Holographic superconductors with $z = 2$ Lifshitz scaling

Yanyan Bu

State Key Laboratory of Theoretical Physics,
Institute of Theoretical Physics, Chinese Academy of Science,
Beijing 100190, People’s Republic of China and
Max-Planck-Institut für Physik (Werner-Heisenberg-Institut),
Föhringer Ring 6, 80805 München, Germany

(Dated: May 3, 2014)

Abstract

We use gauge/gravity duality to explore strongly coupled superconductors with dynamical exponent $z = 2$. In the probe limit we numerically establish background solutions for the matter fields and plot the condensate versus the dimensionless temperature. We then investigate electromagnetic perturbations in order to compute the AC conductivity and also calculate the spectral function. Our results for the condensate and conductivity are qualitatively similar to those of the AdS superconductor. However, we find that (for both s- and p-wave) the condensate does not approach a constant at very low temperature and the conductivity goes to one from below but never exceeds it in the high frequency limit, in contrast to the AdS black hole. We do not see a peak at nonzero frequency in the imaginary part of the AC conductivity along the x direction for the p-wave case. These features are due to the nontrivial dynamical exponent. To be specific, the black hole geometry considered in this work is anisotropic between space and time, very different from the Schwarzschild-AdS black hole, which results in different asymptotic behaviors of temporal and spatial components of gauge fields than those in the Schwarzschild-AdS black hole.

PACS numbers: 11.25.Tq
I. Introduction

The application of gauge/gravity duality [1] to the investigations of strongly coupled systems has gained broad interest ranging from QCD phenomena at low energy to strongly correlated condensed matter physics, see, e.g., [2] for some recent reviews. Holographic superconductors have been constructed in [3, 4] by putting the Abelian Higgs model or SU(2) gauge field into the AdS black hole spacetime. When the Hawking temperature is decreased to a critical value, the black hole becomes unstable against small perturbations and develops hair by condensing some field to stabilize the system. This can be considered as the holographic realization of the superconducting phase transition. This kind of construction for holographic superconductors takes the (asymptotically) AdS black hole spacetime as the starting point. According to the AdS/CFT correspondence, the AdS black hole geometry corresponds to a relativistic CFT at finite temperature. However, many condensed matter systems do not have relativistic symmetry and it is therefore very natural and interesting to generalize these holographic superconducting models to non-relativistic situations.

On the other hand, inspired by the dynamical exponent in condensed matter physics near the critical point, many papers have appeared on the construction of black hole geometries with
anisotropic scaling, such as the Lifshitz black hole. The dual geometry of Lifshitz fixed points was
first proposed in [3] and then generalized to finite temperature in [1]. In short, we now have a
dual geometry of a strongly coupled anisotropic field theory at finite temperature. It is
expected that non-relativistic AdS/CFT will help us to understand some puzzles in unconventional
condensed matter physics.

In [8] a variety of strange metallic behaviors have been realized by using gravity duals of the
Lifshitz fixed points and some string theoretical realizations of this geometry have been proposed in
that paper[2]. More recently, holographic fermions have been studied in [10] to produce a non-Fermi
liquid behavior. With these studies in mind, we now generalize holographic superconductors under
the relativistic AdS/CFT framework to the Lifshitz black hole geometry in order to explore the
effects of the dynamical exponent and also in the hope to distinguish some universal properties of
holographic superconductors. In actual fact, holographic s-wave superconductors with a Lifshitz
fixed point have been constructed in [11, 12] and in Hořava-Lifshitz gravity in [13]. However, the
work of [12] produced only the condensate and the results of [11] seemed surprising, especially the
very small real part of the AC conductivity. We therefore more carefully study these systems here
in order to clarify some confusions which appeared in [11] and also reveal some properties of p-wave
superconductors with Lifshitz scaling.

Although there is a dynamical exponent, which makes the Lifshitz geometry behave quite
differently from asymptotically AdS spacetime, we find that qualitative behaviors of holographic
superconductors with Lifshitz scaling (for both s-wave and p-wave) are basically the same as those
of the AdS black hole case. The condensate has mean-field behavior near the critical temperature.
A gap does appear when decreasing the temperature, which is manifest once looking at the real
part of the AC conductivity. There is also a delta peak near zero frequency for the conductivity,
which is a signal of DC superconductivity. The real part of the conductivity approaches one in the
high frequency limit where the imaginary part goes to zero. These common characteristics of holo-
graphic superconductors appear to be robust phenomena and can be taken as universal properties
of gauge/gravity duality when applied to the study of strongly coupled condensed matter systems.

We also find some other interesting features in our work. The first is that all the condensates do
not approach some constant in the zero temperature limit compared to the BCS superconductor
and the AdS black hole holographic superconductors. The real part of the conductivity never
exceeds one and the imaginary part of the conductivity just approaches zero from above but never

1 Actually, there appear many works by taking this kind of non-relativistic metrics to reveal some strange features
of condensed matter system, see [2] for an incomplete list.
2 Another string theory realization of Lifshitz-like fixed points was investigated in [4].
goes below zero in the high frequency limit. What is more striking is that there is no pole at nonzero frequency for the imaginary part of the AC conductivity $\sigma_{xx}(\omega)$ in the p-wave case. We therefore attribute these nontrivial features to the effect of the Lifshitz scaling. More specifically, the black hole geometry considered in this work is anisotropic between space and time, very different from the AdS black hole, which results in different asymptotic behaviors of temporal and spatial components of gauge fields than previous conclusions in AdS black hole.

Our paper is organized as follows. In section II we briefly review basic aspects of asymptotically Lifshitz black holes for further studies. Section III is concerned with the construction of s-wave superconductors in the Lifshitz black hole geometry. With the numerical solutions one can plot the condensate as well as the free energy difference between the normal and superconducting phases versus the dimensionless temperature. We find that the free energy difference is always greater than zero when below the critical temperature T_c, which proves that the superconducting phase is at least thermodynamically stable. Then we move on to investigate the electromagnetic fluctuations of the system and numerically calculate the AC conductivity using linear response theory. The spectral functions for the electromagnetic perturbations are calculated as well. In section IV the corresponding results for the p-wave superconductor are presented. A short summary is given in section V.

II. HOLOGRAPHIC SETUP: THE GRAVITY DUAL OF THE LIFSHTIZ FIXED POINT

In this section, we concisely provide some backgrounds for the gravity dual of the Lifshitz fixed point. As mentioned in section I, there exist field theories with anisotropic scaling symmetry between the temporal and spatial coordinates. This is found for example in some condensed matter systems near the critical point,

$$t \to \lambda^z t, \quad x^i \to \lambda x^i,$$

where z is called the dynamical exponent. One geometrical realization of this scaling symmetry comes from the generalized gauge/gravity duality: we can map this scaling symmetry in the field theoretical side to some geometrical symmetry in the gravity side. Then it is straightforward to write down the metric with this type of scaling symmetry,

$$ds^2 = L^2 \left(-r^{2z} dt^2 + r^2 \sum_{i=1}^{d} dx_i^2 + \frac{dr^2}{r^2} \right),$$

where $0 < r < \infty$ and L is the radius of curvature of the geometry. This geometry was first proposed in [5] where the action sourcing this geometry was also given. The scale transformation
takes the following form,

\[t \to \lambda^z t, \quad x^i \to \lambda x^i, \quad r \to \frac{r}{\lambda}. \]

(3)

When \(z = 1 \), the above geometry reduces to the usual \(AdS_{d+2} \) spacetime and the symmetry group is enlarged to \(SO(d + 1, 2) \).

According to the gauge/gravity duality, to put the dual field theory at finite temperature one can study the metric with a black hole and the Hawking temperature of the black hole is identified as the temperature of the dual field theory. It is therefore of great interest to construct a finite temperature version of the above geometry, i.e. the so-called Lifshitz black hole. However, it is difficult to obtain analytic black hole solutions in Lifshitz spacetimes. There are some attempts to construct Lifshitz black holes\(^3\) and we here follow the work of \[^6\]. It was found that action of the form

\[S = \frac{1}{16\pi G_{d+2}} \int d^{d+2}x \sqrt{-g} \left(R - 2\Lambda - \frac{1}{2} \partial_\mu \phi \partial^\mu \phi - \frac{1}{4} e^{\lambda \phi} F_{\mu \nu} F^{\mu \nu} \right), \]

(4)

where \(\Lambda \) is the cosmological constant, \(\phi \) is a massless scalar and \(F_{\mu \nu} \) is an abelian gauge field strength, admits the following black hole geometry,

\[ds^2 = L^2 \left(-r^{2z} f(r) dt^2 + r^2 \sum_{i=1}^{d} dx_i^2 + \frac{dr^2}{r^2 f(r)} \right), \]

(5)

\[f(r) = 1 - \frac{r_0^{z+d}}{r^{z+d}}, \quad \Lambda = -\frac{(z + d - 1)(z + d)}{2L^2}. \]

(6)

To support the above black hole geometry, one also needs to give the backgrounds for \(\phi \) and \(F_{rt} \),

\[e^{\lambda \phi} = r^{-2d}, \quad \lambda^2 = \frac{2d}{z-1}, \]

\[F_{rt} = q_0 r^{z+d-1}, \quad q_0^2 = 2L^2(z - 1)(z + d). \]

(7)

Evidently, choosing the dynamical exponent \(z \) to be 1 reduces the Lifshitz black hole to the Schwarzschild AdS black hole in \(d + 2 \)-dimensions. The Hawking temperature and the entropy of the black hole are,

\[T = \frac{z + d}{4\pi} r_0^z, \quad S_{en} = \frac{L^d V_d}{4G_{d+2}} r_0^d, \]

(8)

where \(V_d \) denotes the volume of the \(d \)-dimensional space.

\[^3\] See \[^4\] \[^5\] for an incomplete list of the constructions of black hole geometries with anisotropic scaling symmetry.
We do a coordinate transformation $u = r_0/r$ to map the holographic direction r into a finite interval $[0,1]$ as we find that it is more convenient to use this coordinate system when carrying out numerical calculations. What’s more, we will focus on a 4-dimensional bulk theory and choose the dynamical exponent $z = 2$. With these choices, the bulk geometry is reduced to,

$$ds^2 = L^2 \left(-\frac{r_0^{2z}}{u^{2z}} f(u) dt^2 + \frac{r_0^2}{u^2} (dx^2 + dy^2) + \frac{du^2}{u^2 f(u)} \right), \quad f(u) = 1 - u^{z+2}. \quad (9)$$

In this new coordinate system, the horizon is located at $u = 1$ and $u = 0$ denotes the conformal boundary where the dual field theory lives.

III. HOLOGRAPHIC S-WAVE SUPERCONDUCTORS WITH LIFSHITZ SCALING

This section and the next are the central parts of our work. In this section we focus on aspects of s-wave superconductor. In subsection III A we list the equations of motion for the background fields and solve them by a shooting method. Subsection III B is devoted to the studies of the electromagnetic perturbations of the system.

A. Solution for the background fields

In [16], it was shown that a charged AdS black hole supports charged scalar hair if the charge is large enough. Later this idea was generalized to the neutral AdS black hole in [3], which is the first model of an s-wave holographic superconductor. More specifically, it is constructed from the Abelian Higgs model in the AdS black hole background. The action for this system is,

$$S = \int d^4 x \sqrt{-g} \left(R + \frac{6}{L^2} - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - |\partial_\mu \Psi - iqA_\mu \Psi|^2 - V(|\Psi|) \right), \quad (10)$$

where we choose $V(|\Psi|) = m^2 |\Psi|^2$ for simplicity. This is the minimal Lagrangian of the gravitational dual which holographically describes a superconducting phase transition. As mentioned before, we work in the probe limit, i.e, the black hole geometry is fixed and feels no effect of the matter fields. Above the critical temperature, the black hole background is stable and the scalar field Ψ can be set to zero. This corresponds to the normal phase. When the temperature is decreased to the critical value, the black hole background becomes unstable against small perturbations and the scalar field wants to condense in order to stabilize the system. Once this happens, the black hole develops hair and the system goes through a superconducting phase transition. The scalar field Ψ holographically models the order parameter of a conventional superconductor and gets a nontrivial profile only in the superconducting phase. As the AdS/CFT correspondence
maps a strongly coupled field theory to a weakly coupled gravity system, the holographic method is expected to give a description of strongly coupled superconductors in contrast to conventional BCS theory. However, it is still far from being clear as to the pairing mechanism in holographic superconductors. Due to the conformal characteristic of the AdS space, the chemical potential is usually introduced to explicitly break the conformal invariance and to make the temperature scale meaningful. This is achieved by turning on the time component of the U(1) gauge field.

Having fixed the black hole geometry, the equations of motion for A_μ and Ψ can be easily extracted from the Euler-Lagrange equations and are listed here for further studies in later subsections,

\[
\frac{1}{\sqrt{-g}} \partial_\mu (\sqrt{-g} F^{\mu\nu}) = iq [\Psi^* (\partial^\nu \Psi - iq A^\nu \Psi) - \Psi (\partial^\nu \Psi^* + iq A^\nu \Psi^*)],
\]

\[
\partial_\mu [\sqrt{-g} (\partial^\mu \Psi - iq A^\mu \Psi)] = \sqrt{-g} \left[V'(|\Psi|^2) \frac{\Psi}{2|\Psi|} + iq A^\mu (\partial_\mu \Psi - iq A_\mu \Psi) \right].
\]

From the radial component of eq. (11) one can show that the scalar field can be taken as real. Therefore, the ansatz for the backgrounds of the gauge and scalar fields are

\[
A = \phi(u) dt, \quad \Psi = \psi(u).
\]

Recalling the Lifshitz black hole background given in eq. (9), we obtain the following equations of motion,

\[
\phi'' + \frac{z-1}{u} \phi' - \frac{2\psi^2}{u^2 f(u)} \phi = 0,
\]

\[
\psi'' + \left[\frac{f'(u)}{f(u)} - \frac{z+1}{u} \right] \psi' + \frac{u^{2z-2} \phi^2}{f^2(u)} \psi - \frac{m^2 L^2}{u^2 f(u)} \psi = 0,
\]

where we have for simplicity chosen the scalar potential $V(\Psi)$ as $m^2 \Psi^2$, giving mass to Ψ, and set the charge $q^2 L^2 = 1$. The prime in these equations denotes derivative with respect to u and this notation will be used in the following.

Before continuing, some remarks are in order. Actually, in eqs. (14, 15), we have rescaled the fields ϕ and ψ for convenience. When the dynamical exponent z is nontrivial, the rescaling is different between ψ and ϕ,

\[
\phi \rightarrow \frac{z+2}{4\pi T} \phi, \quad \psi \rightarrow \left(\frac{z+2}{4\pi T} \right)^{1/z} \psi.
\]

The superconducting phase transition is a spontaneous breaking of the electromagnetic symmetry, which should be reflected in the holographic description in some sense. Strictly speaking, the gauge
symmetry in the bulk corresponds to a global symmetry on the boundary field theory according to gauge/gravity duality and therefore we have no electromagnetic symmetry on the boundary. Then the holographic superconductor model should at most be thought of as holographic superfluidity. However, as discussed in [1] this model can produce many features of superconductors and we can ignore this subtlety.

We now have a look at the asymptotic behaviors of the background fields ϕ and ψ. Near the horizon, one must have $\phi(1) = 0$ for its norm to be finite and the scalar field should also be finite there. Near the conformal boundary, we have the following asymptotic behavior from the Frobenius analysis of eqs. (14) and (15) near the singularity $u = 0$,

$$\phi(u \to 0) \sim \mu + \rho u^{2-z} \quad (z \neq 2) \quad \text{or} \quad \phi(u \to 0) \sim \rho + \mu \log u \quad (z = 2),$$

(17)

and

$$\psi(u \to 0) \sim \psi^{(\nu_+)} u^\nu_+ + \psi^{(\nu_-)} u^\nu_-,$$

(18)

where the scaling dimension ν_\pm of the scalar operator \mathcal{O} dual to the bulk scalar ψ is given by $\nu_\pm = \frac{z+2 \pm \sqrt{(z+2)^2 + 4m^2}}{2}$. It is explicit that the BF bound for the scalar mass in Lifshitz background is now changed to $m^2 \geq \frac{-(z+2)^2}{4}$ for 4-dimensional bulk. To obtain explicit behavior for these two fields near the conformal boundary, we need to specify the mass square of the scalar field and the dynamical exponent. We here choose $z = 2$ and $m^2 = 0, -3$ (which are both above the BF bound).

For the exponent $z = 2$, the boundary behavior of the $\phi(u)$ field has a logarithmic term due to degenerate indices of eq. (14) near the conformal boundary $u = 0$. Now the physical result is also changed: we should identify the constant term ρ as the charge density as it is a normalizable mode with respect to the logarithmic term and the non-normalizable logarithmic term μ as the chemical potential. Fortunately, this happens only for the time component of the gauge field and the final result for the conductivity does not change too much. We will come to see this when studying the AC conductivity along the x direction for the p-wave case.

From the boundary behavior of the scalar field ψ, we can directly read off the expectation value of the dual operator \mathcal{O}. When $m^2 = 0$, the indices $\nu = 0$ and 4,

$$\psi(u \to 0) \sim \psi^{(0)} + \psi^{(4)} u^4.$$

(19)

To make the superconducting phase transition a spontaneous breaking of symmetry, we should impose that

$$\psi^{(0)} = 0 \quad \text{and} \quad \langle \mathcal{O}_4 \rangle \sim \psi^{(4)}.$$

(20)

This kind of asymptotic behavior for the bulk field also happens in the study of p-wave holographic superconductor by taking the D3/D3 model in [17].
Therefore, there is only one theory for this choice of the scalar mass squared. While for $m^2 = -3$ the indices $\nu = 1$ or 3,
\[\psi(u \to 0) \sim \psi^{(1)} u + \psi^{(3)} u^3. \] (21)
Evidently, the two modes in the above equation are both normalizable according to $[8]$, and in order to make the theory stable, we should either impose
\[\psi^{(1)} = 0 \quad \text{and} \quad \langle O_3 \rangle \sim \psi^{(3)} \] (22)
or
\[\psi^{(3)} = 0 \quad \text{and} \quad \langle O_1 \rangle \sim \psi^{(1)}. \] (23)
We now have two theories for $m^2 = -3$ corresponding to dimension 1 or dimension 3 order parameters, respectively. In the following analysis, we will concentrate on the dimension 3 case because we find that the ground state of the dimension 1 theory is numerically unstable.

With the boundary conditions mentioned above, we can now use a numerical shooting method to solve the coupled nonlinear eqs. ($[14], [15]$). The condensates corresponding to operators O_3 and O_4 are plotted in FIG. 1.

![FIG. 1. The condensates of the s-wave superconductor for the dimensionless 3D operator O_3 (blue): $\sqrt[3]{\langle O_3 \rangle}/T_c$ and 4D operator O_4 (red): $\sqrt[4]{\langle O_4 \rangle}/T_c.$](image)

From this figure, we see that the condensates go to zero at the critical temperature T_c. However, they do not approach some fixed constants as the temperature $T \to 0$, which is different from
both conventional BCS theory of weakly coupled superconductors and AdS black hole holographic superconductors. We may attribute this effect to the nontrivial dynamical exponent $z \neq 1$. We also find that the expectation values for the operators $\sqrt[3]{\langle O_3 \rangle}$ and $\sqrt[4]{\langle O_4 \rangle}$ are much larger than the BCS predictions at zero temperature. This is consistent with the results of AdS black hole holographic superconductors. Perhaps this is due to the fact that the strongly interacting nature of the holographic superconductor in contrast to the BCS theory.

In the mean field theory for the superconductor, the order parameters have a square root behavior near the critical temperature T_c,

$$\langle O \rangle \sim (T_c - T)^{1/2}. \quad (24)$$

By fitting these curves, we find the mean field behavior also holds in our results. Specifically, for the dimension 3 theory:

$$\langle O_3 \rangle \approx (18.9117T_c)^3(1 - T/T_c)^{1/2} \quad \text{when} \quad T \to T_c, \quad (25)$$

where the critical temperature $T_c \approx 0.0351935\mu$. For the dimension 4 theory:

$$\langle O_4 \rangle \approx (35.5940T_c)^4(1 - T/T_c)^{1/2} \quad \text{as} \quad T \to T_c, \quad (26)$$

with the critical temperature $T_c \approx 0.0229931\mu$.

The relation between the chemical potential and charge density is plotted in FIG. 2. We see that the profile has a small deviation from the linear behavior in the superconducting phase. There is one critical value for the chemical potential where the charge density becomes nonzero. This is actually the critical point where the superconducting phase transition occurs.

At the end of this subsection, we plot the free energy for the two theories, which can be taken as one piece of evidence that the superconducting phase transition does happen when the temperature is decreased to the critical one. With the equations of motion for the backgrounds ϕ and ψ, we can reduce the action \ref{action} to some simpler expression by integrating by parts. Then, the free energy difference between the normal and superconducting phases is

$$\Delta \Xi_{N-SC} = \frac{V_2}{2g_4^2} \rho_0^{z+2} \int_0^1 du \frac{u^{z-1}}{f(u)} (\phi(u)\psi(u))^2 \equiv \frac{V_2}{2g_4^2} \rho_0^{z+2} \Delta F. \quad (27)$$

FIG. 3 is for the plot of the free energy difference. Clearly, the superconducting phase is thermally stable when $T < T_c$.

10
FIG. 2. The profile of the charge density as a function of the chemical potential in the superconducting phase for the s-wave superconductors: the blue one is for the dimension 3 theory and the red one is for the dimension 4 theory.

FIG. 3. The dimensionless free energy difference between the normal and the superconducting phases of the s-wave superconductor for \mathcal{O}_3 (blue) and \mathcal{O}_4 (red) theories, respectively.

B. Fluctuation analysis: AC conductivity and the spectral function

To calculate the AC conductivity of this system, we need to study the electromagnetic perturbation of the above background (here, we do not consider fluctuation of the scalar field). For
the s-wave superconductor, the conductivity is isotropic and it is therefore equivalent to study any spatial component of the gauge field. We here choose radial gauge for the electromagnetic fluctuation, i.e., \(a_u = 0 \). For the purpose of the AC conductivity, we take the following ansatz for the electromagnetic perturbation \(a_x(t, \vec{x}, u) \)

\[
a_x(t, \vec{x}, u) = e^{-i\omega t}a_x(u),
\]

where we have taken spatial momentum to zero. Then, the equation of motion for \(a_x(u) \) is,

\[
a''_x + \left[\frac{f'(u)}{f(u)} - \frac{z-1}{u} \right] a'_x + \left[\frac{\tilde{\omega}^2 u^{2z-2}}{f(u)^2} - \frac{2\psi^2}{u^2 f(u)^2} \right] a_x = 0,
\]

where the dimensionless frequency \(\tilde{\omega} \) is defined as \(\tilde{\omega} = (z+2)\omega/4\pi T \). According to linear response theory, the conductivity is given by the Kubo formula,

\[
\sigma(\omega) = G(\omega, \vec{k} = 0) \frac{i\omega}{i\omega},
\]

where the retarded Green’s function \(G(\omega, \vec{k} = 0) \) for the operator dual to gauge field can be computed according to the prescription given in [19].

Near the horizon, we should take the ingoing wave boundary condition for the electromagnetic field fluctuation in order to calculate the retarded Green’s function,

\[
a_x(u) = (1 - u)^{-i\tilde{\omega}/4}[1 + a_1^x (1 - u) + a_2^x (1 - u)^2 + a_3^x (1 - u)^3 + \cdots],
\]

where we have set the scale of \(a_x \) to be one by making use of the linearity of the fluctuation equation. The coefficients in the above expansion can be uniquely determined once the background \(\psi \) and the frequency \(\tilde{\omega} \) are specified.

Near the conformal boundary \(u = 0 \), the general solution to the fluctuation is of the form,

\[
a_x(u) = A_0^x + A_1^x u^2 + \cdots.
\]

The conductivity can be expressed as

\[
\sigma(\omega) = \frac{1}{i\omega} \frac{A_1^x}{A_0^x}
\]

by using the Kubo formula [30]. By the way, we also give the definition of the spectral function \(\mathcal{R} \) plotted later,

\[
\mathcal{R} = -2\text{Im} G(\omega, \vec{k} = 0) = -2\frac{A_1^x}{A_0^x}
\]

Generically, the equation of motion for the electromagnetic fluctuation [29] cannot be solved analytically due to the presence of the scalar field. The philosophy of the numerical method is that
we can use the power series solution as in eq. (31) and do numerical integration from the horizon to the conformal boundary. Then we can extract the coefficients A_x^0 and A_x^1 and therefore get the conductivity. Our numerical results for the AC conductivity are plotted in FIG. 4 and FIG. 5.

![Plot 1](image1)

FIG. 4. The real (imaginary) part of the AC conductivity of the s-wave superconductor for the dimension 3 theory at $T/T_c = 1.0, 0.798694, 0.269798, 0.0864351$ from top to bottom (bottom to top).

![Plot 2](image2)

FIG. 5. The real (imaginary) part of the AC conductivity of the s-wave superconductor for the dimension 4 theory at $T/T_c = 1.0, 0.565265, 0.298191, 0.0879648$ from top to bottom (bottom to top).

From the plots, we find that the real part of the conductivity approaches one in the high frequency limit, which is equal to the results of the normal phase. This is explicit when taking a look at eq. (29): the effect of the condensed field ψ can be neglected at large $\tilde{\omega}$. Compared to the result for the conductivity in [11], our result is of order 1 although these profiles are qualitatively similar. We found that the results for dimension 3 and dimension 4 theory are qualitatively the same. We also see that a gap forms as the temperature is lowered and the gap gets increasingly deep until the conductivity is exponentially small, which is the same as the AdS superconductor [3].

In the imaginary part of the conductivity, there is a pole at zero frequency. This can be explained
from the Kramers-Krönig relation

\[\text{Im}[\sigma(\omega)] = -P \int_{-\infty}^{\infty} \frac{d\omega'}{\pi} \frac{\text{Re}[\sigma(\omega')]}{\omega' - \omega}, \tag{35} \]

where \(P \) denotes the principal value of the integration. From this formula, we can see that the real part of the conductivity contains a delta function, \(\text{Re}[\sigma(\omega)] = \pi \delta(\omega) \), only when the imaginary part has a pole, \(\text{Im}[\sigma(\omega)] = 1/\omega \). Actually, there is a peak at zero frequency for the imaginary part of the conductivity as can be seen in the right plots of FIGs. 4 and 5.

In FIG. 6 we plot the results for the spectral function corresponding to the gauge field fluctuation \(a_x \). The two figures are consistent with the real part of the conductivity: a gap will appear when the condensate is nonzero (equivalently, when the temperature is low enough) and the spectral functions have a linear behavior with respect to the frequency at large \(\omega/T \) (which corresponds to large \(\omega/T \) behavior of the conductivity).

\[\text{FIG. 6. The spectral functions of the s-wave superconductor for the dimension 3 theory (blue) at } T/T_c = 1.0, 0.798694, 0.269798, 0.0864351 \text{ and the dimension 4 theory (red) at } T/T_c = 1.0, 0.565265, 0.298191, 0.0879648 \text{ from top to bottom.} \]

\[^5 \text{In fact, we can explicitly plot the delta peak in the real part of the conductivity. However, when carrying out the numerical calculations, it is a little hard because we find that this peak will appear at about } \omega \sim 10^{-20} \text{ and the numerical computations are not stable there.} \]
IV. HOLOGRAPHIC P-WAVE SUPERCONDUCTORS WITH LIFSHITZ SCALING

In this section we present the results of the p-wave superconductor in the Lifshitz black hole background. The structure of this section is the same as the previous one.

A. Solution for the background fields

As we have seen in the last section, the s-wave holographic superconductor is very simple and also elegant in describing some important features of superconductors. However, the Abelian-Higgs model for the s-wave superconductor appears to be less universal: we have to specify a potential for the scalar. On the other hand, the p-wave superconductor has already been observed in some experiments of condensed matter physics. It is natural as well as interesting to extend the construction of holographic s-wave superconductors to the p-wave situation. This has been achieved in \cite{4} by introducing the SU(2) gauge field into the AdS_4 black hole background. In this p-wave model the chemical potential and the order parameter have been unified into one field, the nonabelian gauge field, and the action is uniquely determined by gauge invariance. In this sense, the p-wave holographic superconductor is more universal than the Maxwell-Scalar system for the s-wave superconductor. The action is simply of the form,

$$S = \frac{1}{2\kappa^2} \int d^4x \sqrt{-g} \left[R + \frac{6}{L^2} - \frac{1}{4} F_{\mu\nu}^a F^{a\mu\nu} \right],$$

(36)

where the SU(2) gauge field strength is defined as $F_{\mu\nu}^a = \partial_\mu A_\nu^a - \partial_\nu A_\mu^a + \epsilon^{abc} A_\mu^b A_\nu^c$. The Yang-Mills equation for the gauge field is

$$\partial_\mu (\sqrt{-g} F^{a\mu\nu}) + \sqrt{-g} \epsilon^{abc} A_\mu^b F^{c\mu\nu} = 0.$$

(37)

The gauge field ansatz is taken as

$$A = \phi(u) \tau^3 dt + \psi(u) \tau^1 dx,$$

(38)

where τ^a is the generator of the SU(2) gauge group. Plugging this ansatz into the Yang-Mills equation (37) results in

$$\phi'' + \frac{z - 1}{u} \phi' - \frac{\psi^2}{f(u)} \phi = 0,$$

(39)

\footnote{Another approach to p-wave superconductor where the boundary field theory is known is based on D-brane probe in black brane geometry \cite{20}.}
and

\[\psi'' + \left[\frac{f'(u)}{f(u)} + \frac{1 - z}{u} \right] \psi' + \frac{u^{2z-2} \phi^2}{f(u)^2} \psi = 0. \]

(40)

As in the s-wave model, boundary behavior of the background fields \(\phi(u) \) and \(\psi(u) \) is listed as below having chosen \(z = 2 \),

\[\phi(u \to 0) \sim \rho + \mu \log u, \]

(41)

\[\psi(u \to 0) \sim \psi^{(0)} + \psi^{(2)} u^2. \]

(42)

The logarithmic term appears again for the \(\phi \) field, which suggests that we should identify the constant term \(\rho \) as the charge density. We also impose \(\psi^{(0)} \) to be zero in our numerical calculations to insure that the superconducting phase transition is a spontaneous breaking of the symmetry. Then the value of \(\psi^{(2)} \) is proportional to the expectation value of the p-wave order parameter, i.e. \(\langle O_2 \rangle \sim \psi^{(2)} \). Our numerical results are plotted in the following figures. The free energy difference between the normal and superconducting phases is plotted in FIG. 7. As in the s-wave model, the superconducting phase is stable compared to the normal phase when \(T < T_c \). The charge density as a function of the chemical potential can be found in FIG. 8. Explicitly, these plots are very similar to the s-wave case.

\[\Delta F \]

\[\frac{T}{T_c} \]

FIG. 7. The free energy difference between the normal and the superconducting phases for the p-wave.

The condensate of the p-wave order parameter \(\langle O_2 \rangle \) is plotted in FIG. 9. It is clear to see from this plot that the condensate does not approach some fixed value when \(T \to 0 \), which is the same
as the results of the s-wave model mentioned in the last section. Once again, this value is much larger than that of the AdS superconductor. By fitting the curve near the phase transition, we find a mean field behavior for the condensate,

\[\langle \mathcal{O}_2 \rangle \approx (17.8217T_c)^2 (1 - T/T_c)^{1/2} \quad \text{when} \quad T \rightarrow T_c, \]

where the critical temperature is \(T_c \approx 0.0367064\mu \).

FIG. 8. Density as a function of \(\mu \) for the p-wave superconductor.

FIG. 9. The condensate \(\langle \mathcal{O}_2 \rangle \) of the p-wave superconductor.
B. Fluctuation analysis: AC conductivities and spectral functions

Owing to the appearance of the background for the gauge field, say A_0^3, the SU(2) gauge symmetry is explicitly broken to the $U(1)_3$ generated by the rotation in the colored 12 plane. This residual symmetry is identified as the electromagnetic symmetry. For the conductivity, we need to perturb the system and investigate its linear response. The conductivity of the p-wave superconductor is anisotropic, which makes the fluctuation analysis more complicated than the s-wave case. We here focus on the decoupled mode $a_3^3(t,u)$, decoupled sector $\{a_1^1(t,u), a_2^2(t,u), a_3^3(t,u)\}$ and leave the full fluctuation analysis including spatial momentum for future investigations.

For the fluctuation mode $a_3^3(t,u) \sim e^{-i\omega t}a_3^3(u)$, which is decoupled from other modes, we have the following equation,

$$a_3^{3''} + \left[\frac{f(u)'}{f(u)} - \frac{z - 1}{u} \right] a_3^{3'} + \left[\frac{u^{2z-2}\omega^2}{f(u)^2} - \frac{\psi^2}{f(u)} \right] a_3^3 = 0.$$ (44)

This mode looks like the electromagnetic fluctuation in the scalar system for the s-wave model and the procedure for numerical computation of the conductivity along the y direction is of course in parallel with the s-wave situation. We here only present the final results for the conductivity in FIG. 10.

![FIG. 10. The real (imaginary) part of the AC conductivity along the y direction of the p-wave superconductor at different temperature $T/T_c = 1.0, 0.588587, 0.171829, 0.079889$ from top to bottom (bottom to top).](image)

We then move on to the conductivity along the x direction. For this purpose, one should analyze the fluctuations $\{a_1^1(t,u), a_2^2(t,u), a_3^3(t,u)\} \sim e^{-i\omega t} \{a_1^1(u), a_2^2(u), a_3^3(u)\}$, which is also decoupled.
from other modes but is self-coupled. There are three coupled equations of second order,

\[
\begin{align*}
 \dddot{a}_t^1 &+ \frac{z-1}{u} \ddot{a}_t^1 + \frac{\phi \psi}{f(u)} a_x^3 = 0, \\
 \dddot{a}_t^2 &+ \frac{z-1}{u} \ddot{a}_t^2 - \frac{\psi^2}{f(u)} (i \omega a_x^3 + \psi a_t^2) = 0, \\
 \dddot{a}_t^3 &+ \frac{f(u)}{f(u)} + \frac{1-z}{u} \ddot{a}_t^3 - \frac{u^{2z-2}}{f(u)^2} (-\omega^2 a_x^3 + \phi \psi a_t^1 + i \omega \psi a_t^2) = 0,
\end{align*}
\]

(45)

and two constraints of first order:\footnote{These constraints come from the radial gauge we have chosen for the gauge field fluctuation, i.e., \(a_x^2 = 0 \) when deriving the equations of motion.}

\[
\begin{align*}
 i \omega a_t^1' + \phi a_t^2' - \phi' a_t^2 &= 0, \\
 -i \omega a_t^2' + \phi a_t^1' - \phi' a_t^1 + \frac{f(u)}{u^{2z-2}} (\psi a_x^3' - a_x^3 \psi') &= 0.
\end{align*}
\]

(46)

Near the horizon \(u = 1 \), we choose the ingoing wave boundary condition for different modes and also impose that the time components vanish at the horizon,

\[
\begin{align*}
 a_x^3 &= (1-u)^{-i/2} \left[1 + a_x^{3(1)} (1-u) + a_x^{3(2)} (1-u)^2 + a_x^{3(3)} (1-u)^3 + \cdots \right], \\
 a_t^1 &= (1-u)^{-i/2} \left[a_t^{1(1)} (1-u) + a_t^{1(2)} (1-u)^2 + a_t^{1(3)} (1-u)^3 + \cdots \right], \\
 a_t^2 &= (1-u)^{-i/2} \left[a_t^{2(1)} (1-u) + a_t^{2(2)} (1-u)^2 + a_t^{2(3)} (1-u)^3 + \cdots \right],
\end{align*}
\]

(47)

where we have used the linearity of eqs. (45) to set the scale of \(a_x^3 \) at the horizon to 1. The coefficients in the above expansions can be fully determined by plugging the expansion into eqs. (45) and counting powers of \((1-u)\). Then, eqs. (47) can provide initial conditions for these second order differential equations (45). In fact, we use these power solutions to do numerical integration from the horizon to the conformal boundary as mentioned in the last section.

At the conformal boundary, the general solutions to eqs. (45) are of the form,

\[
\begin{align*}
 a_t^1 &= A_t^{1(0)} + A_t^{1(1)} \log u + \cdots, \\
 a_t^2 &= A_t^{2(0)} + A_t^{2(1)} \log u + \cdots, \\
 a_x^3 &= A_x^{3(0)} + A_x^{3(1)} u^2 + \cdots
\end{align*}
\]

(48)

We can also expand the constraint equations near the conformal boundary, but it is of no use for later calculations.

As argued in \cite{footnote1}, for the conductivity to be a gauge invariant quantity, we need to construct a new mode from \(a_t^1, a_t^2, a_x^2 \) which should be invariant under the gauge transformation that respects
our gauge choice. We here do not go into the details of the construction of this field but write down the mode directly,

\[\tilde{a}_3^x = a_3^x + \psi \frac{i\tilde{\omega}a_2^x + \phi a_1^x}{\tilde{\omega}^2 - \tilde{\omega}_2^2}. \] (49)

Plugging the boundary behavior as in eqs. \[48\] into the newly defined mode and expanding it near the conformal boundary,

\[\tilde{a}_3^x = \tilde{A}_3^x(0) + \tilde{A}_3^x(1) u^2 + \cdots, \] (50)

with

\[\tilde{A}_3^x(0) = A_3^x(0), \quad \tilde{A}_3^x(1) = \frac{A_3^1(0)}{\mu} \psi(2) + A_3^3(1). \] (51)

Then, the conductivity along the \(x \) direction is straightforwardly defined as

\[\sigma_{xx}(\omega) = \frac{1}{i\omega} \frac{\tilde{A}_3^x(1)}{\tilde{A}_3^x(0)}. \] (52)

Notice that the above formula is very different from equation (4.19) of \[4\] due to the appearance of the logarithmic terms in the time component of the SU(2) gauge field (for both the background and the fluctuations). The definition for the spectral function is similar to the s-wave case and we list them in what follows for completeness,

\[\mathcal{R} = -2 \frac{\tilde{A}_x^3(1)}{\tilde{A}_x^3(0)} \] (53)

along the \(x \)-direction;

\[\mathcal{R} = -2 \frac{\tilde{A}_y^3(1)}{\tilde{A}_y^3(0)} \] (54)

along the \(y \)-direction.

In FIG. \[11\] we plot numerical results for the conductivity along the \(x \) direction. We can see that the results are very similar to those of the \(y \) direction stated in FIG. \[10\]. Explicitly, there is a DC infinity in the conductivity along the \(x \) direction. What is strikingly different from the \(AdS_4 \) p-wave superconductor is that there is no pole for the imaginary part of the conductivity at nonzero frequency. Mathematically, this is due to the logarithmic term appearing in the boundary behavior for the time component fluctuations of the gauge field. We will take this as the effect of the nontrivial dynamical exponent \(z \neq 1 \). The real (imaginary) part of the conductivity approaches 1 (0) more slowly than the \(y \) direction case, which is consistent with the spectral function.
FIG. 11. The real (imaginary) part of the AC conductivity along x direction of the p-wave superconductor at $T/T_c = 1.0, 0.588587, 0.171829, 0.079889, 0.0691493$ from top to bottom (bottom to top).

FIG. 12. The spectral functions for the modes a^3_y (red) and a^3_z (blue) at temperature corresponding to the conductivity pictures. This can be explained by the anisotropic characteristic of the p-wave superconductor.

The qualitative behavior is similar to the corresponding s-wave case: at high frequency the real part of the conductivity approaches 1 while the imaginary part goes to 0; a peak also appears at zero frequency, indicating a DC superconductivity; the gap forms as the temperature decreases and
it gets increasingly deep until the conductivity is exponentially small. The appearance of the delta peak at zero frequency can also be well understood by the Kramers-Kröning relation \(^{(35)}\). Although the conductivity \(\sigma_{yy}(\omega)\) behaves qualitatively similar to \(\sigma_{xx}(\omega)\), the anisotropic characteristic of the p-wave superconductor can also be seen from the two conductivities: the real part of the \(\sigma_{xx}(\omega)\) grows much slowly than that of \(\sigma_{yy}(\omega)\). These features are common with the AdS superconductors. One main difference is that there is no pole at nonzero frequency for the imaginary part of \(\sigma_{xx}(\omega)\) as mentioned before. Another main difference from the AdS black hole superconductor is that the imaginary part of the conductivity never goes below zero and approaches zero quite slowly.

V. SUMMARY

In this work we explored properties of holographic superconductors with nontrivial dynamical exponent by putting the Abelian-Higgs model (s-wave) or SU(2) gauge field (p-wave) into the Lifshitz black hole geometry constructed in \[^{[6]}\]. We found that the order parameters \(\langle O \rangle\) all have mean field behavior \((T - T_c)^{1/2}\) near the critical temperature \(T_c\), which is qualitatively consistent with the AdS superconductors as well as BCS theory. One difference between our results and previous investigations on condensates is that the condensates do not approach some fixed values in the zero temperature limit\[^{[8]}\]. We then plot the free energy difference between the normal and superconducting phases, which can be taken as evidence of the occurrence of the superconducting phase transition. We also numerically compute the AC conductivities and they nearly behave in the same way: a peak appears at zero frequency, indicating a DC superconductivity; the gap forms as the temperature decreases and it gets increasingly deep until the real part of the conductivity gets exponentially small. The anisotropic characteristic of the p-wave superconductor can be seen from the difference between \(\sigma_{xx}(\omega)\) and \(\sigma_{yy}(\omega)\): their growth rates as increasing the frequency are very different. But we do not see a pole at nonzero frequency for the imaginary part of \(\sigma_{xx}(\omega)\), which does exist in the p-wave superconductor when taking the \(AdS_4\) black hole geometry. Another feature is that all the real parts of the conductivities approach 1 (but never exceed this value) in contrast to those of the AdS case. With respect to this, the imaginary parts of the conductivities approach zero in the high frequency limit but never go below zero. We attribute these differences from the AdS case to the effect of nontrivial dynamical exponent. More specifically, the black hole geometry considered in this work is anisotropic between space and time, very different from

\[^{[8]}\] We would like to state that this feature is not due to the numerical approach used here. Actually, we already used our numerical method to carry out similar computations in other black hole backgrounds \[^{[21]}\], of asymptotic AdS type and found that the condensed operator approach constant value. Therefore, we conclude that the feature found here is due to the nontrivial dynamical exponent \(z\).
the Schwarzschild-AdS black hole, which results in different asymptotic behaviors of temporal and spatial components of gauge fields than previous conclusions in Schwarzschild-AdS black hole. These common features also imply that general gauge/gravity duality is a useful and powerful tool in producing some universal properties of strongly coupled system in condensed matter physics.

ACKNOWLEDGMENTS

The author would like to thank Johanna Erdmenger, Jonathan Shock, Xin Gao and Da-Wei Pang, Xu Zhang for useful discussions. This work was supported by the MPS-CAS Doctoral Training program.

[1] J. M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998), arXiv:hep-th/9711200 [hep-th]
[2] J. Erdmenger, N. Evans, I. Kirsch, and E. Threlfall, Eur. Phys. J. A 35, 81 (2008), arXiv:0711.4467 [hep-th]
[3] S. S. Gubser and A. Karch, Ann. Rev. Nucl. Part. Sci. 59, 145 (2009), arXiv:0901.0935 [hep-th]
[4] S. A. Hartnoll, Class. Quant. Grav. 26, 224002 (2009), arXiv:0903.3246 [hep-th]
[5] C. P. Herzog, J. Phys. A 42, 343001 (2009), arXiv:0904.1975 [hep-th]
[6] U. Gursoy, Mod. Phys. Lett. A 23, 3349 (2009), arXiv:0904.2756 [hep-th]
[7] J. McGreevy, Adv. High Energy Phys. 2010, 723105 (2010), arXiv:0909.0518 [hep-th]
[8] S. A. Hartnoll, C. P. Herzog, and G. T. Horowitz, Phys. Rev. Lett. 101, 031601 (2008), arXiv:0803.3295 [hep-th]
[9] JHEP 0812, 015 (2008), arXiv:0810.1563 [hep-th]
[10] JHEP 0811, 033 (2008), arXiv:0805.2960 [hep-th]
[11] JHEP 0808, 106005 (2008), arXiv:0808.1725 [hep-th]
[12] JHEP 0805, 126003 (2009), arXiv:0905.3183 [hep-th]
[13] arXiv:0812.0530 [hep-th]
[14] arXiv:0809.2020 [hep-th]
[15] D.-W. Pang, JHEP 1004, 120 (2010), arXiv:0912.2403 [hep-th]
[16] E. Brynjolfsson, U. Danielsson, L. Thorlacius, and T. Zingg, 1008, 027 (2010), arXiv:1003.5361 [hep-th]
[17] C. Hoyos-Badajoz, A. O'Bannon, and J. M. Wu, 1009, 086 (2010), arXiv:1007.0590 [hep-th]
[18] T. Nishioka and H. Tanaka, 1102, 023 (2011), arXiv:1010.6075 [hep-th]
[19] S. A. Hartnoll, D. M. Hofman, and D. Vegh, 1108, 096 (2011), arXiv:1105.3197 [hep-th]
[20] J. P. Lemos and D.-W. Pang, 1106, 122 (2011), arXiv:1106.2291 [hep-th]
[21] L. Huijse, S. Sachdev, and B. Swingle, Phys. Rev. B 85, 035121 (2012), arXiv:1112.0573 [cond-mat.str-el]
[22] Y. S. Myung, Eur. Phys. J. C 72, 2116 (2012), arXiv:1203.1367 [hep-th]
[23] S. A. Hartnoll, J. Polchinski, E. Silverstein, and D. Tong, JHEP 1004, 120 (2010), arXiv:0912.1061 [hep-th]
[24] T. Azeyanagi, W. Li, and T. Takayanagi, JHEP 0906, 084 (2009), arXiv:0905.0688 [hep-th]
[21] Y.-Y. Bu, Nucl.Phys. B864, 806 (2012)