SOME REMARKS ON HUISKEN’S MONOTONICITY FORMULA FOR MEAN CURVATURE FLOW

ANNIBALE MAGNI AND CARLO MANTEGAZZA

ABSTRACT. We discuss a monotone quantity related to Huisken’s monotonicity formula and some technical consequences for mean curvature flow.

CONTENTS

1. Maximizing Huisken’s Monotonicity Formula
2. Applications
 2.1. A No–Breathers Result
 2.2. Singularities
References

1. Maximizing Huisken’s Monotonicity Formula

For an immersed hypersurface $M \subset \mathbb{R}^{n+1}$, we call \mathcal{A} and H respectively its second fundamental form and its mean curvature.

Let $M_t = \varphi(M, t)$ be the mean curvature flow (MCF) of an n–dimensional compact hypersurface in \mathbb{R}^{n+1}, defined by the smooth family of immersions $\varphi : M \times [0, T) \to \mathbb{R}^{n+1}$ which satisfies $\partial_t \varphi = H\nu$ where ν is the “inner” unit normal vector field to the hypersurface.

Huisken in [7] found his fundamental monotonicity formula

\[
\frac{d}{dt} \int_M e^{-\frac{|x-p|^2}{4(C-t)}} \frac{e^{-|H|^2/4(4\pi(C-t))^{n/2}}}{4\pi(C-t))^{n/2}} d\mu_t(x) = -\int_M e^{-\frac{|x-p|^2}{4(C-t)}} \frac{|H + \langle \nabla \log u \rangle \nu|^2}{2(C-t)} d\mu_t(x) \leq 0,
\]

for every $p \in \mathbb{R}^{n+1}$, in the time interval $[0, \min\{C, T\})$. Here $d\mu_t$ is the canonical measure on M associated to the metric induced by the immersion at time t.

We call the quantity $\int_M e^{-\frac{|x-p|^2}{4\pi(C-t))^{n/2}} d\mu_t(x)$, the Huisken’s functional. Such formula was generalized by Hamilton in [5, 6] as follows, suppose that we have a positive smooth solution of $u_t = -\Delta u$ in $\mathbb{R}^{n+1} \times [0, C)$ then, in the time interval $[0, \min\{C, T\})$, there holds

\[
\frac{d}{dt} \left[\sqrt{2(C-t)} \int_M u d\mu_t \right] = -\sqrt{2(C-t)} \int_M u |H - \langle \nabla \log u \rangle \nu|^2 d\mu_t
\]

\[
-\sqrt{2(C-t)} \int_M \left(\nabla \nabla u - \frac{\nabla u}{u} \right) \frac{u}{2(C-t)} d\mu_t,
\]

where ∇^\perp denotes the covariant derivative along the normal direction.

Date: 10 January 2009.
Key words and phrases. Mean Curvature Flow.
Definition 1.1. Let \(\varphi : M \to \mathbb{R}^{n+1} \) be a smooth, compact, immersed hypersurface. Given \(\tau > 0 \), we consider the family \(\mathcal{F}_\tau \) of smooth positive functions \(u : \mathbb{R}^{n+1} \to \mathbb{R} \) such that \(\int_{\mathbb{R}^{n+1}} u \, dx = 1 \) and there exists a smooth positive solution of the problem

\[
\begin{align*}
 v_t &= -\Delta v \text{ in } \mathbb{R}^{n+1} \times [0, \tau), \\
v(x, 0) &= u(x) \text{ for every } p \in \mathbb{R}^{n+1}.
\end{align*}
\]

Then, we define the following quantity

\[\sigma(\varphi, \tau) = \sup_{u \in \mathcal{F}_\tau} \sqrt{4\pi \tau} \int_M u \, d\mu.\]

Remark 1.2. The heat kernel \(K_{\mathbb{R}^{n+1}}(x, p, \tau) = e^{-\frac{|x-p|^2}{(4\pi \tau)^{n+1}/2}} \) of \(\mathbb{R}^{n+1} \) at time \(\tau > 0 \) and point \(p \in \mathbb{R}^{n+1} \) clearly belongs to the family \(\mathcal{F}_\tau \).

It is immediate to see by this remark that the quantity \(\sigma(\varphi, \tau) \) is positive and precisely, for every \(p \in \mathbb{R}^{n+1} \) and \(\tau > 0 \),

\[\sigma(\varphi, \tau) \geq \sqrt{4\pi \tau} \int_M e^{-\frac{|x-p|^2}{(4\pi \tau)^{n+1}/2}} \, d\mu(x) \geq \int_M e^{-\frac{|x-p|^2}{(4\pi \tau)^{n+1}/2}} \, d\mu(x) > 0,
\]

which is the quantity of the “classical” Huisken’s monotonicity formula. Hence,

\[(1.3) \quad \sigma(\varphi, \tau) \geq \sup_{p \in \mathbb{R}^{n+1}} \int_M e^{-\frac{|x-p|^2}{(4\pi \tau)^{n+1}/2}} \, d\mu(x) > 0.\]

We want to see that actually this inequality is an equality, that is, we can take the \(\sup \) only on heat kernels. Moreover, the \(\sup \) is a maximum.

We work out some properties of the functions \(u \in \mathcal{F}_\tau \).

We recall the integrated version of Li–Yau Harnack inequality (see [11]).

Proposition 1.3 (Li–Yau integral Harnack inequality). Let \(u : \mathbb{R}^{n+1} \times (0, T) \to \mathbb{R} \) be a smooth positive solution of heat equation, then for every \(0 < t \leq s < T \) we have

\[u(x, t) \leq u(y, s) \left(\frac{s}{t} \right)^{(n+1)/2} e^{\frac{|x-y|^2}{4(n+1)s-t}}.\]

Since the functions \(v : \mathbb{R}^{n+1} \times [0, \tau) \to \mathbb{R} \) associated to any \(u \in \mathcal{F}_\tau \) are positive solutions of the backward heat equation, such inequality reads, for \(0 \leq s \leq t < \tau, \)

\[v(x, t) \leq v(y, s) \left(\frac{t-s}{t} \right)^{(n+1)/2} e^{\frac{|x-y|^2}{4(n+1)t-s}}.\]

This estimate, together with the uniqueness theorem for positive solution of the heat equation (see again [11]), implies that the function \(u = v(\cdot, 0) \) is obtained by convolution of the function \(v(\cdot, t) \) with the forward heat kernel at time \(t > 0 \). This fact implies that the condition \(\int_{\mathbb{R}^{n+1}} v(x, t) \, dx = 1 \) holds for every \(t \in [0, \tau) \), and that every derivative of every function \(v \) is bounded in the strip \([0, \tau - \varepsilon]\), for every \(\varepsilon > 0 \).

The functions \(v(\cdot, t) \) weakly∗ converge as probability measures, as \(t \to \tau \), to some positive unit measure \(\lambda \) on \(\mathbb{R}^{n+1} \) such that

\[(1.4) \quad v(x, t) = \int_{\mathbb{R}^{n+1}} e^{-\frac{|x-y|^2}{4(\tau-t)^{(n+1)/2}}} \, d\lambda(y).
\]

Conversely, every probability measure \(\lambda \), by convolution with the heat kernel, gives rise to a function \(v \) such that \(v(\cdot, \tau) \in \mathcal{F}_\tau \), the most interesting case being
Consequently, the functions $v(x, t) = \int_{\mathbb{R}^{n+1}} v(y, s) e^{\frac{|x-y|^2}{4\pi(s-t)}} dx$

hence, choosing a sequence of times $s_i \to \tau$ such that the measures $v(\cdot, s_i) \mathcal{L}^{n+1}$ weakly* converge to some measure λ, we get equality (1.4), since $\frac{e^{-|x-y|^2}}{[4\pi(s-t)]^{(n+1)/2}}$

converges uniformly to $\frac{e^{-|x-y|^2}}{[4\pi(\tau-t)]^{(n+1)/2}}$ on \mathbb{R}^{n+1}, as $s \to \tau$.

This representation formula also implies that the limit measure λ is unique and that actually $\lim_{s \to \tau} v(\cdot, s) \mathcal{L}^{n+1} = \lambda$ in the weak* convergence of measures on \mathbb{R}^{n+1}.

Finally, we show that $|\lambda| = 1$. This follows by Fubini–Tonelli’s theorem for positive product measures, as $\int_{\mathbb{R}^{n+1}} u(x) dx = 1$,

$$1 = \int_{\mathbb{R}^{n+1}} u(x) dx = \int_{\mathbb{R}^{n+1}} \int_{\mathbb{R}^{n+1}} e^{\frac{|x-y|^2}{4\pi\tau}} \frac{1}{(n+1)/2} d\lambda(y) dx$$

$$= \int_{\mathbb{R}^{n+1}} \int_{\mathbb{R}^{n+1}} \frac{e^{-|x-y|^2}}{[4\pi\tau]^{(n+1)/2}} dx d\lambda(y)$$

$$= \int_{\mathbb{R}^{n+1}} d\lambda(y) = |\lambda|.$$

By this discussion it follows that the family F_τ consists of

$$u(x, t) = \int_{\mathbb{R}^{n+1}} \frac{e^{-|x-y|^2}}{[4\pi\tau]^{(n+1)/2}} d\lambda(y)$$

where λ varies among the convex set of Borel probability measures on \mathbb{R}^{n+1} (which is weak*–compact).

A consequence of this fact is that since the integral $\sqrt{4\pi\tau} \int_M u d\mu$ is a linear functional in the function u, the \sup in defining $\sigma(\varphi, \tau)$ can be taken considering only the extremal points of the above convex, which are the delta measures in \mathbb{R}^{n+1}.

Consequently, the functions u to be considered can be restricted to be heat kernels at time $\tau > 0$.

It is then easy to conclude that as the hypersurface M is compact in \mathbb{R}^{n+1}, the sup is actually a maximum.

Proposition 1.4. The quantity $\sigma(\varphi, \tau)$ is given by

$$\sigma(\varphi, \tau) = \max_{p \in \mathbb{R}^{n+1}} \int_M e^{-\frac{|x-p|^2}{4\pi\tau}} d\mu(x).$$

We have also easily that

$$\sigma(\varphi, \tau) = \sup_{p \in \mathbb{R}^{n+1}} \int_M e^{-\frac{|x-p|^2}{4\pi\tau}} d\mu(x) \leq \int_M \frac{1}{(4\pi\tau)^n/2} d\mu(x) \leq \frac{\text{Area}(M)}{(4\pi\tau)^{n/2}}.$$

Proposition 1.5 (Rescaling Invariance). For every $\lambda > 0$ we have

$$\sigma(\lambda \varphi, \lambda^2 \tau) = \sigma(\varphi, \tau).$$
Proof. Let \(u \in \mathcal{F} \) with associate solution of backward heat equation \(v : \mathbb{R}^{n+1} \times [0, \tau) \to \mathbb{R} \) and consider the rescaled function \(\tilde{u}(y) = u(y/\lambda)\lambda^{-(n+1)} \).

It is easy to see that

\[
\int_{\mathbb{R}^{n+1}} \tilde{u}(y) \, dy = \lambda^{-(n+1)} \int_{\mathbb{R}^{n+1}} u(y/\lambda) \, dy = \int_{\mathbb{R}^{n+1}} u(x) \, dx = 1
\]

with the change of variable \(x = \lambda^{-(n+1)} y \), moreover the function \(\tilde{v}(y, s) = v(y/\lambda, s/\lambda^2)\lambda^{-(n+1)} \) is a positive solution of the backward heat equation on the time interval \(\lambda^2 \tau \), hence \(\tilde{u} \in \mathcal{F}_{\lambda^2} \).

It is now a straightforward computation to see that

\[
\sqrt{4\pi \lambda^2 \tau} \int_M \tilde{u} \, d\mu_{\lambda^2} = \sqrt{4\pi \tau} \int_M u \, d\mu \,
\]

for every smooth immersion of a compact hypersurface \(\varphi : M \to \mathbb{R}^{n+1} \). The statement clearly follows. \(\square \)

By formula (1.2), as the second term vanishes when \(v \) is a backward heat kernel, it follows that if \(\varphi : M \times [0, T) \to \mathbb{R}^{n+1} \) is the MCF of a compact hypersurface \(M \), we have

\[
d \left[\int_M K_{\mathbb{R}^{n+1}}(x, p, C - t) \, d\mu_t(x) \right]
= -\int_M K_{\mathbb{R}^{n+1}}(x, p, C - t)|H + (x - p|v)/2(C - t)|^2 \, d\mu_t(x)
\]

which is clearly negative in the time interval \([0, \min\{C, T\}) \).

Proposition 1.6 (Monotonicity and Differentiability). Along a MCF, \(\varphi : M \times [0, T) \to \mathbb{R}^{n+1} \), if \(\tau(t) = C - t \) for some constant \(C > 0 \), the quantity \(\sigma(\varphi_t, \tau) \) is monotone nonincreasing in the time interval \([0, \min\{C, T\}) \), hence it is differentiable almost everywhere. Moreover, letting \(p_r \) a point in \(\mathbb{R}^{n+1} \) such that \(K_{\mathbb{R}^{n+1}}(x, p_r, \tau) \) is one of maximizer for \(\sigma(\varphi_t, \tau(t)) \) of Proposition 1.4, we have for almost every \(t \in [0, \min\{C, T\}) \),

\[
\frac{d}{dt} \sigma(\varphi_t, \tau) \leq -\int_M e^{-\frac{(x - p_r)^2}{4\sigma}} \left| \frac{x - p_r}{\sigma} \right|^2 \, d\mu_t
\]

or, since this inequality has to be intended in distributional sense, for every \(0 \leq \tau \leq \min\{C, T\} \),

\[
\sigma(\varphi_t, \tau(r)) - \sigma(\varphi_t, \tau(t)) \geq \int_r^t \int_M e^{-\frac{(x - p_r)^2}{4\sigma}} \left| \frac{x - p_r}{\sigma} \right|^2 \, d\mu_s \, ds
\]

Proof. As the function \(\sigma(\varphi_t, \tau) \) is the maximum of monotone nonincreasing smooth functions, it also must be monotone nonincreasing, hence, differentiable at almost every time \(t \in [0, \min\{C, T\}) \). The last assertion is standard, using Hamilton’s trick (see [1]) to exchange the sup and derivative operations. \(\square \)

Remark 1.7. Notice that the quantity \(\sigma \) can be defined also for any \(n \)-dimensional countably rectifiable subset \(S \) of \(\mathbb{R}^{n+1} \), by substituting in the definition the term \(\int_M u \, d\mu \) with \(\int_S u \, d\mathcal{H}^n \), where \(\mathcal{H}^n \) is the \(n \)-dimensional Hausdorff measure (possibly counting multiplicities). If then \(S \) is the support of a compact rectifiable varifold, with finite Area, moving by mean curvature according to Brakke’s definition (see [1]), Huisken’s monotonicity formula (1.2) holds, hence, also this proposition.
Definition 1.8. We define, in the same hypothesis, for $\tau = C - t$ with $C \leq T$,
$$\Sigma(C) = \lim_{t \to C^-} \sigma(\varphi, \tau),$$
and $\Sigma = \Sigma(T)$.

By the previous discussion, $\Sigma \geq \sup_{p \in \mathbb{R}^{n+1}} \Theta(p)$, where this latter quantity is defined as
\begin{equation}
(1.7) \quad \Theta(p) = \lim_{t \to T^-} \int_M \frac{e^{-\frac{|x-p|^2}{4\pi(T-t)}}}{(4\pi(T-t))^{n/2}} \, d\mu_t(x),
\end{equation}
the existence of this limit for every $p \in \mathbb{R}^{n+1}$ is an obvious consequence of Huisken’s monotonicity formula. Moreover, it is easy to see also the existence of $\max_{p \in \mathbb{R}^{n+1}} \Theta(p)$.

Definition 1.9. Let $\varphi : M \to \mathbb{R}^{n+1}$ be a smooth, compact, immersed hypersurface. Then we define
$$\nu(\varphi) = \sup_{\tau > 0} \sigma(\varphi, \tau).$$

Proposition 1.10. The quantity $\nu(\varphi)$ is finite and actually reached by some τ_φ.

Proof. Indeed, we have
$$\lim_{\tau \to 0^+} \sigma(\varphi, \tau) = \Theta(\varphi) > 0,$$
where $\Theta(\varphi)$ is the maximum (which clearly exists as M is compact) of the n-dimensional density of $\varphi(M)$ in \mathbb{R}^{n+1}. Then, if φ is an embedding, $\Theta(\varphi) = 1$, otherwise it will be the highest multiplicity of the points of $\varphi(M)$.

We show then that
$$\lim_{\tau \to +\infty} \sigma(\varphi, \tau) = 0.$$

By the rescaling property of σ, we have $\sigma(\varphi, \tau) = \sigma(\varphi/\sqrt{4\pi\tau}, 1/4\pi)$, hence we need to show that
$$\limsup_{\tau \to +\infty} \sup_{u \in \mathcal{F}_1} \int_{\frac{M}{\sqrt{4\pi\tau}}} u \, d\mu = 0.$$

But we already saw that any function $u \in \mathcal{F}_1$ satisfies $0 \leq u(x) \leq \frac{1}{(4\pi\tau)^{n/2}}$, hence,
$$\limsup_{\tau \to +\infty} \sup_{u \in \mathcal{F}_1} \int_{\frac{M}{\sqrt{4\pi\tau}}} u \, d\mu \leq \limsup_{\tau \to +\infty} \sup_{u \in \mathcal{F}_1} \frac{\text{Vol}(M/\sqrt{4\pi\tau})}{(4\pi)^{n+1}/2} = \limsup_{\tau \to +\infty} \frac{\text{Vol}(M)}{(4\pi)^{(2n+1)/2}} \tau^{-n/2} = 0.$$

The following statement can be proved by the same argument of the proof of Proposition 1.6.

Proposition 1.11 (Monotonicity and Differentiability – II). Along a MCF, $\varphi : M \times [0, T) \to \mathbb{R}^{n+1}$, the quantity above $\nu(\varphi_t)$ is monotone non increasing in the time interval $[0, T)$, hence it is differentiable almost everywhere.

Moreover, letting $p_\varphi \in \mathbb{R}^{n+1}$ and τ_φ to be some of the maximizers whose existence is granted by Propositions 1.4 and 1.10, we have for almost every $t \in [0, T)$,
\begin{equation}
(1.8) \quad \frac{d}{dt} \nu(\varphi_t) \leq -\int_M \frac{e^{-\frac{|x-p_\varphi|^2}{4\tau_\varphi t}}}{(4\pi\tau_\varphi t)^{n/2}} \left(H + \frac{(x - p_\varphi, \nu)}{2\tau_\varphi} \right)^2 \, d\mu_t(x)
\end{equation}
or, since this inequality has to be intended in distributional sense, for every $0 \leq r < t < T$,
\begin{equation}
(1.9) \quad \nu(\varphi_t) - \nu(\varphi_r) \geq \int_r^t \int_M \frac{e^{-\frac{|x-p_\varphi|^2}{4\tau_\varphi s}}}{(4\pi\tau_\varphi s)^{n/2}} \left(H + \frac{(x - p_\varphi, \nu)}{2\tau_\varphi} \right)^2 \, d\mu_s(x) \, ds.
\end{equation}
Remark 1.12. One can repeat all this analysis for a compact, immersed hypersurface of a flat Riemannian manifold T. Moreover, if the original hypersurface $\varphi : M \to \mathbb{R}^{n+1}$ is immersed in \mathbb{R}^{n+1}, we can choose a Riemannian covering map $I : \mathbb{R}^{n+1} \to T$ and consider the immersion $\tilde{\varphi} = I \circ \varphi : M \to T$. Then, we define as above, for every $\tau > 0$, the family $F_{T, \tau}$ of smooth positive functions $u : T \to \mathbb{R}$ such that $\int_T u \, d\mu = 1$ and there exists a smooth positive solution of the problem
\[
\begin{cases}
v_t = -\Delta v & \text{in } T \times [0, \tau) \\
v(p, 0) = u(x) & \text{for every } p \in T.
\end{cases}
\]
Then, we define the following quantity
\[
\sigma_T(\varphi, \tau) = \sup_{u \in F_{T, \tau}} \sqrt{4\pi \tau} \int_M u \, d\tilde{\mu}
\]
where \tilde{M} refers to the fact that we are considering the immersion $\tilde{\varphi} : M \to T$.

Notice that another possibility is simply to embed isometrically a convex set $\Omega \subset \mathbb{R}^{n+1}$ containing $\varphi(M)$ in a flat Riemannian manifold T (during the mean curvature flow a hypersurface φ initially contained in Ω stays “inside” for all the evolution).

As before, these quantities are well defined, finite, positive and monotonically decreasing if φ_t moves by mean curvature.

2. Applications

2.1. A No–Breathers Result.

Definition 2.1. A breather (following Perelman [12]) for mean curvature flow in \mathbb{R}^{n+1} is a smooth n–dimensional hypersurface evolving by mean curvature $\varphi : M \times [0, T) \to \mathbb{R}^{n+1}$, such that there exists a time $T > 0$, an isometry L of \mathbb{R}^{n+1} and a positive constant $\lambda \in \mathbb{R}$ with $\varphi(M, T) = \lambda L(\varphi(M, 0))$.

Remark 2.2. It is useless to consider nonshrinking (steady or expanding) compact breather of MCF, by the comparison with evolving spheres, they simply do not exist.

To authors’ knowledge, it is unknown if there exist nonhomothetic, noncompact “steady” or “expanding” breathers.

Theorem 2.3. Every compact breather is a homothetic solution to MCF.

Proof. By the rescaling property of σ in Proposition 1.5 fixing $C > 0$ we have
\[
\sigma(\varphi_0, C) \geq \sigma(\varphi_{\tau}, C - \tau) = \sigma(\lambda \varphi_0, C - \tau) = \sigma(\varphi_0, (C - \tau)/\lambda^2)
\]
hence, if we choose $C = \frac{T}{1 - \lambda^2}$ we have $C > T$, as $\lambda < 1$ and $(C - \tau)/\lambda^2 = C$. It follows that
\[
\sigma(\varphi_0, C) = \sigma(\varphi_{\tau}, C - \tau)
\]
and (for such special C), by Proposition 1.6 if $\tau(t) = C - t$
\[
\int_0^T \int_M e^{-\frac{(x - p_{\tau(t)})^2}{4(4\pi(\tau(t)))^{n/2}}} \left| H + \frac{(x - p_{\tau(t)}) \cdot \nu}{2\tau(t)} \right|^2 \, d\mu dt = 0.
\]
This implies that for every $t \in (0, \bar{T})$ we have $H(x, t) = -\frac{(x - p_{\tau(t)}) \cdot \nu}{2(C - \tau)}$ for some $p_{\tau(t)} \in \mathbb{R}^{n+1}$, which is the well known equation characterizing a homothetically shrinking solution of MCF. \qed
Remark 2.4. This is the same argument to show that compact shrinking breathers of Ricci flow are actually Ricci gradient solitons.

Recalling the monotone nondecreasing quantity μ of Perelman in [12], along a Ricci flow $g(t)$ of a compact, n-dimensional Riemannian manifold M,

$$\mu(g, \tau) = \inf_{f, t, u > 0} \int_M \left(\tau \left[R + \frac{\nabla u}{u} \right] - u \log u - \frac{u}{2} \log \frac{1}{u} \right) dV.$$

By the rescaling property $\mu(\lambda g, \lambda \tau) = \mu(g, \tau)$, if we have that $g(t) = \lambda dL^* g(0)$ for some diffeomorphism $L : M \to M$ and $0 < \lambda < 1$, fixing $C > 0$ we have

$$\mu(g(0), C) \leq \mu(g(t), C - t) = \mu(\lambda dL^* g(0), C - t) = \mu(\lambda g(0), C - t) = \mu(g(0), (C - t)/\lambda)$$

hence, if we choose $C = \frac{1}{\lambda}$ we have $C > 1$, as $\lambda < 1$ and $(C - t)/\lambda = C$. It follows that

$$\mu(g(0), C) = \mu(g(t), C - t)$$

and by the results of Perelman, $g(t)$ is a shrinking soliton.

2.2. Singularities. If $\varphi : M \times [0, T) \to \mathbb{R}^{n+1}$ is a MCF of a smooth, compact, embedded hypersurface, it is well known that during the flow it remains embedded and there exists a finite maximal time $T > 0$ of smooth existence when the curvature Λ is unbounded as $t \nearrow T$.

Moreover for every $t \in [0, T)$

$$\sup_{p \in \Sigma} |A(p, t)| \geq \frac{1}{\sqrt{2(T-t)}}.$$

If there exists a constant $C > 0$ such that also

$$\sup_{p \in \Sigma} |A(p, t)| \leq \frac{C}{\sqrt{2(T-t)}}.$$

we say that at T we have a type I singularity, otherwise we say the singularity is of type II.

We want to show that if at time T we have a singularity, the associated quantity $\Sigma = \lim_{t \to T-} \sigma(\varphi_t, \tau)$ is larger than one.

Indeed, for every $p \in \mathbb{R}^{n+1}$ such that there exists a sequence of points $q_i \in M$ and times $t_i \nearrow T$ with $p = \lim_{i \to \infty} \varphi(q_i, t_i)$, we consider the function $\Theta(p)$ defined in equation (17). By a simple semicontinuity argument, we can see that $\Theta(p) \geq 1$ for every $p \in \mathbb{R}^{n+1}$ like above, see [2, Corollary 4.20], hence, as $\Sigma \geq \sup_{p \in \mathbb{R}^{n+1}} \Theta(p)$ we get $\Sigma \geq 1$.

If then $\Sigma = 1$, it forces $\Theta(p) = 1$ for all such points p which implies, by the local regularity result of White [15], that the flow cannot develop a singularity at time T (see also Ecker [2]).

Suppose now to have a type I singularity at time T.

By Proposition 1.6 we know that along this flow, for $C = T$, hence, $\tau = T - t$,

$$\sigma(\varphi_r, \tau - r) - \sigma(\varphi_t, \tau - t) \geq \int_t^r \int_M \frac{\left| (x - pt - s) \right|^2}{4\pi(T - s)} \left[H + \frac{\left| (x - pt - s) \right|}{2(T - s)} \right]^2 \mu_s(x) ds$$

for every $0 \leq r \leq t \leq T$, hence,

$$C(\varphi_0) \geq \sigma(\varphi_0, T) - \Sigma \geq \int_0^T \int_M \frac{\left| (x - pt - s) \right|^2}{4\pi(T - s)} \left[H + \frac{\left| (x - pt - s) \right|}{2(T - s)} \right]^2 \mu_s(x) ds$$

Rescaling every hypersurface φ_t as in [7], around the point $pt - t$ as follows,

$$\tilde{\varphi}_s(q) = \frac{\varphi(q, t(s)) - pt - t(s)}{\sqrt{2(T - t(s))}} \quad s = s(t) = -\frac{1}{2} \log(T - t)$$
and changing variables in formula (2.1), we get

\begin{equation}
C \geq \int_M e^{-\frac{|\gamma|^2}{2}} d\tilde{\mu} - \frac{1}{4} \log T \geq \int_{-t_0}^{+\infty} \int_M e^{-\frac{|\gamma|^2}{2}} |\hat{H} + \langle y | \hat{\nu} \rangle|^2 d\tilde{\mu}_s(y) \, ds.
\end{equation}

It follows that reasoning like in [7] and [13] (or [14]), if the singularity is of type I, the curvature of the rescaled hypersurfaces \(\tilde{\gamma}_s : M \to \mathbb{R}^{n+1} \) is uniformly bounded and any sequence converges (up to a subsequence) to a limit embedded hypersurface \(\tilde{M}_\infty \) satisfying \(\hat{H} = -\langle x | \hat{\nu} \rangle \) which is the defining equation for a homothetic solution of MCF.

Moreover, By the estimates of Stone [13, Lemma 2.9], this limit hypersurface satisfies

\[
\frac{1}{(2\pi)^{n/2}} \int_{\tilde{M}_\infty} e^{-\frac{|\gamma|^2}{2}} d\mathcal{H}^n(y) = \lim_{t \to T_0^-} \sigma(\tilde{\gamma}_t, T - t) = \Sigma > 1.
\]

Clearly, by this equation, this embedded limit hypersurface cannot be empty. Moreover, it cannot be flat also, as it would be an hyperplane for the origin of \(\mathbb{R}^{n+1} \) (the only hyperplanes satisfying \(\mathcal{H} = -\langle x | \nu \rangle \) must pass through the origin) as the above integral would be one.

Proposition 2.5. At a singular time \(T \) of the MCF of an embedded compact hypersurface the quantity \(\Sigma \) is larger than one.

If the singularity of the flow is of type I, any sequence of rescaled hypersurfaces (with the maximal curvature) around the maximizer points for the Huisken’s functional at times \(t_i \neq T \) converges, up to a subsequence, to a nonempty and nonflat, smooth embedded limit hypersurface, satisfying \(\mathcal{H} = -\langle x | \nu \rangle \).

Suppose now that we are dealing with the special case of an embedded closed curve \(\gamma_t \) evolving in the plane \(\mathbb{R}^2 \). Rescaling as above, without assuming anything about the “type” of a singularity at some time \(T \), we can extract a subsequence \(\tilde{\gamma}_{s_i} \) of rescaled curves such that:

\[
\int_{\tilde{\gamma}_{s_i}} e^{-\frac{|\gamma|^2}{2}} |\hat{H} + \langle y | \hat{\nu} \rangle|^2 d\mathcal{H}^1(y) \to 0
\]

with locally equibounded lengths. This implies that the curves \(\tilde{\gamma}_{s_i} \) have also locally equibounded \(L^2 \) norms of the curvature. Possibly passing to another subsequence (not relabeled) we can assume that

- the curves \(\tilde{\gamma}_{s_i} \) converges in \(C_{1,\text{loc}}^1 \) to a limit curve \(\tilde{\gamma}_\infty \) with equibounded curvatures \(\tilde{k} \) in \(L^2_{1,\text{loc}} \);
- the curve \(\tilde{\gamma}_\infty \) satisfies \(\tilde{\gamma} = -\langle x | \nu \rangle \) distributionally;
- there holds \(\frac{1}{(2\pi)^{n/2}} \int_{\tilde{\gamma}_\infty} e^{-\frac{|\gamma|^2}{2}} d\mathcal{H}^1(y) = \Sigma > 1 \);
- finally, the curve \(\tilde{\gamma}_\infty \) is embedded, that is, without self-intersections, by the geometric argument of Huisken in [8].

By a bootstrap argument, using the condition \(\tilde{k} = -\langle x | \nu \rangle \), it follows that \(\tilde{\gamma}_\infty \) is a smooth curve and since the only embedded curves in the plane satisfying such condition are the lines through the origin and the unit circle, \(\tilde{\gamma}_\infty \) has to be among them.

Then, the curve \(\tilde{\gamma}_\infty \) cannot be a line through the origin, because for all of them the value of the integral \(\frac{1}{(2\pi)^{n/2}} \int_{\tilde{\gamma}_\infty} e^{-\frac{|\gamma|^2}{2}} d\mathcal{H}^1(y) \) is one. Hence, \(\tilde{\gamma}_\infty \) must be the unit circle.

This implies that at some time the curve \(\gamma_t \) has become \(C^1 \)-close, hence a graph, over a round circle (in particular, it is starshaped). It is then straightforward to see by means of maximum principle that this last property is preserved during the evolution.
Then, by means of the interior estimates of Ecker and Huisken [3], one can find a close (in time) sequence of rescaled curves converging in C^2_{loc} to the unit circle. Then, as this implies that at some time the curve has become convex, the singularity can only be a type I vanishing singularity. As a consequence, type II singularities for embedded closed curves are not possible.

Remark 2.6. It would be very interesting if this argument can be extended in higher dimensions, that is, if rescaling the moving hypersurface around the points maximizing the Huisken’s functional could help to produce homothetic blowups also in the case of a Type II singularity. Some results in this direction have been obtained by Ilmanen in [9, 10].

Acknowledgement. Annibale Magni is partially supported by the ESF Programme “Methods of Integrable Systems, Geometry, Applied Mathematics” (MISGAM) and Marie Curie RTN “European Network in Geometry, Mathematical Physics and Applications” (ENIGMA).

References

1. K. A. Brakke, *The motion of a surface by its mean curvature*, Princeton University Press, NJ, 1978.
2. K. Ecker, *Regularity theory for mean curvature flow*, Progress in Nonlinear Differential Equations and their Applications, 57, Birkhäuser Boston Inc., Boston, MA, 2004.
3. K. Ecker and G. Huisken, *Interior estimates for hypersurfaces moving by mean curvature*, Invent. Math. 105 (1991), no. 3, 547–569.
4. R. S. Hamilton, *Four–manifolds with positive curvature operator*, J. Diff. Geom. 24 (1986), no. 2, 153–179.
5. __________, *A matrix Harnack estimate for the heat equation*, Comm. Anal. Geom. 1 (1993), no. 1, 113–126.
6. __________, *Monotonicity formulas for parabolic flows on manifolds*, Comm. Anal. Geom. 1 (1993), no. 1, 127–137.
7. G. Huisken, *Asymptotic behavior for singularities of the mean curvature flow*, J. Diff. Geom. 31 (1990), 285–299.
8. __________, *A distance comparison principle for evolving curves*, Asian J. Math. 2 (1998), 127–133.
9. T. Ilmanen, *Singularities of mean curvature flow of surfaces*, http://www.math.ethz.ch/~ilmanen/papers/sing.ps, 1995.
10. __________, *Lectures on mean curvature flow and related equations*, http://www.math.ethz.ch/~ilmanen/papers/notes.ps, 1998.
11. P Li and S.-T. Yau, *On the parabolic kernel of the Schrödinger operator*, Acta Math. 156 (1986), no. 3–4, 153–201.
12. G. Perelman, *The entropy formula for the Ricci flow and its geometric applications*, ArXiv Preprint Server – http://arxiv.org, 2002.
13. A. Stone, *A density function and the structure of singularities of the mean curvature flow*, Calc. Var. Partial Differential Equations 2 (1994), 443–480.
14. __________, *Singular and Boundary Behaviour in the Mean Curvature Flow of Hypersurfaces*, Ph.D. thesis, Stanford University, 1994.
15. B. White, *A local regularity theorem for mean curvature flow*, Ann. of Math. (2) 161 (2005), no. 3, 1487–1519.

(Annibale Magni) SISSA – INTERNATIONAL SCHOOL FOR ADVANCED STUDIES, VIA BEIRUT 2–4, TRIESTE, ITALY, 34014
E-mail address, A. Magni: magni@sissa.it

(Carlo Mantegazza) SCUOLA NORMALE SUPERIORE DI PISA, P.ZA CAVALIERI 7, PISA, ITALY, 56126
E-mail address, C. Mantegazza: c.mantegazza@sns.it