Fast low fidelity microsimulation of vehicle traffic on supercomputers

Kai Nagel

Los Alamos National Laboratory, A-DO/SA, MS 997, Los Alamos, NM 87545, U.S.A.
and
Santa Fe Institute, 1660 Old Pecos Trail, Santa Fe, NM 87501, U.S.A.

December 8, 2017

Abstract: A set of very simple rules for driving behavior used to simulate roadway traffic gives realistic results. Because of its simplicity, it is easy to implement the model on supercomputers (vectorizing and parallel), where we have achieved real time limits of more than 4 million kilometers (or more than 53 million vehicle sec/sec). The model can be used for applications where both high simulation speed and individual vehicle resolution are needed. We use the model for extended statistical analysis to gain insight into traffic phenomena near capacity, and we discuss that this model is a good candidate for network routing applications.

1 INTRODUCTION

The task of optimally routing a multitude of vehicles through a road network is extremely complex. Important reasons for this are the non-linear cost function (the delay due to high traffic is not proportional to the traffic density), the stochasticity and time-dependency of the traffic demand, and the nonlinear and stochastic properties of traffic dynamics. Therefore, the problem is intractable by the so far known methods of Combinatorial Optimization used in Operations Research, which means that no mathematical technique is known for finding a globally optimal assignment of traffic demand to a route network under realistic conditions.

This led us to the idea of using a very fast simulation model for developing and testing mathematically based optimization techniques. In order to simulate the effect of individual routing, the simulation model had to be microscopic, i.e. modeling each vehicle as an individual entity with the possibility of a different track plan for each vehicle. To get high computational speed, we formulated the traffic dynamics with as few rules as possible. Due to this simplicity the model can in addition be efficiently installed on many kinds of supercomputers [1].

Besides this, the model proves to be unexpectedly realistic [2] and therefore interesting in its own right. In consequence, it has become the object of ongoing research using analytical and computational techniques (see [3, 4]; further publications are in preparation).

An interesting phenomenon in real traffic reproduced by our model is the formation of start-stop-waves in the vicinity of the regime of maximum throughput. These start-stop-wave instabilities are the phenomenon which restricts the vehicle throughput although the waves itself appear already far below the “critical” traffic density. Theoretical work based on fluidynamical analogies [5] points out similarities to a transition from laminar to turbulent flow [6, 7], and experimental evidence confirms the hypothesis of nontrivial behavior and large fluctuations [8, 9].

The outline of this paper is as follows: At first, in section 2, we recall the definition of our traffic model. Section 3 compares simulation output with real data. In section 4, we give an overview over implementations on different supercomputer architectures and discuss performance results in view of traffic applications. Section 5 contains several examples of how the model may be used as a tool to facilitate a further understanding of traffic patterns near capacity. We finish with a short summary/conclusion.

1 permanent address: ZPR c/o Math. Inst., Univ., Albertus-Magnus-Platz, 50923 Köln, Germany
2 DESCRIPTION OF THE MODEL

The principal idea of our approach is to describe the behavior of vehicles by a set of rules which are as simple as possible. This obviously implies a tradeoff between realism and simulation speed. We describe in the following the set of rules for a simple single-lane traffic flow model; multi-lane modeling will be the subject of later publications.

The model is defined on a one-dimensional array, cutting the street into boxes of length \(\epsilon \approx 7.5 \text{ m} \) (\(\approx 23 \text{ feet} \)). This is the length one vehicle approximately occupies in a congestion. Each box is either empty, or occupied by one vehicle. Since positions are limited to integer array positions, velocities can also only be integers, with a value between 0 and \(v_{\text{max}} \). When a vehicle for instance has the velocity 3, it will jump 3 boxes forwards in a time step.

We use \(v_{\text{max}} = 5 \). In fact, the phenomenology of the model (i.e. the formation of start-stop-waves) is independent of the choice of \(v_{\text{max}} \), but the form of the resulting fundamental diagram (throughput vs. density, see below) becomes unrealistic for values larger than 5 or smaller than about 3 \[1\].

Before the propagation of a car, its velocity is adapted according to its specific situation:

- **slowing down:** If the next car ahead is too close (\(\text{gap} \leq v - 1 \), where \(\text{gap} \) is the number of empty boxes between a car and the next one ahead), then the velocity is reduced: \(v \rightarrow \text{gap} \).

- **acceleration:** If, however, the gap is large enough (\(\text{gap} \geq v + 1 \)) and if the velocity is smaller than the maximum velocity (\(v \leq v_{\text{max}} - 1 \)), then the velocity is increased by one: \(v \rightarrow v + 1 \).

These rules use as input only “old” information which is not changed or generated during the update. Therefore, this deterministic part of the velocity update may be performed “in parallel”, i.e., simultaneously on all vehicles.

In order to take into account the natural fluctuations of driving behavior, we add a

- **randomization:** When velocity is 1 or larger (\(v \geq 1 \)), then with probability \(p = 0.5 \) the velocity of each vehicle may in addition to the above rules be reduced by one: \(v \rightarrow v - \gamma(p) \), where \(\gamma(p) \) is one with probability \(p \) and zero else.

The randomization introduces speed fluctuations for free driving, overreactions at slowing down, and retardations during acceleration.

Note that for the whole velocity update of one vehicle we use only position information of the predecessor—this is in contrast to what some car following theories suggest \[10\]. Nevertheless, this leads to realistic results (see later).

As already mentioned above, after the velocity update each vehicle is advanced \(v \) boxes to the right (“propagation step”). Since this step, as well as the randomization, can again be performed in parallel, the whole update consists of parallel rules, a fact which simplifies enormously the issue of efficiently programming on supercomputers.

When taking into account randomization, the average free speed of a vehicle in our model is \(4.5 \times 7.5 \text{ m/} \Delta t \), where \(\Delta t \) is the model time step. This should be equal to about 112 \(\text{km/h} \) 70 \(\text{mph} \), which results in \(\Delta t \approx 1 \text{ sec} \).

3 PHENOMENOLOGY OF THE MODEL

Fig. 1 shows a typical evolution of the system from random initial conditions. The horizontal direction is the space direction; time is pointing downwards. Each black pixel corresponds to a vehicle moving from left to right; each horizontal line therefore shows the configuration of the simulated road segment at a different time step. In fact, the plot is similar to the well-known space-time-diagrams from aerial photography \[3\], except that time and space axes are exchanged, and that one has to connect all pixels which represent one car in order to get its trajectory.

One observes in the figure that the details of the random initial conditions quickly become irrelevant and that the system’s appearance is dominated by traffic jams of high vehicle density (black), separated by zones.
of free traffic. Jams form and dissolve at arbitrary times and positions, as can be seen at some of the smaller jams.

As a next step of our investigation, we measured the relation between throughput and density for our model. Averages over $T = 200$ time steps, measured locally at one site, result in the scatter-plot of Fig. 2. (To be specific, density ρ and throughput q at position x_0 are here defined by

$$\rho_T := \frac{1}{T} \sum_{t=t_0}^{t_0+T-1} \delta(x_0, t) \quad \text{and} \quad q_T := \frac{n}{T},$$

where $\delta(x_0, t)$ is one if there is a vehicle at position x_0 at time t and zero else, and n is the number of vehicles which passed at position x_0 during the time interval T.)

Our simple model reproduces the linear relation between flow and density for low traffic correctly. Furthermore, near the density corresponding to maximum capacity, it shows the strong fluctuations in the capacity values [6], and these fluctuations as well as the average throughput decrease approximately linearly with density at higher densities. The density corresponding to maximum flow is somewhat low compared with reality, but this is corrected when using a model for more than one lane and with slower vehicle types (preliminary data (M. Rickert); final results together with a detailed description of the multi-lane algorithm will be the subject of a future publication).

4 COMPUTATIONAL ISSUES

4.1 Coding

Two obvious ways to implement the described dynamics are (i) site-oriented, and (ii) vehicle-oriented (see [1] for a more detailed description). Site-oriented represents a street by an array v_i of integers with state values between -1 and v_{max}. A value of $v_i = -1$ means that there is no car on site i, whereas a value v_i between 0 and v_{max} denotes a car with speed v_i at site i. The state of each site can then be updated as a function of the states of its neighbors. The principal disadvantage of this technique is that one needs as much computer time for the empty sites as for the occupied ones; but the advantage is that one can employ sophisticated computing techniques (e.g. single-bit coding) known from advanced cellular automata (CA) simulations [7], which yields very high efficiency especially on SIMD architectures. (An early but elaborated version of the site-oriented approach is [9], which even uses single-bit coding. But it uses the technique in a way which is not vectorizable and can therefore not use the power of many supercomputers.)

In contrast, the vehicle-oriented approach represents a street as a list of pairs (position of vehicle, speed of vehicle). Obviously, the vehicle-oriented approach will outperform the grid-oriented one for very low vehicle densities, but for densities corresponding to capacity flow the results depend on the computer architecture and on the system size. In addition, this approach is difficult to handle efficiently as soon as vehicle passing is allowed. This is especially true on parallel computers, where for efficiency neighboring vehicles should reside on the same node.

In addition, we used a third “intermediate approach”, whose data structure is in principle site-oriented, but where the update only treats the “interesting sites”. CA-techniques are no longer applicable, but at least for non-vectorizing computer architectures the loss in performance is never more than a factor of four. In addition, treatment of multi-lane traffic is easiest with this approach.

4.2 Computer architecture overview

For our comparisons, we used a SUN Sparc10 workstation, a net of these workstations coupled by ethernet under PVM, a NEC-SX3/11, an Intel iPSC/860-Hypercube with 32 nodes, a Thinking Machines CM–5 with 32 nodes and a Parsytec GCell-3 with 1024 nodes.

The SX3 is a very advanced example of the traditional vectorcomputers, comparable to the Cray-line. Its power mostly stems from a combination of vectorization and pipelining, the former meaning that data
which lies in some regular way in memory can be treated without losing time for loading and storing, and the latter meaning that the output from one operation can directly be fed into some other unit which performs the next operation, and which works simultaneously with the first unit. For practical purposes, these machines may be seen as SIMD (single instruction multiple data) machines. But these architectures have reached physical limits.

Microprocessors like in workstations or in personal computers have become more and more powerful and sophisticated during the recent years. Therefore, an obvious idea to obtain high performance is to combine many of these microprocessors to so-called parallel computers. All processors act largely independently (MIMD: Multiple Instruction Multiple Data). A standard means to exchange information between these different processors is “message passing”, where one processor sends out a message to another, but the message is only received when the receiving node explicitly issues a receive command. These message passing commands are added to standard Fortran or C. The Parsytec GCel-3 and the Intel iPSC/860 Hypercube are two examples of this type, the first one being a massively parallel machine containing 1024 relatively slow processors, and the second one modestly parallel with 32 workstation-like CPU’s.

These architectures behave in many respects like coupled workstations; and it is indeed possible to use coupled workstations as a parallel machine. Software packages like PVM (‘parallel virtual machine’) offer message passing routines to be included into standard Fortran or C programs, and these messages are transmitted e.g. via the standard ethernet. However, besides the slow speed of the standard networks compared to those of the dedicated parallel machines, they encounter a more serious principal problem: Networks like Ethernet or even FDDI (optical link) support only one message at a time on the whole network. Adding further machines to a network reduces therefore the amount of time each machine can use the network for communication. This is essentially different for dedicated parallel architectures, where adding further processors usually does not change the bandwidth between two (neighboring) processors.

The last machine we used is a CM-5, which has not only a workstation processor on each node, but in addition 4 vector units. If one does not use the vector units, the machine behaves essentially similar to the iPSC/860; but using the vector nodes represents a combination of the traditional vector machines and the new parallel machines. Using the vector nodes involves up to now the use of a data parallel programming language (High Performance Fortran or C*).

4.3 Computational speed

Table 1 gives computational results for the implementations we tested; as already mentioned, further details of the implementations, how they relate to the different machines, and more detailed performance data are given in [1].

When comparing performance data, it is necessary to give the size of the simulated system. This becomes imperative for parallel computers, because too small systems perform poorly because of the communication overhead. All values of Table 1 have been obtained by simulations of systems of size \(L = 10,000 \text{ km} \) (6,250 miles, 1,333,333 sites) with an average traffic density of 13.4 vehicles/km (8.4 vehicles/mile, 134,000 vehicles in the whole system). This is a system size which seems relevant for applications. Moreover, it is a system size small enough to still fit into memory of our single node machines, but which is at the same time large enough to run relatively efficient on our parallel machines. Quantitatively, this means that both the GCel and the CM-5 were operating at 40% efficiency. Thus, a system size twice as large would need less than twice as much simulation time on these machines.

References in the literature sometimes give a “real time limit” as measure of their model’s performance, which then is the extrapolated system size (or number of vehicles) where simulation is as fast as reality. As explained above, we found these values practically useless in the area of parallel computing, except when given in conjunction with the system size which has really been simulated.

\[\text{References in the literature sometimes give a “real time limit” as measure of their model’s performance, which then is the extrapolated system size (or number of vehicles) where simulation is as fast as reality. As explained above, we found these values practically useless in the area of parallel computing, except when given in conjunction with the system size which has really been simulated.}\]
In consequence and in order to avoid confusion, our primary table entries are the CPU times we needed on the different machines in order to simulate the system as defined above. For convenience, we calculated the real time limits in km and in vehicle sec/sec from these values. But it should be kept in mind that, if one really simulates system sizes near 1 million km on the parallel machines, he/she will find much higher real time limits for these system sizes (e.g. 2 million km instead of 900,000 km on the GCell).

Noteworthy features of the table are: (i) The CA-like algorithm is far superior over the “intermediate” one on the vectorizing machines (NEC SX-3/11 and CM-5), slightly faster on the workstation-based architectures, and slightly slower on the massively parallel Parsytec GCell-3. (ii) Both algorithms can take good advantage of the parallelism. (iii) The multilane-version (which is developed from the “intermediate” algorithm) is, on the workstation, only a factor of about two slower than the corresponding single-lane version.

We are therefore confident to reach, for a realistic network setup, real time limits of, say, 430,000 single lane kilometers (5,700,000 veh sec/sec) on 1024 nodes of the Parsytec GCell-3, or of 1,700,000 single lane kilometers (23,000,000 veh sec/sec) on 512 nodes of a CM-5 (even without using the vector nodes).

5 TRAFFIC DYNAMICS NEAR CAPACITY

So far, we have shown or argued that, despite its simplicity, the model shows realistic properties, and that one can use the approach for very fast, low fidelity, microscopic traffic modeling. In the following, we will explain how the method may be used to gain additional insight into traffic near capacity, and how the traffic dynamics changes with changes in the parameters of the model. Our main argument is that we, with a modest amount of computer resources, can give answers to statistical questions such as “What happens to capacity when everybody were equipped with a cruise control?” or “What ingredients are necessary to make a speed limit enhance throughput [8]?” Any findings certainly have to be inspected more closely either by real measurements or by more extensive models, but these more extensive resources could then be directed towards crucial questions pointed out by this model.

One unquestionable advantage of computer models over reality is that statistical averages are easily available; and with our model running on a supercomputer, high-quality quantitative answers to many questions can be obtained in days or even hours. One example for this is a time-averaged fundamental diagram (throughput vs. density, see Fig. 3). For this, we simulate a closed system (i.e. traffic “on a ring”) of size \(L \), \(L \) being the number of “boxes”. An average density \(\rho := N/L \) (\(N \): number of vehicles) is easily defined because the number of vehicles is conserved during a simulation run, and other quantities such as average throughput \(q \) or average velocity \(v \) can be obtained by mimicking reality, i.e., counting the number of vehicles passing at a certain site, and averaging over their velocities.

We find that we need systems of a size of at least \(L = 10^4 \) (corresponding to 75 km, or 1000 vehicles near capacity density) in order to prevent arbitrary finite size effects due to the ring geometry, and at least \(10^6 \) iterations to obtain satisfying averages (especially near capacity flow, where fluctuations are largest). In our fastest implementation (on a NEC-SX3/11 single node vectorcomputer), one such run needs about 30 sec, and about 100 such runs covering the whole range of densities are needed for a meaningful fundamental diagram (\(q-\rho \)-curve).

The maximum \(q_{\infty} \) of this curve is the maximum capacity of our model traffic: In the long run, it is not possible to get more vehicles over the segment. This is not in contrast to the capacity drop issue [4]—it simply means that although for short times higher capacities are possible (cf. short-time averages in Fig. 1), they cancel out against periods of lower capacity in the long run. The only reasonable definition of capacity seems to be the longterm average, which certainly is much easier to obtain from a model than in reality.

A simple explanation is found when looking at the space-time-plot of Fig. 1, which is in fact showing the system near its “threshold density” \(\rho^* := \rho(q_{\infty}) \approx 0.08 \): One observes that start-stop-waves are natural for systems at maximum throughput, and these waves only vanish at densities and throughputs far below the capacity situation. A capacity drop may therefore be seen as the result of a start-stop-wave.

Results are different for short segments. Simulations of short closed systems (Fig. 2) give a higher maximum throughput for these systems, indicating that there is a way to feed short bottlenecks in a way
that the bottleneck capacity is higher than the capacity q_{max} of long segments. But this feeding has to be flexible: Constant feeding leads to a throughput well below capacity q_{max}. The overall lesson from this is that there is a well defined capacity in a simulation model; a higher throughput is possible for short periods or on short segments; and the latter is not accessible for traffic in a standard bottleneck situation, but only when additional vehicles are injected into the traffic flow inside the bottleneck (as by entry-ramps inside construction site bottlenecks). A detailed publication on these matters and on relating them to length and time scales of the traffic jams is in preparation.

Similarly, one can quantify velocity fluctuations as a function of density (Fig. 3). Technically, we measured the root mean square deviation of the local velocity from its mean $\sigma(v) := \langle \langle v^2 \rangle - \langle v \rangle^2 \rangle$ where $\langle \ldots \rangle$ is the mean over all car which have passed during the measurement. The measurements show that fluctuations are low for the free traffic regime (apart from the noise level introduced by the randomization). They increase rather rapidly near capacity and reach their maximum at a density above capacity. Then they decrease, down to zero at $\rho = 1$. This means that the observations in Fig. 3, where fluctuations in order to detect the capacity regime are measured, can be explained in the context of our simple, rule based model.

As the next issue, we show how far capacity can be enhanced by changing characteristics of the vehicles or of the driving behavior. We analyze the influence of a “cruise control”, of quicker acceleration, of braking “to the point”, and of a better car following behavior in the “dead zone” where neither acceleration nor deceleration are necessary. Technically, we defined different “randomization probabilities” $p_{\text{acc}}, p_{\text{sld}}, p_{\text{free}}, p_{\text{ptn}}$ and $p_{\text{ptn, max}}$ for acceleration noise, noise during slowing down, noise at free driving, noise for platoon behavior, and noise for platoon behavior at maximum speed, respectively. The definitions will be in a way that $p_{\text{acc}} = p_{\text{sld}} = p_{\text{free}} = p_{\text{ptn}} = p_{\text{ptn, max}} = 0.5$ reduces to the “old” model with $p_{\text{general}} = 0.5$. These new noise parameters were integrated into the velocity update in the following way:

- **acceleration**: If the gap (see above) to the next vehicle ahead is large enough ($v \leq \text{gap} - 1$) and maximum velocity is not yet reached ($v \leq v_{\text{max}} - 1$), then accelerate with probability $1 - p_{\text{acc}}$ by one: $v \rightarrow v + 1 - \gamma(p_{\text{acc}})$. (As above, $\gamma(p)$ is one with probability p and zero otherwise.) A high value of p_{acc} therefore means that vehicles have a tendency not to accelerate even if they could.
- **slowing down**: If the next car ahead is too close ($\text{gap} \leq v - 1$), then reduce the velocity, with a probability of p_{sld} to overreact: $v \rightarrow \text{gap} - \gamma(p_{\text{sld}})$.
- **free driving**: If the car has maximum speed ($v = v_{\text{max}}$) and drives freely ($\text{gap} \geq v_{\text{max}} + 1$), then introduce with probability p_{free} a fluctuation: $v \rightarrow v - \gamma(p_{\text{free}})$.
- **driving in a platoon at maximum speed**: If the car has maximum speed ($v = v_{\text{max}}$) but is driving in a platoon ($v = \text{gap}$), then slow down with probability $p_{\text{ptn, max}}$ ($v \rightarrow v - \gamma(p_{\text{ptn, max}})$).
- **driving in a platoon with reduced speed**: If the car is driving in a platoon ($v = \text{gap}$) with lower than maximum speed ($v \leq v_{\text{max}} - 1$), then reduce speed with probability p_{ptn} by one: $v \rightarrow v - \gamma(p_{\text{ptn}})$.

As usual, we performed after this velocity update the vehicle propagation. Fig. 3 contains the averaged fundamental diagrams when

- p_{acc} is reduced from 0.5 to 0.005 (better acceleration), or when
- p_{sld} is reduced from 0.5 to 0.005 (reduced overreaction for slowing down), or when
- p_{free} is reduced from 0.5 to 0.005 (reduced fluctuations at free driving: “cruise control”), or when
- p_{ptn} and $p_{\text{ptn, max}}$ are reduced from 0.5 to 0.005 (reduced fluctuations during platoon driving).

Reducing $p_{\text{ptn, max}}$ in addition to p_{free} (a case closer inspected in a paper in preparation) gave no visible difference.

A cruise control gives 0.324 vehicles per iteration (2%), better braking gives 0.327 vehicles per iteration (2%), and better platoon behavior leads to an increase to 0.380 vehicles per iteration (about 20%). But the remarkable result of these simulations is that an enhancement of acceleration (p_{acc} reduced) nearly doubles the throughput from 0.318 to 0.623 vehicles per iteration (cf. Fig. 4 for a similar prediction). In addition, the space-time diagram for this system near capacity (Fig. 5) looks qualitatively different from all the others, which look, at least at this resolution, similar to Fig. 1.
Although these results might need confirmation by more extensive models, they present interesting information which should be carefully evaluated before starting to equip vehicles with technical devices such as automatic, radar-based car-following devices.

6 OUTLOOK

Sand falling down a very narrow glass tube shows clogging as well as density waves reminiscent of traffic jams \[14, 17\]. Quite general models for one-dimensional driven transport systems indicate self-organization \((\[19\]; \[3\]) of the state of maximum throughput. Indeed, we found in our simulations that the outflow of a jam self-organizes into maximum throughput, but we still have to check the range of the validity of this result, especially to what extent it is robust under different conditions such as different mixtures of vehicles.

Some of this work predicts in addition that this state (of maximum throughput) should be “critical”, pointing to a “self-organizing critical state” \[18\]. This would support arguments of a phase transition from laminar to turbulent traffic flow \[6, 7\]. We have measured the life-times of the traffic jams in our model, but the results indicate that criticality at maximum flow in these observables is destroyed by the amount of noise introduced by the fluctuations.

Along these lines, we hope to be able to relate the theory of traffic flow to the general theory of driven diffusive systems.

7 SUMMARY

We have introduced a low-fidelity microscopic traffic simulation model based on very simple rules describing driving behavior. Nevertheless, this model proves to yield astonishingly realistic behavior. We have implemented two different codings of the model on six different computer architectures, showing that, due to its simplicity, the model runs efficient on these machines. It can therefore be used for the analysis of statistical properties of the simulated traffic, and in addition, it is a candidate for being used to develop dynamic routing methods.

Simulations have not only shown that the overall form of the fundamental diagram as well as the formation of start-stop-waves are robust phenomena in the sense that they persist under considerable changes of the free parameters (see \[1\] for some more results), but it is even possible to use changed rules to predict changes in traffic patterns. The most remarkable of these predictions is that the most efficient way to enhance throughput is the increase of the acceleration capabilities of each individual vehicle. Such changes seem to be able to more than double capacity, whereas with all other changes we never were able to gain more than 20%.

8 ACKNOWLEDGMENTS

I thank C. Barrett and S. Rasmussen for discussions and the latter in addition for revising the manuscript, T. Pfenning for giving me further insight into the details of coupled workstations, and SFI as well as the TRANSIMS group at LANL for hospitality. The NEC-SX3/11 of the Regionales Rechenzentrum Köln provided the computing time for Fig. \[2\]. This work has been supported by the “Graduiertenkolleg Scientific Computing” of the Land Nordrhein-Westfalen and of the Bundesrepublik Deutschland and by the TRANSIMS group of A-DO/SA (LANL).

References

[1] K. Nagel and A. Schleicher. Microscopic traffic modeling on parallel high performance computers. Parallel Computing, in press.

\[^{3}\] J.M. Carlson, E.R. Grannan, C. Singh, G.H. Swindle, Fluctuations in Self-Organizing Systems, preprint 1993
[2] K. Nagel and M. Schreckenberg. A cellular automaton model for freeway traffic. *Journal de Physique I France* Vol. 2, 1992, pp.2221.

[3] A. Schadschneider and M. Schreckenberg. Cellular automaton models and traffic flow. *Journal of Physics A*, in press.

[4] K. Nagel and H.J. Herrmann. Deterministic models for traffic jams. *Physica A*, in press.

[5] M.J. Lighthill and G.B. Whitham. On kinematic waves: II. A theory of traffic flow on long crowded roads. *Special Report 79*, Highway Research Bord, National Research Council, Washington, D.C., 1964, pp. 8-35.

[6] R. Kühne. Traffic patterns in unstable traffic flow on freeways. In: Brannolte U (ed.), *Highway Capacity and Level of Service*, Proc. Int. Symp. Highway Capacity in Karlsruhe. Balkema, Rotterdam, 1991, pp. 211-223.

[7] B.N. Persaud and F.L. Hall. Catastrophe theory and patterns in 30-second freeway traffic data—Implications for incident detection. *Transp. Res. A*, Vol. 23A, No. 2, 1989, pp. 103-113.

[8] H. Zackor, R. Kühne and W. Balz. *Untersuchungen des Verkehrsablaufs im Bereich der Leistungsfähigkeit und bei instabilen Fluß*. Forschung Straßenbau und Straßenverkehrstechnik 524. Bundesminister für Verkehr, Bonn–Bad Godesberg, 1988.

[9] T. Musha and H. Higuchi. The 1/f fluctuation of traffic current on an expressway. *Japanese Journal of Applied Physics*, Vol. 15, 1976, pp.1271.

[10] A.D. May. *Traffic flow fundamentals*. Prentice Hall, Englewood Cliffs, NJ, 1990.

[11] J. Treiterer. *Investigation of Traffic Dynamics by Aerial Photogrammetry Techniques*. Technical Report PB246 094, Columbus, Ohoi, 1975.

[12] D. Stauffer. Computer simulations of cellular automata. *J. Phys. A*, Vol. 24, 1991, pp.909.

[13] M. Cremer, J. Ludwig. A fast simulation model for traffic flow on the basis of Boolean operations. *Mathematics and Computers in Simulation*, Vol. 28, 1986, pp.297.

[14] B.N. Persaud, V.F. Hurdle. Some new data that challenge some old ideas about speed-flow relationship. *Transp. Res. Rec.*, Vol. 1194, 1988, pp.191.

[15] H.P. Piper, Stauvorgänge auf voll ausgelasteten Autobahnen, *Internationales Verkehrswesen*, Vol. 43, No. 11, November (1991), pp. 489–493.

[16] T. Pöschl. *Recurrent clogging and density waves in granular material flowing through a narrow pipe*. HLRZ preprint 67/92. HLRZ c/o KFA, Postfach 1913, 52425 Jülich, Germany.

[17] J. Lee and M. Leibig. *Density waves in granular flow: A kinetic wave approach*. HLRZ preprint 46/93. HLRZ c/o KFA, Postfach 1913, 52425 Jülich, Germany.

[18] P. Bak, C. Tang, K. Wiesenfeld. Self-organized criticality. *Phys. Rev. A*, Vol. 38, 1988, pp.368.

[19] J. Krug, Steady state selection in driven diffusive systems, in: Riste T, Sherrington D (eds.), *Spontaneous formation of space-time structures and criticality*, Kluwer Academic Publishers, Netherlands, 1991, pp. 38-40.
Table Captions

TABLE 1: Computing speed of different algorithms on different computer architectures. “Vehicle-oriented”, “intermediate”, and “multi-lane” mean the corresponding algorithms described in the text; “single-bit” refers to cellular automaton techniques with single bit coding. For each machine and algorithm, the first table entry gives the time each computer needed to simulate a system of size 10,000 km. From this figure, we derive the second and third entries, which are real time limits in km and in \textit{vehicle sec/sec}. For further details see text. The entries for multi-lane traffic are due to M. Rickert (personal communication).
Figure Captions

FIGURE 1: Evolution of the model from random initial conditions. Each black pixel represents a vehicle. Space direction is horizontal, time is pointing downwards, vehicles move to the right. The simulation was of a system of size $L = 10000$ with density $\rho \approx \rho(q_{\text{max}}) \approx 0.08$; the figure shows the first 1000 iterations in a window of $l = 1000$.

FIGURE 2: Top: Fundamental diagram of the model (throughput versus density). Triangles: Averages over short times (200 iterations) in a sufficiently large system ($L = 10,000$). Solid line: Long time averages (10^6 iterations) in a large system ($L = 10,000$). Dashed line: Long time averages (10^6 iterations) for a small system $L = 100$. Bottom: Fluctuations of local velocity (see text) vs. density.

FIGURE 3: Throughput versus density for different sets of parameters (see text). The legends gives the parameter(s) which is/are reduced versus the “standard” model. Note the high increase in possible throughput when p_{acc} is reduced to 0.005 (vehicles accelerate more quickly).

FIGURE 4: Evolution of the model from random initial conditions for a reduced $p_{\text{acc}} = 0.005$. Apart from that the figure is the same as Fig. 1.
Algorithm	Language	Sparc10	PVM	SX-3/11	GCel-3	CM-5	iPSC
		(5 × Sparc10)	1 node\(^1\)	1024 nodes	32 nodes\(^2\)	32 nodes	
Vehicle-or. F77	Vehicle-or. F77	0.43 sec	(23,000 km)	0.07 sec	(30,000 km)	0.33 sec	(0.4·10^6 v s/s)
Single-bit F77	Single-bit F77	0.33 sec	(140,000 km)	0.0025 sec	(4,000,000 km)	0.013 sec	(53·10^6 v s/s)
Intermed. C	Intermed. C	0.71 sec	(65,000 km)	0.15 sec	(21,000 km)	0.48 sec	(10·10^6 v s/s)
Intermed. F77	Intermed. F77	0.91 sec	(11,000 km)	0.15 sec	(0.19·10^6 v s/s)	0.48 sec	(0.28·10^6 v s/s)
Multi-lane F77	Multi-lane F77	1.75 sec	(5,700 km)	0.076 sec	(0.076·10^6 v s/s)	0.48 sec	(12·10^6 v s/s)

\(^1\) Node(s) has/have vector units (SIMD instruction set)
\(^2\) using data parallel Fortran (CMF)
\(^3\) using message passing (CMMD)