Word Sense Annotation of Polysemous Words by Multiple Annotators

Rebecca J. Passonneau, Ansaf Salleb-Aoussi, Vikas Bhardwaj
Columbia University, New York, NY
Nancy Ide
Vassar College, Poughkeepsie, NY
Outline

• Word senses
• MASC word sense annotation
• Interannotator agreement: word/pos dependent
• Exploring the data
 – InterSense Similarity Measures (ISSM)
 – Association rules among annotators
• Future work
Word Senses: Theoretical Issues

• Synchronic variation
 – Selected for by the sentence/utterance context
 – Generative (Pustejovsky)
 – Many contexts are essentially the same (Kilgariff)

• Diachronic variation
 – Changes in senses over time
 – Changes in sense frequency over time

• Situational/sociolinguistic variation
 – Different usage likelihoods in distinct corpora
 – Differences across language users

5/21/2010 LREC 2010 Malta
Annotation Issues

• How much context is enough?
• How much training for annotators?
• How much agreement is possible among annotators? (Fellbaum; Ng; Pedersen; Palmer)

• Sense inventories
 Con: Arbitrary
 Con: No degrees of specificity, e.g., “a long chapter”
 – Other methods (Erk & McCarthy, ratings of all senses)
 Pro: Understandable
 Pro: Convenient annotation labels
 - Explore label usage among many annotators
MASC Word Sense Annotation

• MASC Corpus (May release): Ide et al. 2010 ACL

• Word Sense annotation goals:
 – Harmonize WordNet/FrameNet senses
 – Provide manually annotated data for supervised WSD

• Five rounds to date, a sixth underway
 – MASC subcorpus from OANC: open, heterogeneous
 – WordNet sense labels on 1000 sentences/word
 – Sentences in context (annotator can adjust)
 – Trained annotators at Vassar, Columbia
 – Annotation tool: SATANiC
Round 2.2

- 10 polysemous words (9.5 senses per word on avg.)
- Balanced for POS
 - 3 Adj
 - 3 Nouns
 - 4 Verbs
- Sample of 100 sentences
 - Three Columbia undergraduates
 - Three Vassar undergraduates
 - Same training, same annotation tool
- Interannotator agreement: Krippendorff’s Alpha
 - Wide range of agreement results
 - Word dependent
Interannotator Agreement

Word-POS	Senses in WN	Senses Assigned	Annotators	Alpha
LONG-J	9	4	6	0.67
FAIR-J	10	6	5	0.54
QUIET-J	6	5	6	0.49
TIME-N	10	8	5	0.68
WORK-N	7	7	5	0.62
LAND-N	11	9	6	0.49
SHOW-V	12	10	5	0.46
TELL-V	8	8	6	0.46
KNOW-V	11	10	6	0.37
SAY-V	11	10	6	0.37
Observations on IA

• Agreement is less good on V than N and J
• Most senses are used; sense frequency does not correlate exactly with WN predictions
• Agreement does not degrade as number of senses increases
• Within each part-of-speech, IA varies with no discernible cause other than the word itself
• Words differ with respect to concreteness (e.g., “long” versus “fair” – SEW 2009)
Intersense Similarity

• Hypothesis: words more confusable senses have lower IA

• Measure sense relatedness: Lesk Similarity (Banerjee & Pedersen 2002)

• \(ISM_w(S_1,S_2) = \text{Lesk similarity}(S_1,S_2) \)

• Confusion threshold CT for \(w \):
 \[
 CT_w = \mu ISM_w + \sigma ISM_w
 \]

• Only partial correlation (for adjectives \(\varrho = 0.73 \), but very few datapoints; overall correlation: \(\varrho = 0.59 \))
ISMs Round 2 Words

Word-POS	Pairs of Senses	Alpha	% > CT
LONG-J	36	0.67	0.17
FAIR-J	45	0.54	0.18
QUIET-J	15	0.49	0.20
TIME-N	45	0.68	0.11
WORK-N	21	0.62	0.14
LAND-N	54	0.49	0.07
SHOW-V	28	0.46	0.07
TELL-V	66	0.46	0.12
KNOW-V	55	0.37	0.18
SAY-V	55	0.37	0.09
Association Rules

• Association rules express relations among instances in a dataset, based on their attributes (Agrawal et al. 1993; Borgelt’s Apriori)

• An association rule is an expression C1 → C2, where C1 and C2 express conditions on features describing the instances

Measuring strength of association rules:

• Supp(C) is the fraction of instances satisfying C
• Supp(C1 → C2) = Supp(C1)
• Conf(C1 → C2) = Supp(C1 ∧ C2)/Supp(C1)
Association Rules: Annotators & Senses

- The word sense data is a 3D matrix of instances, annotators, senses
- Flatten the data to a 2D form with Annotator_SenseLabel as an attribute
- Mine association rules among annotators’ choices of senses
- Mining agreement on ‘time’ (IA=0.68): strongest rules for sense 3
 - 101.S3 → 105.S3 with 36% supp. and 77.8% conf.
 - 105.S3 → 101.S3 with 34% supp. and 82.4% conf.
Long (IA=0.67)

\(\text{Ann}_i.S_j\)	\(\text{Ann}_m.S_n\)	Supp	Conf
Long	Long		
102.Coll	108.S1	60.0	55.0
108.S2	102.Coll	37.0	89.2

• If 102 assigns a collocation, 108 assigns sense 1 primarily temporal sense; being or indicating a relatively great or greater than average duration or passage of time or a duration as specified: "a long life"; "a long boring speech"; . . .

• If 108 assigns sense 2, 102 assigns a collocation primarily spatial sense; of relatively great or greater than average spatial extension or extension as specified: "a long road"; "a long distance"
Fair (IA=0.54)

$Ann_i.S_j \rightarrow$	$Ann_m.S_n$	Supp	Conf
	Fair		
107.S2	102.S1	56.0	28.6
102.S1	107.S2	31.0	51.6

- If 107 assigns sense 2, 102 assigns sense 1
- If 102 assigns sense 1, 107 assigns sense 2

Sense 1: Free from favoritism or self-interest or bias or deception; conforming with established standards or rules: "a fair referee"; "fair deal"; "on a fair footing"; "a fair fight"; "by fair means or foul"

Sense 2: Not excessive or extreme: "a fairish income"; "reasonable prices"
Quiet (IA=0.49)

Ann\textsubscript{i}.S\textsubscript{j}	Ann\textsubscript{m}.S\textsubscript{n}	Supp	Conf
107.S3	103.S1	58.0	34.5
103.S1	107.S3	36.0	55.6

- If 107 assigns sense 3, 103 assigns sense 1
- If 103 assigns sense 1, 107 assigns sense 3

Sense 1: characterized by an absence or near absence of agitation or activity: "a quiet life"; "a quiet throng of onlookers"; "quiet peace-loving people"; "the factions remained quiet for almost 10 years"

Sense 3: not showy or obtrusive: "clothes in quiet good taste"
Conclusions and Future Work

• Good agreement among annotators on word senses can be achieved for polysemous words

• Two annotators may be insufficient

• Disagreements can include systematic patterns of difference due to, e.g., subjectivity in meaning

• Future work:
 – Measurement (LAW IV)
 • Drop outliers (e.g., 102 for “long”)
 • Identify confusable senses
 • Identify systematic differences among subsets of annotators
 • Compare trained and a larger number of untrained annotators
 – Allow annotators to assign multiple senses