Identification of low energy nuclear recoils in a gas time projection chamber with optical readout

E Baracchini1,2, L Benussi3, S Bianco3, C Capoccia3, M Caponero3,4, G Cavoto5,6, A Cortez1,2, I A Costa7, E Di Marco3 8, G D’Imperio5, G Dho1,2, F Iacoangeli5, G Maccarrone3, M Marafini5,8, G Mazzitelli3, A Messina5,6, R A Nobrega7, A Orlandi3, E Paoletti3, L Passamonti1, F Petrucci9,5, D Piccolo3, D Pierluigi1, D Pinci5, F Renga5 8, F Rosatelli3, A Russo3, G Saviano3,10, R Tesauro3 and S Tomassini3

1 Gran Sasso Science Institute, L’Aquila, Italy
2 INFN, Laboratori Nazionali del Gran Sasso, Assergi, Italy
3 INFN, Laboratori Nazionali di Frascati, Frascati, Italy
4 ENEA Centro Ricerche Frascati, Frascati, Italy
5 INFN, Sezione di Roma, Roma, Italy
6 Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy
7 Universidade Federal de Juiz de Fora, Juiz de Fora, Brasil
8 Museo Storico della Fisica e Centro Studi e Ricerche ‘Enrico Fermi’, Roma, Italy
9 Dipartimento di Matematica e Fisica, Università Roma TRE, Roma, Italy
10 Dipartimento di Ingegneria Chimica, Materiali e Ambiente, Sapienza Università di Roma, Roma, Italy

E-mail: emanuele.dimarco@roma1.infn.it

Received 24 July 2020, revised 21 September 2020
Accepted for publication 30 September 2020
Published 1 December 2020

Abstract

The search for a novel technology, which is able to detect and reconstruct nuclear recoil events in the keV energy range, has become increasingly important now that vast regions of high mass weakly-interacting-massive-particle–like dark matter candidates have been excluded. Gaseous time projection chambers (TPC) with optical readout are very promising candidates combining the complete event information provided by the TPC technique with the high sensitivity and granularity of the latest generation light sensors. A TPC with an amplification at the anode, obtained with gas electron multipliers (GEMs), was tested at the Laboratori Nazionali di Frascati. Photons and neutrons from radioactive sources were employed to induce recoiling nuclei and electrons with kinetic energy in the range 1–100 keV. A He-CF\textsubscript{4} (60/40) gas mixture was used at atmospheric pressure and the light produced during the multiplication in the GEM channels was acquired by a high-position resolution and low-noise complementary metal-oxide semiconductor camera and a photomultiplier. A multi-stage pattern recognition algorithm based on an advanced clustering technique is presented here. A number of cluster-shaped observables are used to identify nuclear recoils induced by neutrons, which originated from a AmBe source against x-ray55Fe photoelectrons. An efficiency of 18\% to detect nuclear recoils with an energy of about 6 keV is reached, while suppressing 96\% of the 55Fe photoelectrons, making this optical read-out gas TPC a very promising candidate for future investigations of ultra-rare events such as directional direct dark matter searches.

Keywords: instrumentation and detectors, high-energy physics, dark matter, image reconstruction algorithms
1. Introduction

The advent of a market for single-photon light sensors with high position resolution opens a new opportunity to investigate ultra-low rate phenomena such as dark matter (DM) particle scattering on nuclei in a gaseous target.

The nature of DM is still one of the key issues in understanding our Universe [1, 2]. Different models predict the existence of neutral particles with a mass of a few GeV or higher that would fill our Galaxy [3–6]. They could interact with the nuclei present in ordinary matter producing highly ionizing nuclear recoils but with a kinetic energy as small as few keV. Moreover, given the motion of the Sun in the Milky Way toward the Cygnus constellation, such nuclear recoils would exhibit in galactic coordinates a dipole angular distribution in a terrestrial detector [7]. In this paper the use of a current generation complementary metal-oxide semiconductor (CMOS) camera providing a very low noise level together with a large granularity (often indicated as scientific CMOS or sCMOS) to capture the light emitted by gas electron multipliers (GEMs) in a time projection chamber (TPC) device is described. The GEMs are located in the TPC gas volume at the anode position and are used to amplify the ionization produced in the gas by the nuclear recoils and other particles. A secondary scintillation light is produced in the amplification of the avalanche process by the GEM. This light and its spatial distribution are reconstructed in the detector and characterized by means of a clustering algorithm.

Different types of particles will produce distinctive and diverse patterns of ionization charge, and therefore of light emitted by the GEMs, given the different way they deposit energy and interact with matter. Therefore, nuclear recoils can be efficiently identified and separated from different kinds of background down to a few keV of kinetic energy. The study of the optical readout of a TPC has been recently conducted with several small-sized prototypes (NITEC [8], ORANGE [9, 10], LEmon [11–13]) with various particle sources, in the context of the CygNO project [14, 15], as well as for other experiments, such as ARIADNE [16]. In the following, the study of nuclear recoils excited by neutrons from an AmBe source and electron recoils from a 55Fe source in the gas volume of the LEmon prototype is presented.

2. Experimental layout

A 7 l active sensitive volume TPC (named LEmon) was employed to detect the particle recoils. A sketch (not to scale) of the detector setup is shown in figure 1 (left), while an image of the detector in the experimental area is shown in figure 1 (right). The sensitive volume, where the ionization electrons are drifting, features a $200 \times 240 \text{ mm}^2$ elliptical field cage with a 200 mm distance between the anode and the cathode. The anode side is instrumented with a $200 \times 240 \text{ mm}^2$ rectangular triple GEM structure. Standard LHCb-like GEMs (70 μm diameter holes and 140 μm pitch) [17] were used with two 2 mm wide transfer gaps between them. The light emitted from the GEMs is detected with an ORCA-Flash 4.0 camera [18] through a $203 \times 254 \times 1 \text{ mm}^3$ transparent window and a bellows of adjustable length. This camera is positioned at a 52 cm distance from the outermost GEM layer and is based on a sCMOS sensor with high granularity (2048 × 2048 pixels), very low noise (around two photons per pixel), high sensitivity (70% quantum efficiency at 600 nm) and good linearity [19]. This camera is instrumented with a Schneider lens, characterized by an aperture $f/0.95$ and a focal length of 25 mm. The lens is placed at a distance $d = 50.6 \text{ cm}$ from the last GEM in order to obtain a demagnification $\Delta = (d/f) - 1 = 19.25$ to image a surface of $25.6 \times 25.6 \text{ cm}^2$ onto the $1.33 \times 1.33 \text{ cm}^2$ sensor. In this configuration, each pixel is therefore imaging an effective area of $125 \times 125 \text{ μm}^2$ of the GEM layer. The fraction of the light collected by the lens is evaluated to be 1.7×10^{-4} [19]. A semi-transparent mesh was used as a cathode in order to collect light on that side also with a $50 \times 50 \text{ mm}^2$ HZC Photomics XP3392 photomultiplier (PMT) detecting light through a transparent $50 \times 50 \times 4 \text{ mm}^3$ fused silica window. More details on the LEmon detector can be found in reference [21].

A 5 cm thick lead shielding was mounted around the LEmon field cage to reduce the environmental natural radioactivity background. From the measurements of the GEM current and without the lead shielding, a factor of two reduction in the total ionization within the sensitive volume, very likely due to environmental radioactivity, was estimated.

3. Particle images in the LEmon gas volume

The LEmon detector was operated in an overground location at Laboratori Nazionali di Frascati with a He-CF$_4$ (60/40) gas mixture at atmospheric pressure. The triple GEM system was operated with a voltage across each of the GEM sides of 460 V and with a transfer field between the GEM layers of 2.5 kV cm$^{-1}$. A CAEN SY1527 high-voltage module with six independent channels ensured an adequate voltage stability, and monitored the bias currents with a precision of 20 nA. The gas mixture was kept under a continuous flow of about 200 cc min$^{-1}$ and with the GEMs operated at 2.0 × 10$^{-6}$ electric gain. The typical photon yield for this type of gas mixtures has been measured to be around 0.07 photons per avalanche electron [19, 22, 23], and therefore the overall light gain is about 106. The field cage was powered by a CAEN R1570 [24], generating an electric field of 0.5 kV cm$^{-1}$.

The motion of particles within the gas mixtures was studied by means of different simulation tools. In particular, the GARFIELD [25, 26] program was used to evaluate the transport properties for ionization electrons in the sensitive volume for an electric field of 0.5 kV cm$^{-1}$.

Given the diffusion in the gas, ionization electrons produced at a distance z from the GEM will distribute over a region on the GEM surface with a Gaussian transverse profile having:

$$\sigma = \sqrt{\sigma_0^2 + D^2 \cdot z},$$

where D is the transverse diffusion coefficient, whose value at room temperature 140 μm/√cm was obtained with this simulation. The value of σ_0 was measured to be about 300 μm.
Figure 1. Top: the LEMON prototype with its 7 l sensitive volume (A), the PMT (B), the adjustable bellows (C) and the sCMOS camera with its lens (D). Bottom: LEMON with the lead shield around the drift volume cage. The sCMOS camera (on the front) is looking at the GEMs through a blackened bellows.

[27, 28]. Therefore, on average, a point-like ionization will result in a spot of 3–4 mm2.

The expected effective ranges of electron and nuclear recoils were evaluated respectively with Geant4 [29] and with Srim [30] simulation programs. The recoil range estimated from simulation, as a function of the impinging particle kinetic energy, is shown in figure 2 for electrons and—as an example—for He nuclei. These results show that:

- He-nucleus recoils have a submillimeter range up to energies of 100 keV and are thus expected to produce bright spots with sizes mainly dominated by diffusion;
- low energy (less than 10 keV) electron recoils are in general longer than He-nucleus recoils with the same energy and are expected to produce sparse and less intense spot-like signals. For a kinetic energy of 10 keV, the electron range becomes longer than 1 mm and for a few tens of keV, tracks of a few cm are expected.

The images collected by the sCMOS camera contain several instances of the particle tracks described above. The sCMOS sensor was operated in continuous mode with a global exposure time of 30 ms. Example images are shown in figure 3.

The PMT waveform was sent to a digitizer board with a sampling frequency of 4 GS$^{-1}$. The trigger scheme of the detector is based on the PMT signal: if, during the exposure time window, the PMT waveform exhibits a peak exceeding a threshold of 80 mV, it is acquired in a time window of 25 µs and the corresponding sCMOS image is stored. The digitizer is operated in single-event mode. No more than one 25 µs long PMT waveform is recorded in each sCMOS exposure time, even if during the sCMOS exposure time several PMT signals are produced. Therefore, the PMT information was mainly exploited only to select frames with a cosmic-ray track.

Figure 2. Average ranges for electron and He-nucleus recoils as a function of their initial kinetic energy. Lines in the figure are guides for the eye.
Several light spots are visible with different ionization patterns due to different types of particles interacting in the gas. Figure 3(left) shows an image with typical long tracks from cosmic rays traveling through the full gas volume, where clusters of light with larger energy deposition are clearly visible, superimposed to low energy electrons, very likely due to natural radioactivity. Figure 3(right) shows an example of a cleaner event with two straight cosmic ray tracks, that can be used for energy calibration purposes, since the energy releases along the path, dE/dx, can be predicted given the gas mixture and pressure.

Two different artificial radioactive sources were employed for testing and studying the detector responses. A neutron source, based on a 3.5×10^3 MBq activity 241Am source contained in a beryllium capsule (AmBe) was placed at a distance of 50 cm from the sensitive volume side. Because of the interactions between α particles produced by the 241Am and the beryllium nuclei, the AmBe source isotropically emits:

- photons with an energy of 59 keV produced by 241Am;
- neutrons with a kinetic energy mainly in a range 1–10 MeV
- photons with an energy of 4.4 MeV produced along with neutrons in the interaction between α and Be nucleus.

The presence of a lead shield around the sensitive volume absorbed almost completely the 59 keV photon component. A small fraction of it reached the gas through small gaps accidentally present between the lead bricks.

A 55Fe source emits x-rays with a main energy peak at 5.9 keV. This is the standard candle for calibration and performance evaluation of LEMON, and its extensive use is documented in reference [31].

Four different sets of runs have been recorded: (i) without any source and no electric signal amplification in the GEMs, to study the sensor electronic noise; (ii) without any source, but the detector fully active, to study the ambient background, mainly muons from cosmic rays and natural radioactivity; runs with either the (iii) 55Fe source, to study the detector response to a known signal or with the AmBe source, to study the LEMON performances in presence of nuclear recoils.

Figure 4 shows images recorded with the same 30 ms exposure time, in the presence of one of the two sources. The left panel shows an example of several light spots, characteristic of energy deposits due to 55Fe low energy photons. The right panel shows a frame recorded in the presence of the AmBe radioactive source: the short and bright track which is very visible in the center is very likely due to an energetic nuclear recoil induced by a neutron scattering.

4. Cluster reconstruction algorithm

The light produced in the multiplication process through the GEMs and detected by the sCMOS sensor is associated in clusters of neighboring pixels. This is achieved by following the trail of energy deposition of the particle traveling through the gas of the sensitive volume. The energy released as ionization electrons is estimated by the amount of the light collected by the sensor. In the range from few keV to tens of keV for stopped electrons, the deposited energy is equivalent to their total kinetic energy, while for stopped nuclei it represents only a fraction of their initial kinetic energy. Therefore, it is of primary importance to have a reconstruction algorithm that includes all the camera pixels hit by the real photons originating from the energy deposits, while rejecting most of the
Electronic noise from the camera sensor. Noise can either create fake clusters or, more likely, add pixels in the periphery of clusters originated by real photons, thus biasing the energy estimate. Possible additional noise, arising for example from GEM stages, was already demonstrated be negligible [31].

The energy reconstruction follows a three-steps procedure: the single-pixel noise suppression is briefly described in section 4.1. This is followed by the proper clustering: first the algorithm to form basic clusters from single small deposits is described in section 4.2, then the supercluster method, aiming to follow the full particle track, and seeded by the basic clusters found in the previous step, is described in section 4.3.

The results of this paper are based on the properties of the reconstructed superclusters and are described in section 5.

4.1. Sensor noise suppression

The electronic noise of the sensor was estimated in data-taking runs acquired with the sensor in complete dark, obtained by covering the camera lens with its own cap or, equivalently, lowering the voltage across the GEM electrodes to 300 V (pedestal runs). The latter option, which was demonstrated to be fully equivalent to the former, is a valuable method for measuring the sensor noise periodically, and track its evolution, during the periods of the Cygno experiment during which data were not recorded.

For each pixel, the pedestal was computed as the average of the counts over many frames, while the electronic noise was estimated as their standard deviation (SD). The distribution of the pixels’ SD is shown in figure 5. The mode of this distribution is about 1.8 photons per pixel, but a tail is present, with pixels having a noise of more than five photons per pixel. For such pixels, a very non-Gaussian distribution was observed, while for the pixels in the bulk of the distribution, the pedestal distribution followed a Gaussian shape. To form the pedestal-subtracted image, the pedestal mean \(\mu_i \) was subtracted from the image for each \(i \)th pixel, to account for the nonuniformity of the pedestal mean across the sensor. An initial noise suppression was applied by neglecting the pixels with counts less than 1.3 SD. On such pedestal-subtracted zero-suppressed images an upper threshold was applied to reject hot pixels, which are more likely due to sensor instabilities than to a real energy release. They are found to be not malfunctioning pixels since this behavior disappears after a power cycle of the camera and their response to light becomes homogeneous to the neighbors: therefore a dynamic (run-by-run) suppression is needed. They are efficiently identified as high-intensity, isolated pixels, and distinguished by a true energy deposit, for which each pixel is surrounded by some other active pixels. A threshold is applied on the ratio \(R_9 \) between the pixel and the average of the counts in a 3 × 3 pixels matrix surrounding it, and a minimum number of two pixels above noise in that matrix is required to discriminate good pixels from hot ones. Only good pixels are retained for the subsequent clustering.

The resolution of the resulting image is initially reduced by forming macro pixels, by averaging the counts in 4 × 4 pixel matrices. This is needed to reduce the combinatorics of the subsequent clustering algorithm, in order to be executed in a reasonable time for each image. On such 512 × 512 pixel map, a median filter [32] is applied, which is effective in suppressing the electronics noise fluctuations in a 4 × 4 pixel matrix and it is computationally efficient, as described in more details in reference [33]. The output image is passed to the basic clustering algorithm, described in the following.

4.2. Basic cluster reconstruction

The basic clustering algorithm called \texttt{Idbscan}, is described in detail in reference [34] and represents an improvement in the neighboring pixels clusters, called NNC, previously used.
to study the performance of the LEMON detector with a 55Fe radioactive source [31]. It is briefly described here also, since it represents the seeding for the final clustering algorithm.

The energy deposition in the sensitive volume of the TPC is estimated from the 2D projection on the x–y axes of the light emitted in the multiplication process within the GEMs planes. The pattern shows a large variation, depending on the interacting particle. For images recorded with the 55Fe calibration source, the signature of the typical 5.9 keV photons is a spot of few mm2, with the exact size depending on the diffusion in the gas, i.e. on the distance from the anode, along z, of the point where the energy release happens (see figure 4 left). Muons from cosmic rays travel across the gas volume and leave a typical signature of a straight track, shown in figure 3 (right), but with several agglomeration with larger density along the path. Natural radioactivity shows an irregular pattern, sometimes curly, with several kinks along the path. Finally, the signal from nuclear recoils due to neutrons, originated by the AmBe source, is expected to be spot-like, or to emerge as short tracks with a length smaller than 1 mm for energies below 100 keV, as shown by figure 2.

Their track length and their size is found to depend a lot on the initial energy of the impinging neutron, and also on the mass of the recoiling nucleus in the He-CF$_4$ gas mixture utilized in the LEMON detector.

Thus, the clustering algorithm needs to be flexible enough to efficiently reconstruct a diverse set of patterns, from small round spots to long and kinky tracks. A first step of the clustering, called seeding, is used: it focuses in the clustering of spot-like neighboring pixels. The method applied for the LEMON detector is an evolution of the classic DBSCAN algorithm [35]. This is a nonparametric, density-based clustering, which groups together pixels above threshold with many neighbors, within a circle with a radius ε. Its distinctive characteristics making this method very suitable to the LEMON case is its ability to label as outliers, and so not to include in the clusters, pixels that lie isolated in low-density regions, i.e. pixels from electronic noise of the sensor surviving the zero suppression. The extension of DBSCAN used for LEMON data analysis consists in including a third dimension to the phase space of the points considered, adding to the pixel position (x–y coordinates) the measured number of photons in that pixel, N_{ph}. This approach improves the combinatorial background rejection and the energy resolution with respect the previously used NNC algorithm, as described in details in reference [34].

To be as inclusive as possible, and since different interactions may have vastly different intensities, even varying along the track, the clustering procedure is iterated three times. First, the DBSCAN parameters were tuned to form clusters of dense (in x–y dimension) and intense (in the N_{ph} dimension) pixels. The density in 3D is called sparsity. This step typically identifies either rare hot spots of the GEMs, or, efficiently, short nuclear recoils. The pixels belonging to the reconstructed clusters are then removed from the image, and the DBSCAN procedure is repeated, with looser sparsity parameters. The second iteration is tuned to efficiently reconstruct 55Fe round spots and slices of tracks from nuclear recoils with lower intensity. It also collects the agglomeration with larger density along cosmic tracks, clearly visible in the example in figure 3 (right).

A third iteration of DBSCAN with even looser parameters is finally executed, targeting faint portions of a cluster. These are especially used as a proxy for the characterization of clustered noisy pixels, while the first two are used as seeds for the final clustering step, described in section 4.3.

To be computationally viable, the DBSCAN basic clustering is performed on the image with reduced resolution, 512 × 512. In typical images this allows the basic cluster reconstruction to be run in approximately 1 s on an Intel Xeon E5–2620 2.00 GHz and 64 GB RAM. The reconstruction algorithm is implemented in PYTHON3 [36], and interfaced with CERN ROOT v6 [37].

Examples of clustered pixels in two cases are shown in figure 6. The left panel shows an example of clusters reconstructed on the low-resolution image of one event with 55Fe source. Three spots are clearly visible: one, as typical for events with this calibration source with a moderate activity, is reconstructed by a single cluster of the second iteration. The other two are close enough that are merged in a single cluster of the same iteration. The cases of merged spots containing twice the energy of a single x-ray deposit, given the activity of the 55Fe source, represent about one tenth of the clusters in this set of runs. The energy resolution is good enough to distinguish statistically the single and merged spots, as will be described in section 4.4. The optimization of the DBSCAN parameters is done assuming a low pileup of events, typical of the running conditions for a future underground run of the CYGNOS project, of which LEMON is the prototype, where the occurrences of such cases are expected to be negligible.

The right panel shows the outcome of the DBSCAN algorithm on a longer track, presumably from natural radioactivity, and one possible short nuclear recoil. The nuclear

Figure 5. Distribution of the electronic noise of the sensor, estimated in images taken with sensor in complete dark, and evaluated as the SD of the distribution of the counts for each pixel.
recoil candidate is very dense, highly-energetic, and isolated. Therefore, it is reconstructed as a single cluster in the first iteration. The long track shows several clusters with higher intensity. One of them has a large energy, and it is reconstructed as an isolated single iteration-1 cluster. The rest of the track is reconstructed by multiple iteration-2 clusters, which are split where the energy deposition has a minimum extending across too many pixels to be joined together in the same cluster. Events like these, which are frequent for muons, natural radioactivity, but also signals from α-particles with higher energy, originating by the possible interaction of neutrons with the plastic material of the field cage, justify the need of the subsequent step of the superclustering, which follows the track without splitting it into parts. This is described in the following section.

4.3. Supercluster reconstruction

The aim of the superclustering procedure is to collect the majority of the pixels belonging to a track which is long and can be split in multiple parts in the clustering step described before. Indeed, the main limitation of IDBSCAN to follow a long track is mainly originated by the non uniform energy release along the path length. As can be clearly seen in figure 6(right), or even in the example of a raw image of an event with two long cosmic rays in figure 3(right), clusters with larger energy release are followed by regions along the path with a lower or even a zero release. These local minima are sometimes as large, in the 2D space, as the typical size of the ε parameter of DBSCAN [35]. Despite the low electronic noise of the ORCA-Flash 4.0 camera sensor, the energy releases in these local minima are similar in magnitude to the average single-pixel noise.

The IDBSCAN is limited in connecting the full length of an extended path, because of two reasons. First, inflating ε parameter as much as needed to cover the areas of local minima conflicts with the need to reject noise around the cluster. The basic cluster parameters were optimized for the LEMON running conditions to collect most of the signals with an energy as low as few keVs and to reject the typical noise of ≈ 1 photon per pixel. This avoids collecting extra noise in the cluster, biasing the energy scale and worsening its resolution, and keeps the rate of fake clusters at a negligible level [34]. Second, the iterative nature of the algorithm, with different parameters for each iteration, each tuned for very different intensity, makes it convenient and efficient for a deposition of a fixed energy density (like the spots originating from the 56Fe source), but not for the cases as in figure 6 (right), where the same track is split in several parts, some of them belonging to different iterations. This requires a method that can continuously follow the pattern of the track, profiting of the full resolution image, where the gradients of the energy deposition along the track trajectory are smaller than the ones in the transverse direction, but still give information on the energy release pattern. Several existing algorithms were tested to profit of this, but executing any of them on the full 2048 × 2048 image is not manageable CPU-wise, due to the huge pixel combinatorics.

Therefore, the procedure adopted for the final supercluster reconstruction in the LEMON detector starts from defining the interesting regions in the image that may contain pixels from an energy deposit. These are identified by the basic cluster algorithm IDBSCAN previously described, which is applied on the 512 × 512 reduced-resolution image. In order to gather the peripheral pixels, especially along the track trajectory where breaks into small basic clusters may have happened, a window of 5 × 5 pixels is considered, around each pixel belonging to a macro-pixel clustered in a basic cluster. A full resolution image formed only by the interesting pixels passing the simple initial filtering described in section 4.1 is created. The gradients of the intensity N_ph in such an image are computed pixel-by-pixel to look for the edge region where the image turns from signal to noise-only:

\[||\nabla(N_{ph})|| = \sqrt{\left(\frac{\partial N_{ph}}{\partial x}\right)^2 + \left(\frac{\partial N_{ph}}{\partial y}\right)^2}, \]

while the gradient direction is given by:

\[\theta = \tan^{-1}\left(\frac{\partial N_{ph}}{\partial y}/\frac{\partial N_{ph}}{\partial x}\right). \]

In order to reduce the effect of the noise, which induces fluctuations in the first derivatives of equation (2), a Gaussian filter is applied, which smoothen the response by convolving the pixel intensity with a Gaussian function, having as σ the SD of the intensities of all the pixels considered, and rejecting the ones falling outside a 5σ window.

The superclustering algorithm, applied on the filtered image, is an application of the morphological geodesic active contours [38, 39], called GAC in the following. This method uses an active contour finding, widely used in computer vision, where the boundary curve C of an object is detected by minimizing the energy E associated to C:

\[E(C) = \int_0^1 g(N_{ph})(C(p)) \cdot |C_p| dp, \]

where \(ds = |C_p| dp \) is the arc-length parameterization of the curve in the 2D space, and \(g \) is the stopping edge function, which allows to select the boundary of the cluster. In the GAC method used for the LEMON images, the \(g \) function is purely geometrical, and uses the geodesics of the image, i.e. the local minimal distance path joining points with the same light intensity gradient. The function \(g(N_{ph}) \) is given by:

\[g(N_{ph}) = \frac{1}{\sqrt{1 + \alpha ||\nabla G_\sigma \ast N_{ph}||}}, \]

which is minimal in the edges of the image. The \(G_\sigma \ast N_{ph} \) is the aforementioned 5σ Gaussian filter, and the parameter \(\alpha \), which regulates the strength of the filter, was tuned on typical LEMON images to be \(\alpha = 100 \).

This method was chosen because it allows us to follow patterns that may vary from convex to concave shape, eventually with kinks, e.g. in cases of δ-ray emissions. To improve the shrinking of the cluster boundary in the cases of tracks
turning from concave to convex along their trail, the balloon force [39], which is a term added to equation (4) to smooth the cluster contour, is set to -1, in order to push the contour toward a border in the areas where the gradient is too small. A number of 300 iterations is used to evolve the supercluster contour.

The example track shown in figure 6 (right) after the basic clustering step, is shown again in full resolution, zoomed around the cluster, in figure 7 (left). The output of the superclustering with the Gac algorithm is shown on the right panel of the same figure. The splitting of the cluster, happening at the basic clusters step, is recovered: the portions with high and low density along the path of the energy release are joined together. Other three examples of superclustered images are shown in figure 8, in runs without any artificial radioactive source. The top left panel shows an example of a cosmic ray track fully reconstructed by the Gac superclustering, which also includes a δ-ray in the middle of the track length. The top right panel shows an example of a cosmic ray track from a candidate of natural radioactivity interaction; bottom panel shows an example where both a cosmic ray and a curly track are present. In this case, the extremes of the long and straight track are still split, but this is much rarer than after the basic clustering, and it happens when the local minima along the trajectories are compatible with noise-only for more than ≈ 1 cm.

4.4. Energy scale calibration using 55Fe source

The containment of the energy in the supercluster was verified with simulations of nuclear and electron recoils within the gas mixture of the LEMON detector, performed with SRIM [30]. For both types of recoils, for the energy range of interest for the DM search, i.e. $E \lesssim 100$ keV, when considering deposits without electronics noise and no diffusion in the gas, the peak of the $|E - E_{\text{true}}|/E_{\text{true}}$ distribution is within 5%. Adding a noise approximated as a Gaussian function with a mean and a SD equal to the ones observed in the pedestal runs, and a diffusion following the parameterization in equation (1), the fraction of the true energy contained in the supercluster decreases to about 80%. The decrease in the energy containment in the supercluster is due to the smearing of the 2D track pattern around the periphery of the cluster, mostly due to the diffusion effect. This decreases the gradients in equation (2) around the edges, and so the supercluster can shrink more around the crest, loosing part of the tails that can be confused more easily with the noise. A more realistic noise description, and an improved diffusion model, based on the one measured in data is necessary to tune the supercluster parameters in simulation to recover part of the containment. The energy resolution found in simulation (around 4%) is far from the measured one in data, around 18%, because of the absence, in the simulation, of the dominant contribution of the response fluctuations: Poissonian distribution of the number of primary electrons ionized in the gas and exponential behavior of the number of secondary electrons produced in each GEM amplification stage [17]. Both of them are expected to give rise to fluctuations of the order to 10%, that, once added in quadrature, can account for a large part of the measured energy resolution.

The absolute energy scale was then calibrated with the energy distribution measured in data with the 55Fe source, which provides monochromatic photons of 5.9 keV, with the procedure described in reference [31]. The supercluster integral is defined as:

$$I_{\text{SC}} = \sum_i N_{\text{ph}}^i$$ \hspace{1cm} (6)
Figure 7. Left: zoom on the full-resolution image of a track candidate in a run with the AmBe radioactive source. Right: output of the superclustering on the rebinned image. The continuous line represents the approximate contour of the reconstructed supercluster.

Figure 8. Superclusters reconstructed in a run without artificial radioactive sources. The continuous lines represent the approximate contours of the reconstructed superclusters. Top left: cosmic ray track fully reconstructed by the Gac superclustering. A δ-ray is included in the supercluster. Top right: curly track from a candidate of natural radioactivity interaction. Bottom: a cosmic ray with the extremes not joined to the main track, plus a curly track from natural radioactivity.
Figure 9. Distribution of the supercluster integral, before the absolute energy scale calibration is applied, in events with the 55Fe source. Clearly visible is the large peak of a single spot, and, at around twice the energy, a broader peak for the case of two neighboring spots merged in a single supercluster.

where N_{ph}^{i} is the number of counts (photons) in the ith pixel, and the sum runs over all the pixels of the supercluster. While to perform the basic- and super-clustering only pixels passing the zero suppression are considered, for the energy estimate in equation (6) all the pixels within the cluster contours are counted, eventually having negative N_{ph}^{i} after the pedestal subtraction. This choice is meant to avoid a bias on the energy estimate, since after the pedestal subtraction the distribution of the noise is centered around zero. The distribution of I_{SC}, for a run taken in presence of 55Fe source, is shown in figure 9. In addition to the main peak, with a mean of about 2500 counts, a broader peak is clearly distinguished, which represents the cases of two merged spots, with an integral twice the single spot one. An example of such a merged spot is given in figure 6(left). The position of the maximum in the single-spot distribution in runs with 55Fe source allowed to calibrate the absolute energy scale of the LEMON detector. The energy resolution for the reconstructed Gac superclusters is about 18%, similar to the one that can be obtained with only the basic clustering step with Idbscan [34], and improving the one with the simple Nnc algorithm previously used [31].

Using runs with this monochromatic, high rate source, positioned at different distances from the GEM planes, a decrease of the light response for lower distances from the GEM was observed. This effect is opposite to the expected behavior of a lower light yield at larger distances. Indeed, it is expected that, during the drift along the z-direction, the ionization charge undergoes a diffusion in the TPC gas, and some electrons are removed by attachment to the gas molecule. Consequently, some loss in the light collection may be expected. The opposite behavior, instead, is clearly observed. While this effect is currently under study in more detail, it was attributed to a possible saturation effect of the GEMs, especially in the third stage of multiplication, where the charge density in one GEM hole is maximal. Under this hypothesis, an effective, empirical correction was developed, which relies on the charge density of a cluster from a 55Fe deposit. The light density, δ, is defined as:

$$\delta = I_{SC}/n_p,$$

where n_p is the number of pixels passing the zero-suppression threshold (differently from the definition of I_{SC}, where all the pixels in the supercluster are considered). This effective calibration returns the absolute energy of a spot-like region, similar in size to the 55Fe clusters, as a function of the supercluster density, δ: $E = c(\delta) \cdot I_{SC}$. In the hypothesis of saturation, the local density along the track is the parameter which regulates the magnitude of the effect, thus the correction has to be applied dynamically for slices of the supercluster having a size similar to the 55Fe spots. This is achieved with the procedure described in the following.

First, the supercluster skeleton, i.e. the one-pixel-wide representation along the path, is reconstructed. This is achieved through a morphological thinning of the superclusters with the iterative algorithm from reference [40, 41]. Second, a pruning of the obtained skeleton is done, to remove residual small branches along the main pattern, using a hit-or-miss transform. The output of this process for one example track is shown in figure 10. For the calibration procedure, the found skeleton is followed, starting from one of the two end points, and circles having their center on a pixel of the skeleton and their radius equal to the average spot size of the 55Fe clusters are defined. It was checked that this procedure includes all the pixels of the original cluster for the vast majority of the clusters considered. The local density δ_s of the slice s is computed, and its integral I_{c} is calibrated to an absolute energy through the effective correction $E_s = c(\delta_s) \cdot I_{c}$. The pixels of the supercluster used for the slice calibration are removed (including the skeleton
ones), and the procedure is iterated, until having included all the pixels. The sum of the energies of all the slices is the estimate of the calibrated energy of the supercluster:

\[E_{SC} = \sum_{s} E_s. \]

(8)

As a closure test of this procedure, the calibrated energy of the superclusters reconstructed in the runs with the 55Fe source is obtained. The value of the energy peak was obtained by fitting the distribution with the same function used in figure 9, and equals to $m_1 = 5.93 \pm 0.01$ keV, compatible with the expected value. The calibration procedure is an overkill for very long cosmic ray tracks or even for medium-length superclusters from nuclear and electron recoils. The energy resolution worsen after the calibration ($\sigma_1 = 1.48 \pm 0.01$, i.e. 25% energy resolution), as a sign that the empiric correction is still suboptimal.

The skeletonization procedure provides a general method to estimate the track length (l_p), accurate both in the case of straight and curving track. As a check, it has been verified that, in the case of straight tracks, the length extracted in this way coincides with the length of the major axis estimated with a singular value decomposition (SVD), described in the following section. For exactly round spots, the skeleton would collapse in the center of the cluster and the resulting length would be 1 pixel, but this completely symmetric case never happens in the considered samples.

5. Cluster shape observables

The interaction of different particles with the nuclei or the electrons in the gas of the TPC produces different patterns of the 2D projection of the initial 3D particle trajectory. These cluster shape observables are useful to discriminate different ionizing particles. In particular, they were used to select a pure sample of nuclear recoil candidates produced by the interaction of the neutrons originating from the AmBe source and to identify various sources of backgrounds. The main cluster shape observables are described in the following:

- **Figure 1 projected length and width:** a SVD on the $x \times y$ matrix of the pixels belonging to the supercluster is performed. The eigenvectors found can be interpreted as the directions of the two axes of an ellipse in 2D. The eigenvalues represent the magnitudes of its semiaxes: the major one is defined as length, l, the minor one as width, w. These are well defined for elliptic clusters, or for long and straight tracks. The directions along the major and the minor axis are defined as longitudinal and transverse in the following. The longitudinal and transverse supercluster profiles, for the cosmic ray track candidates shown as an example in figure 8 (bottom) are shown in figure 11. The longitudinal profile shows the typical pattern of energy depositions in clusters, while the transverse profile, dominated by the diffusion in the gas, shows a Gaussian shape. It has to be noted that the cluster sizes represent only the projection of the 3D track in the TPC on the 2D x-y plane;
- **Figure 3 projected path length:** for curly and kinky tracks the values returned by the SVD of the supercluster are not an accurate estimates of their size. While the width is dominated by the diffusion, the length for patterns like the one shown in the example of figure 7 is ill-defined. Thus, the more general path length, l_p, computed with the skeletonization procedure in figure 10 is used to estimate the linear extent for both straight and curved tracks.
- **Figure 4 Gaussian width:** the original width of the track in the transverse direction is expected to be much lower than the observed width induced by the diffusion in the gas. Thus, as shown in figure 11 (right), the SD, σ_{Gauss}, estimated by a fit with a Gaussian probability density function. This modeling is appropriate for the cases of straight tracks, typical of cosmic-ray background, or energetic nuclear recoils, and also for spot-like clusters. Tracks with kinks are badly modeled by a Gaussian function: if the χ^2 of the convergence of the fit is below a threshold, the estimated width from the SVD method described earlier is used.
- **Figure 5 slimness:** the ratio of the width over the path length, $\xi = w/l_p$, represents the aspect ratio of the cluster. It is very useful to discriminate between cosmic-ray-induced background (long and thin) from low energy nuclear or electron recoils (more elliptical or round, as the 55Fe spots).
- **Figure 6 integral:** the total number of photons detected by all the pixels gathered in the supercluster, I_{SC}, as defined in equation (6).
- **Figure 7 pixels over threshold:** the number of pixels in the supercluster passing the zero-suppression threshold, n_p.
- **Figure 8 density:** the ratio δ of I_{SC}, divided by n_p, as defined in equation (7).
- **Figure 9 energy:** the calibrated energy, expressed in keV. The calibration method simultaneously performs both the per-slice correction as a function of the local δ, and the absolute energy scale calibration, which corrects the non perfect containment of the cluster, i.e. the bias in the distribution of E/E_{true}, using with 55Fe source.

The distributions of the projected supercluster path length, l_p, and Gaussian transverse size, σ_{Gauss}, are shown in figure 12, for data taken in different types of runs. During the data-taking approximately 3000 frames were recorded in absence of any external radioactive source (no-source sample). In these frames the interaction of ultra-relativistic cosmic ray particles (mostly muons) are clearly visible as very long clusters. Internal radioactivity of the LEMON materials also contributes with several smaller size clusters. About 1500 frames were acquired with the AmBe source, and approximately 10^4 calibration images with 55Fe source. In figure 12, as well as in the following ones showing other cluster properties, the distributions obtained in runs without radioactive sources are normalized to the AmBe data total CMOS exposure time. For the data with 55Fe source, since the activity of the source is such to produce about 15 clusters/event, the data are scaled by a factor one-tenth with respect to the AmBe.

\[\chi^2 = \frac{\sum (y_i - y_i^*)^2}{\sum y_i^2}, \]
exposure time for clarity. Tracks originating from cosmic-ray interactions are also present in the data with both types of radioactive sources, with an efficiency scale factor slightly different from unity because of the trigger. Considerations about the trigger efficiency, affecting the background normalization in data with a radioactive source, are given in section 5.1. The distributions in this section aim to show the different cluster shape observables among the different kinds of events.

Figure 12 shows the cluster sizes distributions in the longitudinal and transverse directions for different sets of runs. Data show an average Gaussian width for the 55Fe spots $\sigma_{\text{Gauss}} \approx 500\,\mu m$ (dominated by the diffusion in the gas), while it is larger, approximately 625 μm, for data with AmBe source. The contribution of cosmic rays, present in all the data, is clearly visible in the data without any radioactive source, corresponding to clusters with a length similar to the detector transverse size (22 cm).

Other observables are the slimness, ξ, and the light density, δ, shown in figure 13. The former is a useful handle to reject tracks from cosmic rays, which typically have a slim aspect ratio, i.e. low values of ξ, while the clusters from 55Fe are almost round, with values $0.9 \lesssim \xi < 1$. By construction, $\xi < 1$, since the width is computed along the minor axis of the cluster, and for round spots it peaks at around 0.9. The apparent threshold effect is purely geometrical, due to the minimal size of the macro-pixel (4×4) used at the basic clustering step which can be larger than a round spot from 55Fe. Data with AmBe source, which contains a component of nuclear recoils, show a component of round spots, similar in size to the ones of 55Fe, and a more elliptical component, with $0.4 < \xi < 0.8$ values. Aside from the slightly different normalization of the cosmic-ray background in the region dominated by these interactions, $0 < \xi < 0.3$, which is discussed in section 5.1, the shape of the distribution shows some differences. This can be attributed to the cases of clusters induced by the radiation from the source which may overlap with a long track from a cosmic ray, changing its shape or, rarely, inducing a track splitting. The effect on the following statistical analysis is an underestimation of the signal efficiency, since a loose selection on this variable is used to discard cosmic-rays background. Given that the signal
concentrates at values of $\xi \approx 0.9$, this effect is assumed to be negligible.

Finally, the light density, δ, is the variable expected to better discriminate among different candidates: cosmic-ray-induced background, electron recoils and nuclear recoil candidates. This is the variable used in this paper for the final particle identification. Due to electron diffusion in gas along the drift path, the measured δ depends on the z position of the cluster.

Because the spot size is expected to increase by about a factor 4 from $z = 0$ cm to $z = 20$ cm (equation (1)), assuming a uniform distribution of clusters within the sensitive volume, size distribution is expected to have a relative SD of about 35%. This spoils the precision in the evaluation of the real δ both for the signal and for the background cluster resulting in a deterioration of the selection performance. Different methods to evaluate the cluster z are under development and will allow a more effective determination of δ.

Moreover, the identification results can be improved using additional cluster shape variables, also profiting from their different correlations for signal and background clusters, via a multivariate approach, but in this early analysis a simple cut-based approach is chosen, for simplicity.

Finally, figure 14 (left) shows the calibrated energy (E) spectrum for the reconstructed superclusters. The energy spectrum shows the $E = 5.9$ keV peak in the first bin of the distribution for data with 55Fe source, and the expected broad peak for minimum ionizing particles traversing the ≈ 20 cm gas volume at around 60 keV. The distribution of the observed average projected $\delta_{y,z}$ for the no-source sample and for the AmBe samples is shown in figure 14(right). The broadening of the distribution is mainly due to the specific energy loss fluctuation in the gas mixture of the cosmic ray particles. Its modal value, corrected for the effect of the angular distribution (an average inclination of 56° was measured from track reconstruction) is 2.5 keV cm$^{-1}$, in good agreement with the GARFIELD prediction of 2.3 keV cm$^{-1}$.

5.1. Background normalization

The data with AmBe source, taken on the Earth surface, suffers from a large contribution of interactions of cosmic rays, and from ambient radioactivity, whose suppression is not optimized for the LEMON detector. The cluster shape observables provide a powerful handle to discriminate them from nuclear recoils candidates, but the small residual background needs to be statistically subtracted. The distributions shown earlier, where the different types of data are normalized to the same exposure time, demonstrate that the live-time normalization provides already a good estimate of the amount of cosmic rays in data with radioactive sources. This approach does not account for a possible bias from the trigger, which is generated by the PMT signals, as described in section 2. Indeed, in runs with the AmBe source, the PMT can trigger both on signals from neutron recoils or photons produced by the 241Am, and on ubiquitous signals from cosmic rays, while in the sample without source only the latter are possible. Therefore, during the same exposure time, the probability of triggering on cosmic rays is lower in events with AmBe than in no-source events. The trigger efficiency scale factor, ε_{SF}, can be obtained as the ratio of the number of clusters selected in pure control samples of cosmic rays (CR) obtained on both types of runs:

$$\varepsilon_{\text{SF}} = \frac{N_{\text{AmBe}}}{N_{\text{no-source}}}.$$

The CR control region is defined by selecting clusters with $l > 13$ cm, $\xi < 0.1$, $\sigma_{y,z}^{\text{Gauss}} < 6$ mm, and having an energy within a range dominated by the cosmic rays contribution, $50 < E < 80$ keV. The selected clusters show small values of...
\[\delta \approx 5, \] very compatible with the small specific ionization of ultrarelativistic particles. This sample is limited in statistics, but it is expected to be almost 100% pure. The scale factor obtained is \(\varepsilon_{SF} = 0.75 \pm 0.02 \). A possible consequence of occasional nearby clusters from nuclear recoils changing the distribution of \(\xi \) is considered. The effect is expected to be reduced for the long clusters selected in the CR control region. A systematic uncertainty due to the different shape of \(\xi \) is estimated by applying the CR selection on the AmBe clusters where the slimness is substituted, cluster-by-cluster, sampling the distribution in the no-source data. The difference in \(N_{AmBe}^{CR} \) is about 1%, small with respect to the statistical uncertainty of \(\varepsilon_{SF} \).

In addition to the normalization correction of the cosmic-ray background to be applied before subtracting it from the source data, it has been mentioned earlier that occasional overlap of long tracks from this background and signal tracks moderately distort the cluster shape distributions. Splitting of a long track in the data with the source may happen because of a gradient change in the region of the overlap with a dense nuclear recoil cluster. The typical track lengths of cosmic rays and signal tracks are so different that in these occurrences the split tracks are still much longer than the signal ones, thus they are rejected. In other cases, when the overlap is close to the edges, the track length is increased, and the selection dismisses those clusters. Since the requirement on the track length is very loose, the effect on the signal efficiency is assumed to be negligible.

In figure 15 the typical light density and polar angle (with respect the horizontal axis) distributions for long clusters selected with the CR requirements, except the energy one, are shown for the AmBe and for the no-source sample, after
Figure 15. Supercluster light density δ (left) and polar angle (right)—with respect the horizontal axis—distributions for long clusters, dominated by cosmic rays tracks. The clusters are selected by the CR requirements, except the energy one. Filled points represent data with AmBe source, light blue distribution represents data without any radioactive source. The normalization of data without source is to the same exposure time of the AmBe one, accounting for the trigger scale factor ε_{SF}, as defined in the text. Bins with negative contents are set to zero value. The filled dark-azure band represents the statistical uncertainty on data with no source.

Figure 16. Supercluster light density δ versus length l_p, for data with AmBe source (left), data without any artificial source (middle), and the resulting background-subtracted AmBe data. The normalization of data without source is to the same exposure time of the AmBe one, accounting for the trigger scale factor ε_{SF}, as defined in the text. The orange ellipse represents the approximate contour of the 59 keV photons control region (PR) defined in the text.

having applied the ε_{SF} scale factor to the latter. Clusters with $\delta < 6$ are thus expected to be mostly coming from muon tracks, and they show indeed a polar angle which is shifted at values toward 90°.

6. Nuclear recoil identification results

As mentioned in the previous section, the 1D observable chosen to distinguish the signal of nuclear recoils from the various types of background is the energy density δ of the cluster.

6.1. Signal preselection

To enhance the purity of the signal sample, a preselection was applied, prior to a tighter selection on δ: clusters with $l_p > 6.3$ cm or $\xi < 0.3$ were rejected to primarily suppress the contribution from cosmic rays. A further loose requirement $\delta > 5$ photons/pixel was also applied to remove the residual cosmic rays background based on their low specific ionization. These thresholds, which only reject very long and narrow clusters, are very loose for nuclear recoils with $E < 1$ MeV energies, given the expected range in simulated events, shown in figure 2, of less than 1 cm. Thus the preselection efficiency for a signal is assumed to be 100%. For electron recoils it can be estimated on data by using the 55Fe data sample, and is measured to be $\varepsilon_{\text{presel}} = 70\%$. Since the x-ray photoelectrons of this source are monochromatic, the estimate of the electron recoils rejection is only checked for an energy around $E = 5.9$ keV. The spectrum of nuclear recoils from AmBe source, instead, extends over a wider range of energies, around [1–100] keV.

With this preselection, the distribution in the 2D plane δ–l_p is shown in figure 16 for AmBe source and no-source data and for the resulting background-subtracted AmBe data. The latter distribution shows a clear component of clusters with short length ($l_p \lesssim 1$ cm) and high density ($\delta \gtrsim 10$), expected from nuclear recoils deposits.

In addition, it shows a smaller component, also present only in the data with AmBe source, of clusters with a moderate track
length, $1.5 \lesssim l_p \lesssim 3.0$ cm, and a lower energy density than the one characteristic of the nuclear recoils ($9 \lesssim \delta \lesssim 12$). Since the density is inversely proportional to the number of active pixels n_{pix}, which is correlated to the track length, the almost linear decrease of δ as a function of l_p points to a component with fixed energy. The 241Am is expected to produce photons with $E = 59$ keV. This hypothesis is verified by introducing an oblique selection in the $\delta - l_p$ plane: $|\delta - y| < 2$, where $y = 14 - p_l/50$, for the clusters with $120 < l_p < 250$ pixels, defining the photon control region, PR. The approximate oblique region in the $\delta - l_p$ plane corresponding to PR is also shown in figure 16. The obtained energy spectrum for these clusters is shown in figure 17, which indeed shows a maximum at $E = 61.6 \pm 3.8$ keV, within the expected resolution. These events are thus rejected from the nuclear recoils candidates by vetoing the PR phase space.

6.2. PMT-based cosmic ray suppression

Independent information about the light detected by the sCMOS sensor of the camera is obtained from the PMT pulse, used to trigger the image acquisition. For each image acquired, the corresponding PMT pulse waveform is recorded. Tracks from cosmic rays, which typically have a large angle with respect the cathode plane, as shown in figure 15 (right), show a broad PMT waveform, characterized by different arrival times of the several ionization clusters produced along the track at different γ. Conversely, spot-like signals like 55Fe deposits or nuclear recoils are characterized by a short pulse, as shown in figure 18.

The time over threshold (TOT) of the PMT pulse was measured, and is shown in figure 19. It can be seen from the region around 270 ns, dominated by the cosmic rays also in the data with the AmBe source, that the trigger scale factor ε_{SF} applied for the data with 55Fe, a scaling factor of one tenth is applied for clarity, given the larger activity of this source. Filled dark-grey and dark-azure bands represent the statistical uncertainty on data with no source and 55Fe source, respectively.

Figure 17. Calibrated energy spectrum for candidates in the control region PR, defined in the text. The background-subtracted distribution is fitted with a Gaussian PDF, which shows a mean value compatible with $E = 59$ keV originated from the 241Am γ-ray interaction within the gas. The filled dark-azure band represents the statistical uncertainty on data with no source.

Figure 18. Example of two acquired waveforms: one short pulse recorded in the presence of 55Fe radioactive source, together with a long signal very likely due to a cosmic ray track.

Figure 19. PMT waveform time over threshold (TOT). The last bin integrates all the events with $\text{TOT} > 400$ ns. Filled points represent data with AmBe source, dark gray (light blue) distribution represents data with 55Fe source (no source). The normalization of data without source is to the same exposure time of the AmBe one, with trigger scale factor ε_{SF} applied. For the data with 55Fe, a scaling factor of one tenth is applied for clarity, given the larger activity of this source. Filled dark-grey and dark-azure bands represent the statistical uncertainty on data with no source and 55Fe source, respectively.
Figure 20. Supercluster light density δ (left) and calibrated energy E (right), after the preselection and cosmic ray suppression described in the text to select nuclear recoil candidates. Filled points represent data with AmBe source, dark gray (light blue) distribution represents data with 55Fe source (no-source). The normalization of no-source data is to the same exposure time of the AmBe data, with the trigger scale factor ε_{SF} applied. For the data with 55Fe, a scaling factor of one tenth is applied for clarity, given the larger activity of this source. Filled dark-grey and dark-azure bands represent the statistical uncertainty on data with no source and 55Fe source, respectively.

Figure 21. Background rejection as a function of the signal efficiency, varying the selection on the δ variable in data with either 55Fe (background sample) or AmBe (signal sample) sources.

Table 1. Signal (nuclear-recoil-induced by AmBe radioactive source) and background (photoelectron recoils of X-rays with $E = 5.9$ keV from 55Fe radioactive source) efficiency for two different selections on δ.

Working point	Signal efficiency	Background efficiency
	ε_{S}	ε_{B}
WP$_{50}$	0.98	0.70
WP$_{40}$	0.98	0.70

6.3. Light density and 55Fe events rejection

The light density distributions, after the above preselection and cosmic ray suppression, for the data taken with AmBe source, data with 55Fe source, and data without any artificial source, are different. The cosmic-background-subtracted distributions of δ in AmBe data and 55Fe data, shown in the bottom panel of figure 20(left), are used to evaluate a curve of 5.9 keV electron recoils rejection ($1 - \varepsilon_{B}^\delta$) as a function of signal efficiency (ε_{S}^δ), obtained varying the selection on δ, shown in figure 21. The same procedure could be applied to estimate the rejection factor against the cosmic-ray-induced background, but this is not shown because of the limited size of the no-source data. This kind of background will however be negligible when operating the detector underground, in the context of the Cygno project, so no further estimates are given for this source.

Table 1 shows the full signal efficiency and electrons rejection factor for two example working points, WP$_{40}$ and WP$_{50}$, having 40% and 50% signal efficiency for the sCMOS sensor image. These can eventually be detected as long, in the time dimension, by the PMT. The light density and the energy spectrum of the preselected clusters are shown in figure 20.
the selection on δ, averaged over the full energy spectrum exploited in the AmBe data. They correspond to a selection $\delta > 11$ and $\delta > 10$, respectively. While this cut-based approach is minimalist, and could be improved by profiting of the correlations among δ and the observables used in the preselection in a more sophisticated multivariate analysis, it shows that a rejection factor approximately in the range $[10^{-3} - 10^{-2}]$ of electron recoils at $E = 5.9$ keV with a gaseous detector at atmospheric pressure can be obtained, while retaining a high fraction of signal events.

6.4. Nuclear recoil energy spectrum and differential efficiency

The energy spectrum for the candidates with $\varepsilon_S^{\text{total}} = 50\%$ in the AmBe sample is shown in figure 22 (left). The signal efficiency is then computed for both the example working points in bins of the visible energy. The efficiency, $\varepsilon_B^{\text{total}}$, represents a γ background efficiency at a fixed energy $E = 5.9$ keV, i.e. the energy of the photons emitted by the 55Fe source. For the WP$_{50}$, the efficiency for very low-energy recoils, $E = 5.9$ keV, is still 18%, dropping to almost zero at $E \lesssim 4$ keV.
The efficiencies reported here only account for analysis selection efficiency, while an absolute trigger efficiency should be also considered. Since the trigger will probably be different in the final CYGNO experiment, where the cosmic-ray-induced background would be much reduced, this estimate is not attempted for this study.

Two candidate nuclear recoils images, fulfilling the WP$_{50}$ selection (with a light density $\delta \gtrsim 10$ photons/pixels and with energies of 5.2 and 6.0 keV) are shown in figure 23. The displayed images are a portion of the full-resolution frame, after the pedestal subtraction. While the determination of the direction of detected nuclear recoil is still under study, it appears pretty clear from the image that some sensitivity to their direction, even at such low energies, is retained and can be further exploited.

7. Conclusion and outlook

A method to efficiently identify recoiling nuclei after an elastic scattering with fast neutrons with an optically read-out TPC was presented in this paper. A 7 l prototype was employed by exposing its sensitive volume to two kinds of neutral particles in an overground location:

- photons with energy of 5.9 and 59 keV provided, respectively, by a radioactive source of 55Fe and of 238Am, able to produce electron recoils with equal energy by means of the photoelectric effect;
- neutrons with kinetic energy of a few MeV produced by an AmBe source that can create nuclear recoils with kinetic energy lower than the neutron ones.

The high sensitivity of the adopted sCMOS optical sensor allowed a very good efficiency in detecting events with an energy released in gas even below 10 keV.

Moreover, the possibility of exploiting the topological information (shape, size and more) of clusters of emitted light allowed us to develop algorithms able to reconstruct not only the total deposited energy, but also to identify the kind of recoiling ionizing particles in the gas (either an electron or a nucleus). Cosmic ray long tracks are also clearly separated.

Because of their larger mass and electric charge, nuclear recoils are expected to release their energy by ionizing the gas molecules in a few hundred μm while the electrons are able to travel longer paths. For this reason, by exploiting the spatial distribution of the collected light, it was possible to identify 5.9 keV electron recoils with an efficiency of 96.5% (99.2%) against nuclear recoils by retaining a capability of detecting them with an efficiency of 50% (40%), averaged across the measured AmBe spectrum.

In particular, the nuclear recoil detection efficiency was measured to be 40% for deposited energies lower than 20 keV and 14% in the range (5–10) keV.

The results obtained in the studies presented in this paper can be improved by means of more sophisticated analyses exploiting a multivariate approach, which combines more complete topological information about the light distribution along the tracks. Additional enhancement of sensitivity can be achieved with a DAQ system collecting single PMT waveforms to be correlated with the track reconstructed in the sCMOS images.

Acknowledgment

We are grateful to ‘Servizio Sorgente LNF’. This work was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Grant Agreement No 818744).

References

[1] Lee B W and Weinberg S 1977 Cosmological lower bound on heavy-neutrino masses, Phys. Rev. Lett. 39 165–8
[2] Undagoitia T M and Rauch L 2015 Dark matter direct-detection experiments J. Phys. G: Nucl. Part. Phys. 43 013001
[3] Hochberg Y, Kuflik E, Volansky T and Wacker J G 2014 Mechanism for thermal relic dark matter of strongly interacting massive particles Phys. Rev. Lett. 113 171301
[4] Kaplan D E, Luty M A and Zurek K M 2009 Asymmetric dark matter Phys. Rev. D 79 115016
[5] PETRAKI K and VOLLAS R R 2013 Review of asymmetric dark matter Int. J. Mod. Phys. 28 1330028
[6] Zurek K M 2014 Asymmetric dark matter: Theories, signatures and constraints Phys. Rep. 537 91–121
[7] Mayet F et al 2016 A review of the discovery reach of directional dark matter detection Phys. Rep. 627 1–49
[8] Baracchini E, Cavoto G, Mazzitelli G, Murtas F, Renga F and Tomassini S 2018 Negative ion time projection chamber operation with SF$_6$ at nearly atmospheric pressure JINST 13 P04022
[9] Marafini M, Patera V, Pinci D, Sarti A, Scibba A and Spiriti E 2017 ORANGE: A high sensitivity particle tracker based on optically read out GEM Nucl. Instrum. Meth. A845 285–8
[10] Antochi V C et al 2018 Combined readout of a triple-GEM detector JINST 13 P05001
[11] Pinci D et al 2017 Cygnus: development of a high resolution TPC for rare events PoS EPS-HEP2017 077
[12] Mazzitelli G et al 2017 A high resolution TPC based on GEM optical readout 2017 IEEE Nuclear. Sympos. and Medical Conf. (NSS/MIC) pp 1–4
[13] Pinci D, Baracchini E, Cavoto G, Di Marco E, Marafini M, Mazzitelli G, Renga F, Tomassini S and Voena C 2018 High resolution TPC based on optically readout GEM Nucl. Instrum. Methods Phys. Res. A 936 453–55
[14] Costa I A et al 2020 CYGNO: Triple-GEM optical readout for directional dark matter search J. Phys.: Conf. Series 1498 012016
[15] C Collaboration 2020 CYGNO Phase-I: One cubic meter demonstrator (https://web.infn.it/cygnus/cygnog)
[16] Roberts A et al 2019 First demonstration of 3D optical readout of a TPC using a single photon sensitive timepix3 based camera JINST 14 P06001
[17] Pinci D 2006 A triple-GEM detector for the muon system of the LHCb experiment PhD thesis, Cagliari University, CERN-THESIS-2006-070
[18] Hamamatsu 2018 ORCA-Flash4.0 V3 Digital CMOS camera (www.hamamatsu.com.jp/en/C13440-20CU.html)
[19] Marafini M, Patera V, Pinci D, Sarti A, Sciuibaba A and Spiriti E 2015 High granularity tracker based on a Triple-GEM optically read by a CMOS-based camera JINST 10 P12010
[20] HZC Photonics XP3392 Photomultiplier (www.hzcphotronics.com/products/XP3392.pdf)
[21] Antochi V C, et al 2020 A GEM-based optically readout time projection chamber for charged particle tracking
[22] Campagnola R 2018 Study and optimization of the light-yield of a triple-GEM detector Master’s thesis Sapienza University of Rome
[23] Torchia N 2016 Development of a tracker based on GEM optically readout Master’s thesis Sapienza University of Rome
[24] CAEN 2017 2 Channel 15 kV/1 mA (10 W) NIM HV Power Supply Module (www.caen.it/csite/CaenProd.jsp?parent=21&idmod=894)
[25] Veenhof R 1998 GARFIELD, recent developments Nucl. Instrum. Meth. A 419 726–30
[26] Veenhof R 1993 GARFIELD, a drift chamber simulation program Conf. Proc. C 9306149 66–71
[27] Mazzitelli G, Ghigo A, Sammule F, Valente P and Vignola G 2003 Commissioning of the DAΦNE beam test facility Nucl. Instrum. Methods Phys. Res. A 515 524–42
[28] Baracchini E et al 2020 Stability and detection performance of a GEM-based optical readout TPC with He/CF4 gas mixtures JINST 15 P10001
[29] Agostinelli S et al 2003 GEANT4—a simulation toolkit Nucl. Instrum. Methods A 506 250
[30] Ziegler J 2004 Srim – 2003 Nucl. Instrum. Methods Phys. Res. B 219-220 1027–36
[31] Abritta Costa I et al 2019 Performance of optically readout GEM-based TPC with a 55Fe source JINST 14 P07011
[32] Dong Y and Xu S 2007 A new directional weighted median filter for removal of random-valued impulse noise IEEE Signal Process. Lett. 14 193–6
[33] Lopes G S P et al 2019 Study of the impact of pre-processing applied to images acquired by the cygno experiment Pattern Recognition and Image Analysis eds. Morales A, Ríos F and Ribeiro B Cham (Berlin: Springer) pp 520–30
[34] Abritta I et al 2020 A density-based clustering algorithm for the cygno data analysis In preparation
[35] Ester M, Kriegel H-P, Sander J, and Xu X 1996 A density-based algorithm for discovering clusters in large spatial databases with noise AAAI Press 226–31
[36] Van Rossum G and Drake F L 2009 Python 3 Reference Manual. Scotts Valley, CA: CreateSpace
[37] Brun R and Rademakers F 1997 “ROOT: An object oriented data analysis framework” Nucl. Instrum. Meth. A 389 81–86
[38] Caselles V, Kimmel R and Sapiro G 1997 Geodesic Active Contours Int. J. Comput. Vis. 22 61–79
[39] Márquez-Neila P, Baumela L and Alvarez L 2014 A morphological approach to curvature-based evolution of curves and surfaces, IEEE Trans. Pattern Anal. Mach. Intell. 36 2–17
[40] Guo Z and Hall R W 1989 Parallel thinning with two-subiteration algorithms Commun. ACM 32 359–73
[41] Lam L, Lee S and Suen C Y 1992 Thinning methodologies—a comprehensive survey IEEE Trans. Pattern Anal. Mach. Intell. 14 869–85