First search for exclusive diphoton production at high mass with tagged protons in proton-proton collisions at $\sqrt{s} = 13$ TeV

The CMS and TOTEM Collaborations

Abstract

A search for exclusive two-photon production via photon exchange in proton-proton collisions, $pp \rightarrow p\gamma\gamma p$ with intact protons, is presented. The data correspond to an integrated luminosity of $9.4 \, \text{fb}^{-1}$ collected in 2016 using the CMS and TOTEM detectors at a center-of-mass energy of 13 TeV at the LHC. Events are selected with a diphoton invariant mass above 350 GeV and with both protons intact in the final state, to reduce backgrounds from strong interactions. The events of interest are those where the invariant mass and rapidity calculated from the momentum losses of the forward-moving protons matches the mass and rapidity of the central, two-photon system. No events are found that satisfy this condition. Interpreting this result in an effective dimension-8 extension of the standard model, the first limits are set on the two anomalous four-photon coupling parameters. If the other parameter is constrained to its standard model value, the limits at 95% CL are $|\zeta_1| < 2.88 \times 10^{-13} \, \text{GeV}^{-4}$ and $|\zeta_2| < 6.02 \times 10^{-13} \, \text{GeV}^{-4}$.

Submitted to Physical Review Letters
In the classical theory of electrodynamics, photons (γ), having neither mass nor charge, lack self interactions. However, because of the characteristics of the vacuum, photons with sufficient energy may fluctuate into charged particle-antiparticle pairs, thus giving rise to photon-photon interactions. When two photons interact in this way through an intermediate charged particle loop to create two different outgoing photons, the process is known as light-by-light (LbL) scattering. Evidence for this process has been sought in laboratory experiments for decades [1–4], and has been studied indirectly by the measurement of the anomalous magnetic moments of the electron [5] and the muon [6, 7].

By exploiting the large photon fluxes produced by ultrarelativistic ion beams at the LHC, as proposed in Ref. [8], the ATLAS and CMS experiments recently reported measurements of LbL scattering [9–11] through exclusive diphoton production in ultraperipheral lead-lead collisions [12]. Analyses based on heavy ion collision data find results consistent with the standard model (SM) expectations. However, these analyses probe the production of LbL candidates in the diphoton mass ($m_{\gamma\gamma}$) range of a few GeV. Complementary to these searches, an exclusive $m_{\gamma\gamma}$ spectrum search starting from 350 GeV is performed in this Letter for the first time.

The LbL scattering process, which can be studied at the electroweak energy scale and above in proton-proton (pp) collisions at the LHC, is of great interest because of its sensitivity to many extensions of the SM [8,13–16]. Some of these can be described by a purely effective extension of the SM Lagrangian using charge conjugation conserving operators, leading to a dimension-8 term for the four-photon coupling. This term contains the electromagnetic field tensor, F, and the two parameters $\xi_{1,2}$:

$$L_{\gamma\gamma\gamma\gamma}^{8}=\xi_{1}F_{\mu\nu}F_{\rho\sigma}F_{\rho\sigma}F_{\mu\nu}+\xi_{2}F_{\mu\nu}F^{\mu\rho}F_{\rho\sigma}F^{\nu\sigma}.$$ (1)

The contribution from the anomalous four-photon coupling is expected to dominate the LbL cross section at high masses as compared to the SM contribution [17]. A similar approach was used in Refs. [18–20] for the $\gamma\gammaW^{+}W^{-}$ quartic coupling.

In pp collisions, LbL scattering (pictured in Fig. 1) can be identified through the measurement of two exclusively produced photons and two intact protons detected in very forward detectors along both beam directions. In this Letter, a search for this process is performed in pp collisions at a center-of-mass energy of 13 TeV using data collected with the CMS and TOTEM detectors in 2016, corresponding to an integrated luminosity of 9.4 fb$^{-1}$. Tabulated results are provided in the HEPData record for this analysis [21].

Figure 1: The process for diphoton production via photon exchange with intact protons in the final state. Several couplings may enter the four-photon shaded area such as a loop (box) of charged fermions or bosons. The model can be extended with intermediate interactions of new physics objects, such as a loop of a heavy charged particle or an s-channel process producing a scalar axion-like resonance that decays into two photons.
The basic feature of the CMS detector is the 3.8 T magnetic field produced by a superconducting solenoid. Within this field are located a silicon pixel and strip tracker with coverage in pseudorapidity up to $|\eta| = 2.5$, surrounded by a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter (HCAL) directly outside the ECAL, each composed of a barrel and two endcap sections. The ECAL consists of about 76 000 PbWO$_4$ crystals, each with a transverse dimension approximately matching the Molière radius of the material. This radius roughly corresponds to a $\Delta \eta \times \Delta \phi$ granularity (where ϕ is azimuthal angle in radians) of 0.0174 x 0.0174 in the barrel, and extending up to 0.05 x 0.05 in both endcaps. The muon detection system consists of three types of gas-ionization detectors located in the steel flux-return yoke of the solenoid. Events are selected online and stored at a maximal rate of about 1 kHz using a two-tier triggering system [22]. A more detailed description of the apparatus, with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [23].

The CMS-TOTEM precision proton spectrometer (CT-PPS) [24] is an array of movable, near-beam “Roman pot” (RPs) devices containing tracking and timing detectors located with their inner edge at a distance of 1.5 mm from the nominal axis of the LHC beam, whose transverse width is about 0.1 mm. The detectors are used to reconstruct the flight path and time of arrival of protons coming from the interaction point (IP) to a point 210 m down the LHC beamline. This beamline consists of a lattice of optical elements, with their physical apertures possibly scraping the beam edges and reducing its acceptance at the CT-PPS. In this study, two tracking stations per side, or “arm”, of CMS are used. These tracking stations provide a measurement of the proton trajectories with respect to the beam position. Knowledge of the magnetic fields traversed by the proton from the IP to the RPs allows for the reconstruction of its fractional momentum loss $\xi = \Delta p/p \sim x/D_x$ with respect to the momentum of the incident proton, with x being the horizontal displacement of the scattered proton, and D_x being the horizontal dispersion of the beam. In the 2016 data taking configuration, the CT-PPS tracking component consisted of silicon strip detectors, with acceptance for ξ between 3–15%. The techniques used for the alignment and calibration of the apparatus are detailed in Refs. [25, 26]. Combining the uncertainties in the alignment and spatial resolution of the RPs, the beam transverse size and angular spread, and the horizontal dispersion, a total relative uncertainty between 6–10% is estimated for ξ over the range of the detector acceptance. The performance of CT-PPS and its potential for high-mass exclusive measurements were validated by the observation of proton-tagged $\gamma\gamma$ collisions in 2016 [27].

Events are required to pass a trigger that selects a pair of photon candidates, with each photon having a transverse momentum $p_T > 60$ GeV each and a ratio of energy deposits in the HCAL to ECAL less than 0.15. This trigger was designed for, and used in, the CMS inclusive high-mass diphoton searches [28]. In the case of an elastic, photon-induced process, the photon pair is expected to have different kinematic properties compared to inclusive processes where the photons are produced together with other particles. In particular, the back-to-back momentum balance in the transverse plane between the two exclusive photons is used to select the exclusive two-photon events.

A boosted decision tree discriminant is used for the photon identification, following the procedure introduced in Ref. [28]. Since the reconstruction algorithms in the ECAL do not make assumptions as to whether the energy deposits are from a photon or an electron, photon reconstruction can be validated using $Z \rightarrow e^+e^-$ events [29]. For this analysis, electrons are vetoed by the presence of hits in the central tracker that are inconsistent with a converted photon.

Several sources of non-exclusive backgrounds are considered for this search. The leading inclu-
sive $\gamma\gamma$ background as well as the $W\gamma$ and $Z\gamma$ subleading backgrounds are simulated by MADGRAPH5_aMC@NLO [30] at next-to-leading order (NLO) precision with NNPDF3.0 parton distribution functions (PDFs) at next-to-NLO precision [31]. Other subleading backgrounds, namely photon-enriched quantum chromodynamics (QCD) processes, photon-enriched inclusive $\gamma + \text{jet}$, and inclusive $t\bar{t}$ processes, are generated at leading order (LO) by PYTHIA 8.205 [32] with NNPDF3.0 PDFs at LO precision. Other subleading backgrounds, namely photon-enriched quantum chromodynamics (QCD) processes, photon-enriched inclusive $\gamma + \text{jet}$, and inclusive $t\bar{t}$ processes, are generated at leading order (LO) by PYTHIA 8.205 [32] with NNPDF3.0 PDFs at LO precision. The exclusive SM LbL process contribution is expected to be negligible at a mass range above 350 GeV, for the luminosity used in this study. It is considered as a background and is simulated using the Forward Physics Monte Carlo (FPMC) program [33] based on the description in Ref. [15]. All samples considered in this search are processed with a GEANT4 [34] simulation of the CMS central detector.

A preselection of events requires each photon to have $p_T > 75$ GeV to ensure a fully efficient trigger, $|\eta| < 2.5$ with a veto on the ECAL barrel-endcap transition region $(1.4442 < |\eta| < 1.5660)$, and $m_{\gamma\gamma} > 350$ GeV. The minimum diphoton mass corresponds to the minimum measurable proton momentum loss detectable by the CT-PPS. For events passing the preselection criteria, an elastic selection region is constructed based on the expected back-to-back emission in the transverse plane of two final-state photons from exclusive elastic processes. The diphoton acoplanarity $a \equiv 1 - |\Delta \phi_{\gamma\gamma}|/\pi$, where $\Delta \phi_{\gamma\gamma}$ is the azimuthal separation of the two photons, is then used as a discriminating variable, and diphoton candidates are selected with $a < 0.005$. To isolate photons in the ECAL, a lower threshold of 0.94 is set on the R_9 variable, computed as the ratio between the energy in a 3×3 area of crystals to the energy in a 5×5 area of crystals, centered on the most energetic crystal of the photon energy deposit [29]. In addition to the criteria from the elastic selection, a tighter selection region is considered requiring $\xi_{\gamma\gamma}^\pm$ to be within the CT-PPS proton ξ acceptance, where $\xi_{\gamma\gamma}^\pm = (p_T^\pm e^{\pm \eta^\gamma} + p_T^\pm e^{\pm \eta^\gamma})/\sqrt{s}$ and the + and − denote the positive and negative z sides of CMS, respectively. Because of the radiation damage to the detector regions closest to the beam, a track reconstruction inefficiency correction varying with x (and hence ξ), and growing over time as radiation is accumulated, is introduced. The signal search region for this analysis is defined by requiring the $\xi_{\gamma\gamma}^\pm$ values to pass a tighter selection corresponding to the most efficient area of the CT-PPS detectors. In this region, the tracking efficiency in each RP is at least 90%. One inclusive background control region is used in the analysis. This control region satisfies the preselection criteria and is given a high efficiency for inclusive diphoton events with the requirement that photons have $p_T > 200$ GeV and $a > 0.025$. The ϕ angle selection suppresses exclusive production, which occurs at small acoplanarity.

The normalization and shape of the simulated background contributions in the signal search region are checked with the inclusive-enriched sample introduced above. A slight deficit (9.9%) observed for the simulation of the inclusive-enriched region is addressed by rescaling the dominant inclusive background.

The data and simulation events falling within the different selection regions can be seen in Fig. 2. For all selection regions used in this study, the data are found to be consistent with the background prediction within statistical uncertainties. A total of 266 diphoton candidates are found in the elastic search region to be compared with the expectation of 263.1 ± 4.1 (statistical). The resulting $m_{\gamma\gamma}$ spectrum of events passing the elastic selection can be seen in Fig. 3. Sensitivity to the LbL signal is enhanced by measuring the resulting final-state protons. In exclusive events, where the protons remain intact, momentum loss from the protons is related to the invariant mass of the diphoton system. Signal candidates are selected by requiring, in addition to the selection criteria defined above, a kinematic matching between the two systems, of the forward protons and the central photons, thus imposing conservation of momentum. It has been shown that matching mass and rapidity of the diphoton system and the scattered protons...
Figure 2: Numbers of simulated and observed events for the various selection regions described in the text. The shaded bands show the statistical uncertainties in the simulated backgrounds added in quadrature. All selection regions are sequential from left to right, with the exception of the inclusive region used in the backgrounds yield correction, thus with a data-to-prediction ratio constrained to unity. The signal region is denoted as “Tight $\xi_{\gamma\gamma}$”.

on an event-by-event basis significantly reduces the contribution of inclusive backgrounds [17]. In fact, the large majority of such events come from the coincidence of an inclusively-produced diphoton event with pileup protons from unrelated events. The kinematic matching ensures that the two systems originate from the same pp interaction. The kinematic variables of an opposite-arm, two-proton system are converted into missing mass and rapidity of the central system through $m_{pp} = \sqrt{s} \xi_+ + \xi_-$, and $y_{pp} = (1/2) \log(\xi_+/\xi_-)$, where ξ_+ and ξ_- correspond to the ξ of protons on the positive z and negative z sides of CT-PPS, respectively. In the case of exclusive diphoton production, both systems are correlated through $m_{\gamma\gamma} = m_{pp}$ and $y_{\gamma\gamma} = y_{pp}$. The resolution of the diphoton mass as deducted from uncertainties in the photons’ momenta is 2.0%. For the two-proton system, a diphoton mass resolution of 5.5–8.4% is expected from the proton fractional momentum loss uncertainties. Equivalently, the central two-photon rapidity resolution is 7.4%, while the forward proton rapidity uncertainty is bounded between 0.05–0.09 in absolute value. In this search, a 2σ window is used in matching the difference, both in mass and rapidity, between the central and the two-proton systems; here σ indicates the combined resolution of the two systems.

The CT-PPS silicon strips, by design, can only reconstruct one proton at a time. This feature leads to a failure of the event reconstruction when multiple candidates are observed in the same RP for the same bunch crossing, leading to an inefficiency of 30% or less in both arms of CT-PPS for the entire data taking period considered in this study. Additionally, the acceptance is restricted to the regions of the silicon strips where the radiation-induced inefficiency remains below 10%. The asymmetric region corresponds to $0.07 < \xi_- < 0.111$ and $0.07 < \xi_+ < 0.138$.

Only two events remain in the signal search region with an expected background of $2.1^{+1.0}_{-0.7}$ (stat) when no kinematic matching criteria are applied. Of these, neither contains a pair of forward proton tracks.

Background contributions are estimated following the procedure described in Ref. [27], where
it is assumed that inclusive background processes involve a full decorrelation between central two-photon and forward two-proton systems. Pseudo-events are formed by combining diphoton kinematic distributions sampled from a template with the two-proton system variables randomly selected from real data events within the period of interest. The diphoton kinematic variables are sampled from an exponential fit to the $\xi_{\gamma\gamma}$ spectra of events passing the background-enriched selection defined above. Using this method, the predicted number of events having an elastic diphoton pair in association with a pair of protons observed within the range where the proton detectors have a radiation inefficiency less than 10% is evaluated as $0.83^{+0.28}_{-0.15}$ (stat) events. This prediction is without the requirement of any kinematic matching of the diphoton and proton systems. In the 2σ and 3σ matching windows, the background predictions are respectively $0.23^{+0.08}_{-0.04}$ (stat) and $0.43^{+0.14}_{-0.08}$ (stat) events. No diphoton candidates with exclusive kinematic features are observed in either of the windows.

The sources of systematic uncertainties affecting the signal are as follows: the yield correction for the inclusive background selection estimate from the inclusive-enriched selection described above (37%), the background evaluation procedure (33%), the radiation damage and tracking efficiency of the RPs (13%), and the luminosity measurement (2.5%) [35]. Additionally, a signal cross section uncertainty of 10% is assumed to account for the rapidity gap survival probability in the high invariant mass region [36]. The rapidity gap survival probability expresses the fraction of events in which no additional soft interactions occur between the two colliding protons, producing extra final-state particles and modifying the topology of exclusive events.

Using a profile likelihood ratio as a test statistic [37], systematic uncertainties as nuisance parameters with a log-normal prior, and the background yields obtained above, the 95% confidence level (CL) [38] [39] observed frequentist upper limit of 4.4 fb is obtained for the LbL cross section within the fiducial region. This region is defined in terms of the single-photon and diphoton selections described previously, with additional asymmetric selection criteria for the two arms of the spectrometer corresponding to the region with less than 10% inefficiency from the CT-PPS strips radiation damage and within beamline apertures. The SM LbL process has
an overall signal efficiency of 6.7%, significantly smaller than for the anomalous four-photon process.

For the anomalous quartic gauge coupling extension of the SM introduced earlier, an observed upper limit of 2.08 fb can be compared with the expected limit of 2.49 fb using the background-only hypothesis. This upper limit is used to place the first limits on the four-photon anomalous quartic gauge couplings. The signal efficiency is observed to be approximately constant over a wide range of the couplings parameters ζ_1 and ζ_2 in the search region. It is evaluated at 63.8% for the central two-photon system and 22.7% for the forward proton system. Figure 4 shows the region of the parameter phase space where the corresponding cross section is excluded by this measurement. Consequently, when one of the model parameters is assumed to be null, the other is limited to

$$|\zeta_1| < 2.88 \times 10^{-13} \text{GeV}^{-4} (\zeta_2 = 0),$$

$$|\zeta_2| < 6.02 \times 10^{-13} \text{GeV}^{-4} (\zeta_1 = 0).$$

Figure 4: Two-dimensional limits on the anomalous four-photon couplings, derived from the observed upper limit on the diphoton production cross section. The shaded area depicts the excluded values of the coupling parameters ζ_1 and ζ_2.

To summarize, the CMS-TOTEM precision proton spectrometer has proven the feasibility of continuously operating a near-beam proton spectrometer at a high-luminosity hadron collider. The first search for the $\gamma \gamma \rightarrow \gamma \gamma$ process with forward proton tags is presented. The search uses an integrated luminosity of 9.4 fb$^{-1}$ of proton-proton collisions collected at a 13 TeV center-of-mass energy at the LHC during 2016. No events are observed with a pair of proton tracks compatible with the diphoton kinematic properties with an expected background of 0.23 and 0.43 events for the 2 and 3 standard deviations windows, respectively. This provides the first limit for the standard model light-by-light production cross section at a scale of hundreds of GeV, and places limits on anomalous couplings for the four-photon interaction based on an effective field theory extension of the standard model.

Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other
CMS and TOTEM institutes for their contributions to the success of the common CMS-TOTEM effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid and other centers for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC, the CMS and TOTEM detectors, and the supporting computing infrastructure provided by the following funding agencies: BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES and BNSF (Bulgaria); CERN; CAS, MoST, and NSFC (China); Minciencias (Colombia); MSES and CSF (Croatia); RIF (Cyprus); SENESCYT (Ecuador); MoER, ERC PUT and ERDF (Estonia); Academy of Finland, Finnish Academy of Science and Letters (The Vilho Yrjö and Kalle Väisälä Fund), MEC, Magnus Ehrnrooth Foundation, HIP, and Waldemar von Frenckell Foundation (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); G3S (Greece); the Circles of Knowledge Club, NKFIa (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR, and NRC KI (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI, and FEDER (Spain); MOSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

References

[1] S. L. Adler, “Photon splitting and photon dispersion in a strong magnetic field”, *Annals Phys.* **67** (1971) 599, doi:10.1016/0003-4916(71)90154-0.

[2] G. Jarlskog et al., “Measurement of Delbrück scattering and observation of photon splitting at high energies”, *Phys. Rev. D* **8** (1973) 3813, doi:10.1103/PhysRevD.8.3813.

[3] R. N. Li, A. I. Mil’shtein, and V. M. Strakhovenko, “Splitting of a high-energy photon in a strong Coulomb field”, *J. Exp. Theor. Phys.* **85** (1997) 1049, doi:10.1134/1.558376, arXiv:hep-ph/9704230.

[4] PVLAS Collaboration, “Limits on low energy photon-photon scattering from an experiment on magnetic vacuum birefringence”, *Phys. Rev. D* **78** (2008) 032006, doi:10.1103/PhysRevD.78.032006, arXiv:0805.3036.

[5] R. S. Van Dyck, P. B. Schwinberg, and H. G. Dehmelt, “New high precision comparison of electron and positron G factors”, *Phys. Rev. Lett.* **59** (1987) 26, doi:10.1103/PhysRevLett.59.26.

[6] Muon g–2 Collaboration, “Final report of the muon E821 anomalous magnetic moment measurement at BNL”, *Phys. Rev. D* **73** (2006) 072003, doi:10.1103/PhysRevD.73.072003, arXiv:hep-ex/0602035.

[7] Muon g-2 Collaboration, “Measurement of the positive muon anomalous magnetic moment to 0.46 ppm”, *Phys. Rev. Lett.* **126** (2021) 141801, doi:10.1103/PhysRevLett.126.141801, arXiv:2104.03281.

[8] D. d’Enterria and G. G. da Silveira, “Observing light-by-light scattering at the Large Hadron Collider”, *Phys. Rev. Lett.* **111** (2013) 080405,
doi:10.1103/PhysRevLett.111.080405 arXiv:1305.7142 [Erratum: doi:10.1103/PhysRevLett.116.129901].

[9] ATLAS Collaboration, “Observation of light-by-light scattering in ultraperipheral Pb+Pb collisions with the ATLAS detector”, Phys. Rev. Lett. 123 (2019) 052001, doi:10.1103/PhysRevLett.123.052001, arXiv:1904.03536.

[10] CMS Collaboration, “Evidence for light-by-light scattering and searches for axion-like particles in ultraperipheral PbPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV”, Phys. Lett. B 797 (2019) 134826, doi:10.1016/j.physletb.2019.134826, arXiv:1810.04602.

[11] ATLAS Collaboration, “Evidence for light-by-light scattering in heavy-ion collisions with the ATLAS detector at the LHC”, Nature Phys. 13 (2017) 852, doi:10.1038/nphys4208, arXiv:1702.01625.

[12] A. J. Baltz, “The physics of ultraperipheral collisions at the LHC”, Phys. Rept. 458 (2008) 1, doi:10.1016/j.physrep.2007.12.001, arXiv:0706.3356.

[13] R. S. Gupta, “Probing quartic neutral gauge boson couplings using diffractive photon fusion at the LHC”, Phys. Rev. D 85 (2012) 014006, doi:10.1103/PhysRevD.85.014006, arXiv:1111.3354.

[14] L. N. Epele et al., “Looking for magnetic monopoles at LHC with diphoton events”, Eur. Phys. J. Plus 127 (2012) 60, doi:10.1140/epjp/i2012-12060-8, arXiv:1205.6120.

[15] S. Fichet et al., “Probing new physics in diphoton production with proton tagging at the Large Hadron Collider”, Phys. Rev. D 89 (2014) 114004, doi:10.1103/PhysRevD.89.114004, arXiv:1312.5153.

[16] S. Fichet, “Shining light on polarizable dark particles”, JHEP 04 (2017) 088, doi:10.1007/JHEP04(2017)088, arXiv:1609.01762.

[17] S. Fichet et al., “Light-by-light scattering with intact protons at the LHC: from standard model to new physics”, JHEP 02 (2015) 165, doi:10.1007/JHEP02(2015)165, arXiv:1411.6629.

[18] CMS Collaboration, “Study of exclusive two-photon production of W^+W^- in pp collisions at $\sqrt{s} = 7$ TeV and constraints on anomalous quartic gauge couplings”, JHEP 07 (2013) 116, doi:10.1007/JHEP07(2013)116, arXiv:1305.5596.

[19] CMS Collaboration, “Evidence for exclusive $\gamma\gamma \rightarrow W^+W^-$ production and constraints on anomalous quartic gauge couplings in pp collisions at $\sqrt{s} = 7$ and 8 TeV”, JHEP 08 (2016) 119, doi:10.1007/JHEP08(2016)119, arXiv:1604.04464.

[20] ATLAS Collaboration, “Measurement of exclusive $\gamma\gamma \rightarrow W^+W^-$ production and search for exclusive higgs boson production in pp collisions at $\sqrt{s} = 8$ TeV using the ATLAS detector”, Phys. Rev. D 94 (2016) 032011, doi:10.1103/PhysRevD.94.032011, arXiv:1607.03745.

[21] “HEPData record for this analysis”, 2021. doi:10.17182/hepdata.113659.

[22] CMS Collaboration, “The CMS trigger system”, JINST 12 (2017) P01020, doi:10.1088/1748-0221/12/01/P01020, arXiv:1609.02366.
[23] CMS Collaboration, “The CMS experiment at the CERN LHC”, JINST 3 (2008) S08004, doi:10.1088/1748-0221/3/08/S08004.

[24] CMS-TOTEM Collaboration, “CMS-TOTEM Precision Proton Spectrometer”, Technical Report CERN-LHCC-2014-021, TOTEM-TDR-003, CMS-TDR-13, 2014.

[25] J. Kašpar, “Alignment of CT-PPS detectors in 2016, before TS2”, CERN-TOTEM-NOTE 2017-001, 2017.

[26] F. Nemes, “LHC optics determination with proton tracks measured in the CT-PPS detectors in 2016, before TS2”, CERN-TOTEM-NOTE 2017-002, 2017.

[27] CMS-TOTEM Collaboration, “Observation of proton-tagged, central (semi)exclusive production of high-mass lepton pairs in pp collisions at 13 TeV with the CMS-TOTEM precision proton spectrometer”, JHEP 07 (2018) 153, doi:10.1007/JHEP07(2018)153, arXiv:1803.04496.

[28] CMS Collaboration, “Search for high-mass diphoton resonances in proton-proton collisions at 13 TeV and combination with 8 TeV search”, Phys. Lett. B 767 (2017) 147, doi:10.1016/j.physletb.2017.01.027, arXiv:1609.02507.

[29] CMS Collaboration, “Performance of photon reconstruction and identification with the CMS detector in proton-proton collisions at $\sqrt{s} = 8$ TeV”, JINST 10 (2015) P08010, doi:10.1088/1748-0221/10/08/P08010, arXiv:1502.02702.

[30] J. Alwall et al., “The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations”, JHEP 07 (2014) 079, doi:10.1007/JHEP07(2014)079, arXiv:1405.0301.

[31] NNPDF Collaboration, “Parton distributions for the LHC Run II”, JHEP 04 (2015) 040, doi:10.1007/JHEP04(2015)040, arXiv:1410.8849.

[32] T. Sjöstrand et al., “An introduction to PYTHIA 8.2”, Comput. Phys. Commun. 191 (2015) 159, doi:10.1016/j.cpc.2015.01.024, arXiv:1410.3012.

[33] M. Boonekamp et al., “FPMC: A generator for forward physics”, 2, 2011. arXiv:1102.2531.

[34] GEANT4 Collaboration, “GEANT4—a simulation toolkit”, Nucl. Instrum. Meth. A 506 (2003) 250, doi:10.1016/S0168-9002(03)01368-8.

[35] CMS Collaboration, “Precision luminosity measurement in proton-proton collisions at $\sqrt{s} = 13$ TeV in 2015 and 2016 at CMS”, Eur. Phys. J. C 81 (2021), no. 9, 800, doi:10.1140/epjc/s10052-021-09538-2, arXiv:2104.01927.

[36] L. A. Harland-Lang, V. A. Khoze, and M. G. Ryskin, “Exclusive physics at the LHC with SuperChic 2”, Eur. Phys. J. C 76 (2016) 9, doi:10.1140/epjc/s10052-015-3832-8, arXiv:1508.02718.

[37] G. Cowan, K. Cranmer, E. Gross, and O. Vitells, “Asymptotic formulae for likelihood-based tests of new physics”, Eur. Phys. J. C 71 (2011) 1554, doi:10.1140/epjc/s10052-011-1554-0, arXiv:1007.1727 [Erratum: doi:10.1140/epjc/s10052-013-2501-z].
[38] T. Junk, “Confidence level computation for combining searches with small statistics”, Nucl. Instrum. Meth. A 434 (1999) 435, doi:10.1016/S0168-9002(99)00498-2, arXiv:hep-ex/9902006.

[39] A. L. Read, “Presentation of search results: the C_{L_s} technique”, in Durham IPPP Workshop: Advanced Statistical Techniques in Particle Physics, p. 2693. Durham, UK, March, 2002. [J. Phys. G 28 (2002) 2693]. doi:10.1088/0954-3899/28/10/313.
A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
A. Tumasyan

Institut für Hochenergiephysik, Vienna, Austria
W. Adam, T. Bergauer, M. Dragicevic, J. Erö, A. Escalante Del Valle, R. Frühwirth, M. Jeitler, N. Krammer, L. Lechner, D. Liko, I. Mikulec, F.M. Pitters, N. Rad, J. Schieck, R. Schönbeck, M. Spanring, S. Templ, W. Waltenberger, C.-E. Wulz, M. Zarucki

Institute for Nuclear Problems, Minsk, Belarus
V. Chekhovsky, A. Litomin, V. Makarenko, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium
M.R. Darwish, E.A. De Wolf, D. Di Croce, X. Janssen, T. Kello, A. Lelek, M. Pieters, H. Rejeb Sfar, H. Van Haevermaet, P. Van Mechelen, S. Van Putte, N. Van Remortel

Vrije Universiteit Brussel, Brussel, Belgium
F. Blekman, E.S. Bols, S.S. Chhibra, J. D’Hondt, J. De Clercq, D. Lontkovskyi, S. Lowette, I. Marchesini, S. Moortgat, A. Morton, Q. Python, S. Tavernier, W. Van Doninck, P. Van Mulders

Université Libre de Bruxelles, Bruxelles, Belgium
D. Beghin, B. Bilin, B. Clerbaux, G. De Lentdecker, B. Dorney, L. Favart, A. Grebenyuk, A.K. Kalsi, I. Makarenko, L. Moureaux, L. Pétré, A. Popov, N. Postiau, E. Starling, L. Thomas, C. Vander Velde, P. Vanlaer, D. Vannerom, L. Wezenbeek

Ghent University, Ghent, Belgium
T. Cornelis, D. Dobur, M. Gruchala, I. Khvastunov, M. Niedziela, C. Roskas, K. Skovpen, M. Tytgat, W. Verbeke, B. Vermassen, M. Vit

Université Catholique de Louvain, Louvain-la-Neuve, Belgium
G. Bruno, F. Bury, C. Caputo, P. David, C. Delaere, M. Delcourt, I.S. Donertas, A. Giammanco, V. Lemaitre, K. Mondal, J. Prisciandaro, A. Taliercio, M. Teklishyn, P. Vischia, S. Wertz, S. Wuyckens

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
G.A. Alves, C. Hensen, A. Moraes

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
W.L. Aldá Júnior, E. Belchior Batista Das Chagas, H. Brandao Malbouisson, W. Carvalho, J. Chinellato, E. Coelho, E.M. Da Costa, G.G. Da Silveira, D. De Jesus Damiao, S. Fonseca De Souza, J. Martins, D. Matos Figueiredo, M. Medina Jaime, C. Mora Herrera, L. Mundim, H. Nogima, P. Rebello Teles, L.J. Sanchez Rosas, A. Santoro, S.M. Silva Do Amaral, A. Szajdjer, M. Thiel, F. Torres Da Silva De Araujo, A. Vilela Pereira

Universidade Estadual Paulista, Universidade Federal do ABC, São Paulo, Brazil
C.A. Bernardes, L. Calligaris, T.R. Fernandez Perez Tomei, E.M. Gregores, D.S. Lemos, P.G. Mercadante, S.F. Novaes, Sandra S. Padula

Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria
A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, M. Misheva, M. Rodozov, M. Shopova, G. Sultanov

University of Sofia, Sofia, Bulgaria
A. Dimitrov, T. Ivanov, L. Litov, B. Pavlov, P. Petkov, A. Petrov
Beihang University, Beijing, China
T. Cheng, W. Fang, Q. Guo, H. Wang, L. Yuan

Department of Physics, Tsinghua University, Tsinghua, China
M. Ahmad, G. Bauer, Z. Hu, Y. Wang, K. Yi

Institute of High Energy Physics, Beijing, China
E. Chapon, G.M. Chen, H.S. Chen, M. Chen, T. Javaid, A. Kapoor, D. Leggat, H. Liao, Z.-A. Liu, R. Sharma, A. Spiezia, J. Tao, J. Thomas-Wilsker, J. Wang, H. Zhang, S. Zhang, J. Zhao

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
A. Agapitos, Y. Ban, C. Chen, Q. Huang, A. Levin, Q. Li, M. Lu, X. Lyu, Y. Mao, S.J. Qian, D. Wang, Q. Wang, J. Xiao

Sun Yat-Sen University, Guangzhou, China
Z. You

Institute of Modern Physics and Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) - Fudan University, Shanghai, China
X. Gao

Zhejiang University, Hangzhou, China
M. Xiao

Universidad de Los Andes, Bogota, Colombia
C. Avila, A. Cabrera, C. Florez, J. Fraga, A. Sarkar, M.A. Segura Delgado

Universidad de Antioquia, Medellin, Colombia
J. Jaramillo, J. Mejia Guisao, F. Ramirez, J.D. Ruiz Alvarez, C.A. Salazar Gonzalez, N. Vanegas Arbelaez

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
D. Giljanovic, N. Godinovic, D. Lelas, I. Puljak

University of Split, Faculty of Science, Split, Croatia
Z. Antunovic, M. Kovac, T. Sculac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, D. Ferencek, D. Majumder, M. Roguljc, A. Starodumov, T. Susa

University of Cyprus, Nicosia, Cyprus
M.W. Ather, A. Attikis, E. Erodotou, A. Ioannou, G. Kole, M. Kolosova, S. Konstantinou, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski, H. Saka, D. Tsiakkouri

Charles University, Prague, Czech Republic
M. Finger, M. Finger Jr., A. Kveton, T. Tomsa

Escuela Politecnica Nacional, Quito, Ecuador
E. Ayala

Universidad San Francisco de Quito, Quito, Ecuador
E. Carrera Jarrin
Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian
Network of High Energy Physics, Cairo, Egypt
S. Elgammal14, A. Ellithi Kamel15, S. Khalil16

Center for High Energy Physics (CHEP-FU), Fayoum University, El-Fayoum, Egypt
M.A. Mahmoud, Y. Mohammed17

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
S. Bhowmik, A. Carvalho Antunes De Oliveira, R.K. Dewanjee, K. Ehataht, M. Kadastik,
M. Raidal, C. Veelken

Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, H. Kirschenmann, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland
E. Brückner, J. Havukainen, V. Karimäki, M.S. Kim, R. Kinnunen, T. Lampén, K. Lassila-Perini,
S. Lehti, T. Lindén, H. Siikonen, E. Tuominen, J. Tuominiemi

Lappeenranta University of Technology, Lappeenranta, Finland
P. Luukka, T. Tuuva

IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
C. Amendola, M. Besançon, F. Couderc, M. Dejardin, D. Denegri, J.-L. Faure, F. Ferri, S. Ganjour,
A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, B. Lenzi, E. Locci, J. Malcles,
J. Rander, A. Rosowsky, M.Ö. Sahin, A. Savoy-Navarro18, M. Titov, G.B. Yu

Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, Institut Polytechnique
de Paris, Palaiseau, France
S. Ahuja, F. Beaudette, M. Bonanomi, A. Buchot Perraguin, P. Busson, C. Charlot, O. Davignon,
B. Diab, G. Falmagne, R. Granier de Cassagnac, A. Hakimi, I. Kucher, A. Lobanov,
C. Martin Perez, M. Nguyen, C. Ochando, P. Paganini, J. Rembser, R. Salerno, J.B. Sauvan,
Y. Sirotis, A. Zabi, A. Zghiche

Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
J.-L. Agram19, J. Andrea, D. Bloch, G. Bourgatte, J.-M. Brom, E.C. Chabert, C. Collard, J.-
C. Fontaine19, D. Gelé, U. Goerlach, C. Grimault, A.-C. Le Bihan, P. Van Hove

Institut de Physique des 2 Infinis de Lyon (IP2I), Villeurbanne, France
E. Asilar, S. Beauceron, C. Bernet, G. Boudoul, C. Camen, A. Carle, N. Chanon,
D. Contardo, P. Depasse, H. El Mamouni, J. Fay, S. Gascon, M. Gouzevitch, B. Ille, Sa. Jain,
I.B. Laktineh, H. Lattaud, A. Lesauvage, M. Lethuillier, L. Mirabito, L. Torerotorot, G. Touquet,
M. Vander Donckt, S. Viret

Georgian Technical University, Tbilisi, Georgia
T. Toriashvili20, Z. Tsamalaidze13

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
L. Feld, K. Klein, M. Lipinski, D. Meuser, A. Pauls, M. Preuten, M.P. Rauch, J. Schulz,
M. Teroerde

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
D. Eliseev, M. Erdmann, P. Fackeldey, B. Fischer, S. Ghosh, T. Hebbeker, K. Hoepfner, H. Keller,
L. Mastrolorenzo, M. Merschmeyer, A. Meyer, G. Mocellin, S. Mondal, S. Mukherjee, D. Noll,
A. Novak, T. Pook, A. Pozdnyakov, Y. Rath, H. Reithler, J. Roemer, A. Schmidt, S.C. Schuler,
A. Sharma, S. Wiedenbeck, S. Zaleski
RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
C. Dziwok, G. Flügge, W. Haj Ahmad21, O. Hlushchenko, T. Kress, A. Nowack, C. Pistone, O. Pooth, D. Roy, H. Sert, A. Stahl22, T. Ziemons

Deutsches Elektronen-Synchrotron, Hamburg, Germany
H. Aarup Petersen, M. Aldaya Martin, P. Asmuss, I. Babounikau, S. Baxter, O. Behnke, A. Bermúdez Martínez, A.A. Bin Anuar, K. Borras23, V. Botta, D. Brunner, A. Campbell, A. Cardini, P. Connor, S. Consuegra Rodríguez, V. Danilov, A. De Wit, M.M. Defranchis, L. Didukh, D. Domínguez Damiani, G. Eckerlin, D. Eckstein, T. Eichhorn, L.I. Estevez Banos, E. Gallo24, A. Geiser, A. Giraldi, A. Grohsjean, M. Guthoff, A. Harb, A. Jafari25, N.Z. Jomhari, H. Jung, A. Kasem23, M. Kasemann, H. Kaveh, C. Kleinwort, J. Knode, D. Krücker, W. Lange, T. Lenz, J. Lidrych, K. Lipka, W. Lohmann26, T. Madlener, R. Mankel, I.-A. Melzer-Pellmann, J. Metwally, A.B. Meyer, M. Meyer, M. Missiroli, J. Mnich, A. Mysiguller, V. Myronenko, Y. Otarid, D. Pérez Adán, S.K. Pfilsch, D. Pitzl, A. Raspereza, A. Saibel, M. Savitskyi, V. Scheurer, C. Schwanenberger, A. Singh, R.E. Sosa Ricardo, N. Tonon, O. Turko, A. Vagnerini, M. Van De Klundert, R. Walsh, D. Walter, Y. Wen, K. Wichmann, C. Wissing, S. Wuchterl, O. Zenaiev, R. Zlebcik

University of Hamburg, Hamburg, Germany
R. Aggleton, S. Bein, L. Benato, A. Benecke, K. De Leo, T. Dreyer, A. Ebrahimi, M. Eich, F. Feindt, A. Fröhlich, C. Garbers, E. Garutti, P. Gunnellini, J. Haller, A. Hinzmann, A. Karavdina, G. Kasieczka, R. Klanner, R. Kogler, V. Kutzner, J. Lange, T. Lange, A. Malara, C.E.N. Niemeyer, A. Nigamova, K.J. Pena Rodriguez, O. Rieger, P. Schleper, S. Schumann, J. Schwandt, D. Schwarz, J. Sonneveld, H. Stadie, G. Steinbrück, B. Vormwald, I. Zoi

Karlsruher Institut fuer Technologie, Karlsruhe, Germany
J. Bechtel, T. Berger, E. Butz, R. Caspart, T. Chwalek, W. De Boer, A. Dierlamm, A. Droll, K. El Morabit, N. Faltermann, K. Flöh, M. Giffels, A. Gottmann, F. Hartmann22, C. Heidecker, U. Husemann, I. Katkov27, P. Keicher, R. Koppenhöfer, S. Maier, M. Metzler, S. Mitra, D. Müller, Th. Müller, M. Musich, G. Quast, K. Rabbertz, J. Rauser, D. Savoï, D. Schäfer, M. Schnepf, M. Schröder, D. Seith, I. Shvetsov, H.J. Simonis, R. Ulrich, M. Wassmer, M. Weber, R. Wolf, S. Wozniewski

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece
G. Anagnostou, P. Asenov, G. Daskalakis, T. Geralis, A. Kyriakis, D. Loukas, G. Paspalaki, A. Stakia

National and Kapodistrian University of Athens, Athens, Greece
M. Diamantopoulou, D. Karasavvas, G. Karathanasis, P. Kontaxakis, C.K. Koraka, A. Manousakis-Katsikakis, A. Panagiotou, I. Papavergou, N. Saoulidou, K. Theofilatos, K. Vellidis, E. Vourliotis

National Technical University of Athens, Athens, Greece
G. Bakas, K. Kousouris, I. Papakrivopoulos, G. Tsipolitis, A. Zacharopoulou

University of Ioánnina, Ioánnina, Greece
I. Evangelou, C. Foudas, P. Gianneios, P. Katsoulis, P. Kokkas, K. Manitara, N. Manthos, I. Papadopoulos, J. Strologas

MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Hungary
Budapest, Hungary
M. Bartók, M.M.A. Gadallah, S. Lőkös, P. Major, K. Mandal, A. Mehta, G. Pasztor, O. Surányi, G.I. Veres

Wigner Research Centre for Physics, Budapest, Hungary
G. Bencze, C. Hajdu, D. Horváth, F. Sikler, V. Veszprémi, G. Vesztermi

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
S. Czellar, J. Karancsi, J. Molnár, Z. Szillasi, D. Teyssier

Institute of Physics, University of Debrecen, Debrecen, Hungary
P. Raics, Z.L. Trocsanyi, B. Ujjvari

Indian Institute of Science (IISc), Bangalore, India
S. Choudhury, J.R. Komaragiri, D. Kumar, L. Panwar, P.C. Tiwari

National Institute of Science Education and Research, HBNI, Bhubaneswar, India
S. Bahinipati, D. Dash, C. Kar, P. Mal, T. Mishra, V.K. Muraleedharan, Nair Bindhu, A. Nayak, D.K. Sahoo, N. Sur, S.K. Swain

Panjab University, Chandigarh, India
S. Bansal, S.B. Beri, V. Bhatnagar, G. Chaudhary, S. Chauhan, N. Dhingra, R. Gupta, A. Kaur, S. Kaur, P. Kumari, M. Meena, K. Sandeep, S. Sharma, J.B. Singh, A.K. Virdi

University of Delhi, Delhi, India
A. Ahmed, A. Bhardwaj, B.C. Choudhary, R.B. Garg, M. Gola, S. Keshri, A. Kumar, M. Naimuddin, P. Priyanka, K. Ranjan, A. Shah

Saha Institute of Nuclear Physics, HBNI, Kolkata, India
M. Bharti, R. Bhattacharya, S. Bhattacharya, D. Bhowmik, S. Dutta, S. Ghosh, B. Gomber, M. Maity, S. Nandan, P. Palit, P.K. Rout, G. Saha, B. Sahu, S. Sarkar, M. Sharan, B. Singh, S. Thakur

Indian Institute of Technology Madras, Madras, India
P.K. Behera, S.C. Behera, P. Kalbhor, A. Muhammad, R. Pradhan, P.R. Pujahari, A. Sharma, A.K. Sikdar

Bhabha Atomic Research Centre, Mumbai, India
D. Dutta, V. Kumar, K. Naskar, P.K. Netrakanti, L.M. Pant, P. Shukla

Tata Institute of Fundamental Research-A, Mumbai, India
T. Aziz, M.A. Bhat, S. Dugad, R. Kumar Verma, G.B. Mohanty, U. Sarkar

Tata Institute of Fundamental Research-B, Mumbai, India
S. Banerjee, S. Bhattacharya, S. Chatterjee, R. Chudasama, M. Guchait, S. Karmakar, S. Kumar, G. Majumder, K. Mazumdar, S. Mukherjee, D. Roy

Indian Institute of Science Education and Research (IISER), Pune, India
S. Dube, B. Kansal, S. Pandey, A. Rane, A. Rastogi, S. Sharma

Isfahan University of Technology, Isfahan, Iran
H. Bakhshiansohi, M. Zeinali

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
S. Chenarani, S.M. Etesami, M. Khakzad, M. Mohammadi Najafabadi
V. Mariania,b, M. Menichellia, F. Moscatellia, A. Piccinellia,b, A. Rossia,b, A. Santocchiaa,b, D. Spigaa, T. Tedeschia,b

INFN Sezione di Pisa a, Università di Pisa b, Scuola Normale Superiore di Pisa c, Pisa Italy, Università di Siena d, Siena, Italy

K. Androsova, P. Azzurria, G. Bagliesia, V. Bertacchia,c, L. Bianchinia, T. Boccalia, R. Castaldia, M.A. Cioccia,b, R. Dell’Orsoa, M.R. Di Domenicoa,d, S. Donatoa, L. Gianninia,c, A. Giassia, M.T. Grippoa, F. Ligabuea,c, E. Mancaa,c, G. Mandorlia,c, A. Messineoa,b, F. Pallaa, G. Ramirez-Sancheza,c, A. Rizzia,b, G. Rolandia,c, S. Roy Chowdhurya,c, N. Shafieia,b, P. Spagnoloa, R. Tenchinia, G. Tonellia,b, A. Venturia, P.G. Verdinia

INFN Sezione di Roma a, Sapienza Università di Roma b, Rome, Italy

F. Cavallaria, M. Cipriania,b, D. Del Rea,b, E. Di Marcoa, M. Diemoza, E. Longoa,b, P. Meridiania, G. Organtinia,b, F. Pandolfia, R. Paramattia,b, C. Quarantaa,b, S. Rahatloua,b, C. Rovellia, F. Santanastasioa,b, L. Soffia,b, R. Tramontanoa,b

INFN Sezione di Torino a, Università di Torino b, Torino, Italy, Università del Piemonte Orientale c, Novara, Italy

N. Amapanea,b, R. Arcidiaconoa,c, S. Argiroa,b, M. Arneodoa,c, N. Bartosika, R. Bellana,b, A. Belloraa,b, J. Berenguer Antequeraa,b, C. Biinoa, A. Cappatia,b, N. Cartigliaa, S. Comettia, M. Costaa,b, R. Covarellia,b, N. Demariaa, B. Kiania,b, F. Leggera, C. Mariottia, S. Masellia, E. Migliorea,b, V. Monacoa,b, E. Monteila,b, M. Montenoa, M.M. Obertinoa,b, G. Ortonaa, L. Pachera,b, N. Pastronea, M. Pelliccionia, G.L. Pinna Angionia,b, A. Piccinellia,c, M. Pisonia, A. Staianoa, S. Vazqueza,b, G. Vazzolera,b

INFN Sezione di Trieste a, Università di Trieste b, Trieste, Italy

S. Belfortea, V. Candelisea,b, M. Casarsaa, F. Cossuttia, A. Da Rolda,b, G. Della Riccaa,b, F. Vazzolera,b

Kyungpook National University, Daegu, Korea

S. Dogra, C. Huh, B. Kim, D.H. Kim, G.N. Kim, J. Lee, S.W. Lee, C.S. Moon, Y.D. Oh, S.I. Pak, B.C. Radburn-Smith, S. Sekmen, Y.C. Yang

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea

H. Kim, D.H. Moon

Hanyang University, Seoul, Korea

B. Francois, T.J. Kim, J. Park

Korea University, Seoul, Korea

S. Cho, S. Choi, Y. Go, S. Ha, B. Hong, K. Lee, K.S. Lee, J. Lim, J. Park, S.K. Park, J. Yoo

Kyung Hee University, Department of Physics, Seoul, Republic of Korea

J. Goh, A. Gurtu

Sejong University, Seoul, Korea

H.S. Kim, Y. Kim

Seoul National University, Seoul, Korea

J. Almond, J.H. Bhyun, J. Choi, S. Jeon, J. Kim, J.S. Kim, S. Ko, H. Kwon, H. Lee, K. Lee, S. Lee, K. Nam, B.H. Oh, M. Oh, S.B. Oh, H. Seo, U.K. Yang, I. Yoon

University of Seoul, Seoul, Korea

D. Jeon, J.H. Kim, B. Ko, J.S.H. Lee, I.C. Park, Y. Roh, D. Song, I.J. Watson
Yonsei University, Department of Physics, Seoul, Korea
H.D. Yoo

Sungkyunkwan University, Suwon, Korea
Y. Choi, C. Hwang, Y. Jeong, H. Lee, Y. Lee, I. Yu

College of Engineering and Technology, American University of the Middle East (AUM), Egaila, Kuwait
Y. Maghrbi

Riga Technical University, Riga, Latvia
V. Veckalns

Vilnius University, Vilnius, Lithuania
A. Juodagalvis, A. Rinkevicius, G. Tamulaitis, A. Vaitkevicius

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia
W.A.T. Wan Abdullah, M.N. Yusli, Z. Zolkapli

Universidad de Sonora (UNISON), Hermosillo, Mexico
J.F. Benitez, A. Castaneda Hernandez, J.A. Murillo Quijada, L. Valencia Palomo

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
G. Ayala, H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-De La Cruz, R. Lopez-Fernandez, C.A. Mondragon Herrera, D.A. Perez Navarro, A. Sanchez-Hernandez

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, C. Oropeza Barrera, M. Ramirez-Garcia, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
J. Eysermans, I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
A. Morelos Pineda

University of Montenegro, Podgorica, Montenegro
J. Mijuskovic, N. Raicevic

University of Auckland, Auckland, New Zealand
D. Krofcheck

University of Canterbury, Christchurch, New Zealand
S. Bheesette, P.H. Butler

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
A. Ahmad, M.I. Asghar, A. Awais, M.I.M. Awan, H.R. Hoorani, W.A. Khan, M.A. Shah, M. Shoaib, M. Waqas

National Centre for Nuclear Research, Swierk, Poland
H. Bialkowska, M. Bluji, B. Boimska, T. Frueboes, M. Górski, M. Kazana, M. Szleper, P. Traczyk, P. Zalewski

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
K. Bunkowski, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Walczak

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
M. Araujo, P. Bargassa, D. Bastos, A. Boletti, P. Faccioli, M. Gallinaro, J. Hollar, N. Leonardo, T. Niknejad, J. Seixas, K. Shchelina, O. Toldaiev, J. Varela
Joint Institute for Nuclear Research, Dubna, Russia
A. Baginyan, M. Gavrilenko, A. Golunov, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavin, I. Kashunin, V. Korenkov, A. Lanev, A. Malakhov, V. Matveev, V. Palichik, V. Perelygin, M. Savina, S. Shmatov, S. Shulha, V. Smirnov, O. Teryaev, N. Voytishin, B.S. Yuldashev, A. Zarubin

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
G. Gavrilov, V. Golovtcov, Y. Ivanov, V. Kim, E. Kuznetsova, E. Murzin, V. Oreshkin, I. Smirnov, D. Soknov, V. Sulinov, L. Uvarov, S. Volkov, A. Vorobyev

Institute for Nuclear Research, Moscow, Russia
Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov, N. Krasnikov, A. Pashenkov, G. Pivovarov, D. Tlisov, A. Toropin

Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of NRC ‘Kurchatov Institute’, Moscow, Russia
V. Epshteyn, V. Gavrilov, N. Lykhovskaya, A. Nikitenko, V. Popov, G. Safronov, A. Spiridonov, A. Stepennov, M. Toms, E. Vlasov, A. Zhokin

Moscow Institute of Physics and Technology, Moscow, Russia
T. Aushev

National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
R. Chistov, M. Danilov, A. Oskin, P. Parygin, S. Polikarpov

P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Terkulov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
A. Belyaev, E. Boos, M. Dubinin, L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, O. Lukina, S. Obraztsov, V. Savrin, A. Snigirev

Novosibirsk State University (NSU), Novosibirsk, Russia
V. Blinov, T. Dimova, L. Kardapoltsev, I. Ovtin, Y. Skovpen

Institute for High Energy Physics of National Research Centre ‘Kurchatov Institute’, Protvino, Russia
I. Azhgirey, I. Bayshev, V. Kachanov, A. Kalinin, D. Konstantinov, V. Petrov, R. Ryutin, A. Sobol, S. Troskin, N. Tyurin, A. Uzunian, A. Volkov

National Research Tomsk Polytechnic University, Tomsk, Russia
A. Babaev, A. Iuzhakov, V. Okhotnikov, L. Sukhikh

University of Belgrade: Faculty of Physics and VINCA Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic, P. Cirkovic, M. Dordevic, P. Milenovic, J. Milosevic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
M. Aguilar-Benitez, J. Alcaraz Maestre, A. Álvarez Fernández, I. Bachiller, M. Barrio Luna, Cristina F. Bedoya, C.A. Carrillo Montoya, M. Cepeda, M. Cerrada, N. Colino, B. De La Cruz, A. Delgado Peris, J.P. Fernández Ramos, J. Flix, M.C. Fouz, A. García Alonso, O. González Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, J. León Holgado, D. Moran
Á. Navarro Tobar, A. Pérez-Calero Yzquierdo, J. Puerta Pelayo, I. Redondo, L. Romero, S. Sánchez Navas, M.S. Soares, A. Triossi, L. Urda Gómez, C. Willmott

Universidad Autónoma de Madrid, Madrid, Spain
C. Albajar, J.F. de Trocóniz, R. Reyes-Almanza

Universidad de Oviedo, Instituto Universitario de Ciencias y Tecnologías Espaciales de Asturias (ICTEA), Oviedo, Spain
B. Alvarez Gonzalez, J. Cuevas, C. Erice, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, E. Palencia Cortezon, C. Ramón Álvarez, J. Ripoll Sau, V. Rodríguez Bouza, S. Sanchez Cruz, A. Trapote

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
J.A. Brochero Cifuentes, I.J. Cabrillo, A. Calderon, B. Chazin Quero, J. Duarte Campderros, M. Fernandez, P.J. Fernández Manteca, G. Gomez, C. Martinez Rivero, P. Martinez Ruiz del Arbol, F. Matorras, J. Piedra Gomez, C. Prieels, F. Ricci-Tam, T. Rodrigo, A. Ruiz-Jimeno, L. Scodellaro, I. Vila, J.M. Vizan Garcia

University of Colombo, Colombo, Sri Lanka
M.K. Jayananda, B. Kailasapathy, D.U.J. Sonnadara, D.D.C. Wickramarathna

University of Ruhuna, Department of Physics, Matara, Sri Lanka
W.G.D. Dharmaratna, K. Liyanage, N. Perera, N. Wickramage

CERN, European Organization for Nuclear Research, Geneva, Switzerland
T.K. Aarrestad, D. Abbaneo, B. Akgun, E. Afffray, G. Auzinger, P. Baillon, A.H. Ball, D. Barney, J. Bendavid, N. Beni, M. Bianco, A. Bocci, E. Brondolin, T. Camporesi, M. Capeans Garrido, G. Cerminara, L. Cristella, D. d’Enterrria, A. Dabrowski, N. Daci, V. Daponte, A. David, A. De Roeck, R. Di Maria, M. Dobson, M. Dünser, N. Dupont, A. Elliott-Peisert, N. Emriskova, F. Fallavollita, D. Fasanella, S. Fiorendi, A. Florent, G. Franzoni, J. Fulcher, W. Funk, D. Gigi, K. Gill, F. Glege, L. Gouskos, M. Guibaud, D. Gulhan, M. Haranko, J. Hegeman, Y. Iyama, V. Innocente, T. James, P. Janot, J. Kieseler, M. Komm, N. Kratochwil, C. Lange, S. Laurila, P. Lecoq, K. Long, C. Lourenço, L. Malgeri, S. Mallios, M. Mannelli, F. Meijers, S. Mersi, E. Meschi, F. Moortgat, M. Mulders, J. Niedziela, S. Orfanelli, L. Orsini, F. Pantaleo, L. Pape, E. Perez, M. Peruzzi, A. Petrilli, G. Petrucciani, A. Pfeiffer, M. Pierini, T. Quast, D. Rabady, A. Racz, M. Rieger, M. Rovere, H. Sakulin, J. Salfeld-Nebgen, S. Scarfi, C. Schäfer, C. Schwick, M. Selvaggi, A. Sharma, P. Silva, P. Sphicas, S. Summers, V.R. Tavolaro, D. Treille, A. Tsiro, G.P. Van Onsem, A. Vartak, M. Verzetti, K.A. Wozniak, W.D. Zeuner

Paul Scherrer Institut, Villigen, Switzerland
L. Caminada, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski, U. Langenegger, T. Rohe

ETH Zurich - Institute for Particle Physics and Astrophysics (IPA), Zurich, Switzerland
M. Backhaus, P. Berger, A. Calandri, N. Chernyavskaya, A. De Cosa, G. Dissertori, M. Dittmar, M. Donegà, C. Dorfer, T. Gadek, T.A. Gómez Espinosa, C. Garf, D. Hits, W. Lustermann, A.-M. Lyon, R.A. Manzoni, M.T. Meinhard, F. Micheli, F. Nessi-Tedaldi, F. Pauss, V. Perovic, G. Perrin, S. Pigazzini, M.G. Ratti, M. Reichmann, C. Reissel, T. Reitenspiess, B. Ristic, D. Ruini, D.A. Sanz Becerra, M. Schönberger, V. Stampf, J. Steggemann, M.L. Vesterbacka Olsson, R. Wallny, D.H. Zhu

Universität Zürich, Zurich, Switzerland
C. Amsler, C. Bott, D. Brzhechko, M.F. Canelli, R. Del Burgo, J.K. Heikkilä, M. Huwiler,
A. Jofrehei, B. Kilminster, S. Leontsinis, A. Macchiolo, P. Meiring, V.M. Mikuni, U. Molinatti, I. Neutelings, G. Rauco, A. Reimers, P. Robmann, K. Schweiger, Y. Takahashi

National Central University, Chung-Li, Taiwan
C. Adloff, C.M. Kuo, W. Lin, A. Roy, T. Sarkar, S.S. Yu

National Taiwan University (NTU), Taipei, Taiwan
L. Ceard, P. Chang, Y. Chao, K.F. Chen, P.H. Chen, W.-S. Hou, Y.Y. Li, R.-S. Lu, E. Paganis, A. Psallidas, A. Steen, E. Yazgan

Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand
B. Asavapibhop, C. Asawatangtrakuldee, N. Srimanobhas

Çukurova University, Physics Department, Science and Art Faculty, Adana, Turkey
M.N. Bakirci, F. Boran, S. Damarseckin, Z.S. Demiroglu, F. Dolek, C. Dozen, I. Dumanoglu, E. Eskut, Y. Guler, E. Gurpinar Guler, I. Hos, C. Isik, E.E. Kangal, O. Kara, A. Kayis Topaksu, U. Kiminsu, G. Onengut, A. Polatoz, A.E. Simsek, B. Tali, H. Topakli, S. Turkcarapar, I.S. Zorbakir, C. Zorbilmez

Middle East Technical University, Physics Department, Ankara, Turkey
B. Isildak, G. Karapinar, K. Ocalan, M. Yalvac

Bogazici University, Istanbul, Turkey
I.O. Atakisi, E. Gülmez, M. Kaya, O. Kaya, Ö. Özçelik, S. Tekten, E.A. Yetkin

Istanbul Technical University, Istanbul, Turkey
A. Cakir, K. Cankocak, Y. Komurcu, S. Sen

Istanbul University, Istanbul, Turkey
F. Aydogmus Sen, S. Cerci, S. Ozkorucuklu, D. Sunar Cerci

Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine
B. Grynyov

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk

University of Bristol, Bristol, United Kingdom
E. Bhal, S. Bologna, J.J. Brooke, E. Clement, D. Cussans, H. Flacher, J. Goldstein, G.P. Heath, H.F. Heath, L. Kreczko, B. Krikler, S. Paramesvaran, T. Sakuma, S. Seif El Nasr-Storey, V.J. Smith, N. Stylianoiu, J. Taylor, A. Titterton

Rutherford Appleton Laboratory, Didcot, United Kingdom
K.W. Bell, A. Belyaev, C. Brew, R.M. Brown, D.J.A. Cockerill, K.V. Ellis, K. Harder, S. Harper, J. Linacre, K. Manolopoulos, D.M. Newbold, E. Olaiya, D. Petyt, T. Reis, T. Schuh, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, T. Williams

Imperial College, London, United Kingdom
R. Bainbridge, P. Bloch, S. Bonomally, J. Borg, S. Breeze, O. Buchmuller, A. Bundock, V. Cepaitis, G.S. Chahal, D. Colling, P. Dauncey, G. Davies, M. Della Negra, G. Fedi, G. Hall, G. Illes, J. Langford, L. Lyons, A.-M. Magnan, S. Malik, A. Martelli, V. Milosevic, J. Nash, P. Palladino, M. Pesaresi, D.M. Raymond, A. Richards, A. Rose, E. Scott, C. Seez, A. Shtipliyski, M. Stoye, A. Tapper, K. Uchida, T. Virdee, N. Wardle, S.N. Webb, D. Winterbottom, A.G. Zecchinelli
Brunel University, Uxbridge, United Kingdom
J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, C.K. Mackay, I.D. Reid, L. Teodorescu, S. Zahid

Baylor University, Waco, USA
S. Abdullin, A. Brinkerhoff, K. Call, B. Caraway, J. Dittmann, K. Hatakeyama, A.R. Kanuganti, C. Madrid, B. Mcmaster, N. Pastika, S. Sawant, C. Smith, J. Wilson

Catholic University of America, Washington, DC, USA
R. Bartek, A. Dominguez, R. Uniyal, A.M. Vargas Hernandez

The University of Alabama, Tuscaloosa, USA
A. Buccilli, O. Charaf, S.I. Cooper, S.V. Gleyzer, C. Henderson, C.U. Perez, P. Rumerio, C. West

Boston University, Boston, USA
A. Akpinar, A. Albert, D. Arcao, C. Cosby, Z. Demiragli, D. Gastler, J. Rohlf, K. Salyer, D. Sperka, D. Spitzbart, I. Suarez, S. Yuan, D. Zou

Brown University, Providence, USA
G. Benelli, B. Burkle, X. Coubes, D. Cutts, Y.t. Duh, M. Hadley, U. Heintz, J.M. Hogan, K.H.M. Kwok, E. Laird, G. Landsberg, K.T. Lau, J. Lee, M. Narain, S. Sagir, R. Syarif, E. Usai, W.Y. Wong, D. Yu, W. Zhang

University of California, Davis, Davis, USA
R. Band, C. Brainerd, R. Breedon, M. Calderon De La Barca Sanchez, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, C. Flores, G. Funk, F. Jensen, W. Ko, O. Kukral, R. Lander, M. Mulhearn, D. Pellett, J. Pilot, M. Shi, D. Taylor, K. Tos, M. Tripathi, Y. Yao, F. Zhang

University of California, Los Angeles, USA
M. Bachtis, R. Cousins, A. Dasgupta, D. Hamilton, J. Hauser, M. Ignatenko, M.A. Iqbal, T. Lam, N. Mccoll, W.A. Nash, S. Regnard, D. Saltzberg, C. Schnaible, B. Stone, V. Valuev

University of California, Riverside, Riverside, USA
K. Burt, Y. Chen, R. Clare, J.W. Gary, G. Hanson, G. Karapostoli, O.R. Long, N. Manganelli, M. Olmedo Negrete, M.I. Paneva, W. Si, S. Wimpenny, Y. Zhang

University of California, Santa Barbara - Department of Physics, Santa Barbara, USA
J.G. Branson, P. Chang, S. Cittolin, S. Cooperstein, N. Deelen, J. Duarte, R. Gerosa, D. Gilbert, V. Krutelyov, J. Letts, M. Masciovecchio, S. May, S. Padhi, M. Pieri, V. Sharma, M. Tadel, F. Würthwein, A. Yagil

University of California, San Diego, La Jolla, USA
N. Amin, C. Campagnari, M. Citron, A. Dorsett, V. Dutta, J. Incandela, B. Marsh, H. Mei, A. Ovcharova, H. Qu, M. Quinnan, J. Richman, U. Sarica, D. Stuart, S. Wang

California Institute of Technology, Pasadena, USA
A. Bornheim, O. Cerri, I. Dutta, J.M. Lawhorn, N. Lu, J. Mao, H.B. Newman, J. Ngadiuba, T.Q. Nguyen, J. Pata, M. Spiropulu, J.R. Vlimant, C. Wang, S. Xie, Z. Zhang, R.Y. Zhu

Carnegie Mellon University, Pittsburgh, USA
J. Alison, M.B. Andrews, T. Ferguson, T. Mudholkar, M. Paulini, M. Sun, I. Vorobiev

University of Colorado Boulder, Boulder, USA
J.P. Cumalat, W.T. Ford, E. MacDonald, T. Mulholland, R. Patel, A. Perloff, K. Stenson, K.A. Ulmer, S.R. Wagner
Cornell University, Ithaca, USA
J. Alexander, Y. Cheng, J. Chu, D.J. Cranshaw, A. Datta, A. Frankenthal, K. Mcdermott, J. Monroy, J.R. Patterson, D. Quach, A. Ryd, W. Sun, S.M. Tan, Z. Tao, J. Thom, P. Wittich, M. Zientek

Fermi National Accelerator Laboratory, Batavia, USA
M. Albrow, M. Alyari, G. Apollinari, A. Arpesyan, A. Apyan, S. Banerjee, L.A.T. Bauer, A. Beretvas, D. Berry, J. Berryhill, P.C. Bhat, K. Burkett, J.N. Butler, A. Canepa, G.B. Cerati, H.W.K. Cheung, F. Chlebana, M. Cremonesi, V.D. Elvira, J. Freeman, Z. Gece, E. Gottschalk, L. Gray, D. Green, S. Grünendahl, O. Gutsche, R.M. Harris, S. Hasegawa, R. Heller, T.C. Herwig, J. Hirschweger, B. Jayatilaka, S. Jindariani, M. Johnson, U. Joshi, P. Klabbers, T. Klieme, B. Klima, M.J. Kortelainen, S. Lammel, D. Lipton, R. Liu, T. Liu, J. Lykken, K. Maeshima, D. Mason, P. McBride, P. Merkel, S. Mrenna, V. O’Dell, V. Papadimitriou, K. Pedro, C. Pena, O. Prokofyev, F. Ravera, A. Reinsvold Hall, L. Ristori, B. Schneider, E. Sexton-Kennedy, N. Smith, A. Soha, W.J. Spalding, L. Spiegel, S. Stoynsev, J. Strait, L. Taylor, R. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, H.A. Weber, A. Woodard

University of Florida, Gainesville, USA
D. Acosta, P. Avery, D. Bourilkov, L. Cadamuro, V. Cherepanov, F. Errico, R.D. Field, D. Guerrero, B.M. Joshi, M. Kim, J. Konigsberg, A. Korytov, K.H. Lo, K. Matchev, N. Menendez, G. Mitselmakher, D. Rosenzweig, K. Shi, J. Sturdy, J. Wang, S. Wang, X. Zuo

Florida State University, Tallahassee, USA
T. Adams, A. Askew, D. Diaz, R. Habibullah, S. Hagopian, V. Hagopian, K.F. Johnson, R. Khurana, T. Kolberg, G. Martinez, H. Prosper, C. Schiber, R. Yohay, J. Zhang

Florida Institute of Technology, Melbourne, USA
M.M. Baarmand, S. Butalla, T. Elkahrawy, M. Hohlmann, D. Noonan, M. Rahmani, M. Saunders, F. Yumiceva

University of Illinois at Chicago (UIC), Chicago, USA
M.R. Adams, L. Apanasevich, H. Becerril Gonzalez, R. Cavanaugh, X. Chen, S. Dittmer, O. Evdokimov, C.E. Gerber, D.A. Hangal, D.J. Hofman, C. Mills, G. Oh, T. Roy, M.B. Tonjes, N. Varelas, J. Vinnikainen, X. Wang, Z. Wu, Z. Ye

The University of Iowa, Iowa City, USA
M. Alhussein, K. Dilisz, S. Durgut, R.P. Gandrajula, M. Haytmyradov, V. Khristenko, O.K. Köseyan, J.-P. Merlo, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul, Y. Onel, F. Ozok, A. Penzo, C. Snyder, E. Tiras, J. Wetzel

Johns Hopkins University, Baltimore, USA
O. Amram, B. Blumenfeld, L. Corcodilos, M. Eminizer, A.V. Gritsan, S. Kyriacou, P. Maksimovic, C. Mantilla, J. Roskes, M. Swartz, TÁ. Vámi

The University of Kansas, Lawrence, USA
P. Baringer, A. Bean, A. Bylinkin, S. Khalil, J. King, G. Krintiras, A. Kropivnitskaya, M. Murray, C. Rogan, S. Sanders, E. Schmitz, J.D. Tapia Takaki, Q. Wang, G. Wilson

Kansas State University, Manhattan, USA
S. Duric, A. Ivanov, K. Kaadze, D. Kim, Y. Maravin, T. Mitchell, A. Modak, A. Mohammadi

Lawrence Livermore National Laboratory, Livermore, USA
F. Rebassoo, D. Wright
University of Maryland, College Park, USA
E. Adams, A. Baden, O. Baron, A. Belloni, S.C. Eno, Y. Feng, N.J. Hadley, S. Jabeen, G.Y. Jeng, R.G. Kellogg, T. Koeth, A.C. Mignerey, S. Nabil, M. Seidel, A. Skuja, S.C. Tonwar, L. Wang, K. Wong

Massachusetts Institute of Technology, Cambridge, USA
D. Abercrombie, B. Allen, R. Bi, S. Brandt, W. Busza, I.A. Cali, Y. Chen, M. D’Alfonso, G. Gomez Ceballos, M. Goncharov, P. Harris, D. Hsu, M. Hu, M. Klute, D. Kovalskyi, J. Krupa, Y.-J. Lee, P.D. Luckey, B. Maier, A.C. Marini, C. Mcginn, C. Mironov, S. Narayanan, X. Niu, C. Paus, D. Rankin, C. Roland, G. Roland, Z. Shi, G.S.F. Stephans, K. Sumorok, K. Tatar, D. Velicanu, J. Wang, T.W. Wang, Z. Wang, B. Wyslouch

University of Minnesota, Minneapolis, USA
R.M. Chatterjee, A. Evans, P. Hansen, J. Hiltbrand, Sh. Jain, M. Krohn, Y. Kubota, Z. Lesko, J. Mans, M. Revering, R. Rusack, R. Saradhy, N. Schroeder, N. Strobbe, M.A. Wadud

University of Mississippi, Oxford, USA
J.G. Acosta, S. Oliveros

University of Nebraska-Lincoln, Lincoln, USA
K. Bloom, S. Chauhan, D.R. Claes, C. Fangmeier, L. Finco, F. Golf, J.R. González Fernández, C. Joo, I. Kravchenko, J.E. Siado, G.R. Snow†, W. Tabb, F. Yan

State University of New York at Buffalo, Buffalo, USA
G. Agarwal, H. Bandyopadhyay, C. Harrington, L. Hay, I. Iashvili, A. Kharchilava, C. McLean, D. Nguyen, J. Pekkanen, S. Rappoccio, B. Rozzbahani

Northeastern University, Boston, USA
G. Alverson, E. Barberis, C. Freer, Y. Haddad, A. Hortiangtham, J. Li, G. Madigan, B. Marzocchi, D.M. Morse, V. Nguyen, T. Orimoto, A. Parker, L. Skinnari, A. Tishelman-Charny, T. Wamorkar, B. Wang, A. Wisecarver, D. Wood

Northwestern University, Evanston, USA
S. Bhattacharya, J. Bueghly, Z. Chen, A. Gilbert, T. Gunter, K.A. Hahn, N. Odell, M.H. Schmitt, K. Sung, M. Velasco

University of Notre Dame, Notre Dame, USA
R. Bucci, N. Dev, R. Goldouzian, M. Hildreth, K. Hurtado Anampa, C. Jessop, D.J. Karmgard, K. Lannon, N. Loukas, N. Marinelli, I. Mcaлистер, F. Meng, K. Mohrman, Y. Musienko50, R. Ruchti, P. Siddireddy, S. Taroni, M. Wayne, A. Wightman, M. Wolf, L. Zygalā

The Ohio State University, Columbus, USA
J. Alimena, B. Bylsma, B. Cardwell, L.S. Durkin, B. Francis, C. Hill, A. Lefeld, B.L. Winer, B.R. Yates

Princeton University, Princeton, USA
B. Bonham, P. Das, G. Dezoort, P. Elmer, B. Greenberg, N. Haubrich, S. Higginbotham, A. Kalogeropoulos, G. Kopp, S. Kwan, D. Lange, M.T. Lucchini, J. Luo, D. Marlow, K. Mei, I. Ojalvo, J. Olsen, C. Palmer, P. Piroué, D. Stickland, C. Tully

University of Puerto Rico, Mayagüez, USA
S. Malik, S. Norberg

Purdue University, West Lafayette, USA
V.E. Barnes, R. Chawla, S. Das, L. Gutay, M. Jones, A.W. Jung, G. Negro, N. Neumeister,
C.C. Peng, S. Piperov, A. Purohit, H. Qiu, J.F. Schulte, M. Stojanovic18, N. Trevisani, F. Wang, A. Wildridge, R. Xiao, W. Xie

\textbf{Purdue University Northwest, Hammond, USA}
J. Dolen, N. Parashar

\textbf{Rice University, Houston, USA}
A. Baty, S. Dildick, K.M. Ecklund, S. Freed, F.J.M. Geurts, M. Kilpatrick, A. Kumar, W. Li, B.P. Padley, R. Redjimi, J. Roberts†, J. Rorie, W. Shi, A.G. Stahl Leiton

\textbf{University of Rochester, Rochester, USA}
A. Bodek, P. de Barbaro, R. Demina, J.L. Dulemba, C. Fallon, T. Ferbel, M. Galanti, A. Garcia-Bellido, O. Hindrichs, A. Khukhunaishvili, E. Ranken, R. Taus

\textbf{Rutgers, The State University of New Jersey, Piscataway, USA}
B. Chiarito, J.P. Chou, A. Gandrakota, Y. Gershtein, E. Halkiadakis, A. Hart, M. Heindl, E. Hughes, S. Kaplan, O. Karacheban26, I. Laflotte, A. Lath, R. Montalvo, K. Nash, M. Osherson, S. Salur, S. Schnetzer, S. Somalwar, R. Stone, S.A. Thayil, S. Thomas, H. Wang

\textbf{University of Tennessee, Knoxville, USA}
H. Acharya, A.G. Delannoy, S. Spanier

\textbf{Texas A&M University, College Station, USA}
O. Bouhali96, M. Dalchenko, A. Delgado, R. Eusebi, J. Gilmore, T. Huang, T. Kamon97, H. Kim, S. Luo, S. Malhotra, R. Mueller, D. Overton, L. Perniè, D. Rathjens, A. Safonov

\textbf{Texas Tech University, Lubbock, USA}
N. Akchurin, J. Damgov, V. Hegde, S. Kunori, K. Lamichhane, S.W. Lee, T. Mengke, S. Muthumuni, T. Peltola, S. Undleeb, I. Volobouev, Z. Wang, A. Whitbeck

\textbf{Vanderbilt University, Nashville, USA}
E. Appelt, S. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, A. Melo, H. Ni, K. Padaken, F. Romeo, P. Sheldon, S. Tuo, J. Velkovska

\textbf{University of Virginia, Charlottesville, USA}
M.W. Arenton, B. Cox, G. Cummings, J. Hakala, R. Hirosky, M. Joyce, A. Ledovskoy, A. Li, C. Neu, B. Tannenwald, Y. Wang, E. Wolfe, F. Xia

\textbf{Wayne State University, Detroit, USA}
P.E. Karchin, N. Poudyal, P. Thapa

\textbf{University of Wisconsin - Madison, Madison, WI, USA}
K. Black, T. Bose, J. Buchanan, C. Caillol, S. Dasu, I. De Bruyn, P. Everaerts, C. Galloni, H. He, M. Herndon, A. Hervé, U. Hussain, A. Lanaro, A. Loeliger, R. Loveless, J. Madhusudanan Sreekala, A. Mallampalli, D. Pinna, A. Savin, V. Shang, V. Sharma, W.H. Smith, D. Teague, S. Trembath-Reichert, W. Vetens

†: Deceased
1: Also at TU Wien, Wien, Austria
2: Also at Institute of Basic and Applied Sciences, Faculty of Engineering, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
3: Also at Université Libre de Bruxelles, Bruxelles, Belgium
4: Also at IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
5: Also at Universidade Estadual de Campinas, Campinas, Brazil
6: Also at Federal University of Rio Grande do Sul, Porto Alegre, Brazil
7: Also at UFMS, Nova Andradina, Brazil
8: Also at Universidade Federal de Pelotas, Pelotas, Brazil
9: Also at Nanjing Normal University Department of Physics, Nanjing, China
10: Now at The University of Iowa, Iowa City, USA
11: Also at University of Chinese Academy of Sciences, Beijing, China
12: Also at Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of NRC ‘Kurchatov Institute’, Moscow, Russia
13: Also at Joint Institute for Nuclear Research, Dubna, Russia
14: Now at British University in Egypt, Cairo, Egypt
15: Now at Cairo University, Cairo, Egypt
16: Also at Zewail City of Science and Technology, Zewail, Egypt
17: Now at Fayoum University, El-Fayoum, Egypt
18: Also at Purdue University, West Lafayette, USA
19: Also at Université de Haute Alsace, Mulhouse, France
20: Also at Tbilisi State University, Tbilisi, Georgia
21: Also at Erzincan Binali Yıldırım University, Erzincan, Turkey
22: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
23: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
24: Also at University of Hamburg, Hamburg, Germany
25: Also at Isfahan University of Technology, Isfahan, Iran, Isfahan, Iran
26: Also at Brandenburg University of Technology, Cottbus, Germany
27: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
28: Also at Institute of Physics, University of Debrecen, Debrecen, Hungary
29: Also at Physics Department, Faculty of Science, Assiut University, Assiut, Egypt
30: Also at Karoly Robert Campus, MATE Institute of Technology, Gyongyos, Hungary
31: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
32: Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
33: Also at Wigner Research Centre for Physics, Budapest, Hungary
34: Also at IIT Bhubaneswar, Bhubaneswar, India
35: Also at Institute of Physics, Bhubaneswar, India
36: Also at G.H.G. Khalsa College, Punjab, India
37: Also at Shoolini University, Solan, India
38: Also at University of Hyderabad, Hyderabad, India
39: Also at University of Visva-Bharati, Santiniketan, India
40: Also at Indian Institute of Technology (IIT), Mumbai, India
41: Also at Deutsches Elektronen-Synchrotron, Hamburg, Germany
42: Also at Sharif University of Technology, Tehran, Iran
43: Also at Department of Physics, University of Science and Technology of Mazandaran, Behshahr, Iran
44: Now at INFN Sezione di Bari, Università di Bari, Politecnico di Bari, Bari, Italy
45: Also at Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Bologna, Italy
46: Also at Centro Siciliano di Fisica Nucleare e di Struttura Della Materia, Catania, Italy
47: Also at Università di Napoli ‘Federico II’, Napoli, Italy
48: Also at Riga Technical University, Riga, Latvia
49: Also at Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico
50: Also at Institute for Nuclear Research, Moscow, Russia
51: Now at National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
52: Also at Institute of Nuclear Physics of the Uzbekistan Academy of Sciences, Tashkent, Uzbekistan
53: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
54: Also at University of Florida, Gainesville, USA
55: Also at Imperial College, London, United Kingdom
56: Also at P.N. Lebedev Physical Institute, Moscow, Russia
57: Also at California Institute of Technology, Pasadena, USA
58: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia
59: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
60: Also at Trincomalee Campus, Eastern University, Sri Lanka, Nilaveli, Sri Lanka
61: Also at INFN Sezione di Pavia, Università di Pavia, Pavia, Italy
62: Also at National and Kapodistrian University of Athens, Athens, Greece
63: Also at Universität Zürich, Zurich, Switzerland
64: Also at Ecole Polytechnique Fédérale Lausanne, Lausanne, Switzerland
65: Also at Stefan Meyer Institute for Subatomic Physics, Vienna, Austria
66: Also at Laboratoire d’Annecy-le-Vieux de Physique des Particules, IN2P3-CNRS, Annecy-le-Vieux, France
67: Also at Gaziosmanpasa University, Tokat, Turkey
68: Also at Şırnak University, Şırnak, Turkey
69: Also at Department of Physics, Tsinghua University, Beijing, China
70: Also at Near East University, Research Center of Experimental Health Science, Nicosia, Turkey
71: Also at Beykent University, Istanbul, Turkey, Istanbul, Turkey
72: Also at Istanbul Aydin University, Application and Research Center for Advanced Studies (App. & Res. Cent. for Advanced Studies), Istanbul, Turkey
73: Also at Mersin University, Mersin, Turkey
74: Also at Adiyaman University, Adiyaman, Turkey
75: Also at Tarsus University, MERSIN, Turkey
76: Also at Ozyegin University, Istanbul, Turkey
77: Also at Izmir Institute of Technology, Izmir, Turkey
78: Also at Necmettin Erbakan University, Konya, Turkey
79: Also at Bozok Universitesi Rektörlüğü, Yozgat, Turkey
80: Also at Marmara University, Istanbul, Turkey
81: Also at Milli Savunma University, Istanbul, Turkey
82: Also at Kafkas University, Kars, Turkey
83: Also at Istanbul Bilgi University, Istanbul, Turkey
84: Also at Hacettepe University, Ankara, Turkey
85: Also at Vrije Universiteit Brussel, Brussel, Belgium
86: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
87: Also at IPPP Durham University, Durham, United Kingdom
88: Also at Monash University, Faculty of Science, Clayton, Australia
89: Also at Bethel University, St. Paul, Minneapolis, USA, St. Paul, USA
90: Also at Karamanoğlu Mehmetbey University, Karaman, Turkey
91: Also at Ain Shams University, Cairo, Egypt
92: Also at Bingol University, Bingol, Turkey
93: Also at Georgian Technical University, Tbilisi, Georgia
B The TOTEM Collaboration

G. Antcheva, P. Aspell9, I. Atanassova, V. Avati7,9, J. Baechler9, C. Baldenegro Barrera11, V. Berardi4a,4b, M. Berretti2a, V. Borchsh8, E. Bossini4b,9, U. Bottigli4c, M. Bozzo5a,5b, H. Burkhardt9, F.S. Cafagna4a, M.G. Catanesi4a, M. Csanád3a,3b, T. Csörgő3a,3b, M. Deile9, F. De Leonardis4a,4c, M. Doubek1c, D. Druzhkin8,9, K. Eggert10, V. Eremin4, A. Fiergolski9, L. Forthomme2a,2b, F. Garcia4a,4c, M. Giani9, L. Grzanka7, J. Hammerbauer1a, T. Isidori11, V. Ivanchenko5, M. Janda1a, A. Karev9, J. Kašpar1b,9, B. Kaynake, J. Kopal9, V. Kudrát1b, S. Lami6a,6b, R. Linhart1a, C. Lindsey11, M.V. Lokajíček1a,1b, L. Losurdo4c, F. Lucas Rodríguez9, M. Macrì5a, M. Malawski7, N. Minafra11, S. Minutoli5a, T. Naaranoja2a,2b, F. Nemes3a,9, H. Niewiadomski10, T. Novák3b, E. Oliveri9, F. Oljemark2a,2b, M. Oriunno1, K. Österberg2a,2b, P. Palazzi4a,4c, Z. Peroutka1a, J. Procházka1b, M. Quinto4a,4b, E. Radermacher9, E. Radicioni4a, F. Ravotti9, C. Ruggiero9, H. Saarikko2a,2b, V.D. Samoylenkoc, A. Scribano6a, J. Široký1a, J. Smajek9, W. Snoeys9, R. Stefanovitch9, J. Sziklai3a, C. Taylor10, E. Tcherniaev8, N. Turini4c, O. Urban1a, V. Vacek1c, O. Vavroch1a, J. Welti2a,2b, J. Williams11, J. Zich1a, K. Zielinski7

†Deceased

1aUniversity of West Bohemia, Pilsen, Czech Republic
1bInstitute of Physics of the Academy of Sciences of the Czech Republic, Prague, Czech Republic
1cCzech Technical University, Prague, Czech Republic
2aHelsinki Institute of Physics, University of Helsinki, Helsinki, Finland
2bDepartment of Physics, University of Helsinki, Helsinki, Finland
3aWigner Research Centre for Physics, RMKI, Budapest, Hungary
3bEszterházy Karoly University KRC, Győngyös, Hungary
4aINFN Sezione di Bari, Bari, Italy
4bDipartimento Interateneo di Fisica di Bari, University of Bari, Bari, Italy
4cDipartimento di Ingegneria Elettrica e dell’Informazione — Politecnico di Bari, Bari, Italy
5aINFN Sezione di Genova, Genova, Italy
5bUniversitá degli Studi di Genova, Genova, Italy
6aINFN Sezione di Pisa, Pisa, Italy
6bUniversità degli Studi di Pisa, Pisa, Italy
6cUniversità degli Studi di Siena and Gruppo Collegato INFN di Siena, Siena, Italy
7Akademia Górniczo-Hutnicza (AGH) University of Science and Technology, Krakow, Poland
8Tomsk State University, Tomsk, Russia
9CERN, Geneva, Switzerland
10Case Western Reserve University, Department of Physics, Cleveland, Ohio, USA
11The University of Kansas, Lawrence, Kansas, USA

94: Also at Sinop University, Sinop, Turkey
95: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
96: Also at Texas A&M University at Qatar, Doha, Qatar
97: Also at Kyungpook National University, Daegu, Korea, Daegu, Korea
a INRNE-BAS, Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria
b Department of Atomic Physics, Eötvös Loránd University, Budapest, Hungary
c NRC 'Kurchatov Institute'–IHEP, Protvino, Russia
d Ioffe Physical Technical Institute, Russian Academy of Sciences, St. Petersburg, Russian Federation
e Istanbul University, Istanbul, Turkey
f SLAC, Stanford University, California, USA