The Thrombopoietin Receptor Can Mediate Proliferation without Activation of the Jak-STAT Pathway

By Marion Dorsch,* Pang-Dian Fan,† Nika N. Danial,‡ Paul B. Rothman,§ and Stephen P. Goff*‡¶

From the *Howard Hughes Medical Institute, †Department of Biochemistry and Molecular Biophysics, ‡Department of Medicine and Integrated Program in Molecular, Cellular, and Biophysical Studies, Columbia University, College of Physicians and Surgeons, New York 10032

Summary

Cytokine receptors of the hematopoietic receptor superfamily lack intrinsic tyrosine kinase domains for the intracellular transmission of their signals. Instead all members of this family associate with Jak family nonreceptor tyrosine kinases. Upon ligand stimulation of the receptors, Jak family members are activated to phosphorylate target substrates. These include STAT (signal transducers and activators of transcription) proteins, which after phosphorylation translocate to the nucleus and modulate gene expression. The exact role of the Jak-STAT pathway in conveying growth and differentiation signals remains unclear. Here we describe a deletion mutant of the thrombopoietin receptor (c-mpl) that has completely lost the capacity to activate Jak family members but retains its ability to induce proliferation. This mutant still mediates TPO-induced phosphorylation of Shc, Vav, mitogen-activated protein kinase (MAPK) and Raf-1 as well as induction of c-fos and c-myc, although at somewhat reduced levels. Furthermore, we show that both wild-type and mutant receptors activate phosphatidylinositol (PI) 3-kinase upon thrombopoietin stimulation and that thrombopoietin-induced proliferation is inhibited in the presence of the PI 3-kinase inhibitor wortmannin. These results demonstrate that the Jak-STAT pathway is dispensable for the generation of mitogenic signals by a cytokine receptor.

The proto-oncogene c-mpl (1, 2) is the receptor for thrombopoietin (TPO)¹, a cytokine which has been shown to be the major regulator of megakaryopoiesis and platelet formation (3–5). C-mpl was originally isolated as the cellular homologue of the transforming oncogene v-mpl of the myeloproliferative leukemia virus (MPLV) (1). Like many cytokine receptors, c-mpl is a member of the hematopoietic receptor superfamily (6). This family is characterized by conserved cysteine residues and a common amino acid motif -WSXWS- in the extracellular domain, and by the lack of intrinsic tyrosine kinase activity in the intracellular domain (6). Nevertheless, tyrosine phosphorylation plays an important role for the intracellular signaling events initiated by these receptors. It has become apparent that nonreceptor tyrosine kinases, such as Jak and Src family members, are recruited by these receptors and mediate the tyrosine phosphorylation of cellular target proteins (6, 7). The signal transduction of cytokine receptors has been extensively studied over the last several years and numerous proteins have been identified which are involved in the signaling pathways leading from the membrane to the nucleus. The Jak kinases seem to function very early on in this process (6, 7). They bind to the intracellular part of cytokine receptors either constitutively or after ligand stimulation and their kinase activities are upregulated after receptor activation. This is believed to result in tyrosine phosphorylation of the receptor itself and of the STAT proteins, a novel class of SH2 domain-containing transcription factors. The STATs become activated upon phosphorylation and translocate from the cytoplasm to the nucleus where they bind to specific DNA motifs. To date, four Jak kinases, Jak-1, Jak-2, Jak-3 and Tyk-2, and at least six different STAT proteins (STAT 1–6) have been described (6, 7). Different cytokine receptors activate distinct but overlapping sets of Jaks and STATs.

Ligand stimulation of c-mpl has been shown to result in the phosphorylation and activation of Jak-2, Tyk-2 and

Abbreviations used in this paper: EMSA, electrophoretic mobility-shift assay; MAPK, mitogen-activated protein kinase; MPLV, myeloproliferative leukemia virus; PI, phosphatidylinositol; STAT, signal transducers and activators of transcription; TPO, thrombopoietin.

1947 J. Exp. Med. © The Rockefeller University Press • 0022-1007/97/12/1947/09 $2.00
Volume 186, Number 12, December 15, 1997 1947–1955 http://www.jem.org
Phosphorylation of proteins other than STATs. It is not clear to what extent the Jak kinases are responsible for induced phosphorylation of Shc, MAPK, Raf-1, Cbl, Vav, STAT3, and STAT5 (8–12). Furthermore, TPO-induced phosphorylation of Shc, MAPK, Raf-1, Cbl, Vav, STAT3, and STAT5 has been described (8–11). The intracellular domains of receptors of the hematopoietic receptor superfamily share two membrane-proximal regions of weak homology, designated box1 and box2 (6).

Materials and Methods

Antibodies. Polyclonal rabbit antisera against Jak-1, Jak-2, Jak-3, and Shc were purchased from Upstate Biotechnology (Lake Placid, N.Y.). Polyclonal antibodies against Vav, Raf-1, STAT3, STAT5a, STAT5b, and c-myc, and a monoclonal anti-Erk2 antibody were obtained from Santa Cruz Biotechnology (Santa Cruz, CA). Anti-Tyr-2 antibodies were kindly provided by Dr. John Krolewski (Columbia University, New York). Horseradish peroxidase-conjugated anti-phosphotyrosine mAb RC20 (clone PY20) was purchased from Transduction Laboratories (Lexington, KY). Anti-active MAPK polyclonal antibodies were obtained from Promega (Madison, WI). Polyclonal anti-c-fos antibodies were purchased from Oncogene Sciences. Anti-STAT1 antibodies were obtained from Caltag (Burlingame, CA), and polyclonal antibodies against Vav, Raf-1, STAT3, and STAT5 were obtained from Santa Cruz Biotechnology (Santa Cruz, CA). Polyclonal rabbit antisera against Jak-1, Jak-2, and Jak-3 were kindly provided by Dr. Dr. Philip Leder, Harvard Medical School, Cambridge, MA (reference 2) as a template and cloned into the mammalian expression vector MT2ym12 (22) in frame with a myc-epitope at the 3' end of the cloning site. Deletion mutants were generated with the help of overlapping oligonucleotides by standard methods (23). To delete aa 505-514 in c-mpl, internal oligonucleotides were: 5'-ATGCTCTACCTACGACTAGTAGGGCAG-3' and 5'-CTGCTGCTACTGAGGCATGCTTTTGTGG-3'; to delete aa 515-522 in c-mplΔ5: 5'-CTGCTGCTACTGAGGCATGCTTTTGTGG-3'; to delete aa 515-522 in c-mplΔ8: 5'-CTGCTGCTACTGAGGCATGCTTTTGTGG-3'; to delete aa 515-522 in c-mplΔ8: 5'-ATGCTCTACCTACGACTAGTAGGGCAG-3' and 5'-CTGCTGCTACTGAGGCATGCTTTTGTGG-3'. The deleted regions were introduced into a 500-bp fragment of c-mpl extending from the BamHI site (bp 1124) to the stop codon; the flanking oligonucleotides used to amplify the region were: 5'-TTTGGATCCAGAAGGCTGAGCTCGTTC-3' and 5'-GGAGGCTGACGGTCTCGCAGC-3'. The amplified fragments were digested with BamHI and SalI and co-cloned into SH-mpl-N (plasmid SH2-1 containing the EcoRI-BamHI fragment of c-mpl). The resulting EcoRI-BamHI fragment was cloned and inserted into the plasmid MT21myc in frame with the myc epitope. In the double mutant c-mpl-Δ7ΔC the COOH-terminal 15 amino acids were deleted using an internal Ncol site (bp 1796). The deletions were confirmed by sequence analysis.

Proliferation assay. Cells were cultured at a density of 5 × 10⁴ per 200 µl in a 96-well round-bottom microtiter plate with varying concentrations of recombinant TPO in culture medium for 48 h. During the last 6 h of culture, cells were pulse-labeled with 0.5 µCi of [³H]thymidine (specific activity 5 Ci/mmol; Amer sham), and [³H]thymidine incorporation was quantified by scintillation counting as described (24).

Cell culture and transfections. BAF/3 cells were cultured in RPMI medium supplemented with 10% FCS, 2 mM l-glutamine, antibiotics and 10% WEHI-3 supernatant as a source of IL-3. COS cells were maintained in DMEM containing 10% FCS, 2 mM l-glutamine and antibiotics. BAF/3 cells were cotransfected with pSV2neo (1 µg) and the receptor expression plasmids (10 µg) by electroporation using a Gene-Pulser (Bio-Rad Laboratories, Richmond, CA). 2 × 10⁵ cells in 0.5 ml PBS were pulse-stimulated for 10 min at 25°C. Cell harvesting and cell proliferation (13, 14, 16, 20, 21), suggesting that Jak activation might be essential. Here we describe a deletion mutant of the thrombopoietin receptor c-mpl which reveals that proliferation can be induced without activating Jaks.

Expression constructs. c-mpl deletion mutants were constructed by sequential PCR using the murine c-mpl cDNA (plasmid pSK-c-mpl, provided by Dr. Philip Leder, Harvard Medical School, Cambridge, MA) as a template and cloned into the mammalian expression vector MT2ym12 (22) in frame with a myc-epitope at the 3' end of the cloning site. Deletion mutants were generated with the help of overlapping oligonucleotides by standard methods (23). To delete aa 505-514 in c-mplΔ7, internal oligonucleotides were: 5'-ATGCTCTACCTACGACTAGTAGGGCAG-3' and 5'-CTGCTGCTACTGAGGCATGCTTTTGTGG-3'; to delete aa 515-522 in c-mplΔ8: 5'-CTGCTGCTACTGAGGCATGCTTTTGTGG-3'; to delete aa 515-522 in c-mplΔ8: 5'-ATGCTCTACCTACGACTAGTAGGGCAG-3' and 5'-CTGCTGCTACTGAGGCATGCTTTTGTGG-3'. The deleted regions were introduced into a 500-bp fragment of c-mpl extending from the BamHI site (bp 1124) to the stop codon; the flanking oligonucleotides used to amplify the region were: 5'-TTTGGATCCAGAAGGCTGAGCTCGTTC-3' and 5'-GGAGGCTGACGGTCTCGCAGC-3'. The amplified fragments were digested with BamHI and SalI and co-cloned into SH-mpl-N (plasmid SH2-1 containing the EcoRI-BamHI fragment of c-mpl). The resulting EcoRI-BamHI fragment was cloned and inserted into the plasmid MT21myc in frame with the myc epitope. In the double mutant c-mpl-Δ7ΔC the COOH-terminal 15 amino acids were deleted using an internal Ncol site (bp 1796). The deletions were confirmed by sequence analysis.

Growth factor stimulation, Western blot analysis and immunoprecipitation. BAF/3 transfectants were grown factor-starved for 8–12 h in RPMI supplemented with 10% FCS. Stimulation was performed at a concentration of 1 × 10⁴ cells/ml with 200 ng/ml recombinant human TPO (generously provided by Amgen, Thousand Oaks, CA) or 50 ng/ml recombinant murine IL-3 (Sigma Chemical Co., St. Louis, MO). Stimulation was stopped and cell extracts were prepared with lysis buffer (20 mM Tris-HCl, pH 8, 150 mM NaCl, 10% glycerol, 1% NP-40, 0.025 mM p-nitrophenylguanidinobenzonitrile, 10 µg/ml aprotinin, 10 µg/ml leupeptin, 1 mM NaVO₄, 2 mM EDTA, 10 mM NaF) at 1 × 10⁶ cells/250 µl as described (8). Proteins were resolved by SDS-PAGE (7.5% gel). Western blot analysis and immunoprecipitations were performed as described (8). Kinase activity of Jak-2 immunoprecipitates was analyzed in an in vitro kinase assay (26). In brief, immunoprecipitates were washed twice in kinase buffer (10 mM Hepes, pH 7.4, 2 mM MnCl₂, 10 mM MgCl₂, 150 mM NaCl, 1 mM DTT, 0.1 mM PMSF, 0.1 mM NaCl, 2 mM ATP, 1 mM NaVO₄) and resuspended in 40 μl kinase buffer. 20 μCi [³²P]ATP (specific activity 3000 Ci/mmol) were added and the kinase reactions were incubated for 30 min at room temperature. Reactions were terminated with 2× Laemmli buffer and analyzed by SDS-PAGE.

Electrophoretic mobility shift assay. Whole cell extracts and shift reactions were prepared as described previously (26). The probe used was from the IRF-1 GAS element: 5'-gatc-GATTCTCCCCAATAT-3' (reference 7). For supershift assays, standard shift reactions were incubated with pre-immune antibodies or antibodies to STAT1, STAT3, and STAT5 (1:20 dilution) for 30 min at 4°C.

PI 3-Kinase assay. PI 3-kinase activity was measured as described (27). Cell lysates were immunoprecipitated with anti-phosphotyrosine antibodies (PY20; Transduction Laboratories) and the immunoprecipitates were washed three times with lysis buffer, twice with LiCl buffer (0.5 M LiCl in 0.1 M Tris, pH 7.5), twice with kinase buffer (20 mM Heps, pH 7.4, 15 mM MgCl₂, 1 mM NaCl, 0.5 mM PMSF), and subsequently resuspended in 45 μl kinase buffer containing 10 μCi γ-[³²P]ATP and 25 μM cold ATP. 5 μl PI (4 mg/ml in DMSO; Avanti Polar Lipids, Alabama) were added and the reaction was incubated for 15 min at RT. The kinase reaction was stopped by adding 40 μl...
Results and Discussion

Mitogenic Response Mediated by c-mpl Deletion Mutants. A series of deletion mutants of c-mpl was constructed; two selected mutants are depicted in Fig. 1a. Mutant c-mplΔ7 lacks the first 10 amino acids (aa) (KWQFPAHYRR, aa 505-514; reference 2) of the cytoplasmic domain but retains an intact box1, whereas mutant c-mplΔ8 retains the juxtamembrane region but lacks the NH2-terminal half of box1 (LRHALWPS, aa 515-522). Cell lines stably expressing the wild-type and mutant receptors were established by transfection of the IL-3-dependent cell line BAF/3. Comparable levels of receptor expression were detected in cells expressing c-mplwt (BAF-mplwt), c-mplΔ7 (BAF-mplΔ7), and c-mplΔ8 (BAF-mplΔ8) (Fig. 1b). The transfected cells were then analyzed for their mitogenic response to TPO (Fig. 1c). Expression of c-mplwt conferred responsiveness to TPO as shown previously (4, 5) (Fig. 1c). BAF-mplΔ7 cells also showed a strong proliferative response to TPO, though higher levels of TPO were required when compared to BAF-mplwt. BAF-mplΔ8 cells were completely unresponsive to TPO (Fig. 1c) and parental BAF/3 cells (not shown), demonstrating that TPO-responsiveness required expression of a functional receptor in these cells. These results indicate that the first 10 aa of the c-mpl cytoplasmic domain are dispensable for a mitogenic response, whereas an intact NH2-terminal half of box1 is absolutely required. BAF-mplΔ7 cells retained their proliferative capacity in TPO for a prolonged period of time (>3 mo, data not shown), suggesting that the mutant receptor provides the signals necessary for long-term survival.

A c-mpl Mutant That Mediates Proliferation without Jak-STAT Activation. Stimulation of c-mpl by its ligand results in tyrosine phosphorylation and activation of Jak-2 (references 8–11, 13). As expected, tyrosine phosphorylation of Jak-2 was observed as early as 5 min after stimulation and was still visible after 30 min in cells expressing the wild-type receptor (Fig. 2a). Jak-2 phosphorylation was not induced in TPO-stimulated BAF-mplΔ8 cells (not shown). Surprisingly, stimulation of BAF-mplΔ7 with TPO also failed to induce tyrosine phosphorylation of Jak-2 (Fig. 2a), even after increasing the TPO concentration ten-fold (data not shown). IL-3 was able to induce tyrosine phosphorylation of Jak-2 in both BAF-mplwt and BAF-mplΔ7 cells at comparable levels, demonstrating that Jak-2 is intact in BAF-mplΔ7 cells (Fig. 2a). Stable expression of c-mplΔ7 in the IL-3-dependent myeloid cell line 32D further confirmed the ability of this mutant to induce a mitogenic response (not shown) in the absence of Jak-2 phosphorylation (Fig. 2b). The unexpected inability of c-mplΔ7 to mediate phosphorylation of Jak-2 was also confirmed in COS cells transiently transfected with the deletion mutants (Fig. 2c). COS cells transfected with c-mplwt or c-mplΔ7 were stimulated with TPO and tyrosine phosphorylation of Jak-2 was analyzed (Fig. 2c). Tyrosine phosphorylation of Jak-2 was detected in cells transfected with c-mplwt but not with c-mplΔ7, although similar amounts of receptor were expressed in both transfectants (Fig. 2c).

Tyrosine phosphorylation of Jak2 leads to activation of their kinase function (6). To monitor Jak-2 activation, the kinase activity of Jak-2 immunoprecipitates from TPO-stimulated BAF-mplwt and BAF-mplΔ7 cells was measured in an in vitro kinase assay (26). Jak-2 kinase activity was strongly activated in stimulated BAF-mplwt but not in BAF-mplΔ7 cells (Fig. 2d).

Tyk-2, another member of the Jak family, has recently been reported to be tyrosine phosphorylated after TPO receptor stimulation (11). To determine whether Tyk-2 is

Figure 1. Mitogenic response of BAF/3 cells expressing c-mpl mutants. (a) Schematic representation of c-mplwt and deletion mutants c-mplΔ7 and c-mplΔ8. (b) Stable expression of c-mplwt, c-mplΔ7 or c-mplΔ8 in BAF/3 transfectants. Cell lysates prepared from 2 × 10⁶ cells were resolved on a 7.5% SDS-PAGE gel, transferred to a nitrocellulose membrane and immunoblotted with a mAb against the myc-epitope. (c) TPO-induced proliferation of BAF-mplwt, BAF-mplΔ7, and BAF-mplΔ8 cells. [3H]thymidine incorporation as an indicator of cellular proliferation was measured at different TPO concentrations. The mean of triplicate counts for each data point is shown.
activated and might compensate for the lack of Jak-2 activation in BAF-mplΔ7 cells, we analyzed tyrosine phosphorylation of Tyk-2 in TPO-stimulated BAF-mplwt and BAF-mplΔ7 cells. Phosphorylation of Tyk-2 was detected at 5 min and 15 min after stimulation of the wild-type receptor but not after stimulation of c-mplΔ7 (Fig. 2 e). Furthermore, neither Jak-1 nor Jak-3 were tyrosine phosphorylated in TPO-stimulated BAF-mplwt and BAF-mplΔ7 cells (Fig. 2 f). Thus, c-mplΔ7 mediates a mitogenic response without detectable phosphorylation of any of the known Jaks.

We next analyzed whether the failure of c-mplΔ7 to activate Jak-2 was also reflected in a lack of activation of their major targets, the STAT proteins. Tyrosine phosphorylation of STATs by Jak-2 leads to activation of their DNA-binding activity (6, 7). Stimulation of the TPO receptor has been described to activate STAT1, 3, and 5 (10–12). Using a DNA probe (GAS-element) (7) which can detect several activated STATs (including STAT1, 3, and 5), we measured STAT DNA-binding activity in lysates prepared from TPO-stimulated BAF-mplwt and BAF-mplΔ7 cells (Fig. 3 a). STAT DNA-binding activity was measured as autophosphorylation in an in vitro kinase assay (EMSA). Complex formation was detected in cells expressing the wild-type receptor but not in cells expressing c-mplΔ7. Lysates were prepared and probed with anti-STAT antibodies to confirm equal levels of receptor expression in all samples. An antiphosphorytrosine immunoblot of Jak-2 immunoprecipitates was performed. (d) Activation of Jak-2 kinase in TPO-stimulated BAF-mplwt but not in BAF-mplΔ7 cells. Tyk-2 was immunoprecipitated with anti-Tyk-2 antibodies and subsequently blotted with antiphosphorytrosine antibodies. Membranes were stripped and reprobed with anti-Tyk-2 antibodies to confirm equal protein loading. (f) Antiphosphorytrosine blot of Jak-1 and Jak-3 immunoprecipitates. IP, immunoprecipitation; WB, Western Blot.
Jak kinase is activated by the mutant receptor to induce STAT DNA-binding activity.

Effects of TPO stimulation on Shc, Vav, Raf-1, MAPK and PI 3-kinase. Our results demonstrate that c-mplΔ7 is able to mediate TPO-stimulated proliferation without activation of the Jak-STAT pathway. We therefore asked if other signaling pathways previously described for c-mpl (8-11) were activated in TPO-stimulated BAF-mplΔ7 or BAF-mplΔ8 cells. As shown in Fig. 4, stimulation of both c-mplwt and c-mplΔ7 induced tyrosine phosphorylation of Shc (a), Vav (b) and c-mpl (c). In contrast, c-mplΔ8 was completely inactive (data not shown). Phosphorylation of Shc and Vav was slightly reduced and phosphorylation of the receptor itself was markedly reduced in BAF-mplΔ7 cells as compared to BAF-mplwt cells. A phosphotyrosine blot of total cell lysates after TPO stimulation (Fig. 4 d) was in agreement with the above observations: protein tyrosine phosphorylation was still detectable in BAF-mplΔ7 cells but the number of proteins phosphorylated and the degree of phosphorylation was reduced compared to BAF-mplwt cells. No tyrosine phosphorylated proteins were detected in lysates from TPO-stimulated BAF-mplΔ8 cells (data not shown). These results suggest that c-mplΔ7 mediates activation of tyrosine kinase(s) other than Jaks. The mutation in box1 in c-mplΔ8 appears to disrupt activation of not only the Jaks but also the additional or alternative tyrosine kinase(s) active in BAF-mplΔ7 cells.

c-mplΔ7 also retained the ability of the wild-type receptor (28, 29) to induce phosphorylation of the serine-threonine kinases Raf-1 (Fig. 4 e) and MAPK (Fig. 4 f), and upregulation of c-fos and c-myc expression (Fig. 5). While the c-mplΔ7-mediated effect on Raf-1 was comparable to the wild-type receptor, the phosphorylation of MAPK induced by the mutant receptor was reduced in its intensity and duration (Fig. 4 f). Induction of c-fos and c-myc protein synthesis was reduced approximately threefold in BAF-mplΔ7 cells as compared to BAF-mplwt cells. In an effort to further investigate the importance of these signals for Jak-independent proliferation, we generated the mutant c-mplΔ7C by introducing an additional COOH-terminal truncation (aa 601-625) in the c-mplΔ7 mutant; it has been previously shown that this region is required for both Shc activation and receptor phosphorylation (13, 21). This double mutant failed to induce tyrosine phosphorylation of Jak and Shc and phosphorylation of Raf-1 but nevertheless was sufficient to mediate proliferation in BAF/3 cells although maximal proliferation was reduced about twofold when compared with the c-mplΔ7 mutant (data not shown). These data suggest that the mitogenic signal required neither Jak activation nor Shc or Raf-1 phosphorylation.

Previous studies have implicated PI 3-kinase in the mitogenic response induced by a number of cytokines (6, 30, 31). To study this pathway we analyzed PI 3-kinase activity in anti-phosphotyrosine immunoprecipitates from BAF-mplwt, BAF-mplΔ7 cells and BAF-mplΔ8 cells before and after TPO stimulation. c-mplΔ7 mediated an increase in PI 3-kinase activity comparable to the wild-type receptor.
Figure 4. Effect of TPO stimulation on Shc, Vav, the receptor itself, Raf-1, and MAPK. Growth factor-deprived BAF-mplwt and BAF-mplΔ7 cells were either left untreated or stimulated with TPO for the indicated times and cell extracts were prepared. Immunoprecipitations were performed with antibodies to Shc (a), Vav (b), and myc (c) and the immunoprecipitates were blotted with antiphosphotyrosine antibodies (d–g). To confirm equal loading of protein, membranes were stripped and reprobed with the antibodies used for immunoprecipitations (lower panel of a–c). In (a) a higher amount of c-mplΔ7 protein was immunoprecipitated. (d) Antiphosphotyrosine immunoblot of total cell lysates. (e) Cell lysates were immunoblotted with an antibody to Raf-1. The lower mobility of Raf-1 seen after stimulation with TPO in BAF-mplwt and BAF-mplΔ7 reflects the increased phosphorylation of Raf-1 on serine. (f) Cell lysates were immunoblotted with anti-active MAPK antibodies which recognize the active forms of Erk-1 and Erk-2 (different exposures of the same membrane are shown in the upper and middle panel). Membranes were stripped and reprobed with anti-Erk2 antibodies to confirm equal protein loading.

Figure 5. TPO stimulates c-fos and c-myc synthesis in BAF-mplwt and BAF-mplΔ7 cells. Growth factor-deprived cells were washed twice and incubated for 30 min at a density of 10^7 per ml in RPMI 1640 deficient in methionine and cysteine (ICN). Cells were metabolically labeled as described (36) by adding 0.5 mCi of [35S]methionine (Translabel; ICN) per ml to the cell suspension. TPO (200 ng/ml) was added simultaneously and cells were incubated for the indicated times. Unstimulated (U) cells were incubated with [35S]methionine in the absence of TPO for 1 h. Cell extracts were prepared and c-fos and c-myc were immunoprecipitated with antibodies to c-fos (top) or c-myc (bottom). Immunoprecipitates were resolved by SDS-PAGE (7.5% gel) and analyzed by fluorography. Signals were quantified with a PhosphorImager.

Figure 6. Activation of PI 3-kinase in TPO-stimulated BAF-mplwt and BAF-mplΔ7 cells. Growth factor-deprived cells were left untreated or were stimulated with TPO for 5 min and cell extracts were prepared. Immunoprecipitations were performed with anti-phosphotyrosine antibodies and the immunoprecipitates were analyzed for PI 3-kinase activity. Formation of PI 3-P was inhibited by inclusion of 100 nM wortmannin (+ Wort.) in the kinase reaction. The ratios of labeled PI 3-P in stimulated samples/unstimulated samples are shown as fold activation. The results shown represent one out of three experiments with similar outcomes.
resulted in a concentration-dependent decrease in TPO-
PI 3-kinase inhibitor wortmannin (1, 10, 100, and 1,000 nM)
and BAF-mplD7 cells with increasing concentrations of the
PI 3-kinase inhibitor wortmannin (1, 10, 100, and 1,000 nM).
Incubation of BAF-mplwt for PI 3-kinase activation. Mutant c-mpl
(Fig. 6), indicating that Jak activation is not a prerequisite
for c-mplΔ8 showed no increase in PI 3-kinase activity. Incubation of BAF-mplwt
and BAF-mplD7 cells with increasing concentrations of the
PI 3-kinase inhibitor wortmannin (1, 10, 100, and 1,000 nM)
resulted in a concentration-dependent decrease in TPO-
dependent proliferation as monitored by [H]thymidine incor-

deletion mutants included an internal deletion of the region mem-

for PI 3-kinase and other as yet undefined kinases or signal-
ing molecules. Alternatively, this region may be structurally
important for the proper positioning of remaining domains.
Nevertheless, our results virtually rule out the possibility
that the drastic effects of deletions in the box1/box2 region are
solely due to the absence of Jak activation.

Another approach to disrupting the Jak-STAT pathway has been the use of kinase-deficient forms of Jak as domi-
nant-negative inhibitors of endogenous Jak activity (33, 34).
Expression in factor-dependent cells of kinase-deficient Jak-2
decreased IL-3- or GM-CSF-induced cell proliferation and
abrogated erythropoietin-induced proliferation (33, 34). The
mechanism of inhibition, however, is uncertain. Notably,
in one case the jak-2 mutant suppressed IL-2 signals that do
not involve jak-2 (33), suggesting that the effects of overex-
pression of such mutants are not restricted to the inhibition
of jak-2 but may also interfere with other signaling events.

The molecular mechanism of the phosphorylation of
Shc, Vav and the receptor itself in the absence of Jak activation
remains to be elucidated. Src family kinases as well as c-fes,
btk, tec, syk (6), and c-kit (35) have all been shown to be
activated by various cytokine receptors. However, activa-
tion of these kinases is not as universal as activation of the
Jaks. To date none of these kinases has been linked to the
expression of such mutants are not restricted to the inhibition

We thank Dr. Steven Greenberg for help with the PI 3-kinase assay.

M. Dorsch is a fellow of the Howard Hughes Medical Institute. S.P. Goff is a Howard Hughes Medical Institute investigator.

Address correspondence to Stephen P. Goff, Howard Hughes Medical Institute, Columbia University College of Physicians and Surgeons, 701 W 168th Street, H HSC Rm 1127A, New York, NY 10032. Phone: (212) 305-3794; Fax: (212) 305-8692; E-mail: goff@cuccfa.ccc.columbia.edu

Received for publication 13 June 1997 and in revised form 5 September 1997.

References

1. Vigon, I., J.P. Mornon, L. Cocault, M.T. Mitjavila, P. Tambourin, S. Gisselbrecht, and M. Souyri. 1992. Molecular cloning and characterization of MPL, the human homolog of the v-mpl oncogene: identification of a member of the hematopoietic growth factor receptor superfamily. Proc. Natl. Acad. Sci. USA. 89:5640-5644.

2. Skoda, R.C., D.C. Seldin, M.K. Chiang, C.L. Peichel, T.F. Vogt, and P. Leder. 1993. Murine c-mpl: a member of the

1953 Dorsch et al.
hematopoietic growth factor receptor superfamily that trans-
duces a proliferative signal. EMBO (Eur. Mol. Biol. Organ.) J. 12:2645–2653.

3. Bartley, T.D., J. Bogenberger, P. Hunt, Y.S. Li, H.S. Lu, F. Martin, M.S. Chang, B. Samal, J.L. Nichol, S. Swift et al. 1994. Identification and cloning of a megakaryocyte growth and development factor that is a ligand for the cytokine receptor Mpl. Cell. 77:1117–1124.

4. deSauvage, F., P.E. Hoss, S.D. Spencer, B.E. Malloy, A.L. Gurney, S.A. Spencer, W.C. Darbonne, W.J. Henzel, S.C. Wongs, W.J. Kang et al. 1994. Stimulation of megakaryocytopoiesis and thrombopoiesis by the c-Mpl ligand. Nature. 369:533–538.

5. Lok, S., K. Kaushansky, R.D. Holly, J.L. Kuijper, D.C. Longo, and P.J. Oort, F.J. Grant, M.D. Heipel, S.K. Burkhead, J.M. Kramer et al. 1994. Cloning and expression of murine thrombopoietin cDNA and stimulation of platelet production in vivo. Nature. 369:565–568.

6. Ihle, J.N. 1995. The Janus protein tyrosine kinase family and its role in cytokine signaling. Adv. Immunol. 60:1–35.

7. Dannel, J.E., I.M. Kerr, and G.R. Stark. 1994. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science. 264:1415–1421.

8. Dorsch, M., P. Fan, J. Bogenberger, and S.P. Goff. 1995. TPO and IL-3 induce overlapping but distinct protein tyrosine phosphorylation in a myeloid precursor cell line. Biochem. Biophys. Res. Commun. 214:424–431.

9. Drachman, J.G., J.D. Griffin, and K. Kaushansky. 1995. The c-Mpl ligand (thrombopoietin) stimulates tyrosine phosphorylation of Jak2, Shc, and c-Mpl. J. Biol. Chem. 270:4979–4982.

10. Mu, S.X., M. Xia, G. Elliott, J. Bogenberger, S. Swift, L. Bennett, D.L. Lappinga, R. Hecbt, R. Lee, and C.J. Saris. 1995. Megakaryocyte growth and development factor and interleukin-3 induce patterns of protein-tyrosine phosphorylation that correlate with dominant differentiation over proliferation of mpl-transfected 32D cells. Blood. 86:4532–4543.

11. Saltet, M., M.A. Durst, D.A. Frank, K. O kuda, K. Kaushansky, R. Salgia, and J.D. Griffin. 1995. The thrombopoietin receptor c-MPL activates Jak2 and TYK2 tyrosine kinases. Exp. Hematol. 23:1040–1048.

12. Bacon, C.M., P.J. Tortolani, A. Shimosaka, R.C. Rees, D.L. Longo, and J.J. O’Shea. 1995. Thrombopoietin (TPO) induces tyrosine phosphorylation and activation of STAT5 and STAT3. FEBS Lett. 370:63–68.

13. Gurney, A.L., S.C. Wong, W.J. Henzel, and F. deSauvage. 1995. Distinct regions of c-Mpl cytoplasmic domain are coupled to the Jak-STAT signal transduction pathway and Shc phosphorylation. Proc. Natl. Acad. Sci. USA 92:5292–5296.

14. Wittnuth, B.A., F.W. Quelle, O. Silvennoinen, T. Yi, B. Tang, O. Miura, and J.N. Ihle. 1993. Jak2 associates with the erythropoietin receptor and is tyrosine phosphorylated and activated following stimulation with erythropoietin. Cell. 74:227–236.

15. Quelle, F.W., N. Sato, B.A. Wittnuth, R.C. Inhorn, M. Eder, A. Miyajima, J.D. Griffin, and J.N. Ihle. 1994. Jak2 associates with the beta c chain of the receptor for granulocyte-macrophage colony-stimulating factor, and its activation requires the membrane-proximal region. Mol. Cell. Biol. 14:4335–4341.

16. DaSilva, L., O.M. Howard, H. Rui, R.A. Kirken, and W.L. Farrar. 1994. Growth signaling and Jak2 association mediated by membrane-proximal cytoplasmic regions of prolactin receptors. J. Biol. Chem. 269:18267–18270.

17. Porteu, F., M.C. Rougez, L. Cocault, L. Benit, M. Charon, F. Picard, S. Gisselbrecht, M. Souyri, and I. Dusander-Fourt. 1996. Functional regions of the mouse thrombopoietin receptor cytoplasmic domain: evidence for a critical region which is involved in differentiation and can be complemented by erythropoietin. Mol. Cell. Biol. 16:2473–2482.

18. Lebrun, J.J., S. Ali, A. Ulrich, and P.A. Kelly. 1995. Proline-rich sequence-mediated Jak2 association to the prolactin receptor is required but not sufficient for signal transduction. J. Biol. Chem. 270:10664–10670.

19. Tanner, J.W., W. Chen, R.L. Young, G.D. Longmore, and A.S. Shaw. 1995. The conserved box 1 motif of cytokine receptors is required for association with Jak kinases. J. Biol. Chem. 270:6523–6530.

20. Miura, O., J.L. Cleveland, and J.N. Ihle. 1993. Inactivation of erythropoietin receptor function by point mutations in a region having homology with other cytokine receptors. Mol. Cell. Biol. 13:1788–1795.

21. Drachman, J.G., K. Kaushansky. 1997. Dissecting the thrombopoietin receptor: functional elements of the mpl cytoplasmic domain. Proc. Natl. Acad. Sci. USA 94:2350–2355.

22. Stahl, N., T.G. Boulton, T. Farruggella, N.Y. Ip, S. Davis, B.A. Wittnuth, F.W. Quelle, O. Silvennoinen, G. Barbieri, S. Pellegrini et al. 1994. Association and activation of Jak-Tyk kinases by CNTF-LIF-OSM-IL-6 beta receptor complexes. Science. 263:92–94.

23. Erlich, H.A. 1989. PCR Technology. Stockton Press, New York. pp 61–70.

24. Dorsch, M., H. Hock, and T. Diamantstein. 1994. Gene transfer of the interleukin (IL)-2 receptor beta chain into an IL-7-dependent pre-B cell line permits IL-2-driven proliferation: tyrosine phosphorylation of Shc is induced by IL-2 but not IL-7. Eur. J. Immunol. 24:2049–2054.

25. Reicin, A.S., A. O hagen, L. Yin, S. Hoglund, and S.P. Goff. 1996. The role of Gag in human immunodeficiency virus type 1 virion morphogenesis and early stages of the viral life cycle. J. Virol. 70:8645–8652.

26. Danial, N.N., A. Pernis, and P.B. Rothman. 1995. Jak-STAT signaling induced by the v-abl oncogene. Science. 269:1875–1877.

27. Sato, N., K. Sakamaki, N. Terada, K. Arai, and A. Miyajima. 1993. Signal transduction by the high-affinity GM-CSF receptor: two distinct cytoplasmic regions of the common beta subunit responsible for different signaling. EMBO (Eur. Mol. Biol. Organ.) J. 12:4181–4189.

28. Nagata, Y., and K. Todokoro. 1995. Thrombopoietin induces activation of at least two distinct signaling pathways. FEBS Lett. 377:497–501.

29. Alexander, W.S., A.B. M auer, U. N ovak, and M. Harrison-Smith. 1996. Tyrosine-599 of the c-mpl receptor is required for Shc phosphorylation and the induction of cellular differentiation. EMBO (Eur. Mol. Biol. Organ.) J. 15:6531–6540.

30. Corcoran, A.E., F.M. Smart, R.J. Cowling, T. Crompton, M.J. Owen, and A. Venkitaraman. 1996. The interleukin-7 receptor alpha chain transmits distinct signals for proliferation and differentiation during lymphopoiesis. EMBO (Eur. Mol. Biol. Organ.) J. 15:1924–1932.

31. Damen, J.E., R.L. Cutler, H. Jiao, T. Yi, and G. Krystal. 1995. Functional regions of the mouse thrombopoietin receptor cytoplasmic domain: evidence for a critical region which is involved in differentiation and can be complemented by erythropoietin. Mol. Cell. Biol. 16:2473–2482.

32. Winton, L.A., and T. Hunter. 1995. Jak2, Ras, and Raf are
required for activation of extracellular signal-regulated kinase/mitogen-activated protein kinase by growth hormone. J. Biol. Chem. 270:30837–30840.

33. Watanabe, S., T. Itoh, and K.-I. Arai. 1996. Jak2 is essential for activation of c-fos and c-myc promoters and cell proliferation through the human granulocyte-macrophage colony-stimulating factor receptor in BA/F3 cells. J. Biol. Chem. 271:12681–12686.

34. Zhuang, H., S.V. Patel, T.C. He, S.K. Sonsteby, Z. Niu, and D.M. Wojchowski. 1994. Inhibition of erythropoietin-induced mitogenesis by a kinase-deficient form of Jak2. J. Biol. Chem. 269:21411–21414.

35. Wu, H., U. Klingmuller, P. Besmer, and H.F. Lodish. 1995. Interaction of the erythropoietin and stem-cell-factor receptors. Nature. 377:242–246.

36. Misra, R.P., V.M. Rivera, J.M. Wang, P. Fan, and M.E. Greenberg. 1991. The serum response factor is extensively modified by phosphorylation following its synthesis in serum-stimulated fibroblasts. Mol. Cell. Biol. 11:4545–4554.