The potentials of Indonesian tubers for the development of potato starch substitute: A short review

G M Ulfa¹, W D R Putri¹,², K Fibrianto¹,², S B Widjanarko¹

¹Food Science and Technology Department, Universitas Brawijaya, Indonesia
²Brawijaya Senso-gastronomy Center, Universitas Brawijaya, Indonesia
E-mail: gracemariaulfa@student.ub.ac.id

Abstract. Potato starch becomes one of the popular starches. It is preferred for use in various industries due to its unique characteristics such as a good film-forming ability and consistency. The high phosphate content causes potato starch to have the excellent ability of water binding, swelling, and good consistency. However, potato production in the developing country tends to decrease. Local tubers could be used to be an alternative to substitute it. The modification process could improve the physicochemical and functional properties of the native local tubers starch. Sweet potato has the potential to be developed to substitute potato starch because it comes from the Solanaceae family. Hydroxypropylation, succinylation, and phosphorylation are suggested in producing potato starch substitute.

1. Introduction
One of the essential crops in the world is potato due to its function for direct or intermediate consumption. It is also popular for its derivative products such as starch and flour [1]. However, potato production in developed countries has declined on average by one percent [2]. Nowadays, potatoes are processed as starch and flour to fulfill the demand from the fast food and food industries [2]. One of the products derived from potato that popularly used all around the world is potato starch.

Two major components of starches, namely amylose and amylopectin, will determine the starch properties. Protein, lipid, and other constituents are also found at starch in the low amount [3] which also have an influence in starch functionality. Other components that have a significant influence on starch functionality is the mineral, such as phosphorous. The phosphorous content of starch also affects its pasting properties and swelling ability [4–6]. Potato starch contains the largest amount of organic phosphate among tuber, which contributes to the unique properties of potato starch [4].

Potato could be substitute with other lower price and high availability commodities. It will become an alternative to overcome the problem of potato production as well as to increase local tubers values. The commodities with similar properties to potato and overcoming the limitations of native starch with modifying the starch is promising. Modified starch is done by chemical, physic, or enzymatic treating of native starch [7]. These methods could improve and alter the physicochemical characteristics. Thus the functional properties of modified starch could be tailor-made to industrial needs.
2. Modified starch

2.1 Native potato starch characteristics
The popularity of potato starch is based on its usage that superior over corn starch and other starches in some applications. The most essential characteristics of potato starch which make it ideal are (1) low gelatinization temperature, (2) excellent film making, (3) high consistency on pasting, and (4) good binding ability. Potato starch has kept its position in some applications over corn or tapioca starch because of its unique traits [8]. The ability to make highly swollen starches increase the firmness, smoothness, and elasticity of products, such as noodle [9,10].

Phosphorous in potato starch was found in high amount and may influence the unique properties of the starch. A high amount of phosphate in potato starch will affect the starch gels with high viscosity [11]. It exists during the development of tuber starch and increases along with the tuber maturity. The amylpectin of potato starch is richer in phosphorous content than amyllose with at least four phosphate groups in each amylpectin fraction [12]. The number of phosphate groups inside starch will influence starch clarity and a viscosity [13]. Tuber starches contain monophosphate esters with covalently bound to starch [14]. The high phosphate monoester content will increase starch clarity and slower the retrogradation process [15].

The differences between native potato starch and cereal starches are potato starch has lower lipid, less crystalline structure, and a lower ratio of amyllose. Potato starch granules average size vary between 5 to 100 µm [16] and exhibits B-type granule pattern [17]. The behaviour of potato starch suggests its application in foods products formulation, which require long shelf-life and high stability [18].

2.2 The potential of local commodities
Tubers contain starch (16–24%), water (70-80%), and trace elements, including protein and lipid (<4%) [19]. Tuber starch also has a blend of taste, light paste, and relatively stable [11]. For example, sweet potatoes could be used in place of potatoes because they are closely related to potatoes. They both come from the Solanaceae family. Another tuber with B-type pattern also potential to be used. The crystalline pattern characteristics of most tuber starches exhibit the pattern of B-type as the result of the x-ray diffraction tests [20]. The information about some commodities characteristics presented in Table 1.

Sample	Granule (µm)	Phosphorous	Amylose (%)	Ref
Potato	35.2	847.2 ppm	21.5	[11]
Sweet potato	19.4	231.3 ppm	23.4	[11]
Yam	22.8	166.1 ppm	25.8	[11]
Cassava	15.7	97.0 ppm	28.8	[11]
Arrowroot	21.1	0.018 %	20.8	[13]
Canna	42.3	0.031 %	31.7	[13]
Ginger	15.8	0.007 %	26.5	[13]
Maize	7.28	0.01 %	29.3	[21]
Chayote	7.50	0.15 %	12.9	[21]
Taro	10-50	0.02 %	29.3	[22]

Table 1. The component characteristics of some local commodities starches.

Some of the important characteristics of starches are pasting and thermal properties. Observing the viscosity changes is studied to understand the pasting characteristics. The tendency towards retrogradation, stability, and other parameters could be obtained from the pasting analysis. Most of the tuber starches exhibit weaker associative intragranular forces [11]. Starch chemical composition also
determines the characteristics of starch. The pasting characteristics of some commodities could be seen in Table 2.

Table 2. Pasting characteristics of some tuber starches.

Sample	Peak viscosity (BU)	Pasting temperature (°C)	Viscosity at 95°C (BU)	Percent concentration (%)	REF
Solanum tuberosum	2150	62	1300	6	[23]
Ipomea batatas	550-560	66.5-68	550-560	4	[24]
Dioscorea alata	-	81-85	25-80	4.5	[25]
Manihot esculenta	590	62	290	6	[26]
Pueraria tuberosa	245	70	NA	5	[27]
Dioscorea alata	No peak	74	100	5	[28]
Dioscorea alata	No peak	69	282	10	[28]
Colocassia esculenta	700-1400	70-75	600-1100	8	[29]
Maranta arundiacea	337-410	72.7-75.9	NA	5	[30]

2.3 Modification of starch
Modified starches are starches that have been treated using chemical, physical, and/or enzymatic to improve their properties for a specific use [31]. Starch modification could be done in many ways, such as etherification, decomposition, esterification, crosslinking, or physic method using heat, moisture, or pressure. The enzymatic also could be applied to starch to alter its properties. A different method of treatment will result in specific physicochemical properties [32].

The physic method is preferred in foods because of its functional properties over those of its native. Moreover, this modification process could be safely used in various food products and other industrial applications. Various physical modification methods of potato starch include pre-gelatinization, high-pressure, heat/moisture, osmotic pressure, and annealing. Other methods, such as microwave and pulse-electric, sonication, and irradiation, are other novel physic methods that could be applied [7,33].

Heating starch in high temperature and pressure, alcohols and alkali could be used to make a cold-water-soluble starch. When compared with native gelatinized starch, it shows smoother texture, greater viscosity, and better process resistance [34]. Other methods with vacuum ball grinding machines are generally used for the manufacture of micron starches. This process will modify the granules with irregularly reduced in size by utilizing the force the grinding balls and starch [35]. Full pre-gelatinization starch could be produced by heating the starch solution above the gelatinization temperature and drying it. [36]. Pre-gelatinization method has a higher hydration and swelling capacity than its native starch, making it suitable for use in tablet formulations and porridge [33,37]. The hydrothermal treatments that are used to produce modified starch without the loss in starch granule integrity are annealing and high moisture treatment. A prominent feature of this method is that their processes will maintain the starch structure by occurring below the gelatinization temperature [38].

Derivatization is a modification method for producing the starch which suits in industrial-scale. The efficiency of these chemical modification is influenced by the starch origin, granule size, reagent type, and the structure [39,40]. The presence of channel and tunnels inside starch granule and the surface of starch also influence the effect of chemical modification. A larger surface area will be accessible by chemical reagents and give easier access for the reagents to the inner starch. However, the reagent could diffuse directly from the surface to the inner matrix [40].

Phosphate groups could be added into native starch as well. Esterification is a chemical modification which could be used to produce potato starch substitute. Some of the methods that could be used are crosslinking, acetylation, phosphorylation, fatty acylation, succinylation and cationization [41]. Crosslink starch could be made by the reaction between starch and another reagent such as sodium tripolyphosphate, epichlorohydrine, sodium trimetaphosphate, and phosphorichloride. These reagents are containing phosphate that could be used to add phosphate group into their starches. Another chemical
modification method, namely acetylation could be done by adding the acetyl group to the hydroxyl group of a glucose molecule [42]. The used of acetic anhydride and base catalysts such as sodium hydroxide are needed in this modification process [43]. Phosphorylation could be done by adding the phosphate groups on starch. It will improve the viscosity, paste clarity, and stability [44]. It also decreases the gelatinization parameters. This method will increase the steric hindrance by resulting in the monophosphate or diphosphate starch. Fatty acylation could be produced by reacting the fatty acids with starch. It will alter the optical activity and thermal properties of starch greatly. Succinylation is esterification process by adding octinyl succinic anhydride to starch. This modification will increase swelling starch ability, peak viscosity, and decrease the gelatinization properties [41].

Etherification is a chemical modification method that could be used to create a potato starch substitute. Hydroxypropylation could be made by adding the hydroxypropyl group on the starch resulting in the increases of peak viscosity, water binding, swelling power, solubility, and paste clarity. However, the gelatinization parameters will decrease by using this method. Hydroxyethylitation could be used to create starch with improving drug binding ability. Carboxymethylation is one of the etherification technique that will improve stability and prevent the recrystallizing ability of starch [41]. The residue is possibly attached to starches with the usage of chemical reagent. The safe chemical reagent is preferred. Besides, starches from various sources showed fundamental structural similarities. This will affect the ability of chemical reagent in altering the micro and ultrastructure to some extent [45].

3. Conclusions
Potato starch is widely used in the world for much industrial application. However, there is a limitation in the usage of native starch. There is also a declining of potato production which could be overcome by substituting potato with local tubers. Sweet potato as local commodities with the same family as potato is potentially developed to substitute potato starch. Starch modification could improve native starch physicochemical and functional properties. Hydroxypropylation, phosphorylation, and succinylation are suggested in the making of potato starch substitute.

References
[1] Alvani K, Qi X, Tester R F and Snape C E 2011 Physico-chemical properties of potato starches Food Chem. 125 958–65
[2] FAO 2008 The global potato economy
[3] Masataka I, Aiko U, Chie M and Miho T 2011 Distribution of starch lysophosphatidylcholine in pasting and gelation of wheat starch suspensions Food Sci. Technol. Res. 17 311–8
[4] Karim A A, Toon L C, Lee V P L, Ong W Y, Fazilah A and Noda T 2007 Effects of phosphorus contents on the gelatinization and retrogradation of potato starch J. Food Sci. 72 132–8
[5] Noda T, Sulari N, Tsuda S, Mori M, Hashimoto N and Yamauchi H 2007 Starch phosphorus content in potato (Solanum tuberosum L.) cultivars and its effect on other starch properties Carbohydr. Polym. 68 793–6
[6] Hemar Y, Hardacre A, Hedderley D I, Clark S, Illingworth D, Harper J W and Boland M 2007 Relationship between the pasting behaviour and the phosphorus content of different potato starches Starch/Stärke 59 149–55
[7] Din Z-, Xiong H and Fei P 2015 Physical and chemical modification of starches - A review Crit. Rev. Food Sci. Nutr. 8398 1549–7852
[8] Wiesenborn D P, Orr P H, Casper H and Tacke B K 1991 Potato starch paste behavior as related to some physical/chemical properties J. Food Sci. 59 644–8
[9] Mitch L E 1984 Starch: Chemistry and Technology ed R Whistler, J BeMiller and E Paschall (Academic Press. Inc.) pp 479–90
[10] Ross A S, Quail K J and Crosbie G B 1997 Physicochemical properties of Australian flours
influencing the texture of yellow alkaline noodles Cereal Chem. 74 814–20
[11] Zaidul I S M, Norulaini N A N, Omar A K M, Yamauchi H and Noda T 2007 RVA analysis of mixtures of wheat flour and potato, sweet potato, yam, and cassava starches Carbohydr. Polym. 69 784–91
[12] Lampitt L H, Fuller C H F and Goldenberg N 1948 The fractionation of potato starch. Part V. The phosphorus of potato starch. J. Chem. Technol. Biotechnol. 67 4 121–5
[13] Peroni F H G, Rocha T S and Franco C M L 2006 Some structural and physicochemical Food Sci. Technol. Int. 12 505–13
[14] Takeda Y, Suzuki A and Hizukuri S 1988 Influence of steeping conditions for kernels on some properties of corn starch Starch/Stärke 40 132–5
[15] Wang L and Wang Y 2001 Structures and physicochemical properties of acid-Thinned corn, potato, and rice starches Starch/Stärke Starch/Stärke 53 570–6
[16] Kim Y S and Wiesenborn D P 1996 Starch noodle quality as related to potato genotypes source of samples gives the desired appearance and texture and is widely available J. Food Sci. 61 248–52
[17] Mbougueng P D, Tenin D, Scher J and Tchiégang C 2012 Influence of acetylation on physicochemical, functional and thermal properties of potato and cassava starches J. Food Eng. 108 320–6
[18] Yakubu P I, Baianu I C and Orr P H 1990 Unique hydration behavior of potato starch as determined by deuterium nuclear magnetic resonance J. Food Sci. 55 158–461
[19] Kaur A, Singh N, Ezekiel R and Guraya H S 2007 Physicochemical, thermal and pasting properties of starches separated from different potato cultivars grown at different locations Food Chem. 101 643–51
[20] Hoover R 2001 Composition, molecular structure, and physicochemical properties of tuber and root starches: A review Carbohydr. Polym. 45 253–67
[21] Jiménez-Hernández J, Salazar-Montoya J A and Ramos-Ramirez E G 2007 Physical, chemical and microscopic characterization of a new starch from chayote (Sechium edule) tuber and its comparison with potato and maize starches Carbohydr. Polym. 68 679–86
[22] Gunaratne A and Hoover R 2002 Effect of heat-moisture treatment on the structure and physicochemical properties of tuber and root starches Carbohydr. Polym. 49 425–37
[23] Vasanthan T 1993 The effect of annealing on the physicochemical properties of wheat, oat, potato and lentil starches J. Food Biochem. 17 303–25
[24] Asante S A, Yamada T and Hisamatsu M 1993 Studies on the properties of starch of diploid Ipomoea trifida (H. B. K.) don. strains Starch/Stärke 45 299–306
[25] Ragger B V and Coursey D G 1967 Properties of starches of some West African yams J. Sci. Food Agric. 18
[26] Cereda B M P and Wosiacki G 1985 Characterization of pinhao starch Starch/Stärke 33 404–7
[27] Suzuki A, Hizukuri S and Takeda Y 1981 Physicochemical studies of kuzu starch Cereal Chem. 58 286–90
[28] Eminiola L O and Delarosa L C 1981 Physicochemical characteristics of yam starches J. Food Biochem. 5 115–30
[29] Jane J, Shen L, Chen J, Lim S, Kasemsuwan T and Nip W K 1992 Physical and chemical studies of taro starches and flours Cereal Chem. 69 528–35
[30] Erdman M D 1986 Starch from arrowroot (Maranta arundinacea) grown at Tifton, Georgia Cereal Chem. 63 277–9
[31] Ortega-Ojeda F E, Larsson H and Eliasson A C 2005 Gel formation in mixtures of hydrophobically modified potato and high amylopectin potato starch Carbohydr. Polym. 59 313–27
[32] Gujral H S, Sharma P and Kaur H 2011 Physicochemical, pasting, and thermal properties of starch osolated from different barley cultivars Int. J. Food Prop. 16 1494–506
[33] Ulfa G M, Putri W D R, Fibrianto K, Prihatiningtyas R and Widjanarko S B The influence of
temperature in swelling power, solubility, and water binding capacity of pregelatinised sweet potato starch 2020 IOP Conf. Ser. Earth Environ. Sci. 475 012036

[34] Yan H and Zhengbiao G U 2010 Morphology of modified starches prepared by different methods Food Res. Int. 43 767–72

[35] Ren G, Li D, Wang L, Özkan N and Mao Z 2010 Morphological properties and thermoanalysis of micronized cassava starch Carbohydr. Polym. 79 101–5

[36] Laovachirasuwan P, Peerapattana J and Srijesdaruk V 2010 Colloids Surfaces B Biointerfaces 78 30–5

[37] Jubril I, Muazu J and Mohammed G H 2015 Effects of phosphate modified and pregelatinized sweet potato starches on disintegrant property of paracetamol tablet formulations J. Appl. Pharm. Sci. 02 28–33

[38] Chung H, Liu Q and Hoover R 2009 Impact of annealing and heat-moisture treatment on rapidly digestible, slowly digestible and resistant starch levels in native and gelatinized corn, pea and lentil starches Carbohydr. Polym. 75 436–47

[39] Huber K C and Bemiller J N 2001 Location of sites of reaction within starch granules Cereal Chem. 78 173–80

[40] Zhao J, Chen Z, Jin Z, Buwalda P, Gruppen H and Schols H A 2015 Effects of granule size of cross-linked and hydroxypropylated sweet potato starches on their physicochemical properties J. Agric. Food Chem. 63 4646–54

[41] Nawaz H, Waheed R, Nawaz M and Shahwar D 2020 Chemical Properties of Starch p 13

[42] Ulfa G M, Putri W D R and Widjanarko S B 2019 The influence of sodium acetate anhydrous in swelling power, solubility, and water binding capacity of acetylated sweet potato starch AIP Conference Proceedings vol 2120 p 050021

[43] Bello-pérez L A, Agama-acevedo E, Zamudio-flores P B, Mendez-montealvo G and Rodriguez-ambriz S L 2010 Effect of low and high acetylation degree in the morphological, physicochemical and structural characteristics of barley starch LWT - Food Sci. Technol. 43 1434–40

[44] Waliszewski K N, Apricio M A, Lus A B and Monroy J A 2003 Changes of banana starch by chemical and physical modification Carbohydr. Polym. 52 237–42

[45] Singh J, Colussi R, Mccarthy O J and Kaur L 2016 Potato starch and its modification (Elsevier Inc.)