Research Article
The Development and Design of Artificial Intelligence in Cultural and Creative Products

Xue Li¹ and Baifeng Lin²

¹School of Design and Art, Jingdezhen Ceramic Institute, Jingdezhen 333000, Jiangxi, China
²Academy of Fine Arts, Anqing Normal University, Anqing 246052, Anhui, China

Correspondence should be addressed to Baifeng Lin; linbofeng@aqnu.edu.cn

Received 5 March 2021; Revised 22 March 2021; Accepted 15 April 2021; Published 26 April 2021

Academic Editor: Sang-Bing Tsai

Copyright © 2021 Xue Li and Baifeng Lin. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The rapid development of the global cultural and creative industry has provided a new stage for the development and innovation of Chinese traditional culture. Cultural creativity has broken the rigid design and production mode of traditional products from the perspective of market and has become the key to improve the economic benefits and competitiveness of traditional products. From the perspective of cultural and creative product design and product development, artificial intelligence technology has been fully utilized at the present stage. The purpose of this article is to compare the traditional design patterns used in product design and understand the new design patterns assisted by artificial intelligence so as to achieve the purpose of process simplification and design innovation more quickly. In this article, traditional graphic patterns and local cultural connotations of the experimental area are taken as the main research points. Through a large number of field investigations and first-hand photo materials, the regional cultural characteristics and local traditional graphic language are analyzed in detail and then summarized. Finally, the examples of development research are summarized and reflected. It is hoped that through the further excavation of the traditional patterns of the region and the exploration of the level of regional culture regeneration, the development of local economy, culture, and tourism can be driven, and a cultural brand that can go out of Anhui province and into the whole country can be built. At the present stage of product research and development, the key is to introduce artificial intelligence means as necessary support and try to infiltrate artificial intelligence measures in the research and development of new products in each link.

1. Introduction

With the development of robot technology, the application of robots became wider and wider. At the same time, the concept of robots also became broader and broader, expanding from the narrow sense of robot to robot technology. In early 2004, a senior member of IEEE affecting the industry of future research pointed out that four technologies will have the greatest influence on the future, that is, biotechnology, nanotechnology, giant computer technology, and intelligent robot technology. Given the strong support, Japan regards robots as a strategic industry, but the current robot industry is faced with problems in Japan. However, robot research is put forward to strengthen and promote specific measures of industrialization of the robot. South Korea has listed robot technology as an “engine” industry for future national development and has given key support to robot technology. The United States has classified robotics as a technology of vigilance, believing that it will have a huge impact on future wars, and has imposed a technological blockade on other countries. Experts suggest that research on robot technology should be further strengthened to promote the development of China’s intelligent robot industry.

The Mediterranean region has received increasing attention in recent years. This is due to the heterogeneity of the countries that make up it, which raises several issues in business cooperation, but also presents several transnational economic opportunities among Mediterranean countries. Through the analysis of cultural and creative industries, it
can be found that there are many similarities in this field, which makes cross-cultural communication and transnational economic development possible. Luciana Lazzaretti studied the three main Mediterranean countries in and outside Europe, Italy, Spain, and Turkey, to highlight the most striking similarities and differences in their characteristics. The specialization of creativity found in this region is similar, leading us to discuss the concept of Mediterranean creativity [1]. Cultural and creative industries are increasingly important in western economies. In these industries, as in several other business sectors, microenterprises, that is, in the United States, are the dominant type of business that employs fewer than 10 people. As these industries have become a part of most economies, Katherine Gundolf has begun to explore the strategic behavior of cultural and creative microbusinesses. While microenterprises are characterized by certain particularities that can affect their ability to participate in external relationships, in this particular case, there is little knowledge of collaboration through strategic alliances. Katherine Gundolf aims to shed light on the specific motivations for participating in strategic alliances in this context in order to improve understanding of the partnerships between microenterprises in the cultural and creative industries. In this process, Katherine Gundolf focuses on six strategic alliances between microenterprises in the French cultural and creative industry. Katherine Gundolf’s findings suggest that strategic alliances involving creative microenterprises seek to reduce overspecialization, aim for a high quality of life and fun to work, and are only possible if there is trust and mutual support among partners. In addition, opportunism and necessity motivation guide the decision of innovative microenterprises to enter the strategic alliance [2]. In Slovakia, there are three unique, historic mining towns, Banska Bystrica, Banska Stiavnica, Kremnica, which have been successfully converted to the creative cultural center. The historical and cultural values of these towns have stood the test of time, becoming a new magnet for people of the creative class who want to escape the atrocities of high modernity (modern urban centers) and find a source of inspiration based on the sentimentalism of historical nostalgia, a new foundation for creative and cultural industries in rural areas. Kamila Borsekova’s main objective was to analyze the cultural and creative industries of these three unique historical mining centers with a view of replicating their knowledge in other communities under economic pressure. Kamila Borsekova first explores concepts related to the cultural and creative industries, focusing on nostalgia sentimentalism, which is an important opposition to high modernity and even postmodernism. The second part will analyze the cultural and creative industries of the three centers based on preliminary data collected from several research projects in this area. Finally, some suggestions are put forward to promote creative and cultural enterprises to participate in regional redevelopment. It also contains policy recommendations on the autonomy of the region in order to make more effective and rational use of the obvious existing potential [3].

This article collects, sorts out, and analyzes the most representative elements in the experimental area by means of field investigation and take this as the foundation of the creation of cultural products. Through the technology of artificial intelligence, a database of cultural elements, symbols, and languages in the experimental area is established to find the breakthrough point of transformation and application of traditional graphics. When developing new products of cultural creativity, such intelligent means, if properly utilized, can help broaden the perspective of product development and integrate more innovative elements into it. Therefore, we can know that the whole process of product development and design should pay close attention to the flexible introduction and application of artificial intelligence technology.

2. Proposed Method

2.1. Cultural and Creative Products

2.1.1. Definition of Cultural and Creative Products. Cultural goods are generally defined as consumer goods that convey opinions, symbols, and lifestyles. They convey or influence cultural activities. The result of these individual or collective creations is cultural objects that are based on copyright and involved in global distribution activities through the industrial chain. Books, publications, crafts, CDs, films, an fashion design provide the public with a wealth of cultural options. By transforming “culture” into “creativity” and attaching it to products, the relationship between conditioned and purpose-oriented objects and people extends outward from the core according to the cultural connotation and the product’s own characteristics, forming a “benefit” type commodity with both use and psychological function [4, 5].

The core concept of cultural creative products lies in culture and creativity, which is the materialized expression of human wisdom and inspiration. First of all, it is closely connected with the extensive application of cultural media and automation technology, showing the characteristics of intelligence. Secondly, cultural and creative industries are at the top of the value chain of technological innovation and development, with high added value. The proportion of technological elements and cultural elements contained in its products is significantly higher than that of general products. It has strong “uniqueness” and shows obvious regional cultural features, which naturally integrates the core symbols of local culture and the commercial value of products, which is the biggest difference between cultural and creative products and general commodities [6, 7].

2.1.2. Design Principles of Cultural and Creative Products

(1) The Freehand Brushwork in Traditional Chinese. In the eyes of the broad masses, Chinese traditional culture pays attention to the shaping of artistic conception and believes that the soul of art means that the ingenious design of f reflects the “charm” of culture and adds traditional cultural elements to the products. For example, for likeness to taste tea and talk about Taoism, the design with three teacups implies “three people walk must have my teacher” and water
teapot expression time such as water implies getting along with friends and that always short hope can retain live and friends in ask. In the design of concrete things, traditional shapes, colors, techniques, and other products can be integrated in new ways [8].

(2) Integration. When designing cultural and creative products, it is necessary to comply with the requirements and guidelines of general product design. The cultural connotation of product design and various elements extracted from it are related to the products to a certain extent, which cannot be reluctantly agreed with. Whenever the form of product design should be based on function service function to meet people’s use needs. For example, the design of “connecting you” USB flash drive combines the unique outline of Windows and doors of Suzhou forest garden with the cultural conception of “winding path connecting you” to convey the strong local characteristics of Suzhou. The shape is simple and unique and very “close to the people” [9].

2.1.3. Application Mode of Cultural and Creative Product Design

(1) Simplified Reproduction Method. Compared with modern graphics, traditional graphics are still too complicated and not simple enough. Therefore, in design, designers need to do subtraction or abstraction on the basis of keeping the original graphic features and meanings. This method requires a high degree of matching between graphics and the new carrier, and it needs to convey the original cultural connotations through this new medium [10].

(2) Visualization. Concrete design refers to the design of transforming intangible thoughts into concrete objective products by means of homophony, metaphor, symbol, and fiction. It requires the retention of the basic characteristics of the objective object, through a unique perspective, to a new art form to summarize decorative products. For example, the tai chi sofa designed by a German designer organically integrates Chinese traditional culture with modern design [11, 12].

(3) Grafting. The design method of connecting disparate things or concepts together through whimsical ideas is called grafting design. Designers need to process and design the information and then translate it into performance elements in the product and then convey it to consumers. For example, in July 2014, the Palace Museum in Taipei launched the “ladies of tang dynasty” series. The designer got inspiration from the palace music chart of the tang dynasty and introduced the “pendant horse bun neck pillow” pillow with reference to the hairstyle of ladies playing music. Ingeniously grafting the unrelated bun with the u-shaped pillow produced an unexpected spark. This fun neck pillow not only gives you a good rest during your trip but also acts as a fun toy. It also shortens the distance between historical relics and people, making consumers feel involved [13, 14].

2.2. Composition and Characteristics of Intelligent Cultural Product Supply Chain. Based on the theory of collaborative innovation, the intelligent cultural product supply chain should be a flat network supply chain that integrates the government, consumers, scientific research and development parties, theoretical research parties, capital suppliers, product producers, suppliers, and third-party logistics and links the parties. This supply chain is mainly based on the Internet, supported by cloud computing, digitalization, mobile Internet, big data, Internet of things, augmented reality, and other artificial intelligence technologies, and finally demonstrated in the form of intelligent collaborative service platform [15, 16]. At the same time, the information resources among the main units are fully shared and achieve supply, investment, research and development, production, circulation, and sales of all links; effective connection, truly achieved when the main body is changed from linear single chain to nonlinear mesh chain, can improve the efficiency and cost savings and fully show the intelligence and informatization of supply chain. Therefore, the characteristics of the supply chain can be summarized as multiagent cooperation, information sharing, and nonlinear collaboration, as shown in Figure 1.

2.2.1. Multiagent Cooperation. Different from the traditional supply chain is the intelligent cultural products supply chain based on the theory of collaborative innovation; the combination of “production and government need” should be paid more attention to push the colleges and universities and scientific research institutes to the front end of the supply chain, under the collaborative power of the government, the excellent cultural resources, and advanced science and technology, provide the cultural enterprises in the supply chain, and help cultural products producers to solve resource requirements, technology applications, and related theoretical problems; for example, avoiding cultural products on the supply side that appears inferiority is invalid. Therefore, this supply chain not only includes the participants in the original product supply chain, but also includes universities, research institutes, governments, financial investment institutions, and third-party collaborative service platforms, involving more detailed and extensive participants [17, 18]. The third-party collaborative service platform here is an online and offline 020 intelligent service platform organization based on cloud computing, digitalization, Internet of things, Internet, and big data technology. It must be closely related to all participants. Universities and research institutes are intellectual institutions providing cultural resources, advanced theories, human resources, and new technologies. The role of the government is to promulgate policies and regulations to regulate enterprise behavior and harmonious enterprise relations and optimize the supply chain as a “spectator.” Capital investors refer to institutions providing funds for the production of cultural products, such as investment banks and financing enterprises [19].
2.2.2. Information Sharing. In this supply chain, information sharing plays a crucial role, which can effectively improve the utilization rate of information resources of the participants, solve the problem of information blockage and communication delay, and promote the cooperation and production of the participants to be more efficient. To a certain extent, inadequate information sharing is also one of the factors that cause the problem on the supply side of the cultural industry. The supply side cannot effectively grasp consumers’ consumption tendency for cultural products, and it is easy to produce cultural products blindly so that the supply is not required frequently. When the information sharing of the supply chain is realized, the collaborative service platform plays the role of a medium, which can automatically collect, integrate, store, analyze, and manage all main body information and distribute information according to the actual needs of each main body, which is a huge service database of big data resources [20, 21]. It makes the communication of the subject in the supply chain more timely and effective, breaks through the single communication mode in the traditional supply chain, and is a collaborative network with strong real-time interaction and high degree of participation, which greatly promotes the mastery of query information on both sides of supply and demand. In addition, the information sharing for all participants in the supply chain to supply the latest theoretical achievements, advanced technical guidance, scientific marketing, and good logistics delivery lets the participation main body fully understand the market dynamic and positive feedback market needs; it can effectively avoid the supply side blind production and sales, to provide an opportunity to achieve real and accurate supply and demand [22, 23].

2.2.3. Nonlinear Synergy. Under the multiagent cooperation and information sharing, all participants in the supply chain can reach the consensus of collaborative innovation, collaborative value-added, collaborative operation, and collaborative complementarity, which greatly improves the value-added capacity of the whole supply chain and generates nonlinear chain synergies, which mainly include economic benefit and social benefit. Economic benefit: the collaborative service platform eliminates the information communication barriers among the subjects and realizes the rapid flow of information resources, which not only enhances the cooperation among the subjects, but also enables the subjects to position the market demand more accurately, thus reducing the cost of each link and finally effectively improving the overall benefit of the supply chain. Social benefits: universities, scientific research institutes, and other knowledge research parties and technology research and development ends can be closely related to the demand side and manufacturers on the collaborative platform, which can reduce the probability of “production, learning and research needs” disconnection and carry out targeted theoretical research and technology research and development. The following is the rapid transfer of theoretical achievements and scientific research technology to the production side through the service platform, promoting the rapid formation and dissemination of scientific research achievements and realizing the accurate focus of cultural products in the actual production; The producer obtains the latest theoretical results, new technologies, funds, policies, and other relevant support services through the collaborative platform, which guarantees the high-quality and feasible supply of cultural products at the source of production. In addition, the close cooperation between logistics enterprises and collaborative platforms can ensure the transportation and circulation of cultural products and realize efficient and convenient delivery [24, 25].

2.3. Development and Challenges of Artificial Intelligence. The concept of artificial intelligence is very wide, so artificial intelligence is also divided into many kinds; according to the strength of artificial intelligence, it can be divided into three categories. Weak artificial intelligence (ai): a weak ai is an artificial intelligence that is good at a single aspect. An ai that can beat the world champion of chess, for example, but can only play chess, does not know how to store data on a hard drive better.

2.3.1. Artificial General Intelligence AGI. Artificial Intelligence at the human level: strong artificial intelligence refers to artificial intelligence that can be compared with human beings in all aspects. Creating strong artificial intelligence is much harder than creating weak artificial intelligence, and humans cannot do it yet. One professor defines intelligence as “a broad range of mental abilities capable of thinking, planning, problem solving, abstract thinking, understanding complex ideas, learning quickly, and learning from experience.” Strong ai should be as adept at these operations as humans [26].

2.3.2. ASI. Oxford philosopher and leading artificial intelligence thinker defines superintelligence as “being much smarter than the smartest human brains in almost every field, including scientific innovation, general knowledge and social skills.” Superartificial intelligence can be a little better
than humans in every aspect or a trillion times better than humans in every aspect.

Human programmers imagine a mechanism, for example, writing a program that can write a news release, compose a song, or communicate with people and then write, try, and modify the algorithm. After numerous failures and trials, intelligent and interesting artificial intelligence programs or robots with physical forms emerge. In this article, the computer programmers write design mechanism, on the grounds of “work” limit algorithm; in the creation process, the programs rely on the programmer control phase (weak artificial intelligence) or the substantive help programmers only provided (strong ai stage) with before joining neural network autonomous learning and spontaneous creation of writing manuscript, paintings, music, and so on. In this article, these achievements are collectively referred to as artificial intelligence achievements [27, 28].

One’s current level of science and technology to the research of artificial intelligence is still in the weak ai stage, although the technology of artificial intelligence has gradually extended to the service life, literature and art, political and military, and other fields. The AlphaGo defeating Lee Sedol has caused quite a stir in these areas of the application of artificial intelligence. Ten years ago, the applications looked much more complex and advanced; however, they are still at the stage of complex weak ai. These ai are just “specialists” in a certain field. The research premise and background of this article is that the rapid development of artificial intelligence is an inevitable trend; after achieving technological singularity, with geometric ratio growth speed, the development of artificial intelligence will be even more difficult to achieve and controlling the speed of the human forecasting will be difficult, so in the future, the achievement of artificial intelligence will emerge in a large number of in the fields even in real life, gradually replacing human social work. The rapid pace of scientific and technological development and the depth of research in the field of artificial intelligence are certainly encouraging. However, from the perspective of law, a social discipline, artificial intelligence brings convenience and efficiency to human beings and risks and problems. The emergence of new technology will not only bring about the change of productivity and production mode, but also affect the social relations among different social subjects at a deeper level. The phenomenon of robots killing people and driverless cars causing accidents is the reality as there are still many problems in developing and applying artificial intelligence. However, it also reflects the embarrassing situation that cannot be relied on [29, 30].

3. Experiments

3.1. Experimental Dataset. The experiment selected area has lakes and mountains, hot springs township, and scenic spots and historical sites, various folk customs, beautiful natural scenery, and profound cultural deposits, with obvious cultural diversity. A single way of traveling can no longer meet the needs of tourists and bring low social and economic benefits. As an important link in the tourism industry chain, cultural and creative industry needs cultural interpretation to be charming. Today, more and more consumers pay more attention to the uniqueness and cultural connotation of travel products. However, from the perspective of cultural and creative products in the market, it is more about discussing the theoretical model, which lacks specific design practice and creative research. It is especially important to dig deeply into regional cultural value and design cultural and creative products with regional culture.

3.1.1. Element Extraction and Design. Extracting and reconstructing elements are a common method in design. The local landscape Lingxiu with a long history of rich cultural connotations provides many resources for the design of local cultural products. These resources are not only the review of the tradition but also the inheritance of the essence of excellent culture. The creative materials are captured from the culture; the traditional art of the region is reconstructed according to the design content and modern constitution consciousness; tradition is reinterpreted with modern language and aesthetic appeal, for better realization of the inheritance and development of the outstanding cultural traditions. The specific data selection process is as follows:

(1) Font Extraction of Cultural Symbols. Plan in order to join the “water as the soul” of the regional cultural characteristics. For the font, Small Zhuan is chosen; this setting is also more in line with Chaohu Lake’s “hot spring township” tourism positioning. According to the geographical characteristics of “three sides of green mountains and one side of the lake,” the “nest” font of the seal body was deformed to extract the cultural symbols of the region. The selection of colors refers to the elegant lacquerware red and black main color, combined with the seal form to show the local cultural history of heavy sense.

(2) Extraction of Graphic Patterns and Folk Culture. The principles of rhythm and prosody are followed in the design of graphic patterns, which coexist in a picture and reflect the sense of pattern order. In terms of content, we take the traditional graphics, cultural allusions, myths and legends, and geographical features of the region as the starting point and foothold of creation to extract and summarize.

(3) Product Design. After designing the graphics, the next step is to consider the application of graphics in creative products. How to tap the essence of “regional culture” and make a series of derivatives based on it? Now there are also a lot of tourism products in the regional market, but the form is older, is poor in practicality, does not attract consumers. The design of the graph can be done as a whole derivative also can be transported. Here, we listed the split application, listed some of the derivatives designs, and made some adjustments based on the characteristics of the derivatives themselves, including calendar, T-shirt, mobile phone case, canvas bag, and stationery.
3.1.2. Material and Process Selection of Cultural and Creative Products. Cultural and creative products in the selection of materials and crafts usually give priority to the cost of production, while the use of regional representative handicrafts is an important factor to consider cultural and creative products. The selection of raw materials reflects the distinctive regional culture. The application of both traditional handicraft and modern new materials endows the product with a sense of history and times. If plastic or silica gel is selected as the plastic material for a mobile phone case, other paper or cloth products can be adjusted according to consumers’ preference.

3.2. Experimental Design. Specific design ideas are shown in Figure 2:

3.3. Experimental Questionnaire Survey. This questionnaire mainly adopts two ways of issuing questionnaires on-site and online in Chaohu area. A total of 120 questionnaires were issued, among which 16 subjects did not live in the experimental area and did not meet the criteria of the survey. The actual number of valid questionnaires was 104. The sample effective rate was 8667%. The purpose of the questionnaire is to collect people’s understanding of the local culture. According to the investigation and analysis, the subjects who have lived in the region for more than 20 years and are over 40 years old are familiar with the regional culture. Moreover, 28.3 percent said they did not know anything about the traditional culture of the region, mainly in the age group of 18 to 30. More than 80 percent of Mankiewicz people want to know more about the traditional culture of the region and believe it is necessary to inherit and protect the local culture. From the survey, it can be concluded that the young man understanding in the geographical area of the traditional culture is not much, due to the fast-paced way of life and people’s attention is focused on the new things and the traditional, ancient culture is falling gradually out of favor. Therefore, the regional traditional culture integrated into modern products results in involving traditional culture in peoples’ daily life, thus leading to better inheritance and development of traditional culture, as shown in Table 1.

4. Discussion

4.1. Design and Analysis of Cultural and Creative Products in the Experimental Area

4.1.1. Market Prospect Analysis. According to the basic framework of regional lake cultural tourism planning, the regional lake cultural tourism will form a geographic spatial pattern of “one lake, two cities, 12 towns, 18 scenes, and 24 mouths.” Opening up the Chaohu lake tourism area is conducive to the adjustment of our province’s tourism regional pattern, enhancing the integration of resources so as to create a new tourism economic growth point. In terms of both natural scenery and cultural history, the development of cultural and creative products in the region has great potential and a good market prospect, which is the creative source of developing cultural and creative products. However, the cultural and creative products in the region have a vast market, but the design and development are not perfect. In order to further improve the form of tourism industry in this region, it is urgent to study the design of cultural and creative products. The use of artificial intelligence technology to select and extract typical graphic language in regional culture and skillfully integrate it into the design of cultural and creative products can not only create products with regional characteristics and modern sense, but also give new vitality to the traditional culture of the region and open up a way for the development of regional cultural and creative industries. Figure 3 shows the scale and growth rate of the cultural and creative industry in the experimental area.

4.1.2. Design Positioning. Some emphasis should be laid on the extraction of the graphic language of the regional traditional culture. Reasonable application, artificial intelligence technology makes “ancient” and “now” a clever combination and extracts representative patterns or cultural forms for design. Among them, “ancient” refers to retaining the original taste of traditional graphic culture; “present” refers to creating a modern form to realize the functional value and market value of the product. Regional culture can be protected through cultural and creative products, and traditional culture can flourish through the tourism industry. The aesthetic connotation of the pattern color in the experimental area carries the cultural connotation of Chinese folk custom and Jiang Shuai region, endowed with strong subjective aesthetic feelings of the national cultural connotation. In order to better apply the traditional nesting pattern to the design, the author extracts and analyzes the color value through artificial intelligence and chart form, and the summary is shown in Figure 4:

4.2. Analysis of Questionnaire Results. As shown in Figure 5, 75% of the test subjects have purchased or intend to purchase cultural and creative products with regional characteristics. However, the cultural and creative products in Chaohu market still have problems such as old-fashioned design, lack of creativity, and obscure regional characteristics. Consumers often prefer simple and modern cultural creative products with regional traditional cultural characteristics. As can be seen from the above chart, the creativity of products is the easiest factor to attract consumers, followed by cultural connotation, use, appearance, price, taste, commemorative significance, and functions. Therefore, the design and development of regional cultural creative products need to organically combine creativity, practicality, and cultural connotation to get more consumers’ recognition and love.

4.3. Innovation of Product Design Methods Using Artificial Intelligence. Artificial intelligence technology can replace and assist human designers in product design. At present, artificial intelligence has not completely changed the process
of product design but has innovated the method of product design. Specifically, there are the following aspects, as shown in Figure 6.

In the Research Phase of Product Design, through interaction with designers, artificial intelligence can not only obtain the research results of previous similar designs but also analyze and judge the advantages and disadvantages of such designs so that designers can choose between them. In the design vision stage, artificial intelligence, on the one hand, can select for designers previous design innovation and personalized demands and, on the other hand, can make the design conceive visualizations through building and processing and design and analysis of the cognitive model for simulating the potential design idea. Through VR, 3D printing technology displays design idea of vision and technical feasibility, assists designers in a number of design ideas, provides and analyzes the solution of the vision as much as possible to eliminate interference, and makes a design more targeted, advanced, original, and feasible. In the design tuning phase, using the test function of artificial intelligence software and mature algorithm module, the design prototype can be tested and tuned in the artificial intelligence environment. Current debugging includes vision, artificial intelligence language, language, communication, knowledge, search, several big modules, design of product inspection, analysis of model checking, voice interaction, and emotion. Under the action of the designer, artificial intelligence will be tuning results, advantages and disadvantages, and characteristics directly, which will be clear at a glance. In the validation phase, product design thinking and requirements are constantly iterative and updated, and the solution in the design may become the starting point of a design update. Evaluation and verification of the product design results after tuning can make the

Table 1: Questionnaire.
What attracts you when buying cultural and creative products?
Modelling
Practical
Creative
Function
Color
The cultural connotation
Memorable
Price
Contracted fashion
Interesting
What elements do you think are needed for a good cultural and creative product?
Unique in form
Traditional style
Highlight traditional culture
Figure 3: Development of cultural and creative industry in the experimental area of artificial intelligence industry.

Figure 4: Color summary value table.

Figure 5: Questionnaire results.
feedback of product design more accurate and more conducive to the improvement of designers. In the traditional design process, this step is tedious and time-consuming. In the artificial intelligence environment, it can screen out the defects of previous verification, not only from the macro perspective, but also from the micro perspective, as it can be tailored accordingly. For example, A/B test is carried out on the verification algorithm and compared with the design in the database to obtain the recognition degree and make the product design success rate greater.

5. Conclusions

As a typical interdisciplinary subject, the basic connotation of artificial intelligence is to simulate a variety of human behaviors, thus creating intelligent product development and other operating modes. Under this premise, artificial intelligence closely connects intelligent means and artificial product development, thus creating more effective product development ideas and product design patterns. At present, artificial intelligence means are gradually penetrating into the daily production of various fields and bringing prominent influence to the daily life of residents. Therefore, it can be known that artificial intelligence technology should be able to integrate into the whole process of designing various products. In general, cultural and creative product design not only pursues its shape and external beauty but needs designers to bring its unique regional cultural characteristics and cultural connotation into consumers’ perception through design. Only in this way can consumers be moved and the sales of cultural and creative products be driven. In the course of packaging design, it is necessary to combine the imparting of theoretical knowledge with the cultivation of practical ability.

This article focuses on the research and discussion on how to implant the cultural image of the experimental area into the creative cultural products, so as to make the regional cultural connotation spread and develop through the flowing nature of commodities. The sales of commodities promote the improvement of economic benefits, and also, the interaction between commodities and tourists can help tourists to further understand the traditional culture of the region. Can really use these cultural resources so that the traditional culture is no longer boring, difficult to understand, not just the so-called “cultural representation,” but a deeper cultural inheritance?

Through the above analysis, we can know that artificial intelligence means reflected in the product development advantages cannot be ignored. Up to now, the technical personnel is trying to design and develop various new products by means of artificial intelligence, and the effectiveness of corresponding product development is particularly outstanding. Therefore, in future practice, the diversified product design still needs to use artificial intelligence means to adapt to local conditions so as to ensure that the corresponding product development ideas can be flexibly selected in close combination with the attributes and characteristics of the product itself.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] L. Lazzaretti, F. Capone, and I. E. Seçilmiş, “In search of a Mediterranean creativity. Cultural and creative industries in Italy, Spain and Turkey,” European Planning Studies, vol. 24, no. 3, pp. 568–588, 2016.
[2] K. Gundolf, A. Jaouen, and J. Gast, “Motives for strategic alliances in cultural and creative industries,” Creativity & Innovation Management, vol. 12, no. 3, pp. 1–13, 2017.
[3] K. Borseková, D. Cole, K. Petríková, and A. Vaňová, “Nostalgic sentiment and cultural and creative industries in regional development: a Slovak case study,” Quaestiones Geographicae, vol. 34, no. 2, pp. 53–63, 2015.
[4] C. Hasio, “Virtual inspirations: the pedagogical and cultural significance of creative posters in the art classroom,” Journal of College Teaching & Learning (TLC), vol. 12, no. 1, pp. 39–44, 2015.
[5] S.-C. Chiou and Y.-C. Wang, “The example application of genetic algorithm for the framework of cultural and creative brand design in Tamsui Historical Museum,” Soft Computing, vol. 22, no. 3, pp. 1–19, 2017.
[6] W. Lu, Q. L. Kweh, and D. He, “Performance analysis of the cultural and creative industry: a network-based approach,” Naval Research Logistics, vol. 64, no. 2, p. 457, 2018.
[7] N. Naga and R. McGill, “Negotiating cultural difference in creative writing workshops,” Pedagogy, vol. 18, no. 1, pp. 69–86, 2018.
[8] S.-J. Luo and Y.-N. Dong, “Classifying cultural artifacts knowledge for creative design,” Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science Edition), vol. 51, no. 1, pp. 113–123, 2017.
[9] S.-J. Luo, “France-asia: cultural identity and creative exchange,” Lesprit Créateur, vol. 56, no. 3, pp. 1–13, 2016.
[10] A. Gilmore and R. Comunian, “Beyond the campus: higher education, cultural policy and the creative economy,” International Journal of Cultural Policy, vol. 22, no. 1, pp. 1–9, 2015.
[11] W.-S. Tang, “Creative industries, public engagement and urban redevelopment in Hong Kong: cultural regeneration as another dose of isotoipa?” Cities, vol. 56, no. 8, pp. 156–164, 2015.

[12] W. Shen and Y. Yuan, “Sociocultural basis underlying creative thinking,” Advances in Psychological Science, vol. 23, no. 7, p. 1169, 2015.

[13] M. Rushworth, “Sigrid hemels and kazuko goto (eds.): tax incentives for the creative industries,” Journal of Cultural Economics, vol. 41, no. 2, pp. 122–134, 2015.

[14] J. George, “Examining the cultural value of festivals,” International Journal of Event and Festival Management, vol. 6, no. 2, pp. 122–134, 2015.

[15] H. Forbes and D. Schaefer, “Social product development: the democratization of design, manufacture and innovation,” Procedia Cirp, vol. 60, no. 5, pp. 404–409, 2017.

[16] C. Steimer, J. C. Aurich, and Aurich, “Analysis of information interdependencies between product development and manufacturing system planning in early design phases,” Procedia Cirp, vol. 50, no. 10, pp. 460–465, 2016.

[17] W. L. Chen and F. L. Chao, “Toward eco product development with qualitative and CAE design process - case study of flame guiding module,” Journal of Physics Conference, vol. 989, no. 1, 2018.

[18] G. F. Özkan-Seely, C. Gaimon, and S. Kavadias, “Dynamic knowledge transfer and knowledge development for product and process design teams,” Manufacturing & Service Operations Management, vol. 17, no. 2, pp. 177–190, 2015.

[19] I. Dmitry, “Conflicts in product development and machining time estimation at early design stages,” Lecture Notes in Control & Information Sciences, vol. 22, no. 13, pp. 103–116, 2015.

[20] I. Dmitry, “A review of leader-follower joint optimization problems and mathematical models for product design and development,” International Journal of Advanced Manufacturing Technology, vol. 22, 2015.

[21] E. R. Gamzu, S. Perez-Iloret, and N. M. Farber, “Design and development of a novel supportive care product for the treatment of sialorrhea in Parkinson’s diseases,” Current Topics in Medicinal Chemistry, vol. 15, no. 10, p. 166, 2015.

[22] A. Querbes and K. Frenken, “Grounding the "mirroring hypothesis": towards a general theory of organization design in New Product Development,” Journal of Engineering and Technology Management, vol. 47, no. 6, pp. 81–95, 2018.

[23] S. Goguelin, J. Colaco, V. Dhokia, and D. Schaefer, “Smart manufacturability analysis for digital product development,” Procedia Cirp, vol. 60, no. 9, pp. 56–61, 2017.

[24] B. Ahmad, “A design-thinking perspective on capability development: the case of new product development for a service business model,” International Journal of Operations & Production Management, vol. 38, no. 4, pp. 1041–1060, 2017.

[25] N. Efkoledis, C. Garcia-Hernadez, P. Kyrtsis, and J. L. Huertas-Talon, “Design for green usability: a new user centered methodology for product development,” Applied Mechanics and Materials, vol. 809-810, no. 2, pp. 1372–1377, 2015.

[26] R. J. Baumgartner and D. Hofer, “Improving sustainability performance in early phases of product design: a checklist for sustainable product development tested in the automotive industry,” Journal of Cleaner Production, vol. 140, no. 2, pp. 1602–1617, 2016.

[27] K. O. M. O. T. O. Hitoshi, K. O. N. D. O. H. Shinsuke, and M. A. S. U. I. Keijiro, “An application of graph traversal algorithm to design task planning in model-based product development,” Journal of Advanced Mechanical Design Systems & Manufacturing, vol. 10, no. 7, 2016.

[28] J.-G. Persson, “Current trends in product development,” Procedia Cirp, vol. 50, no. 1, pp. 378–383, 2016.

[29] J.-Yu Lai and J. Wang, “Exploring the impacts of perceived e-collaboration service convenience on new product development in Taiwanese IC design companies,” Information Technology & Management, vol. 19, no. 14, pp. 1–14, 2017.

[30] Y. P. Liu, J. J. Ding, and X. Y. Long, “Control and optimization of development risk of the high-tech manufacturing and measuring product,” Applied Mechanics & Materials, vol. 709, no. 5, pp. 503–508, 2015.