Derivatives of the Incomplete Beta Function

Robert J. Boik¹
Department of Mathematical Sciences
Montana State University — Bozeman

James F. Robison-Cox
Department of Mathematical Sciences
Montana State University — Bozeman

March 15, 1998

¹Address for Correspondence: Department of Mathematical Sciences, Montana State University — Bozeman, Bozeman, Montana 59717-2400
Derivatives of the Incomplete Beta Function

Keywords: Censored beta; Continued fractions; Truncated beta; Truncated beta-binomial

Languages

FORTRAN 77, MATLAB, and S-PLUS

Description and Purpose

The incomplete beta function is defined as

\[I_{x,p,q} = \int_0^x \frac{u^{p-1}(1-u)^{q-1}}{\text{Beta}(p,q)} \, du, \]

where \(\text{Beta}(p,q) \) is the beta function. Dutka (1981) gave a history of the development and numerical evaluation of this function. In this article, an algorithm for computing first and second derivatives of \(I_{x,p,q} \) with respect to \(p \) and \(q \) is described. The algorithm is useful, for example, when fitting parameters to a censored beta, truncated beta, or a truncated beta-binomial model.

Numerical Method

The incomplete beta function can be written as a hypergeometric series in the following manner:

\[I_{x,p,q} = K_{x,p,q} \times {}_2F_1 \left(1 - q, 1; p + 1; \frac{-x}{1-x} \right), \text{ where } K_{x,p,q} = \frac{x^p (1-x)^{q-1}}{p \text{Beta}(p,q)} \quad (1) \]

and \({}_2F_1 \) is the hypergeometric series. See Abramowitz and Stegun (1965, chapters 15 & 26) for details. Müller (1931) obtained a corresponding continued fraction representation of the above hypergeometric series. From Müller’s corresponding continued fraction, Gautschi (1967) and Tretter and Walster (1976) derived the associated continued fraction representation. The \(n^{th} \) approximant of the associated continued fraction representation is

\[I_{x,p,q} \approx K_{x,p,q} \left\{ 1 + \frac{a_1}{b_1 + \frac{a_2}{b_2 + \frac{a_3}{b_3 + \cdots + \frac{a_n}{b_n}}} \right\}, \quad (2) \]
where $K_{x,p,q}$ is given in (1);

$$a_n = \begin{cases}
\frac{pf(q-1)}{q(p+1)} & \text{if } n = 1, \\
\frac{p^2f^2(n-1)(p+q+n-2)(p+n-1)(q-n)}{q^2(p+2n-3)(p+2n-2)^2(p+2n-1)} & \text{if } n \geq 2;
\end{cases}$$

$$b_n = \frac{2(pf+2q)n^2 + 2(pf+2q)(p-1)n + pq(p-2-pf)}{q(p+2n-2)(p+2n)}; \text{ and}$$

$$f = \frac{qx}{p(1-x)}.$$

Tretter and Walster (1976, 1979, 1980) found that by monitoring subtractions and subtracting analytically when possible, the continuing fraction in (2) yields accurate results, even with extreme arguments. For example, the 21st approximant yielded 25 significant digits when $p = 0.5 \times 10^{20}$, $q = 5000$, and $x = 0.999999999999$. To obtain this accuracy, the approximants were computed in tail-to-head fashion.

The current algorithm is not intended to be used for such extreme arguments. Accordingly, tail-to-head computing is unnecessary and forward recurrence relations will be used to compute approximants in a head-to-tail fashion. Using forward recurrence relations, the nth approximant can be computed as

$$I_{x,p,q} \approx K_{x,p,q} \frac{A_n}{B_n}, \quad n \geq 1,$$

where $K_{x,p,q}$ is given in (1) and the terms A_n and B_n are defined recursively. For $n \geq 1$, A_n and B_n are given by

$$A_n = a_nA_{n-2} + b_nA_{n-1} \quad \text{and} \quad B_n = a_nB_{n-2} + b_nB_{n-1},$$

where $A_{-1} = 1; A_0 = 1; B_{-1} = 0; B_0 = 1$.

Denote the first and second derivatives of the incomplete beta function with respect to p and/or q by $I^p_{x,p,q}$, $I^{pp}_{x,p,q}$, $I^q_{x,p,q}$, $I^{qq}_{x,p,q}$, and $I^{pq}_{x,p,q}$. The proposed algorithm computes approximations to these derivatives by differentiating the approximants in (3). This technique was successfully used by Moore (1982) to obtain derivatives of the incomplete gamma function. For example, the nth approximant to $I^p_{x,p,q}$ is computed as follows:

$$I^p_{x,p,q} = \frac{\partial}{\partial p} I_{x,p,q} \approx \left(\frac{\partial K_{x,p,q}}{\partial p} \right) \frac{A_n}{B_n} + K_{x,p,q} \left\{ \frac{1}{B_n} \left(\frac{\partial A_n}{\partial p} \right) - \frac{A_n}{B_n^2} \left(\frac{\partial B_n}{\partial p} \right) \right\},$$

where

$$\frac{\partial A_n}{\partial p} = \left(\frac{\partial a_n}{\partial p} \right) A_{n-2} + a_n \left(\frac{\partial A_{n-2}}{\partial p} \right) + \left(\frac{\partial b_n}{\partial p} \right) A_{n-1} + b_n \left(\frac{\partial A_{n-1}}{\partial p} \right); \text{ and}$$
\[
\frac{\partial B_n}{\partial p} = \left(\frac{\partial a_n}{\partial p} \right) B_{n-2} + a_n \left(\frac{\partial B_{n-2}}{\partial p} \right) + \left(\frac{\partial b_n}{\partial p} \right) B_{n-1} + b_n \left(\frac{\partial B_{n-1}}{\partial p} \right).
\]

Expressions for the derivatives of \(K_{x,p,q}, a_n,\) and \(b_n\) were obtained using MAPLE V (Char et al., 1991) and are given in the appendix. To avoid overflows due to large \(p\) and/or \(q\), the derivatives of \(a_n,\) and \(b_n\) were converted to partial fractions prior to numerical evaluation. For example, \(\partial b_n/\partial q\) can be evaluated as

\[
\frac{\partial b_n}{\partial q} = -\frac{p^2 f}{q (p + 2n - 2) (p + 2n)} = -\frac{f}{q} - \frac{2f(n-1)^2}{q(p+2n-2)} + \frac{2fn^2}{q(p+2n)}.
\]

Also, when \(x > p/(p + q),\) the incomplete beta function and its derivatives were computed using the relation

\[
I_{x,p,q} = 1 - I_{1-x,q,p}.
\]

Structure

Fortran 77

\texttt{SUBROUTINE INBEDER(X,P,Q,PSI,DER,NAPPX,ERRAPX,IFAULT)}

Input Parameters

- \(X\) Real input: the value \(x\) at which the incomplete beta function is to be evaluated
- \(P\) Real input: a shape parameter
- \(Q\) Real input: a shape parameter
- \(PSI\) Real array (7) input: vector containing log gamma functions and their derivatives
 - \(PSI(1) = \ln \{\text{Beta}(p,q)\}\)
 - \(PSI(2) = \psi_p,\) the digamma function:
 \[\psi_p = d \ln \{\Gamma(p)\} / dp\]
 - \(PSI(3) = \psi'_p,\) the trigamma function:
 \[\psi'_p = d^2 \ln \{\Gamma(p)\} / (dp)^2\]
 - \(PSI(4) = \psi_q\)
 - \(PSI(5) = \psi'_q\)
 - \(PSI(6) = \psi_{p+q}\)
 - \(PSI(7) = \psi'_{p+q}\)
Output Parameters

DER
Real array (6)
output: vector containing evaluated incomplete beta function and its derivatives
DER(1) = $I_{x,p,q}$
DER(2) = $I_{p,x,p,q}$
DER(3) = $I_{pp,x,p,q}$
DER(4) = $I_{q,x,p,q}$
DER(5) = $I_{qq,x,p,q}$
DER(6) = $I_{pq,x,p,q}$

NAPPX
Integer
output: highest order approximant evaluated

ERRAPX
Real
output: approximate maximum absolute error of computed derivatives

IFault
Integer
output: a fault indicator
= 0 if completion is successful
= 1 if X is less than 0 or greater than 1
= 2 if P is less than 0
= 3 if Q is less than 0
= 4 if derivatives were set to 0 because $I_{x,p,q}$ was evaluated to 0 or 1
= 5 if evaluation stopped after MAXAPPX terms.

Constants

Three constants, ERR, MAXAPPX, and MINAPPX, are set in a data statement. The constant ERR should be set to 10^{-j}, where $j = \text{round} \{ b_f \log_{10}(2) \} - 4$ and b_f is the number of bits used to represent the fractional component of floating point numbers. For example, suppose that floating point numbers are represented using 64 bits — one bit for the sign, 11 bits for the exponent, and 52 bits for the fraction. Then ERR should be set to 10^{-12}. If b_f is not known, then b_f can be computed by function N2DIGIT given in Boik (1993, pp. 571). The constant MAXAPPX controls the highest order approximant that will be evaluated. The constant MINAPPX controls the minimum order approximant that will be evaluated.

Auxiliary Algorithms

No auxiliary algorithms are called by subroutine INBEDER. The user, however, is required to input values for the log of the complete beta function and first and second derivatives of the log gamma function. The algorithms of Lanczos (1964), Bernardo (1976), and Schneider (1978) are included and may be used to compute the required values. Alternative algorithms for the log gamma function and its first derivative were constructed by Cody (1993). Cody’s algorithms are more accurate than the older algorithms. FORTRAN source code for these algorithms can be obtained from Netlib.
Use of Fortran Driver Program

As an illustration, a diary of a double precision session appears below.

Number of Bits for Fractional Component of Floating Point Numbers is 52

The constant ERR should be set to 0.1D-11

To exit program, type Control-C

Input p, q, and x
1.5 11 .001
Highest order approximant evaluated = 3
Approximate maximum absolute error = 0.28102520E-15, Ifault = 0
I = 0.89170111E-03, Ip =-0.45720356E-02, Ip = 0.23080438E-01
Iq = 0.11845673E-03, Iqq = 0.51418717E-05, Ipq =-0.53324285E-03

Input p, q, and x

^C

Matlab

```matlab
function [der,psi,nappx,errapx] = inbeder(x,p,q)

Input Parameters

x Input: vector of length k containing values to which beta function is to be integrated

p,q Input: beta shape parameters, either vectors with same dimension as x or scalars
```
Output Parameters

- **der**: output: matrix of dimension $k \times 6$
 - $\text{der}(:,1) = I_{x,p,q}$
 - $\text{der}(:,2) = I_p$
 - $\text{der}(:,3) = I_{pp}$
 - $\text{der}(:,4) = I_q$
 - $\text{der}(:,5) = I_{qq}$
 - $\text{der}(:,6) = I_{pq}$

- **psi**: output: matrix of dimension $k \times 7$
 - $\text{psi}(:,1) = \log[Beta(p,q)]$
 - $\text{psi}(:,2) = \psi_p$
 - $\text{psi}(:,3) = \psi'_p$
 - $\text{psi}(:,4) = \psi_q$
 - $\text{psi}(:,5) = \psi'_q$
 - $\text{psi}(:,6) = \psi_{p+q}$
 - $\text{psi}(:,7) = \psi'_{p+q}$

- **nappx**: output: highest order approximant evaluated. Iteration stops if $nappx > \text{maxappx}$

- **errapx**: output: approximate maximum absolute error of computed derivatives

Optional Arguments

Function inbeder can have one or two additional input arguments. Using $[\text{der}, \text{psi}, \text{nappx}] = \text{inbeder}(x, p, q, \minappx, \maxappx)$ sets parameters MINAPPX and MAXAPPX which control the minimum and maximum order approximant that will be returned. Default values are 3 and 200. Using inbeder(x, p, q, \minappx) changes MINAPPX only and using inbeder$(x, p, q, [], \maxappx)$ changes MAXAPPX only.

Constants

One constant, err, is set in function inbeder. The constant is set to $\text{err} = \text{eps} \times 10^4$, where eps is an internal Matlab constant.

Additional Functions

The following Matlab functions are called by function inbeder.

1. function derconf: computes derivatives of a_n and b_n with respect to p and/or q when $n = 1$.
2. function subd: computes derivatives of a_n and b_n with respect to p and/or q when $n \geq 2$.
3. function distinct: finds distinct entries in a vector.
4. function digam: computes the digamma function for an input vector.
5. function trigam: computes the trigamma function for an input vector.

6. function vec: stacks the elements of a matrix.

7. function devec: arranges the elements of a vector in a matrix.

These functions should be saved with filenames derconf.m, subd.m, distinct.m, digam.m, trigam.m, vec.m, and devec.m, respectively.

S–Plus

```splus
ibd <- inc.beta.deriv(x,p,q)
```

Input Parameters

- **x** vector of length k containing values to which beta function is to be integrated
- **p, q** beta shape parameters, either vectors with same dimension as x or scalars

Output Parameters

The output of function inc.beta.deriv, namely ibd, is a list of 15 elements. Each of the first 13 elements in the list is a vector having the same length as x. Each of the last two elements in the list is a scalar.

- **I** = \(I_{x,p,q} \)
- **Ip** = \(I_{x,p,q}^p \)
- **Ipp** = \(I_{x,p,q}^{pp} \)
- **Iq** = \(I_{x,p,q}^q \)
- **Iqq** = \(I_{x,p,q}^{qq} \)
- **Ipq** = \(I_{x,p,q}^{pq} \)
- **log.Beta** = \(\log\{\text{Beta}(p, q)\} \)
- **digamma.p** = \(\psi_p \)
- **digamma.q** = \(\psi_q \)
- **digamma.pq** = \(\psi_{p+q} \)
- **trigamma.p** = \(\psi'_p \)
- **trigamma.q** = \(\psi'_q \)
- **trigamma.pq** = \(\psi'_{p+q} \)
- **nappx** highest order approximantevaluated. Iteration stops if nappx > maxappx
- **errapx** approximate maximum absolute error of computed derivatives

Additional Optional Inputs

In addition to the required arguments above, the user may specify the following additional arguments.
err approximation control variable, iteration stops when maximum relative change is less than err
minappx minimum order of approximation (default is 3)
maxappx maximum order of approximation (default is 200)

Additional Functions

The following S-Plus functions are called by function inc.beta.deriv.

1. function digamma: computes the digamma function for an input vector.
2. function trigamma: computes the trigamma function for an input vector.

Help Files

Help files are included for three of the defined functions. On unix systems these files should be stored in a .Data/.Help directory with filenames inc.beta.deriv, digamma, and trigamma.

Accuracy

Benchmarks for evaluating the accuracy of the algorithm were obtained by computing the derivatives $I_p^{p,q}$, $I_q^{p,q}$, etc by means of numerical integration. Derivatives for several test cases were computed to 32 significant digits of accuracy using Maple V (Char et al., 1991) numerical integration routines. The output was compared to output from an quadruple precision version (floating point numbers represented using 128 bits) of Fortran subroutine INBEDER. The Fortran and Maple results agreed to at least 23 significant digits, except when the exact derivative is zero. It can be shown that $I_p^{p,q} = 0$ whenever $p = q$. The derivatives to 8 significant digits are displayed in Table 1.

To gauge the accuracy of the Fortran (double precision), Matlab, and S-plus versions of the algorithm, an additional list of test values was used. The values were obtained by equating $I_x^{p,q}$, in turn to 0.01, 0.10, and 0.50 and solving for x, for each $p, q \in \{0.10, 1.0, 10000.0\}$. The 48 x values were then rounded to 8 significant digits and the derivatives were computed using the quadruple precision Fortran version of INBEDER. All three version of INBEDER yielded at least seven significant digits of accuracy for each test case except when the derivative is zero.

Applications

Maximum Likelihood Estimation of Beta Parameters from Censored Data

Gnanadesikan, Pinkham, and Hughes (1967) described an algorithm for maximum likelihood estimation of the parameters of the beta distribution from the smallest
order statistics. Ignoring additive constants, the log likelihood function given the smallest \(k \) order statistics from a sample of size \(n \) is the following:

\[
L(p, q | x_1, \ldots, x_k) =
(p - 1) \sum_{i=1}^{k} \ln(x_i) + (q - 1) \sum_{i=1}^{k} \ln(1 - x_i) - k \ln \{ \text{Beta}(p, q) \} + (n - k) \ln (1 - I_{x_k, p, q}).
\]

Using subroutine \text{INBEDER}, the log likelihood function is readily maximized using a Newton-Raphson algorithm. To solve the likelihood equations, Gnanadesikan et al approximated first derivatives of the incomplete beta function using a seven term Laplacian expansion.

Gnanadesikan et al illustrated their algorithm using a sample of size \(n = 20 \) from a beta distribution having parameters \(p = 1.5 \) and \(q = 11.0 \). Their results along with results based on \text{INBEDER} are given in Table 2. It is apparent from Table 2 that the Laplacian expansion used by Gnanadesikan et al is not sufficiently accurate. Their estimates do not maximize the likelihood function and are especially inaccurate when the ratio \(k/n \) is small. Also, from Table 2 it appears that the maximum likelihood estimates are positively biased when \(k/n \) is small. The variances and covariances of the maximum likelihood estimators can be estimated by the inverse of the observed information matrix.

Maximum Likelihood Estimation in Truncated Beta and Truncated Beta-Binomial Distributions

The beta-binomial model is sometimes used to model binary responses that display greater variation than would be expected under a binomial model. Smith (1983) and Smith and Ridout (1995) described an algorithm for maximum likelihood estimation of the beta-binomial parameters.

A random variable \(Y \) follows a beta-binomial model if conditional on \(\Pi = \pi \), \(Y \sim \text{Binomial}(n, \pi) \) and the marginal distribution of \(\Pi \) is beta. If an investigator has reason to believe that the support of \(\pi \) is restricted to a known subset of the \((0,1)\) interval, then a truncated beta-binomial model may be more appropriate. Suppose that conditional on \(\Pi = \pi \), \(Y \sim \text{Binomial}(n, \pi) \) and that the marginal density of \(\Pi \) is

\[
h_{\Pi}(\pi) = \frac{\pi^{p-1}(1-\pi)^{q-1}}{(I_{\tau_2, p, q} - I_{\tau_1, p, q}) \text{Beta}(p, q)} I_{(\tau_1, \tau_2)}(\pi),
\]

where \(\tau_1 \) and \(\tau_2 \) are known constants satisfying \(0 \leq \tau_1 < \tau_2 \leq 1 \) and \(I_{(\tau_1, \tau_2)}(\pi) \) is an indicator function. It is readily shown that the marginal probability mass function (pmf) of \(Y \) is the following:

\[
\Pr(Y = y | p, q, n, \tau_1, \tau_2) =
\binom{n}{y} \frac{\text{Beta}(p + y, q + n - y)}{\text{Beta}(p, q)} \frac{I_{(\tau_2, p, q) - I_{\tau_1, p, q}}}{(I_{\tau_2, p, q} - I_{\tau_1, p, q})} I_{\{0,1,\ldots,n\}}(y).
\]
The usual beta-binomial pmf is obtained as the limit of (5) as $\tau_1 \to 0$ and $\tau_2 \to 1$. The truncated beta-binomial model in this article (5) differs from the truncated beta-binomial model described by Tripathi et al. (1994). Their model is obtained by excluding $Y = 0$ from the conventional beta-binomial model. That is, Tripathi et al. truncate the support of the discrete random variable Y, whereas the model in (5) truncates the support of the continuous random variable Π. Maximum likelihood estimates of the parameters of the truncated beta distribution in (4) or of the truncated beta-binomial distribution in (5) can be computed using a Newton-Raphson algorithm.

As an illustration, $N = 30$ random variates π_1, \ldots, π_{30}, were generated from the truncated beta distribution having parameters $\tau_1 = 0.2$, $\tau_2 = 0.7$, $p = 3$, and $q = 2$. Conditional on $\Pi = \pi_i$, a binomial variate was generated from the Binomial(n_i, π_i) distribution, where the sample sizes n_i for $i = 1, \ldots, 30$ were 25, 50, or 75. The data appear in Table 3.

Assuming that the values π_i for $i = 1, \ldots, N$ have been observed, the MLEs of p and q can be obtained by maximizing the log likelihood function

$$L(p, q|\pi_1, \ldots, \pi_N; \tau_1, \tau_2) = (p - 1) \sum_{i=1}^{N} \ln(\pi_i) + (q - 1) \sum_{i=1}^{N} \ln(1 - \pi_i) - N \ln(I_{\tau_2,p,q} - I_{\tau_1,p,q}) - N \ln \{\text{Beta}(p, q)\},$$

with respect to p and q. For the data in Table 3, the MLEs are $\hat{p} = 4.153$ and $\hat{q} = 1.680$. The variances and covariances of the maximum likelihood estimators can be estimated by the inverse of the observed information matrix. If truncation is ignored, the MLEs of the beta parameters are $\hat{p} = 10.052$ and $\hat{q} = 8.328$.

Assuming that the values y_i for $i = 1, \ldots, N$ have been observed, but π_i for $i = 1, \ldots, N$ are unobservable, the MLEs of p and q can be obtained by maximizing the log likelihood function

$$L(p, q|n_1, \ldots, n_N; y_1, \ldots, y_N; \tau_1, \tau_2) = (p - 1) \sum_{i=1}^{N} \ln \{\text{Beta}(p + y_i, q + n_i - y_i)\} + \sum_{i=1}^{N} \ln \{I_{\tau_2,p+y_i,q+n_i-y_i} - I_{\tau_1,p+y_i,q+n_i-y_i}\} - N \ln \{\text{Beta}(p, q)\} - N \ln \{I_{\tau_2,p,q} - I_{\tau_1,p,q}\},$$

with respect to p and q. For the data in Table 3, the MLEs are $\hat{p} = 6.451$ and $\hat{q} = 4.248$. For a sample size of $n = 10$, the maximum likelihood estimates of $\Pr(Y = y)$ for $y = 0, \ldots, 10$ are given in Table 4. For comparison, estimates computed under the conventional beta-binomial model and the conventional binomial model also are reported. For the conventional beta-binomial model (ignoring truncation), the MLEs of the beta parameters are $\hat{p} = 11.749$ and $\hat{q} = 10.075$. For the conventional binomial model, $\hat{\pi} = 0.533$. The Kullback-Leibler distances between the true distribution and the three estimates are 0.048 (truncated beta-binomial), 0.200 (beta-binomial), and 0.447 (binomial). It is apparent that precision is lost if truncation and/or extra variation are ignored.
References

Abramowitz, M. & Stegun, I. A. (Eds.) (1965). *Handbook of Mathematical Functions*, New York, Dover Publications, Inc.

Bernardo, J. M. (1976). Algorithm AS 103: Psi (digamma) function. *Appl. Statist.*, 25, 315–317.

Boik, R. J. (1993). Algorithm AS 284: Null distribution of a statistic for testing sphericity and additivity: A Jacobi polynomial expansion. *Appl. Statist.*, 42, 567–584.

Char, B. W., Geddes, K. O., Gonnet, G. H., Leong, B. L., Monagan, M. B., & Watt, S. M. (1991) *Maple V Reference Manual*. New York: Springer-Verlag.

Cody, W. J. (1993). ALGORITHM 715: SPECFUN — A portable FORTRAN package of special function routines and test drivers. *ACM Transactions on Mathematical Software*, 19, 22–32.

Dutka, J. (1981). The incomplete beta function — A historical profile. *Archive for History of the Exact Sciences*, 24, 11–29.

Gautschi, W. (1967). Computational aspects of three-term recurrence relations. *SIAM review*, 9, 24–82.

Gnanadesikan, R., Pinkham, R. S., & Hughes, L. P. (1967) Maximum likelihood estimation of the parameters of the beta distribution from smallest order statistics. *Technometrics*, 9, 607–620.

Lanczos, C. (1964). A precision approximation of the gamma function, *SIAM Journal on Numerical Analysis, Ser. B*, 1, 86–96.

Moore, R. J. (1982). Algorithm AS 187: Derivatives of the incomplete gamma integral. *Appl. Statist.*, 32, 330–335.

Müller, J. H. (1931). On the application of continued fractions to the evaluation of certain integrals, with special reference to the incomplete Beta function. *Biometrika*, 23, 284–297.

Schneider, B. E. (1978). Algorithm AS 121: Trigamma function. *Appl. Statist.*, 27, 97–99.

Smith, D. M. (1983). Algorithm AS 189: Maximum likelihood estimation of the parameters of the beta binomial distribution. *Appl. Statist.*, 32, 196–204.

Smith, D. M. & Ridout, M. S. (1995). Comment on “Algorithm AS 189: Maximum likelihood estimation of the parameters of the beta-binomial distribution” (V32 p196-204). *Appl. Statist.*, 44, 545–547.

Tretter, M. J. & Walster, G. W. (1976). A fast algorithm for significant digit computation of the incomplete beta function for extreme values. *Proceedings of the Computer Science and Statistics 9th Annual Symposium on the Interface*, 293–295, Boston: Prindle, Weber, & Schmidt.

Tretter, M. J. & Walster, G. W. (1979). Continued fractions for the incomplete beta function: Additions and corrections. *Ann. Statist.*, 7, 462–465.

Tretter, M. J. & Walster, G. W. (1980). Analytic subtraction applied to the incomplete gamma and beta functions. *SIAM Journal on Scientific and Statistical Computing*, 1, 321–326.
Tripathi, R. C., Gupta, R. C., & Gurland, J. (1994). Estimation of parameters in the beta binomial model. *Ann. Inst. Statist. Math.*, **46**, 317–331.
Appendix: Required Derivatives

Derivatives of $K_{x,p,q}$

In the following equations, ψ is the psi or digamma function and ψ' is the trigamma function. That is,

$$\psi_p = \frac{\partial \ln \Gamma(p)}{\partial p} \text{ and } \psi'_p = \frac{\partial^2 \ln \Gamma(p)}{(\partial p)^2}.$$

$$\frac{\partial K_{x,p,q}}{\partial p} = K_{x,p,q} \left\{ \ln(x) - p^{-1} + \psi_{p+q} - \psi_p \right\}$$

$$\frac{\partial^2 K_{x,p,q}}{(\partial p)^2} = K_{x,p,q} \left[\left\{ \ln(x) - p^{-1} + \psi_{p+q} - \psi_p \right\}^2 + p^{-2} + \psi'_{p+q} - \psi'_p \right]$$

$$\frac{\partial K_{x,p,q}}{\partial q} = K_{x,p,q} \left\{ \ln(1-x) + \psi_{p+q} - \psi_q \right\}$$

$$\frac{\partial^2 K_{x,p,q}}{(\partial q)^2} = K_{x,p,q} \left[\left\{ \ln(1-x) + \psi_{p+q} - \psi_q \right\}^2 + \psi'_{p+q} - \psi'_q \right]$$

$$\frac{\partial^2 K_{x,p,q}}{(\partial p)(\partial q)} = K_{x,p,q} \left[\left\{ \ln(x) - p^{-1} + \psi_{p+q} - \psi_p \right\} \left\{ \ln(1-x) + \psi_{p+q} - \psi_q \right\} + \psi'_{p+q} \right]$$

Derivatives of a_n

$$\frac{\partial a_n}{\partial p} = \begin{cases}
- \frac{pf (q-1)}{q(p+1)^2} & \text{if } n = 1; \\
- (n-1) f^2 p^2 (q-n) \left[(-8 + 8p + 8q) n^3 \\
+ \{16p^2 + (-44 + 20q) p + 26 - 24q\} n^2 \\
+ (10p^3 + (14q - 46) p^2 + (-40q + 66) p - 28 + 24q) n \\
+ 2p^4 + (-13 + 3q) p^3 + (-14q + 30) p^2 \\
+ (-29 + 19q) p + 10 - 8q \right] \\
\div \left\{ q^2 (p + 2n - 3)^2 (p + 2n - 2)^3 (p + 2n - 1)^2 \right\} & \text{if } n > 1
\end{cases}$$
\[
\frac{\partial^2 a_n}{(\partial p)^2} = \begin{cases}
2 \frac{p f (q - 1)}{q (p + 1)^3} & \text{if } n = 1; \\
2 (n - 1) f^2 p^2 (q - n) \\
\left[-32 n^6 + (-64 p + 32 q + 160) n^5 \\
+ \{160 + 160 q\} p - 292 - 160 q\} n^4 \\
+ \{80 p^3 + (240 q - 240) p^2 + (-640 q + 68) p \\
+ 332 q + 196\} n^3 \\
+ \{70 p^4 + (160 q - 400) p^3 + (-720 q + 771) p^2 \\
+ (960 q - 524) p + 43 - 356 q\} n^2 \\
+ \{24 p^5 + (50 q - 190) p^4 + (-320 q + 574) p^3 \\
+ (711 q - 813) p^2 + (-640 q + 522) p \\
+ 195 q - 113\} n \\
+ 3 p^6 + (6 q - 30) p^5 + (-50 q + 121) p^4 \\
+ (-251 + 157 q) p^3 + (-231 q + 282) p^2 \\
+ (-163 + 161 q) p + 38 - 43 q \right] \\
\div \left\{ q^2 (p + 2 n - 3)^3 (p + 2 n - 2)^4 (p + 2 n - 1)^3 \right\} & \text{if } n \geq 2
\end{cases}
\]

\[
\frac{\partial a_n}{\partial q} = \begin{cases}
\frac{f p}{q (p + 1)} & \text{if } n = 1; \\
\frac{p^2 f^2 (n - 1) (p + n - 1) (2 q + p - 2)}{q^2 (p + 2 n - 3) (p + 2 n - 2)^2 (p + 2 n - 1)} & \text{if } n \geq 2
\end{cases}
\]

\[
\frac{\partial^2 a_n}{(\partial q)^2} = \begin{cases}
0 & \text{if } n = 1; \\
\frac{(n - 1) f^2 p^2 (p + n - 1)}{q^2 (p + 2 n - 3) (p + 2 n - 2)^2 (p + 2 n - 1)} & \text{if } n \geq 2
\end{cases}
\]
\[
\frac{\partial^2 a_n}{(\partial p)(\partial q)} = \begin{cases} \\
\frac{-fp}{q (p+1)^2} & \text{if } n = 1; \\
- (n - 1) f^2 p^2 \left[-8n^4 + (16 + 16q - 12p) n^3 \\
+ \{2p^2 + (40q - 4) p - 48q + 2\} n^2 \\
+ \{7p^3 + (-32 + 28q) p^2 + (-80q + 47) p \\
-20 + 48q \} n \\
+2p^4 + (-13 + 6q) p^3 + (-28q + 30) p^2 \\
+ (-29 + 38q) p + 10 - 16q \\
\div \{q^2 (p + 2n - 3)^2 (p + 2n - 2)^3 (p + 2n - 1)^2 \} \end{cases} \\
\]

Derivatives of \(b_n \)

\[
\frac{\partial b_n}{\partial p} = \frac{pf \left\{(-4p - 4q + 4) n^2 + (4p - 4 + 4q - 2p^2) n + p^2 q \right\}}{q (p + 2n - 2)^2 (p + 2n)^2} \\
\frac{\partial^2 b_n}{(\partial p)^2} = \frac{-2pf \left\{8n^4 - 16qn^3 + \left\{-6p^2 + (12 - 12q) p + 24q - 16\right\} n^2 \\
+ \{-2p^3 + 6p^2 + (-12 + 12q) p + 8 - 8q\} n + p^3 q \right\}}{q (p + 2n - 2)^3 (p + 2n)^3} \\
\frac{\partial b_n}{\partial q} = \frac{-p^2 f}{q (p + 2n - 2) (p + 2n)} \\
\frac{\partial^2 b_n}{(\partial q)^2} = 0 \\
\frac{\partial^2 b_n}{(\partial p)(\partial q)} = \frac{pf \left\{-4n^2 + 4n + p^2 \right\}}{q (p + 2n - 2)^2 (p + 2n)^2} \\
\]
Table 1

First and second derivatives of the incomplete beta function for selected values of \(p, q, \) and \(x. \)

\(p \)	\(q \)	\(x \)	\(I_{p,q,x} \)	\(I_{x,p,q} \)
1.5	11.0	0.001	\(8.9170111 \times 10^{-04} \)	\(-4.5720356 \times 10^{-03} \)
			\(2.3080438 \times 10^{-02} \)	\(1.1845673 \times 10^{-04} \)
			\(5.1418717 \times 10^{-06} \)	\(-5.3324285 \times 10^{-04} \)
1.5	11.0	0.500	\(9.9861069 \times 10^{-01} \)	\(-2.5501997 \times 10^{-03} \)
			\(-3.5047111 \times 10^{-03} \)	\(9.0824388 \times 10^{-04} \)
			\(-5.8941710 \times 10^{-04} \)	\(1.5603497 \times 10^{-03} \)
1000.0	1000.0	0.500	\(5.0000000 \times 10^{-01} \)	\(-8.9224793 \times 10^{-03} \)
			\(4.4630987 \times 10^{-06} \)	\(8.9224793 \times 10^{-03} \)
			\(-4.4630987 \times 10^{-06} \)	\(0.0000000 \times 10^{+00} \)
1000.0	1000.0	0.550	\(9.9999632 \times 10^{-01} \)	\(-3.6713108 \times 10^{-07} \)
			\(-3.4809144 \times 10^{-08} \)	\(4.0584118 \times 10^{-07} \)
			\(-4.2964422 \times 10^{-08} \)	\(3.8682578 \times 10^{-08} \)
Table 2

Maximum likelihood estimates of the beta parameters from the k smallest order statistics when $p = 1.5$, $q = 11.0$, and $n = 20$.

k	k/n	Gnanadesikan et al	Current				
		$\hat{\alpha}$	$\hat{\beta}$	$\ln(L)$	$\hat{\alpha}$	$\hat{\beta}$	$\ln(L)$
2	0.1	1.443	6.472	0.658	3.295	38.146	1.088
4	0.2	1.472	8.145	2.843	3.367	37.714	3.656
6	0.3	1.483	9.602	5.954	3.817	46.262	7.404
8	0.4	1.564	9.760	6.668	2.029	15.124	6.858
10	0.5	1.672	11.765	10.788	2.519	21.977	11.325
12	0.6	1.774	13.175	14.120	2.520	21.857	14.592
14	0.7	1.902	14.995	18.095	2.632	23.378	18.560
16	0.8	1.732	12.202	17.381	1.768	12.554	17.383
18	0.9	1.800	12.920	20.931	1.812	13.035	20.932
20	1.0	1.793	12.781	24.313	1.793	12.784	24.313
Table 3
Simulated data from truncated beta and truncated beta-binomial distributions with parameters $\tau_1 = 0.2$, $\tau_2 = 0.7$, $p = 3$, and $q = 2$.

Sample	π_i	n_i	y_i	Sample	π_i	n_i	y_i	Sample	π_i	n_i	y_i
1	0.4376	25	13	11	0.2379	50	15	21	0.2937	75	19
2	0.4408	25	10	12	0.4263	50	22	22	0.3899	75	30
3	0.4857	25	9	13	0.5026	50	26	23	0.4314	75	34
4	0.6009	25	14	14	0.5408	50	25	24	0.4883	75	37
5	0.6098	25	15	15	0.5459	50	21	25	0.5090	75	31
6	0.6211	25	19	16	0.5810	50	27	26	0.5804	75	47
7	0.6320	25	17	17	0.5905	50	30	27	0.6247	75	45
8	0.6338	25	18	18	0.5997	50	31	28	0.6459	75	47
9	0.6775	25	17	19	0.6405	50	30	29	0.6467	75	55
10	0.6795	25	16	20	0.6983	50	29	30	0.6763	75	50
Table 4

Maximum likelihood estimates of \(\Pr(Y = y) \) from data in Table 3. MLE: estimates were computed assuming a truncated beta-binomial distribution with \(\tau_1 = 0.2 \) and \(\tau_2 = 0.7 \); MLE_{bb}: estimates were computed assuming a beta-binomial distribution; MLE_{bi}: estimates were computed assuming a binomial distribution.

y	\(\Pr(Y = y) \)	True	MLE	MLE_{bb}	MLE_{bi}
0	0.011	0.003	0.002	0.000	
1	0.030	0.013	0.014	0.006	
2	0.054	0.035	0.046	0.029	
3	0.080	0.070	0.099	0.088	
4	0.105	0.114	0.158	0.176	
5	0.126	0.154	0.199	0.241	
6	0.140	0.178	0.197	0.229	
7	0.144	0.175	0.153	0.149	
8	0.135	0.141	0.089	0.064	
9	0.110	0.086	0.035	0.016	
10	0.066	0.031	0.007	0.002	