Modulation of Rhythmic Activity in Mammalian Spinal Networks Is Dependent on Excitability State

Simon A. Sharples,1 and Patrick J. Whelan1,2

DOI: http://dx.doi.org/10.1523/ENEURO.0368-16.2017

1Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada, 2Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada

Visual Abstract

Significance Statement

We show that, as in the invertebrate systems, the action of monoamine modulators on rhythmic motor networks of the mammalian spinal cord is state dependent. Our work shows that neuromodulation in the spinal cord is fundamentally linked to the excitability state of the network. These findings have broad significance on mammalian network function since variations in network excitation can account for (1) diversity of neuromodulator function, which (2) is an additional factor that must be considered when circuit elements are removed from a network to infer network function and (3) can account for the variability often found between experimental preparations.
Neuromodulators play an important role in activating rhythmically active motor networks; however, what remains unclear are the network interactions whereby neuromodulators recruit spinal motor networks to produce rhythmic activity. Evidence from invertebrate systems has demonstrated that the effect of neuromodulators depends on the pre-existing state of the network. We explored how network excitation state affects the ability of dopamine to evoke rhythmic locomotor activity in the neonatal mouse isolated spinal cord. We found that dopamine can evoke unique patterns of motor activity that are dependent on the excitability state of motor networks. Different patterns of motor activity ranging from tonic, nonrhythmic activity to multirhythmic, nonlocomotor activity to locomotor activity were produced by altering global motor network excitability through manipulations of the extracellular potassium and bath NMDA concentration. A similar effect was observed when network excitation was manipulated during an unstable multirhythm evoked by a low concentration (15 μM) of 5-HT, suggesting that our results are not neuromodulator specific. Our data show in vertebrate systems that modulation is a two-way street and that modulatory actions are largely influenced by the network state. The level of network excitation can account for variability between preparations and is an additional factor to be considered when circuit elements are removed from the network.

Key words: CPG; locomotion; network; spinal cord

Introduction

Rhythmic motor behaviors mediate a number of functions essential to survival, including breathing (Smith et al., 1991; Baghdadwala et al., 2016), feeding (Blitz and Nusbaum, 2012; Stadele et al., 2015), and locomotion (Gordon and Whelan, 2006; Griller et al., 2008; Sillar et al., 2014; Kiehn, 2016). In vertebrates, neuronal networks within the spinal cord control rhythmic movements of the limbs and axial musculature to produce various forms of locomotion (Hultborn and Nielsen, 2007; Roberts et al., 2012; Kimura et al., 2013; Kiehn, 2016). While these networks have the capacity to function in isolation, normally they are modulated by inputs from the brain (Miles and Sillar, 2011; Koblinger et al., 2014; Shariples et al., 2015) and brainstem (van den Pol, 1999; Hentall et al., 2003; Jordan et al., 2008; Bouvier et al., 2015), and by sensory feedback from the limbs (Whelan et al., 1995). Collectively, these inputs endow these networks with the flexibility to produce diverse patterns of rhythmicity to suit the task at hand (Jordan et al., 2008; Sillar et al., 2014; Marder et al., 2015). Although evoked rhythms in the spinal cord have been characterized by others including our group, and diversity reported, we are not aware of this diversity being explained in terms of a modulatory-excitation state space (Cowley and Schmidt, 1997; Pearson et al., 2003; Madriaga et al., 2004; Barrière et al., 2005; Christie and Whelan, 2005; Gordon and Whelan, 2006; Puhl and Mesce, 2008; Humphreys and Whelan, 2012; Gozal et al., 2014; Heckman and Johnson, 2014).

The importance of excitation state is evident from examples provided in the small circuits of the stomatogastric nervous system whereby different motor patterns can be modeled as a function of balanced synaptic weights as well as intrinsic properties (Gutierrez et al., 2013; Gutierrez and Marder, 2014). The range of motor patterns generated as a function of varying circuit properties has been termed the circuit state or parameter space. Based on this, it has been proposed that the modulation of circuit output is state dependent and that the influence of a neuromodulator is linked to the relative position of the circuit within its parameter space. Several lines of evidence demonstrate that specific motor patterns can also be achieved through multiple or degenerate mechanisms (Prinz et al., 2004; Gutierrez et al., 2013; Marder et al., 2014).

We show that, as in the invertebrate systems (Bargmann, 2012; Marder et al., 2014), the action of monoamine modulators on rhythmically active motor networks of the mammalian spinal cord is state dependent. We explore how network excitation state influences the modulatory effect of dopamine on rhythmically active motor networks in the isolated spinal cord of neonatal mice. This model is advantageous since elements of the circuit have been genetically defined, and the motor output has been well characterized by several laboratories and is starting to be mathematically modeled. Broadly speaking, our data suggest that it is important to consider modulation as a two-way street; modulatory actions are largely influenced by the network state. Our results have functional implications in pathological instances such as in multiple sclerosis, spinal cord injury, and stroke, where spinal cord excitability and stepping performance are compromised. Furthermore, the irregular rhythmic movements we report here may be manifest in neonatal rodents, while spinal networks are maturing and descending projections are developing. At this time, the neonate must still make
Figure 1. Dopamine evokes multirhythmic patterns of motor activity. A, Neurograms recorded from the left and right ventral roots of the L2 and L5 isolated thoracolumbar spinal cord. B, Dopamine evokes a multirhythmic pattern of motor activity that is composed of two rhythms: a slow, synchronous rhythm with a superimposed fast rhythm. C, These fast and slow rhythms (red boxes) are apparent when the frequency power is represented over time as a spectrogram with frequency on the left y-axis, time on the x-axis,
movements to move toward the mother. These movements tend to be erratic compared with the full-fledged stepping that occurs around postnatal day 9 (P9) to P10 when complete weight support is realized. Our data also function to provide a reference that investigators can use to interpret variability in rhythmic patterns observed using isolated spinal cord preparations. A portion of these results has been published in abstract form (Sharples and Whelan, 2015).

Materials and Methods

Ethical approval and animals

Experiments were performed on male and female neonatal C57BL/6 mice that were 0–4 days old (P0–P3; N = 82). All procedures used were approved by the University of Calgary Health Sciences Animal Care Committee.

Tissue preparation

Animals were anesthetized by cooling, decapitated, and eviscerated to expose the vertebral column. The remaining tissue was placed ventral side up in a dissection chamber filled with room temperature carbogenated (95% O2, 5% CO2) artificial CSF (aCSF; in mm: 128 NaCl, 4 KCl, 1.5 CaCl2, 1 MgSO4, 0.5 Na2HPO4, 21 NaHCO3, and 30 d-glucose), and spinal cords were exposed via a ventral laminectomy and the dorsal and ventral roots cut. The spinal cord was removed, transferred to a recording chamber, ventral side up, with recirculating carbogenated aCSF at a flow rate of 20 ml/min and gradually heated from room temperature to 27°C. This temperature has been used historically by our group and can control for temperature variability when experiments are conducted at room temperature. The spinal cord was allowed another 45–60 min to stabilize in the recording chamber.

Electrophysiological recordings

Neurograms obtained from ventral roots of the lumbar 2 (L2) segments and the L5 were amplified (1000 times; EX-4, Dagan), bandpass filtered (0.1–1 kHz), digitized (Digidata 1440, Molecular Devices), acquired (2.5 kHz) using Clampex software (Molecular Devices), and saved for off-line analysis. Recorded motor activity was analyzed using custom-written MATLAB scripts, Spike2 (Cambridge Electronics) and Spinal Core (a gift from Professor A. Lev-Tov, Hebrew University of Jerusalem, Jerusalem, Israel; Mor and Lev-Tov, 2007).

Pharmacology

Patterns of rhythmic motor activity were evoked by bath application of dopamine hydrochloride (Sigma-Aldrich) or serotonin [5-hydroxytryptamine (5-HT)] hydrochloride (Sigma-Aldrich). Spinal motor network excitability was manipulated pharmacologically by altering the concentration of KCl (VWR) in the bath, applying concentrations of NMDA (2-6 μM; Sigma-Aldrich) that were subthreshold to those that are capable of evoking locomotor patterns of activity in our hands (10-12 μM) and concentrations of MgSO4 (1.0–2.5 mM; VWR) to reduce but not suppress all network activity. The NMDA receptor antagonist aminophosphonovaleter (APV) was also bath applied at concentrations capable of reducing but not suppressing spontaneous activity (5 μM; Tocris Bioscience).

Data analysis

Patterns of rhythmic motor activity were analyzed by performing a Morlet cross-wavelet analysis on ventral root recordings made from left and right L2 and L5 spinal segments and ipsilateral L2–L5 pairs (Mor and Lev-Tov, 2007). Autowavelet spectral analysis was conducted on single ventral root recordings for dopamine dose-response experiments. Spectrograms are displayed with a white V-shaped cone of influence. Frequency power spectrograms were constructed and data were analyzed by selecting regions of interest within the cone of influence. The spectrograms illustrate two distinct rhythms evoked by dopamine at high concentrations, a slow rhythm of 0.01–0.04 Hz, and a fast rhythm at 0.8–1.2 Hz (Fig. 1B). Regions of interest were selected within these frequency ranges and analyzed over the time course of each experiment. Parameters measured within each region of interest include frequency and power. Circular statistics were also examined to explore aspects of the pattern of bursting between neurograms recorded from root pairs (i.e., alternating, 180°; or synchronous, 0°/360°) and include the phase relationship (vector angle) between bursts in the left and right L2–L5 roots and phase vector length (r). Data analyzed within regions of interest over the course of each experiment were segmented into 30 s bins and further averaged over 5 min intervals for statistical analysis. All analyses conducted on rhythmic motor activity were conducted using the data analysis tools available in Spinal Core (Mor and Lev-Tov, 2007).
Repeated-measures ANOVAs were conducted for experiments that involved manipulation of the network excitation state after the addition of dopamine (i.e., KCl or NMDA). Tukey post hoc analyses were conducted when significant main effects were detected with $p < 0.05$. One-way ANOVAs were performed for excitability reduction experiments. Post hoc analyses were performed comparing the frequency power for each experiment to frequency power of rhythms evoked by 50 µM dopamine alone in previous experiments. Nonparametric Friedman repeated-measures ANOVA or Mann–Whitney rank sum tests were conducted when assumptions of normality or equal variance were violated using a Shapiro–Wilk test and a Brown–Forsythe test, respectively. Power analyses could not be conducted on nonparametric statistics.

Results

Dopamine evokes multiple patterns of rhythmic motor activity

We first examined the rhythmic activity evoked only by dopamine, a neuromodulator often used to modulate locomotor activity (Whelan et al., 2000; Bonnot et al., 2002;...
Figure 3. Sequentially boosting network excitation with KCl modulates dopamine-evoked rhythmicity. A, Neurograms recorded from the left and right L2 and right L5 ventral roots show raw data and the effect on rhythmicity. Bath application of 50 µM dopamine evokes...
a multirhythmic pattern of motor activity that is modulated as network excitation is boosted by sequentially increasing the concentration of KCl in the bath (red arrows). When KCl concentration is increased to 10 mM, the pattern switches from multirhythmic to a single, continuous locomotor-like rhythm. B. The frequency power distribution following dopamine application and subsequent excitability manipulation is illustrated in the cross-wavelet frequency power spectrogram over time with frequency on the left y-axis, time on the x-axis, and increasing power represented as warmer colors. At 10 mM KCl, the pattern switches from multiple rhythms to a single continuous rhythm. C–Ciii. Representative neurograms showing rhythm at baseline (C), dopamine with 8 mM KCl (Cii), and a continuous locomotor-like rhythm expressed with dopamine and 10 mM KCl (Ciii). D. Regions of interest were selected around the fast and slow rhythms, and the respective frequency and power for left and right L2 and L5 neurograms were analyzed over time. Di, Dii. Increasing network excitation increased the power of the fast rhythm (Di) and decreased the power of the slow rhythm (Dii). Data are presented as the mean ± SD, with asterisks denoting a significant difference between the respective point and the rhythm at 20 min following dopamine application (\(p < 0.05\), \(\#p < 0.01\), \(\#\#p < 0.001\)) obtained from Tukey post hoc analysis when significant main effects on a repeated-measures ANOVA were found. Nonparametric statistical analysis was performed when assumptions of normality failed, and significance was denoted as follows: \#p < 0.05, \#\#p < 0.01, \#\#\#p < 0.001. Ei, Eii. The phase between L2 neurograms for the fast rhythm is presented in the circular plots in Ei and Eii and illustrate the switch to a locomotor-like pattern at 10 mM KCl as the vector length increases and phase moves toward 180° (alternating) in both the left and right L2s and ipsilateral L2–L5. Each dot represents the average phase for an individual preparation for each respective experimental condition. The length of the arrows represents the mean vector length (\(r\)) or the robustness of the pattern.

Barrière et al., 2004; Humphreys and Whelan, 2012; Sharples et al., 2015; Picton et al., 2016). The rhythm that emerged following bath application of 50 \(\mu M\) dopamine does not resemble a fictive locomotor pattern, which is typically characterized by continuous and alternating bursts between left and right sides within segments and alternation between ipsilateral L2 and L5 bursts. Instead, the rhythm evoked by dopamine consists of a slow and a fast component. The slow episodes occurred synchronously across left and right ventral roots in the L2 (phase: 20.5°; \(r = 0.89\); \(p < 0.0001\)) and L5 (phase: 16.4°; \(r = 0.87\); \(p < 0.0001\); Fig. 1A,Ei) and between ipsilateral ventral root bursts in the L2 and L5 (phase: 14.0°; \(r = 0.91\); \(p < 0.0001\)). The bouts had a mean cycle period of 50 ± 15 s (Fig. 1Di) with the onset phase locked across L2 and L5 bursts. Episode durations are significantly longer in L2 segments compared to L5 possibly reflecting a rostrocaudal gradient of excitability for dopamine (Christie and Whelan, 2005; Fig. 1Dii; L2, 30.5 ± 19 s; L5, 23.0 ± 7.9 s; Wilcoxon signed rank test: \(W = -160, T = 25, T = -185, z = -2.99, p = 0.002\)). The slow rhythm can be observed in the high power region within the frequency-power spectrogram around 0.02 Hz (Fig. 1C).

The slow-depolarizing episodes activated a faster rhythm that was superimposed on the episodes and is illustrated in the fast rhythm band in Figure 1B. In both the L2s and the L5s, the fast rhythm slows from 1.1 ± 0.3 to 0.83 ± 0.2 Hz over the course of the episode (Fig. 1Diii; L2: \(t_{18} = 4.9, p < 0.00006\); L5: \(t_{18} = 4.9, p = 0.00005\)) with no change in rhythm power over the course of an episode and no difference in power between L2 and L5 segments (Fig. 1Div). We found instances when the pattern of bursts between ventral root neurograms of left and right L2, left and right L5, or ipsilateral L2–L5 pairs within the fast rhythm start off synchronous and switched to an alternating pattern toward the end of the episode (Fig. 1Eii). There are also episodes where the fast rhythm is either alternating or synchronous between root pairs for the duration of the episode. Of note, the pattern never started off alternating and changed to synchrony. Examination of the fast rhythm in all episodes in the left and right L2 neurograms revealed that the predominant pattern consists of a fast rhythm that starts off alternating and finishes alternating (54.5% of episodes). This is in contrast to the predominant pattern of bursting between ipsilateral L2 (IL2) and IL5 left–right (L–R) L5, which started off as synchronous and ended as synchronous (IL2–L5: 51.8% of bursts; L–R L5: 85.8% of episodes; Fig. 1Eiii). The predominant burst pattern within each ventral root pair is reflected in the mean vector plots when the data from all episodes are averaged as the average pattern is alternating within the L2s (Fig. 1Fi; phase: 154.4°; \(r = 0.65\); Rayleigh test, \(p = 0.0001\)), synchronous in the L5s (phase: 20.3°; \(r = 0.72\); Rayleigh test, \(p = 0.00002\)), and biased toward synchrony in the ipsilateral L2–L5s (Fig. 1Fii; phase: 78.6°; \(r = 0.45\); \(p = 0.02\)).

Different patterns of rhythmic motor activity were expressed at different concentrations of dopamine tested in a series of experiments (Fig. 2). Recording from single L2 ventral roots, we determined that 30 \(\mu M\) was the lowest concentration of dopamine capable of evoking rhythmicity in five of eight preparations. A 100 \(\mu M\) concentration evoked robust discontinuous multirhythmic activity (seven of nine preparations) or even weak continuous rhythmicity (two of nine preparations), and a 300 \(\mu M\) concentration evoked robust continuous patterns of rhythmicity (six of eight preparations). In rhythmic preparations, the time from the addition of dopamine until the first bout of rhythmicity decreased as a function of dopamine concentration (30 \(\mu M\) = 562 ± 173 s; 100 \(\mu M\) = 338 ± 70 s; 300 \(\mu M\) = 231 ± 46 s; \(p < 0.001\)). The frequency of the fast rhythm was significantly higher at 30 \(\mu M\) compared with 100 and 300 \(\mu M\) (Fig. 2Ci; \(F_{2,19} = 186; p < 0.001\)). The fast rhythm slowed down and became more robust (greater power) as a function of dopamine concentration (Fig. 2Cii; \(F_{2,19} = 20.33; \quad p < 0.001\) as the rhythm switched from a multirhythm at 100 \(\mu M\) to a continuous rhythm at 300 \(\mu M\).

Dopamine-evoked rhythmicity is dependent on network excitation state

The position of the network within parameter state space has been proposed to affect how neuromodulators influence rhythmic motor network output (Marder et al.,
Figure 4. Boosting network excitation with KCl prior to the application of dopamine evokes locomotor-like rhythmicity. A, Neurograms recorded from left and right L2 and right L5 ventral roots illustrate the experimental paradigm and the resultant effect on rhythmicity.
KCl concentration was increased to 10 mM to boost network excitation 20 min prior to application of 50 μM dopamine (DA). Subsequent application of DA resulted in the direct expression of a continuous locomotor-like rhythm that returned to a multirhythm when washed out with regular (4 mM KCl) aCSF and 50 μM DA. Frequency power spectrogramm with frequency on the left y-axis, time on the x-axis, and increasing power represented as warmer colors.

B. Frequency power spectrogram of frequency on the left y-axis, time on the x-axis, and increasing power represented as warmer colors.

Maneuvering the extracellular KCl concentration also affects chloride concentrations. We reproduced the...

2014) and may contribute to the variability we observed with respect to the diversity in rhythmic patterns evoked at different dopamine concentrations. Conceptually, if a neuromodulator is acting around the transition point for a network, where the pattern would change, a similar change in intrinsic properties of a class of neurons within the network would have a large effect compared with when it operates far from the transition borders. We therefore devised a series of experiments whereby the global excitability of spinal motor networks was manipulated by increasing the concentration of extracellular KCl in the bath or by application of NMDA to nonspecifically excite spinal motor networks. The goal here was to move the spinal network around a state space so that we would abut transition zones.

Following bath application of 50 μM dopamine and the generation of a regular multirhythm, the bath KCl concentration was sequentially increased from basal levels (4 mM KCl in the aCSF) in 2 mM increments, and the resultant effects on the rhythm were recorded (Fig. 3; n = 10). The duration of the episodes that composed the slow rhythm decreased as KCl was increased, and differences in episode duration in L2 and L5 were no longer apparent at 6 and 8 mM KCl (baseline: L2, 31 ± 26 s; L5, 23.6 ± 9.5 s; 6 mM: L2, 17.7 ± 5 s; L5, 15.0 ± 2.5 s; 8 mM: L2, 12.4 ± 2.4 s; L5, 11.8 ± 2.3 s). Boosting network excitation via KCl decreased the frequency of the fast rhythm (L_2: $F_{(1,99)} = 5.9$, $p < 0.001$; L_5: $F_{(1,88)} = 0.47$, $p = 0.9$) and increased the frequency of the slow rhythm (L_2: $F_{(1,99)} = 3.7$, $p < 0.001$) in the L2s. The power of the fast rhythm increased (L_2: $F^2_{(11,99)} = 53.7$, $p < 0.001$; L_5: $F^2_{(11,88)} = 51.2$, $p < 0.001$), and slow rhythm decreased (L_2: $F^2_{(11,100)} = 36.3$, $p < 0.001$; L_5: $F^2_{(0,80)} = 8.3$, $p < 0.001$) in both the L2s and L5s (Fig. 3Dii,Di) as excitation was increased and is a reflection of the rhythm switching from discontinuous multirhythm to a continuous rhythm. The pattern of the fast rhythm became more locomotor-like as excitation was increased, which is indicated by the phase moving toward 180° in the left and right L2s (Fig. 3Eii), the ipsilateral L2 and L5 (Fig. 3Eii), and the left and right L5s (DA baseline; phase, 135°, $r = 0.75$, $p = 0.004$; 10 mM KCl: phase, 145°, $r = 0.43$, $p = 0.2$).

These effects were replicated when network excitation was enhanced by the addition of 10 μM KCl prior to the application of 50 μM dopamine (Fig. 4Dii,Di; $n = 7$; L2 power: fast rhythm, $F_{(1,100)} = 7.4$, $p = 0.008$; slow rhythm, $F_{(1,100)} = 33.6$, $p < 0.0001$). No rhythmicity was observed at 10 mM KCl alone; however, the addition of 50 μM dopamine evoked a continuous locomotor-like rhythm with alternation in the left and right L2 and L5 and the ipsilateral L2–L5, with no transition through a multirhythm pattern (Fig. 4Eii,Ei; L2–L2 phase: 170°; $r = 0.91$; Rayleigh test, $p = 0.0009$; L5–L5 phase: 157°; $r = 0.72$; Rayleigh test, $p = 0.02$; iL2–L5 phase: 146°; $r = 0.95$; $p = 0.0003$). This reverted back to a multirhythm with a wash in of 50 μM dopamine with regular (4 mM KCl) aCSF with no significant difference in fast or slow rhythm power under the wash conditions compared with the expected basal rhythm power (Fig. 4Dii,Di; $n = 5$; L2 power: fast rhythm, $F_{(1,92)} = 1.3$, $p = 0.25$; slow rhythm, $F_{(1,92)} = 0.78$, $p = 0.4$). These data indicate that there were no significant order effects due to sequential administration of KCl or second-messenger desensitization effects with time.

In a complimentary set of experiments, following the generation of a robust multirhythm, network excitation was reduced by washing in 50 μM dopamine in aCSF with 1 mM KCl (Fig. 5A). As expected, the power of the fast rhythm degraded in the L2s (Fig. 5Fi; $n = 6$; $p = 0.02$) and a trend toward reduced power the L5s (Fig. 5Fii, n = 5; $p = 0.06$) with no significant reduction in the slow rhythm (Fig. 5Fiii,Fiv). Similarly, 50 μM dopamine had a qualitatively smaller effect on network dynamics when it was presumably far from a transition point, as it did not evoke a fast rhythm when preparations were recovered in aCSF with 1 mM KCl for 1 h prior to dopamine application (Fig. 5B,Fi,Fii; L2, $p < 0.001$; L5, $p = 0.004$). In both experiments, the rhythm was slightly recovered by washing in regular aCSF (4 mM KCl; Fig. 5A,B).

Manipulating the extracellular KCl concentration also affects chloride concentrations. We reproduced the...
Figure 5. Decreasing network excitation disrupts the ability of dopamine to evoke rhythmicity. A–D. Neurograms from single ventral roots within the L5 illustrate the overall effect of reducing network excitation via several pharmacological approaches on dopamine-evoked rhythmicity. A, In the first experiment, network excitability was reduced by washing in aCSF containing 1 mM KCl after evoking a rhythm. B, In a second experiment, preparations were recovered in low KCl (1 mM) aCSF for 1 h prior to dopamine application. C,
above experiments using NMDA to increase excitability across neuronal populations using concentrations (2–6 μM) subthreshold to those that evoke rhythmicity on their own (Fig. 6; n = 10). The duration of the episodes that compose the slow rhythm decreased as NMDA was increased, and differences in episode duration in L2 and L5 were no longer apparent at 2 and 4 μM NMDA (baseline: L2, 29.5 ± 9.5 s; L5, 22.6 ± 6.5 s; 2 μM: L2, 19.4 ± 7 s; L5, 17.2 ± 4.1 s; 4 μM: L2, 13.2 ± 4.3 s; L5, 12.6 ± 4.5 s). Boosting network excitation via NMDA decreased the frequency of the fast rhythm (L2: $\chi^2_{(11)} = 64.3, p < 0.001$; L5: $F_{(11, 99)} = 8.8, p < 0.001$) and increased the frequency of the slow rhythm (L2: $\chi^2_{(11)} = 22.2, p < 0.05$; L5: $F_{(11, 99)} = 18.2, p < 0.001$) in the L2s and the L5s. The power of the fast rhythm increased (Fig. 6D; L2: $X^2_{(11)} = 82.7, p < 0.001$; L5: $F_{(11, 99)} = 12.1, p < 0.001$) and the slow rhythm decreased in both the L2s and L5s (Fig. 6Dii; L2: $\chi^2_{(11)} = 66.7, p < 0.001$; L5: $\chi^2_{(11)} = 46.6, p < 0.001$) as excitation was increased, reflecting the rhythm switching from discontinuous multirhythm to a continuous rhythm. Likewise, the pattern of the fast rhythm became more locomotor like, as indicated by an increase in the mean vector length (r) pointing toward 180° (alternating) in the left and right L2s (Fig. 6Ei), the ipsilateral L2 and L5 (Fig. 6Eii), and the left and right L5s (DA baseline: L5–L5 phase: 16.1°, r = −0.7, p = 0.005; 6 μM NMDA: L5–L5 phase: 113°, r = 0.42, p = 0.2).

In an additional set of experiments, during rhythmic activity evoked by dopamine, network excitation was progressively reduced by incrementally increasing the concentration of Mg$^{2+}$ in the bath (MgSO$_4$). Increasing extracellular Mg$^{2+}$ reduces the efficacy of NMDA-mediated synaptic transmission that is necessary for rhythmogenesis in the spinal cord (Soffe and Roberts, 1989) by impairing the removal of the voltage-dependent Mg$^{2+}$ block in the NMDA channel. This manipulation was thus used as a means of reducing global network excitation by reducing the efficacy of excitatory synaptic transmission. A sequential increase in Mg$^{2+}$ concentration from basal levels (1.0 mM) to 1.5 mM progressively degraded the multirhythm and fully disrupted rhythmic activity at 2.0 mM, as reflected in a significant reduction in the power of the both the fast rhythm (Fig. 5C,Fi,Fii; n = 6; L2, p < 0.001; L5, p < 0.001) and the slow rhythm (Fig. 5Fiii,Fiv; n = 6; L2, p < 0.001; L5, p < 0.001) in both the L2s and L5s. Subsequent experiments where NMDA channels were antagonized with a low concentration of APV (5 μM) also inhibited the fast rhythm (n = 6, p < 0.001) and the slow rhythm (n = 6, p = 0.03) in the L2s but not the fast rhythm (Fig. 5D,Fi,Fii; n = 6, p = 0.1) or the slow rhythm (Fig. 5D,Fiii,Fiv; n = 6, p = 0.7) in the L5s.

5-HT-evoked rhythmicity is also influenced by network excitation

The above experiments describe how network excitation state influences the modulatory effect of dopamine on spinal motor output. Multirhythmic patterns of motor activity have been reported to be generated by a number of modulators, including noradrenaline, trace amines (Gozal et al., 2014), and 5-HT (MacLean et al., 1998; Schmidt et al., 1998). We next examined the generalizability of state dependency using 5-HT instead of dopamine. Examination of the frequency power spectrum over time following the application of low concentrations of 5-HT reveals that it too, although qualitatively different than dopamine, exhibits a slow underlying rhythm that is most apparent in the L2s and disappears as the concentration is increased (Fig. 7A). If this slow rhythm is a network phenomenon that is expressed at intermediate levels of excitation, then it should disappear as network excitation increases. To test this hypothesis, we sequentially increased network excitation in 2 mM KCl increments following the application of 15 μM 5-HT, which was the most effective at evoking both slow and fast rhythms simultaneously. As expected, KCl increased the robustness of the fast, locomotor-like rhythm (Fig. 7Di; n = 5; L2: $F_{(4, 43)} = 5.2, p < 0.001$; L5: $F_{(4, 43)} = 13.9, p < 0.001$) and decreased the power of the slow rhythm (Fig. 7Dii; n = 5; L2: $F_{(4, 43)} = 4.6, p < 0.001$; L5: $\chi^2_{(11)} = 31.1, p < 0.001$) up to 8 mM KCl, with a 10 mM concentration causing a shift to tonic activity and a resultant decline in the power of both the fast and slow rhythms (Fig. 7Diii,Diii).

Discussion

Neuromodulators play a critical role in sculpting network behavior, but these effects are state dependent (Marder et al., 2014). We made use of a well-defined mouse model to explore how network excitation state dictates the modulatory effects of dopamine on spinal locomotor circuits. When we moved the excitation state of the network, we found four stable zones where dopamine produced discrete network behaviors (Fig. 8). While dopamine was used here, our work suggests that these findings are relevant to other modulators such as serotonin, and this generalizability has been pointed out in
Figure 6. Sequential enhancement of network excitation with NMDA modulates dopamine-evoked rhythmicity. A, Neurograms recorded from left and right L2 and right L5 ventral roots illustrate the experimental paradigm and resultant effect on rhythmicity. Bath
application of 50 μM dopamine (DA) evoked a multirhythmic pattern of motor activity that is modulated as network excitation is boosted by sequentially increasing the concentration of NMDA in the bath (red arrows). When NMDA is increased to 6 μM, the pattern switches from multirhythmic to a single, continuous locomotor-like rhythm. B. The frequency power distribution following dopamine application and subsequent excitability manipulation is illustrated in the cross-wavelet frequency power spectrogram over time with frequency on the left y-axis, time on the x-axis, and increasing power represented as warmer colors. C. At 6 μM NMDA, the pattern switches from multiple rhythms to a single continuous rhythm. D. Regions of interest were selected around the fast and slow rhythms, and respective frequency and power for left and right L2 and L5 neurograms were analyzed over time. Increasing network excitation increased the power of the fast rhythm and decreased the power of the slow rhythm. E1, Eii. The phase and regularity of the fast rhythm is presented in the circular plots in E1 and Eii, and illustrate the switch to a locomotor-like pattern at 6 μM NMDA as the vector length increases and phase moves closer to 180° in both the left and right L2s and ipsilateral L2–L5. The phase in circular plots is reported in degrees, with 180° indicating an alternating pattern and 0° being synchronous. The length of the arrows represents the mean vector length (r) or robustness of the pattern. Each dot represents the average phase for an individual preparation for each respective experimental condition. Data are presented as the mean ± SD, with asterisks denoting a significant difference between the respective point and the rhythm at 20 min following dopamine application (##p < 0.01, ####p < 0.001) using pairwise multiple-comparisons Tukey post hoc analysis when significant main effects on a repeated-measures ANOVA were found.

Dopamine reveals state-dependent recruitment of spinally generated rhythmicity

In the current work, the rhythmogenic effects of dopamine were dependent on the excitation state of the spinal cord. In particular, we demonstrate that manipulating network excitation can reproduce the same network output that we report only at high concentrations of dopamine. We replicated this finding using several complimentary nonspecific methods to manipulate network excitation, including increasing extracellular KCl and NMDA to increase excitation, and low KCl, Mg2+ and APV to reduce network excitation. Our work does not suggest that neuromodulator action is wholly dependent on network excitability as modulators have network effects beyond solely increasing network excitation. For example, we found that 5-HT can evoke rhythms that are qualitatively different from those of dopamine, but, notably, we found that the rhythms produced by 5-HT are also dependent on excitation state. Indeed, simply altering the extracellular ionic composition of potassium and calcium is sufficient to drive rhythmicity at the network and interneuronal level through the recruitment of voltage-sensitive sodium–persistent inward currents (Brocard et al., 2013).

In other states the situation is more complex. We found that the rhythm evoked by our initial concentration of dopamine that was used to modulate locomotion (Jiang et al., 1999; Whelan et al., 2000) does not resemble the rhythmic signature typically associated with walking. While the episodes of rhythmicity were regular, the phase of the intraepisode fast rhythm between roots was less stable. Upon initial observation, one could conclude that this is the discrete rhythmic motor pattern evoked by dopamine. Others have explored rhythms that transit between states 1 and 3 (Fig. 8) and inferred a discrete modulatory function (Cazalets et al., 1992; Schmidt et al., 1998; Pearson et al., 2003; Gozal et al., 2014). It could therefore be argued that this multirhythmic pattern of activity may be a more nonphysiological motor pattern occupying state 3 and expressed under the lower levels of excitation present in reduced preparations of the nervous system.

On the other hand, neonatal rodent pups move toward the dam to suckle and toward their littermates to keep
Figure 7. 5-HT evokes multirhythmic patterns of motor activity that become locomotor like as network excitation is enhanced with KCl. Ai–Aiii. Neurograms recorded in separate experiments from single L2 ventral roots illustrate that bath application of 10 μM 5-HT evokes a single slow rhythm (Ai), 15 μM evokes a slow and fast rhythm (Aii), and 20 μM evokes a single fast rhythm (Aiii). B, Autowavelet spectrograms depicted in Bi–Biii illustrate these rhythms. C, Boosting network excitation following the generation of multiple rhythms with 15 μM 5-HT caused a transition from a multirhythm to a single locomotor-like rhythm. Network manipulations are represented and highlighted as a red downward arrow in the spectrogram. D, Regions of interest were selected within...
warm. While neonates do not fully bear their weight or produce functional walking movements, they do produce a diverse array of rhythmic movements of the limbs that allow them to move around the nest. Although speculative, our work could be a representation of these diverse patterns that are expressed as networks enter transition zones during development. As descending pathways mature and the excitability of spinal networks becomes more continued

cross-wavelet spectrograms around the fast and slow rhythms, and the respective frequency and power for left and right L2 and L5 were analyzed over time. Di, Div. Boosting network excitation increased the power of the fast rhythm (Di) and decreased the power of the slow rhythm (Div). Ei, Eii. The bursting pattern of the fast rhythm is presented in the circular plots in Ei and Eii, and illustrates an increase in the vector length at 10 mKCl in the left and right L2s and ipsilateral L2–L5 at 8 mKCl, but at 10 mKCl the length declined as activity became tonic. The phases in circular plots are reported in degrees, with 180° indicating an alternating pattern and 0° indicating a synchronous pattern. The lengths of arrows represent the mean vector length (\vec{r}) and angle or robustness of the pattern. Each dot represents the average phase for an individual preparation for each respective experimental condition. Data are presented as the mean ± SD, with asterisks denoting a significant difference between the respective point and the rhythm at 20 min following dopamine application ($p < 0.05$) from Tukey post hoc analysis when significant main effects on a repeated-measures ANOVA were found.

Figure 8. Neuromodulators evoke rhythmicity by moving the network through an excitation parameter space with the end point pattern being locomotor like. State 1 (basal state) in isolated rodent spinal cords is characterized by spontaneous network activity. Depolarization of the network moves the network into a higher excitation state (state 2), which is characterized by tonic activity with no rhythmicity. State 3 is characterized by multirhythmic patterns of motor activity where modulator-specific patterns of rhythmic motor activity may exist. Finally, in state 4, the locomotor state is characterized by continuous rhythmic activity with an alternating locomotor-like pattern expressed as a network-emergent property at the highest level of network excitation. Neurograms depicted in the schematic are from ventral root recordings in the right L5 and left and right L2 spinal segments. Curved lines in the schematic represent transition zones between network states, where dopamine would be expected to have the greatest effects on network output.
Figure 9. Dopaminergic modulation of state 4. Dopamine exerts a robust modulation of locomotor-like activity at a position in the state space near a transition zone; however, overall the rhythm qualitatively stays the same, and the effect does not change when network excitation is manipulated. Ai, An unstable locomotor rhythm can be evoked by bath application of 10 µM 5-HT and 5 µM NMDA. Aii, Dopamine reduces the frequency and stabilizes the locomotor rhythm. B, This is particularly evident in the spectrogram. C, D, Network excitation was manipulated initially as a means of evoking rhythms of different frequencies but can also be interpreted as a network excitation state manipulation. D, Regardless of the baseline frequency, the modulatory effect of dopamine on rhythm
robust, stable locomotor patterns similar to state 4 would begin to emerge. Similar to developing systems, pathological rhythmic motor patterns could also emerge in adults when spinal networks move into a lower excitation state due to impaired descending activation of spinal motor networks. In other systems, such as epilepsy, altered excitation states can produce slow rhythms similar to what we have observed, but any mechanistic similarities remain speculative at this point (Jensen and Yaari, 1997).

Finally, state 1, or the basal state, in the neonatal rodent spinal cord is characterized by spontaneous activity. An interesting feature of spontaneous activity comes from previous work on the mouse where multiple rhythmic patterns were observed, from high-frequency synchronous bursts, to ipsilateral bursting and locomotor-like activity (Whelan et al., 2000). A hypothesis would then form that several transient states exist that converge onto a fourth locomotor-like state. We suspect that dopamine may be accessing a portion of these transient states and forming several identifiable and stable states. As to how dopamine can excite the cord forming regular episodes of rhythmic activity in state 3, compared with stochastic activation with spontaneous bursting activity in state 1 is unclear.

Implications and summary
Our work illustrates at least four definable network states that restrict the effects that a neuromodulator can elicit within the lumbar spinal cord (Fig. 8). For example, the effects of dopamine on a stable locomotor-like pattern are arguably rather subtle—it does reduce the frequency and increase the amplitude of activity—but the rhythmic pattern remains qualitatively similar. This is very different if the network is transitng to state 4, where dopamine has a large impact on network function, bursting becomes much more regular, and phasing between neurongrams becomes locomotor-like (Sharples et al., 2015). These effects are illustrated in Figure 9. We emphasize the importance of network excitation state when studying the contributions of identifiable cell types to the production of spinally generated rhythmic activity. The removal of elements that compose the central pattern generator may move the network into lower (or higher) regions of network state space. Caution is therefore advised on inferring neuronal sub-type function based on altered patterns of motor activity before moving the network through the full range of excitation state space. This leads us to propose that an important control would be to move the network excitability in the opposite direction to the hypotesized movement of the modulator. This would allow one to detail the contribution of circuit manipulation across defined network states.

References
Baghdadwalia Ml, Duchcherer M, Trask WM, Gray PA, Wilson RJ (2016) Diving into the mammalian swamp of respiratory rhythm generation with the bullfrog. Respir Physiol Neurobiol 224:37–51. CrossRef Medline
Bargmann CI (2012) Beyond the connectome: how neuromodulators shape neural circuits. Bioessays 34:458–465. CrossRef Medline
Barrière G, Mellen N, Cazalets JR (2004) Neuromodulation of the locomotor network by dopamine in the isolated spinal cord of newborn rat. Eur J Neurosci 19:1325–1335. CrossRef Medline
Barrière G, Bertrand S, Cazalets JR (2005) Peptidergic neuromodulation of the lumbar locomotor network in the neonatal rat spinal cord. Peptides 26:277–286. CrossRef Medline
Berg RW, Alaburda A, Houngaard J (2007) Balanced inhibition and excitation drive spike activity in spinal half-centers. Science 315:399–403. CrossRef Medline
Blitz DM, Nusbaum MP (2012) Modulation of circuit feedback specifies motor circuit output. J Neurosci 32:9182–9193. CrossRef Medline
Bonnont A, Whelan PJ, Mentis GZ, O’Donovan MJ (2002) Locomotor-like activity generated by the neonatal mouse spinal cord. Brain Res Brain Res Rev 40:141–151. Medline
Bovier J, Caggiano V, Leiras R, Caldeira V, Bellardita C, Balueva K, Fuchs A, Kiehn O (2015) Descending command neurons in the brainstem that halt locomotion. Cell 163:1191–1203. CrossRef Medline
Brocard F, Shvetsova NA, Bouhadfane M, Tazerart S, Heinemann U, Fyrbak IA, Vinay L (2013) Activity-dependent changes in extracellular Ca2+ and K+ reveal pacemakers in the spinal locomotor-related network. Neuron 77:1047–1054. CrossRef Medline
Brownstone RM, Wilson JM (2008) Strategies for delineating spinal locomotor rhythm-generating networks and the possible role of Hb9 interneurones in rhythmogenesis. Brain Res Rev 57:64–76. CrossRef Medline
Cazalets JR, Sqalli-Houssaini Y, Clarc F (1992) Activation of the central pattern generators for locomotion by serotonin and excitatory amino acids in neonatal rat. J Physiol 455:187–204. CrossRef Medline
Christie KJ, Whelan PJ (2005) Monoaminergic establishment of rostrocaudal gradients of rhythmicity in the neonatal mouse spinal cord. J Neurophysiol 94:1554–1564. CrossRef Medline
Clemens S, Belin-Rauscens A, Simmers J, Combes D (2012) Opposing modulatory effects of D1- and D2-like receptor activation on a spinal central pattern generator. J Neurophysiol 107:2250–2259. CrossRef Medline
Cowley KC, Schmidt BJ (1997) Regional distribution of the locomotor pattern-generating network in the neonatal spinal cord. J Neurophysiol 77:247–259. Medline
Dose F, Zanon P, Coslovich T, Taccola G (2014) Nanomolar oxytocin synergizes with weak electrical afferent stimulation to activate the locomotor CPG of the rat spinal cord in vitro. PLoS One 9:e92967. CrossRef Medline
Gordon IT, Whelan PJ (2006) Monoaminergic control of caudaequina-evoked locomotion in the neonatal mouse spinal cord. J Neurophysiol 96:3122–3129. CrossRef Medline
Gozal EA, O’Neill BE, Sawchuk MA, Zhu H, Haider M, Chou CC, Hochman S (2014) Anatomical and functional evidence for trace amines as unique modulators of locomotor function in the mammalian spinal cord. Front Neural Circuits 8:134. CrossRef Medline
Grillner S, Wallén P, Saitoh K, Kozlov A, Robertson B (2008) Neural bases of goal-directed locomotion in vertebrates—an overview. Brain Res Rev 57:2–12. CrossRef Medline
Gutierrez GJ, Marder E (2014) Modulation of a single neuron has state-dependent actions on circuit dynamics. Eneuro 1:1–12. CrossRef Medline

January/February 2017 2017, 4(1) e0368-16.2017
Gutierrez GJ, O’Leary T, Marder E (2013) Multiple mechanisms switch an electrically coupled, synaptically inhibited neuron between competing rhythm oscillators. Neuron 77:845–858. CrossRef

Hagglund M, Dougherty KJ, Borgius L, Itohara S, Iwasato T, Kiehn O (2013) Optogenetic dissection reveals multiple rhythmogenic modules underlying locomotion. Proc Natl Acad Sci U S A 110:11589–11594. CrossRef

Heckman CJ, Johnson MD (2014) Reconfiguration of the electrical properties of motoneurons to match the diverse demands of motor behavior. Adv Exp Med Biol 826:33–40. CrossRef Medline

Hentall ID, Mesgil R, Pinzon A, Noga BR (2003) Temporal and spatial profiles of pontine-evoked monoamine release in the rat’s spinal cord. J Neurophysiol 89:2943–2951. CrossRef Medline

Hultborn H, Nielsen JB (2007) Spinal control of locomotion—from cat to man. Acta Physiol (Oxf) 189:111–121. CrossRef Medline

Humphreys JM, Whelan PJ (2012) Dopamine exerts activation-dependent modulation of spinal locomotor circuits in the neonatal mouse. J Neurophysiol 108:3370–3381. CrossRef

Jiang Z, Carlin KP, Brownstone RM (1999) An in vitro functionally mature mouse spinal cord preparation for the study of spinal motor networks. Brain Res 816:493–499. CrossRef

Jordan LM, Liu J, Hedlund PB, Akay T, Pearson KG (2008) Descending command systems for the initiation of locomotion in mammals. Brain Res Rev 57:183–191. CrossRef Medline

Kiehn O (2016) Decoding the organization of spinal circuits that control locomotion. Nat Rev Neurosci 17:224–238. CrossRef Medline

Kiehn O, Kjaerulf O, Kjaerulf O, McDearmid JR (1999) Effects of noradrenaline on locomotor rhythm-generating networks in the isolated neonatal mouse spinal cord. J Neurophysiol 82:741–746. CrossRef Medline

Kimura Y, Satou C, Fujikata S, Shoji W, Umeda K, Ishizuka T, Yawo H, Higashijima S (2013) Hindbrain V2a neurons in the excitation of spinal locomotor circuits during zebrafish swimming. Curr Biol 23:843–849. CrossRef

Kloßinger K, Füzesi T, Ejdrygiewicz J, Krajacic A, Bains JS, Whelan PJ (2014) Characterization of A11 neurons projecting to the spinal cord of mice. PLoS One 9:e109636. CrossRef Medline

Maclean JN, Cowley KC, Schmidt BJ (1998) NMDA receptor-mediated oscillatory activity in the mammalian spinal cord. J Neurophysiol 81:2378–2389. CrossRef Medline

Pearlstein E, Ben Mabrouk F, Pfieger JF, Vinay L (2005) Serotonin refines the locomotor-related alternations in the in vitro neonatal spinal cord. Eur J Neurosci 21:1338–1346. CrossRef Medline

Pearson SA, Mouhiate A, Pittman QJ, Whelan PJ (2003) Peptidergic activation of locomotor pattern generators in the neonatal spinal cord. J Neurosci 23:10154–10163. Medline

Picton LD, Sillard KT (2016) Mechanisms underlying the endogenous dopaminergic inhibition of spinal locomotor circuit function in Xenopus tadpoles. Sci Rep 6:35749. CrossRef

Picton LD, Nascimento F, Broadhead MJ, Sillard KT, Miles GB (2016) Sodium pumps mediate activity-dependent changes in mammalian motor networks. J Neurosci. Advance online publication. Retrieved January 19, 2017. doi:10.1523/JNEUROSCI.2005-16.2016.

Prinz AA, Bucher D, Marder E (2004) Similar network activity from disparate circuit parameters. Nat Neurosci 7:1345–1352. CrossRef Medline

Puhl JG, Mesce KA (2008) Dopamine activates the motor pattern for crawling in the medicinal leech. J Neurosci 28:4192–4200. CrossRef Medline

Roberts A, Li WC, Soife SR (2012) A functional scaffold of CNS neurons for the vertebrates: the developing Xenopus laevis spinal cord. Dev Neurobiol 72:575–584. CrossRef

Schmidt BJ, Hochman S, Maclean JN (1998) NMDA receptor-mediated oscillatory properties: potential role in rhythm generation in the mammalian spinal cord. Ann N Y Acad Sci 860:189–202. CrossRef

Sharples SA, Whelan PJ (2015) Dopamine exerts concentration-dependent bidirectional modulation and evokes state-dependent rhythmicity in motor networks of the neonatal mouse spinal cord. Soc Neurosci Abstr 41:422.07.

Sharples SA, Humphreys JM, Jensen AM, Dhoopar S, Delaloye N, Clemens S, Whelan PJ (2015) Dopaminergic modulation of locomotor network activity in the neonatal mouse spinal cord. J Neurophysiol 113:2500–2510. CrossRef Medline

Sillard KT, Combes D, Simmers J (2014) Neuromodulation in developing motor microcircuits. Curr Opin Neurobiol 24:73–81. CrossRef Medline

Stadele C, Heigle S, Stein W (2015) Neuromodulation to the rescue: compensation of temperature-induced breakdown of rhythmic motor patterns via extrinsic neuromodulatory input. PLoS Biol 13:e1002265

van den Pol AN (1999) Hypothalamic hypocretin (orexin): robust innervation of the spinal cord. J Neurosci 19:3171–3182. Medline & Whelan P, Bonnot A, O’donovan MJ (2000) Properties of rhythmic activity generated by the isolated spinal cord of the neonatal mouse. J Neurophysiol 84:2821–2833. Medline

Whelan PJ, Hiebert GW, Pearson KG (1995) Stimulation of the group I extensor afferents prolongs the stance phase in walking cats. Exp Brain Res 103:20–30. CrossRef

Zhong G, Droso S, Crane SA, Delts S, Kwan AC, Webb WW, Sharma K, Harris-Warrick RM (2010) Electrophysiological characterization of V2a interneurons and their locomotor-related activity in the neonatal mouse spinal cord. J Neurosci 30:170–182. CrossRef

Zhong G, Sharma K, Harris-Warrick RM (2011) Frequency-dependent recruitment of V2a interneurons during fictive locomotion in the mouse spinal cord. Nat Commun 2:274. CrossRef