Detection of Orientia sp. DNA in rodents from Asia, West Africa and Europe

Jean François Cosson¹*, Maxime Galan¹, Emilie Bard², Maria Razzauti¹, Maria Bernard³, Serge Morand⁴, Carine Brouat⁶, Ambroise Dalecky⁷, Khalilou Bâ⁹, Nathalie Charbonnel¹ and Muriel Vayssier-Taussat⁷

Abstract
Orientia bacterium is the agent of the scrub typhus, a seriously neglected life-threatening disease in Asia. Here, we report the detection of DNA of Orientia in rodents from Europe and Africa. These findings have important implications for public health. Surveillance outside Asia, where the disease is not expected by sanitary services, needs to be improved.

Keywords: Scrub typhus, Zoonoses, Emerging disease, Rodent-borne disease, Metagenomics

Findings
Orientia tsutsugamushi is the only known species belonging to the Orientia bacterial genus. The bacterium causes scrub typhus in humans. It is an obligate intracytoplasmic bacterium that is transmitted during feeding by larval trombiculid mites, and is hosted by rodents [1]. In Asia, approximately one million cases of scrub typhus occur annually, where it is probably one of the most underdiagnosed and underreported febrile illnesses requiring hospitalization [2], with an estimated 10% fatality rate unless treated appropriately. Formerly thought to be geographically restricted to Asia [3], Orientia was recently identified in sick patients from the Arabian Peninsula [4] and Chile [5]. Miscellaneous reports of scrub typhus-like illness have previously questioned the presence of the bacterium in the Congo [6] and Cameroon [7].

Methods
In order to generate a global picture of zoonotic bacteria that are likely to be harboured by rodents, we applied a metagenomic approach using spleen samples of 1334 rodents from France (Ardennes region), Senegal (along the Senegal River) and Thailand (northern and northeastern provinces of Loei, Nan and Buriram). Rodents were trapped in both natural habitats and villages within rural landscapes. They were euthanized by cervical dislocation and dissected. In order to prevent cross contamination during dissection, we systematically alternated the use of two sets of dissecting instruments. After dissecting a rodent, the set used was immersed in bleach then water and let in alcohol, while we dissected another rodent with the other set [8]. Spleens were placed in RNA later® storage solution (Sigma-Aldrich, Saint Louis, MO, USA) then stored at -20°C until further analysis. Genomic DNA was then extracted from the spleen using the DNeasy® 96 Tissue Kit (Qiagen, Germany). Spleen DNA samples were screened for the presence of bacteria using universal primers targeting the hyper variable region V4 of the 16S rRNA gene (251 bp) via Illumina MiSeq (Illumina) sequencing. The V4 region has been proven to have excellent taxonomic resolution at the genus level [9]. A multiplexing strategy enabled the identification of bacterial genera in each individual sample. We followed the method described in [10] to perform PCR amplification, indexing, pooling, multiplexing and de-multiplexing and finally taxonomic identification using the SILVA SSU Ref NR 119 database as a reference (http://www.arb-silva.de/projects/ssu-ref-nr/). In total we performed four different MiSeq runs, two with rodents from France (N = 557), one with rodents from Asia (N = 423) and one with rodents from Africa (N = 354). For each run, we systematically used negative controls (of DNA extraction and PCR) and none were positive for Orientia. Though we did not use positive controls for Orientia because the bacterium was not expected in

* Correspondence: cosson@supagro.inra.fr
1INRA, CBGP, 755 Avenue Campus Agropolis, Montferrier sur Lez CS30016, 34988, France
Full list of author information is available at the end of the article

© 2015 Cosson et al; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
European and African samples. We used positive controls for other bacterial genus like *Leptospira*, *Borrelia*, *Bartonella* and *Mycoplasma*, and all were found positive for the expected bacterial genera.

Results and discussion

From over a total of 1334 rodents tested, 110 were found positive for *Orientia* (Table 1). As expected, *Orientia* was detected in five sampled rodent species from Thailand: *Rattus tanezumi* (5 positives/67 tested), *Rattus exulans* (1/81), *Bandicota savilei* (2/26), *Berylmys bowersi* (1/17), and *Leopoldamys edwardsi* (1/10). More surprisingly, the bacterium was also detected in numerous rodents collected from both France and Senegal. In Senegal, *Orientia* sequences were only identified in the exotic house mouse (*Mus musculus domesticus*) (48 positives/207 tested), while the sympatric endemic multimammate rats (*Mastomys erythroleucus*) were all found to be negative (0/147), suggesting introduction of the bacterium via the exotic rodent. In France, *Orientia* sp. was detected in three rodent species: *Myodes glareolus* (44/302), *Arvicola scherman* (2/64) and *Microtus arvalis* (6/49). Positive for *Orientia* were trapped inside human houses in Asia and Africa, and in close proximity to human dwellings in Asia and France.

In rodents, blood, spleen and other organs are routinely used for *Orientia* PCR detection [11], although one should notice that such assay is limited to the time window of rickettsemia, i.e. when the bacteria are infecting macrophages in peripheral blood. In our experiments we targeted the spleen because this organ is known to act primarily as a blood filter and then appears appropriate for detecting bacteria infecting blood cells. However, although there are many lines of evidence that *Orientia* may chronically infect humans and rodents, the persistence of the bacteria in organs, and spleen in particular, is currently poorly known [12]. Thus we cannot discard the possibility of false negatives in our assays.

Sequence analyses revealed that the *Orientia* sequences identified in this study were between 100 to 94.4% identical to GenBank-published *Orientia* sequences isolated from humans, mites and rodents in Asia. All sequences shared only 90.8 to 86.5% identity with GenBank-published *Rickettsia*, the closest bacterial genus to *Orientia*, thus consolidating our finding on the presence of *Orientia* in Europe and Africa. We also performed phylogenetic analyses of both the haplotypes identified in this study, and those from GenBank databases, using the neighbor-joining method [13]. Bootstrap analysis was performed on 1,000 replicates. Haplotypes from this study clustered strongly within the *Orientia* phylogroup and were clearly separated from the *Rickettsia* phylogroup. Asian haplotypes were distributed amongst Genbank haplotypes from Asia and Arabian peninsula (Chuto haplotype), African haplotypes fell with the Chuto haplotype, whereas European haplotypes clustered into a new basal phylogroup (Figure 1).

Conclusion

We have established the presence of *Orientia* DNA in spleens of rodents from Thailand, as was expected, but also in rodents collected from France and Senegal. In Asia, scrub typhus is considered as a seriously neglected life-threatening disease despite the fact that this ancient disease has been recognized within this region for many years. In Europe and Africa, this disease is currently less recognized, although the presence of *Orientia* DNA in spleens of rodents suggests that this disease could be introduced into these regions from Asia via exotic rodents. This would explain the presence of *Orientia* in various rodents collected from France and Senegal. Further studies are needed to confirm the presence of *Orientia* in these regions and to investigate the epidemiological implications of this finding.
Figure 1 (See legend on next page.)
years. Our findings, together with those from other recent studies [4,5] suggest that in locales outside of Asia where the disease is not on the public health service radar, surveillance needs to be improved.

Ethical approval

Animals have been treated in accordance with the guidelines of the European Union legislation (Directive 86/609/EEC). The CBGP laboratory has received the approval (no. B 34–169–1) from the regional Head of Veterinary Service (Hérault, France), for the sampling and killing of rodents and the harvesting of their tissues. Dr Cosson has personally received the agreement “certificate d’autorisation d’expérimentation sur animaux vivants” (i.e. “certificate of authorization to experiment on live animals”) (no. C34–105) by the French administration.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

JFC, MG, SM, CB, AD, KB, NC, carried out the rodent sampling. MG, MR carried out the molecular genetic studies. MG, MB, EB participated in the sequence analyses. JFC drafted the manuscript and performed the phylogenetic analyses. MG, SM, CB, AD, NC, MVT helped to draft the manuscript. All authors read and approved the final manuscript.

Acknowledgments

We thank Mamadou Kane, Christophe A. Diagne, Alouw Sow, Youssou Niang and Mamoudou Diallo for their help during field sampling in Senegal, Hélène Vignes for her assistance with the MiSeq sequencing, and Sylvain Peys, Alexandre Dehne-Garcia and Marie Pagès for their help with the bioinformatic analysis. This study was funded by the INRA metaprogramme PATHO-ID and by the ANR ENEMI (ANR-11-JSV7-0006). Rodents were collected in the course of studies funded by the EU grant FP7-261504 EDENext, the ADEME (APR PREST 2009) and the ANR Biodivhealthsea (ANR-11-CEPL-0002). This study was partially funded by EU grant FP7-261504 EDENext and is catalogued by the EDENext Steering Committee as EDENext289 (http://www.edenext.eu). The contents of this publication are the sole responsibility of the authors and don’t necessarily reflect the views of the European Commission. This work was also supported by the COST Action TD1303 (EurNegVec).

Author details

1INRA, CBGP, 755 Avenue Campus Agropolis, Montferrier sur Lez CS30016, 34088, France. 2INRA, Epia, Clermont-Ferrand, France. 3INRA, GABI, Signaie, Domaine de Vilvert, Jouy en Josas 78332, France. 4CNRS-CIRAD, Centre d’Infectiologie Christophe Mérieux du Laos, Vientiane, Lao PDR. 5Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand. 6IRD, CBGP, 755 avenue du campus Agropolis, Montferrier sur Lez Cedex CS 30016, 34088, France. 7INRA, BIPAR, 23 Av. Général de Gaulle, Maisons-Alfort, France. 8IRD, Aix Marseille Université, LEPD (UMR IRD-AMU), Marseille, France. 9IRD, CBGP, Campus ISRA/IRD de Bel Air, BP 1386, Dakar CP 18524, Senegal.

References

1. Paris DH, Shelite TR, Day NP, Walker DH. Unresolved problems related to scrub typhus: a seriously neglected life-threatening disease. Am J Trop Med Hyg. 2013;89:301–7.
2. Watt G, Parola P. Scrub typhus and tropical rickettsioses. Curr Opin Infect Dis. 2003;16:429–36.
3. Kelly DJ, Fuerst PA, Ching WM, Richards AL. Scrub typhus: the geographic distribution of phenotypic and genotypic variants of Orientia tsutsugamushi. Clin Infect Dis. 2009;53:203–30.
4. Izzard L, Fuller A, Blacksell SD, Paris DH, Richards, AL, Aukkanit N, et al. Isolation of a novel Orientia species (O. chuto sp. nov) from a patient infected in Dubai. J Clin Microbiol. 2010;48:4404–9.
5. Balcells ME, Rabagliati R, Garcia P, Poggi H, Oddo D, Concha M, et al. Endemic scrub typhus-like illness Chile. Emerg Infect Dis. 2011;17:1659–63.
6. Osuga K, Kimura M, Goto H, Shimada K, Suto T. A case of Tsutsugamushi disease probably contracted in Africa. Eur J Clin Microbiol Infect Dis. 1991;10:995–6.
7. Ghorbani RP, Ghorbani AJ, Jain MK, Walker DH. A case of scrub typhus probably acquired in Africa. Clin Infect Dis. 1999;25:1473–4.
8. Herbreteau V, Jittapalapong S, Rerknamnuaychoke W, Chaval Y, Cosson JF, Morand S. Protocols for field and laboratory rodent studies. Kasetsart University Press; 2011. (freely available on http://www.cercopath.org/ research/protocols).
9. Claesson MJ, Wang Q, O’Sullivan O, Greene-Diniz R, Cole JR, Ross RP, et al. Comparison of two next-generation sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions. Nucleic Acids Res. 2010;38:e200.
10. Koizich JJ, Westcott SL, Baxter NT, Higlander SK, Schloss PD. Development of a dual-index sequencing strategy and curation pipeline for analysing amplicon sequence data on the MiSeq illumina sequencing platform. Appl Environ Microbiol. 2013;79:5112–20.
11. Watt G, Kantipong P, Jongsakul V, Watcharapichat P, Chaval Y, Cosson JF, Morand S. Comparison of two next-generation sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions. Nucleic Acids Res. 2010;38:e200.
12. Kozich JJ, Westcott SL, Baxter NT, Higlander SK, Schloss PD. Development of a dual-index sequencing strategy and curation pipeline for analysing amplicon sequence data on the MiSeq illumina sequencing platform. Appl Environ Microbiol. 2013;79:5112–20.
13. Gouy M, Guindon S, Gascuel O. SeaView version 4: a multiplatform graphical interface for sequence alignment and phylogenetic tree building. Mol Biol Evol. 2010;27:2124–1.

Submit your next manuscript to BioMed Central and take full advantage of:

• Convenient online submission
• Thorough peer review
• No space constraints or color figure charges
• Immediate publication on acceptance
• Inclusion in PubMed, CAS, Scopus and Google Scholar
• Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit