Supplementary Feedforward Voltage Control in a Reconfigurable Distribution Network using Robust Optimization

Jae-Young Park, Student Member, IEEE, Jaepil Ban, Member, IEEE, Young-Jin Kim, Senior Member, IEEE, and João P. S. Catalão, Fellow, IEEE

Abstract—Network reconfiguration (NR) has attracted much attention due to its ability to convert conventional distribution networks (DNs) into self-healing grids. This paper proposes a new strategy for real-time voltage regulation (VR) in a reconfigurable DN, whereby optimal feedforward voltage control of distributed generators (DGs) is achieved in coordination with the operation of line switches (SWs). This enables preemptive compensation of upcoming deviations in DN voltages resulting from NR-aided load restoration. A robust optimization problem is formulated using a dynamic analytical model of NR to design the feedforward voltage controllers (FVCs) that minimize voltage deviations with respect to the H_{∞} norm. Errors in the estimates of DG modeling parameters and load demands are reflected in the design of optimal FVCs via polytopic uncertainty modeling. Small-signal analysis and case studies are conducted, verifying the effectiveness and robustness of the optimal FVCs in improving real-time VR when NR is activated for load restoration. The performance of the proposed FVCs is confirmed under various conditions of a self-healing DN, characterized by network islanding and size, parameter errors, SW operations, and communication time delays.

Index Terms—Load restoration, network reconfiguration, polytopic uncertainty, robust optimization, voltage control.

NOMENCLATURE

Sets

\(d, q\) subscripts for \(d\)- and \(q\)-axis variables

Indices for SGs, IGs, buses, and vertices

\(i, k, n, v\) index and total number of sampling time steps

\(t, T\) total numbers of SGs, IGs, buses, and vertices

\(G, L, N, V\) convex polytope set

\(\mathcal{P}\) infinity- and two-norm values of \(\bullet\)

\(\|\bullet\|_{\infty}, \|\bullet\|_{2}\) maximum and minimum estimates of \(\bullet\)

\(\Delta\) block diagonal matrix composed of \(\bullet\)

\(\hat{\Delta}\) sum of the diagonal elements of \(\bullet\)

\(\text{conv}\) convex hull for the set of vertices of \(\bullet\)

\(\sigma(\bullet)\) singular values of \(\bullet\)

Matrices, Vectors, and Scalars

\(u(t)\) NR-initiating signal transfer functions of the FVCs for SG unit \(i\) and IG unit \(k\)

\(\mathcal{H}_i(s), M_i(s)\) exciter amplifier gain and line filter inductance

\(K_A, L_f\) total load demand and the amount of load to be restored

\(S_{L}, S_{r}\) communication time delay

\(T_d, U_{SGi}, U_{IGk}\) output signals of the FVCs for SG unit \(i\) and IG unit \(k\)

\(V_{SGi}, V_{IGk}\) terminal voltage magnitudes of SG unit \(i\) and IG unit \(k\)

\(\Delta T_{set}, \Delta V_{rms}, \Delta V_{pk}\) settling time of voltage deviation

\(\gamma\) rms and peak-to-peak voltage deviations

\(d(s)\) upper bound of the energy of FVC output signals

\(A_{DN}, B_{NR}, B_{DG}, C_{DG}\) Padé approximation of the time-delay transfer function modeling coefficients of a reconfigurable network

\(A_{FF}, B_{FF}, C_{FF}, U_{FF}\) control parameters and output signals of FVCs

\(A_{OD}, B_{OD}, C_{OD}\) coefficients for the overall dynamics of a reconfigurable network

 Manuscript received 10 May 2021; revised 23 September 2021 and 6 January 2022; accepted 29 January 2022. Date of publication 8 February 2022; date of current version 20 October 2022. This work was supported by the Energy Cloud R&D Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT under Grant NRF-2019M3F2A1073402. Paper no. TPWRS-00732-2021. (Corresponding author: Young-Jin Kim.)

Jae-Young Park is with the Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Korea (e-mail: luckypark@postech.ac.kr).

Jaepil Ban is with the School of Electronic Engineering, Kumoh National Institute of Technology, Kum, Gyeongbuk 39177, Korea (e-mail: jp-ban@kumoh.ac.kr).

Young-Jin Kim is with the Department of Electrical Engineering, POSTECH, Pohang, Gyeongbuk 37673, Korea, and also with the Institute for Convergence Research and Education in Advance Technology, Yonsei University, Seoul 03722, Korea (e-mail: powersys@postech.ac.kr).

João P. S. Catalão is with the Faculty of Engineering of the University of Porto, 4200-465 Porto, Portugal, and also with the INESC TEC, 4200-465 Porto, Portugal (e-mail: catalao@fe.up.pt).

Color versions of one or more figures in this article are available at https://doi.org/10.1109/TPWRS.2022.3149524.

Digital Object Identifier 10.1109/TPWRS.2022.3149524
in load demand, which in turn trigger abrupt fluctuations in DN voltages in the transient state. Given the small capacities and low inertia of DGs, voltage fluctuations can cause further unexpected tripping of DGs and cascading collapse of DN voltages. This implies that it is essential to accurately reflect the dynamic responses of DGs, loads, and bus voltages into NR-aided load restoration.

In [10]–[15], the optimal NR was conducted considering the dynamics of DGs and loads and the transient operations of DN. Specifically, in [10]–[12], the DG dynamics were reflected in optimization problems to schedule the operations of SWs, while evaluating the maximum frequency deviations due to NR. Synchronous machine-based DGs (SGs) were mainly taken into account. In [13] and [14], NR scheduling was performed with consideration of the maximum transient variations in bus voltages. The sizes and locations of de-energized loads that could be restored without violating the constraints on transient voltages were pre-selected via iterative simulation. However, load services were recovered using SGs alone, rather than SGs in cooperation with inverter-based DGs (IGs). In [15], the optimal NR was achieved for an inverter-dominated DN; the dynamics of grid-forming and grid-following IGs were reflected to estimate the frequency and voltage variations of microgrids (MGs) during NR. However, in [10]–[15], DG control was achieved mainly by conventional feedback control loops that came into effect after bus voltages had substantially deviated due to NR. Thus, current real-time voltage regulation (VR) in a reconfigurable DN can be further improved.

Only a few recent works (e.g., [16]–[18]) have investigated the coordination of DGs and SWs to improve real-time VR during load service restoration. Supplementary feedback loops were established between SGs and SWs [16] and between IGs and SWs [17], [18]. These allowed adjustment of the terminal voltages of SGs and IGs by reference to the on-off status and terminal voltages of the SWs and the currents flowing through them. The adjustments maintained the differences between the terminal voltages of each SW at zero prior to the NR; otherwise, large inrush currents were likely to occur, leading to severe voltage fluctuations. However, such supplementary control is possible only when the feeders of both terminals of the SW are energized. Thus, the method is not applicable to NR-aided load restoration, because the voltages become zero at SW terminals that are connected to interrupted loads. Consequently, the terminal voltages of SGs and IGs still need to be regulated through conventional feedback control, as in [10]–[15].

These issues have motivated the development of new strategies to regulate DN voltage deviations caused by NR preemptively, because NR is commonly performed in a controlled manner. To develop such VR strategies, the gap in the literature between studies of dynamic NR models and their application to DG control first needs to be filled. In [11] and [12], a frequency response rate (FRR) model was adopted for optimal NR considering the change in frequency dip due to a sudden load pickup. However, NR was still modeled simply as the amount of load to be restored or shed, rather than as a change in the network topology itself. This approach compromises the accuracy of estimating the dynamic responses of DGs and loads to the SW...
operations involved in NR-aided load restoration. The transient variations in voltages and line losses due to NR also cannot be analyzed using the FRR model. Moreover, uncertainties in the estimates of DG modeling parameters and load demands were not explicitly considered in [6]–[18]. When the uncertainties are neglected, pre-emptive regulation of DN voltages can become practically ineffective.

This paper proposes a new strategy for real-time VR of a reconfigurable, low-voltage network. Optimal feedforward control of the SGs and IGs is achieved in coordination with SW operations to preemptively mitigate transient voltage deviations at DG terminal buses caused by NR. The dynamic responses of bus voltages to NR are estimated using an analytical model of a reconfigurable network; these responses are integrated into a robust optimization problem to design optimal feedforward voltage controllers (FVCs). Uncertainties in the estimates of DG modeling parameters and load demands are considered during optimization, improving the robustness of optimal FVCs. The FVCs are incorporated in parallel with existing feedback control loops to eliminate steady-state variations in DG terminal voltages. A small-signal analysis and case studies are conducted to assess the performance of the proposed strategy.

The main contributions of this paper are summarized below:

- To the best of our knowledge, this is the first study to report feedforward control of SGs and IGs in coordination with SW operations to improve real-time VR in a reconfigurable, low-voltage network during load service restoration through NR.
- A convex optimization problem is formulated to develop the optimal robust FVCs that minimize the upcoming variations in DG terminal voltages due to NR in the sense of the H_∞ norm.
- Errors in the estimates of DG modeling parameters and load demands are reflected in the optimization problem using a polytopic uncertainty model, enhancing the effectiveness and robustness of the optimal FVCs when applied in practice.
- Comparative small-signal analysis and numerical case studies are comprehensively conducted under various grid conditions, characterized by network islanding and size, SW operations, uncertainty levels, and communications systems.

II. FUNDAMENTALS AND FRAMEWORK

In a reconfigurable DN, NR is conducted to isolate faults and restore loads through on-off operations of sectionalizing switches (SSWs) and tie switches (TSWs). SSWs are installed along individual feeders, and TSWs are installed between feeders. The current practices and standards [19], [20] state that a distribution system operator (DSO) should send binary signals (zero to one or vice versa) to SSWs and TSWs via communication links when changing on-off status; in this paper, the binary signals can serve as NR-initiating signals. Moreover, DGs regulate their terminal voltages to reference values in real time, while supplying active and reactive power to distribution feeders. This facilitates the DSO to support bus voltages across a DN. Conventionally, VR has been achieved using the feedback control loops of individual DGs, commonly by employing proportional-integral (PI) controllers [21], [22]. A switching sequence can be pre-determined using various methods, for example those discussed in [6]–[9]; in this paper, for brevity, the sequence is assumed to be already available.

Fig. 1 shows a schematic diagram of the proposed VR strategy, wherein the FVCs of SGs and IGs generate reference signals for the field exciters and the q-axis inner control loops, respectively, in response to the binary signals (or, alternatively, the NR-initiating signals). SGs serve as grid-forming units and IGs operate as grid-following units. Note that a grid-following IG can support VR by adjusting its reactive power output [21], and the proposed strategy can also readily be applied to the grid-forming type. The FVCs are implemented in the same locations as the DGs, and incorporated in parallel with the existing feedback control loops of the DGs. The reference signals generated by the FVCs are integrated into the signals produced by the feedback loops. The FVCs enable the DGs to compensate for forthcoming variations in the DG terminal voltages caused by NR quickly and pre-emptively, allowing the feedback controllers to better attenuate remaining voltage variations. This significantly and rapidly mitigates transient voltage deviations at DG terminal buses and at load buses throughout the DN, facilitating subsequent load restorations.

In this paper, the FVCs are optimally designed using only information that is commonly available on a reconfigurable DN, SGs, and IGs. Such information is collected, updated, and accessed, for example, using advanced distribution management systems (ADMSs) [23]. In Fig. 1, $H_i(s)$ and $M_k(s)$ represent the transfer functions of the FVCs for SG unit i and IG unit k, respectively. The DSO centrally determines the optimal $H_i(s)$ and $M_k(s)$ online based on the current load demand and the locations of the target SWs to better reflect the time-varying DN dynamics, as in the multi-controller architecture [24]. The DSO then delivers $H_i(s)$ and $M_k(s)$ to the corresponding FVCs in the DG locations for localized generation of reference signals. Delivery of the NR-initiating signal and updating of $H_i(s)$ and $M_k(s)$ are performed only when SWs operations are involved. This mitigates the requirement for computation and communication systems, thus facilitating implementation of the proposed strategy in real DNs.

III. DESIGN OF OPTIMAL ROBUST FVCs

A. Dynamic Responses of DG Terminal Voltages to NR

To design the proposed FVCs, the dynamic responses of the DG terminal voltages to SW operations are first estimated using an analytical model of a reconfigurable DN. In a previous study [25], a dynamic analytical model of NR was developed, wherein NR was considered to be a change in the DN topology itself. This improved the estimation accuracy of network voltage responses, compared with the conventional models in which NR was regarded simply as the load demand to be restored or shed. The previous dynamic analytical model is further adapted for application to supplementary feedforward control of DGs in response to NR-initiating signals. Briefly, the analytical model
of a reconfigurable DN is represented as:

$$\Delta \dot{X}_{DN}(t) = A_{DN} \cdot \Delta X_{DN}(t) + B_{DG} \cdot \Delta U_{FF}(t) + B_{NR} \cdot u(t),$$ \hspace{1cm} (1)$$

$$\Delta V_{DG}(t) = C_{DG} \cdot \Delta X_{DN}(t),$$ \hspace{1cm} (2)$$

where

$$\Delta X_{DN} = [\Delta X_{SG1}, \ldots, \Delta X_{SGG}, \Delta X_{IG1}, \ldots, \Delta X_{IGL}]^T,$$ \hspace{1cm} (3)$$

$$\Delta U_{FF} = [\Delta U_{SG1}, \ldots, \Delta U_{SGG}, \Delta U_{IG1}, \ldots, \Delta U_{IGL}]^T,$$ \hspace{1cm} (4)$$

$$\Delta V_{DG} = [\Delta V_{SG1}, \ldots, \Delta V_{SGG}, \Delta V_{IG1}, \ldots, \Delta V_{IGL}].$$ \hspace{1cm} (5)$$

In (1) and (2), ΔX_{DN} includes the state variables of the SG and IG models [see (3)]; ΔU_{FF} is the FVC output signals; $u(t)$ is the NR-initiating signal; and ΔV_{DG} is the variations in the DG terminal voltages. The corresponding coefficients A_{DN}, B_{DG}, B_{NR}, and C_{DG} are established using linearized models of SGs, IGs, voltage-dependent loads, and distribution lines. The parameters (i.e., resistance and reactance) of distribution lines are also explicitly reflected in the coefficients and hence in the FVC models. Please refer to Appendix A for details.

In (1), $u(t)$ can represent a signal generated at any arbitrary time t without loss of generality, when A_{DN}, B_{DG}, B_{NR}, and C_{DG} are updated prior to NR based on load demand and SW locations, as discussed in Section II. Thus, the analytical model (1)–(5) can be applied to consecutive operations of SWs. Moreover, (1)–(5) can still be used to estimate the dynamic responses of bus voltages to NR in islanded MGs [25].

B. Formulation of the Robust Optimization Problem

The proposed FVCs are designed in the form:

$$\Delta \dot{X}_{FF}(t) = A_{FF} \cdot \Delta X_{FF}(t) + B_{FF} \cdot u(t),$$ \hspace{1cm} (6)$$

$$\Delta U_{FF}(t) = C_{FF} \cdot \Delta X_{FF}(t),$$ \hspace{1cm} (7)$$

where ΔX_{FF} is the state variables and A_{FF}, B_{FF}, and C_{FF} are the FVC parameters. Whereas ΔX_{DN} in (1) and (2) has physical variables, ΔX_{FF} in (6) and (7) includes only numerical variables. Thus, A_{FF}, B_{FF}, and C_{FF} have no physical meanings.

The size of ΔX_{FF} is set to be the same as that of ΔX_{DN}, so that the optimization problem for the determination of A_{FF}, B_{FF}, and C_{FF} can be formulated using only linear matrix inequality (LMI) constraints. Accordingly, the sizes of A_{FF}, B_{FF}, and C_{FF} become the same as those of A_{DN}, B_{NR}, and C_{DG}, respectively, in (1) and (2). Moreover, in (6), the NR-initiating signal $u(t)$ serves as the common input to the FVCs, enabling preemptive compensation for voltage deviations at all DG terminal buses. Note that $u(t-T_d)$ is used, rather than $u(t)$, to analyze the effect of a communication time delay T_d on FVC performance in Sections IV and V.

The overall dynamics of the reconfigurable DN including the SGs, IGs, and corresponding FVCs are obtained by combining (1)–(7), as shown in Fig. 2. This yields the frequency-domain response $G(s)$ of $\Delta V_{DG}(t)$ to $u(t)$, as:

$$G(s) = C_{OD} \cdot (sI - A_{OD})^{-1} \cdot B_{OD},$$ \hspace{1cm} (8)$$

where

$$A_{OD} = \begin{bmatrix} A_{DN} & B_{DG} \cdot C_{FF} \\ O & A_{FF} \end{bmatrix}, B_{OD} = \begin{bmatrix} B_{NR} \\ B_{FF} \end{bmatrix},$$ \hspace{1cm} (9)$$

$$C_{OD} = \begin{bmatrix} C_{DG} \\ O \end{bmatrix}. $$ \hspace{1cm} (10)$$

It can be seen that A_{FF}, B_{FF}, and C_{FF} mainly affect $G(s)$, implying that the FVCs can be optimized to minimize the forthcoming ΔV_{DG} due to NR. In this paper, given (8)–(10), the optimal FVC parameters (i.e., A_{FF}, B_{FF}, and C_{FF}) are determined to minimize the maximum singular value of $G(s)$ (i.e., $\|G(s)\|_\infty$) by solving the optimization problem:
P1: Problem for the design of optimal robust FVCs

\[
\begin{align*}
\arg\min_{\mathcal{J}, \mathcal{L}_{1-5}, \mathcal{U}} & \quad \mathcal{J} \\
\text{subject to} & \quad \mathcal{C}_1 < 0, \\
\mathcal{C}_2 & = \left[\mathcal{L}_2 \mathcal{L}_1 \mathcal{L}_1 \mathcal{L}_1 \right] > 0, \quad \mathcal{L}_1 > 0, \quad \mathcal{L}_2 > 0, \\
\mathcal{C}_3 & = \left[\mathcal{L}_2 - \mathcal{L}_1 \mathcal{L}_5 \mathcal{U} \right] > 0 \quad \text{for} \quad \mathcal{tr}(\mathcal{U}) < \gamma,
\end{align*}
\]

where the element-wise expression of \(\mathcal{C}_1 \) in (12) is shown below. Please see Appendix B for the detailed derivation of P1. Briefly, in (11), \(\mathcal{J} \) represents the upper bound of \(\|G(s)\|_\infty \), which corresponds to the peak value of the frequency response of \(\Delta V_{DG}(t) \) to \(u(t) \). Thus, P1 is formulated to achieve robust operation of the optimal FVCs. The constraints (12) and (13) are required to ensure bus voltage stability in the Lyapunov sense. In other words, the optimal solution (i.e., \(\mathcal{J}, \mathcal{L}_{1-5}, \), and \(\mathcal{U} \)) of P1 is obtained such that all poles of \(G(s) \) are located in the left-hand half plane (LHP). Moreover, (14) specifies the upper bound (i.e., \(\gamma \)) of the total energy of \(\Delta U_{FF} \); this prevents excessive operation of the optimal FVCs and hence the DGs.

As shown in (11)–(15), P1 is a convex optimization problem with a linear objective function and LMI constraints. Therefore, P1 can be readily solved in real time using a common, off-the-shelf LMI solver. Given a solution of P1, the optimal control parameters of the FVCs are determined as:

\[
\begin{align*}
\mathbf{A}_{FF} & = (\mathcal{L}_1 \mathcal{L}_2^{-1} - 1)^{-1} \mathcal{L}_3 \mathcal{L}_2^{-1}, \\
\mathbf{B}_{FF} & = (I - \mathcal{L}_1 \mathcal{L}_2^{-1})^{-1} \mathcal{L}_4, \quad \text{and} \quad \mathbf{C}_{FF} = -\mathcal{L}_5 \mathcal{L}_2^{-1}. \\
\end{align*}
\]

From (6) and (7), the transfer functions of the FVCs for individual SGs and IGs can then be obtained as:

\[
\mathbf{G}_{FF}(s) = [H_1(s), \ldots, H_G(s), M_1(s), \ldots, M_L(s)]^T,
\]

\[
= \mathbf{C}_{FF} \cdot (sI - \mathbf{A}_{FF})^{-1} \cdot \mathbf{B}_{FF}.
\]

C. Uncertainties in the Estimates of DG and Load Parameters

As shown in (15), P1 is formulated using \(\mathbf{A}_{DN}, \mathbf{B}_{DG}, \) and \(\mathbf{B}_{NR} \), which include the parameter estimates of the SGs, IGs, voltage-dependent loads, and distribution lines. Note that \(\mathbf{C}_{DG} \) contains only ones and zeros as elements, irrelevant with uncertainty. In practice, uncertainties in parameter estimates compromise the estimation accuracies of bus voltage responses to NR and hence the performances of optimal FVCs. In [26]–[28], sensitivity analyses revealed particularly large effects of the exciter amplifier gains \(K_A \) of SGs and the filter inductances \(L_f \) of IGs on transient variations in their terminal voltages. The load demand \(S_r \) to be restored also affects the extent to which the voltages deviate in both the transient state and the steady state after NR [13], [14]. Thus, in this paper, P1 is extended to consider uncertainties in the estimates of \(K_A, L_p, \) and \(S_r \), enhancing the robustness of the FVCs and their applicability in real DNs.

Specifically, the effects of uncertainties in the estimates of \(K_A, L_f, \) and \(S_r \) on \(\mathbf{A}_{DN}, \mathbf{B}_{DG}, \) and \(\mathbf{B}_{NR} \) are first evaluated using the polytopic uncertainty model [29], shown in Fig. 3. This allows direct mapping from the error space (i.e., the blue cuboid) of \(\mathbf{A}_{DN}, \mathbf{B}_{DG}, \) and \(\mathbf{B}_{NR} \), when the DN model (1)–(5) is established.

Given the polytopic uncertainty model, the optimal FVC parameters \(\mathbf{A}_{FF}, \mathbf{B}_{FF}, \) and \(\mathbf{C}_{FF} \) are determined to minimize the \(H_\infty \) norm of \(\Delta V_{DG}(t) \) for all inaccurate estimates of \(\mathbf{A}_{DN}, \mathbf{B}_{DG}, \) and \(\mathbf{B}_{NR} \) within \(\mathcal{P} \), by solving the optimization problem:

P2: Extension of P1 to reflect estimation uncertainty

\[
\begin{align*}
\arg\min_{\mathcal{J}, \mathcal{L}_{1-5}, \mathcal{U}} & \quad \mathcal{J} \\
\text{subject to} & \quad \mathcal{C}_{1v} < 0 \quad \text{for} \quad v = 1, \ldots, V, \\
(13) \quad \text{and} \quad (14),
\end{align*}
\]

A comparison of (12) and (22) shows that \(\mathcal{C}_1 \) is extended to \(\mathcal{C}_{1v} \) by replacing \(\mathbf{A}_{DN}, \mathbf{B}_{DG}, \) and \(\mathbf{B}_{NR} \) in (15) with \(\mathbf{A}_{DN,v}, \mathbf{B}_{DG,v}, \) and \(\mathbf{B}_{NR,v} \), respectively, for all \(v \). This extension allows P2 to reflect all uncertainties in the estimates of \(K_A, L_f, \) and \(S_r \) within the boundary of \(\mathcal{P} \), shown in Fig. 3.
Consequently, the optimal solution to P_2 and, hence, the FVCs with optimal A_{FF}, B_{FF}, and C_{FF} can minimize the worst-case voltage variations at the DG terminals (i.e., $||G(s)||_o$) for all the ranges of the uncertain estimates of K_A, L_f, and S_r [30]. The objective function and constraints on C_2, 3, L_1, 2, and U remain the same as in P_1, and consequently, P_2 remains convex. After P_2 is solved, $H_i(s)$ and $M_k(s)$ of all FVCs are determined using (16)–(19), as for P_1.

D. Practical Implementation of Optimal FVCs

Fig. 4 shows a flowchart of the proposed strategy with emphasis on the information requirements and the decision making procedures. In Steps 1–3, the DSO centrally formulates and solves P_2, given the network-wide information and the pre-determined switching schedules. Using the optimal solution to P_2, the DSO determines the optimal $H_i(s)$ and $M_k(s)$ of all FVCs and delivers these to the corresponding FVCs at the DG locations. The FVCs then locally generate reference signals to control the DGs, as shown in Step 4. Such hybrid control approach reduces the need for computation and communication systems, thus ensuring wide applicability of the proposed strategy to large-scale networks. Note that, for application to an islanded MG, only Step 2 needs to be adapted using the appropriate analytical model [25].

Steps 1–4 proceed within a short period of time, enabling real-time VR. In Step 1, the network-wide information and switching schedules are already available in an ADMS and can be instantly downloaded. Step 2 involves only algebraic calculations, as discussed in Appendix A, which take a short time. In Step 3, due to its convexity, P_2 can be solved rapidly:

e.g., $T_{S3} < 10$ s as discussed in Section V. Step 4 proceeds during the time when the existing feedback control loops operate to restore the DG terminal voltages back to their steady-state values in the conventional strategy. This is because, in the proposed strategy, the forthcoming voltage deviations are estimated using the analytical dynamic model of (1)–(5) wherein only the feedback control loops are applied. In [13]–[16], the feedback loops led to the transient period by up to 10 s: i.e., $T_{S4} < 10$ s.

IV. SMALL-SIGNAL ANALYSIS

A. Contribution of the Optimal FVCs to Real-Time VR

A small-signal analysis of the proposed VR strategy was conducted with the optimal FVCs discussed in Section III. In the frequency domain, $G(s)$ [i.e., (8)–(10)] was analyzed for a reconfigurable DN with the model parameters specified in Section V (see Fig. 10 and Table III). Fig. 5 shows that all eigenvalues of $G(s)$ for TSW and SSW operations are placed
Fig. 7. The SVPs of $G(s)$ for the proposed and conventional strategies with errors in the estimates of (a) K_A, (b) L_f, (c) S_r, and (d) K_A, L_f, and S_r.

Fig. 8. The SVPs of $G_d(s)$ for a communication time delay T_d.

Fig. 9. The SVPs of $\tilde{G}(s)$ for communication failures of the SGs and IGs.

Fig. 10. Single-line diagram of the test DN.

Table II

Comparison for Communication System Failures
Device

SG units

Table III

Network Parameters for the Case Studies
Device

SG units
IG units

on the LHP, confirming that the proposed strategy ensures bus voltage stability. Fig. 6 shows the singular value plots (SVPs) of $G(s)$ for the proposed strategy, compared with the SVPs of the conventional strategy using feedback control loops alone. The SVP comparisons demonstrate that the proposed strategy is substantially more effective in attenuating voltage deviations resulting from SW operations than the conventional strategy.

B. Sensitivity Analysis

The proposed strategy was further analyzed by considering uncertainties in the estimates of K_A, L_f, and S_r, as discussed in Section III-C. For brevity, the SGs and IGs were assumed to exhibit the same error percentages in the nominal estimates of K_A and L_f, respectively; also, the load units to be restored were assumed to exhibit the same error percentages in S_r. Fig. 7 shows the SVPs of $G(s)$ in the proposed and conventional strategies when the error percentages varied by $\pm 30\%$ [26], [30]. The proposed strategy still results in lower magnitudes of $G(s)$ and smaller variations thereof, particularly in the frequency range below approximately 1.19×10^2 Hz. This verifies the robustness of the proposed strategy against large uncertainties in the estimates of the DG and load parameters.

Sensitivity analysis was also performed when the optimal FVCs responded to NR-initiating signals with a time delay of T_d. For T_d, the overall dynamics of a reconfigurable DN with
the optimal FVCs are:

\[
\begin{bmatrix}
\Delta \dot{X}_{DN}(t) \\
\Delta \dot{X}_{FF}(t)
\end{bmatrix} = A_{OD} \begin{bmatrix}
\Delta X_{DN}(t) \\
\Delta X_{FF}(t)
\end{bmatrix} + \begin{bmatrix}
B_{NR} & 0
\end{bmatrix} u(t) \\
+ \begin{bmatrix}
0 \\
B_{FF}
\end{bmatrix} u(t - T_d).
\] (24)

The response of \(\Delta V_{DG}\) to \(u(t)\) then changes from \(G(s)\) to:

\[
G_d(s) \approx C_{OD} \cdot (sI - A_{OD})^{-1} \cdot d(s),
\] (25)

where \(d(s) = \begin{bmatrix}
B_{NR} \\
0
\end{bmatrix} + \begin{bmatrix}
0 \\
B_{FF}
\end{bmatrix} \cdot \left(\frac{T_d^2 s^2 - 6T_d s + 12}{T_d^2 s^2 + 6T_d s + 12}\right).
\] (26)

Note that the second-order Padé approximation of \(e^{-sT_d}\) was adopted in (25). Fig. 8 and Table I compare the performances of the proposed and conventional strategies when \(T_d\) increases from 0.1 to 0.6 s. Delayed FVC activations render \(\Delta V_{DG}\) less attenuated, particularly from about \(3.53 \times 10^{-2}\) to \(3.29 \times 10^2\) Hz, compared to synchronous activation [i.e., \(G(s)\)]. However, the proposed strategy still yields smaller \(|\|G_d(s)\|\|\text{ and } |\|G_d(s)\||\) values for all \(T_d\). In real DNs, communication time delays have been reported to be less than 0.540 s [31], confirming the practical applicability of the proposed strategy. Although it affects the transient voltage responses, \(T_d\) has no effect on voltage stability when the proposed strategy is employed because \(d(s)\) is stable in the bounded-input and bounded-output sense. Moreover, the eigenvalues of \((sI - A_{OD})^{-1}\) are the same as those of \(G(s)\), all of which are on the LHP (see Fig. 5).

Further sensitivity analysis was conducted when the communication systems of the DGs failed. To reflect the corresponding operations of the FVCs, (7) becomes:

\[
\Delta U_{FF}(t) = M_{FF} \cdot C_{FF} \cdot \Delta X_{FF}(t),
\] (27)

where \(M_{FF} = \text{diag}(M_{SG,1}, \ldots, M_{SG,i}, \ldots, M_{SG,G}, M_{IG,1}, \ldots, M_{IG,k}, \ldots, M_{IG,L}).\) (28)

In (28), \(M_{SG,i}\) and \(M_{IG,k}\) are binary values that indicate the communication status of SG unit \(i\) and IG unit \(k\), respectively. The response of \(\Delta V_{DG}(t)\) to \(u(t)\) can then be represented as:

\[
\dot{G}(s) = C_{OD} \cdot (sI - A_{OD})^{-1} \cdot B_{OD},
\] (29)

where \(A_{OD} = \begin{bmatrix}
A_{DN} & B_{DG} & M_{FF} & C_{FF} \\
0 & A_{FF}
\end{bmatrix}.\) (30)

Fig. 9 and Table II show the SVPs of \(\dot{G}(s)\) and the corresponding numerical results under extreme conditions: i.e., when the communications of all the SGs and of all the IGs fail. This rather considerably compromises the performance of the proposed strategy. However, the proposed strategy still more effectively reduces bus voltage deviations than does the conventional strategy. Also, the extreme events have no effect on bus voltage stability when the proposed strategy is used, because the eigenvalues of \(A_{OD}\) in (30) are identical to those of \(A_{OD}\) in (9), regardless of the \(M_{FF}\) in (28).

V. CASE STUDIES AND SIMULATION RESULTS

A. Test System and Simulation Conditions

The proposed VR strategy was tested on the DN, modeled using the IEEE 37-bus Test Feeder [32] with modifications based on [16] and [33]. Table III lists the corresponding modeling parameters. Specifically, Fig. 10 shows the initial on-off status of SSWs and TSWs when two faults occurred at the feeders between Buses 707 and 720 and Buses 711 and 738. Moreover, the test DN contains three SGs and five IGs, with total power capacities of 1.8 and 1.0 MVA, respectively. The total load demand was 2.6 + j1.2 MVA and was distributed to the load units connected to all buses. For simplicity, the load units were assumed to have the same ZIP coefficients of 1.5, –2.3, and 1.8 for active power and of 7.4, –12, and 5.6 for reactive power. Three-phase balanced lines were also adopted with impedances set as the average value over the three phases for each line configuration.

In addition, Fig. 11 and Table IV show the self-healing scenario to restore de-energized loads in Areas 1 and 3. The non-critical loads in Area 2 were disconnected to support bus voltages across the DN, and then re-energized after the load restorations in Areas 1 and 3 were completed. In general, SWS are operated one at a time to prevent excessive voltage fluctuations in the transient state [13]. In this study, the time interval between SW operations was set to 10 s. For each SW operation, the optimal FVC parameters were determined within 2 s by solving \(P_x\) using the MATLAB toolbox YALMIP.

Furthermore, Table V lists the main features of the proposed strategy (Cases 1 and 2) and the conventional strategies (Cases 3 and 4). Cases 1 and 3 were compared to examine the effects of the optimal FVCs on real-time VR. Errors in the estimates of \(K_{AV}, L_f,\) and \(S_e\) were not reflected in Cases 1 and 3. To allow fair comparison, Case 2 evaluated the robustness of the FVCs against errors in the parameter estimates by 30%, compared with Case 4 using the robust controller discussed in [26].
TABLE IV
SELF-HEALING SCENARIO OF THE TEST DN

Time periods	Operating statuses of the test DN
$T_2 (t < t_1)$	Faults occur at the feeders between Buses 707 and 720 and between Buses 711 and 738, leading to opening of TSW$_2$ and SSW$_1$, for isolation of the faults.
$T_1 (t_1 \leq t < t_2)$	At $t = t_1$, TSW$_2$ is closed to reduce the line power losses (see Fig. 11(a)). This enables the DGs to secure additional reserve capacity for subsequent load restorations. At $t = t_2$, SSW$_1$ is opened to recover the radial structure of the DN.
$T_2 (t_2 \leq t < t_3)$	TSW$_2$ and SSW$_1$ are closed at $t = t_2$, respectively, to remove the de-energized loads in Area 1 (see Fig. 11(b)).
$T_3 (t_3 \leq t < t_4)$	The non-critical loads in Area 2 are de-energized by opening SSW$_2$; at $t = t_3$ (see Fig. 11(c)), to increase the DG reserve capacity and support the DN voltages. TSW$_1$ and SSW$_1$ then operate at $t = t_3$, respectively, to remove line power losses, further increasing the reserve capacity.
$T_4 (t_4 \leq t < t_5)$	TSW$_1$ and SSW$_2$ are closed at $t = t_4$, respectively, to restore the de-energized loads in Area 3 (see Fig. 11(d)).
$T_5 (t \geq t_5)$	At $t = t_5$, SSW$_1$ is closed to restore the non-critical loads in Area 2. The self-healing operation terminates after the faults are investigated and cleared.

TABLE V
FEATURES OF THE PROPOSED AND CONVENTIONAL STRATEGIES

VR strategy	Proposed	Conventional
Description	No uncertainties in the parameter estimates	30% uncertainties in the parameter estimates

Conventional:
- Case 1: No feedback control
- Case 2: Optimal robust state feedback loop
- Case 3: Load-based output feedback loop
- Case 4: Optimal robust state feedback loop

TABLE VI
RESULTS FOR THE OPERATIONS OF TSW$_2$ AND SSW$_1$

Comparison factors	Proposed	Conventional		
$\Delta V_{rms,avg}$ [$\times 10^3$ pu]	1.318	1.723	5.961	3.626
$\Delta V_{pk,max}$ [$\times 10^2$ pu]	0.559	0.882	1.794	1.643
$\Delta T_{set,max}$ [s]	1.667	3.371	10.823	6.172

TABLE VII
RESULTS FOR DIFFERENT CONDITIONS OF THE TEST DN

Comparison factors	Proposed	Conventional		
$\Delta V_{rms,avg}$ [$\times 10^3$ pu]	3.506	4.639	8.434	6.961
$\Delta V_{pk,max}$ [$\times 10^2$ pu]	4.459	6.843	26.513	21.604
$\Delta T_{set,max}$ [s]	7.117	7.429	24.583	15.948

The case studies discussed above were repeated for different conditions of the test DN. Specifically, the total load demand was increased by up to 80%, and K_A and L_f were set to 100 and 16 mH, respectively, based on the discussions in [34] and [35]. For the conventional strategies, this led to relatively large variations in the transient voltages at the DG terminal buses and hence at the load buses. For example, in Case 3, the maximum and minimum voltages were estimated to be 1.103 pu and 0.846 pu, respectively, implying that voltage stability was jeopardized. However, Fig. 13 shows that the proposed strategy maintained the transient voltage variations within an acceptable limit. Table VII also shows that $\Delta V_{pk,max}$ and $\Delta V_{rms,avg}$ were smaller for the proposed strategy than for the conventional strategies. The improvement in VR was principally because the proposed FVCs allowed the DGs to respond to upcoming voltage deviations caused by NR faster and more accurately (see Fig. 12(c)), including when the errors in DG parameter and load estimates were large. Fig. 12(d) shows that the active power output profiles of DGs were similar in the proposed and conventional strategies, implying that the proposed strategy can also be reliably applied to self-healing of islanded MGs.

B. Performance of the Proposed VR Strategy

The proposed and conventional strategies were comparatively analyzed for the operations of TSW$_2$ and SSW$_1$ of the test DN. Fig. 12(a) shows the terminal voltages of SG$_1$, IG$_1$, and IG$_2$ located near TSW$_2$ and SSW$_1$. Compared with the conventional strategies, the proposed strategy significantly reduced voltage deviations caused by NR-aided load restoration and shedding. This led to a considerable reduction in the transient voltage deviations at buses where only loads were connected, as shown in Fig. 12(b). The proposed strategy also decreased the settling times of voltage deviations and hence the time required for consecutive SW operations, facilitating self-healing of the DN. For all buses, $\Delta V_{rms,avg}$, $\Delta V_{pk,max}$, and $\Delta T_{set,max}$ were estimated as:

$$\Delta V_{rms,avg} = \frac{1}{N} \sum_{n=1}^{N} \sqrt{\frac{1}{T} \sum_{t=1}^{T} (\Delta V_{rms,avg})^2_{n,t}},$$

and

$$\Delta T_{set,max} = \max(\Delta T_{set}), \text{ for } n = 1, \ldots, N.$$
changes in DN operating conditions via analytical network modeling and online FVC updating, thus reducing the magnitudes and settling times of transient voltage variations.

C. Applicability to an Islanded Microgrid

Comparative case studies were conducted when the test DN was intentionally islanded from the main grid. Fig. 14 and Table VIII show that the conventional strategies led to large voltage variations in the transient state, whereas the proposed strategy successfully mitigated the transient voltage variations.

Table VIII

Comparison factors	Proposed	Conventional		
$\Delta V_{\text{rel,avg}}$ [*10^-6 pu]	1.116	1.941	5.866	3.725
$\Delta V_{\text{rel, max}}$ [*10^-6 pu]	2.311	3.637	10.214	9.173
$\Delta T_{\text{rel, max}}$ [s]	1.939	3.813	11.672	6.941

This confirms that in the proposed strategy, the supplementary FVCs successfully enable the SGs and IGs to respond faster and more accurately to upcoming voltage deviations resulting from NR, regardless of whether the low-voltage network is grid-connected or islanded. Moreover, Fig. 14(e) and (f) show that the profiles of the MG frequency and DG active power were similar with each other for all Cases 1–4, confirming that the proposed strategy did not disturb MG frequency regulation.

The case studies were repeated when the IGs operated as grid-forming units in the islanded MG. The case study results, shown in Fig. 15 and Table IX, also prove the effectiveness and robustness of the proposed VR strategy in reducing the MG voltage variations in the transient state, compared to the conventional strategies. This further confirms that the proposed FVCs can adaptively reflect the dynamics of grid-forming IGs, ensuring the wide applicability of the proposed strategy, regardless of the network and IG types.

D. Performance in the Self-Healing Scenario

Additional case studies were performed to evaluate the proposed strategy with variations over time in the load demand and photovoltaic (PV) power generation [36], [37] (see Fig. 16). The optimal FVCs were developed by reference to the base load demand (i.e., $S_L = 2.6 + j1.2 \text{ MVA}$). Differences between actual and base load demands were reflected as uncertainties in the network parameter estimates, in addition to uncertainties in the estimates of K_A, L_f, and S_T. Fig. 17 shows the profiles of V_{DG}, V_{Load}, Q_{DG}, and P_{DG} from T_0 to T_5 in the scenario.

Table IX

Comparison factors	Proposed	Conventional		
$\Delta V_{\text{rel,avg}}$ [*10^-6 pu]	0.845	1.377	3.897	3.212
$\Delta V_{\text{rel, max}}$ [*10^-6 pu]	2.021	2.858	5.927	6.188
$\Delta T_{\text{rel, max}}$ [s]	1.205	2.465	13.672	4.871

This confirms that in the proposed strategy, the supplementary FVCs successfully enable the SGs and IGs to respond faster and more accurately to upcoming voltage deviations resulting from NR, regardless of whether the low-voltage network is grid-connected or islanded. Moreover, Fig. 14(e) and (f) show that the profiles of the MG frequency and DG active power were similar with each other for all Cases 1–4, confirming that the proposed strategy did not disturb MG frequency regulation.

The case studies were repeated when the IGs operated as grid-forming units in the islanded MG. The case study results, shown in Fig. 15 and Table IX, also prove the effectiveness and robustness of the proposed VR strategy in reducing the MG voltage variations in the transient state, compared to the conventional strategies. This further confirms that the proposed FVCs can adaptively reflect the dynamics of grid-forming IGs, ensuring the wide applicability of the proposed strategy, regardless of the network and IG types.
Fig. 16. Continuous variations in the load demand and PV generation.

Fig. 17. Comparison of the proposed and conventional VR strategies for the self-healing scenario: (a) V_{DG}, (b) V_{Load}, (c) Q_{DG}, and (d) P_{DG}.

Fig. 18. The relative magnitudes of (a) $\Delta V_{rms,avg}$ and (b) $\Delta V_{pk,max}$ for different communication time delays.

Table X

Comparison factors	Proposed	Conventional		
$\Delta V_{rms,avg}$ [x10^2 pu]	1.564	1.816	6.684	3.808
$\Delta V_{pk,max}$ [x10^2 pu]	0.962	1.163	2.741	2.418
$\Sigma_i Q_{DG,i,rms}$ [pu]	0.118	0.137	0.111	0.131
$\Sigma_k P_{DG,k,rms}$	0.082	0.099	0.075	0.092

Cases 1 and 2, ΔV_{DG} and ΔV_{Load} remained far lower at all times compared with Cases 3 and 4, because the optimal FVCs enabled faster and preemptive control of the DG in response to SW operations. By contrast, in the conventional strategies, DG power outputs were controlled only by the feedback loops; they came into effect after ΔV_{DG} was already significantly changed by NR. Moreover, Table X numerically compares the proposed and conventional strategies. For Case 2, $\Delta V_{rms,avg}$ and $\Delta V_{pk,max}$ were 52.3 and 51.9%, respectively, smaller than in Case 4; whereas $\Sigma_i \Delta Q_{DG,i,rms}$ and $\Sigma_k \Delta Q_{DG,k,rms}$ were only 4.6 and 7.6%, respectively, larger than in Case 4. This implies that the costs incurred by the increased operational stress on DGs can be adequately compensated by the savings attributable to the improved VR.

E. Effects of Communication Time Delays and Failures

The case studies of Section V-D were repeated to analyze the sensitivity of the proposed strategy in terms of T_d. Fig. 18(a) compares the $\Delta V_{rms,avg}$ ratios of the proposed and conventional strategies when T_d ranged from 0.1 to 0.6 s, as discussed in Section IV-B. Similarly, Fig. 18(b) shows the $\Delta V_{pk,max}$ ratios of the proposed and conventional strategies with respect to T_d.

Table XI shows that under the extreme conditions where the communications systems of all the SGs and of all the IGs failed, Cases 1 and 2 still afforded transient voltage variations of smaller magnitudes and shorter settling times than those of Cases 3 and 4, respectively.

Table XI

Comparison factors	Proposed	Conventional	
$\Delta V_{rms,avg}$ [x10^2 pu]	5.265	5.014	8.434
$\Delta V_{pk,max}$ [x10^2 pu]	11.488	15.211	26.513
$\Delta T_{set,max}$ [s]	11.794	10.921	24.583
$\Delta V_{rms,avg}$ [x10^2 pu]	6.152	5.644	6.961
$\Delta V_{pk,max}$ [x10^2 pu]	13.301	18.069	21.604
$\Delta T_{set,max}$ [s]	12.282	11.665	15.948

F. Scalability Analysis

The proposed strategy was also tested on the large-scale DN, shown in Fig. 19, which was modeled based on the IEEE 123-bus Test Feeder [32]. The test DN included 12 DG units, and the
DG model parameters remained the same as in Table III. It also contained 58 SSWs and 55 TSWs. Initially, three faults occurred in the DN, leading to the opening of SSW14, SSW17, and SSW22 for fault isolation. To restore the de-energized loads in Areas 1 and 2, NR was conducted in the following sequence: at $t = 5$ s, TSW28 was closed to energize the loads in Area 1; at $t = 15$ s, SSW37 was opened to disconnect the non-critical loads in Area 3; and at $t = 25$ s, TSW14 was closed to restore the loads in Area 2. Fig. 20 shows the terminal voltages of SG2 and IG4 located close to TSW14, TSW28, and SSW37. Compared with the conventional strategies, the proposed strategy was more successful in reducing the variations in the DG terminal voltages during NR. This led to significant reductions in the transient voltage deviations at Buses 51 and 58, where only loads were connected. The comparison results shown in Table XII also verify the outperformance of the proposed strategy when applied to a large-scale DN. The case studies were repeated while increasing the number of DGs from 12 to 28. Fig. 21 shows that $\Delta V_{rms, avg}$ and $\Delta V_{pk, max}$ for the proposed strategy were maintained at lower levels for all DG numbers than those for the conventional strategies. Both $\Delta V_{rms, avg}$ and $\Delta V_{pk, max}$ were also gradually reduced as the number of DGs increased. Moreover, Table XIII shows that the maximum computation time to solve P_2 increased almost linearly, rather than exponentially, with respect to the number of DGs. The results verify that the proposed strategy is readily scalable for large-scale DNs.

VI. CONCLUSION

This paper proposed a new VR strategy for a reconfigurable, low-voltage network wherein optimal robust FVCs enable SGs and IGs to respond faster and preemptively to real-time voltage deviations caused by NR-aided load restoration. Real-time voltage deviations at DG terminal buses were estimated using a dynamic analytical model of a reconfigurable network, and then integrated into a robust optimization problem when designing the optimal FVCs. The problem was formulated to minimize voltage deviations with respect to the H_∞ norm, while considering uncertainties in the estimates of the DG and load parameters. The results of small-signal analysis confirmed the effectiveness and robustness of the proposed strategy in terms of attenuating low-frequency components of bus voltage deviations. The case studies also revealed that the proposed strategy more effectively reduced the rms and peak-to-peak variations in bus voltages under various grid conditions, compared with conventional strategies using a PI-based feedback controller and a robust feedback controller.

APPENDIX

A. Modeling a Reconfigurable Network

The relationship between the real-time dq-axis bus voltages and injection currents in the steady-state is:

$$I_0 = Y_B \cdot V_0.$$

(A1)
In (A1), \(Y_B \) consists of block matrices, where the diagonal and off-diagonal blocks are given, respectively, by:

\[
Y_{B_{jj}} = \sum_{n \neq j}^{N} Y_{jn} \quad \text{and} \quad Y_{B_{jk}} = \begin{bmatrix} -G_{jn} & B_{jn} \\ -B_{jn} & -G_{jn} \end{bmatrix}.
\] (A2)

In (A2), \(G_{jn} \) and \(B_{jn} \) are the real and imaginary parts of the line admittance \(Y_{jn} \) between buses \(j \) and \(n \), respectively, as:

\[
Y_{jn} = G_{jn} + j \cdot B_{jn} = 1/((R_{jn} + R_{SW}) + j \cdot X_{jn}),
\] (A3)

where \(R_{jn} \) and \(X_{jn} \) are the resistance and reactance, respectively, of the line between buses \(j \) and \(n \); and \(R_{SW} \) is the SW resistance.

After NR is initiated, (A1) changes to:

\[
I_0 + \Delta I(t) = Y_A \cdot (V_0 + \Delta V(t)), \tag{A4}
\]

where \(\Delta V(t) \) and \(\Delta I(t) \) are the variations in the dq-axis voltages and currents, respectively, in the transient state. From (A1) and (A4), \(\Delta I(t) \) can be represented as:

\[
\Delta I(t) = Y_A \cdot \Delta V(t) + \Delta I_T(t), \tag{A5}
\]

where \(\Delta I_T(t) = \Delta Y(t) \cdot V_0 \) and \(\Delta Y(t) = (Y_A - Y_B) \cdot u(t) \). (A6)

It can be seen from (A1)–(A6) that in the proposed strategy, an admittance matrix is established using line resistances and reactances, and NR is modeled as a discrete change in the admittance matrix (i.e., from \(Y_B \) to \(Y_A \)). It leads to a state variation \(\Delta I_T(t) \) that arises immediately after switching operations.

In addition, considering the FVC outputs, the dynamics of the SGs and IGs can be represented in aggregated form as:

\[
\Delta \dot{X}_{DN}(t) = A_X \cdot \Delta X_{DN}(t) + B_V \cdot \Delta V(t) + B_{DG} \cdot \Delta U_{FF}(t), \tag{A7}
\]

\[
\Delta I_{DG}(t) = C_X \cdot \Delta X_{DN}(t) - D_V \cdot \Delta V(t). \tag{A8}
\]

In (A7) and (A8), the coefficient matrices are block diagonal matrices, where the block matrices are established using the linearized expressions for the SG and IG dynamic models [25]. Moreover, the voltage-dependent loads can be modeled as:

\[
\Delta I_L(t) = D_L \cdot \Delta V(t), \tag{A9}
\]

where \(D_L \) is a block diagonal matrix, the elements of which are determined based on the ZIP coefficients [25]. Using (A1) = \(\Delta I_{DG}(t) + \Delta I_L(t) \), a dynamic model of the reconﬁgured DN can be established by substituting (A8) and (A9) into (A5), as:

\[
\Delta V(t) = Z \cdot (C_X \cdot \Delta X_{DN}(t) - \Delta I_T(t)), \tag{A10}
\]

where \(Z = (Y_A + D_V - D_L)^{-1} \). Using (A7) and (A10), the dynamics of \(\Delta X_{DN} \) can then be expressed in a state-space form as:

\[
\Delta \dot{X}_{DN}(t) = A_{DN} \cdot \Delta X_{DN}(t) + B_{DG} \cdot \Delta U_{FF}(t) + B_{NR} \cdot u(t), \tag{A11}
\]

where \(A_{DN} \) and \(B_{NR} \) are given, respectively, by:

\[
A_{DN} = A_X + B_V \cdot Z \cdot C_X \quad \text{and} \quad B_{NR} = \begin{bmatrix} -B \cdot Z \cdot (Y_A - Y_B) \cdot V_0. \end{bmatrix} \tag{A12}
\]

In (A11), \(A_{DN} \) and \(B_{NR} \) represent the effects of \(\Delta X_{DN} \) and \(u(t) \) on \(\Delta \dot{X}_{DN} \), respectively. As shown in (A12), \(A_{DN} \) consists of \(A_X \) and \(B_V \cdot Z \cdot C_X \), corresponding to the direct and indirect state-feedback effects of \(\Delta X_{DN} \) on \(\Delta \dot{X}_{DN} \), respectively. In particular, \(Z \cdot C_X \) indicates the sensitivity of \(\Delta V \) to \(\Delta X_{DN} \) [see (A10)], and \(B_V \) is the sensitivity of \(\Delta \dot{X}_{DN} \) to \(\Delta V \). Moreover, in (A12), \(Z \cdot (Y_A - Y_B) \cdot V_0 \) explains the reason for the step variation in \(\Delta V \) due to \(u(t) \), and \(B_V \) reﬂects the effect of \(\Delta V \) on \(\Delta \dot{X}_{DG} \). Furthermore, \(\Delta X_{DN} \) in (A7) includes \(\Delta V_{DG} = [\Delta V_{SG}, \Delta V_{IG}]^T \). Thus, using \(C_{DG} \), \(\Delta V_{DG} \) can readily be extracted from \(\Delta X_{DN} \) as:

\[
\Delta V_{DG}(t) = C_{DG} \cdot \Delta X_{DN}(t). \tag{A13}
\]

B. Robust Optimization with LMI Constraints

The existence of an upper bound of \(||G(s)||_{\infty} \) is proved as:

Lemma 1 [38]: A positive ﬁnite \(\mathcal{J} \) for \(||G(s)||_{\infty} < \mathcal{J} \) exists if and only if there exists \(Q > 0 \) such that:

\[
\mathcal{C}_N = \begin{bmatrix} QA_{OD} + A_{OD}^T Q & QB_{OD} C_{OD}^T \\ B_{OD}^T Q & -I \end{bmatrix} < 0. \tag{B1}
\]

Using Lemma 1, the FVCs can be designed by solving

P_N: Nonconvex optimization problem

\[
\arg \min_{\mathcal{J}, \mathcal{F}_P, \mathcal{F}_W, \mathcal{F}_P, Q} \mathcal{J} \tag{B2}
\]

subject to \(Q > 0 \), \(\mathcal{C}_N < 0 \). (B3)

The solution of \(P_N \) ensures bus voltage stability, because the Lyapunov condition (i.e., \(QA_{OD} + A_{OD}^T Q < 0 \)) is guaranteed by \(\mathcal{C}_N < 0 \). To convert \(P_N \) to a convex problem, the decision variables are replaced by the auxiliary variables \(\mathcal{R}, \mathcal{N}, \mathcal{U}, \mathcal{V} \), and \(\mathcal{L}_{1-5} \) for the LMI formulation. Speciﬁcally, \(Q \) and \(Q^{-1} \) are partitioned into block matrices as:

\[
Q = \begin{bmatrix} \mathcal{L}_1^{-1} \mathcal{U} \\ \mathcal{U}^T \mathcal{N} \end{bmatrix} \quad \text{and} \quad Q^{-1} = \begin{bmatrix} \mathcal{L}_2 \mathcal{V} \\ \mathcal{V}^T \mathcal{N} \end{bmatrix}, \tag{B4}
\]

where all block matrices are of the size of \(A_{DN} \). This renders the size of \(\Delta X_{FF} \) equal to the size of \(\Delta X_{DN} \). In (B4), \(\mathcal{R}, \mathcal{N}, \mathcal{L}_1, \) and \(\mathcal{L}_2 \) are positive deﬁnite matrices; \(\mathcal{U} \) and \(\mathcal{V} \) are arbitrary nonsingular matrices that satisfy \(\mathcal{U}^T + \mathcal{L}_1 \mathcal{L}_2^{-1} \mathcal{L}_2^{-1} = \mathcal{I} \). One can then set \(\mathcal{U} = \mathcal{L}_1^{-1} \mathcal{L}_2^{-1} \) and \(\mathcal{V} = -\mathcal{L}_2 \), yielding the equivalent changes of \(\mathcal{A}_{FF}, \mathcal{B}_{FF}, \) and \(\mathcal{C}_{FF} \) as:

\[
\begin{bmatrix} \mathcal{A}_{FF} \mathcal{B}_{FF} \\ \mathcal{C}_{FF} \end{bmatrix} = \begin{bmatrix} \mathcal{L}_2 \mathcal{O} \\ \mathcal{O} \mathcal{I} \end{bmatrix} = \begin{bmatrix} (\mathcal{L}_1 \mathcal{L}_2^{-1})^{-1} \mathcal{O} \\ \mathcal{O} \mathcal{I} \end{bmatrix} = \begin{bmatrix} \mathcal{L}_3 \mathcal{L}_4 \mathcal{O} \end{bmatrix} \tag{B5}
\]

In (B5), \(\mathcal{L}_1, \mathcal{L}_2^{-1} - \mathcal{I} = -\mathcal{L}_1, \) \(\mathcal{U} \) is nonsingular, implying that \(\mathcal{A}_{FF}, \mathcal{B}_{FF}, \) and \(\mathcal{C}_{FF} \) can be recovered using \(\mathcal{L}_{1-5} \); see (16) and (17).

Given \(\mathcal{L}_1, \mathcal{L}_2, \) and \(\mathcal{V} \), the congruence transformation is:

\[
\mathcal{T} = \text{diag}(\mathcal{T}, 1, 1) \text{ where } \mathcal{T} = \begin{bmatrix} \mathcal{L}_2 & \mathcal{L}_1 \\ \mathcal{V}^T & \mathcal{O} \end{bmatrix}. \tag{B6}
\]
By applying the transformation to \mathbf{C}_N and \mathbf{Q} in (B3), \mathbf{C}_1 in (12) and \mathbf{C}_2 in (13) can be obtained, respectively, as:

$$
\mathbf{C}_1 = \mathbf{T}^\mathsf{T} \mathbf{C}_N \mathbf{T} \quad \text{and} \quad \mathbf{C}_2 = \mathbf{T}^\mathsf{T} \mathbf{Q} \mathbf{T}.
$$

(B7)

Considering the parameter uncertainty, \mathbf{C}_N is extended to \mathbf{C}_{Nv} for $v = 1, \ldots, V$, and then similarly transformed to \mathbf{C}_{1v}, in (22) as:

$$
\mathbf{C}_{1v} = \mathbf{T}^\mathsf{T} \mathbf{C}_{Nv} \mathbf{T} \quad \text{for} \quad v = 1, \ldots, V.
$$

(B8)

Furthermore, the total energy $\mathbf{U} > \mathbf{C}_{FF} \mathbf{N}^{-1} \mathbf{C}_{FF}^\mathsf{T}$ for $\mathbf{r} = \mathbf{U} < \gamma$.\footnote{39}

\[\mathbf{U} > \mathbf{C}_{FF} \mathbf{N}^{-1} \mathbf{C}_{FF}^\mathsf{T} \quad \text{for} \quad \mathbf{r} = \mathbf{U} < \gamma.\quad \text{(B9)}\]

Given $\mathbf{Q} \mathbf{Q}^{-1} = \mathbf{I}$, the relationship between the block matrices in (B4) can be specified as:

$$
\mathbf{N} = -\mathbf{U}^{-1} \mathbf{L}_1^{-1} \mathbf{V} = \mathbf{L}_2 (\mathbf{L}_2 - \mathbf{L}_1)^{-1} \mathbf{L}_2.
$$

Using (17) and (B10), (B9) is expressed in an LMI form as:

$$
\mathbf{U} > \mathbf{L}_5 (\mathbf{L}_2 - \mathbf{L}_1)^{-1} \mathbf{L}_5^\mathsf{T} \quad \text{for} \quad \mathbf{r} = \mathbf{U} < \gamma.
$$

(B11)

The upper bound on the total energy of the control input can then be represented as shown in (14) by applying Schur complements to $\mathbf{U} > \mathbf{L}_5 (\mathbf{L}_2 - \mathbf{L}_1)^{-1} \mathbf{L}_5^\mathsf{T}$ in (B11).
and-operations/ancillaryservices/mkt-based-regulation/fast-response-regulation-signal.aspx

[37] Y. Kim et al., “Analysis and experimental implementation of grid frequency regulation using behind-the-meter batteries compensating for fast load demand variations,” IEEE Trans. Power Syst., vol. 32, no. 1, pp. 484–498, Jan. 2017.

[38] J. G. VanAntwerp and R. D. Braatz, “A tutorial on linear and bilinear matrix inequalities,” J. Process Control, vol. 10, no. 4, pp. 363–385, Aug. 2000.

[39] J. F. Camino and J. R. F. Arruda, “H_2 and H_∞ feedforward and feedback compensators for acoustic isolation,” Mech. Syst. Signal Process., vol. 23, no. 8, pp. 2538–2556, Nov. 2009.

Jae-Young Park (Student Member, IEEE) received the B.S. degree (Hons.) in electrical engineering from Konkuk University, Seoul, South Korea, in 2015. He is currently working toward the Ph.D. degree in convergence IT engineering with the Pohang University of Science and Technology, Pohang, South Korea. His research interests include power system reconfiguration, renewable energy resources, and grid-forming power converters.

Jaepil Ban (Member, IEEE) received the Ph.D. degree in electrical engineering from the Pohang University of Science and Technology, Pohang, South Korea, in 2020. From 2020 to August 2021, he was a Postdoctoral Researcher with the Pohang University of Science and Technology. Since 2021, he has been an Assistant Professor with the Kumoh National Institute of Technology, Gumi, South Korea. His research interests include power system control, application of reinforcement learning, and state and line parameter estimation.

Young-Jin Kim (Senior Member, IEEE) received the B.S. and M.S. degrees in electrical engineering from Seoul National University, Seoul, South Korea, in 2007 and 2010, respectively, and the Ph.D. degree in electrical engineering from the Massachusetts Institute of Technology, Cambridge, MA, USA, in 2015. From 2007 to 2011, he was with Korea Electric Power Corporation as a Power Transmission and Distribution System Engineer. He was also a Visiting Scholar with the Catalonia Institute for Energy Research in 2014, and a Postdoctoral Researcher with the Center for Energy, Environmental, and Economic Systems Analysis, Energy Systems Division, Argonne National Laboratory from 2015 to 2016. He joined the faculty with the Pohang University of Science and Technology, Pohang, South Korea, where he is currently an Associate Professor with the Department of Electrical Engineering. His research interests include distributed generators, renewable energy resources, and smart buildings.

João P. S. Catalão (Fellow, IEEE) received the M.Sc. degree from the Instituto Superior Técnico (IST), Lisbon, Portugal, in 2003, and the Ph.D. and Habilitation degrees for a Full Professor (Agregação) from the University of Beira Interior, Covilhã, Portugal, in 2007 and 2013, respectively. He is currently a Professor with the Faculty of Engineering, the University of Porto, Porto, Portugal, and a Research Coordinator with INESC TEC. He was a Primary Coordinator of the EU-funded FP7 Project SiNGULAR (Smart and Sustainable Insular Electricity Grids Under Large-Scale Renewable Integration), a 5.2-million-euro project involving 11 industry partners. His research interests include power system operations and planning, power system economics and electricity markets, distributed renewable generation, demand response, smart grid, and multienergy carriers.