Conformational HIV-1 Envelope on particulate structures: a tool for chemokine coreceptor binding studies

Maria Tagliamonte¹, Maria Lina Tornesello¹, Franco M Buonaguro¹, Luigi Buonaguro¹,²*

Abstract
The human immunodeficiency virus type 1 (HIV-1) external envelope glycoprotein gp120 presents conserved binding sites for binding to the primary virus receptor CD4 as well as the major HIV chemokine coreceptors, CCR5 and CXCR4. Concerted efforts are underway to understand the specific interactions between gp120 and coreceptors as well as their contribution to the subsequent membrane fusion process. The present review summarizes the current knowledge on this biological aspect, which represents one of the key and essential points of the HIV-host cell interplay and HIV life cycle. The relevance of conformational HIV-1 Envelope proteins presented on Virus-like Particles for appropriate assessment of this molecular interaction, is also discussed.

Introduction
The molecular interaction between HIV-1 gp120, in its trimeric conformation, and the CD4 receptor on the host cell surface represents the first step of the HIV infection cycle. Upon this interaction, the co-receptor-binding site on the gp120 is exposed, enabling the binding to HIV chemokine coreceptors (mainly CCR5 or CXCR4) expressed on the surface of a subset of CD4+ lymphocytes. The binding to the coreceptors is followed by fusion of the viral and host cell membranes mediated by the HIV gp41 transmembrane glycoprotein [1-6]. Dissecting the structural changes which HIV external envelope glycoprotein gp120 molecule undergo upon molecular interactions with its cognate cellular receptor and coreceptors, provide essential information to the development of HIV-1-specific drugs, targeting the viral entry step [7-16], as well as of vaccines [17-20].

Gp120 binding to chemokine coreceptors
The HIV-1 Envelope is synthesized as the polyprotein precursor gp160, which undergoes oligomerization, disulfide bond formation and extensive glycosylation in the endoplasmic reticulum [21]. The full post-translational processing and maturation lead to proteolytical cleavage of precursor gp160 into the surface gp120 and transmembrane gp41 subunits by furin-like endo-proteases in the Golgi network [22-24]. The two subunits will assemble into a trimer consisting of three gp120 molecules associated non-covalently with three gp41 subunits. The molecular interaction of HIV gp120 with the CD4 receptor and, subsequently, with the CCR5 or CXCR4 coreceptor leads to the insertion of the hydrophobic gp41 N-terminal region (fusion peptide) into the host cell membrane. In particular, the gp41 ectodomain trimer acquires the six-helix bundle configuration which drives in close contact the viral and cell membranes, ultimately resulting in their fusion [1,2,4,25,26]. Therefore, the binding of HIV envelope to cellular coreceptors dramatically influence the strength of viral-cell interaction and promote the conformational changes in the gp41 required to overcome the energy barrier and induce pore formation and membrane fusion.

Within the CCR5 and CXCR4 amino acid residues interacting with the gp120, most of the cysteine residues are involved in disulfide bonds formation and play a key functional role. In particular, the N-terminal and second extracellular domain (ECII) of both coreceptors seem to be critical for gp120-CD4 complex binding [27-35].
The role of coreceptors in the conformational changes of the HIV transmembrane gp41 to facilitate virus-cell membrane fusion has not yet been fully clarified, mainly due to the lack of the CCR5 and CXCR4 crystal structure and, therefore, their absence in high resolution X-ray structures solved for CD4-bound gp120 [17]. The currently accepted theory proposes that, upon the coreceptor binding to the gp120-CD4 complex, the gp41 acquires the thermostable, six-helix bundle structure that brings the two membranes together and results in fusion pore formation [36,37].

The first step is the exposure of the hydrophobic fusion peptide at the N terminus of gp41 which interacts with the target cell membrane, generating an intermediate, pre-hairpin state bridging the virus and cell membranes. The pre-hairpin then refolds into the stable, six-helix bundle core structure [38,39], releasing sufficient energy to overcome the kinetic barrier [40,41] and catalyzing the fusion of the two membranes [42]. Whether the fusion can occur with the free energy liberated during refolding of one or several trimers, is still debated [40,43] (Fig.1).

In the described stepwise process, the pre-hairpin state shows a relatively long half-life [44], representing a favorable target for inhibitory peptides [45,46] as well as neutralizing antibodies specific for the gp41 HR1 and MPER regions [47-50].

Several data about the envelope/receptor interactions have been generated also for the simian counterpart of HIV (Simian Immunodeficiency Virus, SIV). Indeed, SIVmac is the natural etiological agent of the AIDS-like syndrome in Rhesus Macaques, which is the only available animal model for obtaining relevant information on AIDS pathogenesis [51-54] as well as for testing efficacy of antiviral therapeutics and vaccine candidates [55,56].

Similarly to HIV-1, SIV infection starts with the high-affinity interaction of the gp120-gp41 envelope glycoprotein (Env) complex with CD4 on the target cell surface [57,58]. However, in contrast to HIV-1, different strains of SIV preferentially use CCR5 and not CXCR4 as coreceptor for entry [59-61], although they may show promiscuity in coreceptor usage, engaging alternative

Figure 1 Dissection of sequential steps occurring after engagement of receptor and coreceptor by trimeric HIV envelope proteins.
coreceptors GPR15 and CXCR6/STRL33 with high efficiency [62,63].

Moreover, SIV strains have been shown to infect target cells via a CD4-independent pathway, directly interacting with CCR5 or CXCR4 coreceptor [64,65]. It has been proposed that Env protein of such strains contains multiple amino acid substitutions leading to the constitutive exposure of coreceptor binding site [66,67], similarly to what described for CD4-independent HIV-1 envelope proteins [68,69]. As consequence, CD4-independent viruses acquire a broader cell tropism, being able to infect also CD4 negative or low-expressing cells, such as macaque macrophages [70,71].

The molecular interaction of SIV envelope protein with the CD4 receptor and coreceptors leads to conformational changes in the gp41 ectodomain trimers and exposure of the fusion peptide which closely resemble what described for the HIV-1 counterpart [72,73].

Role of coreceptors post-translational modifications in HIV-1-mediated cell fusion

The effectiveness of CCR5 and CXCR4 as HIV coreceptors depends on the several possible conformations which may significantly influence their ability to support viral entry in different cells [74,75].

Furthermore, post-translational modifications of HIV coreceptors and, in particular, of the extracellular domains (including the N-terminal, EC I – III) and intracellular loops, may modulate the receptor turnover as well as the binding efficacy to the HIV gp120. In general, extracellular domains may undergo N-linked or O-linked glycosylation and tyrosine sulfation, while modifications of intracellular loops include palmitoylation, phosphorylation, and ubiquitination [76-79].

CCR5. The CCR5 N-terminal is relevant for the role as HIV-1 coreceptor [27,29,30] and contains several tyrosine residues which may be modified by sulfation, contributing to binding to natural ligands (MIP1-α, MIP1-β) as well as HIV-1 gp120-CD4 complexes [80-82]. In particular, sulfation of Tyrosines at position 10 and 14 seems to be a requisite for the CCR5 binding efficacy [83,84]. Moreover, CCR5 is also modified by O-linked glycosylation, preferentially on Ser-6 [85,86], although it does not seem to affect the role of CCR5 in the HIV entry [86].

As most chemokine receptors, the CCR5 carboxyl-terminus contains one or more cysteine residues compatible with receptor palmitoylation, typically located 12 to 25 amino acids away from the plasma membrane boundary [87]. Cysteine residues at amino acid positions 321, 323, and 324 undergo palmitoylation, facilitating the CCR5 transport to the plasma membrane as well as ligand-stimulated endocytosis and affecting its ability to initiate intra-cellular signalling pathways [88-90]. However, the biological role of improved localization of CCR5 to lipid rafts for HIV entry into host cells is still disputed [88-92].

CXCR4. Similar to CCR5, also CXCR4 undergo post-translational modifications contributing to its function. CXCR4 is sulfated at three tyrosine residues in the N-terminus, with Tyr21 accounting for the majority of sulfate incorporation, although this modification doesn’t appear to modulate the CXCR4 coreceptor function for HIV-1 [83].

In contrast to CCR5, the extracellular domain of CXCR4 is post-translationally modified by N-linked glycosylation in two potential sites, Asn11 and Asn176 [93,94], although only Asn11 appears to be glycosylated in mammalian cells [94]. Mutation of Asn11 does not impair the CXCR4-mediated HIV-1 infection [95,96]; however, a Asn11-to-Glu11 mutation leads to enhanced binding of both CXCR4-specific and dual-tropic (CCR5 and CXCR4) HIV-1 isolates [78,96].

HIV-1 Envelope-coreceptor signaling

The binding of the gp120-CD4 complex to chemokine coreceptors not only mediates HIV entry but also activates intracellular signaling cascades, mimicking chemokine signaling induced by binding to cognate receptors [97,98] (reviewed in [77,99,100]).

However, in addition to signaling pathways mediating cell migration, transcriptional activation, cell growth and differentiation [101-106], binding of gp120-CD4 complex to CCR5 or CXCR4 coreceptor has also been shown to trigger the activation of proline-rich tyrosine kinase (Pyk2), phosphoinositide 3-kinases (PI3K) [107,108] and CD4/CXCR4-dependent NFAT (nuclear factor of activated T cells) nuclear translocation [109]. Furthermore, gp120 was demonstrated to mediate chemotaxis, actin cytoskeleton rearrangement [108], and the activation of an actin depolymerization factor, coflin, to increase the cortical actin dynamics in resting CD4 T cells [110]. (For a more comprehensive description of gp120-triggered chemokines coreceptor signaling, refer to Cicala and Arthos in this same supplement).

Stable trimeric forms of human immunodeficiency virus recombinant gp140

As described above, the envelope proteins on the virus surface are assembled into trimers, consisting of three gp120 molecules associated non-covalently with three gp41 subunits, which interact sequentially with the CD4 receptor and the chemokine coreceptors, ultimately leading to viral and cell membrane fusion. In the last years, mainly aiming at inducing more potent and broader anti-HIV neutralizing antibodies, several groups have been developing soluble trimers of the gp120 - gp41 Env ectodomain (i.e., lacking the transmembrane,
cytoplasmic domains and named gp140) which are considered to preserve or mimic the structure of functional Env complexes [111-114]. Considering the close structural similarity of these molecules to native trimeric HIV Envelope proteins, this can represent a relevant tool also for receptor and chemokines coreceptor binding studies.

Mutations in the furin cleavage site at the gp120–gp41 junction inhibit the dissociation between the two envelope subunits [114-117], but cleavage-defective gp140 Env proteins seem to be antigenically different from fully processed Env [118-120]. In order to express processed and stable trimers of gp140, an intermolecular disulfide bond has been introduced between the gp120 and gp41 subunits to form a complex called "SOS" gp140 which, although still predominantly monomeric, strongly reacts with the broadly neutralizing b12mAb [118]. An isoleucine-to-proline substitution introduced at position 559 in the N-terminal heptad region of gp41 has been shown to increase the stability of SOS gp140 (SOSIP gp140), leading to a fully cleaved and trimeric structure with optimal antigenic properties [121,122].

Moreover, cleavage-defective gp140 Env proteins have been further modified at the C-terminus to improve trimer formation and stabilization, fusing different heterologous trimerization motifs. In particular, a 32-amino-acid form of the GCN4 transcription factor (GCN), a 27-amino-acid trimerization domain from the C-terminus of bacteriophage T4 fibrin (T4F), or a soluble trimerization domain of chicken cartilage matrix (CART) protein have been employed, showing enhanced binding to broadly neutralizing b12 and 2G12 mAbs [115,116,123]. More recently, the effectiveness of the catalytic chain of aspartate transcarbamoylase (ATCase) as trimerization domain for the HIV gp140 has been described [124,125].

Exploiting the VLP model
In addition to soluble forms, HIV gp140 trimeric complex can be presented on membrane structures including liposomes, inactivated viruses and virus-like particles (VLPs) or pseudovirions, to mimic as close as possible the native conformation [126-131].

In particular, Virus-like particles (VLPs) represent a complex structure based on viral capsid proteins which self-assemble into particulate structures closely resembling immature virus particles [132-135]. VLPs are replication as well as infection incompetent, lacking regulatory proteins as well as infectious genetic material, and can be considered nanoparticles and employed to deliver antigenic structures as well as DNA molecules to antigen presenting cells, for enhanced induction of immune responses against co-administered plasmid DNA-based immunogens [136-140].

VLPs have been produced from a broad spectrum of non-enveloped and enveloped viruses [140]. In particular, the particle structure of non-enveloped VLPs can be based on single or multiple capsid proteins without a surrounding cell membrane. Examples of such VLPs are those formed by the expression of the major capsid protein of papillomaviruses, paroviruses and polyomaviruses [135,141-143] or by multiple interacting capsid proteins of Reoviridae family [144]. Alternative strategy for generating non-enveloped virus-like-particles (VLPs) is based on the assembly of the capsid protein derived from RNA bacteriophages [145-147].

Alternatively, enveloped VLPs are based on assembled capsid proteins surrounded by cell membrane and have been developed for enveloped viruses such as hepatitis B and C virus (HBV & HCV), influenza A and retroviruses, including HIV-1 [129,132,133,148-152].

The different forms of VLPs have distinct properties for displaying antigens, given that only enveloped VLPs may display full-length monomeric or multimeric conformational proteins on their surface through trans-membrane domains [129-131,153]. Non-enveloped VLPs, on the contrary, may be employed to present mainly short peptides or protein sequences. This has been achieved either generating chimeric capsid proteins expressing foreign epitope in frame (eg. Gag:V3) [154-157], or chemically linking the foreign epitope to the assembled capsid protein [158], although HIV-1 Gag proteins fused to full-length HIV Reverse Transcriptase (RT) protein, without loosing the capability of assembling into VLPs, have been recently reported [159]. The conformational structure of full-length proteins possibly expressed on non-enveloped VLPs, however, remains to be proven.

As consequence, at present, only enveloped VLPs displaying full-length conformational proteins on their surface may be a suitable experimental model for studies on binding and interaction between HIV envelope and cellular receptor/coreceptors. They, indeed, represent the closest particle structure to native virus.

Conformational HIV Envelopes presented on particulate structures
Development of HIV-1 Pr55gag-based VLPs expressing gp120/gp140 trimeric Envelope proteins is a goal pursued by several Groups, using different expression systems (mammalian vs baculovirus) as well as different trans-membrane domains. In particular, our group has previously developed Pr55gag-VLPs presenting a gp120 anchored through the trans-membrane (TM) portion of the Epstein-Barr virus (EBV) gp220/350, showing the formation of oligomeric structures [129] and inducing Env-specific humoral and cellular immune response [160-162]. Additional strategies have been more recently
described to express trimeric forms of HIV-1 gp140 molecules on the surface of Pr55gag-VLPs [130,131]. Comparative studies showed that specific transmembrane domains induced optimal incorporation of gp140 Env trimers onto VLP surface, retaining conserved epitopes and undergoing conformational changes upon CD4 binding [131] (Buonaguro et al., submitted).

Considering the biological and structural properties of HIV gp140 trimers presented on the VLP surface, they can be even more strategic for binding studies, providing an invaluable tool for evaluating and dissecting the whole virus-host cell interaction leading to and ending with membrane fusion [163,164] (Fig. 2).

Conclusions
The interaction between HIV particles and target host cells is a defined temporally sequential stepwise process, characterized by the binding of surface gp120 Envelope protein to CD4 receptor and subsequent binding of the gp120-CD4 complex to chemokines coreceptors. This will ultimately lead to membrane fusion and host cell infection.

Studies aimed at dissecting the sequential steps of this process have been and will be instrumental not only to fully understand the strategies adopted by HIV to hijack host cells for its own replication but also to develop HIV-1-specific drugs and vaccines.

The development of novel and improved molecular tools, mimicking as close as possible native Envelope trimeric structures expressed on non-infectious particulate structures (i.e. VLPs), will expand the armamentarium for HIV-host cell interaction studies. This will help in shedding further light on such a key moment of the HIV infection as well as pathogenesis.

Figure 2 Schematic representation of HIV-1 gp120 binding to cellular receptor and coreceptors. The binding of HIV Envelope protein to CD4 receptor and chemokines coreceptors on the host cell surface is represented showing the gp120 in its monomeric form (A) and trimeric form as soluble (B) or bound to virus like particles (VLPs) (C).
Acknowledgements

The study was supported by the European Community's Seventh Framework Programme NGIN (FP7/2007-2013) under grant agreement n 201433. MT was supported by the EU NGIN project.

This article has been published as part of Journal of Translational Medicine Volume 9 Supplement 1, 2011: Differential use of CCR5 vs. CCR3 by HIV-1. Pathogenic, Translational and Clinical Open Questions. The full contents of the supplement are available online at http://www.translational-medicine.com/supplements/1/1.

Author details

1. Lab of Molecular Biology and Viral Oncogenesis & AIDS Reference Center, Istituto Nazionale Tumori “Fond. G. Pascale”, Naples, Italy. 2. Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA.

Competing interests

The authors declare no competing financial or other interests.

Published: 27 January 2011

References

1. Doms RW, Moore JP: HIV-1 membrane fusion: targets of opportunity. J Cell Biol 2000, 151:F19-14.

2. Janes PL, Korte T, Blumenthal R: Conformational changes in cell surface HIV-1 envelope glycoproteins are triggered by cooperation between cell surface CD4 and co-receptors. J Biol Chem 1998, 273:404-409.

3. Sattentau QJ, Moore JP: Conformational changes induced in the human immunodeficiency virus envelope glycoprotein by soluble CD4 binding. J Exp Med 1991, 174:407-415.

4. Sullivan N, Sun Y, Sattentau Q, Thali M, Wu D, Denizova G, Gentzoni J, Robinson J, Moore J, Sodroski J: CD4-induced conformational changes in the human immunodeficiency virus type 1 gp120 glycoprotein: consequences for virus entry and neutralization. J Virol 1998, 72:4694-4703.

5. Zhang W, Canziani G, Plugaru C, Wyatt R, Sodroski J, Sweet R, Kwong P, Hendrickson WA: Conformational changes of gp120 in epitopes near the CCR5 binding site are induced by CD4 and a CD4 miniprotein mimetic. Biochemistry 1999, 38:9405-9416.

6. Wyatt R, Sodroski J: The HIV-1 envelope glycoproteins: fusogens, antigens, and immunogens. Science 1998, 280:1884-1888.

7. Jacobson JM, Saag MS, Thompson MA, Fischl MA, Liporace R, Reichman RC, Redfield RR, Fichtenbaum CJ, Zingman BS, Patel MC, Murgida JD, Perros M, D’Ambrosio F, Michael M, Kroger H, Ly H, Ratakhet S, Buze R, Morris SA, Stavola JJ, Maddon P, Kremer AB, Olson WC: Antiviral activity of single-dose PRO 140, a CCR5 monomeric antibody, in HIV-infected adults. J Infect Dis 2008, 199:1345-1352.

8. Pett SL, McCarthy MC, Cooper DA, MacAulee K, Tendolkar A, Norris R, Strick JM, Williams KM, Emery S: A phase 1 study to explore the activity and safety of SCH532706, a small molecule chemokine receptor-5 antagonist in HIV type 1-infected patients. Antivir Ther 2009, 14:111-115.

9. Lalezezi J, Yadavalli GK, Para M, Richardson G, Dejesus E, Brown SJ, Cai W, Chen C, Zhang J, Novello LA, Lederman MM, Subramanian GM: Safety, pharmacokinetics, and antiviral activity of HGS004, a novel fully human IgG4 monoclonal antibody against CCR5, in HIV-infected patients. J Infect Dis 2008, 197:721-727.

10. Dorf P, Wesley M, Dobs S, Griffin P, Irvine B, Macartney M, Mori J, Rickett G, Smith-Burchell N, Napier C, Webster R, Armour D, Price D, Stammern B, Wood A, Perros M, Maravic (UK-427,857), a potent, orally bioavailable, and selective small-molecule inhibitor of chemokine receptor CCR5 with broad-spectrum anti-human immunodeficiency virus type 1 activity. Antimicrob Agents Chemother 2005, 49:4721-4732.

11. Wood A, Armour D: The discovery of the CCR5 receptor antagonist, UK-427,857, a new agent for the treatment of HIV infection and AIDS. Prog Med Chem 2005, 43:239-271.

12. Hendrix CW, Collier AC, Lederman MM, Schols D, Pollard RB, Brown S, Jackson JB, Gomboos RW, Glebsky MJ, Flexner CW, Bridger GJ, Badel K, MacFarland RT, Kallungal B, Klinkman KL, Hendrix CW: Multiple-dose escalation study of the safety, pharmacokinetics, and biologic activity of oral AMD070, a selective CCR5 receptor inhibitor, in human subjects. Antimicrob Agents Chemother 2007, 51:2351-2358.

13. Prince K, Hatte S, Vermeir T, Aquaro S, De CE, Gerlach LO, Rensenkide M, Schwartz TW, Skee RJ, Bridge G, Schols D: Inhibition of human immunodeficiency virus replication by a dual CCR5/CCR4 antagonist. J Virol 2004, 78:12996-13006.

14. Tagat JR, McCombie SW, Nazareno D, Labrola MA, Xiao Y, Steensma RW, Strick JM, Baroudy BM, Cox K, Lachowicz J, Varty G, Watkins R: Piperazine-based CCR5 antagonists as HIV-1 inhibitors. IV. Discovery of 1-[4-(4-fluoro-3-methylphenyl)ethyl-3(S)-methyl-1-piperazinyl]-4-methylpiperidine (Sch-417690/Sch-D), a potent, highly selective, and orally bioavailable CCR5 antagonist. J Med Chem 2004, 47:2402-2406.

15. Baba M, Takashima K, Miyake H, Kanazaki N, Teshima K, Wang X, Shiraishi M, Iizawa Y: TAK-652 inhibits CCR5-mediated human immunodeficiency virus type 1 infection in vitro and has favorable pharmacokinetics in humans. Antimicrob Agents Chemother 2005, 49:4584-4591.

16. Kwong PD, Wyatt R, Robinson J, Sweet RW, Sodroski J, Hendrickson WA: Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 1998, 393:648-659.

17. Day B, Shvets K, Xu L, Wycuff D, Zhou T, Voss G, Phogat A, Chakrabarti BK, Li Y, Shaw G, Kwong PD, Nabel GJ, Mascola JR, Wyatt RT: Structure-based stabilization of HIV-1 gp120 enhances humoral immune responses to the induced co-receptor binding site. PLoS Pathog 2009, 5:e1000445.

18. Dornitzer PR, Ulmer JB, Rappuoli R: Structure-based antigen design: a strategy for next generation vaccines. Trensi Biotechnol 2008, 26:659-667.

19. Zhou T, Georgiev I, Wu X, Yang ZY, Dai K, Finzi A, Do KY, Scheid J, Shi W, Xu L, Yang Z, Zhu X, Nussenweig MC, Sodroski J, Shapiro L, Nabel GJ, Mascola JR, Kwong PD: Structural Basis for Broad and Potent Neutralization of HIV-1 by Antibody VRC01. Science 2010.

20. Earl PL, Moss B: HIV-1 Env: Folding, interaction with GPR87-B, assembly, and transport of the human immunodeficiency virus type 1 envelope glycoprotein. J Virol 1991, 65:2047-2055.

21. Feer ED, Myers DJ, Risser R: Mutational analysis of the cleavage sequence of the human immunodeficiency virus type 1 envelope glycoprotein precursor gp160. J Virol 1989, 63:4670-4675.

22. McCune JM, Rabon LB, Feinberg MB, Lederman MM, Kosek JC, Reyes GR, Weissman IL: Endoproteolytic cleavage of gp160 is required for the activation of the human immunodeficiency virus. Cell 1988, 53:55-67.

23. Hallenger S, Bosch V, Angliker H, Shaw E, Klenk HD, Garten W: Inhibition of furin-mediated cleavage activation of HIV-1 glycoprotein gp160. Nature 1992, 360:358-361.

24. Melnych G, Markosyan RM, Hemmati H, Delmedico MK, Lambert DM, Cohen FS: Evidence that the transition of HIV-1 gp41 into a six-helix bundle, not the bundle configuration, induces membrane fusion. J Cell Biol 2000, 151:413-423.

25. Moore JP, Doms RW: The entry of entry inhibitors: a fusion of science and medicine. Nat Prod Act Sci 2003, 100:10598-10602.

26. Chattot DJ, Broder CC: Substitutions in a homologous region of extracellular loop 2 of CCR4 and CCR5 alter coreceptor activities for HIV-1 membrane fusion and virus entry. J Biol Chem 2000, 275:23774-23782.

27. Alkhatib G, Locati M, Kennedy PE, Murphy PM, Berger EA: HIV-1 coreceptor activity of CCR5 and its inhibition by chemokines: independence from G protein signaling and importance of coreceptor downmodulation. Virology 1997, 234:340-348.

28. Doran BJ, Lu ZH, Rucker J, Zhang TY, Sharan M, Cen YH, Wang ZX, Guo HH, Du JG, Accavitti MA, Doms RW, Peiper SC: Two distinct CCR5 domains can mediate coreceptor usage by human immunodeficiency virus type 1. J Virol 1997, 71:6305-6314.

29. Diagc T, Troml A, Lin SW, Nagashima KA, Kajumo F, Zhao L, Olson WC, Wu L, Mackay CR, Allaway GP, Sakmar TP, Moore JP, Maddon PJ: Amino-terminal substitutions in the CCR5 coreceptor impair gp120 binding and human immunodeficiency virus type 1 entry. J VIr 1998, 72:279-285.

30. Kuhmann SE, Platt EJ, Kozak SL, Kabat D: Cooperation of multiple CCR5 coreceptors is required for infections by human immunodeficiency virus type 1. J Virol 1998, 72:1005-1015.

http://www.translational-medicine.com/content/9/S1/S1

Page 6 of 10

Taglamonte et al. Journal of Translational Medicine 2010, 9(Suppl 1):S1

http://www.translational-medicine.com/content/9/S1/S1
32. Chabot DJ, Zhang PF, Quinnan GV, Broder CC. Mutagenesis of CXCR4 identifies important domains for human immunodeficiency virus type 1 X4 isolate envelope-mediated membrane fusion and virus entry and reveals cryptic coreceptor activity for R5 isolates. J Virol 1999, 73:6598-6609.

33. Brelot A, Heveker N, Adema K, Hosie MJ, Willert B, Alizon M. Effect of mutations in the second extracellular loop of CXCR4 on its utilization by human and feline immunodeficiency viruses. J Virol 1999, 73:2576-2586.

34. Kayumo J, Thompson DA, Guo Y, Dragic T. Entry of RS4X4 and X4 human immunodeficiency virus type 1 strains is mediated by negatively charged and tyrosine residues in the amino-terminal domain and the second extracellular loop of CXCR4. Virology 2000, 271:240-247.

35. Zhou N, Luo Z, Luo J, Liu D, Hall JW, Pomerantz RJ, Huang Z. Identification of CXCR4 residues corresponding to a predictive alpha-helical domain of human immunodeficiency virus type 1 gp41: revealed by the inhibitory action of a synthetic peptide from gp41. Nat Immunol 2000, 1:2576-2586.

36. Golding H, Zaitseva M, de RE King LR, Manischewitz J, Sidorov I, Gorny MK, MacKey JJ, Schmidt DK, Chalifoux LV, King NW. Chemical probing of the N-terminus of HIV-1 gp41 in the course of HIV-1 envelope glycoprotein-mediated fusion. J Biol Chem 2000, 275:231-241.

37. Eckert DM, Kim PS. Mechanisms of viral membrane fusion and its inhibition. Annu Rev Biochem 2001, 70:77-110.

38. Chan DC, Fass D, Berger JM, Kim PS. Core structure of gp41 from the HIV envelope glycoprotein. Cell 1997, 89:263-273.

39. Weisenhorn W, Dessen A, Harrison SC, Skehel JJ, Wiley DC. Structural basis for HIV-1 neutralization by a fusion intermediate-directed antibody. Adv Virus Res 2005, 64:231-261.

40. Cheremisinoff LV, Kazlov MM. Protein-Lipid interplay in fusion and fission of biological membranes. Annu Rev Biochem 2003, 72:175-207.

41. Melikyan GB, Markosyan RM, Hemmati H, Delmedico MK, Lambert DM, Cohen FS. Evidence that the transition of HIV-1 gp41 into a six-helix bundle, not the bundle configuration, induces membrane fusion. J Cell Biol 2000, 151:413-423.

42. Magnus C, Rusek P, Bohoheffer S, Tikoila A, Regoes RR. Estimating the stoichiometry of human immunodeficiency virus entry. J Virol 2009, 83:1523-1531.

43. Munoz-Barroso I, Dunell S, Sakaguchi K, Appella E, Blumenthal Z. Dilation of the human immunodeficiency virus type 1 gp41 hairpin bundle, not the bundle configuration, induces membrane fusion. Proc Natl Acad Sci U S A 1994, 91:9770-9774.

44. Furuta RA, W protest W, Weng Y, Weiss CD. Capture of an early fusion-active conformation of HIV-1 gp41. Nat Struct Biol 1998, 5:276-279.

45. Luftig MA, Mattu M, Di GP, Gelezunz J, Hrin R, Barbato G, Bianchi E, Miller MD, Pessi A, Carfi A. Structural basis for HIV-1 neutralization by a gp41 fusion intermediate-directed antibody. Nat Struct Mol Biol 2006, 13:740-747.

46. Corti D, Langedijk JP, Hinz A, Seaman MS, Vanzastra F, Fernandez-Rodriguez BM, Silacci C, Pinna D, Jarossay D, Bala-Jaghoorshing S, Willems B, Ziekfeld MJ, Drea H, O'Sullivan E, Pade C, Orkin C, Jeffs SA, Montefiori DC, Davis D, Weisenhorn W, McKnight A, Heeneey J, Sallusto F, Sattentau QJ, Weiss RA, Lanavezaschla A. Analysis of memory B cell responses and isolation of novel monoclonal antibodies with neutralizing breadth from HIV-1-infected individuals. PLoS One 2010, 5:e8805.

47. Dimitrov AS, Jacobs A, Finnegan CM, Stiegler G, Katinger H, Blumenthal R. Exposure of the membrane-proximal external region of HIV-1 gp41 in the course of HIV-1 envelope glycoprotein-mediated fusion. Biochemistry 2007, 46:1386-1401.

48. Frey G, Peng H, Rits-Voloch S, Morell M, Cheng Y, Chen B. A fusion-intermediate state of HIV-1 gp41 targeted by broadly neutralizing antibodies. Proc Natl Acad Sci U S A 2008, 105:3739-3744.

49. Letvin NL, Daniel MD, Sehgal PK, Desrosiers RC, Hunt RD, Waldron LM, Mackey JJ, Schmidt DK, Chaffoux LV, King NW. Induction of AIDS-like disease in macaque monkeys with T-cell tropic retrovirus STLV-III. Science 1985, 230:71-73.

50. Estes JD, Gordon SN, Zeng M, Chahoudiu AM, Dunham RM, Staprans SI, Reilly CS, Silvestri G, Haase AT. Early resolution of acute immune activation and induction of CD4-1 in SIV-infected sooty mangabeys distinguishes nonpathogenic from pathogenic infection in rhesus macaques. J Immunol 2000, 165:7896-7897.

51. Booy WL, Mayau V, Target B, Liovat AS, Kunkel D, Petitjean G, Dillies MA, Roques B, Butler C, Silvestri G, Gaveedoni LD, lemon P, Barchi-Souissi F, Benecke A, Muller-Brutwin MC. Nonpathogenic SIV infection of African green monkeys induces a strong but rapidly controlled T cell response. J Clin Invest 2009, 119:544-553.

52. Silvestri G. Naturally SIV-infected sooty mangabeys: are we closer to understanding why they do not develop AIDS? J Med Primatol 2005, 34:243-252.

53. Sheldrick DJ, Silvestri G, Weiner DB. Monkeying around with HIV vaccines: using rhesus macaques to define ‘gatekeepers’ for clinical trials. Nat Rev Immunol 2009, 9:717-728.

54. Van Rompay KK. Evaluation of antiretrovirals in animal models of HIV infection. Annu Rev Virol 2010, 8:159-175.

55. Kestler HW III, Naidu YN, Kodama T, King NW, Daniel MD, Li Y, Desrosiers RC. Use of infectious molecular clones of simian immunodeficiency virus for pathogenesis studies. J Med Primatol 1989, 18:305-309.

56. Naidu YM, Kestler HW III, Li Y, Butler CV, Silva DP, Schmidt DK, Troup CD, Sehgal PK, Sonigo P, Daniel MD. Characterization of infectious molecular clones of simian immunodeficiency virus (SIVmac) and human immunodeficiency virus type 2: persistent infection of rhesus monkeys with molecularly cloned SIVmac. J Virol 1988, 62:4691-4696.

57. Chen Z, Zhou P, Ho DC, Landau MB, Marx PA. Genetically divergent strains of simian immunodeficiency virus use CCR5 as a coreceptor for entry. J Virol 1997, 71:2705-2714.

58. Edinger AL, Aremeed A, Miller K, Doranz BJ, Endres M, Sharon R, Samson M, Lu ZH, Clements JE, Murphy-Corb M, Peiper SC, Parmentier M, Broder CC, Doms RW. Differential utilization of CCR5 by macrophage and T cell tropic simian immunodeficiency virus strains. J Virol 2005, 81:7405-7410.

59. Kirchhoff F, Pohlmann S, Hamacher M, Means RE, Kraus T, Uberla K, DM. Human immunodeficiency virus variants with differential T-cell and macrophage tropism use CCR5 and an unidentified co-receptor. Nature 1997, 387:286-290.

60. Deng HK, Unutmaz D, Kewalramani VN, Doms RW. Expression cloning of new receptors used by simian and human immunodeficiency viruses. Nature 1997, 388:296-300.

61. Edinger AL, Hoffman TL, Sharron M, Lee B, O'Dowd B. Doms RW. Use of GPR1, GPR15, and STR33L as coreceptors by diverse human immunodeficiency virus type 1 and simian immunodeficiency virus envelope proteins. Virology 1998, 259:367-378.

62. Dehghani H, Puffer BA, Doms RW, Hirsch VM. Unique pattern of convergent envelope evolution in simian immunodeficiency virus-infected rapid progressor macaques: association with CD4-independent usage of CCR5. J Virol 2003, 77:6405-6418.

63. Reeves JD, Hibiats S, Simmonds G, McKnight A, Azevedo-Pereira JM, Moniz-Pereira J, Clapham PR. Primary human immunodeficiency virus type 2 (HIV-2) isolates infect CD4-negative cells via CCR5 and CXCR4: comparison with HIV-1 and simian immunodeficiency virus and relevance to cell tropism in vivo. J Virol 1999, 73:7795-7804.

64. Puffer BA, Altamura LA, Pirson TC, Doms RW. Determinants within gp120 and gp41 contribute to CD4 independence of SIV Env. Virology 2004, 327:126-31.

65. Pohlmann S, Davis C, Meister S, Leslie GJ, Otto C, Reeves JO, Puffer BA, Papkalla A, Krummbiegel M, Marzi A, Lorenz S, Munck J, Doms RW, Kirchhoff F. Amino acid 324 in the simian immunodeficiency virus SIVmac V3 loop can confer CD4 independence and modulate the interaction with CCR5 and alternative coreceptors. J Virol 2004, 78:3223-3232.

66. Hoffman TL, Labranche CC, Zhang W, Canzani G, Robinson J, Chakam L, Howie JA, Doms RW. Stable expression of the coreceptor-binding site in a CD4-independent HIV-1 envelope protein. Proc Natl Acad Sci U S A 1999, 96:6359-6364.
88. Blanpain C, Hoffman TL, Romano J, Haggarty BS, Edwards TG, Matthews TJ, Doms RW, Hoxie JA. Determinants of CD4 independence for a human immunodeficiency virus type 1 variant map outside regions required for coreceptor specificity. *J Virol* 1999, 73:10310-10319.

87. Bannert N, Schenten D, Craig S, Sodroski J. The level of CD4 expression limits infection of primary rhesus monkey macrophages by a T-tropic simian immunodeficiency virus and macrophagotropin human immunodeficiency viruses. *J Virol* 2000, 74:10984-10993.

86. Moti K, Rosenwweg M, Desrosiers RC. Mechanisms for adaptation of simian immunodeficiency virus to replication in alveolar macrophages. *J Virol* 2000, 74:10852-10859.

85. Gustchina E, Hummer G, Bevelry CA, Cleare GM. Differential inhibition of HIV-1 and SIV envelope-mediated cell fusion by C34 peptides derived from the C-terminal heptad repeat of gp41 from diverse strains of HIV-1, HIV-2, and SIV. *J Med Microbiol* 2005, 48:3036-3044.

84. Malaiaevich VN, Chuvikovst CT, Kim PS. Crystal structure of the simian immunodeficiency virus (SIV) gp41 core: resolved helical interactions under the broad inhibitory activity of gp41 peptides. *Proc Natl Acad Sci U S A* 1998, 95:9134-9139.

83. McKnight A, Wilkinson D, Simmons G, Talbot S, Picard L, Ahuja M, Marsh M, Hoxie JA, Clapham PR. Inhibition of human immunodeficiency virus fusion by a monoclonal antibody to a coreceptor (CXCR4) is both cell type and virus strain dependent. *J Virol* 1999, 73:1650-1656.

82. Babcock GJ, Farzan M, Sodroski J. Ligand-independent dimerization of CXCR4, a principal HIV-1 coreceptor. *J Biol Chem* 2003, 278:3378-3385.

81. Zaitseva M, Peden K, Golding H. Determinants of CD4 independence for HIV-1 entry inhibitors. *Biochem Biophys Res Commun* 2003, 161:451-61.

80. Oppermann M. Chemokine receptor CR5: insights into structure, function, and regulation. *Cell Signal* 2004, 16:2021-2120.

79. Sloane AJ, Raso V, Dimitrov DS, Xiao X, Deo S, Muljadi N, Restuccia D, Turville S, Keaney C, Broder CC, Zeitlin E, Cunningham AL, Bendall L, Lynch GM. Marked structural and functional heterogeneity in CXCR4: separation of HIV-1 and SDF-1alpha responses. *Immune Cell Biol* 2005, 83:129-143.

78. Simpson LS, Zhu JZ, Widlskis TS, Stone MJ. Regulation of chemokine recognition by site-specific tyrosine sulfation of receptor peptides. *Chem Biol* 2009, 16:153-161.

77. Farzan M, Mirzabekov T, Kolchinsky P, Wyatt R, Cayaibay M, Gerard NP, Gerard C, Sodroski J, Chow H. Tyrosine sulfation of the amino terminus of CRFS facilitates HIV-1 entry. *Cell* 1999, 96:6567-676.

76. Lam SN, Achiwa P, Wyatt R, Kwon PD, Bevelry CA. Tyrosine-sulfate isosteres of CRFS N-terminus as tools for studying HIV-1 entry. *Bioorg Med Chem* 2008, 16:10131-10120.

75. Babcock GJ, Farzan M, Sodroski J. Characterization of sequence determinants within the carboxyl-terminal domain of chemokine receptor CRFS that regulate signaling and receptor internalization. *J Virol* 2001, 75:34408-34418.

74. Steffens CM, Hope TJ. Mobility of the human immunodeficiency virus (HIV) receptor CD4 and coreceptor CCR5 in living cells: implications for HIV fusion and entry events. *J Virol* 2004, 78:9573-9578.

73. Popik W, Alce TM, Au WC. Human immunodeficiency virus type 1 uses lipid raft-colocalized CD4 and chemokine receptors for productive entry into C4a(+) T cells. *J Virol* 2002, 76:4709-4722.

72. Barin JG, Long D, Doranz BJ, Rucker J, Jink LR, Doms RW. A seven-transmembrane domain receptor involved in fusion and entry of T-cell-tropic human immunodeficiency virus type 1 strains. *J Virol* 1996, 70:6288-6295.

71. Chabot DJ, Chen H, Dimitrov DS, Broder CC. N-linked glycosylation of CXCR4 masks coreceptor function for CCR5-dependent human immunodeficiency virus type 1 isolates. *J Virol* 2000, 74:4404-4413.

70. Reitz A, Heveker N, Montes M, Alizon M. Identification of residues of CXCR4 critical for human immunodeficiency virus coreceptor and chemokine receptor activities. *J Virol* 2000, 75:23736-23744.

69. Thorsen I, Palzer S, Schreiber M. Infection of cells expressing CXCR4 mutants lacking N-glycosylation at the N-terminal extracellular domain is enhanced for R5X4-dutropic human immunodeficiency virus type-1. *EMBO J* 2002, 21:31.

68. Weissman D, Rubin RA, Anthos JJ, Rubbert A, Dybul M, Swoford R, Venkatesan S, Farber JM, Fauci AS. Macrophage-tropic HIV and SIV envelope proteins induce a signal through the CXCR4 chemokine receptor. *Nature* 1997, 389:981-985.

67. Davis CB, Dikic I, Unutmaz D, Hill CM, Anthos J, Siani MA, Thompson DA, Schlessinger J, Littman DR. Signal transduction due to HIV-1 envelope interactions with chemokine receptors CXCR4 or CCR5. *J Exp Med* 1999, 187:1793-1798.

66. Busillo JM, Benovic JL. Regulation of CXCR4 signaling. *Biochim Biophys Acta* 2007, 1768:952-963.

65. Wu Y, Yoder A. Chemokine coreceptor signaling in HIV-1 infection and pathogenesis. *PLoS Pathog* 2009, 5:e1000520.

64. Satoys Y, Whittaker GC, Westwick J, Ward Sc. The CXC chemokine stromal cell-derived factor-2 activates a Gi-coupled phosphoinositide 3-kinase in T lymphocytes. *J Immunol* 1999, 163:5954-5963.

63. Vicente-Manzanares M, Rey M, Jones DR, Sancho D, Mellado M, Rodriguez-Fadde JM, del Pozo MA, Yanez Mo M, de Ana AM, Martinez A, Merida I, Sanchez-Madrid F. Involvement of phosphatidylinositol 3-kinase in stromal cell-derived factor-1 alpha-induced lymphocyte polarization and chemotaxis. *J Biol Chem* 2005, 280:40402-40412.

62. Vicente-Manzanares M, Cabrero JR, Rey M, Perez-Martinez M, Ursa A, Itoh K, Sanchez-Madrid F. A role for the Rho-p160 Rho coiled-coil kinase axis in the chemokine stromal cell-derived factor-1alpha-induced lymphocyte actinomycin and microtubular organization and chemotaxis. *J Immunol* 2002, 168:400-410.

61. Gersi BB, Brubaker SA, Meyer J, Dutt P, Yang Y, Qin S, Newman W, Groopman JE. The alpha-chemokine, stromal cell-derived factor-1alpha, binds to the transmembrane G-protein-coupled CXCR4 receptor and activates multiple signal transduction pathways. *J Biol Chem* 1998, 273:21369-21375.

60. Porcile C, Bajetto A, Porcile C, Pirani P, Ravetti JL, Zona GL. The alpha-chemokine, stromal cell-derived factor activates a Gi-coupled phosphoinositide 3-kinase in T lymphocytes. *J Immunol* 1999, 163:5954-5963.

59. Venkatesan S, Petrovic A, Locati M, Kim YO, Weissman D, Murphy PM. A membrane-proximal basic domain and cytosine cluster in the C-terminal tail of CCR5 contributes to a bipartite motif critical for cell surface expression. *J Biol Chem* 2001, 276:40133-40145.

58. Blanpain C, Wittamer V, Vanvanderein JM, Boom A, Renneboog B, Lee B, Le PE, El AL, Goaerts C, Vissart G, Doms RW, Parmentier M. Palmitoylation of CCR5 is critical for receptor trafficking and efficient activation of intracellular signaling pathways. *J Biol Chem* 2001, 276:23795-23804.
immunogenicity of a noncleavable HIV-1 gp41 envelope glycoprotein. Virolology 2009, 395:33-44.

126. Grott-Verbas K, Huu SJ, Verbas J, Gudeman V, Chen IS. Enhanced binding of antibodies to neutralization epitopes following thermal and chemical inactivation of human immunodeficiency virus type 1 3. J Virol 2000, 74:5802-5809.

127. Grundner C, Mrzabezek T, Sadowski J, Wyatt R. Solid-phase proteoliposomes containing human immunodeficiency virus envelope glycoproteins 1. J Virol 2002, 76:3511-3521.

128. Kacire F, Frezza P, Stephens DM, Davis D, Palayanskya N, Cranage M, Oxford SJ. An experimental chemically inactivated HIV-1 vaccine induces antibodies that neutralize homologous and heterologous viruses 3. Vaccine 1995, 13:54-60.

129. Buonaguro L, Buonaguro FM, Tornesello ML, Mauts D, Buth-Giraldo E, Wagner R, Michelson S, Prevost-M C, Wolf H, Giraldino G. High efficient production of PrS5ag Virus-Like Particles Expressing multiple HIV-1 epitopes, including a gp120 protein derived from an Ugandan HIV-1 isolate 3 subtype A. Antiviral Research 2001, 49:35-47.

130. Cocks ET, Moore PL, Franti M, Cayanan CS, Zhu P, Jiang P, de Vries RP, Wiley C, Zharkikh I, Schulke N, Roux KH, Montefiori DC, Burton DR, Binley JM. A comparative immunogenicity study of HIV-1 virus-like particles bearing various forms of envelope proteins, particles bearing second envelope and soluble monomeric gp120. Virology 2007, 366:254-262.

131. Wang BZ, Liu W, Kang SM, Alman A, Huang C, Ye L, Sun Y, Li Y, Kothe DL, Pushko P, Dokland T, Haynes BF, Smith G, Hahn BH, Compans RW. Incorporation of high levels of chimeric human immunodeficiency virus envelope glycoproteins into virus-like particles. J Virol 2007, 81:10869-10878.

132. Gheysem D, Jacobs E, de Foresta F, Thiart C, Francotte M, Thines D, De Wilde M. Assembly and release of HIV-1 precursor Pr55ag virus-like particles from recombinant baculovirus-infected insect cells. Curr Biol 1999, 9:103-112.

133. Delchambre M, Gheysem D, Thines D, Thiart C, Jacobs E, Verdin E, Horth M, Burny A, Bex F. The GAG precursor of simian immunodeficiency virus virus assemblies into virus-like particles. EMBOJ 1989, 8:2653-2660.

134. Miyahara A, Inamura T, Arai M, Sugawara K, Ohtomo N, Matsubara K. Expression of hepatitis B virus core antigen gene in Saccharomyces cerevisiae: synthesis of two polypeptides translated from different initiation codons. J Virol 1986, 59:176-180.

135. Kimbauer R, Booy F, Cheng N, Lowy DR, Schiller JT. Papillomavirus L1 major capsid protein self-assembles into virus-like particles that are highly immunogenic. Proc Natl Acad Sci USA 1989, 89:12180-12184.

136. Takamura S, Nikura M, Li TC, Takeda N, Kusagawa S, Takei Y, Miyamura T, Yataomi Y. DNA vaccine-encapsulated virus-like particles derived from an orally transmissible virus stimulate mucosal and systemic immune responses by oral administration. Gene Ther 2004, 11:628-635.

137. Malboeuf CM, Simon DA, Lee YE, Laknes HA, Dewhurst S, Frelinger JG, Rose RC. Human papillomavirus-like particles mediate functional delivery of plasmid DNA to antigen presenting cells in vivo. Vaccine 2007, 25:3270-3276.

138. Touze A, Coursaget P. In vitro gene transfer using human papillomavirus-like viruses. Nucleic Acids Res 1996, 24:1317-1323.

139. Xu Y, Zhang YQ, Xu XM, Song GY. Papillomavirus-like virus particles as vehicles for the delivery of epitopes or genes. Arch Virol 2006, 151:2133-2148.

140. Buonaguro L, Tornesello ML, Buonaguro FM: Virus-Like Particles As Particulate Vaccines. Curr HIV Res 2010.

141. Fernandez-San MA, ortega SM, Hervas-Stubbs S, Corral-Martinez P, Segui-Simarro JM, Gaeten J, Coursaget P, Veramendi J. Human papillomavirus L1 protein expressed in tobacco chloroplast self-assemblies into virus-like particles that are highly immunogenic. Plant Biotechnol J 2008, 6:427-441.

142. Lopez de Turiso JA, Cortes E, Martinez C, Ruiz de YR, Simarro I, Vela C. Formation of poliovirus-like particles from recombinant baculovirus-infected insect cells. Virol J 2005, 2:2515-2528.

143. Casal I. Recombinant vaccine for canine parvovirus in dogs. Virol J 2007, 4:289.

144. French TJ, Roy P. Synthesis of bluetongue virus (BTV) corelike particles by a recombinant baculovirus expressing the two major structural core proteins of BTV. J Virol 1996, 70:1530-1536.
145. Kozlovskva TM, Cielens I, Dreilinna D, Dsiers A, Baumann V, Ose V, Pumpens P: Recombinant RNA phage Q beta capsid particles synthesized and self-assembled in Escherichia coli. Gene 1993, 137:133-137.

146. Peabody DS, Mansfield-Wheeler B, Medford A, Jordan SK, do Carmo CJ, Chackerian B: Immune response to diverse epitopes on virus-like particles of RNA phage MS2. J Mol Biol 2008, 380:352-263.

147. Klovins J, Overbeek GP, van den Worm SH, Ackermann HW, van Dijk: Nucleotide sequence of a ssRNA phage from Acinetobacter: kinship to coliphages. J Gen Virol 2002, 83:1523-1533.

148. Yanashchikov GV, Ritter GD, Vey M, Comans RW: Assembly of HIV virus-like particles containing envelope proteins using a baculovirus expression system. Virology 1995, 214:50-8.

149. Baurnt TF, Ito S, Wong DT, Liang TJ: Hepatitis C virus structural proteins assemble into virus-like particles in insect cells. J Virol 1998, 72:3827-36.

150. McAleen WI, Buynak EB, Margutter RZ, Wampler DE, Miller WJ, Hilleman MR: Human hepatitis B vaccine from recombinant yeast. Nature 1984, 307:178-180.

151. Kang SM, Song JM, Quan FS, Compans RW: Conformational HIV-1 Envelope. J Virol 1993, 67:3191-3198.

152. Wagner R, Deml L, Flixbach H, Wanner G, Wolf H: Assembly and extracellular release of chimeric HIV-1 Pr55Gag retrovirus-like particles. Virology 1994, 200:162-175.

153. Deml L, Kratovchel G, Osterrieder N, Knuchel R, Wolf H, Wagner R: Increased incorporation of chimeric human immunodeficiency virus type 1 gp120 proteins into Pr55Gag virus-like particles by an Epstein-Barr virus gp220/350-derived transmembrane domain. Virology 1997, 235:10-20.

154. Tobin GJ, Li GH, Fong SE, Nagashima K, Gonda MA: Chimeric HIV-1 virus-like particles containing gp120 epitopes as a result of a ribosomal frameshift elicit gag- and SU-specific murine cytotoxic T-lymphocyte activities. Virology 1997, 236:307-315.

155. Griffiths JC, Harris SJ, Layton GT, Berrie EL, French TJ, Bums NR, Adams SE, Kingsman AJ: Hybrid human immunodeficiency virus Gag particles as an antigen carrier system: Induction of cytotoxic T-cell and humoral responses by a Gag/V3 fusion. J Virol 1993, 67:1381-1398.

156. Dale CJ, Liu XS, De Rose R, Purcell DF, Anderson J, Xu Y, Leggatt GR, Frazer IH, Kent SJ: Chimeric human papilloma virus-simian/human immunodeficiency virus virus-like-particle vaccines: Immunogenicity and protective efficacy in macaques. Virology 2002, 301:176-87.

157. Weber J, Cheinsong-Popov R, Callow D, Adams S, Patou G, Hodgkin K, Martin S, Gocht F, Kingsman A: Immunogenicity of the yeast recombinant p17/p24/Ty virus-like particles (p24-VLP) in healthy volunteers. Vaccine 1995, 13:831-834.

158. Schmitz N, Dietmeier K, Bauer M, Maudrich M, Utzinger S, Muntwiler S, Koolen AJ: Hybrid human immunodeficiency virus Gag particles as an antigen carrier system: Induction of cytotoxic T-cell and humoral responses by a Gag/V3 fusion. J Virol 1993, 67:3191-3198.

159. Halsey RJ, Tanzer FL, Meyers A, Pillay S, Lynch A, Shephard E, Williamson AL, Schmitt N, Dietmeier K, Bauer M, Maudrich M, Utzinger S, Muntwiler S, Koolen AJ: Hybrid human immunodeficiency virus Gag particles as an antigen carrier system: Induction of cytotoxic T-cell and humoral responses by a Gag/V3 fusion. J Virol 1993, 67:3191-3198.

160. Kozlovskva TM, Cielens I, Dreilinna D, Dsiers A, Baumann V, Ose V, Pumpens P: Recombinant RNA phage Q beta capsid particles synthesized and self-assembled in Escherichia coli. Gene 1993, 137:133-137.

161. Peabody DS, Mansfield-Wheeler B, Medford A, Jordan SK, do Carmo CJ, Chackerian B: Immune response to diverse epitopes on virus-like particles of RNA phage MS2. J Mol Biol 2008, 380:352-263.

162. Klovins J, Overbeek GP, van den Worm SH, Ackermann HW, van Dijk: Nucleotide sequence of a ssRNA phage from Acinetobacter: kinship to coliphages. J Gen Virol 2002, 83:1523-1533.

163. Yanashchikov GV, Ritter GD, Vey M, Comans RW: Assembly of HIV virus-like particles containing envelope proteins using a baculovirus expression system. Virology 1995, 214:50-8.

164. Buonaguro L, Tomesello ML, Tagliamonte M, Gallo RC, Wang LX, Kamin-Lewis R, Abdelwahab S, Lewis GK, Buonaguro FM: Baculovirus-derived human immunodeficiency virus type 1 virus-like particles activate dendritic cells and induce ex vivo T-cell responses. J Virol 2006, 80:9134-9143.

Cite this article as: Tagliamonte et al: Conformational HIV-1 Envelope on particulate structures: a tool for chemokine co-receptor binding studies. Journal of Translational Medicine 2010 9(Suppl 1):S1.

Submit your next manuscript to BioMed Central and take full advantage of:

• Convenient online submission
• Thorough peer review
• No space constraints or color figure charges
• Immediate publication on acceptance
• Inclusion in PubMed, CAS, Scopus and Google Scholar
• Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit