Cloning and Expression of Staphylococcus Simulans Lysostaphin Enzyme Gene in Bacillus Subtilis WB600

Babak Elyasi Far
Tabriz University of Medical Sciences

Mehran Ragheb
Tabriz University of Medical Sciences

Reza Rahbar
Golestan University of Medical Sciences

Ladan Mafakher
Ahvaz Jundishapur University of Medical Sciences

Neda Yousefi Nojookambari
Shahid Beheshti University of Medical Sciences

Spyridon Achinas
University of Groningen

Sajjad Yazdansetad (✉ sajjad.yazdansetad@gmail.com)
Golestan University of Medical Sciences

Research Article

Keywords: Bacillus subtilis, Lysostaphin, Staphylococcus aureus, Plasmids, Enzyme Stability

DOI: https://doi.org/10.21203/rs.3.rs-122682/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background: Lysostaphin is a glycylglycine endopeptidase, secreted by Staphylococcus simulans, capable of specifically hydrolyzing pentaglycine crosslinks present in the peptidoglycan of the Staphylococcus aureus cell wall. In this paper, we describe the cloning and expression of the lysostaphin enzyme gene in Bacillus subtilis WB600 host using pWB980 expression system.

Results: Plasmid pACK1 of S. simulans was extracted using alkaline lysis method. Lysostaphin gene was isolated by PCR and cloned into pTZ57R/T-Vector, then transformed into Escherichia coli DH5α. The amplified gene fragment and uncloned pWB980 vector were digested using PstI and XbaI enzymes and purified. The restricted gene fragment was ligated into the pWB980 expression vector by the standard protocols, then the recombinant plasmid was transformed into B. subtilis WB600 using electroporation method. The recombinant protein was evaluated by the SDS-PAGE method and confirmed by western immunoblot. Analysis of the target protein showed a band corresponding to an about 27-kDa r-lysostaphin. Protein content was estimated 91µg/ml by Bradford assay.

Conclusions: The recombinant lysostaphin represented 90% of its maximum activity at 40°C and displayed good thermostability by keeping about 80% of its maximum activity at 45°C. Heat residual activity assay of recombinant lysostaphin demonstrated that the enzyme stability was up to 40°C and showed good stability at 40°C for 16 h incubation.

1. Introduction

Lysostaphin is a zinc-metalloprotease glycylglycine endopeptidase enzyme originally secreted by Staphylococcus simulans biovar staphylolyticus. Lysostaphin specifically disrupts pentaglycine crosslinks of peptidoglycan, probably between the third and fourth glycine residues, in the Staphylococcus aureus cell wall(1–3). Interestingly, lysostaphin able to lyse cells in all metabolic conditions, including growing, resting, and heat-killed(4). Lysostaphin is encoded by the lysostaphin endopeptidase gene (lss) which is present on plasmid pACK1, a large β-lactamase plasmid with a size of 55171 bp, belonging to the S. simulans(5). Lysostaphin is initially produced as a preproenzyme of 493 amino acids with three domains: an N-terminal domain as the secretion signal peptide of 36 amino acid residues, a proenzyme of 211 amino acid residues harboring 15 tandem repeats (TRs) of 13 amino acids, and a mature enzyme of 246 amino acid residues. The signal peptide is intracellularly cleavaged and propeptide detached extracellularly by a cysteine protease to yield the mature and activated lysostaphin(1, 6). The mature lysostaphin is 4.5-fold more active rather than the prolysostaphin. The mature lysostaphin consists of two domains: an N-terminal peptidase domain involved in the catalytic activity of the enzyme, and a C-terminal domain binding to the peptidoglycan(1). Previous studies reported that the C-terminal domain with 92 amino acids not involved in the enzymatic activity; however, it plays an important role in directing lysostaphin to the S. aureus cell wall(2). Lysostaphin is produced in the stationary-phase cultures of S. simulans and it seems to be synchronized with the production of other extracellular enzymes (i.e., proteases and hexosaminidases)(7, 8). The molecular weight, pI (isoelectric
point), and pH optimum of lysostaphin are about 27 kDa, 9.5, and 7.5, respectively(5). Lysostaphin exhibits a broad spectrum of anti-staphylococcal properties making it a promising candidate for numerous biotechnological applications in the fields of medical, veterinary, food industries, and researches(9, 10). Significantly, lysostaphin can kill the multidrug-resistant strains of staphylococci especially methicillin-resistant *S. aureus* (MRSA) and vancomycin-resistant *S. aureus* (VRSA)(11). On the other hand, lysostaphin is effective in lysing some other staphylococci species such as *S. epidermidis*, *S. haemolyticus*, *S. lugdunensis*, and *S. saprophyticus*(12). Lysostaphin also degrades glycine-rich proteins like insoluble elastin(13). There are some interesting features of lysostaphin making it a unique therapeutic agent, including its activity against non-dividing as well as dividing cells, its digestion by intestinal proteinases, having no influence on the gut microbiota, non-toxicity, its relative stability in conjugating with polyethylene glycol (PEG), and maintenance of its activity in human serum(1, 3). Furthermore, it has been demonstrated that the lysostaphin preserves its bacteriolytic activity in vivo, without any unwanted immune reactions, despite the presence of high-neutralizing antibody titer(14). To overproduce the recombinant lysostaphin and to purify from a safe and nonpathogenic source, we selected *Bacillus subtilis* as an expression host with high capability in the protein secretion. In the present study, we report on cloning and expression of the *S. simulans* lysostaphin enzyme gene in *B. subtilis* WB600 using expression vector pWB980. The recombinant product can be safely used as a novel antimicrobial agent in the treatment of staphylococcal infections.

2. Materials And Methods

2.1. Bacterial strains, plasmids, enzymes, and reagents

Staphylococcus simulans biovar staphylolyticus (ATCC 27848) as the source of the lysostaphin gene was obtained from Persian Type Culture Collection (PTCC, Tehran, Iran). *E. coli* DH5α was purchased from Novagen Company (Novagen, Madison, WI, USA). *Bacillus subtilis* strain WB600, the bioengineered strain with the deficient in six extracellular proteases(15), was kindly provided by Professor Sui-Lam Wong (University of Calgary, Canada). The pTZ57R/T vector (Fig. 1) provided by Fermentas Co., Ltd (Fermentas, Vilnius, Lithuania). The expression vector pWB980 (Fig. 2) was prepared from Nova Lifetech Inc., Hong Kong. The restriction enzymes *Pst*I, *Xba*I and *Eco*RI were purchased from Vivantis (Vivantis, Malaysia). T4 DNA Ligase, *pfuTurbo* DNA polymerase, and *Taq* DNA polymerase enzymes were bought from GeneON (GeneON, Nurnberg, Germany), Fermentas (Fermentas, Vilnius, Lithuania), and Cinnagen (Cinnagen, Tehran, Iran), respectively. Oligonucleotide primers were synthesized by TAG Copenhagen, Denmark. DNA Ladder O’GeneRuler 1 kb Plus was purchased from Thermo Scientific™. Broad range unstained protein standard marker was provided by Fermentas Co., Ltd. All culture media were provided by HiMedia Laboratories Pvt. Ltd., India.

2.2. Plasmid extraction and PCR cloning of lysostaphin gene
The plasmid was extracted from *S. simulans* using an optimized alkaline lysis method. Briefly, the bacterial cell pellet was resuspended in 100 µL resuspension buffer (Tris-Acetat 40 mM, Sodium-EDTA 2 mM, pH 7.9), then the cells were lysed with 200 µL lysis solution (Tris 50 mM, SDS 3%, pH 12.6) and incubated in a water bath at 65°C for 15 min, and then neutralized with 450 µL of cold potassium acetate 5 M, glacial acetic acid, pH 4.8. The mixture was centrifuged at 13,000 rpm for 10 min at 4 °C. The supernatant was mixed with an equal volume of isopropanol and placed at −20 °C for 20 min. The mixture was centrifuged at 13,000 rpm for 10 min at 25 °C. The supernatant was removed and 200 µL of 70% ethanol was added to the pellet and centrifuged at 13,000 rpm for 5 min at 25 °C. The pellet was resuspended in 50 µL dH2O. Extracted plasmid was visualized on a 1% agarose gel stained with ethidium bromide and run at 90 V for 50 min.

Specific primers for PCR amplification of the lysostaphin gene were designed according to the known lysostaphin gene sequence from *S. simulans* deposited in GenBank under accession No. M15686.

The forward primer (5'-AGATCTAGAGCTGCAACACATGAACATTCAGCA-3'), *Xba*I restriction site underlined in the primer sequence, and the reverse primer (5'-TCACTGCAGTTTATAGTTCCCAAGAACAC-3'), *Pst*I restriction site underlined in the primer sequence, were used for PCR amplification of the lysostaphin gene. The PCR reaction mixture was prepared in a total volume of 25 µl containing 10 nanograms (ng) of genomic DNA, 10 mM dNTP mix, 10 pM of each oligonucleotide primer, and 2.5 U *Taq* DNA polymerase in PCR buffer with 20 mM MgSO4. The PCR reaction was carried out in thermal cycler Peqlab Primus 25 (Peqlab Primus 25, UK) under the following steps: 5 min initial denaturation at 94 °C, followed by 35 cycles of denaturation at 94 ºC for 1 min, annealing at 58 ºC for 1 min, synthesis at 72 ºC for 1 min, followed by 10 min elongation at 72 ºC. PCR product was electrophoresed on 1% (w/v) ethidium bromide-stained agarose gel and purified using GeneJET PCR Purification Kit (Thermo Fisher Scientific) according to the manufacturer's instructions.

2.3. Cloning of lysostaphin gene

The pTZ57R/T vector and *E. coli* DH5α were used for the lysostaphin gene cloning, pWB980 expression vector and *B. subtilis* WB600 were utilized for the subcloning. The ligation reaction was done between the PCR product 600 nanogram (ng) and pTZ57R/T vector 200 ng. The ligated vector was transformed into *E. coli* DH5α by cold CaCl2 shock method. Then, 100 µl of the transformed *E. coli* DH5α was cultured aerobically in Luria–Bertani (LB) medium supplemented with 100 µg/ml ampicillin, 30 µg/ml X-gal, and 2 mM IPTG at 37 °C for overnight. The white colonies on the medium were designated and subcultured, followed by the recombinant plasmids were extracted and analyzed. The lysostaphin gene fragment was digested by *Pst*I and *Xba*I enzymes from T-vector. The expression vector pWB980 was also digested by the same enzymes (*Pst*I and *Xba*I) and purified by GeneJET Purification Kit, then ligated to the pWB980 expression vector by the standard protocols.

2.4. Transformation into *Bacillus subtilis* and construction of expression vector
B. subtilis WB600 was used for extracellular production of recombinant lysostaphin. The ligation reaction was carried out with 1 µg pWB980 plasmid and 3 µg gene fragment. Afterward, 20 µl of the ligation mixture was transformed into B. subtilis by electroporation method at 8 milliseconds and 950 V (Gene Pulser Xcell™ Electroporation System, Bio-Rad, USA). Finally, 200 µl of the transformed B. subtilis was aerobically cultured in LB medium supplemented with 10 µg/ml kanamycin (Sigma-Aldrich) at 37 °C for 16 h.

2.5. Expression of lysostaphin

B. subtilis cells with pWB980 plasmid encoding lysostaphin gene were grown in LB medium supplemented with 10 µg/ml kanamycin on a rotator shaker (180 rpm) at 37 °C to reach an optical density (OD) of 1.2–1.5 at a wavelength of 600 nm. The cells were centrifuged and the supernatant was fractionated by adding solid (NH₄)₂SO₄ at 4°C. The protein was pelleted and resuspended in phosphate buffer solution 0.1 M, pH 7.2.

2.6. SDS-PAGE and Western blotting

Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was achieved on 12% (w/v) resolving gel as described by Laemmli(16). The recombinant protein band was monitored by using SDS-PAGE following Coomassie brilliant blue G-250 staining method. The protein concentration was measured by Bradford assay using bovine serum albumin (BSA) as the standard(17). For the immunoblotting assay, a replicate gel was moved onto a nitrocellulose membrane (Macherey-Nagel™ Porablot NCP, Germany) for 1.5 h at 320 V, soaked in 5% BSA blocking solution for overnight at 4°C, then washed 3 times by TBS-T (Tris-HCl 20 mM, NaCl 150 mM, pH 7.5-Tween 0.05%). The blots were incubated with a dilution of 1:100 antiserum, followed by a 1:2000 dilution of HRP- labeled Goat Anti-Rabbit IgG (SouthernBiotech, USA) in TBS-T for 1 h. The signals were developed with DAB (3,3′-Diaminobenzidine) (Sigma-Aldrich, USA) and H₂O₂ substrate.

2.7. Bacteriolytic activity of r-lysostaphin

The bacteriolytic activity of r-lysostaphin was assayed by spectrophotometric measurements of turbidity as previously described by Marova and Kovar(18). Briefly, the reaction mixture, containing 6 ml suspension of S. aureus DSM 1104 diluted in PBS (Phosphate-buffered saline 0.1 M, pH 7.2) to reach OD₆₂₀nm=0.25, was preincubated at 37°C for 10 min and then 20 ml of r-lysostaphin was added. The changes in turbidity of the reaction mixture were determined. One unit of lysostaphin activity was defined as a total preparation affecting 50% turbidity reduction of the bacterial cell suspension at absorbance of 620 nm (A620 nm) within 10 min at 37°C in a 10 mm cuvette. The pH and temperature parameters on recombinant enzyme activity were assayed in the ranges of 5.0–10.0 and 20–60°C, respectively. The residual activity of r-lysostaphin was also studied at different temperatures and time treatments.

3. Results

3.1. Cloning of lysostaphin enzyme gene in E. coli
PCR amplification of the lysostaphin enzyme gene from *Staphylococcus simulans* showed an expected amplicon size of 744 bp (Fig. 3A). Cloning of the lysostaphin gene fragment using pTZ57R/T vector in *E. coli* DH5α host strain resulted in formation of recombinant clones harboring the gene. The recombinant plasmids were digested to 2.9 kb and 0.7 kb segments by the *Xba*1 and *Pst*I enzymes, and 2.4 kb and 1.2 kb segments by the *Mro*N1 and *Xba*I enzymes verifying the gene cloning and orientation properly (Fig. 3B).

3.2. Construction of *B. subtilis* expression vector pWB980

Recombinant plasmid clones carrying the lysostaphin gene were double digested by *Xba*I and *Pst*I enzymes, then the gene fragment was properly ligated into the pWB980 expression vector with the appropriate orientation under the control of P43 promoter. The ligated vector was successfully transferred into *Bacillus subtilis* WB600 using electroporation method. Several transformant clones were grown in LB agar containing 10 µg/ml kanamycin at 37°C for 48 h, then verified by PCR, enzymatic digestion, and sequencing. Our results showed that 7 out of the 9 transformants contained plasmids with correct orientation of the gene fragment which were candidate for gene expression. Double digestion of recombinant plasmids by *Eco*RI and *Xba*I into 0.5 kb and 4 kb fragments confirmed the correct orientation exactly (Fig. 3C).

3.3. Expression of lysostaphin gene

SDS-PAGE analysis of target protein showed a band corresponding to an about 27-kDa r-lysostaphin (Fig. 4A). This protein was confirmed on Western immunoblot by using HRP-conjugated Goat Anti-Rabbit IgG shown in Fig. 4B. The recombinant protein concentration was estimated approximately 91 µg/ml by the Bradford protein assay.

3.4. Enzymatic activity of r-lysostaphin

The temperature dependence of enzyme activity was assayed in the range of 20–70°C. The optimum temperature activity of r-lysostaphin was reported 37–40°C; however, the enzyme represented 90% of its maximum activity at 40°C. Significantly, the r-lysostaphin displayed good thermostability by keeping about 80% of its maximum activity at 45°C as a well-known high temperature for the denaturation of most enzymes (Fig. 5A). The pH profile studies on the staphylolytic activity of r-lysostaphin in the range of 5.0–10.0 showed maximum activity at pH 8 (Fig. 5B). Heat residual activity assay of r-lysostaphin ranging from 10 to 80°C for the different time intervals of 30 min, 2, 4, 8, 12, and 16 h demonstrated that the enzyme stability was up to 40°C. Notably, the recombinant enzyme showed good stability at 40°C for 16 h incubation (Fig. 6).

4. Discussion

In the present study, the mature lysostaphin from *S. simulans* was successfully cloned and expressed in the *B. subtilis* WB600 under the transcriptional control of the strong and regulated P43 promoter of pWB980 expression system. The pWB980 vector contains an auto-inducible P43 promoter, sacB signal
sequence, multiple cloning site (MCS), and kanamycin-resistance marker derived from B. subtilis (19). The P43 promoter has been previously characterized, validated, and applied in the constitutive overexpression of exogenous genes within B. subtilis vectors (20). It has been shown that the P43 promoter to be recognized and active throughout the exponential and lag phases of growth due to the probable recognition of the promoter by both sigma factor 55, the major sigma factor, and sigma factor 37, the lag phase sigma factor. The signal sequence sacB allows the heterologous proteins to be secreted into the culture medium (19). We did not add any inducers during the fermentation process of B. subtilis expressing r-lysostaphin due to the constitutive auto-inducible P43 promoter of pWB980 vector. We obtained extracellular secreted r-lysostaphin in the expected molecular weight of mature lysostaphin with 27 kDa. We were able to produce 91 µg/ml r-lysostaphin which was an impressive concentration of recombinant protein in comparison with the previous studies (21–23). Former approaches for lysostaphin production purified the enzyme from the crude extract of S. simulans (4). The products might be contaminated by pyrogens and/or allergens. Also, the mature lysostaphin is cleaved off during the extract method process. Therefore, purity and yield of wild-type lysostaphin were very limited (21, 23). The other methods, including ion-exchange chromatography, isoelectric focusing (5), Sephadex G-50/100 gel filtration (24), Sephacryl S-200 gel filtration chromatography (21), and intein-chitin-binding domain (CBD) system (13) have been reported for the purification of lysostaphin from the culture filtrate of S. simulans. Cloning and expression of the lysostaphin gene have been reported in various strains such as E. coli BL21 (DE3) as a common host for the production of heterologous proteins (23). However, there are some occasions where E. coli is not host strain of choice and alternative hosts like B. subtilis may become attractive (25). Obviously, a large amount of the target protein is synthesized as insoluble form and deposited in the inclusion bodies of E. coli expression systems. Solubilization and refolding the target proteins from its insoluble form lead to a major loss in specific protein activities (22). B. subtilis has emerged as a highly popular expression host possessing advantages (i.e., non-pathogenicity, absence of significant codon bias, presence of secretory mechanisms, and a well-defined sporulation and germination system), and it is considered as a safe expression host, as far as pharmaceutical/therapeutics is concerned and numerous proteins have been expressed in it (26). Interestingly, B. subtilis produces high levels of extracellular proteins and express them directly into the culture medium. Foreign-secreted proteins typically remain well-folded and in their biologically active form facilitating downstream processing and purifications (27). B. subtilis WB600 host strain has deficient in six extracellular proteases, including nprE, aprA, epr, bpf, nprB, and mpr, which completely overcome the degradation of B. subtilis proteases problem (28).

This is the first report on cloning and expression of the lysostaphin enzyme gene in B. subtilis WB600 using pWB980 expression system, which secretes a high level of r-lysostaphin enzyme several folds rather than the production of r-lysostaphin by pET and some other T7-based expression hosts E. coli BL21(DE3), BL21 star (DE3), BL21-A1, T7 Express, RV308(DE3), and HMS174(DE3). The optimum temperature and pH activity of r-lysostaphin were found at 37–40°C and 8, respectively which is in concordance to the previous reports (29, 30).
The recombinant approach from a non-pathogen, safe, and high potent organism source of lysostaphin as well as easy downstream processing and purification can be considered for industrial-scale production of the valuable therapeutic staphylococcal agent. Other approaches, such as codon optimization and/or site-directed mutagenesis in the target gene sequence may be effective to overproduce the lysostaphin with a high specific activity.

Declarations

Ethics approval

Ethical approval was not required in this study.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

Not applicable.

Competing interests

The authors declare that there is no conflict of interest regarding the publication of this article.

Funding

This research received no specific funding/grant.

Authors' contributions

Babak Elyasi far, Mehran Ragheb, Reza Rahbar, and Ladan Mafakher performed experiments. Neda Yousefi Nojookambari drafted and provided critical revision of the article. All authors contributed to the acquisition of data, analysis, and interpretation. Spyridon Achinas provided the final approval of the
version to publish. Sajjad Yazdansetad wrote the paper and contributed to the conception and design of the study.

Acknowledgments

We hereby appreciate to Vice-chancellor for Research & Technology of Golestan University of Medical Sciences (GOUMS) for valuable contributions in this research. A very special thanks goes to the Faculty of Science and Engineering, University of Groningen, The Netherlands for the meritorious collaboration.

References

1. Bastos M do C de F, Coutinho BG, Coelho MLV. Lysostaphin: A Staphylococcal Bacteriolysin with Potential Clinical Applications. Pharmaceuticals. 2010 Apr;3(4):1139–61.
2. Gründling A, Schneewind O. Cross-Linked Peptidoglycan Mediates Lysostaphin Binding to the Cell Wall Envelope of Staphylococcus aureus. J Bacteriol. 2006 Apr;188(7):2463–72.
3. Kumar JK. Lysostaphin: an antistaphylococcal agent. Appl Microbiol Biotechnol. 2008 Sep;80(4):555–61.
4. Iversen O-J, Grov A. Studies on Lysostaphin. Separation and Characterization of Three Enzymes. Eur J Biochem. 1973 Oct;38(2):293–300.
5. Mądry A, Jendroszek A, Dubin G, Wladyka B. Production of Lysostaphin by Nonproprietary Method Utilizing a Promoter from Toxin–Antitoxin System. Mol Biotechnol. 2019 Oct;61(10):774–82.
6. Thumm G, Gotz F. Studies on prolysostaphin processing and characterization of the lysostaphin immunity factor (Lif) of Staphylococcus simulans biovar staphylolyticus. Mol Microbiol. 1997 Mar;23(6):1251–5.
7. Recsei PA, Gruss AD, Novick RP. Cloning, sequence, and expression of the lysostaphin gene from Staphylococcus simulans. Proc Natl Acad Sci. 1987 Mar;84(5):1127–31.
8. Neumann VC, Heath HE, LeBlanc PA, Sloan GL. Extracellular proteolytic activation of bacteriolytic peptidoglycan hydrolases of Staphylococcus simulans biovar staphylolyticus. FEMS Microbiol Lett. 1993 Jun;110(2):205–11.
9. Szweda P, Schielmann M, Kotlowski R, Gorczyca G, Zalewska M, Milewski S. Peptidoglycan hydrolases-potential weapons against Staphylococcus aureus. Appl Microbiol Biotechnol. 2012 Dec;96(5):1157–74.
10. Mohamed MF, Hamed MI, Panitch A, Seleem MN. Targeting Methicillin-Resistant Staphylococcus aureus with Short Salt-Resistant Synthetic Peptides. Antimicrob Agents Chemother. 2014 Jul;58(7):4113–22.
12. Peacock SJ. Staphylococcus. In: Topley & Wilson’s Microbiology and Microbial Infections. Chichester, UK: John Wiley & Sons, Ltd; 2010.

13. Szweda P, Pladzyk R, Kotlowski R, Kur J. Cloning, Expression, and Purification of the Staphylococcus simulans Lysostaphin Using the Intein-Chitin-Binding Domain (CBD) System. Protein Expr Purif. 2001 Aug;22(3):467–71.

14. Dajcs JJ, Thibodeaux BA, Girgis DO, Shaffer MD, Delvisco SM, O’Callaghan RJ. Immunity to lysostaphin and its therapeutic value for ocular MRSA infections in the rabbit. Invest Ophthalmol Vis Sci. 2002 Dec;43(12):3712–6.

15. Wu XC, Lee W, Tran L, Wong SL. Engineering a Bacillus subtilis expression-secretion system with a strain deficient in six extracellular proteases. J Bacteriol. 1991;173(16):4952–8.

16. LAEMMLI UK. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature. 1970 Aug;227(5259):680–5.

17. Bradford M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal Biochem. 1976 May;72(1–2):248–54.

18. Márová I, Dadák V. Modified simplified method for isolation of lysostaphin from the culture filtrate of Staphylococcus staphylolyticus. Folia Microbiol (Praha). 1993 Jun;38(3):245–52.

19. Cho H-Y, Yukawa H, Inui M, Doi RH, Wong S-L. Production of minicellulosomes from Clostridium cellulovorans in Bacillus subtilis WB800. Appl Environ Microbiol. 2004 Sep;70(9):5704–7.

20. Cui W, Han L, Suo F, Liu Z, Zhou L, Zhou Z. Exploitation of Bacillus subtilis as a robust workhorse for production of heterologous proteins and beyond. World J Microbiol Biotechnol. 2018 Oct;34(10):145.

21. Sharma R, Sharma PR, Choudhary ML, Pande A, Khatri GS. Cytoplasmic expression of mature glycylglycine endopeptidase lysostaphin with an amino terminal hexa-histidine in a soluble and catalytically active form in Escherichia coli. Protein Expr Purif. 2006 Jan;45(1):206–15.

22. Boksha IS, Lavrova N V., Grishin A V., Demidenko A V., Lyashchuk AM, Galushkina ZM, et al. Staphylococcus simulans recombinant lysostaphin: Production, purification, and determination of antistaphylococcal activity. Biochem. 2016 May;81(5):502–10.

23. Farhangnia L, Ghaznavi- Rad E, Mollaee N, Abtahi H. Cloning, Expression, and Purification of Recombinant Lysostaphin From Staphylococcus simulans. Jundishapur J Microbiol. 2014 May;7(5).

24. Wadström T, Vesterberg O. STUDIES ON ENDO-β-N-ACETYLGALACOSAMINIDASE, STAPHYLOLYTIC PEPTIDASE, AND N-ACETYLMURAMY-L-ALANINE AMIDASE IN LYSOSTAPHIN AND FROM STAPHYLOCOCCUS AUREUS. Acta Pathol Microbiol Scand Sect B Microbiol Immunol. 2009 Aug;79B(2):248–64.

25. Calero P, Nikel PI. Chasing bacterial chassis for metabolic engineering: a perspective review from classical to non-traditional microorganisms. Microb Biotechnol. 2019 Jan;12(1):98–124.

26. Omidinia E, Samadi A, Taherkhani H, Khatami S, Moazami N, Rashid Pouraie R, et al. Cloning and expression of Bacillus sphaericus phenylalanine dehydrogenase gene in Bacillus subtilis cells: purification and enzyme properties. World J Microbiol Biotechnol. 2002;18:593–597.
27. Westers L, Westers H, Quax WJ. Bacillus subtilis as cell factory for pharmaceutical proteins: a biotechnological approach to optimize the host organism. Biochim Biophys Acta - Mol Cell Res. 2004 Nov;1694(1–3):299–310.

28. Liu Y-H, Lu F-P, Li Y, Yin X-B, Wang Y, Gao C. Characterisation of mutagenised acid-resistant alpha-amylase expressed in Bacillus subtilis WB600. Appl Microbiol Biotechnol. 2008 Feb;78(1):85–94.

29. Nour El-Din HT, Elhosseiny NM, El-Gendy MA, Mahmoud AA, Hussein MMM, Attia AS. A Rapid Lysostaphin Production Approach and a Convenient Novel Lysostaphin Loaded Nano-emulgel; As a Sustainable Low-Cost Methicillin-Resistant Staphylococcus aureus Combating Platform. Biomolecules. 2020 Mar;10(3):435.

30. Szweda P, Gorczyca G, Filipkowski P, Zalewska M, Milewski S. EFFICIENT PRODUCTION OF Staphylococcus simulans LYSOSTAPHIN IN A BENCHTOP BIOREACTOR BY RECOMBINANT Escherichia coli. Prep Biochem Biotechnol. 2014 May;44(4):370–81.