Semantic Annotating of Czech Corpus via WSD

Robert Král
Natural Language Processing Laboratory
Faculty of Informatics, Masaryk University
Botanická 68a, 602 00 Brno, Czech Republic
rkral@fi.muni.cz

Abstract
We would like to describe the relationship between word sense disambiguation (WSD) and language resources (LR) working with word senses. We discuss the problem of sense division and tagging. Exploiting specific features of the inflectional languages for WSD is encouraged. We present WSD methods for Czech ambiguous nouns. The advantage of these methods consists in reducing the manual work by using a synonym training set. They could be utilized for building a semantically annotated corpus or gaining glosses for Czech WordNet.

1. Introduction

1.1. Main Problems and Solutions in WSD
WSD tries to solve the problem of assigning a sense to the words occurring in a text or speech. It is connected with two questions: how to represent word senses and in which way the correct sense of the word occurrence can be determined on the contextual basis.

A lot of methodologies for WSD are being used (Ide, Véronis, 1998). The problem of the WSD methods based on machine learning consists in the manual annotation of words in a text which is needed for building a training set. The data sparseness problem occurs at the WSD solutions which utilize machine readable dictionaries or lexical databases. Finally, the WSD methods which only divide contexts into the groups in accordance with semantic similarity (Schütze, 1998) of the given ambiguous word suffer from the problem of sense interpretation.

One of our goals that we want to present in the paper is how to construct some sense-annotated data with the minimum of manual work required for tagging.

1.2. Relation between WSD and LR

The role of LRs in WSD is twofold. LRs can provide (annotated) data for the solution to WSD, but, on the other hand, WSD methods could support the creation of LRs. The main types of LRs that contain information about word senses in Czech are: 1. Czech WordNet (Pala, Ševeček, 1999) which at present does not contain any Czech glosses and 2. machine readable dictionaries, for example Dictionary of Literary Czech (2000) offering just a few examples of using senses and in our opinion with an inappropriate division of word senses. This is the reason why we pay attention to the development of the WSD methods that can be used for semantic annotation of Czech corpora. It is possible to extract several sentences (documents) containing the word with the same sense from such a semantically annotated corpus or link appropriate sentences in the corpus with an item in a machine readable dictionary.

2. Word Senses

2.1. Small Sense-Tagged Corpus for Czech
By the term sense-tagged corpus we mean a corpus in which the word occurrences are tagged with their word sense. Such a corpus can give information about structure of word senses and their distribution, represents word senses in a text and could serve as a training and testing set for WSD methods. There are many sense-tagged corpora for English, such as Hector (Atkins, 1993) and others.

Since for Czech no sense-tagged corpus has been introduced so far, we have created a small sense-tagged corpus called DESEM. The textual material for the DESEM corpus has been taken from an already established Czech corpus called DESAM (Pala et. al., 1998). 1364 sense-tagged occurrences of nine Czech ambiguous nouns have been manually recorded. The most difficult problem was to find the individual senses because quite fine grained classification can be used. The tags are in the following form: sn - l - a - h, where n is an identification number and (if it is possible) it corresponds to the number of the synset in the Czech part of EuroWordNet (Pala, Ševeček, 1999; Vossen, 1988), l is a lemma, a is a synonym and h is a hyperonym. Another 802 sense tags of the lemma *fronta* was annotated in the ESOSEM corpus whose textual material was taken from the ESO corpus. The senses of the word *fronta* together with their distributions are presented in Table 1.

We have tested our WSD methods by means of the DESEM corpus. Generally speaking, semantically annotated corpora could be used in other fields of NLP since they represent a reasonably good source of the usage of senses.

2.2. Sense Division
During the sense-tagging of DESEM there were problems with specifying the word senses, therefore, we explored this question.

We have been inspired by (Schütze, 1998) who proposed to interpret a sense as a group of the context including the common ambiguous word, therefore, the word sense in this interpretation does not exist at all. Schütze finds these groups by automatic clustering according to the similarity between two contexts. On the other hand, the word senses...
are specified intuitively in dictionaries. We have tried to introduce the division of senses in a more formal way but with regard to human experience.

We randomly chose 50 contexts of the ambiguous word *vazba* and observed its word senses. One of the biggest problems in tagging the senses by a human is to specify a definition of a sense. We formulated an easier task: to decide if two ambiguous occurrences of the given ambiguous word *vazba* in two contexts have the same sense or not. These decisions were made by hand gradually for 126 couples of contexts. Because of transitivity of similarity, the context a and c were automatically identified as similar if we tag context a similar to b and b similar to c. Here is the algorithm which finds the partitioning \mathcal{R} of n contexts according to the similarity of word senses between two contexts. This algorithm uses for this purpose the external procedure $SemSim$.

\begin{verbatim}
begin
 input $C = \{c_1, \ldots, c_n\}$
 for $i = 1 \ldots n$ do
 $[c_i] := \{c_i\}$
 $\mathcal{R} := \{[c_i]\}$
 for $i = 1 \ldots n - 1$ do
 if $[c_i] = \{c_j\}$ then
 for $j = i + 1 \ldots n$ do
 if $[c_j] = \{c_i\}$ then
 if $SemSim(c_i, c_j)$ then
 $[c_i] := [c_i] \cup [c_j]$\n $\mathcal{R} := \mathcal{R} - \{[c_j]\} \cup \{[c_i]\}$
 endif
 endif
 endif
 endif
 output \mathcal{R}
end
\end{verbatim}

We have got 9 classes of contexts reflecting 9 senses. There is a list of their descriptions for the most frequent among them:

1. linkage, with 19 contexts
2. detention, 17
3. feedback, 4
4. colligation, 4
5. bookbinding, 3

We compared this sense division with the division in the Dictionary of Literary Czech (2000) and found significant distinctions – some word senses are mixed together, etc. For a detailed division of word senses we would have to start, of course, from a bigger set. This experiment implies a need for constructing better and more exact LRs working with word senses.

2.3. Exploiting Relations between Inflectional Variants of Words and Senses

Each WSD system gains information given by the context in which an ambiguous word is placed. But we have anticipated that the part of the information about the sense of the word occurrence is hidden in the form of the word. Of course, this approach could not be tested on the non-inflectional languages like English. But Czech has flection and we have tested our suggestion by means of DESEM corpus.

We suggest to construct a brief classifier assigning the most likely sense to a word form. These probabilities could be counted from the contingency table. Let $f_{t,s}$ be the number of co-occurrences of the word form t and the sense tag s in the training set, in our experiment given by the DESEM corpus. Then the right sense tag for an occurrence of the word form t should be chosen according to the equations 1.

$$s(t) = \arg \max_{s \in \mathcal{S}} P(s_t|t)$$

$$= \frac{\arg \max_{s \in \mathcal{S}} P(s_t, t)}{P(t)}$$

$$= \arg \max_{s \in \mathcal{S}} P(s_t, t)$$

$$= \arg \max_{s \in \mathcal{S}} f_{t,s}$$

If we suppose that the contingency table counted from DESEM represents a language model we can try to measure the precision of the rule for a word form by Equation 2, where $f_{t,s}$ is the marginal frequency. In Equation 3 there is the total precision for all word forms of a given lemma.

$$prec_t = \frac{\max_{s \in \mathcal{S}} f_{t,s}}{f_t}$$

$$f_t = \sum_{s \in \mathcal{S}} f_{t,s}$$

$$prec = \frac{\sum_{s \in \mathcal{S}} \max_{t \in \mathcal{T}} f_{t,s}}{f_t}$$

$$f_t = \sum_{s \in \mathcal{S}} f_{t,s}$$

On the basis of the DESEM corpus we have found out, for example, that if the lemma *vazba* occurs in the context
Table 2: Desambiguation rules on the word form basis.

word form	sense tag	expect. precision
vazbě	s8-područí/ custody	94.1 %
vazba	s5-vztah/link	94.1 %
metru	s1-míra/measure	92.4 %
srážek	s7-počasí/rainfall	83.9 %
srážkách	s2-šarvátka/mellay	83.3 %
vazbu	s5-vztah/link	81.8 %
srážkami	s7-počasí/rainfall	70 %

The concordance containing target word (target concordance) wanted for disambiguation is transformed to (target) vector the same way. Then we choose the most similar vector from the training set labelled by a synonym and assign it to target vector. This method is called the nearest neighbour algorithm. The similarity of two vectors is measured by the angle formed by them. Thus we disambiguate the sense of target word.

We have done experiments with variant of k-NN method, where the k nearest neighbour vectors is searched. The most frequent synonym is chosen from among them.

The results depend on synonym selection and on values of many parameters, such as the length of context, number of training concordances, etc. The precision (the number of correct disambiguated occurrences divided by the total of disambiguated occurrences) ranged from 50 % to 75 % and coverage (the number of disambiguated occurrences among the total of occurrences) was 100 % (except of k-NN, where k is even).

3.3. Decision List (DL)

Using synonym training set in DL (Rivest, 1987) can be divided in two steps: obtaining the DL and the disambiguation itself.

1. In the DL there are rules indicating that some feature of concordance determines the sense, in this case the synonym. Thanks to the training set we can compute conditional probabilities of that in concordance containing lemma w the target word has sense s. In Equations 4 let \(f_{s,w} \) be number of co-occurrences of the synonym s and lemma w and \(f_w \) be the number of occurrences of w in training set. Smoothing is also used in Equation 5 because of rare occurrences of certain lemmata.

\[
P(s|w) = \frac{P(s, w)}{P(w)} \quad (4)
\]

\[
P(s|w) = \frac{f_{s,w} + \epsilon}{f_w + \epsilon} \quad (5)
\]

The pair \((w, s)\) can be interpreted as a decision rule. For example dramatický \(\rightarrow\) epizoda (dramatic \(\rightarrow\) episode) conveys: if dramatický occurs in concordance then we predict synonym epizoda associated with appropriate sense. These pairs-rules sorted in descending order by probability represent the DL.

2. After lemmatization of words in concordance and elimination of some special forms included in the stoplist, each lemma is looked up in the left side of rules in DL. The right side of the rule with the highest probability score is then selected. The target word is labelled by this right side with synonym-sense. For example we disambiguate lemma vazba in concordance like vzájemná vazba mezi pachateli/mutual linkage between the burglars as a vzťah/linkage, because the respective rule has higher score. When no rule reaches the minimal score, disambiguation will fail.

We tested this technique and one of the best results was 91 % of precision and 10 % of coverage.
for lemma vazba using these synonyms: věta/sentence, pokus/test, vzťah/linkage, trest/penalty and similar results for lemma srážka with synonyms: zásah/shot, konflikt/conflict, peníze/money, počasí/weather. Reversely, for lemma scéna and fronta the results were not good (about 50% of precision).

4. Improving LRs via WSD

The applications of WSD to machine translation and information retrieval have been stressed in many articles. However, the WSD methods could be used for obtaining sentences containing a word of a given sense. This data may help to enrich dictionary records by adding relevant gloss to them.

Anyway, the WSD methods are going to be used for creating glosses (examples of use) for synsets in Czech WordNet because there are not any. Obtaining such sentences from the corpus is the task which we are interested in now. For example we need a gloss for synset strana in the sense stránka/page. In the current state it is necessary to specify the synonym stránka manually. The occurrence of target strana in the right sense could be automatically found. This occurrence along with its context can form an appropriate gloss. For this purpose the WSD methods where sense is represented by the synonym are more suitable because synonymy is intrinsic feature of WN. For the sake of automatic gloss retrieval, precision is the most important measure. Since one or two correct glosses usually suffice enough, the coverage or recall measures are not substantial for this purpose. In the current state the tools and program libraries for automatic work with synsets in the Czech WordNet are developed. Later creating glosses could be done fully automatically. Of course, the quality of finding the right glosses depends on quality of WSD methods.

We can look on the same problem from another point of view as well. If we have a synset with at least two synonyms there is a possibility of finding a gloss containing either one or the other. We can construct two sets of concordances where appropriate synonyms occur and find the most semantically similar concordances because they will probably represent the same sense. The similarity of concordances should be measured by the similarity of word senses in concordance.

This specific task can be extended to interconnection between WordNet and corpus which would be a very useful LR. Each synset should be connected to all appropriate occurrences of a given sense in the corpus. Reversely, each occurrence in corpus (except the some word classes) should be linked to the synset in WN. There would be a connection between the division of senses and their use. The advantages of hierarchical division of senses contained in WN and possibility of asking queries through the corpora managers would thus be combined.

5. Acknowledgement

This research has been supported by Czech ministry of Education, Research Program CEZ:J07/98:143300003. My thanks goes to Karel Pala, Radek Sedláček, Pavel Rychlý, Tomáš Čapek, Martin Dvořák and Miloslav Nepil for their help.

6. References

Atkins, S., 1993. Tools for computer-aided lexicography: the Hector project. Papers in Computational Lexicography: COMPLEX’93, Budapest.

Ide, N., Véronis, J., 1998. Introduction to the Special Issue on Word Sense Disambiguation: The State of the Art. Computational Linguistics, Vol. 24, Num. 1.

Král, R., 2001. Three Approaches to Word Sense Disambiguation for Czech. In V. Matoušek et. al., Text, Speech and Dialogue, 4th International Conference, Berlin : Springer-Verlag, s. 174–179.

Manning, Ch. D., Schütze, H., 1999. Foundations of Statistical Natural Language Processing. The MIT Press, Cambridge, Massachusetts.

Pala, K., Rychlý, P., Smrž, P., 1998. DESAM – An Annotated Corpus for Czech. Proceedings of SOFSEM’98, Springer.

Pala, K., Ševeček, P., 1999. Czech Lexical Database of the WordNet Type (within EuroWordNet-2). Sborník prací filosofické fakulty brněnské university, Masaryk University, Brno, 51–64.

Rychlí, P., 2000. Korpusové manažery a jejich efektivní implementace. Ph.D. thesis, Masaryk University, Brno.

Slovník spisovného jazyka českého (Dictionary of literary Czech.) Akademia, Praha, 1960, electronic version, Praha, Brno.

Rivest, R. L., 1987. Learning Decision Lists, Machine Learning, 2, 3, 229–246.

Sedláček, R., Smrž, P., 2001. A New Czech Morphological Analyzer ajka. In V. Matoušek et. al., Text, Speech and Dialogue, 4th International Conference, Berlin : Springer-Verlag, s. 100–107.

Schütze, H., 1998. Automatic Word Sense Discrimination. Computational Linguistics, 24, 1, 97–123.

Vossen, P., 1988. Set of Common Base Concepts in EuroWordNet-2. Final Report, 2D001, Amsterdam.