The direct effect of drinking to cope on alcohol problems is not mediated by alcohol consumption: Invariance across gender and countries

Ruichong Shuai a, Adrian J. Bravo b, Justin J. Anker c, Matt G. Kushner c, Lee Hogarth a, *

a School of Psychology, University of Exeter, Exeter, United Kingdom
b Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA
c Department of Psychological Sciences, William & Mary, USA

ARTICLE INFO
Keywords:
Drinking to cope
Negative affect
Unique risk
Alcohol harm paradox
Invariance across gender and countries

ABSTRACT

Background: Drinking to cope with negative affect confers a direct risk of alcohol problems independently of greater alcohol consumption (i.e., confers susceptibility to the alcohol harm paradox). However, it remains unclear whether this risk is common across gender and countries.

Methods: The current study applied path analysis to two cross-sectional samples of 18-25-year-old undergraduate hazardous drinking students recruited from the UK (Study 1; N = 873) and internationally (Study 2; N = 4064 recruited in Argentina, Canada, South Africa, Spain, Uruguay, USA, and England). The Drinking Motives Questionnaire (DMQ) measured drinking to cope with negative affect and drinking to enhance positive affect (i.e., enhancement motives). The Alcohol Use Disorders Identification Test (AUDIT) measured alcohol consumption and problems.

Results: In both studies, drinking to cope with negative affect had a direct effect on alcohol problems (S1: \(\beta = 0.259, SE = 0.031, p < .001; S2: \beta = 0.255, SE = 0.017, p < .001 \)), and only a negligible proportion of this effect was mediated by alcohol consumption (S1: 2.58 %, \(p = .550; S2: 0.79 \%, p = .538 \)). By contrast, drinking to enhance positive affect had a smaller direct effect on alcohol problems (S1: \(\beta = 0.000, SE = 0.033, p = .989; S2: \beta = 0.044, SE = 0.017, p = .009 \)), and a substantial proportion of this effect was mediated by greater alcohol consumption (S1: 99.76 %, \(p < .001; S2: 60.36 \%, p < .001 \)). Crucially, in both studies, the direct effect of drinking to cope on alcohol problems was invariant across gender and countries.

Conclusions: These findings suggest that individuals who endorse drinking to cope with negative affect are uniquely susceptible to the alcohol harm paradox, that is, greater alcohol problems which cannot be explained by greater alcohol consumption, and this susceptibility is common across gender and countries.

1. Introduction

Frequent alcohol consumption in early adolescence is a strong prospective predictor of alcohol problems (negative consequences and dependence) in later life (Heron et al., 2012; Percy & Iwaniec, 2007). However, alcohol consumption does not explain all the variance in alcohol problems (Prince et al., 2018), suggesting that additional individual difference variables confer unique risk of developing alcohol problems independently of consumption – the so-called alcohol harm paradox (Boyd et al., 2022; Shuai et al., 2022). Motivational theories of addiction have generated evidence that drinking to cope with negative affect is uniquely associated with alcohol problems but not with greater alcohol consumption, whereas conversely, self-reported drinking to enhance positive experience is uniquely associated with greater alcohol consumption but not with alcohol problems (Anderson et al., 2013; Cooper, 1994; Cooper et al., 1995; Cox & Klinger, 1988; Kassel et al., 2000; Kuntsche et al., 2005; Merrill & Read, 2010; Molnar et al., 2010; Read et al., 2003; Simons et al., 2005; Watkins et al., 2015; for a meta-analysis of 28 association studies see Cooper et al., 2016). These dissociable associations suggest that drinking to cope uniquely contributes to the alcohol harm paradox, i.e., excessive alcohol problems above that predicted by level of consumption, whereas drinking for enhancement only contributes to alcohol problems indirectly via greater consumption. Understanding these dissociable risk pathways may help develop effective screening and intervention strategies.

Several studies using structural equation path analysis have tested...
the dissociation between drinking to cope versus enhancement in their direct/indirect effects on alcohol consumption and problems. In the original demonstration, Cooper et al. (1995) examined data from 1006 adolescent past-six-month drinkers and 960 adult past-year drinkers. The analysed models were complex, involving additional measures of expectancies and depression symptoms. Nevertheless, drinking to cope showed a direct association with alcohol problems independently of consumption, whereas drinking for enhancement showed only an indirect association with alcohol problems through consumption. Comparably, Merrill et al. (2014) tested longitudinal data collected from 552 college students across two years. Drinking to cope had a direct prospective effect on alcohol problems which was not mediated by alcohol consumption, whereas conversely, drinking for enhancement only had an indirect prospective effect on alcohol problems via greater consumption. Finally, Bresin and Mekawi (2021) conducted systematic, meta-analytic structural equation modeling with k = 254 studies and found in cross-sectional studies that coping motives had a relatively stronger direct effect on alcohol problems and a relatively weaker indirect effect on problems via alcohol consumption, compared to enhancement motives. In contrast, enhancement motives had no statistically significant direct effect on alcohol problems and a relatively stronger indirect effect on problems via alcohol consumption, compared to coping motives.

Although these dissociable direct and indirect pathways between drinking motives and drinking outcomes are well-established, it remains unclear about the replicability and generality of these pathways between gender and countries. In Cooper et al.’s (1995) study, these pathways were stronger for males than females; however, Merrill et al. (2014) found these pathways were invariant across gender. Finally, Bresin and Mekawi (2021) did not test invariance across gender due to the small number of studies reporting correlations split by gender. As far as we are aware, only one cross-cultural study has tested these issues and found that the dissociable pathways were invariant across gender and countries (the U.S., Argentina and Spain - Mezquita et al., 2018). However, this study used the Young Adult Alcohol Consequences Questionnaire (YAAQ, Read et al., 2003) that is specific to alcohol-related problems among college students (e.g., ‘I have gotten into trouble at work or school because of drinking’), which consists of more mild items than dependence-focused measures (such as Alcohol Use Disorder Identification Test (AUDIT), validated by Babor et al., 2001). Given the uncertainty about whether these risk pathways differ between gender and countries, the current study aimed to test pathways into alcohol use disorder symptoms measured with the AUDIT and examine their invariance between gender and countries.

The current study aimed to confirm these dissociable pathways conferred by drinking to cope versus enhancement and test their invariance across gender and countries, to determine their replicability and generality. Two cross-sectional samples of 18–25-year-old undergraduate students who reported hazardous drinking were tested, with Study 1 examining a UK sample (N = 873) and Study 2 examining an international sample (N = 4064 recruited in Argentina, Canada, South Africa, Spain, Uruguay, USA, and England). Drinking to cope and enhancement motives were measured with Drinking Motives Questionnaire (DMQ: Cooper, 1994; Grant et al., 2007) and alcohol consumption and problems were measured with subscales of the Alcohol Use Disorders Identification Test (AUDIT; Babor et al., 2001). Pathways were tested with SEM path analysis using bootstrap standardized error estimates with the SEM condition to cope and enhancement as predictors, alcohol consumption as the mediator and the alcohol problems as the outcome. It was expected that drinking to cope would have a relatively larger direct effect on alcohol problems, but a smaller direct effect on consumption and a relatively smaller indirect effect on problems via consumption (consistent with the alcohol harm paradox). By contrast, it was expected that drinking for enhancement would have a relatively larger direct effect on alcohol consumption, but a relatively smaller direct effect on alcohol problems and a relatively larger indirect effect on problems via consumption (this pattern of predictions is consistent with Bresin and Mekawi (2021) meta-analysis of cross-sectional studies). Moreover, these dissociable pathways were expected to be invariant across gender and countries, demonstrating their replicability and generality. These findings would suggest that preferential endorsement of drinking to cope relative to enhancement marks unique risk for problematic drinking independently of consumption, revealing drinking to cope as an important susceptibility mechanism contributing to the alcohol harm paradox.

2. Study 1

2.1. Methods

2.1.1. Participants

Participants were recruited from the Psychology research pool at Exeter and the Facebook page “Overheard at Exeter”. A total of 1023 participants completed the survey, from which 873 were selected based on being aged 18–25 and reporting past year hazardous drinking (defined by AUDIT total score of ≥ 3, which is the minimum criterion for hazardous drinking psychometrically evaluated by Nadkarni et al., 2019). The analytical sample had a mean age of 20.52 (SD = 1.61) and were 64 % female. Mean questionnaire scores are shown in Table 1. Participants provided informed consent, were debriefed and reimbursed with course credits or a £3 Amazon voucher depending on their wishes. All studies were approved by the School of Psychology Research Ethics Committee.

2.1.2. Questionnaires

Drinking Motives were measured with the modified Drinking Motives Questionnaire Revised (DMQR validated by Grant et al., 2007), which contains 28 items describing reasons which might motivate participants to drink, which they endorse on a scale ranging from 0 “never” to 10 “always”. The DMQR contains the following five subscales: drinking to cope with anxiety (e.g. “to relax”), drinking to cope with depression (e.g. “to numb my pain”), drinking for enhancement (e.g. “to get a high”), for conformity (e.g. “to be liked”), and drinking to be social (e.g. “as a way to celebrate”). The coping with anxiety/depression subscales were averaged to create a single “coping motives” score due to their high correlation (r = 0.71, p < .001), and previous work supporting their aggregation in cross-sectional research (Bravo & Pearson, 2017). Only the drinking to cope and enhancement subscales were used in the analysis justified by the studies outlined in the introduction.

Alcohol consumption and problems were measured with the 10-item Alcohol Use Disorder Identification Test (AUDIT), assessing past 12-month experience (Babor et al., 2001). Factor analytic studies indicate that the AUDIT has two subscales (Doyle et al., 2007; Maisto et al., 2000). The Consumption subscale is assessed by three items: “How often do you have a drink containing alcohol”, “How many standard drinks do

| Table 1 |
| Sample means (and distribution), Bivariate Pearson correlations matrix and Cronbach’s α reliability statistics (in brackets) for questionnaire measures in Study 1. |

Methods	1	2	3	4	Mean (SD, range)
1. Coping motives	0.93				3.46 (2.08, 0.94)
2. Enhancement motives	0.56	(0.82)			5.61 (2.03, 0.50-10)
3. Alcohol consumption	0.15	0.30	(0.69)		6.69 (2.27, 1-12)
4. Alcohol problems	0.34	0.31	0.57	(0.76)	7.66 (5.12, 0-23)

Note. Significant correlations are emboldened and were determined by a 99 % bias-corrected unstandardized bootstrapped confidence interval (based on 10,000 bootstrapped samples) that does not contain zero. Additionally, p values were all < 0.001.
you have on a typical day when you are drinking”, and “How often do you have six or more standard drinks on one occasion”. The Problems subscale is assessed by seven items addressing both dependence (e.g., “How often during the last year have you found that you were not able to stop drinking once you had started”) and negative consequences (e.g., “How often during the last year have you failed to do what was normally expected from you because of drinking”).

2.1.3. Analytical plan

IBM SPSS Statistics version 28 was used for data curation. Multivariate outliers were first excluded based on Mahalanobis distance greater than 15, leaving N = 873 (i.e., two participant exclusions). To achieve 80% power for detecting small mediated effect in bias-corrected bootstrap tests, required sample size is 462 (see Table 3, Fritz & MacKinnon, 2007). Thus, the current sample size of 873 should be more than adequate to test the null hypothesis. Univariate outliers (>1.5 times the interquartile range) were winsorized to match the nearest non-outlying score (four data points for enhancement motives, one data point for alcohol consumption and problems were corrected). These procedures ensured that correlation and mediation analyses were not unduly influenced by multivariate or univariate outliers. Coping and enhancement motives were simultaneously entered as the predictor variables (X), alcohol consumption was the mediator (M), and alcohol problems was the outcome (Y). Multi-group analyses were conducted to test model invariance across gender groups. All analyses were carried out using Mplus 8.6 (Muthén & Muthén, 2019). Given that chi-square difference test widely used for examining model invariance is sensitive to sample size (Brown, 2015), decrements in the Comparative Fit Index (ΔCFI ≤ 0.010, Cheung & Rensvold, 2002) across more and less constrained models were also examined as a test of invariance.

2.2. Results

Table 1 shows the sample mean, Pearson bivariate correlation matrix and Cronbach’s alpha reliability statistics for the questionnaire measures from Study 1. As expected, all variables correlated with each other. Fig. 1 shows the path model from the SEM analysis revealing the unique direct and indirect associations between variables. As predicted, drinking to cope had a significant unique direct effect on alcohol problems, no significant direct effect on alcohol consumption, and no significant indirect effect on alcohol problems via consumption. By contrast, drinking for enhancement had no significant direct effect on alcohol problems, a significant direct effect on alcohol consumption and a significant indirect effect on alcohol problems via consumption. Furthermore, calculation of the mediation ratio (Preacher & Kelley, 2011) indicated that only 2.58% of the total effect of coping motives on alcohol problems was explained by the indirect path through consumption. By contrast, 99.76% of the total effect of enhancement motives on alcohol problems was explained by the indirect path through consumption. Post-hoc power analysis was conducted using Monte Carlo Power Analysis for indirect effects (Schoemann et al., 2017), with inputted correlation coefficients between coping motives, enhancement motives, alcohol consumption and problems (see Table 1). Results showed that the total sample size of 873 achieved 97% power for detecting indirect effects of coping motives on alcohol problems via consumption and 100% power for detecting indirect effects of enhancement motives on alcohol problems via consumption, determined by a 99% bias-corrected unstandardized bootstrapped confidence interval (based on 10,000 bootstrapped samples). Thus, coping motives are unique in having a stronger direct effect on alcohol problems that is not mediated by alcohol consumption, whereas enhancement motives have no unique direct effect on alcohol problems, but increase alcohol problems indirectly via greater alcohol consumption.

Table 2 shows results from the multi-group analysis between gender groups suggesting an adequate fit of the model (MG1). The addition of constraints between the paths of the two gender groups (MG2) indicated that this model was not invariant (ΔCFI = 0.019, greater than the recommended cut-off point 0.01). To identify an invariant model, the path with the greatest contribution to reducing model fit within the fully constrained model was identified and allowed to be freely estimated. The final model obtained (MG3; the path from Enhancement Motives to Consumption) showed ΔCFI = 0.007 compared with the baseline model (MG1), suggesting model invariance between gender groups. In the final multi-group model, the path from Enhancement Motives to Consumption was significant for both gender groups, but stronger for males (β = 0.419, SE = 0.051, p < .001, 99 %CI = 0.280–0.542) than females (β = 0.248, SE = 0.044, p < .001, 99 %CI = 0.133–0.360). The rest of paths were invariant between gender groups, specifically, the direct path between drinking to cope and alcohol problems, and the indirect path between drinking for enhancement and alcohol problems via consumption.

3. Study 2

3.1. Methods

3.1.1. Participants

Participants were recruited from Argentina, Canada, South Africa, Spain, Uruguay, USA, and England, from January 2019 to March 2020. All participants completed a standardized online battery (translated to Spanish for Spanish-speaking participants) of assessments via Qualtrics software. A total of 5674 participants fully completed the survey (see

Fig. 1. SEM mediation path model in Study 1. Significant parameter estimates are emphasized by emboldened complete connecting lines. As predicted, coping motives had a direct effect on problems and no indirect effect through consumption -> problems pathway, whereas enhancement motives had no direct effect on problems but an indirect effect through consumption -> problems pathway.
effect in bias-corrected bootstrap tests, see Table 3 in Fritz et al., 2018. Additionally, confidence intervals (based on 10,000 bootstrapped samples) that do not contain zero. Furthermore, calculation of the mediation ratio indicated that only 0.79 % of the total effect of coping motives on alcohol problems was explained by the indirect path through consumption. By contrast, drinking for enhancement had a smaller significant direct effect on alcohol problems, a larger significant direct effect on alcohol consumption and a larger significant indirect effect on alcohol problems via consumption. Furthermore, calculation of the mediation ratio indicated that only 0.79 % of the total effect of coping motives on alcohol problems was explained by the indirect path through consumption. By contrast, drinking for enhancement had a smaller significant direct effect on alcohol problems, a larger significant direct effect on alcohol consumption and a larger significant indirect effect on alcohol problems via consumption. Furthermore, calculation of the mediation ratio suggested an adequate fit of the model (MG1A) (Table 4). The addition of constraints between the paths of the two gender groups (MG2A) resulted in minimal change in model fit (ΔCFI = 0.006), suggesting that the dissociable pathways of coping and enhancement motives were invariant across gender. Results from the constrained multi-group model across countries indicated that this model was not invariant across countries (ΔCFI = 0.074, greater than the recommended cut-off point 0.01). To identify an invariant model, the path with the greatest contribution to reducing model fit within the fully constrained model was identified and allowed to be freely estimated (MG3b: the path from Consumption to Problems). Finally, the last path was identified (i.e., the path from Coping to Consumption) and the final model obtained (MG5b) showed ΔCFI = 0.004 compared with the baseline model (MG1b), suggesting model invariance across countries. In the final multi-group model, only two paths were constrained, i.e., Coping Motives to Problems and

3.1.2. Questionnaires

Participants completed questions assessing age, gender and the AUDIT (the US version: Saunders et al., 1993). AUDIT-US version with female. Table 2 shows the sample mean scores for questionnaires. Participants provided informed consent, were debriefed and reimbursed with course credits. All studies were approved by the School Research Ethics Committees for each institution.

3.1.3. Analytical plan

The analytical protocol and predictions were identical to Study 1. Six multivariate outliers were removed by Mahalanobis distance greater than 16.5, leaving N = 4064. As noted in Study 1, the current sample size of 4064 should be more than adequate to test the null hypothesis (N = 462 required for achieving 80 % power for detecting small mediated effect in bias-corrected bootstrap tests, see Table 3 in Fritz & Mackinnon, 2007). Univariate outliers were winsorized to match the nearest non-outlying score (16 data points for DMQR coping, 3 data points for AUDIT consumption and 31 data points for AUDIT problems were corrected). For invariance test across countries, Uruguay and Argentina were grouped into a South America sample (N = 532) as done in previous studies (Pilatti et al., 2021).

3.2. Results

Table 3 shows sample mean (and distribution), Pearson bivariate correlation matrix, and Cronbach's alpha reliability statistics for the questionnaires. All variables were correlated as expected. Fig. 2 shows the path model from the SEM analysis revealing the unique direct and indirect associations between variables. Similar to Study 1, drinking to cope had a significant unique direct effect on alcohol problems, no significant direct effect on alcohol consumption, and no significant indirect effect on alcohol problems via consumption. By contrast, drinking for enhancement had a smaller significant direct effect on alcohol problems, a larger significant direct effect on alcohol consumption and a larger significant indirect effect on alcohol problems via consumption. Furthermore, calculation of the mediation ratio indicated that only 0.79 % of the total effect of coping motives on alcohol problems was explained by the indirect path through consumption. By contrast, drinking for enhancement had a smaller significant direct effect on alcohol problems, a larger significant direct effect on alcohol consumption and a larger significant indirect effect on alcohol problems via consumption. Furthermore, calculation of the mediation ratio indicated that only 0.79 % of the total effect of enhancement motives on alcohol problems was explained by the indirect path through consumption. Post-hoc power analysis was conducted using Monte Carlo Power Analysis for indirect effects (Schoemann et al., 2017), with inputted correlation coefficients between coping motives, enhancement motives, alcohol consumption and problems (see Table 3). Results showed that the total sample size of 4064 achieved 100 % power for detecting indirect effects of coping motives on alcohol problems via consumption and 100 % power for detecting indirect effects of enhancement motives on alcohol problems via consumption, determined by a 99 % bias-corrected unstandardized bootstrapped confidence interval (based on 10,000 bootstrapped samples).

The results from the multi-group analysis between gender groups suggested an adequate fit of the model (MG1A) (Table 4). The addition of constraints between the paths of the two gender groups (MG2A) resulted in minimal change in model fit (ΔCFI = 0.006), suggesting that the dissociable pathways of coping and enhancement motives were invariant across gender. Results from the constrained multi-group model across countries indicated that this model was not invariant across countries (ΔCFI = 0.074, greater than the recommended cut-off point 0.01). To identify an invariant model, the path with the greatest contribution to reducing model fit within the fully constrained model was identified and allowed to be freely estimated (MG3B: the path from Consumption to Problems). Following this, the next path with the greatest contribution to reducing model fit was identified and allowed to be freely estimated (MG4B: the path from Enhancement Motives to Consumption). Finally, the last path was identified (i.e., the path from Coping to Consumption) and the final model obtained (MG5B) showed ΔCFI = 0.004 compared with the baseline model (MG1B), suggesting model invariance across countries. In the final multi-group model, only two paths were constrained, i.e., Coping Motives to Problems and

Table 2

Invariance test results of the SEM across gender.

Mediation Model Across Gender	Overall Fit Indices	Comparison Fit Indices				
	N	Fit Indices	Model comparison	∆χ²	∆df	ΔCFI
MG1 Unconstrained	4064	χ² 0.000 df 1.000	MG1 vs MG2	0.042	0	0.007
MG2 Full constrained model+	4064	χ² 0.000 df 1.000	MG2 vs MG1	15.563	5	0.019
MG3 Full constrained model less constraint EC	4063	χ² 0.000 df 1.000	MG3 vs MG2	8.036	4	-0.007

Note. *+p < .01. + includes the constraints in the paths observed in Fig. 1. The constraints EC refers to the path Enhancement Motives -> Consumption.

Table 3

Sample means (and distribution), Bivariate Pearson correlations matrix and Cronbach's alpha reliability statistics (in brackets) for questionnaire measures in Study 2.

Methods	1	2	3	4	Mean (SD, range)
1 Coping motives	0.81	0.29	0.35	0.23	1.95 (0.96, 1–5)
2 Enhancement motives	0.70	0.60	0.63	0.72	2.04 (1.00, 1–5)
3 Alcohol consumption	0.50	0.29	0.35	0.23	5.50 (2.21, 0–11)
4 Alcohol problems	0.60	0.19	0.23	0.70	3.60 (2.72, 0–28)

Note. Significant correlations are emboldened and were determined by a 99 % bias-corrected unstandardized bootstrapped confidence interval (based on 10,000 bootstrapped samples) that does not contain zero. Additionally, p values were all < 0.001.
Enhancement Motives to Problems, suggesting that both paths were invariant across countries. Specifically, coping motives showed a greater direct effect on alcohol problems and no indirect effect through consumption -> problems pathway. Enhancement motives showed a much smaller direct effect on problems compared to coping motives, but similar magnitude to the indirect effect through consumption -> problems pathway.

Table 4
Invariance testing results of the SEM across gender and countries.

Mediation Model Across Gender	Overall Fit Indices	Comparison Fit Indices	
	χ^2 df	CFI TLI RMSEA SRMR	$\Delta \chi^2$ Δdf ΔCFI
MG1A Unconstrained	0 0	1.000 1.000 0 (00)	0 0
MG2A Constrained	11.763* 5	0.994 0.987 0.026 (0.006 0.045)	0.017 MG2A vs MG1A 11.763 5 –0.006

Mediation Model Across Countries	Overall Fit Indices	Comparison Fit Indices	
	χ^2 df	CFI TLI RMSEA SRMR	$\Delta \chi^2$ Δdf ΔCFI
MG1B Unconstrained	0 0	1.000 1.000 0 (00)	0 0
MG2B Full constrained model+	101.952*** 25	0.926 0.911 0.067 (0.054 0.081)	0.067 MG2B vs MG1B 101.952 25 –0.074
MG3B Full constrained model less constraint CP	64.993*** 20	0.956 0.935 0.058 (0.042 0.074)	0.067 MG3B vs MG1B 64.990 20 –0.044
MG4B Full constrained model less constraints CP, EC	43.563*** 15	0.972 0.945 0.053 (0.035 0.072)	0.067 MG4B vs MG1B 43.563 15 –0.028
MG5B Full constrained model less constraints CP, EC, CC	13.845 10	0.996 0.989 0.024 (0.000 0.051)	0.014 MG5B vs MG1B 13.845 10 –0.004

Note. *p <.05, ***p <.001. + includes the constraints in the paths observed in Fig. 2. The constraints CP refers to the path Consumption -> Problems, EC refers to the path Enhancement Motives -> Consumption, and CC refers to the path Coping Motives -> Consumption.

3.3 Discussion

The current study tested whether the dissociable effects of drinking to cope and enhancement on alcohol consumption and problems were invariant across gender and countries. As predicted, in both studies, drinking to cope had a direct effect on alcohol problems and no indirect effect on problems via consumption, whereas drinking for enhancement had a small direct effect on alcohol problems but an indirect effect via greater alcohol consumption. Calculation of the mediation ratio indicated that the indirect path through consumption accounted for a significantly smaller proportion of the total effect of coping motives on alcohol problems (S1: 2.58 %; S2: 0.79 %), and accounted for a substantial proportion of the total effect of enhancement motives on alcohol problems (S1: 99.76 %; S2: 60.36 %). Importantly, the direct effect of drinking to cope on alcohol problems was invariant across gender and countries, suggesting that the extent to which drinking to cope confers susceptibility to the alcohol harm paradox is comparable across multiple groups. By contrast, the indirect effect of drinking for enhancement on problems via consumption varied between countries, potentially revealing the obscure impact of drinking cultures on the link between consumption and problems (Peele, 1997). Specifically, in Spanish-speaking countries, the link between enhancement motives and alcohol consumption was weaker and the link between alcohol consumption and alcohol problems was not statistically significant. Taken together, these findings suggest that drinking to cope confers a unique risk factor for developing alcohol...
Table 5

Country	Enhancement Motives to Consumption	Consumption to Problems	Specific indirect effects from Enhancement Motives to Problems via Consumption
USA	0.331 (0.275,0.388)	0.164 (0.116,0.308)	0.054 (0.032,0.080)
Canada	0.251 (0.196,0.307)	0.051 (0.027,0.055)	0.015 (0.008,0.021)
South Africa	0.232 (0.191,0.273)	0.055 (0.035,0.075)	0.014 (0.009,0.019)
Spain	0.267 (0.234,0.300)	0.049 (0.034,0.064)	0.011 (0.006,0.016)
UK	0.177 (0.131,0.223)	0.054 (0.032,0.080)	0.015 (0.008,0.022)
Canada	0.175 (0.138,0.217)	0.051 (0.025,0.068)	0.013 (0.006,0.020)
South America	0.175 (0.138,0.217)	0.051 (0.025,0.068)	0.013 (0.006,0.020)
South America	0.175 (0.138,0.217)	0.051 (0.025,0.068)	0.013 (0.006,0.020)
South America	0.175 (0.138,0.217)	0.051 (0.025,0.068)	0.013 (0.006,0.020)
South America	0.175 (0.138,0.217)	0.051 (0.025,0.068)	0.013 (0.006,0.020)

Note: Significant associations are denoted by a 99% bias-corrected unstandardized bootstrap confidence interval (based on 10,000 bootstrapped samples) that does not contain zero.
models tested, but we hope that the narrow focus will promote under-
standing of the alcohol harm paradox. Third, we used different versions of
DMQR in the two studies. Although these are generally considered as
equivalent due to the similarity of the items, we know of no studies that
have directly compared them. Fourth, we have only reported two cat-
egories for gender, which ignores the multiplicity of gender identities.
There was insufficient data in the categories of “Transgender”, “Other”
and “Prefer not to respond” for meaningful statistics, but it is important
to note that gender is not exclusively binary.
In conclusion, the current study suggested there are distinct risk
pathways for individuals who endorse drinking to cope versus
enhancement. Whereas drinking to cope confers a direct risk of alcohol
problems which is not mediated by greater consumption (i.e., suscepti-
bility to the alcohol harm paradox), drinking for enhancement is
related to alcohol problems largely via greater alcohol consumption.
Invariance analysis indicated that the direct effect of drinking to cope
on alcohol problems is comparable across gender and countries, while
the indirect effect of drinking for enhancement on alcohol problems via
consumption is variant across countries (non-significant in Spanish-
speaking countries). Longitudinal research is needed to fully under-
stand exactly why drinking to cope marks a direct risk of alcohol
problems.

Funding
This research was supported by an Alcohol Change UK grant [R317/ 03], and a Medical Research Council award [MC_PC_MR/R019991/1] to
Lee Hogarth.

CRediT authorship contribution statement
Ruichong Shuai: Conceptualization, Methodology, Investigation, Data
curation, Formal analysis, Writing – original draft. Adrian J.
Bravo: Formal analysis, Writing – review & editing. Justin J. Anker:
Writing – review & editing. Matt G. Kusnsher: Writing – review &
editing. Lee Hogarth: Conceptualization, Methodology, Data curation,
Formal analysis, Writing – review & editing, Supervision.

Declaration of Competing Interest
The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability
Data will be made available on request.

Appendix A. Supplementary material
Supplementary data to this article can be found online at https://doi.
org/10.116/j.abrep.2022.100469.

References
Anderson, K. G., Briggs, K. E., & White, H. R. (2013). Motives to drink or
not to drink: Longitudinal relations among personality, motives, and alcohol use across
adolescence and early adulthood. Alcoholism, Clinical and Experimental Research, 37
(5), 860–867. https://doi.org/10.1111/acer.12030
Anker, J. J., & Kusnsher, M. G. (2019). Co-Occurring Alcohol Use Disorder and Anxiety:
Bridging Psychiatric, Psychological, and Neurobiological Perspectives. accr. v40.41.03 Alcohol Research: Current Reviews, 40(1). https://doi.org/10.39546/accr. v40.1.03
Babor, T. F., Higgins-Biddle, J. C., Saunders, J. B., & Monteiro, M. G. (2001). AUDIT: The
alcohol use disorders identification test: Guidelines for use in primary health care (second
ed.). World Health Organization.
Boyd, J., Sexton, O., Angus, C., Meier, P., Purshouse, R. C., & Holmes, J. (2022). Causal
mechanisms proposed for the alcohol harm paradox—a systematic review. Addiction,
117(1), 33–56. https://doi.org/10.1111/add.16567.
