Supplementary Information

Nephelauxetic effect of hydride ligand in Sr$_2$LiSiO$_4$H as a host material for rare-earth-activated phosphors

Tong Wu, Asako Ishikawa, Takashi Honda, Hiromu Tamatsukuri, Kazutaka Ikeda, Toshiya Otomo and Satoru Matsuishi*

*a Materials Research Center for Element Strategy, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan.
b Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba 305-0801, Japan

*Corresponding author. E-mail address: matsuishi@mces.titech.ac.jp
Materials

All non-doped and Eu$^{2+}$-doped (2%) samples were directly synthesized by high-temperature reaction of Sr$_2$Eu$_x$SiO$_4$ ($x = 0, 0.04$) with LiX ($X = H, F$). Specifically, to prepare the non-doped samples, SrCO$_3$ (99.9%, Kojundo Chemical Laboratory co., ltd, Japan) and SiO$_2$ (99.9%, Kojundo Chemical Laboratory co., ltd, Japan) were thoroughly mixed in alumina mortar in air at a stoichiometric ratio of 2:1. The mixture was then heated in an alumina boat in a tube furnace with N$_2$ gas flow at 1300 °C for 6 h to obtain the precursor Sr$_2$SiO$_4$. LiH was synthesized by heating Li metal with H$_2$ gas in a stainless steel vessel. To prepare Sr$_2$LiSiO$_4$H, Sr$_2$SiO$_4$ was thoroughly mixed with LiH (1:1.05) in an Ar-filled glove box and pressed into pellet. The pellet was then placed in a vessel and heated at 700 °C for 5 h under 0.9 MPa H$_2$ pressure. To prepare Sr$_2$LiSiO$_4$F, the precursor was mixed with LiF (99.9%, Kojundo, Japan) at a mole ratio of 1:1.05 in ambient environment and pressed into pellet. The pellet was sintered at 900 °C for 12 h under N$_2$ gas flow.

To prepare the Eu-doped samples, the same procedure was used except that the precursor contained Eu. Specifically, SrCO$_3$ (99.9%, Kojundo Chemical Laboratory co., ltd, Japan), Eu$_2$O$_3$(99.9%, Kojundo Chemical Laboratory co., ltd, Japan), and SiO$_2$(99.9%, Kojundo Chemical Laboratory co., ltd, Japan) were thoroughly mixed in alumina mortar in air at a stoichiometric ratio of 1.96:0.04:1. The mixture was then sintered in an alumina boat placed inside a tube furnace at 1200 °C for 6 h under N$_2$/H$_2$ = 95: 5 gas flow to obtain the precursor with divalent Eu.

For the neutron diffraction measurement, the deuterated and 7Li-enriched sample Sr$_2$7LiSiO$_4$D was synthesized using D$_2$ gas (4N) and 99.9% 7Li-enriched Li metal ingot.

Thermal desorption spectroscopy (TDS)

To determine the hydrogen content, TDS was performed (TDS, TDS1400, ESCO, Japan) under vacuum (<10$^{-7}$ Pa). The temperature was increased from room temperature to 1476 K at a heating rate of 60 K/min.

Powder x-ray diffraction (XRD)

XRD patterns of the samples were recorded on a D8 Advance diffractometer (Bruker, Germany) with Cu K$_\alpha$ radiation at room temperature.
Figure S1. XRD patterns of (a) Sr$_2$LiSiO$_4$H:Eu$^{2+}$ (impurity phase: 1.36 wt.% Li$_2$SrSiO$_4$, GOF = 1.32, $R_{wp} = 5.60$). (b) Sr$_2$LiSiO$_4$F:Eu$^{2+}$ (impurity phase: 5.16 wt.% Sr$_2$SiO$_4$, GOF = 1.84, $R_{wp} = 9.32$)

Optical property measurement

Diffuse reflectance spectra of the samples were measured in ambient atmosphere on a U4100 (Hitachi High-Technologies Corp., Japan) spectrophotometer equipped with an integrating sphere and Spectralon SRS-99-010 as a reflection standard. The powder sample was contained in the sample holder with SiO$_2$ glass window. The photoluminescence spectra of the samples were measured at room temperature on a F-4500 (Hitachi High-Technologies Corp., Japan) fluorescence spectrophotometer.
Figure S2. Diffuse reflectance spectra of Sr$_2$LiSiO$_4$F and Sr$_2$LiSiO$_4$H. The $(F(R)hv)^{1/2}$ data of Sr$_2$LiSiO$_4$F were multiplied by 10 so that both sets of data are displayed within the same coordinate axis range.

Magnetization measurement

To determine Eu valence state in Sr$_2$LiSiO$_4$H:Eu$^{2+}$ and Sr$_2$LiSiO$_4$F:Eu$^{2+}$, magnetization measurements were performed by using a SQUID vibrating sample magnetometer (Quantum Design MPMS). The Magnetization (M) versus Magnetic field (H) plots were obtained from -70000 Oe to 70000 Oe under the fixed temperature $T = 2.5$ K. The M versus Temperature (T) plots were obtained from 2.5 K to 300 K with fixed magnetic field $H = 1$ T. Both M-H curve and M-T curve were well-fitted by the equation:

$$M = N g_J \mu_B B_J(x)$$

where N is the number of atoms, $B_J(x)$ is Brillouin function 1:

$$B_J(x) = \frac{2J + 1}{2J} \coth \left(\frac{2J + 1}{2J} x \right) - \frac{1}{2J} \coth \left(\frac{1}{2J} x \right)$$

and x is given by $x = gJ \mu_B/k_BT$ with total angular momentum J, Landé g-factor $g = 2$, Bohr magneton $\mu_B = 9.274 \times 10^{-21}$ and Boltzmann constant $k_B = 1.38065 \times 10^{-16}$. We chose $J = 7/2$ which corresponds to Eu$^{2+}$ with $^8S_{7/2}$ state. Based on the well-fitted curve, we evaluated the number of Eu$^{2+}$ and compared with nominal concentration of Eu in the samples. For Sr$_2$LiSiO$_4$H:Eu$^{2+}$, the M-H curve gave the number of Eu$^{2+}$ corresponding to 95.2% of nominal Eu content while the M-T curve gave the value of 89.4%. For Sr$_2$LiSiO$_4$F:Eu$^{2+}$, the values of 80.2% and 80.0% were also obtained from M-H and M-T curves, respectively. These results indicate the most of Eu atom form divalent states in both Sr$_2$LiSiO$_4$H:Eu$^{2+}$ and Sr$_2$LiSiO$_4$F:Eu$^{2+}$ sample.
Figure S3. M-T curve and M-H curve (insert) of (a) $\text{Sr}_2\text{LiSiO}_4\text{H}:\text{Eu}^{2+}$ and (b) $\text{Sr}_2\text{LiSiO}_4\text{F}:\text{Eu}^{2+}$ fitted by Brillouin function with $J = 7/2$.

Time-of-flight neutron powder diffraction (TOF-NPD)

The TOF-NPD data of the ^7Li-enriched $\text{Sr}_2\text{LiSiO}_4\text{D}$ sample were collected at room temperature in a vanadium–nickel alloy holder with a diameter of 6 mm. Rietveld refinement of the data was performed using the Z-Rietveld code.

Table S1. Summary of the Rietveld refinement analysis of $\text{Sr}_2\text{LiSiO}_4\text{D}$

Mass ratio (wt.%)	R_{wp}	R_p	R_{wp}/R_p	R_B	R_F
$\text{Sr}_2\text{LiSiO}_4\text{D}$	2.0935%	1.7904%	3.441258	1.0152%	1.0715%
$\text{SrLi}_2\text{SiO}_4$	97.44(2)				
SrO	2.12(2)	0.44(1)			
$\text{Sr}_2\text{LiSiO}_4\text{D}$	1.0152%	1.0715%			
$\text{SrLi}_2\text{SiO}_4$	4.2738%	1.4514%			
SrO	1.9159%	1.1176%			

R_{wp}, 2.0935%; R_p, 1.7904%; R_{wp}/R_p, 0.6084%; R_B, 1.0152%; R_F, 1.0715%.
Phase 1: Sr₂LiSiO₄D
Crystal system: monoclinic
Space group: \(P2_1/m \) (11)
Lattice parameters: \(a = 6.5820(5) \, \text{Å}, b = 5.4197(4) \, \text{Å}, c = 6.9475(5) \, \text{Å}, \beta = 112.5628(2) \, ^\circ \)

Table S2. Atomic coordinates, occupancy and isotropic displacement parameters of Sr₂LiSiO₄D

Occupancy	\(x \)	\(y \)	\(z \)	\(U_{iso} \) (×10⁻² Å²)	
Sr1 2e	1	0.16090(4)	1/4	0.37365(4)	0.936(9)
Sr2 2e	1	0.63362(5)	1/4	0.89818(4)	0.774(10)
Li1 2e	1.000(2)	0.15003(14)	1/4	0.87596(14)	1.116(35)
Si1 2e	1	0.65322(8)	1/4	0.33402(7)	0.547(12)
O1 2e	1	0.40260(6)	1/4	0.15666(6)	0.777(9)
O2 4f	1	0.22628(4)	-0.00820(4)	0.71201(4)	0.899(9)
O3 2e	1	0.65916(6)	1/4	0.56780(4)	1.624(12)
D1 2a	1.000(1)	0	0	0	1.987(14)

Table S3. Isotropic displacement parameters of Sr₂LiSiO₄D (×10⁻² Å²)

	\(U_{11} \)	\(U_{22} \)	\(U_{33} \)	\(U_{12} \)	\(U_{13} \)	\(U_{23} \)
Sr1	0.983(19)	1.222(20)	0.603(17)	0	0.530(15)	0
Sr2	1.015(20)	0.688(22)	0.619(21)	0	0.391(17)	0
Li1	0.913(61)	1.593(60)	0.841(57)	0	0.592(48)	0
Si1	0.772(30)	0.564(27)	0.306(27)	0	0.168(22)	0
O1	0.205(24)	1.439(24)	0.685(20)	0	0.015(17)	0
O2	1.251(19)	0.472(14)	0.944(16)	0.485(14)	0.524(15)	-0.008(12)
O3	2.684(24)	1.783(23)	0.405(21)	0	0.973(19)	0
D1	1.687(26)	1.907(25)	2.366(24)	0.035(16)	0.751(20)	0.071(19)
Phase 2: SrLi$_2$SiO$_4$
Crystal system: Trigonal
Space group: $P3_1$2$_1$ (152)
Lattice parameters: $a = 5.0238(35)$ Å, $c = 12.4580(12)$ Å

Table S4. Atomic coordinates, occupancy and isotropic displacement parameters of SrLi$_2$SiO$_4$

	x	y	z	U_{iso} ($\times 10^{-2}$ Å2)	
Sr1	6c	0.4118(9)	0	1/3	0.633
Li1	3a	0.0955(22)	0.3909(32)	0.4136(12)	0.633
Si1	3b	0.2997(16)	0	5/6	0.633
O1	6c	0.0386(9)	0.4940(11)	0.0566(3)	0.633
O2	6c	0.2968(8)	0.2396(8)	0.1691(4)	0.633

Phase 3: SrO
Crystal system: Cubic
Space group: $Fm-3m$ (225)
Lattice parameter: $a = 5.1565(45)$ Å

Table S5. Atomic coordinates, occupancy and isotropic displacement parameters of SrO

	x	y	z	U_{iso} ($\times 10^{-2}$ Å2)
Sr1	4a	0	0	0.633
O1	4b	1/2	1/2	0.633
Table S6. Interatomic distances in Sr₂LiSiO₄F and Sr₂LiSiO₄D

	Sr₂LiSiO₄F	Sr₂LiSiO₄D
Lattice parameters	\(a = 6.5825(9) \text{ Å}, b = 5.4158(8) \text{ Å}, c = 6.9266(6) \text{ Å}, \beta = 112.525(8)^\circ\)	\(a = 6.5868(2) \text{ Å}, b = 5.4219(1) \text{ Å}, c = 6.9498(2) \text{ Å}, \beta = 112.556(2)^\circ\)
Sr₁-O₁	2.578(9) \text{ Å}	2.578(5) \text{ Å}
Sr₁-O₂	2.708(6) \text{ Å}	2.721(3) \text{ Å}
Sr₁-O₃	2.911(3) \text{ Å}	2.9226(10) \text{ Å}
Sr₁-F₁	2.740(1) \text{ Å}	2.754(3) \text{ Å}
Sr₂-O₁	2.7341(9) \text{ Å}	2.73416(15) \text{ Å}
Sr₂-O₂	2.817(6) \text{ Å}	2.8259(11) \text{ Å}
Sr₂-O₃	2.347(8) \text{ Å}	2.365(3) \text{ Å}
Sr₂-F₁	2.613 (1) \text{ Å}	2.6158(3) \text{ Å}

The Sr₂LiSiO₄F data were obtained from the literature, whereas the Sr₂LiSiO₄D data were obtained from the TOF-NPD measurements.

DFT calculations

Single-shot GoW₀ calculations with \(3 \times 4 \times 3\) mesh and density functional theory calculations, using the projector-augmented wave method and a Perdew–Burke–Ernzerhof exchange correlation functional implemented in VASP code, were performed to determine the bandgap energies of the host materials. \(^{4-7}\) To investigate the optical energy transitions from Eu 4f to 5d in Sr₂LiSiO₄H and Sr₂LiSiO₄F, constrained density functional theory (cDFT) calculations were performed with a plane-wave cutoff energy of 500 eV as wave function. The \(2 \times 2 \times 1\) supercells (Sr₃EuLi₁₆Si₁₆O₆₄H₁₆), which were derived from the calculated Eu-free system, contain 144 atoms with one Eu atom substituted on the Sr1 site and Sr2 site. The DFT+U method\(^8\) was used for localizing the Eu f electrons with \(U = 6\) eV for both hydride and fluoride materials.
Table S7. Bond lengths and bond angles of Eu coordination in Sr1 site in the A_0^* state (structure optimized for A_0 state)

	Sr$_2$LiSiO$_4$H Bond length (Å)	Sr$_2$LiSiO$_4$F Bond length (Å)	Bond angle (Å)	Sr$_2$LiSiO$_4$H Bond angle (Å)	Sr$_2$LiSiO$_4$F Bond angle (Å)
Eu-O1	2.603	Eu-O1	2.616	62.995	62.774
Eu-O2	2.716	O2-Eu-O2	58.296	2.724	58.326
Eu-O3	2.969	O3-Eu-O3	135.065	2.950	135.894
Eu-H	2.765	H-Eu-H	58.994	2.810	58.427

In Sr1 substitution, Eu coordinates with one O1, four O2, three O3 atoms and two X ($X = F, H$) atoms.
Table S8. Bond lengths and bond angles of Eu coordination in Sr2 site in the A₀* state (structure optimized for A₀ state)

Bond length (Å)	Bond angle (Å)	Sr₂LiSiO₄H	Bond length (Å)	Bond angle (Å)	Sr₂LiSiO₄F		
Eu-O1	2.760	O1-Eu-O1	164.213	Eu-O1	2.759	O1-Eu-O1	164.294
	2.760			2.759			
	2.833	O1-Eu-H	120.636	O1-Eu-H	120.654		
				2.787			
Eu-O2	2.849	O2-Eu-O2	55.493	O2-Eu-O2	55.406		
	2.848			2.857			
	2.937			2.905			
	2.935			2.905			
Eu-O3	2.362	O3-Eu-H	83.227	O3-Eu-O3	83.222	O3-Eu-F	82.447
			83.222				
Eu-H	2.574	H-Eu-H	63.615	Eu-F	2.634	F-Eu-F	62.592

In Sr2 substitution, Eu coordinates with three O1, four O2, one O3 atoms and two X (X = F, H) atoms.
Figure S3. Band structures showing the electronic states (ground state A_0, excited state A_0^*, excited state after structure relaxation A^*, ground state A) of (a) Sr$_2$LiSiO$_4$F and (b) Sr$_2$LiSiO$_4$H. (c) Configuration coordinate diagram. Band structures showing the A^* states of (d) Sr$_2$LiSiO$_4$F (left) and Sr$_2$LiSiO$_4$H (right). For better comparison of the Eu 5d lowest band in each excited state, the Eu 4f energy level was set as 0 eV for both Sr$_2$LiSiO$_4$F and Sr$_2$LiSiO$_4$H.
References

1. C. Kittel, *Introduction to Solid State Physics*, 2004.
2. R. Oishi, M. Yonemura, Y. Nishimaki, S. Torii, A. Hoshikawa, T. Ishigaki, T. Morishima, K. Mori and T. Kamiyama, *Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip.*, 2009, 600, 94–96.
3. A. Akella and D. A. Keszler, *Chem. Mater.*, 1995, 7, 1299–1302.
4. P. E. Blöchl, *Phys. Rev. B*, 1994, 50, 17953–17979.
5. G. Kresse and J. Furthmüller, *Phys. Rev. B - Condens. Matter Mater. Phys.*, 1996, 54, 11169–11186.
6. J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, 77, 3865–3868.
7. M. Van Schilfgaarde, T. Kotani and S. Faleev, *Phys. Rev. Lett.*, 2006, 96, 1–4.
8. L. A. I, *J. Phys. Condens. Matter*, 1997, 9, 767.