The polyomavirus JC (JCV) infects 85% of healthy individuals, and its reactivation in a limited number of immunosuppressed people causes progressive multifocal leukoencephalopathy (PML), a demyelinating disease of the central nervous system. We hypothesized that JCV-specific cytotoxic T lymphocytes (CTLs) might control JCV replication in healthy individuals, blocking the evolution of PML. Using 51Cr release and tetramer staining assays, we show that 8 of 11 HLA-A*0201+ healthy subjects (73%) harbor detectable JCV-specific CD8+ CTLs that recognize one or two epitopes of JCV VP1 protein, the HLA-A*0201-restricted VP1p36 and VP1p100 epitopes. We determined that the frequency of JCV VP1 epitope-specific CTLs varied from less than 1/100,000 to 1/2,494 peripheral blood mononuclear cells. More individuals had JCV VP1-specific than cytomegalovirus-specific CTLs (8 of 11 subjects [73%] versus 2 of 10 subjects [20%, respectively]). These results show that a CD8+ T-cell response against JCV is commonly found in immunocompetent people and suggest that these cells might protect against the development of PML.
To assess the cellular immune response against another DNA virus which infects a majority of the adult population, we tested the PBMC of 2 of 10 individuals and that CTLS is a more sensitive technique than FBTS. The presence of functionally active effector cells in the positive (Fig. IA and B, panel c) but not in the negative (Fig. IA and B, panel d), sorted cell populations of both healthy individuals. The presence of CMV was performed in a clinical laboratory of our institution. We found that 3 of 11 subjects (27%) had anti-CMV IgG (subjects 6, 10, and 11). The serological analysis for CMV was performed by in vitro stimulation with the peptide VP1p36, we sought to determine if similar results would be seen with an anti-CMV IgG, was not tested for the presence of CMV-specific CTLs.

To determine the frequency of virus epitope-specific CTLs in the PBMC of these healthy individuals prior to any in vitro stimulation, we used the fresh blood tetramer staining (FBTS) assay and the CTL sorting (CTLS) technique, as previously described (7) (Table 2). With FBTS, the number of tetramer-positive cells was directly calculated and expressed as a number of virus epitope-specific CD8\(^+\) CTLs per PBMC in fresh blood. For the CTLs technique, 50 million PBMC were isolated from fresh blood, stained with a given phycoerythrin (PE)-conjugated tetramer, incubated with anti-PE microbeads (Miltenyi Biotec) and sorted with an AUTOMACS cell sorter (Miltenyi Biotec) into a tetramer-positive and a tetramer-negative fraction. This technique allowed us to detect very rare virus epitope-specific CTLs and calculate their frequency among unstimulated PBMC.

JCV VP1\(_{p36}\)-specific CTLs were detected by FBTS in the PBMC of 2 of 10 individuals. Based on this method, the frequency of these CTLs was 1/4,785 PBMC for one subject (subject 6) and 1/2,494 PBMC for the other subject (subject 9). We also determined the frequency of VP1\(_{p36}\)-specific CTLs by CTLS in subject 9 and found a frequency of 1/22,883 PBMC, 1 log lower than the frequency determined by FBTS. The CTLS method was used to evaluate the PBMC of two additional subjects (subjects 2 and 4) who had no detectable JCV VP1\(_{p36}\)-specific CTLs as determined by FBTS. A nonhomogenous quantity (Fig. 1A, panel a) and a minute quantity (Fig. 1B, panel a) of tetramer binding cells were detected in the positive fraction, compared to a negligible quantity detected in the negative fraction (Fig. 1A and B, panel b). These sorted cells were then stimulated with the VP1\(_{p36}\) peptide in the presence of irradiated autologous feeder cells, and rIL-2 (50 U/ml) was added after 72 h. An expansion of VP1\(_{p36}\) tetramer binding cells were readily detected after 11 to 14 days of stimulation in culture in the positive (Fig. 1A and B, panel e, but not in the negative (Fig. 1A and B, panel d), sorted cell populations of both healthy individuals. The presence of functionally active effector cells in the positive (Fig. 1A and B, panel e) but not the negative (Fig. 1A and B, panel f) sorted cell populations was furthermore demonstrated in a \(^{51}\)Cr release cell killing assay. The frequency of VP1\(_{p36}\)-specific CTLs could not be estimated with precision since the number of tetramer binding cells before in vitro stimulation was very low, being equal to or less than 1/100,000 PBMC. These results indicated that these cells were very rare in fresh blood from these two healthy individuals and that CTLS is a more sensitive technique than FBTS.

To rule out the possibility that VP1\(_{p36}\)-specific lymphocytes were being expanded de novo from the PBMC of healthy individuals by in vitro stimulation with the peptide VP1\(_{p36}\), we sought to determine if similar results would be seen with another well-characterized HLA-A*0201-restricted CTL epitope peptide to stimulate the expansion of CTLs. We stimulated the

TABLE 1. Detection of JCV- and CMV-specific CTL in 11 healthy subjects

Subject	Anti-JCV IgG titer	JCV VP1\(_{p36}\) F BTS	CCTS	\(^{51}\)Cr RA	JCV VP1\(_{p100}\) F BTS	CCTS	\(^{51}\)Cr RA	CMV pp65\(_{p495}\) F BTS	CCTS	\(^{51}\)Cr RA
1	1/16	0.6	—	0.3	—	0.6	—			
2	1/32	—	—	—	—	—	—			
3	1/32	1.0	—	—	—	—	—			
4	1/32	4.2	—	—	—	—	—			
5	1/32	—	—	—	—	—	—			
6	1/32	0.2	13.9	30	—	10	19			
7	1/32	—	2.4	—	—	—	—			
8	1/32	0.3	—	—	—	—	—			
9	1/32	0.3	17.7	32	—	6.5	15			
10	1/32	—	—	—	—	—	—			
11	1/16	NA	—	NA	NA	NA	NA			

a Results of tetramer staining assays are expressed as percentages of CD8\(^+\) T cells. Results of the \(^{51}\)Cr release assay are expressed as percentages of specific lysis of target cells by effector cells at an effector cell-to-target cell ratio of 20:1. Anti-CMV IgG was detected only in patients 6, 10, and 11. CTLS, cultured cell tetramer staining; \(^{51}\)Cr RA, \(^{51}\)Cr release assay performed with in vitro-stimulated PBMC; —, negative result; NA, not available.

To determine the frequency of virus epitope-specific CTLs in the PBMC of these healthy individuals prior to any in vitro stimulation, we used the fresh blood tetramer staining (FBTS) assay and the CTL sorting (CTLS) technique, as previously described (7) (Table 2). With FBTS, the number of tetramer-positive cells was directly calculated and expressed as a number of virus epitope-specific CD8\(^+\) CTLs per PBMC in fresh blood. For the CTLs technique, 50 million PBMC were isolated from fresh blood, stained with a given phycoerythrin (PE)-conjugated tetramer, incubated with anti-PE microbeads (Miltenyi Biotec) and sorted with an AUTOMACS cell sorter (Miltenyi Biotec) into a tetramer-positive and a tetramer-negative fraction. This technique allowed us to detect very rare virus epitope-specific CTLs and calculate their frequency among unstimulated PBMC.

JCV VP1\(_{p36}\)-specific CTLs were detected by FBTS in the PBMC of 2 of 10 individuals. Based on this method, the frequency of these CTLs was 1/4,785 PBMC for one subject (subject 6) and 1/2,494 PBMC for the other subject (subject 9). We also determined the frequency of VP1\(_{p36}\)-specific CTLs by CTLS in subject 9 and found a frequency of 1/22,883 PBMC, 1 log lower than the frequency determined by FBTS. The CTLS method was used to evaluate the PBMC of two additional subjects (subjects 2 and 4) who had no detectable JCV VP1\(_{p36}\)-specific CTLs as determined by FBTS. A nonhomogenous quantity (Fig. 1A, panel a) and a minute quantity (Fig. 1B, panel a) of tetramer binding cells were detected in the positive fraction, compared to a negligible quantity detected in the negative fraction (Fig. 1A and B, panel b). These sorted cells were then stimulated with the VP1\(_{p36}\) peptide in the presence of irradiated autologous feeder cells, and rIL-2 (50 U/ml) was added after 72 h. An expansion of VP1\(_{p36}\) tetramer binding cells were readily detected after 11 to 14 days of stimulation in culture in the positive (Fig. 1A and B, panel e, but not in the negative (Fig. 1A and B, panel d), sorted cell populations of both healthy individuals. The presence of functionally active effector cells in the positive (Fig. 1A and B, panel e) but not the negative (Fig. 1A and B, panel f) sorted cell populations was furthermore demonstrated in a \(^{51}\)Cr release cell killing assay. The frequency of VP1\(_{p36}\)-specific CTLs could not be estimated with precision since the number of tetramer binding cells before in vitro stimulation was very low, being equal to or less than 1/100,000 PBMC. These results indicated that these cells were very rare in fresh blood from these two healthy individuals and that CTLS is a more sensitive technique than FBTS.

To rule out the possibility that VP1\(_{p36}\)-specific lymphocytes were being expanded de novo from the PBMC of healthy individuals by in vitro stimulation with the peptide VP1\(_{p36}\), we sought to determine if similar results would be seen with another well-characterized HLA-A*0201-restricted CTL epitope peptide to stimulate the expansion of CTLs. We stimulated the

TABLE 2. Determination of the frequency of virus epitope-specific CTL in fresh blood

Subject	JCV VP1\(_{p36}\) F BTS	JCV VP1\(_{p100}\) F BTS	CMV pp65\(_{p495}\) F BTS
2	1/100,000	—	NA
4	—	—	—
6	1/4,785	NA	1/9,100
9	1/2,494	1/22,883	1/75,200
10	NA	NA	1/6,000

a Results of FBTS and CTLS are expressed as numbers of tetramer-positive cells/total numbers of PBMC; —, negative result; NA, not available.
PBMC of human immunodeficiency virus-negative (HIV−) subject 2 with the HIV Gag p77 peptide and evaluated the lymphocytes with the corresponding tetramer (18, 23). No tetramer binding cells were detected in the positive or negative lymphocyte fraction before or 2 weeks after in vitro stimulation with the HIV Gagp77 peptide (data not shown). Then, to rule out the possibility that HLA-A*0201/JCV VP1 p36 tetramer staining of the PBMC of healthy individuals was simply the result of a particularly high affinity of the VP1 p36 peptide for the HLA-A*0201 molecule, we compared the binding affinities of JCV VP1 p36, VP1p100, and HIV Gag p77 to the T2 cell line, which expresses only the HLA-A*0201 molecule (21). This study demonstrated that the binding affinities of these three peptides to the HLA-A*0201 molecule were similar (data not shown). All together, these results suggest that de novo expansion of VP1p36-specific CTLs in the PBMC of healthy individuals in vitro was highly unlikely. Finally, to examine whether JCV VP1 epitope-specific CTLs were able to recognize an epitope processed by cells expressing the entire VP1 protein, the PBMC of subject 4 were stimulated with VP1p36 in the presence of rIL-2 as described above. After 2 weeks, JCV VP1 p36 cells were sorted with the corresponding tetramer. These tetramer-positive cells were put back into culture in the presence of rIL-2 for an additional 2-week period and were used as effector cells in a 51Cr release assay (A and B, panels e and f). Tetr, tetramer; stim., stimulation; E:T ratio, effector cell/target cell ratio.

FIG. 1. Low frequencies of JCV VP1 p36-specific CTLs in two healthy individuals. Fifty million fresh PBMC of healthy subjects 2 and 4 were stained with the HLA-A*0201/JCV VP1 p36 PE-labeled tetramer and sorted with an AUTOMACS cell sorter with PE-labeled immunomagnetic beads. A positive (A and B, panel a) and a negative (A and B, panel b) fraction were collected and analyzed immediately after the cells were sorted by flow cytometry. Sorted cells were stimulated in vitro in the presence of VP1 p36 and feeder cells and stained with the VP1 p36 tetramer after 14 days (A, panels c and d) or 11 days (B, panels c and d). The percentage of all CD8+ T cells that bind the tetramer is indicated in each panel. These cells were then assessed for the presence of functionally active effector cells in a 51Cr release assay (A and B, panels e and f).
cells represented 0.2 and 1.8% of CD8αβ+ T cells or 1/9,100 and 1/6,000 PBMC, respectively. This result is similar to that reported in previous studies (2, 25). Therefore, we did not perform CTLs in these cases.

The underlying hypothesis of this study was that JCV-specific CTLs are present in the PBMC of healthy, immunocompetent subjects. Our results show that a majority of the JCV-infected healthy individuals studied (73%) had detectable JCV-specific CTLs in their blood. Studies of the cellular immune responses against CMV and Epstein-Barr virus, two other viruses that establish lifelong latent infections and cause severe disorders only in a minority of immunosuppressed individuals, have also shown a very good concordance rate between the results of serology and the detection of virus-specific CD8+ T cells. All subjects who were seropositive for CMV had detectable CMV-specific CD8+ T cells (9, 11, 25). Epstein-Barr virus-specific CD8+ T cells were also present in all seropositive healthy individuals at least 10 years after their seroconversion (3, 22).

Interestingly, more subjects had CTLs directed against JCV VP1p36 than against JCV VP1p100, and no subject had CTLs recognizing the latter epitope only. In addition, for those subjects who had a CTL response against both epitopes, JCV VP1p36 was always recognized by a greater number of CD8+ T cells than JCV VP1p100. These findings show that JCV VP1p36 is a more immunodominant epitope than JCV VP1p100 and might explain why we were unable to detect JCV VP1p100-specific CTLs in a limited number of healthy individuals in a previous study (13). This was confirmed by the determination of the frequency of JCV-specific CTLs prior to in vitro stimulation: JCV VP1p36-specific CTLs were found more often and in higher numbers in PBMC than JCV VP1p100-specific CTLs. The range of frequencies of VP1 peptide-specific CTLs in PBMC was relatively broad, from less than 1/100,000 to 1/2,494 PBMC. These values are similar to those reported for HIV+ patients with PML who had a favorable clinical outcome (7). Our results also indicate that CTLs is a more sensitive technique than FBTS to determine the frequency of JCV-specific CTLs. This conclusion is clearly illustrated by the facts that JCV VP1p36-specific CTLs could be detected in the PBMC of two subjects (subjects 2 and 4) and JCV VP1p100-specific CTLs could be detected in the PBMC of one subject (9) but that FBTS was negative in studies of all three subjects. However, when JCV-specific cells were frequent enough to be detected by FBTS (JCV VP1p36-specific CTLs in subject 9), the result was one log higher than with CTLs, reflecting the fact that CTLs underestimates the frequency of epitope-specific CTLs. Finally, the fact that JCV VP1p36-specific CTLs were able to recognize and destroy cells expressing the entire VP1 protein indicates that this epitope is indeed processed and presented on major histocompatibility complex I molecules by naturally infected cells. These data suggest that recognition of this epitope by CTLs might play a significant role in the containment of JCV in healthy individuals.

When we compared the frequencies of JCV-specific CTLs with those of CTLs specific to a well-known immunodominant epitope of CMV, we found that a greater number of individuals in our study harbored CTLs recognizing JCV VP1 epitopes than CMV pp65p26. This difference in the cellular immune responses against the two viruses correlates well with the results of the humoral immune response. Indeed, while all our study subjects had detectable anti-CMV IgG, only three of them had anti-CMV IgG. This phenomenon likely reflects a higher rate of infection by JCV than by CMV in our cohort. A possible explanation for this difference might be the young age of our subjects. More than 85% of adults in the beginning of their third decade are already infected by JCV, whereas the rate of infection by CMV is approximately 50% in the general population (9) and increases with age (12).

Do these JCV-specific CD8+ T cells play a role in preventing the development of PML in healthy individuals? In mice infected with CMV, the immune system contributes to preventing the onset of CMV-associated disease, and CD8+ T cells have been shown to be more critical than CD4+ and NK cells in this viral containment (19). The fact that CMV is a very slowly replicating virus provides time for the CMV-specific CD8+ T cells to recognize and lyse infected target cells before the formation of infectious virus (19). Interestingly, JCV is also a slow-growing virus (17). It is possible that virus-specific CD8+ T cells, even in low numbers, are able to prevent the spread of JCV. This viral control is quite effective in most immunosuppressed individuals, as reflected by the fact that only 0.07% of HIV+ patients with hematologic malignancies, 0.8% of liver transplant recipients, and 5.1% of AIDS patients develop PML (15, 20).

This work was supported by Public Health Service grants R01 NS/Al 041198 and NS 047029 and by grant P30-A128691 from the Dana-Farber Cancer Institute–Beth Israel Deaconess Medical Center–Children’s Hospital Center for AIDS Research to I.J.K. R.A.D.P. is the recipient of a fellowship for advanced research from the Swiss National Science Foundation and a grant from the Eugenio Litta Foundation. We are grateful to Michelle Lifton and Darci Gorgone for running the flow cytometry samples and to Freddie Peyerl for performing the peptide binding affinity assay.
REFERENCES

1. Antinori, A., A. Cingolani, P. Lorenzini, M. L. Giancola, I. Uccella, S. Bossolasco, S. Grisetti, F. Moretti, B. Vigo, M. Bongiovanni, B. Del Grosso, M. I. Arcidaiacono, G. C. Fabbia, M. Menia, M. G. Finazzi, G. Guarraldi, A. Ammassari, A. d’Arimini Monforte, P. Cinque, A. De Luca, and the Italian Registry Investigative Neuro AIDS Study Group. 2003. Clinical epidemiology and survival of progressive multifocal leukoencephalopathy in the era of highly active antiretroviral therapy: data from the Italian Registry Investigative Neuro AIDS (IRINA). J. Neurovirol. 9(Suppl. 1):47-53.

2. Boppanna, S. B., and W. J. Britt. 1996. Recognition of human cytomegalovirus gene products by HCMV-specific cytotoxic T cells. Virology 222:293–296.

3. Catalina, M. D., J. L. Sullivan, K. R. Bak, and K. Luzuriaga. 2001. Differential evolution and stability of epitope-specific CD8(+) T cell responses in EBV infection. J. Immunol. 167:4450–4457.

4. Chen, F. E., G. Aubert, P. Travers, I. A. Dodi, and J. A. Madrigal. 2002. HLA tetramers and anti-CMV immune responses: from epitope to immunotherapy. Cytotherapy 4:1-48.

5. Diamond, D. J., J. York, J. Y. Sun, C. L. Wright, and S. J. Forman. 1997. Development of a candidate HLA A*0201 restricted peptide-based vaccine against human cytomegalovirus infection. Blood 90:1751–1767.

6. Du Pasquier, R. A., K. W. Clark, P. S. Smith, J. T. Joseph, J. M. Mazullo, U. De Girolami, N. L. Letvin, and I. J. Koralnik. 2001. Favorable clinical outcome in HIV-infected individuals with progressive multifocal leukoencephalopathy correlates with JCV-specific cellular immune response. J. Neurovirol. 7:318–322.

7. Du Pasquier, R. A., M. J. Kuroda, J. Schmitz, Y. Zheng, K. Martin, F. Peyrl, M. Lifton, D. Gorgone, P. Autissier, N. L. Letvin, and I. J. Koralnik. 2003. Low frequency of cytotoxic T lymphocytes against the novel HLA-A*0201-restricted JC virus epitope VP1p36 in patients with proven or possible progressive multifocal leukoencephalopathy. J. Virol. 77:11918–11926.

8. Du Pasquier, R. A., M. J. Kuroda, Y. Zheng, J. Jean-Jacques, N. L. Letvin, and I. J. Koralnik. 2004. A prospective study demonstrates an association between JC virus-specific cytotoxic T lymphocytes and the early control of progressive multifocal leukoencephalopathy. Brain 127:1970-1978.

9. Gamadia, L. E., R. J. Rentenaar, P. A. Baars, E. B. Remmerswaal, S. Surachno, J. F. Weel, M. Toebes, T. N. Schumacher, I. J. ten Berge, and R. A. van Lier. 2001. Differentiation of cytomegalovirus-specific CD8(+) T cells in healthy and immunosuppressed virus carriers. Blood 98:754–761.

10. Gasnault, J., M. Kahraman, M. G. de Goer de Herve, D. Darabi, J. F. Delfraissy, and Y. Tauxe. 2003. Critical role of JC virus-specific CD4 T-cell responses in preventing progressive multifocal leukoencephalopathy. AIDS 17:i443–i449.

11. Gillespie, G. M., M. R. Wills, V. Appay, C. O’Callaghan, M. Murphy, N. Smith, P. Sissons, S. Rowland-Jones, J. I. Bell, and P. A. Moss. 2000. Functional heterogeneity and high frequencies of cytomegalovirus-specific CD8(+) T lymphocytes in healthy seropositive donors. J. Virol. 74:8140–8150.

12. Klemola, E., and L. Kaaraiainen. 1965. Cytomegalovirus as a possible cause of a disease resembling infectious mononucleosis. Br. Med. J. 5470:1099–1102.

13. Koralnik, I. J., R. A. Du Pasquier, M. Kuroda, J. E. Schmitz, X. Dang, Y. Zheng, M. Lifton, and N. L. Letvin. 2002. Association of prolonged survival in HLA-A2+ progressive multifocal leukoencephalopathy patients with a cytotoxic T lymphocyte response specific for a dominant JC virus epitope. J. Infect. Dis. 186:899–904.

14. Koralnik, I. J., R. A. Du Pasquier, and N. L. Letvin. 2001. JC virus-specific cytotoxic T lymphocytes in individuals with progressive multifocal leukoencephalopathy. J. Virol. 75:3483–3487.

15. Martinez, A. J., and M. Alhub-Barmada. 1993. The neuropathology of liver transplantation: comparison of main complications in children and adults. Mod. Pathol. 6:25–32.

16. Miller, N. R., E. O. Major, and W. C. Wallen. 1983. Transfection of human fetal glial cells with molecularly cloned JCV DNA. p. 29–40. In J. L. Sever and D. L. Madden (ed.), Polyomaviruses and human neurological diseases. Alan R. Liss, Inc., New York, N.Y.

17. Padgett, B. L., L. Walker, G. M. ZuRhein, R. J. Eckroade, and B. H. Dessol. 1971. Cultivation of papova-like virus from human brain with progressive multifocal leukoencephalopathy. Lancet i:1257–1260.

18. Parker, K. C., M. A. Bednarek, L. K. Hull, U. Utz, B. Cunningham, H. J. Zweerink, W. E. Biddison, and J. E. Coligan. 1992. Sequence motifs important for peptide binding to the human MHC class I molecule, HLA-A2. J. Immunol. 149:3580–3587.

19. Polic, B., H. Hengel, A. Krmpotic, J. Trogovic, I. Pavic, P. Luccaronin, S. Jonic, and U. H. Koszinowski. 1998. Hierarchical and redundant lymphocyte subset control precludes cytomegalovirus replication during latent infection. J. Exp. Med. 188:1047–1054.

20. Power, C., J. G. Gladden, W. Halliday, M. R. Del Bigio, A. Nath, W. Ni, E. O. Major, J. Blanchard, and M. Mowat. 2000. AIDS- and non-AIDS-related PML association with distinct p53 polymorphism. Neurology 54:743–746.

21. Salt, R. D., J. D. Howell, and G. Power. 1985. Genes regulating HLA class I antigen expression in T-B lymphoblast hybrids. Immunogenetics 19:235–246.

22. Tan, L. C., N. Gudgeon, N. E. Annels, P. Hansasuta, C. A. O’Callaghan, S. Rowland-Jones, A. J. McMichael, A. B. Rickinson, and M. F. Callan. 1999. A re-evaluation of the frequency of CD8+ T cells specific for EBV in healthy virus carriers. J. Immunol. 162:1827–1835.

23. Tomides, T. J., A. Aldovini, R. P. Johnson, B. D. Walker, R. A. Young, and H. N. Eisen. 1994. Naturally processed viral peptides recognized by cytotoxic T lymphocytes on cells chronically infected by human immunodeficiency virus type 1. J. Exp. Med. 180:1283–1293.

24. Weber, T., C. Trebst, S. Frey, P. Cinque, L. Vago, C. J. Sindic, W. J. Schulz-Schaefer, H. A. Kretzschmar, W. Enzensberger, G. Hunsmann, and W. Luke. 1997. Analysis of the systemic and intrathecal humoral immune response in progressive multifocal leukoencephalopathy. J. Infect. Dis. 176:250–254.

25. Wills, M. R., A. J. Carmichael, K. Mynard, X. Jin, M. P. Weekes, B. Plachter, and J. G. Sissons. 1996. The human cytotoxic T-lymphocyte (CTL) response to cytomegalovirus is dominated by structural protein pp65: frequency, specificity, and T-cell receptor usage of pp65-specific CTLs. J. Virol. 70:7569–7579.