Laboratory Review of Foodborne Disease Investigations in Washington State 2007–2017

Jennifer L. Swoveland,1 Laurie K. Stewart,2 Mary Kaye Eckmann,1 Raymond Gee,1 Krisandra J. Allen,2 Calley M. Vandegrift,1 Gina Olson,1 Mi-Gyeong Kang,1 Michael L. Tran,1 Elizabeth Melius,2 Brian Hiatt,1 Romesh K. Gautom,1 and Ailyn C. Perez-Osorio1

Abstract

The Washington State Department of Health Public Health Laboratories (WAPHL) has tested 11,501 samples between 2007 and 2017 for a foodborne disease using a combination of identification, serotyping, and subtyping tools. During this period there were 8037 total clinical and environmental samples tested by pulsed-field gel electrophoresis (PFGE), including 512 foodborne disease clusters and 2176 PFGE patterns of Salmonella enterica subsp. enterica. There were 2446 Shiga toxin–producing Escherichia coli samples tested by PFGE, which included 158 foodborne disease clusters and 1174 PFGE patterns. There were 332 samples of Listeria monocytogenes tested by PFGE, including 35 foodborne disease clusters and 104 PFGE patterns. Sources linked to outbreaks included raw chicken, unpasteurized dairy products, various produce types, and undercooked beef among others. As next-generation sequencing (NGS) replaces PFGE, the impact of this transition is expected to be significant given the enhanced cluster detection power NGS brings. The measures presented here will be a reference baseline in future years.

Keywords: Washington State, PFGE, Salmonella, Listeria, foodborne illness and disease, PulseNet

Introduction

Approximately 3000 notifiable enteric foodborne illnesses are reported annually in Washington (WA) State, with 1–10 associated deaths (CDC, 2015a). The foodborne disease category is a leading cause of infectious illnesses in WA. Clinical laboratories in WA are required to submit specimens or isolates from patients diagnosed with listeriosis, salmonellosis, shigellosis, vibriosis, or infection with Shiga toxin Department of Health–producing Escherichia coli (STEC) to the Washington State Public Health Laboratories (WAPHL). Submissions are characterized to confirm the initial identification and some isolates are further serotyped and subtyped.

The PulseNet program is a national laboratory network that allows participating laboratories to link molecular characteristics of bacterial isolates from foodborne illness cases to detect outbreaks (Swaminathan et al., 2001). WAPHL was among the first four state PHLs to join the Centers for Disease Control and Prevention (CDC)-sponsored PulseNet program in 1996 (Stephenson, 1997; CDC, 2016b) and has continued its key role as the Western PulseNet Region Area Laboratory for >20 years. PulseNet relies on the use of standardized pulsed-field gel electrophoresis (PFGE) equipment, methodology, and analysis tools that link data across participating laboratories to detect clusters.

The primary source of infection with Listeria monocytogenes, STEC, Salmonella enterica, Campylobacter jejuni, Yersinia spp., Vibrio cholerae, or Vibrio parahaemolyticus is undercooked or adulterated food. Although listeriosis and STEC infections represent a small proportion of all foodborne illnesses, outcomes can be severe so each case is carefully investigated. Listeriosis occurs primarily in individuals with immunosuppression, pregnant women, neonates, and the elderly as invasive infection that can carry a mortality rate of at least 16% (Farber and Peterkin, 1991; Barton Behravesh et al., 2011; CDC, 2016a). STEC infections can also be severe because of the risk of developing hemolytic uremic syndrome that carries a high mortality rate particularly, for children

1Public Health Laboratories, Washington State Department of Health, Shoreline, Washington.
2Communicable Disease Epidemiology, Washington State Department of Health, Shoreline, Washington.

© Jennifer L. Swoveland et al. 2019; Published by Mary Ann Liebert, Inc. This Open Access article is distributed under the terms of the Creative Commons License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
younger than 4 years (Barton Behravesh et al., 2011). Along with listeriosis, salmonellosis causes the most deaths because of a foodborne disease in WA, despite a lower case fatality rate. This is because salmonellosis is among the most common bacterial foodborne infections, second only to campylobacteriosis (CDC, 2015b; Laufer et al., 2015).

The aim of this publication was to summarize the work that WAPHL has carried out over the past 11 years (2007–2017) in the area of foodborne disease investigations. The transition as next-generation sequencing (NGS) replaces PFGE is expected to have a significant impact given the enhanced cluster detection power because of the increase in resolution of NGS. In addition, the use of culture independent diagnostic testing (CIDT) and its impacts on the need for isolates are briefly addressed. The measures presented here will be a baseline for reference in future years. Although WAPHL has applied PFGE to organisms other than those already mentioned, this summary will focus on only these organisms and the work WAPHL has performed for WA residents.

Materials and Methods

Bacteria isolation, identification, and subtyping

STEC were isolated and identified using MacConkey with sorbitol (SMAC), tellurite, and cefixime (CT-SMAC), and Rainbow agar with novobiocin and tellurite. Specimens not already in Gram Negative (GN) broth were enriched by inoculating GN broth. All specimens were initially screened for functional Shiga toxin utilizing a lateral flow enzyme immunoassay (EIA) test (Meridian ImmunoCard STAT™) or Alere SHIGA TOXIN QUIK CHEK™) which detects and differentiates Shiga toxin 1 and Shiga toxin 2 (Staples et al., 2017). Isolates were tested for Shiga toxin production and were confirmed biochemically. If the isolate was Shiga toxin positive and biochemically resembling *E. coli*, the isolate was serotyped using *E. coli* OK antisera or antibody-coated latex beads. Turnaround time for STEC isolation and confirmation was 4–7 business days. These isolates were routinely tested by PFGE.

Salmonella were isolated and identified using MacConkey (MAC), Hektoen Enteric (HE) agar, Salmonella-Snigella (SS) agar, and brilliant green agar. Stool were inoculated into selenite broth and tetrahionate broth as a selective enrichment broth for better recovery of *Salmonella* spp. Isolates resembling *Salmonella* were confirmed using biochemicals. From 2007 to 2012, *Salmonella* isolates were serotyped utilizing *Salmonella* antisera to determine O and H antigens. From 2012 to 2017, molecular techniques (Illumina xMAP *Salmonella* serotyping assay) were used to serotype *Salmonella* isolates, supplemented with *Salmonella* antisera (Dunbar et al., 2015). Turnaround time for *Salmonella* isolation and confirmation was 4–7 business days. All *Salmonella* isolates were routinely tested by PFGE.

Listeria from clinical specimens were identified using blood agar plates (BAP), brain–heart infusion (BHI) broth agar slant or a heart infusion agar (HIA) slant, and MAC to look for purity, hemolysis (BAP), and inhibited growth (MAC). A single colony was picked from the BAP to inoculate a set of biochemicals to confirm *L. monocytogenes*. If the results were not typical for *L. monocytogenes*, then hippurate and CAMP tests were performed to help with the identification. Turnaround time for *Listeria* identification was 3–5 business days.

Listeria isolates were routinely tested by PFGE for subtyping and a BHI/HIA was referred to the CDC for further studies.

Listeria from food samples and environmental samples were isolated and identified using a modified Food and Drug Administration Bacteriological Analytical Manual procedure for detecting *Listeria* in food (FDA, 2017).

Media and test reagents for *Salmonella, E. coli, and Listeria* isolation and identification were purchased commercially with a few exceptions. Antisera were purchased from Difco, Denka Seiken, orSSI Diagnostica. Media and most biochemicals were purchased from Remel and Hardy Diagnostics. The antibody-coated latex beads were purchased from Pro-Lab for *E. coli* Non-O157 (*E. coli* Non-O157 Latex Test Reagent Kit) and from Remel for *E. coli O157* (Remel RIM *E. coli* O157:H7 Latex test). Carbohydrate biochemicals and nutrient broths were made in-house at the WAPHL. All manufactured media were used following the manufacturer guidelines. All WAPHL in-house media use followed the Enterics and Special Bacteriology Reference Units laboratory procedure manuals and microbiology reference books (Holt, 1994; Weyant, 1996; MacFaddin, 2000; de la Maza, 2004; Garcia and Isenberg, 2010; Jorgensen, 2015).

PFGE subtyping

PFGE subtyping was carried out using PulseNet protocols for running and analyzing PFGE gels (Graves and Swaminathan, 2001; Ribot et al., 2001, 2006; Swaminathan et al., 2001; Parsons et al., 2007). Turnaround time for PFGE was 4 business days. PFGE patterns were compared with other patterns both in the WA database and in the national CDC PulseNet database using BioNumerics software. Any pattern matches were further assessed to determine if they should be considered a cluster and clusters were reported to an epidemiologist.

Cluster definition

For this publication a cluster identified by WAPHL is defined as two or more cases with matching PFGE patterns and similar illness onset date (within 60 d). Other supportive information for defining a cluster is similar geographic distribution or similar demographics, especially for a common PFGE pattern (Bender et al., 2001; Barrett et al., 2006; Tauxe, 2006). A foodborne disease outbreak is defined as two or more people with the same illness from a shared identified food or drink. Outbreaks vary in size and are classified depending on the spread of disease as local, multicounty, or multistate (CDC, 2015b). Ill people from the same household are not counted as a cluster.

Results

Between 2007 and 2017 WA received a total of 33,079 notifiable bacterial disease case reports for foodborne illnesses. During this period WAPHL received a total of 12,885 human enteric isolates of which 11,134 received PFGE characterization (Fig. 1). Of human enteric reports (confirmed, probable, and suspect cases), 51% were attributed to campylobacteriosis, 27% to salmonellosis, 9% to STEC, and 10% to other enteric illnesses including listeriosis, vibriosis, cholera, and shigellosis.
There were 8759 salmonellosis and typhoid fever cases (confirmed, probable, and suspect) reported during the period and 7829 Salmonella isolates were subtyped at WAPHL (Table 1). Among the S. enterica subsp. enterica isolates tested, the most frequent serotypes identified, in order, were Enteritidis, Typhimurium, I 4,[5],12:i:-, Heidelberg, and Newport. Table 2 presents the most common serotypes reported in WA. Less common serotypes detected in WA are reported elsewhere (Washington State Department of Health). Serotypes Enteritidis and Typhimurium topped all serotypes for each year during 2007–2017, except for 2015 when a large outbreak of serotype I 4,5,12:i:- associated with roasted whole hogs occurred (Kawakami et al., 2016).

Within serotypes Enteritidis, Typhimurium, and I 4,5,12:i:- there were 110, 287, and 97 distinct PFGE patterns, respectively (Table 1). For all Salmonella serotypes there was an average of 45 Salmonella PFGE clusters per year (Table 1). Salmonella Enteritidis was responsible for multiple confirmed outbreaks linked to travel to Mexico, dining at local restaurants, or consuming poultry (Table 3). One outbreak linked to alfalfa sprouts and spicy sprouts sickened 25 people, 10 residing in WA. Three people were hospitalized and the investigation was closed on July 6, 2011, after the company voluntarily recalled the product (CDC, 2011). Salmonella Typhimurium outbreak vehicles included chicks, peanut butter, alfalfa sprouts, hedgehogs, a teaching laboratory exposure, and restaurants. An outbreak as a result of rotisserie chicken salad contaminated with Salmonella Typhimurium was identified in 2016.

Food vehicles leading to recurrent outbreaks associated with other Salmonella serotypes included pot pie and pig roast linked to Salmonella I 4,[5],12:i:- (Kawakami et al., 2016) and frozen raw chicken linked to Salmonella Heidelberg (Green et al., 2018). Sources linked to multiple Salmonella serotypes included live chicks, pet reptiles, and multiple restaurants. Produce vehicles linked to salmonellosis outbreaks included mangoes, green onions, peppers, and pistachios. In 2015 there were two outbreaks resulting from exposure to peanut butter (Salmonella Newport) and spicy tuna rolls [Salmonella Paratyphi B L(+) Tartrate(+)]. One Salmonella Saintpaul outbreak in 43 U.S. states and Canada linked to jalapeno and serrano peppers, and possibly to raw tomatoes, affected 1442 people with 2 deaths (CDC, 2008b) (Table 3). In 2007 a WA outbreak involving 12 illnesses was linked to the use of an improperly cleaned food slicer contaminated with Salmonella Seftenberg. During the 2007–2017 period there were a total of 23 deaths associated with salmonellosis in WA.

The total number of confirmed, probable, and suspect cases as a result of STEC reported between 2007 and 2017 was 2525, of which 1373 cases were attributed to E. coli O157, 293 cases were attributed to E. coli O26, and 691 were attributed to other E. coli serotypes (not shown). Among E. coli O157 isolates there were 1398 PFGE patterns and 129 PFGE clusters (Table 1). Outbreaks were linked to consuming undercooked beef (2007, 2009), cookie dough (2009), or unpasteurized milk (Table 3); in addition, outbreaks occurred at day care centers, at petting zoos, or owing of contact with grazing animals. There were 10 STEC-related fatalities reported during this period (Table 1). For E. coli non-O157 there were 776 PFGE patterns and 29 PFGE clusters (Table 1), which included outbreaks because of raw sprouts and uncooked flour. In addition, lettuce, leafy greens, kale, and spinach were also found to be STEC vehicles (Table 3) as well as produce (lettuce, kale, cantaloupe, and onions).

Discussion

Salmonellosis has several characteristics that make control difficult (Ailes et al., 2008). It occurs naturally in cattle, poultry, and eggs and is not considered an adulterant in raw
Criteria	STEC (all serotypes)	STEC (O157)	Salmonella Enteritidis	Salmonella Typhimurium	Salmonella I 4,5,12:i-	Salmonella Newport	Salmonella Heidelberg	Salmonella Typhi	All other Salmonella serotypes (non-Typhi)	Listeria monocytogenes	Shigella sonnei and Shigella flexneri	Vibrio	11-Year totals
2007–2017													
No. of unique PFGE patterns	776	398	110	287	97	168	75	2	1439	104	313	6	3773
No. of clusters	29	129	66	89	45	31	22	2	259	35	18	1	726
No. of local clusters	12	54	15	30	8	4	6	55	8	13	0	205	
No. of multistate clusters	17	75	51	59	37	27	16	204	27	5	0	518	
Total WA food/environmental isolates pulsed	24	30	208	114	1	2	379						
Total WA clinical case isolates pulsed	1078	1314	1788	1086	619	392	444	131	3369	218	631	42	11,134
Confirmed/suspect/probable cases	1152	1373	1842	1107	565	385	433	117	4310	249	1733	682	13,948
Deaths	10	3	3	4	1	2		10	18	0	1	52	
2007													
No. of local clusters	0	3	0	0	0	0	0	2	0	1	0		
No. of multistate clusters	0	5	1	3	2	3	0	13	4	0	0		
Confirmed/suspect/probable cases	13	119	120	121	45	58	39	375	25	159	25		
Deaths	0	NA	2	0	0								
Total local and multistate clusters	0	8	1	3	2	3	0	15	4	1	0		
Total WA clinical case isolates pulsed	12	126	112	127	48	56	36	332	16	133	0		
2008													
No. of local clusters	0	4	2	0	0	1	0	2	1	1	0		
No. of multistate clusters	0	1	5	5	2	1	0	5	7	1	0		
Confirmed/suspect/probable cases	24	151	199	133	15	39	31	429	29	116	29		
Deaths	1	NA	3	0	0								
Total local and multistate clusters	0	5	7	5	2	2	0	9	2	2	0		
Total WA clinical case isolates pulsed	12	144	197	129	22	37	31	304	22	96	0		
2009													
No. of local clusters	0	5	2	3	0	0	1	3	1	4	0		
No. of multistate clusters	0	12	4	14	3	1	4	26	1	0	0		
Confirmed/suspect/probable cases	32	159	147	148	17	29	63	416	24	153	48		
Deaths	0	NA	4	0	0								
Total local and multistate clusters	0	0	6	17	3	1	5	29	2	4	0		
Total WA clinical case isolates pulsed	28	156	146	157	26	29	72	318	25	125	0		

(continued)
Criteria	STEC (all serotypes)	STEC (O157)	Salmonella Enteriditis	Salmonella Typhimurium	Salmonella I 4,5,12:i:-	Salmonella Newport	Salmonella Hiedenberg	Salmonella Typhi	All other Salmonella serotypes (non-Typhi)	Listeria monocytogenes	Shigella sonnei and Shigella flexneri	Vibrio	11-Year totals
2010	2	6	3	7	1	0	0	6	3	2	0		
No. of local clusters	2	6	3	7	1	0	0	6	3	2	0		
No. of multistate clusters	0	8	11	8	2	2	2	2	19	0	1	0	
Confirmed/suspect/probable cases	77	110	173	127	10	50	52	368	24	112	59		
Deaths	1	NA	NA	NA	NA	NA	NA	NA	1	0	0		
Total local and multistate clusters	2	14	14	15	3	2	2	25	3	3	0		
Total WA clinical case isolates pulsed	78	103	166	133	18	50	53	234	20	102	0		
2011	0	8	1	3	2	1	1	6	1	2	0		
No. of local clusters	0	8	1	3	2	1	1	6	1	2	0		
No. of multistate clusters	0	5	4	2	2	1	1	10	2	0	0		
Confirmed/suspect/probable cases	88	104	137	88	16	20	27	301	24	153	45		
Deaths	1	NA	NA	NA	NA	NA	NA	NA	0	0	0		
Total local and multistate clusters	0	13	5	5	4	2	2	16	3	0	0		
Total WA clinical case isolates pulsed	80	98	132	82	15	27	29	271	17	91	26		
2012	1	4	0	3	0	0	0	7	0	1	0		
No. of local clusters	1	4	0	3	0	0	0	7	0	1	0		
No. of multistate clusters	3	8	0	4	1	2	1	31	2	0	0		
Confirmed/suspect/probable cases	100	118	151	93	19	39	87	453	26	133	67		
Deaths	0	NA	NA	NA	NA	NA	NA	NA	NA	0	0		
Total local and multistate clusters	4	12	0	7	1	2	1	38	2	1	0		
Total WA clinical case isolates pulsed	94	111	150	87	27	36	87	350	20	23	0		
2013	0	9	0	3	0	0	0	3	1	0	0		
No. of local clusters	0	9	0	3	0	0	0	3	1	0	0		
No. of multistate clusters	3	12	2	7	7	2	1	19	4	0	0		
Confirmed/suspect/probable cases	137	165	141	98	24	21	35	330	21	122	90		
Deaths	3	NA	NA	NA	NA	NA	NA	NA	0	0	0		
Total local and multistate clusters	3	21	2	10	7	2	1	22	5	0	0		
Total WA clinical case isolates pulsed	130	157	146	94	38	21	34	305	25	13	0		
2014	1	0	2	0	0	0	0	1	0	1	0		
No. of local clusters	1	0	2	0	0	0	0	1	0	1	0		
No. of multistate clusters	4	4	7	10	4	2	2	19	5	0	0		
Confirmed/suspect/probable cases	159	103	217	67	67	21	31	336	24	157	92		
Deaths	2	NA	NA	NA	NA	NA	NA	NA	NA	0	0		
Total local and multistate clusters	5	4	9	12	4	2	2	20	5	1	0		
Total WA clinical case isolates pulsed	153	94	206	60	70	22	31	291	20	8	0		

Table 1. (Continued)
Criteria	STEC (all serotypes)	STEC (O157)	Salmonella Enteritidis	Salmonella Typhimurium	Salmonella I 4,5,12:i:-	Salmonella Newport	Salmonella Heidelberg	Salmonella Typhi	All other Salmonella serotypes (non-Typhi)	Listeria monocytogenes	Shigella sonnet and flexneri	Vibrio	11-Year totals	
2015														
No. of local clusters	7	4	3	3	4	0	3	4	1	0	0			
No. of multistate clusters	2	9	7	3	5	4	3	21	4	1	0			
Confirmed/suspect/probable cases	181	157	208	74	224	31	36	461	21	152	68			
Deaths	1	NA	NA	NA	NA	NA	NA	NA	0	0	0			
Total local and multistate clusters	9	13	10	6	9	4	6	25	5	1	0			
Total WA clinical case isolates pulsed	165	149	198	69	234	35	38	350	21	8	0			
2016														
No. of local clusters	0	8	2	4	0	0	1	11	0	1	0			
No. of multistate clusters	2	6	8	1	6	6	2	22	2	2	0			
Confirmed/suspect/probable cases	154	97	195	79	70	16	18	376	14	191	63			
Deaths	0	NA	NA	NA	NA	NA	NA	NA	0	0	1			
Total local and multistate clusters	2	14	10	5	6	6	3	33	2	3	0			
Total WA clinical case isolates pulsed	153	91	188	74	71	18	18	239	16	27	0			
2017														
No. of local clusters	1	3	0	2	1	2	0	10	0	1	0			
No. of multistate clusters	3	5	2	2	3	3	0	17	2	0	0			
Confirmed/suspect/probable cases	187	90	147	79	44	61	14	465	17	285	96			
Deaths	1	NA	NA	NA	NA	NA	NA	NA	3	0	0			
Total local and multistate clusters	4	8	2	4	5	0	27	27	2	0	1			
Total WA clinical case isolates pulsed	173	85	147	74	50	61	15	375	16	5	16			

PFGE, pulsed-field gel electrophoresis; STEC, Shiga toxin-producing Escherichia coli; WA, Washington.
meat products; so producers can attempt but are not required to control it. *Salmonella* spp. can grow as biofilms on common surfaces used to process food, including stainless steel. Cross-contamination may be one of the main obstacles in reducing the prevalence of these bacteria in restaurants and other food-processing establishments as sources of recurrent outbreaks in WA (CDC, 2008a, 2013; Paz-Mendez et al., 2017; Green et al., 2018). Several reports have highlighted the potential for various serotypes of *S. enterica* to grow within the phyllosphere of several food-producing plants when exposure to this pathogen occurs through the soil or irrigation water (Barak et al., 2008; Gu et al., 2011; Zheng et al., 2013; Haendiges et al., 2018). These characteristics make *Salmonella* outbreaks linked to produce categories likely to occur in the future. Travel abroad is another well-recognized risk factor for salmonellosis (Ekdahl et al., 2005) as noted in this report. Contact with live poultry and amphibians was another common outbreak source in Washington that is well-recognized as a risk factor (Woodward et al., 1997; Behravesh et al., 2014; Basler et al., 2016; Bosch et al., 2016; Ribas and Poonlaphdecha, 2017).

Several large outbreaks in WA have been linked to *Salmonella* contamination of foods. An outbreak in 2014 linked to eating a raw beef “kitfo” dish sickened over 40 people. Starting in 2007, peanut butter was recognized as a new vehicle for salmonellosis (Sheth et al., 2011). WA reported 27 ill from 2 nut butter outbreaks since 2007. In 2015 there was the largest pork-associated salmonellosis outbreak in WA history (CDC, 2015a; Kawakami et al., 2016). This multiclonal *Salmonella* outbreak was linked to whole hogs from a slaughter facility and resulted in a large pork recall. Slaughter facilities in the past have been recognized as the most important source of *Salmonella* contamination for *Salmonella*-free hogs (Swanenburg et al., 2001a, 2001b).

Table 2. Predominant Salmonella Serovars Detected in Washington State During 2007–2017

Serotype	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	Total
Agona	13	25	9	15	18	9	9	6	11	4	7	126
Anatum	3	9	7	7	8	3	8	2	3	5	62	
Bareilly	1	3	2	2	9	2	1	0	1	6	29	
Berta	0	0	0	3	3	4	3	2	6	6	2	
Braenderup	9	14	11	17	22	9	8	20	19	12	155	
Brandenburg	4	1	0	5	8	4	11	2	5	11	3	
Chester	2	3	1	10	0	1	2	1	2	3	27	
Dublin	6	2	4	8	5	2	3	8	6	8	5	
Enteritidis	120	199	147	173	137	151	148	217	208	195	147	
Hadar	7	9	15	6	12	13	6	8	14	3	7	
Havana	2	1	2	3	1	1	1	3	6	0	1	
Heidelberg	39	31	63	52	27	87	35	31	36	18	14	
I 4,12:i:-	8	6	8	0	0	1	0	2	10	0	5	
I 4,5,12:b:-	0	0	0	0	0	2	2	13	15	8	11	
I 4,5,12:i:-	46	17	19	10	13	28	38	67	224	70	44	
Infantis	10	11	15	18	11	22	13	19	18	24	28	
Javiana	10	10	9	11	11	8	7	7	13	17		
Kentucky	1	3	3	3	2	2	7	2	2	3		
Litchfield	1	16	4	4	2	1	2	3				
Mbandaka	7	6	5	10	6	6	4					
Montevideo	32	34	44	29	13							
Muenchen	12	6	12	12								
Newport	58	39	29	29	39	20						
Oranienburg	12	10	21	14	10							
Panama	3	3	5									
Paratyp A	3	2	3	1	3							
Paratyp B	2	1	1	1								
Paratyp B var. L(+) tartrate(+)	17	19	18	14	11	8	14	5	8	10	28	152
Poona	5	19	2	9	1	11	7	6	26	4	5	
Potsdam	1	1	6	0	2	0	0	1	1			
Saintpaul	31	27	22	12	5	8						
Sandiego	5	3	1	3	1							
Seftenberg	29	20	6	7								
Stanley	21	9	10	7								
Thompson	11	9	19	16								
Typhi	24	25	61	61								
Typhimurium	121	133	148	127								
Virchow	1	4	5	3								
Weltevreden	1	6	1									

Additional serotypes reported every year can be found in the annual WA communicable disease surveillance reports (Department of Health).

Source: Washington State Department of Health.
Many of the STEC outbreaks (2007–2017) were associated with previously reported high-risk food vehicles particularly undercooked beef, raw sprouts, and unpasteurized milk (Erickson and Doyle, 2007; Neil et al., 2012; Luna-Gierke et al., 2014; Morton et al., 2017) in addition to flour, which has emerged as a risk factor for STEC infections in recent years (Morton et al., 2017). Animal exposures at petting zoos and state fairs are also a significant source of STEC infections. In 2015, WA reported an E. O157:H7 outbreak linked to attendance at a dairy education event. Environmental samples collected at the event site yielded PFGE patterns indistinguishable from the outbreak strain (Dunbar et al., 2015).

With the release of Shiga toxin EIA that allow clinical laboratories to better identify non-O157, there was a concomitant reduction in STEC culture submissions to WAPHL. In addition, with the emergence of polymerase chain reaction-based enteric testing, an increase in stool specimen submissions was noted (as opposed to isolate submissions). CIDT has impacted the workflow at WAPHL as specimen submissions have increased and isolate submissions have decreased. This trend is predicted to continue in future years. It will be important for the WAPHL to facilitate isolate recovery in future years as these new technologies expand and replace current testing workflows at clinical laboratories.

Listeriosis associated with ice cream, raw milk, and Mexican style soft cheeses was identified as a problem as early as 1985 and continues to this day (Linnan et al., 1988; Jackson et al., 2018). The ubiquity of L. monocytogenes in the environment and its potential to grow in biofilms mean that a previously unrecognized food vehicle could cause a foodborne outbreak (Ferreira et al., 2014). WA had two notable recurring listeriosis outbreaks from dairy products.

Table 3. Foods Associated with Clusters and Outbreaks in Washington 2007–2017

IFSACa category	Etiology	Serotype(s)	No. of WA cases	No. of outbreaks
Beef	*Escherichia coli*, Shiga toxin–producing	O157:H7	9	2
Beef	*Salmonella enterica*	Senftenberg, Typhimurium, Braenderup	20	3
Chicken	*S. enterica*	Heidelberg, I 4,[5],12:i:-	104	5
Dairy	*E. coli*, Shiga toxin–producing	O157:H7; O121, O26:H11, O157:NM(H-),	18	5
Dairy	*Listeria monocytogenes*			
Dairy	*S. enterica*	Dublin	3	1
Eggs	*S. enterica*	Enteritidis, Typhimurium	69	2
Fish	*S. enterica*	Paratyphi B var. L(+) tartrate +, Weltevreden	1	1
Fruits	*L. monocytogenes*			
Fruits	*S. enterica*	I 4,[5],12:b:- var. L(+), Litchfield, Panama, Agona, Braenderup, Worthington, Enteritidis, Chayle, Infantis, Newport	116	10
Grains—beans	*E. coli*, Shiga toxin–producing	O121, O26:NM		
Herbs	*S. enterica*	Wandsworth, Typhimurium	33	4
Nuts—seeds	*E. coli*, Shiga toxin–producing	O157:H7	2	1
Nuts—seeds	*S. enterica*	Typhimurium, Newport, Hartford, Oranienburg, Gaminara, Montevideo, Seftenberg	29	4
Oils—sugars	*S. enterica*	Virchow	1	1
Other	*S. enterica*	Heidelberg, I 4,[5],12:b:- var. L(+), Javiana, Okatie, Thompson, Weltevreden	16	1
Pork	*S. enterica*	Enteritidis, I 4,[5],12:i-	215	5
Seeded vegetables	*S. enterica*	Saintpaul, Newport, Paratyphi B, Poona	66	5
Sprouts	*E. coli*, Shiga toxin–producing	O26, O121	12	2
Sprouts	*S. enterica*	Typhimurium, Newport, Enteritidis, Muenchen, Cubana, Kentucky	34	4
Turkey	*S. enterica*	Subspecies IIIa, Hadar, I 4,[5],12:i:-	12	3
Vegetable row crops	*E. coli*, Shiga toxin–producing	O157:H7, O157:NM(H-), O26	28	9
Vegetable row crops	*S. enterica*	Typhimurium, Javiana, Enteritidis	30	3
Multiple	*E. coli*, Shiga toxin–producing	O157:H7, O121	79	6
Multiple	*L. monocytogenes*			
Multiple	*S. enterica*	IV 50:z4,z23:-, Typhimurium, Sandiego, I 4,[5],12:i-	279	18
		Enteritidis, Muenchen, Newport, Chester, Anatum, Heidelberg, Thompson, Paratyphi B var. L(+) tartrate +		

*a www.cdc.gov/foodsafety/ifsac/projects/food-categorization-scheme.html
Two patients hospitalized at the same facility in 2014–2015 and one a year later in 2016 developed listeriosis found to be linked to pasteurized ice cream served at the facility and produced by a local company (Rietberg et al., 2016). Pasteurized soft Mexican cheese produced by a local firm sickened several people in 2010 and again in 2015. Sushi and frozen vegetables have also been linked to listeriosis outbreaks in WA.

The implementation of policies or campaigns to encourage the use of specific interventions, in addition to the implementation of better identification tools (on-site rapid testing, whole-genome sequencing), may lead to the reduction in the incidence of enteric infections. There is strong evidence indicating that in areas of the country where these infections are investigated, such as FoodNet sites, there has been a reduction (by 30%) in illness incidence (Ailes et al., 2008). Better access to rapid test kits that can identify the presence of pathogens at food-processing facilities is also needed. Public health will, in the meantime, continue to rely on surveillance of notifiable conditions through the work of local health jurisdictions who conduct epidemiological and environment investigations. It is possible that the impact of the use of NGS tools may be overshadowed by the impact of CIDTs as fewer illnesses get characterized with an isolate culture that can then flow to get characterized by NGS. Nonetheless, NGS characterization offers unparalleled resolution in providing evidence to pathogen relatedness that will revolutionize the way foodborne disease investigations are conducted in the laboratory as PFGE is phased out.

To understand the impact of future laboratory testing as the use of NGS becomes more streamlined, it would be important for reference laboratories to track the amount of time it takes to detect clusters, number of outbreaks solved with food source identified, number of cases per cluster, and number of cases linked to a food source. In addition, there is work to be carried out to increase the proportion of stool samples submitted for laboratory testing for foodborne illnesses (Ailes et al., 2012) and in laboratory methodologies that ensure the recovery of an isolate. Characterization of isolates remains the key to a solved foodborne disease investigation (Hurd et al., 2012).

Limitations

Foodborne diseases attributed to botulism, norovirus, and yersiniosis were not evaluated. In addition, data for *Campylobacter* and *Shigella* are not complete as WAPHL did not test all the submitted isolates by PFGE. In WA the investigation of campylobacteriosis individual cases is considered optional (Washington State Department of Health, 2016).

Although the case counts were provided, most PHL data were missing vehicle source or cluster association data other than PFGE. All outbreaks and clusters reported herein were closed at the time of the writing of this article.

Acknowledgments

The authors thank the editing assistance of Bonnie Olsen and recognize all the work that several microbiologists have contributed to the Enterics, Food, Special Bacteriology Reference, and PFGE units of WAPHL. This work was supported in part by the Epidemiology and Laboratory Capacity grant sponsored by the CDC.

Disclosure Statement

No competing financial interests exist.

References

Ailes E, Demma L, Hurd S, et al. Continued decline in the incidence of *Campylobacter* infections, FoodNet 1996–2006. Foodborne Pathog Dis 2008;5:329–337.

Ailes E, Scallan E, Berkelman RL, Kleinbaum DG, Tauxe RV, Moe CL. Do differences in risk factors, medical care seeking, or medical practices explain the geographic variation in campylobacteriosis in Foodborne Diseases Active Surveillance Network (FoodNet) sites? Clin Infect Dis 2012; 54(Suppl 5):S464–S471.

Barak JD, Liang A, Narm KE. Differential attachment to and subsequent contamination of agricultural crops by *Salmonella enterica*. Appl Environ Microbiol 2008;74:5568–5570.

Barrett TJ, Gerner-Smidt P, Swaminathan B. Interpretation of pulsed-field gel electrophoresis patterns in foodborne disease investigations and surveillance. Foodborne Pathog Dis 2006; 3:20–31.
Barton Behravesh C, Jones TF, Vugia DJ, et al. Deaths associated with bacterial pathogens transmitted commonly through food: Foodborne diseases active surveillance network (FoodNet), 1996–2005. J Infect Dis 2011;204:263–267.

Basler C, Nguyen TA, Anderson TC, Hancock T, Behravesh CB. Outbreaks of human Salmonella infections associated with live poultry, United States, 1990–2014. Emerg Infect Dis 2016;22:1705–1711.

Behravesh CB, Brinson D, Hopkins BA, Gomez TM. Backyard poultry flocks and salmonellosis: A recurring, yet preventable public health challenge. Clin Infect Dis 2014;59:1432–1438.

Bender JB, Hedberg CW, Boxrud DJ, et al. Use of molecular subtyping in surveillance for Salmonella enterica serotype Typhimurium. N Engl J Med 2001;344:189–195.

Bosch S, Tauxe RV, Behravesh CB. Turtle-associated salmonellosis, United States, 2006–2014. Emerg Infect Dis 2016;22:1149–1155.

CDC. Multistate outbreak of Salmonella infections associated with frozen pot pies—United States, 2007. MMWR Morb Mortal Wkly Rep 2008a;57:1277–1280.

CDC. Outbreak of Salmonella serotype Saintpaul infections associated with multiple raw produce items—United States, 2008. MMWR Morb Mortal Wkly Rep 2008b;57:929–934.

CDC. Multistate Outbreak of Human Salmonella Enteritidis Infections Linked to Alfalfa Sprouts and Spicy Sprouts (Final Update). Atlanta, GA: Centers for Disease Control and Prevention, 2011.

CDC. Outbreak of Salmonella Heidelberg infections linked to a single poultry producer—13 States, 2012–2013. MMWR Morb Mortal Wkly Rep 2013;62:553–556.

CDC. Foodborne Outbreak Online Database. Services U.S. Department of Human and Health Services, ed. Atlanta, GA: Centers for Disease Control and Prevention, 2015a.

CDC. Size and Extent of Foodborne Outbreaks. Volume 2018. Atlanta, GA: Centers for Disease Control and Prevention, 2015b.

CDC. Listeria (Listeriosis)—Outcomes. Prevention. Atlanta, GA: Centers for Disease Control and Prevention, 2016a.

CDC. PulseNet Timeline. Volume 2018. Atlanta, GA: Centers for Disease Control and Prevention, 2016b.

de la Maza LM. Color Atlas of Medical Microbiology. Washington, DC: ASM Press, 2004.

Dunbar SA, Ritchie VB, Hoffmeyer MR, Rana GS, Zhang H. Luminex® multiplex bead suspension arrays for the detection and serotyping of Salmonella spp. Methods Mol Biol 2015;1225:1–27.

Ekdahl K, de Jong B, Wollin R, Andersson Y. Travel-associated non-typhoidal salmonellosis: Geographical and seasonal differences and serotype distribution. Clin Microbiol Infect 2005;11:138–144.

Erickson MC, Doyle MP. Food as a vehicle for transmission of Shiga toxin–producing Escherichia coli. J Food Prot 2007;70:2426–2449.

Farber JM, Peterkin PI. Listeria monocytogenes, a food-borne pathogen. Microbiol Rev 1991;55:476–511.

FDA. Food: BAM: Detection and Enumeration of Listeria monocytogenes. Washington, DC: U.S. Food and Drug Administration, 2017.

Ferreira V, Wiedmann M, Teixeira P, Stasiewicz MJ. Listeria monocytogenes persistence in food-associated environments: Epidemiology, strain characteristics, and implications for public health. J Food Prot 2014;77:150–170.

Garcia LS, Isenberg HD. Clinical Microbiology Procedures Handbook. Washington, DC: ASM Press, 2010.

Graves LM, Swaminathan B. PulseNet standardized protocol for subtyping Listeria monocytogenes by macrorestriction and pulsed-field gel electrophoresis. Int J Food Microbiol 2001;65:55–62.

Green A, Defibbaugh-Chavez S, Douris A, et al. Intensified sampling in response to a Salmonella Heidelberg outbreak associated with multiple establishments within a single poultry corporation. Foodborne Pathog Dis 2018;15:153–160.

Gu G, Hu J, Cevalllos-Cevallos JM, et al. Internal colonization of Salmonella enterica subsp. enterica serovar Typhimurium in tomato plants. PLoS One 2011;6:e27340.

Haendiges J, Blessingston T, Zheng J, Davidson G, Miller JD, Hoffmann M. Complete genome sequences of four Salmonella enterica subsp. enterica serovar Senfenberg and Montevideo isolates associated with a 2016 multistate outbreak in the United States. Genome Announc 2018;6(26):e00630.

Holt JG. Bergey’s Manual of Determinative Bacteriology, 9th edition. Baltimore, MD: Lippincott Williams & Wilkins, 1994.

Hurd S, Patrick M, Hatch J, et al. Clinical laboratory practices for the isolation and identification of Campylobacter in Foodborne Diseases Active Surveillance Network (FoodNet) sites: Baseline information for understanding changes in surveillance data. Clin Infect Dis 2012;54(Suppl 5):S440–S445.

Jackson KA, Gould LH, Hunter JC, Kucerova Z, Jackson B. Listeriosis outbreaks associated with soft cheeses, United States, 1998–2014. Emerg Infect Dis 2018;24:1116–1118.

Jorgensen JH. Manual of Clinical Microbiology. Washington, DC: ASM Press, 2015.

Kawakami VM, Bottichio L, Angelo K, et al. Notes from the field: Outbreak of multidrug-resistant Salmonella infections linked to pork—Washington, 2015. MMWR Morb Mortal Wkly Rep 2016;65:379–381.

Lauffer AS, Grass J, Holt K, Whichard JM, Griffin PM, Gould LH. Outbreaks of Salmonella infections attributed to beef—United States, 1973–2011. Epidemiol Infect 2015;143:2003–2013.

Linman MJ, Mascola L, Lou XD, et al. Epidemic listeriosis associated with Mexican-style cheese. N Engl J Med 1988;319:823–828.

Luna-Gierke RE, Griffin PM, Gould LH, et al. Outbreaks of non-O157 Shiga toxin–producing Escherichia coli infection: USA. Epidemiol Infect 2014;142:2270–2280.

MacFaddin JF. Biochemical Tests for Identification of Medical Bacteria. Baltimore, MD: Lippincott Williams & Wilkins, 2000.

Morton V, Cheng JM, Sharma D, Kearney A. An outbreak of Shiga toxin–producing Escherichia coli O121 infections associated with flour—Canada, 2016–2017. Can Commun Dis Rep 2017;43:154–155.

Neil KP, Biggerstaff G, MacDonald JK, et al. A novel vehicle for transmission of Escherichia coli O157:H7 to humans: Multistate outbreak of E. coli O157:H7 infections associated with consumption of ready-to-bake commercial prepackaged cookie dough—United States, 2009. Clin Infect Dis 2012;54:511–518.

Parsons MB, Cooper KL, Kubota KA, et al. PulseNet USA standardized pulsed-field gel electrophoresis protocol for ...
subtyping of *Vibrio parahaemolyticus*. Foodborne Pathog Dis 2007;4:285–292.

Paz-Mendez AM, Lamas A, Vazquez B, Miranda JM, Cepeda A, Franco CM. Effect of food residues in biofilm formation on stainless steel and polystyrene surfaces by *Salmonella enterica* strains isolated from poultry houses. Foods 2017;6:E106.

Ribas A, Poonlaphdecha S. Wild-caught and farm-reared amphibians are important reservoirs of *Salmonella*, a study in North-East Thailand. Zoonoses Public Health 2017;64:106–110.

Ribot EM, Fair MA, Gautom R, et al. Standardization of pulsed-field gel electrophoresis protocols for the subtyping of *Escherichia coli* O157:H7, *Salmonella*, and *Shigella* for PulseNet. Foodborne Pathog Dis 2006;3:59–67.

Ribot EM, Fitzgerald C, Kubota K, Swaminathan B, Barrett TJ. Rapid pulsed-field gel electrophoresis protocol for subtyping of *Campylobacter jejuni*. J Clin Microbiol 2001;39:1889–1894.

Rietberg K, Lloyd J, Melius B, et al. Outbreak of *Listeria monocytogenes* infections linked to a pasteurized ice cream product served to hospitalized patients. Epidemiol Infect 2016;144:2728–2731.

Sheth AN, Hoekstra M, Patel N, et al. A national outbreak of *Salmonella* serotype Tennessee infections from contaminated peanut butter: A new food vehicle for salmonellosis in the United States. Clin Infect Dis 2011;53:356–362.

Staples M, Fang NX, Graham RM, Smith HV, Jennison AV. Evaluation of the SHIGA TOXIN QUIK CHEK and ImmunoCard STAT! EHEC as screening tools for the detection of Shiga toxin in fecal specimens. Diagn Microbiol Infect Dis 2017;87:95–99.

Stephenson J. New approaches for detecting and curtailing foodborne microbial infections. JAMA 1997;277:1337, 1339–1340.

Swaminathan B, Barrett TJ, Hunter SB, Tauxe RV. PulseNet: The molecular subtyping network for foodborne bacterial disease surveillance, United States. Emerg Infect Dis 2001;7:382–389.

Swanenburg M, Berends BR, Urlings HA, Snijders JM, van Knapen F. Epidemiological investigations into the sources of *Salmonella* contamination of pork. Berl Munch Tierarztl Wochenschr 2001a;114:356–359.

Swanenburg M, van der Wolf PI, Urlings HA, Snijders JM, van Knapen F. *Salmonella* in slaughter pigs: The effect of logistic slaughter procedures of pigs on the prevalence of *Salmonella* in pork. Int J Food Microbiol 2001b;70:231–242.

Tauxe RV. Molecular subtyping and the transformation of public health. Foodborne Pathog Dis 2006;3:4–8.

Washington State Department of Health. Annual Communicable Disease Reports. Volume 2018. Shoreline, WA: Washington State Department of Health.

Washington State Department of Health. Campylobacteriosis. Shoreline, WA: Washington State Department of Health, 2016.

Weyant RS. Identification of Unusual Pathogenic Gram-Negative Aerobic and Facultatively Anaerobic Bacteria. Baltimore, MD: Williams & Wilkins, 1996.

Woodward DL, Khakhria R, Johnson WM. Human salmonellosis associated with exotic pets. J Clin Microbiol 1997;35:2786–2790.

Zheng J, Allard S, Reynolds S, et al. Colonization and internalization of *Salmonella enterica* in tomato plants. Appl Environ Microbiol 2013;79:2494–2502.

Address correspondence to:
Ailyn C. Perez-Osorio, PhD
Public Health Laboratories
Washington State Department of Health
1610 N.E. 150th Street
Shoreline, WA 98155

E-mail: ailyn.perez-osorio@doh.wa.gov