From pattern separation to mood regulation: multiple roles for developmental signals in the adult dentate gyrus

Marlena Wosiski-Kuhn and Alexis M. Stranahan *

Physiology Department, Georgia Health Sciences University, Augusta, GA, USA

*Correspondence: astranahan@gru.edu

Edited by:
Lavinia Alberi, University of Fribourg, Switzerland

Reviewed by:
Nibaldo C. Inestrosa, Pontifical Catholic University of Chile, Chile

OVERVIEW OF ADULT HIPPOCAMPAL NEUROGENESIS

The dentate gyrus represents a unique system for the study of interactions between neuronal development and experience. While this hippocampal subfield has been extensively investigated in relation to the ongoing process of adult neurogenesis, the mnemonic contributions of mature granule neurons have remained enigmatic. Much of the rationale for focusing on newly generated neurons, as opposed to mature granule cells, rests on the greater excitability of immature neurons, which positions them to make a unique contribution to memory processing. On the other hand, the assertion that mature granule cells are either inactive, or very finely tuned to specific spatial configurations, is derived from electrophysiological recording experiments and measures of immediate early gene expression conducted under conditions that are not likely to evoke significant psychological or physiological stress. In this Opinion piece, we present the argument that mature dentate granule neurons are synaptically silent under low-stress conditions, but are recruited in far greater numbers under emotionally salient conditions due to their combined input from the amygdala and entorhinal cortex. Functional activation of the far more numerous mature granule cell population could potentially serve as an emotional tag linking spatial context with stressful experiences. The underlying mechanism for emotional tagging of spatial contexts likely involves signaling cascades implicated in neuronal development, such as the reelin signaling pathway. Alterations in reelin signaling among mature granule neurons could therefore determine their ability to disambiguate stressful and non-stressful contexts.

Adult born neurons account for up to 10% of the entire granule cell population (Imayoshi et al., 2008), and at the point of senescence, nearly forty percent of granule neurons will have been born in adulthood (Snyder and Cameron, 2012). The functional significance of dentate neurogenesis is thought to arise from the distinct synaptic properties of newly generated neurons, with the assumption that increased excitability among new neurons favors their recruitment over the mature dentate granule neuron population. A number of studies have hypothesized mature granule neurons may in fact be functionally silent (Aimone et al., 2010; Alme et al., 2010), but an alternative interpretation can be generated by comparing across studies that evaluated the recruitment and functional significance of dentate gyrus granule cells under low- or high-stress conditions. Although the distributed innervation of dentate granule neurons favors sparse coding, with approximately three percent of granule cells exhibiting firing during exploration of an environment (Chawla et al., 2005; Leutgeb et al., 2007; Treves et al., 2008), these recordings were conducted under low-stress conditions that may not recruit as many mature dentate granule cells. Sparse activation of functionally mature dentate granule cells is sufficient for recall of contextual fear memory (Liu et al., 2012), suggesting that although the proportion of mature granule cells recruited by an experience may be relatively small, the selective recruitment of specific ensembles is involved in the behavioral expression of memory for stressful contexts. Given that the dentate gyrus receives extensive innervation from the amygdala (Wheal and Miller, 1980; Bergado et al., 2007), mature granule cells may be functionally poised for activation only under conditions of high emotional salience.

PHYSIOLOGICAL AND PROPERTIES OF ADULT-BORN NEURONS IN MEMORY ENCODING

Adult-born granule cells have a lower threshold for long-term potentiation (LTP), and exhibit enhanced synaptic plasticity relative to mature granule neurons (Schmidt-Hieber et al., 2004; Ge et al., 2007a; Mongiat et al., 2009). New neurons in the adult brain recapitulate developmental transitions from excitatory responses to GABA to inhibitory responses during the first three days postmitosis (Ge et al., 2007b). At later time points following this transition, new neurons continue to exhibit enhanced LTP and reduced threshold for LTP induction (Ge et al., 2007a). At four weeks of age, newly generated granule cells are functionally integrated into the perforant path circuitry, with afferents along the mossy fiber pathway to CA3 (Toni et al., 2007), but remain distinguishable based on their increased morphological plasticity, particularly among dendritic spines (Zhao et al., 2006). Each of these properties has prompted extensive speculation regarding a selective role for adult-generated neurons in learning, but the possibility that new neurons release signaling molecules that influence plasticity among mature neurons has yet to be adequately addressed. It is possible that adult neurogenesis influences recruitment and plasticity among mature neurons, thereby regulating dentate gyrus...
contributions to pattern separation and memory (Figure 1).

Ablation of adult hippocampal neurogenesis impairs pattern separation, defined as the ability to disambiguate similar spatial contexts (Deng et al., 2010; Tronel et al., 2012). X-ray irradiation of adult born neurons impairs discrimination between two similar contexts during contextual fear conditioning (Sahay et al., 2011) but the specific developmental window for this effect remains obscure due to methodological variability with respect to the interval between irradiation and memory assessment. More recent studies (Arruda-Carvalho et al., 2011) used a novel approach to identify and silence adult generated neurons both before and after training and examine the subsequent effects on memory recall. Silencing of adult-generated neurons before learning did not prevent the formation of new contextual fear or water maze memories, but ablation of new neurons after learning degraded existing contextual and spatial memories. An essential role for adult-generated neurons after, but not before, training on a memory task is consistent with a potential paracrine signaling mechanism allowing new neurons to influence the larger population of mature neurons to facilitate encoding (Figure 1).

The possibility of a distinct functional contribution for adult born granule cells relative to those born during development could be explained by anatomy, rather than by intrinsic functional properties or a paracrine signaling mechanism. Dendritic architecture varies with position in the granule cell layer (Desmond and Levy, 1982; Claiborne et al., 1990; Redila and Christie, 2006) and granule cells born in adulthood are deeper in the granule cell layer than those born in development. Therefore the functional contributions of new neurons may arise from the properties of the subgranular zone microenvironment rather than their excitability or a potential signaling mechanism impacting the larger population of mature dentate granule cells. Vascular innervation of the subgranular zone is substantially more dense than the granule cell layer or molecular layer of the dentate gyrus (Monje et al., 2003), opening the possibility that new neurons might exhibit distinct patterns of neurovascular coupling based on their greater spatial proximity to blood vessels. Understanding how neuronal neighborhoods influence the functional contributions of specific subpopulations of cells is an important and understudied area, both in the dentate gyrus and other hippocampal subfields.

Adult born neurons are first incorporated into local circuits before receiving long range input (Deshpande et al., 2013). In normal mice, incorporation of newborn granule cells into the trisynaptic circuit only occurs once they have reached functional maturity on the cellular level. Interestingly, at this timepoint new neurons also begin to be innervated by the subiculum, which is implicated in the stress response (Herman and Mueller, 2006). Effective termination of the corticosteroid response to stress requires adult-born neurons, but the extent to which subicular innervation of new neurons contributes to this functional role remains unclear (Snyder et al., 2011). Given the extensive speculation surrounding alterations in adult neurogenesis following stress, and in animal models of depressive-like behavior, it is essential to understand the functional role of new and mature dentate granule neurons under conditions of high and low emotional valence.

Fear conditioning tasks are dependent on both basolateral amygdala (BLA) and hippocampus, as seen in cooperative induction of MAPK/ERK signaling components and immediate early genes in the hippocampus and amygdala following contextual fear conditioning and retrieval (Maren, 1996; Maren et al., 1996; Goosens and Maren, 2001; Roozendaal et al., 2009). Therefore, the specific contributions of new neurons to fear conditioning tasks could arise from differential innervation of new and mature neurons by the amygdala. Immature neurons, unlike the mature granule cell population, are primarily activated in the ventral blade of the dentate during water maze learning, opening the possibility of a specific role in regulating the response to stress and emotional learning (Snyder et al., 2009). However, specific information on differential innervation of the dorsal and ventral dentate blades by the amygdala (or any other region) remains scarce. Cholinergic inputs from the BLA to the hippocampus are...
go through the medial septum, while gluta-
matergic inputs arrive via the entorhinal
cortex (Wheal and Miller, 1980; Bergado
et al., 2007). Both sets of inputs are poised
to modulate adult neurogenesis, given that
acetylcholine and glutamate increase pro-
liferation of adult neural precursor cells
(Ge et al., 2007b). In a recent study
(Kirby et al., 2012), immediate early gene
expression was evoked in new neurons by
fear memory training, but not by expo-
sure to a new environment. BLA lesions
led to reductions in adult neurogenesis
and impairment of immediate early gene
expression in the remaining newborn neuronal
population (Kirby et al., 2012). These
observations underscore the importance
of amygdalar inputs to the dentate gyrus
in the regulation of both memory and
neuronal recruitment under high-stress
conditions.

DEVELOPMENTAL MOLECULES IN
NEUROGENESIS AND NEURONAL
MATURATION

The glycoprotein reelin has been heav-
ily implicated in a variety of stress-
related neuropsychiatric conditions and is
widely expressed among interneurons in
the adult vertebrate brain (Pérez-García
et al., 2001). Excitatory layer II entorhinal
cortical neurons also express reelin, both
in the cell body, and in the axons that form
the perforant path projection to the den-
tate gyrus (Stranahan et al., 2009). While
the dentate gyrus is innervated by reelin-
ergic afferents from the entorhinal cortex,
retroviral overexpression or inactivation of
reelin specifically in new neurons supports
a cell autonomous role for reelin glycopro-
tein in adult neurogenesis (Pramatarova
et al., 2008). Reelin overexpression accel-
erated dendritic maturation, while inacti-
vation of reelin in adult caused aberrant
migration, decreased dendrite develop-
ment, and elicited formation of ectopic
dendrites in the hilus. Interestingly, dele-
tion of reelin during adult neurogenesis
increases the number of glia at the expense
of neurons compared to wild types, indi-
cating that reelin controls progenitor cell
fate not only in development but also in
adulthood.

Reelin facilitates adult hippocampal
neurogenesis by promoting the correct
migration and orientation of newly born
granalne cells, but may also play a role in
controlling synaptic plasticity among the
mature granule cell population. A num-
er of developmentally regulated signaling
molecules such as cyclin-dependent kinase
5, Notch, and WNT have been implicated in
the regulation of adult dentate gran-
ule cell neurogenesis, and many of these
signaling pathways overlap with reelin.
The challenge in understanding how these
signaling pathways influence dentate cir-
cuity is directly related to the develop-
mental heterogeneity of dentate gyrus
granule cells; it remains uncertain whether
reelin, or any other neurodevelopmental
signal, impacts dentate synaptic plastic-
ity by influencing new neurons, mature
neurons, or communication between new
and mature neurons, and the likely out-
come is that each of these scenarios
will be upheld in different contexts. The
extent to which a repeated experience
evokes firing among distinct or overlap-
ping ensembles of neurons at various
stages of maturation may determine the
fidelity and accuracy of contextual dis-
crimination, in part by recruiting sig-
aling pathways associated with neural
development.

CONCLUSION

While the dentate circuitry is most stud-
ied with respect to adult neurogenesis,
the functional role of the mature gran-
ule cell population remains mysterious.
Experiments addressing the contribu-
tions of the far more numerous popula-
tions of mature granule neurons would benefit
from the inclusion of high- and low-stress
conditions, in order to activate amygdalar
projections to the dentate gyrus. Although
there has been significant speculation that
mature granule neurons are essentially
“retired,” the possibility remains that they
may have simply changed “careers,” by
refining their responses based on emo-
tional arousal in addition to cognitive
demands.

ACKNOWLEDGMENTS

This work was supported by start-up fund-
ing from Georgia Regents University.

REFERENCES

Aimone, J. B., Deng, W., and Gage, F. H.
(2010). Put them out to pasture? What
are old granule cells good for, anyway?
Hippocampus 20, 1124–1125. doi: 10.1002/hipo.
20867

Alme, C. B., Buzzietti, R. A., Marrone, D. F.,
Leutgeb, J. K., Chawla, M. K., Schaner, M. J.,
et al. (2010). Hippocampal granule cells opt for
early retirement. Hippocampus 20, 1109–1123. doi:
10.1002/hipo.20810

Arruda-Carvalho, M., Sakaguchi, M., Akers, K. G.,
Josselyn, S. A., and Frankland, P. W. (2011).
Posttraining ablation of adult-generated neu-
rons degrades previously acquired memories.
J. Neurosci. 31, 15113–15127. doi: 10.1523/
JNEUROSCI.3432-11.2011

Bergado, J. A., Frey, S., López, I., Almaguer-Melian,
W., and Frey, J. U. (2007). Cholinergic afferents
to the locus coeruleus and noradrenergic afferents
to the medial septum mediate LTP-reinforcement
in the dentate gyrus by stimulation of the amygdala.
Neurobiol. Learn. Mem. 88, 331–341. doi: 10.1016/
jinl.2007.05.003

Chawla, M. K., Guzowski, J. F., Ramirez-Amaya,
V., Lipa, P., Hoffman, K. L., Marriott, L. K.,
et al. (2005). Sparse, environmentally selective
expression of Arc RNA in the upper blade
of the rodent fascia dentata by brief spa-
tial experience. Hippocampus 15, 579–586. doi:
10.1002/hipo.20991

Claiborne, B. J., Amaral, D. G., and Cowan, W.
M. (1990). Quantitative, three-dimensional anal-
ysis of granule cell dendrites in the rat den-
tate gyrus. J. Comp. Neurol. 302, 206–219. doi:
10.1002/jnc.9303020203

Deng, W., Aimone, J. B., and Gage, F. H. (2010).
New neurons and new memories: how does adult
hippocampal neurogenesis affect learning and
memory? Nat. Rev. Neurosci. 11, 339–350. doi:
10.1038/nrn2822

Deshpande, A., Bergami, M., Ghanem, A.,
Conzelmann, K. K., Lepier, A., Götz, M., et al.
(2013). Retrograde monosynaptic tracing reveals
the temporal evolution of inputs onto new neu-
rons in the adult dentate gyrus and olfactory bulb.
Proc. Natl. Acad. Sci. U.S.A. 110, E1152–E1161.
doi: 10.1073/pnas.1218991110

Desmond, N. L., and Levy, W. B. (1982). A quantita-
tive anatomical study of the granule cell dendritic
fields of the rat dentate gyrus using a novel prob-
abilistic method. J. Comp. Neurol. 212, 131–145.
doi: 10.1002/cne.902120204

Ge, S., Yang, C. H., Hsu, K. S., Ming, G. L., and
Song, H. (2007a). A critical period for enhanced
synaptic plasticity in newly generated neurons
of the adult brain. Neuron 54, 559–566. doi:
10.1016/j.neuron.2007.05.002

Ge, S., Pradhan, D. A., Ming, G. L., and Song,
H. (2007b). GABA sets the tempo for activity-
dependent adult neurogenesis. Trends Neurosci.
30, 1–8. doi: 10.1016/j.tins.2006.11.001

Goossens, K. A., and Maren, S. (2001). Contextual
and auditory fear conditioning are mediated by
the lateral, basal, and central amygdaloid nuclei
in rats. Learn. Mem. 8, 148–155. doi: 10.1101/lm.
37601

Herman, J. P., and Mueller, N. K. (2006). Role
of the ventral subiculum in stress integra-
tion. Behav. Brain Res. 174, 215–224. doi:
10.1016/j.bbr.2006.05.033

Imayoshi, I., Sakamoto, M., Ohtsuka, T., Takao,
K., Miyakawa, T., Yamaguchi, M., et al. (2008).
Roles of continuous neurogenesis in the structural
and functional integrity of the adult forebrain.
From pattern separation to mood regulation

Nature Mol. Neurobiol. June 2013 | Volume 7 | Article 96 227, 384–390. doi: 10.1371/journal.pone.00096

Kirby, E. D., Friedman, A. R., Covarrubias, D., Ying, C., Sun, W. G., Goosens, K. A., et al. (2012). Basolateral amygdala regulation of adult hippocampal neurogenesis and fear-related activation of newborn neurons. Mol. Psychiatry 17, 527–536. doi: 10.1038/mp.2011.71

Leutgeb, J. K., Leutgeb, S., Moser, M. B., and Moser, E. I. (2007). Pattern separation in the dentate gyrus and CA3 of the hippocampus. Science 315, 961–966. doi: 10.1126/science.1135801

Liu, X., Ramirez, S., Pang, P. T., Puryear, C. B., Govindarajan, A., Deisseroth, K., et al. (2012). Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature 484, 381–385. doi: 10.1038/nature10128

Maren, S. (1996). Synaptic transmission and plasticity in the amygdala. An emerging physiology of fear conditioning circuits. Mol. Neurobiol. 13, 1–22. doi: 10.1007/BF02740749

Maren, S., Aharonov, G., and Fanselow, M. S. (1996). Retrograde abolition of conditional fear after excitotoxic lesions in the basolateral amygdala of rats: absence of a temporal gradient. Behav. Neurosci. 110, 718–726. doi: 10.1037/0735-7044.110.4.718

Mongiat, L. A., Espósito, M. S., Lombardi, G., and Schinder, A. F. (2009). Reliable activation of immature neurons in the adult hippocampus. PLoS ONE 4:e5320. doi: 10.1371/journal.pone.0005320

Monje, M. L., Toda, H., and Palmer, T. D. (2003). Inflammatory blockade restores adult hippocampal neurogenesis. Science 302, 1760–1765. doi: 10.1126/science.1088417

Pérez-García, C. G., González-Delgado, F. J., Suárez-Solá, M. L., Castro-Fuentes, R., Martín-Trujillo, J. M., Ferres-Torres, R., et al. (2001). Reelin-immunoreactive neurons in the adult vertebrate pallium. J. Chem. Neuroanat. 14, 41–51. doi: 10.1016/S0899-6075(00)00104-6

Pramatarova, A., Chen, K., and Howell, B. W. (2008). A genetic interaction between the APP and Dab1 genes influences brain development. Mol. Cell. Neurosci. 37, 178–186. doi: 10.1016/j.mcn.2007.09.008

Redila, V. A., and Christie, B. R. (2006). Exercise-induced changes in dendritic structure and complexity in the adult hippocampal dentate gyrus. Neuroscience 137, 1299–1307. doi: 10.1016/j.neuroscience.2005.10.030

Roozendaal, B., McEwen, B. S., and Chattarji, S. (2009). Stress, memory and the amygdala. Nat. Rev. Neurosci. 10, 423–433. doi: 10.1038/nrn2651

Sahay, A., Scobie, K. N., Hill, A. S., O’Carroll, C. M., Kheirbek, M. A., Burghardt, N. S., et al. (2011). Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature 472, 466–470. doi: 10.1038/nature09817

Schmidt-Hieber, C., Jonas, P., and Bischofberger, J. (2004). Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature 429, 184–187. doi: 10.1038/nature02553

Snyder, J. S., and Cameron, H. A. (2012). Could adult hippocampal neurogenesis be relevant for human behavior? Behav. Brain Res. 227, 384–390. doi: 10.1016/j.bbr.2011.06.024

Snyder, J. S., Radik, R., Wojtowicz, J. M., and Cameron, H. A. (2009). Anatomical gradients of adult neurogenesis and activity: young neurons in the ventral dentate gyrus are activated by water maze training. Hippocampus 19, 360–370. doi: 10.1002/hipo.20525

Snyder, J. S., Soumier, A., Brewer, M., Pickel, J., and Cameron, H. A. (2011). Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature 476, 458–461. doi: 10.1038/nature10287

Stranahan, A. M., Zhou, Y., Martin, B., and Maudsley, S. (2009). Pharmacomimetics of exercise: novel approaches for hippocampally-targeted neuroprotective agents. Curr. Med. Chem. 16, 4668–4678.

Toni, N., Teng, E. M., Bushong, E. A., Aimone, J. B., Zhao, C., Consiglio, A., et al. (2007). Synapse formation on neurons born in the adult hippocampus. Nat. Neurosci. 10, 727–734. doi: 10.1038/nn1908

Treves, A., Tashiro, A., Witter, M. P., and Moser, E. I. (2008). What is the mammalian dentate gyrus good for? Neuroscience 154, 1155–1172. doi: 10.1016/j.neuroscience.2008.04.073

Tronel, S., Belnoue, L., Grosjean, N., Revest, J. M., Piazza, P. V., Koehl, M., et al. (2012). Adult-born neurons are necessary for extended contextual discrimination. Hippocampus 22, 292–298. doi: 10.1002/hipo.20895

Wheat, H. V., and Müller, J. J. (1980). Pharmacological identification of acetylcholine and glutamate excitatory systems in the dentate gyrus of the rat. Brain Res. 182, 145–155. doi: 10.1016/0006-8993(80)90837-9

Zhao, C., Teng, E. M., Summers, R. G. Jr., Ming, G. L., and Gage, F. H. (2006). Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. J. Neurosci. 26, 3–11. doi: 10.1523/JNEUROSCI.3648-05.2006

Received: 06 May 2013; accepted: 03 June 2013; published online: 26 June 2013.

Citation: Wosiski-Kuhn M and Stranahan AM (2013) From pattern separation to mood regulation: multiple roles for developmental signals in the adult dentate gyrus. Front. Cell. Neurosci. 7:96. doi: 10.3389/fncel.2013.00096

Copyright © 2013 Wosiski-Kuhn and Stranahan. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any forum, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.

Frontiers in Cellular Neuroscience www.frontiersin.org June 2013 | Volume 7 | Article 96 | 4