ON A FAMILY OF HOPF ALGEBRAS OF DIMENSION 72

NICOLÁS ANDRUSKIEWITSC AND CRISTIAN VAY

Abstract. We investigate a family of Hopf algebras of dimension 72 whose coradical is isomorphic to the algebra of functions on S_3. We determine the lattice of submodules of the so-called Verma modules and as a consequence we classify all simple modules. We show that these Hopf algebras are unimodular (as well as their duals) but not quasitriangular; also, they are cocycle deformations of each other.

Introduction

The study of finite dimensional Hopf algebras over an algebraically closed field k of characteristic 0 is split into two different classes: the class of semisimple Hopf algebras and the rest. The Lifting Method from [AS] is designed to deal with non-semisimple Hopf algebras whose coradical is a Hopf subalgebra. Pointed Hopf algebras, that is Hopf algebras whose coradical is a group algebra, were intensively studied by this Method. It is natural to consider next the class of Hopf algebras whose coradical is the algebra kG of functions on a non-abelian group G. This class seems to be interesting at least by the following reasons:

- The categories of Yetter-Drinfeld modules over the group algebra kG and kG, G a finite group, are equivalent. Thence, a lot sensible information needed for the Lifting Method (description of Yetter-Drinfeld modules, determination of finite dimensional Nichols algebras) can be translated from the pointed case to this case—or vice versa.

- The representation theory of Hopf algebras whose coradical is the algebra of functions on a non-abelian group looks easier than the representation theory of pointed Hopf algebras with non-abelian group, because the representation theory of kG is easier than that of G. Indeed, kG is a semisimple abelian algebra and we may try to imitate the rich methods in representation theory of Lie algebras, with kG playing the role of the Cartan subalgebra. We believe that the representation theory of Hopf algebras with coradical kG might be helpful to study Nichols algebras and deformations.

2000 Mathematics Subject Classification. 16W30.

This work was partially supported by ANPCyT-Foncyt, CONICET, Ministerio de Ciencia y Tecnología (Córdoba) and Secyt (UNC).

1An adaptation to general non-semisimple Hopf algebras was recently proposed in [AC].
We have started the consideration of this class in [AV], where finite dimensional Hopf algebras whose coradical is $\mathbb{k}S_3$ were classified and, in particular, a new family of Hopf algebras of dimension 72 was defined. The purpose of the present paper is to study these Hopf algebras. We first discuss in Section 1 some general ideas about modules induced from simple $\mathbb{k}G$-modules, that we call Verma modules. We introduce in Section 2 a new family of Hopf algebras, as a generalization of the construction in [AV], attached to the class of transpositions in S_n and depending on a parameter a. Our main contributions are in Section 3: we determine the lattice of submodules of the various Verma modules and as a consequence we classify all simple modules over the Hopf algebras of dimension 72 introduced in [AV]. Some further information on these Hopf algebras is given in Section 4 and Section 5. We assume that the reader has some familiarity with Yetter-Drinfeld modules and Nichols algebras $B(V)$; we refer to [AS] for these matters.

Conventions.

If V is a vector space, $T(V)$ is the tensor algebra of V. If S is a subset of V, then we denote by $\langle S \rangle$ the vector subspace generated by S. If A is an algebra and S is a subset of A, then we denote by (S) the two-sided ideal generated by S and by $\mathbb{k}(S)$ the subalgebra generated by S. If H is a Hopf algebra, then Δ, ϵ, S denote respectively the comultiplication, the counit and the antipode. We denote by \hat{R} the set of isomorphism classes of a simple R-modules, R an algebra; we identify a class in \hat{R} with a representative without further notice. If S, T and M are R-modules, we say that M is an extension of T by S when M fits into an exact sequence $0 \to S \to M \to T \to 0$.

1. Preliminaries

1.1. The induced representation.

We collect well-known facts about the induced representation. Let B be a subalgebra of an algebra A and let V be a left B-module. The induced module is $\text{Ind}_B^A V = A \otimes_B V$. The induction has the following properties:

- Universal property: if W is an A-module and $\varphi : V \to W$ is morphism of B-modules, then it extends to a morphism of A-modules $\overline{\varphi} : \text{Ind}_B^A V \to W$. Hence, there is a natural isomorphism (called Frobenius reciprocity): $\text{Hom}_B(V, \text{Res}^A_B W) \simeq \text{Hom}_A(\text{Ind}_B^A V, W)$. In categorical terms, induction is left-adjoint to restriction.

- Any finite dimensional simple A-module is a quotient of the induced module of a simple B-module.

Indeed, let S be a finite dimensional simple A-module and let T be a simple B-submodule of S. Then the induced morphism $\text{Ind}_B^A T \to S$ is surjective.

- If B is semisimple, then any induced module is projective.

The induction functor, being left adjoint to the restriction one, preserves projectives, and any module over a semisimple algebra is projective.
If \(A \) is a free right \(B \)-module, say \(A \cong B^{(I)} \), then \(\text{Ind}_B^A V = B^{(I)} \otimes_B V = V^{(I)} \) as \(B \)-modules, and a fortiori as vector spaces.

We summarize these basic properties in the setting of finite dimensional Hopf algebras, where freeness over Hopf subalgebras is known [NZ]. Also, finite dimensional Hopf algebras are Frobenius, so that injective modules are projective and vice versa.

Proposition 1. Let \(A \) be a finite dimensional Hopf algebra and let \(B \) be a semisimple Hopf subalgebra.

- If \(T \in \hat{B} \), then \(\dim \text{Ind}_B^A T = \frac{\dim T \dim A}{\dim B} \).
- Any finite dimensional simple \(A \)-module is a quotient of the induced module of a simple \(B \)-module.
- The induced module of a finite dimensional \(B \)-module is injective and projective.

\[\square \]

1.2. Representation theory of Hopf algebras with coradical a dual group algebra.

An optimal situation to apply the Proposition 1 is when the coradical of the finite dimensional Hopf algebra \(A \) is a Hopf subalgebra; in this case \(B = \text{coradical of } A \) is the best choice. It is tempting to say that the induced module of a simple \(B \)-module is a Verma module of \(A \).

Assume now the coradical \(B \) of the finite dimensional Hopf algebra \(A \) is the algebra of functions \(k^G \) on a finite group \(G \). In this case, we have:

- Any simple \(B \)-module has dimension 1 and \(\hat{B} \cong G \); for \(g \in G \), the simple module \(k_g \) has the action \(f \cdot 1 = f(g)1 \), \(f \in k^G \). Thus any simple \(A \)-module is a quotient of a Verma module \(M_g := \text{Ind}_{k^G}^A k_g \), for some \(g \in G \).
 - The ideal \(A\delta_g \) is isomorphic to \(M_g \) and \(A \cong \bigoplus_{g \in G} M_g \); here \(\delta_g \) is the characteristic function of the subset \(\{g\} \).

- Let \(g \in G \) such that \(\delta_g \) is a primitive idempotent of \(A \). Since \(A \) is Frobenius, \(M_g \cong A\delta_g \) has a unique simple submodule \(S \) and a unique maximal submodule \(N \); \(M_g \) is the injective hull of \(S \) and the projective cover of \(M_g/N \). See [CR, (9.9)].

- In all known cases, \(\text{gr} A \cong \mathcal{B}(V) \# k^G \), where \(V \) belongs to a concrete and short list. Hence, \(\dim M_g = \dim \mathcal{B}(V) \) for any \(g \in G \). More than this, in all known cases we dispose of the following information:

 - There exists a rack \(X \) and a 2-cocycle \(q \in Z^2(X,k^X) \) such that \(V \cong (kX,c^q) \) as braided vector spaces, see [AG] for details.
 - There exists an epimorphism of Hopf algebras \(\phi : T(V) \# k^G \to A \), see [AV, Subsection 2.5] for details. Note that \(\phi(f \cdot x) = \text{ad} f(\phi(x)) \) for all \(f \in k^G \) and \(x \in T(V) \).
o Let X be the set of words in X, identified with a basis of the tensor algebra $T(V)$. There exists $B \subset X$ such that the classes of the monomials in B form a basis of $B(V)$. The corresponding classes in A multiplied with the elements $\delta_g \in k^G, g \in G$, form a basis of A.

o If $x \in X$, then there exists $g_x \in G$ such that $\delta_h \cdot x = \delta_{hx} x$ for all $h \in G$. We extend this to have $g_x \in G$ for any $x \in X$.

o If $x \in X$, then $x^2 = 0$ in $B(V)$ and there exists $f_x \in k^G$ such that $x^2 = f_x$ in A.

Let $g \in G$. If $x \in B$, then we denote by m_x the class of x in M_g. Hence $(m_x)_{x \in B}$ is a basis of M_g. We may describe the action of A on this basis of M_g, at least when we know explicitly the relations of A and the monomials in B. To start with, let $f \in k^G$ and $x \in B$. Then

$$f \cdot m_x = f x \otimes 1 = f(1) \cdot x f(2) \otimes 1 = f(1) \cdot x \otimes f(2) \cdot 1$$\hspace{1cm}(1)$$

Let now $x = x_1 \ldots x_t$ be a monomial in B, with $x_1, \ldots, x_t \in X$. Set $y = x_2 \ldots x_t$; observe that y need not be in B.

$$x_1 \cdot m_x = x_1^2 x_2 \ldots x_t \otimes 1 = f x_1 y \otimes 1 = f x_1 (g_y g) y \otimes 1.$$\hspace{1cm}(2)$$

Let now M be a finite dimensional A-module. It is convenient to consider the decomposition of M in isotypic components as k^G-module: $M = \bigoplus_{g \in G} M[g]$, where $M[g] = \delta_0 \cdot M$. Note that

$$x \cdot M[g] = M[ge] \quad \text{for all } x \in B, g \in G.$$\hspace{1cm}(3)$$

For instance, (1) says that the isotypic components of the Verma module M_g are $M_g[H] = \langle m_x : x \in B, g_x g = h \rangle$.

2. Hopf algebras related to the class of transpositions in the symmetric group

2.1. Quadratic Nichols algebras.

Let $n \geq 3$; denote by O_2^n the conjugacy class of (12) in S_n and by $\text{sgn} : C_{S_n}(12) \to k$ the restriction of the sign representation of S_n to the centralizer of (12). Let $V_n = M((12), \text{sgn}) \in k^{S_n} \mathcal{YD}$; V_n has a basis $(x_{(ij)})_{(ij) \in \mathcal{D}_n}$ such that the action \cdot and the coaction δ are given by

$$\delta_h \cdot x_{(ij)} = \delta_{h(ij)} x_{(ij)} \quad \forall h \in S_n \text{ and } \delta(x_{(ij)}) = \sum_{h \in S_n} \text{sgn}(h) \delta_h \otimes x_{h^{-1}(ij)h}.$$\hspace{1cm}(4)$$

Let $n = 3, 4, 5$. By [MS, G], we know that $B(V_n)$ is quadratic and finite dimensional; actually, the ideal J_n of relations of $B(V_n)$ is generated by

$$x_{(ij)}^2,$$

$$R_{(ij)(kl)} := x_{(ij)} x_{(kl)} + x_{(kl)} x_{(ij)},$$

$$R_{(ij)(ik)} := x_{(ij)} x_{(ik)} + x_{(ik)} x_{(jk)} + x_{(jk)} x_{(ij)}$$\hspace{1cm}(5)$$

\hspace{1cm}(6)$$
for \((ij), (kl), (ik) \in \mathcal{O}^n_2\) with \(#\{i, j, k, l\} = 4\).

For \(n \geq 6\), we define the quadratic Nichols algebra \(\mathcal{B}_n\) in the same way, that is as the quotient of the tensor algebra \(T(V_n)\) by the ideal generated by the quadratic relations (4), (5) and (6) for \((ij), (kl), (ik) \in \mathcal{O}^n_2\) with \(#\{i, j, k, l\} = 4\). It is however open whether:

- \(\mathcal{B}(V_n)\) is quadratic, i.e. isomorphic to \(\mathcal{B}_n\);
- the dimension of \(\mathcal{B}(V_n)\) is finite;
- the dimension of \(\mathcal{B}_n\) is finite.

But we do know that the only possible finite dimensional Nichols algebras\(^2\) over \(\mathbb{S}_n\) are related to the orbit of transpositions and a pair of characters [AFGV, Th. 1.1]. Also, the Nichols algebras related to these two characters are twist-equivalent [Ve].

\[2.2. \text{The parameters.}\]

We consider the set of parameters

\[\mathfrak{A}_n := \left\{a = (a_{(ij)})_{(ij) \in \mathcal{O}^n_2} \in k^{\mathcal{O}^n_2} : \sum_{(ij) \in \mathcal{O}^n_2} a_{(ij)} = 0 \right\}.\]

The group \(\Gamma_n := k^\times \times \text{Aut}(\mathbb{S}_n)\) acts on \(\mathfrak{A}_n\) by

\[(7) \quad (\mu, \theta) \triangleright a = \mu(a_{\theta(ij)}), \quad \mu \in k^\times, \quad \theta \in \text{Aut}(\mathbb{S}_n), \quad a \in \mathfrak{A}_n.\]

Let \([a] \in \Gamma_n \backslash \mathfrak{A}_n\) be the class of \(a\) under this action. Let \(\triangleright\) denote also the conjugation action of \(\mathbb{S}_n\) on itself, so that\(^3\) \(\mathbb{S}_n < \{e\} \times \text{Aut}(\mathbb{S}_n) < \Gamma_n\). Let \(\mathbb{S}_n^a = \{g \in \mathbb{S}_n | g \triangleright a = a\}\) be the isotropy group of \(a\) under the action of \(\mathbb{S}_n\).

We fix \(a \in \mathfrak{A}_n\) and introduce

\[(8) \quad f_{ij} = \sum_{g \in \mathbb{S}_n} (a_{(ij)} - a_{g^{-1}(ij)}g) \delta_g \in k^{\mathbb{S}_n}, \quad (ij) \in \mathcal{O}^n_2.\]

Clearly,

\[(9) \quad f_{ij}(ts) = f_{ij}(s) \quad \forall t \in C_{\mathbb{S}_n}(ij), \quad s \in \mathbb{S}_n.\]

\[\text{Definition 2.}\] We say that \(g\) and \(h \in \mathbb{S}_n\) are \(a\)-linked, denoted \(g \sim_a h\), if either \(g = h\) or else there exist \((i_m j_m), \ldots, (i_1 j_1) \in \mathcal{O}^n_2\) such that

- \(g = (i_m j_m) \cdots (i_1 j_1) h,\)
- \(f_{i_s j_s}((i_s j_s) \cdots (i_1 j_1) h) \neq 0\) for all \(1 \leq s \leq m.\)

In particular, \(f_{i_1 j_1}(h) \neq 0\) by (9). We claim that \(\sim_a\) is an equivalence relation. For, if \(g\) and \(h \in \mathbb{S}_n\) are \(a\)-linked, then \(h = (i_1 j_1) \cdots (i_m j_m) g\) and

\(^2\)There is one exception when \(n = 4\) that is finite dimensional and two exceptions when \(n = 5\) and 6 that are not known.

\(^3\)It is well-known that \(\mathbb{S}_n\) identifies with the group of inner automorphisms and that this equals \(\text{Aut}(\mathbb{S}_n)\), except for \(n = 6\).
\[f_{i_s} ((i_s j_s) (i_{s+1} j_{s+1}) \cdots (i_n j_n) g) = f_{i_s} ((i_{s-1} j_{s-1}) \cdots (i_1 j_1) h) \]
\[= f_{i_s} ((i_s j_s) (i_{s-1} j_{s-1}) \cdots (i_1 j_1) h) \neq 0. \]

In the same way, we see that if \(g \sim_a h \) and also \(h \sim_a z \), then \(g \sim_a z \).

2.3. A family of Hopf algebras.

We fix \(a \in S_n \); recall the elements \(f_{ij} \) defined in (8). Let \(\mathcal{I}_a \) be the ideal of \(T(V_n) \# k^S_n \) generated by (5), (6) and
\[(10) \quad x_{(ij)}^2 - f_{ij}, \]
for all \((ij), (kl), (ik) \in \mathcal{O}_2^n \) such that \#\{\(i, j, k, l \)\} = 4. Then
\[A[a] := T(V_n) \# k^S_n / \mathcal{I}_a \]
is a Hopf algebra, see Remark 3. Also, if \(gr A[a] \simeq B(V_n) \# k^S_n \simeq gr A[b] \), then \(A[a] \simeq A[b] \) if and only if \([a] = [b] \), what justifies the notation. If \(n = 3 \), then \(gr A[a] \simeq B(V_3) \# k^S_3 \) and \(dim A[a] = 72 [AV] \); for \(n = 4, 5 \) the dimension is finite but we do not know if it is the "right" one; for \(n \geq 6 \), the dimension is unknown to be finite.

Remark 3. A straightforward computation shows that
\[\Delta(x_{(ij)}^2) = x_{(ij)}^2 \otimes 1 + \sum_{h \in S_n} \delta_h \otimes x_{h^{-1}(ij)}^2 \] \[\Delta(f_{ij}) = f_{ij} \otimes 1 + \sum_{h \in S_n} \delta_h \otimes f_{h^{-1}(i) h^{-1}(j)}. \]
Then \(J = \langle x_{(ij)}^2 - f_{ij} : (ij) \in \mathcal{O}_2^n \rangle \) is a coideal. Since \(f_{ij}(e) = 0 \), we have that \(J \subset ker \epsilon \) and \(S(J) \subset k^S_n J \). Thus \(\mathcal{I}_a = (J) \) is a Hopf ideal and \(A[a] \) is a Hopf algebra quotient of \(T(V_n) \# k^S_n \). We shall say that \(k^S_n \) is a subalgebra of \(A[a] \) to express that the restriction of the projection \(T(V_n) \# k^S_n \rightarrow A[a] \) to \(k^S_n \) is injective.

Let us collect a few general facts on the representation theory of \(A[a] \).

Remark 4. Assume that \(k^S_n \) is a subalgebra of \(A[a] \) and let \(M \) be an \(A[a] \)-module. Hence
(a) If \((ij) \in \mathcal{O}_2^n \) satisfies \(f_{ij}(h) \neq 0 \), then \(\rho(x_{(ij)}) : M[h] \rightarrow M[(ij)h] \) is an isomorphism.
(b) Let \(g \sim_a h \in S_n \). Then \(\rho(x_{(i_m j_m)} \cdots \rho(x_{(i_1 j_1)} : M[h] \rightarrow M[g] \) is an isomorphism.

Proof. \(\rho(x_{(ij)}) : M[h] \rightarrow M[(ij)h] \) is injective and \(\rho(x_{(ij)}) : M[(ij)h] \rightarrow M[h] \) is surjective, by (10). Interchanging the roles of \(h \) and \((ij)h \), we get (a). Now (b) follows from (a). \(\square \)

This Remark is particularly useful to compare Verma modules.
Lemma 7. Assume that h is simple, then the last assertion of the lemma follows. □

Definition 6. We say that the parameter a is generic when any of the following equivalent conditions holds.

(a) $a_{(ij)} \neq a_{(kl)}$ for all $(ij) \neq (kl) \in \mathcal{O}_2^n$.
(b) $a_{(ij)} \neq a_{h^{ij}(ij)}$ for all $(ij) \in \mathcal{O}_2^n$ and all $h \in S_n - C_{S_n}(ij)$.
(c) $f_{ij}(h) \neq 0$ for all $(ij) \in \mathcal{O}_2^n$ and all $h \in S_n - C_{S_n}(ij)$.

Proof. (a) \implies (b) is clear, since $(ij) \neq h \triangleright (ij)$ by the assumption on h.
(b) \implies (a) follows since any $(kl) \neq (ij)$ is of the form $(kl) = h \triangleright (ij)$, for some $h \notin S_n^i$. (b) \iff (c): given (ij), we have
\[
\{h \in S_n : a_{(ij)} = a_{h^{ij}(ij)}\} = \{h \in S_n : f_{ij}(h) = 0\};
\]
hence, one of these sets equals $C_{S_n}(ij)$ iff the other does. □

Lemma 7. Assume that a is generic, so that $g \sim_a h$ for all $g,h \in S_n - \{e\}$. If kS_n is a subalgebra of $A[a]$, then

(a) If $A[a]$ is finite dimensional, then the Verma modules M_g and M_h are isomorphic, for all $g,h \in S_n - \{e\}$.
(b) If M is an $A[a]$-module, then $\dim M[h] = \dim M[g]$ for all $g,h \in S_n - \{e\}$. Thus $\dim M = (n! - 1) \dim M[(ij)] + \dim M[e]$.
(c) If M is simple and $n = 3$, then $\dim M[h] \leq 1$ for all $h \in S_3 - \{e\}$.

Proof. Let $(ij) \in S_n$ and $g \in S_n - \{e\}$.

- If $g = (ik)$, then $g \sim_a (ij)$, as $(ik) = (jk)(ij)(jk)$ and a is generic.
- If $g = (kl)$ with $\#\{i,j,l,k\} = 4$, then $(ij) \sim_a (ik)$ and $(ik) \sim_a (kl)$, hence $(ij) \sim_a (kl)$.
- If $g = (i_1i_2\cdots i_r)$ is an r-cycle, then $g = (i_1i_r)(i_1i_2\cdots i_{r-1})$. Hence $g \sim_a (ij)$ by induction on r.
- Let $g = g_1 \cdots g_m$ be the product of the disjoint cycles g_1, \ldots, g_m, with $m \geq 2$; say $g_1 = (i_1 \cdots i_r)$, $g_2 = (i_{r+1} \cdots i_{r+s})$ and denote $y = g_3 \cdots g_m$. Then $g = (i_1i_{r+1})(i_1 \cdots i_{r+s})y$ and $y \in C_{S_n}(i_1i_{r+1})$. Hence g and (ij) are linked by induction on m.

Now (a) follows from Proposition 5 and (b) from Remark 4. If $n = 3$ and M is simple, then $\dim A[a] = 72 > (\dim M)^2 \geq 25(\dim M[(12)])^2$ and the last assertion of the lemma follows. □

The characterization of all one dimensional $A[a]$-modules is not difficult. Let \equiv be the equivalence relation in \mathcal{O}_2^n given by $(ij) \equiv (kl)$ iff $a_{(ij)} = a_{(kl)}$.
Let $O^n_2 = \prod_{s \in \Upsilon} C_s$ be the associated partition. If $h \in S_n$, then
\[(11) \quad f_{ij}(h) = 0 \forall (ij) \in O^n_2 \iff h^{-1}C_s h = C_s \forall s \in \Upsilon \iff h \in S^n_n.
\]

Lemma 8. Assume that kS^n is a subalgebra of A_a and let $h \in S^n_n$. Then k_h is a A_a-module with the action given by the algebra map $\zeta_h : A_a \to k$.

\[(12) \quad \zeta_h(x_{(ij)}) = 0, \quad (ij) \in O^n_2 \quad \text{and} \quad \zeta_h(f) = f(h), \quad f \in kS^n.
\]

The one-dimensional representations of A_a are all of this form.

Proof. Clearly, ζ_h satisfies the relations of $T(V_3)\# kS^n$, (5) and (6); (10) holds because h fulfills (11). Now, let M be a module of dimension 1. Then $M = M[h]$ for some h; thus $f_{ij}(h) = 0$ for all $(ij) \in O^n_2$ by Remark 4. \[\square\]

3. **Simple and Verma modules over Hopf algebras with coradical kS^n**

3.1. **Verma modules.**

In this Section, we focus on the case $n = 3$. Let $a \in \mathfrak{A}_3$. Explicitly, A_a is the algebra $(T(V_3)\# kS^n)/I_a$ where I_a is the ideal generated by
\[(13) \quad R_{(13)(23)}, \quad R_{(23)(13)}, \quad x_{(ij)}^2 - f_{ij}, \quad (ij) \in O^n_2,
\]
where
\[(14) \quad f_{13} = (a_{13} - a_{23})(\delta_{12} + \delta_{23} + \delta_{32}) + (a_{13} - a_{12})(\delta_{23} + \delta_{12} + \delta_{32}),
\]
\[(15) \quad f_{23} = (a_{23} - a_{12})(\delta_{13} + \delta_{23} + \delta_{32}) + (a_{23} - a_{13})(\delta_{12} + \delta_{13} + \delta_{23}),
\]
\[(16) \quad f_{12} = (a_{12} - a_{13})(\delta_{23} + \delta_{13} + \delta_{32}) + (a_{12} - a_{23})(\delta_{12} + \delta_{13} + \delta_{23}).
\]

We know from [AV] that A_a is a Hopf algebra of dimension 72 and coradical isomorphic to kS^n, for any $a \in \mathfrak{A}_3$. Furthermore, any finite dimensional non-semisimple Hopf algebra with coradical kS^n is isomorphic to A_a for some $a \in \mathfrak{A}_3$; $A_{[b]} \simeq A_a$ iff $[a] = [b]$. Let $\Omega = f_{13}(12) - f_{13}$, that is
\[(15) \quad \Omega = (a_{23} - a_{13})(\delta_{12} - \delta_e) + (a_{13} - a_{12})(\delta_{13} - \delta_{12} - \delta_{23}) + (a_{12} - a_{23})(\delta_{23} - \delta_{12}).
\]

The following formulae follow from the defining relations:
\[(16) \quad x_{(12)}x_{(13)}x_{(12)} = x_{(13)}x_{(12)}x_{(12)} + x_{(23)}(a_{13} - a_{12}),
\]
\[(17) \quad x_{(23)}x_{(12)}x_{(23)} = x_{(12)}x_{(23)}x_{(12)} - x_{(23)}(a_{23} - a_{12}) \quad \text{and}
\]
\[(18) \quad x_{(23)}x_{(12)}x_{(13)} = x_{(12)}x_{(12)}x_{(23)} + x_{(12)}\Omega.
\]

Let
\[
\mathbb{B} = \left\{ 1, \quad x_{(13)}, \quad x_{(13)}x_{(12)}, \quad x_{(13)}x_{(12)}x_{(13)}, \quad x_{(13)}x_{(12)}x_{(23)}x_{(12)}, \quad x_{(23)}, \quad x_{(12)}x_{(13)}, \quad x_{(12)}x_{(23)}x_{(12)}x_{(23)}, \quad x_{(12)}x_{(23)} \right\}.
\]

Then $\{x\delta_g | x \in \mathbb{B}, \quad g \in S_3\}$ is a basis of $A_{[a]} [AV]$. Fix $g \in G$. The classes of the monomials in \mathbb{B} form a basis of the Verma module M_g. Denote by
the class of \(x_{ij}\ldots x_{rs}\); we simply set \(m_{\text{top}} = m_{(13)(12)(23)(12)}\).

The action of \(A_\theta\) on \(M_g\) is described in this basis by the following formulae:

\[
(19) \quad f \cdot m_1 = f(g)m_1, \quad f \in \mathbb{k}^3_1; \\
(20) \quad f \cdot m_{(ij)\ldots (rs)} = f((ij)\ldots (rs)g)m_{(ij)\ldots (rs)}, \quad f \in \mathbb{k}^3_1; \\
(21) \quad x_{(ij)} \cdot m_1 = m_{(ij)}, \quad (ij) \in \mathbb{O}^3_2; \\
(22) \quad x_{(ij)} \cdot m_{(ij)} = f_{ij}(g)m_1, \quad (ij) \in \mathbb{O}^3_2; \\
(23) \quad x_{(13)} \cdot m_{(23)} = -m_{(23)(12)} - m_{(12)(13)}, \\
(24) \quad x_{(13)} \cdot m_{(12)} = m_{(13)(12)}, \\
(25) \quad x_{(23)} \cdot m_{(13)} = -m_{(12)(23)} - m_{(13)(12)}, \\
(26) \quad x_{(23)} \cdot m_{(12)} = m_{(23)(12)}, \\
(27) \quad x_{(12)} \cdot m_{(13)} = m_{(12)(13)}, \\
(28) \quad x_{(12)} \cdot m_{(23)} = m_{(12)(23)}; \\
(29) \quad x_{(13)} \cdot m_{(13)(12)} = f_{13}(12)g)m_{(12)}, \\
(30) \quad x_{(13)} \cdot m_{(12)(13)} = m_{(13)(12)(13)}, \\
(31) \quad x_{(13)} \cdot m_{(23)(12)} = -m_{(13)(12)(13)} - f_{13}(12)g)m_{(23)} \\
(32) \quad x_{(13)} \cdot m_{(12)(23)} = m_{(13)(12)(23)}, \\
(33) \quad x_{(23)} \cdot m_{(13)(12)} = -m_{(12)(23)(12)} - f_{12}(13)m_{(13)}, \\
(34) \quad x_{(23)} \cdot m_{(12)(13)} = m_{(13)(12)(23)} + \Omega(g)m_{(12)}, \\
(35) \quad x_{(23)} \cdot m_{(12)(23)} = f_{23}(12)g)m_{(12)}, \\
(36) \quad x_{(23)} \cdot m_{(12)(23)} = m_{(13)(23)(12)} - m_{(13)}f_{23}(13), \\
(37) \quad x_{(12)} \cdot m_{(13)(12)} = m_{(13)(12)(13)} + m_{(23)}f_{13}(23)), \\
(38) \quad x_{(12)} \cdot m_{(12)(13)} = f_{12}(13)g)m_{(13)}, \\
(39) \quad x_{(12)} \cdot m_{(12)(23)} = m_{(12)(23)(12)}, \\
(40) \quad x_{(12)} \cdot m_{(12)(23)} = f_{12}(23)g)m_{(23)}; \\
(41) \quad x_{(13)} \cdot m_{(13)(12)(13)} = f_{13}(12)g)m_{(12)(13)}, \\
(42) \quad x_{(13)} \cdot m_{(12)(23)(12)} = m_{\text{top}}, \\
(43) \quad x_{(13)} \cdot m_{(13)(12)(23)} = f_{13}(12)(23)g)m_{(12)(23)}, \\
(44) \quad x_{(23)} \cdot m_{(13)(12)(13)} = m_{\text{top}} - (f_{12}\Omega + (a_{(13)} - a_{(12)})f_{23})g)m_1, \\
(45) \quad x_{(23)} \cdot m_{(12)(23)(12)} = f_{12}(12)g)m_{(12)(23)} + (a_{(12)} - a_{(23)})m_{(13)(12)}, \\
(46) \quad x_{(23)} \cdot m_{(13)(12)(23)} = f_{23}(12)g)m_{(12)(13)} - \Omega(g)m_{(23)(12)}, \\
(47) \quad x_{(12)} \cdot m_{(13)(12)(13)} = (f_{13}(g) + f_{12}(23))m_{(13)(12)} + f_{12}(23)m_{(12)(23)}, \\
(48) \quad x_{(12)} \cdot m_{(12)(23)(12)} = f_{12}(23)g)m_{(23)(12)}, \\
(49) \quad x_{(12)} \cdot m_{(13)(12)(23)} = -m_{\text{top}} + (f_{13}(23)f_{23} - f_{12}(13)f_{13})(g)m_1;
Lemma gives the following result.

Let
\[g, h \]
Let
\[a \]
are reduced to consider the Verma modules
\[M \]
maximal submodules of the various Verma modules. By Lemma 7 (a), we
\[\hat{\omega} \]
This weight space is
\[A \]
considered of the algebras
\[A_{[a]} \]
to determine the simple
\[k \]
case. Up to isomorphism, cf. (7), we may assume
\[a_{(12)} = a_{(13)} = a_{(23)} \]
For shortness, we shall say that
\[a \]
is generic.

To proceed with the description of the simple modules, we split the con-
\[S \]
 consider the Verma module
\[M \]
as
\[k \]
modules. The isotypic components of the Verma module
\[M_e \]
M_{e}[12] = \langle m_{(12)}, m_{(13)(12)(23)} \rangle,
\[M_e[(13)] = \langle m_{(13)}, m_{(12)(23)(12)} \rangle, \]
\[M_e[(23)] = \langle m_{(23)}, m_{(13)(12)(13)} \rangle, \]
\[M_e[(132)] = \langle m_{(13)(12)}, m_{(23)(12)} \rangle. \]

Let
\[g, h \in S_3, \ (ij) \in S_3 \]
By (20) and (3), we have
\[M_g[h] = M_g[hg^{-1}], \]
\[x_{(ij)} \cdot M_g[h] \subseteq M_g[(ij)h]. \]

It is convenient to introduce the following elements:
\[m_{soc} = f_{13}(23) f_{23}(13) m_1 - m_{top}, \]
\[m_o = m_{(13)(12)(13)} + f_{13}(23) m_{(23)}. \]

3.2. Case \(a \in A_3 \) generic.

To determine the simple \(A_{[a]} \)-modules, we just need to determine the
maximal submodules of the various Verma modules. By Lemma 7 (a), we
are reduced to consider the Verma modules
\[M_e \]
and
\[M_g \]
for some fixed
\[g \neq e. \]
We choose
\[g = (13)(23); \]
for the sake of an easy exposition, we write the
\[S_3 \]
elements as products of transpositions.

We start with the following observation. Let
\[M \]
be a cyclic \(A_{[a]} \)-module, generated by
\[v \in M[(13)(23)]. \]
By (55) and acting by the monomials in our
basis of
\[A_{[a]}, \]
we see that
\[M[(13)(23)] = (x_{(13)} x_{(23)} \cdot v, x_{(23)} x_{(12)} \cdot v, x_{(12)} x_{(13)} \cdot v). \]
This weight space is \(\neq 0 \) by Lemma 7 (b), and a further application of this
Lemma gives the following result.
Remark 9. Let M be a cyclic $A_{[a]}$-module, generated by $v \in M[(13)(23)]$. If $\dim M[(23)(13)] = 1$, then

\begin{align}
M[(23)] &= \langle x_{(23)} \cdot v \rangle, & M[e] &= \langle x_{(12)} x_{(23)} \cdot v, x_{(13)} x_{(12)} \cdot v \rangle, \\
M[(12)] &= \langle x_{(23)} \cdot v \rangle, & M[(13)] &= \langle x_{(12)} \cdot v \rangle, \\
M[(13)(23)] &= \langle v \rangle, & M[(23)(13)] &= \langle x_{(13)} x_{(23)} \cdot v \rangle.
\end{align}

(58)

Thus, any cyclic module as in the Remark has either dimension 5, 6 or 7. Moreover, there is a simple module L like this; L has a basis $\{v_g | e \neq g \in S_3\}$ and the action is given by

\begin{equation}
(59) \quad v_g \in L[g], \quad x_{(ij)} \cdot v_g = \begin{cases}
 v_{(ij)g} & \text{if } \sgn g = 1, \\
 f_{(ij)g}(v_{(ij)g}) & \text{if } \sgn g = -1.
\end{cases}
\end{equation}

Let k_e be as in Lemma 8. We shall see that L and k_e are the only simple modules of $A_{[a]}$.

The Verma module M_e projects onto the simple submodule k_e, hence the kernel of this projection is a maximal submodule; explicitly this is

$$N_e = A_{[a]} : M_e [(13)(23)] = \oplus_{g \sim a(13)(23)} M_e [g] \oplus \langle m_{\top} \rangle.$$

We see that this is the unique maximal submodule, as consequence of the following description of all submodules of M_e.

Lemma 10. The submodules of M_e are

$$\langle m_{\top} \rangle \subset A_{[a]} : v \subset N_e \subset M_e$$

for any $v \in M_e [(13)(23)] - 0$. The submodules $A_{[a]} : v$ and $A_{[a]} : u$ coincide iff $v \in \langle u \rangle$. The quotients $A_{[a]} : v/(m_{\top})$ and $N_e / A_{[a]} : v$ are isomorphic to L; and M_e / N_e and $\langle m_{\top} \rangle$ are isomorphic to k_e.

Proof. By (51), (50) and (52), we have $x_{(ij)} \cdot m_{\top} = 0$ for all $(ij) \in O_2^2$. Let

$$v = \lambda m_{(23)(12)} + \mu m_{(12)(13)} \in M_e [(13)(23)] - 0,$$

$$w = \mu m_{(12)(23)} + (\mu - \lambda) m_{(13)(12)} \in M_e [(23)(13)].$$

Using the formulae (23) to (49), we see that $x_{(13)} x_{(23)} \cdot v$, $x_{(23)} x_{(12)} \cdot v$ and $x_{(12)} x_{(13)} \cdot v$ are non-zero multiples of w. That is, $\dim (A_{[a]} : v) [(23)(13)] = 1$.

Also, $x_{(12)} x_{(23)} \cdot v = -\mu m_{\top}$ and $x_{(13)} x_{(12)} \cdot v = \lambda m_{\top}$. Hence

$$\left\{ v, x_{(23)} \cdot v, x_{(12)} \cdot v, x_{(13)} \cdot v, w, m_{\top} \right\}$$

is a basis of $A_{[a]} : v$ by Remark 9.

Let now N be a (proper, non-trivial) submodule of M_e. If $N \neq \langle m_{\top} \rangle$, then there exists $v \in N [(13)(23)] - 0$. Hence $A_{[a]} : v$ is a submodule of N and $N[e] = \langle m_{\top} \rangle$ because $m_1 \in M[e]$ and $\dim M[e] = 2$. Therefore $N = A_{[a]} : N [(13)(23)]$. \quad \Box

It is convenient to introduce the following $A_{[a]}$-modules which we will use in the Section 4.
Definition 11. Let \(t \in \mathfrak{S}_3 \). We denote by \(W_t(L, k_e) \) the \(A_3 \)-module with basis \(\{ w_g : g \in \mathfrak{S}_3 \} \) and action given by

\[
w_g \in W_t(L, k_e)[g], \quad x_{(ij)} \cdot w_g = \begin{cases} 0 & \text{if } g = e, \\ w_{(ij)g} & \text{if } g \neq e \text{ and } \sgn g = 1, \\ f_{ij}(g)w_{(ij)g} & \text{if } g \neq (ij) \text{ and } \sgn g = -1, \\ t_{(ij)}w_e & \text{if } g = (ij). \end{cases}
\]

The well-definition of \(W_t \) follows from the next lemma.

Lemma 12. Let \(t, \tilde{t} \in \mathfrak{S}_3 \).

(a) If \(t = (0, 0, 0) \), then \(W_t(L, k_e) \simeq k_e \oplus L \).

(b) If \(t \neq (0, 0, 0) \), then there exists \(v \in M_e[(13)(23)] = 0 \) such that \(W_t(L, k_e) \simeq A_3 \cdot v \).

(c) If \(v \in M_e[(13)(23)] \neq 0 \), then there exists \(t \neq (0, 0, 0) \) such that \(W_t(L, k_e) \simeq A_3 \cdot v \).

(d) \(W_t(L, k_e) \) is an extension of \(L \) by \(k_e \).

(e) \(W_t(L, k_e) \simeq W_{\tilde{t}}(L, k_e) \) if and only if \(t = \mu \tilde{t} \) with \(\mu \in k^\times \).

Proof. (a) is immediate. If we prove (b), then (d) follows from Lemma 10. (b) We set \(w_{(13)(23)} = t_{(13)}m_{(23)(12)} - t_{(12)}m_{(12)(13)} \in M_e[(13)(23)] - 0 \),

\[
w_{(23)} = x_{(13)} \cdot w_{(13)(23)} , \quad w_{(13)} = x_{(12)} \cdot w_{(13)(23)} , \quad w_{(12)} = x_{(23)} \cdot w_{(13)(23)} .
\]

\[
w_{(23)(13)} = \frac{1}{f_{23}((13))} x_{(23)} x_{(12)} \cdot w_{(13)(23)} \quad \text{and} \quad w_e = m_{\text{top}}.
\]

By the proof of Lemma 10 and (17), we see that \(W_t(L, k_e) \simeq A_3 \cdot w_{(13)(23)} \).

(c) follows from the proof of Lemma 10. (e) Let \(\{ w_g : g \in \mathfrak{S}_3 \} \) be the basis of \(W_t(L, k_e) \) according to Definition 11. Let \(F : W_t(L, k_e) \rightarrow W_{\tilde{t}}(L, k_e) \) be an isomorphism of \(A_3 \)-modules. Since \(F \) is an isomorphism of \(k^3 \)-modules, there exists \(\mu_g \in k^\times \) for all \(g \in \mathfrak{S}_3 \) such that \(F(w_g) = \mu_g w_g \). In particular, \(F \) induces an automorphism of \(L \). Since \(L \) is simple (cf. Theorem 1), \(\mu_g = \mu_L \) for all \(g \neq e \). Since \(F(x_{(ij)} \cdot w_{(ij)}) = x_{(ij)} \cdot F(w_{(ij)}) \), we see that \(t = \frac{\mu_L}{\mu_e} \tilde{t} \).

Conversely, \(F \) is well defined for all \(\mu_e \) and \(\mu_L \) such that \(\mu = \frac{\mu_L}{\mu_e} \).

The Verna module \(M_{(13)(23)} \) projects onto the simple module \(L \), hence the kernel of this projection is a maximal submodule; explicitly this is

\[
N_{(13)(23)} = A_3 \cdot M_{(13)(23)}[e] = M_{(13)(23)}[e] \oplus A_3 \cdot m_{\text{soc}}.
\]

We see that this is the unique maximal submodule, as consequence of the following description of all submodules of \(M_{(13)(23)} \). Recall \(m_{\text{soc}} \) from (56).

Lemma 13. The submodules of \(M_{(13)(23)} \) are

\[
A_3 \cdot m_{\text{soc}} \subseteq A_3 \cdot v \subseteq N_{(13)(23)} \subseteq M_{(13)(23)}
\]

for all \(v \in M_{(13)(23)}[e] - 0 \). The submodules \(A_3 \cdot v \) and \(A_3 \cdot u \) coincide iff \(v \in \langle u \rangle \). The quotients \(A_3 \cdot v/A_3 \cdot m_{\text{soc}} \) and \(N_{(13)(23)}/A_3 \cdot v \) are isomorphic to \(k_e \); and \(M_{(13)(23)}/N_{(13)(23)} \) and \(A_3 \cdot m_{\text{soc}} \) are isomorphic to \(L \).
Proof. Let \(v = \lambda m_1 + \mu m_{\text{top}} \in M_{(13)(23)}[(13)(23)] - 0 \) and \(N = A_{[a]} \cdot v \). Using the formulae (23) to (49), we see that
\[
\begin{align*}
x_{(12)}x_{(13)} \cdot v &= \lambda m_{(12)(13)} - \mu f_{13}((23))^2 m_{(23)(12)} \\
x_{(23)}x_{(12)} \cdot v &= \mu f_{23}((13))^2 m_{(12)(13)} + (\lambda + 2\mu f_{13}((23)) f_{23}((13))) m_{(23)(12)}.
\end{align*}
\]
Thus, \(\dim N[(13)(23)] = 1 \) iff \(\lambda + \mu f_{13}((23)) f_{23}((13)) = 0 \), that is iff \(v \in \langle m_{\text{soc}} \rangle - 0 \). In this case,
\[
\left\{ v, x_{(23)} \cdot v, x_{(12)} \cdot v, x_{(13)} \cdot v, x_{(12)} x_{(13)} \cdot v \right\}
\]
is a basis of \(A_{[a]} \cdot m_{\text{soc}} \) by Remark 9.

Let now \(N \) be an arbitrary submodule of \(M_{(13)(23)} \). If \(\dim N[(13)(23)] = 2 \), then \(N = M_{(13)(23)} \). If \(\dim N[(13)(23)] = 0 \), then \(N \subset M_{(13)(23)}[e] \) by Lemma 7. But this is not possible since \(\ker x_{(13)} \cap \ker x_{(23)} \cap \ker x_{(12)} = 0 \), what is checked using the formulae (23) to (52). It remains the case \(\dim N[(13)(23)] = 1 \). By the argument at the beginning of the proof, the lemma follows.

It is convenient to introduce the following \(A_{[a]} \)-modules which we will use in the Section 4.

Definition 14. Let \(t \in \mathfrak{a}_3 \). We denote by \(W_t(k_e, L) \) the \(A_{[a]} \)-module with basis \(\{ w_g : g \in S_3 \} \) and action given by
\[
w_g \in W_t(k_e, L)[g], \quad x_{(ij)} \cdot w_g = \begin{cases} t_{(ij)} w_{(ij)} & \text{if } g = e, \\ f_{ij}(g) w_{(ij)} & \text{if } g \neq e \text{ and } \sgn g = 1, \\ w_{(ij)} & \text{if } \sgn g = -1. \end{cases}
\]

The well-definition of \(W_t(k_e, L) \) follows from the next lemma.

Lemma 15. Let \(t, \tilde{t} \in \mathfrak{a}_3 \).

(a) If \(t = (0, 0, 0) \), then \(W_t(k_e, L) \cong L \oplus k_e \).
(b) If \(t \neq (0, 0, 0) \), then there exists \(v \in M_{(13)(23)}[e] - 0 \) such that \(W_t(k_e, L) \cong A_{[a]} \cdot v \).
(c) If \(v \in M_{(13)(23)}[e] - 0 \), then there exists \(t \neq (0, 0, 0) \) such that \(W_t(k_e, L) \cong A_{[a]} \cdot v \).
(d) \(W_t(k_e, L) \) is an extension of \(k_e \) by \(L \).
(e) \(W_t(k_e, L) \cong W_{\tilde{t}}(k_e, L) \) if and only if \(t = \mu \tilde{t} \) with \(\mu \in k^{\times} \).

Proof. (a) is immediate. If we prove (b), then (d) follows from Lemma 13.

(b) We set \(w((13)(23)) = m_{\text{soc}} \in M_{(13)(23)}[(13)(23)] \),
\[
w_{(23)} = \frac{x_{(13)} \cdot w_{(13)(23)}}{f_{13}((13)(23))}, \quad w_{(13)} = \frac{x_{(12)} \cdot w_{(13)(23)}}{f_{12}((13)(23))}, \quad w_{(12)} = \frac{x_{(23)} \cdot w_{(13)(23)}}{f_{23}((13)(23))},
\]
\[
w_{(23)(13)} = x_{(23)} x_{(12)} \cdot w_{(13)(23)} \quad \text{and} \quad w_e = -t_{(12)} m_{(13)(12)} + t_{(13)} m_{(12)(13)} \neq 0.
\]
Using the formulae (23) to (49), it is not difficult to see that \(W_t(k_e, L) \cong A_{[a]} \cdot w_e \). (c) follows using the formulae (23) to (49). The proof of (e) is similar to the proof of Lemma 12 (e).
Theorem 1. Let $a \in \mathfrak{A}_3$ be generic. There are exactly 2 simple $\mathcal{A}_{[a]}$-modules up to isomorphism, namely k_e and L. Moreover, M_e is the projective cover, and the injective hull, of k_e; also, $M_{(13)(23)}$ is the projective cover, and the injective hull, of L.

Proof. We know that k_e and L are the only two simple $\mathcal{A}_{[a]}$-modules up to isomorphism by Proposition 1 and Lemmata 7 (a), 10 and 13. Hence, a set of primitive orthogonal idempotents has at most 6 elements [CR, (6.8)]. Since the δ_g, $g \in S_3$, are orthogonal idempotents, they must be primitive. Therefore M_e and $M_{(13)(23)}$ are the projective covers (and the injective hulls) of k_e and L, respectively by [CR, (9.9)], see page 3.

3.3. Case $a \in \mathfrak{A}_3$ sub-generic.

Through this subsection, we suppose that $a_{(12)} \neq a_{(13)} = a_{(23)}$. Then the equivalence classes of S_3 by \sim_a are

$$\{e\}, \quad \{(12)\} \quad \text{and} \quad \{(13), (23), (13)(23), (23)(13)\}.$$

In fact,

- e and (12) belong to the isotropy group S_3^a.
- $(13) = (23)(12)(23)$ with $f_{12}((23)) = a_{(12)} - a_{(13)} \neq 0$ and $f_{23}((12)(23)) = a_{(23)} - a_{(12)} \neq 0$.
- $(123) = (13)(23)$ with $f_{13}((23)) = a_{(13)} - a_{(12)} \neq 0$.
- $(132) = (23)(13)$ with $f_{23}((13)) = a_{(23)} - a_{(12)} \neq 0$.

To determine the simple $\mathcal{A}_{[a]}$-modules, we proceed as in the subsection above; that is, we just need to determine the maximal submodules of the Verma modules M_e, $M_{(12)}$ and $M_{(13)(23)}$, see Proposition 5.

Let M be a cyclic $\mathcal{A}_{[a]}$-module generated by $v \in M[[(13)(23)]$. Here again, we can describe the weight spaces of M. By (55) and acting by the monomials in our basis, we see that $M[[(13)(23)] = \langle x_{(13)}x_{(23)} \cdot v, x_{(12)}x_{(23)} \cdot v, x_{(12)}x_{(13)} \cdot v \rangle$. This weight space is $\neq 0$ by Remark 4 applied to $(13)(23) \sim_a (23)(13)$, and a further application of this Remark gives the following result.

Remark 16. Let M be a cyclic $\mathcal{A}_{[a]}$-module generated by $v \in M[[(13)(23)]$. If $\dim M[[(13)(23)] = 1$, then

$$M[e] = \langle x_{(23)}x_{(13)} \cdot v, (x_{(12)}x_{(23)}) \cdot v, x_{(12)}x_{(13)} \cdot v \rangle,$$

$$M[[(12)] = \langle (x_{(23)} \cdot v), (x_{(13)}x_{(12)}x_{(13)}) \cdot v \rangle,$$

$$M[[(23)(13)] = \langle x_{(12)}x_{(13)} \cdot v \rangle.$$

There is a simple module L like this; $\{v_{(13)}, v_{(23)}, v_{(13)(23)}, v_{(23)(13)}\}$ is a basis of L and the action is given by

$$v_g \in L[g], \quad x_{(ij)} \cdot v_g = \begin{cases} 0 & \text{if } g = (ij) \\
m_{(ij)g} & \text{if } g \neq (ij), \ \text{sgn } g = -1, \\
f_{ij}(g)m_{(ij)g} & \text{if } \text{sgn } g = 1. \end{cases}$$
Let \(k_{(12)} \) and \(k_e \) be as in Lemma 8. We shall see that \(L, k_{(12)} \) and \(k_e \) are the only simple modules of \(A_{[a]} \).

The Verma module \(M_e \) projects onto the simple module \(k_e \), hence the kernel of this projection is a maximal submodule; explicitly this is

\[
N_e = A_{[a]} \cdot (M_e[13](23) \oplus M_e[12]) = \oplus_{g \sim a} (13)(23) M_e[g] \oplus M_e[12] \oplus \langle m_{\text{top}} \rangle.
\]

We see that this is the unique maximal submodule, as consequence of the following description of all submodules of \(M_e \).

Lemma 17. The lattice of (proper, non-trivial) submodules of \(M_e \) is displayed in (62), where \(v \) and \(w \) satisfy

\[
M_e[13](23) = \langle v, m_{(23)(12)} \rangle, \quad M_e[12] = \langle w, m_{(13)(12)(23)} \rangle.
\]

The submodules \(A_{[a]} \cdot v \) (resp. \(A_{[a]} \cdot w \)) and \(A_{[a]} \cdot v_1 \) (resp. \(A_{[a]} \cdot w_1 \)) coincide iff \(v \in \langle v_1 \rangle \) (resp. \(w \in \langle w_1 \rangle \)). The labels on the arrows indicate the quotient of the module on top by the module on the bottom.

![Diagram](62)

Proof. Let

\[
v = \lambda m_{(23)(12)} + \mu m_{(12)(13)} \quad \in M_e[13](23) - 0,
\]

\[
\tilde{v} = \mu m_{(12)(23)} + (\mu - \lambda)m_{(13)(12)} \quad \in M_e[23](13).
\]

Using the formulae (23) to (49), we see that \(x_{(23)} x_{(12)} \cdot v \) and \(x_{(12)} x_{(13)} \cdot v \) are non-zero multiples of \(\tilde{v} \). That is, \(\dim(A_{[a]} \cdot v)[[23](13)] = 1 \). Moreover, \(x_{(12)} x_{(23)} \cdot v = -\mu m_{\text{top}} \) and \(x_{(13)} x_{(12)} \cdot v = \lambda m_{\text{top}} \), and \(x_{(23)} \cdot v \) and \((x_{(13)} x_{(12)} x_{(13)}) \cdot v \) are non-zero multiples of \(\mu m_{(13)(12)(23)} \). By Remark 16, we obtain a basis for \(A_{[a]} \cdot v \):

\[
\left\{ v, x_{(12)} \cdot v, x_{(13)} \cdot v, \tilde{v}, m_{\text{top}}, \mu m_{(13)(12)(23)} \right\};
\]

if \(\mu = 0 \), we obviate the last vector.
By (51), (50) and (52), \(x_{ij} \cdot m_{\text{top}} = 0 \) for all \((ij) \in \mathcal{O}_2^3 \). Then
\[
\mathcal{A}_a \cdot m_{\text{top}} = \langle m_{\text{top}} \rangle
\]
and \(\mathcal{A}_a \cdot u = \mathcal{A}_a \cdot m_1 = M_e \) if \(u \in M_e[e] \) is linearly independent to \(m_{\text{top}} \).

By (43), (46) and (49), \(x_{ij} \cdot m_{(13)(12)(23)} = -\delta_{(12)}((ij))m_{\text{top}} \) for all \((ij) \in \mathcal{O}_2^3 \). Then
\[
\mathcal{A}_a \cdot m_{(13)(12)(23)} = \langle m_{\text{top}}, m_{(13)(12)(23)} \rangle.
\]

By (22), (24) and (26), \(x_{ij} \cdot m_{(12)} = \delta_{(13)}((ij))m_{(13)(12)} + \delta_{(23)}((ij))m_{(23)(12)} \) for all \((ij) \in \mathcal{O}_2^3 \). Then
\[
\mathcal{A}_a \cdot w = \mathcal{A}_a \cdot m_{(23)(12)} \oplus \langle w \rangle
\]
by (63) and Remark 4, if \(w \in M_e[(12)] \) is linearly independent to \(m_{(13)(12)(23)} \).

Let now \(N \) be a (proper, non-trivial) submodule of \(M_e \) which is not \(\langle m_{\text{top}} \rangle \). We set \(\tilde{N} = \mathcal{A}_a \cdot N[(12)] + \mathcal{A}_a \cdot N[(13)(23)] \). Then \(\tilde{N}[g] = N[g] \) for all \(g \neq e \) by Remark 4. By the argument at the beginning of the proof, \(\langle m_{\text{top}} \rangle \subset \tilde{N} \). Then \(\tilde{N}[e] = \langle m_{\text{top}} \rangle = N[e] \) because otherwise \(N = M_e \). Therefore \(N = \tilde{N} \). To finish, we have to calculate the submodules of \(M_e \) generated by homogeneous subspaces of \(M_e[(12)] \oplus M_e[(13)(23)] \); this follows from the argument at the beginning of the proof. \(\square \)

The Verma module \(M_{(13)(23)} \) projects onto the simple module \(L \), hence the kernel of this projection is a maximal submodule; explicitly this is
\[
N_{(13)(23)} = \mathcal{A}_a \cdot (M_{(13)(23)}[e] \oplus M_{(13)(23)}[(12)])
= M_{(13)(23)}[e] \oplus M_{(13)(23)}[(12)] \oplus \mathcal{A}_a \cdot m_{\text{soc}}.
\]

We see that this is the unique maximal submodule, as consequence of the following description of all submodules of \(M_{(13)(23)} \).

Lemma 18. The lattice of (proper, non-trivial) submodules of \(M_{(13)(23)} \) is

\[
\begin{array}{ccc}
\mathcal{A}_a \cdot M_{(13)(23)}[e] & \mathcal{A}_a \cdot M_{(13)(23)}[(12)] \\
\mathcal{A}_a \cdot v & \mathcal{A}_a \cdot \langle m_o, m_{(12)(23)} \rangle & \mathcal{A}_a \cdot w \\
\mathcal{A}_a \cdot m_o & \mathcal{A}_a \cdot m_{\text{soc}} \\
\end{array}
\]

\[
\begin{array}{ccc}
\mathcal{A}_a \cdot M_{(13)(23)}[e] & \mathcal{A}_a \cdot M_{(13)(23)}[(12)] \\
\mathcal{A}_a \cdot v & \mathcal{A}_a \cdot \langle m_o, m_{(12)(23)} \rangle & \mathcal{A}_a \cdot w \\
\mathcal{A}_a \cdot m_o & \mathcal{A}_a \cdot m_{\text{soc}} \\
\end{array}
\]
Here \(v \) and \(w \) satisfy \(M_{(13)(23)}[e] = \langle v, m_{(12)(23)} \rangle \), \(M_{(13)(23)}[(12)] = \langle w, m_o \rangle \). The submodules \(A_{[a]} \cdot v \) (resp. \(A_{[a]} \cdot w \)) and \(A_{[a]} \cdot v_1 \) (resp. \(A_{[a]} \cdot w_1 \)) coincide iff \(v \in \langle v_1 \rangle \) (resp. \(w \in \langle w_1 \rangle \)). The labels on the arrows indicate the quotient of the module on top by the module on the bottom.

Proof. Let \(u = \lambda m_1 + \mu m_{\text{top}} \in M_{(13)(23)}[(13)(23)] - 0 \). Using the formulae (23) to (49), we see that

\[
x_{(12)}x_{(13)} \cdot u = \lambda m_{(12)(13)} - \mu f_{13}(23)2m_{(23)(12)} \quad \text{and} \quad
x_{(23)}x_{(12)} \cdot u = \mu f_{23}(13)2m_{(12)(13)} + (\lambda + 2\mu f_{13}(23)f_{23}(13))m_{(23)(12)}.
\]

Thus, \(\dim N[(23)(13)] = 1 \) iff \(\lambda + \mu f_{13}(23)f_{23}(13) = 0 \), that is iff \(u \in \langle m_{\text{soc}} \rangle - 0 \). By Remark 16,

\[
A_{[a]} \cdot m_{\text{soc}} = \langle m_{\text{soc}}, x_{(12)} \cdot m_{\text{soc}}, x_{(13)} \cdot m_{\text{soc}}, x_{(12)}x_{(13)} \cdot m_{\text{soc}} \rangle
\]

and \(A_{[a]} \cdot u = A_{[a]} \cdot m_1 = M_{(13)(23)} \), if \(u \in M_{(13)(23)}[(13)(23)] \) is linearly independent to \(m_{\text{soc}} \).

By the formulae (23) to (52), if \(u \in (M_{(13)(23)}[e] \oplus M_{(13)(23)}[(12)]) - 0 \), then \(0 \neq \langle x_{(13)} \cdot u, x_{(23)} \cdot u \rangle \subset A_{[a]} \cdot m_{\text{soc}} \). Therefore

\[
A_{[a]} \cdot m_{\text{soc}} \subset A_{[a]} \cdot u
\]

by Remark 4. Also, if \(v \) and \(w \) satisfy \(M_{(13)(23)}[e] = \langle v, m_{(12)(23)} \rangle \) and \(M_{(13)(23)}[(12)] = \langle w, m_o \rangle \), then

\[
\langle x_{(12)} \cdot v \rangle = \langle m_o \rangle \quad \text{and} \quad \langle x_{(12)} \cdot w \rangle = \langle m_{(12)(23)} \rangle.
\]

Let now \(N \) be a (proper, non-trivial) submodule of \(M_{(13)(23)} \) which is not \(A_{[a]} \cdot m_{\text{soc}} \). We set \(\tilde{N} = A_{[a]} \cdot N[e] + A_{[a]} \cdot N[(12)] \). Then \(\tilde{N}[g] = N[g] \) for \(g = e, (12) \) by Remark 4. By the argument at the beginning of the proof, \(A_{[a]} \cdot m_{\text{soc}} \subset \tilde{N} \). Then \(\oplus_{g \sim a(13)(23)} N[g] = A_{[a]} \cdot m_{\text{soc}} = \oplus_{g \sim a(13)(23)} \tilde{N}[g] \) because otherwise \(N = M_{(13)(23)} \). Therefore \(N = \tilde{N} \). To finish, we have to calculate the submodules of \(M_{(13)(23)} \) generated by homogeneous subspaces of \(M_{(13)(23)}[(12)] \oplus M_{(13)(23)}[e] \); this follows from the argument at the beginning of the proof. \(\square \)

The Verma module \(M_{(12)} \) projects onto the simple module \(\mathbb{k}_{(12)} \), hence the kernel of this projection is a maximal submodule; explicitly this is

\[
N_{(12)} = A_{[a]} \cdot (M_{(12)}[(13)(23)] \oplus M_{(12)}[e])
= \oplus_{g \sim a(13)(23)} M_{(12)}[g] \oplus M_{(12)}[e] \oplus \langle m_{\text{top}} \rangle.
\]

We see that this is the unique maximal submodule, as consequence of the following description of all submodules of \(M_{(12)} \).
Lemma 19. The lattice of (proper, non-trivial) submodules of $M_{(12)}$ is

![Diagram](image_url)

Here v and w satisfy $M_{(12)}[[13](23)] = \langle v, m_\circ \rangle$, $M_{(12)}[e] = \langle w, m_{(13)(12)(23)} \rangle$. The submodules $A[a] \cdot v$ (resp. $A[a] \cdot w$) and $A[a] \cdot v_1$ (resp. $A[a] \cdot w_1$) coincide iff $v \in \langle v_1 \rangle$ (resp. $w \in \langle w_1 \rangle$). The labels on the arrows indicate the quotient of the module on top by the module on the bottom.

Proof. Let $v = \lambda m_{(23)} + \mu m_{(13)(12)(13)} \in M_{(12)}[[13](23)]$ be a non-zero element. By Remark 16 and using the formulae (23) to (52), we see that

$$\langle A[a] \cdot v \rangle[[13](23)] = \langle v \rangle,$$

$$\langle A[a] \cdot v \rangle[[13]] = \langle (f_{13}(23)) \mu - \lambda m_{(12)(23)} - \mu f_{13}(23)m_{(13)(12)} \rangle,$$

$$\langle A[a] \cdot v \rangle[[23]] = \langle (f_{13}(23)) \mu - \lambda m_{(12)(13)} - \lambda m_{(23)(12)} \rangle,$$

$$\langle A[a] \cdot v \rangle[[23](13)] = \langle (f_{13}(23)) \mu - \lambda f_{23}(13)m_{(13)} + \lambda m_{(12)(23)}(12) \rangle,$$

$$\langle A[a] \cdot v \rangle[[12]] = \langle m_{0} \rangle$$

and $A[a] \cdot u = A[a] \cdot m_1 = M_e$, if $u \in M_{(12)[(12)]}$ is linearly independent to m_{0}. By (43), (46) and (49), $x_{(ij)} \cdot m_{(13)(12)(23)} = - \delta_{(12)}((ij)) m_{0}$ for all $(ij) \in \mathcal{O}_2^3$. Then

$$A[a] \cdot m_{0} = \langle m_{0} \rangle$$

and $A[a] \cdot u = A[a] \cdot m_1 = M_e$, if $u \in M_{(12)[(12)]}$ is linearly independent to m_{0}. By (43), (46) and (49), $x_{(ij)} \cdot m_{(13)(12)(23)} = - \delta_{(12)}((ij)) m_{0}$ for all $(ij) \in \mathcal{O}_2^3$. Then

$$A[a] \cdot m_{(13)(12)(23)} = \langle m_{0}, m_{(13)(12)(23)} \rangle.$$

By (22), (24) and (26), $x_{(ij)} \cdot m_{(12)} = \delta_{(13)}((ij)) m_{(13)(12)} + \delta_{(23)}((ij)) m_{(23)(12)}$ for all $(ij) \in \mathcal{O}_2^3$. Then

$$A[a] \cdot w = A[a] \cdot m_\circ \oplus \langle w \rangle$$

by (64) and Remark 4, if $w \in M_{(12)}[e]$ is linearly independent to $m_{(13)(12)(23)}$.

Let now N be a (proper, non-trivial) submodule of $M_{(12)}$ which is not $\langle m_{\text{top}} \rangle$. We set $\tilde{N} = A_{[a]} \cdot N[e] + A_{[a]} \cdot N[(13)(23)]$. Then $\tilde{N}[g] = N[g]$ for all $g \neq (12)$ by Remark 4. By the argument at the beginning of the proof, $\langle m_{\text{top}} \rangle \subset \tilde{N}$. Therefore $N = \tilde{N}$. To finish, we have to calculate the submodules of $M_{(12)}$ generated by homogeneous subspaces of $M_{(12)}[(13)(23)] \oplus M_{(12)}[e]$; this follows from the argument at the beginning of the proof.

As a consequence, we obtain the simples modules in the sub-generic case. The proof of the next theorem runs in the same way as that of Theorem 1.

Theorem 2. Let $a \in A_3$ with $a_{(12)} \neq a_{(13)} = a_{(23)}$. There are exactly 3 simple $A_{[a]}$-modules up to isomorphism, namely k_e, $k_{(12)}$, and L. Moreover, M_e is the projective cover, and the injective hull, of k_e; $M_{(12)}$ is the projective cover, and the injective hull, of $k_{(12)}$; and $M_{(13)(23)}$ is the projective cover, and the injective hull, of L.

Proof. We know that k_e, $k_{(12)}$ and L are the only two simple $A_{[a]}$-modules up to isomorphism by Proposition 1 and Lemmata 17, 18 and 19. Hence, a set of primitive orthogonal idempotents has at most 6 elements [CR, (6.8)]. Since the δ_g, $g \in S_3$ are orthogonal idempotents, they must be primitive. Therefore M_e, $M_{(12)}$ and $M_{(13)(23)}$ are respectively the projective covers (and the injective hulls) of k_e, $k_{(12)}$ and L by [CR, (9.9)], see page 3.

4. **Representation type of $A_{[a]}$**

In this section, we assume that $n = 3$ as in the preceding one. We will determine the $A_{[a]}$-modules which are extensions of simple $A_{[a]}$-modules. As a consequence, we will show that $A_{[a]}$ is not of finite representation type for all $a \in A_3$.

4.1. **Extensions of simple modules.** By the following lemma, we are reduced to consider only submodules of the Verma modules for to determine the extensions of simple $A_{[a]}$-modules. Then we shall split the consideration into three different cases like Section 3 and use the lemmata there.

Lemma 20. Let $a \in A_3$ be non-zero. Let S and T be simple $A_{[a]}$-modules and M be an extension of T by S. Hence either $M \simeq S \oplus T$ as $A_{[a]}$-modules or M is an indecomposable submodule of the Verma module which is the injective hull of S.

Proof. If there exists a proper submodule N of M which is not S, then $M \simeq S \oplus T$ as $A_{[a]}$-modules. In fact, $N \cap S$ is either 0 or S because S is simple. Let π be as in (65). Since T is simple, $\pi_{|N} : N \to T$ results an epimorphism. Therefore $M \simeq S \oplus T$ since $\dim N = \dim(N \cap S) + \dim T$.

Let M_S be the Verma module which is the injective hull of S. Then we have the following commutative diagram

\[
\begin{array}{ccc}
0 & \rightarrow & S \\
\downarrow & & \downarrow \pi \\
& & T \\
M_S & \rightarrow & 0
\end{array}
\]

\[
S \leftarrow f \rightarrow M
\]

Therefore either $M \simeq S \oplus T$ as $A_{[a]}$-modules or f is injective. If f is injective, then M results indecomposable by Lemmata 10 and 13 in the generic case, and by Lemmata 17, 18 and 19 in the sub-generic case. \hfill \Box

Recall the modules $W_t(L, k_e)$ and $W_t(k_e, L)$ from Definitions 11 and 14. The next results follow from Lemmata 10, 13, 17, 18 and 19 by Lemma 20.

Lemma 21. Let $a \in \mathfrak{A}_3$ be generic. Let S and T be simple $A_{[a]}$-modules and M be an extension of T by S.

(a) If $S \simeq T$, then $M \simeq S \oplus S$.
(b) If $S \simeq k_e$ and $T \simeq L$, then $M \simeq W_t(L, k_e)$ for some $t \in \mathfrak{A}_3$.
(c) If $S \simeq L$ and $T \simeq k_e$, then $M \simeq W_t(k_e, L)$ for some $t \in \mathfrak{A}_3$. \hfill \Box

Lemma 22. Let $a \in \mathfrak{A}_3$ with $a_{(12)} \neq a_{(13)} = a_{(23)}$. Let S and T be simple $A_{[a]}$-modules and M be an extension of T by S.

(a) If $S \simeq T$, then $M \simeq S \oplus S$.
(b) If $S \simeq k_e$ and $T \simeq k_{(12)}$, then $M \simeq A_{[a]} \cdot m_{(13)(12)(23)} \subset M_e$.
(c) If $S \simeq k_{(12)}$ and $T \simeq k_e$, then $M \simeq A_{[a]} \cdot m_{(13)(12)(23)} \subset M_{(12)}$.
(d) If $S \simeq k_e$ and $T \simeq L$, then $M \simeq A_{[a]} \cdot m_{(23)(12)} \subset M_e$.
(e) If $S \simeq L$ and $T \simeq k_e$, then $M \simeq A_{[a]} \cdot m_{(12)(23)} \subset M_{(13)(23)}$.
(f) If $S \simeq k_{(12)}$ and $T \simeq L$, then $M \simeq A_{[a]} \cdot m_{(12)} \subset M_{(12)}$.
(g) If $S \simeq L$ and $T \simeq k_{(12)}$, then $M \simeq A_{[a]} \cdot m_{(12)} \subset M_{(13)(23)}$. \hfill \Box

Lemma 23. Let k_g and k_h be one-dimensional simple $A_{[(0,0,0)]}$-modules and M be an extension of k_h by k_g. Hence

(a) If $\text{sgn} g = \text{sgn} h$, then $M \simeq k_g \oplus k_h$.
(b) If $\text{sgn} g \neq \text{sgn} h$ and M is not isomorphic to $k_g \oplus k_h$, then $g = (st)h$ for a unique $(st) \in O_3^2$ and M has a basis $\{w_g, w_h\}$ such that $\langle w_g \rangle \simeq k_g$ as $A_{[a]}$-modules, $w_h \in M[h]$ and $x_{(ij)}w_h = \delta_{(ij), (st)}w_g$.

Proof. $M = M[g] \oplus M[h]$ as $k^S_{a_3}$-modules and $M[g] \simeq k_g$ as $A_{[a]}$-modules. Since $x_{(ij)} \cdot M[h] \subset M[(ij)h]$, the lemma follows. \hfill \Box

4.2. Representation type.

We summarize some facts about the representation type of an algebra.

Let R be an algebra and $\{S_1, \ldots, S_t\}$ be a complete list of non-isomorphic simple R-modules. The *separated quiver of R* is constructed as follows. The set of vertices is $\{S_1, \ldots, S_t, S'_1, \ldots, S'_t\}$ and we write $\dim \text{Ext}^1_R(S_i, S_j)$ arrows from S_i to S'_j, cf. [ARS, p. 350]. Let us denote by Γ_R the underlying graph of the separated quiver of R.

A characterization of the hereditary algebras of finite and tame representation type is well-known, see for example [DR2]. As a consequence, the next well-known result is obtained. If R is of finite representation type, then it is Theorem D of [DR1] or Theorem X.2.6 of [ARS]. The proof given in [ARS] adapts immediately to the case when R is of tame representation type.

Theorem 3. Let R be a finite dimensional algebra with radical square zero. Then R is of finite (resp. tame) representation type if and only if Γ_R is a finite (resp. affine) disjoint union of Dynkin diagrams.

In order to use the above theorem, we know that

Remark 24. If r is the radical of R, then the separated quiver of R is equal to the separated quiver of R/r^2, see for example [GI, Lemma 4.5].

We obtain the following result by combining Corollary VI.1.5 and Proposition VI.1.6 of [ARS].

Proposition 25. Let R be an artin algebra, χ an infinite cardinal and assume there are χ non-isomorphic indecomposable modules of length n. Then R is not of finite representation type.

Here is the announced result.

Proposition 26. $A_{((0,0,0))}$ is of wild representation type. If $a \in \mathfrak{A}_3$ is non-zero, then $A_{[a]}$ is not of finite representation type.

Proof. If $a \in \mathfrak{A}_3$ is generic, we can apply Proposition 25 by Lemma 12 and Lemma 14. Hence $A_{[a]}$ is not of finite representation type for all $a \in \mathfrak{A}_3$ generic.

Let $a \in \mathfrak{A}_3$ be sub-generic or zero. Then $\dim \text{Ext}^1_{A_{[a]}}(T, S) = 0$ if $S \simeq T$ by Lemma 22 and 23, and $\dim \text{Ext}^1_{A_{[a]}}(T, S) = 1$ in otherwise. In fact, suppose that $a_{(12)} \neq a_{(13)} = a_{(23)}$, $S \simeq k_e$ and $T \simeq L$. By Lemma 18 and Theorem 2, L admits a projective resolution of the form

$$
\ldots \xrightarrow{} P^2 \xrightarrow{} M_e \oplus M_{(12)} \xrightarrow{F} M_{(13)(23)} \xrightarrow{} L \xrightarrow{} 0,
$$

where F is defined by $F|_{M_e}(m_1) = v$ and $F|_{M_{(12)}}(m_1) = w$; here v and w satisfy $M_{(13)(23)}[e] = \langle v, m_{(12)(23)} \rangle$, $M_{(13)(23)}[\{12\}] = \langle w, m_\circ \rangle$. Then

$$
0 \xrightarrow{} \text{Hom}_{A_{[a]}}(M_{(13)(23)}, k_e) \xrightarrow{\partial_1} \text{Hom}_{A_{[a]}}(M_e \oplus M_{(12)}, k_e) \xrightarrow{\partial_2} \ldots
$$

and $\text{Ext}^1_{A_{[a]}}(L, k_e) = \ker \partial_2/\text{Im} \partial_1$. Since M_h is generated by $m_1 \in M_h[h]$ for all $h \in \mathfrak{S}_3$, $\text{Hom}_{A_{[a]}}(M_{(13)(23)}, k_e) = 0$ and $\dim \text{Hom}_{A_{[a]}}(M_e \oplus M_{(12)}, k_e) = 1$. By Lemma 22, we know that there exists a non-trivial extension of L by k_e and therefore $\dim \text{Ext}^1_{A_{[a]}}(L, k_e) = 1$ because it is non-zero. For other S and T and for the case $a = (0, 0, 0)$, the proof is similar.
Hence if \(a \in A_{[a]} \) is sub-generic and \(a_{(12)} \neq a_{(13)} = a_{(23)} \), the separated quiver of \(A_{[a]} \) is

\[
\begin{array}{c}
\mathbb{k}_e \\
\downarrow \\
L' \\
\downarrow \\
L \\
\downarrow \\
\mathbb{k}'_{(12)} \\
\mathbb{k}'_{(13)} \\
\mathbb{k}'_{(23)} \\
\mathbb{k}_{(13)(23)} \\
\mathbb{k}_{(23)(13)} \\
\end{array}
\]

and the separated quiver of \(A_{[(0,0,0)]} \) is

\[
\begin{array}{c}
\mathbb{k}_e \\
\downarrow \\
L' \\
\downarrow \\
L \\
\downarrow \\
\mathbb{k}'_{(12)} \\
\mathbb{k}'_{(13)} \\
\mathbb{k}'_{(23)} \\
\mathbb{k}'_{(13)(23)} \\
\mathbb{k}'_{(23)(13)} \\
\mathbb{k}_{(23)} \\
\end{array}
\]

Therefore the lemma follows from Theorem 3 and Remark 24.

\[\square\]

Remark 27. Let \(a \in \mathfrak{A}_3 \) be generic. It is not difficult to prove that the separated quiver of \(A_{[a]} \) is

\[
\begin{array}{c}
\mathbb{k}_e \\
\downarrow \\
L' \\
\downarrow \\
L \\
\downarrow \\
\mathbb{k}'_{(12)} \\
\mathbb{k}'_{(13)} \\
\mathbb{k}'_{(23)} \\
\mathbb{k}'_{(13)(23)} \\
\mathbb{k}'_{(23)(13)} \\
\mathbb{k}_{(23)} \\
\end{array}
\]

5. **On the structure of \(A_{[a]} \)**

In this section, we assume that \(n = 3 \) as in the preceding one.

5.1. **Cocycle deformations.**

We show in this subsection that the algebras \(A_{[a]} \) are cocycle deformation of each other. For this, we first recall the following theorem due to Masuoka.

If \(K \) is a Hopf subalgebra of a Hopf algebra \(H \) and \(J \) is a Hopf ideal of \(K \), then the two-sided ideal \((J)\) of \(H \) is in fact a Hopf ideal of \(H \).

Theorem 4. [M, Thm. 2], [BDR, Thm. 3.4]. Suppose that \(K \) is Hopf subalgebra of a Hopf algebra \(H \). Let \(I, J \) be Hopf ideal of \(K \). If there is an algebra map \(\psi \) from \(K \) to \(\mathbb{k} \) such that

- \(J = \psi \rightarrow I \leftarrow \psi^{-1} \)
- \(H/(\psi \rightarrow I) \) is nonzero,

then \(H/(\psi \rightarrow I) \) is a \((H/(I), H/(J))\)-biGalois object and so the quotient Hopf algebras \(H/(I), H/(J) \) are monoidally Morita-Takeuchi equivalent. If \(H/(I) \) and \(H/(J) \) are finite dimensional, then \(H/(I) \) and \(H/(J) \) are cocycle deformations of each other. \[\square\]

We will need the following lemma to apply the Masuoka's theorem.

Lemma 28. If \(W \) is a vector space and \(U \) is a vector subspace of \(W^\otimes n \), then the subalgebra of \(T(W) \) generated by \(U \) is isomorphic to \(T(U) \).
Let \(W \) where \(\psi_T \) be a basis of \(W^{\otimes n} \). Since the \(X_i \)'s are all homogeneous elements of the same degree in \(T(W) \), we only have to prove that \(\{X_i \cdots X_m : i_1, \ldots, i_m \in I^{\times n}\} \) is linearly independent in \(T(W) \) for all \(m \geq 1 \) and this is true because \(B \) is a basis of monomials of the same degree.

Here is the announced result. Observe that this gives an alternative proof to the fact that \(\dim A_{[\alpha]} = 72 \), proved in [AV] using the Diamond Lemma.

Proposition 29. For all \(\alpha \in \mathfrak{A}_3 \), \(A_{[\alpha]} \) is a Hopf algebra monoidally Morita-Takeuchi equivalent to \(B(V_3) \# k^{S_3} \).

Proof. To start with, we consider the algebra \(K_\alpha := T(V_3) \# k^{S_3} / \mathcal{J}_\alpha \), \(\alpha \in \mathfrak{A}_3 \), where \(\mathcal{J}_\alpha \) is the ideal generated by

\[
R_{(13)(23)}, \ R_{(23)(13)} \quad \text{and} \quad x_{(ij)}^2 + \sum_{g \in S_3} a_{g^{-1}(ij)g} \delta_g, \quad (ij) \in \mathcal{O}_2^3.
\]

Let \(M_3 = k^{S_3} \) with the regular representation. For all \(\alpha \in \mathfrak{A}_3 \), \(M_3 \) is an \(K_\alpha \)-module with action given by

\[
x_{(ij)} \cdot m_g = \begin{cases} m_{(ij)g} & \text{if } \text{sgn } g = -1, \\ -a_{g^{-1}(ij)g} m_{(ij)g} & \text{if } \text{sgn } g = 1. \end{cases}
\]

We have to check that the relations defining \(K_\alpha \) hold in the action. Then

\[
\delta_h(x_{(ij)} \cdot m_g) = \delta_h(\lambda_g m_{(ij)g}) = \lambda_g \delta_h((ij)g)m_{(ij)g} = \lambda_g \delta_{g^{-1}(ij)g}(g)m_{(ij)g} = x_{(ij)} \cdot (\delta_{g^{-1}(ij)g} \cdot m_g)
\]

with \(\lambda_g \in k \) according to the definition of the action. Note that

\[
x_{(ij)} \cdot (x_{(ik)} \cdot m_g) = \begin{cases} -a_{g^{-1}(ik)(ij)g} m_{(ij)(ik)g} & \text{if } \text{sgn } g = -1, \\ -a_{g^{-1}(ik)g} m_{(ij)(ik)g} & \text{if } \text{sgn } g = 1. \end{cases}
\]

In any case, we have that \(x_{(ij)}^2 \cdot m_g = -a_{g^{-1}(ij)g} m_g \) and

\[
R_{(ij)(ik)} \cdot m_g = -(\sum_{(st) \in \mathcal{O}_2^3} a_{g^{-1}(st)g} m_{(ij)(ik)g}) = 0.
\]

Let \(W = \langle R_{(13)(23)}, R_{(23)(13)}, x_{(ij)}^2 \rangle : (ij) \in \mathcal{O}_2^3 \rangle \) and \(K \) be the subalgebra of \(T(V_3) \) generated by \(W \); \(K \) is a braided Hopf subalgebra because \(W \) is a Yetter-Drinfeld submodule contained in \(\mathcal{P}(T(V_3)) \) the primitive elements of \(T(V_3) \). Then \(K \# k^{S_3} \) is a Hopf subalgebra of \(T(V_3) \# k^{S_3} \). For each \(\alpha \in \mathfrak{A}_3 \), by Lemma 28 we can define the algebra morphism \(\psi = \psi_K \otimes \epsilon \) : \(K \# k^{S_3} \to k \) where

\[
\psi_K|_{W[g]} = 0 \text{ if } g \neq e \quad \text{and} \quad \psi_K(x_{(ij)}^2) = -a_{(ij)}^\forall (ij) \in \mathcal{O}_2^3.
\]

If \(J \) denotes the ideal of \(K \# k^{S_3} \) generated by the generator of \(K \), then \(\psi^{-1} \to J \leftarrow \psi \) is the ideal generated by the generators of \(\mathcal{I}_\alpha \). In fact, \(\psi^{-1} = \)
$\psi \circ \mathcal{S}$ is the inverse element of ψ in the convolution group $\text{Alg}(K \# k^{S_3}, k)$, $\mathcal{S}(W)[g] \subset (K \# k^{S_3})[g^{-1}]$ and $\mathcal{S}(x^2_{(ij)}) = - \sum_{h \in S_3} \delta_h^{-1} x_{h^{-1}(ij)h}$. Then our claim follows if we apply $\psi \otimes \text{id} \otimes \psi^{-1}$ to $(\Delta \otimes \text{id})\Delta(x^2_{(ij)})$

$$= x^2_{(ij)} \otimes 1 \otimes 1 + \sum_{h \in S_3} \delta_h \otimes x^{-1}_{h^{-1}(ij)h} \otimes 1 + \sum_{h,g \in S_3} \delta_h \otimes \delta_g \otimes x^2_{g^{-1}h^{-1}(ij)hg}$$

and $(\Delta \otimes \text{id})\Delta(x) = x \otimes 1 \otimes 1 + x^{-1} \otimes x_0 \otimes 1 + x^{-2} \otimes x^{-1} \otimes x_0$ for $g \neq e$ and $x \in W[g]$; note that also $x_0 \in W[g]$.

The ideal $\psi^{-1} \to J$ is generated by

$$R_{(13)(23)}, R_{(23)(13)} \text{ and } x^2_{(ij)} + \sum_{g \in S_3} a_g^{-1}(ij)g \delta_g \forall (ij) \in \mathcal{O}_2^3.$$

Now $K_a = T(V_3) \# k^{S_3}/(\psi^{-1} \to J) \neq 0$ because it has a non-zero quotient in $\text{End}(M_3)$. Hence $A_{[a]}$ is monoidally Morita-Takeuchi equivalent to $B(V_3) \# k^{S_3}$, by Theorem 4.

5.2. **Hopf subalgebras and integrals of $A_{[a]}$.**

We collect some information about $A_{[a]}$. Let

$$\chi = \sum_{g \in S_3} \text{sgn}(g)\delta_g, \quad y = \sum_{(ij) \in \mathcal{O}_2^3} x_{(ij)}.$$

It is easy to see that χ is a group-like element and that $y \in \mathcal{P}_{1,\chi}(A_{[a]})$.

Proposition 30. Let $a \in \mathfrak{A}_3$. Then

(a) $G(A_{[a]}) = \{1, \chi\}$.

(b) $\mathcal{P}_{1,\chi}A_{[a]} = \langle 1 - \chi, y \rangle$.

(c) $k\langle \chi, y \rangle$ is isomorphic to the 4-dimensional Sweedler Hopf algebra.

(d) The Hopf subalgebras of $A_{[a]}$ are k^{S_3}, $k\langle \chi \rangle$ and $k\langle \chi, y \rangle$.

(e) $S^2(a) = \chi a \chi^{-1}$ for all $a \in A_{[a]}$.

(f) The space of left integrals is $\langle m_{\top}^\dagger \delta_e \rangle$; $A_{[a]}$ is unimodular.

(g) $(A_{[a]})^*$ is unimodular.

(h) $A_{[a]}$ is not a quasitriangular Hopf algebra.

Proof. We know that the coradical $(A_{[a]})_0$ of $A_{[a]}$ is isomorphic to k^{S_3} by [AV]. Since $G(A_{[a]}) \subset (A_{[a]})_0$, (a) follows.

(b) Recall that $V_3 = M((12), \text{sgn}) \in k^{S_3}_{+} \mathcal{YD}$, see Subsection 2.1. Then $\mathcal{P}_{1,\chi}A_{[a]}/\langle 1 - \chi \rangle$ is isomorphic to the isotypic component of the comodule V_3 of type χ. That is, if $z = \sum_{(ij) \in \mathcal{O}_2^3} \lambda_{(ij)} x_{(ij)} \in (V_3)_{\chi}$, then

$$\delta(z) = \sum_{h \in G,(ij) \in \mathcal{O}_2^3} \text{sgn}(h)\lambda_{(ij)} \delta_h \otimes x_{h^{-1}(ij)h} = \chi \otimes z.$$

Evaluating at $g \otimes \text{id}$ for any $g \in S_3$, we see that $\lambda_{(ij)} = \lambda_{(12)}$ for all $(ij) \in \mathcal{O}_2^3$. Then $z = \lambda_{(12)}y$. The proof of (c) is now evident.
(d) Let \(A \) be a Hopf subalgebra of \(A_3 \). Then \(A_0 = A \cap (A_3)_0 \subseteq k^{S_3} \) by [Mo, Lemma 5.2.12]. Hence \(A_0 \) is either \(k\langle \chi \rangle \) or else \(k^{S_3} \). If \(A_0 = k\langle \chi \rangle \), then \(A \) is a pointed Hopf algebra with group \(\mathbb{Z}/2 \). Hence \(A \) is either \(k\langle \chi \rangle \) or else \(k\langle \chi, y \rangle \) by (b) and [N] or [CD]. If \(A_0 = k^{S_3} \), then \(A \) is either \(k^{S_3} \) or else \(A = A_3 \) by [AV].

To prove (e), just note that \(\chi x_{ij} \chi^{-1} = -x_{ij} \).

(f) follows from Subsections 3.2 and 3.3. Let \(\Lambda \) be a non-zero left integral of \(A_3 \). By Lemma 8, the distinguished group-like element of \((A_3)^* \) is \(\zeta_3 \) for some \(h \in S_3 \), hence \(A \delta_h = \zeta_3 (\delta_h)\Lambda = \Lambda \). Let us consider \(A_3 \) as a left \(k^{S_3} \)-module via the left adjoint action, see page 3. Let \(\Lambda_2 \in (A_3)[g] \) such that \(\Lambda = \sum_{g \in S_3} \Lambda_2 \). Then \(\Lambda = \delta_e \Lambda = \sum_{g \in S_3} \text{ad} \delta_s (\Lambda g) \delta_{g^{-1}} \delta_h = \Lambda h^{-1} \delta_h \).

Since \(M_h \cong A_3 \delta_h \), we can use the lemmata of the Section 3 to compute \(\Lambda \).

If \(a \) is generic, then \(h = e \) by Theorem 1. Since \(x_{ij} \Lambda = 0 \) for all \((ij) \in S_3 \), \(\Lambda = m_{top} \delta_e \) by Lemma 10.

If \(a \) is sub-generic, we assume that \(a_{12} \neq a_{13} = a_{23} \), then either \(\Lambda = \Lambda e \delta_e \) or \(a_{12} \delta_{12} \) by Theorem 2. Since \(x_{ij} \Lambda = 0 \) for all \((ij) \in S_3 \), \(\Lambda = m_{top} \delta_e \) by Lemma 17 and Lemma 19.

(g) By (e), \(S^4 = \text{id} \). By Radford’s formula for the antipode and (f), the distinguished group-like element of \(A_3 \) is central, hence trivial. Therefore, \((A_3)^* \) is unimodular.

(h) If there exists \(R \in A_3 \otimes A_3 \) such that \((A_3, R) \) is a quasitriangular Hopf algebra, then \((A_3, R) \) has a unique minimal subquasitriangular Hopf algebra \((A_R, R) \) by [R]. We shall show that such a Hopf subalgebra does not exist using (d) and therefore \(A_3 \) is not a quasitriangular Hopf algebra.

By [R, Prop. 2, Thm. 1] we know that there exist Hopf subalgebras \(H \) and \(B \) of \(A_3 \) such that \(A_R = HB \) and an isomorphism of Hopf algebras \(H^\text{cop} \to B \). Then \(A_R \neq A_3 \). In fact, let \(M(d, k) \) denote the matrix algebra over \(k \) of dimension \(d^2 \). Then the coradical of \((A_3)^* \) is isomorphic to

- \(k^6 \) if \(a = (0, 0, 0) \).
- \(k \otimes M(5, k)^* \) if \(a \) is generic by Theorem 1.
- \(k^2 \otimes M(4, k)^* \) if \(a \) is sub-generic by Theorem 2.

Since \((A_3)_0 \cong k^{S_3} \), \(A_3 \) is not isomorphic to \((A_3)^{\text{cop}} \) for all \(a \in S_3 \). Clearly, \(A_R \) cannot be \(k^{S_3} \). Since \(A_3 \) is not cocommutative, \(R \) cannot be \(1 \otimes 1 \). The quasitriangular structures on \(k\langle \chi \rangle \) and \(k\langle \chi, y \rangle \) are well known, see for example [R]. Then it remains the case \(A_R \subseteq k\langle \chi, y \rangle \) with \(R = R_0 + R_0 \) where \(R_0 = \frac{1}{2}(1 \otimes 1 + \chi \otimes 1 + 1 \otimes \chi - \chi \otimes \chi) \) and \(R_0 = \frac{1}{2}(y \otimes y + y \otimes y + y \otimes y) \) for some \(\alpha \in k \). Since \(\Delta(\delta_g)^{\text{cop}} R = R \Delta(\delta_g) \) for all \(g \in S_3 \), then

\[\Delta(\delta_g)^{\text{cop}} R_0 = R_0 \Delta(\delta_g) = \Delta(\delta_g) R_0 \text{ in } k^{S_3}; \]

but this is not possible because \(R_0^2 = 1 \otimes 1 \) and \(k^{S_3} \) is not cocommutative. \(\Box \)

The classification of all finite dimensional pointed Hopf algebras with group \(\mathbb{Z}/2 \) also follows easily performing the Lifting method [AS].
Acknowledgements. Part of the work of C. V. was done as a fellow of the Erasmus Mundus programme of the EU in the University of Antwerp. He thanks to Prof. Fred Van Oystaeyen for his warm hospitality and help.

References

[AC] N. Andruskiewitsch and J. Cuadra, *On the structure of (co-Frobenius) Hopf algebras*. J. Noncommut. Geom., to appear.

[AFGV] N. Andruskiewitsch, F. Fantino, M. Graña and L. Vendramin, *Finite-dimensional pointed Hopf algebras with alternating groups are trivial*, Ann. Mat. Pura Appl. 190 (2011), 225-245.

[AG] N. Andruskiewitsch and M. Graña, *From racks to pointed Hopf algebras*, Adv. Math. 178 (2003), 177 – 243.

[ARS] M. Auslander, I. Reiten and S. Smalø, *Representation theory of Artin algebras*. Cambridge Studies in Advanced Mathematics, 36. Cambridge University Press, Cambridge (1995).

[AS] N. Andruskiewitsch and H.-J. Schneider, *Pointed Hopf Algebras*, in “New directions in Hopf algebras”, 1–68, Math. Sci. Res. Inst. Publ. 43, Cambridge Univ. Press, Cambridge, 2002.

[AV] N. Andruskiewitsch and C. Vay, *Finite dimensional Hopf algebras over the dual group algebra of the symmetric group in three letters*, to appear in Comm. Algebra, Special Issue in honor of M. Cohen.

[BDR] M. Beattie, S. Dăscălescu and Ş. Raianu, *Lifting of Nichols algebras of type B_2*, Israel J. Math. 132 (2002), 1-28.

[CD] S. Caenepeel and S. Dăscălescu, *On pointed Hopf algebras of dimension 2^n*, Bull. London Math. Soc. 31 (1999), 17Ü-24.

[CR] C. W. Curtis and I. Reiner, *Methods of representation theory with applications to finite groups and orders*. Volume 1. Wiley Classics Library. (1990).

[DR1] V. Dlab and C. M. Ringel, *On algebras of finite representation type*, J. Algebra 33 (1975), 306-394.

[DR2] V. Dlab and C. M. Ringel, *Indecomposable representations of graphs and algebras*, Mem. Amer. Math. Soc. 6 (1976), no. 173, v+i-57 pp.

[G] M. Graña, *Zoo of finite-dimensional Nichols algebras of non-abelian group type*, available at http://mate.dm.uba.ar/~matiasg/zoo.html.

[GI] A. García Iglesias, *Representations of pointed Hopf algebras over S_3*, Revista de la Unión Matemática Argentina 51 (2010), no. 1 51-77.

[M] A. Masuoka, *Defending the negated Kaplansky conjecture*, Proc. Amer. Math. Soc. 129 (2001), no. 11 3185-3192.

[Mo] S. Montgomery, *Hopf Algebras and their Actions on Rings*, CBMS Reg. Conf. Ser. Math. 82, Amer. Math. Soc. (1993).

[MS] A. Milinski and H.-J. Schneider, *Pointed indecomposable Hopf algebras over Coxeter groups*, Contemp. Math. 267 (2000), 215-236.

[N] W. D. Nichols, *Bialgebras of type one*, Comm. Algebra 6 (1978), 1521-1552.

[NZ] W. D. Nichols and M.B. Zoeller, *Hopf algebra freeness theorem*, Amer. J. Math. 111 (1989), 381–385.

[R] D. Radford, *Minimal quasitriangular Hopf algebras*, J. Algebra 157 (1993), 285-315.

[Ve] L. Vendramin, *Nichols algebras associated to the transpositions of the symmetric group are twist-equivalent*, Proc. Amer. Math. Soc., to appear.

FAMAF-CIEM (CONICET), Universidad Nacional de Córdoba, Medina Allende s/n, Ciudad Universitaria, 5000 Córdoba, República Argentina.

E-mail address: andrus@famaf.unc.edu.ar, vay@famaf.unc.edu.ar