Supplemental Material for

The HIF-prolyl hydroxylases have distinct and non-redundant roles in colitis-associated cancer

Kilian B. Kennel¹, Julius Burmeister¹, Praveen Radhakrishnan¹, Nathalia A. Giese¹, Thomas Giese², Martin Salfenmoser¹, Jasper M. Gebhardt¹, Moritz J. Strowitzki¹, Cormac T. Taylor³, Ben Wielockx⁴, Martin Schneider¹, and Jonathan M. Harnoss¹,*

¹Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
²Institute of Immunology, University Hospital Heidelberg, Heidelberg, Germany
³School of Medicine, Systems Biology Ireland and the Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
⁴Institute for Clinical Chemistry and Laboratory Medicine, Dresden University of Technology, Dresden, Germany

*Corresponding author: Department of General, Visceral and Transplantation Surgery, Heidelberg University, Im Neuenheimer Feld 420, 69120 Heidelberg. Phone: +49-6221-566110; Email: Jonathan.harnoss@med.uni-heidelberg.de

Authorship note: KBK and JB are co-first authors and contributed equally to the manuscript. MSch and JMH are co-last authors and contributed equally to the manuscript.

This file includes:

- Supplemental Methods
- Supplemental Figures 1-7 including Figure legends
- Supplemental Tables 1 and 2
- References for Supplemental Data
SUPPLEMENTAL METHODS

Histology, immunohistochemistry, immunofluorescence

For histology and IHC, tumor-bearing colons were fixed as “swiss rolls” using formalin and ethanol, embedded in paraffin, and cut at 5 µm thickness (1). A subset of tumors was frozen and processed for cryosectioning and subsequent IF staining. Paraffin-embedded tissue sections were dewaxed using xylene and a graded series of ethanol. H&E staining was performed for microscopic analysis of mucosal damage using a previously described scoring system (2) (Supplemental Table 1). Two blinded observers assessed histology scores using a Zeiss Axiostar Plus microscope in combination with an Axiocam MRC camera (Zeiss, Jena, Germany). For IHC, citrate-based antigen retrieval was performed (Dako Target Retrieval Solution, Agilent, Santa Clara, California, USA., #S1699) and sections were incubated overnight at 4°C with the following primary antibodies: PCNA (1:500, Abcam, Cambridge, UK, #265585), CC3 (1:100, Cell Signaling Technology (CST), Danvers, Massachusetts, USA, #9661), F4/80 (1:100, BioRad, Hercules, California, USA, #MCA497), CD3 (1:100, Abcam, #5690), pSTAT3 (1:100, CST, #9145), ERK1/2 (1:1000, CST, #9102), pERK1/2 (1:1000, CST, #9101). For IF on cryosections, a CD11c primary antibody was used (1:100, ThermoFisher Scientific, Waltham, Massachusetts, USA, #14-0114-82). After incubation with appropriate horse radish peroxidase or FITC (for IF-coupled secondary antibodies), detection was carried out using the Liquid DAB+ Substrate Chromogen System (Dako, #K3468). Quantification of positive cells was performed by two blinded investigators using a Zeiss Axiostar Plus microscope in combination with an Axiocam MRC camera (Zeiss).

qRT-PCR

RNA was isolated from murine colonic tumor and mucosa samples using the RNeasy Mini Kit (Qiagen, Hilden, Germany, #74104). cDNA was synthesized using the ImProm-II™ Reverse Transcription System (Promega, Mannheim, Germany, #A3800). qRT-PCR was performed on a LightCycler 480 system (Roche, Mannheim, Germany) using SYBR Green as a dye. Relative transcript expression was analyzed employing the △△Ct method with 18S rRNA (Rn18s) or actin beta (Actb) as housekeeping genes. Primer sequences are listed in Supplemental Table 2.
Immunoblot
Protein from size- and location-matched AOM/DSS tumors was isolated using the AllPrep DNA/RNA/Protein Mini Kit (Qiagen, #80004). Isolated protein was quantified using the Pierce™ BCA Protein Assay Kit (ThermoFisher Scientific, #23225), and equal amounts were loaded for gel electrophoresis. Primary antibodies against STAT3 (1:1000, CST, #9139), pSTAT3 (1:1000, CST, #9145), ERK1/2 (1:1000, CST, #9102), pERK1/2 (1:1000, CST, #9101), ACTB (1:5000, Abcam, #8227) as well as an HRP-conjugated secondary antibody (1:5000, Abcam, #6721) were used for detection of the respective proteins.

Flow cytometry
The following antibodies were used to characterize lymphoid populations in AOM/DSS tumors: APC-R700-CD45 (30-F11) (BioLegend, 103128), Brilliant Violet 605-CD3 (17A2) (BioLegend, 100237), PE-CF594-CD4 (RM4-5) (BD, 562285), APC-C7, CD8a (53-6.7) (BioLegend, 100714), BB515-CD19 (1D3) (BD, 564531), Brilliant Violet 421-CD25 (PC61) (BD, 562606), APC-CD127, (SB/199), (BD, 564175), CD335/NKp46 (29A1.4) (BD, 560757).
For characterization of myeloid populations in AOM/DSS tumors, the following antibodies were used: APC-R700-CD45 (30-F11) (BioLegend, 103128), PE-Cy7-CD11b (M1/70) (BioLegend, 101216), Brilliant Violet 421-CD11c, (N418) (BioLegend, 117330), AF488-CD80 (16-10A1) (BioLegend, 104716), Brilliant Violet-786-CD86 (GL1) (BioLegend, 105043), PE-CF594-CD163 (S15049I) (BioLegend, 155316) PE -CD197/CCR7 (4B12) (BD, 560682), AF647-CD206 (MR5D3) (BD, 565250), APC-C7-F4/80 (BM8) (BioLegend, 123118), PerCP-Cy5.5-Ly-6C (HK1.4) (BioLegend, 128012) Brilliant Violet 605-Ly-6G (1A8) (BioLegend, 127639), BV510-MHC class II (M5/114.15.2) (BioLegend, 107636), BUV395-CD3 (17A2), (BD, 740268), BUV395-CD19 (1D3) (BD, 563557), BUV395-CD335/NKp46 (29A1.4) (BD, 740326). Incubation was performed in Brilliant Stain Buffer (BD, 563794). DAPI was added before data acquisition to identify viable cells.
Isolation of BMDMs

BMDMs were isolated as previously described (3). Briefly, femora and tibiae of WT and Phd2^+/− mice were flushed with PBS, and bone marrow cells were differentiated to macrophages in RPMI-1640 medium supplied with 10% FCS, 1% Penicillin/Streptomycin, 2 mM L-Glutamine and 10 ng/ml murine M-CSF (R&D Systems, Minneapolis, Minnesota, USA, #416-ML) for seven days prior to experiments. For experiments, BMDMs were incubated for 24 hours with control media (RPMI-1640 medium supplied with 1% FCS), 100 ng/ml LPS in control media (Sigma-Aldrich, St. Louis, Missouri, USA, #L2630), 20 ng/ml TNFα in control media (R&D Systems, #410-MT), or 20 ng/ml IL-4 in control media (R&D Systems, #404-ML).
Supplemental Figure 1. (A) Disease activity index (DAI) scores from WT (n = 10), Phd1−/− (n = 6), Phd2−/− (n = 5), and Phd3−/− (n = 9) mice over the course of AOM/DSS treatment. The DAI was calculated every other day. (B) qRT-PCR analysis of pro-inflammatory mRNA expression in non-tumorous colon tissue samples from WT (n = 9), Phd1−/− (n = 9), Phd2−/− (n = 11), and Phd3−/− (n = 11) mice at day 84. Statistical significance was calculated using 2-way ANOVA (A) or 1-way ANOVA with Dunnett’s multiple comparisons test (B). *P < 0.05.
Supplemental Figure 2. (A) Macroscopic quantification of AOM/DSS-induced tumors. Pooled number of tumors per mouse (left: WT: n = 27, Phd1−/−: n = 21, Phd2+/−: n = 20, Phd3−/−: n = 20 mice) and pooled size of individual tumors (right: WT: n = 220, Phd1−/−: n = 63, Phd2+/−: n = 255, Phd3−/−: n = 243 tumors) of 4 studies in total. Statistical significance was calculated using 1-way ANOVA with Dunnett’s multiple comparisons test. *P < 0.05, **P < 0.01, ****P < 0.0001.
Supplemental Figure 3. (A) Quantification of epithelial nuclear β-catenin immunostaining in WT (n = 28) and Phd2\(^{−/−}\) (n = 54) tumors and representative histological images. Scale bar = 100 μm. (B) Quantification of epithelial nuclear pSTAT3Y705 immunostaining in WT (n = 19) and Phd1\(^{−/−}\) (n = 12) tumors and representative histological images. Scale bar = 100 μm. (C, D) qRT-PCR analysis of Egfr (C) and EGFR ligands mRNA expression (D) in WT (n = 16) and Phd2\(^{−/−}\) (n = 16) tumors. (E) Re-analysis of a publicly available high-density microarray data set that includes transcriptomes from size- and location-matched AOM/DSS-induced and sporadic ApomMin\(^{+}\) tumors and respective controls (4). Statistical significance was calculated using 1-way ANOVA with Dunnett’s multiple comparisons test (A) or Student’s t test (B - E). \(^{*}\)P < 0.05.
Supplemental Figure 4. (A) Flowcytometry gating strategy for myeloid populations in AOM/DSS tumors as previously established (5). First, single live cells were identified based on their FSC and SSC properties and DAPI staining. Next, immune cells (CD45+) were gated, and T, B, and NK cells excluded via CD3, CD19, and CD335 dump staining. Myeloid cells were then defined as neutrophils (CD45+, CD3-, CD19-, CD335-, Ly-6G+, CD11b+), Tumor-associated macrophages (TAMs, CD45+, CD3-, CD19-, CD335-, Ly-6G-, F4/80+, CD11b low), resident macrophages (res Macs, CD45+, CD3-, CD19-, CD335-, Ly-6G-, F4/80+, CD11b high), dendritic cells (DCs, CD45+, CD3-, CD19-, CD335-, Ly-6G-, F4/80-, CD11b+, MHCIIm, CD11c+), monocytes (Mono, CD45+, CD3-, CD19-, CD335-, Ly-6G-, F4/80+, CD11b+, MHCIIm, CD11c-, Ly-6C+). Representative contour plots from a Phd2−/− mouse.
Supplemental Figure 5. (A) Flow cytometry gating strategy for lymphoid populations in AOM/DSS tumors. First, single live immune cells were identified based on their FSC and SSC properties, CD45, and DAPI staining. Next, lymphoid cells were defined as B cells (CD45+, CD19+), NK cells (CD45+, CD3-, CD335+), NKT cells (CD45+, CD3+, CD335+), T cells (CD45+, CD3+), Th cells (CD45+, CD3+, CD4+), regulatory T cells (Tregs, CD45+, CD3+, CD4+, CD127-, CD25+) and cytotoxic T cells (CD45+, CD3+, CD8+). Representative contour plots from a WT mouse. (B) Median fluorescence intensity for M1 (CD80, CD86, CCR7) and M2 (CD163, CD206) macrophage polarization markers within the TAM population in tumors from Phd2+/− (n = 6) and WT (n = 6) control mice. Statistical significance was calculated using Student's t test.
Supplemental Figure 6. (A) Quantification of epithelial nuclear β-catenin immunostaining in Phd2^{f/f} (control, n = 27) and Vav:Cre-Phd2^{f/f} mice (n = 36) and representative histological images (right). Scale bar = 100 µm. (B-C) qRT-PCR analysis of Egfr (B) and EGFR ligands (C) mRNA expression in control (n = 14) and Vav:Cre-Phd2^{f/f} mice (n = 14).
Supplemental Figure 7. (A) Macroscopic quantification of AOM/DSS-induced tumors in Phd2^{ff} (control) and Villin:Cre-Phd2^{ff} mice. Number of tumors per mouse (left; control: n = 8, Villin:Cre-Phd2^{ff}: n = 8 mice) and size of individual tumors (right; control: n = 80, Villin:Cre-Phd2^{ff}: n = 64 tumors). Representative macroscopic images of colons from control and Villin:Cre-Phd2^{ff} mice. Arrows indicate colitis-associated tumors. Scale bar = 2 mm. (B) H&E stainings of colons from control and Villin:Cre-Phd2^{ff} mice. Scale bar = 2 mm. (C) Quantification of epithelial PCNA immunostaining in control (n = 17) and Villin:Cre-Phd2^{ff} (n = 15) tumors and representative histological images (bottom). Scale bar = 25 μm. (D) Quantification of epithelial CC3 immunostaining in control (n = 16) and Villin:Cre-Phd2^{ff} (n = 16) tumors and representative histological images (bottom). Scale bar = 25 μm. (E) Quantification of epithelial nuclear pSTAT3Y705 immunostaining in control (n = 20) and Villin:Cre-Phd2^{ff} (n = 16) tumors and representative histological images (bottom). Scale bar = 25 μm. (F-G) qRT-PCR analysis of EGFR ligand Ereg (F) and Il6 and Il11 (G) mRNA expression in control (n = 6) and Villin:Cre-Phd2^{ff} (n = 6) tumors. Statistical significance was calculated using Student’s t test.
Supplemental Tables

Score	Colonic epithelial damage	Inflammatory cell infiltration	Score
0	Normal epithelium	Mucosa Normal	0
1	Hyperproliferation, irregular crypts, goblet cell loss	Mucosa Mild	1
2	Mild to moderate crypt loss (10-50%)	Mucosa Modest	2
3	Severe crypt loss (50-90%)	Mucosa Severe	3
4	Complete crypt loss, surface epithelium intact	Submucosa Normal	0
5	Small- to medium sized-ulcer (<10 crypt widths)	Submucosa Mild to modest	1
6	Large ulcer (≥ 10 crypt widths)	Submucosa Severe	2
		Muscle/serosa Normal	0
		Muscle/serosa Moderate to severe	1

Supplemental Table 1. Histological scoring criteria for DSS-induced colitis. As previously described by Katakura et al. (2). Scores for epithelial damage and inflammatory cell infiltration (separately assessed for mucosa, submucosa, and muscle/serosa) are added, resulting in a minimum score of 0 and a maximum score of 12.
Supplemental Table 2. Primer sequences used for qRT-PCR

Gene	Primer type (FW, forward/REV, reverse)	Primer sequence
II6	FW	TTCCTCTCTGCAAGAGACTTC
	REV	CTGTTGGGAGTGGTATCCTCTG
II11	FW	GGGGACATGAACCTGTGTTTGT
	REV	CAGGAGGGATCAGGTTAGGA
Mpo	FW	CTGCAAAACAGACAGACCC
	REV	AGCCATTTGCAAGTGGCA
Ptgs2	FW	TCCCATGGGTTGAGGAAAA
	REV	ACCCAGCTCTCTGCTTATGA
Cxcl1	FW	ACCCAAAACGAATCAGACC
	REV	TGTCAGAAGCCAGTACC
Cxcl2	FW	GCCAGGCAATCAGTACC
	REV	CTTCCTTACCCGCTAACG
Myc	FW	GAACCAGAGACACAGGAT
	REV	GTTGGTCTCTCTTGCTTATGA
Birc5	FW	TGCCTGGAAGGCTAGAACAA
	REV	ACAAAGTGCTCCAGCC
Bcl2l1	FW	GCCAGGCAATCAGTACC
	REV	CTTCCTTACCCGCTAACG
Ereg	FW	GACATGGACGGCTACTGCTT
	REV	TGTCAGAAGCCAGTACC
Rn18s	FW	ACAAAGTGCTCCAGCC
	REV	CCATCCAACTGGTAGAGCC
Actb	FW	TATAAACCCGCGCCGC
	REV	TCAATCGGAGTAGGCTTAT
Areg	FW	CAGGAGGCAATCAGGTTA
	REV	AAAACCTGGACTGGCTT
Egf	FW	TTCTGGGTTCAGGACTG
	REV	GAACAAACTCTGGCCCTT
Hbegf	FW	AGGACCTTGGAGGAGCAA
	REV	CCAATTCCTTCTTCTGCTT
Btc	FW	ATGAGCCACCCAGCGGCTGAGT
	REV	TAAACGTTAACATATGGCTGT
Epgn	FW	GAGCAGAGAGAGAGAGGCT
	REV	GTCTTCCAGAAAGATGAGAG
Tgfa	FW	AGGCGGAGAGAAGCCCATC
	REV	TCACTTCTGCTGGGTTAGCAA
Egfr	FW	GAAAGTGCCCGAAAAT
	REV	TCGTAGTAGTCAGGGCCA

REFERENCES

1. Greten FR, Eckmann L, Greten TF, Park JM, Li ZW, Egan LJ, et al. IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. *Cell.* 2004;118(3):285-96.

2. Katakura K, Lee J, Rachmilewitz D, Li G, Eckmann L, and Raz E. Toll-like receptor 9-induced type I IFN protects mice from experimental colitis. *J Clin Invest.* 2005;115(3):695-702.

3. Kiss J, Mollenhauer M, Walmsley SR, Kirchberg J, Radhakrishnan P, Niemietz T, et al. Loss of the oxygen sensor PHD3 enhances the innate immune response to abdominal sepsis. *J Immunol.* 2012;189(4):1955-65.

4. Neufert C, Becker C, Tureci O, Waldner MJ, Backert I, Floh K, et al. Tumor fibroblast-derived epiregulin promotes growth of colitis-associated neoplasms through ERK. *J Clin Invest.* 2013;123(4):1428-43.

5. Olesch C, Sirait-Fischer E, Berkefeld M, Fink AF, Susen RM, Ritter B, et al. S1PR4 ablation reduces tumor growth and improves chemotherapy via CD8+ T cell expansion. *J Clin Invest.* 2020;130(10):5461-76.