Growing up in Ancient Sardinia: Infant-toddler dietary changes revealed by the novel use of hydrogen isotopes (δ²H)

Saskia E. Ryan¹*, Linda M. Reynard¹, Elisa Pompianu², Peter van Dommelen³, Clizia Murgia⁴, M. Eulàlia Subirà⁵, Noreen Tuross¹*

¹ Department of Human Evolutionary Biology, Harvard University, Boston, Massachusetts, United States of America, ² Independent researcher, Marrubiu, Italy, ³ Joukowsky Institute for Archaeology and the Ancient World, Brown University, Providence, Rhode Island, United States of America, ⁴ Departament de Biologia Animal, Unitat d’Antropologia Biológica, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Barcelona, Spain, ⁵ Grup de Recerca en Antropologia Biológica, Unitat d’Antropologia Biológica, Universitat Autònoma de Barcelona, Barcelona, Spain

* Current address: Archéozoologie, Archéobotanique: Sociétés, Pratiques et Environnements, UMR CNRS 7209, Muséum National d’Histoire Naturelle, Sorbonne Université, Paris, France

* saskiaryan@fas.harvard.edu (SER); tuross@fas.harvard.edu (NT)

Abstract

Detailed information about the lives and deaths of children in antiquity is often in short supply. Childhood dietary histories are, however, recorded and maintained in the teeth of both juveniles and adults. Primary tooth dentinal collagen does not turn over, preserving a sequential record of dietary changes. The use of nitrogen (δ¹⁵N) and carbon (δ¹³C) isotope values of incrementally sampled dentin are used in the study of breastfeeding practices but evidence for the addition of weaning foods, both in terms of mode and, particularly, duration, has remained analytically inaccessible to date. Here, we demonstrate how the novel use hydrogen isotope (δ²H) values of sequentially micro-sampled dentin collagen, measured from individuals excavated from a Punic cemetery, in Sardinia, Italy, can serve as a proxy for weaning food type and duration in ancient childhood diet. The weaning rate and age, based on the decline in δ¹⁵N and δ¹³C values of permanent first molars and the concomitant increase in δ²H, appears to be broadly similar among six individuals. Hydrogen isotopes vary systematically from a low value soon after birth, rising through early childhood. The early post-birth values can be explained by the influence of δ²H-depleted lipids from mother’s breastmilk and the later δ²H rise is consistent with, among other things, a substantial portion of boiled foodstuffs, such as the higher δ²H values observed in porridge. Overall δ²H in dentin shows great promise to elucidate infant and childhood feeding practices, and especially the introduction of supplementary foods during the weaning process.

Introduction

The interaction of infectious disease and malnutrition have shaped the trajectory of human evolution. Nowhere are these effects more pronounced than in infant survival. Today, the
The global under-5 mortality rate is 3.9% [1], but the extent of infant mortality was much greater in the past. Even as late as the mid 1800s in Italy, our greater study location, approximately 20% of infants succumbed to a number of diseases, including gastrointestinal disorders, pneumonia and bronchitis, by the age of one [2]. The introduction of weaning foods often exacerbates the exposure to disease-causing microorganisms and extends the high infant mortality rates into toddlerhood. Weaning-related deaths existed in the past and persist as a source of childhood mortality to this day. So, while the death rates of infants up to one year of age are estimated at around 25% for much of human history [3], the second year of life comes with substantial risk as infants are weaned from human milk [4]. Although some studies have documented the complex nature of infant feeding (e.g. [5]), our knowledge of ancient infant feeding and nutrition remains limited. When textual sources are lacking, infants and young children become even less visible. Archaeological studies underrepresent many aspects of infancy and childhood [6] due in part to the relative scarcity and preservation of skeletal remains. In addition, infants and children who are part of the archaeological record do not necessarily reflect the healthy child population that survived to adulthood [7–11].

Bioarchaeology has contributed to our knowledge of infant and child lifeways [12,13] and the incorporation of stable isotopic values in the study of breastfeeding and weaning has become standard [8,10,14], albeit not without challenges. The empirical observation that infant bone collagen has elevated amounts of 15N as compared to adults was first reported in 1989 [15], and followed by a study of an archaic population from Florida (USA) that exhibited elevated 15N in bone collagen of children vs the adults [16]. As an isotopic medium to interpret infant feeding patterns, bone is often hampered by population sample size [8], the time averaging of protein synthesis, and the unknown health status of individuals: all of these issues cause fine grained determinations of breastfeeding duration from bone to be questionable.

Many of the difficulties associated with the interpretation of bone isotopes can be overcome by the use of serial sections of dentin from both children and adults, as primary dentin maintains the dietary inputs of infancy in the form of isotopic trends [14,17–24]. Most archaeological studies of breastfeeding and weaning practices have been entirely focused on the use of nitrogen and carbon isotopes; less frequently, oxygen isotopes, strontium and calcium concentrations, and calcium isotope ratios have been used (see [14] for a review). Here, we present a new approach—the hydrogen isotope composition of tooth dentin—to independently document the duration of breastfeeding and, for the first time, provide an isotopic record of the potential range of foods used in the weaning process from individuals excavated from contexts dating from the 4th to early 2nd century BCE, from a Punic cemetery in Villamar [25–27], on the island of Sardinia, Italy.

Hydrogen isotopes are powerful biogeochemical tracers; the hydrogen (and oxygen) isotope composition of surface and groundwater vary geographically, typically reflecting the isotope ratio of precipitation [28]. This variation in geographically distributed isotopes can be subsequently reflected in human and faunal tissues [29–32] along with the contribution of δ^{2}H and δ^{18}O from food [33,34]. Water δ^{2}H in cow’s milk is somewhat higher on average compared with co-occurring drinking water [35–37], and milk lipids have been found to be uniformly lower in δ^{1}H values compared to either liquid source [38,39]. This finding highlights the role of the isotopic composition in different milk components for the interpretation of infant dentin collagen δ^{2}H values. Previous reports suggest that δ^{2}H in bone collagen is related to trophic level [40–45]; however, this is not universally observed, and because these reports refer to cross species comparisons, the relevance to very young human infants is unknown.

Another potential controlling factor of dentin δ^{2}H values is food preparation practice. Food and water sources can be isotopically fractionated through boiling, fermentation, distillation and cooking, though very few studies have measured the δ^{2}H values of cooked food [46,47].
The introduction of heavily cooked foods, for example, cereal gruel, which has historically been used as a transitional food during the weaning period, could influence dentin δ²H values. Barley and wheat have played an instrumental role in the subsistence of Sardinian residents historically [48]; botanical remains show a continuous record of barley cultivation from at least the Nuragic Bronze Age to the Middle Ages and beyond (1500 B.C.—A.D. 1100) [49]. Naked wheat (Triticum aestivum-durum) was also found to be in abundance in Punic contexts elsewhere in Sardinia [50], but it is thought that wheat was exported while barley was the cereal that was consumed by inhabitants [51]. In addition to the sequential dentin collagen samples, this study presents δ²H values of both human breastmilk and porridge, a canonical weaning food, to assess their potential effect on dentin isotope composition.

Materials and methods

Site and individuals

We studied six human individuals and three caprids from the site of Villamar in central Sardinia (Fig 1) (S1 Table for details). Authorization for the use and exportation of the Sardinian specimens was granted by the Soprintendenza Archeologia Belle Arti e Paesaggio per la città metropolitana di Cagliari e le province di Oristano e sud Sardegna, with prot. 15667 of 28 July 2017. Official: Chiara Pilo. All necessary permits were obtained for the described study, which complied with all relevant regulations. The site is a Punic cemetery (4th to early 2nd century BCE), where 25 of approximately 50 known tombs have been excavated since 2013 [25–27] (S2 Table for radiocarbon dates). A total of 299 isotopic values (δ²H of dentin samples = 86 and bone collagen = 9; δ¹⁵N and δ¹³C of dentin samples = 93 and bone collagen = 9) were produced from these 6 humans and 3 caprids. The cemetery occupies a rocky outcrop of marl and sandstone into which the graves were cut. The prevalent burial ritual is inhumation, with most of the deceased having been buried in either chamber tombs or rock-cut niches, accessible via a vertical and roughly rectangular shaft (See S1 Appendix for further site information).

Incremental dentin sampling

Reconstructing breastfeeding and weaning practices (BWP as defined by Tsutaya & Yoneda 2014[14]) is made possible by micro-sampling dentin and/or enamel [22,54–56]. For this
study, the tissue of choice is dentin collagen from the first permanent molar due to its relatively straightforward developmental pattern, the size of the sample required for measurement and the ability to measure hydrogen isotopes in this tissue. Dentin formation commences prior to enamel development and starts at the crown, extending progressively towards the root [57]. Matching the biological age to the incremental sections of dentin cannot be done with complete accuracy as the dentin grows in stacked cones [58] and serial sections are taken horizontally [14], thus cutting across overlapping dentin layers which have been deposited at different times. Therefore the values measured from a given section represent a moving average of the inherent isotope mixing [55]. We have taken the approach here of assigning estimated ages based on the midpoint of the section, and based on the AlQahtani Atlas (2010) [59]. The age at which M1 dentin formation begins is approximately 4.5 ± 0.5 months and the age at apex closure is approximately 9.5 ± 0.5 years.

The method of sectioning the dentin was adapted from 'Method 2' used by Beaumont et al., 2013 [60], which in turn was based on the work of Kirsanow et al., (2008) [55]. Using a rotary blade in a dental hand piece, each tooth was cut in half to isolate one complete root and adjoining section of the crown. Samples were photographed, sonicated in deionized (dl) water, and immersed in 0.5 M EDTA (pH 7.3) which was replaced every 1–2 days until complete demineralization. Dentin was rinsed 15 times in dl water and sequentially cut with a scalpel into thin parallel sections from the coronal dentin horn to the root cervix in 1 mm increments, perpendicular to the central axis of the root. Demineralized dentin sections were freeze-dried. The sampling procedure generated between 12 and 22 serial sections per tooth for a total $n = 105$.

Bone sample preparation

Bone was sampled in order to gauge later-life isotope values [61–63]. Bone was demineralized in 0.5 M EDTA (pH 7.3) and washed 15 times with deionized water [64]. All of the bone collagen was well-preserved based on the criteria of atomic C/N ratios [65,66].

Cooking experiment

Barley (*Hordeum vulgare*) was cooked in water at a temperature of 100˚C for 135 minutes. The cooking water, partially-soluble barley fraction and insoluble barley fraction (grains) were sampled at 15 minute intervals throughout the cooking period and their respective hydrogen isotope values were measured.

Breastmilk (BM) and urine separation

One mother and infant pair was recruited from the general region near Cambridge, Massachusetts, USA, and the mother gave written permission for sample collection. The University Area Institutional Review Board of Harvard University granted permission for human tissue from the mother and infant to be used in this study (IRB14-3463). The mother’s diet was omnivorous and unconstrained. Samples were collected periodically over a ~5 month period, beginning approximately two weeks after the infant’s birth. Expressed milk ($n = 5$) and urine ($n = 7$) samples were collected from the mother, and feces were collected from her infant baby ($n = 5$). The samples were frozen immediately after collection. One millilitre of defrosted milk was centrifuged at 3500 rpm for 30 min at room temperature to separate the lipid-protein mixture from the less dense water-carbohydrate components (BM water). The solid lipid-protein fraction was refrigerated and the lipids (BM lipid-rich) separated from the remaining mixture (BM lipid-depleted). After both fractions were sampled individually, they were homogenised and re-measured (BM solids). Urine samples were centrifuged at 3500 rpm for 30 min at room temperature and the supernatant (urine water) was
collected for analysis. A fraction of the urine was also freeze-dried to facilitate transfer to silver capsules for analysis (urine solid). Breastmilk fluid and urine were filtered through 0.45 μm syringe filters prior to isotopic measurements.

Isotope measurement

Solid samples—dentin, collagen, barley, various milk non-water fractions, urine solids, and feces—were measured by continuous-flow mass spectrometry at Harvard University on a Thermo-Finnegan Delta Plus XP. Dentin and bone collagen δ¹⁵N and δ¹³C values were obtained via a Costech Elemental Analyser, using USGS 40 and USGS 41 glutamic acid as standards, and data are reported relative to AIR for δ¹⁵N and VPDB for δ¹³C. The δ²H values of solid materials were obtained using a Thermo Thermal-Conversion Elemental Analyser (TC/EA), previously described in detail [64]. The δ²H values of bone collagen, infant feces, breastmilk solids and urine solids were analysed using a chromium (Cr)-packed reactor, as described in Reynard et al., 2019 [67]. A subset of dentin samples was analysed at the United States Geological Survey, also using a Cr-packed reactor (see S3 Table for further information). Tooth dentin δ²H measurements were obtained with a glassy carbon furnace packing and were converted to equivalent Cr-reactor-run values using the conversion factor that was also presented by Reynard et al., 2019 [67]. Samples were analysed in duplicate where possible and all δ²H data are normalised to the VSMOW-SLAP scale, using VSMOW and SLAP enclosed in sealed silver tubes as standards. The average standard deviation of the duplicate samples of bone collagen δ²H was ± 3 ‰ and 2 ‰ for tooth dentin (S3 and S4 Tables). The long-term keratin standard value is -89 ± 4 ‰ for Cr-δ²H (n = 63). Breastmilk water and urine water were analysed on a Los Gatos Research T-LWIA-45-EP liquid-water analyser for δ²H and δ¹⁸O and are reported relative to SMOW.

Results and discussion

Isotopic changes in dentin collagen during childhood

Each of the six individuals have strikingly similar trends in δ¹³C and δ¹⁵N values in their M1 throughout childhood, suggesting similar weaning practices in this population (Fig 2A and 2B, respectively). We note that both δ¹³C and δ¹⁵N values progressively fall during the formation of the M1 dentin indicating that less and less breastmilk was part of the toddler diet with increasing age. The δ¹³C and δ¹⁵N values gradually plateau in toddlerhood, reaching values close to those of the bone collagen (representing the years before death–adulthood in most cases here) (Fig 2D). Two individuals (US 320 ID1 and US 319 CR2), who died before reaching adolescence, marked by the cessation of root growth, do not have notably different δ¹⁵N patterns compared with those who survived into adulthood, suggesting no identifiable N isotope bias due to childhood mortality.

Hydrogen isotope patterns are dramatically distinct from the corresponding δ¹⁵N and δ¹³C weaning curves with an inverse pattern seen in the earliest years of dentin deposition (Fig 2D). From the earliest post-birth time segment in the M1 dentin, δ²H values rise rapidly until they peak and begin to decrease again, wavering through later childhood, with values in the latter sections closely corresponding to those of the average bone collagen δ²H value (Fig 2C and 2D). As the isotopic patterns of permanent M1 dentin collagen do not reflect dietary input right at birth, both the high δ¹⁵N and δ¹³C values may have already declined from a maximum value. The permanent M1 dentin collagen does, however, capture the total trajectory of non-breastmilk dietary introduction to the infant/toddler.
Dietary sources contributing to dentin collagen isotope composition

Nitrogen. The nitrogen source in the diet of monotonously breastfed infants is milk supplied from the mother. This milk source reflects the diet of the mother and in an agricultural community such as Villamar, the adults of the community were likely omnivores. The δ^{15}N of bone collagen from Villamar averaged 11.5 ± 0.5 ‰ ($n = 6$), consistent with an adult diet that contained meat products. For two reasons, we argue that the likely source of nitrogen in weaning foods were likely plant based. First, the average δ^{15}N of caprid bone collagen ($n = 3$), is 10.5 ± 0.9 ‰, only 1 ‰ lower than the co-occurring adults at Villamar, making caprid milk or meat an unlikely major dietary component for human weanlings. Second, the total average decline from in M1 dentin δ^{15}N collagen was 4.3 ± 0.5 ‰ ($\text{average} \pm \text{SD total range, } n = 6$), consistent with a mixed weaning diet that contained largely plant derived products.

Carbon. The δ^{13}C values of dentin mirror those of δ^{15}N (Fig 2D), declining by on average 1.5 ± 0.8 ‰ ($n = 6$) over the time represented. The drop in δ^{13}C is consistent with an enriched

Fig 2. The left panels show the separate carbon (A), nitrogen (B) and hydrogen (C) isotope values from each individual ($n = 6$) from the incremental first permanent molar dentin sections. A range of $\sim 1–3$ ‰ in δ^{13}C values, (A), $\sim 4–5$ ‰ in δ^{15}N (B) and $\sim 14–29$ ‰ in δ^2H values (C) is noted across the total length of tooth dentin. The right panel (D) shows the average values of the permanent first molars from 6 different individuals. For the purpose of visual representation, each data point from a 1 mm section is plotted in sequential order. *Approximate age in years is based on the commencement and cessation ages of tooth dentin determined by AlQahtani et al., (2010) [59], assuming a constant growth rate of dentin, factoring in the length of the tooth. The average length of the M1s sampled is used in the case of ‘319 CR2’ and ‘320 ID1’ whose dentin was not fully mineralised.

https://doi.org/10.1371/journal.pone.0235080.g002
animal (mother) input followed by the introduction of C₃ plant-based weaning foods with lower δ¹³C values.

Hydrogen. Far less is known about the hydrogen isotope composition of potential weaning foods, and for that reason we undertook two types of analyses. From a mother-baby pair, we observe human breastmilk water δ²H values to be slightly higher than that of local drinking water values (Δaverage of breastmilk water - drinking water = 4.8 ± 1.5 ‰), in agreement with observed δ²H enrichment in cow’s milk water over drinking water [38,68]. In addition, as previously reported [69], human breastmilk and urine water were isotopically indistinguishable in δ²H. The non-water fractions are all significantly δ²H depleted vs. both the breastmilk water and the local drinking water (Fig 3), in agreement with previously reported data from cows [38].

The hydrogen isotope composition of the infant/toddler dentin is depleted in δ²H in early infancy (Δaverage of dentin horn section-bone collagen = -15.0 ± 5.8 ‰ of earliest M1 dentin vs. bone collagen) and steadily rises over the period in which the nitrogen isotope patterns would suggest weaning is taking place. It is likely that lipid-rich human breastmilk is a sole dietary source during the early stages of infancy and that this monotonous food source significantly contributes to the early depletion in δ²H.

The simultaneous high δ¹⁵N, δ¹³C and low δ²H in the early-formed dentin segments demonstrates that δ²H values in dentin are not elevated during exclusive breastfeeding. The dentin δ²H values are not “trophic” in the sense used in some hydrogen isotopic literature (referring to herbivores vs. omnivores vs. carnivores) [40–45], but rather reflect early milk inputs.

The rise in δ²H values in the M1 dentin is inconsistent with a diet dominated by animal products, and in agreement with the nitrogen isotopic data which suggest that a substitute animal milk source was not a major contribution to the infant diet during the weaning period. There are many other possible foods that could have been used as a substitute food source for weaning infants of Villamar, including likely soft sources such as fruit which often have elevated δ²H values relative to precipitation [70–72]. We chose to test whether cereal gruel/porridge hydrogen isotope values were consistent with the observed increase in the infant dentine collagen.

The δ²H values of the partially-soluble fraction of barley, i.e. the food fraction that would likely have been consumed by an infant being weaned, and the cooking water (Fig 4) become increasingly elevated in δ²H over the cooking time (S6 Table). Barley gruel is therefore a potential source of high δ²H dietary inputs which could subsequently be reflected in tooth dentin. A major factor that controls the starting point and duration of infant weaning is the availability of a suitable supplementary food that has an appropriate nutrient profile and is easy to swallow and digest. The type of food that was used for weaning in Punic Sardinia could very likely have been a grain-based porridge. However, it is likely that any grain treated in the above manner would result in an increase in δ²H values in both the water and partially solubilized grain.

Brewing, boiling, and stewing have been shown to result in an increase in the δ¹⁸O of stew water of 10.3‰ on average [46]. Tuross et al., (2017) [47] document the change in the δ¹⁸O of biochemical constituents in foods (beef and sweet potatoes) through application of heat, and showed a change in δ¹⁸O of Δ 6‰ pre- and post-cooking in the most extreme case. Here, we confirm that the fractionation of hydrogen isotopes occurs as a result of cooking both in the water, as expected [73] and in the partially solubilized grain. Accordingly, one potential cause of elevated hydrogen isotope values in dentin is the consumption of heavily cooked barley gruel.

Conclusions

The duration of the breastfeeding and weaning period varies widely depending on cultural, biological and environmental factors [74,75]. This study provides a new powerful method for examining the decline in the consumption of mother’s breastmilk and the introduction of
weaning foods. Reconstructing breastfeeding and weaning practices of ancient populations can be accomplished by sequential isotope measurement of incremental tooth dentin from adult M1 permanent molars, obviating the need for infant skeletal material. The fine-grained pattern of increasing δ²H and declining δ¹⁵N and δ¹³C in dentin documents the gradual introduction of weaning foods over a duration of one to two years in the Villamar individuals. Dentin laid down in early infancy has a lower δ²H value consistent with breastmilk intake. In the following dentin sections δ²H rises sharply with the concurrent decline in δ¹⁵N and δ¹³C values. All three isotopic ratios are consistent with a substitute weaning food dominated by plant source(s), and we provide evidence for the source of the increase in δ²H during the later first, second and third year of life as consistent with a food such as cooked grains, and inconsistent with substantial animal products. Given the large amplitude shifts observed in

Fig 3. Hydrogen isotope values of infant feces, and maternal breastmilk fractions and urine water. See S5 Table for data. Open circles are outliers. Solid samples were analysed using a Cr-packed reactor.

https://doi.org/10.1371/journal.pone.0235080.g003
δ²H values in sequential dentin samples, consistent with likely dietary inputs (breastmilk and cooked barley porridge), this isotopic tracer reveals more detailed and potentially new and otherwise untraceable dietary sources in infancy and early childhood.

Supporting information

S1 Appendix. Villamar site details.
(PDF)

S1 Table. List of individuals with key information pertaining to the sample analyses from each.
(DOCX)

S2 Table. Radiocarbon dates of selected Villamar individuals.
(DOCX)

S3 Table. Hydrogen, nitrogen and carbon isotope values, standard deviations and sample numbers of individual dentin sections taken from the first permanent molars of six individuals from Villamar. *δ²H analysed at Harvard were converted to equivalent Cr-reactor run values using a conversion factor presented by Reynard et al., 2019[67].
(DOCX)

S4 Table. Bone collagen hydrogen, nitrogen and carbon isotope values of Villamar humans and caprids.
(DOCX)
S5 Table. Hydrogen isotope values (‰) of infant feces, maternal breastmilk and urine (chromium (Cr)-packed reactor), and local meteoric water which were collected over a period of ~5 months.

S6 Table. Hydrogen isotope values (‰) of barley cooking experiment fractions. *Glassy-C reactor configuration.

Acknowledgments
We thank the volunteer mother-baby pair who provided samples. In addition, we thank Samantha Lash and Richard Waldbauer for assistance in the field.

Author Contributions
Conceptualization: Saskia E. Ryan, Noreen Tuross.
Data curation: Saskia E. Ryan, Linda M. Reynard, Noreen Tuross.
Formal analysis: Saskia E. Ryan, Linda M. Reynard, Elisa Pompianu, Clizia Murgia.
Funding acquisition: Noreen Tuross.
Investigation: Saskia E. Ryan, Elisa Pompianu, Peter van Dommelen, Noreen Tuross.
Methodology: Saskia E. Ryan, Linda M. Reynard, Noreen Tuross.
Resources: Elisa Pompianu, Peter van Dommelen, M. Eulàlia Subirà, Noreen Tuross.
Supervision: M. Eulàlia Subirà, Noreen Tuross.
Validation: Saskia E. Ryan, Linda M. Reynard, Noreen Tuross.
Visualization: Saskia E. Ryan, Noreen Tuross.
Writing – original draft: Saskia E. Ryan, Linda M. Reynard, Noreen Tuross.
Writing – review & editing: Saskia E. Ryan, Linda M. Reynard, Elisa Pompianu, Peter van Dommelen, Clizia Murgia, M. Eulàlia Subirà, Noreen Tuross.

References
1. World Health Organization. World Health Statistics 2019: Monitoring Health for the SDGs. World Health Organization. 2019. https://doi.org/10.1007/978-1-349-04787-1_12
2. Del Panta L. Infant and child mortality in Italy, eighteenth to twentieth century: long-term trends and territorial differences. Infant and child mortality in the past. 1997.
3. Volk T, Atkinson J. Is child death the crucible of human evolution? J Soc Evol Cult Psychol. 2008;247. https://doi.org/10.1037/h0099341
4. Gordon JE, Wyon JB, Ascoli W. The second year death rate in less developed countries. Am J Med Sci. 1967; 254: 357–380. PMID: 6054538
5. Pozzi L. The determinants of infant and childhood mortality: A complex tangle in the historical research. Atti della XLII Riun Sci Milano. 2002; 5–7.
6. Baxter JE. The Archaeology of Childhood. Annu Rev Anthropol. 2008; 37: 159–175. https://doi.org/10.1146/annurev.anthro.37.081407.085129
7. Beaumont J, Montgomery J, Buckberry J, Jay M. Infant mortality and isotopic complexity: New approaches to stress, maternal health, and weaning. Am J Phys Anthropol. 2015; 157: 441–457. https://doi.org/10.1002/ajpa.22736 PMID: 25773670
8. Reynard LM, Tuross N. The known, the unknown and the unknowable: Weaning times from archaeological bones using nitrogen isotope ratios. J Archaeol Sci. 2015; 53: 618–625. https://doi.org/10.1016/j.jas.2014.11.018

9. Prowse TL, Saunders SR, Schwarcz HP, Garnsey P, Macchiarelli R, Bondioli L. Isotopic and dental evidence for infant and young child feeding practices in an imperial roman skeletal sample. Am J Phys Anthrop. 2008; 137: 294–308. https://doi.org/10.1002/ajpa.20870 PMID: 18615573

10. Howcroft R. Weaned Upon A Time: Studies of the Infant Diet in Prehistory. Stockholm: Stockholm University; 2013.

11. Beaumont J. The Whole Tooth and Nothing but the Tooth: Or why Temporal Resolution of Bone Collagen May Be Unreliable. Archaeometry. 2020; https://doi.org/10.1111/arcm.12544

12. Perry MA. Redefining Childhood through Bioarchaeology: Toward an Archaeological and Biological Understanding of Children in Antiquity. Archael Pap Am Anthropol Assoc. 2006; 89–111. https://doi.org/10.1525/ap3a.2006.15.89

13. Stuart-Macadam P, Stuart-Macadam P. Breastfeeding in Prehistory. Breastfeeding. Routledge; 2017. pp. 75–100. https://doi.org/10.4324/9781315081984-3

14. Tsutaya T, Yoneda M. Reconstruction of breastfeeding and weaning practices using stable isotope and trace element analyses: A review. American Journal of Physical Anthropology. 2014. pp. 2–21. https://doi.org/10.1002/ajpa.22657 PMID: 25407359

15. Fogel ML, Tuross N, Owseay DW. Nitrogen isotope tracers of human lactation in modern and archaeological populations. Annu Rep Dir Geophys Lab 1988–1989 Carnegie Inst Washington. 1989;

16. Tuross N, Fogel ML. Exceptional molecular preservation in the fossil record: the archaeological, conservation and scientific challenge. Archaeometry of pre-Columbian sites and artifacts: proceedings of a symposium Los Angeles: Getty Conservation Institute. 1994.

17. King CL, Millard AR, Grocke DR, Standen VG, Arriaza BT, Halcrow SE. A comparison of using bulk and incremental isotopic analyses to establish weaning practices in the past. STAR Sci Technol Archaeol Res. Taylor & Francis; 2018; 8923: 1–9. https://doi.org/10.1080/20548923.2018.1443548

18. Czernak A, Schermelleh L, Lee-Thorp J. Imaging-assisted time-resolved dentine sampling to track weaning histories. Int J Osteoarchaeol. 2018; 28: 535–541. https://doi.org/10.1002/oa.2697

19. Tsutaya T, Miyamoto H, Uno H, Omori T, Gakuhari T, Inahara A, et al. From cradle to grave: multi-isotopic investigations on the life history of a higher-status female from Edo-period Japan. 2016; 124: 185–197. https://doi.org/10.1537/ase.161029

20. Beaumont J, Montgomery J. The Great Irish Famine: Identifying Starvation in the Tissues of Victims Using Stable Isotope Analysis of Bone and Incremental Dentine Collagen. PLoS One. 2016; 11: 1–21. https://doi.org/10.1371/journal.pone.0160065 PMID: 27508412

21. Burt NM, Garvie-Lok S. A new method of dentine microsampling of deciduous teeth for stable isotope ratio analysis. J Archaeol Sci. 2013; 40: 3854–3864. https://doi.org/10.1016/j.jas.2013.05.022

22. Eerkens JW, Berget AG, Bartelink EJ. Estimating weaning and early childhood diet from serial micro-samples of dentin collagen. J Archaeol Sci. 2011; 38: 3101–3111. https://doi.org/10.1016/j.jas.2011.07.010

23. Fuller BT, Richards MP, Mays SA. Stable carbon and nitrogen isotope variations in tooth dentine serial sections from Wharram Percy. J Archaeol Sci. 2003; 30: 1673–1684. https://doi.org/10.1016/S0305-4403(03)00173-6

24. Scharlotta I, Goude G, Herrscher E, Bazaliiskii VI, Weber AW. “Mind the gap”—Assessing methods for aligning age determination and growth rate in multi-molar sequences of dietary isotopic data. Am J Hum Biol. 2018; 30: 1–13. https://doi.org/10.1002/ajhb.23163 PMID: 30129288

25. Pompeianu E. Nuovi scavi nella necropoli punica di Villamar (2013–2015). FOLD&R it. 2017; 395: 1–28. Available: http://www.fastionline.org

26. Pompeianu E. Cartagine in Sardegna. Nota su alcuni contesti con incinerazioni dalla necropoli di Villamar. Folia Phoenicia. 2019; 3: 99–116.

27. Guirguis M, Pta Orquin R, Pompeianu E. Premature deaths in Punic Sardinia. Perception of childhood in funerary contexts from Monte Sirai and Villamar. In: Tabolli J, editor. From Invisible to Visible New data and Methods for the Archaeology of infant and Child Burials in Pre-Roman Italy and Beyond. Studies in Mediterranean Archaeology 149, Astrom Editions, Nicosia; 2018. pp. 207–215.

28. Dansgaard W. Stable isotopes in precipitation. Tellus. 1964; 16: 436–468. https://doi.org/10.3402/tellusa.v16i4.8993

29. Bowen GJ. Isoscapes: spatial pattern in isotopic biogeochemistry. Ann Rev Earth Planet Sci. 2010; 38: 161–187.
30. Ehleringer JR, Bowen GJ, Chesson LA, West AG, Podlesak DW, Cerling TE. Hydrogen and oxygen isotope ratios in human hair are related to geography. Proc Natl Acad Sci U S A. 2008; 105: 2788–2793. https://doi.org/10.1073/pnas.0712228105 PMID: 18299562

31. Sharp ZD, Atudorei V, Panarello HO, Fernández J, Douthitt C. Hydrogen isotope systematics of hair: Archeological and forensic applications. J Archaeol Sci. 2003; 30: 1709–1716. https://doi.org/10.1016/S0305-4403(03)00071-2

32. Bowen GJ, Wilkinson B. Spatial distribution of delta O-18 in meteoric precipitation. Geology. 2002; 30: 315–318. https://doi.org/10.1130/0191-7613(2002)030<0315:sdooim>2.0.co;2

33. Kirsanow K, Tuross N. Oxygen and hydrogen isotopes in rodent tissues: Impact of diet, water and ontogeny. Palaeoecogr Palaeoclimatol Palaeoecol. 2011; 310: 9–16. https://doi.org/10.1016/j.palaeo.2011.03.022

34. Podlesak DW, Torregrossa AM, Ehleringer JR, Dearing MD, Passey BH, Cerling TE. Turnover of oxygen and hydrogen isotopes in the body water, CO2, hair, and enamel of a small mammal. Geochim Cosmochim Acta. 2008; 72: 19–35. https://doi.org/10.1016/j.gca.2007.10.003

35. Lin GP, Rau YH, Chen YF, Chou CC, Fu WG. Measurements of δD and δ18Ostable isotope ratios in milk. J Food Sci. 2003; 68: 2192–2195. https://doi.org/10.1111/j.1365-2621.2003.tb05745.x

36. Abeni F, Petrera F, Capelletti M, Prati F, Baldini C. Hydrogen and oxygen isotope fractionation in body fluid compartments of dairy cattle according to season, farm, breed, and reproductive stage. PLoS One. 2015;10. https://doi.org/10.1371/journal.pone.0127391 PMID: 25996911

37. Chesson LA, Valenzuela LO, O’Grady SP, Cerling TE, Ehleringer JR. Hydrogen and Oxygen Stable Isotope Ratios of Milk in the United States. J Agric Food Chem. 2010; https://doi.org/10.1021/jf904151c PMID: 20104849

38. Ehtesham E, Hayman A, Van Hale R, Frew R. Influence of feed and water on the stable isotopic composition of dairy milk. Int Dairy J. 2015; https://doi.org/10.1016/j.idairyj.2014.09.006 PMID: 25908989

39. Dunne J, Rebay-Salisbury K, Salisbury RB, Frisch A, Walton-Doyle C, Evershed RP. Milk of ruminants in ceramic baby bottles from prehistoric child graves. Nature. 2019; 574: 246–248. https://doi.org/10.1038/s41586-019-1572-x PMID: 31554964

40. Reynard LM, Hedges REM. Stable hydrogen isotopes of bone collagen in palaeodietary and palaeoenvironmental reconstruction. J Archaeol Sci. 2008; 35: 1934–1942. https://doi.org/10.1016/j.jas.2007.12.004

41. Birchall J, O’Connell TC, Heaton THE, Hedges REM. Hydrogen isotope ratios in animal body protein reflect trophic level. J Anim Ecol. 2005; 74: 877–881. https://doi.org/10.1111/j.1365-2656.2005.00979.x

42. Topalov K, Schimmelmann A, David Polly P, Sauer PE, Lowry M. Environmental, trophic, and ecological factors influencing bone collagen δ2H. Geochim Cosmochim Acta. 2013; 111: 89–104. https://doi.org/10.1016/j.gca.2012.11.017

43. Gröcke DR, Sauer PE, Bridault A, Drucker DG, Germonpré M, Bocherens H. Hydrogen isotopes in Quaternary mammal collagen from Europe. J Archaeol Sci Reports. 2017; 12: 1–16. https://doi.org/10.1016/j.jasrep.2016.11.020

44. Bowen GJ, Ehleringer JR, Chesson LA, Thompson AH, Podlesak DW, Cerling TE. Dietary and physiological controls on the hydrogen and oxygen isotope ratios of hair from mid-20th century indigenous populations. Am J Phys Anthropol. 2009; 139: 494–504. https://doi.org/10.1002/ajpa.21008 PMID: 19235792

45. van der Suijs LG, Reimer PJ, Ogle N. Adding Hydrogen to the Isotopic Inventory—Combining δ13C, δ15N and δ2H Stable Isotope Analysis for Palaeodietary Purposes on Archaeological Bone. Archaeometry. 2019; 61: 720–749. https://doi.org/10.1111/arcm.12441

46. Brettell R, Montgomery J, Evans J. Brewing and stewing: the effect of culturally mediated behaviour on the oxygen isotope composition of ingested fluids and the implications for human provenance studies. J Anal At Spectrom. 2012; 27: 778. https://doi.org/10.1039/c2ja10335d

47. Tuross N, Reynard LM, Harvey E, Coppa A, McCormick M. Human skeletal development and feeding behavior: the impact on oxygen isotopes. Archaeol Anthropol Sci. Archaeological and Anthropological Sciences; 2017; https://doi.org/10.1007/s12520-017-0486-5

48. Spano Giammellaro A. The Phoenicians and the Carthaginians: the Early Mediterranean Diet. In: Fladri J-L, Montanari M, editors. Food: A Culinary History from Antiquity to the Present. Columbia University Press 1999; 1999.

49. Bakels C. Plant remains from Sardinia, Italy, with notes on barley and grape. Vegetation History and Archaeobotany. 2002. https://doi.org/10.1007/s003340200334

50. Pérez-Jordà G, Hurley J, Ramis D, van Dommelen P. Iron Age botanical remains from nuraghe S’Ura-chi, Sardinia. Antiquity. 2020; 1–8.

51. Attene G, Ceccarelli S, Papa R. The barley (Hordeum vulgare L.) of Sardinia, Italy. Genet Resour Crop Evol. 1996; 43: 385–393.
52. Ancient World Mapping Center. “Map Tiles”. [Internet]. [cited 6 Nov 2018]. Available: http://awmc.unc.edu/wordpress/tiles/

53. QGIS Development Team. QGIS Geographic Information System [Internet]. Open Source Geospatial Foundation. 2018. http://www.qgis.org/

54. Balasse M. Reconstructing dietary and environmental history from enamel isotopic analysis: Time resolution of intra-tooth sequential sampling. Int J Osteoarchaeol. 2002; 12: 155–165. https://doi.org/10.1002/oa.601

55. Kirsanow K, Makarewicz CA, Tuross N. Stable oxygen (d18O) and hydrogen (dD) isotopes in ovicaprid dentinal collagen record seasonal variation. J Archaeol Sci. 2008; 35: 3159–3167. https://doi.org/10.1016/j.jas.2008.06.025

56. Eerkens JW, Bartelink EJ. Sex-biased weaning and early childhood diet among middle holocene hunter-gatherers in Central California. Am J Phys Anthropol. 2013; 152: 471–483. https://doi.org/10.1002/ajpa.22384 PMID: 24127159

57. Hillson S. Teeth. Cambridge: Cambridge University Press.; 1986.

58. Smith TM. Incremental dental development: Methods and applications in hominoid evolutionary studies. J Hum Evol. 2008; https://doi.org/10.1016/j.jhevol.2007.09.020 PMID: 18045649

59. AlQahtani SJ, Hector MP, Liversidge HM. Brief communication: The London atlas of human tooth development and eruption. Am J Phys Anthropol. 2010; 142: 481–490. https://doi.org/10.1002/ajpa.21258 PMID: 20310064

60. Beaumont J, Gledhill A, Lee-Thorp JA, Montgomery J. Childhood diet: A closer examination of the evidence from dental tissues using stable isotope analysis of incremental human dentine *. Archaeometry. 2013; 55: 277–295. https://doi.org/10.1111/j.1475-4754.2012.00862.x

61. Hedges REM, Clement JG, Thomas CDL, O’Connell TC. Collagen turnover in the adult femoral mid-shaft: Modeled from anthropogenic radiocarbon tracer measurements. Am J Phys Anthropol. 2007; 133: 808–816. https://doi.org/10.1002/ajpa.20598 PMID: 17405135

62. Sealy JC. Body tissue chemistry and Palaeodiet. In: Brothwell DR, Pollard AM (Eds), Handbook of Archaeological Science. John Wiley & Sons, Chichester; 2001. pp. 269–279.

63. Ambrose SH, Norr L. Experimental evidence for the relationship of the carbon isotope ratios of whole diet and dietary protein to those of bone collagen and carbonate. In, Lambert J B & Grupe G (Eds) Prehistoric Human Bone–Archaeology at the Molecular Level. Springer Verlag; 1993. pp. 1–38.

64. Tuross N, Warinner C, Kirsanow K, Kester C. Organic oxygen and hydrogen isotopes in a porcine controlled dietary study. Rapid Communications in Mass Spectrometry. 2008. pp. 1741–1745. https://doi.org/10.1002/rcm.3556 PMID: 18446769

65. DeNiro MJ. Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature. 1985; 317: 806–809. https://doi.org/10.1038/317806a0

66. Van Klinken GJ. Bone collagen quality indicators for palaeodietary and radiocarbon measurements. J Archaeol Sci. 1999; 26: 687–695. https://doi.org/10.1006/jasc.1998.0385

67. Reynard LM, Ryan SE, Tuross N. The interconversion of δ2H values of collagen between thermal conversion reactor configurations. Rapid Commun Mass Spectrom. 2019; 33: 678–682. https://doi.org/10.1002/rcm.8396 PMID: 30681206

68. Masud Z, Vallet C, Martin GJ. Stable Isotope Characterization of Milk Components and Whey Ethanol. J Agric Food Chem. 1999; 47: 4693–4699. https://doi.org/10.1021/jf9900027 PMID: 10552874

69. Wong WW, Lee LS, Klein PD. Deuterium and oxygen-18 measurements on microliter samples of urine, plasma, saliva, and human milk. Am J Clin Nutr. 1987; 45: 905–913. https://doi.org/10.1093/ajcn/45.5.905 PMID: 3578092

70. Ingraham NL, Caldwell EA. Influence of weather on the stable isotopic ratios of wines: Tools for weather/climate reconstruction? J Geophys Res Atmos. 1999; https://doi.org/10.1029/98JD00421

71. Bong YS, Lee KS, Shin WJ, Ryu JS. Comparison of the oxygen and hydrogen isotopes in the juices of fast-growing vegetables and slow-growing fruits. Rapid Commun Mass Spectrom. 2008; 22: 2809–2812. https://doi.org/10.1002/rcm.3663 PMID: 18712704

72. Bricout J. Composition en isotopes stable de l’eau des jus de fruits. Ann des Falsif l’exper tise Chim Tox- icol. 1973;

73. Sharp Z. Principles of Stable Isotope Geochemistry, 2nd Edition [Internet]. 2017. Available: https://doi.org/10.25844/h9q1-1-pb82

74. Fulminante F. Infant feeding practices in Europe and the Mediterranean from prehistory to the middle ages: A comparison between the historical sources and bioarchaeology. Child Past. 2015; 8: 24–47. https://doi.org/10.1179/1758571615Z.0000000026