LETTER TO THE EDITOR

In regards to Chu et al.: Patterns of brain metastasis immediately before prophylactic cranial irradiation (PCI): implications for PCI optimization in limited-stage small cell lung cancer

Lukas Käsmann¹,²,³*, Chukwuka Eze¹,², Julian Taugner¹,² and Farkhad Manapov¹,²,³

Abstract

We read the article entitled “Patterns of brain metastasis immediately before prophylactic cranial irradiation (PCI): implications for PCI optimization in limited-stage small cell lung cancer” with great interest. In that study, the author reported about the importance of PCI timing in limited stage small cell lung cancer (LS-SCLC) in the era of MRI surveillance. In addition, the authors raise the issue of neurotoxicity of PCI. In this letter, we aimed to clarify the value of PCI in LS-SCLC and present ongoing trials regarding PCI and MRI surveillance in SCLC. As a result, we see the need for the development of a prediction tool to estimate the risk of intracranial relapse in LS-SCLC after chemoradiotherapy in order to support shared decision making through improved guidance.

Historically, brain as a metastatic site has a special importance in limited stage small cell lung cancer (LS-SCLC) [1, 2]. Earlier studies reported more than 50% cumulative risk of symptomatic brain metastases (BM) 2 years after initial diagnosis. Poor median survival after development of intracranial relapse was also documented. Prophylactic cranial irradiation (PCI) was shown to significantly reduce the incidence of symptomatic BM, especially, in the first 2 years after treatment. Based on the clinical practise guideline of ASTRO in 2020, PCI is strongly recommended for LS-SCLC (stage II or III) after response to chemoradiation [3]. Importantly, patients with higher risk of neurocognitive decline after PCI should be critically considered and treatment should be based on shared decision-making.

Conversely, the pivotal meta-analysis by Aupérin et al. could not demonstrate an effect of PCI on other metastases and local or regional recurrences [4]. Additionally, data on the occurrence of extracranial progression were only available for 67% of the cohort. Hence, no clear conclusion concerning application of PCI and extracranial disease control could be made [4].

Implementation of MRI surveillance has changed the significance of PCI in LS-SCLC. In 2008, the first retrospective study reported on the importance of a second contrast-enhanced cranial MRI immediately before the start of PCI for detection of occult intracranial relapse in LS-SCLC patients after chemoradiotherapy (CRT) [5]. In the same year, Seute et al. [6] described that implementation of cranial MRI at initial diagnosis of SCLC leads to a significant increase in the estimated prevalence of BM. Another important finding of the study was the prognostic role of a single intracranial metastasis in SCLC [6]. In 2015, a retrospective study conducted by Ozawa et al. at evaluated effects of...
duration itself was also reported to have a prognostic role of the number of BMs (single vs. multiple) and concomitant symptomatic burden must also be evaluated. Additionally, the individual risk of acute and subacute toxicity should be identified and factored into shared decision-making.

Finally, the development of a prediction tool of BM could be performed in the ongoing prospective studies which incorporate a comprehensive MRI surveillance in the treatment of LS-SCLC (see Table 1). The results of these studies will define the true role of PCI in LS-SCLC and may help to achieve adequate patient selection.

Table 1 Prospective trials regarding MRI surveillance and PCI in small cell lung cancer (SCLC)

Name of the study	Phase	Status
MRI brain surveillance alone versus MRI surveillance and prophylactic cranial irradiation (PCI): a randomized Phase III trial in small-cell lung cancer (Maverick)	Phase-3	Open, recruiting
Watchful observation of patients with limited small cell lung cancer instead of the PCI—prospective, multicenter one-arm study (PCILESS)	Phase-2	Open, recruiting

Abbreviations

ASTRO: American Society for Radiation Oncology; BM: Brain metastasis; CRT: Chemoradiotherapy; LS-SCLC: Limited stage small cell lung cancer; MRI: Magnetic resonance imaging; PCI: Prophylactic cranial irradiation; SCLC: Small cell lung cancer; TNM: Tumor node metastasis.

Acknowledgements

None.

Authors’ contributions

LK drafted, critically revised and approved the letter. FM, CE and JT helped to draft the letter. All authors read and approved the final letter.

Funding

Open Access funding provided by Projekt DEAL.

Availability of data and materials

No data generated.

Ethical approval and consent to participate

Not required, this article does not contain any studies with human participants or animals performed by any of the authors.

Consent for publication

Not required, no patient data/information involved.

Competing interests

The authors declare that they have no competing interests.

Author details

1. Department of Radiation Oncology, University Hospital LMU Munich, Munich, Germany. 2. German Center for Lung Research (DZL), Partner Site Munich, Munich, Germany. 3. German Cancer Consortium (DKTK), Munich, Germany.

Received: 2 September 2020 Accepted: 24 September 2020

Published online: 02 November 2020

References

1. Chu X, Li S, Xia B, Chu L, Yang X, Ni J, Zou L, Li Y, Xie C, Lin J, Zhu Z. Patterns of brain metastasis immediately before prophylactic cranial irradiation (PCI): implications for PCI optimization in limited-stage small cell lung cancer. Radiat Oncol. 2019;14(1):171.

2. Manapov F, Kasmann L, Roengvoraphoj O, Dantes M, Schmidt-Hege-man N-S, Belka C, Eze C. Prophylactic cranial irradiation in small-cell lung cancer: update on patient selection, efficacy and outcomes. Lung Cancer Targets Ther. 2018;9:49. https://doi.org/10.2147/LCTT.S137577.

3. Simone CB II, Bogart JA, Cabrera AR, Daly ME, DeNunzio NJ, Detterbeck F, Faivre-Finn C, Gatschet N, Gore E, Jabbour SK, Kruser TJ. Radiation therapy for small cell lung cancer: an astro clinical practice guideline. Pract Radiat Oncol. 2020,10(3):157–73. https://doi.org/10.1016/j.prro.2020.02.009.

4. Aupérin A, Ariagada R, Pignon J-P, Le Péchoux C, Gregor A, Stephens RJ, Kristjansen PE, Johnson BE, Ueoka H, Wagner H. Prophylactic cranial irradiation for patients with small-cell lung cancer in complete remission. N Engl J Med. 1999;341:476–84.
5. Manapov F, Klautke G, Fietkau R. Prevalence of brain metastases immediately before prophylactic cranial irradiation in limited disease small cell lung cancer patients with complete remission to chemoradiotherapy: a single institution experience. J Thor Oncol. 2008;3:652–5.

6. Seute T, Leffers P, ten Velde GP, Twijnstra A. Detection of brain metastases from small cell lung cancer: consequences of changing imaging techniques (CT vs. MRI). Cancer Interdiscip Int J Am Cancer Soc. 2008;112:1827–34.

7. Ozawa Y, Omae M, Fuji M, Matsu T, Kato M, Sagisaka S, Asada K, Karayama M, Shirai T, Yasuda K. Management of brain metastasis with magnetic resonance imaging and stereotactic irradiation attenuated benefits of prophylactic cranial irradiation in patients with limited-stage small cell lung cancer. BMC Cancer. 2015;15:589.

8. Mamesaya N, Wakuda K, Omae K, Miyawaki E, Kotake M, Fujiwara T, Kawamura T, Kobayashi H, Nakashima K, Omori S. Efficacy of prophylactic cranial irradiation in patients with limited-disease small-cell lung cancer who were confirmed to have no brain metastasis via magnetic resonance imaging after initial chemoradiotherapy. Oncotarget. 2018;9:17664.

9. Rafal Suwinski M, Lee SP, Withers HR. Dose–response relationship for prophylactic cranial irradiation in small cell lung cancer. Int J Radiat Oncol Biol Phys. 1998;40:797–806.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.