Stability and Oligomeric Equilibria of Refolded Interleukin-1b Converting Enzyme*

(Received for publication, April 3, 1996, and in revised form, June 6, 1996)

Robert V. Talanian, Luan C. Dang, Catherine R. Ferenz, Maria C. Hackett, John A. Mankovich, Jeffrey P. Welch, Winnie W. Wong, and Kenneth D. Brady

From BASF Biorsearch Corporation, Worcester, Massachusetts 01605

We report the preparation and characterization of interleukin-1b converting enzyme (ICE) refolded from its p20 and p10 protein fragments. Refolded ICE heterodimer (p20p10) was catalytically active but unstable, and in size exclusion chromatography eluted at an apparent molecular mass of 30 kDa. The mechanisms of the observed instability were pH-dependent dissociation at low enzyme concentrations, and autolytic degradation of the p10 subunit at high concentrations. Binding and subsequent removal of a high affinity peptidic inhibitor increased the apparent molecular mass to 43 kDa (by size exclusion chromatography), and significantly increased its stability and specific activity. Chemical cross-linking and SDS-polyacrylamide gel electrophoresis analysis of the 43-kDa size exclusion chromatography conformation revealed a 60-kDa species, which was absent in the 30-kDa conformer, suggesting that inhibitor binding caused formation of a (p20p10)2 homodimer. The observation of a reversible equilibrium between ICE (p20p10) and (p20p10)2 suggests that analogous associations, possibly between ICE and ICE homologs, can occur in vivo, resulting in novel oligomeric protease species.

Interleukin-1b converting enzyme (ICE)1 (1, 2) is an intracellular cysteine protease that activates the proinflammatory cytokine interleukin-1b (IL-1b) by cleavage at Asp116-Ala117 (3-5). Several lines of evidence suggest that ICE activity is required for IL-1b activation and that this is a crucial step in inflammation. IL-1b activation is effectively blocked by CrmA, a cowpox virus serpin that binds and inhibits ICE (6). The tetrapeptide ICE inhibitor acetyl-Tyr-Val-Ala-Asp-CHO (Ac-YVAD-CHO) (2) is also effective in blocking IL-1b activation (2, 7-9). Mice lacking functional copies of the murine ICE gene (10, 11), and cells derived from those animals, are deficient in IL-1b maturation. ICE-deficient mice are also resistant to en-...
into its unique Xba site. The following polymerase chain reaction primers were used: P1 (p20 NH2 terminus): 5'-GGG GAA TTC ATG ACC CCG GCT ACG ACC TCT CCT GTG CTA GAA GAT GTT AAA CTT GTC TCT CTT GAA GAA GC-3'; P2 (p20 COOH- terminus): 5'-CCC CAC TAG TCT ATT AAT CTT TAA ACC ACA CCA CAC GGC-3'; P3 (p10 NH2 terminus): 5'-GGG GAA TTC ATG GTCT ATC AAA AAG CAC CTC ACC GAA GAA GAC-3'; P4 (p10 COOH terminus): 5'-CCC CAC TAG TCC TCT ATT AAT CTC GTC GGA AGA GG-3'.

The resulting plasmids, pAM4 ICE(120–297) and pAM4 ICE(317–404) for p20 and p10, respectively, contain the genes under the control of the inducible pL promoter, with several altered amino-terminal codons that reflect E. coli codon preferences.

Expression vectors for ICE p10 or p20 were transfected into E. coli CAG597 cells (New England Biolabs, Beverly, MA) containing the temperature-sensitive repressor cI857 constitutively expressed from a gene insert into the EcoRI-PstI-I site of the pJAM4 ICE(120–297) and pJAM4 ICE(317–404) for p20 and p10. Cells were grown at 29°C to an OD600 value of 30, when the temperature was raised to 42°C to induce proteinsynthesis. The cells were harvested 4 h after induction, and concentrated using a Pellicon filter unit (Millipore, Bedford, MA) with a 0.2-

Characterization of in Vitro Refolded ICE

Inclusion bodies were dissolved in 6 M guanidine hydrochloride, 200 mM DTT, and 50 mM Tris, at pH 8.5. The sample was then dialyzed against 2 M Ac-YVAD-CHO in assay buffer. An aliquot of the sample (0.8 mg) was thawed at 80°C, and Ac-YVAD-CHO-inhibited Refolded ICE—

Reactivation of Ac-YVAD-CHO-inhibited Refolded ICE—

An aliquot of frozen refolded ICE (25 mg ml–1) was thawed to 4°C, and Ac-YVAD-CHO-inhibited Refolded ICE was added to a final concentration of 100 mM ICE and 250 mM Ac-YVAD-CHO in assay buffer. The mixture was then dialyzed exhaustively at 4°C into HGE buffer, then dialyzed against 50 mM Tris, pH 8.5, at 4°C. Enzyme samples were analyzed by size exclusion chromatography as described above.

RESULTS

Preparation of refolded ICE—The p20 and p10 subunits corresponding to the active form of ICE (2) were expressed separately in E. coli from plasmid-based vectors as insoluble inclusion bodies. After inclusion body purification and reverse phase

Buffer A (50 mM HEPES, 20% glycerol, and 0.5 mM EDTA, pH 6.7) at 4°C, and eluted with a linear gradient of Buffer A/Buffer B plus 0.5 mM NaCl.

Determination of Protein Concentration—Protein concentrations were determined by Coomassie Plus staining (Pierce) using bovine serum albumin as a standard.

ICE Activity Assays—Refolded ICE was diluted to the indicated concentrations into 400 μl of HGDE buffer (100 mM HEPES, pH 6.7, 5 mM DTT, 0.5 mM EDTA, 20% glycerol), plus 15 μM acetyl-Tyr-Val-Ala-Asp-Mca (Ac-YVAD-Mca) (35) in a 2 × 10–7 mm fluorescence cuvette at 37°C. The change in fluorescence due to liberated Mca was monitored at 460 nm using 380 nm excitation in a LS-50B Luminescence Spectrometer (Perkin-Elmer, Norwalk, CT). Standard curves were prepared using solutions of Mca in assay buffer.

Assays at low enzyme concentrations demonstrated distinct biphasic behavior, with release of Ac-YVAD-CHO over a period of downwound curvature followed by a linear steady-state. Therefore, results were modeled by non-linear regression analysis to fit chromatograms to an expression for two independent Gaussian curves:

\[F(t) = F_0 + V_r + \frac{V_f}{1 + (t - t_f)^2} \]

where \(F_0 \) is the fluorescence at time 0, \(V_r \) and \(V_f \) are initial and final velocities, and \(k \) is the first-order rate constant describing decay of ICE activity.

Size Exclusion Chromatography—Analytical size exclusion chromatography (SEC) of ICE was performed using a SMART System (Pharmacia, Uppsala, Sweden) with a Superdex-75 column (3.2 × 300 mm, 2.0-nl bed volume) at 6°C with PBS buffer at 45 μl ml–1. Injection volumes were ≤50 μl. Absorbance of the column eluate was monitored at 280 and 230 nm, and signals at these wavelengths were proportional. Molecular weights of experimental peaks were evaluated from plots of log(M) versus elution time for comparable standard proteins (Pharmacia LKB Biotech). Peak areas were evaluated using non-linear regression analysis to fit chromatograms to an expression for two independent Gaussian curves:

\[\frac{A_1}{\alpha_1} \exp \left[\frac{(t - m_1 - 2\sigma_1)^2}{4\sigma_1^2} \right] + \frac{A_2}{\alpha_2} \exp \left[\frac{(t - m_2 - 2\sigma_2)^2}{4\sigma_2^2} \right] \]

pH-dependence of rICE Stability—Buffers in the pH range 6.0–8.0 were prepared by adjusting a stock HGDE buffer to the given pH by addition of 1 M HCl or NaOH. Aliquots of refolded ICE were thawed, and enzyme was diluted to a final concentration of 1 mM into the buffers containing 15 μM Ac-YVAD-Mca. Fluorescence was monitored for 1000 s, or until steady-state was achieved. Data were fitted to Equation 1 by non-linear regression analysis.

Cross-linking of Refolded ICE—Refolded ICE (0.8 μg ml–1) was thawed and a 1-ml aliquot was treated with 100 μM Ac-YVAD-CHO (Bachem Bioscience, Philadelphia, PA) for 30 min at 25°C or with 200 μM α-pyridine for 1 h at 25°C. Samples were then dialyzed to 4°C, and solid ammonium sulfate (J. T. Baker, Phillipsburg, NJ) was added to the reactions to achieve 80% saturation. The samples were incubated on ice for 2 h, then centrifuged at 13,000 × g for 20 min. Pellets were resuspended gently with 25 μl of HGE buffer (HGDE without DTT), then centrifuged to remove aggregated protein. Concentrated inhibited enzyme samples were analyzed by size exclusion chromatography as described above. The major fraction (22.5 μl at 43 kDa (Ac-YVAD-CHO-inhibited enzyme) or at 29 kDa (α-pyridine-inhibited enzyme) was collected and treated with 250 μM bis-maleimidohexane (Pierce) at 25°C for 45 min. The reactions were then rechromatographed on Superdex-75. Small fractions were collected, chromatographed on 10–20% Tris-Tricine mini gel (Integrated Separation Systems, Natick, MA), and detainted by silver staining.

Reactivation of Ac-YVAD-CHO-inhibited Refolded ICE—An aliquot of frozen refolded ICE (25 mg ml–1) was thawed to 4°C, and Ac-YVAD-CHO-inhibited Refolded ICE was added to a final concentration of 200 μM. The sample was warmed to room temperature and incubated for 30 min. The mixture was then dialyzed exhaustively at room temperature against 100 mM HEPES, pH 6.7, 20% glycerol, 0.5 mM EDTA, 25 mM semicarbazide, 5 mM glutathione disulfide, with three buffer changes over 12 h, and a final 1 h dialysis at 4°C into HGE. The enzyme was stored at −80°C until ready for use.

RESULTS

Preparation of refolded ICE—The p20 and p10 subunits corresponding to the active form of ICE (2) were expressed separately in E. coli from plasmid-based vectors as insoluble inclusion bodies. After inclusion body purification and reverse phase
Characterization of in Vitro Refolded ICE

high performance liquid chromatography, approximately 1.5 g of lyophilized proteins at 80–90% purity were obtained from 14-liter fermentations. The purified proteins were dissolved in a reducing and denaturing Tris buffer at pH 9.0, and mixed at a 1:1 molar ratio at 250 μg ml⁻¹. Catalytically active ICE enzyme was prepared by refolding the p20 and p10 fragments as described under “Experimental Procedures.” Refolding was effected by exhaustive dialysis first against a similar buffer lacking denaturant. To generate active enzyme, the material was then dialyzed against a buffer containing HEPES at pH 6.7. Dialysis of denatured p20 and p10 directly into the HEPES buffer resulted in catalytically inactive material.

Refolded ICE (rfICE) was purified by ion exchange chromatography to >95% as judged by SDS-PAGE (Fig. 1), with a single significant contaminant at about 7 kDa (p7). NH₂-terminal sequencing identified p7 as a degradation product of ICE p10 arising from cleavage at Asp⁻¹⁹⁸⁻¹⁹⁹-Gly. Complex formation with the irreversible peptidic ligand acetyl-Tyr-Val-Ala-Asp-Glu-Lys (32) altered the ion exchange mobility of rfICE, but the observation that only half of the material displayed altered mobility after incubation with saturating amounts of peptidic ligand suggested that rfICE contained approximately 50% catalytically inactive protein.

Stabilization of rfICE by Substrate—When rfICE catalytic activity was assayed at a protein concentration of 3 nm, the rate of catalysis decreased for approximately 100 s to a constant non-zero velocity (Fig. 2A). Equation 1 was used to derive initial and final velocities and rate constants for this process as a function of substrate concentration. Michaelis-Menten analysis of the initial velocities (Fig. 2B) gave Kₘ and kcat values of 8 μM and 0.05 s⁻¹, respectively. The observed kcat for rfICE is about 10-fold less than that reported for ICE purified from human THP.1 monocytes (2). The plot of final velocities (Fig. 2B) is sigmoidal, reflecting a substrate-induced decrease in the rate of the rapid decay phase. This is further illustrated by the effect of substrate concentration on the decay rate constant (Fig. 2C). Since the ratio Kₘ/([S]+Kₘ) provides a measure of the total enzyme in the unbound state, the decay rate as a function of substrate concentration can be modeled by:

\[k = k_{\text{inact}} + k_{\text{unbound}}K_m(S + K_m)(\text{for} \ k_{\text{inact}} \ll k_{\text{unbound}}) \]

(Eq. 3)

where k_{inact} is the rate of decay by some process that affects all enzyme and k_{unbound} is the rate of decay of enzyme with no bound ligand. Fitting the data of Fig. 2C to Equation 3 yielded k_{unbound} = 0.040 s⁻¹, k_{inact} = 0.0021 s⁻¹, and Kₘ = 5.5 μM. By this model, substrate binding decreases the decay rate of rfICE 20-fold. The initial slope \((i.e. \ for [S] < 10 \mu M) \) of the plot of final velocities is 65 m⁻¹s⁻¹, while that of the final velocities is 6250 m⁻¹s⁻¹. Thus, at low substrate concentrations, the specific activity of rfICE falls to approximately 1% of its initial value.

Enzyme Concentration Dependence of rfICE Decay—At low enzyme concentrations, decay of rfICE activity was monitored by reaction progress curves (Fig. 3A). Below 10 nm, activity fell quickly (k = 0.02–0.04 s⁻¹; t₁/₂ < 40 s) to a low steady-state value (Fig. 3A, inset). As enzyme concentration was increased toward 24 nm, activity loss became slower, with time constants approaching 0.0035 s⁻¹. When refolded enzyme was preincubated at 37 °C at four different concentrations in the range 50–2000 nm, velocities fell to a final non-zero value with a time constant of 0.0023 ± 0.0008 s⁻¹ (t₁/₂ = 5 min; Fig. 3B). There was no observable dependence of decay rate on enzyme concentration in this range. The combined plot of decay rates versus enzyme concentration for both types of experiments (Fig. 3B, inset) shows that the decay rate is concentration-dependent for [E] < 30 nm, and concentration-independent up to 2 μM.

The contribution of proteolysis to enzyme decay was tested by incubating 2 μM rfICE for various times followed by SDS-PAGE analysis. Over 1 h, the intensity of the 10-kDa band decreased, accompanied by the appearance of lower molecular weight fragments (Fig. 3C). The disappearance of ICE p10 correlated with activity loss (Fig. 3D). We conclude that autolytic cleavage of the 10-kDa subunit is the primary process of rfICE inactivation at high (≥2 μM) enzyme concentrations,
while dissociation is the primary process at low (≤30 nM) concentrations.

pH Dependence of rfICE Inactivation—The pH dependence of the rapid phase of rfICE decay at low rfICE concentration (1 nM) was examined using a series of HEPES buffers from pH 6.0 to 8.0. The enzyme was assayed using 15 μM Ac-YVAD-Amc, and the resulting curves were analyzed using Equation 1. At the lower pH values, activity decayed rapidly to final, very low values (Fig. 4). Between pH 6.8 and 6.9, a dramatic increase in the stability of the enzyme was observed, and at pH values >6.9, little or no rapid decay occurred. We conclude that ionizations with pKₐ values, 6.9 greatly affect the physical stability of rfICE. The steepness of the transition suggests that several ionizations are involved.

Analytical Size Exclusion Chromatography of Refolded ICE—Two distinct species within rfICE were resolved by analytical SEC, at apparent molecular masses of 43 and 29 kDa (Fig. 5A). The areas under each peak were estimated to be 6 and 94%, respectively, using Equation 2. A disproportionately high fraction of total catalytic activity coincided with the higher molecular weight peak. Exposure of rfICE to 200 μM of the reversible peptidic inhibitor Ac-YVAD-CHO (2) for 150 s at 4°C changed the distribution of protein such that 43% of the protein eluted at 43 kDa (Fig. 5A). A similar shift was also induced by their irreversible inhibitor Ac-YVAD-CMK (32) (data not shown). The mobility shift persisted when rfICE was treated with 200 μM Ac-YVAD-CHO for 30 min, then dialyzed exhaustively against HGE buffer containing 5 mM oxidized glutathione and 25 mM semicarbazide to remove the inhibitor. The resulting material (Fig. 5B) migrated predominantly as the 43-kDa species containing almost all of the enzyme activity. We conclude

8.0 nM

![Graph](image-url)

Fig. 3. Enzyme concentration dependence of rfICE decay. A, rfICE was diluted to nominal concentrations of 3.4 (inset), 7, 12, 18, or 24 nM as indicated, into HGDE buffer containing 15 μM Ac-YVAD-Amc. Substrate hydrolysis was followed for 2000 s (18 and 24 nM concentrations), or until steady-state was achieved (3, 7, and 12 nM; see inset). Curves were fit to Equation 1 to estimate the decay rates (see inset to B). B, rfICE was diluted into HGDE buffer (pH 7.5, 30°C) to the indicated nominal concentrations. Aliquots were withdrawn at the indicated times and diluted into HGDE (pH 7.5) buffer containing 15 μM Ac-YVAD-Amc. Substrate hydrolysis was linear at pH 7.5, and reactions were followed for 30 s (control assay) or 60 s. Velocities were obtained by linear regression analysis. All rates are reported as a percentage of the control rate obtained 5 s after dilution. Activity decayed to a final non-zero rate, so that rate constants were estimated by fitting to the model \(A(t) = A_{\text{final}} + (100 - A_{\text{final}}) e^{-kt} \), where \(A_{\text{final}} \) is the velocity at large times, and \(k \) is the rate of decay. Inset B, decay rate constants observed from reaction progress curves (solid circles) or preincubation assays (open circles) are plotted as a function of enzyme concentration. C, SDS-PAGE analysis of room temperature-incubated rfICE. Lanes represent samples drawn at various times as indicated in panel D. Molecular weight standards are as shown. D, band intensities of rfICE p20 (closed circles) and p10 (open circles) from the gel of panel C were quantitated by scanning, and are plotted against the catalytic activity (closed squares) of the same samples in standard assays.
that binding of a peptidic inhibitor favors the formation of a higher order oligomer of rfICE, which displays significantly increased stability and specific activity.

Cross-linking and SDS-PAGE Reveal a 60-kDa ICE Species—Refolded ICE in complex with Ac-YVAD-CMK (32) or Ac-YVAD-CHO crystallized as a 60-kDa tetramer, but migrated at about 43 kDa in analytical SEC. Although anomalous protein SEC mobility is common, cross-linking studies were performed to resolve this discrepancy. rfICE was treated with Ac-YVAD-CHO or 6-mercapto-1-hexanone, a light-dependent ICE inhibitor that fails to induce an SEC mobility shift. The samples were concentrated by AmSO₄ precipitation, purified by SEC, and cross-linked with bis-maleimidohexane. The material was then repurified by SEC. SDS-PAGE analysis with silver staining revealed a 60-kDa species in the 43-kDa SEC fractions resulting from Ac-YVAD-CHO treatment (Fig. 6A). The strong band at about 43 kDa may represent a partially cross-linked species. The 29-kDa SEC fraction from Ac-YVAD-CHO treated rfICE contained among others a prominent 30-kDa species but no 60-kDa species. The 60-kDa band was similarly absent from all fractions of ICE that had been treated with α-pyridoin prior to cross-linking (Fig. 6B). We conclude that rfICE migrating by SEC at an apparent molecular mass of 43 kDa is at least partially composed of the expected (p20p10), 60-kDa tetramer, which migrates on SEC at an anomalously low apparent molecular mass. Catalytically active material that migrates at about 29 kDa contains the expected (p20p10) heterodimer.

DISCUSSION

Our data suggests that active rfICE exists in an equilibrium between (p20p10) heterodimer and a (p20p10)₂ homodimer of

Fig. 5. Size exclusion chromatography analysis of rfICE. rfICE was analyzed by SEC as described under “Experimental Procedures.” A, elution of uninhibited (solid line) or Ac-YVAD-CHO inhibited (dashed line) rfICE. Fractions of untreated rfICE were collected and assayed in HGDE as described under “Experimental Procedures” using 35 μM Ac-YVAD-Amc (solid circles). Elution of molecular weight standards (Pharmacia LKB Biotechnology) bovine serum albumin (67 kDa), ovalbumin (43 kDa), chymotrypsinogen A, (25 kDa), and ribonuclease A (13 kDa) were as indicated. B, elution and activity assay of rfICE inhibited with Ac-YVAD-CHO followed by inhibitor removal.

Fig. 6. Identification of a 60-kDa ICE species in the 43-kDa SEC peak. A, refolded ICE was treated with Ac-YVAD-CHO (100 μM) for 30 min at 25 °C, precipitated by addition of solid ammonium sulfate, centrifuged, and redissolved in 25 μl of HGDE, and separated by SEC as described under “Experimental Procedures.” The major peak at 43 kDa was treated with bis-maleimidohexane (250 μM) for 45 min at room temperature. The mixture was rechromatographed by SEC, and fractions were collected and analyzed by SDS-PAGE. Lane 1, molecular weight standards. Lane 2, ammonium sulfate-concentrated rfICE prior to separation by SEC. Lanes 3-11, fractions of the 43-kDa SEC peak. B, the same procedure was followed, except enzyme was inhibited using α-pyridoin, and the dominant SEC peak at 29 kDa was collected for cross-linking. Lane 1, molecular weight standards. Lane 2, rfICE control. Lanes 3-9, fractions of the 29-kDa SEC peak.

2 N. P. Walker, R. V. Talanian, L. C. Dang, C. R. Ferenz, M. C. Hackett, J. A. Mankovich, J. P. Welch, W. W. Wong, and K. D. Brady, unpublished results.
such as Ac-YVAD-CHO, the equilibrium between heterodimer and homo-dimer shifts toward homo-dimer (Fig. 5). The observation that high substrate concentrations stabilize and increase the specific activity of refICE suggests that substrates also favor (p20p10)_2 formation, but we were unable to demonstrate formation of a 43-kDa species when refICE was treated with high concentrations (>1 mM) of peptide substrate followed by SEC analysis (not shown). We postulate that efficient formation of (p20p10)_2 occurs only when a long-lived enzyme-ligand complex is formed, as expected for slowly reversible (Ac-YVAD-CHO) or irreversible (Ac-YVAD-CMK) inhibitors.

In monocytes, ICE exists primarily as its p45 precursor form (36), suggesting that the mature, active form, when it is produced, decays rapidly. We observe that treatment of ICE with the peptide aldehyde inhibitor Ac-YVAD-CHO, followed by its removal, confers to the enzyme significantly enhanced stability. Purification of ICE from THP.1 cells using a peptide aldehyde affinity column (2) mimics our Ac-YVAD-CHO treatment. The stability of Ac-YVAD-CHO-treated refICE is similar to that of THP.1 ICE (2). Thus the observed stability of isolated natural enzyme may be partly a result of the purification procedure.

The mechanism of ICE down-regulation in vivo is unknown. ICE contains numerous sites in its primary sequence that might be cleaved by ICE or ICE homologs. We find that Asp381, derived from two to four separate gene products. The crystal structure of ICE shows that catalytic residues are part of p20, while the residues that form the P1-P4 pockets derive from Johnstone, C. R., Sali, A., and Grishin, N. V. (1995) 116, 384–393.

Our data shows that ICE (p20p10) heterodimer is in equilibrium with (p20p10)_2 homodimer. If this occurs in vivo, it would allow in principle the formation of pairs of (p20p10) heterodimers derived from different gene products, most likely ICE homologs. Gu et al. (37) report evidence for domain swapping between ICE and the ICE homolog TX/Ich-2/ICErelII (15–17), which results in each (p20p10) heterodimer containing p20 from one gene product and p10 from another. Similarly, Fernandes-Alnemri et al. (20) present evidence for a complex of Mch3 and CPP32. Together with our data, these observations suggest that it is possible to form active ICE-like proteases derived from two to four separate gene products. The crystal structure of ICE shows that catalytic residues are part of p20, while the residues that form the P1-P4 pockets derive from both subunits. The many combinations of (p20p10), that could both subunits. The many combinations of (p20p10)_2 that could result in would vary with the substrate specificity, catalytic properties, and control mechanisms. It is possible that different combinations of hetero- and homo-oligomeric species are stabilized by different natural substrates, offering further control of ICE-like enzyme formation and stability. Such fine control may be necessary for proper regulation of a family of enzymes responsible for both host defense and cellular suicide.

REFERENCES
1. Cerretti, D. P., Kostosky, C. J., Mosley, B., Nelson, N., Van, N. K., Greenstreet, T. A., March, C. J., Kronheim, S. R., Druck, T., Cannizzaro, L. A., Huebner, K., and Black, R. A. (1992) Science 256, 97–100.
2. Thornberry, N. A., Gallant, M., Gareau, Y., Griffin, Y., Tschopp, J., and Powers, J. C. (1991) EMBO J. 10, 3581–3586.
3. Munday, N. A., Vaillancourt, J. P., Ali, A., Casano, F. J., Miller, D. K., Coloured, M., and Ghayur, T. (1995) Biochim. Biophys. Acta 123, 123–138.
4. Chang, A. C. Y., and Cohen, S. N. (1978) J. Bacteriol. 134, 1141–1156.
5. Zimmerman, M., Yerevich, E., and Patel, G. (1976) Anal. Biochem. 70, 258–262.
6. Ayala, J. M., Yamin, T.-T., Egger, L. A., Chin, J., Kostura, M. J., and Miller, D. K. (1994) J. Immunol. 153, 2592–2599.
7. Gu, Y., Wu, J., Faucheu, C., Lanneau, J., Zhu, H., and Yuan, J. (1993) Cancer Res. 53, 2173–2174.
8. Thornberry, N. A., Takahashi, A., Armstrong, R., Krebs, J., Fritz, L., Tomasselli, K. J., Wang, L., Yu, Z., Croce, C. M., Salvesen, G., Earnshaw, W. C., Litwack, G., and Alnemri, E. S. (1995) Cancer Res. 55, 6045–6052.
9. Duan, H., Chinnaiyan, A. M., Tschopp, J., and Flavell, R. A. (1995) EMBO J. 14, 389–399.
10. Li, P., Allen, H., Banerjee, S., Franklin, S., Herzog, L., Johnston, C. G., Li, P., Mankovich, J. A., Terranova, M., and Ghayur, T. (1995) J. Biol. Chem. 270, 15250–15256.
11. Munday, N. A., Vaillancourt, J. P., Ali, A., Casano, F. J., Miller, D. K., Molineaux, S. M., Yamin, T.-T., Yu, V. L., and Nicholson, D. W. (1995) J. Biol. Chem. 270, 15870–15876.
12. Thornberry, N. A., Miller, D. K., and Nicholson, D. W. (1995) J. Biol. Chem. 270, 15870–15876.
13. Thornberry, N. A., Conlon, P. J., Hopp, T. P., and Cosman, D. (1985) Nature 315, 641–647.
14. Cameron, P., Limjuco, G., Rodkey, J., Bennett, C., and Schmidt, J. A. (1985) J. Exp. Med. 162, 790–798.
15. Mosley, B., Urdal, D. L., Prickett, K. S., Larsen, A., Cosman, D., Conlon, P. J., Gillis, S., and Dower, S. K. (1987) J. Biol. Chem. 262, 2941–2944.
16. Ray, C. A., Black, R. A., Kronheim, S. R., Greenstreet, T. A., Sleath, P. R., Salvesen, G. S., and Piduck, D. J. (1992) Cell 69, 597–604.
17. Molineaux, S. M., Casano, F. J., Rolando, M. A., Peterson, E. P., Limjuco, G., Chin, J., Griffin, P. R., Calaycay, J. R., Ding, G. J., Yamin, T.-T., Palhya, O. C., Luei, S., Fletcher, D., Miller, D. K., Howard, A. D., Thornberry, N. A., and Kostura, M. J. (1993) Proc. Natl. Acad. Sci. U. S. A. 90, 1809–1813.
18. Fletcher, D. S., Agarwal, L., Chapman, K. T., Chin, J., Egger, L. A., Limjuco, G., Luei, S., MacIntyre, D. E., Peterson, E. P., Thornberry, N. A., and Kostura, M. J. (1995) J. Interferon Cytokine Res. 15, 243–248.
19. Elford, P. R., Heng, L. R., and Mackenzie, A. R. (1995) Br. J. Pharmacol. 115, 601–606.
20. Li, P., Allen, H., Banerjee, S., Franklin, S., Herzog, L., Johnston, C., McDowell, J., Paskind, M., Rodman, L., Safteld, J., Towne, E., Tracey, D., Wardwell, S., Wei, F.-Y., Wong, W., Kamen, R., and Seshadri, T. (1995) Cell 80, 401–411.
21. Kuida, K., Lippke, J. A., Ku, G., Harding, M. W., Livingston, D. J., Su, M. S., and Flavell, R. A. (1995) Science 267, 2000–2003.
22. Thornberry, N. A., Miller, D. K., and Nicholson, D. W. (1995) Perspect. Drug Disc. 2, 389–399.
23. Miller, D. K., Calaycay, J. R., Chapman, K. T., Howard, A. D., Kostura, M. J., Molineaux, S. M., and Thornberry, N. A. (1993) Ann. N. Y. Acad. Sci. 693, 133–148.