Relative complements and a ‘switch’-classification of simple graphs

Elżbieta Błaszko, Małgorzata Prażmowska, Krzysztof Prażmowski

September 1, 2015

Abstract

In the paper we introduce and study a classification of finite (simple, undirected, loopless) graphs with respect to a switch-equivalence (‘local-complement’ equivalence of [4], an analogue of the complement-equivalence of [3]). In the paper we propose a simple inductive method to compute the number of switch-types of graphs on \(n \) vertices and we show that there are exactly 16 such types of graphs on 6 vertices.

keywords: complete graph, bipartite graph, local complement (in a point).

MSC2010: 05C76

Introduction

In the paper we introduce and study a classification of (simple, undirected, loopless) graphs which was defined, in fact, many years ago as a convenient tool to classify configurations of some sort (see [4], [5]). Namely such a graph is used as a parameter of construction of a so called multiveblen configuration. And the resulting configurations are isomorphic when corresponding graphs are equivalent exactly in the sense considered in this paper. However, at its origins, the equivalence in question was just an auxiliary notion. Its definition was rather (formally) complicated, though it was easy to use when one wanted to check ‘by hand’ whether two given graphs are equivalent. This original definition, now considered rather as a criterion, turned out to be equivalent to a very elegant one, which can be briefly presented as follows. It is a folklore that the binary symmetric difference operation determines the structure of an abelian group on the family \(\wp(\mathcal{X}) \) of all subsets of a fixed set \(\mathcal{X} \), for every \(\mathcal{X} \). In particular, we can take \(\mathcal{X} \) to be the set of edges of a complete graph \(K_\mathcal{X} \). The set of all complete bipartite subgraphs of \(K_\mathcal{X} \) yields a subgroup, isomorphic to \(2^{\mathcal{X}\setminus\{\emptyset\}} \). And, finally, two graphs defined on \(\mathcal{X} \) are equivalent when they are congruent modulo the group of complete bipartite subgraphs defined on \(\mathcal{X} \).

In our opinion, there are two arguments which prove that this equivalence is worth studying. The first argument follows from the way in which it is defined: it places our notion within investigations on natural elementary algebra of sets. The second argument consists in interesting interpretation in terms of ‘switches’. Imagine that a graph \(G \) characterizes possible connections between \(n \) places. Another graph
G' is equivalent to G if it arises from G when in some places all existing connections are blocked, and all the other, previously blocked, become unblocked.

This idea has appeared in the mathematical literature (especially with connections to computer sciences) many years ago, and there is a great amount of papers where complement-equivalence, switching-equivalence and related notions were introduced and studied in the class of directed graphs (digraphs). Just to quote some of them: [3], [1], [2].

Our equivalence has $2^{|\mathcal{X}|} - |\mathcal{X}| + 1$ equivalence classes and this number rapidly increases when $|\mathcal{X}|$ increases.

Quite often we are interested not in a concrete graph (a realization) but more in its isomorphism type. The number μ_n of isomorphism types of respective congruence classes grows up not so rapidly, at least for small values of $n = |\mathcal{X}|$. But the exact formula for $\mu_n = \mu(n)$ is hard to find. The reasoning used to compute the size of a congruence class cannot be applied now, as in a congruence class various numbers of pairwise nonisomorphic graphs may appear. For example, for $n = 4$, there are three iso-types of graphs equivalent to K_4 and five iso-types of graphs equivalent to L_4.

In the paper we propose an inductive method to compute μ_n. It is evident that $\mu_3 = 2$ and it was proved in [4] that $\mu_4 = 3$ and $\mu_5 = 7$. Here we show how our machinery gives $\mu_6 = 16$. This is one, particular result of the paper. At the same time we determine fundamental general properties of the equivalence introduced, and show several general invariants of this equivalence.

Finally, it is worth to note that the family of all complete bipartite graphs defined on \mathcal{X} together with all disjoint unions of pairs of complete subgraphs of $K_\mathcal{X}$ is also a subgroup of all subgraphs of $K_\mathcal{X}$. Consequently, congruence modulo this subgroup also defines an equivalence of graphs. One can note that two graphs are equivalent in this sense if either they are equivalent in the sense introduced in the paper or one is equivalent to the boolean completion of the second. An interpretation of this equivalence in terms of switches is also possible, but now one should pay attention more to a binary labeling connected/unconnected, in fact: a labelling of the edges of $K_\mathcal{X}$ by two distinct symbols.

1 Basic definitions and facts

1.1 Graph-theoretical notations

The equivalence of graphs investigated in the paper is closely related to a classification of partial Steiner triple systems of some sort. However, the resulting classification of graphs has its own interest; it has quite natural intuitions and motivations concerning flows on (undirected) graphs.

Let \mathcal{X} be a nonempty set; then $\mathcal{P}(\mathcal{X})$ is the set of all subsets of \mathcal{X}. For an integer k we write $\mathcal{P}_k(\mathcal{X})$ for the set of k-subsets of \mathcal{X}. A graph (an undirected graph without multiplied edges and loops defined on a set \mathcal{X} is an arbitrary subset \mathcal{E} of $\mathcal{P}_{2}(\mathcal{X})$; if $\{x, y\} = e \in \mathcal{E}$ we say that x, y are the vertices of the edge e. More precisely, we sometimes say that a graph is the structure $\langle \mathcal{X}, \mathcal{E} \rangle$: if $\mathcal{E} \subset \mathcal{P}_{2}(\mathcal{Y})$ for $\mathcal{Y} \subseteq \mathcal{X}$ this caution is necessary. Clearly, if $G = \langle \mathcal{X}, \mathcal{E} \rangle$ is a graph then $\mathcal{I}(G) = \langle \mathcal{X}, \mathcal{I}(\mathcal{E}) \rangle$ with
\(\varphi(\mathcal{E}) = \emptyset_2(X) \setminus \mathcal{E} \) is also a graph defined on \(X \). Most of the notions concerning graphs used in the paper are standard and can be found in any standard textbook, like e.g. [6].

Recall the definition of the symmetric difference operation \(\div \) defined on the family of sets: \(A \div B = (A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B) \). Recall also that \(\div \) defines on each set \(\wp(W) \), with \(W \) arbitrary, the structure of an abelian group with \(\emptyset \) as the unit and each element of order 2.

Two operations on graphs will be frequently used in the paper: Let \(G_i = \langle X_i, \mathcal{E}_i \rangle \) for \(i = 1, 2 \).

\[
G_1 \div G_2 := \langle X, \mathcal{E}_1 \div \mathcal{E}_2 \rangle \quad \text{when } X_1 = X_2 = X, \\
G_1 \cup G_2 := \langle X_1 \cup X_2, \mathcal{E}_1 \cup \mathcal{E}_2 \rangle \quad \text{when } X_1 \cap X_2 = \emptyset.
\]

Several types of graphs are frequently considered in the literature; these will also play a crucial role in forthcoming classifications.

- \(K_X = \langle X, \wp_2(X) \rangle \): the complete graph on \(X \);
- \(N_X = \langle X, \emptyset \rangle = \varphi(K_X) \): the empty graph (note that in this case ‘a graph’ must be considered as ‘a structure’);
- \(K_n, N_n \): an arbitrary graph isomorphic to \(K_X, N_X \) with \(|X| = n \); clearly, the isomorphism type of a complete graph and of an empty graph depends only on the cardinality of its set of vertices.

- \(C_n \): a cyclic graph on a \(n \)-set;
- \(L_n \): a linear graph on \(n \) vertices;
- \(K_{A,B} = \langle A \cup B, \{\{a,b\} : a \in A, b \in B\} \rangle \) defined when \(A \cap B = \emptyset, A \neq \emptyset \) or \(B \neq \emptyset \), a complete bipartite graph on \(A \cup B \).
- \(K_{n_1,n_2} \): a graph \(K_{A,B} \) with \(|A| = n_1, |B| = n_2 \).

Finally, we set

\[
\mathcal{G}(X) := \{\langle X, \mathcal{E} \rangle : \mathcal{E} \subset \wp_2(X)\}, \\
\mathcal{D}(X) := \{K_{A,X \setminus A} : A \subset X\}.
\]

In most parts of the paper we shall omit proofs of elementary set theoretic formulas, like e.g. (7).

1.2 Equivalences of graphs

Let us introduce the following two relations \(\cong \) and \(\approx \) defined on the family \(\mathcal{G}(X) \). Let \(G_1, G_2 \in \mathcal{G}(X) \).

\[
G_1 \cong G_2 \iff G_1, G_2 \text{ are isomorphic,} \\
G_1 \approx G_2 \iff G_1 \div G_2 \in \mathcal{D}(X).
\]

The following formula is valid for any \(A, B \subset X \):

\[
K_{A,X \setminus A} \div K_{B,X \setminus B} = K_{A \div B, X \setminus (A \div B)}.
\]

As an immediate consequence of (7) and properties of the operation \(\div \) we infer
Proposition 1.1. The class $\mathcal{D}(X)$ is closed under \div. Consequently, the relation \approx is an equivalence in $\mathcal{G}(X)$.

Next, we note another set theoretical relation:

$$K_X \div K_{A,X\setminus A} = K_A \cup K_B. \hspace{1cm} (8)$$

These two: (8) and (7) give us immediately two equivalence classes of \approx:

$$[K_X]_\approx = \{K_A \cup K_B : A \cup B = X, A \cap B = \emptyset\}, \quad [N_X]_\approx = \mathcal{D}(X). \hspace{1cm} (9)$$

One more formula of this type can be also worth to note:

$$(K_A \cup N_{X \setminus A}) \div K_{A,X \setminus A} = K_X \setminus K_{X \setminus A} = \kappa(K_{X \setminus A} \cup N_A), \hspace{1cm} (10)$$

so in one \approx-class are: a complete subgraph and the boolean complement of suitable another complete subgraph.

In the original paper [4] the definition of \approx was introduced with the help of the operation of **local complementation**: for $a \in X$ and $E \in \mathcal{G}(X)$ we proceed as follows. Let $e \in \varphi_2(X)$. If $a \notin e$ then $e \in \mu_a(E)$ iff $e \in E$. If $a \in e$ then $e \in \mu_a(E)$ iff $e \notin E$.

So, μ_a is an operation $\mathcal{G}(X) \rightarrow \mathcal{G}(X)$; it is called the local complementation in the point a. It is seen that

$$\mu_a(G) = G \div K_{\{a\},X\setminus\{a\}}. \hspace{1cm} (11)$$

Consequently, with the help of (7), we arrive to the definition introduced in [4]:

Proposition 1.2. Let $G_1, G_2 \in \mathcal{G}(X)$. $G_1 \approx G_2$ iff there is a sequence a_1, \ldots, a_k of elements of X such that $G_2 = \mu_{a_k}(\ldots \mu_{a_1}(G_1) \ldots)$.

Clearly, \approx is also an equivalence relation on $\mathcal{G}(X)$. But \approx and \cong are essentially distinct:

(i) Let $a \in X$, $|X| \geq 2$; then $N_X \cong K_{\{a\},X\setminus\{a\}}$, $N_X \not\cong K_{\{a\},X\setminus\{a\}}$.

(ii) Let $A, B \subseteq X$, $|A| = |B| > 1$. Then $G_1 = K_A \cup N_{X \setminus A} \cong K_B \cup N_{X \setminus B} = G_2$. It is seen that if $A \cup B \neq X$ then $G_1 \div G_2 \notin \mathcal{D}(X)$ and then $G_1 \approx G_2$. Take, in particular, $A = \{1, 2\}$, $B = \{2, 3\}$, $X = A \cup B \cup \{4\}$. Then $G_1 \div G_2$ is the L_3-path $1 \rightarrow 2 \rightarrow 3$ not in $\mathcal{D}(X)$.

The following is easy to prove

Proposition 1.3. Let $G_1, G_2 \in \mathcal{G}(X)$.

(i) If $G_1 \cong G_2$ then $\kappa(G_1) \cong \kappa(G_2)$.

(ii) If $G_1 \approx G_2$ then $\kappa(G_1) \approx \kappa(G_2)$.

Proof. (i) is evident: if a bijection $f : X \rightarrow X$ maps \mathcal{E}_1 onto \mathcal{E}_2, where $G_i = \langle X, \mathcal{E}_i \rangle$ for $i = 1, 2$, then f maps $\varphi_2(X) \setminus \mathcal{E}_1$ onto $\varphi_2(X) \setminus \mathcal{E}_2$ as well.

Ad (ii): Note that for any $G \in \mathcal{G}(X)$ we have $\kappa(G) = K_X \div G$. So, suppose $G_1 \approx G_2$, i.e. $G_2 = G_1 \div H$ with $H \in \mathcal{D}(X)$. Then $\kappa(G_2) = G_2 \div K_X = (G_1 \div H) \div K_X = (G_1 \div K_X) \div H = \kappa(G_1) \div H$. Finally, $\kappa(G_1) \approx \kappa(G_2)$. \hspace{1cm} \blacksquare
And afterwards, as important invariants we obtain

\[G \sim G' \approx \]

Clearly, \((G, E) \sim (G', E')\) if and only if \(G \approx G'\) and \(E \sim E'\). Indeed, it is known that \(K_2 \cup K_1 \approx K_3\) and \(K_3 \cup K_1 \approx K_4\). But \((K_2 \cup K_1) \cup K_1 = K_2 \cup N_2 \approx L_4\) and it is known also that \(K_4 \not\approx L_4\).

Lemma 1.4. Let \(G_1, G_2, G_3 \in \mathcal{G}(X)\) and \(G_1 \approx G_3 \approx G_2\). Then there is \(G' \in \mathcal{G}(X)\) such that \(G_1 \approx G' \approx G_2\).

Proof. Let \(f\) be a bijection that maps \(G_1\) onto \(G_2\), let \(G_1 = G_3 / H\) with \(H \in \mathcal{D}(X)\). Then \(f(H) \in \mathcal{D}(X)\) and \(G_2 \div f(H) = f(G_3) / f(H) = f(G_3 / H) = f(G_1)\). With \(G_1 = G_2 + f(H)\) we get our claim.

As a consequence of the above and of [1.1] we get that the relation \(\sim\) defined on \(\mathcal{G}(X)\) by the formula

\[G_1 \sim G_2 : \iff G_1 \approx G_3 \approx G_2 \quad \text{for a graph } G_3 \]

is an equivalence relation. This is our main subject of the paper. For small values of \(n = |X|\) the classification of the elements of \(\mathcal{G}(X)\) with respect to the relation \(\sim\) is known (cf. [3]). Clearly, \(K_1 = N_1\) and \(K_2 = L_2 \approx N_2\).

- \(n = 2 : \mathcal{G}(X) / \sim = \{ K_2, N_2 \}\).
- \(n = 3 : \mathcal{G}(X) / \sim = \{ [K_3], [N_3] \} \) (cf. [2]).
- \(n = 4 : \mathcal{G}(X) / \sim = \{ [K_4], [N_4], [L_4] \} \).

The elements in the classes enumerated above are pairwise distinct. Moreover, \(L_4 \sim L_2 \cup N_2 \sim L_3 \cup N_1\). The case \(n = 5\), which is also already solved, will be quoted in the following.

Directly from [12] and [1.3] we have

Proposition 1.5. Let \(G_1, G_2 \in \mathcal{G}(X)\). If \(X_1 \sim X_2\) then \(\kappa(G_1) \sim \kappa(G_2)\).

For a graph \(G = \langle X, \mathcal{E} \rangle\) and \(Z \subset X\) we write \(G \upharpoonright Z = \langle Z, \mathcal{E} \cap \mathcal{V}_2(Z) \rangle\). As a convenient tool for determining which graphs are not \(\sim\)-related we give

Lemma 1.6. If \(G_1, G_2 \in \mathcal{G}(X)\), \(Z \subset X\), and \(G_1 \approx G_2\) then \(G_1 \upharpoonright Z \approx G_2 \upharpoonright Z\).

Proof. Let \(Z_i = Z_i \cap \mathcal{V}_2(Z)\) for \(i = 1, 2\). Assume that \(G_1 \approx G_2\). So, there is a sequence of local complementations \(\mu_{a_1}, \ldots, \mu_{a_k}\) which composition maps \(\mathcal{E}_1\) onto \(\mathcal{E}_2\). Note that if \(a_j \notin Z\) then \(\mu_{a_j}(\mathcal{E} \cap \mathcal{V}_2(Z)) = \mathcal{E} \cap \mathcal{V}_2(Z)\) and if \(a_j \in Z\) then local complementation \(\mu_{a_j}\) maps \(\mathcal{E} \cap \mathcal{V}_2(Z)\) onto \(\mu_{a_j}(\mathcal{E}) \cap \mathcal{V}_2(Z)\), for every \(\mathcal{E} \subset \mathcal{V}_2(X)\).

Consequently, a sequence of local complementations in points of \(Z\) maps \(Z_i\) onto \(Z_2\) and we are done by [1.2].

And afterwards, as important invariants we obtain

Proposition 1.7. Let \(G_0\) be a graph on \(k\) vertices, \(k < |X|\). For \(G \in \mathcal{G}(X)\) we write

\[G / G_0 = \{ Z \in \mathcal{V}_k(X) : G \upharpoonright Z \sim G_0 \} \]

Let \(G_1, G_2 \in \mathcal{G}(X)\). If \(G_1 \sim G_2\) then there is a bijection \(f\) of \(X\) which maps the family \(G_1 / G_0\) onto \(G_2 / G_0\).
Proposition 1.8. Let $G_0 \in \mathcal{G}(Z_0)$, $|Z_0| = k < |X|$. For $G \in \mathcal{G}(X)$ we define

$$\#(G; G_0) := |G/G_0|.$$ \hspace{1cm} (14)

(i) Let $G_1, G_2 \in \mathcal{G}(X)$. If $G_1 \sim G_2$ then $\#(G_1; G_0) = \#(G_2; G_0)$.

(ii) $\#(\pi(G); \pi(G_0)) = \#(G; G_0)$.

Proof. The reasoning is standard, we shall only show in several examples how to handle with the formulas like these.

The following notation will be also convenient

$$G_k^0 = G_0 \cup N_{n-k} \text{ where } k = |X_0|, G_0 \in \mathcal{G}(X_0).$$

Analogous notation will be used when only the \equiv-type of G_0 will be important, e.g. L_k^n, $(K_2 \cup K_2)^n$ etc.

From (9) we can relatively easily compute the following formulas

\[
\begin{align*}
\#(L_n; K_3) &= (n-2)(n-3) \hspace{1cm} (15) \quad &\#(C_n; K_3) &= n(n-4) \hspace{1cm} (20) \\
\#(L_n; K_4) &= \binom{n-3}{2} \hspace{1cm} (16) \quad &\#(C_n; K_4) &= \frac{n(n-5)}{2} \hspace{1cm} (21) \\
\#(L_n; K_m) &= 0 \hspace{1cm} \text{for } m > 4 \hspace{1cm} (17) \quad &\#(C_n; K_m) &= 0 \hspace{1cm} \text{for } m > 4 \hspace{1cm} (22) \\
\#(L_n; N_3) &= (n-2) + \binom{n-2}{3} \hspace{1cm} (18) \quad &\#(C_n; N_3) &= n + \frac{n(n-4)(n-5)}{6} \hspace{1cm} (23) \\
\#(L_n; N_m) &= \binom{n-m+1}{m} \hspace{1cm} (19) \quad &\#(C_n; N_m) &= \frac{n(n-m)(n-m-1)}{m} \hspace{1cm} (24)
\end{align*}
\]

Proof. The reasoning is standard, we shall only show in several examples how to handle with the formulas like these.

Ad (15) It is impossible to find K_3 in L_n. So, we search for $K_2 \cup K_1$ within L_n. These are obtained by an edge e of L_n and a vertex v sufficiently far from the endpoints of e. If e is the first or the last in the path L_n then v can be chosen in $n-3$ ways; if e is intermediate (L_n contains $n-3$ such edges) then v can be chosen in $n-4$ ways.

Ad (16) We must determine all the $K_2 \cup K_2$ subgraphs in L_n. So, we must find a pair of edges $\{i_1, i_1+1\}$, $\{i_2, i_2+1\}$ such that $1 \leq i_1, i_1+1 \leq i_2 \leq n-1$. Elementary combinatorics justifies that the number of such pairs (i_1, i_2) is as claimed.

Ad (17) If a graph contains $K_A \cup K_B$ with $|A \cup B| \geq 5$ then it contains a point of rank at least 3; clearly, L_n has no such a point.

Ad (18) We must determine all bipartite $K_{\{i_1, i_2, i_3\}}$ and all N_{i_1, i_2, i_3} contained in L_n. In the first case we choose $1 < i_1 < n$ (in $n-2$ ways) and set $i_2 = i_1 - 1$, $i_3 = i_1 + 1$. In the second case we look for sequences $1 \leq i_1, i_1 + 2 \leq i_2, i_2 + 2 \leq i_3 \leq n$.

From this, by analogous reasonings, we get more complex formulas, e.g.

\[
\begin{align*}
\#(L_n \cup \ldots \cup L_{n_k} \cup C_{l_1} \cup \ldots \cup C_{l_t})^n; K_3) = \\
\sum_{i=1}^{k} [(n_i - 2)(n_i - 3) + (n_i - 1)(n - n_i)] + \sum_{i=1}^{t} [l_i(l_i - 4) + l_i(n - l_i)],
\end{align*}
\] \hspace{1cm} (25)
#(L_{n_1} \cup \ldots \cup L_{n_k} \cup C_{l_1} \cup \ldots \cup C_{l_t})^n; K_4) = \\
\sum_{i=1}^k (n_i-3) + \sum_{j=1}^t \frac{l_j(l_j-5)}{2} + \\
\sum_{1 \leq i_1 < i_2 \leq k} (n_{i_1}-1)(n_{i_2}-1) + \sum_{1 \leq j_1 < j_2 \leq t} l_{j_1}l_{j_2} + \sum_{i=1}^k \sum_{j=1}^t (n_i-1)l_j; \quad (26)

we assume here that l_1, \ldots, l_t > 3.

2 Inductive enumerating of \sim-classes

We begin with the following ‘inductive’ observation. Let \(X_0 \) be a set, \(w \notin X_0 \), \(X = X_0 \cup \{ w \} \). Then each \(G \in G(X) \) can be presented in the form

\[
G = G_0 \divides K_{w,Z}, \text{ where } Z \subset X_0, \ G_0 \in G(X_0), \ Z = \{ x \in X_0 : \{ w, x \} \in G \} \text{ and } G_0 = G \mid X_0. \quad (27)
\]

Assume that \(G \) has form \[(27).\]

Lemma 2.1. If \(G_0 \approx G_0' \), \(G_0 = G_0' \divides K_{A,X_0\setminus A} \), then \(G \approx G_0' \divides K_{w,A\cup Z} \).

Proof. It suffices to note that \(K_{A,X\setminus A} \divides K_{A,X_0\setminus A} = K_{w,A} \) and \(K_{w,A} \divides K_{w,Z} = K_{w,A\cup Z} \). Then \(G = G_0 \divides K_{w,Z} = G_0' \divides K_{A,X_0\setminus A} \divides K_{w,Z} = G_0' \divides K_{A,X_0\setminus A} \divides K_{A,X\setminus A} \divides K_{w,A\cup Z} = (G_0' \divides K_{w,A\cup Z}) \divides K_{A,X\setminus A}. \)

In consequence, to determine all the types of graphs on \(X \) it suffices to choose a point \(w \in X \), and for each type \(G_0 \) of a graph on \(X_0 = X \setminus \{ w \} \) enumerate all, up to an isomorphism of \(G_0 \), \(k \)-subsets \(Z \) of \(X_0 \) such that \(2k \leq |X_0| \). Each type of a graph on \(X \) is realized as \(G_0 \divides K_{w,Z} \) with so obtained \(G_0 \)’s and \(Z \)’s. To complete the task it suffices to verify which of the graphs on the list composed so far are \sim-equivalent and which are not. Let us illustrate how this procedure works and let us apply it to the case \(n = |X| = 6 \).

Let us quote the following

Proposition 2.2 ([4, page 204]). There are exactly 7 \sim-types of graphs on 5 vertices. These are the following:

- 5:1 \(K_5 \), \(\approx K_4^5; \)
- 5:2 \(N_5 = \approx(K_5); \)
- 5:3 \(C_5; \)
- 5:4 \(L_2^2 = K_3^5; \)
- 5:5 \(\approx(L_2^3), \approx K_3^5; \)
- 5:6 \(L_3^3; \)
- 5:7 \(\approx(L_3^3) \approx L_5. \)

Our goal (one of some) is to prove the following

Theorem 2.3 (6-graphs). Let \(G \) be a graph on 6 vertices. Then \(G \) is \sim-equivalent to one of the following graphs.

- 6:1 \(K_6; \)
- 6:2 \(N_6; \)
- 6:3 \(L_3^3; \)
- 6:4 \(\approx(L_3^3), \approx K_4^5, C_3 \cup L_3; \)
- 6:5 \((L_2 \cup L_2)^6; \)
- 6:6 \(C_4^5; \)
- 6:7 \(L_3^3; \)
- 6:8 \(K_3^5; \)
- 6:9 \((L_3 \cup L_2)^6; \)
- 6:10 \(L_5^3; \)
- 6:11 \(L_3 \cup L_3, \) \(\approx(L_3^3) \approx (C_3 \cup L_2)^6 \)
- 6:13 \(C_4^5, \approx \approx(C_6); \)
- 6:14 \(L_5^3; \)
- 6:15 \(L_6^3; \)
- 6:16 \(C_6, \approx \approx(C_3 \cup L_2 \cup L_2). \)
No two graphs in this list are \sim-equivalent.

Proof. Let us assume that graphs classified here are defined on the set $\{1, 2, 3, 4, 5, 6\}$, write $w = 6$ and apply 2.1. Let $X_0 = \{1, 2, 3, 4, 5\}$. So, we obtain the list of graphs of the form $G_0 \div K_w, Z$, G_0 is one from among those enumerated in 2.2 and $Z \in \mathcal{V}_1(X_0) \cup \mathcal{V}_2(X_0) \cup \{\emptyset\}$. In what follows we shall indicate mainly sets of edges of corresponding graphs.

To shorten notation we shall also write "i, j = $\mathcal{X}(i', j')"$, if $G = \mathcal{X}(G')$, G stands on the position i, j in the list below, and G' has the position i', j'. Analogous meaning has notation "i, j = $\mathcal{X}(i', j')", "G = \mathcal{X}(i', j')", "i, j \sim i', j'"", and $G \sim i, j"$. The symbol \bigcirc indicates the case when the resulting graph already belongs to those enumerated through 6.1-6.16 or it coincides with a graph considered earlier. So, it means 'there is nothing to prove in this case'.

1. Let G_0 in 5.1

1.0 $Z = \emptyset$. Then $G = \mathcal{V}_2(X_0) = K_{X_0} \cup K_{\{6\}} \sim K_X$, so G has the type K_6, declared in 6.1 \bigcirc.

1.1 $Z = \{5\}$. Then $G = (\mathcal{V}_2(X_0) \cup \{5, 6\})$ and $G \sim \mathcal{X}(L_6^5)$, declared in 6.4 \bigcirc.

Moreover, $G \sim L_3 \bigcirc$.

1.2 $Z = \{4, 5\}$. Then $G = (\mathcal{V}_2(X_0) \cup \{5, 6\}, \{4, 6\})$ and $G \sim$ 5.2.

2. Let G_0 in 5.2

2.0 $Z = \emptyset$. Then $G = \emptyset$, so G has the type N_6, declared in 6.2 \bigcirc.

2.1 $Z = \{5\}$. Then $G = \{5, 6\}$, so G has the type L_6^5, declared in 6.3 \bigcirc.

2.2 $Z = \{4, 5\}$. Then $G = \{5, 6\}, \{4, 6\}$, so G has the type L_6^5, declared in 6.4 \bigcirc.

3. Let G_0 in 5.3. Say, G is the cycle $1 - 2 - 3 - 4 - 5 - 1$. Considering the automorphism group of G_0 we see that it suffices to consider the following cases only.

3.0 $Z = \emptyset$. Then G has the type C_6^6, declared in 6.5 \bigcirc.

3.1 $Z = \{1\}$. Then $G \sim 6.5$.

3.2 $Z = \{1, 2\}$. Then $G \sim 7.4$.

3.3 $Z = \{1, 3\}$. Then $G \sim 4.5$.

4. Let G_0 in 5.4. Say, the unique edge of G_0 is $\{1, 2\}$. It is seen that it suffices to consider the following sets Z.

4.0 $Z = \emptyset$. Then G has the type L_2^6, equal to 2.1 \bigcirc.

4.1 $Z = \{1\}$. Then G is, in fact, the path $6 - 1 - 2$, so it has the type L_3^6 (and $G = 2.2$) \bigcirc.

4.2 $Z = \{3\}$. Then G has two, disjoint, edges: it is $(L_2 \cup L_2)^6$, declared in 6.5 \bigcirc.

4.3 $Z = \{1, 2\}$. Then G is the triangle $1, 2, 6$, so it is K_3^6, declared in 6.8 \bigcirc.

4.4 $Z = \{3, 4\}$. Then G consists of the 3-path $3 - 6 - 4$ and the edge $1 - 2$ and thus it is $(L_3 \cup L_2)^6$, declared in 6.10 \bigcirc.

4.5 $Z = \{1, 3\}$. Then G consists of the 4-path $2 - 1 - 6 - 3$; it is L_4^6, declared in 6.10 \bigcirc.

5. Let G_0 in 5.5 Then $G_0 = \varepsilon(G'_0)$, where G'_0 is given in 5.11 Consequently, $G \sim \varepsilon(G')$, where G' is a one among those enumerated through 4.0–4.5

5.0 $G = \varepsilon(L^g_5)$, $G = \{1,1\}$
5.1 $G = \varepsilon(L^g_5)$, declared in 6.12
Moreover, $G \sim (C_3 \cup L_2)^6$.
5.2 $G = \varepsilon((L_2 \cup L_2)^6) \sim 6.4$
5.3 $G = \varepsilon(K^g_3) \sim 4.3$
5.4 $G = \varepsilon((L_3 \cup L_2)^6) \sim 4.4$
5.5 $G = \varepsilon(L^g_5) \sim 7.1$ moreover $G \sim L_2 \cup L_4$.

6. Let G_0 in 5.6 One can assume that G_0 is the path 1–2–3, and 4, 5 are isolated.
The following cases must be considered.

6.0 $Z = \emptyset$. Then $G = L^g_5$ (as in 4.1 and 2.2).
6.1 $Z = \{4\}$. Then G consist of the 3-path 1–2–3 and the edge 4–6, so $G = (L_2 \cup L_3)^6$, as in 4.4
6.2 $Z = \{1\}$. Then G is the path 6–1–2–3, so $G = L^g_6 = 4.0$
6.3 $Z = \{2\}$; then $G \sim 4.1$
6.4 $Z = \{4,5\}$. Then G consist of two disjoint 3-paths 1–2–3 and 4–6–5, so $G = L_3 \cup L_3$, declared in 6.11
6.5 $Z = \{4,1\}$. Then G is the path 4–6–1–2–3, so $G = L^g_5$, declared in 6.14
6.6 $Z = \{4,2\}$; then $G \sim 4.5$
6.7 $Z = \{1,3\}$. Then G is the closed cycle 5–1–2–3–5, so $G = C^g_4$, declared in 6.14
6.8 $Z = \{1,2\}$. Then $G \sim 4.3$.

7. Let G_0 in 5.7 One can assume that G_0 is the 5-path 1–2–3–4–5. The following sets Z must be considered.

7.0 $Z = \emptyset$. Then $G = L^g_5 = 6.5$
7.1 $Z = \{1\}$. Then G is the path 6–1–2–3–4–5, so $G = L_6$, declared in 6.15
7.2 $Z = \{2\}$. Then $G \sim 6.1$ and $G \sim 7.6$
7.3 $Z = \{3\}$. Then $G \sim 3.1$
7.4 $Z = \{1,5\}$. Then G is the closed cycle 6–1–2–3–4–5–6, i.e. $G = C_6$, declared in 6.15
7.5 $Z = \{1,2\}$: cf. 1.2
7.6 $Z = \{1,3\}$: cf. 7.2
7.7 $Z = \{1,4\}$: Then $G = 3.1$
7.8 $Z = \{2,3\}$. Then $G \sim 7.4$
7.9 $Z = \{2,4\}$: Then $G \sim 4.2$

Ad 4.1 Note that $G \sqcup K_{\{1,5\},\{2,3,4,6\}} \cong C_3 \cup L_3$. Moreover, $G \sqcup K_{\{6\},\{1,2,3,4,5\}} \cong \varepsilon(L^g_5)$.
Ad 4.2 $G \sqcup K_{\{1,5\},\{2,3,4,6\}}$ is the path 5–1–6–4 connected with the triangle 4, 3, 2 i.e. $G \sim 7.5$ Next, $G \sqcup K_{\{6\},\{1,2,3,4,5\}} = \varepsilon(L^g_5) = \varepsilon(4.1) = 5.4$
Ad 5.1 $G \sqcup K_{\{1,4\},\{2,3,5,6\}}$ is the path 1–3–2–4–6 i.e. $L^g_5 = 6.5$
Ad 5.2 $G \sqcup K_{\{1,3\},\{2,4,5,6\}}$ is the path 1–4–5–3–6–2 i.e. $L_6 = 7.3$
Table 1: Parameters \(#(G; K_3) \), \(#(G; K_4) \), and \(#(G; N_4) \) of the graphs \(G \) defined in 2.3

\(G \)	\(#(G; K_3) \)	6	6	6	6	6	6	6	6	6	6	6
0	0	4	16	10	8	6	10	10	8			
1	14	12	8	10	12	12						

\(G \)	6	6	6	6	6	6	6	6	6	6	6
0	0	3	2	1	1	0	0	4	3	3	
1	0	0	3	3							

\(\frac{G}{L} = \frac{L - 1}{G} \) is the union of the \(L \)-paths: 1 \(-\) 4 \(-\) 2 and 3 \(-\) 5 \(-\) 6

\(\frac{G}{L} = \frac{L - 1}{G} \) is the union of one edge 2 \(-\) 6 and the triangle 3 \(-\) 4 \(-\) 5, so it is \((L_2 \cup C_3)^6 \).

\(\frac{G}{L} = \frac{L - 1}{G} \) is the triangle 3 \(-\) 4 \(-\) 5, so we obtain \(K_3^6 = 4,3 \)

\(\frac{G}{L} = \frac{L - 1}{G} \) is the union of the edge 3 \(-\) 4 and the \(L \)-path 1 \(-\) 5 \(-\) 2.

\(\frac{G}{L} = \frac{L - 1}{G} \) is the path 2 \(-\) 4 \(-\) 1 \(-\) 6 \(-\) 5 \(-\) 3 \(= 7,3 \). Moreover, \(G \cap K_{(4,5),\{1,2,3,6\}} \) is the union of the \(L \)-path 1 \(-\) 3 \(-\) 2 \(-\) 6 and the edge 4 \(-\) 5, so \(G \sim L_2 \cup L_4 \).

\(\frac{G}{L} = \frac{L - 1}{G} \) is the \(L \)-path 4 \(-\) 2 \(-\) 5.

\(\frac{G}{L} = \frac{L - 1}{G} \) is the \(L \)-path 5 \(-\) 2 \(-\) 4 \(-\) 6.

\(\frac{G}{L} = \frac{L - 1}{G} \) is the union of the \(L \)-path 4 \(-\) 2 \(-\) 5 and the edge 1 \(-\) 6.

\(\frac{G}{L} = \frac{L - 1}{G} \) is the union of the \(L \)-path 1 \(-\) 4 \(-\) 6 and the edge 2 \(-\) 5, i.e. \(= \frac{L}{G} = 4,4 \) Next, \(G \cap K_{(3),\{1,2,4,5,6\}} \) \(= \frac{L}{G} = 7,6 \)

\(\frac{G}{L} = \frac{L - 1}{G} \) is the 5-cycle 1 \(-\) 3 \(-\) 2 \(-\) 6 \(-\) 5 \(-\) 1 with the edge 2 \(-\) 4 added, so it is \(\frac{L}{G} = 4,4 \)

\(\frac{G}{L} = \frac{L - 1}{G} \) is the \(L \)-path 4 \(-\) 2 \(-\) 3 \(-\) 1 \(-\) 5 \(-\) 6.

\(\frac{G}{L} = \frac{L - 1}{G} \) is the union of two disjoint edges 1 \(-\) 4 and 2 \(-\) 5, which is \(= \frac{L}{G} = 4,2 \)

To complete the proof we analyse Table 1 (note that \(#(G; N_3) = 20 - #(G; K_3) \), as \(G \) contains 20 subgraphs on 3 vertices). From 1.8, we see that only two cases must be distinguished by other methods. Here, we apply 1.7. To distinguish 6\{1\} and 6\{3\} we note that \(L_6^6/N_4 \) consists of three 4-sets with a common 2-set, while no such a common subset exists for the elements of \(C_6^4/N_4 \). Similarly, to distinguish 6\{3\} and 6\{5\} we note that \(L_6/K_4 \) consists, analogously, of three subsets with the common 2-set, and this is not true for \(C_6/K_4 \).

References

[1] E. Dahlhaus, J. Gustedt, R.M. McConnell Partially Complemented Representations of Digraphs DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 5 (2002), 147–168.
A μ-CLASSIFICATION OF SIMPLE GRAPHS

[2] N. Lindzey Speeding Up Graph Algorithms via Switching Classes \texttt{arXiv:1408.4900}

[3] Ross McConnell, Complement-equivalence classes on graphs, [in] Jan Mycielski, Grzegorz Rozenberg, Arto Salomaa (Eds.), Structures in Logic and Computer Science, Graphs and Algorithms, LNCS 1261 1997 (1997), 174–191.

[4] M. Prażmowska, K. Prażmowski, Some generalization of Desargues and Veronese configurations, Serdica Math. J. 32 (2006), no 2–3, 185–208.

[5] M. Prażmowska, On the existence of projective embeddings of some multiveblen configurations, Bull. Belg. Math. Soc. Simon-Stevin 17 (2010), 1–15.

[6] R. Wilson Introduction to Graph Theory, Addison Wesley, 1996

Authors’ address:
Elżbieta Blaszko, Małgorzata Prażmowska, Krzysztof Prażmowski
Institute of Mathematics, University of Białystok
K. Ciołkowskiego 1M
15-245 Białystok, Poland

e-mail: e.blaszko@wp.pl, malgpraz@math.uwb.edu.pl, krzypraz@math.uwb.edu.pl