Characterization of odor-active compounds in three varieties of ciruela (Spondias purpurea L.) fruit

Odri Sosa-Moguela, Jorge A Pinob, Enrique Sauri-Ducha, and Luis Cuevas-Glorya

aChemical Engineering Department, Technological Institute of Merida, Merida, Mexico; bDepartment of Aromas, Food Industry Research Institute, Havana, Cuba

ABSTRACT

The aroma-active compounds present in tree ripened fruits of ciruela (Spondias purpurea L.) cultivars Chi abal, Campech abal, and Ek abal were isolated by means of simultaneous distillation solvent extraction and solid-phase microextraction and analyzed by gas chromatography-mass spectrometry. Application of odor activity values (OAV) afforded 22 compounds in higher amounts than their threshold concentrations (OAVs >1). Results of the identification experiments in combination with the OAVs suggested that methyl 3-methylbutanoate, ethyl butanoate, ethyl 2-methylbutanoate, ethyl 3-methylbutanoate, ethyl hexanoate, hexyl acetate, with fruity odor notes; (E)-2-hexenal, (Z)-3-hexen-1-ol, (E)-2-hexen-1-ol, 1-hexanol, and (Z)-3-hexenyl acetate, with grassy odor notes, and limonene (citrus-like) were the potentially important common odorants in all ciruela cultivars. Clear differences in the OAVs of some odorants between each of the cultivars suggested that they contributed to the unique sensory profiles of the individual cultivars.

ARTICLE HISTORY

Received 27 April 2017
Accepted 19 May 2018

KEYWORDS

Spondias purpurea; headspace solid-phase microextraction; simultaneous distillation-extraction; odor-active compounds

Introduction

The genus Spondias comprises 17 species, including 7 taxa in the Neotropics and 10 species in the Asian tropics.[1] Spondias purpurea L., Anacardiaceae is one of three Spondias species native to Mexico and Central America.[2] It is known as ciruela mexicana, jocote, siriguela, and red mombin.[2–6] The fruits are highly variable in color and may be purple, dark- or bright-red, orange, yellow, or red-and-yellow. They vary from 1 to 2 inches in length and may be oblong, oval, obovoid, or pear-shaped. The skin is glossy and firm; the flesh aromatic, yellow, fibrous, very juicy, with a rich plum-like subacid to acid flavor. The ripe fruits are commonly eaten out-of-hand, but at home they are often stewed whole with sugar and consumed as a dessert. They can also be preserved simply by boiling and drying, which maintains them in good condition for several months. The strained juice of cooked fruits yields an excellent jelly and is also used for making wine and vinegar.[7]

Ciruela has commercial value as fruit production, juices, jams, ice cream, and alcoholic beverages.[2] Despite its wide acceptance in diverse regional markets and its great potential for commercialization as an exotic fruit, there is scarce information available regarding the volatile composition of this fruit. Simultaneous distillation-extraction (SDE) was employed to analyze the skin and pulp of fresh ciruela. Major compounds were 2-hexenal (~39%), hexadecanoic acid (18.5%), and hexanal (~7%).[8] In an investigation using industrialized pulp, samples were subjected to solid-phase microextraction (SPME) utilizing several types of SPME fibers. The highest amounts extracted, evaluated from the sum of peak areas as well the number of identified compounds (119), were obtained using a CAR-PDMS fiber.[3] Similar types of compounds were found in another study using SPME; although in this case, fresh
pulp was used as the sample. DVB-CAR-PDMS proved to be the more efficient qualitative and semi-quantitative fiber in trapping these compounds. A total of 27 volatiles were identified, especially ketones, alcohols, aldehydes, esters, and terpene hydrocarbons in the headspace. Quantitatively, the predominant were hexanal (10.6%), ethyl acetate (8.4%), 3-hexen-1-ol (6.8%), 2-hexen-1-ol (5%), (E)-2-hexenal (5%), and hexyl acetate (2%). The highest number of compounds (37) were obtained utilizing DVB/CAR/PDMS (50/30 μm) fibers. Hexanal, 3-hexen-1-ol, 2-hexen-1-ol, and ethyl acetate were the major identified compounds. However, neither of these studies attempted to evaluate the quantitative composition and aroma contribution of the volatile compounds.

The aim of the present work was to characterize the aroma of three varieties of ciruela cultivars utilizing simultaneous distillation-solvent extraction and solid-phase microextraction coupled with Gas Chromatography-Mass Spectrometry (GC-MS) and the use of odor activity values in order to identify volatile compounds with olfactive impact.

Materials and methods

Chemicals and reagents

Fresh, healthy, ripe ciruela fruits were harvested at a commercial orchard in the central part of the Yucatan peninsula, Mexico. Three cultivars were collected: Campech abal, Ek abal, and Chi abal. Basic juice chemistry for samples is reported in Table 1 (soluble solids, titratable acidity, and brix/acid ratio).

Standards used for identifications were supplied by Aldrich (Steinheim, Germany) and Fluka (Buchs, Switzerland). Some standards were provided by Dallant (Barcelona, Spain). An n-alkane solution (C₈–C₃₂) from Sigma-Aldrich (St. Louis, MO) was utilized to calculate the linear retention index (RI) of each analyte. Dichloromethane, n-pentane, n-hexane, and n-heptane were procured from Merck (Darmstadt, Germany) and were redistilled and checked for purity.

Soluble chemical analysis

Soluble solids and total acidity (as anhydrous citric acid) were determined in the fruit pulp according to standard methods.

Isolation of volatile compounds by SDE

Volatile compounds were isolated according to a previously reported method. A sample of 250 g of fresh fruit homogenate was blended with 1000 mL of distilled water; 0.5 mL of methyl nonanoate standard solution (3.5 mg/mL) was added as an internal standard. The volatile compounds were isolated by means of a SDE apparatus using 40 mL of dichloromethane for 1 h. The extract was dried over anhydrous Na₂SO₄ and concentrated to 0.6 mL in a Kuderna-Danish evaporator with a Vigreux column and further concentrated to 0.2 mL with a gentle nitrogen stream. The concentrated extract was stored in a glass screw-top vial at −20°C until analyzed. Each sample was analyzed in triplicate.

Table 1. Basic juice chemistry for ciruela varieties.

Variety	Soluble solids (Brix)	Titratable acidity (g/kg as citric acid)	Brix/acid
Campech abal	11.38	0.71	16.03
Ek abal	9.41	1.19	7.91
Chi abal	13.59	0.82	16.57
Isolation of volatile compounds by solid-phase microextraction (HS-SPME)

Volatile compounds from fresh fruit homogenate headspace were extracted using 50/30 µm DVB/CAR/PDMS (Supelco, Park, Bellefonte, PA). The fiber was conditioned before use and cleaned between analyses by inserting them into the GC injector and were maintained at the recommended temperature to prevent contamination and utilized immediately following conditioning. Headspace Solid-Phase Microextraction (HS-SPME) extraction was performed at 30°C on 6 g of stirred homogenate in a 15-mL vial sealed with a polytetrafluoroethylene-lined screw cap with constant magnetic stirring (600 rpm). A pre-extraction time of 30 min and an additional extraction time of 30 min were applied. The sampling conditions were chosen after preliminary Gas Chromatography-Flame Ionization Detector (GC-FID) analyses and were similar to those reported in other fruit studies. [12,13] Each sample was analyzed in triplicate.

GC-FID and GC-MS analysis

A Perkin-Elmer Autosystem XL (Shelton, CT, USA), equipped with a 30-m × 0.25-mm × 0.25-µm film thickness AT-5 ms (Alltech, Deerfield, IL, USA) fused-silica capillary column and with a flame ionization detector, was used. Oven temperature was held at 50°C for 2 min and then raised to 280°C at 4°C/min and held for 10 min. Carrier gas (helium) flow rate was 1 mL/min. The injection and detector temperatures were 240°C and 250°C, respectively. For the SDE extracts 1 µL was injected in 1:10 split mode and for SPME extracts splitless mode (2 min) was applied. The retention times of a series of straight-chain alkanes (C_5–C_32) was used to calculate the retention indices for all identified compounds and for reference standards. Estimated concentrations for all compounds were made by GC peak area comparisons of the SDE extract components with the peak area of a known quantity of internal standard. Concentrations were expressed as mg methyl nonanoate equivalents/kg of fresh weight, response factors being taken as 1.0 for all compounds with reference to the internal standard, and a recovery factor of 80% was considered.

GC-MS analyses were performed on a Perkin-Elmer Clarus 500 gas chromatograph with a similar fused capillary column as in GC-FID. The temperature program and carrier gas flow rate were the same, as in GC-FID. MS analysis was performed on EI mode, electron energy was 70 eV, and both ion source and interface temperatures were 250°C. The acquisition was performed in scanning mode (mass range m/z 35–400 u).

Compounds were preliminarily identified by use of NIST 05, Wiley 6, NBS 75 k, Adams 2001 and in-house Flavorlib libraries. Their identities were confirmed by comparison of their linear retention indices with those of reference standards or with published data.

Odor detection threshold determination

A previously described multiple paired comparison test was used. [14] Samples were prepared in capped, wide-mouthed, 50-mL glass bottles. A group of 30–40 unscreened and untrained assessors were employed in determining the odor thresholds. In each case, panels were replicated a sufficient number of times, so that a minimum of 100 responses were obtained for each concentration used in determining a particular threshold. The test involved presenting the assessors with several samples, along with an aqueous solution for reference. Each sample was compared in odor individually with reference to determine a possible difference. Six samples were presented to each judge during each session. The first bottle contained the reference sample and the next five coded bottles contained four different dilutions and an aqueous solution identical to the reference. The four dilutions were placed in order of increasing concentrations to prevent fatigue. The position of the aqueous solution coded sample was arbitrarily changed from day to day. The statistical analyses for determining odor detection threshold values involved calculating the concentration corresponding to 50% of positive responses from the
total judgments. The calculation was made from the linear regression of percentage detection against log concentration. The 95% confidence limit calculated for the threshold values was used as a measure of error. Relative standard deviations were lower than 6%.

Results and discussion

The total volatile compounds from ciruela, isolated by SDE, were evaluated by sniffing a drop of the extract on a cardboard smelling strip, as done by perfumers. Following evaporation of the solvent, all panelists agreed that the extract evoked the characteristic fruity and plum-like aroma of the fruit, thereby indicating that the method utilized for aroma isolation was appropriate.

A total of 119 volatile compounds were detected by GC-MS by means of two different isolation methods (SDE and HS-SPME) in the three varieties; 105 of them were positively identified (Table 2). Positive identifications were arrived at by comparison of linear retention indices and mass spectra with those of standard reference compounds. As a result of the use of SDE, 63 volatile compounds were additionally isolated, in comparison with the SPME. These results are explained based on the characteristics of each extraction method used. The SDE is an exhaustive method, in which the fruit pulp was completely dispersed in hot water and volatiles were steam distilled and extracted with dichloromethane; consequently, higher recoveries were obtained. Furthermore, the conditions of the SDE method may lead to artifact compounds. On the other hand, the HS-SPME method is a non-exhaustive procedure with mild conditions but is specific depending of the type of fiber used. Taking into account the nature of the identified compounds, their presence cannot be explained simply due to odorant degradation and/or artifact formation, with the exception of 2-furfural.

Certain compounds have been reported previously in ciruela\[3,4,8\] and consisted largely of 44 esters, 17 aldehydes, 16 alcohols, 12 terpenes, 8 ketones, 6 acids, 5 aromatics, 4 paraffins, 6 miscellaneous compounds, and 1 lactone. *Chi abal* showed the richest composition, with 81 volatile compounds. *Campech abal* and *Ek abal* had a moderate composition, with 57 compounds each.

The semiquantitative data in Table 2 show that in total 1.32, 2.97, and 5.10 mg of volatile compounds were obtained per kg of fresh fruit (excluding skin and stone) for *Campech abal*, *Ek abal*, and *Chi abal*, respectively. Alcohols, esters, and aldehydes predominated in the three ciruela fruits (91.5%, 97.9%, and 83.1% of total volatiles in *Campech abal*, *Ek abal*, and *Chi abal*, respectively), then followed terpenes, acids, and ketones. Of these, ethyl acetate, acetic acid, ethyl butanoate, (*E*)-2-hexenal, (*Z*)-3-hexen-1-ol, (*E*)-2-hexenol, and 1-hexanol were the main volatile compounds, according to their high concentrations in at least one of the three cultivars analyzed.

The predominant class of compounds in all three ciruela were C₆ compounds according to their contents, i.e. (*E*)-2-hexenal (0.22–1.00 mg/kg), (*Z*)-3-hexen-1-ol (0.04–0.62 mg/kg), (*E*)-2-hexen-1-ol (0.13–0.52 mg/kg), and 1-hexanol (0.08–0.19 mg/kg). The highest content of (*E*)-2-hexenal and (*E*)-2-hexen-1-ol was present in *Ek abal*, whereas the lowest content was found in *Campech abal*. 1-Hexanol and (*Z*)-3-hexen-1-ol had the highest content in *Chi abal*, whereas the lowest content was found in *Campech abal*. The results parallel previous reports.\[3,4,8\] C₆ compounds are known to have a characteristic ‘green leaf’ odor, as released from green plant tissue following mechanical damage.\[15\] These volatile compounds are responsible for the ‘green’ odor perceived in fruits.\[16\] Other important C₆ compounds, but with fruity odors, were ethyl hexanoate (0.01–0.19 mg/kg) with the highest content in *Chi abal* and hexyl acetate (0.01–0.06 mg/kg) with the highest content in *Ek abal*, in comparison with the previous two cultivars. Among the esters identified, ethyl (*E*)-2-methyl-2-butenoate (ethyl tiglate) warrant attention because this type of ester is a less common plant volatile. The esters of branched chain acids can be derived from amino acid metabolism.\[15\] The presence of this ester has been reported previously in this fruit.\[4\] In general, ethyl esters were found to have higher amounts in *Chi abal*.

Table 3 lists the orthonasal odor detection threshold in water and the OAV for several volatile compounds found in ciruela. The significant contribution of each odorant to the characteristic flavor can be determined by the OAV, which is the ratio of concentration to the odor threshold of the compound. Although it is known that nonvolatile fruit compounds might influence odor thresholds, water is the
Table 2. Volatile compounds identified in ciruela varieties.

Compound	RI	ID	Campech abal	Ek abal	Chi abal	
			SDE	SPME	SDE	SPME
Ethanol	527	A	tr	*	0.01	*
Acetic acid	610	A	tr	*	–	–
Ethyl acetate	613	A	0.16	*	0.59	*
2-Methyl-3-buten-2-ol	618	B	0.23	–	–	–
2-Methylpropan-1-ol	622	A	–	–	–	–
Methyl propanoate	642	A	tr	*	–	–
1-Butanol	650	A	–	–	–	–
3-Methylbutanal	654	A	tr	*	0.01	–
2-Methylbutanal	662	A	0.01	–	–	–
1-Penten-3-one	680	A	–	–	tr	–
3-Pentanone	700	A	tr	–	–	0.01
Pentanal	707	A	–	–	tr	–
Ethyl propanoate	709	A	tr	*	tr	*
Propyl acetate	711	A	–	–	tr	*
3-Hydroxy-2-butanol	714	A	–	–	0.01	–
3-Methyl-3-buten-1-ol	720	A	–	–	0.02	–
Methyl butanoate	724	A	tr	*	–	tr
3-Methyl-2-butenal	730	B	–	–	tr	–
2-Methylbutan-1-ol	736	A	–	–	0.01	–
Ethyl 2-methylpropanoate	751	A	tr	*	–	–
(E)-2-Pentenal	754	B	–	–	0.01	–
1-Pentanol	760	A	0.05	–	0.03	–
(Z)-2-Penten-1-ol	767	B	–	–	0.03	–
3-Methyl-2-buten-1-ol	774	B	–	–	0.01	–
Methyl 3-methylbutanoate	790	A	0.01	*	0.01	*
4-Methyl-3-penten-2-one	797	B	–	–	0.01	–
Hexanal	802	A	–	–	tr	*
Ethyl butanoate	804	A	0.06	*	0.02	–
Butyl acetate	812	A	–	–	0.05	–
2-Furfural	831	A	0.02	–	0.02	–
Ethyl 2-methylbutanoate	845	A	0.01	*	0.02	–
(E)-2-Hexenal	854	A	0.22	–	1.00	*
Ethyl 3-methylbutanoate	858	A	0.01	*	0.01	–
(Z)-3-Hexen-1-ol	860	A	0.05	*	0.05	*
p-Xylene	863	A	0.01	–	–	–
2-Methylpropyl butanoate	865	A	–	–	–	–
(E)-2-Hexen-1-ol	867	A	0.13	–	0.52	*
1-Hexanol	871	A	0.08	*	0.11	–
4-Penten-1-yl acetate	874	B	tr	–	–	0.04
Ethyl (E)-2-methyl-2-butoate	877	A	0.01	*	tr	*
3-Heptanone	884	A	–	–	0.02	–
Propyl butanoate	896	A	–	–	–	0.01
Heptanal	905	A	–	–	tr	*
3-Methyl-2-butenyl acetate	911	B	–	–	tr	*
2-Cyclohexen-1-one	914	A	0.01	–	tr	–
Methyl hexanoate	927	A	tr	*	0.02	–
5-Methyl-3-heptanone	943	B	–	–	tr	–
5-Methyl-2-furfural	946	A	–	–	–	–
(E)-2-Heptanal	954	A	–	–	0.02	–
Benzaldehyde	960	A	0.01	–	tr	–
Methyl (E)-2-hexenoate	966	A	–	–	0.01	–
3-Octanone	984	A	–	–	tr	*
Butyl butanoate	994	A	–	–	tr	–
1,3,5-Trimethylbenzene	996	A	tr	–	–	–
Ethyl hexanoate	998	A	0.01	–	0.06	*
2-Methylpropyl 3-methylbutanoate	1002	A	–	–	0.06	–
Ethyl (E)-3-hexenoate	1004	A	–	–	tr	–
(Z)-3-Hexenyl acetate	1006	A	0.01	*	0.11	*
Hexyl acetate	1009	A	0.01	*	0.06	–
Hexanoic acid	1017	A	–	–	–	0.02
p-Cimene	1023	A	tr	–	–	0.01
Limonene	1028	A	0.01	*	0.01	*

(Continued)
Compound	RI	ID	Campech abal	Ek abal	Chi abal
1,8-Cineol	1031	A	tr	tr	0.01
Phenylacetaldehyde	1040	A	tr	tr	
Butyl 3-methylbutanoate	1046	A	tr	tr	
3-Methylbutyl butanoate	1054	A	tr	tr	
γ-Terpinene	1056	A	0.01	0.01	0.01
(E)-2-Octenal	1057	A	–	–	
γ-Hexalactone	1059	A	tr	tr	
5-Nonanone	1073	B	tr	tr	tr
4-Nonanol	1078	B	–	0.01	tr
(Z)-Linalool oxide (furanoid)	1087	A	tr	–	
Methyl benzoate	1091	A	0.03	–	0.01
2-Methylbenzofuran	1094	A	tr	–	
Ethyl heptanoate	1098	A	tr	tr	tr
Nonanal	1102	A	–	0.02	0.02
Methyl octanoate	1126	A	–	–	0.01
Methyl 2-methyloctanoate	1158	B	0.08	0.07	0.08
Benzy1 acetate	1162	A	tr	–	tr
(E)-2-Nonenal	1165	A	–	tr	tr
Ethyl benzoate	1170	A	tr	tr	tr
Octanoic acid	1197	A	tr	–	
(E)-3-Hexenyl butanoate	1185	A	tr	tr	tr
Heptyl butanoate	1193	A	–	–	tr
Ethyl octanoate	1195	A	tr	tr	0.02
Safranal	1198	A	–	tr	
Decan	1206	A	tr	0.01	–
Ethyl salicylate	1270	A	–	–	0.01
Nonanoic acid	1277	A	–	–	tr
Ethyl nonanoate	1293	A	–	–	tr
α-Cubebene	1351	A	tr	–	tr
α-Copaene	1375	A	0.01	tr	0.01
Methyl (E)-cinnamate	1378	A	tr	–	tr
(E)-β-Damascenone	1384	A	tr	tr	–
Decanoic acid	1387	A	–	–	tr
Ethyl decanoate	1391	A	–	–	0.01
Dodecanal	1411	A	tr	tr	
β-Caryophyllene	1420	A	0.02	–	tr
(E)-α-Bergamotene	1436	A	tr	–	
Dehydro-β-ionone	1438	B	tr	–	
Geranylacetone	1444	A	tr	–	
α-Humulene	1450	A	tr	–	
1-Dodecane	1472	A	tr	0.02	
γ-Curcumene	1479	A	0.01	tr	
(E)-β-Ionone	1486	A	–	–	0.01
α-Selinene	1498	A	–	0.01	–
γ-Cadinene	1514	A	tr	–	tr
Dodecanoic acid	1570	A	–	–	tr
Ethyl dodecanoate	1597	A	–	–	0.01
Benzophenone	1603	A	–	–	tr
1-Tetradecanol	1673	A	–	–	tr
2-Ethylhexyl benzoate	1692	B	tr	–	–
Ethyl tetradecanoate	1794	A	–	–	tr
1-Octadecane	1800	A	0.02	–	–
1-Nonadecane	1900	A	0.01	–	–
Methyl hexadecanoate	1927	A	–	–	tr
Isopropyl hexadecanoate	2013	A	tr	–	tr
1-Eicosane	2000	A	tr	–	–
1-Docosane	2100	A	tr	–	tr

Note	
a	Lineal retention indices in AT-5ms capillary column.
b	The reliability of the identification proposal is indicated by the following: A, compound definitely identified (comparison of RI and mass spectra with reference compound); B, by mass spectra and RI data from literature.
c	Values expressed in mg/kg.
d	tr: Lower than 0.01 mg/kg.
e	Detected.
f	Not detected.
main constituent of the fruit. If a compound has an OAV \(\geq 1\), then it will contribute significantly to the overall fruit odor. If we look at the threshold concentration of a compound as a separate quantity, the OAV for that compound gives the number of threshold concentrations of that compound present in the fruit. The probability of a compound’s odor being detected should be greater than the number of OAVs. This value should then provide some indication of the importance of that compound in the overall odor. However, at least two simplifications of this concept should be scrutinized: the assumption that the perceived intensity is proportional to OAV and the frequent use of thresholds determined in model media other than the original food. Despite these limitations, the OAV concept is still considered a very useful tool in aroma research.\(^{[17]}\)

Due to the unavailability of the pure standard or the odor threshold data in the literature, the OAV of some compounds was omitted. From the odor threshold concentrations determined in this work or obtained from the literature, 22 compounds were present in amounts higher than their threshold concentrations (OAVs >1) (Table 3).

According to the odor notes of the 22 odor-active compounds, there is a balance between fruity and grassy notes in the aroma profile of this fruit. Only six compounds (methyl 3-methylbutanoate, ethyl butanoate, ethyl 2-methylbutanoate, ethyl 3-methylbutanoate, ethyl hexanoate, and hexyl acetate) with fruity odor notes, plus five [(E)-2-hexenal, (Z)-3-hexen-1-ol, (E)-2-hexen-1-ol, 1-hexanol, and (Z)-3-hexenyl acetate] with grassy odor notes, and limonene (citrus-like) were common to the three cultivars. Clear differences in the OAVs of some odorants, between each of the cultivars, suggested that they contributed to the unique sensory profiles of the individual cultivars. Some compounds were detected as potential odorants only in one cultivar, for example, ethyl propanoate, ethyl 2-methylpropanoate, 1,8-cineol, and (E)-β-ionone in Chi abal, methyl butanalan and decanal in Ek abal, and 2-methyl-3-buten-1-ol in Campech abal. 3-Methyl-3-buten-1-ol and nonanal were identified as potential odorants only in Ek abal and Chi abal, whereas methyl benzoate was detected in Campech abal and Chi abal.

Since odor detection thresholds of some volatiles have not been determined, their contribution to ciruela aroma is still undefined. Sensory studies with aroma models and omission experiments warrant being conducted to determine the actual contribution of those volatiles to ciruela aroma.

Compound	Odor threshold (µg/kg)	Odor quality	Campech abal	Ek abal	Chi abal
2-Methyl-3-buten-1-ol	10^b	Fruity, faint scent	23	–	–
3-Methylbutanal	0.5^c	Malty	–	20	–
Ethyl propanoate	10^a	Fruity	–	–	10
3-Methyl-3-buten-1-ol	10^b	Pungent	–	2	5
Ethyl 2-methylpropanoate	0.1^b	Sweet-fruity	–	–	100
Methyl 3-methylbutanoate	0.4^b	Fruity	25	25	100
Ethyl butanoate	1^c	Fruity	60	20	930
Ethyl 2-methylbutanoate	2^b	Fruity	5	10	4
(E)-2-Hexenal	17^a	Green-intense fruity	13	59	20
Ethyl 3-methylbutanoate	0.023^c	Fruity, blueberry-like	435	435	2174
(Z)-3-Hexen-1-ol	50^d	Grassy	1	1	12
(E)-2-Hexen-1-ol	100^b	Grassy	1	5	3
1-Hexanol	0.01^b	Grassy, floral	8000	11,000	19,000
Ethyl hexanoate	1^b	Fruity, pineapple-like	10	60	190
(Z)-3-Hexenyl acetate	13^c	Green, banana-like	1	8	2
Hexyl acetate	2^a	Sweet-fruity	5	30	5
Limonene	10^d	Citrus-like	1	1	1
1,8-Cineol	1.1^e	Green, herb	–	–	10
Methyl benzoate	0.5^b	Fruity, sweet	60	–	20
Nonanal	1^f	Fatty, flowery	–	20	20
Decanal	0.1^b	Orange peel	–	100	–
(E)-β-Ionone	3.5^c	Woody	–	–	3

\(^a\)According to the Leffingwell web page.\(^{[18]}\)
\(^b\)Determined in the present work.
\(^c\)Czerny.\(^{[19]}\)
Conclusion

In the present study, SDE and SPME were used for extraction of volatiles in *Campech abal*, *Ek abal*, and *Chi abal* ciruela fruits. A total of 119 compounds were identified in three cultivars. Of these, ethyl acetate, acetic acid, ethyl butanoate, \((E)-2\)-hexenal, \((Z)-3\)-hexen-1-ol, \((E)-2\)-hexenol, and 1-hexanol were the main volatile compounds, based on their high concentrations in at least one of the three cultivars. The determination of odor activity values provided a satisfactory assessment of the most volatile compounds that play a major role in odor perception. Methyl 3-methylbutanoate, ethyl butanoate, ethyl 2-methylbutanoate, ethyl 3-methylbutanoate, ethyl hexanoate, hexyl acetate with fruity odor notes, \((E)-2\)-hexenal, \((Z)-3\)-hexen-1-ol, \((E)-2\)-hexen-1-ol, 1-hexanol, and \((Z)-3\)-hexenyl acetate with grassy odor notes, and limonene (citrus-like), responsible for the fruity and grassy character of the ciruela, were the potentially important common odorants in all cultivars. In addition, 2-methyl-3-buten-1-ol, 3-methylbutanal, ethyl propanoate, 3-methyl-3-buten-1-ol, ethyl 2-methylpropanoate, 1,8-cineol, methyl benzoate, nonanal, decanal, and \((E)-\beta\)-ionone were potentially important common odorants in all the ciruela cultivars. From the present results, it was concluded that the aroma profiles were similar in the tree cultivars, but significant variations were found in the contributions of these compounds to each cultivar. In future investigations, sensory studies with aroma models and omission experiments warrant being conducted to determine the actual contribution of those volatiles to ciruela aroma.

Acknowledgment

The authors would like to extend their appreciation to Dallant (Barcelona, Spain) for providing material without cost.

References

1. Kostermans, A. J. G. H.;. *Kedondong, Ambarella, and Amra: The Spondiadeae (Anacardiaceae) in Asia and the Pacific Area*; Herbarium Bogoriense: Bogor, Indonesia, 1991, p. 100.
2. Miller, A.; Schaal, B. Domestication of a Mesoamerican Cultivated Fruit Tree, *Spondias Purpurea*. Proceedings of the National Academy of Sciences 2005, 102, 1281–1286. DOI: 10.1073/pnas.0505447102.
3. Augusto, F.; Valente, A. L. P.; Tada, E. S.; Rivellino, R. S. Screening of Brazilian Fruit Aromas Using Solid-Phase Microextraction–Gas Chromatography–Mass Spectrometry. Journal of Chromatography A 2000, 873, 117–127. DOI: 10.1016/S0021-9673(99)01282-0.
4. Ceva-Antunes, P. M.; Bizzo, H. R.; Silva, A. S.; Carvalho, C. P. S.; Antunes, O. A. C. Analysis of Volatile Composition of Siriguela (*Spondias Purpurea*) By Solid Phase Microextraction (SPME). LWT-Food Science Technology 2006, 39, 436–442. DOI: 10.1016/j.lwt.2005.02.007.
5. Engels, C.; Gräter, D.; Esquivel, P.; Jiménez, V. M.; Gänzle, M. G.; Schieber, A. Characterization of Phenolic Compounds in Jocote (*Spondias Purpurea*) Peels by Ultra High-Performance Liquid Chromatography/Electrospray Ionization Mass Spectrometry. Food Research International 2012, 46, 557–562. DOI: 10.1016/j.foodres.2011.04.003.
6. Todisco, K. M.; Castro-Alves, V. C.; Garruti, S.; Maria, J.; Clemente, E. The Use of Headspace Solid-Phase Microextraction (HS-SPME) to Assess the Quality and Stability of Fruit Products: An Example Using Red Mombin Pulp (*Spondias Purpurea*). Molecules 2014, 19, 16851–16860. DOI: 10.3390/molecules191016851.
7. Morton, J. F.; Purple Mombin. In *Fruits of Warm Climates*; Morton, J. F., Ed.; Creative Resource Systems, Inc: Miami, FL, 1987, pp 242–245.
8. Koziol, M. J.; Macia, M. J. Chemical Composition, Nutritional Evaluation, and Economic Prospects of *Spondias Purpurea* (Anacardiaceae). Ecology Botany 1998, 52, 373–380. DOI: 10.1007/BF02862067.
9. AOAC. *Official Methods of Analysis of the Association of Official Analytical Chemists*, 16th ed; AOAC International: Arlington, 1997.
10. Pino, J.; Odour-Active Compounds in Mango (*Mangifera Indica* L. Cv. Corazón). International Journal Food Science and Technology 2012, 47, 1944–1950. DOI: 10.1111/j.1365-2621.2012.03054.x.
11. Cuevas-Glory, L.; Ortiz-Vazquez, E.; Sauri-Duch, E.; Pino, J. Characterization of Aroma-Active Compounds in Sugar Apple (*Annona Squamosa* L.). Acta Alimentaria 2013, 42, 102–108. DOI: 10.1556/AAlim.42.2013.1.10.
12. Quijano, C. E.; Pino, J. Analysis of Volatile Compounds of Cacao Maraco (*Theobroma Bicolor* Humb. Et Bonpl.) Fruit. Journal of Essential Oil Research 2009, 21, 211–215. DOI: 10.1080/10412905.2009.9700150.
13. Pino, J.; Febles, Y. Odour-Active Compounds in Banana Fruit Cv. Giant Cavendish. Food Chemistry 2013, 141, 795–801. DOI: 10.1016/j.foodchem.2013.03.064.

14. Pino, J.; Mesa, J. Contribution of Volatile Compounds to Mango (Mangifera Indica L.) Aroma. Flavour Fragrance Journal 2006, 21, 214–221. DOI: 10.1002/ffj.1703.

15. Osorio, S.; Muñoz, C.; Valpuesta, V. Physiology and Biochemistry of Fruit Flavors. In Handbook of Fruit and Vegetable Flavors; Hui, Y. H., Ed.; John Wiley and Sons, Inc: New Jersey, 2010. pp 25–44.

16. Hatanaka, A.; The Biogeneration of Green Odour by Green Leaves. Phytochemistry 1993, 34, 1201–1218. DOI: 10.1016/0031-9422(91)80003-J.

17. Guth, H.; Grosch, W. Evaluation of Important Odorants in Foods by Dilution Techniques. In Flavor Chemistry; Teranishi, R., Wick, E. L., Hornstein, I., Eds.; Kluwer Academic/Plenum: New York, 1999. pp 377–386.

18. Leffingwell and Assoc. Odor and Flavor Detection Thresholds in Water (In Parts per Billion). http://www.leffingwell.com/odorthre.htm (accessed Oct 4, 2017).

19. Czerny, M.; Christlbauer, M.; Christlbauer, M.; Fischer, A.; Granvogl, M.; Hammer, M.; Hartl, C.; Moran Hernandez, N.; Schieberle, P. Re-Investigation on Odour Thresholds of Key Food Aroma Compounds and Development of an Aroma Language Based on Odour Qualities of Defined Aqueous Odorant Solutions. European Food Research Technology 2008, 228, 265–273. DOI: 10.1007/s00217-008-0931-x.