A REPLACEMENT LEMMA FOR OBTAINING POINTWISE ESTIMATES IN PHASE TRANSITION MODELS

NICHOLAS D. ALIKAKOS AND GIORGIO FUSCO

Abstract. We establish a replacement lemma for a variational problem, which is not based on a local argument. We then apply it to a phase transition problem and obtain pointwise estimates.

1. Introduction

We consider the elliptic system

$$\Delta u - W_u(u) = 0, \text{ for } u : \Omega \subset \mathbb{R}^n \to \mathbb{R}^m,$$

(1)

where $W : \mathbb{R}^m \to \mathbb{R}$ a nonnegative C^1 potential possessing several minima and $W_u(u) := (\partial W/\partial u_1, \ldots, \partial W/\partial u_n)^\top$. The system (1) is variational with associated functional

$$J_\Omega(u) = \int_\Omega \left(\frac{1}{2} |\nabla u|^2 + W(u) \right) dx.$$

(2)

In what follows, we take Ω to be a bounded, open, and connected set in \mathbb{R}^n, with Lipschitz boundary. We introduce the hypothesis

$$(H) \text{ Let } \lambda \to W(a + \lambda w), \text{ with } |w| = 1, \text{ be a strictly increasing function on } [0, r_0). \text{ The vector } a \text{ is a global minimum of } W \text{ and } r_0 \text{ is positive and fixed.}$$

Note that (H) is a very weak nondegeneracy hypothesis that was introduced in [3].

The main purpose of this note is to establish the following

Lemma. Let Ω be as above and let $A \subset \Omega$ be an open, Lipschitz set with $\partial A \neq \emptyset$. Moreover, suppose that

(1) $u(\cdot) \in W^{1,2}(\Omega) \cap C^1(\Omega),$

(2) $|u(x) - a| \leq r \text{ on } \partial A \cap \Omega, \text{ for some } r \text{ with } 2r \in (0, r_0),$

(3) there is an $x_0 \in A$ such that $|u(x_0) - a| > r.$

Then, there exists $\tilde{u}(\cdot) \in W^{1,2}(\Omega)$ such that

$$\tilde{u}(x) = u(x), \quad \text{in } \Omega \setminus A,$$

$$|\tilde{u}(x) - a| \leq r, \quad \text{in } A,$$

$$J_\Omega(\tilde{u}) < J_\Omega(u).$$

We note that in the lemma, no a priori bound is imposed on the max$_A |u(x) - a|$ and, thus, the lemma is not of local nature. Its meaning is that from the point of view of minimizing J for a function that is in part close to the minimum value of W, independently of the structure of W, it is more efficient to remain close to the minimum throughout (see Figure 1).
Corollary. Let \(n = m = 2 \) and let \(W \) have exactly one global minimum at \(a = (\alpha, 0) \) on the right half-plane \(\mathbb{R}_+^2 = \{ u_1, u_2 \mid u_1 \geq 0 \} \), while \(W > 0 \) in \(\mathbb{R}_+^2 \setminus \{a\} \). Consider the family of variational problems

\[
\min_{\Omega_R^\mu} J_{\Omega_R^\mu}, \quad \text{where} \quad \Omega_R^\mu = \{ (x_1, x_2) \mid 0 < x_1 < \mu R \text{ and } |x_2| \leq R \},
\]

with corresponding global minimizers \(\{u_{R,\mu}\} \) and suppose that

(i) \(u_{R,\mu} \) maps \(\Omega_R^\mu \) in \(\{(u_1, u_2) \mid u_1 \geq 0\} \), (positivity)

(ii) \(J_{\Omega_R^\mu}(u_{R,\mu}) \leq CR \), where \(C \) a universal constant,

(iii) \(|u_{R,\mu}(x) - a| \leq r \) on \(\{(\mu R, x_2) \mid |x_2| \leq R\} \) and \(\partial u_{R,\mu}/\partial n = 0 \) on the remaining three sides of \(\partial \Omega_R^\mu \).

Then, there exist \(R_0 > 0 \), \(\mu_0 > 0 \), and \(\eta_0 > 0 \) such that

\[
|u_{R,\mu}(x) - a| \leq \frac{r}{2} \quad \text{in} \quad \{(x_1, x_2) \in \Omega_R^\mu \mid \eta_0 R \leq x_1 \leq \mu R\},
\]

for all \(R \geq R_0 \) and \(\mu \geq \mu_0 \).

The proof of the corollary is a two-dimensional measure-theoretic argument, where the kinetic and potential terms in the energy are estimated independently. It would be very interesting to extend this to higher dimensions. The one-dimensional version of the lemma above appeared in [3], and subsequently in [5], where an extension from balls to convex sets was given. For hypotheses (i) and (ii) see [1], [4].

2. Proofs

Proof of the Lemma. We utilize the polar representation

\[
u(x) = a + |u(x) - a| \frac{u(x) - a}{|u(x) - a|} =: a + \rho(x)n(x)
\]

and note that

\[
|\nabla u(x)|^2 = |\nabla \rho(x)|^2 + \rho^2(x)|\nabla u(x)|^2.
\]
Step 1. We begin by settling the lemma under the additional hypothesis
\[\rho(x) \leq 2r < r_0, \quad \text{in } A. \]

(4)

We choose \(\varepsilon > 0 \) so that \(\rho(x) > r + \varepsilon \), where \(r + \frac{\varepsilon}{2} \) is not a critical value of \(\rho \) in \(A \).

(5)

Therefore, the set
\[\Gamma_\varepsilon = \partial C_\varepsilon \cap A, \quad \text{where } C_\varepsilon = \{ x \in A \mid \rho(x) > r + \frac{\varepsilon}{2} \}, \]

is a \(C^1 \) manifold in \(A \).

Now, define \(\tilde{u}_\varepsilon \) as follows.

\[
\begin{cases}
\tilde{u}_\varepsilon(x) = u(x), & \text{in } A \setminus C_\varepsilon, \\
\tilde{u}_\varepsilon(x) = a + \left(r + \frac{\varepsilon}{2} \right) n(x), & \text{in } C_\varepsilon, \\
\tilde{u}_\varepsilon(x) = u(x), & \text{in } \Omega \setminus A.
\end{cases}
\]

(6)

Notice that \(\tilde{u}_\varepsilon \) is continuous on \(\Gamma_\varepsilon \). There also holds
\[|\nabla \tilde{u}_\varepsilon(x)|^2 = \left(r + \frac{\varepsilon}{2} \right)^2 |\nabla n(x)|^2 \leq \rho^2(x) |\nabla n(x)|^2 \leq |\nabla u(x)|^2 \]
in \(C_\varepsilon \). It follows that \(\tilde{u}_\varepsilon \in W^{1,2}(\Omega) \) and, moreover,
\[\int_\Omega |\nabla u|^2 \, dx \geq \int_\Omega |\nabla \tilde{u}_\varepsilon|^2 \, dx. \]

(7)

Hence, \(\tilde{u}_\varepsilon \rightharpoonup \tilde{u} \) in \(W^{1,2} \) as \(\varepsilon \to 0 \), and by weak lower semi-continuity,
\[\int_\Omega |\nabla u|^2 \, dx \geq \int_\Omega |\nabla \tilde{u}|^2 \, dx. \]

(8)

Clearly
\[
\begin{cases}
\tilde{u}(x) = a + rn(x), & \text{in } C_0 = \{ x \in A \mid \rho(x) > r \}, \\
\tilde{u} = u(x), & \text{in } \Omega \setminus C_0.
\end{cases}
\]

Finally,
\[\int_A W(u(x)) \, dx = \int_{A \setminus C_0} W(a + \rho(x)n(x)) \, dx + \int_{C_0} W(a + \rho(x)n(x)) \, dx. \]

By (H), (iii), and the hypothesis \(A^+ = \{ x \in A \mid \rho(x) > 2r \} = \emptyset \),
\[\int_{C_0} W(a + \rho(x)n(x)) \, dx > \int_{C_0} W(a + rn(x)) \, dx. \]

Therefore,
\[\int_\Omega W(u) \, dx > \int_\Omega W(\tilde{u}) \, dx, \]

(9)

and so, \(J_\Omega(u) > J_\Omega(\tilde{u}) \).

Also by (4),
\[
\begin{cases}
\tilde{u}(x) = u(x), & \text{in } A \setminus C_0, \\
\tilde{u}(x) = a + rn(x), & \text{in } C, \\
\tilde{u}(x) = u(x), & \text{in } \Omega \setminus A,
\end{cases}
\]

thus, the lemma is established under hypothesis (4).
Step 2. We may therefore assume that
\[|A^+| > 0. \]
(10)

We first assume that \(r \) is not a critical value of \(\rho \) in \(A \) and later we remove this assumption.

Define the Lipschitz function
\[
\alpha(\tau) = \begin{cases}
1, & \text{for } \tau \leq r, \\
\frac{2r - \tau}{r}, & \text{for } r \leq \tau \leq 2r, \\
0, & \text{for } \tau \geq 2r,
\end{cases}
\]
(11)

and recall that compositions of Lipschitz functions with \(W^{1,2} \) functions render \(W^{1,2} \) functions.

Set
\[
\begin{aligned}
w(x) &= u(x), & \text{in } A \setminus C_0 \\
w(x) &= a + r\alpha(\rho(x))n(x), & \text{in } C \\
w(x) &= u(x), & \text{in } \Omega \setminus A.
\end{aligned}
\]
(12)

Note that \(W \) is continuous on \(\partial C \) (\(C^1 \) manifold) and so \(w \) is in \(W^{1,2}(\Omega) \).

In \(\{ x \in A \mid r \leq \rho(x) \leq 2r \} \) there holds
\[
|\nabla w(x)|^2 = |\nabla \rho(x)|^2 + r^2\alpha^2|\nabla n(x)|^2
\leq |\nabla \rho(x)|^2 + r^2|\nabla n(x)|^2 \quad (\text{since } \alpha \leq 1)
\leq |\nabla \rho(x)|^2 + \rho^2|\nabla u(x)|^2
= |\nabla u(x)|^2.
\]
(13)

Also \(\nabla w = 0 \) in \(A^+ \) and \(\nabla w = \nabla u \) in the rest of \(A \). It follows that
\[
\int_{\Omega} |\nabla u|^2 \, dx \geq \int_{\Omega} |\nabla w|^2 \, dx.
\]
(14)

In \(\{ x \in A \mid r \leq \rho(x) \leq 2r \} \) there holds
\[
W(w(x)) = W(a + r\alpha(\rho(x))n(x))
\leq W(a + rn(x))
\leq W(a + \rho(x)n(x))
= W(u(x)),
\]
(15)

while
\[
W(w(x)) = 0 < W(u(x)), \text{ in } A^+,
\]
since \(a \) is a global minimum.

Now, since \(|A^+| > 0 \), we obtain
\[
\int_{\Omega} W(u(x)) \, dx > \int_{\Omega} W(w(x)) \, dx.
\]
(16)

We also note that
\[|w(x) - a| \leq r, \text{ in } A. \]

Thus, the lemma is established in this case as well.

Step 3. Finally, suppose that \(r \) is a critical value of \(\rho \) in \(A \). We can choose a decreasing and noncritical sequence \(r_n \to r \). Then, the hypotheses (i), (ii), (iii) of
the lemma are satisfied with \(r = r_n \) and, thus, we obtain a sequence \(\{ \tilde{u}_n \} \) with the following properties:

\[
\begin{cases}
\tilde{u}_n(x) = u(x), & \text{in } \Omega \setminus A, \\
|\tilde{u}_n(x) - a| \leq r_n, & \text{in } A, \\
J_\Omega(\tilde{u}_n) < J_\Omega(u).
\end{cases}
\]

Moreover, by construction,

\[
\int_\Omega |\nabla u|^2 \, dx \geq \int_\Omega |\nabla \tilde{u}_n|^2 \, dx.
\]

Hence, by taking possibly a subsequence, there holds \(\tilde{u}_n \rightharpoonup \tilde{u} \) in \(W^{1,2} \) as \(n \to \infty \) and thus,

\[
\int_\Omega |\nabla u|^2 \, dx \geq \int_\Omega |\nabla \tilde{u}|^2 \, dx.
\]

By the compactness of the embedding \(W^{1,2}_{loc} \hookrightarrow L^2_{loc} \) and from

\[
W(\tilde{u}_n(x)) \leq W(u(x)), \quad \text{in } \Omega,
\]

we obtain

\[
W(\tilde{u}(x)) \leq W(u(x)), \quad \text{a.e. in } \Omega.
\]

However,

\[
\int_{A^+} W(u) \, dx > \int_{A^+} W(\tilde{u}) \, dx,
\]

thus, it follows that

\[
\begin{cases}
\tilde{u}(x) = u(x), & \text{in } \Omega \setminus A, \\
|\tilde{u}(x) - a| \leq r, & \text{in } A, \\
J_\Omega(\tilde{u}) < J_\Omega(u).
\end{cases}
\]

The proof of the lemma is complete. \(\square \)

We continue with the

Proof of the Corollary. In what follows, we write \(u \) for \(u_{R,\mu} \), \(\rho \) for \(\rho_{R,\mu} \) etc. Consider the sets \(j_R \subset i_R \subset \mathbb{R} \), with

\[
i_R := \{ x_1 \in (0, \eta R) \mid \text{there exists } x_2 \in (0, R) \text{ with } \rho(x_1, x_2) \geq \frac{r}{2} \}
\]

and

\[
j_R := \{ x_1 \in i_R \mid \text{there exists } x_2 \in (0, R) \text{ with } \rho(x_1, x_2) \geq \frac{r}{4} \}
\]

Then, the positivity property (i) implies the lower bound

\[
R w_0 |i_R \setminus j_R| \leq \int_0^R \int_{i_R \setminus j_R} W(u) \, dx_1 \, dx_2,
\]

where \(w_0 := \min_{|u - a| > r/4} W(u) > 0 \).

From the definition of \(j_R \), we conclude that for \(x_1 \in j_R \) there is an interval \(L_{x_1} = (a_{x_1}, b_{x_2}) \) of \(x_2 \) values such that

\[
\frac{r}{4} = \rho(x_1, a_{x_1}) \leq \rho(x_1, x_2) \leq \rho(x_1, b_{x_2}) = \frac{r}{2}, \quad \text{for all } x_2 \in L_{x_1}.
\]

It follows that

\[
\int_{L_{x_1}} W(u(x_1, \tau)) \, d\tau \geq w_0 |L_{x_1}|, \quad \text{for all } x_1 \in j_R.
\]
Moreover, we have
\[
\frac{r}{4} \leq \int_{L_{x_1}} \left| \frac{\partial \rho}{\partial x_2}(x_1, \tau) \right| \ d\tau \leq \left(|L_{x_1}| \int_{L_{x_1}} \left| \frac{\partial \rho}{\partial x_2}(x_1, \tau) \right|^2 \ d\tau \right)^{1/2}
\leq \left(|L_{x_1}| \int_{L_{x_1}} |\nabla u(x_1, \tau)|^2 \ d\tau \right)^{1/2},
\]
(19)

From (18) and (19) we have
\[
\rho \text{ we conclude that }
\]

Remark.

Moreover, we have
\[
\frac{1}{32} \frac{1}{|L_{x_1}|} r^2 + w_0 |L_{x_1}| \leq \int_{L_{x_1}} \frac{1}{2} |\nabla u(x_1, \tau)|^2 \ d\tau + \int_{L_{x_1}} W(u(x_1, \tau)) \ d\tau,
\]
thus,
\[
\frac{r \sqrt{w_0}}{2 \sqrt{2}} \leq \int_{L_{x_1}} \frac{1}{2} |\nabla u(x_1, \tau)|^2 \ d\tau + \int_{L_{x_1}} W(u(x_1, \tau)) \ d\tau.
\]
(20)

Concluding,
\[
CR \geq 2 \int_{\Omega_{R,\mu}} \left(\frac{1}{2} |\nabla u|^2 + W(u) \right) \ dx \geq \int_0^R \int_{j_R} \left(\frac{1}{2} |\nabla u|^2 + W(u) \right) \ dx_1 dx_2
\]
\[
= \int_0^R \int_{j_R} \left(\frac{1}{2} |\nabla u|^2 + W(u) \right) \ dx_1 dx_2 + \int_0^R \int_{j_R} \left(\frac{1}{2} |\nabla u|^2 + W(u) \right) \ dx_1 dx_2
\]
\[
\geq Rw_0 |j_R \setminus j_R| + \frac{r \sqrt{w_0}}{2 \sqrt{2}} |j_R|,
\]
(21)

where the last inequality follows from (17), (20). Hence,
\[
CR \geq A |j_R| + B (|i_R| - |i_R|) R, \text{ for } A := r \sqrt{w_0}/2 \sqrt{2}, \ B := w_0,
\]
\[
\geq \min\{A, BR\} |i_R|
\]
\[
\geq A |j_R|, \text{ if } R \geq r/2 \sqrt{2w_0} =: R_0.
\]
(22)

Consequently, if we take \(R \) large, we obtain that
\[
|i_R| \leq \frac{2 \sqrt{2} CR}{r \sqrt{w_0}} =: \eta_0 R.
\]

If we take \(\eta > \eta_0 \) and fix it, then \(|i_R| < \eta R \) and therefore there is an \(\bar{x}_1 \in (0, \eta R) \), which does not belong to \(i_R \), and such that
\[
\rho(\bar{x}_1, x_2) < \frac{r}{2}, \text{ for all } x_2 \in (0, R).
\]
(23)

Applying now the lemma for the choice \(A = \{ (x_1, x_2) \mid \bar{x}_1 \leq x_1 \leq \mu R, |x_2| < R \} \), we conclude that \(\rho \leq r/2 \) in \(A \), thus, \(\rho < r \) on the line \(x_1 = \eta R \). \(\square \)

Remark. The intuition behind hypothesis (ii) is that if \(u_{R,\mu} \) is bounded away from \(a \) on a large set, then
\[
\int_{\Omega_R} W(u_{R,\mu}(x)) \ dx \geq CR^2,
\]
therefore, by (ii) this cannot happen.

The \textit{a priori} bound (ii) is related to the fact that (2) is linked to a perimeter functional (see (2)). In general dimensions, the appropriate \textit{a priori} estimate is \(J_{\Omega_R}(u) \leq CR^{n-1} \).
REFERENCES

[1] S. Alama, L. Bronsard, and C. Gui. Stationary layered solutions in \mathbb{R}^2 for an Allen–Cahn system with multiple well potential. *Calc. Var.* 5 No. 4 (1997), pp. 359–390.

[2] G. Alberti. Variational models for phase transitions, an approach via Γ-convergence. In *Calculus of variations and partial differential equations*, L. Ambrosio and N. Dancer, edited by G. Buttazzo, A. Marino, and M. K. V. Murthy. Springer, 2000.

[3] N. D. Alikakos and G. Fusco. On the connection problem for potentials with several global minima. *Indiana Univ. Math. J.* 57 No. 4 (2008), pp. 1871–1906.

[4] N. D. Alikakos and G. Fusco. On an elliptic system with symmetric potential possessing two global minima. Preprint [arXiv:0810.5909](http://arxiv.org/abs/0810.5909)

[5] N. D. Alikakos and N. I. Katzourakis. Heteroclinic travelling waves of gradient diffusion systems. To appear in *Trans. Amer. Math. Soc.*

Department of Mathematics, University of Athens, Panepistimiopolis, 15784 Athens, Greece and Institute for Applied and Computational Mathematics, Foundation of Research and Technology – Hellas, 71110 Heraklion, Crete, Greece

E-mail address: mallkko@math.uoa.gr

Dipartimento di Matematica Pura ed Applicata, Università degli Studi dell’Aquila, Via Vetoio, 67010 Coppito, L’Aquila, Italy

E-mail address: fusco@univaq.it