A comprehensive analysis of the variable temporal and spatial responses of tropical-subtropical high-altitude glaciers to climate change is critical for successful model predictions and environmental risk assessment in the Himalayan-Tibetan orogen. High-frequency Holocene glacier chronostatigraphies are therefore reconstructed in 79 glaciated valleys across the orogen using 519 published and 16 new terrestrial cosmogenic 10Be exposure age dataset. Published 10Be ages are compiled only for moraine boulders (excluding bedrock ages). These ages are recalculated using the latest ICE-D production rate calibration database and the scaling scheme models. Outliers for the individual moraine are detected using the Chauvenet’s criterion. In addition, past equilibrium-line altitudes (ELAs) are determined using the area-altitude (AA), area accumulation ratio (AAR), and toe-headwall accumulation ratio (THAR) methods for each glacier advance. The modern maximum elevations of lateral moraines (MELM) are also used to estimate...
modern ELAs and as an independent check on mean ELAs derived using the above three methods. These data may serve as an essential archive for future studies focusing on the cryospheric and environmental changes in the Himalayan-Tibetan orogen. A more comprehensive analysis of the published and new 10Be ages and ELA results and a list of references are presented in Saha et al. (2019, High-frequency Holocene glacier fluctuations in the Himalayan-Tibetan orogen. Quaternary Science Reviews, 220, 372–400).

© 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Specifications table

Subject	Earth and Planetary Sciences
Specific subject area	Earth-Surface Processes; Geology.
Type of data	Table
How data were acquired	Accelerated mass spectrometry (AMS); Google Earth imagery; Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) global digital elevation models (GDems) V2; Landsat Enhanced Thematic Mapper Plus (ETM+). ArcGIS 10.5; Read ArcGrid; MATLAB, R ‘luminescence’ statistical package: https://crep.otelo.univ-lorraine.fr/#; http://hess.ess.washington.edu/; http://cronus.cosmogenicnuclides.rocks/2.0/html/al-be/.
Data format	Analyzed
Parameters for data collection	10Be ages from moraine boulders are used after detecting and removing outliers to maintain consistency. No bedrock sample data are used in this study. Limited statistical analyses were performed for moraines that have $<2^{10}$Be ages before/after removing outliers. Former ELAs and change in ELAs (ΔELAs) are measured only for those glaciated valleys where the modern glacier-ice is present. Seventy-seven of the total 79 glaciated valleys fulfill the criteria.
Description of data collection	Approximately 500g of rock to a depth of ≤ 3.5cm from the top of each moraine boulder was collected using a hammer and chisel for 10Be dating. Sample preparation was performed at the Quaternary Geochronology Laboratories in the University of Cincinnati. AMS measurements were performed at the Purdue Rare Isotope Measurement Laboratory at Purdue University. Raw data for ELA estimates were extracted using satellite images acquired in 26th February 2016 at https://search.earthdata.nasa.gov/search. Present and past glaciated areas were mapped (as vector layers) using Google Earth, and Landsat ETM + images and the raw elevation data were extracted from the ASTER GDems (as raster layers).
Data source location	New 10Be samples were collected from Sonapani glacier in the Kulti valley (32.44° N, 77.33° E) and the Parkachik valley in Nun Kun massif (34.05° N, 76.00° E). Published 10Be ages and all ELA dataset covers a vast area including the Himalaya, Tibet, Pamir, and Tian Shan with a latitudinal range of 27.04°–43.12° N and longitudinal range of 71.62°–102.74° E. Note that the sample coordinates are also provided in the tables.
Data accessibility	Data is provided in the paper.
Related research article	Saha, S., Owen, LA., Orr, E.N., Caffee, M.W. (2019). High-frequency Holocene glacier fluctuations in the Himalayan-Tibetan orogen. Quaternary Science Reviews, 220, 372–400.

Value of the data

- These data contain an exhaustive list of 10Be ages and reconstructed past ELAs and ΔELAs of moraines across the Himalaya, Tibet, Pamir, and Tian Shan for the past 15,000 years.
- These data offer valuable information to anyone interested in the paleoclimatic changes in the region, especially in the past cryospheric (freshwater resources) responses to climate variability.
- The 10Be data can be used/reproduced directly to recalculate exposure ages with future modifications in the dating techniques.
- The ELA data are comprehensive and can be directly incorporated into numerical models that use terrestrial glaciers as a proxy for climate change.
- The 10Be ages and ELAs may have the potentiality to model paleotemperatures in this high-altitude mountainous region.
1. Data

Table S1 contains all the new and published ^{10}Be apparent moraine ages for the past 15 ka in the 79 glaciated regions of the Himalayan-Tibetan orogen (see also Supplementary item 1). We identified 128 outliers (in blue in Supplementary item 1) from a total age population of 535 in this study. Note that the ages are organized from oldest to youngest local glacial stages for each climatic zone. For an extended discussion on climatic zones, the readers are encouraged to see the article “High-frequency Holocene glacier fluctuations in the Himalayan-Tibetan orogen” in the Quaternary Science Reviews [1]. A comprehensive list of references is also provided in the article. Table 1 contains the ELAs and ΔELAs for the 77 glaciated regions (see also Supplementary item 2).

2. Experimental design, materials, and methods

2.1. New ^{10}Be ages

We sampled multiple (≥2) boulders from each moraine using a chisel and hammer after carefully considering the moraine morphostratigraphy, physical setting, and surficial characteristics of moraine boulders [2]. Moraines were first mapped and grouped from oldest to youngest based on their relative position from each other (i.e., morphostratigraphy). Since Holocene moraines show similar surficial characteristics, relative dating based on the degree of weathering, vegetation cover, and soil development was not possible. We recorded the stability, degradation, and post-depositional hillslope contribution on each moraine in the field before sampling. We only sampled well-inset stable boulders with no evidence of post-depositional surface deflections, detrital cover, surface spallation, fracturing, and/or extensive weathering. Preferences were also given to boulders with well-developed lichen cover with the idea that boulders have not recently been exhumed and/or toppled allowing the steady growth of lichens. The sampled boulders have heights ranging from 0.3 to 1.3 m (Table S1). Approximately 500 g of rock was collected from the top of each boulder to a depth was ≤3.5 cm. Topographic shielding from the boulder surface to the horizon was measured using a compass and an inclinometer at 10° azimuth interval [2,3]. No correction for snow shielding was performed, assuming a windswept condition throughout the year [3].

Quartz extraction and ^{10}Be sample preparation were executed at the Quaternary Geochronology Laboratories of the University of Cincinnati [4,5]. Our sample preparation includes crushing and sieving the boulder samples to obtain a 250–500 μm particle size fraction. Subsequently, samples were leached for about 10 hours in aqua regia to remove any organics and dried for 24 hours. The dry samples were then etched in 1% HF for approximately 1 h. Since quartz is hydrophilic (sticky) in nature, the froth flotation technique was applied to remove excess muscovite and feldspar (which are hydrophobic) in the sample. Samples were then treated two to three times with 5% and 1% HF/HNO$_3$. Any remaining feldspar, mica, and other heavy minerals were removed by using lithium heteropolytungstate heavy liquid separation (density 2.7 g/cm3) and a Frantz magnetic separator. About 25–15 g of extracted pure quartz was dissolved in 49% concentrated HF acid after adding low background ^9Be carrier (0.495 mg/g for Kulti and 1.0459 mg/g for Parkachik) and fumed with perchloric (HClO$_4$) acid to remove fluorine atoms. In addition, to remove Fe and Ti and separate the ^{10}Be fraction, samples were passed through the anion and cation exchange columns using (6–1 N) HCl acid. Beryllium hydroxide (Be(OH)$_2$) gel was extracted from the ^{10}Be fraction by adding Ammonium hydroxide. The Be(OH)$_2$ was heated at an oven at 900 °C for 30 minutes to form BeO, mixed with acetone, Nb powder, and then loaded into a steel target. A minimum of two blanks were prepared to assess the ^9Be carrier and laboratory background level of ^{10}Be for each set of samples. We measured the ratios of $^{10}\text{Be}/^9\text{Be}$ using the accelerator mass spectrometry (AMS) at the Purdue Rare Isotope Measurement (PRIME) Laboratory at Purdue University. 07KNSTD (standard) is used to normalize our Be isotopic. The $^{10}\text{Be}/^9\text{Be}$ ratios were subsequently converted into ^{10}Be concentrations, i.e., in atoms [2] and exposure ages (Table S1) were estimated using the available online age calculators (https://crep.otelo.univ-lorraine.fr/#; http://hess.ess.washington.edu/; http://cronus.cosmogenicnuclides.rocks/2.0/html/al-be/).
Glaciated Valley	Glacial Stage	Mean moraine age (ka)	Head (m asl)	Toe (m asl)	MELM (m asl)	Area-Altitude ratio	Area-Accumulation ratio	Toe-Headwall altitude ratio	Mean ELA (m asl)	D ELA (m)			
Bordoo Valley, Tian Shan	Present	-	4467	3870	4100	4188	4199	4159	4109	4037	4113	4190	4137±56
BOR 1	0.64±0.23	4458	3745	-	4135	4159	4109	4039	3974	4059	4145	4089±67	54±10
BOR 2	13.08±2.13	4452	3629	-	4044	4079	3979	3869	3890	3987	4085	3990±86	152±46
Kitschi-Kurumdu, Tian Shan	M2	15.16±3.03	4268	3787	-	3999	3969	3930	3899	-	-	-	3949±44
Ala Archa, Kyrgyz Tian Shan	Present	-	4299	3722	3950	4004	3989	3949	3889	3769	3769	3720±97	244±50
Ala Archa	0.49±0.25	4258	3400	-	3765	3739	3659	3569	3660	3769	3720±97	244±50	
Aksai valley, Kyrgyz Tian Shan	Present	-	4139	3843	4100	4006	3989	3979	3949	-	-	-	4005±57
Aksai	5.70±0.16	4072	3408	-	3700	3689	3629	3549	3602	3683	3765	3660±71	339±46
Daxi valley, Tian Shan	Present	-	4400	3801	4000	4075	4049	4019	3969	3972	4043	4115	4030±50
LIA	0.33±0.02	4390	3684	-	4013	3999	3949	3909	3909	3989	4070	3977±58	58±9
Alay Range (Koksu Valley)	Present	-	4917	3621	4059	4180	4209	4159	4099	4019	4149	4280	4144±84
AV	14.02±0.16	4921	3442	-	4060	4129	4029	3899	3893	3981	4041	4190	4034±110
Muztag Ata and Kongur Shan, NW Tibet	Present	-	6853	2773	3809	3972	3829	3729	3559	4003	4111	4280	4017±409
Olimde 7 stage (m3I)	-	6873	2462	-	3870	3769	3619	3449	3792	4233	4675	3915±413	131±51
Muztag Ata and Kongur Shan, NW Tibet	Present	-	7349	4271	5609	5998	6259	5979	5609	5203	5511	5820	5749±332
Olimde 7 stage (m7H)	-	7349	4054	-	5772	6029	5659	5229	5049	5379	5710	5547±341	222±100
Muztag Ata and Kongur Shan, NW Tibet	Present	-	6847	4300	5809	6030	6189	5989	5809	5068	5324	5580	5725±379
Olimde 6 stage (m5H)	-	6852	4003	-	5866	6099	5879	5629	4864	5149	5435	5560±440	153±40
Olimde 6 stage (m6H)	-	6852	3919	-	5793	6059	5829	5539	4801	5095	5390	5501±442	212±53
Olimde 4 stage (m4H)	-	6839	3591	-	5437	5759	5279	4529	4574	4899	5225	5100±454	612±317
Olimde 2 stage (m3H)	-	6852	3515	-	5377	5679	5069	4469	4521	4855	5190	5023±442	690±334
Muztag Ata and Kongur Shan, NW Tibet	Present	-	6991	4348	4969	5602	5459	5119	4849	5144	5409	5675	5278±301
Olimde 8 stage (m6C)	0.51±0.15	7008	4273	-	5528	5389	4970	4769	5101	5375	5650	5255±317	68±42
Stage	Site/Location	Age (ka)	Site Coordinates	Notes									
-------	--------------	----------	------------------	-------									
Olimde 2 stage	Muztag Ata and Kongur Shan, NW Tibet	11.71±0.40	7008 4209	Present									
Olimde 8 stage	Muztag Ata and Kongur Shan, NW Tibet	0.69±0.27	6075 4152	Present									
Olimde 7 stage	Muztag Ata and Kongur Shan, NW Tibet	2.20±0.07	6075 4018	Present									
Olimde 4 Stage	Muztag Ata and Kongur Shan, NW Tibet	7.80±0.32	6075 3782	Present									
Olimde 3 stage	Muztag Ata and Kongur Shan, NW Tibet	10.25±0.16	6682 3582	Present									
Olimde 3 stage	Muztag Ata and Kongur Shan, NW Tibet	9.69±0.34	6747 3413	Present									
Olimde 5 stage	Muztag Ata and Kongur Shan, NW Tibet	5.05±0.14	6865 4059	Present									
Olimde 4 Stage	Muztag Ata and Kongur Shan, NW Tibet	7.74±0.27	6075 3787	Present									
Olimde 3 stage	Muztag Ata and Kongur Shan, NW Tibet	13.18±0.64	5324 4599	Present									
BO8 stage	Great Bogchigir Valley	13.18±0.64	5326 4425	Present									
Batura stage (t6)	Batura - Hunza Valley	14.30±0.01	7606 2502	Present									
Batura stage (t6)	Batura - Hunza Valley	12.49±0.01	7112 2542	Present									
Askole 2 stage (m2b)	Central Karakoram	5.98±0.69	5173 4290	Present									
Mungo 2 stage (m2G)	Central Karakoram	6.64±0.35	5202 2991	Present									
Mungo 2 stage (m1G)	Central Karakoram	13.77±0.53	5202 2889	Present									
Askole 3 stage (m1H)	Central Karakoram	1.03±0.28	6260 2977	Present									

Climatic Zone 1a: Arid and semiarid colder climatic region — Transhimalaya

Climate Zone	Site/Location	Age (ka)	Site Coordinates	Notes
Batura - Hunza Valley	Present	14.30±0.01	7606 2502	-
Batura stage (t6)	12.49±0.01	7112 2542	-	
Askole 2 stage (m2b)	5.98±0.69	5173 4290	-	
Mungo 2 stage (m2G)	6.64±0.35	5202 2991	-	
Mungo 2 stage (m1G)	13.77±0.53	5202 2889	-	
Askole 3 stage (m1H)	1.03±0.28	6260 2977	-	

(continued on next page)
Glaciated Valley	Glacial Stage	Mean moraine age (ka)	Head (m asl)	Toe (m asl)	MELM (m asl)	Area-Altitude (m asl)	Area-Accumulation ratio	Toe-Headwall altitude ratio	Mean ELA (m asl)	ΔELA (m)
Mungo 2 stage (m3I)	13.06±0.40 6262 2977 -	4744 4939 4820 4669	4295 4625 4954	4721±226 30±13						
Mungo 2 stage (m2I)	14.08±0.23 6262 2977 -	4730 4939 4819 4649	4295 4625 4954	4716±226 35±21						
Mungo 2 stage (m1I)	14.98±0.29 6262 2977 -	4710 4929 4809 4619	4295 4625 4954	4706±225 45±32						
Central Karakoram Present	- 5840 4224 4939	5101 5159 5099 5039	4877 5040 5202	5057±108 -						
Central Karakoram Mungo 2 stage (m1E)	13.44±0.19 5718 4019 4689	4916 4979 4929 4839	4703 4875 5046	4872±125 -						
Central Karakoram Mungo 2 stage (m1F)	14.62±0.32 5724 2408 -	4338 4659 4429 4199	4611 4795 4978	4807±186 -						
Ladakh cirque, Ladakh range Present	- 5776 5407 5529	5596 5609 5570 5539	- - 4590	4846±271 413±186						
Ladakh cirque, Ladakh range Ladakh Chang La Present	2.29±0.28 5776 5376 -	5553 5549 5519 5480	- - 4590	5525±34 53±8						
Ladakh cirque, Ladakh range Pangong high cirque Present	0.54±0.11 5984 5386 5679	5673 5690 5659 5629	5629 5690 5750	5675±39 -						
Stok Kangri, Zanskar Present	- 5721 5288 5459	5507 5519 5499 5459	- - - 5489±28 -							
Stok valley, Zanskar mS1	1.42±0.48 5748 5234 -	5456 5449 5419 5399	- - - 5431±27 65±13							
Amda Kangri, Lato mg1	- 5649 5258 5479	5510 5539 5509 5479	- - - 5503±25 -							
Amda Kangri, Lato mg1	1.33±0.12 5649 5149 -	5455 5499 5459 5430	- - - 5461±29 49±6							
Puga Valley, Zanskar Present	- 6099 5686 5839	5893 5909 5870 5839	- - - 5870±32 -							
PM-3 stage	0.28±0.05 6101 5199 -	5647 5659 5609 5559	5563 5655 5746	5634±64 259±15						
PM-2 stage	3.50±0.87 6101 4797 -	5480 5569 5489 5369	5323 5455 5556	5467±96 401±55						
Mentok Kangri, Karzok Present	- 6003 5482 5659	5740 5759 5729 5709	- - - 5719±38 -							
Mentok Kangri, Karzok mM1	0.64±0.09 6003 5447 -	5714 5739 5710 5679	- - - 5711±25 24±5							
Mentok Kangri, Karzok mM2	1.00±0.08 6003 5378 -	5685 5689 5669 5639	5631 5695 5758	5681±42 64±8						
Gomuche Kangri, Karzok Present	- 6084 5381 5649	5873 5939 5909 5869	5669 5740 5810	5807±110 -						
Gomuche Kangri, Karzok mg1	2.25±0.42 6084 5332 -	5805 5909 5859 5739	5639 5715 5790	5779±91 50±39						
Climatic Zone 1b: Arid and semi-arid colder climatic region—southern and northeastern Tibet

Location	MELM	AA	AAR (0.60)	AAR (0.70)	AAR (0.80)	THAR (0.30)	THAR (0.40)	THAR (0.50)						
Dalijia Shan, NE Tibet	Group D moraines	13.45±0.25	4460	3725	4029	4079	4029	3949	3879	3951	4025	4100	4005±74	
Xiying He valley, Qilian Shan, NE Tibet	Present	-	4729	4152	4379	4471	4439	4399	4349	-	-	-	4407±48	
NW Menyuan, Qilian Shan, NE Tibet	N/A	13.16±1.05	4729	3397	-	3836	3689	3629	3579	3801	3935	4070	3791±174	731±65
Anyemaqen Mountains	Gangshiga glacier (Present)	10.08±0.53	4832	4320	-	4506	4459	4409	4379	-	-	-	4438±56	136±15
Anyemaqen Mountains	Halong glacial I (Present)	9.48±1.70	6183	4443	4939	5140	5339	4959	4729	4971	5145	5320	5068±207	
Anyemaqen Mountains	Halong glacial II (Present)	13.89±1.26	6006	4549	4884	5347	5069	4989	4879	4987	5133	5280	5071±173	
Kunlun Shan (northern slopes)	Halong glacial stage (Present)	13.39±1.61	5935	4593	5119	5861	5329	5239	5119	5001	5135	5270	5259±664	
Karola Pass, Mt. Kaluxung, SN Tibet	M2 moraines	8.04±0.74	5960	4405	-	5268	4419	4309	4199	4564	4772	4980	4644±384	453±229
Yunam valley, Zanskar	Present	-	6604	4860	5549	5861	5909	5789	5385	5385	5670	5735	5678±177	
	Youngest	3.28±0.74	-	5754	5809	5629	5469	5369	5549	5730	5313	5310	5493±255	143±167
	Oldest	11.47±0.70	6623	4806	-	5200	5749	5529	5389	5355	5372	5570	5497±198	200±229

Climatic Zone 2a: Transitional climatic region—western Himalaya

Location	MELM	AA	AAR (0.45)	AAR (0.55)	AAR (0.65)	THAR (0.40)	THAR (0.50)	THAR (0.60)						
Nun-Kun massif	Anantick stage (ST-3)	13.55±0.88	-	3685	3699	3639	3569	3705	3795	3884	3711±102			
Nun-Kun massif	Present	-	5571	4238	4629	4905	5000	4830	4629	4775	4910	5044	4840±156	370±133
Yunam valley, Zanskar	Present	-	5601	5179	5369	5409	5410	5389	5369	-	-	-	5389±20	
Youngest	0.62±0.15	5640	4698	-	5231	5329	5269	5119	5079	5175	5270	5216±84	147±58	
Lahul Himalaya, Nn India	Kulti glacial stage	11.76±0.59	5378	2756	-	3854	3869	3689	3559	3811	4075	4338	3885±256	525±104
Lahul Himalaya, Nn India	Present	-	5746	3972	4639	4960	5049	4999	4939	4691	4870	5048	4899±157	
Lahul Himalaya, Nn India	Kulti glacial stage	14.03±0.16	5746	2933	-	4530	4994	4659	4499	4067	4350	4632	4527±274	410±163
Lahul Himalaya, Nn India	Present	-	6002	4187	4909	5170	5269	5169	5060	4917	5100	5103	5109±124	
Lahul Himalaya, Nn India	Kulti glacial stage	14.45±0.70	6002	3971	-	4822	4929	4650	4439	4791	4995	5198	4832±245	306±212
Lahul Himalaya, Nn India	Present	-	4225	3470	3749	3776	3739	3720	3709	3774	3850	3926	3780±73	
Lahul Himalaya, Nn India	Kulti glacial stage	13.95±0.88	4782	2411	-	3404	3639	3419	3099	3367	3605	3842	3482±238	303±184
Hamtah Valley, Lahul	Present	-	5011	4056	4569	4459	4509	4449	4399	4443	4540	4636	4500±78	
mH1a	0.26±0.13	5063	3941	-	4407	4559	4409	4319	4397	4510	4622	4460±106	30±41	
Glaciated Valley	Glacial Stage	Mean moraine age (ka)	Head (m asl)	Toe (m asl)	MELM (m asl)	Area-Altitude ratio	Area-Accumulation ratio	Toe-Headwall altitude ratio	Mean ELA (m)	ΔELA (m)				
--------------------------------------	---------------	-----------------------	--------------	-------------	--------------	---------------------	--------------------------	----------------------------	---------------	----------				
Sonapani glacier, Kulti Valley, Lahul Himalaya	Present	-	5063	3688	-	4332	4149	4319	4810	4518				
mH3	10.48±0.48	5465	3901	4640	4815	4929	4819	4719	4533	4846				
mK1	51.01±0.16	5478	3662	-	4727	4879	4759	4590	4403	4158				
mK2	0.51±0.16	5498	3631	-	4662	4839	4709	4529	4397	4762				
mK3	12.18±0.99	5474	3432	-	4641	4829	4699	4500	4255	4664				
mK4	15.30±0.60	5498	3151	-	4598	4809	4659	4469	4099	4570				
mK5		Location G	5883	3848	4679	4570	4449	4320	4259	4611				
		Present	-	5063	3688	-	4332	4149	4319	4810				
		Location G	0.66±0.34	5883	3519	-	4433	4319	4249	4467				
		Location F	6.09±0.54	5883	3277	-	4329	4269	4140	4323				
		Location F	10.26±0.35	5883	3211	-	4286	4250	4109	4287				
Tons Valley, Garhwal Himalaya, Nn. India	Present	-	5924	4014	4680	5078	5199	5109	4989	4783				
Location E	0.26±0.08	5955	3884	-	4997	5170	5039	4889	4717	4925				
Location D	11.09±0.50	5955	3527	-	4879	5109	4969	4719	4501	4745				
Location C	14.06±0.10	5955	3352	-	4166	4189	4059	3939	4065	4370				
Tons Valley, Garhwal Himalaya, Nn. India	Present	-	6429	4581	4900	5084	5059	4969	4899	5093				
Gangotri, Garhwal Himalaya, Nn India	Present	Kedar glacial stage	8.28±0.45	6429	4218	-	5053	5030	4949	5003				
Gangotri, Garhwal Himalaya, Nn India		Present	-	7003	4017	4900	5151	5149	5000	5215				
Bhullanganga and Dudhanga valleys, Sn. Garhwal Himalaya	mbd4	0.13±0.11	6068	3806	4710	4956	5069	4919	4710	4717				
Bhullanganga and Dudhanga valleys, Sn. Garhwal Himalaya	mbd3	0.15±0.10	6082	3526	-	4871	5019	4849	4609	4534				
Bhullanganga and Dudhanga valleys, Sn. Garhwal Himalaya	mbd2	0.16±0.15	6082	3459	-	4840	4999	4819	4569	4511				
Bhullanganga and Dudhanga valleys, Sn. Garhwal Himalaya	Present	-	5616	4523	5019	5092	5079	5049	4969	5092				
Bhullanganga and Dudhanga valleys, Sn. Garhwal Himalaya	mbd1	0.21±0.02	5616	3776	-	5005	5060	5029	4999	4519				
Location	Present	MELM	AA	AAR (0.50)	AAR (0.60)	AAR (0.70)	THAR (0.30)	THAR (0.40)	THAR (0.50)					
---------------------------------	---------	------	----	------------	------------	------------	-------------	-------------	-------------					
Kedarnath, Sn. Garhwal Himalaya		6136	3805	4730	4985	5189	4959	4730	4745	4980	5214	4941±195		
present														
mk2	0.31±0.17	6136	3597	-	4897	5089	4830	4619	4619	4875	5130	4866±201	106±17	
mk1	10.25±0.83	6136	3180	-	4466	4519	4179	4039	4368	4665	4962	4457±306	515±206	
Mayalil, Sn. Garhwal Himalaya		5121	4620	4839	4893	4919	4869	4839	-	-	-	4872±35		
Present														
mm1	13.62±0.66	5121	4327	-	4758	4809	4759	4699	4649	4730	4810	4745±58	124±16	
Nanda Devi, Garhwa, Nn Indial		6862	3560	4466	4519	4179	4039	4368	4665	4962	5546	5056±285		
Present														
Moraine m4	0.60±0.28	6875	3478	-	4894	5169	4729	4549	4839	5180	5520	4996±325	86±60	
Moraine m2	13.71±0.69	6870	3432	-	4954	5119	4699	4529	4815	5160	5504	4971±356	113±66	
Muguru valley, Gurla Mandhata		6739	5621	5969	6190	6249	6159	5989	5959	-	-	5693±78	295±61	
Present														
M10	0.24±0.15	6739	5489	-	6115	6189	6089	5989	6089	6111	6238	5609±119	79±18	
M9	0.46±0.10	6753	5430	-	6062	6119	5999	5869	5962	6095	6228	5604±117	130±45	
M8	5.01±0.88	6760	5262	-	5935	5949	5829	5739	5869	6020	6170	5930±139	248±81	
M7	8.75±0.55	6760	5207	-	5904	5920	5800	5767	5935	6102	6102	5875±133	303±62	
Muguru valley, Gurla Mandhata		6108	5728	5969	5985	6019	5989	5959	-	-	-	5982±25		
Present														
M5	15.30±0.60	6108	5474	-	5756	5759	5659	5599	-	-	-	5693±78	295±61	

Climatic Zone 2b: Transitional climatic region—central and eastern Himalaya
Table 1 (continued)

Glaciated Valley	Glacial Stage	Mean moraine age (ka)	Head (m asl)	Toe (m asl)	MELM (m asl)	Area-Altitude ratio	Area-Accumulation ratio	Toe-Headwall altitude ratio	Mean ELA (m)	ΔELA (m)	
Recessional moraine		6.03±1.97	7354	2482	-	4750	5099 4969 4149	3950 4437 4925	4611±440	348±262	
Local LGM moraines		10.10±0.73	7354	1697	-	4071	3769 3309 2969	3397 3963 4530	3715±529	1244±550	
Climatic Zone 3: Wet-temperate climatic region — central and eastern Himalaya											
Lete valley, Annapurna, Nepal		Present	6.36±1.21		-	-	-	-	-		
Ganhaizi and Ganheba, southeastern Tibet		Present	12.97±1.41	5108	4502	4670	4841 4839 4819 4779	4667 4743 4820	4772±72		
Annapurna Range, Nepal		Syakta glacier stage	9.48±0.91	5311	4987	5099	5144 5139 5109 5079	-	-		
Annapurna Range, Nepal		Lyapche glacier stage	11.54±0.80	6641	3549	-	5380 5559 5439 5269	4479 4789 5100	5145±387	443±265	
Annapurna Range, Nepal		Yak glacier stage	8.72±0.40	5144	4870	4979	5012 5099 4989 4969	-	-	4992±19	
Annapurna Range, Nepal		Danfe Glacier stage	8.87±0.36	5420	4621	5029	5000 4899 4849 4809	4869 4949 5030	4929±85		
Milarepa's Glacier, Annapurna Range, Nepal		Present	0.55±0.16	5504	3513	-	4469 4379 4329 4329	4116 4315 4515	4337±135	104±73	
Dudh Khola Valley, Annapurna, Nepal		Present	-	6673	3552	4529	5295 5679 4929 4529	4495 4807 5120	4923±423		
Neoglacial		Present	1.70±0.50	6673	3084	-	5196 5559 4689 4449	4166 4525 4885	4781±474	198±98	
Macha Khola Valley, Gorkha Himal, Nepal		Present	4.99±0.92	5304	3735	-	4523 4659 4379 4079	4210 4367 4525	4392±199	654±230	
Mailun Khola, Ganesh Himal, Nepal		Present	7.04±0.64	5562	4257	-	5024 5090 5019 4939	4652 4783 4915	4917±153	192±119	

S. Saha et al. / Data in brief 26 (2019) 104412
Location	Period	Elevation
Langtang Valley, Langtang Himal, Nepal	Present	6319, 3983, 4909, 4861, 4769, 4629, 4439, 4691, 4925, 5160, 4798 ± 218
	Yala I	0.76 ± 0.20, 6328, 3774, 4648, 4509, 4339, 4229, 4547, 4803, 5060, 4591 ± 280
	LT6	4.42 ± 0.15, 6328, 3506, 4491, 4329, 4189, 4049, 4358, 4641, 4925, 4426 ± 292
	Langtang Stage	10.90 ± 0.43, 6525, 3915, 5169, 5259, 5069, 4869, 4702, 4963, 5225, 5037 ± 204
	LT3	4.42 ± 0.15, 6525, 3915, 5169, 5259, 5069, 4869, 4702, 4963, 5225, 5037 ± 204
	Langtang glacial stage II	4.60 ± 0.33, 6563, 3344, 4747, 4869, 4619, 4449, 4315, 4637, 4960, 4657 ± 226
	Langtang glacial stage I	5.47 ± 0.40, 6563, 3079, 4374, 4499, 4049, 3419, 4126, 4475, 4825, 4252 ± 448
Nyalam County, Sn Xixabangma, Sn Tibet	Fu Qu glacier	- 5566, 4446, 4929, 4845, 4709, 4620, 4579, 4788, 4901, 5015, 4798 ± 153
	Puluo 1 moraine	- 5552, 4013, 4509, 4439, 4379, 4329, 4481, 4635, 4790, 4509 ± 158

- No data.

m asl Meter above sea level.

Note: The present here refers to the year 2016 AD.
No corrections for residual boron, radioactive decay, and muongenic production [6] were made; they are negligible for the timescale of this study. Native 9Be in nearby (uniform) lithology is also insignificant (-0.0190 ± 0.0160 to 0.0015 ± 0.0001 ppm in Ref. [1]) to account for any adjustments in our calculated exposure ages.

2.2. Published 10Be ages

For consistency, we followed a strict procedure while compiling the published 10Be ages. This includes only using moraine boulder ages, excluding any bedrock ages from the analysis (Table S1; Supplementary item 1). 10Be ages that do not follow the moraine morphostratigraphic order as outlined in the original literature were excluded. Slip rate studies on moraines that only dated pebbles/cobbles were also not used in this compilation. Only studies that used the standard [4,5] 10Be extraction procedure are targeted. Since published studies used different standards (e.g., LLNL3000, SS55, NIST_Certified, NIST_27900, KNSTD, 07KNSTD) to normalize their Be isotopic measurements (Table S1), a correction factor is used whenever required while recalculating the ages [7]. We used 5 cm as the maximum depth of sample collection and zero erosion rates for studies that did not report any such information. Using the raw data provided in the original literature, we therefore recalculated all the published 10Be ages following the same parameters (Table S1; Supplementary item 1).

2.3. Exposure age calculation

We calculated/recalculated 10Be ages using the community standard Cosmic Ray Exposure program (CREp of [12]), CRONUS-Earth V3 [3], and CRONUScale program [9] (Table S1). Apparent exposure ages are calculated using the scaling schemes of Lifton-Sato-Dunai (LSD; [8]), time-dependent Lal and Stone (Lm; [3]), and time-independent Lal and Stone (St; [10,11]) (Table S1). The global sea-level high-latitude (SLHL) spallogenic 10Be production rate of 4.08 ± 0.23 atoms/g/a was used for the LSD scaling scheme along with the ERA40 atmospheric model and VDM2016 geomagnetic database [12,13] (http://calibration.ice-d.org/). We assumed zero-erosion rates and reported all the ages in thousands of years (ka) before 2016 CE.

We performed several statistical treatments if >2 concordant boulder ages are available for a moraine. We applied reduced chi-squared (χ^2) statistics to assess the distribution of ages. Any age population with $\chi^2 > 1$ likely had outliers, and further statistical treatment was performed. Chauvenet’s criterion [14] was used to detect outliers and highlighted in blue in Table S1. Outliers for new 10Be ages were only removed if convincing field evidence supported our statistical results (e.g., possible recent hillslope deposits, shallow burial, and/or toppling). For published studies, we relied on statistical treatment and the recommendations in the original studies to detect and remove outliers. Mean moraine ages (local glacial stages) are reported using arithmetic means $\pm 1\sigma$, weighted mean $\pm 1\sigma$, and peaks in the probability distribution (Table S1).

2.4. Equilibrium-line altitudes (ELAs)

Present and past ELAs were determined using area-altitude (AA), area accumulation ratio (AAR), and toe-headwall accumulation ratio (THAR) methods for each glacier advance in 77 glaciated valleys (Table 1; Supplementary item 2) [15]. Additionally, the modern maximum elevations of lateral moraines (MELM) were used to evaluate the modern estimated ELAs derived using the above three methods (Table 1). ELAs and ΔELAs are only measured for those glaciated valleys where the modern glacier-ice is present.

Raw data for ELA estimates were extracted using satellite images acquired in 26th February 2016 at https://search.earthdata.nasa.gov/search. Present and past glaciated areas were mapped as vector layers using Google Earth and Landsat ETM+ images in ArcGIS 10.5 (Supplementary item 2). In addition, we used ASTER GDEMs to prepare Hillshade and Slope maps (Spatial Analyst Tools in ArcGIS) to further aid in outlining modern glaciated areas and paleo-ice extents. Paleo-ice extents were defined on the satellite images using moraine positions in the individual valley (Supplementary item 2). The vector layers/maps of the modern and the past glacier extents are then used to extract the DEM values.
and converted into ASCII files. The ASCII files were inserted into the Read ArcGrid program developed by Professor David Nash of the University of Cincinnati to generate the glacier’s hypsometry. The Read ArcGrid program calculates basic statistics, including Elevation Relief Ratio (hypsometric integral), for a matrix of elevations. Using the steps outlined in Ref. [15] and a combination of AA, AAR, and THAR ratios, we finally measured the ELAs. Different combinations of AARs (e.g., ranging from 0.45 to 0.80) and THARs (e.g., varies from 0.3 to 0.6) were used depending on the glacier setting, physical characteristics, and climate (Table 1). We obtained these ratios from the published literature for each distinct climatic zone (see Ref. [1] for details on climatic zones and references therein). In Table 1, we report the (arithmetic) mean ELA and ΔELA with $\pm 1\sigma$ uncertainty.

Acknowledgments

The current project was funded by the SEED grant of PRIME laboratory, Purdue University to AMS measure 10Be samples. SS, LAO and ENO thank the Department of Geology at the University of Cincinnati for fieldwork support. SS acknowledges support from the Geological Society of America for Graduate Student Research Grant and the Graduate Student Governance Association of the University of Cincinnati for Research Fellowship to conduct fieldwork.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.dib.2019.104412.

References

[1] S. Saha, L.A. Owen, E.N. Orr, M.W. Caffee, High-frequency Holocene glacier fluctuations in the Himalayan-Tibetan orogen, Quat. Sci. Rev. 220 (2019) 372–400.

[2] J.C. Gasse, F.M. Phillips, Terrestrial in situ cosmogenic nuclides: theory and application, Quat. Sci. Rev. 20 (2001) 1475–1560, https://doi.org/10.1016/S0277-3791(00)00171-2.

[3] G. Balco, J.O. Stone, N.A. Lifton, T.J. Dunai, A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements, Quat. Geochronol. 3 (2008) 174–195.

[4] C.P. Kohl, K. Nishizumi, Chemical isolation of quartz for measurement of in-situ-produced cosmogenic nuclides, Geochim. Cosmochim. Acta 56 (1992) 3583–3587.

[5] K. Nishizumi, R.C. Finkel, M.W. Caffee, J.R. Southon, C.P. Kohl, J.R. Arnold, C.T. Olinger, J. Poths, J. Klein, Cosmogenic production of 10Be and 26Al on the surface of the Earth and underground, in: Eighth International Conference on Geochronology, Cosmochemistry and Isotope Geochemistry, U.S. Geol. Surv. Circular 1107, Berkeley, California, 1994, p. 234.

[6] R. Braucher, E.T. Brown, D.L. Bourlès, F. Colin, In situ produced 10Be measurements at great depths: implications for production rates by fast muons, Earth Planet. Sci. Lett. 211 (2003) 251–258, https://doi.org/10.1016/S0012-821X(03)00205-X.

[7] K. Nishizumi, M. Imamura, M.W. Caffee, J.R. Southon, R.C. Finkel, J. Mcaninch, Be AMS standards 258 (2007) 403–413, https://doi.org/10.1016/j.nimb.2007.01.297.

[8] N. Lifton, T. Sato, T.J. Dunai, Scaling in situ cosmogenic nuclide production rates using analytical approximations to atmospheric cosmic-ray fluxes, Earth Planet. Sci. Lett. 386 (2014) 149–160.

[9] S.M. Marrero, F.M. Phillips, B. Borchers, N. Lifton, R. Aumer, G. Balco, Cosmogenic nuclide systematics and the CRONUScalc program, Quat. Geochronol. 31 (2016) 160–187, https://doi.org/10.1016/j.quageo.2015.09.005.

[10] D. Lal, Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models, Earth Planet. Sci. Lett. 104 (1991) 424–439.

[11] J.O. Stone, Air pressure and cosmogenic isotope production, J. Geophys. Res. C Ocean. Atmos. 105 (2000) 23753–23759.

[12] L.C.P. Martin, P.H. Blard, G. Balco, J. Lave, R. Delune, N. Lifton, V. Laurent, The CREp program and the ICE-D production rate calibration database: a fully parameterizable and updated online tool to compute cosmic-ray exposure ages, Quat. Geochronol. 38 (2017) 25–49, https://doi.org/10.1016/j.quageo.2016.11.006.

[13] B. Borchers, S. Marrero, G. Balco, M. Caffee, B. Geohring, N. Lifton, K. Nishizumi, F. Phillips, J. Schaefer, J. Stone, Geological calibration of spallation production rates in the CRONUS-Earth project, Quat. Geochronol. 31 (2016) 188–198.

[14] J.R. Taylor, An Introduction to Error Analysis, second ed., University Science Books, Sausalito, Calif, 1997.

[15] H. Osmaston, Estimates of glacier equilibrium line altitudes by the area x altitude, the area x altitude balance ratio and the area x altitude balance index methods and their validation, Quat. Int. 138–139 (2005) 22–31.