Two-Parton Contribution to the Heavy-Quark Forward-Backward Asymmetry in NNLO QCD

W. Bernreuthera, R. Boncianib, T. Gehrmannc, R. Heinescha,1, T. Leinewebera,2, P. Mastroliac,d and E. Remiddie

a Institut für Theoretische Physik, RWTH Aachen, D-52056 Aachen, Germany
b Departament de Física Teòrica, IFIC, CSIC – Universitat de València, E-46071 València, Spain
c Institut für Theoretische Physik, Universität Zürich, CH-8057 Zürich, Switzerland
d Department of Physics and Astronomy, UCLA, Los Angeles, CA 90095-1547, USA
e Dipartimento di Fisica dell’Università di Bologna, and INFN, Sezione di Bologna, I-40126 Bologna, Italy

Abstract

Forward-backward asymmetries, A_{FB}^Q, are important observables for the determination of the neutral-current couplings of heavy quarks in inclusive heavy quark production, $e^+e^- \rightarrow \gamma^*, Z^* \rightarrow Q + X$. In view of the measurement perspectives on A_{FB}^Q at a future linear collider, precise predictions of A_{FB}^Q are required for massive quarks. We compute the contribution of the $Q\bar{Q}$ final state to A_{FB}^Q to order α_s^2 in the QCD coupling. We provide general formulae, and we show that this contribution to A_{FB}^Q is infrared-finite. We evaluate these two-parton contributions for b and c quarks on and near the Z resonance, and for t quarks above threshold. Moreover, near the $t\bar{t}$ threshold we obtain, by expanding in the heavy-quark velocity β, an expression for $A_{FB}^{t\bar{t}}$ to order α_s^2 and NNLL in β. This quantity is equal, to this order in β, to the complete forward-backward asymmetry A_{FB}^t.

Key words: Electroweak measurements, Forward-backward asymmetry, Heavy quarks, Precision calculations, QCD corrections.

PACS: 12.38.Bx, 13.66.Jn, 14.65.Dw, 14.65.Fy, 14.65.Ha

1present address: Framatome ANP GmbH, D-63067 Offenbach, Germany
2present address: Framatome ANP GmbH, D-91050 Erlangen, Germany
1 Introduction

Forward-backward asymmetries in the production of fermions in high-energy e^+e^- collisions are known to be precision observables for the determination of the respective fermionic neutral current couplings. Specifically the forward-backward asymmetry A_{FB}^b of b quarks, which was measured at the Z resonance with an accuracy of 1.7 percent, led to a determination of the effective weak mixing angle $\sin^2\theta_{W,\text{eff}}$ of the Standard Model with a relative precision of about 1 per mille [1, 2] – notwithstanding the apparent discrepancy between this measurement and the determination of $\sin^2\theta_{W,\text{eff}}$ with similar precision from the left-right asymmetry measured by the SLD collaboration. (For a comprehensive overview, see [1].) At a future linear e^+e^- collider [3], precision determinations of electroweak parameters will again involve forward-backward asymmetries. When such a collider will be operated at the Z peak, accuracies of about 0.1 percent may be reached for these observables [4, 5]. Moreover, the top quark asymmetry A_{FB}^t will be experimentally accessible – a crucial tool for the determination of the hitherto unexplored neutral current couplings of this quark.

The theoretical understanding of these observables, in particular those involving the heavy quarks $Q = t, b, c$, must eventually match these projected accuracies. The present theoretical description of A_{FB}^b and A_{FB}^c includes the fully massive next-to-leading order (NLO) electroweak [6, 7, 8] and fully massive NLO QCD [9, 10, 11] corrections. The next-to-next-to-leading order (NNLO) QCD corrections, i.e., the contributions of α^2 to these asymmetries, were calculated so far only in the limit of massless quarks Q [12, 13, 14]. To be precise, the forward-backward asymmetry of massless quarks is not computable in QCD perturbation theory, as was pointed out in [14]. It is affected in the limit $m_Q \to 0$ by logarithmic final state divergences $\sim \ln m_Q$ resulting from the contribution of the $Q\bar{Q}Q\bar{Q}$ final state. (These terms are associated with the non-perturbative Q fragmentation function.) These logarithmically enhanced terms were taken into account in Ref. [14], which is the most complete calculation of A_{FB}^b within QCD to date, done both with respect to the quark and the thrust axis.

In view of the future perspectives for the b- and t-quark asymmetries at a linear collider, a computation of the order α^2 contributions to A_{FB}^Q for massive quarks Q is clearly desirable. The NNLO QCD corrections involve three classes of contributions: (1) the two-loop corrections to the decay of a vector boson into a heavy quark-antiquark pair; (2) the one-loop corrected matrix elements for the decay of a vector boson into a heavy quark-antiquark pair plus a gluon; (3) the tree level matrix elements for the decay of a vector boson into four partons, at least two of which being the heavy quark-antiquark pair.

In the limit of massless external quarks Q the $Q\bar{Q}$ contributions to A_{FB}^Q vanish up to a non-universal correction of order α^2 due to quark triangle diagrams [12]. This is no longer the case for $m_Q \neq 0$. In this paper we determine class (1), i.e., the order α^2 $Q\bar{Q}$ contributions to A_{FB}^Q, for arbitrary quark mass m_Q and center-of-mass (c.m.) energy \sqrt{s}. For this purpose we use our recent results on the two-loop vector and axial vector vertex functions for massive quarks [20, 21, 22] which determine the amplitude of $e^+e^- \to \gamma^*, Z^* \to Q\bar{Q}$ to order α^2 and to lowest order in the electroweak couplings. The contributions (1) from the two-parton final state, and (2) plus (3), i.e., those from the three- and four-parton final states, are separately infrared-finite, as will be discussed below. The latter can be obtained along the lines of the calculations of three-jet production involving heavy quarks [15, 16, 17]. The parity-violating part of $d\sigma(3\text{jet})$ at order α^2, which is a necessary ingredient here, was computed in [18].
However, a full computation of $A_{FB}^{3+4\text{parton}}$ has not yet been done for massive quarks.

The paper is organized as follows. In Section 2 we set up the formulae for determining A_Q^{FB}, off and at the Z resonance, to order α_s^2 in terms of the symmetric and antisymmetric cross sections for inclusive production of quarks Q. In particular we express the $Q\bar{Q}$ contribution to A_Q^{FB} by the one- and two-loop heavy-quark vector and axial vector form factors that determine the amplitude corresponding to the $Q\bar{Q}$ final state. Moreover, we show that these contributions to the respective forward-backward asymmetry, which we denote by $A_{Q\bar{Q}}^{FB}$, are infrared-finite. In Section 3 we present the NNLO $Q\bar{Q}$ cross section and the forward-backward asymmetry in the energy region $\alpha_s \ll \beta \ll 1$, where β denotes the heavy-quark velocity. This result is applicable, for instance, to t quarks in the vicinity of the $t\bar{t}$ threshold. In Section 4 we evaluate $A_{Q\bar{Q}}^{FB}$ for b and c quarks at the Z resonance, and in the case of t quarks for c. m. energies above the $t\bar{t}$ threshold till 1 TeV. We conclude in Section 5.

2 The Forward-Backward Asymmetry to Order α_s^2

In this paper we consider the production of a heavy quark-antiquark pair in e^+e^- collisions,

$$e^+e^- \rightarrow \gamma^*(q), \ Z^*(q) \rightarrow Q\bar{Q} + X,$$

(1)

where $Q = c, b, t$, to lowest order in the electroweak couplings and to second order in the QCD coupling α_s. To this order the following final states contribute to the cross section of inclusive $Q\bar{Q}$ production, Eq. (1): the two-parton $Q\bar{Q}$ state (at Born level, to order α_s and to order α_s^2), the three-parton state $Q\bar{Q}g$ (to order α_s and to order α_s^2) and the four-parton states $Q\bar{Q}gg$, $Q\bar{Q}q\bar{q}$, and $Q\bar{Q}QQ\bar{Q}$ (to order α_s^2).

The forward-backward asymmetry1 A_{FB} for a heavy quark Q is commonly defined as the number of quarks Q observed in the forward hemisphere minus the number of quarks Q in the backward hemisphere, divided by the total number of observed quarks Q. The axis that defines the forward direction must be infrared- and collinear-safe in order that A_{FB} is computable in perturbation theory. Common choices are the direction of flight of Q or the thrust axis direction. The forward-backward asymmetry can also be expressed in terms of the cross section for inclusive production of quarks Q. We have:

$$A_{FB} = \frac{\sigma_A}{\sigma_S},$$

(2)

with the antisymmetric and symmetric cross sections σ_A and $\sigma_S = \sigma$ defined by

$$\sigma_A = \int_0^1 \frac{d\sigma}{d\cos\vartheta} \ d\cos\vartheta - \int_{-1}^0 \frac{d\sigma}{d\cos\vartheta} \ d\cos\vartheta,$$

(3)

$$\sigma_S = \int_{-1}^1 \frac{d\sigma}{d\cos\vartheta} \ d\cos\vartheta.$$

(4)

Here ϑ is the angle between the incoming electron and the direction defining the forward hemisphere (in the e^+e^- center-of-mass frame). When choosing the momentum direction of Q

1We drop the superscript Q in the following for ease of notation.
or the thrust axis, the $Q\bar{Q}$ contribution to A_{FB}, which we compute in this paper, is of course the same. In the following $\vartheta = \angle(e^-, Q)$.

In analogy to its experimental measurement, A_{FB} may be computed by determining the contributions from the final-state jets which, to order α_s^2, are those of the two-, three-, and four-jet states. These contributions are separately infrared-finite, and A_{FB} would not depend on the jet clustering algorithm employed when no phase space cuts are applied. Such a calculation would require a jet calculus for massive quarks at NNLO in α_s which is, however, not available. (For massless quarks a NNLO subtraction method was recently developed \cite{19}, cf. also references therein.) Yet, A_{FB} belongs to the class of observables that can be computed at the level of unresolved partons. The two-parton and the three- plus four-parton contributions to the second-order forward-backward asymmetry are separately infrared (IR) finite, cf. \cite{12,14} and Section 2.2 below. This basic result will be exploited in the following.

To order α_s^2 the symmetric and antisymmetric cross sections receive the following contributions from unresolved partons:

$$
\sigma_{A,S} = \sigma_{A}^{(2,0)} + \sigma_{A}^{(2,1)} + \sigma_{A}^{(2,2)} + \sigma_{A}^{(3,1)} + \sigma_{A}^{(3,2)} + \sigma_{A}^{(4,2)} + \mathcal{O}(\alpha_s^3),
$$

(5)

where the first number in the superscripts (i,j) denotes the number of partons in the respective final state and the second one the order of α_s. Inserting (5) into (2) we get for A_{FB} to second order in α_s:

$$
A_{FB}(\alpha_s^2) = \frac{\sigma_{A}^{(2,0)} + \sigma_{A}^{(2,1)} + \sigma_{A}^{(2,2)} + \sigma_{A}^{(3,1)} + \sigma_{A}^{(3,2)} + \sigma_{A}^{(4,2)}}{\sigma_{S}^{(2,0)} + \sigma_{S}^{(2,1)} + \sigma_{S}^{(2,2)} + \sigma_{S}^{(3,1)} + \sigma_{S}^{(3,2)} + \sigma_{S}^{(4,2)}}.
$$

(6)

Taylor expansion of (6) with respect to α_s leads to

$$
A_{FB}(\alpha_s^2) = A_{FB,0} \left[1 + A_1 + A_2 \right],
$$

(7)

where $A_{FB,0}$ is the forward-backward asymmetry at Born level, and A_1 and A_2 are the $\mathcal{O}(\alpha_s)$ and $\mathcal{O}(\alpha_s^2)$ contributions normalized to $A_{FB,0}$.

$$
A_{FB,0} = \frac{\sigma_{A}^{(2,0)}}{\sigma_{S}^{(2,0)}},
$$

(8)

$$
A_1 = \frac{\sigma_{A}^{(2,1)}}{\sigma_{A}^{(2,0)}} - \frac{\sigma_{S}^{(2,1)}}{\sigma_{S}^{(2,0)}} + \frac{\sigma_{A}^{(3,1)}}{\sigma_{A}^{(2,0)}} - \frac{\sigma_{S}^{(3,1)}}{\sigma_{S}^{(2,0)}},
$$

(9)

$$
A_2 = \frac{\sigma_{A}^{(2,2)}}{\sigma_{A}^{(2,0)}} - \frac{\sigma_{S}^{(2,2)}}{\sigma_{S}^{(2,0)}} + \frac{\sigma_{A}^{(3,2)}}{\sigma_{A}^{(2,0)}} - \frac{\sigma_{S}^{(3,2)}}{\sigma_{S}^{(2,0)}} + \frac{\sigma_{A}^{(4,2)}}{\sigma_{A}^{(2,0)}} - \frac{\sigma_{S}^{(4,2)}}{\sigma_{S}^{(2,0)}} \left[\frac{\sigma_{A}^{(2,1)}}{\sigma_{A}^{(2,0)}} - \frac{\sigma_{S}^{(2,1)}}{\sigma_{S}^{(2,0)}} + \frac{\sigma_{A}^{(3,1)}}{\sigma_{A}^{(2,0)}} - \frac{\sigma_{S}^{(3,1)}}{\sigma_{S}^{(2,0)}} \right].
$$

(10)

1.2 The $Q\bar{Q}$ Contribution

It is convenient to rewrite Eq. (7) as follows:

$$
A_{FB}(\alpha_s^2) = A_{FB}^{(2p)} + A_{FB}^{(3p)} + A_{FB}^{(4p)},
$$

(11)
where the superscript \((np)\) labels the number of partons \(n\) in the final state. Collecting the two-parton term from Eqs. (8), (9), and (10) we get:

\[
A_{FB}^{(2p)} = A_{FB,0} \left[1 + A_1^{(2p)} + A_2^{(2p)} \right],
\]

with

\[
A_1^{(2p)} = \frac{\sigma_A^{(2,1)}}{\sigma_A^{(2,0)}} - \frac{\sigma_S^{(2,1)}}{\sigma_S^{(2,0)}},
\]

\[
A_2^{(2p)} = A_{2,2} - A_{2,1},
\]

where

\[
A_{2,2} = \frac{\sigma_A^{(2,2)}}{\sigma_A^{(2,0)}} - \frac{\sigma_S^{(2,2)}}{\sigma_S^{(2,0)}},
\]

\[
A_{2,1} = \frac{\sigma_S^{(2,1)}}{\sigma_S^{(2,0)}} A_1^{(2p)}.
\]

The remaining terms in Eqs. (9), (10) contribute to \(A^{(3p)}\) and \(A^{(4p)}\).

As already stated above, both the two-parton and the three- plus four-parton contributions \(A^{(2p)}\) and \(A^{(3p)} + A^{(4p)}\), respectively, are infrared (IR) finite, i.e., free of soft and collinear singularities. We shall show this explicitly for \(A^{(2p)}\) at the end of this section.

Next we express \(A_{FB}^{(2p)}\) in terms of the \(VQ\bar{Q}\) vertex form factors \((V = \gamma, Z)\) which determine the amplitude of the reaction \(e^+e^- \rightarrow \gamma^*, Z^* \rightarrow Q\bar{Q}\) to lowest order in the electroweak couplings and to any order in the QCD coupling; see Fig. 1. In this case the \(VQ\bar{Q}\) vertex \(\Gamma_Q^{\mu,V}\) depends,

\[
\begin{align*}
\Gamma_Q^{\mu,V} & = v_Q^V \left(F_1(s) \gamma^\mu + \frac{i}{2m_Q} F_2(s) \sigma^{\mu\nu} q_{\nu} \right) \\
& + a_Q^V \left(G_1(s) \gamma^\mu \gamma_5 + \frac{1}{2m_Q} G_2(s) \gamma_5 q^{\mu} \right),
\end{align*}
\]

Figure 1: The amplitude \(e^+e^- \rightarrow Q\bar{Q}\) in QCD.
where \(s = q^2, \sigma^{\mu\nu} = \frac{i}{2} [\gamma^\mu, \gamma^\nu] \), \(m_Q \) denotes the on-shell mass of \(Q \), and, for \(f = e, Q \),
\[
\begin{align*}
v_f^Z &= e \frac{1}{2 s_W c_W} \left(T_f^3 - 2 s_W^2 e_f \right), \\
a_f^Z &= e \frac{1}{2 s_W c_W} \left(-T_f^3 \right), \\
v_f^\gamma &= e e_f, \quad a_f^\gamma = 0.
\end{align*}
\]
Here \(e_f \) and \(T_f^3 \) denote the charge of \(f \) in units of the positron charge \(e \) and its weak isospin, respectively, and \(s_W \ (c_W) \) are the sine (cosine) of the weak mixing angle \(\theta_W \). The functions \(F_i \) and \(G_i \) denote renormalized form factors; the renormalization scheme will be specified below. Instead of using the Dirac form factor \(F_1 \) we express in the following the (anti)symmetric cross section in terms of
\[
\tilde{F}_1(s) = F_1(s) + F_2(s).
\]
Neglecting the electron mass we find for the two-parton contributions to \(\sigma_{A,S} \):
\[
\begin{align*}
\sigma_A^{(2p)} &= \frac{N_c}{8 \pi} \frac{s}{D_Z} \beta^2 a_e^Z a_Q^Z \left\{ \left[v_e^Z v_Q^Z + \frac{1}{2} \left(1 - \frac{m_Z^2}{s} \right) v_e^\gamma v_Q^\gamma \right] (\tilde{F}_1^* G_1 + \tilde{F}_1 G_1^*) \\
&\quad + i \frac{m_Z \Gamma_Z}{2 s} v_Q^\gamma v_e^\gamma \left(\tilde{F}_1 G_1^* - \tilde{F}_1^* G_1 \right) \right\}, \\
\sigma_S^{(2p)} &= \frac{N_c}{24 \pi} \frac{s}{D_Z} \beta \left(v_e^\gamma v_Q^\gamma \right)^2 W + \frac{N_c}{12 \pi} \frac{s}{D_Z} \beta \left(1 - \frac{m_Z^2}{s} \right) v_e^\gamma v_Q^\gamma v_e^Z v_Q^Z W \\
&\quad + \frac{N_c}{24 \pi} \frac{s}{D_Z} \beta \left[\left(a_e^Z \right)^2 + \left(v_e^Z \right)^2 \right] \left[\left(v_Q^Z \right)^2 W + 2 \beta^2 \left(a_Q^Z \right)^2 (G_1 G_1^*) \right],
\end{align*}
\]
where
\[
W = (3 - \beta^2) \left(\tilde{F}_1 \tilde{F}_1^* \right) + \beta^2 \left(\tilde{F}_1^* F_2 + \tilde{F}_1 F_2^* \right) + \frac{\beta^4}{1 - \beta^2} (F_2 F_2^*),
\]
\(D_Z = [(s - m_Z^2)^2 + m_Z^2 \Gamma_Z^2] \) with \(m_Z, \Gamma_Z \) being the mass and width of the Z boson, \(\beta = \sqrt{1 - 4 m_e^2/s} \) the heavy quark velocity, and \(N_c = 3 \) the number of colors. Because we have put \(m_e = 0 \) the form factor \(G_2 \) does not contribute to Eqs. \[20\], \[21\]. The last term in \[20\], which contains \(\Gamma_Z \), is of higher order in the electroweak couplings as compared with the first term. We will neglect that term in the following.

Expanding the form factors in Eqs. \[20\], \[21\] in powers of \(\alpha_s \):
\[
\begin{align*}
\tilde{F}_1 &= 1 + \left(\frac{\alpha_s}{2 \pi} \right) \tilde{F}_1^{(1s)} + \left(\frac{\alpha_s}{2 \pi} \right)^2 \tilde{F}_1^{(2s)} + O \left(\alpha_s^3 \right), \\
F_2 &= \left(\frac{\alpha_s}{2 \pi} \right) F_2^{(1s)} + \left(\frac{\alpha_s}{2 \pi} \right)^2 F_2^{(2s)} + O \left(\alpha_s^3 \right), \\
G_1 &= 1 + \left(\frac{\alpha_s}{2 \pi} \right) G_1^{(1s)} + \left(\frac{\alpha_s}{2 \pi} \right)^2 G_1^{(2s)} + O \left(\alpha_s^3 \right),
\end{align*}
\]
leads to the expansions of the two-parton contributions as exhibited in (3), i.e.,

$$\sigma_{A,S}^{(2p)} = \sigma_{A,S}^{(2,0)} + \sigma_{A,S}^{(2,1)} + \sigma_{A,S}^{(2,2)}.$$

(25)

The contributions to $\sigma_{S}^{(2p)}$ can be further decomposed as follows:

$$\sigma_{S}^{(2,0)} = \sigma_{S}^{(2,0,\gamma)} + \sigma_{S}^{(2,0,Z)} + \sigma_{S}^{(2,0,\gamma Z)},$$

(26)

$$\sigma_{S}^{(2,1)} = \sigma_{S}^{(2,0,\gamma)} \sigma_{S}^{(2,1,\gamma)} + \sigma_{S}^{(2,0,\gamma Z)} \sigma_{S}^{(2,1,Z)} + \sigma_{S}^{(2,0,\gamma Z)} \sigma_{S}^{(2,1,\gamma Z)},$$

(27)

$$\sigma_{S}^{(2,2)} = \sigma_{S}^{(2,0,\gamma)} \sigma_{S}^{(2,2,\gamma)} + \sigma_{S}^{(2,0,Z)} \sigma_{S}^{(2,2,Z)} + \sigma_{S}^{(2,0,\gamma Z)} \sigma_{S}^{(2,2,\gamma Z)},$$

(28)

where the superscripts γ, Z, and γZ label the pure photon and Z contributions, and the $\gamma - Z$ interference terms, respectively. These terms are given by

$$\sigma_{S}^{(2,0,\gamma)} = \frac{N_c}{24\pi} \frac{1}{s} \beta \left(v_{\epsilon}^\gamma v_{\epsilon}^\gamma \right)^2 (3 - \beta^2),$$

(29)

$$\sigma_{S}^{(2,1,\gamma)} = \left(\frac{\alpha_s}{2\pi} \right)^2 \left\{ 2 \text{Re} \tilde{F}_1^{(16)} + \frac{2\beta^2}{3-\beta^2} \text{Re} F_2^{(10)} \right\},$$

(30)

$$\sigma_{S}^{(2,2,\gamma)} = \left(\frac{\alpha_s}{2\pi} \right)^2 \left\{ \frac{2\beta^2}{3-\beta^2} \left[\text{Re} F_2^{(26)} + \text{Re} \tilde{F}_1^{(16)} \text{Re} F_2^{(16)} + \pi^2 \text{Im} \tilde{F}_1^{(16)} \text{Im} F_2^{(16)} \right] \\
+ \frac{\beta^4}{(3 - \beta^2)(1 - \beta^2)} \left[\left(\text{Re} F_2^{(16)} \right)^2 + \pi^2 \left(\text{Im} F_2^{(16)} \right)^2 \right] \\
+ \left(\text{Re} \tilde{F}_1^{(16)} \right)^2 + \pi^2 \left(\text{Im} \tilde{F}_1^{(16)} \right)^2 + 2 \text{Re} \tilde{F}_1^{(26)} \right\},$$

(31)

$$\sigma_{S}^{(2,0,Z)} = \frac{N_c}{24\pi} \frac{s}{D_Z} \beta \left[(a_{\epsilon}^Z)^2 + (v_{\epsilon}^Z)^2 \right] \left[2 \left(a_{\epsilon}^Z \right)^2 \beta^2 + (v_{\epsilon}^Z)^2 (3 - \beta^2) \right],$$

(32)

$$\sigma_{S}^{(2,1,Z)} = \left(\frac{\alpha_s}{2\pi} \right)^2 \frac{2 \left(a_{\epsilon}^Z \right)^2 \beta^2 + (3 - \beta^2)}{\left(v_{\epsilon}^Z \right)^2} \left\{ v_{\epsilon}^Z \left(3 - \beta^2 \right) \sigma_{S}^{(2,2,\gamma)} \\
+ 4 \left(\frac{\alpha_s}{2\pi} \right)^2 (a_{\epsilon}^Z)^2 \beta^2 \text{Re} G_1^{(26)} + 2 \left(\frac{\alpha_s}{2\pi} \right)^2 (a_{\epsilon}^Z)^2 \beta^2 \left[\text{Re} G_1^{(16)} \right)^2 + \pi^2 \left(\text{Im} G_1^{(16)} \right)^2 \right\},$$

(33)

$$\sigma_{S}^{(2,0,\gamma Z)} = \frac{N_c}{12\pi} \frac{s}{D_Z} \beta \left(1 - \frac{m_{\gamma Z}^2}{s} \right) v_{\epsilon}^\gamma v_{\epsilon}^\gamma v_{\epsilon}^Z v_{\epsilon}^Z (3 - \beta^2),$$

(34)

$$\sigma_{S}^{(2,1,\gamma Z)} = \sigma_{S}^{(2,1,\gamma)},$$

(35)

$$\sigma_{S}^{(2,2,\gamma Z)} = \sigma_{S}^{(2,2,\gamma)},$$

(36)

where the convention $F_a = \text{Re} F_a + i\pi \text{Im} F_a$, $G_a = \text{Re} G_a + i\pi \text{Im} G_a$ ($a = 1, 2$) is used; i.e., a
factor π is taken out of the imaginary part. The antisymmetric cross section is given by:

$$\sigma_{A}^{(2,0)} = \frac{N_c}{4\pi} s \beta^2 a_e a_q \left[v_e^2 v_Q^2 + \frac{1}{2} \left(1 - \frac{m_Z^2}{s} \right) v_e^2 v_Q^2 \right],$$

$$\sigma_{A}^{(2,1)} = \sigma_{A}^{(2,0)} \left(\frac{\alpha_s}{2\pi} \right) \left[\text{Re} \tilde{F}_1^{(1f)} + \text{Re} G_1^{(1f)} \right],$$

$$\sigma_{A}^{(2,2)} = \sigma_{A}^{(2,0)} \left(\frac{\alpha_s}{2\pi} \right)^2 \left[\text{Re} \tilde{F}_1^{(2f)} + \text{Re} G_1^{(2f)} + \pi^2 \text{Im} \tilde{F}_1^{(1f)} \text{Im} G_1^{(1f)} \right].$$

With these formulae the $Q\bar{Q}$ contribution \[\text{(12)}\] to the forward-backward asymmetry is expressed in terms of the one- and two-loop form factors Eqs. \[\text{(22)} - \text{(24)}\].

The second order term in the expansion \[\text{(21)}\] of the axial vector form factor, $G_1^{(2f)}$, receives so-called type A and type B contributions. Type A contributions are those where the Z boson couples directly to the external quark Q \[\text{(21)}\], while the triangle diagram contributions, summed over the quark isodoublets of the three generations, are called type B \[\text{(22)}\]. (In the terminology of \[\text{(14)}\] these correspond to universal and non-universal corrections, respectively.) Among Eqs. \[\text{(29)} - \text{(40)}\] only $\sigma_S^{(2,2,Z)}$ and $\sigma_A^{(2,2)}$ depend on $G_1^{(2f)}$. With $G_1^{(2f)} = G_1^{(2f,A)} + G_1^{(2f,B)}$ we separate in these terms the type A and B contributions:

$$\sigma_S^{(2,2,Z)} = \sigma_S^{(2,2,Z,A)} + \sigma_S^{(2,2,Z,B)}$$

with

$$\sigma_S^{(2,2,Z,A)} = \sigma_S^{(2,2,Z)} \left(G_1^{(2f)} \rightarrow G_1^{(2f,A)} \right),$$

$$\sigma_S^{(2,2,Z,B)} = \left(\frac{\alpha_s}{2\pi} \right)^2 \frac{4}{2} \left(a_Z^2 \right)^2 \beta^2 \text{Re} G_1^{(2f,B)},$$

and

$$\sigma_A^{(2,2)} = \sigma_A^{(2,2,A)} + \sigma_A^{(2,2,B)}$$

with

$$\sigma_A^{(2,2,A)} = \sigma_A^{(2,2)} \left(G_1^{(2f)} \rightarrow G_1^{(2f,A)} \right),$$

$$\sigma_A^{(2,2,B)} = \left(\frac{\alpha_s}{2\pi} \right)^2 \sigma_A^{(2,0)} \text{Re} G_1^{(2f,B)}.$$
If one evaluates, in the case of $b\bar{b}$ and $c\bar{c}$ final states, Eq. (18) exactly at the Z resonance and neglects the contributions from photon exchange, then:

$$A_2^{(2p,B)}(s = m_Z^2) = \left(\frac{\alpha_s}{2\pi}\right)^2 \Re G^{(2\ell,B)}_1 \left[\frac{(3 - \beta^2) (v_0^2)^2 - 2 (a_0'^2) \beta^2}{(3 - \beta^2) (v_0^2)^2 + 2 (a_0'^2) \beta^2}\right].$$

(49)

The type B contribution (18) to the forward-backward asymmetry is ultraviolet- and infrared-finite [22].

2.2 Infrared-Finiteness of $A^{(2p)}_{FB}$

The renormalized vector and axial vector form factors [17] were computed in [20, 21, 22] to order α_s^2 within QCD with N_f massless and one massive quark Q, in a renormalization scheme, which is appropriate for the case at hand: the wavefunction and the mass of Q are defined in the on-shell scheme while α_s is defined in the MS scheme. The renormalized form factors still contain IR divergences which are regulated by dimensional regularization in $D = 4 - 2\varepsilon$ dimensions. At one loop, $F_1^{(1\ell)}$ and $G_1^{(1\ell)}$ contain $1/\varepsilon$ poles due to soft virtual gluons. At two loops, the dominant IR singularities of $F_1^{(2\ell)}$ and $G_1^{(2\ell,\ell')}$ are of order $1/\varepsilon^2$ due to soft and collinear massless partons, while $F_2^{(2\ell)}$ has only $1/\varepsilon$ poles. However, when inserting the renormalized form factors into the formulae for the order α_s and α_s^2 contributions to $A^{(2p)}_{FB}$ the IR singularities cancel and we obtain a finite result. This is well-known for $A_{1F}^{(2p)}$, c.f. [11].

This cancellation of infrared poles can be seen in a straightforward manner if one takes into account the universal structure of the infrared poles in the form factors, which can be expressed in terms of one-loop and two-loop infrared singularity operators for a massive quark-antiquark pair, $I^{(1)}_{QQ}(s, \mu = m_Q, \varepsilon)$ and $I^{(2)}_{QQ}(s, \mu = m_Q, \varepsilon)$, where μ is the renormalization scale, as:

$$\begin{align*}
\text{Poles} \left(F_1^{(1\ell)}\right) &= I^{(1)}_{QQ} F_1^{(0\ell)} , \\
\text{Poles} \left(F_2^{(1\ell)}\right) &= 0 , \\
\text{Poles} \left(G_1^{(1\ell)}\right) &= I^{(1)}_{QQ} G_1^{(0\ell)} , \\
\text{Poles} \left(F_1^{(2\ell)}\right) &= I^{(2)}_{QQ} F_1^{(0\ell)} + I^{(1)}_{QQ} F_1^{(1\ell)} , \\
\text{Poles} \left(F_2^{(2\ell)}\right) &= I^{(1)}_{QQ} F_2^{(1\ell)} , \\
\text{Poles} \left(G_1^{(2\ell)}\right) &= I^{(2)}_{QQ} G_1^{(0\ell)} + I^{(1)}_{QQ} G_1^{(1\ell)} .
\end{align*}$$

(50)

This factorization of the infrared poles is a well-known feature of massless multi-loop amplitudes, where it can be derived from exponentiation [23, 24]. In massive QED, the same behaviour was observed long ago [25]. To the best of our knowledge, infrared factorization in massive QCD was established up to now only at the one-loop level [26]; the above pole structure of the form factors suggests that it holds at higher orders as well. Expressions for $I_{QQ}^{(1,2)}$ can be read off from the explicit pole structure of the form factors [20, 21]. Exploiting that

$$F_1^{(0\ell)} = G_1^{(0\ell)} = 1 ,$$

the type B contribution (18) to the forward-backward asymmetry is ultraviolet- and infrared-finite [22].
one finds immediately that the two-parton contribution (14) to the forward-backward asymmetry is infrared finite. However, it should be kept in mind that the two terms in (14) are not separately finite.

Let us illustrate how this cancellation occurs in $A_2^{(2p)}$ by considering this expression at the Z resonance, i.e., by taking into account only Z exchange contributions and neglecting the photon and $\gamma - Z$ interference terms. When inserting the form factors into Eq. (15), all the leading $1/\epsilon$ singularities cancel, but a subleading divergence remains:

$$A_{2,2} = -\left(\frac{\alpha_s}{2\pi}\right)^2 C_F^2 \frac{1}{\epsilon} \frac{4y}{3} \frac{2(a_Q^2)(1-y)^2 - 3(v_Q^2)(1+y)^2}{[(a_Q^2)(1-y)^2 + (v_Q^2)(1+y)^2 + 2(v_Q^2)y] (1-y)^2} \times [(1+y^2) \ln^2(y) + (1-y^2) \ln(y)] + A_{2,2}^{finite}$$

where $y = (1-\beta)/(1+\beta)$ and $C_F = (N_c^2 - 1)/(2N_c)$. This subleading singularity proportional to C_F^2 results from the real parts of the one-loop form factors, $F_1^{(1\ell)}$ and $G_1^{(1\ell)}$, and from the contribution of a set of abelian-type two-loop diagrams (gluon ladder diagram and gluon vertex diagrams with quark self-energy insertions) to the real parts of the two-loop vector and axial vector form factors. The singularity (52) is removed by the second term in (14). While

$$A_1^{(2p)} = \frac{\alpha_s}{2\pi} C_F \ln(y) \frac{2(a_Q^2)(1-y)^2 - 3(v_Q^2)(1+y)^2}{[(a_Q^2)(1-y)^2 + (v_Q^2)(1+y)^2 + 2(v_Q^2)y] (1-y)^2}$$

is finite, the first term in (16) contains a singularity,

$$\frac{\sigma_s^{(2,1)}}{\sigma_s^{(2,0)}} = -\frac{\alpha_s}{2\pi} C_F \frac{1}{\epsilon} \frac{2(1-y^2 + (1+y)^2 \ln(y))}{1-y^2} + \text{finite terms},$$

and thus the singular part of $A_{2,1}$ cancels the singularity in (52). This cancellation pattern remains also away from the Z resonance.

3 Cross Section and A_{FB} near Threshold

In this section we analyze the cross section and $A_{FB}^{(2p)}$ for $e^+e^- \rightarrow \gamma^*, Z^* \rightarrow Q\bar{Q}$ near the production threshold. Close to threshold, where the quark velocity β is small, the fixed order perturbative expansion in α_s of these and other quantities breaks down due to Coulomb singularities, which must be resummed. In addition, large logarithms in β appear, which may be summed using the renormalization group [27, 28] applied in the framework of nonrelativistic effective field theory methods. However, in the energy region where $\alpha_s \ll \beta \ll 1$, threshold expansions of observables, i.e., expansions in β to fixed order in α_s are expected to yield reliable results. In this region we derive compact formulae for the symmetric and antisymmetric $Q\bar{Q}$ cross sections at NNLO. These expressions should be useful, especially in the case of top-quark pair production, for comparison of continuum results with results obtained directly at threshold.

3.1 The $Q\bar{Q}$ cross section

We start with Eqs. (25) - (28) where the $Q\bar{Q}$ cross section at NNLO, $\sigma_{NNLO} = \sigma_S^{(2p)}$, is expressed in terms of the γ, Z, and $\gamma - Z$ exchange contributions. Using these formulae we
may write
\[
\sigma_{NNLO} = \sigma_{S}^{(2,0,\gamma)} \left\{ 1 + \frac{\sigma_{S}^{(2,0,Z)}}{\sigma_{S}^{(2,0,\gamma)}} + \sigma_{S}^{(2,1,\gamma)} \left[1 + \frac{\sigma_{S}^{(2,0,Z)}}{\sigma_{S}^{(2,0,\gamma)}(1 + \frac{\sigma_{S}^{(2,0,Z)}}{\sigma_{S}^{(2,1,\gamma)}}) \right] \right. \\
+ \sigma_{S}^{(2,2,\gamma)} \left[1 + \frac{\sigma_{S}^{(2,0,Z)}}{\sigma_{S}^{(2,0,\gamma)}(1 + \frac{\sigma_{S}^{(2,0,Z)}}{\sigma_{S}^{(2,2,\gamma)}}) \right] \right\}.
\]

Denoting
\[
\Delta^{(0,Ax)} = \frac{\sigma_{S}^{(2,0,Z)}}{\sigma_{S}^{(2,0,\gamma)}} \sigma_{S}^{(2,0,\gamma)}
\]
and recalling Eqs. (30), (31) we get
\[
\sigma_{NNLO} = \sigma_{S}^{(2,0,\gamma)} \left\{ 1 + \Delta^{(0,Ax)} + \sigma_{S}^{(2,1,\gamma)} \left[1 + \Delta^{(0,Ax)} \right] + \frac{\sigma_{S}^{(2,0,Z)}}{\sigma_{S}^{(2,0,\gamma)}} \left(\sigma_{S}^{(2,1,\gamma)} - \sigma_{S}^{(2,2,\gamma)} \right) \right. \\
+ \sigma_{S}^{(2,2,\gamma)} \left[1 + \Delta^{(0,Ax)} \right] + \frac{\sigma_{S}^{(2,0,Z)}}{\sigma_{S}^{(2,0,\gamma)}} \left(\sigma_{S}^{(2,2,\gamma)} - \sigma_{S}^{(2,2,\gamma)} \right) \right\}.
\]

Putting
\[
\frac{\sigma_{S}^{(2,0,Z)}}{\sigma_{S}^{(2,0,\gamma)}} \left(\sigma_{S}^{(2,1,\gamma)} - \sigma_{S}^{(2,1,\gamma)} \right) = C_F \left(\frac{\alpha_s}{2\pi} \right) \Delta^{(1,Ax)} , \tag{58}
\]
\[
\frac{\sigma_{S}^{(2,0,Z)}}{\sigma_{S}^{(2,0,\gamma)}} \left(\sigma_{S}^{(2,2,\gamma)} - \sigma_{S}^{(2,2,\gamma)} \right) = C_F \left(\frac{\alpha_s}{2\pi} \right)^2 \Delta^{(2,Ax)} , \tag{59}
\]
the NNLO cross section reads:
\[
\sigma_{NNLO} = \sigma_{S}^{(2,0,\gamma)} \left\{ 1 + \Delta^{(0,Ax)} + \sigma_{S}^{(2,1,\gamma)} \left[1 + \Delta^{(0,Ax)} \right] + C_F \left(\frac{\alpha_s}{2\pi} \right) \Delta^{(1,Ax)} \right. \\
+ \sigma_{S}^{(2,2,\gamma)} \left[1 + \Delta^{(0,Ax)} \right] + C_F \left(\frac{\alpha_s}{2\pi} \right)^2 \Delta^{(2,Ax)} \right\}. \tag{60}
\]

We now expand the expression in the curly brackets of Eq. (60) up to and including terms of order \(\beta^0 \). Using the threshold expansions \[20, 21, 22\] of the one- and two-loop vector and axial vector form factors and putting the renormalization scale \(\mu = m_Q \) we obtain
\[
\sigma_{NNLO} = \sigma_{S}^{(2,0,\gamma)} \left\{ 1 + \Delta^{(0,Ax)} + C_F \left(\frac{\alpha_s}{2\pi} \right) \Delta^{(1,V_e)} \left(1 + \Delta^{(0,Ax)} \right) \right. \\
+ \Delta^{(2,V_e)} \left(1 + \Delta^{(0,Ax)} \right) + C_F \left(\frac{\alpha_s}{2\pi} \right)^2 \Delta^{(2,Ax)} \right\}. \tag{61}
\]

The Born cross section \(\sigma_{S}^{(2,0,\gamma)} \) is given in Eq. (29). We get for the terms \(\Delta^{(1,V_e)} \) and \(\Delta^{(2,V_e)} \) which arise from the one- and two-loop photon-exchange contributions, respectively:
\[
\Delta^{(1,V_e)} = \frac{6\zeta(2)}{\beta} - 8 + \mathcal{O}(\beta) , \tag{62}
\]
\[
\Delta^{(2,V_e)} = C_F \Delta_{A}^{(2,V_e)} + C_A \Delta_{NA}^{(2,V_e)} + N_T R \Delta_{L}^{(2,V_e)} + R \Delta_{H}^{(2,V_e)} , \tag{63}
\]
with
\[
\Delta_{A}^{(2,V_e)} = \frac{12\zeta^2(2)}{\beta^2} - \frac{48\zeta(2)}{\beta} + 24\zeta^2(2) - 4\zeta(2)\left(\frac{35}{3} - 8\ln 2 + 4\ln \beta\right) - 4\zeta(3) + 39
\]
\[+ \mathcal{O}(\bar{\beta}), \]
\[
\Delta_{N_A}^{(2,V_e)} = \frac{4\zeta(2)}{\beta}\left(\frac{31}{12} - \frac{11}{2}\ln(2\beta)\right) + 4\zeta(2)\left(\frac{179}{12} - 16\ln 2 - 6\ln \beta\right) - 26\zeta(3) - \frac{151}{9}
\]
\[+ \mathcal{O}(\beta), \]
\[
\Delta_{L}^{(2,V_e)} = \frac{4\zeta(2)}{\beta}\left(2\ln(2\beta) - \frac{5}{3}\right) + \frac{44}{9} + \mathcal{O}(\beta), \]
\[
\Delta_{H}^{(2,V_e)} = -\frac{32}{3}\zeta(2) + \frac{176}{9} + \mathcal{O}(\beta^2). \]

In the equations above, \(\zeta(2) = \pi^2/6\), \(C_A = N_c\), \(T_R = 1/2\), and \(N_f\) is the number of light quarks, which we take to be massless. For the threshold expansions of the terms \(\Delta_{i,Ax}^{(i,Ax)} (i = 0, 1, 2)\), involving \(Z\) boson exchange, we find:
\[
\Delta_{0,\text{Ax}} = \frac{s^2}{D_Z} \left\{ \frac{(a_e^2)^2 + (v^2_Z)^2}{(v^2_e v^2_Q)^2} \left[2 \frac{(a_e^2)^2}{1 - \frac{\beta^2}{3}} + (v^2_Z)^2 \right] + 2 \left(1 - \frac{m^2_Z}{s} \right) \frac{v^2_Z v^2_Q}{v^2_e v^2_Q} \right\}, \quad (68)
\]
\[
\Delta_{1,\text{Ax}} = \mathcal{O}(\beta^2), \quad (69)
\]
\[
\Delta_{2,\text{Ax}} = \frac{64\zeta(2)m^4_Q(a_Q^2)^2 [(v^2_e)^2 + (a_e^2)^2]}{(v^2_Q v^2_e)^2 (4m^2_Q - m^2_Z)^2} C_F + \mathcal{O}(\beta), \quad (70)
\]

where \(\hat{v}_f, \hat{a}_f\) are defined in Eq. (18). While the multiplicative factor \(\Delta_{0,\text{Ax}}^{(0,\text{Ax})}\) is given in exact form, the higher order terms are expanded to the appropriate order in \(\beta\) such that the NNLO cross section \(\sigma_{NNLO}\) is obtained to next-to-next-to-leading logarithmic order (NNLL) in \(\beta\). We observe:

(i) To NNLL in \(\beta\) the NNLO cross section is infrared-finite, i.e., the \(Q\bar{Q}\) cross section is equal to the total production cross section to this order. This is due to the fact that close to threshold, real gluon emission is suppressed by a velocity factor with respect to the \(Q\bar{Q}\) final state. The two-loop triangle diagrams, studied in [22], do not contribute to the cross section to this order in \(\beta\).

(ii) In the expansions of \(\Delta_{1,V_e}^{(1,V_e)}\) and \(\Delta_{2,V_e}^{(2,V_e)}\), IR divergences appear at \(\mathcal{O}(\beta)\) and \(\mathcal{O}(\beta^2)\), respectively. In the expansions of \(\Delta_{1,\text{Ax}}^{(1,\text{Ax})}\) and \(\Delta_{2,\text{Ax}}^{(2,\text{Ax})}\), such divergences show up to order \(\beta^4\) and \(\beta^3\), respectively.

(iii) The threshold cross section \(\sigma_{NNLO}\) was calculated to NNLL in \(\beta\) in the above energy region, for pure vector exchange, previously in [21] (see also [30]). Putting the axial vector couplings to zero in the above expressions and comparing with [21] we find agreement.

(iv) The first and second-order \(Z\)-boson exchange terms \(\Delta_{1,Ax}^{(1,Ax)}\) and \(\Delta_{2,Ax}^{(2,Ax)}\), involving the axial vector coupling \(a_Q\), are of order \(\beta^2\) and \(\beta^0\), respectively. \(\Delta_{2,Ax}^{(2,Ax)}\) is thus relevant for an analysis aiming at NNLO accuracy at threshold (counting \(\alpha_s \sim \beta\)). The analytic result for the axial-vector contribution at \(\mathcal{O}(\alpha_s^2)\), which can be obtained to all orders in \(\beta\) from [21] [22], has not been given before in the literature. The term \(\Delta_{2,Ax}^{(2,Ax)}\) is small compared to \(\Delta_{2,V_e}^{(2,V_e)}\), see Fig. 2.

Nevertheless, at a high luminosity linear collider with polarized e\(^-\) and e\(^+\) beams one may eventually be able to disentangle the vector and axial-vector induced contributions to the \(t\bar{t}\) process.
cross section. A numerical calculation of axial vector contributions in the context of Lippmann-Schwinger equations was performed in [31], and the axial-vector contribution to the threshold cross section at next-to-next-to-leading logarithmic order was determined in [28] by a combination of numerical and analytical calculations.

For completeness we mention that a summation of all terms of the form α_s^n/β^n should be performed when the region of small heavy-quark velocities $\beta \sim \alpha_s$ is approached. The result of the resummation of these leading terms (and of part of the subleading terms) is the well-known Sommerfeld-Sakharov factor (see, for instance [29]). Subleading terms may be resummed by the renormalization group [28] in the context of effective field theory methods. In this paper we are not concerned with these summation methods, as we consider only the region $\beta \gg \alpha_s$.

3.2 Antisymmetric cross section and A_{FB}

Next we perform the threshold expansion of the second-order antisymmetric cross section $\sigma_{NNLO}^{(A)} = \sigma_A^{(2p)}$, given in Eqs. (25) and (38) - (40), in the same manner as was done above for σ_{NNLO}, using the results of [20, 21, 22]. We obtain to NNLL in β:

$$\sigma_{NNLO}^{(A)} = \sigma_A^{(2,0)} \left\{ 1 + C_F \left(\frac{\alpha_s}{2\pi} \right) \Delta^{(A,1)} + C_F \left(\frac{\alpha_s}{2\pi} \right)^2 \Delta^{(A,2)} \right\},$$

(71)

where $\sigma_A^{(2,0)}$ is given in Eq. (38) and

$$\Delta^{(A,1)} = \frac{6\zeta(2)}{\beta} - 6 + \mathcal{O}(\beta),$$

$$\Delta^{(A,2)} = C_F \Delta_A^{(A,2)} + C_A \Delta_{NA}^{(A,2)} + N_f T_R \Delta_L^{(A,2)} + T_R \left(\Delta_H^{(A,2)} + \Delta_{tr}^{(A,2)} \right),$$

(72)
with

\[
\Delta_A^{(A,2)} = \left. \frac{12\zeta^2(2)}{\beta^2} - \frac{36\zeta(2)}{\beta} + 24\zeta^2(2) - 4\zeta(2) \left(\frac{25}{6} - \frac{25}{4} \ln 2 + \frac{9}{2} \ln \beta \right) - \frac{35}{4} \zeta(3) + \frac{70}{3} \right. + \mathcal{O}(\beta),
\]

\[
\Delta_{NA}^{(A,2)} = \frac{4\zeta(2)}{\beta} \left(\frac{16}{3} - \frac{11}{2} \ln (2\beta) \right) + \frac{4\zeta(2)}{\beta} \left(\frac{67}{6} - \frac{25}{2} \ln 2 - 4 \ln \beta \right) - \frac{35}{2} \zeta(3) - 14 + \mathcal{O}(\beta),
\]

\[
\Delta_L^{(A,2)} = \frac{4\zeta(2)}{\beta} \left(2 \ln (2\beta) - \frac{8}{3} \right) + 4 + \mathcal{O}(\beta),
\]

\[
\Delta_H^{(A,2)} = -\frac{32}{3} \zeta(2) + \frac{56}{3} + \mathcal{O}(\beta^2).
\]

(73)

(74)

(75)

(76)

The term \(\Delta_{tr}^{(A,2)}\) in Eq. (72) is the contribution of the triangle diagrams computed in [22]. It is infrared- and ultraviolet-finite. In the case of \(t\bar{t}\) production it is given by

\[
\Delta_{tr}^{(A,2)} = \zeta(2) \left(16 \ln 2 - \frac{23}{3} \right) - 8 \ln 2 + \frac{8}{3} \ln^2 2 + \mathcal{O}(\beta^2).
\]

(77)

Notice that the the second-order antisymmetric \(Q\bar{Q}\) cross section (71) is infrared-finite to NNLL in \(\beta\) and is equal to the total antisymmetric cross section in this order. The terms \(\Delta^{(A,1)}\) and \(\Delta^{(A,2)}\) become infrared-divergent to order \(\beta^2\) and \(\beta\), respectively.

Finally, the second-order forward-backward asymmetry is given near threshold by

\[
A_{FB}^{QQ} = A_{FB,0} C_{FB},
\]

where \(C_{FB}\) is the ratio of the curly bracket in Eqs. (71) and of the curly bracket in (61) divided by \((1 + \Delta^{(0,Ax)})\). To NNLL in \(\beta\) it is equal to the complete forward-backward asymmetry \(A_{FB}^{Q}\).

In Fig. 3 we have plotted the forward-backward asymmetry Eq. (78) to order \(\alpha_s^2\) for \(t\bar{t}\) production above threshold in the range \(0.2 \leq \beta \leq 0.5\), where \(C_{FB}\) is the ratio of two expressions expanded to NNLL in \(\beta\). The top mass and the other parameters were chosen as given in Eq. (79) below. A comparison with the exact second order asymmetry \(A_{FB}^{(tt)}\) will be made in Section 4.2.

4 Numerical Results

In this section we compute the \(Q\bar{Q}\) contributions to \(A_{FB}\) to order \(\alpha_s^2\) using the results of Section 2 and the analytic results for the one- and two-loop vector and type A and B axial vector form factors given in [20, 21, 22]. The numerical evaluation of the harmonic polylogarithms that appear in these expressions were made using the code of [34]. For \(b\) and \(c\) quarks the above formulae are evaluated at and in the vicinity of the \(Z\) resonance and for \(t\) quarks between \(2m_t < \sqrt{s} \leq 1\) TeV. The quark masses, whose values we use are given below, are defined in the on-shell scheme while \(\alpha_s\) is the QCD coupling in the \(\overline{\text{MS}}\) scheme. When calculating \(A_{FB}^{QQ}\) for \(b\) and \(c\) quarks around the \(Z\) resonance, \(\alpha_s\) is defined with respect to the effective \(N_f = 5\) flavor theory; that is, the top quark contribution to the gluon self-energy that enters the vector and
Figure 3: The forward-backward asymmetry $A_{FB}^{(tt)}$ to NNLL above the $t\bar{t}$ threshold in the range $0.2 \leq \beta \leq 0.5$ for $\mu = m_t$.

type A axial vector form factors to order α_s^2 is absent. The forward-backward asymmetry for top quarks is computed in the six-flavor theory with the corresponding six-flavor QCD coupling determined from the five-flavor coupling at the matching point $\mu = m_t$. We use the following input values [1]:

$$
m_c = 1.5 \text{ GeV}, \quad m_b = 5 \text{ GeV}, \quad m_t = 172.7 \pm 2.9 \text{ GeV},$$
$$m_Z = 91.1875 \text{ GeV}, \quad \Gamma_Z = 2.4952 \text{ GeV},$$
$$\sin^2 \theta_W = 0.23153, \quad \alpha_s^{N_f=5}(m_Z) = 0.1187. \quad (79)$$

The value of mass of the top quark is the recent CDF and D0 average [32]. For b and c quarks the type B axial vector contributions are evaluated with the central value of m_t given in (79).

In the following we denote $A_{FB}^{(Q\bar{Q})}$ evaluated to order α_s and α_s^2, respectively, by:

$$A_{FB}^{(Q\bar{Q})}(\alpha_s) = A_{FB,0}^{(Q\bar{Q})} \left(1 + A_1^{(Q\bar{Q})}\right),$$
$$A_{FB}^{(Q\bar{Q})}(\alpha_s^2) = A_{FB,0}^{(Q\bar{Q})} \left(1 + A_1^{(Q\bar{Q})} + A_2^{(Q\bar{Q},A)} + A_2^{(Q\bar{Q},B)}\right).$$

4.1 $A_{FB}^{(Q\bar{Q})}$ for b and c quarks at and in the vicinity of $\sqrt{s} = m_Z$

Let us first consider the b quark asymmetry. As it is to be computed for $\sqrt{s} \simeq m_Z$ we can safely neglect the masses of the $u,d,s,$ and c quarks which contribute to the second order form factors. (As already mentioned above, the t quark contribution to the gluon self-energy is decoupled.) The type B axial vector form factor $G_1^{(2\ell,B)}$ is non-zero due to the large mass splitting between
Table 1: The $b\bar{b}$ contributions to A_{FB} for bottom quarks at $\sqrt{s} = m_Z$.

t and b quarks, and to very good approximation one may neglect in these triangle diagram contributions the mass of the b quark. Therefore we use

$$G_{1}^{(2\ell,B)}(s) = G_{1}^{(2\ell,B)}(s, m_b = 0, m_b = 0) - G_{1}^{(2\ell,B)}(s, m_t, m_b = 0),$$

(80)

when evaluating Eq. (18), respectively (49), for the b quark. The functions on the right-hand side of (80), whose second and third argument denotes the mass of the quark in the loop and the mass of the external quark, respectively, are given in [33, 22]. (We use the notation of [22].)

Putting $\beta = 1$ in Eq. (49), our result for $A_{FB}^{(2p,B)}(s = m_Z^2)$ agrees with that of [12].

Table 1 contains the values for the lowest order forward-backward asymmetry at the Z resonance, together with the $b\bar{b}$ contributions to first and second order in α_s for three choices of the renormalization scale μ. The photon and $\gamma - Z$ interference contributions, which are (on the Z resonance) of higher order in the electroweak couplings, are not taken into account. Table 1 shows that the QCD corrections are dominated by the type B contributions; they are about three times as large as the order α_s and about nine times as large as the order α_s^2 corrections. This is due to the fact that we are close to the chiral limit, as $m_b/m_Z \ll 1$. In this limit the order α_s vector and axial vector form factors $F_{1}^{(1\ell)}$, $G_{1}^{(1\ell)}$, and the order α_s^2 vector and type A axial vector form factors $F_{1}^{(2\ell)}$, $G_{1}^{(2\ell,A)}$ become equal while the chirality-flipping form factors vanish. In this limit $A_{2}^{(QQ)}$ and $A_{2}^{(QQ,A)}$ vanish, too, as an inspection of the above formulae shows. Thus the QCD corrections are dominated by the type B contribution. As it turns out, it amounts to a correction of the lowest order asymmetry by only about one per mille.

In Fig. 4 the first and second order QCD corrections $A_{1}^{(bb)}$, $A_{2}^{(bb,A)}$, and $A_{2}^{(bb,B)}$, evaluated for $\mu = m_Z$, are shown between $88 \text{ GeV} < \sqrt{s} < 95 \text{ GeV}$. Here the contributions from photon exchange are included. Again the QCD corrections are dominated by the type B triangle diagram contributions. Varying the renormalization scale in the range $m_Z/2 \leq \mu \leq 2m_Z$ changes these numbers only by a small amount.

Next we consider the c quark asymmetry for $\sqrt{s} \simeq m_Z$. To very good approximation we can neglect the masses of the c and b quarks in their contribution to the gluon self-energy. Here the type B axial vector form factor $G_{1}^{(2\ell,B)}$ is again determined by the large mass splitting between t and b quarks. In view of the convention adopted in Eq. (17), where the neutral current couplings of the external quark are factored out, we use now

$$G_{1}^{(2\ell,B)}(s) = G_{1}^{(2\ell,B)}(s, m_t, m_c = 0) - G_{1}^{(2\ell,B)}(s, m_b = 0, m_c = 0),$$

(81)

when applying Eq. (18), respectively (49), to the c quark. Again we put $\beta = 1$ in these equations. Eq. (81) is equal in magnitude but opposite in sign to Eq. (80).

Table 2 contains the values for the lowest order c quark forward-backward asymmetry at the Z resonance – without the γ and $\gamma - Z$ contributions –, together with the $c\bar{c}$ contributions to first
Table 2: The $c\bar{c}$ contributions to A_{FB} for charm quarks at $\sqrt{s} = m_Z$.

and second order in α_s for three choices of the renormalization scale μ. The QCD corrections are dominated again by the type B term, which in this case is about two per mille of the leading order asymmetry. The increase by a factor of about two as compared to the b quark results from the fact that $|v_Z^c| < |v_Z^b|$, c.f. Eq. (49).

In Fig. 4 the first and second order QCD corrections $A_1^{(cc)}$, $A_2^{(cc,A)}$, and $A_2^{(cc,B)}$, evaluated for $\mu = m_Z$, are shown between $88 \text{ GeV} < \sqrt{s} < 95 \text{ GeV}$, including the contributions from photon exchange. For c quarks, too, the QCD corrections are dominated by the type B triangle diagram contributions.

In Fig. 6 the $b\bar{b}$ and $c\bar{c}$ forward-backward asymmetries to order α_s^2, $A_1^{(bb)} (\alpha_s^2)$ and $A_2^{(cc)} (\alpha_s^2)$ are displayed between $88 \text{ GeV} < \sqrt{s} < 95 \text{ GeV}$, using $\mu = m_Z$. Figs. 4, 5 show that the order α_s^2 asymmetry is increased, in the case of b quarks, by about one per mille and decreased, in the case of c quarks, by about two per mille of the respective lowest order asymmetry in the whole energy range considered. Varying the renormalization scale in the range $m_Z/2 \leq \mu \leq 2m_Z$ changes the asymmetries shown in Fig. 6 only by a very small amount.

The complete forward-backward asymmetry to order α_s^2 for b and c quarks at and in the vicinity of the Z resonance is dominated by the respective three- and four-parton contributions.
Figure 5: First and second order QCD corrections $A_{1}^{(c\bar{c})}$ (dashed), $A_{2}^{(c\bar{c},A)}$ (dotted), and $A_{2}^{(c\bar{c},B)}$ (solid) for $\mu = m_Z$ in the vicinity of the Z resonance.

Figure 6: $A_{V\bar{B}}^{(b\bar{b})}(\alpha_s^2)$ (solid) and $A_{V\bar{B}}^{(c\bar{c})}(\alpha_s^2)$ (dashed) for $\mu = m_Z$ in the vicinity of the Z resonance.
A complete computation of these terms to order α_s^2 has not yet been done for $m_b, m_c \neq 0$. Nevertheless, we expect that the respective results of [14], which were obtained in the massless limit, will not change dramatically.

4.2 $A_{FB}^{(t\bar{t})}$ for top quarks above threshold

Finally we compute the $t\bar{t}$ contributions to the forward-backward asymmetry in the reaction $e^+e^- \to t\bar{t}X$, sufficiently far away from the pair production threshold in order that perturbation theory in α_s is applicable. That is, the following results apply to events with t and \bar{t} velocities $\beta \gg \alpha_s$. As already stated above, α_s is defined in the six flavor QCD, with all quarks but the top quark taken to be massless. The value of $\alpha_s(\mu = m_t)$ is determined from the input value \[\alpha_s \] of \[\text{[22]} \], and values of α_s at other energy scales are obtained by two-loop renormalization group evolution. Most of the results below are presented for three values of the top quark mass: the present central and 1 s.d. upper and lower values 172.7 GeV, 175.6 GeV, and 169.8 GeV, respectively. The type B contribution to $A_{FB}^{(t\bar{t})}$, Eq. \[\text{[48]} \], is computed with the two-loop axial vector form factor

$$G_1^{(2\ell,B)}(s) = G_1^{(2\ell,B)}(s, m_t, m_t) - G_1^{(2\ell,B)}(s, m_b = 0, m_t).$$

which is given in \[\text{[22]} \].

In the following we consider the energy range $360 \text{ GeV} \leq \sqrt{s} \leq 1 \text{ TeV}$. In Fig. the leading order asymmetry $A_{FB,0}^{(t\bar{t})}$ is shown for three values of the top quark mass. In Figs. and the order α_s correction $A_1^{(t\bar{t})}$ is displayed for three values of the renormalization scale μ and fixed top quark mass, and for three values of m_t and fixed μ, respectively. The analogous cases are shown in Figs. and for the order α_s^2 correction $A_2^{(t\bar{t},A)}$. The triangle diagram contributions

Figure 8: Order α_s correction $A_1^{(t\bar{t})}$ for three values of the renormalization scale μ, using $m_t = 172.7$ GeV.

Figure 9: Order α_s correction $A_1^{(t\bar{t})}$ for three values of the top quark mass, using $\mu = \sqrt{s}$.

Figure 10: Order α_s^2 correction $A_2^{(t\bar{t},A)}$ for three values of the renormalization scale μ, using $m_t = 172.7$ GeV.

Figure 11: Order α_s^2 correction $A_2^{(t\bar{t},A)}$ for three values of the top quark mass, using $\mu = \sqrt{s}$.
Figure 12: Order α_s^2 correction $A_2^{(t\bar{t},B)}$ for three values of the renormalization scale μ, using $m_t = 172.7$ GeV.

Figure 13: Order α_s^2 correction $A_2^{(t\bar{t},B)}$ for three values of the top quark mass, using $\mu = \sqrt{s}$.
Figure 14: Forward-backward asymmetry $A_{FB}^{(t)}(\alpha_s^2)$ for three values of the renormalization scale μ, using $m_t = 172.7$ GeV.

Figure 15: Forward-backward asymmetry $A_{FB}^{(t)}(\alpha_s^2)$ for three values of the top quark mass, using $\mu = \sqrt{s}$.

22
Figure 16: Forward-backward asymmetry to lowest, first and second order in α_s using $m_t = 172.7$ GeV and $\mu = \sqrt{s}$. $A_{FB,0}^{(t\bar{t})}$ (dashed), $A_{FB}^{(t\bar{t})}(\alpha_s)$ (dotted), $A_{FB}^{(t\bar{t})}(\alpha_s^2)$ (solid).

$A_{FB}^{(t\bar{t},B)}$ are given in Fig. 12 and Fig. 13 for three values of μ and m_t, respectively. From these figures we conclude that the two-parton QCD corrections to the lowest order asymmetry are moderate to small for $\sqrt{s} \geq 400$ GeV. At $\sqrt{s} = 400$ GeV, $A_1^{(t\bar{t})}$ is about 3.3 percent while $A_2^{(t\bar{t},A)}$ is about 2.4 percent. As expected, the relative importance of the order α_s^2 corrections increases as the centre-of-mass energy approaches the threshold region: for $\sqrt{s} \simeq 360$ GeV, $A_2^{(t\bar{t},A)}$ is larger than $A_1^{(t\bar{t})}$, signaling that perturbation theory in α_s is no longer applicable. Contrary to the case of b and c quarks at the Z resonance the two-loop type B contributions are two orders of magnitude smaller than $A_2^{(t\bar{t},A)}$.

Figs. 14 and 15 show the forward-backward asymmetry $A_{FB}^{(t\bar{t})}(\alpha_s^2)$ for three values of the renormalization scale and three values of the top quark mass, respectively. The dependence of the second order asymmetry on μ is small: changing μ from $\sqrt{s}/2$ to $2\sqrt{s}$ changes $A_{FB}^{(t\bar{t})}(\alpha_s^2)$, for fixed m_t, only by about 1 percent at $\sqrt{s} \gtrsim 360$ GeV, and this dependence on μ decreases with increasing c. m. energy.

In Fig. 16 the $t\bar{t}$ asymmetry is displayed to lowest, first, and second order in α_s. This figure shows that for c. m. energies sufficiently away from threshold the QCD corrections are under control.

Finally, a comparison is made in Fig. 17 between the exact second order forward-backward asymmetry $A_{FB}^{(t\bar{t})}(\alpha_s^2)$ as given in Fig. 16 and the values obtained from the near-threshold NNLL formula Eq. (78). For $\sqrt{s} \lesssim 360$ GeV corresponding to $\beta \lesssim 0.3$ the deviation of the NNLL from the respective exact value is less than 5 percent.
Future experiments on heavy-quark production at a planned linear e^+e^- collider aim at very precise measurements of the neutral-current couplings of these quarks. An important observable for this purposes is the forward-backward asymmetry A_{FB}^Q in inclusive heavy quark production, $e^+e^- \rightarrow \gamma^* \rightarrow Q + X$. The projected accuracies with which A_{FB}^Q can be measured in future b or t quark production requires also the precise determination of these observables within the Standard Model. In particular, a computation of the order α_s^2 QCD contributions to A_{FB}^Q for massive quarks is mandatory.

In view of these perspectives we have calculated the contribution of the $Q\bar{Q}$ final state to A_{FB}^Q in NNLO QCD. As discussed above, and explicitly shown for the $Q\bar{Q}$ final state, the contributions of the two-parton and of the three- plus four-parton states to the second-order forward-backward asymmetry are separately infrared-finite. We have provided formulae for the symmetric and antisymmetric $Q\bar{Q}$ cross sections σ_S and σ_A which yield $A_{FB}^{Q\bar{Q}}$. These formulae hold for any center-of-mass energy. Specifically, in the energy region near threshold where the quark velocity β satisfies $\alpha_s \ll \beta \ll 1$, we have expanded the order α_s and α_s^2 QCD corrections to σ_S and σ_A to NNLL in β. To this order in β the $Q\bar{Q}$ cross sections are equal to the corresponding total cross sections. Therefore, an (analytic) expression is obtained for the forward-backward asymmetry A_{FB}^Q to order α_s^2 and order β near threshold.

Moreover, we have computed the two-parton forward-backward asymmetry $A_{FB}^{Q\bar{Q}}$ for b and c quarks on and near the Z-boson resonance and for t quarks for center-of-mass energies \sqrt{s} above threshold to 1 TeV. The two-parton asymmetry is determined by the heavy-quark vector and axial vector form factors. To order α_s^2 the axial vector form factors receive besides type
A (universal) corrections also triangle diagram contributions resulting from the large mass splitting between t and b quarks. These triangle diagram terms dominate, for $\sqrt{s} \sim m_Z$, the QCD corrections from the $Q\bar{Q}$ final state to A_{FB}^t and A_{FB}^c. This is due to the fact that here one is close to the chiral limit. However, the complete order α_s^2 QCD corrections to these asymmetries are dominated by the contributions from the three- and four-parton final states, which were calculated so far only for massless quarks \cite{14}. For top quarks the triangle diagram contributions to A_{FB}^t are negligible compared to the type A corrections. These corrections from the $t\bar{t}$ final state to the lowest order asymmetry are moderate for large \sqrt{s} and increase in size towards threshold. The order α_s^2 corrections are important, as the analysis in Section 4.2 shows.

We plan to determine in the near future also the contribution of the three- and four parton-final states to the order α_s^2 forward-backward asymmetry for massive quarks.

Acknowledgment

This work was supported by Deutsche Forschungsgemeinschaft (DFG), SFB/TR9, by DFG-Graduiertenkolleg RWTH Aachen, by the Swiss National Science Foundation (SNF) under contract 200020-109162, by the European Union under the contract HPRN-CT2002-00311 (EU-RIDICE), by a European Commission Marie Curie Fellowship under contract number MEIF-CT-2006-024178, by MCYT (Spain) under Grant FPA2004-00996, by Generalitat Valenciana (Grants GRUPOS03/013 and GV05/015), and by the USA DoE under the grant DE-FG03-91ER40662, Task J.

References

[1] [LEP and SLD Collaborations], “Precision electroweak measurements on the Z resonance,” hep-ex/0509008.
[2] D. Abbaneo et al. [LEP Heavy Flavor Working Group], Eur. Phys. J. C 4 (1998) 185.
[3] J. A. Aguilar-Saavedra et al. [ECFA/DESY LC Physics Working Group Collaboration], “TESLA Technical Design Report Part III: Physics at an e^+e^- Linear Collider”, DESY-report 2001-011 (hep-ph/0106315).
[4] R. Hawking and K. Mönig, Eur. Phys. J. direct C 1 (1999) 8 [hep-ex/9910022].
[5] J. Erler, S. Heinemeyer, W. Hollik, G. Weiglein and P. M. Zerwas, Phys. Lett. B 486 (2000) 125 [hep-ph/0005024].
[6] M. Böhm et al., “Forward - Backward Asymmetries,” in: CERN Yellow Report “Z Physics at LEP 1”, CERN 89-08 (1989), G. Altarelli et al. (eds.).
[7] D. Y. Bardin, P. Christova, M. Jack, L. Kalinovskaya, A. Olchevski, S. Riemann and T. Riemann, Comput. Phys. Commun. 133 (2001) 229 [hep-ph/9908433].
[8] A. Freitas and K. Mönig, Eur. Phys. J. C 40 (2005) 493 [hep-ph/0411304].
[9] J. Jersak, E. Laermann and P. M. Zerwas, Phys. Rev. D 25 (1982) 1218 [Erratum-ibid. D 36 (1987) 310].
[10] B. Arbuzov, D. Y. Bardin and A. Leike, *Mod. Phys. Lett.* A 7 (1992) 2029 [Erratum-ibid. A 9 (1994) 1515].
[11] A. Djouadi, B. Lampe and P. M. Zerwas, *Z. Phys.* C67 (1995) 123 [hep-ph/9411386].
[12] G. Altarelli and B. Lampe, *Nucl. Phys.* B391 (1993) 3.
[13] V. Ravindran and W. L. van Neerven, *Phys. Lett.* B445 (1998) 214. [hep-ph/9809411].
[14] S. Catani and M. H. Seymour, *JHEP* 07 (1999) 023 [hep-ph/9905424].
[15] W. Bernreuther, A. Brandenburg and P. Uwer, *Phys. Rev. Lett.* 79 (1997) 189 [hep-ph/9703305]; A. Brandenburg and P. Uwer, *Nucl. Phys.* B515 (1998) 279 [hep-ph/9708350].
[16] G. Rodrigo, A. Santamaria and M. S. Bilenky, *Phys. Rev. Lett.* 79 (1997) 193 [hep-ph/9703358]; *Nucl. Phys.* B554 (1999) 257 [hep-ph/9905276].
[17] P. Nason and C. Oleari, *Phys. Lett.* B 407 (1997) 57 [hep-ph/9705295]; *Nucl. Phys.* B521 (1998) 237, [hep-ph/9709360].
[18] W. Bernreuther, A. Brandenburg and P. Uwer, hep-ph/0008291.
[19] A. Gehrmann-De Ridder, T. Gehrmann and E. W. N. Glover, *JHEP* 0509 (2005) 056 [hep-ph/0505111].
[20] W. Bernreuther, R. Bonciani, T. Gehrmann, R. Heinesch, T. Leineweber, P. Mastrolia and E. Remiddi, *Nucl. Phys.* B 706, 245 (2005) [hep-ph/0406046].
[21] W. Bernreuther, R. Bonciani, T. Gehrmann, R. Heinesch, T. Leineweber, P. Mastrolia and E. Remiddi, *Nucl. Phys.* B 712 (2005) 229 [hep-ph/0412259].
[22] W. Bernreuther, R. Bonciani, T. Gehrmann, R. Heinesch, T. Leineweber and E. Remiddi, *Nucl. Phys.* B 723 (2005) 91 [hep-ph/0504190].
[23] S. Catani, *Phys. Lett.* B 427 (1998) 161 [hep-ph/9802439].
[24] G. Sterman and M. E. Tejeda-Yeomans, *Phys. Lett.* B 552 (2003) 48 [hep-ph/0210130].
[25] D. R. Yennie, S. C. Frautschi and H. Suura, *Annals Phys.* 13 (1961) 379.
[26] S. Catani, S. Dittmaier and Z. Trocsanyi, *Phys. Lett.* B 500 (2001) 149 [hep-ph/0011222].
[27] M. Beneke, A. Signer and V. A. Smirnov, *Phys. Lett.* B 454 (1999) 137 [hep-ph/9903260].
[28] A. H. Hoang, A. V. Manohar, I. W. Stewart and T. Teubner, *Phys. Rev.* D 65 (2002) 014014 [hep-ph/0107144].
[29] A. Czarnecki and K. Melnikov, *Phys. Rev. Lett.* 80 (1998) 2531 [hep-ph/9712222].
[30] A. H. Hoang, *Phys. Rev.* D 56 (1997) 7276 [hep-ph/9703404].
[31] J. H. Kühn and T. Teubner, *Eur. Phys. J.* C 9 (1999) 221 [hep-ph/9903322].
[32] The Tevatron Electroweak Working Group, J.F. Arguin et al., “Combination of CDF and D0 results on the top-quark mass,” hep-ex/0507091.
[33] B. A. Kniehl and J. H. Kühn, *Nucl. Phys.* B 329, 547 (1990).
[34] T. Gehrmann and E. Remiddi, *Comput. Phys. Commun.* 141 (2001) 296 [hep-ph/0107173]; D. Maître, *Comput. Phys. Commun.* 174 (2006) 222 [hep-ph/0507152].