Title
Enhanced antigen presentation in the absence of the invariant chain endosomal localization signal.

Permalink
https://escholarship.org/uc/item/9427r2bb

Journal
The Journal of experimental medicine, 178(6)

ISSN
0022-1007

Authors
Anderson, MS
Swier, K
Arneson, L
et al.

Publication Date
1993-12-01

DOI
10.1084/jem.178.6.1959

Peer reviewed
Enhanced Antigen Presentation in the Absence of the Invariant Chain Endosomal Localization Signal

By Mark S. Anderson,* Kevin Swier,† Lynne Arneson,‡ and Jim Miller*†

From the *Committee on Immunology and the †Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637

Summary

The cytosolic tail of the major histocompatibility complex class II-associated invariant chain (Ii) molecule is thought to contain the endosomal localization signal that directs and/or retains newly synthesized class II within the endosomal antigen processing compartment. To determine the role of this signal in class II transport and antigen presentation we have generated class II–positive L cell transfectants that coexpress wild type or truncated forms of Ii. Deletion of the endosomal localization signal from Ii results in rapid transport of class II–Ii complexes to the cell surface. Once at the cell surface, the complex is efficiently internalized, Ii is degraded, and class II free of Ii is recycled back to the plasma membrane. Interestingly, the truncated form of Ii is still able to increase the efficiency of antigen presentation to T cells. These data suggest that the ability of Ii to enhance antigen presentation is not limited to Golgi apparatus–endosomal sorting and raise the possibility that endocytosed class II can form immunogenic complexes with newly processed antigen.

During biosynthesis, MHC class II molecules are associated intracellularly with a glycoprotein called invariant chain (Ii). This association occurs soon after translation of the α and β chains of the class II heterodimer in the rough endoplasmic reticulum (ER) and the complex remains intact throughout Golgi apparatus transport. In a post-Golgi apparatus compartment, possibly in the same endosomal compartment where antigen is degraded, Ii dissociates from class II in a protease-dependent fashion, and the majority of class II appears at the cell surface free of Ii (1, 2). Recently, several functions have been ascribed to Ii that might affect the generation of class II–peptide complexes. Ii has been shown to interfere with peptide–class II association (3–5) and to facilitate class II folding and egress from the ER (6–10), suggesting that Ii may act as a surrogate peptide in the ER to allow proper class II folding and to prevent class II from loading with peptide early in biosynthesis. In addition, Ii has been implicated in localizing class II into endosomal compartments that are thought to be the sites for exogenous antigen processing (11–14). This endosomal localization signal resides within the cytosolic domain of Ii (11, 12). When wild type Ii is expressed in the absence of class II, it is retained intracellularly, apparently localized in the ER and in peripheral vesicles. Truncation of the cytosolic NH₂ terminus eliminates the steady state endosomal localization of Ii and results in the transport of Ii to the cell surface.

These results demonstrate that Ii can have profound effects on class II folding and transport and predict that association with Ii could increase the opportunity for class II to associate with peptides generated in endosomal compartments. It has been shown to increase the efficiency of antigen presentation, but for only a subset of antigens (15, 16). Although the characteristics of protein antigens that determine Ii dependence are not known, the ability of class II to present some antigens in the absence of Ii suggests that class II can gain access to endosomal compartments independently of Ii. Class II could enter endosomes either by direct transport from the trans-Golgi network (Chervonsky, A., and A. J. Sant, personal communication) or after internalization of class II from the plasma membrane (17–19). In most cases the ability of Ii to enhance antigen presentation is restricted to the alternatively spliced Ii gene product, p41 (16). The p41 form of Ii differs from p31 by the inclusion of an additional exon that encodes a 64–amino acid segment near the COOH terminus of Ii (20). The p41 form of Ii is able to impart the same folding (16) and peptide blocking functions as does p31 (Anderson, M. S., and J. Miller, manuscript in preparation). Because p31 and p41 only differ in the luminal domain, both proteins contain the same endosomal localization signal located in the cytosolic tail. Nevertheless, efficient antigen presentation often requires association of class II with p41 (16).

As a first step in dissecting the mechanism by which p41

1 Abbreviation used in this paper: ER, endoplasmic reticulum.
can facilitate antigen presentation, we have tested whether the endosomal localization signal in the cytosolic tail of Ii is required. We find that deletion of the cytosolic tail of Ii does not eliminate the ability of p41 to enhance antigen presentation. Biochemical analyses of class II associated with truncated Ii demonstrate that this complex is rapidly transported to the cell surface and then slowly internalized, allowing for Ii dissociation and class II–peptide loading. These data establish a pathway for class II recycling and raise the possibility that class II may access intracellular peptide loading compartments after internalization from the cell surface.

Materials and Methods

Oligonucleotide-directed Mutagenesis. A DNA fragment encoding the amino terminus of Ii with amino acids 2–17 deleted was generated by PCR using a mutagenic 24-base oligonucleotide containing the 5′ untranslated region and the translation initiation codon spliced directly to codons for residues 18–21 of murine Ii and a 18-base oligonucleotide corresponding to residues 81–86. The PCR product was subcloned into murine p31 and p41 cDNA clones to generate pCEXV-A2-17p31 and pCEXV-A2-17p41 and the constructs were confirmed by dideoxynucleotide sequencing.

Results

\[\text{Deletion of the Endosomal Localization Signal from the Cytosolic Tail of Ii Results in Expression of Class II-Ii Complexes at the Cell Surface.}\]

Recent studies have indicated that localization and retention of class II within a post-GoGi apparatus, endosomal compartment is enhanced by association with Ii (13, 14, 35). This endosomal localization signal within Ii is thought to reside within the cytosolic tail of Ii, between amino acids 11 and 15 (11, 12). To investigate the importance of this region of Ii on class II transport and antigen presentation, I-A^k- and I-A^d-positive Ltk^-transfectants expressing Ii deleted of amino acids 2–17 (Δ2-17; see Fig. 1) were generated. Cells transfected with the truncated form of Ii express significant levels of Ii at the cell surface while cells expressing wild type Ii do not (Table 1).

To determine whether Δ2-17 p41 is expressed at the cell surface in association with class II, transfectedants expressing wild type and truncated Ii were cell surface radiolabeled, lysed, and class II and Ii were immunoprecipitated (Fig. 2). In cells transfected with the truncated form of Ii, class II was coprecipitated with the Ii-specific mAb and Δ2-17 p41 was coprecipi-
The NH₂-terminal deletion construct of Ii. Murine Ii exists as two distinct forms, p31 and p41, that differ by the inclusion in p41 of a 64-amino acid segment (hatched bar) encoded by an alternately spliced exon (20). Both p31 and p41 are transmembrane glycoproteins oriented such that the NH₂ terminus resides in the cytosol. The sequence of the wild type and NH₂-terminal deletion construct (Δ2-17) of p31 and p41 Ii is shown at the bottom. The Δ2-17 construct is missing the critical amino acid residues between 11 and 15 that are necessary for endosomal localization of Ii (11, 12). Note that the endosomal localization signal and the p41-specific segment required for efficient antigen presentation are located on opposite sides of the membrane.

Table 1. Truncation of Cytosolic Tail of Ii Results in Cell Surface Expression of Ii

Cell line	GaM	P4H5	10.2.16
LAK	5	5	618
LAK p41	4	6	570
LAK Δ2-17 p41	8	140	437

Cell line	GaM	P4H5	MKD6
LAD	4	5	446
LAD gli	5	6	594
LAD p31	5	6	376
LAD p41	6	6	392
LAD Δ2-17 p31	5	68	437
LAD Δ2-17 p41	5	62	376

Li-negative, class II-positive Ltk- transfectants expressing I-A¹ (LAK) or I-A² (LAD) were retransfected with a genomic clone of Ii (gli) that expresses both p31 and p41, or with cDNA clones expressing either wild type (p31 or p41) or truncated (Δ2-17 p31 or Δ2-17 p41) Ii. The cloned transfectants were stained with P4H5 (anti-li), MKD6 (anti-I-A¹), or 10.2.16 (anti-I-A²) followed by FITC-coupled goat anti-mouse IgG (GaM) and analyzed by flow cytometry. Background staining was determined by staining with the GaM reagent alone. Numbers indicate the mean fluorescence intensity for each antibody.

Surface Expression of Ii

Reciprocal preclear experiments (Fig. 3) indicate that although the vast majority of cell surface Δ2-17 p41 is associated with class II, ~30–45% of the total class II at the cell surface was free of Ii. This population of li-free class II was not derived from cells that have turned off Δ2-17 li expression because flow cytometry analysis (summarized in Table 1) indicates that these transfectants are quite uniform in their expression of Δ2-17 li. Although we cannot exclude the possibility that some class II molecules have not associated with li during biosynthesis, pulse chase analyses (see next section) argue against this accounting for such a large percentage of li-free class II at the cell surface. These analyses indicate that a sizable population of cell surface class II has dissociated from li in cells expressing Δ2-17 p41.
Only a subpopulation of class II expressed at the cell surface is associated with Δ2-17 p41. L cell transfectants expressing I-A^k plus Δ2-17 p41 Ii were surface labeled with ^125I. Ii-free class II complexes were detected by pre-clearing lysates with α-IiC followed by immunoprecipitation with the class II-specific sera (889). Class II-free Ii complexes were detected by pre-clearing lysates with 889 followed by immunoprecipitation with the Ii-specific sera (α-HC). To determine total class II or Ii, lysates were pre-cleared with a cocktail of anti-class I mAb and preimmune rabbit sera (NRS) followed by immunoprecipitation with the class II-specific or with the Ii-specific antibodies. The final pre-clear from each set was run in lanes 1, 3, 5, and 7. Class II α and β chains, Δ2-17 p41 Ii, and the p55 protein that coprecipitates with class II are indicated on the right. NS is a non-specific protein that precipitates with the rabbit α-IiC antisera, but not with the mAb α-IiC (see Fig. 4).

I-A^k that is free of Ii at the cell surface appears to associate with a 55-kD protein (p55). In the pre-clear experiments (Fig. 3) none of the p55 associated with class II is seen in the anti-Ii precipitate and all of it remains associated with the Ii-free class II. Although p55 is readily detected in cell surface-labeled cells expressing no Ii (data not shown), wild type Ii, or truncated (Fig. 2), it is not seen in biosynthetically labeled cells (see Fig. 6, below). This could indicate that p55 is derived from an extracellular source (i.e., serum), that p55 is synthesized at a slow rate, or that p55 is associated with a very small percentage of class II, but is extremely sensitive to cell surface labeling. Although the origin of p55 and the nature of p55 association with I-A^k are not known, several observations suggest that the interaction is specific. Association of p55 with class II is allele dependent; p55 is coprecipitated with I-A^k, but not I-A^d using several class II-specific antibodies, including one antisera that cross-reacts with I-A^k and I-A^d (Figs. 2 and 3). Immunoprecipitates of I-A^k from both L cell and EL4 cell transfectants contain p55 indicating that p55–I-A^k association is not cell type specific (data not shown). Finally, p55 does not coprecipitate with class I (see Fig. 6, below) or with transferrin receptor (data not shown).

Dissociation of Class II from Both Wild Type p41 and Δ2-17 p41 Involves Proteolytic Cleavage of Ii. The pool of Ii-free class II at the cell surface raises the possibility that even in the absence of the endosomal localization signal, class II–Ii dissociation can still occur. To determine where during class II biosynthesis Ii dissociation might take place, pulse–chase analysis of LAK, LAK-p41, and LAK-Δ2-17 p41 was performed (Fig. 4). Both wild type and truncated forms of Ii associate with class II early in biosynthesis. The difference in apparent molecular weight between the two forms of Ii appropriately reflects the size of the deletion. Based on the relative amount of Ii coprecipitating with anti-class II reagents, it appears that most, if not all, class II has associated with Ii early in
biosynthesis. Class II associated with the truncated form of p41 matures from the ER through the Golgi apparatus at a similar rate to class II associated with wild type p41 and fully processed forms of class II and Ii appear at the 1-h chase point. The majority of wild type p41 dissociates from class II shortly after mature glycosylated forms appear at the 1-2-h chase points. In contrast, Δ2-17 p41 remains associated with class II for an extended time and significant dissociation of Δ2-17 p41 from class II does not occur until 8 h. Thus, class II does completely dissociate from both wild type and Δ2-17 p41, although the process is considerably delayed in cells expressing the truncated form.

In normal cells, class II–Ii dissociation requires proteolytic cleavage of Ii, a multi-step process that allows for the isolation of intermediate cleavage products in association with class II (1, 37, 38). These fragments are readily detected in L cell transfectants (asterisk in Fig. 4) without the addition of protease inhibitors. We are confident that these fragments represent Ii degradation products because they are not present in Ii-negative transfectants (Fig. 4) and similar sized fragments are detected on Western blots with In1, a monoclonal antibody that is specific for the cytosolic, NH2 terminus of Ii (see 16). Furthermore, these fragments appear concomitantly with the loss of the intact p41 protein (Fig. 4). The turnover of Ii in the wild type transfectant is similar to that described previously (39) and indicates that class II has gained access to a late proteolytic compartment that results in the cleavage of Ii from class II (1, 37, 38). Dissociation of class II from the truncated Ii also appears to be proteolytic, as visualization of Ii subfragments associated with class II coincides with Ii dissociation (double asterisk in Fig. 4). The difference in apparent molecular weight of the Ii subfragments derived from wild type and Δ2-17 p41 Ii reflects the predicted size of the deletion, suggesting that the subfragments derived from Δ2-17 p41 are also derived from the NH2 terminus of Ii. Because deletion of amino acids 2–17 eliminates the In1 epitope, we cannot directly test this possibility. Taken together, these data indicate that removal of the cytosolic tail of Ii delays class II–Ii dissociation, but that dissociation still occurs by cleavage of Ii while it is associated with class II.

Class II Associated with Δ2-17 p41 Ii Is Rapidly Transported from the trans-Golgi Apparatus to the Cell Surface. Post-Golgi apparatus transport of class II to the cell surface is delayed compared with other integral membrane proteins. During this delay class II is retained in an Ii-dependent manner in a cellular compartment that has access to endocytosed material (13, 14, 40, 41). Release of class II from endosomes to the cell surface requires proteolysis of Ii (35, 42). To determine whether class II associated with the truncated form of Ii was also delayed in transport to the cell surface, we took advantage of the sensitivity of Ii to various proteases, including trypsin. Pulse-chase labeled LAK-Δ2-17 p41 cells were treated with and without trypsin at 4°C before solubilization and labeled. Pulse-chase labeled LAK-Δ2-17 p41 cells were treated with and without trypsin at 4°C before solubilization and lysates were precipitated with anti-class II antibodies. Sensitivity of Ii to trypsin treatment of intact cells indicates arrival of the class II–Ii complex at the cell surface.

As can be seen in Fig. 5, mature glycosylated forms of α, β, and Δ2-17 p41 are first seen by 30 min of chase, and complete conversion of immature to mature proteins takes place over the next several hours (t1/2 ≈50 min). This slow maturation of class II–Ii complexes reflects variation in the efficiency of egress from the ER. Class II–Δ2-17 p41 complexes are
detected at the cell surface within 60 min, and by 3 h the vast majority of class II–Δ2-17 p41 complexes have arrived at the cell surface (t1/2 ≈70 min). These data indicate that once glycosylation is complete in the Golgi apparatus, class II associated with Ii lacking the cytosolic tail is rapidly transported to the cell surface (t1/2 Golgi apparatus to plasma membrane ≈20 min). This is in marked contrast to L cell transfectants expressing wild type Ii, where transport of class II from the Golgi apparatus to the cell surface is delayed for ~4–6 hours (Fineschi, B., and J. Miller, manuscript in preparation).

Analysis of the kinetics of class II transport and Ii dissociation indicates that detectable loss of Δ2-17 p41 from the anti-class II precipitates and the appearance of Ii subfragments occur only after class II–Ii complexes appear at the cell surface. These data suggest that while wild type Ii is degraded in a post-Golgi network compartment before insertion of class II into the plasma membrane, Δ2-17 p41 is degraded slowly over time and this process does not begin until after the class II–Ii complex has been transported to the plasma membrane.

Internalization of Class II from the Cell Surface. The finding that in the Δ2-17 p41 transfectants Ii degradation occurs only after the class II–Ii complex has reached the cell surface suggests that this degradation occurs after internalization of the class II–Ii complex into an endosomal compartment. To measure class II internalization directly, cells were labeled with a reducible biotinylation reagent at 4°C, plasma membrane proteins were allowed to internalize at 37°C for 60 min, and endocytosed class II molecules were identified by protection from reduction by glutathione at 4°C. Significant internalization of class II, but not class I, molecules was observed (Fig. 6). Class II associated with both Δ2-17 p41 and with p55 were internalized at similar levels. Because class II only associates with p55 after it has dissociated from Ii (see Fig. 3, above), these results indicate that internalization of class II from the cell surface is not dependent on association with Δ2-17 p41. An endocytic rate constant of 0.52%/min was calculated for class II–Δ2-17 p41 complexes by kinetic analysis of internalization (Fig. 7). Assuming first order kinetics, it would take ~130 min to internalize 50% of the cell surface class II–Δ2-17 p41 complexes. As the half-life of mature Δ2-17 p41 is about 190 min, it would appear that this internalization rate can account for the slow degradation of Δ2-17 p41.

Taken together the biochemical analysis of class II transport in cells expressing Δ2-17 p41 suggests that deletion of the endosomal localization signal of Ii allows for the rapid transport of the class II–Ii complex to the plasma membrane. Once at the cell surface, the class II–Δ2-17 p41 complex is internalized over time, allowing access to the endosomal compartment, where Ii is degraded. Based on the significantly longer half-life of class II than Ii in Δ2-17 p41–positive cells (the half-life for class II degradation from biosynthesis is ~15 h and for Δ2-17 p41 is ~4 h), Ii-free class II likely recycles to the plasma membrane. This recycled population could account for the sizable fraction of Ii-free class II at the cell surface seen in Fig. 3.

Figure 7. Class II–Δ2-17 p41 complexes are internalized slowly. L cell transfectants expressing I-Ak plus Δ2-17 p41 Ii were biotinylated with NHS-SS-biotin at 0°C and then either left at 0°C or incubated for 5, 15, 30, or 60 min at 37°C. Parallel plates of cells were then incubated at 0°C with or without glutathione to reduce biotin from the cell surface. Class I (16.1.11N) and class II (10.2.16) immunoprecipitates were electrophoresed on SDS/PAGE, transferred to nitrocellulose, and biotinylated molecules were detected with 125I-avidin. Biotinylated cell surface molecules that were internalized during the 60-min incubation at 37°C are protected from reduction by glutathione treatment at 0°C and remain detectable by 125I-avidin binding. The position of class I heavy chain (Kk) and light chain (β2m) are indicated on the left and the position of class II α and β chains, Δ2-17 p41 Ii, and p55 are indicated on the right.

Truncated p41 Ii Can Still Enhance Class II–restricted Antigen Presentation. Recently, Ii has been shown to facilitate presentation of only some antigens (15, 16) and this function is mostly restricted to the alternatively spliced p41 form of Ii (16). To determine if the endosomal localization signal in the cytosolic tail of Ii is critical for the ability of p41 to facilitate antigen presentation, cells expressing no Ii, wild type p41, or truncated p41 were assayed for presentation of Ii-
dependent and li-independent antigens to I-Ak-restricted T cells (Fig. 8, A–C). The T cell hybridoma TS12 is insensitive to enhancement of antigen presentation by wild type li, as both wild type li-positive transfectants and li-negative transfectants present RNase at equivalent levels to TS12 (Fig. 8 A). The Δ2-17 p41 li transfectant also presents RNase at equivalent levels to these cells, suggesting that this mutation has no apparent effect on the ability of these cells to process and present native RNase to TS12. Antigen presentation to the T cell hybridomas, 3A9 and SKK45.10, is enhanced by p41 li, as the coexpression of p41 li dramatically increases the efficiency of antigen presentation over the li-negative transfectant (Fig. 8, B and C). Interestingly, the Δ2-17 p41 li transfectant is able to present native hen egg lysozyme and KLH at levels equivalent to wild type p41 transfectants (Fig. 8, B and C). These results demonstrate that the p41 form of li can enhance antigen presentation independently of the endosomal localization signal located in the cytosolic tail.

When we extended these analyses to I-Ak-restricted T cells, we found that Δ2-17 p41 inhibited antigen presentation of the li-independent epitope recognized by 3DO54.8 T cells (Fig. 8 D). Similarly, a truncated form of p31 li, Δ2-17 p31, can inhibit antigen presentation to the I-Ak-restricted T cells (Fig. 8, D and G), but not to the I-Ak-restricted T cells (data not shown). Thus, Δ2-17 p31 and Δ2-17 p41 have a generalized ability to inhibit antigen presentation to I-Ak-restricted, but not I-Ak-restricted, T cells that could reflect the antigens used or the specific T cells tested. Alternatively, these differences may reflect allelic control of the avidity of li-binding or internalization rates of class II-li complexes. When we tested the ability of Δ2-17 p41 to enhance antigen presentation of OVA to 3DO-18.3, in some (2/6) experiments Δ2-17 p41 li was able to enhance OVA presentation as well as wild type p41 (Fig. 8 E), however, in most (4/6) experiments, the truncated p41 was less efficient than wild type (Fig. 8 F). These results suggest that Δ2-17 p41 can enhance antigen presentation to I-Ak-restricted T cells, but that this effect may be masked by the ability of Δ2-17 li to inhibit antigen presentation, as seen for 3DO-54.8 cells. In fact, direct comparison of Δ2-17 p41 and Δ2-17 p31-positive shows a similar magnitude of p41-dependent enhancement of antigen presentation to I-Ak-restricted 3DO-18.3 T cells as does comparison of wild type p41- and p31-positive cells (Fig. 8 G). Because the inhibitory effect was not seen with the I-Ak-restricted T cells, Δ2-17 p41 li consistently was able to enhance antigen presentation at levels equivalent to wild type p41. Taken together, these results indicate that the cytosolic tail of p41 is not required for enhanced antigen presentation to class II-restricted T cells.

![Figure 8](image)

Figure 8. The endosomal localization signal is not required for p41-dependent enhancement of antigen presentation. L cell transfectants expressing I-Ak (A–C) or I-Ad (D–G) without li (open circles), with genomic li (filled circles), with wild type p41 (filled triangles), with Δ2-17 p41 (open triangles), with wild type p31 (filled squares), or with Δ2-17 p31 (open squares) were assayed for their ability to present various doses of antigen to class II-restricted T cell hybridomas. Data represent the incorporation of [3H]thymidine (cpm x 10^3) by the IL-2-dependent T cell line, CTLL, when cultured in the presence of 25% culture supernatant from the antigen presentation assays. Wild type and truncated forms of p41 are indistinguishable in antigen presentation of both li independent (A) and p41-facilitated (B and C) antigens to I-Ak-restricted T cells. Although Δ2-17 p41 can facilitate I-Ak-restricted antigen presentation as well as wild type p41 in some experiments (2/6, E), in other cases (4/6) this enhancement is diminished (F). This correlates with the ability of both Δ2-17 p31 and Δ2-17 p41-positive transfectants to inhibit presentation of li-independent epitopes to I-Ak-restricted T cells (D) and Δ2-17 p31 to inhibit presentation of li-dependent epitopes to I-Ak-restricted T cells.

(G). The p41-dependent enhancement of antigen presentation is equivalent whether p41 is expressed as 10% of total li from alternative splicing of a genomic li construct or as 100% of total li from a p41 cDNA expression vector (F) (16). RNase, bovine ribonuclease; HEL, hen egg lysozyme; KLH, keyhole limpet hemocyanin; OVA, chicken ovalbumin.
Discussion

In the present study we have examined the role of the endosomal localization signal located in the cytosolic tail of Ii in class II transport and antigen presentation. We found that deletion of amino acids 2-17 from the cytosolic tail of p41 Ii dramatically altered the intracellular transport of class II-Ii complexes. Class II that is associated with wild type Ii exits the trans-Golgi apparatus and is transported to and retained for several hours within an endosomal compartment. Within this compartment Ii is degraded and class II is released to the cell surface. It is during passage through this proteolytic compartment that newly synthesized class II en route to the cell surface is thought to associate with antigenic peptides. Truncation of the Ii cytosolic tail results in the rapid transport of class II-Ii complexes from the trans-Golgi apparatus to the cell surface. Once at the cell surface the complex is internalized over time, Ii is degraded, and class II recycles to the plasma membrane. Surprisingly, altering the pathway of class II transport in this manner had little effect on the ability of p41 Ii to enhance antigen presentation. Thus, p41-dependent enhancement of antigen presentation does not require the endosomal localization signal encoded in the cytosolic tail of Ii.

Our biochemical data suggest that, when associated with Δ2-17 p41, class II intersects the endosomal antigen processing compartments after internalization from the cell surface. The transport rate to the cell surface of class II associated with truncated Ii is extremely rapid compared with class II associated with wild type Ii (41). Thus, in the absence of the Ii-encoded endosomal localization signal class II is either not sorted to or is not retained in the endosomal compartment during transport to the cell surface. Dissociation of both wild type and truncated p41 appears to occur by similar proteolytic events. However, the kinetics of Ii dissociation and of the appearance of class II-associated Ii proteolytic fragments is delayed in Δ2-17 p41-positive cell lines, and significant Ii dissociation occurs only after the class II-Δ2-17 p41 complex has arrived at the plasma membrane. These data suggest that Δ2-17 Ii gains access to endosomes via an internalization pathway from the cell surface which then results in the cleavage and turnover of the Δ2-17 Ii molecule. This was substantiated by a direct measure of class II internalization. Finally, the half-life of class II is much longer than that of Δ2-17 p41, arguing that the internalized class II returns to the cell surface after Δ2-17 Ii is degraded. The detection of a large population of steady state class II that is free of Ii at the cell surface supports this observation. Taken together, these analyses of the effects of Δ2-17 p41 on class II transport reveal a pathway of plasma membrane recycling for class II molecules.

Demonstration of class II internalization and recycling has been a controversial issue. Although some early studies were able to document internalization of class II (17-19), most of these studies relied on the use of antibodies to tag cell surface class II molecules, and it has been difficult to control for the possibility that antibody-binding modulates class II internalization. In several cases where ligand-independent internalization has been measured, little or no internalization has been detected (41, 43, 44). However, Reid and Watts (45) have shown that class II endocytosis and recycling can occur in B cells, but the cycling time is extremely rapid (2-3 min) and an appreciable pool of internalized class II was not evident without the use of primaquine to neutralize endosomal compartments. In contrast, the L cell transfectants analyzed in the present study internalize class II more slowly and an appreciable pool of intracellular class II (10-20% of total) can be accumulated after internalization from the cell surface.

There is accumulating data showing that the majority of class II-peptide complexes at the cell surface are derived from newly synthesized class II binding peptides en route to the cell surface. The sensitivity of antigen presentation to protein synthesis inhibitors and brefeldin A (46, 47) implicates a role for newly synthesized class II. However, the lack of specificity of these reagents and the recent observation that brefeldin A can affect endocytosis (48, 49) raise the possibility that these drugs inhibit antigen presentation by modifying cellular functions other than class II biosynthesis. More recently, the observation that the ability of Langerhans cells to process and present antigen correlates with a transient induction of class II biosynthesis (50) and the ability of Ii to enhance presentation of some antigens (15, 16) argue that newly synthesized class II may be the principle component for antigen presentation. This hypothesis has been confirmed by biochemical analyses of class II-peptide association. Newly synthesized class II has been shown to form SDS-stable conformations, indicative of peptide association, while en route to the cell surface (42, 51). This process can be driven by both fluid phase uptake of antigen (51) and internalization of antigen through the immunoglobulin receptor on antigen-specific B cells (44). These data are consistent with a predominant role of de novo synthesized class II in antigen presentation.

The relative role of plasma membrane recycled class II in antigen presentation has been more controversial. One of the strongest arguments for a recycling pathway has been that the half-life of peptide-class II complexes is relatively short compared with the half-life of class II molecules (52, 53). This rapid turnover of peptide-class II complexes in living cells may allow for peptide exchange and reutilization of class II (54). In light of this possibility, dissociation of peptide-class II complexes appears to occur within an acidic compartment that might represent the peptide loading, endosomal compartment (53). In contrast, in EBV-transformed human B cells class II-peptide complexes are extremely stable and their turnover rate is similar to total class II, suggesting that in these cells there is no opportunity for peptide exchange (55). One possible explanation for the apparent disagreement as to whether class II can be recycled and whether this recycling component is functionally relevant is that this process may vary between cell types. Consistent with this possibility, little, if any, class II internalization has been detected in EBV-transformed human B cell lines (41, 43, 44), similar to those that express extremely stable class II-peptide complexes (55). In addition, expression of class II with Ii containing a cyto-
solic tail deletion in the human fibroblast cell line, M1, results in very stable expression of the class II–Ii complex at the cell surface and the vast majority of class II remains associated with Ii (5). This is in contrast to our finding in L cell transfectants that 30–45% of cell surface class II has dissociated from Ii. This may reflect differences in the ability of these cell types to internalize class II, allowing for endosomal degradation of Ii. In this report, we show that in the presence of Ii, endocytosed class II can enter the proper endocytic compartments for antigen binding. Although we know that Ii-free class II can still be internalized, it remains to be determined whether this pool of recycling Ii-free class II is capable of accessing antigenic peptides and whether this pathway exists in conventional antigen-presenting cells.

Previous studies from our laboratory have indicated that the p31 form of Ii, which contains a wild type endosomal localization signal, is not very effective at facilitating antigen presentation compared to Ii-negative cells (16). This observation along with the present study suggest that for some antigens the endosomal localization signal in the cytosolic tail of Ii is neither necessary nor sufficient to enhance antigen presentation. However, it is possible that under some circumstances, the ability of the endosomal localization signal to increase the relative concentration of class II in endosomes may be important for effective antigen presentation. For example, in cells that express low levels of class II or in B cells that internalize a bolus of antigen in a short time, the amount of class II available for peptide binding in endosomes may be the limiting factor during antigen presentation. In contrast, our L cell transfectants express high levels of class II and continuously internalize antigen by fluid phase uptake throughout the course of the antigen presentation assay. Under these conditions, the dwell time of class II within endosomal compartments may not be a critical factor in the efficiency of antigen presentation.

The results presented in this report suggest that the p41 form of Ii can facilitate antigen presentation regardless of the route that class II takes to the endosome. In wild type p41-positive cells the class II–Ii complex is sorted directly from the trans-Golgi apparatus to endosomes, where Ii is degraded and class II associates with peptide. Deletion of the endosomal localization signal in Ii results in the rapid transport of the class II–Δ2-17 p41 complex to the plasma membrane and Ii is degraded only after internalization of the complex. Thus, these data raise the possibility that, in addition to the conventional trans-Golgi apparatus to endosomal route, class II might form complexes with antigenic peptide when it enters the endosomal compartment after endocytosis from the cell surface.

We thank Andrea Sant for helpful discussions and for sharing unpublished data; Ted Steck for help with internalization and transport kinetics; and Beatrice Fineschi, Marisa Naujokas, and Mary Peterson for comments on the manuscript. Oligonucleotides, peptides, and flow cytometry were provided by the University of Chicago Cancer Center Core Facilities. Optical densitometry was performed on an Ambis system provided by the Ben May Institute.

M. S. Anderson was supported by Medical Scientist Training Program Grant (GM-07281), and K. Swier and L. Arneson by National Institutes of Health Training Grant (GM-07183). This work was supported by grants from the United States Public Health Service (GM-42071) and the Cancer Research Institute to J. Miller.

Address correspondence to Jim Miller, MGCB, University of Chicago, 920 E. 58th Street, Chicago, IL 60637.

Received for publication 23 March 1993 and in revised form 10 September 1993.

References

1. Blum, J., and P. Cresswell. 1988. Role for intracellular proteases in the processing and transport of class II HLA antigens. Proc. Natl. Acad. Sci. USA. 85:3975.
2. Koch, N., G. Moldenhauer, W. Hofmann, and P. Moller. 1991. Rapid intracellular pathway gives rise to cell surface expression of the MHC class II-associated invariant chain (CD74). J. Immunol. 147:2643.
3. Roche, P., and P. Cresswell. 1990. Invariant chain association with HLA-DR molecules inhibits immunogenic peptide binding. Nature (Lond.). 345:615.
4. Teyton, L., D. O'Sullivan, P. Dickson, V. Lotteau, A. Sette, P. Fink, and P. Peterson. 1990. Invariant chain distinguishes between the exogenous and endogenous antigen presentation pathways. Nature (Lond.). 348:39.
5. Roche, P., C. Teletski, D. Karp, V. Pinet, O. Bakke, and E. Long. 1992. Stable surface expression of invariant chain prevents peptide presentation by HLA-DR. EMBO (Eur. Mol. Biol. Organ.) J. 11:2841.
6. Layet, C., and R. Germain. 1991. Invariant chain promotes egress of poorly expressed, haplotype-mismatched class II major histocompatibility complex Aαβ dimers from the endoplasmic reticulum/cis-Golgi compartment. Proc. Natl. Acad. Sci. USA. 88:2346.
7. Schaiff, T., K. Hruska, C. Bono, S. Shuman, and B. Schwartz. 1991. Invariant chain influences post-translational processing of HLA-DR molecules. J. Immunol. 147:603.
12. Lotteau, V., L. Teyton, A. Peleraux, T. Nilsson, L. Karlsson, C. Benoist, and D. Mathis. 1993. Mice lacking the MHC class II-associated invariant chain. *Cell* 72:635.

10. Bikoff, E. K., L.-Y. Huang, V. Episkopou, J. van Meerwijk, R. N. Germain, and E. L. Robertson. 1993. Defective major histocompatibility complex class II assembly, transport, peptide acquisition, and CD4+ T cell selection in mice lacking invariant chain. *J. Exp. Med.* 177:1699.

11. Bakke, O., and D. Dobberstein. 1990. MHC class II-associated invariant chain contains a sorting signal for endosomal compartments. *Cell.* 63:707.

Lotteau, V., L. Teyton, A. Peleraux, T. Nilsson, L. Karlsson, S. Schmid, V. Quaranta, and P. Peterson. 1990. Intracellular transport of class II MHC molecules directed by invariant chain. *Nature (Lond.)*. 348:600.

12. Lotteau, V., L. Teyton, A. Peleraux, T. Nilsson, L. Karlsson, S. Schmid, V. Quaranta, and P. Peterson. 1990. Intracellular transport of class II MHC molecules directed by invariant chain. *Nature (Lond.)*. 348:600.

13. Lamb, C., J. Yewdell, J. Bennink, and P. Cresswell. 1991. Invariant chain targets HLA class II molecules to acidic endosomes containing internalized influenza virus. *Proc. Natl. Acad. Sci. USA.* 88:5988.

14. Romagnoli, P., C. Layet, J. Yewdell, O. Bakke, and R. N. Germain. 1993. Relationship between invariant chain expression and major histocompatibility complex class II transport into early and late endocytic compartments. *J. Exp. Med.* 177:583.

15. Nadimi, F., J. Moreno, F. Momburg, A. Heuser, S. Fuchs, L. Adorini, and G. Hammerling. 1991. Antigen presentation of hen egg lysozyme but not ribonuclease A is augmented by the MHC class II associated invariant chain. *Eur. J. Immunol.* 21:1255.

16. Peterson, M., and J. Miller. 1992. Antigen presentation enhanced by the alternatively spliced invariant chain gene product p41. *Nature (Lond.)*. 357:596.

17. Harding, C., and E. Unanue. 1989. Antigen processing and intracellular Ia: possible roles of endocytosis and protein synthesis in Ia function. *J. Immunol.* 142:12.

18. Machy, P., J. Bizozero, H. Reggio, and L. Leserman. 1990. Endocytosis and recycling of MHC encoded class II molecules by mouse B lymphocytes. *J. Immunol.* 145:1350.

19. Mehringer, J., and S. Cullen. 1990. Internalization of Ia molecules by antigen presenting cells is limited. *J. Immunol.* 145:2064.

20. Koch, N., W. Lauer, J. Habicht, and B. Dobberstein. 1987. Primary structure of the gene for the murine Ia associated invariant chains. *EMBO (Eur. Mol. Biol. Organ.)* J. 6:1677.

21. Oi, V., P. Jones, J. Goding, L. Herzenberg, and L. Herzenberg. 1978. Properties of monoclonal antibodies to mouse Ig allotypes, H-2, and Ia antigens. *Curr. Top. Microbiol. Immunol.* 81:115.

22. Kappeler, J.W., B. Scidmore, J. White, and P. Marrack. 1981. Antigen-inducible, H-2-restricted, interleukin-2 producing T cell hybridomas. Lack of independent antigen and H-2 recognition. *J. Exp. Med.* 153:1198.

23. Bhattacharya, A., M. Dorf, and T. Springer. 1981. A shared alloantigenic determinant on Ia antigens encoded by the I-A and I-E subregions: evidence for I region gene duplication. *J. Immunol.* 127:2488.

24. Mehringer, J., M. Harris, C. Kindle, D. McCourt, and S. Cullen. 1991. Characterization of fragments of the murine Ia-associated invariant chain. *J. Immunol.* 146:920.

25. Ozato, K., N. Mayer, and D. Sachs. 1980. Hybridoma cell lines secreting monoclonal antibodies to mouse H-2 and Ia antigens. *J. Immunol.* 124:533.

26. Sant, A. J., L. R. Hendrix, J. E. Coligan, W. L. MaLoy, and R. N. Germain. 1991. Defective intracellular transport as a common mechanism limiting expression of inappropriately paired class II major histocompatibility complex αβ chains. *J. Exp. Med.* 174:799.

27. Allen, P., D. Struyf, and E. Unanue. 1984. Processing of lysozyme by macrophages: identification of the determinant recognized by two T-cell hybridomas. *Proc. Natl. Acad. Sci. USA.* 81:2489.

28. Lorenz, R., A. Tyler, and P. Allen. 1988. T cell recognition of bovine ribonuclease. Self/non-self discrimination at the level of binding to the I-Aβ molecule. *J. Immunol.* 141:4124.

29. Haskins, K., C. Hannum, J. White, N. Roehm, R. Kubo, J. Kappler, and P. Marrack. 1984. The antigen-specific, major histocompatibility complex–restricted receptor on T cells. VI. An antibody to a receptor allotype. *J. Exp. Med.* 160:452.

30. Shimomonkevitz, R., J. Kappler, P. Marrack, and H. Grey. 1983. Antigen recognition by H-2 restricted T cells. I. Cell-free antigen processing. *J. Exp. Med.* 158:303.

31. Peterson, M., and J. Miller. 1990. Invariant chain influences the immunological recognition of MHC Class II molecules. *Nature (Lond.)*. 345:172.

32. Bretsch, M., and R. Lutter. 1988. A new method for detecting endocytosed proteins. *EMBO (Eur. Mol. Biol. Organ.)* J. 7:4087.

33. Carter, H., and I. Mellman. 1992. Transport of the lysosomal membrane glycoprotein Igpl20 (Igp-A) to lysosomes does not require appearance on the plasma membrane. *J. Cell Biol.* 117:311.

34. Sargiacomo, M., M. Lisanti, L. Graeve, A. Le Bivic, and E. Rodriguez-Boulan. 1989. Integral and peripheral protein composition of the apical and basolateral membrane domains in MDCK cells. *J. Membr. Biol.* 107:277.

35. Loss, G., and A. Sant. 1993. Invariant chain retains MHC class II molecules in the endocytic pathway. *J. Immunol.* 150:3187.

36. Sette, A., L. Adorini, S. Colon, S. Buas, and H. Grey. 1989. Capacity of intact proteins to bind to MHC class II molecules. *J. Immunol.* 143:1265.

37. Nguyen, Q., W. Knapp, and R. Humphreys. 1989. Inhibition by leupeptin and antipain of the intracellular proteolysis of II Human Immunol.* 24:153.

38. Pieters, J., H. Horstmann, O. Bakke, G. Griffths, and J. Lipp. 1991. Intracellular transport and localization of major histocompatibility complex class II molecules and associated invariant chain. *J. Cell Biol.* 115:1213.

39. Holt, G., S. Swiedler, J. Freed, and G. Hart. 1985. Murine Ia-associated invariant chain's processing to complex oligosaccharide forms and its disassociation from the I-Aβ complex. *J. Immunol.* 135:399.

40. Cresswell, P. 1985. Intracellular class II HLA antigens are accessible to transferrin-neuraminidase conjugates internalized by receptor-mediated endocytosis. *Proc. Natl. Acad. Sci. USA.* 82:8188.

41. Neefjes, J., V. Stollorz, P. Peters, H. Geuze, and H. Ploegh. 1990. The biosynthetic pathway of MHC class II but not class I molecules interacts the endocytic route. *Cell.* 61:171.

42. Neefjes, J., and H. Ploegh. 1992. Inhibition of endosomal proteolytic activity by leupeptin blocks surface expression of MHC Class II molecules and their conversion to SDS resistant αβ heterodimers in endosomes. *EMBO (Eur. Mol. Biol. Organ.)* J. 11:411.

43. Davis, J., and P. Cresswell. 1990. Lack of detectable endocytosis of B lymphocyte MHC class II antigens using an antibody.
independent technique. *J. Immunol.* 144:990.

44. Davidson, H., P. Reid, A. Lanzavecchia, and C. Watts. 1991. Processed antigen binds to newly synthesized MHC class II molecules in antigen-specific B lymphocytes. *Cell.* 67:105.

45. Reid, P., and C. Watts. 1990. Cycling of cell surface MHC glycoproteins through primaquine-sensitive intracellular compartments. *Nature (Lond.)* 346:655.

46. St. Pierre, Y., and T. Watts. 1990. MHC Class II-restricted presentation of native protein antigens by B cells is inhabitable by cyclohexamide and brefeldin A. *J. Immunol.* 145:812.

47. Adorini, L., S. Ullrich, E. Appella, and S. Fuchs. 1990. Inhibition by brefeldin A of presentation of exogenous antigens to MHC Class II-restricted T cells. *Nature (Lond.)* 346:63.

48. Wood, S., J. Park, and W. Brown. 1991. Brefeldin A causes a microtubule-mediated fusion of the Trans-Golgi Network and early endosomes. *Cell.* 67:591.

49. Lipponcott-Schwartz, J., L. Yuan, C. Tipper, M. Amherdt, L. Orci, and R. Klausner. 1991. Brefeldin A's effects on endosomes, lysosomes, and the TGN suggest a general mechanism for regulating organelle structure and membrane traffic. *Cell.* 67:601.

50. Puré, E., K. Inaba, M.T. Crowley, L. Tardelli, M.D. Witmer-Pack, G. Ruberti, G. Fathman, and R.M. Steinman. 1990. Antigen processing by epidermal Langerhans cells correlates with the level of biosynthesis of major histocompatibility complex class II molecules and expression of invariant chain. *J. Exp. Med.* 172:1459.

51. Germain, R., and L. Hendrix. 1991. MHC class II structure, occupancy and surface expression determined by post-endoplasmic reticulum antigen binding. *Nature (Lond.)* 353:134.

52. Harding, C., R. Roof, and E. Unanue. 1989. Turnover of Ia-peptide complexes facilitated in viable antigen-presenting cells: biosynthetic turnover of Ia vs. peptide exchange. *Proc. Natl. Acad. Sci. USA.* 86:4230.

53. Marsh, E.W., D.P. Dalke, and S.K. Pierce. 1992. Biochemical evidence for the rapid assembly and disassembly of processed antigen–major histocompatibility complex class II complexes in acidic vesicles of B cells. *J. Exp. Med.* 175:425.

54. Adorini, L., E. Appella, G. Doria, F. Cardinaux, and Z. Nagy. 1989. Competition for antigen presentation in living cells involves exchange of peptides bound by Class II MHC molecules. *Nature (Lond.)* 342:800.

55. Lanzavecchia, A., P. Reid, and C. Watts. 1992. Irreversible association of peptides with class II MHC molecules in living cells. *Nature (Lond.)* 357:249.