Is occupational physical activity associated with all-cause mortality in UK Biobank?

Matthew Pearce¹, Tessa Strain¹,², Katrien Wijndaele¹, Stephen J. Sharp¹, Alexander Mok¹, Soren Brage³

1. MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Level 3 Institute of Metabolic Science, Addenbrooke’s Treatment Centre, Cambridge Biomedical Campus, Cambridge, CB2 0SL, United Kingdom

2. Physical Activity for Health Research Centre, University of Edinburgh, Edinburgh, United Kingdom

*Corresponding author

Word count: 3088

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
ABSTRACT

Objectives

To investigate associations between occupational physical activity (OPA) and all-cause mortality.

Methods

From baseline (2006-2010), 452,884 UK Biobank participants (aged 40-69 years) were followed for a median 11.1 (IQR: 10.4-11.8) years. OPA was categorised by cross-tabulating degree of manual work and walking/standing work amongst those in paid employment (n=264,424), whereas categories of occupational status were used for those not in paid employment (n=188,460). Cox proportional hazards models were used to estimate hazard ratios (HR) and 95% confidence intervals (CI) for all-cause mortality by occupational category, and for working hours/week and non-occupational physical activity stratified by occupational category.

Results

During 4,965,616 person-years of follow-up, 23,310 deaths occurred. Compared to those in sedentary jobs, retirement was associated with lower mortality in women (HR=0.74, CI:0.68-0.81) and men (HR=0.85, CI:0.79-0.92), whereas unemployment was associated with higher mortality in men (HR=1.26, CI:1.10-1.45). There was no evidence of mortality differences by OPA category within the working population. Working <35 hours/week versus 35-40 hours/week was associated with lower mortality in both women (HR=0.86, CI:0.79-0.93) and men (HR=0.81, CI:0.75-0.88), with no interaction by OPA. Non-occupational physical activity was associated with lower mortality in both women (HR=0.90 per 5 kJ/day/kg, CI:0.84-0.96) and men (HR=0.88 per 5 kJ/day/kg, CI:0.84-0.92), with no interaction by OPA.

Conclusion
Work classified as having higher levels of OPA may not be as active as reported, or the types of physical activity performed in those jobs are not health-enhancing. Irrespective of OPA category or employment status, non-occupational physical activity appears to provide health benefits.

Keywords: paradox, labour, heavy, leisure-time

SUMMARY BOX

What are the new findings?

- Retirement was associated with lower all-cause mortality, compared to having a sedentary job in both men and women but unemployment was only associated with higher mortality in men.
- There were no differences in mortality between categories with different levels of self-reported OPA
- Physical activity outside of work was associated with lower hazard of all-cause mortality and there was no interaction with occupational physical activity, indicating similar benefits across different jobs types.

How might it impact on clinical practice in the future?

- Health professionals should be aware that occupations assumed to involve more physical activity may not be as active as reported, or the types of physical activity performed in those jobs may not be health-enhancing.
- Physical activity during leisure-time should continue to be recommended to adults of all paid and unpaid occupational categories.
BACKGROUND

The benefits of physical activity for health are well established,[1,2] with guidelines from the UK Chief Medical Officers[3] and the World Health Organization[4] recommending the equivalent of 150 minutes of moderate-intensity aerobic physical activity each for maintenance of good physical and mental health. No distinctions are made between physical activity in leisure-time, transport, home, occupational domains; the total volume of activity is assumed to be beneficial regardless of the domain in which it was accrued. Contradictory to this advice is the suggestion that occupational physical activity (OPA) does not confer the same benefits, and may even be harmful to health.[5] One meta-analysis reported that male (but not female) workers with high level OPA were at 18% higher risk of mortality compared to those at low levels.[6] Reasons proposed for these findings include OPA being performed at lower intensities, for protracted periods, and in a static posture,[7] but the existing evidence also has limitations including the use of crude self-reported OPA measures, limited adjustment for non-occupational physical activity, and residual confounding for socio-economic status and lifestyle factors (e.g. smoking).[8,9] Prior studies within occupational strata have reported that active jobs were associated with lower mortality.[10,11]

UK Biobank is a large prospective cohort study total and domain-specific physical activity data, as well as occupational variables. These data can be combined in such a way that both work category and hours can be used to characterise exposure to different types and volumes of OPA. A range of lifestyle, socio-economic and health-related variables are collected using a standardised protocol, and it is also possible to calibrate self-reported non-occupational physical activity to objective measures of physical activity using the accelerometer sub-cohort[12] to better control for physical activity outside of work. UK Biobank has sufficient sample size and accrued deaths to allow stratification by sex and occupational categories. This can better address issues of confounding patterned by occupational group with strata larger than many occupational cohorts. This presents opportunities for improving our understanding of OPA, particularly in the UK, where there are few contemporary analyses. In
In this study, we investigated whether occupational category and hours of work in different job categories were associated with all-cause mortality.

METHODS

Participants and study design

UK Biobank is an ongoing prospective cohort study of men and women aged 40-69 years residing within 25 miles of one of 22 assessment centres in England, Scotland, and Wales. Participants were identified from National Health Service general practitioner registries and invited to a baseline assessment between 2006 and 2010. The study was approved by the North West Multicentre Research Ethics Committee and participants provided written informed consent. Data for the current analyses were updated on 26th August 2020, containing information from 502,493 participants with baseline measures. Participant exclusions are outlined in Supplementary Figure 1.

Exposure variables

Occupational status, standard occupational job code (SOC), degree of manual work, degree of standing/walking work, and working duration in hours per week were self-reported using a touch-screen questionnaire. Participants with missing data for these variables were excluded from analyses (n=9,362), as were those reporting paid employment status but zero working hours (n=186). For those in paid employment, degree of manual work and degree of standing/walking work were both reported as one of four categories: “never/rarely”, “sometimes”, “usually”, “always”. Responses of “usually” and “always” were collapsed for both manual work and standing/walking, with the two variables cross-tabulated (Supplementary Table 1) to create six mutually exclusive OPA categories: “no manual, no standing/walking”, “no manual, some standing/walking”, “no manual, usually standing/walking”, “some manual, some standing/walking”, “some manual, usually standing/walking”, “usually manual, usually standing/walking”. Total physical activity estimated by median wrist acceleration showed a
predictable association across these categories within the accelerometery sub-cohort,[16] indicating face validity (Supplementary Figure 2).

The first set of analyses used as the exposure (hereafter defined as “occupational categories”) OPA categories for those in paid employment, and occupational status of those not in paid employment (retired, unable to work due to illness/disability, caring for home/family, student, unemployed, unpaid work). The second set of analyses included only those in paid employment with tertiles of working hours as the exposure (<35, 35-40, >40 hours per week) and stratification by OPA category. In supplementary analyses we repeated both of the above but OPA category was replaced by SOC group for those in paid employment while including the same occupational status categories for those not in paid employment. Further details on the SOC group classifications are provided in Supplementary Table 2.

To investigate whether OPA moderates the association of physical activity outside of work with mortality, we examined the association between non-occupational physical activity energy expenditure (PAEE) and all-cause mortality in two sets of stratified analyses (by OPA categories and by tertiles of working hours). We previously showed how self-reported variables representing multiple behaviours could be combined to predict total PAEE in UK Biobank.[12] For the present study, the three occupational activity variables (manual work, standing/walking, sedentary work) included in this prediction model were set to zero such that the resulting estimate represented non-occupational PAEE. Further details of this prediction model are shown in Supplementary Table 3. Hazard ratios for non-occupational PAEE were presented per 5 kJ/day/kg as this approximates the lower World Health Organization guideline of 150 minutes of moderate intensity activity per week[17].

Outcome assessment

Vital status and date of death were established by linkage to national death registries obtained from the Health and Social Care Information Centre for England and Wales and the
March 2020 in all three nations.

Covariate assessment

Demographic, lifestyle, and clinical variables were assessed at baseline by the aforementioned touch-screen questionnaire, verbal interview, or physical measurement. The following baseline variables were considered as potential confounders of the relationship between OPA and all-cause mortality: age (years), sex, ethnicity (white/non-white), Townsend deprivation index (higher scores indicating higher levels of deprivation), highest educational level (degree or above/any other qualification/no qualification), annual household income (prefer not to answer, do not know, £18,000-30,999, £31,000-51,999, £52,000-100,000, >£100,000), working hours per week (when not assessed as an exposure or used as a stratifying variable; tertiles), alcohol consumption (never/previous/current), smoking (never/previous/current), salt added to food (never/sometimes/usually), oily fish intake (never/sometimes), fruit and vegetable intake (score from 0-4 with 1 point for ≥2 servings/day for each of fresh fruit, dried fruit, cooked vegetable, raw vegetable), processed and red meat intake (average weekly frequency in days per week), parental history of cancer or CVD (yes/no), use of blood pressure or cholesterol lowering medications (yes/no), doctor-diagnosed diabetes or treatment with insulin (yes/no), baseline coronary heart disease, stroke or cancer (self-reported or ICD-10 code I20-25, I60-69, or C00-99; yes/no), body mass index (BMI) in three categories (<25, 25-30, >30 kg·m⁻²), resting heart rate (beats per minute), and non-occupational PAEE (when not assessed as an exposure; kJ/day/kg).

Statistics

For each exposure, a Cox proportional hazards model with age as the underlying timescale was used to estimate hazard ratios (HR) and 95% confidence intervals (CI) for all-cause mortality. The proportional hazards assumption for categorical variables was examined using log-log plots; the baseline hazard function was stratified by levels of those variables that did
not satisfy this assumption (fruit and vegetable intake, income, education). Fractional
polynomials showed that working hours per week did not meet the log-linear assumption so
this variable was categorised using tertile boundaries, while meat consumption \((\log[x+1])\) and
Townsend index \((x^2)\) were transformed. Variance inflation factors and Pearson correlations
indicated no strong collinearity between variables. All analyses were stratified by sex a priori,
based on findings from previous studies.[6] Wald tests were used to examine the potential
interactions of working hours and non-occupational PAEE with OPA category. Models
included all covariates listed above, as well as separately omitting BMI and resting heart rate
which may be on the causal pathway between physical activity and mortality. Individuals with
missing covariate data \((n=37,965)\) were excluded, as were those who died in the first two
years of follow-up \((n=2,096)\) to mitigate potential reverse causation. For the same reason, we
conducted sensitivity analyses excluding those with prevalent coronary heart disease, stroke,
or cancer at baseline \((n=63,755)\). All analyses were performed using STATA/SE 16.1
(StataCorp, TX, USA).

Patient and public involvement

Patients and members of the public were not formally involved in the design, analysis or
interpretation of this study.

RESULTS

In a sample of 452,884 participants, 23,310 deaths occurred during a median 11.1 (IQR: 10.4-
11.8) years of follow up \((4,965,616\text{ person-years})\). Baseline characteristics of the participants
by sex and occupational status are shown in Table 1, and further details for paid and unpaid
occupational groups are provided in Supplementary Tables 4 to 7. Approximately one third of
the participants were retired. Those in paid employment were younger, reported lower
frequency of medication usage and had a lower prevalence of diabetes, CVD, or cancer at
baseline. There were only minor differences between those in, and not in, paid employment
with respect to resting heart rate, BMI, and lifestyle variables. Jobs involving no manual work
Table 1 Baseline characteristics of women and men in UK Biobank.

	No paid employment	In paid employment	All			
	Women	Men	Women	Men	Women	Men
n (%):	109,591	78,869	138,062	126,362	247,653	205,231
Working hours per week, median (IQR)	(58)	(42)	(52)	(48)	(55)	(45)
Age in years at baseline, mean (SD)	61 (6)	62 (6)	52 (7)	53 (7)	56 (8)	57 (8)
White ethnicity, %	96	96	95	95	95	95
Highest educational level						
No qualification, %	26	26	8	10	16	16
Any other qualification, %	50	45	53	51	52	49
Degree or above, %	24	29	38	39	32	35
Townsend index (higher for more deprived), median (IQR)	-2.4	-2.3	-2.1	-2.2	-2.2	-2.2
Household income before tax						
Prefer not to answer, %	14	9	8	6	10	7
Do not know, %	9	3	3	1	5	2
<£18,000, %	31	35	11	7	20	18
£18,000-£30,999, %	24	27	21	19	22	22
£31,000-£51,999, %	13	17	28	30	22	25
£52,000-£100,000, %	6	7	24	30	16	21
>£100,000, %	2	1	6	8	4	6
Occupational category						
Retired, %	80	82	35	32		
Caring for home/family, %	11	1	5	1		
Unable to work due to illness, %	5	9	2	4		
Unemployed, %	2	6	1	2		
Unpaid work, %	1	1	1	0		
Student, %	1	0	0	0		
No manual, no standing/walking, %	38	34	21	21		
No manual, Some standing/walking, %	23	22	13	14		
No manual, Mostly standing/walking, %	12	7	7	4		
Some manual, some standing/walking, %	6	9	4	5		
Some manual, mostly standing/walking, %	12	12	7	7		
Mostly manual, mostly standing/walking, %	9	16	5	10		
Smoking status						
Never, %	58	42	61	54	60	50
Previous, %	34	46	30	34	32	39
Current, %	8	12	9	12	9	12
Alcohol use status						
Never, %	7	3	4	2	5	2
Previous, %	4	4	3	3	3	3
Current, %	89	93	93	95	91	94
Fruit/vegetable score, median (IQR)	2 (1.3)	1 (1.2)	2 (1.3)	1 (0.2)	2 (1.3)	1 (1.2)
Red/processed meat score, median (IQR)	1 (1.1)	1 (1.1)	1 (1.1)	1 (1.1)	1 (1.1)	1 (1.1)
Adds salt to food, %	38	41	38	41	38	41
Consumes oily fish, %	28	31	35	38	32	35
Non-work PAEE (kJ/kg/day), mean (SD)	43 (3)	43 (3)	43 (4)	43 (4)	42 (4)	42 (4)
Parental history of CVD or cancer, %	76	72	69	66	72	68
Blood pressure or cholesterol medication, %	33	47	14	23	23	33
Diagnosis of diabetes or insulin prescription, %	5	10	2	5	4	7
Prevalent CVD or cancer at baseline, %	18	24	9	10	13	15
Body mass index						
<25 kg/m2, %	36	25	43	26	40	25
25-30 kg/m2, %	39	49	35	50	37	50
>30 kg/m2, %	25	26	22	25	23	25
Resting heart rate in bpm, mean (SD)	71 (11)	69 (12)	70 (10)	68 (11)	70 (11)	68 (12)

bpm=beats per minute; CVD=cardiovascular disease; IQR=interquartile range; PAEE=physical activity energy expenditure; SD=standard deviation.
or standing/walking were most common (women 38%; men 34%), whereas jobs involving the
highest levels of manual work and standing/walking were less common (women 9%; men
16%). Supplementary Table 8 shows the distribution of participants across OPA categories
within SOC strata. Participants in managerial, professional, and administrative SOCs tended
to report less manual work and standing/walking, whereas participants in elementary, skilled
trade, personal service, and operative SOCs tended to report more manual work.

Figure 1 shows hazard ratios and 95% confidence intervals of all-cause mortality for
occupational categories compared with the referent of a paid job involving no manual work or
standing/walking (e.g. sedentary office work). Among women and men in paid work, there
were no differences in hazard of all-cause mortality. The hazard of mortality was lower in
retired women, but twice as high in women unable to work due to illness. The hazard was
higher in men unable to work due to illness, unemployed men, and in men caring for home or
others. Additional adjustment for resting heart rate and BMI did not alter these findings
(Supplementary Figure 3). When OPA category was replaced with SOC group
(Supplementary Figure 4), men with “elementary” or “process, plant or machine operative”
SOCs had higher hazards of all-cause mortality than those in “senior managerial positions”
(the category we assumed to be most similar to sedentary desk work with large numbers in
both sexes), however no such associations were observed in women. Similar associations
were observed in the model adjusting for resting heart rate and BMI (Supplementary Figure 4).

Figure 2 shows hazards of all-cause mortality for tertiles of working hours per week within
different OPA strata. Women working 35-40 hours per week had higher hazard than those
working 1-34 hours per week, but women working the longest hours had lower hazard than
those in the middle tertile. Among men, working 35-40 or >40 hours per week was associated
with similarly high hazards of mortality, compared with those working 1-34 hours per week.
There was no evidence of interaction between working hours and OPA category (p=0.49 and
p=0.90 for women and men, respectively). Additional adjustment for resting heart rate and
BMI did not materially alter these findings (Supplementary Figure 5). There was no evidence
of interaction between working hours and SOC category (p=0.32 and p=0.68 for women and men, respectively; Supplementary Figure 6).

Figure 3 shows associations between non-occupational PAEE and all-cause mortality across occupational strata. For those in paid employment, non-occupational PAEE was associated with lower hazard of mortality in both sexes with no evidence of interaction by occupational group (p=0.19 and p=0.11 for women and men, respectively). For those not in paid employment, non-occupational PAEE was also associated with lower hazard of mortality in both sexes with evidence of interaction by occupational group in men (p=0.02) but not women (p=0.40). Following additional adjustment for resting heart rate and BMI, hazard ratios were attenuated across all strata (Supplementary Figure 7).

The inverse association between non-occupational PAEE and mortality was reasonably consistent across tertiles of working hours with no evidence of interaction observed in either women (p=0.69) or men (p=0.61) (Figure 4). Following additional adjustment for resting heart rate and BMI, hazard ratios were attenuated across all strata (Supplementary Figure 8). We observed similar results when repeating all of the above analyses with the exclusion of participants with baseline prevalent coronary heart disease, stroke or cancer (data not shown).

DISCUSSION

In this study of 452,884 women and men including 264,424 paid workers in occupations with varying degrees of manual work and standing/walking, we found little evidence that all-cause mortality varied by category of OPA. Working full-time rather than part-time hours was associated with higher hazard of mortality but there was no pattern indicating that hours in some OPA categories were more harmful than others. Retirement was associated with lower mortality in both men and women but not working due to illness at baseline was predictably not beneficial for survival. Non-occupational physical activity was beneficial across occupational categories, supporting universal physical activity guidelines. [3]
We found no evidence of an association between OPA and all-cause mortality after controlling for non-occupational physical activity, working hours, and a range of demographic, clinical, and lifestyle variables. This is somewhat in contrast to a meta-analysis of 193,696 people reporting that men with high level of OPA were at higher risk of mortality than those at the low level (HR=1.18, 95% CI: 1.05-1.34, \(I^2 = 76\% \)), and the corresponding result for women which showed some evidence of an inverse association (HR=0.90, 95% CI: 0.80-1.01, \(I^2 = 0\% \)).[6]

Our main findings from a single UK cohort are however in agreement with studies from Europe[18–22] and the USA[23] indicating no association. However, in our SOC analysis, we did observe higher all-cause mortality for “elementary occupations” and “process, plant and machine operatives” in men. Discrepancies between our findings and previous work may partly be explained by variation in working patterns and conditions between populations and eras. For example, the strongest effect size (HR 3.40, 95% CI: 1.94-5.96) in the above meta-analysis is from a Taiwanese study with baseline in 1990,[24] likely not generalisable to the UK between 2006 and 2010. Alternatively, our findings could suggest that in this UK population, the combination of two self-reported OPA variables is insufficient to characterise the intensity level of work throughout the day or week, making groups more difficult to distinguish and biasing effect estimates towards the null. The SOCs for which we observed higher harmful associations with all-cause mortality (including assembly line and construction workers, cleaners, and drivers) are perhaps more consistent in terms of activity intensity and thus better characterised, but the potential risks of the actual physical activity performed as part of these occupations should be investigated further using objective measures of physical activity labelled by domain. Accelerometers have been combined with work diaries to show that for mostly (71%) “blue-collar” workers in Denmark, reallocating time to MVPA at work was positively associated with long term sickness absence, whereas an inverse association was observed for reallocating time to MVPA in leisure-time.[25]

In contrast to objective monitoring, self-reported categorical data do not detail the pattern of work bouts intensity across each day. Although a strength of this work was calibration of our
estimate of non-occupational PAEE to objective measures, we have previously shown that the combined inference of activity volume from these self-report data is weak relative to objective measures, with a large proportion of unexplained variance typical of self-report data.[26] This unexplained variance would include unmeasured OPA which could vary by occupation. Without methods to more accurately estimate the dose of OPA and control for non-occupational activity, it is at present difficult to rule out the possibility of health risks or benefits associated with OPA, let alone make domain-specific health recommendations such as those relating to total physical activity, for which robust measures are available.[27]

Overall, we found that non-occupational physical activity was inversely associated with all-cause mortality in paid workers, with stronger associations for those not in paid work. We observed no interaction between OPA category and non-occupational PAEE in paid workers, reflecting previous reports that leisure-time physical activity was beneficial independent of occupational physical activity level.[28,29] Taken together, our results for OPA and non-occupational physical activity suggest that all adults should all aim to be active during their leisure-time irrespective of their occupational status, with the potential additional benefit of substituting out harmful sedentary behaviours.[30] Our results also indicate that OPA may not confer health benefits in this relatively older UK population so the message to be active in leisure-time may be even more important. Moreover, increasing activity at work may be difficult for some workers.

Strengths of this work include a large single cohort study allowing robust estimation of associations, adjustment for a wide range of socio-economic and behavioural covariates as well as sufficient size to conduct stratified analyses larger than many occupational cohort studies. There are also important limitations of this work. As in any observational study, the above adjustments cannot fully eliminate confounding. Job satisfaction, exposure to hazardous materials or working conditions, and shift pattern data are available in UK Biobank but only in a small subsample. Data for phenomena which may potentially confound associations, such as work stress[31,32] and access to sick leave[33] are not recorded.
Characteristics like these may be patterned by occupational group, and these strata could be used to investigate specific working cohorts, such as in previous studies.[10,11] We used baseline data to assign occupational status and were unable to account for any changes during the follow-up period. In a sample aged 40-69 at baseline, retirement or changes in work due to illness during follow-up are of particular concern. We were also unable to account for potentially complex work histories leading up to baseline, account for changes to nature of work over time,[34] or generalise our findings to younger workers. There is also evidence of a healthy volunteer selection bias in UK Biobank such that it is not representative of the general population,[35] particularly in relation to smoking and education[36] which are notable confounders for this study.

In summary, analysis of this population of UK adults aged 40-69 years old showed limited evidence of an association between OPA and all-cause mortality, although potential measurement error and residual confounding mean that we are unable to rule out the possibility of either health benefits or risks. Until stronger evidence is available from a combination of domain labels and objective assessment of the temporal pattern of activity, individuals should continue to maximise their physical activity volume during leisure-time irrespective of their occupation.

Contributors

MP and SB conceptualised the study. MP undertook the analyses with input from TS, SJS, KW, AM, and SB. MP drafted the manuscript with critical revisions from all authors. All authors approved the final version.

The lead author (MP) affirms that this manuscript is an honest, accurate, and transparent account of the study being reported; that no important aspects of the study have been omitted; and that any discrepancies from the study as planned have been explained.

Acknowledgements
We are indebted to the principal investigators of UK Biobank and the volunteers who took part.

Competing interests

All authors have completed the ICMJE uniform disclosure form at www.icmje.org/coi_disclosure.pdf and declare no support from any additional organisations for the submitted work; no financial relationships with any organisations that might have an interest in the submitted work in the previous three years; no other relationships or activities that could appear to have influenced the submitted work.

Funding

MP, TS, KW, AM, and SB acknowledge funding from the Medical Research Council (grants MC_UU_00006/4, MC_UU_12015/3, and MC_UU_12015/1) and NIHR Cambridge Biomedical Research Centre (IS_BRC-1215-20014). SJS acknowledges funding from MRC grant MC_UU_12015/1.

Ethical approval

UK Biobank was approved by the North West Multicentre Research Ethics Committee and all participants provided written informed consent.

Data sharing

The UK Biobank data that support the findings of this study are available to all bona fide researchers for health related research that is in the public interest, https://www.ukbiobank.ac.uk/register-apply/. This work was conducted under UK Biobank application number 20684.
REFERENCES

1. Lee I-M, Shiroma EJ, Lobelo F, et al. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. *Lancet* 2012;380(9838):219–29.

2. Strain T, Brage S, Sharp SJ, et al. Use of the prevented fraction for the population to determine deaths averted by existing prevalence of physical activity: a descriptive study. *Lancet Glob Heal* 2020;8(7):e920–30. http://dx.doi.org/10.1016/S2214-109X(20)30211-4

3. Department of Health & Social Care, Welsh Government, Department of Health Northern Ireland, et al. Physical activity guidelines: UK Chief Medical Officers’ report [Internet]. London; 2019. https://www.gov.uk/government/publications/physical-activity-guidelines-uk-chief-medical-officers-report

4. Bull F, Saad Al-Ansari S, Biddle S, et al. World Health Organization 2020 Guidelines on Physical Activity and Sedentary Behaviour. *Br J Sport Med* 2020;54:1451–62.

5. Holtermann A, Hansen J V., Burr H, et al. The health paradox of occupational and leisure-time physical activity. *Br J Sport Med* 2012;46:291–5.

6. Coenen P, Huysmans MA, Holtermann A, et al. Do highly physically active workers die early? A systematic review with meta-analysis of data from 193 696 participants. *Br J Sports Med* 2018;52(20):1320–6.

7. Holtermann A, Krause N, Van Der Beek AJ, et al. The physical activity paradox: Six reasons why occupational physical activity (OPA) does not confer the cardiovascular health benefits that leisure time physical activity does. *Br J Sport Med* 2018;52:149–50.

8. Shephard RJ. Is there a recent occupational paradox’ where highly active physically active workers die early? or are there failures in some study methods? *Br J Sport Med*
9. Coenen P, Huysmans MA, Holtermann A, et al. Towards a better understanding of the “physical activity paradox”: The need for a research agenda. *Br J Sports Med* 2020;1–3. doi:10.1136/bjsports-2019-101343

10. Morris JN, Heady JA, Raffle PAB, et al. Coronary heart-disease and physical activity of work. *Lancet* 1953;265:1111–20.

11. Paffenbarger RS, Laughlin ME, Gima AS, et al. Work activity of longshoremen as related to death from coronary heart disease and stroke. *N Engl J Med* 1970;282(20):1109–14.

12. Pearce M, Strain T, Kim Y, et al. Estimating physical activity from self-reported behaviours in large-scale population studies using network harmonisation: findings from UK Biobank and associations with disease outcomes. *Int J Behav Nutr Phys Act* 2020;17(40).

13. Littlejohns TJ, Sudlow C, Allen NE, et al. UK Biobank: opportunities for cardiovascular research. *Eur Heart J* 2017;44:1–10.

14. De Matteis S, Jarvis D, Young H, et al. Occupational self-coding and automatic recording (OSCAR): a novel web-based tool to collect and code lifetime job histories in large population-based studies. *Scand J Work Env Hea* 2017;(2):181–6.

15. Kim Y, Wijndaele K, Sharp SJ, et al. Specific physical activities, sedentary behaviours and sleep as long-term predictors of accelerometer-measured physical activity in 91,648 adults: a prospective cohort study. *Int J Behav Nutr Phys Act* 2019;16(1):41.

16. Doherty A, Jackson D, Hammerla N, et al. Large scale population assessment of physical activity using wrist worn accelerometers: The UK biobank study. *PLoS One*
17. World Health Organization. Global Recommendations on Physical Activity for Health [Internet]. Geneva; 2010. https://www.ncbi.nlm.nih.gov/books/NBK305057/

18. Huerta JM, Chirlaque MD, Tormo MJ, et al. Physical activity and risk of cerebrovascular disease in the European prospective investigation into cancer and nutrition-Spain study. *Stroke* 2013;44(1):111–8.

19. Petersen CB, Eriksen L, Tolstrup JS, et al. Occupational heavy lifting and risk of ischemic heart disease and all-cause mortality. *BMC Public Health* 2012;12(1070).

20. Wanner M, Tarnutzer S, Martin BW, et al. Impact of different domains of physical activity on cause-specific mortality: A longitudinal study. *Prev Med (Baltim)* 2014;62:89–95. http://dx.doi.org/10.1016/j.ypmed.2014.01.025

21. Wanner M, Lohse T, Braun J, et al. Occupational physical activity and all-cause and cardiovascular disease mortality: Results from two longitudinal studies in Switzerland. *Am J Ind Med* 2019;62(7):559–67.

22. Chau JY, Grunseit A, Midthjell K, et al. Sedentary behaviour and risk of mortality from all-causes and cardiometabolic diseases in adults: Evidence from the HUNT3 population cohort. *Br J Sport Med* 2015;49(11):737–42. 10.1136/bjsports-2012-091974

23. Richard A, Martin B, Wanner M, et al. Effects of leisure-time and occupational physical activity on total mortality risk in NHANES III according to sex, ethnicity, central obesity, and age. *J Phys Act Heal* 2015;12(2):184–92.

24. Hu GC, Chien KL, Hsieh SF, et al. Occupational versus leisure-time physical activity in reducing cardiovascular risks and mortality among ethnic Chinese adults in Taiwan. *Asia-Paci J Public He* 2014;26(6):604–13. 10.1177/1010539512471966

25. Gupta N, Dencker-Larsen S, Lund Rasmussen C, et al. The physical activity paradox
revisited: A prospective study on compositional accelerometer data and long-term sickness absence. *Int J Behav Nutr Phys Act* 2020;17(1):1–9.

26. Helmerhorst HJF, Brage S, Warren J, et al. A systematic review of reliability and objective criterion-related validity of physical activity questionnaires. *Int J Behav Nutr Phys Act* 2012;9:103.

27. White T, Westgate K, Hollidge S, et al. Estimating energy expenditure from wrist and thigh accelerometry in free-living adults: a doubly labelled water study. *Int J Obes* 2019;43(11):2333–42. http://dx.doi.org/10.1038/s41366-019-0352-x

28. Holtermann A, Marott JL, Gyntelberg F, et al. Does the benefit on survival from leisure time physical activity depend on physical activity at work? A prospective cohort study. *PLoS One* 2013;8(1).

29. Holtermann A, Mortensen OS, Burr H, et al. The interplay between physical activity at work and during leisure time - Risk of ischemic heart disease and all-cause mortality in middle-aged Caucasian men. *Scand J Work Environ Heal* 2009;35(6):466–74.

30. Wijndaele K, Sharp SJ, Wareham NJ, et al. Mortality risk reductions from substituting screen time by discretionary activities. *Med Sci Sports Exerc* 2017;49(7):1111–1119. 10.1249/MSS.0000000000001206

31. Kivimäki M, Pentti J, Ferrie JE, et al. Work stress and risk of death in men and women with and without cardiometabolic disease: a multicohort study. *Lancet Diabetes Endocrinol* 2018;6(9):705–13.

32. Kivimäki M, Steptoe A. Effects of stress on the development and progression of cardiovascular disease. *Nat Rev Cardiol* 2018;15(4):215–29. http://dx.doi.org/10.1038/nrcardio.2017.189

33. Kim D. Paid sick leave and risks of all-cause and cause-specific mortality among adult workers in the USA. *Int J Environ Res Public Health* 2017;14(10):1–10.
34. Church TS, Thomas DM, Tudor-Locke C, et al. Trends over 5 decades in U.S. occupation-related physical activity and their associations with obesity. *PLoS One* 2011;6(5):1–7.

35. Fry A, Littlejohns TJ, Sudlow C, et al. Comparison of sociodemographic and health-related characteristics of UK Biobank participants with those of the general population. *Am J Epidemiol* 2017;186(9):1026–34.

36. Munafò MR, Tilling K, Taylor AE, et al. Collider scope: When selection bias can substantially influence observed associations. *Int J Epidemiol* 2018;47(1):226–35.
FIGURE LEGENDS

Figure 1 Hazard ratio (HR) and 95% confidence interval (CI) of all-cause mortality by occupational category. Reference group is “no manual, no standing/walking”. Models are adjusted for age (underlying timescale), ethnicity, Townsend deprivation index, highest educational level (stratified baseline hazard), annual household income (stratified baseline hazard), working hours per week, alcohol consumption, smoking, salt added to food, oily fish intake, fruit and vegetable intake (stratified baseline hazard), processed and red meat intake, non-occupational physical activity energy expenditure, parental history of cancer or CVD, use of blood pressure or cholesterol lowering medications, doctor-diagnosed diabetes or treatment with insulin, baseline prevalent coronary heart disease, stroke, or cancer. Data for students not shown due to small numbers.

Figure 2 Hazard ratio (HR) and 95% confidence interval (CI) of all-cause mortality by tertile of working hours per week across occupational physical activity strata in working women (left) and men (right). Reference group is “35-40 hours per week”. Models are adjusted for age (underlying timescale), ethnicity, Townsend deprivation index, highest educational level (stratified baseline hazard), annual household income (stratified baseline hazard), alcohol consumption, smoking, salt added to food, oily fish intake, fruit and vegetable intake (stratified baseline hazard), processed and red meat intake, non-occupational physical activity energy expenditure, parental history of cancer or CVD, use of blood pressure or cholesterol lowering medications, doctor-diagnosed diabetes or treatment with insulin, baseline prevalent coronary heart disease, stroke, or cancer.

Figure 3 Hazard ratio (HR) and 95% confidence interval (CI) of all-cause mortality per 5 kJ/day/kg of non-occupational physical activity energy expenditure across occupational strata. Models adjusted for age (underlying timescale), ethnicity, Townsend deprivation index, highest educational level (stratified baseline hazard), annual household income (stratified baseline hazard), working hours per week, alcohol consumption, smoking, salt added to food, oily fish intake, fruit and vegetable intake (stratified baseline hazard), processed and red meat intake, non-occupational physical activity energy expenditure, parental history of cancer or CVD, use of blood pressure or cholesterol lowering medications, doctor-diagnosed diabetes or treatment with insulin, baseline prevalent coronary heart disease, stroke, or cancer.
intake, fruit and vegetable intake (stratified baseline hazard), processed and red meat intake,
parental history of cancer or CVD, use of blood pressure or cholesterol lowering medications,
doctor-diagnosed diabetes or treatment with insulin, baseline prevalent coronary heart
disease, stroke, or cancer. Results for students and unpaid workers not shown due to small
numbers.

Figure 4 Hazard ratio (HR) and 95% confidence interval (CI) of all-cause mortality per 5
kJ/day/kg of non-occupational physical activity energy expenditure across tertiles of working
hours per week.

Models adjusted for age (underlying timescale), ethnicity, Townsend deprivation index, highest
educational level (stratified baseline hazard), annual household income (stratified baseline
hazard), alcohol consumption, smoking, salt added to food, oily fish intake, fruit and vegetable
intake (stratified baseline hazard), processed and red meat intake, parental history of cancer
or CVD, use of blood pressure or cholesterol lowering medications, doctor-diagnosed diabetes
or treatment with insulin, baseline prevalent coronary heart disease, stroke, or cancer,
occupational physical activity category.
Occupational-category	N	Person-years	Deaths	HR (95% CI)
Women				
Retired	87,352	952,184	5,624	0.74 (0.68, 0.81)
Caring for home/family	11,612	128,119	275	0.96 (0.84, 1.11)
Unable to work due to illness	5,850	63,891	479	2.00 (1.76, 2.28)
Unemployed	2,474	26,719	67	1.05 (0.82, 1.36)
Unpaid work	1,518	16,684	49	0.77 (0.58, 1.03)
(Ref) No manual, no standing/walking	52,036	576,585	1,109	1.00 (1.00, 1.00)
No manual, some standing/walking	31,206	346,252	656	0.92 (0.84, 1.02)
No manual, usually standing/walking	16,304	180,981	359	0.90 (0.80, 1.02)
Some manual, some standing/walking	8,920	99,091	221	1.13 (0.97, 1.30)
Some manual, usually standing/walking	16,815	186,889	397	0.96 (0.86, 1.08)
Usually manual, usually standing/walking	12,781	141,744	293	0.96 (0.84, 1.10)
Men				
Retired	65,044	694,227	7,481	0.85 (0.79, 0.92)
Caring for home/family	1,069	11,626	70	1.39 (1.09, 1.78)
Unable to work due to illness	7,191	76,022	1,178	1.80 (1.63, 1.98)
Unemployed	4,609	49,086	305	1.26 (1.10, 1.45)
Unpaid work	579	6,278	41	1.05 (0.76, 1.43)
(Ref) No manual, no standing/walking	43,324	478,991	1,384	1.00 (1.00, 1.00)
No manual, some standing/walking	27,946	309,485	983	0.98 (0.90, 1.06)
No manual, usually standing/walking	8,842	97,457	371	1.00 (0.89, 1.12)
Some manual, some standing/walking	11,242	124,095	450	1.05 (0.94, 1.17)
Some manual, usually standing/walking	15,076	166,224	673	1.02 (0.93, 1.12)
Usually manual, usually standing/walking	19,932	220,121	816	1.02 (0.93, 1.12)
Working-hours	N	Person-years	Deaths	HR (95% CI)
-----------------------	----	--------------	--------	-------------
No manual, no standing/walking				
1-34 hours per week	22,334	246,907	544	0.01 (0.80, 1.04)
35-40 hours per week	21,892	243,220	452	1.00 (1.00, 1.00)
41-84 hours per week	7,810	86,459	113	0.78 (0.63, 0.97)
No manual, some standing/walking				
1-34 hours per week	13,787	152,570	300	0.76 (0.64, 0.90)
35-40 hours per week	12,170	135,461	263	1.00 (1.00, 1.00)
41-84 hours per week	5,249	58,222	93	0.00 (0.70, 1.15)
No manual, usually standing/walking				
1-34 hours per week	9,487	105,019	232	0.96 (0.74, 1.24)
35-40 hours per week	4,246	47,384	80	1.00 (1.00, 1.00)
41-84 hours per week	2,671	29,678	38	0.76 (0.60, 1.11)
Some manual, some standing/walking				
1-34 hours per week	4,041	44,783	110	0.95 (0.69, 1.31)
35-40 hours per week	3,450	38,475	74	1.00 (1.00, 1.00)
41-84 hours per week	1,429	15,832	37	1.23 (0.81, 1.88)
Some manual, usually standing/walking				
1-34 hours per week	9,735	108,088	246	0.89 (0.70, 1.13)
35-40 hours per week	4,909	49,722	109	1.00 (1.00, 1.00)
41-84 hours per week	2,171	24,076	42	0.82 (0.57, 1.18)
Usually manual, usually standing/walking				
1-34 hours per week	7,847	84,660	172	0.72 (0.55, 0.94)
35-40 hours per week	3,676	40,970	94	1.00 (1.00, 1.00)
41-84 hours per week	1,458	16,115	27	0.82 (0.53, 1.27)
All workers				
1-34 hours per week	67,031	742,027	1,604	0.86 (0.79, 0.93)
35-40 hours per week	50,343	660,233	1,081	1.00 (1.00, 1.00)
41-84 hours per week	20,688	229,283	350	0.85 (0.75, 0.96)

Working-hours	N	Person-years	Deaths	HR (95% CI)
No manual, no standing/walking				
1-34 hours per week	7,485	81,749	371	0.78 (0.67, 0.89)
35-40 hours per week	19,151	212,311	569	1.00 (1.00, 1.00)
41-84 hours per week	16,685	184,932	444	0.96 (0.84, 1.09)
No manual, some standing/walking				
1-34 hours per week	4,569	49,937	268	0.88 (0.74, 1.04)
35-40 hours per week	11,459	127,153	376	1.00 (1.00, 1.00)
41-84 hours per week	11,918	132,395	339	0.05 (0.81, 1.10)
No manual, usually standing/walking				
1-34 hours per week	2,370	25,953	133	0.80 (0.61, 1.04)
35-40 hours per week	3,333	36,713	138	1.00 (1.00, 1.00)
41-84 hours per week	3,139	34,792	100	0.83 (0.63, 1.09)
Some manual, some standing/walking				
1-34 hours per week	1,626	17,818	89	0.73 (0.55, 0.95)
35-40 hours per week	4,518	49,905	184	1.00 (1.00, 1.00)
41-84 hours per week	5,096	56,371	177	0.89 (0.72, 1.10)
Some manual, usually standing/walking				
1-34 hours per week	2,849	31,055	169	0.85 (0.69, 1.04)
35-40 hours per week	6,539	72,210	280	1.00 (1.00, 1.00)
41-84 hours per week	5,688	62,959	224	1.00 (0.83, 1.12)
Usually manual, usually standing/walking				
1-34 hours per week	2,865	31,295	140	0.80 (0.65, 0.97)
35-40 hours per week	8,626	95,221	364	1.00 (1.00, 1.00)
41-84 hours per week	8,443	93,605	303	0.98 (0.84, 1.15)
All workers				
1-34 hours per week	21,767	237,808	1,179	0.81 (0.75, 0.88)
35-40 hours per week	53,626	593,513	1,911	1.00 (1.00, 1.00)
41-84 hours per week	50,660	565,054	1,587	0.96 (0.89, 1.02)
Occupational-category	N	Person-years	Deaths	HR (95% CI)
---	---------	--------------	--------	-------------
Women not in paid employment				
Retired	87,352	952,184	5,624	0.75 (0.72, 0.79)
Caring for home/family	11,612	128,119	275	0.75 (0.60, 0.93)
Unable to work due to illness	5,850	63,891	479	0.86 (0.72, 1.03)
Unemployed	2,474	26,719	67	0.66 (0.40, 1.09)
All	107,288	1,170,912	6,445	0.76 (0.72, 0.80)
Women in paid employment				
No manual, no standing/walking	52,036	576,585	1,109	0.88 (0.79, 0.98)
No manual, some standing/walking	31,206	346,252	656	1.02 (0.89, 1.16)
No manual, usually standing/walking	16,304	180,981	359	0.84 (0.69, 1.01)
Some manual, some standing/walking	8,920	99,091	221	0.99 (0.78, 1.25)
Some manual, usually standing/walking	16,815	186,889	397	0.85 (0.71, 1.02)
Usually manual, usually standing/walking	12,781	141,744	293	0.89 (0.73, 1.09)
All	138,062	1,531,543	3,035	0.90 (0.84, 0.96)
Men not in paid employment				
Retired	65,044	694,227	7,481	0.79 (0.76, 0.83)
Caring for home/family	1,069	11,626	70	1.10 (0.70, 1.72)
Unable to work due to illness	7,191	76,022	1,178	0.93 (0.84, 1.04)
Unemployed	4,609	49,086	305	0.82 (0.67, 1.01)
All	77,913	830,961	9,034	0.81 (0.78, 0.84)
Men in paid employment				
No manual, no standing/walking	43,324	478,991	1,384	0.89 (0.82, 0.97)
No manual, some standing/walking	27,946	309,485	983	0.84 (0.75, 0.93)
No manual, usually standing/walking	8,842	97,457	371	0.69 (0.58, 0.82)
Some manual, some standing/walking	11,242	124,095	450	1.01 (0.87, 1.18)
Some manual, usually standing/walking	15,076	166,224	673	0.98 (0.86, 1.11)
Usually manual, usually standing/walking	19,932	220,121	816	0.84 (0.74, 0.95)
All	126,362	1,396,373	4,677	0.88 (0.84, 0.92)
Working-hours	N	Person-years	Deaths	HR (95% CI)
-------------------------------	---------	--------------	--------	--------------
Women				
1-34 work hours per week	67,101	742,783	1,606	0.90 (0.83, 0.98)
35-40 work hours per week	50,372	560,561	1,081	0.86 (0.77, 0.95)
41-84 work hours per week	20,698	229,391	350	0.98 (0.83, 1.17)
Men				
1-34 work hours per week	21,804	238,217	1,181	0.87 (0.79, 0.96)
35-40 work hours per week	53,662	593,896	1,916	0.91 (0.84, 0.98)
41-84 work hours per week	50,997	565,359	1,589	0.86 (0.79, 0.93)