Advances in the pathogenesis of Rett syndrome using cell models

Sijia Lu1,2 | Yongchang Chen1,2 | Zhengbo Wang1,2

1State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
2Yunnan Key Laboratory of Primate Biomedical Research, Kunming, China

Correspondence
Yongchang Chen and Zhengbo Wang,
State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
Email: chencyc@lpbr.cn and wangzb@lpbr.cn

Funding information
The Major Basic Research Project of Science and Technology of Yunnan, Grant/Award Number: 202001BC070001 and 202105AC160041; National Natural Science Foundation of China, Grant/Award Number: 81930121 and 31960120; The National Key Research and Development Program of China, Grant/Award Number: 2018YFA0107902 and 2018YFA0801403

Abstract
Rett syndrome (RTT) is a progressive neurodevelopmental disorder that occurs mainly in girls with a range of typical symptoms of autism spectrum disorders. MeCP2 protein loss-of-function in neural lineage cells is the main cause of RTT pathogenicity. As it is still hard to understand the mechanism of RTT on the basis of only clinical patients or animal models, cell models cultured in vitro play indispensable roles. Here we reviewed the research progress in the pathogenesis of RTT at the cellular level, summarized the preclinical-research-related applications, and prospected potential future development.

KEYWORDS
cell models, MeCP2, pathogenesis, Rett syndrome

1 | INTRODUCTION

Rett syndrome (RTT) is a neurodevelopmental disorder with certain symptoms of autism spectrum disorder (ASD).1–4 Methyl-CpG binding protein 2 (MECP2) was the first identified ASD-causing gene. Mutations of the MECP2 gene contributed most to the occurrence of RTT. Several other genes, such as CDKL5 and FOXG1, are also identified as RTT-causing genes that lead to atypical RTT.5–8 Evidence shows that several neurodevelopmental disorders are related to dysfunction of MeCP2 protein expression.9 Therefore, the research progress of pathogenesis and treatment on RTT might be a wide reference to other ASD diseases. In this review, we focus mainly on the progress of MECP2 mutant RTT.

Research on RTT has usually been based on patients or animal models. However, owing to ethical concerns, it is difficult to draw materials from clinical subjects, and animal models can simulate only partial phenotypes of clinical patients. Therefore, it is not enough to conduct in-depth studies in these ways. Here we reviewed the important progress in the pathogenesis of RTT using cell models.
2 | GENERAL INFORMATION ON RTT

Mutations of the MECP2 gene lead to MeCP2 protein loss of function in part or whole, which affects the methylation binding ability and regulatory function on gene expression, resulting in the phenotypes of typical RTT. Most patients with MECP2 mutant RTT are female, with a prevalence of approximately 1/10000–1/15000.1 Most of the symptoms of patients with RTT occur in the central nervous system, including smaller brain volume and thinner cortical layer, which specifically present as smaller cell bodies, reduced spinothalamic process density and complexity, and significantly lower overall neuronal maturity.10–12 These findings indicate that cellular-level changes play an important role in RTT onset. We summarize the abnormal physiological processes, cell types, and pathological phenotypes affected by MECP2 mutations in Figure 1. In addition, deficiency of this protein outside the nervous system can lead to lesions in the corresponding organs, such as cardiac, liver, and digestive tract, etc.,13 indicating that mutations of MECP2 have complex functions throughout the body. Current research has mainly concerned damages in the nervous system.

As a transcriptional regulator, MeCP2 has a dual regulatory function, that is, transcriptional activation or inhibition. The severity of the RTT phenotype is related to the type of mutation.14,15 Clinically, most mutation sites are located at the 2 functional domains of transcriptional repression domain (TRD) and methyl CpG binding domain (MBD),16 both resulting in severe RTT phenotypes. Previous studies have shown that the TRD and MBD domains are responsible for performing the primary functions of the protein, the NCoR/SMRT corepressor interaction domain (NID) exercises the function of the recruit’s repressive complexes, and the AT-hook domain (AT-hook 1) assists in DNA bending and chromatin remodeling.16–20

3 | A BRIEF OVERVIEW OF THE RESEARCH PROGRESS OF RTT ANIMAL MODELS

Rodent and nonhuman primate models are commonly used to study the disease progress and pathogenic mechanism of RTT. In 2001, MeCP2-knockout mice were first reported,21,22 which exhibit phenotypes resembling some of the symptoms of patients with RTT. In the conditional knockout mice, loss of MeCP2 in inhibitory neurons impaired the GABA signaling pathway, exhibiting autistic stereotypical behavior and severe phenotypes.23 Loss of MeCP2 in cholinergic circuits of basal forebrain and the striatum recapitulated some phenotypes.24 In addition, knockdown of MeCP2 in different brain regions of mice displayed different neuropathological phenotypes, suggesting a region-specific effect.16 MeCP2-deficient rat models generated in 2016 showed Rett-like behavioral and motor deficits.25,26 Subsequently, nonhuman primate models of RTT27 were constructed in 2017. Monkey models showed unique advantages in mimicking abnormal phenotypes of RTT in advanced cognitive, social behavior, and movement activity. They were also used to monitor brain development by neuroimaging.27 The abnormal development of white matter (WM) microstructure and network topological organization of monkey models may cause the RTT behavioral phenotypes.28 The above models have made a great contribution in tracking the disease progression and understanding the phenotypes of RTT. However, for the studies aimed to elucidate the mechanisms in living cells, or to carry out functional verification and pathogenesis exploration more conveniently and comprehensively, cell models are essential.

4 | RESEARCH PROGRESS ON THE PATHOGENESIS OF RTT USING CELL MODELS

Most cells used in laboratory are usually derived from patients with RTT, animal models, or gene-modified cells. The advent of drug studies based on induced pluripotent stem cells (iPSCs) is a milestone in nonclinical trials. Although only relatively few studies have used iPSCs derived from patients with RTT, there have been very important findings and research progress on pathogenesis and preclinical trials, as listed in Table 1.

4.1 | Research progress on RTT neurons

Neurons differentiated from iPSCs derived from patients with RTT show specific pathological phenotypes, that is, smaller neuron cell bodies, decreased synapses and spine density, and abnormal calcium
Time	Researcher	Cell source	Mutation type	Main research
2010	Marchetto et al.丘	Patient iPSCs	T158M, R306C, Q244X, 1155del32	Established an iPSC model derived from patients with RTT for the first time, and tested that IGF1 and gentamicin have a certain recovery effect on the number of glutamatergic synapses
2011	Kim et al.30	Female patients iPSCs	T158M, Q244X, E235fs, R306C, X487W	Defective neuronal maturation in MECP2 mutants is associated with its non-cell-autonomous effects
2011	Cheung et al.29	Female patients iPSCs	Δ3–4 MECP2 mutation, T158M, R306C	Δ3–4 mutation shows a random inactivation pattern of XCI, whereas point mutant cell lines showed a highly skewed pattern of XCI, and MECP2 expression follows its XCI pattern
2011	Ananiev et al.103	Female patients iPSCs	T158M, V247X, R306C, R294X	Syngeneic controls isolated from iPSCs derived from patients with RTT for in vitro studies
2011	Amenduni et al.104	Male/female patients iPSCs	CDKL5: Q347X and T288I	The first use of CDKL5 mutation in RTT cell modeling and neuron differentiation experiments; phenomenon of XCI
2013	Li et al.31	Gene editing ESCs	TALEN targets exon 3	MECP2 deficiency leads to impaired AKT/mTOR pathway and mitochondrial function
2014	Williams et al.49	Female patients iPSCs	V247X, R294X and R306C	Coculture of normal neurons with MECP2 mutant astrocytes and their conditioned medium exhibits neuronal deficits
2015	Djuric et al.105	Female patients iPSCs	MECP2e1 mutations	MECP2e1 mutations affect human neuron body size and electrophysiological properties
2015	Andoh-Noda et al.50	Female patients iPSCs	Exon 4 (c.806delG)	TRD domain truncation of MECP2 affects neuronal differentiation with a tendency to differentiate into astrocytes
2016	Tang et al.35	Male patients iPSCs	Q83X	MECP2 mutation affects the expression of the downstream target gene Kcc2, resulting in GABAergic neuron dysfunction
2016	Chin et al.106	Patients iPSCs	R306C, 1155Δ32	Some pathological manifestations of RTT-iPSC differentiated neurons can be alleviated by choline supplementation
2016	Delépine et al.51	Female patients iPSCs	R294X	EpoD can be used to improve the pathological changes of microtubule dynamics in MECP2-deficient astrocytes, and enhancing microtubule stability may be a potential target for RTT therapy
2017	Yoo et al.79	Male patients iPSCs	Q83X	Restoring MeCP2 and L1 expression in RTT NPCs can normalize impaired neuritogenesis
2018	Landucci et al.37	Female patients iPSCs	T158M, R306C	RTT iPSC-derived neuronal GABAergic circuits are upregulated; selective HDAC6 inhibitors ameliorate the reduction of acetylated α-tubulin in RTT neurons
2018	Ohashi et al.107	Female patients iPSCs	705delG, X487W	The reduction in dendritic complexity of RTT neurons may be due to activation of the p53 pathway, or be associated with aging
signaling and electrophysiological function, reflecting important changes in the morphological structures and functions of RTT. Disruption of the excitatory/inhibitory activity balance between synapses in different brain regions and circuits leads to an imbalance in microenvironmental homeostasis, which may lead to abnormal brain firing, resulting in epilepsy or other symptoms.

Wild-type iPSC-derived neurons typically express high levels of synaptic adhesion molecule GluD1. MeCP2 deficiency caused changes in the action potential of glutamate neurons and a decrease in the number of synapses on glutamate neurons, implying that the fate of neural differentiation may shift to inhibitory neurons, which manifests itself in an increase in inhibitory synapses and a decrease in excitatory synaptic structures. This result may be caused by the downregulated expression of neuron-specific membrane transporter K\(^+\)/Cl\(^-\) cotransporter (KCC2) mediated by RE1-silencing transcription factor (REST), a neuronal gene inhibitor in RTT, which is essential for maintaining excitatory balance in the brain. Impalance of excitatory/inhibitory circuits may be one of the important causes of RTT.

Time	Researcher	Cell source	Mutation type	Main research
2018	Mellios et al.	Female patients iPSCs and male control	R106W, V247X	MECP2 mutation upregulates the expression of mir-199 and mir-214, causing disturbance of ERK/MAPK and PKB/AKT signaling pathways, thereby affecting neurogenesis
2019	Souza et al.	Male patients iPSCs	Q83X	The expression of TH-related genes is altered in RTT
2019	Kim et al.	Male patients iPSCs	Q83X, N126I	Proteomic analysis reveals the causes of dysregulated LIN28 gene expression and delayed glial differentiation under MECP2 mutation
2019	Sharma et al.	Male patients iPSCs	Q83X	Exosomes extracted from normal cells, which carry the signaling information required to regulate the development of neural circuits, can alleviate the neural defects of RTT
2020	Varderidou-Minasian et al.	Patients iPSCs	MECP2 exons 3–4 mutation	The findings provide a profile of proteomic changes in early neurodevelopmental stages (iPSCs to neuronal stem cells), suggesting that changes occur long before RTT syndrome symptoms become apparent
2020	Rodrigues et al.	Patients iPSCs	Δ3–4 MECP2 mutation, T158M, R306C and MECP2e1 mutation	Translational ribosome affinity purification sequencing finds that the dynamic translationome in neural development is perturbed in RTT and proposes that alterations in ubiquitination may have therapeutic implications
2020	Gomes et al.	Male/female patients iPSCs	R255X, Q83X	Premature development of the deep-cortical layer of RTT forebrain organoids and functional deficits in RTT neurons; furthermore, the assembly of RTT dorsal and ventral organoids revealed impairments of interneuron’s migration
2020	Xiang et al.	Gene editing male ESCs	R133C, R270X, R306C	Adverse effects of MECP2 mutant human cortical interneurons using 2D and 3D culture methods to rescue Rett-like pathological phenotypes using BET inhibitor JQ1

Note: ERK/MAPK signaling pathways, extracellular signal-regulated kinase signaling pathways; PKB/AKT signaling pathways, protein kinase B signaling pathways. The mutation type is mainly for the MECP2 gene, and the mutations of other genes are specifically pointed out in the table.

Abbreviations: EpoD, epothilone D; ESCs, embryonic stem cells; iPSCs, induced pluripotent stem cells; RTT, Rett syndrome; TH, thyroid hormone; TRAP-seq, translational ribosome affinity purification sequencing; XCI, X chromosome inactivation.
By analyzing and comparing the different stages of neural differentiation of RTT-iPSCs, researchers revealed some changes and mechanisms at the molecular and cellular level. Transcriptome analysis showed that MeCP2 began to modulate before neural differentiation. During subsequent differentiation, forebrain neurons derived from several human RTT stem cell lines showed a reduction in the expression level of cAMP-response element binding protein (CREB) and phosphorylated CREB, which could lead to functional defects in neurons. In RTT human iPSCs, neural progenitor cells, and cortical neurons, the expression of genes related to the dysregulation of mTOR signaling pathway and the ubiquitin pathway alters the structure of neurons, leading to defects in cell structure. Proteomic analysis revealed that both dendritic morphology and synaptogenesis-related proteins were altered during RTT iPSC-derived neuronal progenitors, that is, in early neuronal differentiation. Another study found that the LIN28A gene may participate in the regulation of neuronal differentiation in RTT-iPSCs. Therefore, dysregulation of the expression of various genes and proteins during this early phase of neuronal differentiation may be an important reason for the progression of RTT.

In addition, MeCP2 also regulates microRNA (miRNA). The expression of miR-199 and miR-214 was found to be most significantly affected by the MeCP2 mutation. Restoration of miRNA expression in patients with RTT and MeCP2-deficient neural stem/precursor cells can relieve the pathological phenotype of RTT neurons.

These results suggest that MeCP2 has a wide range of roles that may not only alter the substance transport process involved in organelles, but also adversely affect the formation and/or maintenance of neural processes by influencing the transcription. Although the effects of MeCP2 on normal brain development is not fully understood, there is no doubt that the mutation of MeCP2 disrupts the expression regulation of a large number of genes and the homeostasis of their microenvironment, which is an important premise of the RTT neuropathological phenotype.

4.2 Research progress on glial cells

Previous studies have shown that RTT-iPSCs mainly affect the differentiation and maturation of neurons. An increasing body of evidence demonstrates that glial cells also express MeCP2 and MeCP2 deficiency in glial, like neurons, are integral components of the neuropathology of RTT (as shown in Figure 2). Williams et al. found that RTT astrocyte coculture with wild-type neurons can impair normal neuron morphology and function. During neural differentiation, RTT neural precursor cells showed a tendency to differentiate into astrocytes. Microtubule dynamics stability was decreased in Mecp2-deficient mouse astrocytes, which may explain the impaired neurites observed in patients with RTT and in animal models.

The MeCP2 mutated microglia have a smaller soma body than wild type. Studies have shown that microglia affected by Mecp2 deficiency may be involved in the abnormal inflammatory response. Enhanced oxidative stress and immune responses were
found in both Mecp2-null mice and their primary glial cells after lipo polysaccharide treatment.56 Likewise, persistent dysfunction of neurons or other glial cells also enhances the immune response of RTT microglia, which may further exacerbate the disease process.57 Higher levels of glutamate were detected in RTT microglia-enriched conditioned medium, and addition of the medium to normal cultures also resulted in damage to dendrites and synapses in neurons.58 Mecp2 deficiency leads to overexpression of glutamine transporter (SNAT1), resulting in the production of large amounts of glutamine in mitochondria for metabolism and the formation of glutamate, which may be responsible for mitochondrial dysfunction and neurotoxicity.59 Other studies have shown that the involvement of miRNA in the regulation of the MECP2-STAT3 axis or the modification of MECP2 phosphorylation may also be the reason for the inflammatory response of microglia.60,61

In mice, Mecp2 deficiency in the oligodendrocyte lineage also plays a unique role in the disease process of RTT.62 From isolated primary oligodendrocyte progenitor cells, the researchers found that the expression of MeCP2 increased in the maturation of oligodendrocyte differentiation process,63,64 which confirmed that MeCP2 regulates myelin-related genes, thereby affecting the process of oligodendrocytes participating in the formation of neuronal myelinlation.65 Therefore, it is believed that, under the influence of MeCP2 mutation, myelination-related dysfunction in the central nervous system leads to RTT pathophysiology.

MeCP2-mutant glial cells could affect the morphology and function of neurons, and affect the disease progression. However, the effects of MeCP2 on glial cells are currently less studied in vivo and in vitro than in neurons. Indeed, more than one cell type and function is regulated by MeCP2, but more evidence is needed to reveal its importance and role in the pathogenesis of RTT. Advances in the pathogenesis of RTT using cell models are summarized in Figure 2. Furthermore, the dynamics of connectivity and circuit neural networks during development and disease should be better examined with the development of new approaches66 (for a comparison of the advantages and disadvantages of cell culture methods, see Table 2), such as sparse coculture for connectivity (SparCon) assays67 or 3D organoid culture system.68,69

Table 2: Comparison of 2D and 3D culture system for in vitro studies

Culture system	Advantages	Disadvantages	Research scope
2 Dimensional (2D)	Short-term culture protocol; Easy to manipulation; Good repeatability.	Cell type is too single; Hard to simulate cell junctions and interaction; Difficult to mimic complex niches	They both can be used in the following research areas: Basic development; Cell physiology; Pathogenic mechanism; Potential therapeutic targets; Drug screening; Gene therapy; Cell therapy, etc.
3 Dimensional (3D)	More similar to in vivo 3D stereoscopic environment; Simulate more complex physiological processes.	Long-term culture requires the support of scaffolds, but their components are unclear; Difficult to directed differentiation; Less repeatability than 2D cells	

4.3 | Research progress on treatment and functional recovery of RTT

At least 70 drugs have been reported in preclinical studies or clinical trials to ameliorate the symptoms of RTT, and some research has been systematically summarized.70,71 Among the downstream signaling molecules regulated by MeCP2, several have been shown to have regulatory effects in RTT animal or cell models.

The point of treatment now is to improve the growth and development of neurons or restore their damaged neurites and synapses. Brain-derived neurotrophic factor (BDNF) is a neurotrophic factor that plays an important role in neuronal survival and plasticity, and its expression is also regulated by MeCP2.72 The expression level was reduced in Mecp2-deficient male mice, and when a certain level of expression was restored, the symptoms and lifespan of the diseased mice could be reversed,73 suggesting that treatments targeting the MeCP2-BDNF axis in RTT could alleviate some symptoms and are potential therapeutic options for RTT. Protein tyrosine phosphatase-1B (PTP1B) is a receptor for BDNF, and its pharmacological inhibition ameliorated the effects of MECP2 disruption in RTT mice.74 When insulin-like growth factor 1 (IGF-1) and low concentrations of gentamicin were administered to RTT neurons, the morphology and function of damaged neurons could also be restored.75 Histone deacetylase 6 (HDAC6)-selective inhibitors showed great application and therapeutic prospects to reverse the decreased microtubule acetylation in neurons of RTT.76,77 Overexpression of L1 retrotransposon can partially restore neurite growth during RTT-iPSC differentiation.78,79 MeCP2’s regulation of the multi-subunit protein complex BLOC-1 may also be a therapeutic target for synaptic dysfunction.80 The mutation impairs the neuronal AKT/mTOR pathway and mitochondrial function.81 Administration of the above pathways may improve the pathological phenotype of RTT neurons.

Restoring normal expression of Mecp2 in the medial prefrontal cortex can improve behavioral deficits in mice.82 However, balancing the exogenous expression of MeCP2 to the physiological range remains a difficult problem to be solved, because the overexpression of MeCP2 leads to MECP2 duplication syndrome.71 Another treatment is to reactivate the silent chromosomes that express the normal MECP2 gene in the cells of female patients. In addition, noncoding RNAs participating...
in MeCP2-related transcriptional regulation processes could also become therapeutic targets.\cite{86-90} Symptomatic treatment is one of the important strategies. RTT treatment in clinical and preclinical studies mainly include 2 approaches: one targets genetic and molecular pathology to repair the mutant MECP2 or to regulate downstream molecules targeting related signaling pathways, such as growth factors (IGF-1, BDNF), inhibitors (PTP1B, HDAC6), and other drugs for specific neuron types; the other alleviates the pathologic symptoms with physical stimulation interventions such as deep brain stimulation,\cite{84, 85} transcranial magnetic stimulation, etc. Nevertheless, none of these drugs have entered phase III/IV clinical trials. Emerging gene and cell therapy for repairing MECP2 mutations in vivo or ex vivo are expected to provide a new treatment strategy after a series of evaluations from cells to animals, then preclinical trials. Moreover, MeCP2 mutations have widespread effects on the central nervous system, affecting all aspects of neurogenesis and biological processes. In-depth analysis of the pathogenic mechanism of MECP2 deficiency will facilitate the optimization and combination of the therapeutic approaches, such as the bias in early neural differentiation process, the exact mechanism of glial cells influencing neuronal structure and function, etc.

5 SUMMARY AND PROSPECTION

In-depth study of RTT and MeCP2 has given us an understanding of MeCP2’s multifunction: widely involved in the transcription regulation of genes, self-translational modification in response to neuronal activity, and promotion of chromatin central aggregation,\cite{91, 92} etc., indicating its importance for individual neurodevelopment. Owing to the difficulties in pre-onset data and sample collections from patients with RTT, the detailed mechanism of RTT in the early stages of postnatal development is still unknown. The emergence of iPSCs has brought great application prospects.\cite{93} To date, iPSCs provide a reusable, versatile, and consistent source from patients for in vitro studies of RTT. Although cell models are a powerful tool to investigate potential regulation mechanisms in RTT, neurodevelopment is a temporary and spatially related complex progress. Whether the results of in vitro and in vivo studies are highly consistent remains to be further demonstrated.

The understanding of RTT should not be limited to the severe consequences of its mutations; the function of MeCP2 in the nervous system and even in early ontogeny also needs to be understood. At present, 2D neural differentiation and 3D brain organoid culture technologies have been developed rapidly.\cite{93-98} The combination of RTT-iPSCs with the above technologies can be better applied to further research on RTT pathogenesis, drug screening, gene repair, and cell therapy. Taken together, the rational use of cells and other models\cite{89-102} for research will help us to understand the pathogenic mechanism and develop new treatments for RTT in the future.

AUTHOR CONTRIBUTIONS

Sijia Lu conceived and wrote the original draft of the manuscript. Zhengbo Wang and Yongchang Chen revised the manuscript. All authors critically read and contributed to the manuscript, and approved its final version.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (18130121, 31960120), the National Key Research and Development Program of China (2018YFA0107902, 2018YFA0801403), and the Major Basic Research Project of Science and Technology of Yunnan (202001BC070001, 202105AC160041).

FUNDING INFORMATION

The National Natural Science Foundation of China (18130121, 31960120), the National Key Research and Development Program of China (2018YFA0107902, 2018YFA0801403) and the Major Basic Research Project of Science and Technology of Yunnan (202001BC070001, 202105AC160041).

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest regarding the publication of this article.

ORCID

Yongchang Chen \(https://orcid.org/0000-0002-3856-3576 \)
Zhengbo Wang \(https://orcid.org/0000-0002-4717-5137 \)

REFERENCES

1. Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet. 1999;23(2):185-188. doi:10.1038/13810
2. Hagberg B, Aicardi J, Dias K, Ramos O. A progressive syndrome of autism, dementia, ataxia, and loss of purposeful hand use in girls: Rett’s syndrome: report of 35 cases. Ann Neurol. 1983;14(4):471-479. doi:10.1002/ana.410140412
3. Lewis JD, Meehan RR, Henzel WJ, et al. Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell. 1992;69(6):905-914. doi:10.1016/0092-8674(92)90610-o
4. Rett A. On a unusual brain atrophy syndrome in Hyperammonamie in childhood [Uber Ein Eigenartiges Hirnatrophisches Syndrom Bei Hyperammonamie Im Kindesalter]. Wien med Wochenschr. 1966;116(37):723-726.
5. Evans JC, Archer HL, Colley JP, et al. Early onset seizures and Rett-like features associated with mutations in CDKL5. Eur J Hum Genet. 2005;13(10):1113-1120. doi:10.1038/sj.ejhg.5201451
6. Philippe C, Amsalem D, Francannet C, et al. Phenotypic variability in Rett syndrome associated with FOXG1 mutations in females. J Med Genet. 2010;47(1):59-65. doi:10.1136/jmg.2009.067355
7. Operto FF, Mazza R, Pastorino GMG, Verrotti A, Coppola G. Epilepsy and genetic in Rett syndrome: a review. Brain Behav. 2019;9(5):e01250. doi:10.1002/brb3.1250
8. Writing Group For Practice Guidelines For D, Treatment Of Genetic Diseases Medical Genetics Branch Of Chinese Medical A, Guan R, Li Q, Fu S. Clinical practice guidelines for Rett syndrome. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2020;37(3):308-312. doi:10.3760/cma.j.issn.1003-9406.2020.03.014
9. Nagarajan RP, Hogart AR, Gwye Y, Martin MR, LaSalle JM. Reduced MeCP2 expression is frequent in autism frontal cortex and correlates with aberrant MECP2 promoter methylation. Epigenetics. 2006;1(4):e1-e11. doi:10.4161/epi.1.4.3514
10. Armstrong D, Dunn JK, Antalffy B, Trivedi R. Selective dendritic alterations in the cortex of Rett syndrome. *J Neuropathol Exp Neurol*. 1995;54(2):195-201. doi:10.1097/00005072-199503000-00006

11. Armstrong DD. Neuropathology of Rett syndrome. *J Child Neurol*. 2005;20(9):747-753. doi:10.1177/088307380502009091

12. Reiss AL, Faruque F, Naidu S, et al. Neuroanatomy of Rett syndrome: a volumetric imaging study. *Ann Neurol*. 1993;34(2):227-234. doi:10.1002/ana.410340220

13. Sharifi O, Yasui DH. The molecular functions of MeCP2 in Rett syndrome pathoanalysis. *Front Genet*. 2021;12:624290. doi:10.3389/fgen.2021.624290

14. Allemand-Grand R, Ellegood J, Spencer Noakes L, et al. Neuroanatomy in mouse models of Rett syndrome is related to the severity of Mecp2 mutation and behavioral phenotypes. *Mol Autism*. 2017:8:32. doi:10.1186/s13227-017-0138-8

15. Cuddapah VA, Pillai RB, Shekar KV, et al. Methyl-CpG-binding protein 2 (Mecp2) mutation type is associated with disease severity in Rett syndrome. *J Med Genet*. 2014;51(3):152-158. doi:10.1136/jmedgenet-2013-102113

16. Nan X, Campoy FJ, Bird A. MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. *Cell*. 1997;88(4):471-481. doi:10.1016/s0092-8674(00)81887-5

17. Lyst MJ, Bird A. Rett syndrome: a complex disorder with simple roots. *Nat Rev Genet*. 2015;16(5):261-275. doi:10.1038/nrg3897

18. Baker SA, Chen L, Wilkins AD, Yu P, Lichtarge O, Zoghbi HY. An AT-hook domain in MeCP2 determines the clinical course of Rett syndrome and related disorders. *Cell*. 2013;152(5):984-996. doi:10.1016/j.cell.2013.01.038

19. Xu M, Song P, Huang W, et al. Disruption of AT-hook 1 domain in MeCP2 causes abnormal behavior in mice. *Biochim Biophys Acta Mol Basis Dis*. 2018;1864(2):347-358. doi:10.1016/j.bbadis.2017.10.022

20. Sheikh TI, Harripaul R, Ayub M, Vincent JB. MeCP2 AT- Hook1 mutation causes neurological symptoms that mimic Rett syndrome. *J Neuropathol Exp Neurol*. 2011;70(11):2103-2115. doi:10.1093/hmg/ddr093

21. Kim KY, Hysolli E, Park IH. Neuronal maturation defect in induced pluripotent stem cells from patients with Rett syndrome. *Proc Natl Acad Sci USA*. 2011;108(34):14169-14174. doi:10.1073/pnas.1018979108

22. Banerjee A, Rikhye RV, Breton-Provencher V, et al. Jointly reduced inhibition and excitation underlies circuit-wide changes in cortical processing in Rett syndrome. *Proc Natl Acad Sci USA*. 2016;113(46):E7287-E7296. doi:10.1073/pnas.1615330113

23. Livide G, Patriarchi T, Amenduni M, et al. GluD1 is a common altered player in neuronal differentiation from both MECP2-mutated and CDKL5-mutated iPS cells. *Eur J Hum Genet*. 2015;23(2):195-201. doi:10.1038/ejhg.2014.81

24. Farra N, Zhang WB, Pasceri P, Eubanks JH, Salter MW, Ellis J. Rett syndrome induced pluripotent stem cell-derived neurons reveal novel neuropsychological alterations. *Mol Psychiatry*. 2012;17(12):1261-1271. doi:10.1038/mp.2011.180

25. Tang X, Drotar J, Li K, et al. Pharmacological enhancement of KCC2 gene expression exerts therapeutic effects on human Rett syndrome neurons and Mecp2 mutant mice. *Sci Transl Med*. 2019;11(503):eaau0164. doi:10.1126/scitranslmed.aau0164

26. Nan X, Campoy FJ, Bird A. MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. *Cell*. 1997;88(4):471-481. doi:10.1016/s0092-8674(00)81887-5

27. Lyst MJ, Bird A. Rett syndrome: a complex disorder with simple roots. *Nat Rev Genet*. 2015;16(5):261-275. doi:10.1038/nrg3897
64. Sharma K, Singh J, Pillai PP, MeCP2 differentially regulate the myelin MBP and PLP protein expression in oligodendrocytes and C6 glioma. J Mol Neurosci. 2018;65(3):343-350. doi:10.1007/s12031-018-1112-4

65. Hong YJ, Do JT. Neural lineage differentiation from pluripotent stem cells to mimic human brain tissues. Front Bioeng Biotechnol. 2019;7:400. doi:10.3389/fbioe.2019.00400

66. Zaslavsky K, Zhang WB, McCready FP, et al. SHANK2 mutations associated with autism spectrum disorder cause hyperconnectivity of human neurons. Nat Neurosci. 2019;22(4):556-564. doi:10.1038/s41593-019-0365-8

67. Gomes AR, Fernandes TG, Vaz SH, et al. Modeling Rett syndrome with human patient-specific forebrain organoids. Front Cell Dev Biol. 2020;8:610427. doi:10.3389/fcell.2020.610427

68. Xiang Y, Tanaka Y, Patterson B, et al. Dysregulation of BRD4 function underlies the functional abnormalities of MeCP2 mutant neurons. Mol Cell. 2020;79(1):84-98 e9. doi:10.1016/j.molcel.2020.05.016

69. Komathi M, Padmapriya S, Balachandar V. Drug studies on Rett syndrome: from bench to bedside. J Autism Dev Disord. 2020;50(8):2740-2764. doi:10.1007/s10803-020-04381-y

70. Sandweiss AJ, Brandt VL, Zoghbi HY. Advances in understanding of Rett syndrome and MECP2 duplication syndrome: prospects for future therapies. Lancet Neurol. 2020;19(8):698-699. doi:10.1016/S1474-4422(20)30217-9

71. Katz DM. Brain-derived neurotrophic factor and Rett syndrome. Handb Exp Pharmacol. 2014;220:481-495. doi:10.1007/978-3-642-45106-5_18

72. Chang Q, Khare G, Dani V, Nelson S, Jaenisch R. The disease progression of Mecp2 mutant mice is affected by the level of BDNF expression. Neuron. 2006;49(3):341-348. doi:10.1016/j.neuron.2005.12.027

73. Krishnan N, Krishnan K, Connors CR, et al. PTP1B inhibition suggests a therapeutic strategy for Rett syndrome. J Clin Invest. 2015;125(8):3163-3177. doi:10.1172/JCI80323

74. Marchetto MC, Carromeu C, Acab A, et al. A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell. 2010;143(4):527-539. doi:10.1016/j.cell.2010.10.016

75. Gold WA, Lacina TA, Cantrill LC, Christodoulou J. MeCP2 deficiency is associated with reduced levels of tubulin acetylation and can be restored using HDAC6 inhibitors. J Mol Med (Berl). 2015;93(1):63-72. doi:10.1007/s00109-014-1202-x

76. Strebl MG, Campbell AJ, Zhao WN, et al. HDAC6 brain map- ping with [(18)F]Bavarostat enabled by a Ru-mediated Deoxyfluorination. ACS Cent Sci. 2017;3(9):1006-1014. doi:10.1021/acscente.7b00274

77. Muotri AR, Marchetto MC, Coufal NG, et al. L1 retrotransposition in neurons is modulated by MeCP2. Nature. 2010;468(7322):443-446. doi:10.1038/nature09544

78. Yoo M, Carromeu C, Kwon O, Muotri A, Schachner M. L1 retrotransposition in humans is associated with autism spectrum disorder. Brain. 2017;140(9):2379-2391. doi:10.1093/brain/awx193

79. Lamore J, Ryder PV, Kim KY, et al. MeCP2 regulates the synaptic expression of a dysbindin-BLOC-1 network component in mouse spinal cord. Curr Res Com. 2017:49(3-4):504-510. doi:10.1007/s12974-017-1004-5

80. Li Y, Wang H, Muffat J, et al. Global transcriptional and translational repression in human-embryonic-stem-cell-derived Rett syn- drome neurons. Cell Stem Cell. 2013;13(4):446-458. doi:10.1016/j.stem.2013.09.001

81. Yu B, Yuan B, Dai JK, et al. Reversal of social recognition deficit in adult mice with MeCP2 duplication via normalization of MeCP2 in the medial prefrontal cortex. Neurosci Bull. 2020;36(6):570-584. doi:10.1007/s12264-020-00467-w
92. Li CH, Coffey EL, Dall’Agnese A, et al. MeCP2 links heterochromatic condensates and neurodevelopmental disease. Mol Ther Nucleic Acids. 2022;27:621-644. doi:10.1016/j.omtn.2021.12.030

93. Karagiannis P, Takahashi K, Saito M, et al. Induced pluripotent stem cells for the treatment of neurologic and psychiatric disorders. Neurobiol Dis. 2015;52(7573):430-434. doi:10.1016/j.nbd.2015.01.001

94. Lu H, Ash RT, He L, et al. Loss and gain of MeCP2 cause similar hippocampal circuit dysfunction that is rescued by deep brain stimulation in a Rett syndrome mouse model. Neuron. 2016;91(4):739-747. doi:10.1016/j.neuron.2016.07.018

95. Garg SK, Lioy DT, Cheval H, et al. Systemic delivery of MeCP2 regulates activity-dependent Bdnf transcription, dendritic growth, and spine maturation in Rett mice. Brain Circ. 2020;2(3):141-145. doi:10.4103/2394-8108.192524

96. Huang M, Yang J, Li P, Chen Y. Embryo-engineered nonhuman primate models: Progress and gap to translational medicine. Research (Wash DC). 2021;2021:9898769. doi:10.34133/2021/9898769

97. Amin ND, Pasca SP. Building models of brain disorders with three-dimensional organoids. Nature. 2018;100(2):389-405. doi:10.1016/j.neuron.2018.10.007

98. Vashi N, Justice MJ. Treating Rett syndrome: from mouse models to human therapies. Mamm Genome. 2019;30(5-6):90-110. doi:10.1007/s00335-019-09793-5

99. Amenduni M, De Filippis R, Cheung AY, et al. iPS cells to model CDKL5-related disorders. Eur J Hum Genet. 2011;19(12):1246-1255. doi:10.1038/ejhg.2011.131

100. Djuric U, Cheung AYL, Zhang W, et al. MECP2e1 isoform mutation affects the form and function of neurons derived from Rett syndrome patient iPSC cells. Neurobiol Dis. 2015;76:37-45. doi:10.1016/j.nbd.2015.01.001

101. Ananiev G, Williams EC, Li H, Chang Q. Isogenic pairs of wild type and mutant induced pluripotent stem cell (iPSC) lines from Rett syndrome patients as in vitro disease model. PLoS One. 2011;6(9):e25255. doi:10.1371/journal.pone.0025255

102. Huang M, Yang J, Li P, Chen Y. Embryo-engineered nonhuman primate models: Progress and gap to translational medicine. Research (Wash DC). 2021;2021:9898769. doi:10.34133/2021/9898769

103. Ananiev G, Williams EC, Li H, Chang Q. Isogenic pairs of wild type and mutant induced pluripotent stem cell (iPSC) lines from Rett syndrome patients as in vitro disease model. PLoS One. 2011;6(9):e25255. doi:10.1371/journal.pone.0025255

104. Amenduni M, De Filippis R, Cheung AY, et al. iPS cells to model CDKL5-related disorders. Eur J Hum Genet. 2011;19(12):1246-1255. doi:10.1038/ejhg.2011.131

105. Djuric U, Cheung AYL, Zhang W, et al. MECP2e1 isoform mutation affects the form and function of neurons derived from Rett syndrome patient iPSC cells. Neurobiol Dis. 2015;76:37-45. doi:10.1016/j.nbd.2015.01.001

106. Chin EW, Marcy G, Yoon SI, et al. Choline ameliorates disease phenotypes in human iPSC models of Rett syndrome. Neurobiol Dis. 2015;52(2):255-269. doi:10.1016/j.nbd.2015.01.001

107. Li CH, Coffey EL, Dall’Agnese A, et al. MeCP2 links heterochromatin condensates and neurodevelopmental disease. Nature. 2020;586(7829):440-443. doi:10.1038/s41586-020-2574-4

108. Karagiannis P, Takahashi K, Saito M, et al. Induced pluripotent stem cells and their use in human models of disease and development. Physiol Rev. 2019;99(1):79-114. doi:10.1152/physrev.00039.2017

109. Haase FD, Coorey B, Riley L, Cantrill LC, Tam PPL, Gold WA. Preclinical investigation of Rett syndrome using human stem cell-based disease models. Front Neurosci. 2021;15:698812. doi:10.3389/fnins.2021.698812

110. Gomes AR, Fernandes TG, Cabral JMS, Diogo MM. Modeling Rett syndrome with human pluripotent stem cells: mechanistic outcomes and future clinical perspectives. Int J Mol Sci. 2021;22(7):3751. doi:10.3390/ijms22073751

111. Clevers H. Modeling development and disease with organoids. Cell. 2016;165(7):1586-1597. doi:10.1016/j.cell.2016.05.082

112. Pasca SP. The rise of three-dimensional human brain cultures. Nature. 2018;553(7689):437-445. doi:10.1038/nature25032

113. Amin ND, Pasca SP. Building models of brain disorders with three-dimensional organoids. Neuron. 2018;100(2):389-405. doi:10.1016/j.neuron.2018.10.007

114. Vashi N, Justice MJ. Treating Rett syndrome: from mouse models to human therapies. Mamm Genome. 2019;30(5-6):90-110. doi:10.1007/s00335-019-09793-5

115. Amenduni M, De Filippis R, Cheung AY, et al. iPS cells to model CDKL5-related disorders. Eur J Hum Genet. 2011;19(12):1246-1255. doi:10.1038/ejhg.2011.131

116. Djuric U, Cheung AYL, Zhang W, et al. MECP2e1 isoform mutation affects the form and function of neurons derived from Rett syndrome patient iPSC cells. Neurobiol Dis. 2015;76:37-45. doi:10.1016/j.nbd.2015.01.001

117. Chin EW, Marcy G, Yoon SI, et al. Choline ameliorates disease phenotypes in human iPSC models of Rett syndrome. Neurobiol Dis. 2015;52(2):255-269. doi:10.1016/j.nbd.2015.01.001

118. Ohashi M, Korsakova E, Allen D, et al. Loss of MECP2 leads to activation of P53 and neuronal senescence. Stem Cell Reports. 2018;10(5):1453-1463. doi:10.1016/j.stemcr.2018.04.001

119. de Souza JS, Ferreira DR, Herai R, et al. Altered gene expression of thyroid hormone transporters and deiodinases in iPSC MeCP2-knockout cells-derived neurons. Mol Neurobiol. 2019;56(12):8277-8295. doi:10.1007/s12035-019-01645-2

120. Sharma P, Mesci P, Carromeu C, et al. Exosomes regulate neurogenesis and circuit assembly. Proc Natl Acad Sci USA. 2019;116(32):16086-16094. doi:10.1073/pnas.1902513116

How to cite this article: Lu S, Chen Y, Wang Z. Advances in the pathogenesis of Rett syndrome using cell models. Anim Models Exp Med. 2022;5:532-541. doi: 10.1002/ame2.12236