Identification of hub genes and small molecule therapeutic drugs related to breast cancer with comprehensive bioinformatics analysis

Mingqian Hao, Wencong Liu, Chuanbo Ding, Xiaojuan Peng, Yue Zhang, Huiying Chen, Ling Dong, Xinglong Liu, Yingchun Zhao, Xueyan Chen, Sadia Khatoon, Yinan Zheng

1 School of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China

Corresponding Author: Wencong Liu
Email address: xiaodiliqian@163.com

Breast cancer is one of the most common malignant tumors among women worldwide and has a high morbidity and mortality. This research aimed to identify hub genes and small molecule drugs for breast cancer by integrated bioinformatics analysis. After downloading multiple gene expression datasets from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database, 283 overlapping differentially expressed genes (DEGs) significantly enriched in different cancer-related functions and pathways were obtained using LIMMA, VennDiagram and ClusterProfiler packages of R. We then analyzed the topology of protein-protein interaction (PPI) network with overlapping DEGs and further obtained 6 hub genes (RRM2, CDC20, CCNB2, BUB1B, CDK1, and CCNA2) from the network via STRING and Cytoscape. Subsequently, we conducted genes expression verification, genetic alterations evaluation, immune infiltration prediction, clinicopathological parameters analysis, identification of transcriptional and post-transcriptional regulatory molecules, and survival analysis for these hub genes. Meanwhile, 29 possible drug candidates (e.g., Cladribine, Gallium nitrate, Alvocidib, 1β-hydroxyalantolactone, Berberine hydrochloride, Nitidine chloride) were identified from DGIdb database and GSE85871 dataset. In addition, some transcription factors and miRNAs (e.g., E2F1, PTTG1, TP53, ZBTB16, hsa-miR-130a-3p, hsa-miR-204-5p) targeting hub genes were identified as key regulators in the progression of breast cancer. In conclusion, our study identified 6 hub genes and 29 potential drug candidates for breast cancer. These findings may advance understanding regarding the diagnosis, prognosis and treatment of breast cancer.
Identification of hub genes and small molecule therapeutic drugs related to breast cancer with comprehensive bioinformatics analysis

Mingqian Hao, Wencong Liu, Chuanbo Ding, Xiaojuan Peng, Yue Zhang, Huiying Chen, Ling Dong, Xinglong Liu, Yingchun Zhao, Xueyan Chen, Sadia Khatoon, Yinan Zheng

School of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China

Corresponding Author:
Wencong Liu

No. 2888 Xincheng avenue, Changchun, Jilin, 130118, China

Email address: xiaodiliqian@163.com
Identification of hub genes and small molecule therapeutic drugs related to breast cancer with comprehensive bioinformatics analysis

Mingqian Hao, Wencong Liu, Chuanbo Ding, Xiaojuan Peng, Yue Zhang, Huiying Chen, Ling Dong, Xinglong Liu, Yingchun Zhao, Xueyan Chen, Sadia Khatoon, Yinan Zheng
School of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China

Corresponding Author:
Wencong Liu
No. 2888 Xincheng avenue, Changchun, Jilin, 130118, China
Email address: xiaodilijian@163.com

Abstract
Breast cancer is one of the most common malignant tumors among women worldwide and has a high morbidity and mortality. This research aimed to identify hub genes and small molecule drugs for breast cancer by integrated bioinformatics analysis. After downloading multiple gene expression datasets from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database, 283 overlapping differentially expressed genes (DEGs) significantly enriched in different cancer-related functions and pathways were obtained using LIMMA, VennDiagram and ClusterProfiler packages of R. We then analyzed the topology of protein-protein interaction (PPI) network with overlapping DEGs and further obtained 6 hub genes (RRM2, CDC20, CCNB2, BUB1B, CDK1, and CCNA2) from the network via STRING and Cytoscape. Subsequently, we conducted genes expression verification, genetic alterations evaluation, immune infiltration prediction, clinicopathological parameters analysis, identification of transcriptional and post-transcriptional regulatory molecules, and survival analysis for these hub genes. Meanwhile, 29 possible drug candidates (e.g., Cladribine, Gallium nitrate, Alvocidib, 1β-hydroxyalantolactone, Berberine hydrochloride, Nitidine chloride) were identified from DGIdb database and GSE85871 dataset. In addition, some transcription factors and miRNAs (e.g., E2F1, PTTG1, TP53, ZBTB16, hsa-miR-130a-3p, hsa-miR-204-5p) targeting hub genes were identified as key regulators in the progression of breast cancer. In conclusion, our study identified 6 hub genes and 29 potential drug candidates for breast cancer. These findings may advance understanding regarding the diagnosis, prognosis and treatment of breast cancer.

Introduction
Among cancers affecting females, breast cancer has a particularly high incidence, recurrence and mortality rate. Although encouraging progress has been made in the early diagnosis and systemic treatment over several decades, the overall 5-year survival rate for patients with breast cancer is still low, and the incidence rate continues to increase annually (Bray et al. 2018; Waks & Winer...
Breast cancer has become a serious public health problem all over the world, which brings great economic burdens to individuals and families. Thus, more efforts are required to find effective biomarkers for the early diagnosis, accurate prognosis, and targeted therapy of breast cancer.

High-throughput sequencing technology and bioinformatics analysis methods can reveal changes in the expression of a vast amount of genes and are also effective tools to identify candidate biomarkers for breast cancer research (Kulasingam & Diamandis 2008). Liu et al. explored the expression and prognostic value of TDO2 in breast cancer using transcriptome data, and analyzed the correlation between TDO2 gene and tumor immune invasion, suggesting that TDO2 was a promising new immunotherapy target for breast cancer (Liu et al. 2020). Others, Li et al. studied the biological mechanism of BRCA1/2 mutant breast cancer and evaluated the diagnosis and prognosis values of key genes using bioinformatics methods (Li et al. 2020b). In addition, to clarify the role of low-frequency mutated genes in breast cancer, Lusito and his colleagues used functional network construction, gene mutation analysis, hierarchical clustering and cancer module recognition to analyze the gene expression and mutation datasets of breast cancer (Lusito et al. 2019). Similarly, Wang et al. used research samples from The Cancer Genome Atlas (TCGA, https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga) and Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) database to analyze the pathogenesis and potential prognostic marker genes of breast cancer (Wang et al. 2019). In general, the majority of bioinformatics studies focused on how key genes affect the tumorigenesis and prognosis of breast cancer, with limited research on the systemic analysis of multi-gene and multi-pathway as well as potential drugs.

In the present study, we applied comprehensive bioinformatics methods, such as differentially expressed genes (DEGs) identification, protein-protein interaction (PPI) network integration, hub genes identification, correlation prediction between hub genes, determination of genetic alterations, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, immune cell infiltrates evaluation, clinicopathological features analysis and survival analysis to process large-scale DNA microarrays and RNA-seq data from GEO, TCGA and other public databases so as to explore potential hub genes and biological pathways related to the occurrence, development and prognosis of breast cancer. We also explored the transcription factors (TFs) and miRNAs that regulate the transcriptional and post-transcriptional processes of hub genes, respectively. In addition, several small molecule drugs for breast cancer were obtained from the DGIdb drug relocation database (http://dgidb.org/) and GSE85871 dataset. Compared with similar publications, this study involved over 10,000 samples and more comprehensive analysis methods. Therefore, we may get more reliable and accurate information about breast cancer through this exploration. The workflow was explained in Fig. 1, and the details were provided in the materials and methods section.

Materials & Methods

Download of datasets and identification of DEGs
5 independent gene expression profiles (GSE3744, GSE21422, GSE42568, GSE61304, and GSE65194) based on GPL570 Platform (Affymetrix Human Genome U133 Plus 2.0 Array) were downloaded from GEO database to identify DEGs. After normalization between arrays, we investigated DEGs among each dataset with the threshold of $|\log_{2}\text{FoldChange} (\log_{2}FC)| > 1$ and $\text{adj.P.Val} < 0.05$ using LIMMA package of R (Ritchie et al. 2015).

For validation, GEPIA2 online tool (http://gepia2.cancer-pku.cn/#index) was used to analyze the differential expression of TCGA Breast invasive carcinoma (BRCA) RNA-seq dataset composed of 1,085 tumor samples and 112 normal samples according to the cut-off standard ($|\log_{2}FC| > 1$ and $q\text{-value} < 0.05$). Lastly, the common results of TCGA BRCA dataset and GEO datasets were selected as the overlapping DEGs of breast cancer, which could reduce the influences resulted from the heterogeneity of the different datasets. Venn diagram and volcano plot were drawn by VennDiagram and other packages of R. Table 1 listed the details of datasets.

Protein-protein interaction (PPI) network integration and hub genes screening

STRING (version 11.0; https://string-db.org/) is a biological database designed to analyze functional interactions between proteins (Szklarczyk et al. 2019). In this study, we used STRING to construct a PPI network with overlapping DEGs under the premise of an Interaction score of 0.7. Then, we utilized the cytoHubba plug-in of Cytoscape (version 3.7.2) which provided the calculated results by maximal clique centrality (MCC), maximum neighborhood component (MNC) and Degree methods to identify hub genes from the PPI network (Chin et al. 2014).

Verification of hub genes

The Oncomine database (https://www.oncomine.org) was used to verify the mRNA expression of hub genes with the threshold of $P < 0.05$ and fold change > 2. Next, the Human Protein Atlas database (HPA, https://www.proteinatlas.org) was used to validate the protein expression of genes by immunohistochemistry data.

BC-GenExMiner (http://bcgenex.centregauducheau.fr/BC-GEM/GEM-Accueil.php) is a statistical mining tool that contains published breast cancer transcription data (10,716 DNA microarray samples and 4,712 RNA-seq samples) (Jézéquel et al. 2012). We performed correlation analysis between hub genes in breast cancer using BC-GenExMiner and GEPIA2 online tool.

GO functional and KEGG pathway enrichment analysis

ClusterProfiler package of R can automatically classify biological terms and gene clusters (Yu et al. 2012). To elucidate the biological characteristics of breast cancer-related genes, we performed GO functional and KEGG pathway enrichment analysis by ClusterProfiler with $p\text{-value} < 0.05$ and $q\text{-value} < 0.05$.

Analysis of genetic alterations of hub genes

The cBioPortal for Cancer Genomics (cBioPortal; http://cbioportal.org) provides online resources for the exploration, visualization and analysis of multidimensional cancer genomics data (Gao et al. 2013). In this study, 6618 breast cancer samples from 13 related reports in cBioPortal were used as research materials to explore genetic alterations connected with the selected hub genes. Afterward, we utilized COSMIC (https://cancer.sanger.ac.uk/cosmic), the
most comprehensive resource for studying somatic mutation information in human cancer, to analyze hub genes alterations in breast cancer (Forbes et al. 2010).

Evaluation of clinicopathological characteristics and immune infiltration

We used BC-GenExMiner to analyze the correlations between hub genes expression and clinicopathological variables such as Oestrogen receptor status (ER), Progesterone receptor status (PR), HER2 receptor status (HER2), Nodal status (N), Scarff Bloom & Richardson grade status (SBR), Nottingham Prognostic Index status (NPI), Age status, P53 status, Basal-like and Triple negative breast cancer (TNBC) subtypes. \(P < 0.05 \) was considered to be statistically significant.

TIMER (https://cistrome.shinyapps.io/timer/) is a comprehensive resource for systematic analysis of tumor-infiltrating immune cells across 32 different cancers from TCGA database (Li et al. 2017). In this experiment, we estimated the associations between hub genes expression and immune cell populations (B Cell, CD8+ T Cell, CD4+ T Cell, Macrophage, Neutrophil, and Dendritic Cell) in breast cancer using TIMER.

Prediction of TFs-hub genes and miRNAs-hub genes interaction

TRRUST (version 2, https://www.grnpedia.org/trrust/), a manually curated database of human and mouse transcriptional regulatory networks, was used to explore the TFs of hub genes (Han et al. 2018). Meanwhile, we used Encyclopedia of RNA Interactomes Platform (ENCORI, http://starbase.sysu.edu.cn/) to unearth the miRNAs targeting hub genes (Li et al. 2014). In addition, we utilized GEO2R online tool (https://www.ncbi.nlm.nih.gov/geo/geo2r/?acc=GSE97811) to analyze breast cancer differentially expressed miRNAs (DEmiRNAs) in GSE97811 dataset including 45 tumor tissues and 16 normal tissues. Then, we got miRNAs-hub genes interaction combined with miRNAs-target genes analysis and DEmiRNAs data. Finally, Cytoscape was used to visualize transcriptional and post-transcriptional regulatory networks.

Survival analysis

In this section, we applied the Kaplan-Meier Plotter (http://kmplot.com/analysis/) to evaluate prognostic information of previously identified hub genes and important reporter regulatory molecules (Nagy et al. 2018). The expression values of these genes were split into either high (expression value ≥ median) or low (expression value < median). Hazard ratio (HR) was calculated to evaluate the association between genes expression and survival, and \(p < 0.05 \) was considered statistically significant.

Small molecule drugs analysis

The DGIdb online tool (http://www.dgidb.org/) – an available resource containing drug-gene interaction information from more than 30 databases – was used to screen antineoplastic drugs targeting hub genes (Cotto et al. 2018). We also downloaded GSE85871 dataset, which is a gene expression data of MCF7 cells treated with 102 traditional Chinese medicine (TCM) ingredients recorded in the GEO database. LIMMA package of R was used to analyze the differential expression genes in each TCM ingredient treatment group compared with the untreated group.
(adj.p.val < 0.05). Then, we evaluated the reversal effects of each TCM ingredient on overlapping DEGs induced by breast cancer.

Results

Dataset processing and DEGs acquisition

After data normalization, the black lines of gene expression box plots of all samples in each single dataset were almost on the same level, which was an important marker to predict the reliability and accuracy of the experimental results (Fig. S1). Next, DEGs (1,738 in GSE3744, 2,430 in GSE21422, 3,116 in GSE42568, 990 in GSE61304 and 4,181 in GSE65194) were identified (Fig. 2A-2E; Table S1-S5), and 302 integrated DEGs (110 up- and 192 down-regulated) from 5 GEO datasets were found (Fig. 2F and 2G). Similarly, we identified 3,559 DEGs from TCGA BRCA dataset with the cut-off criteria of |Log2FC| > 1 and q-value < 0.05 (Table S6). Then, 283 overlapping DEGs which might play promoting or inhibitory roles in breast cancer progression were confirmed from the analysis results of GEO datasets and TCGA BRCA dataset (Fig. 2H and 2I).

PPI network construction and hub genes filtering

The PPI network around proteins encoded by 283 overlapping DEGs was constructed using STRING (Fig. S2A, Table S7). We found that 165 of the 283 overlapping DEGs were related to each other and were visualized using Cytoscape –165 nodes and 1,861 edges were included in PPI network and 6 hub genes (RRM2, CDC20, CCNB2, BUB1B, CDK1, and CCNA2) based on MCC, MNC and Degree methods were identified (Fig. S2B). Notably, these hub genes were all up-regulated in overlapping DEGs (Table S1-S6) and might play important roles in the pathogenesis of breast cancer.

Verification of hub genes

Based on the large-scale breast cancer-related data in the Oncomine database, we confirmed that hub genes were significantly up-regulated in multiple cancer types, including Breast Cancer, Brain and CNS Cancer, Lymphoma, Lung Cancer, and so on (Fig. 3A). Also, immunohistochemistry staining data obtained from the HPA database demonstrated the up-regulated expression of proteins encoded by RRM2, CDC20, CCNB2, CDK1 and CCNA2 (Fig. 3B-3K). However, we did not find the association between BUB1B and breast cancer in HPA database. According to the current analysis, we predicted that BUB1B might also be associated with breast cancer, but experimental data were needed to confirm this specific connection. Meanwhile, CDK1, CCNA2, CCNB2, BUB1B and CDC20 were classified as cancer-related genes, and RRM2 was an FDA approved drug target. The data of BC-GenExMiner and GEPIA2 both confirmed a powerful correlation among hub genes (Fig. S3), suggesting that these genes might be the functional partners in breast cancer.

GO function enrichment and KEGG pathway analysis

The GO function annotations of overlapping DEGs were mainly classified into biological processes (BP), cell component (CC) and molecular function (MF). As for BP, up-regulated overlapping DEGs were significantly related to mitotic nuclear division, organelle fission, and
regulation of chromosome segregation, which was consistent with the biological characteristics of the abnormally rapid proliferation of breast cancer cells. And the down-regulated genes were closely related to regulation of cellular response to growth factor stimulus, temperature homeostasis, retinoid metabolic process, and regulation of vasculature development. Within CC, the up-regulated genes were remarkably correlated to spindle, chromosome, centromeric region, condensed chromosome kinetochore, and midbody, whereas the down-regulated genes were related to collagen-containing extracellular matrix and sarcolemma. MF analysis displayed the up-regulated genes were involved in microtubule binding, microtubule motor activity, and cyclin-dependent protein serine/threonine kinase regulator activity, whereas the down-regulated genes were mainly enriched in glycosaminoglycan binding, heparin binding, extracellular matrix structural constituent and growth factor binding (Fig. 4A and 4B; Table S8 and S9).

KEGG pathway analysis showed the up- and down-regulated overlapping DEGs were all significantly attached to Cell cycle, Oocyte meiosis, Tyrosine metabolism, ECM-receptor interaction, Progesterone-mediated oocyte maturation, p53 signaling pathway, PPAR signaling pathway, and Phenylalanine metabolism (Fig. 4C). Furthermore, the related pathways of hub genes included Cell cycle, Oocyte meiosis, Progesterone-mediated oocyte maturation, and p53 signaling pathway (Fig. 4C). Table S10 presented the detailed results of KEGG enrichment analysis.

Genetic alterations of hub genes

As a result, there were nearly 2.1% (CDC20, CDK1), 1.2% (RRM2), 0.9% (BUB1B), 0.8% (CCNA2), 0.7% (CCNB2) of breast cancer samples included in cBioPortal had genetic changes. Amplification was the most common genetic alterations among 6 hub genes. And deep deletion was another major genetic change among five hub genes (RRM2, CCNB2, BUB1B, CDK1, CCNA2). While genetic alterations in RRM2, CDC20, BUB1B, CDK1 and CCNA2 were related to missense mutation (Fig. S4A). In the query results of COSMIC database, we found that all hub genes had missense mutations. RRM2, CCNB2, CDK1, BUB1B and CDC20 experienced synonymous substitutions. CCNA2 and BUB1B also had frameshift deletions. Specifically, these hub genes had mutations such as A > G, A > T, C > T, C > G, G > A, G > T at nucleotide level (Fig. S4B).

Clinicopathological characteristics and immune infiltration

We investigated the relevance of 6 hub genes and clinicopathological features using BC-GenExMiner (Fig. S5-S7). Data analysis showed that higher expression of hub genes was found in higher NPI and SBR grade ($p < 0.001$). And the expression of these hub genes was significantly higher in ER-, PR-, HER2+, Nodal+, P53-mutated, Basal-like and TNBC clinical subtypes of breast cancer. Surprisingly, significantly increased expression of hub genes was found in patients not more than 51 years old ($p < 0.001$). Moreover, our current results demonstrated that hub genes were correlated with 6 types of immune cell infiltrates (B Cell, CD8+ T Cell, CD4+ T Cell, Macrophage, Neutrophil and Dendritic Cell) with various degrees based on the TIMER database (Fig. S8).

Prediction of TF-hub genes and miRNAs-hub genes interaction
We screened the potential regulatory relationships between TFs and hub genes via TRRUST database to further study the functional roles of hub genes. A total of 19 associations between 17 TFs and 6 hub genes were shown (Fig. 5A). E2F1 could activate the transcriptional process of RRM2 and CDK1. In contrast, TP53 inhibited the expression of CDK1 and CCNB2. Noticeably, PTTG1 gene, the transcriptional promoter of CDK1, was up-regulated in breast cancer; ZBTB16 gene was the transcriptional suppressor of CCNA2, and its expression was down-regulated in overlapping DEGs. Additionally, we obtained 273 targeted miRNAs with regulatory effects on hub genes using ENCORI online tool, and identified 103 DEmiRNAs (58 up- and 45 down-regulated; Table S11) from GSE97811 dataset with $|\log2FC| > 1$ and $adj.P.Val < 0.05$. As a result, 41 associations between 30 miRNAs and 4 hub genes (RRM2, CDK1, CCNA2, and BUB1B) were found from targeted miRNAs analysis and DEmiRNAs data (Fig. 5B). The top 2 hub genes with the most miRNAs targets were RRM2 and CCNA2. In addition, hsa-miR-340-5p, hsa-miR-130a-3p, hsa-miR-200b-3p, hsa-miR-200c-3p, hsa-miR-204-5p, hsa-miR-219a-5p, hsa-miR-27a-3p, hsa-miR-27b-3p, hsa-miR-301a-3p and hsa-miR-429 were the top 10 miRNAs with the most target genes. Unfortunately, we only used TRRUST and ENCORI databases, as well as limited samples of GSE97811 dataset to analyze TFs and miRNAs targeting hub genes, which may potentially limit the completeness of this study.

Survival analysis of hub genes

We then analyzed the prognostic information of 6 hub genes using Kaplan-Meier Plotter. The result demonstrated that breast cancer patients with higher hub genes expression had worse OS, relapse-free survival (RFS) and distant metastasis-free survival (DMFS) (Fig. 6A-6C). Furthermore, we performed prognostic analysis on the important reporter regulatory molecules and found that higher E2F1 and PTTG1 expression predicted worse OS. In contrast, higher expression of ZBTB16, hsa-miR-130a-3p and hsa-miR-204-5p was significantly associated with better OS in breast cancer (Fig. S9A). The remaining reporter regulatory molecules (e.g., TP53, hsa-miR-340-5p, hsa-miR-200b-3p, hsa-miR-200c-3p, hsa-miR-219a-5p, hsa-miR-27a-3p, hsa-miR-27b-3p, hsa-miR-301a-3p, hsa-miR-429) had no statistically significant correlation with OS ($P > 0.05$; Fig. S9B).

Small molecule drugs analysis

Regarding 6 hub genes as potential therapeutic targets for breast cancer, we identified several antineoplastic drugs based on the DGIdb database. At present, only RRM2, CDK1 and CCNA2 were identified as tumor therapeutic targets. Therefore, we speculated the other three genes (CCNB2, BUB1B, CDC20) might be the novel targets in the future. Statistical analysis revealed that 21 candidate drugs such as Cladribine, Gallium nitrate, Dinaciclib, Alvocidib and Suramin targeted RRM2, CDK1 and CCNA2 (Table 2). More experimental data are needed to further confirm the potential of these drug candidates in the treatment of breast cancer.

In addition, we identified 8 TCM ingredients (1β-hydroxyalantolactone, Andrographolide, Berberine hydrochloride, Britainin, Hyodeoxycholic acid, Japonicone A, Nitidine chloride and Tanshinone IIA) that reversed breast cancer-induced gene expression from GSE85871 dataset. Japonicone A reversed the expression of 87 overlapping DEGs, including 6 hub genes, and its...
potential therapeutic effects on breast cancer were related to Cell cycle, Oocyte meiosis, p53 signaling pathway, Progesterone-mediated oocyte maturation, Viral carcinogenesis, HTLV-I infection, Pathways in cancer and TGF-beta signaling pathway (Fig. 7A). Also, Nitidine chloride, Berberine hydrochloride, 1β-hydroxyalantolactone, Britanin and Tanshinone IIA reversed the expression of 37, 35, 31, 30 and 19 overlapping DEGs, respectively, and the potential therapeutic effects of these ingredients on breast cancer were related to biological pathways such as Cell cycle, Oocyte meiosis, p53 signaling pathway and Progesterone-mediated oocyte maturation (Fig. 7B-7F). Details of TCM ingredients were shown in Table S12.

Discussion

Although the detection and treatment of breast cancer have improved, it is still one of the most prevalent malignant tumors with the highest increase in prevalence among women (Ghoncheh et al. 2016). The diagnosis, treatment and prognosis of breast cancer have always been concerned with the world. Gene expression profiles are widely used to explore the molecular mechanisms related to tumorigenesis, which have provided valuable reference and information for clinical applications (Mohr et al. 2002).

In this study, we identified 283 overlapping DEGs (105 up- and 178 down-regulated) and 6 hub genes (RRM2, CDC20, CCNB2, BUB1B, CDK1, CCNA2) associated with breast cancer tumorigenesis and progression based on multiple datasets. By integrating the Oncomine, HPA, GEPIA2 and BC-GenExMiner databases, we confirmed that hub genes were over-expressed at mRNA and protein levels in breast cancer tissues compared with normal and non-cancerous tissues, and there was a powerful correlation between these genes, suggesting that hub genes were potential functional partners closely related to breast cancer. Furthermore, higher expression of hub genes was found in ER-, PR-, HER2+, Nodal+, Basal-like, P53-mutated and TNBC clinical subtypes of breast cancer, and there was a higher hub genes expression in patients not more than 51 years old. We also discovered that the over-expression of each hub gene was associated with poor OS, RFS and DMFS among patients with breast cancer, suggesting that these genes might be potential prognostic biomarkers and promote the progression of breast cancer. Further, we found the expression of hub genes was significantly correlated with immune cell infiltrates and purity, implicating that these hub genes played important roles in manipulating breast cancer immune microenvironment.

KEGG enrichment analysis showed that overlapping DEGs including 6 hub genes were significantly associated with Cell cycle and Oocyte meiosis biological pathways, and overlapping DEGs were also involved in Tyrosine metabolism, ECM-receptor interaction, Progesterone-mediated oocyte maturation and PPAR signaling pathways. To our knowledge, abnormal regulations of cell cycle and cell growth were the major causes of tumorigenesis (Zhuang et al. 2015). In the current study, we found that two important pathways related to cell growth and apoptosis –Cell cycle and Oocyte meiosis –were dysregulated in breast cancer. In addition, ECM-receptor interaction pathway played important roles in tumor shedding, adhesion, degradation, movement and hyperplasia. So far, some studies have shown that ECM receptor interaction pathway was closely related to breast cancer, colorectal cancer, head and neck cancer
and other human tumors (Bao et al. 2019; Islam et al. 2018; Rahman et al. 2019). Gasco et al. concluded that molecular pathological analysis of specific components of p53 signaling pathway may be helpful for the diagnosis and prognosis of breast cancer (Gasco et al. 2002). In addition, it has been found that signal transduction pathways such as Tyrosine metabolism, Progesterone-mediated oocyte maturation and PPAR signaling pathway may also be associated with the occurrence of human cancers (Chen et al. 2012; Liu & Ye 2017; Pietras et al. 1995). These pathways provided insights into the molecular mechanisms of breast cancer initiation and development.

Accumulating studies have demonstrated that CDK1, CCNB2, CCNA2, CDC20 and BUB1B, as genes related to cell cycle, are involved in the occurrence and development of tumors. CDK1, also known as CDC2, plays an important role in the precise cell division (Kang et al. 2014). Inhibiting the expression of CDK1 can suppress tumor cells growth and induce apoptosis in TNBC clinical subtype of breast cancer (Liu et al. 2014). In addition, high expression of CDK1 led to worse 5-year RFS in breast cancer patients (Kim et al. 2008), similar to the experimental results (Fig. 6B). As an important component in cell cycle regulation, CCNB2 seems to functions as the oncogene and independent prognostic factor for survival in patients with breast cancer (Albulescu 2013). Tang et al. proved that there was a significant correlation between CCNB2 and molecular subtypes of breast cancer (Fig. S6A) (Tang et al. 2018). CCNA2, a key regulator of cell cycle, could promote the transformation and progression of cancer (He et al. 2017). Gao et al. found the over-expression of CCNA2 in breast cancer was related to the unfavorable prognosis (Gao et al. 2014), similar to our current findings (Fig. 6). We understand that there have been previous reports that have associated CDC20 over-expression with tumor progression and poor prognosis of breast cancer, indicating that CDC20 may be a useful marker for monitoring breast cancer progression (Sewart & Hauf 2017). Similarly, BUB1B played a pivotal role in the proliferation and progression of many tumors (Takagi et al. 2013). RRM2, a breast cancer hub gene participated in phenylalanine metabolic pathway in our study, was closely linked to tumor growth, invasion, angiogenesis, tumor metastasis and other cellular functions, as well as the prognosis of breast cancer patients (Bell et al. 2017; Chen et al. 2019). It has been previously reported that RRM2 expression was associated with the resistance of tumorigenic breast cancer cells to chemotherapy (Shah et al. 2015). Taken together, our findings were consistent with other previous studies that 6 hub genes may serve as predictive biomarkers for diagnosis and prognosis of patients with breast cancer.

We also found that several reporter regulatory molecules (e.g., E2F1, TP53, PTTG1, ZBTB16, hsa-miR-340-5p, hsa-miR-130a-3p, hsa-miR-200b-3p, hsa-miR-204-5p) regulated the transcription or post-transcription of hub genes associated with major biological processes and pathways in breast cancer, and they were also related to the OS of breast cancer patients. E2F1 and ZBTB16 have been proved to belong to tumor-suppressive genes (Wasim et al. 2010; Worku et al. 2008). In contrast, PTTG1 and mutated TP53 promoted the proliferation of tumor cells (Fu et al. 2018; Gasco et al. 2002).
Breast cancer also shows changes in the expressions of noncoding RNAs (e.g., miRNAs, additional elements). Several studies have previously proven that miRNAs played vital roles in many biological processes, including cell growth, differentiation, metabolism, apoptosis and signal transduction. For instance, Ma et al. demonstrated that miR-219-5p inhibited the cell proliferation and cell cycle distribution of ESCC cells by inhibiting the expression of CCNA2, highlighting the role of miR-219-5p and CCNA2 in cell cycle and tumor growth (Ma 2019).

Liang et al. confirmed the over-expression of miR-204-5p not only inhibited the high expression of RRM2 in breast cancer cells but also inhibited cell migration and invasion of breast cancer (Liang et al. 2019). The above conclusions further demonstrated the miRNAs identified in this study were promising biomarkers for breast cancer. Recent publications described that additional elements including REP522, D20S16, HERVKC4-INT and HERV1_LTRc were also abnormally expressed in ER+/HER2- breast cancer, showing that it is necessary to further strengthen the study of these additional elements related to cancer (Karakülah et al. 2019; Yandım & Karakülah 2019).

Next, we further identified 21 anti-tumor drugs (e.g., Cladribine, Gallium nitrate, Dinaciclib, Alvocidib, Suramin) targeting RRM2, CDK1 and CCNA2 (Table 2). Nevertheless, whether these drugs could exert therapeutic effects on breast cancer by inhibiting the over-expression of RRM2, CDK1 and CCNA2, or whether CCNB2, BUB1B and CDC20 are promising therapeutic targets still need to be supported by further research. In addition, we identified 8 TCM ingredients (1β-hydroxyalantolactone, Andrographolide, Berberine hydrochloride, Britanin, Hyodeoxycholic acid, Japonicone A, Nitidine chloride and Tanshinone IIA) that reversed breast cancer-induced overlapping DEGs expression. Previous limited studies have reported that some of TCM ingredients mentioned above affected the cell cycle of tumor cells (Du et al. 2015; Li et al. 2020a; Lu 2009; Pan et al. 2011; Wang et al. 2016; Zou et al. 2017), similar to our current study that these ingredients inhibited proliferation as well as promoted apoptosis of breast cancer cells through more than one biological pathway (Fig. 7).

Conclusions

In the current study, we obtained 283 overlapping DEGs and 6 hub genes (RRM2, CDC20, CCNB2, BUB1B, CDK1, and CCNA2) related to the occurrence and development of breast cancer via comprehensive bioinformatics analysis. Furthermore, we considered the associations between hub genes expression and clinicopathological factors (e.g., age, subtypes) of patients with breast cancer. The study also established TFs-hub genes and miRNAs-hub genes networks, and found several reporter regulatory molecules (e.g., E2F1, PTTG1, TP53, ZBTB16, hsa-miR-130a-3p, hsa-miR-204-5p) significantly related to the progression and prognosis of breast cancer. Meanwhile, 29 small molecule drugs with potential therapeutic effects for breast cancer were identified from the DGIdb database and GSE85871 dataset. In summary, our research provided further clues for breast cancer therapeutic drugs and biomarkers.

Abbreviations
DEGs differentially expressed genes
GEO Gene Expression Omnibus
TCGA The Cancer Genome Atlas
PPI protein-protein interaction
GO Gene Ontology
KEGG Kyoto Encyclopedia of Genes and Genomes
TFs transcription factors
TCM traditional Chinese medicine
Log2FC log2FoldChange
BRCA Breast invasive carcinoma
MCC maximal clique centrality
MNC maximum neighbourhood component
HPA Human Protein Atlas database
ER Oestrogen receptor status
PR Progesterone receptor status
HER2 HER2 receptor status
SBR Scarff Bloom & Richardson grade status
NPI Nottingham Prognostic Index status
TNBC Triple negative breast cancer
ENCORI Encyclopedia of RNA Interactomes platform
DEmiRNAs differentially expressed miRNAs
HR hazard ratio
OS overall survival
RFS relapse-free survival
DMFS distant metastasis-free survival

References
Albulescu R. 2013. Elevated cyclin B2 expression in invasive breast carcinoma is associated with unfavorable clinical outcome. *Biomark Med* 7:203.

Bao Y, Wang L, Shi L, Yunn F, Liu X, Chen Y, Chen C, Ren Y, and Jia Y. 2019. Transcriptome profiling revealed multiple genes and ECM-receptor interaction pathways that may be associated with breast cancer. *Cell Mol Biol Lett* 24:38. 10.1186/s11658-019-0162-0

Bell R, Barraclough R, and Vasieva O. 2017. Gene Expression Meta-Analysis of Potential Metastatic Breast Cancer Markers. *Current Molecular Medicine* 17. 10.2174/1566524017666170807144946

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, and Jemal A. 2018. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. *CA Cancer J Clin* 68:394-424. 10.3322/caac.21492

Chen W-x, Yang L-g, Xu L-y, Cheng L, Qian Q, Sun L, and Zhu Y-l. 2019. Bioinformatics analysis revealing prognostic significance of RRM2 gene in breast cancer. *Bioscience reports* 39.

Chen YZ, Xue JY, Chen CM, Yang BL, Xu QH, Wu F, Liu F, Ye X, Meng X, Liu GY, Shao ZZ, Shao ZM, and Wu J. 2012. PPAR signaling pathway may be an important predictor of breast cancer response to neoadjuvant chemotherapy. *Cancer Chemother Pharmacol* 70:637-644. 10.1007/s00280-012-1949-0

Chin C-H, Chen S-H, Wu H-H, Ho C-W, Ko M-T, and Lin C-Y. 2014. cytoHubba: identifying hub objects and sub-networks from complex interactome. *BMC systems biology* 8:S11.

Cotto KC, Wagner AH, Feng Y-Y, Kiwala S, Couch GA, Spies G, Wollam A, Spies NC, and Griffith OL. 2014. *CytoHubba*: identifying hub objects and sub-networks from complex interactome. *BMC systems biology* 8:S11.

Du Y, Gong J, Tian X, Yan X, Guo T, Huang M, Zhang B, Hu X, Liu H, and Wang Y. 2015. Japonicone A inhibits the growth of non-small cell lung cancer cells via mitochondria-mediated pathways. *Tumor Biology* 36:7473-7482.

Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, Beare D, Jia M, Shepherd R, Leung K, and Menzies A. 2010. COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. *Nucleic acids research* 39:D945-D950.

Fu D, Zhang Y, and Cui H. 2018. Long noncoding RNA CCAT2 is activated by E2F1 and exerts oncogenic properties by interacting with PTTG1 in pituitary adenomas. *Am J Cancer Res* 8:245-255.

Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, and Larsson E. 2013. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. *Sci Signal* 6:pl1-pl1.

Gao T, Han Y, Yu L, Ao S, Li Z, and Ji J. 2014. CCNA2 is a prognostic biomarker for ER+ breast cancer and tamoxifen resistance. *PLoS ONE* 9:e91771. 10.1371/journal.pone.0091771

Gasco M, Shami S, and Crook T. 2002. The p53 pathway in breast cancer. *Breast cancer research* 4:70.

Ghoucheh M, Pournamdar Z, and Salehiniya H. 2016. Incidence and Mortality and Epidemiology of Breast Cancer in the World. *Asian Pacific Journal of Cancer Prevention* 17:43-46.

He Y, Liu J, Zhao Z, and Zhao H. 2017. Bioinformatics analysis of gene expression profiles of esophageal squamous cell carcinoma. *Diseases of the Esophagus* 30.

Islam T, Rahman R, Gov E, Turanli B, Gullifan G, Haque A, Arga KY, and Haque Mollah N. 2018. Drug Targeting and Biomarkers in Head and Neck Cancers: Insights from Systems Biology Analyses. *Omics* 22:422-436. 10.1089/omi.2018.0048

Jézéquel P, Campone M, Gouraud W, Guérin-Charbonnel C, Leux C, Ricolleau G, and Campion L. 2012. bc-GenExMiner: an easy-to-use online platform for gene prognostic analyses in breast cancer. *Breast Cancer Research and Treatment* 131:765-775.

Kang J, Sergio CM, Sutherland RL, and Musgrove EA. 2014. Targeting cyclin-dependent kinase 1 (CDK1) but not CDK4/6 or CDK2 is selectively lethal to MYC-dependent human breast cancer cells. *BMC Cancer* 14:32.
457 Karakülah G, Arslan N, Yandım C, and Suner A. 2019. TEffectR: an R package for studying the potential effects of transposable elements on gene expression with linear regression model. PeerJ 7:e8192. 10.7717/peerj.8192
458
459 Kim SJ, Nakayama S, Miyoshi Y, Taguchi T, Tamaki Y, Matsushima T, Torikoshi Y, Tanaka S, Yoshida T, Ishihara H, and Noguchi S. 2008. Determination of the specific activity of CDK1 and CDK2 as a novel prognostic indicator for early breast cancer. Ann Oncol 19:68-72. 10.1093/annonc/mdn358
460
461 Kulasingam V, and Diamandis EP. 2008. Strategies for discovering novel cancer biomarkers through utilization of emerging technologies. Nature clinical practice Oncology 5:588-599.
462
463 Li J-H, Liu S, Zhou H, Qu L-H, and Yang J-H. 2014. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic acids research 42:D92-D97. 10.1093/nar/gkt1248
464
465 Li K, Zhou Y, Chen Y, Zhou L, and Liang J. 2020a. A novel natural product, britanin, inhibits tumor growth of pancreatic cancer by suppressing nuclear factor-kappaB activation. Cancer Chemo Ther Pharmacol 85:699-709. 10.1007/s00280-020-04052-w
466
467 Li T, Fan J, Wang B, Traugh N, Chen Q, Liu JS, Li B, and Liu XS. 2017. TIMER: A Web Server for Comprehensive Analysis of Tumor-Infiltrating Immune Cells. Cancer research 77:e108-e110. 10.1158/0008-5472.Can-17-0307
468
469 Li Y, Zhou X, Liu J, Yin Y, Yuan X, Yang R, Wang Q, Ji J, and He Q. 2020b. Differentially expressed genes and key molecules of BRCA1/2-mutant breast cancer: evidence from bioinformatics analyses. PeerJ 8. 10.7717/peerj.8403
470
471 Liang WH, Li N, Yuan ZQ, Qian XL, and Wang ZH. 2019. DSCAM-AS1 promotes tumor growth of breast cancer by reducing miR-204-5p and up-regulating RRM2. Mol Carcinog 58:461-473. 10.1002/mc.22941
472
473 Liu H, and Ye H. 2017. Screening of the prognostic targets for breast cancer based co-expression modules analysis. Mol Med Rep 16:4038-4044. 10.3892/mmr.2017.7063
474
475 Liu Q, Zhai J, Kong X, Wang X, Wang Z, Fang Y, and Wang J. 2020. Comprehensive Analysis of the Expression and Prognosis for TDO2 in Breast Cancer. Mol Ther Oncolytics 17:153-168. 10.1016/j.omto.2020.03.013
476
477 Liu Y, Zhu YH, Mao CQ, Dou S, Shen S, Tan ZB, and Wang J. 2014. Triple negative breast cancer therapy with CDK1 siRNA delivered by cationic lipid assisted PEG-PLA nanoparticles. J Control Release 192:114-121. 10.1016/j.jconrel.2014.07.001
478
479 Lu. 2009. Experimental study of the anti-cancer mechanism of tanshinone IIA against human breast cancer. International Journal of Molecular Medicine 24. 10.3892/immm_0000291
480
481 Lusito E, Felice B, D’Ario G, Ogier A, Montani F, Di Fiore PP, and Bianchi F. 2019. Unraveling the role of low-frequency mutated genes in breast cancer. Bioinformatics 35:36-46.
482
483 Ma Q. 2019. MiR-219-5p suppresses cell proliferation and cell cycle progression in esophageal squamous cell carcinoma by targeting CCNA2. Cell Mol Biol Lett 24:4. 10.1186/s11658-018-0129-6
484
485 Mohr S, Leikauf GD, Keith G, and Rihn BH. 2002. Microarrays as Cancer Keys: An Array of Possibilities. Journal of Clinical Oncology 20:3165-3175. 10.1200/jco.2002.12.073
486
487 Nagy Á, Láneczky Á, Menyhárt O, and Győrfy B. 2018. Validation of miRNA prognostic power in hepatocellular carcinoma using expression data of independent datasets. Scientific Reports 8:9227. 10.1038/s41598-018-27521-y
488
489 Pan X, Han H, Wang L, Yang L, Li R, Li Z, Liu J, Zhao Q, Qian M, and Liu M. 2011. Nitidine chloride inhibits breast cancer cells migration and invasion by suppressing c-Src/FAK associated signaling pathway. Cancer letters 313:181-191.
490
491 Pietras RJ, Arboleda J, Reese DM, Wongvipat N, Pegram MD, Ramos L, Gorman CM, Parker MG, Sliwkowski MX, and Slamon DJ. 1995. HER-2 tyrosine kinase pathway targets estrogen receptor and promotes hormone-independent growth in human breast cancer cells. Oncogene 10:2435-2446.
492
493 Rahman MR, Islam T, Gov E, Turanli B, Gulfidan G, Shahjaman M, Banu NA, Mollah MNH, Arga KY, and Moni MA. 2019. Identification of Prognostic Biomarker Signatures and Candidate Drugs in Colorectal Cancer: Insights from Systems Biology Analysis. Medicina (Kaunas) 55. 10.3390/medicina55010020
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, and Smyth GK. 2015. limma powers differential expression analyses for RNA-sequencing and microarray studies. *Nucleic acids research* 43:e47-e47.

Sewart K, and Hauf S. 2017. Different functionality of Cdc20 binding sites within the mitotic checkpoint complex. *Current Biology* 27:1213-1220.

Shah KN, Wilson EA, Malla R, Elford HL, and Faridi JS. 2015. Targeting ribonucleotide reductase M2 and NF-kB activation with Didox to circumvent tamoxifen resistance in breast cancer. *Molecular Cancer Therapeutics* 14:2411-2421.

Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, and Bork P. 2019. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. *Nucleic acids research* 47:D607-D613.

Takagi K, Miki Y, Shibahara Y, Nakamura Y, Ebata A, Watanabe M, Ishida T, Sasano H, and Suzuki T. 2013. BUB1 Immunolocalization in Breast Carcinoma: Its Nuclear Localization as a Potent Prognostic Factor of the Patients. *Hormones and Cancer* 4:92-102. 10.1007/s12672-012-0130-x

Tang J, Kong D, Cui Q, Wang K, Zhang D, Gong Y, and Wu G. 2018. Prognostic Genes of Breast Cancer Identified by Gene Co-expression Network Analysis. *Front Oncol* 8:374. 10.3389/fonc.2018.00374

Waks AG, and Winer EP. 2019. Breast cancer treatment: a review. *Jama* 321:288-300.

Wang CCN, Li CY, Cai JH, Sheu PC, Tsai JJP, Wu MY, Li CJ, and Hou MF. 2019. Identification of Prognostic Candidate Genes in Breast Cancer by Integrated Bioinformatic Analysis. *J Clin Med* 8. 10.3390/jcm8081160

Wang H-Y, Yu H-Z, Huang S-M, and Zheng Y-L. 2016. p53, Bcl-2 and cox-2 are involved in berberine hydrochloride-induced apoptosis of HeLa229 cells. *Molecular Medicine Reports* 14:3855-3861.

Wang L-G, Han Y, and He Q-Y. 2012. clusterProfiler: an R package for comparing biological themes among gene clusters. *Omics: a journal of integrative biology* 16:284-287.

Wasim M, Carlet M, Mansha M, Greil R, Ploner C, Trockenbacher A, Rainer J, and Kofler R. 2010. PLZF/ZBTB16, a glucocorticoid response gene in acute lymphoblastic leukemia, interferes with glucocorticoid-induced apoptosis. *J Steroid Biochem Mol Biol* 120:218-227. 10.1016/j.jsbmb.2010.04.019

Worku D, Jouhra F, Jiang GW, Patani N, Newbold RF, and Mokbel K. 2008. Evidence of a tumour suppressive function of E2F1 gene in human breast cancer. *Anticancer Res* 28:2135-2139.

Yandim C, and Karaküləah G. 2019. Dysregulated expression of repetitive DNA in ER+/HER2- breast cancer. *Cancer Genet* 239:36-45. 10.1016/j.cancergen.2019.09.002

Yu G, Wang L-G, Han Y, and He Q-Y. 2012. clusterProfiler: an R package for comparing biological themes among gene clusters. *Omics: a journal of integrative biology* 16:284-287.

Zhuang DY, Jiang L, He QQ, Zhou P, and Yue T. 2015. Identification of hub subnetwork based on topological features of genes in breast cancer. *Int J Mol Med* 35:664-674. 10.3892/ijmm.2014.2057

Zou K, Li Z, Zhang Y, Zhang H-y, Li B, Zhu W-I, Shi J-y, Jia Q, and Li Y-m. 2017. Advances in the study of berberine and its derivatives: a focus on anti-inflammatory and anti-tumor effects in the digestive system. *Acta Pharmacologica Sinica* 38:157-167.
Figure 1

Process of the present study.

GEO: Gene Expression Omnibus; TCGA: The Cancer Genome Atlas; Overlapping DEGs: Overlapping differentially expressed genes; GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes; PPI: protein-protein interaction; TFs, transcription factors.
Figure 2

Identification of differentially expressed genes (DEGs) between breast cancer tumor tissues and normal tissues.

(A-E) Volcano plots of differential expression analysis for GSE3744, GSE21422, GSE42568, GSE61304, and GSE65194. Red: up-regulated; Green: down-regulated. (F) Up-regulated DEGs selected by integrating 5 GEO databases. (G) Down-regulated DEGs selected by integrating 5 GEO databases. (H) Up-regulated overlapping DEGs obtained by integrating GEO datasets and TCGA BRCA dataset. (I) Down-regulated overlapping DEGs obtained by integrating GEO datasets and TCGA BRCA dataset.
Figure 3

Expression verification of 6 hub genes.

(A) Hub genes expression in multiple types of human cancers from Oncomine database. Red: up-regulated; Blue: down-regulated. (B-K) Immunohistochemical staining analysis of hub genes in breast cancer based on the Human Protein Atlas. (B) Protein levels of RRM2 in normal tissue (staining: not detected; intensity: negative; quantity: none). (C) Protein levels of RRM2 in tumor tissue (staining: low; intensity: moderate; quantity: < 25%). (D) Protein levels of CDC20 in normal tissue (staining: not detected; intensity: negative; quantity: none). (E) Protein levels of CDC20 in tumor tissue (staining: high; intensity: strong; quantity: 75%-25%). (F) Protein levels of CCNB2 in normal tissue (staining: not detected; intensity: negative; quantity: none). (G) Protein levels of CCNB2 in tumor tissue (staining: medium; intensity: moderate; quantity: 75%-25%). (H) Protein levels of CDK1 in normal tissue (staining: not detected; intensity: negative; quantity: none). (I) Protein levels of CDK1 in tumor tissue (staining: high; intensity: strong; quantity: 75%-25%). (J) Protein levels of CCNA2 in normal tissue (staining: not detected; intensity: negative; quantity: none). (K) Protein levels of CCNA2 in tumor tissue (staining: medium; intensity: strong; quantity: < 25%). There were no related immunohistochemical samples of BUB1B in the database.
A

Analysis Type by Cancer	RR3M2	CDC20	CCNB2	BUB1B	CDK1	CCNA1
Bladder Cancer	6	6	4	5	6	3
Brain and CNS Cancer	8	5	6	5	9	1
Breast Cancer	16	19	22	19	25	1
Cervical Cancer	4	3	3	3	3	2
Colorectal Cancer	12	6	7	8	13	6
Esophageal Cancer	2	2	2	3	3	1
Gastric Cancer	3	2	2	3	6	3
Head and Neck Cancer	6	6	5	4	7	4
Kidney Cancer	2	2	2	2	2	1
Leukemia	7	1	1	7	1	8
Liver Cancer	4	3	3	3	4	4
Lung Cancer	13	12	11	11	16	13
Lymphoma	13	1	1	1	6	1
Melanoma	2	1	1	1	1	1
Myeloma	2	2	2	2	1	1
Other Cancer	6	5	5	6	2	3
Ovarian Cancer	4	4	3	4	5	2
Pancreatic Cancer	2	2	2	2	1	1
Prostate Cancer	2	2	2	2	1	1
Sarcoma	10	12	11	12	12	12

Significant Unique Analyses

Total Unique Analyses	RR3M2	CDC20	CCNB2	BUB1B	CDK1	CCNA1
	649	415	415	419	455	467

B

![Image B]

C

![Image C]

D

![Image D]

E

![Image E]

F

![Image F]

G

![Image G]

H

![Image H]

I

![Image I]

J

![Image J]

K

![Image K]
Figure 4

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of overlapping DEGs by ClusterProfiler and GOplot packages of R. (A) GO analysis of up-regulated overlapping DEGs. (B) GO analysis of down-regulated overlapping DEGs. BP, biological process. CC, cellular component. MF, molecular function. (C) Dot plot of KEGG pathway enrichment analysis.
Figure 5

TFs-hub genes and miRNAs-hub genes regulatory networks.

(A) TFs-hub genes network obtained from TRRUST database. Red rhomboids: hub genes; Ellipses: TFs; Red ellipses: up-regulated genes in overlapping DEGs; Blue ellipses: down-regulated genes in overlapping DEGs; Delta-shaped arrows: activation of hub genes by TFs; Half circular arrows: repression of hub genes by TFs. TFs, transcription factors. (B) miRNAs-hub genes network. Red diamonds: hub genes; Red rectangles: up-regulated miRNAs; Blue rectangles: down-regulated miRNAs.
Figure 6

OS (A), RFS (B), and DMFS (C) analysis of RRM2, CDC20, CCNB2, BUB1B/SSK1, CDK1/CDC2, and CCNA2/CCNA in breast cancer based on Kaplan Meier-Plotter.

The patients were split into high and low expression groups according to the median expression of hub genes. OS, overall survival; RFS, relapse free survival; DMFS, distant metastasis-free survival.
Figure 7

Traditional Chinese medicine (TCM) ingredients-overlapping DEGs-pathways networks.

(A) Japonicone A. (B) Nitidine chloride. (C) Berberine hydrochloride. (D) 1β-hydroxyalantolactone. (E) Britanin. (F) Tanshinone IIA. Yellow diamond: TCM ingredient; Blue diamond: down-regulated gene; Red diamond: up-regulated gene; Green rectangle: KEGG pathway.
Table 1 (on next page)

Characteristics of datasets in this study.
Expression profile dataset	Breast cancer	Normal
GSE3744	40	7
GSE21422	14	5
GSE42568	104	17
GSE61304	58	4
GSE65194	167	11
TCGA BRCA	1085	112
Table 2 (on next page)

Antineoplastic drugs targeting hub genes based on DGIdb database.
Target	Drug	Type	Sources	PMIDs	Score
CLADRIBINE	inhibitor	DrugBank		17852710	
				16316309	
				19576186	6
				9923554	
				19715446	
GALLIUM NITRATE	inhibitor	ChemblInteractions DrugBank		12776257	
				1335254	5
				15651176	
MOTEXAFIN GADOLINUM	inhibitor	TdgClinicalTrial DrugBank TTD		-	3
HYDROXYUREA	inhibitor	GuideToPharmacologyInteractions ChemblInteractions		-	2
CLOFARABINE	inhibitor	GuideToPharmacologyInteractions ChemblInteractions		-	2
GEMCITABINE	inhibitor	ClarityFoundationClinicalTrial GuideToPharmacologyInteractions		-	2
FLUDARABINE	inhibitor	ChemblInteractions		-	1
FLUDARABINE PHOSPHATE	inhibitor	ChemblInteractions		-	1
TRIAPINE	-	TdgClinicalTrial		-	1
FLUDARABINE	inhibitor	GuideToPharmacologyInteractions		-	1
DINACICLIB	inhibitor	GuideToPharmacologyInteractions		-	6
CDK1		ChemblInteractions CancerCommons MyCancer Genome ClinicalTrial		-	
ALVOCIDIB	inhibitor	MyCancer Genome TdgClinicalTrial ChemblInteractions DrugBank		11752352	5
Name	Type	Database 1	Database 2	Database 3	
--------------------	------------	-----------------------------	-------------------	----------------	
Roniciclib	inhibitor	GuideToPharmacologyInteractions	ChemblInteractions	CancerCommons	
AT-7519	inhibitor	GuideToPharmacologyInteractions	ChemblInteractions	DrugBank	
AZD-5438	inhibitor	GuideToPharmacologyInteractions	ChemblInteractions		
TG-02	inhibitor	GuideToPharmacologyInteractions	ChemblInteractions		
CHEMBL1236539	inhibitor	GuideToPharmacologyInteractions			
RG-547	inhibitor	ChemblInteractions			
SELICICLIB	inhibitor	ChemblInteractions			
SURAMIN		NCI		10208280	2
CCNA2	CORDYCEPIN	-	NCI	11566717	2
GENISTEIN		-	NCI	9664138	2