Pharmacokinetic drug-drug interactions in the intensive care unit — single-centre experience and literature review

Piotr Łój1, Aleksandra Olender2, Weronika Ślęzak2, Łukasz J. Krzych1

1Katedra i Klinika Anestezjologii i Intensywnej Terapii, Śląski Uniwersytet Medyczny w Katowicach
2Studenckie Koło Naukowe, Oddział Kliniczny Kardioanestezjologii i Intensywnej Terapii, Śląski Uniwersytet Medyczny w Katowicach, Śląskie Centrum Chorób Serca w Zabrzu

Abstract

Background: Drug-drug interactions constitute a serious health hazard in everyday clinical practice in critically ill patients. Drug-drug interactions may be pharmacokinetic or pharmacodynamic in their nature. We aimed to investigate the quantity and quality of possible drug-drug interactions, and their possible side effects in intensive care unit patients in a 12-month period.

Methods: This retrospective study covered data on pharmacological treatment of 43 consecutive patients (11 females, 32 males) aged 62 ± 15 years, hospitalized between January 2015 and February 2016. Pharmacokinetic DDIs were identified and graded. Only severe and clinically important drug-drug interactions were subjected for further analysis.

Results: Median baseline SAPS III was 53 (IQR 38–67) points. Median intensive care unit stay was 12 (6–25) days. Subjects were treated with a median number of 22 (12–27) drugs. We identified 27 (16–41) possible drug-drug interactions per patient, including 3 (1–7) drug-drug interactions of a severe grade. The total number of severe and clinically important drug-drug interactions was 253 of which 227 were analyzed in detail. No possible side-effects of drug-drug interactions were identified.

Conclusions: DDIs as well as their side-effects are challenging regarding their precise evaluation, especially due to the need for multidrug treatment in critically ill patients. Concentration-controlled therapy should be recommended, especially for treatment with vancomycin, digoxin and valproate. Pantoprazole should be a proton pump-inhibitor of choice. Drug dose modification is necessary in combined treatment with fluconazole and amiodarone or rifampicin. From a clinical point of view, the most important impact of drug-drug interactions is on antibiotic treatment effectiveness, especially with meropenem when valproate is also prescribed.

Key words: drug-drug interactions; pharmacokinetics; intensive care unit

Słowa kluczowe: reakcje międzylekowe; farmakokinetyka; oddział intensywnej terapii
Działania niepożądane leków są istotnym problemem zarówno ze względu na problem medycznych, jak i ekonomicznych. Działaniami niepożdanymi, które w dużej mierze można przewidzieć i im przeciwdziałać są interakcje międzyleko- wie (DDI, drug-drug interactions) [1]. Mogą mieć charakter farmakokinetyczny lub farmakodynamiczny.

Interakcja farmakokinetyczna pojawia się, gdy zmia- na dotyczy procesów wchłaniania, transportu, dystry- bucji, wzięcia z białkami, transformacji lub wydalania. Można ją określić ilościowo. Interakcje farmakokinetycz- ne najczęściej występują poprzez działanie na enzymy mikrosomalne wątroby (izoenzymy cytochromu P-450, CYP450). Inne mechanizmy to: działanie na reakcje 2-fazy metabolizmu wątrobowego (np. sprzęganie z kwasem glutaronowym), wpływ na P glikoproteinę albo poprzez wypieranie leków z wiazaną z białkami osocha (np. albu- minami).

Farmakoterapia na oddziele intensywnej terapii (OIT) ma charakter wielokierunkowy, co zwykle wiąże się z koniecz- noścą podawania wielu leków [2]. Wraz ze zwiększającym liczby stosowanych leków zwiększa się ryzyko wystąpienia potencjalnych DDI [3].

Celem pracy była analiza występowania DDI o cha- rakterze farmakokinetycznym, ich ciężkości oraz poten- cjalnych konsekwencji klinicznych u krytycznie chorych leczonych na OIT.

METODYKA

Retrospektywnej analizie poddano dokumentację me- dyczną 43 kolejnych chorych hospitalizowanych na jednym OIT w okresie 1.2015–2.2016. Interakcje definiowano i klasy- fikowano zgodnie wytycznymi Stockley’s Drug Interactions [4]. Pod względem ciężkości DDI podzielono na interakcje stop- nia:

— ciężkiego — o dużej istotności klinicznej: leki należy sto- sować bardzo ostrożnie lub unikać połączenia, a ryzyko stosowania może być większe niż korzyści, interakcja może zagrażać zdrowiu i życiu lub wymagać zdecydo- wanych interwencji klinicznych;

— średniego — o umiarkowanej istotności klinicznej: leki należy stosować ostrożnie, konieczne może być monitorowanie stężenia lub efektu działania leku, a także modyfikacja dawki;

— lekkiego — o małej istotności klinicznej: interakcja może być istotna przy nagromadzeniu innych interakcji lub chorób współistniejących lub występuje rzadko.

Szczegółowej analizie poddano jedynie średnie i ciężkie potencjalne DDI (pDDI), po odjęciu interakcji świadomych (np. addycja efektu hipotensyjnego tnayozydów i inhibitorów konwertazy angiotensyny), oczywistych (wynikających z mechanizmu działania leku) oraz niwelowanych standardowym monitorowaniem pacjenta na OIT.

Wykorzystano metody statystyki opisowej. Zmienne ilo- ściowe przedstawiono w postaci medianny i rozpiętości kwartylowego (IQR, interquartile range). Zmienne jakościowe przedstawiono w postaci wartości bezwzględnej i odsetka.

wyniki i dyskusja

CHARAKTERYSTYKA BADANYCH I WYSTĘPOWANIE DDI

Badaną grupę stanowiło 11 kobiet i 32 mężczyzn w wie- ku 62 ± 15 (mediana 62) lat. Wyjściowa punktacja w skali SAPS III wynosiła 53 (IQ 38–67). Mediana czasu leczenia na OIT wynosiła 12 (IQR 6–25) dni.

Podczas leczenia pacjenci otrzymywali 22 (IQR 17–27) różne leki, z czego 16 (IQR 13–19) równocześnie. Ogółem odnotowano możliwość wystąpienia 27 (IQR 16–41) DDI w każdym pacjenta w trakcie całego pobytu, w tym 4 (IQR 2–6) DDI stopnia lekkiego, 20 (IQR 10–31) średniego oraz 3 (IQR 1–7) DDI stopnia ciężkiego. Po odjęciu interakcji świadomych, oczywistych oraz niwelowanych standardowym monitorowaniem pacjenta na OIT, pozostało 11 (IQR 7–16) interakcji przypadających na pacjenta. Ostatnie zaobser- wowało 1442 pDDI, z czego 253 miało charakter farmako- kinetyczny. Dwieście dwadzieścia siedem z nich poddano szczegółowej analizie.

AMIODARON

Lekiem, który najczęściej wywoływał pDDI (n = 49) był amiodaron. Zwykle dotyczyło to możliwości zwiększenia stężenia digoksyny (n = 9), fentanylu (n = 7) i teofiliny (n = 4). W pojedynczych przypadkach dochodziło do interakcji z lizdom, statyną, loperamidem, lewo-tyroksyną, budezo- nimidem, sildenafilem i lekanidypiną. Możliwość zmniejszenia stężenia klopidogrelu wystąpiła w 6 przypadkach.

W 4 przypadkach zaobserwowano potencjalne zwięko- szenie połąca pod krzywą (AUC, area under the curve) amio- daronu przez flukonazol. Interakcja ta jest tym istotniejsza, że oba leki mogą wydłużyć odstęp QT (jest to zatem przy- kład interakcji zarówno farmakokinetycznej, jak i farma- kodynamicznej). W literaturze lepiej opisane są przypadki zwiększenia stężenia amiodaronu przez itrakonazol, który silniej hamuje enzymy cytochromu P450, zatem prawdopo- dobieństwo wystąpienia omawianej interakcji jest większe, gdy flukonazol podaje się w dawce ponad 200 mg doba-1 [5]. Przy tych dawkach opisywano przypadki naglej śmierci sercowej [6]. Warto jednak zaznaczyć, że coraz liczniejsze doniesienia podkreślają pozytywny efekt interakcji powyż- szych leków, zwiększającej aktywność flukonazolu na opor- ne szczepy grzybów w wyniku hamowania przez amiodaron aktywnego wyrzutu antybiotyku, tak zwanej „efflux pomp”, przez komórki grzybów [7, 8].

W pojedynczych przypadkach amiodaron podawano z lidokainą. Może się to wiązać ze zwiększeniem stężenia lidokainy, wskutek zmniejszenia klirensu o około 20%, co
dzieje się w następstwie zahamowania przez amiodaron metabolizmu lidokainy, zachodzącego przy udziale cytochromu CYP3A4. W piśmiennictwie opisano pojedyncze przypadki nasilenia hamowania czynności węzła zatokowo-przedsiomkowego [9, 10].

Interakcja amiodaronu z loperamidem nie wydaje się szczególnie istotna w warunkach OIT. Amiodaron jako inhibitor P-glikoproteiny i CYP3A4 może zwiększać stężenie loperamidu we krwi i mózgu. Może to mieć znaczenie przy kumulacji stosowania innych opioidów lub przy stosowaniu dużych dawek loperamidu (np. przy przypadkowym lub świadomym przedawkowaniu) [11].

Jako że sildenafil jest metabolizowany przez CYP3A4, jego stężenie przy podaniu razem z amiodaronem może ulec zwiększeniu. To z kolei sprzyja występowaniu działań niepożądanych sildenafilu z potencjalną koniecznością redukcji jego dawki [12].

Budezonid podlega efektowi pierwszego przesjęcia i jest metabolizowany przez CYP3A4. Mimo że amiodaron nie jest silnym inhibitem tego enzymu, zdarzyły się przypadki zespołu Cushinga w wyniku jednoczasowej podaży tych dwóch leków [13].

Działanie amiodaronu na lewotyroksynę jest dwokątne. Z jednej strony hamuje on konwersję tyroksyny do trijodotironiny i wychwyt zwrotny obu cząstek. Te działania charakteryzuje się niewielką istotnością kliniczną, zgłaszano jednak przypadki odwrócenia sedacji diazepamem po podaniu aminofiliny [25], a także zniesienia efektu działania midazolamu po podaniu teofiliny [26].

Kwas walproinowy może zwiększać stężenie diazepamu nawet dwukrotnie [27, 28]. W przypadku jednoczesnego stosowania z klonazepamem jego klirens może się zwiększyć nawet o 8%, przy czym nie miało to istotnego wpływu na efekt terapeutyczny [30]. Inne benzodiazepeyny nie wykazują reakcji z kwasem walproinowym, taka zamiana leków może być zatem zasadna, przy zachowaniu skuteczności klinicznej.

DIGOKSYNA

Do farmakokinetycznych pDDI wpływających na stężenie digoksyny we krwi dochodziło w 38 przypadkach, najczęściej w korelacji z amiodaronem (n = 9), omeprazolem (n = 8), BDZ (n = 6), a także w pojedynczych przypadkach z trametoprimem, spirinolakatatem, aspiryną i kaptoprilerem. Do zmniejszenia stężenia digoksyny mogło dojść podczas jednoczesnego stosowania z metopolprapramidem (n = 5), a także salbutamolem i sulfasalazyną.

Zwiększenie stężenia digoksyny jest zjawiskiem wyjątkowo niebezpiecznym. Digoksyna to lek o wąskim indeksie terapeutycznym. Stężenie terapeutyczne według charakterystyki produktu leczniczego to 1–2 ng ml⁻¹, jednak według ustaleń Digitalis Investigation Group jest mniejsze: od 0,5 ng ml⁻¹ (0,64 nanomol l⁻¹) do 1,0 ng ml⁻¹ (1,28 nanomol l⁻¹). Przy stężeniu leku >3 ng ml⁻¹ prawie zawsze występują objawy zatrucia. Czynnikami ryzyka zatrucia digoksyną są zaawansowany wiek, hipokaliemia, hipomagnezemia,
hiperkalcaemia, zasadowica, niewydolność naczyń wieńcowych, zapalenie mięśnia sercowego, hipokacja, serce plucne, zmniejszenie masy mięśni szkieletowych (np. w przebiegu kachekcji), niewydolność tarczycy czy niewydolność nerek [31, 32]. Chorych leczeni na OIT są zatem szczególnie podatni na wystąpienie toksyczności leku. Dlatego stężenie digoksyny jest rutynowo kontrolowane u chorych w SCCS.

Podanie pacjentowi otrzymującemu digoksynę amiodarona może się wiązać ze zwiększeniem stężenia digoksyny od 75% do 158% poprzez zahamowanie wydalania digoksyny i zmniejszenie objętości dystrybucji [33]. Prawdopodobną przyczyną jest hamowanie czynności P-glikoproteiny przez amiodaron [34]. Podczas stosowania amiodaronu dawka digoksyny powinna zostać zatem zredukowana o 30–50% [35]. Ewentualne dalsze zmniejszanie dawek jest możliwe dopiero po kontroli stężenia digoksyny we krwi. Interakcja ta jest jedną z najlepiej poznanych, pojawia się w większości pacjentów, a efekty widać od kilku dni do około 4 tygodni od łącznego podania leków [36].

Podanie łącznie z digoksyną inhibitory pompy proto-nowej, zwłaszcza omeprazolu, wiąże się ze zwiększeniem stężenia glikozydu naparstnicy o około 10–30% [37], choć opublikowano przypadki ponad 3-krotnego wzrostu [38]. Prawdopodobnie to wynik hamowania P-glikoproteiny [39]. Efekt nie jest równy dla wszystkich IPP i wydaje się najmniej wyraźny dla pantoprazolu [40].

Alprazolam może zwiększyć stężenie digoksyny nawet 3-krotnie [41]. Wśród innych BDZ tylko stosowania diaze- pu wiązało się z umiarkowanym zwiększaniem się stężenia digoksyny [42].

Wykazano zwiększenie stężenia digoksyny o 22–34% podczas jednoczesnego stosowania z trimetoprimem, jed-nakże tylko u starszych pacjentów [43].

Łączne stosowanie digoksyny ze spironolaktonem może się wiązać z redukcją klirensu o około 25%, i zwiększeniem stężenia o 20%, choć w jednym przypadku odnotowano nawet 4-krotne zwiększenie [44]. Dodatkowo należy zwrócić uwagę na fakt, iż spironolakton i jego metabolit kanrenon, mają fałszywie zaniżać wyniki oznaczeń stężenia digoksyny [44]. Dawkę leku należy wyliczać na podstawie beztluszczowej masy ciała. Monitorowanie stężenia leku we krwi jest zalecane w każdym przypadku, próbkę po podaniu obu leków [52]. Przy przyjmowaniu doustnej formy digoksyny jednocześnie z sulfasalazyną stężenie tej pierwszej może zwiększyć się nawet o 50% w zależności od dawki sulfasalazyny [53]. Przy łącznym stosowaniu z salbutamolem, interakcja jest potwierdzona tylko wtedy, gdy betamimetyk stosuje się doustnie w dawce 3–4 mg. W tych przypadkach prawdopodobnie zwiększeniu ulega przenika-nie digoksyny do mięśni szkieletowych [54]. Poprzez wpływ na stężenie potasu we krwi, salbutamol może jednocześnie indukować toksyczność digoksyny.

TEOFILINA

Na stężenie teofiliny mogły wpływać amiodaron (n = 4), flukonazol (n = 3), pentoksyfina (n = 3), ciprofoksacyna (n = 3), a także w pojedynczych przypadkach karvedilol, metoprolol, werapamil, furosemid i omperazol.

Teofilina, podobnie jak digoksyna, jest lekiem o wąskim indeksie terapeutycznym. Zaleca się, aby jej stężenie we krwi wynosiło 10–20 μg ml⁻¹ (56 do 112 μmol l⁻¹), powyżej tej wartości mogą się pojawić objawy toksyczności (wymioty, drgawki, śpiączka, częstoskurcz, hipotensja, hi-pokaliaemia). Dawkę leku należy wyciąć na podstawie beztluszczowej masy ciała. Monitorowanie stężenia leku we krwi jest zalecane w każdym przypadku, próbkę pobiera się przed każdym podaniem podtrzymującej dawki leku (po 12 h), co jednak nie było możliwe na OIT autorów niniejszej pracy. Należy pamiętać, że kofeina i paracetamol mogą fałszywie zaniżać wyniki oznaczeń wykonanych metodami radioimmunologicznymi i spektrofotometrycznymi [55]. O ile wykazywanej grupie badanej u 10 na 11 pacjentów, u których stosowano teofilinę, używano równie paracetamolu. Interakcja z amiodaronem miała miejsce w jednym przypadku i była wyraźna podwojeniem stężenia teofiliny po podaniu amiodaronu (z 16,8 mg l⁻¹ do 35 mg l⁻¹). Zjawisko to

W analizowanym materiale na 10 chorych stosujących digoksynę każdy przyjmował przynajmniej 2 leki mogące powodować wyżej wskazane interakcje, u pięciu chorych były to 3 leki, u dwóch — 4 leki, a u kolejnych dwóch pacjentów aż 6 preparatów. Przy takich połączeniach nawet z pozoru mniej istotne interakcje nabierają innego znaczenia i prognozowanie stężenia digoksyny bez jego monitorowa- nia staje się bardzo trudne. Połączenia mogące zmniejszać stężenie digoksyny we krwi występowały rzadziej, miały też mniejsze znaczenie kliniczne. Dla przykładu, stosowanie metoklopramidu może zmniejszyć stężenie digoksyny we krwi o 27%, jednak tylko gdy jest ona podawana doustnie [51]. Opiłano przypadek niejaznej interakcji farmakodynamicznej — wywołania u pacjenta bradykardii i asystolii podczas jednoczesnego stosowania tych leków. Na uwagę zasługuje fakt, że stężenie digoksyny nie przekraczało 1 ng ml⁻¹, a objawy ustąpiły po odstawieniu obu leków [52]. Przy przyjmowaniu doustnej formy digoksyny jednocześnie z sulfasalazyną stężenie tej pierwszej może zmniejszyć się nawet o 50% w zależności od dawki sulfasalazyny [53]. Przy łącznym stosowaniu z salbutamolem, interakcja jest potwierdzona tylko wtedy, gdy betamimetyk stosuje się doustnie w dawce 3–4 mg. W tych przypadkach prawdopodobnie zwiększeniu ulega przenika-nie digoksyny do mięśni szkieletowych [54]. Poprzez wpływ na stężenie potasu we krwi, salbutamol może jednocześnie indukować toksyczność digoksyny.

TEOFILINA

Na stężenie teofiliny mogły wpływać amiodaron (n = 4), flukonazol (n = 3), pentoksyfina (n = 3), ciprofoksacyna (n = 3), a także w pojedynczych przypadkach karvedilol, metoprolol, werapamil, furosemid i omperazol.

Teofilina, podobnie jak digoksyna, jest lekiem o wąskim indeksie terapeutycznym. Zaleca się, aby jej stężenie we krwi wynosiło 10–20 μg ml⁻¹ (56 do 112 μmol l⁻¹), powyżej tej wartości mogą się pojawić objawy toksyczności (wymioty, drgawki, śpiączka, częstoskurcz, hipotensja, hipokaliaemia). Dawkę leku należy wyciąć na podstawie beztluszczowej masy ciała. Monitorowanie stężenia leku we krwi jest zalecane w każdym przypadku, próbkę pobiera się przed każdym podaniem podtrzymującej dawki leku (po 12 h), co jednak nie było możliwe na OIT autorów niniejszej pracy. Należy pamiętać, że kofeina i paracetamol mogą fałszywie zaniżać wyniki oznaczeń wykonanych metodami radioimmunologicznymi i spektrofotometrycznymi [55]. W opisywanej grupie badanej u 10 na 11 pacjentów, u których stosowano teofilinę, używano równie paracetamolu. Interakcja z amiodaronem miała miejsce w jednym przypadku i była wyraźna podwojeniem stężenia teofiliny po podaniu amiodaronu (z 16,8 mg l⁻¹ do 35 mg l⁻¹). Zjawisko to
możło wystąpić w związku z wpływem amiodaronu na funkcjonowanie tarczycy [56]. Ponadto amiodaron to inhibitor CYP1A2, którego substratem jest teofilina [57]. Stosowanie flukonazolu może się natomiast wiązać ze zmniejszonym klirensem teofiliny o około 13–16% [58, 59]. W przypadku stosowania teofiliny z pentoksylfiną w jednym badaniu stwierdzono zwiększenie stężenia teofiliny średnio o 30% (z rozrzutem od zwiększenia się stężenia o 95% do jego zmniejszenia o 13%) [60]. Wpływ ciprofloxacyny na stężenie teofiliny jest o wiele lepiej poznany i bardziej istotny, powoduje mianowicie zwiększenie stężenia teofiliny od 17 do 113% [61, 62]. Mechanizm tej interakcji polega na silnym hamowaniu CYP1A2 metabolizującego teofilinę [53]. O wadze problemu świadczy fakt, że w 1991 roku do Amerykańskiej Agencji Leków i Żywności (FDA, Food and Drug Administration) zgłoszono 39 raportów o interakcji tych leków, z czego w trzech przypadkach wiązało się to ze skutkiem śmiertelnym [63]. W tym wypadku bezpieczną alternatywą jest zastosowanie lewofloksacyny, która nie ma skutków śmiertelnych [64].

Na kinetykę teofiliny wpływa funkcja tarczycy — przy niedoczynności można się spodziewać kumulacji leku, zaś wadę temu farmakokinetycznej tej grupy leków. Innymi substratami CYP3A4 są dobrze tolerowane poza rozuwastatyną, karbamazepina, glikokortykosteroidy (amlodypina, diltiazem, nifedypina, wafener, lerkarnidypina, statyny (poza rozustawastyną), karbamapenia, glikokortykosteryoidy (deksametazon), fentanyl, haloperidol, lidokaina, ondansetron, propranolol, kwetiapina, sildenafil czy zolpidem [80].

Poprzez wpływ na CYP2C19 następuje znaczące zwiększenie stężenia omeprazolu (zakres mieści 2–6-krotny) [81]. Wpływ ten jest mniejszy, ale również istotny dla pantopra
dol, lerkarnidypina, statyny (poza rozustawastyną), karbamapenia, glikokortykosteryoidy (deksametazon), fentanyl, haloperidol, lidokaina, ondansebron, propranolol, kwetiapina, sildenafil czy zolpidem [80].

Poprzez wpływ na CYP2C19 następuje znaczące zwiększenie stężenia omeprazolu (zakres mieści 2–6-krotny) [81]. Wpływ ten jest mniejszy, ale również istotny dla pantopra
dol, lerkarnidypina, statyny (poza rozustawastyną), karbamapenia, glikokortykosteryoidy (deksametazon), fentanyl, haloperidol, lidokaina, ondansebron, propranolol, kwetiapina, sildenafil czy zolpidem [80].

Poprzez wpływ na CYP2C19 następuje znaczące zwiększenie stężenia omeprazolu (zakres mieści 2–6-krotny) [81]. Wpływ ten jest mniejszy, ale również istotny dla pantopra
dol, lerkarnidypina, statyny (poza rozustawastyną), karbamapenia, glikokortykosteryoidy (deksametazon), fentanyl, haloperidol, lidokaina, ondansebron, propranolol, kwetiapina, sildenafil czy zolpidem [80].

Poprzez wpływ na CYP2C19 następuje znaczące zwiększenie stężenia omeprazolu (zakres mieści 2–6-krotny) [81]. Wpływ ten jest mniejszy, ale również istotny dla pantopra
dol, lerkarnidypina, statyny (poza rozustawastyną), karbamapenia, glikokortykosteryoidy (deksametazon), fentanyl, haloperidol, lidokaina, ondansebron, propranolol, kwetiapina, sildenafil czy zolpidem [80].

Poprzez wpływ na CYP2C19 następuje znaczące zwiększenie stężenia omeprazolu (zakres mieści 2–6-krotny) [81]. Wpływ ten jest mniejszy, ale również istotny dla pantopra
dol, lerkarnidypina, statyny (poza rozustawastyną), karbamapenia, glikokortykosteryoidy (deksametazon), fentanyl, haloperidol, lidokaina, ondansebron, propranolol, kwetiapina, sildenafil czy zolpidem [80].

Poprzez wpływ na CYP2C19 następuje znaczące zwiększenie stężenia omeprazolu (zakres mieści 2–6-krotny) [81]. Wpływ ten jest mniejszy, ale również istotny dla pantopra
dol, lerkarnidypina, statyny (poza rozustawastyną), karbamapenia, glikokortykosteryoidy (deksametazon), fentanyl, haloperidol, lidokaina, ondansebron, propranolol, kwetiapina, sildenafil czy zolpidem [80].
Flukonazol może zmniejszać klirens fentanylu o 16% [83]. Opisano przypadek zwiększenia stężenia fentanylu, stosowanego jako system transdermalny, do wartości toksycznej z towarzyszącym dużym stężeniem flukonazolu, z opisanym skutkiem śmiertelnym [84]. W przypadku amiodaronu dodatkowo zachodzi jeszcze reakcja farmakodynamiczna: nasilenie kardiotoksyczności (bradykardia, hipotensja, depresja mięśnia sercowego) [85].

Ponieważ glukokortykosteroidy indukują CYP3A4, stężenie fentanylu może ulec zmniejszeniu podczas ich jednoczesnego stosowania [86].

CIPROFLOKSACYNA

Najczęstszymi pDDI ciprofloksacyny było potencjalne zwiększenie stężenia teofiliny (n = 3), zopiklonu (n = 2), pentoksyfiliny (n = 1) i simwiazwiększenie stężenia teofiliny (n = 3), zopiklonu (n = 2), [93, 94].

Pacjentowi przyjmującemu statynę podano ciprofloksacynę, dawki pentoksyfiliny o połowę [92], dlatego sugeruje się w takiej sytuacji redukcję o 60%, a AUC o 15%, przy jednoczesnym stosowaniu z ciprofloksacyną.

Ponieważ w wyniku interakcji dochodziło do napadów drgawkowych, równoczesne stosowanie karbapenemów jest przeciwskazane. Trzeba również pamiętać o tym, że stężenie walproinowego jest drastycznie zwiększyć po odstawieniu karbapenemu [97]. Jeśli nie ma możliwości uniknięcia DDI, należy monitorować stężenie kwasu walproinowego we krwi, co brano pod uwagę na OIT autorów niniejszej pracy.

Kwas acetylosalicylowy może wypierać kwas walproinowy z połączeń z białkami krwi, jednak rzyko wystąpienia DDI jest znaczne tylko przy podaży dawek kwasu acetylosalicylowego większych niż stosowane w leczeniu antyagregacyjnym [98].

Karty charakterystyki produktu leczniczego niektórych zagranicznych producentów ostrzegają, że kwas walproinowy może zwiększać stężenie propofolu we krwi poprzez zahamowanie glukuronizacji w wątrobie [99]. Wyniki badania wydają się jednak przeczyć temu zjawisku [100].

INHIBITORY POMPY PROTONOWEJ

Najistotniejszą pDDI tej grupy leków jest zmniejszenie stężenia klopidogrelu — w analizowanym materiale dotykało to 4 przypadków. Omeprazol może zmniejszać AUC nawet o 45% a Cmax o 49% [101]. Najprostszym sposobem przeciwdziałania tej interakcji jest odstawienie omeprazolu lub zmiana leku na pantoprazol, zmniejszający AUC klopidogreлу o 14%, [101] lub rantidydynę.

Istnieją doniesienia o interakcjach o małej istotności w odniesieniu do połączenia omeprazolu z warfaryną [102], kwasem acetylosalicylowym [103] czy atomwastatyną [104]. W tych przypadkach interakcja może się okazać istotna przy dużym stężeniu omeprazolu we krwi, czyli przy stosowaniu dużych dawek (np. w leczeniu krwawienia z górnego odcinka przewodu pokarmowego), gdy pacjent słabo metabolizuje CYP2C19 lub podczas stosowania flukonazolu.

W każdym z powyższych przypadków bezpieczną alternatywą jest pantoprazol.

WANKOMYCyna

Możliwość DDI wankomycyny odnotowano w 6 przypadkach i dotyczyło to 4 przypadków. Omeprazol może zmniejszać AUC nawet o 45% a Cmax o 49% [101]. Najprostszym sposobem przeciwdziałania tej interakcji jest odstawienie omeprazolu lub zmiana leku na pantoprazol, zmniejszający AUC klopidogrełu o 14%, [101] lub rantidydynę.

Istnieją doniesienia o interakcjach o małej istotności w odniesieniu do połączenia omeprazolu z warfaryną [102], kwasem acetylosalicylowym [103] czy atomwastatyną [104]. W tych przypadkach interakcja może się okazać istotna przy dużym stężeniu omeprazolu we krwi, czyli przy stosowaniu dużych dawek (np. w leczeniu krwawienia z górnego odcinka przewodu pokarmowego), gdy pacjent słabo metabolizuje CYP2C19 lub podczas stosowania flukonazolu. W każdym z powyższych przypadków bezpieczną alternatywą jest pantoprazol.

KWAS WALPROINOWY

Najistotniejszą i najlepiej przebadaną pDDI kwasu walproinowego jest reakcja z karbapenemami. Redukcja stężenia sięgała nawet 96% i często niemożliwe było osiągnięcie stężenia terapeutycznego kwasu walproinowego [95, 96]. Ponieważ w wyniku interakcji dochodziło do napadów drgawkowych, równoczesne stosowanie karbapenemów jest przeciwskazane. Trzeba również pamiętać o tym, że stężenie walproinianu może się drastycznie zwiększyć po odstawieniu karbapenemu [97]. Jeśli nie ma możliwości uniknięcia DDI, należy monitorować stężenie kwasu walproinowego we krwi, co brano pod uwagę na OIT autorów niniejszej pracy.

Kwas acetylosalicylowy może wypierać kwas walproinowy z połączeń z białkami krwi, jednak rzyko wystąpienia DDI jest znaczne tylko przy podaży dawek kwasu acetylosalicylowego większych niż stosowane w leczeniu antyagregacyjnym [98].

Karty charakterystyki produktu leczniczego niektórych zagranicznych producentów ostrzegają, że kwas walproinowy może zwiększać stężenie propofolu we krwi poprzez zahamowanie glukuronizacji w wątrobie [99]. Wyniki badania wydają się jednak przeczyć temu zjawisku [100].

INHIBITORY POMPY PROTONOWEJ

Najistotniejszą pDDI tej grupy leków jest zmniejszenie stężenia klopidogrelu — w analizowanym materiale dotykało to 4 przypadków. Omeprazol może zmniejszać AUC nawet o 45% a Cmax o 49% [101]. Najprostszym sposobem przeciwdziałania tej interakcji jest odstawienie omeprazolu lub zmiana leku na pantoprazol, zmniejszający AUC klopidogrełu o 14%, [101] lub rantidydynę.

Istnieją doniesienia o interakcjach o małej istotności w odniesieniu do połączenia omeprazolu z warfaryną [102], kwasem acetylosalicylowym [103] czy atomwastatyną [104]. W tych przypadkach interakcja może się okazać istotna przy dużym stężeniu omeprazolu we krwi, czyli przy stosowaniu dużych dawek (np. w leczeniu krwawienia z górnego odcinka przewodu pokarmowego), gdy pacjent słabo metabolizuje CYP2C19 lub podczas stosowania flukonazolu.

W każdym z powyższych przypadków bezpieczną alternatywą jest pantoprazol.

WANKOMYCyna

Możliwość DDI wankomycyny odnotowano w 6 przypadkach i dotyczyło to 4 przypadków. Omeprazol (n = 3) i furosemid (n = 5). W każdym przypadku łącznej podaży podaży glikopeptydu z furosemidem pacjent był leczony dobutaminą lub dopaminą.

Dopamina, dobutamina i furosemid istotnie wpływają na stężenie wankomycyny we krwi. Okazało się, że samo ich
odstawienie (przy niezmienionych pozostałych parametrach farmakokinetycznych) wiązało się ze zwiększeniem stabilnego stężenia wankomycyny z 8,79 mg l\(^{-1}\) do 13,3 mg l\(^{-1}\). Efektem tego była potrzeba redukcji dawki o 4,26 mg kg\(^{-1}\) doba\(^{-1}\). Prawdopodobnie wspomniane leki zwiększają kliens wankomycyny bez żadnego wpływu na stężenie kreatyniny w surowicy [105]. Jedyną możliwą metodą postępowania w przypadku takiego połączenia lekowego jest zatem terapia monitorowana stężeniem wankomycyny we krwi.

RIFAMPCYNYA

Rifampycyna mogła generować pDDI z flukonazolem i amiodaronem u jednego chorego.

Lek jako induktor enzymatyczny zarówno wielu izoform cytochromu P-450, p-kwasnej glikoproteiny, jak i glukoro-

ni zwiększa wankomycynę bez żadnego wpływu na stężenie kreatyniny w surowicy [105]. Jedyną możliwą metodą postępowania w przypadku takiego połączenia lekowego jest zatem terapia monitorowana stężeniem wankomycyny we krwi.

1. **Interakcje międzylekowe u krytycznie chorych stanowią...**

2. **Interakcje międzylekowe można często kontrolować poprzez dobrze prowadzoną terapię monitorowaną stężeniem leku. Dotyczy to szczególnie wankomycyny, digoksyny i kwasu walproinowego. Innym sposobem może być zmiana leku wywołującego pDDI na inny o podobnym działaniu — na przykład omeprazolu pantoprazolem. W niektórych przypadkach konieczna musi być modyfikacja dawki leku, na przykład podczas jednoczesnego stosowania z flukonazolem, amiodaronom czy rifympcyną.

3. **Z klinicznego punktu widzenia możliwość występowa...**

PODZIĘKOWANIA

1. Finansowanie — brak
2. Konflikt interesów. — brak.

Piśmiennictwo:

1. Resi AM, Cassiani SH. Adverse drug events in an intensive care unit of a university hospital. Eur J Clin Pharmacol. 2011; 67(6): 625–632, doi: 10.1007/s00228-010-0987-y, indexed in Pubmed: 21246350.
2. Barasiadis S, Farzanegar B, Aleshahem M. Important drug classes associated with potential drug-drug interactions in critically ill patients: highlights for cardiothoracic intensivists. Ann Intensive Care. 2015; 5(1): 44, doi: 10.1186/s13613-015-0086-4, indexed in Pubmed: 26603290.
3. Steinman MA, Landefeld CS, Rosenthal GE, et al. Polypharmacy and prescribing quality in older people. J Am Geriatr Soc. 2006; 54(10): 1516–1523, doi: 10.1111/j.1532-5415.2006.00889.x, indexed in Pubmed: 17038068.
4. Baxter K, Preston CL. Stockley’s drug interactions. http://www.medicinescomplete.com (1.03.2017).
5. Fabre G, Julian B, Saint-Aubert B, et al. Evidence for CYP3A-mediated N-deethylation of amiodarone in human liver microsomal fractions. Drug Metab Dispos. 1993; 21(6): 978–985, indexed in Pubmed: 7905403.
6. Wang J, Chen Y, Lei W, et al. Sudden cardiac arrest triggered by coadministration of flucytosine and amiodarone. Cardioiology. 2017; 137(2): 92–95, doi: 10.11159/000455825, indexed in Pubmed: 28178705.
7. da Silva CR, de Andrade Neto JB, de Sousa Campos R, et al. Synergistic effects of amiodarone and flucytosine on Candida tropicalis resistant to flucytosine. Antimicrob Agents Chemother. 2013; 57(4): 1691–1700, doi: 10.1128/AAC.00966-12, indexed in Pubmed: 23357774.
8. Knorre DA, Krivonosova TN, Markova OV, et al. Amiodarone inhibits multiple drug resistance in yeast Saccharomyces cerevisiae. Arch Microbiol. 2009; 191(8): 675–679, doi: 10.1007/s00203-009-0493-8, indexed in Pubmed: 19536523.
9. Nettel S, Talajic M, Beaudoin D, et al. Absence of pharmacokinetic interaction between amiodarone and lidocaine. Am J Cardiol. 1994; 73(1): 92–94, indexed in Pubmed: 8279386.
10. Ha HR, Candinas R, Stieger B, et al. Interaction between amiodarone and lidocaine. J Cardiovasc Pharmacol. 1996; 28(4): 533–535, indexed in Pubmed: 8691878.
11. US Food and Drug Administration. FDA warns about serious heart problems with high doses of the antiarheal medicine loperamide (Imodium), including from abuse and misuse. http://www.fda.gov/downloads/Drugs/DrugSafety/UCM505108.pdf (7.06.2016).
12. Hyland R, Roe EG, Jones BC, et al. Identification of the cytochrome P450 enzymes involved in the N-demethylation of sildenafil. Br J Clin Pharmacol. 2001; 51(3): 239–248, indexed in Pubmed: 11298070.
13. Amling MB, Blum AL, Martinek J, et al. Cushing’s syndrome in an 81-year-old patient treated with budesonide and amiodarone. Eur J Gastroenterol Hepatol. 2000; 12(9): 1041–1042, indexed in Pubmed: 11007145.
14. Fitzge J, Dluhy RG. Amiodarone-induced elevation of thyroid stimulating hormone in patients receiving levothyroxine for primary hypothyroidism. Ann Intern Med. 1998; 113(7): 553–555, indexed in Pubmed: 2393210.
15. Charraystanka Produktu Leczniczego Euthyrox N 25 μg.
16. Chouhan UM, Chakrabarti S, Millward LJ. Simvastatin interaction with clarithromycin and amiodarone causing myositis. Ann Pharmacother. 2005; 39(10): 1760–1761, doi: 10.1345/aph.1G195, indexed in Pubmed: 16159992.
66. Smith SR, Wiggins J, Stableforth DE, et al. Effect of nelfinavir on serum theophylline concentrations and asthma control. Thorax. 1987; 42(10): 794–796, indexed in Pubmed: 3231539.

67. Harros CD. Theophylline toxicity and nelfinavir. Ann Intern Med. 1987; 106(3): 480, indexed in Pubmed: 3813254.

68. Adebayo GI, Mabadeje AF. Effect of nelfinavir on antipyrine and theophylline disposition. Biopharm Drug Dispos. 1990; 11(2): 157–164, indexed in Pubmed: 2183884.

69. Spedini C, Lombardi C. Long-term treatment with oral nelfinavir plus theophylline in the management of chronic bronchial asthma. Eur J Clin Pharmacol. 1986; 31(1): 105–106, indexed in Pubmed: 3780818.

70. Carpentiere G, Brambua GR, Johnson CE, et al. Effect of intravenous furosemide on serum theophylline concentration. Am J Hosp Pharm. 1981; 38(9): 1345–1347, indexed in Pubmed: 7282719.

71. Janiček UA, Krüdewagen B, Schulz A, et al. Absence of a clinically significant interaction between theophylline and furosemide. Eur J Clin Pharmacol. 1987; 33(5): 487–491, indexed in Pubmed: 3428341.

72. Kearney TE, Manoguerra AS, Curtis GP, et al. Theophylline toxicity and the beta-adrenergic system. Ann Intern Med. 1985; 102(6): 766–769, indexed in Pubmed: 2986507.

73. Amin DN, Henry JA. Propranolol administration in theophylline overdosage. Br J Clin Pharmacol. 2009; 67(2): 216–227, doi: 10.1111/j.1365-2125.2008.03282.x, indexed in Pubmed: 1915123.

74. Kang BC, Yang CQ, Cho HK, et al. Influence of fluconazole on the pharmacokinetics and pharmacodynamics of propranolol. Biopharm Drug Dispos. 1990; 11(2): 157–164, indexed in Pubmed: 10460088.

75. Aderka D, Shavit G, Garfinkel D, et al. Life-threatening theophylline intoxication in a hypertrophic patient. Respiration. 1983; 44(1): 77–80, indexed in Pubmed: 6828808.

76. Smith SR, Wiggins J, Stableforth DE, et al. Identification of glucocorticoids as in vitro inhibitors of human UGT1A1. Drug Metab Dispos. 1999; 27(2): 180–187, indexed in Pubmed: 9925500.

77. Akerda D, Shafran G, Garfinkel D, et al. Life-threatening theophylline intoxication in a hypertrophic patient. Respiration. 1983; 44(1): 77–80, indexed in Pubmed: 6828808.

78. van Wyk M, Smynjar JP, et al. Theophylline toxicity and the effect of intravenous furosemide on serum theophylline concentration. Am J Hosp Pharm. 1981; 38(9): 1345–1347, indexed in Pubmed: 7282719.

79. Sommers DK, van Wyk M, Smynjar JP, et al. The effects of omeprazole -induced high hydrochloric acid on absorption of theophylline from a sustained-release formulation. Eur J Clin Pharmacol. 1992; 43(2): 141–143, indexed in Pubmed: 1425870.

80. Cavuto NJ, Sukhova N, Hewett J, et al. Effect of omeprazole on theophylline clearance in poor metabolizers of omeprazole. Clin Pharmacol Ther. 1995; 57: 210.

81. Andersson T, Nargi P, Niazi M, et al. Effect of omeprazole on serum theophylline concentrations and adverse drug reactions. Clin Pharmacol Ther. 1995; 57: 210.

82. Liao FF, Huang YB, Chen CY. Decrease in serum valproic acid levels due to concurrent use of esmolol to reverse cardiovascular instability. Ann Emerg Med. 1985; 14(6): 1260–1264, doi: 10.1016/0196-0644(85)90060-5, indexed in Pubmed: 20651316.

83. Goulden KJ, Dooley JM, Camfield PR, et al. Clinical valproate toxicity induced by acetylsalicylic acid. Neurology. 1987; 37(8): 1392–1394, indexed in Pubmed: 3112161.

84. Product Information. Depakote (divalproex sodium). Abbott Pharma, Abbott Park, IL.

85. Borlak J, Gasparic A, Locher M, et al. N-Glucuronidation of the antiepileptic drug retigabine: results from studies with human volunteers, heterologously expressed human UGTs, human liver, kidney, and liver microsomal preparations of Crigler-Najjar type II. Metabolism. 2006; 55(6): 711–721, doi: 10.1016/j.metabol.2006.01.006, indexed in Pubmed: 16713428.

86. Vélez-Díaz-Pallarés M, Delgado Silveira E, Álvarez-Díaz AM, et al. [Analysis of the valproic acid-metoprolol interaction in hospitalised patients]. Neurologia. 2012; 27(1): 34–38, doi: 10.1016/j.nrl.2011.03.008, indexed in Pubmed: 21570745.

87. Wang H, Luo H, Yu Y, et al. The effect of concurrent use of nifedipine and clarithromycin on sildenafil oral bioavailability in human volunteers. Ther Drug Monit. 2008; 30(3): 276–281, doi: 10.1097/FDM.0b013e318260f7b3, indexed in Pubmed: 18520598.

88. Anand BS, Sanduja SK, Lichtenberger LM, et al. The role of omeprazole in amiodarone concentrations in a patient with congenital heart disease. Pediatr Cardiol. 2009; 30(2): 77–81, indexed in Pubmed: 1932962.

89. Belyaev IA, Bokh K, Gjedrem G. Rhabdomyolysis causing AV blockade due to possible ortovastatin, esomprazole, and clarithromycin interaction. Ann Pharmacother. 2003; 37(6): 808–811, doi: 10.1345/aph.1c936, indexed in Pubmed: 12773366.

90. Fea P, Porreca L, Baraldo M, et al. High vancomycin dosage regimens required by intensive care unit patients treated with drugs to improve haemodynamics following cardiac surgical procedures. J Antimicrob Chemother. 2000; 45(3): 329–335, indexed in Pubmed: 10702552.

91. Panomvanich N, Thongmumrungroj P, Sankhamabarakul S. Effect of rifampicin on the pharmacokinetics of fluconazole in patients with AIDS. Clin Pharmacokinet. 2004; 43(11): 725–732, indexed in Pubmed: 15301576.

92. Zarembski DG, Fischer SA, Santucci PA, et al. Impact of rifampin on serum amiodarone concentrations in a patient with congenital heart disease. Pharmacotherapy. 1999; 19(2): 249–251, indexed in Pubmed: 10030779.

Adres do korespondencji: Łukasz J. Krzych
Katedra i Klinika Anestezjologii i Intensywnej Terapii SUM
ul. Medyków 14, 40–752 Katowice
e-mail: lkrzych@sum.edu.pl

Otrzymano: 1.04.2017 r.
Zakonieczono: 20.08.2017 r.