ON WEAKLY δ-SEMIPRIMARY IDEALS OF COMMUTATIVE RINGS

AYMAN BADAWI, DENIZ SONMEZ AND GURSEL YESILOT

Abstract. Let R be a commutative ring with $1 \neq 0$. We recall that a proper ideal I of R is called a semiprimary ideal of R if whenever $a,b \in R$ and $ab \in I$, then $a \in \sqrt{I}$ or $b \in \sqrt{I}$. We say I is a weakly semiprimary ideal of R if whenever $a,b \in R$ and $0 \neq ab \in I$, then $a \in \sqrt{I}$ or $b \in \sqrt{I}$. In this paper, we introduce a new class of ideals that is closely related to the class of weakly semiprimary ideals. Let $I(R)$ be the set of all ideals of R and let $\delta : I(R) \to I(R)$ be a function. Then δ is called an expansion function of ideals of R if whenever L, I, J are ideals of R with $J \subseteq I$, then $L \subseteq \delta(L)$ and $\delta(J) \subseteq \delta(I)$. Let δ be an expansion function of ideals of R. Then a proper ideal I of R (i.e., $I \neq R$) is called a (δ-semiprimary) weakly δ-semiprimary ideal of R if $(ab \in I) \neq 0 \neq ab \in I$ implies $a \in \delta(I)$ or $b \in \delta(I)$. For example, let $\delta : I(R) \to I(R)$ such that $\delta(I) = \sqrt{I}$. Then δ is an expansion function of ideals of R and hence a proper ideal I of R is a (δ-semiprimary) weakly δ-semiprimary ideal of R if and only if I is a (semiprimary) weakly semiprimary ideal of R. A number of results concerning weakly δ-semiprimary ideals and examples of weakly δ-semiprimary ideals are given.

1. Introduction

We assume throughout this paper that all rings are commutative with $1 \neq 0$. Let R be a commutative ring. An ideal I of R is said to be proper if $I \neq R$. Let I be a proper ideal of R. Then \sqrt{I} denotes the radical ideal of I (i.e., $\sqrt{I} = \{ x \in R \mid x^n \in I$ for some positive integer $n \geq 1 \}$). Note that $\sqrt{\{0\}}$ is the set (ideal) of all nilpotent elements of R.

Let I be a proper ideal of R. We recall from [1] and [6] that I is said to be weakly semiprime if $0 \neq x^2 \in I$ implies $x \in I$. We recall from [11] (11) that a proper ideal I of R is said to be weakly prime (weakly primary) if $0 \neq ab \in I$, then $a \in I$ or $b \in I$ (i.e., $I \neq R$). Let L be a proper ideal of R. Then L is called a prime ideal of R. We recall from [1] that a function $\delta : I(R) \to I(R)$ is called an expansion function of ideals of R. We recall from [14] that a function $\delta : I(R) \to I(R)$ is called an expansion function of ideals of R. We recall from [14] that a function $\delta : I(R) \to I(R)$ is called an expansion function of ideals of R. We recall from [14] that a function $\delta : I(R) \to I(R)$ is called an expansion function of ideals of R.
if whenever L, I, J are ideals of R with $J \subseteq I$, then $L \subseteq \delta(L)$ and $\delta(J) \subseteq \delta(I)$. Recall from [14] that a proper ideal I of R is said to be a δ-primary ideal of R if whenever $a, b \in R$ with $ab \in I$ implies $a \in I$ or $b \in \delta(I)$, where δ is an expansion function of ideals of R. Let δ be an expansion function of ideals of R. In this paper, a proper ideal I of R (i.e., $I \neq R$) is called a (δ-semiprimary) weakly δ-semiprimary ideal of R if $ab \in I$ implies $a \in \delta(I)$ or $b \in \delta(I)$. For example, let $\delta: I(R) \to I(R)$ such that $\delta(I) = \sqrt{I}$. Then δ is an expansion function of ideals of R and hence a proper ideal I of R is a (δ-semiprimary) weakly δ-semiprimary ideal of R if and only if I is a (semiprimary) weakly semiprimary ideal of R. A number of results concerning weakly δ-semiprimary ideals and examples of weakly δ-semiprimary ideals are given.

Let δ be an expansion function of ideals of a ring R. Among many results in this paper, it is shown (Theorem 2.7) that if I is a weakly δ-semiprimary ideal of R that is not δ-semiprimary, then $I^2 = \{0\}$ and hence $I \subseteq \sqrt{\{0\}}$. If I is a proper ideal of R and $I^2 = \{0\}$, then I need not be a weakly δ-semiprimary ideal of R (Example [1]). It is shown (Example [7]) that if I, J are weakly δ-semiprimary ideals of R such that $\delta(I) = \delta(J)$ and $I + J \neq R$, then $I + J$ need not be a weakly δ-semiprimary ideal of R. It is shown (Theorem 2.11) that if R is a Boolean ring, then every weakly semiprimary ideal of R is weakly prime. It is shown (Theorem 3.1) that if S is a multiplicatively closed subset of R such that $S \cap Z(R) = \emptyset$ (where $Z(R)$ is the set of all zerodivisor elements of R) and I is a weakly semiprimary ideal of R such that $S \cap \sqrt{I} = \emptyset$, then I_S is a weakly semiprimary ideal of R_S. It is shown (Corollary 3.3) that if I is a weakly semiprimary ideal of R and $\frac{R}{I}$ is a weakly semiprimary ideal of $\frac{R}{I}$, then J is a weakly semiprimary ideal of R. It is shown (Corollary 4.2) that if $R = R_1 \times R_2$, where R_1, R_2 are some rings with $1 \neq 0$, and I is a proper ideal of R, then I is a weakly semiprimary ideal of R if and only if $I = \{(0,0)\}$ or I is a semiprimary ideal of R. It is shown (Theorem 5.4) that if I is a weakly δ-semiprimary ideal of R and $\{0\} \neq AB \subseteq I$ for some ideals A, B of R, then $A \subseteq \delta(I)$ or $B \subseteq \delta(I)$.

2. WEAKLY δ-SEMIPRIMARY IDEALS

Definition 2.1. Let $I(R)$ be the set of all ideals of R. We recall from [14] that a function $\delta: I(R) \to I(R)$ is called an expansion function of ideals of R if whenever L, I, J are ideals of R with $J \subseteq I$, then $L \subseteq \delta(L)$ and $\delta(J) \subseteq \delta(I)$.

In the following example, we give some expansion functions of ideals of a ring R.

Example 1. [S] Let $\delta: I(R) \to I(R)$ be a function. Then

1. If $\delta(I) = I$ for every ideal I of R, then δ is an expansion function of ideals of R.
2. If $\delta(I) = \sqrt{I}$ (note that $\sqrt{R} = R$) for every ideal I of R, then δ is an expansion function of ideals of R.
3. Suppose that R is a quasi-local ring (i.e., R has exactly one maximal ideal) with maximal ideal M. If $\delta(I) = M$ for every proper ideal I of R, then δ is an expansion function of ideals of R.
4. Let I be a proper ideal of R. Recall from [13] that an element $r \in R$ is called integral over I if there is an integer $n \geq 1$ and $a_i \in I^i$, $i = 1, \ldots, n$, $r^n + a_1r^{n-1} + a_2r^{n-2} + \cdots + a_{n-1}r + a_n = 0$. Let $I = \{r \in R \mid r$ is integral over $I\}$. Let $I \in I(R)$. It is known (see [13]) that I is an ideal of R and
Let δ be an expansion function of ideals of a ring R.

1. A proper ideal I of R is called a (δ-semiprimary) weakly δ-semiprimary ideal of R if whenever $a, b \in R$ and $(ab \in I) \neq 0 \neq ab \in I$, then $a \in \delta(I)$ or $b \in \delta(I)$.

2. Recall that if $\delta : I(R) \to I(R)$ such that $\delta(I) = \sqrt{I}$ for every proper ideal I of R, then δ is an expansion function of ideals of R. In this case, a proper ideal I of R is called a (semiprimary) weakly semiprimary ideal of R if whenever $a, b \in R$ and $(ab \in I) \neq 0 \neq ab \in I$, then $a \in \sqrt{I}$ or $b \in \sqrt{I}$.

3. A proper ideal I of R is called a (δ-primary) weakly δ-primary ideal of R if whenever $a, b \in R$ and $(ab \in I) \neq 0 \neq ab \in I$, then $a \in I$ or $b \in \delta(I)$.

4. A proper ideal I of R is called a weakly prime ideal of R if whenever $a, b \in R$ and $0 \neq ab \in I$, then $a \in I$ or $b \in I$.

5. A proper ideal I of R is called a weakly primary ideal of R if whenever $a, b \in R$ and $0 \neq ab \in I$, then $a \in I$ or $b \in \sqrt{I}$.

We have the following trivial result, and hence we omit its proof.

Theorem 2.3. Let I be a proper ideal of R and let δ be an expansion function of ideals of R. Then

1. If I is a δ-primary ideal of R, then I is a weakly δ-semiprimary ideal of R. In particular, if I is a primary ideal of R, then I is a weakly semiprimary ideal of R.

2. If I is a weakly δ-primary ideal of R, then I is a weakly δ-semiprimary ideal of R. In particular, if I is a weakly primary ideal of R, then I is a weakly semiprimary ideal of R.

3. If I is a δ-semiprimary ideal of R, then I is a weakly δ-semiprimary ideal of R.

4. $\sqrt{\{0\}}$ is a weakly prime ideal of R if and only if $\sqrt{\{0\}}$ is a weakly semiprimary ideal of R.

5. If I is a weakly prime ideal of R, then I is a weakly semiprimary ideal of R.

The following is an example of a proper ideal of a ring R that is a weakly semiprimary ideal of R but it is neither weakly primary nor weakly prime.
Example 2. Let $A = \mathbb{Z}_2[X, Y]$ where X, Y are indeterminates. Then $I = (Y^2, XY)A$ and $J = (Y^2, X^2Y^2)A$ are ideals of A. Set $R = A/J$. Then $L = I/J$ is an ideal of R and $\sqrt{L} = (Y, XY)A/J$. Since $0 \neq XY + J \in L$ and neither $X + J \in \sqrt{L}$ nor $Y + J \in L$, we conclude that L is not a weakly primary ideal of R. Since $0 + J \neq XY + J \in L$ but neither $X + J \in L$ nor $Y + J \in L$, L is not a weakly prime ideal of R. It is easy to check that L is a weakly semiprimary ideal of R.

The following is an example of an ideal that is weakly semiprimary but not semiprimary.

Example 3. Let $R = \mathbb{Z}_{36}$. Then $I = \{0\}$ is a weakly semiprimary ideal of R by definition. Note that $\sqrt{I} = 6R$. Since $0 = 4 \cdot 9 \in I$ but neither $4 \in \sqrt{I}$ nor $9 \in \sqrt{I}$, we conclude that I is not a semiprimary ideal of R.

Definition 2.4. Let δ be an expansion function of ideals of a ring R. Suppose that I is a weakly δ-semiprimary ideal of R and $x \in R$. Then x is called a dual-zero element of I if $xy = 0$ for some $y \in R$ and neither $x \in \delta(I)$ nor $y \in \delta(I)$ (note that y is also a dual-zero element of I).

Remark 2.5. Let δ be an expansion function of ideals of a ring R. Note that if I is a weakly δ-semiprimary ideal of R that is not δ-semiprimary, then I must have a dual-zero element of R.

Theorem 2.6. Let δ be an expansion function of ideals of a ring R and I be a weakly δ-semiprimary ideal of R. If $x \in R$ is a dual-zero element of I, then $xI = \{0\}$.

Proof. Assume that $x \in R$ is a dual-zero element of I. Then $xy = 0$ for some $y \in R$ such that neither $x \in \delta(I)$ nor $y \in \delta(I)$. Let $i \in I$. Then $x(y + i) = 0 + xi = xi \in I$. Suppose that $xi \neq 0$. Since $0 \neq x(y + i) = xi \in I$ and I is a weakly δ-semiprimary ideal of R, we conclude that $x \in \delta(I)$ or $(y + i) \in \delta(I)$ and hence $x \in \delta(I)$ or $y \in \delta(I)$, a contradiction. Thus $xi = 0$.

Theorem 2.7. Let δ be an expansion function of ideals of a ring R and I be a weakly δ-semiprimary ideal of R that is not δ-semiprimary. Then $I^2 = \{0\}$ and hence $I \subseteq \sqrt{\{0\}}$.

Proof. Since I is a weakly δ-semiprimary ideal of R that is not δ-semiprimary, we conclude that I has a dual-zero element $x \in R$. Since $xy = 0$ and neither $x \in \delta(I)$ nor $y \in \delta(I)$, we conclude that y is a dual-zero element of I. Let $i, j \in I$. Then by Theorem 2.6 we have $(x + i)(y + j) = ij \in I$. Suppose that $ij \neq 0$. Since $0 \neq (x + i)(y + j) = ij \in I$ and I is a weakly δ-semiprimary ideal of R, we conclude that $x + i \in \delta(I)$ or $y + j \in \delta(I)$ and hence $x \in \delta(I)$ or $y \in \delta(I)$, a contradiction. Thus $ij = 0$ and hence $I^2 = \{0\}$.

In view of Theorem 2.7 we have the following result.

Corollary 2.8. Let I be a weakly semiprimary ideal of R that is not semiprimary. Then $I^2 = \{0\}$ and hence $I \subseteq \sqrt{\{0\}}$.

The following example shows that a proper ideal I of R with the property $I^2 = \{0\}$ need not be a weakly semiprimary ideal of R.

Example 4. Let $R = \mathbb{Z}_{12}$. Then $I = \{0, 6\}$ is an ideal of R and $I^2 = \{0\}$. Note that $\sqrt{I} = I$. Since $0 \neq 2 \cdot 3 \in I$ and neither $2 \in \sqrt{I}$ nor $3 \in \sqrt{I}$, we conclude that I is not a weakly semiprimary ideal of R.
Theorem 2.9. Let δ be an expansion function of ideals of a ring R and I be a proper ideal of R. If $\delta(I)$ is a weakly prime of R, then I is a weakly δ-semiprimary ideal of R. In particular, if \sqrt{I} is a weakly prime of R, then I is a weakly semiprimary ideal of R.

Proof. Suppose that $0 \neq xy \in I$ for some $x, y \in R$. Hence $0 \neq xy \in \delta(I)$. Since $\delta(I)$ is weakly prime, we conclude that $x \in \delta(I)$ or $y \in \delta(I)$. Thus I is a weakly δ-semiprimary ideal of R. \square

Note that if I is a weakly semiprimary ideal of a ring R then \sqrt{I} need not be a weakly prime ideal of R. We have the following example.

Example 5. $I = \{0\}$ is a weakly semiprimary ideal of Z_{12}. However, $\sqrt{I} = \{0, 6\}$ is not a weakly prime ideal of Z_{12}. For $0 \neq 2 \cdot 3 \in \sqrt{I}$, but neither $2 \in \sqrt{I}$ nor $3 \in \sqrt{I}$.

Remark 2.10. Note that a weakly prime ideal of a ring R is weakly semiprimary but the converse is not true. Let $R = \mathbb{Z}[X]/(X^2)$. Then $\frac{X^2}{X+X^2}$ is an ideal of R. Since $0 \neq (X + (X^2))(X + (X^2)) = X^2 + (X^3) \in I$ but $X + (X^3) \notin I$, we conclude that I is not a weakly prime ideal of R. Since $\sqrt{I} = \{\frac{X}{X+X^2}\}$ is a prime ideal of R, I is a (weakly) semiprimary ideal of R.

Let R be a Boolean ring (i.e., $x^2 = x$ for every $x \in R$). Since $\sqrt{I} = I$ for every proper ideal I of R, we have the following result.

Theorem 2.11. Let R be a Boolean ring and I be a proper ideal of R. The following statements are equivalent.

(1) I is a weakly semiprimary ideal of R.
(2) I is a weakly prime ideal of R.

Theorem 2.12. Let δ be an expansion function of ideals of a ring R and I be a weakly δ-semiprimary ideal of R. Suppose that $\delta(I) = \delta(\{0\})$. The following statements are equivalent.

(1) I is not δ-semiprimary.
(2) $\{0\}$ has a dual-zero element of R.

Proof. $(1) \Rightarrow (2)$. Since I is a weakly δ-semiprimary ideal of R that is not δ-semiprimary, there are $x, y \in R$ such that $xy = 0$ and neither $x \in \delta(I)$ nor $y \in \delta(I)$. Since $\delta(I) = \delta(\{0\})$, we conclude that x is a dual-zero element of $\{0\}$.

$(2) \Rightarrow (1)$. Suppose that x is a dual-zero element of $\{0\}$. Since $\delta(I) = \delta(\{0\})$, it is clear that x is a dual-zero element of I. \square

In view of Theorem 2.12 we have the following result.

Corollary 2.13. Let $I \subseteq \sqrt{\{0\}}$ be a proper ideal of R such that I is a weakly semiprimary ideal of R. The following statements are equivalent.

(1) I is not semiprimary.
(2) $\{0\}$ has a dual-zero element of R.

Proof. Since $\delta: I(R) \to I(R)$ such that $\delta(I) = \sqrt{I}$ for every proper ideal I of R is an expansion function of ideals of R, we have $\delta(I) = \delta(\{0\})$. Thus the claim is clear by Theorem 2.12. \square
We show that the hypothesis ”δ(I) = δ({0})” in Theorem 2.12 is crucial, i.e. the following is an example of an ideal I of a ring R such that I ⊆ √{0} and {0} has a dual-zero element of R but I is a δ-semiprimary ideal of R for some expansion function δ of ideals of R.

Example 6. Let R = Z₈, δ : I(R) → I(R) such that δ(I) = √I for every nonzero proper ideal I of R, and δ({0}) = {0}. Let I = 4R. Then δ(I) = √I = 2R. It is clear that I is a δ-semiprimary ideal of R and 2 is a dual-zero element of {0}.

Theorem 2.14. Let δ be an expansion function of ideals of a ring R and I be a weakly δ-semiprimary ideal of R. If J ⊆ I and δ(J) = δ(I), then J is a weakly δ-semiprimary ideal of R.

Proof. Suppose that 0 ≠ xy ∈ J for some x, y ∈ R. Since J ⊆ I, we have 0 ≠ xy ∈ I. Since I is a weakly δ-semiprimary ideal of R, we conclude that x ∈ δ(I) or y ∈ δ(I). Since δ(I) = δ(J), we conclude that x ∈ δ(J) or y ∈ δ(J). Thus J is a weakly δ-semiprimary ideal of R. □

In view of Theorem 2.14 we have the following result.

Corollary 2.15. Let I be a weakly semiprimary ideal of R such that I ⊆ √{0}. If J ⊆ I, then J is a weakly semiprimary ideal of R. In particular, if L is an ideal of R, then LI and L ∩ I are weakly semiprimary ideals of R. Furthermore, if n ≥ 1 is a positive integer, then Iⁿ is a weakly semiprimary ideal of R.

Theorem 2.16. Let Iₙ, i ∈ J be a collection of weakly semiprimary ideals of a ring R that are not semiprimary. Then I = ∩ₙ Iₙ is a weakly semiprimary ideal of R.

Proof. Note that √I = ∩ₙ √Iₙ = √{0} by Theorem 2.14. Hence the result follows. □

If I, J are weakly semiprimary ideals of a ring R such that √I = √J and I + J ≠ R, then I + J need not be a weakly semiprimary ideal of R. We have the following example.

Example 7. Let A = ℤ₂[T, U, X, Y], H = (T², U², XY + T + U, TU, TX, TY, UX, UY)A be an ideal of A, and R = A/H. Then by construction of R, I = (TA + H)/H = {0, T + H} and J = (UA + H)/H = {0, U + H} are weakly semiprimary ideals of R such that |I| = |J| = 2 and √I = √J = √{0} (in R) = (T, U, XY)A/H. Let L = I + J = (H + (T, U)A)/H. Then √L = √{0} (in R) and L is not a weakly semiprimary ideal of R. For 0 ≠ X + H · Y + H = XY + H, X + H ∉ L, and Y + H ∉ √L.

Theorem 2.17. Let δ be an expansion function of ideals of R such that δ({0}) is a δ-semiprimary ideal of R and δ(δ({0})) = δ({0}). Then

1. δ({0}) is a prime ideal of R.
2. Suppose that I be a weakly δ-semiprimary ideal of R. Then I is a δ-semiprimary ideal of R.

Proof. (1) Suppose that ab ∈ δ({0}) for some a, b ∈ R. Suppose that a ∉ δ(δ({0})) = δ({0}). Since δ({0}) is a δ-semiprimary ideal of R and a ∉ δ(δ({0})), we have b ∈ δ(δ({0})) = δ({0}). Thus δ({0}) is a prime ideal of R.
(2) Suppose that I is not δ-semiprimary. Clearly, $\delta(\{0\}) \subseteq \delta(I)$. Since $I^2 = \{0\}$ by Theorem 2.7 and $\delta(\{0\})$ is a prime ideal of R, we have $I \subseteq \delta(\{0\})$. Since $\delta(\{0\}) = \delta(\{0\})$, we have $I \subseteq \delta(I) \subseteq \delta(\{0\}) = \delta(\{0\})$. Since $\delta(\{0\}) \subseteq \delta(I)$ and $\delta(I) \subseteq \delta(\{0\})$, we have $\delta(I) = \delta(\{0\})$ is a prime ideal of R. Since $\delta(I)$ is prime, I is a δ-semiprimary ideal of R, which is a contradiction.

\[\square \]

Theorem 2.18. Let δ be an expansion function of ideals of R such that $\delta(\{0\})$ is a weakly δ-semiprimary ideal of R, $\sqrt{\{0\}} \subseteq \delta(\{0\})$, and $\delta(\{0\}) = \delta(\{0\})$. Then

1. $\delta(\{0\})$ is a weakly prime ideal of R.
2. Suppose that I is a weakly δ-semiprimary ideal of R that is not δ-semiprimary. Then $\delta(I) = \delta(\{0\}) = \delta(\sqrt{\{0\}})$ is a weakly prime ideal of R that is not prime. Furthermore, if $J \subseteq \sqrt{\{0\}}$, then J is a weakly δ-semiprimary ideal of R that is not δ-semiprimary and $\delta(J) = \delta(\{0\})$.

Proof. (1) Suppose that $0 \neq ab \in \delta(\{0\})$ for some $a, b \in R$. Suppose that $a \notin \delta(\delta(\{0\})) = \delta(\{0\})$. Since $\delta(\{0\})$ is a weakly δ-semiprimary ideal of R and $a \notin \delta(\delta(\{0\}))$, we have $b \in \delta(\delta(\{0\})) = \delta(\{0\})$. Thus $\delta(\{0\})$ is a weakly prime ideal of R.

(2) Suppose that I is not δ-semiprimary. Then $I^2 = \{0\}$ by Theorem 2.7 and hence $I \subseteq \sqrt{\{0\}}$. Since $\sqrt{\{0\}} \subseteq \delta(\{0\})$, we have $I \subseteq \delta(\{0\})$. Hence $\delta(J) \subseteq \delta(\{0\}) = \delta(\{0\})$. Since $\delta(\{0\}) \subseteq \delta(J)$ and $\delta(J) \subseteq \delta(\{0\})$, we conclude that $\delta(J) = \delta(\{0\})$. In particular, $\delta(I) = \delta(\{0\}) = \delta(\sqrt{\{0\}})$ is a weakly prime ideal of R. Since $\delta(I)$ is a weakly δ-semiprimary ideal of R and $\delta(J) = \delta(I)$, we conclude that J is a weakly δ-semiprimary ideal of R. Since I is not δ-semiprimary, we conclude that $\delta(I) = \delta(\{0\})$ is not a prime ideal of R. Since $\delta(J) = \delta(\{0\})$ is a weakly prime ideal of R that is not prime, we conclude that J is a weakly δ-semiprimary ideal of R that is not δ-semiprimary.

\[\square \]

3. Weakly δ-semiprimary ideals under localization and ring-homomorphism

For a ring R, let $Z(R)$ be the set of all zerodivisors of R.

Theorem 3.1. Let S be a multiplicatively closed subset of R such that $S \cap Z(R) = \emptyset$. If I is a weakly semiprimary ideal of R and $S \cap \sqrt{I} = \emptyset$, then IS is a weakly semiprimary ideal of RS.

Proof. Since $S \cap \sqrt{I} = \emptyset$, we conclude that $\sqrt{IS} = (\sqrt{I})S$. Let $a, b \in R$, $s, t \in S$ such that $0 \neq \frac{a}{s}, \frac{b}{t} \in IS$. Then there exists $u \in S$ such that $0 \neq uab \in I$. Since $u \in S$ and $S \cap \sqrt{I} = \emptyset$, we conclude that $0 \neq ab \in \sqrt{I}$. Since I is a weakly semiprimary ideal of R, we conclude that $a \in \sqrt{I}$ or $b \in \sqrt{I}$. Thus $\frac{a}{s} \in IS$ or $\frac{b}{t} \in IS$. Thus IS is a weakly semiprimary ideal of RS.

\[\square \]

Theorem 3.2. Let γ be an expansion function of ideals of R and let I, J be proper ideals of R with $I \subseteq J$. Let $\delta : I(\frac{I}{J}) \to I(\frac{I}{J})$ be an expansion function of ideals of $S = \frac{R}{I}$ such that $\delta(L+I) = \frac{\gamma(L+I)}{1}$ for every $L \in I(R)$. Then the followings statements hold.
(1) If \(J \) is a weakly \(\gamma \)-semiprimary ideal of \(R \), then \(J/J \) is a weakly \(\delta \)-semiprimary ideal of \(S \).

(2) If \(I \) is a weakly \(\gamma \)-semiprimary ideal of \(R \) and \(I/J \) is a weakly \(\delta \)-semiprimary ideal of \(S \), then \(J \) is a a weakly \(\gamma \)-semiprimary ideal of \(R \).

Proof. First observe that since \(I \subseteq J \), we have \(I \subseteq J \subseteq \gamma(J) \) and \(\delta(J) = \gamma(J) \).

(1) Assume that \(ab \in J \setminus I \) for some \(a, b \in R \). Then \(0 \neq ab \in J \). Hence \(a \in \gamma(J) \) or \(b \in \gamma(J) \). Thus \(a + I \in \gamma(J) \) or \(b + I \in \gamma(J) \). Thus \(J/J \) is a weakly \(\delta \)-semiprimary ideal of \(S = R/J \).

(2) Since \(I \subseteq J \), we have \(\gamma(I) \subseteq \gamma(J) \). Assume that \(0 \neq ab \in J \) for some \(a, b \in R \). Assume \(ab \in I \). Since \(I \) is a weakly \(\gamma \)-semiprimary ideal of \(R \), we have \(a \in \gamma(I) \) or \(b \in \gamma(I) \). Assume that \(ab \in J \setminus I \). Hence \(I \neq ab + I \in J \). Since \(J/J \) is a weakly \(\delta \)-semiprimary ideal of \(S \), we have \(a + I \in \gamma(J) \) or \(b + I \in \gamma(J) \). Thus \(a \in \gamma(J) \) or \(b \in \gamma(J) \). Thus \(J \) is a a weakly \(\gamma \)-semiprimary ideal of \(R \).

\[\square \]

In view of Theorem 3.2, we have the following result.

Corollary 3.3. Let \(I, J \) be proper ideals of \(R \) with \(I \subseteq J \). Then the followings statements hold.

(1) If \(J \) is a weakly semiprimary ideal of \(R \), then \(J/J \) is a weakly semiprimary ideal of \(R/J \).

(2) If \(I \) is a weakly semiprimary ideal of \(R \) and \(I/J \) is a weakly semiprimary ideal of \(R/J \), then \(J/J \) is a a weakly semiprimary ideal of \(R/J \).

Theorem 3.4. Let \(R, S \) be rings and \(f : R \to S \) be a surjective ring-homomorphism. Then

(1) If \(I \) is a weakly semiprimary ideal of \(R \) and \(\ker(f) \subseteq I \), then \(f(I) \) is a weakly semiprimary ideal of \(S \).

(2) If \(I \) is a weakly semiprimary ideal of \(R \) and \(\ker(f) \) is a weakly semiprimary ideal of \(R \), then \(f^{-1}(I) \) is a weakly semiprimary ideal of \(R \).

Proof.

(1) Since \(I \) is a weakly semiprimary ideal of \(R \), we conclude that \(L/\ker(f) \) is a weakly semiprimary ideal of \(R/\ker(f) \) by Corollary 3.1. Since \(R/\ker(f) \) is ring-isomorphic to \(S \), the result follows.

(2) Let \(L = f^{-1}(I) \). Then \(\ker(f) \subseteq L \). Since \(R/\ker(f) \) is ring-isomorphic to \(S \), we conclude that \(L/\ker(f) \) is a weakly semiprimary ideal of \(R/\ker(f) \). Since \(\ker(f) \) is a weakly semiprimary ideal of \(R \) and \(L/\ker(f) \) is a weakly semiprimary ideal of \(R/\ker(f) \), we conclude that \(L = f^{-1}(I) \) is a weakly semiprimary ideal of \(R \) by Corollary 3.2.

\[\square \]

4. Weakly \(\delta \)-semiprimary ideals in product of rings

Let \(R_1, \ldots, R_n \), where \(n \geq 2 \), be commutative rings with \(1 \neq 0 \). Assume that \(\delta_1, \ldots, \delta_n \) are expansion functions of ideals of \(R_1, \ldots, R_n \), respectively. Let \(R = R_1 \times \cdots \times R_n \). We define a function \(\delta : I(R) \to I(R) \) such that \(\delta_x(I_1 \times \cdots \times I_n) = \delta_1(I_1) \times \cdots \times \delta_n(I_n) \) for every \(I_i \in I(R_i) \), where \(1 \leq i \leq n \). Then it is clear that \(\delta_x \)
is an expansion function of ideals of R. Note that every ideal of R is of the form $I_1 \times \cdots \times I_n$, where each I_i is an ideal of R_i, $1 \leq i \leq n$.

Theorem 4.1. Let R_1 and R_2 be commutative rings with $1 \neq 0$, $R = R_1 \times R_2$, δ_1, δ_2 be expansion functions of ideals of R_1, R_2, respectively. Let I be a proper ideal of R. Then the following statements are equivalent.

1. $I \times R_2$ is a weakly δ_x-semiprimary ideal of R.
2. $I \times R_2$ is a δ_x-semiprimary ideal of R.
3. I is a δ_1-semiprimary ideal of R_1.

Proof. (1)\Rightarrow(2). Let $J = I \times R_2$. Then $J^2 \neq \{(0,0)\}$. Hence J is a δ_x-semiprimary ideal of R by Theorem 2.14.

(2)\Rightarrow(3). Suppose that I is not a δ_1-semiprimary ideal of R_1. Then there exist $a, b \in R_1$ such that $ab \in I$, but neither $a \in \delta_1(I)$ nor $b \in \delta_1(I)$. Since $(a,1)(b,1) = (ab,1) \in I \times R_2$, we have $(a,1) \in \delta_x(I \times R_2)$ or $(b,1) \in \delta_x(I \times R_2)$. It follows that $a \in \delta_1(I)$ or $b \in \delta_1(I)$, a contradiction. Thus I is a δ_1-semiprimary ideal of R_1.

(3)\Rightarrow(1). Let I be a δ_1-semiprimary ideal of R_1. Then it is clear that $I \times R_2$ is a (weakly) δ_x-semiprimary ideal of R.

Theorem 4.2. Let R_1 and R_2 be commutative rings with $1 \neq 0$, $R = R_1 \times R_2$, and δ_1, δ_2 be expansion functions of ideals of R_1, R_2, respectively such that $\delta_2(K) = R_2$ for some ideal K of R_2 if and only if $K = R_2$. Let $I = I_1 \times I_2$ be a proper ideal of R, where I_1, I_2 are some ideals of R_1 and R_2, respectively. Suppose that $\delta_1(I_1) \neq R_1$. The following statements are equivalent.

1. I is a weakly δ_x-semiprimary ideal of R.
2. $I = \{(0,0)\}$ or $I = I_1 \times R_2$ is a δ_x-semiprimary ideal of R (and hence I_1 is a δ_1-semiprimary ideal of R_1).

Proof. (1)\Rightarrow(2). Assume that $\{(0,0)\} \neq I = I_1 \times I_2$ is a weakly δ_x-semiprimary ideal of R. Then there exists $(0,0) \neq (x,y) \in I$ such that $x \in I_1$ and $y \in I_2$. Since I is a weakly δ_x-semiprimary ideal of R and $(0,0) \neq (x,1)(1,y) = (x,y) \in I$, we conclude $(x,1) \in \delta_x(I)$ or $(1,y) \in \delta_x(I)$. Since $\delta_1(I_1) \neq R_1$, we conclude that $(1,y) \notin \delta_x(I)$. Thus $(x,1) \in \delta_x(I)$ and hence $1 \notin \delta_2(I_2)$. Since $1 \in \delta_2(I_2)$, we conclude that $\delta_2(I_2) = R_2$ and hence $I_2 = R_2$ by hypothesis. Thus $I = I_1 \times R_2$ is a δ_x-semiprimary ideal of R by Theorem 4.1.

(2)\Rightarrow(1). No comments.

Corollary 4.3. Let R_1 and R_2 be commutative rings with $1 \neq 0$ and $R = R_1 \times R_2$. Let I be a proper ideal of R. The following statements are equivalent.

1. I is a weakly semiprimary ideal of R.
2. $I = \{(0,0)\}$ or I is a semiprimary ideal of R.
3. $I = \{(0,0)\}$ or $I = I_1 \times R_2$ for some semiprimary ideal I_1 of R_1 or $I = R_1 \times I_2$ for some semiprimary ideal I_2 of R_2.

5. **Strongly weakly δ-semiprimary ideals**

Definition 5.1. Let δ be an expansion function of ideals of a ring R. A proper ideal I of R is called a strongly weakly δ-semiprimary ideal of R if whenever $\{0\} \neq AB \subseteq I$ for some ideals A, B of R, then $A \subseteq \delta(I)$ or $B \subseteq \delta(I)$. Hence, a proper ideal I of R is called a strongly weakly semiprimary ideal of R if whenever $\{0\} \neq AB \subseteq I$ for some ideals A, B of R, then $A \subseteq \sqrt{\{0\}}$ or $B \subseteq \sqrt{\{0\}}$.
Remark 5.2. Let \(\delta \) be an expansion function of ideals of a ring \(R \). It is clear that a strongly weakly \(\delta \)-semiprimary ideal of \(R \) is a weakly \(\delta \)-semiprimary ideal of \(R \). In this section, we show that a proper ideal \(I \) of \(R \) is a strongly weakly \(\delta \)-semiprimary ideal of \(R \) if and only if \(I \) is a weakly \(\delta \)-semiprimary ideal of \(R \).

Theorem 5.3. Let \(\delta \) be an expansion function of ideals of a ring \(R \) and \(I \) be a weakly \(\delta \)-semiprimary ideal of \(R \). Suppose that \(AB \subseteq I \) for some ideals \(A, B \) of \(R \) and suppose that \(ab = 0 \) for some \(a \in A \) and \(b \in B \) such that neither \(a \in \delta(I) \) nor \(b \in \delta(I) \). Then \(AB = \{0\} \).

Proof. First we show that \(aB = bA = \{0\} \). Suppose that \(aB \neq \{0\} \). Then \(0 \neq ac \in I \) for some \(c \in B \). Since \(I \) is a weakly \(\delta \)-semiprimary ideal of \(R \) and \(a \notin \delta(I) \), we conclude that \(c \in \delta(I) \). Hence \(0 \neq a(b + c) = ac \in I \). Thus \(a \in \delta(I) \) or \(b + c \in \delta(I) \). Since \(c \in \delta(I) \), we conclude that \(a \in \delta(I) \) or \(b \in \delta(I) \), a contradiction. Thus \(aB = \{0\} \). Similarly, \(bA = \{0\} \). Now suppose that \(AB \neq \{0\} \). Then there is an element \(d \in A \) and there is an element \(e \in B \) such that \(0 \neq de \in I \). Since \(I \) is a weakly \(\delta \)-semiprimary ideal of \(R \), we conclude that \(d \in \delta(I) \) or \(e \in \delta(I) \). We consider three cases:

Case I. Suppose that \(d \notin \delta(I) \) and \(e \notin \delta(I) \). Since \(AB = \{0\} \), we have \(0 \neq e(d + a) = de \in I \), we conclude that \(e \in \delta(I) \) or \(d + a \in \delta(I) \). Since \(d \in \delta(I) \), we have \(e \in \delta(I) \) or \(a \in \delta(I) \), a contradiction.

Case II. Suppose that \(d \notin \delta(I) \) and \(e \in \delta(I) \). Since \(bA = \{0\} \), we have \(0 \neq d(e + b) = de \in I \), we conclude that \(d \in \delta(I) \) or \(e + b \in \delta(I) \). Since \(e \in \delta(I) \), we have \(d \in \delta(I) \) or \(b \in \delta(I) \), a contradiction.

Case III. Suppose that \(d, e \in \delta(I) \). Since \(AB = bA = \{0\} \), we have \(0 \neq (b + e)(d + a) = de \in I \), we conclude that \(b + e \in \delta(I) \) or \(d + a \in \delta(I) \). Since \(d, e \in \delta(I) \), we have \(b \in \delta(I) \) or \(a \in \delta(I) \), a contradiction. Thus \(AB = \{0\} \). \(\square \)

Theorem 5.4. Let \(\delta \) be an expansion function of ideals of a ring \(R \) and \(I \) be a weakly \(\delta \)-semiprimary ideal of \(R \). Suppose that \(\{0\} \neq AB \subseteq I \) for some ideals \(A, B \) of \(R \). Then \(A \subseteq \delta(I) \) or \(B \subseteq \delta(I) \) (i.e., \(I \) is a strongly weakly \(\delta \)-semiprimary ideal of \(R \)).

Proof. Since \(AB \neq \{0\} \), by Theorem 5.3 we conclude that whenever \(ab \in I \) for some \(a \in A \) and \(b \in B \), then \(a \in \delta(I) \) or \(b \in \delta(I) \). Assume that \(\{0\} \neq AB \subseteq I \) and \(A \nsubseteq \delta(I) \). Then there is an \(x \in A \setminus \delta(I) \). Let \(y \in B \). Since \(xy \in AB \subseteq I \) and \(\{0\} \neq AB \) and \(x \notin \delta(I) \), we conclude that \(y \in \delta(I) \) by Theorem 5.3. Hence \(B \subseteq \delta(I) \). \(\square \)

In view of Theorem 5.4, we have the following result.

Corollary 5.5. Let \(I \) be a weakly semiprimary ideal of \(R \). Suppose that \(\{0\} \neq AB \subseteq I \) for some ideals \(A, B \) of \(R \). Then \(A \subseteq \sqrt{I} \) or \(B \subseteq \sqrt{I} \) (i.e., \(I \) is a strongly weakly semiprimary ideal of \(R \)).

References

[1] D. D. Anderson, E. Smith, Weakly prime ideals, Houston J. Math. 29 (2003) 831-840.
[2] D. F. Anderson, A. Badawi, On \(n \)-absorbing ideals of commutative rings, Comm. Algebra 39 (2011) 1646-1672.
[3] D. F. Anderson, A. Badawi, On \((m, n) \)-closed ideals of commutative rings, J. Algebra Appl. 16(1) (21 pages) (2017). DOI: 10.1142/S021949881750013X
[4] S. E. Atani, F. Farzalipour, Weakly primary ideals, Georgian Math. J. 12(3) 423-429 (2005).
[5] A. Badawi, A. Y. Darani, On weakly \(2 \)-absorbing ideals of commutative rings, Houston J. Math. 39(2) (2013) 441-452.
[6] A. Badawi, On weakly semiprime ideals of commutative rings, Beiträge zur Algebra und Geometrie 57 (2016) 589-597.
[7] A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc. 75 (2007) 417-429.
[8] A. Badawi, B. Fahid, On weakly 2-absorbing δ-primary ideals of commutative rings, to appear in Georgian Math J.
[9] A. Badawi, U. Tekir, and E. Yetkin, Generalizations of 2-absorbing primary ideals of commutative rings, Turk. J. Math. 40 (2016) 703-717.
[10] A. Badawi, U. Tekir, and E. Yetkin, On weakly 2-absorbing primary ideals of commutative rings, J. Korean Math. Soc. 52 (2015) 97-111.
[11] A. Badawi, U. Tekir, and E. Yetkin, On 2-absorbing primary ideals of commutative rings, Bull. Korean Math. Soc. 51 (2014) 1163-1173.
[12] R. W. Gilmer, Rings in which semiprimary ideals are primary, Pacific Journal of Math. 12(4) (1962) 1273-1276.
[13] Swanson, I., Huneke, C., Integral closure of ideals, Rings, and Modules, London mathematical society lecture note series 336 (2006).
[14] D. Zhao, δ-primary ideals of commutative rings, Kyungpook Mathematical Journal 41(1) (2001) 17-22.

Acknowledgement.
The authors are grateful to the referee for the great effort in proofreading the manuscript.

Department of Mathematics & Statistics, The American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates
E-mail address: abadawi@aus.edu

Yildiz Technical University, Department of Mathematics, Davutpaşa-Istanbul, Turkey,
E-mail address: dnzguel@hotmail.com, gyesilot@yildiz.edu.tr