Materials Research Express

PAPER

Electrochemical codeine sensor based on carbon paste electrode/HKUST-1

Masoud Pirasteh¹, Tahereh Momeni Isfahani¹∗ and Zeinab Pourghobadi²

¹ Department of Chemistry, Arak Branch, Islamic Azad University, Arak, Iran
² Department of Chemistry, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
* Author to whom any correspondence should be addressed.

E-mail: t.momeni@iau-arak.ac.ir

Keywords: codeine, metal–organic framework, HKUST, electrochemical sensor, differential pulse voltammetry, medicine application

Abstract

In this research, the Cu-MOF (metal–organic framework, HKUST-1) was synthesized via co-precipitation method and it was into the carbon paste electrode and has been investigated in the measurement of codeine. The electrochemical performance of the modified electrode was evaluated by cyclic voltammetry and differential pulse voltammetry. The effective parameters in the sensitivity of the method were optimized. Quantitative measurements and determination of codeine at the surface of the modified electrode were performed by using differential pulse voltammetry. Finally, the ability of the developed method to measure codeine in real plasma samples was investigated. Under the optimal conditions, the linear range was obtained from 2 to 100 μM with a limit of detection of 0.66 μM. The high efficiency of the developed electrode in plasma samples was proved by using high and acceptable accuracy and satisfactory relative recovery percentage. The results in which the recovery values with RSD% for three repeated measurements were in the range of 97–109 (% RSD = 3.75 to 4).

Introduction

Metal–organic frameworks (MOFs) as a type of porous material have attracted much attention due to their remarkable properties, such as regular crystal structures, high surface area, and pores of different sizes. Due to these characteristics, MOFs are widely used in catalysis, drug delivery, gas absorption, energy storage, and sensing purposes [1–3]. Also, in recent years, MOF-derived functional nanomaterials have appeared as state-of-the-art materials for a large different of conceivable usage containing separation, catalysis, storage, analysis [1–8]. These applications arise from their high pore volume and specific surface areas. As one of the most investigated MOFs, HKUST-1 ([Cu3(H2O)2(BTC)3]n, BTC: 1, 3, 5-benzenetricarboxylate) has benefits of open metal sites, facile preparation, high surface area (1925 m² g⁻¹) and an interconnected 3D pore system with pore sizes of 9 Å × 9 Å [9–13]. Both the metallic Cu ion center and the layered structure of HKUST-1 can improve the electron transfer significantly and enhance the catalytic current dramatically. Because of these advantages, here, HKUST-1 was used for the fabrication of an electrochemical sensor for the measurement of codeine [14, 15]. Codeine (3-methylmorphine) is an alkaloid formulated by the methylation of morphine derived from poppy seeds. It is used to control mild to moderate pain, including regular cancer ache, and has antitussive, antistrips, and anti diarrheal properties [16]. The chemical structure of codeine is given in figure 1. Moreover, Codeine is extensively used in cough cold syrup, but it would cause drug addiction, and make mental damage to patient if abused, then even give rise to many issues of social problem. This drug also shows antidiarrheal activity with several side effects such as constipation, sedation and nausea. The increment of drug abuse over the past decades led to the increase of Codeine and other morphine derivatives in drug prescriptions as substitutes and alternative drugs for the management of heroin in some European countries [17, 18].

Various techniques including colorimetric assays, spectrophotometric analysis, electrochemical detection, chromatographic analysis and capillary electromigration techniques have been utilized for the measurement of codeine. MOFs, HKUST-1, Codeine, Electrochemical sensor, Differential pulse voltammetry, Medicine application.
codeine. The use of electrochemistry for measurement of different medicine in various solution and furthermore other functional technologies has much attention has been paid to them. [19–27]. Among the different analytical methods, the electrochemical methods compared to other methods, are powerful detection method due to the intrinsic properties such as sensitivity, low-cost, portability and ease of use [16, 28–34].

Codeine is an electroactive drug that oxidizes, therefore, direct measurement of codeine can be performed. Various electrodes such as glassy carbon electrode, boron doped diamond and carbon paste electrode, have been reported to measure codeine. Electrode modification can reduce the potential excess as well as increase the electron transfer rate in the redox reactions of the desired reduction at the electrode surface [16]. According to the literature, graphene/CoFe2O4 NPs-modified carbon paste [35], TiO2 NPs-modified carbon paste [36], ZnCrFeO4 NPs-modified MWCNT paste [37], CoFe2O4 NPs-modified carbon paste [38], CNT/PdNPs/CPE [39], Zn3SnO4 NPs/graphene-modified carbon paste [40] and CPE/PtNPs/IL [41] electrodes have been utilized for electrochemical measure of this drug and received LOD was in the range of 9–200 nM. In this work, an electrochemical sensor based on modified CPE with CU-MOF was designed for the electrochemical measure of codeine. The limit of detection, linearity range and selectivity of the introducing sensor was also invested by differential pulse voltammetry.

Experimental section

Materials
Analytical grade chemicals were used in all experiments and no further treatments were performed on them prior to tests. The main chemicals used were Cu(NO3)2 and H3BTC. Also, codeine were purchased from rouzdarou Co.

Synthesis of HKUST-1
At first, 1 g Cu(NO3)2 were added into deionized water (25 ml). Followed by added solution H3BTC (2 g in 50 ml water) drop-by-drop, followed by 60 min of stirring at the room temperature. Afterward, the precipitate was collected through centrifugation at 5000 rpm. The produced was rinsed using water and ethanol [1].

Apparatus
The FE-SEM device model (Mira3 TESCAN) was employed for recording SEM images. X-ray diffraction (XRD) patterns of the active materials were recorded on a PANalytical, X’PertPRO instrument with Cu-Kα (λ = 1.5406 Å) radiation. Cyclic voltammetry (CV), differential pulse voltammetry studies were performed using a μ-Autolab PGSTAT coupled with a frequency response analyzer equipped with a NOVA software.

Preparation of modified sensor
A combination of graphite (0.15) and HKUST-1 nanomaterial (0.05 g) in oil were mixed to form a paste. The prepared paste was placed in to a syringe tube and every time we wanted to use it, the surface was refreshed. The electrode was connected to the device with a copper wire.
Result and discussions

XRD and FE-SEM analysis

Figure 2 shows typical x-ray diffraction spectrum (XRD) of the HKSUT-1. Significant deflection peaks of HKSUT-1 are located at 2θ values of approximately 8.08, 10.36, 11.64, 13.48, 14.7, 19.28, 25.92, and 28.92, and were attributed to the (200), (220), (222), (400), (331), (440), (731) and (751) crystal orientations respectively (JCPDS card no: 00–062–1183) [1]. The typical morphology of HKUST-1 nanoparticles was investigated by the FESEM. As can be seen, the HKSUT-1 particles with size distributions into the range below 100 nm are nanoscale, spherical and homogeneous.

Electrochemical test

To assess the electrochemical behavior of 50 μM codeine on the CPE and CPE/HKUST-1 in phosphate solution (0.1 M, pH = 4.0) was used with scanning rates of 50 mV/s. Figure 3 demonstrates that can be seen, oxidation peak for codeine at the CPE and CPE/HKUST-1 surface appeared with a current (I_p) of 20 μA (at 1.18 V) and 52 μA (at 1.16 V), respectively. The effect of HKUST-1 nanoparticles on the active surface of CPE was investigated by Randles-Sevcik equation. The active surface area of modified electrode increase about 1.7 times compared with the CPE.
The effect of pH on codeine oxidation at the CPE/HKUST-1 surface was performed by cyclic voltammetry. Codeine voltammograms with different pHs are shown in figure 4(a). The shift of the Codeine peak oxidation potential at the Codeine surface indicates that this drug is sensitive to pH and this parameter can play a very important role in the electrochemical measurement of this drug. Also current diagram versus of pH showed that the highest oxidation current is related to pH = 4, so this optimal pH was used. The potential diagram versus of the pH was also plotted according to figure 4(b), that line slope is close to that of the Nernst line, therefore the number of electrons and protons transferred in Codeine oxidation is equal. The electrochemical mechanism for this drug interaction is in accordance with figure 4(c) [39]. The pKa values of 8.2 for the codeine showed that while the carbocyclic moiety is almost deprotonated at acidic. Moreover, the observation of the almost irreversibility behavior for the electro-oxidation of codeine in optimized pH value acidic.

Using the effect of potential scan rate on the cyclic voltammograms of the codeine, it is possible to investigate the diffusion or adsorption of analyte on the modified electrode. For this purpose, cyclic voltammograms were recorded at different scan rates in the range of 10 to 150 mV s\(^{-1}\) and the results are reported in figure 4. As shown in figure 5, there is a linear relationship between the current intensity and the square of the potential scan rate, indicating that the reaction has a diffusion-controlled mechanism. In addition, based on the results obtained Tafel plot (log I versus E) Curve and the slope of the equation gives the value of the electron transfer coefficient (\(\alpha\)) for codeine is equal to 0.62.

Chronoamperometry

Thecottrell relationship was used to calculate the diffusion coefficient of codeine on the CPE/HKUST-1 surface by chronoamperometry. For this purpose, amperograms of different concentrations of codeine on the surface of CPE/HKUST-1 were drawn by chronoamperometry method at a potential of 1.3 V for a period of 30 s. Then, by drawing the current diagram according to the \(t^{\frac{1}{2}}\) and according to the slope of their line (figure 6(b)) and drawing figure 6(c), the penetration coefficient for the codeine was equal to \(3.62 \times 10^{-6} \text{ cm}^2\text{s}^{-1}\) \([42, 43]\). In Cottrell relation, \(A, n, C, F\) are the electrode surface area, the number of electrons, concentration, and Faraday constant, respectively

\[
I = nFACD^{1/2}/\pi^{1/2}t^{1/2} \quad \text{(Cottrell relation)}
\]

Different concentrations of codeine were measured at the surface CPE/HKUST-1 and pH = 4 by DPV method. The results are shown in figure 7. As the concentration increases, the oxidation current also increases. The linear relationship of current with concentration was obtained in the concentration range of 2–100 μM. The detection limit of codeine at the surface of CPE/HKUST-1 was also obtained according to LOD = 3 S m\(^{-1}\) equal to 0.66 μM. A comparison of codeine measurement performance of previously reported with the CPE/HKUST-1 sensor is given in table 1. The electrochemical measurements of codeine were investigated in the presence of the various compounds. The interference threshold is considered as the concentration of the interfering species that changes the codeine signal by more or less than 5%. The results (table 2) showed that the studied compounds had no effect on sensor response.
Figure 4. Effect pH on the oxidation peak codeine, (a) CVS, (b) Ep versus pH and (c) Electrochemical mechanism of codeine.

Table 1. Comparison of the performance of different sensor for codeine measurement.

Electrode	Method	Linear range (μM)	LOD (μM)	References
Psi/Pd/CNTPE	DPV	1–700	0.3	[39]
PB/Pd-Al	DPV	2–50	0.8	[44]
NiNPs/carbon black/GCE	SWV	0.83–38.5	0.48	[45]
SWCNT/carbo ceramic electrode	DPV	0.4–300	0.25	[46]
CPE/HKUST-1	DPV	2–100	0.66	This Work

Table 2. Investigate selectivity in measuring codeine.

Compounds	I_{inter} (μM)
Ascorbic acid, Uric acid, Dopamine	100
H_2O_2, Citric acid, L-cysteine	150
NaCl, Na$_2$HPO$_4$, CuCl$_2$	1000
The performance of the CPE/HKUST-1 for detection of codeine were examined in the serum samples. Three concentrations of codeine was add to the real sample. The recovery values in the range of 96%–99% in added samples with different codeine (table 3), indicating that the CPE/HKUST-1 has an acceptable accuracy to measurements of codeine in real serum samples.

Conclusion

In summary, an electrochemical sensor for detection of codeine was developed based on the simple and economic technique. The response of this electrochemical sensor was based on the changes of interfacial properties of sensing platform by interaction between the codeine in the solution and the HKUST-1 on the carbon paste electrode. Since MOFs are a good choice for electrode modification. With the modification of the electrode by HKUST-1, the oxidation current has increased several times and its starting potential occurs at in lower values. Therefore, the improvement in the electrochemical behavior of codeine is due to the acceleration of electron transfer due to the increase in surface area by HKUST-1. The fabricated CPE/HKUST-1 shows

Table 3. The measurement of codeine in human blood serum.

Add (μM)	Obtained (μM)	Recovery (%)	RSD (%)
5	4.86	97.20	3.87
10	9.89	98.90	4.03
25	24.79	99.16	3.75

Figure 5. Cyclic voltammograms of codeine on the modified electrode surface at different scan rates (a), I versus υ^{1/2} (b) and E versus Log I (c).
Figure 6. Chronoamperometry for various concentration of codeine at surface CPE/HKUST-1 in solution (pH = 4.0).

Figure 7. DPVs (a) and calibration (b) curve of codeine.
acceptable selectivity in measurements of codeine, detection limit as 0.66 μM, and a wide linear range from 2 to 100 μM. The codeine quantification in blood serum samples was successfully performed.

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).

ORCID iDs

Tahereh Momeni Isfahani https://orcid.org/0000-0002-6648-9625

References

[1] Ghahkhlani M, Gharagozolou M, Sohoulie E and Khosrowshahi E M 2022 Preparation of an electrochemical sensor based on a HKUST-1/CoFe2O4/SnO2-modified carbon paste electrode for determination of azaperone Microchim. Acta 1 107199
[2] Naghian E, Shahdost-fard F, Sohoulie E, Safarifard V, Najafi M, Rahimi-Nasrabad M and Sohban-Nasab A 2020 Electrochemical determination of levodopa on a reduced graphene oxide paste electrode modified with a metal-organic framework Microchem. J. 104888
[3] Sohoulie E, Karimi M S, Khosrowshahi E M, Rahimi-Nasrabad M and Ahmadi F 2020 Fabrication of an electrochemical mesalazine sensor based on ZIF-67 Measurement 165 108140
[4] Lv S, Zhang K, Zhou Q and Tang D 2020 Plasmonic enhanced photoelectrochemical aptasensor with DA F8BT/g-C3N4 heterojunction and AuNPs on a 3D-printed device Sensors Actuators B 310 127874
[5] Lv S, Zhang K, Zhu L and Tang D 2019 ZIF-8-assisted NaYF4:Yb, Tm® ZnO convertor with exonuclease III- powered DNA walker for near-infrared light responsive biosensor Anal. Chem. 92 1470–6
[6] Lv S, Zhang K, Zhu L, Tang D, Niessner R and Knopp D 2019 H2-based electrochemical biosensor with Pd nanowires@ ZIF-67 molecular sieve bilayered sensing interface for immunoassay Anal. Chem. 91 12053–62
[7] Lv S, Tang Y, Zhang K and Tang D 2018 Wet NH3-triggered NH2-MIL-125 (Ti) structural switch for visible fluorescence immunoassay impregnated on paper Anal. Chem. 90 14121–5
[8] Krishnan S, Gupta A K, Singh M K, Guha N and Rai D K 2022 Nitrogen-rich Cu-MOF decorated on reduced graphene oxide nanosheets for hybrid supercapacitor applications with enhanced cycling stability Chem. Eng. J. 435 135042
[9] He C, Liu C, Li M, Li M, Yin J, Han S, Xia J, Chen D, Cao W and Lu Q 2022 Hierarchical Cu-MOF nanosheets-based antibacterial mesh Chem. Eng. J. 137381
[10] Zheng H, Zhou Y, Wang D, Zhu M, Sun X, Jiang S, Fan Y, Zhang D and Zhang J 2012 Surface-functionalized PVDF membranes by facile synthetic Cu-MOF–74 for enhanced contaminant degradation and antifouling performance Colloids Surf., A 129640
[11] Ling Y, Chu Y R, Gao F, Feng Q Y, Xie H Q, Shao Y and Wang Q X 2022 Immunoaffinity-induced signal depression of Cu-MOF–74 for label-free electrochemical detection of cardiac troponin i The Journal of Physical Chemistry C (https://doi.org/10.1021/acs.jpcc.2c02455)
[12] Wu H, Utomo W P, Tian Y, Mak C H, Chung H Y, Hsu H Y, Shang J and Ng Y H 2022 Enhanced visible-light driven heterogeneous photocatalytic CO2 methanation using a CuO@ Cu-MOF–74 thin film Chem Phys Mater (https://doi.org/10.1016/j. chphma.2022.05.003)
[13] Ambaye A D, Kefeni K K, Kebede T G, Mishra S, Nxumalo E and Ntsendwana B 2022 Cu-MOF–N-doped GO nanocomposites modified screen-printed carbon electrode towards detection of 4-nitrophenol J. Electroanal. Chem. 116542
[14] Shu T, Liu T, Mo H, Yuan Z, Cui F, Jin Y and Chen X 2020 Cu-based metal–organic framework HKUST-1 as effective catalyst for highly sensitive determination of ascorbic acid RSC Adv. 10 22881–90
[15] Asfaram A, Gheddi M and Dashtian K 2017 Rapid ultrasensitive–assisted magnetic microextraction of acid from urine, plasma and water samples by HKUST-1-MOF–Fe3O4–GA-MIP–NPs UV–vis detection and optimization study Ultrason. Sonochem. 34 561–70
[16] Pratiwi R, Noviana E, Fauziati R, Carrio D B, Gandhi F A, Majid M A and Saputri F A 2021 A review of analytical methods for codeine determination Molecules 26 800
[17] Edvardsen H M E and Clausen T 2022 Opioid related deaths in Norway in 2000–2019 Drug Alcohol Depend. 232 102981
[18] Geeraerts A, Geysen H, Ballet L, Hofmans C, Clevers E, Omari T, Manolakis A C, Mols R, Augustijns P and Vanuytsel T 2021 Codeine findings of this study are included within the article
[19] Mirsadeghi S, Zandavar H, Tooski H F, Rajabi H R, Rahimi-Nasrabadi M, Sohoulie E, Ganjali M R and Pourmortazavi S M 2020 Study of photocatalytic and electrocatalytic activities of calcium tungstate nanoparticles synthesized via surfactant–supported hydrothermal method J. Mater. Sci., Mater. Electron. 1–15
[20] Naghian E, Sohoulie E and New A 2020 Electrochemical sensor for determination of zolpidem by carbon paste electrode modified with SnS@SnO2NPs, analytical and bioanalytical Electrochemistry 12 458–67
[21] Ghahkhlani M, Sohoulie E, Khaloo S S and Vaziri M H 2022 Architecture of an aptasensor for the staphylococcus aureus analysis by modification of the screen-printed carbon electrode with aptamer//Ag–Cs–Gr QDs/NTIO2, Chemosphere 133597
[26] Sohouli E, Adib K, Maddah B and Najafi M 2022 Manganese dioxide/cobalt tungstate/nitrogen-doped carbon nano-onions nanocomposite as a new supercapacitor electrode Ceram. Int. 48 295–303
[27] Sanatkar T H, Khoshashi A, Yaghoobii R, Sohouli E and Shakeri J 2020 Stöber synthesis of salen-formaldehyde resin polymer-and carbon spheres with high nitrogen content and application of the corresponding Mn-containing carbon spheres as efficient electrocatalysts for the oxygen reduction reaction RSC Adv. 10 27575–84
[28] Ghalkhani M and Sohouli E 2021 Synthesis of the decorated carbon nano onions with aminated MCM-41/Fe3O4 NPs: Morphology and electrochemical sensing performance for meliitoxenate analysis Microporous Mesoporous Mater. 111658
[29] Mohammadnia M S, Khosrowshahi E M, Naghian E, Keihan A H, Sohouli E, Plonska-Brzezinska M E, Rahimi-Nasrabadi M and Ahmadi F 2020 Application of carbon nanoion on NiMoO4-MnWO4 nanocomposite for modification of glassy carbon electrode: Electrochemical determination of ascorbic acid Microchem. J. 159 105470
[30] Zaidan B A H, Sohouli E, Mazaheri S and Novel A 2019 Capping agent in preparation and characterization of CuAl2O4/CuO nanocomposite and its application for electrochemical detection of dopamine "Analytical & Bioanalytical Electrochemistry" 11 108–22
[31] Taghizadeh M J, Mohammadnia M S, Ghalkhani M and Sohouli E 2021 Improved method for the total synthesis of asazeporone and investigation of its electrochemical behavior in aqueous solution Chem. Res. Chin. Univ. 1–6
[32] Sohouli E, Shahdost-Fard F, Rahimi-Nasrabadi M, Plonska-Brzezinska M E and Ahmadi F 2020 Introducing a novel nanocomposite consisting of nitrogen-doped carbon nano-onions and gold nanoparticles for the electrochemical sensor to measure acetyaminophen J. Electroanal. Chem. 871 114309
[33] Sohouli E, Keihan A H, Shahdost-fard F, Naghian E, Plonska-Brzezinska M E, Rahimi-Nasrabadi M and Ahmadi F 2020 A glassy carbon electrode modified with carbon nanoonions for electrochemical determination of fentanyl Mater. Sci. Eng. C 110 110684
[34] Sohouli E, Ghalkhani M, Zargar T, Joseph Y, Rahimi-Nasrabadi M, Ahmadi F, Plonska-Brzezinska M E and Ehrlich H 2022 A new electrochemical aptasensor based on gold/nitrogen-doped carbon nano-onions for the detection of Staphylococcus aureus Electrochim. Acta 403 139633
[35] Afkhami A, Khoshshafar H, Bagherti H and Madrakian T 2014 Facile simultaneous electrochemical determination of codeine and acetyaminophen in pharmaceutical samples and biological fluids by graphene–CoFe2O4 nanocomposite modified carbon paste electrode Sensors Actuators B 203 909–18
[36] Mashhadizadeh M H and Rasouli F 2014 Design of a new carbon paste electrode modified with TiO2 nanoparticles to use in an electrochemical study of codeine and simultaneous determination of codeine and acetyaminophen in human plasma serum samples Electroanalysis 26 2033–42
[37] Taei M, Salavati H, Hasanpour F, Habibollahi S and Baghlanl H 2016 Simultaneous determination of ascorbic acid, acetyaminophen and codeine based on multi-walled carbon nanotubes modified with magnetic nanoparticles paste electrode Mater. Sci. Eng. C 69 1–11
[38] Afkhami A, Gomar F and Madrakian T 2016 Cobalt-doped carbon paste electrode for simultaneous detection of oxycodone and codeine in human plasma and urine Sensors Actuators B 233 263–71
[39] Ensa A A, Ahmadi M, Rezaei B and Abarghoui M M 2015 A new electrochemical sensor for the simultaneous determination of acetyaminophen and codeine based on porous silicon/palladium nanostructure Talanta 134 745–53
[40] Bagheri H, Khoshshafar H, Afkhami A and Amidili S 2016 Sensitive and simple simultaneous determination of morphine and codeine using a Zn2SnO4 nanoparticle/graphene composite modified electrochemical sensor New J. Chem. 40 7102–12
[41] Ensa A A, Abarghoui M M and Rezaei B 2015 Simultaneous determination of morphine and codeine using Pt nanoparticles supported on porous silicon flour modified ionic liquid carbon paste electrode Sensors Actuators B 219 1–9
[42] Bard A J and Faulkner L R 2001 Fundamentals and applications, Electrochemical Methods 2 580–632
[43] Sohouli E, Ghalkhani M, Rostami M, Rahimi-Nasrabadi M and Ahmadi F 2020 A noble electrochemical sensor based on TiO2@CuO-Ni-rGO and poly (L-cysteine) nanocomposite applicable for trace analysis of flunitrazepam Mater. Sci. Eng. C 117 111300
[44] Pourmehri-Azar M and Saadatirad A 2015 Simultaneous voltammetric and amperometric determination of morphine and codeine using a chemically modified–palladized aluminum electrode J. Electroanal. Chem. 624 293–8
[45] Batista Deroco P, Campanhã Vicentini F and Fatibello Filho O 2015 An electrochemical sensor for the simultaneous determination of paracetamol and codeine using a glassy carbon electrode modified with nickel oxide nanoparticles and carbon black Electroanalysis 27 2214–20
[46] Habibi B, Abazari M and Pourmehri-Azar M H 2014 Simultaneous determination of codeine and caffeine using single-walled carbon nanotubes modified carbon-ceramic electrode Colloids Surf., B 114 89–95