Counterexamples of the Conjecture on Roots of Ehrhart Polynomials

Akihiro Higashitani

Received: 4 July 2011 / Revised: 14 October 2011 / Accepted: 7 November 2011 / Published online: 23 November 2011 © Springer Science+Business Media, LLC 2011

Abstract On roots of Ehrhart polynomials, Beck et al. conjecture that all roots α of the Ehrhart polynomial of an integral convex polytope of dimension d satisfy $-d \leq \Re(\alpha) \leq d - 1$. In this paper, we provide counterexamples for this conjecture.

Keywords Integral convex polytope · Ehrhart polynomial · δ-vector

1 Introduction

Recently, in many research papers on convex polytopes, e.g., [1, 3–5, 9, 10], roots of Ehrhart polynomials have been studied. One of the most important problems is to solve the conjecture given in [1, Conjecture 1.4]. In this paper, we disprove this conjecture.

First of all, we review what the Ehrhart polynomial is. Let $\mathcal{P} \subset \mathbb{R}^N$ be an integral convex polytope of dimension d and $\partial \mathcal{P}$ its boundary. Here an integral convex polytope is a convex polytope all of whose vertices have integer coordinates. Given a positive integer n, we write

\[i(\mathcal{P}, n) = |n\mathcal{P} \cap \mathbb{Z}^N| \quad \text{and} \quad i^*(\mathcal{P}, n) = |n(\mathcal{P} \setminus \partial \mathcal{P}) \cap \mathbb{Z}^N|, \]

where $n\mathcal{P} = \{n\alpha : \alpha \in \mathcal{P}\}$ and $|X|$ denotes the cardinality of a finite set X. The systematic studies of $i(\mathcal{P}, n)$ originated in the work of Ehrhart [6], who established the following fundamental properties:

- $i(\mathcal{P}, n)$ is a polynomial in n of degree d.
- $i(\mathcal{P}, 0) = 1$.
We call this polynomial \(i(P, n) \) the \textit{Ehrhart polynomial} of \(P \). We refer the reader to [2, Chap. 3], [8, Part II], or [13, pp. 235–241] for the introduction to the theory of Ehrhart polynomials.

We define the sequence \(\delta_0, \delta_1, \delta_2, \ldots \) of integers by the formula

\[
(1 - \lambda)^{d+1} \sum_{n=0}^{\infty} i(P, n) \lambda^n = \sum_{j=0}^{\infty} \delta_j \lambda^j.
\]

(1)

Since \(i(P, n) \) is a polynomial in \(n \) of degree \(d \) with \(i(P, 0) = 1 \), a fundamental fact on generating functions (see [13, Corollary 4.3.1]) guarantees that \(\delta_j = 0 \) for every \(j > d \). The sequence \(\delta(P) = (\delta_0, \delta_1, \ldots, \delta_d) \) is called the \textit{\(\delta \)-vector} of \(P \). Alternate names of \(\delta \)-vectors are, for example, \textit{Ehrhart} \(h \)-vector, \textit{Ehrhart} \(\delta \)-vector or \textit{h*-vector}.

By the reciprocity law, one has

\[
\sum_{n=1}^{\infty} i^*(P, n) \lambda^n = \frac{\sum_{i=0}^{d} \delta_{d-i} \lambda^{i+1}}{(1 - \lambda)^{d+1}}.
\]

(2)

The following properties on \(\delta \)-vectors are well known:

- By (1), one has \(\delta_0 = i(P, 0) = 1 \) and \(\delta_1 = i(P, 1) - (d + 1) = |P \cap \mathbb{Z}^N| - (d + 1) \).
- By (2), one has \(\delta_d = i^*(P, 1) = |(P \setminus \partial P) \cap \mathbb{Z}^N| \). In particular, we have \(\delta_1 \geq \delta_d \).
- Each \(\delta_i \) is nonnegative [12].
- When \(d = N \), the leading coefficient of \(i(P, n) \), which coincides with \(\sum_{i=0}^{d} \delta_i / d! \), is equal to the usual volume of \(P \) (see [13, Proposition 4.6.30]). In general, the positive integer \(\text{vol}(P) = \sum_{i=0}^{d} \delta_i \) is called the \textit{normalized volume} of \(P \).

For a complex number \(a \in \mathbb{C} \), let \(\Re(a) \) denote the real part of \(a \). Beck et al. [1] suggest the following

\textbf{Conjecture 1.1} [1, Conjecture 1.4] All roots \(\alpha \) of the Ehrhart polynomial of an integral convex polytope of dimension \(d \) satisfy

\[
-d \leq \Re(\alpha) \leq d - 1.
\]

(3)

It is proved in [1] and [5] that this conjecture is true when \(d \leq 5 \) or roots are real numbers. Moreover, the norm bound of roots of Ehrhart polynomials is given with \(O(d^2) \) (see [4]), and it is known that this bound is best possible [3, Theorem 1.7]. In addition, in order to provide evidence for this conjecture, roots of the Ehrhart polynomials of several integral convex polytopes arising from finite graphs are discussed in [9].

In this paper, we disprove Conjecture 1.1 (see Example 3.1). We obtain many possible counterexamples by Theorem 2.1, and we find a certain counterexample when \(d = 15 \).

\textbf{Remark 1.2} In a recent paper [10], another counterexample is provided. On the one hand, integral convex polytopes given there are so-called \textit{smooth Fano polytopes} and
a certain counterexample is found when the dimension is 124. On the other hand, our counterexamples are simpler polytopes, which are integral simplices, and we obtain them of small dimension 15.

2 A significant family of integral simplices

This section is devoted to proving the following

Theorem 2.1 Let \(m, d, k \in \mathbb{Z}_{>0} \) be arbitrary positive integers satisfying

\[
m \geq 1, \quad d \geq 2 \quad \text{and} \quad 1 \leq k \leq \lfloor (d + 1)/2 \rfloor.
\]

Then there exists an integral convex polytope whose Ehrhart polynomial coincides with

\[
\binom{d+n}{d} + m \binom{d+n-k}{d}.
\]

Before proving the theorem, we recall the well-known combinatorial technique to compute the \(\delta \)-vector of an integral simplex.

Given an integral simplex \(\mathcal{F} \subset \mathbb{R}^N \) of dimension \(d \) with the vertices \(v_0, v_1, \ldots, v_d \in \mathbb{Z}^N \), we set

\[
S = \left\{ \sum_{i=0}^{d} r_i (v_i, 1) \in \mathbb{R}^{N+1} : 0 \leq r_i < 1 \right\} \cap \mathbb{Z}^{N+1}.
\]

We define the degree of an integer point \((\alpha, n) \in S\) with \(\deg(\alpha, n) = n \), where \(\alpha \in \mathbb{Z}^N \) and \(n \in \mathbb{Z}_{\geq 0} \). Let \(\delta_i = |\{\alpha \in S : \deg \alpha = i\}| \). Then we have

\[
\delta(\mathcal{F}) = (\delta_0, \delta_1, \ldots, \delta_d).
\]

We also recall the following

Lemma 2.2 [2, Theorem 2.4] Suppose that \((\delta_0, \delta_1, \ldots, \delta_d)\) is the \(\delta \)-vector of an integral convex polytope of dimension \(d \). Then there exists an integral convex polytope of dimension \(d + 1 \) whose \(\delta \)-vector is \((\delta_0, \delta_1, \ldots, \delta_d, 0)\).

Note that the required \(\delta \)-vector is obtained by forming the pyramid over the integral convex polytope.

Proof of Theorem 2.1 We show that there exists an integral convex polytope of dimension \(d \) whose \(\delta \)-vector is

\[
\delta_i = \begin{cases}
1 & \text{if } i = 0, \\
 m & \text{if } i = k, \\
0 & \text{otherwise}.
\end{cases}
\]

\(\square \) Springer
When \(k = 1 \), it is obvious that \((1, m, 0, \ldots, 0)\) is a \(\delta \)-vector. Thus, we assume that \(k \geq 2 \). By Lemma 2.2, it is enough to construct an integral convex polytope of dimension \(d \) with its \(\delta \)-vector

\[
\delta_i = \begin{cases}
1 & \text{if } i = 0, \\
m & \text{if } i = (d + 1)/2, \\
0 & \text{otherwise,}
\end{cases}
\]

for any positive integer \(m \) and any odd number \(d \) with \(d \geq 3 \).

Let \(d \geq 3 \) be an odd number and \(c = (d - 1)/2 \). We define the integral simplex \(P \subset \mathbb{R}^d \) of dimension \(d \) by setting the convex hull of the integer points \(v_0, v_1, \ldots, v_d \in \mathbb{Z}^d \), which are of the form

\[
v_i = \begin{cases}
e_i & \text{if } i = 1, \ldots, d - 1, \\
\sum_{j=1}^c e_j + \sum_{j=c+1}^{2c} m e_j + (m + 1) e_d & \text{if } i = d, \\
(0, 0, \ldots, 0) & \text{if } i = 0,
\end{cases}
\]

where \(e_1, e_2, \ldots, e_d \) denote the unit coordinate vectors of \(\mathbb{R}^d \). In other words, for \(i = 1, \ldots, d \), \(v_i \) is equal to the \(i \)th row vector of the \(d \times d \) lower triangular integer matrix

\[
\begin{pmatrix}
1 & 0 & \cdots & \cdots & \cdots & 0 \\
0 & 1 & \ddots & & & \\
& \ddots & \ddots & \ddots & & \\
& & \ddots & \ddots & \ddots & \\
& & & \ddots & \ddots & \ddots \\
0 & \cdots & \cdots & 0 & 1 & 0 \\
1 & \cdots & 1 & m & \cdots & m + 1
\end{pmatrix}
\] (6)

where there are \(c \) 1’s and \(c \) \(m \)’s in the \(d \)th row. Then we notice that \(\text{vol}(P) = m + 1 \), which coincides with the determinant of (6).

For \(j = 1, 2, \ldots, m \), since

\[
\sum_{i=0}^c \frac{m + 1 - j}{m + 1} (v_i, 1) + \sum_{i=c+1}^d \frac{j}{m + 1} (v_i, 1) = (1, 1, \ldots, 1, j, j, \ldots, j, c + 1) \in \mathbb{Z}^{d+1}_{c+1}
\]

and

\[
0 \leq \frac{m + 1 - j}{m + 1} < 1, \quad 0 \leq \frac{j}{m + 1} < 1,
\]

we have \(\delta_{c+1} \geq m \). Moreover, from \(\text{vol}(P) = m + 1 \) together with the non-negativity of \(\delta \)-vectors, we obtain \(\delta_{(d+1)/2} = m \). Therefore, we conclude that \(P \) has the required \(\delta \)-vector. \(\square \)
3 Counterexamples of Conjecture 1.1

In this section, we consider the roots of the polynomial (5) given in Theorem 2.1. Let $f(n)$ be the polynomial (5) of degree d. Since

$$f(n) = \prod_{j=d-k+1}^{d}(n+j)m\prod_{j=0}^{k-1}(n-j),$$

negative integers $-1, -2, \ldots, -d+k$ are always the roots of $f(n)$. Let $g_{m,d,k}(n) = \prod_{j=d-k+1}^{d}(n+j)m\prod_{j=0}^{k-1}(n-j)$ be the polynomial in n of degree k. We consider the roots of $g_{m,d,k}(n)$.

Example 3.1 Let us consider the polynomial $g_{9,15,8}(n)$. When $1 \leq m \leq 8$, all its roots satisfy (3). On the other hand, when $m = 9$, its eight roots are approximately

$$14.37537447 \pm 25.02096544\sqrt{-1}, \quad -0.77681486 \pm 10.23552765\sqrt{-1},$$
$$-2.56596317 \pm 4.52757516\sqrt{-1}, \quad \text{and} \quad -3.03259644 \pm 1.31223697\sqrt{-1}.$$

By virtue of Theorem 2.1, this implies that there exists a counterexample of Conjecture 1.1. Moreover, it can be verified that for every $15 \leq d \leq 100$, $g_{9,d,\lfloor(d+1)/2\rfloor}(n)$ possesses a root which violates (3), that is, there exists a counterexample of Conjecture 1.1 for each dimension $15 \leq d \leq 100$. It also seems to be true that there exists a counterexample when $d \geq 101$. In addition, we remark that when $d \geq 17$, we can verify that $g_{9,d,\lfloor(d+1)/2\rfloor}(n)$ possesses a root whose real part is greater than d. (Those are computed by Maple and Maxima.)

These computational results are also supported theoretically. For example, on the roots of $g_{9,15,8}(n)$, by applying the Routh–Hurwitz criterion (see, e.g., [7, pp. 226–233]), we can check that $g_{9,15,8}(n+14.3)$ possesses a root whose real part is nonnegative but $g_{9,15,8}(n+14.4)$ possesses no root whose real part is nonnegative. Of course, this means that $g_{9,15,8}(n)$ possesses a root α with $14.3 \leq \Re(\alpha) < 14.4$.

Remark 3.2 On the order of the largest real part of the non-real roots of $g_{9,d,\lfloor(d+1)/2\rfloor}(n)$, the order seems not to be linear in d. For example, when $d = 30, 50, 100, \text{and } 200$, the largest real parts of the non-real roots of $g_{9,d,\lfloor(d+1)/2\rfloor}(n)$ are as follows:

d	approximate real part
30	60
50	174
100	722
200	2940
Thus, it is more natural to claim that the real parts of roots of Ehrhart polynomials are bounded with \(O(d^2) \), which is known as the best possible norm bound of roots of Ehrhart polynomials.

\textbf{Remark 3.3}

(a) When \(m = 1 \), the real parts of all the roots of \(g_{1,d,k}(n) \) are \((-d + k - 1)/2\), which satisfies \(-d < (-d + k - 1)/2 < -1/2\). In fact, since all the roots of \(1 + \lambda^k \) are on the unit circle in the complex plane, we can apply the theorem of [11] to the polynomial \(\left(\frac{n+d}{d}\right) + \left(\frac{n+d-k}{d}\right) \). On the other hand, when \(m = 2 \), we can obtain other counterexample of Conjecture 1.1 when \(d = 37 \) and \(k = 19 \).

(b) When \(k = 1 \), one has \(g_{m,d,1}(n) = (m + 1)n + d \). Thus, its root is \(-d/(m + 1)\), which satisfies \(-d < -d/(m + 1) < 0\). When \(k = 2 \), one has \(g_{m,d,2}(n) = (m + 1)n^2 + (2d - m - 1)n + d(d - 1) \). If its discriminant is negative, then the real part of its roots is \(-d/(m + 1) + 1/2\), which satisfies \(-d + 1/2 < -d/(m + 1) + 1/2 < 1/2\).

\textbf{Acknowledgements}

The author is supported by JSPS Research Fellowship for Young Scientists. The author would like to thank Hidefumi Ohsugi and Tetsushi Matsui for giving some helpful comments on Example 3.1, pointing out a gap between approximate roots and actual roots and telling the Routh–Hurwitz criterion.

\textbf{References}

1. Beck, M., De Loera, J.A., Develin, M., Pfeifle, J., Stanley, R.P.: Coefficients and roots of Ehrhart polynomials. Contemp. Math. 374, 15–36 (2005)
2. Beck, M., Robins, S.: Computing the Continuous Discretely. Undergraduate Texts in Mathematics. Springer, Berlin (2007)
3. Bey, C., Henk, M., Wills, J.M.: Notes on the roots of Ehrhart polynomials. Discrete Comput. Geom. 38, 81–98 (2007)
4. Braun, B.: Norm bounds for Ehrhart polynomial roots. Discrete Comput. Geom. 39, 191–193 (2008)
5. Braun, B., Develin, M.: Ehrhart polynomial roots and Stanley’s non-negativity theorem. Contemp. Math. 452, 67–78 (2008)
6. Ehrhart, E.: Polynômes Arithmétiques et Méthode des Polyèdres en Combinatoire. Birkhäuser, Boston (1977)
7. Gantmacher, F.R.: Applications of the Theory of Matrices. Interscience, New York (1959)
8. Hibi, T.: Algebraic Combinatorics on Convex Polytopes. Carslaw Publications, Glebe (1992)
9. Matsui, T., Higashitani, A., Nagazawa, Y., Ohsugi, H., Hibi, T.: Roots of Ehrhart polynomials arising from graphs. J. Algebr. Comb. 34, 721–749 (2011)
10. Ohsugi, H., Shibata, K.: Smooth Fano polytopes whose Ehrhart polynomial has a root with large real part. arXiv:1109.0791v2
11. Rodriguez-Villegas, F.: On the zeros of certain polynomials. Proc. Am. Math. Soc. 130, 2251–2254 (2002)
12. Stanley, R.P.: Decompositions of rational convex polytopes. Ann. Discrete Math. 6, 333–342 (1980)
13. Stanley, R.P.: Enumerative Combinatorics, vol. 1. Wadsworth & Brooks/Cole, Monterey (1986)