Quality management of eLearning for medical education: current situation and outlook

Abstract

Introduction: In 2008, the German Council of Science had advised universities to establish a quality management system (QMS) that conforms to international standards. The system was to be implemented within 5 years, i.e., until 2014 at the latest. The aim of the present study was to determine whether a QMS suitable for electronic learning (eLearning) domain of medical education to be used across Germany has meanwhile been identified.

Methods: We approached all medical universities in Germany (n=35), using an anonymous questionnaire (8 domains, 50 items).

Results: Our results (response rate 46.3%) indicated very reluctant application of QMS in eLearning and a major information deficit at the various institutions.

Conclusions: Authors conclude that under the limitations of this study there seems to be a considerable need to improve the current knowledge on QMS for eLearning, and that clear guidelines and standards for their implementation should be further defined.

Keywords: education, eLearning, quality, quality assurance, quality management

Introduction

Electronic learning (eLearning) is increasingly used at universities and is expected to gain even more importance in the future. Universities have a legal obligation to evaluate the quality and effectiveness of their teaching [http://www.gesetze-im-internet.de/hrg/BJNR001850976.html cited 2014 September 10]. While in the past, this obligation concerned only classroom teaching, it now has to be extended to the eLearning domain. Because clear guidelines are still missing, the process of quality management is impeded. In their recommendation of July 04, 2008, the German Council of Science had stated that within a period of approximately three to five years, universities should establish a quality management system (QMS) that meets international standards [1]. Furthermore it recommended the implementation of reliable tools to evaluate the quality of teaching [1].

Thus, universities have to decide which type of QMS they wish to adopt and integrate. The aim of the present study was to assess the current situation regarding the use of QMS in eLearning by sending an anonymous questionnaire to all German medical universities and some related institutions that use eLearning tools. Our working hypothesis was as follows: „Although early initiatives of quality management for eLearning in medical education do exist, adoption and realisation of QMS at the universities are barely apparent. Universities lack knowledge of these systems, and guidelines and standards for their implementation are missing“.

Material and methods

Study participants

The study population consisted of all German medical schools (n=35) as well as some non-university institutions or departments other than medical schools (n=6) that were known to use a QMS for eLearning or to take an interest in this matter. Institutions not located in Germany were excluded. Names of individuals responsible for quality management (specifically for eLearning, if available) at the selected universities were retrieved from the institutions’ homepages. In addition, we searched for addresses of deaneries and administrative offices. To ensure a high rate of returned questionnaires, we informed the potential participants about the study by e-mail before sending out the questionnaires. Content and scope of the study were explained, and participating institutions were asked to provide the e-mail address of a contact person to whom the questionnaire could be sent. Contact persons without an e-mail address were contac-
ted by telephone to request the current details for correspondence. Content and scope of the study were detailed again when sending out the final questionnaire, and instructions on the completion of both the paper-pencil version (provided as a PDF attachment for printout on paper and return by mail) and the online version (including the TAN number of the Education Survey Automation Suite [EvaSys] platform). Twenty-one days after dispatch of the forms, a first email reminder was sent out, with a second and final one released after another 21 days. In both emails, the selected institutions were asked again to participate in the study, emphasising the value and importance of their individual replies.

Questionnaire

The questionnaire contained 50 items in 8 domains (see attachment:). It comprised “closed” questions providing a choice of answers, open questions with blanks for free text entries, and questions on personal opinion using a 5-point scale (1=totally agree, 2=agree, 3=neutral, 4=disagree, 5=totally disagree).

The eight domains included questions regarding

1. general informations about the institution (6 Items),
2. general informations about QMS at the institution (11 items),
3. decision making (11 items),
4. satisfaction, clarity (5 items),
5. time factors (4 items),
6. cost factors (4 items),
7. headcount and responsibilities (6 items) and
8. general comments (3 items).

The content of our questionnaire was based on two earlier surveys, i.e., a study performed by the European Quality Observatory (EQO) entitled “Use and prevalence of quality approaches for eLearning in Europe” [2], and a study on quality management in private medical practices conducted by the German Public Health Foundation (GPHF) in 2008 [3]. We adapted the questions asked by GPHF (e.g., whether institutions have considered quality management at all, and which types of QMS they know) to eLearning and the current test population. The study by the EQO was used to formulate questions on the degree of popularity of various approaches to managing quality [2].

The QMS for eLearning most commonly discussed in the literature were listed as options to tick in the questionnaire. They comprised CEL, DIN PAS 1032–1, Q.E.D., QSel, TUD eLearning-Label, and WebKolleg NRW. The specific features of these QMS are as follows:

1. CEL: The CEL (certification of eLearning) evaluates and develops quality on the meso level (university degree courses, educational programmes). The system is concerned with quality assessment of educational programmes supported by eLearning. Thus, the CEL assesses the complete training module rather than the product itself. It is planned to establish CEL for the entire European eLearning sector.
2. DIN-PAS 1032-1: This QMS concerns primary and continued education with a specific focus placed on eLearning. It was developed by the working group named “Quality in eLearning” of the German Institute for Standardization (DIN; Deutsches Institut für Normung e.V.; PAS = Publicly Available Specifications). The system aims to elaborate processes for planning, developing, conducting, and evaluating educational programmes and facilities, particularly those supported by eLearning.
3. Q.E.D.: The Q.E.D. (quality initiative eLearning in Germany; Qualitätssignatur eLearning in Deutschland) deals with primary and continued education with a special focus placed on eLearning. The initiative’s primary objective is to improve the quality of work process-oriented eLearning in Germany, based on the development and implementation of reference models and quality standards.
4. QSel: The QSel (seal of quality eLearning; Qualitätsiegel eLearning) aims to improve the quality of organisations concerned with primary and continued education, especially those using eLearning and blended learning. The seal serves to document and certify practical application of the quality models DIN-PAS 1032–1 and ISO/IEC 19796–1. In this way, the seal complements existing approaches, concepts, and processes of quality management in the area of eLearning. The seal does not attempt to evaluate the products themselves but rather serves as an instrument to assess process-oriented goals and their degree of achievement.
5. TUD eLearning-Label: The TUD (Technical University of Darmstadt) eLearning-Label evaluates eLearning activities. The system serves as the quality standard to ensure educational and didactic quality of information/communication technology used as part of university course curricula. Educational modules are awarded the label if the criterion of improved teaching benefits is fulfilled. At present, no TUD eLearning-Labels are awarded.
6. WebKolleg NRW: WebKolleg NRW (Nordrhein-Westfalen) assesses educational programmes, especially those involving eLearning, on the basis of more than 50 criteria relating to contents, methodological-didactic aspects, and technical features. Approval is based on criteria developed by WebKolleg NRW themselves, and no certificate or seal is awarded. WebKolleg NRW provides a procedure for authorizing educational modules for the continued-education portal of Nordrhein-Westfalen.

In the questionnaire, a space was added for entry of any system that was not listed. The final questionnaire was developed in a three-step procedure. A team of nine employees of the dental clinic of the Goethe University, Frankfurt am Main (a master of medical education, a QMS delegate, and seven members of the medical education staff) was responsible for evaluating the appropriateness of the questionnaire on three occasions (March,
July, and August 2010), using the ‘thinking aloud’ method [4]. The team members were asked to review the existing version of the questionnaire and were instructed to clearly voice their comments. These were immediately noted and documented by the study leader in a circulating process. The method requires that the team members “think aloud” while performing a specific task (e.g., review of the questionnaire in our case). The team members were asked to pronounce everything that occurred to them, as well as what they were doing, feeling, and looking at while performing the assigned task. This method is advantageous because any misinterpretations of concepts applied in the system and their reasons become readily apparent.

Data collection and analysis

Data collection lasted from September 07, 2010, to March 31, 2011. Data of completed questionnaires were entered into EvaSys for metric evaluation.

Results

Return rates and integration

Overall, 19 of the 41 questionnaires sent out were returned. Of the 35 questionnaires sent to German medical universities, 16 were resubmitted (i.e., Aachen, Berlin, Düsseldorf, Essen, Freiburg, Göttingen, Greifswald, Halle, Hamburg, Hannover, Heidelberg, Jena, Kiel, Leipzig, Lübeck, and Ulm). Of the 6 questionnaires sent to non-university institutions or departments other than medical, three (Technical University of Darmstadt, Wilhelm Büchner University of Darmstadt, and the Central Quality Assurance Section of the Johannes Gutenberg University im Mainz) were resubmitted. Of the 19 questionnaires returned, only three were answered completely. There existed 6 items partially not being answered by all these remaining 16 institutions: numbers 2.4 (answer: “We could not yet decide on a QMS”), 3.1 (answers: “cost effectiveness / reduction of costs” and “streamlining of processes”), 3.3 (answers: “cost factor”, “recommendation”, “competition”, “time factor” and “competent service provider”), 3.6 (answers: “not satisfied with the service provider” and “individual adaptation to specific requirements not or hardly possible”), 4.4 (answers: “economic efficiency” and “improved learning outcomes”) and 7.5 (trained QM delegate). Three of them were part of the domain “decision making” the others of the domains “general question”, “satisfaction/ clarity”, and “headcount/responsibilities”.

The study revealed that 14 institutions had adopted a QMS. Nine institutions reported a general QMS to be available for the entire institution. Only three participating universities or departments other than medical, three (Technical University of Darmstadt, Wilhelm Büchner University of Darmstadt, and the Central Quality Assurance Section of the Johannes Gutenberg University im Mainz) were resubmitted. Of the 19 questionnaires returned, only three were answered completely. Mostly questions about decision making themes were dropped out, for example as reasons, why the QMS wouldn’t be chosen again with the answers “not satisfied with the service provider” and “individual adaptation to specific requirements not or hardly possible”. In the domain “satisfaction and clarity” the answers to the question “Which positive effects have resulted from the implementation of QMS for eLearning?” with “economic efficiency” and “improved learning outcomes” were never ticked.

Discussion

Bearing in mind our working hypothesis the achieved results show that only a few medical universities in Germany have introduced a QMS for general teaching and learning so far. The minimum number of implemented QMS for eLearning especially results in a hard limitation of the study interpretation. Also the response rate of the study and the fact that of the 19 questionnaires returned, only three were answered completely, must be critically mentioned during the discussion of our results. Furthermore extrapolation of the findings to other disciplines and countries is not possible. However it must be stated, that six from the 50 items were generally not answered completely by the 16 remaining institutions. Mostly questions about decision making themes were dropped out, for example as reasons, why the eLearning QMS wouldn’t be chosen again with the answers “not satisfied with the service provider” and “individual adaptation to specific requirements not or hardly possible”. In the domain “satisfaction and clarity” the answers to the question “Which positive effects have resulted from the implementation of QMS for eLearning?” with “economic efficiency” and “improved learning outcomes” were never ticked.

In the domain “headcount and responsibilities” the answer of the question “Who is responsible for the QMS for eLearning?” with “trained QM delegate” was also never marked. These facts must be considered with regard to the current situation. Perhaps the omission of possible answers reflects the problem of the respondents. Further research should clarify these relationships.

Our study documents however that general QMS is well established in medical German university hospitals, while suitable QMS for eLearning are barely available. Current literature indicates that specific QMS for eLearning do exist, but information on their implementation at universities is limited. It is apparent that establishing such systems at universities is associated with various difficulties [http://www.hamburg.de/contentblob/4014946/data/desetzesentwurf-zur-weiterentwicklung-
des-hochschulrechts.pdf, cited 2014 September 10), [5], [6], [7]. Universities have to decide whether to use an internal or external QMS and whether the system should be product- or process-oriented. Moreover, decisions with respect to quality criteria (specifically developed versus predefined) and the choice of a controller (external versus in-house) have to be made. Finally, questions concerning the duration of the implementation process and availability of budget must be addressed. According to Bremer [5], the level of quality management at universities specially in German-speaking countries is rather heterogeneous at present. While some universities, e.g., the University of St. Gallen, Switzerland, the Technical University Darmstadt, and the Goethe University, Frankfurt am Main, have initiated quality assessments of their eLearning products and settings, others are mostly concerned with establishing rather than monitoring eLearning modules at their institution [5]. Thus, evaluation of eLearning tools at universities is still in its early stages [7], and QMS for eLearning are rather rare [2]. Although it is essential to establish evaluation processes within the framework of quality management [http://www.hamburg.de/contentblob/4014946/data/gesetzsentwurf-zur-weiterentwicklung-des-hochschulrechts.pdf, cited 2014 September 10], integration of complete QMS at universities is only just beginning [6], and it remains uncertain how such systems will perform at individual institutions. Validated instruments for the comprehensive assessment of QMS for eLearning in medical training are not yet available. The studies (EQO and GPHF) utilized in our investigation were used as a rough guidance only because they were unrelated to medical contents or referred to general QMS rather than specific QMS for eLearning [2], [3].

As reported in the literature, most QMS for eLearning were completed after 2002. For example, DIN PAS 1032-1:2004 [8], DIN-PAS 1037-2004 [8], and TUD eLearning Label [9] were all completed in 2004, while Q.E.D. [8] was introduced in 2006. WebKolleg NRW [http://www.webkolleg.nrw.de, cited 2014 September 10] became available in 2003. The positive effects expected to result from the implementation of a QMS for eLearning, such as improved quality of teaching, larger selection of eLearning programmes, enhanced competitiveness, lower error rate, streamlined processes, and improved learning outcomes, are stated in literature [8]. Information on quality management of university teaching on an international level has emerged from surveys conducted by Fredekind et al. [10] and Ruiz et al. [11]. The authors suggest peer-reviewed models for eLearning programmes, pointing out that eLearning is increasingly used in clinical teaching but is not yet subject to peer-review.

Degree of popularity

Nine institutions indicated that the reason for not having introduced a QMS for eLearning was the lack of relevant information. This agrees well with other studies, although the popularity level for general QMS among medical doctors amounted to 73% for the system DIN EN ISO 9000 ff. and to 28.4% for EFQM (the excellence model of the European Foundation for Quality Management) [3]. A variation of the EFQM, namely the EFQUEL (European Foundation for Quality in e-Learning) certifies additionally to medical universities also non-medical institutions like DOBA (Maribor Faculty of Applied Business and Social Studies in Slovenia), Moscow university of Industry and Finance in Russia, School of Humanities at the University of Aegean in Greece. In the literature, specific training and the appointment of an external quality manager have frequently been named as possible solutions to increase the popularity level. According to Wellems [12], it may be helpful to involve an external expert whose acceptance by the staff is expected to be higher than that of an internal expert. In this way, costs in connection with internal quality management training may be reduced [12]. In the literature, the time needed to establish a QMS in general education, e.g., learner-oriented quality improvement in advanced training (LQW), was indicated as 13 months [http://www.elearning-mv.de/wp-content/uploads/2011/12/EmpfehlungenZertifizierungE-Learning-in-MV.pdf, cited 2014 September 10], while the Central Office for Distance Learning (ZFU) cited 90 days [http://www.zfu.de, cited 2014 September 10], and the “Gütesiegelverbund Weiterbildung” reported 12 months [http://www.guetesiegelverbund.de, cited 2014 September 10]. For WebKolleg NRW, the time needed to set up the system was documented as one day [http://www.webkolleg.nrw.de, cited 2014 September 10]. Using the GPHF-study as an example, the time required for QMS implementation amounted to 6 h per week for the staff, and 4.5 h per week for the owner of the private practice [3]. Quality competitions, such as the EQA (European Quality Award), require extensive preparation time lasting several years [13]. Similarly, extensive preparation and consultation time is required for DIN-PAS 1032-1 that comprises 693 quality criteria [8]. However, it is not always necessary to set up a separate QMS for eLearning; in certain cases, integration into a pre-existing QMS may be possible [14]. In the literature, the saving potential of a QMS is indicated mostly in terms of re-usability (standards) [http://www.elearning-mv.de/wp-content/uploads/2011/12/EmpfehlungenZertifizierungE-Learning-in-MV.pdf, cited 2014 September 10]. Regarding the costs, only limited information on the set-up and maintenance of QMS for eLearning is available. The literature indicates that universities receive variable financial support. An example for only modest support was described by Hendricson et al. [15], who assessed the realisation of eLearning curricula at medical universities in North-America. The authors concluded from their study that only few faculties obtained financial support for the implementation of a QMS. Fredekind et al. [10] reported also an example where support was provided. Their study included all 65 American and Canadian...
medical universities; 95% of them received administrative help. To ensure effective quality control and develop a programme for risk management, the authors proposed the following measures: active support by the dean, setting goals and visions, appointing trained board members, developing tools for quality control, adhering to institutional standards in patient care, and establishing measures for continuous improvement [10].

The costs for learner-oriented quality improvement in advanced training (LQW) were ranked by size of the organisation and amounted to 4200 € for an organisation employing up to five persons, for example [http://www.elearning-mv.de/wp-content/uploads/2011/12/EmpfehlungenZertifizierungE-Learning-in-MV.pdf, cited 2014 September 10]. Costs for certification of correspondence courses quoted by the ZFU were reported to be at least 950 € or 150% of the purchasing price [http://www.zfu.de, cited 2014 September 10]. Thus, large sums of money have to be invested for the QMS before its advantages will pay off. According to the literature, use of a QMS contributes to cost reduction by applying standards and the option of re-using the system. Moreover, work processes can be streamlined, and staff costs may be lowered. In his study, Rothlauf concluded that the advantages associated with the implementation of a QMS justify the financial expenditure [16]. As reported by Knispel, cost reduction is a positive result of using a QMS [8]. However, high certification costs associated with implementing a QMS, as in the case of DIN ISO 9001, discourage small institutions from using a QMS, although cost reduction is mentioned as an advantageous feature of DIN ISO 9001 [17].

Conclusions

This investigation documents that only very few german medical universities already utilize a QMS for learning. Overall, we conclude that there is a considerable need for better information on QMS for eLearning.

Acknowledgements

We thank all participating universities and Dr. Silvia M. Rogers Weller, Ph.D. (Mediwrite GmbH, Basel, Switzerland) for her language assistance.

Author’s contributions

Authors JA, JM and SG were involved in the conception and all in the evaluation of the study. All authors approved the final version of the manuscript to be published. All authors have been responsible for redrafting and revising the intellectual content of this article. The corresponding author wrote the first draft, the others contributed equally to the paper.

Competing interests

The authors declare that they have no competing interests.

Attachments

Available from http://www.elearning-mv.de/en/journals/zma/2015-32/zma000962.shtml
1. Attachment.pdf (33 KB)

Questionnaire
References

1. Wissenschaftsrat. Empfehlungen zur Qualitätsverbesserung von Lehre und Studium. Köln: Wissenschaftsrat; 2008. Zugänglich unter/available from: http://www.wissenschaftsrat.de/download/archiv/8639-08.pdf geprüft am 15.09.2014

2. Ehlers U, Goertz L, Hildebrandt B, Pawlowski J. Qualität im E-Learning. Nutzung und Verbreitung von Qualitätssansätzen im europäischen E-Learning. Eine Studie des European Quality Observatory. Luxemburg: Amt für amtliche Veröffentlichungen der Europäischen Gemeinschaft; 2005. Zugänglich unter/available from: http://libserver.cedefop.europa.eu/vetelib/ eu/pub/cedefop/pan/2005_5162_de.pdf geprüft am 15.09.2014

3. Obermann K, Müller P. Qualitätsmanagement in der ärztlichen Praxis. Eine deutschlandweite Befragung niedergelassener Ärztinnen und Ärzte. Hamburg: Stiftung Gesundheit; 2008. Zugänglich unter/available from: http://www.stiftung-gesundheit.de/pdf/studien/Studie_QM_2008.pdf geprüft am 15.09.2014

4. Beatty PC, Willis GB. Research synthesis: The practice of cognitive interviewing. Public Opinion Quart. 2007;71:287-311. Zugänglich unter/available from: http://isites.harvard.edu/fs/docs/icb.topic1352376.files/Public%20Opin%20Q-2007-Beatty-287-311.pdf geprüft am 15.09.2014

5. Bremer C. Qualität im eLearning durch Kompetenz stärken. In: Mühlhäuser M, Rößling G, Steinmetz R (Hrsg). DeLFI 2006: 4. eLearning Fachtagung Informatik der Gesellschaft für Informatik e.V. (GI), 11.-14.09.2006 in Darmstadt. Bonn: Gesellschaft für Informatik; 2006.

6. Nickel S. Qualitätsmanagementsysteme an Universitäten und Fachhochschulen: ein kritischer Überblick. Beiträge zur Hochschulforschung, Heft 1. München: Bayerisches Staatsinstitut für Hochschulforschung und Hochschulplanung; 2008. Zugänglich unter/available from: http://www.che.de/downloads/Nickel_QM_Ueberblick.pdf geprüft am 15.09.2014

7. Paechter M. Von der didaktischen Version zum messbaren Indikator: Entwicklung eines Qualitätssystems für mediennbasierte Lehre. In: Sindler A, Bremer C, Dittler U, Hennecke P, Sengstad C, Wedekind J (Hrsg). Qualitätssicherung im eLearning. Münster: Waxmann Verlag; 2006.

8. Knispel K. Qualitätsmanagement im Bildungswesen. Münster: Waxmann Verlag GmbH; 2008.

9. Bruder R, Osswald K, Sauer S, Sonnberger J. Qualitätssicherung mit einem eLearning-Label für universitäre Lehre und einem Gütesiegel. In: Sindler A, Bremer C, Dittler U, Hennecke P, Sengstad C, Wedekind J (Hrsg). Qualitätssicherung im eLearning. Münster: Waxmann Verlag; 2006.

10. Fredekink RE, Cuny EJ, Nadershah NA. Quality assurance and risk management: a survey of dental schools and recommendations for integrated program management. J Dent Educ. 2002;66(4):556-563.

11. Ruiz JG, Candler C, Teasdale TA. Peer reviewing e-learning: opportunities, challenges, and solutions. Acad Med. 2007;82(5):503-507. DOI: 10.1097/ACM.0b013e31803ead94

12. Wellemes E Externer QMB. Aufgaben und Einsatzmodelle. Köln: TÜV Media GmbH; 2014. Zugänglich unter/available from: http://www.qm-aktuell.de/downloads/qmb_05130_v.pdf geprüft am 15.09.2014

13. Wirth M. Qualität eLearning-gestützter Aus- und Weiterbildungsprogramme. Dissertation. Brühl: MVR Druck GmbH; 2005.

14. Stefano A. E-Learning, Grundlagen, Instrumente, Qualitätsmanagement. Berlin: VDM Verlag Dr. Müller; 2005.

15. Hendricson WD, Panagakos F, Eisenberg E, McDonald J, Guest G, Jones P, Johnson L, Cintron L. Electronic curriculum implementation at North American dental schools. J Dent Educ. 2004;68(10):1041-1057.

16. Rothlauf J. Total Quality Management in Theorie und Praxis. Oldenbourg/München: Wissenschaftsverlag GmbH; 2004. DOI: 10.1524/9783486592764

17. Daun A. Qualitätsmanagement und Standardisierung im eLearning. Essen: Universität Essen; 2002.

Corresponding author:
PD Dr. Susanne Gerhardt-Szép, MME
Goethe University Frankfurt am Main, Carolinum Dental University-Institute gGmbH, Department of Operative Dentistry, Theodor-Stern Kai 7, D-60596 Frankfurt, Germany; Phone: +49 (0)69/6301-7505
S.Szep@em.uni-frankfurt.de

Please cite as
Abrusch J, Marienhagen J, Böckers A, Gerhardt-Szép S. Quality management of eLearning for medical education: current situation and outlook. GMS Z Med Ausbild. 2015;32(2):Doc20.
URN: urn:nbn:de:0183-zma0009621
DOI: 10.3205/zma000962, URN: urn:nbn:de:0183-zma0009621
This article is freely available from http://www.egms.de/en/journals/zma/2015-32/zma000962.shtml

Received: 2014-09-15
Revised: 2015-02-04
Accepted: 2015-02-27
Published: 2015-05-13

Copyright
©2015 Abrusch et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 License. See license information at http://creativecommons.org/licenses/by/4.0/.
Qualitätsmanagement im eLearning in der Medizin: eine Ist-Analyse mit Folgerungen

Zusammenfassung

Einleitung: Der Wissenschaftsrat empfahl 2008 den Universitäten innerhalb der nächsten 5 Jahre, d. h. bis spätestens 2014, ein Qualitätsmanagementsystem (QMS), das internationalen Maßstäben entspricht, zu etablieren. Ziel der vorliegenden Studie war es, zu evaluieren, ob es derzeit ein geeignetes QMS für das elektronische Lernen (eLearning) gibt, das speziell im Fach Humanmedizin deutschlandweit eingesetzt werden kann.

Methoden: Im Rahmen einer Umfrage wurden mittels eines anonymisierten Fragebogens (8 Domänen, 50 Items) alle Universitäten (n=35) des Fachbereichs Medizin in Deutschland evaluiert.

Ergebnisse: Die Ergebnisse (46,3% Rücklaufquote) zeigen einen nur zögerlichen Einsatz von QMS für eLearning und dass vor Ort ein großes Informationsdefizit herrscht.

Schlussfolgerung: Unter Berücksichtigung der Limitationen dieser Studie kann zusammenfassend festgehalten werden, dass erheblicher Bedarf zu bestehen scheint, das existierende Informationsdefizit für QMS eLearning zu mindern, sowie zukünftig genaue Richtlinien und Standards zur Umsetzung zu definieren.

Schlüsselwörter: Bildung, eLearning, Qualität, Qualitätsicherung, Qualitätsmanagement

Einleitung

Elektronisches Lernen (= eLearning) wird an Universitäten zunehmend eingesetzt und wird in Zukunft noch an Bedeutung gewinnen. Hochschulen sind gesetzlich dazu verpflichtet, die Qualität und den Erfolg ihrer Lehre zu ermitteln und zu bewerten [http://www.gesetze-im-internet.de/hrg/BJNR001850976.html, zitiert am 10.09.2014]. Diese Pflicht war ursprünglich auf die Präsenzlehre ausgerichtet und bedarf nun ebenso einer Übertragung auf den eLearning Sektor. Genaue Richtlinien hierfür gibt es noch nicht, wodurch die Umsetzung eines Qualitätsnachweises erschwert wird. Eine Empfehlung des Wissenschaftsrats (WR) vom 04.07.2008 lautete, dass Hochschulen innerhalb eines überschaubaren Zeitraums von etwa drei bis fünf Jahren ein Qualitätsmanagementsystem (QMS) etablieren sollen, das internationalen Maßstäben entspricht [1]. Der WR empfiehlt zudem den Aufbau reliabler Bewertungsinstrumente für die Qualität der Lehrleistung [1]. Die Hochschulen stehen daher vor der Aufgabe zu entscheiden, welche Art von QMS sie umsetzen und integrieren möchten. Ziel der vorliegenden Studie war es, im Rahmen einer Ist-Analyse mit Hilfe von anonymisierten Fragebögen, die sich an alle Universitäten des Fachbereichs Medizin in Deutschland richteten, den aktuellen Stand von QMS in Bezug auf eLearning zu untersuchen. Unsere Arbeitshypothese lautete: „Ansätze für QMS für eLearning in der Medizin sind gegenwärtig vorhanden, aber deren Integration und Umsetzung an den Hochschulen sind nur wenig bis gar nicht etabliert. Das Wissen über diese Systeme, sowie Richtlinien und Standards zu deren Umsetzung fehlen den Universitäten."

Material und Methoden

Studienteilnehmer

Die vorliegende Untersuchung schloss alle Universitäten der Fachbereiche Humanmedizin (n=35) und außeruniversitäre Einrichtungen bzw. andere Fachbereiche als Human- und Zahnmedizin (n=6) in Deutschland ein von denen bekannt war, dass sie bereits ein QMS für eLearning benutzten bzw. daran Interesse in diesem Bereich aufwiesen. Einrichtungen außerhalb von Deutschland wurden von der Studie ausgeschlossen. Die ermittelten Universitäten wurden anhand ihrer Homepage auf zuständige Personen für QMS und, falls vorhanden, speziell für eLearning, konsultiert. Weiterhin wurden Studiendekanate
und Stabsstellen herausgesucht. Um eine hohe Rücklaufquote zu gewährleisten, wurden die möglichen Studienteilnehmer vor Versenden des finalen Fragebogens per E-Mail angeschrieben. Sie wurden über Inhalt und Umfang der Fragebogenstudie informiert und gebeten, einen Ansprechpartner (mit E-Mail-Anschrift) zu nennen, an den der Fragebogen versendet werden konnte. Ansprechpartner ohne E-Mail-Adresse wurden telefonisch kontaktiert und die aktuelle E-Mail-Korrespondenzadresse erfragt. Bei der Versendung des finalen Fragebogens wurden erneut Inhalt und Umfang der Studie erläutert und zusätzlichen Instruktionen zum Ausfüllen des Fragebogens gegeben: sowohl für die Paper & Pencil-Variante (als PDF-Datei der verschickten E-Mail angehängt, zum Ausdrucken auf Papier und Zurücksenden auf dem Postweg), als auch für die Online-Variante (inklusive einer TAN-Nummer der EvaSys-Plattform). Weiterhin erfolgte 21 Tage nach Versenden der Fragebögen eine erste Erinnerungsmail und nach weiteren 21 Tagen ein finales (zweites) elektronisches Erinnerungsschreiben. In beiden Erinnerungsmails wurden die Teilnehmer nochmals gebeten, sich an der Studie zu beteiligen und die Bedeutsamkeit ihrer individuellen Antwort betont.

Fragebogen

Der Fragebogen beinhaltete 50 Items in 8 Domänen (siehe Anhang:). Es wurden geschlossene Fragen mit vorgegebenen Antwortmöglichkeiten, offene Fragen mit Freitextangaben und Fragen zu persönlichen Einstellungen mit vorgegebenen fünfstufigen Antwortskalen (1=maximale Zustimmung, 2=Zustimmung, 3=neutrale Haltung, 4=Ablehnung und 5=maximale Ablehnung) verwendet. Die acht Domänen beinhalteten Fragen zu

1. Allgemeine Informationen zur Institution (6 Items),
2. Allgemeine Informationen zum QMS der Institution (11 Items),
3. Entschließungsfundung (11 Items),
4. Zufriedenheit , Übersichtlichkeit (5 Items),
5. Zeitfaktoren (4 Items),
6. Kostenfaktoren (4 Items),
7. Personalaufwand und Zuständigkeiten (6 Items) und
8. Allgemeine Aussagen (3 Items).

Die Erstellung des verwendeten Fragebogens basiert auf zwei vorherigen Untersuchungen (Studie der Stiftung Gesundheit zum QM in der ärztlichen Praxis 2008 und Studie der European Quality Observatory (EQO): „Nutzung und Verbreitung von Qualitätsansätzen im europäischen E-Learning“) [2], [3]. Aus der Studie der Stiftung Gesundheit zu QM wurde die Frage, ob sich die verschiedenen Institutionen überhaupt schon mit QM befasst hatten und welche QMS bekannt sind, auf eLearning und die zu untersuchende Population angepasst [3]. Die Studie der EQO wurde bei der Fragestellung zum Beliebtheitsgrad verschiedener QM-Ansätze ebenso zur Hilfe genommen [2].

QMS für eLearning, die am häufigsten in der Literatur aufgeführt werden, wurden zur Auswahl im Fragebogen zum Ankreuzen vorgegeben. Hierzu zählten CEL, DIN PAS 1032-1, Q.E.D., QSel, TUD eLearning-Label und WebKolleg NRW. Diese unterscheiden sich wie folgt:

1. **CEL:** Das CEL (Certification of eLearning) ist ein Ansatz zur Bewertung und Entwicklung von Qualität auf der Mesoebene (Studiengang, Bildungsprogramm). Die Qualitätsbeurteilung richtet sich auf ein eLearning-gestütztes Ausbildungsprogramm und nicht auf ein Produkt; Ziel der CEL ist eine europaweite Etablierung des Systems für den gesamten eLearning-Bildungsbe- reich.

2. **DIN-PAS 1032-1:** Bezieht sich auf Aus- und Weiterbildung unter besonderer Berücksichtigung von eLearning. PAS = Publicly Available Specifications (= öffentlich zugängliche Spezifikationen), wurde beim DIN (Deutsches Institut für Normung e.V.) von der Arbeitsgruppe „Qualität im eLearning“ entwickelt. Ziel ist die Identifikation und Beschreibung von Prozessen zur Planung, Entwicklung, Durchführung sowie Evaluation von Bildungsprozessen und Bildungsangeboten unter dem spezifischen Aspekt der eLearning-Unterstützung.

3. **Q.E.D.:** Die Q.E.D. (Qualitätsinitiative eLearning in Deutschland) befasst sich mit der Qualität der Aus- und Weiterbildung unter besonderer Berücksichtigung von eLearning. Haupteziel ist die Verbesserung der Qualität von arbeitsprozessorientiertem eLearning in Deutschland basierend auf der Entwicklung und Etablierung von Referenzmodellen und Qualitätsstandards im eLearning.

4. **QSel:** Das Ziel von QSel (Qualitätssiegel eLearning) ist die Verbesserung der Qualitätsentwicklung in Organisationen der Aus- und Weiterbildung, insbesondere für eLearning und Blended Learning. Das Siegel soll die praktische Anwendung der Qualitätsmodelle DIN-PAS 1032–1 und der ISO/IEC 19796–1 dokumentieren und zertifizieren. Damit soll das Siegel eine Ergänzung bieten zu bereits bestehenden Ansätzen, Konzepten und Verfahren zur Qualitätssicherung im eLearning-Bereich. Das Siegel ist kein Instrument zur Bewertung von Produkten, sondern eines der prozessorientierten Überprüfung von Zielen und deren Erfüllungsgrade.

5. **TUD eLearning-Label:** Das TUD (Technische Universität Darmstadt) eLearning-Label begutachtet eLearning-Veranstaltungen. Es dient als Qualitätsmaßstab zur Sicherstellung der pädagogisch-didaktischen Qualität bei der Einbindung von Informations- und Kommunikationstechnologien in die Curricula der Lehrveranstaltungen. Kriterium für die Label-Vergabe ist die verbesserte Lernerorientierung. Aktuell wird das TUD eLearning-Label nicht vergeben.

6. **WebKolleg NRW:** Das Webkolleg NRW (Nordrhein-Westfalen) überprüft Bildungsangebote (speziell im eLearning-Sektor) nach über 50 inhaltlichen, methodisch-didaktischen sowie technischen Gesichtspunkten. Die Zulassung basiert auf eigenen Kriterien, es handelt sich nicht um ein Zertifikat oder Siegel, sondern um ein Zulassungsverfahren von Bildungsange-
boten für das Weiterbildungsportal für neues Lernen in Nordrhein-Westfalen.

Der Fragebogen beinhaltete zusätzlichen Freiraum, um jegliches, nicht gelistetes QMS eintragen zu können. Die finale Version wurde in einem Drei-Schritt-Verfahren entwickelt. Neun Mitarbeiter (eine lehrqualifizierte Person mit einem MME-Abschluss, eine QMS-Beauftragte und sieben Mitarbeiter aus dem Bereich der medizinischen Lehre) gehörten zu dem Personenkreis dieses Evaluationsprozesses. Zu drei verschiedenen Zeitfenstern (März, Juli und August 2010) wurde der Personenkreis aufgefordert, in der „thinking aloud“- Methode den vorgelegten Fragebogen zu evaluieren [4]. Sie wurden gebeten, den Fragebogen zu begutachten und ihre Kommentare direkt auszusprechen. Die Studienleiterin zeichnete während der Testdurchführung alle Kommentare auf. Bei dieser Methode geht es darum, dass die Probanden all das aussprechen, was sie gerade denken, worauf sie gerade schauen, was sie tun und fühlen, noch während sie parallel dazu die Aufgabe (hier: die Überarbeitung des Fragebogens) bearbeiten. Ein großer Vorteil dieser Methode ist, dass unverzüglich klar wird, an welchen Stellen der Benutzer das im System verfolgte Konzept falsch interpretiert und warum diese Fehlinterpretation aufgetreten ist.

Datensammlung und Analyse
Die Evaluation fand im Zeitraum vom 07.09.2010 bis 31.03.2011 statt. Die Fragebögen wurden in EvaSys eingearbeitet und ausgewertet.

Ergebnisse
Rücklaufquoten und Ausfallraten
Von den insgesamt 41 versendeten Fragebögen kamen 19 beantwortet zurück. Von den 35 an die deutschen Universitäten des Fachbereichs Humanmedizin versendeten Fragebögen wurden 16 beantwortet (Aachen, Berlin, Düsseldorf, Essen, Freiburg, Göttingen, Greifswald, Halle, Hamburg, Hannover, Heidelberg, Jena, Kiel, Leipzig, Lübeck und Ulm). Von den 6 an außeruniversitäre Einrichtungen und andere Fachbereiche versendeten Fragebögen kamen drei beantwortet zurück (Technische Universität Darmstadt, Wilhelm Büchner Hochschule Darmstadt und die zentrale Qualitätssicherungseinrichtung der Johannes Gutenberg Universität in Mainz). Von den insgesamt neunungen beantworteten Fragebögen wurden lediglich drei vollständig ausgefüllt. Folgende 6 Items wurden teilweise von keinem der verbliebenen 16 Institutionen beantwortet: Nummern 2.4 (Antwort: „Wir konnten uns noch für kein QM-System entscheiden“), 5.1 (Antworten: „Wirtschaftlichkeit / Kostenenkung“ und „Streit der Arbeitsabläufe“), 5.2 (Antworten: „Kostenfaktor“, „Empfehlung“, „Wettbewerb“, „Zeitfaktor“ und „Kompetenter Dienstleister“), 3.6 (Antworten: „Unzufriedenheit mit dem Dienstleister“ und „Individuelle Anpassung auf die eigenen Belange nicht / kaum möglich“), 7.4 (Antworten: „Wirtschaftlichkeit / Kostenenkung“ und „Verbesserung der Lerneignisse“) und 7.5 (Antwort: „Ausgebildeter QM-Beauftragter“). Drei dieser Items gehörten zu der Domäne „Entscheidungsfindung“, die anderen zu „Allgemeine Fragen“, „Zufriedenheit / Übersichtlichkeit“ und „Personalaufwand und Zuständigkeiten“. Die Studie zeigte, dass 14 Institutionen ein QMS integriert hatten. In neun Fällen war ein allgemeines QMS an den Hochschulen vorhanden. Lediglich drei der befragten Hochschulen gaben an, ein QMS speziell für eLearning eingeführt zu haben. Zwei von ihnen waren medizinische Institutionen. Sechs Institutionen gaben jedoch an, dass sie über ein QMS für Lehre verfügten. Die Gründe, weshalb kein QMS für eLearning eingeführt wurde, erklärten neun Institutionen damit, dass zu wenige Informationen über QMS für eLearning vorhanden seien. In zwei Fällen wurde als Grund „keine Zeit“ und „eLearning wird nicht / kaum in der Lehre angewendet“ benannt; in einem Fall „zu hohe Kosten“ beziehungsweise „kein Bedarf / kein Interesse“. Weitere Gründe im Freitextformat lauteten beispielsweise: „eLearning liegt noch überwiegend in der Hand der einzelnen Kliniken / Institute, kaum übergreifende Strukturen vorhanden“; „Einführung ist zurzeit in Planung durch die zentrale Universitätsverwaltung: QM-Allgemein und QM-Lehre“; „wir haben eine studentische Evaluation, aber keine QMS im engeren Sinne“, „das allgemeine QMS ist auch für eLearning-Angebote zuständig, sodass kein ge- sondertes System notwendig ist“. Die ermittelten Daten zu den Parametern wie Bekanntheitsgrad von QMS für eLearning, Effektivität, Zeit- und Kostenfaktor, um ein solches QMS integrieren zu können, müssen aus Gründen der vorliegenden geringen Rücklaufquote der Fragebögen als nicht repräsentativ angenommen werden.

Diskussion
Ausgehend von unserer Arbeitshypothese zeigen die Ergebnisse dieser Studie, dass nur einige wenige medizinische Universitäten zum aktuellen Zeitpunkt ein QMS für eLearning bzw. für das Lernen generell eingeführt haben. Dies führt zu einer starken Limitation hinsichtlich der Aussagekraft unserer Studie. Hinzu kommen die relativ geringe Rücklaufquote und die Tatsache, dass von den 19 evaluierten Fragebögen nur drei vollständig ausgefüllt worden sind. Dies muss bei der Diskussion der Ergebnisse besondere Berücksichtigung finden. Die Übertragbarkeit der Ergebnisse auf andere Disziplinen und Länder ist ebenfalls eingeschränkt. Es muss jedoch festgehalten werden, dass sechs von den insgesamt 50 Items nicht vollständig von den verbliebenen 16 Institutionen bearbeitet wurden. In den meisten Fällen handelte es sich dabei um Fragen hinsichtlich der Entscheidungsfindung, mit Begründungen, weshalb das verwendete QMS für eLearning zukünftig nicht erneut gewählt worden wäre und den dazugehörigen Antworten „Unzufriedenheit mit dem Dienstleister“ und „Individuelle Anpassung auf die eigenen Belange nicht / kaum möglich“. In der Domäne
„Zufriedenheit und Übersichtlichkeit” wurden bei der Frage „Welche positiven Effekte haben sich durch die Einführung des QM-Systems für eLearning eingestellt“ die Antworten „Wirtschaftlichkeit/Kostensenkung“ und „Verbesserung der Lernergebnisse“ in keinem einzigen Fall gekreuzt. In der Domäne „Personalaufwand und Zuständigkeiten“ wurde bezüglich der Frage „Wer ist für das QMS-System für eLearning zuständig?“ die Antwort „Ausgebildeter QM-Beauftragter“ ebenfalls nie markiert. Diese Tatsachen müssen aufgrund der aktuellen Situation ihre Beachtung finden. Möglicherweise kann man mit deren Hilfe auf die Probleme der evaluierten Institutionen schließen. Zukünftige Studien sollten diese Inhalte weiter thematisieren.

Unsere Studie zeigt jedoch, dass allgemeine QMS in medizinischen Institutionen etabliert sind, während speziell für eLearning ausgerichtete QMS selten zur Verfügung stehen. Die aktuelle Literatur verweist auf die Existenz von QMS für eLearning, es gibt aber nur wenige bis keine Angaben zur Etablierung und Erfahrungen an den Universitäten. Es ist evident, dass die Etablierung dieser Systeme an den Universitäten mit diversen Schwierigkeiten verbunden sind [http://www.hamburg.de/contentblob/4014946/data/gesetzsentwurf-zur-weiterentwicklung-des-hochschulrechts.pdf, zitiert am 10.09.2014], [5], [6], [7].

Die Hochschulen stehen vor der Aufgabe, angesichts der Vielzahl von Ansätzen für QMS für eLearning zu entscheiden, ob sie ein internes oder ein externes QMS integrieren möchten, ob das System produkt- oder prozessorientiert sein soll, ob es eigene oder vorgegebene Qualitätskriterien beinhalten soll, ob unabhängige, externe Prüfer oder Prüfer aus den eigenen Reihen bevorzugt werden, wie lange die Implementierung dauern darf und welches Budget dafür zur Verfügung steht. An deutschsprachigen Hochschulen ist laut Bremer [5] der Stand bei der Qualitätssicherung für eLearning zurzeit sehr heterogen. Während einige Hochschulen, z. B. die Universität St. Gallen, die technische Universität Darmstadt und die Goethe-Universität Frankfurt am Main, sich mit der Sicherung von Qualität für eLearning-Produkte und -Szenarien befassen, sind andere eher noch mit der Verbreitung von eLearning in der Hochschule beschäftigt [5]. Die Evaluation von eLearning in den Hochschulen steckt noch in den Anfängen [7], QMS für eLearning sind eher rar [2]. Die Evaluation, als ein Bestandteil des QM, muss umgesetzt werden [http://www.hamburg.de/contentblob/4014946/data/gesetzsentwurf-zur-weiterentwicklung-des-hochschulrechts.pdf, zitiert am 10.09.2014], doch die Integration von kompletten QMS an Hochschulen steckt noch in den Kinderschuhen [6], und es ist ungeklärt, wie dies im Einzelnen auszusehen hat.

Validierte Instrumente zur flächendeckenden Untersuchung von QMS für eLearning in der medizinischen Ausbildung sind aktuell nicht auffindbar. Zwei existierende Studien konnten jedoch für die Fragebogenerstellung der vorliegenden Untersuchung zur Hilfe genommen werden und zwar die Studie der European Quality Observatory, „Nutzung und Verbreitung von Qualitätsansätzen im europäischen E-Learning“, sowie die Studie der Stiftung Gesundheit zum Qualitätsmanagement in der ärztlichen Praxis 2008. Beide konnten allerdings nur als grober Leitfaden verwendet werden, da sie entweder nicht in Korrelation mit medizinischen Inhalten stehen oder sich auf allgemeine QMS ohne eLearning-Bezug berufen [2], [3].

Die Literatur zeigte auf, dass die meisten QMS für eLearning nach dem Jahr 2002 fertiggestellt und eingeführt wurden. Zum Beispiel wurden DIN PAS1032-1:2004 [8] im Jahr 2004, TUD eLearning Label [9] im Jahr 2004, Q.E.D. [8] im Jahr 2006, WebKolleg NRW [http://www.webkolleg.nrw.de, zitiert am 10.09.2014] im Jahr 2003 und DIN-PAS 1037-2004 [8] im Jahr 2004 realisiert. In der Literatur werden die positiven Effekte, die durch die Einführung von QMS für eLearning erzielt werden sollen, wie zum Beispiel die Qualitätssicherung, die Vergrößerung des eLearning-Angebotes, die Steigerung der Wettbewerbsfähigkeit, das Reduzieren von Fehlern, die Straffung von Arbeitsabläufen und die Verbesserung der Lernergebnisse angegeben [8].. Als internationales Beispiel für QM in der Lehre können die Ergebnisse der Umfrage von Fredekind et al. [10] und Ruiz et al. genannt werden [11]. Die Autoren stellen Peer-Review-Vorschläge für eLearning-Programme vor, da zwar eLearning in der klinischen Lehre zunehme, aber nicht einem Peer-Review-Verfahren unterzogen würde.

Bekanntheitsgrad

Neun der befragten Hochschulen gaben als Grund dafür, kein QMS für eLearning eingeführt zu haben, an, dass sie zu wenige Informationen darüber besitzen. Dies steht im Einklang mit anderen Studien, wobei der Bekanntheitsgrad der allgemeinen QMS für das System DIN EN ISO 9000 ff. bei den Medizinern mit 73% und für EFQM (Excellence-Modell der European Foundation for Quality Management) mit 28,4% angegeben wurde [3]. Eine Variation des EFQM, der sogenannte EFQUEL (European Foundation for Quality in e-Learning) zertifiziert zuzüglich zu medizinischen Universitäten auch nicht-medizinische Institutionen, wie beispielsweise die DOBA (Maribor Fakultät für Angewandte Wirtschafts- und Sozialwissenschaften in Slowenien), die Moskauer Universität für Industrie und Finanzwesen in Russland und die Fakultät für Geisteswissenschaften an der Universität von Aegaeon in Griechenland. Um den Bekanntheitsgrad zu erhöhen, werden in diesem Zusammenhang häufig in der Literatur speziell hierfür notwendige Schulungen und der Einsatz eines externen QM-Beauftragten als mögliche Lösungen aufgeführt. Nach Wellems [12] kann das Hinzuziehen einer externen Fachkraft, dessen Akzeptanz oftmals bei den Mitarbeitern höher ist als die einer internen Fachkraft, hilfreich sein. „Entsprechend können so Einsparungen von Schulungs- und Weiterbildungskosten bezüglich interner QM-Ausbildungen erfolgen“ [12].
Für QMS des allgemeinen Bildungssektors, wie zum Beispiel die Lernorientierte Qualitätstestierung in der Weiterbildung (LQW), konnte in der Literatur als Angaben zur Dauer der Einführung 13 Monate gefunden werden [http://www.elearning-mv.de/wp-content/uploads/2011/12/EmpfehlungenZertifizierungE-Learning-in-MV.pdf, zitiert am 10.09.2014], die Zentralstelle für Fernunterricht (ZFU) gibt hingegen 90 Tage an [http://www.zfu.de, zitiert am 10.09.2014], der Gütesiegelverbund Weiterbildung sogar 12 Monate [http://www.guetesiegelverbund.de, zitiert am 10.09.2014], während für das WebKolleg NRW ein Tag angegeben wird [http://www.webkolleg.nrw.de, zitiert am 10.09.2014]. Aus der Studie der Stiftung Gesundheit zu QM in der ärztlichen Praxis 2008 [3] sei als Beispiel hierzu der zeitliche Aufwand der Mitarbeiter für die Einführungsschritte des QMS genannt: Durchschnittlich sind dazu 6 Stunden pro Woche für die Mitarbeiter und 4,5 Stunden pro Woche für den Inhaber der Institution (Praxis) notwendig [3]. Qualitätswettbewerbe, wie etwa der EQA (European Quality Award), benötigen einen intensiven Vorbereitungsaufwand von mehreren Jahren [13]. In vergleichbarer Weise wird weiterhin angeführt, dass für DIN-PAS 1032.1 mit seinen 693 Qualitätskriterien ein hoher Ziel- und Beratungsaufwand erforderlich ist [8]. Es muss jedoch nicht immer ein eigenes QMS für eLearning konzipiert werden, und gegebenenfalls kann die Integration in ein bereits vorhandenes QMS erfolgen [14]. Einsparmöglichkeiten werden in der Literatur vor allem durch die Möglichkeit der Wiederverwendbarkeit (Standards) angegeben [http://www.elearning-mv.de/wp-content/uploads/2011/12/EmpfehlungenZertifizierungE-Learning-in-MV.pdf, zitiert am 10.09.2014].

Es konnten nur wenige konkrete Angaben über die Kosten für die Ein- und Aufrechterhaltung der QMS für eLearning recherchiert werden. In welchem Umfang die Hochschulen bereits hierbei Unterstützung erhalten, wird in der Literatur unterschiedlich angegeben. Ein Beispiel für wenig Unterstützung geben die Autoren Hendricson et al. [15], die sich mit der Umsetzung von eLearning-Lehrplänen an nordamerikanischen Universitäten für Medizin beschäftigten. Sie fanden in ihrer Studie heraus, dass nur wenige Fakultätsstützung bei der Umsetzung erhielten. Ein Beispiel für Unterstützung geben die Autoren Fredekind et al. an [10]. In ihrer Studie wurden alle 65 amerikanischen und kanadischen Hochschulen für Medizin befragt. 95% erhielten administrative Unterstützung. Um eine wirksame Qualitätssicherung und ein Programm zum Risikomanagement zu entwickeln, schlagen die Autoren Folgendes vor: Aktive Unterstützung durch den Dekan, Festlegung von Zielen/Visionen, geschultes Personal im Ausschuss, Entwicklung von Instrumenten zur Messung von Qualitätssicherung, passend zu den institutionell entwickelten Standards in der Patientenversorgung und Etablierung kontinuierlicher Verbesserungsvorschläge [10]. Die Kosten für die Lernerorientierte Qualitätstestierung in der Weiterbildung (LQW) sind nach Größe der Organisation gestaffelt und liegen zum Beispiel bei einer Organisation mit bis zu fünf Mitarbeitern bei 4200 € [http://www.elearning-mv.de/wp-content/uploads/2011/12/EmpfehlungenZertifizierungE-Learning-in-MV.pdf, zitiert am 10.09.2014]. Die Kosten für die Zulassung von Fernlehrgängen durch die Zentralstelle für Fernunterricht (ZFU) werden mit mindestens 950 € oder 150% des Verkaufspreises angegeben [http://www.zfu.de, zitiert am 10.09.2014]. Es müssen demnach hohe Summen im Vorfeld investiert werden bevor deren Vorteile sich vor Ort auszahlen. Einsparmöglichkeiten werden in der Literatur vor allem durch Wiederverwendbarkeit (Standards) angegeben. Arbeitsprozesse können optimiert und die finanzielle Ausgaben insgesamt erniedrigt werden. So resümiert Rothlauf als Ergebnis seiner Recherchen, dass die mit der Einführung eines QMS verbundenen Vorteile den zusätzlichen finanziellen Aufwand rechtfertigen [16]. Auch Knispel berichtet, dass ein Nutzefaktor eines QMS die Kostenenkung ist [8]. Hohe Zertifizierungskosten, wie bei DIN ISO 9001, schrecken jedoch kleine Unternehmen ab [17]. Dagegen wird als Vorteil von DIN ISO 9001 die Verringerung der Kosten, die mit dem System einhergehen, aufgeführt [17].

Ausblick

Die Empfehlung des Wissenschaftsrats vom 04.07.2008 zur Etablierung von internationalen Maßstäben entsprechenden QMS an Hochschulen [1] innerhalb eines über schaubaren Zeitraums von etwa drei bis fünf Jahren konnte unter den Umständen, wie sie zum Zeitpunkt unserer Studie vorzufinden waren, nicht realisiert werden. Dabei gibt es durchaus wegwiesende internationale Er fahrungen: das Projekt DLAE (Distance Learning Akkreditierung in Europa) beispielsweise ist ein Vorschlag für ein europäisches Akkreditierungssystem für eLearning und Blended Learning. Im Vergleich zum amerikanischen Akkreditierungssystem DETC (Distance Education and Training Council, USA) legen die europäischen Kriterien mehr Gewicht auf die pädagogischen Methoden und weniger auf administrative Aspekte [2], [http://www.detc.org, zitiert am 10.09.2014]. Es zeigt sich durch die oben aufgeführten Beispiele, dass national und international sehr viele Qualitätsansätze für eLearning vorhanden sind. Demnach ist anzunehmen, dass das Streben nach Qualität in Bezug auf eLearning in der universitären Lehre von hoher Wichtigkeit ist. Aus der Vielfalt dieser Ansätze und schon vorhandenen Systeme ergibt sich für jede Hochschule die Aufgabe ein geeignetes System zu finden, das sich auf pädagogische Methoden und andererseits auf administrative Aspekte, einschließlich der Kosten, ausrichtet. (Beispiel: Charité Berlin, Qualitätssiegel eLearning, eige nen Siegel in Anlehnung an DIN-PAS 1032-1). Laut dem aktuellen Stand der Literatur soll folgenden Punkten im Rahmen einer Implementierung eines QMS Beachtung geschenkt werden:

1. Eine Zertifizierung ermöglicht Vergleichbarkeit und Wettbewerb. Bei selbst erstellten Systemen kann man...
nur schwer erkennen, welche Kriterien verwendet wurden, eine Vergleichbarkeit zu anderen QMS ist kaum möglich.

2. Die Verwendung von etablierten Standards ist im Rahmen von Einsparmaßnahmen von großer Bedeutung.

3. Externe Gutachter, die im Rahmen von QMS eingesetzt werden, haben den Vorteil zu internen, dass sie objektiver angesehen werden können und neue Impulse in die Institution hineintragen.

Schlussfolgerung

Die Untersuchung dokumentiert, dass nur an wenigen deutschen medizinischen Universitäten ein QMS für eLearning existiert. Zusammenfassend kann festgehalten werden, dass insgesamt Bedarf besteht das bezüglich QMS für elektronisches Lernen existierende Informationsdefizit zu mindern.

Danksagung

Wir danken allen beteiligten Universitäten und Frau Dr. Silvia M. Rogers Weller, Ph.D. (Mediwrite GmbH, Basel, Switzerland) für die sprachliche Lektorierung der englischen Version der Publikation.

Autorenbeiträge

Die Autoren JA, JM und SG waren an der Konzeption, alle an der Evaluation beteiligt. Alle Autoren haben der Veröffentlichung in der endgültigen Fassung des Manuskripts zugestimmt. Alle Autoren waren an der Revision des Inhalts dieses Artikels beteiligt. Der korrespondierende Autor schrieb das Manuskript, die anderen Autoren trugen gleichermaßen zu dem Artikel bei.

Interessenkonflikt

Die Autoren erklären, dass sie keine Interessenkonflikte im Zusammenhang mit diesem Artikel haben.

Anhänge

Verfügbar unter http://www.wissenschaftsrat.de/download/archiv/5639-08.pdf geprüft am 15.09.2014

Literatur

1. Wissenschaftsrat. Empfehlungen zur Qualitätsverbesserung von Lehrer und Studium. Köln: Wissenschaftsrat; 2008. Zugänglich unter/available from: http://www.wissenschaftsrat.de/download/archiv/8639-08.pdf geprüft am 15.09.2014

2. Ehlers U, Goertz L, Hildebrandt B, Pawlowski J. Qualität im E-Learning, Nutzung und Verbreitung von Qualitätsansätzen im europäischen E-Learning. Eine Studie des European Quality Observatory, Luxemburg; Amt für amtliche Veröffentlichungen der Europäischen Gemeinschaft; 2005. Zugänglich unter/available from: http://libserver.cedefop.europa.eu/vetelib/ eu/pub/cedefop/pan/2005_5162_de.pdf geprüft am 15.09.2014

3. Obermann K, Müller P. Qualitätsmanagement in der ärztlichen Praxis. Eine deutschlandweite Befragung niedergelassener Ärztinnen und Ärzte. Hamburg; Stiftung Gesundheit; 2008. Zugänglich unter/available from: http://www.stiftung-gesundheit.de/pdf/studien/Studie_QM_2008.pdf geprüft am 15.09.2014

4. Beatty PC, Willis GB. Research synthesis: The practice of cognitive interviewing. Public Opinion Quart. 2007;71:287-311. Zugänglich unter/available from: http://isites.harvard.edu/fs/docs/icb.topic1352376.files/ Public%20Opin%20Q-2007-Beatty-287-311.pdf geprüft am 15.09.2014

5. Bremer C. Qualität im eLearning durch Kompetenz stärken. In: Mühlenhäuser M, Rößling G, Steinmetz R (Hrsg). DeLFI2006: 4. eLearning Fachtagung Informatik der Gesellschaft für Informatik e.V., (GI), 11.-14.09.2006 in Darmstadt. Bonn: Gesellschaft für Informatik; 2006.

6. Nickel S. Qualitätsmanagementsysteme an Universitäten und Fachhochschulen: ein kritischer Überblick. Beiträge zur Hochschulforschung, Heft 1. München: Bayerisches Staatsinstitut für Hochschulforschung und Hochschulplanung; 2008. Zugänglich unter/available from: http://www.che.de/downloads/Nickel_QM_Ueberblick.pdf geprüft am 15.09.2014

7. Paechter M. Von der didaktischen Version zum messbaren Indikator: Entwicklung eines Qualitätsystems für medienbasierte Lehre. In: Sinderl A, Bremer C, Dittler U, Hennecke P, Sengstad C, Wedekind J (Hrsg). Qualitätssicherung im eLearning, Münster: Waxmann Verlag; 2006.

8. Knispel K. Qualitätsmanagement im Bildungswesen. Münster: Waxmann Verlag GmbH; 2008.

9. Bruder R, Osswald K, Sauer S, Sonnberger J. Qualitätssicherung mit einem eLearning-Label für universitäre Lehre und einem Gütesiegel. In: Sinderl A, Bremer C, Dittler U, Hennecke P, Sengstad C, Wedekind J (Hrsg). Qualitätssicherung im eLearning, Münster: Waxmann Verlag; 2006.

10. Fredekind RE, Cuny EJ, Nadershahi NA. Quality assurance and risk management: a survey of dental schools and recommendations for integrated program management. J Dent Educ. 2002;66(4):556-563.

11. Ruiz JG, Candler C, Teadale TA. Peer reviewing e-learning: opportunities, challenges, and solutions. Acad Med. 2007;82(5):503-507. DOI: 10.1097/01.ACM.0b013e318138ead94

12. Wellems E Externer QMB. Aufgaben und Einsatzmodelle. Köln: TÜV Media GmbH; 2014. Zugänglich unter/available from: http://www.qm-aktuell.de/downloads/qmb_05130_v.pdf geprüft am 15.09.2014

13. Wirth M. Qualität eLearning-gestützter Aus- und Weiterbildungsgroßprojekte. Dissertation. Brühl: MVR Druck GmbH; 2005.

14. Stefanou A. E-Learning, Grundlagen, Instrumente, Qualitätsmanagement. Berlin: VDM Verlag Dr. Müller; 2005.
15. Hendricson WD, Panagakos F, Eisenberg E, McDonald J, Guest G, Jones P, Johnson L, Cintron L. Electronic curriculum implementation at North American dental schools. J Dent Educ. 2004;68(10):1041-1057.

16. Rothlauf J. Total Quality Management in Theorie und Praxis. Oldenbourg/München: Wissenschaftsverlag GmbH; 2004. DOI: 10.1524/9783486592764

17. Daun A. Qualitätsmanagement und Standardisierung im eLearning. Essen: Universität Essen; 2002.

Korrespondenzadresse:
PD Dr. Susanne Gerhardt-Szép, MME Goethe Universität Frankfurt am Main, Carolinum gGmbH, Poliklinik für Zahnerhaltungskunde, Theodor-Stern Kai 7, 60596 Frankfurt, Deutschland, Tel.: +49 (0)69/6301-7505 S.Szep@em.uni-frankfurt.de

Bitte zitieren als
Abrusch J, Marienhagen J, Böckers A, Gerhardt-Szép S. Quality management of eLearning for medical education: current situation and outlook. GMS Z Med Ausbild. 2015;32(2):Doc20. DOI: 10.3205/zma000962, URN: urn:nbn:de:0183-zma0009621

Artikel online frei zugänglich unter
http://www.gms.de/en/journals/zma/2015-32/zma000962.shtml

Eingereicht: 15.09.2014
Überarbeitet: 04.02.2015
Angenommen: 27.02.2015
Veröffentlicht: 13.05.2015

Copyright
©2015 Abrusch et al. Dieser Artikel ist ein Open-Access-Artikel und steht unter den Lizenzbedingungen der Creative Commons Attribution 4.0 License (Namensnennung). Lizenz-Angaben siehe http://creativecommons.org/licenses/by/4.0/.