Human papillomavirus in retinoblastoma: A tertiary eye care center study from South India

Kumar Jeyaprakash1,2*, Thennarasu Shanthini1*, Usha Kim7, Veerappan Muthukkaruppan4, Ayyasamy Vanniarajan1,2

Purpose: This study is aimed to investigate the presence of Human papillomavirus (HPV) DNA in tumors obtained from sporadic retinoblastoma patients. Methods: One hundred six tumor tissues obtained from sporadic RB patients were analyzed for HPV infection by use of both seminested PCR and real-time quantitative PCR. Results: Of 106 RB patients, 55 were male and 51 were female. The mean age at diagnosis was 26.77 ± 15.36 (mean ± Std. dev) months. Almost all patients presented with leukocoria. Molecular investigation by different methods revealed no HPV positivity in any tumor genome. Conclusion: Our study demonstrates no association between HPV and RB, postulating HPV may not be a major risk factor in the etiology of RB.

Key words: Human papillomavirus, nonfamilial retinoblastoma, pediatric cancer, RB1 inactivation, real-time quantitative PCR

Retinoblastoma (RB) is a childhood intraocular malignant tumor, occurring at an incidence of one in 15,000 live births[1] and developed upon biallelic inactivation of RB1 gene. RB may be unilateral or bilateral and of sporadic or familial. There are two forms of the disease: hereditary and nonhereditary that account for almost 40 and 60% of RB cases, respectively. In hereditary RB, the first mutation is constitutional and the second mutation is somatic, whereas in nonhereditary, both mutations are somatic, i.e. present only in tumor cells.[2]

RB1 gene, a tumor suppressor gene, is located on 13q14 and encodes for retinoblastoma protein (pRB). It is a negative cell cycle regulator and plays a crucial role in cell cycle arrest and apoptosis. In the G0 phase of the cell cycle, pRB binds E2F inhibiting G1-S phase transition, and upon phosphorylation of pRB at multiple serine/threonine sites by different cyclin-dependent kinases in the G1 phase, E2F dissociates from pRB leading to S-phase entry. Loss of pRB results in uncontrollable cell proliferation, a neoplastic phenotype. Various mechanisms inactivating RB1 gene or protein such as mutations, viral oncoprotein interaction and phosphorylation have been documented across multiple human cancers.[3]

RB1 inactivation through mutation is the dogma for RB onset. Besides, multiple studies of RB have substantiated the presence of Human papillomavirus (HPV) DNA in a subset of RBs.[4,5] HPV, a double-stranded DNA virus, is a well-known causative agent of genital cancers in humans. E7 and E6 oncoproteins produced by HPV are known to induce cancer through inactivating pRB and p53, respectively.[6] Integration of the HPV genome into the host cellular genome is a critical event for malignant transformation. One case study from Mexico reported coexistence of HPV DNA and RB1 mutation in an RB tumor, hypothesizing HPV as a cofactor in the RB pathogenesis.[7] Contradictorily, other RB studies from different regions showed no causal relationship between HPV and RB.[10,11] In India, the prevalence of HPV in RB is dynamic, ranging from 70% to no HPV.[12,13] The functional relevance of HPV in this cancer is unknown.

No RB studies from Asia have endowed the status of RB1 gene in HPV-infected RB tumors. With an aim of investigating whether HPV is a risk factor in the etiology of RB, we performed HPV screening using seminested PCR with HPV L1 consensus primers and real-time quantitative PCR (RT-qPCR) targeted two different genes of HPV (1) L1 consensus and (2) E6 or E7 gene in RB tumor DNA samples that had already been RB1 genotyped.

Access this article online
Website: www.ijo.in
DOI: 10.4103/ijo.IJO_106_21
PMID: 34304188
Quick Response Code:

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

For reprints contact: WKHLRPMedknow_reprints@wolterskluwer.com

Cite this article as: Jeyaprakash K, Shanthini T, Kim U, Muthukkaruppan V, Vanniarajan A. Human papillomavirus in retinoblastoma: A tertiary eye care center study from South India. Indian J Ophthalmol 2021;69:2111-5.
Methods

Ethical consents
The study was approved by the institutional ethical committee and conducted in accordant with the Declaration of Helsinki. Informed consent from the parents of RB children were collected before sample collection.

Study subjects and selection
We included nonfamilial RB patients whose tumor eye was enucleated as a part of treatment during January 2012 to October 2019 at a tertiary eye care center in the south zone of India. We unambiguously chose tumor samples after histopathological examination and RB1 gene screening. After all, tumor tissues from 106 RB patients were considered for further experiments.

Controls
HeLa cell line served as positive control, whereas DNA from 10 noncancerous retina tissue (donor eye) and genome of Herpes Simplex Virus, Cytomegalovirus, Varicella zoster virus served as negative controls.

DNA extraction
Total genomic DNA (gDNA) was extracted from RB and control samples using Qiagen DNA mini Kit (Qiagen, USA), as per the manufacturer’s instructions. The purity and yield of the extracted gDNA were determined using Nano spectrophotometer (NanoDrop Technologies Inc, Wilmington).

HPV quantification targeting HPV L1 consensus
SYBR green chemistry-based RT-qPCR was employed to quantify HPV DNA. HPV L1 consensus (MY11-GP06) primers were retrieved from previous study\(^1\) [Table 1]. The reaction mixture contained 1X SYBR Green Master mix (Takara, Japan), 400 nM each primer, and 2 µL (~50–100 ng) of gDNA. Thermal cycle conditions were initial denaturation of 5 min at 94°C followed by 40 cycles of 30 s at 94°C, 30 s at 50°C, and 60 s at 72°C.

The specificity of these primers was evaluated through their ability of discriminating against other viral genomes. Then, detection limit of these primers was determined with 10-fold serial dilution of HPV L1 fragment, ranging from 10\(^6\) to 1 copy. The integrity of extracted DNA was checked by amplifying the beta-2-microglobulin gene (B2M) [Table 1]. Standard curve, between Ct versus HPV DNA copy number, was constructed with known copies of HPV DNA ranging from 10\(^6\) to 1 per reaction. The standards, RB DNA samples along with both positive and negative controls, were parallely inspected in triplicate for every run. The reactions with amplification efficiency of above 90% and R\(^2\) value of ≥0.98 were only considered. True Ct value was obtained based on melt curve analysis as it aids to differentiate nonspecific amplification. The viral load (copies/µg) in RB samples was determined through interpolating corresponding Ct value in the standard curve.

Seminested PCR
This method efficiently detects even low copy number, and was conducted as described previously\(^1\) with little modification. In the first round PCR, MY11-MY09 primers were used [Table 1]. The reaction was conducted in 10 µL volume containing 50–100 ng of gDNA, 1X PCR buffer, 50 µM each dNTPs, 0.5 U Taq DNA polymerase (Sigma-Aldrich, USA), and 4 µM each primer. Thermal cycles were initial denaturation of 5 min at 94°C followed by 40 cycles of 30 s at 94°C, 30 s at 50°C, and 60 s at 72°C followed by final extension of 7 min at 72°C. Appropriate positive and negative controls were included in each run. Then, the PCR reaction mixture was purified using ExoSAP-IT™ (Thermo scientific, USA), according to manufacturer’s protocol.

In the second round PCR, the purified PCR mix was reamplified by MY11-GP06 primers [Table 1] with the reaction composition as described above. Thermal cycles were initial denaturation of 5 min at 94°C followed by 40 cycles of 30 s at 94°C, 30 s at 50°C, and 60 s at 72°C followed by final extension of 7 min at 72°C. The resultant PCR mixture was resolved on 1.5% ethidium bromide stained agarose gel. Then, amplification positive reaction mix was further purified and subjected to Sanger sequencing. The HPV genotype was identified using nucleotide- Basic Local Alignment Search Tool/n-BLAST (National Centre for Biotechnology Information).

HPV quantification targeting HPV early genes
TaqMan chemistry-based RT-qPCR was performed using HPV 14 high-risk viruses real-time PCR kit (Helini Biomolecules, Chennai, India), according to manufacturer’s protocol. This kit contained TaqMan probe targeting E6/E7 gene of 14 different HPV genotypes (16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 66, and 68) and an endogenous control to assess reaction performance and DNA integrity. The standard curve was plotted to quantify the viral loads (copies/µg) in clinical samples using HPV 16 standards provided in this kit.

Results
The clinical characteristics and RB1 mutation status of each study patient are given in Supplemental Table S1. Of 106 RB patients, 83% had (n = 88) unilateral and 17% had (n = 18) bilateral disease. The male (n = 55) to female (n = 51) ratio was 1.07:1, with mean age at diagnosis

S. No	Primer pairs used in this study	Product length, bp
1	B2M-1: 5'-GCTGGGTAGCTCTAAAAACATGTATTCA-3' B2M-2: 5'-CGATGACTAACAATGTCTAAAAATGT-3'	95
2	MY11: 5'-GCMACGGGGWCTAYAAYTGG-3' MY09: 5'-GTCGCMARRGGWWAICTGAC-3'	452
3	MY11: 5'-GCMACGGGGWCTAYAAYTGG-3' GP06: 5'-GAAAAATAAAACTGTAAATCA-3'	190

\(^{1}\text{M=A + C; W=A + T; Y=C + T; R=A + G.}\)
Figure 1: HPV quantification by HPV L1 consensus targeted RT-qPCR. (a) Melt curve plot for B2M gene. (b) Melt curve plot for HPV L1 consensus shows amplification only in positive control (HPV PC, black arrow)

Figure 2: HPV detection by seminested PCR. Lane 1: 100 bp ladder (GeneDireX®), Lane T2–T5: RB DNA samples, Lane PC: HeLa DNA (HPV 18 positive), and NTC: nontemplate control

Figure 3: HPV quantification by TaqMan probe RT-qPCR. (a) Standard curve. (b) Endogenous control amplification plot

Discussion

The present study was aimed to investigate the presence of HPV DNA in sporadic RB tumors that had previously been RB1 genotyped. Interestingly, our analyses identified that no tumor DNA was positive for HPV, indicating that HPV has no relevance in the pathogenesis of RB with or without RB1 biallelic mutations. Over the past two decades, several reports regarding the role of HPV in RB have been published and showed their prevalence in this pediatric cancer, ranging from 0 to 82%. Our finding is in concordant with study by Gillison and coworkers where clear evidence of no association between HPV and RB, regardless of RB1 genotype, was demonstrated. A study by Ryoo and coworkers also reported that none of RB tumors were positive for HPV analysis by in-situ hybridization (ISH). In parallel, Saktanasate and coworkers...
by use of real-time PCR also did not identify HPV DNA in RB tumors.[9,10]

However, the HPV infection in RB is still open to debate as many earlier studies of RB have reinforced positive correlation between HPV infection and RB pathogenesis. Orjuela and coworkers identified HPV DNA, particularly HPV 16 (n = 4) and HPV 18 (n = 11), in 14 of 39 tumor genome and observed intact RB1 protein by immunohistochemistry (IHC) in 3 of 14 HPV positive tumor sections.[7] Another Mexico study from different group showed 42 out of 51 RBs, both familial and nonfamilial, positive for different HPV genotypes 6, 11, 31, 33, 35, and 51.[13] Palazzi and coworkers[12] detected oncogenic HPV genotypes 16 and 35 in 12 of 43 sporadic RBs, which was in contradiction to another Brazilian study by Antoneli and coworkers, where only 7 of 153 tumors were shown positive for HPV, indicated low prevalence of HPV in RB children from Brazil.[4]

Correspondingly, the prevalence of HPV in Indian RB is shown to be varying between 0 and 70% owing to differences in study population and sensitivity of different detection methods. Mohan and coworkers employed nested or seminested PCR and found HPV positivity in 47% of unilateral nonfamilial RBs from South India.[4] Using Southern blot technique, Shetty and coworkers identified HPV genotypes 16 and 18 in 40 and 30% of RB tumors, respectively.[13] Anand and coworkers found 24% of unilateral RB tumors positive for different high-risk and intermediate-risk HPV types and reported HPV genotypes 45, 52, 59, 68, 73, and 82 first time in association with RB, due to the employment of linear array HPV genotyping method.[14] The same group also conducted HPV analysis in 21 RB tumors and 15 of 21 corresponding mothers' cervical brushing samples and identified 3 of 12 HPV positive tumors had the same HPV genotypes in their mother's cervical brushing samples, referring the maternal transmission as possible route of HPV infection in children with RB.[19]

Moreover, a case-control study by Naru and coworkers revealed a causal relationship between HPV 16 and RB in 25% of cases.[20] Another study by these authors compared the proteome between HPV infected and uninfected RBs using 2D-DIGE-coupled MALDI TOF/TOF mass spectrometry and identified 11 differentially expressed proteins. Eight upregulated genes included ENO2, CKB, LDHB, VIM, dodecanoyl-CoA isomerase, ubiquitin carboxyl terminal hydrolase isozyme L1, TPM3, and YWHAE, whereas three downregulated genes included TUBB2A, APOA1, and P4HB.[21] Contradictorily, study by Chauhan and coworkers found no causal relationship between HPV and RB.[12]

Certain studies have also enunciated the role of HPV in RB genesis or progression via analyzing the expression of pRB and/or HPV L1 protein. Montoya and coworkers furthermore observed the expression of HPV L1 protein in 7 of 10 HPV positive RB sections using IHC.[15] All of these studies were investigating HPV as an independent risk factor other than RB1 biallelic mutations. Ironically, a case study demonstrated coexistence of RB1 deletion and HPV 6 in a sporadic bilateral tumor and postulated HPV could be a cofactor in RB pathogenesis.[9] This had pushed us forward to investigate whether HPV is a cofactor or an independent factor in the pathogenesis of RB, and there are no reports from India evaluating the HPV DNA in RB tumors that had previously been RB1 genotyped.

In the present study, we first utilized RT-qPCR targeted HPV L1 consensus and found no tumors were positive. Seminested PCR with HPV L1 consensus primers are shown to be more sensitive in the detection of broad spectrum of HPV infections than single-step PCR with either primer set.[14] Since there is a chance of cross-contamination in seminested PCR,[21] following precautions were taken to avoid such cross-contamination (1) inclusion of appropriate negative controls (non-HPV viral DNA), (2) usage of fresh aliquoted PCR reagents for each run, and (3) preparation of PCR master mix in PCR work station and addition of samples in different laminar flow chambers. With all these precautions, we found no positivity for HPV in any RB samples by seminested PCR as well. These negative results might be of having mutations in HPV L1 consensus primer binding site or disruption of L1 gene resulting from integration. HPV-specific PCR was reported to be more sensitive than degenerate PCR due to degeneracy nature of HPV general primers.[22] As a confirmatory analysis, TaqMan chemistry-based RT-qPCR targeted E6 or E7 gene was alternatively utilized for 40 blinded RB tumor DNA samples and also revealed HPV positivity in no tumor DNA.

Only two coherent studies that contradict each other had systematically analyzed the biallelic status of RB1 gene followed by HPV DNA.9,11 Similarly, we conducted HPV analysis in RB tumors, which had already been screened for mutations or methylation in RB1. Moreover, no aforementioned studies conveying positive relationship between HPV and RB have correlated the disease pathogenesis with either the viral copy number or expression of active viral oncogene and/or proteins included E6 and E7.

The lacuna of few studies evidencing no relationship between HPV and RB included (i) targeted only HPV L1 gene, (ii) use of a single technique, and (iii) analysis on DNA from the FFPE section. An ideal way to investigate HPV in clinical samples include targeting at least two different genes of HPV and using more than one technique to confirm. Gillison and coworkers employed multiplex PCR-coupled line blot hybridization detecting HPV L1 gene and RT-qPCR detecting HPV E6 or E7 gene and strongly concluded no relationship between HPV and RB.[11] Equivalently, we also adapted different detection methods, each targeted HPV L1 or E6/7 genes and did not find HPV DNA in any tumor genome.

Majority of the studies utilized qualitative methods. PCR was the most commonly employed techniques followed by dot-blot hybridization[5] to detect HPV DNA in RB tumors. Other techniques included RFLP,[13] Southern blot,[13] ISH,[10] and real-time PCR.[11,16] We used both qualitative and two different chemistries-based quantitative PCR assays in order to minimize the possibility of false-negative outcomes.

Conclusion

Our molecular analyses clearly show the HPV may not be a major risk factor in the RB development or pathogenesis and also ensure that genetic inactivation of RB1 gene is of great consequences in RB tumorigenesis.

Ethical approval and consent to participate

This study was approved by the Institutional Ethics Review Board, Aravind Medical Research Foundation, India (Ethical approval no: IRB2016017BAS) and conducted in
accordant with 1964 Declaration of Helsinki and its later amendments or comparable ethical standards. Written consent was collected from the parents of RB children enrolled in the study.

Acknowledgments
We thank all the patients and their families for participating in this study. The authors gratefully acknowledge the Department of Science and Technology, India for providing fellowship (IF160516) to Thennarasu Shanthini.

Financial support and sponsorship
This study received grants from Department of Biotechnology, Ministry of Science and Technology, India (BT/NNT/28/SP18830/2018) and Aravind Medical Research Foundation, India.

Conflicts of interest
There are no conflicts of interest.

References
1. Dimaras H, Kimani K, Dimba EA, Grondahl P, White A, Chan HS, et al. Retinoblastoma. Lancet 2012;379:1436-46.
2. Knudson AG Jr. Mutation and cancer: Statistical study of retinoblastoma. Proc Natl Acad Sci USA 1971;68:820-3.
3. Goodrich DW. The retinoblastoma tumor-suppressor gene, the exception that proves the rule. Oncogene 2006;25:5233-43.
4. Mohan A, Venkatesan N, Kandalam M, Pasricha G, Acharya P, Khetan V, et al. Detection of human papillomavirus DNA in retinoblastoma samples: A preliminary study. J Pediatr Hematol Oncol 2009;31:8-13.
5. Naru J, Aggarwal R, Singh U, Kakkar N, Bansal D. HPV-16 detected in one-fourth eyes with retinoblastoma: A prospective case-control study from North India. J Pediatr Hematol Oncol 2016;38:367-71.
6. Antonelli CB, Ribeiro KB, Sredni ST, Arias VE, Andreoli MA, de Camargo B, et al. Low prevalence of HPV in Brazilian children with retinoblastoma. J Med Virol 2011;83:115-8.
7. Orjuela M, Castaneda VP, Ridaura C, Lecona E, Leal C, Abramson DH, et al. Presence of human papilloma virus in tumor tissue from children with retinoblastoma: An alternative mechanism for tumor development. Clin Cancer Res 2000;6:4010-6.
8. de Sanjosé S, Brotons M, Pavón MA. The natural history of human papillomavirus infection. Best Pract Res Clin Obstet Gynaecol 2018;47:2-13.
9. Espinoza JP, Cardenas VJ, Luna CA, Fuentes HM, Camacho GV, Carrera FM, et al. Loss of 10p material in a child with human papillomavirus-positive disseminated bilateral retinoblastoma. Cancer Genet Cytogenet 2005;161:146-50.
10. Ryoo NK, Kim JE, Choung HK, Kim N, Lee MJ, Khwarg SI. Human papillomavirus in retinoblastoma tissues from Korean patients. Korean J Ophthalmol 2013;27:368-71.
11. Gillison ML, Chen R, Goshu E, Rushlow D, Chen N, Banister C, et al. Human retinoblastoma is not caused by known pRB-inactivating human tumor viruses. Int J Cancer 2007;120:1482-90.
12. Chauhan S, Sen S, Singh N, Sharma A, Pushker N, Kashyap S, et al. Human papillomavirus in ocular malignant tumours: A study from a tertiary eye care centre in North India. Can J Ophthalmol 2019;54:688-93.
13. Shetty OA, Naresh KN, Banavali SD, Shet T, Joshi R, Qureshi S, et al. Evidence for the presence of high risk human papillomavirus in retinoblastoma tissue from nonfamilial retinoblastoma in developing countries. Pediatr Blood Cancer 2012;58:185-90.
14. Lee SH, Vigiotti VS, Vigiotti JS, Pappu S. Validation of human papillomavirus genotyping by signature DNA sequence analysis. BMC Clin Pathol 2009;9:3.
15. Montoya-Fuentes H, de la Paz Ramirez-Munoz M, Villar-Calvo V, Suarez-Rincón AE, Ornelas-Aguirre JM, Vazquez-Camacho G, et al. Identification of DNA sequences and viral proteins of 6 human papillomavirus types in retinoblastoma tissue. Anticancer Res 2003;23:2853-62.
16. Saktanasate J, Saksiriwutto P, Uiprasertkul M, Horthongkham N, Trinavarat A, Atchaneeyasakul LO. Human papillomavirus DNA in paraffin-embedded retinoblastoma. J Med Assoc Thai 2018;101:229-31.
17. Palazzi MA, Yunes JA, Cardinalli IA, Stangenhaus GP, Brandalise SR, Ferreira SA, et al. Detection of oncogenic human papillomavirus in sporadic retinoblastoma. Acta Ophthalmol Scand 2003;81:396-8.
18. Anand B, Ramesh C, Appaji L, Kumari BS, Shenoy AM, Nanjundappa, et al. Prevalence of high-risk human papillomavirus genotypes in retinoblastoma. Br J Ophthalmol 2011;95:1014-8.
19. Bhuvaneshwari A, Pallavi VR, Jashree RS, Kumar RV. Maternal transmission of human papillomavirus in retinoblastoma: A possible route of transfer. Indian J Med Paediatr Oncol 2012;33:210-5.
20. Naru J, Aggarwal R, Mohanty AK, Singh U, Bansal D, Kakkar N, et al. Identification of differentially expressed proteins in retinoblastoma tumors using mass spectrometry-based comparative proteomic approach. J Proteomecs 2017;159:77-91.
21. Montenegro LM, Montenegro RA, Lima AS, Carvalho AB, Schindler HC, Abath FG. Development of a single tube hemi-nested PCR for genus-specific detection of Plasmodium in oligoparasite patients. Trans R Soc Trop Med Hyg 2004;98:619-25.
22. Depuydt CE, Boulet GA, Horvath CA, Benoy IH, Vereecken AJ, Bogers JJ. Comparison of MY09/11 consensus PCR and type-specific PCRs in the detection of oncogenic HPV types. J Cell Mol Med 2007;11:881-91.
Table S1: Clinical and genetic characteristics of retinoblastoma patients from this study

Sample	Age of diagnosis (months)	Sex	RB Stages	Laterality	Clinical presentation	RB1 mutation
O1	18	F	E	Uni	Leukocoria	Present
O2	24	F	A, E	Bi	Leukocoria	Present
O4	9	M	E	Uni	Leukocoria	Present
O5	24	F	E	Uni	Leukocoria	Present
O6	17	F	E	Uni	Leukocoria	Present
O7	24	F	E	Uni	Leukocoria	Present
O8	24	F	E	Uni	Leukocoria	Present
O9	36	M	E	Uni	Leukocoria	Present
O12	36	F	E, E	Bi	Leukocoria	Present
O13	24	M	E	Uni	Leukocoria	Present
O14	12	F	E	Uni	Leukocoria	No mutation
O15	3	M	E	Uni	Leukocoria	Present
O16	24	M	E	Uni	Leukocoria	Present
O18	30	M	E, A	Bi	Leukocoria	Present
O19	18	M	B, E	Bi	Leukocoria	Present
O20	36	M	E	Uni	Leukocoria	Present
O22	12	M	E	Uni	Leukocoria	Present
O24	12	M	E	Uni	Leukocoria	Present
O25	24	M	E	Uni	Leukocoria	Present
O26	24	M	D	Uni	Leukocoria	Present
O27	12	F	E, D	Bi	Leukocoria	Present
O28	72	F	E	Uni	Leukocoria	No mutation
O29	36	M	A, E	Bi	Leukocoria	Present
O30	24	F	A, E	Bi	Leukocoria	Present
O31	48	F	E	Uni	Leukocoria	Present
O32	9	M	E	Uni	Leukocoria	Present
O33	36	M	D	Uni	Leukocoria	Present
O34	18	M	E	Uni	Leukocoria	Present
O35	3	M	B, E	Bi	Leukocoria	Present
O36	72	M	D	Uni	Leukocoria	Present
O37	36	M	E	Uni	Leukocoria	Present
O38	30	M	E	Uni	Leukocoria	Present
O39	34	M	E	Uni	Squint	Present
O40	18	F	E	Uni	Leukocoria	Present
O41	24	F	E	Uni	Leukocoria	Present
O42	15	M	E	Uni	Leukocoria	Present
O44	4	M	E	Uni	Leukocoria	Present
O45	36	F	E	Uni	Leukocoria and squint	Present
O46	26	M	E, A	Bi	Leukocoria	Present
O47	48	F	E	Uni	Leukocoria	Present
O48	21	M	E	Uni	Leukocoria	Present
O49	24	M	A, E	Bi	Leukocoria	Present
O50	24	M	E	Uni	Leukocoria	Present
O51	28	M	E	Uni	Leukocoria	Present
O52	28	M	D, A	Bi	Leukocoria	Present
O53	24	F	E	Uni	Leukocoria	Present
O54	41	F	E	Uni	Leukocoria	Present
O55	8.5	F	D, E	Bi	Leukocoria	Present
O56	5	M	E	Uni	Leukocoria	Present
O57	32	F	E	Uni	Leukocoria	Present

Contd...
Sample	Age of diagnosis (months)	Sex	RB Stages	Laterality	Clinical presentation	RB1 mutation
O58	36	M	D	Uni	Leukocoria	Present
O59	18	M	D	Uni	Leukocoria	Present
O60	24	F	E	Uni	Leukocoria	Present
O61	2	F	E	Uni	Leukocoria	Present
O62	48	F	E	Uni	Defective vision	Present
O64	18	M	E	Uni	Leukocoria	Present
O65	28	F	E	Uni	Leukocoria	Present
O66	66	M	D	Uni	Leukocoria	Present
O67	12	M	D	Uni	Leukocoria	Present
O68	24	F	D, A	Bi	Leukocoria	Present
O69	18	M	D	Uni	Leukocoria	Present
O70	16	F	B, E	Bi	Leukocoria	Present
O71	36	F	D, E	Bi	Leukocoria	Present
O72	25	F	E	Uni	Leukocoria	Present
O73	24	F	E	Uni	Leukocoria	No mutation
O75	30	F	E, A	Bi	Leukocoria	Present
T1	7	M	E	Uni	Leukocoria	Present
T2	9	F	D	Uni	Leukocoria	Present
T3	27	M	E	Uni	Leukocoria	Present
T4	29	F	E	Uni	Leukocoria	Present
T5	17	F	E	Uni	Leukocoria	Present
T6	36	M	E	Uni	Leukocoria	No mutation
T7	24	F	D	Uni	Leukocoria	Present
T8	4	M	E	Uni	Leukocoria	No mutation
T9	36	M	E	Uni	Leukocoria	Present
T10	36	M	E	Uni	Leukocoria	Present
T11	48	F	E	Uni	Leukocoria	Present
T12	36	F	E	Uni	Leukocoria	No mutation
T13	48	F	E	Uni	Leukocoria	Present
T14	48	F	E	Uni	Leukocoria	Present
T15	6	M	E	Uni	Leukocoria	Present
T16	72	M	E	Uni	Leukocoria	Present
T17	36	F	E	Uni	Leukocoria	Present
T18	39	M	E	Uni	Leukocoria	Present
T19	20	M	E	Uni	Leukocoria	Present
T20	24	F	E	Uni	Leukocoria	Present
T21	36	M	E	Uni	Leukocoria	Present
T22	24	F	E	Uni	Leukocoria	Present
T23	2	M	E	Uni	Leukocoria	Present
T24	24	F	E	Uni	Leukocoria	Present
T25	24	F	A, E	Bi	Leukocoria	Present
T26	24	F	E	Uni	Leukocoria	Present
T27	19	F	E	Uni	Leukocoria	Present
T28	24	M	D	Uni	Leukocoria	Present
T29	12	M	D	Uni	Leukocoria	Present
T30	60	F	E	Uni	Leukocoria	Present
T31	9	F	E	Uni	Leukocoria	Present
T32	29	M	D	Uni	Leukocoria	Present
T33	10	F	E	Uni	Leukocoria	Present
T34	36	M	E	Uni	Leukocoria	No mutation
Table S1: Contd...

Sample	Age of diagnosis (months)	Sex	RB Stages	Laterality	Clinical presentation	RB1 mutation
T35	19	M	E	Uni	Leukocoria	No mutation
T36	72	F	E	Bi	Leukocoria	Present
T37	24	M	E	Uni	Leukocoria	Present
T38	24	M	D	Uni	Leukocoria	Present
T39	36	F	E	Uni	Leukocoria	Present
T40	36	F	E	Uni	Leukocoria	Present

Uni – Unilateral; Bi – Bilateral.
Ct value for HPV 16	Ct value for HPV 18	Ct value for other 12 HPV types	Ct value for endogenous control
Undetermined	41.953	Undetermined	21.549
Undetermined	Undetermined	Undetermined	22.857
Undetermined	44.405	Undetermined	21.082
Undetermined	Undetermined	Undetermined	21.296
Undetermined	Undetermined	Undetermined	23.422
Undetermined	Undetermined	Undetermined	19.201
Undetermined	Undetermined	Undetermined	24.064
Undetermined	Undetermined	Undetermined	22.006
Undetermined	Undetermined	Undetermined	22.983
Undetermined	Undetermined	Undetermined	22.892
Undetermined	Undetermined	Undetermined	21.465
Undetermined	Undetermined	Undetermined	23.590
Undetermined	Undetermined	Undetermined	21.607
Undetermined	Undetermined	Undetermined	26.218
Undetermined	Undetermined	Undetermined	21.828
Undetermined	Undetermined	Undetermined	22.055
Undetermined	Undetermined	Undetermined	21.563
Undetermined	Undetermined	Undetermined	22.934
Undetermined	Undetermined	Undetermined	22.792
Undetermined	Undetermined	Undetermined	22.158
Undetermined	Undetermined	Undetermined	23.133
Undetermined	Undetermined	Undetermined	22.305
Undetermined	Undetermined	Undetermined	21.685
Undetermined	Undetermined	Undetermined	23.156
Undetermined	Undetermined	Undetermined	21.935
Undetermined	Undetermined	Undetermined	22.360
Undetermined	Undetermined	Undetermined	22.670
Undetermined	Undetermined	Undetermined	22.387
Undetermined	Undetermined	Undetermined	23.281
Undetermined	Undetermined	Undetermined	23.394
Undetermined	34.481	Undetermined	22.057
Undetermined	Undetermined	Undetermined	22.335
Undetermined	Undetermined	Undetermined	22.715
Undetermined	Undetermined	Undetermined	20.982
Undetermined	Undetermined	Undetermined	24.440
Undetermined	Undetermined	Undetermined	22.557
Undetermined	Undetermined	Undetermined	22.212
Undetermined	Undetermined	Undetermined	21.803
Undetermined	Undetermined	Undetermined	23.057
Undetermined	Undetermined	Undetermined	22.174
Figure S1: Melt curve plot of MY11-GP06 specificity test showing amplification in HPV positive control (HeLa cell DNA)