Meningococcal meningitis and septicaemia are life-threatening Neisseria meningitidis infections. Most meningococcal disease in the developed world is caused by N. meningitidis serogroups B, C, and Y; most disease in the meningitis belt in Africa and elsewhere in the developing world is caused by serogroup A, as well as emergent serogroups X and W. Vaccines for serogroups A, C, and Y have been in use since the 1970s, but there is still no universal vaccine on the market for meningococcus group B (MenB). Why has no MenB vaccine been developed? The simple reason is that the strategy used for the other meningococci doesn’t work for MenB. Vaccines for meningococcus groups A, C, W, and Y induce an immune response against the polysaccharide capsule around the bacterium. The capsular polysaccharide of MenB however, is structurally similar to certain abundant human glycoproteins like NCAM. It is therefore not a suitable immune target due to the risk of autoimmune damage through molecular mimicry. The barrier to developing a MenB vaccine thus has two facets: the difficulty in developing vaccines in general, and the specific challenge of creating a vaccine against a pathogen that mimics host molecules. The requirements for the development of an effective vaccine for MenB will be examined in three parts: first, an overview of the general characteristics of an effective vaccine; second, a discussion of current meningococcal vaccine strategies and their limitations with regard to MenB; and third, an examination of a promising new strategy for inoculation against MenB.

Four criteria must be met if a vaccine is to be effective: the immune system must be able to generate an effective response; the response must cover all major strains; the vaccine must be produced cheaply and efficiently, and the side-effects must be small enough to be accepted by the public. The immune system can generate a protective response against MenB, as infection is normally protective. Those who survive infection produce serum bactericidal antibodies (SBA) that lead to lysis of N. meningitidis in the presence of complement. Complement is important, as individuals with complement deficiencies typically get more Neisserial infections. SBA activity is used as a correlate of protection, and has been validated as a marker of immunity with different vaccines.

To provide universal protection, a MenB vaccine must contain antigens that are present in all strains in both time and in space; i.e. the antigen should not vary from one month to the next, or from one part of the country to another. This is problematic as there is wide sequence variation of the exposed antigens of N. meningitidis, particularly of the immunodominant surface protein PorA. There is also antigenic variation of the pili and extensive phase variation. The many repetitive sequences in the genome allow for frequent recombination; DNA transformation is common, and some virulent strains also show hypermutability. This increases the risk of selecting for vaccine escape variants. Meningococci tend to be found as relatively stable clonal complexes, but the prevalence can change rapidly. For example, clonal complex CC213 was not isolated in England before 1995, but accounted for 14% of cases of invasive MenB disease by 2008.

A useful vaccine needs to be produced in sufficient quantity to inoculate a large section of the population at a reasonable cost. A simple and stable vaccine formulation reduces production and transport costs, making immunization a cost-effective public health strategy. A vaccine must also be palatable to the public. Meningococcal meningitis and septicaemia are very serious but relatively rare diseases. The annual incidence is about 2 per 100,000 population in the UK, 87% of this from MenB. As even uncommon side-effects might be noticeable compared to the burden of disease, a
very safe vaccine is needed. A vaccine for Lyme disease was introduced in 1998 in the United States, but was withdrawn in 2002 after (unfounded) complaints that it caused autoimmunity.13 Yet the incidence of Lyme disease is seven times that of meningococcal disease.14 The higher annual incidence of meningococcal disease in infants (36 per 100,000)12 and the fact that meningitis often strikes down otherwise healthy young adults might however encourage use of the vaccine.

Two types of vaccine are currently in use for meningococcal disease: vaccines using the capsular polysaccharide, and vaccines based on outer membrane vesicles (OMVs). The first vaccine against meningococcal disease was simply the capsular polysaccharides of Meningococcus groups A, C, W, and Y. More recent vaccines, Menactra and Menveo, are conjugates: polysaccharide fused to a carrier protein (a modified form of the diphtheria toxin that acts as an adjuvant to enhance immunogenicity and memory).15,16 The best-established single-group vaccine is a conjugate for Meningococcus group C (MCC). It offers 97% protection in infants shortly after vaccination, dropping to 67% protection after a year. This vaccine brought about a striking drop in the incidence of invasive Meningococcus group C (MenC) disease in the UK from 1.85 per 100,000 in 1998–1999 to 0.02 per 100,000 in 2008–2009.7 This is largely due to a herd-immunity effect, mediated by the unexpectedly large reduction in MenC carriage (the MCC vaccine is 75–80% effective against carriage).17,18 Breakthrough cases do occur, however, with more than 10% of MenC cases in the UK in vaccinated individuals.19 A MenA vaccine is also being rolled out in the meningitis belt, and early indications are positive.20

Current vaccines target the polysaccharide capsule, but the MenB capsule is composed of polymers of α(2-8)-linked N-acetylenuraminic acid, which is also found on the human neural cell adhesion molecule NCAM.21,22 A vaccine directed at a host molecule might be expected either not to raise an immune response, or to cause autoimmunity. The MenB polysaccharide is not immunogenic in animal models or in humans.23 This tolerance is expected, as T-cells and B-cells that recognise this self-antigen would either have been deleted in self-reactive in the thymus or bone-marrow, or inactivated. However, there is a concern that this could lead to autoimmunity.

When grown in culture, \emph{N. meningitidis} sheds spherical blebs of membrane containing outer membrane proteins.26 These outer membrane vesicles (OMV) can be purified and used for immunisation, usually after processing to remove most of the lipo-oligosaccharide (LOS), an endotoxin. OMV vaccines were developed to combat MenB outbreaks in Cuba, Norway, and New Zealand.27,28 They induce a protective immune response against the strain from which the OMVs were collected, principally directed against PorA. However, the sequence of PorA is extremely variable,29,30 and mutation can make a diphtheria toxoid resistant to antibodies raised against the parent strain.31 There is, therefore, little cross protection between MenB strains. Consequently, vaccines based on OMV are at the moment only useful in localised epidemics.32

There are three competing strategies to make a universal MenB vaccine: first, to immunize with the capsular polysaccharide regardless of the risk of autoimmunity; second, to “universalize” the OMV vaccine; and third, to rationally design a subunit vaccine based on genomic information.

Despite the risks of autoimmunity, it may be possible to use the capsular polysaccharide of MenB as an immunogen. There are no documented cases of autoimmunity in humans after MenB infection, or in animals vaccinated with (α(2-8)-linked N-acetylenuraminic acid).33 Moreover, survivors of MenB infection have the same sequelae as MenC survivors, with no increased autoimmunity.34 Vaccination with the MenB capsular antigen has the added advantage of potential protection against other bacteria that use this polysaccharide, such as \emph{E. coli} strain K, and \emph{Klebsiella}. However, this remains a risky strategy. Natural infection might only induce a small rise in low-affinity antibodies, while vaccination would have to induce protective antibodies. This level of humoral response might be sufficiently high to lead to autoimmunity. Carriage or aborted infections might also boost initially tolerable antibody levels.

OMV vaccines are the only MenB vaccines that have been proven to be protective in a general population setting. As such, they are a reasonable platform on which to try to build a more universal vaccine. One possible solution to PorA variation is to generate OMVs with multiple different subtypes, and thus protect against different MenB subtypes.35 Another elegant strategy to attempt to address the problem of PorA variability is to generate OMVs without PorA.36 OMVs from mutant bacteria lacking PorA can be used to induce immunity against less immunogenic but more conserved meningococcal surface proteins, with the promise of immunity against all strains of \emph{N. meningitidis}. However, despite promising results in mice, these PorA-deficient OMVs were poorly immunogenic in human trials.37 As antibodies against LOS appear to be protective, a genetically modified strain of \emph{N. meningitidis} was used to produce OMVs containing mutant LOS that is less toxic, allowing OMVs to be generated with higher levels of LOS but without the associated endotoxin side-effects. These OMVs were found to be protective not only against several strains of MenB, but also against MenC, Meningococcus group W (MenW), and Meningococcus group Y (MenY).38 Native outer membrane vesicles (NOMVs) can be isolated without chemical treatment, so the LOS and lipoproteins are in their native conformation, which should improve their immunogenicity.39 A trivalent NOMV vaccine induces SBA in mice against MenB, MenC, MenY, MenW, and various strains of MenA.39,40 Reverse vaccinology is a strategy for rational (or at least rigorous) vaccine design. It aims to test the vaccine potential of every predicted surface protein of a pathogen. The MenB genome was sequenced,41 and 350 putative surface proteins were expressed and used to inoculate mice.41 The antibodies were used to look for surface localisation of their cognate antigen, and tested for serum bactericidal activity. Candidate antigens were then screened to see if they were present and did not vary in different MenB strains. The reverse vaccinology strategy identified a panel of proteins that seem to be ideal antigens: accessible to the immune system, immunogenic, inducing a protective response, present in all strains, and with minimal sequence variation.42 Five antigens were combined to make the multivalent 5-component vaccine against MenB (5CVMB).42 The constituents are the Neisserial adhesion protein (NadA),43 Neisseria Heparin Binding Antigen (HBHA),44 factor H binding protein (fHbp),45 and two Genome-derived Neisseria Antigens (GNA) (GNA1030 and GNA2091) fused to HBHA and fHbp respectively. 5CVMB was effective against 94% of 85 different strains when formulated with an adjuvant (MF59) that is licensed in
humans. 52 5CVMB has been tested in humans either alone or in formulation with the OMV used for vaccination in New Zealand. 59 Both were immunogenic, but the formulation with the OMV was more effective, particularly against certain strains expressing homologous PorA and for which only low SBA was achieved using 5CVMB alone. This formulation was renamed 4-component MenB (4CMenB), counting the NHBA-GNA1030 fusion and the fHbp-GNA2091 fusion as one component each, NadA as the third component and OMV as the fourth component. 4CMenB elicits serum bactericidal antibodies against MenB in infants, 59,60 adolescents, 50 and adults. 51

There are two major concerns for 4CMenB: will it cover all strains and will it have important side-effects? The OMV component of 4CMenB only protects against certain PorA subtypes, and the vaccine only contains one of three fHbp variants. The fHbp component of 4CMenB is variant 1, and 5CVMB (without OMV) induced protective antibodies against 95% of fHbp variant 1 strains, but only against 56% of fHbp variant 2 or 3 strains. 55 In US hospital isolates, 35% were fHbp variants 2 or 3, 52 and only 36% of isolates had the NadA gene, another target of 4CMenB. In terms of side-effects, in a phase three trial, 4CMenB in conjunction with routine immunizations resulted in fever in 50–60% of infants. 58 Reductions in rates of fever by the use of prophylactic paracetamol are unlikely. 54 Nonetheless, an apparently effective MenB vaccine is designed to elicit SBA that act at least in part through a bivalent fHbp vaccine. Nonetheless, NOMV formulations using mutated fHbp designed not to bind to human fH show promise. 60 Other subcapsular antigens are also being investigated as vaccine targets. 61

An alternative vaccine to 5CVMB, containing one fHbp from each family, is currently in clinical trials. However, MenB and MenC strains that do not express fHbp have been isolated from patients with disseminated meningococcal disease. 59 Although these strains are rare, it is possible that they would be selected for by a bivalent fHbp vaccine. Nonetheless, NOMV formulations using mutated fHbp designed not to bind to human fH show promise. 60 Other subcapsular antigens are also being investigated as vaccine targets. 61

What will the future hold for MenB vaccines? The roll-out of 4CMenB (Bexsero) is highly anticipated. Beyond that, three populations could be specifically targeted by a next-generation vaccine: individuals with complement deficiencies, neonates, and asymptomatic carriers. First, individuals with a complement deficiency may not be able to mount a full immune response to MenB even with vaccination, as the vaccine is designed to elicit SBA that act at least in part through complement. 52 One vaccine antigen, GNA2091, does not induce SBA but is protective in a mouse model. 52 This type of antigen might provide better protection for those with complement deficiencies. Second, young infants are particularly vulnerable to MenB: 14% of MenB cases occur in infants less than six months old. 12 One solution is to vaccinate infants very young, as for MenC. Alternatively, vaccines can be offered to potential mothers to enhance the passive protection given to their children by transfer of IgG. Third, asymptomatic carriage of MenB could be directly targeted. About 17% of the population carry meningococci in the nasopharynx, 18 where it is likely to be more susceptible to IgA than to IgG. The 4CMenB vaccine aims to raise IgG, as this is effective at preventing disease and is the correlate of protection (and so mandated by the regulatory framework). A vaccine designed to produce IgA might however have a dramatic effect on carriage. This is similar to the difference between an injected (inactivated) polio vaccine, which leads to an IgG response, and the oral (attenuated) polio vaccine that also has an IgA response, protective in the gut. 61 Intranasal MenB vaccination by inhalation is immunogenic in humans, and might specifically induce a mucus-membrane based response. 64 Such a vaccine might even raise the prospect of MenB eradication.

Less than 15 years after the introduction of the vaccine for MenC, this serogroup causes almost no severe illness in the UK. With the advent of an effective vaccine against MenB, there is reason to be optimistic that invasive meningococcal disease will become a rarity in this country. Moreover, the new crop of MenB vaccines has the potential to be effective against most strains of N. meningitidis. Perhaps the goal of truly effective and universal protection against all meningococci is finally on the horizon, nearly half a century after the first meningococcal vaccines.

Ethical approval
No ethical approval required for this publication.

Conflicts of interest
No conflicts of interest have been declared by the author.

Author contributions
Single author manuscript.

Funding
No funding source declared by author.

References

1. Schwartz B, Moore PS, Broome CV. Global epidemiology of meningococcal disease. Clin Microbiol Rev 1989;2(Suppl 2):S18–24.
2. Harrison LH, Trotter CL, Ramsay ME. Global epidemiology of meningococcal disease. Vaccine 2009;27(Suppl 2):B51–63.
3. Goldschneider I, Gotschlich EC, Artenstein MS. Human immunity to the meningococcus. I. The role of humoral antibodies. J Exp Med 1969;129(6):1307–26.
4. Goldschneider I, Gotschlich EC, Artenstein MS. Human immunity to the Meningococcus. II. Development of Natural Immunity. J Exp Med 1969;129(6):1327–48.
5. Borrow R, Bahr G, Miller E. Meningococcal serotypes of protection—serum bactericidal antibody activity. Vaccine 2005;23(17–18):2222–7.
6. Fijen CA, Kuiper EJ, Te Bulte MT, et al. Assessment of complement deficiency in patients with meningococcal disease in The Netherlands. Clin Infect Dis 1999;28(1):98–105.
7. Campbell H, Andrews N, Borrow R, et al. Updated postlicensure surveillance of the meningococcal C conjugate vaccine in England and Wales: effectiveness, validation of serological correlates of protection, and modeling predictions of the duration of herd immunity. Clin Vaccine Immunol 2010;17(5):840–7.
8. Siddique A, Buisine N, Chalmers R. The transposon-like Correia elements encode numerous strong promoters and provide a potential new mechanism for phase variation in the meningococcus. PLoS Genet 2011;7(1):e1001277.
9. Bucci C, Lavilova A, Salvatore P, et al. Hypermutation in Pathogenic Bacteria: Frequent Phase Variation in Meningococcus is a Phenotypic Trait of a Specialized Mutator Biotype. Mol Cell 1999;3:435–45.
10. Tettelin H, Saunders NJ, Heidelberg J, et al. Complete Genome Sequence of Neisseria meningitidis Serogroup B Strain MC58. Science 2000;287(5459):1805–15.
11. Lucidarme J, Comanducci M, Finidow J, et al. Characterization of Rtp, nhbA (gua2132), nadA, porA, and sequence type in group B meningococcal case isolates collected in England and Wales during January 2006 and potential coverage of an investigational group B meningococcal vaccine. Clin Vaccine Immunol 2010;17(8):919–29.
12. Ladhar S, Flood JS, Ramsay ME, et al. Invasive meningococcal disease in England and Wales: Implications for the introduction of new vaccines. Vaccine 2012;30(24):3716–8.
13. Poland GA. Vaccines against Lyme disease: What happened and what lessons can we learn? Clin Infect Dis 2011;52(Suppl 3):e55–8.
14. Stanke G, Wurmser GP, Gray J, et al. Lyme borreliosis. Lancet 2012;379(9814):461–7.
15. Kayserling H, Papa T, Kornay K, et al. Safety, immunogenicity, and immune memory of a novel meningococcal groups A, C, Y, and W-135 polysaccharide-diphtheria toxoid conjugate vaccine (MVCV-4) in healthy adolescents. Arch Pediatr Adolesc Med 2005;159(10):907–13.
16. Coop B, DeTora L, Menevoi: a novel quadrivalent meningococcal CRM97 conjugate vaccine against serogroups A, C, W-135 and Y. Expert Rev Vaccines 2011;10(1):21–33.
17. Mäden MJ, Bazić Pavlin AB, Urwin R, et al. Impact of meningococcal group C conjugate vaccines on carriage and herd immunity. J Infect Dis 2008;197(5):737–43.
18. Bazić Pavlin AB, Mazelnam MS, ju, et al. Changes in serogroup and genotype prevalence of Neisseria meningitidis in the United Kingdom during vaccine implementation. J Infect Dis 2011;204(7):1046–53.
19. Aucklind C, Gray S, Borrow R, et al. Clinical and immunologic risk factors for meningococcal C conjugate vaccine failure in the United Kingdom. J Infect Dis 2006;194(12):1745–52.
20. Kim SH, Pezzoli L, Yacoub H, et al. Whom and where are we not vaccinating? Coverage after the introduction of a new conjugate vaccine against group A meningococci in Niger in 2016. PLoS one 2012;7(1):e30116. Available from the strain-specific group B meningococcal vaccine MenB2. Clin Vaccine Immunol 2006;13(3):338–42.
21. Finn J, Bittler-Suermann D, Goridis C, et al. Ig5 monoclonal antibody to group B meningococci cross-reacts with developmentally regulated polyalcohol units of glycoproteins in Neisseria meningitidis. Infect Immun 1982;38(3):1203–7.
22. Devi SJ, Schneerson R, Egan W, et al. Identity between polysaccharide antigens of Moraxella nonliquefaciens, group B Neisseria meningitidis, and Escherichia coli K1 (non-O acetylated). Infect Immun 1993(8):7155–6.
23. Wyle FA, Artenstein MS, Brandt BL, et al. Immunologic response of man to group B meningococcal B recombinant vaccine (rMenB) in healthy adolescents in Chile: a phase 2b randomized, observer-blind, placebo-controlled trial. Lancet 2012;379(9816):617–24.
24. Devi S, Robbins J, Schneerson R. Antibodies to poly[(2-8)-alpha-N-acetylneuraminic acid] and poly[(2-9)-alpha-N-acetylneuraminic acid] are elicited by immunization of mice with Escherichia coli K32 conjugates: potential vaccines for groups B and C meningococci and E. coli K1. Proc Natl Acad Sci U S A 1991(8):August(7):7175–8.
25. Leinonen M. Class-specific antibody response to group B meningococcal meningitis capsular polysaccharide: use of polysialic precocating in an enzyme-linked immunosorbent assay. Infect Immun 1992;58(3):1203–7.
26. Collins BS. Gram-negative outer membrane vesicles in vaccine development. Discov Med 2011;12(62):7–15.
27. Bjørn H, Holby E, Gronnesby J, et al. Effect of outer membrane vesicle vaccine against group B meningococcal disease in Norway. Lancet 1991; 338(8775):1093–6.
28. Holst J, Martin D, Arnold R, et al. Properties and clinical performance of vaccines containing outer membrane vesicles from Neisseria meningitidis. Vaccine 2009;27 Suppl 2:83–12.
29. Russo L, Garro MS, et al. PorA variable regions of Neisseria meningitidis. Emerg Infect Dis 2004;10:644–8.
30. Soroahto Pereira C, Requeira M, Mofjelar M. PorA types in Neisseria meningitidis serum groups A and C isolated in Argentina from 2001 to 2003: implications for the design of an outer membrane protein-based vaccine. J Med Microbiol2008;57(Pt 3):338–42.
31. Martin D, Rujie N, McCaul L. The VR2 epitope on the PorA P1. 7, 2 protein is the major target for the immune response elicited by the strain-specific group B meningococcal vaccine MenB2. Clin Vaccine Immunol 2006;13(3):486–91.
32. Tappero JW, Lagos R, Ballesteros AM, et al. Immunogenicity of 2 serogroup B outer membrane polysaccharide-conjugate vaccines: a randomized controlled trial in Chile. JAMA1999;281(16):1520–7.
33. Robbins JB, Schneerson R, Xie G, et al. Capsular polysaccharide vaccine for Group B Neisseria meningitidis: Escherichia coli K1, and Pasteurella haemolytica A2. Proc Natl Acad Sci U S A 2011;108(14):6771–6.
34. Gottfredsson M, Raynorin K, Ingvarsson R, et al. Comparative long-term adverse effects and safety and immunogenicity testing of an intranasal meningococcal group B native outer membrane vesicle vaccine. Vaccine 2010;28(35):5057–67.