The first evaluation of glucose-6-phosphate dehydrogenase deficiency (G6PD) gene mutation in malaria-endemic region at South Central Timor (SCT) district, Eastern Indonesia 2015-2016

J Hutagalung¹, H Kusnanto², Supargiyono³, A H Sadewa⁴ and A W Satyagraha⁵

¹Center for Tropical Medicine, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
²Field Epidemiology Training Program, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
³Department of Parasitology, Entomology and Tropical Disease University Gadjah Mada, Yogyakarta, Indonesia
⁴Department of Biochemistry, Faculty of Medicine, University Gadjah Mada, Yogyakarta, Indonesia
⁵Eijkman Institute for Molecular Biology, Red Blood Cell and Enzyme Disorder Laboratories, Jakarta, Indonesia

Abstract. Primaquine (PQ) is the only licensed drug effective against P. vivax for specific hypnozoites and as a key drug in the malaria elimination stage. However, PQ can cause severe hemolysis in G6PD deficient individuals. Unfortunately, few epidemiological data of these disorders was in Indonesia. This study aimed to assesses the prevalence and genotyping variant of G6PD among the people on malaria-endemic. Blood samples from 555 unrelated subjects in eastern Indonesia were for G6PD by quantitative test and PCR–RFLP–DNA sequencing. All protocols followed by Promega, Madison, USA. The prevalence of malaria and anemia was 32.6% (181/555) and 16% (89/555) with P. vivax dominant species 52.5% (95/181), respectively. Overall, 16.6% (92/555) subjects were G6PD deficient, including 58.7% (54/92) females and 41.3% (38/92). Among the 92 cases G6PD deficient molecularly studied, the genotype variant Vanua Lava (T10883C) were detected dominant and unknown G6PD deficient (T-13.154-C) in 3 cases. It was high G6PD deficient in eastern Indonesia indicate that diagnosis and management of G6PD deficient are necessary. Obligatory anti-malaria doses for G6PD deficient individuals, population screening, are needed on endemic malaria in eastern Indonesia.

1. Introduction
Glucose-6-phosphate dehydrogenase (G6PD) is an X-linked essential enzyme that protects cells from oxidative stress in red blood cells (RBC). G6PD deficiency, the common known enzymopathy, is a hereditary genetic defect and it is one of the prevalent polymorphisms in humans, particularly in males¹¹. G6PD is an enzyme that plays an important role in protecting cells from oxidative damage by producing Nicotinamide Adenine Dinucleotide Phosphate (NADPH) and reduced glutathione (GSH)
in the erythrocyte. Most of the individual with G6PDd is normally asymptomatic and causes hemoglobin (Hb) denaturation, ultimately resulting in hemolysis. Hemolytic anemia in G6PDd can be triggered antimalarial (8-aminoquinolines including primaquine)[2,3,4].

PQ is of interest because induced hemolysis increases in the presence of an individual with G6PDd, which depending on the G6PD variant[5]

In 2013-2014, there were 4.8 million cases of malaria reported in eastern Indonesia with \textit{P. falciparum} 62\% and \textit{P. vivax} 33\% being the most common species[5,6]. South Central Timor (SCT) district, malaria infection is the highest malaria prevalence with API= 15.6\% for more than ten years[7]. Since 1989, PQ has been without any G6PDd testing[8]. Currently, there is no study has been undertaken to ascertain the prevalence of G6PD in SCT district. This study aimed to assesses the prevalence and agenotyping variant of G6PD deficiency among the people of malaria-endemic eastern Indonesia.

2. Materials and methods

The ethics committee of the Faculty of Medicine, Universitas Gadjah Mada approved this study with reference No: KE/FK/85/EC. Total 555 of 558 samples from August 2013 to September 2014. The sample size was calculated using a malaria prevalence of 15\% in 2013 in eastern Indonesia[9]. The Criteria for inclusion were ≥14 years of age and Hb level ≥10 gr/dL[10]. During the interview, thick and thin blood smears by Giemsa 3\% were infected malaria (91\%) and most of G6PDd (98\%) have malaria infected history.

Quantitative G6PD test kit was used to screen for G6PD deficiency according to the Randox G6PD test protocols, UK Cat. No: PD-410 (normal G6PD enzymes = 6.97-20.5U/ grHb)[12]. DNA extraction protocols followed by Promega, Madison, USA, Cat. No. A-1120[13]. Five sets specific primers (20-25 ng) from exon 5, 6, 9, 11 and 12 were identified[14]. G6PD variants were detected using 25 µL the PCR products and sequencing by ABI Prism 310 genetic sequencer Applied Bio System, Macrogen, Seoul, Korea. Each sample was compared to the sequence of G6PD gene in GenBank with accession no. X-554481[15]

Species \textit{Plasmodium} identification using double assignment; microscopic by Giemsa 5\% and nested PCR with ten sets of primers. Nested-1 using primers r-PLU-5 and r-PLU-6 (25 µL total PCR reaction)[16] and nested-2 by using protocols followed by Promega, Madison, USA, Cat. No. M-7122. Statistical analysis with \(\alpha=0.05\) and 95\% confident interval was with the SPSS 16.0 software package.

3. Results

A total 555 of 558 individuals were enrolled this study. Table 1 shows the G6PDd prevalence were 16.4\% (92/555) persons were female dominant 56.5\% (52/92) and by aged groups the most (41 to 51 years old) 30.4\% (28/92). Hb level average G6PDd respondents higher (mean Hb=13.3 gr/dL) than normal groups (mean Hb=11.7 gr/dL) with ethnic Timorese as the major G6PDd was found 95.6\%. Of the 91 G6PDd cases 22 (24\%) were infected malaria (\textit{P. vivax} dominant). The prevalence G6PDd were anaemia detected in 83 cases (91\%) and most of G6PDd (98\%) has malaria infected history.

Variables	G6PD-d result (quantitative)	Total (%)	
	Deficiency (%)	Non deficiency (%)	
Sex:			
Male	40 (7.2)	189 (34.1)	229 (41.3)
Female	52 (9.2)	275 (49.5)	326 (58.7)
Age groups (years):			
< 15	0 (0)	11 (2.0)	11 (2.0)
16-20	2 (0.4)	12 (2.2)	14 (2.5)
21-30	18 (3.2)	63 (11.4)	81 (14.6)
31-40	17 (3.1)	136 (24.5)	153 (27.6)
41-50	28 (5.0)	105 (18.9)	133 (24.0)
> 51	26 (4.7)	137 (24.7)	163 (29.4)

Table 1. Distribution G6PDd (quantitative test), eastern Indonesia.
District:
- Oinlasi: 39 (7.0)
- Oe’ekam: 15 (2.7)
- Panite: 19 (3.4)
- Batu Putih: 7 (1.3)
- Oenino: 11 (2.0)

Ethnic:
- Belunese: 1 (0.2)
- Sumbanese: 1 (0.2)
- Rotenese: 1 (0.2)
- Sabunese: 1 (0.2)
- Timorese: 87 (15.7)

Nested PCR result:
- *P. falcifarum*: 5 (0.9)
- *P. vivax*: 11 (2.0)
- *P. vivax* & *P. falc*: 6 (1.1)
- *P. malariae* + *P. ovale*: 0 (0)
- Negative: 69 (12.4)

Haemoglobin level:
- Normal (≥11 gr/dl): 83 (15.0)
- Anaemia (<11 gr/dl): 8 (1.4)

History infected malaria:
- Yes: 2 (0.4)
- No: 89 (16.0)

Variables	G6PDd result (+) deficiency (%)	Normal (%)	OR/ P-value	95% CI
Stay endemic malaria:				
≤ 5 years	12 (2.2)	60 (10.8)	1.04 (0.53)	0.89-1.12
≥6 years	79 (14.2)	404 (72.8)		
Haemoglobin (Hb) level:				
Anaemia (<11 gr/dl)	83 (15)	267 (48.1)	1.26 (0.00)	1.18-1.34
Normal (≥11 gr/dl)	8 (1.4)	197 (35.5)		
Abortion history:				
Yes (+)	4 (0.7)	54 (9.7)	1.04 (0.02)	1.04-1.22
No (-)	87 (15.7)	410 (73.9)		
History antimalarial:				
Yes (+)	2 (0.4)	37 (6.7)	1.14 (0.03)	1.05-1.24
No (-)	89 (16)	427 (76.9)		
Favism diet:				
Yes (+)	19 (3.4)	47 (8.5)	1.95 (0.05)	1.26-3.02
No (-)	72 (13.0)	417 (75.1)		
Others Infection history:				
Yes (+)	39 (7.0)	183 (33)	0.97 (0.31)	0.90-1.05
No (-)	52 (9.4)	280 (50.5)		

Bivariate resulted (Table 2) in G6PDd risk factors, five variables significant; decreased Hb level (P<0.05 and OR=1.26), abortion history (P<0.05 and OR=1.04), antimalarial (PQ) consuming (P<0.05 and OR=1.14), favism diet (P<0.05 and OR=1.95) and malaria infection history (P<0.05 and OR=1.07).

Table 2. Bivariate analysis G6PDd risk factors (α=0.05 with 95% CI).
Malaria infected:

Positive (+)	Negative (-)	1.07 (0.03)	1.00-1.15
22 (4.0)	69 (12.4)		
159 (28.6)	305 (55)		

*p<0.05 (significant)

Others infection = Thfyoid, dengue and chikungunya

OR = odds ratios

CI 95% = confident interval

G6PD genotype sequence analysis presents a summary of molecular across five exons G6PD gene (5, 6, 9, 11, and 12). However, only 8.9% (6/56) identified with Vanua Lava variant (10.884 T>C) with one sample heterozygote female and we also screen 91.1% (49/56) the nucleotide substitution position was absent from data based G6PD variant.

Table 3. Sequencing G6PDd gene mutation (accession no. X-554481).

Exon	No. sample mutation (%)	Nucleotide (nt) position substitution	Codon/ Amino acid substitution	Class G6PDd WHO	Variant G6PDd
5	6 (6.4)	10.884 T> C^b	128 Leu^b > Pro^b	2	Vanua Lava
	1 (1)	10.928 C> T^{ab}	143 Pro^b > Leu^b	3	Unknown
	1 (1)	10.931 C> T^b	144 Pro^b	3	Unknown
9	6 (0.0)		-	-	-
17	1 (0.9)		352 Pro^b	3	Unknown
26	2 (4.8)	10.113 C> G^b	358 Ala^b	3	Unknown
5	2 (4.8)	10.153 C> T^b	372 Gly^b	3	Unknown
14	1 (1.1)	10.154 T> C^b	373 Ser^b > Pro^b	3	Unknown
11	1 (1.1)	10.137 G> A^b	505 Gly^b > Ser^b	3	Unknown
12	1 (1.1)	10.139 T> G^b	311 Thr^b	3	Unknown
	10.141 A> C^b	515 His^b	4	Unknown	
	10.142 G> A^b	531 Gly^b	4	Unknown	
	10.143 T> A^b	534 Gly^b > Arg^b	4	Unknown	

^aUnknown mutation
^bA=Adenine/C=Cytosin/T=Timin/G=Guanina/Ala=Alanina/Leu=Leusina/Pro=Prolina/Gly=Glysina/Ser=serina/Thr=treonina/His=Histidina

4. Discussion

The primary objective of this study was to describe the prevalence of G6PDd in eastern Indonesia. The prevalence of G6PDd in the current study was higher compared with previous report from Sumba (5.1%), Flores (7.5%), Malaysia (3.4%), Vanuatu (6.9%), Korea (0.5%), and Vietnam (8.7%)^[17,18,19,20]. The current study selected healthy individuals in the general population although particular malaria endemic areas, so it is surprising that G6PDd frequencies are divergent from previous reported. However, there were probably very few as the regions studied to G6PD testing. As expected, we founded female heterozygotes displayed a wide range of G6PD variant in eastern Indonesia. From the postulated evolution of G6PDd, it is possible that the frequency of malaria is lower in patient with G6PDd, though a protective effect agains^[21]. Across all G6PDd correlated reasonably well with the decreased of Hb. These result are consistent with study in National Medical Center and Howard
University, Washington DC, USA, showed G6PDd significant effect on Hb concentration, however no different G6PD activities level in G6PD normal subjects versus those who were G6PD deficient[22].

High G6PDd were found from public health perspective remains G6PDd testing need to be taken, because currently the only PQ remains the drug of choice to radical cure (hypnozoites and control) malaria transmission, the risk associated with its use must be minimized during pre-elimination. Patient should be tested for G6PD deficiency and adequately informed before administration of PQ. WHO suggest using an intermittent PQ regimen of 0.75 mg base/kg once a week for eight weeks[23].

Malaria cases distribution shown that transmission is not homogeneous, malaria risk displaying whole area study site, here additionally advantage this maps provide the base for design of the surveillance strategy and will be fully implemented by targeted inland hotspot for prevent outbreak occurred and endemicity maps were used to estimate real incidence malaria and G6PD in areas for pre-elimination began[24]. There are limitations in this study, therefore, this study require exploratory in prospective studies.

5. Conclusion
G6PDd Vanua Lava (10.884 T>C) was relative common among eastern Indonesia. Significant risk for decreased Hb or adverse hemolytic after PQ treatment that have potential to induce oxidative stress. G6PD assessment should be done before antimalarial drug administration. Further research is needed to identified 58 samples with unknown G6PD gene mutations.

References
[1] Goo Y K, SoY J, Hyun I S, Jun H M, Shin H C, Won J L and Jung Y K 2014 First evaluation of glucose-6-phosphate (G6PD) deficiency in vivax malaria endemic regions in the Republic of Korea *Plos ONE* 9(5) 1-10
[2] Luzzatto L, Metha A and Vulliamy T 2001 Glucose-6-phosphate dehydrogenase deficiency The *metabolic & molecular bases of inherited disease* vol 3 pp 4517-53
[3] Beutler E and Vullam Y T J 2002 Hematologically important mutations: glucose-6-phosphate dehydrogenase *Blood Cell. Mol. Dis.* 28 93-103
[4] Clark T G, Fry A E, Auburn S, Campino S, Diakite M, Green A, Richardson A, Teo Y Y, Small K, Wilson J, et al. 2009 Allelic heterogeneity of G6PD deficiency in West Africa and severe malaria susceptibility *Eur. J. Hum. Genet.* 17 1080-5
[5] Kementerian Kesahatan Republik Indonesia 2013 Malaria di Indonesia (Jakarta: Direktur Jendral Program Pemberantasan Penyakit Menular dan Penyehatan Lingkungan (P2M&PL), Pencetakan Negara) pp 5-10
[6] World Health Organization 2014 From malaria control to malaria elimination (Geneva: WHO press) pp 7-35
[7] Dinas Kesahatan Kabupaten Timor Tengah Selatan 2014 Profil kesehatan kabupaten timor tengah selatan 2012-2013 *Soe* 25-9
[8] Faechem R G, Philips A A, Targett G A and Snow R W 2010 Call to action: priorities for malaria elimination *Lancer* 376 1517-21
[9] Dinas Kesahatan Propinsi Nusa Tenggara Timur 2013 Profil kesehatan propinsi nusa tenggara timur 2012-2013 (Kupang: Indonesian) 15-26
[10] HemoCue AB: HemoCue Hb 2013 Operating manual SE-262.23 (Angelholm, Sweden) pp 3-8
[11] Eijkman Institute, Kementerian Kesahatan Republik Indonesia dan Unicef 2010 Diagnosis laboratorium malaria di Indonesia: petunjuk untuk peserta pelatihan (Jakarta: Eijkman Institute for molecular) pp 15-27
[12] Randox Laboratories Limited 2014 Glucose-6-phosphate dehydrogenase quantitative test manual (Ardmore, United Kingdom) pp 1-4
[13] Promega corporation 2014 *Wizard®* genomic DNA purification Kit: instruction manual. Cat No: A-1120 (2800 Woods Hollow Road, Madison, WI 53711-5399, USA) pp 1-3
[14] Promega corporation 2014 Go tag green master mix PCR: instruction manual. Cat No: M-7122 (2800 Woods Hollow Road, Madison, WI 53711-5399, USA) pp 1-4
[15] Nguyen M H, Hideaki E, Toshihiro M, Takahiro T, Francis W H, Ilomo H, Nobuyuki T and Takatoshi K 2008 Glucose-6-phosphate dehydrogenase (G6PD) variant in East Sepik province of Papua New Guinea: G6PD Jammu, G6PD Vanua Lava and a novel variant (G6PD Dagua) Trop. Med. Health 36(4) 163-9
[16] Snounou G, Viriyakosol S, Jarra W, Thaithong S and Brown K N 1993 Identification of the four human malaria parasite species in field samples by the polymerase chain reaction and detection of a high prevalence of mixed infections Mol. Biochem. Parasitol. 58 283-92
[17] Heidi R, Andrew V, George T, Andrew J T, Gerard K, Ian R, Ivor H, Iata H, Sam Land Archie C A C 2010 Baseline spatial distribution of malaria prior to an elimination programme in Vanuatu Malaria J. 9(150) 2-9
[18] Ari W S, Arkasha S, Venessa B, Rosalie E, Chase R, Iqbal E, Rintis N, Farah N C, Alida R H and Kevin B 2015 G6PD deficiency at Sumba in Eastern Indonesia is prevalent, diverse and severe; implications for primaquine therapy against relapsing vivax malaria Plos Neglect. Trop. Dis. 10(1371) 1-17
[19] Matsuoka H, Hiroyuki M, Meiji A, Shigeto Y, Indah S T, Suhintam P, Henyo K, Fumihiko K 2013 Five different glucose-6-phosphate dehydrogenase (G6PD) variants found among 11 G6PD deficient persons in Flores island, Indonesia J. Hum. Genet. 48 541–4
[20] Ainoon I, Yu Y H, Amir M A L, Boo N Y, Cheong S K and Hamidah N H 2002 Glucose-6-phosphate dehydrogenase (G6PD) variants in Malaysian Malays Human Mutation Brief 574 2-7
[21] Ganczakowski M, Town M, Bowden D K, Vulliamy T J, Kaneko A, Clegg J B, Weatherall D J and Luzatto L 1995 Multiple glucose-6-phosphate dehydrogenase-deficient variants correlated with malaria endemicity in the vanuatu archipelago (Southwestern Pacific) Am. J. Hum. Genet. 56 294-301
[22] Youn K G, So Y J, Hyun I S, Jun H M, Shin H C, Won J L and Jung Y K 2014 First evaluation of glucose-6-phosphate dehydrogenase (G6PD) deficiency in vivax malaria endemic regions in the republic of Korea Plos ONE 9(5) 2-6
[23] Angelo M, Kamran M, Ming J H, Cecilia Z, Bruno G and Ettore C 2012 Glucose-6-phosphate dehydrogenase (G6PD) mutation database: review of the “old” and update of the new mutations Blood Cell. Mol. Dis. 48 154-65
[24] Nguyen T H, Jean P C, Tran T H C, Nick D, Jeremy J F, Tran T H and Sarah J D 2009 Glucose-6-phosphate dehydrogenase (G6PD) mutations and haemoglobinuria syndrome in the vietnamese population Malaria J. 8 152-9