Sex Steroids Induce Membrane Stress Responses and Virulence Properties in Pseudomonas aeruginosa

Celine Vidaillac,a,b* Valerie Fei Lee Yong,a Marie-Stephanie Aschtgen,a,b,c,d Jing Qu,e Shuowei Yang,f Guangfu Xu,f Zi Jing Seng,b,* Alexandra C. Brown,b,h Md Khadem Ali,g,h,t Avileen K. Jaggi,a Jagadish Sankaran,j,k,a* Yong Hwee Foo,b,* Francesco Righetti,c,d Anu Maashaa Nedumaran,k,* Michele Mac Aogain,a,* Dan Roizman,b Jean-Alexandre Richard,t Thomas R. Rogers,t Masanori Toyofuku,n* Sanjay H. Chotirmall,a*

aLee Kong Chian School of Medicine, Nanyang Technological University, Singapore bSingapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore cDepartment of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden dKarolinska University Hospital Solna, Stockholm, Sweden eShenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China fDepartment of Otolaryngology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China gPriority Research Centre for Healthy Lungs, Hunter Medical Research Institute, Newcastle, New South Wales, Australia hSchool of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia iDepartment of Biological Sciences, National University of Singapore, Singapore jCentre for Bio-Imaging Sciences, National University of Singapore, Singapore kSchool of Materials Science and Engineering (MSE), Nanyang Technological University, Singapore lFunctional Molecules and Polymers, Institute of Chemical and Engineering Sciences, ICES, Agency for Science, Technology, and Research, A*STAR, Singapore mFaculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan nDepartment of Inflammation, Centenary Institute, Sydney, NSW, Australia oUniversity of Technology Sydney, School of Life Sciences, Faculty of Science, Ultimo, NSW, Australia

Celine Vidaillac and Valerie Fei Lee Yong contributed equally to this article. Order of the authors is justified in the acknowledgements section.

ABSTRACT

Estrogen, a major female sex steroid hormone, has been shown to promote the selection of mucoid Pseudomonas aeruginosa in the airways of patients with chronic respiratory diseases, including cystic fibrosis. This results in long-term persistence, poorer clinical outcomes, and limited therapeutic options. In this study, we demonstrate that at physiological concentrations, sex steroids, including testosterone and estradiol, induce membrane stress responses in P. aeruginosa. This is characterized by increased virulence and consequent inflammation and release of proinflammatory outer membrane vesicles promoting in vivo persistence of the bacteria. The steroid-induced P. aeruginosa response correlates with the molecular polarity of the hormones and membrane fluidic properties of the bacteria. This novel mechanism of interaction between sex steroids and P. aeruginosa expalices the reported increased disease severity observed in females with cystic fibrosis and provides evidence for the therapeutic potential of the modulation of sex steroids to achieve better clinical outcomes in patients with hormone-responsive strains.

IMPORTANCE Molecular mechanisms by which sex steroids interact with P. aeruginosa to modulate its virulence have yet to be reported. Our work provides the first characterization of a steroid-induced membrane stress mechanism promoting P. aeruginosa virulence, which could have implications for the development of novel therapeutics to combat P. aeruginosa infections.

Citation Vidaillac C, Yong VFL, Aschtgen M-S, Qu J, Yang S, Xu G, Seng ZI, Brown AC, Ali MK, Jaggi TK, Sankaran J, Foo YH, Righetti F, Nedumaran AM, Mac Aogain M, Roizman D, Richard J-A, Rogers TR, Toyofuku M, Luo D, Loh E, Wohland T, Czarny B, Horvat JC, Hansbro PM, Yang L, Li L, Normark S, Heniques-Normark B, Chotirmall SH. 2020. Sex steroids induce membrane stress responses and virulence properties in Pseudomonas aeruginosa. mBio 11:e01774-20. https://doi.org/10.1128/mBio.01774-20.

Editor Vanessa Spandau, University of Texas Southwestern Medical Center Dallas

Copyright © 2020 Vidaillac et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

Address correspondence to Sanjay H. Chotirmall, schotirmall@ntu.edu.sg.

* Present address: Celine Vidaillac, Administration of Science Technology and Training, Ministry of Health, Hanoi, Vietnam, and Oxford University Clinical Research Unit, University of Oxford, Ho Chi Minh City, Vietnam. Zi Jing Seng, The Bone Marrow Donor Programme, Singapore; Md Khadem Ali, Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University School of Medicine, Stanford, California, USA; Jagadish Sankaran, A*STAR-Agency for Science, Technology, and Research, Genome Institute of Singapore, Singapore; Michele Mac Aogain, Biochemical Genetics Laboratory, Department of Biochemistry, St. James’s Hospital, Dublin, Ireland, and School of Medicine, Trinity College, Dublin, Ireland; Liang Yang, School of Medicine, Southern University of Science and Technology, Shenzhen, China.

Received 28 June 2020 Accepted 26 August 2020 Published 29 September 2020 Changes made 27 October 2020
P. aeruginosa virulence, which includes the release of proinflammatory outer membrane vesicles, resulting in inflammation, host tissue damage, and reduced bacterial clearance. We further demonstrate that at nanomolar (physiological) concentrations, male and female sex steroids promote virulence in clinical strains of *P. aeruginosa* based on their dynamic membrane fluidic properties. This work provides, for the first-time, mechanistic insight to better understand and predict the *P. aeruginosa* related response to sex steroids and explain the interindividual patient variability observed in respiratory diseases such as cystic fibrosis that are complicated by gender differences and chronic *P. aeruginosa* infection.

KEYWORDS hormones, steroids, *Pseudomonas aeruginosa*, membrane stress, gender

Clinical observations and research reveal that males are at higher risk for bacterial infection; however, females are more prone to develop more severe illness with poorer outcomes, particularly at reproductive age (1–3). Genetic, anatomical, social, and behavioral differences have all been advanced to explain these gender biases, however, more recently, variations in the host innate and adaptive immune responses under the control of sex steroid hormones have been proposed (4–6). Estrogens exert immunoprotection by promoting natural killer cell activity and inducing the production of proinflammatory cytokines, including tumor necrosis factor alpha (TNF-α), interleukin-1 (IL-1), IL-6, IL-17, and IL-23, while testosterone exerts an opposing immunosuppressive effect (5). The regulation of immune responses by sex steroid hormones may at least partially explain differences in disease susceptibility; however, it does not fully explain the observed differences in disease severity and, importantly, microbial adaptation that occur between genders in the context of chronic pulmonary infection (7).

The last 2 decades have witnessed an exponential rise in the number of studies investigating the role of sex steroids on the progression of chronic infections (7–13). Many bacterial pathogens sense and respond to mammalian hormones, including sex steroids (5, 8, 13, 14). Nanomolar physiological concentrations of 17β-estradiol and estriol promote *Pseudomonas aeruginosa* alginate and pyocyanin production, surface motility, biofilm formation, and adherence to lung epithelia (8, 12). In contrast, micromolar supraphysiological concentrations of 17β-estradiol and testosterone inhibit quorum sensing (14). The influence of sex steroids on clinical disease is exemplified in the genetic condition cystic fibrosis (CF), where elevated 17β-estradiol correlates with the emergence of the deleterious mucoid phenotype of *P. aeruginosa*, a variant associated with poorer lung function and increased mortality, suggesting a key role for sex steroids on the bacterial pathogenicity (8). Despite these links, the mechanisms that underpin the specific roles of sex steroids on bacterial physiology and pathogenicity remain unknown. The presence of receptor proteins, such as LasR in *P. aeruginosa*, TraR in *Escherichia coli*, and even some ubiquitous efflux transporters such as AcrAB-ToIC or ErmAB-ToIC, that may recognize mammalian sex hormones has been suggested; however, no binding interactions or molecular mechanisms leading to virulent bacterial phenotypes are reported (5, 14–17).

Here, we provide evidence, using both *in vitro* and *in vivo* models, that natural and synthetic sex steroid hormones modulate *P. aeruginosa* disease-causing capabilities by inducing bacterial membrane stress responses and production of outer membrane vesicles (OMVs). The steroid concentration required to induce these bacterial responses inversely correlates with the hydrophobic nature of the compound. We propose that clinical isolates may be categorized as hormone-responsive or not depending on their membrane fluidic properties, which bears therapeutic potential in the treatment of *P. aeruginosa* chronic lung infections. This work offers fresh insight into our understanding of sex differences in the susceptibility and response to infections caused by *P. aeruginosa* in the clinic and highlights the potential impact of nonantimicrobial stressors on infectious disease outcomes.
RESULTS

Sex steroid hormones promote the virulence of P. aeruginosa. The female sex steroid hormone estrogen has been known to induce alginate production by P. aeruginosa, which is crucial for the mucoid conversion and survival of the bacteria in the human host (8, 14). Thus, we first assessed the ability of four different sex steroid hormones to alter P. aeruginosa alginate production. The tested compounds varied in polarity and included the synthetic hormone ethinylestradiol (EE2) (logP, 4.15) (18) (least polar), testosterone (T) (logP, 3.30) (19), the pregnancy-related estrogen estriol (E3) (logP, 2.45) (20), and a water-soluble synthetic and hydrophilic derivative of testosterone, TSDG.HCl (logP, 2.40) (21) (most polar) (Fig. 1A). Using a range of concentrations varying from 250 pM to 250 μM, we observed that while all compounds induced P. aeruginosa PAO1 alginate production, the concentration required to achieve the maximal response for each compound decreased as their molecular polarity increased (i.e., hydrophobicity decreased) (Fig. 1B). Thus, the most polar compounds, TSDG.HCl and estriol, required concentrations of ~25 nM to significantly increase PAO1 alginate production, while molecules with lower polarity, testosterone and EE2, required 2.5 μM and 250 μM, respectively. Their effect was further confirmed by an increased swarming motility and rhamnolipid and elastase production, three major virulence factors produced by P. aeruginosa (Fig. 1C to E and Fig. S1A-C). The responses found were not attributable to differences in inocula or bacterial growth rates, as results were normalized at the time of cell harvest (see methods), and growth kinetics did not show any significant differences when P. aeruginosa was cultured with the different steroid compounds (Fig. S1D). Since it has been suggested that swarming motility has an impact on biofilm formation (22, 23), we next studied P. aeruginosa PAO1 biofilms grown in a hormone-rich environment. We observed a significantly reduced roughness coefficient of biofilms grown in the presence of testosterone (2.5 μM) or estriol (25 nM), illustrating a flat homogeneous architecture of the bacteria compared to vehicle control (ethanol) (Fig. 1F to G). Changes in the biofilm 3-dimensional morphology were not associated with differences in growth rates, as biofilms grown in the presence of sex steroids showed comparable numbers of viable biofilm embedded cells compared to ethanol (vehicle control) (Fig. 1H). However, biofilms grown in the presence of hormones had significantly increased biovolumes, a finding that is consistent with the increased alginate production found earlier (Fig. 1B and G). This shift in biofilm architecture further translated into an altered matrix and its related diffusion properties when tested with the neutral dextran molecule (150 kDa) that showed a significantly decreased molecular diffusion across PAO1 biofilms grown in the presence of testosterone compared to ethanol (vehicle control) (1.30 ± 0.97 μm²/s versus 2.68 ± 1.82 μm²/s, respectively; P < 0.05) (Fig. 1I).

To study the effects of steroid hormones in vivo, we used mouse models of lung infection where PAO1 bacteria were inoculated intranasally. By comparing PAO1 pre-exposed to ethanol (vehicle control) with treatment with the respective hormones (testosterone at 2.5 μM and estriol at 25 nM), we observed a significant increase in bacterial counts (CFU) in the lungs of mice treated with testosterone (P < 0.0001) and a trend toward significance with estriol (Fig. 1J and K). This occurred even though it was a short-term experiment (6 h) and P. aeruginosa is not a natural pathogen and typically results in variable infections. These data are consistent with our in vitro observations, suggesting an in vivo persistence due to sex steroid exposure. We did not detect any significant inflammatory changes in the bronchoalveolar lavage fluid over this time period (Fig. S2).

Sex steroids promote P. aeruginosa virulence through the muc operon. Since our data demonstrate that steroid treatment of P. aeruginosa affects its virulence mechanisms, we next used transcriptomic analyses of the bacteria to identify the potential molecular mechanism(s) that drive these effects. Exposure of PAO1 to testosterone (Fig. 2A) led to major transcriptomic alterations (measured as fold change [FC] expression > 1.5) in key virulence genes involved in surface sensing (c-di-GMP
Sex steroids promote *Pseudomonas aeruginosa* virulence in vitro and reduce lung clearance in vivo. (A) Chemical structures of the various sex steroid hormones with associated logP values. (B) *P. aeruginosa* PAO1 was cultured for 16 to 24 h in tryptic soy broth.
regulation and pili), membrane stress (polysaccharides, alginites, quorum sensing, and membrane proteins), and motility (flagella). These results suggest that global regulatory mechanisms that are activated by molecular signaling pathways are induced by *P. aeruginosa* envelope stress upon sex steroid exposure. Using colistin, a known membrane inducer, as a positive control (24), Northern blot analysis of PAO1 confirmed this (Fig. 2B and C). Thus, following testosterone (2.5 μM), estril (25 nM), and colistin (0.4 μM) treatments, we observed increased expressions of mucA, a gene encoding an anti-sigma factor that controls alginate biosynthesis and mucoid conversion (25), and pilA, a gene encoding pilin, the main constituent of type IV pili, key for surface motility, cell adhesion, and biofilm formation (26).

To identify proteins that bind to steroids, we next performed coimmunoprecipitation assays of testosterone and 17β-estradiol with *P. aeruginosa* lysates combined with mass spectrometry (MS) analysis. This revealed 11 and >50 protein hits for testosterone and 17β-estradiol, respectively (Table S1A). The *P. aeruginosa* master regulator of virulence, Vfr, was identified as a testosterone-associated protein and therefore subjected to further analysis. In addition to assessing the impact of steroid exposure on *P. aeruginosa* lacking vfr (Fig. S3), further evaluation of protein-ligand interactions was

FIG 1 Legend (Continued)

(TSB) medium supplemented with ethanol (vehicle control) or the respective sex steroid hormones at concentrations varying from 250 pM to 250 μM, and alginate production was assessed. Sex steroids significantly promote *P. aeruginosa* in vitro production of alginates in a concentration-dependent manner with an inverse relationship with molecular polarity. (C to I) *P. aeruginosa* PAO1 was cultured for 16 to 24 h in TSB medium supplemented with ethanol (vehicle control) or the respective sex steroid hormones (at optimal concentrations varying from 25 nM to 250 μM). Changes in virulence were assessed by (C) increased swimming motility, (D) increased rhamnolipid production, (E) elevated elastase levels, and (F) altered biofilm architecture with (G) reduced roughness coefficient and increased biovolumes, (H) unchanged microbial cell burden, and (I) reduced diffusivity for the neutral molecule of dextran (150 kDa) in the matrix. Each experiment was performed in triplicate, and results are presented as the geometric mean ± standard error (B, G to I) or box and whisker plots with median (horizontal bar), interquartile range (boxes), and minimum and maximum (whiskers). Statistical significance was determined by one-way ANOVA corrected using Tukey’s test for multiple comparisons.

FIG 2 The sex steroids testosterone and estril induce *Pseudomonas aeruginosa* virulence through molecular signaling pathways controlled by surface sensing and membrane stress. (A) *P. aeruginosa* PAO1 was cultured for 16 to 24 h in tryptic soy broth (TSB) medium supplemented with ethanol (vehicle control) or testosterone (2.5 μM) and subjected to RNA sequencing. Significant increases in key virulence genes (marked in blue) involved in surface sensing (c-di-GMP regulation, pili), membrane stress (polysaccharides, alginites, quorum sensing, membrane proteins), and motility (flagella) illustrate the global regulation driven by testosterone. Three genes involved in flagellar motility, rhamnolipids, and polysaccharide regulation were found to be significantly downregulated (marked in red). All the genes reported with a significant change in expression (defined as a >0.5-fold increase or decrease compared to the control) are represented. (B and C) *P. aeruginosa* PAO1 was cultured for 24 to 72 h in TSB medium supplemented with ethanol (vehicle control), testosterone (2.5 μM), estril (25 nM), or colistin (0.4 μM, 1/4 MIC) as a positive control for the membrane stress response. Northern blot gels (B) show increased mucA and pilA mRNA expression following testosterone, estril, and colistin exposure, further illustrated by their (C) corresponding normalized band intensities. T, testosterone; E3, estril.
performed using surface plasmon resonance (SPR). No direct interaction between Vfr and the main steroid hormones was found, suggesting that the sex hormones do not act directly on Vfr, but rather, act through a molecular pathway upstream of the vfr regulatory network (Fig. S4). Further analyses of the MS results identified mucB as a potential candidate. The mucABCD operon has been shown to influence P. aeruginosa virulence, mucoid conversion, and host persistence during chronic infections (27) (Table S1A). Analysis of mucB and steroid binding using SPR revealed no direct interaction (Fig. S4). We thus explored if the observed effects of steroids on P. aeruginosa virulence may be due to disruption of mucB-related signaling pathways. We exposed PAO1, its mucB mutant knockout derivative, and a mucB complemented strain to ethanol (vehicle control), testosterone (2.5 μM), estriol (25 nM), or colistin (0.4 μM, 1/4 MIC), and virulence was assessed. Testosterone and estriol induced increases in (A) swarming motility, (B) rhamnolipids, (C) elastase, and (D) alginate production in PAO1 but not in the mucA, mucB, or algR mutants, and the phenotype was restored following mucB complementation. Each experiment was performed in triplicate, and results are presented as the geometric mean and standard error. Statistical significance was determined by one-way ANOVA corrected using Dunnett’s test for multiple comparisons. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001. T, testosterone; E3, estriol; AU, arbitrary unit; RFU, relative fluorescence unit.

FIG 3 The sex steroid hormones testosterone and estriol induce enhanced Pseudomonas aeruginosa motility, rhamnolipid, elastase, and alginate production through the muc operon. (A) P. aeruginosa PAO1 and mutants lacking genes from the muc operon (algA, mucA, and mucB) were cultured for 24 h in tryptic soy broth medium supplemented with ethanol (vehicle control), testosterone (2.5 μM), estriol (25 nM), or colistin (0.4 μM, 1/4 MIC), and virulence was assessed. Testosterone and estriol induced increases in (A) swarming motility, (B) rhamnolipids, (C) elastase, and (D) alginate production in PAO1 but not in the mucA, mucB, or algR mutants, and the phenotype was restored following mucB complementation. Each experiment was performed in triplicate, and results are presented as the geometric mean and standard error. Statistical significance was determined by one-way ANOVA corrected using Dunnett’s test for multiple comparisons. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001. T, testosterone; E3, estriol; AU, arbitrary unit; RFU, relative fluorescence unit.

Sex steroids induce P. aeruginosa membrane stress and production of outer membrane vesicles. P. aeruginosa, like many other Gram-negative bacteria, secretes OMVs in response to environmental stresses (28–30). We therefore evaluated the
impact of sex steroid exposure (estriol and testosterone) on OMV production. We found that *P. aeruginosa* PAO1 produces significantly more OMVs (2 to 3 times as many) in response to steroids (at their optimal concentrations) compared to the control (ethanol) (Fig. 4A and B). The size distribution of the secreted vesicles (80 to 400 nm) remained unchanged, but there were major differences in their protein composition. Proteomic analysis of purified OMV extracts exposed to sex steroids revealed a diverse array of predominantly outer membrane (OM) proteins, with significant alterations of the outer membrane lipid/protein composition and changes to cell envelope fitness compared to the control (Fig. 4C and Table S1B). While some proteins, including OmpA and flagellin, were detected in the OMVs produced under both control (ethanol) conditions and treatment with steroids, lipoproteins (PA2853, PA4423), efflux transporters, and type 6 secretion systems (T6SS) were more prominent after hormone exposure, suggesting that steroids induce alterations of the bacterial envelope (Table S1B). Interestingly, OMVs secreted during hormonal stress carried an uncharacterized protein, PA2462. This protein, previously identified in *P. aeruginosa* OMVs (31), also shares high sequence homologies with a filamentous hemagglutinin protein described in *Bordetella pertussis* that has been associated with bacterial adherence to ciliated eukaryotic cells (32).

CHARACTERISATION OF OUTER MEMBRANE VESICLES

A

![Control, T (2.5 μM), E3 (25 nM)]

B

![Histogram showing mean intensity](image)

C

![Number of proteins vs. cellular location](image)

INFLAMMATORY EFFECT OF OUTER MEMBRANE VESICLES IN VIVO

D

![IL-1β, IL-12, IFN-γ, TNF-α, Th1 response, IL-10, IL-13, Th2 response](image)

E

![Chemokines](image)

FIG 4 The sex steroid hormones testosterone and estriol induce release of *Pseudomonas aeruginosa* outer membrane vesicles with diminished inflammatory capability. *P. aeruginosa* PAO1 was cultured for 24 h in Tryptic soy broth medium supplemented with ethanol (vehicle control), testosterone (2.5 μM), or estriol (25 nM). Outer membrane vesicles (OMVs) were extracted from the resulting supernatant and further purified as described in Materials and Methods. (A) Representative electron micrographs of extracted OMVs from cultures exposed to ethanol (vehicle control), testosterone (2.5 μM), or estriol (25 nM) (arrows indicate OMVs with their respective vesicle size in nm). (B) OMV amount, but not size, differs under sex steroid stress (range, 80 to 400 nm). (C) OMV extracts subjected to proteomic analysis (Table S2B) reveal significant differences in protein composition and diversity and consist of predominantly outer membrane (OM) proteins. (D and E) Extracted OMVs (10 ng total protein) were administered to the lungs of female C57BL/6 mice (*n* = 5, 6 to 8 weeks old) using the intratracheal route. After 24 h, bronchoalveolar lavage fluid was obtained, and inflammatory (D) cytokines and (E) chemokines were measured, which illustrate a significantly diminished inflammatory response from OMVs secreted under sex steroid stress. Each experiment was performed in triplicate, and results are presented as the geometric mean and standard error. Statistical significance was determined by one-way ANOVA corrected using Dunnett’s test for multiple comparisons. *P* < 0.05; **P** < 0.01; ***P** < 0.001; ****P** < 0.0001. T, testosterone; E3, estriol; OM, outer membrane; EC, extracellular; P, periplasm; C, cytoplasm; U, unknown.
bronchoalveolar lavage fluid (BALF) harvested at 24 h postinoculation illustrated the inflammatory response triggered by *P. aeruginosa* OMVs (Fig. 4D and E). Challenge with OMVs isolated during hormone treatment induced significantly lower cytokine (IL-1α, IL-1β, IL-6, and TNF-α) and chemokine (CCL2-5 and CXCL3) responses in the BALF 24 h postinfection than the control (*P* < 0.001). Lung histology correlated with these observations, and the pulmonary damage was most prominent after challenge with estriol-derived OMVs (Fig. S5). Taken together, our *in vitro* and *in vivo* data provide strong evidence that sex steroid hormones affect the disease-causing capability of *P. aeruginosa*.

Variation in membrane fluidity among *P. aeruginosa* clinical isolates explains sex-hormone responsiveness. To study the clinical relevance of our findings and determine if the effect of sex steroid hormones on *P. aeruginosa* virulence differs between clinical strains due to differences in their membrane fluidity, we performed fluorescence recovery after photobleaching (FRAP) studies. This technique is widely used to measure the mobility and interaction of fluorescently labeled biological molecules within living membranes. As a first measurement, we used the WT PAO1 strain, as well as the mucB mutant and its complemented derivative. Since the muc operon plays a central role in the response to membrane stress and production of OMVs (33), we speculated that mutations in this operon will translate into significant alteration of membrane fluidity. Consistent with this hypothesis, we found that the mucB mutant had a significant reduction in the fraction of recovery compared to PAO1, which was restored to wild-type levels in the mucB complemented strain (Fig. S6). Next, we assessed the recovery fractions of nine clinical isolates of *P. aeruginosa* isolated from different patients (Table S2A). Four of the nine isolates (44%) exhibited lower fractions of recovery compared to WT PAO1, two of which were statistically significant (patient isolates 1 and 2) (Fig. 5A). The five remaining isolates exhibited a higher fraction of recovery than WT PAO1 (patient isolates 5 to 9), two of which were statistically significant (patient isolates 8 and 9) (Fig. 5A). To test whether there was a correlation between the fraction of recovery (membrane fluidity) and steroid “susceptibility” of the isolates, we next assessed the impact of adding testosterone (at 25 nM and 2.5 μM) on their swarming motility (Fig. 5B). As expected, we found that the isolates with a higher fraction of recovery, except isolate 8, showed a significant increased swarming capacity, while those isolates with a lower fraction of recovery were nonresponsive to steroid treatment. To further confirm the FRAP findings, we assessed two clinical isolates (5 and 9) against a larger panel of *P. aeruginosa* virulence factors. We found that both strains had enhanced rhamnolipids, elastase, and alginate production in the presence of testosterone or estriol at concentrations ranging from 25 nM (physiological) to 2.5 μM (supraphysiological) (Fig. 5C to E). These data support that clinical isolates of *P. aeruginosa* respond differently to sex hormones depending on their membrane properties, which affects virulence.

DISCUSSION

The present study provides molecular and cellular evidence that sex steroid hormones modulate *P. aeruginosa* virulence through membrane stress and release of OMVs, which depends on bacterial membrane properties. In agreement with published data, we illustrate that estrogens induce alginate production (8, 14). However, we also show that a range of sex steroids, including male, female, natural, and synthetic hormones, have the potential to modulate *P. aeruginosa* pathogenicity by promoting surface motility, rhamnolipids, elastase, and alginate production and formation of structurally different biofilms with significantly reduced permeability (14, 22, 34, 35). The effects of the steroids correlate with their molecular polarity, a physicochemical property dictating their ability to diffuse across bacterial membranes (36–38). With higher molecular polarity, the diffusivity becomes slower through the bacterial membrane because of increased interactions with proteins, lipids, and polysaccharides, which in turn, increases the membrane stress. Also, the required steroid concentration to induce membrane stress is lower with higher polarity. Thus, the polarity of the...
substance affects the *P. aeruginosa* membrane composition and integrity (39). Indeed, the most polar of the natural steroids, the pregnancy-related estrogen estriol required only nanomolar concentrations to alter *P. aeruginosa* virulence. These concentrations are physiological and have been previously demonstrated in bronchoalveolar lavage fluid (8). Although estriol is the predominant estrogen in pregnancy, it may also be detected in the lung following metabolism of estradiol by aromatase enzymes present in the airway epithelium (8, 40). In contrast, the least polar of all tested steroids, the synthetic estrogen used in oral contraception, ethinylestradiol, necessitated concentrations 1,000-fold higher than estriol to induce similar effects.

Furthermore, we found that the steroid-induced *P. aeruginosa* membrane change activates a global stress response controlled by the *muc* operon. This operon controls genes involved in *Pseudomonas* virulence such as surface motility (flagella function), biofilm formation, regulation of quorum sensing (*rhl, pqs*, and *las*), alginate biosynthe-

FIG 5 Variations in membrane fluidity among *Pseudomonas aeruginosa* clinical isolates explains sex hormone responsiveness. (A and B) Membrane fluidity (assessed using fluorescence recovery after photobleaching [FRAP]) of nine clinical *P. aeruginosa* isolates from nine patients was compared to PAO1. Four of the nine isolates (*P. aeruginosa* from patients 1 to 4) demonstrate lower membrane fluidity, while the other five (*P. aeruginosa* from patients 5 to 9) show higher membrane fluidity compared to PAO1. (B) Clinical *P. aeruginosa* isolates were cultured for 24 h in tryptic soy broth (TSB) medium supplemented with ethanol (vehicle control) or testosterone at two concentrations (physiological concentration, 25 nM; supraphysiological but optimal concentration for PAO1, 2.5 μM). The motility response (swarming) was assessed as an indicator of the sex steroid virulence response. The four isolates with the lowest membrane fluidity compared to PAO1 (*P. aeruginosa* from patients 1 to 4) did not demonstrate any motility changes following testosterone exposure (termed “nonresponsive”). In contrast, four of the five isolates (*P. aeruginosa* from patients 5 to 7 and patient 9) demonstrated significantly increased motility (and higher membrane fluidity) compared to PAO1 following testosterone exposure (termed “hormone-responsive”). (C to E) Two hormone-responsive clinical isolates (patients 7 and 9) were selected and assessed for further virulence studies. Strains were cultured for 24 h in TSB medium supplemented with ethanol (vehicle control), testosterone, or estriol, each at two separate concentrations (25 nM and 2.5 μM as described above). Both hormone-responsive strains exhibited significant upregulation of virulence markers upon hormone exposure as evidenced by elevated (C) rhamnolipids, (D) elastase, and (E) alginate production. Each experiment was performed in triplicate, and results are presented as the geometric mean and standard error. Statistical significance was determined by one-way ANOVA corrected using Dunnett’s test for multiple comparisons. *, *P* < 0.05; **, *P* < 0.01; *** *P* < 0.001; **** *P* < 0.0001. T, testosterone; E3, estriol; AU, arbitrary unit; RFU, relative fluorescence unit.
sis, and type IV pili (41). Activation of quorum sensing contributes to shaping the bacterial community, including a switch to biofilms and inter- and intraspecies communication through the diffusion of autoinducer (AI) molecules (*pqs* and *las*). Increased production of AIs and alginate alters the outer membrane properties and promotes lipid raft formation and OMV release (33). Indeed, we observed increased production of OMVs in response to steroids. OMVs affect bacterial persistence and host immune responses and tissue damage (42). OMV release following sex steroid exposure represents an underappreciated and important bacterial virulence mechanism (28, 43). With a central role in cell communication, OMVs are key to biofilm formation and facilitating host-pathogen interactions, which is attributed to their proinflammatory properties (44–46). A defensive role has also been proposed, where OMVs inhibit the efficacy of antimicrobial agents that target the bacterial cell wall (24). In addition to release, the amount and composition of the OMVs were found to be altered and include proteins involved in bacterial virulence such as lipoproteins, toxins, and adhesins. Changes in OMV protein composition likely explain the altered inflammatory properties observed in the *in vivo* mouse models that support bacterial persistence in sex steroid-rich environments.

Thus, our results support a model whereby sex steroids act as extracellular chemical signals received by the surface sensing regulatory network of *P. aeruginosa* (41) (Fig. 6).

FIG 6 Proposed mechanistic model for sex steroid-driven regulation of *Pseudomonas aeruginosa* virulence and persistence. (1) The polarity of the various sex steroid hormones influences their ability to diffuse across the *P. aeruginosa* (lipid bilayer) membrane with their degree of impact on membrane dynamics dependent on the diffusion rate. More polar molecules such as estriol (with lower hydrophobicity) diffuse more slowly and therefore are more likely to interact with lipopolysaccharides and proteins in the bacterial cell envelope compared to less polar molecules such as testosterone or ethinylestradiol (with higher hydrophobicity), which diffuse more rapidly through the bacterial membrane. (2) Interactions between polar sex steroids, membrane proteins, and lipopolysaccharides are sensed by surface signaling systems, including the *muc* operon (*mucA/B*), leading to (3) activation of the alginate biosynthetic pathway through the *muc* operon, (4) upregulation of downstream genes involved in surface sensing (pili, c-di-GMP) and quorum sensing (*pqs*, *las*, *rhl*, *vfr*), and (5) biofilm formation (polysaccharides, alginates). (6) The increased secretion of quorum sensing autoinducer (AI) molecules coupled to increased membrane protein production alters membrane composition and fluidity and promotes “lipid raft” formation and membrane stress-inducing (7) OMV release that dampens host inflammatory responses and further promotes bacterial persistence and tissue damage. (8) In chronic *P. aeruginosa* infection with “hormone-responsive” strains, the constant pressure exerted by sex steroids, particularly on the bacterial envelope, promotes adaptive change, which aims to protect the bacterium by creating defensive barriers such as alginates that surround bacterial cells, leading to mucoid conversion with bacterial persistence and poorer clinical outcomes. EE2, ethinylestradiol; T, testosterone; E3, estriol; TSDG.HCl, 17β-N,N-dimethylglycinate testosterone hydrochloride; OMV, outer membrane vesicle; LPS, lipopolysaccharides.
involving the \textit{algT}-muc cluster, which is central to the control of bacterial virulence and responses to environmental stresses (47). Potentially, exposure to steroids \textit{in vivo} over a long period may induce mutations in the muc operon that may reduce the fitness costs provoked by the steroid stress. This might lead to a selection of mucoid and persistent \textit{P. aeruginosa} mutant strains that confer poorer clinical outcomes (8, 48).

Further investigations are warranted to better understand the impact of sex steroid-induced OMVs on the course of \textit{P. aeruginosa} infection, especially in the setting of a chronic inflammatory milieu.

Our findings here show clinical relevance since we observe a correlation between the membrane fluid dynamics of individual \textit{P. aeruginosa} clinical isolates and their ability to respond to sex steroids. We show that the concentration and chemical nature of the steroid hormone shape the level of response together with the membrane properties of the exposed \textit{P. aeruginosa} strain. This finding might explain sex differences observed across a range of lung diseases affected by chronic \textit{Pseudomonas} infections (1, 2, 4). Females with CF have earlier colonization (8, 49–51) and mucoid conversion of \textit{P. aeruginosa} (8, 52), which in turn, translates to poorer clinical outcomes and higher mortality (8, 52–54). However, this is not uniformly observed across individual CF females. Our work highlights that colonization with “hormone-responsive” strains may explain this phenomenon and, as such, relate to other chronic respiratory diseases complicated by \textit{P. aeruginosa} infection. This work also furthers our understanding of the variable treatment responses observed between individual female patients affected by \textit{P. aeruginosa}. Exploring whether a colonizing \textit{P. aeruginosa} strain is responsive to hormonal stress may allow a more focused and tailored therapeutic approach based on sex steroids and gender, particularly in the era of antimicrobial resistance (55, 56). A further interesting aspect of our work is improved mechanistic insight into why CF females taking oral contraceptive pills experience fewer exacerbations and need for antibiotics (8, 57, 58). In these women, synthetic exogenous ethinylestradiol ([EE2] logP, 4.15) suppresses the more polar and endogenous estradiol ([E2] logP, 2.70) (59), which based on our data, would have less effect on inducing \textit{P. aeruginosa} virulence and potentially translate to better patient outcomes.

Importantly, the observed effects on \textit{P. aeruginosa} virulence are not specific to steroids. Colistin, an antimicrobial used in the treatment of multidrug-resistant \textit{P. aeruginosa} infection, illustrated a comparable ability to that observed with sex steroids in modulating \textit{P. aeruginosa} virulence. In agreement with previous studies, our data highlight the potential for colistin to exhibit deleterious effects on bacterial virulence if used at suboptimal concentrations against the targeted pathogen (60). Chemical, physiological, or therapeutic exposures including steroids and nonsteroidal or antimicrobial agents that may influence bacterial virulence and the course of infection should be considered when evaluating an optimal treatment strategy for any individual patient (61). Despite emerging evidence of potential sex bias in infection, therapeutic strategies and antimicrobial treatments remain unchanged and do not currently account for gender (1, 4, 5). Antimicrobial dosing is currently largely determined using \textit{in vitro} and \textit{in vivo} pharmacotherapeutic studies with environmental conditions focused on host immunity, the pathogen’s antimicrobial susceptibility, and the antimicrobial agents’ pharmacokinetic properties (62). However, patients who are treated with concomitant and sometimes combination therapies are at the same time exposed to their natural circulating hormones that, based on the data presented, confer an additional and largely unrecognized effect on pathogen virulence and evolution and antimicrobial susceptibility. Further investigations are therefore needed to better understand the impact of sex steroid hormones and other concomitant therapies (using polar molecules) that can induce a \textit{P. aeruginosa} membrane stress response. These effects at an individual level may influence optimal antimicrobial dosing regimens and could become part of precision-medicine approaches for the treatment of infectious disease.

Gender differences are also reported with other clinically relevant Gram-negative pathogens (2, 63, 64), and existing work supports the findings presented in this study with \textit{P. aeruginosa} (65–67). Higher bacterial survival was reported in ovariectomized
rabbits infected with *E. coli* following treatment with estradiol and progesterone (65). Similarly, female virgin mice treated with estrogen or progesterone for 3 days illustrate significant increases in *Salmonella enterica* serovar Typhimurium survival (67). Although such work was not designed to assess the direct effects of sex steroids on bacterial pathogenicity, it is of interest that an envelope stress response mechanism does exist in both *E. coli* and *Salmonella* spp. to maintain membrane integrity and cell homeostasis and facilitate chronic colonization (68, 69). These mechanisms are controlled by the extracytoplasmic sigma factor rpoE or σE, which shares 66% and 91% homology, respectively, with *P. aeruginosa* AlgU (68).

Although this study comprehensively assesses the *in vitro* and *in vivo* effects of sex steroid hormones on *P. aeruginosa* virulence, there are further aspects that warrant future investigation. We did not investigate metabolomic changes that occur under sex steroid stress. *P. aeruginosa* secretes a range of signaling molecules to communicate with its surroundings and adapt its behavior to its environment. Such molecules, termed “auto-inducers” are secreted through their membrane, transported by OMVs, and affect membrane dynamics and integrity, in turn playing a central role in the host-pathogen relationship (70, 71). Therefore, studies focusing on metabolomic alterations in the bacterial membrane, and within OMVs, should be considered in future research including the production of quorum sensing (QS) molecules. The biofilm models presented in this study may not optimally reflect the *in vivo* lung state. Air-liquid interface cell cultures may be a model for future work that more accurately mimics the *in vivo* state (72). Finally, additional *in vivo* animal models more representative of a chronic infection state, while more complex to perform, may be valuable in future work to better understand how sex steroids influence *P. aeruginosa* invasion, colonization, and adaptation in the lungs over the longer term.

Our work unlocks novel academic and translational research avenues for the microbial endocrinology field, and our findings should be carefully considered in individuals receiving concomitant high-polarity therapeutics. The influence of sex steroids on membrane stress, bacterial virulence, and antimicrobial susceptibility demonstrated here for *P. aeruginosa* should also be considered for other clinically relevant Gram-negative pathogens.

MATERIALS AND METHODS

Ethics statement. Approval for investigation of the isolates of *P. aeruginosa*, with linked pseudonymized patient metadata was given by the St. James's/Tallaght University Hospital Ethics Committee (REC: 2017-01 list 1 [8]). Ethics approval for experiments conducted with BALB/c female mice was obtained from the University of Newcastle Animal Care and Ethics Committee (A-2012-233), and for those with C57BL/6 female mice, was obtained from the IACUC Committee of the Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (SIAT-IACUC-181225-YYS-LL-A0551).

Bacterial strains and growth conditions. The strains of *P. aeruginosa* used in this study are listed in Table S2. The strains included algR and mucA mutant derivatives obtained from the *P. aeruginosa* PAO1 transposon mutant two-allele library (University of Washington, Seattle, WA; Manoil laboratory), which was established with NIH funds (grant P30 DK089507) (73). A vfr deletion mutant was generated using a previously reported knockout system (74), and vfr and mucB complemented isolates were constructed by electroporation of pNIC vfr or pNIC mucB plasmids (Bio Basic, Inc.). Mutant selection was performed on gentamicin-containing agar plates (30 μg/ml). Bacterial strains were cultured in tryptic soy broth (TSB; Becton, Dickinson) at 37°C under aeration (200 rpm) unless stated otherwise. Medium was prepared in glass bottles previously washed with a solution of hydrochloric acid and rinsed at least twice with distilled water (dH₂O) to remove any excess detergents or ions that may affect experimental reproducibility. Stock solutions of steroid hormones (Sigma-Aldrich) were prepared in ethanol (Thermo Fisher Scientific) and stored at –20°C, and new stocks were generated every 7 days. TSDG.HCl was synthesized as described in Supplemental Methods and Fig. S7. Colistin (Sigma-Aldrich) was prepared fresh before each experiment, solubilized in sterile dH₂O, and further diluted to the desired concentrations in 100% molecular-grade ethanol (Thermo Fisher Scientific) for experimental consistency.

P. aeruginosa surface motility assay. The swarming motility of *P. aeruginosa* strains was assessed using the previously described methodology with some modifications (75). Swarming medium was prepared by mixing 0.5% (wt/vol) Bacto agar (Axil Scientific, 1st Base), 0.5% (wt/vol) peptone (Becton, Dickinson), and 0.2% (wt/vol) yeast extract (Axil Scientific, 1st Base). Following agar sterilization, the medium was supplemented with 1.0% (vol/vol) glucose (Axil Scientific, 1st Base) and left to cool at 45°C in a water bath. Molten agar (20 ml) was poured into 15-cm petri dishes and dried open for 5 min in a fumigated hood. Overnight cultures (2 ml) of *P. aeruginosa* grown in the presence of ethanol (control), steroids, or colistin were centrifuged (8,000 rpm, 10 min). Pellets were spot inoculated at the center of
the agar surface using a sterile toothpick, and plates were then incubated for 16 h at 37°C. Images of evaporating colonies were taken using a Gel Doc XR + system (Bio-Rad), and the extent of swarming was determined by measuring the swarming area using ImageJ software (76). At least, three biological and two technical replicates were performed to ensure the reproducibility of each experiment.

Extraction and quantification of *P. aeruginosa* virulence factors. *P. aeruginosa* strains were cultured in TSB at 37°C under aeration (200 rpm) in the presence of ethanol (control), steroids, or colistin. After measuring cell density (optical density at 600 nm [OD₆₀₀]), overnight cultures (10 ml) were centrifuged (10,000 rpm, 10 min). Supernatants were collected and filtered sterilized through 0.2-μm filters (Pall Life Sciences) and used for rhamnolipids, elastase, and alginate extraction and quantification.

Rhamnolipids. Rhamnolipids were extracted and further quantified using a previously reported methodology with modifications (77). Briefly, rhamnolipids were extracted from supernatants (8 ml) using diethyl-ether. Extraction was performed twice, and the collected organic fractions were left to evaporate overnight. The resulting white solid precipitates were dissolved in water (100 μl) and mixed with a 0.19% (wt/vol) orcinol solution (900 μl) freshly prepared in 50% H₂SO₄. Samples were heated at 80°C for 10 min and cooled to room temperature for 10 min before the absorbance at 421 nm was measured. The results were normalized using the OD₆₀₀ of the overnight cultures. Three biological and three technical replicates were performed to ensure experimental reproducibility.

Elastase. The elastase present in the filtered supernatants (1 ml) was measured using an elastase assay kit (EnzChek) according to the manufacturer’s instructions. TSB medium was used as the negative control, while elastase provided in the kit was the positive control. Fluorescence from each reaction (expressed in relative fluorescence units [RFU]) was measured using a microplate reader (Tecan Infinite 2000) and normalized using the OD₆₀₀ of the overnight cultures. Three biological and three technical replicates were performed to ensure experimental reproducibility.

Alginates. The alginates present in the filtered supernatants were determined using the uronic acid/carbazole reaction as previously described (8). Supernatants (1 ml) were mixed with 2% cetylpyridinium chloride (500 ml) to precipitate alginates. Alginates were then collected by centrifugation (10,000 × g for 10 min at room temperature) and resuspended in 500 μl of cold (−20°C) isopropanol for 1 h. Repeat centrifugation was performed (10,000 × g at 4°C for 10 min), and the alginate pellets were resuspended in 1 M NaCl (500 ml) for alginate quantification. A solution of purified alginate (50 μl) was mixed with 200 μl of sodium tetraborate/sulphuric acid reagent (25 mM in 2 M H₂BO₃ in sulphuric acid), and the mixture was heated to 100°C for 10 min. Following cooling for 15 min, 50 μl 0.125% carbazole reagent (in 100% ethanol) was then added, and the mixture was heated to 100°C for another 10 min. Following cooling for 15 min, alginate concentrations were determined spectrophotometrically at 550 nm using a standard curve with alginic acid. Three biological and two technical replicates were performed to ensure experimental reproducibility.

Biofilm culture and imaging. Colonies of *P. aeruginosa* were suspended in fresh sterile TSB (5 ml), and inoculum (200 μl) was distributed across 8-well Ibidi μ-slides (Munsterried, Germany). Individual samples were supplemented with either 1 μl molecular-grade ethanol (control), steroids, or colistin at the desired concentrations. Cultures were placed at 37°C under static conditions for biofilm growth. After 16 h, biofilms were gently washed with sterile phosphate-buffered saline (PBS) and stained with Cyto-9 (LIVE/DEAD BacLight bacterial viability kit; Thermo Fisher) for 30 min. Biofilms were then washed twice with PBS before imaging using an LSM780 confocal laser scanning microscope (CLSM, Carl Zeiss, Oberkochen, Germany) at 40X. Representative CLSM images from each well were randomly acquired using the 40X objective. Representative CLSM images from each condition were acquired using a periplasmic injection (P. aeruginosa PAO1 was grown overnight at 37°C (200 rpm), and bacterial cultures were diluted in minimal medium [15.1 mM (NH₄)₂SO₄, 33.7 mM Na₂HPO₄, 22 mM KH₂PO₄, 0.05 mM NaCl, 1 mM MgCl₂·6H₂O, 100 μM CaCl₂·2H₂O, and 1 μM FeCl₃·6H₂O] supplemented with 2 g/liter glucose and 2 g/liter casamino acid. Medium was then heated to 100°C for 10 min, and bacterial cultures were diluted in minimal medium to achieve a cell density of 0.2 (OD₆₀₀). Prepared inocula were introduced into the flow cell using a 0.5-ml sterile syringe. The continuous flow was paused to allow bacterial cells to settle and attach to the flow cell. The flow resumed after 1 h, and biofilms were cultured at room temperature for 3 days.

Flow cell setup. The biofilm setup employed is a modification of the conventional flow cell system which consists of a square fluorinated ethylene propylene (FEP) tube (2 cm long, 2.1 mm inner diameter, 2.3 mm outer diameter; Adtech Polymer Engineering Ltd., Aston Down East, Gloucestershire, UK). Flow cells were continuously supplied at a flow speed of 8 ml h⁻¹ with minimal medium [15.1 mM (NH₄)₂SO₄, 33.7 mM Na₂HPO₄, 22 mM KH₂PO₄, 0.05 mM NaCl, 1 mM MgCl₂·6H₂O, 100 μM CaCl₂·2H₂O, and 1 μM FeCl₃·6H₂O] supplemented with 2 g/liter glucose and 2 g/liter casamino acid. Medium was then heated to 100°C for 10 min, and bacterial cultures were diluted in minimal medium to achieve a cell density of 0.2 (OD₆₀₀). Prepared inocula were introduced into the flow cell using a 0.5-ml sterile syringe. The continuous flow was paused to allow bacterial cells to settle and attach to the flow cell. The flow resumed after 1 h, and biofilms were cultured at room temperature for 3 days.

Preparation of biofilm samples. FEP tubes containing biofilms were detached from the above-described system, and outlet ends were sealed with silicone glue (3M super silicone clear sealant). Minimal medium supplemented with 100 nM 150 kDa Dextran TRITC (TdB Consultancy, Uppsala, Sweden) was introduced into the tubing containing the biofilms and incubated for 1 h at room temperature. The inlet ends were attached to the SPIM sample capillary.

SPIM-FCS measurements. SPIM imaging was carried out using a commercially available light-sheet microscope (Zeiss Lightsheet Z.1; Carl Zeiss AG, Germany). A laser power of 1 to 3 mW was used for
illumin. LSFM10x/NA0.2 served as the illumination objective, while a WPlan-Apochromat 63×/NA1.0 was used as the detection objective. Samples were illuminated using a 561-nm laser. The fluorescence was filtered using LP565. Before the region of interest was acquired, the camera was cooled to ~80°C, exposure gain was set to 300, and exposure time was set to 0.002 s. A total of 50,000 frames were collected for each sample. The ImFCS plugin (81) was used to compute the diffusion coefficient of the 150-kDa neutral molecule through *P. aeruginosa* biofilms. The data were binned 3 × 3, and bleaching correction was performed using a polynomial of order 4. The model used to fit the data is given below.

\[
\frac{G(t)}{N_g(t)} = \frac{1}{a^2\pi} \left[(\frac{a}{\sqrt{D(D + \omega_z^2)}}) \left(\sqrt{\frac{D + \omega_z^2}{a^2}} \right) \right] e^{\frac{\omega_z^2}{4D}} \left(\left(1 + \frac{D\tau}{\omega_z^2} \right)^{-\frac{1}{2}} \right) + G_0
\]

where \(a \) is the pixel size (267 nm), \(r \) is the lag time, \(N \) is the number of particles determined by fitting, \(D \) is the diffusion coefficient estimated by fitting, \(\omega \) is the e⁻² radius in the xy direction (1.5 \(\mu \)m), and \(\omega_z \) is the thickness of the light sheet (1.9 \(\mu \)m).

Bacterial transcriptomics. *P. aeruginosa* PAO1 was cultured overnight in TSB at 37°C under aeration (200 rpm) in the presence of ethanol (control) or with or without testosterone (2.5 \(\mu \)M). Then, 1-mL cultures were treated with RNAProtec reagent (Qiagen, Germany) to maintain the integrity of the RNA. Total RNA was then extracted using an RNeasy minikit (Qiagen, Germany) with some modifications. A Turbo DNA-free kit (Thermo Fisher Scientific, Lithuania) was used to remove genomic DNA contaminants from the total RNA. DNA contamination was assessed with a Qubit double-stranded (dsDNA) high sensitivity assay (Picogreen dye) and a Qubit 2.0 fluorometer (Invitrogen, Austria) according to the manufacturer’s instructions. rRNA was depleted with a Ribo-Zero rRNA removal kit (Illumin, USA), and integrity of the total RNA was assessed with an Agilent TapeStation system (Agilent Technologies, UK). Double-stranded cDNAs were reverse-transcribed using the NEBNext RNA first- and second-strand synthesis module (NEB, USA). cDNAs were subjected to Illumina’s TruSeq stranded mRNA protocol, and quantitated libraries were pooled at equimolar concentrations and sequenced on an Illumina HiSeq 2500 sequencer in rapid mode at a read length of 100-bp paired ends. Differential expression analysis of RNA-seq data was performed using the Rockhopper analysis suite with default parameters and using *P. aeruginosa* PAO1 (GenBank accession number NC_002516) and its associated annotation as a reference.

RNA isolation and Northern blot analysis. *P. aeruginosa* PAO1 was grown overnight in TSB liquid culture (180 rpm, 37°C). Bacteria were then diluted 100-fold in 10 ml TSB medium supplemented with 10 \(\mu \)l ethanol (negative vehicle control), testosterone (2.5 \(\mu \)M), estril (25 nM), or colistin (0.4 \(\mu \)M). Cultures were incubated at 37°C overnight or subcultured three times (100-fold) for a total of 3 days. RNA was isolated using RNeasy Midi prep kits (Qiagen) following the manufacturer’s protocol. The purity and integrity of RNA were determined by spectrophotometry. For Northern blotting, 20 \(\mu \)l of total RNA was separated on an agarose/formaldehyde gel as previously described (82). RNA was then transferred to Hybond membranes (GE Healthcare Life Sciences) by capillary blotting. Membranes were hybridized overnight with \(^{32}P \) γ-labeled DNA oligonucleotides (Table S2B). Northern blots were developed using a Bio-Rad Molecular Imager FX, and signals were quantified with ImageJ (1.52 h).

Outer membrane vesicles (OMV). Extraction: The protocol was described previously (83). Briefly, PAO1 was cultured in TSB (200 rpm, 37°C) with ethanol, ethanol-dissolved testosterone (2.5 \(\mu \)M), estril (25 nM), or colistin (0.4 \(\mu \)M). Cell-free supernatants were collected by centrifugation of the overnight cultures (10,000 rpm, 10 min, room temperature). Residual cells were removed by filtration of the supernatant through a Nalgene Rapid-Flow sterile disposable filter unit (500 ml) with PES membrane (pore size, 0.2 \(\mu \)m). Filtration was repeated twice to ensure that the supernatants were cell-free. Bacterial MVs were pelleted from filtered supernatants by ultracentrifugation (25,000 rpm, 1.5 to 2 h, 4°C) using a Type 45 Ti rotor. OMVs were then resuspended in 1 ml 1× phosphate buffered saline (PBS; Gibco), at pH 7.

Purification: Next, OMVs were purified using density gradient centrifugation (ranging from 35 to 60%) with Opti-Prep (Sigma Aldrich) diluted with PBS. Opti-Prep bands containing OMVs were then washed twice with 1× PBS to remove the Opti-Prep solution.

Particle count and size measurement: OMV samples were analyzed using a NanoSight NS300 system to quantify the size and particle concentrations, and the Malvern Zetasizer DLS instrument was used to acquire the hydrodynamic mean vesicle size. Each sample was measured in triplicate, and data were combined for further analysis.

Proteomic analysis: Tandem MS was performed by the SciLife facility (Uppsala, Sweden). Briefly, total protein concentration was measured using Bradford protein assays (Pierce kit). For each sample, 15 \(\mu \)g of protein was used for digestion. Proteins were digested with trypsin according to a standard operating procedure. The collected peptides were then purified, dried, and resolved in 0.1% formic acid and further diluted 4 times. Tandem MS was performed by applying high-energy collisional dissociation. Protein identification was based on at least two matching peptides of 95% confidence per protein. Only proteins with a Sequest score above 30 were considered for analysis.

Transmission electron microscopy (TEM): Glow-discharged carbon-coated grids (Oxford Instruments, United Kingdom) were incubated for 1 min with a drop of bacterial solution or purified OMVs and negatively stained with 1% uranyl acetate in water. Images were acquired using a high-resolution JEOl ARM300 transmission electron microscope operating at 300 keV with the Gatan one-view CMOS Camera (Gatan, USA).
Fluorescence recovery after photobleaching (FRAP) assays. Cell growth and preparation: Liquid cultures of P. aeruginosa were cultured in TSB at 37°C with aeration and shaking (200 rpm). Overnight cultures were washed three times with 1× phosphate-buffered saline (PBS) before cell exposure to a final concentration of 10 μM Nile red dye (Thermo Fisher Scientific). Samples were incubated at room temperature in the dark for 15 to 20 min. Unbound dye was removed following centrifugation (10,000 rpm, 5 min), and bacterial cells were further washed twice with 1× PBS. Then, 10 μl of cells resuspended in PBS was loaded onto a 1% agarose pad (Vivantis LE grade) prepared in 1×X PBS at pH 7.4 (Gibco). Molten agar (500 μl) was sandwiched between two pieces (1 by 3 inches) of microscope glass slides (1 mm to 1.2 mm thickness), and coverslip covering pads were sealed with paraffin wax.

FRAP measurements: FRAP measurements were taken with a confocal laser scanning microscope (Carl Zeiss LSM 780) using the 561-nm line at the ×100 lens objective. A rectangular strip with a width of 0.34 μm and length extending across the width of the bacterial cell was drawn in the middle of the cell. The fluorescence within the strip was measured at low laser power (4%) and then photobleached with full laser power (100%) for 0.37 s. Fluorescence recovery was followed immediately with low laser power for ~5.7 s, the time required to reach a plateau in the fluorescence intensity.

Data analysis: Molecular dynamics were semiquantitatively characterized by fitting the FRAP curves to an exponential equation providing the halftime of recovery ($t_{1/2}$) and the mobile fraction measurements. However, our data could not be fitted in a single exponential equation. A bi-exponential equation was, instead, used to fit the curves obtained in our experiments:

$$I(t) = F_m (1 - e^{-t/τ_1}) + F_{m2} (1 - e^{-t/τ_2})$$

where F_{m1} and F_{m2} represent the mobile fractions. The halftime of recovery was calculated from the rates $τ_1$ and $τ_2$ obtained from the fit:

$$t_{1/2} = \frac{\ln 0.5}{τ}$$

whereas the mobile fraction or the fraction of recovery was obtained from

$$F_m = F_{m1} + F_{m2}$$

Animal experiments. P. aeruginosa infection: Specific-pathogen-free, 6- to 10-week-old, female BALB/c mice were obtained from the University of Newcastle (New South Wales, Australia) central animal house. Animals were housed on a 12-h light:dark cycle in individually ventilated cages with food and water available ad libitum. All experimental procedures were performed under aseptic techniques and with approval from the University of Newcastle Animal Care and Ethics Committee.

P. aeruginosa (PA01) was grown overnight (37°C, shaking) in Luria-Bertani (LB) broth supplemented with testosterone (2.5 μM; Sigma-Aldrich, Castle Hill, Australia), estriol (25 nM; Sigma-Aldrich), or ethanol (Sigma-Aldrich). Bacteria were quantified by spectrophotometry (600 nm; iMark microplate reader; Bio-Rad, Hercules, CA, USA) and regression curve analysis relating known values to optical density. Animals were intranasally infected with 10^6 CFU of pretreated PA01 in 30 μl of PBS under light isoflurane anesthesia. Animals were then euthanized by lethal intraperitoneal injection of sodium pentobarbitone at 0.5 and 6 h postinfection. BALF was then collected from the airways by lavaging the lungs twice with 0.5 ml of PBS. Lavaged lung tissue was then collected into 1 ml of PBS and homogenized on ice. BALF and homogenized lung tissue were plated onto LB agar plates (20 μl, 5 x 1:10 serial dilutions) and incubated overnight (37°C, 24 h), and the CFU were counted to determine bacterial titers in tissues. Results are presented as combined BALF and lung bacterial titers and those from individual tissues (84–86). Cells were collected from the BALF (295 x g, 4°C, 7 min), with red blood cells lysed (Tris-buffered NHCl, 500 μl, 5 min). The remaining leukocytes were collected (295 x g, 4°C, 7 min) and counted using a hemocytometer. The leukocytes were cytospun (300 rpm, 10 min; Thermo Fisher Scientific, Scoreby, Australia) onto microscope slides, air-fixed, and then stained with May-Grunwald-Giemsa. Differential counts of inflammatory cells were performed under light microscopy (×40 magnification) and determined by size and morphology (84).

OMV in vivo challenge: For OMV experiments, all experimental procedures were performed under aseptic techniques and with approval from the IACUC committee of the Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences. C57BL/6 mice (female, 6 to 8 weeks old) underwent intratracheal installation of OMV extracts in 70 μl sterile saline using a standardized concentration of a total of 10 μg protein. Twenty-four hours after OMV administration, BALF was harvested by flushing 1 ml of sterile saline into the lungs through a catheter inserted into the mouse trachea. Injected saline was retracted with a 3-ml syringe, centrifuged at 3,500 rpm, and resuspended in red blood cell lysis buffer (Beyotime; C3702). Supernatant from the saline centrifugation was collected for LumineX multicytokine analysis using a Bioplex 23-cytokine mouse panel (Bio-Rad; M60009RDP0). The lung tissues were then dissected and fixed in 4% paraformaldehyde before serial dehydration in ethanol, xylene, and paraffin. Paraffin blocks were sectioned at 5 μm, stained for hematoxylin and eosin, and processed for histology.

Statistical analysis. Unless stated otherwise in the experimental procedures, statistical significance was determined by one-way analysis of variance (ANOVA) corrected using Dunnett’s test for multiple comparisons. Differences were considered statistically significant when the P values were <0.05. Analysis was performed using GraphPad Prism 7.0.

Data availability. The MS proteomics data related to potential steroid-binding proteins were deposited in the ProteomeXchange Consortium via the PRIDE (87) partner repository with the data set identifiers PXD018897 and 10.6019/PXD018897. Reviewer account details are as follows: username, reviewer6473@eabi.ac.uk; password, kQ0xxyM. The MS proteomics data related to OMVs were depos-
ited into the ProteomeXchange Consortium via the PRIDE (87) partner repository with the data set identifier PXD019470. Reviewer account details are as follows: username, reviewer94411@ebi.ac.uk; password, kl78AUPh. The transcriptomics data discussed above have been deposited in NCBI's Gene Expression Omnibus (88) and are accessible through the GEO Series accession number GSE148955. These 3 data sets were used to generate transcriptomic data (Fig. 2A) and proteomic data for steroid protein binders (Table S1A) and the OMV protein profile (Table S1B).

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.

TEXT S1, DOCX file, 0.03 MB.
FIG S1, TIF file, 2.3 MB.
FIG S2, TIF file, 1.8 MB.
FIG S3, TIF file, 2.9 MB.
FIG S4, TIF file, 2.9 MB.
FIG S5, TIF file, 2.2 MB.
FIG S6, TIF file, 1.7 MB.
FIG S7, TIF file, 2.3 MB.
TABLE S1, DOCX file, 0.03 MB.
TABLE S2, DOCX file, 0.02 MB.

ACKNOWLEDGMENTS

This research was supported by the Singapore Ministry of Health’s National Medical Research Council under a clinician-scientist individual research grant (MOH-000141) awarded to S.H.C., the Lee Kong Chian School of Medicine (LKCMedicine), Nanyang Technological University, Singapore Start-Up grant to S.H.C., a grant from LKCMedicine to B.H.N. and S.N., the Swedish Research Council, the Knut and Alice Wallenberg Foundation and the Swedish Foundation for Strategic Research (SSF) to B.H.N. and S.N., and a start-up grant from LKCMedicine to B.C. (M4082195).

We acknowledge the Facilities for Analysis, Characterization, Testing, and Simulations (FACTS) at Nanyang Technological University for access to TEM equipment.

P.M.H. is supported by a fellowship and grants from the National Health and Medical Research Council (NHMRC) of Australia (1175134).

We thank Peter Mellroth (Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden) for helpful discussions and Martial Duchamp (School of Materials Science and Engineering [MSE], Nanyang Technological University, Singapore) for his valuable assistance with the TEM experiment.

The University of Washington P. aeruginosa transposon mutant library is supported by NIH P30 DK089507.

C.V. planned and conceived all the in vitro and in vivo experiments and performed the in vitro experiments and data analysis. V.F.L.Y. performed all the in vitro experiments and data analysis. C.V. and V.F.L.Y. drafted the first draft of the manuscript. M.-S.A. significantly contributed to the design of all in vitro and in vivo experiments and the interpretation of all the results, and performed the OMV proteomic analysis and TEM experiments. Z.J.S. and L.L. constructed the vfr mutant strain and plasmid for complementation and performed the RNA sequencing. A.C.B., M.K.A., J.C.H., and P.M.H. performed the P. aeruginosa in vivo infection experiments. J.Q., S.Y., G.X., and L.L. performed the in vivo experiments with OMVs. T.K.J. contributed to the in vitro virulence assays. A.M.N. analyzed the OMV samples for purity and size. J.S. and T.W. performed, analyzed, and interpreted the FCS experiments. Y.H.F. performed and analyzed the FRAP experiments. F.R. and E.L. designed, performed, and analyzed the Northern blot experiments. M.M.A. analyzed the RNAseq data sets. D.R. contributed to the acquisition and analysis of the biofilm confocal images. J.-A.R. designed and performed the synthesis and analysis of the compound TSDG.HCl. T.R.R. provided clinical isolates of P. aeruginosa and contributed to collecting and obtaining data related to the strains. M.T. provided wild-type PAO1 and its mucB knockout derivative and contributed to collecting and obtaining data related to these strains. D.L. supported and advised all ligand-protein interaction experiments. B.C. prepared, acquired, and analyzed samples for
TEMP. S.N. and B.H.N. contributed to the interpretation of the data, the relation to other literature, and the revision of the manuscript. S.H.C. managed the entire project, procured funding, and was involved in the conception, design, and execution of all experiments. He wrote the final manuscript with contributions from all coauthors.

T.R.R. has been advisory board chair and member for, and recipient of conference travel bursary from, A Menarini Pharmaceuticals, Ireland, as well as receiving lecture honoraria from Pfizer Healthcare Ireland and Gilead Sciences, Inc. All other authors have no conflicts of interest.

Note Added after Publication
In the initial publication (on 29 September 2020), there were minor errors in the byline and affiliations. The article was corrected online on 27 October 2020.

REFERENCES

1. Falagas ME, Mourtzoukou EG, Vardakas KZ. 2007. Sex differences in the incidence and severity of respiratory tract infections. Respir Med 101:1845–1863. https://doi.org/10.1016/j.rmed.2007.04.011.

2. Vidalicic C, Yong VFL, Jaggi TK, Soh M-M, Chotirmall SH. 2018. Gender differences in bronchiectasis: a real issue? Breathe (Sheff) 14:108–121. https://doi.org/10.1183/20734735.002218.

3. Vazquez-Martinez ER, Garcia-Gomez E, Camacho-Arroyo I, Gonzalez-Pedrajo B. 2018. Sexual dimorphism in bacterial infections. Biol Sex Differences 9:27. https://doi.org/10.1186/s13293-018-0187-5.

4. vom Steeg LG, Klein SL. 2016. SexX matters in infectious disease pathogenesis. PLoS Pathog 12:e1005374. https://doi.org/10.1371/journal.ppat.1005374.

5. Garcia-Gomez E, Gonzalez-Pedrajo B, Camacho-Arroyo I. 2013. Role of sex steroid hormones in bacterial-host interactions. Blomod Res Int 2013:3–10. https://doi.org/10.1155/2013/928290.

6. Trigunanat A, Dimo J, Jorgensen TN. 2015. Suppressive effects of androgens on the immune system. Cell Immunol 294:87–94. https://doi.org/10.1016/j.cellimm.2015.02.004.

7. Sweezy NB, Ratjen F. 2014. The cystic fibrosis gender gap: potential roles of estrogen. Pediatr Pulmonol 49:309–317. https://doi.org/10.1002/ppul.22967.

8. Chotirmall SH, Smith SG, Gunaratnam C, Cosgrove S, Dimitrov BD, O’Neill SJ, Harvey BJ, Greene CM, McElvaney NG. 2012. Effect of estrogen on transcriptional differences in bronchiectasis: a real issue? Breathe (Sheff) 14:108–121. https://doi.org/10.1183/20734735.002218.

9. Hwang D, Gho YS. 2011. Proteomic analysis of outer membrane vesicles from Pseudomonas aeruginosa. PROTEOMICS 11:3424–3429. https://doi.org/10.1002/pmic.201000212.

10. Rowland SS, Falker WA, Jr, Bashiri-elah N. 1992. Identification of an estrogen-binding protein in Pseudomonas aeruginosa. J Steroid Biochem Mol Biol 42:721–727. https://doi.org/10.1016/0960-0760(92)90113-W.

11. Laurensen JP, Bloom RA, Page S, Sadireh N. 2014. Ethynyl estradiol and other human pharmaceutical estrogens in the aquatic environment: a review of recent risk assessment data. AAPS J 16:299–310. https://doi.org/10.1208/s12248-014-9551-3.

12. PubChem. 2004. Compound summary: testosterone. CID 6013. National Library of Medicine, National Center for Biotechnology Information, Bethesda, MD. https://pubchem.ncbi.nlm.nih.gov/compound/Testosterone. Accessed 9 September 2020.

13. PubChem. 2005. Compound summary: estradiol. CID 5756. National Library of Medicine, National Center for Biotechnology Information, Bethesda, MD. https://pubchem.ncbi.nlm.nih.gov/compound/Estradiol. Accessed 9 September 2020.

14. Hussain AA, Al-Bayatti AA, Dakkuri A, Okochi K, Hussain MA. 2002. Testosterone 17beta-N,N-dimethylglycinate hydrochloride: a prodrug with a potential for nasal delivery of testosterone. J Pharm Sci 91:785–789. https://doi.org/10.1016/j.jsps.2010.06.0543.

15. Shroot JD, Chopp DL, Just CL, Hentzer M, Givskov M, Parsek MR. 2006. The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional. Mol Microbiol 62:1264–1277. https://doi.org/10.1111/j.1365-2958.2006.05241.x.

16. Chrzanowski L, Lawniczak C, Czaczyk K. 2012. Why do microorganisms produce rhomboïdids? World J Microbiol Biotechnol 28:401–419. https://doi.org/10.1007/s11295-011-0854-8.

17. Manning AJ, Kuehn MJ. 2011. Contribution of bacterial outer membrane vesicles to innate bacterial defense. BMC Microbiol 11:258. https://doi.org/10.1186/1471-2179-11-258.

18. Jones AK, Fulcher NB, Balzer GJ, Urbanowski ML, Pritchett CL, Schurr MJ, Yah TL, Wolfgang MC. 2010. Activation of the Pseudomonas aeruginosa AlgU regulon through muaA mutation inhibits cyclic AMP/Vfr signaling. J Bacteriol 192:5709–5717. https://doi.org/10.1128/JB.00526-10.

19. Persat A, Inclan YF, Engel JN, Stone HA, GitaI Z. 2015. Type IV pili mechaanochemically regulate virulence factors in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 112:7563–7568. https://doi.org/10.1073/pnas.1502025112.

20. Min KB, Lee K-M, Oh YT, Yoon SS. 2014. Nonmucoid conversion of mucoid Pseudomonas aeruginosa induced by sulfate-stimulated growth. FEMS Microbiol Lett 360:157–166. https://doi.org/10.1016/j.femsle.2014.06.062.

21. Jan AT. 2017. Outer membrane vesicles (OMVs) of Gram-negative bacteria: a perspective update. Front Microbiol 8:1053. https://doi.org/10.3389/fmicb.2017.01053.

22. O’Donoghue EK, Kracher AM. 2016. Mechanisms of outer membrane vesicle entry into host cells. Cell Microbiol 18:1508–1517. https://doi.org/10.1111/cmi.12655.

23. Toyofuku M, Nomura N, Eberl L. 2019. Types and origins of bacterial membrane vesicles. Nat Rev Microbiol 17:13–24. https://doi.org/10.1038/s41477-018-0112-2.

24. Choi D-S, Kim D-K, Choi SJ, Lee J, Choi J-P, Rho S, Park S-H, Kim Y-K, Hwang D, Gho YS. 2011. Proteomic analysis of outer membrane vesicles derived from Pseudomonas aeruginosa. PROTEOMICS 11:3424–3429. https://doi.org/10.1002/pmic.201000212.
Relman DA, Donnenberg M, Tsuomanen E, Rappuoli R, Falkow S. 1989. Filamentous hemagglutinin of Bordetella pertussis: nucleotide sequence and crucial role in adherence. Proc Natl Acad Sci U S A 86:2637–2641. https://doi.org/10.1073/pnas.86.8.2637.

Tashiro Y, Sakai R, Toyofuku M, Sawada I, Nakajima-Kambe T, Uchiyama H, Nomura N. 1992. Outer membrane machinery and alginate synthesis regulators control membrane vesicle production in Pseudomonas aeruginosa. J Bacteriol 191:7509–7519. https://doi.org/10.1128/JB.191.19.7509-7519.2001.

Gellaty SL, Hancock RE. 2013. Pseudomonas aeruginosa: new insights into pathogenesis and host defenses. Pathog Dis 67:159–173. https://doi.org/10.1128/9781626234133-ch06-02.

Wretlind B, Pavlovskis OR. 1983. Pseudomonas aeruginosa elastase and its role in pseudomonas infections. Rev Infect Dis 5(Suppl 5): S998–S1004. https://doi.org/10.1093/clinids/5.Supplement_5.S998.

Pang Z, Raudonis R, Glick BR, Lin TJ, Cheng Z. 2019. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv 37:177–192. https://doi.org/10.1016/j.biotechnadv.2018.11.013.

Lamas A, Maiz L, Ruiz de Valbuena M, Gonzalez-Casbas JM, Suarez L. 2014. Subcutaneous implant with etonogestrel (Implanon(R)) for contraceptive purposes with cystic fibrosis: a case report. BMC Med 14:165. https://doi.org/10.1186/1471-244X-14-165.

Godfrey EM, Mody S, Schwartz MR, Heltlhe SL, Taylor-Cousar JL, Jain R, Sufian S, Josephy T, Atiken ML. 2020. Contraceptive use among women with cystic fibrosis: a pilot study linking reproductive health questions to the Cystic Fibrosis Foundation National Patient Registry. Contraception 101:420–426. https://doi.org/10.1016/j.contraception.2020.02.006.

Wester RC, Hui X, Hewitt PG, Hontoryen J, Kruser S, Chan T, Maibach HJ. 2002. Polymers effect on estradiol partition coefficient between powdered human stratum corneum and water. J Pharm Sci 91:2642–2645. https://doi.org/10.1016/S0022-3549(02)76248-8.

Pang Z, Raudonis R, Glick BR, Lin TJ, Cheng Z. 2019. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv 37:177–192. https://doi.org/10.1016/j.biotechnadv.2018.11.013.

Lamas A, Maiz L, Ruiz de Valbuena M, Gonzalez-Casbas JM, Suarez L. 2014. Subcutaneous implant with etonogestrel (Implanon(R)) for contraceptive purposes with cystic fibrosis: a case report. BMC Med 14:165. https://doi.org/10.1186/1471-244X-14-165.

Godfrey EM, Mody S, Schwartz MR, Heltlhe SL, Taylor-Cousar JL, Jain R, Sufian S, Josephy T, Atiken ML. 2020. Contraceptive use among women with cystic fibrosis: a pilot study linking reproductive health questions to the Cystic Fibrosis Foundation National Patient Registry. Contraception 101:420–426. https://doi.org/10.1016/j.contraception.2020.02.006.

Beceiro A, Tomas M, Bou G. 2013. Antimicrobial resistance and virulence: a successful or deleterious association in the bacterial world? Clin Microbiol Rev 26:185–230. https://doi.org/10.1128/CMR.00059-12.

Rizk ML, Bhavnani SM, Drusano G, Dane A, Eakin AE, Guina T, Jang SH, Tomayko JF, Wang J, Zhuang L, Lodise TP. 2019. Considerations for dose selection and clinical pharmacokinetics/pharmacodynamics for the development of alternative agents. Antimicrob Agents Chemother 63. https://doi.org/10.1128/AAC.02309-18.

Reller ME, Tauxe RV, Kalish LA, Malbuk K. 2008. Excess salmonellosis in women in the United States: 1968–2000. Epidemiol Infect 136:1109–1117. https://doi.org/10.1017/S0950268807009594.

Olson PD, Hunstad D. 2018. Sex and other host factors influencing urinary tract infection pathogenesis. In Naber KG (ed), Urogenital infections and inflammations. https://doi.org/10.5600/9780071800016. German Medical Science GMS Publishing House, Dusseldorf, Germany.

Matsuda H, Okada K, Fukui K, Kamata Y. 1985. Inhibitory effect of estradiol-17 beta and progesterone on bactericidal activity in uteri of rabbits infected with Escherichia coli. Infect Immun 48:653–657. https://doi.org/10.1128/IAI.48.3.653-657.1985.

Pejicic-Karapetrovic B, Guniani K, Russell MS, Finlay BB, Sad S, Krishnan L. 2007. Pregnancy impairs the innate immune response to Salmonella typhimurium: leading to rapid fatal infection. J Immunol 179:6088–6096. https://doi.org/10.4049/jimmunol.179.9.6088.

Kita E, Yagyu Y, Nishikawa F, Hamuro A, Oku D, Emoto M, Katsui N, Kashiba S. 1989. Alterations of host resistance to mouse typhoid infection by sex hormones. J Leukoc Biol 46:538–546. https://doi.org/10.1002/jlb.46.6.538.

Hews CL, Cho T, Rowley G, Raivo TL. 2019. Maintaining integrity under stress: envelope stress response regulation of pathogenesis in Gram-negative bacteria. Front Cell Infect Microbiol 9. https://doi.org/10.3389/fcimb.2019.00313.

Grabowicz M, Silhavy TJ. 2017. Envelope stress responses: an interconnected safety net. Trends Biochem Sci 42:232–242. https://doi.org/10.1016/j.tibs.2016.10.002.

Schwechheimer C, Kuehn MJ. 2015. Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions. Nat Rev Microbiol 13:605–619. https://doi.org/10.1038/nrmicro3525.
71. Diggle SP, Matthijss S, Wright VJ, Fletcher MP, Chhabra SR, Lamont IL, Kong X, Hider RC, Cornelis P, Cámara M, Williams P. 2007. The Pseudomonas aeruginosa 4-quinolone signal molecules HHQ and PQS play multifunctional roles in quorum sensing and iron entrapment. Chem Biol 14:87–96. https://doi.org/10.1016/j.chembiol.2006.11.014.

72. Crabbé A, Ledesma MA, Nickerson CA. 2014. Mimicking the host and its microenvironment in vitro for studying mucosal infections by Pseudomonas aeruginosa. Pathog Dis 71:1–19. https://doi.org/10.1111/2049-632X.12180.

73. Jacobs MA, Alwood A, Thaipisuttikul I, Spencer D, Haugen E, Ernst S, Will O, Kaul R, Raymond C, Levy R, Chun-Rong L, Guenthner D, Bovee D, Olson MV, Manoil C. 2003. Comprehensive transposon mutant library of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 100:14339–14344. https://doi.org/10.1073/pnas.2036282100.

74. Yang L, Nilsson M, Gjermansen M, Givskov M, Tolker-Nielsen T. 2009. Pyoverdine and PQS mediated subpopulation interactions involved in Pseudomonas aeruginosa biofilm formation. Mol Microbiol 74:1380–1392. https://doi.org/10.1111/j.1365-2958.2009.06934.x.

75. Chang CY, Krishnan T, Wang H, Chen Y, Yin WF, Chong YM, Tan LY, Chong TM, Chan KG. 2014. Non-antibiotic quorum sensing inhibitors acting against N-acyl homoserine lactone synthase as druggable target. Sci Rep 4:7245. https://doi.org/10.1038/srep07245.

76. Koch AK, Kappeli O, Fiechter A, Reiser J. 1991. Hydrocarbon assimilation and biosurfactant production in Pseudomonas aeruginosa mutants. J Bacteriol 173:4212–4219. https://doi.org/10.1128/JB.173.13.4212-4219.1991.

77. Heydorn A, Nielsen AT, Hentzer M, Sternberg C, Givskov M, Erskoll BK, Molin S. 2000. Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology 146:2395–2407. https://doi.org/10.1099/00221287-146-10-2395.

78. Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675. https://doi.org/10.1038/nmeth.2089.

79. Perez-Riverol Y, Csordas A, Bai J, Bernal-Llinares M, Hewapathirana S, Kundu DJ, Inuganti A, Griss J, Mayer G, Eisenacher M, Perez E, Uszkoreit J, Pfeuffer J, Sachsenberg T, Yilmaz S, Cox J, Audain E, Walzer M, Ruffing J, Ternent T, Brazma A, Vizcaino JA. 2019. The PRIDE database and related tools and resources in 2019: improving support for integration of data. Nucleic Acids Res 47:D442–D450. https://doi.org/10.1093/nar/gky1106.

80. Edgar R, Domrachev M, Lash AE. 2002. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30:202–210. https://doi.org/10.1093/nar/30.1.207.
Erratum for Vidaillac et al. “Sex Steroids Induce Membrane Stress Responses and Virulence Properties in Pseudomonas aeruginosa”

Celine Vidaillac,a,b* Valerie Fei Lee Yong,a Marie-Stephanie Aschtgen,a,b,c,d Jing Qu,e Shuowei Yang,f Guangfu Xu,f Zi Jing Seng,h* Alexandra C. Brown,a,b Md Khadem Ali,a,b,h Tavleen K. Jaggi,i Jagadish Sankaran,j,l Yong Hwee Foo,b Francesco Righetti,c,d Anu Maashaa Nedumaran,h Michele Mac Aogain,a,b Dan Roizman,b Jean-Alexandre Richard,i Thomas R. Rogers,m Masanori Toyofuku,n Dahai Luo,n Edmund Loh,b,c,d Thorsten Wohland,i Bertrand Czarny,a,k Jay C. Horvat,a,h Philip M. Hansbro,b,h,o,p Liang Yang,b Liang Li,e Staffan Normark,a,b,c,d Birgitta Henriques-Normark,a,b,c,d Sanjay H. Chotirmall,a

Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
Karolinska University Hospital Solna, Stockholm, Sweden
Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
Department of Otolaryngology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China
Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia
Department of Biomedical Sciences, National University of Singapore, Singapore
Centre for Bio-Imaging Sciences, National University of Singapore, Singapore
School of Materials Science and Engineering (MSE), Nanyang Technological University, Singapore
Functional Molecules and Polymers, Institute of Chemical and Engineering Sciences, ICES, Agency for Science, Technology, and Research (A*STAR), Singapore
Department of Clinical Microbiology, Trinity College Dublin, St. James’s Hospital Campus, Dublin, Ireland
Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia
University of Technology Sydney, School of Life Sciences, Faculty of Science, Ultimo, NSW, Australia

Celine Vidaillac and Valerie Fei Lee Yong contributed equally to this article. Order of the authors is justified in the acknowledgements section.

Volume 11, no. 5, e01774-20, 2020, https://doi.org/10.1128/mBio.01774-20. Professor Birgitta Henriques-Normark's last name was missing a hyphen between Henriques and Normark in the original article. The byline should appear as shown above. Also, the affiliations and affiliation letters are correctly represented herein.

Citation Vidaillac C, Yong VFL, Aschtgen M-S, Qu J, Yang S, Xu G, Seng ZJ, Brown AC, Ali MK, Jaggi TK, Sankaran J, Foo YH, Righetti F, Nedumaran AM, Mac Aogain M, Roizman D, Richard JA, Rogers TR, Toyofuku M, Luo D, Loh E, Wohland T, Csanyi B, Horvat JC, Hansbro PM, Yang L, Li L, Normark S, Henriques-Normark B, Chotirmall SH. 2020. Erratum for Vidaillac et al. "Sex steroids induce membrane stress responses and virulence properties in Pseudomonas aeruginosa." mBio 11:e02809-20. https://doi.org/10.1128/mBio.02809-20.

Copyright © 2020 Vidaillac et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

Address correspondence to Sanjay H. Chotirmall, schotirmall@ntu.edu.sg.

*Present address: Celine Vidaillac, Administration of Science Technology and Training, Ministry of Health, Hanoi, Vietnam, and Oxford University Clinical Research Unit, University of Oxford, Ho Chi Minh City, Vietnam; Zi Jing Seng, The Bone Marrow Donor Programme, Singapore; Md Khadem Ali, Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University School of Medicine, Stanford, California, USA; Jagadish Sankaran, A*STAR—Agency for Science, Technology, and Research, Genome Institute of Singapore, Singapore; Micheál Mac Aogain, Biochemical Genetics Laboratory, Department of Biochemistry, St. James’s Hospital, Dublin, Ireland, and School of Medicine, Trinity College, Dublin, Ireland; Liang Yang, School of Medicine, Southern University of Science and Technology, Shenzhen, China.

Published 3 November 2020