Intratumoral migration of central venous catheter in a patient with malignant bronchial carcinoid

Sir,

A 66-year-old male patient with bronchial carcinoid of left upper lobe of lung was scheduled for lobectomy. Standard monitors were attached and patients trachea intubated with a 35 Fr left sided double lumen tube. Left internal jugular vein (IJV) was cannulated with a 7 Fr 20 cm triple lumen catheter using anatomical landmark based technique in a single attempt using central approach and catheter was fixed at 13 cm. Central venous pressure (CVP) trace was normal and venous back flow was present in all the ports.

The CVP trace began to dampen after thoracotomy and retraction of ribs. Free flow of intravascular fluids and aspiration of blood was also hampered. Repositioning the catheter over a guidewire was not feasible as patient was in right lateral position. Intratumoral location of the tip of the central venous catheter (CVC) was noted during dissection of the left upper lobe of the lung [Figure 1].

Catheter tip migrations are unavoidable. Change in patient position led to migration of the tip of the CVC into the left brachiocephalic vein in our case; the anterior wall of which was eroded by the malignancy leading to intratumoral placement. Intratumoral migration of central venous catheter tips should be placed in distal superior vena cava (SVC), above the pericardial reflection with <40° of impingement angle between the catheter and vessel wall. Visualisation of tip at right tracheobronchial angle in a chest X-ray in a supine patient ensures a minimum distance of 3 cm above the pericardial reflection [4] (median length of SVC is 6.8 cm and maximum distance of right tracheobronchial angle from origin of SVC is 3.8 cm). Catheter placements at right tracheobronchial angle thus permit upto 3 cm of displacements with change in neck, arm and patient positioning.

Magnitude of displacement of CVC’s inserted through IJV with neck flexion and extension is 1.5-3.0 cm in downward and upward direction respectively.[1] Catheter migrations of 3-4 cm have been reported with supine to upright positioning.[2] Hyper abduction of the arm (>180°) also predisposes to the same.[3] Spontaneous migration of a CVC tip into another venous tributary is favoured by jet effect of drug injections, mechanical ventilation, increased intrathoracic and intra-abdominal pressures.[3]

Central venous catheter tips should be placed in distal superior vena cava (SVC), above the pericardial reflection with <40° of impingement angle between the catheter and vessel wall. Visualisation of tip at right tracheobronchial angle in a chest X-ray in a supine patient ensures a minimum distance of 3 cm above the pericardial reflection [4] (median length of SVC is 6.8 cm and maximum distance of right tracheobronchial angle from origin of SVC is 3.8 cm). Catheter placements at right tracheobronchial angle thus permit upto 3 cm of displacements with change in neck, arm and patient positioning.

Estimations of insertion depth using either the anatomical technique (distance between the needle insertion point and the clavicular notch and the vertical length between the clavicular notch and the carina on the chest radiograph) or the Peres’ formula (height 10 cm) should be made in all catheterisations. Insertion depth of 12-13 cm in males and 11-12 cm in females for right IJV and 13-14 cm in males and 12-13 cm in females for left IJV cannulations are optimal.[5]

Ranvinder Kaur, Tanvir Samra, Lalita Chaudhary, Aruna Jain
Department of Anesthesia and Intensive Care, Lady Hardinge Medical College, New Delhi, India

Address for correspondence: Dr. Tanvir Samra, C-l/77, Moti Bagh-1, New Delhi - 110 021, India.
E-mail: drtanvirsamra@yahoo.in

References

1. Curelaru I, Linder LE, Gustavsson B. Displacement of catheters inserted through internal jugular veins with neck flexion and extension. A preliminary study. Intensive Care Med 1980;6:179-83.
2. Kowalski CM, Kaufman JA, Rivitz SM, Geller SC, Waltman AC. Migration of central venous catheters: Implications for initial catheter tip positioning. J Vasc Interv Radiol 1997;8:443-7.
3. Jahagirdar SM, Laxmimani, Athiraman U, Ravishankar M. Migration of subclavian venous catheter tip: Patient positioning

Figure 1: Migration of central venous catheter in bronchial carcinoid
Letters to Editor

in ICU makes a difference. Indian J Crit Care Med 2013;17:193-4.
4. Aslamy Z, Dewald CL, Heffner JE. MRI of central venous anatomy: Implications for central venous catheter insertion. Chest 1998;114:820-6.
5. Kujur R, Rao MS, Mrinal M. How correct is the correct length for central venous catheter insertion. Indian J Crit Care Med 2009;13:159-62.

Bernard-Soulier syndrome: A challenge for anesthetist

Sir,

Bernard-Soulier syndrome (BSS), reported in 1948 for the first time,[1] is a rare hereditary cause of bleeding diathesis characterized by platelet dysfunction secondary to the absence of the von Willebrand factor receptor on the platelet surface.[1] We present the case of a 20-year-old woman who was diagnosed with BSS at the age of 4 years. Her history revealed on and off episodes of epistaxis, gum bleeding and poly-menorrhagia mandating platelets transfusion on three different occasions during her life time. Beside this conservative management, she did not receive any further treatment for this syndrome.

At 38 weeks of gestation, due to her suboptimal continuous tocograph, an emergency cesarean section was planned. Her preoperative anesthesia assessment revealed a smooth antenatal course without any major bleeding episode. The laboratory investigations revealed hemoglobin of 10.2 g/dl with hematocrit of 30.4, white blood cell count of 12,000/cu mm and unrecordable platelet count. Request was made to the laboratory for manual counting of platelets, which then showed the figure of 155,000/cu ml of blood. This discrepancy in two different methods of platelet counting is quite typical of BSS because of the increase size of platelets (giant platelet syndrome).[2]

The coagulation profile showed prothrombin time 9.3/11.0, activated partial thromboplastin time 25.2/30.0, and international normalized ratio 0.88. Other laboratory findings were within normal ranges including bleeding time (2 min) and clotting time (4 min). Based on these findings, general anesthesia was planned after detailed informed consent.

As per advice of a hematologist, 10 units of platelets, two units of packed red blood cells and arrangement of factor VII was made for handling crisis situation. Since major intraoperative and postoperative hemorrhage was the primary concern, two large bore intravenous cannula of 14 G was inserted, and six units of platelet and 2 g of tranexamic acid was given intravenously before taking the patient in operating room.

In the operating room, baseline monitoring was applied which included pulse oximeter and electrocardiogram. An arterial line was secured in left radial artery for measuring blood pressure. Preoxygenation for 3 min with 100% FiO\textsubscript{2} was followed by rapid sequence induction utilizing sodium thiopental (5 mg/kg) and succinyl choline (1.5 mg/kg). Trachea was intubated in first attempt and anesthesia was maintained with isoflurane 1% in oxygen (40%) and nitrous oxide (60%). Paralysis was maintained with atracurium to aid surgery. A healthy baby girl was delivered with good APGAR scores of 8/1 and 9/5 respectively. Morphine 7 mg was used once baby was delivered, and it was supplemented with 1 g intravenous paracetamol. The patient remained hemodynamically stable throughout the procedure. There was total blood loss of 900 ml. Patient was successfully extubated in the end.

Postoperatively in postoperative anesthesia care unit, she was transfused with six platelets units and tranexamic acid was started at a dose of 500 mg every 6 hourly intravenously for further 48 h, that were later switched to oral regime. Platelet count postoperatively was 76,000/cu ml of blood. Patient was discharged home uneventfully on 4th postoperative day.

Till date, only some case reports about the pregnant patients with BSS have been published, among them the detailed reports about anesthetic management of such patients are very few. In this report, the authors aim to emphasize on the clinical course, the anesthetic management and the need for multidisciplinary team approach at tertiary care centers in such cases for successful outcomes. Pregnant women with BSS should ideally be managed in a tertiary unit with thorough hemostatic assessment of the patient. The clinical expertise and readily available access to platelet and other blood products should be ensured in all cases during delivery or cesarean section to minimize the chance of life-threatening hemorrhage. Platelet transfusion remains the mainstay of treatment and has been used both prophylactically and therapeutically.[3] Antifibrinolytic drugs such as aminocaproic acid or tranexamic acid use have a controversial role in literature. The other treatment modalities are

Access this article online

Quick Response Code:
Website:
www.joacp.org
DOI:
10.4103/0970-9185.161706