Rhabdoid tumors of the central nervous system are rare malignancies. These tumors resemble rhabdomyosarcomas, but their immunohistochemical and ultrastructural features allow a clear distinction between the two types of tumors. Recently, some authors have reported a small number of cases of extrarenal rhabdoid tumors. Since 1985, 85 cases of primary CNS malignant rhabdoid tumors have been documented. Intracranial ATT/RhT is a disease of infancy and childhood, usually occurring during the first decade of life. The most common biologically malignant CNS tumor in this period is a primitive neuroectodermal tumor-medulloblastoma (PNET-MB). ATT/RhT is frequently found in the posterior cranial fossa and has different biological behaviors. We report a case of primary intracranial ATT/RhT in the posterior cranial fossa of a child. Preoperative radiological diagnosis was PNET-MB, but pathological diagnosis is ATT/RhT. The case involved a 16-month-old baby boy who presented with severe headache, vomiting, and gait disturbance. He was treated by surgical resection, chemotherapy, and radiotherapy. Despite aggressive therapy, he died 19 months after diagnosis. Clinical, radiological, and histopathological features of primary intracranial ATT/RhT are discussed with a special emphasis on the differential diagnosis from PNET-MB.

Key Words: Atypical Teratoid/Rhabdoid Tumor; Primitive Neuroectodermal Tumor; Medulloblastoma; Child

INTRODUCTION

A 16-month-old baby boy had been suffering from vomiting and progressive gait disturbance since the age of 14 months. He was irritable, drowsy, and showed bilateral papilledema and bilateral Babinski’s sign on admission. Preoperative diagnosis was PNET-MB, but pathological diagnosis is ATT/RhT. The case involved a 16-month-old baby boy who presented with severe headache, vomiting, and gait disturbance. He was treated by surgical resection, chemotherapy, and radiotherapy. Despite aggressive therapy, he died 19 months after diagnosis. Clinical, radiological, and histopathological features of primary intracranial ATT/RhT are discussed with a special emphasis on the differential diagnosis from PNET-MB.
sicular nuclei, occasional single prominent nucleolus, and moderate amounts of eosinophilic or pale cytoplasm (Fig. 3A). In addition to these rhabdoid cells, some cells with intracytoplasmic hyaline-like eosinophilic material were found. The material was displacing the nuclei to the eccentric side, and creating the classic ‘rhabdoid’ appearance, as seen in the rhabdoid tumor of the kidney. Portions consisting of small undifferentiated cells with indistinct cell borders resembling medulloblastoma were also found. Immunohistochemical study revealed both large and small cells which were focally positive for cytokeratin (Fig. 3B), epithelial membrane antigen (EMA, Fig. 3C), synaptophysin, and vimentin (Fig. 3D). They were totally negative for glial fibrillary acidic protein (GFAP). These histologic and immunohistochemical findings were compatible with a diagnosis of ATT/RhT.

After surgical removal of the tumor, the patient received four cycles of chemotherapy according to the eight-drugs-in-one-day protocol. A small enhancing nodule was detected on the left cerebellum on brain MRI after the second chemotherapy. Subsequent spinal MRI showed linearly enhancing lesions along the surface of the spinal cord, suggesting an intraspinal dissemination. Radiotherapy was given with a total intracranial dose of 4,860 cGy in 27 fractions and a total spinal dose of 2,400 cGy in 16 fractions. Though he received two additional cycles of chemotherapy, the tumor volume was not reduced. He died 19 months after the diagnosis. Autopsy was not performed.

**DISCUSSION**

ATT/RhT is a tumor of infancy and childhood, and very rare in adults (5, 6, 9). The mean age of the patients is 2.9 yr and three-quarters of them are 3 yr or younger at the time of diagnosis with a male predominance (10). Childhood PNET-MB, tends to appear between 3 and 5 yr of age. Eighty percent of classic PNET-MBs arise in the cerebellum, but the ATT/RhTs develop on that site in only slightly over half (3-
6, 10). The cerebellopontine angle appears to be a common location for ATT/RhT, 15% in series of Rorke et al. (6). ATT/RhT is a highly malignant neoplasm involving leptomeningeal dissemination in 10-30% of patients (3-6, 10).

Clinical presentation depends on the age of onset and the location of the tumor. Children younger than 3 yr of age usually present with nonspecific symptoms and signs, such as vomiting, lethargy, irritability, loss of weight, macrocephaly, and failure to thrive. Older patients commonly present with increased intracranial pressure or localizing signs. Cranial nerve palsies, headache, and hemiplegia are common (2-4, 6).

Many authors have reported that the clinical symptoms and signs, and the radiological appearance of ATT/RhT are similar to those of PNET-MB, which frequently misleads ATT/RhT to a preoperative diagnosis of PNET/MB. The characteristic findings of ATT/RhT are heterogeneous density on pre-contrast CT, and inhomogeneous enhancement. Calcification, cyst formation, and hemorrhage are frequently associated. On MRI, ATT/RhT usually shows a decreased signal intensity on T2-weighted images, an isosignal intensity on proton image, and inhomogeneous enhancement with gadolinium. Differential diagnosis between ATT/RhT and

Fig. 3. Photomicrography of the tumor discloses aggregations of large, pale, polygonal cells with vesicular nuclei, occasional single prominent nucleolus, and moderate amount of eosinophilic cytoplasm (H&E. A). Immunohistochemical stains for cytokeratin (B), epithelial membrane antigen (C), and vimentin (D) reveal focal positive reactions (A-D, original magnification ×200).
PNET-MB is difficult by radiological findings, but is easier by histopathological findings (6). The malignant rhabdoid tumors are mainly composed of rhabdoid cells, but they also contain areas of primitive neuroectodermal cells with both epithelial and mesenchymal components, which explains why these tumors have been misdiagnosed as PNET-MB in the past. This variety of histological components in the malignant rhabdoid tumor suggests that this tumor is a special type of teratoma, and this motivated Rorke et al. to propose the name ‘atypical teratoid/rhabdoid tumor’ for the malignant form of rhabdoid tumor (5). Light microscopic examination of ATT/RhT reveals a diffuse growth pattern of predominantly polygonal cells arranged in a focally trabecular or alveolar fashion, cells with vesicular nuclei and prominent nucleoli, and scattered cells with globular hyaline cytoplasmic inclusions in the vicinity of the nuclei. Electron microscopy shows whorls of filaments in the cytoplasm, which can be classified as intermediate filaments and represent vimentin (1, 2, 5, 6). Results of the immunohistochemical studies show positivities for three antibodies whose epitopes are almost always expressed: EMA, vimentin, and smooth-muscle actin (SMA) (3, 4, 6, 7, 10). These positivities are not found in PNET-MBs: in particular, EMA is always negative in PNET-MBs (10). Results for GFAP, germ cell tumor markers, desmin, neurofilament, and myoglobin are negative (2, 4-6, 10). Some authors have described deletion or monosomy of chromosome 22 as the most common abnormality in the CNS ATT/RhT (5, 6, 8). Differential diagnosis must include PNET-MB, ependymoma, choroid plexus papilloma, and teratoma.

There has hitherto been no satisfactory treatment for ATT/RhT. The majority of patients die within the first year of local tumor relapse or of leptomeningeal dissemination (2, 4, 5). ATT/RhT is frequently disseminated along the neuraxis at the time of disease relapse. The purpose of surgery is to make a diagnosis and to reduce the tumor burden. Children with ATT/RhT rarely respond to treatment despite the use of aggressive chemotherapy and/or radiotherapy (6).

The median time to tumor progression is 4.5 months, and the mean survival duration is 6 months (6). Survival is poor and unrelated to the age of the patient at the time of diagnosis, the extent of resection, or the type of adjuvant postoperative therapy.

In summary, we reported a case of a 16-month-old male who presented with vomiting, lethargy, and gait disturbance. Preoperative CT and MRI seemed to indicate PNET-MB. Total tumor removal was not possible owing to the invasion of the brainstem. The pathological findings of the resected tissue were consistent with ATT/RhT. CNS ATT/RhT is very rare, and its prognosis is invariably poor according to the previous reports. Considerations on ATT/RhT in the differential diagnosis of posterior cranial fossa tumors may help to avoid misdiagnosis and erroneous prognostication.

REFERENCES

1. Beckwith JB, Palmer NF. Histopathology and prognosis of Wilms’ tumor. Results from the First National Wilms’ Tumor Study. Cancer 1978; 41: 1937-48.
2. Rorke LB, Packer R, Biegel J. Central nervous system atypical teratoid/rhabdoid tumors of infancy and childhood. J Neurooncol 1995; 24: 21-8.
3. Martínez-Lage JF, Nieto A, Solà J, Domingo R, Costa TR, Poza M. Primary malignant rhabdoid tumor of the cerebellum. Child’ Nerv Syst 1997; 13: 418-21.
4. Munoz A, Carrasco A, Munoz MJ, Esparza J. Cranial rhabdoid tumor with marginal tumor cystic component and extraaxial extension. Am J Neuroradiol 1995; 16: 1727-8.
5. Caldemeyer KS, Smith RR, Azzarelli B, Boaz JC. Primary central nervous system malignant rhabdoid tumor: CT and MR appearance simulates a primitive neuroectodermal tumor. Pediatr Neurosurg 1994; 21: 232-6.
6. Rorke LB, Packer RJ, Biegel JA. Central nervous system atypical teratoid/rhabdoid tumors of the infancy and childhood: definition of an entity. J Neurosurg 1996; 85: 56-65.
7. Bonnin JM, Rubinstein LJ, Palmer NF, Beckwith JB. The association of embryonal tumors originating in the kidney and in the brain: a report of seven cases. Cancer 1984; 54: 2137-46.
8. Biegel JA, Rorke LB, Packer RJ, Emanuel BS. Monosomy 22 in rhabdoid or atypical teratoid tumors of the brain. J Neurosurg 1990: 73: 710-4.
9. Horn M, Schlote W, Lerch KD, Steudel WI, Harns D, Thomas E. Malignant rhabdoid tumor: primary intracranial manifestation in an adult. Acta Neuropathol (Berl) 1992; 83: 445-8.
10. Agranovich AL, Ang LC, Griebel RW, Kobrisky NL, Lowry N, Tchang SP. Malignant rhabdoid tumor of the central nervous system with subarachnoid dissemination. Surg Neurol 1992; 37: 410-4.