Deep Neural Tangent Kernel and Laplace Kernel Have the Same RKHS

Lin Chen∗ Sheng Xu†

Abstract

We prove that the reproducing kernel Hilbert spaces (RKHS) of a deep neural tangent kernel and the Laplace kernel include the same set of functions, when both kernels are restricted to the sphere S^{d-1}. Additionally, we prove that the exponential power kernel with a smaller power (making the kernel more non-smooth) leads to a larger RKHS, when it is restricted to the sphere S^{d-1} and when it is defined on the entire \mathbb{R}^d.

1 Introduction

In the past few years, one of the most seminal discoveries in the theory of neural networks is the neural tangent kernel (NTK) [19]. The gradient flow on a normally initialized, fully connected neural network in the infinite-width limit turns out to be equivalent to kernel regression with respect to the NTK. Through the NTK, theoretical tools from kernel methods were introduced to the study of deep overparametrized neural networks. Theoretical results were thereby established regarding the convergence [1, 13, 14], generalization [4, 9], and loss landscape [20] of overparametrized neural networks in the NTK regime.

While NTK has proved to be a powerful theoretical tool, a recent work [17] posed an important question whether the NTK is significantly different from our repertoire of standard kernels. Prior work provided empirical evidence that supports a negative answer. For example, Belkin et al. [7] showed experimentally that the Laplace kernel and neural networks had similar performance in fitting random labels. In the task of speech enhancement, exponential power kernels $K_{\exp}(x, y) = e^{-\|x-y\|^\gamma/\sigma}$, which include the Laplace kernel as a special case, outperform deep neural networks with even shorter training time [18]. The experiments in [17] also exhibited similar performance of the Laplace kernel and the NTK.

The expressive power of a positive definite kernel can be characterized by its associated reproducing kernel Hilbert space (RKHS) [23]. The work [17] considered the RKHS of the kernels restricted to the sphere $S^{d-1} \triangleq \{ x \in \mathbb{R}^d \mid \|x\|_2 = 1 \}$ and presented a partial answer to the question by showing the following subset inclusion relation

$$\mathcal{H}_{\text{Gauss}}(S^{d-1}) \subseteq \mathcal{H}_{\text{Lap}}(S^{d-1}) = \mathcal{H}_{N_1}(S^{d-1}) \subseteq \mathcal{H}_{N_k}(S^{d-1}),$$

where the four spaces denote the RKHS associated with the Gaussian kernel, Laplace kernel, the NTK of two-layer and $(k+1)$-layer ($k \geq 1$) fully connected neural networks, respectively. All four kernels are restricted to S^{d-1}. However, the relation between $\mathcal{H}_{\text{Lap}}(S^{d-1})$ and $\mathcal{H}_{N_k}(S^{d-1})$ remains open in [17].

∗Simons Institute for the Theory of Computing, University of California, Berkeley. E-mail: lin.chen@berkeley.edu
†Department of Statistics and Data Science, Yale University. Email: sheng.xu@yale.edu
We make a final conclusion on this problem and show that the RKHS of the Laplace kernel and
the NTK with any number of layers have the same set of functions, when they are both restricted
to \mathbb{S}^{d-1}. In other words, we prove the following theorem.

Theorem 1. Let $\mathcal{H}_{\text{Lap}}(\mathbb{S}^{d-1})$ and $\mathcal{H}_{N_k}(\mathbb{S}^{d-1})$ be the RKHS associated with the Laplace kernel $K_{\text{Lap}}(x,y) = e^{-c||x-y||}$ ($c > 0$) and the neural tangent kernel of a $(k+1)$-layer fully connected ReLU network. Both kernels are restricted to the sphere \mathbb{S}^{d-1}. Then the two spaces include the same set of functions:

$$\mathcal{H}_{\text{Lap}}(\mathbb{S}^{d-1}) = \mathcal{H}_{N_k}(\mathbb{S}^{d-1}), \forall k \geq 1.$$

Our second result is that the exponential power kernel with a smaller power (making the kernel
more non-smooth) leads to a larger RKHS, both when it is restricted to the sphere \mathbb{S}^{d-1} and when it is defined on the entire \mathbb{R}^d.

Theorem 2. Let $\mathcal{H}_{K_{\gamma,\sigma}^{\exp}}(\mathbb{S}^{d-1})$ and $\mathcal{H}_{K_{\gamma,\sigma}^{\exp}}(\mathbb{R}^d)$ be the RKHS associated with the exponential power kernel $K_{\gamma,\sigma}^{\exp}(x,y) = \exp\left(-\frac{||x-y||}{\sigma}\right)$ ($\gamma, \sigma > 0$) when it is restricted to the unit sphere \mathbb{S}^{d-1} and defined on the entire \mathbb{R}^d, respectively. Then we have the following RKHS inclusions:

1. If $0 < \gamma_1 < \gamma_2 < 2$,
$$\mathcal{H}_{K_{\gamma_1,\sigma_1}^{\exp}}(\mathbb{S}^{d-1}) \subseteq \mathcal{H}_{K_{\gamma_2,\sigma_2}^{\exp}}(\mathbb{S}^{d-1}).$$

2. If $0 < \gamma_1 < \gamma_2 < 2$ are rational,
$$\mathcal{H}_{K_{\gamma_2,\sigma_2}^{\exp}}(\mathbb{R}^d) \subseteq \mathcal{H}_{K_{\gamma_1,\sigma_1}^{\exp}}(\mathbb{R}^d).$$

If it is restricted to the unit sphere, the RKHS of the exponential power kernel with $\gamma < 1$ is
even larger than that of NTK. This result partially explains the observation in [18] that the best
performance is attained by a highly non-smooth exponential power kernel with $\gamma < 1$. Geifman
et al. [17] applied the exponential power kernel and the NTK to classification and regression tasks
on the UCI dataset and other large scale datasets. Their experiment results also showed that the
exponential power kernel slightly outperforms the NTK.

1.1 Further Related Work

Minh et al. [21] showed the complete spectrum of the polynomial and Gaussian kernels on \mathbb{S}^{d-1}. They also gave a recursive relation for the eigenvalues of the polynomial kernel on the hypercube $\{-1,1\}^d$. Prior to the NTK [19], Cho and Saul [11] presented a pioneering study on kernel meth-
ods for neural networks. Bach [6] studied the eigenvalues of positively homogeneous activation
functions of the form $\sigma_\alpha(u) = \max\{u,0\}^\alpha$ (e.g., the ReLU activation when $\alpha = 1$) in their Mercer
decomposition with Gegenbauer polynomials. Using the results in [6], Bietti and Mairal [8]
analyzed the two-layer NTK and its RKHS in order to investigate the inductive bias in the NTK
regime. They studied the Mercer decomposition of two-layer NTK with ReLU activation on \mathbb{S}^{d-1}
and characterized the corresponding RKHS by showing the asymptotic decay rate of the eigenvalues
in the Mercer decomposition with Gegenbauer polynomials. In their derivation of a more concise
expression of the ReLU NTK, they used the calculation of [11] on arc-cosine kernels of degree 0
and 1. Geifman et al. [17] used the results in [8] and considered the two-layer ReLU NTK with bias
β initialized with zero, rather than initialized with a normal distribution [19]. However, neither
[8] nor [17] went beyond two layers when they tried to characterize the RKHS of the ReLU NTK.
This line of work \cite{6,8,17} is closely related to the Mercer decomposition with spherical harmonics. Interested readers are referred to \cite{5} for spherical harmonics on the unit sphere.

Arora et al. \cite{3} presented a dynamic programming algorithm that computes convolutional NTK with ReLU activation. Yang and Salman \cite{26} analyzed the spectra of the conjugate kernel (CK) and NTK on the boolean cube. Fan and Wang \cite{15} studied the spectrum of the gram matrix of training samples under the CK and NTK and showed that their eigenvalue distributions converge to a deterministic limit. The limit depends on the eigenvalue distribution of the training samples.

2 Preliminaries

Let \mathbb{C} denote the set of all complex numbers. For $z \in \mathbb{C}$, write $\Re z$, $\Im z$, and $\arg z \in (-\pi, \pi]$ for its real part, imaginary part, and argument, respectively. Let $\mathbb{H}^+ \triangleq \{z \in \mathbb{C} \mid \Re z > 0\}$ denote the upper half-plane and $\mathbb{H}^- \triangleq \{z \in \mathbb{C} \mid \Re z < 0\}$ denote the lower half-plane. Write $B_z(r)$ for the open ball $\{w \in \mathbb{C} \mid |z - w| < r\}$ and $\overline{B}_z(r)$ for the closed ball $\{w \in \mathbb{C} \mid |z - w| \leq r\}$.

Suppose that $f(z)$ has a power series representation $f(z) = \sum_{n \geq 0} a_n z^n$ around 0. Denote $[x^n]f(z) \triangleq a_n$ to be the coefficient of the n-th order term.

For two sequences $\{a_n\}$ and $\{b_n\}$, write $a_n \sim b_n$ if $\lim_{n \to \infty} \frac{a_n}{b_n} = 1$. Similarly, for two functions $f(z)$ and $g(z)$, write $f(z) \sim g(z)$ as $z \to z_0$ if $\lim_{z \to z_0} \frac{f(z)}{g(z)} = 1$. We also use big-$O$ and little-o notation to characterize asymptotics.

Write $\mathcal{L}\{f(t)\}(s) \triangleq \int_0^\infty f(t) e^{-st} dt$ for the Laplace transform of a function $f(t)$. The inverse Laplace transform of $F(s)$ is denoted by $\mathcal{L}^{-1}\{F(s)\}(t)$.

2.1 Positive Definite Kernels

For any positive definite kernel function $K(x, y)$ defined for $x, y \in E$, denote $\mathcal{H}_K(E)$ its associated reproducing kernel Hilbert space (RKHS). For any two positive definite kernel functions K_1 and K_2, we write $K_1 \preceq K_2$ if $K_2 - K_1$ is a positive definite kernel. For a complete review of results on kernels and RKHS, please see \cite{23}.

We will study positive definite zonal kernels on the sphere $\mathbb{S}^{d-1} = \{x \in \mathbb{R}^d \mid \|x\| = 1\}$. For a zonal kernel $K(x, y)$, there exists a real function $\tilde{K} : [-1, 1] \to \mathbb{R}$ such that $K(x, y) = \tilde{K}(u)$, where $u = x^\top y$. We abuse the notation and use $K(u)$ to denote $\tilde{K}(u)$, i.e., $K(u)$ here is real function on $[-1, 1]$.

In the sequel, we introduce two instances of the positive definite kernel that this paper will investigate.

Laplace Kernel The Laplace kernel $K_{\text{Lap}}(x, y) = e^{-c\|x-y\|}$ with $c > 0$ restricted to the sphere \mathbb{S}^{d-1} is given by

$$K_{\text{Lap}}(x, y) = e^{-c\sqrt{2(1-x^\top y)}} = e^{-\tilde{c}\sqrt{1-u}} \triangleq K_{\text{Lap}}(u),$$

where by our convention $u = x^\top y$ and $\tilde{c} \triangleq \sqrt{2c} > 0$. We denote its associated RKHS by \mathcal{H}_{Lap}.

Exponential Power Kernel The exponential power kernel \cite{18} with $\gamma > 0$ and $\sigma > 0$ is given by

$$K_{\text{exp}}^{\gamma,\sigma}(x, y) = \exp\left(-\frac{\|x-y\|^\gamma}{\sigma}\right).$$
If x and y are restricted to the sphere \mathbb{S}^{d-1}, we have
\[
K^{\gamma,\sigma}_{\exp}(x, y) = \exp \left(-\frac{(2(1 - x^\top y))^\gamma}{\sigma} \right).
\]

Neural Tangent Kernel Given the input $x \in \mathbb{R}^d$ (we define $d_0 \equiv d$) and parameter θ, this paper considers the following network model with $(k + 1)$ layers
\[
f_\theta(x) = w^\top \sqrt{\frac{2}{d_k}} \sigma \left(\cdots \sqrt{\frac{2}{d_2}} \sigma \left(W_1^\top x + \beta b_1 \right) + \beta b_2 \right) + \beta b_{k+1},
\]
where the parameter θ encodes $W_l \in \mathbb{R}^{d_l \times d_{l-1}}$, $b_l \in \mathbb{R}^{d_l}$ ($l = 1, \ldots, k$), $w \in \mathbb{R}^{d_k}$, and $b_{k+1} \in \mathbb{R}$. The weight matrices W_1, \ldots, W_k, w are initialized with $\mathcal{N}(0, I)$ and the biases b_1, \ldots, b_{k+1} are initialized with zero, where $\mathcal{N}(0, I)$ is the multivariate standard normal distribution. The activation function is chosen to be the ReLU function $\sigma(x) \equiv \max\{x, 0\}$.

The NTK of the above ReLU network (1) is given by
\[
N_k(x, y) = \mathbb{E}_\theta \langle \nabla_\theta f_\theta(x), \nabla_\theta f_\theta(y) \rangle,
\]
where the expectation is taken over the random initialization of θ. Geifman et al. [17] and Bietti and Mairal [8] presented the following recursive relations of N_k:
\[
\Sigma_k(x, y) = \sqrt{\Sigma_{k-1}(x, x) \Sigma_{k-1}(y, y)} \kappa_1 \left(\frac{\Sigma_{k-1}(x, y)}{\sqrt{\Sigma_{k-1}(x, x) \Sigma_{k-1}(y, y)}} \right),
\]
\[
N_k(x, y) = \Sigma_k(x, y) + N_{k-1}(x, y) \kappa_0 \left(\frac{\Sigma_{k-1}(x, y)}{\sqrt{\Sigma_{k-1}(x, x) \Sigma_{k-1}(y, y)}} \right) + \beta^2,
\]
where κ_0 and κ_1 are the arc-cosine kernels of degree 0 and 1 [11] given by
\[
\kappa_0(u) = \frac{1}{\pi} (\pi - \arccos(u)), \quad \kappa_1(u) = \frac{1}{\pi} \left(u \cdot (\pi - \arccos(u)) + \sqrt{1 - u^2} \right).
\]
The initial conditions are
\[
N_0(x, y) = u + \beta^2, \quad \Sigma_0(x, y) = u,
\]
where $u = x^\top y$ by our convention.

The NTKs defined in [8] and [17] are slightly different. There is no bias term β^2 in [8], while the bias term appears in [17]. We adopt the more general setup with the bias term.

Lemma 3. $\Sigma_k(x, x) = 1$ for any $x \in \mathbb{S}^{d-1}$ and $k \geq 0$.

Proof. We show it by induction. It holds when $k = 0$ by the initial condition [3]. Assume that it holds for some $k \geq 0$, i.e., $\Sigma_k(x, x) = 1$. Consider $k + 1$. We have
\[
\Sigma_{k+1}(x, x) = \kappa_1(\Sigma_k(x, x)) = \kappa_1(1) = 1.
\]

\[\square\]
Lemma 3 simplifies (2) and gives
\[
\Sigma_k(u) = \kappa_1^{(k)}(u) \\
N_k(u) = \kappa_1^{(k)}(u) + N_{k-1}(u)\kappa_0(\kappa_1^{(k-1)}(u)) + \beta^2,
\]
where \(\kappa_1^{(k)}(u)\) is the \(k\)-th iterate of \(\kappa_1(u)\)
\[
\kappa_1^{(k)}(u) = \underbrace{\kappa_1 \circ \kappa_1 \circ \cdots \circ \kappa_1}_{k}(u).
\]

3 Results on Neural Tangent Kernel

First, we present an overview of our techniques to prove Theorem 1. Since \cite{17} showed \(H\) see \cite[Theorem 2]{24} and \cite[Chapter 17]{10}. Conversely, if the Maclaurin series of \(K\) series of \(\gamma > k\) kernels. Then the Hilbert space \(H\) negative coefficients, \(K\) holds for every \(n \geq 0\). This motivates us to investigate the decay rate of \([z^n]K_{\text{Lap}}(z)\) and \([z^n]N_k(z)\).

We will establish the following asymptotic decay rate
\[
[z^n]K_{\text{Lap}}(z) \sim C_1n^{-3/2}, \quad [z^n]N_k(z) \sim C_2n^{-3/2},
\]
for some positive constants \(C_1, C_2 > 0\). They are indeed of the same order of decay rate \(n^{-3/2}\), which implies that such \(\gamma\) exists. Hence we establish \(\mathcal{H}_{N_k}(S^{d-1}) \subset \mathcal{H}_{\text{Lap}}(S^{d-1})\).

Now the question is how to demonstrate the asymptotic decay rate. Exact calculation seems intractable for \(N_k\) due to its recursive definition. For this real problem, we need complex tools from analytic combinatorics \cite{16}. First, from now on, we treat all (zonal) kernels in this paper, \(K_{\text{Lap}}(u),\ N_k(u),\ \kappa_0(u),\) and \(\kappa_1(u),\) as complex functions of variable \(u \in \mathbb{C}\). To emphasize that they are complex, we use \(z \in \mathbb{C}\) instead of \(u\) to denote the variable. The theory of analytic combinatorics states that the asymptotic of the coefficients of the Maclaurin series is determined by the local nature of the complex function at its dominant singularities (i.e., the singularities closest to \(z = 0\)).

To apply the methodology, the function \(f(z)\) of interest has to be analytic on a \(\Delta\)-domain \cite{16} at the dominant singularities. Formally, for \(R > 1\) and \(\phi \in (0, \pi/2)\), the \(\Delta\)-domain \(\Delta(\phi, R)\) is defined by
\[
\Delta(\phi, R) \triangleq \{z \in \mathbb{C} \mid |z| < R, z \neq 1, |\arg(z - 1)| > \phi\}.
\]
A \(\Delta\)-domain at \(\zeta \in \mathbb{C}\) is the image by the mapping \(z \mapsto \zeta z\) of \(\Delta(\phi, R)\) for some \(R > 1\) and \(\phi \in (0, \pi/2)\). A function is \(\Delta\)-analytic at \(\zeta\) if it is analytic on a \(\Delta\)-domain at \(\zeta\).

First, assume that the function \(f(z)\) has only one dominant singularity and without loss of generality assume that it lies at \(z = 1\).
Lemma 5 ([16 Corollary VI.1]). If \(f \) is \(\Delta \)-analytic at its dominant singularity 1 and

\[
f(z) \sim (1 - z)^{-\alpha}, \quad \text{as } z \to 1, z \in \Delta
\]

with \(\alpha \notin \{0, -1, -2, \ldots\} \), we have

\[
[z^n] f(z) \sim \frac{n^{n-1}}{\Gamma(\alpha)}.
\]

If the function has multiple dominant singularities, the influence of each singularity is added up. Readers are referred to [16, Theorem VI.5] for more details.

3.1 Analytic Continuation of Kernel Functions

In light of (4), the NTKs \(N_k \) are compositions of arc-cosine kernels \(\kappa_0 \) and \(\kappa_1 \). We analytically extend \(\kappa_0 \) and \(\kappa_1 \) to a complex function of a complex variable \(z \in \mathbb{C} \). Both complex functions \(\arccos(z) \) and \(\sqrt{1 - z^2} \) have branch points at \(z = \pm 1 \). Therefore, the branch cut of \(\kappa_0(z) \) and \(\kappa_1(z) \) is \([1, \infty) \cup (-\infty, -1]\). They have a single-valued analytic branch on

\[
D = \mathbb{C} \setminus [1, \infty) \setminus (-\infty, -1).
\]

On this branch, we have

\[
\kappa_0(z) = \frac{\pi + i \log(z + i \sqrt{1 - z^2})}{\pi},
\]

\[
\kappa_1(z) = \frac{1}{\pi} \left[z \cdot \left(\pi + i \log(z + i \sqrt{1 - z^2}) + \sqrt{1 - z^2} \right) \right],
\]

where we use the principal value of the logarithm and square root.

The objective of this subsection is to show that the dominant singularities of \(\kappa_1^{(k)}(z) \) are \(\pm 1 \) and that \(\kappa_1^{(k)}(z) \) is \(\Delta \)-analytic at \(\pm 1 \). Lemma 6 and Lemma 7 demonstrate that \(\pm 1 \) are indeed singularities and analyze the asymptotics as \(z \) tends to \(\pm 1 \), respectively. Recall that the asymptotics around the dominant singularities dictate the decay rate of the Maclaurin coefficients. Pinelis [22] calculated the asymptotics of \(\kappa_1^{(2)} \) around \(\pm 1 \), which inspires our calculation of the asymptotics of the general \(\kappa_1^{(k)} \) in Lemmas 6 and 7.

Lemma 6. For every \(k \geq 1 \), there exists \(c_k(z) \) such that

\[
\kappa_1^{(k)}(z) = z + c_k(z)(1 - z)^{3/2},
\]

where

\[
\lim_{z \to 1} c_k(z) = \frac{2\sqrt{2}k}{3\pi}.
\]

Proof. We prove by induction on \(k \). We first prove the statement for \(k = 1 \). Let \(z = 1 - re^{i\theta} \). Taylor’s theorem around 1 with integral form of remainder gives

\[
k_1(z) = z + \int_{\gamma} \frac{z - w}{\pi \sqrt{1 - w^2}} dw,
\]

where \(\gamma : [0, 1] \to \mathbb{C} \) is the simple straight line connecting 1 and \(z \) taking the form \(\gamma(t) = 1 - te^{i\theta} \). It follows

\[
k_1(z) = z + \int_{\gamma} \frac{z - w}{\pi \sqrt{1 - w}} \cdot \frac{1}{\sqrt{1 + w}} dw
\]

\[
= z + \int_{\gamma} \frac{z - w}{\pi \sqrt{2} \sqrt{1 - w}} dw + \int_{\gamma} \frac{z - w}{\pi \sqrt{2} \sqrt{1 - w}} \cdot \left(\frac{\sqrt{2}}{\sqrt{1 + w} - 1} \right) dw.
\]
Since\
\[
\int_{\gamma} \frac{z - w}{\sqrt{1 - w}} dw = \frac{2}{3} \sqrt{1 - w} (w - 3z + 2) \bigg|_{w=z}^{w=1} = \frac{4}{3} (1 - z)^{3/2},
\]
we have
\[
\kappa_1(z) = z + \frac{2\sqrt{2}}{3\pi} (1 - z)^{3/2} + \int_{\gamma} \frac{z - w}{\pi \sqrt{2} \sqrt{1 - w}} \cdot (\frac{\sqrt{2}}{\sqrt{1 + w}} - 1) dw.
\]
We then turn to show
\[
\lim_{z \to 1} \left\{ (1 - z)^{-3/2} \cdot \int_{\gamma} \frac{z - w}{\pi \sqrt{2} \sqrt{1 - w}} \cdot (\frac{\sqrt{2}}{\sqrt{1 + w}} - 1) dw \right\} = 0.
\]
Direct calculation gives
\[
\lim_{z \to 1} \left\{ (1 - z)^{-3/2} \cdot \int_{\gamma} \frac{z - w}{\sqrt{1 - w}} \cdot (\frac{\sqrt{2}}{\sqrt{1 + w}} - 1) dw \right\} = \lim_{r \to 0} \left\{ (re^{i\theta})^{-3/2} \cdot \int_{0}^{1} (1 - t)e^{2i\theta} \cdot (\frac{\sqrt{2}}{\sqrt{2} - tre^{i\theta}} - 1) dt \right\} = 0.
\]
Therefore, there exists \(c_1(z) \) such that \(\lim_{z \to 1} c_1(z) = \frac{2\sqrt{2}}{3\pi} \neq 0 \) and
\[
\kappa_1(z) = z + c_1(z)(1 - z)^{3/2}.
\]
Next, assume that the desired equation holds for some \(k \geq 1 \). We then have
\[
\kappa_1^{(k+1)}(z) = \kappa_1 (\kappa_1^{(k)}(z)) = \kappa_1 (z + c_k(z)(1 - z)^{3/2}) = z + c_k(z)(1 - z)^{3/2} + c_1 (\kappa_1^{(k)}(z)) \cdot \left(1 - z - c_k(z)(1 - z)^{3/2}\right)^{3/2} = z + c_{k+1}(z)(1 - z)^{3/2},
\]
where \(c_{k+1}(z) \sim c_k(z) + c_1 (\kappa_1^{(k)}(z)) \). Recall that when \(z \to 1 \), we have \(\kappa_1^{(k)}(z) \to 1 \) as well. Therefore we deduce
\[
\lim_{z \to 1} c_{k+1}(z) = \lim_{z \to 1} c_k(z) + \lim_{z \to 1} c_1 (\kappa_1^{(k)}(z)) = \frac{2\sqrt{2}k}{3\pi} \neq 0.
\]
\[
\square
\]
\textbf{Lemma 7.} For every \(k \geq 1 \), there exist \(a_k \in \mathbb{R} \) and a complex function \(b_k(z) \) such that
\[
\kappa_1^{(k)}(z) = a_k + b_k(z)(z + 1)^{3/2},
\]
where
\[
a_k = \kappa_1^{(k)}(-1) \quad \text{and} \quad \lim_{z \to -1} b_k(z) = \frac{2\sqrt{2}}{3\pi} \prod_{j=1}^{k-1} \kappa_1^{(j)}(-1) > 0.
\]
Proof. We prove by induction on k. We first prove the statement for $k = 1$. Let $z = -1 + r e^{i \theta}$. Taylor’s theorem around -1 with integral form of remainder gives

$$
\kappa_1(z) = \int_0^1 \frac{z - w}{\pi \sqrt{1 - w^2}} dw .
$$

where $\gamma : [0, 1] \to \mathbb{C}$ is the simple straight line connecting -1 and z taking the form $\gamma(t) = -1 + t r e^{i \theta}$. Similar arguments as in the proof of Lemma 6 give

$$
\kappa_1(z) = b_1(z)(z + 1)^{3/2} ,
$$

where $\lim_{z \to -1} b_1(z) = \frac{2 \sqrt{2}}{3\pi}$.

Next, assume that the desired equation holds for some $k \geq 1$. Define $h_k \triangleq \kappa_1^{(k)}(-1)$. Since κ_1 is strictly increasing on $[-1, 1]$, $\kappa_1(-1) = 0$ and $\kappa_1(1) = 1$, we have $h_1 = 0$ and $h_k \in (0, 1)$ for all $k > 1$. Expanding κ_1 around h_k yields

$$
\kappa_1(z) = \kappa_1(h_k) + p(z)(z - h_k) = h_{k+1} + p(z)(z - h_k) ,
$$

where $\lim_{z \to h_k} p(z) = \kappa_1'(h_k)$. It follows that

$$
\kappa_1^{k+1}(z) = \kappa_1(a_k + b_k(z)(z + 1)^{3/2}) = h_{k+1} + p(\kappa_1^{(k)}(z))(a_k + b_k(z)(z + 1)^{3/2} - h_k)
$$

$$
= a_{k+1} + b_{k+1}(z)(z + 1)^{3/2} ,
$$

where $a_{k+1} = h_{k+1} + \kappa_1'(h_k)(a_k - h_k)$ and $\lim_{z \to -1} b_{k+1}(z) = \kappa_1'(h_k) \lim_{z \to -1} b_k(z)$. By induction, we can show that $a_k = h_k$ for all $k \geq 1$. Since κ_1' is strictly increasing on $[-1, 1]$, $\kappa_1'(-1) = 0$, and $\kappa_1'(1) = 1$, we have $\kappa_1'(h_k) \geq \kappa_1'(0) > 0$. As a result,

$$
\lim_{z \to -1} b_{k+1}(z) = \frac{2 \sqrt{2}}{3\pi} \prod_{j=1}^k \kappa_1'(\kappa_1^{(j)}(-1)) > 0 .
$$

\[\square\]

In the sequel, we shall show that ± 1 are the only dominant singularities of $\kappa_1^{(k)}$ and κ_1 is Δ-analytic at ± 1.

Lemma 8. For any $z \in \mathbb{C}$ with $\arg z \in (0, \pi/4)$, $\kappa_1(z) \in \mathbb{H}^+$. For any $z \in \mathbb{C}$ with $\arg z \in (-\pi/4, 0)$, $\kappa_1(z) \in \mathbb{H}^-$.

Proof. The second part of the statement follows from the first according to the reflection principle. We only prove the first part here. Let $z = r e^{i \theta}$ with $\theta \in (0, \pi/4)$. Taylor’s theorem with integral form of the remainder and direct calculation give

$$
\kappa_1(z) = \kappa_1(0) + \kappa_1'(0)z + \int_0^1 (z - w)\kappa_1''(w)dw = \frac{1}{\pi} + \frac{1}{2} z + \int_0^1 \frac{z - w}{\pi \sqrt{1 - w^2}} dw ,
$$

where $\gamma : [0, 1] \to \mathbb{C}$ is the simple straight line connecting 0 and z taking the form $\gamma(t) = t r e^{i \theta}$. Then we have

$$
\int_0^1 \frac{z - w}{\pi \sqrt{1 - w^2}} dw = r^2 e^{2i \theta} \int_0^1 \frac{1 - t}{\pi \sqrt{1 - r^2 t^2} e^{2i \theta}} dt = e^{2i \theta} \int_0^r \frac{r - t}{\pi \sqrt{1 - r^2 t^2} e^{2i \theta}} dt .
$$
Since \(\theta \in (0, \pi/4) \), we have \(\arg(1 - t^2 e^{2i\theta}) \in (-\pi, 0) \). Further
\[
\arg\left(\frac{1}{\sqrt{1 - t^2 e^{2i\theta}}} \right) \in (0, \pi/2) \quad \text{and} \quad \arg\left(\int_0^r \frac{r - t}{\pi \sqrt{1 - t^2 e^{2i\theta}}} dt\right) \in (0, \pi/2).
\]
Noting \(\arg(e^{2i\theta}) \in (0, \pi/2) \), we get
\[
\arg\left(\int \frac{z - w}{\pi \sqrt{1 - w^2}} dw\right) \in (0, \pi),
\]
which gives a positive imaginary part. Combining with \(\Im(1/\pi + z/2) > 0 \) yields the desired statement. \(\blacksquare \)

Lemma 9. For every \(k \geq 1 \) and \(\varepsilon > 0 \), there exists \(\delta > 0 \) such that \(\kappa_1^{(k)} \) is analytic on \(B_1(\delta) \cap \mathbb{H}^+ \) and \(B_1(\delta) \cap \mathbb{H}^- \) with
\[
\kappa_1^{(k)}(B_1(\delta) \cap \mathbb{H}^+) \subseteq B_1(\varepsilon) \cap \mathbb{H}^+,
\]
\[
\kappa_1^{(k)}(B_1(\delta) \cap \mathbb{H}^-) \subseteq B_1(\varepsilon) \cap \mathbb{H}^-.
\]

Proof. We present the proof for \(\mathbb{H}^+ \) here and that for \(\mathbb{H}^- \) can be shown similarly. We adopt an induction argument on \(k \).

For \(k = 1 \), \(\kappa_1 \) is analytic on \(\mathbb{H}^+ \). Since \(\kappa_1 \) is continuous at \(z = 1 \), for any \(\varepsilon > 0 \), there exists \(0 < \delta < 1/2 \) such that
\[
\kappa_1(B_1(\delta) \cap \mathbb{H}^+) \subseteq B_1(\varepsilon).
\]

Lemma 8 implies \(\kappa_1(B_1(\delta) \cap \mathbb{H}^+) \subseteq \mathbb{H}^+ \). Combining them yields
\[
\kappa_1(B_1(\delta) \cap \mathbb{H}^+) \subseteq B_1(\varepsilon) \cap \mathbb{H}^+. \tag{6}
\]

Now assume that the statement holds true for some \(k \geq 1 \). Note that for any \(\varepsilon > 0 \), there exists \(0 < \delta < 1/2 \) such that \([\text{H}] \) holds. Then by induction hypothesis, for this chosen \(\delta \), there exists \(\delta_1 > 0 \) such that \(\kappa_1^{(k)} \) is analytic on \(B_1(\delta_1) \cap \mathbb{H}^+ \) and
\[
\kappa_1^{(k)}(B_1(\delta_1) \cap \mathbb{H}^+) \subseteq B_1(\delta) \cap \mathbb{H}^+.
\]

It follows
\[
\kappa_1^{(k+1)}(B_1(\delta_1) \cap \mathbb{H}^+) \subseteq \kappa_1(B_1(\delta) \cap \mathbb{H}^+) \subseteq B_1(\varepsilon) \cap \mathbb{H}^+.
\]
This completes the proof. \(\blacksquare \)

Lemma 10. \(|\kappa_1(z)| \leq 1 \) for any \(|z| \leq 1 \), where the equality holds if and only if \(z = 1 \).

Proof. The Taylor series of \(\kappa_1 \) around \(z = 0 \) is
\[
\kappa_1(z) = \frac{1}{\pi} + \frac{z}{2} + \sum_{n=1}^{\infty} \frac{(2n - 3)!!}{(2n - 1)n!2^n \pi} z^{2n}.
\]
Therefore, for \(|z| \leq 1 \), we have
\[
|\kappa_1(z)| \leq \frac{1}{\pi} + \frac{|z|}{2} + \sum_{n=1}^{\infty} \frac{(2n - 3)!!}{(2n - 1)n!2^n \pi} |z|^{2n} \leq \kappa_1(1) = 1.
\]
The equality holds if and only if \(z = 1 \). \(\blacksquare \)
Theorem 11. For each $k \geq 1$, there exists $R > 1$ such that $\kappa_1^{(k)}$ is analytic on $\{z \in \mathbb{C} \mid |z| \leq R\} \cap D$, where $D = \mathbb{C} \setminus [1, \infty) \setminus (-\infty, -1]$.

Proof. For any $0 < \theta < \pi/2$, there exists $\delta_\theta > 0$ such that for all $|z| \leq 1$ with $|\arg z| \geq \theta$, we have

$$|\kappa_1(z)| \leq 1 - \delta_\theta.$$

To see this, we use an argument similar to [22]. If we define $\phi \triangleq \arg z$, we have

$$\left| \frac{1}{z} + \frac{z}{2} \right| = \sqrt{\frac{|z|^2}{4} + \frac{|z| \cos \phi}{\pi} + \frac{1}{4}} \leq \sqrt{\frac{1}{4} + \frac{\cos \theta}{\pi} + \frac{1}{4}} = \sqrt{\left(\frac{1}{2} + \frac{1}{\pi} \right)^2 - \frac{1 - \cos \theta}{\pi}} = \frac{1}{2} + \frac{1}{\pi} - \delta_\theta,$$

for some $\delta_\theta > 0$. Consider the Taylor series of κ_1 around $z = 0$

$$\kappa_1(z) = \frac{1}{z} + \frac{z}{2} + \sum_{n=1}^{\infty} \frac{(2n - 3)!!}{(2n - 1)n!2^n \pi^2} z^{2n}.$$

We obtain

$$|\kappa_1(z)| \leq \left| \frac{1}{z} + \frac{z}{2} \right| + \sum_{n=1}^{\infty} \frac{(2n - 3)!!}{(2n - 1)n!2^n \pi^2} |z|^{2n} \leq \frac{1}{2} + \frac{1}{\pi} - \delta_\theta + \sum_{n=1}^{\infty} \frac{(2n - 3)!!}{(2n - 1)n!2^n \pi^2} = 1 - \delta_\theta.$$

Lemma 9 shows that there exists $0 < \delta' < 1$ such that $\kappa_1^{(k)}$ is analytic on $B_1(\delta') \cap D$. From the argument above, we know that κ_1 maps $A \triangleq \{z \in \mathbb{C} \mid |z| = 1, |\arg z| \geq \theta\}$ to inside of the open unit ball $B_0(1)$. Since A is compact and Lemma 10 implies that g maps $B_0(1)$ to $B_0(1)$, there exists $1 < R_\theta < 1 + \delta'$ such that κ_1 maps

$$A_\theta \triangleq (\{z \in \mathbb{C} \mid |z| \leq R_\theta, |\arg z| \geq \theta\} \cap D) \cup B_0(1)$$

to $B_0(1)$. It follows that $\kappa_1^{(k)}$ is analytic on A_θ. Let us pick $\theta \in (0, \pi/2)$ such that $e^{i\theta} \in B_1(\delta')$. Then we conclude that $\kappa_1^{(k)}$ is analytic on $\{z \in \mathbb{C} \mid |z| \leq R_\theta\} \cap D$.

According to Theorem 11, $\kappa_1^{(k)}$ is Δ-analytic at ± 1.

3.2 RKHS Inclusion via Singularity Analysis

We first demonstrate that $[z^n]N_k(z) = O(n^{-3/2})$ (Theorem 12). Theorem 12 shows that the dominant singularities of N_k are ± 1 and that N_k is Δ-analytic at ± 1. Moreover, in the proof of Theorem 12 we give the following asymptotics

$$N_k(z) = (k + 1)(z + \beta^2) - \left(\frac{\sqrt{2}(1 + \beta^2)}{2\pi} \frac{k(k + 1)}{z} + o(1) \right) \sqrt{1 - z} \quad \text{as } z \to 1, \quad (7)$$

$$N_k(z) = N_k(-1) + \left(\frac{\sqrt{2}(\beta^2 - 1)}{\pi} \prod_{j=1}^{k-1} \kappa_0(\kappa_j(-1)) + o(1) \right) \sqrt{1 + z} \quad \text{as } z \to -1. \quad (8)$$

When $\beta = 1$, the singularity at $z = -1$ cannot provide a $\sqrt{1 + z}$ term. The dominating term in (8) is a higher power of $\sqrt{1 + z}$. As a result, the contribution of the singularity at -1 to the Maclaurin coefficients is $o(n^{-3/2})$ and dominated by the contribution of the singularity at 1.
The contribution of \(\gamma \)

We prove by induction on \(k \) such that \(\gamma \).

The singularity at \(z = 1 \) provides a \(\sqrt{1 - z} \) term and thus contributes to \(O(n^{-3/2}) \) decay rate of \([z^n]N_k(z) \). In addition, from (7), we deduce

\[
\frac{[z^n]N_k(z)}{n^{-3/2}} \sim -\frac{2\sqrt{2}k(k+1)}{(2\pi)^{1/2}} = \frac{k(k+1)}{\sqrt{2\pi}^{3/2}}. \tag{9}
\]

When \(\beta \neq 1 \), both singularities \(\pm 1 \) contribute \(\Theta(n^{-3/2}) \) to the Maclaurin coefficients. The contribution of \(z = 1 \) is

\[
-\frac{\sqrt{2}(1 + \beta^2)k(k+1)}{2\pi\Gamma\left(-\frac{1}{2}\right)} n^{-3/2} = \frac{(\beta^2 + 1)k(k+1)}{2\sqrt{2\pi}^{3/2}} n^{-3/2}.
\]

The contribution of \(z = -1 \) is

\[
\left(\frac{\sqrt{2}(\beta^2 - 1)}{\pi\Gamma\left(-\frac{1}{2}\right)}\prod_{j=1}^{k-1} \kappa_0(\kappa_1^j(-1))\right) n^{-3/2} = \left(\frac{1 - \beta^2}{\sqrt{2\pi}^{3/2}}\prod_{j=1}^{k-1} \kappa_0(\kappa_1^j(-1))\right) n^{-3/2}.
\]

Combining them gives

\[
\frac{[z^n]N_k(z)}{n^{-3/2}} \sim \frac{(\beta^2 + 1)k(k+1)}{2\sqrt{2\pi}^{3/2}} + (-1)^n \frac{1 - \beta^2}{\sqrt{2\pi}^{3/2}} \prod_{j=1}^{k-1} \kappa_0(\kappa_1^j(-1)). \tag{10}
\]

\textbf{Theorem 12.} The \(n \)-th order coefficient of the Maclaurin series of the \((k + 1)\)-layer NTK in (2) satisfies \([z^n]N_k(z) = O(n^{-3/2})\).

\textbf{Proof.} Since \(\kappa_0 \) and \(\kappa_1 \) are both analytic on \(D = \mathbb{C} \setminus [1, \infty) \setminus (-\infty, -1) \), similar arguments as in the proof of Theorem 11 shows that \(\kappa_0(\kappa_1^k(z)) \) is analytic on \(\{|z| \leq R\} \cap D \) for all \(k \geq 1 \) and some \(R > 1 \). We then show, for any \(k \geq 1 \), there exists some \(R_k > 1 \) such that \(N_k(z) \) is analytic on \(\{|z| \leq R_k\} \cap D \) by induction. The function \(N_0(z) = z + \beta^2 \) is analytic on \(D \). Assume \(N_{k-1}(z) \) is analytic on \(\{|z| \leq R_{k-1}\} \cap D \) for some \(R_{k-1} > 1 \). Recall that

\[
N_k(z) = \kappa_1^k(z) + N_{k-1}(z)\kappa_0(\kappa_1^{k-1}(z)) + \beta^2.
\]

Then we can find some \(R_k > 1 \) such that \(N_k(z) \) is analytic on \(\{|z| \leq R_k\} \cap D \).

We first analyze the behavior of \(N_k(z) \) as \(z \to 1 \) for any \(k \geq 1 \). We aim to show, for any \(k \geq 1 \), there exists a sequence of complex functions \(p_k(z) \) with \(\lim_{z \to 1} p_k(z) = -\sqrt{2}(1 + \beta^2)k(k+1)/2\pi \) such that

\[
N_k(z) = (k + 1)(z + \beta^2) + p_k(z)\sqrt{1 - z} . \tag{11}
\]

We prove by induction on \(k \). Recall

\[
\kappa_0(z) = \frac{\pi + i \log(z + i\sqrt{1 - z^2})}{\pi}.
\]

The fundamental theorem of calculus then gives for any \(z \in D \)

\[
\kappa_0(z) = 1 + \int_{\gamma} \frac{1}{\pi \sqrt{1 - w^2}} dw ,
\]

where \(\gamma : [0, 1] \to \mathbb{C} \) is the simple straight line connecting 1 and \(z \). As \(z \to 1 \), we have \(\frac{1}{\sqrt{1 - z^2}} \sim \frac{1}{\sqrt{2\sqrt{1 - z}}} \). Therefore, similar arguments as in the proof of Lemma 6 give

\[
\kappa_0(z) = 1 + h(z)\sqrt{1 - z} ,
\]

11
where $\lim_{z \to 1} h(z) = -\frac{\sqrt{2}}{\pi}$. Combining with Lemma 6 further gives, for any $k \geq 1$

$$\kappa_0(k_1^{(k)}(z)) = 1 + h(k_1^{(k)}(z))\sqrt{1-z-c_k(z)(1-z)^{3/2}} = 1 + h_k(z)\sqrt{1-z},$$

where $\lim_{z \to 1} h_k(z) = -\frac{\sqrt{2}}{\pi}$. For $k = 1$, we then have

$$N_1(z) = \kappa_1(z) + (z + \beta^2)\kappa_0(z) + \beta^2 = z + d_1(z)(1-z)^{3/2} + (z + \beta^2)(1 + h(z)\sqrt{1-z}) + \beta^2$$

$$= 2(z + \beta^2) + p_1(z)\sqrt{1-z},$$

where $\lim_{z \to 1} d_1(z) = \frac{2\sqrt{2}}{\pi}$ and $\lim_{z \to 1} p_1(z) = -\frac{\sqrt{2}(1 + \beta^2)}{\pi}$. Assume $N_{k-1}(z) = k(z + \beta^2) + \pi$ and $p_{k-1}(z)\sqrt{1-z}$ with $\lim_{z \to 1} p_{k-1}(z) = -\frac{\sqrt{2}(1 + \beta^2)k(k-1)}{(2\pi)}$. We further have

$$N_k(z) = \kappa_1^{(k)}(z) + N_{k-1}(z)\kappa_0^{(k-1)}(z) + \beta^2$$

$$= z + d_k(z)(1-z)^{3/2} + (z + \beta^2) + p_{k-1}(z)\sqrt{1-z} (1 + h_{k-1}(z)\sqrt{1-z}) + \beta^2$$

$$= (k+1)(z + \beta^2) + (k \cdot h_{k-1}(z)(z + \beta^2))\sqrt{1-z}$$

where we set $p_k(z) = p_{k-1}(z) + k \cdot h_{k-1}(z)(z + \beta^2)$ and $d_k(z) \to \frac{2\sqrt{2}k}{\pi}$, $h_{k-1}(z) \to -\frac{\sqrt{2}}{\pi}$ as $z \to 1$. Moreover, we have

$$\lim_{z \to 1} p_k(z) = \lim_{z \to 1} \left\{p_{k-1}(z) + \frac{\kappa_0(a_k) + k \cdot h_{k-1}(z)(z + \beta^2)}{2\pi}\right\}$$

$$= -\frac{\sqrt{2}(1 + \beta^2)k(k-1)}{2\pi} - k \cdot \frac{\sqrt{2}}{\pi}(1 + \beta^2)$$

$$= -\frac{\sqrt{2}(1 + \beta^2)k(k-1)}{2\pi},$$

which is desired. This proves (11).

Next we study the behavior of $N_k(z)$ as $z \to -1$ for any $k \geq 1$. We aim to show, for any $k \geq 1$, there exists a sequence of complex functions $q_k(z)$ with $\lim_{z \to -1} q_k(z) = \sqrt{2}(\beta^2 - 1)\prod_{j=1}^{k-1} \kappa_0(a_j)/\pi$ and $a_k \triangleq \kappa_1^{(k)}(-1)$ as defined in Lemma 7 such that

$$N_k(z) = N_k(-1) + q_k(z)\sqrt{1+z}.\quad (12)$$

We again adopt induction on k. Taylor’s theorem gives

$$\kappa_0(z) = \kappa_0(a_k) + r_k(z)(z-a_k),$$

where $\lim_{z \to a_k} r_k(z) = \kappa_0'(a_k) > 0$. Combining with Lemma 7 further gives, for any $k \geq 1$

$$\kappa_0(k^{(k)}_1(z)) = \kappa_0(a_k) + r_k(k^{(k)}_1(z)b_k(z)(z+1)^{3/2} = \kappa_0(a_k) + \bar{r}_k(z)(z+1)^{3/2},$$

where $b_k(z) \to \frac{2\sqrt{2}}{\pi} \prod_{j=1}^{k-1} \kappa_1'(a_k)$ and $\bar{r}_k(z) \to \frac{2\sqrt{2}}{\pi} \kappa_0'(a_k) \prod_{j=1}^{k-1} \kappa_1'(a_k) > 0$ as $z \to -1$ by Lemma 7.

For $k = 1$, the fundamental theorem of calculus gives for any $z \in D$

$$\kappa_0(z) = \int_{\gamma} \frac{1}{\pi\sqrt{1-w^2}} dw,$$
where \(\gamma : [0, 1] \to \mathbb{C} \) is the simple straight line connecting \(-1\) and \(z\). As \(z \to -1\), we have \(\frac{1}{\sqrt{1-z^2}} \sim \frac{1}{\sqrt{2}} \). Therefore, similar arguments as in the proof of Lemma 6 give

\[
\kappa_0(z) = g(z)\sqrt{1+z},
\]

where \(g(z) \to \sqrt{2} \pi\) as \(z \to -1\). We then have

\[
N_1(z) = \kappa_1(z) + (z + \beta^2)\kappa_0(z) + \beta^2
\]

\[
= a_1 + b_1(z)(z + 1)^{3/2} + (z + \beta^2)g(z)\sqrt{1+z} + \beta^2
\]

\[
= (a_1 + \beta^2) + q_1(z)\sqrt{1+z}
\]

\[
= N_1(-1) + q_1(z)\sqrt{1+z},
\]

where \(N_1(-1) = a_1 + \beta^2 \lim_{z \to -1} q_1(z) = \sqrt{2}(\beta^2 - 1)\). Assume \(N_{k-1}(z) = N_{k-1}(-1) + q_{k-1}(z)\sqrt{1+z}\) with \(\lim_{z \to -1} q_{k-1}(z) = \sqrt{2}(\beta^2 - 1)\prod_{j=1}^{k-2} \kappa_0(a_j)/\pi\). We further have

\[
N_k(z)
\]

\[
= \kappa_1^{(k)}(z) + N_{k-1}(z)\kappa_0(\kappa_{k-1}(z)) + \beta^2
\]

\[
= a_k + b_k(z)(z + 1)^{3/2} + N_{k-1}(z)\left(\kappa_0(a_{k-1}) + \tilde{r}_{k-1}(z)(z + 1)^{3/2}\right) + \beta^2
\]

\[
= (a_k + \beta^2 + N_{k-1}(z)\kappa_0(a_{k-1})) + (b_k(z) + N_{k-1}(z)\tilde{r}_{k-1}(z)) (z + 1)^{3/2}
\]

\[
= (a_k + \beta^2 + N_{k-1}(-1)\kappa_0(a_{k-1})) + q_{k-1}(z)\kappa_0(a_{k-1})\sqrt{z+1} + (b_k(z) + N_{k-1}(z)\tilde{r}_{k-1}(z)) (z + 1)^{3/2}
\]

\[
= N_k(-1) + q_{k-1}(z)\kappa_0(a_{k-1})\sqrt{z+1} + (b_k(z) + N_{k-1}(z)\tilde{r}_{k-1}(z)) (z + 1)^{3/2}
\]

\[
= N_k(-1) + q_k(z)\sqrt{1+z},
\]

where we use the induction assumption in the fourth equation, use the fact \(N_k(-1) = a_k + \beta^2 + N_{k-1}(-1)\kappa_0(a_{k-1})\) in the fifth equation and define

\[
q_k(z) = q_{k-1}(z)\kappa_0(a_{k-1}) + (b_k(z) + N_{k-1}(z)\tilde{r}_{k-1}(z)) (z + 1)
\]

in the last equation. We also have

\[
\lim_{z \to -1} q_k(z) = \lim_{z \to -1} \left\{ q_{k-1}(z)\kappa_0(a_{k-1}) + (b_k(z) + N_{k-1}(z)\tilde{r}_{k-1}(z)) (z + 1) \right\}
\]

\[
= \lim_{z \to -1} \left\{ q_{k-1}(z)\kappa_0(a_{k-1}) \right\}
\]

\[
= \frac{\sqrt{2}(\beta^2 - 1)}{\pi} \prod_{j=1}^{k-1} \kappa_0(a_j),
\]

which is desired. This proves (12).

Finally, combining (11) and (12), using [16, Theorem VI.5] with \(\rho = 1\), \(\tau(z) = (1-z)^{1/2}\), \(\zeta_1 = 1\), \(\zeta_2 = -1\), \(\sigma_1(z) = (k+1)(z + \beta^2)\), \(\sigma_2(z) = N_k(-1)\), \(D = \{ z \in \mathbb{C} \mid |z| \leq R_k \} \cap D\), we conclude \([z^n]N_k(z) = O(n^{-3/2})\). □

We are in a position to prove Theorem [1]
Proof of Theorem 1. Let $K_{\text{Lap}}(z) = e^{-c\sqrt{1-z}}$, where $c > 0$ is an arbitrary constant. We have $\mathcal{H}^f = \mathcal{H}_{\text{Lap}}$. The complex function K_{Lap} is analytic on $\mathbb{C} \setminus [1, \infty)$. As $z \to 1$, we have

$$\frac{K_{\text{Lap}}(z) - 1}{-c} = \sqrt{1-z} + o(\sqrt{1-z}) \sim \sqrt{1-z}.$$

By Lemma 5, we obtain

$$[z^n]K_{\text{Lap}}(z) \sim \frac{c^n}{2\sqrt{\pi}} n^{-3/2}.$$ (13)

Note that $[z^n]N_k(z) = O(n^{-3/2})$ from Theorem 12. Therefore, there exists $\gamma > 0$ such that $\gamma^2 \cdot [z^n]K_{\text{Lap}}(z) - [z^n]N_k(z) > 0$ for all $n \geq 0$. This further implies

$$\gamma^2 K_{\text{Lap}}(x^\top y) - N_k(x^\top y)$$

is a positive definite kernel. According to Lemma 4, we have

$$\mathcal{H}_{N_k}(\mathbb{S}^{d-1}) \subseteq \mathcal{H}_{\text{Lap}}(\mathbb{S}^{d-1}).$$

Note that, due to [17, Theorem 3], we also have

$$\mathcal{H}_{\text{Lap}}(\mathbb{S}^{d-1}) \subseteq \mathcal{H}_{N_k}(\mathbb{S}^{d-1}).$$

Therefore, for any $k \geq 1$,

$$\mathcal{H}_{\text{Lap}}(\mathbb{S}^{d-1}) = \mathcal{H}_{N_k}(\mathbb{S}^{d-1}).$$

4 Results on Exponential Power Kernel

This section presents the proof of Theorem 2. We first show its part (1) by singularity analysis.

Proof of part (1) of Theorem 2. Recall that the exponential power kernel restricted to the unit sphere with $\gamma > 0$ and $\sigma > 0$ is given by

$$K_{\exp}^{\gamma,\sigma}(x, y) = \exp \left(-\frac{\|x - y\|}{\sigma} \gamma \right) = \exp \left(-\frac{(2(1 - x^\top y))\gamma^2}{\sigma} \right).$$

Let us study the decay rate of the Maclaurin coefficients of $K_{\exp}^{\gamma,\sigma}(z) \triangleq e^{-c(1-z)^{\gamma/2}}$, where $c = 2^{\gamma/2}/\sigma$. The dominant singularity lies at $z = 1$. As $z \to 1$, we get

$$K_{\exp}^{\gamma,\sigma}(z) = 1 - (c + o(1))(1 - z)^{\gamma/2}.$$

Applying Lemma 5 gives

$$[z^n]K_{\exp}^{\gamma,\sigma}(z) \sim \frac{cn^{-\gamma/2-1}}{-\Gamma(-\gamma/2)}.$$

Therefore, a smaller γ results in a larger RKHS. □

Part (2) of Theorem 2 requires more technical preparation. Recall that \mathcal{L} and \mathcal{L}^{-1} denote the Laplace transform and inverse Laplace transform, respectively.
Lemma 13. For \(a \in (0, 1) \), \(f(t) \triangleq \mathcal{L}^{-1}\{\exp(-s^a)\}(t) \) exists. Moreover, \(f(t) \) is continuous in \(-\infty < t < \infty\) and satisfies \(f(0) = 0 \). If \(t > 0 \), we have

\[
f(t) = \frac{1}{\pi} \sum_{k=0}^{\infty} \frac{(-1)^{k+1}\Gamma(ak+1)\sin(\pi ak)}{k!y^{ak+1}}.
\]

Proof. According to [12, Theorem 28.2], we have, for \(0 < a < 1 \),

\[
f(t) = \frac{1}{2\pi i} \lim_{T \to +\infty} \int_{x_0 - iT}^{x_0 + iT} \exp(ts - s^a)ds \quad (x_0 \geq 0).
\]

Also [12, Theorem 28.2] implies that \(f(t) \) is continuous in \(-\infty < t < +\infty\) and \(f(0) = 0 \).

Next we explicitly calculate \(f(t) \) using Bromwich contour integral. We denote each part of the Bromwich contour by \(\Gamma_0, \ldots, \Gamma_5 \) as depicted in Fig. 1. Denote the radius of the outer and inner arc by \(R \) and \(r \). When \(T \to \infty \), we have \(R = \sqrt{T^2 + x_0^2} \to \infty \). Also we let \(r \to 0 \) and \(\Gamma_2, \Gamma_4 \) tend to \((-\infty, 0]\) from above and below respectively in the limit. By the residue theorem, we have

\[
\left(\int_{\Gamma_0} + \ldots + \int_{\Gamma_5} \right) \exp(ts - s^a)ds = 0,
\]

which implies

\[
\lim_{T \to \infty} \int_{x_0 - iT}^{x_0 + iT} \exp(ts - s^a)ds = \lim_{T \to \infty} \int_{\Gamma_0} \exp(ts - s^a)ds = -\lim_{T \to \infty} \left(\int_{\Gamma_1} + \ldots + \int_{\Gamma_5} \right) \exp(ts - s^a)ds
\]

\[
\triangleq -\lim(I_1 + \ldots + I_5),
\]

where the last two limits are taken as \(R \to \infty \), \(r \to 0 \), and \(\Gamma_2, \Gamma_4 \) tend to \((-\infty, 0]\). We then calculate each part separately.

Part I: We calculate the parts for \(\Gamma_1 \) and \(\Gamma_5 \). We follow the similar idea as in the proof of [25, Theorem 7.1]. Along \(\Gamma_1 \), since \(s = Re^{i\theta} \) with \(\theta_0 \leq \theta \leq \pi \), \(\theta_0 = \arccos(x_0/R) \),

\[
I_1 = \int_{\theta_0}^{\pi/2} e^{Re^{i\theta}} e^{-s}\sin(\pi a\theta) iRe^{i\theta} d\theta + \int_{\pi/2}^{\pi} e^{Re^{i\theta}} e^{-s}\sin(\pi a\theta) iRe^{i\theta} d\theta
\]

\[
\triangleq I_{11} + I_{12}.
\]
For I_{11},

$$|I_{11}| \leq \int_{\theta_0}^{\pi/2} |e^{Rt \cos \theta} \cdot |e^{-Ra \cos(a \theta)}| Rd\theta,$$

$$\leq \int_{\theta_0}^{\pi/2} e^{Rt \cos \theta} \cdot e^{-Ra \cos(a \pi/2)} Rd\theta$$

$$\leq \frac{R}{Ra \cos(a \pi/2)} \int_{\theta_0}^{\phi_0} e^{Rt \cos \phi} d\phi,$$

where $\phi_0 = \pi/2 - \theta_0 = \arcsin(x_0/R)$. Since $\sin \phi \leq \sin \phi_0 \leq x_0/R$, we have

$$|I_{11}| \leq \frac{R}{Ra \cos(a \pi/2)} \phi_0 e^{x_0 t} = \frac{R}{Ra \cos(a \pi/2)} e^{x_0 t} \arcsin(x_0/R).$$

As $R \to \infty$, we have $\lim_{R \to \infty} I_{11} = 0$.

For I_{12},

$$|I_{12}| \leq \int_{\pi/2}^{\pi} e^{Rt \cos \theta} \cdot e^{-Ra \cos(a \theta)} Rd\theta.$$

First, we consider the case $0 < a < 1/2$. We have $a \theta \leq a \pi < \pi/2$ and $\cos(a \theta) \geq \cos(a \pi) > 0$. It follows

$$\int_{\pi/2}^{\pi} e^{Rt \cos \theta} \cdot e^{-Ra \cos(a \theta)} Rd\theta$$

$$\leq Re^{-Ra \cos(a \pi)} \int_{\pi/2}^{\pi} e^{Rt \cos \theta} d\theta$$

$$= Re^{-Ra \cos(a \pi)} \sqrt{\pi \frac{2 \pi}{\phi_0}} e^{-2Rt \delta/\pi} d\phi$$

$$\leq Re^{-Ra \cos(a \pi)} \sqrt{\pi \frac{2 \pi}{\phi_0}} e^{-2Rt \delta/\pi} d\phi$$

$$= e^{-Ra \cos(a \pi)} \pi \left(1 - e^{-Rt} \right),$$

where in the last inequality we use the fact $\sin \phi \geq 2\phi/\pi$ for $\phi \in [0, \pi/2]$. Thus, $\lim_{R \to \infty} I_{12} = 0$.

Next, we consider $1/2 \leq a < 1$. Define

$$p(\theta) \triangleq Rt \cos \theta - Ra \cos(a \theta).$$

We then have its second derivative as follows

$$p''(\theta) = a^2 Ra \cos(a \theta) - Rt \cos(\theta).$$

Choose δ to be a fixed constant in $(0, \frac{\pi}{2}(1 - \frac{1}{a})]$. Since $a \geq 1/2$, then $\delta < \pi/2$. If $\pi/2 + \delta \leq \theta \leq \pi$,

$$p''(\theta) \geq -a^2 Ra - Rt \cos(\pi/2 + \delta) = -a^2 Ra + Rt \sin(\delta).$$
Since $a < 1$, there exists some large $R_1 > 0$ such that $p''(\theta) \geq -a^2 R^a + R t \sin(\delta) > 0$ holds for all $R > R_1$. If $\pi/2 \leq \theta < \pi/2 + \delta$,

$$p''(\theta) \geq a^2 R^a \cos(a(\pi/2 + \delta)).$$

Since $a(\pi/2 + \delta) < \pi/2$ by the choice of δ, we get $\cos(a(\pi/2 + \delta)) > 0$. Then we also have $p''(\theta) > 0$. Therefore, if $R > R_1$, $p(\theta)$ is convex in $\theta \in [\pi/2, \pi]$. As a result, we get

$$\max_{\theta \in [\pi/2, \pi]} p(\theta) \leq \max \{p(\pi/2), p(\pi)\}.$$

Write

$$h(R, \theta) \triangleq R e^{R t \cos \theta} \cdot e^{-R^a \cos(a \theta)} = R e^{p(\theta)}.$$

Then we have

$$\max_{\theta \in [\pi/2, \pi]} h(R, \theta) \leq \max \{h(R, \pi/2), h(R, \pi)\}$$

$$= R \max \{e^{-R^a \cos(\pi/2)}, e^{-R^a \cos(a \pi) - R t}\}$$

$$\leq R \max \{e^{-R^a \cos(\pi/2)}, e^{R^a - R t}\},$$

which goes to 0 as $R \to \infty$. Therefore, $h(R, \theta)$ converges to 0 uniformly (as a function of $\theta \in [\pi/2, \pi]$ with index R), which implies

$$\lim_{R \to \infty} \int_{\pi/2}^{\pi} h(R, \theta) d\theta = 0.$$

Hence, we establish $\lim_{R \to \infty} I_{12} = 0$ for all $a \in (0, 1)$.

Combining these above, we conclude $\lim_{R \to \infty} I_3 = 0$. Similarly, $\lim_{R \to \infty} I_5 = 0$.

Part II: We calculate the parts for Γ_2 and Γ_4. By the dominated convergence theorem, we have, for $y > 0$

$$\lim_{R \to \infty} I_2 = \lim_{R \to \infty} \int_{r \to 0}^{r+iy} \int_{r \to 0}^{r+iy} \exp(ts) \exp(-s^a) ds$$

$$= \lim_{R \to \infty} \int_{r \to 0}^{r+iy} \int_{r \to 0}^{r+iy} \exp(ts) \sum_{k=0}^{\infty} \frac{(-1)^k s^{ak}}{k!} ds$$

$$= \lim_{R \to \infty} \sum_{k=0}^{\infty} \frac{(-1)^k}{k!} \int_{r \to 0}^{r+iy} \exp(ts) s^{ak} ds.$$

We then calculate the limit of the summand.

$$\lim_{R \to \infty} \int_{r \to 0}^{r+iy} \exp(ts) s^{ak} ds = \int_{-\infty}^{0} e^{tx} \cdot [(t-x)e^{i\pi}]^{ak} dx$$

$$= \int_{0}^{\infty} e^{-tx} x^{ak} e^{i\pi ak} dx$$

$$= \frac{1}{t^{ak+1}} \Gamma(ak + 1) e^{i\pi ak}.$$
Similarly, we obtain the corresponding part in Γ_4:

\[
\lim_{\substack{R \to \infty \\ r \to 0}} \frac{1}{2\pi i} \int_{-r-iy}^{R+i(y)} \exp(ts) s^{ak} ds = -\int_{-\infty}^{0} e^{tx} \cdot \left[(-x)e^{-ix}\right]^{ak} dx
\]

\[
= -\frac{1}{t^{ak+1}} \Gamma(ak+1)e^{-i\pi ak}.
\]

Combining the parts of Γ_2 and Γ_4 together, we get

\[
\lim(I_2 + I_4) = \sum_{k=0}^{\infty} \frac{(-1)^k}{k!} \frac{2i\Gamma(ak+1)\sin(\pi ak)}{t^{ak+1}}.
\]

Part III: We get the limit for Γ_3 is 0 as $r \to 0$.

Combining the three parts above, we conclude

\[
f(t) = \frac{1}{2\pi i} \sum_{k=0}^{\infty} \frac{(-1)^k}{k!} \frac{2i\Gamma(ak+1)\sin(\pi ak)}{t^{ak+1}}
\]

\[
= \frac{1}{\pi} \sum_{k=0}^{\infty} \frac{(-1)^k \Gamma(ak+1)\sin(\pi ak)}{k!t^{ak+1}}.
\]

Lemma 14. Let $f(t)$ be as defined in Lemma 13. For $a = \frac{p}{q} \in (0, 1)$ (p and q are co-prime), we have $f(t) \sim -\frac{1}{t^{a+1}\Gamma(-a)}$ as $t \to +\infty$.

Proof. Euler’s reflection formula gives

\[
\Gamma(1 + ka)\Gamma(-ka) = \frac{-\pi}{\sin(\pi ka)}, \quad ka \notin \mathbb{Z}.
\]

According to Lemma 13, we have

\[
f(t) = \frac{1}{\pi} \sum_{k=0}^{\infty} \frac{(-1)^k \Gamma(ak+1)\sin(\pi ak)}{k!t^{ak+1}}
\]

\[
= \sum_{k=0}^{\infty} \frac{(-1)^k}{k!t^{ak+1}} \Gamma(-ak)
\]

\[
= \sum_{j=1}^{\infty} \sum_{n=0}^{\infty} \frac{(-1)^{nq+j}}{(nq+j)!t^{a(nq+j)+1}} \Gamma(-a(nq+j))
\]

(14)

First, we show that the series in (14) converges absolutely:

\[
\sum_{j=1}^{q-1} \sum_{n=0}^{\infty} \frac{|t|^{-a(nq+j)-1}}{(nq+j)!\Gamma(-a(nq+j))}
\]

\[
= \sum_{j=1}^{q-1} \frac{1}{|t|^{aj+1}} \sum_{n=0}^{\infty} \frac{|t|^{-np}}{(nq+j)!\Gamma(-a(nq+j))}
\]

\[
= \sum_{j=1}^{q-1} \frac{1}{|t|^{aj+1}\Gamma(-aj)} \sum_{n=0}^{\infty} \frac{|t|^{-np} \prod_{i=1}^{np} (aj+i)}{(nq+j)!}.
\]

(15)
The inner summation in (15) is a power series in $|t|^p$. We would like to show that its radius of convergence is ∞. Define
\[
b_n = \prod_{i=1}^{np} (aj + i) / (nq + j)!
\]
We have
\[
b_{n+1} / b_n = \prod_{nq < i \leq (n+1)q} (aj + i) / \prod_{nq < i \leq (n+1)q} (j + i) = \frac{\prod_{i=1}^{p} (aj + np + i)}{\prod_{i=1}^{p} (j + np + 1)}.
\]
As a result, the radius of convergence is ∞. Therefore, by Fubini’s theorem, we have
\[
f(t) = \sum_{j=1}^{q-1} \frac{1}{\tau^a + 1 \Gamma(-a)} \sum_{n=0}^{\infty} (-1)^n (p+q+1) t^{-p} \prod_{i=1}^{np} (aj + i) / (nq + j)!
\]
\[
= \sum_{j=1}^{q-1} \frac{1}{\tau^a + 1 \Gamma(-a)} \left((-1)^j / j! + \sum_{n=1}^{\infty} (-1)^n (p+q+1) t^{-p} \prod_{i=1}^{np} (aj + i) / (nq + j)! \right)
\]
Notice that the quantity A goes to 0 as $t \to +\infty$. Therefore we deduce
\[
f(t) \sim \sum_{j=1}^{q-1} \frac{(-1)^j}{\tau^a + 1 \Gamma(-a)} \sim - \frac{1}{\tau^a + 1 \Gamma(-a)}.
\]

Corollary 15. For $a = \frac{p}{q} \in (0,1)$ (p and q are co-prime) and $\sigma > 0$, $\mathcal{L}^{-1}\{\exp(-s^\sigma)\}(t) = \Theta(t^{-a-1})$.

Proof. Use the property $\mathcal{L}^{-1}\{F(cs)\}(t) = \frac{1}{c} f \left(\frac{t}{c} \right)$, where $c > 0$ and $F(s) = \mathcal{L}\{f(t)\}(s)$.

Lemma 16 (Schoenberg interpolation theorem [10, Theorem 1 of Chapter 15]). If f is completely monotone but not constant on $[0,\infty)$, then for any n distinct points x_1, x_2, \ldots, x_n in any inner-product space, the matrix $A_{ij} = f(||x_i - x_j||^2)$ is positive definite.

Lemma 17 (Bernstein-Widder [10, Theorem 1 of Chapter 14]). A function $f : [0,\infty) \to [0,\infty)$ is completely monotone if and only if there is a nondecreasing bounded function g such that $f(t) = \int_0^\infty e^{-st}dg(s)$.

Proof of part (2) of Theorem 2. By Lemma 16 and Lemma 4, we need to show that
\[
e^2 \exp(-x^{\gamma_1}/\sigma_1) - \exp(-x^{\gamma_2}/\sigma_2)
\]
is completely monotone but not constant on $[0,\infty)$ for some $c > 0$. By Lemma 17, it suffices to check that $\mathcal{L}^{-1}\{\exp(-x^{\gamma_1}/\sigma_1)\}$ is the Laplace transform of a non-negative function on $[0,\infty)$. By Corollary 15 for rational $\gamma_1, \gamma_2 \in (0,1]$, there exists $c > 0$ such that
\[
e^2 \mathcal{L}^{-1}\{\exp(-x^{\gamma_1}/\sigma_1)\} - \mathcal{L}^{-1}\{\exp(-x^{\gamma_2}/\sigma_2)\}
\]
is continuous and positive on $[0,\infty)$, which completes the proof.

19
5 Numerical Results

We verify the asymptotics of the Maclaurin coefficients of the Laplace kernel and NTKs through numerical results.

Fig. 2 plots \([z^n]K(z)/n^{-3/2}\) versus \(n\) for different kernels, including the Laplace kernel \(K_{\text{Lap}}(u) = e^{-\sqrt{2(1-u)}}\) and NTKs \(N_1, \ldots, N_4\) with \(\beta = 0, 1\). All curves converge to a constant as \(n \to \infty\), which indicates that for every kernel \(K(z)\) considered here, we have \([z^n]K(z) = \Theta(n^{-3/2})\). The numerical results agree with our theory in the proofs of Theorem 12 and Theorem 1.

Now we investigate the value of \([z^n]K(z)/n^{-3/2}\). Table 1 reports \([z^{100}]K(z)/100^{-3/2}\) for the Laplace kernel and NTKs with \(\beta = 0, 1\). These numerical values are the final values of the curves in Fig. 2. We present the theoretical prediction by the asymptotic of \([z^n]K(z)/n^{-3/2}\) alongside each numerical value. The choice of \(\beta\) does not apply to the Laplace kernel. Therefore, we only show the results of the Laplace kernel in the columns for \(\beta = 1\) and leave blank the columns for \(\beta = 0\).

![Figure 2: We plot \([z^n]K(z)/n^{-3/2}\) versus \(n\) for the Laplace kernel \(K_{\text{Lap}}(u) = e^{-\sqrt{2(1-u)}}\) and NTKs \(N_1, \ldots, N_4\) with \(\beta = 0, 1\).](image)

Kernel \(K\)	\([z^{100}]K(z)/100^{-3/2}\) \((\beta = 1)\)	Theory	\([z^{100}]K(z)/100^{-3/2}\) \((\beta = 0)\)	Theory
\(K_{\text{Lap}}\)	0.28244	\(\frac{1}{2\sqrt{\pi}} \approx 0.282095\)	0.261069	\(\frac{\sqrt{\pi}}{2\sqrt{2\pi^{3/2}}} \approx 0.253975\)
\(N_1\)	0.261069	\(\frac{\sqrt{2}}{\pi^{3/2}} \approx 0.253975\)	0.261069	\(\frac{\sqrt{\pi}}{2\sqrt{2\pi^{3/2}}} \approx 0.253975\)
\(N_2\)	0.776014	\(\frac{\sqrt{3}}{\pi^{3/2}} \approx 0.761924\)	0.457426	\(\frac{2}{\sqrt{2\pi^{3/2}}} \approx 0.444455\)
\(N_3\)	1.54607	\(\frac{\sqrt{5}}{\pi^{3/2}} \approx 1.52385\)	0.821694	\(\frac{13\pi - \arccos(\pi^{-1})}{2\sqrt{2\pi^{3/2}}} \approx 0.800218\)
\(N_4\)	2.56559	\(\frac{10\sqrt{7}}{\pi^{3/2}} \approx 2.53975\)	1.32472	Equation (17) \(\approx 1.29531\)

Table 1: We report the numerical values of \([z^{100}]K(z)/100^{-3/2}\) for the Laplace kernel \(K_{\text{Lap}}(u) = e^{-\sqrt{2(1-u)}}\) and NTKs \(N_1, \ldots, N_4\) with \(\beta = 0, 1\). These numerical values are the final values of the curves in Fig. 2. We present the theoretical prediction by the asymptotic of \([z^n]K(z)/n^{-3/2}\) alongside each numerical value. The choice of \(\beta\) does not apply to the Laplace kernel. Therefore, we only show the results of the Laplace kernel in the columns for \(\beta = 1\) and leave blank the columns for \(\beta = 0\).

\[
20 + \pi^{-2} \left(\pi - \arccos \left(\pi^{-1} \right) \right) \left(\pi - \arccos \left(\frac{\sqrt{\pi^{2} - 1} + \pi - \arccos(\pi^{-1})}{\pi^{2}} \right) \right) \approx 1.29531. \tag{17}
\]
We observe that the theoretical prediction by the asymptotic is close to the corresponding numerical value. There are two possible reasons that account for the minor discrepancy between them. First, the theoretical prediction reflects the situation for an infinitely large \(n \) (so that the lower order terms become negligible), while \(n = 100 \) is clearly finite. Second, the numerical results for the Maclaurin series are obtained by numerical Taylor expansion and therefore numerical errors could be present.

In what follows, we explain how to obtain the theoretical predictions. First, (13) gives
\[
[z^n] K_{\text{Lap}}(z)/n^{-3/2} \sim \frac{1}{2\sqrt{\pi}}.
\]
As a result, the theoretical prediction for \([z^{100}] K_{\text{Lap}}(z)/100^{-3/2}\) is \(\frac{1}{2\sqrt{\pi}} \).

Now we explain the theoretical predictions for NTKs. When \(\beta = 1 \), the theoretical prediction is given by (9). We present it in the third column of Table 1 for \(N_1, \ldots, N_4 \). When \(\beta = 0 \), we plug \(\beta = 0 \) into (10) and obtain
\[
\frac{[z^n] N_k(z)}{n^{-3/2}} \sim \frac{k(k + 1)}{2\sqrt{2}\pi^{3/2}} + \frac{(-1)^n}{\sqrt{2}\pi^{3/2}} \prod_{j=1}^{k-1} \kappa_0(\kappa_1(-1)).
\]
The above expression (when \(n = 100 \) on the right-hand side) is the theoretical value presented in the fifth column of Table 1 for NTKs.

6 Discussion

Our result provides further evidence that the NTK is similar to the existing Laplace kernel. However, the following mysteries remain open.

First, if we still restrict them to the unit sphere, do they have a similar learning dynamic when we perform kernelized gradient descent? Second, what is the behavior of the NTK and the Laplace kernel outside of \(S^{d-1} \) and in the entire space \(\mathbb{R}^d \)? Do they still share similarities in terms of the associated RKHS? If not, how far do they deviate from each other and is the difference significant? Third, this work along with [8, 17] focuses on the NTK with ReLU activation. It would be interesting to explore the influence of different activations upon the RKHS and other kernel-related quantities. Fourth, we showed that highly non-smooth exponential power kernels have an even larger RKHS than the NTK. It would be worthwhile comparing the performance of these non-smooth kernels and deep neural networks through more extensive experiments in a variety of machine learning tasks.

Acknowledgements

We thank Iosif Pinelis for helpful discussions and thank Mikhail Belkin and Alexandre Eremenko for introducing to us the work [18] and [16], respectively.

References

[1] Z. Allen-Zhu, Y. Li, and Z. Song. A convergence theory for deep learning via over-parameterization. In International Conference on Machine Learning, pages 242–252, 2019.
[2] N. Aronszajn. Theory of reproducing kernels. Transactions of the American mathematical society, 68(3):337–404, 1950.

[3] S. Arora, S. S. Du, W. Hu, Z. Li, R. R. Salakhutdinov, and R. Wang. On exact computation with an infinitely wide neural net. In Advances in Neural Information Processing Systems, pages 8141–8150, 2019.

[4] S. Arora, S. S. Du, W. Hu, Z. Li, and R. Wang. Fine-grained analysis of optimization and generalization for overparameterized two-layer neural networks. In 36th International Conference on Machine Learning, ICML 2019, pages 477–502. International Machine Learning Society (IMLS), 2019.

[5] K. Atkinson and W. Han. Spherical harmonics and approximations on the unit sphere: an introduction, volume 2044. Springer Science & Business Media, 2012.

[6] F. Bach. Breaking the curse of dimensionality with convex neural networks. The Journal of Machine Learning Research, 18(1):629–681, 2017.

[7] M. Belkin, S. Ma, and S. Mandal. To understand deep learning we need to understand kernel learning. In International Conference on Machine Learning, pages 541–549, 2018.

[8] A. Bietti and J. Mairal. On the inductive bias of neural tangent kernels. In Advances in Neural Information Processing Systems, pages 12893–12904, 2019.

[9] Y. Cao and Q. Gu. Generalization bounds of stochastic gradient descent for wide and deep neural networks. In Advances in Neural Information Processing Systems, pages 10836–10846, 2019.

[10] E. W. Cheney and W. A. Light. A course in approximation theory, volume 101. American Mathematical Soc., 2009.

[11] Y. Cho and L. K. Saul. Kernel methods for deep learning. In Advances in neural information processing systems, pages 342–350, 2009.

[12] G. Doetsch. Introduction to the theory and application of the Laplace transformation. Springer, 1974.

[13] S. Du, J. Lee, H. Li, L. Wang, and X. Zhai. Gradient descent finds global minima of deep neural networks. In International Conference on Machine Learning, pages 1675–1685, 2019.

[14] S. S. Du, X. Zhai, B. Poczos, and A. Singh. Gradient descent provably optimizes over-parameterized neural networks. In International Conference on Learning Representations, 2019.

[15] Z. Fan and Z. Wang. Spectra of the conjugate kernel and neural tangent kernel for linear-width neural networks. arXiv preprint arXiv:2005.11879, 2020.

[16] P. Flajolet and R. Sedgewick. Analytic combinatorics. cambridge University press, 2009.

[17] A. Geifman, A. Yadav, Y. Kasten, M. Galun, D. Jacobs, and R. Basri. On the similarity between the laplace and neural tangent kernels. arXiv preprint arXiv:2007.01580, 2020.

[18] L. Hui, S. Ma, and M. Belkin. Kernel machines beat deep neural networks on mask-based single-channel speech enhancement. Proc. Interspeech 2019, pages 2748–2752, 2019.
[19] A. Jacot, F. Gabriel, and C. Hongler. Neural tangent kernel: Convergence and generalization in neural networks. In Advances in neural information processing systems, pages 8571–8580, 2018.

[20] R. Kuditipudi, X. Wang, H. Lee, Y. Zhang, Z. Li, W. Hu, R. Ge, and S. Arora. Explaining landscape connectivity of low-cost solutions for multilayer nets. In Advances in Neural Information Processing Systems, pages 14601–14610, 2019.

[21] H. Q. Minh, P. Niyogi, and Y. Yao. Mercer’s theorem, feature maps, and smoothing. In International Conference on Computational Learning Theory, pages 154–168. Springer, 2006.

[22] I. Pinelis. Analyzing the decay rate of taylor series coefficients when high-order derivatives are intractable. MathOverflow, 2020. URL https://mathoverflow.net/q/366252.

[23] S. Saitoh and Y. Sawano. Theory of reproducing kernels and applications. Springer, 2016.

[24] I. J. Schoenberg. Positive definite functions on spheres. Duke Mathematical Journal, 9(1):96–108, 1942.

[25] M. R. Spiegel. Laplace transforms. McGraw-Hill New York, 1965.

[26] G. Yang and H. Salman. A fine-grained spectral perspective on neural networks. arXiv preprint arXiv:1907.10599, 2019.