Article

Multiplicity of Solutions for Fractional-Order Differential Equations via the $\kappa(x)$-Laplacian Operator and the Genus Theory

Hari M. Srivastava and Jose Vanterler da Costa Sousa

Department of Mathematics and Statistics, University of Victoria, Victoria, BC V8W 3R4, Canada
Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
Department of Mathematics and Informatics, Azerbaijan University, 71 Jeyhun Hajibeyli Street, Baku AZ1007, Azerbaijan
Section of Mathematics, International Telematic University Uninettuno, 00186 Rome, Italy
Center for Mathematics, Computing and Cognition, Federal University of ABC-UFABC, 5001 Bangú, Santo André 09210-580, SP, Brazil; jose.vanterler@ufabc.edu.br
* Correspondence: harimsri@math.uvic.ca

Abstract: In this paper, we investigate the existence and multiplicity of solutions for a class of quasi-linear problems involving fractional differential equations in the χ-fractional space $H^{\gamma,\beta}_{\alpha}$. Using the Genus Theory, the Concentration-Compactness Principle, and the Mountain Pass Theorem, we show that under certain suitable assumptions the considered problem has at least k pairs of non-trivial solutions.

Keywords: fractional differential equations; $\kappa(x)$-Laplacian; χ-Hilfer fractional derivative; existence; multiplicity of solutions; genus theory; Concentration-Compactness Principle; Mountain Pass Theorem; variable exponents; variational methods

MSC: Primary 26A33, 34A08; Secondary 35A15, 35J20, 35J66, 35J92

1. Introduction

Let $I = [a, b]$ ($-\infty < a < b < \infty$) denote a finite interval on the real axis \mathbb{R}. In the theory and application of fractional integrals and fractional derivatives, it is known that the right-sided Hilfer fractional derivative $H_{\alpha}^{\gamma,\beta}$ and the left-sided Hilfer fractional derivative $H_{\alpha}^{\gamma,\beta}$ of order γ ($0 < \gamma < 1$) and type β ($0 \leq \beta \leq 1$) reduce, when $\beta = 0$ and $\beta = 1$, respectively, to the corresponding relatively more familiar Riemann-Liouville fractional derivatives and Liouville-Caputo fractional derivatives, respectively (see [1–4] for details, along with several other related recent works [5–9]). For $n - 1 < \gamma < n$ ($n \in \mathbb{N}$), let $f, \chi \in C^a(I \subset \mathbb{R})$, where the function χ is increasing and $\chi'(x) \neq 0$ in the interval I. Then, we have the right-sided χ-H $H_{\alpha}^{\gamma,\beta}$ and the left-sided χ-Hilfer fractional derivative $H_{\alpha}^{\gamma,\beta}$ of order γ ($0 < \gamma < 1$) and type β ($0 \leq \beta \leq 1$).

Let

$$\theta = (\theta_1, \theta_2, \ldots, \theta_N), \quad d = (d_1, d_2, \ldots, d_N) \quad \text{and} \quad \gamma = (\gamma_1, \gamma_2, \ldots, \gamma_N),$$

where $0 < \gamma_1, \gamma_2, \ldots, \gamma_N < 1$ with $\theta_j < d_j$ for all $j \in \{1, 2, \ldots, N\}$ and $N \in \mathbb{N}$, and use

$$\Lambda = I_1 \times I_2 \times \cdots \times I_N = [\theta_1, d_1] \times [\theta_2, d_2] \times \cdots \times [\theta_N, d_N],$$

where T_1, d_2, \ldots, T_N and $\theta_1, \theta_2, \ldots, \theta_N$ are positive constants. We consider $\chi(\cdot)$ to be an increasing and positive monotone function on $(\theta_1, d_1), (\theta_2, d_2), \ldots, (\theta_N, d_N)$ having.
a continuous derivative $\chi'(\cdot)$ on $(\theta_1,d_1), (\theta_2,d_2), \cdots, (\theta_N,d_N)$. The χ-Riemann-Liouville fractional integral of order γ and of N variables $\phi = (\varphi_1, \varphi_2, \cdots, \varphi_N) \in L^1(\Delta)$, denoted by $\mathcal{I}^{\gamma \chi}_{\theta,x}(\cdot)$, is defined as follows (see [10–12]):

$$\mathcal{I}^{\gamma \chi}_{\theta,x}(\phi)(x_j) := \frac{1}{\Gamma(\gamma_j)} \int \int \cdots \int_{\Delta} \chi'(s_j)[\chi(x_j) - \chi(s_j)]^\gamma ds_j$$

for all $j \in \{1, 2, \cdots, N\}$. We can then define $\mathcal{I}^{\gamma \chi}_{\theta,x}(\cdot)$ by analogy.

Furthermore, we let $\varphi, \chi \in C^n(\Delta)$ be two functions such that χ is increasing, $\chi'(x_j) \neq 0$ ($j \in \{1, 2, \cdots, N\}$), and $x_j \in \Delta$. The χ-Hilfer fractional partial derivative (χ-H) of functions of N variables, denoted by $\mathcal{D}_D^{\gamma \beta \chi}_{\theta,x}(\cdot)$, of order γ ($n - 1 < \gamma < n$) and type β ($0 \leq \beta \leq 1$), is defined as follows (see [10–12]):

$$\mathcal{D}_D^{\gamma \beta \chi}_{\theta,x}(\phi)(x_j) := \mathcal{I}^{(1-\gamma)\chi}_{\theta,x}(\frac{1}{\chi'(x_j)} (\frac{d^N}{dx^N}) \mathcal{I}^{(1-\beta)(1-\gamma)\chi}_{\theta,x}(\phi)(x_j))$$ \hspace{1cm} (1)

for all $j \in \{1, 2, \cdots, N\}$. We can then define $\mathcal{D}_D^{\gamma \beta \chi}_{\theta,x}(\cdot)$ by analogy.

Throughout this work, we use the following notations:

$$\mathcal{I}^{\gamma \chi}_{\theta,x}(\cdot) := \mathcal{I}^{\gamma \chi}_{\theta,\gamma}(\cdot),$$

$$\mathcal{I}^{\gamma \chi}_{\theta,x}(\cdot) := \mathcal{I}^{\gamma \chi}_{\theta,\chi}(\cdot),$$

$$\mathcal{D}_D^{\gamma \beta \chi}_{\theta,x}(\cdot) := \mathcal{D}_D^{\gamma \beta \chi}_{\theta,\gamma}(\cdot),$$

and

$$\mathcal{D}_D^{\gamma \beta \chi}_{\theta,x}(\cdot) := \mathcal{D}_D^{\gamma \beta \chi}_{\theta,x}(\cdot).$$

In the present paper, we consider the following class of quasi-linear fractional-order problems with variable exponents:

$$\begin{cases}
\mathcal{D}_D^{\gamma \beta \chi} \left(\left[\mathcal{D}_D^{\gamma \beta \chi}_+ \phi \right]^{\kappa(x)-2} \mathcal{D}_D^{\gamma \beta \chi}_+ \phi \right) = \lambda |\varphi|^{\gamma(x)-2} \varphi + F(x, \varphi) \\
\varphi = 0,
\end{cases}$$

(2)

where $\Delta := [0, T] \times [0, T] \times [0, T]$ is a bounded domain with a smooth boundary, and (for simplicity) $\mathcal{D}_D^{\gamma \beta \chi}_+ (\cdot)$ and $\mathcal{D}_D^{\gamma \beta \chi}_- (\cdot)$ are the χ-H of order γ ($\frac{1}{\kappa(x)} < \gamma < 1$) and type β ($0 \leq \beta \leq 1$), $\lambda > 0 ; \kappa, \eta : \Delta \to \mathbb{R}$ are Lipschitz functions such that:
• \((p_1)\) \(1 < \kappa_- \leq \kappa(x) \leq \kappa_+ < 3, \kappa_+ < n_- \leq n(x) \leq \kappa_+\) for all \(x \in \overline{\Delta}\).

• \((p_2)\) The set \(A = \left\{ x \in \overline{\Delta} : n(x) = \kappa_+\right\}\) is not empty.

We now make several assumptions which are detailed below. Let \(f : \overline{\Delta} \times \mathbb{R} \to \mathbb{R}\) be a function provided by

\[
f(x, t) = \zeta(x)|t|^\kappa(x) - 2t + \psi(x, t)
\]

with \(\zeta \in L^{\infty}(\Delta)\) and the function \(\psi : \overline{\Delta} \times \mathbb{R} \to \mathbb{R}\) satisfying the following conditions:

• \((g_1)\) The function \(g\) is odd with respect to \(t\), that is, \(\psi(x, -t) = -\psi(x, t)\) for all \((x, t) \in \overline{\Delta} \times \mathbb{R}\);

\[
\psi(x, t) = o(|t|^\kappa(x) - 1) \text{ when } |t| \to 0 \text{ uniformly in } x;
\]

\[
\psi(x, t) = o(|t|^n(x) - 1) \text{ when } |t| \to \infty \text{ uniformly in } x.
\]

• \((g_2)\) \(\psi(x, t) \leq \frac{1}{\kappa^*}\psi(x, t)\) for all \(t \in \mathbb{R}\), and at almost every point \(x \in \Delta\), where

\[
\psi(x, t) = \int_0^t \psi(x, s) ds.
\]

In addition, consider the following:

• \((H_1)\) There exists \(\tau > 0\) such that

\[
\int_\Delta \left(\frac{1}{\kappa(x)} \left| H^D_{\gamma, \beta} \varphi \right|^{\kappa(x)} - 2 \right) \zeta(x)|\varphi|^{n(x)} dx \geq \tau \int_\Delta \frac{1}{\kappa(x)} |\varphi|^{\kappa(x)} dx.
\]

• \((H_2)\) \(\kappa(x) = \kappa_+\) for all \(x \in \Gamma = \{ x \in \Delta : \zeta(x) > 0 \}\).

The derivative operator

\[
H^D_{\gamma, \beta} \left(\left| H^D_{\gamma, \beta} \varphi \right|^{\kappa(x)} - 2 \right) \left(H^D_{\gamma, \beta} \varphi \right)
\]

is a natural generalization of the operator

\[
H^D_{\gamma, \beta} \left(\left| H^D_{\gamma, \beta} \varphi \right|^{\kappa(x)} - 2 \right) \left(H^D_{\gamma, \beta} \varphi \right),
\]

with \(\kappa(x) = \kappa > 1\) being a real constant.

In recent years, there has been growing interest in the study of equations with growth conditions involving variable exponents. The study of such problems has been stimulated by their applications in elasticity [13], electro-rheological fluids [14,15] and image restoration [16]. Lebesgue spaces with variable exponents appeared for the first time as early as 1931 in the work of Orlicz [17]. Applications of this work include clutches, damper and rehabilitation equipment, and more [18–21].

Zhikov [13] was the first to work with the Lavrentiev phenomenon involving variational problems with variable exponents. His work motivated a great deal of research worldwide into variational and differential equations with variable exponent problems, including the works of, among others, Acerbi and Mingione [14], Alves [22,23], Alves and Ferrera [24,25], Antontsev and Shmarev [26], Bonder and Silva [27], Fu [28], Kovacic and Rakocevic [29], and Fan et al. [30,31].

In 2005, Chabrowski and Fu [32] considered the following \(\kappa(x)\)-Laplacian problem:

\[
\begin{cases}
-\text{div} (\zeta(x) |\nabla \varphi|^{\kappa(x)} - 2 \nabla \varphi) + b(x) |\varphi|^{\kappa(x) - 2} \varphi = F(x, \varphi) \text{ in } \Delta \\
\varphi = 0 \text{ on } \partial \Delta,
\end{cases}
\]

where \(1 < \kappa_1 \leq b(x) \leq \kappa_2 < n, \Delta \subset \mathbb{R}^n\) is bounded, \(0 < \zeta_0 \leq \zeta(x) \in L^\infty(\Delta)\) and \(0 \leq b_0 \leq b(x) \in L^\infty(\Delta)\). In fact, Chabrowski and Fu [32] investigated the existence of
solutions in \(W^{1,\kappa(x)}_0(\Delta) \) in the superlinear and sublinear cases using the Mountain Pass Theorem (MPT). Subsequently, in 2016, Alves and Ferreira [25] discussed the existence of solutions for a class of quasi-linear problems involving variable exponents by applying the Ekeland variational principle and the Mountain Pass Theorem (MPT).

In 2022, Taarabti [33] investigated the existence of positive solutions of the following equation:

\[
\begin{align*}
\Delta_{\kappa(x)} \varphi + v|\varphi|^{\kappa(x)-2}\varphi &= \lambda k(x)|\varphi|^{\gamma(x)-2} + s(x)|\varphi|^\beta-2 \varphi \quad \text{in} \ \Delta \\
\varphi &= 0 \quad \text{on} \ \partial \Delta.
\end{align*}
\]

(3)

For further details about the parameters and functions of problem (3), see [33].

Over the years, interest in fractional differential equations involving variational techniques has been gaining remarkable popularity and attention from researchers. However, works in this direction remain very limited, especially those involving the \(\chi \)-Hilfer fractional derivative operators (see [34–36]). The pioneering work involving the \(\chi \)-Hilfer fractional derivative operator, the \(m \)-Laplacian, and the Nehari manifold was conducted by da Costa Sousa et al. [37] in 2018. We mention here that classical variational techniques have been applied in partial differential equations involving fractional derivatives; see, for example, [38–41].

Recently, Zhang and Zhang [42] investigated the properties of the following problem:

\[
\begin{align*}
(-\Delta_{\kappa(x)})^s \varphi = f(x) \quad \text{in} \ \Delta \\
\varphi &= 0 \quad \text{on} \ \partial \Delta,
\end{align*}
\]

where \(0 < s < 1, \kappa : \mathbb{R} \times \mathbb{R} \to (1,\infty) \) is a continuous function with \(s\kappa(x,y) < N \) for any \((x,y) \in \mathbb{R} \times \mathbb{R}\) and \(0 \leq f \in L^1(\Delta) \).

Research on fractional Laplacian operators has been fairly productive in recent years. For example, in 2019 Xiang et al. [41] carried out interesting work on a multiplicity of solutions for the variable-order fractional Laplacian equation with variable growth using the MPT and Ekeland’s variational principle. For other interesting results on multiplicity of solutions, see the works by Ayazoglu et al. [43], Xiang et al. [44], Colasuono et al. [45], and Mihailescu and Radulescu [46], as well as the references cited in each of these publications.

In 2021, Rahmoune and Biccari [47] investigated a multiplicity of solutions for the fractional Laplacian operator involving variable exponent nonlinearities of the type

\[
(-\Delta)^{\kappa(x)} \varphi + AV \varphi = \gamma |\varphi|^{p(x)-2} \varphi + \beta |\varphi|^{\beta-2} u, \quad \text{in} \ \Delta,
\]

with \(\varphi = 0 \) in \(\mathbb{R}^n / \Delta \). Their results were obtained using the MPT and Ekeland’s variational principle. Finally, several open and interesting problems about the existence and multiplicity of solutions were highlighted at the end of their paper [47] (see of the aforementioned recent related works [41,43–46] on the same subject).

In the year 2020, da Costa Sousa et al. [48] considered a mean curvature type problem involving a \(\chi \)-H operator and variable exponents provided by:

\[
\begin{align*}
Hf^{\gamma(x)}(x)\xi(x) &= \lambda f(x)|\xi(x)|^{\mu(x)-2}\xi(x) + g(x)|\xi(x)|^{\beta(x)-2}\xi(x) \quad \text{in} \ \Delta \\
I_{T_0}^{\beta-1}\xi(0) &= I_T^{\beta-1} \chi \xi(T) = 0 \quad \text{on} \ \partial \Delta,
\end{align*}
\]

(4)
where
\[
H^L_{\gamma, \beta} \xi(x) := \frac{D_{\gamma, \beta} \xi(x)}{\left(1 + \frac{|D_{\gamma, \beta} \xi(x)|^2}{1 + |D_{\gamma, \beta} \xi(x)|^2(x)}\right)^{\frac{1}{2}}}
\]

For further details about the parameters and functions of problem (5), see [48].

Motivated by the above-mentioned works, our main object in this paper is to investigate the multiplicity of solutions to problem (2) by applying the Concentration-Compactness Principle (CCP), the Mountain Pass Theorem (MPT) for paired functionals, and the genus theory. More precisely, we present the following theorem.

Theorem 1. Suppose that a function \(g \) satisfies the conditions \((g_1)\) and \((g_2)\) and that the conditions \((p_1), (p_2), (H_1), \) and \((H_2)\) are satisfied. Then there exists a sequence \(\{\lambda_k\} \subset (0, +\infty) \) with \(\lambda_k > \lambda_{k+1} \) for all \(k \in \mathbb{N} \) such that, for \(\lambda \in (\lambda_{k+1}, \lambda_k) \), the problem (2) has at least \(k \) pairs of non-trivial solutions.

The rest of this paper is organized as follows. In Section 2, we present important definitions results needed for the further development of the paper. In Section 3, we present technical lemmas and discuss the main result of the paper, that is, the multiplicity of solutions to problem (2) via the Genus Theory, the Concentration-Compactness Principle, and the Mountain Pass Theorem (MPT). Finally, in Section 4, we conclude the paper by presenting several closing remarks and observations.

2. Mathematical Background and Auxiliary Results

Consider the space \(L^\infty_+(\Delta) \) provided by
\[
L^\infty_+(\Delta) := \left\{ \varphi \in L^\infty(\Delta) : \text{ess inf}_{x \in \Delta} \varphi \geq 1 \right\}
\]
and we assume that \(s \in L^\infty_+(\Delta) \). For each \(s \in L^\infty_+(\Delta) \), consider the numbers \(s_- \) and \(s_+ \) by
\[
s_- = \text{ess inf}_\Delta h \quad \text{and} \quad s_+ = \text{ess sup}_\Delta h.
\]
The Lebesgue space with the variable exponent \(L^s(\Delta) \) is defined as follows (see [27]):
\[
L^s(\Delta) = \left\{ \varphi : \Delta \to \mathbb{R} \text{ is measurable: } \int_\Delta |\varphi|^s(x) \, dx < \infty \right\},
\]
which the norm
\[
\|\varphi\|_{L^s(\Delta)} = \inf \left\{ \lambda > 0 : \int_\Delta \frac{|\varphi|^s(x)}{\lambda} \, dx \leq 1 \right\}.
\]
On the space \(L^s(\Delta) \), we consider the modular function \(\rho : L^s(\Delta) \to \mathbb{R} \) defined by
\[
\rho(\varphi) = \int_\Delta |\varphi|^s(x) \, dx.
\]

Definition 1. Let \(0 < \gamma \leq 1, 0 \leq \beta \leq 1 \) and \(p \in C^+ (\Delta) \). The right-sided \(\chi \)-fractional derivative space provided by \(H_{\gamma, \beta}^L := H_{\gamma, \beta}^L(\Delta) \) is the closure of \(C_0^\infty(\Delta) \) with the following norm:
\[
\|\varphi\|_{H_{\gamma, \beta}^L} = \inf \left\{ \lambda > 0 : \int_\Delta \frac{|\varphi|^\kappa(x)}{\lambda^s} + \frac{|D_{\gamma, \beta} \varphi(x)|^2}{\lambda} \, dx \leq 1 \right\}
\]
where \(H^{\gamma, \beta}_{\gamma}(\cdot) \) is the right-sided \(\chi \)-H with \(0 < \gamma \leq 1 \) and type \(0 \leq \beta \leq 1 \) as in (1), which is provided by

\[
H^{\gamma, \beta}_{\gamma}(x) := \{ \varphi \in L^x(\Delta) : H^{\gamma, \beta}_{\gamma} \varphi \in L^x(\Delta) \text{ and } \varphi(\Delta) = 0 \},
\]

where the space \(H^{\gamma, \beta}_{\gamma}(\Delta) \) is the closure of \(C^0(\Delta) \).

Proposition 1 (see [37, 49]). Let \(0 < \gamma \leq 1, 0 \leq \beta \leq 1 \) and \(1 < \kappa(x) < \infty \). Then, for all \(\varphi \in H^{\gamma, \beta}_{\gamma}(\Delta, \mathbb{R}) \),

\[
\| \varphi \|_{L^x(\Delta)} \leq \frac{\chi(T) - \chi(0)}{T} \left\| H^{\gamma, \beta}_{\gamma} \varphi \right\|_{L^x(\Delta)};
\]

(7)

Remark 1. In view of Inequality (7), we can consider the space \(H^{\gamma, \beta}_{\gamma}(\Delta, \mathbb{R}) \) with respect to the following equivalent norm:

\[
\| \varphi \| = \left\| H^{\gamma, \beta}_{\gamma} \varphi \right\|_{L^x(\Delta)}.
\]

(8)

Proposition 2 (see [37, 49]). Let \(0 < \gamma \leq 1, 0 \leq \beta \leq 1 \) and \(1 < \kappa(x) < \infty \). Then, the space \(H^{\gamma, \beta}_{\gamma}(\Delta, \mathbb{R}) \) is a separable Banach space and is reflexive.

Proposition 3 (see [27]). Let \(\varphi \in L^x(\Delta) \). Then, each of the following assertions holds true:

1. If \(u \neq 0 \), then \(\| \varphi \|_{L^x(\Delta)} = \lambda \) if and only if \(\rho(\frac{\varphi}{\lambda}) = 1 \);
2. \(\| \varphi \|_{L^x(\Delta)} < 1 \) if and only if \(\rho(\varphi) < 1 \);
3. If \(\| \varphi \|_{L^x(\Delta)} > 1 \), then \(\| \varphi \|_{L^x(\Delta)} \leq \rho(\varphi) \leq \| \varphi \|_{L^x(\Delta)} \).

Corollary 1 (see [27]). Let \(\{ \varphi_n \} \subset L^x(\Delta) \). Then,

1. \(\lim_{n \to \infty} \| \varphi_n \|_{L^x(\Delta)} = 0 \) if and only if \(\lim_{n \to \infty} \rho(\varphi_n) = 0 \);
2. \(\lim_{n \to \infty} (\varphi_n) \|_{L^x(\Delta)} = \infty \) if and only if \(\lim_{n \to \infty} \rho(\varphi_n) = \infty \).

Proposition 5 (see [25, 28], Hölder-Type Inequality). Let \(f \in L^x(\Delta) \) and \(g \in L^{r(\cdot)}(\Delta) \). Then, the following holds true:

\[
\int_{\Delta} |f(x)g(x)| \, dx \leq C_{\| f \|_{L^x(\Delta)} \| g \|_{L^{r(\cdot)}(\Delta)}}.
\]

Lemma 1 (see [25, 28]). Let \(h, r \in L^{\infty}_{\gamma}(\Delta) \), with \(s(x) \leq r(x) \) at almost every point \(x \in \Delta \) and \(\varphi \in L^{r(\cdot)}(\Delta) \). Then, \(\| \varphi \|_{L^{r(\cdot)}(\Delta)} \)

\[
\| \varphi \|_{L^{r(\cdot)}(\Delta)} \leq \| \varphi \|_{L^{r(\cdot)}(\Delta)} + \| \varphi \|_{L^{r(\cdot)}(\Delta)}
\]

or equivalently,

\[
\| \varphi \|_{L^{r(\cdot)}(\Delta)} \leq \max \{ \| \varphi \|_{L^{r(\cdot)}(\Delta)}, \| \varphi \|_{L^{r(\cdot)}(\Delta)} \}.
\]

Lemma 2 (see [25, 28], Brezis-Lieb Lemma). Let \(\{ \Psi_n \} \subset L^{s(\cdot)}(\Delta, \mathbb{R}^m) \) with \(m \in \mathbb{N} \). Then,
(1) $\Psi_n(x) \rightarrow \Psi(x)$ at almost every point in $x \in \Delta$;

Furthermore, $\Psi \in L^s(\Delta, \mathbb{R}^m)$ and

$$\int_{\Delta} \left(|\Psi_n|^{s(x)} - |\Psi_n - \Psi|^{s(x)} - |\Psi|^{s(x)} \right) dx = o_n(1).$$

Remark 2. In the space $\mathcal{H}^s(\Delta)$, we consider $\rho_1 : \mathcal{H}^{s(x)}(\Delta) \rightarrow \mathbb{R}$ (modular function) provided by

$$\rho_1(\varphi) = \int_{\Delta} \left(|H_{s(x)}^{\gamma, \beta, \chi} \varphi|^{s(x)} + |\varphi|^{s(x)} \right) dx.$$

Remark 3. If we define

$$\|\varphi\|_1 := \inf \left\{ \int_{\Delta} \left(|H_{s(x)}^{\gamma, \beta, \chi} \varphi|^{s(x)} + |\varphi|^{s(x)} \right) dx \leq 1 \right\}$$

then $\|\cdot\|_{\mathcal{H}^s(\Delta)}$ and $\|\cdot\|_1$ are equivalent norms in the space $\mathcal{H}^s(\Delta)$.

We now present several definitions and a version of the Lions’ Compactness-Concentration Principle in the setting of the χ-H operator.

Definition 2 (see [50]). A finite measure μ on Δ is a continuous linear functional over $C_0(\Delta)$, and the respective norm is defined by

$$\|\mu\| := \sup_{\Phi \in C_0(\Delta)} \left| \langle \mu, \Phi \rangle \right|,$$

with

$$\langle \mu, \Phi \rangle := \int_{\Delta} \Phi \, d\mu.$$

We denote by $\mathcal{M}(\Delta)$ and $\mathcal{M}^+(\Delta)$ the spaces of finite measures and positive finite measures over Δ, respectively. There are two important convergence properties in $\mathcal{M}(\Delta)$, as detailed below.

Definition 3 (see [50]). A sequence $\mu_n \rightarrow \mu$ in $\mathcal{M}(\Delta)$ (strongly converges), if $\|\mu_n - \mu\| \rightarrow 0$.

Definition 4 (see [50]). A sequence $\mu_n \rightarrow \mu$ in $\mathcal{M}(\Delta)$ (weakly converges), if $\langle \mu_n, \Phi \rangle \rightarrow \langle \mu, \Phi \rangle$ for all $\Phi \in C_0(\Delta)$.

Lemma 3 (see [20], Simon Inequality). Let $x, y \in \mathbb{R}^N$. Then, there is a constant $C = C(x)$ such that

$$\langle |x|^{k-2}x - |y|^{k-2}y, x - y \rangle \geq \begin{cases} C \frac{|x-y|^2}{(|x|+|y|)^{k-2}} & \text{if } 1 < k < 2 \\
C|x-y|^k & \text{if } k \geq 2, \end{cases}$$

where $\langle \cdot, \cdot \rangle$ denotes the usual inner product in \mathbb{R}^N.
Then, there exist \(\kappa \) and \(n \) be log-Hölder continuous. Then, there is a continuous embedding \(\mathbb{R}^n \) such that for all \(\xi \in \mathbb{R}^j \),

\[
\left\| \mathbf{v} \right\|_{L^1(\mathbb{R}^n)} = 0
\]

Moreover, if

\[
\lim_{|\xi| \to \infty} \frac{\mathcal{P}(\xi, \phi_n)}{\mathcal{Q}(\xi, s)} = 0
\]

uniformly in \(\xi \in \mathbb{R}^n \) and

\[
\lim_{|\xi| \to \infty} (\phi_n) = 0
\]

uniformly in \(n \), then \(\mathcal{P}(\xi, \phi_n) \to v \) in \(L^1(\mathbb{R}^n) \).

Lemma 5 (see [27]). Let \(\mu \) and \(\nu \) be two non-negative and bounded measures on \(\overline{\Lambda} \) such that for \(1 \leq \kappa(x) < r(x) < \infty \) there exists a constant \(c > 0 \) satisfying the following inequality:

\[
\left\| \mathbf{v} \right\|_{L^1(\Lambda)}^{\kappa(x)} \leq c \left\| \mathbf{v} \right\|_{L^1(\Lambda)}^{\kappa(x)}
\]

Then, there exist \(\{x_i\}_{i \in J} \subset \overline{\Lambda} \) and \(\{v_j\}_{j \in J} \subset (0, \infty) \) such that

\[
\mathbf{v} = \sum_i v_i \delta_{x_i},
\]

Proposition 6. Let \(m, n \in C(\overline{\Lambda}) \) such that \(1 \leq m(x) \leq \kappa_n(x) \) for all \(x \in \overline{\Lambda} \), and let the functions \(\kappa \) and \(n \) be log-Hölder continuous. Then, there is a continuous embedding \(H_{\gamma_{\kappa(x)}(\Lambda)} \hookrightarrow L^1(\Delta) \).

Lemma 6 (see [27]). Let \(\mathbf{v}_n \to \mathbf{v} \) a.e. and \(\mathbf{v}_n \to \mathbf{v} \) in \(L^1(\Delta) \). Then,

\[
\lim_{n \to \infty} \left(\int_{\Delta} |\mathbf{v}(x)|^{\kappa(x)} \, dx - \int_{\Delta} |\mathbf{v}(x) - \mathbf{v}_n(x)|^{\kappa(x)} \, dx \right) = \int_{\Delta} |\mathbf{v}(x)|^{\kappa(x)} \, dx.
\]

Lemma 7 (see [27]). For the sequence \(\{v_j\}_{j \in \mathbb{N}} \), let \(\nu \) be a non-negative and finite Radon measure in \(\Delta \) such that \(v_j \to v \) weakly * in the sense of measurement. Then,

\[
\left\| \mathbf{v} \right\|_{L^1(\Lambda)}^{\kappa(x)} \to \left\| \mathbf{v} \right\|_{L^1(\Lambda)}^{\kappa(x)} \text{ as } j \to \infty
\]

for all \(\mathbf{v} \in C^\infty(\overline{\Lambda}) \).
Theorem 2. Let \(q, r \in C(\Delta) \) be such that

\[
1 < n_+ \leq n_+ < N \quad \text{and} \quad 1 \leq n(x) \leq r^*(x)
\]

in \(\Delta \) with bounded domain of \(\mathbb{R}^N \) with a smooth border. Also let \(\{ (q_n) \} \) be a weakly convergent sequence in the space \(\mathcal{H}_{(x)}^{v, \delta, n} (\Delta) \) with a weak limit \(q \) such that

1. \(\left| H_{v, \delta}^{\gamma, \delta, n} (q_n) \right|^{r(x)} \rightarrow \mu \) in \(\mathcal{M}(\Delta) \);
2. \((q_n)^{n(x)} \rightarrow v \) in \(\mathcal{M}(\Delta) \).

Suppose further that \(\varphi = \{ x \in \Delta : n(x) = r^*(x) \} \) is non-empty. Then, for some countable set \(\Lambda, \)

\[
\nu = |\varphi|^{n(x)} + \sum_{j \in \Lambda} v_j \delta_{x_j}, \quad v_j > 0,
\]

\[
\mu \geq |H_{v, \delta}^{\gamma, \delta, n} \varphi|^{r(x)} + \sum_{j \in \Lambda} |\mu_j \delta_{x_j}| > 0
\]

and

\[
S \sum_{j \in \Lambda} \frac{1}{\tau_j^{(x)}} \leq S \sum_{j \in \Lambda} \frac{1}{\mu_j^{(x)}} \quad \forall j \in \Lambda,
\]

where \(\{ x_j \} \in \Lambda \subset \varphi \) and \(S \) is the best constant provided by

\[
S = \inf_{\Xi \in \mathbb{C}_0^\infty(\Delta)} \frac{\|H_{v, \delta}^{\gamma, \delta, n} \Xi\|_{L^1(\Delta)}}{\|\Xi\|_{L^n(\Delta)}}.
\]

Proof. Let \(\Xi \in C_0^\infty(\Delta) \) and let \(v_j = (\varphi_j) - \varphi \). Then, by using Lemma 6, we have

\[
\lim_{j \to \infty} \left(\int_\Delta |\Xi|^{n(x)} |(\varphi_j)|^{n(x)} \, dx - \int_\Delta |\Xi|^{n(x)} |v_j|^{n(x)} \, dx \right) = \int_\Delta |\Xi|^{n(x)} |\varphi|^{n(x)} \, dx.
\]

Moreover, by using the Hölder measure inequality (10) and Lemma 5 and after taking limits, we obtain the following representation:

\[
\nu = |\varphi|^{n(x)} + \sum_{j \in \Lambda} v_j \delta_{x_j}.
\]

Suppose that \(x_1 \in \Delta / A \). Let \(B = B(x_1, r) \subset \subset \Delta - A \). Then,

\[
n(x) < \kappa_1^*(x) - \delta
\]

for some \(\delta > 0 \) in \(\overline{B} \). Using Proposition 6, the embedding \(\mathcal{H}_{(x)}^{v, \delta, n} (B) \hookrightarrow L^1(B) \) is compact. Therefore, \((\varphi_j) \to \varphi \) strongly in \(L^n(B) \), and thus \(|(\varphi_j)|^{n(x)} \to |\varphi|^{n(x)} \) strongly in \(L^1(B) \). This is a contradiction to our assumption that \(x_1 \in B \).
Next, by applying (9) to $\Xi(\varphi_j)$ and taking into account the fact that $(\varphi_j) \to \varphi$ in $L^{\kappa(x)}(\Delta)$, we find that
\[
S\|\Xi\|_{L^\kappa(\Delta)} \leq \|\Xi\|_{L^\kappa(\Delta)} + \left\| \left(H^\gamma_+ \Xi \right) \varphi \right\|_{L^{\kappa(x)}(\Delta)}.
\]

We consider $\Xi \in C^\infty_0(\mathbb{R}^n)$ such that $0 \leq \Xi \leq 1$ and assume that it is supported in the unit ball of \mathbb{R}^N. For a fixed $j \in I$, we let $\varepsilon > 0$ be arbitrary. We set $\Xi_{b,\varepsilon}(x) := \varepsilon^{-n} \Xi((x-x_j)\varepsilon)$. Then, decomposition of v yields
\[
\rho_v(\Xi_{b,\varepsilon}) := \int_\Delta \|\Xi_{b,\varepsilon}|_{|n(x)|} \varphi(x)\|_{L^\kappa(x)}(\Delta) + \sum_{i \in I} \rho_v(\Xi_{b,\varepsilon})(x_i)\varphi(x_i) \geq \rho_v(\Xi_{b,\varepsilon}).
\]

We use
\[
q^{+}_{b,\varepsilon} := \sup_{B_i(x_i)} n(x), \quad q^{-}_{b,\varepsilon} := \inf_{B_i(x_i)} n(x), \quad p^{+}_{b,\varepsilon} := \sup_{B_i(x_i)} \kappa(x) \quad \text{and} \quad p^{-}_{b,\varepsilon} := \inf_{B_i(x_i)} \kappa(x).
\]

Then, if
\[
\rho_v(\Xi_{b,\varepsilon}) < 1 \quad \text{and} \quad \rho_v(\Xi_{b,\varepsilon}) > 1,
\]
it follows that
\[
\|\Xi_{b,\varepsilon}\|_{L^\kappa(\Delta)} \geq \rho_v(\Xi_{b,\varepsilon}) \|\varphi\|_{L^\kappa(\Delta)} \geq \frac{1}{\rho_v(\Xi_{b,\varepsilon})}
\]
and
\[
\|\Xi_{b,\varepsilon}\|_{L^\kappa(\Delta)} \leq \rho_v(\Xi_{b,\varepsilon}) \|\varphi\|_{L^\kappa(\Delta)} \geq \rho_v(\Xi_{b,\varepsilon}) \|\varphi\|_{L^\kappa(\Delta)} \geq \frac{1}{\rho_v(\Xi_{b,\varepsilon})},
\]
respectively. Consequently, we have
\[
\max \left\{ \frac{1}{\rho_v(\Xi_{b,\varepsilon})}, \frac{1}{\rho_v(\Xi_{b,\varepsilon})} \right\} \leq \|\Xi_{b,\varepsilon}\|_{L^\kappa(\Delta)} + \left\| \left(H^\gamma_+ \Xi \right) \varphi \right\|_{L^{\kappa(x)}(\Delta)}.
\]

Thus, by means of Proposition 3 and Corollary 1, we have
\[
\left\| \left(H^\gamma_+ \Xi \right) \varphi \right\|_{L^\kappa(\Delta)} \leq \max \left\{ \varphi \left(\left(H^\gamma_+ \Xi \right) \varphi \right)^{\frac{1}{\gamma}}, \varphi \left(\left(H^\gamma_+ \Xi \right) \varphi \right)^{\frac{1}{\gamma}} \right\}.
\]
meaning that by using the Hölder inequality (see Proposition 5), it follows that
\[
\rho \left(\left(H^\gamma_+ \Xi \right) \varphi \right) = \int_\Delta \|H^\gamma_+ \Xi \varphi\|_{L^{\kappa(x)}(\Delta)} \|\varphi\|_{L^{\kappa(x)}(\Delta)} \varphi(x) \ dx
\]
\[
\leq \left\| \|\varphi\|_{L^{\kappa(x)}(\Delta)(B_i(x_i))} \right\| \left\| H^\gamma_+ \Xi \right\|_{L^{\kappa(x)}(\Delta)(B_i(x_i))} \|\varphi\|_{L^{\kappa(x)}(\Delta)(B_i(x_i))},
\]
where
\[
\gamma(x) = \frac{n}{n - \kappa(x)} \quad \text{and} \quad \gamma'(x) = \frac{n}{\kappa(x)}.
\]

Next, by applying the relation
\[
H^\gamma_+ \Xi \left(\frac{x - x_i}{\varepsilon} \right) \frac{1}{\varepsilon},
\]
it follows that
\[
\left\| H D_+^{γ,β,κ} \varphi \right\|_{L^p(\varepsilon)} \leq \max \left\{ \rho \left(\left\| H D_+^{γ,β,κ} \varphi \right\|_{L^p(\varepsilon)} \right) \right\}
\]
and
\[
\rho \left(\left\| H D_+^{γ,β,κ} \varphi \right\|_{L^p(\varepsilon)} \right) = \int_{B_1(0)} \left| H D_+^{γ,β,κ} \varphi \left(x + \frac{x - x_i}{\varepsilon} \right) \right| n 1 \varepsilon^n \ dx = \int_{B_1(0)} \left| H D_+^{γ,β,κ} \varphi \right| n dy.
\]

Thus, clearly, we have
\[
H D_+^{γ,β,κ} \varphi \to 0
\]
in \(L^p(\varepsilon) \) (strongly). We note here that
\[
\left\| \varphi \right\|_{L^p(\varepsilon)} \leq \mu \left(B_\varepsilon(x_i) \right).
\]
Therefore, we obtain
\[
\left\| \varepsilon \right\|_{L^p(\varepsilon)} \leq \max \left\{ \mu \left(B_\varepsilon(x_i) \right) \right\},
\]
meaning that
\[
S \min \left\{ \varepsilon_1 \mu_1, \varepsilon_1 \mu_2 \right\} \leq \max \left\{ \mu \left(B_\varepsilon(x_i) \right) \right\},
\]
As \(κ \) and \(n \) are continuous functions and \(n(x_i) = κ_1(x_i) \), upon letting \(\varepsilon \to \infty \), we obtain
\[
S \min \left\{ \varepsilon_1 \mu_1, \varepsilon_1 \mu_2 \right\} \leq \mu \left(B_\varepsilon(x_i) \right),
\]
where
\[
\mu_i := \lim_{\varepsilon \to \infty} \mu \left(B_\varepsilon(x_i) \right).
\]
Finally, we prove that
\[
\mu \geq \left| H D_+^{γ,β,κ} \varphi \right|^{(x)} + \sum \mu_i \delta x_i.
\]
In fact, we have \(\mu \geq \sum \mu_i \delta x_i \). As \((\varphi_j) \to \varphi \) in \(H^{γ,β,κ}(\varepsilon) \) (weakly), \(H D_+^{γ,β,κ} (\varphi_j) \to \left| H D_+^{γ,β,κ} \varphi \right|^{(x)} \) weakly in \(L^p(x) \) for all \(U \subset \Delta \). From the weakly lower semi-continuity of the norm, we find that
\[
d\mu \geq \left| H D_+^{γ,β,κ} \varphi \right|^{(x)}.
\]
As \(\left| H D_+^{γ,β,κ} \varphi \right|^{(x)} \) is orthogonal to \(\mu \), we arrive at the desired result. This completes the proof of Theorem 2.

\[\square \]

Definition 5. When \(E \) is an abstract Banach space and \(I \in C^1(E, \mathbb{R}) \), we say that a sequence \(\{ v_n \} \) in \(E \) is a Palais-Smale (PS) sequence for \(I \) at level \(c \). We denote this by \((PS)_c \) when \(I(v_n) \to c \)
and \(I'(v_n) \to c \) in \(E^* \) as \(n \to \infty \). We say that \(I \) satisfies the PS condition at level \(c \) when every sequence \((PS)_c\) has a subsequence convergent in \(E \).

Theorem 3 (see [52]). Let \(U \) and \(V \) be an infinite-dimensional space and a finite-dimensional space (\(U \) being a Banach space), respectively, with

\[
U = V \oplus W \quad \text{and} \quad I \in C^1(U, \mathbb{R})
\]

being an even functional with \(I(0) = 0 \) satisfying the following conditions:

1. There are constants \(\delta, \sigma > 0 \) such that \(I(\varphi) \geq \delta > 0 \) for each \(\varphi \in \partial V \cap W \);
2. There exists \(\varphi > 0 \) such that \(I \) satisfies the condition \((PS)_c\) for \(0 < c < \varphi \);
3. For each subspace, \(U \subset U \) exists with

\[
R = R(U) > 0
\]

such that

\[
I(\varphi) \leq 0 \quad (\forall \varphi \in U \setminus B_R(0)).
\]

Suppose that \(\{e_1, \ldots, e_k\} \) is a basis for the vector space \(V \). For \(m \geq k \), choose inductively \(e_{m+1} \notin U_m := \text{span}\{e_1, \ldots, e_m\} \). Let \(R_m = R(U_m) \) and \(D_m = B_{R_m}(0) \cap U_m \). Define the following sets:

\[
G_m := \{ s \in C(D_m, U) : s \text{ is odd and } s(\varphi) = \varphi, \forall \varphi \in \partial B_{R_m}(0) \cap U_m \}
\]

and

\[
\Gamma_j := \left\{ s(D_m \setminus \Xi) : s \in G_m, m \geq j, \Xi \in \Sigma \text{ and } q(\Xi) \leq m - j \right\},
\]

where \(\Sigma \) is the family of the sets \(\Xi \subset U \setminus \{0\} \) such that \(\Xi \) is closed in \(U \) and symmetric with respect to \(0 \); that is,

\[
\Sigma = \{ \Xi \subset U \setminus \{0\} : \Xi \text{ is closed in } U \text{ and } \Xi = -\Xi \}
\]

and \(q(\Xi) \) is the gender of \(\Xi \in \Sigma \). For each \(j \in \mathbb{N} \), define

\[
e_j := \inf_{k \in \Gamma_j} \max_{\varphi \in k} I(\varphi).
\]

If \(0 < \beta \leq \epsilon_j \leq \epsilon_{j+1} \) for \(j > k \) and, if \(j > k \) and \(\epsilon_j < \varphi \), then \(\epsilon_j \) is a critical value for \(I \). Furthermore, if

\[
e_j = \epsilon_{j+1} = \cdots = \epsilon_{j+l} = \epsilon < \varphi \quad (j > k),
\]

then \(q(\mathcal{K}_\epsilon) \geq l + 1 \), where

\[
\mathcal{K}_\epsilon := \{ \varphi \in U : I(\varphi) = \epsilon \text{ and } I'(\varphi) = 0 \}.
\]

3. Main Results

Consider the following energy functional of (2) provided by

\[
E_\lambda : H^{\gamma, \beta X}_{\kappa(x)}(\Delta) \to \mathbb{R},
\]

which is defined by

\[
E_\lambda(\varphi) = \int_\Delta \frac{1}{\kappa(x)} \left| H^{\gamma, \beta X}_{\kappa(x)} \varphi \right|^\kappa(x) dx - \lambda \int_\Delta \frac{1}{n(x)} |\varphi|^n(x) dx - \int_\Delta \frac{\zeta(x)}{\kappa(x)} |\varphi|^\kappa(x) dx - \int_\Delta \varphi(x, \varphi) dx.
\]

Thus, using condition \((g_1)\), it is shown that

\[
E_\lambda \in C^1(H^{\gamma, \beta X}_{\kappa(x)}(\Delta), \mathbb{R})
\]
with
\[
E^c_A(\psi)v = \int_\Delta \left| H D_{+}^{\gamma,\beta,\lambda} \psi \right|^{\kappa(x) - 2} H D_{+}^{\gamma,\beta,\lambda} \psi H D_{+}^{\gamma,\beta,\lambda} v \, dx \\
- \lambda \int_\Delta \left| \varphi \right|^{\kappa(x) - 2} \varphi v \, dx - \int_\Delta \zeta(x) \left| \varphi \right|^{\kappa(x) - 2} \varphi v \, dx \\
- \int_\Delta \psi(x, \varphi)v \, dx
\]

for all $\varphi, v \in H_{k(x)}^{\gamma,\beta,\lambda}(\Delta)$. Therefore, the critical points of the energy functional $E_A(\cdot)$ are solutions to problem (2).

In our first result in this section (Lemma 8 below), we prove that the functional $E_N(\cdot)$ satisfies the first geometry of the MPT for even functionals.

Lemma 8. Under conditions (H₁) and (g₁), $E_N(\cdot)$ satisfies hypothesis (I₁) of Theorem 3.

Proof. Given $\delta > 0$, we obtain
\[
\int_\Delta \frac{1}{k(x)} \left(\left| H D_{+}^{\gamma,\beta,\lambda} \varphi \right|^{\kappa(x)} - \zeta(x) \left| \varphi \right|^{\kappa(x)} \right) \, dx \\
= \frac{1}{1 + \delta} \int_\Delta \frac{1}{k(x)} \left(\left| H D_{+}^{\gamma,\beta,\lambda} \varphi \right|^{\kappa(x)} - \zeta(x) \left| \varphi \right|^{\kappa(x)} \right) \, dx \\
+ \frac{\delta}{1 + \delta} \int_\Delta \frac{1}{k(x)} \left| H D_{+}^{\gamma,\beta,\lambda} \varphi \right|^{\kappa(x)} \, dx - \frac{\delta}{1 + \delta} \int_\Delta \frac{1}{k(x)} \zeta(x) \left| \varphi \right|^{\kappa(x)} \, dx.
\]

From condition (H₁), it follows that
\[
\int_\Delta \frac{1}{k(x)} \left(\left| H D_{+}^{\gamma,\beta,\lambda} \varphi \right|^{\kappa(x)} - \zeta(x) \left| \varphi \right|^{\kappa(x)} \right) \, dx \\
\geq \frac{\gamma}{1 + \delta} \int_\Delta \frac{\left| \varphi \right|^{\kappa(x)}}{k(x)} + \frac{\delta}{1 + \delta} \int_\Delta \frac{1}{k(x)} \left| H D_{+}^{\gamma,\beta,\lambda} \varphi \right|^{\kappa(x)} \, dx \\
- \frac{\delta}{1 + \delta} \int_\Delta \frac{1}{k(x)} \zeta(x) \left| \varphi \right|^{\kappa(x)} \, dx.
\]

For a sufficiently small δ, provided that $\zeta(x) \in L^{\infty}(\Delta)$, we can assume that
\[
\frac{1}{1 + \delta} \left(\frac{\gamma}{k_+} - \frac{\delta \zeta(x)}{k_-} \right) \geq \frac{1}{1 + \delta} \left(\frac{\gamma}{k_+} - \frac{\delta \| \zeta \|_{L^{\infty}(\Delta)}}{k_-} \right) = \frac{\gamma_0}{\gamma} > 0.
\]

Therefore, for all $\varphi \in H_{k(x)}^{\gamma,\beta,\lambda}(\Delta)$, we find that
\[
\int_\Delta \frac{1}{k(x)} \left(\left| H D_{+}^{\gamma,\beta,\lambda} \varphi \right|^{\kappa(x)} - \zeta(x) \left| \varphi \right|^{\kappa(x)} \right) \, dx \\
\geq \frac{\delta}{1 + \delta} \int_\Delta \frac{1}{k(x)} \left| H D_{+}^{\gamma,\beta,\lambda} \varphi \right|^{\kappa(x)} \, dx + \frac{\gamma_0}{\gamma} \int_\Delta \left| \varphi \right|^{\kappa(x)} \, dx. \tag{11}
\]

For the sake of verifying the above developments, given $\epsilon > 0$, there exists $C_{\epsilon} > 0$ such that
\[
\left| \psi(x, t) \right| \leq \frac{\epsilon}{k(x)} |t|^{|\kappa(x)|} + \frac{C_{\epsilon}}{H(x)} |t|^{|\kappa(x)|} \forall (x, t) \in \Delta \times \mathbb{R}. \tag{12}
\]
Indeed, from hypothesis \((g_1)\) we know that
\[
|\psi(x, t)| = o(|t|^{\eta(x)-1}) \quad \text{when} \quad |t| \to \infty
\]
uniformly in \(x\). Thus, given \(\varepsilon > 0\), there is a number \(R = R(\varepsilon) > 0\) such that \(|\psi(x, t)| \leq \varepsilon|t|^{\eta(x)-1}\) for all \(x \in \bar{A}\) and \(|t| \geq R\).

By continuity and from the inequalities above, there exists \(M > 0\) such that
\[
|\psi(x, t)| \leq M + \varepsilon|t|^{\eta(x)-1} \quad \forall (x, t) \in \bar{A} \times \mathbb{R}.
\]

Again, it follows from condition \((g_1)\) that, given \(\varepsilon > 0\), \(\exists \delta(\varepsilon) > 0\), satisfying
\[
|\psi(x, t)| \leq \varepsilon|t|^{\eta(x)-1} \quad \forall (x, t) \in \bar{A} \times [-\delta, \delta]. \quad (13)
\]

We can now assume that \(\delta < 1\). Therefore, for \(|t| \geq \delta\), we have \(|t|^{\eta(x)-1} \geq \delta^{\eta-1}\), such that
\[
\frac{|\psi(x, t)|}{|t|^{\eta(x)-1}} \leq \frac{M}{|t|^{\eta(x)-1}} + \varepsilon \leq \frac{M}{\delta^{\eta-1}} + \varepsilon = C_\varepsilon \quad \forall x \in \bar{A} \quad \text{and} \quad |t| \geq \delta. \quad (14)
\]

Thus, from Inequalities (13) and (14) we obtain
\[
|\psi(x, t)| \leq \varepsilon|t|^{\eta(x)-1} + C_\varepsilon|t|^{\eta(x)-1} \quad \forall (x, t) \in \bar{A} \times \mathbb{R},
\]
which leads to the statement to be verified.

Next, using the definition of \(E_\lambda(\cdot)\) and the Equations (11) and (12), we obtain
\[
E_\lambda(\varphi) \geq \frac{\delta}{(1 + \delta)_{\kappa_+}} \int_\Delta \left| \mathbb{H}^+_{\gamma, \beta; X} \varphi \right|^{\kappa_+} dx + \left(\gamma_0 - \frac{\varepsilon}{\kappa_-} \right) \int_\Delta |\varphi|^{\kappa_-} dx
- \frac{(\lambda + C_\varepsilon)}{n_-} \int_\Delta |\varphi|^{n_-} dx.
\]

Consequently, if \(\varepsilon\) is small enough and \(\|\varphi\| \leq 1\), from Proposition 4 we find that
\[
E_\lambda(\varphi) \geq \frac{\delta}{(1 + \delta)_{\kappa_+}} \|\mathbb{H}^+_{\gamma, \beta; X} \varphi\|^{\kappa_+}_{L^{\kappa_+}((\Delta))} - \frac{(\lambda + C_\varepsilon)}{n_-} \int_\Delta |\varphi|^{n_-} dx.
\]

Using Sobolev embeddings, there exists \(\varepsilon_1 > 0\) such that
\[
\|\varphi\|_{L^{\kappa_+}((\Delta))} \leq \varepsilon_1 \|\mathbb{H}^+_{\gamma, \beta; X} \varphi\|_{\mathcal{H}^{\gamma, \beta; X}_{\kappa_+}((\Delta))} \quad \forall \varphi \in \mathcal{H}^{\gamma, \beta; X}_{\kappa_+}((\Delta)).
\]

Thus, if we apply Proposition 3, we obtain
\[
E_\lambda(\varphi) \geq c_3 \|\varphi\|^{\kappa_+}_{\mathcal{H}^{\gamma, \beta; X}_{\kappa_+}((\Delta))} - c_4 \|\varphi\|^{n_-}_{\mathcal{H}^{\gamma, \beta; X}_{\kappa_+}((\Delta))}
\]
for the positive constants \(c_2, c_3,\) and \(c_4\). Because \(\kappa_+ < n_-\) if \(\|\varphi\|_{\mathcal{H}^{\gamma, \beta; X}_{\kappa_+}((\Delta))} = \sigma > 0\) is sufficiently small, \(\exists \tilde{\beta} > 0\) such that
\[
E_\lambda(\varphi) \geq \tilde{\beta} > 0, \quad \forall \varphi \in \partial B_\sigma(0).
\]

We have thus completed the proof of Lemma 8. \(\square\)

Lemma 9. Under the conditions \((H_1)\) and \((g_1)\), \(E_\lambda(\cdot)\) satisfies the condition \((I_3)\).

Proof. Let \(\tilde{E}\) be a sub-space of \(\mathcal{H}^{\gamma, \beta; X}_{\kappa_+}((\Delta))\) of a finite dimension.
For verification of the above statement, given $\varepsilon > 0$, there is a constant $M > 0$ satisfying

$$F(x, t) \geq -M - \varepsilon |t|^n(x) \quad \forall (x, t) \in \bar{\Omega} \times \mathbb{R}. \quad (15)$$

In fact, we have

$$\frac{f(x, t)}{|t|^n(x) - 1} \leq |\zeta(x)| \frac{|t|^n(x) - 1}{|t|^n(x) - 1} + |\psi(x, t)| \to 0$$

when $|t| \to \infty$. Hence, given $\varepsilon > 0$, $\exists R_0 > 0$ such that $|f(x, t)| \leq \varepsilon |t|^n(x)$ for all $x \in \bar{\Omega}$ and $|t| \geq R_0$. Moreover, because f is continuous, it follows that

$$|f(x, t)| \leq M + \varepsilon |t|^n(x) \quad \forall x \in \bar{\Omega} \times \mathbb{R}$$

for some positive constant M_0. Thus, we have

$$\frac{|F(x, t)|}{|t|^n(x)} \leq \frac{M_0}{|t|^n(x) - 1} + \frac{\varepsilon}{n_+} = o(1) \text{ with } |t| \to \infty.$$

Furthermore, given $\varepsilon > 0$, $\exists R > 0$ such that

$$|F(x, t)| \leq \varepsilon |t|^n(x) \quad \forall x \in \bar{\Omega} \quad \text{and} \quad |t| \geq R.$$

By continuity, there is a constant $M > 0$ such that $F(x, t) \geq -M$ for all $x \in \bar{\Omega}$ and $|t| \leq R$. Therefore, we obtain

$$F(x, t) \geq -M - \varepsilon |t|^n(x) \quad \forall (x, t) \in \bar{\Omega} \times \mathbb{R},$$

thereby proving the claim.

Using Inequality (15) and $\mathcal{E}_A(\cdot)$, we have

$$\mathcal{E}_A(\varphi) \leq \frac{1}{\kappa_-} \int_{\Delta} |H_D^{\gamma_+} \varphi_x|^{k(x)} dx - \frac{\lambda}{n_+} \int_{\Delta} |\varphi|^{n(x)} dx + \varepsilon \int_{\Delta} |\varphi|^{n(x)} dx + M|\Delta|.$$

Now, upon setting

$$\varepsilon = \frac{\lambda}{2n_+},$$

we can conclude that

$$\mathcal{E}_A(\varphi) \leq \frac{1}{\kappa_-} \int_{\Delta} |H_D^{\gamma_+} \varphi_x|^{k(x)} dx - \frac{\lambda}{2n_+} \int_{\Delta} |\varphi|^{n(x)} dx + M|\Delta|.$$

By applying Proposition 3, it follows that

$$\mathcal{E}_A(\varphi) \leq \frac{1}{\kappa_-} \max \left\{ \left| \varphi \right|^{k_-}_{\gamma_+^{\delta_+}(\Delta)} \right\} - \frac{\lambda}{2n_+} \min \left\{ \left| \varphi \right|^{n_-}_{\gamma_+^{\delta_+}(\Delta)} \right\} + M|\Delta|.$$

Because $\dim \tilde{E} < \infty$, any two norms in \tilde{E} are equivalent, and thus $\exists c > 0$ (constant) such that

$$\mathcal{E}_A(\varphi) \leq \frac{1}{\kappa_-} \max \left\{ \left| \varphi \right|^{k_-}_{\gamma_+^{\delta_+}(\Delta)} \right\} - \frac{\lambda c}{2n_+} \min \left\{ \left| \varphi \right|^{n_-}_{\gamma_+^{\delta_+}(\Delta)} \right\} + M|\Delta|.$$

Moreover, as $\kappa_- < n_-$, we have

$$\Psi(s) = \frac{s^{\kappa_+}}{\kappa_-} - \frac{\lambda c s^{q_-}}{2n_+} \to -\infty.$$
when \(s \to \infty \). Consequently, for a sufficiently large \(R > 0 \), the last inequality implies that
\[
\mathcal{E}_\lambda(\varphi) \leq \frac{\|\varphi\|^n_{\mathcal{H}^{\gamma,\delta}(\Delta)}}{\lambda} - \frac{\lambda c \|\varphi\|^n_{\mathcal{H}^{\gamma,\delta}(\Delta)}}{2n} + M|\Delta| < 0
\]
for all \(\varphi \in \tilde{E} \) with \(\|\varphi\| \geq R \). Hence, \(\mathcal{E}_\lambda(\cdot) < 0 \) over \(\tilde{E} \setminus B_R(0) \). \(\square \)

We now establish a compactness condition for the functional \(\mathcal{E}_\lambda(\cdot) \). We prove that the (PS) condition holds true below a certain level, provided that the parameter \(\lambda \) is less than 1.

Lemma 10. Let the conditions \((H_1),(g_1)\), and \((g_2)\) be satisfied. Then, every sequence (PS) for the functional \(\mathcal{E}_\lambda(\cdot) \) is bounded in \(\mathcal{H}^{\gamma,\delta}(\Delta) \).

Proof. Let \(\{\varphi_n\} \) be a sequence (PS), for the functional \(\mathcal{E}_\lambda(\cdot) \). Then,
\[
\mathcal{E}_\lambda(\varphi_n) \to c \quad \text{and} \quad \mathcal{E}_\lambda'(\varphi_n) \to 0 \quad \text{when} \quad n \to \infty. \quad (16)
\]

We note that
\[
\lambda \int_\Delta \left(\frac{1}{\kappa} \right) \|\varphi_n\|^n \, dx
\]
\[
= \mathcal{E}_\lambda(\varphi_n) - \frac{1}{\kappa} \mathcal{E}_\lambda'(\varphi_n) + \frac{1}{\kappa} - 1 \int_\Delta \left(\frac{1}{\kappa} \right) \|\nabla \mathcal{D}^{\gamma,\delta}(\Delta) \|_{\mathcal{E}} \|\varphi_n\|^{n-1} \|\varphi_n\| \, dx
\]
\[
+ \int_\Delta \left(\frac{1}{\kappa} \right) \|\varphi_n\|^n \, dx
\]
\[
- \int_\Delta G(x, \varphi_n) - \frac{1}{\kappa} g(x, \varphi_n) \mathcal{E}_\lambda(\varphi_n) \, dx.
\]

In the above equality, using the hypotheses \((g_2)\) and \((16)\), we obtain
\[
\lambda \int_\Delta \left(\frac{1}{\kappa} - 1 \right) \|\varphi_n\|^{n-1} \, dx
\]
\[
\leq \lambda \int_\Delta \left(\frac{1}{\kappa} - 1 \right) \|\varphi_n\|^{n-1} \, dx
\]
\[
\leq c + 1 + \|\varphi_n\|^{\mathcal{H}^{\gamma,\delta}(\Delta)} + \|a\|_{\infty} \int_\Delta \left(\frac{1}{\kappa} - 1 \right) \|\varphi_n\|^{n-1} \, dx \quad (17)
\]
for sufficiently large \(n \). Provided \(\varepsilon > 0 \), note that \(\exists C_\varepsilon > 0 \) such that
\[
|t|^{\varepsilon} \leq \varepsilon |t|^{n-1} + C_\varepsilon \quad \forall \, (x,t) \in \Delta \times \mathbb{R}.
\]

Upon combining the last inequality with \((17)\), we obtain
\[
\lambda \left(\frac{1}{\kappa} - 1 \right) \int_\Delta \|\varphi_n\|^{n-1} \, dx
\]
\[
\leq c + 1 + \|\varphi_n\|^{\mathcal{H}^{\gamma,\delta}(\Delta)} + \|a\|_{\infty} \left(\frac{1}{\kappa} - \frac{1}{\kappa} \right) \int_\Delta \|\varphi_n\|^{n-1} \, dx
\]
\[
+ \|a\|_{\infty} \left(\frac{1}{\kappa} - \frac{1}{\kappa} \right) C_\varepsilon |\Delta|,
\]
which implies that
\[
\left[\lambda \left(\frac{1}{\kappa} - 1 \right) - \|a\|_{\infty} \left(\frac{1}{\kappa} - \frac{1}{\kappa} \right) \varepsilon \right] \int_\Delta \|\varphi_n\|^{n-1} \, dx \leq c + 1 + \|\varphi_n\|^{\mathcal{H}^{\gamma,\delta}(\Delta)} + C_\varepsilon
\]
where c_5 is a positive constant. If we set
\[
\varepsilon = \frac{\lambda}{2} \left(\frac{1}{\kappa_+} - \frac{1}{n_-} \right) \left[\|a\|_\infty \left(\frac{1}{\kappa_-} - \frac{1}{\kappa_+} \right) \right]^{-1},
\]
we obtain
\[
\frac{\lambda}{2} \left(\frac{1}{\kappa_+} - \frac{1}{q_-} \right) \int_{\Delta} |(\varphi_n)|^{n(x)} \, dx \leq c + 1 + \|\varphi_n\|_{\mathcal{H}^{\gamma,\delta}_{\kappa(x)}(\Delta)} + c_5,
\]
which yields
\[
\int_{\Delta} |(\varphi_n)|^{n(x)} \, dx \leq c_6 \left(1 + \|\varphi_n\|_{\mathcal{H}^{\gamma,\delta}_{\kappa(x)}(\Delta)} \right).
\]
Now, using the definition of $\mathcal{E}_\lambda(\cdot)$ together with (11), we obtain
\[
\frac{\delta}{(1 + \delta)\kappa_+} \int_{\Delta} |^{n(x)} \, dx \leq \mathcal{E}_\lambda(\varphi_n) + \lambda \int_{\Delta} \frac{|(\varphi_n)|^{n(x)} \, dx + \int_{\Delta} G(x, \varphi_n) \, dx.}
\]
Of the growth conditions over φ, given $\varepsilon > 0$, there exists $C_\varepsilon > 0$ such that
\[
|\varphi(x, t)| \leq \varepsilon |t|^{n(x)} + C_\varepsilon
\]
for all $x \in A$ and $t \in \mathbb{R}$, meaning that
\[
\frac{\delta}{(1 + \delta)\kappa_+} \int_{\Delta} |^{n(x)} \, dx \leq c + \frac{a_n(1)}{\kappa_-} \int_{\Delta} |(\varphi_n)|^{n(x)} \, dx + \varepsilon \int_{\Delta} |(\varphi_n)|^{n(x)} \, dx + C_\varepsilon |\Delta|
\]
\[
\leq c + \frac{a_n(1)}{\kappa_-} + \left(\frac{\lambda}{n_-} + \varepsilon \right) c_6 (1 + \|\varphi_n\|_{\mathcal{H}^{\gamma,\delta}_{\kappa(x)}(\Delta)}) + C_\varepsilon |\Delta|.
\]
Therefore, for sufficiently large n, we have
\[
\int_{\Delta} |^{n(x)} \, dx \leq c_7 \left(1 + \|\varphi_n\|_{\mathcal{H}^{\gamma,\delta}_{\kappa(x)}(\Delta)} \right),
\]
where c_7 is a positive constant. If
\[
\|\varphi_n\|_{\mathcal{H}^{\gamma,\delta}_{\kappa(x)}(\Delta)} > 1,
\]
then it follows from Proposition 4 that
\[
\|\varphi_n\|_{\mathcal{H}^{\gamma,\delta}_{\kappa(x)}(\Delta)} \leq c_7 \left(1 + \|\varphi_n\|_{\mathcal{H}^{\gamma,\delta}_{\kappa(x)}(\Delta)} \right).
\]
Finally, as $\kappa_- > 1$, the above inequality implies that $\{\varphi_n\}$ is bounded in $\mathcal{H}^{\gamma,\delta}_{\kappa(x)}(\Delta)$. We have thus completed the proof of Lemma 10. ☐

From the reflexivity of $\mathcal{H}^{\gamma,\delta}_{\kappa(x)}(\Delta)$, if $\{\varphi_n\}$ is a sequence (PS)$_\varepsilon$ for $\mathcal{E}_\lambda(\cdot)$, then up to subsequence $(\varphi_n) \rightarrow \varphi$ in $\mathcal{H}^{\gamma,\delta}_{\kappa(x)}(\Delta)$. As the immersion of $\mathcal{H}^{\gamma,\delta}_{\kappa(x)}(\Delta)$ in $L^{n(x)}(\Delta)$ is continuous, $(\varphi_n) \rightarrow \varphi$ in $L^{n(x)}(\Delta)$. On the other hand, the immersion $\mathcal{H}^{\gamma,\delta}_{\kappa(x)}(\Delta)$ in $L^r(\Delta)$ is compact for $1 < r_- \leq r < \kappa_-$.
Consequently, \((\varphi_n) \to \varphi\) in \(L^\kappa(x)(\Delta)\). From the CCP, for Lebesgue spaces with variable exponents (see Theorem 2) there are two non-negative measures \(\mu, \nu \in \mathcal{M}(\Delta)\), a countable set \(\Lambda\), points \(\{x_j\}_{j \in \Lambda} \in \Lambda\), and sequences \(\{\mu_j\}_{j \in \Lambda}\) and \(\{\nu_j\}_{j \in \Lambda} \subset [0, \infty)\), and thus we have
\[
|H^\beta \varphi_n(x)|^\kappa(x) \to \mu \geq |H^\beta \varphi|^\kappa(x) + \sum_{j \in \Lambda} \mu_j \delta_{x_j}, \quad \text{in} \quad \mathcal{M}(\Delta),
\]
where
\[
|\varphi_n|^{\kappa(x)} \to \nu = |\varphi|^{\kappa(x)} + \sum_{j \in \Lambda} \nu_j \delta_{x_j}, \quad \text{in} \quad \mathcal{M}(\Delta)
\]
and
\[
Sv_j \leq \frac{\mu_j}{\nu_j} \quad \forall \ j \in \Lambda.
\]

Our objective is now to establish a lower estimate for \(\{v_i\}\). For this purpose, we need to prove the following lemma.

Lemma 11. Let \(\Xi \in C_0^\infty(\Delta)\), satisfying the following conditions:
\[
\Xi(x) = 1 \text{ in } B_1(0), \quad \sup p \Xi \subset B_2(0) \quad \text{and} \quad 0 \leq \Xi(x) \leq 1 \quad \forall x \in \Delta.
\]

Then, for \(\varepsilon > 0\), \(z \in \Delta\) and \(\varphi \in L^\kappa(x)(\Delta)\), it is asserted that
\[
\int_\Delta |\varphi| H^\beta \Xi(x - z)^{\kappa(x)} dx \leq C \left(\|\varphi\|_{L^\kappa(\Theta)^{\kappa}(B_2(z))} + \|\varphi\|_{L^\kappa(\Theta)^{\kappa}(B_2(z))} \right),
\]
(18)
where
\[
\Xi(x) = \Xi \left(\frac{x}{\varepsilon} \right)
\]
for all \(x \in \Delta\) and for a constant \(C\) independent of \(\varepsilon\) and \(z\).

Proof. We note that
\[
\int_\Delta |\varphi| H^\beta \Xi(x - z)^{\kappa(x)} dx
\]
\[
= \int_{B_2(z)} |\varphi| H^\beta \Xi \left(\frac{x - z}{\varepsilon} \right)^{\kappa(x)} dx
\]
\[
\leq c_p \|\varphi\|_{L^\kappa(\Theta)^{\kappa}(B_2(z))} \left(\frac{1}{\varepsilon} \right)^{\kappa(x)} \|H^\beta \Xi\|_{L^\kappa(\Theta)^{\kappa}(B_2(z))}
\]
where \(c_p\) is the constant provided by the Hölder inequality (see Proposition 5). Thus, upon changing the variable, we have
\[
\int_{B_2(z)} \left(\frac{1}{\varepsilon} \right)^{\kappa(x)} \|H^\beta \Xi\|_{L^\kappa(\Theta)^{\kappa}(B_2(z))} dx
\]
\[
= \int_{B_2(z)} \left(\frac{1}{\varepsilon} \right)^{\kappa(x)} \|H^\beta \Xi\|_{L^\kappa(\Theta)^{\kappa}(B_2(z))}^N dx
\]
\[
= \int_{B_2(z)} \|H^\beta \Xi\|_{L^\kappa(\Theta)^{\kappa}(B_2(z))}^N dx.
\]
Now, the result follows from Proposition 3 and Lemma 1. We have thus completed the proof of Lemma 11. \(\Box\)
Lemma 12. Under the conditions of Lemma 10, let \(\{(\varphi_n)\} \) be a sequence (PS) for the functional \(E_\lambda(\cdot) \) and \(\{v_j\} \). Then, for each \(j \in \Lambda \),

\[
v_j \geq \frac{S^N}{\lambda^{N/j}} \quad \text{or} \quad v_j = 0.
\]

Proof. First, for each \(\varepsilon > 0 \) let \(\Xi_\varepsilon \in C_0^\infty(\Lambda) \), as in Lemma 11. Therefore, we have

\[
\{ \Xi_\varepsilon(\cdot - x_j)(\varphi_n) \} \subset \mathcal{H}_{k(x)}^{\gamma,\beta,\lambda}(\Lambda)
\]

for any \(j \in \Lambda \). In addition, by direct calculation we can see that \(\{ \Xi_\varepsilon(\cdot - x_j)(\varphi_n) \} \) is bounded in \(\mathcal{H}_{k(x)}^{\gamma,\beta,\lambda}(\Lambda) \). Thus, we obtain

\[
E_\lambda'(\varphi_n)(\Xi_\varepsilon(\cdot - x_j)(\varphi_n)) = o_n(1)
\]

or equivalently,

\[
\int_\Delta H D_+^{\gamma,\beta,\lambda}(\varphi_n) \left[\frac{\kappa(x)}{x} \right] \Xi_\varepsilon(x - x_j) \; dx
\]

\[
+ \int_\Delta H D_+^{\gamma,\beta,\lambda}(\varphi_n) \left[\frac{\kappa(x)}{x} \right] - 2 (\varphi_n) H D_+^{\gamma,\beta,\lambda}(\varphi_n) H D_+^{\gamma,\beta,\lambda} \Xi_\varepsilon(x - x_j) \; dx + o_n(1)
\]

\[
= \lambda \int_\Delta (\varphi_n)^n(x) \Xi_\varepsilon(x - x_j) \; dx + \int_\Delta \zeta(x) (\varphi_n)^{\kappa(x)} \Xi_\varepsilon(x - x_j) \; dx
\]

\[
+ \int_\Delta \xi(x, (\varphi_n)) (\varphi_n) \Xi_\varepsilon(x - x_j) \; dx.
\]

(19)

Now, for each \(\delta > 0 \), by applying the Cauchy-Schwartz and Young inequalities, we obtain

\[
\int_\Delta \left| H D_+^{\gamma,\beta,\lambda}(\varphi_n) \right|^{\kappa(x)} dx \leq \delta \int_\Delta \left| H D_+^{\gamma,\beta,\lambda}(\varphi_n) \right|^{\kappa(x)} dx + C_\delta \int_\Delta (\varphi_n) H D_+^{\gamma,\beta,\lambda}(\varphi_n) \left[\frac{\kappa(x)}{x} \right] dx.
\]

(20)

Thus, by the Lebesgue Dominated Convergence Theorem and the limit of \(\{(\varphi_n)\} \), we can conclude that

\[
\limsup_{n \to \infty} \int_\Delta \left| H D_+^{\gamma,\beta,\lambda}(\varphi_n) \right|^{\kappa(x)} dx \leq \delta \epsilon_1 + C_\delta \int_\Delta \left| H D_+^{\gamma,\beta,\lambda}(\varphi_n) \right|^{\kappa(x)} dx.
\]

(21)

Therefore, by applying Lemma 11, it follows that

\[
\limsup_{n \to \infty} \int_\Delta \left| H D_+^{\gamma,\beta,\lambda}(\varphi_n) \right|^{\kappa(x)} dx \leq \delta \epsilon_1 + CC_\delta \left(\|\varphi\|_{L^p(x)}^{p+} (B_{2\delta}(x_j)) + \|\varphi\|_{L^p(x)}^{p+} (B_{2\delta}(x_j)) \right).
\]

(22)

Applying the Strauss Lemma (see Lemma 4) with

\[
\mathcal{P}(x, t) = \psi(x, t)t \quad \text{and} \quad \mathcal{Q}(x, t) = |t|^{\kappa(x)} + |t|^{p(x)},
\]
and using the Lebesgue Dominated Convergence Theorem, we obtain
\[
\lim_{n \to \infty} \int_{\Delta} |D^{\alpha}_{+} (\varphi_n)|^{k(x)} \mathbb{B}_{e}(x-x_j) \, dx = \int_{\Delta} |D^{\alpha}_{+} \varphi(x)|^{k(x)} \mathbb{B}_{e}(x-x_j) \, dx.
\] (23)

Next, using Equation (19) and Equations (21) to (23), we obtain
\[
\lim_{n \to \infty} \int_{\Delta} |D^{\alpha}_{+} (\varphi_n)|^{k(x)} \mathbb{B}_{e}(x-x_j) \, dx \\
\leq \lambda \lim_{n \to \infty} \int_{\Delta} |(\varphi_n)|^{n(x)} \mathbb{B}_{e}(x-x_j) \, dx + \int_{\Delta} |D^{\alpha}_{+} \varphi(x)|^{k(x)} \mathbb{B}_{e}(x-x_j) \, dx
\\
+ \int_{\Delta} \psi(x, \varphi) \varphi \mathbb{B}_{e}(x-x_j) \, dx + \delta \varepsilon_1 + CC_{\delta} \left[\| \varphi \|_{L^{N}_{\chi}(\varepsilon)} \right]_{\mathbb{B}_{2\delta}(x_j)} + \| \varphi \|_{L^{N}_{\chi}(\varepsilon)} \right]_{\mathbb{B}_{2\delta}(x_j)}
\]}

where \(\mathbb{C} \) is a constant independent of \(\varepsilon \) and \(j \). Because
\[
\left| |D^{\alpha}_{+} (\varphi_n)|^{k(x)} \right| \to \mu \quad \text{and} \quad |(\varphi_n)|^{n(x)} \to \nu \quad \text{in} \quad \mathcal{M}(\Delta),
\]
we have
\[
\lim_{n \to \infty} \int_{\Delta} |D^{\alpha}_{+} (\varphi_n)|^{k(x)} \mathbb{B}_{e}(x-x_j) \, dx \geq \int_{\mathbb{B}_{\delta}(x_j)} d\mu \geq \mu_j \quad (24)
\]
and
\[
\lim_{n \to \infty} \int_{\Delta} |(\varphi_n)|^{n(x)} \mathbb{B}_{e}(x-x_j) \, dx = \int_{\mathbb{B}_{2\delta}(x_j)} \mathbb{B}_{e}(x-x_j) \, dv \leq \int_{\mathbb{B}_{2\delta}(x_j)} dv \leq v_j.
\]

Consequently, we have
\[
\mu_j \leq \lim_{n \to \infty} \int_{\Delta} |D^{\alpha}_{+} (\varphi_n)|^{k(x)} \mathbb{B}_{e}(x-x_j) \, dx
\\
\leq \lambda v_j + \int_{\mathbb{B}_{2\delta}(x_j)} \zeta(x) |D^{\alpha}_{+} \varphi(x)|^{k(x)} \mathbb{B}_{e}(x-x_j) \, dx + \int_{\mathbb{B}_{2\delta}(x_j)} \psi(x, \varphi) \varphi \mathbb{B}_{e}(x-x_j) \, dx
\\
+ \delta \varepsilon_1 + CC_{\delta} \left[\| \varphi \|_{L^{N}_{\chi}(\varepsilon)} \right]_{\mathbb{B}_{2\delta}(x_j)} + \| \varphi \|_{L^{N}_{\chi}(\varepsilon)} \right]_{\mathbb{B}_{2\delta}(x_j)}
\]

Upon first letting \(\varepsilon \to 0 \) and then \(\delta \to 0 \), we obtain \(\mu_j \leq \lambda v_j \). Hence,
\[
\frac{1}{S^{\frac{1}{N}}_{\lambda^{\frac{1}{N}}}} \leq \mu_j \leq \left(\lambda v_j \right)^{\frac{1}{N}}
\]
and thus
\[
v_j \geq \frac{S^{\frac{N}{\lambda}}}{\Lambda^{\frac{1}{N}}} \quad \text{or} \quad v_j = 0.
\]

This evidently concludes our proof of Lemma 12.

We are now able to demonstrate that the (PS) condition for the functional \(E_{\lambda} (\cdot) \) holds true below a certain level. More precisely, we can prove the following lemma.

Lemma 13. Let the conditions \((H_1), (H_2), (g_1), \) and \((g_2)\) be satisfied. If \(\lambda < 1 \), then \(E_{\lambda} (\cdot) \) satisfies the condition \((PS)_{d} \) for
\[
d \leq \lambda^{1-\frac{N}{n}} \left(\frac{1}{\kappa} - \frac{1}{n} \right) S^{N}.
\]
Proof. Let the sequence \(\{ (\varphi_n) \} \) be (PS)\(_d\) for the energy functional \(\mathcal{E}_\lambda (\cdot) \) with

\[
d < \lambda^{1 - \frac{N}{\kappa_+}} \left(\frac{1}{\kappa_+} - \frac{1}{n_-} \right) S^N,
\]

that is,

\[
\mathcal{E}_\lambda (\varphi_n) = d + o_n(1) \quad \text{and} \quad \mathcal{E}_\lambda '(\varphi_n) = o_n(1).
\]

We observe that

\[
d = \lim_{n \to \infty} \left[\int_{\Delta} \left(\frac{1}{\kappa_+(x)} - \frac{1}{\kappa_+} \right) |H^+D^\gamma_\beta \chi (\varphi_n)|^{\kappa_+} \, dx + \lambda \int_{\Delta} \left(\frac{1}{\kappa_+} - \frac{1}{\kappa_+^\gamma_\beta \chi (x)} \right) |(\varphi_n)|^{\kappa_+} \, dx \right]
\]

\[
+ \int_{\Delta} \left(\frac{1}{\kappa_+} - \frac{1}{\kappa_+} \right) \xi(x) |(\varphi_n)|^{\kappa_+} \, dx - \int_{\Delta} \left(G(x, (\varphi_n)) - \frac{1}{\kappa_+} \right) \xi(x) \right) \right). \tag{25}
\]

Then, it follows from conditions (H\(_1\)) and (H\(_2\)) that

\[
d \geq \lambda \left(\frac{1}{\kappa_+} - \frac{1}{n_-} \right) \lim_{n \to \infty} \int_{\Delta} |(\varphi_n)|^{\kappa_+} \, dx. \tag{26}
\]

Now, recalling that

\[
\lim_{n \to \infty} \int_{\Delta} |(\varphi_n)|^{\kappa_+} \, dx = \int_{\Delta} |\varphi|^{\kappa_+} \, dx + \sum_{j \in \Lambda} v_j \geq v_j,
\]

it follows that if \(v_j > 0 \) for some \(j \in \Lambda \), then

\[
d \geq \lambda \left(\frac{1}{\kappa_+} - \frac{1}{n_-} \right) v_j \geq \lambda \left(\frac{1}{\kappa_+} - \frac{1}{n_-} \right) \frac{S^N}{\lambda^{n_j}}.
\]

Thus, for \(\lambda < 1 \), we find that

\[
d \geq \lambda \left(\frac{1}{\kappa_+} - \frac{1}{n_-} \right) \left(\frac{S}{\lambda^{\kappa_+}} \right)^N = \lambda^{1 - \frac{N}{\kappa_+}} \left(\frac{1}{\kappa_+} - \frac{1}{n_-} \right) S^N, \tag{27}
\]

which is absurd. Therefore, we must have \(v_j = 0 \) for all \(j \in \Lambda \), implying that

\[
\int_{\Delta} |(\varphi_n)|^{\kappa_+} \, dx \to \int_{\Delta} |\varphi|^{\kappa_+} \, dx. \tag{28}
\]

Combining the above limit with Lemma 2, we have

\[
\int_{\Delta} |(\varphi_n) - \varphi|^{n_+} \, dx \to 0 \text{ when } n \to \infty.
\]

Thus, by Proposition 3, \((\varphi_n) \to \varphi \) in \(L^{n_+}(\Delta) \).

Now let us denote by \(\{ P_n \} \) the sequence provided by

\[
P_n(x) := \left(H^+D^\gamma_\beta \chi (\varphi_n) \right)^{\kappa_+} H^+D^\gamma_\beta \chi (\varphi_n) - \left| H^+D^\gamma_\beta \chi \varphi \right|^{\kappa_+ - 2} H^+D^\gamma_\beta \chi \varphi \right)^{\kappa_+ - 2} H^+D^\gamma_\beta \chi (\varphi_n) - \varphi. \tag{29}
\]
From the above definition of \mathcal{P}_n we find that

$$
\int_{\Delta} \mathcal{P}_n(x) \, dx = \int_{\Delta} \left| H^{\gamma, \beta_X}_+ (\varphi_n) \right|^{\kappa(x)} \, dx
- \int_{\Delta} \left| H^{\gamma, \beta_X}_+ (\varphi_n) \right|^{\kappa(x)-2} H^{\gamma, \beta_X}_+ (\varphi_n) \left(H^{\gamma, \beta_X}_+ \varphi \right) \, dx
- \int_{\Delta} \left| H^{\gamma, \beta_X}_+ \varphi \right|^{\kappa(x)-2} H^{\gamma, \beta_X}_+ \varphi \left(H^{\gamma, \beta_X}_+ (\varphi_n) - \varphi \right) \, dx.
$$

Because $(\varphi_n) \rightarrow \varphi$ in $\mathcal{H}_{\mathcal{X}(x)}^{\gamma, \beta_X}(\Delta)$, we have

$$
\int_{\Delta} \left| H^{\gamma, \beta_X}_+ \varphi \right|^{\kappa(x)-2} H^{\gamma, \beta_X}_+ \varphi \left(H^{\gamma, \beta_X}_+ (\varphi_n) - \varphi \right) \, dx \rightarrow 0
$$

when $n \rightarrow \infty$. This implies that

$$
\int_{\Delta} \mathcal{P}_n(x) \, dx = \int_{\Delta} \left| H^{\gamma, \beta_X}_+ (\varphi_n) \right|^{\kappa(x)} \, dx - \int_{\Delta} \left| H^{\gamma, \beta_X}_+ (\varphi_n) \right|^{\kappa(x)-2} \times H^{\gamma, \beta_X}_+ (\varphi_n) \left(H^{\gamma, \beta_X}_+ \varphi \right) \, dx + o(1).
$$

On the other hand, because

$$
\mathcal{E}_A \left(\varphi_n \right) (\varphi_n) = o_n(1) \quad \text{and} \quad \mathcal{E}_A \left(\varphi_n \right) \varphi = o_n(1),
$$

we have

$$
\int_{\Delta} \mathcal{P}_n(x) \, dx
= o_n(1) + \lambda \int_{\Delta} |(\varphi_n)|^{n(x)} \, dx + \int_{\Delta} \xi(x) |(\varphi_n)|^{n(x)} \, dx + \int_{\Delta} g(x, (\varphi_n)) \, dx
- \lambda \int_{\Delta} |(\varphi_n)|^{n(x)-2} (\varphi_n) \varphi \, dx - \int_{\Delta} \xi(x) |(\varphi_n)|^{n(x)-2} \, dx - \int_{\Delta} g(x, (\varphi_n)) \, dx.
$$

Combining (28) with the Strauss lemma (see Lemma 4), we can conclude that

$$
\int_{\Delta} \mathcal{P}_n \, dx \rightarrow 0 \quad \text{when} \quad n \rightarrow \infty.
$$

Let us now consider the following sets:

$$
\Delta_+ = \{ x \in \Delta : \kappa(x) \geq 2 \} \quad \text{and} \quad \Delta_- = \{ x \in \Delta : 1 < \kappa(x) < 2 \}.
$$

It follows from Lemma 3 that

$$
\mathcal{P}_n(x) \geq \begin{cases}
\frac{2^{1-x} \left| H^{\gamma, \beta_X}_+ (\varphi_n) - H^{\gamma, \beta_X}_+ \varphi \right|^{\kappa(x)}}{2^{1-x}} & \text{if} \quad \kappa(x) \geq 2 \\
\left(\kappa_- - 1 \right) \frac{\left| H^{\gamma, \beta_X}_+ (\varphi_n) - H^{\gamma, \beta_X}_+ \varphi \right|^2}{\left(|H^{\gamma, \beta_X}_+ (\varphi_n)| + |H^{\gamma, \beta_X}_+ \varphi| \right)^2} & \text{if} \quad 1 < \kappa(x) < 2.
\end{cases}
$$

Consequently, we obtain

$$
\int_{\Delta_+} \left| H^{\gamma, \beta_X}_+ (\varphi_n) - H^{\gamma, \beta_X}_+ \varphi \right|^{\kappa(x)} \, dx = o_n(1).
$$
Now, by applying the Hölder inequality (see Proposition 5), we have
\[
\int_\Delta \left| D_+^{\gamma, \beta; x} (\varphi_n) - D_+^{\gamma, \beta; x} \varphi \right|^{\kappa(x)} dx \leq C \| s_n \|_{L^\infty(\Delta)}^\frac{2}{\Delta} \| s_n \|_{L^{2-\kappa(x)}(\Delta)}^\frac{2}{\Delta},
\]
where
\[
g_n(x) = \frac{| D_+^{\gamma, \beta; x} (\varphi_n) - D_+^{\gamma, \beta; x} \varphi |^{\kappa(x)}}{\left(| D_+^{\gamma, \beta; x} (\varphi_n) | + | D_+^{\gamma, \beta; x} \varphi | \right)^{\frac{\kappa(x)}{2(2-\kappa(x))}}}
\]
and
\[
s_n(x) = \left(| D_+^{\gamma, \beta; x} (\varphi_n) | + | D_+^{\gamma, \beta; x} \varphi | \right)^{\frac{\kappa(x)}{2(2-\kappa(x))}},
\]

C > 0 (constant). In addition, by direct calculation we can see that
\[
\left\{ \| s_n \|_{L^{2-\kappa(x)}(\Delta)}^\frac{2}{\Delta} \right\}
\]
is a bounded sequence and
\[
\int_\Delta | g_n |^{\frac{2}{\Delta}} dx \leq C \int_\Delta \mathcal{P}(x) dx.
\]

Therefore, we have
\[
\int_\Delta | D_+^{\gamma, \beta; x} (\varphi_n) - D_+^{\gamma, \beta; x} \varphi |^{\kappa(x)} dx \to 0 \quad \text{when} \quad n \to \infty. \quad (35)
\]

From Equations (31), (34), and (35), we deduce that \((\varphi_n) \to \varphi\) in \(H^{\gamma, \beta; x}(\Delta)\). We thus conclude the proof of Lemma 13. \(\square\)

Lemma 14. Under conditions \((g_1)\) and \((H_1)\), there is a sequence \(\{M_m\} \subset (0, \infty)\) independent of \(\lambda\) with \(M_\lambda \leq M_{m+1}\) such that, for all \(\lambda > 0\),
\[
c_m^\lambda = \inf_{K \in \mathcal{I}_m} \max_{\varphi \in K} E_\lambda(\varphi) < M_m.
\]

Proof. First, we observe that
\[
c_m^\lambda = \inf_{K \in \mathcal{I}_m} \max_{\varphi \in K} \left\{ \frac{1}{\Delta(x)} \left| D_+^{\gamma, \beta; x} \varphi \right|^{\kappa(x)} dx - \int_\Delta \frac{\lambda}{n(x)} \| \varphi \|^{\kappa(x)} dx - \int_\Delta F(x, \varphi) dx \right\}
\]
\[
\leq \inf_{K \in \mathcal{I}_m} \max_{\varphi \in K} \left\{ \frac{1}{\Delta(x)} \left| D_+^{\gamma, \beta; x} \varphi \right|^{\kappa(x)} dx - \int_\Delta F(x, \varphi) dx \right\}.
\]

Let
\[
M_m = \inf_{K \in \mathcal{I}_m} \max_{\varphi \in K} \left\{ \frac{1}{\Delta(x)} \left| D_+^{\gamma, \beta; x} \varphi \right|^{\kappa(x)} dx - \int_\Delta F(x, \varphi) dx \right\} + 1.
\]

Then, by the definition of the set \(\Gamma_m\) and by the properties of the infimum of a set, it follows that \(M_m \leq M_{m+1}\). Therefore, as \(F(x, t) \leq c_1 + c_2 |t|^{\kappa(x)}\), we can conclude that \(M_m < \infty\), proving the result asserted by Lemma 14. \(\square\)

Finally, we prove the main result (Theorem 1) of this paper.
Proof. Proof of Theorem 1: First, λ_k for each $k \in \mathbb{N}$ such that
\[M_k < \lambda_k^{1-\frac{N}{n_+}} \left(\frac{1}{\kappa_+} - \frac{1}{n_-} \right) S^N. \]
Thus, for $\lambda \in (\lambda_k, \lambda_{k+1})$ we have
\[0 < \epsilon_1^k \leq \epsilon_2^k \leq \cdots \leq \epsilon_k^k < M_k \leq \lambda_k^{1-\frac{N}{n_+}} \left(\frac{1}{\kappa_+} - \frac{1}{n_-} \right) S^N. \]
Now, by Theorem 3, the levels provided by
\[\epsilon_1^k \leq \epsilon_2^k \leq \cdots \leq \epsilon_k^k, \]
are the critical values of the functional $E(\cdot)$. Thus, if
\[\epsilon_1^k < \epsilon_2^k < \cdots < \epsilon_k^k, \]
the functional $E(\cdot)$ has at least k critical points, meaning that if $\epsilon_j^k = \epsilon_{j+1}^k$ for some $j = 1, 2, \cdots, k$, it follows from Theorem 3 that $K_{\epsilon_j^k}$ is an infinite set. Consequently, problem (2) has infinite solutions in this case. In either case, therefore, we can see that the problem (2) has at least k pairs of non-trivial solutions. Our proof of Theorem 1 is thus completed. □

4. Application

In this section, we present an application of the investigated result. First, let us consider $\kappa(x) = 2$, $n(x) = 2$, $\zeta(x) = 2$, $\chi(x) = x$ and $\beta = 1$ in Equation (2). Then, we have the following class of quasi-linear fractional-order problems:
\[
\begin{aligned}
\left\{ \begin{array}{l}
&D^T_+ (D^T_+ \varphi) = (2 + \lambda) \varphi + \psi(x, \varphi) \\
&\varphi = 0,
\end{array} \right.
\end{aligned}
\]
where $\Delta := [0, T] \times [0, T] \times [0, T]$ is a bounded domain with a smooth boundary and, for simplicity, $D^T_+ (\cdot), D^T_+ (\cdot)$ are the Liouville-Caputo fractional derivatives of order $\gamma \left(\frac{1}{2} < \gamma < 1 \right)$ and $p, q : \bar{\Delta} \to \mathbb{R}$ are Lipschitz functions such that:
- (p1) $1 < \kappa_- \leq 2 \leq \kappa_+ < 3, \kappa_+ < n_- \leq 2 \leq \kappa_+(x)$ for all $x \in \bar{\Delta}$ and
- (p2) The set $A = \{ x \in \bar{\Delta} : 2 = p(x) \}$ is not empty.

We now make several assumptions, which are detailed below. Let $f : \bar{\Delta} \times \mathbb{R} \to \mathbb{R}$ be a function provided by
\[f(x, t) = 2t + \psi(x, t) \]
with $a \in L^\infty(\Delta)$ and the function $g : \bar{\Delta} \times \mathbb{R} \to \mathbb{R}$ satisfying the following conditions:
- (g1) The function g is odd with respect to t, that is, $\psi(x, -t) = -\psi(x, t)$ for all $(x, t) \in \bar{\Delta} \times \mathbb{R}$, $\psi(x, t) = o(|t|^{\kappa_+(x) - 1})$ when $|t| \to 0$ uniformly in x, and $\psi(x, t) = o(|t|^{\alpha(x)-1})$ when $|t| \to \infty$ uniformly in x;
- (g2) $\psi(x, t) \leq \frac{1}{\kappa_+} \psi(x, t)t$ for all $t \in \mathbb{R}$ and at almost every point $x \in \Delta$, where
\[\psi(x, t) = \int_0^t \psi(x, s)ds. \]
Furthermore, we make the following assumptions:
• (H₁) There exists γ > 0 such that
\[\int_\Delta \left(\frac{1}{2} - 2|\varphi|^2 \right) dx \geq \gamma \int_\Delta \frac{1}{2}|\varphi|^2 dx. \]

• (H₂) 2 = \kappa_+ for all \(x \in \Gamma = \{ x \in \Delta : 2 > 0 \} \).

Theorem 4. Suppose that a function g satisfies the conditions \((g_1)\) and \((g_2)\) and that the conditions \((p_1)\), \((p_2)\), \((H_1)\) and \((H_2)\) are also satisfied. Then there exists a sequence \(\{ \lambda_k \} \subset (0, +\infty) \) with \(\lambda_k > \lambda_{k+1} \) for all \(k \in \mathbb{N} \) such that, for \(\lambda \in (\lambda_{k+1}, \lambda_k) \), the problem (36) has at least \(k \) pairs of non-trivial solutions.

Remark 4. We have presented an application of problem (2) in a particular case in the sense of the Liouville-Caputo fractional derivative. However, it is possible for particular choices of \(\beta \) and \(\chi \) to obtain a new class of particular cases, especially when the limit \(\gamma \to 1 \).

5. Concluding Remarks and Observations

In the investigations presented in this paper, we have successfully addressed a problem involving the multiplicity of solutions for a class of fractional-order differential equations via the \(\kappa(x) \)-Laplacian operator and the Genus Theory. We have first presented several definitions, lemmas and other preliminaries related to the problem. Applying these lemmas and other preliminaries, we have then studied the existence and multiplicity of solutions for a class of quasi-linear problems involving fractional differential equations in the \(\chi \)-fractional space \(H^{\gamma, \beta, \chi}_\kappa(\Delta) \) via the Genus Theory, the Concentration-Compactness Principle (CCP) and the Mountain Pass Theorem (MPT). We have considered a number of corollaries and consequences of the main results in this paper. On the other hand, although we have obtained several results in this paper, many open questions remain about the theory involving the \(\chi \)-Hilfer fractional derivative. As presented in the introduction, the first work with \(m \)-Laplacian via the \(\chi \)-Hilfer derivative was developed in 2019. It should be noted that there have been few further developments thus far. In this sense, several future questions need to be answered, in particular, those that are itemized below:

• Is it possible to discuss the results in Orlicz Spaces and Generalized Orlicz Spaces?

• Would it be possible to obtain the existence and multiplicity of solutions of Equation (2) unified with Kirchhoff’s problem?

• Is it possible to extend these results to more general and global fractional-calculus operators?

Yet another possibility is to further extend this work to the distributed-order Hilfer fractional derivative and the \(\psi \)-Hilfer fractional derivative operators with variable exponents. For additional details, see [53,54], and (for recent developments) see [55], which is based upon the Riemann-Liouville, the Liouville-Caputo, and the Hilfer fractional derivatives.

As can be seen, it is a new area and there are many questions yet to be answered. Surely, this calls for the attention of researchers toward the discussing of new and complex problems.

Author Contributions: Formal analysis, H.M.S. and J.V.d.C.S.; Investigation, H.M.S. and J.V.d.C.S.; Methodology, J.V.d.C.S.; Supervision, H.M.S.; Validation, J.V.d.C.S.; Writing – original draft, J.V.d.C.S.; Writing – review and editing, H.M.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable

Informed Consent Statement: Not applicable

Data Availability Statement: This article has no associated data.
Conflicts of Interest: The authors declare that they have no conflict of interest.

References
1. Hilfer, R. (Ed.) Applications of Fractional Calculus in Physics; World Scientific Publishing Company: Singapore; Hackensack, NJ, USA; London, UK; Hong Kong, China, 2000.
2. Kilbas, A.A.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematical Studies; Elsevier: Amsterdam, The Netherlands; London, UK; New York, NY, USA, 2006; Volume 204.
3. Srivastava, H.M. An introductory overview of fractional-calculus operators based upon the Fox-Wright and related higher transcendental functions. J. Adv. Eng. Comput. 2021, 5, 135–166. [CrossRef]
4. Srivastava, H.M. Some families of Mittag-Leffler type functions and associated operators of fractional calculus. TWMS J. Pure Appl. Math. 2016, 7, 123–145.
5. Tomovski, Z.; Hilfer, R.; Srivastava, H.M. Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions. Integral Transform. Spec. Funct. 2010, 21, 797–814. [CrossRef]
6. Hilfer, R.; Luchko, Y.; Tomovski, Z. Operational method for solution of the fractional differential equations with the generalized Riemann-Liouville fractional derivatives. Fract. Calc. Appl. Anal. 2009, 12, 299–318.
7. Srivastava, H.M. Fractional-order derivatives and integrals: Introductory overview and recent developments. Kyungpook Math. J. 2020, 60, 73–116.
8. Srivastava, H.M. Some parametric and argument variations of the operators of fractional calculus and related special functions and integral transformations. Symmetry 2021, 13, 2294. [CrossRef]
9. da Costa Sousa, J.V.; de Oliveira, E.C. On the χ-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 2018, 60, 72–91. [CrossRef]
10. da Costa Sousa, J.V.; de Oliveira, E.C. Leibniz type rule: χ-Hilfer fractional operator. Commun. Nonlinear Sci. Numer. Simul. 2019, 77, 305–311. [CrossRef]
11. da Costa Sousa, J.V.; de Oliveira, E.C. Leibniz type rule: χ-Hilfer fractional operator. Commun. Nonlinear Sci. Numer. Simul. 2020, 39, 254. [CrossRef]
12. Zhikov, V.V. Averaging of functionals of the calculus of variations and elasticity theory. Izvest. Rossiskoi Akad. Nauk. Ser. Mat. 1986, 50, 675–710. [CrossRef]
13. Acerbi, E.; Mingione, G. Regularity results for stationary electro-rheological fluids. Arch. Rational Mech. Anal. 2002, 164, 213–259. [CrossRef]
14. Ruzicka, M. Electrorheological Fluids: Modeling and Mathematical Theory; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2000; Volume 1748; pp. 16–38.
15. Chen, Y.; Levine, S.; Rao, M. Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 2006, 66, 1383–1406. [CrossRef]
16. Orlicz, W. Über konjugierte exponentenfolgen. Studia Math. 1931, 3, 200–211. [CrossRef]
17. Nikitzczuk, Z.; Weinberg, B.; Canavan, P.K.; Mavroidis, C. Active knee rehabilitation orthotic device with variable damping characteristics implemented via an electrorheological fluid. IEEE/ASME Trans. Mechatron. 2009, 15, 952–960. [CrossRef]
18. Simmonds, A.J. Electro-rheological valves in a hydraulic circuit. IEE Proc. D-Control Theory Appl. 1991, 138, 400–404. [CrossRef]
19. Simon, J. Régularité de la solution d’une équation non linéaire dans RN. In Journées d’Analyse Non Linéaire; Lecture Notes in Mathematics Book Series; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1978, Volume 665; pp. 205–227.
20. Stanway, R.; Sproston, J.L.; El-Wahed, A.K. Applications of electro-rheological fluids in vibration control: A survey. Smart Mater. Struct. 1996, 5, 464–492. [CrossRef]
21. Alves, C.O. Existence of solution for a degenerate $\kappa(x)$-Laplacian equation in \mathbb{R}^N. J. Math. Anal. Appl. 2008, 345, 731–742. [CrossRef]
22. Alves, C.O. Existence of solution for a degenerate $\kappa(x)$-Laplacian equation in \mathbb{R}^N. J. Math. Anal. Appl. 2008, 345, 731–742. [CrossRef]
23. Alves, C.O. Existence of radial solutions for a class of $\kappa(x)$-Laplacian equations with critical growth. Differ. Integral Equ. 2010, 23, 113–123.
24. Alves, C.O.; Ferreira, M.C. Nonlinear perturbations of a $\kappa(x)$-Laplacian equation with critical growth in \mathbb{R}^N. Math. Nachr. 2014, 287, 849–868. [CrossRef]
25. Alves, C.O.; Ferreira, M.C. Existence of solutions for a class of $\kappa(x)$-Laplacian equations involving a concave-convex nonlinearity with critical growth in \mathbb{R}^N. Topol. Meth. Nonlinear Anal. 2015, 45, 399–422. [CrossRef]
26. Antontsev, S.N.; Shmarev, S.I. Elliptic equations with anisotropic nonlinearity and nonstandard conditions. In Handbook of Differential Equations: Stationary Partial Differential Equations; Chipot, M., Ed.; Elsevier B.V.: Amsterdam, The Netherlands; London, UK; New York, NY, USA, 2006; Volume 3; pp. 1–100.
27. Bonder, J.F.; Silva, A. Concentration-compactness principle for variable exponent spaces and applications. Electon. J. Differ. Equ. 2010, 2010, 141.
28. Fu, Y. The principle of concentration compactness in $L^{p(x)}$ spaces and its application. Nonlinear Anal. 2009, 71, 1876–1892. [CrossRef]
29. Kovacik, D.; Rakosnik, J. On spaces $L^{p(x)}$ and $W^{1,p(x)}$. Czechoslovak Math. J. 1991, 41, 592–618.
30. Fan, X.; Shen, J.; Zhao, D. Sobolev embedding theorems for spaces $W^{k,x}(\Omega)$. J. Math. Anal. Appl. 2001, 262, 749–760. [CrossRef]
31. Fan, X.; Zhao, Y.; Zhao, D. Compact embedding theorems with symmetry of Strauss–Lions type for the space $W^{k,x}(\mathbb{R}^N)$. J. Math. Anal. Appl. 2001, 255, 333–348. [CrossRef]
32. Chabrowski, J.; Fu, Y. Existence of solutions for $\kappa(x)$-Laplacian problems on a bounded domain. J. Math. Anal. Appl. 2005, 306, 604–618. [CrossRef]
33. Taarabti, S. Positive solutions for the $\kappa(x)$-Laplacian: Application of the Nehari method. Discrete Cont. Dyn. Syst.-S 2022, 15, 229–243. [CrossRef]
34. Soub, J.V.; Tavares, L.S.; Ledesma, C.E.T. A variational approach for a problem involving a χ-Hilfer fractional operator. J. Appl. Anal. Comput. 2021, 11, 1610–1630.
35. da Costa Sousa, J.V. Nehari manifold and bifurcation for a χ-Hilfer fractional p-Laplacian. Math. Meth. Appl. Sci. 2021, 44, 9616–9628. [CrossRef]
36. Sousa, J.V.; de Oliveira, M.P.E.C.; Existence and regularity of weak solutions for χ-Hilfer fractional boundary value problem. Mediterr. J. Math. 2021, 18, 1–15. [CrossRef]
37. Soub, J.V.; Zuo, J.; O’Regan, D. The Nehari manifold for a χ-Hilfer fractional p-Laplacian. Applicable Anal. 2021, 1–31. [CrossRef]
38. Ledesma, C.E.; Nemat, N. Impulsive fractional boundary value problem with p-Laplace operator. J. Appl. Math. Comput. 2017, 55, 257–278. [CrossRef]
39. Nyamoradi, N. The Nehari manifold and its application to a fractional boundary value problem. Differ. Equ. Dyn. Syst. 2013, 21, 323–340. [CrossRef]
40. Nyamoradi, N.; Zhou, Y. Bifurcation results for a class of fractional Hamiltonian systems with Liouville–Weyl fractional derivatives. J. Vibration Control 2016, 22, 1358–1368. [CrossRef]
41. Xiang, M.; Zhang, R.; Yang, D. Multiplicity results for variable-order fractional Laplacian equations with variable growth. Nonlinear Anal. Ser. A Theory Methods Appl. 2019, 178, 190–204. [CrossRef]
42. Zhang, C.; Zhang, X. Renormalized solutions for the fractional $\kappa(x)$-Laplacian equation with L^1 data. Nonlinear Anal. 2020, 190, 111610. [CrossRef]
43. Ayazoglu, R.; Sarac, Y.; Sener, S.S.; Alisoy, G. Existence and multiplicity of solutions for a Schrödinger–Kirchhoff type equation involving the fractional $p(\cdot, \cdot)$-Laplace operator in \mathbb{R}^N. Collect. Math. 2021, 72, 129–156. [CrossRef]
44. Xiang, M.; Hu, D.; Zhang, R.; Wang, Y. Multiplicity of solutions for variable-order fractional Kirchhoff equations with nonstandard growth. J. Math. Anal. Appl. 2021, 501, 124269. [CrossRef]
45. Colasuonno, F.; Pucci, P. Multiplicity of solutions for $\kappa(x)$-polyharmonic elliptic Kirchhoff equations. Nonlinear Anal. 2020, 190, 111610. [CrossRef]
46. Mihăilescu, M.; Rădulescu, V. A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids. Proc. Roy. Soc. London Ser. A Math. Phys. Eng. Sci. 2006, 462, 2625–2641. [CrossRef]
47. Rahmoune, R.; Biccari, U. Multiplicity of solutions for fractional $q(\cdot)$-Laplacian equations. arXiv 2021, arXiv:2103.12600.
48. da Costa Sousa, J.V.; Oliveira, D.S.; Tavares, L.S. Solutions for a mean curvature equation involving a χ-Hilfer fractional operator and variable exponents via the Nehari manifold. 2022, Preprint.
49. Ledesma, C.E.T.; da Costa Sousa, J.V. Fractional integration by parts and Sobolev-type inequalities for χ-fractional operators. Math. Methods Appl. Sci. 2022, 1–22. [CrossRef]
50. Willem, M. Minimax Theorems, Progress in Nonlinear Differential Equations and Their Applications; Birkhäuser: Basel, Switzerland, 1996; Volume 24.
51. Chabrowski, J. Weak Convergence Methods for Semilinear Elliptic Equations; World Scientific Publishing Company: Singapore; Hackensack, NJ, USA, 1999; London, UK; Hong Kong, China, 1999.
52. Rabinowitz, P.H. Minimax Methods in Critical Point Theory with Applications to Differential Equations; CBMS Regional Conference Series in Mathematics; American Mathematical Society: Providence, RI, USA, 1984; Volume 65.
53. Luchko, Y.F. The 1st level general fractional derivatives and some of their Properties. arXiv 2022, arXiv:2206.02154.
54. Fernández-Anaya, G.; Quezada-Téllez, L.A.; Franco-Pexrex, L. Stability analysis of distributed order of Hilfer nonlinear systems. Math. Methods Appl. Sci. 2021, 44, 4137–4155. [CrossRef]
55. Srivastava, H.M.; Raghavan, D.; Nagarajan, S. A comparative study of the stability of some fractional-order cobweb economic models. Rev. Real Acad. Cienc. Exactas Fis. Natur. Ser. A Mat. (RACSAM) 2022, 116, 98. [CrossRef]