Abstract—Effects of gonadotropin and estrogen on the levels of prostaglandin (PG) in the rat ovary were investigated. PGF content in rat ovary, as measured by radioimmunoassay, was slightly higher than that by bioassay using rat stomach fundus, although there was no statistically significant difference. PGE and PGF levels in rat ovary during the estrous cycle were lowest on the day of diestrus. PGE was of the highest level on the day of estrus, and PGF on the day of proestrus. Both PGE and PGF were increased 24 hours after treatment with pregnant mare serum gonadotropin on the first day of diestrus. PGE was increased about 2.5 fold and PGF about 2.3 fold. PGF was significantly increased 24 hours after treatment with estradiol on the first day of diestrus. These results suggest that gonadotropin may directly or indirectly regulate changes in ovarian PG content via actions of estrogen.

There are reports on the action of prostaglandins (PGs) on reproductive function. Aspirin and indomethacin, inhibitors of PG biosynthesis, inhibits ovulation in rats (1-3), and levels of PGE and PGF in ovarian follicles were markedly increased immediately before ovulation in rats (4-6) and rabbits (7). It has been reported that luteinizing hormone (LH) and follicle stimulating hormone (FSH) in vitro have a stimulating action on PG biosynthesis in Graafian follicles before ovulation (8, 9). Blatchley and Donovan demonstrated that exogenous PGF2α had a significant luteolytic effect in guinea-pigs (10), and that PGF in the utero-ovarian vein of the guinea-pig treated with estrogen could not be detected in the case of hysterectomy (11). On the basis of these results, they suggested that the luteolysin derived from the uterus was PGF2α. PGF2α derived from the uterus brings about luteolysis in many different species (12, 13). More recently, it has been reported that progesterone and 20α-hydroxy-4-en-3-one in rat ovary were steeply decreased within 10 min after injection of PGF2α into the uterine lumen and that estradiol was gradually increased (14).

We investigated the effects of gonadotropin and estrogen on PG content in rat ovary in an attempt to elucidate the role of PG in rat ovarian function.

MATERIALS AND METHODS

Female Wistar rats weighing about 200 g were housed five per cage under controlled conditions of light and temperature. Vaginal
smears were examined every morning, and rats exhibiting a regular 4-day estrous cycle were used for the experiments. At each stage in the estrous cycle, rats were sacrificed for the determination of PG content in the ovary. Pregnant mare serum gonadotropin (PMS, Teikoku Zoki Pharmaceutical Co.) and human chorionic gonadotropin (HCG, ibid) were dissolved in 0.9% saline and were given s.c. on the first day of diestrus (50 IU and 25 IU per rat, respectively). Estradiol was dissolved in sesame oil and 20 μg of estradiol was given s.c. to each rat on the first day of diestrus. Ovaries were removed 24 hours after treatment with each hormone and were weighed. After homogenizing the ovary in acidified alcohol, the PG in the ovary was extracted with ethyl ether (15). The whole fraction was separated into PGE and PGF by silica-gel column chromatography (16) and each fraction was measured by bioassay using rat stomach fundus (17). PGF in the rat ovary was measured by a radioimmunoassay kit (Clinical Assays, Inc.) for comparison with the results of the bioassay.

RESULTS

Measurement of PGF content in rat ovary by bioassay and radioimmunoassay: PGF content in rat ovary on the day of diestrus was measured by bioassay using rat stomach fundus and by radioimmunoassay (Table 1). Although PGF content (1.05±0.157 ng/ovary) measured by radioimmunoassay was slightly higher than that 0.65±0.056 ng/ovary) by bioassay, the difference was not significant. In the subsequent experiments, PG content in rat ovary is shown as the level which was measured by bioassay.

PG content in rat ovary during the estrous cycle: PGE and PGF in rat ovary were measured at different phases of the estrous cycle. The level of PGE was lowest on the day of diestrus and highest on the day of estrus, about 2.7 fold as compared with that on the day of diestrus (Fig. 1). The level of PGF was lowest on the day of diestrus as well as PGE content, and highest on the day of proestrus, about 9.1 fold as compared with that on the day of diestrus, but there was a

![Fig. 1. Prostaglandin E content in rat ovary during the estrous cycle. PGE was measured by bioassay using rat stomach fundus. Each column shows the mean of 4–6 rats and vertical bar indicates standard error of the mean. D: Diestrus, P: Proestrus, E: Estrus, M: Metestrus. *p<0.01: Significantly different from diestrus.](image)

| Table 1. Prostaglandin F content in rat ovary by bioassay and radioimmunoassay |
|---------------------------------|-----------------|-----------------|
| No. of rat | Bioassay (ng/ovary) | Radioimmunoassay (ng/ovary) |
| 1 | 0.6 | 0.69 |
| 2 | 0.54 | 1.46 |
| 3 | 0.66 | 0.99 |
| 4 | 0.8 | 0.8 |
| Mean±SE | 0.65±0.056 | 1.05±0.157 |

One rat ovary was used for bioassay and the other for radioimmunoassay.
Table 2. Effect of PMS and HCG on prostaglandin content in rat ovary

Group	Prostaglandin Content	Mean±SE	
	PGE 0.8	0.6	0.6±0.10
	PGF 0.4	0.6	0.6±0.22
PMS	PGE 0.6	0.8	1.5±0.44
	PGF 1.4	1.0	1.4±0.13**
HCG	PGE 0.3	0.5	0.5±0.06
	PGF 0.2	0.2	0.3±0.08

All values are expressed as ng per ovary. PMS (50 IU) and HCG (25 IU) were dissolved in 0.9% saline and given s.c. on the first day of diestrus. Rats were sacrificed 24 hours after each hormonal injection. **p<0.05: Significantly different from control. PMS: pregnant mare serum gonadotropin. HCG: human chorionic gonadotropin.

considerable variation. PGF content was also about 6.6 fold higher on the day of estrus than on the day of diestrus (Fig. 2).

Effect of gonadotropin on PG content in rat ovary: Effects of PMS and HCG on PG content in rat ovary were also studied (Table 2). Although the treatment of PMS increased both PGE and PGF levels to about 2.5 fold and 2.3 fold, respectively, of the control levels, only PGF content was more significantly increased (p<0.05). The treatment of HCG tended to decrease both PGE and PGF contents in rat ovary, but there was no significant difference.

Effect of estradiol on PG content in rat ovary: Effect of estradiol on PG content in rat ovary was then studied (Fig. 3). PGF content was 1.3±0.23 ng/ovary after estradiol injection and increased about 1.8 fold as compared with that of the control (0.7±0.05 ng/ovary, p<0.05). There was no significant change in PGE content after the estradiol injection.

DISCUSSION

Two methods, bioassay and radioimmunoassay, were used for the measurement of PGF content in rat ovary. No significant
difference between PGF levels measured by
the two methods was recognized (Table 1),
although the PGF level measured by radio-
immunoassay was slightly higher than that
by bioassay. Lipids other than PG may also
participate in the measurement of PGF
content by radioimmunoassay (18), therefore
PG content in the subsequent experiments
(Figs. 1–3 and Table 2) was determined by
bioassay with smooth muscle (17).

PG content in the ovary fluctuated at
different phases of the estrous cycle indicating
that the PG content is closely related to the
secretion of the sex hormones. In particular,
the large variation of PGF content on the day
of proestrus may reflect the fact that follicular
PG is rapidly increased immediately before
the ovulation (4–6). These are interesting
results in view of the fact that gonadotropin
and ovarian steroids are secreted in large
amounts on the day of proestrus in rat.
Although it has been confirmed that PG
stimulates ovulation (19), the acting site
and the mechanisms involved are poorly
understood. Clark et al. (8) and Bauminger
et al. (9) showed that the formation of PG
in rat Graafian follicles was stimulated by
LH or FSH. In the present study, PMS and
HCG which have a stimulatory action on
follicular maturation and ovarian steroido-
genesis were used to investigate whether
or not the ovarian PG content is modified by
gonadotropin. Both PGE and PGF contents
in diestrous rat ovary were increased by PMS
treatment but tended to decrease with HCG
treatment. We suggest that the sensitivity
of ovary to gonadotropin for PG production
differs between diestrus and proestrus. In
contrast, it has been reported that the effect
of PG on steroid contents in hypophysec-
tomized rat ovary differs from that in the
intact rat ovary (14). When estradiol
was given to the rat on the first day of diestru,
the content of ovarian PGF increased (Fig.
3) as compared to the PMS treated rat.

However, the change in the PGE after the
PMS administration increased with somewhat
fluctuation, therefore, the significance may
not be statistical. On the other hand, it has
been observed that PGF content in rat uterus
was increased on the day of proestrus when
estrogen levels reached a maximum (20) and
that PGF content in the uterus of ovari-
ectomized rat increased with estrogen treat-
ment (21). Moreover there was an increase
in PGF level in the utero-ovarian vein after
estrogen administration to guinea-pigs (11)
and rats (22). Thus, the PG derived from
the uterus may also have some influence on
the PG content in the rat ovary, though it
has been confirmed in many species (except
humans) that PGF2α derived from uterus
causes a luteolysis (23).

Our results suggest that PG content in the
rat ovary may be regulated not only directly
by gonadotropin, as reported in the case of
the rat (8, 9) and rabbit (24), but also
indirectly via estrogen.

REFERENCES

1) Orczyk, G.P. and Behrman, H.R.: Ovulation
blockade by aspirin or indomethacin: in vivo
evidence for a role of prostaglandin in gonado-
tropin secretion. Prostaglandins 1, 3–21 (1972)

2) Armstrong, D.T. and Grinwich, D.L.: Blockade
of spontaneous and LH-induced ovulation in
rats by indomethacin, an inhibitor of pro-
staglandin biosynthesis. Prostaglandins 1, 21–
28 (1972)

3) Tsafrifri, A., Linder, H.R., Zor, U. and Lamprecht,
S.A.: Physiological role of prostaglandins in the
induction of ovulation. Prostaglandins 2, 1–10
(1972)

4) LeMaire, W.J., Leidner, R. and Marsh, J.M.: Pre
and post ovulatory changes in the concen-
tration of prostaglandin in rat Graafian follicles.
Prostaglandins 9, 221–229 (1975)

5) Bauminger, S. and Linder, H.R.: Preovulatory
changes in ovarian prostaglandin formation
and their hormonal control in the rat. Prostag-
landins 9, 737–751 (1975)

6) Iesaka, T., Sato, T. and Igarashi, M.: Role of
prostaglandin F2α in ovulation. Endocr. japon.
22, 279–285 (1975)

7) LeMaire, W.J., Yang, N.S.T., Behrman, H.R.
and Marsh, J.M.: Preovulatory changes in the concentration of prostaglandin in rabbit Graafian follicles. Prostaglandins 3, 367–375 (1973)
8) Clark, M.R., Marsh, J.M. and LeMaire, W.J.: The role of protein synthesis in the stimulation by LH of prostaglandin accumulation in rat preovulatory follicles in vitro. Prostaglandins 12, 209–216 (1976)
9) Bauminger, S., Lieberman, M.E. and Linder, H.R.: Steroid-independent effect of gonadotropin on prostaglandin synthesis in rat Graafian follicles in vitro. Prostaglandins 9, 753–763 (1975)
10) Blatchley, F.R. and Donovan, B.T.: Luteolytic effect of prostaglandin in the guinea-pig. Nature 221, 1065–1066 (1966)
11) Blatchley, F.R., Donovan, B.T., Poyser, N.L., Horton, D.W., Thompson, C.J. and Los, M.: Identification of prostaglandin F2α in the utero-ovarian blood of guinea pig after treatment with oestrogen. Nature 230, 243–244 (1971)
12) Fiint, A.P.F. and Hillier, K.: Prostaglandins and reproduction. Edited by Karim, S.M.M., p. 271–308. MTP Press, Lancaster (1975)
13) Zor, U. and Lamprecht, S.A.: Biochemical action of hormones. Edited by Litwack, G., Vol. 4, p. 85–133. Academic Press, New York (1977)
14) Takahashi, M. and Aizawa, Y.: Effect of uterine prostaglandin F2α on the level of ovarian steroids in rats. Folia pharmacol. japon. 76, 93–97 (1980) (Abs. in English)
15) Takeuchi, K., Yamada, K and Aizawa, Y.: Biological assay of prostaglandin using rat uterus. Folia pharmacol. japon. 71, 675–682 (1975) (Abs. in English)
16) Arai, Y., Takeuchi, K., Yamada, K., Kogo, H. and Aizawa, Y.: Influence of carragenin inflammation on prostaglandin release from rat synovial membrane and action of anti-inflammatory drugs. Folia pharmacol. japon. 75, 765–769 (1979) (Abs. in English)
17) Takeuchi, K., Kogo, H. and Aizawa, Y.: Biological assay of prostaglandin in rat urine using fundus of rat stomach. Folia pharmacol. japon. 76, 179–184 (1980) (Abs. in English)
18) Hirata, H.: Metabolism and disease, Edited by Yoshitoshii, Y., Yamamura, Y. and Oda, T., Vol. 12, p. 53–60, Nakayama Press (1975)
19) Armstrong, D.T., Grinwich, D.L., Moon, Y.S. and Zamecnic, J.: Inhibition of ovulation in rabbits by intrafollicular injection of indomethacin and prostaglandin F antiserum. Life Sci. 14, 129–140 (1974)
20) Ham, E.A., Cirillo, V.J., Zanetti, M.E. and Kuehl, F.A.: Estrogen-induced synthesis of specific prostaglandins in the uterus. Proc. natn. Acad. Sci. U.S.A. 72, 1420–1424 (1975)
21) Kogo, H., Yamada, K. and Aizawa, Y.: Effect of estradiol on prostaglandin metabolism in rat uterus. Prostaglandins 13, 785–794 (1977)
22) Castracane, V.D. and Jordan, V.C.: Consideration into the mechanism of estrogen-stimulated uterine prostaglandin synthesis. Prostaglandins 12, 243–251 (1976)
23) Behrman, H.R.: Prostaglandins in hypothalamic-pituitary and ovarian function. A. Rev. Physiol. 41, 685–700 (1979)
24) Marsh, J.M., Yang, N.S.T. and LeMaire, W.J.: Prostaglandin synthesis in rabbit Graafian follicles in vitro. Effect of luteinizing hormone and cyclic AMP. Prostaglandins 7, 269–283 (1974)