SPECTRAL SYNTHESIS VIA MOMENT FUNCTIONS ON HYPERGROUPS

ZYWILLA FECHNER, ESZTER GSELMANN, AND LÁSZLÓ SZÉKELYHIDI

Abstract. In this paper we continue the discussion about relations between exponential polynomials and generalized moment generating functions on a commutative hypergroup. We are interested in the following problem: is it true that every finite dimensional variety is spanned by moment functions? Let \(m \) be an exponential on \(X \). In our former paper we have proved that if the linear space of all \(m \)-sine functions in the variety of an \(m \)-exponential monomial is (at most) one dimensional, then this variety is spanned by moment functions generated by \(m \). In this paper we show that this may happen also in cases where the \(m \)-sine functions span a more than one dimensional subspace in the variety. We recall the notion of a polynomial hypergroup in \(d \) variables, describe exponentials on it and give the characterization of the so called \(m \)-sine functions. Next we show that the Fourier algebra of a polynomial hypergroup in \(d \) variables is the polynomial ring in \(d \) variables. Finally, using Ehrenpreis–Palamodov Theorem we show that every exponential polynomial on the polynomial hypergroup in \(d \) variables is a linear combination of moment functions contained in its variety.

1. Introduction

In our former paper (see [5]) we studied the following problem: given a commutative hypergroup \(X \), is it true that all exponential polynomials are included in the linear span of all generalized moment functions? A more precise formulation of this problem reads as follows: given an exponential monomial corresponding to the exponential \(m \) on the commutative hypergroup \(X \), is it true that the (finite dimensional) variety of this exponential monomial has a basis consisting of generalized moment functions associated with the exponential \(m \)? In [5], we proved that a sufficient condition for this is that all \(m \)-sine functions in the given variety form a one dimensional subspace. Of course, the same holds if all \(m \)-sine functions in the variety are zero, as in that case every exponential monomial, as well as every generalized moment function in the given variety is a constant multiple of \(m \).

In addition, it was shown in [5] that this sufficient condition holds on polynomial hypergroups in one variable, for example.

A natural question is if the condition that the \(m \)-sine functions in the given variety form a linear space of dimension at most one is necessary. The subject
of this paper is to study this problem, to give a negative answer, and to support the conjecture that, in fact, every exponential monomial is a linear combination of generalized moment functions in its variety. In particular, we show that if X is a polynomial hypergroup in d variables, then every exponential monomial is the linear combination of generalized moment functions, however, there are exponential monomials, whose variety contains more than one linearly independent sine functions, if $d > 1$.

A hypergroup is a locally compact Hausdorff space X equipped with an involution and a convolution operation defined on the space of all bounded complex regular measures on X. For the formal definition, historical background and basic facts about hypergroups we refer to [2]. In this paper X denotes a commutative hypergroup with identity element e, involution \circ, and convolution \ast. For each function f on X we define the function q_f by

$$q_f(x) = f(x^{-1} \ast x).$$

Given x in X we denote the point mass with support the singleton $\{x\}$ by δ_x. The convolution $\delta_x \ast \delta_y$ is a compactly supported probability measure on X, and for each continuous function $h: X \to \mathbb{C}$ the integral

$$\int_X h(t)d(\delta_x \ast \delta_y)(t)$$

will be denoted by $h(x \ast y)$. Given y in X the function $x \mapsto h(x \ast y)$ is the translate of h by y.

A set of continuous complex valued functions on X is called translation invariant, if it contains all translates of its elements. A linear translation invariant subspace of all continuous complex valued functions is called a variety, if it is closed with respect to uniform convergence on compact sets. The smallest variety containing the given function h is called the variety of h, and is denoted by $\tau(h)$. Clearly, it is the intersection of all varieties including h. A continuous complex valued function is called an exponential polynomial, if its variety is finite dimensional. An exponential polynomial is called an exponential monomial, if its variety is indecomposable, that is, it is not the sum of two proper subvarieties. The simplest nonzero exponential polynomial is the one having one dimensional variety: it consists of all constant multiples of a nonzero continuous function. Clearly, it is an exponential monomial. If we normalize that function by taking 1 at e, then we have the concept of an exponential. Recall that m is an exponential on X if it is a non-identically zero continuous complex-valued function satisfying $m(x \ast y) = m(x)m(y)$ for each x, y in X. Exponential monomials and polynomials on commutative hypergroups have been introduced and characterized in [9, 10, 3]. In the study of exponential polynomials the basic tool is the modified difference (see in [9]). Here we briefly recall the notion of modified difference. For a given function f in $C(X)$, y in X and an exponential $m: X \to \mathbb{C}$ we define the modified difference:

$$\Delta_{m; y} f(x) = f(x \ast y) - m(y)f(x)$$

for all x in X. For y_1, \ldots, y_{N+1} in X we define

$$\Delta_{m; y_1,\ldots,y_{N+1}} f(x) = \Delta_{m; y_1,\ldots,y_N} \ast \Delta_{m; y_N+1} f(x)$$

for all x in X. The following characterization theorem of exponential monomials is proved in [3 Corollary 2.7].
Theorem 1.1. Let X be a commutative hypergroup. The continuous function $f : X \rightarrow \mathbb{C}$ is an exponential monomial if and only if there exists an exponential m and a natural number n such that

$$\Delta_{m; y_1, y_2, \ldots, y_{n+1}} * f = 0$$

holds for each $y_1, y_2, \ldots, y_{n+1}$ in X.

If f is nonzero, then m is uniquely determined, and f is called an m-exponential monomial, and its degree is the smallest n satisfying the property in Theorem 1.1. The degree of each exponential function is zero: in fact, every nonzero exponential monomial of degree zero is a constant multiple of an exponential. For exponential monomials of first degree sine functions provide an example: given an exponential m on X the continuous function $s : X \rightarrow \mathbb{C}$ is called an m-sine function, if

$$s(x * y) = s(x)m(y) + s(y)m(x)$$

holds for each x, y in X. If s is nonzero, then m is uniquely determined, and its degree is 1.

Important examples for exponential polynomials are provided by the moment functions. Let X be a commutative hypergroup, r a positive integer, and for each multi-index α in \mathbb{N}^r, let $f_\alpha : X \rightarrow \mathbb{C}$ be continuous function, such that $f_\alpha \neq 0$ for $|\alpha| = 0$. We say that $(f_\alpha)_{\alpha\in\mathbb{N}^r}$ is a generalized moment sequence of rank r, if

$$f_\alpha(x * y) = \sum_{\beta \leq \alpha} \binom{\alpha}{\beta} f_{\beta}(x)f_{\alpha-\beta}(y)$$

holds whenever x, y are in X (see [4]). It is obvious that the variety of f_α is finite dimensional: in fact, every translate of f_α is a linear combination of the finitely many functions f_β with $\beta \leq \alpha$, by equation (1.1). The functions in a generalized moment function sequence are called generalized moment functions. In this paper we shall omit the ”generalized” adjective: we simply use the terms moment function sequence and moment function. The order of f_α in the above moment function sequence is defined as $|\alpha|$. It follows that moment functions are exponential polynomials.

The special case of rank 1 moment sequences leads to the following system of functional equations:

$$f_k(x * y) = \sum_{j=0}^{k} \binom{k}{j} f_j(x)f_{k-j}(y)$$

for all $k = 0, 1, \ldots, N$ and for each x, y in X.

Observe that in every moment function sequence the unique function $f_{(0,0,\ldots,0)}$ is an exponential on the hypergroup X. In this case we say that the exponential $m = f_{(0,0,\ldots,0)}$ generates the given moment function sequence, and that the moment functions in this sequence correspond to m. We may also say that the moment functions in the given moment sequence are m-moment functions. It is also easy to see, that in every moment function sequence f_α with $|\alpha| = 1$ is an m-sine function on X, where $m = f_{(0,0,\ldots,0)}$.

The main result in [4] is that moment sequences of rank r can be described by using Bell polynomials if the underlying hypergroup is an Abelian group. The point
is that in this case the situation concerning \(\tau \) can be reduced to the case where the generating exponential is the identically 1 function and the problem reduces to a problem about polynomials of additive functions. Unfortunately, if \(X \) is not a group, then such a reduction is not available, in general.

The following result is important.

Theorem 1.2. Let \(X \) be a commutative hypergroup. Then the variety of a nonzero moment function contains exactly one exponential: the generating exponential function.

Proof. In the moment function sequence in Eq. (1.1) we show that the only exponential in the variety of \(f = f_{\alpha} \) is \(m = f_{(0,0,...,0)} \). First we show that \(f \) is an \(m \)-exponential monomial of degree at most \(|\alpha| \). We prove by induction on \(N = |\alpha| \), and the statement is obviously true for \(N = 0 \). Assuming that the statement holds for \(|\alpha| \leq N \), we prove it for \(|\alpha| = N + 1 \). By equation \((1.1) \), we have

\[
\Delta_{m; y} * f_{\alpha}(x) = f_{\alpha}(x * y) - m(y)f_{\alpha}(x) = \sum_{\beta < \alpha} \left(\begin{array}{c} \alpha \\ \beta \end{array} \right) \Delta_{m; \beta}(x)f_{\alpha - \beta}(y).
\]

for each \(x, y \) in \(X \). The right side, as a function of \(x \), is an exponential monomial of degree at most \(N = |\alpha| - 1 \), corresponding to the exponential \(m \), by the induction hypothesis. It follows that

\[
\Delta_{m; y_1, y_2, ..., y_{N+1}} * f_{\alpha}(x) = \Delta_{m; y_1, y_2, ..., y_{N+1}} * [\Delta_{m; y} * f_{\alpha}](x) = \sum_{\beta < \alpha} \left(\begin{array}{c} \alpha \\ \beta \end{array} \right) \Delta_{m; \beta}(x)f_{\alpha - \beta}(y) = 0,
\]

which proves our first statement.

To prove that \(m \) is the only exponential in the variety of \(f \) we know, from the results in Eq. (1.1), that the annihilator \(\text{Ann} \tau(m) \) of the variety \(\tau(m) \) of \(m \) is a closed maximal ideal \(M_m \) in \(M_e(X) \), the space of all compactly supported complex Borel measures on \(X \), in which the measures \(\Delta_{m; y} \) span a dense subspace, and \(\tau(m) \subseteq \tau(f) \), hence \(\text{Ann} \tau(f) \subseteq M_m \). On the other hand, by the above equation,

\[
M_m^{N+2} \subseteq \text{Ann} \tau(f),
\]

as the product of any \(N + 2 \) generators of a dense subspace of \(M_m \) annihilates the function \(f \). It follows that, if an exponential \(m_1 \) is in \(\tau(f) \), then clearly \(\tau(m_1) \subseteq \tau(f) \), hence \(\text{Ann} \tau(f) \subseteq \text{Ann} \tau(m_1) \). We conclude that

\[
M_m^{N+2} \subseteq \text{Ann} \tau(f) \subseteq \text{Ann} \tau(m_1).
\]

As \(\text{Ann} \tau(m_1) \) is a maximal ideal, hence it is a prime ideal, as well, consequently we have \(M_m \subseteq \text{Ann} \tau(m_1) \). By maximality, it follows that we have \(\tau(m) = \tau(m_1) \), which immediately implies \(m_1 = m \). \(\square \)

This theorem can be formulated in the way that every \(m \)-moment function is an \(m \)-exponential monomial.

Exponential monomials are the basic building blocks of spectral synthesis. We say that *spectral analysis* holds for a variety, if every nonzero subvariety in the variety contains a nonzero exponential monomial. We say that a variety is *synthesizable* if all exponential monomials in the variety span a dense subspace. We say
that \emph{spectral synthesis holds for} a variety if every subvariety of it is synthesisable. It is obvious that spectral synthesis for a variety implies spectral analysis for it. If spectral analysis holds for every variety on \(X \), then we say that \emph{spectral analysis holds on} \(X \). If every variety on \(X \) is synthesisable, then we say that \emph{spectral synthesis holds on} \(X \). Clearly, on every commutative hypergroup, spectral synthesis holds for finite dimensional varieties.

In the light of these definitions our basic problem about the relation between exponential monomials and moment functions can be reformulated: is it true that every finite dimensional variety is spanned by moment functions? If so, then spectral synthesis is rather based on moment functions, not on exponential monomials. Obviously, it is enough to consider indecomposable varieties, and even we may assume that the variety in question is the variety of an exponential monomial. Our result in \([5, \text{Theorem 2.1}]\) says that if the linear space of all \(m \)-sine functions in the variety of an \(m \)-exponential monomial is (at most) one dimensional, then this variety is spanned by moment functions – obviously, associated with \(m \). In the subsequent paragraphs we show that this may happen also in cases where the \(m \)-sine functions span a more than one dimensional subspace in the variety.

\section*{2. Polynomial hypergroups}

In this section we recall the definition of a class of hypergroups which will be used in the sequel.

The following definition is taken from \([2, \text{Chapter 3, Section 3.1, p. 133}]\). Let \(d \) denote a positive integer, let \(P_n \) denote the set of polynomials in on \(\mathbb{C}^d \) of degree at most \(n \). Finally, let \(\pi \) denote a probability measure on \(\mathbb{C}^d \), and we assume that the commutative hypergroup \(X \) with convolution \(\ast \), involution \(\cdot \), and identity \(o \) satisfies the following properties: for each \(x \) in \(X \) there exists a polynomial \(Q_x \) on \(\mathbb{C}^d \) such that we have:

\begin{enumerate}[(P1)]
 \item For each nonnegative integer \(n \), the set \(X_n = \{ x : x \in X, Q_x \in P_n \} \) is a basis of the linear space \(P_n \).
 \item We have \(Q_x(1,1,\ldots,1) = 1 \) for each \(x \) in \(X \).
 \item For each \(x \) in \(X \), we have \(Q_x(z) = \overline{Q_x}(z) \) whenever \(z \) is in \(\text{supp} \pi \).
 \item For each \(x, y, w \) in \(X \), we have
 \[\int_{\mathbb{C}^d} Q_x Q_y Q_w d\pi \geq 0. \]
\end{enumerate}

In fact, the properties (P1), (P2), (P3), (P4) are not independent – for the details see \([2, \text{Proposition 3.1.4}]\). Property (P4) expresses that the polynomials \(Q_x \) for \(x \) in \(X \) are orthogonal with respect to the measure \(\pi \).

In this case, by property (P1), for each \(x, y \) in \(X \) the polynomial \(Q_x Q_y \) admits a unique representation

\begin{equation}
Q_x Q_y = \sum_{w \in X} c(x, y, w) Q_w
\end{equation}

with some complex numbers \(c(x, y, w) \). The formula \((2.1)\) is called \emph{linearization formula}, and the numbers \(c(x, y, w) \) are called \emph{linearization coefficients}.

The hypergroup \(X \) with convolution \(\ast \) is called a \emph{polynomial hypergroup (in} \(d \) \emph{variables}) if there exists a family \(\{ Q_x : x \in X \} \) of polynomials satisfying the above
polynomials associated with the family of polynomials \(p \) of degree \(d \) defined by the recursion

\[
Tx_{k,n}(x) = \begin{cases}
T_k(x), & \text{if } n = 0 \\
T_n(y), & \text{if } k = 0
\end{cases}
\]

Furthermore, for each positive integers \(k, n \) with \(k + n \geq 2 \),

\[
xyT_{k,n}(x,y) = \frac{1}{4} [T_{k-1,n-1}(x,y) + T_{k+1,n-1}(x,y) + T_{k-1,n+1}(x,y) + T_{k+1,n+1}(x,y)].
\]

The choice \(d = 1 \) is the case of polynomial hypergroups in one variable. In this case we may suppose that \(X = \mathbb{N} \), the set of natural numbers, and the family of polynomials \(\{Q_x : x \in X\} \) is in fact a sequence of polynomials \(\{P_n\}_{n \in \mathbb{N}} \), where \(P_n \) is of degree \(n \) and we always assume that \(P_0 = 1 \). Suppose that there exists a Borel measure on a finite interval such that the sequence \(\{P_n\}_{n \in \mathbb{N}} \) is orthogonal with respect to this measure. In this case it turns out that the linearization coefficients \(c(k,l,n) \) are zero unless \(|k-l| \leq n \leq k+l \). Hence the linearization formula has the form

\[
P_k P_l = \sum_{l=|k-l|}^{k+l} c(k,l,n) P_n.
\]
Clearly, this is satisfied by $T_{k,n}(x,y) = T_k(x) \cdot T_n(y)$, which leads to a two-dimensional generalization of the Chebyshev hypergroup on the basic set $X = \mathbb{N} \times \mathbb{N}$.

From the above recursion formulas we can derive
$$T_{k,l} \cdot T_{m,n} = \frac{1}{4} [T_{|k-m|,|l-n|} + T_{|k-m|,|l+n|} + T_{k+m,|l-n|} + T_{k+m,|l+n|}],$$
which provides us the convolution of point masses in X:

$$\delta_{k,l} \ast \delta_{m,n} = \frac{1}{4} [\delta_{|k-m|,|l-n|} + \delta_{|k-m|,|l+n|} + \delta_{k+m,|l-n|} + \delta_{k+m,|l+n|}]$$
whenever k, l, m, n are natural numbers. The involution on X is the identity mapping, and the identity is $\delta_{0,0}$.

Exponential functions on X are described in the following theorem (see [2 Proposition 3.1.2], [8, Theorem 3.1]).

Theorem 2.1. The function $M : \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{C}$ is an exponential on X if and only if there exist complex numbers λ, μ such that

$$M(x,y) = T_x(\lambda)T_y(\mu)$$
holds whenever (x,y) are in X. The correspondence between the exponentials M and the pairs (λ, μ) is one-to-one.

Proof. If M has the given form with some complex numbers λ, μ, then for each natural numbers k, l, m, n we have

$$M[\delta_{k,l} \ast \delta_{m,n}] = \int_X M(u,v) d(\delta_{k,l} \ast \delta_{m,n})(u,v) =$$

$$\frac{1}{4} [T_{|k-m|}(\lambda)T_{|l-n|}(\mu) + T_{|k-m|}(\lambda)T_{|l+n|}(\mu) + T_{k+m}(\lambda)T_{|l-n|}(\mu) + T_{k+m}(\lambda)T_{|l+n|}(\mu)] =$$

$$T_{k,l}(\lambda)T_{m,n}(\mu) = T_{k}(\lambda)T_{l}(\mu) : T_{m}(\lambda)T_{n}(\mu) = M(\delta_{k,l})M(\delta_{m,n}),$$

further $M(\delta_{0,0}) = T_0(\lambda)T_0(\mu) = 1$, hence M is an exponential on the hypergroup X.

Conversely, suppose that $M : \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{C}$ is an exponential on X, that is, we have

$$M[\delta_{k,l} \ast \delta_{m,n}] = M(\delta_{k,l})M(\delta_{m,n})$$
for each natural numbers k, l, m, n, further $M(\delta_{0,0}) = 1$. We define the function

$$f(m,n) = M(\delta_{m,n})$$
whenever m, n are in \mathbb{N}. Then f satisfies

$$f(k,l)f(m,n) =$$

$$\frac{1}{4} [M(\delta_{|k-m|,|l-n|}) + M(\delta_{|k-m|,|l+n|}) + M(\delta_{k+m,|l-n|}) + M(\delta_{k+m,|l+n|})] =$$

$$\frac{1}{4} [f(|k-m|,|l-n|) + f(|k-m|,|l+n|) + f(k+m,|l-n|) + f(k+m,|l+n|)]$$
for each k, l, m, n in \mathbb{N}. Here we substitute $l = m = 0$ to get

$$f(k,0)f(0,n) = f(k,n),$$
and the substitution $l = n = 0$ in (2.7) gives

$$f(k,0)f(m,0) = \frac{1}{2} [f(|k-m|,0) + f(k+m,0)]$$
for all \(k, m \) in \(\mathbb{N} \). As \(f(0, 0) = 1 \), the function \(k \mapsto f(k, 0) \) is an exponential of the Chebyshev hypergroup (see \([3]\)), hence \(f(k, 0) = T_k(\lambda) \) for each \(k \) in \(\mathbb{N} \) with some complex number \(\lambda \). Similarly, we have that \(f(0, n) = T_n(\mu) \) holds for each \(n \) in \(\mathbb{N} \) with some complex number \(\mu \). It follows, by (2.8), that

\[
M(\delta_{k,n}) = f(k, n) = f(k, 0)f(0, n) = T_k(\lambda)T_n(\mu),
\]

and our statement is proved. Clearly, the pair \(\lambda, \mu \) is uniquely determined by the exponential \(M \).

Using this theorem it is reasonable to denote the exponential corresponding to the pair \((\lambda, \mu) \) in \(\mathbb{C}^2 \) by \(M_{\lambda, \mu} \).

Theorem 2.2. Let \(M_{\lambda, \mu} : \mathbb{N} \times \mathbb{N} \to \mathbb{C} \) be an exponential on \(X \). The function \(S : \mathbb{N} \times \mathbb{N} \to \mathbb{C} \) is an \(M_{\lambda, \mu} \)-sine function on \(X \) if and only if there are complex numbers \(a, b \) such that

\[
S(x, y) = aT'_x(\lambda)T_y(\mu) + bT_x(\lambda)T'_y(\mu)
\]

whenever \(x, y \) are in \(X \).

Proof. The function \(S \) given in (2.2) is an \(M_{\lambda, \mu} \)-sine function on \(X \), as it is easy to check by simple calculation. For the converse we assume that \(S : \mathbb{N} \times \mathbb{N} \to \mathbb{C} \) is an \(M_{\lambda, \mu} \)-sine function on \(X \). Then we have for each \(x, y, u, v \) in \(\mathbb{N} \):

\[
S((x, y) * (u, v)) = S(x, y)M_{\lambda, \mu}(u, v) + S(u, v)M_{\lambda, \mu}(x, y).
\]

Using the form of the exponentials on \(X \) given in the previous Theorem 2.1 and substituting \(y = u = 0 \) we get

\[
S(x, v) = S(x, 0)T_v(\mu) + S(0, v)T_x(\lambda).
\]

Now we substitute \(y = v = 0 \) in (2.10) to get

\[
\frac{1}{2}[S(|x - u|, 0) + S(x + u, 0)] = S(x, 0)T_u(\lambda) + S(u, 0)T_x(\lambda).
\]

Using the fact that the function \(M_\lambda : x \mapsto T_x(\lambda) \) is an exponential on the Chebyshev hypergroup (see \([3]\)), we can write equation (2.12) in the form

\[
S(x * u, 0) = S(x, 0)M_\lambda(u) + S(u, 0)M_\lambda(x),
\]

and this means that the function \(x \mapsto S(x, 0) \) is an \(M_\lambda \)-sine function on the Chebyshev hypergroup. It follows from \([3]\) Theorem 2.5, that

\[
S(x, 0) = a\frac{d}{d\lambda}M_\lambda(x) = aT'_x(\lambda)
\]

with some complex number \(a \). Similarly, we have that

\[
S(0, v) = b\frac{d}{d\mu}M_\mu(x) = aT'_v(\mu).
\]

Finally, substitution into (2.11) gives the statement. □

It follows that the linear space of all \(M_{\lambda, \mu} \)-sine functions on \(X \) is at most two dimensional, it is spanned by the two functions \((x, y) \mapsto T'_x(\lambda)T_y(\mu) \) and \((x, y) \mapsto T_x(\lambda)T'_y(\mu) \). On the other hand, these two functions are linearly independent. Indeed, assume that

\[
aT'_x(\lambda)T_y(\mu) + \beta T_x(\lambda)T'_y(\mu) = 0
\]
holds for some complex numbers α, β and for all x, y in X. Substituting $x = 0, y = 1$ and using $T_0(z) = 1$ and $T_1(z) = z$ we have $T_0'(\lambda) = 0$ and $T_1'(\mu) = 1$, hence we get $\beta = 0$. Interchanging the role of x and y, we obtain $\alpha = 0$, hence the two functions $(x, y) \mapsto T_x'(\lambda)T_y'(\mu)$ and $(x, y) \mapsto T_x(\lambda)T_y'(\mu)$ are linearly independent – they form a basis of the linear space of all $M_{\lambda, \mu}$-sine functions. We consider the variety $\tau(\varphi)$ of an $M_{\lambda, \mu}$-exponential monomial, which is not a linear combination of moment functions in $\tau(\varphi)$ associated with the exponential $M_{\lambda, \mu}$. From [5, Theorem 2.1] it follows, that the two functions $(x, y) \mapsto T_x'(\lambda)T_y'(\mu)$ and $(x, y) \mapsto T_x(\lambda)T_y'(\mu)$ must belong to $\tau(\varphi)$, hence the linear space of all $M_{\lambda, \mu}$-sine functions in $\tau(\varphi)$ is two dimensional. We will show that still $\tau(\varphi)$ is generated by moment functions. This would verify that the sufficient condition given in [5, Theorem 2.1] it follows, that the two functions $(x, y) \mapsto T_x'(\lambda)T_y'(\mu)$ and $(x, y) \mapsto T_x(\lambda)T_y'(\mu)$ in $\tau(\varphi)$ is generated by moment functions.

We note that the formula for S in equation (2.4) can be written in the following form

$$S(x, y) = a \tilde{c}_\lambda M_{\lambda, \mu}(x, y) + b \tilde{c}_\mu M_{\lambda, \mu}(x, y),$$

which is a special case of the moment functions appear in Theorem 3.1 in the next section.

3. A CLASS OF MOMENT FUNCTIONS ON POLYNOMIAL HYPERGROUPS

Let X be a polynomial hypergroup in d variables associated with the family of polynomials $\{Q_x : x \in X\}$, and we always assume that $Q_o = 1$, where o is the identity of X. We introduce a special class of exponential monomials on X. Let P be a polynomial in d variables:

$$P(\xi) = \sum_{|\alpha| \leq N} a_\alpha \xi^\alpha,$$

where we use multi-index notation. This means that $\xi = (\xi_1, \xi_2, \ldots, \xi_d)$ is in \mathbb{C}^d, $\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_d)$ is in \mathbb{N}^d, a_α is a complex number, and $|\alpha| = \alpha_1 + \alpha_2 + \cdots + \alpha_d$, $\xi^\alpha = \xi_1^{\alpha_1} \xi_2^{\alpha_2} \cdots \xi_d^{\alpha_d}$.

Then we write

$$P(\partial) = \sum_{|\alpha| \leq N} a_\alpha \partial^\alpha,$$

where $\partial = (\partial_1, \partial_2, \ldots, \partial_d)$ with the obvious meaning of the partial differential operators ∂_i. The differential operator $P(\partial)$ is defined on the space of polynomials in d variables in the usual way: given the polynomial Q in the polynomial ring $\mathbb{C}[z_1, z_2, \ldots, z_d]$ then

$$[P(\partial)Q](\xi) = \sum_{|\alpha| \leq N} a_\alpha [\partial_1^{\alpha_1} \partial_2^{\alpha_2} \cdots \partial_d^{\alpha_d} Q](\xi).$$
for each $\xi \in C^d$. If P is not identically zero, then we always assume that $\sum_{|\alpha|=N} |a_{\alpha}| > 0$, that is, the the total degree of the polynomial P is N – in this case we say that the differential operator $P(\partial)$ is of order N.

The following result shows that the functions $x \mapsto P(\partial)Q_x$ are linear combinations of moment functions on X.

Theorem 3.1. Let X be a polynomial hypergroup in d variables associated with the family of polynomials $\{Q_x : x \in X\}$. Then, for each multi-index α in \mathbb{N}^d, and for every λ in \mathbb{C}^d, the function $x \mapsto [\partial^\alpha Q_x](\lambda)$ is a moment function sequence of rank d associated with the exponential $x \mapsto e^{Q_x}$.

Proof. Let $c((x, y, t)$ denote the linearization coefficients of the polynomial hypergroup X, that is

$$Q_x \cdot Q_y = \sum_{t \in X} c(x, y, t)Q_t$$

for each x, y in X. Further let $f(x) = [\partial^\alpha Q_x](\lambda)$ whenever x in X: then we have

$$f(x \ast y) = \int_X f(t) d(\delta_x \ast \delta_y)(t) = \int_X [\partial^\alpha Q_t](\lambda) d(\delta_x \ast \delta_y)(t) =$$

$$\partial^\alpha \left[\int_X Q_t(\lambda) d(\delta_x \ast \delta_y)(t) \right] = \partial^\alpha \left[\sum_{t \in X} c(x, y, t)Q_t(\lambda) \right] =$$

$$[\partial^\alpha (Q_x \cdot Q_y)](\lambda) = \sum_{\beta \leq \alpha} \binom{\alpha}{\beta} [\partial^\beta Q_x](\lambda) \cdot [\partial^{\alpha-\beta} Q_y](\lambda),$$

which proves the statement. \qed

The moment functions of the form $x \mapsto \partial Q_x(\lambda)$ play an important role in our work: our purpose is to show that in any variety the linear combinations of these moment functions span a dense subspace. In other words, spectral synthesis holds on any polynomial hypergroup even when we restrict ourselves to exponential polynomials merely of the form $x \mapsto P(\partial)Q_x(\lambda)$. This will be proved in the subsequent paragraphs.

4. The Fourier–Laplace transform

In what follows we shall use the Fourier–Laplace transform on commutative hypergroups. Here we shortly summarize the basic concepts and results. Let X be a commutative hypergroup and let $\mathcal{C}(X)$ denote the linear space of all complex valued continuous functions on X. Equipped with the uniform convergence on compact sets $\mathcal{C}(X)$ is a locally convex topological vector space. If, for instance, X is discrete, then $\mathcal{C}(X)$ is the linear space of all complex valued functions on X and the topology on $\mathcal{C}(X)$ is the topology of pointwise convergence.

The topological dual space of $\mathcal{C}(X)$ can be identified with the space of all compactly supported complex Borel measures on X, denoted by $\mathcal{M}_c(X)$. The identification depends on the Riesz Representation Theorem (see e.g. [6, Theorem 6.19]): every continuous linear functional Λ on $\mathcal{C}(X)$ can be represented in the form

$$\Lambda(f) = \int_X f \, d\mu$$

whenever f is in $\mathcal{C}(X)$, where μ is a uniquely determined measure in $\mathcal{M}_c(X)$, depending on Λ only. Clearly, if X is discrete, then $\mathcal{M}_c(X)$ is the linear space of all
finitely supported complex valued functions on X. For each measure μ in $\mathcal{M}_c(X)$ we define the measure $\hat{\mu}$ by

$$\int_X f \, d\hat{\mu} = \int_X \tilde{f} \, d\mu$$

whenever f is in $\mathcal{C}(X)$.

The convolution in X induces an algebra structure on $\mathcal{M}_c(X)$ in the following manner. Given two measures μ, ν in $\mathcal{M}_c(X)$ their convolution is introduced as the measure $\mu * \nu$ defined on $\mathcal{C}(X)$ by the formula

$$\int_X f \, d(\mu * \nu) = \int_X \int_X f(x * y) \, d\mu(x) \, d\nu(y),$$

whenever f is in $\mathcal{C}(X)$. We recall that $f(x * y)$ stands for the integral

$$\int_X f = \int_X f(t) \, d(\delta_x * \delta_y)(t),$$

and for every exponential $\mu, \nu, \mu * \nu$ are compactly supported, this integral exists for each continuous function f.

It is easy to check that the linear space $\mathcal{M}_c(X)$ is a commutative algebra with the convolution of measures. We call $\mathcal{M}_c(X)$ the measure algebra of the hypergroup X. If X is discrete, then it is usually called the hypergroup algebra of X – imitating the terminology used in group theory.

The Fourier–Laplace transform on $\mathcal{M}_c(X)$ is defined as follows: for each measure μ in $\mathcal{M}_c(X)$ and for each exponential m on X we let

$$\hat{\mu}(m) = \int_X \tilde{m} \, d\mu.$$
For our purposes it will be necessary to describe the Fourier algebra of polynomial hypergroups. This will be done in the subsequent paragraphs.

Let X be a polynomial hypergroup in d variables generated by the family $\{Q_x : x \in X\}$ of polynomials. We may assume that $Q_o = 1$, where o is the identity of X. It is known that the function $m : X \to \mathbb{C}$ is an exponential on X if and only if there exists a $\lambda \in \mathbb{C}^d$ such that

$$m(x) = Q_x(\lambda)$$

holds for each x in X. As λ is obviously uniquely determined by m, hence the set E_pX of all exponentials on X can be identified with \mathbb{C}^d. Consequently, the Fourier–Laplace transform of each measure in $M_c(X)$ is a complex valued function on \mathbb{C}^d:

$$\hat{\mu}(\lambda) = \int_X Q_x(\lambda) \, d\mu(x).$$

In fact, the integral is a finite sum, which implies that $\hat{\mu}$ is a complex polynomial in d variables. Conversely, let P be any polynomial in the polynomial ring $\mathbb{C}[z_1, z_2, \ldots, z_d]$. Then, by definition, P has a representation of the form

$$P(z) = \sum_{k=1}^n c_k Q_{x_k}(z)$$

with some elements x_k in X and complex numbers c_k for $k = 1, 2, \ldots, n$. We have

$$\hat{\delta}_{x_k}(z) = \int_X Q_x(z) \, d\delta_{x_k}(x) = Q_{x_k}(z),$$

hence

$$P = \sum_{k=1}^n c_k Q_{x_k} = \sum_{k=1}^n c_k \hat{\delta}_{x_k} = \left(\sum_{k=1}^n c_k \delta_{x_k} \right).$$

Here $\mu = \sum_{k=1}^n c_k \delta_{x_k}$ is in $M_c(X)$, hence we have proved that each polynomial in $\mathbb{C}[z_1, z_2, \ldots, z_d]$ is in $A_c(X)$. In other words, the Fourier algebra of each polynomial hypergroup in d variables is the polynomial ring in d variables.

5. Spectral synthesis via moment functions

We shall use the following basic result (see [7, 8 Theorem 6.9]).

Theorem 5.1. (Ehrenpreis–Palamodov Theorem) Let I be a primary ideal in the polynomial ring $\mathbb{C}[z_1, z_2, \ldots, z_d]$, and let V denote the set of all common zeros of all polynomials in I. Then there exists a positive integer t such that, for $i = 1, 2, \ldots, t$ there exist differential operators with polynomial coefficients of the form

$$A_i(z, \partial) = \sum_j c_{ij} p_j(z_1, z_2, \ldots, z_d) \partial_1^{j_1} \partial_2^{j_2} \cdots \partial_d^{j_d}$$

for $i = 1, 2, \ldots, t$ with the following property: a polynomial p in $\mathbb{C}[z_1, z_2, \ldots, z_d]$ lies in the ideal I if and only if the result applying $A_i(z, \partial)$ to f vanishes on V for $i = 1, 2, \ldots, t$.

The following result can be found in [8 Theorem 6.10], but for the sake of completeness we present it together with its proof.
Theorem 5.2. Let X be a polynomial hypergroup in d variables, and let V be a proper variety on X. Then the functions of the form $x \mapsto P(\partial)Q_x(\lambda)$ in V, where P is a polynomial in d variables, and λ is in \mathbb{C}^d such that the exponential $x \mapsto Q_x(\lambda)$ is in V, span a dense subspace in V.

Proof. We use the fact that, for each variety on X, if V^\perp denotes the orthogonal complement of V, that is, the set of all measures μ in $\mathcal{M}_c(X)$ such that $\int_X f \, d\mu = 0$ for each f in V, then V^\perp is an ideal in $\mathcal{M}_c(X)$. Similarly, for each ideal I, the annihilator I^\perp is the set of all functions in $\mathcal{C}(X)$ such that $\int f \, d\mu = 0$ for each μ in I, and it is a variety in $\mathcal{C}(X)$. In addition, we have $V^{\perp\perp} = V$. (see e.g. [11 Theorem 5, Theorem 16]). In our case, in particular, V^\perp is a proper ideal. By the Noether–Lasker Theorem, ([11 Theorem 7.13]) I is an intersection of (finitely many) primary ideals. It follows from the Ehrenpreis–Palamodov Theorem 5.1 that, for each λ in V there is a set \mathcal{P}_λ of polynomials such that the measure μ in $\mathcal{M}_c(X)$ annihilates V if and only if

$$[P(\partial)\mu](\lambda) = \int_X [P(\partial)Q_x](\lambda) \, d\mu(x) = 0$$

holds for each λ in V and P in \mathcal{P}_λ. In other words, all exponential polynomials $x \mapsto [P(\partial)Q_x](\lambda)$ with $x \mapsto Q_x(\lambda)$ in V and P in \mathcal{P}_λ belong to V, and their linear hull is dense in V. □

From this theorem we infer that every exponential monomial is a linear combination of moment functions.

Corollary 5.3. Let X be a polynomial hypergroup. Then every exponential polynomial on X is a linear combination of moment functions contained in its variety.

Corollary 5.4. Let X be a polynomial hypergroup in d variables. Then every exponential polynomial on X has the form $x \mapsto P(\partial)Q_x(\lambda)$ with some complex polynomial P in d variables and some complex number λ.

Proof. If f is an exponential monomial, then it has a finite dimensional variety V. As $P(\partial)$ is a linear combination of differential operators of the form ∂^α, and, by Theorem 5.2, $x \mapsto [\partial^\alpha Q_x](\lambda)$ is a moment function, the previous theorem implies that the linear combinations of all exponential monomials in V span a dense subspace. By finite dimensionality, it means that V is the linear span of all moment functions included in V, hence f is a linear combination of moment functions. □

References

[1] M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969.
[2] W. R. Bloom and H. Heyer, Harmonic analysis of probability measures on hypergroups, de Gruyter Studies in Mathematics, vol. 20, Walter de Gruyter & Co., Berlin, 1995.
[3] Z. Fechner and L. Székelyhidi, Finite dimensional varieties on hypergroups, Aequationes Math., doi.org/10.1007/s00010-021-00777-y
[4] Z. Fechner, E. Gselmann and L. Székelyhidi, Moment functions on groups, arXiv:2010.00208 [math.CA], 2020.
[5] Z. Fechner, E. Gselmann and L. Székelyhidi, Moment functions and exponential monomials on commutative hypergroups, to appear
[6] W. Rudin, Real and complex analysis, McGraw-Hill Book Co., New York, third edition, 1987.
[7] B. Sturmfels, Solving systems of polynomial equations, volume 97 of CBMS Regional Conference Series in Mathematics, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 2002.
[8] L. Székelyhidi, *Functional Equations on Hypergroups*, World Scientific Publishing Co. Pte. Ltd., New Jersey, London, 2013.

[9] L. Székelyhidi, Exponential polynomials on commutative hypergroups, *Arch. Math (Basel)*, 101 (4), 341–347, 2013.

[10] L. Székelyhidi, Characterization of exponential polynomials on commutative hypergroups, *Ann. Funct. Anal.*, 5 (2), 53–60, 2014.

[11] L. Székelyhidi, Spherical spectral synthesis on hypergroups, *Acta Math. Hungar.*, 163 (1), 247–275, 2021.

Institute of Mathematics, Lodz University of Technology, 90-924 Łódź, ul. Wólczańska 215, Poland, ORCID 0000-0001-7412-6544

Email address: zfechner@gmail.com

University of Debrecen, H-4002 Debrecen, P.O.Box: 400, Hungary

Email address: gselmann@science.unideb.hu

University of Debrecen, H-4002 Debrecen, P.O.Box: 400, Hungary, ORCID: 0000-0001-8078-6426

Email address: szekely@science.unideb.hu, lszekelyhidi@gmail.com