PROOF OF A CONJECTURE OF DAVILA AND KENTER REGARDING A LOWER BOUND FOR THE ZERO FORCING NUMBER IN TERMS OF GIRTH AND MINIMUM DEGREE

RANDY DAVILA1 AND THOMAS KALINOWSKI2 AND SUDEEP STEPHEN2

ABSTRACT. In this note, we study a dynamic coloring of vertices in a simple graph G. In particular, one may color an initial set of vertices black, with all other vertices white. Then, at each discrete time step, a black vertex with exactly one white neighbor will force its white neighbor to become black. The initial set of black vertices is called a zero forcing set if by iterating this aforementioned process, all of the vertices in G become black. The zero forcing number of G is the cardinality of a minimum zero forcing set in G, and is denoted by $Z(G)$. Davila and Kenter [Bounds for the zero forcing number of a graph with large girth. Theory and Applications of Graphs, 2(2) (2015)] conjectured that the zero forcing number satisfies $Z(G) \geq (g - 3)(\delta - 2) + \delta$ where g and δ denote the girth and the minimum degree of the graph, respectively. This conjecture has been proven for graphs with girth $g \leq 10$. In this note, we prove it for all graphs with girth $g \geq 11$ and for all values of $\delta \geq 2$, thereby settling the conjecture.

1. Introduction

For a two-coloring of the vertex set of a simple graph $G = (V, E)$ consider the following color-change rule: a white vertex u is converted to black if it is the only white neighbor of some black vertex v. We call such a black vertex v a forcing vertex and say v forces u. Given a two-coloring of G, the derived set is the set of black vertices obtained by applying the color-change rule until no more changes are possible. A zero forcing set for G is a subset of vertices $S \subseteq V$ such that if initially the vertices in S are colored black and the remaining vertices are colored white, then the derived set is the complete vertex set V. The minimum cardinality of a zero forcing set for the graph G is called the zero forcing number of G, denoted by $Z(G)$. This concept was introduced by the AIM Minimum Rank – Special Graphs Work Group in [3] as a tool to bound the minimum rank of matrices associated with the graph G. Since its introduction the zero-forcing number has been studied as an interesting graph invariant with various applications [4, 5, 6, 9, 11, 12, 14]. Moreover, it has been established that the zero forcing problem is NP-complete [11], which motivates the search for easily computable bounds for $Z(G)$.
Graph Terminology. For the entirety of this note we will restrict ourselves to undirected finite simple graphs. Let $G = (V, E)$ be a graph. We will denote the order and size of G by $n = |V|$ and $m = |E|$, respectively. Two vertices $v, w \in V$ will be called neighbors, or adjacent vertices, whenever $vw \in E$. The *open neighborhood* of $v \in V$ is the set of neighbors of v, denoted by $N(v) = N_G(v)$, whereas the *closed neighborhood* of v is $N[v] = N_G[v] = N_G(v) \cup \{v\}$. The *degree* of $v \in V$ is the cardinality of its open neighborhood, and is denoted by $\deg_G(v) = |N(v)|$. The maximum and minimum vertex degrees in G are denoted by $\Delta(G)$ and $\delta(G)$, respectively. The *distance* $\text{dist}_G(u, v)$ between two vertices u and v in a graph G is the length of the shortest path between u and v. A cycle of length ℓ is denoted as C_ℓ.

Given a set of vertices $S \subseteq V$, the open neighborhood of S is defined as $N(S) = N_G(S) = \bigcup_{v \in S} N(v)$. The closed neighborhood of S is defined as $N[S] = N_G[S] = N(S) \cup S$. The girth of G, denoted $g = g(G)$, is the size of a smallest cycle which is contained in G as a subgraph.

Necessary Tools. The maximum number of edges in a simple graph of order n and girth at least $\ell + 1$ is denoted by $\text{ex}(n; \{C_3, C_4, \ldots, C_\ell\})$, often referred to as *extremal function*. The following theorem will be essential for the proof of our main result.

Theorem 1. [2 Theorem 1] Let $\ell \geq 4$ and $\ell + 1 \leq n \leq 2\ell$ be integers. Then

$$
\text{ex}(n; \{C_3, C_4, \ldots, C_\ell\}) = \begin{cases}
n & \text{if } \ell + 1 \leq n \leq \lfloor 3\ell/2 \rfloor, \\
n + 1 & \text{if } \lfloor 3\ell/2 \rfloor + 1 \leq n \leq 2\ell - 1, \\
n + 2 & \text{if } n = 2\ell.
\end{cases}
$$

This statement will be used in the form of the following corollaries.

Corollary 1. For $g \geq 11$, $\text{ex}(g - 2, \{C_3, C_4, \ldots, C_{g-6}\}) = \begin{cases}
g - 1 & \text{for } g \in \{11, 12, 13\}, \\
g - 2 & \text{for } g \geq 14.
\end{cases}$

Corollary 2. For $g \geq 11$, $\text{ex}(g - 2, \{C_3, C_4, \ldots, C_{g-4}\}) = g - 2$.

2. **Main Result**

In this section, we prove the following conjecture posed by Davila and Kenter [8].

Conjecture 1. [8] If G is a graph with girth $g \geq 3$ and minimum degree $\delta \geq 2$, then

$$
Z(G) \geq \delta + (\delta - 2)(g - 3).
$$

Gentner et al. [11] and Gentner and Rautenbach [12] and Davila and Henning [7] have shown that inequality (1) is true for girth $g \leq 10$. Our aim in this note is to prove that (1) is true for all graphs with girth $g \geq 11$ and minimum degree $\delta \geq 2$. By doing so, we settle the conjecture. We state our main result as follows.

Theorem 2. Let G be a graph with girth $g \geq 11$ and minimum degree $\delta \geq 2$. Then (1) is true.

Remark 1. Note that an alternative proof of Conjecture [1] which does not depend on the previous results has recently appeared in [10].
Proof. Let \(G \) be a graph with minimum degree \(\delta \geq 2 \) and girth \(g \geq 11 \). Suppose \(S \subseteq V \) is a zero forcing set with cardinality \(|S| \leq \delta + (\delta - 2)(g - 3) - 1 \). Let \(x_1, \ldots, x_t \) be a chronological list of forcing vertices resulting in all of \(\bar{V} \) becoming black starting with \(S \) as an initial set of black vertices. Let \(\bar{S} = V \setminus S \) be the set of initially white vertices. Since \(G \) is a graph with minimum degree \(\delta \geq 2 \), and girth \(g \geq 5 \), we have \(n \geq g(\delta - 1) \). Hence, we obtain the chain of inequalities

\[
|\bar{S}| = n - |S| \geq g(\delta - 1) - (\delta - 2)(g - 3) - \delta + 1 = g + 2\delta - 5 \geq g - 1.
\]

We next set \(X = \{x_1, \ldots, x_{g-2}\} \), and slightly modifying the notation of \([7]\), we set \(S_1 = S \cap N(x_1) \) and

\[
S_i = S \cap \left(N(x_i) \setminus \bigcup_{j=1}^{i-1} N[x_j] \right) \quad \text{for } i = 2, \ldots, g - 2,
\]

\[
S_X^* = \bigcup_{i=1}^{g-2} S_i,
\]

\[
S_X = X \cap (S \setminus S_X^*).
\]

Then \(S_X^* \) and \(S_X \) are disjoint subsets of \(S \), and consequently

\[
(2) \quad |S| \geq |S_X| + |S_X^*|.
\]

Since \(x_1 \in S \cap X \), and \(x_1 \notin S_i \) for all \(i \in [g - 2] \), we have \(x_1 \in S_X \) and thus \(|S_X| \geq 1 \). Let \(H = (X, E') \), be the graph with vertex set \(X \) and edge set

\[
E' = \{\{x_i, x_j\} : \{x_i, x_j\} \in E(G) \text{ or } v \in N(x_i) \cap N(x_j) \text{ for some } v \in V \setminus X\}.
\]

Let \(m' = |E'| \) be the size of \(H \).

Lemma 1. \(|S_X^*| \geq (\delta - 1)(g - 2) - m' \).

Proof. Since \(x_i \) is a forcing vertex in step \(i \), we have

\[
|N(x_i) \cap \left(S \cup \bigcup_{j=1}^{i-1} N[x_j] \right)| = \deg_G(x_i) - 1.
\]

Note that for every edge \(\{x_j, x_i\} \in E' \) with \(j < i \), we have either

- \(\{x_j, x_i\} \in E \) and \(N(x_i) \cap N(x_j) = \emptyset \), or
- \(\{x_j, x_i\} \notin E \) and \(|N(x_i) \cap N(x_j)| = 1 \).

This implies

\[
|N(x_i) \cap \bigcup_{j=1}^{i-1} N[x_j]| \leq \{|x_j : j < i \text{ and } \{x_i, x_j\} \in E'\}|,
\]

and consequently

\[
|S| = \left| S \cap \left(N(x_i) \setminus \bigcup_{j=1}^{i-1} N[x_j] \right) \right| \geq \deg_G(x_i) - 1 - \{|x_j : j < i \text{ and } \{x_i, x_j\} \in E'\}|.
\]
Using the fact that the sets S_i are pairwise disjoint, we obtain

$$|S^*_X| = \sum_{i=1}^{g-2} |S_i| \geq \sum_{i=1}^{g-2} (\deg_G(x_i) - 1 - |\{x_j : j < i \text{ and } \{x_i, x_j\} \in E\}|) \geq (\delta - 1)(g - 2) - m',$$

where we used $\sum_{i=1}^{g-2} |\{x_j : j < i \text{ and } \{x_i, x_j\} \in E\}| = m'$. \hfill \square

Lemma 2. If $x \in X \setminus S_X$, then $\text{dist}_G(x, x') = 1$ for some $x' \in X$.

Proof. If $x \in X \setminus S_X$, then $x \in \tilde{S}$ or $x \in S^*_X$. If $x \in \tilde{S}$, then at some point in the forcing process a vertex $x' \in X$ forces x, which implies $\text{dist}_G(x, x') = 1$. If $x \in S^*_X$, then x belongs to some S_i, $i \in [g - 2]$, which implies $x \in N(x_i)$, i.e., $\text{dist}_G(x, x_i) = 1$. \hfill \square

Next observe that Lemma[1] inequality[2], and our assumption on the cardinality of S, together provide the inequality

$$(\delta - 2)(g - 3) + \delta - 1 \geq |S| \geq |S_X| + |S^*_X| \geq |S_X| + (\delta - 1)(g - 2) - m'$$

which implies

$$m' \geq g - 3 + |S_X|.$$

Note that the girth of H is at least $g/2$, since every edge in H corresponds to an edge or a path of length 2 in G, and thus

$$m' \leq \text{ex}(g - 2, \{C_3, \ldots, C_{[(g-1)/2]}\}).$$

Since $g - 2 \leq 2[(g-1)/2]$, it follows by Theorem[1] that $m' \leq g$. Thus, $m' \in \{g - 2, g - 1, g\}$. That is, we have three separate cases to consider. We handle these cases next.

Case 1: If $m' = g - 2$ then $|S_X| = 1$, hence $|X \setminus S_X| = g - 3$ and by Lemma[2] at least $g - 3$ edges of H correspond to edges of G. Consequently, a cycle of length k in H leads to a cycle of length at most $k + 1$ in G (as there is at most one edge in the cycle that corresponds to a path of length two in G). Therefore, H does not contain any cycle, hence $m' \leq g - 3$, which is the required contradiction.

Case 2: If $m' = g - 1$ then $|S_X| \leq 2$, hence $|X \setminus S_X| \geq g - 4$ and by Lemma[2] at least $g - 4$ edges of H correspond to edges of G. Consequently, a cycle of length k in H leads to a cycle of length at most $k + 3$ in G, and therefore the girth of H is at least $g - 3$. By Corollary[2] this implies $m' \leq g - 2$, which is the required contradiction.

Case 3: If $m' = g$ then $|S_X| \leq 3$, hence $|X \setminus S_X| \geq g - 5$ and by Lemma[2] at least $g - 5$ edges of H correspond to edges of G. Consequently, a cycle of length k in H leads to a cycle of length at most $k + 5$ in G, and therefore the girth of H is at least $g - 5$. By Corollary[1] this implies $m' \leq g - 1$ which is the required contradiction.

This completes the proof of the theorem, and the conjecture presented in [8] is resolved in the affirmative. \hfill \square

3. Concluding remarks

Let $f(g, \delta)$ denote the minimum zero forcing number over all graphs of girth g and minimum degree δ. Theorem[2] provides a lower bound for f, and from [8] we know that this bound is tight in the following cases:

- $f(g, 2) = 2$ for all $g \geq 3$ (the g-cycle),
• $f(3, \delta) = \delta$ for all $\delta \geq 1$ (the complete graph $K_{\delta+1}$),
• $f(4, \delta) = 2\delta - 2$ for all $\delta \geq 2$ (the complete bipartite graph $K_{\delta,\delta}$),
• $f(4, 3) = 4$ (the 3-cube),
• $f(5, 3) = 5$ (the Petersen graph),
• $f(6, 3) = 6$ (the Heawood graph).

Consequently, the smallest open cases are the following.

Question 1. We know $7 \leq f(7, 3) \leq 8$ and $8 \leq f(8, 3) \leq 10$. Can we close these gaps?

Question 2. We know $f(5, 4) \geq 8$. What is the best upper bound we can come up with?

In general the bound $f(g, \delta) \geq \delta + (g-3)(\delta-2)$ is not sharp. For instance, using essentially the same argument as in the proof of Theorem 2, one can prove $f(g, \delta) \geq \delta + (g-3)(\delta-2) + 1$ for $g \geq 14$, $\delta \geq 3$, and more generally, for large values of δ and g the exponential lower bound established in [13] is stronger than the bound from the present note. This motivates the following questions.

Question 3. What are upper bounds for $f(g, \delta)$?

Question 4. What can be said about the asymptotic behaviour of $f(g, \delta)$?

References

[1] Ashkan Aazami, *Hardness results and approximation algorithms for some problems on graphs*, Ph.D. thesis, University of Waterloo, 2008, [uwspace.uwaterloo.ca/handle/10012/4147].

[2] Encarnación Abajo and Ana Rosa Diánez, *Exact value of ex(n; \{C_3, \ldots, C_s\}) for n \leq \lfloor 25(s-1)/8 \rfloor*, Discrete Applied Mathematics **185** (2015), 1–7.

[3] AIM Minimum Rank – Special Graphs Work Group, *Zero forcing sets and the minimum rank of graphs*, Linear Algebra and its Applications **428** (2008), no. 7, 1628–1648.

[4] Francesco Barioli, Wayne Barrett, Shaun M Fallat, H Tracy Hall, Leslie Hogben, Bryan Shader, P van den Driessche, and Hein Van Der Holst, *Zero forcing parameters and minimum rank problems*, Linear Algebra and its Applications **433** (2010), no. 2, 401–411.

[5] Francesco Barioli, Wayne Barrett, Shaun M Fallat, H Tracy Hall, Leslie Hogben, Bryan Shader, Pauline van den Driessche, and Hein Van Der Holst, *Parameters related to tree-width, zero forcing, and maximum nullity of a graph*, Journal of Graph Theory **72** (2013), no. 2, 146–177.

[6] Avi Berman, Shmuel Friedland, Leslie Hogben, Uriel G Rothblum, and Bryan Shader, *An upper bound for the minimum rank of a graph*, Linear Algebra and its Applications **429** (2008), no. 7, 1629–1638.

[7] Randy Davila and Michael Henning, *The forcing number of graphs with a given girth*, arXiv [1610.08433] 2016.

[8] Randy Davila and Franklin Kenter, *Bounds for the zero forcing number of graphs with large girth*, Theory and Applications of Graphs **2** (2015), no. 2, Article 1.

[9] Christina J Edholm, Leslie Hogben, Joshua LaGrange, and Darren D Row, *Vertex and edge spread of zero forcing number, maximum nullity, and minimum rank of a graph*, Linear Algebra and its Applications **436** (2012), no. 12, 4352–4372.

[10] Maximilian Fürst and Dieter Rautenbach, *A short proof for a lower bound on the zero forcing number*, arXiv [1705.08365] 2017.

[11] Michael Gentner, Lucia D Penso, Dieter Rautenbach, and Uéverton S Souza, *Extremal values and bounds for the zero forcing number*, Discrete Applied Mathematics **214** (2016), 196–200.

[12] Michael Gentner and Dieter Rautenbach, *Some bounds on the zero forcing number of a graph*, arXiv [1608.00747] 2016.

[13] Thomas Kalinowski, Nina Kamčev, and Benny Sudakov, *Zero forcing number of graphs*, arXiv [1705.10391] 2017.
[14] Leihao Lu, Baoyindureng Wu, and Zixing Tang, *Proof of a conjecture on the zero forcing number of a graph*, Discrete Applied Mathematics **213** (2016), 233–237.