Experimental and computational evidence for 'double pancake bonds'; the role of dispersion-corrected DFT methods in strongly dimerized 5-aryl-1λ²,3λ²-dithia-2,4,6-triazines

René T. Boeré

R. T. Boeré. Department of Chemistry and Biochemistry and Canadian Centre for Research in Advanced Fluorine Technologies, University of Lethbridge, 4401 University Dr. W, Lethbridge, AB, Canada T1K 3M4

Corresponding author: René T. Boeré (email: boere@uleth.ca)

SUPPORTING MATERIAL

1) Full Crystallographic Data for 3 and 4... S2
 Table S1 Crystal, Data Collection and Refinement Parameters for Crystallography of 3 and 4..... S2
 Table S2. Fractional Atomic Coordinates for 3 ... S3
 Table S3. Bond lengths [Å] and angles [*] for 3... S4
 Table S4. Torsion angles [*] for 3.. S5
 Table S5. Atomic Occupancy for 3... S6
 Table S6 Fractional Atomic Coordinates for 4... S6
 Table S7. Bond lengths [Å] and angles [*] for 4... S6
 Table S8. Torsion angles [*] for 4.. S7
 Table S9 Least Squares Planes in crystal structure of 3.. S8
 Figure S1 Full view of a displacement ellipsoids plot of 3.. S9
 Figure S2 View of the molecular structure of the dimer 3 orthogonal to the aryl planes........ S10
 Figure S3 Packing diagrams showing intermolecular contacts in the lattice of 3 at 100 K........ S11
 Figure S4 Packing diagram for (a) 1 (refcode: DESSID) and (b) 2 (refcode: PAFLAJ) S12
 Figure S5 Diagram for the crystal structure of 4 showing contacts and packing diagram S13
 Table S10. Selected geometrical parameters from experiments and DFT calculations........ S14

2) DFT Computational Results.. S15
 Table S11 DFT Computed Results for the ‘parent’ HCN₃S₂ dimer................................. S17
 Table S12 DFT Computed Results for the CF₃CN₃S₂ dimer... S17
 Table S13 DFT Computed Results for the Me₂NCN₃S₂ dimer.................................... S17
 Table S14 DFT Computed Cartesian Geometries with Structure Plots S18

(39 Pages)
Table S1. Crystal, Data Collection and Refinement Parameters for Crystallography of 3 and 4

Parameter	3	3-CF₃-C₆H₄-CN₃S₂	4	3-CF₃-C₆H₄-CN₃S₃
Identification code	RB16082		RB16083rf1	
Empirical formula	C₈H₄F₃N₃S₂		C₈H₄F₃N₃S₃	
Formula weight	263.26		323.34	
Temperature/K	99.98(13)		100.01(10)	
Crystal system	triclinic		monoclinic	
Space group	P-1		C2/c	
a/Å	7.62509(11)		22.90772(16)	
b/Å	8.44847(12)		4.66989(3)	
c/Å	15.92585(16)		22.2724(2)	
α/°	104.2308(10)		90	
β/°	94.4500(10)		106.6781(9)	
γ/°	103.1503(12)		90	
Volume/Å³	958.65(2)		2282.39(3)	
Z	4		8	
ρcalc/g/cm³	1.824		1.882	
μ/mm⁻¹	5.289		6.306	
F(000)	528.0		1296.0	
Crystal size/mm³	0.374 × 0.25 × 0.061		0.385 × 0.25 × 0.063	
Radiation	CuKα (λ = 1.54184)		CuKα (λ = 1.54184)	
2θ range for data collection/°	11.102 to 154.986		8.058 to 155.214	
Index ranges	-9 ≤ h ≤ 9, -10 ≤ k ≤ 10, -20 ≤ l ≤ 20		-28 ≤ h ≤ 28, -5 ≤ k ≤ 5, -27 ≤ l ≤ 27	
Reflections collected	37748		23650	
Independent reflections	4013 [Rint = 0.0533, Rsigma = 0.0198]		2390 [Rint = 0.0276, Rsigma = 0.0108]	
Data/restraints/parameters	4013/30/320		2390/0/172	
Goodness-of-fit on F²	1.082		1.075	
Final R indexes [I>2σ (I)]	R₁ = 0.0385, wR₂ = 0.1067		R₁ = 0.0280, wR₂ = 0.0741	
Final R indexes [all data]	R₁ = 0.0398, wR₂ = 0.1076		R₁ = 0.0286, wR₂ = 0.0744	
Largest diff. peak/hole / e Å⁻³	0.51/-0.48		0.41/-0.32	

A = 1/[σ²(Fo²) + A(P)² + BP] where P = (Fo² + 2Fc²)/3.
Table S2. Fractional Atomic Coordinates ($\times 10^4$) and Equivalent Isotropic Displacement Parameters ($\text{Å}^2\times 10^3$) for 3. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{ij} tensor.

Atom	x	y	z	$U(eq)$
S1	9440.8(6)	10155.4(6)	1261.4(3)	18.58(13)
S2	6016.5(6)	8369.4(6)	336.9(3)	17.89(13)
S3	7338.0(6)	5966.8(6)	-322.2(3)	16.75(13)
S4	10752.8(6)	7757.9(6)	610.9(3)	17.64(13)
F1	10343.5(19)	7494(2)	4558.2(9)	40.8(4)
F2	8921.4(19)	8658.1(19)	5543.0(8)	36.2(3)
F3	8246(2)	5959.5(19)	5057.2(10)	16.7(3)
N1	8654(2)	9403(2)	2026.0(10)	18.2(3)
N2	7890(2)	9831(2)	428.0(11)	20.2(3)
N3	5665(2)	7884(2)	1235.8(11)	19.1(3)
N4	7164(2)	5105(2)	475.4(10)	17.0(3)
N5	9364(2)	7109(2)	-310.7(11)	19.3(3)
N6	10139(2)	6662(2)	1280.5(11)	18.4(3)
C1	6956(3)	8422(2)	1935.8(12)	18.1(4)
C2	6430(3)	7936(2)	2734.4(12)	18.4(4)
C3	7781(3)	7939(2)	3380.4(13)	19.9(4)
C4	7288(3)	7456(3)	4119.5(13)	22.2(4)
C5	5462(3)	7019(3)	4234.6(14)	25.8(4)
C6	4134(3)	7039(3)	3596.8(14)	26.7(4)
C7	4604(3)	7473(3)	2841.4(13)	21.9(4)
C8	8697(3)	7397(3)	4810.0(13)	26.7(4)
C11	8515(3)	5535(2)	1151.1(12)	16.5(4)
C12	8200(3)	4599(2)	1820.5(12)	16.7(4)
C13	6446(3)	3834(2)	1923.1(12)	18.3(4)
C14	6166(3)	2994(2)	2568.0(12)	18.5(4)
C15	7627(3)	2897(2)	3116.8(12)	20.4(4)
C16	9386(3)	3654(3)	3010.6(13)	21.4(4)
C17	9675(3)	4502(2)	2368.1(12)	18.7(4)
F4	4134(18)	1750(30)	3420(9)	51(2)
F5	3650(20)	601(19)	2056(8)	36(2)
F6	3110(20)	3030(20)	2512(16)	43(3)
C18	4260(120)	2160(110)	2660(60)	24.2(4)
F4A	4000(20)	2360(60)	3477(9)	59(5)
F5A	3750(30)	610(30)	2230(30)	59(4)
F6A	3000(30)	2870(30)	2370(20)	38(3)
C18A	4260(170)	2160(160)	2660(80)	24.2(4)
Table S3. Bond lengths [Å] and angles [°] for 3

Atom	Atom	Length/Å	Atom	Atom	Length/Å
S1	S4	2.4956(6)	C3	C4	1.389(3)
S1	N1	1.6024(16)	C4	C5	1.396(3)
S1	N2	1.6328(17)	C4	C8	1.494(3)
S2	S3	2.5069(6)	C5	C6	1.384(3)
S2	N2	1.6320(17)	C6	C7	1.391(3)
S2	N3	1.6087(17)	C11	C12	1.479(3)
S3	N4	1.6117(16)	C12	C13	1.388(3)
S3	N5	1.6209(17)	C12	C17	1.399(3)
S4	N5	1.6355(17)	C13	C14	1.388(3)
S4	N6	1.6058(16)	C14	C15	1.392(3)
F1	C8	1.339(3)	C14	C18	1.50(9)
F2	C8	1.342(2)	C14	C18A	1.50(12)
F3	C8	1.347(3)	C15	C16	1.391(3)
N1	C1	1.344(3)	C16	C17	1.390(3)
N3	C1	1.340(3)	F4	C18	1.34(10)
N4	C11	1.348(2)	F5	C18	1.38(8)
N6	C11	1.345(3)	F6	C18	1.31(11)
C1	C2	1.486(3)	F4A	C18A	1.31(13)
C2	C3	1.398(3)	F5A	C18A	1.27(12)
C2	C7	1.394(3)	F6A	C18A	1.36(15)

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
N1	S1	S4	95.79(6)	F1	C8	F3	106.52(19)
N1	S1	N2	112.87(9)	F1	C8	C4	113.47(17)
N2	S1	S4	96.47(6)	F2	C8	F3	105.77(17)
N2	S2	S3	94.87(6)	F2	C8	C4	112.60(18)
N3	S2	S3	97.05(6)	F3	C8	C4	111.76(18)
N3	S2	N2	113.54(9)	N4	C11	C12	115.77(16)
N4	S3	S2	96.42(6)	N6	C11	N4	128.46(17)
N4	S3	N5	113.69(9)	N6	C11	C12	115.73(16)
N5	S3	S2	96.41(6)	C13	C12	C11	120.60(17)
N5	S4	S1	95.16(6)	C13	C12	C17	119.32(17)
N6	S4	S1	96.77(6)	C17	C12	C11	120.07(17)
N6	S4	N5	112.37(9)	C12	C13	C14	120.05(17)
C1	N1	S1	122.87(14)	C13	C14	C15	120.95(18)
S2	N2	S1	117.39(10)	C13	C14	C18	119(4)
C1	N3	S2	121.67(14)	C13	C14	C18A	119(5)
C11	N4	S3	121.53(14)	C15	C14	C18	120(4)
S3	N5	S4	117.85(10)	C15	C14	C18A	120(5)
C11	N6	S4	123.00(14)	C16	C15	C14	119.00(18)
N1	C1	C2	115.12(17)	C17	C16	C15	120.35(18)
N3	C1	N1	128.68(18)	C16	C17	C12	120.32(18)
N3	C1	C2	116.15(17)	F4	C18	C14	113(6)
C3	C2	C1	119.55(17)	F4	C18	F5	102(6)
C7	C2	C1	120.53(17)	F5	C18	C14	111(6)
C7	C2	C3	119.92(18)	F6	C18	C14	112(7)
C4 C3 C2 119.55(18) F6 C18 F4 112(7)
C3 C4 C5 120.59(19) F6 C18 F5 106(6)
C3 C4 C8 120.89(19) F4A C18A C14 112(7)
C5 C4 C8 118.51(18) F4A C18A F6A 100(9)
C6 C5 C4 119.48(19) F5A C18A C14 114(10)
C5 C6 C7 120.55(19) F5A C18A F4A 111(10)
C6 C7 C2 119.87(19) F5A C18A F6A 105(8)
F1 C8 F2 106.16(18) F6A C18A C14 114(10)

Table S4. Torsion angles [°] for 3

A	B	C	D	Angle/°	A	B	C	D	Angle/°
S1	S4	N5	S3	-80.11(10)	C3	C2	C7	C6	0.9(3)
S1	S4	N6	C11	88.04(15)	C3	C4	C5	C6	1.2(3)
S1	N1	C1	N3	1.1(3)	C3	C4	C8	F1	-13.2(3)
S1	N1	C1	C2	-176.19(13)	C3	C4	C8	F2	107.4(2)
S2	S3	N4	C11	-89.93(14)	C3	C4	C8	F3	-133.7(2)
S2	S3	N5	S4	80.55(10)	C4	C5	C6	C7	0.7(3)
S2	N3	C1	N1	0.6(3)	C5	C4	C8	F1	167.0(2)
S2	N3	C1	C2	177.80(13)	C5	C4	C8	F2	-72.4(3)
S3	S2	N2	S1	-80.28(10)	C5	C4	C8	F3	46.5(3)
S3	S2	N3	C1	87.33(15)	C5	C6	C7	C2	-1.7(3)
S3	N4	C11	N6	-0.4(3)	C7	C2	C3	C4	0.9(3)
S3	N4	C11	C12	-177.79(12)	C8	C4	C5	C6	-179.0(2)
S4	S1	N1	C1	-91.41(15)	C11	C12	C13	C14	-178.41(16)
S4	S1	N2	S2	80.93(10)	C11	C12	C17	C16	178.63(17)
S4	N6	C11	N4	0.8(3)	C12	C13	C14	C15	-0.3(3)
S4	N6	C11	C12	178.13(13)	C12	C13	C14	C18	-179(4)
N1	S1	N2	S2	-18.16(14)	C12	C13	C14	C18A	-179(5)
N1	C1	C2	C3	-23.4(2)	C13	C12	C17	C16	-0.3(3)
N1	C1	C2	C7	156.78(18)	C13	C14	C15	C16	-0.1(3)
N2	S1	N1	C1	8.12(18)	C13	C14	C18	F4	-165(4)
N2	S2	N3	C1	-11.14(18)	C13	C14	C18	F5	81(7)
N3	S2	N2	S1	19.60(14)	C13	C14	C18	F6	-37(7)
N3	C1	C2	C3	158.95(17)	C13	C14	C18A	F4A	-140(8)
N3	C1	C2	C7	-20.8(3)	C13	C14	C18A	F5A	93(10)
N4	S3	N5	S4	-19.37(14)	C13	C14	C18A	F6A	-27(10)
N4	C11	C12	C13	-23.1(2)	C14	C15	C16	C17	0.3(3)
N4	C11	C12	C17	158.05(17)	C15	C14	C18	F4	17(8)
N5	S3	N4	C11	9.98(18)	C15	C14	C18	F5	-98(6)
N5	S4	N6	C11	-10.40(18)	C15	C14	C18	F6	144(4)
N6	S4	N5	S3	19.40(14)	C15	C14	C18A	F4A	42(12)
N6	C11	C12	C13	159.22(17)	C15	C14	C18A	F5A	-86(10)
N6	C11	C12	C17	-19.7(2)	C15	C14	C18A	F6A	155(5)
C1	C2	C3	C4	-178.88(17)	C15	C16	C17	C12	-0.1(3)
C1	C2	C7	C6	-179.27(18)	C17	C12	C13	C14	0.5(3)
C2	C3	C4	C5	-2.0(3)	C18	C14	C15	C16	179(4)
C2	C3	C4	C8	178.22(18)	C18A	C14	C15	C16	179(5)
Table S5. Atomic Occupancy for 3

Atom	Occupancy	Atom	Occupancy	Atom	Occupancy
F4	0.58(7)	F5	0.58(7)	F6	0.58(7)
C18	0.58(7)	F4A	0.42(7)	F5A	0.42(7)
F6A	0.42(7)	C18A	0.42(7)		

Table S6 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for 4. \(U_{eq}\) is defined as 1/3 of the trace of the orthogonalised \(U_{ij}\) tensor.

Atom	\(x\)	\(y\)	\(z\)	\(U_{eq}\)
S2	3381.3(2)	2542.9(8)	5493.1(2)	16.45(11)
S1	4513.2(2)	2553.7(8)	5342.2(2)	14.68(11)
S3	4317.9(2)	5637.3(8)	6372.4(2)	16.41(11)
F1	4570.7(5)	9676(3)	3021.8(5)	32.3(3)
F2	4047.2(5)	13499(2)	2725.9(5)	28.6(2)
F3	3780.5(5)	9586(2)	2219.8(5)	29.7(3)
N2	3976.2(6)	636(3)	5489.5(6)	17.8(3)
N1	4228.7(6)	4760(3)	4772.6(6)	16.6(3)
N3	3210.7(6)	4735(3)	4905.3(6)	17.6(3)
N5	3634.4(6)	4840(3)	6132.7(6)	18.6(3)
N5	4757.2(6)	4839(3)	5984.9(6)	17.1(3)
C1	3636.6(7)	5475(3)	4630.8(7)	14.4(3)
C2	3418.5(7)	7392(3)	4075.5(7)	14.6(3)
C3	3802.7(7)	8058(3)	3707.9(7)	15.2(3)
C4	3604.8(7)	9942(3)	3211.1(7)	15.9(3)
C5	3026.0(7)	11180(4)	3070.4(7)	19.1(3)
C6	2641.9(7)	10476(4)	3429.7(8)	20.3(3)
C7	2834.8(7)	8591(4)	3928.1(7)	18.0(3)
C8	4001.7(7)	10672(3)	2800.7(7)	17.9(3)

Table S7. Bond lengths [Å] and angles [°] for 4

Atom	Atom	Length/Å	Atom	Atom	Length/Å
S2	N2	1.6296(13)	N1	C1	1.3436(19)
S2	N3	1.6190(14)	N3	C1	1.337(2)
S2	N5	1.7440(15)	C1	C2	1.492(2)
S1	N2	1.6292(13)	C2	C3	1.398(2)
S1	N1	1.6192(13)	C2	C7	1.399(2)
S1	N4	1.7437(14)	C3	C4	1.384(2)
S3	N5	1.5478(14)	C4	C5	1.397(2)
S3	N4	1.5475(13)	C4	C8	1.502(2)
F1	C8	1.3376(19)	C5	C6	1.388(2)
F2	C8	1.3388(19)	C6	C7	1.386(2)
F3	C8	1.3460(18)			

continued...
Table S8. Torsion angles [°] for 3

A	B	C	D	Angle/°	A	B	C	D	Angle/°
N2	S2	N5		104.93(7)	C3	C2	C7		119.56(14)
N3	S2	N2		110.47(7)	C7	C2	C1		120.31(14)
N3	S2	N5		102.60(7)	C4	C3	C2		119.52(14)
N2	S1	N4		104.70(7)	C3	C4	C5		120.95(14)
N1	S1	N2		110.49(7)	C3	C4	C8		120.94(14)
N1	S1	N4		102.46(7)	C5	C4	C8		118.10(14)
N4	S3	N5		120.33(8)	C6	C5	C4		119.37(15)
S1	N2	S2		112.43(8)	C7	C6	C5		120.20(15)
C1	N1	S1		119.64(11)	C6	C7	C2		120.38(14)
C1	N3	S2		119.65(11)	F1	C8	F2		106.64(13)
S3	N5	S2		119.73(8)	F1	C8	F3		106.33(13)
S3	N4	S1		119.92(8)	F1	C8	C4		113.16(13)
N1	C1	C2		114.78(13)	F2	C8	F3		105.84(13)
N3	C1	N1		130.41(14)	F2	C8	C4		112.45(13)
N3	C1	C2		114.80(13)	F3	C8	C4		111.90(13)
C3	C2	C1		120.11(13)					
Table S9 Least Squares Planes in crystal structure of 3

Least-squares planes (x, y, z in crystal coordinates) and deviations from them in the crystal structure refinement of 3 (* indicates atom used to define plane)

-4.3989 (0.0026) x + 7.2842 (0.0024) y + 2.4007 (0.0089) z = 3.5387 (0.0034)
 * 0.0010 (0.0012) C1
 * -0.0103 (0.0010) N1
 * 0.0088 (0.0010) N3
 * 0.0085 (0.0006) S1
 * -0.0081 (0.0006) S2
 0.2546 (0.0018) N2
Rms deviation of fitted atoms = 0.0080

-4.8166 (0.0017) x + 5.7526 (0.0118) y + 6.7269 (0.0268) z = 2.1433 (0.0098)
Angle to previous plane (with approximate esd) = 17.457 (0.152)
 * 0.0000 (0.0000) S1
 * 0.0000 (0.0000) N2
 * 0.0000 (0.0000) S2
Rms deviation of fitted atoms = 0.0000

-4.7807 (0.0024) x + 6.1866 (0.0032) y + 5.6562 (0.0083) z = 0.0023 (0.0035)
Angle to previous plane (with approximate esd) = 4.399 (0.181)
 * 0.0026 (0.0012) C11
 * 0.0002 (0.0009) N4
 * -0.0037 (0.0010) N6
 * -0.0012 (0.0006) S3
 * 0.0022 (0.0006) S4
 -0.2567 (0.0018) N5
Rms deviation of fitted atoms = 0.0023

1.9732 (0.0084) x + 3.1878 (0.0019) y + 14.9317 (0.0078) z = 9.4804 (0.0047)
 * -0.1027 (0.0007) C1
 * -0.0021 (0.0009) N1
 * -0.2961 (0.0007) N2
 * 0.2012 (0.0006) S1
 * 0.1996 (0.0006) S2
 -0.2961 (0.0007) N2
Rms deviation of fitted atoms = 0.1890

2.6746 (0.0045) x + 0.7967 (0.0070) y + 20.1283 (0.0056) z = 12.1636 (0.0085)
Angle to previous plane (with approximate esd) = 17.822 (0.140)
 * 0.0000 (0.0000) S3
 * 0.0000 (0.0000) N5
 * 0.0000 (0.0000) S4
Rms deviation of fitted atoms = 0.0000

Least-squares planes (x, y, z in crystal coordinates) and deviations from them in the crystal structure refinement of 4 (* indicates atom used to define plane)

1.9732 (0.0084) x + 3.1878 (0.0019) y + 14.9317 (0.0078) z = 9.4804 (0.0047)
 * -0.1027 (0.0007) C1
 * -0.0021 (0.0009) N1
 * -0.2961 (0.0007) N2
 * 0.2012 (0.0006) S1
 * 0.1996 (0.0006) S2
 -0.2961 (0.0007) N2
Rms deviation of fitted atoms = 0.1890

2.6746 (0.0045) x + 0.7967 (0.0070) y + 20.1283 (0.0056) z = 12.1636 (0.0085)
Angle to previous plane (with approximate esd) = 33.227 (0.098)
 * 0.0000 (0.0000) S1
 * 0.0000 (0.0000) S2
 * 0.0000 (0.0000) N2
Rms deviation of fitted atoms = 0.0000

1.6105 (0.0082) x - 3.7723 (0.0007) y + 12.0374 (0.0078) z = 6.1836 (0.0031)
Angle to previous plane (with approximate esd) = 63.704 (0.078)
* 0.0106 (0.0005) S1
* -0.0385 (0.0007) N4
* 0.0559 (0.0007) S3
* -0.0419 (0.0007) N5
* 0.0139 (0.0005) S2
Rms deviation of fitted atoms = 0.0365
1.9732 (0.0084) x + 3.1878 (0.0019) y + 14.9317 (0.0078) z = 9.4804 (0.0047)

Angle to previous plane (with approximate esd) = 83.069 (0.026)
* -0.1027 (0.0007) C1
* -0.0021 (0.0009) N1
* -0.2961 (0.0007) N2
* 0.2012 (0.0007) S1
* 0.1996 (0.0006) S2
-0.2961 (0.0007) N2
Rms deviation of fitted atoms = 0.1890
2.6746 (0.0045) x + 0.7967 (0.0070) y + 20.1283 (0.0056) z = 12.1636 (0.0017)

Angle to previous plane (with approximate esd) = 33.227 (0.098)
* 0.0000 (0.0000) S1
* 0.0000 (0.0000) S2
* 0.0000 (0.0000) N2
Rms deviation of fitted atoms = 0.0000

Figure S1 Full view of a displacement ellipsoids plot of 3 as found in the crystal lattice and showing the disorder model for the C18 CF₃ group (refined to an occupancy ratio of 0.58:0.42).
Figure S2 View of the molecular structure of the dimer 3 orthogonal to the plane defined by the C12 > C17 phenyl ring (H-atoms omitted). The upper C2 > C7 ring is displaced towards optimal π-stacking with the ring centroid centred over the C13-C14 bond of the lower ring. Some inter-annular C-C distances are shown.
Figure S3 Packing diagrams showing intermolecular contacts in the lattice of 3 at 100 K. (a) Paradigmatic approximately parallel S⋯N contacts link two dimers centrosymmetrically at 3.073 and 2.987 Å are 0.28 and 0.36 Å less than the sums of the v.d.Waals radii, respectively. Symmetry code i: 2-x,2-y,-z. (b) xtended short contacts up to 0.1 Å less than the sums of v.d.Waals radii of the interacting atoms. The pairs of dimers shown in Fig. 3 are further connected by contacts between the apical N atoms and the ring C atoms to form walls of DTTA dimers. Cross-links between these walls have the [CN$_3$S$_2$] units off-register by half resulting in rather long contacts; the metrically shortest contacts are consequently between ortho H atoms of the phenyl ring and sulfur and F to S contacts.

Lattice interactions in the structure of 3

Discuss the short contacts in the crystal. Strongly-associated dimers of dimers. Extended network of contacts less than the sums of the v.d.Waals radii form into parallel 'walls' of dimers that are out of register by half the vertical distance. This long-range organization of the crystal lattice found in 3 is contrasted with that in the only other structurally characterized DTTAs, 1 and 2 (refcodes: DESSID and PAFLAJ), in Fig. S3. 1 shows a layer structure of weakly-associated dimers oriented along the cell b axis, resulting in columns of CN$_3$S$_2$ rings isolated by phenyl rings. The extended structure of 2 shares many similarities with that of 1 and both are significantly different from the more complex pattern of interactions found in 3.
Figure S4 Packing diagram for (a) 1 (refcode: DESSID) and (b) 2 (refcode: PAFLAJ). Contacts between S atoms are colour-coded by length (yellow – very short; purple very long).

Lattice interactions in the structure of 4

The shortest contacts in the crystal lattice are those that connect S3 on one molecule with the N2 of the next molecule which are shorter than (Σrdw=0.30 Å). This leads to 'nesting' of one cage with the next above and below it in an infinite row or 'stack'. At (Σrdw=0.20 Å) the nesting is augmented by an N1 to C1 contact. The stacks of nested cages are aligned with the crystallographic b axis (see Fig. S5). At (Σrdw=0.20 Å) additional short contacts link the rows of nested cages with a second row via centrosymmetric S1···S1" and N1···N1" contacts, so that within the C2/c unit cells, there are four such "pairs" of cages grouped around 1̅ locations.
Figure S5 Diagram for the crystal structure of 4 showing (a) the rows formed by 'nesting' the cages within themselves through short N2⋯S3' and N2⋯C1' contacts and the centrosymmetrically disposed second row of nested cages connected through S1⋯S1'' and N1⋯N1'' contacts. The double-nested rows run along the crystallographic b axis in perfect stacks. (b) Packing diagram viewed down the crystallographic b axis.

Nesting is also observed in structures with CSD Refcodes: AJIHAC (4-NCC6H4), DOSBAO (iPr2N, but very long and weak contacts); ECEBOE (CF3); GEDHEC (Cl-); JAIXOH (CF3). The remaining 11 structures in the literature instead show a head-to-head packing arrangement of N2⋯S3' and S3⋯N2' (refcodes: AJIGAB, AJIGEF, AJIGIJ, AJIGOP, AJIGUV, BEZRUU, BEZSAB, BEZSEF, BEZSIJ, BEZSOP, DACDEQ).
Table S10. Selected geometrical parameters from experiments and DFT calculations.

Atoms	3 b	3a b	3b	3c	3d'	3e	3f
S1–N1	1.6024(16)	1.6130	1.615	1.643	1.616	1.620	1.675
S3–N4	1.6117(16)	1.6130	1.614	1.616	1.616	1.620	1.626
S1–N2	1.6328(17)	1.6486	1.651	1.719	1.623	1.649	1.768
S3–N5	1.6209(17)	1.6487	1.652	1.635	1.623	1.648	1.639
S2–N2	1.6320(17)	1.6332	1.631	1.677	1.620	1.649	1.750
S4–N5	1.6355(17)	1.6332	1.630	1.635	1.620	1.649	1.643
S2–N3	1.6087(17)	1.6111	1.610	1.623	1.659	1.620	1.568
S4–N6	1.6058(16)	1.6112	1.611	1.611	1.659	1.620	1.628
N1–C1	1.344(3)	1.3386	1.338	1.356	1.364	1.339	1.305
N4–C11	1.348(2)	1.3379	1.338	1.345	1.364	1.339	1.337
N3–C1	1.340(3)	1.3379	1.338	1.316	1.313	1.339	1.369
N6–C11	1.345(3)	1.3386	1.338	1.328	1.313	1.339	1.336
C1–C2	1.486(3)	1.4790	1.479	1.482	1.481	1.438	1.481
C11–C12	1.479(3)	1.4790	1.480	1.479	1.481	1.438	1.483
S1…S4	2.4956(6)	2.5496	2.549	2.0753 a	2.6971	2.4649	1.8155 b
S2…S3	2.5069(6)	2.5496	2.550	—	—	2.4650	2.5244
i – i'	2.759	2.798	2.796	2.665	2.775	3.226	3.472
ii – ii'	3.850	3.570	3.633	—	—	—	—

| Tip angle S1N2S2 | 17.46(15) | 17.96 | 17.93 | 16.40 | 8.52 | 30.21 | 54.22 |
| Tip angle S3N5S4 | 17.82(14) | 17.96 | 17.95 | 36.77 | 8.52 | 30.21 | 42.71 |

a This value S1…N5. b This value N2…S3.
DFT Computational Results

The general approach was to do a full optimization at the DFT/6-31+G(2d,p) level with frequency checks, followed by DFT/6-311+G(2d,p). The latter repeatedly displayed imaginary frequencies that correspond to deformations towards the 'correct' geometries from the high-compliance methods. Re-optimization starting from the statically deformed geometries then led to fully converged DFT/6-311+G(2d,p) geometries without imaginary frequencies. A computed structure of 3 was first conducted with the B3LYP functional; although this optimized fully, the geometry indicated excessive repulsion between aryl substituents. Next, a series of functionals with differing approaches for inclusion of dispersion effects were tested, using primarily methods already validated for DTTA dimers in the work of Mou et al.: B3LYP-D3, B3LYP-D3BJ, M062X, O3LYP, and also the new APF-D method built into GW16.62. The most tractable method (good compromise between accuracy and efficiency) was B3LYP-D3BJ which was thenceforth used for all other calculations in conjunction with the above mentioned double and triple-ζ Pople basis sets. Cartesians coordinates of all the optimized geometries reported in this work are presented in Table S14.

Frontier Molecular Orbitals of the 'bicyclic' precursor 4.

Although it has a similar structure to the basal DTTA ring, the DFT calculations indicate that the FMOs of the cage compound are really quite different from those of the (monomeric or dimeric) DTTA rings. Notably, the LUMO of 4 is quite low-lying at -3.80 eV, compared to the HOMO at -7.65 eV. This LUMO is a π* fragment on the bridging "-N=S=N-" moiety. The HOMO by contrast is dominated by a p orbital framework mostly on the DTDA ring (at the two N atoms).
Frontier Molecular Orbitals of the triplet state of monomeric 3m

mCF3 triplet monomer

	E(ev)	gaps(eV)	E(AU)
83a L+1	-1.30751	0.04805	
82a L	-2.03623	0.07483	
81a H	-6.02052	0.22125	
80a H-1	-6.5789	0.24177	
79a H-2	-7.9392	1.360298	
78a H-3	-8.00668	0.29424	
77a H-4	-8.7101	0.32009	
76a H-5	-9.04314	0.33233	

Frontier Molecular Orbitals of the singlet C1 state of monomeric 3o

mCF3 singlet C1 monomer

	E(ev)	gaps(eV)	E(AU)
68a L+1	-1.96929	0.07237	
67a L	-3.91926	1.4403	
66a H	-6.25155	2.22974	
65a H-1	-7.8192	1.567649	
66a H-2	-7.9577	0.138506	
65a H-3	-8.49703	0.31226	
64a H-4	-8.7833	0.32278	
63a H-5	-9.45079	0.34731	
Frontier Molecular Orbitals of the dichloro precursor 5

Table S11 DFT Computed Results for the ‘parent’ HCN₃S₂ dimer

Code	Geometry	Rel E, kJ	Dimer E, kJ	dist i···i, Å	d(S-S)*	Torsion
7a	cofacial-0	0.0	-119.0	2.788	2.5369	0.1
7c	cofacial-64	6.1	-112.9	2.683	2.0573	64.4
7d	cofacial-149	5.5	-113.5	2.772	2.6604	149.3
7d'	cofacial-149	5.5	-113.5	2.772	2.6586	149.3
7e	S,S antarafacial	65.9	-53.1	3.234	2.4550	180.0
7f	S,N antarafacial	65.9	-53.1	3.490	1.7985	155.3

Table S12 DFT Computed Results for the CF₃CN₃S₂ dimer

Code	Geometry	Rel E, kJ	Dimer E, kJ	dist ii···ii, Å	d(S-S)*	Torsion
8a	cofacial-0	2.4	-119.8	2.832	2.5248	0.1
8c	cofacial-65	0.0	-122.2	2.668	2.0803	64.8
8d	cofacial-152	2.5	-119.8	2.774	2.7279	152.4
8e	S,S antarafacial	72.4	-54.7	3.206	2.456	180.0

Table S13 DFT Computed Results for the Me₂NCN₃S₂ dimer

Code	Geometry	Rel E, kJ	Dimer E, kJ	dist ii···ii, Å	d(S-S)*	Torsion
9a	cofacial-4	0.2	-0.8*	2.827	2.827	0
9c	cofacial-64	0.4	-0.6*	2.691	2.0612	65.1
9d	cofacial-150	0.0	-1.0	2.871	2.6893	149.6

* Never fully converges.
Table S14 DFT Computed Cartesian Geometries with Structure Plots

3a DTTADIMER-B3LYPD3BJ-6311G2DP-OPT

Atom	X	Y	Z
S	3.428800	-1.892200	0.084200
S	3.515500	0.249100	1.863700
F	-2.474800	-2.953800	-1.448700
F	-3.590300	-3.721800	0.245700
N	1.842500	-1.806200	0.363800
N	1.920800	0.025500	1.916000
N	4.320900	-0.949600	1.108900
F	-4.255400	-1.920200	-0.756100
C	1.294400	-0.910800	1.194200
C	-0.174300	-0.976600	1.355300
C	-2.318100	-1.758300	0.593800
C	-2.952900	-1.028300	1.596500
H	-4.031800	-1.037100	1.673300
C	-0.938300	-1.743200	0.473800
H	-0.446500	-2.299400	-0.309500
C	-2.192300	-0.274600	2.478500
H	-2.680400	0.304900	3.250800
C	-0.810700	-0.241300	2.356900
H	-0.214200	0.362300	3.026100
C	-3.150900	-2.584400	-0.342800
S	3.515700	-0.249300	1.863600
S	3.429000	1.892000	-0.084200
F	-2.474400	2.954000	1.448600
N	1.842800	1.806200	-0.363800
N	1.921000	-0.255000	-1.916000
N	4.321200	0.949300	-1.100700
C	1.294600	0.910900	-1.194400
C	-0.174100	0.976700	-1.355400
C	-0.810500	0.241300	-2.356900
H	-0.214000	-0.362200	-3.026200
C	-0.938000	1.743300	-0.473900
H	-0.446200	2.299500	0.309400
C	-2.317800	1.758500	-0.593800
C	-2.192100	0.274600	-2.478500
H	-2.680200	-0.304800	-3.250700
C	-2.952600	1.028400	-1.596500
H	-4.031500	1.037200	-1.673300
C	-3.150600	2.584600	0.342700

3a' DTTADimer-B3LYPD3-6311

Atom	X	Y	Z
S	3.438300	-1.900100	0.098800
S	3.512500	0.249300	1.876100
DTTAdimer-m062x-6311G2dp-OF

S 3.428700 1.828800 -0.250200
S 3.481800 -0.466100 -1.785700
F -2.437400 2.929800 1.323000
F -3.611200 3.587200 -0.357800
N 1.852300 1.760100 -0.533000
N 1.900600 -0.017200 -1.927000
N 4.325400 0.956000 -1.122500
S 3.428700 1.828800 -0.250200
S 3.481800 -0.466100 -1.785700
F -2.437400 2.929800 1.323000
F -3.611200 3.587200 -0.357800
N 1.852300 1.760100 -0.533000
N 1.900600 -0.017200 -1.927000
N 4.325400 0.956000 -1.122500
S 3.428700 1.828800 -0.250200
S 3.481800 -0.466100 -1.785700
F -2.437400 2.929800 1.323000
F -3.611200 3.587200 -0.357800
N 1.852300 1.760100 -0.533000
N 1.900600 -0.017200 -1.927000
N 4.325400 0.956000 -1.122500
S 3.428700 1.828800 -0.250200
S 3.481800 -0.466100 -1.785700
F -2.437400 2.929800 1.323000
F -3.611200 3.587200 -0.357800
N 1.852300 1.760100 -0.533000
N 1.900600 -0.017200 -1.927000
N 4.325400 0.956000 -1.122500
S 3.428700 1.828800 -0.250200
S 3.481800 -0.466100 -1.785700
F -2.437400 2.929800 1.323000
F -3.611200 3.587200 -0.357800
N 1.852300 1.760100 -0.533000
N 1.900600 -0.017200 -1.927000
N 4.325400 0.956000 -1.122500
S 3.428700 1.828800 -0.250200
S 3.481800 -0.466100 -1.785700
F -2.437400 2.929800 1.323000
F -3.611200 3.587200 -0.357800
N 1.852300 1.760100 -0.533000
N 1.900600 -0.017200 -1.927000
N 4.325400 0.956000 -1.122500
S 3.428700 1.828800 -0.250200
S 3.481800 -0.466100 -1.785700
F -2.437400 2.929800 1.323000
F -3.611200 3.587200 -0.357800
N 1.852300 1.760100 -0.533000
N 1.900600 -0.017200 -1.927000
N 4.325400 0.956000 -1.122500
S 3.428700 1.828800 -0.250200
S 3.481800 -0.466100 -1.785700
F -2.437400 2.929800 1.323000
F -3.611200 3.587200 -0.357800
N 1.852300 1.760100 -0.533000
N 1.900600 -0.017200 -1.927000
N 4.325400 0.956000 -1.122500
H -4.029200 0.925800 -1.680400
C -0.925100 1.670100 -0.539100
H -0.425200 2.254200 0.222400
C -2.196400 0.137200 -2.480900
H -2.693200 -0.467000 -3.231800
C -0.815000 0.107100 -2.369500
H -0.222200 -0.519900 -3.024700
C -3.129300 2.528700 0.272600
S 3.482900 0.418600 -1.804200
S 3.420400 -1.844500 0.221100
F -3.568700 -3.642700 0.345400
F -4.226900 -1.876800 -0.706900
F -2.448700 -2.925300 -1.358700
N 1.843400 -1.767300 0.492100
N 1.899700 0.188400 -1.886300
N 4.296600 -0.834400 1.162000
C -0.172700 -0.874800 2.400400
C -0.815500 -0.107100 2.369500
H -0.222500 0.519800 3.024600
C -0.925800 -1.669800 0.538900
H -0.426000 -2.253800 -0.222800
C -2.305000 -1.676100 0.645800
C -2.196800 -0.137200 2.481000
H -2.692600 0.466900 3.232000
C -2.947800 -0.917400 1.616400
H -4.029700 -0.925700 1.680600
C -3.130000 -2.528300 -0.272700
--

3a''' DTTAdimer_noDispersion_b3lyp6311G2dp_OF2

S 3.423400 1.828700 0.303600
S 3.411800 0.107600 -1.884200
F -2.876400 2.952100 1.781200
F -2.428900 4.672000 0.543000
N 1.837800 1.908000 -0.007300
N 1.827300 0.423600 -1.883000
N 4.270900 1.117700 -0.912500
F -4.272800 3.567700 0.237200
C -1.253600 1.249500 -1.000500
C -0.202000 1.487900 -1.180500
C -2.254000 2.536300 -0.465300
C -2.942100 1.937000 -1.515000
H -4.002000 2.112100 -1.639600
C -0.891600 2.317200 -0.296200
H -0.357000 2.785000 0.518900
C -2.254000 1.110600 -2.398500
H -2.785700 0.638200 -3.215200
C -0.896800 0.884800 -2.235400

S21
Atom	X	Y	Z
H	-0.3617	0.2412	-2.9197
C	-2.9619	3.4294	0.5159
S	3.3978	-0.1839	1.8884
S	3.3817	-1.9052	-0.2990
F	-3.8087	-4.3032	0.1415
F	-3.9630	-2.6405	-1.2386
F	-2.2888	-4.0143	-1.3823
N	1.7932	-1.9484	0.0112
N	1.8067	-0.4634	1.8786
N	4.2388	-1.2137	0.9213
C	1.2186	-1.2767	0.9937
C	0.2425	-1.4827	1.1665
C	0.9300	-0.8563	2.2086
H	-0.3875	-0.2158	2.8900
C	-0.9433	-2.3094	0.2827
H	-0.4147	-2.7964	-0.5232
C	-2.3066	-2.4995	0.4462
C	-2.2960	-1.0538	2.3664
H	-2.8212	-0.5620	3.1754
C	-2.9905	-1.8744	1.4891
H	-4.0550	-2.0302	1.6114
C	3.0809	-3.3662	-0.5076

3a"""" O3LYP/6-311+G(3df)(2p) DTTADIMER-O3LYP-6311G2DP-OF1

Atom	X	Y	Z
S	-3.3804	-1.8240	0.4585
S	-3.4084	-0.2989	-1.8426
F	2.4095	-3.5391	1.8255
F	3.2722	-4.7147	0.2221
N	1.8082	-1.9610	0.1336
N	1.8287	-0.6214	1.8644
N	4.2595	-1.2367	-0.8039
F	4.2578	-2.9045	0.8879
C	1.2456	-1.3939	-0.9409
C	0.1992	-1.6784	-1.1487
C	2.2710	-2.6545	-0.3757
C	2.9219	-2.2052	-1.5253
H	3.9774	-2.4049	-1.6690
C	0.9191	-2.3995	-0.1898
H	0.4159	-2.7483	0.7006
C	2.2084	-1.4938	-2.4813
H	2.7104	-1.1392	-3.3748
C	0.8575	-1.2281	-2.2975
H	0.3066	-0.6685	-3.0423
C	3.0472	-3.4495	0.6447
S	-3.4087	-2.9810	1.8424
S	-3.3810	1.8233	-0.4586
F	3.2712	4.7153	-0.2221
F	4.2570	2.9052	-0.8880
F	2.4085	3.5396	-1.8255
\[
\begin{array}{ccc}
S & -1.808900 & 1.960800 & -0.133600 \\
N & -1.829200 & 0.621200 & 1.864500 \\
N & -4.260000 & 1.235600 & 0.883600 \\
C & -1.246200 & 1.393900 & 0.941100 \\
C & 0.198600 & 1.678600 & 1.148800 \\
C & 0.856900 & 1.228400 & 2.297600 \\
H & 0.306100 & 0.668700 & 3.042400 \\
C & 0.918400 & 2.399800 & 0.189900 \\
H & 0.415000 & 2.748600 & -0.700400 \\
C & 2.270200 & 2.654900 & 0.375700 \\
C & 2.207900 & 1.494200 & 2.481400 \\
H & 2.709900 & 1.139700 & 3.374800 \\
C & 2.921300 & 2.205700 & 1.525300 \\
H & 3.976700 & 2.405500 & 1.669000 \\
C & 3.046300 & 3.450100 & -0.644600 \\
\end{array}
\]

3b SYN COFACIAL - S-B3LYP3B3J - 6311G2DP - OF2

\[
\begin{array}{ccc}
S & -3.720200 & -1.126100 & 1.332400 \\
S & -2.923700 & -1.940900 & -1.209600 \\
F & 3.244500 & -2.356600 & -1.546200 \\
F & 4.772900 & -1.686100 & -0.154500 \\
N & -2.128800 & -1.024800 & 1.585000 \\
N & -1.445600 & -1.752000 & -0.603300 \\
N & -4.107800 & -1.867900 & -0.907000 \\
F & 3.781100 & -3.588600 & 0.154000 \\
C & -1.221600 & -1.328500 & 0.648900 \\
C & 0.198900 & -1.214200 & 1.045100 \\
C & 2.526300 & -1.637300 & 0.593400 \\
C & 2.886100 & -0.946800 & 1.746500 \\
H & 3.930000 & -0.836300 & 2.006100 \\
C & 1.192700 & -1.763900 & 0.235200 \\
H & 0.914800 & -2.280900 & -0.671400 \\
C & 1.895800 & -0.393200 & 2.548800 \\
H & 2.170800 & 0.156900 & 3.439200 \\
C & 0.559000 & -0.533200 & 2.289900 \\
H & -0.215800 & -0.101600 & 2.827200 \\
C & 3.580600 & -2.306100 & -0.242700 \\
S & -4.086800 & 1.228600 & 0.427000 \\
S & -3.083000 & 0.459400 & -2.055700 \\
F & 3.694100 & 2.783000 & -1.784200 \\
F & 4.413100 & 1.476900 & -0.211500 \\
F & 3.139600 & 0.686500 & -1.784700 \\
N & -1.693000 & 1.002700 & -1.441100 \\
N & -2.565700 & 1.691100 & 0.688700 \\
N & -4.394800 & 0.833900 & -1.124300 \\
C & -1.591600 & 1.523700 & -0.213100 \\
C & -0.250700 & 2.000600 & 0.191500 \\
\end{array}
\]
S
C 1.849200 -2.950000 1.019200
H 1.334200 -3.880900 1.220000
C 3.163000 -2.973100 0.559300
H 3.674300 -3.912100 0.400000
C 5.229400 -1.751100 -0.197900
--

3d SYN COFACIAL-150-B3LYPD3BJ-6311G2DP-OF
S -0.076900 -1.605300 1.342500
S 0.606100 1.101100 1.538600
F -6.038300 -2.157500 -0.228200
F -7.562500 -0.862900 0.617800
N -1.600800 -0.985400 1.140700
N -0.929800 1.325500 1.085600
N 1.008200 -0.460900 1.712800
F -7.031300 -0.682800 -1.474700
C -1.827200 0.301700 1.006300
C -3.221200 0.708500 0.716800
C -5.474300 0.120900 0.111400
C -5.841400 1.466800 0.137500
H -6.860000 1.754400 -0.089200
C -4.175700 -0.261300 0.398500
C -3.886500 -1.300800 0.372200
C -4.893600 2.428800 0.452400
H -5.172800 3.474300 0.474500
C -3.586400 2.054600 0.739300
H -2.840100 2.797500 0.982900
C -6.517300 -0.900700 -0.241500
S -0.606100 1.101100 -1.538600
S 0.076900 -1.605300 -1.342400
F 7.562500 -0.862900 -0.617800
F 7.031300 -0.682800 1.474600
F 6.038300 -2.157500 0.228200
N 1.600800 -0.985400 -1.140700
N 0.929800 1.325500 -1.085600
N -1.008300 -0.460900 -1.712800
C 1.827200 0.301700 -1.006300
C 3.221200 0.708500 -0.716800
C 3.586400 2.054600 -0.739300
H 2.840100 2.797500 -0.982900
C 4.175700 -0.261300 -0.398500
H 3.886500 -1.300800 -0.372200
C 5.474300 0.120900 -0.111400
C 4.893600 2.428800 -0.452400
H 5.172800 3.474300 -0.474500
C 5.841400 1.466800 -0.137500
H 6.860000 1.754400 0.089200
C 6.517300 -0.900700 0.241500
3d' Syn' Cofacial150- B3LYP3BJ-6311G2DP-OF
S 0.479800 -0.229900 -1.578400
S -0.178200 -2.938900 -1.336700
F -4.350600 3.244400 0.797000
F -5.175000 3.114900 -1.282000
N -1.014800 -0.013700 -1.003200
N -1.685400 -2.325000 -1.016400
N 0.870700 -1.790400 -1.789700
F -6.456100 2.789600 0.519900
C -1.903000 -1.039200 -0.860600
C -3.271300 -0.634300 -0.464400
C -4.891000 1.090400 -0.013400
C -5.838100 0.130200 0.320400
H -6.830000 0.432500 0.626200
C -3.611500 0.715100 -0.465600
H -2.872400 1.460000 -0.664100
C -5.496600 -1.218000 0.262300
H -6.229500 -1.969100 0.527000
C -4.223600 -1.601100 -0.125300
H -3.946200 -2.644800 -0.164200
C -5.223800 2.554600 0.028500
S 0.178200 -2.938900 1.336700
S -0.479800 -0.229900 1.578400
F 5.174900 3.114900 1.282000
F 6.456100 2.789600 0.519900
F 4.350700 3.244400 -0.797000
N 1.014800 -0.013700 1.003200
N 1.685400 -2.325000 1.016400
N -0.870700 -1.790400 1.789700
C 1.903000 -1.039200 0.860600
C 3.271300 -0.634300 0.464500
C 4.891000 -1.601100 0.125300
H 3.946200 -2.644800 0.164200
C 3.611500 0.715100 0.465600
H 2.872400 1.460000 0.664100
C 4.891000 1.090400 0.013400
C 5.496600 -1.218000 -0.262300
H 6.229500 -1.969100 -0.527000
C 5.838100 0.130200 -0.320400
H 6.830000 0.432500 -0.626200

3d'' AntiCofacial150-B3LYP3BJ-6311G2DP-OF
S -0.235000 0.478700 1.480500
S -0.301100 -2.303800 1.193500
F 5.423000 2.603200 -0.618200
	x	y	z
F	6.1232	2.2132	1.3942
N	1.2864	0.3839	0.9644
N	1.3260	-2.1024	0.9419
N	-1.0301	-0.9268	1.6369
F	7.3252	1.6025	-0.3069
C	1.8791	-0.9168	0.8260
C	3.3203	-0.8803	0.4867
C	5.3527	0.3641	0.1372
C	6.0264	-0.8056	-0.1925
H	7.0739	-0.7701	-0.4574
C	4.0054	0.3323	0.4768
C	5.3403	-2.0167	0.1580
H	5.8595	-2.9296	-0.4453
C	3.9972	-2.0575	0.1520
H	3.4785	1.2408	0.7315
C	6.0602	1.6892	0.1483
S	-0.5397	-2.1696	1.4857
S	0.8207	0.2708	1.6426
F	-6.3801	-1.2019	0.3266
F	-6.9568	0.4622	1.5968
F	-7.5272	0.4494	0.4931
N	-0.5859	0.8702	-1.1777
N	-1.8406	-1.1820	-1.2827
N	0.7931	-1.3348	-1.8752
C	-1.7174	0.1139	-1.0263
C	-2.9446	0.8601	-0.6672
C	-2.9402	2.2546	-0.6265
H	-2.0311	2.7847	-0.8728
C	-4.1124	0.1630	-0.3460
H	-4.1087	-0.9160	-0.3686
C	-5.2542	0.8608	0.0067
C	-4.0922	2.9467	0.2733
H	-4.0843	4.0287	-0.2453
C	-5.2516	2.2556	0.0444
H	-6.1500	2.7910	0.3233
C	-6.5217	0.1355	0.3576

3e ANTARAFACIAL2-B3LYP3DJ-6-311G2DP-OF

	x	y	z
S	0.1519	-1.5900	-0.9417
S	0.7800	1.0859	-1.2837
F	6.7256	2.1036	-0.1760
F	7.8844	0.9708	1.2695
N	1.7140	-1.7225	-0.5329
N	2.2613	0.6136	-0.8304
N	-0.1613	-0.1858	-1.7466
F	8.2148	0.6753	-0.8510
Atom	X	Y	Z
------	---------	---------	---------
C	2.535100	-0.66100	-0.544600
C	3.955800	-0.958200	-0.235700
C	6.221100	-0.281200	0.067200
C	6.626800	-1.582700	0.359900
H	7.664200	-1.707400	0.591400
C	4.897100	0.075000	-0.229100
H	4.581800	1.082100	-0.454900
C	5.692500	-2.528200	0.354600
H	6.001400	-3.540200	0.582600
C	4.362700	2.260800	-0.058400
H	3.628800	3.054000	-0.053300
C	4.897100	-0.075000	0.229200
H	4.581800	-1.082100	0.454700
C	6.221100	0.201000	-0.067100
C	6.626800	-0.067100	-0.354000
H	7.964900	1.397700	-0.322100

3f SN-antarafacial-B3LYPD3BJ-6311-G2DP-OF

Atom	X	Y	Z
S	0.661300	-0.944100	-0.521500
S	0.300700	1.695900	-0.578300
F	6.648300	-2.377400	-0.265900
F	8.139900	-1.200700	-1.317900
N	2.241800	-0.579700	-0.489500
N	1.917000	1.802200	-0.412900
N	-0.163800	0.270500	-1.250300
F	8.065300	-1.165400	0.847000
C	2.658200	0.691000	-0.401100
C	4.127500	0.890700	-0.380400
C	6.352300	-0.025100	-0.314800
C	6.891300	1.260700	-0.338000
H	7.964900	1.397700	-0.322100
3m Monomer-6-31G-triplet

Atom	X	Y	Z
S	-3.047700	-1.800800	-0.018900
S	-3.963200	0.871500	-0.009000
F	3.090200	-1.989000	0.027400
F	4.274700	-0.551500	-1.087800
N	-1.597400	-1.074300	-0.058900
N	-2.371700	1.188500	-0.050200
N	-4.306700	-0.739500	0.157200
F	4.299000	-0.522800	1.078100
C	-1.418800	0.250500	-0.034900
C	-0.018800	0.729200	-0.017500
C	2.344400	0.263100	0.066400
C	2.625300	1.628700	0.021800
H	3.651900	1.971100	0.037800
C	1.035600	-0.189100	-0.013100
H	0.820800	-1.246900	-0.025100
C	1.579300	2.540200	0.018800
H	1.789700	3.601900	0.030100
C	0.263600	2.096800	-0.001600
4a MCF3BICYCLIC-B3LYP3B1_6311GPLUS2DP-OF

5a mCF3dichloride_6311D3bj_OF
	C	Cl	Cl
	4.293200	-3.895500	-2.836000
	-0.707700	1.178700	-2.228000
	0.096600	1.244900	1.068400

7a
H-TTADIMER-B3LYPD3BJ-6311G2DP-OF

	S	Cl	Cl
	-1.269900	-3.895500	-2.836000
	1.397000	1.178700	-2.228000
	-0.543700	1.058200	1.068400

7c
COFACIAL-60-B3LYPD3BJ-6311G2DP-OF

	S	Cl	Cl
	-0.856900	-1.686100	-1.459400
	0.975800	1.168600	0.000400
	-1.288700	1.056000	1.610100

7d
H-COFACIAL150-B3LYPD3BJ-6311G2DP-OF

	S	Cl	Cl
	-1.324000	-1.439200	-1.228600
	1.500700	-1.213300	-0.789100
	-0.128300	-0.835000	2.672500
	0.096600	1.244900	1.068400
S 1.324000 1.500700 0.128300
N 1.346500 0.880700 -1.424600
N 1.225700 -1.443500 -0.755600
N 1.559500 -0.355500 1.248800
C 1.267700 -0.406500 -1.628200
H 1.228600 -0.709100 -2.672500
--
7d' H-COFACIAL150SYMPRIME-B3LYPD3B3J-6311G2DP-OF
S 1.439700 -1.213100 -0.835200
S 1.323300 1.500600 -0.127100
N 1.225500 -1.443700 0.755200
N 1.345700 0.880000 1.425200
N 1.560000 -0.755600 1.248800
C 1.266900 -0.407400 1.628300
S 1.439900 -1.212900 0.835200
S 1.323100 1.500800 0.127000
N 1.226000 -1.443600 -0.755200
N 1.345400 0.880100 -1.425200
N 1.559900 -0.755200 1.248500
C 1.267100 -0.407200 1.628300
H 1.227500 -0.710400 -2.672500
H 1.227700 -0.710300 -2.672500
--
7e H-ANTARAFACIAL-B3LYPD3B3J-6311G2DP-O
S -1.005900 -1.387000 0.783700
S -1.005600 1.387000 0.703800
N -2.129200 -1.216400 -0.471200
N -2.128700 1.216800 -0.471200
N -0.829200 0.000000 1.578600
C -2.526800 0.000200 -0.831700
H -3.355800 0.000400 -1.536700
S 1.005900 1.387000 -0.703700
S 1.005500 -1.387000 -0.703800
N 2.128700 -1.216800 0.471200
N 2.129200 1.216400 0.471200
N 0.829200 0.000000 1.578600
C 2.526800 -0.000300 0.831700
H 3.355800 0.000400 1.536700
--
7f SN-antarafacial-B3LYPD3B3J-6311-G2DP-OF
S -0.702000 -1.263000 0.613700
S -1.458500 1.299600 0.533000
N -2.032000 -1.532800 -0.310700
N -2.700300 0.787400 -0.483300
N -0.886000 0.099300 1.505000
--
Atom	X	Y	Z
C	-2.821600	-0.515200	-0.629500
S	0.497300	0.964800	-1.051100
S	2.128400	-1.270100	-0.371600
N	2.772400	-0.215600	0.775100
N	1.713000	1.634000	-0.389300
N	0.463000	-0.743100	-0.654000
C	2.487000	1.042400	0.637000
H	-3.726300	-0.798400	-1.164800
H	2.979700	1.732400	1.317400

7 HCN3S2 MON-B3LYPD36311G2DP-TRIPLET-ENVELOPE-OP

Atom	X	Y	Z
S	-1.419400	-0.552300	-0.038000
S	1.419400	-0.552200	-0.038000
N	-1.204000	1.069700	-0.005600
N	1.204000	1.069700	-0.005600
N	0.000000	-1.398700	0.132600
C	0.000000	1.628800	0.043400
H	0.001000	2.714400	0.105400

7 HCN3S2 monomer-b3lypD3BJ6311G2dp-singletC1-OP

Atom	X	Y	Z
S	-1.362500	-0.531600	-0.073100
S	1.403900	-0.558100	0.166800
N	-1.175500	0.970400	0.390700
N	1.150200	1.120000	-0.279100
N	0.041600	-1.352900	-0.214200
C	0.163800	1.474400	1.215200

8a CF3 Cofacial-0 DIMER-B3LYPD3BJ-6311G2DP-OF

Atom	X	Y	Z
S	1.762700	-1.265000	-1.395100
S	1.742200	-1.259400	1.399200
N	0.163800	-1.474400	-1.215200
N	0.149000	-1.460100	1.195200
N	2.590500	-1.451300	0.089100
C	-0.384500	-1.556800	-0.014800
S	1.741800	1.259800	-1.399200
S	1.762400	1.265400	1.395100
N	0.163300	1.474400	1.215200
N	0.148600	1.460000	-1.195200
N	2.590100	1.451900	-0.089100
C	-0.385000	1.556500	0.014800
C	-1.873000	1.933100	0.003400
C	-1.872500	-1.933600	-0.003400
F	-1.996200	3.246800	-0.279600
F	-2.450100	1.711400	1.183400
8c CF3-COFA\text{\textsc{CIAL-65-B3LYP3BJ-6311-G2DP-OF}}

\begin{align*}
S & -2.537500 & 1.250000 & -0.934500 \\
F & -2.449700 & -1.711600 & -1.183300 \\
F & -1.995600 & -3.247300 & 0.279300 \\
F & -2.537000 & -1.250600 & 0.934700 \\
\end{align*}

\begin{align*}
S & 0.899100 & -2.429200 & -0.267900 \\
F & -0.237600 & -0.597000 & -2.049600 \\
N & 1.816800 & -1.163500 & 0.168700 \\
N & 0.770300 & 0.429800 & -1.30100 \\
N & 0.036100 & -2.153100 & -1.626000 \\
C & 1.618900 & 0.034700 & -0.376100 \\
S & -0.243400 & -0.863600 & 2.148000 \\
S & -2.034300 & -1.926500 & 0.237500 \\
N & -2.000500 & -0.863600 & -0.346000 \\
N & -0.731900 & 0.529500 & 1.467700 \\
N & -0.600500 & -2.161100 & 1.148800 \\
C & -1.459900 & 0.604800 & 0.388400 \\
C & -1.825800 & 2.013600 & 0.079800 \\
C & 2.580000 & 1.109300 & 0.138500 \\
F & 3.815500 & 0.892500 & -0.368700 \\
F & 2.681900 & 1.064300 & 1.474300 \\
F & 2.199700 & 2.332500 & -0.217100 \\
F & -0.954600 & 2.925300 & 0.350300 \\
F & -3.044800 & 2.349600 & 0.392300 \\
F & -1.885400 & 2.081800 & -1.420500 \\
\end{align*}

--

8d CF3-COFA\text{\textsc{CIAL-152-B3LYP3BJ-6311G2DP-OF}}

\begin{align*}
S & 0.381500 & -1.309500 & 1.795900 \\
S & -0.140000 & -1.624700 & -0.949000 \\
N & 1.822600 & -0.678300 & 1.222800 \\
N & 1.220200 & -0.756500 & -1.115900 \\
N & -0.506000 & -1.937000 & 0.593200 \\
C & 2.013700 & -0.498400 & -0.045600 \\
S & 0.140100 & 1.624600 & -0.949000 \\
S & -0.381500 & 1.309500 & 1.795900 \\
N & -1.822600 & 0.678300 & 1.222800 \\
N & -1.220200 & 0.756500 & -1.115900 \\
N & 0.506000 & 1.937000 & 0.593200 \\
C & -2.013700 & 0.498400 & -0.045600 \\
C & 3.385500 & 0.067400 & -0.438500 \\
C & -3.385500 & -0.067400 & -0.438500 \\
F & -3.259700 & -1.050400 & -0.949000 \\
F & -4.045100 & -0.552200 & 0.611800 \\
F & 4.045100 & 0.552200 & 0.611800 \\
F & 4.132600 & -0.905000 & -0.993100 \\
\end{align*}

S35
8e CF3 S,Santarafacial-OF
S -0.638200 -1.390600 1.048500
S -0.638500 1.389400 1.049700
N -2.126800 -1.212500 0.405700
N -2.126800 1.212500 0.405700
N -0.121900 0.000000 1.764300
C -2.625100 -0.000500 0.223600
C -4.104700 0.000000 -0.199500
F -4.403200 1.081000 -0.925200
F -4.406200 -1.084400 -0.918600
F -4.885400 0.004400 0.897900
S 0.638200 1.390700 -1.048500
S 0.638500 -1.389400 -1.049700
N 2.126800 -1.212500 -0.405800
N 2.126800 1.213500 -0.405700
N 0.121900 0.000800 1.764300
C 2.625100 0.000500 -0.223600
C 4.104700 0.000000 0.199500
F 4.885400 -0.004500 -0.897900
F 4.403200 -1.089900 0.925300
F 4.406300 1.084500 0.918500

8o CF3MONOMER-B3LYPD36311G2DP-SINGLET-OF
S -1.922500 1.353600 -0.120700
S -1.615600 -1.410100 0.082000
F 2.438800 1.234200 0.252000
F 2.156500 -0.750400 1.083000
N -0.187900 1.248500 0.079000
N -0.193700 1.248500 -0.079000
N 0.015200 1.472000 -1.207200
N 0.014700 1.475000 1.262000
N -2.419000 1.510000 -0.000900
C 0.607200 1.590200 -0.000400
C 1.883100 0.043700 0.032200

9a ME2NDIMER-Cofacial0-6311G2DP-OF-QC
S -1.570600 1.256800 -1.387800
S -1.571100 1.258300 1.386400
N 0.015200 1.472000 -1.207200
N 0.014700 1.475000 1.262000
N -2.419000 1.510000 -0.000900
C 0.607200 1.590200 -0.000400
S -1.573000 -1.256800 -1.386300
9o ME2NMONOMER-B3LYPD3631G2DP-SINGLET-OF
S 1.563700 -1.343600 -0.231800
S 1.562700 1.343800 0.231800
N 0.024700 -1.153100 0.314100
N 0.024900 1.152700 -0.315400
N 2.432500 0.000600 0.001100
C -0.605400 0.000500 -0.000700
N -1.951800 -0.000200 -0.000300
C -2.717700 -1.219200 0.199800
H -2.054400 -2.075700 0.136000
H -3.197900 -1.212400 1.182300
H -3.493500 -1.287100 -0.566600
C -2.717600 1.219100 -0.199100
H -3.491000 1.288200 0.569600
H -2.053700 2.075300 -0.138100
H -3.200800 1.211500 -1.180100