Comprehensive evaluation of Luzhou-flavor liquor quality based on fuzzy mathematics and principal component analysis

Yanbo Liu1,2,3,4 | Zhangning Qiao1,3,4 | Zhijun Zhao1,3,4 | Xian Wang5 | Xiyu Sun1,3,6 | Suna Han2 | Chunmei Pan1,3,4

1College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou, China
2Postdoctoral Programme, Henan Yangshao Distillery Co., Ltd., Mianchi, China
3Henan Liquor Style Engineering Technology Research Center, Henan University of Animal Husbandry and Economy, Zhengzhou, China
4Zhengzhou Key Laboratory of Liquor Brewing Microbial Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, China
5SheDianLaoJiu Co. Ltd., Sheqi, China
6ZhangGongLaoJiu Wine Co. Ltd., Ningling, China

Correspondence
Chunmei Pan, College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China. Email: sige518888@163.com

Funding information
Major Science and Technology Projects of Henan Province of China, Grant/Award Number: 181100211400; Key Technologies Research and Development Program of Henan Province of China, Grant/Award Number: 202102110130; Scientific Research Foundation for Doctors of Henan University of Animal Husbandry and Economy, Grant/Award Number: 2018HNUAHEDF011; Key Subject Projects of Henan University of Animal Husbandry and Economy. Grant/Award Number: C3060020

Abstract
Currently, the primary method of identifying high- and low-quality liquors is sensory tasting, which is prone to uncertainty caused by the biases of tasters. To address this problem, this study used color, aroma, taste, and style as four factors affecting the sensory quality of Luzhou-flavor liquor; determined the weights of each factor; and quantitatively evaluated the sensory quality of five different Luzhou flavor liquor using fuzzy mathematical methods. The volatile aromatic substances in the liquor samples were detected by GC-MS, and analyzed using principal component analysis. The results obtained from fuzzy mathematics and principal component analysis indicated that the comprehensive evaluation system was scientifically sound and reasonably constructed.

KEYWORDS
comprehensive evaluation, fuzzy mathematics, Luzhou-flavor liquor, principal component analysis, quality
1 | INTRODUCTION

Chinese liquors are the traditional fermented distilled liquors of China (Zheng & Han, 2016). Luzhou-flavor liquors, one of the twelve major aromatic liquors in China, have unique flavors and aromas, and account for more than 70% of annual liquor yields in China (He et al., 2019). Luzhou-flavor liquors are produced from grains with medium-high temperature, with Daqu being the aroma-producing agent, and involve continuous distillation of grain ingredients, mixed steaming and mixed burning, solid-state fermentation, distillation, aging, and blending. Their aromatic compounds are dominated by ethyl caproate, and are produced without the addition of edible alcohols, nonfermented aromatic compounds, or taste-producing substances (He et al., 2020; Shi et al., 2011).

Fuzzy mathematics is a mathematical theory and method for studying and processing fuzzy phenomena (Wang et al., 2020). It can quantify unclear or unquantifiable boundaries, and scientifically and comprehensively evaluate the multiple quality indicators of the target (Dong & Bi, 2020; Minaev et al., 2020). Sensory evaluation is currently the primary method for determining liquor quality, blending, and flavoring. Traditional sensory evaluation methods generally adopt weighted averaging and total scoring, which are affected by factors like the region, ethnicity, habits, liquor tasting environment, hobbies, and psychological factors of individuals (Cheng et al., 2013; Mukhopadhyay et al., 2013), creating a certain fuzziness. Hence, fuzzy mathematics is suitable for the mathematical and quantitative description/processing of the results of sensory evaluation (Sun et al., 2021). It can eliminate the subjectivity and unilateralism of sensory evaluation (Morales & Boekel, 1997), and thus provide more accurate, objective, reasonable, and scientific evaluation results (Xu et al., 2019; Zou et al., 2019). To date, fuzzy mathematics and sensory evaluation have been combined in research on pit mud (Chang et al., 2018), jams (Shinde & Kulkarni, 2016), yellow rice liquors (Feng et al., 2018), tea (Debjanii et al., 2013), sauce (Zhou & Wei, 2019), sausage (Lee & Kwon, 2007), agricultural products and insecticides (Cheng et al., 2021), Radix pseudostellariae healthcare liquors (Zhao et al., 2022), and wine (Song et al., 2021).

Principal component analysis (PCA) is a statistical method that converts multiple variables into a few principal components through dimensionality reduction. This method can, therefore, solve problems involving multiple inter-related variables (Abdi & Williams, 2010). PCA combines several detection techniques, and is used for the analysis of foods and drugs (Pravdova et al., 2002; Wang et al., 2020). Trace components in liquors are mainly analyzed using gas chromatography–mass spectrometry (GC-MS; Fan et al., 2019). Research on trace components can reveal the fermentation mechanism of liquors, and is, therefore, vital for understanding their aroma characteristics and overall quality (He et al., 2021; Yan et al., 2020). The results of chromatography are processed by PCA to develop a more objective and effective method for liquor quality evaluation. PCA has been widely applied to the study of beef (Meng et al., 2020), winter jujube (Kou et al., 2021), olive oil (Zhang et al., 2011), mulberry leaf tea (He et al., 2021), and sauce (Feng et al., 2013).

However, till date there is no report of fuzzy mathematics being used for the evaluation of Luzhou-flavor liquors, nor are there reports of using PCA for the comprehensive analysis of the physicochemical indicators of liquors. Therefore, this study aimed to determine the weights of liquor sensory indicators (color, aroma, taste, and style) and use fuzzy mathematics to quantitatively evaluate the sensory quality of five different Luzhou-flavor liquor samples. Subsequently, PCA was used for dimensionality reduction of trace components in liquors, statistical analysis, and for the establishment of a comprehensive and scientific mathematical model. The findings of this study will help in the construction of a comprehensive evaluation system for Luzhou-flavor liquors.

2 | MATERIALS AND METHODS

2.1 | Materials and reagents

Luzhou-flavor liquors with five quality levels (newly produced liquor blended in different proportions with old liquor by the liquor company; the higher the percentage of newly produced liquor, the lower is its quality) were bought from a liquor factory in Henan.

2.2 | Instruments and machine

Gas chromatograph–mass spectrometer: Shimadzu Corporation, Japan; solid-phase microextraction device: Merck, USA.

2.3 | Sensory evaluation

Four evaluation grades of Luzhou-flavor liquors (Table 1) were set, based on the provisions of sensory properties in GB/T10345-2007 (A National Standard of the People’s Republic of China- Analytical Methods for Liquors). To ensure the accuracy of evaluation and the environmental comfort, we asked the liquor tasters to refrain from drinking, smoking, and eating spicy or irritating foods 24 h before evaluation. They waited for 10 min between evaluations and gargled with clean water during these intervals. Ten tasters (five males and five females) with certificates of liquor evaluation and majoring in liquor-making engineering, were invited to constitute the evaluation team. Liquor tasters have a background in the systematic theoretical study and practice of brewing and tasting. They are, therefore, trained to earnestly comprehend and understand the relevant evaluation indices, and be objective and fair in their assessment. Based on the grade standards, a single-factor evaluation involving four indicators (color, aroma, taste, and style) was conducted, and an evaluation table was filled in. With a maximum score of 100, scores of >95, 90–95, 85–90, and 80–85, were considered excellent grade, grade 1, grade 2, and grade 3, respectively.
2.4 | Fuzzy mathematical modelling (Lee & Kwon, 2007; Zhou & Wei, 2019)

2.4.1 | Establishment of an evaluated target set

Let the evaluated target set of Luzhou-flavor liquors be $B = \{M_1, M_2, M_3, M_4, M_5\}$, where M_1 to M_5 represent the samples marked 1–5, respectively.

2.4.2 | Establishment of an evaluated factor set

The evaluated factors of the Luzhou-flavor liquors are U_1: color, U_2: aroma, U_3: taste, and U_4: style. The evaluated factor set is, therefore, $U = \{U_1, U_2, U_3, U_4\} = \{\text{color, aroma, taste, style}\}$.

2.4.3 | Establishment of comment set

The evaluation standards for Luzhou-flavor liquors are based on the four grades (V_1–V_4) shown in Table 1, which constitute the evaluation set $V = \{V_1, V_2, V_3, V_4\} = \{\text{excellent grade, grade 1, grade 2, grade 3}\}$.

2.4.4 | Determination of evaluation factor weights

Color, taste, aroma, and style were assigned scores of 5, 50, 30, and 15, respectively, so the weight set was $X = \{0.05, 0.5, 0.3, 0.15\}$.

2.4.5 | Determination of fuzzy matrix

The 10 evaluators scored the liquor samples according to the comment set V. The times of comments given to each index were then plotted in a table. The data in the table were divided by 10 to determine the membership grade R of each of the four factors, for the five liquor samples. A membership grade matrix was obtained by arranging the factors in rows. According to the principle of fuzzy transformation, Y was used as a synthetic evaluation set that contains the products to be evaluated. Therefore, a fuzzy relationship evaluation set was obtained: $Y = XR$, where X is a weight set and R is a fuzzy matrix. Finally, a comprehensive score matrix T is introduced to process the fuzzy relationship evaluation set Y. According to the specialties of sensory evaluation, let the evaluation grade set be $K = \{k_1, k_2, k_3, k_4\}$. The total score in the fuzzy comprehensive evaluation of liquor samples was $T = Y \times K$, where the evaluation grade set was $K = \{90, 70, 50, 30\}$.

2.5 | GC-MS analysis conditions

2.5.1 | Chromatographic conditions

The chromatographic column used was SHIMADZU Rxi-5MS capillary column (30×0.25 mm, 0.25μm) with an inlet temperature of $250 ^\circ C$ and a column flow of 1.0 ml/min. The sampling method involved splitless injection and heating according to the following program: the starting temperature was $40 ^\circ C$ (held for 2 min), was increased at $3.5 ^\circ C/min$ to $95 ^\circ C$ (held for 2 min), and then increased at $5 ^\circ C/min$ to $230 ^\circ C$ (held for 10 min); an injection volume of 1 μl was used.

2.5.2 | Mass spectrometry conditions

Ion source was from EI and the scan mode used was SCAN mode, the ion source temperature was $220 ^\circ C$, interface temperature was $250 ^\circ C$, electronic capacity was 70 eV, detector voltage was 0.7 kV, solvent delay was by 3.0 min, and scanning range was 30–550 amu.

2.6 | Data processing

The data obtained were used for statistical analysis and PCA using all-cause models in Microsoft Office Excel 2016 and SPSS 26.0. The significance level was set at $p < .05$.

Table 1 | Sensory rating standard for Luzhou-flavor liquor

Item	Excellent grade (>95)	First grade (90–95)	Second grade (85–90)	Third grade (80–85)
Color	Colorless or light yellow, clear and transparent, no suspension, no precipitate	Colorless and transparent, slightly turbid, no precipitation	Colorless and transparent, with turbid precipitation	
Aroma	Strong compound aroma dominated by ethyl caproate	Strong compound aroma dominated by ethyl caproate	Slight compound aroma dominated by ethyl caproate	No evident compound aroma dominated by ethyl caproate
Taste	Mellow body, moderately sweet and clear, long finish	Mellow and harmonious body, moderately sweet and clear, long finish	Off-flavor in the body, unclear, uncomfortable finish	Strong off-flavor, short finish
Style	Typical style in this type of liquors	Slightly typical style in this type of liquors	Not typical style in this type of liquors	No typical style in this type of liquors
3 | RESULTS

3.1 | Analysis of the sensory indices of liquor samples using fuzzy mathematics

3.1.1 | Results of sensory evaluation of different liquor samples

An evaluation team of ten tasters conducted sensory tasting of the five different liquor samples under special conditions, and evaluated the four indicators of color, aroma, taste, and style, in accordance with the grading criteria developed for dark wine evaluation and single-factor evaluation (Table 1). The five wine samples were poured into numbered wine glasses by a special person, and evaluated and scored by the ten tasters. The evaluation results were collected, summarized, and statistically analyzed, to produce a statistical table of comprehensive tasting results (counting the number of sensory tasters) (Table 2).

As an example, with respect to the color of the sample M5, 8, 1, 0, and 1 tasters graded it as excellent, 1, 2, and 3, respectively (Table 2). Hence, we obtained U1 = [0.8, 0.1, 0, 0, 1]. Similarly, we obtained U2 = [0, 0.4, 0.2, 0.4], U3 = [0, 0, 0.7, 0.3], and U4 = [0.1, 0.2, 0.3, 0.4]. Then, a membership grade matrix of the four single factors for the five liquor samples was obtained as follows:

\[
R_1 = \begin{bmatrix}
0.9 & 0.1 & 0 & 0 \\
0.2 & 0.7 & 0.1 & 0 \\
0.1 & 0.4 & 0.5 & 0 \\
0.2 & 0.4 & 0.3 & 0.1
\end{bmatrix}
\]

\[
R_2 = \begin{bmatrix}
0.8 & 0.2 & 0 & 0 \\
0.5 & 0.3 & 0.2 & 0 \\
0.2 & 0.5 & 0.3 & 0 \\
0.2 & 0.6 & 0.2 & 0
\end{bmatrix}
\]

\[
R_3 = \begin{bmatrix}
0.9 & 0.1 & 0 & 0 \\
0.6 & 0.4 & 0 & 0 \\
0.2 & 0.8 & 0 & 0 \\
0.3 & 0.6 & 0.1 & 0
\end{bmatrix}
\]

\[
R_4 = \begin{bmatrix}
0.9 & 0.1 & 0 & 0 \\
0.1 & 0.5 & 0.4 & 0 \\
0.3 & 0.5 & 0.2 & 0 \\
0.1 & 0.2 & 0.6 & 0.1
\end{bmatrix}
\]

\[
R_5 = \begin{bmatrix}
0.8 & 0.1 & 0 & 0 \\
0.4 & 0.2 & 0.4 & 0 \\
0.3 & 0.7 & 0.3 & 0 \\
0.1 & 0.2 & 0.3 & 0.4
\end{bmatrix}
\]

According to the fuzzy changing principle, the weighted averages were adopted to determine the comprehensive membership grade of the evaluation factors: \(Y = XR \). The evaluation results are as follows:

\[
Y_1 = XR_1 = \begin{bmatrix}
0.9 & 0.1 & 0 & 0 \\
0.2 & 0.7 & 0.1 & 0 \\
0.1 & 0.4 & 0.5 & 0 \\
0.2 & 0.4 & 0.3 & 0.1
\end{bmatrix} \times \begin{bmatrix}
0.05 & 0.5 & 0.3 & 0.15
\end{bmatrix} = \{0.205, 0.535, 0.245, 0.015\}
\]

Similarly, \(Y_2 = \{0.04, 0.35, 0.39, 0.22\} \)

\[
Y_3 = \{0.45, 0.535, 0.015\} \quad Y_4 = \{0.11, 0.375, 0.44, 0.075\}
\]

\[
Y_5 = \{0.055, 0.235, 0.355, 0.355\}
\]

The total score of the fuzzy comprehensive evaluation is \(T = Y \times K \). Given that \(Y_1 = \{0.205, 0.535, 0.245, 0.015\} \) and evaluation grade set \(K = [90, 70, 50, 30] \) for M1, we have:

\[
\text{Comprehensive score } T_1 = Y_1 \times K = \begin{bmatrix}
0.205 & 0.535 & 0.245 & 0.015
\end{bmatrix} \times \begin{bmatrix}
90 & 70 & 50 & 30
\end{bmatrix} = 68.6
\]

Similarly, \(T_2 = 54.2, T_3 = 78.7, T_4 = 60.4, \) and \(T_5 = 49.8 \).

3.1.2 | Sensory evaluation results with fuzzy mathematics

During the fuzzy mathematics sensory evaluation, the fuzzy mathematics rationale is used to simulate human thinking and to consider the overall effects of all factors for determining the final result. It eliminates the subjective factors of human evaluators, and thus makes the evaluation process more accurate, objective, and scientific (Pan et al., 2014). Computations showed that the sensory score was the highest in M3, and was significantly higher than other samples. The sensory scores of the five samples were ranked from high to low as M3, M1, M4, M2, and M5. Hence, the sensory evaluation of the five samples can be summarized as M3 > M1 > M4 > M2 > M5.

Shinde and Kulkarni (2016) evaluated four different jams available in the market based on a fuzzy-logic mathematical model using color, flavor, texture, and overall appearance of the jam, as evaluation
indicators. The fuzzy mathematical approach was also used to evaluate the quality of a product produced using a new process. Song et al. (2021) evaluated the quality of grape distilled wine using four indicators, namely appearance, color, aroma, and taste.

3.2 | Construction of quality model for liquor samples

3.2.1 | Trace component analysis of liquor samples

The aromatic components of the five liquor samples were detected using GC-MS. Then, GC-MS total ion current maps of the representative components in the liquor samples were plotted. The chromatogram components of the Luzhou-flavor liquors are listed in Table 3. The chromatogram results of the Luzhou-flavor liquors were not quantitatively analyzed, and were all relative concentrations (%).

3.2.2 | PCA mathematical model

The PCA mathematical model is as follows:

\[
F_1 = a_{11}ZV_1 + a_{21}ZV_2 + \ldots + a_{n1}ZV_m \\
F_2 = a_{12}ZV_1 + a_{22}ZV_2 + \ldots + a_{n2}ZV_m
\]

where \(a_{ij}, a_{2i}, a_{ni} (i = 1, n)\) are the eigenvectors of the eigenvalues in the covariance matrix \(\Sigma\) from \(V\), and \(ZV_1, ZV_2, \ldots, ZV_m\) are the standardized values of the original variables. Because the dimensions of the indices are usually different in practical applications, the impact of the dimensions must be eliminated before computation, and the original data must be standardized.

The chromatogram components from the liquors are marked as \(V_1, V_2, V_3, V_4, V_5\). The communality of variables refers to the degree to which a common factor in the original information of each variable can be extracted. The communality of variables extracted by PCA in this study, as shown in Table 4, is above 90% for all variables. This suggests that

TABLE 3	Parts of chromatographic components of the Luzhou-flavor liquor samples								
Sample name	Hexanoic acid ethyl ester	Octanoic acid ethyl ester	2-hydroxypropanoic acid ethyl ester	2-methylpropanol	Butanol	2-methylbutanol	Hexanol	Heptanoic acid	M1
	33.25	41.5	2.07	0.07	1.97	4.92	3.06	1.47	0.99
M2	22.99	3.09	2.23	0.7	1.61	8.04	4.97	1.56	1.25
M3	22.45	1.14	0.19	0.73	1.04	5.73	4.87	0.97	2.82
M4	29.95	4.35	1.59	1.24	1.07	5.08	4.91	0.26	3.41
M5	19.1	3.24	4.91	0.87	3.24	4.91	0.32	0.97	

TABLE 4	Common degrees of variables extracted by principal component analysis	
Initial	Extract	
\(V_1\)	1.000	0.953
\(V_2\)	1.000	0.996
\(V_3\)	1.000	0.910
\(V_4\)	1.000	0.956
\(V_5\)	1.000	0.963
\(V_6\)	1.000	0.977
\(V_7\)	1.000	0.974
\(V_8\)	1.000	0.999
\(V_9\)	1.000	0.983
\(V_{10}\)	1.000	0.994
\(V_{11}\)	1.000	0.984
\(V_{12}\)	1.000	0.994
TABLE 5 Eigenvalues and variance contributions of the principal components in Luzhou-flavor liquors

Element	Initial eigenvalue	Percentage of variance	Accumulative contribution rates %	Extracted sum of squares of load	Total	Percentage of variance	Accumulative contribution rates %	Sum of squares of rotational loads	Total	Percentage of variance	Accumulative contribution rates %
1	6.184	51.536	51.536	6.184	51.536	51.536	4.664	38.864	38.864		
2	4.337	36.144	87.680	4.337	36.144	87.680	3.864	32.198	71.061		
3	1.163	9.691	97.371	1.163	9.691	97.371	3.157	26.310	97.371		
4	0.315	2.629	100.000								
5	1.058E-15	8.816E-15	100.000								
6	4.175E-16	3.479E-15	100.000								
7	2.552E-16	2.126E-15	100.000								
8	1.279E-17	1.066E-16	100.000								
9	−5.521E-17	−4.601E-16	100.000								
10	−1.009E-16	−8.406E-16	100.000								
11	−6.275E-16	−5.229E-15	100.000								
12	−9.963E-16	−8.302E-15	100.000								

TABLE 6 Principal component load matrix and eigenvectors of the Luzhou-flavor liquors

Index	First principal components	Second principal components	Third principal components			
	Loads	Eigenvectors	Loads	Eigenvectors	Loads	Eigenvectors
V₁	−0.848	−0.341	0.372	0.179	0.310	0.287
V₂	0.374	0.150	−0.033	−0.016	0.924	0.857
V₃	−0.416	0.167	−0.467	−0.224	−0.720	−0.668
V₄	0.858	0.345	−0.004	−0.002	0.468	0.434
V₅	−0.106	−0.043	0.229	0.110	0.948	0.879
V₆	−0.319	−0.128	0.932	0.448	0.085	0.079
V₇	−0.169	−0.068	0.839	0.403	0.491	0.455
V₈	−0.207	−0.083	0.973	0.467	−0.095	−0.088
V₉	−0.352	−0.142	0.823	0.395	0.427	0.396
V₁₀	0.942	0.379	−0.326	−0.157	−0.039	−0.036
V₁₁	0.926	0.372	−0.156	−0.075	0.322	0.299
V₁₂	0.919	0.370	−0.356	−0.171	0.154	0.143

TABLE 7 Comprehensive score of quality of Luzhou-flavor liquor

Sample name	Scores of first principal components (F₁)	Scores of second principal components (F₂)	Scores of third principal components (F₃)	Comprehensive score (F)	Rank
M1	−1.52	2.36	1.88	0.26	2
M2	−1.20	1.34	−1.92	−0.33	4
M3	3.00	−1.23	3.21	1.45	1
M4	−1.29	0.59	1.57	−0.30	3
M5	1.02	−3.06	−4.74	−1.07	5

TABLE 8 Correlation between Luzhou-flavor liquor model scores and sensory scores

Sample name	M1	M2	M3	M4	M5
Sensory scores	68.6	54.2	78.7	60.4	49.8
The model-based comprehensive scores F	0.26	−0.33	1.45	−0.30	−1.07
Significance	$p < .001$				
Correlation coefficients	0.9717				
the loss of information is small, indicating that several common factors extracted in this study can strongly explain these variables.

The eigenvalues and variance contribution rates of the principal components obtained from the Luzhou-flavor liquors by PCA are listed in Table 5. Principal components with eigenroots larger than 1 and accumulative contribution rates larger than 80% were selected as the study targets. As shown in Table 5, the eigenroots of the first, second, and third principal components are 6.184, 4.337, and 1.163, respectively (all larger than 1); and their accumulative contribution rates are 51.536%, 87.680%, and 97.371%, respectively, which can efficiently reflect the original data in the indices of the Luzhou-flavor liquors.

The eigenvectors were calculated based on the eigenroots of the first three principal components and the load matrix (Table 6). The standardized V1, V2, V3, V12 values are marked as ZV1 to ZV12, respectively. Thus, the principal components are expressed as:

\[
F_1 = -0.341ZV_1 + 0.150ZV_2 + 0.167ZV_3 + 0.345ZV_4 - 0.043ZV_5 - 0.128ZV_6 - 0.068ZV_7 - 0.083ZV_8 - 0.142ZV_9 + 0.379ZV_{10} + 0.372ZV_{11} + 0.370ZV_{12} \\
F_2 = 0.179ZV_1 - 0.016ZV_2 - 0.224ZV_3 - 0.002ZV_4 + 0.110ZV_5 + 0.448ZV_6 + 0.403ZV_7 + 0.467ZV_8 + 0.395ZV_9 - 0.157ZV_{10} - 0.075ZV_{11} - 0.171ZV_{12} \\
F_3 = 0.287ZV_1 + 0.857ZV_2 - 0.668ZV_3 + 0.434ZV_4 + 0.879ZV_5 + 0.079ZV_6 + 0.455ZV_7 - 0.088ZV_8 + 0.396ZV_9 - 0.036ZV_{10} + 0.299ZV_{11} + 0.143ZV_{12}
\]

(1) (2) (3)

where the coefficients are the eigenvectors of the quality indices, and F1, F2, and F3 are the scores of the principal components. The variance contribution rates βi (i = 1, 2, 3) of the initial eigenroots were used as the weighting coefficients of the first three principal components. Thereby, a quality evaluation model of the Luzhou-flavor liquors, namely, the comprehensive score, was obtained in Equation (4):

\[
F = \frac{0.51536F_1 + 0.36144F_2 + 0.09691F_3}{0.97371}
\]

(4)

The principal component matrix can also be used to measure the contributions of the principal components. Specifically, a larger absolute value of the load means that the contribution of the corresponding principal component is larger (Karytsas & Choropanitis, 2017). The first principal component has large loads in V1, V4, V10, V11, and V12, and mainly influences the liquor quality from the perspectives of ethyl caproate, ethyl butyrate, furfural, heptanoic acid, and octanoic acid (Table 6). The second principal component has large loads in Vp, V9, Vp, and Vp, and mainly influences the liquor quality from the perspectives of 2-methyl-1-propanol, butanol, isopentyl alcohol, and hexyl alcohol. The third principal component has large loads in V2, V3, and V5, and mainly influences the liquor quality from the perspectives of ethyl octanoate, ethyl lactate, and butyl caproate.

3.2.3 Trace components by PCA

The comprehensive quality scores of Luzhou-flavor liquors were determined using Equation (4) (Table 7). From the PCA-based mathematical model, the scores of the five samples of Luzhou-flavor liquors were ranked from high to low as M3, M1, M4, M2, and M5. Hence, the sensory evaluation of the five samples was M3 > M1 > M4 > M2 > M5.

3.3 Correlations of the Luzhou-flavor liquor model

Correlations and significance between the model-based comprehensive scores, F, and the sensory scores, were tested (Table 8). The correlation coefficients between the comprehensive scores and fuzzy mathematics sensory scores were up to 0.97, showing very high significance (p < .01), further validating the reliability of the evaluation model.

4 CONCLUSIONS

Fuzzy mathematics and PCA were used to comprehensively evaluate the Luzhou-flavor liquors of different quality levels. Then, sensory evaluation data and trace components of the liquors were analyzed. Based on the modeling and data output, the liquor samples at close grades were ranked as M3 > M1 > M4 > M2 > M5. Thereby, a comprehensive liquor evaluation model has been established in this study. Compared to traditional liquor quality evaluation methods, this new method is more capable of performing comprehensive analysis and objective evaluation.

ACKNOWLEDGMENTS

This work was supported by the Major Science and Technology Projects of Henan Province of China (181100211400), Key Technologies Research and Development Program of Henan Province of China (20210211030), Scientific Research Foundation for Doctors of Henan University of Animal Husbandry and Economy (2018HNUAHEDF011) and Key Subject Projects of Henan University of Animal Husbandry and Economy (C3060020). We thank Wiley editing services for English language editing.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ETHICS STATEMENT

Our research did not contain any animal experiments or human subjects.

DATA AVAILABILITY STATEMENT

Data available on request from the authors.
ORCID
Yanbo Liu https://orcid.org/0000-0002-9017-5861

REFERENCES
Abdi, H., & Williams, L. J. (2010). Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 2(4), 433–459. https://doi.org/10.1002/wics.743
Chang, S., Wang, C., Liu, Y., Zhang, L., Zhang, Y., Li, M., Cai, H., Zhang, Y., & Wang, H. (2018). Construction & application of pit mud quality evaluation system based on fuzzy mathematical model. Liquor-making Science & Technology, 12, 70–73. https://doi.org/10.13746/j.njkt.2018229
Cheng, H., Xing, J., & Zheng, R. (2021). Comprehensive safety risk assessment of pesticide residues in agricultural products based on entropy-fuzzy analysis. Journal of Chinese Institute of Food Science and Technology, 21(5), 331–339. https://doi.org/10.16429/j.1009-7848.2021.05.039
Cheng, P., Fan, W., & Xu, Y. (2013). Quality grade discrimination of Chinese strong aroma type liquors using mass spectrometry and multivariate analysis. Food Research International, 54(2), 1753–1760. https://doi.org/10.1016/j.foodres.2013.09.002
Debjani, C., Das, S., & Das, H. (2013). Aggregation of sensory data using fuzzy logic for sensory quality evaluation of food. Journal of Food Science and Technology, 50(6), 1088–1096. https://doi.org/10.1007/s13197-011-0433-x
Dong, C., & Bi, K. (2020). A low-carbon evaluation method for manufacturing products based on fuzzy mathematics. Systems Science & Control Engineering, 8(1), 153–161. https://doi.org/10.1080/21642583.2020.1734987
Fan, Q., Wang, X., Zhao, Y., Zheng, F., Li, H., Zhang, F., & Chen, F. (2019). Characterization of key aroma compounds in Laobaigan Chinese Baijiu by GC×GC-TOF/MS and means of molecular sensory science. Flavour and Fragrance Journal, 34(6), 514–525. https://doi.org/10.1002/ffj.12533
Feng, J., Zhan, X.-B., Zheng, Z.-Y., Wang, D., Zhang, L.-M., & Lin, C.-C. (2013). New model for flavour quality evaluation of soy sauce. Czech Journal of Food Sciences, 31, 292–305. https://doi.org/10.17221/524/2011-CJFS
Feng, N., Zhang, L., & Hou, D. (2018). Study on the effect of different broomcorn millet varieties and processing technology on the quality of yellow wine in broomcorn millet and Tartary buckwheat based on fuzzy mathematics. Journal of Anhui Agricultural Science, 46(36), 162–165. https://doi.org/10.13989/j.cnki.0517-6611.2018.36.043
He, F., Duan, J., Zhao, J., Li, H., Sun, J., Huang, M., & Sun, B. (2021). Different distillation stages Baijiu classification by temperature-programmed headspace-gas chromatography-ion mobility spectrometry and gas chromatography-offactometry-mass spectrometry combined with chemometric strategies. Food Chemistry, 365, 130430. https://doi.org/10.1016/j.foodchem.2021.130430
He, G., Huang, J., Wu, C., Jin, Y., & Zhou, R. (2020). Bioturbation effect of fortified Daqiu on microbial community and flavor metabolite in Chinese strong-flavor liquor brewing microecosystem. Food Research International, 129, 108851. https://doi.org/10.1016/j.foodres.2019.108851
He, G., Huang, J., Zhou, R., Wu, C., & Jin, Y. (2019). Effect of fortified Daqiu on the microbial community and flavor in Chinese strong-flavor liquor brewing process. Frontiers in Microbiology, 10, 56. https://doi.org/10.3389/fmicb.2019.00056
Karytas, S., & Choropanitis, I. (2017). Barriers against and actions towards renewable energy technologies diffusion: A principal component analysis for residential ground source heat pump (GSHP) systems. Renewable and Sustainable Energy Reviews, 78, 252–271. https://doi.org/10.1016/j.rser.2017.04.060
Kou, X., Chai, L., Yang, S., He, Y., Wu, C. E., Liu, Y., Zhou, J., Xue, Z., & Wang, Z. (2021). Physiological and metabolic analysis of winter jujube after postharvest treatment with calcium chloride and a composite film. Journal of the Science of Food and Agriculture, 101(2), 703–717. https://doi.org/10.1002/jsfa.10683
Lee, S. J., & Kwon, Y. A. (2007). Study on fuzzy reasoning application for sensory evaluation of sausages. Food Control, 18(7), 811–816. https://doi.org/10.1016/j.foodcont.2006.04.004
Meng, X., Wang, H., & Wu, P. (2020). Construction and analysis of quality evaluation modeling for beef with sous vide cooking. Journal of Food Science and Technology, 38(1), 88–96. https://doi.org/10.3969/j.issn.2095-6002.2020.01.012
Minaeva, Y. N., Filimonova, O. Y., Minaeva, J. I., & Filimonov, A. (2020). Fuzzy mathematics with limited possibilities for assigning membership functions. Cybernetics and Systems Analysis, 56(1), 29–39. https://doi.org/10.1007/s10559-020-00218-9
Morales, F. J., & Van Boekeel, M. A. J. S. (1997). A study on advanced Maillard reaction in heated casein/sugar solutions: Fluorescence accumulation. International Dairy Journal, 7(11), 675–683. https://doi.org/10.1016/S0958-6946(97)00071-X
Mukhopadhyay, S., Majumdar, G. C., Goswami, T. K., & Mishra, H. N. (2013). Fuzzy logic (similarity analysis) approach for sensory evaluation of chhanda podo. LWT-Food Science and Technology, 53(1), 204–210. https://doi.org/10.1016/j.lwt.2013.01.013
Pan, Z., Zhou, W., & Zhou, A. (2014). Optimization on processing technology of bacon based on fuzzy mathematical sensory evaluation. Food & Machinery, 2, 201–205. https://doi.org/10.3969/j.issn.1003-5788.2014.02.050
Pravdova, V., Boucon, C., De Jong, S., Walczak, B., & Massart, D. L. (2002). Three-way principal component analysis applied to food analysis: An example. Analytica Chimica Acta, 462(2), 133–148. https://doi.org/10.1016/S0003-9866(02)00318-5
Shinde, S., & Kulkarni, U. (2016). Extracting classification rules from modified fuzzy min-max neural network for data with mixed attributes. Applied Soft Computing, 40, 364–378. https://doi.org/10.1016/j.asoc.2015.10.032
Song, J., Li, N., & Tong, W. (2021). The optimization of processing technology based on fuzzy mathematical evaluation and aroma component analysis of grape distilled wine in Xinjiang. Modern Food Science and Technology, 37(2), 249–260. https://doi.org/10.13982/j.mstf.1673-9078.2021.2.0768
Sun, T., Lu, X., Cai, Y., Pan, Y., & Huang, J. (2021). Software test quality evaluation based on fuzzy mathematics. Journal of Intelligent & Fuzzy Systems, 40(4), 6125–6135. https://doi.org/10.3233/JIFS-189451
Wang, R., Miao, K., & Sun, J. (2020). Intelligent recognition method of infrared imaging target of unmanned autonomous ship based on fuzzy mathematical model. Journal of Intelligent & Fuzzy Systems, 38(4), 3981–3989. https://doi.org/10.3233/JIFS-179623
Xu, W., Wang, B., & Zhang, H. (2019). Research on data fusion algorithm based on fuzzy mathematics and principal component analysis. Advances in Applied Mathematics, 8(5), 953–957. https://doi.org/10.1016/j.aam.2019.85108
Yan, Y., Chen, S., He, Y., Nie, Y., & Xu, Y. (2020). Quantitation of pyrazines in Baijiu and during production process by a rapid and sensitive direct injection UPLC-MS/MS approach. LWT, 128, 109371. https://doi.org/10.1016/j.lwt.2020.109371
Zhang, X., Qi, X., Zou, M., & Liu, F. (2011). Rapid authentication of olive oil by Raman spectroscopy using principal component analysis. Analytical Letters, 44(12), 2209–2220. https://doi.org/10.1080/00032719.2010.546030
Zhao, J., Wang, M., Saroja, S. G., & Khan, I. A. (2022). NMR technique and methodology in botanical health product analysis and quality control. *Journal of Pharmaceutical and Biomedical Analysis*, 207, 114376. https://doi.org/10.1016/j.jpba.2021.114376

Zheng, X. W., & Han, B. Z. (2016). Baijiu, Chinese liquor: History, classification and manufacture. *Journal of Ethnic Foods*, 3(1), 19–25. https://doi.org/10.1016/j.jef.2016.03.001

Zhou, W., & Wei, Y. (2019). Application of fuzzy mathematics in sensory evaluation of light soy sauce. *China Condiment*, 44(7), 115–117. https://doi.org/10.3969/j.issn.1000-9973.2019.07.025

Zou, Y., Gao, H., & Zhang, H. (2019). Establishment of sensory evaluation system for Hainan camellia oil based on fuzzy mathematics. *Cereal and Food Industry*, 26(3), 30–33, 37. https://doi.org/10.3969/j.issn.1672-5026.2019.03.009

How to cite this article: Liu, Y., Qiao, Z., Zhao, Z., Wang, X., Sun, X., Han, S., & Pan, C. (2022). Comprehensive evaluation of Luzhou-flavor liquor quality based on fuzzy mathematics and principal component analysis. *Food Science & Nutrition*, 10, 1780–1788. https://doi.org/10.1002/fsn3.2796