Estimating Error in Using Residential Outdoor PM$_{2.5}$ Concentrations as Proxies for Personal Exposures: A Meta-analysis

Christy L. Avery,¹ Katherine T. Mills,¹ Ronald Williams,² Kathleen A. McGraw,³ Charles Poole,¹ Richard L. Smith,⁴ and Eric A. Whitsel¹ ⁵

¹Department of Epidemiology, University of North Carolina–Chapel Hill, Chapel Hill, North Carolina, USA; ²U.S. Environmental Protection Agency, National Exposure Research Laboratory, Research Triangle Park, North Carolina, USA; ³Health Sciences Library, Department of Statistics and Operations Research, and ⁴Department of Medicine, University of North Carolina–Chapel Hill, Chapel Hill, North Carolina, USA

BACKGROUND: Studies examining the health effects of particulate matter ≤ 2.5 µm in aerodynamic diameter (PM$_{2.5}$) commonly use ambient PM$_{2.5}$ concentrations measured at distal monitoring sites as proxies for personal exposure and assume spatial homogeneity of ambient PM$_{2.5}$. An alternative proxy—the residential outdoor PM$_{2.5}$ concentration measured adjacent to participant homes—has few advantages under this assumption.

OBJECTIVES: We systematically reviewed the correlation between residential outdoor PM$_{2.5}$ and personal PM$_{2.5}$ (r) as a means of comparing the magnitude and sources of measurement error associated with their use as exposure surrogates.

METHODS: We searched seven electronic reference databases for studies of the within-participant residential outdoor-personal PM$_{2.5}$ correlation.

RESULTS: The search identified 567 candidate studies, nine of which were abstracted in duplicate, that were published between 1996 and 2008. They represented 329 nonsmoking participants 6–93 years of age in eight U.S. cities, among whom r was estimated (median, 0.53; range, 0.25–0.79) based on a median of seven residential outdoor-personal PM$_{2.5}$ pairs per participant. We found modest evidence of publication bias (symmetric funnel plot; p_{Begg} = 0.4; p_{Egger} = 0.2); however, we identified evidence of heterogeneity (Cochran’s Q-test p = 0.05). Of the 20 characteristics examined, earlier study midpoints, eastern latitudes, older mean age, higher outdoor temperatures, and lower personal-residential outdoor PM$_{2.5}$ differences were associated with increased within-participant residential outdoor-personal PM$_{2.5}$ correlations.

CONCLUSIONS: These findings were similar to those from a contemporaneous meta-analysis that examined ambient-personal PM$_{2.5}$ correlations (r = median, 0.54; range, 0.09–0.83). Collectively, the meta-analyses suggest that residential outdoor-personal and ambient-personal PM$_{2.5}$ correlations merit greater consideration when evaluating the potential for bias in studies of PM$_{2.5}$ mediated health effects.

KEY WORDS: air pollution, measurement error, meta-analysis, PM$_{2.5}$, Environ Health Perspect 118:673–678 (2010). doi:10.1289/ehp.0901158 [Online 14 January 2010]

Numerous epidemiologic and toxicologic studies have linked particulate matter (PM) air pollution with adverse health outcomes, including mortality (Burnett et al. 2000; Dominici et al. 2003; Katsouyanni et al. 2003), hospital admissions (Burnett et al. 1995; Linn et al. 2000; Ofteid et al. 2003), and subclinical disease (Diez Roux et al. 2008; Liao et al. 2009; Whitel et al. 2009). A common feature of such studies is their reliance on ambient PM concentrations measured at distal monitoring sites as proxies for personal exposure to PM of ambient origin. The reliance is consistent with regulatory policies developed under the Clean Air Act (1970) which have been informed by studies of the correlation between personal exposures to PM originating outdoors and residential outdoor PM concentrations (Wallace 2000). However, ambient PM may not adequately represent total PM exposure, because human activity pattern surveys suggest that, on average, individuals spend ≈ 85% of their time indoors (Klepeis et al. 2001), where they are exposed to numerous sources of indoor PM, the physicochemical properties and toxicities of which often differ from those of ambient PM (Monn and Becker 1999; Wainman et al. 2000).

Available exposure studies, although small in number, have suggested that several factors may influence the relationship between ambient and total PM exposure, including home ventilation, indoor PM sources, and time–activity patterns (Rodes et al. 2001; Sarnat et al. 2006; Williams et al. 2003b). Because these factors are not well quantified (Janssen et al. 1998), we previously reviewed the literature that examined the within-participant ambient-personal PM$_{2.5}$ correlation to determine the magnitude and sources of measurement error inherent in using ambient PM$_{2.5}$ as a surrogate for personal exposure (Avery et al. 2010). We found that characteristics of participants, studies, and the environments in which they were conducted affect the accuracy of ambient PM$_{2.5}$ as a proxy for personal exposure and that the potential for exposure misclassification may be substantial. Although the residential outdoor PM$_{2.5}$ concentration measured adjacent to participant homes may be equally prone to misclassification under the assumption of spatial homogeneity, use of this measure as an alternative proxy for personal exposure may have some advantages if this assumption is not uniformly applicable. Studies of spatial variability in ambient PM$_{2.5}$ concentrations among 27 U.S. urban areas (Pinto et al. 2004) suggest that this may be the case. The fact that PM$_{2.5}$ varies at the microenvironmental level as a function of, for example, topography, proximity to PM$_{2.5}$ point sources, adjacency to major traffic arterials, and prevailing winds [U.S. Environmental Protection Agency (EPA) 2009; Zhu et al. 2002] also is consistent with this suggestion. Nonetheless, how spatial variability and outdoor microenvironments affect the use of ambient PM$_{2.5}$ concentrations as a proxy for personal PM$_{2.5}$ exposure remains unclear. Thus, we performed a meta-analysis using the literature that examined the within-participant residential outdoor-personal PM$_{2.5}$ correlation and contrasted these findings with those from the review of the within-participant ambient-personal PM$_{2.5}$ correlation (Avery et al. 2010). Findings from the two meta-analyses will facilitate the quantification of bias that resulted from the use of surrogates for personal PM$_{2.5}$ exposure in studies that relied on outdoor PM$_{2.5}$ measurements.

Methods

Systematic review strategy. We devised a search strategy to identify studies of the...
Table 1. Characteristics of nine U.S. studies examining the within-participant residential outdoor-personal PM$_{2.5}$ correlation.

Study/substudy	Setting	Study dates (month/day/year)	PM$_{2.5}$ measures					
	City	Start	End	Duration (months)	Timing	Pairs	r	
Wallace 1996	Azusa	03/06/1999	03/13/1999	0.2	N	7	P	
Rojas-Bracho et al. 2000	Boston	02/05/1996	02/02/1997	11.7	C	13	P	
Williams et al. 2000a, 2000b	Towson	07/26/1998	08/23/1998	0.9	C	16	P	
1	Fresno	02/01/1999	02/28/1999	0.9	C	8	P	
2	Fresno	04/19/1999	05/16/1999	0.9	N	7	P	
Suh et al. 2003	1	Los Angeles	06/12/2000	07/24/2000	1.4	C	6	S
2	Los Angeles	02/11/2000	03/22/2000	1.3	C	6	S	
Liu et al. 2003	1	Seattle	10/26/1999	08/10/2000	0.3	C	7	P
2	Seattle	10/26/2000	09/26/2000	11.8	C	7	P	
3	Seattle	02/07/2000	05/24/2001	15.2	C	7	P	
4	Seattle	11/27/2000	02/24/2001	2.9	C	7	P	
Reid 2003	1	Atlanta	09/21/1999	11/23/1999	2.0	C	6	S
2	Atlanta	04/01/2000	05/13/2000	1.4	C	6	S	
Williams et al. 2003a	Raleigh	06/09/2000	05/21/2001	11.2	N	20	P	
Brown et al. 2008	1	Boston	11/15/1999	01/29/2000	2.4	C	6	S
2	Boston	06/06/2000	07/25/2000	1.6	C	5	S	
All nine studies totaled	8	1998–2001	1998–2001	1.9	70%	C	7	63% P

Abbreviations: C, consecutive; N, nonconsecutive; P, Pearson product-moment correlation coefficient; r, within-participant residential outdoor-personal PM$_{2.5}$ correlation estimation method; S, Spearman's rank correlation coefficient. Summary statistics are reported as counts, range, proportion, or median. "Pairs" indicates average number of paired measurements for estimation of within-participant correlations. Williams et al. 2000a and 2000b refer to the same study.

Table 2. Characteristics of participants in nine studies that examined the within-participant residential outdoor-personal PM$_{2.5}$ correlation.

Study/substudy	Participant Age	Mean	Minimum	Maximum	Percent female	Comorbidity		
Wallace 1996		34.1	11	52	30	N		
Rojas-Bracho et al. 2000		17	___	___	___	P		
Williams et al. 2000a, 2000b		19	81	72	93	81	N, C, P	
Rodes et al. 2001		1	5	85	55	___	68	N
2		14	85	55	55	___	68	N
Suh et al. 2003		2	14	69.1	55	___	84	P
2		13	70	60	84	___	93	P
Liu et al. 2003		3	10	76.3	66	88	61	N
2		30	77.3	65	89	55	P	
3		33	76.6	57	86	35	C	
4		22	9	6	13	24	P	
Reid 2003		1	23	64	33	88	33	C, P
2		22	63	33	94	50	50	C
Williams et al. 2003a		2	26	70	55	95	74	C
Brown et al. 2008		1	12	___	___	40	20	C, P
2		11	40	___	___	27	27	C, P
All nine studies totaled		16	329	70	6	93	55%	25% N

Abbreviations: N, no disease; P, chronic pulmonary disease; C, chronic cardiovascular disease.

*Summary statistics reported as counts, range, proportion, or median; †Requested but not provided as of 18 November 2009. *Not collected. Williams et al. 2000a and 2000b refer to the same study.
Statistical analysis. Summary correlation and variance estimates for the jth study were estimated from the personal ambient PM$_{2.5}$ concentrations measured for each of the ith participants. Each within-participant correlation coefficient (r) was converted to its variance-stabilizing Fisher’s z-transform: $Z_r = \log_2[(1 + r)/(1 - r)]$ (Fisher 1925). Estimates of the within-participant variance [$v_i = 1 + (n_i - 3)$] and between-participant variance ($\tau^2 = [Q_j - (k - 1)] + c$) for the jth study were estimated from the number of paired personal-residential outdoor PM$_{2.5}$ measurements for each participant (n_i), the number of participants per study (k), the weighted sum of squared errors [$Q_j = \sum_{i=1}^{n_j}((Z_{rij} - Z_{j})^2)$], and a constant ($c$) = $\sum_{i=1}^{k}(n_i - 3) - [\sum_{i=1}^{k}(n_i - 3)^2 + \sum_{i=1}^{k}n_i(n_i - 3)]$. The transformed effect size for the jth study is given by $Z_j = \sum_{i=1}^{n_j}w_iZ_{rij} + \sum_{i=1}^{k}w_i$, with participant-specific weights [$w_i = (1 + (n_i - 3) + \tau_j^2)^{-1}$], study-specific standard errors [$S_j = (1 + \sum_{i=1}^{k}w_i)^{-1/2}$], and study-specific weights [$W_j = (1 + j)^{1/2}$]. Negative τ^2 estimates were set to 0 (Field 2001).

We assessed publication bias, which is present when study results influence the chance or timing of publication (Begg and Berlin 1989), using a “funnel plot” of W_j versus Z_j. In the absence of publication bias, plots usually resemble a symmetrical funnel, with the more precise estimates forming the spout and the less precise estimates forming the cone. We also evaluated the adjusted rank correlation (Begg and Mazumdar 1994) and regression asymmetry tests (Egger et al. 1997) as well as a nonparametric “trim-and-fill” method that imputes hypothesically missing results due to publication bias (Duval and Tweedie 2000). Low p-values associated with the former tests (p_{Begg} or p_{Egger}) give evidence of asymmetry.

Interstudy heterogeneity was evaluated using a plot of Z_j versus $1 - S_j$ (Galbraith 1988) and with Cochran’s Q-test (Cochran 1954). The plot and test are related in that the position of the jth study along the vertical axis illustrates its contribution to Q-test statistic. In the absence of appreciable evidence of heterogeneity, all studies fall within the 95% confidence interval (CI) and $p_{Cochran} > 0.1$.

We first assessed variation in the strength and precision of Z_j across levels of the study, environment, and participant characteristics with a summary random-effects estimate of Z within each study, environment, and participant category (Berkey et al. 1995). We also constructed a series of univariable random-effects meta-regression models to relate each study, environment, and participant characteristic to differences in Z_j. Lastly, a multivariable random-effects meta-regression model and a backward elimination strategy were used to evaluate 8 study, participant, and environment characteristics routinely available in epidemiologic studies of PM$_{2.5}$ health effects: latitude, longitude, mean age, percent female, relative humidity, sea level pressure, mean temperature, and mean residential outdoor temperature, and study characteristics (range 0.2–24.0°C) (Table 3).

Results

The systematic review identified 567 candidate studies for screening. Of these studies, nine (2%) met the criteria for critical appraisal and were abstracted (Brown et al. 2008; Liu et al. 2003; Reid 2003; Rodes et al. 2001; Rojas-Bracho et al. 2000; Suh et al. 2003; Wallace 1996; Williams et al. 2000a, 2000b, 2003a). Abstracted studies were published between 1996 and 2008 (Table 1), were set in eight cities in six U.S. states, and were conducted between 1989 and 2001. The median study duration was 1.9 months (range 0.2–15.2 months), a period in which 70% of the studies collected PM$_{2.5}$ data over consecutive days. During data collection, the investigators recorded a median of seven (range, 5–20) pairs of residential outdoor and personal PM$_{2.5}$ concentrations per participant, on which the within-participant Pearson (63%) and Spearman (37%) correlation coefficients were based (Table 1).

The studies represented 329 nonsmoking participants 6–93 (median, 70) years old, 55% of whom were female and 25% of whom did not report chronic pulmonary or cardiovascular disease (Table 2). On average, residential outdoor PM$_{2.5}$ concentrations (range 8.6–42.6 μg/m3) were lower than personal PM$_{2.5}$ concentrations (range, 9.3–70.0 μg/m3), with a median residential outdoor-personal PM$_{2.5}$ difference of −1.55 μg/m3 (range, −27.4 to 9.0 μg/m3; Table 3). The estimated \bar{r}_j (median, 0.53; range, 0.25–0.79) and its standard deviation varied widely (Figure 1), the latter reflecting variability in sample weights (median, 53.6; range, 9.4–548.1). Temperature (range, 2.0–24.0°C) and relative humidity (range, 27.3–78.9%) were also variable.

Table 3. Environmental characteristics for nine studies that examined the within-participant correlation between residential outdoor and personal PM$_{2.5}$.

Study	Substudy	Residential outdoor PM$_{2.5}$ (µg/m3)	Personal PM$_{2.5}$ (µg/m3)	r	\bar{r}	SD	T ($^\circ$C)	DP ($^\circ$C)	SLP (kPa)	RH (%)
Wallace 1996		42.6 ± NR	70 ± NR	0.41	0.16	11.7	52.0	101.81	27.3	
Rojas-Bracho et al. 2000		14.2 ± 11.2	21.6 ± 13.6	0.64	0.11	13.2	45.4	101.56	68.0	
Williams et al. 2000a, 2000b		22.0 ± 12.0	13.0 ± 3.2	0.79	0.08	24.0	64.0	101.85	68.3	
Rodes et al. 2001	1	20.5 ± 13.4	13.1 ± 5.9	0.58	0.18	9.6	41.8	102.27	75.2	
	2	10.1 ± 3.2	11.1 ± 2.8	0.65	0.20	17.5	41.2	101.42	43.9	
Suh et al. 2003	1	19.3 ± 9.0	25.1 ± 20.8	0.32	0.14	21.1	60.3	101.34	71.3	
	2	13.5 ± 8.5	19.6 ± 14.5	0.59	0.16	13.7	46.8	101.70	69.7	
Liu et al. 2003	1	9.0 ± 4.6	9.3 ± 8.4	0.47	0.10	9.9	43.6	101.78	78.9	
	2	9.2 ± 5.1	10.5 ± 7.2	0.51	0.09	10.8	44.8	101.78	77.8	
	3	12.6 ± 7.9	10.8 ± 8.4	0.55	0.13	10.0	42.8	101.82	76.0	
	4	11.3 ± 6.4	13.3 ± 8.2	0.41	0.11	8.9	37.8	101.90	77.1	
Reid 2003	1	14.5 ± 7.3	16.3 ± 8.4	0.76	0.18	15.7	49.7	102.01	68.3	
	2	22.7 ± 10.6	15.0 ± 7.5	0.48	0.12	17.2	49.8	101.64	62.0	
Williams et al. 2003a		19.3 ± 8.4	23.0 ± 16.1	0.35	0.04	17.2	51.9	101.92	67.4	
Brown et al. 2008		8.6 ± 5.2	12.0 ± 6.0	0.25	0.22	2.0	22.7	101.67	59.0	
	2	12.5 ± 7.6	10.0 ± 6.2	0.75	0.35	20.4	58.6	101.43	70.3	
All nine studies totaled 1996–2008		13.9 ± 7.9	13.2 ± 8.2	0.53	0.14	13.4	46.1	101.78	69.0	

Abbreviations: DP, dew point; NR, not reported; \bar{r}_j mean within-participant residential outdoor PM$_{2.5}$-personal PM$_{2.5}$ correlation coefficient; RH, relative humidity; SD, standard deviation; SLP, sea level pressure; T, temperature.
Figure 2, a funnel plot of Z_j, shows little evidence of asymmetry. This was consistent with $P_{	ext{Hedges}} = 0.4$, $P_{	ext{Tigger}} = 0.2$, although the “trim-and-fill” analysis imputed seven hypothetically missing studies. Figure 3, a Galbraith plot in which three observations fell outside the 95% CIs, provides evidence of heterogeneity. This evidence was consistent with $P_{	ext{Cochran}} = 0.05$.

Several study, participant, and environmental characteristics were suggestively associated with moderate increases in the within-participant residential outdoor-personal PM$_{2.5}$ correlation coefficient in univariate meta-regression models (Figure 4), including earlier study midpoints, eastern longitudes, older mean age, lower personal-residential outdoor PM$_{2.5}$ differences (and ratios), and higher mean temperatures (Figure 5). For example, every 5°C increase in mean temperature was associated with a 0.10 95% CI, (-0.02, 0.21) unit difference in r. The direct association between mean temperature and r was also apparent when evaluating mean temperature dichotomized at the median: In studies with a mean temperature ≥ 13.43°C, r was 0.59 (range, 0.40–0.74), and in those with a mean temperature < 13.43°C, r was 0.50 (range, 0.44–0.56).

When evaluating multivariable meta-regression models, only higher mean ages and eastern longitudes were associated with an increased within-participant residential outdoor-personal PM$_{2.5}$ correlation coefficient ($p < 0.05$).

Discussion

Epidemiologic studies of the health effects of PM$_{2.5}$ typically estimate PM$_{2.5}$ exposures using daily mean concentrations either obtained from a single ambient PM$_{2.5}$ monitoring site or averaged across several sites (U.S. EPA 1996). Although rapid dispersion and secondary formation of atmospheric PM$_{2.5}$ via chemical reactions of such gases as sulfur dioxide, nitrogen oxides, and ammonia ensure some geographic uniformity of the monitored concentrations, primary sources of anthropogenic PM$_{2.5}$, including traffic, construction, and industry (Samet and Krewski 2007), can increase the spatial variability of PM$_{2.5}$. Additional factors that influence the relationship between ambient PM$_{2.5}$ concentrations and PM$_{2.5}$ exposures include home ventilation, indoor activities associated with generation or resuspension of PM$_{2.5}$ like cooking or cleaning, and time–activity patterns (Liu et al. 2003; Williams et al. 2000b).

Thus, estimates of PM$_{2.5}$ exposure based on ambient PM$_{2.5}$ concentrations are associated with an acknowledged degree of uncertainty (Janssen et al. 1998).

To further characterize this uncertainty, in the present study we extended a prior meta-analysis of the within-participant ambient-personal PM$_{2.5}$ correlation (Avery et al. 2010) by examining the within-participant residential outdoor-personal PM$_{2.5}$ correlation using analogous meta-analytic methods. In both cases, the examination generated little evidence for publication bias of Fisher’s z-transformed r but strong evidence of heterogeneity. Several study, participant, and environment characteristics were associated with an increased r, including earlier study midpoints, eastern longitudes, lower personal-residential outdoor PM$_{2.5}$ differences (and ratios), higher mean ages, and higher mean temperatures. Moreover, the direct association between eastern longitudes and increased r was consistent with the prior meta-analysis of the within-participant ambient-personal PM$_{2.5}$ correlation.

The direct association between eastern longitudes and increased r may reflect several regional factors, including higher ambient PM$_{2.5}$ concentrations (Rom and Markowitz 2006) or a greater influence of secondary PM$_{2.5}$ sources in eastern locales (Pinto et al. 2004). The inverse associations between the residential outdoor-personal PM$_{2.5}$ difference (or ratio) and mean temperature with r may also suggest lower microenvironmental variation in PM$_{2.5}$ or an increased contribution of residential outdoor to personal PM$_{2.5}$ exposure, through either time–activity patterns or increased air exchange. We were unable to fully evaluate the influence of these factors given the limited number of published studies and their inconsistent reporting of other geographic, household, and personal factors potentially responsible for the above associations. However, higher mean ages and eastern longitudes were associated with increased r in the multivariable prediction model that included study, participant, and environment characteristics routinely available in epidemiologic studies of PM$_{2.5}$ health effects.
Although the meta-analyses of the ambient-personal and residential outdoor-personal PM$_{2.5}$ correlations summarized a wide range of published correlation coefficients, both of them estimated a median τ of 0.5, which suggests that attempting to account for spatial variability and outdoor microenvironments does not appreciably affect the use of outdoor PM$_{2.5}$ concentrations as proxies for personal PM$_{2.5}$ exposure in the settings examined by the source studies. Nonetheless, these simple measures of central tendency have potentially important implications for studies using PM$_{2.5}$ concentrations measured at distal or proximal monitoring sites. For example, an τ of 0.5 implies that, on average, only τ^2 or one-fourth of the variation in personal PM$_{2.5}$ is explained by ambient or residential outdoor PM$_{2.5}$ concentrations. Under a simple measurement error model, it also implies that the variances of ambient or residential outdoor PM$_{2.5}$ concentrations are $1/\tau^2$, or four times as large as the variance of the true, but often unmeasured, personal PM$_{2.5}$ exposure. Moreover, τ values of 0.5 in diseased and nondiseased subpopulations (i.e., nondifferential exposure measurement error) imply that a) sample sizes needed to detect between-group differences in mean ambient or residential outdoor PM$_{2.5}$ concentrations are $1/\tau^2$, or 4-fold as large as those needed to detect the same differences in personal PM$_{2.5}$ exposures, and b) effect estimates expressed as microgram per cubic meter increases in ambient or residential outdoor PM$_{2.5}$ concentrations are equal to those associated with the same microgram per cubic meter increases in personal PM$_{2.5}$ exposure, albeit attenuated toward the null by the power τ or 0.25. The latter form of attenuation is capable of obscuring weak to modest health effects of PM$_{2.5}$ (White et al. 2003), yet it cannot be adequately controlled by methods commonly used to account for confounding (Greenland and Robins 1985).

Given the above considerations, it is tempting to assume that all health effect estimates based on ambient or residential outdoor PM$_{2.5}$ concentrations would be considerably larger if they were instead based on personal PM$_{2.5}$ exposures, but to do so would yield more biased estimates if the original PM$_{2.5}$-disease associations were spurious due to chance or confounding (Armstrong 1998). This justifies the application of the present findings to the PM$_{2.5}$-disease associations that are the most precise and least biased according to criteria used to judge epidemiologic evidence (Hill 1965; Poole 2001; U.S. EPA 2009). Furthermore, factors associated with τ, such as mean age and eastern longitudes, may differ among participants and the studies in which they are enrolled. It is therefore difficult to predict the degree to which PM$_{2.5}$ health effects estimates may be biased by exposure measurement error. Nonetheless, the above examples clearly illustrate that the impact of τ on the interpretation of findings from studies of PM$_{2.5}$ health effects may be substantial.

Although in the present study we attempted to quantify the error associated with using residential outdoor and ambient PM$_{2.5}$ concentrations as proxies for total personal exposure, the approach adopted here has several limitations. First, residential outdoor and ambient PM$_{2.5}$ concentrations are likely to be poor proxies for exposure to nonambient PM because PM originating indoors has different

Table: Summary Correlations

Study characteristics	Summary τ	τ difference
Year		
Per 1-year increase	0.59 (0.42, 0.72)	-0.02 (–0.07, 0.04)
10/1996–03/2003	0.49 (0.34, 0.68)	0
02/2003–7/2008	0.49 (0.34, 0.68)	0
Study midpoint		
03/1999–03/2000	0.62 (0.48, 0.75)	0.25 (0.03, 0.44)
03/2000–03/2001	0.45 (0.37, 0.53)	0
Measurement type		
Consecutive	0.56 (0.46, 0.65)	0.13 (–0.12, 0.37)
Nonconsecutive	0.43 (0.35, 0.51)	0
Latitude		
≥ 96.07°	0.57 (0.43, 0.69)	-0.01 (–0.13, 0.11)
< 96.07°	0.50 (0.38, 0.61)	0.09 (0.16, 0.34)
Longitude		
≥ 10° increase	0.61 (0.39, 0.76)	0.04 (–0.02, 0.09)
< 10° increase	0.49 (0.42, 0.54)	0.16 (0.09, 0.39)
Correlation coefficient		
Spearman	0.53 (0.36, 0.67)	0.02 (–0.30, 0.26)
Pearson	0.55 (0.42, 0.66)	0
Mean number of paired measures		
> 7	0.55 (0.42, 0.68)	0.01 (–0.02, 0.04)
< 7	0.53 (0.36, 0.66)	0
Participant characteristics		
Comorbidity	0.85 (0.44, 0.79)	0.22 (–0.12, 0.51)
Cardiovascular	0.43 (0.21, 0.61)	0
Pulmonary	0.49 (0.39, 0.60)	0
Healthy	0.50 (0.39, 0.60)	0
Mean age, restricted to adults		
> 69 years	0.57 (0.41, 0.70)	0.09 (–0.23, 0.40)
< 69 years	0.50 (0.38, 0.64)	0
Percent female		
> 50%	0.53 (0.38, 0.66)	0.01 (–0.05, 0.07)
< 50%	0.54 (0.38, 0.66)	0.11 (–0.30, 0.20)
Environment characteristics		
Mean outdoor PM$_{2.5}$	> 13.85 µg/m³ increase	-0.01 (–0.18, 0.17)
> 13.85 µg/m³ increase	0.57 (0.38, 0.71)	0.03 (0.19, 0.32)
Mean personal PM$_{2.5}$	> 13.3 µg/m³ increase	0.50 (0.43, 0.56)
> 13.3 µg/m³ increase	0.50 (0.43, 0.56)	0
Mean outdoor/personal PM$_{2.5}$	> 0.5 µg/m³ increase	-0.06 (–0.14, 0.02)
> 0.5 µg/m³ increase	0.49 (0.40, 0.57)	-0.21 (–0.45, 0.03)
Personal/ambient PM$_{2.5}$	> 0.5 µg/m³ increase	-0.17 (–0.35, 0.00)
> 0.5 µg/m³ increase	0.49 (0.40, 0.57)	-0.22 (–0.45, 0.03)
Relative humidity		
> 50%	0.48 (0.41, 0.55)	0.11 (–0.10, 0.31)
< 50%	0.57 (0.47, 0.67)	0
Dew point		
> 44°C	0.59 (0.41, 0.73)	0.12 (–0.14, 0.37)
< 44°C	0.49 (0.32, 0.55)	0
SLP (hPa)		
> 101.8	0.58 (0.39, 0.70)	0.05 (–0.08, 0.11)
< 101.8	0.52 (0.43, 0.60)	0.05 (–0.22, 0.30)
Mean temperature		
> 13.4°C	0.59 (0.40, 0.74)	0.10 (–0.02, 0.21)
< 13.4°C	0.59 (0.40, 0.74)	0.12 (–0.14, 0.37)

Figure 4. Unadjusted summary correlations (95% CIs) and differences (95% CIs) by study, participant, and environment characteristics for nine studies examining the within-participant residential outdoor-personal PM$_{2.5}$ correlation. Summary correlations represent stratum-specific estimates of τ. Increases in τ per unit change of study, participant, and environment characteristics are provided by τ difference estimates. SLP, sea level pressure.

Figure 5. Plot for 16 estimates of the within-participant residential outdoor-personal PM$_{2.5}$ correlation (95% CI) versus mean outdoor temperature, including the univariate random-effects meta-regression line.
compositions and biological properties (Long et al. 2001). Although the relative toxicity of outdoor and indoor PM remains under investigation, a panel study of 16 chronic obstructive pulmonary disease patients in Vancouver, British Columbia, reported that only the PM originating outdoors was associated with adverse cardiopulmonary effects (Ebel et al. 2005). Moreover, in the present study we did not evaluate the correlation between concentrations of PM originating almost exclusively outdoors (e.g., sulfate or elemental carbon) and personal PM$_{2.5}$ exposure, despite reports that their associations with ambient PM$_{2.5}$ are particularly strong (Ebel et al. 2000; Sarnat et al. 2006). Further work examining the relative contributions of PM$_{2.5}$ constituents to PM-mediated health effects is clearly needed.

In summary, the results presented here and in the previous meta-analysis of the within-participant ambient-personal PM$_{2.5}$ correlation (Avery et al. 2010) suggest that greater scrutiny of the effects of exposure measurement error is warranted. Further inquiry should involve quantifying the impact of using ambient or resident outdoor PM$_{2.5}$ concentrations as proxies for personal PM$_{2.5}$ exposure, as well as the development of methodologies to apply such findings. A comprehensive understanding of the degree to which these proxies influence PM$_{2.5}$-disease associations is especially important in air pollution epidemiology because the health effects of PM$_{2.5}$ exposure may be subtle. Such subclinical effects are particularly difficult to detect in the presence of measurement error because sensitivity of detection varies inversely with the degree of misclassification (Rom and Markowitz 2006).

References

Armstrong BG. 1989. Effect of measurement error on epidemiological studies of environmental and occupational exposures. Occup Environ Med 55(10):651–656.

Avery CL, Mills KT, Williams R, McGraw K, Poole C, Smith RL, Armstrong BG. 1998. Effect of measurement error on epidemiologic investigations is especially important in air pollution epidemiology because the health effects of PM$_{2.5}$ exposure may be subtle. Such subclinical effects are particularly difficult to detect in the presence of measurement error because sensitivity of detection varies inversely with the degree of misclassification (Rom and Markowitz 2006).

Clean Air Act. 1970. 42 USC4701.

Cochran WG. 1954. The combination of estimates from different studies with special reference to the combination of estimates from clinical trials. Biometrics 10(4):245–263.

Diez Roux AV, Auchincloss AH, Franklin TG, Raghunathan T, Barr RG, et al. 2004. Long-term exposure to outdoor ambient particulate matter and prevalence of sub-clinical atherosclerosis in the Multi-Ethnic Study of Atherosclerosis. Am J Epidemiol 160(6):677–685.

Dominici F, McDermott A, Daniels M, Zeger SL, Samet J. 2003. Mortality among residents of 90 cities. In: Revised Analyses of Time-Series Studies of Air Pollution and Health: Revised Analyses of the National Morbidity, Mortality, and Air Pollution Study (NMAMPS), Part II. Boston:Health Effects Institute, 9–24.

Duval S, Tweedie R. 2000. Trim and fill: a simple funnel-plot-based method of detecting and adjusting for publication bias in meta-analysis. Biometrics 56(2):453–463.

Ebel ST, Petkau AJ, Vedal S, Fisher TV, Brauer M. 2000. Exposure of chronic obstructive pulmonary disease patients to particulate matter: relationships between personal and ambient air concentrations. J Air Waste Manag Assoc 50(7):1081–1094.

Ebel ST, Wilson WE, Brauer M. 2005. Exposure to ambient and nonambient components of urban air pollution and daily mortality in Portland, Oregon. Environ Health Perspect 113(10):1379–1383.

Field AP. 2001. Meta-analysis of correlation coefficients: a Monte Carlo comparison of fixed- and random-effects methods. Psychol Methods 6(2):161–180.

Fisher RA. 1935. Design methods for Research Workers. Edinburgh:Oliver & Boyd.

Galbraith RF. 1986. A note on graphical presentation of estimated odds ratios from several clinical trials. Stat Med 5(8):889–894.

Greenland S, Robins JM. 1986. Confounding and misclassification. Am J Epidemiol 122(3):495–508.

Hill AB. 1965. The environment and disease: association or causation? Proc R Soc Med 58:295–300.

Janssen NA, Haek, G, Brunekreef B, tcp, ap, 2006. Sensitivity analysis of various models of short-term effects of ambient particles on total mortality in 29 cities in APHEA2. In: Revised Analysis of Time-series Studies of Air Pollution and Health. Special report. Boston:Health Effects Institute, pp. 157–164.

Koutrakis P. 2008. Ambient site, home outdoor and home indoor concentrations and biologic markers of exposure and effects associated with PM$_{2.5}$ and PM$_{10}$ exposures for elderly populations and indoor and outdoor concentrations for three retirement center scenarios. J Expo Anal Epidemiol 11(2):103–115.

Rojas-Bracho L, Suh HH, Koutrakis P. 2000. Relationships among personal, indoor, and outdoor fine and coarse particle concentrations for individuals with COPD. J Expo Anal Epidemiol 10(3):294–306.

Rom WN, Markowitz SB. 2006. Environmental and Occupational Medicine. 4th ed. Philadelphia:Lea & Febiger.

Avery CL, Mills KT, Williams R, McGraw K, Poole C, Smith RL, Armstrong BG. 1998. Effect of measurement error on epidemiologic investigations is especially important in air pollution epidemiology because the health effects of PM$_{2.5}$ exposure may be subtle. Such subclinical effects are particularly difficult to detect in the presence of measurement error because sensitivity of detection varies inversely with the degree of misclassification (Rom and Markowitz 2006).