Characterization of Afb, a novel bifunctional protein in *Streptococcus agalactiae*

Sanaz Dehbashi1, Mohammad Reza Pourmand2*, Rahil Mashhadi2

1Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
2Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran

Received: October 2015, Accepted: December 2015

ABSTRACT

Background and Objectives: *Streptococcus agalactiae* is the leading cause of bacterial sepsis and meningitis in newborns and results in pneumonia and bacteremia in adults. A number of *S. agalactiae* components are involved in colonization of target cells. Destruction of peptidoglycan and division of covalently linked daughter cells is mediated by autolysins. In this study, autolytic activity and plasma binding ability of AFb novel recombinant protein of *S. agalactiae* was investigated.

Materials and Methods: The *gbs1805* gene was cloned and expressed. *E. coli* strains DH5α and BL21 were used as cloning and expression hosts, respectively. After purification, antigenicity and binding ability to plasma proteins of the recombinant protein was evaluated.

Results: AFb, the 18KDa protein was purified successfully. The insoluble mature protein revealed the ability to bind to fibrinogen and fibronectin. This insoluble mature protein revealed that it has the ability to bind to fibrinogen and fibronectin plasma proteins. Furthermore, *in silico* analysis demonstrated the AFb has an autolytic activity.

Conclusions: AFb is a novel protein capable of binding to fibrinogen and fibronectin. This findings lay a ground work for further investigation of the role of the bacteria in adhesion and colonization to the host.

Keywords: *Streptococcus agalactiae*, Fibrinogen, Fibronectin, Autolysin

INTRODUCTION

Streptococcus agalactiae is the principal cause of bacterial sepsis, neonatal meningitis and endocarditis in parturient women. It is also a cause of pneumonia particularly in the immunocompromised elderly (1). *S. agalactiae* commonly colonizes the gastrointestinal and urogenital tracts of humans (2) and the proteins enabling the bacteria for colonization, invasion and evasion are poorly defined (3).

The interaction between *S. agalactiae* and the epithelial cells is mediated by a heterogeneous system known as extracellular matrix (ECM). This system includes the components both fibronectin and fibrinogen (2). The fibronectin functions as a binding site for *S. agalactiae* through an insoluble phase (4, 5). A sequence of arginine, glycine and aspartic acid (RGD) in fibronectin is also involved in binding to proteins (6). Furthermore, C5a peptidase has a high affinity to the RGD sequence of the fibronectin and plays a significant role in adhesion and invasion (4). However, the fibrinogen in *S. agalactiae* performs key role in
attachment (7) and FbsA and FbsB are recognized fibrinogen-binding proteins (2). The FbsA binds to cell wall covalently because of LPXTG motif while the FbsB seems to be secreted due to lack of such motif (8). Both proteins promote the entry of the *S. agalactiae* into the epithelial cells (9).

S. agalactiae also possess a dynamic structure called peptidoglycan. This structure like other Gram-positive bacterial cell wall contains peptidoglycan hydrolases. These enzymes play an important role in remodeling, turnover, division and separation of the cell wall (10). In critical situations, some of the peptidoglycan hydrolases (autolysin) facilitate self-disintegration (autolysis) of the peptidoglycan (11, 12). *S. agalactiae* and *Staphylococcus aureus* are both Gram positive cocci from different genus. While there is no clear evidence about the details of autolysin in *S. agalactiae*, *S. aureus* (Atl) contains two major domains of autolysin: amidase and glucosaminidase (11). The glucosaminidase domain ionically binds to fibronectin (13). Another autolysin of *S. aureus* (Aaa) is bifunctional, and it also mediates adherence to immobilized fibrinogen and fibronectin (14). Similar roles were found in other *Streptococcus* species such as *Streptococcus pneumoniae* (15). The *S. agalactiae* contains proteins which are not fully understood of their roles, like Gbs1805.

In this study, AFb, which is a novel protein encoded by *gbs1805* gene in *S. agalactiae* was cloned, over expressed and purified. In silico analysis of AFb indicates amidase activity and great homology to other *Streptococci* genus. Moreover, the binding ability of AFb to plasma proteins was examined.

MATERIALS AND METHODS

This experimental study was performed on functional analysis of *gbs1805* gene of *S. agalactiae*.

Bacterial strains, plasmids and culture conditions. The strains and plasmids used in this study are presented in Table 1. The *S. agalactiae* isolate were grown on blood agar enriched by 5% sheep blood. Also, *Escherichia coli* strains were cultured overnight on Luria Bertani (LB) (Merck, Germany) broth at 37 °C. Ampicillin (0.1mg/ml) was added to the cultures when required.

PCR amplification of the gbs1805 gene. Chromosomal DNA of *S. agalactiae* was extracted using DNA Extraction Kit (Promega, USA) based on the manufacturer’s instructions. The upstream (GGCGGCCATATGATACATATAACTATGAGTAGATGTA) and the downstream (GGCGGCCCTCGAGATTCCGGATAATGTAGCTAATTAC) primers (20pmol/μl) with the underlined restriction sites were used to amplify the *gbs1805* gene at: 95 °C for 5 min, 95 °C for 1 min, 59 °C for 45 seconds (30 cycles), 72 °C for 45 seconds and 72 °C for 10 seconds.

Cloning and Overexpression. The amplified gene and pET21a were double digested by *Nde*I and *Xho*I enzymes (Takara, Japan) and ligated using T4 ligase (Takara, Japan). Then, the recombinant vector was transformed to *Escherichia coli* DH5α. Then positive clones were chosen from the ampicillin-supplemented LB agar plates and were confirmed by colony PCR and sequencing of plasmid. The positive clones then were transformed to the expression host, *E. coli* BL21. The overexpression was optimized at 37 °C, 1mM/ml IPTG (Fermentas, USA) for 4 hours once the culture has reached OD 600 of 0.6.

Strains and plasmids	Genotype or Description	Source
E. coli strains	dlacZ Delta M15 Delta(lacZYA-argF) U169 recA1 endA1 hsdR17(rK-mK+) supE44 thi-1 gyrA96 relA1 F_ompT gal (dcm) (lon) hsdSB (rB_ mB_)	Novagen, UK
DH5α		
BL21		
Streptococcus agalactiae	Clinical isolate	This Study
pET21a	His6-tagged vector Amp'	Stratagen, UK

Table 1. Bacterial strains and plasmids
Protein purification. The recombinant insoluble protein was purified by Qiagen purification kit (Qiagen, Netherland) based on the manufacturer’s instructions. The purification process included 4 steps: cell lysis, binding, washing and elution. The procedure was performed using urea buffers under PH reducing conditions.

SDS-PAGE, Western blotting. The purified protein was indicated by SDS-PAGE. 12.5% SDS-PAGE gel was applied to analyze the purified recombinant protein by Coomassie brilliant blue staining. Western blot was used to confirm the His-tagged recombinant protein. Briefly, the recombinant protein was size-separated on SDS-PAGE gel. Then it was electroblotted to nitrocellulose membrane. The membrane was blocked overnight (4 °C) with 3% skimmed milk in PBS. Subsequently, it was washed three times in a washing buffer (TWEEN 20 and PBS) and incubated in His-tag antibody (Sigma, USA) diluted in 1:1000 in PBS for 1h at room temperature. Afterwards, the membrane was washed three times and DAB substrate (3, 3’-Diaminobenzidine) (Sigma, USA) was added to detect the recombinant protein.

Western blotting was used to assess binding to biotinylated plasma proteins (fibrinogen and fibronectin). Ant II was used as a positive control. The recombinant protein was electroblotted on nitrocellulose membrane as previously mentioned. After blocking and washing the membrane, it was incubated in plasma protein (fibrinogen and fibronectin) diluted in 1:1000 for 3h at room temperature. Then the membrane was washed as before and incubated in Streptavidin (Roche, Germany) diluted washing buffer in 1:30000 at room temperature for 3h. Subsequently, the membrane was washed and incubated in alkaline phosphatase buffer for 5 min. Then the membrane was immersed in NBT/BCIP (Roche, Germany) solution and kept in dark condition until the protein band appears.

RESULTS

The gbs1805 gene was amplified by PCR (Fig. 1) and cloned into pET21a in E. coli DH5α as cloning host. Then, the constructed plasmid was transformed into BL21 and expressed as a hexahistidyl-tagged protein. The recombinant protein was successfully purified using Ni-NTA (Qiagen, Netherland), as predicted by bioinformatics analysis in JCVI. A full sized 18 KDa mature protein was indicated by the SDS-PAGE (Fig. 2). Then, the purified His6-tagged recombinant protein was confirmed by anti his-tag

Fig. 1. Amplification of gbs1805 gene (432bp). (M)Marker 100bp (GeneOn, USA), (1) Positive Control Streptococcus agalactiae NEM316, (2-4) Clinical isolates.
western blot experiment (Fig. 3). The binding ability of the bacterium to the fibrinogen and fibronectin are shown Fig. 4.

DISCUSSION

Attachment to specific receptors is the initial step in the pathogenesis of Gram-positive bacteria (16). The most common receptors mediating adherence to epithelial cells including fibrinogen and fibronectin are parts of the extra cellular matrix (ECM) (2, 17) and fibrinogen and fibronectin are known to be the major

Fig 2. Confirmation of protein purification by SDS PAGE. (M): Unstained protein marker (Fermentas, USA), Lane1: Purified Recombinant protein (18 KDa).

Fig 3. Anti His6-tagged recombinant protein. Lane1: Prestained Marker (Sinaclon, Iran), Lane2: Recombinant protein (18 KDa).

Fig 4. (A) Fibrinogen protein binding assay. Lane 1: Prestained Marker (Sinaclon, Iran), Lane 2: Positive control (Ant II), Lane 3: Recombinant protein (18 KDa). (B) Fibronectin protein binding assay. Lane 1: Prestained Marker (Sinaclon, Iran), Lane 2: Positive control (Ant II), Lane 3: Recombinant protein (18 KDa).
components of the ECM in a number of Gram-positive bacteria (18, 19). In this study, AFB (Autolysin, Fibrinogen/Fibronectin binding), is identified to be a novel protein of Group B Streptococcus capable of binding fibrinogen and fibronectin. *S. agalactiae* interacts with fibrinogen via a variety of proteins including FbsA, FbsB, FbsC, Srr1 and Srr2 (2, 8, 20, 21). Fibrinogen is expressed on epithelial and endothelial cell surfaces and interferes complement activation (22), phagocytosis and polymorphonuclear activation (23). Since FbsA protects *S. agalactiae* against opsonophagocytosis (9), deletion of fbsA leads to reduced proliferation of the bacterium in blood (7). The interaction of Srr1 and fibrinogen contribute to pathogenesis and plays key role in attachment to brain microvascular endothelial cells (24). The binding ability to epithelial and endothelial cells, biofilm formation and invasion decreases significantly in fbsC-negative mutants (20). Furthermore, FbsA and FbsB also participate in evasion of host defense (23).

Fibronectin, another component of ECM, produces A549 on cell surfaces in the respiratory tract and on vaginal and cervical cells (6, 25). The well-defined fibronectin binding protein of Group B Streptococcus encoded by scpB gene, known asC5a peptidase, adheres to epithelial cells and involved in evasion (4). *S. agalactiae* binds to immobilized fibronectin (5).

However, the scpB defective mutant *S. agalactiae*’s attachment to fibronectin significantly decreases when compared to the wild strain (6). This suggests the involvement of multiple factors in the fibronectin binding process. In addition to the binding activity of AFB, it seems to be a peptidoglycan hydrolase. The possible role of the AFB in the attachment process and the substantial pathogenicity is not well recognized due to the lack of afb-defective mutant *S. agalactiae*.

Commonly, peptidoglycan hydrolases deal with cell separation, turn over, remodeling, and degradation of cell wall. Evidence shows that peptidoglycan hydrolases, autolysins, are involved in the pathogenesis and virulence of Gram-positive bacteria by mediating bacterial adherence (26, 27). To date numerous autolysin/adhesion proteins including Aaa, Atl, Aae, LytM, AmiC, etc which confirmed binding to ECM are described under gram-positive bacteria (11, 13-15, 28). In vivo studies demonstrated that autolysin-defective mutants to be less virulent than wild type strains of *Listeria monocytogenes*, *S. aureus*, *S. pneumonia*, and *S. epidermidis* (29-31). In silico studies of AFB demonstrated high homology to amidase, and zymography confirmed the activity in vitro (Fig 5). Therefore, AFB can be a bifunctional protein, based on its binding affinity to two plasma proteins and amidase like activity. Using patients’ sera, we did not get any

Fig 5. (A). Sequence of the gbs1805 gene. Red: Nucleic acid sequence of signal peptide. (B). Amino acid sequence of the AFB (the recombinant protein). (C). Multiple alignment of AFB to other protein of *Streptococcus agalactiae*.
SANAZ DEHBASHI ET AL.

evidence showing antigenic activity.

CONCLUSION

The AFb is a novel protein encoded by gbs1805 in S. agalactiae and is capable to bind with the plasma proteins - fibrinogen and fibronectin. The role of the protein in adhesion and colonization of the bacterium is unknown and needs further investigation.

ACKNOWLEDGEMENT

The authors wish to express their gratitude to research council of Tehran university of Medical Sciences, Iran, for financial support (Grant No: 24744).

REFERENCES

1. Reinscheid DJ, Gottschalk B, Schubert A, Eikmanns BJ, Chhatwal GS. Identification and molecular analysis of PcsB, a protein required for cell wall separation of group B streptococcus. J Bacteriol 2001; 183:1175-83.
2. Ragunathan P, Ponnuraj K. Expression, purification and structural analysis of a fibrinogen receptor FbsA from Streptococcus agalactiae. Protein J 2011; 30; 159-66.
3. Fluegge K, Schweier O, Schiltz E, Batsford S, Berner R. Identification and immunoreactivity of proteins released from Streptococcus agalactiae. Eur J Clin Microbiol Infect Dis 2004; 23: 818-24.
4. Hull JR, Tamura GS, Castner DG. Interactions of the streptococcal C5a peptidase with human fibronectin. Acta Biomater 2008; 4: 504-513.
5. Butler KM, Baker CJ, Edwards MS. Interaction of soluble fibronectin with group B streptococci. Infect Immun 1987; 55: 2404-2408.
6. Beckmann C, Waggoner JD, Harris TO, Tamura GS, Rubens CE. Identification of novel adhesins from Group B streptococci by use of phage display reveals that C5a peptidase mediates fibronectin binding. Infect Immun 2002; 70: 2869-2876.
7. Rivera J, Vannakambadi G, Hook M, Sperizale P. Fibrinogen-binding proteins of Gram-positive bacteria. Thromb Haemost 2007; 98: 503-511.
8. Devi AS, Ponnuraj K. Cloning, expression, purification and ligand binding studies of novel fibrinogen-binding protein FbsB of Streptococcus agalactiae. Protein Expr Purif 2010; 74: 148-155.
9. Gutekunst H, Eikmanns BJ, Reinscheid DJ. The novel fibrinogen-binding protein FbsB promotes Streptococcus agalactiae invasion into epithelial cells. Infect Immun 2004; 72: 3495-504.
10. Gotz F, Heilmann C, Stehle T. Functional and structural analysis of the major amidase (Afi) in Staphylococcus. Int J Med Microbiol 2014; 304: 156-63.
11. Biswas R, Voggu L, Simon UK, Hentschel P, Thumm G, Gotz F. Activity of the major staphylococcal autolysin Afi. FEMS Microbiol Lett 2006; 259: 260-268.
12. Garcia P, Paz GM, Garcia E, Garcia JL, Lopez R. The molecular characterization of the first autolytic lysozyme of Streptococcus pneumoniae reveals evolutionary mobile domains. Mol Microbiol 1999; 33:128-138.
13. Grilo IR, Ludovice AM, Tomasz A, De Lencastre H, Sobral RG. The glucosaminidase domain of Atl - the major Staphylococcus aureus autolysin - has DNA-binding activity. Microbiology open 2014; 3: 247-256.
14. Heilmann C, Hartleib J, Hussain MS, Peters G. The multifunctional Staphylococcus aureus autolysin aad mediates adherence to immobilized fibrinogen and fibronectin. Infect Immun 2005; 73: 4793-4802.
15. Mellroth P, Daniels R, Eberhardt A, Ronnlund D, Blom H, Widengren J, et al. LytA, major autolysin of Streptococcus pneumoniae, requires access to nascent peptidoglycan. J Biol Chem 2012; 287: 11018-29.
16. Tamura GS, Kuypers JM, Smith S, Raff H, Rubens CE. Adherence of group B streptococci to cultured epithelial cells: roles of environmental factors and bacterial surface components. Infect Immun 1994; 62: 2450-2458.
17. Patti JM, Allen BL, McGavin MJ, Hook M. MSCRAMM-mediated adherence of microorganisms to host tissues. Annu Rev Microbiol 1994; 48:585-617.
18. Courtney HS, Bronze MS, Dale JB, Hasty DL. Analysis of the role of M24 protein in A streptococcal adhesion and colonization by use of omega-interposon mutagenesis. Infect Immun 1994; 62: 4868-4873.
19. Shenkman B, Rubinstein E, Tamarin I, Bardik R, Savion N, Varon D. Staphylococcus aureus adherence to thrombin-treated endothelial cells is mediated by fibrinogen but not by platelets. J Lab Clin Med 2000; 135: 43-51.
20. Buscetta M, Papasergi S, Firon A, Pietrocola G, Biondo C, Mancuso G, et al. FbsC, a Novel Fibrinogen-binding Protein, Promotes Streptococcus agalactiae-Host Cell Interactions. J Biol Chem 2014; 289: 21003-21015.
21. See OS, Minasov G, Seepersaud R, Doran KS, Dubrovska I, Shuvalova L, et al. Characterization of fibrinogen binding by glycoproteins Srr1 and Srr2 of Streptococcus agalactiae. J Biol Chem 2013; 288: 35982-35996.
22. Schubert A, Zakikhany K, Schreiner M, Frank R, Spellerberg B, Eikmanns BJ, et al. A fibrinogen recep-
tor from group B Streptococcus interacts with fibrinogen by repetitive units with novel ligand binding sites. Mol Microbiol 2002; 46: 557-569.

23. Margarit I, Bonacci S, Pietrocola G, Rindi S, Ghezzo C, Bombaci M, et al. Capturing host-pathogen interactions by protein microarrays: identification of novel streptococcal proteins binding to human fibronectin, fibrinogen, and C4BP. FASEB J 2009; 23: 3100-3112.

24. Seo HS, Xiong YQ, Sullam PM. Role of the serine-rich surface glycoprotein Srr1 of Streptococcus agalactiae in the pathogenesis of infective endocarditis. PLoS One 2013; 8: e64204.

25. Mu R, Kim BJ, Paco C, Del Rosario Y, Courtney HS, Doran KS. Identification of a group B streptococcal fibronectin binding protein, SfbA, that contributes to invasion of brain endothelium and development of meningitis. Infect Immun 2014;82: 2276-86.

26. Berry AM, Paton JC. Additive attenuation of virulence of Streptococcus pneumoniae by mutation of the gene encoding pneumolysin and other putative pneumococcal virulence proteins. Infect Immun 2000; 68: 133-40.

27. Hell W, Meyer HG, Gattemann SG. Cloning of a gene encoding a Staphylococcus saprophyticus surface protein with adhesive and autolytic properties. Mol Microbiol 1998; 29: 871-881.

28. Milohanic E, Jonquieres R, Cossart P, Berche P, Guilllard JL. The autolysin Ami contributes to the adhesion of Listeria monocytogenes to eukaryotic cells via its cell wall anchor. Mol Microbiol 2001; 39: 1212-1224.

29. Heilmann C, Thumm G, Chhatwal GS, Hartleib J, Ueckotter A, Peters G. Identification and characterization of a novel autolysin (Aae) with adhesive properties from Staphylococcus epidermidis. Microbiology 2003; 149: 2769-78.

30. Rupp ME, Fey PD, Heilmann C, Gotz F. Characterization of the importance of Staphylococcus epidermidis autolysin and polysaccharide intercellular adhesin in the pathogenesis of intravascular catheter-associated infection in a rat model. J Infect Dis 2001; 183:1038-1042.

31. Pilgrim S, Kolb-Maurer A, Gentschev I, Goebel W, Kuhn M. Deletion of the gene encoding p60 in Listeria monocytogenes leads to abnormal cell division and loss of actin-based motility. Infect Immun 2003; 71: 3473-84.