Prognostic impacts and dynamic changes of cohesin complex gene mutations in de novo acute myeloid leukemia

Cheng-Hong Tsai1,2,3, Hsin-An Hou1, Jih-Luh Tang1,2, Yuan-Yeh Kuo1,4, Yu-Chiao Chiu5, Chien-Chin Lin1,6,7, Chieh-Yu Liu6, Mei-Hsuan Tseng1, Tsung-Yi Lin1, Ming-Chih Liu5, Chia-Wen Liu5, Liang-In Lin10, Ming Yao1, Chi-Cheng Li1,2, Shang-Yi Huang1, Bor-Sheng Ko1, Szu-Chun Hsu1,6, Chien-Ting Lin1,2, Shang-Ju Wu1, Chien-Yuan Chen1, Woei Tsai1, Eric Y. Chuang5,11, Wen-Chien Chou1,6 and Hwei-Fang Tien1

Cohesin complex is a multimeric protein complex, composed of four core subunits, including SMC1A, SMC3, RAD21, and either STAG1 or STAG2 proteins. They form a ring-shaped structure, and mediate sister chromatid cohesion and segregation during mitosis and meiosis. Recently, the cohesin gene mutations have been reported in myeloid neoplasms1–7, but studies regarding their clinical and prognostic relevance and dynamic changes in de novo acute myeloid leukemia (AML) patients are limited and the findings are controversial.

In this study, we aimed to investigate the clinical, biological, and prognostic implications of cohesin gene mutations in a large cohort of de novo AML patients. To evaluate the sequential changes of cohesin and co-occurring gene mutations, serial analyses of gene mutations by targeted next-generation sequencing (NGS) were performed in 386 samples from 116 patients during follow-ups. To the best of our knowledge, this is the first report to address the dynamic changes of cohesin gene mutations during the clinical course in de novo AML. We also investigated the pathophysiological pathways by mRNA expression profiling.

A total of 391 consecutive patients with newly diagnosed de novo non-M3 AML, consisting of 217 males and 174 females, were recruited. The coding sequences of cohesin complex genes were screened by Ion Torrent NGS (Thermo Fisher Scientific, MA, USA). All mutations were confirmed by Sanger sequencing. For non-synonymous missense mutations, we included only those reported to be pathogenic solely by computational tools. Thirty-seven patients (9.5%) had cohesin gene mutations, most commonly in RAD21 (15 of 391, 3.8%), followed by STAG2 (12 of 390, 3.1%) and SMC1A (8 of 391, 2.0%). Except for one patient with concurrent mutations in STAG2 and RAD21, the mutations in these component genes were mutually exclusive, suggesting a convergence of biological effects of these mutations (Fig. 1a). Mutations in STAG2 and RAD21 were mainly truncations or frameshift mutations (10/12 and 12/15, respectively), while those in SMC1A and SMC3 were mostly missense mutations (7/8 and 2/2, respectively; Fig. 1b).

Cohesin gene mutations were mutually exclusive with unfavorable-risk cytogenetics as well as complex chromosomal changes (P = 0.003 and P = 0.023, respectively, Supplementary Table S1), against that cohesin gene mutations lead to premature sister chromatid separation in AML. Therefore, cohesin gene mutations may take part in leukemogenesis by alternative mechanisms. Interestingly, six (16.7%) of the thirty-eight patients with t(8;21) had cohesin gene mutations, all in RAD21, while none of the patients with inv(16) had any cohesin mutation, compatible with previous reports1,8, indicating that concerted interaction of cohesin gene mutations with RUNX1-RUXX1T1 fusion plays a role in the leukemogenesis of some AML patients with t(8;21). In the 34 patients with acute promyelocytic leukemia and t(15;17) who were
Fig. 1 (continued)
excluded from this study, none harbored a cohesin gene mutation (0% vs. 9.5%, \(P = 0.059 \), data not shown).

We screened mutations in 20 other genes, including FLT3, NPM1, CEBPA, RUNX1, ASXL1, IDH1, IDH2, TET2, DNMT3A, NRAS, KRAS, JAK2, KIT, PTPN11, SRSF2, U2AF1, SF3B1, WT1, TP53, and MLL/PTD, to investigate the difference of the mutation profiles between cohesin gene-mutated and wild-type (WT) AML patients. Among the 37 patients with cohesin gene mutations, 30 (81.1%) patients had at least one other gene mutation simultaneously. The most common concurrent molecular events in cohesin gene-mutated cohort were FLT3/ITD (21.6%) and NPM1 mutations (21.6%). None of the patients with cohesin gene mutations had TP53 mutations. Compared with other cohesin gene mutations, STAG2 mutations more frequently co-occurred with RUNX1 mutations (27.3% vs. 0%, \(P = 0.023 \) and tended to co-occur with ASXL1 mutations (25.0% vs. 4.0%, \(P = 0.084 \)), but less frequently with NPM1 mutations (0% vs. 32.0%, \(P = 0.036 \); Fig. 1a and Supplementary Table S2).

Until now, reports regarding prognostic relevance of cohesin gene mutations in AML are very limited. In this study, survival analyses were performed in the 286 (73.1%) patients who received standard chemotherapy, including 26 cohesin gene-mutated and 260 WT patients. The complete remission (CR), induction death, and relapse rate were similar between these two groups (Supplementary Table S3). With a median follow-up time of 53.0 months (range, 0.1–160), patients with cohesin gene mutations had significantly longer overall survival (OS) and disease-free survival (DFS) than those without the mutation (not reached vs. 20.0 ± 2.3 months, \(P = 0.036 \) and 24.5 ± 0.0 vs. 9.0 ± 0.8 months, \(P = 0.038 \), respectively, Fig. 1d). The detail of univariate analysis for OS and DFS was shown in Supplementary Table S4.

In multivariate Cox proportional hazards regression analysis for OS and DFS, cohesin gene mutations were independent favorable factors for both OS and DFS (Table 1). These results were in contrast to the report of Thol et al. in which cohesin gene mutations had no significant implication on OS and DFS (OS hazard ratio (HR)}
In that report, the incidence (5.9%) of cohesin gene mutations in AML was relatively low, compared with that in other reports (8.8–13.3%)\(^4,6,7\), and patients with secondary AML were included. Thota et al. reported that in patients with myelodysplastic syndrome (MDS) who survived more than 12 months, cohesin gene mutations were associated with a shorter survival (HR 2.1, \(P = 0.017\)). The prognostic implication of cohesin gene mutations in primary AML patients (\(n = 101\)) was not analyzed in that report\(^6\). The reasons why the cohesin gene mutations have opposite prognostic impact on AML and MDS remain unknown. Similar findings have been found in \(SF3B1\) mutation, which has a negative impact on de novo AML patients\(^2,10\), but a favorable impact on patients with MDS\(^12\).

In order to evaluate the dynamic changes of cohesin and co-occurring gene mutations, we serially analyzed 386 samples from 116 patients, including 19 with and 97 without cohesin gene mutations at diagnosis (Table 2), for 54 gene mutations involved in myeloid malignancies by TruSight Myeloid Panel (Illumina, San Diego, CA, USA). HiSeq platform (Illumina) was used for sequencing with a median reading depth of 12,000×. Among the patients with cohesin gene mutations, 17 patients lost the original mutations at CR, while the mutations remained detectable at CR in UPN 1 and 12 (Fig. 1e), although with lower allele frequencies. The disease subsequently relapsed in these two patients with rising mutant allele burdens indicating the presence of minimal residual disease. Most other concurrent mutations in the 19 patients studied disappeared at CR but \(DNMT3A\) mutations were detectable in four patients (UPN 12, 16, 20, and 22), in whom \(IDH1\) (UPN 12), \(U2AF1\) (UPN 20 in CR2), or \(NPM1\) and \(NRAS\) mutations (UPN 22) also remained detectable at the same time. Two (UPN 28 and 37) of the eight cohesin-mutated patients who had paired samples at both diagnosis and relapse lost the original cohesin gene mutations (both in \(RAD21\)) during disease evolution. Graphical representations of clonal evolution in three representative patients were shown in Fig. 1e. Among the 97 patients without cohesin gene mutations at diagnosis, no one acquired the mutation at relapse, indicating that the mutations played little role in the progression of AML.

Furthermore, we applied Bradley–Terry model to evaluate the temporal order of gene mutations in cohesin-mutated patients (Supplementary Fig. S1). Only samples with statistically significant and recurrent gene–gene pairwise precedence were included in the analysis. The \(STAG2\) mutations occurred as an early event, while \(RAD21\) and \(SMC1A\) mutations occurred relatively late. In comparison of gene mutations between secondary and de novo AML, Lindsley et al. defined \(STAG2\) mutation as a

Variables	Disease-free survival	Overall survival
	RR 95% CI P value	RR 95% CI P value
	Lower Upper	Lower Upper
Total cohort (\(n = 286\))		
Age\(^a\)	1.916 1.401 2.621 < 0.001	2.462 1.755 3.453 < 0.001
WBC\(^b\)	1.356 0.983 1.871 0.063	1.552 1.096 2.198 0.013
Karyotype\(^c\)	1.553 0.982 2.456 0.060	1.936 1.219 3.076 0.005
\(NPM1/FLT3\)-ITD\(^d\)	0.260 0.121 0.560 0.001	0.240 0.097 0.592 0.002
\(CEBPA\) double mutations \(^e\)	0.504 0.301 0.844 0.009	0.352 0.182 0.678 0.002
\(RUNX1\)\(^e\)	0.977 0.593 1.611 0.928	1.012 0.593 1.728 0.965
\(ASXL1\)\(^e\)	0.973 0.563 1.683 0.922	1.134 0.646 1.990 0.662
\(IDH2\)\(^a\)	0.845 0.518 1.377 0.498	0.490 0.260 0.924 0.028
Cohesin gene\(^e\)	0.487 0.256 0.926 0.028	0.489 0.242 0.992 0.047
\(SF3\)\(^a\)	1.992 1.252 3.171 0.004	1.702 1.006 2.879 0.048
\(TP53\)\(^a\)	1.512 0.817 2.797 0.188	1.697 0.916 3.146 0.093

\(RR\) relative risk, CI confidence interval, SF splicing factor genes
\(^a\)Age > 50 years relative to age \(\leq 50\) years (the reference)
\(^b\)WBC > 50,000/\(\mu\)l vs. \(\leq 50,000/\(\mu\)l
\(^c\)Unfavorable cytogenetics vs. others
\(^d\)\(NPM1\)-/FLT3-ITD vs. other subtypes
\(^e\)Mutated vs. wild type

0.96, \(P = 0.89\) and RFS HR 0.62, \(P = 0.18\), respectively\(^3\).
Table 2 Sequential studies in the AML patients with cohesin gene mutations at diagnosis

UPN	Interval (months)	Disease status	Karyotype	Mutations	
				Cohesin	Others
1	Diagnosis	49, XY, t(6;11)(q27;q23),+8,+9,+19	STAG1 (F174L)	—	
0.8	CR1	46, XY	STAG1 (F174L)	—	
2.0	Relapse	46, XY	STAG1 (F174L)	—	
5	Diagnosis	46, XY, t(8;21)(q22;q22)	RAD21 (Y215Ter)	—	
0.9	CR1	46, XY	—	—	
12.0	Relapse	46, XY, t(8;21)(q22;q22)	RAD21 (Y215Ter)	KIT	
6	Diagnosis	NM	STAG2 (exon 19/20 splicing)	BCOR, BCORL1, CSF3R, RUNX1	
1.0	CR1	46, XY	—	—	
9	Diagnosis	46, XY	STAG2 (21D742GfsTer5), RAD21 (G547AfsTer65)	IDH2, SRSF2, CEBPA	
2.6	CR1	46, XY	—	—	
11	Diagnosis	46, XY	STAG2 (S633LfsTer4)	BCOR, DNMT3A, IDH2	
14.0	Relapse	46, XY	STAG2 (S633LfsTer4)	BCOR, DNMT3A, IDH2	
6.8	CR2	46, XY	—	—	
12	Diagnosis	46, XY	STAG2 (Q556Ter)	IDH1, DNMT3A	
1.1	CR1	ND	STAG2 (Q556Ter)	IDH1, DNMT3A	
8.2	Relapse	ND	STAG2 (Q556Ter)	IDH1, DNMT3A	
4.4	CR2	ND	STAG2 (Q556Ter)	IDH1, DNMT3A	
2.3	Relapse 2	ND	STAG2 (Q556Ter)	IDH1, DNMT3A	
16	Diagnosis	46, XY	SMC3 (R661P)	DNMT3A, FLT3/ITD, NPM1	
1.3	CR1	46, XY	—	DNMT3A	
18	Diagnosis	46, XX	SMC1A (R496H)	FLT3/ITD, NPM1, TET2	
1.0	CR1	ND	—	—	
19	Diagnosis	46, XY	SMC1A (G707A)	—	
10.0	CR1	46, XY	—	—	
20	Diagnosis	47, XY,+8	SMC1A (E767del)	DNMT3A, IDH2, NRAS, U2AF1	
1.7	CR1	47, XY	—	DNMT3A	
13.8	Relapse	48, XY,+8,+15	SMC1A (E767del)	DNMT3A, IDH2, NRAS, U2AF1	
2.1	CR2	ND	—	DNMT3A, U2AF1	
8.1	Relapse2	48, XY,+X,+15	SMC1A (E767del)	DNMT3A, IDH2, NRAS, U2AF1, RUNX1, CLUX1	
22	Diagnosis	45, X−Y	SMC1A (R693Q)	DNMT3A, NPM1, NRAS, FLT3/ITD	
0.9	CR1	NM	—	DNMT3A, NPM1, NRAS	
23.9	Relapse	45, X−Y	SMC1A (R693Q)	DNMT3A, NPM1, FLT3/ITD	
1.2	CR2	46, XY	—	—	
23	Diagnosis	46, XY	SMC1A (G17V)	IDH1	
1.2	CR1	46, XY	—	—	
24	Diagnosis	45, X−Y	SMC1A (R816H)	NPM1, DNMT3A	
secondary-type mutation because it was 95% specific for secondary AML. However, other studies suggested that STAG2 mutation might serve as an early event in leukemogenesis in AML.

We further profiled genome-wide mRNA expression in 10 cohesin-mutated and 163 WT patients to explore the molecular mechanisms underlying cohesin gene mutations. One hundred and sixty-two differentially expressed genes were identified between the cohesin-mutated and WT AML (41.5-fold change and t-test P < 0.05, Supplementary Fig. S2 and Supplementary Table S5). Ingenuity Pathway Analysis (IPA, Ingenuity Systems, Redwood City, CA, USA) and Gene Set Enrichment Analysis (GSEA) revealed that these genes were significantly associated with differentiation of blood cells, proliferation of blood cells, apoptosis, and cell death of blood cells (Supplementary Table S6 and Supplementary Fig. S3).

Besides, a network constructed by IPA showed ERK1/2 was a hub gene among the differentially expressed genes, implying involvement of this multifunctional kinase in cohesin gene mutation-driven signaling (Supplementary Fig. S4A). ERK1/2 still played a central role in the networks constructed by the differentially expressed genes between STAG2-mutated and WT patients, and RAD21-mutated and WT patients (Supplemental Figs. S4B and S4C).

In conclusion, our study showed that cohesin gene mutations were recurrent in de novo AML and had favorable impacts on both OS and DFS. Further, cohesin gene mutations were strongly associated with the biological function related to proliferation and differentiation of blood cells. Sequential analyses showed cohesin gene mutations might be lost during disease evolution in de novo AML patients, but none of the patients without the mutation acquired a novel one during the clinical course. Further prospective studies with larger cohorts are warranted to confirm our findings.

Acknowledgments
This work was partially sponsored by grants MOST 100-2628-B-002-003-MY3, 103-2628-B-002-008-MY3, 103-2923-B-002-001, MOST 102-2325-B-002-028, 103-2314-B-002-130-MY3, 103-2314-B-002-131MY3, and 104-2314-B-002-128-MY4 from the Ministry of Science and Technology (Taiwan), National Taiwan University Hospital-National Taiwan University joint research grant (UN103-051), Far Eastern Hospital and NTUH joint grant 105-FTN24, and MOHW 105-TDU-B-211-134004 from the Ministry of Health and Welfare (Taiwan), NTUH.
Author details
1Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan. 2Tai-Cheng Stem Cell Therapy Center, National Taiwan University Hospital, Taipei, Taiwan. 3Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan. 4Graduate Institute of Oncology, National Taiwan University, Taipei, Taiwan. 5Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan. 6Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan. 7Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, Taiwan. 8Biostatistics Consulting Laboratory, School of Nursing and Center of General Education, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan. 9Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan. 10Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan. 11Bioinformatics and Biostatistics Core, Center of Genomic Medicine, National Taiwan University, Taipei, Taiwan.

Author contributions
C.-H.T. was responsible for data management and interpretation, mutation analysis, statistical analysis, and manuscript writing. H.-A.H. was responsible for study design and plan, data management and interpretation, mutation analysis, statistical analysis, and manuscript writing. Y.-C.C. and E.Y.C. were responsible for network analysis and interpretation. J.-L.T., C.-C.L., M.Y., C.-C.L., S.-Y.H., B.-S.K., S.-C.H., C.-T.L., S.-J.W., C.-Y.C., and W.T. contributed patient samples and clinical data; M.H.T., C.-Y.L., and M.-C.L. performed the gene mutation and chromosomal studies; W.-C.C. and H.-F.T. designed and coordinated the study over the entire period and wrote the manuscript.

Competing interests
The authors declare that they have no competing interests.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information
The online version of this article (https://doi.org/10.1038/s41408-017-0022-y) contains supplementary material.

Received: 25 August 2017 Revised: 8 October 2017 Accepted: 12 October 2017
Published online: 29 December 2017

References
1. Duployez, N. et al. Comprehensive mutational profiling of core binding factor acute myeloid leukemia. Blood 127, 2451–2459 (2016).
2. Lindéry, R. C. et al. Acute myeloid leukemia ontology is defined by distinct somatic mutations. Blood 125, 1367–1376 (2015).
3. Papaemmanuil, E. et al. Genomic Classification and Prognosis in Acute Myeloid Leukemia. N. Engl. J. Med. 374, 2209–2221 (2016).
4. Cancer Genome Atlas Research, N. et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N. Engl. J. Med. 368, 2059–2074 (2013).
5. Thol, F. et al. Mutations in the cohesin complex in acute myeloid leukemia: clinical and prognostic implications. Blood 123, 914–920 (2014).
6. Thota, S. et al. Genetic alterations of the cohesin complex genes in myeloid malignancies. Blood 124, 1790–1798 (2014).
7. Ion, A. et al. Recurrent mutations in multiple components of the cohesin complex in myeloid neoplasms. Nat. Genet. 45, 1232–1237 (2013).
8. Faber, Z. J. et al. The genomic landscape of core-binding factor acute myeloid leukemias. Nat. Genet. 48, 1551–1556 (2016).
9. Chou, W. C. et al. TET2 mutation is an unfavorable prognostic factor in acute myeloid leukemia patients with intermediate-risk cytogenetics. Blood 118, 3803–3810 (2011).
10. Hou, H. A. et al. Splicing factor mutations predict poor prognosis in patients with de novo acute myeloid leukemia. Oncotarget 7, 9084–9101 (2016).
11. Shah, H. S. et al. Clinical and biological implications of partial tandem duplication of the MLL gene in acute myeloid leukemia without chromosomal abnormalities at 11q23. Leukemia 16, 196–202 (2002).
12. Walczak, L. et al. SF3B1 mutation identifies a distinct subset of myelodysplastic syndrome with ring sideroblasts. Blood 126, 233–241 (2015).
13. Mazumdar, C. et al. Leukemia-Associated Cohesin Mutants Dominate the Enforce Stem Cell Programs and Impair Human Hematopoietic Progenitor Differentiation. Cell. Stem. Cell. 17, 675–688 (2015).
14. Mullenders, J. et al. Cohesin loss alters adult hematopoietic stem cell homeostasis, leading to myeloproliferative neoplasms. J. Exp. Med. 212, 1853–1860 (2015).