Bioactive compound and Antioxidant Activity Analysis of Some Medicinal Plants of Province of Western Sulawesi

A.Mu’nisa¹, Syamsia¹, Rachmawaty³, A. Muflihunna²
¹Departement od Biology, Universitas Negeri Makassar, Makassar, 90222, :
²Faculty of Pharmacy, Universitas Muslim Indonesia, Makassar, 90231
andi.munisa@unm.ac.id

Abstract: The main objective of this study was the screening of some selected medicinal plants very popular in Provinsi of western Sulawesi, with respect to antioxidant capacity, and bioactive compound. All plants were extracted with the conventional method, maceration with methanol. Bioactive compound was measured by GCMS-QP2010 Ultra Shimadzu. The antioxidant capacity of the plant extracts was measured by their ability to scavenge free radicals such as DPPH (2,2-diphenyl-1-picrylhydrazyl). These extracts resulted in a rapid increase and decrease of the absorbance and showed different hydrogen-donating capacity towards the DPPH radical. A lot of differences found and showing anti-oxidant activity of methanol extracts of different plant species. Among the species, methanol extract of Ficus septica, Cordoline sp., Celotia argantea, Physalis angulate, Kalandioe pinnata and Melostoma polyanthum, showed the maximum scavenging capacity of over 70.

1. Introduction
Indonesia has been known for its greatest biodiversity in the world, comprising tropical plants and marine biota. In the Indonesian territory there are about 30,000 species of plants and 7,000 of them are thought to have medicinal properties. One province in Indonesia is the province of western Sulawesi, also has several types of medicinal plants that can be used in the treatment of various types of diseases. Diseases that can be cured include, diabetes mellitus, hypertension, diarrhea, tetanus, anemia, and others [1].

Medicinal plants have different properties. The efficacy of medicinal plants is highly dependent on the bioactive components contained therein. With the bioactive components, the medicinal plants are able to neutralize the cause of a disease. Based on the potential of medicinal plants in West Sulawesi, the analysis of bioactive components and antioxidant activity on the types of medicinal plants commonly used by local communities. It is expected from this research to know what bioactive components. In this study, we investigated 6 selected, local putative medicinal plants for their potential antioxidant activities using scavenging free radical activity assays [2].

The aim of this study is to determine the organic compounds present in the medicinal plant extract with the aid of GC-MS technique, which may provide an insight in its use in tradition medicine.

2. Plant material
Leaves of medicinal plant were selected to screen its biopotentials based on its traditional usage. Care was taken to select healthy leaf. The plant were cut into small pieces and shade dried at room temperature for 15 days. Preparation of extracts medicine plants the collected was washed under running tap water and dust was removed from the leaves. The leaves were dried at room temperature.
for 15 days and coarsely powdered. The powder (2 gm) was extracted with 70% methanol and 100% aqueous for 48 hours. A semi solid extract was obtained after complete elimination of alcohol and water under reduced pressure. The extract medicine plants was stored in refrigerator until used.

Chemical tests were carried out on the alcoholic and aqueous extract using standard procedures to identify the preliminary phytochemical screening following the methodology of Sofowara , Trease and Evans and Harborne

Preparation of extracts medicine plants the above said herbs were selected and procured from the approved supplier. They were washed with water and then powdered. The powder was taken and extraction was carried out in large scale capacity reactor using 75% methanol and concentrated. The concentrated extract was spray dried and the dried powder was taken to check the antioxidant activity and GC-MS analysis.

2.1. Gas Chromatography-Mass Spectrometry (GC-MS) Analysis

Gas Chromatography-Mass Spectrometry (GC-MS) Analysis analysis were carried out on a GC-MS-QP 2010 Plus Shimadzu system and Gas chromatograph interfaced to a mass spectrometer (GC-MS) instrument employing the following conditions: Column Elite-1 fused silica capillary column (30m x 0.25mm 1D x µl df, composed of 100% dimethyl polysiloxane). For GC-MS detection, an electron ionization system with ionization energy of 70eV was used. Helium gas (99.999%) was used as the carrier gas at constant flow rate 1ml/min and an injection volume of 2µl was employed (Split ratio of 10:1) injector temperature-250C; ion-source temperature 280C. The oven temperature was programmed from 110C (Isothermal for 2 min.) with an increase of 10C / min to 200C then 5C / min. to 280°C / min, ending with a 9 min. isothermal at 280°C. Mass spectra were taken at 70 eV; a scan interval of 0.5s and fragments from 40 to 550Da. Total GC running time was 36 minutes. The relative percentage amount of each component was calculated, by comparing its average peak area to the total areas, Software adopted to handle mass spectra and chromatogram was a turbomass. The detection employed the NIST Ver. 2.0 year 2009 library [3].

2.2. Free radical scavenging activity

The 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay DPPH radical scavenging activity was done using the reported method; the reaction mixture containing 1 mL of DPPH solution (0.1 mmol /L, in 95% methanol v/v) with different concentrations of the extract was shaken and incubated for 20 min at room temperature and the absorbance was read at 517 nm against a blank. The radical scavenging activity was measured as a decrease in the absorbance of DPPH and calculated using the following equation: Effect of scavenging (%) = [1-A sample (517nm) /A control (517nm)] ×100

3. Result and Discussion

Extracts were subjected for the evaluation of antioxidant activity by using various in vitro model systems. DPPH radical scavenging activity was observed in all the extracts, the curcuma extract showed dominant activity followed by coffee bean extract among the extracts. The IC50 values were calculated and are depicted in (Table 1).

Sample	% of DPPH Scavenging activity	Antioxidant capacity (mg/L)
Ficus septica	61.186±0.514	60.679±0.249
Cordoline sp	32.995±0.724	38.598±0.274
Celotia argantea	36.837±0.570	43.707±0.260
Physalis angulate	41.136±0.837	41.216±0.277
Kalandioe pinnata	92.065±0.365	79.586±0.415
Melostoma polyanthum	94.617±0.207	80.797±0.155
Table 1 shows that *polyantuhum melostoma* plant has a percentage of DPPH scavenger activity (94.617 ± 0.207%) and antioxidant capacity (80.797 ± 0.155 mg / l) is highest. Further follow-up plants that have DPPH scavenging activity are *Kalandioe pinnata*, *Ficus septica*, *Physal angulate*, *Celotio argantea* and *Cordoline sp*. And for plants that have antioxidant capacity are *Kalandioe pinnata*, *Ficus septica*, *Celotio argantea*, *Physalis angulate*, and *Cordoline sp*.

The results of the GC-MS analysis of the methanolic extract of *Kalandioe pinnata*, *Ficus septica*, *Celotio argantea*, *Physalis angulate*, *Cordoline sp* and *Melostoma polyantuhum* are given in Table 1. The major components were 2,3,5,6-tetramethyl-benzenesulfonamide (0.65), Tridecane, 6-methyl (3.33), Tetradecane (3.56), Hexadecane (2.37), Octadecane (1.46), Phthalic acid, butyl hept-2-yl ester (5.27), Phytol (2.94), 9-Cyclohexylnonadecane (15.93), 9-Octadecenamide, (Z) (18.89), 2,2,2-trifluoroethyl 2-methyltetrahydro-5-oxo-3furancarboxylate (10.47) (Table 2).

Table 2. The chemical composition of methanolic extract of *Kalandioe pinnata*, *Ficus septica*, *Celotio argantea*, *Physalis angulate*, *Cordoline sp* and *Melostoma polyantuhum*

Peak	R. Time	Name	Molecular weight	Formula
50	20.674	Phytol	296	C20H40O
38	16.840	2-hexadecen-1-ol, 3,7,11,15-tetramethyl	296	C20H40O
19	12.946	1,3-Propanediol, (hydroxymethyl)-2-nitro	151	C4H9NO5
41	17.406	2-hexadecen-1-ol, 3,7,11,15-tetramethyl	296	C20H40O
44	18.002	hexadecanoic acid, methyl ester	256	C16H32O2
30	15.089	3-Buten-2-ol, 4-(2,6,6-trimethyl-1-cyclohexen-1-yl)	197	C13H22O
36	37.092	Vitamin E	430	C29H50O2
67	35.328	gamma.-Tocopherol	417	C28H48O2

2 Cordoline sp

Peak	R. Time	Name	Molecular weight	Formula
47	35.184	lup-20(29)-en-3-yl acetate	468	C32H52O2
39	26.790	hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl)methyl ester	330	C19H38O4
39	18.003	hexadecanoic acid, methyl ester	270	C17H34O2
44	37.090	Vitamin E	430	C29H50O2
31	10.126	2-Methoxy-4-vinilphenol	150	C9H10O2

3 Celocasia argantea

Peak	R. Time	Name	Molecular weight	Formula
22	16.638	2-hexadecen-1-ol, 3,7,11,15-tetramethyl	296	C20H40O
29	18.147	hexadecanoic acid, methyl ester	270	C17H34O2
34	20.668	Phytol	296	C20H40O
25	17.404	2-hexadecen-1-ol, 3,7,11,15-tetramethyl-gamma.-Tocopherol	296	C20H40O
33	35.325	Vitamin E	416	C28H48O2
9	37.090	Vitamin E	430	C29H50O2
The GC-MS spectrum confirmed the presence of various components with different retention times as illustrated in Table 2. The mass spectrometer analyzes the compounds eluted at different times to identify the nature and structure of the compounds. The large compound fragments into small compounds giving rise to appearance of peaks at different m/z ratios. These mass spectra are fingerprint of that compound which can be identified from the data library. The GC-MS study of the methanolic extract of The GC-MS spectrum confirmed the presence of various components with different retention times as illustrated in Figure1. The mass spectrometer analyzes the compounds eluted at different times to identify the nature and structure of the compounds. The large compound fragments into small compounds giving rise to appearance of peaks at different m/z ratios. These mass spectra are fingerprint of that compound which can be identified from the data library. The GC-MS study of the methanolic extract of the plants had shown the presence of lots of phytochemicals which strength contribute to the medicinal bioactive of that plant had shown the presence of lots of phytochemicals which strength contribute to the medicinal bioactive of that plant.

The identified major compounds possess some important biological potential for future drug development. There is growing awareness in correlating the phytochemical compounds and their biological activities. The identified major compounds possess some important biological potential for future drug development. There is growing awareness in correlating the phytochemical compounds and their biological activities. Similar to this study, five major compounds were characterized through GC-MS analysis in Polygonum chinense [4]. Eighteen phytochemical constituents have been
identified from the ethanolic extract of the leaves of Desmodium gyrans by Gas chromatogram Mass spectrometry (GC-MS) [5]. Nanadagopalan reported the presence of Phytol in the leaves of Kirganelia reticulata aerial parts, which was found to be effective in different stages of arthritis [6]. 9-octadecenoic acid (20.89%) constitutes the major constituent of the leaf extract while oleic acid (84%) is the major component of the seed extract [7]. In spite of the advantage of modern high drug discovery and screening techniques, traditional medicinal knowledge have also given clues to the discovery of valuable drugs [8]. There is growing awareness in correlating the phytochemical compounds with their biological activities. GC-MS analysis of ethanol extract has led to identification of twenty-eight compounds from Macrotyloma uniflorum Linn. by comparison of their retention indices and mass spectra fragmentation [9]. The ethanolic leaf extract obtained from P. pulchellum were subjected to chemical analysis by GC-MS method which confirmed the presence of phytocompounds which are responsible for pharmacological activities

4. Conclusion

The presence of bioactive compounds justifies the use of the leaf part for various ailments by traditional practitioners. The present study aimed at identifying the nature of the components responsible for their antioxidant activity. This study clearly shows that GC-MS is a powerful technique enabling fast separation and characterization of bioactive metabolites. The high sensitivity of this technique helps in characterization of active compounds in Kalandioe pinnata, Ficus septic, Celotio argantea, Physalis angulate, Cordoline sp and Melostoma polyanthum. In addition to the antioxidant activity test showed Among the species, methanol extract of Ficus septic, Cordoline sp., Celotio argantea, Physalis angulate, Kalandioe pinnata and Melostoma polyanthum, showed the maximum scavenging capacity of over 70.

References

[1] Syamsiah, Siti Fatmah Hiola, Andi Mu’nisa, Oslan Jumadi. (2016) Study on Medicinal Plants Used by the Ethnic Mamuju in West Sulawesi, Indonesia. Journal of Tropical Crop Science 3 (2), 54-62
[2] Ansari, A. Q., Syed A. A., M.A. Waheed and Sayyed J. A. 2013. Extraction and determination of antioxidant activity of Withania somnifera Dunal. Euro. J. Exp. Bio. 3(5):502-507
[3] Janakiraman, N., Johnson, M., and Sahaya, S. S. (2012). GC–MS analysis of bioactive constituents of Peristrophe bicalyculata (Retz.) Nees. (Acanthaceae). Asian Pacific Journal of Tropical Biomedicine, 2(1), 46-49.
[4] Ezhilan, B. P., and Neelamegam, R. (2012). GC-MS analysis of phytocomponents in the ethanol extract of Polygonum chinense L. Pharmacognosy Research, 4(1), 11-14
[5] Gopalakrishnan, S., and Rajameena, R. (2012). GC-MS analysis of some bioactive constituents of the leaves of Desmodium gyrans DC. International research journal of pharmacy, 3(8), 271-274.
[6] Nanadagopalan, V., Johnson Gritto, M., and Doss, A. (2015). GC-MS analysis of biomolecules on the leaves extract of Sterculia urens Roxb. Journal of Pharmacognosy and Phytochemistry, 3(6), 193-196.
[7] Aja, P. M., Nwachukwu, N., Ibiam, U. A., Igwenyi, I. O., Offor, C. E., and Orji, U. O. (2014). Chemical constituents of Moringa oleifera leaves and seeds from Abakaliki, Nigeria. Am J Phytomedicine Clin Ther, 2, 310-321.
[8] Balamurugan, K., Nishanthini, A., and Mohan, V. R. (2012). GC–MS analysis of Polycarpaea corymbosa (L.) Lam whole plant. Asian Pacific Journal of Tropical Biomedicine, 2(3), 1289-1292
[9] Das, S., Vasudeva, N., and Sharma, S. (2014). Chemical composition of ethanol extract of Macrotyloma uniflorum (Lam.) Verde. using GC-MS spectroscopy. Organic and medicinal chemistry letters, 4(13), 1-4.
[10] Mu’nisa, A., Yusmina, H., Muflihunna. 2017. Analysis of Phenols and Antioxidants Infused Sappan Wood (Caesalpiniasappan L.). IJSR 2(9) : 89-93