Genetic variation in XRCC1, sun exposure, and risk of skin cancer

J Han*1,2, SE Hankinson1,3, GA Colditz1,2 and DJ Hunter1,2,3

1Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, 181 Longwood Ave., Boston, MA 02115, USA; 2Program in Molecular and Genetic Epidemiology, Harvard School of Public Health, 665 Huntington Ave., Boston, MA 02115, USA; 3Department of Epidemiology, Harvard School of Public Health, 665 Huntington Ave., Boston, MA 02115, USA

The XRCC1 gene is involved in the base excision repair pathway. We assessed the associations of polymorphisms and haplotypes in XRCC1 with skin cancer risk in a nested case–control study within the Nurses' Health Study (219 melanoma, 286 squamous cell carcinoma (SCC) and 300 basal cell carcinoma (BCC), and 873 controls). We genotyped four haplotype-tagging single-nucleotide polymorphisms (Arg194Trp, C26602T, Arg399Gln, and G6n632Gln). There was no significant difference in frequency distribution between cases and controls for any of the five inferred common haplotypes. We observed that the 399Gln allele was inversely associated with SCC risk. This inverse association was only seen among those who had five or more lifetime sunburns, those with a family history of skin cancer, and those in the highest tertile of cumulative sun exposure in a bathing suit, but not among those with low risk defined by these risk factors. We also observed a significant association of the carriage of 194Trp allele with increased SCC risk, which was modified by family history of skin cancer. These two polymorphisms were not associated with BCC or melanoma risk. Our data suggest that the Arg194Trp and Arg399Gln polymorphisms may be differently associated with skin cancer risk according to exposure dose and skin cancer type.

British Journal of Cancer (2004) 91, 1604–1609. doi:10.1038/sj.bjc.6602174 www.bjcancer.com
Published online 21 September 2004
© 2004 Cancer Research UK

Keywords: XRCC1; sunlight; skin cancer

The genotoxic effect of sunlight exposure has been demonstrated in the aetiology of both melanoma and nonmelanocytic skin cancer (Armstrong et al, 1997; English et al, 1997; Ravanat et al, 2001). Ultraviolet (UV) radiation is capable of causing a wide range of lesions in DNA. In addition to DNA photoproducts generated upon the direct absorption of UVB (280–320 nm), UVA (320–400 nm) can indirectly cause oxidative DNA damage in the form of oxidation of guanine (8-hydroxyguanine) and single-strand breaks via reactive oxygen species generated after the absorption of light energy by cellular chromophores (Hall and Johnson, 1996; Brash, 1997; Kielbassa et al, 1997). UVB can also induce oxidative DNA damage to a lesser extent (Kvam and Tyrrell, 1997).

Base excision repair (BER) is responsible for repair of oxidative DNA damage and single-strand breaks (Memisoglu and Samson, 2000; Nilsen and Krokan, 2001). It has been shown that modulation of BER alters cellular sensitivity to UVA but not to UVB (Kim et al, 2002). The XRCC1 protein is involved in the BER pathway. Although XRCC1 has no known enzymatic activity, there are three distinct domains that are sites of interaction with DNA polymerase β (Kubota et al, 1996; Marintchev et al, 2000), poly(adenosine diphosphate (ADP)-ribose) polymerase (PARP), and DNA ligase III (Callebaut and Mornon, 1997; Zhang et al, 1998; Thompson and West, 2000). This suggests that XRCC1 may act as a nucleating factor in BER by bringing different DNA repair components together at the site of action. A number of single-nucleotide polymorphisms (SNPs) in XRCC1 have been identified (Shen et al, 1998; Mohrenweiser et al, 2002). These polymorphisms may alter the BER capacity, and in turn confer genetic predisposition to skin cancer. We assessed whether candidate polymorphisms and haplotypes in the XRCC1 gene are associated with skin cancer risk (melanoma, basal cell carcinoma (BCC), and squamous cell carcinoma (SCC)) in a nested case–control study within the Nurses’ Health Study. We further investigated the gene–environment interactions between XRCC1 genetic variation and sun exposure-related risk factors on skin cancer risk.

MATERIALS AND METHODS

Study population

The Nurses' Health Study was established in 1976, when 121 700 females registered nurses between the ages of 30 and 55, residing in 11 larger US states, completed a self-administered questionnaire on their medical histories and baseline health-related exposures. Updated information has been obtained by questionnaires every 2 years. Between 1989 and 1990, blood samples were collected from 32 826 volunteers of the cohort members. Eligible cases in this study consisted of women with incident skin cancer from the subcohort who gave a blood specimen, including SCC and BCC cases with a diagnosis anytime after blood collection up to June 1, 1998 and melanoma cases (including in situ cases) up to June 1,
2000 with no previously diagnosed skin cancer. All available pathologically confirmed melanoma and SCC cases and 300 self-reported BCC cases randomly selected from about 2600 available self-reported BCC cases were included. The validity of self-report of BCC is high in this medically sophisticated population (90%) (Colditz et al, 1986; Hunter et al, 1990). All the SCC and BCC cases had no history of melanoma diagnosis. A common control series (case:control = 1:1) was randomly selected from participants who gave a blood sample and were free of diagnosed skin cancer up to and including the questionnaire cycle in which the case was diagnosed. One control was matched to each case by year of birth (± 1 year) and race (Caucasian, Asian, Hispanic, others). At the time we selected cases and controls, 47 cases and 69 controls were determined. In order to obtain additional information by supplementary questionnaires, we randomly selected a second matched living control when the first control was deceased, and collected supplementary questionnaires from these second living controls. The nested case–control study consisted of 219 melanoma cases (including 77 in situ cases), 286 SCC cases, 300 BCC cases, and 874 matched controls. Owing to the absence of African-American cases, one African-American control was excluded to avoid potential population stratification. We mailed to 758 living cases and 804 living controls a supplementary questionnaire on lifetime sun exposure and other skin cancer risk factors. In all, 695 cases responded, 15 cases refused to participate, and 48 cases did not respond after three mailings (participation rate = 92%). Among controls, 713 responded, nine refused, and 82 did not respond (participation rate = 92%). The study protocol was approved by the Committee on Use of Human Subjects of the Brigham and Women’s Hospital, Boston, MA, USA.

Exposure data

Information regarding skin cancer risk factors was obtained from the prospective biennial questionnaires and the retrospective supplementary questionnaire. Information on natural hair color and childhood and adolescent tendency to sunburn or tan was asked in the 1982 prospective questionnaire; ethnic group in the 1992 questionnaire. The retrospective supplementary questionnaire consisted of questions in three major areas: (1) pigmentation, constitutional and susceptibility factors; (2) history of residence (states and towns), sun exposure habits, and severe sunburns at different ages; and (3) family history of skin cancer (father, mother, and siblings). In addition, the 11 states of residence of cohort members at baseline were grouped into three regions: Northeast (CT, MA, MD, NJ, NY, and PA), Northcentral (MI and OH), and West and South (CA, TX, and FL). The reliability of the measurements obtained on both the prospective and retrospective data (natural hair color, childhood tendency to tan, and burn) was approximately in the same magnitude in terms of correlation coefficient and mean change among the cases and controls and the odds ratios (ORs) based on both questionnaires were similar, indicating that the retrospective assessment was not likely to substantially bias the estimates of risk in this study, at least for these variables.

In order to estimate sunlight exposure for each subject, a UV database for 50 US states was developed. The database used reports from the Climatic Atlas of the US, which reported mean daily solar radiation (in Langleyes) at the earth’s surface for weather stations around the country. The records of average annual solar radiation for January and July were extracted to represent winter and summer radiation, respectively. The mean solar radiation for each state was derived from the average of UV values measured in weather stations within that state, and both summer and winter radiation indices were developed for each state. A cumulative lifetime sun exposure was developed by combining the UV database and the information obtained from the supplementary questionnaires. Questions about sun exposure while wearing a bathing suit were used to define a cumulative lifetime sun exposure variable for this behavior.

SNP identification

As described previously (Han et al, 2003), we selected haplotype-tagging SNPs for the XRCC1 gene, using data derived from the resequencing of the exons and adjacent intronic and noncoding regions of the gene in a multiple-ethnicity group of 90 samples from the NIH DNA Polymorphism Discovery Resource available from the Coriell Institute for Medical Research (Collins et al, 1998; Mohenweiser et al, 2002). Four haplotype tagging, SNPs were selected from the five common haplotypes inferred from 17 common SNPs (>1% allele frequency) of the gene. We genotyped these four SNPs (C26304T(Arg194Trp), C26602T, G28152A(Arg399Gln), and G36189A(Gln632Gln)) in the present case–control study of mostly Caucasian women.

Laboratory assays

Genotyping was performed by the 5’ nucleotide assay (TaqMan®), using the ABI PRISM 7900HT Sequence Detection System (Applied Biosystems, Foster City, CA, USA), in 384-well format. TaqMan® primers and probes were designed using the Primer Express® Oligo Design software v2.0 (ABI PRISM). Laboratory personnel were blinded to case–control status and blinded quality control samples were included to validate genotyping procedures; concordance for the blinded samples was 100%. Primers, probes, and conditions for genotyping assays are available upon request.

Statistical analysis

We performed haplotype estimation using the Partition-Ligation Expectation Maximization Algorithm (Qin et al, 2002). We used a χ^2 test to assess whether the XRCC1 genotypes were in Hardy-Weinberg equilibrium and to determine P-values for differences in haplotype frequencies between cases of each type and common controls. We used a common control series in data analysis to increase the statistical power. Unconditional logistic regression was employed to calculate OR and 95% confidence interval (CI) to assess the risks of the three types of skin cancer for XRCC1 genotypes. A test for trend was calculated across the three genotypes for each polymorphism. The results did not change substantially in the matched analysis for each of the three types of skin cancer with their own matched controls. We used a likelihood ratio test (LRT) to evaluate heterogeneity in the effects of the XRCC1 genotypes on different types of skin cancer in polytomous logistic regression models (Marshall and Chisholm, 1985). To summarise multiple variables, we constructed a multivariate confounder score to create a constitutional susceptibility index for skin cancer (Miettinen, 1976). Briefly, we applied the logistic regression coefficients from a multivariate model including age, race, natural skin colour, natural hair colour, child or adolescent tendency to burn, and the number of palpably raised moles on arms, to each individual's values for the latter four of these variables, and summed the values to compute a susceptibility risk score in the logit scale. We used this score to define women with low, intermediate, and high constitutional susceptibility based on the models that included terms for all combinations of the XRCC1 genotype and levels of environmental exposure to the models with indicator variables for the main effects only (nominal LRT). We
also modelled XRCCI genotypes as ordinal variables and environmental exposures as continuous variables to assess the statistical significance of interactions by testing the significance of a single multiplicative interaction term (ordinal LRT). All P-values were two-sided.

RESULTS

Descriptive characteristics of cases and controls

The mean ages at diagnosis of melanoma, SCC, and BCC cases were 63.4, 64.7, and 64.0 years, respectively, and that of controls, 64.5 years. Self-reported major ethnicity was similar between cases and controls (cases vs controls: Caucasian, 85.3 vs 85.7%; others, 11.7 vs 11.6%; one Asian melanoma case and one control; one Hispanic SCC case and two controls). Significantly positive associations were observed of lighter natural skin color, lighter natural hair colour, child or adolescent tendency to burn, and the number of palpably raised moles on arms with the risk of all three types of skin cancer. The risk for the highest tertile of the susceptibility score was about three-fold higher for SCC and BCC and four-fold higher for melanoma, compared to the lowest tertile. A family history of skin cancer was a risk factor for the three types of skin cancer. Cases of each skin cancer type were more likely to have used sunlamps or attended tanning salons. The number of lifetime severe sunburns that blistered was significantly associated with all three types of skin cancer. Women in the West and South regions were more likely to be diagnosed with SCC or BCC compared to those in Northeast.

XRCCI and skin cancer risk

The genotype distributions of the four haplotype-tagging SNPs were in Hardy–Weinberg equilibrium among controls. The five common haplotypes inferred from these four SNPs accounted for 99% of the alleles of the present study population of mostly Caucasian women (Table 1). Three rare haplotypes were also estimated. There was no significant difference in frequency distribution in cases and controls for any haplotype. The four haplotype-tagging SNPs were mutually exclusive to each other on these five common haplotypes. In other words, individuals with the variant allele of one polymorphism carried the haplotype that only harbored this variant, but not others. Therefore, the carriage of a polymorphism can be viewed as the carriage of the corresponding haplotype in the evaluation of main effect of polymorphic sites and gene–environment interactions.

We therefore evaluated the four haplotype-tagging SNPs in relation to skin cancer risk (Table 2). We observed a significantly increased risk of SCC among 194Trp carriers. As compared with noncarriers, the multivariate OR was 1.51 for women with at least one 194Trp allele (95% CI 1.01–2.28). We observed that the 399Gln allele was associated with significantly decreased risk of SCC. Compared with women with 399 Arg/Arg genotype, women with Arg/Gln and Gln/Gln genotypes had multivariate ORs of 0.84 (95% CI 0.62–1.15) and 0.61 (95% CI 0.39–0.97) for the risk of SCC, respectively (P for trend, 0.04). Our data showed that the two variants 194Trp and 399Gln were not in the same common haplotype. Carriage of either variant allele was not associated with altered skin cancer risk compared with being homozygous wild type for both alleles (data not shown). No overall associations between C26602T and Gln632Gln and three types of skin cancer risks were found. There was no significant heterogeneity in the main effect of each genotype on the three types of skin cancer (Table 2). It is noteworthy that there is another nonsynonymous polymorphism Arg280His, which is in 100% genotype concordance with C26602T among the 90 individuals from the NIH DNA Polymorphism Discovery Resource (see the Environmental Genome Project (http://egp.gs.washington.edu).

Table 1	Frequencies of PLEM inferred haplotypes in cases and controls									
Haplotypes	**Melanoma cases (n, %)**	**P-value**	**SCC cases (n, %)**	**P-value**	**BCC cases (n, %)**	**P-value**	**Common controls (n, %)**			
C26304T (Arg194Trp)	G28152A (Arg399Gln)	G36189A (Gln632Gln)								
0	0	0	0	47 (1.18)	0.50	73 (1.38)	0.06	51 (9.8)	0.59	168 (10.7)
1	0	0	0	26 (6.5)	0.78	40 (7.5)	0.30	33 (6.3)	0.87	97 (6.2)
0	1	0	0	14 (3.5)	0.40	16 (3.0)	0.12	25 (4.8)	0.71	69 (4.4)
0	0	1	0	147 (36.9)	0.54	169 (31.7)	0.14	187 (35.9)	0.77	555 (35.3)
0	0	0	1	163 (40.9)	0.42	233 (43.8)	0.79	223 (42.9)	0.91	680 (43.2)

Haplotype frequencies from our observed genotypes were estimated using PLEM. Five common haplotypes were listed. The P-values for differences in haplotype frequencies between cases and controls were determined by the two-sample proportion test incorporating standard error from PLEM output. '0' stands for common allele; '1' stands for rare allele. Three additional rare haplotypes were also inferred (all less than 0.5% in cases or controls).

XRCCI Arg399Gln, risk factors, and skin cancer risk

We evaluated potential interactions between the Arg399Gln polymorphism and lifetime severe sunburns, family history of skin cancer, cumulative sun exposure with a bathing suit, and geographic region on SCC risk (Table 3). A significantly positive association of the number of lifetime severe sunburns with SCC was seen among women with the 399Arg/Arg genotype (five or more vs never, OR 3.19; 95% CI 1.63–6.22), and this excess risk was attenuated among those who carried the Gln allele. The Gln allele was significantly inversely associated with SCC risk among those who had five or more severe sunburns in their lifetime (P for trend, 0.04), but positively associated with SCC risk among women who never had severe sunburns (P for trend, 0.12). This interaction was statistically significant (P for ordinal test, 0.008; P for nominal test, 0.05). The 399Gln allele was not significantly associated with lifetime sunburns among controls. The interaction pattern described above was limited to those in the West and South regions, but not among those in Northeast and Northcentral regions (data not shown).

We observed that the inverse association of XRCCI 399Gln on SCC risk was significantly stronger among the individuals with a family history of skin cancer (P for trend, 0.001) than women without family history of skin cancer (P for trend, 0.71; P for ordinal interaction, 0.01; P for nominal interaction, 0.02) (Table 3). It was noteworthy that the 399Gln allele was associated with family history of skin cancer (P, 2 for trend, 0.05) among controls.

In addition, a significantly inverse association of the 399Gln allele on SCC risk was only seen among women in the highest tertile of exposure (P for trend, 0.02), whereas no apparent association between the 399Gln allele and SCC risk was observed among women in the lowest or intermediate tertile (Table 3). The interaction was not statistically significant. There was no significant interaction between geographic region of residence and the Arg399Gln polymorphism on SCC risk, even though the
The Arg399Gln polymorphism has recently drawn considerable
interest as a potential risk factor for SCC. We observed a significant
interaction between the Arg399Gln polymorphism and family history of
skin cancer on SCC risk (P = 0.05). Compared with 194Trp noncarriers
without family history, the 194Trp carriers with a family history of skin
cancer had a multivariate OR of 3.45 (95% CI, 1.64–7.25), whereas the
multivariate OR was 1.16 (95% CI, 0.71–1.92) for 194Trp carriers
without family history, and 1.19 (95% CI, 0.85–1.67) for 194Trp noncarriers
with family history. No interactions were observed between the Arg194Trp
ddand other risk factors on SCC risk. We did not observe any notable
interactions between the two polymorphisms Arg399Gln and
Arg194Trp and the above risk factors on BCC or melanoma risk.

DISCUSSION

In this nested case–control study, we observed a significantly
inverse association between the Arg194Trp polymorphism and family history of skin
cancer on SCC risk (P for interaction, 0.05). Compared with 194Trp
noncarriers without family history, the 194Trp carriers with a family history of skin
cancer had a multivariate OR of 3.45 (95% CI, 1.64–7.25), whereas the
multivariate OR was 1.16 (95% CI, 0.71–1.92) for 194Trp carriers
without family history, and 1.19 (95% CI, 0.85–1.67) for 194Trp noncarriers
with family history. No interactions were observed between the Arg194Trp
ddand other risk factors on SCC risk. We did not observe any notable
interactions between the two polymorphisms Arg399Gln and
Arg194Trp and the above risk factors on BCC or melanoma risk.

The Arg399Gln polymorphism has recently drawn considerable
attention because of its location in the region of the BRCT-I
interaction domain of XRCC1 with PARP. Associations have been
reported between the 399Gln allele and higher DNA adduct levels
(Lunn et al., 1999; Duell et al., 2000; Matullo et al., 2001) and higher
sister chromatid exchange frequency (Duell et al., 2000). However,
in an in vitro transfection experiment, the wild-type and variant
alleles equally complemented both the single-strand break repair
defect and the sensitivity to methyl methanesulphonate in XRCC1-
deficient EM9 cells, suggesting that the 399Gln variant retained a
substantial level of function (Taylor et al., 2002). A positive
association of the 399Gln allele with the risk of SCC was observed
among women who never had severe blistering sunburns. Given
the above data suggesting the reduced repair activity of the 399Gln
allele, our data showed that the positive association of the 399Gln
variant and SCC risk occurred in the context of low levels of DNA
damage. In contrast, among women with five or more severe
sunburns, a significantly inverse association was observed between
the 399Gln allele and the risk of SCC. A possible explanation is
that, when challenged by an overwhelmingly high dose of
exposure, keratinocytes with impaired DNA repair capacity may
accumulate excessive damage, thus inducing apoptosis and
decreasing the risk of SCC. The lifetime sunburn variable
combines exposure intensity and biological response to sun
exposure. We also observed a significantly inverse association of
the 399Gln allele with SCC risk among women with higher risk
gooding by family history of skin cancer or cumulative sun
exposure while wearing a bathing suit, along with a relatively null
association among women with lower risk.

We did not observe significant effect modification of the XRCC1
Arg399Gln on the relation of these risk factors with melanoma risk.
UVA has been reported to have low capacity to induce melanoma
compared to UVB in opossum models (Robinson et al., 1998, 2000).

Table 2 XRCC1 genotypes and skin cancer risk

Genotype	Melanoma			SCC			BCC					
	Controls	Multivariate OR	Multivariate OR	Cases	Multivariate OR	Multivariate OR	Cases	Multivariate OR	Multivariate OR			
Arg194Trp				Arg399Gln			Arg399Gln			Arg399Gln		
wt/wt	764	185	1.00	1.00	240	1.00	1.00	260	1.00	1.00		
het	93	30	1.24 (0.80–1.93)	1.28 (0.79–2.06)	44	1.44 (0.98–2.11)	1.51 (1.01–2.28)	34	1.09 (0.73–1.63)	1.26 (0.82–1.93)		
var/var	6	0			0			0				
Heterogeneity	0.56											
C26602Td												
wt/wt	770	198	1.00	1.00	261	1.00	1.00	261	1.00	1.00		
het	68	15	0.83 (0.46–1.48)	1.01 (0.55–1.88)	17	0.68 (0.39–1.18)	0.73 (0.41–1.30)	0				
var/var	4	0			0			0				
Heterogeneity	0.25											
Gln632Gln												
wt/wt	345	76	1.00	1.00	128	1.00	1.00	108	1.00	1.00		
het	351	99	1.26 (0.90–1.77)	1.17 (0.81–1.67)	112	0.85 (0.63–1.14)	0.84 (0.62–1.15)	124	1.13 (0.84–1.52)	1.08 (0.79–1.48)		
var/var	119	29	1.10 (0.68–1.77)	0.83 (0.49–1.39)	33	0.74 (0.48–1.14)	0.61 (0.39–0.97)	35	0.94 (0.61–1.45)	0.84 (0.53–1.33)		
Trend		0.42	0.77									
Heterogeneity	0.18											

The number of participants does not sum to total women because of missing data on genotype. 1Unconditional logistic regression adjusted for the matching variables: age and race (Caucasian, non-Caucasian). 2Unconditional logistic regression adjusted for the matching variables, constitutional susceptibility score (tertiles), family history of skin cancer (yes/no), the number of lifetime severe sunburns which blistered (none, 1–5, 6–11, >11), sunlamp use or tanning salon attendance (yes/no), cumulative sun exposure while wearing a bathing suit, along with a relatively null association among women who never had severe blistering sunburns. Given the above data suggesting the reduced repair activity of the 399Gln allele, our data showed that the positive association of the 399Gln variant and SCC risk occurred in the context of low levels of DNA damage. In contrast, among women with five or more severe sunburns, a significantly inverse association was observed between the 399Gln allele and the risk of SCC. A possible explanation is that, when challenged by an overwhelmingly high dose of exposure, keratinocytes with impaired DNA repair capacity may accumulate excessive damage, thus inducing apoptosis and decreasing the risk of SCC. The lifetime sunburn variable combines exposure intensity and biological response to sun exposure. We also observed a significantly inverse association of the 399Gln allele with SCC risk among women with higher risk according to family history of skin cancer or cumulative sun exposure while wearing a bathing suit, along with a relatively null association among women with lower risk.

We did not observe significant effect modification of the XRCC1 Arg399Gln on the relation of these risk factors with melanoma risk. UVA has been reported to have low capacity to induce melanoma compared to UVB in opossum models (Robinson et al., 1998, 2000).
which suggests that UVA-induced oxidative DNA damage repaired by BER pathway may be less important than UVB-induced photoproducts in melanoma development in mammals. In contrast to keratinocytes, which are eliminated by apoptosis when severely damaged by UV radiation, melanocytes have low levels of cell cycle proliferation and a limited capacity to undergo apoptosis, perhaps due to a high content of antiapoptotic proteins damaged by UV radiation, melanocytes have low levels of cell cycle proliferation and a limited capacity to undergo apoptosis, perhaps due to a high content of antiapoptotic proteins.

Excised DNA damage unrepaired in the genome, potentially leading to subsequent mutation and increased cancer risk. No association between Arg194Trp and altered levels of biomarkers has been found between Arg194Trp and altered levels of biomarkers.

The Arg399Gln allele is more apparent among individuals with relatively high sun exposure. These data suggest that the apoptosis due to the Arg399Gln genotype was only apparent among women in West and South regions. An overall significant interaction between sunburns and the Arg399Gln genotype was only apparent among women in West and South regions.

Table 3 Interaction between XRCCI Arg399Gln and risk factors on SCC risk

	Arg/Arg	Arg/Gln	Gln/Gln				
	Cases/controls	OR	Cases/controls	OR	Cases/controls	OR	P, trend
Lifetime severe sunburns^a							
Never	17/110	1.00	20/89	1.56 (0.75–3.37)	8/27	2.06 (0.77–5.56)	0.12
1–4	39/87	2.75 (1.72–4.57)	26/94	1.64 (0.81–3.31)	11/28	2.18 (0.88–5.38)	0.38
≥5	47/72	3.19 (1.63–6.22)	41/85	2.36 (1.21–4.61)	11/36	1.18 (0.48–2.89)	0.04
P for interaction, 0.05 for nominal test; 0.008 for ordinal test							
Family history of skin cancer^b							
No	80/269	1.00	70/257	0.90 (0.61–1.32)	25/83	0.96 (0.56–1.63)	0.71
Yes	48/76	1.75 (1.09–2.81)	42/94	1.27 (0.78–2.04)	8/36	0.40 (0.17–0.93)	0.001
P for interaction, 0.02 for nominal test; 0.01 for ordinal test							
Cumulative sun exposure with a bathing suit^c							
Low	25/94	1.00	22/87	0.83 (0.42–1.64)	9/31	0.96 (0.40–2.35)	0.74
Intermediate	29/89	1.09 (0.57–2.05)	33/96	1.27 (0.68–2.37)	7/25	0.99 (0.37–2.65)	0.66
High	54/89	2.58 (1.43–4.67)	41/88	1.74 (0.94–3.22)	14/40	1.10 (0.50–2.45)	0.02
P for interaction, 0.48 for nominal test; 0.17 for ordinal test							
Geographic Region^d							
Northeast	50/145	1.00	47/160	0.93 (0.58–1.51)	17/52	0.91 (0.46–1.78)	0.96
Northcentral	19/68	0.96 (0.51–1.81)	13/48	0.84 (0.41–1.74)	4/18	0.56 (0.17–1.84)	0.19
West and South	34/56	2.11 (1.19–3.72)	27/60	1.32 (0.73–2.40)	9/21	1.07 (0.44–2.62)	0.12
P for interaction, 0.81 for nominal test; 0.26 for ordinal test							

^aThe number of participants does not sum to total women because of missing data on genotype. ^bUnconditional logistic regression adjusted for the matching variables, constitutional susceptibility score (tertiles), family history of skin cancer (yes/no), sunlamp use or tanning salon attendance (yes/no), cumulative sun exposure with a bathing suit (tertiles), and geographic regions. ^cUnconditional logistic regression adjusted for the matching variables, constitutional susceptibility score (tertiles), family history of skin cancer (yes/no), cumulative sun exposure with a bathing suit (tertiles), and geographic regions. ^dUnconditional logistic regression adjusted for the matching variables, constitutional susceptibility score (tertiles), family history of skin cancer (yes/no), the number of lifetime severe sunburns which blistered (none, 1–5, 6–11, >11), sunlamp use or tanning salon attendance (yes/no), cumulative sun exposure with a bathing suit (tertiles), and geographic regions. ^eUnconditional logistic regression adjusted for the matching variables, constitutional susceptibility score (tertiles), family history of skin cancer (yes/no), the number of lifetime severe sunburns which blistered (none, 1–5, 6–11, >11), sunlamp use or tanning salon attendance (yes/no), cumulative sun exposure with a bathing suit (tertiles).
ACKNOWLEDGEMENTS

We thank Dr Karl Kelsey for his insightful scientific comments. We thank Dr Hardeep Ranu, Craig Labadie, Pati Soule and Alicia Whittington for their laboratory assistance, Rong Chen, David Coppola, and Karen Corsano for their programming support. We also thank Gary Chase and Nicole Williams for their help in supplementary questionnaire administration and data entry. We are also indebted to the participants in the Nurses’ Health Study for their dedication and commitment. This work is supported by NIH grants CA97746 and CA87969.

REFERENCES

Armstrong BK, Kricker A, English DR (1997) Sun exposure and skin cancer. Australas J Dermatol 38: S1 – S6
Bowen AR, Hanks AN, Allen SM, Alexander A, Diedrich MJ, Grossman D (2003) Apoptosis regulators and responses in human melanocytic and keratinocytic cells. J Invest Dermatol 120: 48 – 55
Brash DE (1997) Sunlight and the onset of skin cancer. Trends Genet 13: 410–414
Callebaut I, Mormon JP (1997) From BRCA1 to RAP1: a widespread BRCT module closely associated with DNA repair. FEBS Lett 400: 25 – 30
Colditz GA, Martin P, Stampfer MJ, Willett WC, Sampson L, Rosner B, Hennekens CH, Speizer FE (1986) Validation of questionnaire information on risk factors and disease outcomes in a prospective cohort study of women. Am J Epidemiol 123: 894 – 900
Collins FS, Brooks LD, Chakravarti A (1998) A DNA polymorphism discovery resource for research on human genetic variation. Genome Res 8: 1229 – 1231
Danno K, Horio T (1987) Sunburn cell: factors involved in its formation. Photochem Photobiol 45: 683 – 690
Duell EJ, Wiencke JK, Cheng TJ, Varkonyi A, Zuo ZF, Ashok TD, Mark EJ, Wain JC, Christian DC, Kelsey KT (2000) Polymorphisms in the DNA repair genes XRCC1 and ERCC2 and biomarkers of DNA damage in human blood mononuclear cells. Carcinogenesis 21: 965 – 971
English DR, Armstrong BK, Kricker A, Fleming C (1997) Sunlight and cancer. Cancer Causes Control 8: 271 – 283
Gilchrest BA, Eller MS, Geller AC, Yaar M (1999) The pathogenesis of melanoma induced by ultraviolet radiation. N Engl J Med 340: 1341 – 1348
Goode EL, Ulrich CM, Potter JD (2002) Polymorphisms in DNA repair genes and associations with cancer risk. Cancer Epidemiol Biomarkers Prev 11: 1513 – 1530
Hall M, Johnson RT (1996) The role of DNA repair in the prevention of cancer. Mol Aspects Med 17: 235 – 283
Han J, Hankinson SE, De Vivo I, Spiegelman D, Tamimi RM, Mohrenweiser HW, Colditz GA, Hunter DJ (2003) A prospective study of XRCC1 haplotypes and their interaction with plasma carotenoids on breast cancer risk. Cancer Res 63: 8536 – 8541
Hunter DJ, Colditz GA, Stampfer MJ, Rosner B, Willett WC, Speizer FE (1999) Risk factors for basal cell carcinoma in a prospective cohort of women. Ann Epidemiol 1: 13 – 23
Kielbassa C, Roza L, Epe B (1997) Wavelength dependence of oxidative DNA base damage in human skin cells by UV and near visible radiation. Carcinogenesis 18: 2379 – 2384
Lunn RM, Langlois RG, Hsieh LL, Thompson CL, Bell DA (1999) XRCC1 polymorphisms: effects on aflatoxin B1-DNA adducts and glycosphorin A variant frequency. Cancer Res 59: 2557 – 2561
Marinichev A, Robertson A, Dimitriadi ES, Prasad R, Wilson SH, Mullen GP (2000) Domain specific interaction in the XRCC1-DNA polymerase beta complex. Nucleic Acids Res 28: 2049 – 2059
Marshall RJ, Chisholm EM (1985) Hypothesis testing in the polychotomous logistic model with an application to detecting gastrointestinal cancer. Stat Med 4: 337 – 344
Matulolo G, Palle D, Peluso M, Guarerra S, Carturan S, Celentano E, Krogh V, Munnia A, Tumino R, Polidoro S, Piazza A, Vines P (2001) XRCC1, XRCC3, XPD gene polymorphisms, smoking and (323P)-DNA adducts in a sample of healthy subjects. Carcinogenesis 22: 1437 – 1445
Memisoglu A, Samson L (2000) Base excision repair in yeast and mammals. Mutat Res 451: 39 – 51
Miettinen OS (1976) Stratification by a multivariate confounder score. Am J Epidemiol 104: 609 – 620
Mohrenweiser HW, Xi T, Vazquez-Matias J, Jones IM (2002) Identification of 127 amino acid substitution variants in screening 37 DNA repair genes in humans. Cancer Epidemiol Biomarkers Prev 11: 1054 – 1064
Nelson HH, Kelsey KT, Mott LA, Karagas MR (2002) The XRCC1 Arg399Gln polymorphism, sunburn, and non-melanoma skin cancer: evidence of gene–environment interaction. Cancer Res 62: 152 – 155
Nilson H, Krokan HE (2001) Base excision repair in a network of defence and tolerance. Carcinogenesis 22: 987 – 998
Qin ZS, Niu T, Liu JS (2002) Partition-ligation-expectation-maximization algorithm for haplotype inference with single-nucleotide polymorphisms. Am J Hum Genet 71: 1242 – 1247
Ravanat JL, Douki T, Cadet J (2001) Direct and indirect effects of UV radiation on DNA and its components. J Photochem Photobiol B 63: 88 – 102
Robinson ES, Hill JR, Kripe ML, Setlow RB (2000) The Monodelphis melanoma model: initial report on large ultraviolet A exposures of sucking young. Photochem Photobiol 71: 743 – 746
Robinson ES, Hubbard GB, Colon G, Vandenberg JL (1998) Low-dose ultraviolet exposure early in development can lead to widespread melanoma in the opossum model. Int J Exp Pathol 79: 235 – 244
Shen MR, Jones IM, Mohrenweiser H (1998) Nonconservative amino acid substitution variants exist at polymorphic frequency in DNA repair genes in healthy humans. Cancer Res 58: 604 – 608
Taylor RM, Thistlethwaite A, Caldecott KW (2002) Central role for the XRCC1 BRCT domain in mammalian DNA single-strand break repair. Mol Cell Biol 22: 2536 – 2563
Thompson LH, West MG (2000) XRCC1 keeps DNA from getting stranded. Mutat Res 459: 1 – 18
Zhang X, Morera S, Bates PA, Whitehead PC, Coffer AI, Hainbucher K, Nash RA, Sternberg MJ, Lindahl T, Freemont PS (1998) Structure of an XRCC1 BRCT domain: a new protein–protein interaction module. EMBO J 17: 6404 – 6411

© 2004 Cancer Research UK

British Journal of Cancer (2004) 91(8), 1604 – 1609

Genetic variation in XRCC1, sun exposure, and risk of skin cancer

J Han et al