Oral toxicity of various *Stemona collinsiae* crude extracts against nymph and adult stages of American cockroach, *Periplaneta americana* (Dictyoptera: Blattodea)

Anon Phayakkaphon b, Preeyanate Dathong b, Napasorn Ransibrahmanakul a, Nontapat Sarovatha a, Yudthana Samung b, Aurapa Sakulpanich h,*

a Division of Pharmaceutical Sciences, Faculty of Pharmacy, Thammasat University, Rangsit Campus, Pathum Thani 12120, Thailand

b Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand

ARTICLE INFO

Keywords:
Stemona collinsiae
Non-Tai-Yak
Nymphicide
Biopesticide
Cockroach control
Adulticidal activity
Nymphicidal activity
Didehydrostemofoline
Alkaloids

ABSTRACT

Stemona collinsiae exhibits insecticidal resistance against various pests and insect vectors. However, insecticidal activity of *S. collinsiae* roots has not been tested for some insect vectors, including the American cockroach, *Periplaneta americana*. The synanthropic insect *P. americana* is a reservoir of pathogenic and non-pathogenic microorganisms and a cause of infectious diseases and cockroach allergy. This important vector transmits microorganisms to animals and humans to cause vector-borne diseases. This research involved detection of the nymphicidal and adulticidal activities of *S. collinsiae* root extracts against *P. americana* through oral administration. The effects of hexane, dichloromethane, ethanol, and water crude extracts were tested on final instar nymphs and adult *P. americana*. After *P. americana* ingested bait containing hexane and dichloromethane crude extracts, signs of toxicity occurred, such as hind leg shaking, whole-body tremor, immobility, abdomen swelling, and death. At 48 h, the nymphs and adult *P. americana* that ingested dichloromethane crude extract-containing bait showed corrected mortality of 65%–100% and 20%–100%, respectively. Whereas none of the nymphs and adult *P. americana* that ingested the water crude extract-containing bait died (0% corrected mortality). When we dissected alimentary canals of the dead *P. americana* that had ingested dichloromethane- and hexane-containing baits, the foreguts were found to be swollen. TLC analysis showed the dichloromethane and hexane crude extracts contained the alkaloid didehydrostemofoline and unknown fluorescent substances. Phytochemicals from crude extracts were detected in extracts of dissected alimentary canals using thin-layer chromatography, and didehydrostemofoline alkaloid and unknown fluorescent substances were found in cockroaches that ingested dichloromethane- and hexane-containing baits. The cause of death of *P. americana* may be attributed to alkaloids and synergistic effects of other substances in *S. collinsiae* root extract. Mechanisms of action might include several pathways involved in nervous system function. Thus, dichloromethane and hexane crude extracts can be developed as alternative active ingredients in a natural insecticide for cockroach control.

1. Introduction

Periplaneta americana is an omnivorous, synanthropic insect and an important insect vector. *P. americana* is found at approximately 60.9% in 14 provinces of Thailand (Tawatsin et al., 2001), and is globally distributed, including in Korea (Lee et al., 2003), China (Chomboosri et al., 2004), and Iran (Kassiri et al., 2014). *P. americana* prefers a warm climate with high humidity and prefers living in dark places. Cockroaches such as *P. americana* are indicators of poor hygiene and are often found in indoor and outdoor facilities, such as kitchens, restaurants, toilets, and sewers (Chomboosri et al., 2004; Srivichai et al., 2002; Lee et al., 2003; Tawatsin et al., 2001). The cockroach's alimentary cavity and salivary glands are reservoirs for the habitation and propagation of both non-pathogenic and pathogenic microorganisms (Falsone et al., 2017; Tinker and Otteson, 2016; Gijzen and Barugahare, 1992; Bracke et al., 1979); thus, *P. americana* can carry several vector-borne diseases, such as food poisoning, parasitic diseases, and typhoid disease. Microorganisms such as *Klebsiella*, *Pseudomonas*, *Escherichia coli*, *Proteus*, *Salmonella*,

* Corresponding author.

E-mail address: aurapa_s@staff.tu.ac.th (A. Sakulpanich).

https://doi.org/10.1016/j.heliyon.2021.e07970
Received 11 May 2021; Received in revised form 24 July 2021; Accepted 7 September 2021
2405-8440/© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Staphylococcus, *Streptococcus*, *Strongyloides stercoralis*, *Ascaris lumbricoides*, *Trichuris trichiura*, *Isospora belli*, *Entamoeba histolytica*, *Entamoeba coli*, and *Iodamoeba bütschlii* (Kassiri et al., 2014; Malik et al., 2013; Chamavit et al., 2011; Pai et al., 2005) can be transmitted to humans and animals via mechanical and biological transmission (Pai et al., 2003; Tatfeng et al., 2005; Suntarvitun and Domaikaw, 2018; Zahraei-Ramazani et al., 2018; Malik et al., 2013; El-Sherbini and Gneidy, 2012; Chamavit et al., 2011). Cockroaches mediate mechanical transmission when they climb over waste and sewage, which are sources of pathogenic and non-pathogenic microorganisms. Microorganisms, parasites, and their eggs can opportunistically attach to the skin, hair, legs, and wings of the cockroach and be transferred to human or animal foodstuffs by the insect when it is foraging, resulting in the spread of infectious diseases. In other cases, microorganisms can contaminate human and animal diets via secretions from cockroach salivary glands, i.e., biological transmission. *P. americana* is also a transport vector of *Toxoplasma gondii* (Chinchilla et al., 1994), the pathogenic protozoan that causes toxoplasmosis (Dubey, 2008). Cats, the definitive hosts, ingest *T. gondii* by eating infected raw meat, rodents, or arthropods, such as house flies and cockroaches (Hill and Dubey, 2002), and excrute the oocysts of *T. gondii* in their faeces. The faeces are then ingested by cockroaches (Wallace, 1972). When a pregnant woman comes who is at risk of serious symptoms such as blindness, mental disability, disability (Dubey, 2008; Halonen and Weiss, 2013). Thus, the elimination of cockroaches can decrease the rate of transmission of *T. gondii* and other pathogenic microorganisms from cockroaches to animals and humans.

A well-known non-infectious disease associated with cockroaches is cockroach allergy (Srisuwatchari et al., 2020; Nasirian, 2017; Patel and Meher, 2016; Sookrung et al., 2014; Arruda et al., 2001; Schou et al., 1990). The exoskeleton, whole body, secretions, feces, and dust particles from dead cockroaches are all sources of allergens (Patel and Meher, 2016). The main allergen Per 1a has been extracted and isolated from the midgut and feces of *P. americana* (Sookrung et al., 2014), and other allergens have been found, including Per 2a, Per 3a, Per 6a, Per 7a, Per 9a, and Per 10a; these allergens may cause indoor allergy and asthma in infants, children, and adults (Arruda et al., 2001). After a patient receives allergens via contact and inhalation, the allergens react with immunoglobulin E (IgE) and non-IgE types, leading to the secretion of cytokines and chemokines. Allergic inflammation occurs, during which white blood cells are increasingly induced and move into the inflammation site, while mast cells release histamine. Finally, allergic symptoms such as a red rash, sneezing, rhinorrhea, allergic rhinitis, airway inflammation, bronchospasm, wheezing, and asthma appear (Srisuwatchari et al., 2020; Patel and Meher, 2016).

Therefore, eliminating cockroaches and terminating their life cycle, for instance via mechanical traps and chemical insecticides, is an important strategy for controlling and preventing cockroach vector-borne diseases. Insects can receive chemical insecticides via ingestion, contact, and inhalation. The ingestion pathway, usually using oral bait, is convenient, ready to use, and simple for insect control. The bait does not widely diffuse in air and good insect control should have a low ecological impact (Revay et al., 2015). The toxic bait is contained in closed containers which are safe for humans and pets. After insects eat the toxic bait, the toxic insecticides are absorbed and distributed to the tissue (Champman, 1998). Irregular symptoms occur, leading to the death of the insect. Selective activity via the ingestion route is an interesting basic route and toxic bait products are available in the market. Accordingly, the bait method was used in this research. Natural chemicals from insecticidal plants are sources of synthetic insecticides such as pyrethrins and imidacloprid. In Thailand, there is a high diversity of insecticidal plants, including *Stemonona collinsiae* (Stemonaceae), which has been traditionally used as an insecticide and insect repellent to protect food. Furthermore, the root extract has been used as a pesticide for eliminating beetles and pests in pepper plantations (Inthachub and Duyfjes, 2011). Recent scientific reports revealed that *S. collinsiae* root extract can be used to kill pests such as *Plutella xylostella* (Jiwajinda et al., 2001; Phatharaphan et al., 2010), *Spodoptera exigua* (Brem et al., 2002), and insect vectors such as *Parasarcophaga ruficornis* (Sakulpanich et al., 2017) and *Chrysomya megacephala* (Sakulpanich et al., 2016), but its insecticidal activity against *P. americana* has never been reported. Thus, in this research, we studied the nymphicidal and adulticidal activities of various *S. collinsiae* root extracts against final instar nymph and adult stage *P. americana* via oral administration. The crude extracts were produced using a sequential reflux extraction method, and phytochemicals in each crude extract were detected with thin-layer chromatography (TLC). Bait mixed with each crude extract was fed to *P. americana* to observe the resulting mortality and signs of toxicity, including irregularities of the internal organs.

2. Materials and methods

2.1. Plant materials

2.1.1. *Stemonona collinsiae* preparation

Roots of *S. collinsiae* were harvested from Ubon Ratchathani, Thailand, from December 2018 to January 2019, and the roots and aerial parts were arranged as herbarium for identification and deposited in the Forest and Plant Conservation research office, Department of National Parks, Wildlife and Plant conservation with voucher specimens BKF No. 196976.

2.1.2. Preparation of hexane, dichloromethane, ethanol, and water crude extracts using sequentially reflux extraction method (modified from Sakulpanich et al., 2017)

Hexane, dichloromethane, ethanol, and purified water were used as extractants. For hexane extraction, powdered root (300 g) was placed in a round-bottom flask, 1000 ml of hexane was added, and the top of the flask was covered with a cold condenser. The flask was soaked in a 60–70 °C water bath for 1 h, then the liquid extract was passed through a filter paper and the filtrate collected in a bottle and protected from light. The filtrate was tested for alkaloids by analyzing a 2 ml aliquot using thin-layer chromatography (TLC) and Dragendorff’s spray reagent. A new aliquot of hexane was added into the extraction residue, and the flask was re-immersed in the water bath for 1 h. The extraction and filtration process were repeated until all alkaloids were exhaustively extracted from the extraction residue. The complete extraction was confirmed by TLC and Dragendorff’s spray reagent. The collected filtrates were concentrated using a rotary evaporator under reduced pressure at 40 ± 1 °C. Then, the hexane crude extract was dried on a water bath at 70 ± 1 °C, poured into a tightly sealed glass container, protected from light, and kept in a refrigerator at 4 °C.

For dichloromethane, ethanol, and water extraction, the extraction process was repeated using the same steps as described in the hexane extraction. The dichloromethane, ethanol, and water were changed when alkaloid-testing showed a negative result in the final filtrate. The water crude extract was dried using lyophilization.

2.2. Ethical consideration statement

The animal protocol was established under ethical principles and guidelines for the use of animals provided by the National Research Council of Thailand and all animal experiments were performed in accordance with the protocols approved by the Animal care and Use Committee of Thammasat University: Protocol No. 005/2020 and the
Animal care and Use Committee of Faculty of Tropical Medicine, Mahidol University: Protocol No. 001/2021 Certificate No. FTM-ACUC 005/2021.

2.3. Periplaneta americana rearing

Periplaneta americana were collected from Ratchaburi, Thailand. The cockroach species were identified by an Entomologist, Yuithana Samung, who works in Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University. The species identification was performed following the handbook of domiciliary cockroach species in Thailand (Asahina, 1983). P. americana were reared by Anon Phayakkaphon who works in the Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University; they were provided with dry cat food (Purina® Friskies® for adult cats, Nestlé, Thailand) and water. They were maintained and bred in plastic boxes (30 × 30 × 30 cm) with lids on the top. Petroleum jelly was smeared on the inside wall of each plastic box to prevent the cockroaches escaping. The plastic boxes containing P. americana were placed in a cockroach-rearing room at the Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, under ambient temperatures (27–30 °C), 70%–90% humidity, and a photoperiod of a 12:12 h dark: light cycle. Final instar nymphs and adult P. americana were used for oral toxicity tests using the bait method (Seemannot et al., 2018; Thavara et al., 2007).

2.4. Oral toxicity based on bait method

2.4.1. Bait preparation

Each type of crude extract was homogenously mixed with glucose. The range of concentration, 1–50% w/w was tested. Two-fold serial dilutions were prepared (6 concentrations per two-fold dilution). The range of concentration of the crude extract, which produced the range of concentrations were prepared (6 concentrations per two-fold dilution). The range of concentration of the crude extract, which produced the range of concentrations were prepared (6 concentrations per two-fold dilution). Finally, 3 g of each concentration of the bait was weighed and placed in a disposable plastic Petri dish (90 × 15 mm) (ดีแอนเทอร์โมดิแก๊น สมุน, Thailand) and water. They were released into the box and starved for 24 h before testing. After 24 h, the bait was placed in the box, and signs of toxicity and mortality were observed at 1, 2, 4, 12, 24, 48, and 72 h. The dead P. americana were detected by prodding them with forceps. Signs of death were as follows: P. americana did not respond to prodding, were immobile, and were unable to return to a normal posture. P. americana in the negative control group received only glucose. All experiments were repeatedly performed for three replications.

A group of 10 final instar nymphs (unsexed) and a group of 10 adult P. americana (mixed sexes) were used in the test. A cup of water was placed in the testing box. The P. americana were released into the box and starved for 24 h before testing. After 24 h, the bait was placed in the box, and signs of toxicity and mortality were observed at 1, 2, 4, 12, 24, 48, and 72 h. The dead P. americana were detected by prodding them with forceps. Signs of death were as follows: P. americana did not respond to prodding, were immobile, and were unable to return to a normal posture. P. americana in the negative control group received only glucose. All experiments were repeatedly performed for three replications.

2.5. Comparison of the dissected alimentary canals from the extract-treated group and negative control group

The dead P. americana were dissected and their alimentary canals removed. P. americana in the negative control group were killed by freezing in a refrigerator at -20 °C before dissection, then fixed onto the dissection board with pins. The dissection was performed by longitudinally cutting from the abdomen using medical scissors, and the exoskeleton and fat tissue were gradually removed using forceps. The alimentary canals from P. americana in the extract-treated group were compared with those from negative control group.

The images of P. americana and the dissected alimentary canal were taken using a Canon EOS 500D digital SLR camera (Canon, Japan). The SN724ST stereomicroscope 10x (Nikon, China) with microscope camera MDX503 and iWorks software (Lanoptik Technologies Ltd., China) was used for enlarging the images.

2.6. Determination of alkaloids in crude extracts and dissected alimentary canal using TLC

2.6.1. Preparation of hexane, dichloromethane, ethanol, and water crude extract solutions

The hexane, dichloromethane, ethanol, and water extract solutions were prepared at a concentration of 1 mg/ml. The hexane and dichloromethane crude extracts were dissolved in dichloromethane, whereas the ethanol and water crude extracts were dissolved in 70% ethanolic solvent. In the case of water crude extract, a sonication bath was used for dissolving.

2.6.2. Preparation of dichloromethane alimentary canal extracts

Didehydrostemofoline is very soluble in dichloromethane; thus, dichloromethane was selected to extract the didehydrostemofoline from the dissected alimentary canals. The dissected alimentary canals of the dead nymph and adult P. americana in the treated groups and negative control group were soaked in dichloromethane. Dichloromethane (1 mL) was added to a container with the dissected alimentary canal, which was then shaken using a vortex for 3 min, and the dichloromethane liquid extract was pipetted into a new container. A new aliquot of dichloromethane was added to the container and shaken for 3 min, and the extraction was repeated three times. The collected dichloromethane liquid extract of the alimentary canal was dried using a rotary evaporator under reduced pressure and at 40 °C. Dichloromethane (1 mL) was added to the dry residue, and the alkaloids in the dichloromethane alimentary canal extract solutions were tested with TLC.

2.6.3. TLC method

Amounts of 20 μL of the dichloromethane alimentary canal extract solution, 10 μL of didehydrostemofoline, 10 μL of hexane, dichloromethane, and water crude extract solution, and 20 μL of ethanol crude extract solution were spotted onto a silica gel GF254 TLC plate (Merck, Germany) by Linomat 5 applicator (Camag®, Switzerland). The TLC plate was developed in a TLC tank containing a mixture of dichloromethane, methanol, water, and 10% NH4OH in the ratio 70: 25: 5: 0.1. The developed TLC plate was dried and detected under visible and UV light at 254 nm and 366 nm, respectively. Then, the TLC was sprayed with Dragendorff’s reagent to detect the alkaloids. The development of an orange band indicated the presence of an alkaloid. TLC images were taken and recorded by TLC Visualizer (Camag®, Switzerland) and the TLC performance was controlled by WinCats software (Camag®, Switzerland). TLC was performed by the authors and was performed repeatedly for three replications.

2.7. Parameter and statistical analysis

The percentage of observed mortality was calculated. The data were corrected using Abbott’s formula (Abbott, 1925). The percentages of corrected mortality were calculated and shown as mean ± SD or range as min-max. Signs of toxicity, morphological changes and abnormal behaviour were observed. The onset of action and time to death were recorded and compared with the negative control group. The severity level of morphological and behaviour changes including signs of toxicity were considered and divided into groups. The percentage of the
P. americana in each group was calculated. Probit analysis using the Probit analysis program, March 1987 version (Raymond, 1985), was performed to calculate the median lethal concentrations (LC50) at a 95% confidence limit of upper (UCL) and lower (LCL) confidence limits. Results with \(p < 0.05 \) are considered statistically significant.

3. **Results**

3.1. Oral toxicity based on bait method

Each type of extract resulted in different mortality percentages and nymphicidal and adulticidal activity levels. Forty-eight hours after treatment of the final instar nymphs with baits containing hexane, dichloromethane, ethanol, or water crude extract, we observed percentage corrected mortalities of 0%–30%, 65%–100%, 7%–13%, and 0%–0%, respectively. The adult *P. americana* at 48 h after treatment with the baits containing hexane, dichloromethane, ethanol, or water crude extract displayed percentage corrected mortalities of 11%–54%, 20%–100%, 0%–40%, and 0%–0%, respectively. The mortality of *P. americana* that ingested the ethanol crude extract was less than those that consumed the dichloromethane and hexane extract baits. When the dichloromethane and hexane extract baits were suddenly placed in the test boxes, *P. americana* retreated. After 15–30 min, a few *P. americana* gradually approached and ate the bait, and 48–24 h after placing the bait, all *P. americana* that ingested the bait had died with a swollen abdomen. The baits containing the highest concentrations of dichloromethane and hexane extracts showed the most potent repellent effect. *P. americana* ate the bait mixed with the lower-concentration ethanol crude extract and showed symptoms of leg shaking and body tremors, but 48 h later, the symptoms had disappeared and no dead *P. americana* were seen. Both the final instar nymph and adult *P. americana* that received the dichloromethane crude extract displayed the highest percentage corrected mortality. All *P. americana* in the water crude extract-treated group and in the negative control group (0%–0% of corrected mortality) survived and did not show any signs of toxicity.

All *P. americana* that ingested the bait containing hexane and dichloromethane crude extracts, and some that consumed the ethanol crude extract, showed toxicity symptoms, such as excited movement, body elevation, hind leg shaking, whole-body tremors, immobility, and abdomen swelling. Compared with the *P. americana* in the negative control group (Figure 1A), the *P. americana* that ingested the dichloromethane- and hexane crude extract-containing baits showed clear abdomen swelling (Figure 1B). At the highest concentration (50% w/w) of each crude extract, the onset time of the excited movement and shaking symptoms appeared at 13–15 min after eating the bait containing dichloromethane crude extract, which occurred faster than the ethanol crude extracts (34–40 min). At 1–3 h after consuming the bait containing the dichloromethane crude extract, the swollen abdomen occurred. The shortest duration of time-to-death was 24 h which was found in the *P. americana* in the dichloromethane extract-treated group. At 24–72 h, the majority of *P. americana* in the ethanol extract-treated group had not died, but they presented immobility.

Severe effects were found, such as inflating of the peritenum, which led to a tear of the integument (1%) (Figure 2A) or leakage of adipose tissue from the intersegmental membrane (1%) (Figure 2B). The protrusion of anal organs (Figure 2C) occurred more frequently than both of the severe effects. The inflating of the peritenum and leakage of adipose tissue happened in some *P. americana* that had repeatedly ingested the toxic bait containing low concentrations (1.0% w/w–2.5% w/w) or ate the bait containing dichloromethane crude extract at the high concentration (50% w/w).

Three main signs of toxicity that developed after oral administration represented three levels of symptom severity, from most to least severe: (1) swollen abdomen, (2) apathy and absence of movement, (3) defensive behaviour and rapid locomotion. The percentage of *P. americana* that displayed each sign is presented in Table 1. After *P. americana* ate the bait mixed with dichloromethane, hexane, and ethanol crude extracts, there was sequentially apathy and motionlessness, followed by swelling of the abdomen, and those showing a swollen abdomen usually died within 72 h. The symptom of abdomen swelling was an irreversible effect.

At 24 h, the *P. americana*, ingesting the dichloromethane crude extract, showed the highest percentage of the swelling abdomen (35.0–100.0% in final instar nymph and 10.0–85.0% in the adult stage) and the lowest percentage of defence effect and fast movement (0.0%). At 48 h, the number of *P. americana*, showing apathy and motionlessness, decreased (0.0–15.0% in final instar nymph and 20.0–80.0% in the adult stage) while the percentage of the swelling abdomen increased (50.0–100.0% in final instar nymph and 20.0–95.0% in the adult stage). At 24 and 48 h, the ethanol crude extract predominantly produced the highest percentage of apathy and motionlessness (20.0–88.9% in final instar nymph and 10.0–70.0% in the adult stage) while the percentage of the swelling abdomen was lowest, compared with the dichloromethane and hexane crude extract-treated groups. The *P. americana* eating the water crude extract and the *P. americana* in the negative control group eating only the glucose did not show any sign of toxicity (0% of swelling abdomen, apathy and motionlessness) and still showed fast movement and reactions to stimulants (100% of defence effect with fast movement).

3.2. Comparison of the dissected alimentary canals in the extract-killed *P. americana* and the *P. americana* in the negative control group

After the *P. americana* in the hexane- and dichloromethane-treated groups died with swollen abdomens, they were dissected to study the internal organs. We found that their foreguts were swollen compared with those in the water crude extract-treated and negative control groups, which showed no swelling (Figure 3). Some *P. americana* in the ethanol-treated group with swollen abdomens were dissected, and the foregut was found to be swollen in a similar manner to that of the *P. americana* in the dichloromethane- and hexane-treated groups. Black digested food was observed in the foreguts of the ethanol-, dichloromethane-, and hexane-treated groups but was not seen in the foreguts of the negative control group, which ate only glucose (Figure 3).

3.3. Determination of alkaloids in the crude extracts and the dissected alimentary canal using TLC method

The orange bands appeared after spraying the TLC plate with Dragendorff’s spray reagent (Figure 4C), which indicated the presence of
alkaloids. Quenching bands were seen under light at 254 nm (Figure 4A). Orange and quenching bands were seen at the same position (Rt = 0.41) in the dihydrostemonofoline reference substance (Row No. 9), hexane crude extract (Row No. 6), and dichloromethane crude extract (Row No. 7), including the extracts of the dissected alimentary canals from the adult P. americana (Row No. 2 and 3) and final instar nymphs (Row No. 12 and 13) that ingested the hexane and dichloromethane crude extract-containing baits.

An orange band corresponding to dihydrostemonofoline alkaloid was apparent in the dichloromethane crude extract and P. americana that ingested bait containing hexane and dichloromethane crude extracts, while the water crude extract did not show this band. All extracts from dissected alimentary cavities exhibited the dihydrostemonofoline band at \(R_f = 0.41 \), except those of the final instar nymph and adult P. americana that ate the bait containing the water crude extract (Row No. 5 and 15). The highest concentration of dihydrostemonofoline was found in the extract from the alimentary canal of adult P. americana that consumed dichloromethane bait (Row No. 3), followed by that of the final instar nymphs that ingested the dichloromethane bait (Row No. 13).

Under light at 366 nm (Figure 4B), blue and purple fluorescent bands appeared at \(R_f = 0.73 \) and \(R_f = 0.75 \), respectively. Both fluorescent bands appeared in the row containing the dichloromethane crude extract (Row No. 7) and the alimentary canal extracts of adult P. americana (Row No. 3) and final instar nymphs (Row No. 13) that ingested the dichloromethane crude extract. The highest fluorescence intensity occurred for the alimentary canal extract from the adult P. americana that ate the

Table 1. The percentage of the signs of toxicity divided into three levels in each group of P. americana ingesting the different extracts, observed at 24 and 48 h.

Group of P. americana	Time of observation	The percentage of P. americana, observed at 24th and 48th hour	Adult P. americana				
		Final-instar nymph					
		Swollen abdomen	Apathy and absence of movement	Defense behavior and rapid locomotion			
Hexane treated group	24th hour	11.1–55.0 (29.2 ± 1.7)	25.0–77.8 (56.8 ± 2.3)	0.0–20.0 (11.0 ± 0.1)	16.7–60.0 (20.7 ± 1.5)	57.2–88.9 (71.6 ± 1.4)	0.0–10.0 (4.5 ± 0.2)
	48th hour	21.7–60.0 (39.3 ± 1.6)	25.0–73.3 (50.7 ± 2.0)	0.0–5.0 (2.7 ± 0.2)	16.7–60.0 (38.0 ± 1.9)	42.5–80.7 (61.8 ± 1.6)	0.0–0.0 (0.0 ± 0.0)
Dichloromethane	24th hour	35.0–100.0 (74.0 ± 2.8)	0.0–30.0 (16.8 ± 1.2)	0.0–0.0 (0.0 ± 0.0)	10.0–85.0 (31.5 ± 2.9)	10.0–90.0 (57.2 ± 2.9)	0.0–20.0 (8.4 ± 0.7)
treated group	48th hour	50.0–100.0 (84.0 ± 2.7)	0.0–15.0 (10.0 ± 0.8)	0.0 ± 0.0 (0.0 ± 0.0)	20.0–95.0 (33.0 ± 2.2)	20.0–80.0 (54.0 ± 2.2)	0.0–0.0 (0.0 ± 0.0)
Ethanol treated	24th hour	0.0–33.3 (17.2 ± 1.4)	20.0–88.9 (60.8 ± 2.9)	0.0–80.0 (37.0 ± 3.2)	0.0–30.0 (16.0 ± 1.3)	10.0–70.0 (42.0 ± 2.6)	0.0–60.0 (30.0 ± 2.5)
group	48th hour	0.0–20.0 (8.4 ± 0.7)	20.0–88.9 (56.4 ± 2.5)	0.0–80.0 (40.5 ± 2.8)	0.0–30.0 (12.0 ± 1.3)	10.0–70.0 (36.0 ± 2.6)	0.0–60.0 (30.0 ± 2.5)
Water treated group	24th hour	0.0–0.0 (0.0 ± 0.0)	0.0–0.0 (0.0 ± 0.0)	100 (100.0 ± 0.0)	0.0 ± 0.0 (0.0 ± 0.0)	0.0 ± 0.0 (0.0 ± 0.0)	100 (100.0 ± 0.0)
	48th hour	0.0–0.0 (0.0 ± 0.0)	0.0–0.0 (0.0 ± 0.0)	100 (100.0 ± 0.0)	0.0 ± 0.0 (0.0 ± 0.0)	0.0 ± 0.0 (0.0 ± 0.0)	100 (100.0 ± 0.0)
Glucose treated	24th hour	0.0–0.0 (0.0 ± 0.0)	0.0–0.0 (0.0 ± 0.0)	100 (100.0 ± 0.0)	0.0 ± 0.0 (0.0 ± 0.0)	0.0 ± 0.0 (0.0 ± 0.0)	100 (100.0 ± 0.0)
group (Negative	48th hour	0.0–0.0 (0.0 ± 0.0)	0.0–0.0 (0.0 ± 0.0)	100 (100.0 ± 0.0)	0.0 ± 0.0 (0.0 ± 0.0)	0.0 ± 0.0 (0.0 ± 0.0)	100 (100.0 ± 0.0)
control)							

Range presented in range of min-max.

(…) presented as mean ± SD.
dichloromethane crude extract (Row No. 3), and the second highest intensity was seen for the gut extract of final instar nymphs that consumed the dichloromethane crude extract (Row No. 13).

4. Discussion

Stemona collinsiae and crude extracts including alkaloids such as didehydrostemofoline, stemofoline, and hydroxystemofoline (Kongkiatpailboon et al., 2011; Schinnerl et al., 2007; Greger, 2006; Sastraruji et al., 2005; Seger et al., 2004; Pham et al., 2002; Jiwajinda et al., 2001) exhibit insecticidal activity against pests and important insect vectors (Sakulpapanich et al., 2016, 2017; Phattharaphan et al., 2010; Vo et al., 2010; Brem et al., 2002; Jiwajinda et al., 2001), but *P. americana* has never been tested with *S. collinsiae*. This study was the first report that presented the nymphicidal and adulticidal activities of *S. collinsiae* root extracts against *P. americana*. The highest didehydrostemofoline content was in the dichloromethane crude extract and was followed by hexane and ethanol crude extracts while the absence of didehydrostemofoline was found in the water crude extract. The dichloromethane crude extract presented the highest potency against *P. americana* followed by the hexane and ethanol crude extracts. All *P. americana* in the groups that received water crude extract and only the glucose survived. The least amount of didehydrostemofoline was found in the ethanol crude extract because the didehydrostemofoline was not exhaustively extracted in the previous extraction with dichloromethane extractant. The lowest didehydrostemofoline content in the ethanol crude extract slightly affected the mortality rate in the *P. americana*. Therefore, didehydrostemofoline was the cause of death in the *P. americana* that ingested the toxic baits, especially the dichloromethane treated *P. americana*. These fluorescent phytochemicals and other phytochemicals, such as stilbenoids and rotenoid flavonoids, might synergize the insecticidal activity of the alkaloids. Recently, stilbenoids isolated from *Vitis vinifera* canes reportedly exhibited insecticidal activity against *Spodoptera littoralis* larvae (Pavela et al., 2017); however, its effects on *S. collinsiae* are unclear and should be investigated in further experiments.

The oral toxicities of the *S. collinsiae* root extracts were novel, as evident from the findings. Signs of toxicity were observed, including hind leg shaking, body tremors, undirected and fast movement, immobility, paralysis, abdomen swelling, and finally death. The strongest toxicity signs were seen in *P. americana* that ate the dichloromethane crude extract-containing bait, and the strength was directly associated with the concentrations of didehydrostemofoline and unknown fluorescent substances.

Figure 3. The dissected alimentary canals of (A) the final instar nymphs and (B) the adult *P. americana* in the hexane crude extract-treated group, the dichloromethane crude extract-treated group and the negative control group receiving only glucose.

Figure 4. TLC pattern of the crude extracts and the extracts from the dissected alimentary canals which was observed under (A) UV 254 nm, (B) 366 nm and (C) after sprayed with dragendorff’s spray reagent. 1 = Adult *P. americana* ingesting glucose. 2 = Adult *P. americana* ingesting hexane bait. 3 = Adult *P. americana* ingesting dichloromethane bait. 4 = Adult *P. americana* ingesting ethanol bait. 5 = Adult *P. americana* ingesting water bait. 6 = Hexane crude extract. 7 = Dichloromethane crude extract. 8 = Ethanol crude extract. 9 = Didehydrostemofoline reference substance. 10 = Water crude extract. 11 = Final-instar nymph ingesting glucose. 12 = Final-instar nymph ingesting hexane bait. 13 = Final-instar nymph ingesting dichloromethane bait. 14 = Final-instar nymph ingesting ethanol bait. 15 = Final-instar nymph ingesting water bait.
These toxicity symptoms are similar to those reported for nitromethylene heterocycle insecticides and neonicotinoids such as imidacloprid. The latter produces irregular and strong excitatory responses, such as abdominal quivering, wing flexing, uncontrollable preening, leg tremor, violent whole-body shaking, as well as depressive paralytic responses, such as prostration, immobility, paralysis (Tan et al., 2007; Schroeder and Platum, 1984). Didehydrostemofoline containing pyrrol|1,2-a|azepine (Schinderl et al., 2007; Seger et al., 2004) or other alkaloids has some functional groups or pharmacophores similar to nitromethylene heterocycle insecticides and neonicotinoids comprising imidazolidine rings with electron-negative atoms and N-containing cyclic/acyclic substituents (Schroeder and Platum, 1984). Furthermore, alkaloids such as muscarine, tubocurarine, conitine, and nicotine generally act on the nervous and muscle systems. Thus, the insecticidal activity of S. collinsiae root extract is a result of alkaloids that induce neonicotinoid-like signs of toxicity.

The toxicity of didehydrostemofoline and stemofoline alkaloids which occurred from the inhibitory activity of acetylcholinesterase was reported (Kongkiatpaiboon et al., 2013). When considering other mechanisms behind the stimulation of nicotinic receptors and according to IRAC (IRAC, 2020), insect nicotinic acetylcholine receptor agonists and allosteric activators are of interest. Imidacloprid activates nicotinic acetylcholine receptor desensitized (nAChRD), while methyllicaconitine interacts with nicotinic acetylcholine receptor non-desensitized (nAChRN). Neonicotinoids, such as acetamiprid and clothianidin, are able to interact with α-bungarotoxin-insensitive nicotinic acetylcholine receptors both nAChR1 and nAChR2 to induce a biphasic current-voltage curve, whereas imidacloprid produces a monophasic current-voltage curve (Tan et al., 2007; Thany et al., 2007; Thany, 2009; Thany and Tricoire-Leignel, 2011). In comparison with this research, in terms of hyper-excitation, the cockroaches treated with the dichloromethane and hexane extracts in our study showed toxicity signs in the early stages, followed by lethargy. Because of the chemical structure-activity relationship, it is possible that the alkaloids within the S. collinsiae root extracts, especially the dichloromethane and hexane crude extracts, activate the nicotinic acetylcholine receptors, such as nAChRD and nAChRN, in the thoracic ganglia, or nAChR1 and nAChR2 in the DUM neurons. The mechanisms of action of the alkaloids isolated from S. collinsiae that interact with nicotinic acetylcholine receptors, and their structure-activity relationships, should be explored in further experiments.

Other insecticidal phytochemicals, such as stilbeneoids (e.g., stemofuran A–K, dilydrostilbenes, stilbostemins A) and rotenoids flavonoids (e.g., stemonactal, stemonal, and stemonone) (Zraunig et al., 2014; Pangkam and Chimsook, 2013; Pacher et al., 2002; Shiengthong et al., 1974), were found in S. collinsiae which exhibit inhibitory activity on mitochondrial complex I electron transport (IRAC, 2020). The S. collinsiae root extracts, especially the dichloromethane crude extracts, were found to comprise alkaloids and other unknown compounds but they might also contain rotenoids. The alkaloids, rotenoids, and unknown substances could produce synergistic effects and promote the insecticidal activity of S. collinsiae root extracts.

In this research, irregular and prominent swelling of the abdomen and foregut was surprisingly found in all dead P. americana. These symptoms were irreversible and important causes of death in P. americana, especially those that ate the bait mixed with the dichloromethane crude extract. The protrusion of the anal organ and leakage of adipose tissue were a result of the excess foregut swelling and the swollen foregut being pressed against the internal organs/adipose tissue. The swelling of the abdomen and foregut was not found in the negative control group or water crude extract group but the milder effect was noticed in the ethanol crude extract group. The swollen abdomen and foregut in P. americana that ingested the dichloromethane crude extract may have resulted from didehydrostemofoline and other alkaloids which disturbed the function of neurotransmitters and the nervous system as well as crop hydrostatic pressure, transient pressure, and hemolympic osmotic pressure which affected crop volume and crop emptying time because the muscles of the foregut and anterior midgut, including those involved in peristaltic movement, are controlled by the stomodeal nervous system, while the release of air from the crop during the feeding process is controlled by the pharyngeal and proventriculus nervous pathways. Pressure in the hemolymph influences the hydrostatic pressure gradient in the crop lumen and the anterior part of the midgut and leads to the opening of the proventricular valve (Davey and Treherne, 1964). Interference with the function of the foregut occurred consecutively. Moreover, crop emptying is regulated by the osmotic pressure of the hemolymph, which is controlled by dietary factors. At high hemolympic osmotic pressure, the crop emptying time is prolonged (Champman, 1998), and the absorption of toxicants and the severity of toxicity increase. However, the actual cause of the abdomen and foregut swelling is uncertain.

Unexpectedly, the bait containing hexane and dichloromethane crude extracts as active ingredients showed cockroach-repellent properties, as both the final instar nymphs and adult P. americana retreated from these crude extracts, which affected the LC50 calculation. The relationship between the concentration of the crude extract and oral toxicity was dose-independent. Therefore, the LC50 values calculated in this research do not represent the actual values. In contrast, the ethanol and water crude extracts including glucose did not show repellent properties, and the starved P. americana ate the bait soon after it was placed in the boxes. Both the dichloromethane and hexane crude extract-containing baits, which possessed an odor and repellent activity, contained high concentrations of didehydrostemofoline and blue and purple fluorescent phytochemicals. Thus, we preliminarily presumed that the odor and repellent effect might be produced by the alkaloids or the unknown fluorescent substances. Likewise, repellent hettisine alkaloid was reported to repel Tribolium castaneum (Ulubelen et al., 2001). However, insecticidal compounds in the dichloromethane and hexane crude extracts should be isolated and the repellent compounds separated to remove the characteristic odor that disturbs P. americana, allowing bait containing only the isolated insecticidal compounds to be prepared and tested. The calculation of LC50 should subsequently be renewed to obtain the actual value.

Novelty of repellent activity from S. collinsiae crude extract based on the concentration was also found in this research. P. americana were obviously killed by S. collinsiae crude extract via oral administration using a bait form. P. americana has self-grooming behavior (Zhukovskaya, 2014). It is an omnivorous insect and opportunistic feeder (Bell and Adyiodi, 1982). It could ingest a residue of the crude extract attached to its antenna, foreleg, midleg, hindleg, wing, abdomen, corpse, exuviae, or other diet. Thus, aerosol was also a form of interest, but the suitable concentration, stability, and shelf-life of the insecticidal phytoc hemicals in the crude extract should be selected and detected. Besides, didehydrostemofoline, having a molecular mass less than 500, and lipophilicity, could penetrate from integument via pore canal and gland including a soft intersegmental membrane. It was absorbed and distributed to the target site. It was accumulated in the lipid tissue of P. americana. For the development of an aerosol formulation, contact toxicity should be tested for finding the evidence of efficacy of S. collinsiae against P. americana in the next experiment.

5. Conclusions

The dichloromethane and hexane crude extracts showed high toxicity to P. americana. The ethanol crude extract was less toxic, while the water crude extract was non-toxic to P. americana. The dichloromethane and hexane crude extracts killed the final instar nymph and adult P. americana and, thus, can terminate their life cycle and could be applied for insect control. The alkaloids found in S. collinsiae root extracts act as neurotoxins and cause irregular symptoms and death in P. americana. Didehydro stemofoline alkaloid is reported to possess acetylcholinesterase-inhibiting activity; however, other phytochemicals may also be responsible for the insecticidal activity, including rotenoids, flavonoids, and other unknown fluorescent substances, which may also synergistically promote the insecticidal properties. The mechanisms of actions of the
phytochemicals in *S. collinsiae* root extract might involve the nicotinic acetylcholine receptor modulator, nicotinic acetylcholine receptor allo-
steric modulator-site I, and mitochondrial complex I electron transport inhibitors. However, this needs further study because it was unclear which mechanisms were involved.

S. collinsiae roots contain an abundance of various insecticidal phytochemicals. This plant provides interesting raw materials for the development of alternative insecticides against the final instar nymph and adult *P. americana* via oral administration or in the form of a toxic bait or other form such as aerosol. This study found the repellent activity of the *S. collinsiae* hexane and dichloromethane crude extract. It can be used as a raw material in repellent products for repelling *P. americana*. The *S. collinsiae* root extract showed insecticidal and repellent activities against *P. americana* based on the concentration of the crude extract and the type of phytochemicals in the crude extract.

Declarations

Author contribution statement

Anon Phayakkaphon and Yudthana Samung: Contributed reagents, materials, analysis tools or data, performed the experiments. Preeyanat Datongh, Napasorn Ransibrhamanakul, Nontapat Sar-ovath: Performed the experiments. Aurora Sakulpunich: Conceived and designed the experiments; Performed the experiments; Analyzed and interpreted the data; Contributed reagents, materials, analysis tools or data; Wrote the paper.

Funding statement

This work was supported by Faculty of Pharmacy, Thammasat University Research Fund under the Specific Field Research Scholar: Research Unit in Medicinal Chemistry and Natural Products Research Unit, Contact No. Pharm TU-S 1/2019.

Data availability statement

Data included in article supplementary material/referenced in article.

Declaration of interests statement

The authors declare no conflict of interest.

Additional information

No additional information is available for this paper.

Acknowledgements

We have to thank Assoc. Prof. Dr. Jirapon Ruangsittichai and Assoc. Prof. Dr. Aron Jedsadayamnata for supporting and facility. Finally, we are deeply grateful to the program of Phytopharmaceutical Sciences and the department of Pharmacognosy, faculty of Pharmacy, Mahidol University which allowed us to use high-performance thin-layer chromatography (HPTLC) apparatus for the detection of phytochemicals with TLC method.

References

- A. Phayakkaphon et al. Heliyon 7 (2021) e07970
- Arruda, L.K., Vaiies, L.D., Ferranti, V.P.L., Santos, A.B.B., Pomê, A., Chapman, M.D., 2001. Cockroach allergens and asthma. Curr. Opin. Allergy Clin. Immunol. 107 (3), 419–428.
- Asahina, S., 1983. Domiciliary cockroach species in Thailand. Promotion of provincial health services project. In: Handbook series No. 5, p. 12.
- Bell, W.J., Adyodi, K.G., 1982. The American Cockroach. Chapman & Hall, New York.
- Bracke, J.W., Cruden, D.L., Markovetz, A.J., 1979. Intestinal microbial flora of the American cockroach, *Periplaneta americana* L. Appl. Environ. Microbiol. 38 (5), 945–955.
- Brem, B., Seger, C., Pacher, T., Hofer, O., Vajrodaya, S., Greger, H., 2002. Feeding deterence and contact toxicity of *Stemona* alkaloids a source of potent natural insecticides. J. Agric. Food Chem. 50, 6385–6388.
- Chamavit, P., Sahaisook, P., Niamnuy, N., 2011. The majority of cockroaches from the Samutprakarn province of Thailand are carriers of parasitic organisms. Excli J 10, 218–222.
- Chapman, R.F., 1998. The Insects: Structure and Function, fourth ed. Cambridge University Press, Cambridge, pp. 38–68.
- Chinchilla, M., Guerrero, O.M., Castro, A., Sabah, J., 1994. Cockroaches as transport hosts of the lungworm *Aelurostrongylus abstrusus*. Exp. Parasitol. 82, 54–64.
- Finney, D.J., 1971. Probit Analysis. Cambridge University Press, Cambridge, England.
- Finlay, G.L., 2006. Structural relationships, distribution and biological activities of *Stemona* alkaloids. Planta Med. 72 (9), 991–1000.
- Falsone, L., Colella, V., Napoli, E., Brianti, E., Otranto, D., 2017. The cockroach *Periplaneta americana* as a potential paratenic host of the lungworm *Aelurostrongylus abstrusus*. Exp. Parasitol. 182, 54–57.
- Gijzen, H.J., Barugahare, M., 1992. Contribution of anaerobic protozoa and methanogens to hindgut metabolic activities of the American cockroach, *Periplaneta americana*. Appl. Environ. Microbiol. 58 (8), 2560–2570.
- Greger, H., 2006. Structural relationships, development and biological activities of *Stemona* alkaloids. Planta Med. 72 (2), 99–113.
- Halonen, S.K., Weiss, L.M., 2013. Toxoplasmosis. Handb. Clin. Neurol. 114, 125–174.
- Hill, D., Dubey, J.P., 2002. *Toxoplasma gondii*—the first 100 years. J. Eukaryot. Microbiol. 59 (5), 487–475.
- Inthachub, P., Duyfjes, B.E.E., 2011. Stemonaceae. In: Santisuk, T., Larsen, K. (Eds.), Flora of Thailand Volume Eleven Part One. Prachachon Co. Ltd., Bangkok, pp. 74–99.
- Ko, A.E., Schal, C., Silverman, J., 2016. Diet quality affects bait performance in German cockroaches (Dictyoptera: Blattellidae). Pest Manag. Sci. 72 (10), 1826–1836.
- Ko, A.E., Schal, C., Engelmeier, D., Vajrodaya, S., Hofer, O., Greger, H., 2002. Feeding deterence and contact toxicity of *Stemona* alkaloids a source of potent natural insecticides. J. Agric. Food Chem. 50, 6385–6388.
- Ko, A.E., Schal, C., Engelmeier, D., Vajrodaya, S., Hofer, O., Greger, H., 2002. Feeding deterence and contact toxicity of *Stemona* alkaloids a source of potent natural insecticides. J. Agric. Food Chem. 50, 6385–6388.
- Ko, A.E., Schal, C., Engelmeier, D., Vajrodaya, S., Hofer, O., Greger, H., 2002. Feeding deterence and contact toxicity of *Stemona* alkaloids a source of potent natural insecticides. J. Agric. Food Chem. 50, 6385–6388.
- Ko, A.E., Schal, C., Engelmeier, D., Vajrodaya, S., Hofer, O., Greger, H., 2002. Feeding deterence and contact toxicity of *Stemona* alkaloids a source of potent natural insecticides. J. Agric. Food Chem. 50, 6385–6388.
- Ko, A.E., Schal, C., Engelmeier, D., Vajrodaya, S., Hofer, O., Greger, H., 2002. Feeding deterence and contact toxicity of *Stemona* alkaloids a source of potent natural insecticides. J. Agric. Food Chem. 50, 6385–6388.
- Ko, A.E., Schal, C., Engelmeier, D., Vajrodaya, S., Hofer, O., Greger, H., 2002. Feeding deterence and contact toxicity of *Stemona* alkaloids a source of potent natural insecticides. J. Agric. Food Chem. 50, 6385–6388.
- Ko, A.E., Schal, C., Engelmeier, D., Vajrodaya, S., Hofer, O., Greger, H., 2002. Feeding deterence and contact toxicity of *Stemona* alkaloids a source of potent natural insecticides. J. Agric. Food Chem. 50, 6385–6388.
- Ko, A.E., Schal, C., Engelmeier, D., Vajrodaya, S., Hofer, O., Greger, H., 2002. Feeding deterence and contact toxicity of *Stemona* alkaloids a source of potent natural insecticides. J. Agric. Food Chem. 50, 6385–6388.
