REMARKS ON SCHRÖDINGER OPERATORS WITH SINGULAR MATRIX POTENTIALS

VLADIMIR MIKHAILETS AND VOLODYMYR MOLYBOGA

Abstract. In this paper the asymmetric generalization of the Glazman–Povzner–Wienholtz theorem is proved for one-dimensional Schrödinger operators with strongly singular matrix potentials from the space $H^{-1}_{loc}(\mathbb{R}, \mathbb{C}^{m \times m})$. This result is new in the scalar case as well.

1. Introduction and main results

Let us consider in the complex separable Hilbert space of vector functions $L^2(\mathbb{R}, \mathbb{C}^m)$, $m \in \mathbb{N}$ the operators generated by the formal differential expression:

$$l[u] := -u'' + qu, \quad u = (u_1, \ldots, u_m),$$

where the matrix potential $q = \{q_{ij}\}_{i,j=1}^m$ belongs to the Sobolev negative class $H^{-1}_{loc}(\mathbb{R}, \mathbb{C}^{m \times m})$. Without loss of generality, we assume that the potential q in (1) may be presented in the form

$$q = Q' + s, \quad Q \in L^2_{loc}(\mathbb{R}, \mathbb{C}^{m \times m}), \quad s \in L^1_{loc}(\mathbb{R}, \mathbb{C}^{m \times m}),$$

where the derivative is understood in the sense of the distributions. Then the block Shin–Zettl matrices are defined:

$$A(x) := \begin{pmatrix} Q & I_m \\ -Q^2 + s & -Q \end{pmatrix} \in L^1_{loc}(\mathbb{R}, \mathbb{C}^{2m \times 2m}),$$

where I_m is a unit $(m \times m)$-matrix. Similarly to the scalar case [7,15] Shin–Zettl matrices define quasiderivatives [13]:

$$u[0] := u, \quad u[1] := u' - Qu, \quad u[2] := (u[1])' + Qu[1] + (Q^2 - s)u.$$

Then formal differential equation (1) is a quasidifferential one:

$$l[u] := -u[2], \quad \text{Dom}(l) := \left\{ u \mid u, u[1] \in AC_{loc}(\mathbb{R}, \mathbb{C}^{m}) \right\},$$

where by $AC_{loc}(\mathbb{R}, \mathbb{C}^{m})$ we denote the class of locally absolutely continuous vector functions. This definition is motivated by the fact that

$$-u[2] = -u'' + qu$$

in the sense of distributions, i. e.,

$$\langle -u[2], \varphi \rangle = \langle -u'' + qu, \varphi \rangle, \quad u \in \text{Dom}(l), \varphi \in C^\infty_0(\mathbb{R}, \mathbb{C}^{m}).$$

We say that function u solves the Cauchy problem

(3) $l[u] = f, \quad f \in L^1_{loc}(\mathbb{R}, \mathbb{C}^m),$
(4) $u(x_0) = c_0, \quad u[1](x_0) = c_1, \quad x_0 \in \mathbb{R}, \quad c_0, c_1 \in \mathbb{C}^{m},$

if u is the first coordinate of the vector function solving the Cauchy problem for the associated Cauchy problem with initial conditions [4]

(5) $\frac{d}{dx} \begin{pmatrix} u \\ u[1] \end{pmatrix} = A(x) \begin{pmatrix} u \\ u[1] \end{pmatrix} + \begin{pmatrix} 0 \\ -f \end{pmatrix}.$

The existence and uniqueness theorem implies that the Cauchy problem for system (5) has a unique solution (see [13 Theorem 16.1] and [17 Theorem 2.1]). Therefore our definition of a solution of the equation (3) is correct.

2010 Mathematics Subject Classification. Primary 34L40; Secondary 47B44, 47A05.

Key words and phrases. Matrix Schrödinger operator, Glazman–Povzner–Wienholtz theorem, m-accretivity, complex-valued potential, distributional potential.
Differential expression (1) gives rise to the associated maximal and preminimal operators L and L_{00} in the Hilbert space $L^2(\mathbb{R}, \mathbb{C}^m)$:

$$Lu := l[u], \quad \text{Dom}(L) := \left\{ u \in L^2(\mathbb{R}, \mathbb{C}^m) \bigg| u, u^{(1)} \in AC_{loc}(\mathbb{R}, \mathbb{C}^m), \ l[u] \in L^2(\mathbb{R}, \mathbb{C}^m) \right\},$$

and

$$L_{00}u := l[u], \quad \text{Dom}(L_{00}) := \{ u \in \text{Dom}(L) \mid \text{supp} \ u \subset \mathbb{R} \}.$$

The block Shin–Zettl matrix (2) defines the Lagrange adjoint quasidifferential expression l^+ in the following way:

$$v^{(0)} := v, \quad v^{(1)} := v' - Q^*v, \quad v^{(2)} := \left(v^{(1)}\right)' + Q^*v^{(1)} + ((Q^*)^2 - s^2)v,$$

$$l^+[v] := -v^{(2)}, \quad \text{Dom}(l^+) := \left\{ v \bigg| v, v^{(1)} \in AC_{loc}(\mathbb{R}, \mathbb{C}^m) \right\},$$

where the matrix $Q^* := \overline{Q^T}$ is Hermitian conjugate to Q. The matrix s^* has a similar meaning.

Quasidifferential expression 1^+ gives rise to the associated maximal and preminimal operators L^+ and L_{00}^+:

$$L^+v := l^+[v], \quad \text{Dom}(L^+) := \left\{ v \in L^2(\mathbb{R}, \mathbb{C}^m) \bigg| v, v^{(1)} \in AC_{loc}(\mathbb{R}, \mathbb{C}^m), \ 1^+[v] \in L^2(\mathbb{R}, \mathbb{C}^m) \right\},$$

and

$$L_{00}^+v := l^+[v], \quad \text{Dom}(L_{00}^+) := \{ v \in \text{Dom}(L^+) \mid \text{supp} \ v \subset \mathbb{R} \}.$$

Below we prove (Proposition 7) that preminimal operators L_{00}, L^+_{00} are densely defined in the space $L^2(\mathbb{R}, \mathbb{C}^m)$ and have closures L_0 and L^+_0 which are called minimal operators. Maximal operators L and L^+ are closed.

For the case of potential q being a real-valued symmetric matrix such operators were considered earlier in [13]. Matrix Schrödinger operators with strongly singular self-adjoint potentials of Miura class were investigated in detail in [2]. There one may find a more detailed review and a more extensive bibliography. For the scalar case of quasidifferential operators generated by Shin–Zettl matrices of general form one may find a review of results in [4], see also [8, 18].

Recall that an operator A in the Hilbert space H is called accretive if

$$\text{Re} \ (Au, u)_H \geq 0, \quad u \in \text{Dom}(A).$$

If in addition the left half-plane \(\{ \lambda \in \mathbb{C} \mid \text{Re} \lambda < 0 \} \) belongs to the resolvent set of the operator A then operator A is called m-accretive [10, 11]. This operator is also maximal accretive in the sense that it has no accretive extensions in the space H. If operator A is m-accretive then operator $-A$ generates a semigroup of contractions in the space H. Converse is also true.

The main result of this paper is a non-symmetric generalization of the Glazman–Povzner–Wienholtz theorem for operators generated by differential expression (1).

Theorem 1. The operator L_0 is m-accretive if and only if preminimal operators L_{00} and L^+_{00} are accretive. In this case $L_0 = L$.

Note that in this theorem we assume both preminimal operators L_{00} and L^+_{00} to be accretive. In the scalar case one of these operators being accretive implies that other is also accretive.

Corollary 2 (Cf. [5]). If matrix potential q is self-adjoint: $Q = Q^*$ and $s = s^*$, then operator L_0 is symmetric. Moreover if operator L_0 is bounded below then it is self-adjoint and $L_0 = L$.

For $m = 1$ this is known [11, Remark III.2], see also [9, 11].

Remark 3. If the complex matrices Q and s are symmetric, i. e., $Q = Q^T$, $s = s^T$, then Theorem 1 can be strengthened. As operator L_{00} is accretive, the operator L_0 is maximal accretive and its residual spectrum is empty.

In particular, this condition is satisfied in the scalar case, when $m = 1$. In this case, the operators L_{00} and L^+_{00} obviously are accretive if the real part of the potential q is positive in the sense of distributions. This condition is equivalent to

$$q = \mu + i\nu,$$

where μ is a nonnegative Radon measure on a locally compact space \mathbb{R} and ν is a real-valued distribution from $H^{loc}_{-1}(\mathbb{R}, \mathbb{C}^{m \times m})$.
The paper is organized as follows. In Section 2 we state a list of the symbols used in the paper and thoroughly investigate the properties of the operators \(L, L_0 \) and \(L_0^+ \). Section 3 contains proofs of the main Theorem 4 Corollary 5 and Remark 6.

2. Properties of the minimal and maximal operators

In this paper, we use the following notation. We denote by \((\cdot, \cdot)_{C^m} \) the inner product in the space \(C^m \):

\[
(u, v)_{C^m} := \sum_{i=1}^{m} u_i \overline{v}_i, \quad u = (u_1, \ldots, u_m), \quad v = (v_1, \ldots, v_m) \in C^m.
\]

We denote by \((\cdot, \cdot)_{L^2(\mathbb{R}, C^m)} \) the inner product in the Hilbert space of square-integrable vector functions \(L^2(\mathbb{R}, C^m) \):

\[
(u, v)_{L^2(\mathbb{R}, C^m)} := \int_{\mathbb{R}} (u, v)_{C^m} \, dx
\]

For an arbitrary matrix \(A = (a_{ij})_{i,j=1}^{m} \in C^{m \times m} \) we denote the transposed matrix by \(A^T = (a_{ij})_{i,j=1}^{m} \) and Hermitian conjugate matrix by \(A^* = (a_{ij}^*)_{i,j=1}^{m} : a_{ij}^* = \overline{a_{ji}} \). For an arbitrary complex number \(a \in \mathbb{C} \) we denote the corresponding complex conjugate number by \(\overline{a} \).

We say that matrix function \(A(x) = (a_{ij}(x))_{i,j=1}^{m} \) belongs to the space \(L^p_{loc}(\mathbb{R}, C^{m \times m}) \), if each element of this matrix \(a_{ij}(x) \) belongs to the space \(L^p_{loc}(\mathbb{R}, \mathbb{C}) \), \(p \in (1, \infty) \).

J. Weidmann [17] previously studied in detail the quasidifferential matrix-valued Sturm-Liouville operators generated by quasidifferential expressions \(\tau \),

\[
\tau[u] := -(u' - Qu)' - Q^*(u' - Qu) - (Q^*Q - s)u,
\]

\(Q \in L^2_{loc}(\mathbb{R}, C^{m \times m}), \quad s \in L^1_{loc}(\mathbb{R}, C^{m \times m}), \quad s = s^* \).

In this case preminimal operators generated by quasidifferential expressions \(\tau \) are symmetric [17, Theorem 3.1].

Obviously, if matrices \(Q = Q^* \) and \(s = s^* \) are self-adjoint then operators generated by quasidifferential expressions \(\tau \) and operators generated by quasidifferential expressions \(l \) and \(l^+ \) coincide.

The following properties of the operators \(L, L_0, L_0 \) and \(L_0^+, L_0^+ \) we state without proof, because they are proved in the same way as the properties of operators generated by quasidifferential expressions \(\tau \) [17].

Lemma 4. For arbitrary vector functions \(u \in \text{Dom}(L), \ v \in \text{Dom}(L^+) \) and arbitrary finite interval \([a, b]\) we have

\[
\int_a^b (l[u], v)_{C^m} \, dx - \int_a^b (u, l^+[v])_{C^m} \, dx = [u, v]_{a}^{b},
\]

where

\[
[u, v](t) \equiv [u, v] := \begin{pmatrix} u, v(1) \end{pmatrix}_{C^m} - \begin{pmatrix} u(1), v \end{pmatrix}_{C^m},
\]

\[
[u, v]_{a}^{b} := [u, v](b) - [u, v](a), \quad -\infty \leq a \leq b \leq \infty.
\]

Lemma 5. For arbitrary vector functions \(u \in \text{Dom}(L) \) and \(v \in \text{Dom}(L^+) \) the following limits exist and are finite:

\[
[u, v](-\infty) := \lim_{t \to -\infty} [u, v](t), \quad [u, v](\infty) := \lim_{t \to \infty} [u, v](t).
\]

Lemma 6 (Generalized Lagrange identity). For arbitrary vector functions \(u \in \text{Dom}(L) \) and \(v \in \text{Dom}(L^+) \) the following relation holds:

\[
\int_{-\infty}^{\infty} (l[u], v)_{C^m} \, dx - \int_{-\infty}^{\infty} (l[u], v)_{C^m} \, dx = [u, v]_{-\infty}^{\infty}.
\]

Proposition 7. The operators \(L, L_0 \) and \(L^+, L_0^+ \) have the following properties:

1°. Operators \(L_0 \) and \(L_0^+ \) are densely defined in the Hilbert space \(L^2(\mathbb{R}, C^m) \).

2°. The equalities

\[
(L_0)^* = L^+ = L,
\]

hold. In particular, operators \(L, L^+ \) are closed and operators \(L_0, L_0^+ \) are closable.

3°. Domains of operators \(L_0, L_0^+ \) may be described in the following way:

\[
\text{Dom}(L_0) = \{ u \in \text{Dom}(L) \mid [u, v]_{-\infty}^{\infty} = 0, \forall v \in \text{Dom}(L^+) \},
\]

\[
\text{Dom}(L_0^+) = \{ v \in \text{Dom}(L^+) \mid [u, v]_{-\infty}^{\infty} = 0, \forall u \in \text{Dom}(L) \}.
\]
The following inclusions take place:

$$\text{Dom}(L) \subset H^1_{\text{loc}}(\mathbb{R}, \mathbb{C}^m), \quad \text{Dom}(L^+) \subset H^1_{\text{loc}}(\mathbb{R}, \mathbb{C}^m).$$

For the case $m = 1$ the results of this section are established in [42].

3. PROOFS

The following lemma is proved by direct calculation.

Lemma 8. For arbitrary vector functions $u \in \text{Dom}(L)$, $v \in \text{Dom}(L^+)$ and functions $\varphi \in C_0^\infty(\mathbb{R}, \mathbb{C})$ we have

i) $\|\varphi I_m u\| = \varphi I_m[u] - \varphi'' I_m u - 2\varphi' I_m u', \quad \varphi I_m u \in \text{Dom}(L_{00});$

ii) $\varphi^+ [\varphi I_m v] = \varphi I_m l^+ [v] - \varphi'' I_m v - 2\varphi' I_m v', \quad \varphi I_m v \in \text{Dom}(L_{00}).$

Proof of Theorem 1. Sufficiency. Due to the assumptions of theorem the minimal operators L_0 and L_0^+ are accretive. Without loss of generality we assume that the following inequalities hold:

$$\text{Re} \langle L_0 u, u \rangle_{L^2(\mathbb{R},\mathbb{C}^m)} \geq \langle u, u \rangle_{L^2(\mathbb{R},\mathbb{C}^m)}, \quad u \in \text{Dom}(L_0),$$

and

$$\text{Re} \langle L_0^+ v, v \rangle_{L^2(\mathbb{R},\mathbb{C}^m)} \geq \langle v, v \rangle_{L^2(\mathbb{R},\mathbb{C}^m)}, \quad v \in \text{Dom}(L_0^+).$$

To prove the minimal operator L_0 to be m-accretive one suffices to show that the kernel of operator L^+ contains only the zero element.

Let v be a solution to the equation

$$L^+ v = 0.$$

We will show that $v \equiv 0$.

For an arbitrary function $\varphi \in C_0^\infty(\mathbb{R}, \mathbb{R})$ due to Lemma 8 we have $\varphi I_m v \in \text{Dom}(L_{00})$. Therefore, taking into account that $1^+[v] = 0$, after some simple calculations we obtain:

$$\langle L_0^+ \varphi I_m v, \varphi I_m v \rangle_{L^2(\mathbb{R},\mathbb{C}^m)} = \int_{\mathbb{R}} (\varphi')^2(v, v)_{\mathbb{C}^m} d x + \int_{\mathbb{R}} \varphi \varphi' ((v, v')_{\mathbb{C}^m} - (v', v)_{\mathbb{C}^m}) d x.$$

As

$$\text{Re} \int_{\mathbb{R}} \varphi \varphi' ((v, v')_{\mathbb{C}^m} - (v', v)_{\mathbb{C}^m}) d x = 0,$$

from (7) taking into account (8) we receive:

$$\int_{\mathbb{R}} (\varphi')^2(v, v)_{\mathbb{C}^m} d x \geq \int_{\mathbb{R}} (\varphi)^2(v, v)_{\mathbb{C}^m} d x \quad \forall \varphi \in C_0^\infty(\mathbb{R}, \mathbb{R}).$$

Furthermore, let us take a sequence of functions $\{\varphi_n\}_{n \in \mathbb{N}}$ which has the following properties:

i) $\varphi_n \in C_0^\infty(\mathbb{R}, \mathbb{R});$

ii) $\text{supp } \varphi_n \subset [-n - 1, n + 1];$

iii) $\varphi_n(x) = 1, \quad x \in [-n, n];$

iv) $|\varphi_n(x)| \leq C$ where $C > 0$ is an absolute constant.

Substituting in (8) we get

$$\int_{-n}^n (v, v)_{\mathbb{C}^m} d x \leq \int_{\mathbb{R}} (\varphi_n')^2(v, v)_{\mathbb{C}^m} d x \leq C^2 \int_{n \leq |x| \leq n + 1} (v, v)_{\mathbb{C}^m} d x,$$

i. e.

$$\int_{-n}^n (v, v)_{\mathbb{C}^m} d x \leq C^2 \int_{n \leq |x| \leq n + 1} (v, v)_{\mathbb{C}^m} d x.$$

As $v \in L^2(\mathbb{R}, \mathbb{C}^m)$ passing in (9) to the limit as $n \to \infty$, we receive $v \equiv 0$.

Thus we have proved that operator L_0 is m-accretive.

In a similar way one may prove that operator L_0^+ is m-accretive. Then taking into account that an adjoint operator to the m-accretive operator is m-accretive [16 Proposition 3.20] from the property 2^o of Proposition 7 we get that the maximal operator L is also m-accretive. By the definition of the maximal accretivity and [16] Примерложение 3.24 we have $L_0 = L$ as $L_0 \subset L$. Sufficiency is proved.
Necessity. Let us suppose that the operator L_0 is m-accretive. Then taking into account that an adjoint operator to the m-accretive operator is m-accretive [16 Proposition 3.20] from the property 20 of Proposition [7] we get that the operator L_{00}^+ is m-accretive. Therefore the operators L_{00} and L_{00}^+ are accretive. Necessity is proved.

Theorem is proved completely. \hfill \Box

Proof of Corollary \[^{[8]}\] One only needs to note that in the case of self-adjoint potential q preminimal operators L_{00} and L_{00}^+ coincide and due to property 20 of Proposition \[^{[7]}\] (see also \[^{[17]}\] Theorem 3.1) are symmetric. \hfill \Box

Proof of Remark \[^{[9]}\] Note that in the case of complex symmetric matrix potentials, we have:

\[Q^* = \overline{Q} = \{\overline{Q}_{ij}\}_{i,j=1}^m, \quad s^* = \overline{s} = \{\overline{s}_{ij}\}_{i,j=1}^m. \]

Thus domains of preminimal operators L_{00} and L_{00}^+ are related by

\[u \in \text{Dom}(L_{00}) \iff \overline{u} \in \text{Dom}(L_{00}^+). \]

Therefore the accretivity of the operator L_{00} implies the m-accretivity of the operator L_{00}^+ and vice versa.

Moreover, let J be an antilinear operator of complex conjugation. Then one may easily verify that the following inclusion takes place:

\[JL_{00} = L_{00}^+ \subset L_{00} = L_{00}^+ J, \]

that is, the operator L_0 is J-symmetric \[^{[6]}\]. If operators L_{00} are accretive, then due to Theorem \[^{[1]}\] and property 20 of Proposition \[^{[4]}\] the operator L_0 is J-self-adjoint:

\[JL_{00} = L_0. \]

Therefore its residual spectrum is empty. \hfill \Box

Acknowledgment. The first author was partially supported by the grant no. 03-01-12 of National Academy of Sciences of Ukraine (under the joint Ukrainian–Russian project of NAS of Ukraine and Syberian Branch of Russian Academy of Sciences) and the second author was partially supported by the grant no. 01-01-12 of National Academy of Sciences of Ukraine (under the joint Ukrainian–Russian project of NAS of Ukraine and Russian Foundation of Basic Research).

References

[1] S. Albeverio, A. Kostenko, M. Malamud, Spectral theory of semibounded Sturm–Liouville operators with local point interactions on a discrete set, J. Math. Phys. 51 (2010), no. 10, 102102, 24 pp.

[2] J. Eckhardt, F. Gesztesy, R. Nichols, G. Teschl, Supersymmetry and Schrödinger-type operators with distributional matrix-valued potentials, arXiv:1206.4966 [math.SP], 35 pp.

[3] J. Eckhardt, F. Gesztesy, R. Nichols, G. Teschl, Wegl–Titchmarsh theory for Sturm–Liouville operators with distributional potentials, arXiv:1208.4677 [math.SP], 80 pp.

[4] W. Everitt, L. Markus, Boundary Value Problems and Symplectic Algebra for Ordinary Differential and Quasi-differential Operators, Mah. Surveys Monogr., vol. 61, Amer. Math. Soc., Providence, RI, 1999.

[5] S. Clark, F. Gesztesy, On Povzner–Wienholtz-type self-adjointness results for matrix-valued Sturm–Liouville operators, Proceedings of the Royal Society of Edinburgh, 133 A (2003), 747–758.

[6] I. Glazman, Direct Methods of Qualitative Spectral Analysis of Singular Differential Operators, Daniel Davey & Co., Inc., New York, 1966.

[7] A. Goriunov, V. Mikhailets, Regularization of singular Sturm–Liouville equations, Methods Funct. Anal. Topology 16 (2010), no. 2, 120–130.

[8] A. Goriunov, V. Mikhailets, K. Pankrashkin, Formally self-adjoint quasi-differential operators and boundary value problems, Electron. J. Diff. Eq. 2013 (2013), 1–16.

[9] R. Hryniv, Ya. Mykytyuk, Self-adjointness of Schrödinger operators with singular potentials, Methods Funct. Anal. Topology 18 (2012), no. 2, 152–159.

[10] T. Kato, Perturbation theory for linear operators, Springer, Berlin, etc., 1995.

[11] V. Mikhailets, V. Molyboga, One-dimensional Schrödinger operators with singular periodic potentials, Methods Funct. Anal. Topology 14 (2008), no. 2, 184–200.

[12] V. Mikhailets, V. Molyboga, Schrödinger operators with complex singular potentials, Methods Funct. Anal. Topology 19 (2013), no. 1, 16–28.

[13] K. Mirzoev, T. Safonova, Singular Sturm–Liouville operators with distribution potential on spaces of vector functions, Dokl. Math. 84 (2011), no. 3, 791–794.

[14] M. Naimark, Linear Differential Operators (Russian), Nauka, Moscow, 1969.

[15] A. Savchuk, A. Shkalikov, Sturm-Liouville operators with distribution potentials (Russian), Tr. Mosk. Mat. Obs. 64 (2003), 159–212; Engl. transl. in Trans. Moscow Math. Soc. (2003), 143–192.
[16] K. Schmüdgen, *Unbounded Self-adjoint Operators on Hilbert Space*, Graduate Texts in Mathematics, **265**, Springer, Dordrecht, etc., 2012.

[17] J. Weidmann, *Spectral Theory of Ordinary Differential Operators*, Lecture Notes in Mathematics, 1258, Springer–Verlag, Berlin, etc., 1987.

[18] A. Zettl, *Formally self-adjoint quasi-differential operator*, Rocky Mount. J. Math. **5** (1975), no. 3, 453–474.

Institute of Mathematics, National Academy of Science of Ukraine, 3 Tereshchenkivs'ka Str., 01601 Kyiv-4, Ukraine

E-mail address: mikhailets@imath.kiev.ua

Institute of Mathematics, National Academy of Science of Ukraine, 3 Tereshchenkivs'ka Str., 01601 Kyiv-4, Ukraine

E-mail address: molyboga@imath.kiev.ua