Inferring the origin of an epidemic with a dynamic message-passing algorithm

Andrey Y. Lokhov1, Marc Mézard1,2, Hiroki Ohta1, and Lenka Zdeborová3

1LPTMS, Université Paris-Sud and CNRS-UMR 8626, 91405 Orsay, France,
2Ecole Normale Supérieure, 45 rue d’Ulm, 75005 Paris, France, and
3IPhT, CEA Saclay and CNRS-URA 2306, 91191 Gif-sur-Yvette, France.

(Dated: February 6, 2014)

We study the problem of estimating the origin of an epidemic outbreak: given a contact network and a snapshot of epidemic spread at a certain time, determine the infection source. This problem is important in different contexts of computer or social networks. Assuming that the epidemic spread follows the usual susceptible-infected-recovered model, we introduce an inference algorithm based on dynamic message-passing equations and we show that it leads to significant improvement of performance compared to existing approaches. Importantly, this algorithm remains efficient in the case where the snapshot sees only a part of the network.

PACS numbers: 89.75.Hc, 05.20.-y, 02.50.Tt

INTRODUCTION

Understanding and controlling the spread of epidemics on networks of contacts is an important task of today’s science. It has far-reaching applications in mitigating the results of epidemics caused by infectious diseases, computer viruses, rumor spreading in social media and others. In the present article we address the problem of estimation of the origin of the epidemic outbreak (the so-called patient zero, or infection source - in what follows, these terms are used alternately): given a contact network and a snapshot of epidemic spread at a certain time, determine the infection source. Information about the origin could be extremely useful to reduce or prevent future outbreaks. Whereas the dynamics and the prediction of epidemic spreading in networks have attracted a considerable number of works, for a review see \cite{13,14}, the problem of estimating the epidemic origin has been mathematically formulated only recently \cite{5}, followed by a burst of research on this practically important problem \cite{15,16}. In order to make the estimation of the origin of spreading a well defined problem we need to have some knowledge about the spreading mechanism. We shall adopt here the same framework as in existing works, namely we assume that the epidemic spread follows the widely used susceptible-infected-recovered (SIR) model or some of its special cases \cite{12}.

The stochastic nature of infection propagation makes the estimation of the epidemic origin intrinsically hard: indeed, different initial conditions can lead to the same configuration at the observation time. Finding an estimator that maximizes the probability of the observed configuration is in general computationally intractable, except in very special cases such as the case where the contact network is a line or a regular tree \cite{4,6,11}. The methods that have been studied in the existing works are mostly based on various kinds of graph centrality measures. Examples include the distance centrality or the Jordan center of a graph \cite{4,7}. The problem was generalized to estimating a set of epidemic origins using spectral methods in \cite{8,9}. Another line of approach uses more detailed information about the epidemic than just a snapshot at a given time \cite{10}. Note, however, that all the present methods are limited, for instance none of them uses efficiently the information about the nodes to which the epidemic did not spread.

In this paper we introduce a new algorithm for the estimation of the origin of an SIR epidemic from the knowledge of the network and the snapshot of some nodes at a certain time. Our algorithm estimates the probability that the observed snapshot resulted from a given patient zero in a way which is crucially different from existing approaches. For every possible origin of the epidemic, we use a fast dynamic message-passing method to estimate the probability that a given node in the network was in the observed state (\textit{S}, \textit{I} or \textit{R}). We then use a mean-field-like approximation to compute the probability of the observed snapshot as a product of the marginal probabilities. We finally rank the possible origins according to that probability.

The dynamic message-passing (DMP) algorithm that we use in order to estimate the probability of a given node to be in a given state is interesting in itself. A precursor appeared in \cite{13} in a form averaged over initial conditions, which does not lend itself to algorithmic use. Here we derive and use the DMP on a given network for given initial conditions. If averaged also over the graph ensemble, it can be used to obtain the asymptotically exact dynamic equations of \cite{14,15} for SIR, or those of \cite{16} for avalanches in the random field Ising model. Note that although DMP bares some similarity with the standard belief propagation (BP) method \cite{17,18}, it is crucially different from BP in several aspects: it is not derived from a Boltzmann-like probability distribution, and it does not need to be iterated till convergence, instead the iteration time corresponds directly to the real time in the associated SIR dynamics. A nice property that DMP shares with BP is that it is exact if the contact network is a tree. We use it here as an approximation for loopy-but-sparse contact networks in the same way that BP is commonly used with success in equilibrium studies of such networks.
We test our algorithm on synthetic spreading data and show that it performs better than existing approaches (except for a special region of parameters where the Jordan center is on average better). The algorithm is very robust, for instance it remains efficient even in the case where the states of only a fraction of nodes in the network is observed. From our tests we also identify a range of parameters for which the estimation of the origin of epidemic spreading is relatively easy, and a region where this problem is hard. Hence, our dataset can also serve as a test-bed for new approaches.

SIR SPREADING MODEL AND INFERECE OF EPIDEMIC ORIGIN

Let $G \equiv (V, E)$ be a connected undirected graph containing N nodes defined by the set of vertices V and the set of edges E. The SIR model is defined as follows: Each node i at discrete time t can be in one of three states $q_i(t)$: susceptible, $q_i(t) = S$, infected, $q_i(t) = I$, or recovered, $q_i(t) = R$. At each time step, an infected node will recover with probability μ_t, and a susceptible node i will become infected with probability $1 - \prod_{k \in \partial i} (1 - \lambda_{ki} \delta_{q_k(t), I})$, where ∂i is the set of neighbors of node i, and λ_{ki} measures the efficiency of spread from k to i. The recovered nodes never change their state. We assume that the graph G and parameters λ_{ij}, μ_i are known (or have been already inferred). The general properties and the phase diagram of this model on random networks were studied in many works, see e.g. [3] and references therein.

To define the problem of estimation of the epidemic origin, we consider the case where, at initial time $t = 0$, only one node is infected (the the ‘patient zero’, i_0), and all others nodes are susceptible. After $t_0 > 0$ time steps (t_0 is in general unknown), we observe the state of a set of nodes $O \subset V$, and the task is to estimate the location of patient zero based on this snapshot.

Let us briefly explain two existing algorithms [1, 6, 7] that we will use as benchmarks. The authors of [4, 6, 7] considered only the case when all the nodes were observed, $O = V$. In appendix [9] we propose a generalisation of these algorithms to a more general case. The most basic measure for node i to be the epidemic origin is the distance centrality $D(i)$ which we define as $D(i) \equiv \sum_{j \in G} d(i, j) (\delta_{q_j, I} + \delta_{q_j, R}/\mu_j)$, where the graph G is a connected component of the original graph G containing all infected and recovered nodes and only them, and $d(i, j)$ is the shortest path between node i and node j on the graph G. The ad-hoc factor $1/\mu_j$ is introduced to distinguish recovered nodes that for small μ_j tend to be closer to the epidemic origin. In the existing works this factor was not present, because [4, 6] treated only the SI model, and [7] considered that susceptible and recovered nodes are indistinguishable. The authors of [4, 6] suggested a “rumor centrality” estimator and showed that, for tree graphs, the rumor centrality and the distance centrality coincide. Another simple but well-performing estimator, Jordan centrality $J(i)$, was proposed in [7] and corresponds to a node minimizing the maximum distance to other infected and recovered nodes: $J(i) \equiv \max_{j \in G} d(i, j)$. A node i where $J(i)$ is minimal is known as a ‘Jordan center’ of G in the graph theory literature. Note that in [7] the Jordan center of only the infected notes was used, hence our implementation uses more information.

The core of the algorithm proposed in the present work is DMP, explained in the next section, which provides an estimate of the probabilities $P^2_S(t, i_0)$ (respectively $P^2_I(t, i_0)$, $P^2_R(t, i_0)$) that a node j is in each of the three states SI,IR, at time t, for a given patient zero i_0. Let us first assume that the time t_0 is known. With the use of Bayes rule, the probability that node i is the patient zero given the observed states is proportional to the joint probability of observed states given the patient zero, $P(i|O) \sim P(O|i)$. We also define an energy-like function of every node $E(i) \equiv -\log P(O|i)$, such that nodes with lower energy are more likely to be the infection source. If one were able to compute $P(O|i)$ exactly, finding i which minimizes $E(i)$ would be an optimal inference scheme of the patient zero. As there is no tractable way to compute exactly the joint probability of the observations, we approximate it using a mean-field-type approach as a product of the marginal probabilities provided by the dynamic message-passing

$$P(O|i) \sim \prod_{k \in O} P_S^k(t, i) \prod_{l \in O} P_I^l(t, i) \prod_{m \in O} P_R^m(t, i).$$

To estimate the value of t_0, we compute the energy $E(i, t)$ for different possible values t, and choose the value that maximizes the ”partition function” $Z(t) \equiv \sum_i e^{-E(i, t)}$.

DYNAMIC MESSAGE-PASSING ALGORITHM

Let us explain the dynamic message-passing equations for the SIR model. The proof that these equations are exact on trees, and the connections to some related existing results [13, 16, 19, 22], are discussed in appendix [8]. We first define the message $P^k_{S \rightarrow I}(t)$ as the probability for node i to be in the state S at time t in the cavity graph in which node j has been removed. The quantity $\theta^{k \rightarrow i}(t)$ is the probability for node k not to pass the infection signal to node i up to time t, and $\phi^{k \rightarrow i}(t)$ is the probability for node k to be in the state I and not to pass the infection to node i up to time t. The initial condition are $\theta^{k \rightarrow i}(0) = 1$, and $\phi^{k \rightarrow i}(0) = \delta_{q_k(0), I}$. For more details see
These messages satisfy the recursion rules:

\[P_{S}^{\rightarrow j}(t+1) = P_{S}^{\rightarrow j}(0) \prod_{k \in \partial i \setminus j} \theta^{k \rightarrow i}(t+1), \]

\[\theta^{k \rightarrow i}(t+1) - \theta^{k \rightarrow i}(t) = -\lambda_{ki}\theta^{k \rightarrow i}(t), \]

\[\phi^{k}(t) = (1 - \lambda_{ki})(1 - \mu_{i})\phi^{k}(t-1) - P_{S}^{\rightarrow i}(t) - P_{S}^{\rightarrow i}(t-1)]. \]

Here \(\partial i \setminus j \) means the set of nodes neighboring node \(i \), excluding \(j \). The marginal probabilities that node \(i \) is in a given state at time \(t \) are then given as

\[P_{i}^{\rightarrow}(t+1) = P_{i}^{\rightarrow}(0) \prod_{k \in \partial i} \theta^{k \rightarrow i}(t+1), \]

\[P_{i}(t+1) = P_{R}(t) + \mu_{i}P_{i}(t), \]

\[P_{i}(t+1) = 1 - P_{S}^{\rightarrow i}(t+1) - P_{R}(t+1). \]

Hence the algorithmic complexity for computing the energy \(E(i) \) of a given vertex \(i \) (and therefore the probability that it is the epidemic origin) is \(O(t_{0} NC) \), where \(c \) is the average degree of the graph.

PERFORMANCE OF INFERENCE ALGORITHMS

We first test our algorithm on random regular graphs, i.e., random graphs drawn uniformly from the set of graphs where every node has degree \(c \). In all the simulations we consider uniform transmission and recovery probabilities \(\lambda_{ij} = \lambda \) and \(\mu_{i} = \mu \).

In the first example, inset of Fig. 1 we plot the energy \(E(i) \) resulting from the dynamic message-passing of the nodes for which the probability of being the epidemic origin is finite according to our algorithm, we order the nodes according to the energy value. The true epidemic origin is marked with a red cross. We define the rank of candidates for the epidemic origin to be its position in this ranking (the lowest energy node having rank 0). The main graph of Fig. 1 shows the histogram of normalized ranks (i.e., the rank divided by the total number of nodes that were observed as recovered or infected) of the true epidemic origin as obtained from our DMP inference algorithm, compared to the rankings obtained by distance, rumor and Jordan centralities. The DMP inference algorithm considerably outperforms the three centrality measures, with a comparable computational cost.

In Fig. 2 we present the average normalized rank of the true epidemic origin for random regular graphs for the whole range of the transmission probability \(\lambda \), for different values of the recovery probability \(\mu \), and snapshot times \(t_{0} \). As an estimation for the spreading time \(t_{0} \), we take the one maximizing the ”partition function” \(Z(t) = \sum e^{-E(i,t)} \). The distribution of the estimated time is concentrated at the true spreading time \(t_{0} \). We find that for different values of \(\mu \), DMP inference outperforms the centrality measures (see, e.g., case (a)), except in a special case (b) \((\mu = 1, \text{corresponding to the deterministic recovery}) \), in a range of \(0.3 < \lambda < 0.58 \) where Jordan center is a better estimation. In other cases, however, Jordan centrality is less performant. Note that for \(\mu < 1 \) Jordan centrality does not distinguish between recovered and infected nodes, which partly explains its rather bad performance in that case. The Fig. 2(c) shows the dependence on the spreading time \(t_{0} \) for fixed values of \(\lambda \) and \(\mu \). Note that DMP remains efficient even for relatively large \(t_{0} \), when the centrality algorithms fail to make a prediction.

![FIG. 1. (color online) A test of inference of the epidemic origin on random regular graphs of degree \(c = 4 \), size \(N = 1000 \). Inset: An epidemic is generated with recovery probability \(\mu = 1 \), transmission probability \(\lambda = 0.6 \), a snapshot of all the nodes is taken at time \(t_{0} = 8 \) (in this figure we assume we know the value of \(t_{0} \)). 242 nodes are observed to be in the \(I \) or \(R \) state. The dynamic message-passing is used to compute the energy of every node. This energy is finite for 43 nodes; it is plotted as a function of their rank \(r \). The true patient zero is marked by a red cross, and its rank is \(r(t_{0}) = 2 \) in this case. Main figure: an epidemic generated with \(\mu = 1, \lambda = 0.5 \), \(t_{0} = 5 \). The histogram (over 1000 random instances) of the normalized rank (i.e., the rank divided by the number of \(R \) or \(I \) nodes in the snapshot) of the true patient zero is plotted for the dynamic message-passing (DMP) inference, as well as for the distance, rumor and Jordan centrality measures.](image-url)
our opinion the systematic comparison presented here is a good test-bed for comparing and improving algorithms.

We now show the performance of our algorithm in the case where the snapshot is incomplete: a fraction ξ of nodes is not observed. We compare it to the generalizations of Jordan and distance centralities to this case that we propose in appendix B. Fig. 3 (a) gives the average rank of the true epidemic origin. It shows that, with incomplete snapshots, the DMP inference algorithm outperforms both centralities even in the case where for complete snapshots the Jordan centrality was better. This observed robustness of DMP is a very useful property.

In the example depicted in Fig. 3 (b), we studied the performance of DMP on a non-regular network of the U.S. East-Coast power grid which contains $N = 4941$ nodes with a maximum degree 24. We see that the DMP estimator gives better prediction for all range of λ. The results for random scale-free and Erdős-Rényi networks are given in the appendix C.

Our algorithm is based on an approximation to the Bayes optimal inference, there are two possible sources of sub-optimality on real networks. The first is the fact that the message-passing equations may lead to errors on loopy graphs. The second is the mean-field-like approximation of the joint probability distribution. We have observed that taking into account the two-point correlation in this approximation does not lead to any improvement in our results. It would be interesting to search for better approximations of the likelihood on a general graph.

CONCLUSION

The approximate solution of dynamics of the SIR model in terms of message-passing equations allowed us to develop an efficient probabilistic algorithm for detecting patient zero. Compared to existing algorithms, it generically (except for a narrow range of parameters) provides an improved estimate for the source of infectious outbreak. It also performs well when the snapshot sees only a part of the network. One superiority of our approach, compared to previous ones, is that it uses efficiently the information about where the epidemic did not spread. As is usual for Bayes inference approaches, our algorithm is versatile and easily amenable to gener-
alizations: it can straightforwardly treat the case of dynamically changing networks, the case of multiple sources and also the case where the contact network is not fully known.

ACKNOWLEDGMENTS

This work has been supported in part by the EC Grant STAMINA, No. 265496, and by the Grant DySpaN of Triangle de la Physique.

Appendix A: Dynamic message-passing for SIR model

We present here a proof that the probabilities of being susceptible/infected/recovered at a given time t as provided by the dynamic message-passing (DMP) equations (2-7) from the main part of this paper are exact for all initial conditions and every realization of the transmission and recovery probabilities λ_{ij} and μ_i if the graph of contacts is a tree. Before giving the proof we start with a couple of remarks explaining relation to existing works.

1. General remarks about DMP, and possible generalizations

It should be noted that equations reminiscent of (2-7) were first derived in [13]. The authors of [13] treated a more general SIR model where the transmission and recovery probability depends on the time when the node in question was infected. For this more general case, no easily tractable form of the DMP is known (by this we mean a Markovian form of the DMP, where the probabilities at time t give the probabilities at time $t+1$ via a set of simple closed equation). The equations in [13] were instead written in a convolutional form that is rather complicated for numerical resolution. The authors noticed that when the probabilities of recovery and transmission are constant then the equations simplify, but did not write a version of the equations that is applicable on a given graph for a given initial condition (actually they only wrote equations averaged over a set of initial conditions). Hence we find is useful to provide the derivation of the DMP on a single graph in their simple iterative form.

For the purpose of this paper we use the DMP on a single instance of the contact network for a given initial condition. However, if an ensemble of initial conditions is given as well as an ensemble of random graphs with a given probability distribution then one can write differential equations for the fraction of nodes that are susceptible/infected/recovered at a given time. These equations were first derived by [14] and appeared also in [13] and [15]. One should not confuse these averaged DMP equations with the “naive” mean field equations that are often written for the SIR model under the assumption of perfect mixing, see e.g. [3]. Whereas the naive mean field equations provide only a very crude approximation for the real probabilities, the equations of [14] are exact in the thermodynamic limit, $N \to \infty$, as long as, in the random graph ensemble, the probability that a randomly chosen node belongs to a finite-length loop goes to zero in the large graph-size limit.

Furthermore, it is important to be aware of the differences between DMP and BP [17]. The common point of DMP and BP is that they are both exact if the underlying network is a tree. The crucial difference is that BP is derived from a stationary Boltzmann-like probability distribution and only the fixed point of the BP equations has a physical meaning. Whereas in the DMP equations (presented here for the SIR model) every step of the iterations corresponds to the physical time in the underlying dynamical process. Note, however, that DMP can be derived from a “dynamic” belief propagation where variables in the corresponding graphical model are the whole trajectories of a given node, see e.g. [22]. Here we will present a more straightforward derivation.

Before proceeding to the derivation itself, let us mention a few possibilities of extension of our approach, the study of which is left for future work.

- The present DMP equations can be also applied to contact networks that evolve in time. The generalization is straightforward, one only needs to encode the dynamics of the network into time-changing transmission probabilities $\lambda_{ij}(t)$ and use the equations (2-7). The SIR model on dynamically changing networks has been already studied using the graph-averaged version of the DMP equations in [19, 20]. We anticipate that the DMP equations on a single graph will also be useful for studies where specific experimental data about the changing network, such as those of [21], can be used.

- Our approach can also infer multiple infection sources. In the most straightforward way it would, however, scale exponentially in the number of sources. This can be easily avoided by realizing that with k infection sources, one may do a kind of Monte-Carlo search for their best positions.

- Another interesting problem for which our approach can be generalized is when the knowledge of the contact network is incomplete.
2. Derivation of DMP for the SIR model

Here we present the derivation of equations \[2-7\] for tree contact networks. We define \(P_S^i(t), P_I^i(t)\) and \(P_R^i(t)\) as marginal probabilities that \(q_i(t) = S, q_i(t) = I\) and \(q_i(t) = R\). These marginals sum to one and thus
\[
P_I^i(t + 1) = 1 - P_S^i(t + 1) - P_R^i(t + 1).
\]
Since the recovery process from state \(I\) to state \(R\) is independent of neighbors, we have
\[
P_R^i(t + 1) = P_R^i(t) + \mu_i P_I^i(t).
\]

The epidemic process on a graph can be interpreted as the propagation of infection signals from infected to susceptible nodes. The infection signal \(d^{k\rightarrow i}(t)\) is defined as a random variable which is equal to one with probability \(\delta_{q_i(t),I} \lambda_{ij}\), and equal to zero otherwise. Consider an auxiliary dynamics \(D_j\) where node \(j\) receives infection signals, but ignores them and thus is fixed to the \(S\) state at all times. Since the infection cannot propagate through node \(j\) in this dynamic setting, different graph branches rooted at node \(j\) become independent if the underlying graph is a tree. This is the natural generalization of the cavity method used for deriving BP (see [18]) to dynamical processes. Notice that the auxiliary dynamics \(D_j\) is identical to the original dynamics \(D\) for all times such that \(q_j(t) = S\). We also define an auxiliary dynamics \(D_{ij}\) in which the state of a pair of neighboring nodes \(i\) and \(j\) is always \(S\).

In order to close the system of message-passing equations, we write the remaining update rules in terms of three kinds of cavity messages, defined as follows:

- \(\theta^{k\rightarrow i}(t)\) is the probability that the infection signal has not been passed from node \(k\) to node \(i\) up to time \(t\) in the dynamics \(D_i\):
 \[
 \theta^{k\rightarrow i}(t) = \text{Prob}_{D_i} \left(\sum_{t'}^t d^{k\rightarrow i}(t') = 0 \right);
 \]

- \(\phi^{k\rightarrow i}(t)\) is the probability that the infection signal has not been passed from node \(k\) to node \(i\) up to time \(t\) in the dynamics \(D_i\) and that node \(k\) is in the the state \(I\) at time \(t\):
 \[
 \phi^{k\rightarrow i}(t) = \text{Prob}_{D_i} \left(\sum_{t'}^t d^{k\rightarrow i}(t') = 0, q_k(t) = I \right);
 \]

- \(P_S^{k\rightarrow i}(t)\) is the probability in the dynamics \(D_i\) that node \(k\) is in the the state \(S\) at time \(t\):
 \[
 P_S^{k\rightarrow i}(t) = \text{Prob}_{D_i} (q_k(t) = S).
 \]

In what follows, we prove that
\[
P_S^{i\rightarrow j}(t + 1) = P_S^i(0) \prod_{k \in \partial i \setminus j} \theta^{k\rightarrow i}(t + 1),
\]
where \(\partial i \setminus j\) means the set of neighbors of \(i\) excluding \(j\). Indeed, by definition
\[
P_S^{i\rightarrow j}(t + 1) = \text{Prob}_{D_j} (q_i(t + 1) = S) = P_S^i(0) \text{Prob}_{D_j} \left(\sum_{k \in \partial i \setminus j} \sum_{t'}^t d^{k\rightarrow i}(t') \right).
\]
Since the auxiliary dynamics \(D_{ij}\) coincides with dynamics \(D_j\) as long as the node \(i\) is in the \(S\) state, we can write
\[
P_S^{i\rightarrow j}(t + 1) = P_S^i(0) \text{Prob}_{D_{ij}} \left(\sum_{k \in \partial i \setminus j} \sum_{t'}^t d^{k\rightarrow i}(t') \right).
\]
Since different branches of the graph containing nodes \(k \in \partial i \setminus j\) are connected only through node \(i\), they are independent of each other, hence
\[
P_S^{i\rightarrow j}(t + 1) = P_S^i(0) \prod_{k \in \partial i \setminus j} \text{Prob}_{D_{ij}} \left(\sum_{t'}^t d^{k\rightarrow i}(t') \right),
\]
Moreover, for nodes \(k \in \partial i \setminus j \), the dynamics \(D_{ij} \) is equivalent to the dynamics \(D_i \), so we can replace \(D_{ij} \) by \(D_i \) in the last expression and hence, using the definition (A3), we obtain equation (A6).

We complete the updating rules by writing the equations for \(\theta^{k\rightarrow i}(t) \) and \(\phi^{k\rightarrow i}(t) \). The only way \(\theta^{k\rightarrow i}(t) \) can decrease is by actually transmitting the infection signal from node \(k \) to node \(i \), and this happens with probability \(\lambda_{ki} \) multiplied by the probability that node \(k \) was infected, so we have

\[
\theta^{k\rightarrow i}(t + 1) - \theta^{k\rightarrow i}(t) = -\lambda_{ki} \phi^{k\rightarrow i}(t).
\] (A10)

The change for \(\phi^{k\rightarrow i}(t) \) at each time step comes from three different possibilities: either node \(k \) actually sends the infection signal to node \(i \) (with probability \(\lambda_{ki} \)), either it recovers (with probability \(\mu_k \)), or it switches to \(I \) at this time step, being previously in the \(S \) state (this happens with probability \(S^{t\rightarrow i}(t - 1) - S^{t\rightarrow i}(t) \)):

\[
\phi^{k\rightarrow i}(t) - \phi^{k\rightarrow i}(t - 1) = -\lambda_{ki} \phi^{k\rightarrow i}(t - 1) - \mu_k \phi^{k\rightarrow i}(t - 1) + \lambda_{ki} \mu_k \phi^{k\rightarrow i}(t - 1) + S^{k\rightarrow i}(t - 1) - S^{k\rightarrow i}(t).
\] (A11)

The third compensation term on the right hand side of the previous equation comes to avoid counting twice the situation when node \(k \) transmits the infection and recovers at the same time step. This completes the update rules for cavity messages. These equations can be iterated in time starting from initial conditions for cavity messages:

\[
\theta^{i\rightarrow j}(0) = 1,
\]

\[
\phi^{i\rightarrow j}(0) = \delta_{qi}(0), I.
\] (A12) (A13)

The marginal probability in the original dynamics \(D \) is obtained by including all the neighbor nodes \(k \in \partial i \) in eq. (A6):

\[
P_S^i(t + 1) = P_S^i(0) \prod_{k \in \partial i} \theta^{k\rightarrow i}(t + 1).
\] (A14)

The closed set of equations (A1, A2, A6, A10, A11, A14), together with the initial conditions (A12, A13), give the exact values of marginal probabilities \(P_S^i(t), P_I^i(t) \) and \(P_R^i(t) \) on a tree graph.

Appendix B: The centrality algorithms for incomplete snapshots

In the case where the state of all the nodes is known at time \(t_0 \), the centrality algorithms work on a connected component \(G \) of infected and recovered nodes. In practice the information is available only for a fraction \(1 - \xi \) of nodes in the graph \(G \). The snapshot \(O(t_0) \) can then be thought of as a configuration of \((1 - \xi)N \) nodes in the states \(S, I, R \) (nodes for which we have the information), and of \(\xi N \) randomly located nodes in the unknown state \(X \). Now the infected and recovered nodes in general do not form a connected component and are located in several disconnected components, separated by the nodes in the unknown states \(X \). Nevertheless, it is clear that not all the \(X \)-nodes have to be checked as possible candidates to be the actual source of infection. If the cluster of nodes in the \(X \) state is surrounded only by the \(S \)-nodes, this cluster is clearly in the \(S \) state itself. Other \(X \)-nodes in principle are susceptible to be the infection source and thus need to be checked.

We propose the following generalization of centrality algorithms for the \(\xi \neq 0 \) case. First we construct a connected component composed of all the nodes in the \(I \) and \(R \) states and clusters of \(X \) nodes which are not completely encircled by \(S \)-nodes. This gives a connected component of \(I, R \) and \(X \) nodes attached together. Since now we have a connected component \(G \), we can run centrality algorithms on it in a usual way. For \(\xi = 0 \) the connected component constructed in this way coincides with a connected component composed of infected and recovered component.

Below (figure 4) we compare the distributions of ranks for DMP and Jordan estimators for different \(\xi \) (\(\xi = 0, \xi = 0.5 \) and \(\xi = 0.9 \)) in the special case of 'deterministic' recovery \(\mu = 1 \) for \(\lambda = 0.5 \) and \(\lambda = 0.7 \). The results are presented for a regular random graph composed of \(N = 1000 \) nodes with connectivity \(c = 4 \), and we take \(t_0 = 10 \). The plot shows how often the rank of the actual epidemic origin \(i_0 \) is within the value of the corresponding bin (0% means exact reconstruction). According to the histogram, in 60% of cases we manage to locate the true infection source within 10% of relevant nodes (those situated in \(G \)) for \(\xi = 0 \). This number falls to 40% for \(\xi = 0.9 \), when the states of only 10% of nodes in the network are known.

We see that although for \(\xi = 0 \) the rank distribution based on the Jordan centrality estimator gives better results (in the case \(\lambda = 0.5 \)), it is no longer efficient when the number of unknown nodes gets larger (for all \(\xi > 0.4 \)). The dependence on \(\xi \) for the case \(\lambda = 0.7 \) follows the same patterns.
FIG. 4. (color online) Distribution of inferred rank of the epidemic origin measured over the graph G for Jordan centrality estimator (yellow) and DMP estimator (red) with known spreading time on regular random graphs: a) $\xi = 0, \lambda = 0.5$, b) $\xi = 0, \lambda = 0.7$, c) $\xi = 0.5, \lambda = 0.5$, d) $\xi = 0.5, \lambda = 0.7$, e) $\xi = 0.9, \lambda = 0.5$, f) $\xi = 0.9, \lambda = 0.7$. The average is performed over 500 instances.

Appendix C: Erdős-Rényi and scale-free networks

We present here some results for other families of random networks. In Fig. 6, we plot the inference results for the connected component of Erdős-Rényi graphs of size $N \simeq 1000$ with average degree $\langle c \rangle = 4$. Fig. 5 shows the corresponding results for the connected component of scale-free networks of size $N \simeq 1000$, generated to have the Pareto degree distribution with a shape parameter $\alpha = 0.25$, and minimum value parameter $k = 1$, with a probability distribution function $P(x) = \alpha k^\alpha x^{-1-\alpha}$, defined for $x > k$. For both networks, the DMP algorithm considerably outperforms Jordan and distance centralities.
The snapshot time t_0 (assumed to be known) and recovery probability μ are: (a) $t_0 = 10, \mu = 0.5$ and (b) $t_0 = 10, \mu = 1$. The dotted line shows the average fraction of nodes that were infected or recovered in the snapshot, $|\mathcal{G}|/N$, we use this number to normalize the ranks of the epidemic origin.

![Graph showing rank of true epidemic origin](image1)

FIG. 5. (color online) Average rank of the true epidemic origin on Erdős-Rényi graphs of size $N \approx 1000$ with average degree $(c) = 4$. Each data point is averaged over 1000 instances. The snapshot time t_0 (assumed to be known) and recovery probability μ are: (a) $t_0 = 10, \mu = 0.5$ and (b) $t_0 = 10, \mu = 1$. The dotted line shows the average fraction of nodes that were infected or recovered in the snapshot, $|\mathcal{G}|/N$, we use this number to normalize the ranks of the epidemic origin.

FIG. 6. (color online) Average rank of the true epidemic origin on scale-free graphs of size $N \approx 1000$, generated according to the Pareto distribution with shape parameter $\alpha = 0.25$, and minimum value parameter $k = 1$, average degree $(c) = 5/3$. Each data point is averaged over 3000 instances. The snapshot time t_0 (assumed to be known) and recovery probability μ are: (a) $t_0 = 10, \mu = 0.5$ and (b) $t_0 = 10, \mu = 1$. The dotted line shows the average fraction of nodes that were infected or recovered in the snapshot, $|\mathcal{G}|/N$, we use this number to normalize the ranks of the epidemic origin.

[1] J. Murray, *Mathematical biology* (Springer-Verlag (Berlin and New York), 1989)
[2] H. W. Hethcote, SIAM Rev. **42**, 599653 (2000)
[3] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang, Physics Reports **424**, 175308 (2006)
[4] D. Shah and T. Zaman, in SIGMETRICS’10, *Proceedings of the ACM SIGMETRICS international conference on Measurement and modeling of computer systems* (2010) pp. 203–214
[5] C. H. Comin and L. da Fontoura Costa, Phys. Rev. E **84**, 056105 (2011)
[6] D. Shah and T. Zaman, IEEE Trans. Inform. Theory **57**, 5163 (2011)
[7] K. Zhu and L. Ying, “Information source detection in the sir model: A sample path based approach,” (2012), arXiv:1206.5421
[8] B. A. Prakash, J. Vreeken, and C. Faloutsos, in *ICDM’12; Proceedings of the IEEE International Conference on Data Mining* (2012)
[9] V. Fioriti and M. Chinnici, “Predicting the sources of an outbreak with a spectral technique,” (2012), arXiv:1211.2333 [math-ph]
[10] P. C. Pinto, P. Thiran, and M. Vetterli, Phys. Rev. Lett. **109**, 068702 (2012)
[11] C. W. T. Wenxiang Dong, Wenyi Zhang, “Rooting out the rumor culprit from suspects,” (2013), arXiv:1301.6312 [cs.SI]
[12] W. O. Kermack and A. G. McKendrick, Proc. R. Soc. Lond. A **115**, 700 (1927)
[13] B. Karrer and M. E. J. Newman, Physical Review E **82**, 016101 (2010)
[14] E. Volz, J. Math. Biol. **56**, 293310 (2008)
[15] J. C. Miller, J. Math. Biol. **62**, 349 (2011)
[16] H. Ohta and S. Sasa, EPL (Europhysics Letters) **90**, 27008 (2010)
[17] J. Yedidia, W. Freeman, and Y. Weiss, in *Exploring Artificial Intelligence in the New Millennium* (Science & Technology Books, 2003) pp. 239–236
[18] M. Mézard and A. Montanari, *Physics, Information, Computation* (Oxford Press, Oxford, 2009)
[19] E. Volz and L. A. Meyers, Proc. R. Soc. B **274**, 29252933 (2007)
[20] E. Volz and L. A. Meyers, J. R. Soc. Interface **6**, 233 (2009)
[21] J. Stehlé, N. Voirin, A. Barrat, C. Cattuto, V. Colizza, L. Isella, C. Régis, J.-F. Pinton, N. Khananer, V. Y. den Broeck, and P. Vanhems, BMC Medicine **9**, 87 (2011)
[22] Y. Kanoria and A. Montanari, Annals of Applied Probability **21**, 5 (2011)
[23] M. E. J. Newman, Phys. Rev. E **66**, (2002) **66**, 016128 (2002)
[24] D. J. Watts and S. H. Strogatz, Nature **393**, 440 (1998)