Noise in the Clouds: Influence of Network Performance Variability on Application Scalability

* Now at Sapienza University of Rome, Italy
HPC in the cloud

Provider	CPU	Net. Bw.	Network	Transp. Prot.
AWS	2x18C Intel Xeon Platinum @ 3GHz	100 Gb/s	Fat Tree	SRD
Azure	2x22C Intel Xeon Platinum @ 2.7GHz	100-200 Gb/s	Non-blocking Fat Tree	InfiniBand
GCP	2x15C Intel Cascade Lake @ 3.1GHz	100 Gb/s	3:1 blocking Fat Tree	TCP/IP + Intel QuickData
Oracle	2x18C Intel Xeon Gold @ 3GHz	100 Gb/s	Non-blocking Fat Tree	RoCEv2
Daint	2x18C Intel Xeon E5-2695 v4 @2.1GHz	82 Gb/s	Cray Aries (Dragonfly)	FMA
Alps	2x64C AMD EPYC 7742 @ 2.25GHz	100 Gb/s	HPE Cray Slingshot (Dragonfly)	RoCEv2
DEEP-EST	2x12C Intel Xeon Gold @3.2GHz	100 Gb/s	Mellanox Infiniband EDR (Fat Tree)	InfiniBand
Target

Compare **network performance** of cloud HPC vs on-premise HPC

Analyze **network noise** of cloud HPC vs on-premise HPC and its impact **at scale**
Network Performance
Bandwidth and latency
HPC vs. normal instances

![Bandwidth Comparison Graphs]

- **AWS**: Normal, HPC, HPC (Metal), HPC (200 Gb/s)
- **Azure**: Normal, HPC, HPC (Metal), HPC (200 Gb/s)
- **GCP**: Normal, HPC, HPC (Metal), HPC (200 Gb/s)
- **Oracle**: Normal, HPC, HPC (Metal), HPC (200 Gb/s)

Message Size: 1B, 256B, 64KiB, 16MiB

Bandwidth (Gb/s): 0, 20, 40, 60, 80, 100, 120, 140, 160, 180, 200
Network Noise
Bandwidth noise

Cloud systems are more affected by bandwidth noise than premise systems.
Noise impact at scale
Noise

\[H_0 \xrightarrow{\text{COMP}} \xrightarrow{\text{COMP}} \xrightarrow{\text{COMP}} \]

\[H_1 \xrightarrow{\text{COMP}} \xrightarrow{\text{COMP}} \xrightarrow{\text{COMP}} \]

\[H_2 \xrightarrow{\text{COMP}} \xrightarrow{\text{COMP}} \xrightarrow{\text{COMP}} \]

\[H_3 \xrightarrow{\text{COMP}} \xrightarrow{\text{COMP}} \xrightarrow{\text{COMP}} \]
Methodology

Get network performance measurements... ...and OS and network noise measurements...

...and simulate performance at scale
Simulation validation (16 nodes)

[Bar charts showing comparison between simulated and real times for Daint, Alps, DEEP-EST, Azure (200 Gb/s), AWS, GCP, and Oracle in Dissemination and Ring scenarios.]
512 MiB Ring collective simulation

Bandwidth noise can increase the runtime by 50% even when running at small scale (4 nodes)
Impact of bandwidth noise on monetary cost

Dummy application: 8192x8192 matrix multiplication followed by 512MiB allreduce (20% of time spent in communication)

Network noise impacts the monetary cost, even for applications not dominated by communication.

AWS HPC (Metal)	Azure HPC	
OS Noise	Network Noise	OS+Network Noise

GCP HPC	Oracle HPC (Metal)	Daint HPC (Metal)
Nodes	Cost Increase (%)	Nodes
4	0	4
16	0	16
64	20	64
256	20	256
1024	10	1024

Network noise impacts the monetary cost, even for applications not dominated by communication.
Conclusions

More of SPCL’s research:

- [youtube.com/@spcl](https://www.youtube.com/c/SPCL) - 150+ Talks
- twitter.com/spcl_eth - 1.2K+ Followers
- github.com/spcl - 2K+ Stars

... or spcl.ethz.ch

https://github.com/DanieleDeSensi/cloud_noise
https://github.com/DanieleDeSensi/cloud_noise_data
