A visible light active Bi$_{0.9}$Ho$_{0.1}$FeO$_3$/TiO$_2$ composite thin films with different mol.% of Bi$_{0.9}$Ho$_{0.1}$FeO$_3$ were successfully prepared via non-aqueous sol-gel method. The incorporation of 5, 10 and 20 mol.% Bi$_{0.9}$Ho$_{0.1}$FeO$_3$ nanoparticles in the precursor solution of TiO$_2$ brings modifications in the functional properties of the composite thin films. XPS analysis indicates that interdiffusion of Fe$^{3+}$, Ho$^{3+}$, Bi$^{3+}$/Ti$^{4+}$ ions through the interfaces between Bi$_{0.9}$Ho$_{0.1}$FeO$_3$ nanoparticles and TiO$_2$ matrix reduces the concentration of Ti$^{3+}$ ions. X-ray diffraction analysis affirms that TiO$_2$ and Bi$_{0.9}$Ho$_{0.1}$FeO$_3$ retain anatase and orthorhombic phase respectively in composite films. The composite thin film containing 20 mol.% Bi$_{0.9}$Ho$_{0.1}$FeO$_3$ nanoparticles exhibits the most prominent absorption phenomenon in visible region and has significantly reduced indirect band gap of 2.46 eV compared to that of pure TiO$_2$ (3.4 eV). Hall effect measurements confirm that the resistivity of composite film increases by \sim2.33 orders of magnitude and its carrier concentration decreases by 1.8 orders of magnitude at 5 mol.% Bi$_{0.9}$Ho$_{0.1}$FeO$_3$ nanoparticles addition compared to those of pure TiO$_2$ film. Moreover, the pure film exhibits diamagnetism, whereas the composite films have both large ferromagnetic and small diamagnetic components. The findings in this research justify that the composite film can be a potential candidate for making improved photocatalyst, resistors and spintronic devices.

TiO$_2$ powder or thin film has been comprehensively investigated due to their excellent photo-chemical stability, low cost and non-toxicity1. However, pure TiO$_2$ responds only to ultraviolet (UV) light which comprises only 4% of the total sunlight. The absorption occurs in the UV light due to large band gap (3.2 eV) which eventually restricts its practical application in degradation of organic pollutants such as dyes, detergents and pesticides etc$^{1-4}$. Because of diamagnetism and low resistivity, TiO$_2$ has become a concern in the field of spintronics, resistors, sensors and multistate memory devices5,6. These limitations have galvanized endeavors to enhance photocatalytic activity, induce magnetism and raise resistivity of TiO$_2$.

One of the attempts is to substitute a portion of the titanium with different electropositive atoms. Transition metals (e.g. Fe, Mn and Cr etc) are the most commonly used constituents that induce visible light absorption$^2-4$. Besides, transition metal (TM) doped TiO$_2$ has exhibited improved ferromagnetism at room temperature7,8. Moreover, Mn and Fe dopants in TiO$_2$ have increased the resistivity significantly7,8. Another endeavor involves substitution of oxygen with electronegative atoms (N, C and S) which aids TiO$_2$ to absorb visible light efficiently9. However, the introduction of substitutional elements creates scattering centers which decrease the photochemical activity. It has been reported that substitutional TM serves as a center for charge carrier recombination1. Besides, it has been controversial as to whether Co or Fe doped TiO$_2$ is a true magnetic semiconductor or if the effect is due to the clustering of a ferromagnetic second phase10,13. Indeed, according to these reports doped TiO$_2$ has failed to exhibit magnetism to any greater extent.

Since, the physical quantities like electrical, magnetic, and optical properties come in the category of sum or product properties, many have tried to make composites of TiO$_2$ to utilize this criteria12,13. Magnetic properties
have been improved by the fabrication of TiO$_2$/Fe$_3$O$_4$/SiO$_2$ or Fe$_2$O$_3$-TiO$_2$ composites. Similarly, the nanostructured ZnO/TiO$_2$ has been found to improve the optical properties, even though, ZnO is a wide band gap semiconductor. Nowadays, the visible light activity of TiO$_2$ is increased by coupling it with other narrow band gap semiconductors. The proposition is that coupled semiconductors form a hetero-junction structure which can transfer electrons from an excited small band gap semiconductor to the other attached one in the case of proper band potentials. In$_2$O$_3$/BiFeO$_3$/TiO$_2$ heterostructures have been reported for showing better visible light activity. Multiferroic BiFeO$_3$ (BFO) deserves a special mention for its narrow band gap (2.2 eV) and chemical stability which have made it a suitable visible-light responsive photocatalyst. The coupling of TiO$_2$ with BFO has been accomplished through different synthesis processes. For instance, core-shell structured BFO/TiO$_2$ by hydrolysis precipitation approach, deposition of TiO$_2$ on ferroelectric BFO substrate by pulsed laser deposition, growth of TiO$_2$ nanofibers on BFO nanoparticles by electrophoresing. These reports focus on enhancing visible light activity of TiO$_2$. Subsequently, several studies ponder on improving electrochemical energy storage capacity and solar energy conversion efficiency of titania by anchoring BFO nanoparticles on TiO$_2$.

The magnetic and electrical properties (e.g. resistivity, carrier concentration and mobility) still remain unreported with BFO nanoparticles due to its various limitations. Literature survey indicates that BFO nanoparticles are antiferromagnetic and have higher leakage current due to formation of oxygen vacancies (OVs). Recently, doping with tri-positive rare-earth ions (R$^{3+}$) at the Bi site has been proposed to mitigate some of the issues mentioned above. Previous reports suggest that 10 mol.% Holmium (Ho$^{3+}$) doping at Bi site increases the magnetization by 6 times and exhibits higher resistivity compared to pure BFO. Since Ho$^{3+}$ is a rare earth metal it is expected that Bi$_2$O$_3$:Ho$_{0.1}$Fe$_{0.9}$O$_3$ (BHF0) nanoparticles will have better absorbance in the visible region and lower band gap than BFO. The aforementioned advantages make BHFO nano particles a good candidate for incorporation in TiO$_2$.

TiO$_2$ thin film is better candidate for spintronics, sensors and magnetic memory devices creating faster, smaller and more energy efficient devices compared to titania nanoparticles, nanowire, nanorod or nanofiber. Both undoped and doped TiO$_2$ thin films have been of immense interest due to their enhanced photocatalytic activity, better electrical properties and room temperature ferromagnetism. To the best of our knowledge the optical, magnetic and electrical properties based on incorporation of BHFO nanoparticles in TiO$_2$ thin film have not been explored yet. Herein motivated by the above concerns, BHFO nanoparticle/TiO$_2$ composite thin films were prepared by non-aqueous sol-gel method and their structural, magnetic, optical and electrical properties were investigated in detail. The current study revealed that composite thin films could be a more efficient visible light absorber than pure TiO$_2$. Furthermore room temperature magnetism and improved electrical properties of this composite thin films have been found.

Experimental Section

Materials. Bismuth nitrate pentahydrate (Bi(NO$_3$)$_3$·5H$_2$O, Merck -India), iron nitrate nonahydrate (Fe(NO$_3$)$_3$·9H$_2$O, Merck-India), holmium nitrate pentahydrate (Ho(NO$_3$)$_3$·5H$_2$O, Sigma Adrich-USA), citric acid (C$_6$H$_8$O$_7$, Merck -India) and ethylene glycol (C$_2$H$_6$O$_2$, Merck -India) were used for the synthesis of BHFO nanoparticles. In this case, C$_6$H$_8$O$_7$ acted as the chelating agent to complex the metal cations and C$_2$H$_6$O$_2$ was added via an esterification reaction. The solutions of pure TiO$_2$ thin film and BHFO nanoparticles/TiO$_2$ composite thin films were prepared using titanium(IV) n-butoxide (Ti(O-nBu)$_4$, Aldrich-USA) as precursor and n-butyl alcohol (n-BuOH, Merck-India) as solvent. Besides, acetylacetone (C$_5$H$_8$O$_2$, Loba chemie) was added in the solution as chelating agent to decrease the reactivity of Ti(O-nBu)$_4$. Glacial acetic acid (CH$_3$COOH, Qualikems) was used further to begin hydrolysis via an esterification reaction.

Synthesis of BHFO nanoparticles. BHFO nanoparticles were synthesized using a modified sol-gel method described elsewhere. Shorty, for a typical 1 g BHFO powder synthesis process stoichiometric proportion of Bi(NO$_3$)$_3$·5H$_2$O (0.003 mol), Fe(NO$_3$)$_3$·9H$_2$O (0.0033 mol), Ho(NO$_3$)$_3$·5H$_2$O (0.00033 mol), C$_6$H$_8$O$_7$ (0.0067 mol) and C$_2$H$_6$O$_2$ (10 mol) were dissolved in 400 ml deionized water. Subsequently this solution was heated under continuous stirring at 75–85 °C for 4 h to obtain gel. The gel was dried at 100 °C for 24 h in a drier to obtain precursor xerogel. The ground precursor xerogel powders were annealed at 500 °C with a heating rate of 3 °C/min to obtain BHFO nanoparticles. BHFO pellets (thickness 0.11 cm and diameter = 1.3 cm) were prepared by mixing precursor xerogel powders with PVA binder followed by pressing (5 tons pressure) and annealing at 500 °C with a heating rate of 3 °C/min to measure electrical properties.

Preparation of pure TiO$_2$ thin films and BHFO nanoparticles/TiO$_2$ composite thin films. The detail synthesis process of pure TiO$_2$ thin film is delineated elsewhere. Briefly, first n-BuOH (0.0884 mol) and C$_2$H$_6$O$_2$ (0.0015 mol) were mixed and, then TiO(n-Bu)$_4$ (0.005 mol) was added to the solution. Subsequently this mixture was stirred for 30 min at room temperature. CH$_3$COOH (0.001 mol) was slowly added into the alkoxide solution and stirred continuously for another 30 min. Concentration of the final solution was 0.5 M and its color was yellowish.

Thin films containing 5 mol.% BHFO (marked as T98B5), 10 mol.% BHFO (marked as T98B10) and 20 mol.% BHFO (marked as T98B20) were prepared using non aqueous sol-gel method. To synthesize composite films, molar amount of n-BuOH, C$_2$H$_6$O$_2$, TiO(n-Bu)$_4$ and CH$_3$COOH was kept similar as that of pure thin film. Firstly 0.0442 mol of n-BuOH was taken and calculated amount of BHFO nanoparticles was mixed into it for every composite film. The whole mixture was dispersed vigorously in an ultrasonic bath for 30 min to avoid the aggregation of BHFO nanoparticles. Then C$_2$H$_6$O$_2$, TiO(n-Bu)$_4$ and rest of n-BuOH (0.0442 mol) were added into this mixture and it was stirred for 30 min on a stirring plate at room temperature. This mixture was then taken into ultrasonic
bath in which CH₃COOH was added dropwise. The final mixture was under intensive stirring for 2 h in an ultrasonic bath. The prepared mixture eventually turned into brownish color.

The brownish and yellowish solutions were spin-coated onto the 2.5 × 2 cm² glass substrate at 2000 rpm for 30 s and dried at 200 °C for 10 mins. During coating brownish solution was in stirring state continuously so that BHFO nanoparticles did not settle down. Micro pipette was used to ensure that specific amount of solution was taken every time. The spin-coating and drying processes were repeated three times. The pure and composite films were annealed in static air at 500 °C for 2 h with a heating rate of 3 °C/min.

Characterization. XPS measurements were carried out on the PHI Quantera II spectrometer and peak fitting was performed by Origin Pro. XRD (PANalytical Empyrean X-Ray Diffractometer system) was used for phase analysis of nanoparticles and thin films utilizing a Cu x-ray source (wavelength: Kα₁ = 1.540598 Å and Kα₂ = 1.544426 Å). Rietveld refinement was done using FULLPROF software. Field emission scanning electron microscope (FESEM: JEOL, JSM, 7600F) was employed to monitor the morphologies of nanoparticles and thin films and to determine the thickness of these thin films. Energy dispersive X-ray spectroscopy (EDS) was used for mapping the elements present in the thin films. The optical properties were evaluated using UV/Vis/NIR spectrometric measurements (Perkin Elmer, Lambda 1050). To measure the magnetic property of the thin films, 5 mm × 5 mm size sample was cut from every thin film substrate. Electrical characterizations of nanoparticles were carried out by coating both sides of the pellet with silver paste and its conductivity was measured using Precision Materials Analyzer (Radiant Technologies, Inc.: P-PMF, PMF0215-377). Hall measurement was carried out using the van der Pauw configuration (HMS-3300). The four points contacts were made by indium tin alloy soldering which enabled us to obtain the carrier concentration, resistivity and mobility of thin films. The room temperature magnetic property was determined by vibrating sample magnetometer (VSM: EV-9 Microsense).

Results and Discussion
The chemical composition and electronic structure of the as synthesized BHFO, TiO₂, and T80B20 was determined by performing XPS analysis. Figure 1(a) depicts the XPS survey spectrum which clearly shows the presence of all the main constituent elements like Ti, Bi and O. Here, all the spectra were corrected for the C 1s peak appeared at 284.6 eV. However, Fe 2p peaks near 720 eV were not easily detectable by XPS nonetheless the EDX analysis (see Fig. S4) suggests the abundance of Fe in composite thin films. The low sensitivity of Fe to XPS analysis may lead to its absence in the survey spectra. However, the high resolution XPS scanning of BHFO nanoparticle depicts the peak corresponding to Fe having low intensity compared to other elements see Fig. S1. The high resolution elementary XPS peaks of Ti 2p and O 1s core levels observed for TiO₂, T80B20 and BHFO after curve-fitting are presented in Fig. 1(b–f). The binding energies of the Ti 2p₃/₂ and Ti 2p₁/₂ are found to be nearly 458.4 and 464.1 eV respectively, giving a spin orbit splitting of −5.7 eV between the two core levels, which corresponds to the 4+ oxidation state of Ti in anatase phase. Moreover, the appearance of extra peaks at around 457.8 eV and 463.3 eV

Figure 1. (a) XPS survey spectra of BHFO nanoparticles, TiO₂ film and T80B20 composite thin film. (b,c) Ti 2p spectra of TiO₂ and T80B20. (d-f) O 1s spectra of BHFO, TiO₂ and T80B20.
confirms the presence of Ti$^{3+}$.31 The peak position of Ti 2p in T80B20 has shifted negligibly. It is important to note here that the peak areas ratio for Ti$^{3+}$ to Ti$^{4+}$ given by \((\text{Ti}^{3+}\text{2p}_{3/2} + \text{Ti}^{3+}\text{2p}_{1/2})\text{Area}/(\text{Ti}^{2p}_{3/2} + \text{Ti}^{2p}_{1/2})\text{Area})\) in TiO2 and T80B20 are 0.348 and 0.231 respectively. The diminishment of the area ratio in T80B20 implies that the concentration of Ti$^{3+}$ has decreased. The interdiffusion of A$^{3+}$ (here A$^{3+}$ represents Bi$^{3+}$, Fe$^{3+}$ and/or Ho$^{3+}$) from BHFO to TiO2 across the interface could lead to a reduction in the concentration of Ti$^{3+}$ ion. The substitution of Ti$^{4+}$ in TiO2 by A$^{3+}$ generates holes to maintain charge neutrality which oxidizes an existing Ti$^{3+}$ to Ti$^{4+}$ according to the following reactions decreasing the density of electron hopping sites.

\[
\text{A}^{3+} + \text{TiO}_2 \rightarrow \text{A}^{4+} + h^* \tag{1}
\]

\[
\text{Ti}^{3+} + h^* = \text{Ti}^{4+} \tag{2}
\]

Combining Equations (1,2)

\[
\text{A}^{3+} + \text{Ti}^{3+} + \text{TiO}_2 \rightarrow \text{A}^{4+} + \text{Ti}^{4+} \tag{3}
\]

Figure 1(d) displays the XPS spectra of O 1s for BHFO, which can be deconvoluted into two peaks at around 529.4 eV and 531 eV. The lower binding energy peak is affiliated with the intrinsic O 1s core spectra and the higher energy peak is attributed to the oxygen vacant sites in BHFO. The XPS spectrum of O 1s core level for TiO2, as shown in Fig. 1(e), can also be de-convoluted into two symmetric Gaussian peaks centered at 529.6 and 532.2 eV.22 The low binding energy peak at 529.6 eV of O 1s can be assigned to the $^{−2}$ oxidation state of oxygen.31 The enhancement of peak intensity at around 532 eV can be ascribed to the presence of both the oxygen vacancy related defects (OV) and the hydroxyl group (OH$^−$) together in T80B20.22 The appearance of OH$^−$ in TiO2 is normal since it is potential photocatalyst.2,4 It is noteworthy here that the ratio of the two peak areas (OV/OH$^−$)Area/(O 1s)Area in TiO2 and T80B20 are 1.83 and 2.20 respectively. The increment in area ratio could be due to an increment in OH$^−$ group concentration in T80B20.22 This indicates that the composite film could be a better candidate for making improved photocatalyst than many other ceramic thin films.

Figure 2 shows room temperature XRD patterns of nanoparticles, pure thin film and composite thin films. The obtained pattern of TiO2 as depicted in Fig. 2(a) shows satisfactory correspondence with anatase phase. The diffraction peaks at θ = 25.2° (101), 37.8° (004), 48.0° (200), 53.9° (105) and 55.1° (211) are matched well with the standard diffraction data of tetragonal crystal structure of TiO2.32 Thus, it is confirmed that the annealed TiO2 film deposited on glass substrates has anatase phase with no trace of other polymorphs of TiO2 (e.g., rutile and brookite).

On the other hand, XRD pattern of BHFO as shown in Fig. 2(e) is in line with previous report of Ho$^{3+}$ doped BFO ceramics.33 In addition to the desired spectra one extra peak [marked by asterisk (•)] becomes visible which indicates the presence of impurity phase. To uncover the crystal structure and the impurity phase, Rietveld refinement of BHFO was carried out using the FULLPROF software.29 The refinement corroborates that BHFO crystallizes in a orthorhombically distorted perovskite structure having Pnma space group and the extra peak in the XRD pattern belongs to Bi$_2$Fe$_2$O$_5$ impurity phase. However, refinement indicates that Ho substituted BFO has different bond angles (Fe-O2-Fe = 151.33°, Fe-O1-Fe = 147.91°) and bond lengths (Fe-O1 = 1.49 Å, Fe-O2 = 1.82 Å) compared to that of undoped BFO.33 The alternation of these parameters is expected to have profound influence on the magnetic and optical properties of BHFO. Weight fraction of the phases, lattice parameters and Rietveld agreement factors listed in Table S1 and fitted plot of XRD pattern as Fig. S2 are provided as Supplementary Information.
thin film preparation. On the other side, the grains of pure TiO₂ film are polygonal and crack-free (see Fig. 3(b)). Fig. 3(a) that nanoparticles are agglomerated and thus they were dispersed in an ultrasonic bath before composite are nearly spherical in shape with average diameter of 45 nm as depicted in Fig. 3(a). It can be clearly seen from observations it can be reasonably stated that there is no appreciable segregation of BHFO nanoparticles in the are also indicating the well-adherence of films with the glass substrate. Considering all these aforementioned table parameters have changed with respect to pure one (see Table 1). The positions of diffraction peaks (101) and (200) were determined using Pseudo - Voight function in high score plus software and lattice parameters were calculated using the following formulae:

\[
\frac{1}{d_{hkl}^2} = h^2 + k^2 + l^2 \left(\frac{a^2}{c^2} \right) \frac{1}{a^2}
\]

where \(d_{hkl}\) spacing has been calculated using the Bragg’s law.

Looking at the XRD patterns for composite thin films (see Fig. 2(b–d)) it can be immediately appreciated that intensity of the peaks of BHFO increases with an increase mol.% of BHFO nanoparticles. In particular, no impurity peak can be discerned in any of the composite films. This observation solidifies that the anatase phase of TiO₂ is retained in the films and addition of nanoparticles does not introduce any phase change. Another feature of the composite thin films is to be observed- the diffraction peaks of different planes of composite films have shifted and the lattice parameters have changed with respect to pure one (see Table 1). The positions of diffraction peaks (101) and (200) were determined using Pseudo - Voight function in high score plus software and lattice parameters were calculated using the following formulae:

\[
\frac{1}{d_{hkl}^2} = h^2 + k^2 + l^2 \left(\frac{a^2}{c^2} \right) \frac{1}{a^2}
\]

where \(d_{hkl}\) spacing has been calculated using the Bragg’s law.

The peak shifting of composite films may be attributed to the diffusion of Fe\(^{3+}\), Ho\(^{3+}\) or Bi\(^{3+}\) ions into TiO₂ across the interfaces of BHFO and TiO₂. Table 1 shows that diffraction peaks (101) and (200) have shifted to higher angle for T\(^{95B5}\) and this film has the lowest lattice parameters. According to a previous study, this phenomenon manifests the introduction of tensile stresses due to the interstitial incorporation of doping ions in the crystal lattice of TiO₂. Some other previous studies also report that Fe ions can go either in octahedral interstitial sites or in the substitutional positions of TiO₂ lattice. Since the ionic radii of Fe\(^{3+}\) (0.785 Å) is lower than that of Bi\(^{3+}\) (1.015 Å) and Ho\(^{3+}\) (1.015 Å), Fe\(^{3+}\) ions have the highest chance of interstitial incorporation in TiO₂. On the other hand, the diffraction peaks of T\(^{90B10}\) and T\(^{80B20}\) has shifted to the lower angle and they have larger lattice parameters compared to the pure film (see Table 1). These can be ascribed to the generation of compressive stresses as a result of substitutional incorporation of Bi\(^{3+}\) (1.14 Å), Ho\(^{3+}\) (1.015 Å) or Fe\(^{3+}\) (0.785 Å)\(^{55,56}\). The XPS analysis also supports this phenomenon. The comparatively larger ionic radii of Bi, Ho and Fe compared to Ti\(^{4+}\) (0.745 Å) ion\(^{57}\) possibly cause an expansion of the crystal lattice and concordant shift in the TiO₂ diffraction peaks to a smaller angle. The substituted Ti\(^{4+}\) ions may have also diffused in crystal structure of BHFO.

Figure 3 exhibits the surface images of nanoparticles and films annealed at 500 °C. The observed nanoparticles are nearly spherical in shape with average diameter of 45 nm as depicted in Fig. 3(a). It can be clearly seen from Fig. 3(a) that nanoparticles are agglomerated and thus they were dispersed in an ultrasonic bath before composite thin film preparation. On the other side, the grains of pure TiO₂ film are polygonal and crack-free (see Fig. 3(b)) signifying the fact that annealing and densification has occurred to a satisfactory degree. The average grain size of this film is larger than that of nanoparticles and is found to be ~60 nm. The average diameter of nanoparticles and grain size of thin films were determined using Image J software.

The addition of only 5 mol.% BHFO in TiO₂ has introduced crack as well as diminished the uniformity and polygonality of the grains (see Fig. 3(c)). Further additions of 10 and 20 mol.% BHFO nanoparticles have totally changed the morphologies of thin films (see Fig. 3(d,e)). T\(^{90B10}\) and T\(^{80B20}\) films have irregular polygonal grains and spherical nanoparticles which have made the surface rough. It has become difficult to identify TiO₂ and BHFO nanoparticles separately from Fig. 3(d,e). Indeed, T\(^{90B10}\) with 20 mol.% BHFO has larger number of porosities, cracks and rougher surface compared to T\(^{80B20}\). The FESEM surface morphology of T\(^{90B10}\) film is consistent with the peak intensities (20 = 22.54°, 32.14°, 39.48°, 46.185° and 57.34°) of XRD pattern (as depicted in Fig. 2) implying high amount of BHFO nanoparticles in the TiO₂ matrix. Moreover, the thickness of the films is increasing with increasing mol.% of BHFO nanoparticles. It can be seen from the insets of Fig. 3(b–e), the average thicknesses of TiO₂, T\(^{95B5}\), T\(^{90B10}\) and T\(^{80B10}\) are 200, 244, 477, and 635 nm respectively. The cross sections of the films are also indicating the well-adhesion of films with the glass substrate. Considering all these aforementioned observations it can be reasonably stated that there is no appreciable segregation of BHFO nanoparticles in the TiO₂ matrix.

Figure 4 depicts the absorbance spectra for thin films and nanoparticles. The absorbance of BHFO nanoparticles shown in the inset of Fig. 4 was obtained from diffused reflectance data using Kubelka-Munk conversion function. The diffused reflectance data was converted to Kubelka-Munk function given by the following equation:

\[
F(R) = \frac{(1 - R)^2}{2R}
\]

where R is the diffused reflectance value. On the other hand the absorbance of the films was determined using Beer- Lambert law as follows:

\[
\text{Absorbance} = \frac{E}{b}\text{ (Beer-Lambert law)}
\]
where A, T and R stand for the absorbance, transmittance and reflectance of the film.

Nanoparticles exhibit extensive visible light absorbance and absorb larger wavelength than the synthesized films. The steep shape of the spectrum indicates that the visible light absorption has happened as a result of electronic transition from the valence band to conduction band ($O^2−2p → Fe^{3+}3d$) in BHFO lattice. This phenomenon will be discussed in detail in the following section. In contrast, the pure TiO$_2$ film does not start absorbing substantially until the incident wavelength falls below 370 nm (see Fig. 4). This is typical behavior of TiO$_2$ film. It is noticeable from Fig. 4 that the absorption edge of composite thin films shows progressive shift between the pure TiO$_2$ thin film and BHFO nanoparticles. Even though the absorption edge of T$_{90}B_{10}$ film does not shift much and still absorb shorter wavelength (~ 380 nm) than two other composite films Fig. 4 clearly depicts that T$_{90}B_{10}$ and T$_{80}B_{20}$ films show a redshift and absorb visible light. The absorption edges of T$_{90}B_{10}$ and T$_{80}B_{20}$ films are 440 and 545 nm respectively (see Fig. 4). It has been established that the interfacial charge of TiO$_2$ gets affected by diffusion of foreign ions which in turn influences the optical properties. Indeed, the decrement of Ti$^{4+}$ concentration in T$_{90}B_{20}$ film obtained from XPS analysis (see Table 1) suggests the possibility of A$^{3+}$ ions diffusion in the crystal structure of TiO$_2$. Therefore, the bathochromic shift of T$_{90}B_{10}$ and T$_{80}B_{20}$ films could be due to the interdiffusion of A$^{3+}$/Ti$^{4+}$ ions across the interfaces between BHFO and TiO$_2$. In fact, due to interdiffusion of ions the electrons of these two films could be excited from the partially filled d orbitals of Fe$^{3+}$ (rather than the lower-lying O p orbitals) to the Ti 3d orbitals with lower energy visible light.
In order to have better ideas on the optical properties of the films, their band gaps were determined as shown in Fig. 5. The band gap of BHFO nanoparticles obtained from $[E^*F(R)]^2$ vs E plot depicted in Fig. 5(a) is found to be 1.88 eV, which is notably smaller than the previously reported values for both undoped and many doped BFO. The reduced band gap of BHFO could be attributed to the following reasons: (a) Ho $^{3+}$ ions are likely to have minimal degree of hybridization for a stable electronic configuration (4f10 5d0 6s0) which in turn may lead to the formation of unique energy level in between Fe 3d and O 2p and thereby effective band gap of Ho doped BFO is diminished, (b) according to some previous investigations, changes in Fe-O bond length and Fe-O-Fe bond angle by cation doping play a pivotal role in modifying one-electron bandwidth (W) and thus band gap of BFO. This claim has been substantiated by the empirical formula relating W with bond length and angle:

$$W \approx \frac{\cos \omega}{d_{Fe-O}}$$ \hspace{1cm} (7)

where ω stands for $\frac{\pi}{2}$(Fe-O-Fe) and d_{Fe-O} is the Fe-O bond length. The relationship between band gap and W can be given as: $E_g = \Delta - W$ where Δ is the charge transfer energy. Generally, BFO crystallizes in a rhombohedral phase and bond length (Fe-O) of this phase is greater than that of orthorhombic phase. Since BHFO nanoparticles have orthorhombic phase and have smaller bond length, they have appreciably larger bandwidth (W) value than that of BFO which could reduce the effective band gap energy of BHFO.

Figure 4. UV-vis absorbance spectra of films. The inset shows the absorbance spectra of BHFO nanoparticles.

Figure 5. (a) $[E^*F(R)]^2$ vs energy, E plot to calculate band gap energy of nanoparticles (b) indirect and (c) direct Tauc’s plots demonstrating the band gap energies of pure and composite thin films.
The optical band gap of the films were calculated using the Tauc’s law as given below:

\[
\alpha = A'(E - E_g)^n
\]

where \(A'\) is a constant, \(E\) is the photon energy, \(E_g\) is the band gap energy, \(\alpha\) is the absorption coefficient and \(n\) is the power factor of the optical transition mode in a semiconductor, i.e., direct transition \((n = 1/2)\) or indirect transition \((n = 2)\). The band gaps of the films were obtained by extrapolating the linear portion of of \((\alpha h\nu)^2\) vs \(E\) plot for direct transition (see Fig. 5(c)) and \((\alpha h\nu)^{1/2}\) vs \(E\) plot for indirect transition (see Fig. 5(b)). Since the indirect band gaps of the films are more related to their absorption edge values (see Fig. 4) they have been assigned to the respective composite thin films. Even both experimental results and theoretical modeling suggest that TiO2 has a direct forbidden gap, which is almost degenerated with an indirect allowed transition. Therefore, the indirect allowed transition dominates in the optical absorption just above the absorption edge due to the weak strength of the direct forbidden transition.

The Tauc’s plots of composite thin films corresponding to indirect transition shown in Fig. 5 have only one linear region. However, the curve for pure TiO2 has more than one linear regions which indicates that there is more than one optical transition occurring in this film. The first transition of pure film occurred at 3.4 eV is its effective band gap which agrees reasonably well with previous studies. The second indirect transition occurs at 2.1 eV and it is believed that this sort of transition is attributed to the presence of OVs in deposited TiO2 film.

The indirect band gaps of T95B5, T90B10 and T80B20 films are 3.13, 2.87 and 2.46 respectively (see Fig. 5). Thus, the optical transition energies of composites thin films monotonically decrease with increasing mol.% of BHFO nanoparticles. A perceptive explanation for the reduced band gap is related to conduction band of two different semiconductors. The hypothesis is that if the conduction band edge of the sensitizing material is higher than the conduction band edge of TiO2, electrons can transfer from the smaller band gap material to the conduction band of TiO2. According to some previous reports BFO has relatively high conduction band edge which makes electrons in BFO nanoparticles to be transferred easily into the lower lying CB of TiO2 through the interface. Thus it is required to determine the conduction band (CB) and valence band (VB) positions of both BHFO and TiO2 to elucidate optical transition phenomenon. The CB potential of BHFO and TiO2 at the point of zero charge can be calculated successfully by the following empirical equation:

\[
E_{CB} = \chi_s - E^* - 0.5E_g
\]

where \(E_{CB}\) is the CB edge potential, \(E^*\) is the energy of free electrons on the hydrogen scale (~4.5 eV), \(E_g\) is the band gap energy of the semiconductor, \(\chi_s\) is the electronegativity of the semiconductor, which is the geometric mean of the electronegativity of the constituent atoms. The detail information on \(\chi_s\) has been provided in the Supplementary Information. Plugging \(E^*, \chi_s\) values of TiO2 (5.81 eV) and BHFO (5.86 eV), and their corresponding \(E_g\) values into the above equations, \(E_{CB}\) of TiO2 and BHFO stands as ~0.39 and 0.42 eV respectively. The valence band edge potential \(E_{VB}\) can be obtained by the equation: \(E_{VB} = E_{CB} + E_g\) and the calculated \(E_{VB}\) of TiO2 and BHFO are 3.01 and 2.3 eV respectively. Figure 6 depicts the calculated energy levels of TiO2 and BHFO.

It can be clearly seen from Fig. 6 that BHFO has relatively higher CB potential than that of TiO2. As discussed earlier, the redshift shown by T90B10 and T80B20 films is probably induced by Fe, Bi, Ho/Ti interdiffusion in the interfaces which could raise the CB edge potentials of BHFO and TiO2 and hence lower the optical transition energy at the interface between BHFO and TiO2. Such reduced band-gaps of T90B10 and T80B20 could be beneficial for the efficient utilization of visible light for photocatalysis. Moreover from XPS analysis a higher amount of OH\(^-\) has been found in T90B20 which allows the generation of large amount of highly reactive hydroxyl radicals (OH\(^*\)) through oxidation of OH\(^-\) by photo induced holes rendering the composite film highly reactive during photocatalysis.
From the Hall effect analysis, the Hall coefficient is found to be negative for all the thin films which indicates that they are n-type semiconductors. Generally, TiO$_2$ is an intrinsic n-type semiconductor8. The formation of the OVs and titanium interstitials are responsible for this sort of conductivity54. TiO$_2$ is a sub-stoichiometric compound with excess titanium under standard conditions. This sub-stoichiometry is accommodated as OVs or titanium interstitials formation. The following reaction mechanisms can be considered for the formation of OVs in TiO$_2$ crystal55:

$$O_0^{x-} + 2e^- + \frac{1}{2}O_2(g) + V_0^{**} + 2e^-$$

Combining Equations (4 and 5)

$$2Ti_{T1}^{x+} + 2e^- = 2Ti_{T1}^{x+}$$

$$2Ti_{T1}^{x+} + O_0^{x-} = 2Ti_{T1}^{x+} + \frac{1}{2}O_2(g) + V_0^{**}$$

As follows the n-type conductivity behavior found in TiO$_2$ implies Equation (6) to be the dominant step for providing two excess electrons. The carrier concentration (CC), resistivity and mobility of pure TiO$_2$ thin film deposited using non aqueous sol-gel method are found to be 2.0×10^{16} cm$^{-3}$, 1550.8 Ω-cm and 208 cm2/V.s respectively. The CC of TiO$_2$ found in the literatures ranges from 1×10^{16} cm$^{-3}$ to 1×10^{20} cm$^{-3}$56,57. Thus the measured value of CC is within accepted range. The measured mobility of the film is also consistent with the previous study which reported almost similar CC8. The resistivity of conductor and semiconductor normally varies from 10^{-3} to 10^8 Ω-cm58. Based on this range, pure TiO$_2$ film can be classified as semiconductor. However, the resistivity of this pure TiO$_2$ film is lower than prepared by many methods such as chemical bath deposition58, spray pyrolysis59 and DC magnetron sputtering technique26.

Figure 7(a) depicts that 5 mol.% BHFO addition has significantly altered the CC, mobility and resistivity of the film. The resistivity of T$_{95}$B$_5$ film is \sim2.33 orders of magnitude higher than pure film while the CC and mobility of this film are 62.5 and 2.6 times lower than those of pure one. Moreover, the charge carriers of T$_{95}$B$_5$ film are dominated by free electrons at 5 mol.% BHFO addition, even though, BFO is reported to be a p-type semiconductor60,61 where holes are the majority carriers. Here, substitution of Bi$^{3+}$ with Ho$^{3+}$ should retain BHFO as p-type semiconductor60,61. The determination of CC of BHFO was out of scope for the current study. Moreover, to the best of our knowledge there is no report on CC of BFO or on doped BFO60,61. Since TiO$_2$ is the major phase its carrier will ultimately control the carrier concentration. The concentration of electrons may also be affected subtly by the diffused Fe ions. Since Fe ions have more than one valence states such as Fe$^{2+}$ or Fe$^{3+}$, some of diffused Fe$^{3+}$ may have changed into Fe$^{2+}$ by accepting free electrons of TiO$_2$ matrix and reduces total CC of T$_{95}$B$_5$ slightly. Thus the total CC of the composite film decreases with the addition of BHFO.

The additions of 10 and 20 mol.% BHFO have not changed the electrical properties of T$_{90}$B$_{10}$ and T$_{80}$B$_{20}$ films (see Fig. 7(a)) appreciably. The mobilities of T$_{90}$B$_{10}$ and T$_{80}$B$_{20}$ films have decreased by a factor of 1.23 and 1.6 respectively and the CCs of these two films have been reduced by a factor of \sim4.1 when compared to those of T$_{95}$B$_5$ film. Similarly, the resistivities of T$_{90}$B$_{10}$ and T$_{80}$B$_{20}$ films are 1.05 and 1.15 times higher than that of T$_{95}$B$_5$ film. However, the charge carriers of T$_{90}$B$_{10}$ and T$_{80}$B$_{20}$ films are still found to be dominated by free electrons. The aforesaid variations in CC, mobility and resistivity point out that addition of higher mol.% of BHFO has little effect on electrical properties of composite films. The trivial reduction of CC in T$_{90}$B$_{10}$ and T$_{80}$B$_{20}$ films primarily depends on diffused A$^{3+}$ ions which substitute Ti$^{4+}$ from the lattice sites of TiO$_2$ as discussed in XPS pattern analysis section. This substitution may lead to formation of holes compensating free electrons in TiO$_2$ and

![Figure 7. (a) Resistivity, carrier concentration and mobility of films with different mol.% of BHFO (b) Conductivity (\(\Omega\)-cm) vs. Electric Field, E (kV/cm) plot of BHFO nanoparticles.](image-url)
eventually reduces the films’ electron/Ti$^{3+}$ concentration. However, further reduction in CC (electron hoping site concentration) is probably hindered by intergranular cracks and pore formations in the films (see Fig. 3(d,e)) as well as the direct contact interface areas between BHFO and TiO$_2$ are likely to become gradually saturated at higher BHFO nanoparticles content (10 and 20 mol.%) in the composite films. These phenomena could hamper further enhancement in migration of Ho$^{3+}$, Fe$^{3+}$ from BHFO to TiO$_2$ in T90B10 and T80B20 restricting any marked alteration in overall carrier concentration of the system.

The increased resistivity of composite thin films is directly related to low conductivity of BHFO (see Fig. 7(b)). The conductivity of BHFO varies from 1×10^{-12} to 5×10^{-12} (Ω cm)$^{-1}$ which is lower than that of previously reported doped BFO25. The CC and mobility are also related to resistivity via the following equation63:

$$\rho = \frac{1}{qn\mu}$$ \hspace{1cm} (13)

where q is the electron charge, n is carrier concentration and μ is the mobility. The reduced CC and mobility of composite films could be ascribed to increased resistivity of films. Moreover, the poor morphology of the films may reduce mobility of films. Yasuno et al.64 and Trinh et al.65 observed that electrical properties of the film depend on surface roughness and porosity of film. These surface roughness and porosity increase the scattering of electrons and holes which in turn reduce their mean free path. From FESEM images it is clear that the pure film has a smoother surface than the composite films. With increasing mol.% of BHFO, the surface roughness and porosity of the films increase and charge carrier mean free path of the films decreases. Thus, the mobilities of the films decrease with reduced mean free path of electrons. The composite films with enhanced resistivity, and reduced CC and mobility will have minimum leakage current and reduced power losses in devices. Therefore, these films could be electrically reliable for resistors, sensors and memory devices.

Generally BFO nanoparticles exhibit G-type antiferromagnetism due to its cycloid spiral spin structure23. However, an enhancement in magnetization by Ho-doping at Bi-site is evidenced in this study (see Fig. 8(a)). The saturation magnetization (Ms), coercivity (Hc) and magnetic susceptibility (χ) of BHFO nanoparticles are 24.33 emu/cm3, 260 Oe and 0.247 respectively. The density of BHFO is 8.40 g/cm3 which was calculated from the unit cell parameters listed in Table S1. The magnetization unit of BHFO was converted from emu/gm to emu/cm3 by multiplying with 8.40 g/cm3. The bond lengths and bond angles of BHFO listed in Table S1 are quite different from the reported bond lengths and bond angles of pure BFO23. The enhanced magnetization could be attributed to these changes in bond angle and bond length which modify the tilting angle of FeO$_6$ octahedron and thereby suppress spiral modulated spin structure23. Moreover, the substitution of non-magnetic Bi$^{3+}$ ([Xe] 4f14 5d10 6s2 6p0) with magnetic Ho$^{3+}$ ([Xe] 4f1) having high magnetic moment (10.6 μ_B) could lead to improved magnetization.

Room temperature M-H curve of thin films were obtained after subtracting the contribution of glass substrate. TiO$_2$ film deposited on this substrate is diamagnetic (see Fig. 8(b)) and the diamagnetic susceptibility (χ_d) is $\sim -1.58 \times 10^{-3}$. Donor type defects (e.g. OVs) have been proposed to be a vital element for ferromagnetism in TiO$_2$66,67 indicating that synthesized TiO$_2$ film may not have sufficient amount of OVs to induce magnetism. The other three composite thin films show no such diamagnetic behavior yet they display no complete ferromagnetic loop either. The composite thin films have ferromagnetic behavior accompanied with a diamagnetic component. The discernibly open hysteretic loop shown in the inset of Fig. 8(b) is signifying the presence of a ferromagnetic component. The actual saturation magnetization of all the composite thin films is likely to occur at low magnetic fields and all the films have diamagnetic components at higher magnetic fields. Figure 8(b) clearly depicts that saturation magnetization of the films increases with increasing mol.% of BHFO. T90B10 has higher magnetization and coercivity than two other composite films (see inset of Fig. 8(b)). Moreover, it has retained its ferromagnetism upto 11 kOe and has the lowest diamagnetic susceptibility (3.28 $\times 10^{-3}$). The diamagnetic susceptibilities of other two films are 1.01 $\times 10^{-3}$ (T95B5) and 6.045 $\times 10^{-4}$ (T80B20). Previous investigations reveal that diffusion
of magnetic ions into an oxide ceramic through interfaces aids in emergence of room temperature ferromagnetism\(^{46,47}\). As conferred earlier, the interdiffusion of Fe\(^{3+}\), Ho\(^{3+}\) and Ti\(^{4+}\) in the interfaces brings about a decrement of Ti\(^{3+}\) concentration in the crystal structure of TiO\(_2\). The ferromagnetic exchange between the diffused magnetic ions (Fe\(^{3+}\) or Ho\(^{3+}\)) and OVs could induce magnetism\(^{46,47}\). The lacking of sufficient diffused magnetic ions to couple with OVs possibly leads to diamagnetism at higher magnetic field for the films. Since Ti\(^{95}\)B\(^{5}\) and Ti\(^{90}\)B\(^{10}\) have lower mol.% of BHFO compared to Ti\(^{90}\)B\(^{10}\), they are expected to have smaller amount of diffused Fe\(^{3+}\) or Ho\(^{3+}\) ions in TiO\(_2\) phase than that of Ti\(^{90}\)B\(^{10}\). Therefore, the ferromagnetic exchange of Ti\(^{95}\)B\(^{5}\) and Ti\(^{90}\)B\(^{10}\) is weak due to small amount of diffused magnetic ions and thus diamagnetic susceptibility of these films is higher than that of Ti\(^{90}\)B\(^{10}\). On the other hand, Ti\(^{90}\)B\(^{10}\) film has higher amount of magnetic ions when compared with other two composite films. Hence, a stronger ferromagnetic exchange between magnetic ions and OVs is expected in Ti\(^{90}\)B\(^{10}\) film leading to a lower diamagnetic susceptibility compared to the other two composite films. Indeed, composites thin film with further addition of BHFO nanoparticles (>20 mol.%) will have diamagnetic component. It can be seen from Fig. S5 that the reduction in diamagnetic susceptibility from TiO\(_2\) film to Ti\(^{95}\)B\(^{5}\) film is prominent but further addition of BHFO nanoparticles does not bring such kind of change. In fact Fig. S5 depicts that diamagnetic susceptibility of Ti\(^{90}\)B\(^{10}\) film is approaching saturation phenomenon conforming our explanation provided in electrical section. The presence of pores and cracks in films (see Fig. 3(d,e)) as well as possible saturation of total amount of direct contact interface areas between BHFO and TiO\(_2\) not only affect the electrical properties but also the magnetic properties of Ti\(^{95}\)B\(^{5}\) and Ti\(^{90}\)B\(^{10}\) films. Nevertheless, this finding suggests that incorporation of BHFO nanoparticles into TiO\(_2\) matrix introduces magnetism in the final product which can be applied to thin films-based spintronics application.

Conclusion

In conclusion, novel BHFO/TiO\(_2\) composite thin films were prepared for the first time by non-aqueous sol-gel method. The incorporation of BHFO nanoparticles improves magnetism and electrical properties of composite thin films, and also reduces their band gaps. The composite thin films exhibit a redshift in optical absorption edge and absorb visible light. Such behavior has been attributed to interdiffusion of A\(^{3+}\)/Ti\(^{4+}\) ions through the interfaces between BHFO and TiO\(_2\). Besides, interfacial microstructural defects and the direct contact areas between BHFO and TiO\(_2\) in composite films control the migration of these ions through their interfaces which eventually determines the amount of CC in the films. Moreover, the ferromagnetic exchange between the diffused magnetic ions (Fe\(^{3+}\) or Ho\(^{3+}\)) and OVs has been considered to influence the induction of magnetism in composite thin films.

References

1. Li, S., Lin, Y.-H., Zhang, B.-P., Li, J.-F. & Nan, C.-W. BiFeO\(_3\)/TiO\(_2\) core-shell structured nanocomposites as visible-active photocatalysts and their optical response mechanism. *Journal of Applied Physics* **105**, 054310 (2009).
2. Wang, X., Li, J.-G., Kamiyama, H., Moriyoshi, Y. & Ishigaki, T. Wavelength-sensitive photocatalytic degradation of methyl orange in aqueous suspension over iron (III)-doped TiO\(_2\) nanopowders under UV and visible light irradiation. *The Journal of Physical Chemistry B* **110**, 6804–6809 (2006).
3. Nkosi, S. et al. An instant photo-excited electrons relaxation on the photo-degradation properties of TiO\(_2\)–x films. *Journal of Photochemistry and Photobiology A: Chemistry* **293**, 72–80 (2014).
4. Serpone, N., Lawless, D., Dusdier, J. & Herrmann, J.-M. Spectroscopic, photoconductivity, and photocatalytic studies of TiO\(_2\) colloids: naked and with the lattice doped with Cr\(^{3+}\), Fe\(^{3+}\), and V\(^{5+}\) cations. *Langmuir* **10**, 643–652 (1994).
5. Weissmann, M. & Errico, L. A. The role of vacancies, impurities and crystal structure in the magnetic properties of TiO\(_2\). *Physica B: Condensed Matter* **398**, 179–183 (2007).
6. Gale, E. TiO\(_2\)-based memristors and ReRAM: materials, mechanisms and models (a review). *Semiconductor Science and Technology* **29**, 104004 (2014).
7. Wang, Z. et al. Extraordinary Hall effect and ferromagnetism in Fe-doped reduced rutile. *Applied Physics Letters* **83**, 518–520 (2003).
8. Li, X. et al. Structures and magnetic properties of p-type Mn: TiO\(_2\) doped magnetic semiconductor thin films. *Journal of Applied Physics* **106**, 043913 (2009).
9. Chen, X. & Burda, C. The electronic origin of the visible-light absorption properties of C-, N- and S-doped TiO\(_2\) nanomaterials. *Journal of the American Chemical Society* **130**, 3018–3019 (2008).
10. Kim, Y. J., et al. Growth and properties of molecular beam epitaxially grown ferromagnetic Fe-doped TiO\(_2\) rutile films on TiO\(_2\) (110). *Applied Physics Letters* **84**, 3531–3533 (2004).
11. Kim, J.-Y. et al. Ferromagnetism Induced by Clustered Co in Co-Doped Anatase TiO\(_2\) Thin Films. *Physical review letters* **90**, 017401 (2003).
12. Gao, X., Liu, X., Zhu, Z., Wang, X. & Xie, Z. Enhanced photoelectrochemical and photocatalytic behaviors of MnFe2O4 (M = Ni, Co, Zn and Sn) modified TiO\(_2\) nanorod arrays. *Scientific reports* **6**, 30543 (2016).
13. Van Suchtelen, J. Product properties: a new application of composite materials. *Philips Res. Rep* **27**, 28–37 (1972).
14. Watson, S., Beydoun, D. & Amal, R. Synthesis of a novel magnetic photocatalyst by direct deposition of nanosized TiO\(_2\) crystals onto a magnetic core. *Journal of Photochemistry and Photobiology A: Chemistry* **148**, 303–313 (2002).
15. Huang, W., Tang, X., Felner, I., Kolyppyn, Y. & Gedanken, A. Preparation and characterization of FeO\(_x\)-TiO\(_2\) via sonochemical synthesis. *Materials research bulletin* **37**, 1721–1735 (2002).
16. Cheng, C. et al. Enhanced photocatalytic performance of TiO\(_2\)-ZnO hybrid nanostructures. *Scientific reports* **4**, 4181 (2014).
17. Mu, J. et al. Enhancement of the visible-light photocatalytic activity of In2O3–TiO2 nanofoil heteroarchitectures. *ACS applied materials & interfaces* **4**, 424–430 (2011).
18. Yang, Y. et al. Electrospray nanofibers of p-type BiFeO3/n-type TiO2 hetero-junctions with enhanced visible-light photocatalytic activity. *RSC Advances* **4**, 31941–31947 (2014).
19. Larsen, G. K., Fitzmorris, B. C., Longo, C., Zhang, J. Z. & Zhao, Y. Nanostructured homogenous CdSe–TiO\(_2\) composite visible light photoanodes fabricated by oblique angle deposition. *Journal of Materials Chemistry* **22**, 14205–14218 (2012).
20. Zhang, Y., Schultz, A. M., Salvador, P. A. & Rohrer, G. S. Spatially selective visible light photocatalytic activity of TiO\(_2\)/BiFeO\(_3\) heterostructures. *Journal of Materials Chemistry* **21**, 4168–4174 (2011).
21. Zhu, A., Zhao, Q., Li, X. & Shi, Y. BiFeO\(_3\)/TiO\(_2\) nanotube arrays composite electrode: construction, characterization, and enhanced photocatalytic properties. *ACS applied materials & interfaces* **6**, 671–679 (2013).
65. Trinh, T. T., Jang, K., Velumani, S., Dao, V. A. & Yi, J. Role of Schottky barrier height at source/drain contact for electrical improvement in high carrier concentration amorphous InGaZnO thin film transistors. *Materials Science in Semiconductor Processing* **38**, 50–56 (2015).

66. Coey, J., Venkatesan, M. & Fitzgerald, C. Donor impurity band exchange in dilute ferromagnetic oxides. *Nature materials* **4**, 173–179 (2005).

67. Zhao, T. *et al.* Electric field effect in diluted magnetic insulator anatase Co: TiO2. *Physical review letters* **94**, 126601 (2005).

68. Zhang, L. *et al.* Interfacial effect on Mn-doped TiO2 nanoparticles: from paramagnetism to ferromagnetism. *RSC Advances* **6**, 57403–57408 (2016).

69. García, M. *et al.* Interface double-exchange ferromagnetism in the Mn-Zn-O system: new class of biphase magnetism. *Physical review letters* **94**, 217206 (2005).

70. Choudhury, B. & Choudhury, A. Room temperature ferromagnetism in defective TiO2 nanoparticles: Role of surface and grain boundary oxygen vacancies. *Journal of Applied Physics* **114**, 203906 (2013).

Acknowledgements

The work was funded by Bangladesh University of Engineering and Technology (BUET), Dhaka -1000, Bangladesh. Field emission scanning electron microscopy, X-Ray Diffraction and UV-Vis/NIR spectrometric measurements were supported by the Department of Glass and Ceramic Engineering, BUET. The authors also acknowledge Bangladesh Atomic Energy Commission for magnetic property determination. Hall effect measurement was supported by Institute of Fuel Research & Development, Bangladesh Council of Scientific and Industrial Research, Dhaka- 1000, Bangladesh.

Author Contributions

M.R.I. conducted the synthesis process and wrote whole manuscript, supervised by A.K.M.B.R. and M.A.Z. The Hall effect measurement was done by M.S.B.

Additional Information

Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-019-41570-x.

Competing Interests: The authors declare no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2019