Differences in preschool-age children’s dietary intake between meals consumed at childcare and at home

S.B. Sisson a,⁎, A.C. Kiger a, K.C. Anundson a, A.H. Rasbold a, M. Krampe a, J. Campbell b, B. DeGrace c, L. Hoffman a

a Department of Nutritional Sciences, OUHSC, Oklahoma City, OK, United States
b Department of Biostatistics and Epidemiology, OUHSC, Oklahoma City, OK, United States
c Department of Rehabilitation Sciences, OUHSC, Oklahoma City, OK, United States

A R T I C L E I N F O

Article history:
Received 4 October 2016
Received in revised form 29 December 2016
Accepted 6 February 2017
Available online 08 February 2017

Keywords:
Childcare
Home
Dietary intake

A B S T R A C T

Preschool children need optimal nutrition, including a variety of nutrient-dense foods, for growth and development. The purpose of this study was to determine differences in foods and nutrients consumed at childcare and home environments. Children ages 3-to-5 years (n = 90, 3.8 ± 0.7 years; 56% female) from 16 childcare centers participated in this cross-sectional study from 2011 to 2014. Lunches at childcare were observed for two days; three days of dinners at home were reported by caregivers. Nutrient-dense and energy-dense foods were counted and nutrient content of meals was determined using FoodWorks®. More servings of fruit (0.92 ± 0.82 vs. 0.15 ± 0.26; p ≤ 0.0001), vegetables (1.47 ± 1.43 vs. 0.62 ± 0.60; p ≤ 0.0001), and low-fat dairy (0.92 ± 0.82 vs. 0.07 ± 0.19; p ≤ 0.0001) were consumed at childcare than at home. More servings of high-fat, high-sugar foods (0.08 ± 0.18 vs. 0.43 ± 0.39; p ≤ 0.0001) and sugary drinks (0.22 ± 0.41 vs. 0.39 ± 0.35; p ≤ 0.0001) were consumed at home than at childcare. There were no differences between environments in whole-grains, high-fat meats, or high-fat-high-sugar condiments consumed. On average, children consumed 333.0 ± 180.3 kcal at childcare and 454.7 ± 175.3 kcal at home (p ≤ 0.0001). There were no differences in macronutrient profiles or in iron, zinc, folate, or vitamin B6 intake. More calcium (86.2 ± 44.6 vs. 44.6 ± 22.2 mg/kcal; p ≤ 0.0001) and vitamin A/kcal (56.1 ± 36.9 vs. 26.5 ± 24.2 RAE/kcal; p ≤ 0.0001) were consumed at childcare than at home. Preschool children are consuming more nutrient-dense foods and a more servings of fruit and vegetables at childcare during lunch than at home during dinner. Childcare and parents should work together to provide early and consistent exposure to nutrient-rich foods to ensure optimal nutrition for developing children.

© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Dietary habits developed in early childhood serve as a foundation for future preferences and intake (Savage et al., 2007), and are difficult to modify as children age (Birch, 1999). Familiar eating environments, such as the home and childcare, influence the formation of children’s dietary habits (Ziegler et al., 2006). The home food environment and feeding practices affect dietary quality and, ultimately, the child’s health (Couch et al., 2014; Skouteris et al., 2011; Jones et al., 2014). While parents undeniably have a great impact on children’s eating habits, 11 million young children attend childcare daily (Child Care in America, 2014) and are influenced by the childcare food environment (Kharofa et al., 2015). In the U.S., childcare centers are required to meet dietary quality standards (United States Department of Agriculture, 2015; Oklahoma Department of Human Services, 2016), while meals served at home are not subject to regulation. Dietary quality standards vary based on participation in the Child and Adult Care Food Program (CACFP) and state licensure requirements, if a center does not participate in the CACFP. Researchers report that children in childcare over-consume foods high in fats and sugar (Benjamin Neelon et al., 2012), while under-consuming fat, vegetables, grains, and fiber (Briley et al., 1999; Gubbels et al., 2014). Studies contrasting dietary intake of young children at home and childcare are limited (Ziegler et al., 2006; Briley et al., 1999; Gubbels et al., 2014; Bernardi et al., 2010; Bruening et al., 1999; Sepp et al., 2001; Worobey et al., 2005). Half were conducted outside the U.S. (Gubbels et al., 2014; Bernardi et al., 2010; Sepp et al., 2001), and those in the U.S. were published at least 10 years ago (Ziegler et al., 2006; Briley et al., 1999; Bruening et al., 1999; Worobey et al., 2005). Additionally, of those studies conducted in the U.S., only one indicated whether or not childcare centers participated in the CACFP (Bruening et al., 1999) and another included Head Start Centers which necessitates participation in CACFP since they serve a low-income population (Worobey et al., 2005). Discrepancies among the dietary intake findings in infant, toddler, and preschool-age children could be attributed to the
global reach of the locations and the outdated time frame. However, findings are inconsistent. Higher fats and sweets were generally consumed at home (Briley et al., 1999; Bruening et al., 1999; Sepp et al., 2001), although one study reported more sweet snacks consumed at childcare (Gubbels et al., 2014). Two studies found that more vegetables were consumed at home (Briley et al., 1999; Gubbels et al., 2014), while another observed that more vegetables were consumed at childcare (Bruening et al., 1999). Energy intake was equivalent between environments (Ziegler et al., 2006; Gubbels et al., 2014; Bernardi et al., 2010), or higher at home (Sepp et al., 2001; Worobey et al., 2005). Researchers reported that either macronutrient profiles (percent carbohydrate, fat, protein) were the same in both environments (Ziegler et al., 2006; Worobey et al., 2005), more fat and protein was consumed at home (Gubbels et al., 2014; Bernardi et al., 2010), or more fat was consumed at childcare (Sepp et al., 2001). Some reported that more micronutrients were consumed at childcare than at home (Ziegler et al., 2006; Bruening et al., 1999), while others noted equivalent micronutrient consumption in both environments (Briley et al., 1999; Sepp et al., 2001). Regarding those findings that could discern between CACFP-participating centers and home, the centers provided lower fat (Bruening et al., 1999), more vegetables (Bruening et al., 1999), lower energy (Worobey et al., 2005), and more micronutrients (Bruening et al., 1999) compared to home. Of the study conducted in the U.S. that reported higher vegetable intake at home, CACFP participation was not indicated (Briley et al., 1999). Given the inconsistency across studies and need for a current understanding of dietary patterns among young children in the U.S., the purpose of the present study was to determine differences in foods and nutrient intake between meals consumed by preschool-age children at childcare and at home. We hypothesized that more nutrient-dense meals would be consumed at childcare than at home.

2. Methods

2.1. Study design

This cross-sectional study involved 3-to-5-year-old children and their parents from 16 childcare centers across Oklahoma. Data collection occurred from 2011 through 2014. All study procedures were approved by the University Institutional Review Board.

2.2. Recruitment

Licensed childcare centers that provided full-time care and a lunch meal to preschool children were eligible. Participation in CACFP was not a requirement and was not recorded as part of data collection. Oklahoma state licensure requirements for childcare state that centers must provide meals consistent with the CACFP (Oklahoma Department of Human Services, 2016). Centers were contacted via phone to determine interest and eligibility. Thirty-three centers were contacted; 13 were trained on standard recall interview techniques and procedures (Thompson and Byers, 1994) and engaged in ample practice before participating in data collection with caregivers. Trained researchers asked caregivers to recall foods the child consumed during the previous three dinner meals. Parents were prompted to recall easily forgotten foods, such as condiments, and probed for food preparation methods and brands. Interviewers used a guide to help caregivers visualize volumes of foods using common household goods (i.e., ping-pong ball equals two tablespoons). Researchers aimed to obtain three days of dinner recall for each child which would be averaged for analyses; however, 11 children had only two days. For those children with three dinner recalls, using a repeated measures Analysis of Variance, there was not a statistically significant difference across days. Similarly, there was no significant difference for dietary intake between weekdays and weekend days using a dependent t-test. Therefore, for those 11 children with two recalls, an average of day one and day two was imputed for day three. Day one, two, and three values were then averaged for analyses.

2.5. Dietary intake data processing

Foods consumed (fruit, vegetables, low-fat dairy, whole-grains, high-fat meats, high-fat high-sugar foods, high-fat high-sugar condiments, and sugary drinks) were counted. The criterion for each category is in Table 1. Each food was counted as one serving rather than using actual volumetric serving size. This approach errs in favor of the caregiver who provides a variety of fruits and vegetables, although each independently may not constitute a complete serving. For example, if a mixed vegetable recipe was served, each vegetable included was counted separately as one serving. Energy (kilocalories), macronutrients (carbohydrate, protein, fat), and micronutrients (calcium, iron, zinc, vitamin A, folate, vitamin B6) were determined using FoodWorks® (The Nutrition Co., Long Valley N.J.) and the United States Department of Agriculture food database. Macro- and micronutrients were examined relative to energy consumed, so that differences in the energy content of the meal were attenuated.

2.6. Analysis

Descriptive characteristics (mean ± SD and frequency) were calculated. Dependent t-tests were conducted to determine the differences in foods and nutrients consumed during meals at childcare and at home. There were 19 dependent variables examined; thus, the alpha was adjusted, using the Bonferroni method for significance (p < 0.003). Data were analyzed using SPSS Statistical Analysis Software (IBM Corporation, Somers, NY).
Children consumed significantly fewer kilocalories during lunch at childcare than during dinner at home. Although not statistically significant after correction for multiple analyses, children consumed significantly fewer high-fat high-sugar foods and sugary drinks than during dinner at home. Although not statistically significant after correction for multiple analyses, children consumed more iron/kcal and folate/kcal during dinner at home than lunch at childcare. There was no difference for zinc/kcal or vitamin B6/kcal consumed at either environment.

3. Results

Ninety 3-to-5-year-old children and their caregivers participated. Children were 3.8 ± 0.7 years old, 55.6% female, 44.4% white, 33.3% American Indian or Alaska Native, 8.9% black, 11.1% Hispanic, and 2.2% Asian.

Lunches were observed throughout the week: 10% of lunches were observed on Monday, 15% on Tuesday, 14% on Wednesday, 29% on Thursday, 20% on Friday, and 12% were imputed. Dinners were recalled throughout the week: 20% of recalls represent meals consumed on Monday, 17% on Tuesday, 13% on Wednesday, 10% on Thursday, 7% on Friday, 11% on Saturday, 18% on Sunday, and 4% were imputed.

A list of the variety of fruits and vegetables consumed at childcare and home are presented in Table 2. Thirty-four different fruits and vegetables were consumed by children at childcare while forty-four were consumed by individual children at home. Mean foods and nutrients consumed at both environments and the differences between the environments are reported in Table 3. During lunch at childcare, children consumed significantly more fruit, vegetables, combined total fruit and vegetables, and low-fat dairy than during dinner at home. During lunch at childcare, children consumed significantly fewer high-fat high-sugar foods and sugary drinks than during dinner at home. Although not statistically significant after correction for multiple analyses, children consumed more high-fat high-sugar condiments during lunch at childcare than during dinner at home. There was no difference between whole-grains and high-fat meats consumed between environments.

Children consumed significantly fewer kilocalories during lunch at childcare than during dinner at home. Although not statistically significant after correction for multiple analyses, more carbohydrates and less fat were consumed during lunch at childcare than dinner at home. No difference was observed in protein consumption between environments. More food was consumed during dinner at home than lunch at childcare; therefore, micronutrients were calculated relative to energy. Children consumed significantly more calcium/kcal and vitamin A/kcal during lunch at childcare than during dinner at home. Although not significantly different after adjustment for multiple analyses, children consumed more iron/kcal and folate/kcal during dinner at home than lunch at childcare. There was no difference for zinc/kcal or vitamin B6/kcal consumed at either environment.

4. Discussion

Primary findings generally supported our hypothesis and revealed that preschool-age children consumed more servings of fruit (Gubbel et al., 2014), vegetables (Bruening et al., 1999), and low-fat dairy products (Bruening et al., 1999) during lunch at childcare than during dinner at home. While the listed variety of fruits and vegetables consumed by children at home has a wider variety than that consumed at childcare, this is likely due to a few children rather than the majority of children as evidenced by data showing more fruits and vegetable consumption at childcare. Furthermore, more servings of high-fat, high-sugar foods and sugary drinks were consumed during dinner at home (Briley et al., 1999; Bruening et al., 1999; Sepp et al., 2001), making dinner a potential source of excess energy and fat consumption. While we reported

Table 1
Criteria for foods and food categories.

Food group	Criterion
Fruit	Included: fresh, frozen or canned varieties (i.e. applesauce, fruit medleys), excluded fruits, yogurt and any fruit juice.
Vegetable	Included fresh, frozen or canned varieties; corn and beans as a starch vegetable (i.e., corn on the cob, baked beans, hummus, or lentil soup); and avocados as a fatty vegetable. Excluded any fried preparation (i.e., French fries or fried green beans); small amounts of processed tomato products (i.e., spaghetti or pizza sauce); pickles, and deli salads (i.e., potato salad).
Low-fat dairy	Included fat-free or 1% unflavored milk, fat-free or 1% cheese, fat-free or 1% yogurt, skim chocolate milk, fat-free or 1% cottage cheese, smoothie made with fat-free or 1% dairy products, etc.
Whole-grains	Included oatmeal, brown rice, bread, unsalted-unbuttered popcorn, corn tortillas, etc. Excluded bread, pasta, flour (refined) tortillas, or buns made with refined (white) flour; any foods that can be included in high-fat high-sugar category.
High-fat meat	Included bologna, ham if not deli slices sausage, bacon, 80/20 ground beef, and pot roast.
High-fat high-sugar foods	Included foods with 9 g or more per serving of added sugar, which includes: cookies, cakes, donuts, muffins, sweet bread, cereal bar, breakfast fruit bars, any sweetened cereal, meals prepared with cream-based soup.
High-fat high-sugar condiments	Included condiments that contain >9 g of sugar or >5 g of fat per serving. Included juice that is not 100% fruit, drinks that contain added sugar, flavored milk.

Table 2
List of fruits and vegetables consumed by preschool-age children [3 to 5 years; n = 90] at childcare and home environments in Oklahoma 2011–2014.

Produce	Childcare	Home
Apple	Apple	
Applesauce	Applesauce	
Asparagus	Asparagus	
Avocado	Avocado	
Banana	Banana	
Beans	Beans	
Bell peppers	Black beans	
Black-eyed peas	Blueberries	
Broccoli	Broccoli	
Brussels sprouts	Cabbage	
Cabbage	Cabbage	
Carrots	Carrots	
Cauliflower	Cauliflower	
Celery	Celery	
Cherries	Chickpeas	
Corn	Corn	
Cucumber	Cucumber	
Edamame	Field greens	
Grapes	Grapes	
Green beans	Green beans	
Lentils	Lentils	
Lettuce	Lettuce	
Lima beans	Lima beans	
Mushrooms	Mushrooms	
Olives	Olives	
Onion	Onion	
Oranges	Oranges	
Peaches	Pears	
Pears	Peas	
Pineapple	Pineapple	
Pinto beans	Pinto beans	
Plums	Plums	
Potatoes	Potatoes	
Salad	Salad	
Seaweed	Seaweed	
Spinach	Spinach	
Strawberries	Strawberries	
Sweet potato	Sweet potato	
Tangerine	Tangerine	
Tomatoes	Tomatoes	
Watermelon	Watermelon	
Zucchini	Zucchini	
higher vegetable consumption at childcare, two studies (Briley et al., 1999; Gubbels et al., 2014) reported higher vegetable consumption at home. (Briley et al., 1999; Gubbels et al., 2014) Differences may be explained by cultural food habits, as Gubbels et al. (Gubbels et al., 2014) was conducted in the Netherlands, or changes in vegetables served at either home or childcare since 1999 (Briley et al., 1999). Furthermore, Briley et al. (Briley et al., 1999) did not indicate if centers participated in the CACFP, while Oklahoma state regulations require all centers to adhere to CACFP guidelines (Oklahoma Department of Human Services, 2016). Another recent study (Robson et al., 2015) demonstrated that children are consuming inadequate fruit, vegetables, and low-fat dairy products consumed at childcare. In the present study, the servings of fruit, vegetables, and low-fat dairy products consumed at childcare were at least twice that consumed at home. While a wider variety of foods were consumed by individuals of each serving size. While this method of assessing appears to be accurate meal representation from home when observation is not feasible, limitations exist for dietary recall, which may decrease accuracy, as not all details of food preparation may be remembered. Further, social desirability bias may have influenced parental response.

There was risk of underestimation of energy-dense foods due to each food being counted as a serving, which does not consider the volume of the serving. For example, a child could eat ten chicken nuggets, which would only be counted as one energy-dense food. The kilocalories and fat would be reflected in the nutrient analyses (i.e., kilocalories). This method of assessment also risks overestimation of fruit and vegetables, since each single fruit was counted rather than a full volume serving size. While this error in the favor of caregivers who expose children to multiple small amounts of fruits and vegetables in a given meal, it overestimates the actual volume consumed.

Further investigation comparing the meal consumption of preschool-age children throughout the entire day, including cultural and seasonal differences, and snacking, would provide a complete understanding of intake and areas for improvement. Additionally, it is suggested that examination of dietary intake of children attending centers that participate in CACFP versus those that do not would provide further understanding of those policies and the provision of adequate nutrition to children at childcare. Utilization of emerging technology may assist in accurate meal representation from home when observation is not feasible. Assessing barriers that prevent caregivers from providing nutritionally rich meals would aid in the development of interventions.

This study demonstrated that preschool-age children consumed more nutrient-dense foods and micronutrients at childcare than at home, and children are consuming more energy-dense foods and sugary drinks at home. Implications of this study emphasize the importance of the CACFP (United States Department of Agriculture, 2015) and concomitant state regulations (Oklahoma Department of Human Services, 2016). While nutritional inadequacies are reported in childcare (Benjamin Neelon et al., 2012; Briley et al., 1999; Gubbels et al., 2014; Rasbold et al., 2016), federal and state regulation likely enhance the quality of foods prepared for children and appear healthier than foods provided at home. While a wider variety of foods were consumed by individual children in their homes the total fruit and vegetable consumption was lower at home indicating that some children are being served a variety of foods at home. Although this discrepancy also emphasizes the importance of the childcare providers in serving a variety of foods to all children.
children regardless of home caregiver food provision and home food availability. Preschool-age children are dependent on caregivers for food that supports normal growth and development in both environments. The optimal diet for children includes consistent provision of nutrient-dense foods by both parents and childcare providers.

Conflict of interest

No authors have a conflict of interest to report.

Transparency document

The Transparency document associated with this article can be found, in the online version.

Acknowledgements

We would like to extend our appreciation to all of the childcare centers and families who participated and took the time to contribute to this research study. We would also like to thank all student members of the Behavioral Nutrition and Physical Activity Laboratory who contributed to data collection for this project. This project was supported by the Gretchen Swanson Center for Nutrition and the Stephenson Cancer Center at the University of Oklahoma Health Sciences Center, Department of Nutritional Sciences. This work was conducted when A.K., K.A., A.R., and M.K. were graduate students in the Behavioral Nutrition and Physical Activity Laboratory, and was completed in partial fulfillment of A.K’s Master of Science degree. We would also like to thank Mrs. Kathy Kyler for editorial review of this manuscript.

References

Savage, J.S., Fisher, J.O., Birch, L.L., 2007. Parental influence on eating behavior: conception to adolescence. J. Law Med. Ethics 35 (1), 22–34.

Birch, LL. 1999. Development of food preferences. Annu. Rev. Nutr. 19, 41–62.

Ziegler, P., Briefel, R., Ponza, M., Novak, T., Hendricks, K. 2006. Nutrient intakes and food patterns of toddlers’ lunches and snacks: influence of location. J. Am. Diet. Assoc. 106 (1 Suppl. 1), S124–S134.

Couch, S.C., Glanz, K., Zhou, C., Sallis, J.F., Saelens, B.E., 2014. Home food environment in relation to children’s diet quality and weight status. J. Acad. Nutr. Diet. 114 (10), 1569–1579, e1561.