Strong Couplings of Three Mesons with Charm(ing) Involvement

Wolfgang Lucha1,a, Dmitri Melikhov1,2,3,b, Hagop Sazdjian4,c, and Silvano Simula5,d

1Institute for High Energy Physics, Austrian Academy of Sciences, Nikolsdorfgasse 18, A-1050 Vienna, Austria
2D. V. Skobeltsyn Institute of Nuclear Physics, M. V. Lomonosov Moscow State University, 119991, Moscow, Russia
3Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria
4IPN, CNRS/In2P3, Université Paris-Sud 11, F-91406 Orsay, France
5INFN, Sezione di Roma Tre, Via della Vasca Navale 84, I-00146 Roma, Italy

Abstract. We determine the strong couplings of three mesons that involve, at least, one \(\eta_c \) or \(J/\psi \) meson, within the framework of a constituent-quark model by means of relativistic dispersion formulations. For strong couplings of \(J/\psi \) mesons to two charmed mesons, our approach leads to predictions roughly twice as large as those arising from QCD sum rules.

1 Three-meson strong coupling from meson–meson transition amplitudes

We determine the strong couplings of three mesons at least one of which is one of the charmonia \(\eta_c \) and \(J/\psi \), generically called \(g_{P P V} \) and \(g_{P V V} \) for pseudoscalar mesons \(P \) of mass \(M_P \) and vector mesons \(V \) of mass \(M_V \) and polarization vector \(\varepsilon_\mu \) and defined, for momentum transfer \(q \equiv p_1 - p_2 \), by the amplitudes

\[
\langle P'(p_2) V(q) | P(p_1) \rangle = -\frac{g_{P P V}}{2} (p_1 + p_2)^\mu \varepsilon_\mu(q),
\]

\[
\langle V'(p_2) V(q) | P(p_1) \rangle = -g_{P V V} \varepsilon_\mu(p_1) \varepsilon_\nu(p_2) p_1^\mu p_2^\nu,
\]

from the residues of \textit{poles} situated at the masses \(M_{P_R} \) and \(M_{V_R} \) of (appropriate) pseudoscalar and vector resonances \(P_R \) and \(V_R \) and contributing to \textit{transition form factors} \(F_+^{P P V}(q^2) \), \(V^{P V V}(q^2) \) and \(A_0^{P V V}(q^2) \), in terms of vector quark currents \(j_\mu \equiv \bar{q}_1 \gamma_\mu q_2 \) and axial-vector quark currents \(j_\mu^A \equiv \bar{q}_1 \gamma_\rho \gamma_5 q_2 \) defined by

\[
\langle P'(p_2) | j_\mu(p_1) \rangle = F_+^{P P V}(q^2) (p_1 + p_2)_\mu + \cdots,
\]

\[
F_+^{P P V}(q^2) = \frac{g_{P P V} f_{V_R}}{2 M_{V_R} (1 - q^2/M_{V_R}^2)};
\]

\[
\langle V(p_2) | j_\mu(p_1) \rangle = \frac{2 V^{P V V}(q^2)}{M_P + M_V} \varepsilon_\mu(p_1) \varepsilon_\nu(p_2) p_1^\rho p_2^\nu,
\]

\[
V^{P V V}(q^2) = \frac{(M_V + M_P) g_{P V V} f_{V_R}}{2 M_{V_R} (1 - q^2/M_{V_R}^2)};
\]

\[
\langle V(p_2) | j_\mu^A(p_1) \rangle = i q_\mu (\varepsilon^\nu(p_2) p_1) \frac{2 M_V}{q^2} A_0^{P V V}(q^2) + \cdots,
\]

\[
A_0^{P V V}(q^2) = \frac{g_{P V V} f_{P_R}}{2 M_V (1 - q^2/M_{P_R}^2)};
\]

ae-mail: Wolfgang.Lucha@oeaw.ac.at
be-mail: dmitri_melikhov@gmx.de
ce-mail: sazdjian@ipno.in2p3.fr
de-mail: simula@roma3.infn.it

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).
where the P or V decay constants $f_{P,V}$ parametrize the matrix elements of the interpolating currents $j^{(5)}_{\mu}$

\[\langle 0| j^{(5)}_{\mu}| P(q) \rangle = i f_P q_\mu , \quad \langle 0| j^{(5)}_{\mu}| V(q) \rangle = f_V M_V \epsilon_\mu(q) . \]

Such strong-coupling results may prove to be useful for studies of long-distance QCD effects in hadron decays involving charmed mesons or charmonia in the final state of a kind similar to the one in Ref. [1].

2 Quark-model-underpinned dispersion analysis of transition form factors

We describe the relevant properties of the involved strongly coupling mesons by means of a relativistic constituent-quark model [2–4]. Of course, this requires us to match the QCD currents $j_{\mu}^{(5)}$ to associated constituent-quark currents, which is, for heavy quarks, easily effected by introducing form factors $g_{V,A}$,

\[j_{\mu} = g_V \bar{Q} \gamma_\mu Q + \text{other Lorentz structures} , \quad j_{\mu}^{(5)} = g_A \bar{Q} \gamma_\mu \gamma_5 Q + \text{other Lorentz structures} , \]

for which we choose $g_V = g_A = 1$ [5] but, for light quarks, rendered rather involved [6, 7], for instance, if embedding partial axial-current conservation. For the radial meson wave functions, Gaussian shapes

\[w_{P,V}(k^2) \propto \exp \left(-\frac{k^2}{2\beta_{P,V}^2} \right) , \quad \int d^2 k^2 w_{P,V}(k^2) = 1 , \]

with slopes $\beta_{P,V}$ given, together with all relevant mesonic features, in Table 1 [8–13], turn out to suffice for our purposes. Table 2 lists the numerical values adopted for the masses of the constituent quarks q.

Within the framework of a relativistic dispersion formalism (reviewed, e.g., in Ref. [14]), we represent for our purposes. Table 2 lists the numerical values adopted for the masses of the constituent quarks q.

\[F(q^2) = \int d s_1 d s_2 \phi_1(s_1) \phi_2(s_2) \Delta_F(s_1, s_2, q^2) , \quad f_{P,V} = \int_{(m_1+m)^2}^{\infty} ds \phi_{P,V}(s) \rho_{P,V}(s) , \]

Table 1. Relevant parameters of the mesons: numerical values of mass M, leptonic decay constant f and slope β.

Meson	M (GeV)	f (MeV)	β (GeV)
D	1.87	206 ± 8	0.475
D^*	2.010	260 ± 10	0.48
D_s	1.97	248 ± 2.5	0.545
D_s^*	2.11	311 ± 9	0.54
η_c	2.980	394.7 ± 2.4	0.77
J/ψ	3.097	405 ± 7	0.68

Table 2. Constituent mass of each quark flavour $Q = u, d, s, c$ [5] involved in charm(ing) three-meson couplings.

Quark flavour	Quark mass m (GeV)
u	0.23
d	0.23
s	0.35
c	1.45
and of the wave functions of all mesons entering the corresponding one- or two-meson matrix elements

$$\phi_{P,V}(s) = \frac{\pi}{s^{3/4}} \sqrt{\frac{s^2 - (m_1^2 - m_2^2)^2}{2(s - (m_1 - m_2)^2)}} \omega_{P,V} \left(\frac{(s - m_1^2 - m_2^2)^2 - 4m_1^2m_2}{4s} \right).$$

3 Three-meson strong coupling: determination from transition amplitudes

We fix the slopes $\beta_{P,V}$ such that the decay constants $f_{P,V}$ are reproduced by their spectral representation. Equipped with these $\beta_{P,V}$ values, we deduce all strong couplings from the spectral representation of the relevant form factors $F(q^2)$ derived sufficiently off the resonances at $M_R = (P_R, V_R)$, by interpolating pointwise given momentum dependences of $F(q^2)$ by three-parameter $(\sigma_1, \sigma_2, F(0))$ ansätze of the form

$$F(q^2) = \frac{F(0)}{1 - \sigma_1 q^2/M_R^2 + \sigma_2 q^2/M_R^4} \left(1 - \frac{q^2}{M_R^2} \right), \quad \text{Res } F(M_R^2) = \frac{F(0)}{1 - \sigma_1 + \sigma_2}, \quad R = P_R, V_R,$$

and extrapolating $F(q^2)$ to the poles at $q^2 = M_R^2$, where the strong couplings emerge from the residues. Using $\sigma_{1,2}, F(0)$, and M_R as fit parameters, all arising masses M_R come close to the known resonances. Quite generally, a given strong coupling may show up in and therefore can be extracted from more than one meson–meson transition form factor, for example, $g_{\eta_c, J/\psi}$ from $F_{+}^{\eta_c, J/\psi}$ or $A_{0}^{D, J/\psi}$ (see Fig. 2) [15–17], $g_{DD}\phi$ from $F_{+}^{D,D, \phi}$ or $A_{0}^{D, \phi}$ (see Fig. 3(a)) [15–17] and $g_{DD}\eta_c$ from $F_{+}^{\eta_c, D}$, $A_{0}^{\eta_c, D}$ or A_{0}^{D, η_c} (see Fig. 3(b)) [15–17]; for further examples of such multiple involvements, consult Tables III, V, and VI of Ref. [15].

![Figure 2](https://example.com/figure2.png)

Figure 2. Behaviour of the off-shell η_c-η_c-J/ψ strong coupling $g_{\eta_c, \eta_c, J/\psi}$ with increasing resonance-mass-normalized momentum transfer $x \equiv q^2/M_R^2$ for the transition of η_c to the η_c (solid red line) or the J/ψ meson (dotted blue line).
Figure 3. Behaviour of the “off-shell” $D-D-J/\psi$ and $D-D^*-\eta_c$ strong couplings $g_{D\psi\eta_c}$ and $g_{D\psi^*\eta_c}$, respectively, with increasing “resonance-mass-normalized” momentum transfer $\chi = q^2/M_R^2$: (a) $g_{D\psi\eta_c}(x) = 2 M_0 (1-x) A_0^{\psi\eta_c}(q^2)/f_D$ (blue dotted line and squares □) and $g_{D\psi}(x) = 2 M_0 (1-x) F_{3}^{\psi\eta_c}(q^2)/f_\phi$ (red solid line and triangles ▲), relying on interpolation (blue or red lines) or not (squares □, triangles ▲); (b) $g_{D\psi\eta_c}(x)$ (solid red line), $g_{D\psi^*\eta_c}(x)$ (dotted blue line) and $g_{D\psi^*\eta_c}(x)$ (dashed green line). For each transition, the relevant resonance, R, is identified by a circumflex.

4 Strong coupling predictions from relativistic constituent-quark approach

We collect our emerging strong-coupling findings — extracted, in the case of multipresence of one and the same three-meson coupling in more than one meson–meson transition amplitude, by a combined fit — in Table 3: Strange quark content instead of a down quark implies a reduction of the involved strong couplings, by roughly 10%. Confronting, in Table 4, our $D_{(s)}-D_{(s)}^*-J/\psi$ predictions with QCD sum-rule outcomes [18–20], the QCD sum-rule estimates prove to be lower than ours [15–17] by a factor of two.

Table 3. Charm(ing) three-meson strong couplings: quark-model-based dispersion-approach outcomes [15–17].

$PP'V$ Coupling	Strong coupling $g_{PP'V}$
$\eta_c-\eta_c-J/\psi$	25.8 ± 1.7
$D-D-J/\psi$	26.04 ± 1.43
$D-D^*-\eta_c$	15.51 ± 0.45
D_s-D_s-J/ψ	23.83 ± 0.78
$D_s-D_s^*-\eta_c$	14.15 ± 0.52

$PV'V$ coupling	Strong coupling $g_{PV'V}$ (GeV$^{-1}$)
$\eta_c-J/\psi-J/\psi$	10.6 ± 1.5
$D-D^*-J/\psi$	10.7 ± 0.4
$D^*-D^*-\eta_c$	9.76 ± 0.32
$D_s-D_s^*-J/\psi$	9.6 ± 0.8
$D_s^*-D_s^*-\eta_c$	8.27 ± 0.37

Table 4. Strong couplings of the J/ψ meson to two charmed mesons: relativistic quark model vs. QCD sum rule.

Coupling	Approach	Quark model [15–17]	QCD sum rules	References
$D-D-J/\psi$		26.04 ± 1.43	11.6 ± 1.8	[18]
$D-D^*-J/\psi$	(10.7 ± 0.4) GeV$^{-1}$	(4.0 ± 0.6) GeV$^{-1}$	[18]	
D_s-D_s-J/ψ	23.83 ± 0.78	11.96±1.134	19]	
$D_s-D_s^*-J/\psi$	9.6 ± 0.8 GeV$^{-1}$	(4.30±1.22) GeV$^{-1}$	[20]	
Acknowledgements

D. M. would like to express gratitude for support by the Austrian Science Fund (FWF) under project P29028-N27.

References

[1] P. Santorelli, Phys. Rev. D 77 (2008) 074012, arXiv:hep-ph/0703232.
[2] W. Lucha, F. F. Schöberl, and D. Gromes, Phys. Rep. 200 (1991) 127.
[3] F. Cardarelli, E. Pace, G. Salmè, and S. Simula, Phys. Lett. B 357 (1995) 267, arXiv:nucl-th/9507037.
[4] R. N. Faustov and V. O. Galkin, Z. Phys. C 66 (1995) 119.
[5] D. Melikhov and B. Stech, Phys. Rev. D 62 (2000) 014006, arXiv:hep-ph/0001113.
[6] D. Melikhov and B. Stech, Phys. Rev. D 74 (2006) 034022, arXiv:hep-ph/0606203.
[7] W. Lucha, D. Melikhov, and S. Simula, Phys. Rev. D 74 (2006) 054004, arXiv:hep-ph/0606281.
[8] C. T. H. Davies et al., Phys. Rev. D 82 (2010) 114504, arXiv:1008.4018 [hep-lat].
[9] W. Lucha, D. Melikhov, and S. Simula, Phys. Lett. B 701 (2011) 82, arXiv:1101.5986 [hep-ph].
[10] D. Bečirević et al., J. High Energy Phys. 1202 (2012) 042, arXiv:1201.4039 [hep-lat].
[11] G. C. Donald et al. (HPQCD Coll.), Phys. Rev. D 86 (2012) 094501, arXiv:1208.2855 [hep-lat].
[12] W. Lucha, D. Melikhov, and S. Simula, Phys. Lett. B 735 (2014) 12, arXiv:1404.0293 [hep-ph].
[13] K. A. Olive et al. (Particle Data Group), Chin. Phys. C 38 (2014) 090001 and 2015 update.
[14] D. Melikhov, Eur. Phys. J. direct C4 (2002) 2, arXiv:hep-ph/0110087.
[15] W. Lucha, D. Melikhov, H. Sazdjian, and S. Simula, Phys. Rev. D 93 (2016) 016004, 93 (2016) 019902(E), arXiv:1506.09213 [hep-ph].
[16] W. Lucha, D. Melikhov, H. Sazdjian, and S. Simula, Proc. Sci., EPS-HEP 2015 (2015) 428, arXiv:1509.03089 [hep-ph].
[17] W. Lucha, D. Melikhov, H. Sazdjian, and S. Simula, preprint HEPHY-PUB 970/16 (2016), arXiv:1607.05569 [hep-ph].
[18] R. D. Matheus et al., Int. J. Mod. Phys. E 14 (2005) 555.
[19] B. Osório Rodrigues, M. E. Bracco, and M. Chiapparini, Nucl. Phys. A 929 (2014) 143, arXiv:1309.1637 [hep-ph].
[20] B. Osório Rodrigues et al., Eur. Phys. J. A 51 (2015) 28, arXiv:1501.03088 [hep-ph].