Evaluating the size at sexual maturity for 20 fish species (Actinopterygii) in wetland (Gajner Beel) ecosystem, north-western Bangladesh through multi-model approach: A key for sound management

Md. Rabiul HASAN1, Md. Yeamin HOSSAIN1,3, Zannantul MAWA1, Sumaya TANJIN1, Md. Ashekur RAHMAN1, Uttam Kumar SARKAR2, Jun OHTOMI3

1 Department of Fisheries, Faculty of Agriculture, University of Rajshahi, Rajshahi, Bangladesh
2 ICAR-Central Inland Fisheries Research Institute, Barrackpore, West Bengal, India
3 Faculty of Fisheries, Kagoshima University, Shimoarata, Kagoshima 890-0056, Japan

Corresponding author: Md. Yeamin HOSSAIN (hossainyeamin@gmail.com)

Abstract

Effective fisheries management depend on having an exact assessment of biological parameters, including growth parameters, reproduction, size at sexual maturity (\(L_m\)), and stock assessment. The purpose of this research was to estimate the size at sexual maturity (\(L_m\)) for 20 fish species belongs to 14 families from a wetland (Gajner Beel) ecosystem in the north-western (NW) Bangladesh through multi-models such as length (\(L_{\text{max}}\)) based empirical model, gonadosomatic index (GSI)-based model, and logistic model using commercial catches from January to December 2018. Also, we assessed the \(L_m\) in other water-bodies worldwide. Specimens’ total length (TL) was noted up to 0.1 cm using measuring board body weight (BW) and gonad weight (GW) weighed by digital electronic balance with 0.01 g accuracy. To assess the \(L_m\), maximum body length (\(L_{\text{max}}\)) based empirical model; the relation between TL (total length in cm) vs. GSI (gonadosomatic index in %); and a logistic model were considered. The minimum \(L_m\) was 4.64, 3.90, and 4.15 cm for Chanda nama Hamilton, 1822 and the maximum was 25.33, 24.50, and 24.70 cm for Channa striata (Bloch, 1793) through \(L_{\text{max}}\), GSI, and logistic-based models, respectively. From these three models, the minimum mean \(L_m\) was 4.23 cm for \(C. nama\) and the maximum was 24.84 cm for \(C. striata\). The \(L_m\) with 50.0% species was in 8.80 cm TL. We also calculated the \(L_m\) from different bodies of water based on \(L_{\text{max}}\). This study was generated data of 17 new \(L_m\) among 20 species, which are globally absent. Therefore, the study will help develop sustainable management strategies, conservation through the implementation of mesh size based on the size at sexual maturity (\(L_m\)).

Keywords

Bangladesh, logistic models, fish species, size at first sexual maturity, Gajner Beel

Introduction

In Bangladesh, fishes are the most affluent organisms, which secure livelihood, contribute food, generate employment, and are used to develop the nation’s economy (Hamilton 1971; Godfray et al. 2010; Costello et al. 2012; FAO 2012). The fisheries sector plays a key role in the national economy, contributing 3.50% to the GDP (Gross Domestic Product) of the country and 25.71% in agricultural GDP (DoF 2019). A large variety of aquatic animals...
is found in the inland, estuarine, and marine waters of Bangladesh (Rahman 1989).

Bangladesh is fortunate to have vast aquatic resources and rich fish genetic diversity. It has a lot of inland water bodies that host 267 freshwater fish species. Biodiversity of fishes is very essential for nutrition and livelihoods for the rural people in Bangladesh (Thilsted 2013). Fishes, which spend their life in freshwater, (rivers and lakes), where the salinity is below 1.05‰ are considered freshwater fishes. Fishes require a range of physiological modification to live in the freshwater environment (Rohalin et al. 2019).

A land, which is inundated by water, annually or seasonally, permanently or temporarily that is called a wetland (Keddy 2010). Water purification, processing of carbon and other nutrients, maintenance of shorelines, water storage, and assistance of animals and plants are the important functions of a wetland (Butler 2010). Marsh, swamp, pen, and bog are the main types of wetlands (Keddy 2010). The wetlands can be freshwater, brackish, or saltwater (Ramsar Conservation 1971). The Pantanal in South America, the Amazon River basin, the West Siberian Plain (Fraser and Keddy 2005), and the Sundarbans in the Ganges–Brahmaputra delta (Giri et al. 2007) are the largest wetlands on the Earth. Rivers and streams, Haors, Baors, Beels, lakes and marshes, reservoirs, ponds, cultivated fields flooded by water, and estuarine systems are considered wetlands in Bangladesh (See Table 1). The freshwater wetlands are Haors, Baors, Beels, and Jheels. The man-made wetlands are dighis, lakes, ponds, and borrow pits (Banglapedia 2004).

Gajner Beel is situated at Sujanagar, Pabna in north-western (NW) Bangladesh. This Beel is used as an imperative feeding and spawning ground by many freshwater fish species. Near about 0.5 million people of surrounding villages of this Beel are directly or indirectly reliant on this wetland for their livelihood (Mazid et al. 2005; Hasan et al. 2020).

Effective fisheries management depends on having an exact assessment of biological parameters, including growth parameters, reproduction, size at sexual maturity (L_m), and stock assessment (Tracey et al. 2007). The L_m in fish species is a fundamental requirement to find out the reasons on behalf of modifications of the length of maturity (Templeman 1987). Subsequently, it is habitually castoff as a sign of least-acceptable capture dimensions (Lucifora et al. 1999).

Scanning of the literature shows non-availability of species-specific data on size at sexual maturity (L_m) of these 20 species except Channa striata (Bloch, 1793) (see Herre 1924; Makmur et al. 2003), Gudusia chapra (Hamilton, 1822) (see Hossain et al. 2010), and Puntius sophore (Hamilton, 1822) (see Hossain et al. 2012a) from the Gajner Beel, Bangladesh. The objective of our research is to estimate the L_m for 20 species from the Gajner Beel in Bangladesh that will be helpful for the management strategies of these species in Gajner Beel in Bangladesh and adjacent aquatic ecosystems.

Table 1. Types and area of wetlands in Bangladesh.

Types	Wetland	Area [km²]
Open waters	Rivers	7497
	Estuaries and mangrove swamps	6102
	Beels and haors	1142
	Inundable floodplains	54 866
	Kaptai Lake	688
Closed water	Ponds	1469
	Baors (Oxbow Lakes)	55
	Brackish-water farms	1080
	Total	72 899

Figure 1. Sampling sites in a wetland ecosystem (Gajner Beel) (indicated by red circle), northwestern Bangladesh.
Materials and methods

The presently reported study was conducted in Gajner Beel (23°55′N, 89°33′E), which is located at Sujanagar, Pabna, NW Bangladesh (Fig. 1). Sampling was done from January to December 2018. Fishes were caught by several types of net (gill nets, long seine) and then preserved in 10% formalin for the further process. Species identification was done by observation of morphometric characters and reviews the various pieces of literature. Each individual was measured by measuring board (0.1 cm) and weighed by digital weight balance (0.01 g). After dissection the fishes, gonads have been removed and weighed. Sexing was determined under the microscopic view, and then only female specimens were used for this analysis. The gonadosomatic index was estimated based on Nikolsky (1963)

\[
\text{GSI} (\%) = \frac{\text{GW}}{\text{BW}} \times 100
\]

where, GW referred to the gonad weight (g) and BW were body weight (g). The length of 50% maturity (50% \(L_m\)) of the 20 fish species was estimated using three models, which were shown in Table 2.

Model name	Equations	Reference
Empirical model	\(\log (L_m) = -0.1189 + 0.9157 \times \log (L_{\text{max}})\)	Binohlan and Froese 2009
GSI based model	\(L_m = \text{TL vs. GSI}\)	Hossain et al. 2010
Logistic model	\(\text{PMI} = \frac{100}{1 + \exp\left(-\frac{f(TL_m - TL_{50})}{\text{TL}_{50}}\right)}\)	King 2007

Analysis of \(L_m\), a logistic curve following King (2007) was applied for the data by plotting the percentage of mature individuals (PMI) against TL class. TL = total length (cm), GSI = Gonadosomatic index (%) and \(L_m\) = Size at sexual maturity.

Results

Altogether 3040 specimens of 20 fish species were considered in the presently reported study and a list of fish species is given in Table 3. The minimum length was 2.40 cm in TL for \(C.\) nama and the maximum length was 46.00 cm for \(C.\) striata. The estimated minimum \(L_m\) was 4.64, 3.90, and 4.15 cm for \(C.\) nama and the maximum was 25.33, 24.50, and 24.70 cm for \(C.\) striata through \(L_{\text{max}},\) TL vs. GSI, and logistic-based models, respectively, and the mean value was 10.04 cm for the 20 species of Gajner Beel, Bangladesh. The maximum length, minimum length, and \(L_m\) with 95% CL are given in Table 4. We also calculated the \(L_m\) from the different water bodies (Table 5) based on \(L_{\text{max}}\) which are collected from the previous works on these species by previous workers. As an example of TL vs. GSI and logistic models and figures are presented in Fig. 2. \(L_m\) shows that 50% of mature fishes are below 8.80 cm, so the selection of this net-mesh size would protect half the adults in the Gajner Beel ecosystem. On the other hand, 80% of mature fishes are below 12.10 cm, so such a larger, more-conservative mesh size might play a vital role for sustainable fish production in wetland ecosystems (Fig. 3).

Table 3. List of total 20 fish species in a wetland ecosystem (Gajner Beel), NW Bangladesh.

Sl. No	Family	Scientific name	Common name
01	Ambassidae	Chanda nama	Chanda
02	Anabantidae	Anabas testudineus	Koi
03	Bagridae	Mystus cavasius	Gudia
04	Mystus tengara	Tengra	
05	Belonidae	Xenentodon cancela	Kakila
06	Channidae	Channa orientalis	Cheng
07	Channa punctata	Taki	
08	Channa striata	Shol	
09	Clupeidae	Gudasia chapa	Chapila
10	Cobitidae	Lepidocephalichthys guntia	Guntum
11	Cyprinidae	Amblypharyngodon mola	Moa
12	Puntius sophore	Jat puni	
13	Salmontomina bacala	Chela	
14	Gobiidae	Glossogobius giuris	Bele
15	Heteropneustidae	Heteropneustes fossilis	Shingi
16	Mastacembelidae	Macragnostus aculeatus	Shal baim
17	Macragnostus panchus	Guchi	
18	Nandidae	Nandus nandus	Bheda
19	Osphronemidae	Trichogaster fasciata	Kholisa
20	Siluridae	Ompok pabo	Pabda

Figure 2. An example figure of size at sexual maturity which produced by TL vs. GSI (A) and logistic model (B) for the 20 species in wetland ecosystem (Gajner Beel) northwestern Bangladesh.

Figure 3. Relation between the maximum total length attained by a species and the number of species attaining that length in a wetland ecosystem (Gajner Beel) northwestern Bangladesh.
Table 4. Size at first sexual maturity (L_{m}) of 20 fish species in a wetland ecosystem (Gajner Beel), NW Bangladesh.

Scientific name	n	Minimum length [cm]	Maximum length [cm]	Maximum length based on (95% CL)	Size at sexual maturity (L_{m})
Channa nama	196	2.40	7.20	4.64 (3.81–5.68)	3.90
Mystus cavatus	124	5.30	16.90	10.13 (8.05–12.75)	9.80
Mystus tengara	139	4.80	12.60	7.74 (6.23–9.65)	7.00
Xenentodon cancila	118	8.50	24.00	13.96 (10.95–17.77)	12.98
Channa orientalis	152	8.10	19.00	11.27 (8.92–14.24)	12.48
Channa punctata	178	5.30	19.40	11.49 (9.09–14.55)	12.20
Channa striata	128	9.50	46.00	25.33 (19.35–32.89)	24.50
Gadusia chapra	126	4.40	14.60	7.18 (5.79–8.93)	6.90
Lepidocephalichthys guenthe	117	5.00	10.30	6.44 (5.22–7.98)	6.50
Amblypharyngodon mola	193	3.90	7.80	4.99 (4.09–6.13)	4.90
Puntius sophore	191	4.20	11.00	6.83 (5.53–8.49)	7.00
Salmus situna	114	4.20	10.00	6.26 (5.09–7.76)	6.50
Glossogobius giuris	189	3.90	14.70	8.91 (7.13–11.17)	8.10
Heteropneustes fossilis	180	6.30	24.10	14.02 (10.99–17.84)	12.20
Macropodus maculatus	115	8.70	27.00	15.55 (12.14–19.86)	16.18
Macropodus maculatus	190	6.90	15.70	9.47 (7.55–11.89)	9.80
Nandus nandes	168	6.50	17.20	10.29 (8.18–12.96)	10.40
Trichogaster fasciata	170	3.30	9.30	5.86 (4.77–7.24)	6.00
Ompok pabu	122	4.80	17.80	10.62 (8.43–13.39)	9.85

Table 5. Calculate the size at sexual maturity based on maximum length from the different water bodies in world wide.

Species name	Sex	Habitat	L_{m} [cm]	L_{m} (95% CL)
Channa nama	C	Brahmaputra River tributary, Bangladesh	6.40	4.16 (3.44–5.08)
	C	Deepor beel, Assam, India	7.00	4.52 (3.72–5.33)
	C	Hirakud Reservoir, India	10.10	6.32 (5.13–7.83)
	C	Brahmaputra River, Bangladesh	7.40	4.75 (3.91–5.83)
	C	Ganges River, Rajshahi, Bangladesh	7.20	4.64 (3.81–5.68)
	C	India	11.00	6.83 (5.53–8.49)
Mystus cavatus	C	Chi River, Thailand	16.50	9.91 (7.89–12.46)
	C	Pampanga River, Candaba, Philippines	11.70 (SL)	7.23 (5.84–9.00)
	C	Agusan Marsh, Philippines	17.00	10.18 (8.09–12.82)
	C	Terulia River, Bangladesh	16.10	9.69 (7.72–12.18)
	C	India	25.00	14.49 (11.35–18.47)
Mystus tengara	C	Brahmaputra River, Bangladesh	11.20	6.95 (5.62–8.64)
	C	Ganges River, Bangladesh	11.60	7.18 (5.79–8.93)
	C	India	18.00	10.73 (8.51–13.53)
Xenentodon cancila	C	Atri River, Bangladesh	18.10	10.78 (8.55–13.60)
	C	Hirakud reservoir, India	18.60	11.06 (8.76–13.96)
	C	Chi River, Thailand	23.00	13.43 (10.55–17.07)
	C	India	40.00	22.29 (17.12–28.81)
Channa orientalis	C	Basantar River, India	19.60	11.60 (9.17–14.67)
	C	Gajner beel floodplain, Pabna, Bangladesh	18.40	10.95 (8.68–13.82)
	C	India	33.00	18.69 (14.47–24.02)
Channa punctata	F	Siruvani River, Tamil Nadu, India	24.40	14.18 (11.11–18.05)
	M	Vellar River, Tamil Nadu, India	25.00	14.49 (11.35–18.47)
	M	Valam River, Tamil Nadu, India	24.50	14.23 (11.15–18.12)
	M	Cauvery River, Tamil Nadu, India	27.90	16.63 (12.49–20.94)
	M	Cauvery River, Tamil Nadu, India	25.90	14.97 (11.70–19.10)
	M	Tamirabarani River, Tamil Nadu, India	27.40	15.76 (12.30–20.14)
	M	India	26.80	15.45 (12.06–19.72)
	M	Ganges River, Bangladesh	19.20	11.38 (9.01–14.38)
	M	Mathabhanga River, Bangladesh	18.90	11.22 (8.88–14.17)
	M	Chamarajendra River, Karnataka	31.00	17.65 (13.70–22.64)
Channa striata	F	North Kerian rice agroecosystem, Malaysia	54.00	29.34 (22.27–38.28)
	M	Vellar River, Tamil Nadu, India	45.20	24.93 (19.06–32.35)
	M	Agusan Marsh, Philippines	61.0	32.80 (24.78–42.96)
	M	Chi River, Thailand	51.00	277.84 (21.18–36.26)
	M	Cappar River, Candaba, Philippines	41.40 (SL)	23.0 (17.65–29.77)

Table 5 continues on next page.
Species name	Sex	Habitat	L_{sex} [cm]	$L_{95\% \text{ CL}}$
Channa striata	C	Pearl River, China	39.30	21.93 (16.86-28.34)
	C	100.00	51.38 (28.20-68.60)	
Gudusia chapra	F	Lake, Mymensingh, Bangladesh	13.70 (SL)	8.56 (6.70-10.45)
	M	12.60 (SL)	7.74 (6.23-9.65)	
	C	Lower Brahmaputra, India	13.80	8.41 (6.74-10.52)
	C	Betwa River, India	15.00	9.08 (7.25-11.39)
	C	Hirukud Reservoir, India	11.60	7.18 (5.79-8.93)
	C	Ganges Lower region, Bangladesh	13.40	8.19 (6.87-10.23)
	C	20.00	11.82 (9.33-14.95)	
Lepidocephalichthys guenthe	C	Atrai River, Bangladesh	8.70	5.51 (4.50-6.80)
	C	Ganges Lower region, Bangladesh	9.60 (SL)	6.03 (4.91-7.46)
	C	15.00	9.08 (7.25-11.39)	
Amblypharyngodon mola	F	Wetlands of Dishoi and Neamatighat, Assam, India	9.00	5.69 (4.64-7.02)
	M	6.60	4.28 (3.53-5.23)	
	C	Hirukud Reservoir, India	7.20	4.64 (3.81-5.68)
	F	Payra River, Bangladesh	5.80 (SL)	3.80 (3.16-4.63)
	M	5.40 (SL)	3.56 (2.97-4.33)	
	C	Atrai River, Bangladesh	6.20	4.04 (3.35-4.93)
	C	Ganges River, Bangladesh	8.10	5.16 (4.23-6.35)
	M	7.60	4.73 (4.00-5.98)	
	C	Ganges lower region, Bangladesh	5.9 (SL)	3.86 (3.20-4.71)
	C	Mathabhanga River, Bangladesh	7.00	4.52 (3.72-5.53)
	U	South 24 Parganas, India	8.70	5.51 (4.50-6.80)
	C	India	20.00	11.82 (9.33-14.95)
Puntius sophore	F	Ganga basin tributaries, India	18.50	11.00 (8.72-13.89)
	M	6.60	4.28 (3.53-5.23)	
	C	Mathabhanga River, Bangladesh	10.20	6.38 (5.18-7.90)
	C	Hirukud Reservoir, India	10.80	6.72 (5.44-8.34)
	C	Brahmaputra River basin, India	7.40 (SL)	4.75 (3.91-5.83)
	C	20.00	11.82 (9.33-14.95)	
Salmostoma baccala	C	Atrai River, Bangladesh	10.50	6.55 (5.31-8.12)
	C	Hinkud Reservoir, India	14.70	8.91 (7.13-11.17)
	C	18.00	10.73 (8.51-13.53)	
Glossogobius giuris	C	Brahmaputra River, Bangladesh	9.70	6.09 (4.95-7.54)
	C	Hirukud Reservoir, India	22.50	13.16 (10.35-16.71)
	C	Hongshui River, China	17.50	10.46 (8.30-13.18)
	C	Agusun Marsh, Philippines	19.50	11.54 (9.13-14.60)
	C	Ganges lower region, Bangladesh	23.60	13.75 (14.79-17.49)
	F	22.80	13.32 (10.47-16.92)	
	M	23.60	13.75 (14.79-17.49)	
	C	17.90 (SL)	10.67 (8.47-13.46)	
	C	Estuaries, South Africa	11.90 (SL)	7.34 (5.92-9.15)
	C	50.00 (SL)	27.34 (20.82-35.59)	
Heteropneustes fossilis	C	Atrai River, Bangladesh	13.70	8.36 (6.70-10.45)
	C	Gajner beel floodplain, Pabna, Bangladesh	16.50	9.91 (7.89-12.46)
	C	Ganga River, India	31.00	17.65 (13.70-22.64)
	C	Gajner beel floodplain, Pabna, Bangladesh	26.80	15.45 (12.06-19.72)
	C	24.10	14.02 (10.99-17.84)	
Macrogastinus aculeatus	C	Ganges River, NW Bangladesh	23.40	13.64 (10.71-17.35)
	C	Thailand	38.00	21.27 (16.37-27.45)
Macrogastinus panculus	C	Atrai River, Bangladesh	12.60	7.74 (6.23-9.65)
	C	Mathabhanga River, Bangladesh	16.20	9.74 (7.76-12.25)
	C	Gajner beel floodplain, Pabna, Bangladesh	14.40	8.75 (7.00-10.95)
	C	Hirukud Reservoir, India	16.60	9.96 (7.93-12.53)
	C	18.00	10.73 (8.51-13.53)	
Nandus nandus	F	Ganges River, NW Bangladesh	13.60	8.50 (6.66-10.38)
	M	12.60	7.74 (6.23-9.65)	
	C	Brahma River, Bangladesh	14.00	8.52 (6.83-10.67)
	C	Mathabhanga River, Bangladesh	14.20	8.63 (6.91-10.81)
	C	Gajner beel floodplain, Pabna, Bangladesh	14.10	8.58 (8.87-10.74)
	C	20.00	11.82 (9.33-14.95)	
Trichogaster fasciata	C	Deepor beel, Assam, India	8.10	5.16 (4.23-6.35)
	C	Gajner beel floodplain, Pabna, Bangladesh	9.40	5.92 (4.82-7.32)
	C	12.50	7.68 (6.18-9.58)	
Ompok pabo	C	25.00	14.49 (11.35-18.47)	
	F	Feni and Gomati River, Tripura, India	19.00	11.27 (8.92-14.24)
	M	20.70	12.19 (9.62-15.45)	
	C	Payra River, southern Bangladesh	22.30	13.05 (10.27-16.57)

FishBase: Froese and Pauly (2020).
Discussion

This study referred to the first strive to evaluate the size at sexual maturity of 20 fishes through multiple models in the Gajner Beel wetland ecosystem. The selection of permissible capture size at first maturity is broadly used and it is also used as an important tool in fisheries management (Lucifora et al. 1999; Hossain et al. 2012b) in open waters. Available information on size at sexual maturity of fishes from plots of percentage occurrence of mature females against length class can be obtained from the resulting logistic equation (King 2007). Some studies have narrated low exactness in the estimation of \(L_m \) of fishes using this logistic equation (Hossain and Ohtomi 2008; Hossain et al. 2013) but its accuracy for short life cycle organisms is addressed. Garcia (1985) also reported that using the proportion of mature females as an index of population reproduction was highly biased.

Nevertheless, the \(L_m \) was estimated by several models including brooding of eggs over time (especially for crustaceans), the appearance of the ovary and maturation stages over time (King 2007), the relative weight of gonad (TL vs. gonadosomatic index, modified gonadosomatic index, and Dobriyal index) over time (Hossain et al. 2017; Ahamed et al. 2018; Khatun et al. 2019), and histological studies (Chelemal et al. 2009; Jan and Ahmed 2019; Lucano-Ramirez et al. 2019). These methods differ with processing time, precision, accuracy, or suitability when we used these singly (De Martini and Lau 1999). To prevent this problem, we used three models (\(L_m \), TL vs. GSI, and logistic-based models) and their mean value was used to calculate their size at sexual maturity.

Among the 20 fishes, \(C. \) nama was the smallest and \(C. \) striata the largest in TL. Information on \(L_m \) was available only for three species (\(C. \) striata, \(G. \) chapra, and \(P. \) sophore) in FishBase (Froese and Pauly 2020). In our study \(L_m \) (mean \(L_m \)) was 24.84 cm for \(C. \) striata whereas Makmur et al. (2003) recorded 15.40 and 18.00 cm in the Musi River, south Sumatera, and 25.00 cm was found in Indonesia (Herre 1924). For the \(G. \) chapra \(L_m \) was 7.00 cm in this study, Hossain et al. (2010) narrated 8.00 cm in the Ganges River. We found 6.78 cm \(L_m \) for \(P. \) sophore. Halls et al. (1999), Halls (2005), and Hossain et al. (2012a) reported that \(L_m \) was 6.10, 4.50, and 5.00 for the \(P. \) sophore in the Talinnagar sluicegate, Lohajang River, and Padma River, respectively. The \(L_m \) of fish specimens might differ due to several factors like feeding rate, sex and gonadal development, behavior, season, the flow of water, populations density, water temperature, and food (Hossain et al. 2006, 2012a, b; Tarkan et al. 2006; Muchlisin et al. 2010). Most importantly it was the first attempt on \(L_m \) for 20 species in Gajner Beel wetland ecosystem so it can be used as baseline information for the future studies and essential for the selection of the permissible mesh size of nets which will be helpful for the sustainable management strategies of these 20 fish species from Gajner Beel in Bangladesh and contiguous ecosystems. Optimum catchable length (\(L_{opt} \)) is the length where the biomass of an unexploited cohort would be maximum (Froese et al. 2016). We also observed the \(L_{opt} \) which is essential for the management of these 20 fish species (Table 6).

Scientific name	\(n \)	Minimum length [cm]	Maximum length [cm]	Optimum catchable length of individuals (\(L_{opt} \))
Chanda nama	196	2.40	7.20	4.80
Anabas testudineus	130	7.50	16.40	10.93
Mystus cavatius	124	5.30	16.90	11.27
Mystus tengara	139	4.80	12.60	8.40
Xenentodon cancila	118	8.50	24.00	16.00
Channa orientalis	152	8.10	19.00	12.67
Channa punctata	178	5.30	19.40	12.93
Channa striata	128	9.50	46.00	30.67
Gudusia chapra	126	4.40	14.60	9.73
Lepidocephalichthys guntea	117	5.00	10.30	6.87
Amblypharyngodon mola	193	3.90	7.80	5.20
Puntius sophore	191	4.20	11.00	7.33
Salmistoma bacaila	114	4.20	10.00	6.67
Glossogobius giuris	189	3.90	14.70	9.80
Heteropneustes fossilis	180	6.30	24.10	16.07
Macrognathus aculeatus	115	8.70	27.00	18.00
Macrognathus paniculatus	190	6.90	15.70	10.47
Nandus nandus	168	6.50	17.20	11.47
Trichogaster fasciata	170	3.30	9.30	6.20
Ompok pabo	122	4.80	17.80	11.87

Fish diversity of Gajner Beel wetland ecosystem is declining at a faster rate because of many factors; damage of habitat, aquatic pollution, fishing pressure, natural disaster, extreme floodplain siltation, and reclamation of wetland (Dudgeon 1992; Hossain et al. 2014; Rahman et al. 2016). Therefore, to conserve the wild stock of wetlands, more population surveys and stock assessments are urgently needed. Identification of the causative factors for declining of the species, the establishment of suitable sanctuaries, conservation of habitats, and protection of adult species during the spawning — and/ or peak spawning season is highly recommended. Besides this, the mesh size of harvesting nets based on size at sexual maturity should be confirmed throughout the year for sustainable conservation and management. Furthermore, public awareness is most important for the conservation of this species.

The presently reported study concludes that around 50.0% of species were sexually matured in 8.80 cm TL. So, we strongly suggest that \(\leq 8.80 \) cm TL fishes cannot be recommended for harvesting. As a result, at least 50% of species survive in the wetland ecosystem.

Acknowledgments

We are very much thankful to the Bangladesh Agriculture Research Council, NATP-2, ID: 484 for the financial support to complete this research.
References

Ahamed F, Saha N, Ahmed ZF, Hossain MY, Ohtomi J (2018) Reproductive biology of Apodytes bato (Gobiidae) in the Payra River, southern Bangladesh. Journal of Applied Ichthyology 34(5): 1169–1175. https://doi.org/10.1111/jai.13781

Bangladesh (2004) National Encyclopaedia of Bangladesh, Asiatic Society of Bangladesh, 1st edn. February 2004. Dhaka, Bangladesh. http://en.banglapedia.org/index.php?title=Wetland

Binohlan C, Froeke R (2009) Empirical equations for estimating maximum length from length at first maturity. Journal of Applied Ichthyology 25(5): 611–613. doi.org/10.1111/j.1439-0426.2009.01317.x

Butler S (2010) Macquarie Concise Dictionary (5th edn.). Macquarie Dictionary Publishers, Sydney.

Chelemen M, Jamili S, Sharifpour I (2009) Reproductive biology and histological studies in Abu Mullet, Liza abu in the water of the Khozestan province. Su Ürünleri Dergisi 4(1): 1–11. doi.org/10.3923/jsan.2009.1.11

Costello C, Ovando D, Steven GD, Olivier D, Lester SE (2012) Status and solutions for the world’s unassessed fisheries. Science 338(6106): 517–520. doi.org/10.1126/science.1223389

DeMartini EE, Lau BB (1999) Costello C, Ovando D, Hilborn R, Butler S (2010) Macquarie Concise Dictionary (5th edn.). Macquarie Dictionary Publishers, Sydney.

Dudgeon D (1992) Endangered ecosystems: A review of the conservation status of tropical Asian rivers. Hydrobiologia 248(3): 167–191. doi.org/10.1007/BF00006146

Froese R, Pauly D (2016) Minimizing the impact of fishing. Fish and Fisheries 17(3): 785–802. https://doi.org/10.1111/faf.12146

Garcia S (1985) Reproduction, stock assessment models and population parameters in exploited penaeid shrimp populations. In: Rothlisberg PC, Hill BJ (Eds) Proceedings of 2nd Australian National Prawn Seminar. NSW-2, Cleveland, Australia, 139–158.

Giri C, Pengra B, Zhu Z, Singh A, Tieszen LL (2007) Monitoring and modeling forest dynamics of the Sundarbans in Bangladesh and India using multi-temporal satellite data from 1973 to 2000. Ecosystems, Coastal and Shelf Science 73(1–2): 91–100. doi.org/10.1016/j.ecss.2006.12.019

Godfray C, John B, Crute IR, Lawrence H (2010) Food security: The challenge of feeding 9 billion people. Science 327(5967): 812–818. https://doi.org/10.1126/science.1185383

Halls AS (2005) The use of sluice gates for stock enhancement and diversification of livelihoods (R3210). Fisheries Assessment Report. MRAG, London, 75 pp.

Halls AS, Hoggarth DD, Debnath D (1999) Impacts of hydraulic engineering on the dynamics and production potential of floodplain fish populations in Bangladesh. Fisheries Management and Ecology 6(4): 261–285. https://doi.org/10.1111/j.1365-2400.1999.tb00080.x

Hamilton WD (1971) Geometry for the selfish herd. Journal of Theoretical Biology 31(2): 295–311. doi.org/10.1016/0022-0726(71)90189-5

Hasan MR, Mawa Z, Ul-Hassan H, Rahman MA, Tanjin S, Ahmed Abro N, Gabel K, Bashar MA, Jasmine S, Ohtomi J, Hossain MY (2020) Impact of eco-hydrological factors on growth of the Asian stinging catfish Heteromehus fossilis (Bloch, 1794) in a Wetland Ecosystem. Egyptian Journal of Aquatic Biology and Fisheries 24(5): 77–94. doi.org/10.21608/eqaf.2020.104538

Herre AWCT (1924) Distribution of the true freshwater fishes in the Philippines. II. Philippine Labyrinthini, Claridae, and Siluridae. Philippine Journal of Science 24(6): 683–709.

Hossain MY, Ohtomi J (2008) Reproductive biology of the southern rough shrimp Trachysalambria curviscrostris (Penaeidae) in Kagoshima Bay, southern Japan. Journal of Crustacean Biology 28(4): 607–612. doi.org/10.1651/07-2970.1

Hossain MY, Ahmed ZF, Leunda PM, Jasmine S, Oscoz J, Miranda R, Ohtomi J (2006) Condition, length–weight and length–length relationships of the Asian striped catfish Mystus vitatus (Bloch, 1794) (Siluriformes: Bagridae) in the Mathabhanga River, southwestern Bangladesh. Journal of Applied Ichthyology 22(4): 304–307. doi.org/10.1111/j.1439-0426.2006.00803.x

Hossain MY, Ahmed ZF, Islam ABMS, Jasmine S, Ohtomi J (2010) Gonadosomatic index-based size at first sexual maturity and fecundity indices of the Indian River shad Guadria chapa (Clupeidae) in the Ganges River (NW Bangladesh). Journal of Applied Ichthyology 26(4): 550–553. doi.org/10.1111/j.1439-0426.2010.01454.x

Hossain MY, Rahman MM, Miranda R, Leunda PM, Oscoz J, Jewel MAS, Naif A, Ohtomi J (2012a) Size at first sexual maturity, fecundity, length–weight and length–length relationships of Puntias sophore (Cyprinidae) in Bangladeshi waters. Journal of Applied Ichthyology 28(5): 818–822. doi.org/10.1111/j.1439-0426.2012.02020.x

Hossain MY, Jewel MAS, Nahar L, Rahman MM, Naif A, Ohtomi J (2012b) Gonadosomatic index-based size at first sexual maturity of the catfish Eutropiichthys vacha (Hamilton, 1822) in the Ganges River (NW Bangladesh). Journal of Applied Ichthyology 28(4): 601–605. doi.org/10.1111/j.1439-0426.2012.01954.x

Hossain MY, Arefin MS, Mohmid MS, Hossain MI, Jewel MAS, Rahman MM, Ahamed F, Ahmed ZF, Ohtomi J (2013) Length–weight relationships, condition factor, gonadosomatic index-based size at first sexual maturity, spawning season and fecundity of Aspidoparia moror (Cyprinidae) in the Jamuna River (Brahmaputra River distributary), northern Bangladesh. Journal of Applied Ichthyology 29(5): 1166–1169. doi.org/10.1111/jai.12127

Hossain MY, Rahman MM, Ahamed F, Ahmed ZF, Ohtomi J (2014) Length–weight and length–length relationships and form factor of three threatened fishes from the Ganges River (NW Bangladesh). Journal of Applied Ichthyology 30(1): 221–224. doi.org/10.1111/jai.12251

Hossain MY, Hossen MA, Islam MS, Jasmine S, Nawer F, Rahman MM (2017) Reproductive biology of Pethia ticto (Cyprinidae) from the Gorai River (SW Bangladesh). Journal of Applied Ichthyology 33(5): 1007–1014. doi.org/10.1111/jai.13427
Jan M, Ahmed I (2019) Reproductive biology and histological studies of ovarian development of *Schizothorax plagiotomus* in river Lidder from Kashmir Himalaya. *Journal of Applied Ichthyology* 35(2): 512–519. https://doi.org/10.1111/jai.13858

Keddy PA (2010) Wetland ecology: principles and conservation (2nd edn.). Cambridge University Press, New York. https://doi.org/10.1017/CBO9780511778179

Khatun D, Hossain MY, Nawer F, Mostafa AA, Al-Askar AA (2019) Reproduction of *Eptophichthys vacha* (Schilbeidae) in the Ganges River (NW Bangladesh) with special reference to potential influence of climate variability. *Environmental Science and Pollution Research International* 26(11): 10800–10815. https://doi.org/10.1007/s11356-019-04523-5

King M (2007) Fisheries biology, assessment and management, 2nd edn. Wiley-Blackwell Publishing, Oxford, 382 pp. https://doi.org/10.1002/9781118688038

Lucano-Ramírez G, Gómez-García MDJ, Ruiz-Ramírez S, González-Sansón G, Aguilar Betancourt C, Flores-Ortega JR (2019) Reproductive characteristics of the sole *Achirus mazatlanus* (Pleuronectiformes: Achiridae) in the Barra de Navidad coastal lagoon, Jalisco, Mexico. *Ciencias Marinas* 45(2): 47–58. https://doi.org/10.7773/cm.v45i2.2952

Lucifora LO, Valero JL, Garcia VB (1999) Length at maturity of the green-eye spurdog shark, *Squalus mitsukuii* (Elasmobranchii. Squalidae) from the sw Atlantic, with comparisons with other regions. *Marine & Freshwater Research* 50(7): 629–632. https://doi.org/10.1071/MF98167

Makmur S, Rahardjo MF, Sukimin S (2003) Biologi reproduksi ikan gabus (*Channa striata*) di daerah banjaran sungai Musi Sumatera Selatan. *Jurnal of Iktiologi Indonesia* 3(2): 57–62.

Mazid MA, Rahman MJ, Mustafa MG (2005) Abundance, migration and management of Jatka (juvenile hilsa, *Tenualosa ilisha*) in the Gajner Beel, Pabna, Bangladesh. *Bangladesh Journal of Fisheries Research* 9(2): 191–202.

Muchlisin ZA, Musman M, Azizah MNS (2010) Length–weight relationships and condition factors of two threatened fishes, *Rasbora tawarensis* and *Poropuntius tawarensis*, endemic to Lake Laut Tawar, Aceh Province, Indonesia. *Journal of Applied Ichthyology* 26(6): 949–953. https://doi.org/10.1111/j.1439-0426.2010.01524.x

Nikolsky GV (1963) The ecology of fishes. Academic press Inc., London.

Ramsar Conservation (1971) Official page of the Ramsar Convention. [retrieved 2011–09–25]

Rohalin WM, Yaakub N, Fazdil NM (2019) Level of zinc and lead in freshwater fishes in Balok River, Pahang, Malaysia. *United International Journal of Research and Technology* 1(1): 44–48.

Tarkan AS, Gaygusuz O, Acipinar P, Gursoy C, Ozulug M (2006) Length–weight relationship of fishes from the Marmara region (NW-Turkey). *Journal of Applied Ichthyology* 22(4): 271–273. https://doi.org/10.1111/j.1439-0426.2006.00711.x

Templeman W (1987) Differences in sexual maturity and related characteristics between populations of *Thorny skate* (Raja radiate) from the northwest Atlantic. *Journal of Northwest Atlantic Fishery Science* 7(2): 155–167. https://doi.org/10.2960/J.v7.a18

Thilsted SH (2013) Diversifying food and diets: using agricultural biodiversity to improve nutrition and health. *Earthscan*, London, 270–282.

Tracey SR, Lyle J, Haddon M (2007) Reproductive biology and per-recruit analyses of striped trumpeter (*Latris lineata*) from Tasmania, Australia: Implications for management. *Fisheries Research* 84(3): 358–368. https://doi.org/10.1016/j.fishres.2006.11.025