Appendix

Population

All patients provided written informed consent for banking of a molecular sample. Ethics approval was obtained from the University Health Network Research Ethics Board. Eligibility criteria required: (i) diagnosis of chronic phase (<10% blasts in peripheral blood or bone marrow) primary MF, post-polycythemia vera MF (PPV MF) or post-essential thrombocythemia MF (PET MF), (ii) received first line JAKi therapy with either ruxolitinib or momelotinib, and (iii) have a molecular sample available for analysis at the time of starting JAKi. For paired sequencing analysis, patients were included if they had available molecular sample at the time of: (i) JAKi failure or (ii) after ≥3 years in patients who continue to benefit from JAKi therapy.

Definitions

Mutations in ASXL1, EZH2, IDH1/2, SRSF2, or U2AF1 Q157 were classified as high molecular risk (HMR) based on prior reports(1, 2). The Mutation-Enhanced International Prognostic Score System (MIPSS70, http://www.mipss70score.it/) risk categories were calculated for patient at time of JAKi initiation(1, 3). Dynamic International Prognostic Scoring System (DIPSS) scores were calculated on the first day of JAKi and on clinical assessment following JAKi failure(4). Cytogenetic results were assessed from the most recent peripheral blood or bone marrow sample prior to starting JAKi.

Criteria for JAKi failure was documented according to the Canadian consensus criteria as listed in Supp. Table S1(5).

Molecular Analysis

Targeted Next-Generation Sequencing (NGS, paired end sequencing, Miseq v2, Illumina, San Diego, CA) was performed on high-quality DNA extracted from peripheral blood or bone
marrow samples. NGS was carried out using one of two NGS panels 1) the Trusight Myeloid amplicon-based panel (Illumina, 54 myeloid genes, Supp. Table S6) from samples collected until April 2018, or 2) a custom hybridization capture-based panel (Oxford Gene Technologies, 49 myeloid genes, Supp. Table S7) for samples collected from April 2018 onward. Sequencing reads were processed as previously described (6-8). Landscape plots were prepared using the GenVisR R package (Skidmore et al, Bioinformatics 2016).

For the comparisons between paired samples, genes not included on both panels were excluded and variants were only considered significant if present with an allele frequency (VAF) >5% to account for methodologic and sensitivity differences between the two panels. Pathogenic/likely pathogenic variants were classified as persistent (present at >5% VAF at both time points), emergent (only present at >5% VAF at the later time point) or dropout (>5% VAF at the first time point only).

Statistical analysis

Descriptive statistics were provided with median and range for continuous variables, and frequencies and percentages for categorical variables. To compare different subgroups, Kruskal-Wallis test was used for continuous variables, and chi-square test and Fisher exact test were used for categorical variables. Time to JAKi failure was defined as time from start of JAKi therapy to treatment failure meeting the criteria of the Canadian MPN Group or date of last follow-up. Overall Survival (OS) time was defined as time from either initiation of or failure of JAKi therapy to date of death or last follow-up. Univariate and multivariate Cox proportional hazards regression models were used to assess the association of clinical, and molecular factors on cumulative incidence of JAKi failure and OS. Mutations in genes that were present in ≥5% of the patient population were included in univariate analysis. Multivariable analysis (MVA) was
conducted using clinical and molecular variables that had P<0.10 on univariate analysis. Models for time to treatment failure and OS from JAKi initiation were based on the inclusion of MIPSS70; and variables included within those scores were not included separately within the models. The first MVA model (Model 1) included mutations as separate, independent variables; while Model 2 evaluated the impact of the total number of mutations. For analysis of OS after JAKi failure the MVA model was based on the DIPSS at time of failure. Hazard ratio (HR) and corresponding 95% confidence interval (CI) were provided. Survival and JAKi failure probabilities were calculated using Kaplan-Meier (K-M) method. Differences in K-M survival and cumulative incidence curves were evaluated by log-rank test and results were considered significant if the p-value was less than or equal to 0.05. Statistical analyses were performed using SAS 9.4, Stata v.17, and R (R Foundation, Vienna, Austria).
1. Tefferi A, Guglielmelli P, Lasho TL, Gangat N, Ketterling RP, Pardanani A, et al. MIPSS70+ version 2.0: mutation and karyotype-enhanced international prognostic scoring system for primary myelofibrosis. Journal of clinical oncology: official journal of the American Society of Clinical Oncology. 2018;36(17):1769-70.

2. Vannucchi A, Lasho T, Guglielmelli P, Biamonte F, Pardanani A, Pereira A, et al. Mutations and prognosis in primary myelofibrosis. Leukemia. 2013;27(9):1861-9.

3. Guglielmelli P, Lasho TL, Rotunno G, Mudireddy M, Mannarelli C, Nicolosi M, et al. MIPSS70: mutation-enhanced international prognostic score system for transplantation-age patients with primary myelofibrosis. Journal of Clinical Oncology. 2018;36(4):310-8.

4. Passamonti F, Cervantes F, Vannucchi AM, Morra E, Rumi E, Pereira A, et al. A dynamic prognostic model to predict survival in primary myelofibrosis: a study by the IWG-MRT (International Working Group for Myeloproliferative Neoplasms Research and Treatment). Blood. 2010;115(9):1703-8.

5. Gupta V, Cerquozzi S, Foltz L, Hillis C, Devlin R, Elsawy M, et al. Patterns of Ruxolitinib Therapy Failure and Its Management in Myelofibrosis: Perspectives of the Canadian Myelofibrosis Group: JCO Oncology Practice. 2020:JOP. 19.00506.

6. Gupta V, Kennedy JA, Capo-Chichi J-M, Kim S, Hu Z-H, Alyea EP, et al. Genetic factors rather than blast reduction determine outcomes of allogeneic HCT in BCR-ABL−negative MPN in blast phase. Blood advances. 2020;4(21):5562-73.

7. Spiegel JY, McNamara C, Kennedy JA, Panzarella T, Arruda A, Stockley T, et al. Impact of genomic alterations on outcomes in myelofibrosis patients undergoing JAK1/2 inhibitor therapy. Blood advances. 2017;1(20):1729-38.

8. McNamara CJ, Panzarella T, Kennedy JA, Arruda A, Claudio JO, Daher-Reyes G, et al. The mutational landscape of accelerated-and blast-phase myeloproliferative neoplasms impacts patient outcomes. Blood advances. 2018;2(20):2658-71.
Supp. Table S1: Canadian MPN group’s operational definition of ruxolitinib failure

Pattern of JAKi therapy failure	Definition
Sub-optimal spleen response	<25% reduction in palpable spleen length after at least 3 months of optimally dosed JAKi therapy
Loss of spleen response	≥50% increase in spleen length from best response
Transfusion dependent anemia	≥4 units of red cell transfusions in 8 weeks occurring ≥ 6 months from ruxolitinib treatment
Severe thrombocytopenia	Unable to maintain unsupported platelet count >50 x 10⁹/L in patients on anticoagulation; and >25 x 10⁹/L in patients without anticoagulation
Transformation to AP/BP	Peripheral blood or bone blasts of ≥10% or biopsy proven myeloid sarcoma
Second Cancers	Diagnosis of a cancer (excluding MPN-related AML) after initiation of JAKi

Abbreviations: JAKi, JAK inhibitor; Hb, hemoglobin; AML, acute myeloid leukemia
Supp. Table S2: Baseline clinical, demographic and molecular data for myelofibrosis patients at the time of starting JAK Inhibitor therapy

	All Patients (n=113)
Age, Median (range), years	68 (42-86)
Male, n (%)	70 (62)
Hb, Median (range), g/L	97 (64-158)
WBC, Median (range), x10⁹/L	14.4 (1.6-89.0)
Plt count, Median (range), x10⁹/L	196 (17-1345)
PBB Median (range)	1.0 (0.0-8.0)
PBB ≥1%, n (%)	62 (55)
RBC transfusion-requiring anemia (RBC Tx), n (%)	45 (40)
Spleen size (palpable), Median (range), cm	16.0 (3.5-38.0)
ECOG, n (%)	
0	24 (22)
1	77 (69)
≥2	10 (9)
Missing	2
Cytogenetics, n (%)	
Normal	52 (46)
Abnormal, favorable*	24 (21)
Abnormal, not favorable**	6 (5)
Failed, not done	31 (27)
DIPSS, n (%)	
Low/ Intermediate-1†	29 (26)
Intermediate-2	50 (44)
High	34 (30)
MIPSS70, n (%)	
Low/Intermediate‡	40 (35)
High	73 (65)
JAK Inhibitor, n (%)	
Ruxolitinib	85 (75)
Momelotinib	28 (25)
Driver Mutations, n (%)	
JAK2	88 (78)
MPL	8 (7)
CALR	19 (17)
Non-MPN Driver mutations (≥5 patients)	
ASXL1, n (%)	37 (33)
TET2, n (%)	33 (29)
SF3B1, n (%)	13 (12)
SRSF2, n (%)	12 (11)
U2AF1, n (%)	11 (10)
EZH2, n (%)	10 (9)
CBL, n (%)	7 (6)
DNMT3A, n (%)	7 (6)
IDH1/IDH2, n (%)	5 (4)
TP53, n (%)	5 (4)
HMR mutations§, n (%)	
No	61 (54)
Yes	52 (46)
Number of mutations including Driving mutations, n (%)	
0-1	22 (19)
2	48 (43)
≥ 3	43 (38)

*Sole abnormalities of 20q-, 13q-, +9, chromosome 1 translocation/duplication, -Y or sex chromosome abnormality other than –Y

**All other abnormalities
†Includes 1 patient with DIPSS “low” risk category
‡Includes 2 patients with MIPSS70 “low” risk category
¥Includes 1 patient with both CALR and MPL driver mutations
§Mutation in any of: ASXL1, EZH2, IDH1/2, SRSF2, or U2AF1 Q157
	N	Cumulative Incidence of JAKi Failure	Overall Survival			
		HR(95%CI)	p-value	HR(95%CI)	p-value	Global p-value
Model 1						
MIPSS70						
Low/Intermediate	40	reference	0.06	reference		
High	73	1.5 (0.98,2.28)	2.05 (1.26,3.33)	0.004		
Age > median	56	0.79 (0.52-1.22)	0.29	1.07 (0.66,1.72)	0.79	
RBC Tx	45	2.31 (1.45,3.69)	<0.001	1.69 (1.06,2.7)	0.03	
ECOG			0.01	reference		0.003
0	24	reference	0.3	1.29 (0.69,2.43)	0.42	
1	77	0.78 (0.46,1.32)	0.36	1.25 (0.78,2)	0.42	
≥2	10	2.37 (1.04,4.94)	0.03	4.14 (1.71,10.05)	0.002	
CBL mutation	7	3.13 (1.38,7.09)	0.006	4.31 (1.7,10.91)	0.002	
Model 2			0.15	reference		0.03
MIPSS70						
Low/Intermediate	40	reference	0.15	reference		
High	73	1.37 (0.9,2.1)	1.72 (1.05,2.81)			
Age > median	56	0.79 (0.51,1.23)	0.3	1.25 (0.78,2)	0.36	
RBC Tx	45	2.06 (1.3,3.28)	0.002	1.41 (0.89,2.23)	0.15	
ECOG			0.01	reference		0.03
0	24	reference	0.29	1.31 (0.71,2.44)	0.39	
1	77	0.75 (0.44,1.27)	0.06	3.08 (1.3,7.33)	0.01	
≥2	10	2.18 (0.97,4.87)				
Number Mutations			0.24	reference		0.007
0-1	22	reference	0.24	reference		
2	48	1.16 (0.64,2.13)	0.62	1.84 (0.88,3.87)	0.11	
≥3	43	1.59 (0.85,2.97)	0.14	3.00 (1.44,6.24)	0.003	
Supp. Table S4: Clinical features at time of JAKi Failure (n=107)

	n (%)
DIPSS	
Not available*	16
Available	91
Intermediate-1	22 (24)
Intermediate-2	50 (55)
High	19 (21)
ECOG	
Not available**	19
Available	86
0	21 (24)
1	52 (60)
≥2	15 (17)
Pattern of Failure	
Spleen	43 (40)
Suboptimal response†	8 (7)
Loss of response‡	35 (33)
Significant Cytopenia	24 (22)
Transfusion requiring anemia¥	10 (9)
Thrombocytopenia§	14 (13)
Acceleration/Blast phase	15 (14)
Non-hematologic toxicity~	21 (20)
Secondary malignancy	4 (4)

*Death within 4 weeks of JAKi failure n=12, not captured n=4

**Death within 4 weeks of JAKi failure n=12, not captured n=7

†<25% reduction in palpable spleen length after at least 3 months of optimally dosed JAKi therapy

‡≥50% increase in spleen length from best response

¥≥4 units of red cell transfusions in 8 weeks occurring ≥ 6 months from JAKi treatment

§Unable to maintain unsupported platelet count >50 x 10⁹ /L in patients on anticoagulation; and >25 x 10⁹ /L in patients without anticoagulation

~infection (n=6), neuropathy (n=3), renal impairment/injury (n=3), fatigue (n=2), headache (n=2), Liver injury (n=1), allergy (n=1), hemorrhage (n=1), peritonitis (n=1), arthralgia (n=1).
Supp. Table S5: Multivariable analysis of clinical variables associated with survival following JAKi failure (n=107)

Covariate	Number (%)	HR(95%CI)	p-value	Global p-value
DIPSS at failure				0.011
Low/Int-1	22 (24)	reference		
Int-2	50 (55)	2 (0.95,4.22)	0.07	
High	19 (21)	4.06 (1.61,10.21)	0.003	
ECOG at failure			<0.001	
0	21 (24)	reference		
1	52 (60)	1.65 (0.82,3.3)	0.16	
≥2	15 (17)	5.58 (2.27,13.72)	<0.001	
Pattern of Failure			0.17	
Spleen	43 (40)	reference		
Cytopenia	15 (14)	1.52 (0.83,2.8)	0.18	
Acceleration/Blast Phase	24 (22)	2.44 (1.04,5.7)	0.04	
Other	25 (23)	1.11 (0.51,2.4)	0.8	
Non-hematologic	21 (20)			
Secondary malignancy	4 (4)			
Supp. Table S6: TruSight Myeloid (Illumina) NGS Gene Panel

Genes and exon coverage in the TruSight Myeloid (Illumina) NGS Gene Panel

Complete coding region coverage (15/54)	Hotspot coverage (39/54)	Exon Coverage
BCOR	**ABL1**	4-6
BCORL1	**ASXL1**	12
CDKN2A	**ATRX**	8-10 and 17-31
CEBPA	**BRAF**	15
CUX1	**CALR**	9
DNMT3A	**CBL**	8, 9
ETV6/TEL	**CBLB**	9, 10
EZH2	**CBLC**	9, 10
IKZF1	**CSF3R**	14-17
KDM6A	**FBXW7**	9-11
PHF6	**FLT3**	14, 15, 20
RAD21	**GATA1**	2
RUNX1	**GATA2**	2-6
STAG2	**GNAS**	8, 9
ZRSR2	**HRAS**	2, 3
	IDH1	4
	IDH2	4
	JAK2	12, 14
	JAK3	13
	KIT	2, 8-11, 13, 17
KMT2A		2, 3
KRAS		5-8
MPL		10
MYD88		3-5
NOTCH1		26-28, 34
NPM1		12
NRAS		2, 3
PDGFRA		12, 14, 18
PTEN		5, 7
PTPN11		3, 13
SETBP1		4 (partial)
SF3B1		13-16
SMC1A		2, 11, 16, 17
SMC3		10, 13, 19, 23, 25, 28
SRSF2		1
TET2		3-11
TP53		2-11
U2AF1		2, 6
WT1		7, 9
Supp. Table S7: Genes covered by a custom hybridization capture-based panel (Oxford Gene Technologies, 49 myeloid genes)

Complete coding sequence coverage (n=21)	Hotspot gene region coverage (n=28)			
Gene	**Transcript**	**Gene**	**Transcript**	**Target Exon**
BCOR	NM_001123385.1	ASXL1	NM_015338.5	13
BCORL1	NM_021946.4	BRAF	NM_004333.4	15
CEBPA	NM_004364.3	CALR	NM_004343.3	9
CTNNAL1	NM_001903.3	CBL	NM_005188.3	8,9
CUX1	NM_001202543.1	CSF3R	NM_156039.3	14-17
DDX41	NM_016222.3	FBXW7	NM_033632.3	9-11
DNMT3A	NM_022552.4	FLT3	NM_004119.2	14,15,20
ETNK1	NM_018638.4	GATA2	NM_032638.4	2-6
ETV6/TEL	NM_001987.4	GNAS	NM_00516.4	8,9
EZH2	NM_004456.4	IDH1	NM_005896.3	4
IKZF1	NM_006060.5	IDH2	NM_002168.3	4
IRF1	NM_002198.2	JAK2	NM_004972.3	12,14
JAK1	NM_001321853.1	KIT	NM_000222.2	2, 8-11,13,17
PAX5	NM_016734.2	KMT2A/MLL	NM_001197104.1	5-8
PHF6	NM_032458.2	KRAS	NM_033360.3	2,3
PPM1D	NM_003620.3	MPL	NM_005373.2	10
RAD21	NM_006265.2	MYD88	NM_002468.4	3,5
RUNX1	NM_001754.4	NOTCH1	NM_017617.3	26-28,34
SH2B3/LNK	NM_005475.2	NPM1	NM_002520.6	12
STAG2	NM_001042749.2	NRAS	NM_002524.3	2,3
ZRSR2	NM_005089.3	PTPN11	NM_002834.3	3,13
		SETBP1	NM_015559.2	4
		SF3B1	NM_012433.2	13-16
		SRSF2	NM_001195427.1	1
		TET2	NM_001127208.2	3-11
		TP53	NM_000546.5	2-11
		U2AF1	NM_001025203.1	2,6
		WT1	NM_024426.3	7,9
Figure Legends:

Supp. Figure S1: Flow diagram showing selection of study cohort

Supp. Figure S2: Cumulative incidence of JAKi failure (a) whole cohort and stratified by (b) transfusion requiring anemia, (c) ECOG performance status, and (d) mutation status of CBL. Failure incidence curves compared with log rank test.

Supp. Figure S3: Overall survival by (a) MIPSS70 risk category, (b) transfusion requiring anemia (c) CBL mutation status, and (d) number of mutations identified. Survival curves compared with log rank test.
Supp. Figure S1: Flow diagram showing selection of study cohort

194 patients with MF treated with JAKi identified from MPN database

Excluded (n=38):
- Upfront SCT (n=14)
- Miscellaneous (n=10)
- Alternate diagnosis (n=8)
- Insufficient information (n=6)

156 patients with MF in CP and treated with ruxolitinib or momelotinib

Excluded (n=43):
- No molecular sample available at time of starting JAKi (n=43)

113 patients with a molecular sample available
- PMF (n=61)
- PPV-MF (n=27)
- PET-MF (n=25)

Failed JAKi therapy (n=107)

Molecular sample at time of JAKi failure (n=49)
- AP/BP (n=10)
- Spleen (n=23)
- Cytopenias (n=10)
- Second cancer (n=2)
- Non-hematological toxicity (n=4)

Ongoing JAKi therapy (n=6)

No molecular sample available at JAKi failure (n=58)
Supp. Figure S2: KM curves for cumulative incidence of JAKi failure a) Overall, and by b) transfusion status, c) ECOG performance status, d) CBL mutation status.
Overall Survival by MIPSS70

- High risk: blue line
- Low/intermediate risk: red line

Overall Survival by RBC Transfusion Status

- Not requiring RBC transfusion: blue line
- Transfusion requiring anemia: red line

Overall Survival by CBL Mutation

- Wild type CBL: blue line
- Mutated CBL: red line

Overall Survival by Number of Mutations

- 0-1 mutations: blue line
- 2 mutations: red line
- ≥3 mutations: green line

Supp. Figure S3: KM curves for overall survival from JAKi start by a) MIPSS70 risk, b) transfusion status, c) CBL mutation status, and d) total number of mutations.