Sex ratio and first maturity of blackeye thicklip wrasse

Hemigymnus melapterus Bloch, 1791 in Spermonde Archipelago

J Tresnati, A L Yanti, D Yanuarita, B S Parawansa, I Yasir, A Yanti, P Y Rahmani, R Aprianto, and A Tuwo

1 Fisheries Department, Faculty of Marine Science and Fisheries, Universitas Hasanuddin, Makassar, Indonesia
2 Marine Science Department, Faculty of Marine Science and Fisheries, Universitas Hasanuddin, Makassar, Indonesia
3 Multitrophic Research Group, Faculty of Marine Science and Fisheries, Universitas Hasanuddin, Makassar, Indonesia

E-mail: jtresnati@yahoo.com

Abstract. Blackeye thicklip wrasse *Hemigymnus melapterus* is a Labridae that was widespread throughout the tropical and subtropical waters of Indo-Pacific. In eastern Indonesia, blackeye thicklip wrasse found from the Strait of Bali, Mentawai Islands, Raja Ampat Islands, Manado and surrounding areas, and Banggai; while in central Indonesia, blackeye thicklip wrasse found in the waters of the Spermonde Archipelago. This research aims to analyze the sex ratio, gonad maturity stage, and the size at first maturity of blackeye thicklip wrasse in the Spermonde Archipelago. This research was done on the population of blackeye thicklip wrasse in the Spermonde Archipelago, South Sulawesi, Indonesia. Samples were collected from fishermen caught landed in the Rajawali Makassar Fisheries Port at Makassar City. Blackeye thicklip wrasse sex ratio was not balanced. This imbalance was thought to have something to do with the "r" reproductive strategy where blackeye thicklip wrasse tries to produce as many eggs as possible to maintain its population. The success of this strategy probably supported by protogynous reproduction patterns where young fish can produce eggs as fast and as much as possible before being devoured by predators. Based on its gonad structure, blackeye thicklip wrasse could be classified as fish with a total spawning pattern that take place long spawning period or individual different spawning period throughout the year. The size at the first maturity of blackeye thicklip wrasse female was 21.4 cm; it was much smaller than half the size that has ever been caught.

1. **Introduction**

Blackeye thicklip wrasse *Hemigymnus melapterus*, Bloch. 1791 is a Labridae family [1,2] that can reach 50 cm in the body length. Blackeye thicklip wrasse is widespread throughout the Indo-Pacific tropical and subtropical waters, from the east coast of Africa including the red sea to Polynesia, and Southern Japan [2,3]. Blackeye thicklip wrasse can live at a depth of 1 to 30 m and like coral areas such as coral debris, sand and the outer part of coral cliffs [4]. In Indonesia, blackeye thicklip wrasse is found starting from the strait of Bali, Mentawai Islands, Raja Ampat Islands, Manado and surrounding areas, and Banggai [4], and Spermonde Islands waters [5].
Spermonde Islands are located in the Makassar Strait, South Sulawesi Province. This archipelago is one of the fishing areas which cover about 2,500 km². Spermonde Islands is the habitat of high diversity reef fish [5-8]. In the Spermonde Islands there are 120 islands with a total human population of around 50,000 people whose livelihoods depend directly or indirectly on fish catches [5].

These blackeye thicklip wrasse live solitaire or in small groups. Blackeye thicklip wrasse is a benthic predator that mainly consume small marine invertebrates such as crustaceans, mollusks, worms and echinoderms [4]. Blackeye thicklip wrasse has an important role in controlling the growth and development of corals because it can reduce or prey on coral competitors attached to coral branches, that is why this Blackeye thicklip wrasse can be considered as an indicator of coral conditions [9].

Blackeye thicklip wrasse is associated with coral [10] so it has an important ecological role in coral ecosystems. Blackeye thicklip wrasse has also an important economic role because at the time of blackeye thicklip wrasse classified as sea water aquarium fishes, while the large-sized fish, 30-40 cm is traded in the market for local consumption [5].

Previous study indicated that ecologically, blackeye thicklip wrasse has been studied extensively, such as parasitic aspects [11-24], species diversity [5], habitat and distribution [4, 25], taxonomy [26], recruitment [27], mortality [28], predator [29, 30], behavior [31], physiology [32], and genetic [33, 34]. The previous studies indicated that reproductive biology blackeye thicklip wrasse has not been studied. In Indonesia, especially in the Spermonde Islands, there have never been the results of previous studies that examined the biological aspects of blackeye thicklip wrasse. Therefore it is necessary to analyze the reproductive biology of blackeye thicklip wrasse in the Spermonde islands waters. This study aims to analyze aspects of reproductive biology including sex ratio, maturity stages, and the size of the first maturity of blackeye thicklip wrasse in the Spermonde Islands waters.

2. Materials and Methods
Blackeye thicklip wrasse samples were collected at Rajawali Makassar Fisheries Port, Makassar City (Figure 1) every mid-month. Based on the participatory mapping involving fishermen who landed fish at TPI Rajawali, it was known that blackeye thicklip wrasse originates from nine fishing locations in the Spermonde Islands, namely the waters around of Lumu-lumu, Lanyukang, Bonebatang, Panambung, Langkai, Kodingarengkeke, Kodingarenglompo, Barranglompo, and Barrangcaddi (Figure 2). After the interviews with fishermen at Rajawali Makassar Fisheries Port, it was found that blackeye thicklip wrasse was captured using nets, spears and fishing rods. Fishing can be done by fishermen every day of the year. The parameters measured were total body length, body weight, gonad weight, and gonad length. The observed aspects were sex, gonad colour, gonad structure, and gonad development. The analyzed aspects were sex ratio, maturity stages, and first maturity. Weight measurements were carried out using scales with the accuracy of 0.01 g.

Sex ratio was calculated using equations: \[NK = \frac{\Sigma J}{\Sigma B} \] where: NK = sex ratio, \(\Sigma J \) = number of males, \(\Sigma B \) = number of female. The sex ratio significance was tested by using chi-square [35] and data arranged in the form of a contingency table [36].

Maturity stages were determined morphologically by observing the gonad colour, gonad length, and gonad weight. Maturity stages determination refers to other wrasse C. fasciatus that live in the Spermonde Island waters [37]. Maturity stage distribution was analyzed based on sampling period and length classes distribution.
Figure 1. Blackeye thicklip wrasse *Hemigymnus melapterus* during measuring parameters in the laboratory (a-b) and in their habitat (Randall, 2013) (c) and (Kretzberg, 2011) (d).

Figure 2. Participatory map of capture areas of blackeye thicklip wrasse *Hemigymnus melapterus* in the Spermonde Islands, South Sulawesi, Indonesia

First maturity is estimated based on length where 50% (L₁₅₀) of adult mature (MS III, IV, and V) [38], according to the equation: L₁₅₀ = L₅₀, where: L₅₀ was the total length at 50% of the samples were mature.
3. Results

3.1. Sex Ratio
During the study, 78 were collected, consisting of 2 males, 51 females and 25 sexes unidentified. The sex ratio between males and females was 1: 25.50, unidentified and female was 1: 2.04, and male+unidentified and female was 1: 1.89 (Figure 2). The statistical test indicated that the three sex ratios based on the sampling time were significantly different (P <0.05). Sex ratios based on maturity stage and length classes show the female dominance (Figure 4). The statistical test indicated that the three sex ratios based on the maturity stage and length classes were significantly different (P <0.05).

![Figure 3. Sex ratio of blackeye thicklip wrasse Hemigymnus melapterus related to sampling period for female, male and unidentified](image)

![Figure 4. Blackeye thicklip wrasse Hemigymnus melapterus sex ratio related to maturity stage for female, male and unidentified sex(a), and length classes (b)](image)

3.2. Maturity Stages
During the study, females were dominants, especially MS III and IV. The ovaries colors were red-orange to brownish red (Figure 5).
Figure 5. Macroscopic characteristics of blackeye thicklip wrasse *Hemigymnus melapterus* female at the MS IV early (a) MS IV late (b). O: Ovary.

Monthly sampling indicates that the maturity stage present variedly (Figure 6). Maturity stages present variedly in each length class, where the MS II (unidentified maturity stages) and MS IV (mature) were dominant (Figure 7).

Figure 6. Maturity stages blackeye thicklip wrasse *Hemigymnus melapterus* related to sampling period.

Figure 7. Maturity stages blackeye thicklip wrasse *Hemigymnus melapterus* related to length classes.

3.3. *First Maturity*

The first maturity in males was not estimated because the number of males found in the sample was too small. Females reach the first maturity at a length of 21.4 cm (Figure 6).
Figure 8. First maturity blackeye thicklip wrasse *Hemigymnus melapterus* at the female related to length classes.

4. Discussion

4.1. Sex Ratio

The presence of females dominantly indicates an imbalance of population structure in blackeye thicklip wrasse. This sex ratio imbalance in blackeye thicklip wrasse has never been reported before. The imbalance of sex ratio on reef fish that has been previously reported was on *Scarus rivulatus*, with male and female ratios being 1:3.5 [39]. In reproductive terms, this imbalance sex ratio indicated that blackeye thicklip wrasse population is likely to have a "r" reproductive strategy, a strategy in which blackeye thicklip wrasse population tries to produce as many eggs as possible to maintain their population. This strategy is needed to face very high competition in coral reef ecosystems. Very high competition in the coral reef ecosystem caused a shorter lifetime, so that there is a possibility that reef fish will choose the reproductive pattern of protogyny. This reproductive pattern allows the young fishes to produce eggs as fast and as much as possible before being devoured by predators. Sex ratio imbalance due to protogyny does not interfere with the reproduction process and population survival because naturally, the male can produce enough sperm to fertilize eggs produced by many females.

If blackeye thicklip wrasse is assumed to be a protogyny, and the MS II under the smaller size of male assumed to be female, and MS II which is larger than male assumed to be male, then the sex ratio distribution will show a transition from female domination to males in larger length classes. This assumption makes the appearance of Figure 4b become look like Figure 9. Figure strengthens the suspicion that blackeye thicklip wrasse is protogyny.

Alleged protogyny on blackeye thicklip wrasse still needs further study through a histological approach. Protogyny was a reproductive pattern often found in reef fish [40]. In protogyny, female fish will turn into a male after a reproductive period ends [41]. Other than hermaphroditism, sex ratio can also be influenced by many factors, such as behavior, growth patterns, mortality rates, and differences age at the first maturity [42].

4.2. Maturity Stages

The macroscopic characteristics of MS IV gonad walls were very thin and resembled the empty bag after spawning (MS V) lead to the assumption that blackeye thicklip wrasse is the total spawning pattern, where during spawning all gametes are removed. Marine organisms that have a total spawning pattern generally absorb gonads that have gone through a reproductive cycle and then form new
gonads [43]. This assumption is supported by the difficulty of distinguishing between MS V and MS II because in post-spawning, the gonad size was very small and assumed as MS II.

![Sex ratio distribution at the blackeye thicklip wrasse Hemigymnus melapterus related to the protogynous assumption, and unidentified incorporation into females and males.](image)

Figure 9. Sex ratio distribution at the blackeye thicklip wrasse *Hemigymnus melapterus* related to the protogynous assumption, and unidentified incorporation into females and males.

The presence of MS IV for most of the year and MS V in some sampling periods indicated that there was a possibility that blackeye thicklip wrasse has an annual reproduction cycle with a long spawning process or different individual spawning times throughout the year. The blackeye thicklip wrasse spawning period looks like similar to other wrasses spawning periods [44]. Spawning wrasses have something to do with the lunar cycle [45], and habitat use [46]. Although, in certain fish families, spawning can occur several times [47], however, the suspicion of a long spawning process or different individual spawning times throughout the year on blackeye thicklip wrasse population still requires further study through observing the gonad microscopic structure and distribution of egg size.

The presence of fewer male was thought to have something to do with MS II, which was mostly found during one-year sampling. In MS II, the gonad size was still too small, so it was difficult to identify the sex. This is the case with other wrasse species, where at the early stages of gonad maturation, MS I, II and III in males are very difficult to distinguish macroscopically because the gonad size is still very small [37]. The complexity of the development of maturity stages causes the differences or variation in determining the phases of gonad development, especially in maturation and post-spawning stages in wrasses, fish and other marine organisms [43, 48-52].

4.3. First Maturity

The first maturity was only estimated at the females because the number of males found during sampling was not enough to analyze the size at first maturity. The first maturity which was 21.4 cm, it was relatively small compared to the maximum size that can be achieved by blackeye thicklip wrasse in nature, which was 90 cm [53] or the maximum size of blackeye thicklip wrasse ever caught, which is 50 cm [4].

Even it was never reported before about the first maturity, but the first maturity of blackeye thicklip wrasse was smaller than other species of wrasse, such as *Cheilinus undulatus*, that have the first maturity 45-50 cm at the female, and 70 cm at the male [54]. The first maturity, besides being influenced by biological factors, it is also influenced by environmental factors that differ from one geographical condition to another [55].
5. Conclusion

Blackeye thicklip wrasse sex ratio was not balanced. This imbalance was thought to have something to do with the "r" reproductive strategy where blackeye thicklip wrasse tries to produce as many eggs as possible to maintain its population. The success of this strategy probably supported by protogyny reproduction patterns where young fish can produce eggs as fast and as much as possible before being devoured by predators. Based on its gonad structure, blackeye thicklip wrasse could be classified as fish with a total spawning pattern that takes place long spawning process or different individual spawning times throughout the year. The size at the first maturity of blackeye thicklip wrasse female was 21.4 cm; it was much smaller than half the size that has ever been caught.

Acknowledgment

We would like to thank Universitas Hasanuddin for providing research funding (contract number 1585/UN4.22/PT.01.03/2020 dated May 27th, 2020).

References

[1] Parenti P and Randall J E 2018 A checklist of wrasses (Labridae) and parrotfishes (Scaridae) of the world: 2017 update Journal of the Ocean Science Foundation 30 11-27
[2] Randall J E 2013 Review of the Indo-Pacific labrid fish genus Hemigymnus Journal of the Ocean Science Foundation 6 2-18
[3] Matsumoto B M M and bin Syed Hussein M A 2018 Coral reef fish population in the western extremity of the Coral Triangle Borneo Journal of Marine Science Aquaculture 2 1-8
[4] Shea S, Liu M, Sadovy Y, Craig M T and Rocha L A 2010 Hemigymnus melapterus . The IUCN Red List of Threatened Species 2010
[5] Yasir I, Tresnati J, Yanti A, Rahmani P, Aprianto R and Tuwo A 2019 Species diversity of wrasses caught by fishermen in the Spermonde Islands, South Sulawesi, Indonesia. In: IOP Conference Series: Earth and Environmental Science: 370 012015 IOP Publishing
[6] Ulfah I, Yusuf S, Rappe R A, Bahar A, Haris A, Tresnati J and Tuwo A 2020 Coral conditions and reef fish presence in the coral transplantation area on Kapoposang Island, Pangkep Regency, South Sulawesi. In: IOP Conference Series: Earth and Environmental Science: 473 012058 IOP Publishing
[7] Tresnati J, Yasir I, Yanti A, Rahmani P Y, Aprianto R and Tuwo A 2020 Multi years catch composition and abundance of Parrotfish landed at Makassar Fisheries Port. In: IOP Conference Series: Earth and Environmental Science: 473 012059 IOP Publishing
[8] Tresnati J, Yasir I, Aprianto R, Yanti A, Rahmani P Y and Tuwo A 2019 Long-Term Monitoring of Parrotfish Species Composition in the Catch of Fishermen from the Spermonde Islands, South Sulawesi, Indonesia. In: IOP Conference Series: Earth and Environmental Science: 370 012015 IOP Publishing
[9] Bellwood D R, Hoey A S and Choat J H 2003 Limited functional redundancy in high diversity systems: resilience and ecosystem function on coral reefs Ecology letters 6 281-5
[10] Rembet U N 2012 Simbiosis Zooxanthellae dan Karang Sebagai Indikator Kualitas Ekosistem Terumbu Karang Jurnal Ilmiah Platax 1 37-44
[11] Grutter A 1998 Habitat-related differences in the abundance of parasites from a coral reef fish: an indication of the movement patterns of Hemigymnus melapterus Journal of Fish Biology 53 49-57
[12] Grutter A S 2003 Feeding ecology of the fish ectoparasite Gnathia sp.(Crustacea: Isopoda) from the Great Barrier Reef, and its implications for fish cleaning behaviour Marine Ecology Progress Series 259 295-302
[13] Grutter A S 2000 Ontogenetic variation in the diet of the cleaner fish Labroides dimidiatus and its ecological consequences Marine Ecology Progress Series 197 241-6
[14] Grutter A, Deveney M, Whittington I and Lester R 2002 The effect of the cleaner fish Labroides dimidiatus on the capsalid monogenean Benedenia lolo parasite of the labrid fish Hemigymnus melapterus *Journal of Fish Biology* 61 1098-108

[15] Munoz G and Cribb T H 2005 Infracommunity structure of parasites of Hemigymnus melapterus (Pisces: Labridae) from Lizard Island, Australia: the importance of habitat and parasite body size *Journal of Parasitology* 91 38-45

[16] Grutter A and Lester R 2002 Cleaner fish Labroides dimidiatus reduce temporary parasite load on coral reef fish Hemigymnus melapterus *Marine Ecology Progress Series* 234 247-55

[17] Grutter A 1996 Parasite removal rates by the cleaner wrasse Labroides dimidiatus *Marine Ecology Progress Series* 130 61-70

[18] Grutter A S 1995 Spatial and temporal variations of the ectoparasites of seven reef fish species from Lizard Island and Heron Island, Australia *Oceanographic Literature Review* 6 489

[19] Grutter A S 1999 Infestation dynamics of gnathiid isopod juveniles parasitic on the coral-reef fish Hemigymnus melapterus (Labridae) *Marine Biology* 135 545-52

[20] Grutter A S and Pankhurst N W 2000 The effects of capture, handling, confinement and ectoparasite load on plasma levels of cortisol, glucose and lactate in the coral reef fish Hemigymnus melapterus *Journal of Fish Biology* 57 391-401

[21] Sikkel P C, Cheney K L and Côté I M 2004 In situ evidence for ectoparasites as a proximate cause of cleaning interactions in reef fish *Animal Behaviour* 68 241-7

[22] Chambers S and Sikkel P C 2002 Diel emergence patterns of ecologically important, fish-parasitic, gnathiid isopod larvae on Caribbean coral reefs *Caribbean Journal of Science* 38 37-43

[23] Sikkel P C, Schaumburg C S and Mathenia J 2006 Diel infestation dynamics of gnathiid isopod larvae parasitic on Caribbean reef fish *Coral Reefs* 25 683-9

[24] Barber I 2007 Parasites, behaviour and welfare in fish *Applied Animal Behaviour Science* 104 251-64

[25] Green A L 1996 Spatial, temporal and ontogenetic patterns of habitat use by coral reef fishes (Family Labridae) *Marine Ecology Progress Series* 133 1-11

[26] Ahmad M A and Khalaf-Allah H M M 2019 Morphological differences of scales and gill rakers used as a taxonomic character in some thick-lip fish species (Family: Labridae), Red Sea, Egypt *Egyptian Journal of Aquatic Biology Fisheries* 23 77-91

[27] Eckert G J 1984 Annual and spatial variation in recruitment of labroid fishes among seven reefs in the Capricorn/Bunker Group, Great Barrier Reef *Marine Biology* 78 123-7

[28] Eckert G J 1987 Estimates of adult and juvenile mortality for labrid fishes at One Tree Reef, Great Barrier Reef *Marine Biology* 95 167-71

[29] Palacios M M, Killen S S, Nadler L E, White J R and McCormick M I 2016 Top predators negate the effect of mesopredators on prey physiology *Journal of Animal Ecology* 85 1078-86

[30] Emslie M J, Cheal A J and Logan M 2017 The distribution and abundance of reef-associated predatory fishes on the Great Barrier Reef *Coral Reefs* 36 829-46

[31] Heatwole S J and Fulton C J 2013 Behavioural flexibility in reef fishes responding to a rapidly changing wave environment *Marine biology* 160 677-89

[32] Siebeck U E and Marshall N J 2001 Ocular media transmission of coral reef fish—can coral reef fish see ultraviolet light? *Vision research* 41 133-49

[33] Waniez L, Thollot P and Kulbicki M 1997 Effects of marine reserves on coral reef fish communities from five islands in New Caledonia *Coral reefs* 16 215-24

[34] Yi M, Gu S, Luo Z, Lin H-D and Yan Y 2019 Characterization of the complete mitochondrial genome of the coral reef fish, Hemigymnus melapterus (Pisces: Labridae) and its phylogenetic implications *Mitochondrial DNA Part B* 4 4168-9

[35] Scherrer B 1984 *Biostatistique* (Quebec, Canada: Gaetan Morin Editeur)

[36] Zar J H 2010 *Biostatistical Analysis* (New Jersey: Pearson Prentice Hall)
[37] Tresnati J, Yasir I, Yanti A, Aprianto R, Rahmani P and Tuwo A 2019 Maturity stages of the redbreasted wrasse Cheilinus fasciatus. In: *IOP Conference Series: Earth and Environmental Science* 370 012016 IOP Publishing

[38] Yanti A, Tresnati J, Yasir I, Syafiuddin, Rahmani P Y, Aprianto R and Tuwo A 2020 Size at the maturity of sea cucumber Holothuria scabra. Is it an overfishing sign in Wallacea Region? In: *IOP Conference Series: Earth and Environmental Science* 473 012056 IOP Publishing

[39] Aswady U 2019 Rasio Kelamin dan Ukuran Pertama Kali Matang Gonad Ikan Kakatua (Scarus rivulatus Valenciennes, 1840) di Perairan Desa Tanjung Tiram, Kecamatan Moramo Utara Kabupaten Konawe Selatan *Jurnal Manajemen Sumber Daya Perairan* 4

[40] Choat J and Robertson D 1975 *Intersexuality in the animal kingdom* (Springer) pp 263-83

[41] Kobayashi K and Suzuki K 1990 Gonadogenesis and sex succession in the protogynous wrasse, Cirrhilabrus temmincki, in Suruga bay, central Japan *Japanese Journal of Ichthyology* 37 256-64

[42] Effendie M 2002 *Biologi Perikanan* (Edisi Revisi) *Penerbit Yayasan Pustaka Nusantara* Yogyakarta 163

[43] Tuwo A and Conand C 1992 Reproductive biology of the holothurian Holothuria forskali (Echinodermata) *J. mar. bid. Ass. U.K.* 72 745-58

[44] Craig P 1998 Temporal spawning patterns of several surgeonfishes and wrasses in American Samoa *Pacific Science* 52 35-9

[45] Taylor M H 1984 Lunar synchronization of fish reproduction *Transactions of the American Fisheries Society* 113 484-93

[46] Fulton C, Bellwood D and Wainwright P 2001 The relationship between swimming ability and habitat use in wrasses (Labridae) *Marine Biology* 139 25-33

[47] Sadovy Y, Kulbicki M, Labrosse P, Letourneur Y, Lokani P and Donaldson T 2003 The humphead wrasse, Cheilinus undulatus: synopsis of a threatened and poorly known giant coral reef fish *Reviews in fish Biology and Fisheries* 13 327-64

[48] Irmawati, Tresnati J, Nadiarti and Fachruddin L 2019 Sex Differentiation and Gonadal Development of striped snakehead (Channa striata Bloch, 1793). In: *IOP Conference Series: Earth and Environmental Science* 253 012007 IOP Publishing

[49] Kantun W, Mallawa A and Tuwo A 2018 Reproductive pattern of yellowfin tuna Thunnus albacares in deep and shallow sea FAD in Makassar Strait *AACL Bioflux* 11 884-93

[50] Tuwo A and Tresnati J eds 2015 *Sea Cucumber Farming in Southeast Asia (Malaysia, Philippines, Indonesia, Vietnam)* (New Jersey: Wiley Blackwell)

[51] Yanti A, Yasir I, Rahmani P Y, Aprianto R, Tuwo A and Tresnati J 2019 Macroscopic characteristics of the gonad maturity stage of dusky parrotfish Scarus niger. In: *IOP Conference Series: Earth and Environmental Science* 370 012051 IOP Publishing

[52] Cardinale M, Colloca F and Ardizzone G D 1998 Growth and reproduction of Xyrichthys novacula (Pisces: Labridae) in the Mediterranean Sea *Scientia Marina* 62 193-201

[53] Allen G and Erdmann M 2012 *Reef Fishes of the East Indies: volumes I-III*, Tropical Reef Research *Perth, Australia*

[54] Choat J H and Robertson D R 2002 Age-based studies *Coral reef fishes: dynamics and diversity in a complex ecosystem*. *Academic Press, San Diego, California, USA* 57-80

[55] Nasution S H 2017 Karakteristik Reproduksi Ikan Endemik *Rainbow selebensis* (Telmatherina cerebensis Boulenger) di Danau Towuti *Jurnal Penelitian Perikanan Indonesia* 11 29-37