Research Article

Yong Xu* and Xianhua Li

On CSQ-normal subgroups of finite groups

DOI 10.1515/math-2016-0073
Received May 15, 2016; accepted September 12, 2016.

Abstract: We introduce a new subgroup embedding property of finite groups called CSQ-normality of subgroups. Using this subgroup property, we determine the structure of finite groups with some CSQ-normal subgroups of Sylow subgroups. As an application of our results, some recent results are generalized.

Keywords: CSQ-normal subgroup, Nilpotent subgroup, Supersolvable subgroup

MSC: 20D10, 20D15

1 Introduction

All groups in this paper are finite. Let $\pi(G)$ stand for the set of all prime divisors of the order of a group G. The other notations and terminologies in this paper are standard (see [1]).

Let $H \leq G$ and $g \in G$, then $H \leq \langle H, H^g \rangle \leq \langle H, g \rangle$. It is clear that $H = \langle H, H^g \rangle$ for all $g \in G$ if and only if $H \normal G$. In [2], H is called abnormal in G if $\langle H, H^g \rangle = \langle H, g \rangle$ for all $g \in G$. In [3], the famous Wielandt Theorem shows that $H \trianglelefteq \langle H, H^g \rangle$ for all $g \in G$ if and only if $H \trianglelefteq G$. In [4], H is called pronormal in G if H is conjugate to H^g in $\langle H, H^g \rangle$ for all $g \in G$. These show that the normalities of a subgroup H in G may be determined by the normalities of a subgroup H in $\langle H, H^g \rangle$. This leads us to investigate the properties of G from the relationship between the subgroup H of G and the union of $\langle H, H^g \rangle$ for all $g \in G$. On the other hand, Kegel in [5] introduced the concept of S-quasinormal subgroups. A subgroup H of a group G is said to be s-permutable, S-quasinormal, or π-quasinormal in G if $PH = HP$ for all Sylow subgroups P of G. In this paper, we introduce a new generalized normality of subgroups, CSQ-normality, and obtain a criterion for nilpotency and supersolvability of a group by using the CSQ-normality of subgroups. Now we recall the following definitions. Let G be a finite group. For every $n \mid |G|$, if G has a subgroup of order n, then G is called a CLT-group. Furthermore, G is called a $QCLT$-group if the image of G under every homomorphism is a CLT-group. As an application of our results, some recent results are generalized. For example, Humphreys [6] proved that a $QCLT$-group of odd order is supersolvable, and we will prove that a $QCLT$-group of even order is also supersolvable if the maximal subgroups of its Sylow 2-subgroup are all CSQ-normal subgroups.

Definition 1.1. Let H be a subgroup of a group G. We say that H is CSQ-normal in G if H is S-quasinormal in $\langle H, H^g \rangle$ for all $g \in G$.

By [5, Lemma 3], we know that all S-quasinormal subgroups are CSQ-normal subgroups. The following example shows that a CSQ-normal subgroup is not necessarily a S-quasinormal subgroup.

Example 1.2. Let $G = A_4$, $H = \langle (12)(34) \rangle$. Obviously, H is not S-quasinormal in G but CSQ-normal in G.

*Corresponding Author: Yong Xu: School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang, Henan 471003, China and School of Mathematics and Statistics, Southwest University, Chongqing, 400715, China, E-mail: xuy2011@163.com

Xianhua Li: School of Mathematical Science, Soochow University, Suzhou, Jiangsu 215006, China
2 Basic definitions and preliminary results

The lemma presented below is crucial in the sequel. The proof is a routine check, and we omit its details.

Lemma 2.1. Let H be a CSQ-normal subgroup of a group G and $N \trianglelefteq G$. Then
(a) If $H \leq K$, then H is CSQ-normal in K.
(b) HN/N is CSQ-normal in G/N.

Lemma 2.2. Suppose that every proper subgroup of a group G is nilpotent but G itself is not nilpotent. Then
(a) By the hypothesis, G has cyclic subgroups.
(b) If G is a group with $G = \langle a \rangle$, then $a^{2n} = e$ for all n.
(c) Let G be a group with subgroups H and K. Then G/HK is normal in G.
(d) If G is a group with $G = \langle a \rangle$, then $a^{2n} = e$ for all n.
(e) Let G be a group with subgroups H and K. Then G/HK is normal in G.
(f) If G is a group with subgroups H and K, then G/HK is normal in G.

Proof. By [7, Theorem 1.1], the result is true.

As in [8], a minimal non-supersolvable group is a group whose proper subgroups and quotients are supersolvable.

Lemma 2.3. Suppose that a group G is minimal non-supersolvable. Then G is isomorphic to a group of the form G_t for $1 \leq t \leq 6$, where the groups G_t are defined in the following way.
(I) G_1 is a minimal nonabelian group and $|G_1| = pq^t$, where $p \nmid q - 1$, $\beta \geq 2$.
(II) $G_2 = \langle a, x \rangle$ and $|G_2| = p^{\alpha + \beta}q$, where $a = p^\alpha xq^\beta + r - 1$, where $a \geq 2$, $\alpha = 2$, $a^{\alpha + \beta} = a^r = c_1^2 = \cdots = c_{\beta}^r = 1$.
(III) $G_3 = \langle a, b, c \rangle$ and $|G_3| = t$, where $\alpha = 1$, $\beta = 1$, $\gamma = 2$, $\delta = 1$.
(IV) $G_4 = \langle a, b \rangle$ and $|G_4| = p^{\alpha + \beta}q$, where $\alpha = 2$, $\beta = 1$.
(V) $G_5 = \langle a, b \rangle$ and $|G_5| = t$, where $\alpha = 2$, $\beta = 1$.
(VI) $G_6 = \langle a, b, c \rangle$ and $|G_6| = t$, where $\alpha = 2$, $\beta = 1$.

Proof. See [8, Corollary 2.2].

Lemma 2.4. Let H be a CSQ-normal subgroup of G. Then
(a) H^x is also a CSQ-normal subgroup of G for any $x \in G$.
(b) H is subnormal in G.

Proof. (a) By the hypothesis, H is S-quasinormal in (H, H^x) for all $g \in G$. Then for any $x \in G$, we have that H^x is S-quasinormal in $(H^x, (H^x)^x) = (H^x, (H^x)^x)$ for all $g \in G$. Then one checks easily that $\tau : G \rightarrow G$, defined by

$$\tau(g) = g^x$$

is a bijective map. Since g^x runs over G as g does for fixed x, we get that H^x is S-quasinormal in $(H^x, (H^x)^x)$ for all $g \in G$. Thus H^x is a CSQ-normal subgroup of G.
(b) By the hypothesis, H is S-quasinormal in (H, H^g) for all $g \in G$. By [5, Theorem 1], we know that H is subnormal in (H, H^g) for all $g \in G$, so H is subnormal in G by Wielandt’s theorem.

\section{3 Main results}

Let Z be a complete set of Sylow subgroups of a group G, that is, for each prime p dividing the order of G, Z contains exactly one Sylow p-subgroup of G. Let $Z \cap E = \{P \cap E \mid P \in Z\}$.

\textbf{Theorem 3.1.} Let G be a group and Z be a complete set of Sylow subgroups of G. Suppose that $E \trianglelefteq G$ such that G/E is nilpotent and G is G_1-free. If every cyclic subgroup of a Sylow subgroup of E contained in $Z \cap E$ is a CSQ-normal subgroup of G, then G is nilpotent.

\textbf{Proof.} Assume that the result is false, and let G be a counterexample with least $([G] + |E|)$.

Let $H < G$. Of course, H is G_1-free. Obviously, $H/H \cap E \cong HE/E$ is nilpotent. Suppose that $K = H \cap E$ and K_p is a Sylow p-subgroup of K, so $Z = \{K_p \mid p \in \pi(H \cap E)\}$ is a complete set of Sylow subgroups of $H \cap E$. Assume that T is a cyclic subgroup of K_p. Since $K \leq E$, there exists $x \in E$ such that $K_p^x \leq P \cap E$, where $P \in Z$. By the hypothesis and Lemma 2.4 (a), we get that T is CSQ-normal in G. Then T is CSQ-normal in H by Lemma 2.1 (a). Hence all cyclic subgroups of K_p contained in Z are CSQ-normal in H, and thus H and its normal subgroup K satisfy the hypothesis. By the minimal choice of $|G| + |E|$, H is nilpotent. By Lemma 2.2, we may assume that $G = P^*Q$, where Q is a normal Sylow q-subgroup of G and P^* is a cyclic Sylow p-subgroup of G.

Suppose that $N \trianglelefteq G$. We shall prove that $(G/N, EN/N)$ satisfies the hypothesis. Clearly, $(G/N)/(EN/N) \cong G/EN$ is nilpotent and G/N is G_1-free. Let H/N be a cyclic subgroup of a Sylow subgroup of $EN/N \cap ZN/N$. Then we may assume $H = \langle xN \rangle$ and $\langle x \rangle$ is a cyclic subgroup of a Sylow subgroup in $E \cap Z$. By the hypothesis, $\langle x \rangle$ is CSQ-normal in G and by Lemma 2.1 (b), H/N is CSQ-normal in G/N. Then $(G/\Phi(G), E/\Phi(G))$ satisfies the hypothesis of the theorem. The minimality of $|G| + |E|$ implies that $G/\Phi(G)$ is nilpotent and so is G, a contradiction. Thus $\Phi(G) = 1$ and so $G \cong G_1$, again a contradiction. This shows that there exists no counterexample, so the result is true. \hfill \Box

\textbf{Remark 3.2.} We cannot replace the condition “cyclic subgroup of Sylow subgroup” by “minimal subgroup of a Sylow subgroup” in Theorem 3.1. For example, let $G = E = (Z_2 \times Z_2 \times Z_2 \times Z_2 \times Z_2 \times Z_2) \rtimes Z_9$. Obviously, the pair (G, E) satisfy the hypothesis. Nevertheless, it is not nilpotent.

\textbf{Remark 3.3.} The condition of “G is G_1-free” cannot be removed. For example, let $G = S_3$ and choose $E = A_3$. Then the pair (S_3, A_3) satisfy the hypothesis of Theorem 3.1. Nevertheless, S_3 is not nilpotent.

\textbf{Corollary 3.4.} Let G be a group and Z be a complete set of Sylow subgroups of G. If every cyclic subgroup of a Sylow subgroup of G contained in Z is a CSQ-normal subgroup of G, then G is nilpotent.

\textbf{Proof.} By the proof of Theorem 3.1, we just need to check that $G \cong G_1$. By the hypothesis, we have that a p-Sylow subgroup G_p is a CSQ-normal subgroup of G. Then $G_p \trianglelefteq G$ by Lemma 2.4 (b), thus $G_p \trianglelefteq G$, so G is nilpotent. The proof is completed. \hfill \Box

To prove Theorem 3.6, we need the following Lemma 3.5.

\textbf{Lemma 3.5.} Let G be a group and Z be a complete set of Sylow subgroups of G. Suppose that P is a Sylow p-subgroup of G contained in Z, where p is a prime divisor of $|G|$ with $\left(|G|, p - 1\right) = 1$. If every maximal subgroup of P is CSQ-normal in G, then $G/O_p(G)$ is p-nilpotent and hence G is solvable.

\textbf{Proof.} Assume that the result is false and let G be a counterexample of smallest order.
First of all, we show that $O_p(G) = 1$. Assume that $O_p(G) = P$. Then $G/O_p(G)$ is a p'-group and of course it is p-nilpotent, a contradiction. Assume that $1 < O_p(G) < P$. Obviously, $O_p(G)Z/O_p(G)$ is a complete set of Sylow subgroups of $G/O_p(G)$ and $G/O_p(G)$ satisfies the hypothesis by Lemma 2.1 (b). The minimal choice implies that $G/O_p(G) \cong (G/O_p(G))/(O_p(G)/O_p(G))$ is p-nilpotent, a contradiction. Thus we have $O_p(G) = 1$.

Let P_1 be a maximal subgroup of P. By the hypothesis, P_1 is CSQ-normal subgroup of G. Then P_1 is subnormal in G by Lemma 2.4, and thus $P_1 \leq O_p(G) = 1$. Hence P is a cyclic subgroup of order p. Since $N_G(P)/C_G(P) \cong \text{Aut}(P)$, we get that the order of $N_G(P)/C_G(P)$ must divide $\langle |G|, p - 1 \rangle = 1$. Then $N_G(P) = C_G(P)$. Thus G is p-nilpotent by [1, Burnside’s theorem], a contradiction. We conclude that there is no counterexample and Lemma 3.5 is proved.

Theorem 3.6. Let G be a group and Z be a complete set of Sylow subgroups of G. Suppose that G is G_1-free with $t \in \{1, 2, 6\}$ and every maximal subgroup of any non-cyclic Sylow subgroup of G contained in Z is CSQ-normal in G. Then G is supersolvable.

Proof. Assume that the theorem is false and let G be a counterexample of smallest order. We proceed in a number of steps.

If every Sylow subgroup of G contained in Z is cyclic, then every Sylow subgroup of G is cyclic, thus G is supersolvable. Next we assume that there is a non-cyclic Sylow p-subgroup contained in Z.

Step 1. G is solvable.

Let $p = \min \pi(G)$ and P be a Sylow p-subgroup of G contained in Z. If P is cyclic, then G is p-nilpotent, so G is solvable. If P is not cyclic, then $G/O_p(G)$ is p-nilpotent by Lemma 3.5, thus G is solvable. Hence we have Step 1.

Step 2. G has a unique minimal normal subgroup N and $\Phi(G) = 1$.

Let N be a minimal normal subgroup of G. Then ZN/N be a complete set of Sylow subgroups of G/N. Let $PN/N \in \text{Syl}_p(G/N)$, where $P \in Z$ and PN/N is non-cyclic. (Of course, P is non-cyclic.) Assume that T/N be a maximal subgroup of PN/N. Then $T = T \cap PN = (T \cap P)N$. Suppose that $T \cap P = P_1$. Then $P_1 \cap N = T \cap P \cap N = P \cap N$. Hence $|P : P_1| = |PN/N : P_1N/N| = |P/N : T/N| = p$.

By the hypothesis, P_1 is CSQ-normal in G, so $P_1N/N = T/N$ is CSQ-normal in G/N by Lemma 2.1 (b). Thus G/N satisfies the hypothesis. By the choice of G, we obtain that G/N is supersolvable. Similarly, if N_1 is another minimal normal subgroup of G. Then G/N_1 is also supersolvable. Now it follows that $G \cong G/N \cap N_1$ is supersolvable, a contradiction. Hence, N is the unique minimal normal subgroup of G. If $N \leq \Phi(G)$, then the supersolvability of G/N implies the supersolvability of G. Hence, $\Phi(G) = 1$. Therefore, we have Step 2.

Step 3. $N = O_p(G) = P$, $C_G(N) = N$ and $|G| = p^{1_2^\alpha_1}r_2^\alpha_2 \cdots r_s^\alpha_s$, the Sylow r_i-subgroup of G is cyclic, where $1 \leq i \leq s$, $\alpha_i \geq 1$.

By Step 1 and Step 2, we know that N is an elementary abelian p-subgroup and $N = F(G) = O_p(G) \leq P$, so $C_G(N) = N$. Assume that $N < P$. Given a maximal subgroup P_1 of P, by the hypothesis, P_1 is a CSQ-normal subgroup of G, then P_1 is subnormal in G by Lemma 2.4, so $P_1 \leq O_p(G) = N < P$. If $N = P_1 < G$, we get that P has a unique maximal subgroup, so P is cyclic and hence so is N. By Step 2, we obtain that G/N is supersolvable, hence so is G, a contradiction. Therefore, we have $N = P$. Suppose that R_i is a non-cyclic Sylow r_i-subgroup of G contained in Z for some natural number i, $1 \leq i \leq s$, and $|R_i| = r_i^{\alpha_i}$. Then $\alpha_i \geq 2$, so we can choose $1 \neq R_{i1}$ to be a maximal subgroup of $R_i \in \text{Syl}_{r_i}(G)$. By the hypothesis, R_{i1} is CSQ-normal in G, so R_{i1} is subnormal in G by Lemma 2.4, so $1 \neq R_{i1} \leq O_p(G)$. By the uniqueness of N, this is impossible. Hence R_i is cyclic, and thus all Sylow subgroups of G are cyclic except $B = P$. Hence we have the assertion in Step 3.

Step 4. Let E be a maximal subgroup of G. We show that $|G : E| = |P| = p^{\beta_1}r_1^\beta_1$, where $\beta_1 \leq \alpha_i$. Then E satisfies the hypothesis, so E is supersolvable.
Since G is solvable, $|G : E| = p^j$ or $r_i^{\beta_i}$, where $j \leq n$, $\beta_i \leq \alpha_i$. Suppose that $|G : E| = p^j$. By Step 2 and Step 3, it is easy to show $G = NE$ and $N \cap E = 1$, so $E = R_1 R_2 \cdots R_s$ and $j = n$, where $R_i \in Syl_{r_i}(G)$ ($1 \leq i \leq s$). It is clear that E satisfies the hypothesis by Lemma 2.1 (a), so E is supersolvable.

Step 5. Final contradiction.

By Step 2 and Step 4, we know that G is minimal nonsupersolvable. On the other hand, by Step 4 and the hypothesis, G is not isomorphic to any group G_i in Lemma 2.3. We conclude that there is no minimal counterexample and Theorem 3.6 is proved.

If we remove “non-cyclic” in the hypothesis of Theorem 3.6, we can get the following Theorem.

Theorem 3.7. Let G be a group and Z be a complete set of Sylow subgroups of G. Suppose that G is G_1-free and G_6'-free, where $G_6' \subseteq G_6$ and $|G_6'| = p^a q^b r^c$, that is, the case $\alpha = 1$. If every maximal subgroup of every Sylow subgroup of G contained in Z is a CSQ-normal subgroup of G, then G is supersolvable.

Proof. By the proof of Theorem 3.6, we only need to check $G \cong G_2$ and $G \cong G_5$, where $|G_5| = p^a q^b r^c$ and $p^a q^b r^c | r - 1$, $p | q - 1$, $\alpha \geq 2$. Assume that $G \cong G_2$. Using the same description as in Lemma 2.3, let $V_1 = \langle a^p \rangle$. Then it is a maximal subgroup of P. By the hypothesis V_1 is a CSQ-normal subgroup of G, so V_1 is S-quasinormal in $\langle V_1, V_1^{c_1} \rangle$ for all $g \in G$. Choosing $g = c_{i^1}$. Then $((a^p)^{-1} c_{i^1} = c_{i^1}^{-1} (a^p)^{-1} c_{i^1} \in \langle V_1, V_1^{c_1} \rangle$, so

$$c_{i^1}^{-1} (a^p)^{-1} c_{i^1} a^p = c_{i^1}^{-1} a^p c_{i^1} = c_{i^1}^{-1} (a^p)^{a^p} = c_{i^1}^{-1} a_{i^1 + 1} = \cdots = c_{i^1}^{-1} c_{i^1} \in \langle V_1, V_1^{c_1} \rangle$$

where the exponent of t (mod r) is $p^{\alpha - 1}$. Thus r divides

$$t^{p^{\alpha - 1}} - 1 = (t - 1)(t^{p^{\alpha - 1}} - 1 + t^{p^{\alpha - 2}} + \cdots + 1).$$

If $r | t - 1$, then c_{i^1} commutes with V_1, of course, c_{i^1} normalizes V_1. If $r \nmid t - 1$, then $(t - 1, r) = 1$, we get

$$c_{i^1} = c_{i^1}^{m(t - 1) + nr} = (c_{i^1}^{-1})^m \in \langle V_1, V_1^{c_1} \rangle.$$

It follows that $\langle V_1, V_1^{c_1} \rangle = \langle a^p, c_{i^1} \rangle$. Since V_1 is S-quasinormal in $\langle V_1, V_1^{c_1} \rangle$, we have that $V_1 R_i = \langle a^p \rangle R_i$ is a subgroup of G, where $R_i \in Syl_{r_i}((a^p, c_{i^1}))$. By [5, Theorem 1], V_1 is normal in $V_1 R_i$, hence $V_1 \lhd V_1 R_i$. Therefore, R_i normalizes V_1, and, of course, c_{i^1} normalizes V_1. Since i was arbitrary, we conclude that V_1 is normalized by P and R, where $P \in Syl_p(G)$, $R \in Syl_r(G)$. If $\alpha \geq 2$, then $1 \neq V_1 \lhd G$, which is impossible. If $\alpha = 1$, then $G \cong G_1$, a contradiction. Hence G is not isomorphic to G_1. As in a similar argument above, we also get that G is not isomorphic to G_6, where $|G_6| = p^a q^b r^c$ and $p^a q^b | r - 1$, $p | q - 1$, $\alpha \geq 2$. The proof is completed.

Corollary 3.8. [9, Theorem 2] Let G be a group with the property that maximal subgroups of Sylow subgroups are π-quasinormal in G for $\pi = \pi(G)$. Then G is supersolvable.

Proof. By the proof of Theorem 3.6 and Theorem 3.7, we only need to check that $G \cong G_1$ and $G \cong G_6$, where $|G_6| = p^a q^b r^c$, and $p^a q^b r^c | r - 1$, $p | q - 1$. Assume that $G \cong G_1$. By Lemma 2.3, we have $G_1 = PQ$, where $|P| = p$ and $|Q| = q^b \beta \geq 2$. By Step 2 and Step 3 of Theorem 3.6, Q is a minimal normal subgroup of G_1. Choosing Q_1 to be a maximal subgroup of Q, by the hypothesis, we obtain that Q_1 is π-quasinormal in G_1. Then $O^\pi(G) \leq N_G(Q_1)$, so P normalizes Q_1, and thus $1 \neq Q_1 \lhd G$, contrary to the minimality of Q. Hence $G \not\cong G_1$. Using a similar argument as above, we also get that G is not isomorphic to G_6. The proof is completed.

Corollary 3.9. [9, Theorem 1]. Let G be a group with the property that maximal subgroups of Sylow subgroups are normal in G. Then G is supersolvable.

Theorem 3.10. Let G be a $QCLT$-group. If every maximal subgroup of a Sylow 2-subgroup of G is CSQ-normal in G, then G is supersolvable.

Proof. Assume that the Theorem is false and let G be a counterexample of smallest order.
Assume first that G has odd order. Since G is a $QCLT$-group, by [6], we have that G is supersolvable. Now we assume that $2 \mid |G|$. By Lemma 3.5, we have that G is solvable. For any $1 \neq N \trianglelefteq G$, if $2 \nmid |G/N|$, then G/N is a $QCLT$-group of odd order and hence G/N is supersolvable. Suppose that $2 \mid |G/N|$. Without loss of generality, we assume that every maximal subgroup of a Sylow 2-subgroup of G/N is of the form P_1N/N, where P_1 is a maximal subgroup of a Sylow 2-subgroup of G. Then P_1 is CSQ-normal in G by hypothesis, so P_1N/N is CSQ-normal in G/N by Lemma 2.1 (b). Hence the quotient group G/N satisfies the hypothesis. By the choice of G, we have that G is a solvable outer-supersolvable group. Then, by [7, Theorem 7.1], $G = ML$, where M is a maximal subgroup of G, $M \cap L = 1$, L is an elementary abelian p-group and is also the unique minimal normal subgroup of G with order p^α, $\alpha > 1$, the Sylow p-subgroup of M is an abelian p-group and $\Phi(G) = 1$.

If $|G_2| \leq 4$, where $G_2 \in Syl_2(G)$, then G_2 is a cyclic subgroup or an elementary abelian 2-subgroup. It follows that G is S_4-free, then G is supersolvable by [10, Theorem 4], a contradiction. Hence we may choose $1 \neq P_1$ to be a maximal subgroup of G_2. By hypothesis, P_1 is a CSQ-normal subgroup of G. Then P_1 is subnormal in G by Lemma 2.4, thus $1 \neq P_1 \subseteq O_2(G)$, hence $L \leq O_2(G)$, so we get $p = 2$. By [7, §6.1, Main lemma], we also get $O_2(G) = F(G) = L$.

Let M_2 be a Sylow 2-subgroup of M. Then $G_2 = M_2L$ is a Sylow 2-subgroup of G. Assume that P_1 is a maximal subgroup of M_2N containing M_2. Then $M_2 < P_1$ since $|L| = 2^\alpha$, where $\alpha > 1$. Then P_1 is CSQ-normal in G by the hypothesis, so P_1 is subnormal in G by Lemma 2.4. Thus $P_1 \leq O_2(G) = L$, hence $G_2 = M_2L = P_1L = L$ is an elementary abelian Sylow 2-subgroup of G. It follows that G is S_4-free, so G is supersolvable by [10, Theorem 4], a contradiction. Hence the minimal counterexample does not exist. Therefore G is supersolvable.

Theorem 3.11. Let G be a $QCLT$-group. If every 2-maximal subgroup of a Sylow 2-subgroup of G is CSQ-normal in G. Then G is supersolvable.

Proof. The proof is similar to Theorem 3.10 and omitted here.

Acknowledgement: This work was supported by the National Natural Science Foundation of China (Grant N. 11671324, 11601225, 11171243, 11326056), the China Postdoctoral Science Foundation (N. 2015M582492), the Natural Science Foundation of Jiangsu Province (N. BK20140451) and the Henan University of Science and Technology Science Fund for Innovative Teams (N. 2015XTD010).

References

[1] Huppert, B., Endliche Gruppen, I, Springer, New York, Berlin, 1967
[2] Doerk, K., Hawkes, T., Finite Soluble Groups, Walter de Gruyter, Berlin, New York, 1992
[3] Kurzweil, H., Stellmacher, B., The Theory of Finite Groups: An Introduction, Springer-Verlag, New York, Inc, 2004
[4] Robinson, D., A Course in the Theory of Groups, New York, Springer-Verlag, 1982
[5] Kegel, O., Sylow-Gruppen and Subnormalteiler endlicher Gruppen, Math. Z., 1962, 78, 205-211
[6] Humphreys, J., On groups satisfying the converse of Lagrange's theorem, Proc. Camb. Phil. Soc., 1974, 75, 25-32
[7] Chen, Z., Inner outer \sum-group and minimal non \sum-group, Southeast Normal University Press, Chongqing, 1988
[8] Li, X., Xu, Y., Minimal inner-\sum-Ω-groups and their applications, Sci. China Math., 2011, 54(9), 1927-1936
[9] Srinivasan, S., Two sufficient conditiond for supersolvability of finite group, Israel J. Math., 1980, 35, 210-214
[10] Zhang, J., On the supersolvability of $QCLT$-groups (Chinese), Acta Math. Sinica, 1988, 31(1), 29-32