Saturated Adaptive Relative Motion Coordination of Docking Ports in Space Close-Range Rendezvous

LIANG SUN, Member, IEEE
University of Science and Technology, Beijing, China

JINGJING JIANG, Member, IEEE
Loughborough University, Leicestershire, U.K.

An adaptive relative pose controller for docking ports of two uncertain spacecraft in autonomous rendezvous and docking is developed. A novel relative translational and rotational model represented in the chaser body-fixed frame is derived first based on the classical Newton–Euler equations. Based on the proposed model, a six-degrees-of-freedom adaptive control law is presented based on norm-wise estimations for the unknown parameters of two spacecraft to decrease the online computational burden. Meanwhile, an adaptive robust control input is designed by introducing an exponential function of states to improve the response performance with respect to the traditional adaptive robust control. Moreover, a linear antiwindup compensator is employed to ensure the bounded performance of the control inputs. The explicit tuning rules for designing parameters are derived based on the stability analysis of the closed-loop system. It is proved in Lyapunov framework that all closed-loop signals are always bounded and the pose tracking error ultimately converges to a small neighborhood of zero. Simulation results validate the performance of the proposed robust adaptive control strategy.

Manuscript received November 4, 2019; revised April 27, 2020; released for publication June 13, 2020. Date of publication June 22, 2020; date of current version December 4, 2020.

DOI: 10.1109/TAES.2020.3003961

Refereeing of this contribution was handled by A. de Ruiter.

This work was supported in part by the National Natural Science Foundation of China under Grant 61903025, in part by the China Scholarship Council under Grant 201906465028, and in part by the Fundamental Research Funds for the Central Universities under Grant FRF-BD-19-002A Grant FRF-GF-18-0028B.

Authors’ addresses: Liang Sun is with the Key Laboratory of Knowledge Automation for Industrial Processes of Ministry of Education, Institute of Artificial Intelligence, School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China, E-mail: (liangsun@ustb.edu.cn); Jingjing Jiang is with the Department of Aeronautical and Automotive Engineering, Loughborough University, Leicestershire LE11 3TU, U.K., E-mail: (J.Jiang2@lboro.ac.uk). (Corresponding author: Liang Sun.)

0018-9251 © 2020 IEEE
the eigenstructure assignment parametric technique and the backstepping technique was developed in [19]. To address the problem of lack of relative velocity measurements, a robust observer was developed to estimate the relative velocity for rendezvous and docking controllers in [20]. Considering the short-time operation requirements of the spacecraft rendezvous and docking to save the limited fuel, an adaptive terminal sliding mode controller was designed to complete the finite-time rendezvous and proximity operations [21]. Considering the constraints on the thrust magnitude, the spacecraft positioning within the line-of-sight cone, and the approach velocity, the model predictive control approach [22] was employed to improve the controller real-time computational efficient [23] and satisfy the requirement of multiobjective optimization [24]. A passivity-based adaptive controller was developed in [25] for uncertain spacecraft proximity operations and a iterative-learning-control-based tracking controller was proposed in [26] for asteroid close-proximity operations, but the attitude synchronization are not considered in these studies. A time-varying sliding mode-based fault-tolerant controller was designed in [27], but the proposed model was the same as the traditional tracking model for one spacecraft so that the model couplings between the target and chaser in rendezvous and docking missions were ignored. To describe the relative pose motion between two spacecraft in a unified way, the dual quaternion-based relative pose model was reported recently, and some corresponding controllers were also designed, such as the noncertainty-equivalence adaptive controller in [28], output feedback controllers in [29] and [30], proportional-derivative controller in [31], and adaptive sliding mode controller in [32]. The aforementioned state feedback control approaches are able to achieve the prescribed relative pose control objectives. Nevertheless, a drawback of the abovementioned controllers is that they ignored the misalignment effect of docking ports and centers of mass for two spacecraft. In practical applications, the chaser should fly around the target to track its docking port, and the chaser’s docking port also should be aligned with the target’s docking port so that the final docking operation can be conducted well. Therefore, the relative pose motion between docking ports of two spacecraft should be modeled, then the position tracking and attitude synchronization of two docking ports could be achieved in the rendezvous and docking missions. This article gives a novel model describing the relative pose dynamics between docking ports of two spacecraft, and develops a model-based adaptive sliding mode relative pose controller for spacecraft close-range rendezvous and docking missions, where the normwise adaptive estimations for eight unknown parameters in the model are updated in the proposed adaptive controller to decrease the online computational burden with respect to the classical elementwise estimations for 324 unknown parameters in [9] and 392 unknown parameters in [33]. Unlike the methods proposed in [6] and [21], the relative pose motion of the docking port-fixed coordinate frame of the chaser with respect to the target’s docking port is clearly considered in the proposed relative model. The consideration of the misalignment effect of docking ports and centers of mass for two spacecraft is important, since the docking port’s pose and velocities are different from the mass center’s pose and velocities theoretically. Specifically, the relative pose model is formulated in the chaser’s body-fixed frame to avoid the control input transformation in the traditional target’s orbital coordinate frame-based translational model [6] or the line-of-sight coordinate frame-based translational model [2], [7]. Furthermore, although the signum function in the traditional sliding mode control generates a relatively large control chattering, the first-order sliding mode technique with an exponential reaching law and boundary layer technique is able to suppress unknown external disturbances as well as to accelerate the convergence rate towards the sliding surface and reduce the control chattering phenomenon. Moreover, the uniformly ultimately bounded stability of the closed-loop system is proved based on the Lyapunov theory, and the relative pose and velocity between two docking ports ultimately converge to small neighborhoods of zero. Simulation results have been used to validate the proposed method.

The rest of this article is divided into four sections. Section II presents the mathematical description and control task for spacecraft rendezvous and docking. Section III provides the relative motion controller design, and the stability of the closed-loop system is rigorously analyzed. Numerical simulations are conducted in Section IV to support the theory. Finally, Section V concludes this article.

II. PROBLEM STATEMENT

Considering the docking port of the chaser tracking to the target’s docking port and synchronizing the attitude of two spacecraft, some coordinate frames and vectors are defined in Fig. 1, where the earth-centered inertial frame is denoted as \(F_e = \{OX,Y,Z\}\). The vectors \(\{r_t, r_e, p_d\}\) are represented in target’s body-fixed frame \(F_t = \{TX,Y,Z\}\) with an origin \(T\) locating at its center of mass, while the vectors \(\{r, r_e, l\}\) are described in the chaser’s body-fixed frame \(F_c = \{Qxyz\}\) with an origin \(Q\) locating at the center of the docking port of the chaser. Point \(C\) is the center of mass of the chaser, and point \(P\) is the center position of the target’s docking port. Specifically, point \(P\) can also be located at

![Fig. 1. Scenario of space close-range rendezvous and docking.](image-url)
any position in the extension line of the target’s docking port, i.e., line \(TP \), then the proposed model and control system designing approach in this study can be extended to autonomous fly-around proximity operations.

The position and attitude kinematics can be modeled in frame \(F_c \) as \(\dot{r} = v - \omega \times r \) and \(\dot{\theta} = G(\theta) \omega \) by the modified Rodrigues parameters-based attitude description shown in [18], then the chaser’s pose kinematics represented in frame \(F_c \) can be uniformly rewritten as

\[
\dot{p} = Ap + Bq
\]

where \(p = [r^T, \omega^T]^T, q = [v^T, \omega^T]^T, A = \text{diag}(-S(\omega), O_3), B = \text{diag}(I_3, G(\omega)) \). \(r \) and \(v \) are the position and velocity of frame \(F_c \) with respect to frame \(F_0 \) described in frame \(F_c \); \(\alpha \) and \(\omega \) are the attitude and angular velocity of frame \(F_c \) with respect to frame \(F_0 \); \(G(\omega) = \frac{1}{2}[(1 - \sigma^T \sigma)I_3 + 2S(\sigma) + 2\sigma \sigma^T] \); \(I_3 \) and \(O_3 \) are three-dimensional identity and null matrices, and \(S(a) \) denotes a skew-symmetric matrix for any \(a \in \mathbb{R}^3 \).

As shown in Fig. 1, the position vector of mass center of the chaser can be expressed in frame \(F_0 \) as

\[
r_c = R_c(r + I)
\]

where \(I \) is the constant position vector from the point \(Q \) to the mass center of the chaser \(C \) and \(R_c \) is the rotation matrix from \(F_c \) to \(F_0 \). Then, due to the second Newton law, the position dynamics represented in frame \(F_0 \) are

\[
m\ddot{r}_c = m(f + f_g + f_{J_3} + \omega)
\]

where \(m \) is the mass of the chaser; \(f \) is the control force of the chaser; \(f_g \) is gravitational force [14], [32]

\[
f_g = m\omega = -\frac{m\mu_g}{\|r_c\|^2}R_c^T r_c = -\frac{m\mu_g}{\|R_c(r + I)\|^2} (r + I)
\]

and \(f_{J_3} \) is the perturbation force due to earth’s oblateness and [14], [32]

\[
f_{J_3} = m\omega = -\frac{3m\mu_g}{2\|R_c(r + I)\|^2} R_c^T r_{c1} - \frac{5m\mu_g}{2\|R_c(r + I)\|^2} R_c^T r_{c2} - \frac{5m\mu_g}{2\|R_c(r + I)\|^2} R_c^T r_{c3}
\]

with \(r_{ci} \) representing the \(i \)th element of the vector \(R_c(r + I) \), the second-degree zonal harmonic coefficient \(\frac{\mu_g}{2\|r_c\|^2} \), earth’s gravitational parameter \(\mu_g = 398600.4418(\text{km}^3/\text{s}^2) \), and earth’s mean equatorial radius \(R_E = 6378.137 \text{(km)} \) represents disturbances resulting from the atmospheric drag, the solar radiation, and third-body effects [14], [32].

Taking twice the time derivative of \(r_c \) in (2) based on the facts \(R_c = R_cS(\omega), \dot{r} = v - \omega \times r \), and \(I = 0 \) in frame \(F_c \) leads to

\[
\ddot{r}_c = R_c(\omega \times \omega \times I + \omega \times I + \omega \times v + \dot{v}).
\]

Then, substituting (4) into (3) results in the position dynamics of the point \(Q \) as

\[
m(\dot{v} + \omega \times I + \omega \times v + \omega \times \omega \times I) = f + f_g + f_{J_3} + \omega.
\]

Based on the Euler dynamical equation of a rigid body, the attitude motion of the chaser with respect to its mass center \(C \) can be modeled as

\[
J\dot{\omega} + \omega \times J\omega = \tau + \tau_g + \delta
\]

where \(J \) is the inertia matrix of the chaser with respect to \(C \); \(\tau \) is the control torque of the chaser

\[
\tau_g = \frac{3\mu_g(R_c^T r_c)}{\|R_c^T r_c\|^2} \times J(R_c^T r_c) = \frac{3\mu_g(r + I)}{\|r + I\|^2} \times J(r + I)
\]

is the gravity-gradient torque [14][32]; \(\delta \) is the unknown disturbance torque of the chaser. Then, based on the parallel axis theorem in theoretical mechanics, the inertia matrix of the chaser with respect to point \(Q \) is \(J_c = J + m(I^T I_3 - I I^T) \), so one can obtain

\[
J_c\omega = J_0\omega + m\omega \times I = J_0\omega + ml \times \omega + \omega
\]

based on the fact \(a \times (b \times c) = (a \cdot c)b - (a \cdot b)c \) for any \(a \in \mathbb{R}^3, b \in \mathbb{R}^3, \) and \(c \in \mathbb{R}^3 \). Taking the time derivative of \(\omega \) in (7) yields

\[
J_c\dot{\omega} = J_0\dot{\omega} + m\dot{\omega} + m\omega \times \dot{\omega} - m\omega \times v - m\omega \times \omega \times I
\]

and substituting (9) into (8) leads to

\[
J_c\dot{\omega} = J_0\dot{\omega} - l \times (f + f_g + f_{J_3} + \omega - m\omega \times v) \times v - m\omega \times \omega \times I.
\]

Then, substituting (7) and (10) into (6) results in

\[
J_0\dot{\omega} + \omega \times J_0\omega = J_0\dot{\omega} + ml \times \dot{v} + ml \times \omega \times v
\]

\[
-l \times (f + f_g + f_{J_3} + \omega) + \omega \times J_0\omega
\]

with a fact that \(l \times (\omega \times \omega \times I) = \omega \times (l \times \omega \times I) - (\omega \times l) \times \omega - (\omega \times \omega \times I) = (\omega \times I)(l \times \omega) - (\omega \times \omega)(l \times I) - (l \times I)(\omega \times \omega) + (l \times \omega)(\omega \times I) = 0 \). Substituting (11) into (6) yields

\[
J_0\dot{\omega} + ml \times \dot{v} + ml \times \omega \times v + \omega \times J_0\omega = \tau + \tau_g + \delta + l \times (f + f_g + f_{J_3} + \omega).
\]

Furthermore, substituting (7) and (8) into (12) yields the attitude dynamics of the chaser represented in frame \(F_c \) as

\[
J_0\dot{\omega} + ml \times \dot{v} + ml \times \omega \times v + \omega \times J_0\omega = \tau + \tau_g + \delta + l \times (f + f_g + f_{J_3} + \omega).
\]

Thus the chaser’s pose dynamics represented in frame \(F_c \) can be rewritten uniformly based on (5) and (13) as

\[
\mathcal{M} \ddot{q} + \mathcal{C} q = \mathcal{E}(u + n + d)
\]
\[
E = \begin{bmatrix} 1_s & O_3 \\ S(I) & I_3 \end{bmatrix}, \quad u = \begin{bmatrix} f \\ \tau \end{bmatrix},
\]

\[
n = \begin{bmatrix} f_g + f_{i_l} \\ \tau_g \end{bmatrix}, \quad d = \begin{bmatrix} w \\ \delta \end{bmatrix}.
\]

Remark 1 The matrix \(M\) is constant, symmetric, and positive definite, namely \(M = 0\) and \(M = M^T > 0\). Meanwhile, the matrix \(C\) is skew-symmetric such that \(C = -C^T\). Since \(S(\omega)J - mS(\omega)S^2(I) = -S((J - mS^2(I))\omega)\).

Meanwhile, the pose kinematics and dynamics of the uncontrolled target are represented, in frame \(F_i\), as

\[
\begin{aligned}
\dot{p}_i &= \mathcal{A}_i p_i + B_i q_i, \\
\mathcal{M}_i \dot{q}_i + C_i q_i &= d_i,
\end{aligned}
\]

where \(p_i = [r_i^T, \sigma_i^T]^T, q_i = [v_i^T, \omega_i^T]^T, \mathcal{A}_i = \text{diag}(-S(\omega_i), O_3), B_i = \text{diag}(I_3, G(\sigma_i)), \mathcal{M}_i = \text{diag}(m_l, J_l), \), \(C_i = \text{diag}(m_lS(\omega_i), S(\omega_i)J_l), d_i = [w_i^T, \delta_i^T]^T\); \(r_i, v_i, \sigma_i, \omega_i\) are the position, velocity, attitude, and angular velocity of frame \(F_i\) with respect to frame \(F_0\) described in frame \(F_i\); \(m_l\) and \(J_l\) are the mass and the inertia matrix of the target; \(w_i\) and \(\delta_i\) are the external force and the external torque of the target.

To achieve the final docking missions, the position of chaser’s docking port \(Q\) should track the position of point \(P\) in Fig. 1. Then, the position and velocity of point \(P\) described in frame \(F_i\) are

\[
r_p = r_i + p_d, \quad v_p = v_i + S(\omega_i)p_d.
\]

The relative pose and velocity between points \(Q\) and \(P\) can be expressed in frame \(F_i\) as

\[
\begin{aligned}
\mathbf{r}_e &= \mathbf{r} - \mathbf{R} \mathbf{r}_p, \quad \sigma_e = \sigma \otimes \sigma_i^{-1}, \quad v_e = \mathbf{v} - \mathbf{R} \mathbf{v}_p, \\
\omega_e &= \omega - \mathbf{R} \omega_i
\end{aligned}
\]

where \(\sigma \otimes \sigma_i^{-1} = \frac{\sigma(\sigma_i - 1) + (1 - \sigma_i^2)}{1 + \sigma_i^2} - 2\sigma_i, R\) is the rotational matrix from \(F_i\) to \(F_e\), and is expressed as [34]

\[
R = I_3 - 4(1 - \sigma_i^2) \sigma_i S(\sigma_i) + \frac{8}{(1 + \sigma_i^2)^2} S^2(\sigma_i).
\]

Furthermore, based on the fact that \(\dot{R} = -S(\omega)R\), calculating the time derivative of relative pose and velocity results in the relative kinematics and relative dynamics expressed in frame \(F_e\) as

\[
\begin{aligned}
\dot{p}_e &= \mathcal{A}_e p_e + B_e q_e, \\
\mathcal{M}_e \dot{q}_e + C_e q_e + g_e &= Eu + d_e,
\end{aligned}
\]

where \(p_e = [r_e, \sigma_e^T]^T, \quad q_e = [v_e^T, \omega_e^T]^T, \quad \mathcal{A}_e = \mathcal{A}, \quad B_e = \text{diag}(I_3, G(\sigma_e)), \quad \mathcal{M}_e = \mathcal{M}, \quad C_e = C, \quad g_e = [g_{e_{r_1}}^T, g_{e_{r_2}}^T]^T, \quad d_e = [d_{e_{r_1}}^T, d_{e_{r_2}}^T]^T, \quad \text{and}
\]

\[
g_{e_{r_1}} = m[S(I)S(\omega_e) - S(\omega_e)S(I)](\omega - \omega_e) + mS(I)R + RS(p_d)J_{i_e}^{-1}S(R^T(\omega - \omega_e))J_eR^T(\omega - \omega_e) \\
+ mS^2(\omega - \omega_e)(Rp_d + mRS^2(R^T(\omega - \omega_e))p_d \\
- f_g - f_{j_e}),
\]

\[
g_{e_{r_2}} = m[S(I)S^2(\omega - \omega_e)Rp_d - [JR - mS(I)RS(p_d)] \\
- mS^2(I)R[J_{i_e}^{-1}S(R^T(\omega - \omega_e))J_eR^T(\omega - \omega_e)] \\
+ mS^2(I)S(\omega_e) - mS(\omega_e)S^2(I) + S(\omega_e) \\
- JS(\omega_e)(\omega - \omega_e) + mS(I)RS^2(R^T(\omega - \omega_e))p_d - \tau_g - S(I)f_g + f_{j_e})
\]

\[
d_{e_1} = w - \frac{m}{m_l} \mathbf{R} w_i + m[S(I)R + RS(p_d)]J_{i_e}^{-1} \delta_i,
\]

\[
d_{e_2} = \delta + S(I)w - \frac{m}{m_l} S(I)Rw_i - [JR \\
- mS(I)RS(p_d) - mS^2(I)R]J_{i_e}^{-1} \delta_i.
\]

Consider that the chaser’s inputs \(f = [f_1, f_2, f_3]^T\) and \(\tau = [\tau_1, \tau_2, \tau_3]^T\) are subject to the following nonsymmetric constraints [18]:

\[
-\tau_{i_{\max}} \leq \tau_i \leq \tau_{i_{\max}}, i = 1, 2, 3.
\]

where \(f_{i_{\max}}\) and \(\tau_{i_{\max}}\) are the known lower limitations of inputs, \(f_{i_{\min}}\) and \(\tau_{i_{\max}}\) are the known upper limitations of inputs. Thus, the control inputs \(f_i\) and \(\tau_i\) are defined by

\[
\begin{aligned}
f_i &= \begin{cases} f_{i_{\max}}, & \text{if } f_{i_0} > f_{i_{\max}} \\
f_{i_0}, & \text{if } -f_{i_{\max}} \leq f_{i_0} \leq f_{i_{\max}} \\
-f_{i_{\max}}, & \text{if } f_{i_0} < -f_{i_{\max}} \end{cases} \quad (20) \\
\tau_i &= \begin{cases} \tau_{i_{\max}}, & \text{if } \tau_{i_0} > \tau_{i_{\max}} \\
\tau_{i_0}, & \text{if } -\tau_{i_{\max}} \leq \tau_{i_0} \leq \tau_{i_{\max}} \\
-\tau_{i_{\max}}, & \text{if } \tau_{i_0} < -\tau_{i_{\max}} \end{cases} \quad (21)
\end{aligned}
\]

where \(f_0 = [f_{i_0}, f_{i_2}, f_{i_3}]^T\) and \(\tau_0 = [\tau_{i_0}, \tau_{i_2}, \tau_{i_3}]^T\) are the control input commands to be designed.

Before the statement of the control objective of this study, the following assumptions are claimed.

Assumption 1 \(m\) and \(J\) are uncertain but constant, while \(m_l\) and \(J_l\) are completely unknown but constant. Furthermore, the chaser’s parameters can be treated as \(m = m_0 + m_\Delta\) and \(J = J_0 + J_\Delta\) with the known constant parts \(m_0\) and \(J_0\) and the unknown parts \(m_\Delta\) and \(J_\Delta\). The external disturbances are unknown and bounded by constants \(||d|| \leq \delta\) and \(||d_t|| \leq \delta_t||\), respectively. The desired position vector \(p_d\) and the vector \(l\) are constant and known by the chaser. Moreover, the influence of orbital motion of two spacecraft are excluded here since the motion of spacecraft is largely faster than that of orbital motion.

Assumption 2 The chaser is active for rendezvous and docking with a passive target in this study, while the chaser can obtained precisely its motion information \(p\) and \(q\) and relative motion information \(p_e\) and \(q_e\) in real time based on the high-performance measurement devices and equipments, which are mounted on the body of the chaser.
This article aims to develop an adaptive controller u under the Assumptions 1 and 2 to ensure the precisely relative position tracking and attitude synchronization between two docking ports of two spacecraft, while system states $p_e(t)$ and $q_e(t)$ ultimately converge to small neighborhoods of zero.

III. CONTROLLER DESIGN AND STABILITY ANALYSIS

Define a vector

$$s = q_e + \Lambda p_e$$

(22)

with a positive-definite diagonal gain matrix $\Lambda = \text{diag}(\Lambda_1, \Lambda_2)$ and $\Lambda_i \in \mathbb{R}^{3 \times 3} > 0$. Then, based on (18) and (22), the time derivative of s can be obtained by

$$\dot{M}_s + C_s = M_e A \dot{p}_e + M_e A \dot{p}_e - g_e + Eu + d_e.$$

Furthermore, because of the parametric uncertainties of m and J in Assumption 1, the matrices can be written as

$M_e = M_0 + M_\Delta$, $C_e = C_0 + C_\Delta$, and $g_e = g_0 + g_\Delta$, then the dynamics of s can be rewritten as

$$\dot{M}_s + C_s = \dot{h}_0 + h_\Delta + Eu_0 + Eu_\Delta + d_e.$$

(23)

where

$$h_0 = M_0 A \dot{p}_e + E \ddot{q}_e + C_0 \Lambda \ddot{p}_e - g_0$$

$$h_\Delta = M_\Delta A \dot{p}_e + E \ddot{q}_e + C_\Delta \Lambda \ddot{p}_e - g_\Delta$$

$$M_0 = \begin{bmatrix} m_0 I_3 & -m_0 S(I) \\ m_0 S(I) & J_0 - m_0 S^2(I) \end{bmatrix}$$

$$M_\Delta = \begin{bmatrix} m_\Delta I_3 & -m_\Delta S(I) \\ m_\Delta S(I) & J_\Delta - m_\Delta S^2(I) \end{bmatrix}$$

$$C_0 = \begin{bmatrix} m_0 S(2) & -m_0 S^2(2) \\ m_0 S(2) & \omega J_0 - m_0 \omega S^2(2) \end{bmatrix}$$

$$C_\Delta = \begin{bmatrix} m_\Delta S(2) & -m_\Delta S^2(2) \\ m_\Delta S(2) & \omega J_\Delta - m_\Delta \omega S^2(2) \end{bmatrix}$$

$$g_0 = [g_{01}^T, g_{02}^T]^T, g_\Delta = [g_{\Delta 1}^T, g_{\Delta 2}^T]^T$$

$$g_{01} = m_0 [S(I) S(\omega_e) - S(\omega) S(I)] (\omega - \omega_e) + m_0 S^2(\omega) - \omega_e \rho_d R_p d + m_0 R S^2(R^T(\omega - \omega_e)) p_d - m_0 (a_e + a_{f_1})$$

$$g_{02} = m_0 [S(\omega)]^2 (\omega - \omega_e) \rho_d R_p d + [m_0 S^2(I) S(\omega_e) - m_0 S(I) S(\omega_e)] (\omega - \omega_e) R_p d + [m_0 S(\omega_e)]^2 \rho_d - m_0 (a_e + a_{f_2})$$

$$g_{\Delta 1} = m_\Delta [S(I) S(\omega_e) - S(\omega) S(I)] (\omega - \omega_e) + m_\Delta S^2(\omega) - \omega_e \rho_d R_p d + m_\Delta R S^2(R^T(\omega - \omega_e)) p_d - m_\Delta (a_e + a_{f_3})$$

$$g_{\Delta 2} = m_\Delta [S(I)]^2 (\omega - \omega_e) \rho_d R_p d - [m_\Delta R S(I) S(\omega_e) - m_\Delta S(I) S(\omega_e)] R_p d + m_\Delta S^2(I) S(\omega_e) - m_\Delta S(I) S(\omega) S^2(I) + S(\omega)$$

$$- J_\Delta S(\omega_e) [\omega - \omega_e] + m_\Delta S(I) R S^2(R^T(\omega - \omega_e)) p_d - \tau_{f\Delta} - m_\Delta S(I) (a_e + a_{f_4})$$

with $\tau_{f\Delta} = \frac{3m(\rho \omega + r I)}{r^2 + \rho^2} \times J_\Delta (r + I), u_{\Delta} = u - u_0,$ and $u_0 = [f_0^T, \gamma_0^T]^T$.

Defining eight unknown constant parameters as

$$\alpha_1 = \| M_\Delta \|$$

$$\alpha_2 = |\| M_\Delta \| | + |\| J_\Delta \| | + |\| S(\omega) \| | ^2$$

$$\alpha_3 = (\| J \| + \| m \| [J]^{-1}) [\| J \| + 4 |\| m \| | \| p_d \| | + (\| J \| + \| m \| [J]^{-1}) [\| J \|]$$

$$\alpha_4 = |\| M_\Delta \| | + |\| J_\Delta \| |$$

$$\alpha_5 = 1 + |\| M_\Delta \| | + |\| J_\Delta \| |$$

$$\alpha_6 = |\| M_\Delta \| | + |\| J_\Delta \| |$$

$$\alpha_7 = (1 + |\| J \| | [m]^{-1} + (m + 1) |\| p_d \| | + 2 m |\| J \| | + \| J \| + \| m \| [J]^{-1}) [\| J \|]$$

and their estimations as $\hat{\alpha}_i (i = 1, 2, \ldots, 8)$, then one can design a model-based adaptive controller as

$$u_0 = E^{-1} \left(-k B_c p_c - K s - L \dot{x} - \frac{\gamma}{\beta} \text{tanh}(\kappa s) \right)$$

(24)

with $\gamma = \sum_{i=1}^{8} \hat{\alpha}_i \beta_i$, $\beta_1 = \| M_\Delta \|$, $\beta_2 = \| M_\Delta \| + |\| J_\Delta \| |$, $\beta_3 = \| J \| + |\| m \| | [J]^{-1}$, $\beta_4 = |\| J \| | + |\| m \| | [J]^{-1}$, $\beta_5 = |\| M_\Delta \| | + |\| J_\Delta \| |$, $\beta_6 = |\| M_\Delta \| | + |\| J_\Delta \| |$, $\beta_7 = (1 + |\| J \| | [m]^{-1} + (m + 1) |\| p_d \| | + 2 m |\| J \| | + \| J \| + \| m \| [J]^{-1}) [\| J \|]$, $\beta_8 = (1 + |\| J \| | [m]^{-1} + (m + 1) |\| p_d \| | + 2 m |\| J \| | + \| J \| + \| m \| [J]^{-1}) [\| J \|]$, and $\gamma = 1$, and design the adaptive laws as

$$\dot{\hat{\alpha}}_i = -\beta_i \hat{\alpha}_i + \frac{\lambda_i \beta_i}{\bar{\beta}(s)} \text{tanh}(\kappa s), (i = 1, 2, \ldots, 8)$$

(25)

and the linear antiwindup compensator as

$$\dot{\hat{x}} = -\Pi \hat{x} + E u_\Delta$$

(26)

where $\bar{\beta}(s) = a + (1 - a) e^{-\theta |x|}$, $\theta > 0$, $0 < a < 1$, $b > 0$, $c > 0$, $k > 0$, $\kappa > 0$, $\lambda_i > 0$, $\rho_i > 0 (i = 1, 2, \ldots, 8)$; $K = \text{diag}(K_1, K_2)$, $L = \text{diag}(L_1, L_2)$, and $\Pi = \text{diag}(\Pi_1, \Pi_2)$ are positive-definite diagonal matrices with $K_i \in \mathbb{R}^{3 \times 3} (i = 1, 2)$, $L_i \in \mathbb{R}^{3 \times 3} (i = 1, 2)$, and $\Pi_i \in \mathbb{R}^{3 \times 3} (i = 1, 2)$.

\text{tanh}(\kappa s) = \text{tanh}(\kappa s_1), \text{tanh}(\kappa s_2), \ldots, \text{tanh}(\kappa s_6)$ for $s \in \mathbb{R}^6$; \hat{x} is the state of the compensator.

Remark 2: In the proposed controller (24), the function $\beta(s)$ has three important properties [35][36]. First, this function is always positive, so it can be viewed as a dynamical gain for the robust control term, such that the stability of the closed-loop system is not affected. Second, if s increases, $\beta(s)$ approaches to a, then $\frac{\gamma}{\beta(s)}$ tends to $\frac{\gamma}{a}$. Thus, $\frac{\gamma}{a}$ is larger than γ, which implies that $\frac{\gamma}{\beta(s)}$ increases as s increases, and the convergent rate to $s = 0$ will be accelerated. Third, if s decreases, then $\beta(s)$ approaches to 1, and $\frac{\gamma}{\beta(s)}$ tends to γ. This implies that, as the system tracking errors approach to zero, $\frac{\gamma}{\beta(s)}$ will be decreased to lower the control effort. Therefore, the function $\beta(s)$ used in this adaptive controller can help the controller to adapt to the variation of s and improve the response performance of the controlled systems.
Theorem 1 Consider the system model (18) of autonomous close-range rendezvous and docking under the Assumptions 1 and 2. If \(u_A \) is bounded by an unknown constant \(\bar{u}_A \) such that \(\| u_A \| \leq \bar{u}_A \), and the tunable parameters satisfy \(\lambda_\Pi - \frac{c}{\lambda_K} > 0 \), where \(\lambda_\Pi \) and \(\lambda_K \) are minimum eigenvalues of matrices \(\Pi \) and \(K \), and \(\bar{\lambda}_L \) is the maximum eigenvalue of the matrix \(L \). Then, the proposed controller (24) with adaptive laws (25) and suitable tunable parameters can ensure that \(p_c(t) \) and \(q_e(t) \) ultimately converge to small neighborhoods of zero, and the estimation errors of unknown parameters are uniformly bounded.

Proof. Substituting the proposed controller into the system model results in the closed-loop system as

\[
\begin{align*}
\dot{p}_c &= A_c p_c + B_c q_e \\
\dot{M}_s \dot{s} + C_s s &= h_\Delta + d_e + E u_A \\
-k B_c^T p_c - K s - L \xi &= -\frac{\alpha}{\beta}\tan(\kappa s).
\end{align*}
\]

(27)

For the closed-loop system (27), defining the parameter estimation errors as \(\hat{\alpha}_i = \hat{\alpha}_i - \alpha_i \) \((i = 1, 2, \ldots, 8)\), a candidate Lyapunov function \(V \) is chosen as

\[
V(t) = \frac{1}{2} \left[k p_c^T p_c + s^T M_s s + q^T q + \sum_{i=1}^{8} \frac{\hat{\alpha}_i^2}{\lambda_i} \right].
\]

(28)

Then, the time derivative of \(V(t) \) along the state trajectory of the closed-loop system (27) is

\[
\dot{V}(t) = k p_c^T \dot{p}_c + s^T \dot{M}_s \dot{s} + q^T \dot{q} + \sum_{i=1}^{8} \frac{\hat{\alpha}_i \dot{\hat{\alpha}}_i}{\lambda_i}
\]

\[
= k p_c^T A_c p_c + k p_c^T B_c q_e - s^T C_s s - s^T E u_A - s^T L \xi
\]

\[
- k s^T B_c^T p_c - s^T K s - \frac{\gamma}{\beta}(s) s^T \tan(\kappa s) + s^T h_\Delta
\]

\[
+ s^T d_e - \frac{\gamma}{\beta}(s) s^T \tan(\kappa s) + \sum_{i=1}^{8} \frac{\hat{\alpha}_i \dot{\hat{\alpha}}_i}{\lambda_i}
\]

Since \(p_c^T A_c p_c = 0 \) and \(s^T C_s s = 0 \) based on the skew-symmetric matrices \(A_c \) and \(C_s \), the definition of vector \(s \) in (22), and the fact \(||s|| \leq \frac{||s||}{\beta(s)} \) based on \(0 < \beta(s) < 1 \), then the time derivative of \(V(t) \) can be rewritten as

\[
\dot{V}(t) = - k p_c^T B_c \Delta p_c - s^T K s - \frac{\gamma}{\beta}(s) s^T \tan(\kappa s) + \sum_{i=1}^{8} \frac{\hat{\alpha}_i \dot{\hat{\alpha}}_i}{\lambda_i}
\]

\[
- k s^T B_c^T p_c - s^T K s - \frac{\gamma}{\beta}(s) s^T \tan(\kappa s) + \sum_{i=1}^{8} \frac{\hat{\alpha}_i \dot{\hat{\alpha}}_i}{\lambda_i}
\]

\[
+ (||h_\Delta|| + ||d_e||) \frac{||s||}{\beta(s)} + \sum_{i=1}^{8} \frac{\hat{\alpha}_i \dot{\hat{\alpha}}_i}{\lambda_i}.
\]

(29)

Since \(||S(\alpha)|| = ||\alpha|| \) and \(||R|| = 1 \), then

\[
||h_\Delta|| + ||d_e|| \leq \alpha_1 ||\Delta(\alpha, p_c, B_c q_e)|| + \alpha_2 ||\omega|| ||\alpha, p_c||
\]

\[
+ \alpha_3 ||\omega - \omega_r||^2 + \alpha_4 ||\alpha|| ||\omega - \omega_r||
\]

\[
+ \alpha_5 ||\omega|| ||\omega - \omega_r|| + \alpha_6 ||a_g + a_l||
\]

\[
+ \alpha_7 \frac{2 \beta_k}{||r|| + l} + \alpha_8.
\]

(30)

Because of the facts \(0 \leq ||s_i|| - s_i \tan(\kappa s_i) \leq \frac{\delta}{\kappa} (i = 1, 2, \ldots, 6) \) with \(\nu = 0.2785 \) and \(\hat{\alpha}_i \hat{\alpha}_i = \hat{\alpha}_i \hat{\alpha}_i = \frac{1}{\lambda_\Pi} |\alpha_i|^2 + \frac{1}{\lambda_K} |\alpha_i|^2 \) \((i = 1, 2, \ldots, 8)\), then substituting (30) and the proposed adaptive law (25) into (29) results in

\[
\dot{V}(t) \leq -k \lambda_\Pi ||p_c||^2 - \frac{\lambda_\Pi}{3} ||s||^2 - \frac{\lambda_\Pi}{3} ||\alpha||^2
\]

\[
- \left(\frac{\lambda_\Pi}{3} - \frac{3 \kappa}{\lambda_K} \right) ||\xi||^2 - \sum_{i=1}^{8} \frac{\rho_i}{\lambda_i} ||\alpha_i||^2 + \frac{3 \kappa}{\lambda_K} ||E||^2 + \frac{3 \kappa}{\lambda_K} ||E||^2
\]

\[
- \sum_{i=1}^{8} \frac{\rho_i}{\lambda_i} ||\alpha_i||^2 + \frac{6 \nu}{\kappa}
\]

\[
\leq - \delta ||z||^2 + \epsilon
\]

where \(\delta = [p_c^T, s^T, q^T, \hat{\alpha}_1, \hat{\alpha}_2, \ldots, \hat{\alpha}_8]^T \); \(\delta_0 = \min(k \lambda_\Pi, \frac{\lambda_\Pi}{3}, \frac{\lambda_\Pi}{3}) \left(\lambda = 1, 2, \ldots, 8\right)\); \(\lambda_m(\Lambda) \) and \(\tilde{\lambda}_\Pi \) are minimum and maximum eigenvalues of \(\Lambda \), respectively. Thus, one has \(\dot{V}(t) \leq -\delta ||s||^2 + \epsilon \), and its solution satisfies \(V(t) \leq \frac{1}{\delta} [V(0) - \epsilon s^2] \leq \frac{1}{\delta} ||s||^2 \). This means \(||z|| \leq \sqrt{\frac{1}{\delta} ||s||^2} \leq \frac{1}{\sqrt{\delta}} ||s|| \). Thus \(p_c, s, \xi, \) and \(\hat{\alpha}_i \) \((i = 1, 2, \ldots, 8)\) are ultimately bounded. Since \(||p_c|| \leq ||z|| \), then \(\lim_{t \to \infty} ||p_c(t)|| \leq \lim_{t \to \infty} ||z(t)|| \leq \frac{1}{\sqrt{\delta}} ||s|| \). Furthermore, since \(q_e = s - \Lambda p_c, ||s|| \leq ||z||, \) and \(||p_c|| \leq ||z||, \) then one has \(\lim_{t \to \infty} ||q_e(t)|| \leq (1 + 1) \sqrt{\delta} \frac{1}{\sqrt{\delta}} ||s|| \) with the maximum eigenvalue \(\tilde{\lambda}_\Pi \) of the matrix \(\Lambda \). Therefore, \(p_c(t) \) and \(q_e(t) \) ultimately converge to small neighborhoods of zero, and the parameter estimation errors \(\hat{\alpha}_i \) \((i = 1, 2, \ldots, 8)\) are uniformly bounded.

Remark 3 The proposed controller (24) has a typical state-feedback control structure with the proportional-derivative feedback terms \(-k B_c^T + \frac{K^T}{\alpha} \Delta p_c - K q_e\), the feed-forward term \(-h_0 \), saturation compensation term \(-L \xi\), and the robust adaptive control term \(-\frac{\gamma}{\beta}(s) \tan(\kappa s)\), where feedback terms have three tunable parameters, \(k, K, \) and \(\Lambda \), to set the transient and steady-state response performances of the closed-loop system; feed-forward term is employed to cancel the known part of the system model; the robust adaptive
in the proposed controller. Figs. 2 and 3 give the relative pose results, where the relative position and relative attitude converge to the neighborhoods of zero in $30(s)$ with steady-state high precision. Fig. 4 gives the time history of control inputs with smaller control chattering in the steady-state phase. Fig. 5 implies that all estimations are always bounded. These results imply that the proposed controller (24) can ensure the relative position tracking and attitude synchronization mission with acceptable performance for close-range rendezvous and docking missions. Furthermore, to validate the advantages of the tuning function $\beta(s)$ in the proposed controller.
controller (24), the simulation results based on the non-tuning function version of (24) are shown in Figs. 6–9. From the comparisons between two kinds of controlled systems, the proposed tuning function-based controller has better performance with faster transient response time and higher steady-state precision and stronger antidisturbance ability. Furthermore, to show the effectiveness of the saturation compensator, the proposed controller without the compensator is used to conduct the simulation again, and the results are given in Figs. 10–13. It is seen that the curves of the system states in Figs. 10 and 11 are slightly different in the transient response process with respect to the results in Figs. 2 and 3, but the control effort in Fig. 12 is clearly larger than the ones in Fig. 13, and the magnitude of control inputs clearly exceeds the prescribed nonsymmetric limitation. Thus, the proposed compensator-based adaptive
controller has better control performance with respect to the controller without the saturation compensator.

V. CONCLUSION

A model-based adaptive sliding mode relative pose motion controller has been developed for the spacecraft close-range rendezvous and docking missions. A relative pose dynamics between the docking ports of two spacecraft are formulated in the chaser’s body-fixed coordinate frame to reflect the complicated couplings in the model, and the proposed controller has classical state-feedback control structure with less online estimations to suppress the model uncertainties and guarantee the response performance. The nonsymmetric saturation effect of the control inputs is compensated by a linear antiwindup auxiliary system in the presence of uncertainties and guarantee the response performance. The future works will focus on the advanced control approaches for the proposed relative motion states ultimately converging to small neighborhoods of zero. The future works will focus on the advanced control approaches for the proposed relative motion model subject to multiple constraints.

REFERENCES

[1] J. L. Goodman
History of space shuttle rendezvous and proximity operations
J. Spacecraft Rockets, vol. 43, no. 5, pp. 944–959, 2006.

[2] C. A. Kleeve
Feedback control for spacecraft rendezvous and docking
J. Guid. Control Dyn., vol. 22, no. 4, pp. 609–611, Jul.–Aug. 1999.

[3] Y. Wang and S. Xu
Stabilization of coupled orbit-attitude dynamics about an asteroid utilizing Hamiltonian structure
Astrodynamics, vol. 2, no. 1, pp. 53–67, Mar. 2018.

[4] K. Subbarao and S. Welsh
Nonlinear control of motion synchronization for satellite proximity operations
J. Guid. Control Dyn., vol. 31, no. 5, pp. 1284–1294, Sep.–Oct. 2008.

[5] D. Lee and G. Vukovich
Adaptive sliding mode control for spacecraft body-fixed hovering in the proximity of an asteroid
Aerospace Technol., vol. 46, pp. 471–483, Oct. 2015.

[6] M. Xin and H. Pan
Indirect robust control of spacecraft via optimal control solution
Ieee Trans. Aerospace Electron. Syst., vol. 48, no. 2, pp. 1798–1809, Apr. 2012.

[7] H. Yoon, Y. Eun, and C. Park
Adaptive tracking control of spacecraft relative motion with mass and thruster uncertainties
Aerospace Technol., vol. 34, pp. 75–83, Apr. 2014.

[8] S. B. McCamish, M. Romano, and X. Yun
Autonomous distributed control of simultaneous multiple spacecraft proximity maneuvers
Ieee Trans. Autom. Sci. Eng., vol. 7, no. 3, pp. 630–643, Jul. 2010.

[9] F. Zhang and G. Duan
Integrated relative position and attitude control of spacecraft in proximity operation missions
Int. J. Autom. Comput., vol. 9, no. 4, pp. 342–351, Aug. 2012.

[10] L. Sun and W. Huo
6-DOF integrated adaptive backstepping control for spacecraft proximity operations
Ieee Trans. Aerospace Electron. Syst., vol. 51, no. 3, pp. 2433–2443, Jul. 2015.

[11] L. Sun, W. He, and C. Sun
Adaptive fuzzy relative pose control of spacecraft during rendezvous and proximity operations
Ieee Trans. Fuzzy Syst., vol. 26, no. 6, pp. 3440–3451, Dec. 2018.

[12] L. Sun and Z. Zheng
Adaptive relative pose control of spacecraft with model couplings and uncertainties
Acta Astronautica, vol. 143, pp. 29–36, Feb. 2018.

[13] G. Di Mauro, M. Schlotterer, S. Theil, and M. Lavagna
Nonlinear control for proximity operations based on differential algebra
J. Guid. Control Dyn., vol. 38, no. 11, pp. 2173–2187, Nov. 2015.

[14] N. Filipe and P. Tsiotras
Adaptive position and attitude-tracking controller for satellite proximity operations using dual quaternions
J. Guid. Control Dyn., vol. 38, no. 4, pp. 566–577, Apr. 2015.

[15] H. Dong, Q. Hu, and M. R. Akella
Dual-quaternion-based spacecraft autonomous rendezvous and docking under six-degree-of-freedom motion constraints
J. Guid. Control Dyn., vol. 41, no. 5, pp. 1150–1162, May 2018.

[16] L. Sun, W. Huo, and Z. Jiao
Robust nonlinear adaptive relative pose control for cooperative spacecraft during rendezvous and proximity operations
Ieee Trans. Control Syst. Technol., vol. 25, no. 5, pp. 1840–1847, Sep. 2017.

[17] K. Xia and S.-Y. Park
Adaptive control for spacecraft rendezvous subject to time-varying inertial parameters and actuator faults
J. Aerosp. Eng., vol. 32, no. 5, Sep. 2019, Art. no. 04019063.

[18] L. Sun, W. Huo, and Z. Jiao
Disturbance-observer-based robust relative pose control for spacecraft rendezvous and proximity operations under input saturation
Ieee Trans. Aerospace Electron. Syst., vol. 54, no. 4, pp. 1605–1617, Aug. 2018.

[19] F. Zhang
Robust integrated translational and rotational control for spacecraft rendezvous in unstructured environments
Trans. Inst. Meas. Control., vol. 40, no. 11, pp. 3293–3313, Jul. 2018.

[20] S. He and D. Lin
Reliable spacecraft rendezvous without velocity measurement
Acta Astronaut., vol. 144, pp. 52–60, Mar. 2018.

[21] D. Lee and G. Vukovich
Robust adaptive terminal sliding mode control on SE(3) for autonomous spacecraft rendezvous and docking
Nonlinear Dyn., vol. 83, no. 4, pp. 2263–2279, Mar. 2016.
Liang Sun (Member, IEEE) received the M.Sc. and the Ph.D. degrees in control theory and control engineering from Beihang University, Beihang, China, in 2011 and 2016, respectively.

He was a Postdoctoral Fellow in mechanical engineering with Beihang University from 2015 to 2017, and a Visiting Scholar with Loughborough University, U.K., from 2019 to 2020. He joined the University of Science and Technology Beijing, as an Associate Professor in 2017. His current research interests include nonlinear mechanical systems control, aerospace control, and intelligent control.

Jingjing Jiang (Member, IEEE) received the B.E. degree in electrical and electronic engineering from the University of Birmingham, Birmingham, U.K., and from the Harbin Institute of Technology, Harbin, China, in 2010, and the M.Sc. degree in control systems and the Ph.D. degree in shared-control for systems with constraints from the Imperial College London, London, U.K., in 2016.

She carried out research as part of the Control and Power Group, Imperial College and joined Loughborough University, as a Lecturer in September 2018. Her current research interests include driver assistance control and autonomous vehicle control design, control design of systems with constraints, and human-in-the-loop.