Original Article

10-Gingerol as an inducer of apoptosis through HTR1A in cumulus cells: In-vitro and in-silico studies

Kiptiyah Kiptiyah, D.Sc a,*, Widodo Widodo, Ph.D b, Gatot Ciptadi, D.Sc c, Aulanni’am Aulanni’am, DVM d, Mohammad A. Widodo, Ph.D c and Sutiman B. Sumitro, D.Sc b

* Department of Biology, Faculty of Sciences and Technology, Maulana Malik Ibrahim Islamic State University of Malang, Indonesia
b Department of Biology, Faculty of Sciences, Brawijaya University, Malang, Indonesia
c Department of Pharmacology, Faculty of Medicine, Brawijaya University, Malang, Indonesia
d Department of Chemistry, Faculty of Sciences, Brawijaya University, Malang, Indonesia
e Department of Reproduction, Faculty of Husbandry, Brawijaya University, Malang, Indonesia

Received 19 December 2016; revised 17 May 2017; accepted 21 May 2017; Available online 23 June 2017

Abstract

Objectives: Cumulus cells play a crucial role as essential mediators in the maturation of ova. Ginger contains 10-gingerol, which induces apoptosis in colon cancer cells. Based on this hypothesis, this study aimed to determine whether 10-gingerol is able to induce apoptosis in normal cells, namely, cumulus cells.

Methods: This study used an in vitro analysis by culturing Cumulus cells in M199 containing 10-gingerol in various concentrations (12, 16, and 20 μM) and later detected early apoptotic activity using an Annexin V-FITC detection kit.

Result: The in vitro data revealed that the number of apoptosis cells increased along with the period of incubation as follows: 12 μM (63.71% ± 2.192%); 16 μM (74.51% ± 4.596%); and 20 μM (78.795% ± 1.435%). The substance 10-gingerol induces apoptosis in cumulus cells by inhibiting HTR1A functions and inactivating GSK3B and AKT-1.

Conclusions: These findings indicate that further examination is warranted for 10-gingerol as a contraception agent.

Keywords: 10-Gingerol; Apoptosis; Cumulus cells; HTR1A; In silico; In vitro

© 2017 The Authors. Production and hosting by Elsevier Ltd on behalf of Taibah University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Cumulus cells are a group of granulosa cells that surround oocytes and support the maturation process. Cumulus cells play a crucial role in modulating signals, nourishing bioactive nutrients, and transporting them through gap junctions for oocyte maturation stimuli. The role of the cumulus cell is an essential mediator for ovulation stimuli. Prevention of ovulation is a major target mechanism of oral contraceptives. The use of these contraceptives often results in side effects for their acceptor, from general conditions, such as obesity, to serious cases, such as breast, cervical, endometrial, or colorectal cancer. Therefore, we need to uncover an agent, such as ginger, which contains 10-gingerol, as a candidate contraception agent.

Since ancient times, ginger has been used as a traditional drug without side effects. The herbal drug ginger (Zingiber officinale Roscoe) is rich in various pharmacological properties, including antioxidant, anti-inflamatory, and anti-cancer activities through the activation of p-53 to induce apoptosis. Bioactive compounds of ginger induce apoptosis to suppress ovarian cancer cell proliferation. Terpenoid of ginger alters the Bax/Bcl-2 ratio to induce apoptosis in MDA-MB-231 human breast cancer cells followed by a down regulation of cellular pro-caspase 3. A minor bioactive component in fresh ginger is shogaols, which induces apoptosis through the up-regulation of p-53 and the down-regulation of B cell lymphoma-2 (Bcl-2) followed by cytochrome Complex (cyt c) release, perturbation of apoptosis proteins and activation of caspase 9 and 3. Fresh ginger also contains gingerols, such as 6-gingerol, 8-gingerol, and 10-gingerol, which are major biologically active components.

6-Gingerol has various pharmacological functions and exhibits anti-proliferative and pro-apoptotic activities. In MDA-MB-231 breast cancer cells, 8-gingerol and 10-gingerol are pro-apoptotic and anti-proliferative. In HL-60 human leukaemia cells, 10-gingerol is anti-carcinogenic and kills cells at concentrations of 10–100 μM, which is better than 6-gingerol. In HCT 116 and HT 29 colon cancer cell lines, the bioactive molecules in ginger act as anti-tumour agents by inducing apoptosis. In HCT 116 colon cancer cells, 10-gingerol inhibits cell proliferation through the induction of mitochondrial apoptosis. Recently, a study reported that 10-gingerol was more potent than 6-gingerol and 8-gingerol for the inhibition of mammary carcinoma cell growth through the induction of apoptosis.

The bioactive compound in ginger can interact with a receptor of serotonin, HTR1A. HTR1A has anti-apoptotic properties and is implicated in cell survival. HTR1A is found in cumulus cells and plays a crucial role in the regulation of cell proliferation, which is inhibited by an antagonist of HTR1A. HTR1A functions are disturbed by a ligand inhibitor, H1C1. Gingerols are major compounds in ginger, which exhibit anti-cancer effects through degradation of the GSK3B pathway. The GSK3B has positive functions, which are related to the regulation of numerous cellular functions, including cell growth and cell cycle, whereas the negative functions of GSK3B are related to the regulation of the expression of p-53 to induce apoptosis.

10-Gingerol inactivates AKT to regulate down regulate the cell cycle process in MDA-MB-231 breast cancer cells and inhibit their proliferation. The AKT inactivation is associated with cell death. AKT is a serine/threonine-specific protein kinase that is a mediator through the PI3K/AKT pathway in biological processes, such as cell proliferation, survival cell, cell cycle, and apoptosis. Apoptosis is the process of programmed cell death, which can occur either through the extrinsic pathway, which is characterized as death receptor-mediated, and the intrinsic pathway, which is influenced by members of the bcl family (bax and bel-2) to act as pro- or anti-apoptotic factors depend on the regulatory proteins.

The activation of pro-apoptotic proteins, such as FOXO-1, FOXO-3, and PTEN, and the inactivation of anti-apoptotic proteins, such as ILK, MDM2, NOS3, mTOR, and RICTOR, leads to apoptosis.

During apoptosis, phospholipid phosphatidylserine residues are translocated from the inner to the outer leaflet of the plasma membrane. In this case, phosphatidylserine binds to the protein Annexin-V when it is labelled with a fluorescent FITC tag, which detects apoptosis. Increased apoptosis in cumulus cells is an indicator that decreases the quality of the oocyte, which contributes to a decrease in the percentage of oocyte maturation. The oocytes maturation rate is higher in oocytes with the cumulus cells than in oocytes without the cumulus cells. The relationship between the cumulus cells and the oocyte is important, not only in oocyte maturation but also for secreting chemotactic factors that guide the spermatozoon to the oocyte, which increases the chance of fertilization.

To gain information about its side effects when it is applied for cancer treatment, we attempted to investigate the effects of 10-gingerol, a bioactive compound of ginger on cumulus cells. While the anti-carcinogenic property of 10-gingerol has been reported previously, this study is the first to investigate the effects of 10-gingerol on normal cumulus cells.

Materials and Methods

These studies obtained ethical approval from the Health Research Ethics Committee at the Medical Faculty of Brahijaya University in Malang, East Java, Indonesia No. 588/EC/KEPK/11/2014.

Isolation of cumulus cells

The ovaries of a goat were obtained from an abattoir and were saved in 0.9% NaCl at 34–37 °C. The cumulus cells were released from 3 to 5 mm ovarian follicles using a 21 Gx1.5 needle, were diluted with 1 mL of M199 (Sigma) and were centrifuged for 5 min. The supernatant was put aside, and then, 1 mL of fresh M199 (Sigma) was added.

Cumulus cell culture and harvesting

The cumulus cells were cultured using M199 in four composition mediums consisting of 20 mM high D-glucose (Merck) as a control and three combinations (i.e., the high glucose medium contained 10-gingerol (Aphios) in various
concentrations (12, 16, and 20 μM) as treatments. The cells were incubated for 24, 48, 72, and 96 h in a humidified atmosphere of 5% CO₂ at 37 °C. The cumulus cells were harvested using trypsin–EDTA (Sigma).

Detection of apoptosis in cumulus cells

The cumulus cells were harvested, washed using cold Biolegend cell staining buffer, and resuspended in Annexin V binding buffer, and 100 μL of the cell suspension was transferred and added to 5 μL of fluorochromes into the conjugated Annexin V–FITC. Then, 10 μL of the PI solution was added, and it was incubated for 15 min at 25 °C in the dark room. Next, we added 400 μL of the Annexin V binding buffer and analysed the samples using Flow Cytometry. The data are presented as dot plots (Annexin V–FITC plotted against PI staining). Apoptosis was determined based on the Annexin V–FITC positive cumulus cells (i.e., UR (upright) + LR (low right)).

Prediction target and pathway analysis of 10-gingerol using a bioinformatics approach

The protein targets of 10-gingerol were assessed using SwissTarget (http://swisstargetprediction.ch). We found HTR1A as a protein target of the compound (at 90% probability). The three-dimensional structure (3D) of HTR1A was modelled using homology modelling (SWISS-MODEL) based on a protein template (PDB 2JOA). The 3D model was used to examine the binding between HTR1A and 10-gingerol. The interaction between the both molecules was analysed using AutoDock Vina in the PyRx 0.8 Program. The results of the docking were visualized using BIVOIA 1 Discovery Studio 2016-Accelrys (San Diego, CA, USA). Furthermore, we explored the function of HTR1A through the STRING database (http://string-db.org/newstring).

Statistical analysis

This experiment consisted of 16 combination treatments, and all treatments were performed at least two times. The statistical significance of apoptosis in the cumulus cells was determined using a two-way analysis of variance (ANOVA) test using the SPSS 16 programme. The results were presented as the mean ± standard deviation (SD) in the histogram.

Results

The result of the *in vitro* study showed that apoptosis in the cumulus cells was minimal and was statistically significant only at the end of the 96 h incubation period (Figure 1A4, Table 1, Figure 2). The apoptosis percentage in the cumulus cells increased with the 10-gingerol treatment along with the period of incubation. In this case, this was proven by the treatments that were described in the data in Figure 1D1–D4, Table 1, and Figure 2. The data revealed that the high glucose medium containing 20 μM of 10-gingerol increased the apoptosis percentage of the cumulus cells for all the tested incubation periods as follows: 24 h (16.07% ± 0.36%) < 48 h (32.01% ± 2.33%) < 72 h (53.69% ± 2.40%) < 96 h (78.8% ± 1.44%) as well as in the highest incubation period (96 h), which is presented in the data in Figure 1B4, C4, D4, Table 1, and Figure 2 and revealed that 12 μM (63.71% ± 2.19%) < 16 μM (74.51% ± 4.66%) < 20 μM (78.8% ± 1.44%).

The results of the analysis using the Discovery Studio Visualizer revealed that 10-gingerol (Figure 3A) binds to its protein target HTR1A, which binds to ILE 385, GLY 384, ILE 383, and ARG 386 by hydrogenic binding and forms alky bonds to ILE 415 and ARG 386. In addition, 10-gingerol also forms hydrophobic bond and binds to TYR 382, ARG 386, ILE 418, GLU 416, LYS 381, ILE 452, and MET 387 (Figure 3B) with a hydrophobicity between −3 and 3 (Figure 3C), which indicates that 10-gingerol binds to hydrophobic active sites.

The result of the exploration using the STRING database (http://string-db.org/newstring) suggested that HTR1A functions are linked to various biological process pathways, including regulation of the apoptotic process, the cell cycle process, and the regulation of cell proliferation. The presence of 10-gingerol inhibits HTR1A functions, inactivate GSK3β and AKT-1 to induce apoptosis, and inhibits the cell cycle process and the proliferation of cumulus cells by activating pro-apoptotic proteins, such as FOXO1, FOXO3, and PTEN and inactivating anti-apoptotic proteins, such as NOS3, ILK, MD2M, mTOR, and RICTOR (Figure 4).

Discussion

Details of apoptosis in cumulus cells have been investigated. However, the role of 10-gingerol to induce apoptosis that involves its protein target HTR1A remains unclear. Glucose represents a critical physiological function that provides energy to support cumulus cell proliferation (Figure 1A1–A4, Table 1, Figure 2). Previous researchers have reported that high glucose concentrations promote the proliferation of cells and significantly increase the population of the cells. Higher glucose concentrations produce higher cell populations than lower glucose concentrations. A high glucose concentration (10–50 mM) promotes cell proliferation without any effect on viability. The *in-silico* study predicted that apoptosis in the cumulus cells, by 10-gingerol, occurred through diffusion on the surface of the cumulus cell membrane and inhibited its protein target or receptor, HTR1A. Furthermore, 10-gingerol crossed the cumulus cell’s membrane and damaged the mitochondrial membrane, releasing cytochrome C from the mitochondria to go into the cytosol. Ziegler & Groscurth reported that, in the cytosol, cytochrome C activated pro-caspase 9, 3, 6, and 7. These caspases led to apoptosis in the cumulus cells. In addition, a previous study reported that 10-gingerol is a hydrophobic compound and possesses anti-carcinogenic properties that are better than other gingerols. 10-gingerol, a lipophilic compound, inhibits the proliferation of cancer cells and decreases the viability of tumour cell lines, and 10-gingerol induces apoptosis in a cancer cell.

10-gingerol is a hydrophobic compound that acts as an inhibitor for HTR1A functions (Figure 3) to induce apoptosis (Figure 4). Previous researchers report that ginger possesses phenolic compounds that can interact with HTR1A, HTR1A stimulates numerous biological processes, such as cell proliferation, growth regulation, anti-apoptosis.
Figure 1: Percentage of apoptotic cumulus cells resulting from the 10-gingerol treatment for an incubation period of 24–96 h. The cumulus cells were cultured using 20 mM high glucose medium and high glucose medium contained various concentrations of 10-gingerol for an incubation period of 24–96 h. The induction of apoptotic cumulus cells was investigated using an Annexin V-FITC apoptosis detection kit with a PI solution and was analysed by flow cytometry. The data were presented as dot plots (Annexin V-FITC plotted against PI staining). Apoptosis was determined based on the Annexin V-FITC positive cumulus cells, i.e., UR (Up-Right) + LR (Low-Right).

Table 1: Two-way ANOVA of the apoptosis percentage in the cumulus cells resulting from the 10-gingerol treatment over incubation periods of 24, 48, 72, and 96 h.

Treatments	Apoptosis percentage in the cumulus cells			
	24 h (Mean ± SD)	48 h (Mean ± SD)	72 h (Mean ± SD)	96 h (Mean ± SD)
20 mM glucose	8.60 ± 1.34^i	5.64 ± 0.04^m	5.04 ± 0.79^m	1.36 ± 0.13^a
20 mM glucose + 12 μM 10-gingerol	10.05 ± 1.64^i	21.78 ± 1.89^j	44.26 ± 2.91^f	63.71 ± 2.19^e
20 mM glucose + 16 μM 10-gingerol	12.77 ± 0.72^b	27.08 ± 1.15^b	49.14 ± 3.97^e	74.51 ± 4.60^b
20 mM glucose + 20 μM 10-gingerol	16.07 ± 0.36^i	32.01 ± 2.33^g	53.69 ± 2.40^d	78.80 ± 1.44^a

Mean ± SD with different letter means that there is a significant difference (p < 0.05), and if the letter are the same, there is not a significant difference (p > 0.05).
NF-κB pathway, modulating cell survival, controlling cell development, cell survival, and cell cycle progression. In contrast, the inactivation of HTR1A, by an inhibitor, disturbs the cell cycle process. The HTR1A that was applied in the in-silico study was for the anti-proliferation of ligands. In fact, HTR1A was also found in cumulus cells. The HTR1A acts as a pro-apoptosis agent through the negative role of GSK3B for p-53 expression regulation, which induces apoptosis through AKT inactivation by 10-gingerol and induces G1 phase arrest. The AKT inactivation is associated with cell death and decreases cell proliferation. The inhibition of the AKT pathway acts to enhance the activation of pro-apoptosis proteins, such as FOXOs as tumour suppressors, and their forced expression inhibits cell proliferation. FOXOs (FOXO1 and FOXO3) are important targets of AKT (Figure 4) that play a role in promoting cell growth inhibition and apoptosis by inducing the expression of multiple pro-apoptotic proteins, such as the Bc12, Fas ligand, and tumour necrosis factor-related apoptosis-inducing ligand, TRAIL. FOXO1 acts as a tumour suppressor, an anti-proliferative, and a pro-apoptotic gene that might lead to endothelial cell death. The activation of FOXO1 is involved in the regulation of apoptosis, cell proliferation arrest, and decreases cell viability in cervical cancer cell lines and during tumourigenesis. In addition, it acts as a tumour suppressor and function in the process of pro-apoptosis in the follicular granulosa cells of growing follicles. The expression of FOXO1 induces pro-apoptotic pathways and delays the G2/M transition. FOXO3 is a pro-apoptotic molecule that increases in follicular atresia. The inactivation of AKT increases FOXO3a, which is a subfamily of FOXO3 that functions to suppress tumour cell growth.

AKT inhibition suppresses cumulus cell expansion, and in pancreatic islet β-cells, it results in a dysfunction that leads to apoptosis through PTEN activation. PTEN is a tumour suppressor that induces apoptosis by activating caspase-3 and caspase-8, inhibiting cell proliferation, and increasing apoptosis. The activation of PTEN activates p53 and their interactions induce apoptosis through the Bax and caspase 3 pathways. PTEN and p53 also form a complex in the nucleus and induce the expression of tumour suppressors, resulting in apoptosis and the induction of cell cycle arrest at the G1 phase to inhibit cell proliferation.

Figure 2: The cumulus cells were cultured in 20 mM high glucose medium and high glucose medium containing various concentrations (12, 16, 20 μM) of 10-gingerol (10-G) over an incubation period of 24–96 h. Apoptotic cumulus cells were measured by flow cytometry. *p < 0.05 was significantly different from the control. The data are presented as the Mean ± SD.

Figure 3: Result of the visualization using BIOVIA Accelrys 2016 exhibits an interaction between 10-gingerol and HTR1A. The chemical structure of 10-gingerol (Qiu et al., 2015) as a ligand (A). The 10-gingerol (yellow) binds to HTR1A (grey) by hydrogenic, alkyl, and hydrophobic binding that involves some amino acids (B) in hydrophobicity –3 until 3 (C).
The inactivation of AKT inactivates anti-apoptosis proteins, such as NOS3, an enzyme that plays a crucial role in the production of NO. NO is indicated to protect against the effects of free radicals, DNA damage, and impair the tumour suppressor function of p53, which may cause cancer cell development. NO directly inhibits the activity of caspases to obstruct apoptosis by blocking cytochrome C release, increasing Bcl-2 expression, which controls mitochondrial permeability, and playing a role in tumour progression. The absence of AKT-1 enhances apoptosis as a result of the loss of eNOS, which is well known as NOS3. Lower levels of NOS3 result in lower levels of NO, which are associated with poorer cell survival. An altered intracellular generation of NO from NOS-3 induces cell death and arrests cell proliferation in tumour cells.

AKT inactivation suppresses ILK expression. ILK is a serine–threonine kinase that is involved in the regulation of cell proliferation. The knockdown of ILK expression induces growth inhibition and apoptosis in ovarian cancer cells. The inhibition of ILK in vivo results in decreased tumour growth through the induction of apoptosis, which induces cell-cycle arrest and proliferative defects. Our in-silico data provides evidence that gingerol is a small molecule inhibitor for the expression of ILK that induces apoptosis in cumulus cells (Figure 4).

Increasing apoptosis by 10-gingerol through HTR1A induced the inactivation of AKT and mTOR (Figure 4). The inactivation of both AKT activity and mTOR enhances the apoptotic cell death of granulosa cells, because mTOR is a serine/threonine kinase that plays a critical role as a growth factor in mammals. mTOR is a major downstream target of AKT that forms two functionally distinct complexes, which involve mTORC1 and mTORC2. mTORC1 is essential to control protein synthesis and cellular metabolism, while mTORC2 is essential to control cell viability. AKT inhibition, followed by mTORC1 blockage, contributes to anti-tumour responses. The down-regulation of mTORC2 facilitates apoptosis in breast cancer cells. The suppression of mTOR blocks G1 cell cycle progression and inhibits the proliferation of a lymphoma cell line. In addition, the inhibition of the AKT-mTOR pathway leads to the initiation of apoptosis and cell cycle G1 arrest in ovarian cancer cells, which accompanies cell death, resulting in anti-tumour effects.

Apoptosis in cumulus cells is significantly increased by 10-gingerol through HTR1A functions (Figure 3) to suppress RICTOR (Figure 4). RICTOR is a cytosolic protein that is recognized as a specific component of mTORC2, which functions to regulate cell proliferation. The loss of RICTOR prevents mTORC2 activation. In addition, the inhibition of RICTOR induces apoptosis to inhibit cell proliferation. Moreover, the loss of RICTOR in oocytes causes follicular apoptotic death, while the deletion

Figure 4: Result of the exploration of HTR1A functions involved in biological process pathways using the STRING database (http://string-db.org/newstring). The pathway analysis exhibited the regulation of apoptosis, cell cycle process, and proliferation by 10-gingerol through HTR1A in the cumulus cells.
of RICTOR in osteoblasts inhibits osteoblast bone formation.114 Furthermore, the suppression of RICTOR induces apoptosis in lung cancer cells.33

Apoptosis in the cumulus cells by 10-gingerol (Figure 1), through HTR1A, occurred by inhibiting MDM2 activity, which involved the blockade of AKT (Figure 4). The inhibition of AKT re-activates the promotion of p-53 function to block MDM2 activity,115–117 which, thus, induces the apoptotic response and G2/M cell cycle arrest.118 The inhibition of MDM2 results in the activation of p53 and the induction apoptosis through the activation of caspases 3, 7 and 9.98 The disruption of the p-53-MDM2 interaction activates the p-53 pathway, resulting in apoptosis,119 which is cytotoxic to the G1 phase arrest and the anti-apoptotic effect.120 The inactivation of AKT contributes to MDM2 depletion, which, thus, the results in increased apoptosis, cell cycle arrest, and anti-apoptotic effects.121

Conclusion

This study’s results indicate that 10-gingerol induces apoptosis and inhibits the cell cycle process and cell proliferation in cumulus cells through HTR1A, which inactivates the GSK3B protein and the AKT-1 protein. Consequently, this protein activates pro-apoptosis proteins, such as FOXO-1, FOXO-3, and PTEN, and inactivates anti-apoptosis proteins, such as ILK, MDM2, mTOR, NOS3, and RICTOR. Furthermore, ginger extract with 10-gingerol can be further utilized as an alternative contraceptive agent as it prevents oocyte maturation through the cumulus cells death.

Abbreviations: ARG, arginine; eNOS, endothelial nitric oxide synthase; FOXO, forkhead box; GLU, glutamine; GLY, glycine; GS3K, glycogen synthase kinase-3; HTR1A, 5-hydroxytryptamine receptor 1 A; ILE, ileusine; ILK, integrin-linked kinase; LYS, lysine; MDM2, murine double minute clone 2; MET, methionine; mTOR, mammalian target of rapamycin; mTORC1, mTOR complex 1; mTORC2, mTOR complex 2; NO, nitric oxide; NOS3, nitric oxide synthase 3; PTEN, phosphatase and tensin homologue delete on chromosome ten; RICTOR,rapamycin-insensitive companion of mTOR; TYR, tyrosine

Conflict of interest

The authors have no conflict of interest to declare.

Authors’ contributions

KK conceived, designed, and performed the experiment, provided research materials, collected, organised, analysed, and interpreted the data, wrote the paper and revised it to be published. WW conceived, designed, analysed, and interpreted the in-silico data, provided the in silico journal research, reviewed drafts of the paper to be submitted, and give the final approval of the version to be published. GC conceived and designed the in vitro experiment, provided information about the research materials, reviewed the drafts of the paper to be submitted, and gave the final approval of the version to be published. AA conceived and designed the in vitro study, reviewed the drafts of paper to be submitted, and gave the final approval of the version to be published. MAW conceived and designed the in vitro study, helped in data interpretation, reviewed the drafts of the paper, and gave the final approval of the version to be published. SBS conceived and designed the study, supervised the development of the work, helped in data interpretation, reviewed drafts of the paper, and gave the final approval of the version to be published.

Acknowledgements

Authors thank the Reproductive Biology Laboratory of Science and Technology in Maulana Malik Ibrahim Islamic State University of Malang, Chemical Technique in State Polytechnique of Malang, both the Molecular Physiology Laboratory in Medical Science Faculty and the Doctoral Programme of Biology Department of Brawijaya University in Malang, the abattoir in Malang Municipality and CV. Gamma Scientific Biolab in Malang of Indonesia. Funding was supplied by the National Educational Ministry of Indonesian Republic Government No. 708/H10.14/AK/2010.

References

1. Zhu J, Zhang J, Li H, Wang TY, Zhang CX, Luo MJ, et al. Cumulus cells accelerate oocyte aging by releasing soluble Fas Ligand in mice. Sci Rep 2015; 5(868): 1–8.

2. Huang Z, Wells D. The human oocyte and cumulus cells relationship: new insights from the cumulus cell transcriptome. Mol Hum Reprod 2010; 16(10): 715–725.

3. Ikeda S, Saeki K, Imai H, Yamada M. Abilities of cumulus and granulosa cells to enhance the developmental competence of bovine oocytes during in vitro maturation period are promoted by midkine; a possible implication of its apoptosis suppressing effects. Reproduction 2006; 132: 549–557.

4. Sutton-McDowall ML, Gilchrist RB, Thompson JG. The pivotal role of glucose metabolism in determining oocyte developmental competence. Reproduction 2010; 139: 685–695.

5. Su YQ, Sugiuara K, Wigglesworth K, O’Brien MJ, Affourtit JP, Pangas SA, et al. Oocyte regulation of metabolic cooperativity between mouse cumulus cells and oocytes: BMP15 and GDF9 control cholesterol biosynthesis in cumulus cells. Development 2007; 135: 111–121.

6. Shimada M, Richards JS. Cumulus cells are an essential mediator of ovulation stimuli from granulosa cells to oocyte. J Mammm Ova Res 2010; 2: 2–10.

7. Milsom I, Korver T. Ovulation incidence with oral contraceptives: a literature review. J Fam Plann Reprod Health Care 2008; 34(4): 237–246.

8. Robinson JA, Burke AE. Obesity and hormonal contraceptive efficacy. Womens Health (Lond Engl) 2015; 9(5): 453–466.

9. Giersch JM, Coeytaux RR, Urrutia RP, Havrilesky LJ, Moorman PG, Lowery WJ, et al. Oral contraceptive use and risk of breast, cervical, colorectal, and endometrial cancers: a systematic review. Cancer Epidemiol Biomarkers Prev 2013; 22(11): 1931–1943.

10. Marwat SK, Shoaib M, Khan EA, Rehman F, Ullah H. Phytochemistry and bioactivities of Quranic plant, zingiber Rosco against cholangiocarcinoma. Asian Pac J Cancer Prev 2012; 13(9): 4597–4606.
12. Rahmani AH, Al Shabrm FM, Salah MA. Active ingredients of ginger as potential candidates in the prevention and treatment of diseases via modulation of biological activities. Int J Physiol Pathophysiolog Pharmaco 2014; 6(2): 125–136.

13. Ali BH, Blunden G, Tanira MO, Nemmar A. Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): a review of recent research. Food Chem Toxicol 2008; 46: 409–420.

14. Rahman S, Salehin F, Iqbal A. In vitro antioxidant and anti-cancer activity of young Zingiber officinale against human breast carcinoma cell line. BMC Complement Altern Med 2011; 11: 76.

15. Kim HW, Oh DH, Jung C, Kwon DD. Apoptotic effects of 6-gingerol in LNCap human prostate cancer cells Soon-chunhyang. Med Sci 2011; 17: 75–79.

16. Liu Y, Whelan RJ, Pattnaik BR, Ludwig K, Subudhi E, Rowland H. Terpenoids from Zingiber officinale (Ginger) induce apoptosis in endometrial cancer cells through the activation of p53. PLoS One 2012; 12: 1–10.

17. Rhode J, Fogoros S, Zick S, Wahl H, Griffith KA, Huang J, et al. Zingiber officinale modulates angiogenic factors in ovarian cancer cells. BMC Complement Altern Med 2007; 7(44): 2–9.

18. Elkady AA, Abuzinadah OA, Baeshen NA, Rahmy TR. Differential control of growth, apoptotic activity, and gene expression in human breast cancer cells by extracts derived from medicinal herbs Zingiber officinale. J Biomed Biotechnol 2012: 1–14.

19. Choudhury D, Das A, Bhattacharya A, Chakrabarti G. Aqueous extract of ginger shows antiproliferative activity through disruption of microtubule network of cancer cells. Food Chem Toxicol 2010; 48: 2872–2880.

20. Zick SM, Djuric Z, Ruffin MT, Litizinger AJ, Normolle DP, Feng MR, et al. Pharmakochemis of 6-, 8-, 10-Gingerols and 6-Shogaol and conjugate metabolites in healthy human subjects. Cancer Epidemiol Biomarkers Prev 2008; 17(8): 1930–1936.

21. Fu J, Chen H, Soroka DN, Warin RF, Sang S. Cystein-conjugated metabolites of ginger components, shogaols, induce apoptosis through oxidative stress-mediated p53 pathway in human colon cancer cells. J Agric Food Chem 2014; 62: 4632–4642.

22. Guo J, Wu H, Du L, Zhang W, Yang J. Comparative anti-oxidant properties of some gingerols and shogaols, and the relationship of their contents with the antioxidant potencies of fresh and dried ginger (Zingiber officinale Roscoe). J Agric Sci Tech 2014; 16: 1063–1072.

23. Kim SM, Kim C, Bae H, Lee JH, Baek SH, Nam D, et al. 6-Shogaol exert anti-proliferative and pro-apoptotic effects through the modulation of STAT3 and MAPKs signaling pathways. Mol Carcinog 2015; 54(10): 1132–1146.

24. da Silva JA, Becceneri AB, Mutti HS, Martin ACBM, da Silva MFDF, Fernandes JB, et al. Purification and biological differential effects of ginger-derived substances on normal and tumor cell lines. J Chromatogr B 2012: 903: 157–162.

25. Chen CY, Li YW, Kuo SY. Effect of [10]-Gingerol on [Ca2+]i and cell death in human colorectal cancer cells. Molecules 2009; 14: 959–969.

26. Abdullah S, Abidin SAZ, Murad NA, Makpol S, Ngah WZW, Yusof YAM. Ginger Extract (Zingiber officinale) Triggers apoptosis and G0/G1 cells arrest in HCT 116 and HT 29 colon cancer cell lines. Afr J Biochem Res 2010; 4(4): 134–142.

27. Ryu MJ, Chung HS. [10]-Gingerol induces mitochondrial apoptosis through activation of MAPKs pathway in HCT116 human colon cancer cells. In Vitro Cell Dev Biol Animal 2015; 51: 92–101.

28. Bernard MM, McConnery JR, Hoskin DW. [10]-Gingerol, a major phenolic constituent of ginger root, induces cell cycle arrest and apoptosis in triple-negative breast cancer cells. Exp Mol Pathol 2017; 102: 370–376.

29. Niewegelt A, Huonker P, Schoop R, Altman KH, Gertsch J. Identification of serotonin 5-HT1A receptor partial agonists in ginger. Bioorg Med Chem 2010; 18: 3345–3351.

30. Turner JH, Garnovskaya MN, Raymond JR. Serotonin 5-HT1A receptor stimulates eNOS N-terminal kinase and induces apoptosis in Chinese hamster ovary fibroblasts. Biochim Biophys Acta 2007; 1773: 391–399.

31. Hsiung S-c, Adlersberg ML, Arango V, Mann JJ, Tamir H, Liu K-p. Attenuated 5-HT1A receptor coupling in brains of suicide victims: involvement of adenyl cyclase, phosphati-dylinositol 3-kinase, Akt and mitogen-activated protein kinase. J Neurochem 2003; 87: 182–194.

32. Henriksen R, Dizey N, Abrahamsson PA. Expression of serotonin receptors 5-HT1A, 5-HT1B, 5-HT2B and 5-HT4 in and in ovarian tumours. Anticancer Res 2012; 32: 1361–1366.

33. Dizey N, Bjartell A, Nilsson E, Hansson J, Gadaleanu V, Cross N. Expression of serotonin receptors and role of seroton in human prostate cancer tissue and cell lines. Prostate 2004; 59(3): 328–336.

34. Runyon ST, Zhang Y, Appleton BA, Sazinsky SL, Wu P, Pan B, et al. Structural and functional analysis of the PDZ domains of human HtrA1 and HtrA3. Prot Sci 2007: 16: 2454–2471.

35. Lee SH, Cekanova M, Baek SJ. Multiple mechanisms are involved in 6-gingerol-induced cell growth arrest and apoptosis in human colorectal cancer cells. Mol Carcinog 2008; 47(3): 197–208.

36. Cai G, Wang J, Xin X, Ke Z, Luo J. Phosphorylation of glycogen synthase kinase-3β at serine 9 confers cisplatin resistance in ovarian cancer cells. J Int Oncol 2007; 31: 657–662.

37. Phukan S, Babu VS, Kannoji A, Harirahan R, Balaji VN. GSK3β: role in therapeutic landscape and development of modulators. Br J Pharmacol 2010; 160: 1–19.

38. Jacobs KM, Bluve SR, Ferraro DJ, Jaboin JJ, Hallahan DE, Thotala D, GSK-3β: a bifunctional role in cell death pathways. Nat Rev Cancer 2011; 11: 1–13.

39. Joo J, Hong SS, Cho YR, Cheo DW. 10-Gingerol inhibits proliferation and invasion of MDA-MB-231 breast cancer cells through suppression of Akt and p38MAPK activity. Oncol Rep 2016; 35(2): 779–784, http://dx.doi.org/10.3892/or.20154045.

40. Farook JM, Shields J, Tawilk A, Markand S, Sen T, Smith SB, et al. GADD34 induces cell death through inactivation of Akt following traumatic brain injury. Cell Death Dis 2013; 4: 1–9.

41. Li J, Su W, Zhang S, Hu Y, Liu J, Zhang X, et al. Epidermal growth factor receptor and AKT1 gene copy numbers by multi-gene fluorescence in situ hybridization impact on prognosis in breast cancer. Cancer Sci 2015; 106: 642–649.

42. Katayama K, Naoya Fujita, Takashi Tsuruo. Akt/Protein kinase B-dependent phosphorylation and inactivation of WEE1Hu promote cell cycle progression at G2/M transition. Mol Cell Biol 2005; 25(13): 5725–5737.

43. Bhutani J, Sheikh A, Niazi AK. Akt inhibitors: mechanism of action and implications for anticancer therapeutics. Infect Agent Cancer 2013; 8(49): 1–4.

44. Loreto C, Rocca GL, Anzalone R, Caltabiano R, Vespaiani G, Castorina S, et al. The role of intrinsic pathway in apoptosis activation and progression in Peyronie’s disease. BioMed Res Int 2014; 2014: 1–11.

45. Martinou JC, Youle RJ. Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev Cell 2011; 21: 92–101.

46. Prasad SB, Yadav SS, Das M, Govardhan HB, Pandey LK, Singh S, et al. Down regulation of FOXO1 promotes cell proliferation in cervical cancer. J Cancer 2014; 5(6): 655–662.

47. Matsuda F, Inoue N, Maeda A, Cheng Y, Sai T, Gonda H, et al. Expression and function of apoptosis initiator FOXO3 in granulose cells during follicular atresia in pig ovaries. J Reprod Dev 2011; 57(1): 151–158.

48. Sun Y, Tian H, Wang L. Effects of PTEN on the proliferation and apoptosis of colorectal cancer cells via the phosphinositol-3-kinase/Akt pathway. Oncol Rep 2015; 33: 1828–1836.
10-Gingerol as an inducer of apoptosis

49. Serrano I, McDonald PC, Lock F, Muller WJ, Dedhar S. Inactivation of the Hippo tumour suppressor pathway by integrin-linked kinase. Nat Commun 2013; 4(2976): 1–12.

50. Liu X, Li G. MicroRNA-133b inhibits proliferation and invasion of ovarian cancer cells through Akt and Erk1/2 inactivation by targeting epidermal growth factor receptor. Int J Clin Exp Pathol 2015; 8(9): 10605–10614.

51. Choi YY, Jo MW, Lee EY, Choi DS. AKT is involved in granulosa cell autophagy regulation via mTOR signaling during rat folliculogenesis and atresia. Reproduction 2014; 147: 73–80.

52. Tsai JP, Lee CH, Ying TH, Lin CL, Lin ChL, HsuE JT, et al. Licochalcone A induces autophagy through PI3K/Akt/mTORC2 inactivation and autophagy suppression enhances Licochalcone A-induced apoptosis of human cervical cancer cells. Oncotarget 2015; 6(30): 28681–28686.

53. Chatterjee P, Seal S, Mukherjee S, Kundu R, Bhuyan M, Barua NC, et al. A carbazole alkaloid deactivates mTOR through the suppression of receptor and that induce apoptosis in lung cancer cells. Mol Cell Biochem 2015; 405(1): 149–158.

54. Shen M, Lin F, Zhang J, Kong H, Yang C, Xiong Z, et al. Rictor/mTORC2 pathway in oocytes regulates folliculogenesis, and its inactivation causes premature ovarian failure. J Biol Chem 2015; 290(10): 6387–6396.

55. Rysavy NM, Shimoda LMN, Dixon AM, Speck M, Stokes AJ, Turner H, et al. Beyond apoptosis: the mechanism and function of phosphatidylserine asymmetry in the membrane of activating mast cells. BioArchitecture 2014; 4(4–5): 127–137.

56. Demchenko AP. Beyond annexin V: fluorescence response of cellular membranes to apoptosis. Cytotechnology 2013; 65: 157–17213.

57. Liu S, Jiang L, Zhong T, Kong S, Zheng R, Kong F, et al. Effect of acrylamide on oocyte nuclear maturation and cumulus cells apoptosis in mouse in vitro. Plos One 2015; 10(8): 1–13. e1015818.

58. Mahmoodi R, Abbasi M, amiri I, Kashani IR, Pasbakhsh P, Saadipour K, et al. Cumulus cell role on mouse germinal vesicle oocyte maturation, fertilization, and subsequent embryo development to blastocyst stage in vitro. J Yakbhem Med 2009; 11: 299–302.

59. Zhou C-J, Wu S-N, Shen J-P, Wang D-H, Kong X-W, Lu A, et al. The beneficial effects of cumulus cells and oocyte-cumulus cell gap junctions depends on oocyte maturation and fertilization methods in mice. PeereJ 2016; 1: 1–15. http://dx.doi.org/10.7717/peerj.1761.

60. Hou S, Zheng F, Li Y, Gao L, Zhang J. The protective effect of gynins and acid on renal tubular epithelial cell injury induced by high glucose. Int J Mol Sci 2014; 15: 15026–15043.

61. Deorosan B, Nauman EA. The role of glucose, serum, and three-dimensional cell culture on themetabolism of bone marrow-derived mesenchymal stem cells. Stem Cells Int 2011: 2011: 1–12.

62. Shen M, Lin F, Zhang J, Tang Y, Chen WK, Liu H. Involvement of the up-regulated FoxO1 expression in follicular granulosa cell apoptosis induced by oxidative stress. J Biol Chem 2012; 287(31): 25727–25740.

63. Ziegler U, Groscurth P. Morphological features of cell death. Physiology 2004; 19: 124–128.

64. Wang Q, Frolova AI, Purcell S, Adastra K, Schoeller E, Chi MM, et al. Mitochondrial dysfunction and apoptosis in celiocytes of type I diabetic mice. PLoS One 2010; 5: 1–11.

65. Zamani A, Qu Z. Serotonin activates angiogenic phosphorylation signaling in human endothelial cells. FEBS Lett 2012; 586: 2360–2365.

66. Chien J, Staub J, Hu SI, Erickson-Johnson MR, Couch FJ, Smith DI, et al. A candidate tumor suppressor HtrA1 is down-regulated in ovarian cancer. Oncogene 2004; 23: 1636–1644.

67. Albert PR, Le François B, Millar AM. Transcriptional dysregulation of 5-HT1A autoreceptors in mental illness. Mol Brain 2011; 4(21): 1–14.

68. Berger M, Scheel DW, Macias H, Miyatsuka T, Kim H, Hoang P, et al. Gt/o-coupled receptor signaling restricts pancreatic β-cell expansion. PNAS 2015; 112: 2888–2893.

69. Nakashima A, Wada H, Kubo H, Matsuura W, Silva AB, Malagola E, Reding Theresia, Sonda Sabrina, Graf Rolf, et al. Serotonin promote acinar dedifferentiation following pancreatitis-induced regeneration in the adult pancreas. J Pathol 2015; 237(4): 495–507.

70. Liang C, Chen W, Zhi X, Ma T, Xia X, Liu H, et al. Serotonin promotes the proliferation of serum-deprived hepatocellular carcinoma cells via upregulation of FOXO3a. Mol Cell 2013; 12(14): 1–11.

71. Jeon YH, Park YH, Kwon JH, Lee JH, Kim Y. Inhibition of 14-3-3 binding to rictor of mTORC2 for Akt phosphorylation at Ser-473 is regulated by selecinoprotein W. Biochem Biophys Acta 2013; 1833(10): 2135–2142.

72. Lin W, Jeong W, Song G. Delphinidin suppresses proliferation and migration of human ovarian clear cell carcinoma cells through blocking Akt and ERK1/2 MAPK signaling pathways. Mol Cell Endocrinol 2016; 422: 172–181.

73. Roy SK, Srivastava RK, Shankar S. Inhibition of PI3K/AKT and MAPK/ERK pathways causes activation of FOXO transcription factor, leading to cell cycle arrest and apoptosis in pancreatic cancer. J Mol Signal 2010; 5(10): 1–13.

74. Santo EE, Stroeken P, Sluis PV, Koster J, Versteeg R, Westerhout EM. FOXO3a is a major target of inactivation by PI3K/AKT signaling in aggressive neuroblastoma. Cancer Res 2013; 73(7): 2189–2198.

75. Sengupta A, Kalinichenko VV, Yutzey KE. FoxO1 and FoxM1 transcription factors have antagonistic functions in neonatal cardiomyocyte cell-cycle withdrawal and IGF1 gene regulation. Circ Res 2013; 112: 267–277.

76. Zhang X, Tang N, Hadden TJ, Rishi AK. Akt, FoxO and regulation of apoptosis. Biochim Biophys Acta 2011; 1813: 1978–1986.

77. Kazantseva YA, Yarushkin AA, Pustynlyak VO. CAR-mediated repression of FoxO1 transcriptional activity regulates the cell cycle inhibitor p21 in mouse livers. Toxicology 2014; 321: 73–79.

78. Dhareaneshwaran H, Abid MdR, Yuan L, Dupuis D, Beeler D, Spokes KC, et al. FoxO1-mediated activation of Akt plays a critical role in vascular homeostasis. Circ Res 2014; 115(2): 238–251.

79. Wang Y, Zhou Y, Graves DT. FOXO transcription factors: their clinical significance and regulation. BioMed Res Int 2014; 2014: 1–14.

80. Zhang J-Q, Gao B-W, Wang J, Ren Q-L, Chen J-F, Ma Q, et al. Critical role of FoxO1 in granulosa cell apoptosis caused by oxidative stress and protective effects of grape seed procyanidin B2. Oxid Med Cell Longev 2016; 2016: 1–17.

81. Yuan C, Wang L, Zhou L, Fu Z. The function of FOXO1 in the late phases of the cell cycle is suppressed by PLK1-mediated phosphorylation. Cell Cycle 2014; 13(5): 807–819.

82. Das TP, Suman S, Alatassi H, Anem MK, Damodaran C. Inhibition of AKT promotes FOXO3a-dependent apoptosis in prostate cancer. Cell Death Dis 2016; 7: 1–10.

83. Makker A, Goel MM, Mahdi AA. PI3K/PTEN/Akt and TSC/mTOR signaling pathways, ovarian dysfunction, and infertility: an update. J Mol Endocrinol 2014; 53: R103–R118.

84. Nakashima A, Wada H, Kubo H, Matsuura W, Silva AB, Malagola E, Reding Theresia, Sonda Sabrina, Graf Rolf, et al. Serotonin promote acinar dedifferentiation following pancreatitis-induced regeneration in the adult pancreas. J Pathol 2015; 237(4): 495–507.

85. Serra H, Chivite I, Angulo-Urarte A, Soler A, Sutherland JD, Arruabarrena-Aristorena A, et al. PTEN mediates Notch-dependent stalk cell arrest in angiogenesis. Nat Commun 2015; 6(7935): 1–13. http://dx.doi.org/10.1038/ncomms8935.
86. Dillon LM, Miller TW. Therapeutic targeting of cancers with loss of PTEN function. *Curr Drug Targets* 2014; 15(1): 65–79.

87. Miwa S, Sugimoto N, Shirai T, Hayashi K, Nishida H, Ohnari I, et al. Caffeine activates tumor suppressor PTEN in sarcoma cells. *Int J Oncol* 2011; 1–8. http://dx.doi.org/10.3892/ijo.2011.1051.

88. Kitagishi Y, Matsuura S. Redox regulation of tumor suppressor PTEN and aging. *Int J Mol Med* 2013; 31: 511–515.

89. Sellrendran K, Tong L, Vishwanathan S, Bratasz A, Trigg NJ, Kutala VK, et al. EF24 induces G2/M arrest and apoptosis in cisplatin resistant human ovarian cancer cells by increasing PTEN expression. *J Biol Chem* 2007; 282(39): 28669–28681.

90. Li CJ, Elsasser TH, Kahl S. AKT/eNOS signaling module functions as a potential feedback loop in the growth hormone signaling pathway. *J Mol Signal* 2009; 4(1): 1–13.

91. Verim L, Toptas B, Ozkan NE, Cacina C, Turan S, Korkmaz G, et al. Possible relation between the NOS3 Gene GLU298ASP polymorphism and bladder cancer in Turkey. *Korkmaz G, et al. Possible relation between the NOS3 Gene GLU298ASP polymorphism and bladder cancer in Turkey. Asian Pac J Cancer Prev 2013 89. Selvendiran K, Tong L, Vishwanathan S, Bratasz A, Trigg NJ, Kutala VK, et al. EF24 induces G2/M arrest and apoptosis in cisplatin resistant human ovarian cancer cells by increasing PTEN expression. *J Biol Chem* 2007; 282(39): 28669–28681.

92. Choudhari SK, Chaudhary M, Bagde S, Gadbail AR, Joshi V. PTEN expression.

93. Fernandez-Hernando C, Ackah E, Yu J, Suarez Y, Murata T, Li Q, Li C, Zhang Y-Y, Chen W, Lv J-L, You JSQ-S. McDonald PC, Fielding AB, Dedhar S. Integrin-linked kinase gene induces the apoptosis in ovarian carcinoma. *Mol Med Rep* 2013; 446; 11(118): 1

94. Miwa S, Sugimoto N, Shirai T, Hayashi K, Nishida H, Ohnari I, Dillon LM, Miller TW. Therapeutic targeting of cancers with loss of PTEN function. *Curr Drug Targets* 2014; 15(1): 65–79.

95. Muntane J, Bonavida B. Special collection: nitric oxide in cancer. *Redox Biol* 2015; 6: 505–506.

96. Li Q, Li C, Zhang Y-Y, Chen W, Lv J-L, You JSQ-S. Silencing of integrin-linked kinase suppresses in-vivo tumorigenesis of human ovarian carcinoma cells. *Mol Med Rep* 2013; 7: 1050–1054.

97. McDonald PC, Fielding AB, Dedhar S. Integulin-linked kinase—essential roles in physiology and cancer biology. *J Cell Sci* 2008; 121: 3121–3132.

98. Liu Q, Xiao L, Yuan D, Shi X, Li P. Silencing of the integrin-linked kinase gene induces the apoptosis in ovarian carcinoma. *J Recept Signal Transduct Res* 2012; 32: 120–127.

99. Watzka SB, Setinek U, Huber M, Cantonati H, Lax F, Watson S, et al. Reactivity of integrin-linked kinase in human mesothelial cell proliferation. *Interact Cardiovasc Thorac Surg* 2008; 7: 107–110.

100. Yen C-F, Wang H-S, Lee C-L, Liao S-K. Roles of integrin-linked kinase in cell signaling and its perspectives as a therapeutic target. *Gynecol Minim Invas Ther* 2014; 3: 67–72.

101. Taborská P, Bartunkova J, Smrz D. Rictor beyond the TORC: linking the proliferation, migration and FCR1-mediated degranulation of human mast cells. *Recept Clin Investig* 2015; 2(3): 1–7.

102. Guo Z, Zhou Y, Evers M, Wang Q. Rictor regulates FBXW7-dependent c-Myc and cyclin E degradation in colorectal cancer cells. *Biochem Biophys Commun* 2012; 418(2): 426–432.

103. Julien L-A, Carriere A, Moreau J, Roux PP. mTORC1 activated S6K1 phosphorylates rictor on threonine 1135 and regulates mTORC2 signaling. *Mol Cell Biol* 2010; 30(4): 908–921.

104. Mori S, Nada S, Kimura H, Tajima S, Takahashi Y, Kitamura A, et al. The mTOR pathway controls cell proliferation by regulating the FoxO3a transcription factor via SGK1 kinase. *PLoS One* 2014; 9(2): 1–12.

105. Im-aram A, Farrand L, Bael SM, Song G, Song YS, Han JY, et al. The mTORC2 component rictor contributes to cisplatin resistance in human ovarian cancer cells. *PLoS One* 2013; 8(9): 1–14.

106. Breuleux M, Klopfenstein M, Stephan C, Doughty CA, Baris L, Maira S-M, et al. Increased AKT S473 phosphorylation after mTORC1 inhibition is RICTOR dependent and does not predict tumor cell response to PI3K/mTOR inhibition. *Mol Cancer Ther* 2009; 8(4): 742–753.

107. Saqenca M, Menon D, Patel D, Mukhopadhyay S, Chow V, Foster DA. Amino acid and mTOR mediate distinct metabolic checkpoints in mammalian G1 cellcycle. *PLoS One* 2013; 8(8): e74157.

108. Kawada JY1, Iwata S, Suzuki M, Kawano Y, Kanazawa T, Siddiquey MN, et al. mTOR inhibitors induce cell cycle arrest and inhibit tumor growth in Epstein-Barr virus-associated T and natural killer cell lymphoma cells. *Clin Cancer Res* 2014; 20(21): 5412–5422.

109. Stine JE, Guo H, Sheng X, Han X, Shointment MN, Gilliam TP, et al. The HMG-CoA reductase inhibitor, simvastatin exhibits anti-metastatic and anti-tumorigenic effects in ovarian cancer. *Oncotarget* 2006; 7(1): 946–960.

110. Galluzzi L, Morselli E, Kepp O, Vitale I, Younes AB, Mairi MC, et al. Evaluation of rapamycin –induced cell death. *Methods Mol Biol* 2012; 821: 125–169.

111. Cheaib B, Auguste A, Leary A. The PI3K/AKT/mTOR pathway in ovarian cancer: therapeutic opportunities and challenges. *Chin Cancer J* 2015; 34(1): 4–16.

112. Mivec G, Muthusamy V, Damsky W, Theodosakis N, Liu X, Meeth K, et al. DNMT3b mediates melanoma growth by controlling levels of mTORC2 component RICTOR. *Cell Rep* 2016; 14(09): 2180–2192.

113. Gulhati P, Cai Q, Li J, Liu J, Ryehahou PG, Qi S, et al. Targeted inhibition of mTOR signaling inhibits tumorigenesis of colorectal cancer. *Clin Cancer Res* 2009; 15(23): 7207–7216.

114. Lai P, Song Q, Yang C, Li Z, Liu S, Liu B, et al. Loss of RICTOR with aging in osteoblasts promotes age-related bone loss. *Cell Death Dis* 2016; 7: e2408-1-11.

115. Daniele S, Costa B, Zappelli E, Da Pozzo E, Sestito S, Nesi G, et al. Combined inhibition of AKT/mTOR and MDM2 enhances glioblastoma multiforme cell apoptosis and differentiation of cancer stem cells. *Sci Rep* 2016; 6(5956): 1–14.

116. Jansson MD, Damas ND, Lees M, Jacobsen M, Lund AH. mTOR inhibitors induce cell cycle arrest of colorectal cancer. *Oncotarget* 2015; 14(52): 2078–2081.

117. Maloniazza SK, Dutta P, Santra MK, Green MR. F-box protein FBXO31 directs degradation of MDM2 to facilitate p53-mediated growth arrest following genotoxic stress. *PNAS* 2015; 112(28): 8632–8637.

118. Deben C, Wouters A, Beeck KO, Den Bossche J, Jacobs J, Zwarenpoel K, et al. The MDM2-inhibitor Nutlin-3 synergizes with cisplatin to induce p53 dependent tumor cell apoptosis in non-small cell lung cancer. *Oncotarget* 2015; 6(26): 22666–22679.

119. Moretti M, Mancini F. P53 network in ovarian cancer. In: Farghaly SA, editor. *Ovarian cancer — basic science perspective*. InTech; 2012 pp. 271–286.

120. Wang B, Fang L, Zhao H, Xiang T, Wang D. MDM2 inhibitor Nutlin-3a suppresses proliferation and promotes apoptosis in osteosarcoma cells. *Acta Biomol Biophys Sin* 2012; 4(4): 685–691.

121. Ou WB, Zhu J, Eilers G, Li X, Kuang Y, Liu L, et al. HDACi inhibits liposarcoma via targeting of the MDM2-p53 signaling axis and PTEN, irrespective of p53 mutational status. *Oncotarget* 2015; 6(12): 10510–10520.