Loss of *Mrap2* is associated with *Sim1* deficiency and increased circulating cholesterol

T V Novoselova¹, R Larder², D Rimmington², C Lelliott³, E H Wynn², R J Gorrigan¹, P H Tate³, L Guasti¹, The Sanger Mouse Genetics Project³, S O’Rahilly², A J L Clark¹, D W Logan³, A P Coll² and L F Chan¹

¹Centre for Endocrinology, Queen Mary University of London, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Charterhouse Square, London, UK
²University of Cambridge Metabolic Research Laboratories, MRC Metabolic Disease Unit, Wellcome Trust-MRC Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke’s Hospital, Cambridge, UK
³Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK

Abstract

Melanocortin receptor accessory protein 2 (MRAP2) is a transmembrane accessory protein predominantly expressed in the brain. Both global and brain-specific deletion of *Mrap2* in mice results in severe obesity. Loss-of-function MRAP2 mutations have also been associated with obesity in humans. Although MRAP2 has been shown to interact with MC4R, a G protein-coupled receptor with an established role in energy homeostasis, appetite regulation and lipid metabolism, the mechanisms through which loss of MRAP2 causes obesity remains uncertain. In this study, we used two independently derived lines of *Mrap2* deficient mice (*Mrap2*²tm¹αℓtm¹α) to further study the role of *Mrap2* in the regulation of energy balance and peripheral lipid metabolism. *Mrap2*²tm¹αℓtm¹α mice have a significant increase in body weight, with increased fat and lean mass, but without detectable changes in food intake or energy expenditure. Transcriptomic analysis showed significantly decreased expression of *Sim1*, *Trh*, *Oxt* and *Crh* within the hypothalamic paraventricular nucleus of *Mrap2*²tm¹αℓtm¹α mice. Circulating levels of both high-density lipoprotein and low-density lipoprotein were significantly increased in *Mrap2* deficient mice. Taken together, these data corroborate the role of MRAP2 in metabolic regulation and indicate that, at least in part, this may be due to defective central melanocortin signalling.

Introduction

Melanocortin receptor accessory protein (MRAP) and its parologue MRAP2 are a recently identified class of small, single-pass transmembrane domain accessory proteins (Chan et al. 2009, Novoselova et al. 2013). Both MRAP and MRAP2 have been shown to interact with the melanocortin receptors (MCRs), a family of G protein-coupled receptors (GPCRs) with diverse physiological function stimulated by pro-opiomelanocortin (POMC) derived peptide agonists such as adrenocorticotropic hormone (ACTH) and α-MSH (Cone 2005, Chan et al. 2009). Of the five MCRs (MC1R–MC5R), only the function of the melanocortin 2 receptor (MC2R) is clearly recognized to be facilitated...
by MRAPs (Metherell et al. 2005, Chan et al. 2009), although in-vitro data suggests a broader role in conjunction with all the MCRs (Chan et al. 2009, Sebag & Hinkle 2009, 2010).

MRAP is highly expressed in the adrenal gland and is essential for MC2R function. Mutations in MRAP are associated with familial glucocorticoid deficiency (OMIM#607398) (Metherell et al. 2005). MRAP2 is predominantly expressed in the central nervous system and hypothalamus, in particular within the paraventricular nucleus (PVN), a region known to have a role in energy homeostasis (Chan et al. 2009). Mice with global and brain-specific Mrap2 deletion developed marked obesity and rare loss-of-function or missense heterozygous variants in Mrap2 were also identified in humans with severe early-onset obesity (Asai et al. 2013). This work demonstrated that Mrap2’s role in the control of body composition and growth is via MC4R signalling (Asai et al. 2013). Further evidence for a link with MC4R signalling came from a study on the role of Mrap2 in zebrafish feeding and growth (Sebag et al. 2013).

Given these data, the phenotype observed in Mrap2-deficient mice is likely, at least in part, to be driven by disruption of central melanocortin signalling. However, some areas of uncertainty remain. In particular, the paradoxical observation that the mutant mice become obese without detectable changes in food intake or energy...
balance (Asai et al. 2013) requires exploration, as does the potential role of MRAP2 in peripheral cholesterol and lipid metabolism, a function known to be regulated by melanocortins (Nogueiras et al. 2007, Perez-Tilve et al. 2010). In this study, we have used an independently derived line of Mrap2-deficient mice (Mrap2\(^{tm1a/tm1a}\)) on two different genetic backgrounds to further study the role of MRAP2 in the regulation of energy homeostasis and the control of cholesterol and lipid metabolism.

Materials and methods

Generation of Mrap2-deficient mouse

Mice carrying the knockout-first conditional-ready allele Mrap2\(^{tm1a/ECOCMM6Wtsi}\) (abbreviated to Mrap2\(^{tm1a}\)) were generated on a C57BL/6N background as part of the Sanger Mouse Genetics Project (MGP) (Fig. 1A). Mice carrying the same Mrap2\(^{tm1a}\) allele were generated separately on a 129S5/SvEvBrdwtsi;129P2/OlaHsdWtsi background (abbreviated to 129/Sv). Detailed description of the Sanger Mouse Genetics Project methodology has been reported (Skarnes et al. 2011). Briefly, a promoter-containing cassette (L1L2_Bact_P) was introduced upstream of the critical Mrap2 exon 4 at position 87175333 of Chromosome 9, Build GRCh38 (Fig. 1A). The vectors containing Mrap2\(^{tm1a}\) were electroporated into C57BL/6N derived JM8F6 and 129P2/OlaHsd derived E14Tg2a embryonic stem (ES) cells. Correct ES cell gene targeting was confirmed by long-range PCR (Fig. 1B). Mice obtained from heterozygous intercross were genotyped for the Mrap2\(^{tm1a}\) allele by PCR (Supplementary Table 1, see section on supplementary data given at the end of this article).

Animal husbandry

The care and use of all animals were carried out in accordance with the UK Home Office regulations, UK Animals (Scientific Procedures) Act 1986. Mice were kept under a standard 12 h light:12 h darkness cycle with food and water ad libitum unless otherwise stated. 129/Sv background mice were maintained in a facility at 22°C and fed a standard chow (SDS RM3, Essex, UK). Mice on a C57BL/6N background were maintained at 21°C ±2°C, humidity 55%±10% and fed a standard rodent chow (LabDiets 5021-3, IPS, Richmond, VA, USA).

Metabolic phenotyping

Metabolic phenotyping was undertaken at two independent centres. In accordance to the 3R (replacement, reduction and refinement) principles of humane experimental technique and based on scientific objectives, not all procedures were performed on both lines. The genetic background of Mrap2\(^{tm1a}\) mice used in each experiment have been specified previously.

Phenotyping using C57BL/6N mice was performed at the Wellcome Trust Sanger Institute as part of the MGP (White et al. 2013), whilst studies using 129/Sv background mice were carried out at the University of Cambridge Metabolic Research Laboratories (MRL). For data arising from the MGP, a cumulative baseline was generated from controls of the same genetic background, age and sex. Seven male and seven female Mrap2\(^{tm1a}\) mice were processed in five batches for each sex (one to three mice per batch) and were phenotyped unblinded as part of a larger mixed genotype group that included weekly wild-type controls, with the individual mouse as the experimental unit. Animals for testing were randomly assigned to test sessions and operators. Mice were group housed to a minimum density of three per cage.

Body composition of 14-week-old anaesthetized C57BL/6N Mrap2\(^{tm1a}\) mice were determined by dual-energy X-ray absorptiometry (DEXA) using a Lunar PIXImus2 mouse densitometer (General Electric Medical Systems, Fitchburg, WI, USA).

After overnight fasting (approximately 16 h), intra-peritoneal glucose tolerance tests (IPGTT) were carried out on 13-week-old mice. After taking a baseline glucose measurement, mice were given a single glucose injection (2 g/kg) and blood glucose measured at 15, 30, 60 and 120 min (Accu-Chek Aviva, Roche).

Blood for plasma biochemistry was collected from 16-week-old C57BL/6N animals into lithium-heparin tubes. Animals were not fasted unless otherwise indicated. Clinical blood chemistry was carried out using an Olympus AU400 chemistry analyser (Olympus). Insulin levels were measured by Mesoscale Discovery array technology platform.

Additional data relating to the C57BL/6N Mrap2\(^{tm1a/tm1a}\) line can be found at http://www.mousephenotype.org/data/genes/MGI:3609239. For studies at MRL, individual experiments were matched for age and sex of mice. The body weight and length were measured weekly since weaning. Food intake was carried out on 8-week-old single-housed acclimatized animals. Response to fasting was measured after mice were moved into clean cages, and food was removed at 07:00 for 24 h.
Energy expenditure was determined at 8 weeks of age using indirect calorimetry. Animals were placed in a custom-built monitoring system based on their home cages (Ideas Studio, Cambridge, UK). Oxygen consumption and carbon dioxide production was measured, and samples were taken at 18min intervals for 48h. Energy expenditure was calculated using indirect calorimetry with the Elia and Livesey constants for respiratory quotient (Elia & Livesey 1992). Activity was assessed by beam breaks (beams 1.25cm apart) and measurements were taken as total, rather than consecutive beam breaks.

Behavioural tests

Open field assessment was used to quantify spontaneous locomotor behaviour in a novel environment. The open field, custom-designed-walled, infra-red backlit arena 75 cm² (Tracksys Ltd., Nottingham, UK) was subdivided into a centre zone (42 cm²) with the remainder designated as border zone. Twenty-week-old 129/Sv background mice were recorded for a 20min period using Noldus Ethovision-3 video tracking software. The position of the centre-point of the mouse within the open field was recorded. A mouse was considered to begin moving when its velocity surpassed 2 cm/s and stop moving when below 1.75 cm/s. *Mrap2tm1a/tm1a* and their *Mrap2*+/+ controls were littermates housed in single-sex groups of three to five.

Histology, non-radioactive in-situ hybridization, immunohistochemistry and PVN stereotaxic counts

For haematoxilin-eosin (H&E) staining, tissues were fixed in 4% paraformaldehyde (PFA) (Sigma), washed, dehydrated and embedded into paraffin before sectioning to 7μm. For Oil-Red-O staining, flash frozen liver was embedded into OCT (VWR), 10μm cryosections were adhered onto slides (Thermo Fisher) and stained with Oil-Red-O (Sigma). Both staining techniques were performed according to standard protocols. *Ucp1* immunohistochemistry was carried out using brown fat paraffin sections anti-*Ucp1* antibody (1/500) according to the manufacturer’s instructions (ab10983, Abcam) followed by detection using anti-rabbit HRP antibody (Thermo-Fisher) with DAB staining (Vector).

To generate riboprobes for *in-situ* hybridization (ISH), RNA was extracted from hypothalamus and cDNA prepared. Full-length *Mrap2* cDNA fragment (898 bp) was PCR amplified (Supplementary Table 1), ligated into pGEM-T easy vector (Promega), sequenced and then linearized with EcoRI or NotI (Promega). Digoxigenin (DIG)-labelled antisense and sense cRNA probes were synthesized by *in-vitro* transcription with T7 or SP6 RNA polymerases (Roche). Dissected brains were embedded into OCT and frozen in liquid nitrogen, 20μm cryosections were cut onto slides and fixed with ice-cold 4% PFA for 20min. Slides were then subjected to ISH as described previously (Gorrigan et al. 2011).

To determine the PVN neuron counts, brains of *Mrap2tm1atm1a* and wild-type littermates (three brains per group) were fixed in 4% PFA, cryoprotected with 20% sucrose and cryosectioned 20μm each, starting from −0.58 mm to −1.22 mm to bregma (Franklin & Paxinos 2012). After Nissl staining, the slides were visualized and images taken using Zeiss Axio Scope A1. The neurons within the PVN were then counted using ImageJ software (http://imagej.nih.gov/ij/).

Laser-captured microdissection and RNA isolation

Mouse brains from 9-week-old, 129/Sv *Mrap2tm1atm1a* and *Mrap2*+/+ mice were dissected, immediately embedded into OCT and frozen in liquid nitrogen. Coronal sections (20μm) covering the region from −0.58 mm to −1.22 mm caudal to bregma (Franklin & Paxinos 2012) were cut on a cryostat and mounted on Superfrost Plus slides (Thermo-Fisher). Frozen sections were fixed for 40s in 95% ethanol and then rehydrated (75% and 50% ethanol, 30s each). The slides were stained with 1% cresyl violet in 75% ethanol (w/v) for 45s, dehydrated in a graded ethanol series (50, 75, 95, 100% for 30s each), in 100% ethanol for 5min and air-dried. Laser microdissection was performed using a P.A.L.M. MicroBeam (Zeiss). The PVN was collected into AdhesiveCap tubes (Zeiss). Total RNA was immediately isolated using the RNAqueous-Micro Kit (Ambion). Quality and quantity of the total RNA samples were determined by the Agilent BioAnalyzer using PicoChip. RNase free technique and RNase free reagents were used throughout.

RNA microarray hybridization and analysis

Fifteen nanograms of isolated RNA with the RNA Integrity Number of at least 6.5 (*n* = 4 for *Mrap2*+/+; *n* = 3 for *Mrap2tm1atm1a*) was converted into cDNA using Ovation PICO SL System V2 (NuGEN), which was then fragmented and labelled using Encore BiotinIL Module (NuGEN). About 1500ng of each labelled product was then hybridized with MouseRef-Sv2.0 Expression BeadChip Kit according to the manual and scanned using iScan (Illumina, San Diego, CA, USA). Raw image data were...
converted to \textit{bsc} format using Illumina GenomeStudio 2011.1 software. Bonferroni correction with Family-Wise Error Rate (FWER) of 0.05 was applied to identify statistical significance of gene expression changes. Pathway analysis was performed using DAVID6.7 (http://david.abcc.ncifcrf.gov/tools.jsp) and STRING 10 (http://string-db.org/).

Quantification of RNA by real-time quantitative PCR (Q-RT-PCR)

Dissected tissues were immediately frozen in liquid nitrogen, homogenized using Precellys24 (Precellys, Bertin Technologies, Paris, France) into RPL buffer (Qiagen) and the RNA was extracted with RNeasy Mini Kit (Qiagen). cDNA was produced with SuperScriptII (Life Technologies) and 50 ng of cDNA was used for RT-Q-PCR with TaqMan Universal MasterMix II and gene-specific TaqMan probes (Life technologies, Supplementary Table 2). The fold change related to Actin-b was calculated using 2^{-\Delta\Delta Ct} method (Livak & Schmittgen 2001).

Protein quantification

White and brown fat tissues were homogenized using Precellys24 in ice-cold RIPA buffer (Sigma) containing phosphatase (Roche) and protease inhibitors cocktail (Sigma). Lysates were centrifuged for 20 min at 4°C before separation of the lipid layer. The SDS–PAGE samples were prepared with 2× Sample buffer (Sigma), heated at 95°C for 5 min, centrifuged for 20 min at 4°C to separate samples from residual lipids and subjected to western blotting. The membrane was blocked with 5% bovine serum albumin in TBS (Life Technologies) for 1 h at 22°C followed by incubation at 4°C overnight with the primary antibody: anti-ACTB antibody 1/10,000 (Abcam), anti-UCP1 1/5000 (Abcam) and antibodies for Fatty Acid and Lipid Metabolism and Lipolysis Activation (8334, 8335 Cell Signaling Technology). After three washes, the membranes were probed with anti-mouse 800 and anti-rabbit 800 IRDye antibodies (LI-COR). The band intensities were quantified using Odyssey software.

Statistical analysis

All data were generated from the MGP utilized statistical analysis with RStudio running R version 3.1.2 and Phenstat package version 2.0.1. This uses a mixed-model framework (Karp et al. 2012) to assess the impact of genotype on phenotype. The analysis was performed by loading the model without body weight, therefore analysing the absolute differences between genotypes whilst accounting for sex, using the model: \textit{Y} = \textit{Genotype} + \textit{Sex} + \textit{Genotype} × \textit{Sex}. Multiple correction testing was performed on the global \textit{P}-values using the Hochberg correction. Data is presented as both box-and-whiskers plot (showing min-mean-max values, with the box representing the 25th and 75th percentiles), and as a scatter dot plot for individual values. \textit{P}-values presented on graphs are either global \textit{P}-values for genotype adjusted for multiple correction testing, or (in the cases of sexual dimorphism) the \textit{P}-value is the impact of genotype for that sex.

For other data, males and females were assessed independently and the effect of genotype compared with wild-type controls was statistically tested using a two-tailed Student’s \textit{t}-test. For calorimetry data, multiple linear regression analysis (ANCOVA) was used. Data is plotted as mean ± S.E.M. and analysed using Microsoft excel and GraphPad Prism.

Results

Production of \textit{Mrap2}-deficient mice

Mice carrying the mutant \textit{Mrap2}^{tm1a} allele were viable with expected homozygous mutant offspring born from heterozygous matings (21% C57BL/6N \textit{Mrap2}^{tm1a/tm1a} and 23% 129/Sv \textit{Mrap2}^{tm1a/tm1a}). Both female and male \textit{Mrap2}^{tm1a/tm1a} mice were fertile and did not exhibit any changes in skin or hair colour/appearance. The introduction of the knockout-first \textit{Mrap2}^{tm1a} allele resulted in targeted disruption of the critical exon 4 encoding the transmembrane domain of the protein. The predicted outcome would be a premature stop codon, thus producing a short 132bp transcript that, if translated, would produce a 44 amino acid protein (predicted MW 5 kDa). Previous work demonstrated that such a protein was unlikely to be translated (Asai et al. 2013). However, generation of hypomorphic mice have been demonstrated previously using the ‘knockout-first’ strategy targeting other genes (McIntyre et al. 2012, Chen et al. 2013, White et al. 2013). We therefore determined the expression of \textit{Mrap2} by Q-RT-PCR analysis using a TaqMan probe spanning exons 4–5. cDNA generated from whole hypothalamus extracted from mice on an 129/Sv background revealed a low but detectable residual \textit{Mrap2} transcript of \textit{Mrap2}^{tm1a/tm1a} within homozygous mice (13%, range 11–16%), whilst heterozygotes \textit{Mrap2}^{tm1a/+} mice had approximately half of the \textit{Mrap2} transcript expression compared with \textit{Mrap2}^{+/+} (Fig. 1B).
Mrap2 is predominantly expressed in the paraventricular nucleus of the hypothalamus

Mrap2 RNA expression was studied in wild-type mouse tissues (Fig. 1B). The highest expression level was detected in the hypothalamus with substantial expression observed in the pituitary gland. Mrap2 expression was also detected in the cortex, cerebellum and adrenal gland. Kidney, testes, thymus and pancreas had very low expression levels whilst expression in white fat, liver, brown fat and skin was undetectable (Fig. 1B). ISH using a full-length Msx2 probe showed visible Msx2 RNA expression in the PVN of Mrap2+/+ mice on a 129/Sv background, which was absent in Mrap2tm1a/tm1a mice (Fig. 1C).

Mrap2 deficiency results in obesity in both C57BL/6N and 129/Sv background

Before weaning, there was no difference in body weight between wild-type and Mrap2tm1a/tm1a mice (Fig. 1D). However, in both genetic backgrounds and in both sexes, Mrap2tm1a/tm1a mice had a significant increase in body weight from 6 weeks of age. By 16 weeks of age on a C57BL/6N background, mean body weight in male wild-type mice was 32.2 g, compared with 42.5 g in Mrap2tm1a/tm1a mice; the corresponding weights in females were 25.4 g and 38.7 g, respectively (Fig. 1E). Similarly, on a 129/Sv background, mean body weight in male wild-type mice was 29.1 g, compared with 45.1 g in Mrap2tm1a/tm1a mice; the corresponding weights in females were 24.4 g and 36.9 g, respectively.

In C57BL/6N, this increase in body weight was as a result of a significant increase in both fat and lean mass (Fig. 2A and D). C57BL/6N Mrap2tm1a/tm1a females had twice the fat/body weight ratio of Mrap2+/+ controls and Mrap2tm1a/tm1a males displayed a 1.5-fold increase (Fig. 2A and B) with clear increase in adipocyte size macroscopically (Fig. 2C). No difference in bone mineral content or density was observed in either sex (Fig. 2E). Body length was significantly increased in female, but not male Mrap2tm1a/tm1a...
mice (Fig. 2F). On the 129/Sv background, a significant increase in fat mass was recorded in both male and female Mrap2tm1a/tm1a mice compared with wild-type controls with no change in lean mass observed (data not shown).

Mrap2-deficient mice display little difference in food intake and energy expenditure compared with wild-type control mice

Activation of the melanocortin system has a role in both feeding behaviour in both ad libitum conditions and in re-feeding after fasting. To determine if loss of Mrap2 affects feeding behaviour in either situation, the food intake and body weight of 8-week-old male and female 129/Sv mice were monitored over a period of 60 h. For the first 24 h, food was freely available, after which mice were fasted for 24 h followed by reintroduction of food (Fig. 3A, B, C and D).

Neither female nor male Mrap2tm1a/tm1a mice exhibited changes in food intake when compared with wild-type controls over the entire period. Further, Mrap2tm1a/tm1a mice did not show any difference in the rate of weight loss upon fasting compared with the wild-type mice. However, interestingly, during re-feeding after a fast, Mrap2tm1a/tm1a male mice did not re-gain weight as fast as the wild-type males (Fig. 3C and D).

Total energy expenditure measurements versus lean mass or total body weight did not show significant changes between the genotypes/sex (Supplementary Fig. 1). Analysis of respiratory quotient over a period of 48-h demonstrated that it did not differ between Mrap2tm1a/tm1a and their Mrap2+/+ littermates (Supplementary Fig. 2). In keeping with a lack of change in energy expenditure, there was no difference between Mrap2tm1a/tm1a and Mrap2+/+ mice in the expression level of Ucp1 mRNA and UCP1 protein levels in brown adipose tissue of age-matched animals, despite differences in morphology (Supplementary Fig. 3).

Locomotor activity measurements (average beam breaks in a 5 min time period) demonstrated that male 129/Sv Mrap2 tm1a/tm1a mice, compared with wild-type, moved significantly more during the daytime (Fig. 4A). No difference was observed in females.

Mrap2tm1a/tm1a mice display behavioural changes when presented with a novel environment

To further examine the locomotor activity as well as novel environment exploration and anxiety-related behaviour, 20-week-old 129/Sv Mrap2tm1a/tm1a mice were subjected to an open field exploration test during the light phase. This recapitulated the sex-specific difference in locomotor activity between female and male Mrap2tm1a/tm1a mice (Fig. 4B and C). Mrap2tm1a/tm1a male mice spent more time moving and covered a greater distance compared with Mrap2+/+ mice. Although Mrap2tm1a/tm1a male mice appeared to spend more time traversing the centre of the open field...
than controls, the difference was not significant, \(P = 0.075 \) (Fig. 4C and D). There was no difference in thigmotactic behaviour in the females, and Mrap2tm1a/tm1a mice of both sexes displayed no differences in gait, circling and rearing behaviour (data not shown).

Mrap2-deficient mice are Sim1 deficient

To further explore what might be the driving changes in body composition in Mrap2-deficient mice, we undertook transcriptomic analysis of laser microdissection PVN from 9-week-old 129/Sv Mrap2tm1a/tm1a mice and wild-type littermates (Fig. 5A). Mice of a 129/Sv genetic background, less prone to developing obesity-related co-morbidity, were used to reveal the effect of Mrap2 deficiency without secondary changes caused by hyperinsulinaemia and/or elevated glucose. We confirmed the changes observed in laser-capture material by undertaking Q-RT-PCR on whole hypothalamus extracted from a separate, second population of 129/Sv Mrap2tm1a/tm1a mice and wild-type littermates. Expression of genes that did not show any changes by microarray, such as Sf-1 and Pomc, were also confirmed by Q-RT-PCR as additional controls (Supplementary Fig. 4).

We could not detect significant changes in Mc4r mRNA expression in the PVN of Mrap2tm1a/tm1a mice due to the high variability between mice within each group (Fig. 5B). However, we found that Sim1 mRNA level in the PVN of Mrap2tm1a/tm1a mice was less than 50% of that observed in wild-type littermates (Fig. 5C). Sim1 is responsible for the late stages of the differentiation of oxytocin (Oxt), arginine vasopressin (Avp), corticotrophin-releasing hormone (Crh), thyrotropin-releasing hormone (Trh) and somatostatin neurons (Sst) (Michaud et al. 1998). In keeping with this, in Mrap2tm1a/tm1a mice, PVN expression levels of Oxt, Avp, Trh and Crh were significantly decreased compared with the wild-type. Sst expression in Mrap2tm1a/tm1a was unchanged compared with Mrap2+/+ mice, although results were variable within the cohort (\(n = 3 \) per group). Analysis of RNA from whole hypothalami (Fig. 5D) recapitulated these findings, except for Crh expression levels, which did not reach statistical significance. All changes were confirmed in both sexes (data not shown).
Mrap2 deficiency in obesity

It is known that SIM1 is implicated in the development of the PVN and Sim1+/− mice exhibit a smaller PVN with reduced neuron number compared with their wild-type littermates (Michaud et al. 2001). We could not find morphological changes or a reduction in the number of neurons in the PVN of Mrap2tm1a/tm1a mice compared with wild-type (Fig. 5E and F), suggesting that unlike Sim1+/−, a lack of Mrap2 does not cause underdevelopment of the PVN.

Mrap2 deficiency increases circulating HDL and LDL cholesterol

Macroscopically, the livers of Mrap2tm1a/tm1a mice were visibly pale in both sexes in both 129/Sv and C57BL/6N backgrounds, and the histological analysis showed lipid accumulation (Fig. 6A and B). There is recent evidence that the central melanocortin system directly controls peripheral lipid metabolism and circulating cholesterol (Nogueiras et al. 2007, Perez-Tilve et al. 2010). We therefore studied the cholesterol and lipid profile in C57BL/6N Mrap2tm1a/tm1a mice. The blood triacylglyceride levels (TAG) were not significantly different in Mrap2tm1a/tm1a mice compared with wild-type (Fig. 6C). However, total circulating cholesterol in Mrap2tm1a/tm1a mice was significantly higher than in wild-type controls of both sexes (Fig. 6D). HDL was elevated in both sexes with a greater percentage increase in females (Fig. 6E). LDL was significantly increased in male and female Mrap2tm1a/tm1a mice (Fig. 6F). NEFA-C levels were not significantly different between Mrap2tm1a/tm1a and Mrap2+/− mice of either sex (Fig. 6G), whilst glycerol concentration was increased to a similar degree in mutant mice of both sexes (Fig. 6H). To investigate whether high cholesterol levels were due to a decrease in cholesterol re-uptake in the liver or an increase in cholesterol synthesis, we analysed the expression of the HDL scavenger receptor Scarb1, LDL receptor (Ldlr) and the key transcription factor of cholesterol biosynthesis Srebpt2 (Shimomura et al. 1998) in the livers of 129/Sv Mrap2tm1a/tm1a mice. Interestingly, Srebpt2 mRNA levels were increased in the livers of female Mrap2tm1a/tm1a mice, whereas Scarb1 and Ldlr levels were similar to the wild type (Fig. 6I). Expression analysis of livers from male Mrap2tm1a/tm1a mice showed lower levels of Ldlr mRNA whereas Scarb1 and Srebpt2 transcript were similar to the wild-type male littermates (Fig. 6I).

To study white fat function, we tested the protein levels and phosphorylation state of enzymes involved in lipogenesis and fatty acid synthesis as well as phosphorylation of the rate-limiting enzyme for lipolysis of hormone sensitive lipase (HSL). Phosphorylation of
ATP-citrate lyase (ACL), an enzyme responsible for the synthesis of cytosolic acetyl-CoA that serves lipogenesis and cholesterologenesis pathways (reviewed in Chypre et al. 2012), was increased in white fat of female Mrap2tm1a/tm1a mice but not in Mrap2tm1a/bm1a male mice (Fig. 7A and B, Supplementary Fig. 5A and B).

HSL phosphorylation is known to be important for the enzyme activation and therefore lipolysis (Egan et al. 1992). The proportion of HSL phosphorylated on S563, S565 and S660 was analysed and it was found that the proportion of S660 phosphorylated HSL was three times lower in white fat of female Mrap2tm1a/tm1a mice compared with the wild type (Fig. 7C and D). Phosphorylation on other residues was not changed and male Mrap2tm1a/tm1a mice did not have changes in HSL phosphorylation on any residues tested (Supplementary Fig. 5C, D, E and F).

Analysis of glucose homeostasis in Mrap2-deficient mice
Mrap2tm1a/bm1a mice of both sexes on a C57BL/6N background fed on a chow diet from weaning display elevated fasting plasma insulin concentration with higher fasting blood glucose at 13 weeks of age compared with Mrap2+/+ mice (Fig. 7E and F). Glucose clearance in
response to an IP glucose bolus (Fig. 7G and H) appeared delayed, although statistical analysis of the area under the curve was only significant in female mice.

Discussion

In this study, we report the generation and characterization of a murine model with a targeted Mrap2 allele (knockout-first Mrap2tm1a/EUCOMM(Wts)). The construct used here is a Tm1a allele, which theoretically can still allow transcriptional read through (White et al. 2013). We detected low Mrap2 expression within Mrap2tm1a/tm1a homozygous mice and in the absence of a suitable antibody we cannot rule out the expression within Mrap2tm1a/tm1a mice, though this is an evidence of an interesting interaction between the genetic backgrounds with Mrap2, which will form the basis of a future study.

Mrap2tm1a/tm1a mutant mice on both C57/BL6N and 129/Sv background display severe early-onset obesity with a significantly increased fat mass, consistent with a recent report of Mrap2-knockout mice (Asai et al. 2013). Unlike Mrap2+/− mice on a 129/Sv genetic background (Asai et al. 2013), our C57BL/6N Mrap2tm1a/tm1a display elevated fasting insulin and blood glucose concentrations. We believe that this is an evidence of an interesting interaction between the genetic backgrounds with Mrap2, which will form the basis of a future study.

Mrap2+/− mice have been reported previously to show no increased food intake or reduction in energy expenditure and thermogenesis to account for their increased body weight. In our assessment of 8-week-old Mrap2tm1a/tm1a mice, we recapitulated and confirmed these findings. We calculate that female Mrap2tm1a/tm1a mice gained more weight compared with the wild-type mice (females: 0.117±0.041 g/day; males: 0.096±0.023 g/day). To achieve this, a female mutant mouse would need to deposit 0.701±0.246 kcal/day and a male mouse 0.578±0.139 kcal/day (Flatt 1991). This would equate to an increase in food intake of 0.232±0.081 g of standard chow (for females) and 0.191±0.046 g (for males), which is within the measurable limits of food intake variation. Therefore, it is possible that the causative difference is below the threshold of the detection (Tschopt et al. 2012, Speakman 2013). Indeed, older animals that are significantly more obese than their wild-type counterparts, and as a result would be expected to consume larger quantities, demonstrate a subtle increase in cumulative food intake when monitored over 50 days (Asai et al. 2013). Additionally, our behavioural tests on separate cohorts of animals, independently analysed on two separate platforms, demonstrated sex-specific increased daytime locomotor and exploratory activity in Mrap2tm1a/tm1a male mice, which may indicate food-seeking behaviour. These lines of evidence would point to hyperphagia being the key driver in the development of obesity. However, importantly, obesity in Mrap2-deficient animals clearly precede any change in food intake and in paired feeding studies Mrap2-deficient animals continue to gain more weight than their wild-type counterparts (Asai et al. 2013). It is only when further food restriction was undertaken did weight gain in mutant mice become equivalent to that of wild-type mice (Asai et al. 2013).

Intriguingly, this suggests a far more complex mechanism at play in Mrap2 null mice.

Our transcriptomic analysis of the PVN of the mutant mice also favoured increased energy intake as being a more likely promoter of increased body weight. It was found that Sim1 expression levels were low in the PVN of the Mrap2tm1a/tm1a mice resembling Sim1 deficiency. The reduced expression of Sim1 and its associated neuropeptides cannot be secondary to obesity alone, as this was not observed in reported hypothalamic microarray data from obese mice fed in a high fat diet (Lee et al. 2010). SIM1 is a transcription factor that regulates development of the PVN, and Sim1+/− mice die due to the abnormal hypothalamic architecture (Michaud et al. 2001). Heterozygous Sim1+/− mice exhibit a small PVN with reduced neuronal number and develop severe early-onset obesity due to hyperphagia and increased linear growth. They have an impaired response to MTL, an MC3R/MC4R agonist, indicative of a disrupted central melanocortin pathway (Holdert et al. 2004, Kublaoui et al. 2006a,b, Tolson et al. 2010). Expression analysis of the PVN from Sim1+/− mice has shown an 80% decrease in Oxt expression and 20–40% decrease in Trh, Crh, Avp and Sst expression (Kublaoui et al. 2008). Compared with Sim1+/− mice, we did not detect morphological changes within the PVN of Mrap2tm1a/tm1a mice. However, the levels of Oxt, Avp and Trh in Mrap2tm1a/tm1a mice PVN were reduced, consistent with low Sim1 expression levels. Interestingly, despite these changes and also the high expression of Mrap2 in the pituitary, we found no evidence of pituitary dysfunction in Mrap2tm1a/tm1a mice. Progression through puberty and fertility appear unchanged in mutant mice, and thyroid hormone levels, T3 and T4, were normal (data not shown). Corticosterone concentrations were previously reported to be normal (Asai et al. 2013). This would suggest that the level of neuropeptide expression is sufficient for peptide production and physiological stimulation of downstream hormones, as exemplified by normal levels of T4 in the case of Trh.

In contrast to the downstream effects, the change in neuropeptide expression is likely to play a direct role in
maintaining energy homeostasis as it is known that Oxt, Avp and Trh in the PVN have anorexigenic effects (reviewed in Valassi et al. 2008), and Oxt is thought to be key to the mechanism for the hyperphagia of Sim1+/- mice (Kublaoui et al. 2008). Overall, the changes in Sim1 provide further evidence that a central melanocortin pathway deficiency exists in Mrap2tm1a/tm1a mice as SIM1 has been considered to be downstream of MC4R signalling (Holder et al. 2004, Kublaoui et al. 2006a, b, Tolson et al. 2010).

Modulation of MC4R has been shown to directly affect peripheral lipid metabolism. Mc4r-/- mice had elevated plasma cholesterol and HDL levels (Nogueiras et al. 2007, Perez-Tilve et al. 2010). Both sexes of Mrap2tm1a/tm1a mice displayed elevated circulating cholesterol although there is a suggestion that males and females partition cholesterol into HDL differently, consistent with reports of sex differences in the hepatic control of cholesterol metabolism (De Marinis et al. 2008). Mrap2tm1a/tm1a female mice showed increased de novo hepatic lipogenesis; however, unlike female Mrap2tm1a/tm1a mice, male Mrap2tm1a/tm1a mice had low expression of liver LDL receptor, possibly reflecting elevated circulating LDL levels.

Figure 7
Phosphorylation of ACL and HSL are changed in female Mrap2tm1a/tm1a mice and insulin insensitivity in both genders observed at 13 weeks of age. (A) Analysis of ACL phosphorylation in white fat of the female mutant mice compared with the wild type by immunoblotting. (B) A significant increase is demonstrated in mutant mice by using band densitometry analysis of the ratio of phosphorylated to non-phosphorylated ACL normalized to β-actin. (C) Phosphorylation of HSL on S660 in white fat of the female mutant mice is decreased as assessed by western blotting. (D) Densitometry analysis of phosphorylated to non-phosphorylated HSL normalized to β-actin was higher in C57BL/6N Mrap2tm1a/tm1a mutant mice of both genders associated with significantly elevated insulin levels (log transformed due to the range of values observed in Mrap2tm1a/+ male mice. (E&H) IPGTT performed on 13-week-old mice of both genders, delayed glucose clearance demonstrated in Mrap2tm1a/tm1a female mice but not statistically significant in male Mrap2tm1a/tm1a mice. n=7 for each Mrap2tm1a/tm1a group, 39 for female Mrap2+/- and 35 for Mrap2+/- controls gender/genotype. P-values presented on graphs are either global P-values for genotype adjusted for multiple correction testing, or (in the cases of sexual dimorphism) the P-value is the impact of genotype for that sex. AUC, area under the curve; *P<0.05; **P<0.005; ***P<0.0005; NS, not significant.
Mrap2^{tm1a/tm1a} female mice had increased ACL phosphorylation in white fat, a key modification that activates ACL catalytic activity (Berwick et al. 2002) and leads to an increase in de novo lipogenesis. Along with this change we found that phosphorylation of HSL on S660, which is phosphorylated by protein kinase A upon sympathetic nervous system activation (Anthonsen et al. 1998), was decreased. It is possible that both changes in the liver and white adipocytes are due to the low sympathetic tone which is in part regulated via the central melanocortin system (Nogueiras et al. 2007, Perez-Tilve et al. 2010). Mrap2 is not expressed in white fat or liver and therefore is unlikely to influence de novo lipogenesis directly in these tissues, suggesting that MRAP2 may contribute to the melanocortin regulation of sympathetic outflow. The changes observed in white fat were only found in females and are thus unlikely to be the primary cause of MRAP2-associated obesity, although this might explain the greater severity of obesity in females.

Our study corroborates the role of MRAP2 in metabolism. The changes in cholesterol metabolism and transcriptomic profile of the PVN of Mrap2^{tm1a/tm1a} mice support the notion that MRAP2 is involved in the MC4R signalling pathway in vivo. However, our data further highlights phenotypic differences between Mrap2 deficient and Mc4r-deficient mice. Despite both mice developing severe early-onset obesity, Mc4r^{−/−} mice are clearly hyperphagic with decreased energy expenditure (Huszar et al. 1997, Balthasar et al. 2005), whilst Mrap2-deficient mice display no demonstrable hyperphagia or reduction in energy expenditure. We describe other additional phenotypic differences such as normal bone mineral content and density in Mrap2^{tm1a/tm1a} mice in contrast to increased bone density in Mc4r^{−/−} mice (Braun et al. 2012). Importantly, Asai and coworkers demonstrated that Mrap2^{−/−} mice remain responsive to treatment with MTII, a MC3R/MC4R agonist, whilst the anorexic response to MTII is abolished in Mc4r^{−/−} mice, suggesting at least some preservation of MCR function centrally (Marsh et al. 1999, Asai et al. 2013). We also show sex-specific differences in glucose handling as well as an exploratory activity phenotype in Mrap2^{tm1a/tm1a} mice. Taken together, our study points towards the likelihood of MC4R-independent mechanisms and possibly MCR-independent pathways in the pathogenesis of MRAP2-associated obesity.

Declaration of interest
The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Funding
Funding was received from The Medical Research Council UK (MRC/ Academy of Medical Sciences Clinician Scientist Fellowship Grant G8802796, to L F C, supporting T V N), Society for Endocrinology Early Career award to T V N, the Wellcome Trust (Grant No. 098851) to D W L, C L, E H W and for the MGP generation and phenotyping of the CS7BL/6N background mice. R J G is supported by a Wellcome Clinical Research Training Fellowship (Grant No. WT092024MA). R L, D R, S O R and A P C are funded by the Medical Research Council (MRC) Metabolic Disease Unit (MRC_MC_UU_12012/1). L G was supported by Biotechnology and Biological Sciences Research Council (BBSRC), award BB/L00267/1 and Rosetrees Trust.

Acknowledgements
The authors thank the support from the funding bodies. The authors also wish to thank Sanger Mouse Genetics Project and Research Support Facility staff for generating and providing mouse phenotyping information; Natasha Karp for statistical input on the MGP mouse data; Keith Burling for insulin analysis and David Jackson for help with manuscript preparation.

References
Anthonsen MW, Ronnstrand L, Wernsted C, Degermen E & Holm C 1998 Identification of novel phosphorylation sites in hormone-sensitive lipase that are phosphorylated in response to isoproterenol and govern activation properties in vitro. *Journal of Biological Chemistry* **273** 215–221. (doi:10.1074/jbc.273.1.215)
Asai M, Ramachandrappa S, Joachim M, Shen Y, Zhang R, Nuthalapati N, Ramanathan V, Strochlic DE, Ferket P, Linhart K, et al. 2013 Loss of function of the melanocortin 2 receptor accessory protein 2 is associated with mammalian obesity. *Science* **341** 275–278. (doi:10.1126/science.1233000)
Balthasar N, Dalgaard IT, Lee CE, Yu J, Funahashi H, Williams T, Feneira M, Tang V, McGovern RA, Kenny CD, et al. 2005 Divergence of melanocortin pathways in the control of food intake and energy expenditure. *Cell* **123** 93–105. (doi:10.1016/j.cell.2005.08.035)
Berwick DC, Hers I, Heesom KJ, Moule SK & Tavare JM 2002 The identification of ATP-citrate lyase as a protein kinase B (Akt) substrate in primary adipocytes. *Journal of Biological Chemistry* **277** 33895–33900. (doi:10.1074/jbc.M204681200)
Braun TP, Orwell B, Zhu X, Levasseur PR, Szumowski M, Nguyen ML, Bouxsein ML, Klein RF & Marks DL 2012 Regulation of lean mass, bone mass, and exercise tolerance by the central melanocortin system. *PloS ONE* **7** e42183.
Chan LF, Webb TR, Chung TT, Melaridou E, Cooray SN, Guasti L, Chapple JP, Egetertova M, Elphick MR, Cheetham ME, et al. 2009 MRAP and MRAP2 are bidirectional regulators of the melanocortin receptor family. *PNAS* **106** 6146–6151. (doi:10.1073/pnas.0809918106)
Chen J, Ingham N, Clare S, Raisen C, Vancollie VE, Ismoll O, McIntyre RE, Tsang SH, Mahajan VB, Dougan G, et al. 2013 Mcp1-deficient mice reveal a role for MCPH1 in otitis media. *PloS ONE* **8** e8156.
Chypré M, Zaidi N & Smans K 2012 ATP-citrate lyase: a mini-review. *Biological and Biophysical Research Communications* **422** 1–4. (doi:10.1016/j.bbrc.2012.04.144)
Mrap2 deficiency in obesity

Holder JL Jr, Zhang L, Kublaoui BM, DiLeone RJ, Oz OK, Bair CH, Lee YH, Egan JJ, Greenberg AS, Chang MK, Wek SA, Moos MC Jr & Londos C

Metherell LA, Chapple JP, Cooray S, David A, Becker C, Ruschendorf F, Kublaoui BM, Gemelli T, Tolson KP, Wang Y & Zinn AR 2008 Oxytocin Sim1

Huszar D, Lynch CA, Fairchild-Huntress V, Dunmore JH, Fang Q, Gorrigan R, Guasti L, King P, Clark AJ & Chan LF 2011 Localisation DOI: 10.1530/JOE-16-0057

Journal of Endocrinology

http://joe.endocrinology-journals.org © 2016 Society for Endocrinology

Printed in Great Britain

Published by Bioscientifica Ltd.