FOURIER MULTIPLIERS FOR HARDY SPACES OF DIRICHLET SERIES

ALEXANDRU ALEMAN, JAN-FREDRIK OLSEN AND EERO SAKSMAN

Abstract. We obtain new results on Fourier multipliers for Dirichlet-Hardy spaces. As a consequence, we establish a Littlewood-Paley type inequality which yields a simple proof that the Dirichlet monomials form a Schauder basis for $p > 1$.

1. Introduction

The Dirichlet-Hardy spaces H^p were first explicitly studied in the papers [2, 8]. (We refer to these papers for full details of the discussion in this section. See also [6] for some historical remarks.) For $p = 2$, they consist of Dirichlet series \(\sum_{n \in \mathbb{N}} a_n n^{-s} \) with square-summable coefficients, where $s = \sigma + it$ denotes the complex variable. By the Cauchy-Schwarz inequality, functions in H^2 converge on the half-plane $\mathbb{C}_{1/2} = \{ \sigma > 1/2 \}$. These spaces connect function space theory to analytic number theory. A striking illustration of this connection is given by the Riemann-zeta function $\zeta(s) = \sum_{n \in \mathbb{N}} n^{-s}$ that gives the reproducing kernel of H^2. Indeed, the function $k_w(s) := \zeta(s + \bar{w})$, for Re $w > 1/2$, has the property that $\langle f|k_w \rangle = f(w)$ for all $f \in H^2$, as may be verified by inspection.

For general $p > 0$, these spaces are defined to be the closure of Dirichlet polynomials in the norm

\[
\lim_{T \to \infty} \left(\frac{1}{2T} \int_{-T}^{T} \left| \sum_{n=1}^{N} a_n n^{-it} \right|^p dt \right)^{1/p}.
\]

(1)

This norm can be understood as the ergodic theorem on the infinite dimensional polydisk \mathbb{T}^∞. To briefly explain this, we note that \mathbb{T}^∞ is a compact Abelian group with the product of the normalised Lebesgue measures $d\theta_i/2\pi$ on each copy of \mathbb{T} as its unique normalised Haar measure $d\theta$. It has dual group $\mathbb{Z}_\text{fin}^\infty$, i.e., sequences in \mathbb{Z}^∞ with finitely many non-zero coefficients. So by standard Fourier analysis on groups, $F \in L^p(\mathbb{T}^\infty)$ has a Fourier expansion $F \sim \sum_{\nu \in \mathbb{Z}_\text{fin}^\infty} a_{\nu} z^\nu$, where $z \in \mathbb{T}^\infty$ and we use multi-index notation. The central observation, essentially

\begin{itemize}
 \item[2000 Mathematics Subject Classification.] Primary 30B50; Secondary 42B15, 42B30, 46B15.
 \item[Key words and phrases.] Dirichlet series, Hardy spaces, infinite polydisc, Schauder bases, Fourier multipliers.
 \item[The third author was supported by the Finnish CoE in Analysis and Dynamics Research, and by the Academy of Finland, projects 113826 & 118765.]
\end{itemize}
called Kroenecker’s lemma, is that the path \(\phi : t \mapsto (2^{-it}, \ldots, p_i^{-it}, \ldots) \), where \(p_i \) is the \(i \)'th prime number, is ergodic in \(\mathbb{T}^\infty = \{ z = (z_1, \ldots) : z_i \in \mathbb{T} \} \). The ergodic theorem now says exactly that for continuous functions

\[
\lim_{T \to \infty} \left(\frac{1}{2T} \int_{-T}^{T} |F \circ \phi(t)|^p \, dt \right)^{1/p} = \|F\|_{L^p(\mathbb{T}^\infty)}
\]

(2)

For \(F \) with spectral support only in the narrow cone \(\mathbb{N}_{\text{fin}}^\infty \), one checks that \(F \circ \phi \) is a Dirichlet series and that the right-hand side of this formula is exactly (1), provided we identify \(a_\nu \) with \(a_n \) when \(n = p_1^{\nu_1} p_2^{\nu_2} \cdots \). (Note that the same argument can be made using only the Stone-Weierstrass theorem, see [11]) We define the subspace \(H^p(\mathbb{T}^\infty) \) to consist of exactly these functions. By the uniqueness of prime number factorization, the map from \(H^p(\mathbb{T}^\infty) \) to \(\mathcal{H}^p \) given by \(F \mapsto F \circ \phi \) has an inverse, which is called the Bohr lift in honor of H. Bohr.

The structure of the paper is as follows. In Section 2 we use a technique of Fefferman to study certain Fourier multipliers on the spaces \(L^p(\mathbb{T}^\infty) \). These results are used in Section 3 to obtain a Littlewood-Paley inequality for the spaces \(\mathcal{H}^p \): for \(f = \sum_{n \in \mathbb{N}} a_n n^{-s} \) in \(\mathcal{H}^p \) with \(p > 1 \) and \(c > 1 \), we have

\[
\| f \|_{\mathcal{H}^p} \simeq |a_0| + \left\| \left(\sum_{k \geq 0} \left| \sum_{n \in \mathbb{N}_{\text{fin}}^{\infty}} a_n n^{-s} \right|^2 \right)^{1/2} \right\|_{\mathcal{H}^p}
\]

(3)

As an application, we observe that the functions \(\{n^{-s}\}_{n \in \mathbb{N}} \) constitute a Schauder basis for the spaces \(\mathcal{H}^p \) for \(p > 1 \).

2. Fourier Multipliers

To state and prove our theorem on Fourier multipliers, we first introduce some notation, and review some necessary background. Throughout the section, \(p \geq 1 \).

A measurable function \(m : \mathbb{R} \to \mathbb{C} \) is called a Fourier multiplier on \(L^p(\mathbb{R}) \) if the operator \(f \mapsto \mathcal{F}^{-1}(m(\xi) \hat{f}(\xi)) \) is bounded on \(L^p(\mathbb{R}) \), where \(\mathcal{F} \) denotes the Fourier transform. On the torus \(\mathbb{T} \), a function \(m : \mathbb{Z} \to \mathbb{C} \) is called a multiplier if the map defined by the relation \(e^{int} \mapsto m(n)e^{int} \) extends to a bounded operator on \(L^p(\mathbb{T}) \). Finally, a function \(m : \mathbb{Z}_{\text{fin}}^\infty \to \mathbb{C} \) is called a multiplier if the operator

\[
\sum_{\nu \in \mathbb{Z}_{\text{fin}}^\infty} a_\nu e^{i\nu \cdot} \mapsto \sum_{\nu \in \mathbb{Z}_{\text{fin}}^\infty} m(\nu)a_\nu e^{i\nu \cdot}
\]

is bounded on \(L^p(\mathbb{T}^\infty) \). Here we use the notation \(z = e^{i\theta} \) for a point in \(\mathbb{T}^\infty \). We denote the respective operator norms by \(\|m\|_{\mathcal{M}_p(X)} \), where \(X = \mathbb{R}, \mathbb{T} \) or \(\mathbb{T}^\infty \) as appropriate. We refer to the operator of multiplication by \(m \) by \(T_m \).

It is well-known that results for multipliers on \(\mathbb{T} \) may be deduced from those on the real line by the method of transference. More specifically, let \(m : \mathbb{R} \to \mathbb{C} \) be a
regulated function, i.e.,
\[m(\xi) = \lim_{\varepsilon \to 0^+} \frac{1}{2\varepsilon} \int_{-\varepsilon}^{\varepsilon} m(\xi + t)dt, \quad \forall \xi \in \mathbb{R}. \]

The basic result on transference, due to de Leeuw [4] (see [5, Section 3.6.2] for proofs), states that if a regulated function \(m \) is a multiplier on \(\mathbb{R} \), then \(m \) restricted to \(\mathbb{Z} \) is a multiplier on the torus. A converse statement also holds. In fact,
\[\|m\|_{M_p(\mathbb{R})} = \sup_{\gamma > 0} \|m(\gamma \cdot)\|_{M_p(\mathbb{T})}. \quad (4) \]

Our argument relies in a crucial way on this formula.

To formulate our result, we introduce some additional notation. For \(\nu \in \mathbb{Z}_\infty \), one associates a unique rational number:
\[r: \nu \mapsto - \to r_\nu \to p_1^{\nu_1} \cdots p_k^{\nu_k}, \]
where \(p_i \) is the \(i \)’th prime number. So, given a function \(m: \mathbb{Q}_+ \to \mathbb{C} \), we obtain a function \(m \circ r: \mathbb{Z}_\infty \to \mathbb{C} \). In particular, \(m \) induces in this way a densely defined Fourier multiplier on \(L^p(\mathbb{T}_\infty) \) by
\[T_m: \sum_{\nu \in \mathbb{Z}_\infty} a_\nu e^{i \nu \cdot \theta} \mapsto \sum_{\nu \in \mathbb{Z}_\infty} m(r_\nu) a_\nu e^{i \nu \cdot \theta}. \]

Our multiplier result is as follows:

Theorem 1. Let \(p \in [1, \infty) \) and \(m: \mathbb{R}_+ \to \mathbb{C} \) be a regulated function continuous at rational points. Then \(m \circ r \) is a Fourier multiplier on \(L^p(\mathbb{T}_\infty) \), where \(r(\nu) = p_1^{\nu_1} \cdots p_k^{\nu_k} \) for \(\nu \in \mathbb{Z}_\infty \), if and only if \(m \circ \exp \) is a Fourier multiplier on \(L^p(\mathbb{T}_\infty) \). Moreover,
\[\|m \circ r\|_{M_p(\mathbb{T}_\infty)} = \|m \circ \exp\|_{M_p(\mathbb{R})}. \]

Proof. We split the proof of the theorem into two parts.

First, we establish that \(\|m \circ r\|_{M_p(\mathbb{T}_\infty)} \leq \|m \circ \exp\|_{M_p(\mathbb{R})} \). Fix a polynomial
\[f = \sum_{\nu \in \mathbb{Z}_\infty} a_\nu e^{i \nu \cdot \theta}. \]

Observe that since a polynomial only depends on a finite number of variables, we may restrict our attention to \(L^p(\mathbb{T}^d) \), for some \(d \in \mathbb{N} \). As a multiplier on \(L^p(\mathbb{T}^d) \), we need only consider \(\nu \in \mathbb{Z}^d \). Explicitly, we only need to consider the multiplier
\[\nu \mapsto m(r_\nu) = m(e^{i \nu_1 \log p_1 + \cdots + \nu_d \log p_d}), \quad \nu \in \mathbb{Z}^d, \]
acting on \(L^p(\mathbb{T}^d) \). The idea is to introduce a change of variables on \(\mathbb{T}^d \) so that as a multiplier, this function only acts on the first variable.

To do this, we need to make an approximation. For \(\delta > 0 \), choose \(Q, a_1, \ldots, a_d \in \mathbb{N} \) so that
\[\left| \frac{a_j}{Q} - \log p_j \right| < \delta, \quad \text{for } j = 1, \ldots, d. \]
We may assume that \(a_1\) and \(a_2\) are relatively prime (indeed, by the prime number theorem, we may choose both \(a_1\) and \(a_2\) to be prime), whence there exist \(q_1, q_2 \in \mathbb{N}\) so that \(a_1q_2 - a_2q_1 = 1\). This ensures that the \(d \times d\) matrix

\[
A = \begin{pmatrix}
 a_1 & a_2 & a_3 & \cdots & a_d \\
 q_1 & q_2 & 0 & \cdots & 0 \\
 0 & 0 & 1 & \cdots & 0 \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & 0 & \cdots & 1
\end{pmatrix}
\]

satisfies \(\det A = 1\). A fortiori, \(A^{-1}\) also has integer coefficients, whence \(A : \mathbb{Z}^d \to \mathbb{Z}^d\) is bijective. Especially, one checks that \(A\) induces a bijective and measure preserving diffeomorphism on \(\mathbb{T}^d = \mathbb{R}^d/\mathbb{Z}^d\).

We next introduce a function defined on \(\nu \in \mathbb{Z}^d\) by

\[
M(\nu) = m \left(e^{\frac{\nu_1}{q_1} + \cdots + \frac{\nu_d}{q_d}} \right).
\]

Since \(m\) was assumed to be continuous on rational numbers, it follows that for any \(\epsilon > 0\) small enough, we may choose \(\delta > 0\) sufficiently small in the above approximation, so that \([M(\nu) - m(r)] < \epsilon\) uniformly on the finite index set corresponding to the set of non-zero coefficients of the polynomial \(f\). In particular, this implies that we can make \(\|T_M f - T_m f\|_{L^p(\mathbb{T}^d)}\) arbitrarily small. In light of (4), to obtain the desired inequality, we infer that it suffices to prove

\[
\|T_M f\|_{L^p(\mathbb{T}^d)} \leq \|m \circ \exp(Q^{-1}.)\|_{M_p(\mathbb{T})}.
\] (5)

To verify (5), let us first employ the change of variables \(\theta = A^T \theta'\) to get

\[
\|T_M f\|_{L^p(\mathbb{T}^d)}^p = \int_{\mathbb{T}^d} \left| \sum_{\nu \in \mathbb{Z}^d} M(\nu) a_{\nu} e^{i\nu \cdot A^T \theta'} \right|^p d\theta' = \int_{\mathbb{T}^d} \left| \sum_{\nu \in \mathbb{Z}^d} M(\nu) a_{\nu} e^{iA \nu \cdot \theta'} \right|^p d\theta'.
\]

If we change indices by \(\nu' = A \nu\), and observe that \(M(\nu) = m(e^{\nu'/Q})\), this becomes

\[
\int_{\mathbb{T}^d} \left| \sum_{\nu' \in \mathbb{Z}^d} m(e^{\nu'/Q}) a_{A^{-1} \nu'} e^{i\nu' \cdot \theta'} \right|^p d\theta' = \int_{\mathbb{T}^{d-1}} \left| \sum_{\nu'_{d-1}} b_{\nu'_{d-1}} m(e^{\nu'_{d-1}/Q}) e^{i\nu'_{d-1} \theta'} \right|^p \frac{d\theta'_2 \cdots d\theta'_d}{2\pi},
\]

where \(b_{\nu'_{d-1}} = b_{\nu'_{d-1}}(\theta'_2, \ldots, \theta'_d)\) is constant with respect to \(\theta'_1\). This is less than or equal to

\[
\|m \circ \exp(Q^{-1}.)\|_{M_p(\mathbb{T})}^p \int_{\mathbb{T}^{d-1}} \left| \sum_{\nu'_{d-1}} b_{\nu'_{d-1}} e^{i\nu'_{d-1} \theta'} \right|^p \frac{d\theta'_2 \cdots d\theta'_d}{2\pi} = \|m \circ \exp(Q^{-1}.)\|_{M_p(\mathbb{T})} \|f\|_{L^p(\mathbb{T}^d)}^p,
\]

which exactly yields the desired inequality (5).

We turn to the second part of the proof, where we establish the inequality \(\|m \circ \exp\|_{M_p(\mathbb{R})} \leq \|m \circ r\|_{M_p(\mathbb{T}^\infty)}\). By (4), it is sufficient to show that, for every \(\gamma > 0\), we have \(\|m \circ \exp(\gamma \cdot)\|_{M_p(\mathbb{T})} \leq \|m \circ r\|_{M_p(\mathbb{T}^\infty)}\). We now fix a polynomial
in one variable. As our idea is to work the previous argument backwards using only two variables, we express the polynomial as trivially depending on a second variable:

\[f(\theta_1', \theta_2') = \sum_{|n| \leq N} a_{(n,0)} e^{i\theta_1'}. \]

Here \(a_{(n,m)} \) is zero for all \((n, m) \notin \mathbb{N} \times \{0\} \).

As in the first part of the proof, we first fix \(\delta > 0 \) and introduce a change of variables, this time induced by the matrix

\[B = \begin{pmatrix} b + 1 & b \\ 1 & 1 \end{pmatrix}. \]

Above, the integer \(b \) is chosen so large that there exist prime numbers \(p_j, p_k \) for which

\[|\gamma(b + 1) - \log p_j| < \delta/N, \quad \text{and} \quad |\gamma b - \log p_k| < \delta/N. \]

This is possible, since from the prime number theorem it holds that \(\log(p_{n+1}/p_n) \to 0 \) when \(n \to \infty \). As we have \(\det B = 1 \), the matrix \(B \) induces a measure preserving diffeomorphism of \(\mathbb{T}^2 \).

Setting \(\theta = B^T \theta' \) and \((n, 0)^T = B \nu \), we get

\[\|T_{m \exp(\gamma)} f\|^p_{L^p(\mathbb{T})} = \left(\int_{\mathbb{T}^2} \left| \sum_{|n| \leq N} m(e^{\gamma n}) a_{(n,0)} e^{i(n,0) \cdot \theta'} \right|^p \frac{d\theta_1' d\theta_2'}{2\pi} \right)^{1/p} \]

\[= \left(\int_{\mathbb{T}^2} \left| \sum_{\nu \in \mathbb{Z}^2} m(\exp(\gamma((b + 1)\nu_1 + b\nu_2))) a_{B\nu} e^{i\nu \cdot \theta} \right|^p \frac{d\theta_1 d\theta_2}{2\pi} \right)^{1/p}. \]

As \(\nu = (n, -n)^T \), we are only summing over \(\nu \in \mathbb{Z}^2 \) for which \(|\nu| \leq 2N \). So given any \(\epsilon > 0 \), by choosing \(\delta > 0 \) small enough, we make

\[|m \circ \exp(\gamma n) - m(p_j^{\nu_1} p_k^{\nu_2})| = |m(e^{\gamma(b_1 \nu_1 + b_2 \nu_2)}) - m(e^{\nu_1 \log p_j + \nu_2 \log p_k})| < \epsilon \]

uniformly for indices \(\nu \) so that \(a_{B\nu} \) is non-zero. This implies that we only need to establish that

\[\int_{\mathbb{T}^2} \left| \sum_{\nu \in \mathbb{Z}^2} m(p_j^{\nu_1} p_k^{\nu_2}) a_{B\nu} e^{i\nu \cdot \theta} \right|^p \frac{d\theta_1 d\theta_2}{2\pi} \leq \|m \circ r\|_{M^p(\mathbb{T}^\infty)}^p \|f\|_{L^p(\mathbb{T})}^p. \]

But this is readily seen to hold, as the left-hand side may be interpreted as \(T_{mor} \) applied to a function \(F \) depending on the \(j \)'th and \(k \)'th copy of \(\mathbb{T} \) in \(\mathbb{T}^\infty \), and where \(\|F\|_{L^p(\mathbb{T}^\infty)} = \|f\|_{L^p(\mathbb{T})} \) holds by reversing the changes in notation and variables. \(\square \)

3. Some Consequences and open problems

In this section we deduce a Littlewood-Paley inequality from Theorem 1 and also discuss Schauder bases for the spaces \(\mathcal{H}^p \).
First, we observe how a characterisation due to Marcinkiewicz is inherited by multipliers of the form discussed in the previous section. To do this, we recall that the total variation of a complex function f on the interval (a, b) is given by

$$
\|f\|_{BV(a,b)} = \sup\sum_{n=1}^{N} |f(x_j) - f(x_{j-1})|,
$$

where the supremum is taken over all sequences $a = x_0 < x_1 < \cdots < x_n = b$. For fixed $\eta > 1$, we also use the notation

$$
I_k = \begin{cases}
[e^{\eta^k}, e^{\eta^{k+1}}] & k \geq 1, \\
[e^{-\eta}, e^{\eta}] & k = 0, \\
[e^{-\eta^{k+1}}, e^{-\eta^k}] & k \leq -1.
\end{cases}
$$

We now get:

Corollary 1. Suppose that $p \in (1, \infty)$ and $\eta > 1$, then there exists a constant $C > 0$ such that for all regulated $m : \mathbb{R}_+ \rightarrow \mathbb{C}$ that are continuous at rationals we have

$$
\|m \circ r\|_{M_p(\mathbb{T}^\infty)} \leq C \left(\|m\|_{L^\infty(0,\infty)} + \sup_{k \in \mathbb{Z}} \|m\|_{BV(I_k)}\right).
$$

Proof. Since $m \circ \exp$ and m have the same sup-norm, and $\|m \circ \exp\|_{BV(e^{\eta^k}, e^{\eta^{k+1}})} = \|m\|_{BV(I_k)}$, the Marcinkiewicz bound follows immediately from its classical counterpart, see [5, Section 5.2.1].

We also formulate a Hörmander-Mihlin type multiplier theorem for $p = 1$, see [9, 7] (a proof is also found in [5, Theorem 5.2.7]). Recall that $m : \mathbb{R} \rightarrow \mathbb{C}$ satisfies the Hörmander-Mihlin condition if m is continuous and piecewise differentiable on $\mathbb{R} \setminus \{0\}$ with

$$
\|m\|_{L^\infty(\mathbb{R})} + \sup_{x \neq 0} |xf'(x)| < \infty.
$$

If this holds, then $m \in M_p(\mathbb{R})$ for any $p \in (1, \infty)$. In addition, m defines a multiplier operator that is bounded from $H^1(\mathbb{R})$ to $L^1(\mathbb{R})$ with norm bounded by (7). For our purposes it is useful to observe that (7) remains invariant if m is replaced by $m(\lambda \cdot)$ for any $\lambda > 0$.

Corollary 2. Assume that $m : (0, \infty) \rightarrow \mathbb{C}$ is continuous and piecewise differentiable. Then

$$
\|m \circ r\|_{H^1(\mathbb{T}^\infty) \rightarrow L^1(\mathbb{T}^\infty)} \leq c \left(\|m\|_{L^\infty(0,\infty)} + \sup_{t > e} |t \log(t) m'(t)|\right).
$$

Proof. The condition of m ensures that it can be modified on $(0,e)$ so that it satisfies (7) on \mathbb{R}. Hence $T_{m \circ \exp} : H^1 \rightarrow L^1$ is bounded in one variable with the stated bound. The case $p = 1$ of the proof of Theorem [1] now applies without changes. One simply needs to observe that after the change of variables, the assumption $f \in H^1(\mathbb{T}^\infty)$ implies that $a_{A-1,\nu} = 0$ if $\nu_1 < 0$, whence the one-dimensional multiplier $m(e^{\nu' / Q})$ is applied only to analytic functions.
We proceed to obtain a Paley-Littlewood type of theorem for $L^p(\mathbb{T}^\infty)$ as a consequence of Corollary 1. Fix a rational number $\eta > 1$, and consider intervals I_k as above. For $f = \sum_{\nu \in \mathbb{Z}_m} a_\nu e^{i\nu \theta}$ in $L^p(\mathbb{T}^\infty)$, define the square function

$$S(f) = \left(\sum_k |f_k(\theta)|^2 \right)^{1/2}$$

where

$$f_k(\theta) = \sum_{\nu: r_\nu \in I_k} a_\nu e^{i\nu \theta}.$$

The following result is clearly the most interesting in the special case of \mathcal{H}^p, which we stated as formula (3) in the introduction.

Corollary 3. Suppose that $p \in (1, \infty)$, and that $\eta > 1$ is a rational number. Then there exist constants such that for all $f \in L^p(\mathbb{T}^\infty)$, we have

$$\|f\|_{L^p(\mathbb{T}^\infty)} \approx \|S(f)\|_{L^p(\mathbb{T}^\infty)}.$$

Proof. We apply a standard argument. Define $m_\epsilon = \sum_{k \in \mathbb{Z}} \epsilon_k \chi_{I_k}$ for given $\epsilon \in \{-1, 1\}^\mathbb{Z}$. By Corollary 1, there exists some $C > 0$, independent of ϵ, such that $\|m_\epsilon \circ \tau\|_{M_p(\mathbb{T}^\infty)} \leq C$. Here, m_ϵ is made regulated by defining it appropriately on the endpoints of the intervals I_k. This has no effect on the operator $T_{m_\epsilon} r_\tau$ as the endpoints are irrational. Next, since $T_{m_\epsilon} r_\tau T_{m_\epsilon} = \text{Id}$, we obtain for any $g \in L^p(\mathbb{T}^\infty)$ that $\|T_{m_\epsilon} r_\tau g\|_{L^p(\mathbb{T}^\infty)} \approx \|g\|_{L^p(\mathbb{T}^\infty)}$. This holds uniformly in ϵ. The corollary now follows by averaging over ϵ and invoking Khintchine’s inequality [5, p. 435].

This result should be compared to a Paley-Littlewood inequality obtained from martingale theory. Indeed, a function $f \in L^p(\mathbb{T}^\infty)$ may be considered as a martingale $\{f(N)\}$ with respect to the filtration induced by the increasing sequence of σ-algebras corresponding to the sequence $\{\mathbb{T}^N\}_{N \in \mathbb{N}}$. The function $f(N)$, also called the conditional expectation, is obtained from f by integrating away all but the N first variables (see, e.g., [3] where these are called the ‘N-te Abschnitt’). A Paley-Littlewood inequality is now obtained as a direct corollary of the classical Burkholder’s square function inequality [3] (see also [3, Theorem 5.4.7]). Set $\Delta_N f = f_N - f_{N-1}$. Then

$$\|f\|_{L^p(\mathbb{T}^\infty)} \approx \left(\sum |\Delta_N f|^2 \right)^{1/2} \|f\|_{L^p(\mathbb{T}^\infty)}.$$

Actually, the same argument that was used to prove Corollary 3 yields (3) without using probability theory (this observation was applied in [1]).

In the following corollary, we consider the functions $1, 2^{-s}, 3^{-s}, \ldots$. It is clear that they form an orthogonal basis in \mathcal{H}^2. Luckily, they also yield a natural basis in \mathcal{H}^p:

Corollary 4. Suppose $p \in (1, \infty)$. Then the functions n^{-s}, $n = 1, 2, \ldots$, form a Schauder basis for \mathcal{H}^p.

Proof. By the density and independence of these functions, and standard Schauder basis theory, it suffices to establish that the truncations \(\sum_{n=1}^{\infty} a_n n^{-s} \mapsto \sum_{n=1}^{N} a_n n^{-s} \) are bounded on \(\mathcal{H}^p \), uniformly with respect to \(N \). Let \(\alpha \in (0, 1/2) \) be an irrational number. According to Corollary \(\[\] \) the indicator functions of the intervals \((0, N + \alpha) \) yield uniformly bounded multipliers on \(L^p(\mathbb{T}^\infty) \). The result follows. \(\square \)

Although we have not been able to find this result stated explicitly in the literature, we indicate how it can be deduced from \([10, \text{Theorem 8.7.2}]\). This result deals with the space \(L^p(G) \), where \(G \) is a compact abelian group that has a dual \(\Gamma \) which admits an order relation \(\mathcal{P} \). I.e., \(\mathcal{P} \) is a subset of \(\Gamma \) such that \(\mathcal{P} \cup (-\mathcal{P}) = \Gamma \), and \(\mathcal{P} \cap (-\mathcal{P}) = \{0\} \).

Under any such order relation one can define \(\text{sgn}(\gamma) \in \{-1, 0, 1\} \) according to whether or not \(\gamma \) is in \(\mathcal{P} \) or is in \(\{0\} \). With this, the statement is that the Hilbert transform \(T_\mathcal{P} : \sum_{\gamma \in \Gamma} a_\gamma e_\gamma \mapsto -i \sum_{\gamma \in \Gamma} \text{sgn}(\gamma) e_\gamma \) is bounded on \(L^p(G) \), where \(e_\gamma \) is the Fourier character corresponding to \(\gamma \in \Gamma \). In particular, \(\mathcal{P} = \{\nu : \log r_\nu \leq 0\} \) is an order relation in the dual \(\mathbb{Z}^\infty_{\text{fin}} \) of \(\mathbb{T}^\infty \). Hence the corresponding Riesz projection \(R_\mathcal{P} \), where \(R_\mathcal{P} e_\gamma := \chi_{\{r_\gamma \geq 0\}} e_\gamma \), is bounded on \(L^p(\mathbb{T}^\infty) \). If \(r \to \nu(r) \) is the inverse of the map \(r \), we obtain uniformly in \(N \)

\[
\left\| \sum_{n \leq N} a_n n^{-s} \right\|_{\mathcal{H}^p} = \left\| e_{\nu(N)} R_\mathcal{P} (e_{-\nu(N)} f) \right\|
\]

for functions \(f(s) = \sum_{n \in \mathbb{N}} a_n n^{-s} \) in \(\mathcal{H}^p \). As above, it follows immediately that \(\{n^{-s}\} \) is a Schauder basis for \(\mathcal{H}^p \) when \(p > 1 \).

We end with the following open questions which may seem innocent, but they could be somewhat hard taking into account the quite intractable and mysterious nature of the spaces \(\mathcal{H}^p \) for \(p \neq 2 \) as discussed, e.g., in \([11]\).

Question 1. Does \(\mathcal{H}^1 \) have a Schauder basis?

Question 2. Does \(\mathcal{H}^p \) have an unconditional basis if \(p \in (1, \infty) \setminus \{2\} \)?

ACKNOWLEDGEMENTS

This work was done as part of the research program “Complex Analysis and Spectral Problems” 2010/2011 at the Centre de Recerca Matemàtica (CRM), Bellaterra, Barcelona. We would also like to thank Anders Olofsson for valuable discussions on the topic.

REFERENCES

1. Nakhle Asmar, Florence Newberger, and Saleem Watson, *A multiplier theorem for Fourier series in several variables*, Colloq. Math. 106 (2006), no. 2, 221–230.

2. Frédéric Bayart, *Hardy spaces of Dirichlet series and their composition operators*, Monatsh. Math. 136 (2002), no. 3, 203–236.
3. D. L. Burkholder, *Martingale transforms*, Ann. Math. Statist. **37** (1966), 1494–1504.
4. Karel de Leeuw, *On L_p multipliers*, Ann. of Math. (2) **81** (1965), 364–379.
5. Loukas Grafakos, *Classical Fourier analysis*, second ed., Graduate Texts in Mathematics, vol. 249, Springer, New York, 2008.
6. Håkan Hedenmalm, Peter Lindqvist, and Kristian Seip, *Addendum to "A Hilbert space of Dirichlet series and systems of dilated functions in $L^2(0,1)$"*, Duke Math. J. **99** (1999), 175–178.
7. Lars Hörmander, *Estimates for translation invariant operators in L^p spaces*, Acta Math. **104** (1960), 93–140.
8. Håkan Hedenmalm, Peter Lindqvist, and Kristian Seip, *A Hilbert space of Dirichlet series and systems of dilated functions in $L^2(0,1)$*, Duke Math. J. **86** (1997), 1–37.
9. S. G. Mihlin, *On the multipliers of Fourier integrals*, Dokl. Akad. Nauk SSSR (N.S.) **109** (1956), 701–703.
10. Walter Rudin, *Fourier Analysis on Groups*, Interscience Publishers (a division of John Wiley and Sons), New York-London, 1962.
11. Eero Saksman and Kristian Seip, *Integral means and boundary limits of Dirichlet series*, Bull. Lond. Math. Soc. **41** (2009), no. 3, 411–422.

Centre for Mathematical Sciences, Lund University, P.O. Box 118, SE-22100 Lund, Sweden

E-mail address: aleman@maths.lth.se

Department of Mathematics and Statistics, University of Helsinki, P.O. Box 68, FI-00014 Helsinki, Finland

E-mail address: eero.saksman@helsinki.fi

Centre for Mathematical Sciences, Lund University, P.O. Box 118, SE-22100 Lund, Sweden

E-mail address: janfreol@maths.lth.se