CoRoT-7b: SUPER-EARTH OR SUPER-Io?

Rory Barnes\(^1\)\(^2\), Sean N. Raymond\(^2\)\(^3\), Richard Greenberg\(^3\), Brian Jackson\(^4\)\(^5\), and Nathan A. Kaib\(^1\)

\(^1\) Department of Astronomy, University of Washington, Seattle, WA 98195-1580, USA
\(^2\) Center for Astrophysics and Space Astronomy, University of Colorado, UCB 389, Boulder, CO 80309-0389, USA
\(^3\) Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721, USA
\(^4\) Planetary Systems Laboratory, Goddard Space Flight Center, Code 693, Greenbelt, MD 20771, USA

ABSTRACT

CoRoT-7b, a planet about 70% larger than the Earth orbiting a Sun-like star, is the first-discovered rocky exoplanet, and hence has been dubbed a “super-Earth.” Some initial studies suggested that since the planet is so close to its host star, it receives enough insolation to partially melt its surface. However, these past studies failed to take into consideration the role that tides may play in this system. Even if the planet’s eccentricity has always been zero, we show that tidal decay of the semimajor axis could have been large enough that the planet formed on a wider orbit which received less insolation. Moreover, CoRoT-7b could be tidally heated at a rate that dominates its geophysics and drives extreme volcanism. In this case, CoRoT-7b is a “super-Io” that, like Jupiter’s volcanic moon, is dominated by volcanism and rapid resurfacing. Such heating could occur with an eccentricity of just \(10^{-5}\). This small value could be driven by CoRoT-7c if its own eccentricity is larger than \(\sim10^{-4}\). CoRoT-7b may be the first of a class of planetary super-Ios likely to be revealed by the CoRoT and Kepler spacecraft.

Key words: celestial mechanics – planets and satellites: individual (CoRoT-7b)

1. INTRODUCTION

The discovery of CoRoT-7b (Léger et al. 2009; hereafter LRS09) heralds a new era in the study of exoplanets. The detection of rocky exoplanets has been a prime objective of exoplanet surveys as they are the most likely environments to measure via radial velocity data (Butler et al. 2006), the planet’s eccentricity \(e_p\) is <0.03 so as to be extremely difficult to detect (see Gaidos et al. 2007 for a review). Such planets probably formed at larger distances and migrated in, although there exist several other formation mechanisms (Raymond et al. 2008). At very close distances (<0.03 AU), planets orbiting \(\sim1\) \(M_\odot\) stars may experience enough insolation to partially melt the surface, producing a silicate vapor atmosphere (Schaefer & Fegley 2009). CoRoT-7b may be such a world with a surface temperature of order 2000 K (LRS09, Valencia et al. 2009).

These previous studies assumed that the planet remains at a constant distance from the star. However, CoRoT-7b is so close to its star that its life expectancy is very short as tides cause the orbit to decay quickly, assuming a conventional value for the stellar tidal parameter \(Q_\ast\) (Jackson et al. 2009). On that basis, LRS09 inferred that the value of \(Q_\ast\) is unexpectedly large. Alternatively, CoRoT-7b could be on the verge of spiraling down to the star, out of a large population of planets (in many systems), many of which have already been destroyed, as discussed by Jackson et al. (2009). It therefore remains uncertain whether the radiative heating has been intense enough, long enough to melt the surface. Here, we assess the possible orbital history and its implications.

Tides may also contribute to, and even dominate, the heating of the planet. If the planet’s orbit is at all eccentric (even if the eccentricity \(e_p\) is <0.03 so as to be extremely difficult to measure via radial velocity data (Butler et al. 2006)), the planet’s figure will be flexed by the time-varying gravitational potential of the star. These tides on the planet transform orbital energy into internal heat, affecting its geophysics as well as contributing to orbital decay. If the orbit of CoRoT-7b is sufficiently eccentric, then the planet could be substantially affected by tidal heating. Tidal heat alone could be adequate to make it a “super-Io,” with a surface heat flux far exceeding that of Jupiter’s extremely volcanic moon (Barnes et al. 2009b). This Letter identifies the orbital circumstances, histories, and physical properties that lead to Io-like volcanism (a super-Io) and those that do not (a super-Earth).

If CoRoT-7b orbited in isolation, then tides would quickly damp any primordial eccentricity (LRS09), and we might expect minimal tidal heating today. However, even small eccentricities (those typically considered negligible) could yield considerable tidal heating and have profound consequences for the geophysical state of this planet. We show here that if the planet is similar to the rocky bodies in our Solar System and has an eccentricity even as small as \(\sim10^{-5}\), tides may generate more heat per unit surface area than on Io. Such an eccentricity can be maintained by perturbations from planet c, the 8 \(M_\oplus\) planet that orbits at 0.046 AU, but only if its own eccentricity is large enough. In many plausible cases, the tidal heating may be orders of magnitude larger. In Section 2, we discuss tidal theory, the two models for the surface temperature presented in LRS09, and our N-body model. In Section 3, we show the possible orbital and thermal histories of planet b. Finally, in Section 4 we discuss the plausible range of physical properties that this planet has in the context of tidal evolution and tidal heating, and suggest that CoRoT-7b could be the first of many super-Ios that will be discovered by CoRoT and Kepler.
2. METHODS

Previous investigations have considered the possible range of surface temperatures of CoRoT-7b (LRS09; Schaefer & Fegley 2009; Valencia et al. 2009). Here we review the two models of LRS09: one in which the energy is uniformly distributed over the surface,

\[T_u = (1 - A)^{1/4} g \left(\frac{R_p}{2a} \right)^{1/2} T_s, \]

and one in which there is no surface heat transport to the back side,

\[T_s = (1 - A)^{1/4} g \left(\frac{R_p}{a} \right)^{1/2} T_s. \]

Here, \(A \) is the albedo, \(g \) quantifies the effectiveness of heat transport, and \(T_s \) is the effective temperature of the star (5275 K for CoRoT-7). We assumed \(A = 0 \) and \(g = 1 \) (no albedo and no greenhouse effect (LRS09)). In the next section, we will couple these models, Equations (1) and (2), to the tidal evolution of b’s orbit in order to estimate its surface temperature history.

Tidal theory is a notoriously complicated and uncertain field. With few examples of tidal evolution in the solar system as well as the long timescales associated with this phenomenon, firm observational constraints are rare (see Lainey et al. 2009 for a recent example). For more complete reviews of tidal models, consult Ferraz-Mello et al. (2008) or Heller et al. (2009). Here we employ a standard model that was developed to study orbital evolution of satellites in our solar system (Goldreich & Soter 1966; see also Jackson et al. 2008c; Barnes et al. 2009a, 2009b; Greenberg 2009). In this model, a planet on a circular orbit migrates (\(a \) evolves) at a rate

\[\frac{da}{dt} = -\frac{9}{2} \frac{\sqrt{GM_p R_p^5 m_p}}{Q_p'} a^{-11/2}, \]

where \(G \) is the gravitational constant, \(R_p \) is the planetary radius, \(R_s \) is the stellar radius, and \(Q_p' \) is the star’s “tidal dissipation function” which encapsulates the physical response of the body to tides, including the Love number. In order to constrain a planet’s orbital history, we integrate Equation (3) backward in time by flipping the sign. We use a time step of 1000 yr which convergence tests demonstrated resolves the evolution. We will use this equation to consider the past evolution of planet b’s orbit.

We will also consider the possibility that the planet has a nonzero eccentricity today in order to assess tidal heating, which is parameterized as

\[H = \frac{63}{4} \frac{(GM_p)^{3/2} M_* R_p^5}{Q_p'} a^{-15/2} e^2, \]

where \(Q_p' \) is the planet’s tidal dissipation function and \(M_* \) is the stellar mass (Peale et al. 1979; Jackson et al. 2008b). Note that if the planet has a nonzero eccentricity, Equation (3) will have an additional term, but for the small values we consider below, this change is negligible.

In order to assess the surface effects of tidal heating, we can compare our results with the processes and characteristics observed on planetary bodies in our own solar system. For comparison, heating rates must be scaled to account for the differences in sizes among bodies. Because we are comparing effects at the surface, we consider the heating rate per unit surface area (see, e.g., Williams et al. 1997; Jackson et al. 2008a, 2008b), i.e., the heat flux, \(h = H/4 \pi R_*^2 \), through the planetary surface. On Io, \(h = 2 \) W m\(^{-2}\) (from tidal heating) (McEwen et al. 2004), resulting in intense global volcanism and a lithosphere recycling timescale of 142 to 3.6 \times 10^7 \) yr (Blaney et al. 1995; McEwen et al. 2004). On Earth, the heating comes from the radioactive decay of U and K and produces a heat flux of 0.08 W m\(^{-2}\) (Davies 1999), which is adequate for plate tectonics and some volcanism, which is modest relative to Io. The radiogenic heat flux of CoRoT-7b is of order 0.4 W m\(^{-2}\) (A. Léger 2009, private communication). The actual scaling of geophysical processes among various sized planets is much more complex than can be represented by the single parameter \(h \). The internal effects will depend on, and modify, composition and structure. Qualitative differences in heat transport, such as the roles of convection versus conduction, will make for complex diversity. Many of these differences may scale as the heating rate per unit mass, for example. However, modeling these details would require complicated internal geophysical simulations which are beyond the scope of this investigation.

Here we assume that the surface heat flux \(h \) gives an adequate first-order qualitative representation of surface effects. Thus, we call planets “super-Ios” if their flux exceeds Io’s value (\(h > 2 \) W m\(^{-2}\)). Otherwise they can be considered as “super-Earths” (Jackson et al. 2008a; Barnes et al. 2009a, 2009b). We use Equation (4) to make these distinctions in the following section.

We also consider the perturbations from planet c which can maintain b’s eccentricity in a manner similar to the mutual perturbations of the planets in the HD 40307 system (Barnes et al. 2009b). We model the interactions with the N-body code HNBody,\(^7\) which includes general relativity precession. We assume the orbits are coplanar, with planet c’s mass, \(m_c = 8.93 M_\oplus \) (Queloz et al. 2009). For the remaining orbital parameters, we used the nominal values from Queloz et al. (2009), except that the eccentricity of planet c was chosen from the possible range \(3 \times 10^{-5} < e_c < 3 \times 10^{-3} \). We integrated the orbital motion for \(10^5 \) yr. Then, for each case, using the average astrocentric eccentricity of b, we computed the tidal heat flux of planet b, \(h_b \). We calculate the average heating flux because the mantle (if such a layer exists) of CoRoT-7b probably cannot respond to heating variations with timescales of thousands of years. We have not tested system stability numerically, but note that the above parameter space is Hill stable (Marchal & Bozis 1982; Gladman 1993), which implies Lagrange stability as well (Barnes & Greenberg 2006).

3. RESULTS

3.1. Surface Temperature Evolution

Here, we consider the past evolution of this planet in order to estimate how the surface temperature has changed. We consider a range of \(Q_p' \) values from \(10^5 \) to \(10^7 \) (Mathieu 1994; Lin et al. 1996; Ogilvie & Lin 2004; Jackson et al. 2009) and integrate back in time over the past 2.5 Gyr in order to cover the full age of the system, 1.2–2.3 Gyr (LRS09). Here, we assume that \(e_b \) has always been small enough that tides raised on the planet have not affected the orbital evolution (note that this assumption assumes the least amount of migration). The evolution of the semimajor axis of planet b’s orbit is shown in the top panel of Figure 2. For low \(Q_p' \), the planet could have begun nearly twice as far out, whereas if \(Q_p' = 10^7 \) or greater, there has been little change. The actual value of \(Q_p' \) remains uncertain.

\(^7\) http://janus.astro.umd.edu/HNBody/
corresponds to Q (Equation (2); “no heat transport” strip). In this panel, the top of the gray strips is through gravitational interactions with other planets in the solar system. So far only one other planet is known, so we consider its effects on planet b. The magnitude of e_b will depend on the current values of e_c and m_c, both of which are poorly constrained. We assume the orbit of planet c is inclined 20° to the line of sight (coplanar with b (LRS09)), with a mass of 8.93 $M_⊕$. Figure 3 shows the average heating flux (h_b), based on the average value of e_b over the 10^5 yr integration, as a function of e_c. If $e_c \gtrsim 10^{-4}$, then h_b exceeds the threshold for planet b to be a super-Io.

But could planet c have such a “large” eccentricity given the extreme tidal damping in this system? The orbital circularization rate falls off as $a^{-6.5}$ (Goldreich & Soter 1966), which might seem to suggest that c’s orbital eccentricity would be damped relatively slowly. However, planets b and c are coupled through their secular interactions, so that the tidal damping of one may affect the other. Planet c’s orbit could be circularized quickly through its interaction with b, i.e., planet b essentially drains c’s excess eccentricity. Therefore planet c alone may not be able to maintain b’s eccentricity to the level required for it to be a super-Io.

4. DISCUSSION

We have shown how tides may revise previous interpretations of the physical properties of CoRoT-7b. Consideration of tidal migration has important implications for the planet’s surface evolution and the planet’s interior. When the planets first formed, they were much hotter (Figure 3). We have shown how tides may revise previous interpretations of the physical properties of CoRoT-7b. Consideration of tidal migration has important implications for the planet’s surface evolution and the planet’s interior. When the planets first formed, they were much hotter (Figure 3).
temperature, and hence the possibility that the surface is (partially) melted (Schaefer & Fegley 2009). Valencia et al. (2009) argue that such a high surface temperature would lead to loss of the volatile inventory within 10^8 yr after formation. However, Figure 1 shows that such a supposition implicitly assumes $Q_\star \gtrsim 10^6$. Although the temperature difference could be only a few hundred degrees or less, we encourage future research into the surface and interior properties of CoRoT-7b (and close-in terrestrial bodies discovered in the future) due to insolation to bear in mind the tidal evolution of the orbit.

Previous interpretations of the surface properties of CoRoT-7b (Léger et al. 2009; Schaefer & Fegley 2009; Valencia et al. 2009) have only considered the radiative properties of the star. We have shown that other stellar properties, specifically its physical response to tides, are at least as important (at least on the dark side of the planet). In this case, the range of plausible Q_\star values permits a wide range of surface temperature histories. This result emphasizes the urgent need to determine Q_\star values more precisely.

Furthermore, we have shown that a slight eccentricity in the orbit of CoRoT-7b can result in enough tidal heating for it to be a super-Io planet (Barnes et al. 2009b), even without taking into account surface melting resulting from stellar radiation. However, tides would quickly circularize the orbit without an external agent. Perturbations from CoRoT-7c are a likely mechanism to drive the requisite eccentricity. Depending on CoRoT-7c’s mass and orbit, CoRoT-7b could be tidally heated to be a super-Io or less heated so as to be a super-Earth. Crucially, these distinctions lie below the current detection limit for the orbital eccentricities, so either is possible. However, given their close proximities to the host star, tidal damping may be strong enough to circularize both orbits below the threshold to make b a super-Io. As shown in Figure 2, the uncertainties in e_b are consistent with a tidal heating rate of greater than 10^6 W m$^{-2}$. Such a large heating rate is unlike anything observed in our solar system and would have dramatic effects on the internal, surface and atmospheric properties.

Regardless of the current eccentricity of CoRoT-7b, most models of planet formation predict that planets form with eccentricities of at least a few percent (Raymond et al. 2004, 2006; O’Brien et al. 2006; Morishima et al. 2008). Therefore, it seems likely that the planet was a super-Io early in its history (assuming it never had a large gaseous envelope), even accounting for tidal migration which implies formation was somewhat farther from the star than the current orbit.

We have assumed that CoRoT-7b has been a terrestrial-like planet throughout its history. Valencia et al. (2009) point out that ablation could strip away many Earth masses of gas within 1 Gyr, but we have showed it used to be further out. We are currently examining mass loss with tidal evolution (B. Jackson et al., in preparation). If the planet began with a large gaseous envelope, many of the ideas presented here may require revision.

Tides play a crucial role in defining the characteristics of the atmosphere, surface and interior of CoRoT-7b. This planet is the first close-in terrestrial planet discovered, but the CoRoT and Kepler spacecrafts are likely to find many more. Mayor et al. (2009) find that 30% of solar-mass stars have super-Earth to Neptune mass companions on periods of 50 days or less, Marcy et al. (2005) and Cumming et al. (2008) find that the mass-frequency distribution of exoplanets is a power law with slope ~ -1.1 (low mass planets are more common), and the geometric transit probability of a 10 M_\oplus planet orbiting a 1 M_\odot star is $\sim 10\%$. Taken together these results suggest Kepler, which is monitoring 10^5 stars, should find at least 100 terrestrial planets with orbital periods less than 10 days. Like CoRoT-7b, these planets can be strongly tidally heated. A significant fraction of the first wave of rocky exoplanets may be super-ilos.

R.B. and S.N.R. acknowledge funding from the NASA Astrobiology Institute’s Virtual Planetary Laboratory lead team, supported by NASA under Cooperative Agreement No. NNH05ZDA001C. R.G. acknowledges support from NASA’s Planetary Geology and Geophysics program, grant No. NNG05GH65G. B.J. is funded by an NPP administered by ORNL.

REFERENCES

Barnes, R., & Greenberg, R. 2006, ApJ, 647, L163
Barnes, R., Jackson, B., Greenberg, R., & Raymond, S. N. 2009a, ApJ, 700, 130
Barnes, R., Jackson, B., Raymond, S. N., West, A. A., & Greenberg, R. 2009b, ApJ, 695, 1006
Blaney, D. L., Johnson, T. V., Matson, D. L., & Veeder, G. J. 1995, Icarus, 113, 220
Butler, R. P., et al. 2006, ApJ, 646, 505
Cumming, A., Butler, R. P., Marcy, G. W., Vogt, S. S., Wright, J. T., & Fischer, D. A. 2008, PASP, 120, 531
Davies, G. 1999, Dynamic Earth (Cambridge: Cambridge Univ. Press)
Dickey, J. O., et al. 1994, Science, 265, 482
Ferraz-Mello, S., Rodríguez, A., & Hussmann, H. 2008, Celest. Mech. Dyn. Astron., 101, 171
Fortney, J. J., Marley, M. S., & Barnes, J. W. 2007, ApJ, 659, 1661
Gaidos, E., Haghighipour, N., Agol, E., Latham, D., Raymond, S. N., & Rayner, J. 2007, Science, 318, 210
Gladman, B. 1993, Icarus, 106, 247
Goldreich, P., & Soter, S. 1966, Icarus, 5, 375
Greenberg, R. 2009, ApJ, 698, L42
Heller, R., Jackson, B., Barnes, R., Greenberg, R., & Homeier, D. 2009, A&A, submitted
Jackson, B., Barnes, R., & Greenberg, R. 2008a, ApJ, 681, 1631
Jackson, B., Greenberg, R., & Barnes, R. 2008b, ApJ, 678, 1396
Lainey, V., Arlot, J.-E., Karatekin, O., & van Hoolst, T. 2009, Nature, 459, 957
Léger, A., et al. 2009, A&A, 506, 287 (LRS09)
Lin, D. N. C., Bodenheimer, P., & Richardson, D. 1996, Nature, 380, 606
Marchal, C., & Bizis, G. 1982, Celest. Mech. Dyn. Astron., 26, 311
Marcy, G., Butler, R. P., Fischer, D., Vogt, S., Wright, J. T., Tinney, C. G., & Jones, H. R. A. 2005, Prog. Theor. Phys. Suppl., 158, 24
Mardling, R. A., & Lin, D. N. C. 2002, ApJ, 573, 829
Mathieu, R. 1994, ARA&A, 32, 465
Mayor, M., et al. 2009, A&A, 493, 639
McEwen, A. S., Keszthelyi, L. P., Lopes, R., Schenck, P. M., & Spencer, J. R. 2004, in Jupiter: The Planet, Satellites and Magnetosphere, ed. P. Bagenal, T. E. Dowling, & W. B. McKinnon (Cambridge: Cambridge Univ. Press), 307
Morishima, R., Schmidt, M. W., Stadel, J., & Moore, B. 2008, ApJ, 685, 1247
O’Brien, D. P., Morbidelli, A., & Levison, H. F. 2006, Icarus, 184, 39
Ogilvie, G., & Lin, D. N. C. 2004, ApJ, 610, 477
Peale, S. J., Cassen, P., & Reynolds, R. T. 1979, Science, 203, 892
Queloz, D., et al. 2009, A&A, 506, 303
Raymond, S. N., Barnes, R., & Mandell, A. M. 2008, MNRS, 384, 663
Raymond, S. N., Quinn, T. R., & Lunine, J. I. 2004, Icarus, 168, 1
Raymond, S. N., Quinn, T. R., & Lunine, J. I. 2006, Icarus, 183, 265
Schaefer, L., & Fegley, B. 2009, ApJ, 703, 413
Seager, S., Kuchner, M., Hier-Majumder, C. A., & Militzer, B. 2007, ApJ, 669, 1279
Sotin, C., Grasset, O., & Mocquet, A. 2007, Icarus, 191, 337
Vaillancourt, D., Ikoma, M., Guillo, T., & Nettelmann, N. 2009, A&A, submitted (arXiv:0907.3067)
Valencia, D., Sadler, D. V., & O’Connell, R. J. 2007, ApJ, 656, 545
Williams, D. M., Kasting, J. F., & Wade, R. A. 1997, Nature, 385, 234
Yoder, C. F. 1995, in Global Earth Physics: A Handbook of Physical Constants, ed. T. Ahrens (Washington, DC: American Geophysical Union)