Scaled-up ethyl formate fumigation to replace methyl bromide on traded mushroom to disinfest mushroom fly (Lycoriella mali)

Tae hyung Kwon1, Dong bin Kim2, Kyung won Kim3, Min goo Park3, Gwang hyun Roh4 and Byung ho Lee2*

Abstract
Mushroom fly, Lycoriella mali (Diptera: Sciaridae), is the primary pest in imported mushrooms. The amount of Tricholoma matsutake imported from China increases every fall when it is harvested. When importing T. matsutake, disinfestation using methyl bromide (MB) or phosphine (PH3) is performed to prevent the introduction of L. mali. However, MB will be phased out due to ozone-depletion, chronic toxicity to workers, and residual issues. PH3 fumigation in mushroom disinfestation requires a long exposure time (24 h). In this study, we used ethyl formate (EF), which can replace MB and reduce exposure time. The efficacy of EF, PH3 and EF + PH3 on L. mali was evaluated. Using 4-h EF fumigation at 5 °C, the 3rd and 4th instar was the most tolerant stage in terms of 99% killed lethal concentration × time products (LCt99%). When 4-h EF fumigation at 5 °C was applied on all stages of L. mali, the LCt99% values of EF were 73.1 g h/m³ to the 1st and 2nd instar, 112.9 g h/m³ to the 3rd and 4th instar, 68.9 g h/m³ to pupae, and 20.1 g h/m³ to adult. It was confirmed that combination treatment with EF + PH3 had a synergistic effect on L. mali. The LCt99% of EF + 0.5 g/m³ of PH3 to the 3rd and 4th instar was 48.3 g h/m³. When only 140 g/m³ of EF was applied for 4 h at > 5 °C and 35 g/m³ of EF + 0.5 g/m³ of PH3 for 4 h at > 5 °C in commercial trials containing T. matsutake, proven efficacy (100%) on L. mali was confirmed. In the case of EF treatment only, phytotoxic damage occurred due to high Ct products, and there was no phytotoxic damage in combination treatment with EF + PH3. This study provides a new guideline for EF + PH3 combination treatment within a shorter exposure time (4 h) than existing PH3 treatment (24 h) and replacement of MB use.

Keywords: Lycoriella mali, Ethyl formate, Phosphine, Alternatives, EF + PH3, Synergistic effect

Introduction
Flies of the family Sciaridae occur almost worldwide in many different cultivating and perishable commodities [1]. Significant loss of cultivating mushrooms caused by several species such as Lycoriella mali and Lycoriella ingenua of sciarid in the mushroom industry has been reported from the USA, UK, and South Korea [2–5].

Efficacy of synthetic pesticides such as diflubenzuron, diazinon, methoprene, and phosphate insecticides such as demethoate and acephate in L. mali has been reported [2].

In the mushroom trade among several countries including China and Korea, Lycoriella sp. is classified as a quarantine pest in some countries, including South Korea, and must be treated by phytosanitary disinfestation at ports. According to KATI [6], South Korea exported 7584 t of Pleurotus eryngii, the main exported mushroom, and imported 145 t of Tricholoma matsutake from mainly China in 2019.

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
According to the phytosanitary guideline in Korea, imported mushrooms infested with *L. mali* must be chemically treated with methyl bromide (MB). In the case of exported mushrooms, pest free inspection was the last option to avoid rejecting them in countries where they are imported with the option not to treat with MB because it caused loss of quality. As well as phytotoxic damage to mushrooms treated with MB, its use has been phasing out because of ozone depletion properties and chronic toxicity to human in Korea [7]. MB fumigation on food commodities could be more difficult in the future because there is a need to update residual bromide ion and MB itself post all type of food commodities associated with the new Positive List System (PLS) in Korea [8]. In Korea, MB fumigation on tumbled mushrooms will be discontinued after 2022 (Personal communication with MG Park), because there is currently no consumer safety data supported in Korea. In the case of PH$_3$ fumigation, as current alternative options, commercial adaptation might be difficult because a long exposure time is required in grains (> 5 days) and mushrooms (> 1 days), which could shorten the shelf life of mushrooms [9].

Ethyl formate (EF), an alternative to MB, is known to be safer than other fumigants in the workplace and there is residual free regulation in many countries because it is globally classified as a food additive. In practice, EF fumigation has been used in imported commodities such as fruits, vegetables, nursery plants, etc. [10, 11]. A new concept of EF application technology with N$_2$ (Non-CO$_2$) was developed and used commercially in Korea [9].

Although EF was effective fumigant, it has high sorption [12] to commodities like perishable fruits and vegetables and more less vaporization at low temperature [13]. PH$_3$ was good at permeability to commodities like timber [14]. Thus the new concept of fumigation has been studied that combined EF and PH$_3$, which was more effective to insect pests and less phytotoxic damage to commodities [15, 16].

No study evaluating the efficacy of EF on *L. mali* has been reported. Herein, we suggest new disinfection guidelines for disinfection of *L. mali* using EF and EF + PH$_3$, which are a replacement for MB.

We evaluated (1) Efficacy of EF for 4 h-fumigation on *L. mali* in lab studies, (2) sorption studies on several types of mushroom and gas penetration under imported conditions, (3) Synergistic effect of EF and PH$_3$ to *L. mali* and Phytotoxic damage to mushroom with EF + PH$_3$ fumigation. (4) application of liquid EF with N$_2$ application on a commercial scale for confirmation on imported mushrooms.

Materials and methods

Insects and chemicals

Lycoriella mali was collected from a mushroom farm in Yeongcheon, Gyeongbuk, South Korea during 2020. *L. mali* were transferred and reared in an insect rearing room at Gyeongsang National University. *L. mali* was maintained in the insect rearing room at 24°C and 60–70% relative humidity (RH) with a 16:8 [L:D] h. *Pleurotus eryngii* was provided as a food source. Female adults of *L. mali* lay eggs on water agar (2%) in the insect breeding dish (100 mm × 40 mm). Larvae pupated within 5–6 days, and adults emerged within 25 days; 1st, 2nd, 3rd and 4th instar larvae, pupae, and adults were used in this study. EF (Fumate™, > 99% purity; Hoengseong, Korea) was supplied by Safefume Co. Ltd in Korea. Phosphine was purchased as ECO2Fume (2% PH$_3$ + 98% CO$_2$) from Cytec (Sydney, Australia).

Egg hatching test at low temperature

Egg hatching studies of *L. mali* were performed at 5±0.5°C in an incubator. The eggs were collected form rearing cages with 200 mated females on the *Pleurotus eryngii* over 1 day and treated immediately. Before fumigation to eggs, 2% agar medium was laid on the bottom of the breeding dish (50 mm × 15 mm) to maintain moisture and cut pine of *P. eryngii* was placed on the agar medium. Then 20 eggs of *L. mali* were transferred to each cut pine of *P. eryngii*. Because the egg color is transparent, the cut pine of *P. eryngii* was dyed using natural pigments to make observation of the eggs easier. Following placement in a 5°C incubator, the egg hatching rate was observed for 5 to 14 days. After 72 h of treatment, eggs were checked hatching rate. Treatment was replicated three times, and the control was replicated 10 times at room temperature (24±1°C).

Efficacy to developmetal stages of *L. mali* with EF in a laboratory experiment

Efficacy of EF was evaluated for three different developmental stages (adult, larvae and pupae) of *L. mali*. In the case of EF mixed with PH$_3$ studies, the 3rd and 4th instars of *L. mali*, which is the most tolerant stage to EF, was evaluated. Adults of *L. mali* were transferred from a breeding dish (50 mm × 15 mm) using collecting equipment (Fulton, MX-991/U, Georgia) within three days of developing an adult. Adults of *L. mali* were fumigated at 5°C for 4 h with 1.0–9.0 g/m3 of EF. The 1st and 2nd instar and the 3rd and 4th instar were classified and tested. From 1 to 7 days after hatching, the 1st and 2nd instar and 7 to 14 days were classified into the 3rd and 4th instar. The pupae were used within two days after
pupation. Larvae and pupae stages of *L. mali* were transferred from water agar (2%) to a breeding dish (50 mm × 15 mm). The 1st and 2nd instar of *L. mali* were fumigated at 5°C for 4 h with 1.0–30.0 g/m³ of EF. The 3rd and 4th instar were fumigated at 5°C for 4 h with 1.0–45.0 g/m³ of EF. The pupae were fumigated at 5°C for 4 h with 1.0–40.0 g/m³ of EF.

The concentration of EF was measured using an Agilent portable GC 17A (Shimadzu, Kyoto, Japan) equipped with a flame ionization detector (FID) after separation on a DB-5MS Column (30 m × 0.25 mm i.d., 0.25 µm film thickness; J&W Scientific, Folsom, CA). The oven temperature was 100°C. The injector and detector temperatures were 250 and 280°C, respectively. Helium was used as a carrier gas at the flow rate of 1.5 mL/min. Headspace EF was calculated by the peak area against external EF standards.

After completion of 4 h fumigation, treated *L. mali* was transferred to an insect rearing room at 24°C and 60–70% relative humidity (RH) with a 16:8 [L:D] h. The mortality of the treated *L. mali* larvae and adults were determined by visual inspection of movement using a microscope 1 day after fumigation. The mortality of the treated *L. mali* pupae was determined by checking the number of adults for 5 days after fumigation. Usually, the rate of pupae to adults in the control group was 50% level. All treatments and controls were replicated three times.

The temperature was recorded using data loggers (Thermo Recorder TR-72Ui, T&D Corp., Japan). In this study, a 6.8 L desiccator was used in the experiment as a fumigation chamber. The desiccators were sealed with a glass stopper equipped with a septum (Alltech Associates Australia, Cat. No. 15419). The exact volume of desiccators was measured using weigh of water. The desiccators were tightly sealed with high vacuum grease (Dow Corning, USA). A filter paper (Whatman No. 1) was inserted into the glass stopper to make clear evaporation in the desiccator for the injected EF. A magnetic bar to stir the fumigant was located at the bottom of the desiccator. The dose of fumigant and Ct products was calculated using the method reported by Ren et al. [14].

Efficacy to 3rd and 4th larvae of *L. mali* with EF combined with PH₃ in a laboratory experiment

For EF + PH₃ efficacy studies, the 3rd and 4th instars of *L. mali* were transferred on agar petri dish in desiccator (6.8 L). The larvae in the desiccators were fumigated at 5°C for 4 h with 4.0–28.0 g/m³ of EF mixed with 0.5 and 1.0 g/m³ of PH₃. Analysis of EF concentration was as shown above, the concentration of PH₃ was measured using Agilent 7890A equipped with a flame photometric detector (FPD) and HP-PLOT/Q (30 m × 530 µm × 40 µm, Agilent, Santa Clara, CA) operating in split mode (10:1). The temperature of the injector and the oven was 200°C. The temperature of the detector was 250°C. The injection volumes and flow rate of EF and PH₃ were 60 µl and 20 and 1.5 and 5 ml/min, respectively.

Determination of the synergistic effect of ethyl formate mixed with phosphine against the 3rd and 4th larvae of *L. mali*

After efficacy to EF alone fumigation and EF combined with PH₃ fumigation, we evaluated synergistic effect. A synergistic effect was measured by synergistic ratios (SRs). Synergistic ratios are defined by Hewlett and Plackett [17] and based on equation. 1.

\[
SR = \frac{L(Ct) \text{ of ethyl formate only}}{L(Ct) \text{ of ethyl formate + phosphine}}
\]

SR = 1 describes additive action, SR < 1 describes antagonism, SR < 1 describes synergism

Sorption test of *Tricholoma matsutake* for 4 h EF fumigation in a laboratory experiment

Evaluation of sorption of EF on *T. matsutake* was performed in a 6.8 L desiccator under lab condition. Each *T. matsutake* was filled at a 0.5, 1, and 1.5% filling ratio (w/v) for the sorption test; 140 g/m³ of EF was applied using a syringe for 4 h at 5°C. Gas sampling was performed at time intervals (10 min, 1, 2, and 4 h) and measurements were performed using an Agilent portable GC 17A (Shimadzu, Kyoto, Japan) equipped with a flame ionization detector (FID) after separation on a DB-5MS Column (30 m × 0.25 mm i.d., 0.25 µm film thickness; J&W Scientific, Folsom, CA).

Gas penetration test of EF on packed mushrooms with logistic consideration (Styrofoam box)

In the case of import and export *Tricholoma matsutake*, a styrofoam box with an ice pack was used as packing materials. Evaluation of gas penetration of EF on packed mushrooms (*Tricholoma matsutake*) was performed in a 0.275 m³ fumigation chamber at 5°C. Each mushroom was filled at a 1.0% filling ratio (w/v) for the gas penetration test; 35, 70 and 140 g/m³ of EF was applied using a special vaporizer (supplied by Safefume Co.) for 4 h at 5°C. The two conditions (inside, outside of the Styrofoam box) of EF concentration were analyzed. Gas sampling was performed at time intervals and measurements were performed using an Agilent portable GC 17A.
Commercial scaled-up fumigation

EF alone fumigation on Tricholoma matsutake

Scale-up fumigation was performed using a 25 m³ Tarp-fumigation chamber in the Incheon airport warehouse in South Korea. *Tricholoma matsutake* were placed in a styrofoam box (1.7% f.r.) and the cover of the box was opened, which is based on commercial use. Then, 140 g/m³ of EF was applied for 4 h at 5°C. Liquid EF was vaporized with SFM-I (supplied by Safefume Co.) with N₂ as the carrier gas and a fan was placed at the bottom of the Tarp-chamber for efficient gas circulation. The concentrations of the inside and outside of the styrofoam box were analyzed. Three of the insect breeding dishes containing >300 larvae of *L. mali* (total 1079) were then located in the styrofoam box. Gas sampling was collected at time intervals (0, 1, 2, and 4 h) and EF concentration inside and outside of the styrofoam box was measured using GC-FID. Because measurement with GC-FID directly at the field is impossible, the concentration was checked in advance at the field using a gas analyzer (IBRID MX6; Industrial Scientific, Pittsburgh, PA, USA). A previous study found no significant difference in the measured concentration of IBRID and GC-FID. Fumigated larvae of *L. mali* were transferred to an insect rearing room. The mortality of larvae was determined 1-d after fumigation. All treatments and controls were replicated three times.

EF fumigation mixed with PH₃ on Tricholoma matsutake

Scale-up fumigation was performed using a 5 m³ fumigation chamber in the same APQA site in South Korea. *Tricholoma matsutake* were placed in a styrofoam box (0.5% f.r.) and the cover of the box was opened, which is based on commercial use. Then, 35 g/m³ of EF mixed with 0.5 g/m³ of PH₃ was applied for 4 h at 5°C. Liquid EF was vaporized using a vaporizer (supplied by Safefume Co.) with N₂ as the carrier gas and a mini fan was placed at the bottom of the chamber for efficient gas circulation. The concentration of PH₃ was achieved by injecting 125 ml of 2% PH₃ into a 5 m³ fumigation chamber. The concentrations of the inside and outside of the styrofoam box were analyzed. Three insect breeding dishes containing >300 larvae of *L. mali* (total 1,097) were then located in the styrofoam box. Gas sampling was collected at time intervals (0, 1, 2, and 4 h) and EF and PH₃ concentrations inside and outside of the styrofoam box were measured using GC-FID and GC-FPD. Fumigated larvae of *L. mali* were transferred to an insect rearing room. The mortality of larvae was determined 1-d after fumigation. All treatments and controls were replicated three times.

Phytotoxic assessment

The phytotoxic damage of EF on mushrooms (*Pleurotus eryngii, Tricholoma matsutake*) was evaluated in scaled-up studies (5 m³ fumigation chamber). Two types of mushrooms were filled at a 1.5% filling ratio; 140 g/m³ of EF for *Pleurotus eryngii* and 140 g/m³ of EF and 35 g/m³ of EF + 0.5 g/m³ PH₃ for *Tricholoma matsutake*. EF were applied using a special vaporizer (supplied by Safefume Co.) for 4 h at 5°C. After completion of fumigation, mushrooms were transferred to storage at 5 ± 0.8°C. The deterioration degrees were classified according to symptoms of the water condensation surface of the cap and changing a soft cap, grill, stem parts: 0: Non, 1: water condensation, 2: water condensation following changing a soft cap and grill parts 3: water condensation following changing a soft cap and grill and then stem part). A color change (hue value) using a color meter (TES 135A, Taiwan), weight loss (% weight differences before and after treatment) and market value based on the hardness of head parts (the harder the best, the softer the worst) were evaluated 3-d after fumigation.

Statistical analysis

Analysis of the toxicological dose response to EF by *L. mali* was based on a Probit analysis (Finney, 1971). As part of the analysis, the slopes of the Probit transformations were determined as well as Chi-square tests of data homogeneity for different treatments. The indices of toxicity measurement derived from this analysis were L(Ct)₅₀ = median lethal concentration that causes 50% response (mortality) and L(Ct)₉₉ = lethal concentration that causes 99% response (mortality) of exposed *L. mali* determined from a range of at least 10 different Ct products to ensure that the observed data covered mortality from 0 to 100% and adequately covered the intermediate range. For analysis of the hatchability of eggs on two temperatures and phytotoxic damage assessment of EF fumigation, on mushrooms, a T-test procedure was used to compare the two sample means. The EF alone fumigation and EF combined with PH₃ fumigation against phytotoxicity of mushrooms were compared using Tukey’s test in scaled-up trials. All statistical analyses were performed using SAS (ver. 9.4; SAS Institute Inc.) [18].

Results and discussion

Egg hatchability test at low temperature

This study was conducted to investigate eggs hatching in low temperature conditioned mushrooms. According to previous ecological studies on *L. mali*, the average length of a generation from egg to adult was 28 d at 21°C [19]; it...
took five days from eggs to hatching. The egg hatchability under normal temperature condition (24 ± 1°C) were 88.3 ± 1.7% and 100.0 ± 0.0% at the day of the 5th and 6th day after oviposition (Table 1). However, we confirmed that the eggs under low temperature (5.0 ± 0.5°C) did not hatch at all. Based on logistic distribution of imported T. matsutake from China, it takes at least five days from harvest to consumers, all logistics is under < 5°C, meaning that survival of the egg might be difficult under cold temperature conditions if found in imported mushrooms.

Efficacy to developmetal stages of L. mali with EF

in a laboratory experiment

The efficacy of 4 h EF fumigation (practical exposure condition using EF fumigations in Korea) on larvae, pupae, and adults stages of L. mali at 5°C is shown in Table 2. For the 1st and 2nd of L. mali larvae, the L(CT)50% and L(CT)99% values of EF were 43.6, 73.1 g h/m³. For the 3rd and 4th of L. mali larvae, the L(CT)50% and L(CT)99% values of EF were 25.0 and 112.9 g h/m³. The L(CT)50% and L(CT)99% values of EF on L. mali pupae were 36.8 and 68.9 g h/m³ and adults were 7.8 and 20.1 g h/m³ at 5°C (Table 2), respectively. Thus, the order of susceptively

Stage	L(CT)50% (95% CL)	L(CT)99% (95% CL)	Slope ± SE	df	χ²
1st, 2nd instar	43.6 (37.1–53.3)	73.1 (68.4–100.2)	3.1 ± 0.3	21	28.9
3rd, 4th instar	27.84 (22.53–33.01)	112.9 (90.70–152.25)	3.2 ± 0.3	28	48.47
Pupae	36.8 (28.9–46.1)	68.9 (57.6–97.1)	4.3 ± 0.3	15	40.2
Adults	7.8 (5.8–13.9)	20.1 (16.6–26.2)	2.0 ± 0.4	13	32.1

Efficacy to PH3, EF and PH3 + EF fumigation for 4 h exposure on Lycoriella mali at 5 ± 0.5°C

Fumigant dose	Ct products (g h/m³)	Mortality ± SE (%)
Control	0.0	0.0 ± 0.0
PH₃ 0.5 g/m³	1.8	0.0 ± 0.0
PH₃ 1.0 g/m³	3.5	0.0 ± 0.0
EF 6.0 g/m³	14.8	200 ± 2.9
EF 10.0 g/m³	26.4	467 ± 1.7
EF 18.0 g/m³	44.9	867 ± 1.7
EF 26.0 g/m³	65.5	950 ± 0.0
PH₃ 0.5 g/m³ + EF 6.0 g/m³	1.8 + 15.2	417 ± 1.7
PH₃ 0.5 g/m³ + EF 100 g/m³	1.8 + 26.6	400 ± 2.9
PH₃ 0.5 g/m³ + EF 18.0 g/m³	1.8 + 45.7	1000 ± 0.0
PH₃ 0.5 g/m³ + EF 26.0 g/m³	1.8 + 65.7	1000 ± 0.0
PH₃ 1.0 g/m³ + EF 18.0 g/m³	3.6 + 47.0	1000 ± 0.0
PH₃ 1.0 g/m³ + EF 26.0 g/m³	3.5 + 65.6	1000 ± 0.0

Table 1 Egg hatchability of lycoriella mali under two conditions (5 ± 0.5°C, 24 ± 1.0°C)

Day after oviposition	Temperature (mean ± SE, °C)	No. of tested	No. of hatched	p-value	Hatchability (mean ± SE, %)
5	5 ± 0.5	60	0	<0.0001	0.0 ± 0.0
	24 ± 1.0	60	52		88.3 ± 1.7*
6	5 ± 0.5	60	0	<0.0001	0.0 ± 0.0
	24 ± 1.0	60	60		100.0 ± 0.0
7	5 ± 0.5	60	0	<0.0001	0.0 ± 0.0
	24 ± 1.0	60	60		100.0 ± 0.0
8	5 ± 0.5	60	0		0.0 ± 0.0
9	5 ± 0.5	60	0		0.0 ± 0.0
10	5 ± 0.5	60	0		0.0 ± 0.0
11	5 ± 0.5	60	0		0.0 ± 0.0
12	5 ± 0.5	60	0		0.0 ± 0.0
13	5 ± 0.5	60	0		0.0 ± 0.0
14	5 ± 0.5	60	0		0.0 ± 0.0

* All the unhatched eggs were emergedll at 6-d after oviposition

- impossible to check

Table 2 LCt (Lethal Concentration x time) value of EF fumigation for 4 h expoure on Lycoriella mali at 5 ± 0.5°C

Stage	L(CT)50% (95% CL)	L(CT)99% (95% CL)	Slope ± SE	df	χ²
1st, 2nd instar	43.6 (37.1–53.3)	73.1 (68.4–100.2)	3.1 ± 0.3	21	28.9
3rd, 4th instar	27.84 (22.53–33.01)	112.9 (90.70–152.25)	3.2 ± 0.3	28	48.47
Pupae	36.8 (28.9–46.1)	68.9 (57.6–97.1)	4.3 ± 0.3	15	40.2
Adults	7.8 (5.8–13.9)	20.1 (16.6–26.2)	2.0 ± 0.4	13	32.1
of *L. mali* life stages to EF based on L(Ct)99% values was adults > pupae > 1st and 2nd instar > 3rd and 4th instar larvae. *Drosophila suzukii* (Diptera: Drosophilidae) of the other flies was also most tolerant larval stage except for eggs [20].

Efficacy to 3rd and 4th larvae of *L. mali* with EF combined with PH3 in a laboratory experiment

The efficacy of EF + 0.5 g/m³ PH3 fumigation for 4 h on the 3rd and 4th of *L. mali* at 5 °C is shown in Table 3. The mortality of *L. mali* was no effect with PH3 of 0.5 and 1.0 g/m³ for 4 h fumigation, and was 86.7% with EF of 18.0 g/m³ for 4 h fumigation. Otherwise, EF combined with PH3 of 0.5 g/m³ fumigation for 4 h was controlled 100% against 3rd and 4th instar of *L. mali* (Table 3). The L(Ct)50% and L(Ct)99% values of EF + 0.5 g/m³ PH3 against the 3rd and 4th of *L. mali* were 34.4 and 48.3 g h/m³ at 5 °C, respectively (Table 4). According to the results of a preliminary experiment at 5 °C, the 3rd and 4th instar were the most tolerant stages of *L. mali*. It was confirmed that application of EF + 0.5 g/m³ PH3 to *L. mali* had a synergistic effect when treated L(Ct)99% at 5 °C (Table 5). The fumigant, PH3 was required more longer exposure times to kill insect pests than EF [21] and EF was needed to high concentration to control insect pests at low temperature [22]. But mixed usage of these fumigants would be better to control insect pests than alone [15, 16].

Sorption test of *T. mastutake* for 4 h EF fumigation in a laboratory experiment

Based on the efficacy studies resulting in L(Ct)99% values of EF on *L. mali* larvae, which is the most tolerant to EF fumigation in this study, estimated applicable schedules (140 g/m³ EF for 4 h exposure) were performed on *T. matsutake*. The losses of EF inside the fumigated desiccators and their adsorption are shown in Fig. 1.

Table 4 L(Ct) (Lethal concentration x time) value of EF mixed with 0.5 g/m³ PH3 for 4 h exposure on *Lycoriella mali*

Temp (°C)	Stage	L(Ct)50% (95% CL)	L(Ct)99% (95% CL)	Slope ± SE	df	χ²
5	3rd–4th instar	34.4 (33.3–35.7)	48.3 (44.9–53.9)	15.8 ± 1.8	16	77.59

Table 5 Synergistic efficacy of EF mixed with 0.5 g/m³ PH3 on 3rd–4th larvae stage of *Lycoriella mali*

Temp (°C)	Stage	aSynergistic ratios L(Ct)50%	bSynergistic ratios L(Ct)99%
5	3rd–4th larvae	0.81	2.34

a Synergistic ratios (SRs): L(Ct)50% of ethyl formate only/L(Ct)50% of ethyl formate + 0.5 g/m³ phosphine

b Synergistic ratios (SRs): L(Ct)99% of ethyl formate only/L(Ct)99% of ethyl formate + 0.5 g/m³ phosphine

Fig. 1 Concentration loss of EF fumigation (140 g/m³ at 5 °C for 4 h) on *Tricholoma matsutake*
The concentration of EF decreased during 4 h of exposure on mushrooms. Loss rate of EF on *T. matsutake* was relatively low, approximately 30% at f.r. 1.5%. But EF was required high concentration due to their high sorption to commodities like fruits and vegetable, which can cause to phytotoxic damage to commodities [23–25].

Gas penetration test of EF on packed mushroom with styrofoam box

A gas penetration test was performed using a 0.275 m³ fumigation chamber with different filling ratios of *T. matsutake*. As a result of EF gas penetration, there was a difference between the inside and outside of the styrofoam box (Fig. 2). When EF 35, 70, 140 g/m³ was applied, Ct products inside the styrofoam box were 60.2 ± 2.4, 95.0 ± 2.9 and 167.1 ± 6.1 g h/m³ at f.r. 1.0%, respectively. However, EF Ct products outside the styrofoam box were 89.4 ± 2.2, 136.3 ± 2.3 and 219.7 ± 4.1 g h/m³ at f.r. 1.0%, respectively, shown in Fig. 2. Regarding the initial concentration, the concentration of inside was 15–40% of the concentration of outside. After 2 h of treatment, the inside and outside concentrations were similar. The calculation of Ct products in the lab might be different when applied in actual scaled-up trials because it is dependent on sealing conditions, temperature, and condition of commodities (water content, logistic packing, etc.). According to our data when determining EF concentration to achieve target Ct products (112.9 g h/m³, Probit estimation for 99% mortality on *L. mali* with 4 h exposure, 100 g/m³ of EF might be applicable. However, >100 g/m³ of EF could be obtained with proven efficacy (>99%) under the worst circumstance of commercials. EF concentration inside the styrofoam box containing *T. matsutake* was lower than outside. The difference of EF concentration inside and outside the box might be different depending on fanning conditions (running time, numbers of fans, locations of fan, electrical capacity, etc.) during the EF fumigation. Based on unpublished data, we suggested using a fan for more than 2 h at low-middle capacity for even distribution of gas.

Commercial sized EF fumigation

EF alone fumigation on Tricholoma matsutake

The scaled-up EF fumigation to confirm disinfection on *L. mali* was performed using a 25 m³ Tarp-fumigation chamber filled with *T. matsutake* (1.7% f.r. w/v). When 140 g/m³ was applied for 4 h at 5°C, *L. mali* achieved 100% mortality (total 1079 of fumigated *L. mali* larvae used). The accumulated Ct products of EF were 159.0 ± 3.1, 147.2 ± 2.8 g h/m³ inside, 195.3 ± 4.3 g h/m³ outside the styrofoam box (Fig. 3, Table 6). We confirmed more than achievable L(Ct)⁹⁹% values and the loss rates of EF were approximately 70–80% for 4 h exposure, which was similar to previous lab condition studies. When conducting this test, we tried to confirm the mortality for *L. mali* naturally infested in *T. matsutake*, however collection of a large amount of *T. matsutake* was impossible and the number of infested *L. mali* per mushroom was too small. For a small number of *L. mali*, 100% mortality...
was achieved. Regarding weight loss, in assessment of 3 d after fumigation, *T. matsutake* was not significantly different (*df*: 16, *p*-value: 0.8062) (Fig. 4). Likewise, regarding color change, *T. matsutake* was not significantly different (*df*: 16, *p*-value: 0.8198) (Fig. 5).

EF fumigation mixed with PH3 on *Tricholoma matsutake*

We proposed EF + PH3 combination fumigation. It was performed using a 5 m³ container filled with *T. matsutake* (0.5 f.r. w/v). When 35 g/m³ of EF + 0.5 g/m³ of PH3 was applied for 4 h at 5 °C, *L. mali* achieved 100% mortality (total 1,097 of fumigated *L. mali* larvae used). The acculumed Ct products of EF were 50.6 ± 0.6, 50.2 ± 1.1 g h/m³ inside, 66.4 ± 0.1 g h/m³ outside the styrofoam box (Fig. 6, Table 3). We confirmed more than achievable L(Ct)⁹⁹% values and the loss rates of EF were approximately 60–70% for 4 h exposure, which was similar to previous lab condition.

Type and size of fumigation	Appl. Dose (g/m³)	Packing and gas sampling	Ct products (g h/m³)	Mort. (%) (dead/total)	Deterioration degree¹	Market value²
Fumigation chamber¹	–	Untreated	–	0 (0/159)	0 a	B1 B2 C
(25 m³)	EF 140.0	S.B.(I¹¹)	1590 ± 3.1	100 (331/331)	3 b	D D D D
	S.B.(I²)	1472 ± 2.8	100 (387/387)	3 b	D D D D	
	S.B.(O)	1953 ± 4.3	100 (361/361)	3 b	D D D D	
Fumigation chamber²	–	Untreated	–	0 (0/159)	0 a	B1 B2 C
(5 m³)	EF 35.0 + PH3 0.5	S.B.(I¹¹)	50.6 ± 0.6	100 (397/397)	0 a	B1 B2 C
	S.B.(I²)	50.2 ± 1.1	100 (356/356)	0 a	B1 B2 C	
	S.B.(O)	66.4 ± 0.1	100 (344/344)	0 a	B1 B2 C	

S.B: Styrofoam box, Inside (I), Outside (O)

¹ The deterioration degrees: 0: Non, 1: water condensation, 2: water condensation following changing soft a cap and grill parts 3: water condensation following changing soft a cap, grill and then stem part

² Market value based on commercial grades. A: button, B1: young mushroom, B2: mature mushroom, C: overmature mushroom, D: not for sale

![Fig. 3](image_url)
Gas concentration when fumigated with 140 g/m³ EF for 4 h on *Tricholoma matsutake* (f.r. 1.7%) in scaled-up trials (25 m³ Tarp-fumigation chamber, temp.: 7.3 ± 0.4 °C). *Gas concentration inside (S. B. I) and outside (S. B. O) the styrofoam box.*
Fig. 4 Weight loss after 3-d fumigation on mushrooms fumigated with 140 g/m³ EF only and 35 g/m³ EF mixed with 0.5 g/m³ PH₃ (4 h exposure). NS: Not significant

Fig. 5 Color change after 3-d fumigation on mushrooms fumigated with 140 g/m³ EF only and 35 g/m³ EF mixed with 0.5 g/m³ PH₃ (4 h exposure). NS: Not significant
studies. Regarding weight loss, in assessment of 3-d after fumigation, *T. matsutake* was not significantly different (*df*: 18, *p*-value: 0.4423) (Fig. 4). Regarding color change, *T. matsutake* was not significantly different (*df*: 16, *p*-value: 0.3473) (Fig. 5). Thus, EF combined with PH3 fumigation was no damage to mushrooms unlike EF alone fumigation. There were previous studies reported that EF + CO₂ [26], PH3 + CO₂ for reducing LT (Lethal time) values [27] and PH3 + O₂ [28] for increasing efficacy and decreasing phytotoxic damage to commodities.

Acknowledgements

This research funded by Animal and Plant Quarantine Agency in Republic of Korea. Also we thank to Korean Mushroom Association (KMA) to support commercial trials.

Authors' contributions

B.H.L, K.W.K and M.G.P designed the experiments. T.H.K and D.B.K conducted experiments, results analysis and interpretation. G.H.R and T.H.K wrote the manuscript. All authors read and approved the final manuscript.

Funding

This study was supported by APQA (Animal and Plant Quarantine Agency) project (PN. P202038012).

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Declarations

Competing interests

The authors declare that they have no competing interests.

Author details

1. Division of Applied Life Science (BK21 + Program), Gyeongsang National University, Jinju 52828, Republic of Korea. 2. Institute of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea. 3. Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea. 4. USDA-ARS, US Pacific Basin Agricultural Research Center, Hilo, HI 96720, USA.

Received: 18 May 2021 Accepted: 18 August 2021

Published online: 10 September 2021

References

1. Lewandowski M, Szyk A, Bednarek A (2004) Biology and morphometry of *Lycoriella ingenua* (Diptera: *Sciaridae*). Biol Lett 41:41–50
2. Cantelo WW (1979) *Lycoriella mali*: control in mushroom compost by incorporation of insecticide into compost. J Econ Entomol 71:703–705
3. White PF (1985) Pests and pesticides. In: Fleeg PB, Spencer DM, Wood DA (eds) The biology and technology of the cultivated mushroom. Wiley, Chichester, pp 279–293
4. Kim KJ, Hwang CY (1996) An investigation of insect pest on the mushroom (*Lentinus edodes*, *Pleurotus ostreatus*) in south region of Korea. Korean J Appl Entomol 35:45–51
5. Shamshad A, Clift AD, Mansfield S (2008) Toxicity of six commercially formulated insecticides as biopesticides to third instar of mushroom sciarid, *Lycoriella ingenua* Dofour (Diptera: *Sciaridae*), in New South Wales, Australia. Aust J Entomol 47:256–260
6. Kati (2020) https://www.kati.net/statistics/periodPerformance.do, last modified 20 Nov 2020. Accessed 21 Feb 2021
7. Choi J, Lim E, Park MG, Cha W (2020) Assessing the restet reliability of prefrontal EEG markers of brain rhythm slowing in the eyes-closed resting state. Clin EEG Neurosci 51(5):1–9
8. Bae EY, Lee EK (2009) Pharmacoeconomic guidelines and their implementation in the positive list system in South Korea. Value Health 12:36–41
9. Yang JQ, Park YR, Hyun IH, Kim GH, Kim BS, Lee BH, Ren YL (2016) A combination treatment using ethyl formate and phosphine to control
planococcus citri (Hemiptera: Pseudococcidae) on pineapples. J Econ Entomol 109(6):2355–2363
10. Simpson T, Bikoba V, Mitcham EJ (2004) Effects of ethyl formate on fruit quality and target pest mortality for harvested strawberries. Postharvest Biol Technol 34:313–319
11. Simpson T, Bikoba V, Tipping C, Mitcham EJ (2007) Ethyl formate as a postharvest fumigant for selected pests of table grapes. J Econ Entomol 100:1084–1090
12. Smit R, Jooste MM, Addison MF, Johnson SA (2020) Ethyl formate fumigation: its effect on stone and pome fruit quality, and grain chinch bug (Maschadius diplopterus) mortality. Sci Hortic 261:1–9
13. Lee JS, Kim HK, Kyung YJ, Park GH, Lee BH, Yang JO, Koo HN, Kim GH (2018) Fumigation activity of ethyl formate and phosphine against Tetranychus urticae (Acari: Tetranychidae) on imported sweet pumpkin. J Econ Entomol 111(4):1625–1632
14. Ren YL, Lee BH, Padovan B (2011) Penetration of methyl bromide, sulfuryl fluoride, ethanedinitrile and phosphine into timber blocks and the sorption rate of the fumigants. J Stored Prod Res 47:63–68
15. Cho SW, Kim HK, Kim BS, Yang JO, Moon YM, Ren YL (2016) Evaluation of the synergistic effect between ethyl formate and phosphine for control of Aphis gossypii (Homoptera: Aphididae). J Econ Entomol 109(1):143–147
16. Cho SW, Kim HK, Kim BS, Yang JO, Kim GH (2020) Combinatory effect of ethyl formate and phosphine fumigation Pseudococcus longispinus and P. orchidicola (Hemiptera: Pseudococcidae) mortality and phytotoxicity to 13 foliage nursery plants. J Asia Pac Entomol 23(1):152–158
17. Hewlett PS, Plackett RL (1969) A unified theory for quantal responses to mixtures of drugs: non-interactive action. Biometrics 15:591–610
18. Institute SAS (2009) SAS/STAT 9.2 user’s guide, 2nd edn. SAS Institute Inc, Cary
19. O’connor L, Keli CB, (2005) Mushroom host influence on Lycomila mali (Diptera: sciaridae) life cycle. J Econ Entomol 98(2):342–349
20. Kwon TH, Park CG, Lee BH, Zarders DR, Roh GH, Kendra PE, Cha DH (2021) Ethyl formate fumigation and ethyl formate plus cold treatment combination as potential phytosanitary quarantine treatments of Drosophila suzukii in blueberries. J Asia Pac Entomol 24:129–135
21. Kyung YJ, Kim HK, Cho SW, Kim BS, Yang JO, Koo HN, Kim GH (2019) Comparison of the efficacy and phytotoxicity of phosphine and ethyl formate for controlling Pseudococcus longispinus (Hemiptera: Pseudococcidae) and Pseudococcus orchidicola on imported foliage nursery plants. J Econ Entomol 112(5):2149–2156
22. Agarwal M, Ren YL, Newman J, Learmonth S (2015) Ethyl formate: a potential disinfection treatment for eucalyptus weevil (Conipatus platensis) (Coloptera: Curculionidae) in apples. J Econ Entomol 108(6):2566–2571
23. Kim BS, Shin EM, Park YJ, Yang JO (2020) Susceptibility of the cigarette beetle Lasioderma serricorne (Fabricius) to phosphine, ethyl formate and their combination, and the sorption and desorption of fumigants on cured tobacco leaves. Insects 11(9):599
24. Lee BH, Kim BS, Yang JO, Park CK, Ren YL (2014) Evaluation of synergistic effect between ethyl formate and phosphine for control of three species aphids in perishable commodity. 11th International working conference on Stored Product Protection, 24–28 November. Chiang Mai, Thailand, pp 979–984
25. Kyung YJ, Kim HK, Lee JS, Kim BS, Yang JO, Lee BH, Koo HN, Kim GH (2018) Efficacy and phytotoxicity of phosphate as fumigants for Frankliniella occidentalis (Thysanoptera: Thripidae) on asparagus. J Econ Entomol 111(6):2644–2651
26. Haritos VS, Damcevski KA, Dojchinov G (2006) Improved efficacy of ethyl formate against stored grain insects by combination with carbon dioxide in a ‘dynamic’ application. Pest Manag Sci 62:325–333
27. Meenatchi R, Alice RPS, Paulin PP (2018) Synergistic effect of phosphine and carbon dioxide on the mortality of Tribolium castaneum (Coleoptera: Tenebrionidae) in paddy. J Agric Sci 10:503–510
28. Liu SS, Liu YB, Simmons GS (2015) Oxygenated phosphine fumigation for control of light brown apple moth (Lepidoptera: Tortricidae) eggs on cut-flow. J Econ Entomol 108:1630–1636

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.