N\textalpha-Amino-t-Arginine, an Inhibitor of Nitric Oxide Synthase, Raises Vascular Resistance but Increases Mortality Rates in Awake Canines Challenged with Endotoxin*

By J. Perren Cobb, Charles Natanson, William D. Hoffman, Robert F. Lodato, Steve Banks, Cesar A. Koev, Michael A. Solomon, Ronald J. Elin, Jeanette M. Hosseini, and Robert L. Danner

From the Department of Critical Care Medicine, and the *Department of Clinical Pathology, Warren G. Magnuson Clinical Center, National Institutes of Health, Bethesda, Maryland 20892; and the Division of Pulmonary and Critical Care Medicine, The University of Texas Health Science Center, Houston, Texas 77030

Summary

Inhibitors of nitric oxide synthase (NOS) have been reported to increase mean arterial pressure in animal models of sepsis and recently have been given to patients in septic shock. However, controlled studies to determine the effects of these agents on cardiovascular function and survival in awake animal models of sepsis have not been reported. To examine the therapeutic potential of NOS inhibition in septic shock, we challenged canines with endotoxin (2 or 4 mg/kg i.v.) and treated them with either normal saline or N\textalpha-amino-t-arginine (10 or 1 mg/kg/h), the most specific inhibitor available for the isoform of NOS implicated in septic shock. Endotoxemic animals treated with N\textalpha-amino-t-arginine (n = 11) had higher systemic and pulmonary vascular resistance indices (SVRI and PVRI, p < 0.033) and decreased heart rates (p = 0.009), cardiac indices (CI, p = 0.01), oxygen delivery indices (p = 0.027), and oxygen consumption indices (p = 0.046) compared with controls (n = 6). Moreover, N\textalpha-amino-t-arginine increased mortality rates after endotoxin challenge (10 of 11 vs. 1 of 6 controls, p = 0.005). Administration of t-arginine did not improve survival or alter the cardiopulmonary effects of N\textalpha-amino-t-arginine, which suggests that inhibition of NOS may not have been competitive. In normal animals, N\textalpha-amino-t-arginine alone (n = 3) increased SVRI (p = 0.0008) and mean arterial pressure (p = 0.016), and decreased CI (p = 0.01) compared with saline-treated controls (n = 3), but, at the high dose, also produced neuromuscular rigidity and seizure-like activity that was not apparent in the endotoxemic model. Thus, the mortality rate from endotoxemia increased either because of NOS inhibition per se or because of properties unique to N\textalpha-amino-t-arginine, or both.

Despite antibiotic therapy and advances in critical care, septic shock is associated with a high mortality rate (1, 2). Approximately 50% of patients who die of septic shock have persistent hypotension and low systemic vascular resistance refractory to vasopressor therapy (3–5). New evidence suggests that overproduction of endothelium-derived relaxing factor (EDRF)1, recently identified as nitric oxide (NO) (6), or a closely related nitrosothiol (7, 8), contributes to the development of sepsis-induced hypotension (9). A calcium-independent isoform of nitric oxide synthase (NOS) can be induced in cultured endothelial cells by interferon-γ combined with bacterial LPS (endotoxin), TNF, or IL-1 (10–12), and in vascular smooth muscle cells in vitro after stimulation

1 Abbreviations used in this paper: CBC, complete blood count; CI, cardiac index; DO\textsubscript{2}I, oxygen delivery index; EDRF, endothelium-derived relaxing factor; ER, extraction ratio; HR, heart rate; t-ARG, t-arginine; IVEF, left ventricular ejection fraction; MAP, mean arterial pressure; NAA, N\textalpha-amino-t-arginine; NOS, nitric oxide synthase; PCWP, pulmonary capillary wedge pressure; PVRI, pulmonary vascular resistance index; SVI, stroke volume index; SVRI, systemic vascular resistance index; VO\textsubscript{2}I, oxygen consumption index.
with endotoxin (13). It is believed that this inducible iso-
form of NOS is responsible for the excess production of NO in
sepsis, which leads to the development of shock (9, 14, 15).

Some L-arginine analogs reversibly inhibit NOS, restore
endotoxin-induced loss of catecholamine vasmotor responsi-

even in vivo (16, 17), and reverse hypotension in animal
models of septic shock. Nω-methyl-L-arginine (18, 19) has
been shown in anesthetized animals to reverse endotoxin and
TNF-induced hypotension (9, 20–22). Most recently, Nω-
methyl-L-arginine and another NOS inhibitor, Nω-nitro-L-
arginine methyl ester, were reported to increase systemic vas-
cular resistance and blood pressure in three patients with septic
shock (23, 24). Together, these studies support the hypoth-
esis that production of excess NO is a contributor to the
hypotension of septic shock, and suggest a potential ther-
aputic role for inhibitors of NOS as antihypotensive agents
in this condition.

However, inhibition of endogenous NO production may
be harmful. Administration of Nω-methyl-L-arginine to anes-

edritized rats and canines has been shown to increase renal
vascular resistance (25) and decrease renal blood flow (26,
27). The use of this NOS inhibitor in awake canines results
in dose-related increases in basal epicardial coronary artery
tone (28). Further, Nω-methyl-L-arginine increases capillary
leak and enhances intestinal damage in rats and depresses cardiac
output in anesthetized canines given endotoxin (21, 29). High
doses of Nω-methyl-L-arginine (300 mg/kg) administered
after endotoxin challenge can precipitate cardiovascular col-
lapse and death in anesthetized rats (22).

Most previous investigations have examined the cardiovas-

cular effects of short-term infusions of Nω-methyl-L-arginine
in the presence of general anesthetics, which may also pro-
duce significant hemodynamic changes (30). Further, studies
using NOS inhibitors in large animal models of sepsis and
in humans have not been designed to determine the effect
of these agents on survival. In this study, we evaluated the
therapeutic value of a continuously infused NOS inhibitor
by serially following cardiopulmonary function, laboratory
parameters, and survival in awake canines challenged with
intravenous endotoxin. Nω-amin-L-arginine was used in
these experiments because it is a potent NOS inhibitor
in vivo (31, 32), is the most specific inhibitor available for the
induced isoform of NOS (15), has not been reported to be
significantly metabolized to the substrate L-arginine (unlike
Nω-methyl-L-arginine (33), and is readily water soluble (un-
like Nω-nitro-L-arginine).

Materials and Methods

Reagents. Nω-amin-L-arginine was prepared as the lyophilized
hydrochloride salt by Dr. Owen W. Griffith at Cornell University
Medical College (32, 34). The drug was reconstituted with pyrogen-
free normal saline and passed through a 22-μm filter (Milllex-GV;
Millipore, Bedford, MA) before intravenous administration. Eche-
richia coli 0111:B4 endotoxin and L-arginine (Sigma Chemical Co.,
St. Louis, MO) were suspended in pyrogen-free normal saline for
intravenous injection. Ceftriaxone (Rocephin®, Hoffman LaRoche
Inc., Nutley, NJ) was reconstituted with pyrogen-free sterile water.

Experimental Groups (Table 1) and Study Design (Fig. 1):

23 2-yr-
old, purpose-bred, 8–13 kg beagles were studied. A baseline compre-
hensive hemodynamic evaluation was performed for each animal
at least 3 d before endotoxin challenge, as described previously (35,
36). Briefly, arterial and thermocoupling, balloon-tipped, pul-
monary artery catheters were inserted in awake animals to obtain serial
hemodynamic measurements (monitor model 90603; Spacelabs Inc.,
Redmond, WA) before and after an intravenous volume infusion
(40 ml/kg Ringer’s solution over 30 min). Left ventricular ejection
fractions (LVEF) were determined by radionuclide ventriculogra-

phraphy (35).

At time 0 h (Fig. 1), 17 animals received a 1- or 2-h intravenous
infusion of endotoxin, 2 mg/kg/h, delivered using a micropump
(Influ-Med™ 300; Medfusion, Inc., Duluth, Georgia). 11 of these 17
animals were given 22-h, continuous, Nω-amin-L-arginine
intravenous infusion at either 1 or 10 mg/kg/h after a loading dose
(see Table 1). L-arginine was administered to 4 of the 11 Nω-
amin-L-arginine-treated animals at 1, 10, 20 or 50 mg/kg/h after a loading
dose (Table 1) to evaluate its ability to competitively reverse NOS
inhibition (19, 20). The remaining six endotoxin-challenged
animals served as controls and received only normal saline at a rate
equivalent in ml/h to that of Nω-amin-L-arginine infusion
(0.9–1.2 ml/h). Six normal animals not challenged with endotoxin
received Nω-amin-L-arginine alone at 1 mg/kg/h (n = 1), or 10
mg/kg/h (n = 1), or an equal volume of normal saline (n = 3).
Ceftriaxone, 100 mg/kg, was injected intravenously immediately
before and 22 h after endotoxin challenge to prevent catheter-related
infusion. All animals received 10 ml/kg/h Ringer’s solution intravenously
continuously for 6 h after endotoxin challenge. 40 ml/kg
Ringer’s solution was infused intravenously in all animals over
30 min immediately before time 0, 10, 14, and 22 h. Hemodynamic
measurements and blood for laboratory analysis were obtained at
0, 2, 6, 10, 14, 18, and 22 h. Simultaneous radionuclide LVEFs
were determined at 6 and 22 h. All catheters were removed at
24 h and the animals were returned to individual cages for 3–10 d
of close observation depending upon their clinical status.

Laboratory Analysis. Blood samples for quantitative bacterial cul-

ture were collected into 1.5-ml isolator tubes (DuPnt Medical
Products Department, Wilmington, DE) at 0 and 22 h after endotoxin
challenge just before the dose of ceftriaxone. Serial dilutions of the
lysed samples were plated for bacterial colony quantitation. Serum
and whole blood were analyzed by an outside source (MetaPh Mid-
Atlantic Regional Laboratory, Rockville, MD) for serum chem-
istry and complete blood count (CBC) using standard automated
methods. Arterial and mixed venous blood gases were determined
using an automated system (288 Blood Gas System and 2500 Co-
oximeter; Ciba-Corning Diagnostic Corp., Medfield, MA). The
Nω-amin-L-arginine solution was assayed for endotoxin contamin-
ination by Dr. H. Donald Hochstein (Division of Product Quality
Control, Food and Drug Administration, Bethesda, MD) using a
limulus amebocyte lysate gel test (Associates of Cape Cod, Woods
Hole, MA). Plasma endotoxin concentrations were determined as
previously described using a kinetic, chromogenic limulus lysate
assay (MA Bioproducts, Walkersville, MD) (37).

Animal Care. The protocol used in this study was approved
by the Clinical Center Animal Care and Use Committee of the
National Institutes of Health. Every effort was made by a team of
experienced veterinarians, physicians, and research technicians
to keep the animals comfortable within the constraints of the pro-
tocol. Animals were euthanized if they appeared to be suffering
in the judgment of the veterinarians or the investigators.

Cardiopulmonary Calculations and Statistics. The methods used
for the measurement and calculation of hemodynamic and LVEF
data have been described (35, 38). Oxygen delivery \((\text{DO}_2) \) and consumption \((\text{VO}_2) \) were calculated from measured values using standard formulae. Extraction ratio \((\text{ER}) \) was calculated as \(\text{VO}_2/\text{DO}_2 \). The following parameters were either measured directly from stripchart recordings or calculated using standard formulae: mean arterial pressure \((\text{MAP, mm Hg}) \), systemic and pulmonary vascular resistance indices \((\text{SVRI} \text{ and } \text{PVRI, respectively, dyn-sec/cm}^2 \cdot \text{kg}) \), cardiac index \((\text{CI, ml/min-kg}) \), heart rate \((\text{HR, beats/min}) \), LVEF, pulmonary capillary wedge pressure \((\text{PCWP, mm Hg}) \), stroke volume index \((\text{SVI, ml/kg}) \), \(\text{VO}_2 \) index \((\text{VO}_2\text{I, ml/min-kg}) \), and \(\text{DO}_2 \) index \((\text{DO}_2\text{I, ml/min-kg}) \).

Serial effects of endotoxin alone and serial effects of N\textsuperscript{\text{w}}-amino-L-arginine in endotoxin-challenged animals were analyzed by analysis of variance (ANOVA) (39). A three-way ANOVA was constructed with treatment group, dog nested within group, time, and group-time interaction effects extracted. A Tukey multiple comparisons procedure (39) or a Dunnett test (40) for comparing to a common baseline was used to adjust \(p \) values. Survival data were analyzed using Fisher's exact test.

Results

Survival and Clinical Manifestations. Continuous intravenous N\textsuperscript{\text{w}}-amino-L-arginine administration decreased survival after intravenous endotoxin challenge (Table 1 and Fig. 2).

Experimental Groups				
Dose	Number of dogs	Endotoxin	NAA\textsuperscript{\text{*}}	10 d Survival (%)
mg/kg	mg/kg/h			
---	---	---	---	---
Endotoxin challenged				
NS*	2	2	2	(100)
4	4	3	(75)	
NAA	2	2	10	0 (0)
5	4	1	1	(20)
NAA + L-arginine\textsuperscript{\text{g}}	4	4	1	0 (0)
Normal				
NS	3	3	(100)	
NAA	2	10	0	(0)
1	1	(100)		

* NS normal saline.
1 N\textsuperscript{\text{w}}-amino-L-arginine (NAA) at 1 mg/kg/h or 10 mg/kg/h preceded by a 10 or 20 mg/kg NAA loading dose, respectively.
g L-arginine at 1, 10, 20, or 50 mg/kg/h preceded by a 1, 10, 200, or 200 mg/kg IV loading dose, respectively.

Survival at 1, 10, 20, or 50 mg/kg/h did not improve survival (Fig. 2). Two animals (nonsurvivors) in this group were euthanized in preterminal states. The animal that received L-arginine at 10 mg/kg/h was euthanized at 24 h, and the animal that received L-arginine at 50 mg/kg was euthanized at 36 h. Combining data from all animals that received endotoxin plus N\textsuperscript{\text{w}}-amino-L-arginine, with or without L-arginine \((n = 11) \), revealed a 10-d survival rate of 9.1% \((p = 0.005 \) vs. saline-treated controls). During the study, no clinical differences were noted between these groups.

Because N\textsuperscript{\text{w}}-amino-L-arginine increased mortality after endotoxin challenge in this model, normal animals were studied during an infusion of either N\textsuperscript{\text{w}}-amino-L-arginine or normal saline. The infusion of N\textsuperscript{\text{w}}-amino-L-arginine at 10 mg/kg/h did not improve survival.

![Figure 1](endotoxin.png)
Figure 1. Experimental design. (Bars) Duration of infusions of endotoxin, N\textsuperscript{\text{w}}-amino-L-arginine, L-arginine, and Ringer's solution as indicated. (Open arrows) Times when a 30-min intravenous infusion of 40 ml/kg Ringer's solution was administered. (Solid arrows) Times when physiologic measurements were performed. Baseline \((B) \) measurements were obtained at least 3 d before endotoxin challenge \((0 \text{ h}) \).

![Figure 2](survival.png)
Figure 2. Survival vs. time in endotoxin-challenged canines treated with either normal saline (controls, O----O), N\textsuperscript{\text{w}}-amino-L-arginine \((\text{NAA, o--o,}) \), or N\textsuperscript{\text{w}}-amino-L-arginine plus l-arginine \((\text{NAA + L-ARG, △-△}) \).
in two animals was stopped at 6 and 14 h because of the onset of muscular hypertonicity, myoclonus, and seizure-like activity. Because of persistent hypertonicity, the animals were euthanized 9 and 10 h, respectively, after discontinuation of N'-a-amino-l-arginine. The animal that received N'-a-amino-l-arginine at 1 mg/kg/h and those that received only normal saline experienced no untoward sequelae.

Hemodynamic and Blood Gas Analysis. Differences (p values) between groups are presented in this and the following section based upon ANOVA. Means (±SE) and time points at which these differences were significant are shown in Figs. 3, 4, and 5.

Data from the normal animals that received N'-a-amino-l-arginine alone (n = 3) were pooled and compared with values from animals that received only normal saline (n = 3). N'-a-amino-l-arginine increased SVRI (p = 0.0008) and MAP (p = 0.016) and decreased CI (p = 0.01) and SVI (0.014) compared with normal saline (Fig. 3). Decreases in DO$_2$I and VO$_2$I in N'-a-amino-l-arginine-treated animals approached, but did not reach, statistical significance (p = 0.07 and 0.08, respectively, data not shown). N'-a-amino-l-arginine did not have significant effects on HR, PCWP, or LVEF (p > 0.30 for each parameter compared with normal saline, data not shown). Blood gas analysis revealed a decrease in arterial bicarbonate concentrations (16.5 ± 1.5 vs. 21.0 ± 0.6 mM/L, p = 0.004) and an increase in arterial lactate (1.90 ± 0.09 vs. 0.33 ± 0.07 mM/liter, p = 0.002) in normal animals treated with N'-a-amino-l-arginine compared with normal saline at 22 h. N'-a-amino-l-arginine–treated animals also had a lower mixed venous oxygen (P$_{O_2}$) at 2 h compared with those that received normal saline (32 ± 1 vs. 45 ± 3 mm Hg, p = 0.002).

Because there were no significant differences in any hemodynamic variable between groups of animals that received either the low (n = 2) or high dose (n = 4) of endotoxin,
values from these animals were pooled for analysis (n = 6). Compared to values at 0 h, endotoxin infusion decreased MAP, CI, SVI, and LVEF and increased SVRI, PVRI, HR, and PCWP (p < 0.05 for each parameter, Fig. 4). Endotoxin challenge also led to significant decreases in arterial pH (p = 0.0001), bicarbonate concentrations (p = 0.0001), and base excess (p = 0.0001), compared to values at 0 h (Table 2). Additionally, there was a significant increase in ER (p = 0.01), but no statistically significant effect on DO₂I or VO₂I (Fig. 5).

There were no statistically significant differences in any of the cardiopulmonary parameters measured in endotoxin-challenged dogs that were treated with Nα-amino-L-arginine at either the low or high dose, with (n = 4) or without (n = 7) L-arginine. Thus, in the absence of significant differences, data from all animals treated with Nα-amino-L-arginine were pooled to maximize the ability to detect any Nα-amino-L-arginine effect. Combined data (n = 11) demonstrated that treatment of endotoxin challenged animals with Nα-amino-L-arginine increased SVRI (p = 0.008), PVRI (p = 0.047), and arterial lactate levels (p = 0.046) and decreased HR (p = 0.009), CI (p = 0.01), arterial pH (p = 0.04), DO₂I (p = 0.027), and VO₂I (p = 0.046) compared with saline-treated controls (Figs. 4 and 5, Table 2). Differences between Nα-amino-L-arginine and saline-treated groups for other cardiopulmonary values were not significant.

Laboratory Analysis. Endotoxin infusion resulted in a significant rise in plasma endotoxin levels from undetectable at 0 h to 1330 ± 405 endotoxin units (EU)/ml and 3682 ± 1462 EU/ml at 2 h in the saline and Nα-amino-L-arginine-treated groups, respectively. Differences between these groups were not significant. Treatment with Nα-amino-L-arginine either with or without L-arginine had no effect on any laboratory values in endotoxemic animals (data not shown, p > 0.05). Blood culture data were available at 0 and 22 h for all but two of the animals studied (one received endotoxin alone and the other endotoxin plus Nα-amino-L-arginine); none of the 21 animals tested was bacteremic. The endotoxin concentrations of the Nα-amino-L-arginine preparations were all <0.036 EU/ml (<3.6 pg/ml reference endotoxin). Animals thus received <10 pg/kg/d of reference endotoxin equivalent by way of the Nα-amino-L-arginine infusion.

Discussion

Nα-amino-L-arginine unexpectedly increased mortality in this canine model of endotoxic shock. The drug increased SVRI but decreased HR, CI, DO₂I, and VO₂I during endotoxin challenge (Fig. 5), and increased arterial lactate, PCWP, and base excess, while decreasing CI and pH (Table 2). Together, these findings suggest that Nα-amino-L-arginine may have deleterious effects on cardiorespiratory function in endotoxemic dogs.
dotoxemia. Administration of t-arginine, a substrate reported to competitively reverse the effects of NOS inhibitors, including Nω-aminot-arginine (9, 31, 34), failed to improve survival or to alter the hemodynamic profile of endotoxic shock in animals treated concomitantly with Nω-aminot-arginine. In normal (nonendotoxemic) dogs, Nω-aminot-arginine increased SVRI and MAP and decreased CI and SVI. Further, this compound caused a previously unreported toxicity manifested as muscular hypertonicity, myoclonus, and seizure-like activity that was apparent in the two normal animals given 10 mg/kg/h Nω-aminot-arginine.

The increase in SVRI and decrease in CI associated with Nω-methyl-t-arginine infusion are consistent with previous findings on the use of NOS inhibitors at similar doses in anesthetized animals given endotoxin (9, 21). Notably, Nω-aminot-arginine, a related NOS inhibitor, has been reported to decrease CI by depressing SVI in both normal and endotoxin-challenged animals under pentobarbital anesthesia (21). However, we observed a difference in the Nω-aminot-arginine-associated decrease in CI between our normal and endotoxemic dogs. Normal dogs treated with Nω-aminot-arginine developed a depressed CI because of a decrease in SVI without significant change in HR. In contrast, endotoxemic dogs treated with Nω-aminot-arginine developed a depressed CI due to a decrease in HR without significant change in SVI. There was no evidence that Nω-aminot-arginine had a direct effect on myocardial performance (as measured by LVEF) in normal dogs, and it did not alter the fall in LVEF characteristic of endotoxic shock (41). These results are not consistent with a direct role for NO in the pathogenesis of myocardial depression during sepsis (42). Further, the lack of an effect on LVEF would argue against Nω-aminot-arginine-induced global myocardial ischemia.

Most previous laboratory studies have used NOS inhibitors to treat endotoxin or cytokine-induced shock in anesthetized canines (9, 20, 21). In our study, general anesthesia was not used because these agents have marked effects on cardiovascular function and autonomic reflexes that could mask or augment the effect of either endotoxin or NOS inhibition. Anesthesia itself can produce hypotension, splanic vasoconstriction, dose-dependent cardiac depression, and blunting of normal autonomic reflexes (30). Pentobarbital, the anesthetic used in some previous studies of NOS inhibition (9, 21), is a myocardial depressant that causes an increase in HR and a decrease in SVI (30, 43). In addition, positive pressure ventilation is often used in conjunction with anesthetics and may further alter cardiopulmonary function, thus making data interpretation difficult. Notably, in our study in awake canines, Nω-aminot-arginine had only modest effects on endotoxin-induced hypotension compared with the results obtained in anesthetized models (9). The role, if any, of nitric oxide in anesthetic-induced hypotension has not been investigated.

t-arginine was not found to improve survival or affect cardiopulmonary parameters in endotoxemic dogs given Nω-aminot-arginine. It has been demonstrated in vitro that inhibition of NOS by t-arginine analogs may not be reversible under certain conditions (44, 45). Most previous studies using t-arginine in vivo to reverse the effects of NOS inhibitors, in particular Nω-methyl-t-arginine, measured hemodynamic changes immediately after rapid intravenous infusions of NOS inhibitors and t-arginine (9, 19, 20, 36). It seems likely in the present investigation that inhibition of NOS by Nω-aminot-arginine was not reversed by the continuous administration of t-arginine, based on the lack of a cardiovascular effect. The continuous infusion of Nω-aminot-arginine in our study may have resulted in irreversible, rather than competitive, inhibition of NOS. This hypothesis is supported by a recent report on the use of these agents to treat human septic shock (23), as the duration of action of 1 mg/kg Nω-methyl-t-arginine appeared to increase after successive intravenous bolus infusions.

The adverse impact of Nω-aminot-arginine on survival after endotoxin challenge was unexpected and the exact mechanism for this enhanced mortality remains unknown. The continuous infusion of Nω-aminot-arginine may have raised serum or tissue concentrations of this agent to levels sufficient to cause toxicity. The relatively short-lived hemodynamic effects of NOS inhibitors in animal models (9, 20, 23, 31) have led to the recommendation (22) and use (23, 27) of these agents as continuous infusions. However, as mentioned above, the pharmacologic profile and metabolic fate of these agents have not been thoroughly characterized. Further, endotoxemia may alter the metabolism of NOS inhibitors. Nω-aminot-arginine alone demonstrated a previously unreported neuromuscular toxicity in normal animals, manifested by an increase in neuromuscular excitability. It is possible that Nω-aminot-arginine or one of its metabolites is epileptogenic or might have disrupted normal guanidine metabolism, as abnormal serum levels of other guanidine compounds have been linked to seizure activity (46, 47). We cannot determine from this study whether the neuromuscular toxicity of Nω-aminot-arginine contributed to the increased mortality of endotoxin challenge. Nω-aminot-arginine at 1 mg/kg/h did not cause obvious toxicity in the one normal animal tested, but did increase the mortality of endotoxemia.

It is notable that Nω-aminot-arginine did have potentially harmful effects during endotoxemia, as demonstrated by Nω-aminot-arginine-induced decreases in CI, DO2I, and VO2I. It is possible that DO2I may have become inadequate to meet metabolic demands, leading to the observed fall in VO2I and an increase in mortality (48). This relationship, however, cannot be confirmed from the present investigation, though it is supported by the higher arterial lactate levels and lower pH measured in the endotoxemic animals treated with Nω-aminot-arginine. Other investigators have reported that NOS inhibitors worsen endotoxin-induced capillary leak and gastrointestinal damage in rodents, which suggests that NO may be important in maintaining vascular integrity and organ blood flow in sepsis (29). However, we did not observe enhanced endotoxin-induced hepatic damage (reflected by serial measures of liver function tests) in our Nω-aminot-arginine-treated canines, as has been reported in mice given Nω-methyl-t-arginine (49). This may represent species-related differences, NOS inhibitor differences, or both.

It is important to consider the potentially harmful hemo-
dynamic effects of Nω-amino-L-arginine in the context of the limitations of this particular model of septic shock. The hemodynamic profile of human septic shock, characterized by a high CI and a low SVRI, was not simulated by the endotoxin model used in this study, despite the large volumes of intravenous fluids (200 ml/kg/d) used for resuscitation. It is not clear that an NOS inhibitor-induced increase in SVRI would be harmful in septic shock patients with a high CI and low SVRI. The ability of NOS inhibitors to reverse the catecholamine hyporesponsiveness of the septic vasculature (16, 17, 50) may be useful clinically for the treatment of refractory septic shock, especially in patients who cannot tolerate high doses of vasopressors. However, based upon the results of this investigation, we conclude that prolonged administration of Nω-amino-L-arginine is harmful to normal and endotoxin-challenged canines, and that it should not be used in patients. Clearly, the neurotoxic potential of some NOS inhibitors must be appreciated and more fully studied, ideally in unanesthetized animals. In addition, the pharmacokinetic and pharmacodynamic profiles of NOS inhibitors need to be determined in vivo before the optimal route and timing of administration can be established.

We wish to thank Dr. Owen W. Griffith, for preparation of the Nω-amino-L-arginine, and Gary Akin and Donald Dolan for their expert technical assistance.

Address correspondence to Dr. J. Perren Cobb, Critical Care Medicine Department, Building 10, Room 7D-43, National Institutes of Health, Bethesda, MD 20892.

Received for publication 17 April 1992 and in revised form 7 July 1992.

References

1. Ziegler, E.J., J.A. McCutchan, J. Fierer, M.P. Glauser, J.C. Sadoff, H. Douglas, and A.I. Braude. 1982. Treatment of gram-negative bacteremia and shock with human antiserum to a mutant Escherichia coli. N. Engl. J. Med. 307:1225.

2. Parrillo, J.E., M.M. Parker, C. Natanson, A.F. Suffredini, R.L. Danner, R.E. Cunnion, and F.P. Ognibene. 1990. Septic shock in humans: Advances in the understanding of pathogenesis, cardiovascular dysfunction, and therapy. Ann. Intern. Med. 113:227.

3. Parker, M.M., J.H. Shelnamer, C. Natanson, D.W. Alling, and J.E. Parrillo. 1987. Serial cardiovascular variables in survivors and non-survivors of human septic shock: heart rate as an early predictor of prognosis. Crit. Care. Med. 15:923.

4. Ruokonen, E., J. Takala, A. Kari, and E. Alhava. 1991. Septic shock and multiple organ failure. Crit. Care. Med. 19:1146.

5. Groenveld, A.B.J., W. Bronsveld, and L.G. Thijss. 1984. Hemodynamic determinants of mortality in human septic shock. Surgery (St. Louis). 99:140.

6. Palmer, R.M.J., A.G. Perrige, and S. Moncada. 1987. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature (Lond.). 327:524.

7. Myers, P.R., R.L. Minor, Jr., R. Guerra, Jr., J.N. Bates, and D.G. Harrison. 1990. Vasorelaxant properties of the endothelium-derived relaxing factor more closely resemble S-nitroscysteine than nitric oxide. Nature (Lond.). 345:161.

8. Vanin, A.F. 1991. Endothelium-derived relaxing factor is a nitrosyl iron complex with thiol ligands: hypothesis. FEBS (Fed. Eur. Biochem. Soc.) Lett. 289:1.

9. Kilbourn, R.G., A. Jubran, S.S. Gross, O.W. Griffith, R. Levi, J. Adams, and R.F. Lodato. 1990. Reversal of endotoxin-mediated shock by Nω-methyl-L-arginine, an inhibitor of nitric oxide synthesis. Biochem. Biophys. Res. Commun. 172:1132.

10. Kilbourn, R.G., and P. Belloni. 1990. Endothelial cell production of nitrogen oxides in response to interferon gamma in combination with tumor necrosis factor, interleukin-1, or endotoxin. J. Natl. Cancer Inst. 82:772.

11. Gross, S.S., E.A. Jaffe, R. Levi, and R.G. Kilbourn. 1991. Cytokine-activated endothelial cells express an isotype of nitric oxide synthase which is tetrahydrobiopterin-dependent, calmodulin-independent and inhibited by arginine analogs with a rank-order of potency characteristic of activated macrophages. Biochem. Biophys. Res. Commun. 178:823.

12. Radomski, M.W., R.M.J. Palmer, and S. Moncada. 1990. Glucocorticoids inhibit the expression of an inducible, but not the constitutive, nitric oxide synthase in vascular endothelial cells. Proc. Natl. Acad. Sci. USA. 87:10043.

13. Fleming, I., G.A. Gray, C. Schott, and J.C. Stoclet. 1991. Inducible but not constitutive production of nitric oxide by vascular smooth muscle cells. Eur. J. Pharmacol. 200:375.

14. Nathan, C.F., and D.J. Stuehr. 1990. Does endothelium-derived nitric oxide have a role in cytokine-induced hypotension? J. Natl. Cancer Inst. 82:726.

15. [Editorial; comment] 1991. Nitric oxide in the clinical arena. Lancet (N. Am. Ed.). 338:1360.

16. Julou-Schaeffer, G., G.A. Gray, I. Fleming, C. Schott, J.R. Parratt, and J.C. Stoclet. 1990. Loss of vascular responsiveness induced by endotoxin involves t-arginine pathway. Am. J. Physiol. 259:H1038.

17. Gray, G.A., C. Schott, G. Julou-Schaeffer, I. Fleming, J.R. Parratt, and J.C. Stoclet. 1991. The effect of inhibitors of the t-arginine/nitric oxide pathway on endotoxin-induced loss of vascular responsiveness in anesthetized rats. Br. J. Pharmacol. 103:1218.

18. Sakuma, I., D.J. Stuehr, S.S. Gross, C. Nathan, and R. Levi. 1988. Identification of arginine as a precursor of endothelium-derived relaxing factor. Proc. Natl. Acad. Sci. USA. 85:8664.

19. Aisaka, K., S.S. Gross, O.W. Griffith, and R. Levi. 1989. Nω-methylarginine, an inhibitor of endothelium-derived nitric oxide synthesis, is a potent pressor agent in the guinea pig: does nitric oxide regulate blood pressure in vivo? Biochem. Biophys. Res. Commun. 160:881.

20. Kilbourn, R.G., S.S. Gross, A. Jubran, J. Adams, O.W. Griffith,
R. Levi, and R.F. Lodato. 1990. Nω-methyl-L-arginine inhibits tumor necrosis factor-induced hypotension: implications for the involvement of nitric oxide. Proc. Natl. Acad. Sci. USA. 87:3629.

21. Klabunde, K.E., and R.C. Ritger. 1991. Nω-monomethyl-L-arginine (NMA) restores arterial blood pressure but reduces cardiac output in a canine model of endotoxic shock. Biochem. Biophys. Res. Commun. 178:1135.

22. Nava, E., R.M.J. Palmer, and S. Moncada. 1991. Inhibition of nitric oxide synthesis in septic shock: how much is beneficial? Lancet (N. Am. Ed.). 338:1555.

23. Petros, A., D. Bennett, and P. Valance. 1991. Effect of nitric oxide synthase inhibitors on hypotension in patients with septic shock. Lancet (N. Am. Ed.). 338:1557.

24. Geroulanos, S., J. Schilling, M. Cakmakci, H.H. Jung, and F. Largiader. 1992. Inhibition of NO synthesis in septic shock (letter). Lancet (N. Am. Ed.). 339:435.

25. Tolins, J.P., and L. Raij. 1990. Modulation of systemic blood pressure and renal haemodynamic responses by endothelium-derived relaxing factor (nitric oxide). In Nitric Oxide from L-arginine: A Bioregulatory System. S. Moncada and E.A. Higgs, editors. Elsevier Science Publishing Company, Inc., New York. 463-473.

26. Walder, C.E., C. Thiemermann, and J.R. Vane. 1991. The involvement of endothelium-derived relaxing factor in the regulation of renal cortical blood flow in the rat. Br. J. Pharmacol. 102:967.

27. Perrella, M.A., K.B. Hildebrand, Jr., K.B. Margulies, and J.C. Stoclet. 1991. Evidence that an L-arginine/nitric oxide depleting agent decreases the survival rate of septic dogs. Br. J. Pharmacol. 102:1563.

28. Cohn, E., D.E. Chambers, C. Lin, W.D. Kuehl, R.M.J. Palmer, S. Moncada, and F.R. Cobb. 1991. Effects of inhibition of nitric oxide formation on basal vasomotion and endothelium-dependent responses of the coronary arteries in awake dogs. J. Clin. Invest. 81:1964.

29. Hutchison, J.R., B.J.R. Whittle, and N.K. Boughton-Smith. 1990. Role of nitric oxide in maintaining vascular integrity in endotoxin-induced acute intestinal damage in the rat. Br. J. Pharmacol. 101:815.

30. Vatner, S.F., and E. Braunwald. 1975. Cardiovascular control mechanisms in the conscious state. N. Engl. J. Med. 293:970.

31. Vargas, H.M., J.M. Cuevas, L.J. Ignarro, and G. Chaudhuri. 1991. Comparison of the inhibitory potencies of Nω-methyl-, Nω-nitro-, and Nω-amino-L-arginine on EDRF function in the rat: Evidence for continuous basal EDRF release. J. Pharmacol. Exp. Ther. 257:1208.

32. Gross, S.S., D.J. Stuehr, K. Aisaka, E.A. Jaffe, R. Levi, and O.W. Griffith. 1990. Macrophage and endothelial cell nitric oxide synthesis: Cell-type selective inhibition by Nω-aminoarginine, Nω-nitroarginine and Nω-methylarginine. Biochem. Biophys. Res. Commun. 170:96.

33. Hecker, M., J.A. Mitchell, H.J. Harris, M. Katsura, C. Thiemermann, and J.R. Vane. 1990. Endothelial cells metabolize Nω-monomethyl-L-arginine to L-citrulline and subsequently to L-arginine. Biochem. Biophys. Res. Commun. 167:1037.

34. Fukuto, J.M., K.S. Wood, R.E. Byrns, and L.J. Ignarro. 1990. Nω-amino-L-arginine: a new potent antagonist of L-arginine-mediated endothelium-dependent relaxation. Biochem. Biophys. Res. Commun. 168:458.

35. Natanson, C., M.P. Fink, H.K. Ballantyne, T.J. MacVittie, J.J. Conklin, and J.E. Parrillo. 1986. Gram-negative bacteremia produces both severe systolic and diastolic dysfunction in a canine model that simulates human septic shock. J. Clin. Invest. 78:259.

36. Natanson, C., R.L. Danner, M.P. Fink, T.J. MacVittie, R.I. Walker, J.J. Conklin, and J.E. Parrillo. 1988. Cardiovascular performance with E. coli challenges in a canine model of human sepsis. Am. J. Physiol. 254:H558.

37. Danner, R.L., C. Natanson, R.L. Elin, J.M. Hosseini, S.M. Banks, T.J. MacVittie, and J.E. Parrillo. 1990. Pseudomonas aeruginosa compared with Escherichia coli produces less endotoxemia but more cardiovascular dysfunction and mortality in a canine model of septic shock. Chest. 98:1480.

38. Hoffman, W.D., S.M. Banks, D.W. Alling, P.W. Eichenholz, P.Q. Eichacker, J.E. Parrillo, and C. Natanson. 1991. Factors that determine the hemodynamic response to inhalational anesthetics. J. Appl. Physiol. 70:2155.

39. Scheffe, H. 1989. The Analysis of Variance. John Wiley & Sons, Inc., New York.

40. Dunnnett, C.W. 1955. A multiple comparisons procedure for comparing several treatments with a control. Journal of the American Statistical Association. 50:1096.

41. Natanson, C., P.W. Eichenholz, R.L. Danner, P.Q. Eichacker, W.D. Hoffman, G.C. Kuo, S.M. Banks, T.J. MacVittie, and J.E. Parrillo. 1989. Endotoxin and tumor necrosis factor challenges in dogs simulate the cardiovascular profile of human septic shock. J. Exp. Med. 169:823.

42. Schulz, R., J.A. Smith, J.A. Lewis, and S. Moncada. 1991. Nitric oxide synthase in cultured endothelial cells of the pig. Br. J. Pharmacol. 104:21.

43. Olmsted, F., and I.H. Page. 1966. Hemodynamic changes in dogs caused by sodium pentobarbital anesthesia. Am. J. Physiol. 210:817.

44. Olken, N.M., K.M. Rusche, M.K. Richards, and M.A. Marletta. 1991. Inactivation of macrophage nitric oxide synthase activity by Nω-methyl-L-arginine. Biochem. Biophys. Res. Commun. 177:828.

45. Dwyer, M.A., D.S. Bredt, and S.H. Snyder. 1991. Nitric oxide synthase: irreversible inhibition by L-Nω-nitroarginine in brain in vitro and in vivo. Biochem. Biophys. Res. Commun. 176:1136.

46. De Deyn, P.P., B. Marrescau, and R.L. Macdonald. 1991. Guanidino compounds that are increased in hyperargininemia inhibit GABA and glycine responses on mouse neurons in cell culture. Epilepsy Res. 8:134.

47. Shiraga, H., Y. Watanabe, and A. Mori. 1991. Guanidino compound levels in the serum of healthy adults and epileptic patients. Epilepsy Res. 8:142.

48. Bland, R.D., W.C. Shoemaker, E. Abraham, and J.C. Cobo. 1985. Hemodynamic and oxygen transport patterns in surviving and nonsurviving postoperative patients. Crit. Care Med. 13:85.

49. Billiar, T.R., R.D. Curran, D.J. Stuehr, K. Hofmann, and K.L. Natanson, P.Q. Eichacker, and C. Natanson. 1991. Factors that determine the hemodynamic response to inhalational anesthetics. J. Appl. Physiol. 70:2155.

50. Fleming, I., G. Julou-Schaeffer, G.A. Gray, J.R. Parratt, and J.C. Stoclet. 1991. Evidence that an L-arginine/nitric oxide-dependent elevation of tissue cyclic GMP content is involved in depression of vascular reactivity by endotoxin. Br. J. Pharmacol. 103:1047.