ARRANGEMENTS OF IDEAL TYPE

GERHARD RÖHRLE

Abstract. In 2006 Sommers and Tymoczko defined so-called arrangements of ideal type \(\mathcal{A}_I \) stemming from ideals \(I \) in the set of positive roots of a reduced root system. They showed in a case by case argument that \(\mathcal{A}_I \) is free if the root system is of classical type or \(G_2 \) and conjectured that this is also the case for all types. This was established only very recently in a uniform manner by Abe, Barakat, Cuntz, Hoge and Terao. The set of non-zero exponents of the free arrangement \(\mathcal{A}_I \) is given by the dual of the height partition of the roots in the complement of \(I \) in the set of positive roots, generalizing the Shapiro-Steinberg-Kostant theorem which asserts that the dual of the height partition of the set of positive roots gives the exponents of the associated Weyl group.

Our first aim in this paper is to investigate a stronger freeness property of the \(\mathcal{A}_I \). We show that all \(\mathcal{A}_I \) are inductively free, with the possible exception of some cases in type \(E_8 \).

In the same paper from 2006, Sommers and Tymoczko define a Poincaré polynomial \(I(t) \) associated with each ideal \(I \) which generalizes the Poincaré polynomial \(W(t) \) for the underlying Weyl group \(W \). Solomon showed that \(W(t) \) satisfies a product decomposition depending on the exponents of \(W \) for any Coxeter group \(W \). Sommers and Tymoczko showed in a case by case analysis in type \(A_n, B_n \) and \(C_n \), and some small rank exceptional types that a similar factorization property holds for the Poincaré polynomials \(I(t) \) generalizing the formula of Solomon for \(W(t) \). They conjectured that their multiplicative formula for \(I(t) \) holds in all types. In our second aim to investigate this conjecture further, the same inductive tools we develop to obtain inductive freeness of the \(\mathcal{A}_I \) are also employed. Here we also show that this conjecture holds inductively in almost all instances with only a small number of possible exceptions.

Contents

1. Introduction
2. Recollections and Preliminaries
3. Arrangements of Ideal Type
4. Inductively free \(\mathcal{A}_I \) for \(\Phi \) of exceptional type
5. The Poincaré polynomial \(I(t) \) of \(I \)
6. Supersolvable and inductively factored \(\mathcal{A}_I \)
References

1. Introduction

Much of the motivation for the study of arrangements of hyperplanes comes from Coxeter arrangements. They consist of the reflecting hyperplanes associated with the reflections

2010 Mathematics Subject Classification. 20F55, 52B30, 52C35, 14N20.

Key words and phrases. Root system, Weyl arrangement, arrangement of ideal type, free arrangement, inductively free arrangement, supersolvable arrangement, inductively factored arrangement.
of the underlying Coxeter group. While Coxeter arrangements are a well studied subject, subarrangements of the latter are considerably less well understood. In this paper we study certain arrangements which are associated with ideals in the set of positive roots of a reduced root system, so called arrangements of ideal type \mathcal{A}_I, Definition 1.3, cf. [ST06, §11].

1.1. Ideals in Φ^+. Let Φ be an irreducible, reduced root system and let Φ^+ be the set of positive roots with respect to some set of simple roots Π. An (upper) order ideal, or simply ideal for short, of Φ^+, is a subset \mathcal{I} of Φ^+ satisfying the following condition: if $\alpha \in \mathcal{I}$ and $\beta \in \Phi^+$ so that $\alpha + \beta \in \Phi^+$, then $\alpha + \beta \in \mathcal{I}$.

Recall the standard partial ordering \preceq on Φ: $\alpha \preceq \beta$ provided $\beta - \alpha$ is a $\mathbb{Z}_{\geq 0}$-linear combination of positive roots, or $\beta = \alpha$. Then \mathcal{I} is an ideal in Φ^+ if and only if whenever $\alpha \in \mathcal{I}$ and $\beta \in \Phi^+$ so that $\alpha \leq \beta$, then $\beta \in \mathcal{I}$.

Let β be in Φ^+. Then $\beta = \sum_{\alpha \in \Pi} c_\alpha \alpha$ for $c_\alpha \in \mathbb{Z}_{\geq 0}$. The height of β is defined to be $ht(\beta) = \sum_{\alpha \in \Pi} c_\alpha$.

Let $\mathcal{I} \subseteq \Phi^+$ be an ideal and let

$$\mathcal{I}^c := \Phi^+ \setminus \mathcal{I}$$

be its complement in Φ^+. Further, define $\lambda_1 := \{ |\alpha \in \mathcal{I}^c \mid ht(\alpha) = i \}$. This gives the height partition $\lambda_1 \geq \lambda_2 \geq \ldots$ of \mathcal{I}^c. Let $s = \lambda_1$, the number of simple roots in \mathcal{I}^c.

Definition 1.1 ([ST06, Def. 3.2]). The ideal exponents m_i^T of an ideal \mathcal{I} in Φ^+ are the parts of the dual of the height partition of \mathcal{I}^c, i.e. $m_i^T := |\{ \lambda_j \mid \lambda_j \geq s - i + 1 \}|$, so that

$$m_s^T \geq \ldots \geq m_1^T.$$

Note that since $\lambda_1 > \lambda_2$, we have $m_1^T = 1$, cf. [ST06, Prop. 3.1].

This terminology is motivated as follows. For $\mathcal{I} = \emptyset$, we have $\mathcal{I}^c = \Phi^+$. A famous theorem asserts that the dual of the height partition of Φ^+ gives the exponents of W. This connection was first discovered by Shapiro (unpublished) and rediscovered independently by Steinberg [Ste59, §9]. Kostant [Ko59] was the first to provide a uniform proof. Macdonald gave a proof using generating functions [Mac72].

1.2. Arrangements of ideal type. Following [ST06, §11], we associate with an ideal \mathcal{I} in Φ^+ the arrangement consisting of all hyperplanes with respect to the roots in \mathcal{I}^c. Let $\mathcal{A}(\Phi)$ be the Weyl arrangement of Φ, i.e., $\mathcal{A}(\Phi) = \{ H_\alpha \mid \alpha \in \Phi^+ \}$, where H_α is the hyperplane in the Euclidean space $V = \mathbb{R} \otimes \mathbb{Z}\Phi$ orthogonal to the root α.

Definition 1.3 ([ST06, §11]). Let $\mathcal{I} \subseteq \Phi^+$ be an ideal. The arrangement of ideal type associated with \mathcal{I} is the subarrangement \mathcal{A}_I of $\mathcal{A}(\Phi)$ defined by

$$\mathcal{A}_I := \{ H_\alpha \mid \alpha \in \mathcal{I}^c \}.$$

It was shown by Sommers and Tymoczko [ST06, Thm. 11.1] that in case the root system is classical or of type G_2, each \mathcal{A}_I is free and the non-zero exponents are given by the ideal exponents of \mathcal{I}, cf. (1.2). The general case was settled only recently in a uniform manner for all types by Abe, Barakat, Cuntz, Hoge, and Terao in [ABC+16, Thm. 1.1].

Theorem 1.4 ([ST06, Thm. 11.1], [ABC+16, Thm. 1.1]). Let Φ be a reduced root system with Weyl arrangement $\mathcal{A} = \mathcal{A}(\Phi)$. Then any subarrangement of \mathcal{A} of ideal type \mathcal{A}_I is free with the non-zero exponents given by the ideal exponents m_i^T of \mathcal{I}.

The method of proof of [ABC+16, Thm. 1.1] entails a new general version of Terao’s seminal addition deletion theorem (Theorem 2.3) allowing for an entire set of hyperplanes to be added at once to a given free arrangement while retaining freeness - given suitable circumstances - as opposed to adding just one hyperplane at a time. In particular, this method implies that there is a total order on the set of hyperplanes in \mathcal{A}_I such that each term of the resulting chain of subarrangements of \mathcal{A}_I is itself free. See [AT16] for an application of this method in the context of Shi arrangements.

The fact that each \mathcal{A}_I is free with the non-zero exponents given by the ideal exponents further justifies the choice of terminology in Definition 1.1. The proof of [ABC+16, Thm. 1.1] is stunning, for not only does it generalize the aforementioned result by Shapiro-Steinberg-Kostant, it also gives a new uniform proof of the latter.

Thanks to independent fundamental work of Arnold and Saito, see [OT92, §6], the reflection arrangement $\mathcal{A}(W)$ of any real reflection group W is free. In [BC12, Cor. 5.15], Barakat and Cuntz showed that in fact $\mathcal{A}(W)$ is inductively free, see Definition 2.4. The most challenging case here is that of type E_8. In view of these results and considering the method of proof of Theorem 1.4 in [ABC+16, Thm. 1.1], it is natural to ask whether the free subarrangements \mathcal{A}_I of $\mathcal{A}(W)$ are also inductively free. Our first aim is to show that all \mathcal{A}_I are indeed inductively free with the possible exception of some instances only in type E_8, see Theorem 1.15.

In recent work [Hul16], Hultman characterized all \mathcal{A}_I that are supersolvable, see Definition 2.10. Since, supersolvability implies inductive freeness, see Theorem 2.15, the following result from [Hul16] readily provides a large collection of inductively free \mathcal{A}_I.

Theorem 1.5 ([Hul16, Thms. 6.6, 7.1]). For Φ of type A_n, B_n, C_n, or G_2, each \mathcal{A}_I is supersolvable with the non-zero exponents given by the ideal exponents $m^\mathcal{I}_I$ of \mathcal{I}.

Remark 1.6. For Φ of type A_n, every free subarrangement of \mathcal{A} is already supersolvable, [ER94, Thm. 3.3]. Thus in that case, Theorem 1.5 follows from Theorem 1.4.

As opposed to type A_n, a free subarrangement of the supersolvable arrangement of type B_n need not be supersolvable in general, e.g. the Weyl arrangement of type D_n is not supersolvable for $n \geq 4$, cf. Theorem 2.28(i). So the fact that all \mathcal{A}_I in type B_n and type C_n are supersolvable is not a consequence of Theorem 1.4.

We give a short proof of Theorem 1.5 based on Theorem 1.12(i) in Section §3.

In contrast to the types covered in Theorem 1.5, there are always non-supersolvable arrangements of ideal type for the other Dynkin types, e.g., for $\mathcal{I} = \emptyset$, the Weyl arrangement $\mathcal{A}_I = \mathcal{A}(\Phi)$ itself is not supersolvable, see Theorem 2.28; see also [Hul16]. Nevertheless, in type D_n we obtain the following.

Theorem 1.7. Let Φ be of type D_n for $n \geq 4$. Then each \mathcal{A}_I is inductively free with the non-zero exponents given by the ideal exponents $m^\mathcal{I}_I$ of \mathcal{I}.

From the last two results and Theorem 2.15, the following is immediate.

Theorem 1.8. For Φ of classical type, each \mathcal{A}_I is inductively free with the non-zero exponents given by the ideal exponents $m^\mathcal{I}_I$ of \mathcal{I}.

For arbitrary Φ, we obtain the following.
Theorem 1.9. For θ the highest root in Φ+ and I = {θ}, \mathcal{A}_I is inductively free with the non-zero exponents given by the ideal exponents m^I_i of I.

Next we describe an inductive tool that is a generalization of a criterion from [ST06, §7]. It is crucial in the proofs of both Theorems 1.5 and 1.7, as well as in all subsequent results. Using induction, it allows us to show that a large class of arrangements of ideal type is inductively free also in the exceptional types, see Theorems 1.13 and 1.14.

Let Φ_0 be a (standard) parabolic subsystem of Φ (cf. §2.8) and let

$$\Phi^c_0 := \Phi^+ \setminus \Phi^+_0,$$

the set of positive roots in the ambient root system which do not lie in the smaller one. The following is a generalization of an inductive criterion from [ST06, §7].

Condition 1.10. Let I be an ideal in Φ^+ and let Φ_0 be a maximal parabolic subsystem of Φ such that $\Phi^c_0 \cap I^c \neq \emptyset$. Assume that firstly, $\Phi^c_0 \cap I^c$ is linearly ordered with respect to \leq so that there is a unique root of every occurring height in $\Phi^c_0 \cap I^c$, and secondly, for any $\alpha \neq \beta$ in $\Phi^c_0 \cap I^c$, there is a $\gamma \in \Phi^+_0$ so that α, β, and γ are linearly dependent.

Definition 1.11. Fix a standard parabolic subsystem Φ_0 of Φ. For I an ideal in Φ^+,

$$I_0 := I \cap \Phi^+_0$$

is an ideal in Φ^+_0. Thus

$$\mathcal{A}_{I_0} := \{H_\gamma \mid \gamma \in I^0_0 = \Phi^+_0 \setminus I_0\}$$

is an arrangement of ideal type in $\mathcal{A}(\Phi_0)$, the Weyl arrangement of Φ_0.

Obviously, since $I^0_0 = \Phi^+_0 \setminus I_0 = I^c \cap \Phi^+_0 \subset I^c$, we may view \mathcal{A}_{I_0} as a subarrangement of \mathcal{A}_I rather than as a subarrangement of $\mathcal{A}(\Phi_0)$. Note however, as such, \mathcal{A}_{I_0} is not of ideal type in \mathcal{A} in general, since I_0 need not be an ideal in Φ^+.

Our next result shows that Condition 1.10 allows us to derive various stronger freeness properties of \mathcal{A}_I from those of \mathcal{A}_{I_0}. This is the principal inductive tool in our entire study.

For the notion of an inductively factored arrangement, see Definition 2.19. This also implies inductive freeness, see Proposition 2.21.

Theorem 1.12. Let I be an ideal in Φ^+ and let Φ_0 be a maximal parabolic subsystem of Φ such that either $\Phi^c_0 \cap I^c = \emptyset$ or else Condition 1.10 is satisfied. Then the following hold:

(i) \mathcal{A}_{I_0} is supersolvable if and only if \mathcal{A}_I is supersolvable;
(ii) \mathcal{A}_{I_0} is inductively free if and only if \mathcal{A}_I is inductively free;
(iii) \mathcal{A}_{I_0} is inductively factored if and only if \mathcal{A}_I is inductively factored.

In particular, in each of the cases above we have

$$\exp \mathcal{A}_I = \{\exp \mathcal{A}_{I_0}, |\mathcal{A}_I \setminus \mathcal{A}_{I_0}|\} = \{0^{n-k}, m^I_1, \ldots, m^I_s\}.$$
Theorem 1.13. Let Φ be a reduced root system with Weyl arrangement $\mathcal{A} = \mathcal{A}(\Phi)$. Let \mathcal{I} be an ideal in Φ^+. Suppose that either \mathcal{A}_I is reducible, or else \mathcal{A}_I is irreducible and there is a maximal parabolic subsystem of Φ such that Condition 1.10 is satisfied. Suppose that each arrangement of ideal type for every proper parabolic subsystem is inductively free. Then the arrangement of ideal type \mathcal{A}_I is inductively free with the non-zero exponents given by the ideal exponents m^+_I of \mathcal{I}.

Theorem 1.8 settles the question of inductive freeness of all \mathcal{A}_I for classical root systems. Our next results addresses the situation for the exceptional types.

Theorem 1.14. Let Φ be a root system of exceptional type with Weyl arrangement $\mathcal{A} = \mathcal{A}(\Phi)$. Let \mathcal{I} be an ideal in Φ^+. Suppose that \mathcal{I} satisfies one of the following conditions

(i) \mathcal{A}_I is reducible;
(ii) \mathcal{A}_I is irreducible and there is a maximal parabolic subsystem of Φ such that Condition 1.10 is satisfied; or
(iii) $\mathcal{I} = \{\theta\}$ or $\mathcal{I} = \emptyset$.

Suppose that each arrangement of ideal type for every proper parabolic subsystem of exceptional type is inductively free. Then \mathcal{A}_I is inductively free.

Table 1 gives the number of all \mathcal{A}_I which satisfy one of the conditions above.

Specifically, in Table 1 we present the number of all arrangements of ideal type for each exceptional type in the first row, see (2.29). In the second row, we list the number of all \mathcal{A}_I which satisfy one of the conditions in Theorem 1.14 and thus are inductively free under the assumption that this is the case for every proper parabolic subsystem of exceptional type.

Φ	E_6	E_7	E_8	F_4	G_2
all \mathcal{A}_I	833	4160	25080	105	8
ind. free \mathcal{A}_I	771	3433	18902	85	8

Table 1. Ind. free \mathcal{A}_I for exceptional Φ from Theorem 1.14

Thanks to Theorems 1.8 and 1.14, it is evident from Table 1 that with the possible exception of a relatively small number of cases in the exceptional types, all \mathcal{A}_I are inductively free. T. Hoge was able to check on a computer that all of the possible exceptions in type F_4 (20 cases), E_6 (62 cases) and E_7 (727 cases) are indeed inductively free. There are 6178 undecided cases in E_8 at present. Therefore, using Theorems 1.8 and 1.14 along with these computational results, we can derive the following.

Theorem 1.15. Let Φ be a reduced root system with Weyl arrangement $\mathcal{A} = \mathcal{A}(\Phi)$. Let \mathcal{I} be an ideal in Φ^+. Then \mathcal{A}_I is inductively free with the non-zero exponents given by the ideal exponents m^+_I of \mathcal{I} with the possible exception when W is of type E_8 and \mathcal{I} is one of 6178 ideals in Φ^+.

This leads to the following conjecture.

Conjecture 1.16. Let Φ be a reduced root system with Weyl arrangement $\mathcal{A} = \mathcal{A}(\Phi)$. Then any subarrangement of \mathcal{A} of ideal type \mathcal{A}_I is inductively free with the non-zero exponents given by the ideal exponents m^+_I of \mathcal{I}.
Remarks 1.17. (i). We emphasize that our proofs of Theorems 1.5 – 1.15 do not depend on Theorem 1.4. Instead our arguments are based on extensions of ideas from the paper of Sommers and Tymoczko [ST06]. Condition 1.10 is clearly inspired by their work. Nevertheless, our approach is developed more within the framework of hyperplane arrangements and depends less on the root system combinatorics.

(ii). The freeness property asserted in Conjecture 1.16 is the strongest one we can hope to hold for all \mathcal{A}_I for all types, as the Weyl arrangement $\mathcal{A}(\Phi)$ itself is supersolvable (inductively factored) only if Φ is of type A_n, B_n, C_n, or G_2, cf. Theorem 2.28.

(iii). Since inductively free arrangements are divisionally free, see [Abe16], it follows from Theorem 1.15 that with the possible exception of 6178 instances in type E_8 all \mathcal{A}_I are also divisionally free. Note, Conjecture 1.16 would settle affirmatively a conjecture by Abe that all arrangements of ideal type are divisionally free, [Abe16, Conj. 6.6].

(iv). The fact that T. Hoge was able to confirm by computer calculations that the remaining instances from Table 1 in types F_4, E_6 and E_7 are indeed inductively free, suggests that the outstanding 6178 instances for E_8 might also be in reach by suitable computational means. Although the number of undecided instances for E_8 is small in relative terms (only 6178 out of 25080 cases), in view of the challenges the authors of [BC12] were faced with in connection with their computational proof of the inductive freeness of the full Weyl arrangement for E_8, this is likely going to be a formidable task.

Even if this finite number of unresolved instances can be confirmed computationally, it would be very desirable to have a uniform and conceptual proof of Conjecture 1.16. This would then entail a conceptual proof of the fact that the Weyl arrangement for E_8 itself is inductively free.

1.3. The Poincaré polynomial of a Coxeter group. Let W be the Coxeter group associated with the root system Φ and let Φ^+ be the system of positive roots with respect to a base Π. For $w \in W$, we define

\begin{equation}
N(w) := \{ \alpha \in \Phi^+ \mid w\alpha \in -\Phi^+ \}.
\end{equation}

Then $|N(w)| = \ell(w)$, where ℓ is the usual length function of W with respect to the fixed set of generators of W corresponding to Π.

Let t be an indeterminate. The Poincaré polynomial $W(t)$ of the Coxeter group W is defined by

\begin{equation}
W(t) := \sum_{w \in W} t^{|N(w)|} = \sum_{w \in W} t^{\ell(w)}.
\end{equation}

The following factorization of $W(t)$ is due to Solomon [Sol66]:

\begin{equation}
W(t) = \prod_{i=1}^n (1 + t + \ldots + t^{e_i}),
\end{equation}

where $\{e_1, \ldots, e_n\}$ is the set of exponents of W. See also Macdonald [Mac72].

In geometric terms, $W(t^2)$ is the Poincaré polynomial of the flag manifold G/B, where G is a semisimple Lie group with Weyl group W and B is a Borel subgroup of G. The formula (1.20) then gives a well-known factorization of this Poincaré polynomial.
1.4. **The Poincaré polynomial of an ideal.** Fix a subset $R \subset \Phi^+$. Following [ST06, §4], we say that a subset $S \subseteq R$ is R-closed provided if $\alpha, \beta \in S$ and $\alpha + \beta \in R$, then also $\alpha + \beta \in S$. For \mathcal{I} an ideal in Φ^+, we say $S \subset \mathcal{I}$ is of Weyl type for \mathcal{I} provided both S and its complement in \mathcal{I}^c are \mathcal{I}^c-closed. Let \mathcal{W} denote the set of all subsets of \mathcal{I}^c which are of Weyl type for \mathcal{I}. These sets generalize the sets $N(w)$ defined in (1.18) above. For, thanks to [ST06, Prop. 6.1], each such set S of Weyl type for \mathcal{I} is of the form $S = N(w) \cap \mathcal{I}^c$ for some $w \in W$. So in particular, if $\mathcal{I} = \emptyset$, so that $\mathcal{I}^c = \Phi^+$, the sets of Weyl type for $\mathcal{I} = \emptyset$ are precisely the sets $N(w)$ in Φ^+; see also [Ko61]. Therefore, because of the analogy with (1.19) and following [ST06, §§4, 6], we call

$$
(1.21) \quad \mathcal{I}(t) := \sum_{S \in \mathcal{W}} t^{|S|}
$$

the Poincaré polynomial of \mathcal{I}. We can now formulate a further conjecture due to Sommers and Tymoczko which asserts that the analogue of Solomon’s multiplicative formula (1.20) for $W(t)$ holds for $\mathcal{I}(t)$.

Conjecture 1.22 ([ST06, §4]). Let \mathcal{I} be an ideal in Φ^+. Then

$$
(1.23) \quad \mathcal{I}(t) = \prod_{i=1}^{k} (1 + t + \ldots + t^{m_i^2}),
$$

with m_i^2 the ideal exponents of \mathcal{I} introduced in Definition 1.1.

For $\mathcal{I} = \emptyset$ the identity (1.23) specializes to Solomon’s formula (1.20). In [ST06, Thm. 4.1], Sommers and Tymoczko gave a proof of the identity (1.23) based on case by case arguments in the following cases along with computer checks for F_4 and E_6.

Theorem 1.24 ([ST06, Thm. 4.1]). Let Φ be of type $A_n, B_n, C_n, \text{ or } G_2$ and let \mathcal{I} be an ideal in Φ^+. Then $\mathcal{I}(t)$ satisfies (1.23).

We present an alternative proof of Theorem 1.24 based on Theorems 1.5 and 5.2 and (5.7), see Remark 5.6(iii). Conjecture 1.22 is still open for the infinite family of type D_n for $n \geq 4$, as well as for types E_7 and E_8.

In [ST06, Thm. 9.2], Sommers and Tymoczko gave a uniform proof of (1.23) for all types for $\mathcal{I} = \{\emptyset\}$ using an alternate formula for $W(t)$ due to Macdonald, [Mac72, Cor. 2.5].

Theorem 1.25. Let θ be the highest root of Φ^+ and let $\mathcal{I} = \{\emptyset\}$. Then $\mathcal{I}(t)$ satisfies (1.23).

Thanks to work of Tymoczko [Tym07], for Φ of classical type, $\mathcal{I}(t^2)$ is the Poincaré polynomial of the regular nilpotent Hessenberg variety $\mathcal{H}_\mathcal{I}$ associated with \mathcal{I}. It follows from Theorem 1.24 that for Φ of type $A_n, B_n, \text{ or } C_n$, the Poincaré polynomial of $\mathcal{H}_\mathcal{I}$ admits a factorization as in (1.23), see [ST06, Thm. 10.2].

Our second aim is to address Conjecture 1.22. In this context Condition 1.10 is also a crucial inductive tool. Here are our main results in this direction.

Theorem 1.26. Let Φ be a reduced root system with Weyl arrangement $\mathcal{A} = \mathcal{A}(\Phi)$. Let \mathcal{I} be an ideal in Φ^+. Suppose that either $\mathcal{A}_\mathcal{I}$ is reducible, or else $\mathcal{A}_\mathcal{I}$ is irreducible and there is a maximal parabolic subsystem of Φ such that Condition 1.10 is satisfied. Suppose that for every proper parabolic subsystem of Φ the Poincaré polynomials of all ideals factor as in (1.23). Then $\mathcal{I}(t)$ also factors as in (1.23), and so Conjecture 1.22 holds in these instances.
Thanks to Corollary 6.3, Conjecture 1.22 holds for D_4. So in principle, we can argue by induction for type D_n using Theorem 1.26. Inductively Theorem 1.26 covers the bulk of all instances in type D_n in the following sense. It is straightforward to see that there are just 2^{n-2} ideals \mathcal{I} in D_n for which Condition 1.10 is not satisfied with respect to Φ_0 being the standard subsystem of type D_{n-1}. In addition, in three of these 2^{n-2} instances Conjecture 1.22 always holds, see Remark 6.4. This means, assuming the factorization result for D_{n-1}, it follows from Theorem 1.26 that it holds for all but $2^{n-2} - 3$ instances in D_n as well. Nevertheless, the general case for type D_n is still unresolved.

The following settles Conjecture 1.22 for most instances in the exceptional types.

Theorem 1.27. Let Φ be an irreducible root system of exceptional type with Weyl arrangement $\mathcal{A} = \mathcal{A}(\Phi)$. Let \mathcal{I} be an ideal in Φ^+. Suppose that \mathcal{I} satisfies one of the following conditions

(i) $\mathcal{A}_\mathcal{I}$ is reducible;
(ii) $\mathcal{A}_\mathcal{I}$ is irreducible and there is a maximal parabolic subsystem of Φ such that Condition 1.10 is satisfied; or
(iii) $\mathcal{I} = \{\theta\}$ or $\mathcal{I} = \emptyset$.

Suppose that for every proper parabolic subsystem of Φ the Poincaré polynomials of all ideals factor as in (1.23). Then $I(t)$ also factors as in (1.23) and so Conjecture 1.22 holds in these instances.

Table 1 gives the number of all $\mathcal{A}_\mathcal{I}$ which satisfy one of the conditions above.

For Φ of exceptional type, we see from the data in Table 1 that there is a large number of cases when it does follow from Theorem 1.27 that $I(t)$ factors as in (1.23). Sommers and Tymoczko have already checked computationally that Conjecture 1.22 holds in types F_4 and E_6. It also holds for D_4, by Corollary 6.3. A. Schauenburg was able to confirm this also for root systems of type D_n for $5 \leq n \leq 7$ and E_7 by direct computation. Combining these computational results with Theorem 1.27, we obtain the following.

Theorem 1.28. Let Φ be an irreducible root system of exceptional type with Weyl arrangement $\mathcal{A} = \mathcal{A}(\Phi)$. Let \mathcal{I} be an ideal in Φ^+. Then Conjecture 1.22 holds for \mathcal{I} with the possible exception when W is of type E_8 and \mathcal{I} is one of 6178 ideals.

Remarks 1.29. (i). Our proofs of Theorems 1.26 and 1.27 utilize the observation from [ST06, §12] that the Poincaré polynomial $I(t)$ associated with $\mathcal{A}_\mathcal{I}$ coincides with the rank generating function of the poset of regions of $\mathcal{A}_\mathcal{I}$, see (5.7). This allows us to study the former by means of the latter.

(ii). Thanks to work of Björner, Edelman, and Ziegler [BEZ90, Thm. 4.4], respectively Jambu and Paris [JP95, Prop. 3.4, Thm. 6.1], the rank generating function of the poset of regions of a real arrangement which is supersolvable, respectively inductively factored, admits a multiplicative decomposition which is equivalent to (1.23) for an arrangement of ideal type, according to (5.7), see Theorem 5.2.

Therefore, there is independent interest in the supersolvable and inductively factored instances among the $\mathcal{A}_\mathcal{I}$. The former have already been characterized by Hultman in [Hul16].

(iii). In [ST06, §12], Sommers and Tymoczko speculate about an equivalence of both of their theorems [ST06, Thms. 4.1, 11.1], cf. Theorems 1.4 and 1.24. The fact that all $\mathcal{A}_\mathcal{I}$ are supersolvable in these instances implies both results, cf. Theorems 1.5 and 5.2. Indeed,
the similarity of the formulations of Theorems 1.13, 1.14, 1.26, and 1.27 confirm a deeper parallelism between both conjectures. This connection appears to stem from Condition 1.10 and the fact that this in turn entails the presence of a modular element in \(L(\mathcal{A}_1) \) of rank \(r(\mathcal{A}_1) - 1 \) (cf. Lemmas 3.1 and 3.4), which ultimately furnishes the induction argument, by means of Theorem 1.12(ii) and Lemma 5.4.

1.5. Supersolvable and inductively factored arrangements of ideal type. It follows from \[Hul16\] that there are always non-supersolvable arrangements of ideal type in all Dynkin types other than the ones covered in Theorem 1.5. Likewise for the notion of inductive factoredness. In view of Conjecture 1.22 it is rather natural to investigate inductive factoredness for the \(\mathcal{A}_1 \), cf. Remark 1.29(ii). Theorem 1.12(iii) proves to be an equally useful inductive tool in this regard. We give an indication for \(\Phi \) of type \(D_n \) for \(n \geq 4 \), \(E_6 \), \(E_7 \), and \(E_8 \), where the situation is already quite different to the one covered in Theorem 1.5, as demonstrated in our next result.

Let \(\theta \) be the highest root in \(\Phi \). Then \(h = \text{ht}(\theta) + 1 \) is the Coxeter number of \(W \). For \(1 \leq t \leq h \), let \(\mathcal{I}_t \) be the ideal consisting of all roots of height at least \(t \), i.e.

\[\mathcal{I}_t := \{ \alpha \in \Phi^+ \mid \text{ht}(\alpha) \geq t \} \]

In particular, we have \(\mathcal{I}_1 = \Phi^+ \) and \(\mathcal{I}_h = \varnothing \).

Theorem 1.30. Let \(\Phi \) be of type \(D_n \) for \(n \geq 4 \), \(E_6 \), \(E_7 \), or \(E_8 \). Let \(\mathcal{I} \) be an ideal in \(\Phi^+ \). Then the following hold:

(i) if \(\mathcal{I} \subseteq \mathcal{I}_4 \), then \(\mathcal{A}_\mathcal{I} \) is not supersolvable;

(ii) if \(\mathcal{I} \subseteq \mathcal{I}_5 \), then \(\mathcal{A}_\mathcal{I} \) is not inductively factored.

Theorem 1.31. Let \(\Phi \) be of type \(D_n \) for \(n \geq 4 \), \(E_6 \), \(E_7 \), or \(E_8 \). Let \(\mathcal{I} \) be an ideal in \(\Phi^+ \). Then the following hold:

(i) if \(\mathcal{I} \supseteq \mathcal{I}_3 \), then \(\mathcal{A}_\mathcal{I} \) is supersolvable;

(ii) if \(\mathcal{I} \supseteq \mathcal{I}_4 \), then \(\mathcal{A}_\mathcal{I} \) is inductively factored.

Thanks to Theorem 2.15 and Proposition 2.21, in all instances covered in Theorem 1.31, \(\mathcal{A}_\mathcal{I} \) is inductively free.

While in types \(A_n \), \(B_n \), \(C_n \) and \(G_2 \), the notions of supersolvability and inductive factoredness coincide for all \(\mathcal{A}_\mathcal{I} \), according to Theorem 1.5, in contrast, in type \(D_n \) for \(n \geq 4 \), \(E_6 \), \(E_7 \), or \(E_8 \), the arrangement \(\mathcal{A}_\mathcal{I}_4 \) is inductively factored but not supersolvable, thanks to Theorems 1.30(i) and 1.31(ii). Note that Theorems 1.30(i) and 1.31(i) also both follow readily from \[Hul16\].

The paper is organized as follows. In §§2.1 – 2.2 we recall some basic terminology and introduce further notation on hyperplane arrangements and record some basic facts on modular elements in the lattice of intersections of an arrangement. This is followed by brief sections on the fundamental notion on free and inductively free arrangements, including Terao’s addition deletion Theorem 2.3. In §§2.5 and 2.6, the concepts of supersolvable, nice and inductively factored arrangements are recalled.

It is worth noting that all of these properties above are inherited by arbitrary localizations. In Lemmas 2.7 and 2.24 and Corollary 2.13, we show that if \(X \) in \(L(\mathcal{A}) \) is modular of rank \(r(\mathcal{A}) - 1 \) and the localization \(\mathcal{A}_X \) satisfies any of these properties, the so does \(\mathcal{A} \) itself.
The number of all ideals \(\mathcal{I}\) in \(\Phi^+\) was first obtained in a case by case analysis by Shi [Shi97]. An expression for this number in closed form was proved by Cellini and Papi [CP00, CP02], see §2.9. We also record closed formulas for the former sequences for the classical types depending on the rank in Table 4. They coincide with the famous Catalan sequences. Concerning the mathematical ubiquity of the latter, see [Sta99].

In the main section of the paper, §3, we prove in Lemma 3.1 that \(\mathcal{A}_I\) is always a localization of \(\mathcal{A}_F\) and in Lemma 3.4 that if \(\mathcal{I} \subseteq \Phi^+\) and \(\Phi_0\) satisfy Condition 1.10, then the center of this localization is a modular element of rank \(r(\mathcal{A}_F) - 1\). This and further results stemming from this fact are then used to prove Theorem 1.12. Subsequently Theorems 1.13 and 1.5 are then derived as consequences of Theorem 1.12. This is followed by a proof of Theorem 1.7. All of the above crucially depend on Condition 1.10 and Theorem 1.12.

Section 4 is devoted to the proof of Theorem 1.14. This crucially depends again on Theorems 1.5 and 1.12.

In §5.1, we recall the basics on the rank-generating function \(\zeta(P(\mathcal{A}, B), t)\) of the poset of regions \(P(\mathcal{A}, B)\) of a real arrangement \(\mathcal{A}\). In Theorem 5.2 we recall theorems of Björner, Edelman and Ziegler [BEZ90, Thm. 4.4], respectively Jambu and Paris [JP95, Prop. 3.4, Thm. 6.1], asserting that for \(\mathcal{A}\) supersolvable, respectively inductively factored, \(\zeta(P(\mathcal{A}, B), t)\) satisfies a factorization analogous to (1.23). The proof of [BEZ90, Thm. 4.4] is used in Lemma 5.4 to show that \(\zeta(P(\mathcal{A}, B), t)\) factors with respect to a localization of \(\mathcal{A}\) at a modular element of rank \(r(\mathcal{A}) - 1\). This in turn allows us to derive the desired factorization of \(\zeta(P(\mathcal{A}, B), t)\) despite the absence of supersolvability or inductive factoredness of the ambient arrangement, cf. Example 5.5. Lemma 5.4 quickly furnishes the proofs of Theorems 1.26 and 1.27.

Finally, in §6, after classifying all supersolvable and all inductively factored \(\mathcal{A}_F\) in type \(D_4\) in Lemma 6.1, we complete the proofs of Theorems 1.30 and 1.31. The proof of Theorem 1.31 utilizes Condition 1.10 and Theorem 1.12 once again.

For general information about arrangements, Weyl groups and root systems, we refer the reader to [Bou68] and [OT92].

2. Recollections and Preliminaries

2.1. Hyperplane arrangements

Let \(\mathbb{K}\) be a field and let \(V = \mathbb{K}^\ell\) be an \(\ell\)-dimensional \(\mathbb{K}\)-vector space. A hyperplane arrangement \(\mathcal{A} = (\mathcal{A}, V)\) in \(V\) is a finite collection of hyperplanes in \(V\) each containing the origin of \(V\). We also use the term \(\ell\)-arrangement for \(\mathcal{A}\). We denote the empty arrangement in \(V\) by \(\emptyset\).

The lattice \(L(\mathcal{A})\) of \(\mathcal{A}\) is the set of subspaces of \(V\) of the form \(H_1 \cap \cdots \cap H_i\) where \(\{H_1, \ldots, H_i\}\) is a subset of \(\mathcal{A}\). For \(X \in L(\mathcal{A})\), we have two associated arrangements, firstly \(\mathcal{A}_X := \{H \in \mathcal{A} \mid X \subseteq H\} \subseteq \mathcal{A}\), the localization of \(\mathcal{A}\) at \(X\), and secondly, the restriction of \(\mathcal{A}\) to \(X\), \((\mathcal{A}^X, X)\), where \(\mathcal{A}^X := \{X \cap H \mid H \in \mathcal{A} \setminus \mathcal{A}_X\}\). Note that \(V\) belongs to \(L(\mathcal{A})\) as the intersection of the empty collection of hyperplanes and \(\mathcal{A}^V = \mathcal{A}\). The lattice \(L(\mathcal{A})\) is a partially ordered set by reverse inclusion: \(X \leq Y\) provided \(Y \subseteq X\) for \(X, Y \in L(\mathcal{A})\).

More generally, for \(U\) an arbitrary subspace of \(V\), define \(\mathcal{A}_U := \{H \in \mathcal{A} \mid U \subseteq H\} \subseteq \mathcal{A}\), the localization of \(\mathcal{A}\) at \(U\). Note that for \(X = \cap_{H \in \mathcal{A}_U} H\), we have \(\mathcal{A}_X = \mathcal{A}_U\) and \(X\) belongs to the intersection lattice of \(\mathcal{A}\).

For \(\mathcal{A} \neq \emptyset\), let \(H_0 \in \mathcal{A}\). Define \(\mathcal{A}' := \mathcal{A} \setminus \{H_0\}\), and \(\mathcal{A}'' := \mathcal{A}_H = \{H_0 \cap H \mid H \in \mathcal{A}'\}\), the restriction of \(\mathcal{A}\) to \(H_0\). Then \((\mathcal{A}, \mathcal{A}', \mathcal{A}'')\) is a triple of arrangements, [OT92, Def. 1.14].
Throughout, we only consider arrangements \mathcal{A} such that $0 \in H$ for each H in \mathcal{A}. These are called central. In that case the center $T(\mathcal{A}) := \bigcap_{H \in \mathcal{A}} H$ of \mathcal{A} is the unique maximal element in $L(\mathcal{A})$ with respect to the partial order. A rank function on $L(\mathcal{A})$ is given by $r(X) := \text{codim}_V(X)$. The rank of \mathcal{A} is defined as $r(\mathcal{A}) := r(T(\mathcal{A}))$.

The product $\mathcal{A} = (\mathcal{A}_1 \times \mathcal{A}_2, V_1 + V_2)$ of two arrangements $(\mathcal{A}_1, V_1), (\mathcal{A}_2, V_2)$ is defined by

$$\mathcal{A} = \mathcal{A}_1 \times \mathcal{A}_2 := \{H_1 + V_2 \mid H_1 \in \mathcal{A}_1\} \cup \{V_1 + H_2 \mid H_2 \in \mathcal{A}_2\},$$

see [OT92, Def. 2.13].

2.2. Modular elements in $L(\mathcal{A})$. We say that $X \in L(\mathcal{A})$ is modular provided $X + Y \in L(\mathcal{A})$ for every $Y \in L(\mathcal{A})$, [OT92, Cor. 2.26]. We require the following characterization of modular members of $L(\mathcal{A})$ of rank $r - 1$, see the proof of [BEZ90, Thm. 4.3].

Lemma 2.1. Let \mathcal{A} be an arrangement of rank r. Suppose that $X \in L(\mathcal{A})$ is of rank $r - 1$. Then X is modular if and only if for any two distinct $H_1, H_2 \in \mathcal{A} \setminus \mathcal{A}_X$ there is a $H_3 \in \mathcal{A}_X$ so that $r(H_1 \cap H_2 \cap H_3) = 2$, i.e. H_1, H_2, H_3 are linearly dependent.

Next we record a special case of a general fact about modular elements in a geometric lattice, cf. [Aig79, Prop. 2.42] or [OT92, Lem. 2.27].

Lemma 2.2. Let \mathcal{A} be an arrangement of rank r. Suppose that $X \in L(\mathcal{A})$ is modular of rank $r - 1$. Then the map $L(\mathcal{A}_X) \to L(\mathcal{A}^H)$ given by $Y \mapsto Y \cap H$ is a lattice isomorphism for any $H \in \mathcal{A} \setminus \mathcal{A}_X$. In particular, $\mathcal{A}_X \cong \mathcal{A}^H$.

2.3. Free hyperplane arrangements. Let $S = S(V^*)$ be the symmetric algebra of the dual space V^* of V. Let $\text{Der}(S)$ be the S-module of \mathbb{K}-derivations of S. Since S is graded, $\text{Der}(S)$ is a graded S-module.

Let \mathcal{A} be an arrangement in V. Then for $H \in \mathcal{A}$ we fix $\alpha_H \in V^*$ with $H = \ker \alpha_H$. The defining polynomial $Q(\mathcal{A})$ of \mathcal{A} is given by $Q(\mathcal{A}) := \prod_{H \in \mathcal{A}} \alpha_H \in S$. The module of \mathcal{A}-derivations of \mathcal{A} is defined by

$$D(\mathcal{A}) := \{\theta \in \text{Der}(S) \mid \theta(Q(\mathcal{A})) \in Q(\mathcal{A})S\}.$$

We say that \mathcal{A} is free if $D(\mathcal{A})$ is a free S-module, cf. [OT92, §4].

If \mathcal{A} is a free arrangement, then the S-module $D(\mathcal{A})$ admits a basis of ℓ homogeneous derivations, say $\theta_1, \ldots, \theta_{\ell}$, [OT92, Prop. 4.18]. While the θ_i’s are not unique, their polynomial degrees $\text{pdeg} \theta_i$ are unique (up to ordering). This multiset is the set of exponents of the free arrangement \mathcal{A} and is denoted by $\text{exp} \mathcal{A}$.

Terao’s celebrated addition deletion theorem which we recall next plays a pivotal role in the study of free arrangements, [OT92, §4].

Theorem 2.3 ([Ter80]). Suppose that \mathcal{A} is non-empty. Let $(\mathcal{A}, \mathcal{A}', \mathcal{A}'')$ be a triple of arrangements. Then any two of the following statements imply the third:

1. \mathcal{A} is free with $\text{exp} \mathcal{A} = \{b_1, \ldots, b_{\ell-1}, b_{\ell}\}$;
2. \mathcal{A}' is free with $\text{exp} \mathcal{A}' = \{b_1, \ldots, b_{\ell-1}, b_{\ell} - 1\}$;
3. \mathcal{A}'' is free with $\text{exp} \mathcal{A}'' = \{b_1, \ldots, b_{\ell-1}\}$.

There are various stronger notions of freeness which we discuss in the following subsections.
2.4. Inductively free arrangements. Theorem 2.3 motivates the notion of inductively free arrangements, see [Ter80] or [OT92, Def. 4.53].

Definition 2.4. The class \mathcal{IF} of inductively free arrangements is the smallest class of arrangements subject to

(i) \emptyset belongs to \mathcal{IF}, for every $\ell \geq 0$;
(ii) if there exists a hyperplane $H_0 \in \mathcal{A}$ such that both \mathcal{A}' and \mathcal{A}'' belong to \mathcal{IF}, and $\exp \mathcal{A}'' \subseteq \exp \mathcal{A}'$, then \mathcal{A} also belongs to \mathcal{IF}.

Remark 2.5. It is possible to describe an inductively free arrangement \mathcal{A} by means of a so-called induction table, cf. [OT92, §4.3, p. 119]. In this process we start with an inductively free arrangement and add hyperplanes successively ensuring that part (ii) of Definition 2.4 is satisfied. This process is referred to as induction of hyperplanes. This procedure amounts to choosing a total order on \mathcal{A}, say $\mathcal{A} = \{H_1, \ldots, H_m\}$, so that each of the subarrangements $\mathcal{A}_i := \{H_1, \ldots, H_i\}$ and each of the restrictions $\mathcal{A}_i^{H_i}$ is inductively free for $i = 1, \ldots, m$. In the associated induction table we record in the i-th row the information of the i-th step of this process, by listing $\exp \mathcal{A}_i = \exp \mathcal{A}_{i-1}, H_i$, as well as $\exp \mathcal{A}_i'' = \exp \mathcal{A}_i^{H_i}$, for $i = 1, \ldots, m$. For instance, see [OT92, Tables 4.1, 4.2], or Table 2 below.

The class of free arrangements is closed with respect to taking localizations, cf. [OT92, Thm. 4.37]. This also holds for the class \mathcal{IF}, [HRS17, Thm. 1.1].

Proposition 2.6. If \mathcal{A} is inductively free, then so is \mathcal{A}_U for every subspace U in V.

For X in $L(\mathcal{A})$ modular of rank $r - 1$, we get the following converse to Proposition 2.6, see also [Slo15, Lem. 6.7].

Lemma 2.7. Let \mathcal{A} be an arrangement of rank r. Suppose that $X \in L(\mathcal{A})$ is modular of rank $r - 1$. If \mathcal{A}_X is inductively free, then so is \mathcal{A}. In particular, if $\exp \mathcal{A}_X = \{0, e_1, \ldots, e_{\ell-1}\}$, then $\exp \mathcal{A} = \{e_1, \ldots, e_{\ell-1}, e_{\ell}\}$, where $e_{\ell} := \mid \mathcal{A} \setminus \mathcal{A}_X \mid$.

Proof. We argue by means of an induction table for \mathcal{A} starting with the inductively free subarrangement \mathcal{A}_X and adding hyperplanes from $\mathcal{A} \setminus \mathcal{A}_X = \{H_1, \ldots, H_m\}$ (in any fixed order) successively, see Remark 2.5. Let $\mathcal{A}_i := \mathcal{A}_X \cup \{H_1, \ldots, H_i\}$ for $i = 1, \ldots, \ell$. Then, since X is modular of rank $r - 1$ also in $L(\mathcal{A}_i)$, for $i = 1, \ldots, \ell$ (cf. the second part of the proof of [BEZ90, Thm. 4.3]), it follows from Lemma 2.2 that $\mathcal{A}_i^{H_i}$ is isomorphic to \mathcal{A}_X for each $i = 1, \ldots, \ell$.

$\exp \mathcal{A}_i'$	H_i	$\exp \mathcal{A}_i''$
$e_1, \ldots, e_{\ell-1}, 0$	H_1	$e_1, \ldots, e_{\ell-1}$
$e_1, \ldots, e_{\ell-1}, 1$	H_2	$e_1, \ldots, e_{\ell-1}$
\vdots	\vdots	\vdots
$e_1, \ldots, e_{\ell-1}, e_{\ell} - 1$	H_{ℓ}	$e_1, \ldots, e_{\ell-1}$
$e_1, \ldots, e_{\ell-1}, e_{\ell}$		

Table 2. Induction table for \mathcal{A} starting at \mathcal{A}_X.

12
It thus follows from Table 2 and a repeated application of the addition part of Theorem 2.3 that \(\mathcal{A} \) is inductively free with \(\exp \mathcal{A} = \{e_1, \ldots, e_{\ell-1}, e_\ell\} \).

Remark 2.8. The same argument as the one in the proof of Lemma 2.7 shows that if \(X \in L(\mathcal{A}) \) is modular of rank \(r-1 \) and \(\mathcal{A}_X \) is free, then so is \(\mathcal{A} \).

Free arrangements behave well with respect to the product construction for arrangements, [OT92, Prop. 4.28]. This property descends to the class \(\mathcal{IF} \), [HR15, Prop. 2.10].

Proposition 2.9. Let \(\mathcal{A}_1, \mathcal{A}_2 \) be two arrangements. Then \(\mathcal{A} = \mathcal{A}_1 \times \mathcal{A}_2 \) is inductively free if and only if both \(\mathcal{A}_1 \) and \(\mathcal{A}_2 \) are inductively free.

2.5. Supersolvable arrangements

The following notion is due to Stanley [Sta72].

Definition 2.10. Let \(\mathcal{A} \) be a central arrangement of rank \(r \). We say that \(\mathcal{A} \) is supersolvable provided there is a maximal chain

\[
V = X_0 < X_0 < \ldots < X_{r-1} < X_r = T(\mathcal{A})
\]

of modular elements \(X_i \) in \(L(\mathcal{A}) \), cf. [OT92, Def. 2.32].

The class of supersolvable arrangements is closed under localization, [Sta72].

Proposition 2.11. If \(\mathcal{A} \) is supersolvable, then so is \(\mathcal{A}_U \) for every subspace \(U \) in \(V \). We require the following characterization of supersolvable arrangements due to Björner, Edelman and Ziegler, [BEZ90, Thm. 4.3].

Theorem 2.12. Every arrangement of rank at most 2 is supersolvable. Let \(\mathcal{A} \) be an arrangement of rank \(r \geq 3 \). Then \(\mathcal{A} \) is supersolvable if and only if \(\mathcal{A} \) can be written as the proper disjoint union of two subarrangements \(\mathcal{A} = \mathcal{A}_0 \bigsqcup \mathcal{A}_1 \), such that \(\mathcal{A}_0 \) is supersolvable of rank \(r-1 \) and for any \(H_1 \neq H_2 \) in \(\mathcal{A}_1 \), there is a \(H_3 \) in \(\mathcal{A}_0 \) so that \(H_1 \cap H_2 \subseteq H_3 \).

Thanks to Lemma 2.1 and Theorem 2.12, we get a converse to Proposition 2.11 for \(X \) in \(L(\mathcal{A}) \) modular of rank \(r-1 \). (This is just the reverse implication in Theorem 2.12.)

Corollary 2.13. Let \(\mathcal{A} \) be an arrangement of rank \(r \). Suppose that \(X \in L(\mathcal{A}) \) is modular of rank \(r-1 \). If \(\mathcal{A}_X \) is supersolvable, then so is \(\mathcal{A} \). In particular, if \(\exp \mathcal{A}_X = \{0, e_1, \ldots, e_{\ell-1}\} \), then \(\exp \mathcal{A} = \{e_1, \ldots, e_{\ell-1}, e_\ell\} \), where \(e_\ell := |\mathcal{A} \setminus \mathcal{A}_X| \).

Also supersolvable arrangements are compatible with the product construction for arrangements.

Proposition 2.14 ([HR14, Prop. 2.5]). Let \(\mathcal{A}_1, \mathcal{A}_2 \) be two arrangements. Then \(\mathcal{A} = \mathcal{A}_1 \times \mathcal{A}_2 \) is supersolvable if and only if both \(\mathcal{A}_1 \) and \(\mathcal{A}_2 \) are supersolvable.

The connection of this notion with freeness is due to Jambu and Terao.

Theorem 2.15 ([JT84, Thm. 4.2]). A supersolvable arrangement is inductively free.

2.6. Nice and inductively factored arrangements

The notion of a nice or factored arrangement goes back to Terao [Ter92]. It generalizes the concept of a supersolvable arrangement, see [OST84, Thm. 5.3] and [OT92, Prop. 2.67, Thm. 3.81]. Terao’s main motivation was to give a general combinatorial framework to deduce tensor factorizations of the underlying Orlik-Solomon algebra, see also [OT92, §3.3]. We recall the relevant notions from [Ter92] (cf. [OT92, §2.3]):

13
Definition 2.16. Let \(\pi = (\pi_1, \ldots, \pi_s) \) be a partition of \(\mathcal{A} \).

(a) \(\pi \) is called independent, provided for any choice \(H_i \in \pi_i \) for \(1 \leq i \leq s \), the resulting \(s \) hyperplanes are linearly independent, i.e. \(r(H_1 \cap \ldots \cap H_s) = s \).

(b) Let \(X \in L(\mathcal{A}) \). The induced partition \(\pi_X \) of \(\mathcal{A}_X \) is given by the non-empty blocks of the form \(\pi_i \cap \mathcal{A}_X \).

(c) \(\pi \) is nice for \(\mathcal{A} \) or a factorization of \(\mathcal{A} \) provided

(i) \(\pi \) is independent, and

(ii) for each \(X \in L(\mathcal{A}) \setminus \{V\} \), the induced partition \(\pi_X \) admits a block which is a singleton.

If \(\mathcal{A} \) admits a factorization, then we also say that \(\mathcal{A} \) is factored or nice.

Remark 2.17. If \(\mathcal{A} \) is non-empty and \(\pi \) is a nice partition of \(\mathcal{A} \), then the non-empty parts of the induced partition \(\pi_X \) form a nice partition of \(\mathcal{A}_X \) for each \(X \in L(\mathcal{A}) \setminus \{V\} \); cf. the proof of [Ter92, Cor. 2.11].

Following Jambu and Paris [JP95], we introduce further notation. Suppose \(\mathcal{A} \) is not empty. Let \(\pi = (\pi_1, \ldots, \pi_s) \) be a partition of \(\mathcal{A} \). Let \(H_0 \in \pi_1 \) and let \((\mathcal{A}, \mathcal{A}', \mathcal{A}'') \) be the triple associated with \(H_0 \). Then \(\pi \) induces a partition \(\pi' \) of \(\mathcal{A}' \), i.e. the non-empty subsets \(\pi_i \cap \mathcal{A}' \). Note that since \(H_0 \in \pi_1 \), we have \(\pi_i \cap \mathcal{A}' = \pi_i \) for \(i = 2, \ldots, s \). Also, associated with \(\pi \) and \(H_0 \), we define the restriction map

\[\varrho := \varrho_{\pi,H_0} : \mathcal{A} \setminus \pi_1 \to \mathcal{A}'' \] given by \(H \mapsto H \cap H_0 \)

and set

\[\pi_i'' := \varrho(\pi_i) = \{ H \cap H_0 \mid H \in \pi_i \} \text{ for } 2 \leq i \leq s. \]

In general, \(\varrho \) need not be surjective nor injective. However, since we are only concerned with cases when \(\pi'' = (\pi_2'', \ldots, \pi_s'') \) is a partition of \(\mathcal{A}'' \), \(\varrho \) has to be onto and \(\varrho(\pi_i) \cap \varrho(\pi_j) = \emptyset \) for \(i \neq j \).

The following gives an analogue of Terao’s addition deletion Theorem 2.3 for free arrangements for the class of nice arrangements.

Theorem 2.18 ([HR16a, Thm. 3.5]). Suppose that \(\mathcal{A} \neq \emptyset \). Let \(\pi = (\pi_1, \ldots, \pi_s) \) be a partition of \(\mathcal{A} \). Let \(H_0 \in \pi_1 \) and let \((\mathcal{A}, \mathcal{A}', \mathcal{A}'') \) be the triple associated with \(H_0 \). Then any two of the following statements imply the third:

(i) \(\pi \) is nice for \(\mathcal{A} \);

(ii) \(\pi' \) is nice for \(\mathcal{A}' \);

(iii) \(\varrho : \mathcal{A} \setminus \pi_1 \to \mathcal{A}'' \) is bijective and \(\pi'' \) is nice for \(\mathcal{A}'' \).

The bijectivity condition on \(\varrho \) in the theorem is necessary, cf. [HR16a, Ex. 3.3]. Theorem 2.18 motivates the following stronger notion of factorization, cf. [JP95], [HR16a, Def. 3.8].

Definition 2.19. The class \(\mathcal{IFAC} \) of inductively factored arrangements is the smallest class of pairs \((\mathcal{A}, \pi) \) of arrangements \(\mathcal{A} \) together with a partition \(\pi \) subject to

(i) \((\mathcal{A}_\ell, \pi)\) belongs to \(\mathcal{IFAC} \) for each \(\ell \geq 0 \);

(ii) if there exists a partition \(\pi \) of \(\mathcal{A} \) and a hyperplane \(H_0 \in \pi_1 \) such that for the triple \((\mathcal{A}, \mathcal{A}'', \mathcal{A}'') \) associated with \(H_0 \) the restriction map \(\varrho = \varrho_{\pi,H_0} : \mathcal{A} \setminus \pi_1 \to \mathcal{A}'' \) is bijective and for the induced partitions \(\pi' \) of \(\mathcal{A}' \) and \(\pi'' \) of \(\mathcal{A}'' \) both \((\mathcal{A}', \pi') \) and \((\mathcal{A}'', \pi'') \) belong to \(\mathcal{IFAC} \), then \((\mathcal{A}, \pi) \) also belongs to \(\mathcal{IFAC} \).
If \((\mathcal{A}, \pi)\) is in \(\text{IFAC}\), then we say that \(\mathcal{A}\) is \textit{inductively factored} with respect to \(\pi\), or else that \(\pi\) is an \textit{inductive factorization} of \(\mathcal{A}\). Sometimes, we simply say \(\mathcal{A}\) is \textit{inductively factored} without reference to a specific inductive factorization of \(\mathcal{A}\).

The connection with the previous notions is as follows, [HR16a, Prop. 3.11].

Proposition 2.20. If \(\mathcal{A}\) is supersolvable, then \(\mathcal{A}\) is inductively factored.

Proposition 2.21 ([JP95, Prop. 2.2], [HR16a, Prop. 3.14]). Let \(\pi = (\pi_1, \ldots, \pi_r)\) be an inductive factorization of \(\mathcal{A}\). Then \(\mathcal{A}\) is inductively free with \(\exp \mathcal{A} = \{0^{\ell-r}, |\pi_1|, \ldots, |\pi_r|\}\).

Remark 2.22. In analogy to \(\text{IF}\), for members in \(\text{IFAC}\) one can present a so called induction table of factorizations, cf. [HR16a, Rem. 3.16].

The proof of Proposition 2.21 shows that if \(\pi\) is an inductive factorization of \(\mathcal{A}\) and \(H_0 \in \mathcal{A}\) is distinguished with respect to \(\pi\), then the triple \((\mathcal{A}, \mathcal{A}', \mathcal{A}'')\) with respect to \(H_0\) is a triple of inductively free arrangements. Thus an induction table of \(\mathcal{A}\) can be constructed, compatible with suitable inductive factorizations of the subarrangements \(\mathcal{A}'\).

Let \(\mathcal{A} = \{H_1, \ldots, H_m\}\) be a choice of a total order on \(\mathcal{A}\). Then, starting with the empty partition for \(\emptyset\), we can attempt to build inductive factorizations \(\pi_i\) of \(\mathcal{A}_i\) consecutively, resulting in an inductive factorization \(\pi = \pi_m\) of \(\mathcal{A} = \mathcal{A}_m\). This is achieved by invoking Theorem 2.18 repeatedly in order to derive that each \(\pi_i\) is an inductive factorization of \(\mathcal{A}_i\).

We then add the inductive factorizations \(\pi_i\) of \(\mathcal{A}_i\) as additional data into an induction table for \(\mathcal{A}\). The data in such an extended induction table together with the addition part of Theorem 2.18 then proves that \(\mathcal{A}\) is inductively factored. We refer to this technique as \textit{induction of factorizations} and the corresponding table as an \textit{induction table of factorizations} for \(\mathcal{A}\). See for instance [HR16a, §3.3], or Table 3.

By Remark 2.17, the class of nice arrangements is closed with respect to taking localizations. This property restricts to the class \(\text{IFAC}\), [MR17, Thm. 1.1].

Proposition 2.23. If \(\mathcal{A}\) is inductively factored, then so is \(\mathcal{A}_U\) for every subspace \(U\) in \(\mathcal{V}\).

The following gives a converse to Proposition 2.23 for \(X\) in \(L(\mathcal{A})\) modular of rank \(r-1\).

Lemma 2.24. Let \(\mathcal{A}\) be an arrangement of rank \(r\). Suppose that \(X \in L(\mathcal{A})\) is modular of rank \(r-1\). If \(\mathcal{A}_X\) is inductively factored, then so is \(\mathcal{A}\). In particular, if \(\exp \mathcal{A}_X = \{0, e_1, \ldots, e_{\ell-1}\}\), then \(\exp \mathcal{A} = \{e_1, \ldots, e_{\ell-1}, e_{\ell}\}\), where \(e_{\ell} := |\mathcal{A} \setminus \mathcal{A}_X|\).

Proof. Let \(\pi_X\) be an inductive factorization of \(\mathcal{A}_X\) and let \(\exp \mathcal{A}_X = \{0, e_1, \ldots, e_{\ell-1}\}\). Let \(\pi^X := \mathcal{A} \setminus \mathcal{A}_X = \{H_1, \ldots, H_{\ell_1}\}\) (given in any fixed order). Then \(\pi := (\pi_X, \pi^X)\) is a partition of \(\mathcal{A}\). We show that \(\pi\) is an inductive factorization of \(\mathcal{A}\) by means of the following induction table of factorizations starting with the inductive factorization \(\pi_X\) of \(\mathcal{A}_X\), see Remark 2.22.

It follows from Lemma 2.2 applied to the consecutive triples in this induction table that each restriction in Table 3 is isomorphic to \(\mathcal{A}_X\) and the induced partition \(\pi_i'' = \pi_X\) is in bijection with \(\pi_X\). Thus each restriction along with the induced partition in this table is isomorphic to the pair \((\mathcal{A}_X, \pi_X)\), and thus is inductively factored. Consequently, it follows from Table 3, Theorem 2.18 and Remark 2.22 that \(\pi = (\pi_X, \pi^X)\) is an inductive factorization of \(\mathcal{A}\). Observe, the notation here is consistent with the one introduced in Definition 2.16(b), for the partition of \(\mathcal{A}_X\) induced from \(\pi\) is just \(\pi_X\), the one we started with. \(\square\)
\[
\begin{array}{cccccc}
\pi'_i & \exp \mathcal{A}' & H_i & \pi''_i & \exp \mathcal{A}'' \\
\pi_X & e_1, \ldots, e_{\ell-1}, 0 & H_1 & \overline{\pi_X} & e_1, \ldots, e_{\ell-1} \\
\pi_X, \{H_1\} & e_1, \ldots, e_{\ell-1}, 1 & H_2 & \overline{\pi_X} & e_1, \ldots, e_{\ell-1} \\
\pi_X, \{H_1, H_2\} & e_1, \ldots, e_{\ell-1}, 2 & H_3 & \overline{\pi_X} & e_1, \ldots, e_{\ell-1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\pi_X, \{H_1, H_2, \ldots, H_{e_{\ell-1}}\} & e_1, \ldots, e_{\ell-1}, e_{\ell} - 1 & H_{e_{\ell}} & \overline{\pi_X} & e_1, \ldots, e_{\ell-1} \\
\pi = (\pi_X, \pi_X) & e_1, \ldots, e_{\ell-1}, e_{\ell} \\
\end{array}
\]

Table 3. Induction table of factorizations for \(\mathcal{A}\) starting at \(\mathcal{A}_X\)

Remark 2.25. The same argument in the proof of Lemma 2.24 shows that if \(X \in L(\mathcal{A})\) is modular of rank \(r - 1\) and \(\mathcal{A}_X\) is nice, then so is \(\mathcal{A}\) (albeit without any reference to exponents, as \(\mathcal{A}_X\) might not be free).

As for the previous stronger freeness properties, inductively factored arrangements are compatible with the product construction for arrangements.

Proposition 2.26 ([HR16a, Prop. 3.30]). Let \(\mathcal{A}_1, \mathcal{A}_2\) be two arrangements. Then \(\mathcal{A} = \mathcal{A}_1 \times \mathcal{A}_2\) is inductively factored if and only if both \(\mathcal{A}_1\) and \(\mathcal{A}_2\) are inductively factored.

Remark 2.27. Observe that the implications in Lemmas 2.7, 2.24 and Corollary 2.13 fail without the modularity requirement on \(X\). For let \(\mathcal{A}\) be a non-free 3-arrangement and let \(X \in L(\mathcal{A})\) be of rank 2. Then being supersolvable, \(\mathcal{A}_X\) satisfies each of the stronger freeness properties, but \(\mathcal{A}\) does not.

2.7. **Supersolvable Weyl arrangements.** In [BC12, Cor. 5.15], Barakat and Cuntz showed that every Weyl arrangement is inductively free. In [HR14, Thm. 1.2] and [HR16b, Cor. 1.4], all supersolvable, respectively inductively factored, reflection arrangements were classified.

It is going to be useful to know all instances when a Weyl arrangement itself satisfies any of these stronger freeness properties. It turns out that for a Weyl arrangement \(\mathcal{A} = \mathcal{A}(\Phi)\), supersolvability, niceness and inductive factoredness all coincide.

Theorem 2.28 ([HR14, Thm. 1.2], [HR16b, Thm. 1.3, Cor. 1.4]). Let \(\Phi\) be an irreducible reduced root system with Weyl arrangement \(\mathcal{A} = \mathcal{A}(\Phi)\). Then

(i) \(\mathcal{A}\) is supersolvable if and only if \(\Phi\) is of type \(A_n, B_n, C_n\), or \(G_2\);
(ii) \(\mathcal{A}\) is inductively factored if and only if \(\mathcal{A}\) is supersolvable;
(iii) \(\mathcal{A}\) is nice if and only if \(\mathcal{A}\) is inductively factored.

2.8. **Parabolic subsystems and parabolic subgroups.** Let \(\Phi\) be a reduced root system of rank \(n\) with Weyl group \(W\) and reflection arrangement \(\mathcal{A} = \mathcal{A}(\Phi) = \mathcal{A}(W)\).

For \(w \in W\), write \(\text{Fix}(w) := \{v \in V \mid wv = v\}\) for the fixed point subspace of \(w\). For \(U \subseteq V\) a subspace, we define the *parabolic subgroup* \(W_U\) of \(W\) by \(W_U := \{w \in W \mid U \subseteq \text{Fix}(w)\}\). By Steinberg’s Theorem [Ste60, Thm. 1.5], for \(U \subseteq V\) a subspace, the parabolic subgroup \(W_U\) is itself a Coxeter group, generated by the reflections in \(W\) that are contained in \(W_U\).
Let $X = \cap_{H \in \mathcal{A}} H$. Then $\mathcal{A}_X = \mathcal{A}_U$ and $X \in L(\mathcal{A})$. Thus, $\mathcal{A}(W_U) = \mathcal{A}_U = \mathcal{A}_X = \mathcal{A}(W_X)$, by [OT92, Thm. 6.27, Cor. 6.28].

Let Φ^+ be the set of positive roots with respect to some set of simple roots Π of Φ. For Π_0 a proper subset of Π, the (standard parabolic) subsystem of Φ generated by Π_0 is $\Phi_0 := Z\Pi_0 \cap \Phi$, cf. [Bou68, Ch. VI §1.7]. Define $\Phi^+_0 := \Phi_0 \cap \Phi^+$, the set of positive roots of Φ_0 with respect to Π_0. If the rank of Φ_0 is $n - 1$, then Φ_0 is said to be maximal.

Set $X_0 := \cap_{\gamma \in \Phi^+_0} H_\gamma$. Then $\mathcal{A}(\Phi) X_0 = \mathcal{A}(\Phi_0)$. Therefore, the reflection arrangement $\mathcal{A}(W_{X_0})$ of the parabolic subgroup W_{X_0} is just $\mathcal{A}(\Phi_0)$, i.e. Φ_0 is the root system of W_{X_0}.

2.9. **On the number of ideals.** Suppose that Φ is irreducible with Weyl group W. Let θ be the highest root in Φ. A closed formula for the number of all ideals \mathcal{I} in Φ^+ was given by Cellini and Papi [CP00, CP02]:

\begin{equation}
\frac{1}{|W|} \prod_{i=1}^{n} (h + e_i + 1),
\end{equation}

where $h = \text{ht}(\theta) + 1$ is the Coxeter number of Φ, and e_1, \ldots, e_n are the exponents of W.

Following [Som05], we call an ideal \mathcal{I} in Φ^+ strictly positive provided it satisfies $\mathcal{I} \cap \Pi = \emptyset$, i.e., provided it does not contain a simple root. Note that this includes the empty ideal. Sommers proved a closed formula for the number of strictly positive ideals in [Som05]:

\begin{equation}
\frac{1}{|W|} \prod_{i=1}^{n} (h + e_i - 1),
\end{equation}

where the notation is as in (2.29).

It is also useful to have closed expressions in terms of the rank for the numbers above for the classical types. These along with the same numbers for the exceptional types belong to the famous Catalan sequences. For further information on the combinatorial aspects and ubiquity of the latter, see for instance [Sta99].

Φ	A_n	B_n	C_n	D_n
all \mathcal{I}	$\frac{1}{n+2} \binom{2n+2}{n+1}$	$\binom{2n}{n}$	$\binom{2n}{n}$	$\binom{2n-1}{n} + \binom{2n-2}{n}$
strictly positive \mathcal{I}	$\frac{1}{n+1} \binom{2n}{n}$	$\binom{2n-1}{n-1}$	$\binom{2n-1}{n-1}$	$\binom{2n-2}{n} + \binom{2n-3}{n}$

Table 4. The number of all \mathcal{I} and strictly positive \mathcal{I} for classical Φ.

In Table 5 we present the number of ideals \mathcal{I} that lie in \mathcal{I}_t for $t \geq 1$ for the irreducible root systems of exceptional type of rank at least 4. Thus the first two rows give the number of ideals in Φ^+, respectively strictly positive ideals in Φ^+, according to (2.29) and (2.30).

The last row in Table 5 labeled with \ast gives the number of ideals \mathcal{I} that are not covered by the inductive argument of Theorems 1.14 and 1.27, see §4.3 and §4.11, and §5.2. The significance of the last entry in each column above the row labeled with \ast is explained in §4.3.
Φ	F_4	E_6	E_7	E_8
\mathcal{I}	105 833 4160 25080			
$\mathcal{I} \subseteq \mathcal{I}_2$	66 418 2431 17342			
$\mathcal{I} \subseteq \mathcal{I}_3$	48 254 1660 13395			
$\mathcal{I} \subseteq \mathcal{I}_4$	36 150 1162 10714			
$\mathcal{I} \subseteq \mathcal{I}_5$	22 62 726 8330			
$\mathcal{I} \subseteq \mathcal{I}_6$	403 6623			
$\mathcal{I} \subseteq \mathcal{I}_7$				4500
*	20 62 727 6178			

Table 5. The number of ideals \mathcal{I} in \mathcal{I}_t for $t \geq 1$

3. Arrangements of Ideal Type

We maintain the notation and setup from the Introduction and §2. In particular, let Φ be a reduced root system in the real n-space V with a fixed set of simple roots Π, so that $|\Pi| = n$, and corresponding set of positive roots Φ^+. Throughout, let $\mathcal{A} = \mathcal{A}(\Phi)$ be the Weyl arrangement of Φ. Let Φ_0 be a proper parabolic subsystem of Φ, let \mathcal{I} be an ideal in Φ^+ and let $\mathcal{I}_0 = \mathcal{I} \cap \Phi_0^+$. We start with an elementary but crucial observation.

Lemma 3.1. Let Φ, \mathcal{I} and Φ_0 be as above. Then, viewing $\mathcal{A}_{\mathcal{I}_0}$ as a subarrangement of $\mathcal{A}_\mathcal{I}$, we have $\mathcal{A}_{\mathcal{I}_0} = (\mathcal{A}_\mathcal{I})_{X_0}$, where $X_0 := \cap_{\gamma \in \Phi_0^+} H_\gamma$.

Proof. As a subarrangement of $\mathcal{A} = \mathcal{A}(\Phi)$, $\mathcal{A}(\Phi_0)$ coincides with $\mathcal{A}_X_{\mathcal{I}_0}$, cf. §2.8. Therefore, viewing $\mathcal{A}_{\mathcal{I}_0}$ as a subarrangement of $\mathcal{A}_\mathcal{I}$, we have

$$\mathcal{A}_{\mathcal{I}_0} = \{ H_\gamma \mid \gamma \in \mathcal{I}_0^c = \mathcal{I}_0^c \cap \Phi_0^+ \} = \mathcal{A}_\mathcal{I} \cap \mathcal{A}_{X_0} = (\mathcal{A}_\mathcal{I})_{X_0},$$

as desired. Note that X_0 need not belong to $L(\mathcal{A}_\mathcal{I})$ in general; e.g. see Example 3.3 below. \square

The following is immediate from Propositions 2.6, 2.11, 2.23 and Lemma 3.1.

Corollary 3.2. Let Φ, \mathcal{I} and Φ_0 be as above.

(i) If $\mathcal{A}_\mathcal{I}$ is supersolvable, then so is $\mathcal{A}_{\mathcal{I}_0}$.

(ii) If $\mathcal{A}_\mathcal{I}$ is inductively free, then so is $\mathcal{A}_{\mathcal{I}_0}$.

(iii) If $\mathcal{A}_\mathcal{I}$ is inductively factored, then so is $\mathcal{A}_{\mathcal{I}_0}$.

Before discussing consequences of Condition 1.10, we illustrate two instances in an easy example when this condition holds, respectively fails. Note that in this setting Φ_0 is assumed to be a maximal parabolic subsystem of Φ.

Example 3.3. Let Φ be of type A_3 with simple roots $\Pi = \{ \alpha, \beta, \gamma \}$. Let \mathcal{I} be the ideal in Φ^+ generated by β. Then $\mathcal{I}^c = \{ \alpha, \gamma \}$, so that $\mathcal{A}_{\mathcal{I}} = \{ H_\alpha, H_\gamma \}$ is of rank 2. We consider two different maximal parabolic subsystems in turn.

(a). First let Φ_0 be the subsystem of Φ of type A_2 generated by α and β. Then $\mathcal{I}_0 = \{ \beta, \alpha + \beta \}$ and $\Phi_0^c = \{ \gamma \}$. So, $\mathcal{I}_0 = \{ \alpha \}$ and $\mathcal{A}_{\mathcal{I}_0} = \{ H_\alpha \}$. Clearly, \mathcal{I}_0 is not an ideal in Φ^+. Note that $X_0 = H_\alpha \cap H_\beta \notin L(\mathcal{A}_\mathcal{I})$. But $(\mathcal{A}_\mathcal{I})_{X_0} = \{ H_\alpha \}$ so that $r((\mathcal{A}_\mathcal{I})_{X_0}) = r(\mathcal{A}_\mathcal{I}) - 1$. In particular, Condition 1.10 holds in this instance.
Second let \(\Phi_0 \) be the subsystem of \(\Phi \) of type \(A^2_1 \) generated by \(\alpha \) and \(\gamma \). This time \(I_0 = \emptyset \) which is of course an ideal in \(\Phi^+ \). Moreover, we have \(I^c_0 = \Phi^+_0 \setminus \{ \alpha, \gamma \} = I^c \). Now \(X_0 = H_\alpha \cap H_\gamma \in L(A) \). So that \(\mathcal{A}_{I_0} = (\mathcal{A}_I)_{X_0} = \mathcal{A}_I \), and in particular, \(r(\mathcal{A}_{I_0}) = r(\mathcal{A}_I) \). Here Condition 1.10 is not satisfied, as \(\Phi \) and \(1.10 \) entails the presence of a modular element in \(L(\mathcal{A}_I) \) of rank \(r(\mathcal{A}_I) - 1 \), is pivotal for our entire analysis.

Lemma 3.4. If \(I \subseteq \Phi^+ \) and \(\Phi_0 \) satisfy Condition 1.10, then for \(X_0 := \cap_{\gamma \in \Phi^+_0} H_\gamma \), the center
\[
Z := T((\mathcal{A}_I)_{X_0})
\]
of \((\mathcal{A}_I)_{X_0} \) is modular of rank \(r(\mathcal{A}_I) - 1 \) in \(L(\mathcal{A}_I) \).

Proof. By construction and Lemma 3.1, we have
\[
(3.5) \quad \mathcal{A}_{I_0} = (\mathcal{A}_I)_{X_0} = (\mathcal{A}_Z).
\]
Thanks to Condition 1.10, \(\Phi^+_0 \cap I^c \neq \emptyset \) and \(\Phi^+_0 \cap I^c \) is linearly ordered by height. Consequently, there is a unique simple root \(\alpha \) in \(\Phi^+_0 \cap I^c \). Since \(\alpha \) is linearly independent from \(T^c_0 \) and every root in \(I^c \) is a \(\mathbb{Z}_{\geq 0} \)-linear combination of \(\alpha \) and roots from \(T^c_0 \), we have \(r(\mathcal{A}_{I_0}) = r(\mathcal{A}_I) - 1 \). We conclude that \(r(Z) = r((\mathcal{A}_I)_{X_0}) = r(\mathcal{A}_I) - 1 \), by (3.5).

It follows that \(Z \) is modular. If \(\alpha \neq \beta \in \Phi^+_0 \cap I^c \), then by Condition 1.10, there is a \(\gamma \in \Phi^+_0 \) so that \(\alpha, \beta \) and \(\gamma \) are linearly dependent. Since \(\alpha \) and \(\beta \) both belong to \(I^c \), so does \(\gamma \). It follows that \(\gamma \in \Phi^+_0 \cap I^c = I^c_0 \). Thus \(H_{\gamma} \in \mathcal{A}_{I_0} = (\mathcal{A}_I)_{X_0} \), by (3.5). On the other hand, \(H_{\alpha}, H_{\beta} \in (\mathcal{A}_I)_{Z} \). Since \(\alpha, \beta \) and \(\gamma \) are linearly dependent, \(Z \) is modular, by Lemma 2.1. \(\square \)

Lemma 3.6. Suppose \(\Phi, I \) and \(\Phi_0 \) satisfy Condition 1.10. Let \(\delta \) be in \(\Phi^+_0 \cap I^c \). Then the restriction of \(\mathcal{A}_I \) to \(H_\delta \) is isomorphic to the arrangement of ideal type \(\mathcal{A}_{I_0} \) in \(\mathcal{A}(\Phi_0) \).

Proof. By Lemma 3.4, for \(X_0 := \cap_{\gamma \in \Phi^+_0} H_\gamma \), the center \(Z := T((\mathcal{A}_I)_{X_0}) \) of \((\mathcal{A}_I)_{X_0} \) is modular of rank \(r(\mathcal{A}_I) - 1 \) in \(L(\mathcal{A}_I) \). By (3.5), \(\mathcal{A}_{I_0} = (\mathcal{A}_I)_{X_0} = (\mathcal{A}_Z) \). Therefore, it follows from Lemma 2.2 that the restriction map \(\rho_\delta : \mathcal{A}_{I_0} \to \mathcal{A}_{I_i} \) given by \(H_\gamma \mapsto H_\delta \cap H_\gamma \) defines an isomorphism between \(\mathcal{A}_{I_0} \) and \(\mathcal{A}_{I_i} \). \(\square \)

We are now in a position to prove Theorem 1.12.

Proof of Theorem 1.12. The reverse implications follow in each instance from Corollary 3.2.

Now consider the forward implications. If \(\mathcal{A}_I \) has rank at most 2, then all statements clearly hold, as then \(\mathcal{A}_I \) is supersolvable, cf. Theorems 2.12 and 2.15 and Proposition 2.20. So suppose that \(r(\mathcal{A}_I) \geq 3 \).

If \(\Phi^+_0 \cap I^c = \emptyset \), then \(\mathcal{A}_I \) is the product of the 1-dimensional empty arrangement \(\emptyset_1 \) and \(\mathcal{A}_{I_0} \). So each statement follows from Propositions 2.14, 2.12, and 2.26, respectively. Therefore, we may assume that \(\Phi^+_0 \cap I^c \neq \emptyset \). Then define the non-empty subarrangement
\[
\mathcal{A}^c_{I_0} := \{ H_\beta \mid \beta \in \Phi^+_0 \cap I^c \} = \mathcal{A}_I \setminus \mathcal{A}_{I_0}
\]
of \(\mathcal{A}_I \). We may thus decompose \(\mathcal{A}_I \) as the proper disjoint union
\[
\mathcal{A}_I = \mathcal{A}_{I_0} \bigsqcup_{\mathcal{A}_{I_0}^c}.
\]
Now Condition 1.10 implies that the center $Z := T((A_I)_{x_0})$ of $(A_I)_{x_0}$ is modular of rank $r(A_I) - 1$ in $L(A_I)$, by Lemma 3.4. Thus the forward implications follow thanks to (3.5) from Corollary 2.13 and Lemmas 2.7 and 2.24, respectively. □

Armed with Theorem 1.12 we can now derive Theorems 1.13 and 1.5.

Proof of Theorem 1.13. If A_I is reducible, then A_I is the product of smaller rank arrangements of ideal type. The result then follows from the inductive hypothesis along with Proposition 2.9.

If A_I is irreducible and there is a maximal parabolic subsystem of Φ such that Condition 1.10 is satisfied, it follows from the inductive hypothesis and Theorem 1.12(ii) that A_I is inductively free. □

We now apply Theorem 1.12 to various types.

In [ST06, Lem. 7.1], Sommers and Tymoczko showed that for Φ of type A_n, B_n or C_n and the canonical choice of maximal subsystem Φ_0 of type A_{n-1}, B_{n-1} or C_{n-1}, respectively, Condition 1.10 is satisfied for any ideal I with $\Phi_0^c \cap I^c \neq \emptyset$.

Proof of Theorem 1.5. For Φ of rank 2, the result follows by the first part of Theorem 2.12.

Let Φ be of type A_n, B_n or C_n for $n \geq 3$ and let $A = A(\Phi)$ be the Weyl arrangement of Φ. We argue by induction on n and suppose that the result holds for smaller rank root systems of the same type as Φ. Let Φ_0 be the standard maximal parabolic subsystem of Φ of type A_{n-1}, B_{n-1} or C_{n-1}, respectively. If $\Phi_0^c \cap I^c = \emptyset$, then A_I is the product of the 1-dimensional empty arrangement \emptyset_1 and an arrangement of ideal type of Φ_0, and the latter is supersolvable by induction on n, and so the result follows from Proposition 2.14.

Therefore, we may assume that $\Phi_0^c \cap I^c \neq \emptyset$. It follows from [ST06, §7] that $\Phi_0^- = \Phi^+ \setminus \Phi_0^+$ is linearly ordered by height and that for each I with $\Phi_0^c \cap I^c \neq \emptyset$, Condition 1.10 is satisfied. It thus follows by induction on n and Theorem 1.12(i) that each A_I is supersolvable. □

With Theorem 1.5 we readily get further instances of supersolvable arrangements of ideal type in other types as well.

Example 3.7. Let Φ be a reduced root system and let I be an ideal in Φ^+ with $I \cap \Pi \neq \emptyset$. Suppose that the simple factors in the complement $\Pi \setminus I$ are all of type A, B or C. Then A_I is a product of arrangements of ideal type of types A, B or C. So A_I is supersolvable, thanks to Theorem 1.5 and Proposition 2.14. For instance this is the case for any such I in case Φ is of type F_4.

Moreover, if it is the case that A_{I_0} is supersolvable in all instances when Condition 1.10 holds, then also A_I is supersolvable, by Theorem 1.12(i). This is also the case for F_4, as then Φ_0 is of type B_3 or C_3. Consequently, out of the total of 105 ideals in type F_4 the 83 instances covered in Theorem 1.14 (i) and (ii) are supersolvable.

Here is a uniform example of a supersolvable arrangement of ideal type in every type.

Example 3.8. Observe that $\Pi_0 = \Pi$ and so A_{I_0} is the Boolean arrangement of rank n which is known to be supersolvable, cf. [OT92, Ex. 2.33].

Next we consider the case when Φ is of type D_n. Here and later on we use the notation for the positive roots from [Bou68, Planche IV].
Proof of Theorem 1.7. Let \(\Phi \) be of type \(D_n \), for \(n \geq 4 \) and let \(\Phi_0 \) be the standard subsystem of \(\Phi \) of type \(D_{n-1} \). Then \(\Phi_0^c = \{ e_1 \pm e_j \mid 2 \leq j \leq n \} \). Note that \(\Phi_0^c \) is not linearly ordered by \(\preceq \), for \(\beta^\pm := \beta^\pm_n := e_1 \pm e_n \) both have height \(n-1 \).

We argue by induction on \(n \). For \(n = 3 \), \(\Phi \) is of type \(D_3 = A_3 \), and so the result follows from Theorems 1.5 and 2.15.

Now suppose that \(n \geq 4 \) and that the result holds for smaller rank root systems of type \(D \). If \(\Phi_0^c \cap I^c = \emptyset \), then \(\mathcal{A}_I \) is the product of the 1-dimensional empty arrangement \(\emptyset_1 \) and an arrangement of ideal type of the subsystem of type \(D_{n-1} \). Since the latter is inductively free by induction on the rank, the result follows from Proposition 2.9. Therefore, we may assume that \(\Phi_0^c \cap I^c \neq \emptyset \).

(a): Suppose first that \(I \) is an ideal in \(\Phi^+ \) so that Condition 1.10 is satisfied. This is precisely the case as long as not both of \(\beta^\pm := e_1 \pm e_n \) belong to \(I^c \). Let \(\delta \) be the unique root of maximal height in \(\Phi_0^c \cap I^c \) and set \(I_0 = I \cap \Phi_0 \). Then \(I_0 \) is an ideal in \(\Phi_0^+ \). Set \(m_s^I := \text{ht}(\delta) \), so that thanks to Condition 1.10, we have

\[
m_s^I = |\Phi_0^c \cap I^c| = |\mathcal{A}_I \setminus \mathcal{A}_{I_0}|.
\]

By induction on the rank, \(\mathcal{A}_{I_0} \) is inductively free and by construction \(m_1^I, \ldots, m_{k-1}^I \) are the non-zero exponents of \(\mathcal{A}_{I_0} \), where \(m_1^I, \ldots, m_k^I \) are the ideal exponents of \(I \). Note that here we do not partially order the ideal exponents as in (1.2).

It follows from Theorem 1.12(ii) that \(\mathcal{A}_I \) is inductively free with exponents \(\exp \mathcal{A}_I = \{0^{n-k}, m_1^I, \ldots, m_k^I\} \), as desired.

(b): Now we consider the cases when both \(\beta^\pm := e_1 \pm e_n \) do belong to \(I^c \). Here we follow closely the proof of [ST06, Thm. 11.1].

Suppose first that \(I \) is such that both \(\beta^\pm \) are maximal in \(\Phi_0^c \cap I^c \) with respect to \(\preceq \). Set \(I^+ := I \cup \{\beta^+\} \). Then by case (a) proved above, \(\mathcal{A}_{I^+} \) is inductively free with

\[
\exp \mathcal{A}_{I^+} = \{m_1^I, \ldots, m_{n-2}^I, n-1, n-2\}.
\]

Let \((\mathcal{A}_I, \mathcal{A}_I^+, \mathcal{A}_I^m) \) be the triple of \(\mathcal{A}_I \) with respect to \(H_{\beta^+} \). It remains to show that \(\mathcal{A}_I^{H_{\beta^+}} \) is inductively free with

\[
\exp \mathcal{A}_I^{H_{\beta^+}} = \{m_1^I, \ldots, m_{n-2}^I, n-1\}.
\]

It then follows from Theorem 2.3 that \(\mathcal{A}_I \) is inductively free with

\[
\exp \mathcal{A}_I = \{m_1^I, \ldots, m_{n-2}^I, n-1, n-1\}.
\]

In order to show that \(\mathcal{A}_I^{H_{\beta^+}} \) is inductively free with the desired exponents, we argue as follows. Consider the triple of \(\mathcal{A}_I^{H_{\beta^+}} \) with respect to \(H_{\beta^+} \cap H_{\beta^-} \). Then the deleted arrangement \(\mathcal{A}_I^{H_{\beta^+}} \setminus \{H_{\beta^+} \cap H_{\beta^-}\} \) coincides with \(\mathcal{A}_I^{H_{\beta^+}} \), where \(I^- := I \cup \{\beta^-\} \) and so the latter is inductively free with exponents \(\{m_1^I, \ldots, m_{n-2}^I, n-2\} \), by case (a) above. For \(I^- \) satisfies Condition 1.10 above and \(\beta^+ \) is maximal in \(\Phi_0^c \cap (I^-)^c \). Finally, we need to show that the restricted arrangement \((\mathcal{A}_I^{H_{\beta^+}})^{H_{\beta^+} \cap H_{\beta^-}} \) is inductively free. Since \(H_{\beta^+} \cap H_{\beta^-} \) coincides with the intersection of the null spaces of \(e_1 \) and \(e_n \), arguing as in the proof of [ST06, Thm. 11.1], this restricted arrangement coincides with an arrangement of ideal type in a root system of type \(B_{n-2} \) with exponents given by \(\{m_1^I, \ldots, m_{n-2}^I\} \). Thanks to Theorems 1.5 and 2.15, the latter is inductively free. So, \(\mathcal{A}_I^{H_{\beta^+}} \) is inductively free, by Theorem 2.3.
Finally, we consider the case when \(\delta = e_1 + e_{2n-1} \) is the maximal element of \(\Phi_0 \cap I^c \) for some \(l > n - 1 \). We argue as in the proof of [ST06, Thm. 11.1] and deduce again that \(\mathcal{A}_I \) is inductively free with
\[
\exp \mathcal{A}_I = \{m_1^I, \ldots, m_{n-2}^I, n-1, l, l'\},
\]
as follows. By induction on \(|I^c| \), we know that \(\mathcal{A}_{I'} \) is inductively free, for \(I' = I \cup \{\delta\} \), with
\[
\exp \mathcal{A}_{I'} = \{m_1^I, \ldots, m_{n-2}^I, n-1, l-1\}.
\]
By the argument from the proof of [ST06, Thm. 11.1], the restricted arrangement \(\mathcal{A}_{I}^{H_{\beta^+}} \) is isomorphic to \(\mathcal{A}_{I}^{H_{\beta^+}} \) in the case above, where both \(\beta^\pm \) were maximal in \(\Phi_0 \cap I^c \). From that case we infer that \(\mathcal{A}_{I}^{H_{\beta^+}} \) is inductively free, thus so is \(\mathcal{A}_{I}^{H_{\beta^+}} \) with
\[
\exp \mathcal{A}_{I}^{H_{\beta^+}} = \{m_1^I, \ldots, m_{n-2}^I, n-1\}.
\]
It follows from Theorem 2.3 that also in this case \(\mathcal{A}_I \) is inductively free. \qed

Example 3.9. Theorem 1.12(i) can also be used to show that there are arrangements of ideal type which are supersolvable in type \(D_n \) beyond the cases treated in Theorem 1.31(i). For instance let \(I \) be the ideal generated by \(e_{n-3} + e_n, e_{n-3} - e_n \), or \(e_{n-2} + e_{n-1} \). Let \(\Phi_0 \) be the standard subsystem of type \(A_{n-1} \) so that the generator of \(I \) does not belong to \(\Phi_0 \) (there are two choices in the last instance). Then one easily checks that Condition 1.10 is satisfied. The fact that \(\mathcal{A}_I \) is supersolvable then follows from Theorems 1.5 and 1.12(ii).

Next we give a uniform argument for the penultimate ideal \(I_{h-1} = \{\theta\} \) in all cases.

Proof of Theorem 1.9. Let \(\mathcal{A} = \mathcal{A}(W) \) be the Weyl arrangement of \(W \). Consider the triple \((\mathcal{A}, \mathcal{A}', \mathcal{A}'') \) with respect to \(H_\theta \). In case there is only one root length \(W \) is transitive on \(\Phi \). In the other instances (i.e. for \(B_n \) and \(F_4 \)) the restrictions of \(\mathcal{A} \) to hyperplanes with respect to a short and long root are isomorphic, cf. [OT92, Prop. 6.82, Table C.9]. Therefore, since \(\mathcal{A} \) is inductively free, \((\mathcal{A}, \mathcal{A}', \mathcal{A}'') \) is a triple of inductively free arrangements. In particular, \(\mathcal{A}' = \mathcal{A}_{I_{h-1}} \) is inductively free. \qed

Remark 3.10. Lemma 3.6 and Theorem 1.12(ii) can also be employed in the exceptional instances as well. Suppose \(I \) is an ideal in \(\Phi^+ \) such that Condition 1.10 is fulfilled for some fixed choice of a maximal parabolic subsystem \(\Phi_0 \). Let \(\delta \) be the unique root of maximal height in \(\Phi_0 \cap I^c \) and \(I_0 = I \cap \Phi_0^+ \). Consider the restriction of \(\mathcal{A}_I \) with respect to \(H_\delta \). In our applications in Section 4 we argue by induction on the rank of the underlying root system, so that the arrangement of ideal type \(\mathcal{A}_{I_0} \) of smaller rank is inductively free. Then using Lemma 3.6, Theorems 1.5 and 1.7, it follows that \(\mathcal{A}_{I_0}^{H_\delta} \cong \mathcal{A}_{I_0} \) is inductively free. It thus follows from Theorem 1.12(ii) that also \(\mathcal{A}_I \) is inductively free with the desired exponents. We illustrate this in the following example.

Example 3.11. Let \(\Phi \) be of type \(F_4 \). We use the notation for the roots in \(\Phi \) as in [Bou68, Planche VIII]. We consider two examples of ideals. In our first case let \(I \) be the ideal generated by \(1120 \) and \(0122 \). Let \(\Phi_0 \) be the standard subsystem of type \(C_3 \). Then \(I^c = \{1000, 0100, 0010, 0001, 1100, 0110, 0011, 1111, 0120, 0111, 1111, 0121\} \), where the roots in \(\Phi_0 \cap I^c \) are underlined. It is easy to check that \(I \) and \(\Phi_0 \) satisfy Condition 1.10.

In our second example let \(I \) be the ideal generated by \(0121 \). This time let \(\Phi_0 \) be the standard subsystem of type \(B_3 \). Then \(I^c = \{1000, 0100, 0010, 0001, 1100, 0110, 0011, 1111, 1110, 1110, 1110, 1110, 1110\} \),
0120, 0111, 1120, 1111, 1220}, where the roots in $\Phi_0^c \cap I^c$ are underlined. It is again easy to check that I and Φ_0 satisfy Condition 1.10.

Here the subsystems used must not be interchanged; for Φ_0 of type B_3, the first ideal does not satisfy Condition 1.10 and likewise neither does the second for Φ_0 of type C_3.

It follows from Theorems 1.5 and 1.12(i) that both A^t are supersolvable and that the exponents are $\{1, 3, 4, 4\}$ and $\{1, 3, 4, 5\}$, respectively; cf. Example 3.7.

We investigate the inductively free A^t in the exceptional instances in more detail in §4.

4. Inductively Free A^t for Φ of Exceptional Type

4.1. Thanks to Proposition 2.9, Theorem 1.14 readily reduces to the case when Φ is irreducible which we assume from now on. Let $A = A(\Phi)$ be the Weyl arrangement for Φ irreducible of exceptional type. Since any arrangement of rank at most two is inductively free, we may suppose that W has rank at least 4.

We use the labeling of the Dynkin diagram of Φ and the notation for roots in Φ from [Bou68, Planche V - VIII]. We argue by induction on the rank of the underlying root system and therefore assume that each arrangement of ideal type is inductively free for root systems of smaller rank. So fix Φ and let I be an ideal in Φ^+. Arguing further by induction on $|I^c|$, we may assume that A^t is inductively free for every ideal J properly containing I.

4.2. Our strategy is to consider all ideals I such that $I \subseteq I_t$ but $I \not\subseteq I_{t+1}$ for successive values of $t \geq 1$. This means each such ideal contains a root of height t but no roots of smaller height. Then we determine all instances when Condition 1.10 is satisfied for each such I for a suitable choice of subsystem Φ_0 of Φ in Tables 6 - 9 below. In each of these tables we list for a given root β in I of height t a parabolic subsystem Φ_0 of Φ and the resulting set of roots in $\Phi_0^c \cap I^c$ relevant for Condition 1.10. Here we determine $\Phi_0^c \cap I^c$ under the assumption that β is the only root of height t in I. In case there are additional roots of height t in I, the set $\Phi_0^c \cap I^c$ may be smaller but still satisfies Condition 1.10. In each case we know by induction that A_{I_0} is inductively free, so that we can conclude from Theorem 1.12(ii) that A^t is also inductively free.

For instance, consider the next to last entry for E_7 in Table 6. Here $I = \langle\begin{pmatrix} 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 \end{pmatrix}\rangle$, and for Φ_0 of type E_6 it follows that $I_0 = \langle\begin{pmatrix} 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 \end{pmatrix}\rangle$. The fact that A_{I_0} is inductively free follows from the last row for E_6 of the same table. So A^t is inductively free by induction and Theorem 1.12(ii). For another example, consider the last case for for E_7 in Table 6. Here $I = \langle\begin{pmatrix} 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 \end{pmatrix}\rangle$, and for Φ_0 of type E_6 we have $I_0^\circ = \Phi_0^+$, so that $A_{I_0} = A(E_6)$ which is inductively free. So then again A^t is inductively free thanks to Theorem 1.12(ii).

4.3. Returning to Table 5, the last entry in each column above the last row labeled by * indicates that for every ideal I with $I \subseteq I_t$, there is no maximal parabolic subsystem Φ_0 so that Condition 1.10 is satisfied. Naturally, if I is small, then I^c is large. So that for sufficiently small I Condition 1.10 fails simply because $\Phi_0^c \cap I^c$ is no longer linear for any choice of maximal subsystem Φ_0. So for instance, if Φ is of type F_4, then this is the case for all I whose roots have height at least 5, and according to the entry in Table 5, there are exactly 22 such instances. The final row labeled by * gives the total number of all ideals I where Condition 1.10 fails for every choice of a maximal subsystem Φ_0 of Φ. From the list
of these cases we have removed the 2 instances corresponding to the full Weyl arrangement \(\mathcal{A}_{I_n} = \mathcal{A}(\Phi) \) and the case of the penultimate ideal \(\mathcal{A}_{I_{n-1}} \), which are both inductively free.

4.4. Now if \(\mathcal{I} \cap \Pi \neq \emptyset \), i.e. if \(\mathcal{I} \) is not strictly positive, then \(\mathcal{I}^c \) is either the complement of an ideal in a smaller rank root system or is the product of complements of ideals in direct products of smaller rank root systems. It therefore follows from our induction hypothesis and Proposition 2.9 that also \(\mathcal{A}_{\mathcal{I}} \) is inductively free in this instance. We may therefore assume that \(\mathcal{I} \) is strictly positive, i.e. \(\mathcal{I} \subseteq \mathcal{I}_2 \). Observe that \(\mathcal{I}_2^c = \Pi \) and so \(\mathcal{A}_{\mathcal{I}_2} \) is inductively free, see Example 3.8.

4.5. Next suppose that \(\mathcal{I} \subseteq \mathcal{I}_2 \) and \(\mathcal{I} \not\subseteq \mathcal{I}_3 \), i.e. \(\mathcal{I} \) contains a root of height 2. Then \(\mathcal{A}_{\mathcal{I}} \) is again the product of two arrangements of ideal type of smaller rank root systems and so the result follows from our induction hypothesis and Proposition 2.9. We therefore may assume that \(\mathcal{I} \subseteq \mathcal{I}_3 \).

4.6. Next we consider the case when \(\mathcal{I} \subseteq \mathcal{I}_3 \) and \(\mathcal{I} \not\subseteq \mathcal{I}_4 \). Then there is a root of height 3 in \(\mathcal{I} \) but no root of smaller height. One readily checks that there is always a suitable maximal subsystem \(\Phi_0 \) in each case so that Condition 1.10 is satisfied. We list the various cases in Table 6 below. For each fixed root \(\beta \) of height 3 we consider the case \(\mathcal{I} = \langle \beta \rangle \) and list a suitable maximal parabolic subsystem \(\Phi_0 \) such that Condition 1.10 is fulfilled. This is then easy to verify in each instance.

4.7. Next, we consider the case when \(\mathcal{I} \subseteq \mathcal{I}_4 \) and \(\mathcal{I} \not\subseteq \mathcal{I}_5 \). Then there is a root of height 4 in \(\mathcal{I} \) but no root of smaller height. In Table 7, for each fixed root \(\beta \) of height 4 we first consider the case \(\mathcal{I} = \langle \beta \rangle \) and – provided there exists one – list a suitable maximal parabolic subsystem \(\Phi_0 \) such that Condition 1.10 holds. This is then easy to verify in each instance. There are some ideals \(\mathcal{I} \) of this kind when there is no maximal standard parabolic subsystem \(\Phi_0 \) such that Condition 1.10 is satisfied. This is indicated with the label “×” in the corresponding row. For instance, this occurs when \(\Phi \) is of type \(E_6 \) and \(\mathcal{I} = \langle 0^{1110} \ 0^{0110} \rangle \), then for \(\Phi_0 \) of type \(A_5 \) as in the second row for \(E_6 \) in Table 6, \(\Phi_0 \cap \mathcal{I}^c \) only consists of \(\alpha_2 \) and \(\alpha_2 + \alpha_4 \).

It follows by induction on the rank and the results from §§4.4 - 4.6 that \(\mathcal{A}_{\mathcal{I}} \) is inductively free for any \(\mathcal{I} \) with \(\mathcal{I} \not\subseteq \mathcal{I}_4 \).
standard parabolic subsystem Φ_0 of Φ. For instance, the ones in type E_7 are $\mathcal{I} = \langle 011100 \rangle$, $\mathcal{I} = \langle 011100, 111110 \rangle$, and $\mathcal{I} = \langle 011100, 111111 \rangle$.

4.8. Next, we consider the case when $\mathcal{I} \subseteq \mathcal{I}_5$. In case of F_4 and E_6 one readily checks that there is no maximal standard parabolic subsystem Φ_0 such that Condition 1.10 is satisfied.
Φ	$\beta \in \mathcal{I}$	Φ_0	$\Phi_0 \cap \mathcal{I}^c$
F_4	1111	C_3	1000, 1100, 1110, 1120, 1220
	1120	C_3	1000, 1100, 1110, 1111
	0121	B_3	0001, 0011, 0111, 1111
E_6	11110	D_5	100000, 110000, 111000, 112000
	0	D_5	0, 0, 0, 0, 1
	11100	D_5	100000, 110000, 111000, 111100, 111110, 111111
	1	D_5	0, 0, 0, 0, 0, 0
	01110	\times	\times
	00111	D_5'	00001, 00011, 00111, 01111, 11111
	01111	D_5'	00001, 00011, 00111, 01111
E_7	111000	D_6	1000000, 1100000, 1110000, 1111000
	0	D_6	0, 0, 0, 0, 1
	111000	D_6	1000000, 1100000, 1110000, 1111000, 1111100, 1111110, 1111111
	1	D_6	0, 0, 0, 0, 0, 0, 1
	011100	\times	\times
	001110	E_6	000001, 000011, 000111, 001111, 011111
	001111	E_6	000001, 000011, 000111, 001111, 011111
	0	E_6	0, 0, 0, 0, 0
E_8	1110000	D_7	10000000, 11000000, 11100000, 11110000
	0	D_7	0, 0, 0, 1
	1110000	D_7	10000000, 11000000, 11100000, 11110000, 11111000, 11111100, 11111110, 11111111
	1	D_7	0, 0, 0, 0, 0, 0, 1
	0111000	\times	\times
	0011100	E_7	0000001, 0000011, 0000111, 0001111, 0011111, 0111111, 1111111
	0011110	E_7	0000001, 0000011, 0000111, 0001111, 0011111, 0111111
	0	E_7	0, 0, 0, 1
	0011111	E_7	0000001, 0000011, 0000111
	0	E_7	0, 0, 0

Table 7. Condition 1.10 for $\mathcal{I} \subseteq \mathcal{I}_4$ and $\mathcal{I} \not\subseteq \mathcal{I}_5$

It follows from Remark 3.10, Theorem 1.9, [BC12, Cor. 5.15], and the data in Tables 6 and 7, that for F_4 and E_6, there are at most 20, respectively 62, \mathcal{A}_I which might fail to be inductively free. This number is listed in the last row of Table 5 labelled by \ast.

4.9. We continue by considering the case when $\mathcal{I} \subseteq \mathcal{I}_5$ and $\mathcal{I} \not\subseteq \mathcal{I}_6$ for E_7 and E_8. Then there is a root of height 5 in \mathcal{I} but no root of smaller height. We list all cases when Condition
1.10 is satisfied in Table 8 below. The notation is as in the previous tables. In particular, as before, “×” indicates that Condition 1.10 fails for any choice of maximal parabolic subsystem.

Φ	β ∈ Τ	Φ₀	Φ₀ ∩ T̅
E₇	111110 0	×	×
	111100 1	×	×
	011110 1	×	×
	012100 1	×	×
	011111 0 E₆	000001 000011 000111 001111 011111	
	001111 1 E₆	000001 000011 001111 001111 011111 111111	
E₈	1111100 0	×	×
	1111000 1	×	×
	0111100 1	×	×
	0121000 1	×	×
	0011110 1 E₇	0000001 0000011 0000111 0001111 0011111 0111111	
	0111110 0 E₇	0000001 0000011 0000111 0011111 0011111 0111111	
	0011111 0 E₇	0000001 0000011 0001111 0011111	

Table 8. Condition 1.10 for I ⊆ I₅ and I ∉ I₆

If I is an ideal as above, containing more than one root β of height 5 so that already for the smaller ideal ⟨β⟩ there is no parabolic subsystem Φ₀ which satisfies Condition 1.10, then it is readily checked that this is also the case for the larger ideal I. On the other hand if I is an ideal which contains roots β of height 5 so that Condition 1.10 holds for the ideal ⟨β⟩ for some such β and for some choice of maximal parabolic subsystem Φ₀, then Condition 1.10 also holds for the larger ideal I and the same Φ₀.

For instance, consider the ideal I = \(\langle 111110, 001111 \rangle \) (cf. the first and last rows of the cases for E₇ in Table 8). We see that for Φ₀ of type E₆ Condition 1.10 holds and Φ₀ ∩ T̅ = \(\{ 0000001, 0000011, 0000111, 0001111, 0011111, 0111111 \} \).

For Φ of type E₇, respectively of type E₈, there are 323, respectively 355, ideals of this kind for which Condition 1.10 does not hold for any choice of a maximal standard parabolic subsystem Φ₀ of Φ.

4.10. Next, we consider the case when I ⊆ I₆. One checks that in case of E₇ there is no maximal parabolic subsystem Φ₀ such that Condition 1.10 is satisfied. For E₈ there is only one case of such an ideal I. This is listed in Table 9 below. Note that for E₈ one checks
that if $\mathcal{I} \subseteq \mathcal{I}_7$, then again there is no maximal standard parabolic subsystem Φ_0 such that Condition 1.10 is satisfied.

For Φ of type E_7, respectively of type E_8, there are 403, respectively 1317, ideals of this kind for which Condition 1.10 does not hold for any choice of a maximal standard parabolic subsystem Φ_0 of Φ.

\[
\begin{array}{|c|c|c|}
\hline
\Phi & \beta \in \mathcal{I} & \Phi_0 \cap \mathcal{I}^c \\
\hline
E_7 & 0111100 & \times \\
 & 0121100 & \times \\
E_8 & 1111110 & \times \\
 & 1111000 & \times \\
 & 0111110 & \times \\
 & 0111000 & \times \\
 & 1121000 & \times \\
 & 0121100 & \times \\
\hline
\end{array}
\]

Table 9. Condition 1.10 for $\mathcal{I} \subseteq \mathcal{I}_6$ and $\mathcal{I} \not\subseteq \mathcal{I}_7$

Finally, by induction on the rank and thanks to Theorem 1.9 and [BC12, Cor. 5.15] along with the results from §§4.4 - 4.10, including the data in Tables 6 - 9, it follows that for E_7, respectively E_8, there are at most $403 + 323 + 3 - 2 = 727$, respectively $4500 + 1317 + 355 + 8 - 2 = 6178$ arrangements of ideal type \mathcal{A}_I which might fail to be inductively free. This number of instances is listed in the last row of Table 5 labelled by \ast.

Finally, [BC12, Cor. 5.15] along with Theorem 1.9 complete the proof of Theorem 1.14.

Remark 4.1. Above we have dealt with all instances when Condition 1.10 holds in the exceptional types. As observed this leads to a surprisingly small number of ideals left to be considered further. This number is shown in the last row of Table 5 above labeled with \ast. Here we have already taken the cases $\mathcal{I}_{h-1} = \{0\}$ and $\mathcal{I}_h = \emptyset$ into account as well which give inductively free arrangements of ideal type, by Theorem 1.9 and [BC12, Cor. 5.15].

For each of these remaining instances other than the outstanding 6178 for type E_8, T. Hoge was able to check that \mathcal{A}_I is inductively free by computational means.

Finally Theorem 1.15 follows from Theorem 1.14 and Remark 4.1.

5. The Poincaré polynomial $\mathcal{I}(t)$ of \mathcal{I}

5.1. Rank-generating functions of posets of regions of real arrangements. In this subsection let \mathcal{A} be a hyperplane arrangement in the real vector space $V = \mathbb{R}^\ell$. A **region** of \mathcal{A} is a connected component of the complement $M(\mathcal{A}) := V \setminus \bigcup_{H \in \mathcal{A}} H$ of \mathcal{A}. Let $\mathcal{R} := \mathcal{R}(\mathcal{A})$ be the set of regions of \mathcal{A}. For $R, R' \in \mathcal{R}$, we let $\mathcal{S}(R, R')$ denote the set of hyperplanes in \mathcal{A} separating R and R'. Then with respect to a choice of a fixed base region B in \mathcal{R}, we can partially order \mathcal{R} as follows:

$$R \leq R' \quad \text{if} \quad \mathcal{S}(B, R) \subseteq \mathcal{S}(B, R').$$
Endowed with this partial order, we call \(\mathcal{R} \) the poset of regions of \(\mathcal{A} \) (with respect to \(B \)) and denote it by \(P(\mathcal{A}, B) \). This is a ranked poset of finite rank, where \(\text{rk}(R) := |\mathcal{S}(B, R)| \), for \(R \) a region of \(\mathcal{A} \), [Ed84, Prop. 1.1]. The rank-generating function of \(P(\mathcal{A}, B) \) is defined to be the following polynomial in \(Z_{\geq 0}[t] \)

\[
\zeta(P(\mathcal{A}, B), t) := \sum_{R \in \mathcal{A}} t^{\text{rk}(R)}.
\]

This poset along with its rank-generating function was introduced by Edelman [Ed84].

If \(\mathcal{A} \) is the product of arrangements \(\mathcal{A} = \mathcal{A}_1 \times \mathcal{A}_2 \) then so is the rank-generating function of its poset of regions

(5.1) \[
\zeta(P(\mathcal{A}, B), t) = \zeta(P(\mathcal{A}_1, B_1), t) \cdot \zeta(P(\mathcal{A}_2, B_2), t),
\]

where \(B = B_1 \times B_2 \), see [Sta12, §3.3].

The following theorem due to Jambu and Paris, [JP95, Prop. 3.4, Thm. 6.1], was first shown by Björner, Edelman and Ziegler for \(\mathcal{A} \) supersolvable in [BEZ90, Thm. 4.4].

Theorem 5.2. If \(\mathcal{A} \) is inductively factored, then there is a suitable choice of a base region \(B \) so that \(\zeta(P(\mathcal{A}, B), t) \) satisfies the multiplicative formula

(5.3) \[
\zeta(P(\mathcal{A}, B), t) = \prod_{i=1}^{\ell} (1 + t + \ldots + t^{e_i}),
\]

where \(\{e_1, \ldots, e_\ell\} = \exp \mathcal{A} \) is the set of exponents of \(\mathcal{A} \).

We recall the inductive construction from the proof of [BEZ90, Thm. 4.4]. Let \(\mathcal{A} \) be a real arrangement of rank \(r \). Suppose that \(X \in L(\mathcal{A}) \) is modular of rank \(r - 1 \). Let \(\mathcal{A}_0 := \mathcal{A}_X \). Then there is an order-preserving, surjective map

\[
\pi : P(\mathcal{A}, B) \to P(\mathcal{A}_0, \pi(B)),
\]

which is induced by inclusion of regions. For \(R \in \mathcal{R} \), let \(\mathcal{F}(R) := \pi^{-1}(\pi(R)) \) be its fibre under \(\pi \). We say that \(\mathcal{B} \in \mathcal{R} \) is canonical (with respect to \(\mathcal{A}_0 \)) provided \(\mathcal{F}(B) \) is linearly ordered within \(P(\mathcal{A}, B) \). The proof of the following lemma is just the argument from [BEZ90, Thm. 4.4].

Lemma 5.4. Let \(\mathcal{A} \) be a real arrangement of rank \(r \). Suppose that \(X \in L(\mathcal{A}) \) is modular of rank \(r - 1 \). Let \(\mathcal{A}_0 := \mathcal{A}_X \) and set \(e_\ell := |\mathcal{A} \setminus \mathcal{A}_0| \). Then there is a region \(B \) in \(\mathcal{R} \) which is canonical with respect to \(\mathcal{A}_0 \). In addition, setting \(B_0 := \pi(B) \), we have the following:

(i) \(\zeta(P(\mathcal{A}, B), t) = \zeta(P(\mathcal{A}_0, B_0), t) \cdot (1 + t + \ldots + t^{e_\ell}) \).

(ii) Suppose that there are non-negative integers \(e_1, \ldots, e_{\ell-1} \) such that \(\zeta(P(\mathcal{A}_0, B_0), t) \)

factors as in (5.3). Then \(\zeta(P(\mathcal{A}, B), t) \) also factors as in (5.3) (with \(e_\ell := |\mathcal{A} \setminus \mathcal{A}_0| \)).

Proof. Since \(X \in L(\mathcal{A}) \) is modular of rank \(r - 1 \), any two hyperplanes in \(\mathcal{A} \setminus \mathcal{A}_0 \) do not intersect in a region of \(\mathcal{R}(\mathcal{A}_0) \), by Lemma 2.1. It follows that for any \(R \in \mathcal{R} \) the regions in \(\mathcal{F}(R) \) are linearly ordered by adjacency and each fibre has the same length \(e_\ell := |\mathcal{A} \setminus \mathcal{A}_0| \). Fix a region \(B \) in \(\mathcal{F}(R) \) at the end of such a linear chain of adjacencies for some \(R \in \mathcal{R} \). Then \(B \) is canonical with respect to \(\mathcal{A}_0 \). Moreover, for \(R \in \mathcal{R} \), calculating the rank in \(P(\mathcal{A}, B) \) with respect to \(B \), we have \(\text{rk}(R) = \text{rk}_0(\pi(R)) + \text{rk}_{\mathcal{F}(R)}(R) \), where \(\text{rk}_0(\pi(R)) \) is the rank of \(\pi(R) \) in \(P(\mathcal{A}_0, B_0) \) with respect to \(B_0 \) and \(\text{rk}_{\mathcal{F}(R)}(R) \) is the rank of \(R \) in its fibre which is induced from the rank in \(P(\mathcal{A}, B) \). Hence the rank-generating function \(\zeta(P(\mathcal{A}, B), t) \) of the
poset of regions $P(\mathcal{A}, B)$ with respect to B is the product of the rank-generating function $\zeta(P(\mathcal{A}_0, B_0), t)$ of the poset of regions $P(\mathcal{A}_0, B_0)$ with respect to B_0 and the rank-generating function for each fibre. Thus, since B is canonical with respect to \mathcal{A}_0, (i) follows.

Finally, (ii) follows directly from (i).

The relevance of Lemma 5.4 stems from the fact that it can be used to show that the rank generating function $\zeta(P(\mathcal{A}, B), t)$ factors as in (5.3) even when \mathcal{A}_0 is not inductively factored (or supersolvable). We illustrate this with an example from the setting from §3 we also use the notation from that section.

Example 5.5. Let $n \geq 5$ and Φ be of type D_n and let Φ_0 be the standard subsystem of type D_{n-1}. Let \mathcal{I} be the ideal in Φ^+ generated by $e_1 - e_j$ for $2 \leq j \leq n$. Then Condition 1.10 holds. Note that with the notation from §3, we have $\mathcal{I}_0 = \emptyset$, so that $\mathcal{A}_0 = \mathcal{A}(D_{n-1})$ is the reflection arrangement of Φ_0. In particular, \mathcal{A}_0 is not supersolvable and not inductively factored. For B a region of $\mathcal{A}_\mathcal{I}$ containing the fundamental dominant Weyl chamber of Φ and for $\mathcal{A}_0 := \mathcal{A}_\mathcal{I}_0$ and $B_0 = \pi(B)$ as above, we see from (5.7) that $\zeta(P(\mathcal{A}_0, B_0), t)$ is just the Poincaré polynomial of $W(D_{n-1})$ which factors according to (1.20). Therefore, by Lemma 5.4(ii), $\zeta(P(\mathcal{A}_\mathcal{I}, B), t)$ factors as in (5.3) as well. As a consequence of (5.7), Conjecture 1.22 holds in these instances.

5.2. The Poincaré polynomial $\mathcal{I}(t)$ and the rank-generating function of the poset of regions of $\mathcal{A}_\mathcal{I}$. There is a connection between the combinatorics of an arrangement of ideal type $\mathcal{A}_\mathcal{I}$, by way of the Poincaré polynomial $\mathcal{I}(t)$ of \mathcal{I} and the geometry of the arrangement $\mathcal{A}_\mathcal{I}$, via the theory of rank-generating functions of the poset of regions of $\mathcal{A}_\mathcal{I}$, as follows.

Remarks 5.6. (i). In [ST06, §12], Sommers and Tymoczko observed that if we fix a region B of the set of regions $\mathcal{R} = \mathcal{R}(\mathcal{A}_\mathcal{I})$ of $\mathcal{A}_\mathcal{I}$ which contains the dominant Weyl chamber of Φ, then thanks to [ST06, Prop. 6.1], the rank-generating function of the poset of regions $P(\mathcal{A}_\mathcal{I}, B)$ of $\mathcal{A}_\mathcal{I}$ with respect to B is just the Poincaré polynomial $\mathcal{I}(t)$ of \mathcal{I} introduced in (1.21):

$$\zeta(P(\mathcal{A}_\mathcal{I}, B), t) = \sum_{R \in \mathcal{R}} t^{rk(R)} = \sum_{S \in \mathcal{W}^t} t^{|S|} = \mathcal{I}(t).$$

(ii). Thanks to Theorem 5.2 and (5.7), the Poincaré polynomial $\mathcal{I}(t)$ of a supersolvable or inductively factored arrangement of ideal type $\mathcal{A}_\mathcal{I}$ satisfies (1.23) and thus for all supersolvable or inductively factored $\mathcal{A}_\mathcal{I}$, Conjecture 1.22 holds. Thus Theorem 1.31 gives further evidence for this conjecture.

(iii). Theorem 1.24 follows from Theorems 1.5 and 5.2 combined with (5.7).

In view of Remark 5.6(i), Theorem 1.26 is an easy consequence of Lemmas 3.4 and 5.4.

Proof of Theorem 1.26. Thanks to Remark 5.6(i), it suffices to consider the rank-generating function $\zeta(P(\mathcal{A}_\mathcal{I}, B), t)$ of the poset of regions of $\mathcal{A}_\mathcal{I}$ for a region B of $\mathcal{R}(\mathcal{A}_\mathcal{I})$ containing the dominant Weyl chamber of Φ. If $\mathcal{A}_\mathcal{I}$ is reducible, then $\mathcal{A}_\mathcal{I}$ is the product of two arrangements of ideal type of smaller rank root systems. The multiplicative property for $\zeta(P(\mathcal{A}_\mathcal{I}, B), t)$ then follows from (5.1) and the inductive hypothesis made in the statement.

So suppose that $\mathcal{A}_\mathcal{I}$ is irreducible and that Condition 1.10 holds. It then follows from the inductive hypothesis and Lemmas 3.4 and 5.4(ii) that $\zeta(P(\mathcal{A}_\mathcal{I}, B), t)$ factors as in (5.3), as claimed. □
Theorem 1.27 follows equally readily.

Proof of Theorem 1.27. In cases (i) and (ii), we argue as in the proof of Theorem 1.26.

If \(I = \{ \emptyset \} \) or \(I = \emptyset \), then the result follows from Theorem 1.25 and Solomon’s formula (1.20), respectively.

Because the very same instances have already been accounted for in Table 1 in connection with our analysis of the inductively free \(\mathcal{A}_I \) for \(\Phi \) of exceptional type in Theorem 1.14, the final statement follows from the determination of all the instances covered in (i) and (ii) from Section 4.

Remarks 5.8. (i). The relevance in studying the class of inductively factored real arrangements for our purpose lies in the fact that it is the largest class of free arrangements which satisfies the multiplicative formula (5.3). This formula does not hold in general for the larger class of inductively free arrangements. For instance, the real simplicial arrangement “\(A_4(17) \)” from Grünbaum’s list [Gr71] does not factor as in (5.3), as observed by Terao, see [BEZ90, p. 277]. T. Hoge has checked that this arrangement is inductively free.

Therefore, in the context of arrangements of ideal type, where we can’t expect more than inductive freeness in general, according to our discussion above, the general factorization property from Theorem 1.26 (predicted for all \(\mathcal{A}_I \) by Conjecture 1.22) shows that the arrangements of ideal type are rather special in this regard.

(ii). The multiplicative formula (5.3) for a free real arrangement \(\mathcal{A} \) involving the exponents frequently plays a crucial role in related contexts.

For instance, for a fixed \(w \) in \(W \), define its Poincaré polynomial by \(P_w(t) = \sum_{x \leq w} t^{\ell(x)} \), where \(\leq \) is the Bruhat-Chevalley order on \(W \). E.g., for \(w_0 \) the longest word in \(W \), \(P_{w_0}(t) = W(t) \), see (1.19). In geometric terms, \(P_w(t^2) \) is the Poincaré polynomial of the Schubert variety \(X(w) = BwB/B \) in the full flag manifold \(G/B \) of the semisimple Lie group \(G \) associated with \(w \) in the Weyl group \(W \) of \(G \).

Consider the subarrangement \(\mathcal{A}_w \) of the Weyl arrangement \(\mathcal{A}(W) \) given by the hyperplanes corresponding to the set of roots \(N(w) \) introduced in (1.18). According to a criterion due to Carrell and Peterson [Car94], the Schubert variety \(X(w) \) is rationally smooth if and only if \(P_w(t) \) is palindromic.

All instances are known when \(P_w(t) \) admits a factorization analogous to (1.20). This is the case precisely when \(X(w) \) is rationally smooth. Equivalently, this is the case precisely when \(\mathcal{A}_w \) is free and the exponents then make an appearance in this analogue of (1.20) for \(P_w(t) \), cf. [Slo15, Thm. 3.3]. This is also the case precisely when the rank-generating function of the poset of regions of \(\mathcal{A}_w \) coincides with \(P_w(t) \), [OY10].

6. Supersolvable and inductively factored \(\mathcal{A}_I \)

In this final section we prove Theorems 1.30 and 1.31. First we consider the situation for \(\Phi \) of type \(D_4 \).

Lemma 6.1. Let \(\Phi \) be of type \(D_4 \). Then \(h = 6 \). Then all arrangements of ideal type \(\mathcal{A}_I \) but the three corresponding to \(I_6 = \emptyset \), \(I_5 \), and \(I_4 \) are supersolvable and all but the ones corresponding to \(I_6 = \emptyset \) and \(I_5 \), are inductively factored. Thus of the 50 arrangements of ideal type \(\mathcal{A}_I \) in type \(D_4 \), 47 are supersolvable and 48 are inductively factored.

Proof. According to Table 4, there are 50 arrangements of ideal type in this case and 20 strictly positive ideals. Since each proper parabolic subsystem of \(D_4 \) is a product of type \(A \)
and Proposition 2.20 that the 30 arrangements \(\mathcal{A}_I \), where \(I \) is not strictly positive are all supersolvable.

Next, consider all \(I \) with \(I \subseteq I_2 \) and \(I \not\subseteq I_3 \). Then there is a root of height 2 in \(I \). Again, since \(\mathcal{A}_I \) is a product of smaller rank arrangements of ideal type, it follows from Theorem 1.5 and Proposition 2.14 that all \(\mathcal{A}_I \) of this kind are supersolvable.

Next suppose that \(I \subseteq I_3 \) and \(I \not\subseteq I_4 \). Then there is a root of height 3 in \(I \). There are 7 such ideals. One checks that there is always a rank 3 subsystem \(\Phi_0 \) of type \(A_3 \), so that Condition 1.10 is satisfied. Thus, by Theorems 1.5 and 1.12(i), each such arrangement \(\mathcal{A}_I \) is supersolvable.

Summarizing the observations above, \(\mathcal{A}_I \) is supersolvable for any \(I \not\subseteq I_4 \), thanks to Theorems 1.5 and 1.12(i) and Proposition 2.14. This applies to 47 out of the 50 ideals. The 3 ideals left to consider are \(I_4 = \{e_1 + e_3, e_1 + e_2\} \), \(I_5 = \{e_1 + e_2\} \), and \(I_6 = \emptyset \). Of course, \(\mathcal{A}_I = \mathcal{A}(D_4) \) is neither supersolvable, nor inductively factored, e.g. see [JT84, Ex. 5.5] or Theorem 2.28. One checks directly that \(\mathcal{A}_I \) is not supersolvable. In addition, one can show that \(\mathcal{A}_I \) is not nice, so in particular, is not inductively factored, nor supersolvable.

In contrast, for \(I_4 \) one can show that

\[
\{H_{e_2-e_3}, H_{e_3-e_4}, H_{e_2-e_4}, H_{e_2+e_3}, H_{e_1-e_2}, H_{e_1-e_3}, H_{e_1-e_4}, H_{e_3+e_4}, H_{e_2+e_4}, H_{e_1+e_4}\}
\]

is an inductive factorization of \(\mathcal{A}_{I_4} \), where the notation is as in [Bou68, Planche IV]. We show this directly as follows. Let \(\delta = e_2 + e_3 \). By the argument above, for \(I = \langle \delta \rangle \) we have \(\mathcal{A}_I \) is supersolvable with exponents \(\exp \mathcal{A}_I = \{1, 2, 3, 3\} \). Note that \(I_4 = \langle \delta \rangle = I_4^c \). Consider the triple of \(\mathcal{A}_{I_4} \) with respect to \(H_{\delta} \). Then we have \(\mathcal{A}_{I_4}, \mathcal{A}_{I_4}^L = \mathcal{A}_I, \mathcal{A}_{I_4}'' \). Since \(\mathcal{A}_{I_4} = \mathcal{A}_I \) is supersolvable, it admits a canonical inductive factorization given by

\[
\{H_{e_2-e_3}, H_{e_3-e_4}, H_{e_2-e_4}, H_{e_1-e_2}, H_{e_1-e_3}, H_{e_1-e_4}, H_{e_3+e_4}, H_{e_2+e_4}, H_{e_1+e_4}\}
\]

stemming from a maximal chain of modular elements in \(L(\mathcal{A}_I) \), see Proposition 2.20, see also [Ter92, Ex. 2.4] and [HR16a, Prop. 3.11]. Moreover, one checks that \(\mathcal{A}_{I_4}'' \) is inductively factored with inductive factorization given by

\[
\{H_{e_2-e_3}, H_{e_1-e_2}, H_{e_1-e_3}, H_{e_1-e_4}, H_{e_3+e_4}, H_{e_2+e_4}, H_{e_1+e_4}\}
\]

It follows from Theorem 2.18 that the partition of \(\mathcal{A}_I \) given in (6.2) defines an inductive factorization of \(\mathcal{A}_{I_4} \).

Thus precisely 47 of the 50 arrangements \(\mathcal{A}_I \) are supersolvable and precisely 48 are inductively factored.

\[\square \]

Corollary 6.3. Conjecture 1.22 holds for \(\Phi \) of type \(D_4 \).

Proof. Let \(\Phi \) be of type \(D_4 \) and let \(I \) be an ideal in \(\Phi^+ \). It follows from Lemma 6.1 that either \(\mathcal{A}_I \) is inductively factored, or else \(I = \{\emptyset\} \), or \(I = \emptyset \). So the result follows from Theorem 5.2 and (5.7), Theorem 1.25, and (1.20), respectively.

\[\square \]

Remark 6.4. We note that one can show that out of all \(\binom{2n-1}{n} + \binom{2n-2}{n} \) ideals in type \(D_n \), there are just \(2^{n-2} \) ideals for which Condition 1.10 fails with respect to \(\Phi_0 \) being the standard subsystem of type \(D_{n-1} \). However, if \(I \) is the largest such ideal, i.e. \(I = \langle e_{n-2} + e_{n-1} \rangle \), then \(\mathcal{A}_I \) is supersolvable, see Example 3.9. Thus Conjecture 1.22 holds in this case, by Theorem 5.2 and (5.7). Likewise, for \(I = \{\emptyset\} \), or \(I = \emptyset \), Conjecture 1.22 holds, by Theorem 1.25 and (1.20).
Thus, assuming the factorization result from Conjecture 1.22 for D_{n-1}, it follows from Theorem 1.26 that it holds for all instances in D_n as well with at most $2^{n-2} - 3$ exceptions.

A. Schauenburg was able to check that Conjecture 1.22 always holds also in these additional $2^{n-2} - 3$ cases for $5 \leq n \leq 7$ by direct computational means.

We are now in a position to prove Theorems 1.30 and 1.31.

Proof of Theorem 1.30. We prove both parts simultaneously. For Φ of type D_4, the result follows from Lemma 6.1. Now let Φ be as in the statement of rank at least 5 and let Φ_0 be the standard subsystem of Φ of type D_4. Since, $\mathcal{I}_0 = \mathcal{I} \cap \Phi_0^+$ also consists of roots of height at least 4, respectively 5, by the result for D_4, $\mathcal{A}_{\mathcal{I}_0}$ is not supersolvable, respectively not inductively factored. It now follows from Corollary 3.2(i) and (iii) that the same holds for $\mathcal{A}_\mathcal{I}$. □

Remark 6.5. We can strengthen Theorem 1.30(ii) slightly as follows. Thanks to Lemma 6.1, $\mathcal{A}_\mathcal{I}$ is not nice for $\mathcal{I} \subseteq \mathcal{I}_5$. This also holds for Φ as in the statement of Theorem 1.30, arguing as in the proof above and using Remark 2.17 and Lemma 3.1.

Proof of Theorem 1.31. (i). We argue by induction on the rank. For Φ of type D_4, the result follows from Lemma 6.1. Now let Φ be of type D_n for $n \geq 5$, E_6, E_7, or E_8 and suppose that the result is true for smaller rank root systems of these kinds.

If \mathcal{I} contains a root of height 1 or 2, then it follows that $\mathcal{A}_\mathcal{I}$ is the product of arrangements of ideal type for smaller rank root systems of types A, D or E and each ideal corresponding to a factor still contains all roots of height 3 of the smaller rank root system. Thus by induction on the rank, Theorem 1.5, and Proposition 2.14, the product $\mathcal{A}_\mathcal{I}$ is also supersolvable.

It remains to consider the case when $\mathcal{I} = \mathcal{I}_3$. So assume $\mathcal{I} = \mathcal{I}_3$ and let Φ_0 be the standard subsystem of Φ of type D_{n-1}, D_5, D_6, or D_7, respectively. Then Condition 1.10 is satisfied. Therefore, since $\mathcal{A}_{\mathcal{I}_0}$ is supersolvable by induction (for \mathcal{I}_0 is the ideal $\Phi_0^+ \cap \mathcal{I}_3$ in Φ_0), so is $\mathcal{A}_\mathcal{I}$, thanks to Theorem 1.12(i).

(ii). Again, we argue by induction on the rank. For Φ of type D_4, the result follows again from Lemma 6.1. As above, if \mathcal{I} also contains a root of height 1 or 2, then $\mathcal{A}_\mathcal{I}$ is the product of arrangements of ideal type for smaller rank root systems of types A, D or E and each ideal corresponding to a factor still contains all roots of height 4 of the smaller rank root system. Thus by induction on the rank, Theorem 1.5, and Proposition 2.26, the product $\mathcal{A}_\mathcal{I}$ is also inductively factored.

Now suppose that $\mathcal{I} \subseteq \mathcal{I}_3$ but $\mathcal{I} \not\subseteq \mathcal{I}_4$, so that \mathcal{I} still contains a root of height 3 but none of smaller height.

Suppose first that Φ is of type D_n for $n \geq 5$. If \mathcal{I} contains $e_i - e_{i+3}$ for some $1 \leq i \leq n-3$ or $e_{n-3} + e_n$, then for Φ_0 the standard subsystem of type D_{n-1}, Condition 1.10 holds. Therefore, since \mathcal{I}_0 still contains all roots of height 4 in Φ_0^+, it follows from induction on n that $\mathcal{A}_{\mathcal{I}_0}$ is inductively factored. Thus so is $\mathcal{A}_\mathcal{I}$, thanks to Theorem 1.12(iii). Finally, if the only root of height 3 in \mathcal{I} is $e_{n-2} + e_{n-1}$, then let Φ_0 be one of the standard subsystems of type A_{n-1} in Φ. Again it is easy to see that then Condition 1.10 is satisfied. Thus, thanks to Theorem 1.5, $\mathcal{A}_{\mathcal{I}_0}$ is supersolvable and so is $\mathcal{A}_\mathcal{I}$, according to Theorem 1.12(i), and so $\mathcal{A}_\mathcal{I}$ is inductively factored, by Proposition 2.20.

Now suppose Φ is of type E. Since \mathcal{I} admits a root of height 3, it follows from Table 6 that there always exists a maximal parabolic subsystem Φ_0 so that Condition 1.10 holds. Since Φ_0 is of type A, D or E, and \mathcal{I}_0 still contains all the roots of height 4 of Φ_0^+, so that by
induction on the rank, Theorem 1.5 and the case for type D_n just proved, \mathcal{A}_{I_0} is inductively factored, then so is \mathcal{A}_I, according to Theorem 1.12(iii).

It remains to consider the case when $I = I_4$. So let $I = I_4$. Suppose first that Φ is of type D_n for $n \geq 5$. Since I contains $e_1 - e_5$, Condition 1.10 is valid for Φ_0 the standard subsystem of type D_{n-1}. Since I_0 is the ideal in Φ_0^+ consisting of all roots of height at least 4, it follows from induction on n that \mathcal{A}_{I_0} is inductively factored, and thus so is \mathcal{A}_I, thanks to Theorem 1.12(iii).

Finally, for Φ of type E and $I = I_4$, it follows from Table 7 there always exists a maximal parabolic subsystem Φ_0 so that Condition 1.10 holds. Since Φ_0 is of type A, D or E, and I_0 is the ideal in Φ_0^+ consisting of all roots of height at least 4, it follows from induction on the rank, Theorem 1.5 and the case for type D_n just proved that \mathcal{A}_{I_0} is inductively factored, and once again, so is \mathcal{A}_I, owing to Theorem 1.12(iii).

\[\square\]

Acknowledgments: The research of this work was supported by DFG-grant RO 1072/16-1.

I am grateful to T. Hoge for checking that the possible exceptions in Table 1 in type F_4 (20 cases), E_6 (62 cases) and E_7 (727 cases) are all inductively free, as predicted by Conjecture 1.16. He also checked that the simplicial arrangement “$A_4(17)$” from Grünbaum’s list is inductively free.

Thanks are also due to A. Schauenburg for computing the data in Table 5 for the cases when $I \subseteq I_t$ for $t \geq 3$ and for checking that Conjecture 1.22 holds for D_n for $5 \leq n \leq 7$ and for E_7.

References

[Abe16] T. Abe, Divisionally free arrangements of hyperplanes, Inventiones Math. 204(1), (2016), 317–346.

[ABC+16] T. Abe, M. Barakat, M. Cuntz, T. Hoge, and H. Terao, The freeness of ideal subarrangements of Weyl arrangements, JEMS, 18 (2016), no. 6, 1339–1348.

[AT16] T. Abe and H. Terao, Free filtrations of affine Weyl arrangements and the ideal-Shi arrangements, J. Algebraic Combin. 43 (2016), no. 1, 33–44.

[Aig79] M. Aigner, Combinatorial Theory, Grundlehren der math. Wissenschaften vol. 234 (1979).

[BC12] M. Barakat and M. Cuntz, Coxeter and crystallographic arrangements are inductively free, Adv. Math 229 (2012), 691–709.

[BEZ90] A. Björner, P. Edelman, and G. Ziegler, Hyperplane arrangements with a lattice of regions. Discrete Comput. Geom. 5 (1990), no. 3, 263–288.

[Bou68] N. Bourbaki, Éléments de mathématique. Groupes et algèbres de Lie. Chapitre IV-VI, Actualités Scientifiques et Industrielles, No. 1337, Hermann, Paris, 1968.

[Car94] J. B. Carrell, The Bruhat graph of a Coxeter group, a conjecture of Deodhar, and rational smoothness of Schubert varieties, Algebraic groups and their generalizations: Classical methods (University Park, 1991), Proc. Sympos. Pure Math., 56, part 1, pp. 5361, Amer. Math. Soc., Providence, RI, 1994.

[CP00] P. Cellini and P. Papi, ad-nilpotent ideals of a Borel subalgebra. J. Algebra 225 (2000), no. 1, 130–141.

[CP02] ———, ad-nilpotent ideals of a Borel subalgebra. II. J. Algebra 258 (2002), 112–121.

[Ed84] P.H. Edelman, A partial order on the regions of \mathbb{R}^n dissected by hyperplanes. Trans. Amer. Math. Soc. 283 (1984), no. 2, 617–631.

[ER94] P.H. Edelman and V. Reiner, Free hyperplane arrangements between A_{n-1} and B_n Math. Z. 215 (1994), no. 3, 347–365.
B. Grünbaum, *Arrangements of Hyperplanes*, Proceedings of the Second Louisiana Conference on Combinatorics, Graph Theory and Computing (Louisiana State Univ., Baton Rouge, La., 1971), pp. 41–106.

T. Hoge and G. Röhrle, *On supersolvable reflection arrangements*, Proc. AMS, **142** (2014), no. 11, 3787–3799.

T. Hoge and G. Röhrle, *On inductively free reflection arrangements*, J. Reine u. Angew. Math. **701** (2015), 205–220.

T. Hoge and G. Röhrle, *Addition-Deletion Theorems for Factorizations of Orlik-Solomon Algebras and nice Arrangements*, European J. Combin. **55** (2016), 205–220.

T. Hoge and A. Schauenburg, *Inductive and Recursive Freeness of Localizations of multiarrangements*, to appear.

A. Hultman, *Supersolvability and the Koszul property of root ideal arrangements*, Proc. AMS, **144** (2016), 1401–1413.

M. Jambu and L. Paris, *Combinatorics of Inductively Factored Arrangements*, European J. Combin. **16** (1995), 267–292.

M. Jambu and H. Terao, *Free arrangements of hyperplanes and supersolvable lattices*, Adv. in Math. **52** (1984), no. 3, 248–258.

B. Kostant, *The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group*, Amer. J. Math. **81** (1959) 973–1032.

T. Møller and G. Röhrle, *Localizations of inductively factored arrangements*, to appear.

S. Oh and H. Yoo, *Bruhat order, rationally smooth Schubert varieties, and hyperplane arrangements*, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010), 965–972, Discrete Math. Theor. Comput. Sci. Proc., AN, Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2010.

P. Orlik, L. Solomon, and H. Terao, *Arrangements of hyperplanes and differential forms*. Combinatorics and algebra (Boulder, Colo., 1983), 29–65, Contemp. Math., 34, Amer. Math. Soc., Providence, RI, 1984.

P. Orlik and H. Terao, *Arrangements of hyperplanes*, Springer-Verlag, 1992.

J.-Y. Shi, *The number of ⊕-sign types*, Quart. J. Math. Oxford Ser. (2) 48 (1997), no. 189, 93–105.

W. Slofstra, *Rationally smooth Schubert varieties and inversion hyperplane arrangements*, Adv. Math. **285** (2015), 709–736.

L. Solomon, *The orders of the finite Chevalley groups*. J. Algebra **3** (1966) 376–393.

E. Sommers, *B-stable ideals in the nilradical of a Borel subalgebra*. Canad. Math. Bull. **48** (2005), no. 3, 460–472.

E. Sommers and J. Tymoczko, *Exponents for B-stable ideals*. Trans. Amer. Math. Soc. **358** (2006), no. 8, 3493–3509.

R. P. Stanley, *Supersolvable lattices*, Algebra Universalis **2** (1972), 197–217.

R. P. Stanley, *Enumerative combinatorics*. Volume 1. Second edition. Cambridge Studies in Advanced Mathematics, **49**, Cambridge University Press, Cambridge, 2012.

R. P. Stanley, *Enumerative combinatorics*. Volume 2. Second edition. Cambridge Studies in Advanced Mathematics, **62**, Cambridge University Press, Cambridge, 1999.

R. Steinberg, *Finite reflection groups*. Trans. Amer. Math. Soc., **91** (1959), 493–504.

H. Terao, *Arrangements of hyperplanes and their freeness I*, J. Fac. Sci. Univ. Tokyo **27** (1980), 293–320.

H. Terao, *Generalized exponents of a free arrangement of hyperplanes and Shepherd-Todd-Brieskorn formula*, Invent. Math. **63** no. 1 (1981) 159–179.

H. Terao, *Factorizations of the Orlik-Solomon Algebras*, Adv. in Math. **92**, (1992), 45–53.

J. Tymoczko, *Paving Hessenberg varieties by affines*, Sel. math., New ser. **13**, (2007), 353–367.
