Age-dependent non-linear neuroplastic effects of cathodal tDCS in the elderly population: a titration study

Ensiyeh Ghasemian-Shirvana, Mohsen Mosayebi-Samani, Leila Farnada, Min-Fang Kuoa, Raf L.J. Meesen, Michael A. Nitsche

A Department of Psychology and Neurosciences, Leibniz Research Center for Working Environment and Human Factors, Dortmund, Germany
b International Graduate School of Neuroscience, Ruhr-University Bochum, Bochum, Germany
c Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek, Belgium
d Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Belgium
*e Department of Neurology, University Medical Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany

Article history:
Received 1 October 2021
Received in revised form 27 December 2021
Accepted 16 January 2022
Available online 24 January 2022

Keywords:
tDCS
TMS
Motor cortex
Aging
Non-linear plasticity

Background: Neuromodulatory effects of transcranial direct current stimulation (tDCS) in older humans have shown heterogeneous results, possibly due to sub-optimal stimulation protocols associated with limited knowledge about optimized stimulation parameters in this age group. We systematically explored the association between the stimulation dosage of cathodal tDCS and induced after-effects on motor cortex excitability in the elderly.

Method: Thirty-nine healthy volunteers in two age groups, namely Pre-Elderly (50–65 years) and Elderly (66–80 years), participated in the study. Ten sessions of cathodal tDCS, with a combination of four intensities (1, 2, 3 mA and sham) and three durations (15, 20, 30 min) were conducted over the M1 in each participant. Cortical excitability changes were monitored with TMS-induced motor evoked potentials (MEPs) for up to 2 h after stimulation.

Results: Motor cortex excitability was reduced by cathodal stimulation intensities of 1 and 3 mA in both age groups, in accordance with results observed in the younger age groups of previous studies. For the 2 mA stimulation condition, an age-dependent conversion of plasticity into a stimulation duration-dependent excitability enhancement was observed in the Pre-Elderly group, whereas in the Elderly group, LTD-like plasticity was preserved, or abolished, depending on stimulation duration.

Conclusion: The LTD-like plasticity effects induced by cathodal tDCS originally described in young adults are also observable in older humans, but non-linearities of the resulting plasticity were partially preserved only in the Pre-Elderly, but not the Elderly group. These results aid in understanding age-dependent plasticity dynamics in humans, and to define more efficient tDCS protocols in the aging brain.

© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Aging in otherwise healthy humans is associated with a decline in cognitive and motor performance, which negatively affects the quality of life [1–3]. These age-dependent alterations are caused by structural and neurophysiological alterations of the brain at the cellular, circuit, and systems level [4–6]. Former studies have stressed an impact of age on neuroplasticity, which is the structural and functional alteration of the strength of synaptic connections in response to environmental or internal demands, as a critical factor for age-related cognitive, and motor decline [7,8].

In this regard, animal studies have shown an age-related decline of motor functions, including a decline of motor coordination [9], or motor slowing and parkinsonian symptoms [10], as well as a decline of cognitive performance, including impairment of visual recognition memory [11], executive functions [12], or discrimination learning [13]. These deficits have been linked to age-dependent alterations of plasticity mechanisms, including an increase of the synaptic threshold for the induction of long-term potentiation (LTP), and increased probability for the induction of long-term depression (LTD) [14], potentially due to synaptic density...
The use of tDCS in basic and clinical settings [27] has revealed a gradual improvement of healthy young adults [35,36], whether and to what degree the findings obtained in young healthy humans can be extrapolated to the elderly population is not yet clear. Only a few studies have assessed the direct neurophysiological effects of tDCS in elderly adults. We recently tested the effects of anodal and cathodal tDCS of 1 mA for 15 min applied over the primary motor cortex in three age groups: young (18–30 years-old), Pre-Elderly (50–65 years-old) and Elderly (66–80 years-old) humans. The results showed no age-dependent differences for the excitability-dimining effects of cathodal tDCS, while the excitatory effect of anodal tDCS declined depending on age [37] for this specific tDCS protocol. Apart from this, other studies for age-dependent cathodal tDCS effects are not available. However, the results of this study do not exclude that cathodal tDCS effects differ between young and elderly humans with respect to other tDCS dosages, especially given the dosage-dependent non-linearities of tDCS effects, which in young healthy adults are observed under specific dosages [34]. Here, gradual age-dependent alterations of cerebral connectivity, and transmitter availability could have relevant effects. Systematic dosing studies for cathodal tDCS in elderly adults are thus required to identify age-adapted optimized intervention protocols.

In the present study, we systematically explored the effect of cathodal tDCS on motor cortex plasticity with combinations of three stimulation intensities (1, 2, and 3 mA) and durations (15, 20, and 30 min), in a sham-controlled cross-over design in two age groups: Pre-Elderly and Elderly. According to previous findings, we anticipated a dosage-dependent non-linear effect of tDCS which is modulated by age, and an enhancement of respective neurophysiological outcomes by intensified tDCS dosages. The results of this study will provide further insights about the dependency of tDCS-induced LTD-like neuroplasticity from these stimulation parameters in the elderly population, and thereby deliver crucial information for future applications of cathodal tDCS in this group.

2. Methods

2.1. Participants

Thirty-nine healthy, non-smoking participants of two age groups were recruited: 20 Pre-Elderly participants (11 females; mean age (years ± SD) 58.65 ± 3.86) and 19 Elderly participants (10 females; mean age (years ± SD) 72.68 ± 5.12). These age ranges were selected based on previous findings looking at the impact of age on tDCS-generated plasticity [37,38], and is in line with the assumed course of plasticity alteration in advanced age (see these also for further details: [39,40]. All participants were right-handed according to the Edinburgh Handedness Inventory [41]. Prior to participation, volunteers were screened for history of neurological and psychiatric diseases, and the absence of exclusion criteria for non-invasive electrical and magnetic brain stimulation [42,43]. Central nervous system-acting medication or respective recreational substances served also as exclusion criteria. In addition, to ensure that cognitive functioning was within age-related norms, all participants underwent a cognitive screening, namely the Montreal Cognitive Assessment (MOCA) test [44]. Moreover, the amount of physical activity of the participants was quantified using an adapted version of the Lundeschmid Activity Questionnaire [45]. Additionally, all participants were instructed not to consume drinks containing caffeine at least 2 h prior to each session, and to avoid alcohol one day prior to each session. The study conformed to the Declaration of Helsinki and was approved by the local ethics committee. All participants gave written informed consent prior to study participation, and were financially compensated.

2.2. Motor cortical excitability monitoring

Transcranial magnetic stimulation (TMS) is a non-invasive brain stimulation technique that can induce action potentials in surface-near cortical neurons [46]. The motor evoked potential (MEP) amplitude elicited by single pulse TMS is a global measure of excitability of the cortico-spinal system, not restricted to single neuronal subgroups, and neurotransmitter or -modulator systems. In principle, single pulse TMS-evoked MEP could also be affected via transmission alterations at cortico-spinal synapses, and at the neuromuscular junction. However, the direct effects of tDCS are missing at this level, which make this measure appropriate for screening the cortical effects of tDCS [23]. In this study, single pulse TMS at 0.25 Hz ± 10% jitter was delivered by a PowerMag magnetic stimulator (Mag&More, Munich, Germany) with a figure-of-eight magnetic coil (diameter of one winding, 70 mm; peak magnetic field, 2T). The coil was held tangentially to the skull, with the handle pointing backwards and laterally at 45° from the midline.
and was applied to the left primary motor cortex. Surface MEPs were recorded from the right Abductor Digitii Minimii muscle (ADM) with gold cup electrodes in a belly-tendon montage. The signals were amplified, and filtered (1000; 3 Hz - 3 kHz) via the D440-2 (Digitimer, Welwyn Garden City, UK), and digitized (sampling rate, 5 kHz) with a micro 1401 AD converter (Cambridge Electronic Design, Cambridge, UK), controlled by Signal Software (Cambridge Electronic Design, v. 2.13).

2.3. Transcranial direct current stimulation (tDCS)

TDCS was applied with a constant current battery-powered stimulator (neuroConn, Ilmenau, Germany), through a pair of saline-soaked surface sponge electrodes (5 × 7 cm) placed on the scalp. Based on previous studies, one electrode was fixed over the motor cortex representational area of the right ADM as identified by TMS (the long axis medio-lateral, and with an angle of 45° in relation to midline to align with the motor strip orientation [47], and the other was placed contralaterally over the right orbit [23,26]). Prior to stimulation, a topical anaesthetic cream (EMLA®, 2.5% lidocaine, 2.5% prilocaine) was applied to the stimulation site to ensure sufficient blinding of the participants (Guleyupoglu, Febles, Minhas, Hahn, & Biskon, 2014). All participants received cathodal tDCS at an intensity of 1.0, 2.0 or 3.0 mA for 15, 20 or 30 min, with a 30 s ramp-up and down at the start and end of stimulation. For sham stimulation, a current strength of 1.0 mA was delivered for 30 s, with a 30 s ramp up and down, followed by 15 min with 0 mA stimulation. All intensity-duration combinations, including sham stimulation, resulted in 10 experimental sessions per participant.

2.4. Experimental procedure

All volunteers went through a 2-h introductory session to examine their medical and cognitive state as well as to familiarize them with the experimental procedure, including tDCS. This session was separated at least one week from the principal experimental sessions.

At the beginning of each experimental session, participants were seated in a comfortable chair with head and armrests. TMS was applied to the left motor cortex to identify the representational area of the right ADM in which the largest MEPs were produced (motor hot spot), and the respective coil position was marked with a waterproof pen. The intensity of the TMS pulses was adjusted to elicit MEPs with a peak-to-peak amplitude of 1 mV (SI1mV) on average, which was determined at the beginning of each session, and kept constant throughout the experiment in each participant. Baseline cortical excitability was determined by measuring 30 MEPs. Afterwards, tDCS electrodes were mounted and tDCS was applied. TDCS with different intensities and durations (as outlined above) was applied in a randomized order with a minimum of seven days between each session to avoid carry-over effects [48,49]. After intervention, tDCS electrodes were removed and corticospinal excitability was assessed by TMS (30 stimuli per time-point) every 5 min for up to 30 min, then at 60 min, 90 min, and 120 min post-tDCS (Fig. 1).

2.5. Calculations and statistics

MEP amplitudes were first visually inspected to exclude trials in which background electromyographic activity was present. Then, the individual means of MEP amplitudes recorded at each time point were calculated for all subjects and all conditions separately. The post-intervention mean MEP amplitudes were then normalized to the respective individual mean baseline MEP amplitude.

2.5.1. Equivalence of SI1mV and baseline MEP between groups and measures

To test if baseline measures differed between sessions, and groups, two separate mixed model ANOVAs were calculated with “Condition” (10 levels) as the within-subject factor, “Age-Group” as the between-subject factor, and ‘SI1mV’ and ‘baseline MEP’ as dependent variables.

2.5.2. Effect of age on early and late tDCS after-effects

To better define the time course of plasticity induced by tDCS and compensate for variability between single time-points, the
normalized post-stimulation MEP amplitudes of all time-points were grand-averaged and pooled into two epochs: 30 min after stimulation (early epoch), and 60–120 min after stimulation (late epoch). Then, to test if the respective active stimulation condition effects differed from those of sham stimulation, and between age groups, a mixed model ANOVA was calculated with ‘Condition’ (10 levels) and ‘Epoch’ (3 levels) as the within-subject factors, ‘Age-Group’ as the between-subject factor, and normalized post-stimulation MEPs as the dependent variable. In addition, to disentangle the effects of tDCS intensity and duration, a mixed-model ANOVA was calculated with normalized MEPs as the dependent variable, ‘Intensity’ (3 levels), ‘Duration’ (3 levels), and ‘Epoch’ (3 levels) as within-subject factors, and ‘Age-Group’ as between-subject factor. Furthermore, we examined the effect of ‘Session-Order’ as a covariate in ANCOVA analyses conducted separately for all dosage combinations with ‘Session-Order’ as the covariate, ‘Age-Group’ as between- and ‘Epoch’ as covariates of factors. Additionally, we conducted an ANCOVA to test a possible effect of session/condition interval duration on the results defined as between-subject factor, ‘Intensity’ (3 levels), ‘Duration’ (3 levels), and ‘Epoch’ (3 levels) as within-subject factors, and ‘Age-Group’ as between-subject factor. Furthermore, we examined the effect of ‘Session-Order’ as a covariate in ANCOVA analyses conducted separately for all dosage combinations with ‘Session-Order’ as the covariate, ‘Age-Group’ as between- and ‘Epoch’ as covariates of factors. Eventually, to explore a possible effect of SI1mV, and thus baseline MEPs did not show significant differences for ‘Session-Order’ as the covariate, ‘Age-Group’ as between- and ‘Epoch’ as covariates of factors.

2.5.3. Assessment of tDCS side-effects, and blinding

After each session, participants were asked to fill in a questionnaire which contained: (1) their guess as to which intensity of tDCS was applied (0, 1, 2, and 3 mA), (2) rating scales for the presence, and amount, of visual phenomena, itching, tingling and pain during stimulation, and (3) rating scales for the presence, and amount, of skin redness, headache, fatigue, concentration difficulties, nervousness and sleep problems within 24 h after stimulation. The side-effects were rated on a numerical scale of sensations from zero (‘none’) to five (‘extremely strong’). To identify whether participants correctly guessed tDCS intensities, a Chi-square test was conducted. The presence of side-effects during and after tDCS was calculated separately for each side effect by mixed-model ANOVAs with ‘Condition’ (10 levels) as the within-subject factor, ‘Age-Group’ as the between-group factor and rating scores (0–5) as a dependent variable. In case of significant effects, follow-up exploratory post-hoc paired t-tests were conducted to examine if an active tDCS session resulted in a significant difference in sensation relative to sham tDCS.

For the ANOVAs, Mauchly’s test of sphericity was conducted, and between-group differences for “Condition” (F(4.870, 180.183) = 1.463, p = 0.206, η² = 0.038), ‘Age-Group’ (F(1, 37) = 1.020, p = 0.319, η² = 0.027) and their interaction, ‘Condition’ x ‘Age-Group’ (F(4, 870, 180.183) = 1.099, p = 0.362, η² = 0.029). Furthermore, the ANOVA conducted for baseline MEPs did not show significant differences for ‘Condition’ (F(9, 333) = 0.553, p = 0.835, η² = 0.015), ‘Age-Group’ (F(1, 37) = 3.546, p = 0.068).

Table 1 Demographic characteristics of participants. Mean age (±SD), mean MOCA score (±SD); comparisons between groups were performed using Student’s paired t-tests for ‘Age’ and ‘MOCA Score’. For physical activity level (ranging from 1.0 [low] to 4.0 [high]), a Mann-Whitney U test was conducted.

| Factor               | Pre-Elderly | Elderly | Test       | P Value |
|----------------------|-------------|---------|------------|---------|
| Age (years)          | 11 females/58.65 ± 3.86 | 10 females/62.68 ± 5.12 | Student’s paired t-test | <0.001* |
| MOCA score           | 27.78 ± 1.90 | 27.11 ± 1.67 | Student’s paired t-test | P = 0.522 |
| Physical Activity Level | 1.85 | 1.89 | Mann-Whitney U test | P = 0.825 |

3. Results

All participants attended all experimental sessions, except for one participant in the Elderly group that dropped out due to the COVID-19 pandemic. In addition, because of the COVID-19 lockdown, some experimental sessions had to be postponed for nine participants. Therefore, single inter-session intervals between experimental sessions had to be extended for up to 120 days (actual session intervals reported in the supplementary material, table S1).

The results of the MOCA test were in the normal range for all participants without significant differences between the two groups. In addition, a Mann-Whitney U test indicated no significant between-group differences for ‘Physical Activity Level’ (Table 1). (For the results of the distribution of participants to Chronotypes, please refer to supplementary materials. (Table S2).

3.1. No difference of SI1mV and baseline MEPs between conditions, and participant groups

Baseline MEP and SI1mV are listed in Table 3. The respective ANOVA results showed no significant differences of SI1mV for the factors ‘Condition’ (F(4, 870, 180.183) = 1.463, p = 0.206, η² = 0.038), ‘Age-Group’ (F(1, 37) = 1.020, p = 0.319, η² = 0.027) and their interaction, ‘Condition’ x ‘Age-Group’ (F(4, 870, 180.183) = 1.099, p = 0.362, η² = 0.029). Furthermore, the ANOVA conducted for baseline MEPs did not show significant differences for ‘Condition’ (F(9, 333) = 0.553, p = 0.835, η² = 0.015), ‘Age-Group’ (F(1, 37) = 3.546, p = 0.068).

Table 2 Baseline MEP values and TMS stimulation intensities: Data are presented as mean ± SD; SI1mV refers to the percentage of maximal stimulator output (%MSO) which was required for generating ~1 mV MEP. The results of the ANOVAs showed no significant differences of baseline MEP and SI1mV across sessions, and between Age-Groups.

| Group          | Baseline MEP (%) |
|----------------|------------------|
| Pre-Elderly    |                  |
| 1 mA-15min     | 1.00 ± 0.12      | 60.75 ± 12.45 |
| 1 mA-20min     | 1.06 ± 0.14      | 59.60 ± 13.35 |
| 1 mA-30min     | 1.02 ± 0.09      | 59.65 ± 13.36 |
| 2 mA-15min     | 1.04 ± 0.10      | 59.60 ± 12.43 |
| 2 mA-20min     | 1.01 ± 0.11      | 59.60 ± 12.97 |
| 2 mA-30min     | 1.05 ± 0.12      | 59.70 ± 13.23 |
| 3 mA-15min     | 1.06 ± 0.11      | 58.67 ± 13.51 |
| 3 mA-20min     | 1.07 ± 0.09      | 58.82 ± 13.50 |
| 3 mA-30min     | 1.02 ± 0.08      | 59.20 ± 13.03 |

| Elderly        |                  |
| 1 mA-15min     | 1.04 ± 0.11      | 55.78 ± 11.70 |
| 1 mA-20min     | 1.05 ± 0.07      | 55.52 ± 12.19 |
| 1 mA-30min     | 1.06 ± 0.07      | 55.42 ± 12.38 |
| 2 mA-15min     | 1.05 ± 0.10      | 55.34 ± 12.57 |
| 2 mA-20min     | 1.11 ± 0.09      | 55.21 ± 12.38 |
| 2 mA-30min     | 1.08 ± 0.12      | 55.63 ± 12.58 |
| 3 mA-15min     | 1.06 ± 0.12      | 55.63 ± 12.37 |
| 3 mA-20min     | 1.07 ± 0.15      | 55.47 ± 12.13 |
| 3 mA-30min     | 1.04 ± 0.12      | 55.47 ± 12.40 |

Table 3 Baseline MEP values and SI1mV across sessions, and between Age-Groups.
3.2. tDCS effects on motor cortex excitability

The respective mixed-model ANOVA was conducted to test if the respective active stimulation conditions results differ from those of sham stimulation, and if results differ between age groups. The results showed significant main effects of ‘Condition’ \((F_{(9, 333)} = 9.641, p < 0.001, \eta^2_p = 0.207)\), and ‘Epoch’ \((F_{(2, 74)} = 41.310, p < 0.001, \eta^2_p = 0.528)\), but not ‘Age-Group’ \((F_{(1, 37)} = 3.883, p = 0.056, \eta^2_p = 0.095)\). In addition, the results revealed significant interactions of ‘Condition’ × ‘Age-Group’ \((F_{(9, 333)} = 4.097, p < 0.001, \eta^2_p = 0.100)\), ‘Condition’ × ‘Epoch’ \((F_{(18, 666)} = 6.467, p < 0.001, \eta^2_p = 0.149)\), and ‘Condition’ × ‘Epoch’ × ‘Age-Group’ \((F_{(18, 666)} = 2.524, p < 0.001, \eta^2_p = 0.064)\) (Table 3A). The post-hoc tests comparing active tDCS conditions with the effects of sham stimulation for the Pre-Elderly group revealed a significant reduction of MEP amplitudes after 1 mA-15min, 1 mA-20min, 1 mA-30min, 3 mA-15min, 3 mA-20min, and 3 mA-30min (all conditions for early and late epochs), while MEP amplitudes were enhanced after 2 mA-20min (only in the early epoch), but unaltered after 2 mA-15min and 2 mA-30min. However, for the Elderly group, cortical excitability reductions were observed after 1 mA-15min, 1 mA-20min, 1 mA-30min, 3 mA-15min, 3 mA-20min and 3 mA-30min (all in the early epoch), but no significant MEP alterations emerged for the 2 mA-15min, 2 mA-20min and 2 mA-30min stimulation dosages. In addition, the post-hoc tests comparing tDCS conditions between age groups showed significant larger MEP after 2 mA-20min and 2 mA-30min cathodal tDCS in the Pre-Elderly in comparison to the Elderly group in both early and late epochs (Fig. 2).

The mixed-model ANOVA conducted to investigate the effects of different stimulation intensities and durations revealed significant main effects of ‘Intensity’ \((F_{(2, 74)} = 28.873, p < 0.001, \eta^2_p = 0.438)\), ‘Epoch’ \((F_{(2, 74)} = 48.021, p < 0.001, \eta^2_p = 0.565)\), but not ‘Age-Group’ and ‘Duration’. In addition, the results revealed significant ‘Intensity’ × ‘Age-Group’ \((F_{(2, 74)} = 13.251, p < 0.001, \eta^2_p = 0.264)\), ‘Intensity’ × ‘Epoch’ \((F_{(4, 148)} = 18.398, p < 0.001, \eta^2_p = 0.332)\), and ‘Intensity’ × ‘Epoch’ × ‘Age-Group’ \((F_{(4, 148)} = 7.704, p < 0.001, \eta^2_p = 0.172)\) interactions (Table 3B).

### Table 3
Effect of age group, and stimulation dosage on early and late tDCS effects, epoched data. The results of the respective mixed-model ANOVAs are shown. Asterisks indicate significant results \((p < 0.05)\). d.f. — degrees of freedom, \(\eta^2_p\) — partial eta squared.

| Factor | d.f. | Error | F value | \(\eta^2_p\) | P value |
|--------|------|-------|---------|-------------|---------|
| A) Effect of age on overall tDCS effects versus sham, epoched data (Early and late effects) | | | | | |
| Condition | 9, 333 | 9.641 | 0.207 | <0.001* | |
| Condition × Age-Group | 9, 333 | 4.097 | 0.100 | <0.001* | |
| Epoch | 2, 74 | 41.310 | 0.528 | <0.001* | |
| Epoch × Age-Group | 2, 74 | 2.461 | 0.062 | 0.092 | |
| Condition × Epoch | 18, 666 | 6.467 | 0.149 | <0.001* | |
| Condition × Epoch × Age-Group | 18, 666 | 2.524 | 0.254 | <0.001* | |
| Age-Group | 1, 37 | 3.883 | 0.095 | 0.056 | |
| Intensity | 2, 74 | 28.873 | 0.438 | <0.001* | |
| Intensity × Age-Group | 2, 74 | 13.251 | 0.264 | <0.001* | |
| Duration | 1, 725 | 0.447 | 0.012 | 0.613 | |
| Duration × Age-Group | 1, 725 | 1.362 | 0.035 | 0.262 | |
| Duration × Epoch | 1, 725 | 1.362 | 0.035 | 0.262 | |
| Duration × Epoch × Age-Group | 1, 725 | 1.362 | 0.035 | 0.262 | |
| Epoch | 2, 74 | 48.021 | 0.565 | <0.001* | |
| Epoch × Age-Group | 2, 74 | 2.767 | 0.070 | 0.069 | |
| Intensity × Duration | 4, 148 | 1.051 | 0.028 | 0.383 | |
| Intensity × Duration × Age-Group | 4, 148 | 0.997 | 0.026 | 0.417 | |
| Intensity × Epoch | 4, 148 | 18.398 | 0.332 | <0.001* | |
| Intensity × Epoch × Age-Group | 4, 148 | 7.704 | 0.172 | <0.001* | |
| Duration × Epoch | 4, 148 | 0.464 | 0.012 | 0.762 | |
| Duration × Epoch × Age-Group | 4, 148 | 0.753 | 0.020 | 0.557 | |
| Intensity × Duration × Epoch | 8, 296 | 1.575 | 0.041 | 0.132 | |
| Intensity × Duration × Epoch × Age | 8, 296 | 0.777 | 0.21 | 0.623 | |
| Group | 1, 37 | 3.523 | 0.087 | 0.068 | |

*E. Ghasemian-Shirvan, M. Mosayebi-Samani, L. Farnad et al. Brain Stimulation 15 (2022) 296–305*
ANCOVA. The respective results showed no significant impact of SI1mV on the outcomes (more details are provided in the supplementary material, Table S3).

3.3. Assessment of tDCS side-effects, and blinding efficacy

The chi-square test revealed no significant heterogeneity with respect to blinding, suggesting successful blinding (Table 4). The results of the ratings of self-reported versus actual received stimulation intensities are reported in Table S4 of the supplementary material.

Participant ratings for the presence and intensity of side effects during and within 24 h after stimulation are shown in Table S5 of the supplementary material. The mixed model ANOVAs showed no significant difference in the side effect ratings during or 24 h after the end of stimulation, except for the tingling sensation, where higher scores of sensation were rated in Pre-Elderly compared to Elderly participants (Table S6 in the supplementary material). Further, Pearson correlations conducted for the tingling sensation with respective early epoch MEP amplitudes showed no significant correlation MEPs with tingling sensation for each dosage (please refer to supplementary material, Table S7).

4. Discussion

The main results of this study show that cathodal tDCS over the motor cortex in healthy humans with advanced age reduce cortical excitability with 1 and 3 mA stimulation intensity, with longer lasting effects in the Pre-Elderly group. Moreover, a non-linear pattern of plasticity induction was observed in both age groups.

In contrast to stimulation with 1, and 3 mA, stimulation with 2 mA did not reduce cortical excitability in both age groups, and enhanced cortical excitability in the 20 min stimulation duration condition selectively in the Pre-Elderly group. In addition, all participants tolerated the intervention well, and blinding was successful.

For the Pre-Elderly group, the low (1 mA) and high (3 mA) intensity protocols resulted in LTD-like plasticity lasting for about 120 min after the end of stimulation, while for 2 mA protocols LTP-like plasticity induction (for 20 min intervention duration) or no significant effects on MEP amplitudes (for 15 min or 30 min stimulation duration) were obtained. For the Elderly group, the low (1 mA) and high (3 mA) intensity protocols resulted in LTD-like plasticity for about 30 min after tDCS, while for the 2 mA protocol a slight LTD-like plasticity (with 20 min and 30 min stimulation duration) was observed. The mixed model ANOVAs showed no significant difference in the side effect ratings during or 24 h after the end of stimulation, except for the tingling sensation, where higher scores of sensation were rated in Pre-Elderly compared to Elderly participants (Table S6 in the supplementary material). Further, Pearson correlations conducted for the tingling sensation with respective early epoch MEP amplitudes showed no significant correlation MEPs with tingling sensation for each dosage (please refer to supplementary material, Table S7).
duration compared to baseline excitability, but not the sham stimulation condition), or no significant effects on cortical excitability (for tDCS with 15 min duration) were observed. The effects of 2 mA stimulation for 20 min differed significantly between the two groups. While LTP-like plasticity was observed in the Pre-Elderly group, the same protocol resulted in minor LTD-like effects (significant vs baseline, but not the sham stimulation condition) in the Elderly population.

The results obtained in this study for the Pre-Elderly group are in accordance with previous findings in young healthy participants, in which intensity-dependent non-linear after-effects of cathodal motor tDCS were reported. Protocols with low intensity (1 mA-15 min and 1 mA-20 min) and high intensity (3 mA-20 min) cathodal tDCS resulted in LTD-like plasticity, while an excitability enhancement was observed in conditions with 2 mA intensity for 20 min [33,34]. The results are furthermore generally in line with results of a former study of our group with respect to the observed LTD-like plasticity after 1 mA-15 min [37]. However, no neurophysiological data were available so far for 1 mA stimulation with longer duration or the higher cathodal motor tDCS intensities used (2 mA and 3 mA).

It should be noted that while it has been reported in some studies that advancing age increases motor threshold [50], no significant $SI_{1mV}$ intensity differences between age groups were identified in the present study. This is similar to parallel studies of our group [37,38] and other groups [37,51-54]; furthermore $SI_{1mV}$ had no significant impact on our results. Reasons which might explain this inconsistency are inter-individual variability of demographic parameters (e.g. genetic profile, sex, and age), and differences of inclusion criteria for recruiting participants between studies (e.g. smoking, taking medication, physical activity level), which can affect baseline cortical excitability [55].

4.1. Proposed mechanisms of action

Neuroimaging and pharmacological studies, in young healthy humans, have shown that the plasticity induction by tDCS, at the cellular level, is driven by the glutamatergic system, and involves NMDA receptors, which have calcium channel properties [56-60]. In addition, animal studies have demonstrated a dependency of the direction of plasticity from the amount of neuronal calcium influx [61]. Low-level Ca$^{2+}$ influx has been shown to induce LTD, whereas a moderate calcium enhancement results in no synaptic modulation, a larger increase induces LTP, and maximum calcium influx might again abolish or convert plasticity due to counter-regulatory mechanisms [62,63]. Calcium dynamics might be thus a good
candidate mechanism to explain the dosage-dependent effects of tDCS.

These dynamics can not only explain dosage-dependent effects of cathodal tDCS, but also gradual age-dependent differences observed in the present study, since calcium dynamics are altered in higher age due to a decline of glutamatergic transmitter availability [64,65], and amount of calcium channels [66,67]. For the Pre-Elderly group, the results of the study are comparable to those obtained in young adults [34], and thus a relevant age-dependent decline of calcium influx most likely does not apply in this group. Here we suggest that 1 mA tDCS resulted in an LTD-inducing low calcium concentration, 2 mA in a calcium concentration sufficient for the induction of LTD-like plasticity, and 3 mA in LTD-like plasticity due to calcium overflow-induced counterregulatory mechanisms. Respective calcium-dependency of the effects of cathodal tDCS effects for the 3 mA stimulation condition have been recently described in young adults [59]. However, in contrast to the Pre-Elderly group, increasing tDCS dosage resulted in an almost uniform cortical excitability reduction for the Elderly population. One possible explanation for this effect is the decline of glutamate and calcium channel availability in the elderly, which will reduce calcium influx due to tDCS, and prevent calcium influx to an amount sufficient for the induction of LTD-like plasticity for the higher stimulation intensities. At present, these explanations are however speculative, and do not account fully for all details of the results. If decreased calcium influx in the elderly group would have been the only driving force for the limited conversion of tDCS effects on cortical excitability, a conversion effect would have been expected for stimulation with 3 mA in this age group, which did not take place. A more general reduction of the propensity to develop LTD-like plasticity in higher age was observed in animal models [68], and documented in a recent tDCS study in humans [37] which might contribute to this limited conversion. Furthermore, the re-establishment of LTD-like plasticity by stimulation with 3 mA might also be caused by effects of tDCS with this intensity on deeper cortical layers, which might not be affected by low intensity stimulation.

Apart from the calcium hypothesis mentioned above, other age-dependent neurophysiological and -anatomical changes might contribute to differences in the brain’s responsiveness to stimulation [69]. This includes alterations of neurotransmitters, and -modulators, such as reduced availability of glutamate [64,70], GABA [21], dopamine [20], acetylcholine, serotonin, noradrenaline [71], which all have been shown to alter tDCS-generated plasticity responses [69,72]. Moreover, at the macroscale anatomical level, age-dependent cortical atrophy increases electrode to brain distance, which gradually reduces electrical field intensity at the target level [36], and at the microscale level, age-dependently altered electric parameters of dendrites [73] might reduce the responsiveness of neurons to an externally applied electrical current [74] as well as alter the distribution of current density [75,76]. These reasons for the gradually altered plasticity response to tDCS in higher age are speculative at present, and should be explored systematically in future studies.

4.2. Limitations and future directions

Some limitations of this study should be taken into account. First, this was an exploratory study. Data were acquired from a relatively small sample of 20 participants in each group over a couple of sessions involving different interventions. Thus, results are preliminary, and should be replicated in follow-up studies with larger samples. In addition, this study was performed in a sham-controlled single-blinded design. A double-blind design would have been preferable to prevent any observer bias more definitively. However, this would not be trivial due to the study’s design, which included excitability measures immediately before and after stimulation with different durations. Furthermore, as mentioned above, we did not explore neurobiological mechanisms underlying age-dependent alterations of tDCS-induced neuroplasticity or investigate other aspects affecting the physiological impact of stimulation. Moreover, in neurological and psychiatric disorders, alterations of cerebral structures and functions, as well as altered neurotransmitter, and -modulator activities could affect the parameter range for optimal stimulation.

Furthermore, a possible limitation would be an excitability alteration induced by the TMS protocol applied to monitor excitability itself. Previous studies have however shown stable TMS single pulse MEPs over 24 h [77], that rTMS at the frequency of 0.25Hz induces no plasticity [78,79], and related studies of our own group also identified no effect of this TMS protocol on cortical excitability [80,81]. In addition, the sham tDCS session results in the present study show unaltered motor cortex excitability, which makes an impact of TMS itself on cortical excitability unlikely.

The proposed mechanisms of age-dependent plasticity alterations in the present study are speculative at present. They should be substantiated by more detailed mechanistic explorations in future, including monitoring the effects of pharmacologically defined systems by respective TMS protocols, magnetic resonance spectroscopy, and modelling studies exploring age-dependent differences of electrical field intensity, which might be caused by cerebral atrophy in higher age. The transfer of the physiological effects obtained in the present study to cognitive, and behavioural processes should not be taken for granted, and should be explored in future studies.

To maximize the comparability of results between age groups for exploring age-related plasticity alterations, we specified strict inclusion criteria (no relevant neurological, psychiatric, or internal organ disorders, no smoking, and no CNS-active medication). As a result, the generalizability of the results to the general elderly population might be limited. Consequently, the results obtained in the present study might also not be one-to-one transferable to clinical populations. Finally, the present study was conducted in the primary motor cortex, and taking into account anatomy differences, receptor- and neurotransmitter availability, and target-to-cortex distances for other areas, a one-to-one transferability of the results to other stimulation targets obtained in the present study cannot be taken for granted, and should be explored in future studies.

5. Conclusion

In the present study we expanded the parameter space of cathodal tDCS regarding current intensity and stimulation duration (up to 3 mA and 30min) while investigating age-related differences of tDCS-induced neuroplasticity in the motor cortex of healthy older adults from two different age groups. tDCS induced LTD-like plasticity in both age groups. However, the non-linear conversion effect of cathodal tDCS with an induction of LTD-like plasticity for a stimulation intensity of 2 mA was only observed in the Pre-Elderly group. These results might be explained by reduced glutamatergic activity in higher age, which reduces neuronal calcium influx, which is critical for plasticity induction in higher age. The results of the present study supplies relevant information for optimization of tDCS protocols to reduce cortical excitability. They might also help to improve the efficacy of tDCS as a therapeutic tool for the treatment of neurological and psychiatric disorders in elderly patients. However, a one-to-one transferability of these effects to other cortical areas and patient populations should not be taken for granted due to the state-dependency of tES effects, anatomical
differences, and differences of neuromodulator activities and cortical excitability between healthy humans and respective patients.

Declaration of competing interest

MA Nitsche is a member of Advisory Boards of Neuroelectrics and NeuroDevice. None of the remaining authors have potential conflicts of interest to be disclosed.

Credit authorship contribution statement

Ensiyeh Ghasemian-Shirvan: Conceptualization, Data curation, Formal analysis, Investigation, Writing – original draft, Visualization. Mohsen Mosayebi-Samani: Formal analysis, Methodology, Validation, Writing – review & editing. Leila Farnad: Formal analysis, Writing – review & editing. Min-Fang Kuo: Conceptualization, Supervision, Methodology, Validation, Writing – review & editing. Michael A. Nitsche: Conceptualization, Funding acquisition, Supervision, Methodology, Validation, Writing – review & editing.

Acknowledgements

This work was supported by research grants from the German Federal Ministry of Education and Research (BMBF) (GCBS grant 01EE1501, TRAINSTIM grant 01GQ1424E) and the Special Research Fund (BOF) of Hasselt University (BOF17B03). We thank Nicole Rück for her kind help in recruiting elderly participants. We also appreciate the help of Dr. Hannah Schade and Jan Digutsch for assessing psychological tests. We further appreciate Ruxandra Ungureanu for her help in preparing the final draft of the manuscript.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.brs.2022.01.011.

References

[1] Vance DE, Kaur J, Fazeli PL, Talley MH, Yuen HK, Kitchin B, et al. Neuroplasticity and successful cognitive aging: a brief overview for nursing. J Neurosci Nurs 2012;44(4):218–27.
[2] Grady C. The cognitive neuroscience of aging. Nat Rev Neurosci 2012;13(7):491–505.
[3] Alexander G, Ryan L, Bowers D, Foster T, Bizon J, Geldmacher D, et al. Characterizing cognitive aging in humans with links to animal models. Front Aging Neurosci 2012;4:21.
[4] Adams J. Comparison of synaptic changes in the precentral and postcentral cerebral cortex of aging humans: a quantitative ultrastructural study. Neurobiol Aging 1987;8(3):203–12.
[5] Schmidt S, Redecker C, Bruehl C, Witte OW. Age-related decline of functional inhibition in rat cortex. Neurobiol Aging 2010;31(3):504–11.
[6] Andrews-Hanna JR, Snyder AZ, Vincent JL, Lustig C, Head D, Raichle ME, et al. Age-related differences in the aging brain: a critical perspective. Mech Ageing Dev 2001;122(1):1–29.
[7] Kemp N, Bashir ZI. Long-term depression: a cascade of induction and expression mechanisms. Prog Neurobiol 2001;65(4):339–65.
[8] Husem J, Bashir ZI. Long-term depression: multiple forms and implications for brain function. Trends Neurosci 2007;30(4):176–84.
[9] Henderson E, Tomlinson BE, Gibson PH. Cell counts in human cerebral cortex in normal adults throughout life using an image analysing computer. J Neuro Sci 1980;64(1):113–36.
[10] Kaasinen V, Vilkman H, Hietala J, Nagren K, Helenius H, Olsson H, et al. Age-related dopamine D2/D3 receptor loss in extrastriatal regions of the human brain. Neurobiol Aging 2000;21(5):683–8.
[11] Heise KF, Zimenman M, Hoppe J, Gerloff C, Wegscheider K, Hummel FC. The aging motor system as a model for plastic changes of GABA-mediated interneuronal inhibition and their behavioral relevance. J Neurosci : Off J Soc Neurosci 2013;33(21):9039–49.
[12] Prehn K, Flöel A. Potentials and limits to enhance cognitive functions in healthy and pathological aging by tDCS. Front Cell Neurosci 2015;9:335.
[13] Nitsche MA, Paulus W. Excitability changes induced in the human cortex by weak transcranial direct current stimulation. J Physiol 2000;527(3):633–9.
[14] Nitsche MA, Paulus W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology 2001;57(10):1899–901.
[15] Nitsche MA, Paulus W. Transcranial direct current stimulation—update 2011. Restor Neurol Neurosci 2011;29(6):463–92.
[16] Nitsche MA, Nitsche MS, Klein CC, Tegau F, Rothwell JC, Paulus W. Level of action of cathodal DC polarisation induced inhibition of the human motor cortex. Clin Neurophysiol 2003;114(4):600–4.
[17] Summers J, Kang N, Craughth JD. Does transcranial direct current stimulation enhance cognitive and motor functions in the aging brain? A systematic review and meta-analysis. Ageing Res Rev 2016;25:42–54.
[18] Gomes-Osman J, Rice J, Cabral DJF, Fried PJ, Nissim NR, Akus S, et al. Non-invasive brain stimulation: probing intracortical circuits and improving cognition in the aging brain. Front Aging Neurosci 2018;10:177.
[19] Flöel A. tDCS-enhanced motor and cognitive function in neurological diseases. NeuroImage 2014;85:934–47.
[20] Leflaucheur JP, Antal A, Ayache SS, Benninger DH, Brunnel J, Cogamiarian F, et al. Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clin Neurophysiol : official journal of the International Federation of Clinical Neurophysiology 2017;128(1):56–92.
[21] Yavari F, Jamil A, Mosayebi Samani M, Vidor LP, Nitsche MA. Basic and functional effects of transcranial Electrical Stimulation (tES)—an introduction. Neurobiol Aging 2018;65:81–92.
[22] Agboada D, Mosayebi Samani M, Jamil A, Kuo M-F, Nitsche MA. Exploring the parameter space of anodal transcranial direct current stimulation of the primary motor cortex. Sci Rep 2019;9(1):18185.
[23] Batsikadze G, Moliadze V, Paulus W, Kuo MF, Nitsche M. Partially non-linear stimulation intensity-stimulus-dependent effects of direct current stimulation on motor cortex excitability in humans. J Physiol 2012;591(7):1987–2000.
[24] Mosayebi Samani M, Agboada D, Jamil A, Kuo M-F, Nitsche MA. Titrating the neuromodastic effects of cathodal transcranial direct current stimulation (tDCS) over the primary motor cortex. Cortex 2019;119:350–61.
[25] Indahlvarri A, Alhuza A, O’Shea A, Forbes MA, Nissim NR, Kraft JN, et al. Modeling transcranial electrical stimulation in the brain. Brain stimulation 2020;13(3):664–74.
[26] Mosayebi Samani M, Jamil A, Salvador R, Ruffini G, Haueisen J, Nitsche MA. The impact of individual electrical stimulation in the anterior cingulate cortex excitability and their behavioral relevance. J Neurosci : Off J Soc Neurosci 2011;33(21):9011–22.
[27] Mosayebi Samani M, Agboada D, Jamil A, Kuo M-F, Nitsche MA. Titrating the neuromodular effects of cathodal transcranial direct current stimulation (tDCS) over the primary motor cortex. Cortex 2020;13(3):664–74.
[28] Ghasemian-Shirvan E, Farnad L, Mosayebi Samani M, Verstraelen S, Meessen RJJ, Kuo M-F, et al. Age-related differences of motor cortex plasticity in adults: a transcranial direct current stimulation study. Brain Stimulation 2021;14(2):316–26.
[29] Ghasemian-Shirvan E, Farnad L, Mosayebi Samani M, Verstraelen S, Meessen RJJ, Kuo M-F, et al. Effect of aging and sex on cerebral excitability in the elderly measured with transcranial magnetic stimulation. Brain Stimulation 2020;13(6):1588–99.
[30] Farnad L, Ghasemian-Shirvan E, Mosayebi Samani M, Kuo M-F, Nitsche MA. Exploring age-related differences of neuroplastic effects of anodal transcranial direct current stimulation over the primary motor cortex of older humans. Brain Stimulation 2021;14(4):622–34.
[31] Antonenko D, Nierhaus T, Meinzer M, Prehn K, Thielshcr A, Ittermann B, et al. Age-dependent effects of brain stimulation on network centrality. Neuroimage 2018;176:71–82.
[32] Freitas C, Farzan F, Pascual-Leone A. Assessing brain plasticity across the lifespan with transcranial magnetic stimulation: why, how, and what is the ultimate goal? Front Neurosci 2013;7:42.
Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 1971;9(1):97–113.

Bikson M, Crossman P, Thomas C, Zannou AI, Jiang J, Adnan T, et al. Safety of transcranial direct current stimulation: evidence based update 2016. Brain Stimul 2016;9(5):641–61.

Rossi S, Hallett M, Rossini PM, Pascual-Leone A. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol : official journal of the International Federation of Clinical Neurophysiology 2009;120(12):2008–39.

Nitsche MA, Cohen LG, Wassermann EM, Priori A, Lang N, Antal A, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc 2005;53(4):695–9.

Hoeltke V, Jakob E. Lüdendscheider aktivitätsfragebogen zum risikofaktor bewegungsmangel. Zugriff am 2002;24:2011.

Fitzgerald PB, Brown TL, Daskalakis ZJ. The application of transcranial magnetic stimulation. Neurosci Lett 2002;333(2):83–8.

Nitsche MA, Fricke K, Henschke U, Schlitterlau A, Liebetanz D, Lang N, et al. Intracortical modulation of motor cortex excitability and conductivity. Brain Res 1992;593(1):249–53.

Kosse AR, Schrader C, Dauper J, Dengler R, Rollnik JD. Increased intracortical inhibition in middle-aged humans; a study using paired-pulse transcranial magnetic stimulation. Neurosci Lett 2002;313(2):83–6.

Hortobágyi T, del Olmo MF, Rothwell JC. Age reduces cortical reciprocal inhibition in humans. Exp Brain Res 2019;237(1):322–9.

Opitz A, Paulus W, Will S, Antunes A, Thielscher A. Determinants of the electric field during transcranial direct current stimulation. Neuroimage 2015;109:140–50.

Agosta F, Pier谩vani M, Geroldi C, Copetti M, Frisoni GB, Filippi M. Resting state fMRI in Alzheimer’s disease: beyond the default mode network. Neurobiol Aging 2012;33(3):1554–78.

Lang N, Rothkugel H, Reiber H, Hasan A, Sueske E, Tergau F, et al. Circadian modulation of GABA-mediated cortical inhibition. Cereb Cortex 2011;21(10):2248–68.

Paulus W, Rothwell JC. Membrane resistance and shunting inhibition: where biophysics meets state-dependent human neurophysiology. J Physiol 2016;594(10):2719–28.

Opitz A, Paulus W, Will S, Antunes A, Thielscher A. Determinants of the electric field during transcranial direct current stimulation. Neuroimage 2015;109:140–50.

Agosta F, Piermanti M, Geroldi C, Copetti M, Frisoni GB, Filippi M. Resting state fMRI in Alzheimer’s disease: beyond the default mode network. Neurobiol Aging 2012;33(3):1554–78.

Lang N, Rothkugel H, Reiber H, Hasan A, Sueske E, Tergau F, et al. Circadian modulation of GABA-mediated cortical inhibition. Cereb Cortex 2011;21(10):2248–68.

Paulus W, Rothwell JC. Membrane resistance and shunting inhibition: where biophysics meets state-dependent human neurophysiology. J Physiol 2016;594(10):2719–28.

Opitz A, Paulus W, Will S, Antunes A, Thielscher A. Determinants of the electric field during transcranial direct current stimulation. Neuroimage 2015;109:140–50.

Agosta F, Piermanti M, Geroldi C, Copetti M, Frisoni GB, Filippi M. Resting state fMRI in Alzheimer’s disease: beyond the default mode network. Neurobiol Aging 2012;33(3):1554–78.

Lang N, Rothkugel H, Reiber H, Hasan A, Sueske E, Tergau F, et al. Circadian modulation of GABA-mediated cortical inhibition. Cereb Cortex 2011;21(10):2248–68.

Paulus W, Rothwell JC. Membrane resistance and shunting inhibition: where biophysics meets state-dependent human neurophysiology. J Physiol 2016;594(10):2719–28.

Opitz A, Paulus W, Will S, Antunes A, Thielscher A. Determinants of the electric field during transcranial direct current stimulation. Neuroimage 2015;109:140–50.