Maternal stress induced anxiety-like behavior exacerbated by electromagnetic fields radiation in female rats offspring

Ehsan Hosseini1*, Mahsa Farid Habibi2, Shirin Babri2, Gisou Mohaddes3, Hajar abkhezr3, Hamed Heydari4

1 Faculty of Veterinary Medicine, Division of Physiology, Department of Basic Science, Urmia University, Urmia, Iran, 2 Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran, 3 Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran, 4 Department of Physiology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran

* Ehsan5461@gmail.com

Abstract

There is a disagreement on whether extremely low frequency electromagnetic fields (ELF-EMF) have a beneficial or harmful effect on anxiety-like behavior. Prenatal stress induces frequent disturbances in offspring physiology such as anxiety-like behavior extending to adulthood. This study was designed to evaluate the effects of prenatal stress and ELF-EMF exposure before and during pregnancy on anxiety-like behavior and some anxiety-related pathways in the hippocampus of female rat offspring. A total of 24 female rats 40 days of age were distributed into four groups of 6 rats each: control, Stress (rats whose mothers underwent chronic stress), EMF (rats whose mothers were exposed to electromagnetic fields) and EMF/S (rats whose mothers were simultaneously exposed to chronic stress and ELF-EMF). The rats were given elevated plus-maze and open field tests and then their brains were dissected and their hippocampus were subjected to analysis. ELISA was used to measure 24(S)-hydroxy cholesterol, corticosterone, and serotonin levels. Cryptochrome2, steroidogenic acute regulatory protein, 3B-Hydroxy steroid dehydrogenase, N-methyl-D-aspartate receptor 2(NMDAr2) and phosphorylated N-methyl-D-aspartate receptor 2(PNMDAr2) were assayed by immunoblotting. Anxiety-like behavior increased in all treatment groups at the same time EMF increased anxiety induced by maternal stress in the EMF/S group. The stress group showed decreased serotonin and increased corticosterone levels. ELF-EMF elevated the PNMDAr2/NMDAr2 ratio and 24(S)-OHC in the hippocampus and prenatally stress may contribute to anxiety via a decrease in serotonin and an increase in corticosterone in the hippocampus. We also found that anxiety-like behavior induced by maternal stress exposure, is exacerbated by electromagnetic fields radiation.
1. Introduction

Stress can be described as a situation in which homeostasis is altered by numerous reactions, due to stress factors [1]. One of the most prevalent types of stresses is prenatal, which can exert emotional, behavioral and cognitive changes in offspring [2–6]. Anxiety is a behavioral change that introduces enormous problems in the social life of offspring in adulthood [7,8]. Current studies on anxiety are typically in male animals, while female animals are often excluded because of interference of estrogen [9–11]. In fact, there are reports that women are twice as likely as men to experience anxiety disorders and depression [12,13]. Because of this, we selected female rats to study changes in anxiety behavior. It has been found that maternal stress can have persistent effects on the neurodevelopment of offspring, such as rate of neurotransmitter secretion and receptors [14]. On the other hand, extremely low frequency electromagnetic fields (ELF-EMF) (ELF 3–3000 Hz) [15] are prevalent in daily life, bringing about an escalating concern with regard to their potential harmful effects [16,17]. We chose an electromagnetic field with frequency of 50 Hz because this frequency is produced by most electrical home appliances [18,19].

According to some studies, ELF-EMF is the same as physiological stress and can cause oxidative stress in the brains of rats [20], chick embryonic cells and humans erythrocytes [21], and kestrel lymphocytes [22]. Numerous studies has been performed on behavior of animal which indicates that ELF-EMF are safe in some cases [23,24] but they are abundant studies declaring of hazardous effect of them in promoting anxiety and depression behaviors in animals [25–27] and human [28,29]. On the other hand, another research has demonstrated some anti-anxiety effects of low frequency electromagnetic fields in mice [30]. Overall, however, most studies show that ELF-EMF increases anxiety-like behavior. Also, there are few studies that addressed the effect of prenatal ELF-EMF exposure on anxiety-like behavior in offspring [26]. Thus, the two factors ELF-EMF and prenatal stress increase the risk of developing anxiety-like behavior, and on the other hand, knowing that these two factors are found in abundance in modern life, how these two factors simultaneously affect anxiety-like behavior is unknown. One view could be that these two factors could have a dual aggravating effect on anxiety-like behavior, and the other view could be that these two factors may interfere with each other’s ability to create anxiety-like behavior, and this could be a way to use ELF-EMF to prevent the harmful effects of prenatal stress. The hippocampus has a clear role in anxiety behavior in animals [31] and several studies have demonstrated that the hippocampus is highly affected by prenatal stress in respect to receptors and neurotransmitters [32–35]. The N-Methyl-D-Aspartate receptor (NMDAr) is an important receptor in the hippocampus involved in anxiety-like behavior [36,37]. Cholesterol is crucial for brain function and neurotransmission [38] because neuroactive steroids (NASs) produced from cholesterol modulate brain processes and interact with diverse receptors such as NMDArs [39]. 24(S)-hydroxy cholesterol is a neuroactive steroid responsible for numerous aspects of brain development and function, such as axon and dendrite growth and synaptogenesis [40], and is a positive allosteric modulator of NMDArs (Fig 1) [41,42]. Another imperative neurostroids is corticosterone, the main corticosteroid hormone in rats, which is associated with a considerable increase in anxiety-like behavior [43] Corticosterone receptors are extremely concentrated in the hippocampus [44]. Steroidogenic acute regulatory protein (STAR) is a key protein that contributes to the production of corticosterone [45] (Fig 1). Moreover, it has been found that stress increases STAR expression in the hippocampus [46]. Furthermore, 3B-Hydroxy steroid dehydrogenase (3B-HSD) is an imperative enzyme in the synthesis process of neurostroids in different brain regions of rats (Fig 1) [47]. Cryptochrome genes, as a part of the circadian cycle system, have a direct effect on behaviors associated with anxiety since circadian clock-deficient cryptochrome
knockout mice showed increased anxiety-like behavior [48] and anhedonic-like behavior was observed in cryptochrome-deficient mice [49]. Additionally, mice exhibiting higher anxiety behavior showed lower expression levels of cryptochrome2 in the hippocampus in comparison with normal mice [50]. Serotonin in the hippocampus is involved in anxiety-like behavior [51].
and the serotonergic system in hippocampus regulates anxiety-like behavior [52]. Considering that prenatal stress is one of the most common factors in inducing anxiety-like behavior in offspring in modern societies [53–55] and on the other hand due to the confinement of modern living environment with ELF-EMF and the anxiogenic effect of ELF-EMF [25,26,56,57] and also considering the key role of the hippocampus in anxiety-like behavior [31], we hypothesized that if these two factors may have synergic effect of inducing anxiety-like behavior via metabolic changes in hippocampus or the interaction of these two factors can reduce their ability to create anxiety-like behavior. For the first time, to our knowledge, our study simultaneously investigated anxiety-like behavior, neurostroids formation and metabolism, cryptochrome2 expression as a marker of circadian rhythm, glutamate receptor activation, and serotonin production in the hippocampus of female rat offspring which were prenatally stressed and/or exposed to EMF.

2. Materials and methods

2.1 Animals

Twenty-four female Wistar rats of 3 months of age and weighing 200–250 g were obtained from the Tabriz University Animal Care Center and were kept for one week prior to the study at 25˚C and 12 h light and 12 dark conditions for adaptation to the lab environment. During this time, animals had free access to food and water. All procedures and experiments were performed in accordance with the regulations of the Tabriz Medical University Ethical Committee for the protection of animals in research (IR.TBZMED.VCR.REC.1397.230) under the guidelines of the National Institutes of Health.

2.2 Experimental design

Female Wistar rats were randomly divided into four groups of 6 rats each (n = 6): control (C), electromagnetic field (EMF), stress (S), and electromagnetic field with stress (EMF-S) groups. Dams in the control group were exposed to a switched-off jammer device. Dams in the EMF group were exposed to ELF-EMF (50 Hz, 100 μT) for 21 days, 4 hours each day from 10:00 a.m. to 14:00 p.m. Dams in the S group were subjected to different types of stressors for 21 days (Table 1). The EMF-S group dams were exposed to ELF-EMF and stressors at the same time for 21 days. After this 21-day period, mating was permitted between male and female rats overnight (each Dam with 2 male rats in a cage). First, the vaginal plaque was checked and after ensuring that the female rat was pregnant, we put the pregnant rat to be treated with second 21-days course of stress (group S) or electromagnetic field (group ELF-EMF) or both stress and electromagnetic field (group EMF/S). All offspring were weaned on day 21 and then female offspring were selected for behavioral tests and measuring the desired indices. Behavioral tests and sampling were performed at the age of 40 days (Flowchart 1).

2.3 Stress procedure

The stress protocol of this study was according to Lewitus [58] with some modification. In the present study, the stress period was induced for 3 weeks before and 3 week of pregnancy. Three weeks of stress has been defined as chronic stress for rats in previous studies [58,59]. Each week the stress diet consisted of 8 different stress modes (Table 1), including: two periods of stroboscopic lighting (300 flash / min), one period of dry cage, two periods of noise (80 db), two periods of 45˚ cage tilt, one period of pair housing, and periods of water and food deprivation in which water deprivation was empty water bottles and food deprivation was followed by limited food intake [60].
2.4 Electromagnetic field device

The magnetic field device used in our study is based on Helmholtz's screw theory designed in a physiology laboratory. The field-generating part of this machine consists of two coils with a radius of 30 cm located coaxially at 30 cm distance from one another. In the space between the two rings, a uniform field is created. The material of the rings containing coils is wooden and no metal was used in the mentioned distance, with a wooden tripod embedded on a sheet of foam. To produce a uniform field throughout this complex no metal parts were used. In this study the induced current was 50 Hz at an intensity of 100 μT [61].

2.5 Behavioral tests

Elevated plus-maze (EPM). This tool is made of wood and has four arms arranged in the shape of a plus sign. Two of the arms have no side or end walls (open arms; 50×10 cm). The other two arms have side walls and end walls, but are open on the top (closed arms; 50×10×40 cm). To prevent rats from falling, a 1 cm height glass beam was installed on both sides and at the end of the open arms. The four arms lead to a central area of 10×10 cm. The maze is supported by stands at a height of 50 cm. The rats were placed within the central area of the maze facing an open arm. Suitable light is provided with a 100-watt bulb located at a height of 120 cm from the center of the maze. While doing the test, every rat was positioned in the central part so that it could move freely in different parts of the maze for 5 minutes. The following parameters were measured by observation: 1. The number of entries to the open arms. 2. The number of entries to the closed arms. 3. The total time spent in the open arms. 4. The total

Days	Light/darkness	Multiple Stress procedures timing
Sunday	Lights on overnight	Strobe light on 10.00
		Room light off
		Untilt cages
		Strobe light off 16.00
		Room lights on
		Soil bedding
		Start food and water deprivation
Saturday	Lights on overnight	Dry cage 11.00
		Add water bottle
		Food ad libitum 12.00
		Remove water bottle
		White noise on
		White noise off 15.00
Monday	Lights off overnight	Empty water bottle 10.00
		Add water bottle 11.00
		Strobe lights on 17.00
Tuesday	Lights off overnight	Strobe lights off 10.30
		Remove food
		Tilt cages
		White noise on 15.30
		Paired housing
		Untilt cages
		White noise off 23.30
Wednesday	Lights off overnight	Rehouse singly 10.00
		Restricted food
		Add food ad libitum 12.00
Thursday	Lights on overnight	Start food and water deprivation 19.00
Friday	Lights on overnight	Restore food and water deprivation 14.30

https://doi.org/10.1371/journal.pone.0273206.t001
time spent in the closed arms. 5. The percentages of open arm entries (OAE%). 6. The percentage of time spent in the open arms (open arm time, OAT%). These were calculated for each animal as follows: OAE%: \(\text{(the ratio of entries into open arms to total entries} \times 100 \); OAT%: \(\text{(the ratio of times spent in the open arms to total times spent in any arms} \times 100 \). OAE% and OAT% are defined as anxiety indices [62].

2.6 Open Field Tests (OFT)

This test was performed using a wooden compartment measuring 100 x 100 cm with a height of 30 cm. The inside of the chamber is divided into 25 equal square of 20 × 20 cm; The rat was then placed in the central square and the behavior was monitored for 5 minutes [63] as follows: 1. The number of times standing or leaning on the wall (one or two paws in contact with the wall). 2. The number of times rearing (standing on two hind paws without touching the walls). 3. The number of grooming behaviors (face cleaning, paw licking, fur licking, head scraping,
and rubbing). 4. The number of defecations. 5. The number of center square entries (frequency with which the rat entered the center region with all four paws). At the end of each test, the box was cleaned with 70% alcohol and water to remove anything that could distract rat behavior in subsequent tests. All these experiments were recorded with a camera connected to the recording and analysis system. The system and the experimental instruments were located in an independent room to avoid the interference of artificial factors. For all behavioral tests, rats were brought to the testing room more than half an hour before the test.

2.7 Sampling

After the behavioral tests, rats were anesthetized with an intraperitoneal injection of ketamine hydrochloride and xylazine (60 and 12 mg / kg, respectively) [38]. The skulls of the rats were dissected using a guillotine, then the hippocampus were isolated and frozen at -80˚C. All sampling was performed at 9:00 a.m. The right hemispheres were used for western blotting and the left hemisphere for ELISA.

2.8 Measurements of serotonin and 24(s) hydroxyl cholesterol

Serotonin, 24(s) hydroxyl cholesterol and corticosterone concentrations was determined in the hippocampal of all groups (n = 6) using the rat serotonin, 24(s)- hydroxyl cholesterol and corticosterone enzyme-linked immuno-specific assay (ELISA) kit (Elabscience, E-EL-003396, USA) (abcam, ab204530, USA)(abcam, KGE009, USA) respectively, following the manufacturer’s instructions. The absorbance of each well was measured at a wavelength of 450 nm using a 96-well microplate spectrophotometer (Awareness /stat Fax 4200). This assay can detect rat serotonin and 24(s)- hydroxyl cholesterol and corticosterone in the ranges of 15.63–1000 ng/mL and 0.39–100 ng/ml and 0.46–100 ng/mL respectively.

2.9 Western blot

The hippocampi were gently homogenized using a teflon homogenizer (Thomas) in 7 volumes of cold suspension buffer (20 mM HEPES-KOH (pH7.5), 250 mM sucrose,10 mM KCl, 1.5 mM MgCl2, 1Mm EDTA, 1 mM EGTA, 1 mM DTT, 0.1 mM PMSF, 2 mg/ml aprotinin, 10 mg/ml leupeptin, 5 mg/ml pepstatin, and 12.5 mg/ml of N-acetyl-Leu-Leu-Norleu-Al). Protein concentrations were determined with the BCA protein assay reagent (Pierce). Proteins (10 μg) were separated by SDS–PAGE (10% gel), followed by transfer to a polyvinylidene difluoride membrane (Millipore) and were blocked with 3% BSA in phosphate-buffered saline (PBS) for 1 h. The membrane was incubated overnight at 4˚C with anti-STAR (sc-166821, 1:500), Anti-cryp (sc-293263, 1:200), Anti-3β-HSD (sc-515120, 1: 500), Anti- NMDA (ab14596, 1:500), Anti-PNMDA (ab16646, 1:250). The appropriate secondary antibodies were used to detect the anti-body antigen complex on membrane. GAPDH (Sigma) was applied as a gel loading control at a 1:500 dilutions. The obtained images were analyzed by image J then the density of each target protein band normalized to GAPDH corresponding band. The blots were developed with chemiluminescence detection system (Pierce ECL, Thermo Fisher Scientific). For developing, HyBlot CL (Denville Scientific, Metuchen, NJ) and Amersham Biosciences Hyperfilm were used to detect multiple proteins, membranes were stripped and then reprobed. Quantification of immunoblots was done using the UN-SCAN-IT software (Silk Scientific Inc., Orem, UT).

2.10 Statistical analysis

Normality of the data distribution was checked and confirmed using the Shapiro-Wilk test. All data are presented as mean ± SEM. The data was analyzed using SPSS 25 using two-way
analysis of variance (ANOVA) with chronic stress and EMF as main fixed factors, followed by Tukey’s post-hoc test. \(P < 0.05 \) was considered significant.

3. Results

3.1 The effect of EMF and prenatal stress on Corticosterone levels

Corticosterone did not show any statistically considerable change between EMF group (18.82 ±2.45) and control (34.53±2.16), (\(P = 0.136, \) \(F = 12.21 \)). Corticosterone in stress group (60.7 ±8.99) significantly increased compared to control (34.53±2.16), (\(p < 0.001 \)). EMF exposure decreased corticosterone level in EMF/S group (35.88±2.55) compared to Stress group (\(P < 0.01 \)). Also, EMF/S showed significant increase in comparison with EMF (\(P < 0.01 \)) (Fig 2A).

3.2 The effect of EMF and prenatal stress on 24(S)-OHC levels

As presented in Fig 2B, EMF exposure, increased the 24(S)-OHC of EMF group (1.34±0.08) compared to control (1.06±0.05), (\(p < 0.05 \)), (\(p = 0.0352, \) \(F = 37.6 \)). 24(S)-OHC significantly decreased in Stress group (0.38±0.03) compared to control (\(p < 0.001 \)). Also EMF/S group (1.21±0.08) showed increased 24(S)-OHC compared Stress group (\(p < 0.001 \)). There was not any significant difference between EMF/S (1.21±0.08) and EMF (1.34±0.08) (\(P = 0.5377, \) \(F = 37.6 \)) and also there was not any significant difference between EMF/S (1.21±0.08) and control (1.06±0.05), (\(P = 0.4322, \) \(F = 37.6 \)) (Fig 2B).

3.3 The effect of EMF and prenatal stress on Serotonin content

Serotonin was significantly decreased in stress (10.53±1.89) compared to control (72.49 ±11.44), (\(p < 0.001, \) \(P = 0.0006, \) \(F = 12.57 \)) but no change was observed in EMF (75.77±15.49) compared to control (\(P = 0.9950, \) \(F = 12.57 \)). It EMF/S (19.41±1.19), did not show any difference with Stress group (\(P = 0.91, \) \(F = 12.57 \)). Also EMF/S showed significant decrease compared to EMF (\(p < 0.001, \) \(P = 0.0017, \) \(F = 12.57 \)) (Fig 2C).

3.4 The effect of EMF and prenatal stress on cryptochrome levels

The amount of cryptochrome 2 did not show any statistically difference among groups. (\(F = 2.514 \)) (Ctrl vs EMF, \(P = 0.3814 \)), (Ctrl vs S, \(P = 0.7891 \)), (Ctrl vs EMF-S \(P = 0.8655 \)), (EMF vs S, \(P = 0.1111 \)), (EMF vs EMF-S, \(P = 0.7888 \)), (S vs EMF-S, \(P = 0.381 \)) (Fig 3B).
3.5 The effect of EMF and prenatal stress on PNMDAr2/NMDAr2

PNMDAr2/NMDAr2 increased in EMF group (1.48±0.08) significantly increased compared to control (0.98±0.02), (P<0.05, P = 0.0342, F = 5.355). The other groups did not change significantly compared to control. There was significant difference between EMF/S (0.85±0.16) and EMF (1.488±0.08327), (F = 5.355, P<0.01, P = 0.0065) (Fig 3C).

3.6 The effect of EMF and prenatal stress on STAR levels

STAR in EMF group (1.22±0.01) increased compared to control (0.99±0.02), (P<0.05, P = 0.0352, F = 32.79) and decreased meaningfully in Stress group 0.67±0.02) compared to control (p<0.01, P = 0.0076, F = 32.79). EMF/S (0.64±0.08) group did not show any statistically difference compared with Stress, (P = 0.96, F = 32.79). Also EMF/S showed significant decrease compared to EMF (p<0.001, P = 0.0001) (Fig 4B).

3.7 The effect of EMF and prenatal stress on 3B-HSD

3B-HSD in stress group (0.48±0.12) decreased significantly compared to control (1.01±0.02), (P<0.05, P = 0.0266, F = 11.19), moreover, 3B-HSD of EMF group (1.15±0.12) did not change.

Fig 3. Effect of EMF on cryptochrome 2(cry2) and N-Methyl-D-Aspartate receptor 2(NMDAr2) / phosphorylated N-Methyl-D-Aspartate receptor2 (PNMDAr2) after prenatal stress. A representative immunoblotting image of cry2, NMDAr2, PNMDAr2 and GAPDH in different groups (A). Graphs show the protein expression of cry2 (B) and NMDAr2/ PNMDAr2 (C). Data are shown as mean ± SEM (n = 6 per group). Two-way ANOVA, followed by Tukey's posthoc test: *p < 0.05 versus control group; ANOVA, analysis of variance; Ctrl, Control; EMF, Electromagnetic Field; S, Stress.

https://doi.org/10.1371/journal.pone.0273206.g003

Fig 4. Effect of EMF exposure on steroidogenic acute regulatory protein (STAR) and 3B-Hydroxy steroid dehydrogenase (3B-HSD) expression after prenatal stress. A. representative immunoblotting image of STAR, 3B-HSD and GAPDH in different groups. Graphs show the quantified protein bands of (B) STAR and(C) 3B-HSD normalized to GAPDH and were presented as fold of control. Data are shown as mean ± SEM (n = 6 per group). Two-way ANOVA, followed by Tukey’s posthoc test: *p < 0.05, **p < 0.01 versus control group; ## P<0.01, ### P<0.001 versus EMF; ANOVA, analysis of variance; Ctrl, Control; EMF, Electromagnetic Field; S, Stress.

https://doi.org/10.1371/journal.pone.0273206.g004
significantly in comparison with control, (P = 0.74, F = 11.19). EMF/Stress group (0.52 ± 0.09) did not exhibit any significant difference with stress group, (P = 0.99, F = 11.19). Also EMF/S showed significant decrease compared to EMF (p < 0.01, P = 0.0098, F = 11.19) (Fig 4C).

3.8 The effect of EMF and prenatal stress on anxiety-like behavior (Elevated plus maze test)

Percentage of time spent in open arms, in EMF (26.33 ± 0.88) and Stress (27.83 ± 1.1) groups decreased compared to control (P<0.001) and in EMF/S group (21.50 ± 0.99) decreased compared to stress group (P<0.05, P = 0.032, F = 12.08). Also EMF/S showed significant decrease compared to EMF (p<0.01, P = 0.0098, F = 11.19) (Fig 5A).

Percentage of entrance in open arms of elevated plus maze, in EMF (30.67 ± 1.11 P = 0.0006) and Stress (32 ± 1.06, P = 0.0005) group significantly decreased compared to control (42.67± 1.02), (P<0.001) and in EMF/S group (24.5 ± 2.23) statistically decreased compared to stress group (P<0.01, P = 0.0076, F = 13.52). Also EMF/S showed significant decrease compared to EMF (p<0.05, P = 0.036) (Fig 5B).

3.9 The effect of EMF and prenatal stress on anxiety-like behavior (Open field test)

Center square entries decreased in EMF (5.8±0.94, P = 0.29, F = 14.53) compared to control (11.3±1.2) and also Stress (4.6±0.98) group showed significant decrease compared to control (P <0.01, P = 0.008). Leaning in stress (17.6±3.4, P = 0.0007) and EMF/S (23.3±1.2, P = 0.0009) groups was higher than EMF group (7.8±1.2) (Fig 6).

4. Discussion

In the present study, we studied the effect of prenatal stress along with ELF-EMF on anxiety-like behavior in female offspring to assess possible alteration in neurosteroids formation and metabolism, cryptochrome2 expression as a marker of circadian rhythm, glutamate receptor activation, and serotonin production in the hippocampus. We observed that although anxiety-like behavior, increased in all treatment groups, the EMF/S group showed more anxiety.
Fig 6. Effect of EMF on Center square entries (A), Leaning (B), Rearing (C), Grooming (D), Defecation (E), after prenatal stress. Data are shown as mean ± SEM (n = 6 per group). Two-way ANOVA, followed by Tukey’s posthoc test: *p < 0.05, **p < 0.01, ***p<0.001, ANOVA, analysis of variance; Ctrl, Control; EMF, Electromagnetic Field; Stress, Prenatal stress.

https://doi.org/10.1371/journal.pone.0273206.g006
compared to both the ELF-EMF and Stress groups. For the first time, the present research found that prenatal stress combined with ELF-EMF brought more serious anxiety-like behaviors than prenatal stress alone or ELF-EMF alone in female rats. Furthermore, we found elevated corticosterone levels in the Stress group, which can be one cause of the anxiety-like behavior observed in this group. In addition, we observed a considerable serotonin decrease in the Stress group. It has been found that induction of stress during gestation causes changes in the central serotoninergic nervous system of offspring [64] and that prenatal maternal stress in mice results in a decrease in serotonin levels in offspring [65]. On the other hand, there are studies demonstrating that a decrease of serotonin levels in the hippocampus causes anxiety behavior in rats [66,67]. Hence, the anxiety-like behavior observed in the Stress group may be in relation to a decrease in hippocampal serotonin.

Conversely, elevated PNMDA r2/NMDA r2 (a criterion of NMDA receptor activation) and 24 (S)-hydroxy cholesterol levels in the ELF-EMF group indicated that anxiety-like behavior in this group could be attributed to these changes since studies have shown that activation of NMDA receptors (increase of PNMDAr/NMDAr) in the hippocampus leads to anxiety-like behavior in rodents [36,68] and 24- (S) hydroxycholesterol is a positive allosteric modulator of NMDA receptors which may result in anxiety-like behavior [69,70].

It should be noted that the hippocampus, amygdala, and medial prefrontal cortex are anatomically and physiologically connected with projections to each other and cooperate together to initiate a relatively wide range of behaviors including anxiety behavior [71]. For example, CA1 forms the main output of the hippocampus [72] and projects to the medial prefrontal cortex and the amygdala [73,74], and in practice, CA1–prefrontal cortex inputs activate in anxiety-related behaviors [75] and activation of ventral CA1—basolateral amygdala synapses considerably increases anxiety-related behaviors [76,77]. It has been shown that corticosterone secretion following stress increases the excitability and firing of CA1 hippocampal pyramidal cells [78–80] which may be result in activation of ventral CA1—basolateral amygdala and CA1–prefrontal cortex circuitry and subsequently may thus initiate anxiety-like behavior, which could be an explanation for anxiety behavior seen in the Stress group of our study with noting to the increase of corticosterone in the stress group. Also, it has been found that NMDA receptors play a key role in generation of action potentials in CA1 [81], in a way that increases the activity of NMDA receptors (PNMDAr/NMDAr) which elevates the firing of CA1 cells that may stimulate ventral CA1—basolateral amygdala and CA1–prefrontal cortex circuitry. This may be a proximate cause of anxiety-like behavior observed in the EMF group in our study, considering increase in the PNMDAr/NMDAr ratio in the ELF-EMF group.

Cry2 is crucial for normal emotional behavior and is directly associated with anxiety-like behavior [82] and as mentioned earlier, mice with higher anxiety behavior exhibit lower expression levels of Cry2 in the hippocampus in comparison with normal mice [50]. Moreover, it has been found that ELF-EMF (50–60 Hz) can disturb circadian biorhythms by perturbation of the clock function of cryptochromes [83]; however, we did not find any significant Cry 2 alteration in any of the treatment groups. It seems that further study is indicated to clarify the relationship between Cry2 and ELF-EMF exposure on one hand and between Cry2 and prenatal stress on the other.

In the present study, we assayed STAR and 3β-HSD enzymes to find the origin of possible changes in corticosterone levels. STAR is a key enzyme in the synthesis of corticosterone [45] and can affect production of corticosterone. In our study, we did not observe a direct relationship between the levels of STAR and corticosterone in the Stress and EMF groups. However, 3β-HSD, another crucial enzyme in synthesis of corticosterone, decreased significantly in the
stress group compared with the control group, but, we did not observe a logical association between 3β-HSD enzymes and corticosterone levels in the Stress group.

5. Conclusion

It may be concluded that involvement of ELF-EMF and prenatal stress in potential induction of anxiety-like behavior via the hippocampus may be different such that ELF-EMF may initiate anxiety-like behavior by increasing 25(S)-OHC and PNMDAr2/NMDAr2 in the hippocampus while prenatal stress probably increases anxiety-like behavior by elevating corticosterone and decreasing serotonin (Fig 7).

Fig 7. Summary of how ELF-EMF and prenatal stress could be able to induce anxiety-like behavior in offspring by modification of neurotransronds metabolism, serotonin and N-Methyl-D-Aspartate receptor 2(NMDAr2) in hippocampus. ↑ indicating increasing effect, ↓ indication decreasing effect.

https://doi.org/10.1371/journal.pone.0273206.g007
Study limitations
There were some limitations in present study which could help clarify the findings, including lack of electrophysiological studies to find the effects of changes of the studied factors on hippocampal-amygdala-prefrontal cortex synapses and circuitry and lack of assessment of changes of factors such as corticosterone and NMDA receptors and so on in other regions involved in anxiety behavior such as the amygdala.

Ethics approval and consent to participate
This project was approved by the Tabriz University of Medical Sciences Board. All procedures were performed in strict accordance with the international guidelines for care of experimental animals.

Supporting information
S1 Dataset.
(DOCX)

S1 Raw images.
(PDF)

Acknowledgments
We would like to thank to Dr. Pouran Karimi for her inspiration and perfect technical help.

Author Contributions
Conceptualization: Ehsan Hosseini, Shirin Babri, Gisou Mohaddes.

Data curation: Hajar abkhezr.

Investigation: Ehsan Hosseini, Mahsa Farid Habibi, Shirin Babri, Hajar abkhezr.

Methodology: Ehsan Hosseini, Gisou Mohaddes.

Resources: Mahsa Farid Habibi, Hamed Heydari.

Software: Hajar abkhezr, Hamed Heydari.

Supervision: Ehsan Hosseini, Shirin Babri.

Visualization: Mahsa Farid Habibi, Hajar abkhezr, Hamed Heydari.

Writing – original draft: Ehsan Hosseini.

References
1. Martínez-Sámano J., et al., Extremely low frequency electromagnetic field exposure and restraint stress induce changes on the brain lipid profile of Wistar rats. BMC Neurosci, 2018. 19(1): p. 31. https://doi.org/10.1186/s12868-018-0432-1 PMID: 29783956

2. Sofiabadi M., Esmaeili M.H., and Yousefi F., Comparison of the effect of receiving three different stresses during pregnancy on anxiety in male rats. Journal of Knowledge and Health in Basic Medical Sciences, 2020. 15(4): p. 37–42.

3. Nazeri M., et al., Psychological or physical prenatal stress differentially affects cognition behaviors. Physiology & Behavior, 2015. 142: p. 155–160. https://doi.org/10.1016/j.physbeh.2015.02.016 PMID: 25668515

4. Vallié M., et al., Long-term effects of prenatal stress and postnatal handling on age-related glucocorticoid secretion and cognitive performance: a longitudinal study in the rat. European Journal of Neuroscience, 1999. 11(8): p. 2906–2916. https://doi.org/10.1046/j.1460-9568.1999.00705.x PMID: 10457187
5. Holubová A., et al., The effect of neonatal maternal stress on plasma levels of adrenocorticotropic hormone, corticosterone, leptin, and ghrelin in adult male rats exposed to acute heterotypic stressor. Physiological research, 2016. 65.
6. Holubová-Kroupová A. and Šlamberová R., Perinatal Stress and Methamphetamine Exposure Decreases Anxiety-Like Behavior in Adult Male Rats. Frontiers in behavioral neuroscience, 2021. 15: p. 648780–648780. https://doi.org/10.3389/fnbeh.2021.648780 PMID: 39994969
7. Samochowiec J. and Florack A., Intercultural contact under uncertainty: The impact of predictability and anxiety on the willingness to interact with a member from an unknown cultural group. International Journal of Intercultural Relations, 2010. 34(5): p. 507–515.
8. Blanco C., et al., The evidence-based pharmacological treatment of social anxiety disorder. International Journal of Neuropsychopharmacology, 2003. 6(4): p. 427–442. https://doi.org/10.1017/S1461145703003791 PMID: 14609440
9. Spritzer M.D., et al., Testosterone influences spatial strategy preferences among adult male rats. Hormones and behavior, 2013. 65(5): p. 800–812. https://doi.org/10.1016/j.Yhbeh.2013.03.018 PMID: 23597827
10. Smarr B.L., et al., Sex differences in variability across timescales in BALB/c mice. Biology of sex differences, 2017. 8(1): p. 1–7. https://doi.org/10.1186/s13293-016-0125-3 PMID: 28203366
11. Maghami S., et al., Maternal separation blunted spatial memory formation independent of peripheral and hippocampal insulin content in young adult male rats. PloS one, 2018. 13(10): p. e0204731. https://doi.org/10.1371/journal.pone.0204731 PMID: 30332425
12. Kuehner C., Why is depression more common among women than among men? The Lancet Psychiatry, 2017. 4(2): p. 146–158. https://doi.org/10.1016/S2215-0366(16)30263-2 PMID: 27856392
13. Li S.H. and Graham B.M., Why are women so vulnerable to anxiety, trauma-related and stress-related disorders? The potential role of sex hormones. The Lancet Psychiatry, 2017. 4(1): p. 73–82. https://doi.org/10.1016/S2215-0366(16)30358-3 PMID: 27856395
14. Weinstock M., The potential influence of maternal stress hormones on development and mental health of the offspring. Brain, behavior, and immunity, 2005. 19(4): p. 296–308. https://doi.org/10.1016/j.bbi.2004.09.006 PMID: 15944068
15. Poole C., Invited commentary: evolution of epidemiologic evidence on magnetic fields and childhood cancers. American journal of epidemiology, 1996. 143(2): p. 129–132. https://doi.org/10.1093/oxfordjournals.aje.a008719 PMID: 8546113
16. Singh S. and Kapoor N., Health implications of electromagnetic fields, mechanisms of action, and research needs. Advances in biology, 2014. 2014.
17. Hosseini E., Brain-to-brain communication: the possible role of brain electromagnetic fields (As a Potential Hypothesis). Heliyon, 2021. 7(3): p. e06363–e06363. https://doi.org/10.1016/j.heliyon.2021.e06363 PMID: 33732922
18. Moriyama K. and Yoshitomi K., Apartment electrical wiring: a cause of extremely low frequency magnetic field exposure in residential areas. Bioelectromagnetics, 2005. 26(3): p. 238–41. https://doi.org/10.1002/bem.20099 PMID: 15768426
19. Mezei G., et al., Household appliance use and residential exposure to 60-hz magnetic fields. J Expo Anal Environ Epidemiol, 2001. 11(1): p. 41–9. https://doi.org/10.1038/sj.jea.7500145 PMID: 11246800
20. Martinez-Samano J., et al., Extremely low frequency electromagnetic field exposure and restraint stress induce changes on the brain lipid profile of Wistar rats. BMC neuroscience, 2018. 19(1): p. 31. https://doi.org/10.1186/s12868-018-0432-1 PMID: 29783956
21. Lahijani M.S., Tehrani D.M., and SABOURI E., Histopathological and ultrastructural studies on the effects of electromagnetic fields on the liver of preincubated white Leghorn chicken embryo. Electromagnetic biology and medicine, 2009. 28(4): p. 391–413. https://doi.org/10.3109/15368370903287689 PMID: 20017630
22. Fernie K.J. and Bird D.M., Evidence of oxidative stress in American kestrels exposed to electromagnetic fields. Environmental research, 2001. 86(2): p. 198–207. https://doi.org/10.1006/ensr.2001.4263 PMID: 11437466
23. Lai J., et al., Effects of extremely low frequency electromagnetic fields (100 μT) on behaviors in rats. Neurotoxicology, 2016. 52: p. 104–113. https://doi.org/10.1016/j.neuro.2015.11.010 PMID: 26593281
24. Burman O., et al., The effect of exposure to low frequency electromagnetic fields (EMF) as an integral part of the housing system on anxiety-related behaviour, cognition and welfare in two strains of laboratory mouse. PloS one, 2018. 13(5): p. e0197054. https://doi.org/10.1371/journal.pone.0197054 PMID: 29771983
25. Djordjevic N.Z., Paunovic M.G., and Peulic A.S., Anxiety-like behavioural effects of extremely low-frequency electromagnetic field in rats. Environmental Science and Pollution Research, 2017. 24(7): p. 21693–21699. https://doi.org/10.1007/s11356-017-9710-1 PMID: 28756602

26. Karimi S.A., et al., Effects of exposure to extremely low-frequency electromagnetic fields on spatial and passive avoidance learning and memory, anxiety-like behavior and oxidative stress in male rats. Behavioural brain research, 2019. 359: p. 630–638. https://doi.org/10.1016/j.bbr.2018.10.002 PMID: 30290199

27. Szemerszky R., et al., Stress-related endocrinological and psychopathological effects of short- and long-term 50Hz electromagnetic field exposure in rats. Brain Research Bulletin, 2010. 81(1): p. 92–99. https://doi.org/10.1016/j.brainresbull.2009.10.015 PMID: 19883742

28. Hosseinabadi M.B., et al., Investigating the effects of exposure to extremely low frequency electromagnetic fields on job burnout syndrome and the severity of depression; the role of oxidative stress. Journal of occupational health, 2020. 62(1): p. e12136. https://doi.org/10.1002/1348-9585.12136 PMID: 32710586

29. Singh S. and Kapoor N., Health Implications of Electromagnetic Fields, Mechanisms of Action, and Research Needs. Advances in Biology, 2014. 2014: p. 198609.

30. SHAHIDI M., et al., INVESTIGATION OF THE EFFECT OF ELECTROMAGNETIC FIELDS WITH LOW FREQUENCY ON ANXIETY IN MALE MICE. RAZI JOURNAL OF MEDICAL SCIENCES (JOURNAL OF IRAN UNIVERSITY OF MEDICAL SCIENCES), 2016. 23(145): p. -.

31. Engin E. and Treit D., The role of hippocampus in anxiety: intracerebral infusion studies. Behavioural pharmacology, 2007. 18(5–6): p. 365–374. https://doi.org/10.1097/FBP.0b013e3282de7929 PMID: 17762507

32. Day J.C., et al., Prenatal stress enhances stress-and corticotropin-releasing factor-induced stimulation of hippocampal acetylcholine release in adult rats. Journal of Neuroscience, 1998. 18(5): p. 1886–1892. https://doi.org/10.1523/JNEUROSCI.18-05-01886.1998 PMID: 9465013

33. Szurán T.F., et al., Prenatal stress in rats: effects on plasma corticosterone, hippocampal glucocorticoid receptors, and maze performance. Physiology & behavior, 2000. 71(3–4): p. 353–362.

34. Van den Hove D., et al., Prenatal stress in the rat alters 5-HT1A receptor binding in the ventral hippocampus. Brain research, 2006. 1090(1): p. 29–34. https://doi.org/10.1016/j.brainres.2006.03.057 PMID: 16677618

35. Son G.H., et al., Maternal stress produces learning deficits associated with impairment of NMDA receptor-mediated synaptic plasticity. Journal of Neuroscience, 2006. 26(12): p. 3309–3318. https://doi.org/10.1523/JNEUROSCI.3850-05.2006 PMID: 16654481

36. Barkus C., et al., Hippocampal NMDA receptors and anxiety: at the interface between cognition and emotion. European journal of pharmacology, 2010. 626(1): p. 49–56. https://doi.org/10.1016/j.ejphar.2009.10.014 PMID: 19836379

37. Rezvanfar M., Zarrindast M.-R., and Bina P., Role of ventral hippocampal GABAA and NMDA receptors in the anxiolytic effect of carbamazepine in rats using the elevated plus maze test. Pharmacology, 2009. 84(6): p. 356–366. https://doi.org/10.1159/000256666 PMID: 19907194

38. Björkhem I., Crossing the barrier: oxysterols as cholesterol transporters and metabolic modulators in the brain. Journal of internal medicine, 2006. 260(6): p. 493–508. https://doi.org/10.1111/j.1365-2796.2006.01725.x PMID: 17161600

39. Tuem K.B. and Atey T.M., Neuroactive steroids: receptor interactions and responses. Frontiers in Neurology, 2017. 8: p. 442. https://doi.org/10.3389/fneur.2017.00442 PMID: 28894435

40. Lund E.G., et al., Knockout of the cholesterol 24-hydroxylase gene in mice reveals a brain-specific mechanism of cholesterol turnover. Journal of Biological Chemistry, 2003. 278(25): p. 22980–22988. https://doi.org/10.1074/jbc.M303415200 PMID: 12686551

41. Paul S.M., et al., The major brain cholesterol metabolite 24 (S)-hydroxycholesterol is a potent allosteric modulator of N-methyl-D-aspartate receptors. Journal of Neuroscience, 2013. 33(44): p. 17290–17300. https://doi.org/10.1523/JNEUROSCI.2619-13.2013 PMID: 24174662

42. Sun M.-Y., et al., Endogenous 24 S-hydroxycholesterol modulates NMDAR-mediated function in hippocampal slices. Journal of neurophysiology, 2016. 115(3): p. 1263–1272. https://doi.org/10.1152/jn.00890.2015 PMID: 26745248

43. Macri, S., R. Canese, and G. Laviola, Prenatal Stress and Peripuberal Stimulation of the Endocannabinoid System Differentially Regulate Emotional. 2012.

44. Kim E.J., Pellman B., and Kim J.J., Stress effects on the hippocampus: a critical review. Learning & memory, 2015. 22(9): p. 411–416. https://doi.org/10.1101/lm.037291.114 PMID: 26286651

45. Nematiollahi M., et al., High levels of corticosterone, and gene expression of star, cypl7a2, hsd3b, cypl21, hsd11b2 during acute stress in common carp with interrenal hyperplasia. General and
46. Munetsuna E., et al., Social isolation stimulates hippocampal estradiol synthesis. Biochemical and Biophysical Research Communications, 2009. 379(2): p. 480–484. https://doi.org/10.1016/j.bbrc.2008.12.076 PMID: 19114026

47. Guennoun R., et al., A key enzyme in the biosynthesis of neurosteroids, 3β-hydroxysteroid dehydrogenase/Δ5-Δ4-isomerase (3β-HSD), is expressed in rat brain. Molecular Brain Research, 1995. 30(2): p. 287–300. https://doi.org/10.1016/0169-328x(95)00016-i PMID: 7673579

48. De Bundel D., et al., Cognitive dysfunction, elevated anxiety, and reduced cocaine response in circadian clock-deficient cryptochrome knockout mice. Frontiers in behavioral neuroscience, 2013. 7: p. 152. https://doi.org/10.3389/fnbeh.2013.00152 PMID: 24187535

49. Savalli G., et al., Anhedonic behavior in cryptochrome 2-deficient mice is paralleled by altered diurnal patterns of amygdala gene expression. Amino Acids, 2015. 47(7): p. 1367–1377. https://doi.org/10.1007/s00726-015-1968-3 PMID: 25820768

50. Griesauer I., et al., Circadian abnormalities in a mouse model of high trait anxiety and depression. Annals of medicine, 2014. 46(3): p. 148–154. https://doi.org/10.3109/07853890.2013.866440 PMID: 24405329

51. Kagamishy Y., Yamamoto T., and Watanabe S., Hippocampal serotonergic system is involved in anxiety-like behavior induced by corticotropin-releasing factor. Brain research, 2003. 991(1–2): p. 212–221. https://doi.org/10.1016/j.brainsci.2003.08.021 PMID: 14575894

52. Ohmura Y., et al., Different roles of distinct serotonergic pathways in anxiety-like behavior, antidepressant-like, and anti-impulsive effects. Neuropharmacology, 2020. 167: p. 107703. https://doi.org/10.1016/j.neuropharm.2019.107703 PMID: 31299228

53. Said N., et al., Effects of prenatal stress on anxiety-like behavior and nociceptive response in rats. J Integr Neurosci, 2015. 14(2): p. 223–34. https://doi.org/10.1142/S0219635215500107 PMID: 25873270

54. Soares-Cunha C., et al., Mild Prenatal Stress Causes Emotional and Brain Structural Modifications in Rats of Both Sexes. Frontiers in Behavioral Neuroscience, 2018. 12. https://doi.org/10.3389/fnbeh.2018.00129 PMID: 30034328

55. Miyagawa K., et al., Prenatal stress induces anxiety-like behavior together with the disruption of central serotonin neurons in mice. Neuroscience Research, 2011. 70(1): p. 111–117. https://doi.org/10.1016/j.neure.2011.02.002 PMID: 21320553

56. Bagheri Hosseinabadi M., et al., The effect of chronic exposure to extremely low-frequency electromagnetic fields on sleep quality, stress, depression and anxiety. Electromagnetic biology and medicine, 2019. 38(1): p. 96–101. https://doi.org/10.1080/15368378.2018.1545665 PMID: 30547710

57. Faraji N., et al., Comparing the Effects of Long-term Exposure to Extremely Low-frequency Electrical Fields With Different Values on Learning, Memory, Anxiety, and β-amyloid Deposition in Adult Rats. Basic and clinical neuroscience, 2021. 12(6): p. 849–860. https://doi.org/10.32598/bcn.2021.1204.2 PMID: 35693151

58. Katz, R.J., K.A. Roth, and B.J. Carroll, Acute and chronic stress effects on open field activity in the rat: implications for a model of depression. 1981.

59. Lewitus G.M., et al., Vaccination as a novel approach for treating depressive behavior. Biological psychiatry, 2009. 65(4): p. 283–288. https://doi.org/10.1016/j.biopsych.2008.07.014 PMID: 18722594

60. Sanders M.J., Wiltgen B.J., and Fanselow M.S., The place of the hippocampus in fear conditioning. European journal of pharmacology, 2003. 463(1–3): p. 217–223. https://doi.org/10.1016/s0014-2999(03)01283-4 PMID: 12600712

61. Mueller B.R. and Bale T.L., Sex-specific programming of offspring emotionality after stress early in pregnancy. Journal of Neuroscience, 2008. 28(36): p. 9055–9065. https://doi.org/10.1523/JNEUROSCI.1424-08.2008 PMID: 18768700
66. File S.E., et al., Anxiety in the rat is associated with decreased release of 5-HT and glycine from the hippocampus. Neuroscience Letters, 1987. 83(3): p. 318–322. https://doi.org/10.1016/0304-3940(87)90107-8 PMID: 3441314

67. Tu W., et al., Serotonin in the ventral hippocampus modulates anxiety-like behavior during amphetamine withdrawal. Neuroscience, 2014. 281: p. 35–43. https://doi.org/10.1016/j.neuroscience.2014.09.019 PMID: 25241066

68. Grillon C., et al., Anxiolytic effects of a novel group II metabotropic glutamate receptor agonist (LY354740) in the fear-potentiated startle paradigm in humans. Psychopharmacology, 2003. 168(4): p. 446–454. https://doi.org/10.1007/s00213-003-1444-8 PMID: 12709777

69. Paul S.M., et al., The major brain cholesterol metabolite 24(S)-hydroxysterol is a potent allosteric modulator of N-methyl-D-aspartate receptors. The Journal of neuroscience: the official journal of the Society for Neuroscience, 2013. 33(44): p. 17290–17300. https://doi.org/10.1523/JNEUROSCI.2619-13.2013 PMID: 24174662

70. Sun M.Y., et al., Endogenous 24S-hydroxysterol modulates NMDAR-mediated function in hippocampal slices. J Neurophysiol, 2016. 115(3): p. 1263–72. https://doi.org/10.1152/jn.00890.2015 PMID: 26745248

71. Yang Y. and Wang J.-Z., From structure to behavior in basolateral amygdala-hippocampus circuits. Frontiers in neural circuits, 2017. 11: p. 86. https://doi.org/10.3389/fncir.2017.00086 PMID: 29163066

72. Knerim J.J. and Neunuebel J.P., Tracking the flow of hippocampal computation: Pattern separation, pattern completion, and attractor dynamics. Neurobiology of learning and memory, 2016. 129: p. 38–49. https://doi.org/10.1016/j.nlm.2015.10.008 PMID: 26514299

73. Jay T.M. and Witter M.P., Distribution of hippocampal CA1 and subicular efferents in the prefrontal cortex of the rat studied by means of anterograde transport of Phaseolus vulgaris-leucoagglutin in. Journal of Comparative Neurology, 1991. 313(4): p. 574–586. https://doi.org/10.1002/cne.903130404 PMID: 1783682

74. Kishi T., et al., Topographical projection from the hippocampal formation to the amygdala: a combined anterograde and retrograde tracing study in the rat. Journal of Comparative Neurology, 2006. 496(3): p. 349–368. https://doi.org/10.1002/cne.20919 PMID: 16566004

75. Ciocchi S., et al., Selective information routing by ventral hippocampal CA1 projection neurons. Science, 2015. 348(6234): p. 560–563. https://doi.org/10.1126/science.aaa3245 PMID: 25931556

76. Drevets W.C., Neuroimaging abnormalities in the amygdala in mood disorders. Annals of the New York Academy of Sciences, 2003. 985(1): p. 420–444. https://doi.org/10.1111/j.1528-1167.2003.tb07098.x PMID: 12724175

77. Carter C.S. and Krug M.K., The functional neuroanatomy of dread: functional magnetic resonance imaging insights into generalized anxiety disorder and its treatment. 2009, Am Psychiatric Assoc. p. 263–265. https://doi.org/10.1176/appi.ajp.2008.08081833 PMID: 19255044

78. Mueller N.K. and Beck S.G., Corticosteroids Alter the 5-HT1A Receptor-Mediated Response in CA1 Hippocampal Pyramidal Cells. Neuropsychopharmacology, 2000. 23(4): p. 419–427. https://doi.org/10.1016/S0893-133X(00)00134-2 PMID: 10989269

79. Joëls M., Stress, the hippocampus, and epilepsy. Epilepsia, 2009. 50(4): p. 586–597. https://doi.org/10.1111/j.1528-1167.2008.01902.x PMID: 19054412

80. Maggio N. and Segal M., Differential Corticosteroid Modulation of Inhibitory Synaptic Currents in the Dorsal and Ventral Hippocampus. The Journal of Neuroscience, 2009. 29(9): p. 2857. https://doi.org/10.1523/JNEUROSCI.4399-08.2009 PMID: 19261881

81. Zhao M., Adams J.P., and Dudek S.M., Pattern-dependent role of NMDA receptors in action potential generation: consequences on extracellular signal-regulated kinase activation. The Journal of neuroscience: the official journal of the Society for Neuroscience, 2005. 25(30): p. 7032–7039. https://doi.org/10.1523/JNEUROSCI.1579-05.2005 PMID: 16049179

82. Sokolowska E., et al., The circadian gene Cryptochrome 2 influences stress-induced brain activity and depressive-like behavior in mice. Genes, Brain and Behavior, 2020. p. e12708. https://doi.org/10.1111/gbb.12708 PMID: 33070440

83. Vanderstraeten J., et al., Could magnetic fields affect the circadian clock function of cryptochromes? Testing the basic premise of the cryptochrome hypothesis (ELF magnetic fields). Health physics, 2015. 109(1): p. 84–89. https://doi.org/10.1097/HAP.0000000000000292 PMID: 26011501