Population structure and breeding season of the hermit crab *Diogenes brevirostris* Stimpson, 1858 (Decapoda, Anomura, Diogenidae) from southern Mozambique

CARLOS LITULO¹ & CHRISTOPHER TUDGE²,³

¹Departamento de Ciências Biológicas, Faculdade de Ciências, Universidade Eduardo Mondlane, Maputo, Mozambique, ²Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA, and ³Biology Department, American University, Washington, DC, USA

(Accepted 6 June 2005)

Abstract

In this study the population dynamics of the diogenid hermit crab *Diogenes brevirostris* is evaluated focusing on size structure, sex ratio and breeding season. Crabs were randomly taken on a monthly basis from January to December 2003 at Costa do Sol, Maputo Bay, southern Mozambique. A total of 622 crabs was obtained of which 290 were males (46.6%), 170 were non-ovigerous females (27.3%) and 162 were ovigerous females (26.1%). The overall size frequency distribution was unimodal for males, non-ovigerous females and ovigerous females. The overall sex ratio (1:1.15) differed from the expected 1:1 ratio. Sexual dimorphism was evidenced by the larger size attained by males in relation to both ovigerous and non-ovigerous females. Breeding took place year-round with three peaks of spawning (March, August and December). Despite the high reproductive activity, young recruits were scarce in the population. The present results suggest that the study area is suitable for reproduction and growth whereas recruitment may take place in different areas from that occupied by the adults.

Keywords: *Diogenes brevirostris*, hermit crabs, population structure, reproduction

Introduction

Studies on populations generally focus on descriptions of density, size structure, sex ratio and breeding periods that can be compared to other populations of the same species, genus or other taxonomic level. Such comparisons are an important strategy to verify differences among populations and to understand the biological constraints that are shaping the structure of these populations (Branco et al. 2002). Moreover, the study of dominant populations may be very important to elucidate the structure and function of communities. Decapod crustaceans represent a large number of living species that inhabit a wide variety of biotopes, and consequently are a promising field of study because the
establishment of these animals in such diverse habitats derives from the evolution of adaptive strategies (Mantelatto and Sousa 2000). Hermit crabs are anomuran decapod crustaceans that developed strategies to utilize gastropod shells and other types of cavities to shelter the uncalcified abdomen. According to Martinelli et al. (2002), there are currently more than 800 species of hermit crabs worldwide, ranging from the deeper parts of the oceans to intertidal habitats. Despite this high diversity, the population biology aspects of these organisms are still poorly known.

There are many studies on different biological aspects of hermit crabs, mostly related to behavioural characteristics such as the use of gastropod shells and habitat selection in both the field and laboratory (e.g. Tunberg et al. 1994; Mantelatto and Garcia 2000; Turra and Leite 2001). However, studies on population structure of hermit crabs have been conducted for European and Mediterranean (Lancaster 1990; Elwood and Neil 1991; Manjón-Cabeza and Garcia-Raso 1994, 1998; Benvenuto and Gherardi 2001), temperate (Asakura and Kikuchi 1984; Asakura 1987, 1991, 1992, 1995; Imazu and Asakura 1994; Carlon and Ebersole 1995; Pessani et al. 2000), tropical (Kamalaveni 1949; Ameyaw-Akumfi 1975; Bertness 1981; Schiller et al. 1991; Gherardi and Nardone 1997; Nakasone 2001) and South American species (Franzoso and Mantelatto 1998; Bertini and Franzoso 2000; Turra and Leite 2000; Garcia and Mantelatto 2001; Branco et al. 2002; Martinelli et al. 2002).

Breeding seasons of hermit crabs have been frequently described and reveal continuous to seasonal patterns (e.g. Manjón-Cabeza and Garcia-Raso 1998; Turra and Leite 2000; see also Table II in this study). Reproductive activity has been shown to be influenced by the morphology of the shells used by the crabs (Carlon and Ebersole 1995; Turra and Leite 1999; Mantelatto et al. 2002). Moreover, reproductive peaks may vary between populations in response to variation in environmental parameters of a given area.

In southern Africa, studies on hermit crab biology are very few (e.g. Ameyaw-Akumfi 1975; Emmerson and Alexander 1986; Walters and Griffiths 1987; Reddy and Biseswar 1993) and, in particular reference to Mozambique, they have been restricted to behavioural and ecological studies (Barnes 1997, 1999; De Grave and Barnes 2001).

Diogenes brevirostris Stimpson, 1858 occurs from Saldanha Bay, Mozambique to Durban (Emmerson and Alexander 1986) and is the most common and fast-moving hermit crab occurring in the intertidal habitats and estuaries of southern Africa (Walters and Griffiths 1987). Very little is known about its biology. Emmerson and Alexander (1986) assessed the patterns of shell utilization, morphometrics and fecundity while Walters and Griffiths (1987) addressed questions related to distribution, abundance and shell utilization in the field and laboratory. Virtually nothing is known about its population biology and breeding.

In this paper, we describe the population structure of *D. brevirostris* from Costa do Sol, Maputo Bay, southern Mozambique with emphasis on size structure, sex ratio, breeding season and recruitment.

Materials and methods

This study was conducted in the intertidal area of Costa do Sol, Maputo Bay, southern Mozambique (25°55′S, 32°55′E). Three rivers discharge into the area: Nkomati on the north, Maputo on the southern bank and Umbeluzi flowing through the Espírito Santo estuary. The runoff of these rivers brings large amounts of nutrients into Maputo Bay. The climate in Maputo Bay is tropical with an average yearly temperature of 25°C and an average rainfall of ~1000 mm per year.
Hermit crabs were collected monthly at full moon during one year, from January to December 2003, in low-tide periods. Collection was performed by two people during a period of 1 h, covering an area of 300 m². Almost all hermit crabs were found in small aggregations of five or more in small pools that were regularly searched during the study period. After collection, all individuals were bagged and transported immediately to the Laboratory of Ecology of the University Eduardo Mondlane where they were removed by carefully cracking each shell. Sex was determined based on the presence of gonopores. The cephalothoracic shield length (SL=dorsally, from the tip of the rostrum to the V-shaped groove at the posterior edge) was measured with the aid of Vernier callipers (±0.05 mm accuracy) or under a dissecting microscope equipped with an ocular micrometer. The specimens were grouped in 0.5 mm size-class intervals, from 1.5 to 10.0 mm.

The reproductive activity of the population was assessed as the percentage of females carrying eggs relative to the total number of females collected (Fransozo and Mantelatto 1998; Turra and Leite 2000; Martinelli et al. 2002) and the monthly occurrence of ovigerous females was evaluated through one-way ANOVA followed by Scheffé’s test for multiple comparisons (Sokal and Rohlf 1995). The Chi-square test (χ^2) was used to evaluate sex ratio (M:F) and to compare male and female percentages per month. Data were assessed for normality through the Kolmogorov–Smirnov test and the mean size of individuals was compared by the Student’s t test (Sokal and Rohlf 1995). The occurrence of juveniles (individuals of both sexes smaller than the smallest ovigerous female) characterized the recruitment in the population (Garcia and Mantelatto 2001; Martinelli et al. 2002). Mean ± standard deviation (SD) is presented throughout the text.

Results

A total of 622 crabs was sampled from which 290 were males (46.6%), 170 were non-ovigerous females (27.3%) and 162 were ovigerous females (26.1%). Animal size (minimum, maximum, and mean ± SD) was 1.8, 10.0, and 5.29 ± 1.38 mm for males; 1.5, 8.0, and 4.39 ± 1.19 mm for non-ovigerous females; and 3.0, 9.2 mm, and 4.89 ± 1.55 mm for ovigerous females, respectively. Males were on average larger than ovigerous females ($t=4.89, P<0.001$) which were in turn larger than non-ovigerous females ($t=6.38, P<0.05$).

Figure 1 depicts the yearly size frequency distribution for all hermit crabs sampled during the study period. There was a unimodal size distribution with a normal distribution for males (Kolmogorov–Smirnov test, KS=0.040, $P>0.05$), non-ovigerous females (KS=0.032, $P>0.05$) and ovigerous females (KS=0.022, $P>0.05$). The size frequency histograms show a clear prevalence of individuals measuring 3.5–6.5 mm SL. The modal size ranged from 4.5 to 5.5 mm SL for males, non-ovigerous females and ovigerous females (Figure 1).

Monthly size frequency distributions for males, non-ovigerous females and ovigerous females are shown in Figure 2. Major differences can be seen between each demographic category. Males often displayed uni- and bimodal distribution, while non-ovigerous and ovigerous females tended to be largely unimodal. Larger males were scarce from the end of summer to winter (April to July). Moreover, ovigerous females were often larger than non-ovigerous females.

Overall sex ratio (M:F) was 1:1.15 in favour of females and differed from the expected 1:1 ($\chi^2=16.73, P<0.05$). Monthly sex ratios (percentage of males) ranged from 30.3 to 66.7%. The percentage of non-ovigerous females was greater than or equal to that of
ovigerous females for 50% of the year (January, February, April, May, July, and December) (see Table I).

Diogenes brevirostris showed continuous reproduction ($F=189.315$, $P<0.05$) with the largest peak of occurrence of ovigerous females in March and lesser peaks in June, August, October, and December. There was a significant decrease in February (Figure 3) (Scheffé’s test, $P<0.05$).

Analysis of juvenile recruitment in the study area (all crabs of both sexes <3.0 mm SL) showed that it occurred with higher incidence from April to July (Figure 2). No juveniles were recorded from August to October and again in December.

Discussion

Population structure

Diogenes brevirostris in Maputo Bay, Mozambique is sexually dimorphic with males being generally larger than both ovigerous and non-ovigerous females. This condition has been well documented in other hermit crab species (e.g. Ameyaw-Akumfi 1975; Asakura 1987, 1995; Lowey 1987; Tunberg et al. 1994; Gherardi and Nardone 1997; Wada 1999;
Population structure and breeding of Diogenes brevirostris

Frequency (%)

January
n = 95

July
n = 44

February
n = 45

August
n = 10

March
n = 96

September
n = 29

April
n = 37

October
n = 43

May
n = 90

November
n = 54

June
n = 30

December
n = 96

Shield length (mm)
Three factors can influence the sexual dimorphism of hermit crabs: (1) the difference in energy available for growth, with males growing more because they do not expend energy in egg production, but use their energy for structural metabolism; (2) the larger reproductive effort exhibited by males may be due to their ability

Table I. *Diogenes brevirostris* Stimpson, 1858: total number and sex ratio of individuals collected monthly at Costa do Sol, Maputo Bay, southern Mozambique.

Month	Males	Non-ovigerous females	Ovigerous females	Total	Sex ratio (M:F)	χ^2		
January	25	38.5	20	30.8	20	65	1:1.60*	2.16
February	15	33.3	25	55.6	5	45	1:2.00*	1.71
March	20	51.3	3	7.7	16	39	1:0.95	0.23
April	22	59.5	10	27.1	5	37	1:0.68	1.31
May	40	44.4	28	31.1	22	90	1:1.25	0.09
June	20	66.7	4	13	6	20	1:0.50*	2.57
July	19	43.2	13	29.5	12	44	1:1.32	0.11
August	40	57.1	10	14.3	20	70	1:0.75*	1.61
September	16	55.2	4	13.8	9	29	1:0.82	0.45
October	23	53.5	8	18.6	12	43	1:0.87	0.43
November	30	46.9	15	23.4	19	64	1:1.13	0.36
December	20	30.3	30	45.5	16	66	1:2.30*	3.78
Total	290	46.6	170	27.3	162	622	1:1.15*	16.73

*Significantly different from the expected 1:1 sex ratio (χ^2 test, $P<0.05$).

Figure 3. *Diogenes brevirostris* (Stimpson, 1858). Percentage of ovigerous females collected from January to December 2003 at Costa do Sol, Maputo Bay, southern Mozambique. Error bars represent standard deviation. Bars sharing the same letter do not differ statistically (Scheffé’s test, $P>0.05$).
to fertilize more than one female; (3) males of larger dimensions have a greater chance of obtaining females for copulation as a function of intraspecific fights (Abrams 1988). Moreover, smaller growth rates of females would be a consequence of the utilization of relatively small shells and of the higher energy allocation to reproduction in relation to males (Fotheringham 1980; Asakura 1992; Bertini and Fransozo 2000). All these factors can help to determine the size of the local population of *D. brevirostris*.

The global size frequency distribution displayed a unimodal pattern with males reaching larger sizes than non-ovigerous and ovigerous females, with females being abundant in the smallest size classes (SL<5.5 mm) while males outnumbered females in the largest ones (SL>5.5 mm). This condition has been reported in other tropical hermit crabs (Reigada and Santos 1997; Mantelatto and Sousa 2000; Turra and Leite 2000). According to Diaz and Conde (1989), unimodality of size frequency distributions generally characterizes a dynamic equilibrium for a certain population, and the occurrence of slight monthly variations could reflect recruitment pulses, growth and differential mortality rates. However, testing departures from Poisson distributions may be used to support hypotheses of randomness and independence of certain events in time and spatial scales (Sokal and Rohlf 1995).

The overall sex ratio differed from the expected 1:1 proportion. Several causes may lead to this discrepancy, such as differences between sexes in longevity and growth rate, differential migration, mortality and sex reversal. Sex reversal (hermaphroditism) is very common among hermit crabs but the causes governing its occurrence are still poorly known (Turra and Leite 2000). According to Werner (1972), sex ratios differing from the 1:1 are widespread among crustaceans. In hermit crabs, females tend to be more abundant than males (Ameyaw-Akumfi 1975; Imazu and Asakura 1994; Reigada and Santos 1997; Garcia and Mantelatto 2001; Martinelli et al. 2002). Turra and Leite (2000) state that this may be explained by higher mortality acting on males or by habitat partitioning, differential feeding restriction or spatial dispersion between sexes. Also important to address is the search for and utilization of shells, which are a limiting resource that may influence the sex ratio, with males being more successful in obtaining adequate shells in relation to females (Asakura 1992; Mantelatto and Garcia 2000).

In our study there were few juveniles. This observation and the maximum size attained by the specimens may support the hypothesis that recruitment may occur in different habitats from those occupied by adults. As mentioned by Asakura (1991), Fransozo and Mantelatto (1998) and Martinelli et al. (2002), this may occur due to the need for protection and particular food resources. Hazlett (1981a, 1981b), studying a population of *Clibanarius vittatus* (Bosc, 1802) in Florida, reported that this crab can undergo along-shore daily movements which can vary from a half metre to a few hundred metres in a single day. Similar daily movements may be responsible for the variation in the relative abundance of juveniles in the study area. Looking at Figure 2, it can be seen that juveniles recruit mostly during winter (March to June) in the study area. In Maputo Bay, phyto- and zooplankton growth occurs from September to November and a major period of plankton abundance occurs by March due to nutrient accumulation during the winter rainy season (Paula et al. 1998). Thus, the juvenile migration may occur throughout the rainy season. Recently, Litulo (2004) found that the reproductive and recruitment activity of the fiddler crab *Uca annulipes* (H. Milne Edwards, 1837) in Maputo Bay occurs in the rainy season, favouring food supply and larval flux. This may also apply to the population of *Diogenes brevirostris* studied herein, since the study area receives water input and nutrient outflow from three major rivers (see Materials and Methods for site description).
Breeding season

Hermit crabs may display continuous (with or without peaks) or seasonal reproductive patterns (Tunberg et al. 1994; Manjón-Cabeza and García-Raso 1998; Fransozo and Mantelatto 1998; Branco et al. 2002) regardless of the taxonomic group (Table II). For example, *Clibanarius vittatus* (see Lowey 1987; Reigada and Santos 1997; Turra and Leite 2000) and *C. antillensis* (Herbst, 1796) (see Turra and Leite 1999, 2000) show different reproductive patterns in different habitats. This is further evidence of the effects of latitude on the reproductive activity of a species. As noted by Sastry (1983), populations of a given species at different latitudes subjected to particular environmental conditions may display different reproductive patterns. Continuous or wide reproductive periods shown by hermit crabs may be a result of multiple spawnings or asynchrony in reproduction.

Ovigerous females of *Diogenes brevirostris* were found year-round in the study area but with the largest peaks in March, August and December, suggesting a continuous reproductive pattern (Figure 3). A similar pattern was found in *Paguristes tortugae* (Schmitt, 1933) studied by Mantelatto and Sousa (2000) and *Clibanarius antillensis* studied by Turra and Leite (2000). Continuous reproduction is important for the determination of several characteristics of a population such as continuous larval supply and juvenile recruitment, which are important mechanisms to stabilize a population.

In most subtropical and tropical regions, the reproductive activity is more intense during the warmer months, when the food sources are abundant in the plankton (Sastry 1983; Ramírez Llodra 2002).

From the literature (Table II) it is noted that most hermit crabs display seasonal reproduction (78%) rather than continuous. However, both continuous and seasonal reproduction is found in subtropical and tropical areas (here delimited as <23°N and S) and cooler temperate latitudes greater than 23°N and S. It is generally expected that tropical species will breed for longer periods and this may be explained by the narrow variations observed in temperature, rainfall, and nutrient input, which are very important for reproduction and larval growth. Sastry (1983) mentioned that a prolonged breeding period indicates that individuals produce several successive broods during the year or breed asynchronously. A similar reproductive pattern seems to be evident in *D. brevirostris*, since several breeding peaks can be observed during the study period (Figure 2).

According to Turra and Leite (2000), any hypothesis to explain the occurrence of hermit crab populations with seasonal reproductive patterns in the tropics and with continuous patterns in temperate regions may be based on the evolutionary histories of populations, although local factors such as competition and shell use should also be considered when assessing the reproductive traits of a species or population. We recognize the need to be cautious in interpreting this limited breeding data as significant taxonomic and location bias is apparent in Table II. For example, (1) all investigations of the breeding periods of hermit crabs in the family Paguridae are limited to the northern hemisphere; (2) most of the studies (74%) are from the northern hemisphere and extend across a broader range of latitude (6–54°N) when compared to the southern hemisphere (15–27°S); and (3) only 19% of the studies have been carried out on tropical hermit crabs in the first place. A statistical analysis of a more exhaustive data set is required to elucidate any patterns in breeding peaks across latitudes (in both hemispheres) and comparative breeding records for congeners found over a wide range of latitudes should provide the best picture. Both of these approaches are beyond the scope of this paper and are future research directions.

This study constitutes a detailed account of the population biology and reproduction of a tropical hermit crab in southern Africa. Further studies on gonad development, fecundity,
Species	Breeding pattern	Breeding peak	Study area	Reference
Coenobitidae				
Birgus latro	Seasonal	September–October	Vanuatu, Indian Ocean (15°S)	Schiller et al. (1991)
Coenobita cavipes	Seasonal	May–August	Okinawa-jima, Japan (25°N)	Nakasone (2001)
Coenobita purpureus	Seasonal	May–September	Okinawa-jima, Japan	Nakasone (2001)
Coenobita rugosus	Seasonal	May–November	Okinawa-jima, Japan	Nakasone (2001)
Diogenidae				
Calcinus obscurus	Continuous	December–February	Flamenco Island, Panama (8°N)	Bertness (1981)
Calcinus tubularis	Seasonal	August	Ligurian Sea, Italy (43°N)	Pessani et al. (2000)
Clibanarius albidigitus	Continuous	December–February	Flamenco Island, Panama	Bertness (1981)
Clibanarius antillensis	Continuous	February–May	São Sebastião, Brazil (24°S)	Turra and Leite (2000)
Clibanarius antillensis	Continuous	November–March	São Sebastião, Brazil	Turra and Leite (1999)
Clibanarius chapini (= C. tricolor)	Continuous	January–October	Tengpobo, Ghana (6°N)	Ameyaw-Akumfi (1975)
Clibanarius clopetarius	Seasonal	February–May	São Sebastião, Brazil	Turra and Leite (2000)
Clibanarius senegalensis	Continuous	September–December	Tengpobo, Ghana	Ameyaw-Akumfi (1975)
Clibanarius virensens	Seasonal	July–September	Kominato, Japan (35°N)	Imazu and Asakura (1994)
Clibanarius vittatus	Seasonal	April–October	São Sebastião, Brazil	Turra and Leite (2000)
Clibanarius vittatus	Seasonal	April–August	São Vicente, Brazil (24°S)	Reigada and Santos (1997)
Clibanarius vittatus	Seasonal	April–September	Florida, USA (28°N)	Lowey (1987)
Dardanus deformis	Continuous	August–October	Costa do Sol, Mozambique (26°S)	Litulo (unpublished data)
Dardanus insignis	Seasonal	September–November	Santa Catarina, Brazil (27°S)	Branco et al. (2002)
Diogenes brevirostris	Continuous	March–December	Costa do Sol, Mozambique	Present study
Diogenes nitidimanus	Seasonal	March–November	Costa do Sol, Mozambique	Present study
Diogenes pugilator	Continuous	April–July	Cadiz, Spain (36°N)	Manjón-Cabeza and García-Raso (1998)
Loxopagurus loxochelis	Seasonal	June–October	Ubatuba, Brazil	Martinelli et al. (2002)
Paguristes erythrops	Seasonal	March–September	Anchieta Island, Brazil (21°S)	Garcia and Mantelatto (2001)
Paguristes tortuca	Continuous	March–December	Anchieta Island, Brazil	Mantelatto and Sousa (2000)
Paguristes tripugiloides	Seasonal	November–September	Pacific Coast, USA (46–48°N)	Nyblade (1987)
Petrochirus diogenes	Seasonal	March	Penha, Brazil (26°S)	Turra et al. (2002)
Petrochirus diogenes	Seasonal	February–April	Ubatuba, Brazil	Bertini and Fransozo (2000)
Paguridae				
Cestopagurus timidus	Seasonal	April–November	Almeria, Spain (37°N)	Manjón-Cabeza and García-Raso (1994)
Discorsopagurus schmitt	Seasonal	January–April	Washington, USA (46–48°N)	Gherardi and Cassidy (1995)
Discorsopagurus schmitt	Seasonal	January–May	Pacific Coast, USA	Nyblade (1987)
Elassochirus gilli	Seasonal	September–May	Pacific Coast, USA	Nyblade (1987)
Table II. (Continued.)

Species	Breeding pattern	Breeding peak	Study area	Reference
Elassochirus tenuimanus	Seasonal	August–May	Pacific Coast, USA	Nyblade (1987)
Labidochirus splendescens	Seasonal	July–April	Pacific Coast, USA	Nyblade (1987)
Pagurus annulipes	Seasonal	April–August	Massachusetts, USA (41–43°N)	Carlon and Ebersole (1995)
Pagurus armatus	Seasonal	October–September	Pacific Coast, USA	Nyblade (1987)
Pagurus beringanus	Seasonal	November–September	Pacific Coast, USA	Nyblade (1987)
Pagurus bernhardus	Seasonal	November–May	Penzance, England (50°N)	Lancaster (1990)
Pagurus bernhardus	Seasonal	December–May	Ards Peninsula, Ireland (54°N)	Elwood and Neil (1991)
Pagurus capillatus	Seasonal	January–May	Pacific Coast, USA	Nyblade (1987)
Pagurus caurinus	Seasonal	December–September	Pacific Coast, USA	Nyblade (1987)
Pagurus dalli	Seasonal	November–April	Pacific Coast, USA	Nyblade (1987)
Pagurus filholi	Continuous	April–July	Hokkaido, Japan (42–45°N)	Goshima et al. (1998)
Pagurus geminus (= *P. filholi*)	Seasonal	January–June	Kominato, Japan	Imazu and Asakura (1994)
Pagurus granosimanus	Seasonal	October–September	Pacific Coast, USA	Nyblade (1987)
Pagurus hirsutiusculus	Seasonal	November–September	Pacific Coast, USA	Nyblade (1987)
Pagurus kenneryi	Seasonal	January–May	Pacific Coast, USA	Nyblade (1987)
Pagurus longicarpus	Seasonal	April–May	Massachusetts, USA	Carlon and Ebersole (1995)
Pagurus longicarpus	Seasonal	April	New Jersey, USA (39–40°N)	McDermott (1999)
Pagurus maclaughlinae	Continuous	September–June	Florida, USA (27–28°N)	Tunberg et al. (1994)
Pagurus middendorfii	Seasonal	November–February	Hokkaido, Japan	Wada et al. (1995)
Pagurus nigrofasciata	Seasonal	May–February	Hokkaido, Japan	Goshima et al. (1996)
Pagurus ochotensis	Seasonal	March–September	Pacific Coast, USA	Nyblade (1987)
Pagurus pollicaris	Seasonal	April	Massachusetts, USA	Carlon and Ebersole (1995)
Pagurus samuelis	Seasonal	November–September	Pacific Coast, USA	Nyblade (1987)
Pagurus stevensae	Seasonal	December–April	Pacific Coast, USA	Nyblade (1987)
Pagurus spp.	Continuous	All year	Flamenco Island, Panama	Bertness (1981)
growth, predation, shell utilization, larval ecology, and morphology are needed to better understand the life cycle of *Diogenes brevirostris* in the study area.

Acknowledgements

We would like to thank the Laboratory of Ecology of the University Eduardo Mondlane for logistic support. C.L. thanks Fernando L. M. Mantelatto for providing useful literature on hermit crab population biology and reproduction. C.T. acknowledges the continued support of the chair and staff of the Department of Zoology, NMNH, SI, Washington, DC for his research associate status.

References

Abrams PA. 1988. Sexual difference in resource use in hermit crabs: consequences and causes. In: Chelazzi G, Vannini M, editors. Behavioral adaptation to intertidal life. New York: Plenum Press. p 283–296.

Ameyaw-Akumfi C. 1975. The breeding biology of two sympatric species of tropical hermit crabs, *Clibanarius chapini* and *C. senegalensis*. Marine Biology 29:15–28.

Asakura A. 1987. Population ecology of the sand-dwelling hermit crab *Diogenes nitidimanus* Terao: 3. Mating system. Bulletin of Marine Science 41:282–288.

Asakura A. 1991. Population ecology of the sand-dwelling hermit crab *Diogenes nitidimanus*. IV. Larval settlement. Marine Ecology Progress Series 78:139–146.

Asakura A. 1992. Population ecology of the sand-dwelling hermit crab *Diogenes nitidimanus* Terao. 5. Ecological implications in the pattern of moulting. Journal of Crustacean Biology 12:537–545.

Asakura A. 1995. Sexual differences in the life history and resource utilization by the hermit crab. Ecology 76:2295–2313.

Asakura A, Kikuchi T. 1984. Population ecology of the sand dwelling hermit crab, *Diogenes nitidimanus* Terao. 2. Migration and life history. Publications from the Amakusa Marine Biology Laboratory 7:109–123.

Barnes DKA. 1997. Ecology of tropical hermit crabs at Quirimbas Island, Mozambique: distribution, abundance and activity. Marine Ecology Progress Series 154:133–142.

Barnes DKA. 1999. Ecology of tropical hermit crabs at Quirimbas Island, Mozambique: shell characteristics and utilization. Marine Ecology Progress Series 183:241–251.

Benvenuto C, Gherardi F. 2001. Population structure and shell use in the hermit crab, *Clibanarius erythropus*: a comparison between Mediterranean and Atlantic shores. Journal of the Marine Biological Association of the United Kingdom 81:77–84.

Bertini G, Fransozo A. 2000. Population dynamics of *Petrochirus diogenes* (Crustacea, Anomura, Diogenidae) in the Ubatuba region, São Paulo, Brazil. Crustacean Issues 12:331–342.

Bertness MD. 1981. Seasonality in tropical hermit crab reproduction in the bay of Panama. Biotropica 13:292–300.

Branco JO, Turra A, Souto FX. 2002. Population biology and growth of the hermit crab *Dardanus insignis* at Armação do Itapocoroy, southern Brazil. Journal of the Marine Biological Association of the United Kingdom 82:597–603.

Carlon DB, Ebersole JP. 1995. Life-history variation among three temperate hermit crabs: the importance of size in reproductive strategies. Biological Bulletin 188:329–337.

De Grave S, Barnes DK. 2001. Ecology of tropical hermit crabs (Crustacea, Decapoda) at Quirimbas Island, Mozambique: a multivariate assemblage perspective. Tropical Zoology 14:197–209.

Díaz H, Conde JE. 1989. Population dynamics and life history of the mangrove crab *Aratus pisonii* (Brachyura, Grapsidae) in a marine environment. Bulletin of Marine Science 45:148–163.

Elwood RW, Neil SJ. 1991. *Pagurus bernhardus* in Northern Ireland. In: Elwood RW, Neil SJ, editors. Assessment and decisions: a study of information gathering by hermit crabs. London: Chapman and Hall. p 38–145.

Emmerson WD, Alexander MD. 1986. Shell utilization and morphometrics of the hermit crab *Diogenes brevirostris* Stimpson. South African Journal of Zoology 21:211–216.

Fotheringham N. 1980. Effects of shell utilization on reproductive patterns in tropical hermit crabs. Marine Biology 55:287–293.
Fransozo A, Mantelatto FLM. 1998. Population structure and breeding period of the tropical hermit crab *Calcinus tibicen* (Decapoda: Diogenidae) in the region of Ubatuba, São Paulo, Brazil. Journal of Crustacean Biology 18:738–745.

Garcia RB, Mantelatto FLM. 2001. Population dynamics of the hermit crab *Paguristes eythrops* (Diogenidae) from Anchieta Island, southern Brazil. Journal of the Marine Biological Association of the United Kingdom 81:955–960.

Gherardi F, Cassidy PM. 1995. Life history patterns of *Discorsopagurus schmitti*, a hermit crab inhabiting polychaete tubes. Biological Bulletin 188:68–77.

Gherardi F, Nardone F. 1997. The question of coexistence in hermit crabs: population ecology of a tropical intertidal assemblage. *Crustacea* 70:608–629.

Goshima S, Kawashima T, Wada S. 1998. Mate choice by males of the hermit crab *Pagurus filholi*: do males assess ripeness and/or fecundity of females? Ecological Research 13:151–161.

Goshima S, Wada S, Ohmori H. 1996. Reproductive biology of the hermit crab *Pagurus nigrofasciata* (Anomura: Paguridae). Crustacean Research 25:86–92.

Hazlett BA. 1981a. The behavioral ecology of hermit crabs. Annual Review of Ecology and Systematics 12:1–22.

Hazlett BA. 1981b. Daily movements of the hermit crab *Clibanarius vittatus*. Bulletin of Marine Science 31:177–183.

Imazu M, Asakura A. 1994. Distribution, reproduction and shell utilization patterns in three species of intertidal hermit crabs on a rocky shore on the Pacific coast of Japan. Journal of Experimental Marine Biology and Ecology 184:42–65.

Kamalaveni S. 1949. On the ovaries, copulation and egg formation in the hermit crab *Clibanarius olivaceus* Henderson (Crustacea, Decapoda). Journal of the Zoological Society of India 1:120–128.

Lancaster I. 1990. Reproduction and life history strategy of the hermit crab *Pagurus bernhardus*. Journal of the Marine Biological Association of the United Kingdom 70:129–142.

Litulo C. 2004. Reproductive aspects of a tropical population of the fiddler crab *Uca annulipes* (H. Milne Edwards, 1837) (Brachyura: Ocypodidae) at Costa do Sol Mangrove, Maputo Bay, southern Mozambique. Hydrobiologia 525:167–173.

Lowey WA. 1987. Aspects of the population of *Clibanarius viattus* at Sebastian Inlet, Florida [MSc thesis]. James Madison University, Harrisonburg, Virginia, USA. 55 p.

Manjón-Cabeza ME, García-Raso JE. 1994. Estrutura de una poblacion del cangrejo ermitano *Cestopagurus timidus* (Crustacea, Decapoda, Anomura) de fondos de *Posidonia oceanica* del SE de Espana. Cahiers de Biologie Marine 35:225–236.

Manjón-Cabeza ME, García-Raso JE. 1998. Population structure and growth of the hermit crab *Diogenes pugilator* (Decapoda: Anomura: Diogenidae) from the Northeastern Atlantic. Journal of Crustacean Biology 18:753–762.

Mantelatto FLM, Alarcon VF, Garcia RB. 2002. Egg production strategies of the tropical hermit crab *Paguristes tortugae* from Brazil. Journal of Crustacean Biology 22:390–397.

Mantelatto FLM, Garcia RB. 2000. Shell utilization pattern of the hermit crab *Calcinus tibicen* (Diogenidae) from southern Brazil. Journal of Crustacean Biology 20:460–467.

Mantelatto FLM, Sousa LM. 2000. Population dynamics of the hermit crab *Paguristes tortugae* Schmitt, 1933 (Anomura, Diogenidae) from Anchieta Island, Ubatuba, Brazil. Nauplius 8:185–193.

Martinelli JM, Mantelatto FLM, Fransozo A. 2002. Population structure and breeding season of the South Atlantic hermit crab *Loxopagurus losochelis* (Anomura, Diogenidae) from the Ubatuba region, Brazil. *Crustacea* 75:791–802.

McDermott JJ. 1999. Reproduction in the hermit crab *Pagurus longicarpus* (Decapoda: Anomura) from the coast of New Jersey. Journal of Crustacean Biology 19:612–621.

Nakasone Y. 2001. Reproductive biology of three land hermit crabs (Decapoda: Anomura: Coenobitidae) in Okinawa, Japan. Pacific Science 55:157–169.

Nyblade CF. 1987. Phylum or Subphylum Crustacea, Class Malacostraca, Order Decapoda, Anomura. In: Strathmann MF, editor. Reproduction and development of marine invertebrates of the northern Pacific coast. Seattle: University of Washington Press. p 441–450.

Paula J, Pinto I, Guimbe I, Monteiro S, Gove D, Guerreiro J. 1998. Seasonal cycles of planktonic communities at Inhaca Island, southern Mozambique. Journal of Plankton Research 20:2165–2178.

Pessani D, Damiano MT, Maiorana G, Tirelli T. 2000. The biology of *Calcinus tubularis* (Decapoda, Diogenidae) in nature and in the laboratory. Crustacean Issues 12:377–383.

Ramírez Llrodra E. 2002. Fecundity and life-history strategies in marine invertebrates. Advances in Marine Biology 43:87–170.
Reddy T, Biseswar R. 1993. Patterns of shell utilization in two sympatric species of hermit crabs from the Natal coast (Decapoda, Anomura, Diogenidae). Crustaceana 65:13–24.

Reigada ALD, Santos S. 1997. Biology and shell relationship in Clibanarius viitatus (Bosc, 1802) (Crustacea, Diogenidae) from São Vicente, SP, Brazil. Brazilian Archives of Biology and Technology 42:941–952.

Sastry AN. 1983. Ecological aspects of reproduction. In: Vernberg WB, Vernberg FB, editors. The biology of Crustacea. Volume 8, Environmental adaptations, New York: Academic Press. p 179–270.

Schiller C, Fielder DR, Brown IW, Obed A. 1991. The coconut crab: aspects of Birgus latro biology and ecology in Vanuatu. In: Brown IW, Fielder DR, editors. Canberra: Australian Center for International Agricultural Research. p 13–31. (ACIAR monograph; 8).

Sokal RR, Rohlf FJ. 1995. Biometry: principles and practices. San Francisco: W. W. Freeman and Co. 776 p.

Turra A, Branco JO, Souto FX. 2002. Population biology of the hermit crab Petrochirus diogenes (Linnaeus) (Crustacea, Decapoda) in southern Brazil. Revista Brasileira de Zoológia 19:1043–1051.

Turra A, Leite FPP. 1999. Population structure and fecundity of the hermit crab Clibanarius antillensis Stimpson 1862 (Anomura, Diogenidae) in Southwestern Brazil. Bulletin of Marine Science 64:281–289.

Turra A, Leite FPP. 2000. Population biology and growth of three sympatric species of intertidal hermit crabs in south-eastern Brazil. Journal of the Marine Biological Association of the United Kingdom 80:1061–1969.

Turra A, Leite FPP. 2001. Shell utilization patterns of a tropical rocky intertidal hermit crab assemblage: I. The case of Grande Beach. Journal of Crustacean Biology 21:393–406.

Wada S. 1999. Environmental factors affecting sexual size dimorphism in the hermit crab Pagurus middendorfii. Journal of the Marine Biological Association of the United Kingdom 79:953–954.

Wada S, Goshima S, Nakao S. 1995. Reproductive biology of the hermit crab Pagurus middendorfii Brandt (Decapoda: Anomura: Paguridae). Crustacean Research 24:23–32.

Walters WA, Griffiths CL. 1987. Patterns of distribution, abundance and shell utilization amongst hermit crabs, Diogenes brevirostris. South African Journal of Zoology 22:269–277.

Werner AM. 1972. Sex ratio as a function of size in marine Crustacea. American Naturalist 106:321–350.