Development and characterization of miconazole nitrate transfersomal gel

Shaik Sajid Ali*, Madhu Gudipati, Ramarao Nadendla

Department of Pharmaceutics, Chalapathi Institute of Pharmaceutical Sciences, Lam, Guntur-34, Andhra Pradesh, India.

ABSTRACT

Miconazole nitrate (MIC) is an antifungal drug used for treatment of superficial fungal infections. However, it has low skin permeability. Hence, the basic idea behind the development of such a system, transfersomes is to maintain a sustain release of drug from the dosage form and for target delivery. Miconazole nitrate was formulated as transfersomes, half-life can be increased and the desired effect can be obtained. MIC transfersomes were prepared using a thin lipid film hydration technique. The prepared transfersomes were evaluated with respect to entrapment efficiency (EE%), particle size, and quantity of in vitro drug released to obtain an optimized formulation. The optimized formulation of MIC transfersomes was incorporated into a Carbopol 934 gel base which was for drug content, pH, spreadability, viscosity, in vitro permeation, and in vitro activity. The prepared MIC transfersomes had a high EE% ranging from 65.45% to 80.11%, with small particle sizes ranging from 368 nm to 931 nm. The in vitro release study suggested that there was an inverse relationship between EE% and in vitro release. In 24 hrs the drug release was observed ranging from 79.08% to 88.72%. The kinetic analysis of all release profiles was found to follow Higuchi’s diffusion model. All independent variables had a significant effect on the dependent variables (p-values < 0.05). Therefore, Miconazole nitrate in the form of transfersomes has the ability to penetrate the skin, overcoming the stratum corneum barrier. When the data subjected to zero order and first order kinetics model, a linear relationship was observed with high R² values for zero order model as compared to first order model and suggested that the formulations followed zero order sustained release.

Keywords: Antifungal activity; Carbopol 934; Entrapment efficiency; Miconazole nitrate; Transfersomes.

INTRODUCTION

Miconazole topical is an antifungal medication. Miconazole topical prevents fungus from growing on your skin. Miconazole topical (for the skin) is used to treat skin infections such as athlete’s foot, jock itch, ringworm, tinea versicolor (a fungus that discolors the skin), and yeast infections of the skin. Miconazole topical may also be used for purposes not listed in this medication guide. The antifungal agent used typically in its nitrate form, to treat candidiasis and other fungal infections is known as Miconazole nitrate.[2]

The development of a new drug delivery system has been of great interest. The purpose of the novel drug delivery system is to deliver the drug to the body’s needs during the treatment cycle and to redirect the active agent to the action site. There have been a number of new drug delivery systems which cover many administrative routes to ensure managed and targeted distribution. One such method is the encapsulation of a drug in vesicular structures, which could be expected to extend the life of the drug in systemic circulation and minimize toxicity if the drug can be chosen. A variety of vesicular systems have therefore been developed for the delivery of drugs, such as liposomes, niosomes, pharmacosomes and transfersomes. The use of liposomal, transfersome vesicular systems, as well as the ability to integrate hydrophilic and lipophilic medicines are one of the options for improving the penetration of drugs in the skin.

Recent strategies in drug delivery include distributing the medication at a default rate known as the controlled release delivery system. Such devices also helped to reduce the side-effects of the conventional...
Transfersomes, a new class of modified liposomes were derived from the Latin word "transfer", And the Greek word "soma" meaning "a body. “Transfersomes, which are initially reported by Cevc[6] and are different descriptions of deforming, highly-deformable, elastic or ultra-flexible liposomes are claimed to improve transdermal, in vitro delivery of a wide range of drugs and are defined as non-natural vesicular designed to display an attribute of cell vesicle or cell engaged in exocytosis.[7] The deformation of transfersomes is the result of integration of the edge activator into the bilayer phospholipids which increases elasticity through the destabilization of lipid bilayers.[8] Edge activators are commonly used as single-chain surfactants such as sodium cholate and tween 80.[9,10] Transfersomes will squeeze around one-tenth of the diameter of the vesicles through conduits and allow them to spontaneously enter the stratum corneum.[11]

Figure 1: Structure of Transfersomes[13]

MATERIALS AND METHODS
Materials
Miconazole Nitrate was obtained as a gift sample from vital Laboratories Pvt. Ltd, soya lecithin was purchased from Himedia, and methanol was purchased from Fischer Scientifics, Span 80 and tween 80 was procured from Reachem, Mumbai, India and Carbopol 934 was procured from Loba Chamoe Pvt Ltd, Mumbai

Preparation of Miconazole nitrate Loaded Transfersomes
Soya-phosphatidylcholine was taken in a round bottom flask. Span80 (sp) or Tween 80 (Tw) was put in the same round bottom flask. Methanol was then added to the same flask. The Miconazole nitrate was also loaded in the same RBF. These were then dissolved by shaking. Thin film was then formed by keeping it in the rotatory vacuum evaporator at 60°C. To prepare small vesicles, resulting LMVs were sonicated at room temperature or 500C for 30min. the sonicated vesicles were homogenized by manual extrusion 10 times through a sandwich of 200 and 100nm polycarbonate membrane. Then finally we got the Transfersome were transferred to 2% w/v carbopol gel.

Preparation of Gels
Preparation of carbopol gel base: 0.5 g Carbopol 934 was weighed and dispersed in water with mild stirring and allowed to swell for 24 hours to obtain 0.5% gel. Later 2 ml of glycerin was added to for gel consistency. As shown in the (Table 1) different compositions of Carbopol 0.5, 1 and 2% gels were prepared.[12]

Table 1: Composition of different gel base
Formulation
TF1
TF2
TF3

Shaik Sajid Ali et al., (2020) Int. J. Res. Pharm. Sci & Tech., 1(4), 109-116
Evaluation of miconazole nitrate transfersomes

Drug-Excipient Compatibility

Differential scanning Calorimetry (D.S.C): Differential Scanning Calorimetry (DSC) is used to check the compatibility of drug with excipients. DSC measurements were done on pyris calorimeter. Approximately 3-5mg of drug were weighed accurately into standard aluminum pan. An empty pan was used as a reference. The samples were heated from room temperature to 390°C with scan rates 10°C/minute. Then the DSC curves are recorded with the help of computer scans. [14]

Fourier transforms infrared spectroscopy (FTIR): FTIR spectroscopy was carried out to check the compatibility between the drug and polymer. The IR spectra of Miconazole Nitrate and physical mixtures of drug and polymer was carried out by using FTIR, Bruker. The scanning range was 400 to 4000 cm⁻¹ and the resolution was 1 cm⁻¹. The wave numbers of characteristic peaks of physical mixtures were compared with the pure samples and interpreted. [15]

Vesicle morphology: For SEM one drop of Transfersomes were mounted on the stub covered with clean glass and coated with gold and were observed under the scanning electron microscope at an accelerating voltage of 20KV and photomicrographs of suitable magnification was obtained.

Particle size: Size was determined using a Zetasizer 300HS. Samples were diluted with distilled water and measured at a temperature of 25°C. The diameter was calculated from the autocorrelation function of intensity of light scattering from transfersomes. [16]

Drug content: 1gm each formulation containing approximately 40mg of drug was taken in a 50 ml volumetric flask and diluted with methanol and shaken to dissolve the drug in methanol. The solution was filtered through Whatmann filter paper, 0.1 ml of the filtrate was pipette out and diluted 10ml of methanol. The content of the drug was observed in UV-Spectrophotometer. [17, 18]

Formulation Code	Composition					
	Drug (mg)	Lecithin (mg)	Span80 (mg)	Tween80 (mg)	Methanol (ml)	Phosphate buffer (ml)
F1	10	95	5	-	2	10
F2	10	90	10	-	2	10
F3	10	85	15	-	2	10
F4	10	80	20	-	2	10
F5	10	75	25	-	2	10
F6	10	70	30	-	2	10
F7	10	95	-	5	2	10
F8	10	90	-	10	2	10
F9	10	85	-	15	2	10
F10	10	80	-	20	2	10
F11	10	75	-	25	2	10
F12	10	70	-	30	2	10

Entrapment Efficiency: The concentration of Miconazole nitrate in the formulation was determined by UV analysis after disruption of the vesicles with Triton X-100 (0.5% w/w). The vesicle/Triton X-100 solution was centrifuged at 10,000 rpm at 4°C for 10 min. The supernatant was filtered. The entrapment efficiencies and the loading efficiencies of the Miconazole nitrate-loaded formulation were calculated by [UV, 19]

\[
\text{Entrapment efficiency} = \left(\frac{\text{Amount entrapped}}{\text{Total amount added}} \right) \times 100
\]

In vitro drug release studies

The in vitro permeation behaviour of Miconazole nitrate from all transfersomal gel formulations and the control gel formulation (containing drug, span 80, Tween 80, and Soya phosphatidylcholine) were investigated using cellophane membrane (Molecular weight cut of 12000–14000). The vertical type of the Franz Diffusion cell was designed, fabricated, and validated prior to the permeation study. The cellophane membrane was mounted on a diffusion cell assembly with an effective diffusion area of 2.303 cm². The receptor compartment consisted of a 22.5 ml phosphate buffer at pH 7.4 as the receptor fluid agitated at 100 rpm, and was maintained at 37 ± 0.5°C throughout the experiments. The prepared formulation was applied to the membrane in the donor compartment. An aliquot of 2 mL sample was withdrawn at suitable time intervals and replaced immediately with an equal volume of fresh diffusion medium. The cumulative amount that permeated across the cellophane membrane was calculated and plotted against time. [20, 21]

Kinetics of drug release: To examine the drug release kinetics and mechanism the cumulative release data were fitted to models of data treatment as follows:

- Cumulative percentage drug release Vs. Time (zero order rate kinetics)
- Log cumulative percentage drug retained Vs. Time (first order rate kinetics)

Rubatosis Publications | International Journal of Research in Pharmaceutical Sciences and Technology 111
RESULTS AND DISCUSSION

A successful attempt was made to formulate transferosomes gel of Miconazole nitrate using different surfactants. Effect of surfactant applied on formulations was assessed. In the present work, twelve formulations were prepared and composition is mentioned in Table 1. Among these one of the best formulations was loaded into carbopol gel. The formulated transferosomes and gel were characterized for various physicochemical parameters.

Preformulation studies of pure drug:

Drug excipients compatibility studies

Chemical compatibility-Differential scanning calorimetry (DSC) studies: The DSC procedure is followed and DSC thermogram of API, drug-Excipient compatibility blend were shown in the (Figure 2 and Figure 3).

Identification of Miconazole nitrate: The IR spectrum of pure drug was found to be similar to that of standard spectrum of Miconazole nitrate. The spectrum of Miconazole nitrate shows the following groups at their frequencies shown in 1473, 1642, 2904, 3407 cm\(^{-1}\). Determination of melting point. The melting point of Miconazole nitrate was found to be 170-184°C which complied with the BP standards.

Drug-polymer compatibility: Compatibility studies of pure drug Miconazole nitrate with polymers were carried out prior formulation of transferosomes. IR spectra of pure drug and polymer were taken. All the characteristic peaks of Miconazole nitrate were present in spectra at respective wavelength. As shown in (Figure 4, Figure 5, Figure 6, Figure 7) Thus, indicating compatibility between drug and polymers were interpretation was represented in (Table 3) and It shows that there was no significant change in the chemical integrity of the drug.
Rubatosis Publications | International Journal of Research in Pharmaceutical Sciences and Technology

Table 3: Interpretation of Miconazole nitrate and physical mixtures

S.no	Type of bond	Type of stretch	Characteristic peak	Pure Drug (Miconazole Nitrate)	Physical Mixture (drug + span80 + soya lecithin)	Physical Mixture (drug + tween80 + soya lecithin)
1	N-H	Stretch	3500-3300	3407.74	3361.60	3398.91
2	C-H	Stretch	2960-2850	2904.48	2925.55	2915.42
3	C=O	Stretch	1600-1900	1642.87	1738.52	1739.21
4	C-C	Stretch	1450-1070	1473.41	1055.63	1067.25

Morphology: The prepared transferosomes were undergone morphological studies by using optical microscopic method. Small quantity of sample spreaded over clean slide. The slide was focused under optical light and images were snapped by using optical microscopy attached with Dewinter Microscopic camera software. According to morphological evaluation analysis, all vesicles types seemed to have a spherical or oval shaped which had been resulted or shown in (Figure 8). These oval-shaped vesicles may have resulted from the transferosomes’ deformation, which might occur during the sample preparation.

Particle size: Particle size analysis showed that the sizes of different formulations were in the range of 368 nm and 931 nm indicating that these vesicles were all of a small size. From formulation F1 to F12 particle size are listed in (Table 4).

Drug content: Drug content uniformity was determined as triplicate by dissolving in methanol and dissolved transferosomes were undergone centrifugation at 3000rpm for 2hrs and filtered with Whatman filter paper (0.45,) Whatman, Maidstone, UK. The solution was diluted to Beer’s range and observed in UV-Spectrophotometer. The value range from 80.45% to 94.15% as shown in (Table 4).

Entrapment Efficiency

The entrapment efficiency of deformable vesicles formulations were found to be in the range of 66.12 to 80.11. The percentage entrapment efficiency for span80 was maximum F3 for i.e. 80.11 and minimum for F6 i.e. 65.41 and in case of tween80 maximum for F10 i.e. 74.25 and minimum for F8 i.e. 66.12%. as shown in (Figure 9).

In vitro Diffusion Studies

In vitro diffusion studies of all the formulation of transferosomes of Miconazole nitrate were carried out in pH 7.4 phosphate buffer. The study was performed for 24hrs and cumulative percentage drug release was calculated at different time intervals. The in vitro drug release profile for the formulation (F1 to F6), (F7 to F12) were tabulated in (Table 5 and Table 6). The plot of time Vs cumulative % drug release formulations (F1 to F6) to (F7 to F12) were plotted and depicted in (Figure 10 and Figure 11) figures. Effects of various surfactants and their concentration on drug release were studied.

In vitro drug release studies from gel through a cellophane membrane:

Transferosomal gel formulation was subjected to in vitro drug release studies using a cellophane membrane. The cumulative amount of drug release was calculated. Results revealed that highest cumulative amount of drug release 88.62% up to 24hrs.

![Figure 8: SEM image of transferosomes](image)

![Figure 9: Entrapment Efficiency of F1 to F12 Formulations](image)

Shaik Sajid Ali et al. (2020) Int. J. Res. Pharm. Sci & Tech., 1(4), 109-116
Table 5: In vitro percentage Cumulative drug release of F1 to F6

S.No	Time (Hrs)	% Cumulative drug release					
F1	F2	F3	F4	F5	F6		
1	0	0	0	0	0	0	
2	1	12.54±0.02	13.50±0.48	16.87±0.09	13.27±0.26	11.44±0.12	11.68±0.01
3	2	20.66±0.22	16.09±0.25	20.41±0.24	23.36±0.31	27.57±0.25	23.48±0.05
4	3	29.99±0.35	20.82±0.43	23.99±0.26	26.91±0.16	30.13±0.19	27.96±0.09
5	4	32.57±0.02	29.01±0.38	27.60±0.06	31.60±0.09	37.29±0.24	34.61±0.1
6	5	39.73±0.12	32.72±0.27	33.49±0.09	35.22±0.13	42.23±0.35	39.20±0.33
7	6	41.26±0.28	38.74±0.36	38.31±0.35	39.99±0.38	46.08±0.29	42.77±0.42
8	7	48.51±0.24	44.82±0.25	45.43±0.24	42.59±0.46	48.81±0.31	45.31±0.21
9	8	51.26±0.32	50.96±0.34	51.50±0.29	50.74±0.24	52.71±0.19	48.93±0.32
10	9	64.30±0.15	60.58±0.09	60.99±0.32	61.18±0.5	62.37±0.41	57.89±0.44
11	10	82.03±0.27	81.69±0.19	79.57±0.45	87.21±0.19	85.84±0.22	81.81±0.49

Table 6: In vitro percentage Cumulative drug release of F7 to F12

S.No	Time (Hrs)	% Cumulative drug release					
F7	F8	F9	F10	F11	F12		
1	0	0	0	0	0	0	
2	1	16.77±0.15	19.88±0.09	15.70±0.09	21.13±0.09	13.05±0.1	19.29±0.16
3	2	31.32±0.18	28.78±0.1	20.35±0.12	24.87±0.06	17.93±0.16	24.01±0.19
4	3	32.83±0.26	34.04±0.14	27.28±0.19	28.64±0.12	25.23±0.24	28.78±0.1
5	4	37.94±0.33	39.35±0.24	32.03±0.24	33.61±0.17	30.23±0.32	35.87±0.24
6	5	41.91±0.28	42.22±0.35	40.20±0.31	42.16±0.21	32.90±0.19	44.16±0.29
7	6	48.31±0.39	50.09±0.29	45.08±0.22	46.10±0.26	39.15±0.25	49.13±0.22
8	7	51.17±0.45	53.06±0.14	47.76±0.29	47.72±0.32	47.84±0.35	53.01±0.34
9	8	60.05±0.42	63.51±0.32	51.59±0.24	54.05±0.41	51.86±0.12	56.93±0.19
10	9	71.4±0.46	74.07±0.28	62.18±0.45	65.13±0.34	63.05±0.25	65.41±0.45
11	10	87.67±0.49	88.45±0.26	82.97±0.24	83.37±0.45	79.06±0.29	86.72±0.49

Figure 10: In-vitro Diffusion studies for F1 to F6

Figure 11: In-vitro diffusion studies for F7 to F12

Figure 12: Time Vs Drug retained (First order kinetics) of formulations F1 to F6

Figure 13: Time Vs Drug retained (First order kinetics) of formulations F7 to F12
SUMMARY

Miconazole nitrate is mainly used in the treatment of fungal infections. The basic idea behind the development of such a system is to maintain a sustained release of drug from the dosage form and for target delivery. In the research work an attempt was made to formulate and evaluate the transferosomal gel for sustained effect. The drug excipient compatibility studies were carried out by using DSC & FT-IR technique. Based on the results, excipients were found to be compatible with Miconazole nitrate. In preformulation study, estimation of Miconazole nitrate was carried out by UV spectrophotometer at λ_{max} 272 nm using water as solvent, which had a good reproducibility and this method was used entire study. Entrapment efficiency ranging from 65.45 to 80.11% was obtained. Particle size of transferosomes was found to be in the range of 368 to 931 nm. In 24 hrs the drug release was observed ranging from 79.57% to 88.72%. Drug release from the gel was observed that 79.57%. In order to reduce the probable mechanism of drug from the dosage form, the result of in vitro dissolution studies were fitted to various kinetics equations. When the data subjected to zero order and first order kinetics model, a linear relationship was observed with high R^2 values for zero order model as compared to first order model and suggested that the formulations followed zero order sustained release.

CONCLUSION

Transferosomal drug delivery system offers a simple and practical approach to achieved increase bioavailability, avoids first pass metabolism and modify drug release profiles essential for sustained, site specific and localized drug action. In vitro release obeyed zero order kinetics with mechanism of release zero order followed by non fickian diffusion due to more lipophile nature of polymers used. The drug permeation was slow and study and 79.57% of Miconazole nitrate could permeate through the skin into the pilosebaceous unit in 24hrs. Among all the formulations, F3 possess satisfactory swelling index, and in vitro drug release studies were extended period of time so F3 was considered to be the best formulations. So, Miconazole nitrate used for the treatment of pain as transferosomal gel can produce fast absorption.
study conducted so far reveals promising result suggesting scope for pharmacodynamic and pharmacokinetics evaluation.

ACKNOWLEDGEMENT

I express profound sense of gratitude to our honourable principal Prof. Dr. Ramaraao Nadendla, for his help in all necessary aspects during my research work. I express my humble gratitude to my research guide Dr. Madhu Gudipati, Department of pharmacy, Chalapathi institute of pharmaceutical sciences, for his inspiring guidance, constant encouragement and intellectual suggestions throughout the course of the dissertation. I thank all the faculty members of department of pharmacy for their cooperation during my research work and Chalapathi Institute of Pharmaceutical Sciences, Lam, Guntur, for providing necessary facilities to carry out this work.

REFERENCES

1. Qushawy, M., Nasr, A., Abd-Alhaseeb, M., & Swidan, S. (2018). Design, optimization and characterization of a transdermal gel using miconazole nitrate for the treatment of candida skin infections. Pharmaceutics, 10(1), 26. DOI: 10.3390/pharmaceutics10010026.

2. Premchandani, L. A., Bakliwal, S. R., Rane, B. R., Gnarathri, N. A., Patil, V. B., & Pawar, S. P. (2016). Pro-transfersome: ultraflexible vesicular approach for transdermal drug delivery system. Indian Journal of Drugs, 4(2), 28-41.

3. Vinod, K. R., Kumar, M. S., Anbazhagan, S., Sandhya, S., Saikumar, P., Rohit, R. T., & Banji, D. (2012). Critical issues related to transfersomes-novel vesicular system. ACTA Scientiarum Polonorum Technologia Alimentaria, 11(1), 67-82.

4. Sangwan, S., & Dureja, H. (2009). Pharmacosomes: A potential alternative to conventional vesicular systems.

5. WF, L (1990). Schaumburg-Lever G. Histopathology of the skin. J.B. Lippincott Company, 7th edition, Philadelphia.

6. Chaurasia, L., Singh, S., Arora, K., & Saxena, C. (2019). Transfersome: A Suitable Delivery System for Percutaneous Administration. Current Research in Pharmaceutical Sciences, 1-11.

7. Fartasch, M., Bassukas, I. D., & Diepgkn, T. L. (1993). Structural relationship between epidermal lipid lamellae, lamellar bodies and desmosomes in human epidermis: an ultrastructural study. British Journal of Dermatology, 128(1), 1-9.

8. Ford, J. L., Rubinstein, M. H., & Hogan, J. E. (1985). Propranolol hydrochloride and aminophylline release from matrix tablets containing hydroxypropylmethylcellulose. International journal of pharmaceutics, 24(2-3), 339-350.

9. Remuñan-López, C., Portero, A., Vila-Jato, J. L., & Alonso, M. J. (1998). Design and evaluation of chitosan/ethylcellulose mucoadhesive bilayered devices for buccal drug delivery. Journal of controlled release, 55(2-3), 143-152.

10. Benson, H. A. (2005). Transdermal drug delivery: penetration enhancement techniques. Current drug delivery, 2(1), 23-33.

11. Mezei, M., & Gulasekhraram, V. (1980). Liposomes as selective drug delivery system for the topical route of administration I. Lotion dosage form. Life Sciences, 26(18), 1473-1477.

12. Thakur, N., Jain, P., & Jain, V. (2018). Formulation Development and Evaluation of transferosomal gel. Journal of Drug Delivery and Therapeutics, 8(5), 168-177.

13. Salman, B. S., & Baig, M. A. H. (2019). Formulation and evaluation of nanoparticulate ofloxacin ophthalmic gel using ionic gelation method. International Journal of Research in Pharmaceutical Sciences and Technology, 1(2), 73-78.

14. US Food and Drug Administration. (1995). Code of Federal register.

15. Sathe, S., Bagade, M., Nandgude, T., Kore, K., & Shete, R. (2015). Formulation and evaluation of thermo reversible in-situ nasal gel of terbutaline sulphate. Indo Am J Pharm Res, 5, 3680-7.

16. Patel, R., Singh, S. K., Singh, S., Sheth, N. R., & Gendle, R. (2009). Development and characterization of curcumin loaded transfersome for transdermal delivery. Journal of pharmaceutical sciences and research, 1(4), 71.

17. Purushottam, S. S., Bhaskarao, G. S., & Bhanudas, S. R. (2013). Gelified emulsion: a new born formulation for topical delivery of hydrophobic drugs. World journal of pharmacy and pharmaceutical sciences, 3, 233-251.

18. Masmoudi, H., Piccerelle, P., Le Dréau, Y., & Kister, J. (2006). A rheological method to evaluate the physical stability of highly viscous pharmaceutical oil-in-water emulsions. Pharmaceutical research, 23(8), 1937-1947.

19. Prajapati, S. T., Patel, C. G., & Patel, C. N. (2011). Transfersomes: a vesicular carrier system for transdermal drug delivery. Asian Journal of Biochemical and Pharmaceutical Research, 2(1), 507-524.

20. Bargir, T. N., Aj, A., & Sa, P. (2016). Composition of terbinaine HCL polymeric gel for mucosal drug delivery.

21. Sanjay, Jain, B. D., Padsal, A., Patel, K., & Mokale, V. (2007). Formulation development and evaluation of fluconazole gel in various polymer bases formulation development and evaluation of fluconazole gel in various polymer bases. Asian Journal of Pharmaceutics, 1(1), 63-68.