Correlation between battery material performance and cooperative electron-phonon interaction in LiCo$_y$Mn$_{2-y}$O$_4$

Krishna Rao Ragavendran, Prabhat Mandal, and Sudhakar Yarlagadda
Saha Institute of Nuclear Physics, HBNI, 1/AF Bidhannagar, Kolkata 700 064, India

(Dated: October 8, 2018)

Understanding the basic physics related to archetypal lithium battery material (such as LiCo$_y$Mn$_{2-y}$O$_4$) is of considerable interest and is expected to aid designing of cathodes of high capacity. The relation between electrochemical performance, activated-transport parameters, thermal expansion, and cooperativity of electron-phonon-interaction distortions in LiCo$_y$Mn$_{2-y}$O$_4$ is investigated. The first order cooperative-normal-mode transition, detected through coefficient of thermal expansion, is found to disappear at a critical doping ($y \sim 0.16$); interestingly, for $y \gtrsim 0.16$ the resistivity does not change much with doping and the electrochemical capacity becomes constant over repeated cycling. The critical doping $y \sim 0.16$ results in breakdown of the network of cooperative/coherent normal-mode distortions; this leads to vanishing of the first-order transition, establishment of hopping channels with lower resistance, and enhancing lithiation and delithiation of the battery, thereby minimizing electrochemical capacity fading.

I. INTRODUCTION

Among the commercially available batteries, lithium-ion batteries have the highest energy density and are the primary energy source for portable electronics. The energy stored in rechargeable lithium batteries is limited by their cathodes. Currently, cutting-edge cathodes use either layered LiCoO$_2$, its three-dimensional doped variant Li$_{1-x}$Mn$_{2-y}$O$_4$ (with M=Ni,Co, etc.), or polyanionic compounds such as olivine-type LiFePO$_4$ [1,6]. Introduced in 1983 by J. B. Goodenough [6], Li$_{1-x}$Mn$_2$O$_4$ serves as an attractive alternative to Li$_{1/3}$CoO$_2$ in terms of environmental friendliness, cost effectiveness, safety [7], as well as with its virtue to enable the variation of the lithium stoichiometry x over the entire range from 0 to 1. When $x = 0$, the battery is said to be in a completely charged state, while $x = 1$ implies the battery is totally discharged. The material, however, suffers from the problem of electrochemical capacity loss over repeated cycling, which is circumvented by doping at the Mn site with other transition metal atoms [8]. By a trial and error approach, it is established that among the doped variants, the cobalt doped spinel LiCo$_y$Mn$_{2-y}$O$_4$ with doping level between 0.1 and 0.2 is ideal for enhanced battery performance [8,9]. However, to the best of our knowledge, no clear correlation has been made between battery performance and basic physics related phenomena such as structural phase transitions, anomalies in transport and heat capacity, etc. Thus, a detailed understanding of the fundamental physics of LiCo$_y$Mn$_{2-y}$O$_4$ is highly essential for developing cutting-edge energy storage devices.

Phase transitions in LiMn$_2$O$_4$ (and its doped variants) can be grouped under two categories on the basis of the temperature at which the transitions occur: the high temperature region (200 K to 300 K) involving coherent normal-mode distortions [11] (and charge ordering [12]), and the low temperature region (\sim 60 K) corresponding to the magnetic (i.e., antiferromagnetic) ordering. Phase transitions in the battery material in the former region (which is close to the room temperature) pertains to a structural transition, is expected to be of significance to the battery performance, and will be studied in this work.

The MnO$_6$ octahedra in spinel type LiMn$_2$O$_4$ are similar to the MnO$_6$ octahedra in perovskite manganites (such as LaMnO$_3$); hence, the framework of coherent normal modes [such as Jahn-Teller (JT) modes] utilized in perovskite manganites is expected to provide insights into normal-mode ordering in the spinel structures. Using experiments and theory, we try to understand the sophisticated physics behind the dopant level of LiCo$_y$Mn$_{2-y}$O$_4$ in the stabilization of cathode materials for energy device applications, so that we can design new materials to transcend the existing performance levels.

In this paper, we investigate transport, structural, and thermal properties of both pure and doped LiCo$_y$Mn$_{2-y}$O$_4$ compounds and examine the effect of these properties on battery performance. We explain the superior electrochemical performance of cobalt-doped LiMn$_2$O$_4$ within the framework of cooperative-normal-mode physics. When non-JT ions such as Co$^{3+}$ replace the JT Mn$^{3+}$ ions, the cooperative link connecting the local normal-mode distortions starts to weaken and the electronic conductivity increases due to tunneling of charge carriers through regions of non-cooperative normal modes. As the level of Co reaches a certain threshold (i.e., $y \sim 0.16$), the cooperative link is completely broken and the electrochemical discharge capacity shows stability with the cycle number. Any further increase in the cobalt level, while ensuring a stable discharge capacity, only contributes to a lowering of the capacity due to a decrease in the number of carriers; this explains the emergence of $y \sim 0.16$ as the ideal doping level for battery performance.

II. EXPERIMENTAL PROCEDURES

Spinel type polycrystalline LiCo$_y$Mn$_{2-y}$O$_4$ samples with different values of y were prepared through a
conventional solid state method. Stoichiometric quantities of Li$_2$CO$_3$, MnCO$_3$ and CoCO$_3$ were ground and calcined in platinum crucibles at 800°C for 16 h, with intermittent grindings, in an atmosphere of air. The samples were then pelletized and sintered at 800°C for 16 h. The phase purity of LiCo$_{0.8}$Mn$_{2-y}$O$_4$ samples was checked by high resolution powder x-ray diffraction (XRD) method with Cu K$_\alpha$ radiation in a Rigaku x-ray diffractometer (TTRAX II). Within the resolution of XRD, we have not observed any peak due to impurity phase(s). The XRD pattern can be indexed very accurately. We have measured the macroscopic length change of a sample of dimension 1 mm and the coefficient of linear thermal expansion $[\alpha(T)]$ has been calculated using the relation, $\alpha(T) = \frac{1}{L_0} \frac{dT}{dL} \Delta L$.

III. THEORY, RESULTS, AND DISCUSSION

The Hamiltonian for the cooperative electron-phonon interaction system contains the hopping term H_t, the electron-phonon interaction H_{ep}, and the lattice term H_l. Here, in the H_{ep} term, we consider only the breathing mode (BM) and the JT modes; rest of the normal modes are not taken into account. At the site (i,j,k), we define the creation operators for d_{xz-y^2} and d_{z^2} orbitals as $d_{i,j,k}^{x \pm}$ and $d_{i,j,k}^{z}$, respectively. The indices i, j, and k correspond to labels along the x-, y-, and z-axes, respectively. Next, we express H_{ep} in the orthogonal basis $\psi_{y^2-x^2}$ and ψ_{z^2} as follows [16, 17]:

$$H_{ep} = \frac{1}{4} g \omega_0 \sqrt{2M \omega_0} \sum_{i,j,k} \left(d_{i,j,k}^{x \pm} d_{i,j,k}^{x \mp} + d_{i,j,k}^{y \pm} d_{i,j,k}^{y \mp} + d_{i,j,k}^{z} d_{i,j,k}^{\dagger z} \right),$$

where g is the electron-phonon coupling, ω_0 is the frequency of optical phonons, M is the mass of an oxygen ion. Furthermore, we define $Q_{x:i,j,k} = u_{x:i,j,k} - u_{x:i-1,j,k}$ where $u_{x:i,j,k}$ and $u_{x:i-1,j,k}$ are the displacements in the x-direction of the two oxygen ions along the x-axis around the site (i,j,k); $Q_{y:i,j,k}$ and $Q_{z:i,j,k}$ are defined similarly in terms of the displacements in the y- and z-directions of the oxygen ions along the y- and z-axes around the site (i,j,k), respectively.

Now, the breathing mode Q_1 has all the Mn-O bond lengths changing uniformly and is defined as $Q_1 \equiv (Q_x + Q_y + Q_z)/\sqrt{3}$. The three-dimensional tetragonal JT distortion mode, commonly known as the Q_2 mode and defined as $Q_2 \equiv (2Q_x - Q_y - Q_z)/\sqrt{3}$, has the Mn-O bond lengths changing in all directions [17, 18]. On the other hand, the planar JT distortion mode, commonly known as the Q_3 mode, has the Mn-O bond lengths changing only in the plane and is defined as $Q_3 \equiv Q_x - Q_y$. If a single e_g electron occupies a Mn site, from Eq. 1, it is clear that in the d_{z^2} orbital the electron would excite both Q_1 and Q_3 modes, whereas in the $d_{x^2-y^2}$ orbital it would generate only the planar Q_2 excitation.

We will first consider the undoped LiMn$_2$O$_4$ spinel. As shown in Fig. 1 to minimize energy due to Coulombic interactions, there are two Mn$^{3+}$ ions and two Mn$^{4+}$ ions in each cube. Furthermore, from the above equation 1 and Fig. 1 it is clear that when only $d_{x^2-y^2}$ orbital is occupied by an e_g electron at a Mn$^{3+}$ ion in the LiMn$_2$O$_4$ spinel, there is no frustration and the energy is minimized. This is because, in any face that is in the xy-plane of a cube shown in Fig. 1 we have only Mn$^{3+}$ ion and one Mn$^{4+}$ ion diagonally opposite to each other. Within the above occupancy scenario, only planar Q_2 mode is excited at Mn$^{3+}$ sites; then, the distortion at one Mn$^{3+}$ site is compatible with the distortion at another Mn$^{3+}$ site.

![FIG. 1. Part of the unit cell of LiMn$_2$O$_4$ in an ideal spinel lattice. Octahedral coordination to a manganese is depicted using thicker lines. Each manganese tetrahedron in a cube has two JT-active Mn$^{3+}$ ions and two non-JT Mn$^{4+}$ ions.](image-url)
site, thereby cooperatively avoiding frustration. In addition to the BM and JT modes, if other normal modes are also included in our considerations, there may be a slight frustration. In fact, compared to the large JT ordering temperatures (i.e., at least 750 K [19]) in perovskite manganites, the first-order structural transition occurs at a much lower temperature (i.e., about 220 K as shown in Fig. 2) indicating a much weaker frustration due to interaction between cooperative normal-mode distortions. Furthermore, the small overall relative expansion around the structural transition shown in Fig. 2 (which is an order of magnitude smaller than in perovskite manganites [19]) also reflects the relevance of, besides the BM and JT modes, additional cooperative electron-phonon interactions [19] also reflects the relevance of, besides the BM and JT modes, additional cooperative electron-phonon interactions.

Next, we will analyze the relative expansion $\Delta L/L_0$ in the doped system LiCo$_y$Mn$_{2-y}$O$_4$. In the undoped LiMn$_2$O$_4$, a structural transition occurs as the temperature is lowered to $T \sim 220$ K (as shown in Fig. 4) and it indicates onset of cooperative normal-mode distortions. As the doping increases, a fraction of the JT active Mn$^{3+}$ (shown in Fig. 1) is replaced by non-JT Co$^{3+}$ ions [13, 20]; consequently, the frustration decreases and the cooperative ordering becomes less robust leading to a decrease in the transition temperature of the first-order structural transition. At the structural transition, as can be seen from the plots in Fig. 2 there is a sizeable change in the relative expansivity $\Delta L/L_0$; this change in $\Delta L/L_0$ diminishes with increasing doping (again illustrating weakening of cooperative ordering) and finally vanishes at a critical doping $y \sim 0.16$. At the critical doping $y \sim 0.16$, a percolating path involving non-cooperative normal-mode distortions is established. The progressive suppression of the JT transition with Co doping is more clearly visible in the temperature dependence of the coefficient of linear thermal expansion. For undoped sample, $\alpha(T)$ shows a peak around 220 K; the peak weakens, becomes broader, and shifts to lower temperatures as Co concentration increases and disappears at around $y=0.16$.

This picture of weakening cooperative distortions is similar to that observed in systems such as perovskite manganites where the JT ordering temperature diminishes with doping and finally vanishes. A depiction of JT ordering temperature versus doping in La$_{1-x}$Ca$_x$MnO$_3$ is given in Refs. 21 and 22.

Before discussing conduction in undoped and doped LiMn$_2$O$_4$, we will first recapitulate conduction mechanisms in the two-band perovskite manganites and the single-band Holstein model. The crossover from hopping conduction to band-like conduction occurs at lower temperatures in wider-band perovskite manganites such as La$_{1-x}$Ca$_x$MnO$_3$ and La$_{1-x}$Sr$_x$MnO$_3$ [23]. Now, within the two-band picture of perovskite manganites in Ref. 22, the upper broad band (due to undistorted states that are orthogonal to the polaronic states) overlap with the polaronic band to produce conduction at carrier concentrations corresponding to $0.2 \lesssim x \lesssim 0.5$. Here, in the case of LiCo$_y$Mn$_{2-y}$O$_4$, since the hopping integral is smaller than in manganites [24, 25], the upper band is not relevant for conduction. Next, in the single-band Holstein model, band-like conduction occurs when bandwidth is larger than twice the uncertainty in energy due to electron-phonon scattering (i.e., \hbar/τ with τ being the scattering time) [26, 27]. However, in the present cobalt-doped LiMn$_2$O$_4$, the narrow band width does not produce band-like conduction even at low temperatures and, consequently, only hopping conduction due to a single polaronic band is realized.

We will now discuss the conduction in undoped LiMn$_2$O$_4$. Since the e_g electron at a Mn$^{3+}$ site distorts the oxygen cage around it and forms a small polaron (with polaronic energy $E_p \propto g^2 \omega^2$) [26, 27], the transport
of the e_g electron at higher temperatures (i.e., around room temperature) will be activated with the activation energy E_a being at least half the polaronic energy E_p. In fact, the value of $\frac{(E_a - E_p/2)}{E_p/2}$, reflects the degree of frustration due to cooperative electron-phonon modes as will be explained below. Now, each Mn$^{3+}$ site has four Mn$^{3+}$ sites diagonally opposite to it as shown in Fig. 1. If the e_g electron hops from a Mn$^{3+}$ ion to a neighboring Mn$^{4+}$ ion, the distortion produced by the remaining three Mn$^{3+}$ ions (which are neighbors of the Mn$^{4+}$ ion) makes the hopping unfavorable leading to enhancement in the activation energy E_a by a fraction of the polaronic energy.

Next, we will focus on the conduction in doped LiMn$_2$O$_4$. In LiCo$_y$Mn$_{2-y}$O$_4$, since Co$^{3+}$ replaces Mn$^{3+}$, the corners of each cube in Fig. 1 (on an average) are occupied by $2 - 2y$ Mn$^{3+}$ ions, $2y$ Co$^{3+}$ ions, and two Mn$^{4+}$ ions. Since Co$^{3+}$ is not JT active, the oxygen-cage surrounding Co$^{3+}$ is not distorted. Consequently, hopping from Mn$^{3+}$ to Mn$^{4+}$ has, on an average, a lower activation energy due to decrease in frustration. The resistivity in LiCo$_y$Mn$_{2-y}$O$_4$ can be expressed as follows

\[\rho = A \frac{e^{(2R/\xi)}}{n} e^{(E_a/k_B T)}, \]

where A is a constant, n is the concentration of the mobile e_g electrons, ξ is the localization length, R is the shortest hopping distance for an e_g electron (i.e., the distance between two neighboring Mn$^{3+}$ and Mn$^{4+}$ ions), and T is the temperature. The fact that, even upon doping with cobalt, each Mn$^{3+}$ has the same number of diagonally opposite Mn$^{4+}$ ions for the e_g electron to hop to, justifies using a fixed-hopping-distance model rather than a variable-hopping-range model. Our transport model is clearly verified by Fig. 3 which depicts linear plots of $\log_{10}(\rho)$ versus $1/T$. Using Fig. 3 at various Co-doping values, we extract the prefactor $A \frac{e^{(2R/\xi)}}{n}$ and the activation energy E_a [occurring in Eq. (2)] and generate Fig. 4. Now, the localization length ξ decreases with the cobalt doping. Hence, in the above expression for resistivity, the prefactor $A \frac{e^{(2R/\xi)}}{n}$ will have a minimum as a function of Co-doping because $\frac{1}{n}$ decreases with doping while the term $e^{(2R/\xi)}$ increases with doping. In fact, as depicted in Fig. 4 the minimum in the prefactor $A \frac{e^{(2R/\xi)}}{n}$ occurs at $y \sim 0.16$. Here it should be pointed out that, below $y \sim 0.16$, localization length decreases slowly with doping (due to cooperative normal-mode/network weakening with doping); whereas above $y \sim 0.16$, localization length decreases more rapidly with doping. Next, the activation energy E_a (as shown in Fig. 4) monotonically decreases with doping; however, the drop is sharper till $y \sim 0.16$. Lastly, it is of interest to note that the resistivity drops sizeably with increasing doping until the doping-level attains a value $y \sim 0.16$; at higher doping values (i.e., $y \gtrsim 0.16$), the resistivity does not change.

FIG. 3. Linearity in plots of $\log_{10}(\rho)$ vs $1/T$ depicting activated transport at various dopings and above the structural transition. For doping below $y \sim 0.16$, the resistivity drops sizeably with increase in doping; contrastingly, for $y \gtrsim 0.16$, the resistivity does not change much with doping.

FIG. 4. Plots of the prefactor $A \frac{e^{(2R/\xi)}}{n}$ and the activation energy E_a [occurring in the resistivity equation (2)] as a function of cobalt doping in LiCo$_y$Mn$_{2-y}$O$_4$. The prefactor shows a minimum at $y \sim 0.16$ and the drop in E_a is sharper till $y \sim 0.16$; both are indicative of a change in the transport mechanism.
FIG. 5. Electrochemical capacity versus discharge cycle number (adapted from Ref. 29). Capacity fades with repeated cycling for the undoped cathode whereas it remains unchanged at $y \sim 0.16$. See Fig. 6 for corroborative doping dependence of capacity.

FIG. 6. Variation of the capacity as a function of cycle number for Li/LiCo$_y$Mn$_{2-y}$O$_4$ cells at various cobalt dopings. At higher doping $y \sim 0.16$, capacity remains unchanged after repeated cycling. Reproduced from Ref. 11.

IV. CONCLUSIONS

From the results of the thermal expansion and electrical conductivity measurements on LiCo$_y$Mn$_{2-y}$O$_4$ spinel, within the framework of coherent normal-mode physics, we provide an explanation for the optimum doping level that generates best capacity performance in Li/LiCo$_y$Mn$_{2-y}$O$_4$ cells. At $y=0$, the material shows a first-order phase transition attributed to cooperative normal-mode distortions. These cooperative distortions lower the electrical conductivity as well as the efficiency of Li insertion and de-insertion into the spinel structure, leading to lowering of discharge capacity with cycle number. With increase in the doping ‘y’, the cooperative-normal-mode network starts to weaken, and at $y \sim 0.16$ the cooperative network is completely broken. Any further increase in ‘y’, only causes a lowering of the capacity due to a decrease in the number of charge carriers. The $y \sim 0.16$ is thus the ideal doping level for realizing stable discharge capacity of the battery.

V. ACKNOWLEDGEMENTS

S. Y. acknowledges stimulating discussions with P. B. Littlewood, M. M. Thackeray, H. Iddir, and J. W. Free-land. The authors thank A. Ghosh for help with the figures and the students of P. Mandal for help with the measurements.
[1] J. M. Tarascon and M. Armand, Nature 414, 359 (2001).
[2] B. L. Ellis, K. T. Lee, and L. F. Nazar, Chem. Mater. 22, 691 (2010).
[3] J. B. Goodenough and Y. Kim, Chem. Mater. 22, 587 (2010).
[4] L. Croguennec and M. R. Palacin, J. Am. Chem. Soc. 137, 31403156 (2015).
[5] D. Larcher and J. M. Tarascon, Nature Chem. 7, 19 (2015).
[6] M.M. Thackeray, P.G. Bruce, J.B. Goodenough, Mater. Res. Bull. 18, 461 (1983).
[7] See M. Wakihara, G. Li, and H. Ikuta, in Lithium ion batteries: fundamentals and performance, edited by M. Wakihara and O. Yamamoto (Wiley-VCH, New York, 1998).
[8] L. Guohua, H. Ikuta, T. Uchida and M. Wakihara, J. Electrochem. Soc. 143, 178 (1996).
[9] S.H. Wu and H.J. Su, Mater. Chem. Phys. 78, 189 (2002).
[10] H. Huang, C. Wang, W.K. Zhang, Y.P. Gan, and L. Kang, J. Power Sources 184, 583 (2008).
[11] P. Arora, B.N. Popov, and R.E. White, J. Electrochem. Soc. 145, 807 (1998).
[12] C.H. Shen, S.R. Liu, R. Gundakaram, J.M. Chen, S.M. Huang, J.S. Chen, C.M. Wang, J. Power Sources 102, 21 (2001).
[13] N. Andouni, F. Gendron, A. Mauger, H. Zarrouk, C.M. Julien, Mater. Sci. and Eng. B 129, 64 (2006).
[14] J. B. Goodenough, Chem. Mater. 26, 820 (2014).
[15] J.R.Carvajal, G. Rousse, C. Masquelier and M. Hervieu, Phys. Rev. Lett. 81, 4660 (1998).
[16] Ravindra Pankaj and Sudhakar Yarlagadda, \texttt{arXiv:1608.06055}
[17] P. B. Allen and V. Perebeinos, Phys. Rev. B 60, 10747 (1999). Here, electron-phonon interaction is expressed in a different basis.
[18] Daniel I. Khomskii, Transition Metal Compounds (Cambridge University Press, 2014).
[19] Tapan Chatterji, Francois Fauth, Bachir Ouladdiaf, P. Mandal, and B. Ghosh, Phys. Rev. B 68, 052406 (2003).
[20] M. Wakihara, Mater. Sci. and Eng. R 33, 109 (2001).
[21] see K.H. Kim, M. Uehara, V. Kiryukhin and S.-W. Cheong, in Colossal Magnetoresistive Manganites, edited by T. Chatterji, (Kluwer Academic, Dordrecht, 2004).
[22] T. V. Ramakrishnan, J. Phys.: Condens. Matter 19, 125211 (2007).
[23] E. Dagotto, T. Hotta, and A. Moreo, Physics Reports 344, 1 (2001).
[24] M. Atanasov, J.-L. Barras, L. Benco, and C. Daul, J. Am. Chem. Soc 122, 4718 (2000).
[25] R. Basu, C. Felser, A. Maignan and R. Seshadri, J. Mater. Chem. 10, 1921 (2000).
[26] Sudhakar Yarlagadda, Phys. Rev. B 62, 14828 (2000).
[27] T. Holstein, Ann. Phys. (N.Y.) 8, 343 (1959).
[28] N. F. Mott, Metal-Insulator Transitions (Taylor and Francis, London/Philadelphia, 1990).
[29] K. Ragavendran, L. Lu, B.J. Hwang, K. Barner, and A. Veluchamy, J. Phys. Chem. C. 117, 3812 (2013).