Power Series and p-adic Algebraic Closures

Kiran S. Kedlaya

March 13, 2018

Abstract

We describe a presentation of the algebraic closure of the ring of Witt vectors of an algebraically closed field of characteristic $p > 0$. The construction uses “generalized power series in p” as constructed by Poonen, based on an example of Lampert.

1 Introduction

In a previous paper [3], the author gave an explicit description of the algebraic closure of the power series field over a field of characteristic $p > 0$, in terms of certain “generalized power series”. The purpose of the present paper is to extend this work to mixed characteristic. Specifically, we give an analogous description of the algebraic closure of the Witt ring $W(K)$ of an algebraically closed field K of characteristic p. In place of generalized power series, we use “generalized p-adic series” as introduced by Poonen [6]. (Note: here and throughout, the “algebraic closure” of a domain refers to the integral closure of the domain in the algebraic closure of its function field.)

Our approach is to relate the algebraic closure of $W(K)$ to the algebraic closure of $K[[t]]$ via the Witt ring of the latter. We first exhibit a surjection of $W(K[[t]])$ onto $W(K)^\wedge$ (the wedge denotes p-adic closure) in which t maps to p. (The wedge denotes p-adic completion.) Using the results of [3], we then give explicit presentations of $W(K[[t]])$ and of $W(K)^\wedge$.

Our approach makes use of two notions which occur in [3] but might otherwise be unfamiliar to the reader: generalized power series, described in Section 2, and twist-recurrent sequences (or linearized recurrent sequences), described in Section 3.

2 Generalized power series

In this section, we describe the construction of generalized power series and their p-adic analogues; before doing so, however, let us briefly review some of the history of these constructions, following the account given in [3].

Generalized power series were first introduced by Hahn [1], and were studied in terms of valuations by Krull [4]. (Nowadays rings of generalized power series are sometimes known as
Mal’cev-Neumann rings, as these two authors independently extended the construction to nonabelian value groups. We will not need that generalization in this paper.) It was noted by Kaplansky [2] that his “maximal immediate extension” of a valued field turns out to be a ring of generalized power series in the equal characteristic case. The mixed-characteristic analogues of generalized power series were introduced by Poonen [6], who showed that the ring they form realizes Kaplansky’s maximal immediate extension in the mixed characteristic case. Poonen’s construction was motivated by an example of Lampert [5].

Let us now proceed to the constructions. For any ring R and any totally ordered abelian group G (whose identity element we call 0), we define the set $R((t^G))$ of formal power series over R with value group G as the set of functions $x: G \to R$ for which the set of $i \in G$ with $x_i \neq 0$ is well-ordered, that is, contains no infinite decreasing subsequence; this set is called the support of x. We will often write the element x as $\sum_i x_i t^i$, where t is the dummy variable specified in the notation $R((t^G))$. With this notation, $R((t^G))$ begs to be given the structure of a ring with the operations

$$\sum_i x_i t^i + \sum_j y_j t^j = \sum_k (x_k + y_k) t^k$$

$$\sum_i x_i t^i \times \sum_j y_j t^j = \sum_k \left(\sum_{i+j=k} x_i y_j \right) t^k.$$

Fortunately, these definitions make sense, the former because the union of two well-ordered sets is well-ordered, the latter because the set of sums of elements of two well-ordered sets is well-ordered and because any such sum can be so expressed in finitely many ways. (These are all easy consequences of the no-infinite-decreasing-subsequence definition.)

The subring $R[[t^G]]$ of $R((t^G))$ comprises those x whose support consists entirely of nonnegative elements of G. Both of these rings carry a natural t-adic valuation v_t with values in G.

Proposition 1. Assume G is divisible. If R is an algebraically closed field, then so is $R((t^G))$.

We give a proof using a transfinite version of Newton’s algorithm; another proof can be found in [7], and a proof using the theory of immediate extensions is sketched in [8].

Proof. Associated to the polynomial $P(x) = a_0 x^n + a_1 x^{n-1} + \cdots + a_n$ over $R((t^G))$ is its Newton polygon, the lower boundary of the convex hull of the points $(i, v_t(a_i))$ for $i = 0, \ldots, n$. The integers m such that $(m, v_t(a_m))$ are vertices of the Newton polygon are called the breakpoints, and the ratios $(v_t(a_{m_1}) - v_t(a_{m_2}))/(m_1 - m_2)$, where m_1, m_2 are adjacent breakpoints, are called the slopes of the Newton polygon (they exist because G is divisible). We will eventually see that the valuations of the roots of P are the slopes of the constituent segments of the Newton polygon, and keeping this in mind will clarify the motivation of the following argument.

Let ω_G be the smallest ordinal with cardinality greater than that of G. We show that for any monic polynomial $P(x)$ over $R((t^G))$, there exists a map $f: \omega_G \to G \cup \{\infty\}$ and a map
$g : \omega_G \to R$ such that $r_\omega = \sum_{\alpha < \omega} g(\alpha) t^{f(\alpha)}$ has the following properties. (In the definition of r_ω, we formally take $t^\infty = 0$.)

1. If $\omega_1 < \omega_2$, then $f(\omega_1) \leq f(\omega_2)$, with equality only if both are equal to ∞.

2. If $f(\omega) = \infty$, then r_ω is a root of P.

3. If $f(\omega) < \infty$, then the polynomial $P(x - r)$ has largest Newton slope strictly greater than $f(\alpha)$.

Since there is no injective map from ω_G to G, there exists some $\omega < \omega_G$ such that $f(\omega) = \infty$, and the corresponding r_ω will be a root of P, proving the theorem. In other words, we will carry out a “transfinite Newton’s algorithm” and show that it converges to a root of P.

We prove the claim by transfinite induction. The induction step is self-evident for limit ordinals, so we may need only worry about non-limit ordinals as well as the base case. Both of these are subsumed in the following fact: if $P(0) \neq 0$, there exist $r \in R$ and $s \in G$ such that the largest slope of the Newton polygon of $P(x - rt^s)$ is strictly greater than the largest slope of the Newton polygon of $P(x)$.

To prove the latter claim, write $P(x) = a_0 x^n + a_1 x^{n-1} + \cdots + a_n$ with $a_0 = 0$. Let m be the largest breakpoint (we do not regard n itself as a breakpoint) and s the slope of the segment of the Newton polygon between m and n. Since K is algebraically closed, the polynomial

$$A(x) = a_m t^{-v_1(a_m)} x^{n-m} + a_{m+1} t^{-v_1(a_{m+1}) - s} x^{n-m-1} + \cdots + a_n t^{-v_1(a_n) - s(n-m)}$$

factors completely over K. Let r be any root of this polynomial, let q be the multiplicity of the root r, and put $Q(x) = P(x - rt^s)$. If we put $Q(x) = \sum b_i x^{n-i}$, then

$$b_i = \sum_j a_{i-j} \binom{n-i+j}{j} r^j t^{vj}.$$

From this description we can read off the Newton slopes of $Q(x)$. First note that for any breakpoint $i \leq m$, the sum defining b_i consists of a_i plus various terms of valuation strictly larger than that of a_i. For $i > m$, we have $v_i(b_i) \geq v_i(b_m) + s(i-m)$, and the coefficient of $t^{v_i(b_m) + s(i-m)}$ in b_i is equal to the coefficient of x^{i-m} in $A(x-r)$. In particular, we have $v_i(b_{n-q}) = v_i(b_m) + s(n-m-q)$ and $v_t(b_i) > v_t(b_m) + s(i-m)$ for $i > n-q$. In short, the Newton slopes of $Q(x)$ less than r are the same as those of P, the slope r occurs with multiplicity $n-m-q$, and the remaining slopes are greater than r. This completes the proof of the claim and hence of the induction step. \[\square \]

If the ring R carries a valuation v, we define the subring $R_v((t^G))$ of $R((t^G))$ as the set of x such that for any r, the set of $i \in G$ such that $v(x(i)) \leq r$ is well-ordered. This ring is canonically isomorphic to the inverse limit of $R/I_r((t^G))$ over all r, where $I_r = \{ t \in R : v(t) \geq r \}$. In particular, if v is a discrete valuation, $R_v((t^G))$ is I_1-adically complete.
We now proceed to the promised mixed-characteristic analogue. Given a prime p, a p-adically complete ring R, and a totally ordered abelian group G equipped with a fixed embedding of \mathbb{Z} in G, the ring $R((p^G))$ of p-adic series over R with value group G is the quotient of $R((t^G))$ by the ideal consisting of those x for which $\sum_{n=0}^{\infty} x_{n+i} p^n = 0$ for all $i \in G$; the ring $R[[p^G]]$ is defined as the analogous quotient of $R[[t^G]]$. In case R/pR is perfect, we can choose canonical representatives of elements of $R((p^G))$ in $R[[t^G]]$, namely those whose coefficients are all Teichmüller elements of R.

Unsurprisingly, we have the following analogue of Proposition 1. The proof of Proposition 1 given in

Proposition 2. Assume G is divisible. If R is an algebraically closed field, then so is $W(R)((p^G))$.

3 Twist-recurrent sequences

Throughout this section, let R be a p-adically complete and separated ring whose residue ring is an algebraically closed field, and $\sigma : R \to R$ an automorphism of R inducing the Frobenius automorphism $x \mapsto x^p$ on the residue field. (We sometimes write F, acting as an operator on the left, instead of σ, acting as a superscript on the right.) Let R_0 be the fixed ring of σ, which is complete with residue field \mathbb{Z}_p, and let π be a generator of the maximal ideal of R_0, which then also generates the maximal ideal of R.

The main case of interest is when R is the ring of Witt vectors of an algebraically closed field of characteristic p, or the quotient of said ring by the ideal generated by a power of p. The bulk of this section follows [3, proof of Lemma 4], mutatis mutandis; significant departures are noted where they occur.

A twist-recurrence relation is an equation of the form

$$d_0 c_n + d_1 c_{n+1} + \cdots + c_{n+k}^\sigma = 0 \quad \forall n \geq 0,$$

where $d_0, \ldots, d_k \in R$ are not all zero, d_0 is not divisible by π and c_0, c_1, \ldots is an infinite sequence of elements of R; a twist-recurrent sequence is any sequence of the form $\{c_n\}$ for suitable k and d_0, \ldots, d_k.

Before proceeding further, we note that in [3], it was not required that d_0 be nonzero, and so a twist-recurrent sequence with finitely many terms prepended remained twist-recurrent. In this more general setting, allowing d_0 to be divisible by π would cause technical complications not relevant to our main task.

The basic properties of twist-recurrent sequences superficially resemble those of ordinary linear recurrent sequences (those satisfying the same defining equation with the σ-action removed). For example, it is evident that (assuming $d_k \neq 0$) the set of such sequences forms an R-module with scalar multiplication defined by

$$\lambda\{c_n\} = \{\lambda^{\sigma^{-n}} c_n\}.$$
(but not under the usual scalar multiplication $\lambda\{c_n\} = \{\lambda c_n\}$).

To continue the analogy, we note that twist-recurrent sequences can be studied by exhibiting a canonical basis for the set of sequences satisfying a given relation. Of course, the exact nature of these basis sequences is somewhat different than in the classical case: they are the constant sequences $c_n = z$ for z a root of the equation

$$P(F)(z) = (d_0 + d_1 F + \cdots + d_n F^n)z = 0.$$

The following lemma (which may be thought of as Hensel’s Lemma for polynomials in the operator F) shows that these sequences indeed furnish a complete basis for the set of solutions of a twist-recurrence relation.

Lemma 1. Let R_0 be the fixed ring of σ. Then given $d_0, \ldots, d_{n-1} \in R$ with $d_0 \not\equiv 0 \pmod{\pi}$, the set of solutions of the equation

$$P(F)z = (F^n + d_{n-1}F^{n-1} + \cdots + d_0)z = 0$$

in R is a free R_0-module of rank n.

Proof. Let $z_1^{(1)}, \ldots, z_n^{(1)} \in R$ be elements which reduce to a basis over F_p of the F_p-vector space solutions of $P(F)z = 0$ modulo π. For each $k \in \mathbb{N}$, we wish to exhibit $z_1^{(k)}, \ldots, z_n^{(k)}$ which reduce to a basis over $R_0/\pi^n R_0$ of the set of solutions of $P(F)z = 0$ in $R/\pi^n R$. We construct these by an inductive argument: given the $z_i^{(k)}$, note that

$$P(F)(z_i^{(k)} + s\pi^k) \equiv P(F)z_i^{(k)} + \pi^k(s^{s\pi^k} + d_{n-1}s^{\pi^{n-1}} + \cdots + d_0 s) \pmod{\pi^{k+1}}.$$

Since R has algebraically closed residue field, there exists $s \in R$ such that $P(F)(z_i^{(k)} + s\pi^k) \equiv 0 \pmod{\pi^{k+1}}$; we set $z_i^{(k+1)} = z_i^{(k)} + s\pi^k$. The facts that the $z_i^{(k)}$ are independent and that they span the solution space of $P(F)z = 0$ are straightforward. \hfill \square

Note that the lemma can (and in fact always will) fail if d_0 is divisible by π; for example, the equation $(F + \pi)z = 0$ has no nonzero solutions. However, in case π is not nilpotent, a full set of solutions will exist if we adjoin $\pi^{1/m}$ and a solution of $(F + \pi^{1/m})z = 0$ for some m, and the following lemma (the analogue of [3, Corollary 5] in this context) can be proved in this fashion without the restriction on d_0.

Lemma 2. For $d_0, \ldots, d_{k-1}, d'_0, \ldots, d'_{l-1} \in R$ with $d_0, d'_0 \not\equiv 0 \pmod{\pi}$, consider the twist-recurrence relations

$$c_n^{\sigma^k} + d_{k-1}c_{n+k-1}^{\sigma^{k-1}} + \cdots + d_0 c_n = 0$$

$$(c'_n)^{\sigma^l} + d'_{l-1}(c'_{n+l-1})^{\sigma^{l-1}} + \cdots + d'_0 c'_n = 0.$$

Then the following are true:

1. There is a twist-recurrence relation whose solutions include all sequences of the form $(c_n + c'_n)$, where (c_n) satisfies the first relation and (c'_n) satisfies the second.
2. There is a twist-recurrence relation whose solutions include all sequences of the form $(c_n c'_n)$, where (c_n) satisfies the first relation and (c'_n) satisfies the second.

Proof. By the previous lemma, the sequences (c_n) and (c'_n) satisfying the given relations have the form

$$c_n = \sum_i \lambda_i^{\sigma^{-n}} z_i, \quad c'_n = \sum_j \lambda_j^{\sigma^{-n}} z'_j,$$

where the z_i and z'_j depend only on the d_i and d'_j. Clearly $(c_n + c'_n)$ and $(c_n c'_n)$ are also of this form, with the set of z_i being the union of the sets of z_i and z'_j in the former case, and the set of products $z_i z'_j$ in the latter case.

Thus it suffices to show that given a set of z_i, the set of sequences of the form $c_n = \sum_i \lambda_i^{\sigma^{-n}} z_i$ satisfies a twist-recurrence relation. Clearly we may alter the set as needed to ensure that the z_i are linearly independent over R_0, and that the R_0-module they span is saturated (that is, if px lies in the span, so does x), or in other words, the images of the z_i in $R_0/\pi R_0$ are linearly independent over \mathbb{F}_p. If $\{z_1, \ldots, z_k\}$ is the resulting set, then the equation

$$\det \begin{pmatrix} z_1 & z_1^\sigma & \cdots & z_1^{\sigma^{k-1}} \\ \vdots & \vdots & & \vdots \\ z_k & z_k^\sigma & \cdots & z_k^{\sigma^{k-1}} \\ c_n & c_{n+1}^\sigma & \cdots & c_{n+k}^\sigma \end{pmatrix} = 0$$

is satisfied when $c_n = \sum_i \lambda_i^{\sigma^{-n}} z_i$, and expanding this determinant along the bottom row gives us an equation of the form $d_0 c_n + d_1 c_{n+1}^\sigma + \cdots + d_k c_{n+k}^\sigma = 0$; all that remains to be checked is that d_0 and d_k are not divisible by π.

Since $d_0 = (-1)^k d_k^\sigma$, we need only check that d_k is not divisible by π. In fact, since z_1, \ldots, z_k are linearly independent mod π,

$$d_k = \det \begin{pmatrix} z_1 & z_1^\sigma & \cdots & z_1^{\sigma^{k-1}} \\ \vdots & \vdots & & \vdots \\ z_n & z_n^\sigma & \cdots & z_n^{\sigma^{k-1}} \end{pmatrix} \equiv \det \begin{pmatrix} z_1 & z_1^p & \cdots & z_1^{p^{k-1}} \\ \vdots & \vdots & & \vdots \\ z_n & z_n^p & \cdots & z_n^{p^{k-1}} \end{pmatrix} \not\equiv 0 \pmod{\pi}.$$

Though we will not need this extra generalization, it is worth noting that (by descent) the lemma also holds over $W(L)$ for L a perfect but not algebraically closed field.

We conclude with a remark about twist-recurrence in the case of primary interest in this paper, where $R = W_m(K)$ is the ring of Witt vectors of length m over an algebraically closed field K of characteristic p, with the canonical Frobenius. It is natural to ask whether twist-recurrence of a sequence of Witt vectors is related to twist-recurrence of the sequence of k-th components for $k = 1, \ldots, m$; the following lemma answers this question affirmatively.
Lemma 3. Let \(\{c_0, c_1, \ldots \} \) be a sequence of elements of \(W_m(R) \), and let \((w_{k,0}, \ldots, w_{k,m-1})\) be the Witt vector corresponding to \(c_k \).

1. If \(\{c_n\} \) is twist-recurrent, then so is \(\{w_{n,i}\} \) for \(i = 0, \ldots, m - 1 \).

2. If \(\{w_{n,i}\} \) is twist-recurrent for \(i = 0, \ldots, m - 1 \), then so is \(\{c_n\} \).

Moreover, the derived twist-recurrence relations depend only on the initial ones, and not on the particular sequences.

Proof. The key observation here is that a sequence \(\{w_n\} \) of elements of \(K \) is twist-recurrent if and only if the sequence \(\{[w_n]\} \) of Teichmüller lifts of \(\{w_n\} \) to \(W_m(K) \) is twist-recurrent. Of course one implication is obvious. For the other, note that in \(W_m(K) \), \([x] = t^{q^k} \) for any \(k \geq m \) and any \(t \in W_m(K) \) such that \(t \equiv x^{q^{-k}} \pmod{p} \). Thus if we write \(w_n = \sum_{i=1}^{m} \lambda_i^{q^{-m}} z_i \), we may select \(y_i \in W_m(K) \) such that \(y_i \equiv z_i^{q^{-m}} \pmod{p} \), and then \(\sum_i \lambda_i^{q^{-m}} y_i \) is a lift of \(w_n \). Now

\[
[w_n] = \left(\sum_i \lambda_i^{q^{-n-m}} y_i \right)^{p^m} = \sum_{e_1 + \cdots + e_j = p^m} \frac{p^m!}{e_1! \cdots e_j!} (\lambda_1^{e_1} \cdots \lambda_j^{e_j})^{q^{-n-m}} y_1^{e_1} \cdots y_j^{e_j}
\]

satisfies a twist-recurrence relation not depending on the \(\lambda_i \).

Given the observation, the rest of the proof is straightforward. On one hand, if the sequences of components of the Witt vectors are twist-recurrent, so are the sequences of their Teichmüller lifts, and the given sequence is simply a linear combination of these. On the other hand, if the sequence of Witt vectors is twist-recurrent, then the sequence of unit components is as well, as is its corresponding sequence of Teichmüller lifts. Subtracting this sequence off and dividing by \(p \) gives a sequence of Witt vectors over \(W_{m-1}(K) \) which is twist-recurrent, and the claim follows by induction.

Beware that if \(\{w_n\} \) is a twist-recurrent sequence in \(K \), the sequence \(\{[w_n]\} \) of Teichmüller lifts to \(W(K) \) may not be twist-recurrent.

4 Completed algebraic closures

Let \(K \) be an algebraically closed field of characteristic \(p \). We use the \(p \)-adic ring \(W(K)[[t^Q]] \) to explicitly construct the \(p \)-adic completion of the algebraic closure of \(W(K) \); in so doing, we will exploit the results of [3], though it is certainly possible to give independent derivations of the present results.

We begin with the ring \(W(K)[[t^Q]] \) and its \(p \)-adic completion, which may be described as the set of series \(\sum_{i \in \mathbb{Q}} c_i t^i \) such that for each \(n \in \mathbb{N} \), \(\{i \in \mathbb{Q} : v(c_i) \leq n\} \) is well-ordered. This ring is isomorphic to \(W(K[[t^Q]]) \); we fix the isomorphism which sends \(t \in W(K)[[t^Q]] \) to the Teichmüller lift of \(t \in K[[t^Q]] \), and use this isomorphism to identify the two rings. Since \(K[[t^Q]] \) is algebraically closed, it contains an algebraic closure of \(K[[t]] \), which we
hereafter refer to as “the” algebraic closure $\overline{K[[t]]}$ of $K[[t]]$. Likewise, since $W(K)[p^G]$ is algebraically closed, it contains an algebraic closure of “the” algebraic closure $W(K)$, which we hereafter refer to as “the” algebraic closure $\overline{W(K)}$ of $W(K)$.

There are a number of natural maps between the aforementioned rings, which are summarized in the diagram below. Our first goal is to establish the existence of the two dotted arrows. (This relationship between $\overline{K[[t]]}$ and $\overline{W(K)}$ is well-known; for example, it occurs in the construction of the “big rings” of Fontaine.)

\[\begin{array}{ccc}
\overline{K[[t]]} & \overset{\pi}{\rightarrow} & \overline{W(K)[[t^G]]} \\
\downarrow & & \downarrow \\
K[[t]]/(t) & \overset{\pi}{\rightarrow} & K[[t]][t^G]/(t) \\
\downarrow & & \downarrow \\
W(K)^\wedge & \overset{\pi}{\rightarrow} & W(K)[p^G] \\
\downarrow & & \downarrow \\
W(K)/(p)^\wedge & \overset{\pi}{\rightarrow} & W(K)[p^G]/(p)
\end{array}\]

Theorem 1. The map $\pi : W(K)[[t^G]]^\wedge \rightarrow W(K)[p^G]$ induces a surjection of $W(K)[[t]]$ onto $\overline{W(K)}^\wedge$ (and so $\tilde{\pi}$ induces an isomorphism of $K[[t]]/(t)$ with $\overline{W(K)}/(p)$).

The argument relies on a lemma which assert that the roots of a polynomial vary continuously with the coefficients, in a manner independent of characteristic. The analogous statement for two polynomials over a single DVR, in which k is not restricted, is well-known.

Lemma 4. Let $P(x) = x^n + a_1x^{n-1} + \cdots + a_n$ be a polynomial over $K[[t^G]]$ and $Q(x) = x^n + b_1x^{n-1} + \cdots + b_n$ a polynomial over $W(K)[p^G]$ with the same Newton polygon. Suppose $k \in (0, 1]$ has the property that for for $i = 1, \ldots, n$, $\tilde{\pi}(at^{-v_i}) \equiv bp^{-v_i} \pmod{p^k}$, where v_i is the y-coordinate of the point of the Newton polygon with x-coordinate i. Then for each root y of P of slope s, there exists a root z of Q of slope s such that $\tilde{\pi}(y) \equiv z \pmod{p^{k/m+s}}$ (where m is the multiplicity of s in the Newton polygon), and vice versa.

Proof. Let s_1, \ldots, s_l be the distinct slopes of the Newton polygon and m_1, \ldots, m_l their multiplicities. Then we can factor $P(x)$ as $P_1(x) \cdots P_l(x)$, where $P_i(x)$ is the monic polynomial of degree m_i whose roots are the roots of P which have valuation s_i (counting multiplicities). Similarly we can factor $Q(x)$ as $Q_1(x) \cdots Q_l(x)$. Now observe that

\[P_i(xt^{-s_i}) \equiv x^{m_i} + (a_{n-m_i+1}/a_{n-m_i})x^{m_i-1} + \cdots + (a_n/a_{n-m_i}) \pmod{t^k}\]

\[Q_l(xp^{-s_i}) \equiv x^{m_i} + (b_{n-m_i+1}/b_{n-m_i})x^{m_i-1} + \cdots + (b_n/b_{n-m_i}) \pmod{p^k}\]

and so

\[\tilde{\pi}(P_i(xp^{-s_i})) \equiv Q_l(xp^{-s_i}) \pmod{p^k}.\]
Moreover, \(P/P_t \) and \(Q/Q_t \) also obey the conditions of the lemma. Thus by descending induction, we have \(\tilde{\pi}(P_i(xp^{-s_i})) \equiv Q_i(xp^{-s_i}) \mod p^k \) for \(i = 1, \ldots, l \). In other words, the proof of the statement of the lemma reduces to the case in which \(P \) and \(Q \) have only one slope, which we may assume is 0. In this case, \(n = m \) and \(y_i = 0 \) for all \(i \).

Let \(y \in K[[t^G]] \) be a root of \(P(x) \), and choose \(z \in W(K)[[p^G]] \) such that \(\tilde{\pi}(y) \equiv z \mod p \). Let

\[
c_i = \sum_j a_{i-j} \binom{n-i+j}{j} y^j,
\]

\[
d_i = \sum_j b_{i-j} \binom{n-i+j}{j} z^j,
\]

so that \(P(x-y) = \sum c_i x^{n-i} \) and \(Q(x-z) = \sum d_i x^{n-i} \). Then clearly \(\tilde{\pi}(c_i) \equiv d_i \mod p^k \).

By the assumption that \(y \) is a root of \(P(x) \), we have \(c_n \equiv 0 \mod p^k \). That means that the Newton polygon of \(Q(x-z) \) has at least one slope greater than or equal to \(k/m \), which is to say \(z \) is congruent to a root of \(Q(x) \) modulo \(p^k \), as desired. The converse implication follows by an analogous argument.

\(\blacksquare \)

Proof of the Theorem. We first establish that \(\pi(W(K[[t]])) \) is algebraically closed; that is, for any \(a_1, \ldots, a_n \in W(K[[t]]) \), the polynomial \(R(x) = x^n + \pi(a_1)x^{n-1} + \cdots + \pi(a_n) \) has a root in \(\pi(W(K[[t]])) \). Since this assertion only depends on the values of \(\pi(a_i) \), we may rechoose the \(a_i \) to ensure that

\[
v_i(\rho(a_i)) = v_p(\pi(a_i)),
\]

where \(\rho \) denotes reduction modulo \(p \). Then the polynomials \(P(x) = x^n + \rho(a_1)x^{n-1} + \cdots + \rho(a_n) \) over \(K[[t]] \) and \(Q(x) = x^n + \pi(a_1)x^{n-1} + \cdots + \pi(a_n) \) over \(W(K)[[p^G]] \) clearly satisfy the conditions of Lemma 3 with \(k = 1 \). Thus for some root \(z \) of \(Q \) of highest slope \(s \), there exists a root \(y \) of \(P \) in \(K[[t^G]] \), also of slope \(s \), with \(\tilde{\pi}(yt^{-s}) \equiv zp^{-s} \mod p^{1/n} \). Since the coefficients of \(P \) lie in the algebraically closed domain \(K[[t]] \), \(y \) does as well.

Choose a lift \(z \) of \(y \) to \(W(K[[t]]) \), making sure that \(z \) is divisible by \(t^{v_t(y)} \). We may reapply the above steps to \(R(x - \pi(z)) \) to get another "approximate root", and so on. Each step increases the largest slope of the residual polynomial by at least \(1/n \), so the approximate roots converge in \(W(K)[[p^G]] \) to a root of \(R(x) \). Moreover, since we made \(z \) divisible by \(t^{v_t(y)} \), the approximate roots also converge \((p, t)\)-adically in \(W(K[[t]]) \), which proves the claim.

In particular, we now have that \(\pi(W(K[[t]])) \) contains \(W(K) \wedge \), and it remains to establish that for any \(r \in W(K[[t]]) \), \(\pi(r) \in W(K) \wedge \). Without loss of generality, we may assume \(v_p(\pi(r)) = v_t(\rho(r)) = 0 \).

We will prove the claim by constructing a sequence \(\{r_j\} \) of elements of \(W(K[[t]]) \) and monic polynomials \(P_j(x) = x^n + a_1^{(j)} x^{n-1} + \cdots + a_n^{(j)} \), for \(j = 0, \ldots, n \), such that for \(j = 0, \ldots, n - 1 \):

1. \(r_0 = r; \)
(b) \(\pi(a_{ij}^{(j)}) \in \overline{W(K)}^{\wedge} \);

(c) \(v_t(\rho(a_{ij}^{(j)})) = v_p(\pi(a_{ij}^{(j)})) \);

(d) \(\rho(r_j) \) is a root of \(\rho(P_j) \) of slope at least \(j/n \);

(e) there exists a root \(s_j \) of \(\pi(P_j) \) such that \(\pi(r_j) \equiv s_j \pmod{p^{(j+1)/n}} \);

(f) \(\pi(r_j - r_{j+1}) = s_j \) and \(P_{j+1}(x) = P_j(x + r_j - r_{j+1}) \).

Note that (b) can be arranged for \(j = 0 \) by lifting a polynomial over \(K[[t]] \) having \(\rho(r) \) as a root (making sure that (c) is also satisfied). The fact that (e) holds is a consequence of Lemma 4.

Observe that \(\pi(r_0 - r_n) \in \overline{W(K)}^{\wedge} \) and \(v_p(r_n) \geq 1 \). That is, \(\pi(r) \) is congruent to an element of \(\overline{W(K)}^{\wedge} \) modulo \(p \). Repeating this process with \(r_n \) in place of \(r \) exhibits successive elements of \(\overline{W(K)}^{\wedge} \) congruent to \(\pi(r) \) modulo \(p^i \) for all \(i \in \mathbb{N} \), which implies that \(\pi(r) \in \overline{W(K)}^{\wedge} \). Thus \(\pi(W(K[[t]])) = \overline{W(K)}^{\wedge} \), as desired.

This gives a rather nonexplicit construction of the completed algebraic closure of \(W(K) \). We explicate the construction in two steps, first giving a concrete description of \(W(K[[t]]) \). In order to effect this description, we recall some definitions from [3], adapted slightly to accommodate our new definition of twist-recurrence. For \(a, b \in \mathbb{N} \), we define the set \(S_{a,b} \subseteq \mathbb{Q} \) as follows:

\[
S_{a,b} = \left\{ \frac{1}{a}(n - b_1 p^{-1} - b_2 p^{-2} - \cdots) : n \in \mathbb{N}, b_i \in \{0, \ldots, p - 1\}, \sum b_i \leq b \right\}.
\]

We also define \(T_b = S_{1,b} \cap (0, 1) \).

For \(R \) a \(p \)-adically complete ring with Frobenius, we say a function \(f : T_b \to R \) is twist-recurrent if there exists \(k, l \in \mathbb{N} \) and \(d_0, \ldots, d_{k-1} \in R \), with \(d_0 \) not divisible by \(p \), such that the twist-recurrence relation (\([\ref{def:twist-recurrence}]\)) holds for any sequence \(\{c_n\} \) of the form

\[
c_n = f(-b_1 p^{-1} - \cdots - b_{j-1} p^{-j+1} - p^{-n+1}(b_j p^{-j} + \cdots)) \quad (n \geq 0)
\]

for \(j \in \mathbb{N} \) and \(b_1, b_2, \cdots \in \{0, \ldots, p-1\} \) with \(\sum b_i \leq b \). (The explicit insertion of \(l \) is required because eventually twist-recurrent sequences need not be twist-recurrent.)

Theorem 2. The ring \(W_n(K[[t]]) \) is isomorphic to the set of \(x \in W_n(K)[[t^Q]] \) such that the following conditions hold.

1. There exist \(a, b \in \mathbb{N} \) such that if \(x_i \equiv 0 \pmod{p^n} \), then \(i \in S_{a,b} \).

2. For each nonnegative integer \(m \), the function \(f_m : T_b \to W_n(K) \) given by \(f_m(i) = x_{(m+i)/a} \) is twist-recurrent.

3. The functions \(f_m \) span a \(W_n(K) \)-module of finite rank (in the space of all maps from \(T_b \) to \(W_n(K) \) with the natural \(W_n(K) \)-module structure).
Proof. It suffices to note that the latter set is a ring (by Lemma 2), and has residue ring $\overline{K[[t]]}$ (by [3]).

With this in hand, we now give a concrete description of the completed algebraic closure of $W(K)$. Let $R = W(K)[[t^G]] = W(K)[[t][t^G]]/(t - p)$ be the p-adic ring over $W(K)$ with value group \mathbb{Q}. As noted in Section 2, each element x of R admits a unique representation in $W(K)[[t^G]]$ of the form $\sum x_i t^i$, where $a_i \in K$ and brackets denote the Teichmüller map. Beware that the x_i do not exhibit quite the same behavior as their counterparts in $K[[t^G]]$; most notably, they are not additive.

Let B denote the subset of R consisting of those x satisfying the following conditions for each $n \in \mathbb{N}$:

1. There exist $a, b \in \mathbb{N}$ such that x is supported on $S_{a,b} \cup (n, \infty)$.

2. For some (any) choice of a, b as above and for each $j < n$, the function $f : T_b \to K$ given by (2) is twist-recurrent.

As in [3], a simplification occurs in the case $k = \overline{F}_p$: the twist-recurrent condition can be replaced by the simpler condition that for some $M, N \in \mathbb{N}$, the sequences become periodic after M terms with period length at most N.

Theorem 3. The image of $W(K[[t]])$ under the quotient $W(K)[[t^G]] \to W(K)[[t^Q]]$ is equal to B (which thus is the p-adic completion of an algebraic closure of $W(K)$).

Proof. The most difficult part of the proof is showing that B is actually a ring! If $z = x + y$ then

$$z_i = x_i + y_i + \sum_{j=1}^{\infty} P_j(x_i, y_i, x_{i-1}, y_{i-1}, \ldots, x_{i-k}, y_{i-k})$$

for certain universal polynomials P_j. Suppose that x and y are twist-recurrent. To check $z \in B$, we must verify the condition given above for each n. However, for given n, we may replace the infinite sum over j by a sum with $j \leq n$ without changing the values of z_i for $i < n$. This expresses z_i as a polynomial in the x_{i-k} and y_{i-k}, and any fixed polynomial in sequences satisfying given twist-recurrence relations satisfies one as well (by Lemma 2).

Thus z is twist-recurrent.

If $z = xy$, then

$$z_i = \sum_{j+k=i} \sum_{m=0}^{\infty} Q_m(x_j, y_k, x_{j-1}, y_{k-1}, \ldots, x_{j-m}, y_{k-m})$$

for certain universal polynomials Q_m. The argument that z is twist-recurrent given that x and y are is similar to that for multiplication, except one must additionally note that as over a sequence of the form (2), the number of terms in the outer sum is uniformly bounded. See the analogous section of [3] for a detailed description of why this is the case.
Given that \(B \) is a ring, which evidently is \(p \)-adically complete, let \(R \) be the image of \(W(K[[t]]) \) in \(W(K)((p^0)) \). To show \(R = B \), we need only show \(R/pR = B/pB \) as as subsets of \(W(K)((p^0))/ (p) = K[[t^0]]/(t) \). But this follows from the description of \(K[[t]] \) given in [3], together with Lemma 3.

Among other things, this result resolves a question of Lampert [3,5], who asked for the possible order types of the support of an element of the \(p \)-adic ring \(\mathbb{Z}_p[[p^0]] \) algebraic over \(\mathbb{Z}_p \). The theorem shows that, writing \(\omega \) for the first countable ordinal, the support of an algebraic element has order type at most \(\omega^\omega \) (whereas the support of a general element of \(\mathbb{Z}_p[[p^0]] \) may have any countable order type). This observation may be useful for implementing the extraction of roots of polynomials over \(\mathbb{Z}_p \) on a computer.

It is worth noting explicitly that the mixed-characteristic result above is weaker than the equal-characteristic analogue, in that we deduce no criterion for identifying \(W(K) \) within its completion. Indeed, such a criterion would have to be more subtle in this case: for example, in [3] it is shown that every algebraic series over \(K[[t]] \) is supported on \(S_{a,b} \) for some \(a, b \), but this already appears to fail over \(\mathbb{Z}_p \) for the polynomial \(x^p - p^{b-1}x = p^{b-1} \). This question clearly deserves to be better understood, but we will not comment further on it here.

It is also worth reiterating an observation from [3]: a twist-recurrent series can be specified modulo \(p^n \) by a finite number of elements of \(K \). This may make twist-recurrent series amenable to machine computations.

References

[1] H. Hahn, Über die nichtarchimedische Größensysteme, in Gesammelte Abhandlungen I, Springer-Verlag, 1995.
[2] I. Kaplansky, Maximal fields with valuations, Duke Math J. 9 (1942), 303–321.
[3] K.S. Kedlaya, The algebraic closure of the power series field in positive characteristic, xxx preprint [math.AG/9810142].
[4] W. Krull, Allgemeine Bewertungstheorie, J. für Math. 167 (1932), 160-196.
[5] D. Lampert, Algebraic \(p \)-adic expansions, J. Number Theory 23 (1986) 279–284.
[6] B. Poonen, Maximally complete fields, Enseign. Math. 39 (1993), 87–106.
[7] P. Ribenboim, Fields: algebraically closed and others, Manuscripta Math. 75 (1992), 115–150.
[8] J.-P. Serre, Local Fields, Springer-Verlag, 1979.