Foreword — At the beginning of the twentieth century, two scientists, the Austrian Victor Hess and the Italian Domenico Pacini, developed two brilliant lines of research independently, leading to the determination of the origin of atmospheric radiation. Before their work, the origin of the radiation — today called “cosmic rays” — was strongly debated, as many scientists thought that these particles came from the crust of the Earth.

The approach by Hess is well known: Hess measured the rate of discharge of an electroscope that flew aboard an atmospheric balloon. Because the discharge rate increased as the balloon flew at higher altitude, he concluded in August 1912 that the origin could not be terrestrial. For this discovery, Hess was awarded the Nobel Prize in 1936, and his experiment became legendary.

Shortly before, in June 1911, Pacini, a professor at the University of Bari, made a series of measurements to determine the variation in the speed of discharge of an electroscope (and thus the intensity of the radiation) while the electroscope was immersed in a box in the sea near the Naval Academy in the Livorno Bay (the Italian Navy supported the research). The measures are documented in his work La radiazione penetrante alla superficie ed in seno alle acque (Penetrating radiation at the surface of and in water). Pacini discovered (italics are in the original) that the discharge of the oscilloscope was significantly slower than at the surface:

“The apparatus [...] was enclosed in a copper box to be able to immerse in depth. [...] The experiments were performed [...] with the apparatus on the surface and immersed at a depth of 3 meters. [...] It appears from the results of the work described in this Note: that a sizable cause of ionization exists in the atmosphere, originating from penetrating radiation, independent of the direct action of radioactive substances in the soil.”

Documents testify that Pacini and Hess knew of each other’s work. Pacini died in 1934, two years before the Nobel Prize was awarded for the discovery of cosmic rays. While Hess is remembered as the discoverer of cosmic rays, the simultaneous discovery by Pacini is forgotten by most.

Alessandro De Angelis

1 V.F. Hess, Phys. Zeit. 13, 1084-1091, November 1912.
2 D. Pacini, Nuovo Cimento VI/3, 93-100, February 1912.
3 P. Carlson and A. De Angelis, Nationalism and internationalism in science: the case of the discovery of cosmic rays, Eur. Phys. J. H, in press (arXiv:1012.5068 [physics.hist-ph]).
4 A. De Angelis, Domenico Pacini, uncredited pioneer of the discovery of cosmic rays, Rivista del Nuovo Cimento 33, 713-756, 2010.
Observations that were made on the sea during the year 1910 led me to conclude that a significant proportion of the pervasive radiation that is found in air had an origin that was independent of direct action of the active substances in the upper layers of the Earth’s surface.

Here, I will report on further experiments that support this conclusion. The results that were previously obtained indicated that a source of ionization existed on the sea surface, where possible effects from the soil are small, that had such an intensity that could not be explained on the basis of the known distribution of radioactive substances in water and in air.

Indeed, as shown by Eve, one can easily calculate the expected ionizing action at the surface of the sea, due to γ radiation that is emitted by active particles in air.

Let:

- Q be the equivalent radiation in Ra. C per cm3 in the atmosphere, expressed in grams of Radium in radioactive equilibrium, $Q = 8 \times 10^{-17}$.

- K be the number of ions that is generated per cm3 per second from one gram of Radium at a distance of 1 cm: $K = 3.4 \times 10^9$ for air enclosed in an Aluminum electroscope; $K = 3.1 \times 10^9$ for free air.

- λ be the absorption coefficient of γ rays in air = 0.000044.

- r be the distance from the point at which we consider the action.

Then, the number q of ions due to the γ rays of Radio C in air will be expressed as:

$$q = 2\pi KQ \int_0^\infty \frac{r^2 e^{-\lambda r}}{r^2} dr$$

$$q = 2\pi \frac{KQ}{\lambda} = 0.035.$$

We should now take into account the effect of the active products of Thorium, but there is no precise input to complete the calculation. Eve assumes that, due to the effect of the γ radiation that is emitted by the products of Thorium, 0.025 ions per cm3 per second are generated; which gives a total of 0.06 for the ions in air. In this calculation it is assumed that the air above the sea surface has the same radioactive composition as the air above the ground, while indeed at some distance from the coast, the content of radioactive emanation of the air above the sea is smaller with respect to the air above the soil, especially regarding Thorium.

For the contribution from sea water, the calculation is also easy, knowing from the Joly experiments that the equivalent in Radio is $Q' = 1.1 \times 10^{-14}$; the absorption coefficient λ' is immediately obtained, using the relationship between that
coefficient and the density:
\[
\frac{\lambda'}{\rho} = 0.034^{8}.
\]
Thus, we obtain the value \(q = 0.006 \) for the sea.

To the value \(q = 0.066 \) we must add the effect of secondary radiation emitted from the walls of the container; we can assume that this will increase the effect that one has in open air by 20%, so we arrive at an estimate of a total ionization that is on the order of 0.1 ions per cubic centimeter.

The measurements that I made on the sea had nonetheless provided for values for \(q \) that were, on average, significantly larger than those predicted by theory. As an example, I take the indications from the apparatus \(A^{9} \) which had walls that were 1.5 mm thick, to exclude the vast majority of \(\beta \) radiation. Onboard a boat with a surface of about 4 m\(^2\), this device provided an average measurement of 8.9 ions on the sea, with a minimum of 4.7; in the hypothesis, supported by the results obtained so far, in which the minimum of 4.7 ions can be ascribed entirely to the residual ionization, one is left with an average of 4.2 ions, from which subtracting the action of secondary radiation, we obtain the value:
\[
q = 3.4 \text{ ions}
\]
due to the penetrating radiation over the sea at a distance greater than 300 meters from the coast.

Subsequently, in May 1911, Simpson and Wright\(^{10}\) published a note, reporting observations of atmospheric electricity aboard the “Terra Nova” in a journey from England to New Zealand, following the Antarctic expedition of Captain Scott. The authors observed onboard their ship, on average, a value of approximately 6 ions for the penetrating radiation; however, they found during several hours values of approximately 9 ions after the ship had left the coast – an increase of 3 ions with respect to the average value of \(q \). The minimum value that was obtained for \(q \) was 4 ions.

The results by Simpson and Wright confirm that even outside of the direct action of soil it is possible to observe considerable fluctuations in the values of penetrating radiation. The results of the experiments on which I will now report also seem to indicate the presence of well-measurable effects of penetrating radiation in air, over an absorbing medium.

We shall see that by immersing the measuring device in water, one can further lower the penetrating radiation that is observed at the surface of a sea or lake below its average value.

The \(A \) device, already used in the experiments above, was enclosed in a copper box to be able to immerse it in water. The experiments were performed again at the Naval Academy of Livorno, precisely in the same place where the measurements of the previous year had been made.

The apparatus was put onboard the same boat, which was pegged at more than 300 meters from the coast, over 8-m-deep water. Between June 24 and June 30, measurements were made with the apparatus on the surface and immersed at a depth of 3 meters.

Here are the results of these observations, each of which had a duration of approximately 3 hours:

When the instrument was at the surface, the loss per hour, measured in volts, was:
\[
13.2 - 12.2 - 12.1 - 12.6 - 12.5 - 13.5 - 12.1 - 12.7
\]

\(^{8}\)Mc. Clelland. Phil. Mag., July 1904.

\(^{9}\)See Pacini, op. cit.

\(^{10}\)G. C. Simpson and C. S. Wright: Atmospheric Electricity over the Ocean. Proceed. of the Rovedo Soc. Vol. 85, p. 175, 1911.
(average of 12.6, corresponding to 11 ions per cm3 per second).

With the instrument immersed:

\[
10.2 - 10.3 - 10.3 - 10.1 - 10.0 - 10.6 - 10.6
\]

(average of 10.3, corresponding to 8.9 ions per cm3 per second).

The difference between these two values is 2.1 ions.

The boat was the same as the one that was used for the measurements in which the minimum value of 4.7 ions was established, and because it had always been kept under the same conditions – i.e., either on the sea or suspended over the sea from the quay – we are convinced that the boat did not contain active materials other than those that came from the air or sea. In the hours in which measurements were not made, the measuring apparatus was kept charged, always in the same room, and the dispersion of electricity was strictly constant.

With the same apparatus, measurements were also made at the Lake of Bracciano. At 350 meters from the shore, I measured \(q = 12.4q\) at the surface, while at a depth of 3 meters (at a place where the bed was over 7 m deeper), the result was \(q = 10.2\). Thus, the difference in the two values of \(q\) was 2.2 ions.

With an absorption coefficient of 0.034 for water, it is easy to deduce from the known equation \(I/I_0 = e^{-\lambda d}\), where \(d\) is the thickness of the matter crossed, that, in the conditions of my experiments, the activities of the bed and of the surface were both negligible.

The water temperature was, on average, a few tenths of a degree lower than the air above, and working under airtight conditions, the number of ions created in the internal space varies only due to changes in radiation. From the measured differences of 2.1 and 2.2, by subtracting 20% due to secondary radiation, these numbers become:

1.7 ions for the sea
1.8 ions for the Lake of Bracciano.

Is this decrease in the value of \(q\), moving from observation at the surface to a survey of the interior of the water, due to external actions or rather to a variation in the residual ionization of the container in the transition from air to water?

We know nothing for certain about the origin of the residual ionization for air that is trapped in a metallic container.

The causes that might generate the residual ionization are intrinsic activity, or radioactive impurities of the metal, and possible spontaneous ionization of the enclosed gas\(^{11}\).

Under the conditions in which these experiments are conducted, it is unlikely that metals, with the exception of lead, contain radioactive impurities. Furthermore, in a long series of observations that were made earlier with the same apparatus, an increase in dispersion that could be ascribed to impurities was never observed.

In the case of activity that is due to the metal or spontaneous emission of electrons due to disintegration of the gas that is encapsulated in the device, one cannot see any reason for a variation of these causes of ionization, given the changing conditions of the isolated instrument between the surface and the depth.

The explanation appears to be that due to the absorbing power of water and the minimum amount of radioactive substances in the sea, absorption of \(\gamma\) radiation coming from the outside happens indeed, when the apparatus is immersed.

It is natural, as already pointed out\(^ {12}\), to look for the origin of such ionization of air due to penetrating radiation, not directly dependent on active substances in the

\(^{11}\)G.C. Simpson and C.S. Wright (op. cit.).
\(^{12}\)D. Pacini (op. cit.).
soil, in an accumulation of radioactive material that released into the atmosphere around the site of observation.

Simpson and Wright also attribute an increase of three ions to this cause, in their measurement of normal ionization on the sea. According to these authors, the active particles could have deposited onto the ship from the air when the ship was near the coast.

If we assume that the products are spread evenly in the atmosphere at altitudes of up to 5 km, and that they are rapidly deposited on the surface of the Earth from the air, from Eve’s data one deduces a layer of Ra C that is equivalent to 4×10^{-11} of Radium per cm3 in equilibrium. This would generate 1.8 ions per cm3 per second in the air at a height of 1 meter.

In the case of my experiments, one can neglect the action of active particles that deposit onto the water, because they should go into solution quickly, due to wave motion. We can get a sense of what the effect would be of an active substance that is deposited onto the boat used here, that has a surface of approximately 4 m2. Suppose that the Ra C that is deposited onto the boat acts on the device (which is located in the center, above a table, at the height of the edge) as if it were distributed evenly on the surface of a half-sphere whose radius is 80 cm, in an amount Q that is equivalent to 4×10^{-11} grams of Ra per cm2. The number of ions that is generated by the full radioactive deposit in 1 cm3 of air in the center of the hemisphere would be expressed as

$$q = \frac{KQ}{r^2} e^{-\lambda r^2} 2\pi r^2 = 0.8 \text{ ions}.$$

Assuming that the products of Thorium are responsible for 0.5 ions in this case, we would have a total of 1.3 ions. This calculation gives us a value smaller than that observed, but the effect is nevertheless well measurable.

A rapid reduction in the active products of the atmosphere could occur for large values of the Earth’s field, especially in the case of rain. The observations that have been made so far on the behavior of penetrating radiation during rain are not quite in agreement, and they are not enough to establish the existence of an action in the sense mentioned above.

Free-balloon experiments have been performed recently13 on penetrating radiation in the upper atmosphere. Although they cannot be considered conclusive with regard to the study of the radiation that penetrates at a certain height above the ground, these observations, however, could have shown that where, according to the law of absorption from air (recently verified by Hess), the action of active substances of the soil is negligible, there is still a large quantity of penetrating radiation. This result has spurred Gockel and Hess to repeat what the author of the present paper concluded from the first observations that were made on the sea and what appears from the results of the work described in this Note: that a sizable cause of ionization exists in the atmosphere, originating from penetrating radiation, independent of the direct action of radioactive substances in the soil.

[Note by A. De Angelis: Thanks to Dr. Stefania De Angelis from Williams Language Solutions and Dr. Sean Kim from Blue Pencil Science for help in the translation and editing; and to the colleagues N. Giglietto, S. Stramaglia, A. Garuccio, L. Guerriero, E. Menichetti, P. Spinelli, F. Guerra, N. Robotti, L. Cifarelli and P. Carlson for discussions and for material about the work of Pacini.]

13A. Goekel. Phys. Zeit., p. 595, 1911 and V.F. Hess. Phys. Zeit., p. 998, 1911.
Reprint of the original article, with the kind permission of the President of the Società Italiana di Fisica, professor Luisa Cifarelli.
LA RADIAZIONE PENETRANTE ALLA SUPERFICIE ED IN SENO ALLE ACQUE.

Nota di D. PACINI.

Le osservazioni eseguite sul mare nel 1910 ¹) mi co­n­du­ce­vano a concludere che una parte non trascurabile della radiazione penetrante che si riscontra nell’aria, avesse origine indipendente dall’azione diretta delle sostanze attive contenute negli strati superiori della crosta terrestre.

Riferirò ora sopra ulteriori esperienze che confermano quella conclusione.

I risultati precedentemente ottenuti indicavano esistere, sulla superficie del mare, dove non è più sensibile l’azione del terreno, una causa ionizzante di tale intensità da non potersi spiegare esaurientemente considerando la nota distribuzione delle sostanze radioattive nell’acqua e nell’aria.

Difatti, come l’Eve ²) ha mostrato, si può calcolare facilmente quale dovrebbe essere l’azione ionizzante dovuta alle radiazioni γ emesse da particelle attive nell’aria, alla superficie del mare.

Sia Q l’equivalente in Ra. C per cm² nell’atmosfera, espresso come in grammi di Radio in equilibrio radioattivo $Q = 8 \times 10^{-17}$

K il numero di ioni generati per cm² al 1° da un grammo di Radio ad 1 cm. di distanza: $K = 3,4 \times 10^9$ per l’aria racchiusa in elettroscoopio d’alluminio; $K = 3,1 \times 10^9$ all’aria libera.

¹) D. Pacini. Ann. dell’Uff. Centr. Meteor. Vol. XXXII, parte I, 1910.
— Le Radium, T. VIII, pag. 307, 1911.
²) A. S. Eve. Phil. Mag., 1911.
λ il coefficiente d’assorbimento dei raggi γ nell’aria
= 0,000044

r la distanza dal punto in cui si considera l’azione; allora il numero \(q \) di ioni dovuti ai raggi γ del Radio C nell’aria sarà espresso da:

\[
q = 2 \pi K Q \int_0^r e^{-\lambda r} dr
\]

\[
q = 2 \pi \frac{K Q}{\lambda} = 0,035
\]

Bisognerebbe ora tener conto dell’effetto dei prodotti attivi del Torio; ma non si hanno elementi precisi in proposito per poter completare il calcolo. L’Eve ammette che per effetto della radiazione γ emessa dai prodotti del Torio, si generino, per cm\(^3\), al 1° ioni 0,025. Il che fa in totale per l’aria ioni 0,06. In questo calcolo si suppone che l’aria al disopra della superficie del mare abbia la stessa composizione radioattiva, come al disopra del suolo, mentre in realtà, ad una certa distanza dalla costa, il contenuto di emanazione radioattiva nell’aria del mare è inferiore a quello dell’aria sul suolo, specialmente per ciò che riguarda il Torio.

Per il contributo dato dall’acqua del mare, il calcolo si fa anche facilmente, conoscendosi dalle esperienze di Joly \(^1\) l’equivalente in Radio \(Q' = 1,1 \times 10^{-5} \); il coefficiente di assorbimento \(\lambda' \) si ottiene subito ricordando che il rapporto fra detto coefficiente e la densità:

\[
\frac{\lambda'}{\rho} = 0,034 \quad ^2
\]

Così si ottiene per il mare il valore \(q = 0,006 \).

Dobbiamo aggiungere al valore \(q = 0,066 \), l’effetto della radiazione secondaria destata sulle pareti del recipiente; che possiamo ammettere aumenti del 20 %, l’azione che si avrebbe

\(^1\) Joly, Phil. Mag. September 1909.
\(^2\) Mo. Clelland, Phil. Mag., July 1904.
all'aria libera; giungeremo così in totale ad una ionizzazione che è dell'ordine del decimo di ione per cm3.

Le osservazioni da me fatte sul mare avevano tuttavia fornito per q, in media, dei valori notevolmente più grandi di quello che la teoria comporterebbe. Prendo ad esempio le indicazioni dell'apparecchio A $^{1)}$ che aveva le pareti di mm. 1,6 e tali ciò da escludere la grande maggioranza delle radiazioni tipo β. Questo apparecchio detto sul mare, a bordo di una lancia di circa 4 m2 di superficie, una media di ioni 8,9 ed un minimo di ioni 4,7; e nella ipotesi, avvalorata dai risultati finora ottenuti, che il minimo di ioni 4,7 possa ascriversi interamente alla ionizzazione residua, resta una media di ioni 4,2, dalla quale sottraendo l’azione delle radiazioni secondarie avremo il valore:

$$q = 3,4$$

come dovuto alla radiazione penetrante sul mare a oltre 300 metri dalla costa.

Successivamente nel maggio 1911 è stata pubblicata una nota di Simpson e Wright $^2)$ che hanno istituito osservazioni di elettricità atmosferica a bordo del « Terra Nova » nel viaggio dall'Inghilterra alla Nuova Zelanda, della spedizione antartica del capitano Scott. Per quanto riguarda la radiazione penetrante i citati Autori hanno trovato in media, a bordo della loro nave, il valore di circa 6 ioni; essi riscontrarono però valori di circa 9 ioni per molte ore dopo che la nave aveva lasciato le coste; quindi un aumento di 3 ioni sul valore medio di q. Il minimo valore che ottennero per q fu di 4 ioni.

Questi risultati di Simpson e Wright intanto confermano che anche all'infuori dell’azione diretta del suolo è possibile constatare oscillazioni notevoli nei valori della radiazione penetrante, e quelli delle esperienze sulle quali ora riferirò, sem-

$^1)$ Vedi Pacini, l. c.

$^2)$ G. C. Simpson and C. S. Wright: « Atmospheric Electricity over the Ocean ». *Proceed. of the Royal Soc.* Vol. 85, pag. 175, 1911.
brano anch'essi attestare della presenza di effetti ben misurabili della radiazione penetrante nell'aria, sopra un mezzo assorbente.

Vedremo pertanto che immergendo l'apparecchio nelle acque si può ulteriormente abbassare, al disotto del suo medio valore, la radiazione penetrante osservata alla superficie del mare o di un lago.

L'apparecchio A, già adoperato nelle esperienze sopra citate, venne racchiuso in una scatola di rame per poterlo immergere in seno alle acque. Le esperienze furono condotte ancora presso l'Accademia navale di Livorno e precisamente nello stesso luogo dove erano state eseguite quelle dell'anno precedente.

L'apparecchio fu disposto a bordo della medesima lancia che fu ancorata a oltre 300 metri dalla costa, sopra 8 m. di fondo e dal 24 al 31 giugno si fecero delle osservazioni coll'apparecchio alla superficie, e coll'apparecchio immerso nelle acque, a 3 m. di profondità.

Ecco i risultati di queste osservazioni, ciascuna delle quali ha all'incirca la durata di 3 ore:

Coll'apparecchio alla superficie del mare si ebbe una perdita oraria di Volta:

\[
13,2 \rightarrow 12,2 \rightarrow 12,1 \rightarrow 12,5 \rightarrow 13,5 \rightarrow 12,6 \rightarrow 12,7
\]

media 12,6 equivalente a ioni 11 per cm³ al 1°.

Coll'apparecchio immerso:

\[
10,2 \rightarrow 10,3 \rightarrow 10,3 \rightarrow 10,1 \rightarrow 10,0 \rightarrow 10,6 \rightarrow 10,6
\]

media 10,3 equivalente a ioni 8,9 per cm³ al 1°.

La differenza fra questi due valori è di ioni 2,1.

La barca era la medesima che servì per le misure in cui fu possibile constatare il minimo di 4,7 ioni, ed essendo essa sempre tenuta nelle stesse condizioni, cioè o in mare, o sospesa sul mare dalla banchina, mediante grue, abbiamo ragione di ritenere che la imbarcazione non contenesse materiali attivi estranei a quelli provenienti dall'aria o dal
mare. Nelle ore in cui non si facevano esperienze, l'apparecchio era tenuto carico, sempre nello stesso locale, ove la dispersione della elettricità si conservò rigorosamente costante.

Collo stesso apparecchio furono eseguite osservazioni anche sul lago di Bracciano. A 350 metri dalla riva, ottenni in superficie \(q = 12.4 \) ed in seno alle acque a m. 3 di profondità, in un luogo ove il fondo superava i 7 m., si ebbe \(q = 10.2 \). La differenza nei due valori di \(q \) fu quindi di 2,2.

Il coefficiente d'assorbimento per l'acqua essendo 0,034 è facile dedurre dalla nota equazione \(I/I_0 = e^{-\lambda d} \), dove \(d \) è lo spessore di materia traversata, che nelle condizioni delle mie esperienze, l'azione del fondo e quella della superficie erano trascurabili.

La temperatura dell'acqua fu in media di pochi decimi di grado inferiore a quella dell'aria sovraeante e, operandosi a tenuta d'aria, il numero di ioni generato nello spazio interno, varierà solo al variare della causa ionizzante. Dalle differenze 2,1 e 2,2 sottraendo il 20% come dovuto alla radiazione secondaria, quei numeri si riducono a:

ioni 1,7 per il mare
e ioni 1,8 per il lago di Bracciano.

Questa diminuzione nel valore di \(q \), passando dalla osservazione in superficie, all'indagine dell'interno delle acque, sarà dovuta alle azioni esterne o forse ad una variazione della ionizzazione residua del recipiente nel passaggio dall'aria all'acqua?

Nulla sappiamo di sicuro circa la origine della ionizzazione residua dell'aria rinchiusa in un recipiente metallico.

Le cause che ci appaiono come possibili generatrici della ionizzazione residua, quando l'aria introdotta sia priva di emanazione, sono: l'attività propria, o le impurità radioattive del metallo, e forse anche la ionizzazione spontanea del gas racchiuso 1).

1) G. C. Simpson and C. S. Wright (l. c.).
È poco probabile che nelle condizioni in cui vengono adoperati per queste esperienze i metalli, ad eccezione del piombo, contengano impurità radioattive: d’altronde nella lunga serie di osservazioni fatte in precedenza coll’apparecchio da me adoperato, non fu osservato un aumento di dispersione che potesse ascriversi ad impurità.

Nella ipotesi di un’attività propria del metallo, o di una emissione di elettroni per disgregazione spontanea del gas racchiuso nell’apparecchio, non appare come si potrebbe dedurre una variazione di queste cause ionizzanti, col mutare di condizione dell’istruimento, a tenuta d’aria, fra la superficie e l’interno delle acque.

La spiegazione che sembra doversi dare del fenomeno è che per il potere assorbente dell’acqua e per la quantità minima di sostanze radioattive contenute nel mare, realmente si verifichi, nell’atto della immersione, un assorbimento delle radiazioni γ provenienti dall’esterno.

Di questa ionizzazione dell’aria dovuta alla radiazione penetrante, e che, non dipende direttamente dalle sostanze attive contenute nel terreno, è naturale, come già fu osservato 1), ricercarne l’origine in un accumulamento, intorno al luogo d’osservazione, del materiale radioattivo diffuso nell’atmosfera.

Anche Simpson e Wright attribuiscono a questa causa l’aumento di tre ioni, sulla ionizzazione normale da essi osservata in mare; secondo questi Autori le particelle attive si sarebbero depositate dall’aria sulla nave, quando la nave trovavasi in vicinanza della costa.

Se supponiamo che i prodotti attivi siano ripartiti uniformemente nell’atmosfera fino a 5 Km. di altezza, e che essi vengano rapidamente a depositarsi dall’aria, sulla superficie della terra; dai dati di Eve si deduce che si avrebbe, per ogni cm³, uno strato di Ra.C equivalente a gr. 4×10^{-11} di Radio, in equilibrio con esso; e questo genererebbe nell’aria, ad un metro di altezza, ioni $1,8$ per cm³ al 1°.

1) D. Pacini (l. c.).
Nel caso delle mie esperienze, trascurando l’azione delle particelle attive che si depositano sulle acque, perchè può supporre, che esse vadano presto in soluzione, a causa del moto ondoso; ci si può fare un’idea di quale sarebbe l’effetto della sostanza attiva che si depositasse sulla barca che ha circa 4 m² di superficie. Supponiamo che il Ra.C depositatosi sulla barca, agisca sull’apparecchio (che era situato al centro, sopra una tavola, all’altezza dell’orlo) come se fosse distribuito uniformemente sulla superficie di una mezza sfera di 80 cm. di raggio, in ragione di una quantità Q, equivalente a gr. 4×10^{-11} di Ra, per ogni cm². Il numero di ioni a cui tutto il deposito radioattivo sarebbe luogo in un cm3 d’aria, al centro della emisfera sarebbe espresso da

$$q = \frac{KQ}{r^2} e^{-kr^2} 2\pi r^2 = 0,8 \text{ ioni}$$

e supponendo che i prodotti del Torio influiscono in questo caso per 0,5 ioni, avremmo in totale ioni 1,3. Il calcolo ci fornisce così un valore minore di quello osservato, ma tuttavia l’effetto sarebbe ben misurabile.

Un rapido abbassamento dei prodotti attivi dell’atmosfera potrebbe verificarsi per forti valori del campo terrestre e soprattutto nel caso di precipitazioni. Le osservazioni finite eseguite sull’andamento della radiazione penetrante, durante la pioggia, non sono abbastanza concordi, nè sufficientemente numerose per stabilire in modo indubbio la esistenza di una azione nel senso sopra detto.

Recentemente sono state fatte delle ricerche in pallone libero, sulla radiazione penetrante nell’alta atmosfera 1). Anche queste osservazioni, sebbene non si possano considerare come definitive per ciò che riguarda lo studio della radiazione penetrante ad una certa altezza sul suolo, avrebbero tuttavia

1) A. Gockel. Phys. Zeit., pag. 595, 1911 e V. F. Hess. Phys. Zeit., pag. 598, 1911.
mostrato che là dove, per la legge dell'assorbimento dell'aria (recentemente verificata dall'Hess), non è più sensibile l'azione delle sostanze attive del terreno, si riscontrano ancora alti valori per la radiazione penetrante. Risultato questo che ha condotto il Gockel e l'Hess a ripetere quanto lo scrivente ebbe a concludere dalle prime osservazioni eseguite sul mare e quanto appare confermato le esperienze di cui è oggetto questa nota: cioè che esista nell'atmosfera una sensibile causa ionizzante, con radiazioni penetranti, indipendente dall'azione diretta delle sostanze radioattive del terreno.