Surveillance Data Highlights Feed Form, Biosecurity, and Disease Control as Significant Factors Associated with Salmonella Infection on Farrow-to-Finish Pig Farms

Hector Argüello 1*, Edgar G. Manzanilla 2, Helen Lynch 1,3, Kavita Walia 1,4, Finola C. Leonard 3, John Egan 4, Geraldine Duffy 1, Gillian E. Gardiner 5 and Peadar G. Lawlor 2

1 Teagasc, Food Research Centre, Ashtown, Ireland, 2 Pig Development Department, Animal and Grassland Research and Innovation Centre, Teagasc, Fermoy, Ireland, 3 School of Veterinary Medicine, University College Dublin, Dublin, Ireland, 4 Central Veterinary Research Laboratory, Department of Agriculture, Food and the Marine, Backweston, Ireland, 5 Department of Science, Waterford Institute of Technology, Waterford, Ireland

Among the zoonotic pathogens affecting pigs, Salmonella stands out due to the high number of human cases linked to pork consumption. In the last two decades many countries have put considerable effort into the control of the infection by surveillance and control strategies on farm. Despite this effort, many herds still have a high Salmonella prevalence and they require guidance to address this problem. The present study, using the serological surveillance data of finishing pigs from the Irish National pig Salmonella Control Programme, aimed to highlight factors associated with increased risk or that might mitigate Salmonella occurrence on farm. A questionnaire with 33 questions regarding herd characteristics, management, feeding, biosecurity, and health was completed for 61 individual herds. After the multivariate analysis by linear regression, nine variables were retained in the final model and linked to herd seroprevalence. Home produced-feed linked to the use of meal showed an eight point reduction in Salmonella prevalence compared to purchased feed (p = 0.042). Different biosecurity measures were associated to lower seroprevalence. Changing of footwear from outside to inside the farm decreased seroprevalence nearly 20 units (p = 0.014) and policies not permitting access to the farmyard to feed trucks (p = 0.048) or avoiding the presence of cats on the farm (p = 0.05) were estimated in 10 units less of seroprevalence. In contrast, the lack of perimeter fence increased the chance to have higher seroprevalence in five units (p = 0.05). Finally, intestinal diseases such as swine dysentery (p = 0.044) and E. coli diarrhea (p = 0.1) were estimated to increase Salmonella prevalence in ~20 and 10 units, respectively, demonstrating the importance of controlling other enteric pathogens in an on-farm Salmonella control programme. These results show the usefulness of surveillance data to improve on-farm control and confirm that Salmonella infection in pigs is multi-factorial and the approach to its control should be multifaceted.

Keywords: control, foodborne-pathogen, risk factors, feed, swine dysentery, biosecurity
INTRODUCTION

Among food-borne pathogens in the EU, <i>Salmonella</i> ranks second in the number of human cases, after <i>Campylobacter</i> spp., and is responsible for the highest number of food-borne outbreaks (EFSA, 2015). Pork is one of the main sources of human salmonellosis cases and following the successful implementation of control programmes in poultry, the relative proportion of salmonellosis cases attributed to pork consumption has risen (De Knecht et al., 2015).

Many countries, including Ireland, have surveillance and control programmes in operation which aim to reduce the risk of <i>Salmonella</i> transmission in the pig production chain (Quirke et al., 2001; Stårek et al., 2002; Alban et al., 2012). The Irish National Pig <i>Salmonella</i> Control Programme (NPSCP) commenced in 2002 and was revised in 2010 with the aim of reducing <i>Salmonella</i> prevalence in the pork production chain. Similar to other on farm control programmes (Alban et al., 2012) the NPSCP collects sera (six samples per month) from each herd and the prevalence is estimated considering the results from the last 3 months using a weighting of 3:1:1 with the results from the most recent month having the highest weighting. All herds with a prevalence value over 50% are categorized as high risk and are required to put control measures in place.

On farm control includes potential strategies such as the use of vaccines (Argüello et al., 2013b), organic acids (Argüello et al., 2013a; Walia et al., 2016) and many other potential actions related to husbandry, management, hygiene, biosecurity, and feed (De Busser et al., 2013; De Ridder et al., 2013; Burns et al., 2015). Risk factor studies help to determine which on farm actions may be most effective in reducing on farm prevalence as well as identifying factors likely to increase the risk of having <i>Salmonella</i> in the herd. A number of studies to identify such on-farm factors have been performed either using bacteriology (van der Wolf et al., 2001a; Lo Fo Wong et al., 2004; Garcia-Feliz et al., 2009; Correa-Gomes et al., 2012, 2013), or serology (van der Wolf et al., 2001b; Beloeil et al., 2007; Smith et al., 2010). Interestingly factors related to management such as all-in/all-out policy (AI/AO), hygiene, presence of other diseases such as Porcine respiratory and reproductive syndrome (PRRS) and particularly factors associated with feed (coarseness, meal vs. pelleted, home-produced vs. purchased) have been associated with infection, but results are not always consistent across studies, while findings on the effect of factors such as herd size, cleaning protocols, and antimicrobial usage are disputed. These differences may be related to the outcome variable (bacteriology or serology), the type of study (cross-sectional or cohort studies) and even to the serotype or serotypes involved in the infection (Correa-Gomes et al., 2012). Despite the effort, inconsistent results require more research to clarify how to mitigate the on farm <i>Salmonella</i> burden. Data from surveillance programmes such as the Irish NPSCP is extremely useful in performing epidemiological studies (Baptista et al., 2010; Smith et al., 2010). The aim of the present study was to provide new insights regarding on farm practices related to herd characteristics management, husbandry, feeding, biosecurity and diseases, that affect the herd <i>Salmonella</i> prevalence by the analysis of data from a farm questionnaire combined with serology data provided by the NPSCP.

MATERIALS AND METHODS

Questionnaire Survey

A cross-sectional study, using a questionnaire survey, was conducted to collect information from Irish herds which sold finisher pigs to the slaughterhouse. Only farrow-to-finish and finishing herds were included in the study as breeding herds (those selling weaner pigs) are not included in the surveillance performed by the NSPCP and the number of such herds is small in Ireland. The questionnaires were completed between October 2014 and May 2015 during workshops with farmers and visits to farms. The questionnaire was designed and tested prior to use in collaboration with Teagasc pig advisors and farm staff. The purpose of the study and instructions on how to complete the questionnaire were explained to the farmers. A cover letter was included with the questionnaire explaining the aim of the study, the confidentiality of the results, the importance of accuracy in filling out the questionnaire, and contact details to obtain clarifications if required. In total, 33 closed questions were posed regarding factors previously included in studies on risk factors for <i>Salmonella</i> and adapted to the particularities of pig production in Ireland. The questionnaire was divided into five sections or topics: with questions related to herd characteristics, herd management (Table 1) feed and water (Table 2), hygiene and biosecurity (Tables 1, 3), and herd health (Table 3).

<i>Salmonella</i> Data Collection

Meat-juice serological data from Irish herds selling finisher pigs to abattoirs, between January and December 2014, were obtained from the Department of Agriculture Food and the Marine (DAFM), institution responsible for the Irish National pig <i>Salmonella</i> Control Programme. Annual prevalence was estimated by dividing the number of positive pigs delivered to the slaughterhouse in 2014 by the total number of pigs sampled from the same herd during the same period. <i>Salmonella</i> serological data were matched to the questionnaire data using the national herd numbers provided in both databases.

Detection of <i>Salmonella</i> (Serology)

The detection of antibodies (IgG) in meat juice samples obtained from finishing pigs delivered to the slaughterhouse was performed by an indirect enzyme-linked immunosorbent assay (ELISA). In most cases, six pigs per herd were randomly selected at the slaughterhouse for sampling each month, although frequency of sampling varied occasionally subject to delivery of pigs to the abattoir. Meat juice samples consisted of 10 g of the intercostal muscle. Samples were submitted to the National Reference Laboratory where they were frozen and stored at ~ – 20°C until analysis. Prior to analysis, each sample was thawed and the muscle fluid was then analyzed by an in-house ELISA based on the Danish mix-ELISA (Nielsen et al., 1998). The indirect ELISA used allows the detection of porcine IgG against the O-chain of the lipopolysaccharide from <i>Salmonella</i> serogroups B, C1, and D. Calibrated optical densities (OD%) were obtained.
TABLE 1 | Description of variables associated to herd characteristics, herd management and biosecurity included in the questionnaire completed by 61 Irish herds.

Variable	Categories	No. Herds (%)
HERD CHARACTERISTICS		
Herd size	Number of sows in the herd	Continuous
	No	40 (65.6)
	Cattle	21 (34.4)
	Sheep	1 (1.6)
Other animal species in the herd		
	No	40 (65.6)
	Cattle	21 (34.4)
	Sheep	1 (1.6)
Full-time staff	No. of people in the herd	Continuous
	Yes	40 (65.6)
	No	21 (34.4)
Permanent staff		
	Yes	40 (65.6)
	No	21 (34.4)
Labor employed		
	Yes	42 (68.9)
	No	19 (31.1)
Specialized areas of work		
	Yes	42 (68.9)
	No	19 (31.1)
Training courses		
	Yes	32 (52.5)
	No	29 (47.5)
Distribution of production stages (Yes/No)		
Weaning		51 (83.6)/10 (16.4)
Growing		50 (82)/11 (18)
Finishing divided		13 (21.3)/48 (78.7)
HERD MANAGEMENT		
All-in/all-out policy (Yes/No)		
Farrowing		48 (78.7)/13 (21.3)
Weaning		46 (75.4)/15 (24.6)
Finishing		34 (55.7)/27 (44.3)
Pig regrouping (Yes/No)		
Weaning		40 (65.6)/21 (34.4)
Growing		24 (34.3)/37 (60.7)
Finishing		22 (36.1)/39 (63.9)
BIOSECURITY MEASURES		
Presence of farms within 2 km		
Pigs		15 (24.6)
Cattle		44 (72.1)
Sheep		14 (22.9)
Others		1 (1.6)
No		9 (14.8)
Fence		
Single		33 (54.1)
Double		8 (13.1)
No		20 (32.8)
Hygienic barrier at the entrance		
Yes		11 (18)
No		50 (81.2)
Loading bay at the entrance		
Inside		46 (75.4)
Outside		14 (22.9)
Access of the feed truck		
Inside		13 (21.3)
Outside		48 (78.7)
Access of the disposal carcass truck		
Inside		25 (40.1)
Outside		36 (59)
Presence of changing room		
Yes		47 (71.1)
No		11 (18.9)
Hygiene and clothes for staff		
Hand washing		52 (85.2)/9 (14.8)
Shower		36 (70.6)/15 (29.4)
Clothes change		46 (75.4)/15 (24.6)
Boots change		51 (83.6)/10 (16.4)
Policy of visitors (Yes/No)	Require visitors to be free of visiting other farm	30 (49.2)/31 (50.8)
Presence of animals on the farm (Yes/No)		
Birds		29 (47.5)/32 (52.5)
Rodents		51 (83.6)/10 (16.4)
Cats		22 (36.1)/39 (63.9)
Dogs		18 (29.5)/43 (71.5)

(Continued)

by regression analyses of positive and negative reference sera. The meat-juice test was considered positive above a cut-off of 40 OD%. According to Nielsen et al. (1998) the sensitivity of the test is ∼89–100% and the specificity is 98–100%, at individual animal level.

Statistical Analysis
A database including information from questionnaires and the NPSCP was created using Excel (Microsoft Office). Any inconsistency in answers was discussed with farmers or Teagasc farm advisors and corrected if necessary. A total of 125 variables were created from the answers obtained in the questionnaire.

All statistical analysis was conducted using SAS 9.3 (Cary, NC). As a first step, a descriptive analysis was performed to identify variables with a large number of missing observations or with low variability making them of little value for further investigation. After this validation step, a univariate analysis was conducted using the annual Salmonella herd prevalence as the outcome variable. A relaxed P-value ≤ 0.25 was used to select variables for further analysis in a multivariable model. Collinearity was evaluated among pre-selected variables using chi-square and Fischer’s tests. From the correlated variables the ones with the lowest P-value and/or that made most biological sense were selected for the final multivariable model. Multivariable analysis was performed using a stepwise selection. Variables were retained in the model when p-value was <0.15 while α = 0.05 was established as threshold for significance. Interactions were checked among all the variables in the model and introduced one by one to see if they would improve the fitness of the model. As well, all rejected variables were added separately into the final model to ensure no significant variables had been omitted. Two-way interactions were checked among all the variables in the model.

RESULTS
A total of 67 questionnaires were returned. Six of these were discarded due to the low number of samples tested for Salmonella

TABLE 1 | Continued

Variable	Categories	No. Herds (%)
Hygiene and clothes for visitors		
Hand washing		47 (77)/14 (13)
Shower		36 (70.6)/15 (29.4)
Clothes change		46 (75.4)/15 (24.6)
Boots change		51 (83.6)/10 (16.4)
Policy of visitors (Yes/No)	Require visitors to be free of visiting other farm	30 (49.2)/31 (50.8)
Presence of animals on the farm (Yes/No)		
Birds		29 (47.5)/32 (52.5)
Rodents		51 (83.6)/10 (16.4)
Cats		22 (36.1)/39 (63.9)
Dogs		18 (29.5)/43 (71.5)

aNot all questions were answered in all herds, thus not all questions sum 61 farms.
bMinimum of 3 days before visiting the herd.
sero-prevalence on these farms throughout 2014. Thus, 61 farms were used for further analysis. In these herds the number of samples analyzed in 2014 varied from 24 to 96, with a median of 72.0 tests analyzed per herd (SE = 1.5). More than 95% of herds had at least 48 tests performed. The mean annual prevalence in 2014 was 25.4 (SE = 2.4). There was no correlation between number of sera analyzed and herd prevalence ($r = 0.031$). Herd prevalence ranged from six herds completely negative in the study had 50 sows and only three of the herds included had <100 sows. There was no correlation between herd size and herd prevalence ($R = 0.03$).

A number of variables were removed due to the low variability exhibited in the descriptive analysis of the data. Low variability between herds (defined as ≤ 3 herds in a category) was detected in variables such as type of herd, replacement policy (few herds purchased weaners and/or finishers), feed allocation (ad-$libitum$ access to feed was provided in all the herds) and the use of antimicrobials or pharmacological levels of zinc oxide in finisher feed (not practiced in most herds). Thirty-five variables were selected from the univariate analysis with a P-value < 0.25 (Table 2).

Collinearity was observed among related variables (Supplementary Table 1). For example, strong collinearity was observed for type of feed (pelleted or meal) in different production stages and feed delivery (dry or liquid feeding) as well as source of feed (home produced or purchased) and feed delivery where all home-produced feed was fed as meal. Similarly, collinearity was observed among variables related to washing protocols. Other variables with collinearity were chlorinated water, turnover of staff in the last 2 years or change to washing protocols. Other variables with collinearity were type of water (soft, hard, chlorinated, desiccant), origin of feed (home-made, purchased), type of feed (pelleted, meal, dry, liquid, purchased), additives in feed (argin, other, antibiotics), type of water delivery (borehole, main supply, river, other), desiccant (no, pressurized, detergent), disinfection (pressure water, detergent) and types of washing protocols.

Table 2: Description of the feed variables generated from the questionnaire data completed in 61 Irish herds.

Variable	Categories	Farm	Sow	Weaners	Growers	Finishers
Origin	Home-made	–	–	11	14	14
Type of feed	Liquid	–	–	4	1	5
	Meal	–	–	30	19	22
	Pelleted	–	23	–	37	30
	Dry	–	24	–	30	18
	Wet	–	27	–	23	32
Supplements in feed	Antibiotics	–	–	–	–	–
	Zinc Oxide	–	48/13	8/53	3/58	
	Acids	–	48/13	26/34	1/60	
	Whey	–	9/52	7/54	8/53	
Water supply	Bore hole	46				
	Main supply	12				
Chlorinated water	Yes	8				
	No	53				
Type of water	Soft	9				
	Hard	42				
	Do not known	10				

Table 3: Health and cleaning variables included in the questionnaire data completed in 61 Irish herds. (a)

Disease	No. herds present (%)	No. herds free (%)	No. herds unknown (%)		
HEALTH					
PRRS^b	29 (47.5)	29 (47.5)	3 (5)		
Porcine circovirus 2^c	47 (77)	7 (11.5)	7 (11.5)		
Dysentery	32 (52.5)	17 (27.8)	12 (19.7)		
E. coli diarrhea	40 (67.8)	10 (16.9)	9 (15.3)		
Ileitis	17 (27.8)	22 (36.1)	22 (36.1)		
Mange	12 (19.7)	37 (60.6)	12 (19.7)		
Disease complexes					
Respiratory complex (PPRRS	APP	Enzootic pneumonia	Glasser)	50 (81.2)	11 (18.8)
Enteric complex (Dysentery	E. coli diarrhea	Ileitis)	49 (80.3)	12 (19.7)	
Protocol					
Weaning					
Growing					
Finishing					

Table 4: Health and cleaning variables included in the questionnaire data completed in 61 Irish herds. (a)

HEALTH	No. herds present (%)	No. herds free (%)	No. herds unknown (%)		
PRRS^b	29 (47.5)	29 (47.5)	3 (5)		
Porcine circovirus 2^c	47 (77)	7 (11.5)	7 (11.5)		
Dysentery	32 (52.5)	17 (27.8)	12 (19.7)		
E. coli diarrhea	40 (67.8)	10 (16.9)	9 (15.3)		
Ileitis	17 (27.8)	22 (36.1)	22 (36.1)		
Mange	12 (19.7)	37 (60.6)	12 (19.7)		
Disease complexes					
Respiratory complex (PPRRS	APP	Enzootic pneumonia	Glasser)	50 (81.2)	11 (18.8)
Enteric complex (Dysentery	E. coli diarrhea	Ileitis)	49 (80.3)	12 (19.7)	

Protocol: Weaning, Growing, Finishing

CLEANING PROTOCOLS: No washing, Pressurized water, Detergent, Disinfectant, Dry, Desiccant, Pressure water + disinfection, Water + disinfection + dry, Water + desiccant, Water + dry + desiccant.
TABLE 4 | Variables associated with Salmonella using a relaxed p-value (*P < 0.25) from univariable mixed linear regression of meat juice ELISA herd prevalence results obtained from slaughtered pigs during 2014.

Potential factor indicator	Level	Estimate 1	P-value
Staff change**	Yes	0	0.246
No	−5.968		
Training course**<,k	Yes	0	0.069
No	−8.674		
Origin of weaned pig feed**<,c	Home produced	−11.963	0.05
Purchased	0		
Origin of growing pig feed**<,c	Home produced	−9.955	0.088
Purchased	0		
Origin of finishing pig feed**<,c	Home produced	−0.991	0.078
Purchased	0		
Type feed—sows**<,c,g	Liquid feed	−14.465	0.233
Pelleted	−22.552		
Type feed—weaned pigs**<,c,g	Liquid feed	−15.215	0.065
Pelleted	−11.092		
Type feed—finishing pigs**<,c	Liquid feed	−14.864	0.13
Pelleted	−8.423		
Dry or wet feed for weaned pigs**<,c	Dry	8.848	0.084
Wet	0		
Dry or wet feed for growing pigs**<,c,g	Dry	8.471	0.127
Wet	0		
Dry or wet feed for finishing pigs**<,c	Dry	7.877	0.146
Wet	0		
Use of whey in finishers	Yes	0	0.238
No	0		
Antimicrobials in growing feed**<,c,n,l	Yes	8.892	0.123
No	0		
Zinc in growing pig feed**<,c,g	Yes	0	0.212
No	−6.189		
Acids in finishing pig feed**<,e	Yes	0	0.167
No	−9.833		
Water supply**<	Bore hole	−14.175	0.244
Main supply	−4 to 348		
River	−3.475		
Other	0		
Chlorinate water**<	Yes	−12.524	0.072
No	0		
Last analysis of water quality	(Months)	−	0.2493
Presence of perimeter fence	No	4.738	0.0621
Single	13.637		
Double	0		
Carcass disposal truck**<	Outside	−10.758	0.0252
Inside	0		
Feed truck**<	Outside	−9.195	0.1167
Inside	0		
Cleaning including disinfection and drying at growing	Yes	0	0.243
No	−6.711		
Cleaning including pressurized water at finishing	Yes	0	0.149
No	6.617		
Cleaning including disinfection at finishing	Yes	0	0.168
No	6.930		

TABLE 4 | Continued

Potential factor indicator	Level	Estimate 1	P-value
Change of boots by staff*	Yes	0	0.163
No	9.427		
Change of boots by visitors*<,<k	Yes	0	0.215
No	8.037		
Presence of cats	Yes	0	0.071
No	−8.628		
Presence of birds<	Yes	0	0.243
No	−5.376		
Glassier’s disease<	Yes	12.628	0.051
No	0		
Coccidia present<	Yes	6.394	0.128
No	11.906		
Swine Dysentery disease	Yes	20.811	0.078
No	6.128		
E. coli Diarrhea	Yes	7.522	0.055
No	−4.861		
Unknown	0		
Mange<	Yes	−1.655	0.212
No	7.883		
Unknown	0		
Respiratory complex<	Yes	0	0.147
No	−9.330		

*Estimate defines the influence of variable levels in the seroprevalence of Salmonella within the herd.
**Colinearly among selected variables.
*Denotes colinearity among the variable with all others with the same letter.

Twenty-one variables were included in the multivariate analysis (Table 4). Nine of these variables were retained in the model (Figure 1). Within the feed variables analyzed, farms using home-produced feed were associated to lower seroprevalence compared to those using purchased feed (estimate = −8.42; SE = 4.9; p = 0.042). Among biosecurity factors, banning the feed truck access to the farmyard (estimate = −10.06; SE = 4.42; p = 0.048), or the absence of cats on the farm (estimate = 10.3; SE = 5.57; p = 0.02), exhibited a protective effect to Salmonella seroprevalence, while the lack of internal policy to change boots (estimate = 18.05; SE = 6.00; p = 0.014), and the lack of perimeter fence (estimate = 13.99; SE = 5.57; p = 0.051) were significantly associated to Salmonella seroprevalence. Among management factors, those farms without staff turnover within the last 2 years had lower seroprevalence values (estimate = −10.73; SE = 4.28; p = 0.042), while those farms without introducing people into training were significantly associated to lower seroprevalence (estimate = −13.34; SE = 4.09; p = 0.045). Finally, two diseases were significantly linked to Salmonella seroprevalence. Farms with swine dysentery (Brachyspira hyodysenteriae) were shown to be increased in their Salmonella levels (estimate = 17.02; SE = 7.13; p = 0.044) and we also observed a trend for those farms with E. coli diarrhea problems (estimate = 10.65; SE = 5.72; p = 0.1). None of the interactions among these nine variables was significant.
DISCUSSION

Among zoonotic pathogens affecting swine, *Salmonella* is the first pathogen associated to human gastroenteritis linked to pork consumption (EFSA, 2015). Pork is ranked as the third most common source of human salmonellosis, but it is at present considered the main source of *Salmonella* from meat in countries where *Salmonella* control in poultry and laying hens has been successful (De Knecht et al., 2015). *Salmonella* control programmes in pig production aim to reduce the burden of *Salmonella* in pork meat. Most of the control programmes include surveillance of the herd status by monitoring the presence of antibodies against *Salmonella* in finishing pigs at market weight (Quirke et al., 2001; Alban et al., 2012). The information garnered from surveillance programmes can be used to categorize herds by risk, but also offers the opportunity to explore the epidemiology and control of the infection (Baptista et al., 2009, 2011; Smith et al., 2010). The present study combining available serological data from the NPSCP database (used as continuous outcome variable) with information gathered through a questionnaire, provided an opportunity to evaluate *Salmonella* risk factors in Irish pig herds. Indirect detection of *Salmonella*, based on the detection of antibodies in the host, offers a number of advantages compared to analysis performed by bacteriology. The fact that antibodies can be detected for long periods of time (Funk et al., 2001) overcomes the problem of the intermittent shedding of *Salmonella* in feces (Beloel et al., 2003). The surveillance data also offers a huge advantage compared to cross-sectional studies in that the analysis of samples throughout a period of 12 months, allows the level of infection in the herd to be estimated with much more accuracy compared to single values in cross-sectional studies where temporary or seasonal changes may skew the data (Hautekiet et al., 2008). A potential limitation of using surveillance data is the limited number of sera tested per month compared to the number of slaughtered pigs, fact that biases the actual herd prevalence (Nielsen et al., 1998) but with enough power to estimate annual herd prevalence (Alban et al., 2012).

There is vast information in the literature regarding on-farm *Salmonella* risk factors (van der Wolf et al., 2001a,b; Beloel et al., 2003, 2007; Lo Fo Wong et al., 2004; García-Feliz et al., 2009; Correia-Gomes et al., 2012, 2013). These studies are useful in identifying important factors related to herd characteristics, management, husbandry, hygiene/health that may help prevent or mitigate infection. Conflicting results between studies can be related to particularities of the production system in different countries or by limitations in studies where all factors associated with the infection were not explored. Sixty-one herds were included in the analysis for the present study, which is ~20% of the commercial pig herds in the Republic of Ireland. The number, a good representation of the Irish herds yielded nevertheless a scarce number of surveys compared to previous studies (Kranker et al., 2001; Nollet et al., 2004; García-Feliz et al., 2009) limiting the power of the analysis. To maximize the information gained by the questionnaire, 125 variables were identified from the 33 questions in the survey and of these, nine were retained in the final regression model.

Although feed can be source of *Salmonella* infection (Burns et al., 2015), different studies, including numerous risk factor studies, have also shown that feed form and method of delivery can be used to mitigate *Salmonella* on farm (Mikkelsen et al., 2004; García-Feliz et al., 2009). In agreement with Kranker et al. (2001), the present study found that herds with their own feed mill (home-produced feed) had a lower *Salmonella* prevalence compared to herds purchasing feed. This result is not consequence of the origin of feed but related to the feed presentation (meal or pelleted). Home-made/purchase was included in the model as there were less interactions with other variables compared to meal/pelleted feed variable. All farms with home produced feed, fed meal diets while those purchasing feed were more likely to use pelleted feed. Non-pelleted feed is linked with slower gastric transit time together with a more viscous, porridge-like consistency in the stomach, both of which favor increased microbial fermentation in the stomach (Mikkelsen et al., 2004). Moreover, coarsely-ground meal may not be as well digested as finely ground pelleted feed at the terminal ileum leaving additional carbohydrate substrate to be fermented in the large intestine (Mikkelsen et al., 2004). As a consequence, the growth of lactic acid-producing microbiota is promoted and the concentration of volatile fatty acids is increased, creating a hostile environment for *Salmonella* (low pH, organic acids, competitive...
exclusion etc.) in the lower gastrointestinal tract (Arguello et al., 2013a).

Factors related to herd characteristics such as herd size, management, and husbandry have been linked with Salmonella infection by different studies (Kranker et al., 2001; Vico et al., 2001; Beloel et al., 2003, 2004; Leontides et al., 2003). All-in/all-out (AI/AO) flow disrupts the transmission of infection between production stages (Beloel et al., 2004; Farzan et al., 2010). However, similar to some other studies (Nollet et al., 2004; Rajic et al., 2007; Garcia-Feliz et al., 2009) our study found no benefit in terms of Salmonella mitigation on farms using AI/AO in weaners, growers and finishers. This may be related to the fact that in most instances AI/AO was by room rather than by building as in other studies which is likely to have decreased the effectiveness of the intervention in the current study. Similarly, no potential benefit was demonstrated where cleaning and disinfection protocols were implemented between batches. Nine variables were generated from the survey (Table 1) to analyse the effect of different protocols used (pressurized water, detergent, disinfectant and desiccation) or their combinations. None of them were significant in the final model. As with AI/AO, a reduction in Salmonella level would be expected when cleaning protocols are implemented on the farm. However, despite some studies having shown this to be the case (Funk and Gebreyes, 2004), others could not link implementation of cleaning protocols to a decrease in Salmonella (Nollet et al., 2004). A possible explanation is that effective cleaning protocols are not correctly performed on farm (Mannion et al., 2007).

Among the management and husbandry factors included in the questionnaire, there was a trend for those herds that did not change staff in the previous 2 years to have lower Salmonella levels than those where staff turnover was high. This result may be associated with the standard of husbandry on farms, with the possibility of poorer standards on farms with inexperienced staff where staff turnover is highest. Attendance at courses and workshops was linked to a higher prevalence, although we are skeptical of the validity of this result and believe that the question should be revised for further such surveys.

Biosecurity is an essential component in the control of Salmonella; external biosecurity decreases the likelihood of introducing Salmonella into the herd while internal biosecurity reduces the spread of the infection between stages and batches of pigs (FAO, 2015). The presence of a perimeter fence around the unit and restricting the access of feed trucks to outside the farm yard perimeter from which the feed bins were accessed were two factors linked with a reduced Salmonella prevalence in the present study. Similarly, one aspect of internal biosecurity, the change of footwear from outside the unit to inside, was also linked to reduced Salmonella prevalence. In addition, the presence of cats on the unit was linked to higher levels of Salmonella which agrees with the results of Nollet et al. (2004). Rodents (Vico et al., 2001) were frequently observed in Irish herds in the present study (83.6% of the farmers admitted to seeing rodents on their farms). Cats may help to control rodent populations (Funk et al., 2001) but are themselves a vector for Salmonella.

Swine salmonellosis is usually a subclinical infection (Boyen et al., 2008) but severity of infection may be increased by the presence of other infections in the herd. Previous studies have linked the presence of Salmonella to other diseases such as PRRS (Beloel et al., 2007). In the present study we allocated a complete section of the questionnaire to herd health, as we considered that co-infections could be one of the key factors in the perpetuation of the infection over a prolonged period (defined as high prevalence at the end of the year). Our survey included a list of common swine infections, including respiratory, intestinal, and systemic diseases and farmers were instructed to be as precise as possible when indicating the presence or absence of these diseases. Furthermore, questions regarding the vaccination programme used were included in order to gain insight on the pathogens potentially circulating within the herd and their prevention.

Two intestinal disorders were found to be associated with Salmonella: swine dysentery and E. coli diarrhea. Swine dysentery, a haemorrhagic diarrhea caused by Brachyspira hydysenteriae affects pigs in the growing and/or finishing stages, causing considerable economic losses (Alvarez-Ordoñez et al., 2013). In contrast, E. coli diarrhea usually occurs during the suckling or post-weaning periods depending on the pathotype of E. coli involved. The strong association between high Salmonella prevalence and swine dysentery and the trend toward an association with E. coli diarrhea demonstrates the importance of controlling concomitant enteric infections in any Salmonella control programme. For example, Walia et al. (2016) attributed the lack of efficacy of an organic acid-based feed additive in controlling Salmonella in finishers to the presence of a concomitant Lawsonia intracellularis infection (porcine proliferative enteropathy or PPE) and van der Wolf et al. (2001a) linked herds with diarrhea (cause not specified) to presence of Salmonella. Intestinal disorders alter the physiological conditions of the gut favoring the development of other pathologies, making it common to find several pathogens during laboratory diagnosis of diarrhea cases (Williamson et al., 2015). The four intestinal pathogens (Brachyspira spp., Lawsonia intracellularis, E. coli, and Salmonella) constitute the basis of the “intestinal complex.” We failed to demonstrate an association between Salmonella prevalence and the variable “intestinal complex” which included any of the three other intestinal diseases mentioned above. A potential reason why Salmonella and L. intracellularis were not linked in the present study despite other studies having associated both pathologies (Borewicz et al., 2015; Walia et al., 2016), is that PPE often causes subclinical disease and farmers may not have been aware of the presence of the pathogen in their herds. However, the fact that two intestinal infectious disorders could be linked to Salmonella once again demonstrates the importance of a multifaceted approach in a successful Salmonella control programme.

The present study shows the value of surveillance data in uncovering factors associated with on-farm Salmonella infection. Feed form (use of meal vs. pelleted) appears to be a useful strategy to mitigate the burden of on-farm Salmonella. Biosecurity factors such as perimeter fencing, changing of footwear between outside and inside of the unit and the absence of cats were associated with lower Salmonella sero-prevalence, while intestinal diseases (swine dysentery and E. coli diarrhea) were linked to higher Salmonella sero-prevalence. These results show that Salmonella...
infection in pigs is multi-factorial and highlight that for its control different strategies must be included simultaneously.

AUTHORS CONTRIBUTIONS

HA, EM, FL, JE and GD participated in the design of the study. GD, FL, GG and PL provided the funding to perform the study. HA, KW and HL collected the questionnaire data. KW, HL and JE performed the analysis of the data. HA, EM, FL, GD, GG and PL wrote the manuscript. All authors approved the final version of the manuscript.

FUNDING

This study was funded by the Food Institutional Research Measure (FIRM) administered by the Department of Agriculture Food and the Marine (DAFM) (FIRM/RSF/CoFoRD 2011 Project 11/SF/329).

ACKNOWLEDGMENTS

The authors gratefully acknowledge the staff at Longtown Research Farm and the Central Veterinary Research Laboratory (CVRL) Backweston for their expert help in the serological analyses of the study.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmicb.2018.00187/full#supplementary-material

Supplementary Table 1 | Collinearity results among selected variables from the univariate analysis in the Salmonella risk factors study conducted in 61 Irish farrow-to-finish herds.

REFERENCES

Alban, L., Baptista, F. M., Mogelmose, V., Serensen, L. L., Christensen, H., Aabo, S., et al. (2012). *Salmonella* surveillance and control for finisher pigs and pork in Denmark—A case study. *Food Res. Int.* 45, 656–665. doi: 10.1016/j.foodres.2011.02.050

Beloeil, P. A., Chauvin, C., Proux, K., Fablet, C., Madec, F., and Alioum, A. (2007). *Salmonella* enterica and *Lawsonia intracellularis*. *PLoS ONE* 10:e0139106. doi: 10.1371/journal.pone.0139106

Baptista, F. M., Halasa, T., Alban, L., and Nielsen, L. R. (2011). Modelling *Salmonella* occurrence and *Enterobacteriaceae* counts in pig feed ingredients and compound feed from feed mills in Ireland. *Prev. Vet. Med.* 121, 231–239. doi: 10.1016/j.prevetmed.2015.07.002

Boyen, F., Haesebrouck, F., Maes, D., Van Immerseel, F., Ducatelle, R., and Pasmans, F. (2008). Non-typhoidal *Salmonella* infections in pigs: a closer look at epidemiology, pathogenesis and control. *Vet. Microbiol.* 130, 1–19. doi: 10.1016/j.vetmic.2007.12.017

Baptista, F. M., Alban, L., Ersbøll, A. K., and Nielsen, L. R. (2009). Factors affecting the presence of *Salmonella* in pigs. *Foodborne Pathog. Dis.* 10, 842–849. doi: 10.1089/fpd.2013.1497

Burns, A. M., Lawlor, P. G., Gardiner, G. E., McCabe, E. M., Walsh, D., Mohammed, M., et al. (2015). *Salmonella* occurrence and *Enterobacteriaceae* counts in pig feed ingredients and compound feed from feed mills in Ireland. *Prev. Vet. Med.* 121, 231–239. doi: 10.1016/j.prevetmed.2015.07.002

Correia-Gomes, C., Economou, T., Mendoza, D., Viera-Pinto, M., and Niza-Ribeiro, J. (2012). Assessing risk profiles for *Salmonella* serotypes in breeding pig operations in Portugal using a Bayesian hierarchical model. *BMC Vet. Res.* 8:226. doi: 10.1186/1746-6148-8-226

Correia-Gomes, C., Mendoza, D., Viera-Pinto, M., and Niza-Ribeiro, J. (2013). Risk factors for *Salmonella* spp in Portuguese breeding pigs using a multilevel analysis. *Prev. Vet. Med.* 108, 159–166. doi: 10.1016/j.prevetmed.2012.07.013

De Busser, E. V., De Zutter, L., Dewulf, J., Houd, K., and Maes, D. (2013). *Salmonella* control in live pigs and at slaughter. *J. Vet.* 196, 20–27. doi: 10.1016/j.tvjl.2013.01.002

European Food Safety Authority (EFSA) (2015). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2013. *EFSA J.* 13, 1175–1186. doi: 10.1051/epidemiol/1001903

European Food Safety Authority (EFSA) (2015). The European union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2013. *EFSA J.* 13:3991. doi: 10.2903/j.efsa.2015.3991

Farzan, A., Friendship, R. M., Dewey, C. E., Poppe, C., and Funk, J. (2010). Evaluation of three intervention strategies to reduce the transmission of *Salmonella Typhimurium* in pigs. *Vet. J.* 197, 613–618. doi: 10.1016/j.tvjl.2013.03.026

Farzan, A., Friendship, R. M., Dewey, C. E., Poppe, C., and Funk, J. (2010). Evaluation of the risk factors for shedding *Salmonella* with or without antimicrobial resistance in swine using multinomial regression method. *Veterinary Microbiology* 130, 85–93. doi: 10.1016/j.vetmic.2007.12.017

Funk, J. A., Davies, P. R., and Nichols, M. A. (2001). Longitudinal study of *Salmonella enterica* in growing pigs and at slaughter. *J. Vet.* 196, 20–27. doi: 10.1016/j.tvjl.2013.03.026

García-Feliz, C., Carvajal, A., Collazos, J. A., and Rubio, P. (2009). Herd-level risk factors for fecal shedding of *Salmonella enterica* in Spanish fattening pigs. *Prev. Vet. Med.* 91, 130–136. doi: 10.1016/j.prevetmed.2009.05.011

García-Feliz, C., Carvajal, A., Collazos, J. A., and Rubio, P. (2009). Herd-level risk factors for fecal shedding of *Salmonella enterica* in Spanish fattening pigs. *Prev. Vet. Med.* 91, 130–136. doi: 10.1016/j.prevetmed.2009.05.011
Hautekiet, V., Geert, V., Marc, V., and Rony, G. (2008). Development of a sanitary risk index for *Salmonella* seroprevalence in Belgian pig farms. *Prev. Vet. Med.* 86, 75–92. doi: 10.1016/j.prevetmed.2008.03.005

Kranner, S., Dahl, J., and Wingstrand, A. (2001). Bacteriological and serological examination and risk factor analysis of *Salmonella* occurrence in sow herds, including risk factors for high *Salmonella* seroprevalence in receiver finishing herds. *Berl. Munch. Tierarztl. Wochenschr.* 114, 350–352.

Leonotis, L. S., Grafanakis, E., and Genigeorgis, C. (2003). Factors associated with the serological prevalence of *Salmonella enterica* in Greek finishing swine herds. *Epidemiol. Infect.* 131, 599–606. doi: 10.1017/S0950268803008732

Lo Fo Wong, D. M. A., Dahl, J., Stege, H., van der Wolf, P. J., Leonotis, L., von Altrock, A., et al. (2004). Herd-level risk factors for subclinical *Salmonella* infection in European finishing-pig herds. *Prev. Vet. Med.* 62, 253–266. doi: 10.1016/j.prevetmed.2004.01.001

Mannion, C., Leonard, F. C., Lynch, P. B., and Egan, J. (2007). Efficacy of cleaning and disinfection on pig farms in Ireland. *Vet. Rec.* 161, 371–375. doi: 10.1136/vr.161.11.371

Mikkelsen, L. L., Naughton, P. J., Hedemann, M. S., and Jensen, B. B. (2004). Effects of physical properties of feed on microbial ecology and survival of *Salmonella enterica* serovar Typhimurium in the pig gastrointestinal tract. *Appl. Environ. Microbiol.* 70, 3485–3492. doi: 10.1128/AEM.70.6.3485-3492.2004

Nielsen, B., Ekeroth, L., Bager, F., and Lind, P. (1998). Use of muscle fluid as a source of antibodies for serologic detection of *Salmonella* infection in slaughter pig herds. *J. Vet. Diagn. Invest.* 10, 158–163. doi: 10.1177/104063878801000207

Nollet, N., Maes, D., De Zutter, L., Duchateau, L., Houf, K., Huysmans, K., et al. (2004). Risk factors for the herd-level bacteriologic prevalence of *Salmonella* in Belgian slaughter pigs. *Prev. Vet. Med.* 65, 63–75. doi: 10.1016/j.prevetmed.2004.06.009

Quirke, A. M., Leonard, N., Kelly, G., Egan, J., Lynch, P. B., Rowe, T., et al. (2001). Prevalence of *Salmonella* serotypes on pig carcasses from high- and low-risk herds slaughtered in three abattoirs. *Berl. Munch. Tierarztl. Wochenschr.* 114, 360–362.

Rajić, A., Chow, E. Y., Wu, J. T., Deckert, A. E., Reid-Smith, R., Manninen, K., et al. (2007). *Salmonella* infections in ninety Alberta swine finishing farms: serological prevalence, correlation between culture and serology, and risk factors for infection. *Foodborne Pathog. Dis.* 4, 169–177. doi: 10.1089/fpd.2006.0073

Smith, R. P., Clough, H. E., and Cook, A. J. (2010). Analysis of meat juice ELISA results and questionnaire data to investigate farm-level risk factors for *Salmonella* infection in UK pigs. *Zoonoses Public Health.* 57, 39–48. doi: 10.1111/j.1863-2378.2010.01362.x

Stärk, K. D., Wingstrand, A., Dahl, J., Megelmose, V., and Lo Fo Wong, D. M. (2002). Differences and similarities among experts’ opinions on *Salmonella enterica* dynamics in swine pre-harvest. *Prev. Vet. Med.* 53, 7–20. doi: 10.1016/S0167-5877(01)00278-1

van der Wolf, P. J., Lo Fo Wong, D. M., Wolbers, W. B., Elbers, A. R., van der Heijden, H. M., van Schie, F. W., et al. (2001a). A longitudinal study of *Salmonella enterica* infections in high- and low-seroprevalence finishing swine herds in The Netherlands. *Vet. Q.* 23, 116–121. doi: 10.1080/01652176.2001.9695096

van der Wolf, P. J., Wolbers, W. B., Elbers, A. R., van der Heijden, H. M., Koppen, J. M., Hunneman, W. A., et al. (2001b). Herd level husbandry factors associated with the serological *Salmonella* prevalence in finishing pig herds in The Netherlands. *Vet. Microbiol.* 78, 205–219. doi: 10.1016/S0378-1135(00)00294-7

Vico, J. P., Rol I., Garrido, V., San Román, B., Grilló, M. J., and Mainar-Jaime, R. C. (2001). Salmonellosis in finishing pigs in Spain: prevalence, antimicrobial agent susceptibilities, and risk factor analysis. *J. Food Prot.* 74, 1070–1078. doi: 10.4315/0362-028X.JFP-10-515

Wallia, K., Argüello, H., Lynch, H., Leonard, F. C., Grant, J., Yearsley, D., et al. (2016). Effect of feeding sodium butyrate in the late finishing period on *Salmonella* carriage, seroprevalence, and growth of finishing pigs. *Prev. Vet. Med.* 131, 79–86. doi: 10.1016/j.prevetmed.2016.07.009

Williamson, S., Robertson, S., Stringer, L., Smith, R., and Davies, R. (2015). "Salmonellosis in pigs: what does disease surveillance data from England–Wales tell us?,” in Proceedings of Safepork 2015 (Porto), 97.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2018 Argüello, Manzanilla, Lynch, Walia, Leonard, Egan, Duffy, Gardiner and Lawlor. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.