A Sephin1-insensitive tripartite holophosphatase dephosphorylates translation initiation factor 2α

Ana Crespillo-Casado1*, Zander Claes2, Meng S. Choy3, Wolfgang Peti4, Mathieu Bollen2 and David Ron1*

From the 1Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom; 2Department of Cellular and Molecular Medicine, KU Leuven, BE-3000 Leuven, Belgium; 3Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721-0041, United States

Running title: Reconstitution of a PPP1R15A-containing holophosphatase

*To whom correspondence should be addressed: Ana Crespillo-Casado & David Ron: Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, United Kingdom; ac880@cam.ac.uk & dr360@medschl.cam.ac.uk; Phone +44 (0)1223 768 940

Keywords: Phosphoprotein Phosphatase 1 (PP1), enzyme inhibitor, eukaryotic initiation factor 2α (eIF2α), G-actin, Integrated Stress Response, proteostasis, protein synthesis, Sephin1, Guanabenz

ABSTRACT

The integrated stress response (ISR) is regulated by kinases that phosphorylate the α subunit of translation initiation factor 2 and phosphatases that dephosphorylate it. Genetic and biochemical observations indicate that the eIF2αp-directed holophosphatase - a therapeutic target in diseases of protein misfolding - is comprised of a regulatory, PPP1R15, and a catalytic, Protein Phosphatase 1 (PP1) subunit. In mammals, there are two isoforms of the regulatory subunit, PPP1R15A and PPP1R15B, with overlapping roles in the essential function of eIF2αp dephosphorylation. However, conflicting reports have appeared regarding the requirement for an additional co-factor, G-actin, in enabling substrate-specific dephosphorylation by PPP1R15-containing PP1 holoenzymes. An additional concern relates to the sensitivity of the holoenzyme to the [(o-chlorobenzylidene)amino]guanidines Sephin1 or Guanabenz, putative small molecule proteostasis modulators. It has been suggested that the source and method of purification of the PP1 catalytic subunit and the presence or absence of an N-terminal repeat-containing region in the PPP1R15A regulatory subunit might influence the requirement for G-actin and sensitivity of the holoenzyme to inhibitors. We find that eIF2αp-dephosphorylation by PP1 was moderately stimulated by repeat-containing PPP1R15A in an unphysiological low ionic strength buffer, whereas stimulation imparted by the co-presence of PPP1R15A and G-actin was observed under a broad range of conditions: low and physiological ionic strength; whether PPP1R15A regulatory subunit had or lacked the N-terminal repeat-containing region; and whether it was paired with native PP1 purified from rabbit muscle, or recombinant PP1 purified from bacteria. Furthermore, none of the PPP1R15A-containing holophosphatases tested was inhibited by Sephin1 or Guanabenz.

The integrated stress response (ISR) is a signal transduction pathway that couples diverse stressful conditions to the activation of a rectifying translational and transcriptional program that is implicated in biological processes ranging from memory formation to immunity and metabolism (reviewed in Ref. 1). The mammalian ISR and its yeast counterpart (the general control response) are initiated by the phosphorylation of the α subunit of translation initiation factor 2 (eIF2α) on
Reconstitution of a PPP1R15A-containing holophosphatase

serine 51 (2,3) and its activity is terminated by eIF2αp dephosphorylation.

Two related regulatory proteins, PPP1R15A/GADD34 and PPP1R15B/CREP, encoded in mammals by PPP1R15A and PPP1R15B, direct the unspecific Protein Phosphatase 1 (PP1) to promote eIF2αp dephosphorylation (4-7). PPP1R15A or PPP1R15B form a complex with PP1 via a conserved region of ~70 amino acids (PPP1R15A residues 555-624) located at their C-termini (5,8-11) (Fig. 1A). This conserved C-terminal region of either PPP1R15 regulatory subunit is sufficient to promote eIF2αp dephosphorylation and to inactivate the ISR (4,5,10,11). Indeed, Herpes viruses have exploited this activity and encode a small protein homologous to the C-terminus of PPP1R15 to reverse eIF2α phosphorylation, undoing a defensive strategy of infected cells (12).

Despite genetic evidence pointing to the sufficiency of the conserved C-terminal portion of PPP1R15 in reversing the eIF2αp-dependent ISR in vivo (4,5,10), complexes formed in vitro between PPP1R15 regulatory subunit fragments and PP1 have not been observed to accelerate eIF2αp dephosphorylation: dephosphorylation of eIF2αp is no faster by a complex of PPP1R15A-PP1 (or PPP1R15B-PP1) than by PP1 alone, showing that when added as single components, PPP1R15A/B do not influence Kcat or Km of PP1 towards the substrate eIF2αp (10). However, addition of G-actin to the binary complex of PPP1R15 and PP1 selectively accelerates eIF2αp dephosphorylation. G-actin binds directly to the conserved C-terminus of PPP1R15, alongside PP1 to form a ternary complex, whose affinity (Kf ~10^8 M) matches the EC50 of G-actin’s stimulatory effect (10,13). The in vivo relevance of G-actin to eIF2αp dephosphorylation is attested to by the finding that actin sequestration in fibres (as F-actin) enfeebles eIF2αp dephosphorylation, implying a role for factors that affect the actin cytoskeleton in ISR regulation (14).

The ability to dephosphorylate eIF2αp is an essential function in developing mammals (15). Nonetheless, inactivation of the PPP1R15A gene, which decelerates eIF2αp dephosphorylation and prolongs the ISR, is protective in certain cellular and animal models of diseases associated with enhanced unfolded protein stress (16-19). This has generated interest in targeting the PPP1R15A-containing holophosphatase for inhibition by small molecules (reviewed in Ref. 20); an endeavour that requires detailed knowledge of the enzymatic mode of action.

A recent report challenged the need for G-actin as a co-factor in PPP1R15A-mediated eIF2αp dephosphorylation (21). Instead, it suggested that a binary complex assembled from PP1α and a fragment of PPP1R15A (PPP1R15A^25-636), encompassing both the C-terminal PP1-binding region and the N-terminal repeat-containing extension, dephosphorylates eIF2αp faster than PP1 alone (21). Importantly, dephosphorylation of eIF2αp by this active binary complex was reported to be selectively inhibited in vitro by Guanabenz and Sephin1, two structurally-related small molecules that function in vivo as proteostasis modifiers (22,23). The new study contradicts previous observations that neither a PPP1R15A-PP1 binary complex, nor a PPP1R15A-PP1-G-actin ternary complex, were susceptible to inhibition by Guanabenz or Sephin1 (9,13).

Here we address three important questions raised by these discrepant reports: Does the isotype of PP1 catalytic subunit or its source (recombinant versus native) influence the requirement for G-actin by the eIF2αp-directed holophosphatase? What role does the N-terminal repeat-containing region of PPP1R15A play in eIF2αp dephosphorylation by the holophosphatase? Do these factors influence the sensitivity of eIF2αp dephosphorylation to Guanabenz and Sephin1?

Results

Both native PP1 and bacterially-expressed PP1α require the presence of G-actin to promote PPP1R15A-regulated eIF2αp dephosphorylation

PP1 produced in *E. coli* may differ in its enzymatic activity from PP1 purified from animal tissues, both in its substrate specificity and in its sensitivity to regulatory subunits (reviewed in ref. 24). To determine if the G-actin-dependence of PP1-PPP1R15A-mediated eIF2αp dephosphorylation is a peculiarity of the bacterially-expressed PP1α isoform used previously (10,13), we purified the native catalytic subunit of PP1 from rabbit skeletal muscle (PP1N), following an established protocol (25), and compared the two PP1 preparations. Native PP1
Reconstitution of a PPP1R15A-containing holophosphatase

(PP1N) is a mixture of PP1α, PP1β and PP1γ isoforms and gave rise to two prominent bands on SDS-PAGE (Fig. S1A, left panel). The mass spectra of tryptic peptides derived from the PP1N sample was analysed by Maxquant with iBAQ (intensity based absolute quant) to identify the major contaminating species (tropomyosin), and to estimate the relative contribution of PP1 and contaminants to the protein preparation. This enabled a comparison of the catalytic subunit content of PP1N preparation with the bacterially-expressed PP1γ, which served as a reference.

The N-terminal portion of PPP1R15A, which includes the membrane association region (26), compromises expression in bacteria and recovery of a functional protein (27). Therefore, we used a PPP1R15A325-636 fragment lacking this region, which is soluble when expressed in E. coli. Fig. 1B shows that addition of either PPP1R15A325-636-MBP (lanes 5–8), or G-actin alone (lanes 13 & 14) did not stimulate eIF2αp dephosphorylation by nanomolar concentrations of PP1N. However, addition of both G-actin and PPP1R15A325-636-MBP (lanes 9–12) stimulated dephosphorylation by 5-fold (Fig. 1B), similar to the increase observed with bacterially expressed PP1γ (Fig. S1B).

PP1 purified from rabbit muscle is a mixture of α, β and γ isoforms, whereas it has been reported that the PP1α isoform possesses in vivo selectivity for PPP1R15A (6). Therefore, we prepared bacterially-expressed PP1α by a method that promotes its native-like state (28). To control for effects the location of the tag might have on activity, we also generated an N-terminally MBP-tagged PPP1R15A325-636 (MBP-PPP1R15A325-636, Fig. 1A, Table S1). The holophosphatase comprised of PP1α and MBP-PPP1R15A325-636 also exhibited a stringent requirement for G-actin (Fig. 1C).

A concentration-dependent stimulatory effect of PPP1R15A on eIF2αp dephosphorylation by the three component holoenzyme (PP1, PPP1R15A and G-actin) was observed with constructs tagged at either their N- or C-termini and with either native or bacterially-expressed PP1 (Fig. 2A and B). The difference in EC50 values obtained for PPP1R15A325-636-MBP with PP1N (58 nM) or MBP-PPP1R15A325-636 with PP1α (6 nM) may reflect the effect of the position of the MBP-tag, the contaminating tropomyosin (in PP1N), or both. Importantly, the data agreed with similar experiments in which PPP1R15A325-636 and bacterially-expressed PP1γ were used, EC50 of 10 nM (13, Figure 8A therein).

G-actin also exerted a saturable concentration-dependent stimulatory effect on the activity of a three-component holophosphatase constituted with native PP1N (Fig. 2C). The EC50 for G-actin with PP1N (30 nM) was similar to that previously observed using bacterially-expressed PP1γ, EC50 of 13 nM (13, figure 2C therein). Hence, despite variations in the estimated EC50 values for PPP1R15A or G-actin, the combinations of catalytic and regulatory subunits tested showed consistent PPP1R15A and G-actin concentration dependent enzymatic activity. These experiments, conducted in a buffer of physiological ionic strength, over a physiological protein concentration range (nanomolar catalytic subunit and micromolar substrate) and over a timescale aimed to minimize the effect of substrate depletion on enzyme kinetics, indicate that neither the source of PP1 nor the position of the tag in PPP1R15A are likely to account for the reported G-actin independent ability of PPP1R15A to stimulate eIF2αp dephosphorylation.

Two-fold stimulation of eIF2αp dephosphorylation by repeat-containing PPP1R15A in an unphysiological low ionic strength buffer

To explore the discrepant findings on the G-actin independent stimulatory activity of MBP-PPP1R15A325-636 we sought to reproduce the experiments reported in reference 21 as closely as possible. We received from the Bertolotti laboratory their expression plasmid. The encoded protein, referred to here as MBP–PPP1R15A325-636 (Fig. 1D) differs from the one used above (MBP–PPP1R15A325-636) by the absence of three residues in the linker separating the MBP from PPP1R15A and 11 residues in the linker separating PPP1R15A from the C-terminal poly-histidine tag (see Table S1). The MBP–PPP1R15A325-636 fusion protein was produced in E. coli and purified as described (21) and dephosphorylation reactions were carried out in a salt-free, low ionic strength buffer, designed to mimic as close as possible the one used in that study (50 mM Tris at pH 7.4, 1.5 mM EGTA, 2 mM MnCl2, with the notable
exception of 0.5 mM TCEP, added here to prevent inactivation of the catalytic subunit by oxidation).

A 2-fold stimulation of eIF2α^p dephosphorylation by MBP–PPP1R15A₃₂₅₋₆₃₆ was apparent in reactions conducted at low salt concentration (15 mM), but lost at more physiological concentrations (100 mM), whilst the 5-fold stimulatory effect of G-actin was observed at both low and physiological salt concentration (Fig. 3A). The stimulatory effect of MBP–PPP1R15A₃₂₅₋₆₃₆ at low salt concentration was dependent on the N-terminal repeat-containing region of PPP1R15A (Fig 3B), as reported (21), and was not observed with a non-specific dephosphorylation substrate (Fig. S2A).

Though modest (two-fold) and confined to non-physiological, low ionic strength conditions, this stimulatory effect was reproducibly observed also with the MBP-PPP1R15A₃₂₅₋₆₃₆ and PPP1R15A₃₂₅₋₆₃₆-MBP proteins used in Fig.1 and Fig.2 (Fig. S2B), negating a role for the linkers or the position of the tag in this activity. Notably, in both unphysiological-low ionic strength buffer (in which PPP1R15A alone has a stimulatory effect) and in physiological conditions, the presence of G-actin dominates the kinetics of eIF2α^p dephosphorylation.

Lengthy incubation of the enzymatic reactions does not uncover PPP1R15A’s ability to promote G-actin-independent eIF2α^p dephosphorylation at physiological salt concentrations

Upon inhibition of the phosphorylating kinase, the eIF2α^p signal decays with a T_{1/2} of <10 minutes (with no change in the total eIF2α content) in both cultured mouse fibroblasts (Ref. 14, figure 6 therein) and Chinese Hamster Ovary cells (Ref. 13, figure 10 therein). Despite the rapid in vivo kinetics of the dephosphorylation reaction, the experiments pointing to G-actin-independent eIF2α^p dephosphorylation were conducted with long incubations of 16 hours at 30°C (21). In the absence of other components, PP1α is markedly unstable at 30°C, losing about half of its activity by 1 hour and all detectable activity by 3 hours (Fig. S3A and B). Thus, a stabilizing effect of a PP1 binding co-factor might have accounted for the apparent G-actin-independent stimulatory effect of MBP-PPP1R15A₃₂₅₋₆₃₆ on PP1α-mediated eIF2α^p dephosphorylation at physiological salt concentrations. However, over a range of PP1 concentrations (0.2-200 nM), the presence of MBP-PPP1R15A₃₂₅₋₆₃₆ failed to stimulate eIF2α^p dephosphorylation, whether PP1^N (Fig. 4A) or PP1α (Fig. 4B) were used as the catalytic subunit.

Substrate recruitment by the repeat-containing PPP1R15A₄₂₅₋₅₁₂ region plays a secondary role in the kinetics of eIF2α^p dephosphorylation and its disruption is unlikely to account for sensitivity to Sephin1

PPP1R15A interacts directly with eIF2α, both in cells (9) and in vitro (21). This interaction maps to the repeat-containing region of PPP1R15A, residues 325-512; N-terminal to PPP1R15A’s PP1-binding domain (Fig. 1A) and was proposed to play an important role in the catalytic cycle of PPP1R15A-containing holoenzymes (21). However, in the presence of G-actin, PPP1R15A₃₂₅₋₆₃₆-MBP and PPP1R15A₅₃₃₋₆₂₄-MBP (Fig. 1A, Table S1) stimulated eIF2α^p dephosphorylation similarly, when paired either with PP1^N (compare Fig. 2B and 5A here) or with PP1γ (compare Figure 8A and Figure 2B in Ref. 13). These findings suggest that the conserved C-terminal PPP1R15 fragment that binds PP1 and G-actin simultaneously is sufficient to promote eIF2α^p dephosphorylation and to dominate its kinetics in vitro and call in to question the importance of the N-terminal repeats in PPP1R15A to the fundamentals of the holoenzyme’s catalytic cycle.

We considered that an important contributory role for substrate engagement by the PPP1R15A₃₂₅₋₅₃₃ repeat-containing fragment to the catalytic cycle of the dephosphatase might have been masked by compensatory features that diverge between the different regulatory subunit constructs, fortuitously equalizing their activity. To address this possibility, we measured the ability of MBP-PPP1R15A₃₂₅₋₆₃₆-mediated (G-actin-dependent) eIF2α^p dephosphorylation using PP1α as the catalytic subunit. Minimal inhibition of the dephosphorylation reaction was observed at competitor concentrations of up to 8 μM (Fig. 5B), which is a >300-fold excess over the MBP-PPP1R15A₃₂₅₋₆₃₆ regulatory subunit (present in the reaction at 24 nM), and a concentration of 18-fold
above the reported K_d of the interaction between MBP-PPP1R15A$^{325-512}$ and eIF2a$^\alpha$ (21).

These data suggest that substrate recruitment by the N-terminal extension of PPP1R15A plays a secondary role in the kinetics of the dephosphorylation reaction in vitro and that the reported role of Sephin1 and Guanabenz in disrupting that interaction is unlikely to make an important contribution to their pharmacological activity. Consistent with these conclusions we find that under physiological salt conditions in which eIF2a$^\alpha$ dephosphorylation is dependent on the concentration of PP1α, MBP-PPP1R15A$^{325-636}$ and G-actin, we were unable to observe an inhibitory effect of either Sephin1 (Fig. 6A and Fig. S4A, lanes 8-11) or Guanabenz (Fig. 6B and Fig. S4B, lanes 7-10) at a concentration of up to 100 μM which exceeds by a hundred-fold the concentration required for a proteostatic effect in cultured cells (1 μM)(23, figure 1F therein). Similarly, no effect of the compounds was observed on the PPP1-PPP1R15A holophosphatase activity in low salt conditions (Fig. S4A lanes 1-7 and Fig. S4B lanes 1-6).

Complete inhibition of PPP1R15A-mediated eIF2a$^\alpha$–dephosphorylation by Sephin 1 was reported in an assay conducted over 16 hours at 30°C in a low ionic strength buffer (21). We wished to test if the reported Sephin1’s inhibition might be unmasked by this long incubation (in which the enzyme is undergoing inactivation, Fig. S3B). Using identical MBP~PPP1R15A$^{325-636}$ and PP1α constructs, in an identical low ionic strength buffer and following overnight incubation at 30°C, we observed a two-fold stimulation of eIF2a$^\alpha$–dephosphorylation by MBP~PPP1R15A$^{325-636}$ (similar to that noted in shorter reactions Fig. 3). However, even in these conditions, designed to mimic as closely as possible those used in reference (21), the presence of 100 μM Sephin1 was devoid of an inhibitory effect on substrate dephosphorylation (Fig. S4C)

Discussion

The new experiments presented here cover a range of conditions with realistic concentrations and time regimes. Incorporation of multiple time points and titrations of reaction components enabled a comparison of enzyme kinetics that accounts for the effect of substrate depletion. Our observations were made with four different PPP1R15A preparations, three different PP1 preparations and both buffer conditions previously used in our lab and those used in reference (21), all of which consistently show the requirement for G-actin as an additional co-factor in enabling PPP1R15A to stimulate eIF2a$^\alpha$ dephosphorylation in vitro. As such the results presented here are in keeping with previous observations that G-actin has an essential role in promoting eIF2a$^\alpha$ dephosphorylation both in vitro and in vivo (10,13,14).

The PP1 apo-enzyme is salt sensitive and inhibited by buffers of physiological ionic strength (29). By contrast, PP1-holoenzymes retain their regulated enzymatic activity at physiological ionic strength (30). These considerations call into question the significance of the two-fold stimulation of eIF2a$^\alpha$ dephosphorylation by PPP1R15A$^{325-636}$ observed in buffer of low ionic strength. Our experiments also cast doubt on the importance of the physical interaction between the repeat-containing region of PPP1R15A (residues 325-512) and eIF2a$^\alpha$ in substrate-specific dephosphorylation reaction carried out in physiological ionic strength. PPP1R15 regulatory subunits are found throughout the animal kingdom, yet only their C-terminal ~70 residues are conserved (11). This C-terminal fragment contains all the information needed to promote eIF2a$^\alpha$ dephosphorylation, as exemplified by its selective hijacking by Herpes viruses (12) and by experimentally targeted expression in cells (10, figure 1C therein). In complex with G-actin, the conserved C-terminal fragment of the PPP1R15s is also able to direct PP1 to selectively dephosphorylate eIF2a$^\alpha$ in vitro (Fig. 2 and 5A here (10,13).

The prominent stimulatory role of G-actin on eIF2a$^\alpha$ dephosphorylation, observed both in vivo and in vitro, should not obscure the possibility that binary complex formation with PPP1R15 might also favour eIF2a$^\alpha$ dephosphorylation independently of G-actin joining the complex. Regulatory subunit binding restricts access to PP1 (24,31), favouring the phosphorylation of one class of substrates over another. Mere exclusion of some substrates from access to the catalytic subunit might accelerate eIF2a$^\alpha$ dephosphorylation when levels of PPP1R15A levels are sufficiently elevated in cells – even though in vitro (and in the absence of
competing substrates) the PPP1R15A-PP1 binary complex is not a faster eIF2α phosphatase than PP1 alone (provided the experiments are conducted at physiological salt concentrations). As neither Sephin1 nor Guanabenz affect the stability of the PPP1R15A-PP1 complex (13), it is unlikely that they achieve any measure of inhibition by weakening PPP1R15A’s ability to compete with other regulatory subunits for limiting amounts of catalytic subunit. These considerations lead us to propose a dual role for PPP1R15A in cells: Diverting limiting amounts of PP1 away from other substrates towards eIF2α and, in conjunction with G-actin as an essential co-activator, stimulating the intrinsic rate of dephosphorylation by the holoenzyme thus formed. Actin, too, has a dual role in stimulating eIF2α dephosphorylation: by stabilizing the PPP1R15A-PP1 complex (14) G-actin favours the exclusion of other regulatory subunits, whilst stimulating enzyme kinetics selectively towards eIF2α (Fig. 7).

Here we present no argument against an important function for the divergent N-terminal extensions of PPP1R15A regulatory subunits. This role may play out in terms of subcellular localization (26) or protein stability (32) and might be influenced by a physical interaction with the substrate (9,21). However, our findings argue that the physical interaction noted previously between PPP1R15A residues 325-512 and eIF2α (21) is unlikely to play an important role in formation of the enzyme-substrate complex required for catalysis under physiological conditions and hence its disruption by Guanabenz or Sephin1 is unlikely to underscore an inhibitory effect on eIF2α dephosphorylation.

Most importantly perhaps, the findings presented here argue that the inability of previous efforts to uncover a role for Guanabenz or Sephin1 in inhibiting eIF2α dephosphorylation in vitro (9,13) was unlikely to have arisen from choice of catalytic subunit, from features of the PPP1R15A regulatory subunit or the buffer conditions used. Rather, the findings reported here, made in vitro, reinforce observations that Sephin1 and Guanabenz have no measurable effect on the rate of eIF2α dephosphorylation in cells (13). The recent description of PPP1R15A/GADD34-independent cellular effects of Guanabenz (33) and our observations that Sephin1-induced changes in gene expression were noted both in cells lacking PPP1R15A and in cells with non-phosphorylatable eIF2α (13), suggest the need to reconsider the role of these two compounds as eIF2α dephosphorylation inhibitors.

Experimental procedures

Protein expression and purification

The plasmids used to express protein in *E. coli* and the sequence of the encoded proteins are listed in Tables S1 and S2.

PP1R15A, MBP, and MBP-PPP1R15A were constructed in the C-terminally hexahistidine tag-containing pMAL-c5x-His plasmid (New England Biolabs, Cat. No. N8114). Transformed *E. coli* BL21 (New England Biolabs, Cat. No. C3013) were selected on LB agar plates supplemented with 100 µg/ml ampicillin. A single colony was picked to grow overnight in 5 ml starter culture that served to inoculate 2 L of LB media (all supplemented with 100 µg/mL ampicillin), which was kept at 37°C. At OD600=0.6-0.8 protein expression was induced using 1 mM Isopropyl β-D-1-thiogalactopyranoside (IPTG) at 18°C for 20 hours. Bacteria were pelleted and resuspended in ice-cold His6 Lysis Buffer containing 50 mM Tris pH 7.4, 500 mM NaCl, 1 mM MgCl2, 1 mM tris (2-carboxyethyl)phosphine (TCEP), 100 µM phenylmethylsulfonyl fluoride (PMSF), 20 mM Tris/1M aprotinin, 2 µM leupeptin, and 2 µg/ml pepstatin 20 mM imidazole and 10% glycerol. Bacterial suspensions were lysed using an Emulsi-Flex-C3 homogenizer (Avestin, Inc, Ottawa, Ontario) and clarified in a JA-25.50 rotor (Beckman Coulter) at 33,000 x g for 30 min at 4°C. Pre-equilibrated Ni-NTA beads (Qiagen, Cat. No. 30230,) were incubated with the samples for 2
Reconstitution of a PPP1R15A-containing holophosphatase

hours at 4°C. Proteins were eluted in 2 mL of imidazole elution buffer (50 mM Tris, pH 8, 100 mM NaCl, 500 mM imidazole, 10% glycerol) and incubated with amylase beads (New England Biolabs, Cat No. NE8021S) pre-equilibrated with lysis buffer (His6 lysis buffer without imidazole) for 2 hours at 4°C. The amylase beads were batch-washed using 25 bed volumes of lysis buffer and proteins were eluted with amylase elution buffer (lysis buffer + 10 mM maltose). MBP-R15A (325-512) purification required an additional buffer exchange step (into lysis buffer) using Centiprep 1 desalting columns (EMP Biotech, Cat. No. CP-0110) to eliminate maltose (that appeared to interfere with the dephosphorylation reactions when present at high concentrations).

MBP–PPP1R15A (325-636) (a gift of the Bertolotti lab) was expressed and purified as described (21), with minor modifications: The IPTG-induced culture was maintained for 16 hours at 18°C and 0.5 mM TCEP was included in all buffers, throughout the purification procedure and in the final dialysis buffer (50 mM Tris at pH 7.4, 200 mM NaCl, 0.5 mM TCEP).

eIF2α: The N-terminal fragment of human eIF2α (1-185, with three solubilizing mutations) was purified from bacteria and phosphorylated in vitro using the kinase domain of PERK, as described (10).

G-actin was purified from rabbit muscle according to ref. (34) as modified in ref. (10).

PP1γ (7-300) was purified according to ref. (13).

PP1α (7-330) was purified from BL21 E. coli according to ref. (28,35)

PP1N was purified from rabbit muscle according to ref. (25)

In vitro dephosphorylation reactions

Unless otherwise stated, dephosphorylation reactions were performed at a final volume of 20 µL by assembling 5 µL of 4× solution of each component: PP1, PPP1R15A, G-actin and eIF2α (p or their respective buffers). A 10X assay buffer (500 mM Tris pH 7.4, 1 M NaCl, 1 mM EDTA, 0.1% Triton X-100, 10 mM MgCl2) was diluted 1:10, supplemented with 1 mM DTT and used to create working solutions of PP1, PPP1R15A and eIF2α (p at the desired concentrations. G-actin working solutions were created using G-buffer (2 mM Tris-HCl at pH 8, 0.2 mM ATP, 0.5 mM DTT and 0.1 mM CaCl2). Holoenzyme components (PP1, PPP1R15A and G-actin) were combined first and substrate (eIF2α (p) was added last to initiate the reactions, which were conducted under shaking at 500 rpm and at 30°C for the specified time. The final buffer composition was 36 mM Tris pH 7.4, 76 mM NaCl, 74 µM EDTA, 0.007% Triton X-100, 0.7 mM MgCl2, 25 µM CaCl2, 0.05 mM ATP and 0.8 mM DTT, 0.5 µM Latrunculin B, 0.4 - 3 µM MnCl2, 0.5% Glycerol and 50 µM TCEP, in experiments performed in Fig. 1, Fig. 2, Fig. 4, Fig. 5, Fig. 6, Fig. S1, Fig. S3 and Fig. S4A (lanes 8-11) and Fig. S4B (lanes 7-10).

Dephosphorylation reactions designed to reproduce the observations of ref. (21) were performed in the assay buffer described therein (50 mM Tris-HCl pH 7.4, 1.5 mM EGTA pH 8.0, 2 mM MnCl2), with the modification that 0.5 mM TCEP was added to disfavor oxidative inactivation of the enzyme. The NaCl content of the final reaction was constrained by the contribution of the protein solutions added to each reaction. To maintain parity between reactions performed with and without PPP1R15A, an equal volume of the PPP1R15A buffer was added to reactions lacking the protein. The final salt concentration in the various reactions is noted in the figure legends.

The stability test of PP1α (Fig. S5) was performed by preparing a fresh 240 nM solution of PP1α in the assay buffer described above. Separate aliquots were pre-incubated either at 30°C or on ice for the specified times (30 minutes to 7 hours, see schema in Fig. S3A). At termination of the pre-incubation, 5 µL of these pre-incubated solutions were added into 20 µL dephosphorylation reactions as described above.

Dephosphorylation reactions to test the activity of Sephin1 or Guanabenz (Fig. 6 and Fig. S4) included a 15 minutes pre-incubation of the enzymatic components at room temperature (before addition of substrate) with either Sephin1 (Enamine, Cat. No. EN300-195090), Guanabenz (Sigma-Aldrich, Cat. No. D6270), Tautomycin (Calbiochem, Cat. No. 5805551) or an equal volume of DMSO (vehicle).

Reactions were terminated by addition of 10 µL of 3× Laemmli buffer supplemented with 100 mM DTT and heating the samples for 5 minutes at 70°C. A third (10 µL) of the final volume was resolved in 12.5% PhosTag SDS gels.
Reconstitution of a PPP1R15A-containing holophosphatase (Wako, Cat. No. NARD AAL-107) at 200 V for 1 hour. Gels were stained with Coomassie Instant Blue and imaged on an Odyssey imager (LI-COR, Lincoln, NE).

ImageJ was used to quantify eIF2α^p dephosphorylation as reflected by the intensity of the fluorescence arising from the Coomassie stain of the eIF2α^p and eIF2α⁰ bands resolved by the PhosTag SDS-PAGE gels and captured as a TIF file on Odyssey imager. GraphPad Prism v8 was used to fit plot and perform statistical analysis. Table S3 lists the number of times each experiment was performed.
Acknowledgements: We thank Alison Schuldt and members of the Ron laboratory for their comments on the manuscript. Stefan Marciniak and Joe Chambers for useful ideas for experiments and comments on the manuscript. Robin Antrobus for mass spectrometry analysis support. Anne Bertolotti, for sharing the MBP–PPP1R15A325-636 expression plasmid. Supported by a Wellcome Trust Principal Research Fellowship to D.R. (Wellcome 200848/Z/16/Z) and a Wellcome Trust Strategic Award to the Cambridge Institute for Medical Research (Wellcome 100140). M.B. was supported by a Flemish Concerted Research Action (GOA15/016). W.P. was supported by National Institute of Health R01NS091336 and the American Diabetes Association Pathway to Stop Diabetes Grant 1-14-ACN-31. Z.C. is a PhD fellow of the Fund for Scientific Research - Flanders.

Conflict of interest: The authors have no conflicts of interest

Author contributions: ACC conceived the study, co-designed and conducted experiments, interpreted the results, created the figures and co-wrote the paper. ZC co-designed the experiments, assisted with the preparation of PP1 from rabbit muscle, interpreted the results, edited the manuscript. MC expressed and purified PP1α from \textit{E. coli}, interpreted the results, edited the manuscript. WP oversaw the expression and purification of PP1α from \textit{E. coli}, interpreted the results, edited the manuscript. MB co-designed the experiments, oversaw the purification of PP1 from rabbit muscle, interpreted the results and edited the manuscript. DR conceived the study, co-designed and conducted experiments, interpreted the results and co-wrote the paper.
Reconstitution of a PPP1R15A-containing holophosphatase

References

1. Pakos-Zebrucka, K., Koryga, I., Mnich, K., Ljubic, M., Samali, A., and Gorman, A. M. (2016) The integrated stress response. *EMBO Rep* **17**, 1374-1395
2. Dever, T. E., Feng, L., Wek, R. C., Cigan, A. M., Donahue, T. F., and Hinnebusch, A. G. (1992) Phosphorylation of initiation factor 2 alpha by protein kinase GCN2 mediates gene-specific translational control of GCN4 in yeast. *Cell* **68**, 585-596
3. Harding, H. P., Zhang, Y., Zeng, H., Novoa, I., Lu, P. D., Calfon, M., Sadri, N., Yun, C., Popko, B., Paules, R., Stojdl, D. F., Bell, J. C., Hettemann, T., Leiden, J. M., and Ron, D. (2003) An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. *Mol. Cell* **11**, 619-633
4. Jousse, C., Oyadomari, S., Novoa, I., Lu, P., Zhang, Y., Harding, H. P., and Ron, D. (2003) Inhibition of a constitutive translation initiation factor 2alpha phosphatase, CReP, promotes survival of stressed cells. *J. Cell Biol.* **163**, 767-775
5. Novoa, I., Zeng, H., Harding, H., and Ron, D. (2001) Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2a. *J. Cell Biol.* **153**, 1011-1022
6. Brush, M. H., Weiser, D. C., and Shenolikar, S. (2003) Growth arrest and DNA damage-inducible protein GADD34 targets protein phosphatase 1 alpha to the endoplasmic reticulum and promotes dephosphorylation of the alpha subunit of eukaryotic translation initiation factor 2. *Mol. Cell. Biol.* **23**, 1292-1303
7. Ma, Y., and Hendershot, L. M. (2003) Delineation of a Negative Feedback Regulatory Loop That Controls Protein Translation during Endoplasmic Reticulum Stress. *J. Biol. Chem.* **278**, 34864-34873
8. Connor, J. H., Weiser, D. C., Li, S., Hallenbeck, J. M., and Shenolikar, S. (2001) Growth arrest and dna damage-inducible protein gadd34 assembles a novel signaling complex containing protein phosphatase 1 and inhibitor 1. *Mol. Cell. Biol.* **21**, 6841-6850.
9. Choy, M. S., Yusoff, P., Lee, I. C., Newton, J. C., Goh, C. W., Page, R., Shenolikar, S., and Peti, W. (2015) Structural and Functional Analysis of the GADD34:PP1 eIF2alpha Phosphatase. *Cell Rep* **11**, 1885-1891
10. Chen, R., Rato, C., Yan, Y., Crespillo-Casado, A., Clarke, H. J., Harding, H. P., Marciniak, S. J., Read, R. J., and Ron, D. (2015) G-actin provides substrate-specificity to eukaryotic initiation factor 2alpha holophosphatases. *Elife* **4**, e04871
11. Malzer, E., Szajewska-Skuta, M., Dalton, L. E., Thomas, S. E., Hu, N., Skaer, H., Lomas, D. A., Crowther, D. C., and Marciniak, S. J. (2013) Coordinate regulation of eIF2alpha phosphorylation by PPP1R15 and GCN2 is required during Drosophila development. *J. Cell Sci.* **126**, 1406-1415
12. He, B., Gross, M., and Roizman, B. (1998) The gamma134.5 protein of herpes simplex virus 1 has the structural and functional attributes of a protein phosphatase 1 regulatory subunit and is present in a high molecular weight complex with the enzyme in infected cells. *J. Biol. Chem.* **273**, 20737-20743
13. Crespillo-Casado, A., Chambers, J. E., Fischer, P. M., Marciniak, S. J., and Ron, D. (2017) PPP1R15A-mediated dephosphorylation of eIF2alpha is unaffected by Sephin1 or Guanabenz. *Elife* **6**, e26109
14. Chambers, J. E., Dalton, L. E., Clarke, H. J., Malzer, E., Dominicus, C. S., Patel, V., Moorhead, G., Ron, D., and Marciniak, S. J. (2015) Actin dynamics tune the integrated
stress response by regulating eukaryotic initiation factor 2alpha dephosphorylation. Elife 4, e04872

15. Harding, H. P., Zhang, Y., Scheuner, D., Chen, J. J., Kaufman, R. J., and Ron, D. (2009) Ppp1r15 gene knockout reveals an essential role for translation initiation factor 2 alpha (eIF2alpha) dephosphorylation in mammalian development. Proc. Natl. Acad. Sci. U. S. A. 106, 1832-1837

16. Marciniak, S. J., Yun, C. Y., Oyadomari, S., Novoa, I., Zhang, Y., Jungreis, R., Nagata, K., Harding, H. P., and Ron, D. (2004) CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev. 18, 3066-3077

17. Lin, W., Kunkler, P. E., Harding, H. P., Ron, D., Kraig, R. P., and Popko, B. (2008) Enhanced Integrated Stress Response Promotes Myelinating Oligodendrocyte Survival in Response to Interferon-(gamma). Am. J. Pathol. 173, 1508-1517

18. D’Antonio, M., Musner, N., Scapin, C., Ungaro, D., Del Carro, U., Ron, D., Feltri, M. L., and Wrabetz, L. (2013) Resetting translational homeostasis restores myelination in Charcot-Marie-Tooth disease type 1B mice. J. Exp. Med. 210, 821-838

19. Wang, L., Popko, B., and Roos, R. P. (2014) An enhanced integrated stress response ameliorates mutant SOD1-induced ALS. Hum. Mol. Genet. 23, 2629-2638

20. Schneider, K., and Bertolotti, A. (2015) Surviving protein quality control catastrophes--from cells to organisms. J. Cell Sci. 128, 3861-3869

21. Carrara, M., Sigurdardottir, A., and Bertolotti, A. (2017) Decoding the selectivity of eIF2alpha holophosphatases and PPP1R15A inhibitors. Nat. Struct. Mol. Biol. 24, 708-716

22. Tsaytler, P., Harding, H. P., Ron, D., and Bertolotti, A. (2011) Selective inhibition of a regulatory subunit of protein phosphatase 1 restores proteostasis. Science 332, 91-94

23. Das, I., Krzyzosiak, A., Schneider, K., Wrabetz, L., D’Antonio, M., Barry, N., Sigurdardottir, A., and Bertolotti, A. (2015) Preventing proteostasis diseases by selective inhibition of a phosphatase regulatory subunit. Science 348, 239-242

24. Peti, W., Nairn, A. C., and Page, R. (2013) Structural basis for protein phosphatase 1 regulation and specificity. The FEBS journal 280, 596-611

25. DeGuzman, A., and Lee, E. Y. (1988) Preparation of low-molecular-weight forms of rabbit muscle protein phosphatase. Methods Enzymol. 159, 356-368

26. Zhou, W., Brush, M. H., Choy, M. S., and Shenolikar, S. (2011) Association with endoplasmic reticulum promotes proteasomal degradation of GADD34 protein. J. Biol. Chem. 286, 21687-21696

27. Mikami, S., Kobayashi, T., Machida, K., Masutani, M., Yokoyama, S., and Imataka, H. (2010) N-terminally truncated GADD34 proteins are convenient translation enhancers in a human cell-derived in vitro protein synthesis system. Biotechnol. Lett. 32, 897-902

28. Kelker, M. S., Page, R., and Peti, W. (2009) Crystal structures of protein phosphatase-1 bound to nodularin-R and tautomycin: a novel scaffold for structure-based drug design of serine/threonine phosphatase inhibitors. J. Mol. Biol. 385, 11-21

29. Hubbard, M. J., and Cohen, P. (1989) Regulation of protein phosphatase-1G from rabbit skeletal muscle. 2. Catalytic subunit translocation is a mechanism for reversible inhibition of activity toward glycolgen-bound substrates. Eur. J. Biochem. 186, 711-716

30. Vulsteke, V., Beullens, M., Waelkens, E., Stalmans, W., and Bollen, M. (1997) Properties and phosphorylation sites of baculovirus-expressed nuclear inhibitor of protein phosphatase-1 (NIPP-1). J. Biol. Chem. 272, 32972-32978

31. Verbinnen, I., Ferreira, M., and Bollen, M. (2017) Biogenesis and activity regulation of protein phosphatase 1. Biochem. Soc. Trans. 45, 89-99
32. Brush, M. H., and Shenolikar, S. (2008) Control of cellular GADD34 levels by the 26S proteasome. *Mol. Cell. Biol.* **28**, 6989-7000

33. Perego, J., Mendes, A., Bourbon, C., Camosseto, V., Combes, A., Liu, H., Manh, T. V., Dalet, A., Chasson, L., Spinelli, L., Bardin, N., Chiche, L., Santos, M. A. S., Gatti, E., and Pierre, P. (2018) Guanabenz inhibits TLR9 signaling through a pathway that is independent of eIF2alpha dephosphorylation by the GADD34/PP1c complex. *Sci Signal* **11**

34. Pardee, J. D., and Spudich, J. A. (1982) Purification of muscle actin. *Methods Enzymol.* **85** Pt B, 164-181

35. Choy, M. S., Hieke, M., Kumar, G. S., Lewis, G. R., Gonzalez-DeWhitt, K. R., Kessler, R. P., Stein, B. J., Hessenberger, M., Nairn, A. C., Peti, W., and Page, R. (2014) Understanding the antagonism of retinoblastoma protein dephosphorylation by PNUTS provides insights into the PP1 regulatory code. *Proc. Natl. Acad. Sci. U. S. A.* **111**, 4097-4102
Figure 1. G-actin stimulates PPP1R15A-dependent eIF2α phosphatase activity by either PP1N or PP1α

A, Cartoon representation of human PPP1R15A protein (1-674) and the different constructs used in this study (sequence provided in Table S1). Key residues used for truncated versions of the proteins in this study are annotated. The ER localization domain and the proline, glutamate, serine and threonine-rich (PEST) repeats are highlighted as are the PP1 and G-actin binding sites in the conserved C-terminal region. MBP solubility tag is also represented in the cartoons of the constructs.

B, Upper panel: Coomassie-stained PhosTag-SDS-PAGE containing resolved samples of dephosphorylation reactions (30 minutes at 30°C) in which 2 μM eIF2αP was dephosphorylated by PP1N purified from rabbit skeletal muscle in the presence or absence of PPP1R15A325-636-MBP (50 nM) and/or G-actin (400 nM). The position of the various protein species is indicated. eIF2αP and eIF2α0 refer to the phosphorylated and non-phosphorylated form of the bacterially-expressed N-terminal domain (residues 1-185) of eIF2α, respectively. Note that both G-actin and PP1N preparation gave rise to two bands: a major full-length species and minor degradation product, in the case of G-actin, and a PP1 and tropomyosin band in the case of PP1N (see also Fig. S1). Shown is a representative experiment of two independent repetitions performed.

Middle panel: Plot of the rate of eIF2αP dephosphorylation as a function of the concentration of PP1N from lanes 1 to 12 of experiment above.

Bottom panel: Plot of the velocity of each enzyme relative to the mean of velocity of PP1 alone calculated from all the informative reactions in the two repeats of this experiment. Statistical significance derived from Mann-Whitney test (ns, non significant, p > 0.05; ***, p ≤ 0.001).

C, as in “B” but using bacterially-expressed PP1α as the catalytic subunit (96, 48, 24 or 12 nM), MBP-PPP1R15A325-636 (50 nM) and G-actin (400 nM). The assays were performed during 20 minutes at 30°C. Shown is a representative experiment of two independent repetitions performed.
Figure 2. The source of catalytic subunit does not affect the kinetics of PPP1R15A and G-actin-mediated stimulation of eIF2α^P dephosphorylation. A. **Upper panel:** Coomassie-stained PhosTag-SDS-PAGE of dephosphorylation reactions (30 minutes at 30°C), in which 2 μM eIF2α^P was dephosphorylated by PP1^N (20 nM) in presence of G-actin (400 nM) and increasing concentrations of PPP1R15A₃₂₅₋₆₃₆-MBP (0-100 nM). Shown is a representative experiment of three independent experiments performed. **Lower panel:** Plot of the rate of dephosphorylation of eIF2α^P as a function of PPP1R15A₃₂₅₋₆₃₆-MBP concentration, from the three experiments performed. The EC₅₀ was calculated using the "[Agonist] vs. response - variable slope (four parameters)" function in GraphPad Prism v7. The grey lines represent the 95% confidence interval of the fitting. Shown are values obtained for EC₅₀ and information of goodness of the fit (r²). B. as in “A” but using bacterially-expressed PP1α (24 nM) and increasing concentrations of MBP-PPP1R15A₃₂₅₋₆₃₆ (0-100 nM) in reactions performed over 20 minutes at 30°C. Shown is a representative experiment of three independent experiments performed. C. As in “A” but with fixed concentrations of PP1^N (20 nM) and PPP1R15A₃₂₅₋₆₃₆-MBP (50 nM) and varying the concentrations of G-actin (1-2000 nM). Shown is a representative experiment of three independent experiments performed.
Figure 3. **PPP1R15A**³²⁵⁻⁶³⁶ accelerates eIF2α^P dephosphorylation by PP1α in a low ionic strength buffer.

A. Upper panel: Coomassie-stained PhosTag-SDS-PAGE containing resolved samples of dephosphorylation reactions (30 minutes at 30°C) in which 2 μM eIF2α^P was dephosphorylated by PP1α (25 or 100 nM) in the presence or absence of MBP~PPP1R15A³²⁵⁻⁶³⁶ (1 μM) with or without G-actin (400 nM) in low (15 mM NaCl) or physiological (100 mM NaCl) ionic strength buffer. Shown is a representative experiment of three independent repetitions performed. Lower panel: Plot of the percentage of eIF2α^P dephosphorylation at the different conditions from the experiment above and the two other repeats performed. Statistical significance derived from paired two tailed t-test, (ns, non significant, p > 0.05; *, p ≤ 0.05; **, p ≤ 0.01). **B.** as in “A” but using PPP1R15A⁵³³⁻⁶²⁴-MBP (200 nM). Shown is a representative experiment of three independent repetitions performed.
Figure 4. At physiological ionic strength and in the absence of G-actin, PPP1R15A is unable to stimulate dephosphorylation of eIF2αP (despite an extended incubation of 16 h). **A**, Upper panel: Coomassie-stained PhosTag-SDS-PAGE containing dephosphorylation reactions (16 hours at 30°C) in which 2 μM eIF2αP was dephosphorylated by the indicated concentration of PP1N in the presence or absence of PPP1R15A325-636-MBP (50 nM). Quantification of percentage of dephosphorylation (%dP) is shown below the image. Shown is a representative experiment of two independent repetitions performed. Lower panel: Plot of the rate of dephosphorylation of eIF2α as a function of PP1N concentration. Data was obtained by quantification of bands of image shown above and the other repeat performed. **B**, as in “A” but using PP1α as the source of catalytic subunit and MBP-PPP1R15A325-636 (50 nM) as the regulatory subunit. Shown is a representative experiment of two independent repetitions performed.
Figure 5. The C-terminal portion of PPP1R15A is sufficient to promote eIF2αP dephosphorylation. A, Upper panel: Coomassie-stained PhosTag-SDS-PAGE containing resolved samples from dephosphorylation reactions (30 minutes at 30°C) in which 2 μM eIF2αP was dephosphorylated by PP1N (20 nM) in the presence of G-actin (400 nM) and increasing concentrations of PPP1R15A533-624-MBP (0-100 nM). Shown is a representative experiment of three independent repetitions performed. Lower panel: Plot of the rate of dephosphorylation of eIF2αP as a function of PPP1R15A533-624-MBP concentration, from the three experiments performed. The EC_{50} was calculated using the "[Agonist] vs. response - variable slope (four parameters)" function in GraphPad Prism v7. The grey lines represent the 95% confidence interval of the fitting. Shown are values obtained for EC_{50} and information of goodness of the fit (r^2).

B, as in "A" but using PP1α (24 nM) in presence of MBP-PPP1R15A325-636 (24 nM), G-actin (400 nM) and increasing concentrations of MBP-PPP1R15A325-512 as a competitor (0-8 μM). The assays were performed during 20 minutes at 30°C. Lane 8, loaded with only MBP-PPP1R15A325-512 shows the absence of a species co-migrating with eIF2αP (which might otherwise obscure an inhibitory effect on dephosphorylation). Lanes 9 and 10 control for the dependence of enzymatic activity on PPP1R15A and G-actin in this experiment. Quantification of percentage of dephosphorylation (%dP) is shown below the image. Shown is a representative experiment of two independent repetitions performed.
Figure 6. Neither Sephin1 nor GBZ interfere with eIF2α dephosphorylation.

A, Coomassie-stained PhosTag-SDS-PAGE containing resolved samples from dephosphorylation reactions (20 minutes, 30°C) in which 2 μM eIF2α was dephosphorylated by PP1α (24 nM) in presence or absence of MBP-PPP1R15A325-636 (60 nM) and/or G-actin (400 nM). The components were pre-incubated as specified with either Sephin1 (100 μM), Tautomycin (80 nM) or DMSO (vehicle) for 15 minutes at room temperature before being added to the reaction. The bottom panel shows a long exposure of the relevant section of the image above corresponding to the phosphorylated and non-phosphorylated forms of eIF2α. Quantification of percentage of dephosphorylation (%dP) is shown below the image. Shown is a representative experiment of three independent experiments performed.

B, as in “A” but with Guanabenz (GBZ). Shown is a representative experiment of two independent experiments performed.
Figure 7. Model depicting PPP1R15A’s role in regulating eIF2αP dephosphorylation. A, In absence of PPP1R15A the cellular pool of catalytic subunit (PP1) is preferentially bound by a variety of regulatory subunits (R₁, R₂, R₃) which direct its phosphatase activity towards their specific substrates (S₁, S₂, S₃), excluding eIF2α. In the substrate conversion section, see the preferential dephosphorylation of substrates S₁, S₂ and S₃ (solid arrow) compared to eIF2α (dotted arrow). B, Rising levels of PPP1R15A recruit PP1 away from other regulatory subunits, redirecting its phosphatase activity towards eIF2α by excluding other substrates. In the substrate conversion section, observe the inverted preferential dephosphorylation of substrates compared to “A”. C, When present, G-actin joins the PPP1R15A-PP1 holophosphatase, increasing its intrinsic eIF2α-directed catalytic activity. In the substrate conversion section, see the increased arrow thickness for eIF2αP dephosphorylation compared to “B”.
A Sephin1-insensitive tripartite holophosphatase dephosphorylates translation initiation factor 2 α
Ana Crespillo-Casado, Zander Claes, Meng S. Choy, Wolfgang Peti, Mathieu Bollen and David Ron

J. Biol. Chem. published online April 4, 2018

Access the most updated version of this article at doi: 10.1074/jbc.RA118.002325

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts