The strong modulation limit of excitons and trions in moiré materials

Yongxin Zeng and Allan H. MacDonald

Department of Physics, University of Texas at Austin, Austin, TX 78712

(Dated: July 4, 2022)

The optical properties of weakly-doped two-dimensional materials are dominated by strong exciton and trion absorption and luminescence features. In this article we examine the influence of moiré patterns in semiconductor heterobilayers on exciton and trion states in the limit of strong moiré modulation potentials, commenting on similarities and differences compared to the case of excitons and trions in semiconductor quantum dots. We discuss strategies for using optical properties as quantitative probes of moiré materials, and the prospects for exploiting moiré materials to design unique light emitters.

I. INTRODUCTION

Moiré superlattices form when two-dimensional (2D) crystals are stacked with a small twist angle or lattice mismatch. When the host materials are semiconductors or semimetals, moiré superlattices are accurately described by continuum models with the periodicity of the moiré pattern, giving rise to artificial two-dimensional moiré materials with controllable large lattice constants. Extensive theoretical and experimental work on twisted bilayer graphene [11,22] and twisted bilayer transition metal dichalcogenides (TMDs) [23,37] over the past several years has established moiré materials as an important platform for studies of strongly correlated electron physics.

In addition to modifying low-energy electronic properties, the moiré potentials in twisted bilayer TMDs also significantly modify interband excitonic collective modes, and associated optical properties [38,54]. The moiré modulation splits both intralayer and interlayer excitonic peaks in the optical spectrum into a series of subpeaks and modifies optical selection rules. Since the electrons, holes, and excitons are often strongly localized near minima of the periodic moiré potential, moiré superlattice systems can act as a new and more perfectly periodic realization of quantum dot arrays [40,41], and be used to engineer single-photon emitters and entangled photon sources [43,49] with potential applications in quantum optics.

Theories of the excitonic properties of moiré materials have progressed by treating excitons as point particles moving in a periodic moiré potential [39,43]. Recent numerical and experimental studies show that moiré modulation strengthens when strain is taken into account [55–58], and that the conduction band electrons and valence band holes that combine to form excitons in a moiré material can be attracted to different lateral positions; the former case is distinguished by fewer but stronger absorption features because of the approximate applicability of angular momentum conservation selection rules. Magnetic fields are potentially useful in characterizing moiré materials, but because of the strong electron-hole binding in two-dimensional material excitons and trions will yield substantial corrections that can be used to identify electron, hole, exciton, and trion configurations only at very strong magnetic fields.

II. THE MODEL

In a TMD heterobilayer moiré superlattice, electrons and holes tend to localize at one of three high-symmetry sites in a moié unit cell [55,63] at which the local stacking places the metal atoms of one layer above either metal, chalcogen, or empty sites of the layer below. As summarized in Fig. 1, there is an important distinction between the case in which electrons and hole are localized at the same positions in the moiré pattern or at different positions. It is not yet confidently known which among the various TMD heterobilayer systems fall into the former category and which fall into the latter category. When the electron and hole sites are the same, they form a triangular lattice of sites at which excitons can be localized. When the electron and hole sites are separated in the 2D plane, however, their triangular lattices combine to form a hexagonal lattice like the one shown
in Fig. 1(a). In a hole-doped system some of the hole sites are occupied, and at certain fractional fillings the ground state of the doped holes is a lattice Wigner crystal [24][26][35]. Fig. 1 shows an example at filling factor \(\nu = 1/3 \). Possible low-energy excitations of the system include electron-hole pairs at empty neighboring sites (an exciton), or an electron-hole pair at a filled hole site and its neighboring electron site (a trion). Excitations with electrons and holes farther away are also possible, but have higher energies and weaker optical absorptions. If we ignore these, and consider only near-neighbor exciton and trion excitations, each bond between an electron site and its neighboring hole site can be associated with an exciton or trion excitation, as marked by the red crosses and triangles, together they form a kagome lattice. (d) Same as (b), except that the electrons and holes are localized at the same sites. The yellow circles show two excitons and a trion excitation.

FIG. 2. Schematic illustration of the model system – a few electrons and holes confined in a 2D quantum dot. The black dots stand for the confining potential minima for electrons and holes, and the blue and green dots represent electrons and holes respectively. The vectors \(r_{ei} \) and \(r_{hj} \) are defined relative to the potential minima for electrons and holes respectively, which are separated by the vector \(s = s \hat{x} \) when the electrons and holes are in the same layer and by \(s \hat{x} + d \hat{z} \) when the electrons and holes are in layers separated by distance \(d \).

In this article we consider both two-particle exciton and three-particle trion electron-hole complexes, ignoring the possible role of coupling to other excitations of the system. We study a system of \(N_e \) electrons and \(N_h \) holes confined in a 2D quantum dot (Fig. 2) with harmonic confining potentials for the electrons and holes, and a magnetic field \(B = B \hat{z} \) applied perpendicular to the 2D plane. We take advantage of the large spin-splitting of single-layer TMD bands at the Brillouin-zone corners by including only one conduction band and one valence band per spin. We consider the general case in which the electrons and holes have different effective masses \(m_e \) and \(m_h \) and are localized at different lateral positions in the same or different layers by confining potentials that can have different oscillator frequencies \(\omega_e \) and \(\omega_h \). For heterobilayer moiré superlattices, states with electrons and holes in the same layer are relevant in absorption or reflection measurements and states with electrons and holes in different layers are relevant in luminescence experiments. The system is described by Hamiltonian

\[
H = H_e + H_h + V_{ee} + V_{hh} + V_{eh}.
\]

(1)

The electron and hole single-particle terms are (in cgs units)

\[
H_e = \sum_{i=1}^{N_e} \left[\frac{1}{2m_e} (p_{ei} + eA_e(r_{ei}))^2 + \frac{1}{2}m_e\omega_e^2 r_{ei}^2 \right],
\]

(2)

\[
H_h = \sum_{j=1}^{N_h} \left[\frac{1}{2m_h} (p_{hj} - eA_h(r_{hj}))^2 + \frac{1}{2}m_h\omega_h^2 r_{hj}^2 \right],
\]

(3)

where \(i \) and \(j \) are labels for electrons and holes, and the origins of \(r_{ei} \) and \(r_{hj} \) are chosen to be at the minima of the
corresponding confining potentials. We choose a gauge such that \(A_c(r_c) = \frac{1}{2}B \times r_c \) and \(A_h(r_h) = \frac{1}{2}B \times r_h \), i.e., the symmetric gauge, but with different origins for electrons and holes. We do not explicitly include in our calculations the valley Zeeman splitting [64–67], which produces a constant shift in exciton energies but does not change exciton wavefunctions. Its effects can be easily added to our results. The non-trivial orbital effects of the magnetic field that we discuss in our work can be decoupled from the valley Zeeman splitting by optical measurements with circularly polarized light. The interaction terms are

\[
V_{ee} = \sum_{i_1 < i_2} \frac{e^2}{|r_{ei_1} - r_{ei_2}|},
\]

\[
V_{hh} = \sum_{j_1 < j_2} \frac{e^2}{|r_{hj_1} - r_{hj_2}|},
\]

\[
V_{eh} = \sum_{i=1}^{N_e} \sum_{j=1}^{N_h} \frac{-e^2}{\sqrt{|r_{ei} - r_{hj}| + s^2 + d^2}},
\]

where \(s \) is the displacement between the confining potential minimum of electrons and holes. We choose the coordinate axes such that the 2D crystals are in the \(x \)-\(y \) plane and the in-plane component of \(s \) is along the \(x \) direction (see Fig. 2). \(d \) is the distance between the electron and hole layers (\(d = 0 \) when the electrons and holes are in the same layer), and \(\epsilon \) is the dielectric constant of the dielectric surrounding the system. The most commonly employed surrounding dielectric is hexagonal boron nitride (hBN), which has an anisotropic dielectric tensor. In this case \(\epsilon = \sqrt{\epsilon_{zz} \epsilon_{xx}} \) and the effective layer separation \(d \) is related to the physical separation \(d_0 \) by \(d = d_0 \sqrt{\epsilon_{zz}/\epsilon_{xx}} \), where \(\epsilon_{zz} \) and \(\epsilon_{xx} \) are respectively the perpendicular-to-plane and in-plane components of the dielectric tensor.

We diagonalize the few-particle Hamiltonian using a configuration interaction approach with basis state Slater determinants constructed from the eigenstates of \(H_e \) and \(H_h \). Our calculations are similar to those reported in earlier papers [68–71] on quantum dots in semiconductor quantum wells, except that we consider here the possibility that the electrons and holes are localized at different lateral positions. The harmonic oscillator (with mass \(m \), charge \(\pm e \), angular frequency \(\omega \), in a perpendicular magnetic field \(B \)) eigenstates \(|n_+ n_- \rangle \) are labelled by two quantum numbers \(n_+ \) and \(n_- \), with energy eigenvalues

\[
E_{n_+ n_-} = (n_+ + 1)\hbar \Omega_+ + (n_- + 1/2)\hbar \Omega_-,
\]

where \(\Omega_{\pm} = \Omega \pm \omega_c/2 \) with \(\Omega = \sqrt{\omega^2 + (\omega_c/2)^2} \) and \(\omega_c = eB/mc \). (See Appendix A for derivations.) To diagonalize the Hamiltonian we choose basis states that are antisymmetrized combination of electron-hole many particle product states

\[
|n_{e1} n_{e2} n_{h1} n_{h2} \rangle = \prod_{i \neq j} (n_i - n_j) \frac{1}{\sqrt{2^n}} \frac{1}{\pi^{n/2}} \int d\theta d\phi (\sin\theta)^n (\cos\phi)^n \delta_{\theta \phi} (\sin\theta)^n \cos\phi^n,
\]

where \(\theta \) and \(\phi \) are the angular coordinates of the \(i \)-th particle with respect to the origin at the center of mass of the system. The antisymmetry of the basis states is insured by the geometric factor \(\prod_{i \neq j} (n_i - n_j) \), which is equal to zero if there are two particles located at the same site. The two-particle matrix elements of \(V_{ch} \) are similar but do not conserve angular momentum because the electron and hole oscillators have different centers in general:

\[
\langle n'_{e+} n'_{h-}, n'_{h+} n'_{h-} | V_{eh} | n_{e+} n_{e-}, n_{h+} n_{h-} \rangle = -\frac{\beta_{eh}}{2} \frac{e^2}{\epsilon B} \left(\prod_{\alpha \lambda} n'_{\alpha \lambda} n_{\alpha \lambda} \right)^{1/2} \left(-1 \right)^{n'_{e+} n_{e-} + n'_{h+} n_{h-} - \delta_{ll'}} \times \sum_{k_{\lambda} = 0}^{\min(n'_{\lambda}, n_{\lambda})} \left(\frac{(-1)^{k_{\lambda} - 2 - p}}{k_{\lambda} !} (n'_{\lambda} - k_{\lambda}) ! (n_{\lambda} - k_{\lambda}) ! \right) \cdot I, \]

where \(\beta_{eh} = \beta_e \beta_h / (\beta_e + \beta_h) \), and the \((n', n, k) \)-dependent integral

\[
I = \int_0^\infty dq^2 e^{-q^2} (q^2)^{p-1} e^{-q^2} \cdot \int_0^{2\pi} d\phi \frac{2\pi}{2\pi} (ie^{i\phi})^{l'} e^{i\phi \cos \phi},
\]
where we introduced the dimensionless lengths $\tilde{d} = \frac{\sqrt{2}\epsilon a}{\Omega_{\alpha}}$, $\tilde{s} = \frac{\sqrt{2}\epsilon a}{\Omega_{\alpha}}$, the total angular momentum quantum numbers $l = n_{e+} - n_{e-} = n_{h+} + n_{h-}$, $l' = n'_{e+} - n'_{e-} = n'_{h+} + n'_{h-}$, and $p = \sum_{\alpha \lambda} (n'_{\alpha \lambda} + n_{\alpha \lambda} - 2k_{\alpha \lambda})/2$. The radial part of the integral in Eq. (11) can be computed analytically and we obtain

$$I = 4^{-p} \Gamma(2p+1) \int_{0}^{2\pi} \frac{d\phi}{2\pi} (i e^{i\phi})^{l-l'} U(p + \frac{1}{2}, \frac{1}{2}, \frac{1}{4}(\tilde{d} - i\tilde{s} \cos \phi)^2),$$

where U is the confluent hypergeometric function of the second kind. The angular integral must be evaluated numerically for $s \neq 0$. For $s = 0$,

$$I(s = 0) = \delta_{l,l'} \cdot 4^{-p} \Gamma(2p+1) U(p + \frac{1}{2}, \frac{1}{2}, \frac{1}{4} d^2).$$

When $d \to 0$, $I(s = 0) \to \delta_{l,l'} \Gamma(p + \frac{1}{2})$. More detail on the derivations of these formulas is provided in Appendix A. The generalization of these formulas to properly anti-symmetrized multi-particle states basis with spin and/or valley degrees of freedom is straightforward.

III. EXCITONS

We first consider the case of excitons – two-particle states with an electron and a hole that are distinguishable. We neglect intervalley exchange interactions \[72–75\] so that the excitonic states are valley independent. The total exciton Hamiltonian can be written as

$$|\psi_{\text{ex}}^{(s)}\rangle = \sum_{n_e,n_h} C_{n_e,n_h}^{(s)} |n_e; n_h\rangle,$$

where n_e is a shorthand for the two indices (n_{e+}, n_{e-}) that specify which electron basis state is occupied, and similarly for n_h. The coefficients $C_{n_e,n_h}^{(s)}$ are obtained by numerical diagonalization of the Hamiltonian in the magnetic harmonic oscillator basis $|n_e; n_h\rangle$. In our model, exciton energies are given relative to the band gap between potential extrema.

In the weak-confinement limit, the relative-motion electron-hole-pair state is very weakly distorted, and the electron-hole center-of-mass moves in a weak modulation potential. The characteristic length scale for bound electron-hole pairs is the effective Bohr radius $a_B^{\text{eff}} = \epsilon \hbar^2/m_e c^2$ where $m = m_e m_h/(m_e + m_h)$ is the reduced mass of the electron-hole pair. The characteristic energy scale is the effective Rydberg $Ry^{\text{eff}} = \epsilon^2/2a_B^{\text{eff}} = m e^4/2\epsilon^2 \hbar^2$. In our calculations we set $m_e = 0.4m_0$, $m_h = 0.5m_0$ where m_0 is the free electron mass, and $\epsilon = 5$, as approximate parameters for intralayer excitons in bilayer TMDs \[70\] surrounded by hBN. Then we find $a_B^{\text{eff}} = 1.19 \text{ nm}$ and $Ry^{\text{eff}} = 121 \text{ meV}$.

In the strong-confinement and large-s limit, the electron and hole are each confined in a harmonic potential, with length scale given by the oscillator length $l_\alpha = \sqrt{\hbar/m_\alpha \omega_\alpha}$ and energy scale $\hbar \omega_\alpha$. The magnetic field provides another length scale, the magnetic length $l_B = \sqrt{\hbar/eB}$, and another energy scale, the cyclotron energy $\hbar \omega_\text{cycl} = \hbar eB/m_\alpha c$. For our explicit calculations we choose $\hbar \omega_\alpha = 50 \text{ meV}$, $\hbar \omega_\text{cycl} = 60 \text{ meV}$. Then the harmonic confinement lengths $l_\alpha = 1.95 \text{ nm}$ and $l_B = 1.59 \text{ nm}$. At magnetic field $B = 10 \text{ T}$, the magnetic length $l_B = 8.11 \text{ nm}$ is considerably longer and the cyclotron energies $\hbar \omega_\text{cycl} = 2.9 \text{ meV}$, $\hbar \omega_\text{cycl} = 2.3 \text{ meV}$ considerably smaller than other length and energy scales. In a magnetic field, the oscillator length $L_\alpha = \sqrt{\hbar/m_\alpha \Omega_\alpha}$ with $\Omega_\alpha = \sqrt{\omega_\alpha^2 + (\omega_\text{cycl}/2)^2}$. We therefore see that due to the large effective masses in the TMDs, the oscillator length is weakly perturbed by a $B = 10 \text{ T}$ magnetic field ($L_\alpha \approx l_\alpha \ll l_B$). The magnetic length and the oscillator length start to become comparable only for magnetic fields $\sim 100 \text{ T}$; below this field scale exciton states are weakly perturbed by magnetic fields. In the following we present results at zero magnetic field unless otherwise specified; the results differ very little when a moderate magnetic field is applied.

Fig. 3 shows numerical results for the ground-state exciton energy $E_{\text{ex}}^{(0)}$ as a function of the in-plane separation between the electron and hole confining potential minima s, for intralayer (blue $d = 0$) and interlayer (green and yellow $d = 1,2 \text{ nm}$) excitons. The dots and solid lines are numerical results from ED calculations, and the dotted curves are the large-s approximation \[15\]. The blue cross shows the weak-confinement approximation \[10\] expression which adds a zero-point confinement energy to the free exciton energy.

![Ground-state exciton energy](image.png)

Fig. 3. Ground-state exciton energy $E_{\text{ex}}^{(0)}$ as a function of the in-plane separation between the electron and hole confining potential minima s, for intralayer (blue $d = 0$) and interlayer (green and yellow $d = 1,2 \text{ nm}$) excitons. The dots and solid lines are numerical results from ED calculations, and the dotted curves are the large-s approximation. The blue cross shows the weak-confinement approximation expression which adds a zero-point confinement energy to the free exciton energy.
can be treated at lowest order in perturbation theory. In this limit, the ground state energy is

\[E_{\text{eh}}^{(0)}(s) = E_e^{(0)} + E_h^{(0)} - \frac{e^2}{\sqrt{s^2 + d^2}}, \]

where \(E_e^{(0)} = h(\Omega_{e+} + \Omega_{e-})/2 = h\Omega_e \) is the ground state of an electron in the quantum dot (and similarly for holes) with \(\Omega_e \) and \(\Omega \) defined after Eq. (4). The dotted curves in Fig. 3 show that the approximate ground state energy calculated from Eq. (15), which entirely neglects electron-hole correlations, agrees well with the numerical results when \(s \gg L_e, L_h \). For intermediate \(s \approx 3 \text{nm} \), Coulomb attraction distorts the wavefunctions of the electron and hole, which effectively reduces the electron-hole separation and results in a lower ground-state energy than that given by Eq. (15). The approximate relation, and this results in a ground state energy that is higher than that given by Eq. (15). The approximate ground state energy of Eq. (15) is in reasonable agreement with numerical results when \(s \gtrsim L_e, L_h \).

We see from Fig. 3 that exciton properties depend qualitatively on the ratio of \(s \) to confinement oscillator lengths. As indicated in Fig. 1, the experimentally relevant value of \(s \) is either \(s = 0 \), in which case electron-hole correlation is always important, or \(s = a_M/\sqrt{3} \), where \(a_M \) is the lattice constant of the triangular moiré Bravais lattice. In the former case (see below) the large-\(s \) limit is never relevant. In the latter case, the large-\(s \) limit is always achieved at large enough moiré period since the oscillator length of electrons or holes in moiré materials varies \[23, 37\] approximately as the square root of the moiré period. The large-\(s \) limit is simple not only for excitons, but for any finite-particle-number electron-hole complex, since the interactions between electrons and holes \(\mathcal{V}_{eh} \) (Eq. (6)) simply add an electrostatic contribution to energies and do not alter electron wavefunctions.

If confinement is weak, the \(s = 0 \) system can be viewed as a tightly bound exciton of mass \(M = m_e + m_h \) moving in a weak confining potential with angular frequency \(\omega = \sqrt{(m_e \omega_e^2 + m_h \omega_h^2)/(m_e + m_h)} \) \[69\]. The ground state energy is then the sum of the ground state energies of the harmonic oscillator and the tightly bound exciton. For the intralayer exciton case \(d = 0 \), the system is similar to a 2D hydrogen atom, and the total energy is given by the analytic result:

\[E_{\text{eh}}^{(0)}(0) = \hbar \omega - 4 \text{Ry}^*. \]

This approximate result is indicated by the blue cross in Fig. 5, where we see that the parameters chosen for this calculation are not in the weak confinement limit – the exciton radius \(a_B^* \) is not small compared with the confining length of the harmonic potential \(L = \sqrt{\hbar M \omega} \) – and Eq. (16) is therefore inaccurate. The stronger confinement weakens the correlations between electron and hole positions and therefore increases the total energy. Fig. 4 shows how the exciton ground state energy shifts in a magnetic field. In the large-\(s \) limit it follows from Eq. (15) that the diamagnetic exciton energy shift comes from the single-particle energies of electrons and holes:

\[\Delta E_{\text{eh}}^{(0)}(B) = E_{\text{eh}}^{(0)}(B) - E_{\text{eh}}^{(0)}(B = 0) \approx \frac{e^2 B^2}{8\hbar c} \left(\frac{l^2}{m_e} + \frac{l^2}{m_h} \right). \]

The last line of the above equation applies for a small magnetic field \(B \ll 2m_\text{e}\omega_e c/e \). Fig. 4 shows that for \(s = 3 \text{nm} \) the numerical results are already close to the \(s \to \infty \) limit. The diamagnetic exciton energy shift grows quadratically with magnetic field both in the strong-binding case (\(s = 0 \)) and in the strong-confinement large-\(s \) limit, as expected for the ground state with zero angular momentum. By first-order perturbation theory we see from Eqs. (2) and (3) that the diamagnetic exciton energy shift for a zero-angular-momentum state is

\[\Delta E_{\text{eh}}^{(0)}(B) \approx \frac{e^2 B^2}{8\hbar c} \left(\frac{r_e^2}{m_e} + \frac{r_h^2}{m_h} \right), \]

where the angle brackets denote ground state expectation values. When \(s = 0 \) the electron and hole orbitals shrink due to strong Coulomb attraction, resulting in a weaker diamagnetic response. The diamagnetic response

![FIG. 4. Diamagnetic exciton energy shift \(\Delta E_{\text{eh}}^{(0)}(B) = E_{\text{eh}}^{(0)}(B) - E_{\text{eh}}^{(0)}(B = 0) \) of the excitonic ground state in a magnetic field \(B \), for interlayer excitons at \(d = 1.2 \text{nm} \) and \(s = 0.3 \text{nm} \). The circular and triangular dots connected by solid or dashed lines are numerical results from ED calculations, and the dotted curve shows the energy increase obtained from the \(s \to \infty \) limit \[15\] expression in which only the zero-point confinement energy is shifted.

![Graph showing how exciton ground state energy shifts in a magnetic field.](image)
of excitons can in principle be used as an experimental probe of the binding strength of the electrons and holes and therefore distinguish the case in which they localized at the same site from the case in which they are localized at different sites. In practice, however, this requires a very strong magnetic field because of the strong binding and large effective masses of electrons and holes in TMDs.

Next we study the optical absorption of the intralayer exciton states \((d = 0) \). In our model the current operator is given up to a constant factor by

\[
\hat{j} \sim \sum_{\tau} \int dr \left[e^\dagger(r) h^\dagger(r) \exp\left(\frac{i eBs}{2\hbar c} y\right) + h_\tau(r) e_\tau(r) \exp(-i eBs/2\hbar c y) \right],
\]

where \(e^\dagger \) and \(h^\dagger \) are electron and hole creation operators, \(\tau = \pm \) is the valley index, and the phase factors \(\exp(\pm i eBs/2\hbar c y) \) come from our gauge choice (see Appendix B for details). The matrix element for a transition from the vacuum state \(|\Psi_0\rangle \) with no electrons or holes to an exciton state \(|\Psi_{eh}\rangle \) (Eq. (14)) is proportional to the corresponding optical absorption rates:

\[
\langle \Psi_0 | j | \Psi_{eh}\rangle \sim \sum_{n_e,n_h} C_{n_e,n_h}^{(i)} \int dr \psi_{n_e}^{(e)}(r) \psi_{n_h}^{(h)}(r) e^{-i \frac{eBs}{\hbar c} y},
\]

where \(\psi_{n_e}^{(e)}(r) \) is the wavefunction of an electron in state \(n_e \), and similarly \(\psi_{n_h}^{(h)}(r) \) for holes. Then the absorption rate of state \(i \) is proportional to the dimensionless quantity

\[
A_{eh}^{(i)} = \left| \sum_{n_e,n_h} C_{n_e,n_h}^{(i)} \int dr \psi_{n_e}^{(e)}(r) \psi_{n_h}^{(h)}(r) e^{-i \frac{eBs}{\hbar c} y} \right|^2,
\]

which is, roughly speaking, the overlap of the electron and hole wavefunctions. The optical absorption strength of the ground state is calculated by numerical integration of the wavefunctions and shown in Fig. 5. The optical spectrum is a set of \(\delta \)-function peaks located at the energy eigenvalues of exciton states and with heights proportional to the corresponding optical absorption rates:

\[
A_{eh}(\omega) = \sum_i A_{eh}^{(i)} \delta(\hbar \omega - E_{eh}^{(i)} - E_g),
\]

where \(E_g \) is the single-particle gap between the conduction and valence bands.

We can obtain analytic expressions for the optical matrix elements in certain limiting cases. When \(s \gg L_e, L_h \) and confinement is strong the electron and hole are in the ground states of their confining potentials and their wavefunctions are

\[
\psi_0^{(a)}(r) = \frac{1}{\sqrt{\pi L_a}} e^{-r^2/2L_a^2},
\]

where \(a = e, h \) and the origin \(r = 0 \) is chosen at the bottom of the confining potential. The two-body wavefunction is approximately the product of \(\psi_0^{(e)} \) and \(\psi_0^{(h)} \).

![Figure 5](image_url)

FIG. 5. Optical absorption strength \(A_{eh}^{(0)} \) of intralayer excitons as a function of the separation between the electron and hole confining potential minima \(s \). The blue dots are the numerical results from ED calculations and the dotted curve is from the large-\(s \) approximation (24). Since the likely \(s \) is either 0 or \(a_M/\sqrt{3} \), based on symmetry considerations, and typical moiré periods are longer than 5 nm, a substantial reduction in oscillator strength is expected in the \(s \neq 0 \) case.

Then we can do the integral (21) and find

\[
A_{eh}^{(0)}(s) \approx \left(\frac{2L_e L_h}{L_e^2 + L_h^2} \right)^2 \exp \left[-\frac{s^2}{L_e^2 + L_h^2} \left(1 + \frac{L_e^2 L_h^2}{4L^2} \right) \right].
\]

The dotted curve in Fig. 5 shows that the above approximation is in good agreement with the numerical results at large \(s \).

For \(s = 0 \) and the weak-confinement limit, the wavefunction of the two-particle system can be separated into center-of-mass and relative motions

\[
\Psi_{eh}^{(0)}(r_e, r_h) \approx \psi_{cm}(R) \psi_{rel}(r),
\]

where \(R = (m_e r_e + m_h r_h)/M \) and \(r = r_e - r_h \) are the center-of-mass and relative coordinates. The center-of-mass motion is the ground state of the harmonic oscillator:

\[
\psi_{cm}(R) = \frac{1}{\sqrt{\pi L}} e^{-R^2/2L^2},
\]

where the confining length \(L = \sqrt{\hbar/M\omega} = 1.23 \text{ nm} \). The relative motion is the ground state of the 2D hydrogen atom

\[
\psi_{rel}(r) = \frac{1}{\sqrt{2\pi a_B^2}} e^{-2r/a_B^2}.
\]

With the wavefunction (25) and the current operator (19) we find

\[
\langle \Psi_0 | j | \Psi_{eh}^{(0)} \rangle = \int dR \psi_{eh}^{(0)}(R, R) \approx 4\sqrt{2L/a_B^2},
\]
and therefore
\[A_{eh}^{(0)}(0) = |\langle \Psi_0 | j | \Psi_{eh}^{(0)} \rangle|^2 \approx \frac{32L^2}{a_B^2} \approx 34. \quad (29) \]

This estimate is much larger than the result from ED calculation, as shown in Fig. 5. The difference can be understood as follows. Confinement adds a harmonic repulsive contribution to the relative motion which mixes the ground state of the 2D hydrogen atom \(27\) with higher energy states. Since the wavefunctions of higher-energy hydrogenic states have smaller values at \(r = 0\), the resulting optical absorption strength is reduced \(70\). For the parameters used in the calculations illustrated in Fig. 5, the confining potential is far from weak, a lot of high energy states come into play, and the discrepancy between the exact numerical results and the approximation of (29) becomes large.

IV. TRIONS

Next we study a system of one electron and two holes – a moiré-confined trion. The three-particle state must be antisymmetric with respect to exchange of the two holes. We work in a representation in which the orbital and valley parts of the two-hole states separate, and each is symmetric or antisymmetric with respect to the permutation.

The orbital parts of the basis states are \((n_h > n_l)\)
\[|n_e; n_1 n_2\rangle_s = \frac{1}{\sqrt{2}} |n_e\rangle_s (|n_1 n_2\rangle_h + |n_2 n_1\rangle_h), \quad (30) \]
\[|n_e; n_1 n_2\rangle_a = \frac{1}{\sqrt{2}} |n_e\rangle_a (|n_1 n_2\rangle_h - |n_2 n_1\rangle_h), \quad (31) \]
\[|n_e; n_1 n_2\rangle_s = |n_e\rangle_s |n_1 n_2\rangle_h, \quad (32) \]

where each \(n\) is shorthand for the two indices \((n_+, n_-)\) that distinguish two-dimensional oscillator single-particle states, the subscripts \(s\) and \(a\) stand for symmetric and antisymmetric states, and the kets with subscripts \(e\) and \(h\) are direct product states of electrons and holes without (anti)symmetrization. The valley parts of the basis states are
\[|\pm; + +\rangle_s = |\pm\rangle_e |+ +\rangle_h, \quad (33) \]
\[|\pm; --\rangle_s = |\pm\rangle_e |--\rangle_h, \quad (34) \]
\[|\pm; + --\rangle_s = \frac{1}{\sqrt{2}} |\pm\rangle_e (|--\rangle_h + |+ +\rangle_h), \quad (35) \]
\[|\pm; + --\rangle_a = \frac{1}{\sqrt{2}} |\pm\rangle_e (|--\rangle_h - |+ +\rangle_h), \quad (36) \]

where + and – stand for valley +\(K\) and –\(K\).

We are interested in the optical excitations of a state with a single hole to a trion one-electron-two-hole state. The initial hole is in the ground state \(n_h = 0\) (by which we mean \(n_{h+} = n_{h-} = 0\)), and we assume without loss of generality that it is in the –\(K\) valley:
\[|\Psi_h^{(0)}\rangle = |0\rangle_h |-\rangle_h. \quad (37) \]

In order for the optical matrix elements to be non-zero, the newly added electron and hole must be in the same valley. There are three possibilities: \(|+; + --\rangle_s, |+; + +\rangle_s\) and \(|-; --\rangle_s\). Correspondingly the three-particle state has three possible forms:

\[|\Psi^{(1,i)}_{ehh}\rangle = \sum_{n_e} \sum_{n_{h1} \geq n_{h2}} C^{(s,i)}_{n_e n_{h1} n_{h2}} |n_e; n_{h1} n_{h2}\rangle |+; + +\rangle_a, \quad (38) \]
\[|\Psi^{(2,i)}_{ehh}\rangle = \sum_{n_e} \sum_{n_{h1} > n_{h2}} C^{(a,i)}_{n_e n_{h1} n_{h2}} |n_e; n_{h1} n_{h2}\rangle |+; + --\rangle_s, \quad (39) \]
\[|\Psi^{(3,i)}_{ehh}\rangle = \sum_{n_e} \sum_{n_{h1} > n_{h2}} C^{(a,i)}_{n_e n_{h1} n_{h2}} |n_e; n_{h1} n_{h2}\rangle |-; --\rangle_s. \quad (40) \]

The energy of the system depends only on the orbital part of the state, so the second and third forms of the three-particle state (39) and (40) with antisymmetric orbital parts are exactly degenerate in energy. Exchange statistics suggests that the ground state takes the first form (38), since there is then no exclusion principle that forbids the two holes from occupying the same low-energy single-particle orbital \((n_{h1} = n_{h2} = 0\). This expectation is confirmed by our numerical results.

Using the current operator \([19\]), we find the optical absorption strength for intralayer trions
When the polarization of the incident light is random (or equivalently, when the valley polarization of the initial hole is random), there is equal probability that an electron-hole pair is created in the same or opposite valley as the initial hole. Therefore the optical absorption spectrum is

\[
A_{\text{ehh}}(\omega) = \frac{1}{2} \sum_{p=1}^{3} \sum_{i} A_{\text{ehh}}^{(p,i)} \delta(\omega - E_{\text{ehh}}^{(p,i)} - E_g)
\]

\[
= \frac{1}{2} \sum_{i} A_{\text{ehh}}^{(s,i)} \delta(\omega - E_{\text{ehh}}^{(s,i)} - E_g) + \frac{3}{2} \sum_{i} A_{\text{ehh}}^{(a,i)} \delta(\omega - E_{\text{ehh}}^{(a,i)} - E_g).
\]

\(A_{\text{ehh}}^{(s,i)}\) shows the ground-state trion energy \(E_{\text{ehh}}^{(0)}\) as a function of the electron-hole separation \(s\). Other parameters of the calculations are chosen to be the same as for the calculations of excitons in Sec. III. The dotted curve shows the large-\(s\) approximation in which the motion of the electron (holes) is not affected by the presence of the holes (electron) in the other potential well, so the ground state energy is

\[
E_{\text{ehh}}^{(0)}(s) \approx E_e^{(0)} + E_h^{(0)} - \frac{2e^2}{\epsilon \sqrt{s^2 + d^2}},
\]

where \(E_{\text{ehh}}^{(0)}\) is the ground state energy of two holes in the same quantum dot. A similar ED calculation with only holes present yields \(E_{\text{hh}}^{(0)} = 260\text{meV}\) for the parameters of Fig. 6. As shown in Fig. 6 the approximation (45) is in good agreement with the numerical results for \(s \lesssim L_e, L_h\).

Fig. 7 shows the trion binding energy, defined as

\[
E_{\text{tb}} = E_{\text{eh}}^{(0)} + E_h^{(0)} - E_{\text{ehh}}^{(0)},
\]

as a function of \(s\). At small \(s\), an extra hole binds with the electron-hole pair in such a way as to lower the energy. At large \(s\), the repulsion between the two holes dominates and the energy increases when an extra hole is added to the system. The crossover from a bound trion to an unbound trion takes place between 2 to 3 nm for an intralayer trion, and around 1 nm for an interlayer trion at interlayer distance \(d = 1\text{ nm}\). An interlayer trion at \(d = 2\text{ nm}\) is always unbound even for \(s = 0\).
an approximation that is valid when the confinement of exciton and trion final states. We have modeled the energy because anharmonic corrections become important for trions than that of an intralayer exciton. This can be qualitatively understood by considering the $m_e \to \infty$ limit at $s = 0$ for which the electron stays at the center of its quantum dot while the two holes move around it. The Coulomb repulsion between the two holes pushes them away from the electron into higher-energy states, so the overlap between the electron and hole wavefunctions, and therefore the optical absorption strength, decreases. For large $s \gg L_e, L_h$, the optical absorption strength is small and can be calculated from Eq. (41) with

$$C_{n_h, n_k}(0, s, 0) = \delta_{n_e, 0} C_{n_h, n_k}^{(s, 0)},$$

where $C_{n_h, n_k}^{(s, 0)}$ (with $n_h > n_k$) are the expansion coefficients of the two-hole ground state in the symmetric two-hole basis. We notice from the ED calculation that the two-hole ground state comes predominantly from the single-particle ground state $|00\rangle_s$ and the lowest two excited states with zero total angular momentum $|11, 00\rangle_s$ and $|10, 01\rangle_s$:

$$|\Psi_{hh}(s)\rangle \approx C_0|00, 00\rangle_s + C_1|11, 00\rangle_s + C_2|10, 01\rangle_s,$$ (48)

with $C_0 \approx 0.82$ and $C_1 = C_2 \approx 0.40$. Then from Eq. (41) we find an analytic expression for the optical absorption strength in the large-s limit:

$$A_{ehh}^{(0)}(s) \approx C_0 - C_1 \frac{L_e^2 - L_h^2}{\sqrt{2} (L_e^2 + L_h^2)} \left(1 - \frac{L_e^2}{4L_B^2}\right) \left(\frac{L_h^2 s^2}{L_e^2 + L_h^2}\right)^{1/2} \exp \left[-\frac{s^2}{L_e^2 + L_h^2} \left(1 + \frac{L_e^2 L_h^2}{4L_B^2}\right)\right].$$ (49)

This approximation is in good agreement with the numerical results at $s \geq 3$ nm as shown by the dotted curve in Fig. 8.

V. SUMMARY AND DISCUSSION

In this article we have numerically calculated the energies of exciton and trion states in moiré superlattices, and the matrix elements for interband absorption processes with exciton and trion final states. We have modeled the moiré superlattice by harmonic confinement potentials – an approximation that is valid when the confinement oscillator lengths are small compared to the moiré lattice constant. Our calculations are similar to earlier ones [68-71] that used harmonic confinement potentials to model quantum dots in semiconductor quantum wells, but differ because of the relevance of the TMD valley degree of freedom, and by the possibility in the moiré superlattice case that electrons and holes are localized at different lattice sites.

The relative positions of electron and hole confinement locations is very important for the optical properties of moiré superlattices. As illustrated in Fig. 1 the two most likely possibilities are that the confinement locations are at identical positions in the moiré unit cell, or that they are separated by a large fraction of the moiré lattice constant. It is not yet known whether one circumstance or the other is always realized, or whether this important distinction is interface-dependent. A recent experimental and computational study [83] of WSe$_2$/WSe$_2$ heterostructures suggests that some of the optical absorption peaks...
come from excitons and trions in which the electrons and holes are confined at different lateral positions in the 2D plane, providing an example of the latter case. More experimental studies are needed to investigate how this property depends on the material platform. Our calculations show that the two cases should in principle be distinguishable experimentally, since the rotational symmetries that apply in the common-confinement-location case, lead to a smaller number of very strong absorption peaks. In the distinct-confinement-location case, the number of exciton and trion absorption peaks proliferates as angular-momentum-conservation selection rules are relaxed, but the overall absorption strength is still weakened due to electron-hole confinement. The situation is more complicated in realistic TMD materials due to the possible coexistence and mixing of both types of excitonic modes [53]. Nevertheless, we expect that our theory provides a useful guide to understand the nature of different excitonic peaks. Because the Bohr radius length scale is so short in TMD two-dimensional semiconductors, the influence of magnetic fields on observable properties is weak at moderate magnetic field strengths. In fact the results of our illustrative calculations at zero magnetic field are almost identical to the results at $B \sim 10$ T. Magnetic fields are potentially very useful probes in sorting out the properties of electron-hole systems formed at particular interfaces, but will require extremely strong magnetic fields on the 100 T scale.

A full theory of the optical absorption spectrum of a doped moiré system is complicated by importance of correlations among the doped charges present in the initial state and correlations between electrons, holes, and trions located in different periods of the moiré superlattice [53]. As a first approximation, we ignore these complications and calculate the optical absorption spectra of excitons and trions in our quantum dot model. In Fig. 9 we show the optical spectra of excitons (22) and trions (44) at a large $s = 3$ nm (a) and a small $s = 1$ nm (b), and compare the results at $B = 0$ and $B = 10$ T. The band gap E_g is set to zero in this figure since its only effect is a constant shift along the ω-axis. The δ-function is replaced with a Lorentzian function with height 1 and width 0.2 meV. At $s = 1$ nm the electrons and holes are strongly bound and the two- or three-body eigenstates of the system have approximate rotational symmetry, so most of these states have optical absorption that is supressed by angular momentum conservation [50, 68, 80]. In contrast, at $s = 3$ nm the electrons and holes are strongly localized in the harmonic potentials, and Coulomb interaction distorts the localized wavefunctions weakly. In this case the selection rules associated with angular momentum conservation are not relevant because rotational symmetry is strongly broken. The absorption peaks in Fig. 9(a) are therefore much more closely spaced than in Fig. 9(b). The peaks for states with nonzero angular momenta appear in the strong-confinement limit and are split in a magnetic field, whereas the level splittings in Fig. 9 are present even in valley-selected absorption measurements, because they are purely orbital effects. The results do demonstrate that the absorption spectrum of moiré superlattices is strongly sensitive to electrical modulation of the carrier density.

A more accurate description of the optical spectra of moiré materials would take account of correlations between electrons and holes in different periods of the moiré pattern, but is beyond the scope of the present work. These correlations will entangle photons emitted by nearby excitons, and promise the possibility of realizing unusual single and few photon light emitters. One of the important contributions to inter-site exciton hopping processes come from the intervalley exchange interactions [72, 75], which in the weak-modulation limit lead to topologically non-trivial exciton bands [39] in the presence of a finite Zeeman field. We expect that this property will survive at strong modulation. Our work has focused on excitons and trions, but our method also applies to more complex systems like biexcitons. Because the moiré confinement length is relatively small, the transition energy between excitons and biexcitons localized at a single moiré site is expected to be large. The method can also be extended to study a combination of localized and itinerant particles, which may help interpret recent experimental work [20, 84] that used excitons in a TMD monolayer as an optical sensor of correlated insulating states in moiré materials. We anticipate that close interaction between theory and experiment will be necessary to sort out all the richness of the optical properties of moiré superlattices.

ACKNOWLEDGMENTS

Y.Z. and A.H.M. acknowledge many helpful conversations with Hui Deng and Feng Wang. This work was supported by Army Research Office (ARO) Grant # W911NF-17-1-0312 (MURI).
FIG. 9. The optical absorption spectra of excitons \((A_{eh})\), upper panels) and trions \((A_{ehh})\), lower panels) at (a) \(s = 3\) nm; (b) \(s = 1\) nm. The \(\delta\)-functions in Eqs. (22) and (44) are replaced with Lorentzian functions with height 1 and width 0.2 meV.

Appendix A: Derivation of Coulomb matrix elements in the harmonic oscillator basis

1. Single-particle basis

We consider an electron or a hole moving in a two-dimensional quantum dot, described by the Hamiltonian (in cgs units)

\[
H = \frac{1}{2m}(p + eA)^{2} + \frac{1}{2}m\omega^{2}r^{2},
\]

where the upper and lower signs are for electrons and holes respectively. We work in the symmetric gauge

\[
A_x = -By/2, \quad A_y = Bx/2.
\]

To simplify notations we define the dimensionless quantities

\[
\tilde{r} = r/l_B, \quad \tilde{\omega} = \omega/\omega_c, \quad \tilde{H} = H/\hbar\omega_c,
\]

where the magnetic length \(l_B = \sqrt{\hbar c/eB}\) and the cyclotron frequency \(\omega_c = eB/mc\). The dimensionless Hamiltonian can then be written as

\[
\tilde{H} = \frac{1}{2}(-i\partial_{\tilde{z}} + \frac{\tilde{y}}{2})^{2} + \frac{1}{2}(-i\partial_{\tilde{y}} + \frac{\tilde{x}}{2})^{2} + \frac{1}{2}\tilde{\omega}^{2}(\tilde{x}^{2} + \tilde{y}^{2}).
\]

Now we transform to the complex coordinates

\[
z = x + iy, \quad z^* = x - iy,
\]

and their dimensionless counterparts \(\tilde{z}, \tilde{z}^*\) defined in an obvious way. Then after some algebra the Hamiltonian can be written as

\[
\tilde{H} = -2\partial_{\tilde{z}}\partial_{\tilde{z}} + (\frac{1}{8} + \frac{1}{2}\tilde{\omega}^{2})\tilde{z}^{*}\tilde{z} + \frac{1}{2}(\tilde{z}\partial_{\tilde{z}} - \tilde{z}^{*}\partial_{\tilde{z}}^{*}).
\]

Now we introduce the operators

\[
b_+ = \frac{1}{\sqrt{2}}(\frac{\tilde{z}^*}{2} + 2\partial_{\tilde{z}}), \quad b_{+}^{\dagger} = \frac{1}{\sqrt{2}}(\frac{\tilde{z}}{2} - 2\partial_{\tilde{z}}^{*}),
\]

\[
b_- = \frac{1}{\sqrt{2}}(\frac{\tilde{z}}{2} + 2\partial_{\tilde{z}}^{*}), \quad b_{-}^{\dagger} = \frac{1}{\sqrt{2}}(\frac{\tilde{z}^*}{2} - 2\partial_{\tilde{z}}).
\]
which satisfy the usual commutation relations of raising and lowering ladder operators. The Hamiltonian can be written in terms of these operators as

$$\hat{H} = b_+^\dagger b_+ + \frac{1}{2} + \omega^2 (b_+^\dagger + b_-)(b_+ + b_-),$$ \hspace{1cm} (A8)

where as before the upper and lower signs (in the subscript) are for electrons and holes respectively. The Hamiltonian is quadratic in the ladder operators, and can be diagonalized by a Bogoliubov transformation

$$a_+ = b_+ \cosh \frac{\eta}{2} + b_- \sinh \frac{\eta}{2},$$ \hspace{1cm} (A9)

$$a_- = b_+ \cosh \frac{\eta}{2} + b_- \sinh \frac{\eta}{2},$$

where

$$\tanh \eta = \frac{2\omega^2}{2\omega^2 + 1} = \frac{2\omega^2}{2\omega^2 + \omega_c^2}.$$ \hspace{1cm} (A10)

The Hamiltonian then takes the diagonal form

$$\hat{H} = \hat{\Omega}_+(a_+^\dagger a_+ + \frac{1}{2}) + \hat{\Omega}_-(a_-^\dagger a_- + \frac{1}{2}),$$ \hspace{1cm} (A11)

where

$$\hat{\Omega}_\pm = \frac{1}{2}(\sqrt{1 + 4\omega^2} \pm 1).$$ \hspace{1cm} (A12)

Restoring the physical dimensions, we have the diagonalized Hamiltonian

$$H = \hbar \Omega_+(a_+^\dagger a_+ + \frac{1}{2}) + \hbar \Omega_-(a_-^\dagger a_- + \frac{1}{2}),$$ \hspace{1cm} (A13)

with

$$\Omega_\pm = \sqrt{\omega^2 + \left(\frac{\omega_c}{2}\right)^2 \pm \frac{\omega_c}{2}} = \Omega \pm \frac{\omega_c}{2}.$$ \hspace{1cm} (A14)

The eigenstates of this Hamiltonian are

$$|n_+ n_-\rangle = (a_+^\dagger)^n_+ (a_-^\dagger)^n_- |0\rangle,$$ \hspace{1cm} (A15)

with energy

$$E_{n_+ n_-} = (n_+ + \frac{1}{2})\hbar \Omega_+ + (n_- + \frac{1}{2})\hbar \Omega_-.$$ \hspace{1cm} (A16)

For later use, the complex coordinate z can be expressed in terms of the ladder operators as

$$z = \sqrt{2l_B}(b_+^\dagger + b_-) = \sqrt{2l_B}e^{-\eta/2}(a_+^\dagger + a_-) = L(a_+^\dagger + a_-),$$ \hspace{1cm} (A17)

where $L = \sqrt{2l_B}e^{-\eta/2} = \sqrt{\hbar/m\Omega}$ is the total confining length. The normalized real-space wavefunction of the energy eigenstates is

$$\psi_{n_+ n_-}(r, \theta) = \left[\frac{n!}{(n + |l|)!} \frac{1}{\pi} \right]^{1/2} \frac{1}{L} \left(\frac{r}{L}\right)^{|l|} e^{-r^2/2L^2} L_n^{|l|}(r^2/L^2) \cdot e^{il\theta},$$ \hspace{1cm} (A18)

where $n = \min(n_+, n_-)$, $l = \pm(n_+ - n_-)$, $\Omega = \sqrt{\omega^2 + (\omega_c/2)^2}$, and $L_n^{|l|}$ is the associated Laguerre polynomial.
2. Coulomb matrix elements

Now we calculate the Coulomb matrix elements in the above basis (generalized to multiple particles, see Eq. (8)). We start with the most complicated one, \(V_{eh} \) (Eq. (6)), the electron-hole interaction. The calculations for \(V_{ee} \) and \(V_{hh} \) are similar and simpler. We first write \(V_{eh} \) in Fourier form (consider only one electron and one hole for simplicity):

\[
V_{eh} = -\frac{2\pi e^2}{\epsilon} \int \frac{d^2q}{(2\pi)^2} \frac{1}{|q|} e^{-|q|d_{e}d_{h}e^{i(q^z z_e+q^z z_h)/2}e^{-i(q^z z_e+q^z z_h)/2}},
\]

(A19)

where \(q = q_x + i q_y \) is a complex integration variable. By Eq. (A17) we can write the complex coordinates \(\sqrt{n} \) in terms of ladder operators \(a_\pm, a_\pm^\dagger \), then the matrix elements of \(V_{eh} \) can be written as

\[
\langle n'_e+n'_h, n'_h|V_{eh}|n_e+n_e, n_h+h_h \rangle = -\frac{2\pi e^2}{\epsilon} \int \frac{d^2q}{(2\pi)^2} \frac{1}{|q|} e^{-|q|d_{e}d_{h}e^{iL_e(q^a_{a}^+ +qa_{a})}|n_e} \times \langle n'_e|e^{iL_e(q^a_{a}^+ +qa_{a})}|n_e \rangle \langle n'_h|e^{-iL_h(qa_{a}^+ +qa_{a})}|n_h \rangle \langle n'_h|e^{-iL_h(qa_{a}^+ +qa_{a})}|n_h \rangle,
\]

(A20)

Then we need to evaluate matrix elements of the form \(\langle n'|e^{i(fa^+ f^* a)}|n \rangle \). To this end we make use of the operator identity

\[
e^{i(fa^+ f^* a)} = e^{-|f|^2/2}e^{if a^+}e^{i f^* a},
\]

(A21)

which then leads to

\[
\langle n'|e^{i(fa^+ f^* a)}|n \rangle = e^{-|f|^2/2} \langle n'|e^{if a^+}e^{i f^* a}|n \rangle
\]

\[
= e^{-|f|^2/2} \sum_{k'=0}^{n'} \sum_{k=0}^{n} \frac{(i f)^k (if^*)^k}{k!} \langle n'| (a^+)k (a^k)|n \rangle
\]

\[
= e^{-|f|^2/2} (ie^{i\varphi})^{n' - n} \langle n'|n \rangle^{1/2} \sum_{k=0}^{\min(n',n)} (-1)^{n-k}|f|^{n'-n-2k} \frac{1}{k!(n'-k)!(n-k)!},
\]

(A22)

where \(\varphi \) is the argument of the complex number \(f = |f|e^{i\varphi} \). With this formula we go back to Eq. (A20) and get

\[
\langle n'_e+n'_e, n'_h, n'_h|V_{eh}|n_e+n_e, n_h+n_h \rangle = -\sqrt{\beta \frac{e^2}{\epsilon} \frac{1}{c_B} \left(\prod_{\alpha \lambda} n_{\alpha \lambda}! \prod_{\alpha \lambda} n_{\alpha \lambda}! \right)^{1/2} (-1)^n_{e+}n_e+n_h+n_h \times \sum_{k_{\alpha \lambda}=0}^{n_{\alpha \lambda}=0} \left(\prod_{\alpha \lambda} (-1)^{k_{\alpha \lambda}} (\frac{\beta_{\alpha \lambda}}{\beta_{\alpha \lambda}})^{1/2} (n_{\alpha \lambda}^{+} n_{\alpha \lambda}) - k_{\alpha \lambda} \right)^{1/2} (n_{\alpha \lambda}^{+} n_{\alpha \lambda})! (n_{\alpha \lambda} n_{\alpha \lambda}-k_{\alpha \lambda})! \right) . I,
\]

(A23)

where the summation indices \(\alpha \in \{ e, h \} \) and \(\lambda = \pm \) (the summation sign really means four summations), and we defined \(\beta_{\alpha} = e^{\pi \sigma} = \sqrt{1 + (2\omega_{,\alpha}/\omega_{\alpha})^2} \) and \(\beta_{ch} = (\beta_{e}^{-1} + \beta_{h}^{-1})^{-1} \), and the \((n', n, k) \)-dependent integral

\[
I = \int_0^{\infty} dq \int_0^{\infty} q^2 dq e^{-q^2} - \frac{1}{2} e^{-q} e^{i\tilde{q} \tilde{d}} \int_0^{2\pi} d\phi \int_0^{2\pi} \int_0^{2\pi} (ie^{i\phi})^{l'-l} e^{i\tilde{s} \cos \phi} ,
\]

(A24)

with the dimensionless variables

\[
\tilde{q} = \frac{\sqrt{2}}{\sqrt{\beta_{ch}} |q|}, \quad \tilde{d} = \frac{\sqrt{2} \beta_{ch}}{l_B} d, \quad \tilde{s} = \frac{\sqrt{2} \beta_{ch}}{l_B} s,
\]

(A25)

the index

\[
p = \sum_{\alpha \lambda} \left(\frac{n_{\alpha \lambda}^{+} n_{\alpha \lambda}}{2} - k_{\alpha \lambda} \right)
\]

(A26)

and the total angular momentum quantum numbers

\[
l = n_{e+} - n_{e-} + n_{h+} + n_{h-}, \quad l' = n_{e+} - n_{e-} + n_{h+} + n_{h-}.
\]

(A27)
The integral \(\int \) can be simplified in special cases. When \(s = 0 \), the angular integral is simply \(\delta_{\ell l} \). When \(d \) is also zero, the radial integral yields a gamma function and the result is

\[
I = \delta_{\ell l} \cdot \Gamma(p + \frac{1}{2}). \quad (A28)
\]

When \(s = 0 \) and \(d \neq 0 \), the radial integral yields the product of a gamma function and a (Tricomi’s) confluent hypergeometric function

\[
I = \delta_{\ell l} \cdot 4^{-p} \Gamma(2p + 1) U(p + \frac{1}{2}, \frac{1}{2}, \frac{d^2}{4}). \quad (A29)
\]

However, in the general case where \(s \neq 0 \), only the radial part can be integrated in closed form and the angular integral remains:

\[
I = 4^{-p} \Gamma(2p + 1) \int_0^{2\pi} \frac{d\phi}{2\pi} (ie^{i\phi})^{l-l'} U(p + \frac{1}{2}, \frac{1}{2}, \frac{d^2 - i\delta \cos \phi}{4}). \quad (A30)
\]

In practical calculations the integral has to be done numerically. The matrix elements of \(V_{ee} \) and \(V_{hh} \) can be calculated in the same way, although the result looks simpler since \(d = s = 0 \) for the same type of particles. The result is (without antisymmetrization)

\[
\langle n_1', n_1', n_2', n_2' | V_{\alpha\alpha} | n_1, n_1, n_2, n_2 \rangle = \frac{\sqrt{\beta}}{2} e^{2 \int_B} \left(\frac{\prod n_{i\lambda} n_{i\lambda}!}{(1-i\lambda)'} \right)^{1/2} (-1)^{n_1'+n_1+n_2'+n_2-\delta_{\ell l}}
\times \sum_{k_{i\lambda} = 0}^{\min(n_{i\lambda}'))} \left(\frac{\prod_{i\lambda} (1-i\lambda)!}{(n_{i\lambda}-k_{i\lambda})!(n_{i\lambda}'-k_{i\lambda})!} \right) \cdot \Gamma(p + \frac{1}{2}), \quad (A31)
\]

where \(\alpha = e \) or \(h \), the summation indices \(i = 1, 2 \) is the particle label (the \(e/h \) label is omitted), \(\lambda = \pm \), and we defined

\[
p = \sum_{i\lambda} \left(\frac{n_{i\lambda}' + n_{i\lambda}}{2} - k_{i\lambda} \right), \quad (A32)
\]

\[
l = n_{1+}-n_{1-}+n_{2+}-n_{2-}, \quad l' = n_{1'+}-n_{1'-}+n_{2'+}-n_{2'}. \quad (A33)
\]

Appendix B: The current operator

In the two-band model the current operator is (naively) proportional to \(\sum_k (e^+_k h^+_{-k} + h^-_k e^+_k) \), which in real space takes the form

\[
\dot{j} \sim \int dr [e^+_r(r) h^+_r(r) + h(r) e_r(r)], \quad (B1)
\]

where \(e \) and \(h \) are annihilation operators of electron and hole states. Note however that in writing Eqs. \(\frac{2}{8} \) and \(\frac{3}{8} \) with \(A_\alpha(r_\alpha) = \frac{1}{2} B \times r_\alpha \) for both \(\alpha = e \) and \(h \), and with \(r_e \) and \(r_h \) measured from different origins (see Fig. \(\frac{2}{8} \)), we have implicitly performed a gauge transformation

\[
A_e(r_e) \rightarrow A_e(r_e) - \frac{B_s}{2} \hat{y}, \quad \psi([r_e], [r_h]) \rightarrow \psi([r_e], [r_h]) \exp \left(i \frac{eB_s}{2\hbar c} \sum_i y_{ei} \right), \quad (B2)
\]

compared to the gauge where \(A(r) = \frac{1}{2} B \times r \) for both electrons and holes, with the origin set at the confining potential minimum for holes. After the gauge transformation the field operator \(e(r) \) gains an \(r \)-dependent phase factor, so in this gauge the current operator becomes

\[
\dot{j} \sim \int dr \left[e^+_r(r) h^+_r(r) \exp \left(\frac{i eB_s}{2\hbar c} y \right) + h(r) e(r) \exp \left(-\frac{i eB_s}{2\hbar c} y \right) \right]. \quad (B3)
\]
The energies and optical absorption strengths are obtained by numerically diagonalizing the Hamiltonian as a matrix in the harmonic oscillator basis, which has to be cut off under some energy scale. The number of basis states used in the ED calculations are shown in Table I. With the exception of the $s = 0$ case, the number of basis states is chosen such that the ground-state energy is accurate within 1 meV (in fact the error is much smaller for large s), and the optical absorption strength (for $d = 0$) is accurate within 1%. In the magnetic harmonic oscillator basis, convergence is faster for larger s. For $s = 0$, the ED calculations suffer from poor convergence with the number of basis states, as already noted in Ref. [69] where the exciton problem is solved instead in the center-of-mass and relative coordinates. However, since we are mostly interested in the $s \neq 0$ case, and for its easier generalization to more complicated systems like trions and biexcitons, we solve the $s = 0$ case also in the harmonic oscillator basis, but with a huge number of basis states. The calculation is manageable when we take advantage of the rotational symmetry of the system and only diagonalize the block with total angular momentum zero (which contains the ground state and is optically active).

Appendix C: Basis cutoff

The energies and optical absorption strengths are obtained by numerically diagonalizing the Hamiltonian as a matrix in the harmonic oscillator basis, which has to be cut off under some energy scale. The number of basis states used in the ED calculations are shown in Table I. With the exception of the $s = 0$ case, the number of basis states is chosen such that the ground-state energy is accurate within 1 meV (in fact the error is much smaller for large s), and the optical absorption strength (for $d = 0$) is accurate within 1%. In the magnetic harmonic oscillator basis, convergence is faster for larger s. For $s = 0$, the ED calculations suffer from poor convergence with the number of basis states, as already noted in Ref. [69] where the exciton problem is solved instead in the center-of-mass and relative coordinates. However, since we are mostly interested in the $s \neq 0$ case, and for its easier generalization to more complicated systems like trions and biexcitons, we solve the $s = 0$ case also in the harmonic oscillator basis, but with a huge number of basis states. The calculation is manageable when we take advantage of the rotational symmetry of the system and only diagonalize the block with total angular momentum zero (which contains the ground state and is optically active).

s (nm)	0	1	2	3	4	5	6	7	8
N_{t0}	150000	3000	3000	2000	2000	500	200	100	100
N_{t1}	500000	10000	8000	8000	8000	8000	4000	4000	4000
N_{t2}	200000	20000	20000	10000	10000	500	200	100	100
N_{t3}	10000	1000	500	500	500	500	500	500	500
N_{t4}	1000	100	100	100	100	100	100	100	100

TABLE I. Number of basis states for the ED calculations for excitons (N_{t0}, N_{t1}, N_{t2} for $d = 0, 1, 2$ nm) and trions (N_{t0}, N_{t1}, N_{t2}) at different in-plane electron-hole separations s.
with a twist, Nature Materials 19, 1265 (2020).
[17] L. Balents, C. R. Dean, D. K. Efetov, and A. F. Young, Superconductivity and strong correlations in moiré flat bands, Nature Physics 16, 725 (2020).
[18] U. Zondiner, A. Rozen, D. Rodan-Legrain, Y. Cao, R. Queiroz, T. Taniguchi, K. Watanabe, Y. Oreg, F. von Oppen, A. Stern, et al., Cascade of phase transitions and dirac re-awakens in magic-angle graphene, Nature 582, 203 (2020).
[19] D. Wong, K. P. Nuckolls, M. Oh, B. Lian, Y. Xie, S. Jeon, K. Watanabe, T. Taniguchi, B. A. Bernevig, and A. Yazdani, Cascade of electronic transitions in magic-angle twisted bilayer graphene, Nature 582, 198 (2020).
[20] N. Bultinck, E. Khalaf, S. Liu, S. Chattejee, A. Vishwanath, and M. P. Zaletel, Ground state and hidden symmetry of magic-angle graphene at even integer filling, Physical Review X 10, 031034 (2020).
[21] J. M. Park, Y. Cao, K. Watanabe, T. Taniguchi, and P. Jarillo-Herrero, Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene, Nature 590, 249 (2021).
[22] E. Khalaf, S. Chattejee, N. Bultinck, M. P. Zaletel, and A. Vishwanath, Charged skyrmions and topological origin of superconductivity in magic-angle graphene, Science advances 7, eabf5299 (2021).
[23] F. Wu, T. Lovorn, E. Tutuc, and A. H. MacDonald, Hubbard model physics in transition metal dichalcogenide moiré bands, Physical review letters 121, 026402 (2018).
[24] E. C. Regan, D. Wang, C. Jin, M. I. B. Utama, B. Gao, X. Wei, S. Zhao, W. Zhao, Z. Zhang, K. Yamakita, M. Klima, E. Y. Paik, Y. Zeng, L. Zhang, et al., Mott and generalized Wigner crystal states in WSe₂/WS₂ moiré superlattices, Nature 579, 359 (2020).
[25] Y. Tang, L. Li, T. Li, Y. Xu, S. Liu, K. Bar- mak, K. Watanabe, T. Taniguchi, A. H. MacDonald, J. Shan, et al., Simulation of Hubbard model physics in WSe₂/WS₂ moiré superlattices, Nature 579, 353 (2020).
[26] Y. Xu, S. Liu, D. A. Rhodes, K. Watanabe, T. Taniguchi, J. Hone, V. Elser, K. F. Mak, and J. Shan, Correlated insulating states at fractional fillings of moiré superlattices, Nature 587, 214 (2020).
[27] L. Wang, E.-M. Shih, A. Ghiotto, L. Xian, D. A. Rhodes, C. Tan, M. Claassen, D. M. Kennes, Y. Bai, B. Kim, et al., Correlated electronic phases in twisted bilayer metal dichalcogenides, Nature materials 19, 861 (2020).
[28] D. M. Kennes, M. Claassen, L. Xian, A. Georges, A. J. Millis, J. Hone, C. R. Dean, D. Basov, A. N. Pasupathy, and A. Rubio, Moiré heterostructures as a condensed-matter quantum simulator, Nature Physics 17, 155 (2021).
[29] C. Jin, Z. Tao, T. Li, Y. Xu, Y. Tang, J. Zhu, S. Liu, K. Watanabe, T. Taniguchi, J. C. Hone, et al., Stripe phases in WSe₂/WS₂ moiré superlattices, Nature Materials , 1 (2021).
[30] X. Huang, T. Wang, S. Miao, C. Wang, Z. Li, Z. Lian, T. Taniguchi, K. Watanabe, S. Okamoto, D. Xiao, et al., Correlated insulating states at fractional fillings of the WSe₂/WS₂ moiré lattice, Nature Physics 17, 715 (2021).
[31] Z. Chu, E. C. Regan, X. Ma, D. Wang, Z. Xu, M. I. B. Utama, K. Yamakita, M. Blei, K. Watanabe, T. Taniguchi, et al., Nanoscale conductivity imaging of correlated electronic states in WSe₂/WS₂ moiré superlattices, Physical review letters 125, 186803 (2020).
[32] H. Pan, F. Wu, and S. D. Sarma, Quantum phase dia- gram of a Moiré-Hubbard model, Physical Review B 102, 201104 (2020).
[33] N. Morales-Durán, A. H. MacDonald, and P. Potasz, Metal-insulator transition in transition metal dichalcogenide heterobilayer moiré superlattices, Physical Review B 103, L241110 (2021).
[34] Y. Zhang, T. Liu, and L. Fu, Electronic structures, charge transfer, and charge order in twisted transition metal dichalcogenide bilayers, Physical Review B 103, 155142 (2021).
[35] Z. Bi and L. Fu, Excitonic density wave and spin-valley superfluid in bilayer transition metal dichalcogenide, Nature communications 12, 1 (2021).
[36] H. Li, S. Li, E. C. Regan, D. Wang, W. Zhao, S. Kahn, K. Yamakata, M. Blei, T. Taniguchi, K. Watanabe, et al., Imaging generalized wigner crystal states in a WSe₂/WS₂ moiré superlattice, arXiv preprint arXiv:2106.10599 (2021).
[37] M. Angeli and A. H. MacDonald, Γ valley transition metal dichalcogenide moiré bands, Proceedings of the National Academy of Sciences 118 (2021).
[38] E. C. Regan, D. Wang, E. Y. Paik, Y. Zeng, L. Zhang, J. Zhu, A. H. MacDonald, H. Deng, and F. Wang, Emerging exciton physics in transition metal dichalcogenide heterobilayers, Nature Reviews Materials , 1 (2022).
[39] F. Wu, T. Lovorn, and A. H. MacDonald, Topological exciton bands in moiré heterojunctions, Physical review letters 118, 147401 (2017).
[40] F. Wu, T. Lovorn, and A. MacDonald, Theory of optical absorption by interlayer excitons in transition metal dichalcogenide heterobilayers, Physical Review B 97, 035306 (2018).
[41] H. Yu, G.-B. Liu, J. Tang, X. Xu, and W. Yao, Moiré excitons: From programmable quantum emitter arrays to spin-orbit–coupled artificial lattices, Science advances 3, e1701696 (2017).
[42] K. Tran, G. Moody, F. Wu, X. Lu, J. Choi, K. Kim, A. Rai, D. A. Sanchez, J. Quan, A. Singh, et al., Evidence for moiré excitons in van der Waals heterostructures, Nature 567, 71 (2019).
[43] C. Jin, E. C. Regan, A. Yan, M. I. B. Utama, D. Wang, S. Zhao, Y. Qin, S. Yang, Z. Zheng, S. Shi, et al., Observation of moiré excitons in WSe₂/WS₂ heterostructure superlattices, Nature 567, 76 (2019).
[44] K. L. Seyler, P. Rivera, H. Yu, N. P. Wilson, E. L. Ray, D. G. Mandrus, J. Yan, W. Yao, and X. Xu, Signatures of moiré-trapped valley excitons in MoSe₂/WS₂ heterobilayers, Nature 567, 66 (2019).
[45] E. M. Alexeev, D. A. Ruiz-Tijerina, M. Danovich, M. J. Hamer, D. J. Terry, P. K. Nayak, S. Ahn, S. Pak, J. Lee, J. I. Sohn, et al., Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures, Nature 567, 81 (2019).
[46] N. Zhang, A. Surrente, M. Baranowski, D. K. Maude, P. Gant, A. Castellanos-Gomez, and P. Plochocka, Moiré intralayer excitons in a MoSe₂/MoS₂ heterostructure, Nano letters 18, 7651 (2018).
[47] Y. Shimazaki, I. Schwartz, K. Watanabe, T. Taniguchi, M. Kroner, and A. Imamoğlu, Strongly correlated electrons and hybrid excitons in a moiré heterostructure, Nature 580, 472 (2020).
[48] L. Zhang, Z. Zhang, F. Wu, D. Wang, R. Gogna, S. Hou, K. Watanabe, T. Taniguchi, K. Kulkarni, T. Kuo, et al., Twist-angle dependence of moiré excitons in WS₂/MoSe₂
heterobilayers, Nature communications 11, 1 (2020).

[49] H. Baek, M. Brotons-Gisbert, Z. Koong, A. Campbell, M. Rambach, K. Watanabe, T. Taniguchi, and B. D. Gerardot, Highly energy-tunable quantum light from moiré-trapped excitons, Science advances 6, eaau8526 (2020).

[50] D. A. Ruiz-Tijerina, I. Soltero, and F. Mireles, Theory of moiré localized excitons in transition metal dichalcogenide heterobilayers, Physical Review B 102, 195403 (2020).

[51] E. Liu, E. Barré, J. van Baren, T. Taniguchi, K. Watanabe, Y.-T. Cui, N. M. Gabor, T. F. Heinz, Y.-C. Chang, et al., Signatures of moiré trions in WSe₂/MoSe₂ heterobilayers, Nature 594, 46 (2021).

[52] M. Brotons-Gisbert, H. Baek, A. Campbell, K. Watanabe, T. Taniguchi, and B. D. Gerardot, Moiré-trapped interlayer trions in a charge-tunable WSe₂/MoSe₂ heterobilayer, arXiv preprint arXiv:2101.07747 (2021).

[53] H. Baek, M. Brotons-Gisbert, A. Campbell, K. Watanabe, T. Taniguchi, and B. D. Gerardot, Optical read-out of Coulomb staircases in a moiré super-lattice via trapped interlayer trions, arXiv preprint arXiv:2102.01358 (2021).

[54] S. Brem, C. Linderilv, P. Erhart, and E. Malic, Tunable phases of moiré excitons in van der Waals heterostructures, Nano letters 20, 8534 (2020).

[55] S. Shabani, D. Halbertal, W. Wu, M. Chen, S. Liu, J. Hone, W. Yao, D. N. Basov, X. Zhu, and A. N. Pasupathy, Deep moiré potentials in twisted transition metal dichalcogenide bilayers, Nature Physics 17, 720 (2021).

[56] H. Li, S. Li, M. H. Naik, J. Xie, X. Li, J. Wang, E. Regan, D. Wang, W. Zhao, S. Zhao, et al., Imaging moiré flat bands in three-dimensional reconstructed wse 2/ws 2 superlattices, Nature materials , 1 (2021).

[57] E. Li, J.-X. Hu, X. Feng, Z. Zhou, L. An, K. T. Law, N. Wang, and N. Lin, Lattice reconstruction induced multiple ultra-flat bands in twisted bilayer WSe₂, arXiv preprint arXiv:2103.06479 (2021).

[58] M. H. Naik and M. Jain, Ultraflatbands and shear solitons in moiré patterns of twisted bilayer transition metal dichalcogenides, Physical review letters 121, 266401 (2018).

[59] H. Guo, X. Zhang, and G. Lu, Shedding light on moiré excitons: A first-principles perspective, Science advances 6, eabf5638 (2020).

[60] M. H. Naik, S. Kundu, I. Maity, and M. Jain, Origin and evolution of ultraflat bands in twisted bilayer transition metal dichalcogenides: Realization of triangular quantum dots, Physical Review B 102, 075413 (2020).

[61] Z. Zhan, Y. Zhang, P. Lv, H. Zhong, G. Yu, F. Guineau, J. Á. Silva-Guillén, and S. Yuan, Tunability of multiple ultraflat bands and effect of spin-orbit coupling in twisted bilayer transition metal dichalcogenides, Physical Review B 102, 241106 (2020).

[62] I. Maity, P. K. Maiti, H. Krishnamurthy, and M. Jain, Reconstruction of moiré lattices in twisted transition metal dichalcogenide bilayers, Physical Review B 103, L121102 (2021).

[63] S. Kundu, I. Maity, R. Bajaj, H. Krishnamurthy, and M. Jain, Atomic reconstruction and flat bands in strain engineered transition metal dichalcogenide bilayer moiré systems, arXiv preprint arXiv:2108.01112 (2021).

[64] Y. Li, J. Ludwig, T. Low, A. Chernikov, X. Cui, G. Arefe, Y. D. Kim, A. M. Van Der Zande, A. Rigosi, H. M. Hill, et al., Valley splitting and polarization by the Zeeman effect in monolayer MoSe₂, Physical review letters 113, 266804 (2014).

[65] D. MacNeill, C. Heikes, K. F. Mak, Z. Anderson, A. Kormányos, V. Zólyomi, J. Park, and D. C. Ralph, Breaking of valley degeneracy by magnetic field in monolayer MoSe₂, Physical review letters 114, 037401 (2015).

[66] A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoğlu, Valley Zeeman effect in elementary optical excitations of monolayer WSe₂, Nature Physics 11, 141 (2015).

[67] G. Aivazian, Z. Gong, A. M. Jones, R.-L. Chu, J. Yan, D. G. Mandrus, C. Zhang, D. Cobden, W. Yao, and X. Xu, Magnetic control of valley pseudospin in monolayer WSe₂, Nature Physics 11, 148 (2015).

[68] A. Wojs and P. Hawrylak, Negatively charged magnetoexcitons in quantum dots, Physical Review B 51, 10880 (1995).

[69] V. Halonen, T. Chakraborty, and P. Pietiläinen, Excitons in a parabolic quantum dot in magnetic fields, Physical Review B 45, 5980 (1992).

[70] W. Que, Excitons in quantum dots with parabolic confinement, Physical Review B 45, 11036 (1992).

[71] V. Maksy and T. Chakraborty, Quantum dots in a magnetic field: Role of electron-electron interactions, Physical review letters 65, 108 (1990).

[72] H. Yu, G.-B. Liu, P. Gong, X. Xu, and W. Yao, Dirac cones and Dirac saddle points of bright excitons in monolayer transition metal dichalcogenides, Nature communications 5, 1 (2014).

[73] M. Glazov, T. Amand, X. Marie, D. Lagarde, L. Bouet, and B. Urbanzsek, Exciton fine structure and spin decoherence in monolayers of transition metal dichalcogenides, Physical review B 89, 201302 (2014).

[74] T. Yu and M. Wu, Valley depolarization due to intervalley and intravalley electron-hole exchange interactions in monolayer MoS₂, Physical Review B 89, 205303 (2014).

[75] F. Wu, F. Qu, and A. H. Macdonald, Exciton band structure of monolayer MoS₂, Physical Review B 91, 075310 (2015).

[76] A. Kormányos, G. Burkard, M. Gmitra, J. Fabian, V. Zólyomi, N. D. Drummond, and V. Fal’ko, k · p theory for two-dimensional transition metal dichalcogenide semiconductors, 2D Materials 2, 022001 (2015).

[77] K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. F. Heinz, and J. Shan, Tightly bound trions in monolayer MoS₂, Nature materials 12, 207 (2013).

[78] J. S. Ross, S. Wu, H. Yu, N. J. Ghimire, A. M. Jones, G. Aivazian, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, et al., Electrical control of neutral and charged excitons in a monolayer semiconductor, Nature communications 4, 1 (2013).

[79] A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, et al., Optical generation of excitonic valley coherence in monolayer WSe₂, Nature nanotechnology 8, 634 (2013).

[80] E. Anisimovas and F. Peeters, Excitonic trions in ver- tically coupled quantum dots, Physical Review B 68, 115310 (2003).

[81] W. Xie and C. Chen, Excitonic trion - in gaas quantum dots, Physica E: Low-dimensional Systems and Nanostructures 8, 77 (2000).

[82] A. Bracker, E. Stienna, D. Gammon, M. Ware, J. Tischler, D. Park, G. Gershoni, A. Filinov, M. Bonitz, F. Peeters,
et al., Binding energies of positive and negative trions: From quantum wells to quantum dots, Physical Review B 72, 035332 (2005).

[83] M. H. Naik, E. C. Regan, Z. Zhang, Y.-h. Chan, Z. Li, D. Wang, Y. Yoon, C. S. Ong, W. Zhao, S. Zhao, et al., Nature of novel moiré exciton states in WSe₂/WS₂ heterobilayers, arXiv preprint arXiv:2201.02562 (2022).

[84] J. Gu, L. Ma, S. Liu, K. Watanabe, T. Taniguchi, J. C. Hone, J. Shan, and K. F. Mak, Dipolar excitonic insulator in a moiré lattice, arXiv preprint arXiv:2108.06588 (2021).