Conservation Laws and the Multiplicity Evolution of Spectra at the Relativistic Heavy Ion Collider

Zbigniew Chajecki and Mike Lisa
Department of Physics, Ohio State University, 191 West Woodruff Ave, Columbus, OH 43210, USA
(Dated: January 9, 2009)

Transverse momentum distributions in ultra-relativistic heavy ion collisions carry considerable information about the dynamics of the hot system produced. Direct comparison with the same spectra from $p + p$ collisions has proved invaluable to identify novel features associated with the larger system, in particular, the “jet quenching” at high momentum and apparently much stronger collective flow dominating the spectral shape at low momentum. We point out possible hazards of ignoring conservation laws in the comparison of high- and low-multiplicity final states. We argue that the effects of energy and momentum conservation actually dominate many of the observed systematics, and that $p + p$ collisions may be much more similar to heavy ion collisions than generally thought.

I. INTRODUCTION

A. Heavy Ion Physics: Relying on Comparison

The physics program at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory is remarkably rich, thanks to the machine’s unique ability to collide nuclei from 1H to 197Au, in fully symmetric (e.g. $Au + Au$ or $p + p$) to strongly asymmetric (e.g. $d + Au$) entrance channels, over an energy range spanning more than an order of magnitude. The capability to collide polarized protons provides access to an entirely new set of fundamental physics, not discussed further here.

Achieving the primary aim of RHIC— the creation and characterization of a color-deconfined state of matter and its transition back to the confined (hadronic) state— requires the full capabilities of RHIC. In particular, comparisons of particle distributions at high transverse momentum (p_T) from $Au + Au$ and $p + p$ collisions, probe the color-opaque nature of the hot system formed in the collisions [1,2,3]. Comparisons with reference $d + Au$ collisions were necessary to identify the role of initial-state effects in the spectra [4]. Comparing anisotropic collective motion from non-central collisions of different-mass initial states (e.g. $Au + Au$ versus $Cu + Cu$) [5] tests the validity of transport calculations crucial to claims of the creation of a “perfect liquid” at RHIC [6]. Indeed, a main component of the future heavy ion program at RHIC involves a detailed energy scan, designed to identify a predicted critical point in the Equation of State of QCD [7].

The need for such systematic comparisons is not unique to RHIC, but has been a generic feature of all heavy ion programs [8,9], from low-energy facilities like the NSCL (Michigan State), to progressively higher-energy facilities at SIS (GSI), the Bevatron/Bevalac (Berkeley Lab), AGS (Brookhaven), and SPS (CERN). The nature of heavy ion physics is such that little is learned through study of a single system.

B. Bigger is better

Despite the necessary attention to smaller colliding partners, these comparisons are ultimately aimed at identifying novel aspects of collisions between the heaviest ions, in which a highly excited bulk system might be created, with a sufficient number of degrees of freedom such that it may be described thermodynamically— e.g. in terms of pressure, temperature, energy density, and an Equation of State (EoS). If the energy density of this system is sufficiently large (typically estimated at $\varepsilon_{\text{crit}} \sim 1$ GeV/fm3 [6]) and its spatial extent considerably larger than the color-confinement length ~ 1 fm, then a new state of matter— the quark-gluon plasma (QGP) [10]— may be created. Microscopically, such a state might be characterized by colored objects (or something more complicated [11]); macroscopically, it represents a region on the phase diagram in which the EoS is distinctly different than for the hadronic phase [12].

Ultra-relativistic collisions between the heaviest nuclei enjoy the additional advantage that finite-size effects are small, due to high-multiplicity final states. In a small system (e.g. final state of an $p + \bar{p}$ collision) a statistical analysis of yields requires a canonical treatment, due to the conservation of discreet quantum numbers such as baryon number and strangeness [13]. For larger systems, a grand canonical treatment is more common [e.g. 14], with finite quantum-number effects absorbed into, e.g. “saturation factors” [15].

Due to the large available energy \sqrt{s} and final-state multiplicity, energy and momentum conservation effects on kinematic observables (spectra, momentum correlations, elliptic flow) are generally small. They are accounted for with correction factors [16,17] or neglected altogether.

C. Multiplicity evolution of single-particle spectra

Detailed single-particle spectra (e.g. d^2N/dp_T^2) have been measured at RHIC, for a variety of particle types. Often, the shape of the “soft” ($p_T \lesssim 2$ GeV/c) part of the spectrum is compared to hydrodynamic calculations [18] or fitted to simple “blast-wave” parameterizations [e.g. 19] to extract the collective flow of the system. The “hard” sector ($p_T \gtrsim 4$ GeV/c) is assumed to be dominated by the physics of the initial-state,
high-\(Q^2\) parton collisions and resulting jets. The physics of the “firm” sector (\(2 < p_T < 4\) GeV/c) may be the richest of all, reflecting the dynamics of the confinement process itself [20].

We would like to focus not so much on the single-particle spectra themselves, but on their multiplicity dependence. Much has been inferred from this dependence. In the soft sector, blast-wave fits to spectra from high-multiplicity final states (associated with central \(A + A\) collisions) indicate strong collective radial flow; the same fits to low-multiplicity final states– including minimum bias \(p + p\) collisions– appear to indicate much weaker flow [21]. This seems to confirm a common assumption that \(p + p\) collisions are not sufficiently “large” to develop collective behaviour.

In the hard sector, one of the earliest and most exciting observations [3, 22] at RHIC was that the high-\(p_T\) yield from high-multiplicity \(Au + Au\) collisions was suppressed, relative to appropriately scaled lower-multiplicity \(A + A\) or minimum bias \(p + p\) collisions. This has been taken as evidence of energy loss of hard-scattered partons through a very color-dense medium. Meanwhile, the high-multiplicity \(e + e\) collisions [29, 30]. However, as pointed out by Knoll [31], number effects on single-particle distributions, due solely to kinematics, for a fixed dynamical (“parent”) distribution.

In Section II, we test the extreme ansatz that all of the experimentally-measured multiplicity dependence of single-particle spectra is due to EMCICs. We will find surprising agreement with this ansatz in the soft sector (\(p_T \lesssim 1\) GeV/c). We will discuss that we formalism is on less firm footing, conceptually and mathematically, at much higher \(p_T\). Nevertheless, we explore this regime as well. We find that, in the hard sector, the data from heavy ion collisions is clearly not dominated by EMCICs, though we point out that ignoring EMCICs, especially for \(p + p\) collisions, may be dangerous even at high \(p_T\).

In Sections III and IV, we summarize and give an outlook for future studies.

II. EFFECTS OF ENERGY AND MOMENTUM CONSERVATION ON SINGLE-PARTICLE SPECTRA

A. A restricted phase space factor

Changing the size (central versus peripheral ion collisions, \(e + e\) collisions, etc) and energy of a collision system will lead to different measured single-particle distributions, reflecting (1) possibly different physical processes driving the system and (2) effects due to phase space restrictions. To focus on changes caused by the latter, we consider some Lorentz-invariant “parent” distribution \(f(p) = 2E\frac{d^4N}{dp}\), driven by some unspecified physical process, but unaffected by energy and momentum conservation. For simplicity, we assume that all particles obey the same parent distribution.

In the absence of other correlations, the measured single-particle distribution is related to the parent according to [16, 17, 25, 27]

\[
\tilde{f}_e(p_i) = \tilde{f}(p_1) \times \frac{\int \left(\prod_{i=2}^{N} d^4p_i \delta \left(p_i^2 - m_i^2 \right) \tilde{f}(p_j) \right) \delta^4 \left(\sum_{i=1}^{N} p_i - P \right)}{\int \left(\prod_{i=1}^{N} d^4p_i \delta \left(p_i^2 - m_i^2 \right) \tilde{f}(p_j) \right) \delta^4 \left(\sum_{i=1}^{N} p_i - P \right)},
\]

where \(N\) is the event multiplicity. The integral in the numerator of Equation I represents the number of configurations in which the \(N - 1\) other particles counter-balance \(p_1\) so as to conserve the total energy-momentum \(P\) of the event, and the denominator, integrating over all \(N\) particles, is a normalization.

For \(N \gtrsim 10\) [25], one may use the central limit theorem to rewrite the factor in Equation I as [16, 17, 25, 27]

\[
\tilde{f}_e(p_i) = \tilde{f}(p_1) \left(\frac{N}{N-1} \right)^{2} \times \exp \left[-\frac{1}{2(N-1)} \left(\frac{p_{ix}^2}{\langle p_{ix}^2 \rangle} + \frac{p_{iy}^2}{\langle p_{iy}^2 \rangle} + \frac{p_{iz}^2}{\langle p_{iz}^2 \rangle} + \frac{(E_i - \langle E_i \rangle)^2}{\langle E_i^2 \rangle - \langle E_i \rangle^2} \right) \right],
\]
Where
\[\langle p \rangle = \int dp f(p) \cdot p \] (3)
are average quantities and we have set the average three-momentum \(\langle p_{1,2,3} \rangle = \langle p \rangle \). We stress that what appears in Equation (3) is the parent distribution \(f \), not the measured one \(f_c \). Hence, for finite multiplicity \(N \), the averages \(\langle p \rangle \) are not the measured ones, which we define as
\[\langle p \rangle_c = \int dp f_c(p) \cdot p \] (4)
See also the discussion in Appendix B.

Since \(p \) distributions are commonly reported, we would like to estimate EMCIC distortions to \(p \) distributions, integrated over azimuth and a finite rapidity bin centered at midrapidity. As discussed in Appendix A for the approximately boost-invariant distributions at RHIC [21], the measured and parent \(p \) distributions are related by
\[f_c(p) = \frac{N}{N-1} \left(\frac{N}{N-1} \right)^2 \times \exp \left[-\frac{1}{2(N-1)} \left(\frac{2p_T^2}{p_T^2} + \frac{\langle E \rangle^2}{\langle E \rangle^2} \right) \right] \] \[+ \frac{1}{(N-1)^2} \left(\frac{2E}{\langle E \rangle} \right)^2 \] (5)
The notation \(X \) indicates the average of a \(X \) over the rapidity interval used; see Appendix A for details. These averages depend, of course, on \(p \) and should not be confused with global averages \(\langle X \rangle \) (Equation 3) which characterize the parent distribution.

We would also like to emphasize the fact that since Equation (5) depends on the energy of the particle (not just momentum) it becomes clear that the EMIC effects are larger on heavier particles at the same \(p \). Thus we should expect that the proton spectra will be more suppressed than pion spectra.

In what follows, we find that ignoring the \(p_T^2/\langle p_T^2 \rangle \) term does not affect our results, since the numerator is small for the narrow rapidity windows used here, and the denominator is large. In discussions below, we set this term to zero.

B. Straw-man postulate of a universal parent distribution

Equations (5) are reminiscent of Fermi’s “Golden Rule” [32,33], in which the probability for making a particular observation is given by the product of the squared matrix element and a quantity determined by available phase space. The first term represented the underlying physical process. In his original statistical model [32], Fermi originally assumed it to be a constant representing the volume in which emitted particles were produced; this is equivalent to setting \(f(p) \) constant in Equation (1). While surprisingly successful in predicting cross sections and pion spectra [e.g. 34,35], the emission volume required to describe the data was considered unrealistically large [36]. Using the mean value theorem, Hagedorn [33] generalized the theory so that the “physics term” is the interaction matrix element, suitably averaged over all final states.

We wish to make no assumptions about the underlying physics (represented by \(f \)) driving the observed spectrum \(f_c \). Rather, we wish to quantify the effect of changing the multiplicity \(N \), which appears in the phase space term.

In particular, in the following Section, we compare measured single-particle spectra for different event classes.

We postulate that the parent distributions for, say classes 1 and 2, are the same \(f_1 = f_2 \). By Equation (3) this implies \(\langle p \rangle_1 = \langle p \rangle_2 = \langle p \rangle \). In this case, the only reason that the observed spectra differ \(f_{c1} \neq f_{c2} \) is the difference in “multiplicity” \(N_1 \neq N_2 \), see Section II C for a discussion of \(N \).

To eliminate the (unknown) parent distribution itself, we will study the ratio of observed \(p \) distributions, which, by Equation (5) becomes
\[\frac{f_{c1}(p)}{f_{c2}(p)} = K \times \left(\frac{N_2 - 1}{N_1 - 1} \right)^2 \times \exp \left[\left(\frac{1}{2(N_2 - 1)} - \frac{1}{2(N_1 - 1)} \right) \left(\frac{2p_T^2}{p_T^2} + \frac{\langle E \rangle^2}{\langle E \rangle^2} \right) \right] \times \frac{\langle E \rangle^2}{\langle E \rangle^2 - \langle E \rangle^2} \] (6)
where the constant \(K \) is discussed at the end of Section II C. As mentioned at the end of Section II A, numerically unimportant terms in \(p \) have been dropped.

Naturally, our postulate cannot be expected to be entirely correct; one may reasonably expect the mix of physical processes in \(p + p \) collisions to differ from those in \(Au + Au \) collisions. Nevertheless, it is interesting to find the degree to which the change in single-particle spectra may be attributed only to finite-multiplicity effects. We will find that the postulate works surprisingly well in some regions, and fails in others. As we will discuss, both the success and failure raise interesting and surprising possibilities.

C. Testing the postulate - how to treat the parameters

By our postulate, the phase space factor affecting a \(p \) distribution is driven by four quantities. Three, \(\langle p_T^2 \rangle, \langle E^2 \rangle \) and \(\langle E \rangle \), characterize the parent distribution, while \(N \) is the number of particles in the final state. In general, increasing any one parameter decreases the effect of phase space restrictions on the observed distributions. But what should we expect these values to be? They should characterize the relevant system in which a limited quantity of energy and momentum is shared. They are not, however, directly measurable, and should only approximately scale with measured values, for at least five reasons discussed here.

Firstly, the energy and momentum is shared among measured and unmeasured (neutrals, neutrinos, etc.) particles
alike so that \(N\) should roughly track the measured event multiplicity \(N_{\text{meas}}\), but need not be identical to it. Secondly, emission of resonances smears the connection between \(N\) and \(N_{\text{meas}}\): e.g. the emission of an omega meson which later decays into “secondary” particles (\(\omega \to \pi^+\pi^-\)) increments \(N\) by unity, rather than three, as far as other particles are concerned. This latter consideration also affects the kinematic parameters \(\langle p_T^2 \rangle\), \(\langle E^2 \rangle\) and \(\langle E \rangle\). While energy and momentum are, of course, conserved in resonance decay, the aforementioned quantities, themselves, are not. Thus, one need not expect perfect correspondence between the appropriate kinematic parameters in Equation 6 and the measured ones.

Thirdly, even restricting consideration to primary particles, it is unclear that all of them should be considered in the relevant ensemble of particles sharing some energy and momentum. In particular, for space-time extended systems in high-energy collisions, the momentum extent of characteristic physics processes (e.g. string breaking) and causality in an approximately boost-invariant scenario suggest that rapidity slices of roughly unit extent should be considered separate subsystems [26]. Of course, the total available energy in any event is shared among all such subsystems; i.e. the midrapidity subsystem in one event will not have exactly the same available energy as that in another event. However, such fluctuations are to be expected in any case– surely individual collisions will differ from one another to some extent. Thus, we repeat our interpretation of the four parameters \(N\), \(\langle p_T^2 \rangle\), \(\langle E^2 \rangle\) and \(\langle E \rangle\): they characterize the scale, in energy and momentum, of the limited available phasespace to an \(N\)-particle subsystem.

Fourthly, Equations 11-16 are appropriate for fixed \(N\), while we will be comparing to measured spectra selected by measured charged-particle multiplicity. Thus, \(N\) would inevitably fluctuate within an event class, even if we could ignore the above considerations. Naturally, high-multiplicity events contribute to spectra more than low multiplicity events. Similarly, the average multiplicity in two-particle correlations is even more shifted to higher multiplicities.

Fifthly, as already mentioned in Section II.A the kinematic parameters \(\langle p_T^2 \rangle\), \(\langle E^2 \rangle\) and \(\langle E \rangle\) correspond to the parent distribution, which will only correspond identically to the measured one in the limit of infinite multiplicity (i.e. no EMCIC distortions). See also the discussion in Appendix B.

For all of these reasons, we will treat \(N\), \(\langle p_T^2 \rangle\), \(\langle E^2 \rangle\) and \(\langle E \rangle\) as free parameters when testing our postulate against data. Our aim is not to actually measure these quantities by fitting the data with Equation 6; this is good, since our fits to the data explain the multiplicity evolution of the spectra.

To get a feeling for these values, we look at \(p + p\) collisions at \(\sqrt{s_{NN}}=200\) GeV, simulated by the PYTHIA event generator (v6.319) [17]. In the model, we can identify primary particles, thus avoiding some of the issues discussed above. However, the fact that PYTHIA conserves momentum means that we access \(\langle p_T^2 \rangle\), as defined by Equation 4, not the parameters of the parent distribution. Nevertheless, a scale for our expectations may be set. Table II summarizes the result for primary particles satisfying a varying cut on pseudorapidity where all particle decays were switched off in simulations. The results from simulations when resonance decays were included are shown in Table III. These two tables give us rough estimates of ranges of the total multiplicity and kinematic variables that one may expect. The bulk component of single-particle spectra is often estimated with Maxwell-Boltzmann distributions, with inverse slope parameters in the range \(T \sim 0.15 \div 0.35\) GeV. Again, simply for rough guidance, we list Maxwell-Boltzmann expectations for our kinematic parameters in Table III assuming pion-dominated system.

Finally, a word about normalization— the quantity \(K\) which appears in Equation 6. Not only energy and momentum, but also discrete quantum numbers like strangeness and baryon...
number are conserved event by event, affecting the overall yield of a given particle species. For example, the related phenomenon of “canonical suppression” affects the ratio of yields for strange versus non-strange particles, as multiplicity varies \[38, 39\]. Since we restrict our attention to energy and momentum conservation and the effect on kinematic quantities, we are interested in the \textit{shape} of the spectra ratio, as a function of particle momentum, and include a factor \(K\) in our Equation [6] which should be of order, but not necessarily identical, to unity. We do not discuss it further.

III. TEST OF THE POSTULATE - COMPARISON TO DATA

We now explore the degree to which the postulate proposed above describes the multiplicity evolution of measured \(p_T\) spectra measured in \(\sqrt{s_{NN}} = 200\) GeV collisions at RHIC. As is frequently done, we will separately discuss the “soft” \((p_T \lesssim 1\) GeV/c) and “hard” \((p_T \gtrsim 3\) GeV/c) portions of the spectra. This separation is not entirely arbitrary, as spectra in these two \(p_T\) ranges are thought to be dominated by quite different physics, and the multiplicity evolution in the two sectors is usually interpreted in terms of distinct physics messages.

In the soft sector, the spectral shapes are often consistent with hydrodynamic calculations \([e.g. 18, 40]\), or fitted with blast-wave type models \([e.g. 19, 41]\), and show evidence of strong, explosive flow associated with a collective bulk medium. This is especially clear in the mass dependence of the spectra; the \(m_T\) (or \(p_T\)) spectrum of heavy particles like protons are significantly flatter than that for pions, in the presence of strong flow. The multiplicity evolution in this sector suggests that high-multiplicity collisions (say, central \(Au + Au\) collisions) show much more collective flow than do low-multiplicity (say, \(p + p\)) collisions \[21\]. Such an interpretation initially sensible in a scenario in which flow is built up through multiple collisions among emitted particles; the concept of a collective bulk medium in a very low-multiplicity collision is thus usually considered questionable.

Particle yields at high \(p_T\), on the other hand, are generally discussed in the context of fragments from high-\(Q^2\) parton scatterings in the initial stage of the collision. As the event multiplicity in \(Au + Au\) collisions is increased, a suppression of high-\(p_T\) yields is observed, relative to a properly normalized minimum-bias spectrum from \(p + p\) collisions. This suppression has been attributed to partonic energy loss in the bulk medium \[42, 43, 44, 45\].

The multiplicity evolution of the spectra in \(p + p\) collisions, however, shows quite the reverse. Relative to the soft sector, the high-\(p_T\) yields increase as the multiplicity increases; one may also say that the \(p_T\) spectra become less steep as multiplicity increases \[23\]. This seems to reinforce the conclusion discussed above in relation to the soft sector, that \(p + p\) collisions do not build up a bulk system capable of quenching jets.

Here, we reconsider these conclusions based on the multiplicity evolution of the spectra, in light of the phase space restrictions discussed above.

Event selection	\(N\)	\(<p_T^2>\) [GeV/c]^2	\(<E^2>\) [GeV^2]	\(<E>\) [GeV]
\(p + p\) min-bias	10.3	0.12	0.43	0.61
\(Au + Au\) 70-80%	15.2	"	"	"
\(Au + Au\) 60-70%	18.3	"	"	"
\(Au + Au\) 50-60%	27.3	"	"	"
\(Au + Au\) 40-50%	38.7	"	"	"
\(Au + Au\) 30-40%	67.6	"	"	"
\(Au + Au\) 20-30%	219	"	"	"
\(Au + Au\) 10-20% > 300	"	"	"	"
\(Au + Au\) 5-10% > 300	"	"	"	"
\(Au + Au\) 0-5% > 300	"	"	"	"

TABLE IV: Multiplicity and parent-distribution kinematic parameters which give a reasonable description of the spectrum ratios for identified particles in the soft sector. See text for details. Note that the multiplicity changes with event class; the parent distribution is assumed identical.

A. Soft sector: identified particles in \(Au + Au\) versus \(p + p\)

Figure 1 shows \(m_T\) distributions for minimum-bias \(p + p\) collisions and multiplicity-selected \(Au + Au\) collisions, all at \(\sqrt{s_{NN}} = 200\) GeV, reported by the STAR Collaboration at RHIC \[21\]. For the highest-multiplicity \(Au + Au\) collisions (top-most filled datapoints), the spectrum for heavier emitted particles is less steep than the essentially exponential pion spectrum. Circles in Figure 2 show the result of fits with a blast-wave model \[19\]. They indicate a kinetic freezeout temperature of about 100 MeV and average collective flow velocity about 0.6c for the most central collisions. For lower multiplicity collisions, the freeze-out temperature appears to grow to \(\sim 130\) MeV and the flow velocity decreases to \(\sim 0.25c\). The STAR collaboration, using a slightly different implementation of a blast-wave model, reported essentially identical values \[21\].

Ratios of spectra from minimum-bias \(p + p\) collisions to those from \(Au + Au\) collisions are plotted in Figure 3. For the filled points, the denominator is the most central \(Au + Au\) collisions, while the open points represent the ratio when the denominator is from peripheral (60-70% centrality) \(Au + Au\) collisions. Pions, kaons, and protons are distinguished by different symbol shapes.

The curves show the function given in Equation [6] for the kinematic scales given in Table IV. Clear from the Table is that all curves in Figure 3 are generated with the same kinematic variables \(<p_T^2>, <E^2>, <E>\); only the relevant multiplicity changes.

We do not quote uncertainties on the kinematic or multiplicity parameters, as the fitting space is complex, with large correlations between them. Furthermore, it is clear that the calculated curves do not perfectly reproduce the measured ratios. However, it is also clear that “reasonable” values of multiplicity and energy-momentum scales go a long way towards explaining the multiplicity evolution of the spectra, even keeping physics (“parent distribution”) fixed. Our postulate of Section II B seems to contain a good deal of truth.
FIG. 1: (Color online) Transverse mass distributions for pions (left), kaons (center) and antiprotons (right) measured by the STAR Collaboration for \(\sqrt{s_{NN}}=200\) GeV collisions [21]. The lowest datapoints represent minimum-bias \(p+p\) collisions, while the others come from \(Au+Au\) collisions of increasing multiplicity. Filled datapoints are for the top 5% and 60-70% highest-multiplicity \(Au+Au\) collisions, and for the \(p+p\) collisions.

FIG. 2: (Color online) Circles show the temperature (top panel) and flow (bottom panel) parameters of a Blast-wave model [19] fit to the STAR spectra of Figure 1 as a function of the event multiplicity. Squares represent Blast-wave fit parameters to “EMCIC corrected spectra,” and shaded region represents these results combined with systematic errors, as discussed in the text.

Another way to view the same results is useful. While the curves shown in Figure 3 only approximately describe the data shown there, one may approximately “correct” the measured \(m_T\) distributions, to account for EMCICs. This is shown in Figure 4, where the measured min-bias \(p+p\) and central and mid-peripheral \(Au+Au\) spectra have been copied from the full points of Figure 1 and are shown by full points.

FIG. 3: (Color online) The ratio of the \(p_T\) distribution from minimum-bias \(p+p\) collisions to the distribution from 0-5% (filled datapoints) and 60-70% (open datapoints) highest multiplicity \(Au+Au\) collisions; c.f. Figure 1. The ratio of the kaon spectra from \(p+p\) and 0-5% \(Au+Au\) collisions (solid green squares) has been scaled by a factor 1.7 for clarity. Curves represent a calculation of this ratio (ratio of EMCIC factors) using Equation 6.
The open red triangles represent the min-bias divided by the ratio of upper and lower curves shown in Figure 3. See text for details.

Comparison to the spectra from central collisions. This “EMCIC-corrected” spectrum is then scaled up to show

divided by Equation 6, with the parameters from Table IV. The level of (dis)agreement is identical to that between

the lowest multiplicity collisions, these fits are less satisfactory

for the heavier emitted particles. Blast-wave fits to these spectra are also shown. Especially for the very

lowest multiplicity collisions, these fits are less satisfactory than those to the measured spectra; the “parent distributions”

extracted via our approximate EMCIC correction procedure follow the Blast-wave shape only approximately. Much of the

deviation is at \(p_T \sim 0.9 \text{ GeV/c} \) for protons from the lowest multiplicity collisions (upper-right panels). This is the region

around which the approximations used in deriving the EMCIC correction should start to break down, as discussed in

Appendix C. So, two fits are performed: one including all datapoints shown (blue squares in Figure 2), and the other

excluding proton spectra points with \(p_T > 0.8 \text{ GeV/c} \). The resulting range of Blast-wave parameters is indicated by the

shaded region in Figure 2. There, statistical errors on the fit parameters have been multiplied by \(\sqrt{\chi^2 / \text{d.o.f.}} \) (ranging from \(\sim 2 \) for spectra from \(p + p \) collisions to \(\sim 1 \) for those from mid-peripheral and central \(p + A \) collisions) and added to both ends of the range. Thus, the shaded region should represent a conservative estimate of blast-wave temperature and flow strengths to the parent distributions.

In summary, to the extent that the curves in Figure 3 describe the ratios shown there— which they do in sign, magnitude and mass dependence, but only approximately in shape—the data is consistent with a common parent distribution for spectra from all collisions. The residual deviation seen in Figure 3 is observed again in different forms in Figures 4 and 5. The upshot is that EMCICs may dominate the multiplicity evolution of the spectra in the soft sector at RHIC. Extracting physics messages from the changing spectra, while ignoring kinematic effects of the same order as the observed changes themselves, seems unjustified.

In particular, STAR [21] and others [19] have fitted the spectra with Blast-wave distributions, which ignore EMCIC effects. Based on these fits, they concluded that the difference in spectral shapes between high- and low-multiplicity collisions was due to much lower flow in the latter; c.f. Figure 2. Recently, Tang et al. [47] arrived to the same conclusion, us-

FIG. 4: (Color online) Transverse mass distributions of pions, kaons and antiprotons for minimum-bias \(p + p \) spectra and 60-70% and 0-5% highest multiplicity \(A + A \) collisions at \(\sqrt{s_{NN}} = 200 \text{ GeV} \). Filled datapoints are the same as in Figure 1. Open triangles represent the \(p + p \) spectra divided by the lower curves shown in Figure 3. Open circles are the same spectra as the open triangles, except scaled up to compare to the spectra from the \(A + A \) collisions. Open squares represent the spectra from 60-70% highest multiplicity \(A + A \) events, divided by the ratio of upper and lower curves shown in Figure 3. See text for details.
FIG. 5: (Color online) dN/dp_T spectra for pions (left), kaons (center), and protons (right) are plotted on a linear scale, as a function of event multiplicity. Top panels show spectra for minimum-bias $p+p$ collisions, and the spectra for the six lowest multiplicity selections of $Au+Au$ collisions are shown in the lower panels. Filled symbols are the measured data, while open symbols are the “EMCIC corrected” distributions, discussed in the text. (For pions, these distributions overlap almost completely.) Blast-wave fits are indicated by the curves. For the “EMCIC corrected” spectra, two fits are performed, to estimate systematic errors. The solid line represents a fit to all datapoints, while the fit indicated by the dashed line ignores proton yields above $p_T = 0.8$ GeV/c.

An independent measurement of flow would help clarify this issue. Two-particle femtoscopy (“HBT”) is a sensitive probe of collective motion \cite{50} and has been measured in $p+p$ collisions at RHIC \cite{51}. Any scenario should be able to describe simultaneously both the spectral shapes and the m_T dependence of the femtoscopic scales. A study of this topic is underway.

B. Soft sector: unidentified particles in multiplicity-selected $p+p$ collisions

While minimum-bias $p+p$ collisions are the natural “reference” when studying $Au+Au$ collisions, the STAR experiment has also measured p_T spectra from multiplicity-selected $p+p$ collisions \cite{23}. These are reproduced in Figure 6 in which the lowest-multiplicity collisions are shown on the bottom and the highest at the top. Numerical labels to the right of the spectra are included just for ease of reference here.

The solid curve is a power-law fit to the highest-multiplicity spectrum (#10), just for reference. This curve is scaled and replotted as dashed lines, to make clear the multiplicity evolution of the spectra. Concentrating on the soft sector for the moment, we perform the same exercise as above, to see to what extent this multiplicity evolution can be attributed to EMCICs.

In Figure 7 are shown three ratios of spectra, in which the second-highest-multiplicity spectrum (#9) is used as the denominator, to avoid statistical fluctuations associated with the highest multiplicity spectrum. Also shown are curves, using...
dashed lines below, to emphasize the multiplicity evolution of the spectrum shape.

Equation 6 with the energy-momentum scales given in Table V.

The spectra reported by STAR are for unidentified negative hadrons. In calculating these curves, we assumed that all particles were pions. This matters, since the energy terms in Equation 5 require the particle mass. We expect the particle-identified spectra from Table V to be affected by this simplistic assumption. Particle-identified spectra in the soft sector may be understood almost entirely in terms of phase-space restriction with decreasing event multiplicity.

FIG. 7: (Color online) Ratio of the p_T spectra shown by full points in Figure 6. Spectra for the lowest-multiplicity (red triangles), fifth-lowest (green triangles) and seventh-lowest (squares) multiplicity collisions are divided by the spectrum for the second-highest multiplicity collisions. Curves represent a calculation of this ratio (ratio of EMCIC factors) using Equation 6; see text for details.

C. Segue: From the soft to the hard sector

Figure 7 shows the central result of this paper: namely, that the multiplicity evolution of the mass and p_T dependence of single particle spectra in the soft sector may be understood almost entirely in terms of phase-space restriction with decreasing event multiplicity.

Plotted in that figure is the ratio of spectra from low-multiplicity events over spectra from high-multiplicity events. Experimental studies sometimes show this ratio’s inverse, often called R_{AA}. While of course the same information is shown in both representations, we choose that of Figure 7 for two reasons. The first is to emphasize the effects of EMCICs, the topic of this paper; these are, generically, to suppress the particle yield at high energy and momentum, particularly for low-N final states. (In multiparticle distributions, they also generate measurable correlations.)

The second reason is to stress that we have been discussing spectra in the soft sector, whereas the ratio R_{AA} is generally studied at high p_T. At large p_T, we expect that a purely EMCIC-based explanation of the multiplicity evolution of the spectra might break down, for two reasons. Firstly, even if particles of all momenta shared phase-space statistically, our approximation of Equation 2 is expected to break down for energies much above the average energy, as discussed in Appendix B. Secondly, it is believed that the high-p_T yield has a large pre-equilibrium component; thus, high-p_T particles might participate less in the statistical sharing of phase-space, as discussed in Section II.C.

As we discuss in the next Section, EMCICs surely do not dominate the multiplicity evolution of the hard sector in heavy ion collisions. For interpreting high-p_T spectra from multiplicity-selected $p+p$ collisions, accounting for EMCICs may or may not be important. In order to make the connection...
to Figure 5 we will plot spectra from low-multiplicity collisions over those from high-multiplicity, as well as the inverse, to make the connection to R_{AA}.

D. Spectra in the hard sector

The generic effect of EMCICs is to suppress particle yields at energy-momentum far from the average value. The effect is stronger for lower multiplicity N. It is clear, then, that EMCICs cannot account for the multiplicity evolution of the spectra at high p_T in $Au+Au$ collisions, since high-multiplicity collisions are observed to have more suppression at high p_T than do low-multiplicity collisions [6]. Thus, we conclude that our postulate fails for $Au+Au$ collisions at high p_T; the “parent distribution” describing the underlying physics in this region does, indeed, change with multiplicity.

But in $p+p$ collisions, the multiplicity evolution in the hard sector is opposite to that in $Au+Au$ collisions. In particular, in $p+p$ collisions, the yield at high p_T (relative to lower p_T) is increased as multiplicity increases, as is clear from Figure 8, similar results have been observed in $p+p$ collisions at the Tevatron [52], ISR [53], and SPPS [54]. A “hardening” of the spectrum with increasing multiplicity goes in the same direction as would EMCIC effects. To what extent can EMCICs account for the multiplicity evolution of spectra from $p+p$ collisions, in the hard sector?

Some insight on this question may be gained from Figure 8, in which the data and curves shown in Figure 7 are plotted out to $p_T = 6$ GeV/c. Clearly, the calculated suppression function (Equation 6) fails dramatically at high p_T.

We recall that Equations 2 and 6 are based on the central limit theorem (CLT), which naturally leads to Gaussian distributions. As discussed in Appendix B, one expects the breakdown of the CLT approximation in the far tails of the distribution—e.g. when $p_T \gg \langle p_T^2 \rangle$. Thus, any inferences we make about EMCIC effects in the hard sector remain qualitative. Nevertheless, the level of disagreement between the calculations and measurements leads us to conclude that EMCICs do not fully explain the multiplicity evolution of p_T spectra in $p+p$ collisions in the hard sector.

However, this, in itself, raises a fascinating possibility. Figure 8 shows that, relative to high-multiplicity $p+p$ collisions, the suppression of high-p_T yields from low-multiplicity collisions is not as strong as one expects from our simple postulate. Said another way, the high-p_T “enhancement” in high-multiplicity collisions may not be as large as one expects from phasespace considerations alone. This is emphasized in Figure 9, in which is plotted “R_{pp}”, the ratio of the spectrum from high-multiplicity to lower-multiplicity collisions: R_{pp} is the analog of R_{CP} from heavy ion collisions [3].

The motivation for studying quantities like R_{AA} and R_{CP} (and now R_{pp}) is to identify important differences between one class of collisions and another. Presumably, one is interested in physics effects (jet quenching, etc.), above and beyond “trivial” energy and momentum conservation. Thus, it makes sense to attempt to “correct” for EMCICs by divid- ing them out as we did in Section III A, keeping in mind the caveats just discussed.

The result of this exercise is shown in Figure 10, in which the data from Figure 9 are divided by the curves from the same Figure, to form a new quantity, $R_{pp}^{(#9,#4)}$. Explicitly, the green circles on Figure 10 which compare multiplicity selections #9 and #4 are given by

\[R_{pp}^{(#9,#4)}(p_T) \equiv \frac{dn}{dp_T} \bigg|_{#9} \times \frac{dn}{dp_T} \bigg|_{#4} \times \exp \left[\frac{1}{2(N_{#9} - 1)} - \frac{1}{2(N_{#4} - 1)} \right] \left(\frac{2p_T^2}{\langle p_T^2 \rangle} + \frac{(E - \langle E \rangle)^2}{\langle E^2 \rangle - \langle E \rangle^2} \right), \]

where the relevant quantities from Table 3 are used. Again, all particles are assumed to have pion mass. Qualitative
though it is, Figure 10 raises the possibility that, when “trivial” EMCICs are accounted for, the high-p_T yield from high-multiplicity $p+p$ collisions is suppressed relative to low-multiplicity collisions, a trend in the same direction as that observed in $Au+Au$ collisions.

In the hard sector, our estimates are mathematically and conceptually too simplistic to decide whether this implies “jet quenching” in high-multiplicity $p+p$ collisions. However, it is quite clear that conservation-induced phase-space restrictions might be sufficiently large in the hard sector, so that a high-p_T “enhancement” in high-multiplicity $p+p$ collisions turns into a “suppression,” when these effects are accounted for. Extracting physics messages (e.g., about mini-jet production or jet quenching) from the multiplicity evolution of $p+p$ spectra is a non-trivial task, in light of this potentially huge background effect. At the very least, EMCICs should not be ignored, as they usually are, when extracting physics messages.

IV. SUMMARY AND DISCUSSION

The study of relativistic heavy ion collisions is, by its very nature, heavily dependent on comparative systematics. Physical models or hypotheses are most stringently tested when predictions for a given observable are compared to measurements for a range of global collision conditions. Even aside from specific models, much qualitative information may be gleaned simply through study of the evolution of an observable as collision conditions—quantified by global variables—change.

Since the goal is to probe an interaction or transition characterized by a dimensionful scale (confinement length ~ 1 fm), perhaps the most important global variable is event multiplicity, which on average reflects the size of the system generated in the collision.

Directly measurable is the multiplicity evolution of experimental observables. This evolution is driven by (1) the evolution of the underlying physics—which is of direct interest and (2) kinematic phase-space restrictions (EMCICs)—which are presumably less interesting. It may be hazardous to ignore the latter effect and make inferences on the former, particularly since phase-space restrictions have an obvious explicit multiplicity dependence. In this study, we have quantitatively estimated the degree to which phase-space restrictions may affect physics inferences based on measured data.

We have focused on the multiplicity evolution of single particle spectra. In previous published studies, analyses which have ignored EMCICs have inferred much from this evolution. In particular, there have been conclusions that spectra from central $Au+Au$ collisions exhibit greater collective radial flow than do those from peripheral $Au+Au$ or $p+p$ collisions. Using an expression to approximately account for EMCIC effects, we have shown that the multiplicity evolution of the spectra may be dominated by such effects, rather than any change in the underlying physics.

In particular, we have tested the extreme postulate that the driving physics, characterized by a parent distribution, is identical for $p+p$ collisions and $Au+Au$ collisions of all centralities. Since the parameters characterizing the parent distribution and the system multiplicity N were fitted, our test is not perfect. Some multiplicity evolution of the parent distribution itself may exist, and may not be easily separable from EMCICs. Our point is that, with “reasonable” parameters, much of the data systematics is readily understood in terms of a universal parent distribution in the soft sector, and similar high-p_T yield suppression in $p+p$ and $Au+Au$ collisions.

In the soft sector ($p_T \lesssim 1$ GeV/c) this postulate worked surprisingly well. The changes in m_T distributions, as the collision multiplicity is changed, are almost entirely due to EMCICs. “Correcting” the spectra for EMCICs, an approximate procedure along the lines of Fermi’s Golden Rule, reveals almost universal parent distributions.

While the spectra themselves carry more information than fits to the spectra, it was interesting to find that blast-wave fits to the “EMCIC-corrected” spectra show that low multiplicity $Au+Au$ collisions, and even $p+p$ collisions, are characterized by very similar flow and temperature values as for spectra from $Au+Au$ collisions. This contrasts strongly with previous conclusions and assumptions about collectivity in small systems. Blast-wave [19] or modified Blast-wave [47] fits which ignore EMCICs, may yield unreliable results for low-multiplicity final states.

The same analysis of p_T spectra of unidentified hadrons from multiplicity-selected $p+p$ collisions yielded similar results, though the multiplicity evolution of the spectra was only roughly explained by our postulate. This is to be expected, for several reasons. Firstly, our approximate expression to account for EMCICs was based on the central limit theorem, which begins to break down for the very small multiplicities involved. Secondly, the lack of particle identification led to a simple assumption that all particles were pions. Nevertheless, it was clear that EMCICs can go a long way towards explaining the multiplicity evolution of the p_T spectra in the soft sector.

EMCIC effects on momentum distributions are expected to

FIG. 10: (Color online) R_{pp} (c.f. Figure 9) divided by the EMCIC contribution to R_{pp}, as calculated by Equation 7.
be large at higher p_T, where a single particle may consume much of the total available energy. However, the approximations behind our EMCIC factor should begin to break down at high p_T. Unlike our results in the soft sector, we would be on shaky ground to draw firm conclusions from our studies in the hard sector. Nevertheless, we applied our formalism to obtain a rough estimate the magnitude of restricted phase-space effects at high p_T.

Firstly, we immediately realized that the well-known “high-p_T suppression” for central $Au + Au$ collisions cannot be explained by EMCICs, as these effects would cause the opposite behavior (i.e. “high-p_T enhancement”) from what is experimentally observed. Thus, our postulate fully breaks down at high p_T—there is a difference in the physics (parent distribution) in the hard sector.

Turning to the multiplicity-evolution of p_T spectra from $p + p$ collisions, however, the measured effect goes in the same direction as that expected from EMCIC effects. Still keeping in mind the caveats behind our expression at high momentum, we estimated that the high-p_T enhancement expected from EMCICs should be at least as large as that observed in the data. Again, we do not conclude, but suggest that the multiplicity-evolution of the parent distributions in $p + p$ collisions might in fact reveal a high-p_T suppression for high multiplicity collisions, reminiscent of the effect measured in heavy ion collisions.

V. CONCLUSIONS AND OUTLOOK

Our results suggest that the multiplicity evolution of the soft portion of the p_T spectra in collisions at RHIC is dominated by phase-space restrictions. Effects due to actual changes in physics (the parent distribution) are subdominant. This suggests one of two possibilities.

Firstly, one may take the common assumption that the physics underlying the soft particles from $A + A$ and $p + p$ collisions is quite different, say bulk behavior versus string breaking, respectively. In this case, our results suggest that single-particle spectra are too insensitive to distinguish very different physics scenarios, and physics conclusions (say, radial flow in $A + A$ collisions) based on them are questionable.

On the other hand, the single-particle spectra may well reflect the underlying physics. If energy and momentum conservation effects are taken into account, the low-p_T spectra indicate that $p + p$ collisions display as much collective radial flow as do $Au + Au$ collisions. In the larger system, this collective behavior is usually considered to arise from a (perhaps only partially) thermalized bulk system.

The question naturally arises: isn’t it impossible for a system as small as that created in a $p + p$ collision to form even a partially thermalized bulk system which develops flow? The answer is not obvious. After all, estimates set the timescale for complete thermalization in central $Au + Au$ collisions below 1 fm/c [18, 40], via a mechanism that may be driven more by fluctuating color fields than by classical rescattering processes [55, and references therein]. Perhaps the possibility that similar processes have sufficient time to thermalize a system on the scale of ~1 fm should not be dismissed out of hand.

Indeed, in the literature one finds frequent suggestions [53, 56, 57, 58, 59, 60], based on single-particle spectra, that high energy particle collisions generate flowing bulk systems and perhaps even Quark-Gluon Plasma; see also the recent review by Weiner [61]. By partially removing the obscuring effects of EMCICs, we have more directly compared proton collisions to heavy ion collisions (at the same energy and measured with the same detector), for which a flow-based interpretation is generally well accepted.

If a bulk system is created in $p + p$ collisions, might it “quench” jets as the medium does in $Au + Au$ collisions? This was, after all, the original proposition of Bjorken [62]. The signature of such quenching would be a suppression of particle yields at high p_T in high-multiplicity collisions, relative to those at lower multiplicity. While our formalism is insufficiently reliable at high p_T to draw firm quantitative conclusions, such a suppression may possibly be present, though obscured by EMCICs in measured spectra.

Increased focus on the relationship between large and small systems created in ultrarelativistic collisions is called for. Experimental programs at the Large Hadron Collider will very soon open up important avenues in this study. In particular, the experiments will measure first $p + p$ collisions at record collision energies, with event multiplicities similar to $Cu + Cu$ or semi-peripheral $Au + Au$ collisions at RHIC. Soft sector p_T distributions will likely be among the first observations reported. Later, with identical acceptance and techniques, the same experiments will then measure much larger systems created in $Pb + Pb$ collisions. The direct comparison afforded by this data should help answer the question of whether a bulk system created in hadronic collisions is qualitatively different than that created in collisions between the heaviest ions, or merely a smaller version of it.

The nature of relativistic heavy ion studies depends upon comparison of “small” and “large” collision systems, each of which may be driven by distinct, non-trivial physics processes. In performing such comparisons, we must not neglect the “trivial” effect of energy and momentum conservation, and its explicit dependence on collision size.

Acknowledgments

We wish to thank Drs. Paweł Danielewicz, Sean Gavin, Ulrich Heinz, Peter Jacobs, Declan Keane, Scott Pratt, Sergei Voloshin, and Bill Zajc, for important suggestions and insightful discussions, and Mr. Evan Askanazi for some numerical calculations.

This work supported by the U.S. National Science Foundation under Grant No. PHY-0653432.
Figure 11: (Color online) EMCIC factor calculated using the numerical averaging of Equation (A2) and the approximation of Equation (A3).

APPENDIX A: EMCIC FACTORS FOR RAPIDITY- AND ANGLE-INTEGRATED p_T DISTRIBUTIONS

Equation (2) gives the EMCIC correction factor to the triple differential spectrum $f(p)$. Experimental measurements often report p_T distributions integrated over angle and a range of rapidity, i.e.

$$ f_c(p) \equiv \frac{1}{4\pi y_{\text{max}}} \int_0^{2\pi} d\phi \int_{y_{\text{min}}}^{y_{\text{max}}} dy f_c(p_x, p_y, p_z, E). \quad (A1) $$

In the absence of a triple-differential measurement, we consider azimuthally-symmetric distributions, and $\langle p_T^2 \rangle = \langle p_T^2 \rangle / 2$. At midrapidity at RHIC, it is reasonable also to assume a boost-invariant parent distribution. In this case, only part of the EMCIC factor remains in the rapidity integral:

$$ f_c(p_T) = f(p_T) \cdot \left(\frac{N}{N-1} \right)^2 \exp \left[-\frac{p_T^2}{(N-1)\langle p_T^2 \rangle} \right] \times $$

$$ \frac{1}{2y_{\text{max}}} \int_{-y_{\text{max}}}^{y_{\text{max}}} dy \exp \left[-\frac{1}{2(N-1)} \left(\frac{p_T^2}{\langle p_T^2 \rangle} + \frac{E^2}{\langle E^2 \rangle - \langle E \rangle^2} \right) \right]. \quad (A2) $$

To arrive at a closed form for our EMCIC factor, we approximate the average of the exponential with the exponential of the average, i.e.

$$ f_c(p) = f(p) \cdot \left(\frac{N}{N-1} \right)^2 \times $$

$$ \exp \left[-\frac{1}{2(N-1)} \left(\frac{2\langle p_T^2 \rangle}{\langle p_T^2 \rangle} + \frac{\langle p_T^2 \rangle}{\langle p_T^2 \rangle} \right) \right] \times $$

$$ \frac{1}{2y_{\text{max}}} \int_{-y_{\text{max}}}^{y_{\text{max}}} dy \exp \left[-\frac{1}{2(N-1)} \left(\frac{E^2}{\langle E^2 \rangle - \langle E \rangle^2} \right) \right]. \quad (A3) $$

FIG. 12: (Color online) $\frac{dN}{dE}$ obtained from GENBOD events run for the same average energy ($\langle E \rangle = 1$ GeV) but different multiplicities: $N = 5, 10, 15, 20, 30, 40$ pions.

This expression is reproduced in Equation 5.

Here, the rapidity-averaged quantities are

$$ p_T^2 = \frac{1}{2y_{\text{max}}} \int_{-y_{\text{max}}}^{y_{\text{max}}} p_T^2 dy = m_T^2 \left(\frac{\sinh(2y_{\text{max}})}{4y_{\text{max}}} - \frac{1}{2} \right) \quad (A4) $$

$$ E^2 = \frac{1}{2y_{\text{max}}} \int_{-y_{\text{max}}}^{y_{\text{max}}} E^2 dy = m_T^2 \left(\frac{\sinh(2y_{\text{max}})}{4y_{\text{max}}} + \frac{1}{2} \right) \quad (A5) $$

$$ F = \frac{1}{2y_{\text{max}}} \int_{-y_{\text{max}}}^{y_{\text{max}}} E dy = m_T \frac{\sinh(y_{\text{max}})}{y_{\text{max}}}. \quad (A6) $$

The approximation used in going from Equation (A2) to (A3) is well-justified for typical numerical values used in this study. Figure 11 shows a numerical integration of the EMCIC factor from Equation (A2) (labeled “exact”) and Equation (A3) (“approximation”) for values indicated in the Figure.

APPENDIX B: REGION OF APPLICABILITY FOR THE EMCIC FORMULA

The exact expression for the phase space integral of Eq. (1) was approximated by that in Eq. (2) through an appeal to the Central Limit Theorem. Discrepancies between the exact expression and the approximate Gaussian functional form will become more apparent in the tails of the distribution. For example, our approximate phase space suppression function never vanishes, thus permitting a tiny but finite probability for a particle to carry more energy than that of the entire system! In this Appendix, we perform simple numerical calculations with the GENBOD computer program [63], to estimate the range of quantitative reliability of Equation (2).

Given a total energy E_{tot}, multiplicity N and list of particle masses, GENBOD produces phasespace-weighted events of N
4-momenta by filling Lorentz-invariant phase space according to the Fermi distribution,

$$\tilde{f} = 2E\frac{d^3N}{dp^3} = \frac{1}{2\pi p} \frac{dN}{dE} \propto e^{-E/\zeta}. \quad (B1)$$

where ζ characterizes the slope of the energy distributions. Since it is $(1/p) \cdot dN/dE$ which is exponential and not $(1/p) \cdot dN/dE$, the inverse slope ζ should not be considered a “temperature,” but only a parameter characterizing the parent distribution.

As a result, generated particles in an event are correlated only by energy and momentum conservation. Thus, EMCIC effects on the calculated single-particle spectrum, $f_c(p)$, are given precisely according to Equation $B1$.

To evaluate the region of validity of Equation $B4$ we use Eq. $B1$ as a parent distribution, $\tilde{f}(p)$. Results of this exercise are presented on Figure 12 which shows energy spectra from GENBOD events with the same average energy per particle $\langle E \rangle_c = E_{\text{tot}}/N = 1$ GeV, but different multiplicity N. As expected, in the limit of large N, $f_c(p) \rightarrow \tilde{f}(p)$, and it is clear that the plotted distribution is increasingly well-described by an exponential, as N increases.

It is appropriate here to point out why we wish to identify the parent distribution in the first place, rather than following the procedure outlined in Section II B. There, the parent distribution cancels when taking the ratio of two measured spectra $f_{c,1}/f_{c,2}$, using the postulate that the parent distributions f_1 and f_2 are identical. In contrast, the parent distributions for the different GENBOD spectra shown in Figure 12 are assuredly not the same. Those spectra came from event samples having the same $\langle E \rangle$, (c.f. Eq. 3), and thus different $\langle E \rangle$ (c.f. Eq. 3), implying different parents.

Having at hand a functional form for the GENBOD parent distribution, we may test our approximate formula for the phasespace modification factor, by fitting the calculated spectrum according to

$$\frac{dN_c}{dE} = A \cdot p \cdot e^{-E/\zeta} \times (B2)$$

$$\left(\frac{N}{N-1}\right)^2 \exp\left[\left(-\frac{1}{2(N-1)}\right)\left(\frac{3p^2}{\langle p^2 \rangle}\right) + \frac{E^2}{\langle E^2 \rangle - \langle E \rangle^2} - \frac{2E\langle E \rangle}{\langle E^2 \rangle - \langle E \rangle^2} + \frac{\langle E \rangle^2}{\langle E^2 \rangle - \langle E \rangle^2}\right],$$

where we used the fact that GENBOD generates particles isotropically so that $<p_x^2> = <p_y^2> = <p_z^2> = \frac{1}{3} <p^2>$. Since N is a known quantity, and $\langle E \rangle$, $\langle E^2 \rangle$ and $\langle p^2 \rangle$ may be directly calculated from ζ, the fit of Equation $B2$ has only two parameters: the overall normalization A, which is unimportant to us, and ζ, which characterizes the parent distribution.

The results are shown in Figure 13; and, for better detail, in Figure 14. For the case here, which is typical of that in the data, we see that our approximation begins to break down for particle energies $E \gtrsim 2 \div 3 \langle E \rangle$. Above this range, our approximation (e.g. Equation $B6$) should only be taken qualitatively.

[1] M. Gyulassy and M. Plumer, Phys. Lett. B243, 432 (1990).

[2] R. Baier, D. Schiff, and B. G. Zakharov, Ann. Rev. Nucl. Part.
