Mutational and Computational Analysis of the α1b-Adrenergic Receptor

IN Volvement of Basic and Hydrophobic Residues in Receptor Activation and G Protein Coupling*

Received for publication, June 21, 2001, and in revised form, September 13, 2001
Published, JBC Papers in Press, October 3, 2001, DOI 10.1074/jbc.M105791200

Peter J. Greasley‡, Francesca Fanelli§, Alexander Scheer¶, Liliane Abuin‡, Monique Nenniger-Tosato‡, Pier G. DeBenedetti§, and Susanna Cotecchia¶

From the ‡Institut de Pharmacologie et Toxicologie, Université de Lausanne, 1005 Lausanne, Switzerland and the §Dipartimento di Chimica, Università di Modena and Reggio Emilia, 41100 Modena, Italy

To investigate their role in receptor coupling to Gq, we mutated all basic amino acids and some conserved hydrophobic residues of the cytosolic surface of the α1b-adrenergic receptor (AR). The wild type and mutated receptors were expressed in COS-7 cells and characterized for their ligand binding properties and ability to increase inositol phosphate accumulation. The experimental results have been interpreted in the context of both an ab initio model of the α1b-AR and of a new homology model built on the recently solved crystal structure of rhodopsin. Among the twenty-three basic amino acids mutated only mutations of three, Arg254 and Lys258, in the third intracellular loop and Lys291 at the cytosolic extension of helix 6, markedly impaired the receptor-mediated inositol phosphate production. Additionally, mutations of two conserved hydrophobic residues, Val147 and Leu151 in the second intracellular loop had significant effects on receptor function. The functional analysis of the receptor mutants in conjunction with the predictions of molecular modeling supports the hypothesis that Arg254, Lys258, as well as Leu151, are directly involved in receptor-G protein interaction and/or receptor-mediated activation of the G protein. In contrast, the residues belonging to the cytosolic extensions of helices 3 and 6 play a predominant role in the activation process of the α1b-AR. These findings contribute to the delineation of the molecular determinants of the α1b-AR/Gq interface.

The α1b-adrenergic receptor (α1b-AR) belongs to the superfamily of G protein-coupled receptors (GPCRs) that transmit a variety of signals across the cell membrane. Stimulation of the α1b-AR by catecholamines activates proteins of the Gq family, resulting in the production of inositol phosphates (IP) via the activation of phospholipase C (PLC) (1).

GPCRs are structurally characterized by seven transmembrane α-helices connected by alternating extracellular (e) and intracellular (i) loops. While the extracellular portion of these receptors is primarily involved in ligand binding, the cytosolic loops mediate the interaction of the receptors with a number of signaling and regulatory proteins, including G proteins, arrestins, and G protein-coupled receptor kinases (reviewed in Ref. 2).

Evidence suggests that a conformational adjustment within the helical bundle of the receptor underlies the process of agonist-induced activation of GPCRs (reviewed in Ref. 3). The current hypothesis is that the transition from the inactive (R) to active (R*) state of a GPCR results in receptor interaction with, and activation of, a G protein. Thus a GPCR-mediated biological response involves a series of events (i.e. receptor activation, receptor-G protein interaction, and receptor-induced G protein activation) for which a detailed mechanism still remains elusive at the molecular level. Although residues located in the helical bundle and at the boundary between the membrane and the cytosol may play a role in the “conformational switch” underlying receptor activation, amino acids in the intracellular loops are believed to be more directly involved in receptor-G protein interaction and/or receptor-induced G protein activation. The combination of these two latter events, which cannot be unequivocally separated experimentally, is generally indicated with the term of receptor-G protein coupling.

We have previously provided evidence that the negatively and positively charged amino acids of the conserved DRY motif at the cytosolic end of helix 3 play a key role in the activation process of the α1b-AR (4–6). Following a combination of experimental and computer-simulated mutagenesis of the α1b-AR, we have hypothesized that protonation of the aspartate (Asp142) and a shift of the arginine (Arg143) out of a conserved “polar pocket” are crucial steps in the transition of the receptor from the inactive (R) to active (R*) state (4–6).

Several studies have tried to identify the amino acids of different GPCRs involved in G protein coupling at both experimental (as reviewed in Ref. 2) and theoretical levels (7–10). The majority of these studies indicate that sequences in the i2 loop as well as in the N and C termini of the i3 loop play an important role in the conformational change; r.m.s.d., root mean square deviation; CAM, constitutively active mutant; R and R*, inactive and active states, respectively.
important role in the efficiency of receptor-G protein coupling and/or in the selectivity of receptor-G protein recognition. BBXB or BBXB motifs located in different cytosolic loops (where B is any basic amino acid and X is any residue) have been implicated in the coupling of a number of GPCRs to G proteins (11–13). However, this motif has not been found to be universally important for all GPCRs. Other studies have identified hydrophobic amino acids as contributing to the receptor-G protein interface (14–16). In conclusion, what has become abundantly clear is that there is no simple sequence determinant that can be attributed to receptor-G protein coupling.

A recent modeling study (8), docking simulations between active forms of the α1b-AR and a Gq heterotrimer led us to suggest that the positive surface of the cytosolic portion of GPCRs could complement a negative surface found on different G protein α subunits and thereby play a role in receptor-G protein coupling. However, the docking simulations also suggested that, despite the large number of cationic amino acids, only some might interact with anionic residues in the Gq α-subunit. To investigate the role of cationic residues in receptor-G protein coupling, we have mutated all the basic amino acids located in the i1, i2, and i3 loops of the α1b-AR and investigated the effect of these mutations on receptor-mediated production of IP. In addition, we have also characterized the effects resulting from mutations of conserved hydrophobic residues in the cytosolic portion of the receptor.

Our findings demonstrate that mutations of the basic residues in the cytosolic portion of the receptor have wide ranging phenotypes. Only mutations of three (Arg254, Lys258, and Lys291) out of the twenty-three basic amino acids studied impaired the receptor-mediated signaling response. We also demonstrate an important role for two highly conserved hydrophobic residues in receptor function. The effect of these mutations has been evaluated in the context of both the ab initio model previously described (17) and a new model of the α1b-AR built on the recently solved 2.8 Å crystal structure of rhodopsin (18).

EXPERIMENTAL PROCEDURES

Materials—COS-7 cells were from the American Type Culture Collection (Rockville, MD); DMEM, gentamicin, fetal bovine serum, and restriction enzymes from Life Technologies, Inc. (Grand Island, NY); Pico polymerase was from Roche Molecular Biochemicals (Mannheim, Germany); [125I]HEAT and [3H]inositol from PerkinElmer Life Sciences (Boston, MA); epinephrine was from Sigma Chemical Co. (St. Louis, MO), and prazosin from Research Biochemical International.

Mutagenesis of the α1b-AR—The cDNA of the hamster α1b-AR (19) was mutated using PCR-mediated mutagenesis and Pico DNA polymerase. The constructs were subcloned in the pRK5 expression vector, and mutations were confirmed by automated DNA sequencing (Microsynth GmbH, Switzerland).

Cell Culture and Transfection—Cell culture and transfection methods used for constructing and transfecting the α1b-AR were similar to those used for the α1a-AR and Its Mutants (17). The wild type α1b-AR receptor was achieved following the iterative procedure previously described (17). The wild type α1b-AR input structure was selected from among over 200 tested input arrangements according to both internal and external consistency criteria and was used to produce the input structures for the mutants. These structures were obtained by substituting the mutated residue in the wild type input structure by means of the molecular graphics package QUANTA (release 98; Molecular Simulations Inc., Waltham, MA). Minimization and molecular dynamics (MD) simulations of the receptor models were performed using the program CHARMM (Molecular Simulations Inc), following the computational protocol previously described (17). In a model study MD runs of 100 ps were performed to compare the dynamic features of the wild type receptor with those of the constitutively active mutants (8). Because the first 100 ps of the equilibrated trajectory were sufficiently representative of the whole trajectory and given the high number of mutants considered in this study, MD runs of 150 ps were generally performed following the same heating and equilibration set-up as that employed for the longer MD simulations. The results reported were collected every 0.5 ps during the last 100 ps of the equilibrated MD trajectory. Finally, for each mutant the structure averaged over the 200 structures stored during the production phase were used for the comparative analysis.

The average minimized structure of the wild type α1b-AR showed a root mean square deviation (r.m.s.d.) of 3.9 Å from the rhodopsin structure, whereas deviations of larger (r.m.s.d.) 6 Å were for simulations. r.m.s.d. levels were computed by superimposing the main chain atoms of segments 37–62, 74–100, 111–133, 152–171, 202–225, 253–276, and 286–306, representing the seven transmembrane helices of rhodopsin, with those in the homologous segments 45–70, 82–107, 119–141, 161–180, 202–225, 295–318, and 328–348 of the average minimized structure of the wild type α1b-AR.

Comparative Modeling of the α1b-AR and Its Mutants—Another model of the α1b-AR was built by comparative modeling (20) using the recently determined 2.8 Å x-ray structure of rhodopsin (18) as a template. Eight different chimeric α1b-AR/rhodopsin templates (shown in the supplementary material) were constructed in which the e2, the i3, and in some cases only the i2 loop were extracted from the input structure of the ab initio model of the α1b-AR. Furthermore, in the chimeras helix 5 has been elongated by 10 amino acids using the α4b-AR sequence before deleting the 226–235 rhodopsin segment. Finally, an α-helical segment of 6 amino acids using the α2a-AR sequence has been added to the N terminus of the helix 6 of rhodopsin after deleting the 240–248 rhodopsin segment. For each of the eight different templates, MODELLER generated 25 models. Among the 200 models finally obtained, 20 models were selected showing low restraint violations and low numbers of main-chain and side-chain bad conformations or close contacts. These models were completed by the addition of the polar hydrogen’s and subjected to automatic and manual rotation of the side-chain torsion angles when in bad conformations, as well as to energy minimization and MD simulations according to the computational protocol employed for simulating the ab initio α1b-AR model. Different combinations of intra-helix distance constraints were also probed. About 450 MD trial runs were done to select the proper input structure for the wild type α1b-AR. The final input structure selected that was obtained using the alignment (see the supplementary material) was then used for generating the input structures for the receptor mutants. The structures of the wild type receptor and its mutants averaged over the last 100 ps of the 150 ps MD trajectory were finally minimized and considered for the comparative analysis.

The input structure of the wild type α1b-AR showed an r.m.s.d. of 0.17 Å from the rhodopsin structure (r.m.s.d. was computed by employing the matching criteria described above for the ab initio model). This deviation increases to 2.07 Å upon energy minimization and MD simulations, becoming quite close to the value that would be expected given a sequence identity of 22.4% between the transmembrane segments of the α1b-AR and rhodopsin (21).

RESULTS

Expression of Receptor Mutants—The wild type and mutated α1b-ARs were expressed in COS-7 cells and tested for their ability to bind the radioligand [125I]HEAT and epinephrine. Saturation binding experiments indicated that the Kd of [125I]HEAT was ~80 pm for all the receptors studied (results not shown), whereas the IC50 values for epinephrine varied as indicated in Table I. The affinity of prazosin for the different...
Mutational Analysis of the α1b-Adrenergic Receptor

The wild type α₁b-AR (WT) and its mutants were expressed in COS-7 cells. Receptor expression was measured using 250 pm of [³²P]HEAT on membrane preparations derived from transfected cells from one well of a six-well dish (approximately 150 μg of protein). Inositol phosphate (IP) accumulation was measured following incubation in the presence (Basal) or presence of 100 μM epinephrine (Epi-stimulated) for 45 min. The IP accumulation is expressed as the percentage increase in IP levels above those of mock-transfected cells. Results for receptor expression and IP accumulation are the mean ± S.E. of at least three independent experiments. The IC₅₀ values for epinephrine were assessed in competition binding experiments using 80 pm of [³²P]HEAT. The IC₅₀ values are from thirty and three independent experiments for the wild type and mutated receptors, respectively. The EC₅₀ values are from fifteen and two independent experiments for the wild type and mutated receptors, respectively.

Table I: Functional properties of the α₁b-AR and its mutants

Receptor	Expression	Basal IP (fmol/well)	Epi-stimulated IP (fmol/well)	IC₅₀ (Epi)	EC₅₀ (Epi)	
WT (high expression)	264 ± 36	36 ± 16	365 ± 12	5.9 ± 0.36	38 ± 6	
WT (ave. expression)	158 ± 10	33 ± 16	303 ± 50			
WT (low expression)	63 ± 8	21 ± 6	148 ± 30			
D142A	110 ± 27	269 ± 89	634 ± 136	0.22 ± 0.06	ND	
A293E	121 ± 73	352 ± 43	852 ± 104	0.1 ± 0.02	ND	
R74E	152 ± 22	10 ± 6	296 ± 23	7.3 ± 0.2	38 ± 3	
R75E	120 ± 37	16 ± 7	267 ± 31	5.9 ± 0.9	56 ± 2	
R67E	87 ± 15	29 ± 2	248 ± 33	5.7 ± 0.3	110 ± 25	
R74E/R77E	28 ± 4	11 ± 8	84 ± 12	5.7 ± 0.5	14 ± 6	
R74E/H75E	93 ± 10	24 ± 7	217 ± 83	4.9 ± 0.8	10 ± 6	
R148E	198 ± 16	219 ± 42	537 ± 72	2.6 ± 0.8	48 ± 15	
R159E	232 ± 39	38 ± 7	635 ± 210	2.7 ± 0.8	28 ± 10	
R160E	285 ± 36	82 ± 40	528 ± 76	7.4 ± 0.7	28 ± 5	
R145E/R159E	R160E	77 ± 21	180 ± 96	636 ± 170	7.4 ± 0.5	19 ± 2
K161E	79 ± 16	61 ± 31	1037 ± 475	3.1 ± 0.06	33 ± 7	
K231E	182 ± 41	117 ± 24	678 ± 56	4.1 ± 0.3	16 ± 3	
R232E	153 ± 35	53 ± 3	632 ± 70	2.4 ± 0.6	74 ± 20	
R235E	121 ± 27	20 ± 4	360 ± 27	5 ± 0.3	23 ± 3	
R243E	145 ± 52	14 ± 9	284 ± 83	6.4 ± 0.2	100 ± 15	
R286E	147 ± 43	31 ± 9	891 ± 55	61.1	22 ± 5	
R254E	187 ± 35	8 ± 5	109 ± 16	2.9 ± 0.8	ND	
R254A	118 ± 38	8 ± 4	125 ± 15	3.5 ± 0.1	21 ± 7	
R258E	179 ± 39	14 ± 5	165 ± 79	7.3 ± 0.6	ND	
K293A	103 ± 31	27 ± 20	356 ± 53	5 ± 0.03	48 ± 12	
R254E/R258E	162 ± 42	15 ± 5	30 ± 12	10 ± 0.3	ND	
R254E/K258	125 ± 37	11 ± 7	81 ± 20	4.4 ± 0.5	ND	
R254E/K258/D142A	79 ± 3	14 ± 3	25 ± 5	0.22 ± 0.06	ND	
R254E/K258/E293D	177 ± 27	16 ± 4	45 ± 12	0.12 ± 0.01	ND	
K269E	127 ± 39	32 ± 20	387 ± 132	6.4 ± 0.6	70 ± 8	
R271E	70 ± 30	13 ± 18	344 ± 68	5.1 ± 0.5	22 ± 5	
R276E	82 ± 28	10 ± 7	327 ± 52	7.2 ± 0.3	88 ± 9	
R282E	182 ± 34	11 ± 8	314 ± 118	6.2 ± 0.16	25 ± 7	
R285E	116 ± 32	19 ± 4	493 ± 141	3.3 ± 0.3	25 ± 5	
R288A	130 ± 38	47 ± 12	280 ± 184	3.8 ± 0.4	23 ± 6	
R288E	134 ± 30	55 ± 6	266 ± 54	4.4 ± 0.06	37 ± 4	
K290E	113 ± 34	53 ± 12	565 ± 90	1.3 ± 0.2	34 ± 5	
K291A	142 ± 29	14 ± 4	107 ± 17	8 ± 1.5	ND	
R291E	177 ± 44	4 ± 2	77 ± 24	6.3 ± 0.7	ND	
R288E/K291E	112 ± 31	26 ± 9	117 ± 7	3.1 ± 0.2	ND	
R288E/K291E/D142A	102 ± 41	29 ± 6	76 ± 22	1.7 ± 0.2	ND	
R288E/K291E/A293D	137 ± 29	48 ± 10	299 ± 76	0.45 ± 0.1	ND	
K294E	118 ± 38	9 ± 5	372 ± 84	5.3 ± 0.03	57 ± 15	

*p < 0.05 paired Student’s t test.

ND, not determined.

Receptor mutants was similar to that for the wild type α₁b-AR (results not shown). Receptor coupling to the Gₛ/PLC pathway was assessed as the ability of the receptor mutants to mediate epinephrine-stimulated IP accumulation (Table I). Transfections using 3 μg of DNA per 1 × 10⁶ cells resulted in the expression of all receptor mutants at levels ranging from 60 to over 250 fmol/well. In each experiment, the wild type α₁b-AR was expressed using varying quantities of DNA (0.3, 1.3, and 3 μg of DNA/1 × 10⁶ cells) resulting in low (between 60 and 100 fmol/well), medium (between 100 and 200 fmol/well), and high (between 200 and 300 fmol/well) levels of expression. This allowed us to always be able to directly compare the properties of the mutated receptors with those of the wild type α₁b-AR expressed at comparable levels within the same experiment.

Fig. 1 shows the localization of the amino acids mentioned in this study within a simplified topographical scheme of the...
r1b-AR based on its sequence alignment with bovine rhodopsin. The mutated amino acids are colored according to the functional effects induced upon their mutation.

Mutagenesis of Basic Residues in the i1 Loop of the r1b-AR—
The first intracellular loop of the r1b-AR as with most GPCRs is short, being predicted to consist of just six amino acids (Fig. 1). Within this region there are three basic residues (Arg148, His159, and Arg160) forming a BXX/BBX motif that has been described as important in the coupling of some receptors to G proteins. The individual mutations of Arg148, His159, and Arg160 into Glu did not result in any significant change in the ligand binding properties of the receptors or in their ability to mediate epinephrine-induced IP accumulation (Table I).

To investigate whether the loss of more than a single basic residue had a greater effect than the single mutations, we generated the double mutants R74E/H75E and R74E/R77E. Both mutants displayed decreased levels of expression. However, their ability to mediate an agonist-induced IP response did not significantly differ from that of the wild type r1b-AR expressed at similar levels (Table I). It may therefore be concluded that the basic residues forming the BBXB motif in the i1 loop of the r1b-AR do not play a significant role in receptor-G protein coupling. These findings are in agreement with those from other studies on various GPCRs indicating that amino acids in the i1 loop are not important (22, 23) or only play a modest role (24, 25) in receptor-G protein coupling.

Mutagenesis of Basic Residues in the i2 Loop and Cytosolic Extension of Helix 4 of the r1b-AR—
The 16 amino acids that constitute the i2 loop of the r1b-AR and the cytosolic extension of helix 4 contain four cationic amino acids, Arg148, Arg159, Arg160, and Lys161. Within this region is found the DRYL motif identified as a common feature in the rhodopsin family of GPCRs and an essential part of the receptor activation mechanism (5, 6). Mutations of the four positively charged residues, Arg148, Arg159, Arg160, and Lys161, did not result in any change in the ligand binding properties of the receptor mutants (Table I). Only the triple mutant R148E/R159E/R160E displayed a 9-fold increase in affinity for epinephrine (Table I).

Significantly, all the mutations resulted in an increased maximal epinephrine-stimulated activity of the receptor. However, the EC50 values of epinephrine for all the receptor mutants were similar to that of the wild type r1b-AR (Table I). The R148E mutant also displayed a significant 6-fold increase in its constitutive activity (Table I). Interestingly, when the sequence of the r1b-AR is aligned with those of the muscarinic M1, M3, and M5 receptors a homologous arginine is similarly located. Mutation of this arginine in the M5 muscarinic receptor to either Asp or Glu also produced constitutive activity (26).

The mutations of Arg148 and Arg159 to Ala resulted in a 2-fold increase in the efficacy of epinephrine, whereas the mutation of Arg160 into Ala did not (results not shown). This suggests that the effect on agonist efficacy is linked to the loss of the positive charge at positions 148 and 159, rather than to the introduction of the anion. In contrast, at position 160 the introduction of the anion is responsible for the effects seen, rather than the loss of the positive charge.

To further explore the respective role of these residues, the mutations R148E, R159E, and R160E were combined. The triple mutant R148E/R159E/R160E, despite being expressed at a lower level as compared with the single mutants, displayed both a significantly increased constitutive and epinephrine-stimulated activity (Table I).

Mutagenesis of Basic Residues in the i3 Loop and Cytosolic Extensions of Helices 5 and 6 of the r1b-AR—
The region including the i3 loop and the cytosolic extensions of helices 5 and 6 of the r1b-AR is rich in basic amino acids, containing 16 Arg and Lys residues (Fig. 1). Herein we have generated point mutations of each of these residues, and the mutations fell into three groups (Table I).

The first group contains the 6 basic residues, Lys235, Lys243, Lys259, Lys262, Arg288, and Lys304 that, when mutated into Glu, did not significantly change the ligand binding or G protein-coupling properties of the receptor (Table I). We therefore did not perform other mutations at these positions. The second group concerns the basic amino acids Lys231, Arg232, Lys249, Lys251, Arg254, Lys257, Lys258, and Lys290. Mutation of all these residues into Glu significantly increased the efficacy of epinephrine without any change in its binding affinity (Table I). Interestingly, the mutation of Lys231 also resulted in a 3.5-fold increase in constitutive activity.

The third group of mutations concern the three residues, Arg254, Lys258, and Lys291, whose mutations resulted in a significant impairment of the receptor-mediated IP response without changing the ligand binding properties of the receptor (Table I). Mutations of Arg254 and Lys258 into Glu resulted in a 65% and a 45% decrease in epinephrine-stimulated IP response, respectively (Fig. 2A). When these two mutations were combined to make the R254E/K258E mutant, the receptor-mediated IP response was almost completely abolished, suggesting an important role for these two residues in receptor G protein coupling (Table I and Fig. 2A).

To determine whether the effects observed were due to either the loss of the positive charge or to the introduction of the anions, Arg254 and Lys258 were also mutated into alanine, both individually and in combination. Although the maximal ago-
nistic-stimulated IP response of the R254A mutant remained impaired, that of the K258A mutant was similar to the wild type α1b-AR (Table I). However, when the two mutations were combined to make the R254A/K258A mutant, the maximal epinephrine-stimulated activity was profoundly impaired (75% lower than the WT average), suggesting that the integrity of both Arg254 and Lys258 is important for receptor-mediated signaling (Table I). It is noteworthy that combining the mutations of Arg254 and Lys258 (whether replaced by Ala or Glu) had a greater effect than either of the two individual mutations. These findings suggest that, due to their relative locations, Arg254 and Lys258 may partially substitute for each other.

We made the hypothesis that, if the integrity of both Arg254 and Lys258 was essential for receptor function, then their mutation should abolish both the constitutive and agonist-induced activity of the constitutively active mutants (CAMs) D142A and A293E previously described (5, 27). Thus, the double mutation of Arg254 and Lys258 into Glu was combined with the constitutively active D142A and A293E mutants to generate the triple mutants R254E/K258E/D142A and R254E/K258E/A293E, respectively. In agreement with our hypothesis, the mutation of Arg254 and Lys258 in the context of the CAMs abolished both the constitutive and the epinephrine-stimulated activities of the receptor (Fig. 2A and Table I). The binding affinity of epinephrine for the triple mutants was increased by about 30-fold as for the constitutively active receptors D142A and A293E (5, 27). However, although the triple mutants maintained the ligand binding properties of the CAMs, they had lost their signaling ability.

The third basic residue found to be important for receptor-mediated signaling was Lys291 found at the cytosolic extension of helix 6 (Fig. 1). The mutation of Lys291 into Ala and Glu resulted in 65 and 75% decrease in epinephrine-stimulated IP production, respectively, without any significant effect on the ligand binding properties of the receptor (Table I). The EC_{50} value for epinephrine was not measured for the K291E mutant due to its low activity.

Because Arg298 and Lys291 are predicted in our receptor models to be one helix turn apart on the cytosolic extension of helix 6 (Fig. 1), we combined the mutations of these two residues so as to assess the effect of a greater loss of cationic charge at this location. The R288A/K291A and R288E/K291E mutants each displayed properties similar to those of the single mutants K291A and K291E, respectively (Fig. 2B and Table I).

To further assess the importance of Lys291 in receptor function, the double mutation R288E/K291E was combined with the constitutively active D142A and A293E mutants to generate the triple mutants R288E/K291E/D142A and R288E/K291E/A293E, respectively. Interestingly, the triple mutants did not display a significantly altered constitutive activity as compared with the wild type α1b-AR. However, the R288E/K291E/D142A receptor displayed some epinephrine-stimulated activity whereas the R288E/K291E/A293E mutant was as good as the wild type receptor in its response to epinephrine (Fig. 1B and Table I). Both triple mutants displayed a 30-fold increase in binding affinity for epinephrine as found for the constitutively active receptors D142A and A293E (5, 27). The double mutants K291E/D142A and K291E/A293E displayed ligand binding and G protein-coupling properties similar to those of the triple mutants R288E/K291E/D142A and R288E/K291E/A293E, respectively (results not shown).

In conclusion, these results suggest that Lys291 plays an important role in receptor function. However, the finding that its mutation does not completely abolish the agonist-induced activity of the CAMs suggests that its integrity is not essential.

Mutagenesis of Conserved Hydrophobic Residues of the α1b-AR—We have previously investigated the role of Asp142 and Arg143 belonging to the DRYXXX(V/I)XXX motif that has been identified as an essential part of the activation mechanism in GPCRs. Herein we have mutated the other conserved residues of this motif, Tyr144, Val147, and Leu151.

The Y144A mutant displayed ligand binding properties similar to those of the wild type α1b-AR. However, it was characterized by a small but significant increase in its constitutive activity and a 5-fold increase in epinephrine-induced IP response (Table I).

The replacement of Val147 by alanine resulted in a marked increase in the constitutive activity as well as in the epinephrine-induced IP response of the receptor. In contrast, the mutation V147E resulted in a complete loss of receptor-mediated signaling. Interestingly, the affinity of both the V147A and V147E mutants for epinephrine was increased by more than 100-fold. The introduction of the V147E mutation into the constitutively active receptor A293E abolished both its constitutive and epinephrine-induced activity (Fig. 2C and Table I). Altogether the features of the V147E mutant are similar to those of the previously described R144E mutant that displayed high affinity for epinephrine, despite being completely impaired in its signaling properties. Mutations of the homologous valine in other GPCRs has also resulted in a profound impairment of receptor-G protein coupling (26, 28), whereas increased constitutive activity induced by its mutation has not been reported to date.

Mutation of Leu151 in the α1c-AR into both Ala and Asp resulted in 62 and 83% impairment of epinephrine-induced IP response, respectively, without any significant change in the ligand binding properties of the receptor (Fig. 2C and Table I).
Previous studies on other GPCRs have reported that mutations of a conserved leucine homologous to Leu151 decreased the signaling properties of the receptors (14, 15, 29). In each case mutation to any amino acid other than one that is large and hydrophobic in character results in significant impairment of the receptor-mediated response.

The results obtained from the double mutants V147E/A293E (Fig. 2C and Table I) also support an important role for Val147 and Leu151 in receptor function. The introduction of the mutations at each residue is depicted by the color of the sphere, with white representing no effect, green being constitutively activating, yellow increased efficacy for epinephrine, red impaired receptor-mediated signaling, and violet being either impairing or constitutively activating depending upon the substituent amino acid.

In conclusion, the high degree of conservation of Val147 and Leu151 among the rhodopsin-like GPCRs and the similarity of the effects found when they are mutated in the α1b-AR and in other receptors, supports the importance of their role in receptor-mediated signaling.

Analysis of the α1b-AR and Its Mutants by Molecular Modeling—The initial hypothesis, upon which the mutational analysis of the amino acids located in the cytosolic portion of the receptor was based, originated from our previous study on the docking between the α1b-AR and a modeled Gq heterotrimer (8). The model of the α1b-AR used in those studies was built following an ab initio approach (17). However, because the crystal structure of rhodopsin has recently been determined at 2.8-Å resolution (18) we have also generated a homology model of the α1b-AR based on the rhodopsin structure. In this work, the experimental data have been interpreted in the context of both the ab initio and the homology models following molecular dynamics (MD) simulations of the majority of the α1b-AR mutants.
Fig. 3 shows three different views of the models representing the inactive state of the α₁b-AR obtained following either the ab initio (Fig. 3A) or homology (Fig. 3B) modeling approaches. Each model was obtained by averaging the structures of the wild type α₁b-AR and those of all mutants with functional properties equivalent to the wild type receptor. We consider this “super average” structure to be more representative of the inactive state of the receptor than that of the wild type α₁b-AR alone.

The ab initio and homology models each displayed a high degree of similarity in the arrangement of the transmembrane helices. In addition, the i3 loop in both models contains an α-helical segment (ranging from Met242 to Arg254) within its N-terminal half and a less structured C-terminal portion. Most importantly, the i2 and i3 loops in both models contribute to the formation of a cytosolic crevice that potentially represents a site with electrostatic and shape complementarity with G proteins as previously described (8).

However, there are also some important differences between the two models that result in different mechanistic hypotheses for receptor function. In the homology model, helices 2 and 3, respectively, begin three and five amino acids earlier than in the ab initio model. Furthermore, helix 3 in the homology model displays a greater degree of tilt such that its cytosolic extension is closer to helix 5 than in the ab initio model. In addition, the orientation of the cytosolic extension of helix 6 is slightly different in the two models (Fig. 3). As a result, important differences in the amino acids contributing to the helix 3/helix 6 interface as well as in the environment of Arg143 of the DRY motif are found (Fig. 3).

In particular, Arg143 in the ab initio model (Fig. 3A) is directed toward helix 2, and we have previously predicted that its interaction with Asp91 was an important constraint in maintaining the receptor in its inactive state (30). It is worth noting that in the “super average” structure shown in Fig. 3A, the interaction between Arg143 and Asp91 is not as apparent as in the original model of the wild type receptor described in our previous studies (17). In fact the Asp91 to Arg143 distance in the super average structure is 7.86 Å in comparison to 4.82 Å in the previously described wild type model. This suggests that the Arg143 to Asp91 interaction in the ab initio model is not a feature common to all the inactive conformations of the receptor as would have been expected when looking at the model of the wild type α₁b-AR alone.

In the homology model, Asp91 in helix 2 is not in the proximity of Arg143. Instead, Arg143 makes a salt bridge with both the adjacent Asp142 and Glu289 on helix 6 (Fig. 3B). The latter interaction introduces a link between helices 3 and 6 that potentially represents an important constraint keeping the α₁b-AR in the inactive state. This hypothesis seems to be supported by our preliminary findings, which show that mutations of Glu289 in helix 6 can increase the constitutive activity of the receptor (results not shown).

We cannot say at present which receptor model is more representative of the actual structure of the α₁b-AR. Although the arrangement of the seven helices in the homology model may be more reliable, the lack of sequence and length similarity in the extra- and intracellular portions of α₁b-AR and rhodopsin does not favor the homology model in preference to the ab initio model. In this study we have therefore used both models of the α₁b-AR to interpret the results of the mutagenesis experiments. The modeling analysis was mainly used to locate the mutated residues in the inactive state of the α₁b-AR and to highlight potential relationships between the effect of the mutations on receptor function and their position in the receptor structure.

Molecular dynamics analysis of the basic amino acids in the three intracellular loops revealed a number of structural features consistent with the experimental findings. In both models the majority of the basic amino acids of the i1 (Arg74 and Arg77) and i2 loops (Arg159 and Arg160), as well as of the cytosolic extension of helix 4 (Lys258), lie at the putative lipid/water interface (Fig. 1). Modeling the mutations of these residues does not predict dramatic functional changes for the receptor in agreement with the experimental effects observed for these mutations.

However, the mutations of Arg159, Arg160, and Lys258 resulted in a significant increase in the efficacy for epinephrine. This effect may be in part due to the influence of these mutations on the pKa of Asp142 of the (E/D)RY motif that is in their proximity. Mutation of Arg159, Arg160, or Lys258 to Glu could potentially increase the pKa of Asp142, thereby favoring its protonation. Computer simulations (5), as well as experimental studies on rhodopsin (31), have suggested that protonation of this residue is one of the key events in the activation process of these receptors.

The majority of the basic amino acids in the i3 loop are not directed toward the solvent-accessible crevice formed between the i2 and i3 loops but instead are involved in intra-loop interactions. In particular, most of the cationic amino acids of the i3 loop that when mutated did not alter receptor function (Lys243, Lys249, Lys258, and Lys262) or increased the efficacy of the agonist (Lys249 and Lys271), were found to form salt bridges with anionic amino acids within the loop. Thus, both the ab initio and homology models suggest that the main role of the majority of the cationic amino acids in the i3 loop is to stabilize its structure.

Interestingly, the few basic amino acids in the i3 loop that are directed toward the cytosolic crevice of the receptor include Arg254 and Lys258, both of which are fully exposed to the solvent in both models (Fig. 3). The potential key position of Arg254 and Lys258 has been previously highlighted by the results of our study on docking between the α₁b-AR and Gαq (8). Docking solutions between active forms of the α₁b-AR and a Gq-heterotrimer identified a number of cationic residues (Arg143, Arg160, Arg232, Arg243, Arg254, Lys258, Lys262, and Arg288) on the cytosolic surface of the receptor as being available to make contact with anionic amino acids in the αq subunit. Interestingly, Arg254 and Lys258 were among the few residues shared by all the docking solutions proposed.

The position of residues whose mutations resulted in important functional effects, either constitutively activating the receptor (Tyr144, Arg148), impairing receptor-G protein coupling (Lys291) or both (Val147), have given insight into their structural functional role. In particular, both models demonstrate that the receptor sites susceptible to activating mutations (Asp142, Tyr144, Val147, Arg148, Glu289, and Arg288), reported in this and previous studies (5, 27) belong to, or are close by, the helix 3/helix 6 interface. As a result, all are in close proximity of the highly conserved arginine, Arg143, of the DRY motif (Fig. 3).

In both models, these constitutively activating mutations all perturb the intramolecular interactions involving Arg143, which represents an important constraint that stabilizes the inactive state (R) of the α₁b-AR (results not shown). These findings strongly support a rearrangement between helix 3 and helix 6 as a fundamental step in the activation process of GPCRs (32, 33).

The amino acid Lys291 at the cytosolic extension of helix 6 belongs to the helix 3/helix 6 interface in the ab initio model, whereas it is directed toward the outer face of helix 7 in the homology model (Fig. 3). Despite these topographical differences, the lack of solvent accessibility of Lys291 in the ab initio
model and its orientation in the homology model appear to exclude that this residue is directly involved in G protein interaction and/or activation. Mutations of Lys291 therefore probably indirectly impair receptor-G protein coupling by inducing a structural perturbation in the helix 6/helix 3 or helix 6/helix 7 packing. The experimental results support the hypothesis that the integrity of Lys291 is important for productive receptor-mediated signaling, but it is not an essential mediator of receptor-G protein coupling. In fact, mutations of Lys291 impaired the agonist-induced response of the wild type α1b-AR but not that of the constitutively active D142A and A293E mutants (Fig. 2B).

Mutations of Val147 at the cytosolic extension of helix 3 and of Leu151 in the i2 loop resulted in marked effects on receptor function. Both models are consistent with mutations of Val147 introducing structural perturbations in the helix 3/helix 6 packing. According to the ab initio model, the V147A mutation that results in an increased constitutive activity of the receptor changes the interaction pattern of Arg143 and increases the solvent accessibility of the cytosolic crevice between the i2 and i3 loops, which is a feature of the active receptor state (R*). In contrast, the mutation V147E introduces a link between the replacing glutamate and Lys291 on helix 6. Consistent with this additional constraint between helices 3 and 6, this mutation almost completely abolished the receptor-mediated signaling response. The homology model suggests that the activating mutation of Val147 into Ala destabilizes the interaction found in the inactive state of the wild type receptor between Arg143 and Glu290. In contrast, the V147E mutation reinforces the link between the two helices, by introducing a new inter-helical interaction between the replacing glutamate and Lys290 on helix 6. In addition, the replacing glutamate at position 147 can also interact with the neighboring Arg143. Thus, both models highlight Val147 as a crucial residue by its close proximity to Arg143, and its inactivating mutation V147E introduces additional constraints into the receptor. We therefore propose that the integrity of Val147 is important because it supports the mechanistic role of Arg143 in the activation process of the α1b-AR.

According to the ab initio model, Leu151 in the i2 loop is directed toward helix 6 and buried with respect to the cytosol. Mutation of Leu151 to Asp is predicted to trigger the formation of a salt bridge across the core of the helical bundle between the replacing aspartate and Arg258 on helix 6. This new constraint may be expected to impair receptor function. In contrast, Leu151 in the homology model is accessible to the cytosol. Its mutation to Asp may introduce an intra-loop salt bridge with Arg146, thereby changing the conformation and solvent accessibility of the loop. Thus, the homology model suggests that Leu151 may either be important for maintaining the conformation and orientation of the i2 loop and/or play a direct role in receptor-G protein coupling.

DISCUSSION

In this study we have applied a systematic mutagenesis approach upon the α1b-AR to investigate the role in receptor-G protein coupling of all the basic amino acids as well as of some conserved hydrophobic residues located in the cytosolic portion of the receptor. Interpreting the effects of the mutations in conjunction with results from molecular modeling analysis has provided some insight on the structure function role of several amino acids.

The α1b-AR-mediated IP response in cells can be mediated by different members of the Gq family (34). However, the results of this study have only been interpreted in the context of the α1b-AR coupling to Gq, because our previous modeling study investigated the docking of a α1b-AR model with a modeled Gq heterotrimer (8).

The Majority of the Cationic Amino Acids in the Intracellular Loops Are Not Directly Involved in Receptor-G Protein Coupling—An important finding of this study is that mutating the majority of basic residues in the cytosolic loops and extensions of helices 4, 5, and 6 of the α1b-AR did not impair the receptor-mediated IP response. This result is in good agreement with the predictions made in our previous modeling work docking the α1b-AR with Gq (8). In that study we suggested that, although the majority of cationic residues on the cytosolic surface of the α1b-AR contribute to reciprocal electrostatic properties between the receptor and the Gq subunit, only a selected number of cationic residues could be contact sites on the receptor for the G protein.

It is noteworthy that several mutations in the i3 loop of the α1b-AR (colored yellow in Figs. 1 and 3) increased the agonist-induced response of the receptor. This in conjunction with our molecular modeling studies suggests that the i3 loop is highly constrained by a number of intramolecular interactions, thereby limiting its propensity to interact with and/or activate the G protein. Mutations of these residues would reduce these constraints leading to increased receptor-G protein coupling.

Arg254 and Lys258 in the i3 Loop and Leu151 in the i2 Loop Are Directly Involved in Receptor-G Protein Coupling—We have found that, among all the basic residues of the cytosolic surface of the receptor, only the combined mutations of Arg254 and Lys258 in the i3 loop almost totally impaired the IP response of the receptor as well as of the constitutively active mutants D142A and A293E.

In both the ab initio and homology models of the α1b-AR, Arg254 and Lys258 are the only cationic amino acids in the i3 loop that are solvent-accessible and directed toward the cytosolic crevice of the receptor. Thus, we hypothesize that Arg254 and Lys258 are among the contact sites on the receptor for the Gq subunit and may therefore play a direct role in receptor-G protein coupling. This is also supported by the results of a previous study showing that Arg254 and Lys258 belonged to the only stretch of residues identified in the α1b-AR that could confer to β2-AR the ability to activate the Gq/PLC pathway (19). It will be interesting to assess whether mutations of the amino acids predicted to be the partners to Arg254 and Lys258 in the α1b-AR subunit also impair receptor G protein coupling.

Our experiments, however, do not directly assess the functional role played by Arg254 and Lys258 at a mechanistic level. The impairment of the α1b-AR-mediated IP response induced by mutations of these residues could result from their effect on any of the steps leading to a receptor-mediated response, i.e. receptor activation, receptor-G protein interaction or receptor-induced G protein activation. Arg254 and Lys258 are located far from the transmembrane helical bundle and from the membrane/cytosol boundary where constitutively activating mutations have principally been found in GPCRs (3). This location appears to exclude Arg254 and Lys258 from being involved in the process of receptor activation, i.e. the transition of the receptor from its inactive (R) to active (R*) state.

For most GPCRs, receptor-G protein interaction cannot be conclusively distinguished from receptor-mediated G protein activation at the experimental level. The guanine nucleotide-sensitive high affinity binding of agonists to the β2-AR has been interpreted as a measure of its physical interaction with Gq and some of its mutants (35). Unfortunately, this experimental tool cannot be applied to the α1b-AR which, like other GPCRs coupled to the Gq/PLC pathway, displays monophasic binding isothermas for agonists that are insensitive to GTP analogues. We have also explored the possibility of assaying the ability of different receptor mutants to co-immunoprecipitate the α1 sub-
Mutational Analysis of the α_{1b}-Adrenergic Receptor

unit as a tool to potentially measure the receptor-G protein physical interaction in COS-7 cells. However, the inability to detect a significant agonist-dependent regulation of the α_{1b}-AR-α_{i} subunit association (results not shown), combined with the difficulty in finding a convincing theoretical interpretation of the co-immunoprecipitation experiments, discouraged us from further pursuit of this assay.

In conclusion, despite the lack of direct evidence, both the functional analysis of the receptor mutants and the predictions of molecular modeling support the hypothesis that Arg254 and Lys258 are directly involved in the receptor-mediated activation of the G protein.

The experimental results indicate that Leu151 also plays an important role in receptor-mediated signaling. Despite the fact that the ab initio and homology models of the α_{1b}-AR do not provide a consistent interpretation of the structural functional role of Leu151, the fact that its mutation into Asp almost completely abolished the IP response mediated by the wild type α_{1b}-AR as well as by the constitutively active mutant A293E suggests that this residue may be part of the receptor-G protein interface. The high degree of conservation of this residue, in conjunction with the similar effects found upon its mutation in other receptors, suggests that its role in receptor-G protein coupling is conserved among different GPCRs.

The Cytosolic Extensions of Helices 3 and 6 Play a Crucial Role in Receptor Activation—Both the ab initio and homology models of the α_{1b}-AR predict that the majority of amino acids susceptible to activating mutations identified in this study (Tyr144, Val147, Arg148, and Gln298) or in our previous work (Asp142 (5) and Arg293 (27)) belong to or are close to the interface between the cytosolic extensions of helices 3 and 6 (Fig. 3). Altogether, our results suggest that the residues located in the environment of the interface between the cytosolic extensions of helices 3 and 6 are mainly involved in the activation process of the α_{1b}-AR, i.e. its transition between the inactive (R) and active (R*) states. This is in agreement with the conclusions of other studies on rhodopsin (36, 37) and β_{2}-AR (38), suggesting that a rearrangement in the relative positioning of helices 3 and 6 is a fundamental step in receptor activation.

The findings of this study exclude the basic amino acids in the cytosolic extension of helix 6 of the α_{1b}-AR from playing a direct role in receptor-G protein coupling. In fact, mutating most of these residues (Arg288, Lys290, and Lys294) had no significant effect on receptor function. Only mutations of Lys291 profoundly impaired the α_{1b}-AR-mediated IP response. The functional as well as modeling analysis of these mutations suggest that Lys291 is not a contact site on the receptor for the G protein, but rather it plays a structural role in helix 3/helix 6 or helix 6/helix 7 packing, thereby allowing productive receptor-G protein coupling.

Previous studies on muscarinic cholinergic receptors have provided evidence that it is mainly hydrophobic residues in the cytosolic extension of helix 6 that dictate receptor-G protein coupling selectivity (reviewed in Ref. 2). Future mutagenesis studies of the α_{1b}-AR targeting other amino acids that have not been considered in this study will further investigate the functional role of this portion of the receptor.

Conclusions—The findings of this study significantly improve our knowledge of the molecular determinants of the α_{1b}-AR/Gs protein interface. The role of cationic as well as hydrophobic residues in receptor-G protein coupling has been suggested for several GPCRs (2). However, a systematic mutational analysis of these residues has been lacking. It is therefore difficult to build a complete map of the different amino acids involved in receptor-G protein coupling for various receptors and to compare the positions of the basic residues found functionally important among different receptors. Our findings do not support the hypothesis that simple motifs like the BBXB or BBXB sequences found in different cytosolic loops of GPCRs can predict receptor-G protein coupling. In fact, among the three BBXB or BBXB motifs found in the α_{1b}-AR, in the i1 loop, the N-terminal portion of the i3 loop, and in the cytosolic extension of helix 6, only mutations of a single residue (Lys291) in the later motif (28)KKAAK294) impaired the receptor-mediated response. This suggests that the effect of this mutation is linked to an important structural functional role of Lys291 rather than to the disruption of the motif.

The results of the mutagenic analysis of the α_{1b}-AR are in agreement with the conclusions of docking simulations between the α_{1b}-AR and Gs models (8). It is noteworthy that the complementary areas of charge and shape driving the docking between the α_{1b}-AR and Gs display similarities with that recently described between the rhodopsin structure and transducin (39). The involvement of the i2 and i3 loops of rhodopsin in G protein interaction was recently demonstrated by elegant studies, in which different sites in these loops were cross-linked to transducin (40, 41).

Despite the large number of experimental studies on GPCRs, our knowledge on how agonist binding to receptors results in G protein activation still remains unclear. The crystal structure of rhodopsin in its ground state has represented a significant breakthrough in GPCR research (18). However, a better understanding of how the active conformation of rhodopsin interacts with and activates transducin awaits the resolution of the active structure of the receptor. New structural approaches like those recently described by the group of Khorana (40–42) will be extremely useful in elucidating the architecture of the receptor-G protein interface. However, the results from systematic mutational analysis of different receptors, such as those presented herein, represent an important step in determining the role of individual amino acids in GPCR function.

REFERENCES

1. Wu, D., Katz, A., Lee, C. H., and Simon, M. I. (1992) J. Biol. Chem. 267, 25798–25802
2. Weiss, J. (1997) FASEB J. 11, 346–354
3. Gether, U. (2000) Endor. Rev. 21, 90–113
4. Scheer, A., Fanelli, F., Costa, T., De Benedetti, P. G., and Coteccchia, S. (1996) EMBO J. 15, 3566–3578
5. Scheer, A., Fanelli, F., Costa, T., De Benedetti, P. G., and Coteccchia, S. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 808–813
6. Scheer, A., Costa, T., Fanelli, F., De Benedetti, P. G., Mharouty-Kodja, S., Abouin, L., Nenninger-Tosato, M., and Coteccchia, S. (2000) Mol. Pharmacol. 57, 219–231
7. Litcharge, O., Bourne, H. R., and Cohen, F. E. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 7607–7611
8. Fanelli, F., Menziani, C., Scheer, A., Coteccchia, S., and De Benedetti, P. G. (1999) Proteins 37, 145–156
9. Oliveira, L., Paiva, A. C., and Vriend, G. (1999) Protein Eng. 12, 1087–1095
10. Groff, E. van Der Wenden, E. M., Oliveira, L., AP, I. J., and Vriend, G. (2000) Proteins 41, 448–459
11. Okamoto, T., and Nishimoto, I. (1992) J. Biol. Chem. 267, 8342–8346
12. Hoggar, P., Shuckley, M. S., Lameh, J., and Sadee, W. (1995) J. Biol. Chem. 270, 7405–7410
13. Lee, N. H., Geoghegan, N. S., Cheng, E., Cline, R. T., and Fraser, C. M. (1996) Mol. Pharmacol. 50, 140–148
14. More, O., Lameh, J., Hoggar, P., and Sadee, W. (1993) J. Biol. Chem. 268, 22273–22276
15. Arora, K. K., Sakai, A., and Catt, K. J. (1995) J. Biol. Chem. 270, 22820–22826
16. Wadu, S. M., Scribner, M. K., Dalman, H. M., Taylor, J. M., and Neubig, R. R. (1996) Mol. Pharmacol. 50, 351–358
17. Fanelli, F., Menziani, C., Scheer, A., Coteccchia, S., and De Benedetti, P. G. (1998) Methods 14, 302–317
18. Palczewski, K., Kumasaka, T., Horii, T., Behnke, C. A., Motoshima, H., Fox, B. A., Le Trong, I., Teller, D. C., Okada, T., Stenkamp, R. E., Yamamoto, M., and Miyano, M. (2000) Science 289, 739–745
19. Coteccchia, S., Ostrowski, J., Kjeldsberg, M. A., Caron, M. G., and Lefkowitz, R. J. (1992) J. Biol. Chem. 267, 1633–1639
20. Sali, A., and Blundell, T. L. (1993) J. Mol. Biol. 234, 779–815
21. Chothia, C., and Lesk, A. M. (1986) EMBO J. 5, 823–828
22. Shi, W., Osawa, D. C., and Weis, E. R. (1995) J. Biol. Chem. 270, 2112–2119
23. Jin, H., Nip, S., O’Dowd, B. F., and George, S. R. (1998) Biochim. Biophys. Acta 1402, 165–170
Mutational Analysis of the α_{1b}-Adrenergic Receptor

24. Dixon, R. A., Sigal, I. S., and Strader, C. D. (1988) Cold Spring Harbor Symp. Quant. Biol. 53, 487–497
25. Mathi, S. K., Chan, Y., Li, X., and Wheeler, M. B. (1997) Mol. Endocrinol. 11, 424–432
26. Burstein, E. S., Spalding, T. A., and Brann, M. R. (1998) J. Biol. Chem. 273, 24322–24327
27. Kjelsberg, M. A., Cotecchia, S., Ostrowski, J., Caron, M. G., and Lefkowitz, R. J. (1992) J. Biol. Chem. 267, 1430–1433
28. Damaj, B. B., McColl, S. R., Neote, K., Songqing, N., Ogborn, K. T., Hebert, C. A., and Naccache, P. H. (1996) FASEB J. 10, 1426–1434
29. Smit, M. J., Roovers, E., Timmerman, H., van de Vrede, Y., Alewijnse, A. E., and Leurs, R. (1996) J. Biol. Chem. 271, 7574–7582
30. Scheer, A., and Croteau, S. (1997) J. Recept. Signal Transduct. Res. 17, 57–73
31. Fahmy, K., and Sakmar, T. P. (1993) Biochemistry 32, 7229–7236
32. Sheikh, S. P., Vilardaga, J. P., Baranski, T. J., Lichtarge, O., Iiri, T., Meng, E. C., Nissenson, R. A., and Bourne, H. R. (1999) J. Biol. Chem. 274, 17033–17041
33. Ghanouni, P., Steenhuis, J. J., Farrens, D. L., and Kohilka, B. K. (2001) Proc. Natl. Acad. Sci. U. S. A. 98, 5997–6002
34. Wilkie, T. M., Scherle, P. A., Strathmann, M. P., Slepak, V. Z., and Simon, M. I. (1991) Proc. Natl. Acad. Sci. U. S. A. 88, 10049–10053
35. Grishina, G., and Berlot, C. H. (1998) J. Biol. Chem. 273, 15053–15060
36. Sheikh, S. P., Zvyaga, T. A., Lichtarge, O., Sakmar, T. P., and Bourne, H. R. (1996) Nature 383, 347–350
37. Farrero, D. L., Altenbach, C., Yang, K., Hubbell, W. L., and Khorana, H. G. (1996) Science 274, 678–770
38. Jensen, A. D., Guarnieri, F., Rasmussen, S. G., Asmar, F., Ballesteros, J. A., and Gether, U. (2001) J. Biol. Chem. 276, 9279–9290
39. Hamm, H. K. (2001) Proc. Natl. Acad. Sci. U. S. A. 98, 4819–4821
40. Itoh, Y., Cai, K., and Khorana, H. G. (2001) Proc. Natl. Acad. Sci. U. S. A. 98, 4857–4861
41. Cai, K., Itoh, Y., and Khorana, H. G. (2001) Proc. Natl. Acad. Sci. U. S. A. 98, 4877–4882
42. Loewen, M. C., Klein-Seetharaman, J., Getmanova, E. V., Reeves, P. J., Schwalbe, H., and Khorana, H. G. (2001) Proc. Natl. Acad. Sci. U. S. A. 98, 4888–4892
Mutational and Computational Analysis of the α₁b-Adrenergic Receptor: INVOLVEMENT OF BASIC AND HYDROPHOBIC RESIDUES IN RECEPTOR ACTIVATION AND G PROTEIN COUPLING
Peter J. Greasley, Francesca Fanelli, Alexander Scheer, Liliane Abuin, Monique Nenniger-Tosato, Pier G. DeBenedetti and Susanna Cotecchia

J. Biol. Chem. 2001, 276:46485-46494.
doi: 10.1074/jbc.M105791200 originally published online October 3, 2001

Access the most updated version of this article at doi: 10.1074/jbc.M105791200

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC’s e-mail alerts

Supplemental material:
http://www.jbc.org/content/suppl/2001/12/07/276.49.46485.DC1

This article cites 42 references, 27 of which can be accessed free at
http://www.jbc.org/content/276/49/46485.full.html#ref-list-1