The Relationship of COVID-19 Morbidity and Mortality with the History of Influenza Vaccination

Mehran Seif-Farshad¹,², Mahasti Alizadeh³, Simin Khayatzadeh⁴, Fariba Heidari²,⁵*

Received: 21 Sep 2021 Published: 22 Oct 2022

Abstract

Background: COVID-19 is currently the leading global health issue. Low- and middle-income countries (LMICs) face challenges in supplying COVID-19 vaccines. To assess an adjunctive preventive measure for COVID-19 burden, we aimed to evaluate the relationship of influenza vaccination in the previous year with outcomes of COVID-19 in affirmed cases after adjustment for relevant factors.

Methods: This prospective study was conducted using the provincial registry of confirmed COVID-19 cases in East-Azerbaijan province in North-West of Iran. The main outcomes were COVID-19 mortality and hospitalization. The influenza vaccination history in 2019 was collected by phone calls. Data analysis was done by SPSS software version 16, separately for healthcare workers and the general population. The logistic regression model was applied to compare the covariates in influenza vaccinated versus unvaccinated patients.

Results: From 1 March to 10 October 2020, 17,213 positive COVID-19 cases were registered, of which 916 patients were included. A total of 88 patients (9.6%) deceased due to COVID-19. Two hundred subjects (21.8%) reported receiving the influenza vaccine during the past year. Healthcare workers had a significantly higher vaccination rate than the general population (28.9% vs. 7.1%; p<0.001). After adjustment for socioeconomic and health covariates, the vaccinated cases in the general population had 84% lower odds of death (OR: 0.16; 95%CI: 0.05-0.60; p=0.017). In multivariate analysis, the influenza vaccination history in the previous year was not significantly related to the lower COVID-19 hospitalization rate.

Conclusion: The flu vaccination rate was not optimal in our community. The flu vaccination can be an independent preventing factor for COVID-19 mortality in the general population. The influenza vaccine can be considered as an effective adjutant preventive countermeasure for the COVID-19 burden.

Keywords: COVID-19, Vaccines, Influenza, SARS-CoV-2, Mortality

Introduction

In December 2019, the emergence of COVID-19 (Coronavirus Disease 2019), a disease by a novel coronavirus termed SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), was detected in Wuhan, China, and has
spread out throughout the world (1). The COVID-19 pandemic is currently the leading global health issue due to high infectivity and mortality (2-4). By 20 September 2021, more than 228 million confirmed cases of COVID-19, including 4,679,099 deaths, were reported worldwide and are still increasing (5). COVID-19 cases vary in clinical presentation from asymptomatic to life-threatening lung injury (2), and mainly affect the elderly and patients with comorbidities, such as diabetes, obesity, cardiovascular, respiratory, renal, and lung diseases (1).

Currently, several vaccines against COVID-19 are developed, and mass vaccination is delivered in many countries. Up to 20 September 2021, globally 31.9% and 11.7% of the population are fully and partially vaccinated against COVID-19, respectively (5). In the USA, 54% of the population is fully vaccinated against COVID-19. However, according to the data from Iran’s ministry of health, by the same date, only 14.4 million people (16.9% of the population) were fully vaccinated with two doses of COVID-19 vaccines and 17 million subjects received only the first shot. In low- and middle-income countries (LMICs), the problems of vaccine shortage, fiscal limitations, vaccine acceptance issues, and implementation difficulties result in lower vaccination rates. On the other hand, the long-term efficacy of vaccines is not established. The emerging variants of SARS-CoV-2 with increased infectivity surge a new problem. Moreover, post-vaccination transmission and positive tests for COVID-19 have been reported (6). Therefore, other countermeasures are still recommended like behavioral interventions for source control and reducing the transmission chain including the use of masks, social distancing, and quarantine.

Some researchers assessed the alternate preventing factors for this pandemic, such as the existing vaccines to step up in controlling the pandemic (7). Many studies attempted to analyze the relationship of the influenza vaccine with COVID-19 severity, but most of them were of ecologic design and are exposed to ecologic fallacy (8-13). In three patient-level studies, the authors concluded that the influenza vaccination can reduce the risk of COVID-19 severity (14-16). However, Zein et al. reported that after controlling for possible confounding factors, the influenza vaccination was not significantly associated with lower admission or mortality of COVID-19 (17). Therefore, considering this inconsistency, and to evaluate a more available preventive strategy for COVID-19 burden, especially for LMICs, we aimed to evaluate the relationship of influenza vaccination in the previous year with outcomes of COVID-19 in affirmed cases after adjustment for confounding factors.

Methods

Study Setting and Design

This study was conducted in the East-Azerbaijan province in North-West of Iran. A prospective provincial offline registry was developed for all confirmed cases of COVID-19 from March 2020. All hospitals, clinics, primary care centers, and laboratories throughout the province were mandated to send daily reports of the cases who were diagnosed with COVID-19 to the registry leadership team. Cases from both healthcare workers and the general population were included in the registry. The diagnosis was made by Reverse transcription-polymerase chain reaction (RT-PCR) or chest CT scan indicating COVID-19 pneumonia to assure consistency. We performed a systematic random sampling method to include the cases from the registry list. For the cases whose contact information was missing, the next person on the list was included.

Data Collection

A trained interviewer made phone calls to ask about the influenza vaccination history in 2019 and the COVID-19 mortality and hospitalization. The information on mortality and admission was obtained from the patients or their relatives and was checked with the data of the registry. The subjects who died of causes unrelated to COVID-19 were excluded. The available influenza vaccines in this period were trivalent inactivated influenza vaccine (IIV3 or TIV) and quadrivalent inactivated influenza vaccine (IIV4 or QIV), which are routinely administered from August to November in Iran.

The educational level based on the Iranian educational system was adjusted to the International Standard Classification of Education 2011 (ISCED-2011), which is an updated framework for organizing information on education developed by the United Nations Educational, Scientific and Cultural Organization (UNESCO) (18). The level of education was categorized into 5 groups including illiterate (ISCED level 0); primary (ISCED level 1 & 2); secondary (ISCED level 3 & 4); tertiary (ISCED level 5 & 6); and Master’s or higher (ISCED level 7 & 8). The International Standard Classification of Occupations (ISCO), developed by the International Labor Organization, was used for grading occupations (19). The job state of the participants was grouped into 7 categories of unemployed/housewife; student; retired; manual worker (drivers, sellers, mechanics, farmers, etc.); clerical (including teachers, employees, and secretaries); technician (including nurses, health care workers, engineers, etc.); and professional (including physicians, managers, and faculty members). There were only 5 students among the participants that were excluded from job analyzes. Moreover, we assessed the BMI (body mass index), use of antibiotics during their symptomatic period, history of chronic diseases, using corticosteroids, and current smoking state.

Statistical Analysis

SPSS software version 16 was used for data analysis. To analyze the basic characteristics of flu vaccinated compared to the unvaccinated group, the chi-squared test was used for qualitative data and a t-test was done for quantitative variables. To compare the covariates in influenza vaccinated versus unvaccinated patients the logistic regression test was applied. The data for healthcare workers and the general population were analyzed separately to control the sampling bias. To mitigate the confounding bias, we used the multivariate logistic regression model. The significant variables in univariate analysis were entered into the multivariate model. The P-value <0.05 was considered
to be statistically significant.

Results

From 1 March to 10 October 2020, a total of 17,213 positive cases were registered throughout the East-Azerbaijan province. In total, 916 patients participated in this study, of which 620 (67.7%) and 296 (32.3%) cases were healthcare workers and the general population, respectively. A total of 88 patients (9.6%) deceased due to COVID-19. Participants were from 8 to 99 years old with a mean (standard deviation) of 44.4 (15.98) years. Among the study population, 365 patients (39.8%) were male, and 551 subjects (60.2%) were female. Two hundred subjects (21.8%) reported receiving the influenza vaccine during the past year.

The characteristics of the study participants are presented in Table 1. Healthcare workers had a significantly higher flu vaccination rate than the general population ($p<0.001$). The unvaccinated group was significantly older than the vaccinated subjects ($p=0.001$). The occupation and education levels were significantly higher in the vaccinated versus unvaccinated population.

The logistic regression analysis showed that after adjustment for socioeconomic and health covariates, the vaccinated patients in the general population had significantly lower odds of death ($p<0.017$) (Table 2). Age, hypertension, diabetes mellitus, and heart disease were independent predictors of COVID-19 mortality in the general population.

In univariate analysis, the influenza vaccination history in the previous year was significantly related to a lower hospitalization rate in affirmed COVID-19 cases in the general population. But this association was non-significant after controlling for other variables (Table 3). However, the patient’s education level was independently related to hospital admission.

After controlling the covariates, only patients’ age was significantly related to the COVID-19 mortality in healthcare workers (Table 4). Multivariate analysis revealed that education level and hypertension were significantly related to COVID-19 hospitalization in healthcare workers (Table 5).

Discussion

This prospective study was conducted to analyze the relationship of the influenza vaccine history with the mortality and hospitalization rate of COVID-19. Because of using the data of the registry, the inclusion of both the general population and health care workers, performing subgroup analysis, and controlling the potential confounding variables in the multivariate analysis, our results can be generalizable to the general populations. The total past-year flu vaccination rate was 21.8% and was significantly higher for healthcare workers than the general population (28.9 vs. 7.1%). The flu vaccination rate was lower than in other countries (17). Evidence showed that despite 70-91% efficacy for influenza vaccines, the acceptance rate is not ideal. The general acceptance rate for flu vaccines was reported to be below 30% worldwide (20). The global flu vaccine coverage is moderate with much lower achieve-

Variable	Vaccinated N=200	Unvaccinated N=716	P-value
Age (years)	41.4 (13.84)	45.3 (16.44)	0.001
BMI (kg/m²)	26.7 (3.93)	27.1 (4.28)	0.174
Sex	0.092		
Male	90 (45.0)	275 (38.4)	
Female	110 (55.0)	441 (61.6)	
Healthcare worker	<0.001		
Yes	179 (89.5)	441 (61.6)	
General population	21 (10.5)	275 (38.4)	
Job	<0.001		
Unemployed/Housewife	13 (6.5)	149 (20.8)	
Retired	6 (3.0)	31 (4.3)	
Manual	1 (0.5)	62 (8.7)	
Clerical	52 (26.0)	82 (11.5)	
Technicians	91 (45.5)	334 (46.6)	
Professional	37 (18.5)	53 (7.4)	
Education	<0.001		
Illiterate	5 (2.5)	72 (10.1)	
Primary	15 (7.5)	97 (13.5)	
Secondary	38 (19.0)	129 (18.0)	
Tertiary	90 (45.0)	304 (42.5)	
Master’s & higher	52 (26.0)	114 (15.9)	
Hypertension	23 (11.5)	161 (22.5)	<0.001
Diabetes	20 (10.0)	117 (16.3)	0.026
Smoking	15 (7.5)	63 (8.8)	0.561
Heart disease	11 (5.5)	43 (6.0)	0.788
Renal disease	1 (0.5)	7 (1.0)	0.521
Asthma	10 (5.0)	51 (7.1)	0.287
Cancer history	3 (1.5)	6 (0.8)	0.401
Organ graft history	0 (0.0)	3 (0.4)	0.359

P-values were based on Chi-square test, except for age and BMI that were based on T-test.
The higher education and occupation level groups had a higher flu vaccine uptake in low and middle-income countries (LMICs) (21). The higher education and occupation level groups had significantly higher flu vaccine uptake. This finding was congruent with other studies (10).

Our results showed that past-year flu vaccination can be an independent preventing factor for COVID-19 mortality in the general population. The flu-vaccinated group had 84% lower odds of COVID-19 death in comparison with unvaccinated subjects. Similarly, Fink et al. showed that the flu-vaccinated group had 18% lower invasive ventilation, 17% lower mortality, and 8% lower ICU admission after adjustment for comorbidities (14). Pawlowski et al. concluded that geriatric influenza vaccination can reduce COVID-19 infection even after controlling other relevant covariates (15), and Jehi et al. showed that flu vaccination was related to lower COVID-19 infection (16). On the contrary, Zein et al. indicated that flu vaccination was not significantly related to COVID-19 mortality and hospitalization after multivariate adjustment (17), and Wehenkel et al. showed that the flu vaccination was not related to the case fatality of COVID-19 after controlling the possible confounding covariates (12).

One possible reason for the observed preventive effect of influenza vaccination is that the vaccinated cases may have better health and healthier attitudes (13). However, the consideration of confounding factors like chronic diseases in the analysis devalued this explanation. It is proposed that the flu vaccine may induce the production of specific T-cell responses and specific neutralizing antibodies (14). Another plausible mechanism for this preventive effect is the development of a non-specific immune response or innate immunity that can activate an early response to immediate virus detection and on-time protection before organ invasion (10, 22-24). Another justifica-

Table 2. The logistic regression analysis for the relationship between influenza vaccination and COVID-19 death in the general population

Predictor	Deceased Univariate	Alive Univariate	OR(95% CI) Univariate	P-value Univariate	OR(95% CI) Multivariate	P-value Multivariate
Age	74.4 (11.78)	51.7 (16.96)	1.10 (1.08-1.13)	<0.001	1.11 (1.07-1.15)	<0.001
BMI	29.7 (3.47)	28.5 (4.42)	1.07 (1.01-1.14)	0.032	1.04 (0.95-1.15)	0.401
Flu vaccination						
Yes	1 (1.3)	20 (9.1)	0.13 (0.017-0.99)	0.049	0.16 (0.05-0.60)	0.017
No	76 (98.7)	199 (90.9)	Referent	Referent		
Sex						
Male	39 (50.6)	104 (47.5)	Referent			
Female	38 (49.4)	115 (52.5)	0.88 (0.52-1.48)	0.633		
Education						
Illiterate	35 (45.5)	42 (19.2)	Referent	Referent		
Primary	25 (32.5)	71 (32.4)	0.42 (0.22-0.80)	0.008	1.55 (0.60-3.98)	0.367
Secondary	16 (20.8)	68 (31.1)	0.28 (0.14-0.57)	<0.001	3.93 (0.95-6.35)	0.060
Tertiary	0 (0)	29 (13.2)	-	0.998	-	0.998
Master’s +	1 (1.3)	9 (4.1)	0.13 (0.016-1.10)	0.062	2.65 (0.12-6.30)	0.547
Job						
Unemployed/	54 (70.1)	107 (48.9)	Referent	Referent		
Housewife						
Retired	14 (18.2)	22 (10.0)	1.26 (0.59-2.66)	0.542	1.18 (0.30-4.23)	0.818
Manual	11 (14.5)	39 (17.5)	0.34 (0.16-0.45)	0.007	1.18 (0.37-3.82)	0.780
Clerical	0 (0)	0 (0)	-	-	-	-
Technicians	0 (0)	30 (1.4)	-	-	-	-
Professional	0 (0)	3 (1.4)	-	-	-	-
Hypertension						
Yes	64 (83.1)	75 (34.2)	Referent	Referent		
No	13 (16.9)	144 (65.8)	0.11 (0.06-0.20)	<0.001	0.39 (0.16-0.96)	0.043
Diabetes						
Yes	60 (64.9)	51 (23.3)	Referent	Referent		
No	27 (35.1)	168 (76.7)	0.16 (0.09-0.29)	<0.001	0.37 (0.17-0.78)	0.009
Smoking						
Yes	10 (13.0)	32 (14.6)	Referent			
No	67 (87.0)	187 (85.4)	1.15 (0.54-2.46)	0.725		
Heart disease						
Yes	25 (32.5)	22 (10.0)	Referent	Referent		
No	52 (76.5)	197 (90.0)	0.23 (0.12-0.45)	<0.001	0.30 (0.13-0.73)	0.008
Renal disease						
Yes	2 (2.6)	5 (2.3)	Referent			
No	75 (97.4)	217 (97.7)	0.88 (0.17-4.61)	0.876		
Asthma						
Yes	18 (23.4)	26 (11.9)	Referent			
No	59 (76.6)	193 (88.1)	0.44 (0.23-0.86)	0.016	1.08 (0.43-2.69)	0.875
Cancer history						
Yes	3 (3.9)	3 (1.4)	Referent			
No	74 (96.1)	216 (96.6)	0.34 (0.07-1.74)	0.196		
Cortone therapy						
Yes	4 (5.2)	5 (2.3)	Referent			
No	73 (94.8)	24 (97.7)	0.43 (0.11-1.63)	0.213		

SD: standard deviation, OR: odds ratio, CI: confidence interval.
Our results indicated that the history of flu vaccination was not related to COVID-19 mortality or hospitalization in healthcare workers. This finding can be a result of low mortality and hospitalization rate among healthcare workers with hypertension and diabetes mellitus. Similar to other studies, our analysis of both healthcare workers and the general population revealed that flu-vaccinated patients have reduced uncontrolled destructive pro-inflammatory responses, which results in lethal stages of COVID-19 (14).

The influenza vaccination history of the general population in the previous year was not related to a lower hospital admission rate in the general population. This can be attributable to the fact that at the beginning of the pandemic, the diagnostic test was prioritized for severe or hospitalized cases. That is why the majority of the cases from the general population that were included in this study (90.5%) had hospital admission, yielding a smaller sample size in the non-hospitalized patients. The multivariate analysis showed that in the general population, subjects with secondary and primary education had significantly higher odds of hospital admission than illiterate cases. This finding may be related to the lower affordability of hospitalization by illiterate groups.

Currently, the vaccination scale against COVID-19 may be limited in LMICs. Simultaneously, some mutations for...
SARS-CoV-2 are emerging that raise concerns for this pandemic. In this period, the influenza vaccination can be considered an effective adjuvant preventive countermeasure for COVID-19 in less developed countries, especially for elders, patients with comorbidities, pregnant women, and healthcare workers.

Study Limitations

Some limitations should be considered in interpreting the results of this study. Our data about the flu vaccination history were self-reported and exposed to recall bias. The data for some dead patients were missing because of their relative’s non-response. The rate of mortality was low among the healthcare workers to ensure a robust statistical analysis.

Conclusion

The overall flu vaccination rate was low in our community, even among the healthcare workers. The influenza vaccine can be considered an effective adjuvant preventive countermeasure for COVID-19 mortality and burden, especially for the general population. The advancing age, hypertension, diabetes mellitus, and previous heart disease were risk factors for COVID-19 death.

Acknowledgments

This research was funded by the Infectious and Tropical Diseases Research Center of Tabriz University of Medical Sciences.

Ethical Considerations

The study protocol was approved by the Ethical Committee of Tabriz University of Medical Sciences (No. IR.TBZMED.REC.1399.680). The study objectives were explained to the participants before data collection. The participants were assured of the confidentiality of the information provided.

Table 4: The logistic regression analysis for the relationship between influenza vaccination and COVID-19 death in healthcare workers

Predictor	Univariate OR (95% CI)	P-value	Multivariate OR (95% CI)	P-value
Flu vaccination				
Yes	2.08 (0.63-6.91)	0.321	1.24 (0.93-1.64)	0.001
No	Referent		Referent	
Sex				
Male	Referent		Referent	
Female	0.46 (0.14-1.52)	0.202	Referent	
Education				
Illiterate	Referent		Referent	
Primary	Referent		Referent	
Secondary	0.37 (0.03-4.35)	0.429	Referent	0.999
Tertiary	0.04 (0.01-0.70)	0.027	Referent	0.999
Master’s +	0.71 (0.08-6.12)	0.751	Referent	0.999
Job				
Unemployed/	Referent		Referent	
Housewife	Referent		Referent	
Retired	Referent		Referent	
Manual	Referent		Referent	
Clerical	Referent		Referent	
Technicians	0.05 (0.01-0.91)	0.044	Referent	0.999
Professional	Referent		Referent	
Hypertension				
Yes	Referent		Referent	
No	0.08 (0.03-0.29)	0.001	0.35 (0.06-2.05)	0.245
Diabetes				
Yes	Referent		Referent	
No	0.27 (0.06-1.28)	0.099	Referent	
Smoking				
Yes	Referent		Referent	
No	0.27 (0.06-1.28)	0.099	Referent	
Heart disease				
Yes	Referent		Referent	
No	0.10 (0.01-0.91)	0.040	2.36 (0.07-8.03)	0.633
Renal disease				
Yes	Referent		Referent	
No	0.19 (0.01-0.91)	0.040	2.36 (0.07-8.03)	0.633
Asthma				
Yes	Referent		Referent	
No	0.17 (2.8)	0.633	Referent	
Cancer history				
Yes	Referent		Referent	
No	0.03 (0.003-0.39)	0.007	0.02 (0.01-3.50)	0.198
Cortone therapy				
Yes	Referent		Referent	
No	0.16 (2.6)	0.999	Referent	

SD: standard deviation, OR: odds ratio, CI: confidence interval.
The authors declare that they have no competing interests.

Conflicts of Interests

The authors declare that they have no competing interests.

References

1. Yang J, Zheng Y, Gou X, Pu K, Chen Z, Guo Q, et al. Prevalence of comorbidities in the novel Wuhan coronavirus (COVID-19) infection: a systematic review and meta-analysis. Int J Infect Dis. 2020;94:91-5.
2. Eli Z trailaty ME, Järhult JD. From SARS to COVID-19: A previously unknown SARS-CoV-2 virus of pandemic potential infecting humans—Call for a One Health approach. One Health. 2020;9:100124.
3. DEL RIO C, MALANI PN. COVID-19—a rapidly changing epidemic. JAMA. 2020;323:1339-40.
4. Mizumoto K, Omoni R, Nishiura H. Age specificity of cases and attack rate of novel coronavirus disease (COVID-19). medRxiv. 2020.
5. World Health Organization (WHO). Coronavirus Disease (COVID-19) Dashboard. 2021. [Cited 2021 April 5]. https://covid19.who.int/?gclid=EAIaIQobChMIgMuEqrnw7gIVsmDmCh10qgdIEAYASAAAgBgD_BwE.
6. Keehner J, Horton LE, Pfeffer MA, Longhurst CA, Schooley RT, Currier JS, et al. SARS-CoV-2 infection after vaccination in health care workers in California. N Engl J Med. 2021;384(18):1774-5.
7. Zhang L, Liu Y. Potential interventions for novel coronavirus in China: a systematic review. J Med Virol. 2020:92:479-90.
8. Arokiaraj MC. Correlation of influenza vaccination and influenza incidence on COVID-19 severity. SSRN. 2020;3572814.
9. Li Q, Tang B, Bragazzi NL, Xiao Y, Wu J. Modeling the impact of antiviral drugs on the 2019-nCoV epidemic with limited detection capability. Math Biosci. 2020;325:108378.
10. Marin-Hernández D, Schwartz RE, Nixon DF. Epidemiological evidence for association between higher influenza vaccine uptake in the elderly and lower COVID-19 deaths in Italy. J Med Virol. 2021;93:64-5.
11. Zannotti C, Omar M, Dinanalanka W, Imada EL, Colantuoni E, Parmigiani G, et al. Influenza vaccination and COVID19 mortality in
COVID-19 Morbidity, Mortality, and Flu Vaccination

the USA. MedRxiv. 2020.
12. Wehenkel C. Positive association between COVID-19 deaths and influenza vaccination rates in elderly people worldwide. Peer J. 2020;8:e10112.
13. Amato M, Werba JP, Frigerio B, Coggi D, Sansaro D, Ravani A, et al. Relationship between influenza vaccination coverage rate and COVID-19 outbreak: An Italian ecological study. Vaccines. 2020;8(3):535.
14. Fink G, Orlova-Fink N, Schindler T, Grisi S, Ferrer AP, Daubenberger C, et al. Inactivated trivalent influenza vaccine is associated with lower mortality among Covid-19 patients in Brazil. BMJ Evid Based Med. 2020;26(4):192-3.
15. Pawlowski C, Puranik A, Bandi H, Venkatakrishnan AJ, Agarwal V, Kennedy R, et al. Exploratory analysis of immunization records highlights decreased SARS-CoV-2 rates in individuals with recent non-COVID-19 vaccinations. Sci Rep. 2021;11(1):1-20.
16. Jhi L, Ji X, Milinovich A, Erzurum S, Rubin BP, Gordon S, et al. Individualizing risk prediction for positive coronavirus disease 2019 testing: results from 11,672 patients. Chest. 2020;158(4):1364-75.
17. Zein JG, Whelan G, Erzurum SC. Safety of influenza vaccine during COVID-19. J Clin Transl Sci. 2020.
18. UNESCO Institute for Statistics. International standard classification of education: ISCED 2011. Montreal: UNESCO Institute for Statistics. 2012.
19. International Labour Organization (ILO). International Standard Classification of Occupations 2008 (ISCO-08): structure, group definitions and correspondence tables. International Labour Office. 2012.
20. Mendelson M. Could enhanced influenza and pneumococcal vaccination programs help limit the potential damage from SARS-CoV-2 to fragile health systems of southern hemisphere countries this winter? Int J Infect Dis. 2020;94:32-3.
21. Thindwa D, Quesada MG, Liu Y, Bennett J, Cohen C, Knoll MD, et al. Use of seasonal influenza and pneumococcal polysaccharide vaccines in older adults to reduce COVID-19 mortality. Vaccine. 2020;38(34):5398-5401.
22. Cowling BI, Fang VJ, Nishiura H, Chan KH, Ng S, Ip DK, et al. Increased risk of noninfluenza respiratory virus infections associated with receipt of inactivated influenza vaccine. Clin Infect Dis. 2012;54(12):1778-83.
23. Salem ML, El-Hennawy D. The possible beneficial adjuvant effect of influenza vaccine to minimize the severity of COVID-19. Med Hypotheses. 2020;140:109752.
24. Eldanasory OA, Raban AA, Al-Tawfiq JA. Can influenza vaccine modify COVID-19 clinical course?. Travel Med Infect Dis. 2020;37:101872.