Exome sequencing in families with severe mental illness identifies novel and rare variants in genes implicated in Mendelian neuropsychiatric syndromes

Suhas Ganesh, MD, Husayn Ahmed P., MSc, Ravi K. Naddella, MD, Ravi P. More, PhD, Manasa Seshadri, DPM, Biju Viswanath, MD, Mahendra Rao, MD, PhD, Sanjeev Jain, MD, The ADBS Consortium and Odity Mukherjee, PhD

Aim: Severe mental illnesses (SMI), such as bipolar disorder and schizophrenia, are highlyheritable, and have a complex pattern of inheritance. Genome-wide association studies detect a part of the heritability, which can be attributed to common genetic variation. Examination of rare variants with next-generation sequencing may add to the understanding of the genetic architecture of SMI.

Methods: We analyzed 32 ill subjects from eight multiplex families and 33 healthy individuals using whole-exome sequencing. Prioritized variants were selected by a three-step filtering process, which included: deleteriousness by five in silico algorithms; sharing within families by affected individuals; rarity in South Asian sample estimated using the Exome Aggregation Consortium data; and complete absence of these variants in control individuals from the same gene pool.

Results: We identified 42 rare, non-synonymous deleterious variants (~5 per pedigree) in this study. None of the variants were shared across families, indicating a ‘private’ mutual genetic risk, such as the ‘oligogenic quasi-Mendelian model’ and the ‘omnigenic models’ of inheritance. Several recent studies in autism, SCZ, BD, and depression have detected rare variants using NGS in case-control or family-based designs, across different genes implicated to play a key role in critical pathological pathways. Findings from such studies have shown that the majority of the rare variants identified are private to a family (Table S1), indicating the underlying heterogeneity in the genetic architecture of SMI. Multiplex families may provide valuable insights into the genetic correlates of these syndromes when tested using high throughput sequencing.

Bipolar disorder (BD) and schizophrenia (SCZ) are severe mental illness (SMI) syndromes with a median lifetime prevalence of 2.4 and 3.3 per thousand persons, respectively, and an estimated heritability of 70–90\%.[1,2] Evidence from family and molecular genetic studies suggests shared, perhaps overlapping, risk factors across these syndromes.[3,4] The outcomes from large-scale genome-wide association studies (GWAS) exploring the common disease–common variant (CDCV) hypothesis detect a proportion of the estimated genetic risk. In this context, next-generation sequencing (NGS) technology, by evaluating rare genetic variants, has enabled a deeper examination of complex traits using alternate models of genetic risk, such as the ‘oligogenic quasi-Mendelian model’ and the ‘omnigenic models’ of inheritance. Several recent studies in autism, SCZ, BD, and depression have detected rare variants using NGS in case-control or family-based designs, across different genes implicated to play a key role in critical pathological pathways. Findings from such studies have shown that the majority of the rare variants identified are private to a family (Table S1), indicating the underlying heterogeneity in the genetic architecture of SMI. Multiplex families may provide valuable insights into the genetic correlates of these syndromes when tested using high throughput sequencing.

Keywords: Mendelian, polygenic, schizophrenia, bipolar disorder, rare variant.

Conclusion: Next-generation sequencing approaches in family-based studies are useful to identify novel and rare variants in genes for complex disorders like SMI. The findings of the study suggest a potential phenotypic burden of rare variants in Mendelian disease genes, indicating pleiotropic effects in the etiology of SMI.

http://onlinelibrary.wiley.com/doi/10.1111/pcn.12788/full
A cross-nosology approach has been quite informative in identifying potential disease-relevant pathways in SCZ and BD.7,18 Single-nucleotide polymorphisms (SNP) associated with these two syndromes show a high mutual correlation, among combinations of neuropsychiatric syndromes.19,20 Such overlaps have also been observed across diverse neuropsychiatric syndromes, for both common and rare genetic variations, as well as in gene expression profiles in the cerebral cortex.19,20 These findings indicate an underlying shared molecular pathology in the pathobiology of SMI.

As part of a longitudinal study, ‘Accelerator Program for Discovery of Brain Disorders Using Stem Cells’ (ADBS),21 aimed at understanding the developmental trajectories and basic biology of SMI, we describe in this study the results of a variant discovery analysis using whole-exome sequencing (WES) in eight multiplex pedigrees with SCZ and BD phenotypes from a well characterized Indian cohort. Such studies have been predominantly conducted in large cohorts of European origin,19 and representation from other populations is perhaps necessary to validate earlier findings, and identify population-specific signatures underlying SMI. In the current study, we aimed to identify rare, damaging, exonic variants that co-segregate with SMI in multiplex families, and to examine their relevance to the disease.

Methods
Sample selection
The families were recruited as part of the ADBS longitudinal study, which has been approved by the ethics committee of the National Institute of Mental Health and Neurosciences, Bengaluru, India. The details of screening, informed consent, recruitment, and phenotyping have been previously published.21 Some of the families in the cohort have been on follow up for longer than 10 years. We have previously noted evidence of linkage in psychosis at chromosome 18p11.2,22 and the sex-specific association to the DISC1 gene using a case–control study design23 in samples taken from this cohort. For the current study, eight families (A through H) with high loading of SMI (SCZ, BD, and psychosis in the context of these eight pedigrees; Fig. 1a, Fig. S1) were assessed in detail. From these, 32 individuals (‘cases’; 16 females) with SMI were available for blood sampling and were subjected to WES. Two senior psychiatrists evaluated all patients and unaffected relatives independently. Diagnoses were made with the ICD-10 Classification for Mental and Behavioural Disorders and were verified in the longitudinal course of follow ups. From five of the eight families, we could also sample eight unaffected individuals who had crossed the age at risk and are defined as a ‘family-specific control’ for the respective pedigree henceforth in this report. An independent set of 25 individuals without a history of SMI were further sampled as population-matched controls. Together this group constituted a total of 33 asymptomatic ‘controls.’

Exome sequencing and analysis
Sequencing was carried out on the Illumina Hiseq NGS platform with libraries prepared using Illumina exome kits. Reads were aligned with reference human genome GRCh37 using the Burrows–Wheeler algorithm tool.24 Variants were called from realigned BAM files using VarScan2 with the standard criteria (min coverage = 8, MAF ≥ 0.25, and \(P \leq 0.001\)).25 Standard quality control protocols were employed at sequencing, alignment, and variant calling (Fig.S2). The resulting variant called files were annotated with ANNOVAR.26

Pedigree-based analysis
All variant segregation analysis was performed at the level of individual pedigrees. To ascertain the degree of variance (between pedigrees) and relatedness within family structures, we generated a dendrogram with hierarchical clustering analysis using an allele-sharing matrix of the exonic variants (Appendix S1).

Variant prioritization
Variants were prioritized if:

1. the variant was found to be shared by all affected individuals within the pedigree while allowing for one missing genotype, a method shown to be useful in an earlier study of familial BD;12
2. the variant fell into any of the following deleterious categories – the non-synonymous damaging strict (NSD-S) set predicted to be damaging by five prediction algorithms (SIFT,27 Polyphen-2 HDIV,28 Mutation taster 2,29 Mutation assessor,30 and LRT31 (Appendix S1)), the Disruptive set predicted to result in protein truncation (splice site, stop gain, or stop loss variants), or the non-synonymous damaging broad (NSD-B) set predicted to be damaging by one or more of the five prediction algorithms; and
3. the variant was rare (<1% in Exome Aggregation Consortium – South Asian sample (ExAC-SAS))32 and completely absent from a control cohort of 33 individuals from the same gene pool (http://indexdb.ncbs.res.in).

The above variant prioritization was carried out using an in-house automated pipeline ‘varPrio’. Details of the pipeline and the resulting variant enrichment are summarized in Figure1c. To rule out any false positive calls at the final variant list, a representative set of prioritized variants (\(n=10\)) was independently confirmed by Sanger sequencing and we noted a 100% concordance.

Functional annotation
We adapted two approaches for evaluating functional impact to the prioritized variants:

- We reviewed the literature on individual genes identified in the NSD-S and the disruptive set carrying rare variants of highest priority (all five \textit{in silico} predictors) for prior evidence of disease association in neuropsychiatric phenotype.
- For the NSD-B set carrying rare variants of plausible disease relevance (1–5 \textit{in silico} predictors), we tested for enrichment of the aggregate list using DAVID functional annotation tool 6.8.33,34 To test the enrichment on the categories of biological process, molecular function, protein domain, protein–protein interaction, and tissue expression we selected the sources as – ‘GOTERM_BP_DIRECT’, ‘GOTERM_MF_DIRECT’, ‘INTERPRO’, ‘KEGG_PATHWAY’ and ‘UP_TISSUE’ in \textit{this in silico} approach. Modified Fisher’s exact test with Benjamini–Hochberg correction built-in to this algorithm was used to infer enrichment.

Results
Sample characteristics
Of the 32 cases sequenced in the study, 26 were diagnosed with BD, four with SCZ, and one each with SCZ-like psychosis and schizoaffective disorder. They had been ill for a mean (SD) duration of 23.7 (11.1) years, and the mean (SD) age at onset was 23.1 (7.9) years. In most of the pedigrees, there was heterogeneity in the age of onset, illness severity, global outcomes, and segregation of suicidality and psychosis (in BD) with the primary phenotype. Substance use disorder was a common comorbidity, followed by hypothyroidism, seizure disorder, and dementia (Appendix S2, Table S2).

In the analysis of relatedness using the cluster dendrogram, ‘cases’ and ‘controls’ formed a single cluster possibly resulting from sharing of a large number of common and/or benign exonic variants. As expected, members from each pedigree clustered together due to the relatively larger magnitude of variant sharing (Fig. 1b, Appendix S1).
Fig. 1 (a) Two representative pedigrees analyzed with exome sequencing (Families A and B). (b) Cluster dendrogram created with a distance matrix based on the degree of variant sharing between pairs of cases and controls analyzed in the study. (c) ‘varPrio’ – variant prioritization pipeline with numbers indicating the reduction in the total number of variants in each prioritization step. (d) Ideogram representing the 42 genes that harbored variants prioritized by non-synonymous damaging strict (NSD-S) and disruptive definition generated with NCBI genome decoration page.
Rare deleterious variants in Mendelian genes segregate within SMI families

Familywise prioritization identified a total of 39 NSD-S, three disruptive, and 248 NSD-B variants. The NSD-S and disruptive sets of variants (Table 1, Fig. 1d) spanning 42 genes were private to individual pedigrees (~5 variants per pedigree). Twelve of these were novel (not reported in dbSNP or other published databases) and the remaining were noted in very low frequencies (~1e-07 to 7.8e-03) in ExAC-SAS. None of the variants prioritized were present in 33 healthy Indian control samples (http://indexdb.ncri.res.in). Nine (21.4%) of the 42 variants were found in genes that have been reported in Mendelian syndromes with early onset neurodevelopmental features, such as infantile epilepsy, intellectual disability, and structural brain abnormalities. Seven (16.67%) of these gene-phenotype relationships were reported in the Online Mendelian Inheritance in Man (OMIM) and the remaining two were noted in the MedGen (NCBI) and ClinVar databases. This was significantly higher in comparison to a background list of 1310 out of 15 857 (8.26%) such genes (Appendix S1) listed in the OMIM database ($P = 0.039$, odds ratio [OR] = 2.423, confidence interval [CI] = 1.07–5.513, Fisher’s exact test) while not accounting for potential gene length bias. Some of these variants were observed in close proximity to reported ‘pathogenic’ mutation of the relevant Mendelian syndrome and/or in highly conserved regions (Table 2(a)). Two of these nine variants, one each on the GRM1 gene (chr6:146351218, GRCh37) and NIPBL gene (chr5:37010263, GRCh37), were novel. Pathogenic mutations on the GRM1 gene, coding for metabotropic glutamate receptor 1 (mGlur1) result in autosomal dominant (type 44) (OMIM:617691) and recessive (type 13) (OMIM:614831) forms of spinocerebellar ataxia, both of which are characterized by early age of onset and associated intellectual disability. Missense variants have been identified spanning the entire exome of this gene in individuals and families with SCZ and other neuropsychiatric syndromes.34 Mutations in the NIPBL gene, coding for Cohesin Loading Factor involved cortical neuronal migration,35 cause Cornelia de Lange syndrome 1. The novel missense variant identified in the pedigree G (chr5:37010263), segregating with BD would result in substitution of polar amino acid glutamine by a hydrophobic amino acid proline. A non-sense mutation at the same codon (rs797045760) is reported to be pathogenic of Cornelia de Lange syndrome 1 (ClinVarSCV000248215.1).

Ten other genes that harbored prioritized variants have been implicated in neuropsychiatric syndromes. We identified a variant (rs148371256) in the NRG2 gene (Neuregulin 2) that was earlier reported to be associated with gamma band oscillations in SCZ with suggestive genome-wide significance.39 The encoded protein neuregulin-2 has been shown to be critical for the formation and maturation of GABAergic synapses40 and its ablation results in dopaminergic dysregulation. A novel variant (chr3:122423522, GRCh37) was identified in the PARP14 gene (Poly ADP ribose polymerase 14), and the gene has been implicated in post-traumatic stress disorder (PTSD), major depressive disorder (MDD), and attention deficit hyperactivity disorder (ADHD).42

We also noted a variant (rs54059912) in the GOLM1 gene (Golgi membrane protein 1), which was earlier reported in sporadic Alzheimer’s disease (AD) to influence the pre-frontal cortical volume.43 A list of these 10 genes, evidence for disease association, and gene ontology descriptions are presented in Table 2(b).44–52

Of the remaining genes, there were several with a plausible role in the biology of SMI, but not thus far implicated in any disease phenotype. These genes, with the ontology descriptions and plausible biological implications, are provided in Table 2(c).53–58

Enrichment of coding variants with plausible functional role in SMI

The NSD-B set consisted of 248 variants; of these, except for rs570064523 in the PCSK1 gene, which was identified in cases from two families (G and H), no other overlap at the level of family was noted for the remaining 247 variants (Appendix S2, Table S3). In the ‘protein domains’ category tested using the Interpro database as the source, the term ‘epidermal growth factor like domain’ showed a nominally significant enrichment with $P = 0.0013$, Benjamini–Hochberg false discovery rate corrected $P = 0.073$. Twelve genes that were enriched for this domain included the NRG2 and SCUBE3 genes, which were also categorized in the NSD-S set along with the NOTCH1, JAG1 and WIF1 genes, which form critical nodes in the notch signaling pathway implicated in neurodevelopment and embryogenesis (Appendix S2, Table S4).59 There was no statistically significant enrichment in any of the remaining categories tested with this in silico approach.

Discussion

The results of our study highlight the usefulness of WES in multiplex families with SMI to identify rare and novel variants that may contribute to the susceptibility to common polygenic syndromes. Many of these variants prioritized by NSD-S, and presumed to be disruptive, map to genes that have been previously reported in GWAS candidate gene association, post-mortem expression, or animal model studies of SMI. In addition, consistent with the WES approach, we identify variants in genes hitherto not reported in the context of an SMI, but that could potentially contribute to disease biology.

The segregation of rare and deleterious variants in Mendelian disease genes with a neuropsychiatric phenotype is in keeping with some recent observations. Studies have shown that heterozygous carriers of Mendelian disease mutations are at increased risk for specific common diseases.60 While Mendelian forms of common, complex traits, such as Alzheimer’s disease, hypertension, hypercholesterolemia, and hypertriglyceridemia, have long been attributed to rare causal variants in single genes, population-based GWAS in these traits have often implicated genes that also cause single gene disorders.60 More recently, using electronic health record data, the disease-relevant phenotypic burden of rare variants in Mendelian genes, thus far not characterized as ‘pathogenic,’ has been demonstrated across diverse phenotypes.61

We explored the clinical significance of nine variants in Mendelian genes in the ClinVar database, a publicly available archive of human phenotype-variation relations.36 None of these variants was annotated as ‘pathogenic’ or ‘likely pathogenic’ in the database for the corresponding Mendelian phenotype. As a corollary, none of the families had any identified or suspected case of a severe neurodevelopmental syndrome. However, the predicted deleteriousness by in silico algorithms, a very low prevalence in the population, physical proximity to known pathogenic mutations, and the reported physiological gene function suggest a plausible role for these variants in the etiology of SMI. The impact of these variants in cellular and/or animal models needs to be examined to validate these observations and to establish their causal role in SMI. Interestingly, an earlier WES study in families with BD also reported variants in genes of mono- genic syndromes: holoprosencephaly and progressive myoclonic epilepsy.52

We detected rare variants in 10 additional genes that have been noted in earlier studies to contribute to the risk for polygenic syndromes, such as SCZ, BD, autism, MDD, ADHD, PTSD, AD, and Parkinson’s disease. This finding is congruent with the evolving concept of shared molecular neuropathology across SMI.37 These, along with other identified genes known to be involved in neurodevelopmental processes (e.g., PLXND1) or known to have manifold higher brain expression (e.g., ANLN, LRRC8B) are potential targets to be examined in future studies of SMI. Lastly, of the 12 genes encoding highly conserved epidermal growth factor-like domains and showing nominally significant enrichment to this domain, many encode for proteins that play critical roles during embryogenesis and neurodevelopment.59
Table 1. List of novel or rare variants prioritized by non-synonymous damaging strict and disruptive definition

Gene symbol	rsID/novel	chr:location	Transcript	Exon	Variant	Amino acid change	ExAC_SAS
LRRC8B	NOVEL	chr1:90049348	NM_015350	Exon5	c.A1139C	p.Y380S	
GRM1	NOVEL	chr6:14631218	NM_001278064	Exon1	c.A565G	p.S189G	
SETD6	NOVEL	chr16:58552094	NM_001160305	Exon6	c.C932G	p.A311G	
SYF2	NOVEL	chr1:25555567	NM_015484	Exon3	c.A180C	p.K60N	
RAB3L1	NOVEL	chr11:61675047	NM_001271686	Exon3	c.G491A	p.S164N	
BCDN5D	NOVEL	chr12:50236792	NM_181708	Exon1	c.G79A	p.G27S	
NDRG3	NOVEL	chr20:3357139	NM_022477	Exon3	c.G106T	p.G36C	
PARR14	NOVEL	chr3:122423522	NM_017554	Exon8	c.G3467A	p.S1156N	
NIPBL	NOVEL	chr5:37010263	NM_015384	Exon21	c.A4496C	p.Q1499P	
SCUBE3	NOVEL	chr6:35211460	NM_001303136	Exon16	c.C1996T	p.L666F	
NBPF11	NOVEL	chr1:147599423	NM_015506	Exon2	c.G565A	p.D189N	6.00E-03
CMTM2	NOVEL	chr5:805506	Splicing				
KRT85	rs112554450	chr12:52578810	NM_002283	Exon2	c.G565A	p.D189N	6.00E-03
NRG2	rs148371256	chr5:13921286	NM_001184935	Exon7	c.C1477T	p.R493W	5.00E-04
MDN1	rs148868949	chr9:3097121	NM_014611	Exon68	c.C11392T	p.R3798W	3.00E-03
MYO1A	rs151267903	chr12:57431355	NM_005379	Exon19	c.A2032T	p.I678F	5.00E-03
EPHC1	rs1570624	chr6:52319050	NM_018100	Exon5	c.G881A	p.R294H	5.10E-03
CNGB1	rs192843629	chr6:57950041	NM_01286130	Exon22	c.C2191T	p.R731C	7.00E-04
PCCB	rs371155999	chr3:136002730	NM_005052	Exon6	c.G595T	p.P199S	7.10E-03
TRMT44	rs373816157	chr4:8467199	NM_152544	Exon8	c.C1405T	p.R469W	0.000E+00
CLUAP1	rs531380218	chr6:353588	Splicing				
GOLM1	rs534059912	chr9:88661389	NM_016548	Exon5	c.G463A	p.D155N	3.70E-03
LGALS12	rs534811017	chr1:63277314	NM_01142537	Exon3	c.S320T	p.T107M	2.20E-03
ADP9H	rs54708034	chr1:13901144	NM_001291994	Exon2	c.T128C	p.L43S	7.80E-04
FAM208B	rs458531206	chr10:5789582	NM_017782	Exon15	c.T4198C	p.S1400P	4.00E-03
PM20D1	rs553380022	chr1:205809400	NM_152491	Exon10	c.G1088A	p.R363Q	2.70E-03
CD1D	rs569232577	chr1:158152752	NM_001766	Exon5	c.G692G	p.P231R	1.40E-03
PLXND1	rs569306898	chr1:129279222	NM_015103	Exon31	c.G5084C	p.R3798W	6.12E-05
WDF14	rs571808731	chr10:50030541	NM_020945	Exon35	c.G5941A	p.P1918T	3.10E-03
CCD2A	rs574421639	chr4:15559035	NM_001080522	Exon22	c.A2734G	p.R912G	1.30E-03
ANLN	rs575070189	chr7:36435984	NM_001284301	Exon2	c.C128T	p.P433L	1.80E-03
PARVB	rs575240566	chr22:44528830	NM_001243385	Exon6	c.G663A	p.H155N	1.00E-04
DOCK3	rs61732769	chr8:25174610	NM_024940	Exon14	c.T1460T	p.T469M	4.30E-03
KIF7	rs749711306	chr15:90176400	NM_198852	Exon13	c.G2690C	p.G897A	6.47E-05
C20orf194	rs750188084	chr20:3251118	NM_001009984	Exon30	c.A2741G	p.N914S	6.06E-03
TCEA3	rs753347636	chr1:23720470	NM_003196	Exon8	c.C721T	p.R241C	6.05E-05
ARHGFE40	rs756016433	chr1:21553914	NM_001278529	Exon19	c.C1885T	p.R629W	0.000E+00
PLB1	rs67002233	chr2:28814039	Splicing				0.0004
SCNSA	rs775711350	chr2:166032822	NM_001081676	Exon3	c.G83A	p.R28H	0.000E+00
INPP5A	rs775793924	chr10:134521844	NM_005539	Exon7	c.C502T	p.R168W	6.08E-03
DENDNSA	rs779817963	chr1:9171664	NM_001243254	Exon15	c.A2699G	p.H900R	6.13E-02
COLA4S	rs78972735	chrX:107865996	NM_000495	Exon33	c.G2858T	p.G953V	6.90E-03

Chr:location (chromosomal location); ExAC_SAS (variant allele frequency in ExAC south Asian sample).
Table 2. Disease relevance of the genes harboring prioritized variants
(a) Genes implicated in a Mendelian syndrome
Gene symbol

GRM1
EFHC1
DENND5A
KIF7
SCN3A
PCCB
NIPBL
CLUAP1
CC2D2A
(b) Genes implicated in a human polygenic phenotype
Gene symbol

NRG2
GOLM1
INPP5A
MDN1
DOCK5
PARP14
TRMT44
PM20D1
WDFY4
PARVB
familial risk for SMI, private to each pedigree, determined by variants of possible major/moderate effect. Lastly, we have not been able to sample all affected individuals from each multiplex pedigree. Among the unaffected individuals, we have been able to sample one to two representative individuals from five of the pedigrees. Thus, the prioritized variants might represent only a part of the shared genetic risk within each pedigree.

Using WES data in multiplex families with SMI, we find evidence that suggests intersections in the molecular pathways leading to the expression of polygenic SMI and Mendelian neuropsychiatric syndromes. The patient-derived neural stem cell lines being developed as part of the program will be useful to explore the functional significance of the identified variants accounting for ‘modifier genetic background’ and to characterize mechanisms that underlie the observed genotype–phenotype correlates.

Conclusions

NGS approaches in a family-based study design are useful to identify novel and rare variants in genes potentially relevant to complex disorders, such as SMI. The study further provides an independent validation for the phenotypic burden of rare deleterious variants in Mendelian disease genes that segregate privately in multiplex pedigrees with SCZ and BD. Our findings support the role of heterogeneity and pleiotropy in the genetic architecture of SMI encompassing a spectrum of neurodevelopmental and degenerative phenotypes.

Acknowledgments

The authors are grateful to all the patients, their family members, and healthy volunteers who participated in the study. Financial support for the study was provided by: the Department of Biotechnology funded grants, “Targeted generation and interrogation of cellular models and networks in neuro-psychiatric disorders using candidate genes” (BT/01/CEIB/11/VI/11/2012) and “Accelerating program for discovery in brain disorders using stem cells” (BT/PR17316/MED/31/326/2015) (ADBS); Pratiksha Trust; and the Institute of Stem Cells and Regenerative Medicine (InStem), Bengaluru, India. The authors would like to thank the sequencing core facility at the Institute of Genomics and Integrative Biology (IGIB), Delhi (Dr Faruq Mohammed) and the National Centre for Biological Sciences (NCBS), Bengaluru (Dr Awadhesh Pandit) for sample processing and WES data generation. The authors would like to thank Manasa K.P., Anand Ganapathy Subramaniam, Soham Deepak Jagtap, Geetanjali Murari, Srividiya Shetty, and Surya Prakash M. from

Table 2. (Continued)
(b) Genes implicated in a human polygenic phenotype
Gene symbol
NBPF11

(c) Genes putatively significant to neurobiology
Gene symbol
PLXND1
SETD6
NDRG3
SCUBE3
CNGB1
LRRC8B
C20orf194

†Variant in close proximity to a pathogenic mutation for a Mendelian syndrome.

CNV, copy number variation; EWAS, epigenome wide association study; GO, gene ontology; GWAS, genome-wide association studies; MIM, Mendelian Inheritance in Man.
NIMHANS and Vidhya Varadharajan, Priyanka Bhatia, Shubhra Acharya, and Batul Yusuf from InStem for their technical support during initial raw data curation. The authors would also like to thank all investigators of the ADBS Consortium for providing valuable inputs to the manuscript and having final approval of the manuscript. Suhas Ganesh is currently affiliated with and supported by the Schizophrenia Neuropharmacology Research Group at Yale University.

Disclosure statement

The authors declare that they have no conflicts of interest.

Author contributions

S.G. analyzed the data and wrote the manuscript; H.A.P. built the VarPrio algorithm and performed variant prioritization and secondary analysis; R.K.N. and M.S. performed the detailed clinical assessments of the study participants under the supervision of B.V.; R.P.M. performed whole-exome sequence data mining; O.M. supervised sequencing data generation, analysis of the results, and manuscript preparation. S.J. and M.S. provided vital inputs to data analysis and manuscript preparation. The study was conceived by the ADBS Consortium. All authors took part in editing the manuscript and approved the final version.

References

1. Merikangas KR, Jin R, He J-P et al. Prevalence and correlates of bipolar spectrum disorder in the World Mental Health Survey Initiative. *Arch. Gen. Psychiatry* 2011; 68: 241.

2. Saha S, Chant D, Welham J, McGrath J. A systematic review of the prevalence of schizophrenia. *PLoS Med.* 2005; 2: e141.

3. Sullivan PF, Kendler KS, Neale MC. Schizophrenia as a complex trait: Evidence from a meta-analysis of twin studies. *Arch. Gen. Psychiatry* 2003; 60: 1187–1192.

4. Barnett JH, Smoller JW. The genetics of bipolar disorder. *Neuroscience* 2009; 164: 331–343.

5. Lichtenstein P, Yip BH, Bjørk C et al. Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: A population-based study. *Lancet* 2009; 373: 234–239.

6. Lin PI, Mitchell BD. Approaches for unraveling the joint genetic determinants of schizophrenia and bipolar disorder. *Schizophr. Bull.* 2007; 33: 791–797.

7. Cross-Disorder Group of the Psychiatric Genomics Consortium, Lee SH, Ripke S et al. Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. *Nat. Genet.* 2013; 45: 984–994.

8. Kerner B. Toward a deeper understanding of the genetics of bipolar disorder. *Front. Psych.* 2015; 6: 105.

9. Boyle EA, Li YL, Pritchard JK. An expanded view of complex traits: From polygenic to omnigenic. *Cell* 2017; 169: 1177–1186.

10. Chapman NH, Nato AQ, Bernier R et al. Whole exome sequencing in extended families with autism spectrum disorder implicates four candidate genes. *Hum. Genet.* 2015; 134: 1055–1068.

11. Kato T. Whole genome/exome sequencing in mood and psychotic disorders: Whole genome/exome in mental disorders. *Psychiatry Clin. Neurosci.* 2015; 69: 65–76.

12. Goes FS, Pirooznia M, Parla JS et al. Exome sequencing of familial bipolar disorder. *JAMA Psychiatry* 2016; 73: 590.

13. Rao AR, Yoursaw M, Christensen B, Nelson SF, Kerner B. Rare deleterious mutations are associated with disease in bipolar disorder families. *Mol. Psychiatry* 2017; 22: 1099–1104.

14. Timms AE, Dorschner MO, Wechsler J et al. Support for the N-methyl-D-aspartate receptor hypofunction hypothesis of schizophrenia from exome sequencing in multiple families. *JAMA Psychiatry* 2013; 70: 582.

15. DeLisi LE. A case for returning to multiplex families for further understanding the heritability of schizophrenia: A psychiatrist’s perspective. *Mol. Neuropsychopharmac* 2016; 2: 15–19.

16. Glaahn DC, Nimgaarkar VL, Ravenos H et al. Rediscovering the value of families for psychiatric genetics research. *Mol. Psychiatry* 2018. https://doi.org/10.1038/s41380-018-0073-x

17. Cristino AS, Williams SM, Hawi Z et al. Neurodevelopmental and neuropsychiatric disorders represent an interconnected molecular system. *Mol. Psychiatry* 2014; 19: 294–301.

18. O’Dushlaine C, Rossin L, Lee PH et al. Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways. *Nat. Neurosci.* 2015; 18: 199–209.

19. Gandal MJ, Haney JR, Parikhshak NN et al. Shared molecular neuropsychology across major psychiatric disorders parallels polygenic overlap. *Science* 2018; 359: 693–697.

20. Brainstorm Consortium, Anttila V, Bulik-Sullivan B et al. Analysis of shared heritability in common disorders of the brain. *Science* 2018; 360: eaap8757.

21. Viswanath B, Rao NP, Narayanaswamy JC et al. Discovery biology of neuropsychiatric syndromes (DBNS): A center for integrating clinical medicine and basic science. *BMC Psychiatry* 2018; 18: 106.

22. Mukherjee O, Meera P, Ghosh S et al. Evidence of linkage and association on 18p11.2 for psychosis. *Am. J. Med. Genet. B Neuropsychiatr. Genet.* 2006; 141B: 868–873.

23. Ram Murthy A, Purushottam M, Kiran Kumar HBG et al. Gender-specific association of TSNA4/DSC1 locus for schizophrenia and bipolar affective disorder in south Indian population. *J. Hum. Genet.* 2012; 57: 523–530.

24. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. *Bioinformatics* 2009; 25: 1754–1760.

25. Koboldt DC, Larson DE, Wilson RK. Using VarScan 2 for germline variant calling and somatic mutation detection. *In*: Bateman A, Pearson WR, Stein LD, Stormo GD, Yates JR (eds). *Current Protocols in Bioinformatics*. John Wiley & Sons, Hoboken, NJ, 2013; 15.4.1–15.4.17.

26. Wang K, Li M, Hakonarson H. ANNOVAR: Functional annotation of variants from high-throughput sequencing data. *Nucleic Acids Res.* 2010; 38: e164.

27. Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. *Nat. Protoc.* 2009; 4: 1073–1081.

28. Adzhubei IA, Schmidt S, Peshkin L et al. A method and server for predicting damaging missense mutations. *Nat. Methods* 2010; 7: 248–249.

29. Schwarz JM, Cooper DN, Schuelke M, Seelow D. MutationTaster2: Mutation prediction for the deep-sequencing age. *Nat. Methods* 2014; 11: 361–362.

30. Reva B, Antipin Y, Sander C. Predicting the functional impact of protein mutations: Application to cancer genomics. *Nucleic Acids Res.* 2011; 39: e118–e118.

31. Chun S, Fay JC. Identification of deleterious mutations within three human genomes. *Genome Res.* 2009; 19: 1553–1561.

32. Lek M, Karceski JZ, Minikel EV et al. Analysis of protein-coding genetic variation in 60,706 humans. *Nature* 2016; 536: 285.

33. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. *Nat. Protoc.* 2009; 4: 44–57.

34. Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. *Nucleic Acids Res.* 2009; 37: 1–13.

35. OMIM. *Online Mendelian Inheritance in Man*. McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, 2018.

36. Landrum MJ, Lee JM, Benson M et al. ClinVar: Improving access to variant interpretations and supporting evidence. *Nucleic Acids Res.* 2018; 46: D1062–D1067.

37. Ayyoub MA, Angelicheva D, Vile D et al. Deleterious GRM1 mutations in schizophrenia. *PLoS ONE* 2012; 7: e32849.

38. van den Berg DLC, Azzarelli R, Oishi K et al. Nippl interacts with Zip609 and the integrator complex to regulate cortical neuron migration. *Neuron* 2017; 93: 348–361.

39. Keote B, Leicht G, Giebling L et al. A genome-wide association study of early gamma-band response in a schizophrenia case–control sample. *World J. Biol. Psychiatry*. 2017. https://doi.org/10.1080/15629757.2017.1366054

40. Lee K-H, Lee H, Yang CH et al. Bidirectional signaling of neuregulin-2 mediates formation of GABAergic synapses and maturation of glutamatergic synapses in newborn granule cells of postnatal hippocampus. *J. Neurosci.* 2015; 35: 16479–16493.

41. Yan L, Shamir A, Skirzewski M et al. Neuregulin-2 ablation results in dopamine dysregulation and severe behavioral phenotypes relevant to psychiatric disorders. *Mol. Psychiatry* 2018; 23: 1233–1243.

42. de Jong S, Newhouse SJ, Patel H et al. Immune signatures and disorder-specific patterns in a cross-disorder gene expression analysis. *Br. J. Psychiatry* 2016; 209: 202–208.

43. Inkster B, Rao AW, Ridler K et al. Genetic variation in GOLM1 and prefrontal cortical volume in Alzheimer's disease. *Neurolig. Aging* 2012; 33: 457–465.
© 2018 Institute for Stem Cell Biology and Regenerative Medicine (InStem)
Psychiatry and Clinical Neurosciences published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Psychiatry and Neurology

19

Psychiatry and Clinical Neurosciences 73: 11–19, 2019

Supporting information

Additional Supporting Information may be found in the online version of this article at the publisher’s web-site:

Appendix S1. Supplemental material for Mendelian disease genes in familial SMI

Appendix S2. Microsoft Excel file containing supplementary tables