Milestones achieved in response to drought stress through reverse genetic approaches [version 1; peer review: 2 approved]

Baljeet Singh¹, Sarvjeet Kukreja², Umesh Goutam¹

¹Biotechnology, Lovely Professional University, Phagwara, Punjab, 144411, India
²Department of Botany, Ch. MRM Memorial College, Sriganganagar, Rajasthan, 335804, India

Abstract
Drought stress is the most important abiotic stress that constrains crop production and reduces yield drastically. The germplasm of most of the cultivated crops possesses numerous unknown drought stress tolerant genes. Moreover, there are many reports suggesting that the wild species of most of the modern cultivars have abiotic stress tolerant genes. Due to climate change and population booms, food security has become a global issue. To develop drought tolerant crop varieties knowledge of various genes involved in drought stress is required. Different reverse genetic approaches such as virus-induced gene silencing (VIGS), clustered regularly interspace short palindromic repeat (CRISPR), targeting induced local lesions in genomes (TILLING) and expressed sequence tags (ESTs) have been used extensively to study the functionality of different genes involved in response to drought stress. In this review, we described the contributions of different techniques of functional genomics in the study of drought tolerant genes.

Keywords
VIGS, CRISPR, TILLING, ESTs, Drought stress, Climate change, Reverse Genetics, Functional genomics

This article is included in the Climate gateway.
This article is included in the Agriculture, Food and Nutrition gateway.

Corresponding author: Umesh Goutam (umeshbiotech@gmail.com)

Author roles: Singh B: Writing – Original Draft Preparation; Kukreja S: Writing – Review & Editing; Goutam U: Supervision, Writing – Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: The author(s) declared that no grants were involved in supporting this work.

Copyright: © 2018 Singh B et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Singh B, Kukreja S and Goutam U. Milestones achieved in response to drought stress through reverse genetic approaches [version 1; peer review: 2 approved] F1000Research 2018, 7:1311 https://doi.org/10.12688/f1000research.15606.1

First published: 17 Aug 2018, 7:1311 https://doi.org/10.12688/f1000research.15606.1
Introduction

Nowadays, global food security has become a major challenge due to the extreme changes to the climate and increases in the global population. Therefore, plants are growing under various kinds of unfavourable environmental stresses such as drought, salinity, heat, cold and oxidative stresses which are retarding the growth and yield. Of these, drought stress is the most predominant abiotic stress making this situation worse. Over the last decade, climate change has been increasing the frequency of drought conditions and reduced the crop yield (Table 1) by affecting the basic plant growth processes such as seed germination, photosynthesis, source sink relationships, turgor pressure, cell division and elongation, enzyme activities, and secondary metabolites production. In addition, drought can also increase the production and accumulation of reactive oxygen species (ROS) in plants which leads to oxidative stress. Several genes that express under drought conditions are involved in the regulation of all these processes and pathways. In recent years, many drought tolerant genes have been identified in major food crops and still there are numerous genes taking part in drought stress whose functions are unknown. With the help of available genomic and transcriptomic data reverse genetic approaches accelerated the investigations of gene function under different abiotic stresses.

Table 1. Yield loss in various crops under different drought conditions.

Crop	Yield loss (approx. %)	References
Wheat	57	4
	21	5
	26	6
Rice	53–92	7
Maize	63–87	8
	40	5
	40	6
Chickpea	45–69	9
Soybean	46–71	10
Sunflower	60	11
Potato	17	12
Barley	37–41	13

Table 2. Successfully confirmed genes via different virus-induced gene silencing (VIGS) systems.

Viral vector	Type	Crop	Target gene	Reference
BSMV (Barley Stripe Mosaic Virus)	RNA virus	Wheat	TaEra1, TaSal1, TaBTF3, TaPGR5, TaAtg8, HvHVA1, HvDhn6, HvEXPB7, HvATG6	33, 34, 35, 36, 37, 38, 39
TRV (Tobacco Rattle Virus)	RNA virus	Tomato	Sllea4, SpMPK1, SpMPK2, SpMPK3, SimPK, SISR1L, SUJB1, Pyrus betulaefolia, Chili pepper, Cotton, PbrMYB21, CaPO2, CaMLO2, CaAIR1, CaAIR2, CaWDP1, GhMKK3, GhWRKY27a	40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52
TYLCCNV (Tomato Yellow Leaf Curl China Virus)	DNA virus	Tomato	SIGRX1	53
CLCrV(Cotton Leaf Crumple Virus)	DNA virus	Cotton	GhNAC79	54
viral vector which infects the plant and triggers the silencing of that particular gene89,95. For efficient gene silencing the selection of the target fragment is very crucial. This technology can be used for forward and reverse genetics for both monocotyledonous and dicotyledonous plants86,87. There is no requirement of stable plant transformants in VIGS technology88. Moreover, a number of different genes can be studied simultaneously and a specific target can also be silenced individually through this technology90,91. Many VIGS vectors have been developed for different crops by modifying plant viruses and have been used successfully for the functional study of genes expressed under drought stress31-44. These VIGS vectors along with the target gene can be inoculated into the plants by different methods such as agrodrench, needleless syringe inoculation, agro inoculation, prick inoculation, and biolistic inoculation76,85.

Plants have adopted many molecular mechanisms to withstand different abiotic stress, and a number of stress related genes get stimulated under stress conditions90,92. Among them, MAPKs (Mitogen Activated Protein Kinases) are the most important enzymes for the plant growth and development and also play an important role in signal transduction under extreme conditions90-92. The role of different MAPKs under drought stress has been studied through VIGS technology. The silencing of genes SpMAPK1, SpMAPK2, SpMAPK3 in Solanum pinnipellifolium, SIMPK in Solanum Lycopersicum and GhMKK3 in Gossypium hirsutum reduced the drought tolerance in silenced plants41,42,43.

In addition, various transcriptional factors regulate the plant behaviour in response to environmental conditions71. The WRKYs transcription factor play crucial role in the plant development under drought stress74. In cotton the VIGS of GhWRKY27a enhanced the tolerance against drought stress72. Further, another family of transcriptional factor, NAC, plays an important role under drought75. Silencing of the GhNAC79 and JUB1 genes in cotton and tomato respectively made the plants more sensitive to drought44,45. In addition, PbrMYB21 gene belonging to MYB family of transcription factors (TFs) studied in Pyrus betulaefolia. The PbrMYB21 silenced plants exhibited decreased drought tolerance in comparison to control plants73. Beside these, SR/CAMTA proteins from a small family of TFs and silencing of SISRIL and SIGRX1 genes from this resulted in decreased tolerance against drought stress in tomato45,51.

Beside these, autophagy, a protein degradation process induced in plants in response to environmental stimuli, has been reported to be involved due to the involvement of autophagy-related genes (ATG) under drought stress74-79. The ATG8 gene in wheat and ATG6 and its orthologs get induced in wheat, rice and barley in response to multiple abiotic stresses. Barley stripe mosaic virus (BSMV) based VIGS system was used for their functionality under drought stress. The results indicated the active participation of ATG genes in various survival mechanisms used by plants under drought45,49. In spite of these, many drought tolerant genes have been reported in weeds and also wild species of major cultivars. For instance, ApdRI15 gene in a weed named, Alternanthera philoxeroides has been identified as a drought tolerant gene through VIGS50.

Expressed sequence tags (ESTs)

It is a sequence based technique that can be used to identify or study genes. ESTs can be generated from cDNA libraries90. Functional studies of specific genes using this technique, can provide results in a cost-effective manner91. Large scale EST sequencing has been performed in various crops and in several crops it is in progress. Millions of ESTs of different crops are available at Expressed Sequence Tags Database of National Center of Biotechnology Information. To identify drought stress responsive genes, first cDNA libraries are developed from plants growing under stressed conditions or from drought challenged tissues of drought responsive genotypes. Then by sequencing the clones ESTs can be identified92,93. ESTs provide high quality transcripts for investigation of genes as functional markers under stress conditions. During the last two decades, drought responsive genes have been identified and studied by ESTs in a number of crops such as common beans41, barley44, chickpea45-48, sorghum39,90, rice41-44, Camellia sativa85, wheat90,91, Kodo millet69, pearl millet90,91, sweet potato102, rapeseed102, Peanut103, and Ammopiptanthus mongolicus104. Analysis by BLASTX or qRT-PCR can be performed to find the most promising ESTs82.

TILLING

With the advancements in high-throughput techniques genomes of a large number of crops are available now which present a number of new opportunities for the application of traditional mutation based reverse genetic techniques105. TILLING is a nontransgenic method used to study allelic variations in the target gene in a mutant population and the effect of the mutant gene is studied from the changes in plant phenotypes106,107. It is a quick and comparatively cheap method for the screening of single nucleotide polymorphisms (SNP) in the target sequence. These point mutations in the target genes can be identified by PCR105,108. Moreover, this technique is applicable to any plant species whose genome sequence is available, regardless of its ploidy levels. In TILLING, to induce mutations in plant genome chemical mutagens are used that generated random mutations105. In most of the experiments, to generate the TILLING population ethymethansulfonate (EMS) is used as a mutagen105. However, to study the polymorphism developed, due to environmental conditions, a modified technique called as EcoTILLING has been developed. It seems a more promising strategy to study the genes related to abiotic stresses109,110.

CRISPR Technology

CRISPR (Clustered Regularly Interspaced Short Palindromic Repeat)/ CRISPR-associated nuclease protein (Cas) 9 technology based upon plant antiviral defense mechanisms, offered various new opportunities for researchers. It is relatively simple, easy, less cytotoxic and very efficient targeted genome editing technology in comparison to traditional techniques used for the same purpose111,112. CRISPR/CAS9 based gene editing technology has become common practice in various labs. It involves the use of the CAS9 endonuclease, originally derived from Streptococcus pyogenes, and a guide RNA which leads CAS9 to the target sequence working together and generate double stranded DNA breaks which are later repaired by the error prone non-homologous end joining (NHEJ) method or by the homology directed repair (HDR) pathway113,114. Recently, this technology
has been extensively used for crop improvement\(^{11,15-120}\). This system has been successfully used to study the genes involved in drought stress (Table 3) in model plant Arabidopsis\(^{121}\) and also in a number of crops such as soybean, maize\(^{12,122}\), rice\(^{12,123}\), and tomato\(^{3,24}\).

Conclusion and future perspectives

Severe droughts are becoming more common every year and are reducing crop yield considerably. There is an urgent need for drought tolerant varieties. Breeding and transgenic approaches could solve this problem but the knowledge of molecular mechanisms and genes taking part in drought tolerance is essential. Several reverse genetic techniques have proved their potential in many crops and some are still evolving. During the last decade, the genomes of several crops were successfully sequenced, various new VIGS systems have been developed for different crops\(^{16-121}\) and CRISPR has become the most powerful tool for genome editing\(^{122-124}\). Thus, these techniques can play a pivotal role in crop improvement and can contribute highly in the development of drought tolerant varieties.

Data availability

No data are associated with this article.

Competing interests

No competing interests were disclosed.

Grant information

The author(s) declared that no grants were involved in supporting this work.

References

1. Lesk C, Rowhani P, Ramankutty N: Influence of extreme weather disasters on global crop production. Nature. 2016; 529(7584): 84–7.
2. Nouri F, Nouri H, Kaur S, Singh S, et al.: Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nat Rev Genet. 2015; 16(4): 237–51.
3. Balla K, Rakszegi M, Li Z, et al.: Clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9.
4. PtoMYB216 ARGOS8
5. Sr. No. Crop Gene Name Reference

Sr. No.	Crop	Gene Name	Reference
1.	Arabidopsis	mir169a	113
2.	Arabidopsis	UGT79B2, UGT79B3	121
3.	Maize	ARGOS8	114
4.	Tomato	simapk3	124
5.	Arabidopsis, Poplar	PtoMYB216	125
6.	Rice	OsSAPK2	123

Page 5 of 11
Molecular Mechanisms for Drought Tolerance in Rice. Int J Curr Microbiol Appl Sci 2017; 6(7): 4160–73. Publisher Full Text

68. Ara H, Sinha AK: Conscientiousness of mitogen activated protein kinases in acquiring tolerance for abiotic stresses in plants. Proc Indian Natl Sci Acad. 2014; 80(2): 211–9. Reference Source

69. Nakagami H, Ptitschke A, Hirt H: Emerging MAP kinase pathways in plant stress signalling. Trends Plant Sci. 2007; 12(7): 339–46. PubMed Abstract | Publisher Full Text

70. Ptitschke A, Schikora A, Hirt H: MAPK cascade signalling networks in plant defence. Curr Opin Plant Biol. 2009; 12(4): 241–6. PubMed Abstract | Publisher Full Text

71. Zhang S, Kessig DF: MAPK cascades in plant disease signaling. Trends Plant Sci. 2001; 6(11): 520–7. PubMed Abstract | Publisher Full Text

72. Romet T: Protein kinases in the plant defence response. Curr Opin Plant Biol. 2001; 4(5): 407–14. PubMed Abstract | Publisher Full Text

73. Guo R, Yu F, Gao Z, et al.: GHWRY3, a novel cotton (Gossypium hirsutum L.) WRKY gene, is involved in diverse stress responses. Mol Biol Rep. 2011; 38(1): 49–58. PubMed Abstract | Publisher Full Text | Free Full Text

74. Zhang T, Huang L, Wang Y, et al.: Differential transcriptome profiling of chilling stress response between shoots and rhizomes of Oryza longistaminata using RNA sequencing. PLoS One. 2017; 12(11): e0188625. PubMed Abstract | Publisher Full Text | Free Full Text

75. Nuruuzman M, Sharori AM, Kikuchi S: Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants. Front Microbiol. 2013; 4: 248. PubMed Abstract | Publisher Full Text | Free Full Text

76. Liu Y, Xiong Y, Bassham DC: Autophagy is required for tolerance of drought and salt stress in plants. Autophagy. 2009; 5(7): 954–63. PubMed Abstract | Publisher Full Text

77. Nolan TM, Brennan B, Yang M, et al.: Selective Autophagy of BEST Mediated by DSK2 Balances Plant Growth and Survival. Dev Cell. 2017; 41(1): 33–46.e7. PubMed Abstract | Publisher Full Text | Free Full Text

78. Wang W, Xu M, Wang G, et al.: Autophagy: An Important Biological Process That Protects Plants from Stressful Environments. Front Plant Sci. 2017; 7: 2030. PubMed Abstract | Publisher Full Text | Free Full Text

79. Bai C, Wang P, Fan Q, et al.: Identification of key drought stress-related genes in the hysichin bean. PLoS One. 2013; 8(3): e61086. PubMed Abstract | Publisher Full Text | Free Full Text

80. Liao W, Xiong N, Chang JM, et al.: Identification of drought-tolerant and -susceptible genotypes of sorghum (Sorghum bicolor (L.) Moench). BMC Genet. 2017; 18(1): 119. PubMed Abstract | Publisher Full Text | Free Full Text

81. Pradhan A, Ali RMIA, Nada A, et al.: Transcriptome analysis of the role of drought-induced gene DRI5 in Oryza sativa L. using RNA sequencing. Genome. 2017; 60(1): 86–95. PubMed Abstract | Publisher Full Text | Free Full Text

82. Chen Z, Guo Y, Chen ZX, et al.: Genome-wide characterization of developmental stage- and tissue-specific transcription factors in wheat. BMC Genomics. 2015; 16(1): 125. PubMed Abstract | Publisher Full Text | Free Full Text

83. Ergen NZ, Budak H: Sequencing over 13 000 expressed sequence tags from six subtractive cDNA libraries of wild and modern wheats following slow drought stress. Plant Cell Environ. 2009; 32(3): 220–36. PubMed Abstract | Publisher Full Text | Free Full Text

84. Siddappa N, Raghu GK, Devavar VR: Identification of Drought-Responsive Transcripts in Kodo Millet (Paspalumscrocurublum L.). Int J Innov Res Dev. 2016; 11. Reference Source

85. Shivhare R, Lata C: Exploration of Genetic and Genomic Resources for Abiotic and Biotic Stress Tolerance in Pearl Millet, Front Plant Sci. 2017; 7: 2069. PubMed Abstract | Publisher Full Text | Free Full Text

86. Choudhary M, Jayanand, Padaria JC: Transcriptional profiling in pearl millet (Pennisetum glaucum L. Br). for identification of differentially expressed drought responsive genes. Physiol Mol Biol Plants. 2015; 21(2): 187–96. PubMed Abstract | Publisher Full Text | Free Full Text

87. Kim YH, Jeong JC, Lee HS, et al.: Comparative characterization of sweetpotato antioxidant genes from expressed sequence tags to dehydration-treated fibrous roots under different abiotic stress conditions. Mol Biol Rep. 2013; 40(4): 2887–96. PubMed Abstract | Publisher Full Text | Free Full Text

88. Moens CB, Donn TM, Wolf-Saxon ER, et al.: Reverse genetics in zebrafish by TILLING. Brief Funct Genomic Proteomic. 2008; 7(6): 454–9. PubMed Abstract | Publisher Full Text | Free Full Text

89. Dhahleh SL, Shenben A, Edelberg M: Assessing and Exploiting Functional Diversity in Germplasm Pools to Enhance Abiotic Stress Adaptation and Yield in Cereals and Food Legumes. Front Plant Sci. 2017; 8: 1461. PubMed Abstract | Publisher Full Text | Free Full Text

90. Romay G, Bragard C: Antiviral Defenses in Plants through Genome Editing.

Page 7 of 11
Open Peer Review

Current Peer Review Status: ✔✔

Version 1

Reviewer Report 10 December 2018

https://doi.org/10.5256/f1000research.17024.r40635

© 2018 Bhardwaj P. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Pardeep Kumar Bhardwaj
Institute of Bioresources and Sustainable Development, Sikkim Centre, Gangtok, Sikkim, India

The review entitled “Milestones achieved in response to drought stress through reverse genetic approaches” by Singh et al., presents recent advances in understanding the response of drought stress in crop plants using reverse genetic technologies. It is well known that drought stress is major concern in the era of climate change. Therefore, it is important to address the recent updates on drought stress response in crop plants to scientific communities. The review article is written and organized very well but minor points need to be taken care.

1. Authors have explained several techniques available to study the functionality of different genes involved in response to drought stress but should also include the advantages of these techniques in monocots/dicots.

2. In VIGS, authors should explain the functional analysis of \textit{DREB} transcription factors using VIGS technology citing some latest references.

3. In ESTs analysis, authors should include the analysis of drought responsive ESTs generated through chemical priming studied in crop plants.

Is the topic of the review discussed comprehensively in the context of the current literature?
Yes

Are all factual statements correct and adequately supported by citations?
Partly

Is the review written in accessible language?
Yes

Are the conclusions drawn appropriate in the context of the current research literature?
Yes
Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Plant Molecular Biology

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 31 October 2018

https://doi.org/10.5256/f1000research.17024.r38198

© 2018 Mani E. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Elangovan Mani
Advanta India Ltd., Hyderabad, Telangana, India

Title: Ok, it represents the article well
Abstract: Ok, it provide the central idea about the article precisely. However, authors can expand it a little more.
Keywords: Authors should arrange them alphabetically
Introduction: At the end of first paragraph, authors suggested about available transcriptomic data. I believe there they can add some references of available transcriptomes related to the topic. Overall, it has been written fine.
VIGS: Authors provided all the required information related to this technology. However, there are some bioinformatics tools, which helps in the selection of target fragment within the gene. They can add these too.
Expressed sequence tags (ESTs): Ok
TILLING: Ok
CRISPR Technology: Ok
Conclusion: Ok, Nicely written.

To summarize, the review by Singh et al. presents our current knowledge of many genes deciphered by reverse genetic technologies: VIGS, EST, TILLING and CRISPR. The tables represents ample amount of information in a well-organised way. Overall, the Review provides a useful compilation of subject matter related to addressed topic in a coherent way.

Is the topic of the review discussed comprehensively in the context of the current literature?
Partly

Are all factual statements correct and adequately supported by citations?
Yes

Is the review written in accessible language?
Yes

Are the conclusions drawn appropriate in the context of the current research literature?
Yes

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com