Text messaging interventions to support smoking cessation among hospitalized patients in Brazil: a randomized comparative effectiveness clinical trial

Lígia Menezes do Amaral¹, Telmo Mota Ronzani², Erica Cruvinel³, Kimber Richter⁴, Rafaela de Oliveira Andrade⁵, Isabella Oliveira Lanzieri⁵, Ângela Caroline Dias Albino Destro de Macêdo⁶ and Isabel Cristina Gonçalves Leite⁷*

Abstract

Objective: A clinical trial carried out in patients hospitalized for clinical and surgical conditions. This study evaluated the effectiveness of text messaging interventions (TM) versus telephone counseling (TC) to promote smoking cessation among hospitalized smokers in a middle-income country. Seven-day abstinence was measured during follow-up phone calls one month after discharge. The comparative cost of the two interventions considered the cost of calls, time spent on phone calls and sending SMS and cost of the professional involved in the approaches.

Results: Past 7-day tobacco abstinence was not statistically different between groups (30.5% in TM group and 26% in TC, p = 0.318). Costs were significantly lower in the TM group (US$9.28 × US$19.45 - p < 0.001). Continuous abstinence was reported by 26% of TM participants and 24.5% of TC participants (p = 0.730). In the 3-month follow-up, 7-day abstinence was 23% in the TMI and 27% in the TC (p = 0.356) group. Continuous abstinence was reported by 20% of TM participants and 24% of TC participants (p = 0.334).

Trial registration: ClinicalTrials.gov ID: NCT03237949 Registered on: 30th May 2017.

Keywords: Patient discharge, Randomized trial, Smoking cessation, Text messaging

Introduction

Smoking is the leading cause of premature death worldwide [1, 2]. During hospital stays, when they were hospitalized for diagnosis and treatment of clinical and surgical conditions, patients must abstain from smoking, and they are particularly accessible and interested in receiving advice to quit [3–7]. Increased access to phones, cell phones, the internet, and the emergence of quitlines have made these strategies attractive vehicles for novel health interventions [8–15].

Brazil has one of the world’s most successful tobacco control programs, leading to a significant reduction in the prevalence of smoking in the last three decades (from more than 40% to less than 10% of the population). Brazil implemented numerous tobacco control policies including smoke-free air laws, marketing restrictions, graphic health warnings on cigarette packaging, national smoking cessation campaigns through the mass media, cigarette price increases and a national smoking cessation treatment program [16–19]. However, only a few hospitals in
Brazil actually have a protocol to address smoking cessation with their patients [20–23].

Text messaging shows strong potential to extend care to hospitalized smokers in Brazil during the post-discharge period [3]. Text message interventions are effective for smoking cessation [24–26] and have a wide reach and low cost [24]. Most Brazilians- 86% of the population aged 10 years or over- are mobile phone users [27].

The present study is the first definitive randomized clinical trial to evaluate SMS for the post-discharge follow-up of smokers in Brazil. However, most smokers do not receive smoking cessation treatment when trying to quit [3]. Different from other countries, there is limited research investigating SMS to support smoking cessation among post-discharge patients in Brazil.

The objective of the present study was to evaluate the effectiveness and costs of a post-discharge text messaging (TM) versus telephone counseling (TC), for supporting cessation among hospitalized smokers in Brazil.

Main text

Methods

Design

The design a 1:1 ratio two-arm randomized controlled clinical trial of non-inferiority conducted with hospitalized smokers. The study was approved by the Hospital Ethics Committee Review Board/process number 2.868.112. The trial is registered in the Clinical Trials Registry (NCT03237949) and the Brazilian Clinical Trials Registry (RBR-8mgc3h). The study adheres to the CONSORT Guidelines.

Setting and participants

This study was conducted at a university hospital located in the city of Juiz de Fora in the southeastern part of Brazil. Smoking is prohibited in the hospital (tobacco-free campus) and patients had to remain abstinent throughout their stay. Patients were recruited from all units of a 159-bed public university hospital. Participants were involved in an initial pre-screening process using the Electronic Medical Record System (EMR) and then answered an initial pre-screening survey administered by the researcher manually by a cell phone. Messaging was unidirectional messages per day for 15 days. Text messages were sent to the content of text messages was used [29]. The study adheres to Bandura's self-efficacy theory to design the content of text messages was used [29]. The study did not assess abstinence in the last 15 days but we used the intention to quit (or remain abstinent) in the next 30 days, collected in the baseline assessment, to customize the text message content. Participants abstinent or preparing to quit in the next 30 days received two messages per day for 15 days. Text messages were sent manually by a cell phone. Messaging was unidirectional participants were unable to reply to messages.

Telephone counseling

In TC, participants received one weekly phone call for 4 weeks. Four attempts were made, on different days and times of the day, per week for each participant. Telephone counseling lasted approximately 15 to 30 min. The counseling approach addressed motivation, confidence, quitting history, environmental factors, trigger situations, coping strategies, medication use, relapse prevention and setting a quit date. This is the standard treatment.
given to all discharged patients, except in the intervention group (TM) during this study. The approaches were based on concepts of motivational interviewing and cognitive behavioral therapy. Each telephone counseling was designed to help patients develop an individualized plan to quit smoking or to remain abstinent. The approach was based on Motivational Interviewing (quote) and addressed behavioral and cognitive issues, including motivation, confidence, quitting history, environmental factors, trigger situations, coping strategies, medication use, relapse prevention and setting a quit date [30].

These approaches were based on previous pragmatic tobacco treatment research [3].

Measures

Measures included demographics and social class distribution [30]. The nicotine dependence was evaluated via Fagerström Test [32]. Withdrawal symptoms during hospitalization [33], tobacco use characteristics, readiness to quit [34], and nicotine replacement therapy during hospitalization were assessed. The Patient Health Questionnaire –4 (PHQ-4) and the Alcohol Use Disorder Identification Test (AUDIT-C) were used [35, 36].

The main outcome measure was self-reported 7-day point prevalence abstinence at 1 month post-randomization (“Did you smoke even a single puff in the last 7 days?”). Secondary outcomes included self-reported 30 days continued abstinence at 1-month post-randomization (“Did you smoke even a single puff in the last 30 days”), and biochemically verified abstinence at 3 months post-discharge. Exhaled carbon monoxide of ≤10 ppm was the cutoff for verification of abstinence [37].

To calculate costs, we analyzed the average time spent on interventions, the minute value of each intervention per participant, the amount paid to the telephone company, and the cost per minute worked by the healthcare professional, based on the federal employees’ salary scale. Costs were calculated in Brazilian Real and converted into dollars on January 7, 2020 (1 dollar = 4.08 Brazilian Real).

Analyses

Research Electronic Data Capture (REDCap) was used to enter the data. After descriptive statistics, the comparison of categorical variables was performed by chi-square and, for continuous variables with normal distribution, t-tests for independent samples. Nonparametric distribution variables were analyzed by Mann–Whitney. Subjects lost to follow-up were counted as smokers (intention to treat analysis—ITT).

A comparative assessment of intervention costs was performed using cost minimization, used to measure the cost difference between alternative interventions, when it is assumed that both have the same effectiveness [38].

Results

Participants were recruited from May 2017 to January 2019. Of 629 individuals identified as smokers, after evaluating exclusion criteria, 400 participants were randomized and allocated to the study groups. Some interruptions occurred due to the worsening of the medical condition of the patients or for the performance of complementary exams at the time of the approach (Figure S1).

Participant characteristics

Randomization led to similar groups for all baseline characteristics, except for the age of tobacco initiation (Table 1).

The proportion of participants reached for follow-up was 73.25% (n = 293) at 30 days post-discharge and 66% (n = 264) at 90 days post-discharge.

Abstinence at 1 and 3 months after discharge

Self-reported, 7-day point prevalence abstinence rates were not statistically different between groups at 1 month post-discharge using an ITT analysis (p = 0.318). Similarly, 30 day continuous abstinence was not significantly different between groups (p = 0.730), however the number of cigarettes per day smoked was fewer in the TM group (p < 0.036). Quit rates were also not significantly different at 3-month follow-up (Table 2).

Cost analysis

Costs were significantly lower in the TM group compared to the TC group. Cost results can be seen in Table 3.

Discussion

This was the first fully-powered study to compare the effectiveness of text messaging versus telephone counseling for post-discharge smoking cessation treatment. Both led to a high prevalence of self-reported smoking abstinence. Cost analysis found that text messaging intervention was half as expensive as phone calls.

A recent meta-analysis included 26 clinical trials and concluded that there is moderate evidence that text messages increase cessation rates by approximately 50% when compared to support for smoking cessation [26].

In the last decades, there has been a great advance in the use of communication technologies in health care. This phenomenon contributed to the emergence of innovative health behavior change interventions [24] and several strategies have been studied to help hospitalized smokers to quit [11, 12, 15].
Table 1 Baseline characteristics of study participants by treatment group

Variables	Standard care (control)	Sustained care (intervention)	p
	M (SD)	M (SD)	
Age (years)	45.97 (12.58)	45.45 (12.92)	0.701
Age at smoking initiation	18.70 (16.35)	16.09 (7.40)	0.001
Importance of quitting (0–10)	10 (0)	10 (0)	0.844
Confidence to quit (0–10)	7 (5)	8 (5)	0.273
Withdrawal scale (0–4)	3 (4)	3 (4)	0.303
Male	102 (51.3)	94 (47.2)	0.422
Ethnoracial group (self-declared)			0.511
White	67 (36.2)	62 (33.0)	
Black, grayish-brown/indigenous	118 (63.8)	126 (67.0)	
Education level			0.201
0–4 years	5 (2.6)	1 (0.5)	
5–8 years	78 (40.4)	75 (38.1)	
More than 9 years	110 (57)	121 (61.4)	
Married or with a partner	61 (33)	58 (32.2)	0.878
SES1—average household income in dollars/month2			0.228
SES A (USD 5.058)	1 (0.5)	0.0 (0.0)	
SES B1 (USD 2.241)	2 (1.0)	1.0 (0.5)	
SES B2 (USD 1.175)	43 (21.1)	30 (15.0)	
SES C1 (USD 655)	112 (56.3)	110 (55.0)	
SES C2 (USD 393)	42 (21.1)	58 (29.0)	
SES D+E (USD 186)	6 (0.0)	1.0 (0.5)	
Cigarettes/day			0.165
< 10	81 (40.5)	94 (47.3)	
11–20	72 (36.0)	83 (41.7)	
> 21	47 (23.5)	22 (11.0)	
Time to first cigarette of the day			0.264
After 60 min	34 (17.3)	52 (26.4)	
Between 31 and 60 min	24 (12.2)	19 (9.6)	
Between 6 and 30 min	61 (31.0)	43 (21.8)	
The first 5 min	78 (39.5)	83 (42.2)	
Nicotine dependence3 ≥ 5	168 (84.0)	179 (89.5)	0.105
Quit attempts in past year	69 (34.5)	87 (43.5)	0.065
Life use quit medication			0.742
NRT	32 (16.1)	34 (16.9)	
Bupropion	15 (4.6)	15 (7.5)	
Champix or Varenicline	2 (1.0)	0 (0.0)	
Commitment to quitting			0.711
Plan to stay quit	118 (62.8)	125 (64.4)	
Plan to try to stay quit	25 (13.3)	27 (13.9)	
Plan to reduce smoking	34 (18.1)	28 (14.4)	
Plan not to quit	11 (5.9)	14 (7.2)	
Current depressive symptoms4	88 (56.1)	88 (55.3)	0.900
Current anxiety symptoms5	96 (72.2)	98 (76.6)	0.418
Mild to Severe Risk of alcohol abuse6	133 (66.5)	123 (61.5)	0.298
NRT during hospitalization	188 (94.0)	190 (95.0)	0.661
Any smoking-cessation treatment	23 (13.9)	26 (20.5)	0.133
Table 1 (continued)

Variables	Standard care (control)	Sustained care (intervention)	p
Any smoking-cessation counseling	57 (34.8)	37 (29.6)	0.354
Interest in receiving medication	170 (89.9)	171 (91.9)	0.503

M Mean, SD Standard deviation, Md Median, IR Interquartile range, SES Social economic stratum, NRT Nicotine replacement therapy

1 Assessed via Brazilian criteria and social class distribution (ABEP 2016)
2 1 real = 4.129 dollars, december 09, 2019
3 Assessed via Fagerström test for nicotine dependence
4,5 Assessed via patient health questionnaire 4 item (PHQ-4)
6 Assessed via alcohol use disorder identification test (AUDIT-C)

Table 2 Abstinence at follow up post-discharge by treatment group

Variables	Sustained care (Intervention) N (%)	Standard care (Control) N (%)	p
Follow-up 30 (missing = smoking)			
Abstinences for the past 7 days	61 (30.5)	52 (26.0)	0.318
Abstinences for the past 30 days	52 (26.0)	49 (24.5)	0.730
Follow-up 90 (missing = smoking)			
Abstinences for the past 7 days	46 (23.0)	54 (27.0)	0.356
Abstinences for the past 90 days	40 (20.0)	48 (24.0)	0.334
Abstinences verified by measurement of exhaled carbon monoxide 2	20 (95.2) n = 21	8 (80.0) n = 10	0.160
Number of cigarettes per day in non-abstinent participants at follow-up 30	9.99 (15.033)	13.91 (14.859)	0.036
Number of cigarettes per day in non-abstinent participants at follow-up 90	10.04 (14.997)	12.51 (12.421)	0.131

M Mean, SD Standard deviation

1 Subjects lost to follow-up were counted as smokers (intention to treat analysis—ITT)
2 Participants were characterized as abstinent if their results were ≤ 10 ppm

Table 3 Cost analysis by strategies of counseling post-discharge

Analysis	Text messages interventions	Telephone calls	p
Quantity per patient	14 a 30	4	
Monthly cost of telephone company	R$ 22.50	R$ 69.90	
Average time	1 message- 0.5 min	1 call- 4.7 min	
Average number of retries per approach	1	3.15	
Time spent on unsuccessful attempts per patient	0 min	8 min	
Health worker’s minute value 1	R$ 0.77	R$ 0.77	
Total cost per patient	R$ 5.39 / R$ 11.55	R$ 20.63	
Cost total per group (200 participants)	R$ 2.310.00	R$ 4.126.00	
Cost per abstinent participant in last 7 days with 30 days of follow-up	R$ 37.87	R$ 79.34	

1 According to Table of Salaries of Civil Federal Civil Servants of Jan 2019 –Education Technicians Category E (undergraduate level)
2 Referring to 15 messages for the least motivated group and 30 messages for the group motivated for cessation
3 Sum of call times completed, and average spent on unsuccessful attempts per patient

p < 0.001
Behavior change interventions sent by text messages are becoming increasingly popular, the possibility of reaching many people when performing interventions without personal contact reduces costs and allows access to people who are reluctant to have direct contact [24, 25, 39, 40].

Text messages have been used in Brazil for approximately 30 years, but the strategy, despite offering great advantages in the health area, is still little explored for this purpose. Despite the Brazilian tobacco control program reaching a significant number of people, through actions of the Unified Health System (SUS), the country’s free public health system, communication technologies such as SMS are still not used by the program. Text messaging strategies are promising especially for low/middle-income countries where proactive telephone counseling is not available for free and quitline services are not structured. Future studies should address the effectiveness of automated messaging systems, evaluate ways to promote better interactivity with the participants, and determine the intensity of the approach to deliver the best results.

Limitations
Loss of follow up is an important limitation of longitudinal studies. In this study, there were significantly fewer reached for follow up in the standard care (TC) group than in the TM group. Other limitations are the loss of interactivity due to the lack of actions aimed at possible participants’ responses to messages (unidirectional messaging) and the unavailability of an automated messaging system.

Abbreviations
TM: Text messaging; TC: Telephone counseling; CPIT: Interdisciplinary center for research and intervention in tobacco; CDC: Center disease control; PHQ-4: Patient health questionnaire-4; AUDIT-C: Alcohol use disorder identification test; REDCap: Research electronic data capture; ITT: Intention to treat analysis; M: Mean; SD: Standard deviation; Md: Median; IR: Interquartile range; SES: Social economic stratum; NRT: Nicotine replacement therapy; ppm: Particles per million.

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/s13104-022-06002-6.

Additional file 1: Figure S1. Participant flow diagram.

Acknowledgements
The authors thank the employees of the Brazilian Company of Hospital Services EBSERH and UFJF, as well as the students and residents of the University Hospital for their participation in data collection and assistance in performing the test.

Authors’ contributions
LMA: conceptualization, data curation, formal analysis, investigation, methodology, software, validation, writing-review & editing. TMK: conceptualization, methodology, writing-review & editing. ROA: conceptualization, data curation, formal analysis, investigation, methodology, project administration, supervision, software, validation, writing-review & editing. All authors read and approved the final manuscript.

Funding
This work was supported by Coordination for the Improvement of Higher Education Personnel of Brazil (CAPES) process number: 88881.361525/2019-01, Federal University of Juiz de Fora and the National Council for Scientific and Technological Development (CNPQ), process number: 303229/2019-5.

Availability of data and materials
The datasets used and/or analysed during the current study available from the corresponding author on reasonable request.

Declarations
Ethics approval and consent to participate
The study was approved by the Hospital Ethics Committee Review Board/ process number 2.868.112 and all participants signed informed consent. Participants were not reimbursed for participation, as this is not permitted under Brazilian law. The trial is registered in the Clinical Trials Registry (NCT03237949) and the Brazilian Clinical Trials Registry (RBR-8mgc3h).

Consent for publication
Not applicable.

Competing interests
The authors declared no competing interest in the subject matter or materials discussed in this article.

Author details
1. Clinical Medicine Department, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil. 2. Department of Psychology, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil. 3. Population Health Department, University of Kansas Medical Center, Kansas City, KS, USA. 4. Preventive Medicine and Public Health, University of Kansas Medical Center, Kansas City, KS, USA. 5. Present Address: Medical School, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil. 6. Medical School, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil. 7. Collective Health Department, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil.

Received: 31 August 2021 Accepted: 14 March 2022

Published online: 26 March 2022

References
1. Ekpu VI, Brown AK. The economic impact of smoking and of reducing smoking prevalence: review of evidence. Tob Use Insights. 2015;8(1):1–35. https://doi.org/10.4137/TUIS.15138.
2. Jha P, Ramasundarahettige C, Landsman V, Rostron B, Thun M, Anderson RN, et al. 21st-century hazards of smoking and benefits of cessation in the United States. N Engl J Med. 2013;368(4):341–50. https://doi.org/10.1056/NEJMa1211128.
3. Cruisnel E, Richter KP, Colugnati F, Ronzani TM. An experimental feasibility study of a hybrid telephone counseling/text messaging intervention for post-discharge cessation support among hospitalized smokers in Brazil. Nicotine Tob Res. 2019;21(12):1700–5. https://doi.org/10.1093/ntr/nty165.
4. Rigotti NA, Clair C, Munafò MR, Stead LF. Interventions for smoking cessation in hospitalised patients. Cochrane Database Syst Rev. 2012;12(1):1–86. https://doi.org/10.1002/14651858.CD001837.pub3.
5. Reid ZZ, Regan S, Kelley JH, Streck JN, Ylioja T, Tindle HA, et al. Comparison effectiveness of post-discharge strategies for hospitalized smokers: study protocol for the helping HAND 2 randomized controlled
trial. BMC Public Health. 2015;15(1):1–12. https://doi.org/10.1186/ s12889-015-1484-0.
6. Rigotti NA, Arinstein JH, McKool KM, Wood-Reid KM, Pasternak RC, Singer DE. Efficacy of a smoking cessation program for hospital patients. Arch Intern Med. 1997;157(22):2653–60. https://doi.org/10.1001/archinte.1997.00440403135016.
7. Richter KP, Fasera B, Mussulman LM, Ellerbeck EF, Shireman TI, Hunt JJ, do Amaral AL. Using warm handoffs to link hospitalized smokers with tobacco treatment after discharge: study protocol of a randomized controlled trial. Trials. 2012;13(127):1–11. https://doi.org/10.1186/1745-6215-13-127.
8. Abu-Hasaballah K, James A, Aselte RN. Lessons and pitfalls of interactive voice response in medical research. Contemp Clin Trials. 2007;28(5):593–602. https://doi.org/10.1016/j.cct.2007.02.007.
9. Cummins S, Zhu SH, Gamst A, Kirby C, Brandstein K, Klonoff C, et al. Using warm handoffs to link hospitalized smokers with tobacco treatment after discharge: a randomized controlled trial. BMC Intern Med. 1997;157(22):2653–60. https://doi.org/10.1001/archinte.1997.00440403135016.
10. Buller DB, Borland R, Berta R, Berghaus EP, Shane JH, Zimmerman DE. Rand-lesson trial. Trials. 2012;13(127):1–11. https://doi.org/10.1186/1745-6215-13-127.
11. Richter KP, Fasera B, Mussulman LM, Ellerbeck EF, Shireman TI, Hunt JJ, do Amaral AL. Using warm handoffs to link hospitalized smokers with tobacco treatment after discharge: study protocol of a randomized controlled trial. Trials. 2012;13(127):1–11. https://doi.org/10.1186/1745-6215-13-127.
12. Richter KP, Fasera B, Mussulman LM, Ellerbeck EF, Shireman TI, Hunt JJ, do Amaral AL. Using warm handoffs to link hospitalized smokers with tobacco treatment after discharge: study protocol of a randomized controlled trial. Trials. 2012;13(127):1–11. https://doi.org/10.1186/1745-6215-13-127.
13. Richter KP, Fasera B, Mussulman LM, Ellerbeck EF, Shireman TI, Hunt JJ, do Amaral AL. Using warm handoffs to link hospitalized smokers with tobacco treatment after discharge: study protocol of a randomized controlled trial. Trials. 2012;13(127):1–11. https://doi.org/10.1186/1745-6215-13-127.
14. Fellows JL, Mularski RA, Leo MC, Bentz CJ, Waiwaiole LA, Francisco MC, et al. Referring hospitalized smokers to outpatient quit services: a randomized trial. Arch Intern Med. 2016;176(14):969–70. https://doi.org/10.1001/jamadermatol.2016.04038.
15. Fellows JL, Mularski RA, Leo MC, Bentz CJ, Waiwaiole LA, Francisco MC, et al. Referring hospitalized smokers to outpatient quit services: a randomized trial. Arch Intern Med. 2016;176(14):969–70. https://doi.org/10.1001/jamadermatol.2016.04038.
16. Fellows JL, Mularski RA, Leo MC, Bentz CJ, Waiwaiole LA, Francisco MC, et al. Referring hospitalized smokers to outpatient quit services: a randomized trial. Arch Intern Med. 2016;176(14):969–70. https://doi.org/10.1001/jamadermatol.2016.04038.
17. Lee K, Chagas LC, Novotny TE. Brazil and the framework convention on tobacco control: global health diplomacy as soft power. PLoS Med. 2012;9(11):e1001336. https://doi.org/10.1080/14651858.2012.1002932.
18. Levy D, de Almeida LM, Sávio A. The Brazil smokers policy simulation model: the effect of strong tobacco control policies on smoking prevalence and smoking-attributable deaths in a middle income nation. PLoS Med. 2012;9(11):e1001336. https://doi.org/10.1080/14651858.2012.1002932.
19. Shibuya K, Ciecierni C, Guindon E, Betcher DW, Evans DB, Murray CJL, WHO framework convention on tobacco control. Development of an evidence-based global public health treaty. Br Med J. 2003;327(7407):154–7. https://doi.org/10.1136/bmj.327.7407.154.
20. Garcia T, dos Andrade SAS, Biral AT, Bertani AL, de Carmo LMO, Ceare J, et al. Evaluation of smoking cessation treatment initiated during hospitalization in patients with heart disease or respiratory disease. J Bras Pneumol. 2018;44(4):12–8. https://doi.org/10.1590/1516-8747.201700007.
21. de Azevedo RCS, Mauro MLM, Lima DD, Gaspar KC, da Silva VF, Battiga NJ. General hospital admission as an opportunity for smoking-cessation strategies: a clinical trial in Brazil. Gen Hosp Psychiatr. 2010;32(6):599–606. https://doi.org/10.1016/j.genhosppsych.2010.09.013.
22. de Abreu Perez C, Pinheiro T, Bialos S, Cunha V, Maria Cavalcante T. Disque Saúde Pare de Fumar no Brasil: uma Fonte de Informação a mais para a População. Brazilian J Cancerol. 2011;57(3):337–44. https://doi.org/10.32655/2176-9745.RBC.2011v57n3.668.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.