Riemann-Liouville and higher dimensional Harday operators for non-negative decreasing function in $L^{p(x)}$ spaces

Ghulam Murtaza and Muhammad Sarwar

Abstract. In this paper one-weight inequalities with general weights for Riemann-Liouville transform and $n-$ dimensional fractional integral operator in variable exponent Lebesgue spaces defined on \mathbb{R}^n are investigated. In particular, we derive necessary and sufficient conditions governing one-weight inequalities for these operators on the cone of non-negative decreasing functions in $L^{p(x)}$ spaces.

2000 Mathematics Subject Classification: 42B20, 42B25, 46E30.

Key Words and Phrases: Variable exponent Lebesgue spaces, Riemann-Liouville transform, $n-$ dimensional fractional integral operator, one–weight inequality.

1. Introduction

We derive necessary and sufficient conditions governing the one-weight inequality for the Riemann-Liouville operator

$$R_\alpha f(x) = \frac{1}{x^\alpha} \int_0^x \frac{f(t)}{(x-t)^1-\alpha}dt \quad 0 < \alpha < 1,$$

and $n-$dimensional fractional integral operator

$$I_\alpha g(x) = \frac{1}{|x|^\alpha} \int_{|y|<|x|} \frac{g(t)}{|x-t|^{n-\alpha}}dt \quad 0 < \alpha < n,$$

on the cone of non-negative decreasing function in $L^{p(x)}$ spaces.

In the last two decades a considerable interest of researchers was attracted to the investigation of the mapping properties of integral operators in so called Nakano spaces $L^{p(\cdot)}$ (see e.g., the monographs [3], [7] and references therein). Mathematical problems related to these spaces arise in applications to mechanics of the continuum medium. For example, M. Ruzička [19] studied the problems in the so called rheological and electrorheological fluids, which lead to spaces with variable exponent.

Weighted estimates for the Hardy transform

$$(Hf)(x) = \int_0^x f(t)dt, \quad x > 0,$$
in L^p spaces were derived in the papers [8] for power-type weights and in [11], [12], [15], [6], [17] for general weights. The Hardy inequality for non-negative decreasing functions was studied in [3], [4].

Weighted problems for the Riemann-Liouville transform in L^p spaces were explored in the papers [10], [11], [2], [14] (see also the monograph [18]).

Historically, one and two weight Hardy inequalities on the cone of non-negative decreasing functions defined on \mathbb{R}_+ in the classical Lebesgue spaces were characterized by M. A. Arino and B. Muckenhoupt [1] and E. Sawyer [22] respectively.

It should be emphasized that the operator $I_\alpha f(x)$ is the weighted truncated potential. The trace inequality for this operator in the classical Lebesgue spaces was established by E. Sawyer [21] (see also the monograph [13], Ch.6 for related topics).

In general, the modular inequality

\[
\int_0^1 \left| \int_0^x f(t) dt \right|^{q(x)} v(x) dx \leq c \int_0^1 \left| f(t) \right|^{p(t)} w(t) dt \tag{*}
\]

for the Hardy operator is not valid (see [23], Corollary 2.3, for details). Namely the following fact holds: if there exists a positive constant c such that inequality (*) is true for all $f \geq 0$, where q, p, w and v are non-negative measurable functions, then there exists $b \in [0, 1]$ such that $w(t) > 0$ for almost every $t < b$; $v(x) = 0$ for almost every $x > b$, and $p(t)$ and $q(x)$ take the same constant values almost everywhere for $t \in (0; b)$ and $x \in (0; b) \cap \{v \neq 0\}$.

To get the main result we use the following pointwise inequities

\[
c_1(Tf)(x) \leq (R_\alpha f)(x) \leq c_2(Tf)(x),
\]
\[
c_3(Hg)(x) \leq (I_\alpha g)(x) \leq c_4(Hg)(x),
\]

for non-negative decreasing functions, where c_1, c_2, c_3 and c_4 are constants are independents of f, g and x, and

\[
Tf(x) = \frac{1}{x} \int_0^x f(t) dt, \quad Hg(x) = \frac{1}{|x|^n} \int_{|y|<|x|} g(y) dy.
\]

In the sequel by the symbol $Tf \approx Tg$ we means that there are positive constants c_1 and c_2 such that $c_1 Tf(x) \leq Tg(x) \leq c_2 Tf(x)$. Constants in inequalities will be mainly denoted by c or C; the symbol \mathbb{R}_+ means the interval $(0, +\infty)$.

2. PRELIMINARIES

We say that a radial function $f : \mathbb{R}^n \rightarrow \mathbb{R}_+$ is decreasing if there is a decreasing function $g : \mathbb{R}_+ \rightarrow \mathbb{R}_+$ such that $g(|x|) = f(x), \ x \in \mathbb{R}^n$. We will denote g
again by \(f \). Let \(p : \mathbb{R}^n \to \mathbb{R}^n \) be a measurable function, satisfying the conditions
\[p^- = \text{ess inf}_{x \in \mathbb{R}^n} p(x) > 0, \quad p^+ = \text{ess sup}_{x \in \mathbb{R}^n} p(x) < \infty. \]

Given \(p : \mathbb{R}^n \to \mathbb{R}_+ \) such that \(0 < p^- \leq p^+ < \infty \), and a non-negative measurable function (weight) \(u \) in \(\mathbb{R}^n \), let us define the following local oscillation of \(p \):
\[\varphi_{p(\cdot),u(\delta)} = \text{ess sup}_{x \in B(0,\delta) \cap \text{supp } u} p(x) - \text{ess inf}_{x \in B(0,\delta) \cap \text{supp } u} p(x), \]
where \(B(0,\delta) \) is the ball with center 0 and radius \(\delta \).

We observe that \(\varphi_{p(\cdot),u(\delta)} \) is non-decreasing and positive function such that
\[\lim_{\delta \to \infty} \varphi_{p(\cdot),u(\delta)} = p^+ u - p^- u, \quad (1) \]
where \(p^+ \) and \(p^- \) denote the essential infimum and supremum of \(p \) on the support of \(u \), respectively.

By the similar manner it is defined (see [3]) the function \(\psi_{p(\cdot),u(\eta)} \) for an exponent \(p : \mathbb{R}_+ \to \mathbb{R}_+ \) and weight \(v \) on \(\mathbb{R}_+ \):
\[\varphi_{p(\cdot),v(\varepsilon)} = \text{ess sup}_{x \in B(0,\varepsilon) \cap \text{supp } v} p(x) - \text{ess inf}_{x \in (0,\varepsilon) \cap \text{supp } v} p(x), \]

Let \(D(\mathbb{R}_+) \) be the class of non-negative decreasing functions on \(\mathbb{R}_+ \) and let \(DR(\mathbb{R}^n) \) be the class of all non–negative radially decreasing functions on \(\mathbb{R}^n \). Suppose that \(u \) is measurable a.e. positive function (weight) on \(\mathbb{R}^n \). We denote by \(L^{p(x)}(u, \mathbb{R}^n) \), the class of all non–negative functions on \(\mathbb{R}^n \) for which
\[S_p(f) = \int_{\mathbb{R}^n} |f(x)|^{p(x)} u(x) d\mu(x) < \infty. \]

For essential properties of \(L^{p(x)} \) spaces we refer to the papers [16], [20] and the monographs [7], [5].

Under the symbol \(L^{p(x)}(u, \mathbb{R}_+) \) we mean the class of non-negative decreasing functions on \(\mathbb{R}_+ \) from \(L^{p(x)}(u, \mathbb{R}^n) \cap DR(\mathbb{R}^n) \).

Now we list the well-known results regarding one-weight inequality for the operator \(T \). For the following statement we refer to [1].

Theorem A. Let \(r \) be constant such that \(0 < r < \infty \). Then the inequity
\[\int_0^\infty v(x)(Tf(x))^r dx \leq c \int_0^\infty v(x)(f(x))^r dx, \quad f \in L^r(v, \mathbb{R}_+), \quad f \downarrow \quad (2) \]
for a weight \(v \) holds, if and only if there exists a positive constant \(C \) such that for all \(s > 0 \)
\[
\int_s^\infty \left(\frac{s}{x}\right)^r v(x) dx \leq C \int_0^s v(x) dx.
\tag{3}
\]

Condition (3) is called \(B_r \) condition and was introduced in [1].

Theorem B. Let \(v \) be a weight on \((0, \infty)\) and \(p : \mathbb{R}^+ \rightarrow \mathbb{R}^+ \) such that \(0 < p^- \leq p^+ < \infty \), and assume that \(\psi_{p^+}(0^+) = 0 \). The following facts are equivalent:

(a) There exists a positive constant \(c \) such that for any \(f \in D(\mathbb{R}^+) \),
\[
\int_0^\infty (Tf(x))^{p(x)} v(x) dx \leq C \int_0^\infty (f(x))^{p(x)} v(x) dx.
\tag{4}
\]

(b) For any \(r, s > 0 \),
\[
\int_r^\infty \left(\frac{r}{sx}\right)^{p(x)} v(x) dx \leq C \int_0^s \frac{v(x)}{s^{p(x)}} dx.
\tag{5}
\]

(c) \(p|_{\text{supp } v} \equiv p_0 \) a.e and \(v \in B_{p_0} \).

Proposition 2.1. For the operators \(T, H, R_\alpha \) and \(I_\alpha \), the following relations hold:

(a) \(R_\alpha f \approx Tf, \quad 0 < \alpha < 1, \quad f \in D(\mathbb{R}^+) \);

(b) \(I_\alpha g \approx Hg, \quad 0 < \alpha < n, \quad g \in DR(\mathbb{R}^n) \).

Proof. (a) Upper estimate. Represent \(R_\alpha f \) as follows:
\[
R_\alpha f(x) = \frac{1}{x^\alpha} \int_0^{x/2} \frac{f(t)}{(x - t)^{1-\alpha}} dt + \frac{1}{x^\alpha} \int_{x/2}^{x} \frac{f(t)}{(x - t)^{1-\alpha}} dt = S_1(x) + S_2(x).
\]

Observe that if \(t < x/2 \), then \(x/2 < x - t \). Hence
\[
S_1(x) \leq c \frac{1}{x} \int_0^{x/2} f(t) dt \leq cTf(x),
\]

where the positive constant \(c \) does not depend on \(f \) and \(x \). Using the fact that \(f \) is decreasing we find that
\[
S_2(x) \leq cf(x/2) \leq cTf(x).
\]
Lower estimate follows immediately by using the fact that \(f \) is non-negative and the obvious estimate \(x - t \leq x \) and \(0 < t < x \).

(b) Upper estimate. Let us represent the operator \(I_\alpha \) as follows:

\[
I_\alpha g(x) = \frac{1}{|x|^\alpha} \int_{|y|<|x|/2} \frac{g(y)}{|x-y|^{n-\alpha}} dy + \frac{1}{|x|^\alpha} \int_{|x|/2<|y|<|x|} \frac{g(y)}{|x-y|^{n-\alpha}} dy
\]

=: \(S_1'(x) + S_2'(x) \).

Since \(|x|/2 \leq |x-y| \) for \(|y| < |x|/2 \) we have that

\[
S_1'(x) \leq c \frac{|x|^{\alpha-n}}{|x|^{n-\alpha}} \int_{|y|<|x|/2} g(y) dy \leq c H g(x).
\]

Taking into account the fact that \(f \) is radially decreasing on \(\mathbb{R}^n \) we find that there is a decreasing function \(f : \mathbb{R}_+ \rightarrow \mathbb{R}_+ \) such that

\[
S_2'(x) \leq f(|x|/2) \cdot \frac{1}{|x|^\alpha} \int_{|x|/2<|y|<|x|} |x-y|^{\alpha-n} dy
\]

Let \(F_x = \{ y : |x|/2 < |y| < |x| \} \). Then we have

\[
\int_{F_x} |x-y|^{\alpha-n} dy = \int_0^\infty \left| \{ y \in F_x : |x-y|^{\alpha-n} > t \} \right| dt
\]

\[
\leq \int_0^{|x|^{\alpha-n}} \left| \{ y \in F_x : |x-y|^{\alpha-n} > t \} \right| dt + \int_{|x|^{\alpha-n}}^\infty \left| \{ y \in F_x : |x-y|^{\alpha-n} > t \} \right| dt
\]

=: \(I_1 + I_2 \).

It is easy to see that

\[
I_1 \leq \int_0^{|x|^{\alpha-n}} |B(0,|x|)| dt = c |x|^\alpha,
\]

while using the fact that \(\frac{n}{n-\alpha} > 1 \) we find that

\[
I_2 \leq \int_{|x|^{\alpha-n}}^\infty \left| \{ y \in F_x : |x-y| \leq t^{\alpha-n} \} \right| dt \leq c \int_{|x|^{\alpha-n}}^\infty t^{\frac{n}{n-\alpha}} dt = c_{\alpha,n} |x|^\alpha.
\]

Finally we conclude that

\[
S_2'(x) \leq c f(|x|/2) \leq c H f(x).
\]
Lower estimate follows immediately by using the fact that f is non-negative and the obvious estimate $|x - y| \leq |x|$, where $0 < |y| < |x|$.

We will also need the following statement:

Lemma 2.2. Let r be a constant such that $0 < r < \infty$. Then the inequality

$$
\int_{\mathbb{R}^n} (Hf(x))^r u(x) dx \leq C \int_{\mathbb{R}^n} (f(x))^r u(x) dx,
$$

$f \in L^r_{\text{dec}}(u, \mathbb{R}^n)$ \hspace{1cm} (6)

holds, if and only if there exists a positive constant C such that for all $s > 0$,

$$
\int_{|x| > s} |x|^{r(1-n)} u(x) dx \leq C \int_{|x| < s} |x|^{r(1-n)} u(x) dx.
$$

(7)

Proof. We shall see that inequality (6) is equivalent to the inequality

$$
\int_0^\infty \tilde{u}(t) (T \bar{f}(t))^r dt \leq C \int_0^\infty \tilde{u}(t) (\bar{f}(t))^r dt,
$$

where $\tilde{u}(t) = t^{(n-1)(1-r)} \bar{u}(t)$, $\bar{f}(t) = t^{n-1} f(t)$ and $\bar{u}(t) = \int_{S_0} u(t\bar{x}) d\sigma(\bar{x})$.

Indeed, using polar the coordinates in \mathbb{R}^n we have

$$
\int_{\mathbb{R}^n} (Hf(x))^r u(x) dx = \int_{\mathbb{R}^n} u(x) \left(\frac{1}{|x|^n} \int_{|y| < |x|} f(y) dy \right)^r dx
$$

$$
= \int_0^\infty t^{n-1} \left(\frac{1}{|t|^n} \int_{|y| < |t|} f(y) dy \right)^r \left(\int_{S_0} u(t\bar{x}) d\sigma(\bar{x}) \right) dt
$$

$$
= C \int_0^\infty t^{n-1} t^{-nr} t^r \left(\frac{1}{t} \int_0^t \tau^{n-1} f(\tau) d\tau \right)^r \tilde{u}(t) dt
$$

$$
= C \int_0^t \tilde{u}(t) (\bar{f}(t))^r \bar{u}(t) \left(\int_0^t \bar{f}(\tau) d\tau \right)^r dt
$$

$$
\leq C \int_0^t \tilde{u}(t) (\bar{f}(t))^r dt
$$

$$
= C \int_{\mathbb{R}^n} (f(x))^r u(x) dx.
$$
To formulate the main results we need to prove

Proposition 3.1. Let u be a weight on \mathbb{R}^n and $p : \mathbb{R}^n \to \mathbb{R}_+$ such that $0 < p^- \leq p^+ < \infty$, and assume that $\varphi_{p(\cdot), u(0^+)} = 0$. The following statements are equivalent:

(a) There exists a positive constant C such that for any $f \in DR(\mathbb{R}^n)$,

$$
\int_{\mathbb{R}^n} (Hf(x))^{p(x)} u(x) dx \leq C \int_{\mathbb{R}^n} (f(x))^{p(x)} u(x) dx.
$$

(b) For any $r, s > 0$,

$$
\int_{|x| > r} \left(\frac{r}{s|x|^{ln}} \right)^{p_0} u(x) dx \leq C \int_{B(0,r)} \frac{|x|^{(1-n)p_0} u(x)}{s^{p_0}} dx.
$$

(c) $p_{|\text{supp } u|} \equiv p_0 \quad \text{a.e and } u \in B_{p_0}$.

Proof. We use the arguments of [3]. To show that (a) implies (b) it is enough to test the modular inequality (8) for the function $f_{r,s}(x) = \frac{1}{s} \chi_{B(0,r)}(x) |x|^{1-n}$, $s, r > 0$. Indeed, it can be checked that

$$
Hf_{r,s}(x) = \begin{cases} \frac{1}{|x|^{ln}} \int_{|y| \leq |x|} |y|^{1-n} dy, & \text{if } |x| \leq r; \\ \frac{1}{|x|^{ln}} \int_{|y| \leq r} |y|^{1-n} dy, & \text{if } |x| > r. \end{cases}
$$

Further, we find that

$$
\int_{|x| > r} u(x) (Hf_{r,s})^{p(x)} dx \leq \int_{\mathbb{R}^n} u(x) (Hf_{r,s})^{p(x)} dx \leq C \int_{\mathbb{R}^n} u(x) \left(\frac{1}{s} \chi_{B(0,r)}(x) |x|^{1-n} \right)^{p(x)} dx.
$$

Therefore

$$
\int_{|x| > r} u(x) \left(\frac{r}{s|x|^{ln}} \right)^{p(x)} dx \leq C \int_{B(0,r)} \frac{|x|^{(1-n)p(x)} u(x)}{s^{p(x)}} dx.
$$

To obtain (c) from (b) we are going to prove that condition (b) implies that $\varphi_{p(\cdot), u(\delta)}$ is a constant function, namely $\varphi_{p(\cdot), u(\delta)} = p_u^+ - p_u^-$ for all $\delta > 0$. This fact and the hypothesis on $\varphi_{p(\cdot), u(\delta)}$ implies that $\varphi_{p(\cdot), u(\delta)} \equiv 0$, and hence due to (1),

$$
p_{|\text{supp } u|} \equiv p_u^+ - p_u^- \equiv p_0 \quad \text{a.e.}.
$$
Finally (9) means that \(u \in B_{p_0} \). Let us suppose that \(\varphi_{p(\cdot),u} \) is not constant. Then one of the following conditions hold:

(i) there exists \(\delta > 0 \) such that

\[
\alpha = \text{ess sup}_{x \in B(0,\delta) \cap \text{supp } u} p(x) < p_u^+ < \infty,
\]

and hence, there exists \(\epsilon > 0 \) such that

\[
\{|x| > \delta : p(x) \geq \alpha + \epsilon\} \cap \text{supp } u > 0,
\]

or

(ii) there exists \(\delta > 0 \) such that

\[
\beta = \text{ess inf}_{x \in B(0,\delta) \cap \text{supp } u} p(x) > p_u^- > 0,
\]

and then, for some \(\epsilon > 0 \),

\[
\{|x| > \delta : p(x) \leq \beta - \epsilon\} \cap \text{supp } u > 0.
\]

In the case (i) we observe that condition (b) for \(r = \delta \), implies that

\[
\int_{|x| > \delta} \left(\frac{\delta}{s} \right)^{p(x)} \frac{u(x)}{|x|^{np(x)}} \, dx \
\leq C \int_{B(0,\delta)} |x|^{(1-n)p(x)} u(x) \, dx.
\]

Then using (10) we obtain, for \(s < \min(1, \delta) \),

\[
\left(\frac{\delta}{s} \right)^{\alpha + \epsilon} \int_{\{|x| > \delta : p(x) \geq \alpha + \epsilon\}} \frac{u(x)}{|x|^{np(x)}} \, dx \leq C \int_{B(0,\delta)} u(x) |x|^{(1-n)p(x)} \, dx,
\]

which is clearly a contradiction if we let \(s \downarrow 0 \). Similarly in the case (ii) let us consider the same condition (b) for \(r = \delta \), and fix now \(s > 1 \). Taking into account (11) we find that:

\[
\frac{1}{s^{\beta - \epsilon}} \int_{\{|x| > \delta : p(x) \leq \beta - \epsilon\}} \left(\frac{\delta}{|x|^n} \right)^{p(x)} u(x) \, dx \leq C \int_{B(0,\delta)} |x|^{(1-n)p(x)} u(x) \, dx,
\]

which is a contradiction if we let \(s \uparrow \infty \).

Finally, the fact that condition (c) implies (a) follows from [1, Theorem 1.7] \(\square \)

Theorem 3.2. Let \(u \) be a weight on \((0, \infty)\) and \(p : \mathbb{R}_+ \to \mathbb{R}_+ \) such that \(0 < p^- \leq p^+ < \infty \). Assume that \(\psi_{p(\cdot),u(0^+)} = 0 \). The following facts are equivalent:

(i) There exists a positive constant \(C \) such that for any \(f \in D(\mathbb{R}_+) \),

\[
\int_{\mathbb{R}_+} \left(R_\alpha f(x) \right)^{p(x)} u(x) \, dx \leq C \int_{\mathbb{R}_+} \left(f(x) \right)^{p(x)} u(x) \, dx.
\]

(ii) condition (5) holds;
(iii) condition (c) of Theorem B is satisfied.

Proof. Proof follows by using Theorems B and Proposition 2.1(a). □

Theorem 3.3. Let \(u \) be a weight on \(\mathbb{R}^n \) and \(p : \mathbb{R}^n \to \mathbb{R}_+ \) such that \(0 < p^- \leq p^+ < \infty \), and assume that \(\varphi_{p(\cdot),u(0^+)} = 0 \). The following facts are equivalent:

(i) There exists a positive constant \(C \) such that for any \(f \in DR(\mathbb{R}^n) \),
\[
\int_{\mathbb{R}^n} (I_\alpha f(x))^{p(x)} u(x) dx \leq C \int_{\mathbb{R}^n} (f(x))^{p(x)} u(x) dx.
\]

(ii) condition (9) holds;

(iii) condition (c) of Proposition 3.1 holds.

Proof. Proof follows by using Propositions 3.1 and Proposition 2.1 (b). □

Acknowledgement. The authors are grateful to Prof. A. Meskhi for drawing our attention to the problem studied in this paper and helpful remarks.

References

[1] M. A. Arino and B. Muckenhoupt, Maximal functions on classical Lorentz spaces and Hardy’s inequality with weight for nonincreasing functions *Trans. Amer. Math. soc.* **320** (1990), 727-735.

[2] U. Ashraf, V. Kokilashvili and A. Meskhi, Weight characterization of the trace inequality for the generalized Riemann-Liouville transform in \(L^p(x) \) spaces, *Math. Ineq. Appl.* **13** (2010), No.1, 63–81.

[3] S. Boza and J. Soria Weighted Hardy modular inequalities in variable \(L^p \) spaces for decreasing functions *J. Math. Appl.* **348** (2008), 383-388.

[4] S. Boza and J. Soria, Weighted weak modular and norm inequalities for the Hardy operator in variable \(L^p \) spaces of monotone functions, *Revista Math. Compl.*, **25** (2012), 459-474.

[5] D. Cruz-Uribe and A. Fiorenza, *Variable Lebesgue spaces*, Birkhäuser, Springer, Basel, 2013.

[6] D. Cruz-Uribe and F. Mamedov, On a general weighted Hardy type inequality in variable exponent Lebesgue spaces, *Rev. Mat. Complut.* **25** (2012), 335–367.

[7] L. Diening, P. Harjulehto, P. Hästö and M. Ružička, *Lebesgue and Sobolev spaces with variable exponents*, Lecture Notes in Mathematics, Vol. 2017, Springer, Heidelberg, 2011.

[8] L. Diening and S. Samko, Hardy inequality in variable exponent Lebesgue spaces, *Fract. Calc. Appl. Anal.* **10** (2007), 1-18.

[9] L. Diening and S. Samko, Hardy inequality in variable exponent Lebesgue spaces, *Fract. Calc. Appl. Anal.* **10** (2007), 1-18.

[10] D.E. Edmunds and A. Meskhi, Potential-type operators in \(L^p(x) \) spaces., *Z. Anal. Anwend* **21** (2002), 681–690.

[11] D. E. Edmunds, V. Kokilashvili, and A. Meskhi, On the boundedness and compactness of the weighted Hardy operators in \(L^p(x) \) spaces. *Georgian Math. J.* **12** (2005), 27–44.
[12] D. E. Edmunds, V. Kokilashvili, and A. Meskhi, Two-weight estimates in $L^p(^x)$ spaces with applications to Fourier series. *Houston J. Math.* 35(2009), No. 2, 665–689.

[13] D. E. Edmunds, V. Kokilashvili, and A. Meskhi, *Bounded and compact integral operators, Mathematics and Its Applications, Kluwer Academic Publishers, Dordrecht, Boston, London*, 2002.

[14] V. Kokilashvili, A. Meskhi and M. Sarwar, One and Two-weight norm estimates for one-sided operator in $L^p(^x)$ spaces, *Eurasian Math. J.*, 1(2010), No. 1, 73-110.

[15] T. S. Kopaliani, On some structural properties of Banach function spaces and boundedness of certain integral operators, *Czechoslovak Math. J.* 54(2004), No. 3, 791-805.

[16] O. Kováčik and J. Rákosník, On spaces $L^{p(^x)}$ and $W^{k,p(^x)}$, *Czechoslovak Math. J.* 41(1991), No.4, 592–618.

[17] F. I. Mamedov and A. Harman, On a Hardy type general weighted inequality in spaces, *Integral Equ. Oper. Th.* 66(2010), No.4, 565–592.

[18] A. Meskhi, *Measure of Non-compactness for Integral Operators in Weighted Lebesgue Spaces*. Nova Science Publishers, New York, 2009.

[19] M. Ružička, *Electrorheological fluids: modeling and mathematical theory*. Lecture Notes in Mathematics, 1748, Berlin, Springer, 2000.

[20] S. Samko, Convolution type operators in $L^{p(^x)}$, *Integral Transforms Spec. Funct.* 7(1998), Nos 1-2, 123-144.

[21] E. T. Sawyer, Multipliers of Besov and power weighted L^2 spaces, *Indiana Univ. Math. J.*, 33(1984), No. 3, 353–366.

[22] E. Sawyer, Boundedness of classical operators on classical Lorentz spaces, *Studia Math.* 96(1990), No. 2, 145–158.

[23] G. Sinnamon, Four questions related to Hardy’s inequality. *Function spaces and applications (Delhi, 1997)*, 255-266, *Narosa, New Delhi*, 2000.

Authors’ Addresses:

G. Murtaza:
Department of Mathematics,
GC University, Faisalabad, Pakistan
Email: gmnizami@@googlemail.com

M. Sarwar:
Department of Mathematics,
University of Malakand, Chakdara,
Dir Lower, Khyber Pakhtunkhwa, Pakistan
E-mail: sarwar@uom.edu.pk; sarwarswati@gmail.com