New Dithiocarbamates as a Possible Human Serum Albumin Metal Carrier in Drug Delivery Systems and their Antioxidant and Antiproliferative Activities.

Saadi M D Al-Nuzal¹, Azhar M Haleem¹, Ken Czerwinski² and Salah M. Haleem³.
¹Environment Research Centre, The University of Technology, Baghdad, Iraq.
² Department of Chemistry, University of Nevada Las Vegas, Las Vegas, NV, USA.
³ Kamal Al-Samarrai Specialist Hospital, Baghdad, Iraq.
E-mail: 0011519@uotechnology.edu.iq

Abstract. New mono- and bis-dithiocarbamates were prepared from the reaction of organic dihydrazides -NHNH-(C=O)(CH₂)x-(C=O)NHNH- (where x = 0, 2, 4) and basic carbon disulfide with varying chain length 10-14 atom as a human serum metal carrier. The products were characterized by various spectrophotometric such as ¹H and ¹³C NMR and elemental analysis. Their antiproliferative activities were examined on two species of the standard strains of the Gram-positive Staphylococcus aureus ATCC 25923 and Gram-negative Escherichia coli ATCC 25922 by following the procedure of broth micro-dilution method (BMM), which was applied at the concentrations: 0.0, 100, 200, and 300 ppm for each compound. The antioxidant properties were investigated by following the DPPH method, which was applied for each of the above concentrations. All prepared compounds exhibited antiproliferative and antioxidant activity.

Keywords: Dithiocarbamates, metal carrier, drug delivery, antiproliferative activity, antioxidant, DPPH.

1. Introduction:
Dithiocarbamates are thiol that possesses the general structure R₁R₂-N=(S)-SNa [1-2], their first commercial application was as a fungicide during the forties of the past century. They are important therapeutic and industrial chemicals and one of the dithiocarbamates, thiram disulphide (R₂NC=(S)S)₂ where R = Et used as a fungicide both in the field and as a seed protectant. A large number of articles dealing with the formation of complexes of dithiocarbamates with metal ions were reported in the works of literature covering wide fields, among them is their use as chemotherapeutic agent for Alzheimer’s disease [3], as antifungal agents and antibacterial agents [4], in agriculture as pesticide [5], and in the industry as stabilizers for PVC [6]. They have been studied extensively over the last decades in a response to their growing applications in many new areas of chemistry, industry and medicine [7-8].

The ability of dithiocarbamates with coordinate to metal ions offer important biological value because a lot of proteins, molecules, and enzymes, which are current in their metal compositions centres, are imperative for these structures [9]. They behave as metal chelators at the same time change and destabilize their structure and consequently reduce their toxic behaviour [10], and hence their interaction with some metals can be related to oxidative processes that are vital mechanisms in the elimination of microorganisms [11-12]. There have been a large number of recent experimental studies, particularly related to the regulation of transcription factors and apoptosis, in which dithiocarbamates were used to modify the cellular redox environment [10-12].

Dithiocarbamato complexes have attracted great interest due to their anticancer properties [13-16], cocaine addiction [17], antimalarial [18], antifungal [19] and inflammation [20]. Evidence that Sodium 1-dithiocarboxylatopyrroolidine-2-carboxylate (Py-m-DTC) efficiently reduces CVB3 replication and CVB3 viral progeny release and such inhibitory effect are unbiased of its antioxidant recreation [16-17]. Their complexes with platinum, vanadium, ruthenium, gold, rhodium and many others have been determined to possess therapeutic homese [18-19]. In this situation, they behave like a vehicle for transporting the metal to their intended target site [20] and also has the tendency to reduce toxicity, improve solubility and biocompatibility [21]. Gold dithiocarbamates have been evaluated for their
potential to inhibit cisplatin-induced nephrotoxicity and for their in vitro cytotoxicity toward a variety of human tumour cell lines by 1-4-fold [22-23].

Human serum albumin (HSA) demonstrated its important role as a drug delivery vehicle for organic small molecules. It possesses a high concentration in the tumour area, superior binding efficacy with various ligands and the extension of circulatory half-life [24-25]. It has several binding pockets where various ligands such as fatty acids, ions can bind, providing drugs with the option for non-covalent binding sites [25-29]. Many published articles dealing with dithiocarbamato complexes [30-31]. The present work aim is to prepare new dithiocarbamates as a potential human serum albumin metal carrier in drug delivery systems and study their antioxidant and antiproliferative activity.

2. Materials and methods:

2.1 Instrument:
Melting points of synthesized compounds were recorded in open capillary tubes using model SMP1 from the UK melting point apparatus. The elemental analysis was measured by EuroEA model 3000/Italy elemental Analyzer for C, H, S, and N. ¹H NMR, ¹³C NMR spectra were recorded by using Bruker spectrometer model Ultra-Shield at 300.15 MHz using deuterated dimethyl sulfoxide (DMSO-d₆) and chloroform (CDCl₃) as a solvent for samples with TMS as internal reference standard at 298 K, in Al-Bayt university.

2.2 Chemicals:
General-purpose grade of oxalyl dihydrazide (ODH), succinyl (SDH), adipyl dihydrazide (ADH) and proline (Pr), and 2,2-diphenyl-1-picryl-hydrazylhydrate (DPPH) were obtained from Sigma-Aldrich. The other dithiocarbamates used in this study were prepared by the following procedures:

2.2.1 Sodium 1-dithiocarboxylatopyrrolidin-2-carboxylate (Py-m-DTC): A solution of CS₂ (2.36 g, 1.81 ml, 40 mMole) in 50 mL methanol was gradually added to a solution of sodium hydroxide (2.24 g, 40 mMole) and pyrolidiane-2-carboxylic acid (20 mmol) in 75 mL of ethanol over a period of 30 minutes. The solution was stirred for 12 hours and the precipitates were filtered and washed with 3 × 10 mL ethanol and 3 × 10 mL ether. The product of the title compound was dried under vacuum for 5 hours to get white crystals, yield 65 % and M.p. 255-258°C. ¹H NMR (DMSO-d₆) δ ppm: 1.54-1.64 (m, 2H, C₂-H); 1.7-1.95 (m, 2H, C₂-H); 2.7-2.8 (m, 2H, C₂-H); 3.7 (t, 1H, C₁-H), ¹³C NMR (DMSO-d₆) δ ppm: 23.8 (C₃), 29.5 (C₂), 52.2 (C₄), 74.8 (C₁), 176.1 (C=O), 211.8 (C=S).

2.2.2 Sodium 2-(2-hydrazinyl-2-oxoacetyl) hydrazinecarboxdihtioate (ODH-m-DTC): A solution of CS₂ (1.18 g, 0.905 ml, 20 mMole) in 50 mL methanol was gradually added to a solution of sodium hydroxide (1.12 g, 20 mmole) and oxalyl dihydrazide (2.36 g, 20 mMole) in 75 mL of ethanol over a period of 30 minutes. The solution was stirred for 12 hours and the precipitates were filtered and washed with 3 × 10 mL ethanol and 3 × 10 mL ether. The product of the title compound was dried under vacuum for 5 hours to get white crystals, Yield 65 % and M.pt. 220 -225°C. ¹H NMR (DMSO-d₆) δ ppm: 2.0 (s, 2H, H-N₂ and 1H, H-N₃), 8.2 (s, 1H, H-N₂ and 1H, H-N₃); ¹³C NMR (DMSO-d₆) δ ppm:159.0 (C₁=O and C₂=O), 203.5 (C₃=S).

2.2.3 Sodium 2,2'-oxalyl bis-(hydrazinecarbodithioate) (ODH-b-DTC): A solution of CS₂ (2.36 g, 1.81 ml, 40 mmole) methanol was added to a solution of sodium hydroxide (2.25 g, 40 mmole) and oxalyl dihydrazide (I) (2.36 g, 20 mmole) in 75 mL of ethanol over a period of 30 minutes. The solution was stirred for 12 hours and then was filtered and washed with 3 × 10 mL ethanol and 3 × 10 mL ether. The product of the title compound was dried under vacuum for 5 hours to get white crystals, 100 % Yield: 6.93 g, M.pt. 270 -275°C. ¹H NMR (DMSO-d₆) δ ppm: 2.0(s, 2H, H-N₁ and 1H, H-N₄), 2.5 (s, 2H, H-C₂ and 1H, H-N₃), 8.02 (s, 1H, H-N₂, and 1H, H-N₃); ¹³C NMR (DMSO-d₆) δ ppm: 159.6 (C₂ and C₃), 203.5 (C₁=S, C₄=S).
2.2.4 Sodium 2-(4-hydrazinyl-4-oxobutanoyl) hydrazinecarbodithioate (SDH-m-DTC): By following
the procedure used in section (b) for (ODH-MDTC) by using succinyl dihydrazide (2.93 g, 20 mmole)
instead of oxalyl dihydrazide. The product of the title compound was dried under vacuum for 5 hours
to get white crystals, yield 3.03 g (90.3 %) and M.pt 162-164°C. 1H NMR (DMSO-d6) δ ppm: 2.0 (s, 1H,
H-N1 and 2H, H-N4), 2.5 (s, 2H, C6H2 and 2H, C2H2), 8.1 (s, 1H, H-N2, 1H, H-N3). 13C NMR (DMSO-
d6) δ ppm: 34.0 (C2 and C3), 177.1 (C1=O and C6=O), 203.5 (C5=S).

2.2.5 Sodium 2,2′-succinyl bis(hydrazinecarbodithioate) (SDH-b-DTC): By following procedure
mentioned in (f) above using succinyl dihydrazide (I) (2.36 g, 20 mmole) and refluxed for a period
of 30 minutes. The solution was stirred for 12 hours and then was treated similarly. The product of the title
compound was dried under vacuum for 5 hours to get white crystals, 100 % Yield: 6.93 g, M.pt. 270-
275°C. 1H NMR (DMSO-d6) δ ppm: 2.05(s, 2H, H-N1, and 1H, H-N4), 2.5(s, 2H, H-C2 and 1H, H-C3),
8.10(s, 1H, H-N2 and 1H, H-N3); 13C NMR (DMSO-d6) δ ppm: 34.0 (C6H2, C2H2), 177.5(C3=O and
C5=O), and 203.6((C1=S and C6=S).

2.3 Antiproliferative activity:
The antiproliferative activities (antibacterial activity) of seven newly prepared compounds Py-m-DTC,
ODH-m-DTC, SDH-m-DTC, ADH-m-DTC, ODH-b-DTC, SDH-b-DTC, ADH-b-DTC as well as their
precursors ODH, SDH, ADH were tested against two standard strains of the Gram-positive
Staphylococcus aureus ATCC 25923 and the Gram-negative Escherichia coli ATCC 25922, by
the broth micro-dilution method (BMM) [32]. The procedure includes the transfer of 100 µL volumes of
10⁶ CFU/mL logarithmic phase cultures of each bacterial suspension to inculcate in 25 mL sterile
Mueller-Hinton broth, which was consisting of serial concentrations (0, 100, 200, and 300) ppm of each
compound. All tubes were incubated at 37°C ± 0.2°C for 24 hr. The optical density (OD) was measured
at 600 nm wavelength by using UV-VIS spectrophotometer after the specified incubation time.

2.4 Antioxidant and chromosomal assay:
The chromosomal analyses were carried out according to [34], while the percentage of antioxidant
activity (AA %) often tested compounds were assessed by using 2, 2-diphenyl-1-picryl-hydrazyhydrate
(DPPH) method. Free radical scavenger assay was conducted according to Brand-Williams et al. [34-
35]. The experiment includes the transfer of 0.5 mL of serial concentrations (0, 100, 200, and 300) ppm
of each compounds in a mixture of (0.5 mM of DPPH in 3.3 mL absolute ethanol). The change in the
mixture color was recorded at 515 nm by UV-VIS Spectrophotometer within 100 minutes at room
temperature. The blank tube consists of (3.3 ml of ethanol + 0.5 ml of sample blank is the absorbance
of the control reaction.

Except for the test compound, while the control tube consists of (3.5 mL ethanol + 0.3 mL of DPPH).
The scavenging activity percentage (AA %) was determined according to the following formula:

\[
AA\% = 100 - \frac{(\text{Abs. sample} - \text{Abs. blank}) \times 100}{\text{Abs. control}}
\]
Figure 1: The Structures and nomenclature of the prepared mono- and bis-dithiocarbamates.

2.5 Statistical analysis:
The results are reported as the mean ± SD of three independent replicates. Statistical analysis of data was carried out by computer using SPSS version 16 software. The level of significance was measured by using the Analysis of Variance (ANOVA) test [35]. The level of significance was shown using the least significant difference (LSD) test.

Table 1: The physical properties and elemental analysis of the prepared dithiocarbamates.

| # | Compound | Formula | M. wt | M. pt (°C) | Color | Yield (%) | C % | H % | N % | Found | Theo. | Found | Theo. | Found | Theo. | Found | Theo. |
|-----|----------------|----------------|--------|------------|-----------|-----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| a) | Py-\(m\)-DTC | \(\text{C}_6\text{H}_7\text{NNa}_2\text{O}_2\text{S}_2\) | 235.23 | 255-258° | White | 95% | 30.60 | 30.64 | 3.00 | 5.93 | 5.95 |
| b) | ODH-\(m\)-DTC | \(\text{C}_1\text{H}_2\text{N}_2\text{Na}_2\text{O}_2\text{S}_2\) | 216.22 | 170-173° | White | 65% | 16.63 | 16.66 | 2.37 | 25.76 | 25.91 |
| c) | ODH-\(b\)-DTC | \(\text{C}_1\text{H}_2\text{N}_2\text{Na}_2\text{O}_2\text{S}_2\) | 314.34 | 270-275° | White | 90.3% | 15.23 | 15.28 | 1.35 | 17.67 | 17.82 |
| d) | SDH-\(m\)-DTC | \(\text{C}_1\text{H}_2\text{N}_2\text{Na}_2\text{O}_2\text{S}_2\) | 244.27 | 103-105° | White | 90.3% | 24.49 | 24.58 | 3.76 | 22.65 | 22.94 |
| e) | SDH-\(b\)-DTC | \(\text{C}_1\text{H}_2\text{N}_2\text{Na}_2\text{O}_2\text{S}_2\) | 342.39 | 126-128° | White | 100% | 21.00 | 21.05 | 2.54 | 16.33 | 16.43 |
| f) | ADH-\(m\)-DTC | \(\text{C}_1\text{H}_2\text{N}_2\text{Na}_2\text{O}_2\text{S}_2\) | 272.32 | 107-109° | White | 83% | 30.85 | 30.87 | 4.83 | 20.43 | 20.57 |
| g) | ADH-\(b\)-DTC | \(\text{C}_1\text{H}_2\text{N}_2\text{Na}_2\text{O}_2\text{S}_2\) | 370.45 | 155-157° | White | 94% | 25.83 | 25.94 | 3.31 | 15.09 | 15.12 |
Table 2: The antiproliferative activities were examined on two species of standard bacteria viz. Staphylococcus aureus ATCC 25923 and Escherichia coli ATCC 25922 using broth micro-dilution method (BMM) at different concentrations (0.0, 100, 200, and 300 ppm) of each compound. The antioxidant properties were investigated by 2, 2-diphenyl-1-picrylhydrazyl hydrate (DPPH) method at the same concentrations.

#	Compound	Conc. (ppm)	Mitotic index	S. aureus ATCC 25923 (+)	Inhibition rate %	E. coli ATCC 25922	Inhibiti on rate %	AA % Activity	Increasing rate %
1	-	0	0.88±0.02	0.84±0.22	-	0.96±0.02	-	100	82
2	Py-m-DTC (a)	100	0.84±0.01	0.71±0.12	15.47	0.88±0.13	8.33	82	100
		200	0.83±0.04	0.62±0.11	26.19	0.82±0.05	14.5	85	103.65
		300	0.80±0.01	0.55±0.09	34.53	0.76±0.11	20.8	91	110.97
3	ODH	100	0.86±0.07	0.65±0.11	22.61	0.78±0.03	18.75	82	100
		200	0.86±0.03	0.58±0.05	30.95	0.65±0.02	32.29	85	103.65
		300	0.82±0.03	0.45±0.07	53.57	0.61±0.06	36.45	89	108.53
4	ODH-m-DTC (b)	100	0.86±0.02	0.55±0.12	33.33	0.78±0.11	22.45	82	100
		200	0.84±0.01	0.44±0.11	40.30	0.70±0.09	32.29	85	103.65
		300	0.83±0.01	0.38±0.12	56.35	0.64±0.06	34.34	89	108.53
5	ODH-b-DTC (c)	100	0.87±0.06	0.56±0.12	33.33	0.78±0.12	18.75	61	100
		200	0.85±0.03	0.42±0.12	50.00	0.73±0.09	23.05	65	106.55
		300	0.82±0.01	0.33±0.09	60.71	0.64±0.09	33.33	72	118.03
6	SDH	100	0.86±0.04	0.78±0.18	7.14	0.78±0.02	18.75	7.14	100
		200	0.83±0.05	0.67±0.23	20.23	0.63±0.06	34.37	20.23	104.41
		300	0.81±0.01	0.78±0.18	48.88	0.61±0.02	36.45	48.8	114.7
7	SDH-m-DTC (d)	100	0.87±0.01	0.69±0.12	11.41	0.84±0.04	20.42	43.7	100
		200	0.87±0.06	0.58±0.06	32.45	0.80±0.02	46.85	48	103.35
		300	0.85±0.05	0.47±0.13	55.30	0.62±0.07	47.31	56	119.16
8	SDH-b-DTC (e)	100	0.86±0.07	0.66±0.06	21.42	0.84±0.04	21.42	53	100
		200	0.85±0.09	0.48±0.06	42.85	0.77±0.03	42.85	57	107.54
		300	0.83±0.02	0.42±0.08	50	0.65±0.02	50.65	65	122.64
9	ADH	100	0.88±0.09	0.75±0.07	10.71	0.92±0.02	4.16	62	100
		200	0.87±0.04	0.63±0.13	25.00	0.87±0.07	9.37	67	108.06
		300	0.85±0.01	0.52±0.18	38.10	0.71±0.07	26.04	71	114.51
10	ADH-m-DTC (f)	100	0.85±0.12	0.50±0.08	32.45	0.80±0.02	46.85	48	103.35
		200	0.84±0.04	0.41±0.12	55.30	0.62±0.07	47.31	56	119.16
		300	0.87±0.03	0.60±0.06	21.42	0.84±0.04	21.42	53	100
11	ADH-b-DTC (g)	100	0.87±0.20	0.51±0.06	42.85	0.77±0.03	42.85	57	107.54
		200	0.86±0.12	0.49±0.08	50.00	0.65±0.02	50.00	65	122.64
12	Ascorbic acid	50	-	-	-	-	-	91	110.97

P-value | 0.799666 | 0.441566 | 0.000264 | -

*Significant at p ≤ 0.05, Data represented as Mean±SD
3. Results and discussion:

Products of the reactions mentioned in Section 2-2(a-f) were separated and characterized by the available physical and spectrometric techniques. These compounds were prepared for the first time to accept sodium 1-dithiocarboxylatopyrroldine-2-carboxylate (Py-m-DTC) by using the following general route:

\[
\begin{align*}
\text{oxalyl dihydrazide} & \rightarrow \text{Sodium 2-(2-hydrazinyl-2-oxoacetyl) hydrazine carbodithioate (ODH-m-DTC).} \\
\text{oxalyl dihydrazide} & \rightarrow \text{Sodium 2,2'-oxalyl bis-(hydrazinecarbodithioate) (ODH-b-DTC).}
\end{align*}
\]

However, all these compounds are water-soluble products with a relatively higher melting point and obtained in good yield and purity. They possess the general structure NaS-(S=)C-NHNH-(C=O)(CH\text{2})x-(C=O)NHNH-C(=S)-SNa (where x = 0, 2, 4), having a chain length of 11-16 atom. This structure will enable these compounds to interact with human serum albumin, with a fat metal-binding site.

Organic compounds were synthesized owning sulphur and nitrogen are shown to possess broad biological activity [36-38]. Dithiocarbamates get great applications in a different pharmaceutical sector that displays considerably oxidation state metal cation stabilizing technique. The antiproliferative effect of these new dithiocarbamates was investigated on the growth rate of most dominant bacteria *S. aureus* through its two standard strains of the Gram-positive *Staphylococcus aureus* ATCC 25923 and Gram-negative *Escherichia coli* ATCC 25922. The results were presented in Table 3 and showed that the highest inhibition rate for *S. aureus* was (60.71 %) at 300 ppm of ODH-b-DTC (c), while the highest inhibition rate of *E. coli* was (36.45%) at 300 ppm of SDH and ODH with significant differences at (p ≤ 0.05), but there are no differences in the antioxidant activity among the six synthesized compounds (P value, 0.000264). The results obtained for these dithiocarbamates exhibited a moderate to high inhibition rate for the tested bacteria viz. *Staphylococcus aureus* ATCC 25923 and Gram-negative *Escherichia coli* ATCC 25922 both Gram-positive and Gram-negative bacteria may be associated with bacterial strains. The bacterial isolates are more responsive to these new dithiocarbamates rather than to their precursors, viz the starting hydrazine starting materials; ODH, SDH, and ADH.

Oxidants and free radicals play a dual role as useful and toxic compounds, considering that they can be both hazardous or beneficial to the body. They are produced both from regular cell metabolisms in situ or from exterior sources such as cigarette smoke, radiation, medication …etc. When an overload of free radicals cannot steadily be destroyed, their accumulation in the body generates a phenomenon known as oxidative stress [36-38]. Ascorbic acid is usually used as a reference compound to measure antioxidant activity, 50 pmm of ascorbic acid gives 91% antioxidant activity with significant differences at (p≤0.05).

All the prepared dithiocarbamates and their precursors showed suitable antioxidant activity. The values of DPPH antioxidant things to do of Na-DPDTC and their precursors were presented in
Figure-3. They all show good antioxidant activity, beside the absence of geno-toxicity through the use of mitotic index on peripheral blood lymphocytes as a bioindicator and does not cause a damage to the DNA molecule, which in turn will present them as a hot candidate for use in drug synthesis as metal carriers.

4. Conclusion:

New mono- and bis-dithiocarbamates of acid were synthesized as a possible human serum albumin metal carrier in delivery systems. The products were characterized by available techniques. They possess the general structure NaS-(S=)C-NHNH-(C=O)(CH₂)ₓ-(C=O)NHNH-C(=S)SNa (where x = 0, 2, 4), having a chain length of 11-16 atom. These compounds were very stable and soluble in water, which enables them to interact with human serum albumin and excreted easily from the human body. Their antiproliferative effect was investigated on the Gram-positive *Staphylococcus aureus* ATCC 25923 and Gram-negative *Escherichia coli* ATCC 25922. The results showed that the highest inhibition rate for *S. aureus* was (60.71 %) at 300 ppm of ODH-b-DTC (c), while the highest inhibition rate of *E. coli* was (36.45%) at 300 ppm of SDH and ODH with significant differences at (p ≤ 0.05), but there are no differences in the antioxidant activity among the six synthesized compounds (P value, 0.000264). These dithiocarbamates and their precursors showed good antioxidant activity, which in turn will present them as a hot candidate for use in drug synthesis as metal carriers.

Reference:

[1] R. Schubart, 2000. "Dithiocarbamic Acid and Derivatives". *Ullmann's Encyclopedia of Industrial Chemistry*. Weinheim: Wiley-VCH.

[2] B. N. Sağlık, Y. Özkay, Ü. D. Özkay, and H. K. Gençer, 2014. "Synthesis and Biological Evaluation of Some Novel Dithiocarbamate Derivatives.". *Journal of Chemistry*, Volume 2014, Article ID 387309, 9 pages.

[3] H. D. Yin, and S. C. Xue, 2006. "Synthesis and characterization of organotin complexes with dithiocarbamates and crystal structures of (4-NCC₆H₄CH₂)₂-Sn(S₂CNEt₂)₂ and (2-CIC₆H₄CH₂)₂Sn(Cl)₂S-CN(C₂H₅)₂". *Appl. Organomet. Chem. 20(4): 283289.*

[4] I. P. Ferreira, G. M. De Lima, E. B. Paniago, J. A. Takahashi, C. B. Pinheiro, 2014. "Synthesis, characterization and antifungal activity of new dithiocarbamate-based complexes of Ni (II), Pd (II) and Pt (II)." *Inorg. Chim. Acta*, 423: 443-449.

[5] A. Mishra, and N. Kaushik. 2008. "Nickel (II) thiohydrazide and thiodiamine complexes: synthesis, characterization, antibacterial, antifungal and thermal studies.". *Spectrochim. Acta Mol. Biomol. Spectrosc.* 69: 842-848

[6] M. Castillo, J. J. Criado JJ, Macias B, Vaquero MV. 1986 "Chemistry of dithiocarbamate derivatives of amino acids. I. Study of some dithiocarbamate derivatives of linear α-amino acids and their nickel (II) complexes.". *Inorg. Chim. Acta*, 124: 127-132.

[7] A. Golcu, 2006. "Transition metal complexes of propranolol dithiocarbamate: synthesis, characterization, analytical properties and biological activity." *Transit. Met. Chem.*, 31: 405-412.

[8] J. W. de Freitas Oliveira, H. A. O. Rocha, W. M. T. Q. de Medeiros, and M. S. Silva, 2019 "Application of Dithiocarbamates as Potential New Antitrypanosomatids-Drugs: Approach Chemistry, Functional and Biological,". *Molecules*. 24(15): 2806.

[9] G. Hogarth, 2005. "Transition metal dithiocarbamates: 1978–2003. In: Kenneth D.K., editor. Progress in Inorganic Chemistry.". Volume 53. John Wiley & Sons; Hoboken, NJ, USA: pp. 71-561.

[10] A. M. Bond, R. L. Martin, 1984. "Electrochemistry and redox behavior of transition metal dithiocarbamates,". *Coord. Chem. Rev.*, Vol. 54:23-98.
[11] Y. Yang, Z. Tian, X. Zhao, Y. Li, S. Duan, 2020. "A novel antitumor dithiocarbamate compound inhibits the EGFR/AKT signaling pathway and induces apoptosis in esophageal cancer cells.", Oncology Letters, 20: 877-883, 2020.

[12] Nobel, C.I., Kimland, M., Lind, B., Orrenius, S. and Slater, A.F. "Dithiocarbamate toxicity toward thymocytes involves their copper-catalyzed conversion to thiram disulfides, which oxidize glutathione in a redox cycle without the release of reactive oxygen species.", (1995) J. Biol. Chem. 270, 26202-26208.

[13] R. A. Kamoo, S. A. Nadhum, M. H. Mohammed, 2020. "Dithiocarbamates derivatives as anticancer agents: A Review", Annals of Tropical Medicine & Public Health, Vol. 23 Issue 19.

[14] C. K. Adokoh, 2020. "Therapeutic potential of dithiocarbamate supported gold compounds.", RSC Advances, Issue 5.

[15] R. K. Sodhi and S. Paul, 2019. "Metal Complexes in Medicine: An Overview and Update from Drug Design Perspective.", Cancer Therapy & Oncology International Journal, Volume 14, Iss. 1.

[16] R. W-Y. Sun, D-L. Ma, E. L-M. Wong, C-M. Che. 2007. "Some uses of transition metal complexes as anti-cancer and anti-HIV agents.", Dalton Trans. Vol. 43, 4884-4892.

[17] S. Mukherjee, V. Kumar, A. K. Prasad, H. G. Raj, M. E. Bracke, C. E. Olsen, S. C. Jain and V. S. Parmar. 2001. "Synthetic and biological activity evaluation studies on novel 1,3-diarylpropenones.", Bioorg. Med. Chem. Lett., Vol. 9(2): 337-345.

[18] M. Sofuoglu and T. R. Kosten, 2005. "Novel approaches to the treatment of cocaine addiction.", CNS Drugs, Vol. 19, 13-25.

[19] H. Mansouri-Torshizi, M. Saeidifar, F. Khosravi, A. Divsalar, A. A. Saboury and F. Hassani, 2011. "DNA binding and antitumor activity of cis-diimineplatinum(II) and palladium(II) dithiocarbamate complexes.", Bioinorg. Chem. Appl. 2011: 394506.

[20] J. Rojas, J. N. Domínguez, J. E. Charris, G. Lobo, M. Payá, and M. I. Ferrándiz. 2002. "Synthesis and inhibitory activity of dimethylamino-chalcone derivatives on the induction of nitric oxide synthase.", Eur. J. Med. Chem. Vol. 37(8): 699-705.

[21] S. K. Awasthi, N. Mishra, B. Kumar, M. Sharma, A. Bhattacharya, L. C. Mishra and V. K. Bhasin. 2009. Potent antimalarial activity of newly synthesized substituted chalcone analogs in vitro.", Med. Chem. Res. Vol. 18(6): 407-420.

[22] S. X. Xioning Si X., McManus B. M., Jingchun Zhang, Ji Yuan, Caroline Cheung, Mitra Esfandiar, Agripina Suarez, Andrew Morgan, and Honglin Luo, "Pyrrolidine Dithiocarbamate Reduces Coxackievirus B3 Replication through Inhibition of the Ubiquitin-Proteasome Pathway.", Journal of Virology, 2005, Vol. 79, No. 13, p. 8014-8023.

[23] X. Jiang, M. Ahmed, Z. Deng and R. Narain, 2009. "Biotinylated glyco-functionalized quantum dots: synthesis, characterization, and cytotoxicity studies.", Bioconjugate Chem., 20, 994-1001.

[24] M. T. Larsen, M. Kuhlmann, M. L. Hvam, K. A. Howard, 2016. "Albumin-based drug delivery: harnessing nature to cure disease.", Mol. Cell Ther., Vol. 4(1), Pp. 3.

[25] M. Fasano, S. Curry, E. Terreno, M. Galliano, G. Fanali, P. Narciso, S. Notari, P. Ascenzi, and P. Narciso, 2005. "The extraordinary ligand binding properties of human serum albumin.", IUBMB Life, Vol. 57(12), Pp. 787-796.

[26] J. Ghuman, P. A. Zumszain, I. Petitpas, A. A. Bhattacharya, M. Otagiri, S. Curry. 2005. "Structural basis of the drug-binding specificity of human serum albumin.", J. Mol. Biol. Vol. 353: Pp. 38-52.

[27] A. A. Bhattacharya, T. Grüne, and S. Curry. 2000. "Crystallographic analysis reveals common modes of binding of medium and long-chain fatty acids to human serum albumin.", J. Mol. Biol., Vol. 303, Pp. 721-732.

[28] F. Shiri, S. Shahraji, and M. Bazzi-Alahri, 2020. "Assessing the in vitro and in silico interactions of two Palladium(II) dithiocarbamate complexes with human serum albumin.", Journal of Molecular Structure, Vol. 1221, 128809.

[29] S. Shahraji, F. Shiri F., M. Saeidifar, F. Shiri, Ameneh Heidari A., 2019. "Synthesis, Characterization, Cytotoxicity and Detailed HSA Interaction of New Zinc(II) Complexes Containing
Dithiocarbamate and Heterocyclic N-donor Ligands.", *Polycyclic Aromatic Compounds*, Volume 39, Issue 3, Pp. 220-237.

[30] X. Q. Song, Z. G. Wang, Y. Wang, Huang Y. Y., Sun Y.X., Ouyang Y., Xie C.-Z. and Xu J. Y., 2020. "Syntheses, characterization, DNA/HSA binding ability and antitumor activities of a family of isostructural binuclear lanthanide complexes containing hydrazine Schiff base.", *Journal of biomolecular Structure and Dynamics*, Vol. 38, Issue 3, Pp. 733-743.

[31] A. O. Chavesa, C. H. d-S. Oliveira, R. C. Ferreir, J. L. R. Pereira, C. E. Rodrigues-Santos, A. Echevarria, D. Cesarin-Sobrinhoa, 2017. "Investigation of interaction between human plasmatic albumin and potential fluorinated anti-trypanosomal drugs.", *Journal of Fluorine Chemistry*, Vol. 199, Pp. 103-112.

[32] J. Cappuccino, N. Sherman, "Microbiology: A Laboratory Manual", 9th Ed., Benjamin/Comings Publishing Company, Inc., California, US.

[33] W. Brand-Williams, M. E. Cuvelier, and C. Berset, 1995. "Use of a free radical method to evaluate antioxidant activity.", *Food Sci Technol.*, Vol. 28, Issue 1, Pp. 25-30.

[34] M. E. Cuvelier, and C. Berset, 1995. "Use of a free radical method to evaluate antioxidant activity.", *LWT - Food Science and Technology.*, Vol. 28, Issue 1, 1995, Pp. 25-30.

[35] Sawyer S., 2009, "Analysis of Variance: The Fundamental Concepts.", *The Journal of manual & manipulative therapy*, 17(2):27E-38E.

[36] P. K. Sharma, A. Amin, M. Kumar, 2020. "A Review: Medicinally Important Nitrogen Sulphur Containing Heterocycles.", *The Open Medicinal Chemistry Journal*, Vol. 14, Pp. 49-64.

[37] N. N. Makhova, L. I. Belen'kii, G. A. Gazieva, I. L. Dalinger, L. S. Konstantinova, V. V. Kuznetsov, A. N. Kravchenko, M. M. Krayushkin, O. A. Rakitin, A. M. Starosotnikov, L. L. Fershtat, S. A. Shevelev, V. Z. Shirinian and V. N. Yarovenko, 2020. "Progress in the chemistry of nitrogen-, oxygen- and sulfur-containing heterocyclic systems.", *Russian Chemical Reviews*, Vol. 89, Number 1, Pp. 15-21.