Uemura plot as a certificate of two-dimensional character of superconducting transition for quasi-two-dimensional HTS

G. Sergeeva

National Science Center "Kharkov Institute of Physics and Technology", Academicheskaya st.1, 61108, Kharkov, Ukraine
E-mail: gsergeeva@kipt.kharkov.ua

Abstract

For quasi-two-dimensional HTS in superconducting state the dimensional crossover, $3D \rightarrow 2D$ is studied. With using general properties of superconducting state for 2D systems the universal temperature dependence of the relation of the penetration lengths of magnetic field along axis \hat{c}, $\lambda^2(0)/\lambda^2(T/T_c)$, is found out. This dependence evidences about two-dimensional character of superconducting transition for quasi-two-dimensional HTS and leads to the Uemura plot for quasi-two-dimensional HTS.

1. Introduction. Quasi-two-dimensional (quasi 2D) or highly anisotropic underdoped HTS are exhibiting such out of the ordinary properties as "semiconducting-like" c-axis resistivity, $\rho_c(T)$, near T_c, big interval of two-dimensional superconducting fluctuations, $\Delta^N_{2D} \sim T_c$, and pseudo-gap states at $T \lesssim T^*$, where T^* is the temperature of charge ordering. These properties lead to the discussion of the association of superconducting transition with Berezinskii-Kosterlitz-Thouless (BKT) transition in CuO$_2$ planes at $T_{BKT} < T_c$, where T_{c0} is the temperature of two-dimensional superconducting transition in the mean-field theory (see, for example, review [1] and the references there). Despite the observations of two-dimensional character of superconducting fluctuations and the evidences for a BKT transition have been reported in most of quasi 2D HTS [2,3], up to now the question whether a BKT transition is observable in bulk cuprates with taken into account interlayer coupling in these materials [4,5] is under the discussion.
Interlayer coupling can lead to the dimensional crossovers both as at \(T > T_c \) (2D \(\rightarrow \) 3D), so in superconducting state near \(T_c \) (3D \(\rightarrow \) 2D) [4-6]. Theoretical model of such superconducting transition is well known [7-9]: at enough small probability \(t_c \) of charge tunnelling between \(CuO_2 \) planes transition has two-dimensional character with finite region \(\Delta_{3D} \) of three-dimensional superconducting fluctuations. Anisotropy of exchange interactions in \(CuO_2 \) planes and along axis \(\hat{c} \) in spin-fluctuational pairing model assumes big values of \(\Delta_{2D}^N \) and \(T_{c0} \) and the distinction of temperatures \(T_c << T_{c0} \). For quasi 2D HTS in ref. [10,11] it was shown that at \(T > T_c \) two-dimensional character of superconducting fluctuations leads to the temperature dependence of the probability of charge tunnelling \(t_c(T) \), and to the exasperation of semiconducting-like of \(\rho_c(T) \) near \(T_c \), so that 2D \(\rightarrow \) 3D crossover occurs at \(T_c^0 > T_c > T_{BKT} \) before BKT transition. This point out to the two-dimensional character of superconducting transition, which develops under Kats scenario [7] at enough small value of probability \(t_c(T_c^0) \):

\[
T_c^0/\varepsilon_F < t_c(T_c^0),
\]

where \(\varepsilon_F \) is Fermi energy, values \(T_c^0 \) and the temperature of three-dimensional transition in the mean field theory are the same order values. The interval \(\Delta_{3D}^N \) of three-dimensional fluctuations in normal state can be found out from the measurements of resistivity \(\rho_c(T) \)

\[
\Delta_{3D}^N \simeq T_c^0 - T_c << \Delta_{2D}^N
\]

It is known that at \(T < T_c \) back crossover 3D \(\rightarrow \) 2D occurs at \(T_{cr} \), which value depends on correlation length \(\xi_c(T) \) along axis \(\hat{c} \) [6, 12]. This paper is devoted to the studying of the dimensionality of the superconducting state of quasi 2D HTS and to the determination of the values \(T_{cr} \). With using general properties of superconducting state for 2D systems the universal temperature dependence of the relation of the penetration lengths of magnetic field along axis \(\hat{c} \), \(\lambda^2(0)/\lambda^2(T/T_c) \), is found out.

2. **Universal dependence of** \(T_c(\lambda^{-2}(0)) \). The penetration lengths of magnetic field along axis \(\hat{c} \), \(\lambda(T) \) determines by London formula \(\lambda(T) \simeq n_{s,3}^{-1/2} \), where \(n_{s,3} \) is the three-dimensional superfluid density. The density \(n_{s,3} \) evidently interconnects with two-dimensional superfluid density \(n_{s,3} = n_s(T)\nu/l \), where \(\nu \) is number of layers, \(l \) is the lattice constant. V.Pokrovskii shown that for quasi 2D HTS the penetration length \(\lambda(T) \) and two-dimensional superfluid density \(n_s(T) \) is connected by the expression

\[
\lambda^2(0)/\lambda^2(T) = n_{s,3}(T)/n_{s,3}(0) = n_s(T)/n_s(0),
\]

Here it will shown that for quasi 2D HTS (3) leads to universal dependence of \(T_c(\lambda^{-2}(0)) \),
which was called "Uemura plot" and was discovered at the measurements of muon relaxation rate [14].

For plane system (3) can be written as ratio \(\rho_s(T/T_c) = n_s(T/T_c)/n_s(0) \), where \(\rho_s(T/T_c) \) is dimensionless hardness and satisfy to universal dependence [15]

\[
\rho_s(T/T_c) = \exp\left(-\frac{T e^{-1}}{T_c \rho_s(T/T_c)}\right)
\]

(4)

The decision of (4) was received in ref.[15]: \(\rho_s(0) = 1 \), and at \(T = T_c \)

\[
\rho_s(T/T_c)|_{T=T_c} = e^{-1}
\]

(5)

Expressions (3)-(4) results to universal character of temperature dependence of ratio

\[
\lambda^2(0)/\lambda^2(T/T_c) = \rho_s(T/T_c)/\rho_s(0) = \exp\left(-\frac{T e^{-1}\lambda^2(T/T_c)}{T_c \lambda^2(0)}\right),
\]

(6)

and simple relation between values \(\lambda^2(T) \) and \(n_s(T) \) at \(T = T_c \) and at \(T = 0 \):

\[
\lambda^2(0)/\lambda^2(T_c) = n_s(T)/n_s(0) = e^{-1}
\]

(7)

Using this relation and Kosterlitz-Thouless-Nelson formula [16]

\[
k_B T_c = \frac{\hbar^2}{32 \pi m} n_s(T_c),
\]

(8)

we can receive the universal relation between the density \(n_s(0) \) at \(T = 0 \) and transition temperature \(T_c \):

\[
T_c = \frac{k^2 e^{-1}}{32 k_B \pi m} n_s(0),
\]

(9)

where \(k_B \) is Boltzman constant. For two-dimension superconductor the role of effective penetration length acts magnetic screening length

\[
L_s(T) = \frac{mc^2}{2 \pi n_s(T) e^2},
\]

(10)

which is connected with the bulk London penetration length

\[
L_s = 2d^{-1} \lambda^2,
\]

(11)

where \(d \) - thickness of \(CuO_2 \) plane.

It is seen from (7-11) that the transition temperature is proportional to \(\lambda^{-2}(0) \)

\[
T_c = k \lambda^{-2}(0),
\]

(12)

where

\[
k = \frac{\epsilon^2 \hbar^2 e^{-1} d}{64 k_B \pi^2 e^2},
\]

(13)
depends only from universal constants and from thickness of CuO$_2$ plane. The temperature of dimensional crossover, $T_{cr} < T_c$, depends on correlation length $\xi_c(T)$, and can be determined at the measurement of penetration length as the boundary of two-dimensional region, where at $T > T_{cr}$ the measurement values of $\lambda^2(0)/\lambda^2(T/T_c)$ are diverging from universal relation (6). Knowing T_{cr} let us to determine the interval $\Delta_{3D}^S \approx (T_c - T_{cr})$ of three-dimensional fluctuations at $T < T_c$. Full interval is equal

$$\Delta_{3D} = \Delta_{3D}^N + \Delta_{3D}^S = T^0_c - T_{cr}$$

(14)

does not depend on the exactness of the measurement of T_c, and determines as the difference between the temperatures of two dimensional crossovers: in normal state, T^0_c, and in superconducting state, T_{cr}. So, for $La_{1.85}Sr_{0.15}CuO_4$ the measurements of resistivity $\rho_c(T)$ [17] and of the penetration length [18] let us to determine the temperature $T^0_c \sim 41.5K$, and $T_{cr} \sim 26K$. This lead to the value $\Delta_{3D} \sim 15.5K$. We see that the region Δ_{3D} of three-dimensional superconducting fluctuations is finite in the concrete, that evidences about the two-dimensional character of superconducting transition.

Thus, here it is shown that expression (12), which was found out at the measurements of nuon relaxation rate [14] for quasi 2D HTS, really is universal and is the sequence of general consistent pattern (4), (8) of superconducting state for two-dimensional systems and must to fulfil for HTS with two-dimensional superconducting state at $T < T_{cr}$. This means that for quasi 2D HTS superconducting transition has two-dimensional character and develops on Kats scenario [7], and at $T < T_{cr}$ the temperature dependence of $\lambda^2(0)/\lambda^2(T/T_c)$ also must to be universal (6).

The author would like to thank Dr.Kabanov V. for the reference on the V.L.Pokrovskii paper [13].

References
1. S.L.Cooper, K.E.Gray, in "Physical properties of high temperature superconductors" ed.: Donald M.Ginsberg, IY p.61-188 (1994).
2. S.Martin, A.T.Fiory, R.M.Fleming, G.P.Espinoza, and A.S.Cooper, Phys.Rev.Lett. 62, 677 (1989).
3. D.H.Kim, A.M.Goldman, J.H.Kang, R.T.Kampwirth, Phys.Rev. B40, 8834 (1989).
4. Y.Matsuda, S.Komiyama, T.Onogi, T.Terashima, K.Shimura, and Y.Bando, Phys.Rev. B48, 10498 (1993).
5. Y.Matsuda, S.Komiyama, T.Terashima, K.Shimura, and Y.Bando, Phys.Rev.Lett. 69, 3228 (1992).
6. Z.Tesanovic, L.Xing, L.Bulaevskii, O.Li, and Suenaga, Phys.Rev.Lett. 69, 3563 (1992).
7. E.I.Kats, JEF (Russian),56, 1675 (1969).
8. Vik.Dotsenko and M.V.Feigelman, JETP, 83, 345 (1982).
9. L.Bulaevskii, Usp.Fiz.Nauk (Russian), 116, 449 (1975).
10. G.Sergeeva, Physica C, 341-348, 181 (2000).
11. G.G.Sergeeva, Low Temp. Phys., 26, 453 (2000); cond-mat/0009212.
12. T.Schneider and H.Keler, Phys.Rev. B 47, 5915 (1993).
13. V.L.Pokrovskii, Pis'ma JETF, (Russian) 47, 539 (1988).
14. Y.J.Uemura, V.J.Emery, A.R.Moodenbaugh et al. Phys.Rev. B 38, 909 (1988); Phys.Rev.Lett. 64, 2082 (1990).
15. Patashinskii A.Z., Pokrovskii V.L. Fluctuational theory of phase transition (Russian, Moscow, Nauka) 1982.
16. B.I.Halperin and David R.Nelson, J. Low Temp.Phys. 36, 599 (1979).
17. T.Ito, H.Takagi, S.Ishibashi et al. Nature, 350, 596 (1991).
18. G.Aeppli and R.J.Cava, E.J.Ansaldo et al. Phys.Rev. B 35, 7129 (1987).