Turning on ROP activity in a bimetallic Co/Zn complex supported by a [2+2] Schiff-base macrocycle

Kuiyuan Wang, Timothy J. Prior and Carl Redshaw*

Homo-dinuclear complexes Co and Zn complexes derived from the macrocycle LH2, [(2-OH-5-(R)-C6H1-1,3-(CH4)2][CH2CH2Zn(2-C6H4N)]2 (R = Me, tBu), revealed near inactivity for the ring opening polymerization (ROP) of the cyclic esters 6-valerolactone (6-VL) and ε-caprolactone (ε-CL). By contrast, the hetero-binuclear complexes [Co(NCMe)(μ-Br)ZnBr]·nMeCN (n=3 or 3.25) were found to be efficient catalysts for the ROP of ε-CL and 6-VL. The production of aliphatic polysters has become a very topical area given their biodegradability and biocompatibility,[1] and given the current global issues with plastic pollution, this is likely to remain the case for the foreseeable future.[2] One viable route to such polymers is via the metal-catalyzed ring opening polymerization (ROP) of cyclic esters.[3] The choice of metal catalyst is influenced by a number factors, such as price, toxicity, activity and control. Frameworks that are capable of simultaneously binding multiple metal centres continue to be of great interest in various fields of catalysis, and this stems from the possible presence of favourable cooperative effects.[4] We have become interested in the use of Schiff-base macrocycles given that they possess multiple binding sites,[5] and our studies have been focusing on the simplest members of this family, the so-called Robson type macrocycles, derived from the [2+2] condensation of a diamine/dianiline with a dialdehyde.[6] In terms of catalysis (ROP of ε-CL), we observed beneficial cooperative effects when alkylaluminium centres are bound in a specific way to a Schiff-base macrocycle (LH2, scheme 1, left) derived from the dianiline [(CH2CH2)2C6H4NH2]2, whereas the presence of aluminoxane type (Al-O-Al) bonding in such a system proved detrimental.[7] Furthermore, we noted that manganese complexes of such macrocycles were far less active with conversions for the ROP of ε-CL < 15 %. [8] It is noteworthy that the structural chemistry of this particular macrocycle is underexplored, indeed a search of the CSD revealed no hits,[9] other than our previous mentioned chemistry.[10] We have selected the metals cobalt and zinc given their relatively low cost and biocompatibility. Further, we note that the use of Zn complexes for the ROP of ε-CL is well established,[10] ROP using Co species are scant.[10] Recent work by Williams et al. has shown how the use of hetero-dinuclear complexes can result in enhanced catalytic performance.[11] In particular, it was reported that an in-situ generated catalyst comprising the hetero-dinuclear Zn-Mg complex bearing a diphenolate tetramine macrocycle (scheme 1, right) used in conjunction with its homo-dinuclear Zn-Zn and Mg-Mg counterparts performed better for the copolymerization of CO2 with epoxides than did the homo-dinuclear complexes alone. Given the very similar solubility properties of the three species, it was not possible to crystalize selectively the Mg-Zn hetero-dinuclear complex. However, subsequent studies by the same group have shown that it is possible to access such species via mono-metalation, followed by the addition of the second metal,[11b] and the molecular structures of a number of mixed-metal species were reported.[11c,d] Interestingly, Williams et al. also observed that for ROP of ε-CL and r-LA, a mixed Ti/Zn system displayed moderate/high activity whilst the mono-Ti system was inactive[11e]. We also note that cooperative effects have also been observed for a homo-dinuclear zinc complex in lactide polymerization.[12]

Scheme 1. Macrocycle LH2 (R = Me, tBu) and the Zn-Mg complex reported by Williams et al.

Given this, we have re-focused our efforts on the [2+2] Schiff-base systems and have extended our studies in an attempt to access mixed-metal systems. Herein, we report that homodinuclear cobalt and zinc complexes bearing the macrocycle L (1 - 3, scheme 2) are readily accessible. Furthermore, on reacting 1 with Br2Zn a complex 4 related to 1 was formed differing only
in the composition (partial occupancy Co:Zn = 68:32) of the anion, whereas with Et$_2$Zn, it proved possible to isolate and structurally characterize the mixed-metal Co-Zn complexes 5 (chart 2 right). Interestingly, the homo-dinuclear species 1 and 3 (R = Me and tBu) were inactive when screened for the ROP of ε-CL (and virtually inactive for δ-VL), whereas the mixed-metal complexes 5Me and 5tBu were efficient catalysts when screened under the same conditions (130 °C, 24 h). We note that poly(ε-caprolactone), PCL and PVL are favoured polymers given both their biodegradability, and are considered as potential environmentally friendly commodity plastics. [13] Beyond ROP, Co-Zn species are of interest in gas sensors, semiconductors, dyes and pigments, as well as in other catalytic processes [14].

![Figure 1](image1.png)

Figure 1. Molecular structure of 1Bu·0.5MeCN. Solvent omitted for clarity. Thermal ellipsoids are drawn at the 30% probability level. Selected bond lengths (Å) and angles (°): Co(1) – Br(1) 2.4847(6), Co(1) – O(1) 2.004(2), Co(1) – O(2) 2.043(2), Co(1) – N(1) 2.088(3), Co(1) – N(3) 2.105(3); O(1) – Co(1) – O(2) 178.52(9), N(1) – Co(1) – N(3) 108.77(11), O(1) – Co(1) – Br(1) 92.98(7), N(3) – Co(1) – Br(1) 128.17(8), N(1) – Co(1) – Br(1) 122.54(8), N(1) – Co(1) – N(3) 108.77(11).

Reaction of the [2+2] Schiff-base macrocycle [(2-OH)-5-(R)-C$_6$H$_4$(H$_2$N)$_2$]- (R = Me, tBu) with 2.1 equivalents of CoBr$_2$ afforded, following work-up, green prisms on recrystallization from a saturated solution of acetonitrile at 0 °C in about 70% yield. The molecular structure of 1Bu·0.5MeCN is shown in figure 1, with selected bond lengths and angles given in the caption; for 1Me·4MeCN see ESI figure S1. The complex is a salt of formula [CoBr$_4$(NMe)$_4$]-[CoBr$_2$(NMe)$_2$] ·0.5MeCN (1Bu·0.5MeCN). In the cation, the cobalt centre is five-coordinate with a trigonal bipyramidal pattern; the apical sites are occupied by O atoms of phenolates, with the bromide and two N atoms in the equatorial sites. Concentration of the mother-liquor afforded more of 1Bu·0.5MeCN plus small amounts of an orange/red product, identified as [CoBr$_4$(NMe)$_4$][CoBr$_3$(NMe)$_2$] ·Br] ·4.5MeCN (2Bu·4.5MeCN), the structure of which is similar to that observed for 1Bu·0.5MeCN, differing mainly in the composition of the anions, namely Br$^-$ and CoBr$_3$(NMe)$_2$; the molecular structure is shown in figure S2 (ESI). Similar interaction of LH$_2$ with 2.1 equivalents of ZnBr$_2$ afforded, following work-up, yellow prisms of [ZnBr$_4$(NMe)$_2$] ·MeCN (3Bu·MeCN) in good yield. Use of excess ZnBr$_2$ (> 4 equivalents) also afforded 3Bu·MeCN as the only crystalline product. Again, the structure (ESI, figure S4) is very reminiscent of 1Bu·0.5MeCN, with the zinc adopting a trigonal bipyramidal geometry in the cation; for the structure of 3Me·MeCN, see figure S3. Having isolated and characterized these homo-dinuclear products, we then targeted the formation of a mixed-metal system. Complex 1Bu·MeCN was reacted with ZnBr$_2$ to afford a yellow product, however the structure, namely [CoBr$_4$(NMe)$_2$][Co$_2$Br$_6$(NMe)$_2$] ·2MeCN (4Bu·2MeCN), turned out to be very similar to 1 differing only in the composition of the anion, the latter having cobalt:zinc occupancy 68:32 (17) (ESI, figure S5). We note that the structures of both 3Me·Bu and 4Bu·Bu are analogous to the equivalent manganese complex (see CUVYID in CCDC). [15] Given this disappointing result, both 1Me·tBu and 1Bu·Bu were treated with Et$_2$Zn (one equivalent) and on work-up (acetanilide), brown/red products were isolated in good yield. Single crystals were grown from acetonitrile on prolonged standing (3 days) at ambient temperature. The molecular structure of 5Bu·3.25MeCN is shown in figure 2, with bond lengths/angles given in the caption; for 5Me·3MeCN see figure S6, ESI. In 5Bu·3.25MeCN, the macrocycle binds two metals (Co and Zn) in an ordered way. The Co$^+$ is bound in a distorted octahedral geometry by two cis phenolates and two cis imines of the macrocycle, a rather distant bromide (Co(1)-Br(1) 2.9383(5) Å), and a single molecule of acetonitrile. The Zn ion is in close proximity to the Co ion; the bromide and one of the phenolates each coordinate to the Zn. The tetrahedral coordination about the Zn is completed by an imine and a mono-dentate bromide. One might describe the octahedron of Co(1) and the tetrahedron around Zn(1) as sharing a common edge (O(1) and Br(1)). The two metals are separated at a distance 3.2399(5) Å. The magnetic moments of 5 (5.1 – 5.3) are consistent with high spin Co(II) complexes [16], whilst the 1H NMR spectra are broad and spread over a large window (+140 to -40 ppm). The cobalt and zinc complexes 1, 3 and 5 (R = Me, tBu) have been screened for their ability to ring open polymerize δ-VL and ε-CL; runs were conducted in the presence of benzy al alcohol [BrOH]. For complexes 1 and 3, a variety of conditions were used in the attempted ROP of δ-VL including temperatures in the range 40 to 130 °C, differing ratios of [δ-VL]:[C$_6$H$_5$]·BrOH and over different times, however on each occasion there was no sign of polymer upon...
poly(δ-VL) at 130 °C exhibited near first order dependence of the CL concentration melt. From a kinetic study, it was observed that the polymerization work-up. However, for the mixed-metal systems, activity was observed when the temperature reached 130 °C, in the presence of one equivalent of BnOH (at this temperature, no activity was observed for 1 and 3 – see figure 3 for the relative rates of the δBu derivatives). Data for runs is given in table 1 (see also figures 19-24 ESI) and reveals that 5Bu out-performs 5Me, which is thought to be due to the increased solubility of the former in the reaction solvent. In these mixed-metal systems, the Co to Zn distance may favor coordination of a monomer to both metal centres, and then as in the ROP of propylene oxide, one metal acts a as Lewis acid with the other using its M-OR function to attack the carbonyl group. Highest conversions were achieved with ratios between 100:1:1 and 500:1:1 at 130 °C, with all the runs showing good control with PDIs in range 1.15-1.30; above and below this temperature only trace polymer was observed. Use of either 12h (run 6) or no solvent (i.e. a melt, run 7) was less controlled. Analysis of the polymer indicated the presence of benzylxy and hydroxyl end groups (figure S22, ESI). There was evidence of transesterification and all observed Mw values were significantly lower than the calculated values (see figure S21, ESI). In the case of ε-CL, the situation was more pronounced with no conversion evident by 1H NMR spectroscopic analysis. Mw values were determined by GPC in THF vs PS standards and were corrected with a Mark-Houwink factors (0.58 for poly(δ-VL) * (F.W.[M]/[BnOH])(conversion) Polydispersity index (Mw/Mn) were determined by GPC.

Run	Cat.	[δ-VL]:[Cat]:BnOH	T(°C)	t(h)	Conv. (%)	M w	Mn cal	PDI
1	5Bu	50:1:1	130	24	88.7	1.35	0.45	1.16
2	5Bu	100:1:1	130	24	92.8	2.14	0.93	1.15
3	5Bu	250:1:1	130	24	98.7	5.19	2.46	1.22
4	5Bu	500:1:1	130	24	99.4	6.89	4.97	1.23
5	1Bu	500:1:1	130	12	92.7	0.45	4.64	1.53
6	5Bu	500:1:1 (melt)	130	24	96.2	7.11	4.82	1.79
7	5Bu	500:1:1	70	24	76.1	0.76	3.80	1.19
8	5Bu	500:1:1	130	24	97.0	2.68	2.43	1.30
9	5Me	250:1:1	130	24	91.4	3.35	4.57	1.15
10	5Me	500:1:1	130	24	38.8	0.45	1.94	1.42
11	5Bu	500:1:1	130	24	4.4	0	0.22	-

* By 1H NMR spectroscopic analysis. Mw values were determined by GPC in THF vs PS standards and were corrected with a Mark-Houwink factors (0.58 for poly(δ-VL) (F.W.[M]/[BnOH])(conversion) Polydispersity index (Mw/Mn) were determined by GPC.

4926, 5039, and S154 using the formula C15H32CHO(OC(H)5CO)2OH for n = 42, 43 and 44 respectively. The 1H NMR spectra of the PCL (e.g. figure S28) revealed the presence of benzylxy and OH end groups. It also proved possible to ROP r-LA using the mixed-metal systems, albeit in much poorer yields. Moreover, co-polymerization of δ-VL and ε-CL was possible as was ε-CL with r-LA (see table S1 and figures S33-43, ESI for preliminary results).

In conclusion, we have isolated and structurally characterized homo-dinuclear cobalt and zinc complexes as well as rare examples of mixed-metal [Co/Zn] complexes of a [2+2] macrocyclic Schiff-base. Screening of these complexes for the ROP of the cyclic esters δ-valerolactone (δ-VL) and ε-caprolactone (ε-CL) revealed that whilst the homo-dinuclear complexes are either virtually inactive (δ-VL) or inactive (ε-CL), the mixed-metal systems are efficient catalysts at 130 °C, suggestive that the metals are able to ‘turn each other on’.

Conflicts of interests

There are no conflicts to declare.

Table 1. ROP of δ-VL using complexes 1-5

Run	Cat.	[δ-VL]:[Cat]:BnOH	T(°C)	t(h)	Conv. (%)	Mw	Mn cal	PDI
1	5Bu	50:1:1	130	24	88.7	1.35	0.45	1.16
2	5Bu	100:1:1	130	24	92.8	2.14	0.93	1.15
3	5Bu	250:1:1	130	24	98.7	5.19	2.46	1.22
4	5Bu	500:1:1	130	24	99.4	6.89	4.97	1.23
5	1Bu	500:1:1	130	12	92.7	0.45	4.64	1.53
6	5Bu	500:1:1 (melt)	130	24	96.2	7.11	4.82	1.79
7	5Bu	500:1:1	70	24	76.1	0.76	3.80	1.19
8	5Bu	500:1:1	130	24	97.0	2.68	2.43	1.30
9	5Me	250:1:1	130	24	91.4	3.35	4.57	1.15
10	5Me	500:1:1	130	24	38.8	0.45	1.94	1.42
11	5Bu	500:1:1	130	24	4.4	0	0.22	-

Figure 3. Plot of ln(VL0/VLt) vs. time using complex 1Bu, 3Bu and 5Bu [(monomer):[Cat]:BnOH=500:1:1; 130 °C]
Table 2. ROP of ε-CL using complexes 1-5.

Run	Cat.	[ε-CL] [Cat]	T(°C)	t/h	Conv. (%)	Me x 10²	Mw/Mn x 10⁴	PDI
1	5Bu	50:1:1	130	24	99.3	1.14	0.57	1.14
2	5Bu	100:1:1	130	24	99.6	2.65	1.01	1.13
3	5Bu	250:1:1	130	24	99.6	4.10	2.86	1.13
4	5Bu	500:1:1	130	24	99.8	6.56	5.05	1.34
5	5Bu	1000:1:1	130	24	88.7	3.61	8.87	1.12
6	5Bu	500:1:1	130	12	48.0	2.28	2.74	1.80
7	5Bu	500:1:2	130	24	71.5	3.48	1.78	1.15
8	5Bu	500:1:1	130	24	98.2	7.87	4.98	1.66

* By 'H NMR spectroscopic analysis. * M, values were determined by GPC in THF vs PS standards and were corrected with a Mark-Houwink factors (0.56 for poly(ε-CL) (F-W.[M]/[BnOH])|(conversion)) Polydispersity index (Mw/Mn) were determined by GPC.

Acknowledgements

We thank the China Scholarship Council (CSC) for a PhD Scholarship to KW. The EPSRC National Crystallography Service Centre at (1Me-CMCN, 3Me-CMCN, 5Bu-CMCN, 5Me-CMCN) contain the supplementary crystallographic data. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via Southampton is thanked for data. CR also thanks the EPSRC (grant EP/S025537/1) for financial support. § CCDC 1849421 (1Bu-0.5MeMCN, 2Bu-4.5MeMCN, and 5Bu-3.25MeMCN), 1849421 (4Bu-0.25MeMCN) and 1921189-92.

www.ccdc.cam.ac.uk/data_request/cif.

Note and References

1. A. C. Albertsson and I. K. Varma, *Biomacromolecules* 2003, 4, 1466-1486.
2. P. Villarrubia-Gómez, S. E. Cornell and J. Fabres, *Marine Policy*, 2018, 96, 213-220.
3. For reviews, see (a) O. Dechy-Cabaret, B. Martin-Vaca and D. Bourissou, *Chem. Rev.*, 2004, 104, 6147–6176; (b) M. Labet and W. Thielemans, *Chem. Soc. Rev.*, 2009, 38, 3484–3504; (c) C. M. Thomas, *Chem. Soc. Rev.*, 2010, 39, 165–173; (d) A. Arbaoui and C. Redshaw, *Polym. Chem.*, 2010, 1, 801–826; (e) Y. Sarazin, J.-F. Carpentier, *Chem. Rev.*, 2015, 115, 3564–3614 and references therein.
4. See for example, (a) S. K. Mandal, H. W. Roessky, *Acc. Chem. Res.*, 2010, 43, 248-259; (b) M. Delferro, T. J. Marks, *Chem. Rev.*, 2011, 111, 2450-2485; (c) J. P. McNinch, M. Delferro, T. J. Marks, *Acc. Chem. Res.*, 2014, 47, 2545-2557; (d) I. Bratko, M. Gómez, *Dalton Trans.*, 2013, 42, 10654-10661.
5. (a) S. Brooker, *Coord. Chem. Rev.*, 2001, 222, 33-56; (b) W. Radecka-Paryzek, V. Patriniak, J. Lisowski, *Coord. Chem. Rev.*, 2005, 249, 2156-2175; (c) C. Redshaw, *Dalton Trans.*, 2016, 45, 9018-9030; (d) C. Redshaw, *Catalysts*, 2017, 7, 165.
6. (a) N. H. Pilkington, R. Robson, *Aust. J. Chem.*, 1970, 23, 2225–2236; (b) M. Bell, A. J. Edwards, B. F. Hoskins, E. H. Kachab, R. Robson, *J. Am. Chem. Soc.*, 1989, 111, 3603–3610.
7. (a) A. Arbaoui, C. Redshaw, D. L. Hughes, *Chem. Commun.*, 2008, 4717; (b) A. Arbaoui, C. Redshaw, D. L. Hughes, *Supramol. Chem.*, 2009, 21, 35; (c) W. Yang, K.-Q. Zhao, B. – Q. Wang, C. Redshaw, M. R. J. Elsegool, J.-L. Zhao, T. Yamato, *Dalton Trans.*, 2016, 45, 11990-12005.
8. W. Yang, K.-Q. Zhao, B.-Q. Wang, C. Redshaw, M. R. J. Elsegool, J. -L. Zhao and T. Yamato, *Dalton Trans.*, 2016, 45, 226–236.
9. F. H. Allen, *Acta Crystallogr. Sect. B: Struct. Sci.*, 2002, 58, 380.
10. See for example, J. Zhang, B. Wang, L. Wang, J. Sun, Y. Zhang, Z. Cao and Z. Wu, *Appl. Organomet. Chem.*, 2018, 32e4077 and references therein.
11. (a) P.K. Saini, C. Roman, K. C. Williams, *Chem. Commun.*, 2014, 50, 4164-4167; (b) J. F. Garden, P. K. Saini, C. K. Williams, *J. Amer. Chem. Soc.*, 2015, 137, 15078-15081. (c) J. F. Garden, A. J. P. White, C. K. Williams, *Dalton Trans.*, 2017, 46, 2532-2541; (d) A. C. Deacy, C. B. Durr, J. F. Garden, A. J. P. White, C. K. Williams, *Inorg. Chem.*, 2018, 57, 15575-15583. (e) G. Trott, J. F. Garden, C. K. Williams, *Chem. Sci.*, 2019, 10, 4618-4627.
12. A. Thevenon, C. Roman, M. S. Bennington, A. J. P. White, H. J. Davidson, S. Brooker, C. K. Williams, *Angew. Chem. Int. Ed.*, 2016, 55, 8680-8685.
13. See for example, (a) M. A. Woodruff and D. W. Hutmacher, *Prog. Polym. Sci.*, 2010, 35, 1217-1256; (b) Y. F. Al-Khafaji and F. H. Hussein in *Green and Sustainable Advanced Materials: Processing and Characterization*, Eds. S. Ahmed and C. M. Hussain, Wiley, 2018, Chapter 6.
14. (a) T. Baird, K. C. Campbell, P. J. Holiman, R. W. Hoyle, D. Stirling, B. P. Williams, M. Morris, *J. Mater. Chem.*, 1997, 7, 319–330; (b) X. Niu, W. Du, W. Du, *Sens. Actuators B*, 2004, 99, 405–409; (c) N. H. Perry, T. O. Mason, C. Ma, A. Navrotsky, Kondrat, T. E. Davies, J. D. Morgan, D. I. Enache, G. B. Combes, S. H. Taylor, J. K. Bartley, G. J. Hutchings, *Catal. Sci. Technol.*, 2014, 4, 1970-1978.
15. (a) R. W. Handel, H. Willms, G. B. Jameson, K. J. Berry, B. Moubrakari, K. S. Murray and S. Brooker, *Eur. J. Inorg. Chem.*, 2010, 3317–3332; (b) A. A. Abou-Hussein and W. Linert, *Spectro. Chim. Acta A, Mol. Biomol. Spec.*, 2015, 141, 223-232.
16. (a) B. Antelmann, M. H. Chisholm, S. S. Iyer, J. C. Huffman, D. Navarro-Llobet, M. Pagel, W. J. Simonick and W. Zhong, *Macromolecules*, 2001, 34, 3159-3175; (b) W. Braune and J. Okuda, *Angew. Chem. Int. Ed.* 2003, 42, 64-68.
17. K. Makiguchi, T. Satoh, T. Kakuchi, *Macromolecules*, 2011, 44, 1999–2005.
415x187mm (300 x 300 DPI)