An approximate proximal numerical procedure concerning the generalized method of lines

Fabio Silva Botelho
Department of Mathematics
Federal University of Santa Catarina, UFSC
Florianópolis, SC - Brazil

Abstract

This article develops an approximate proximal approach for the generalized method of lines. The present results are extensions and applications of previous ones which have been published since 2011, in books and articles such as [3, 4, 5, 6]. We also recall that in the generalized method of lines, the domain of the partial differential equation in question is discretized in lines (or in curves) and the concerning solution is developed on these lines, as functions of the boundary conditions and the domain boundary shape.

1 Introduction

Let Ω ⊂ \mathbb{R}^2 be an open, bounded and connected set where
\[\Omega = \{(x, y) \in \mathbb{R}^2 : y_1(x) \leq y \leq y_2(x), a \leq x \leq b\}. \]
Here, we assume, \(y_1, y_2 : [a, b] \to \mathbb{R} \) are continuous functions.
Consider the Ginzburg-Landau type equation, defined by
\[\begin{cases} -\varepsilon \nabla^2 u + \alpha u^3 - \beta u = f, & \text{in } \Omega, \\ u = 0, & \text{on } \partial \Omega. \end{cases} \] (1)
Here \(\varepsilon > 0, \alpha > 0, \beta > 0 \) and \(f \in L^2(\Omega) \).
Also, \(u \in W_0^{1,2}(\Omega) \) and the equation in question must be considered in a distributional sense.

2 The numerical method

We discretize the interval \([a, b]\) into \(N \) same measure sub-intervals, through a partition
\[P = \{x_0 = a, x_1, \ldots, x_N = b\}, \]
where \(x_n = a + nd, \forall n \in \{1, \ldots, N - 1\} \). Here
\[d = \frac{(b - a)}{N}. \]
Through such a procedure, we generate \(N \) vertical lines parallel to the Cartesian axis \(0y \), so that for each line \(n \) based on the point \(x_n \) we are going to compute an approximate solution \(u_n(y) \) corresponding to values of \(u \) on such a line.

Considering this procedure, the equation system obtained in partial finite differences is given by

\[
-\varepsilon \left(\frac{u_{n+1} - 2u_n + u_{n-1}}{d^2} + \frac{\partial^2 u_n}{\partial y^2} \right) + \alpha u_n^3 - \beta u_n = f_n,
\]

\(\forall n \in \{1, \cdots, N-1\} \), with the boundary conditions

\[
u_0 = 0,
\]

and

\[
u_N = 0.
\]

Let \(K > 0 \) be an appropriate constant to be specified.

In a proximal approach, considering an initial solution \(\{(u_0)_n\} \)

we redefine the system of equations in question as below indicated.

\[
-\varepsilon \left(\frac{u_{n+1} - 2u_n + u_{n-1}}{d^2} + \frac{\partial^2 u_n}{\partial y^2} \right) + \alpha u_n^3 - \beta u_n + K u_n - K (u_0)_n = f_n,
\]

\(\forall n \in \{1, \cdots, N-1\} \), with the boundary conditions

\[
u_0 = 0,
\]

and

\[
u_N = 0.
\]

Hence, we may denote

\[
u_{n+1} - \left(2 + \frac{K d^2}{\varepsilon} \right) u_n + u_{n-1} + T(u_n) + \tilde{f}_n \frac{d^2}{\varepsilon} = 0,
\]

where

\[
T(u_n) = (-\alpha u_n^3 + \beta u_n) \frac{d^2}{\varepsilon} + \frac{\partial^2 u_n}{\partial y^2} \frac{d^2}{\varepsilon},
\]

and \(\tilde{f}_n = K (u_0)_n + f_n \), \(\forall n \in \{1, \cdots, N-1\} \).

In particular, for \(n = 1 \), we get

\[
u_2 - \left(2 + \frac{K d^2}{\varepsilon} \right) u_1 + T(u_1) + \tilde{f}_1 \frac{d^2}{\varepsilon} = 0,
\]

so that

\[
u_1 = a_1 u_2 + b_1 T(u_2) + c_1 + E_1,
\]

where

\[
a_1 = \frac{1}{2 + K d^2},
\]

\[
b_1 = \frac{K d^2}{\varepsilon},
\]

\[
c_1 = \frac{\partial^2 u_1}{\partial y^2},
\]

\[
E_1 = \frac{-\alpha u_1^3 + \beta u_1}{\varepsilon}.
\]
\[b_1 = a_1, \]

and
\[c_1 = a_1 \frac{d^2}{\varepsilon} \]

and the error \(E_1 \), proportional to \(1/K \), is given by
\[E_1 = b_1 (T(u_1) - T(u_2)). \]

Now, reasoning inductively, having
\[u_{n-1} = a_{n-1} u_n + b_{n-1} T(u_n) + c_{n-1} + E_{n-1} \]

for the line \(n \), we have
\[u_{n+1} - \left(2 + K \frac{d^2}{\varepsilon} \right) u_n + a_{n-1} u_n + b_{n-1} T(u_n) + c_{n-1} + E_{n-1} \]
\[+ T(u_n) + \tilde{f}_n \frac{d^2}{\varepsilon} = 0, \]

so that
\[u_n = a_n u_{n+1} + b_n T(u_n) + c_n + E_n, \]

where
\[a_n = \frac{1}{2 + K \frac{d^2}{\varepsilon} - a_{n-1}}, \]
\[b_n = a_n (b_{n-1} + 1), \]

and
\[c_n = a_n \left(c_{n-1} + \tilde{f}_n \frac{d^2}{\varepsilon} \right) \]

and the error \(E_n \), is given by
\[E_n = a_n E_{n-1} + b_n (T(u_n) - T(u_{n+1})), \]

\(\forall n \in \{1, \cdots, N-1\} \).

In particular, for \(n = N-1 \), we have \(u_N = 0 \) so that,
\[u_{N-1} \approx a_{N-1} u_N + b_{N-1} T(u_N) + c_{N-1} \]
\[\approx a_{N-1} u_N + b_{N-1} \frac{\partial^2 u_{N-1}}{\partial y^2} d^2 + b_{N-1} (-\alpha u_N^3 + \beta u_N) \frac{d^2}{\varepsilon} + c_{N-1} \]
\[= b_{N-1} \frac{\partial^2 u_{N-1}}{\partial y^2} d^2 + c_{N-1}. \]

This last equation is an ODE from which we may easily obtain \(u_{N-1} \) with the boundary conditions
\[u_{N-1}(y_1(x_{N-1})) = u_{N-2}(y_2(x_{N-1})) = 0. \]
Having \(u_{N-1} \), we may obtain \(u_{N-2} \) though the equation

\[
\begin{align*}
u_{N-2} &\approx a_{N-2}u_{N-1} + b_{N-2}T(u_{N-1}) + c_{N-2} \\
&\approx a_{N-2}u_{N-1} + b_{N-2} \frac{\partial^2 u_{N-2}}{\partial y^2} d^2 + b_{N-2}(-\alpha u_{N-1}^3 + \beta u_{N-1}) \frac{d^2}{\varepsilon} + c_{N-2},
\end{align*}
\]

with the boundary conditions

\[
u_{N-2}(y_1(x_{N-2})) = u_{N-2}(y_2(x_{N-2})) = 0.
\]

An so on, up to finding \(u_1 \).

The next step is to replace \(\{(u_0)_n\} \) by \(\{u_n\} \) and then to repeat the process until an appropriate convergence criterion is satisfied.

The problem is then approximately solved.

3 A numerical example

We present numerical results for \(\Omega = [0,1] \times [0,1] \), \(\alpha = \beta = 1 \), \(f \equiv 1 \) in \(\Omega \), \(N = 100 \), \(K = 50 \) and for

\[\varepsilon = 0.1, \ 0.01 \ \text{and} \ 0.001. \]

For such values of \(\varepsilon \), please see figures 1, 2 and 3 respectively.

Remark 3.1. We observe that as \(\varepsilon > 0 \) decreases to the value 0.001 the solution approaches the constant value 1.3247 along the domain, up to the satisfaction of boundary conditions. This is expect, since this value is an approximate solution of equation \(u^3 - u - 1 = 0 \).
Figure 2: Solution u for $\varepsilon = 0.01$

Figure 3: Solution u for $\varepsilon = 0.001$
4 A general proximal explicit approach

Based on the algorithm presented in the last section, we develop a software in MATHEMATICA in order to approximately solve the following equation.

\[
\begin{aligned}
-\varepsilon \left(\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} \right) u + \alpha u^3 - \beta u &= f, & \text{in } \Omega, \\
 u &= 0, & \text{on } \partial\Omega_1, \\
 u &= u_f(\theta), & \text{on } \partial \Gamma_2.
\end{aligned}
\] (5)

Here

\[
\Omega = \{(r, \theta) \in \mathbb{R}^2 : 1 \leq r \leq 2, \ 0 \leq \theta \leq 2\pi\},
\]
\[
\partial\Omega_1 = \{(1, \theta) \in \mathbb{R}^2 : 0 \leq \theta \leq 2\pi\},
\]
\[
\partial\Omega_2 = \{(2, \theta) \in \mathbb{R}^2 : 0 \leq \theta \leq 2\pi\},
\]

\[
\alpha = \beta = 1, \ K = 10, \ N = 100 \text{ and } f \equiv 1, \ \text{on } \Omega.
\]

At this point we present such a software in MATHEMATICA.

**

1. \texttt{m8} = 100;

2. \texttt{d} = 1.0/\texttt{m8};

3. \texttt{K} = 10.0;

4. \texttt{e1} = 0.01;

5. \texttt{A} = 1.0;

6. \texttt{B} = 1.0;

7. \texttt{For}[i = 1, i < \texttt{m8} + 1, i++,
 \texttt{uo[i]} = 0.0];

8. \texttt{For}[k = 1, k < 150, k++,
 \text{Print}[\texttt{k}];
 \texttt{a[1]} = 1/(2.0 + \texttt{K} * \texttt{d^2}/\texttt{e1});
 \texttt{b[1]} = \texttt{a[1]};
 \texttt{c[1]} = \texttt{a[1]}*(\texttt{K*uo[1]} + 1.0)*\texttt{d^2}/\texttt{e1};
 \texttt{For}[i = 2, i < \texttt{m8}, i++,
 \texttt{a[i]} = 1/(2.0 + \texttt{K} * \texttt{d^2}/\texttt{e1} - \texttt{a[i - 1]});
 \texttt{b[i]} = \texttt{a[i]}*(\texttt{b[i - 1]} + 1);
 \texttt{c[i]} = \texttt{a[i]}*(\texttt{c[i - 1]} + (\texttt{K*uo[i]} + 1.0) * \texttt{d^2}/\texttt{e1})];

9. \texttt{u[\texttt{m8}]} = \texttt{uf[\texttt{x}]}; \ \texttt{d1} = 1.0;

10. \texttt{For}[i = 1, i < \texttt{m8}, i++,
 \texttt{t[\texttt{m8} - i]} = 1 + (\texttt{m8 - i})*\texttt{d};
 \texttt{A1} = \texttt{a[\texttt{m8} - i] * u[\texttt{m8} - i + 1]} +

**
b[m8 - i]*(-A*u[m8 - i + 1]^3 + B*u[m8 - i + 1])*d2/ε1*d1^2 +
c[m8 - i] +
d2 * d1^2*b[m8 - i]*(D[u[m8 - i + 1], x, 2]/t[m8 - i]) +
d1^2 * 1/t[m8 - i]*d2 (u[m8 - i + 1] - u[m8 - i])/d)/(1.0);
A1 = Expand[A1];
A1 = Series[A1, {uf[x], 0, 3}, {uf''[x], 0, 1}, {uf'''[x], 0, 1}, {uf''''[x], 0, 0}];
A1 = Normal[A1];
u[m8 - i] = Expand[A1];
For[i = 1, i < m8 + 1, i++,
uo[i] = u[i]; d1 = 1.0;
Print[Expand[u[m8/2]]]

For such a general approach, for ε = 0.1, we have obtained the following lines (here x stands for θ).

\[
\begin{align*}
\text{u[10]}(x) &= 0.4780 + 0.0122 \ u_f[x] - 0.0115 \ u_f[x]^2 + 0.0083 \ u_f[x]^3 + 0.0069u_f''[x] \\
&\quad - 0.0014 \ u_f[x](u_f'')[x] + 0.0016 \ u_f[x]^2u_f'[x] - 0.00092 \ u_f[x]^3u_f''[x] \\
&\quad \cdots \quad (6)
\end{align*}
\]

\[
\begin{align*}
\text{u[20]}(x) &= 0.7919 + 0.0241 \ u_f[x] - 0.0225 \ u_f[x]^2 + 0.0163 \ u_f[x]^3 + 0.0012 \ u_f''[x] \\
&\quad - 0.0025 \ u_f[x](u_f'')[x] + 0.0030 \ u_f[x]^2(u_f')'[x] - 0.0018 \ u_f[x]^3(u_f''')[x] \\
&\quad \cdots \quad (7)
\end{align*}
\]

\[
\begin{align*}
\text{u[30]}(x) &= 0.9823 + 0.0404 \ u_f[x] - 0.0375 \ u_f[x]^2 + 0.0266 \ u_f[x]^3 + 0.00180 (u_f''')[x] \\
&\quad - 0.00362 \ u_f[x](u_f''')[x] + 0.0043 \ u_f[x]^2(u_f''')'[x] - 0.0028 \ u_f[x]^3(u_f''''[x] \\
&\quad \cdots \quad (8)
\end{align*}
\]

\[
\begin{align*}
\text{u[40]}(x) &= 1.0888 + 0.0698 \ u_f[x] - 0.0632 \ u_f[x]^2 + 0.0433 \ u_f[x]^3 + 0.0026(u_f''')[x] \\
&\quad - 0.0051 \ u_f[x](u_f''')[x] + 0.0061u_f[x]^2(u_f''')'[x] - 0.0043u_f[x]^3(u_f'''')[x] \\
&\quad \cdots \quad (9)
\end{align*}
\]

\[
\begin{align*}
\text{u[50]}(x) &= 1.1316 + 0.1277 \ u_f[x] - 0.1101 \ u_f[x]^2 + 0.0695 \ u_f[x]^3 + 0.0037 (u_f''')[x] \\
&\quad - 0.0073 \ u_f[x](u_f''')[x] + 0.0084 \ u_f[x]^2(u_f'''')[x] - 0.0062 \ u_f[x]^3(u_f''''')[x] \\
&\quad \cdots \quad (10)
\end{align*}
\]

\[
\begin{align*}
\text{u[60]}(x) &= 1.1104 + 0.2389 \ u_f[x] - 0.1866 \ u_f[x]^2 + 0.0988 \ u_f[x]^3 + 0.0053(u_f''')[x] \\
&\quad - 0.0099 \ u_f[x](u_f''')[x] + 0.0105 \ u_f[x]^2(u_f''')'[x] - 0.0075 \ u_f[x]^3(u_f'''')[x] \\
&\quad \cdots \quad (11)
\end{align*}
\]
\begin{align*}
\text{u}[70](x) &= 1.0050 + 0.4298 \, u_f[x] - 0.273813 \, u_f[x]^2 + 0.0949 \, u_f[x]^3 + 0.0070 \, (u''_f)[x]
&\quad - 0.0116 \, u_f[x](u''_f)[x] + 0.0102 \, u_f[x]^2(u''_f)[x] - 0.0061 \, u_f[x]^3(u''_f)[x] \quad (12) \\
\text{u}[80](x) &= 0.7838 + 0.6855 \, u_f[x] - 0.2892 \, u_f[x]^2 + 0.0161 \, u_f[x]^3 + 0.0075 \, (u''_f)[x]
&\quad - 0.0098u_f[x](u''_f)[x] + 0.0063084u_f[x]^2(u''_f)[x] - 0.0027u_f[x]^3(u''_f)[x] \quad (13) \\
\text{u}[90](x) &= 0.4359 + 0.9077 \, u_f[x] - 0.1621u_f[x]^2 - 0.0563 \, u_f[x]^3 + 0.0051 \, (u''_f)[x]
&\quad - 0.0047 \, u_f[x](u''_f)[x] + 0.0023 \, u_f[x]^2(u''_f)[x] - 0.00098 \, u_f[x]^3(u''_f)[x] \quad (14)
\end{align*}

For \(\varepsilon = 0.01 \), we have obtained the following line expressions.

\begin{align*}
\text{u}[10](x) &= 1.0057 + 2.07 \times 10^{-11} \, u_f[x] - 1.85 \times 10^{-11} \, u_f[x]^2 + 1.13 \times 10^{-11} \, u_f[x]^3
&\quad + 4.70 \times 10^{-13} \, (u''_f)[x] - 8.44 \times 10^{-13} \, u_f[x](u''_f)[x]
&\quad + 7.85 \times 10^{-13} \, u_f[x]^2(u''_f)[x] - 6.96 \times 10^{-14} \, u_f[x]^3(u''_f)[x] \quad (15) \\
\text{u}[20](x) &= 1.2512 + 2.13 \times 10^{-10} \, u_f[x] - 1.90 \times 10^{-10} \, u_f[x]^2 + 1.16 \times 10^{-10} \, u_f[x]^3
&\quad + 3.94 \times 10^{-12} \, (u''_f)[x] - 7.09 \times 10^{-12} \, u_f[x](u''_f)[x] + 6.61 \times 10^{-12} \, u_f[x]^2(u''_f)[x] - 7.17 \times 10^{-13} \, u_f[x]^3(u''_f)[x] \quad (16) \\
\text{u}[30](x) &= 1.3078 + 3.80 \times 10^{-9} \, u_f[x] - 3.39 \times 10^{-9} \, u_f[x]^2 + 2.07 \times 10^{-9} \, u_f[x]^3
&\quad + 5.65 \times 10^{-11}(u''_f)[x] - 1.018 \times 10^{-10} \, u_f[x](u''_f)[x]
&\quad + 9.52 \times 10^{-11} \, u_f[x]^2(u''_f)[x] - 1.27 \times 10^{-11} \, u_f[x]^3(u''_f)[x] \quad (17) \\
\text{u}[40](x) &= 1.3208 + 7.82 \times 10^{-8} \, u_f[x] - 6.98 \times 10^{-8} \, u_f[x]^2 + 4.27 \times 10^{-8} \, u_f[x]^3
&\quad + 9.27 \times 10^{-10} \, (u''_f)[x] - 1.67 \times 10^{-9} \, u_f[x](u''_f)[x]
&\quad + 1.57 \times 10^{-9} \, u_f[x]^2(u''_f)[x] - 2.62 \times 10^{-10} \, u_f[x]^3(u''_f)[x] \quad (18) \\
\text{u}[50](x) &= 1.3238 + 1.67 \times 10^{-6} \, u_f[x] - 1.49 \times 10^{-6} \, u_f[x]^2 + 9.15 \times 10^{-7} \, u_f[x]^3
&\quad + 1.54 \times 10^{-8} \, (u''_f)[x] - 2.79 \times 10^{-8} \, u_f[x](u''_f)[x]
&\quad + 2.64 \times 10^{-8} \, u_f[x]^2(u''_f)[x] - 5.62 \times 10^{-9} \, u_f[x]^3(u''_f)[x] \quad (19)
\end{align*}
Remark 4.1. We observe that as \(\varepsilon > 0 \) decreases to the value 0.01 the solution approaches the constant value 1.3247 along the domain, up to the satisfaction of boundary conditions. This is expect, since this value is an approximate solution of equation \(u^3 - u - 1 = 0 \).

References

[1] R.A. Adams and J.F. Fournier, Sobolev Spaces, 2nd edn. (Elsevier, New York, 2003).
[2] J.F. Annet, Superconductivity, Superfluids and Condensates, 2nd edn. (Oxford Master Series in Condensed Matter Physics, Oxford University Press, Reprint, 2010)
[3] F. Botelho, Topics on Functional Analysis, Calculus of Variations and Duality, Academic Publications, Sofia, (2011).
[4] F. Botelho, Existence of solution for the Ginzburg-Landau system, a related optimal control problem and its computation by the generalized method of lines, Applied Mathematics and Computation, 218, 11976-11989, (2012).
[5] F. Botelho, Functional Analysis and Applied Optimization in Banach Spaces, Springer Switzerland, 2014.
[6] F.S. Botelho, Functional Analysis, Calculus of Variations and Numerical Methods in Physics and Engineering, CRC Taylor and Francis, Florida, 2020.
[7] L.D. Landau and E.M. Lifschits, Course of Theoretical Physics, Vol. 5- Statistical Physics, part 1. (Butterworth-Heinemann, Elsevier, reprint 2008).

\[
\begin{align*}
\ u[60](x) &= 1.32449 + 0.000036 \ u_f[x] - 0.000032 \ u_f[x]^2 + 0.000019 \ u_f[x]^3 \\
&
+ 2.51 \times 10^{-7} \ (u_f''[x]) - 4.57 \times 10^{-7} \ u_f[x](u_f''[x]) \\
&
+ 4.36 \times 10^{-7} \ u_f[x]^2(u_f''[x]) - 1.21 \times 10^{-7} \ u_f[x]^3(u_f''[x]) \quad (20)
\end{align*}
\]

\[
\begin{align*}
\ u[70](x) &= 1.32425 + 0.00079 \ u_f[x] - 0.00070 \ u_f[x]^2 + 0.00043 \ u_f[x]^3 \\
&
+ 3.89 \times 10^{-6} \ (u_f''[x]) - 7.12 \times 10^{-6} \ u_f[x](u_f''[x]) \\
&
+ 6.89 \times 10^{-6} \ u_f[x]^2(u_f''[x]) - 2.64 \times 10^{-6} \ u_f[x]^3(u_f''[x]) \quad (21)
\end{align*}
\]

\[
\begin{align*}
\ u[80](x) &= 1.31561 + 0.017 \ u_f[x] - 0.015 \ u_f[x]^2 + 0.009 \ u_f[x]^3 \\
&
+ 0.000053 \ (u_f''[x]) - 0.000098 \ u_f[x](u_f''[x]) \\
&
+ 0.000095 \ u_f[x]^2(u_f''[x]) - 0.000051 \ u_f[x]^3(u_f''[x]) \quad (22)
\end{align*}
\]

\[
\begin{align*}
\ u[90](x) &= 1.14766 + 0.296u_f[x] - 0.1991 \ u_f[x]^2 + 0.0638 \ u_f[x]^3 \\
&
+ 0.00044 \ (u_f''[x]) - 0.00067 \ u_f[x](u_f''[x]) \\
&
+ 0.00046 \ u_f[x]^2(u_f''[x]) - 0.00018 \ u_f[x]^3(u_f''[x]) \quad (23)
\end{align*}
\]