Multi-omic profiles of human non-alcoholic fatty liver disease tissue highlight heterogenic phenotypes

Wasco Wruck¹, Karl Kashofer², Samrina Rehman³, Andriani Daskalaki⁴, Daniela Berg⁵, Ewa Gralka⁶, Justyna Jozefczuk⁷, Katharina Drews⁸, Vikash Pandey⁹, Christian Regenbrecht⁴, Christoph Wierling⁴, Paola Turano⁶, Ulrike Korf⁵, Kurt Zatloukal², Hans Lehrach⁴, Hans V. Westerhoff²,⁸,⁹ & James Adjaye¹,⁴

Non-alcoholic fatty liver disease (NAFLD) is a consequence of sedentary lifestyle and high fat diets with an estimated prevalence of about 30% in western countries. It is associated with insulin resistance, obesity, glucose intolerance and drug toxicity. Additionally, polymorphisms within, e.g., APOC3, PNPLA3, NCAN, TM6SF2 and PPP1R3B, correlate with NAFLD. Several studies have already investigated later stages of the disease. This study explores the early steatosis stage of NAFLD with the aim of identifying molecular mechanisms underlying the etiology of NAFLD. We analyzed liver biopsies and serum samples from patients with high- and low-grade steatosis (also pre-disease states) employing transcriptomics, ELISA-based serum protein analyses and metabolomics. Here, we provide a detailed description of the various related datasets produced in the course of this study. These datasets may help other researchers find new clues for the etiology of NAFLD and the mechanisms underlying its progression to more severe disease states.

Design Type(s)	parallel group design ● transcription profiling by array design ● protein expression profiling
Measurement Type(s) | transcription profiling assay ● protein expression profiling ● metabolite profiling
Technology Type(s) | microarray platform ● ELISA ● nuclear magnetic resonance assay
Factor Type(s) | disease stage ● obesity
Sample Characteristic(s) | Homo sapiens ● serum ● liver

¹Medical Faculty, Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University, 40225 Düsseldorf, Germany. ²Institute of Pathology, Medical University of Graz, Graz 8036, Austria. ³The Manchester Centre for Integrative Systems Biology, Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK. ⁴Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Ihnestrasse 63, Berlin 14195, Germany. ⁵Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany. ⁶Magnetic Resonance Center (CERM), University of Florence, 50129 Florence, Italy. ⁷Institute for Pathology & Comprehensive Cancer Center, Cancer Stem Cell Group, Charité—Universitätsmedizin, 10117 Berlin, Germany. ⁸Netherlands Institute for Systems Biology, VU University Amsterdam, HV NL-1081 Amsterdam, The Netherlands. ⁹Synthetic Systems Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1018 WS Amsterdam, The Netherlands. Correspondence and requests for materials should be addressed to J.A. (email: James.Adjaye@med.uni-duesseldorf.de).
Background & Summary

With an estimated prevalence of about 30% in western countries, NAFLD is a major public health issue. Sedentary life-style and excessive food consumption correlate with rate at which NAFLD cases appear. Epidemiologic studies showing a prevalence of the disease that differs between countries as well as between groups in the same country, appear to reflect an interplay of environmental and genetic factors in its etiology. Additionally, polymorphisms in, e.g., APOC3, PNPLA3, NCAN, TM6SF2 and PPP1R3B, correlate with NAFLD. Over-feeding directly induces insulin resistance. Causality between steatosis and the metabolic syndrome of insulin resistance, obesity, and glucose intolerance, is still unresolved. While the correlation between steatosis and insulin resistance is established there is debate about the relationship between steatosis and hepatic insulin resistance. Samuel et al. showed that activated PKC-ε and JNK can induce insulin resistance via impaired IRS1 and IRS2 tyrosine phosphorylation in rats fed with high fat diet. An investigation on the insulin-like growth factor (IGF) axis in the Nurses’ Health Study and another population study of 3863 people addressed connections between the IGF axis, insulin resistance, diabetes risk and NAFLD. IGFBP3 is associated with various cancers and up-regulation of IGF1 receptor (IGF1R) is considered an early event in hepatocarcinogenesis. Thus, the IGF axis might play an important role in a direct development of carcinoma from steatosis without the formerly assumed intermediary phase of cirrhosis.

The progression of NAFLD from mild steatosis up to severe steatohepatitis and even liver cirrhosis and hepatocellular carcinoma, varies widely between individual patients. Insulin resistance, dysregulation of cytokines as a basis for inflammation, and oxidative stress appear to foster progression to steatohepatitis. A two-step progression from simple steatosis to steatohepatitis and fibrosis has been proposed, and suggests that after fat accumulation in the liver due to insulin resistance, lipids are peroxidized with cytokines and Fas ligand induced by excessive ROS. However, this two-step progression has been questioned. We found that in fibroblasts derived from steatosis patients AKT/mTOR signaling was reduced and that the insulin-resistant phenotype is exhibited not only by insulin-metabolizing central organs, e.g., the liver, but also by skin fibroblasts. Transcriptome data identified a regulatory network orchestrated by the transcription factor SREBF1 and linked to a metabolic network of glycerolipid and fatty acid biosynthesis. The downstream transcriptional targets of SREBF1 which include the phosphatidic acid phosphatase LPIN1 and LDLR, were also involved.

Moreover, there is the possible involvement of ROS in disease progression. Houstis et al. demonstrated that oxidative stress can induce insulin resistance and that anti-oxidants may ameliorate insulin resistance. Depletion of glutathione can improve insulin sensitivity in mice. Glutathione is known as the body’s master antioxidant, protecting cells against damage caused by numerous reactive intermediates. Detoxification of these reactive metabolites results in the consumption of glutathione either via oxidation or conjugation. Maintenance of the intracellular glutathione level is thereby a critical liver function, which could be impaired following insult/injury or in steatosis and steatohepatitis.

Several other studies exploring various aspects of NAFLD have been published. A recent publication by Moylan et al. showed that it is possible to discriminate mild versus severe fibrosis stages of NAFLD patients via their gene expression profiles. Another study from Speliotes et al. investigated NAFLD via a genome-wide association study (GWAS) approach. Besides the most prominent association of PNPLA3 this study reported several other associations including one at locus 19p13.11 which is in strong linkage disequilibrium with a recently found steatosis-linked polymorphism in TM6SF2, transmembrane superfamily member 2. A knockdown of TM6SF2 in human hepatoma cell lines and in mice led to an increase in lipid droplet area while overexpression led to a decrease.

Interestingly, the above mentioned genes associated with NAFLD in GWAS were not detected in a large-scale GWAS about obesity and insulin biology although the metabolic syndrome connects NAFLD and obesity. Feldstein et al. found CK-18 as a non-invasive biomarker for NASH by comparison of plasma samples from patients with biopsy proven NAFLD. Du Plessis et al. used analysis results from subcutaneous and visceral fat and liver biopsies to construct a model which predicts NAFLD liver histology. This model involves the genes CCL2, DMRT2, GADD45B, IL1RN, and IL8. In contrast to the studies of Moylan et al. and Feldstein et al. our study highlights potential means of classifying distinct grades of Steatosis in NAFLD—the very early stage of the disease. Although it is evident that a complex interplay of genetic and environmental factors contribute to the development of steatosis, to date there has not been a systemic study of the disease employing a multi-omic approach—transcriptome, ELISA-based proteome and metabolome. Therefore, the intention of this study is to provide a more comprehensive view of steatosis based on transcriptomic, metabolomic and protein biomarker profiles. Additionally, this should lay down the foundation for follow-up systems biology-based studies.

In the current study we analyzed patient liver biopsies and associated serum samples, from patients with the insulin resistance phenotype confirmed by the HOMA-IR model. Here, we describe these valuable data sets deposited in public repositories, which might support other researchers in identifying new clues for the etiology of NAFLD and the mechanisms underlying its progression to more severe disease states.
Table 1. Samples related to data sets in repositories (Data Citations 1–Data Citation 3).

ID	gender	Age	BMI	% steatosis	grouping by pathologist	steatosis grouping	medical centre	liver illumina array rep.1 (GSE46300)	liver illumina array rep.2 (GSE46300)	serum NMR data	serum ELISA data
H0004	f	54	47	10%	obese, low steatosis	Graz (Austria)	GSM1128362	GSM1128363	MTBLS174	10.6084/m9.gSHARE.1333564	
H0007	f	33	51	40%	obese, high steatosis	Graz (Austria)	GSM1128364	GSM1128365	MTBLS174	10.6084/m9.gSHARE.1333564	
H0008	m	61	46	40%	obese, high steatosis	Graz (Austria)	GSM1128366	GSM1128367	MTBLS174	10.6084/m9.gSHARE.1333564	
H0009	f	48	49	5–10%	obese, low steatosis	Graz (Austria)	GSM1128368	GSM1128369	MTBLS174	10.6084/m9.gSHARE.1333564	
H0011	f	58	45	70%	obese, high steatosis	Graz (Austria)	GSM1128370	GSM1128371	MTBLS174	10.6084/m9.gSHARE.1333564	
H0012	f	50	35	0	obese, low steatosis	Graz (Austria)	GSM1128372	GSM1128373	no	no	
H0018	f	35	41	30–40%	obese, high steatosis	Graz (Austria)	GSM1128374	GSM1128375	MTBLS174	10.6084/m9.gSHARE.1333564	
H0021	m	49	41	0%	no steatosis	Graz (Austria)	GSM1128376	GSM1128377	MTBLS174	10.6084/m9.gSHARE.1333564	
H0022	m	45	49	40%	obese, high steatosis	Graz (Austria)	GSM1128378	GSM1128379	MTBLS174	10.6084/m9.gSHARE.1333564	
H0024	m	29	44	50%	obese, high steatosis	Graz (Austria)	no	no	MTBLS174	10.6084/m9.gSHARE.1333564	
H0025	f	53	46	15–20%	obese, low steatosis	St Gallen (Switzerland)	no	no	MTBLS174	10.6084/m9.gSHARE.1333564	
H0026	f	46	39	0%	no steatosis	St Gallen (Switzerland)	no	no	MTBLS174	10.6084/m9.gSHARE.1333564	
H0027	m	44	42	50%	obese, high steatosis	St Gallen (Switzerland)	no	no	MTBLS174	10.6084/m9.gSHARE.1333564	
H0028	f	28	43	20%	obese, low steatosis	St Gallen (Switzerland)	no	no	MTBLS174	10.6084/m9.gSHARE.1333564	
H0029	f	40	39	< 5%	no steatosis	St Gallen (Switzerland)	no	no	MTBLS174	10.6084/m9.gSHARE.1333564	
H0030	m	22	45	30%	obese, low steatosis	St Gallen (Switzerland)	no	no	MTBLS174	10.6084/m9.gSHARE.1333564	
H0031	m	22	41	0%	no steatosis	St Gallen (Switzerland)	no	no	MTBLS174	10.6084/m9.gSHARE.1333564	
H0033	f	44	43	40%	obese, high steatosis	St Gallen (Switzerland)	no	no	MTBLS174	10.6084/m9.gSHARE.1333564	
H0034	m	50	42	10%	obese, low steatosis	St Gallen (Switzerland)	no	no	MTBLS174	10.6084/m9.gSHARE.1333564	

Methods

Patient recruitment, sample collection and clinical measurements

All patients participating in this study were recruited in the Multidisciplinary Obesity Research (MORE) project at the Medical University of Graz, Austria or at the Interdisciplinary Adipositas Center at the Kantonsspital St Gallen, Switzerland. Patients with morbid obesity who admitted into hospital for treatment by bariatric surgery (gastric banding, gastric bypass, sleeve gastrectomy) were invited to participate in the study and to sign the informed consent. The study was approved by the institutional review board of the Medical University of Graz (reg. IRB000002556 at the Office for Human Research Protections of the US Departments of Health and Human Services) under license 20–143 ex 08/09. All experiments were performed in accordance with approved guidelines. Written informed consent was obtained from all participants. In the course of the bariatric surgery, samples of blood, skin and a liver biopsy were taken. Out of 18 patients (Table 1), 9 liver biopsies were of high quality enabling their use in the transcriptome analyses. Serum plasma was available from all the patients. The overall experimental design of this study is illustrated in Fig. 1. A pathological diagnosis of the liver phenotype, including liver steatosis grading based on H&E morphology, was performed by an experienced, board certified pathologist (CL). We simplified Kleiner’s scoring scheme by condensing Steatosis grades 2 (34–66%) to our ‘high-grade’ while adopting grades 0 (‘none’) and 1 (‘low’) to our ‘low-grade’ while adopting grades 0 (‘none’) and 1 (‘low’)25. This simplification was made because the inter-patient-variability in this complex heterogeneous disease did not allow a more detailed grading on the omics levels. Two examples of liver biopsies are shown in Fig. 2a.

Illumina bead chip hybridization and data analysis

Microarray experiments were carried out on the Illumina BeadStation 500 platform (Illumina, San Diego, CA, USA). Briefly, 500 ng DNase-treated total RNA were used as input for amplification and biotin labeling reactions (Illumina TotalPrep RNA Amplification Kit, Ambion) prior to hybridization of the resulting cRNAs onto Illumina HumanHT-12_v4_BeadChips, washing, Cy3-streptavidin staining and scanning according to the manufacturer’s instructions.

Transcriptomics data analysis

Illumina data was processed via R/Bioconductor26 and packages lumi27, limma28 and biomaRt. Background-corrected log2-transformed data was normalized via quantile normalization from the lumi package.
qRT-PCR
Quantitative real-time polymerase chain reaction (qRT-PCR) was carried out to confirm the microarray-derived data. Reactions were carried out on the ABI PRISM 7900HT Sequence Detection System (Applied Biosystems). Data analysis was carried out using the ABI PRISM SDS 2.2.1 software (Applied Biosystems) and Microsoft Excel (Microsoft Corporation, Redmond, WA, USA). GAPDH-normalized, relative mRNA levels of each gene (high steatosis versus low steatosis) were calculated based on the 2-ΔΔCT Method. Primer sequences for QRT-PCR validation are described in Table 2.

ELISA-based assay for biomarkers
ELISA measurements from plasma samples were carried out using the Ciraplex platform (Aushon Biosystems, Billerica, MA, US). Commercial assays were purchased and measurements were carried out according to instructions provided by the manufacturer. The following 29 targets were analyzed either as single-plex assays or as multiplex assay: hFGFb; hGROα; hLIF; hIFNγ; hIL4; IL5; hIL6; hIL10; hIL12p70; hIL13; hTNFa; hIL309; hIL8; hIL10; hMCP4; hMIP1α; hMIP1b; hCRP; hLeptin; hPAlactive; hResistin; hIGFBP1; hIGFBP3; hIGFBP2; hMIF; hApoA1; hCRP; hAcrp30.

NMR sample preparation
Frozen plasma samples were thawed at room temperature and shaken before use. According to standard methodologies a total of 300 μl of buffer (70 mM Na2HPO4; 20% (v/v) D2O; 6.15 mM NaN3; 6.64 mM TMSP; pH 7.4) was added to 300 μl of each serum sample. A total of 450 μl of this mixture was transferred into a 4.25 mm NMR tubes (Bruker BioSpin) for analysis.
NMR spectra acquisition and processing
NMR spectra from 18 plasma samples from morbidly obese patients that underwent different type of bariatric surgery and additionally have developed steatosis were collected (Table 1). 1H-NMR spectra were acquired using a Bruker spectrometer (Bruker Biospin). Unsupervised and supervised methods were used in order to identify a disease-related metabolomic profile that might contain a signature of steatosis.

Data Records
Data record 1
The microarray experiments discussed in this publication were carried out on the Illumina BeadStation 500 platform (Illumina, San Diego, CA, USA). The data have been deposited in NCBI’s GEO and are accessible through GEO Series accession number GSE46300 (Data Citation 1).

Data record 2
Metabolomic raw data from Nuclear magnetic resonance (NMR) measurements have been deposited at the MetaboLights database (http://www.ebi.ac.uk/metabolights) of the European Bioinformatics Institute (EBI) under MTBLS174 (Data Citation 2).
ELISA measurements have been deposited at figshare (http://www.figshare.com) (Data Citation 3).

Technical Validation

Transcriptomic data

Microarray data passed the proprietary Illumina quality controls. All samples were investigated in duplicates. Fig. 2b shows that—as would be expected—the duplicates cluster together demonstrating the validity of experiments in terms of whole-genome gene expression. The Pearson correlation coefficients of all samples versus each other were calculated with the intention to detect outliers. However, all correlation coefficients were greater than 0.98 and all correlation coefficients of duplicates even greater than 0.99 so that all samples passed this quality check (Table 3). Genes with significant differential gene expression were selected for validation via RT-PCR experiments (Fig. 2c). Genes were termed differentially expressed if the multiple-testing-corrected limma28 P-value was less than 0.05, the ratio was less than 0.75 or greater than 1.33 and the gene was expressed (detection P-value less than 0.05) in at least one of both cases. Furthermore, we analysed clusters of genes differentially expressed in high versus low steatotic livers together with genes found in literature19,23 and genome-wide association studies3 (Fig. 2d). This analysis confirms high similarity between duplicates and clustering—to some extent but not fully—according to steatosis grade. Fig. 3a shows a plot of the first two components of the Principal Component Analysis (PCA) of the microarray data.

Table 2. Primer sequences for QRT-PCR validation of genes differentially expressed between high-grade and low-grade steatosis.

Gene	Fwd	Rev	Product size
ACADSB	CACCATTGCAAAGCATATCG GCAAGGCACTTACTCCCAAC	117	
AGPAT2	GGCGGCTCCCTCCTACA TTGAGGGTTTCTGGACCATT	91	
ECHS1	AACCCTTGACCTGATGACCA CAACGAGGTTGTAAGAGC	112	
IGF1	TGCCAGGACAGGGTCGGAAC	111	
IGBP2	CTCCTGCAACAGCAAGACTG	147	
IGBP3	CAACATGGGAGCTGATGAGG	92	
INS1G1	CAACACCGCCACTCATCG	138	
KRT18	GAGGGTTGAGCGTGTTGACAC	99	
LIPA	CATCCTGTTGAAAGGCAAGC	112	
PLIN2	GCTGAGCAGATTGAGTGGAG	102	

Table 3. Pearson correlation coefficients of transcriptome data of all samples versus each other.

Data record 3

ELISA measurements have been deposited at figshare (http://www.figshare.com) (Data Citation 3).
Figure 3. Transcriptomic and metabolomic profiles. (a–c) Transcriptomics and metabolomics PCA plots. Distinct colours are used to aid visualizing patients with distinct levels of steatosis: yellow, patients with < 5% no steatosis; magenta, patients with 5–33%, low level steatosis; cyan, patients with high steatosis >33%, high steatosis. (a) Unsupervised PCA plot for 18 liver biopsies, Illumina microarray data. (b) Unsupervised PCA plot for 18 plasma samples, metabolomics data. (c) Supervised discrimination analysis (pls/ca: partial least squares/canonical analysis) of metabolites in patient plasma samples. The correspondence between numbers in the plot and sample names in Table 1 is: 1 = H0004, 2 = H0007, 3 = H0008, 4 = H0009, 5 = H0011, 6 = H0018, 7 = H0021, 8 = H0022, 9 = H0024, 10 = H0025, 11 = H0026, 12 = H0027, 13 = H0028, 14 = H0029, 15 = H0030, 16 = H0031, 17 = H0033, 18 = H0034, 19 = H0012.
ELISA-based assay for biomarkers

Samples below and above quantification limit as well as samples with coefficient of variation (cv) greater than 20% were marked in the measurements table (Data Citation 3). Independent validation of the ELISA-based measurements was checked by visual inspection of plots comparing disease states.

Metabolomics

Assignment of all metabolites were done manually, signals were assigned on template one-dimensional NMR profiles by using matching routines of AMIX 7.3.2 (Bruker BioSpin) in combination with the BBIOREFCODE Version 2-0-0 reference database and published literature when available. Additional confirmation was done using data provided in our lab -database containing spectra of standard pure compounds. To assess which metabolites (i.e., NMR peaks) were significantly different between different sets a univariate paired Wilcoxon test was used. A P-value ≤ 0.05 was considered statistically significant (P-value not corrected for multiple testing).

Robust validation of statistical analysis results was done using a cross-validation technique.

The accuracy of the classification was assessed by means of a single cross-validation scheme. The original data set was split into a training set (80% of the samples) and a test set (20% of the samples) prior to any step of statistical analysis. The number of PLS components was chosen on the basis of a 5-fold cross validation performed on the training set only, and the best model was used to predict the samples in the test set. The whole procedure was repeated 200 times with a Monte Carlo cross validation scheme, and the results averaged.

Figure 3b shows a plot of unsupervised discrimination analysis and Fig. 3c shows separation of steatosis grades in a plot of supervised discrimination analysis (pls/ca: partial least squares/canonical analysis) of metabolites in patient plasma samples. The clustering of Fig. 3c results from a supervised PLS/CA based only on the metabolomic NMR profiles. The algorithm takes into account the supervised information relative to the 3 steatosis groups.

Distribution plots

Figure 4a shows the distribution of percentage parenchymal involvement in steatotic patients derived from Table 1. The percentage is converted to a scale from zero to one and plotted with the kernel density function from the R statistical package. Fig. 4b–d display distributions separated into groups of age above/below median (median = 45), body mass index (BMI) above/below median (median = 43) and gender. Fig. 4d would suggest a slight tendency for more severe steatosis in males. A similar trend has
been reported in a NAFLD study on Australian adolescents where 3.1% of males and only 2.2% of females had moderate to severe steatosis while 7.0% of males and 14.1% of females had mild steatosis.27

Usage Notes
All patients in this study underwent bariatric surgery. This should be taken into account when generalizing results although these are typical cases of morbid obesity which is connected to the metabolic syndrome including NAFLD. The sample size of these datasets—in particular the transcriptomics dataset—poses certain limits onto its usage. Due to its small size it will not enable rigorous analysis of gender effects. Therefore it would likely need to be combined with other data sources, such as data from Moylan et al.18 and Du Plessis et al.23.

References
1. Lazo, M, & Clark, J. M. The epidemiology of nonalcoholic fatty liver disease: a global perspective. Semin. Liver Dis. 28, 339–350 (2008).
2. Petersen, K. F. et al. Apolipoprotein C3 Gene Variants in Nonalcoholic Fatty Liver Disease. N. Engl. J. Med. 362, 1082–1089 (2010).
3. Speliotes, E. K. et al. Genome-Wide Association Analysis Identifies Variants Associated with Nonalcoholic Fatty Liver Disease That Have Distinct Effects on Metabolic Traits. PLoS Genet 7, e1001324 (2011).
4. Samocha-Bonet, D. et al. Overfeeding Reduces Insulin Sensitivity and Increases Oxidative Stress, without Altering Markers of Mitochondrial Content and Function in Humans. PLoS ONE 7, e36320 (2012).
5. Ratnu, V., Bellentani, S., Cortez-Pinto, H., Day, C. & Marchesini, G. A position statement on NAFLD/NASH based on the EASL 2009 special conference. J. Hepatol. 53, 372–384 (2010).
6. Farese, R. V. Jr., Zechnier, R., Newgard, C. B. & Wallner, T. C. The Problem of Establishing Relationships between Hepatic Steatosis and Hepatic Insulin Resistance. Cell Metab. 15, 570–573 (2012).
7. Samuel, V. T. et al. Mechanism of Hepatic Insulin Resistance in Non-alcoholic Fatty Liver Disease. J. Biol. Chem. 279, 32345–32353 (2004).
8. Rajpathak, S. N. et al. Insulin-like growth factor axis and risk of type 2 diabetes in women. Diabetes 61, 2248–2254 (2012).
9. Völzke, H. et al. Association between hepatic steatosis and serum IGFB1 and IGFBP-3 levels in a population-based sample. Eur. J. Endocrinol. 161, 705–713 (2009).
10. Alem, E., Nehrbass, D., Klimek, F., Mayer, D. & Bannasch, P. Upregulation of the insulin receptor and type I insulin-like growth factor receptor are early events in hepatocarcinogenesis. Toxicol. Pathol. 39, 524–543 (2011).
11. Baffy, G., Brunt, E. M. & Caldwell, S. H. Hepatocellular carcinoma in non-alcoholic fatty liver disease: An emerging menace. J. Hepatol. 56, 1384–1391 (2012).
12. Marra, F., Gastaldelli, A., Svegliati Baroni, G., Tell, G. & Tiribelli, C. Molecular basis and mechanisms of progression of non-alcoholic steatohepatitis. Trends Mol. Med. 14, 72–81 (2008).
13. Angulo, P. Nonalcoholic fatty liver disease. N. Engl. J. Med. 346, 1221–1231 (2002).
14. Jozefczuk, J. et al. A Systems Biology Approach to Deciphering the Etiology of Steatosis Employing Patient-Derived Dermal Fibroblasts and iPS Cells. Front. Physiol 3, 339 (2012).
15. Houstis, N., Rosen, E. D. & Lander, E. S. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 440, 944–948 (2006).
16. Findeisen, H. M. et al. Glutathione Depletion Prevents Diet-Induced Obesity and Enhances Insulin Sensitivity. Obesity 19, 2429–2432 (2011).
17. Hayes, J. D., Flanagan, J. U. & Jowsey, I. R. Glutathione Transferases. Annu. Rev. Pharmacol. Toxicol. 45, 51–88 (2005).
18. Moylan, C. A. et al. Hepatic gene expression profiles differentiate presymptomatic patients with mild versus severe nonalcoholic fatty liver disease. Hepatol. Baltim. Md 59, 471–482 (2014).
19. Kahali, B. et al. TM6SF2: catch-22 in the fight against nonalcoholic fatty liver disease and cardiovascular disease? Gastroenterology 148, 679–684 (2015).
20. Kozlitina, J. et al. Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease. Nat. Genet. 46, 352–356 (2014).
21. Shungin, D. et al. New genetic loci link adipose and insulin biology to body fat distribution. Nature 518, 187–196 (2015).
22. Feldstein, A. E. et al. Cytokertatin-18 fragment levels as noninvasive biomarkers for nonalcoholic steatohepatitis: A multicenter validation study. Hepatology 50, 1072–1078 (2009).
23. Du Plessis, J. et al. Association of Adipose Tissue Inflammation With Histologic Severity of Nonalcoholic Fatty Liver Disease. Gastroenterology 149, 635–648, e14 (2015).
24. Matthews, D. R. et al. Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28, 412–419 (1985).
25. Kleiner, D. E. et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41, 1313–1321 (2005).
26. Gentleman, R. C. et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5, R80 (2004).
27. Du, P., Kibbe, W. A. & Lin, S. M. lumi: a pipeline for processing Illumina microarray. Bioinformatics 24, 1547–1548 (2008).
28. Smyth, G. K. Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments. Stat. Appl. Genet. Mol. Biol. 3 doi:10.2202/1544-6155.1027 (2004).
29. Ayonrinde, O. T. et al. Gender-specific differences in adipose distribution and adipokine profiles in adolescents with NAFLD. Hepatol. Baltim. Md 575, 800–809 (2011).

Data Citations
1. Wruck, W. et al. NCBI GEO GSE46300 (2014).
2. Wruck, W. et al. MetaboLights MTBLS174 (2015).
3. Wruck, W. et al. Figshare http://dx.doi.org/10.6084/m9.figshare.1335654 (2015).

Acknowledgements
The authors acknowledge support from the German Federal Ministry of Education and Research (BMBF GRANT 0315717A), which is a partner of the ERASysBio+ initiative supported under the EU ERA-NET Plus scheme in FP7. Hans V. Westerhoff, & Samrina Rehman thank the EPSRC and BBSRC (and
BBSRC-BRIC) for support of the Manchester Centre for Integrative Systems Biology, as well as various other funding agencies (EU-FP7 [SYNPOL #311815], H2020 [Epipredict, #642691 and Corbel #654248], NWO, the SysMO and ERASysBio funder communities), in particular the ERASysBio+ support by BBSRC. Additionally, James Adjaye and Wasco Wruck acknowledge support from the Medical faculty of the Heinrich Heine University Düsseldorf.

Author Contributions

W.W. performed transcriptomics analyses, UK and D.B. performed RPPA analyses, E.G. and P.T. NMR analyses, S.R. and H.W. flux analyses (data not included here). K.K. and K.Z. were responsible for patient recruitment and RNA isolation from patient-derived liver biopsies. J.J. and K.W. performed the RT-PCR experiments. A.D. and C.W. performed pathway analysis and built systems biological models (data not included here) and V.P. performed flux coupling analysis (data not included here). W.W. was responsible for data management. W.W., A.D., S.R., H.W., C.W. and J.A. wrote the manuscript. H.L. and J.A. conceived the concept. J.A. coordinated the work.

Additional Information

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Wruck, W. *et al.* Multi-omic profiles of human non-alcoholic fatty liver disease tissue highlight heterogenic phenotypes. *Sci. Data* 2:150068 doi: 10.1038/sdata.2015.68 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0

Metadata associated with this Data Descriptor is available at http://www.nature.com/sdata/ and is released under the CC0 waiver to maximize reuse.