Supplementary materials and methods

Plant material, growth conditions and histological analyses

Arabidopsis thaliana ecotype Columbia-0 (Col-0) was the wild-type for the generation of all plant material described in this study. General plant handling and transformation protocols as well as β-glucuronidase (GUS) staining followed standard procedures (Weigel and Glazebrook, 2001). The *ces-1* line was identified in the SIGnAL database (SALK Institute) and corresponds to line SALK_082100. This line segregated kanamycin resistance 3:1 and was defined by the absence of CES transcript.

For hypocotyl elongation assays mother plants were cultivated in a controlled environment of 16 hr/8 hr light/dark cycle (100 μmol m⁻² s⁻¹ white light) at a temperature of 21°C/17°C (±1). Seeds of all lines used in one experiment were harvested at the same time and plated on ATS medium (Lincoln et al., 1990). Hypocotyl elongation assays were performed as described previously (Poppenberger et al., 2005). For hypocotyl growth response assays 24-epiBL (OlChemIm Ltd, Olomouc, Czech Republic) and Brz2001 (Sekimata et al., 2001) were dissolved in DMSO and added to ATS medium in the required concentrations. Seeds were incubated on vertical plates either in the dark (following a 4 hr light impulse) or in the light and hypocotyl elongation was measured at different time-points. For each experiment the 20 tallest seedlings originating from 40 seeds (to correct for late germination) were analyzed in 3 replicates and the standard error (SE) was calculated.

For quantitative PCR analysis 10-day-old seedlings were grown vertically on ATS plates and transferred to flasks containing liquid ATS medium and incubated for 48 hr on an orbital shaker at 20 rpm. 24-epiBL and Brz2001 were then added to the flasks in the indicated concentrations and after incubation seedlings were ground in liquid nitrogen.
Western blotting

For Western blot analysis 100 mg of plant material was ground to a fine powder and extracted with 300 μl loading buffer (66 mM TRIS/HCl pH=6.8, 133 mM DTT, 2.7% SDS, 13% glycerol and 0.01% bromophenol blue). 20 μl of this extract were separated by SDS-PAGE (10% gel) and blotted onto Immobilon P (Millipore Cooperation, Bedford, MA, USA). Membranes were probed with a rabbit anti-c-Myc antibody. Alkaline phosphatase-conjugated goat anti-rabbit IgG (Santa Cruz Biotechnology, CA) was used as secondary antibody and detected by enhanced chemiluminescence using CDP-Star reagent (Amersham Biosciences).

Protein interaction assays and kinase assays

For yeast two-hybrid assays, CES, BEE1 and BEE3 were PCR amplified from Col-0 cDNA using specific primers and cloned into GAL4 bait (pGADT7) and prey (pGBK7) vectors, respectively (Clontech). The sequenced constructs were introduced into the yeast two-hybrid strain PJ69-4A (James *et al.*, 1996) and β-galactosidase activity was assayed.

Kinase assays were performed as described previously (Rozhon *et al.*, 2010).

Supplementary references

Goda H, Sawa S, Asami T, Fujioka S, Shimada Y, Yoshida S (2004) Comprehensive comparison of auxin-regulated and brassinosteroid-regulated genes in Arabidopsis. *Plant Physiol* 134: 1555–1573

Goda H, Shimada Y, Asami T, Fujioka S, Yoshida S (2002) Microarray analysis of brassinosteroid-regulated genes in Arabidopsis. *Plant Physiol* 130: 1319–1334

He JX, Gendron JM, Sun Y, Gampala SS, Gendron N, Sun CQ, Wang ZY (2005) BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses. *Science* 307: 1634–1638

James P, Halladay J, Craig EA (1996) Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. *Genetics* 144: 1425–1436

Li L, Ye H, Guo H, Yin Y (2010) Arabidopsis IWS1 interacts with transcription factor BES1 and is involved in plant steroid hormone brassinosteroid regulated gene expression. *Proc Nat Acad Sci USA* 107: 3918–3923
Lincoln C, Britton JH, Estelle M (1990) Growth and development of the axr1 mutants of Arabidopsis. Plant Cell 2: 1071–1080

Müssig C, Fischer S, Altmann T (2002) Brassinosteroid-regulated gene expression. Plant Physiol 129: 1241–1251

Poppenberger B, Fujioka S, Sueno K, George GL, Vaistij FE, Seto H, Hiranuma S, Takastuto S, Adam G, Yoshida S, Bowles D (2005) The UGT73C5 of Arabidopsis thaliana glucosylates brassinosteroids. Proc Nat Acad Sci USA 102: 15253–15258

Rozhon W, Mayerhofer J, Petuschnig E, Fujioka S, Jonak C (2010) Arabidopsis GSK3, functions in the brassinosteroid signalling pathway. Plant J 62: 215–223

Sekimata K, Kimura T, Kaneko I, Nakano T, Yoneyama K, Takeuchi Y, Yoshida S, Asami T (2001) A specific brassinosteroid biosynthesis inhibitor, Brz2001: evaluation of its effects on Arabidopsis, cress, tobacco, and rice. Planta 213: 716–721

Weigel D, Ahn JH, Blazquez MA, Borevitz JO, Christensen SK, Fankhauser C, Ferrandiz C, Kardailsky I, Malancharuvil EJ, Neff MM, Nguyen JT, Sato S, Wang ZY, Xia Y, Dixon RA, Harrison MJ, Lamb CJ, Yanofsky MF, Chory J (2000) Activation tagging in Arabidopsis. Plant Physiol 122: 1003–1013

Weigel D and Glazebrook J (2001) Arabidopsis: A Laboratory Manual (Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press)
Supplementary figure legends

Figure S1 Analysis of CES-YFP subcellular localization in *Arabidopsis* plants stably transformed with 35Spro:CES-YFP. CES-YFP localizes diffusely to the nucleus in 14-day-old seedlings of 35Spro:CES-YFP. Nuclear compartmentalization was induced by application of 1 μM 24-epiBL for 2 h to plants pre-treated with 2.5 μM Brz2001 for 24 h. Application of Brz2001 on its own did not induce nuclear body formation.

Figure S2 Analysis of BEE1-YFP and BEE3-YFP subcellular localization and interactions of CES with BEE1 and BEE3 in yeast two-hybrid assays. (A) 35Spro:BEE1-YFP reporter expression in *Arabidopsis* protoplasts treated with 24-epiBL (1 μM) 2 hr as compared to untreated controls. (B) 35Spro:BEE3-YFP reporter expression in *Arabidopsis* protoplasts treated with 24-epiBL (1 μM) for 2 hr as compared to untreated controls. (C) Images of a representative 35Spro:CES-CFP and 35Spro:BEE3-YFP co-expressing protoplast after 2 hr of 24-epiBL treatment. (D) Quantitative yeast two-hybrid analysis of ß-galactosidase activity in cells transformed with combinations of CES and BEE1, BEE3 resp. as compared to control strains. Data points represent the average of three replicates. The standard deviation is shown.
BR-induced genes significantly up-regulated in ces-D and their expression in 35Sp:cMyc-CES-SRDX plants.

Public ID	ces-D/Col-0	SRDX/Col-0	Gene symbol	Description
At4g25810	1.3	2.42	XTR6	Xyloglucan-xyloglucosyl transferase
At4g16563	3.8	2.34	PH1	Phosphate-induced 1
At1g35140	3	1.84	LRX2	Extensin; structural constituent of cell wall
At3g45970	3	1.16	D2N2	Dark-induced 2
At1g62440	1.1	1.13	SLAH3	SLAC1 homologue 3
At3g60140	2.3	0.22	AIEXLA1	Expansin-like
At5g24030	3	1.55	SLAH3	SLAC1 homologue 3
At1g10550	1.3	1.82	XTH33	Xyloglucan-xyloglucosyl transferase
At3g35290	3	0.94	--	--
At2g19800	1.2	3.30	MIOX2	Myo-inositol oxygenase 2
At4g38400	1.2	1.17	AIEXLA2	Expansin-like
At5g57550	2	2.84	XTR3	Xyloglucan-xyloglucosyl transferase
At3g93530	3	1.39	--	--
At1g77640	3	0.86	--	--
At2g27920	2.3	0.73	SCPL51	Serine carboxypeptidase
At3g46480	3	0.80	--	--
At2g34510	2.9	1.46	--	Anchored to membrane
At5g08950	1.2	2.54	--	--
At2g47440	1.2	0.89	--	Heat shock protein folding
At2g42580	3	1.41	TTL3	Leaf vascular tissue pattern formation
At5g43800	3	1.18	THE1	Regulation of cell growth
At3g06070	3	0.46	--	--
At3g41080	3	1.66	--	--
At5g13220	3	1.83	AHS1	Jasmonate-associated 1
At1g23030	1.3	1.04	Ubiquitin-protein ligase activity	
At5g57650	1.3	0.71	TCH4	Xyloglucan-xyloglucosyl transferase
At5g06720	1.2	1.59	--	Hydrogen peroxide catalytic process
At2g16060	4	1.64	AHB1	Oxygen transporter activity
At3g47340	4	1.68	ASN1	Dark-induced; amino acid biosynthesis
At2g33570	3	1.11	--	--
At3g62720	3	1.28	ATXT1	Xylosyltransferase 1
At1g11260	2.3	1.32	--	--
At4g35320	2.3	0.75	--	--
At2g14900	2.3	1.09	Endomembrane system	
At3g54030	3	3.15	--	--
At1g66160	3	1.20	--	--
At4g39830	2.3	0.88	--	--
At2g32150	2.3	0.88	Hydrolyase activity	
At3g05060	2.3	0.88	--	--
At1g44350	3	1.44	IIA-Leucine resistant (IRL)-like gene 6	
At5g39580	3	2.66	Hydrogen peroxide catalytic process	
At5g06870	3	1.01	PGIP2	Polygalacturonase inhibiting protein 2
At3g05900	3	1.26	TTL4	Tetratricopeptide-repeat thioredoxin-like 4
At2g28400	2.3	0.94	--	--
At4g31800	3	3.63	--	--
At4g22560	2.3	1.02	--	--
At3g06770	3	0.79	--	--
At3g30775	4	2.70	ERD5	Early responsive to dehydration 5
At2g34300	2.9	1.25	--	--
At5g58670	2.3	0.74	ATPLC1	Phospholipase C, lipid metabolic process
At4g31000	3	1.94	--	--
At5g03120	2.3	1.00	--	--
At2g34930	1.2	3.63	--	--
At5g01040	2.0	1.26	LAC8	Laccase 8
At1g76900	2.0	1.16	--	--
At1g08370	2.0	1.34	FLA9	Fasciclin-like arabinogalactan-protein 9

a Ratio of the microarray intensity of the ces-D mutant and Col-0 controls.

b Student's t-Test p-value.

c FDR q-value.

A ratio of the microarray intensity of the dominant-negative over-expressor line CES-SRDX #203 and Col-0 controls.

References: 1, Goda et al. 2002; 2, Goda et al. 2004; 3, He et al., 2005; 4, Müssig et al., 2002
Supplementary Table 4

Genes involved in the regulation of transcription (GO 0006355) significantly up-regulated in cesD.

Public ID	cesD/Col-0 Ratio^a	p-value^b	q-value^c	CES-SRDX/Col-0 Ratio^a	p-value^b	q-value^c	Gene symbol	Description
At1g65330	26.51	0.0000	0.0028	0.91	0.9087	0.5854	PHE2	Agamous-like transcription factor
At1g18710	18.91	0.0087	0.0390	1.15	0.8588	0.5721	AtMYB47	Myb-type transcription factor, responsive to IAA
At2g44010	14.61	0.0091	0.0400	1.67	0.2417	0.3046	---	Transcription factor activity, shade avoidance
At3g15170	13.57	0.0198	0.0603	0.69	0.6267	0.4925	CUC1	Shoot apical meristem formation
At2g28700	9.95	0.0157	0.0529	2.15	0.4733	0.4284	AGL46	Agamous-like, transcription factor activity
At5g53980	6.85	0.0028	0.0223	0.69	0.4032	0.3963	ATHB52	Homeodomain leucine zipper class I
At2g34600	5.58	0.0031	0.0236	2.43	0.0458	0.1294	JAZ7	Response to JA and chitin
At3g54340	5.00	0.0144	0.0504	9.35	0.0015	0.0261	AP3	Floral homoeotic gene
At1g22130	3.28	0.0345	0.0835	1.09	0.9219	0.5891	AGL104	Agamous-like; pollen development, tube growth
At1g77640	3.12	0.0008	0.0126	0.86	0.3818	0.3859	---	Contains a AP2 domain
At1g01250	2.77	0.0265	0.0719	3.90	0.0008	0.0209	---	Putative transcription factor of unknown function
At4g28190	2.75	0.0009	0.0129	1.11	0.3676	0.3784	ULT1	Regulation of inflorescence meristem growth
At5g50570	2.75	0.0000	0.0040	0.91	0.3766	0.3832	---	Putative SBP-box binding transcription factor
At1g44830	2.70	0.0001	0.0061	1.74	0.0671	0.1564	---	ERF/AP2 transcription factor family
At3g58120	2.62	0.0004	0.0088	0.91	0.3981	0.3939	---	BZIP family transcription factors
At5g13220	2.50	0.0017	0.0179	1.83	0.0169	0.0786	JAS1	Overexpression enhances insensitivity to MeJA
At4g37850	2.50	0.0039	0.0265	1.54	0.3549	0.3718	---	Basic helix-loop-helix (bHLH) family protein
At1g21910	2.45	0.0016	0.0173	1.25	0.0819	0.1733	---	ERF/AP2 transcription factor
At3g16770	2.34	0.0001	0.0059	1.04	0.5265	0.4523	ATEBP	Suppressor of Bax-induced cell death
At4g36730	2.28	0.0004	0.0091	1.29	0.0670	0.1563	GFB1	bZIP transcription factor, G-box binding
At2g30590	2.25	0.0004	0.0088	1.48	0.0131	0.0702	WRKY21	WRKY DNA-binding protein, unknown function
At2g14210	2.20	0.0042	0.0272	0.90	0.8068	0.5726	ANR1	Agamous-like, response to nutrient
At2g42380	2.15	0.0255	0.0702	0.13	0.0090	0.0072	---	Heterodimerizes with AtZIP61, binds G-boxes
At5g60850	2.14	0.0028	0.0225	0.52	0.0001	0.0116	OBP4	Zinc finger protein
At4g31800	2.13	0.0006	0.0107	3.63	0.0001	0.0101	WRKY18	Pathogen-induced transcription factor
At5g10140	2.08	0.0006	0.0107	2.25	0.0000	0.0082	FLC	Agamous-like; negative regulation of flower development

^a Ratio of the microarray intensity of the cesD mutant and Col-0 controls.

^b t-Test p-value.

^c FDR q-value.

^d Ratio of the microarray intensity of the dominat-negative over-expressor line CES-SRDX #203 and Col-0 controls.
Supplementary Table 5

Sequences of primers used in this study.

Name	Sequence
Primers used for cloning and sequencing	
CEspGBK7-T-fw	5' AAGCATATGATGGACGGGTGGACGACGTCATTGAAATGCATCCATAG 3'
CEspGBK7-rv	5' TGGCGAATCCTCAGAAGGAGTGAAGGTGAATGAGTGAAGATGAACTG 3'
CEspGBK7-T-rw	5' GTACCTGGAAGGATGGACGTAATGAGTGAAGGTGAATGAGTGAAGATGAACTG 3'
CEspGBK7-fw	5' TGCGAATCCTCAGAAGGAGTGAAGGTGAATGAGTGAAGATGAACTG 3'
BEE1pGBK7-T-fw	5' TCTGAATGCATTCATATGCAATGTCATGCAGGAGGAATTGAGTGAAGATGAACTG 3'
BEE1pGBK7-rv	5' GAGGACCGAAGGAGTGAAGGTGAATGAGTGAAGATGAACTG 3'
BEE1pGBK7-T-rw	5' TCTGAATGCATTCATATGCAATGTCATGCAGGAGGAATTGAGTGAAGATGAACTG 3'
BEE3pGBK7-fw	5' CACATGCGGAGATCTCTCTCTCGA 3'
BEE3pGBK7-rv	5' CAAGAATCGAAGGAGTGAAGGTGAATGAGTGAAGATGAACTG 3'
CESSfusions-fw-c	5' CTACGAAATCGGCAAGGATGTGAATGAGTGAAGATGAACTG 3'
CEStranscGUS-rv-a	5' CTGCGAATCCTCAGAAGGAGTGAAGGTGAATGAGTGAAGATGAACTG 3'
pGWR8-8-BEE1-1	5' GATACCGAAGGAGTGAAGGTGAATGAGTGAAGATGAACTG 3'
pGWR8-8-SEE1-2	5' GCCCGCCCTAAGGAGGATGTGAATGAGTGAAGATGAACTG 3'
pGWR8-8-SEE1-3	5' ACCATGCGAAGGAGTGAATGAGTGAAGATGAACTG 3'
pGWR8-8-SEE1-2	5' GCCCGCCCTAAGGAGGATGTGAATGAGTGAAGATGAACTG 3'
pGWR8-8-SES-1	5' ACCATGCGAAGGAGTGAATGAGTGAAGATGAACTG 3'
PGWKR-8-SES-2	5' GAGGAGGAGGAGTGAAGGTGAATGAGTGAAGATGAACTG 3'
SOER2	5' GCGGATGCAGACGTTACATGCCAGATGATATGAGATGAACTG 3'
SOEL2	5' TGATGCGATATCAGCTGCAGGCAACACTTATAC 3'

Primers used for RT-semi quantitative PCR	
Atlg25320RT-fw	5' GTATACCGCCTTCCGAGGATGTGAATGAGTGAAGATGAACTG 3'
Atlg25320RT-rv	5' GATATGCGATTCCGAGGATGTGAATGAGTGAAGATGAACTG 3'
Atlg25340RT-T-fw	5' GATATGCGATTCCGAGGATGTGAATGAGTGAAGATGAACTG 3'
Atlg25340RT-rv	5' GATATGCGATTCCGAGGATGTGAATGAGTGAAGATGAACTG 3'
CERSRT-fw	5' CTGCGAATCCTCAGGCAAGGATGTGAATGAGTGAAGATGAACTG 3'
CERSRT-rv	5' CTGCGAATCCTCAGGCAAGGATGTGAATGAGTGAAGATGAACTG 3'
CPDRT-fw	5' TCGTGAATCCTCAGGCAAGGATGTGAATGAGTGAAGATGAACTG 3'
CPDRT-rv	5' TCGTGAATCCTCAGGCAAGGATGTGAATGAGTGAAGATGAACTG 3'
DWF4RT-fw	5' TCGTGAATCCTCAGGCAAGGATGTGAATGAGTGAAGATGAACTG 3'
DWF4RT-rv	5' TCGTGAATCCTCAGGCAAGGATGTGAATGAGTGAAGATGAACTG 3'
ROT3-fw	5' TCGTGAATCCTCAGGCAAGGATGTGAATGAGTGAAGATGAACTG 3'
ROT3-rv	5' TCGTGAATCCTCAGGCAAGGATGTGAATGAGTGAAGATGAACTG 3'
UBQ5-fw	5' TCGTGAATCCTCAGGCAAGGATGTGAATGAGTGAAGATGAACTG 3'
UBQ5-rv	5' TCGTGAATCCTCAGGCAAGGATGTGAATGAGTGAAGATGAACTG 3'

Primers used for RT-qPCR	
CPD-1	5' CTTACGCGGAGGATGTGAATGAGTGAAGATGAACTG 3'
CPD-2	5' TCGTGAATCCTCAGGCAAGGATGTGAATGAGTGAAGATGAACTG 3'
DWF4RT-3	5' TCGTGAATCCTCAGGCAAGGATGTGAATGAGTGAAGATGAACTG 3'
DWF4RT-4	5' TCGTGAATCCTCAGGCAAGGATGTGAATGAGTGAAGATGAACTG 3'
ROT3-3	5' TCGTGAATCCTCAGGCAAGGATGTGAATGAGTGAAGATGAACTG 3'
ROT3-4	5' TCGTGAATCCTCAGGCAAGGATGTGAATGAGTGAAGATGAACTG 3'
UBQ5-1	5' TCGTGAATCCTCAGGCAAGGATGTGAATGAGTGAAGATGAACTG 3'
UBQ5-2	5' TCGTGAATCCTCAGGCAAGGATGTGAATGAGTGAAGATGAACTG 3'

Primers used for ChIP-semi quantitative PCR	
CPD-ChIP-1	5' TTATCGCGGAGCAGGTAATGCGGATGGTGAATGAGTGAAGATGAACTG 3'
CPD-ChIP-2	5' TTATCGCGGAGCAGGTAATGCGGATGGTGAATGAGTGAAGATGAACTG 3'
CPD-ChIP-3	5' TTATCGCGGAGCAGGTAATGCGGATGGTGAATGAGTGAAGATGAACTG 3'
CPD-ChIP-4	5' TTATCGCGGAGCAGGTAATGCGGATGGTGAATGAGTGAAGATGAACTG 3'
CPD-ChIP-5	5' TTATCGCGGAGCAGGTAATGCGGATGGTGAATGAGTGAAGATGAACTG 3'
CPD-ChIP-6	5' TTATCGCGGAGCAGGTAATGCGGATGGTGAATGAGTGAAGATGAACTG 3'
CPD-ChIP-7	5' TTATCGCGGAGCAGGTAATGCGGATGGTGAATGAGTGAAGATGAACTG 3'
CPD-ChIP-8	5' TTATCGCGGAGCAGGTAATGCGGATGGTGAATGAGTGAAGATGAACTG 3'
CPD-ChIP-9	5' TTATCGCGGAGCAGGTAATGCGGATGGTGAATGAGTGAAGATGAACTG 3'
CPD-ChIP-10	5' TTATCGCGGAGCAGGTAATGCGGATGGTGAATGAGTGAAGATGAACTG 3'
CPD-ChIP-13	5' TTATCGCGGAGCAGGTAATGCGGATGGTGAATGAGTGAAGATGAACTG 3'
CPD-ChIP-14	5' TTATCGCGGAGCAGGTAATGCGGATGGTGAATGAGTGAAGATGAACTG 3'
CPD-ChIP-15	5' TTATCGCGGAGCAGGTAATGCGGATGGTGAATGAGTGAAGATGAACTG 3'
CPD-ChIP-16	5' TTATCGCGGAGCAGGTAATGCGGATGGTGAATGAGTGAAGATGAACTG 3'

Primers used for ChIP-qPCR	
SS-F''	5' GAGGATGCGGAGCAGGTAATGCGGATGGTGAATGAGTGAAGATGAACTG 3'
SS-R''	5' GAGGATGCGGAGCAGGTAATGCGGATGGTGAATGAGTGAAGATGAACTG 3'
CPD-qPCR-9	5' GAGGATGCGGAGCAGGTAATGCGGATGGTGAATGAGTGAAGATGAACTG 3'
CPD-qPCR-10	5' GAGGATGCGGAGCAGGTAATGCGGATGGTGAATGAGTGAAGATGAACTG 3'
COR15a-ChIP-1	5' GAGGATGCGGAGCAGGTAATGCGGATGGTGAATGAGTGAAGATGAACTG 3'
COR15a-ChIP-2	5' GAGGATGCGGAGCAGGTAATGCGGATGGTGAATGAGTGAAGATGAACTG 3'
Supplementary Table 5
(continued)

Name	Sequence	3'
COR15a-ChIP-3	5' TGTTGGCGGACATACATTG	
COR15a-ChIP-4	5' TCGTCTCATTTCTCCAG	
COR15b-ChIP-1	5' GATAATGCAATGCCAAAAA	
COR15b-ChIP-2	5' TCTCGACCAATGAGAATCCA	
CYP718-ChIP-3	5' ACATACAGCCGAGCCACCTG	
CYP718-ChIP-4	5' TGGATGGGTCTCTTCTACCTC	
CYP724a1-ChIP-1	5' CATGAGGTTCCCCAAATTACG	
CYP724a1-ChIP-2	5' TTCTCTAAAAAGAGGAATGAAAGAA	
DIN11-ChIP-1	5' TCAAAGGATTGGATCTACCTC	
DIN11-ChIP-2	5' TCAAGCGTGAAGTAGTTTGGAG	
DWF4-ChIP-1	5' CTCTGTCGTCATGCCTTC	
DWF4-ChIP-2	5' CAATGATTCCGGAATGG	
JR2-ChIP-1	5' ACACAGTTTTAGATCAGGAAGG	
JR2-ChIP-2	5' GCCAATGGTTTTCACATTGTC	
KIN1-ChIP-1	5' CCGACATAAGGCAAAACTCGA	
KIN1-ChIP-2	5' GATGTGGTGGCAGGATAGA	
PHE2-ChIP-1	5' GAATTTGCGGATGAGTT	
PHE2-ChIP-2	5' TTTGGAAACATTTCAAGTTT	

Name	Sequence	3'
Reference: Le et al. (2010)		