Characterization of Minimum Cycle Basis in Weighted Partial 2-trees

N.S. Narayanaswamy † G. Ramakrishna †

Abstract
For a weighted outerplanar graph, the set of lex short cycles is known to be a minimum cycle basis [Inf. Process. Lett. 110 (2010) 970-974]. In this work, we show that the set of lex short cycles is a minimum cycle basis in weighted partial 2-trees (graphs of treewidth two) which is a superclass of outerplanar graphs.

1 Introduction
A cycle basis is a compact description of the set of all cycles of a graph and has various applications including the analysis of electrical networks [6]. Let \(G = (V(G), E(G)) \) be an edge weighted graph and let \(m = |E(G)| \) and \(n = |V(G)| \). A cycle is a connected graph in which the degree of every vertex is two. An incidence vector \(x \), indexed by \(E(G) \) is associated with every cycle \(C \) in \(G \), where for every edge \(e \in E(G) \), \(x_e \) is 1 if \(e \in E(C) \) and 0 otherwise. The cycle space of \(G \) is the vector space over \(\mathbb{F}_2^m \) spanned by the incidence vectors of cycles in \(G \). A cycle basis of \(G \) is a minimum set of cycles whose incidence vectors span the cycle space of \(G \). The weight of a cycle \(C \) is the sum of the weights of the edges in \(C \). A cycle basis \(B \) of \(G \) is a minimum cycle basis (MCB) if the sum of the weights of the cycles in \(B \) is minimum. A minimum cycle basis of \(G \) is denoted by \(MCB(G) \).

Motivation: For a weighted graph \(G \), Horton has identified a set \(\mathcal{H} \) of \(O(mn) \) cycles and has shown that a minimum cycle basis of \(G \) is a subset of \(\mathcal{H} \) [5]. Liu and Lu have shown that the set of lex short cycles (defined later) is a minimum cycle basis in weighted outerplanar graphs [8]. We generalize this result for partial 2-trees which is a superclass of outerplanar graphs.

Our contribution: The following are the main results in this work.

Theorem 1.1 Let \(G \) be a weighted partial 2-tree on \(n \) vertices and \(m \) edges. Then the number of lex short cycles in \(G \) is \(m - n + 1 \).

Theorem 1.2 For a weighted partial 2-tree \(G \), the set of lex short cycles is a minimum cycle basis.

Related work: The characterization of graphs using cycle basis was initiated by MacLane [9]. In particular, MacLane showed that a graph \(G \) is planar if and only if \(G \) contains a cycle basis \(B \) such that each edge in \(G \) appears in at most two cycles of \(B \). However, he referred to a cycle basis as a complete independent set of cycles. Formally, the concept of cycle space in graphs was introduced in [3] after four decades. Later, it was characterized that a planar 3-connected graph \(G \) is a Halin graph if and only if \(G \) has a planar basis \(B \) such that each cycle in \(B \) has an external edge [12]. There after, it was shown that every 2-connected outerplanar graph has a unique MCB [7]. Subsequently, it was proven that Halin graphs that are not necklaces have a unique MCB [11].

* A preliminary version of this paper appeared as Characterization of Minimum Cycle Basis in Weighted Partial 2-trees in the proceedings of CTW 2012
† Department of Computer Science and Engineering, Indian Institute of Technology Madras, India. Email: swamy@cse.iitm.ac.in, grama@cse.iitm.ac.in
The first polynomial time algorithm for finding an MCB was given by Horton [5]. Since then, many improvements have taken place on algorithms related to minimum cycle basis and its variants. A detailed survey of various algorithms, characterizations and the complexity status of cycle basis and its variants was compiled by Kavitha et al. [6]. The current best algorithm for MCB runs in $O(m^2 n/ \log n)$ time and is due to Amaldi et al. [1].

Graph preliminaries: In this paper, we consider only simple, finite, connected, undirected and weighted graphs. We refer [13] for standard graph theoretic terminologies. Let G be an edge weighted graph. Let $X \subseteq V(G)$. $G - X$ denotes the graph obtained after deleting the set of vertices in X from G. $G[X]$ denotes the subgraph induced by vertices in X. X is a **vertex separator** if $G - X$ is disconnected. A **component** of G is a maximal connected subgraph. K_2 denotes a cycle on 3 vertices and K_3 denotes an edge. $K_{2,3}$ is a complete bipartite graph (V_1, V_2) such that $|V_1| = 2$, $|V_2| = 3$. A graph is **planar** if it can be drawn on the plane without any edge crossings. A planar graph is **outerplanar** if it can be drawn on the plane such that all of its vertices lie on the boundary of its exterior region. A 2-tree is defined inductively as follows: K_3 is a 2-tree; if G' is a 2-tree and $G = G' \cup \{v\}$ is such that $N_G(v)$ forms a K_2 in G, then G is a 2-tree. A graph is a **partial 2-tree** if it is a subgraph of a 2-tree. Alternatively, a graph of treewidth (defined in [10]) two is a **partial 2-tree**. An H-**subdivision** (or subdivision of H) is a graph obtained from a graph H by replacing edges with pairwise internally vertex disjoint paths.

2 MCB in Weighted Partial 2-trees

For a weighted partial 2-tree G associated with a weight function $w : E(G) \rightarrow \mathbb{N}$, we show that the set of lex short cycles (defined below) in G is an MCB(G). The notion of lex shortest path and lex short cycle is presented from [4]. For a totally ordered set S, min(S) denotes the minimum element in S. For a graph G, let $V(G)$ be a totally ordered set. A path $P(u, v)$ between two distinct vertices u and v is **lex shortest path** if for all the paths P' between u and v other than P, exactly one of the following three conditions hold: 1) $w(P') > w(P)$ 2) $w(P') = w(P)$ and $|E(P')| > |E(P)|$ 3) $w(P') = w(P)$, $|E(P')| = |E(P)|$ and $\min(V(P') \setminus V(P)) > \min(V(P) \setminus V(P'))$, where $w(P) = \Sigma_{e \in E(P)} w(e)$. The lex shortest path between any two vertices u and v is unique and is denoted by lsp(u, v). A cycle C is **lex short** if for every two vertices u and v in C, lsp$(u, v) \subseteq C$. The set of lex short cycles of G is denoted by LSC(G). For a subgraph G_1 of G, the total order of $V(G_1)$ is the order induced by the total order of $V(G)$. We use lsp$_{G_1}(x, y)$ to denote the lex shortest path between vertices x and y in G_1. We use the following lemmas from the literature.

Lemma 2.1 ([4]) For a simple weighted graph G, LSC(G) contains an MCB(G).

Lemma 2.2 ([8]) For a simple weighted outerplanar graph G, $|\text{LSC}(G)| = m - n + 1$.

We present the following lemmas and theorems that are required to prove our main result.

Lemma 2.3 Let G be a partial 2-tree and $\{u, v\}$ be a vertex separator in G. Let P be the lex shortest path between u and v. There exist one component H in $G - \{u, v\}$ such that $V(P) \cap V(H) = \emptyset$ and $E(P) \cap E(H) = \emptyset$.

Proof If $P = (u, v)$, then none of the components in $G - \{u, v\}$ contain $V(P)$ and $E(P)$. If $P = (u, x, v)$, then no component in $G - \{u, v\}$ contain $E(P)$ and exactly one component in $G - \{u, v\}$ contains x. If P is not captured by these two cases, then P has at least three edges. If $|E(P)| \geq 3$, then exactly one component in $G - \{u, v\}$ that contains $P - \{u, v\}$. Since $\{u, v\}$ is a vertex separator in G, the number of components in $G - \{u, v\}$ is at least two. Therefore, there exist a component H in $G - \{u, v\}$ such that $V(P) \cap V(H) = \emptyset$ and $E(P) \cap E(H) = \emptyset$. \square

Lemma 2.4 Let G be a partial 2-tree that is not outerplanar. Then there exists a $K_{2,3}(\{u, v\}, \{x, y, z\})$-subdivision in G such that $G - \{u, v\}$ contains at least three components.
Proof A graph is outerplanar if and only if it contains no subgraph that is a subdivision of K_4 or $K_{2,3}$ [2]. Since a partial 2-tree does not contain a subdivision of K_4, a partial 2-tree is outerplanar if and only if it does not contain a subdivision of $K_{2,3}$. Consider a $K_{2,3}\{u, v\}, \{x, y, z\}$-subdivision in G. Assume that $G - \{u, v\}$ has at most two components. Then there exist a path in $G - \{u, v\}$ between two vertices in $\{x, y, z\}$ which does not go through the other vertex. Without loss of generality, we assume that x and y are those two vertices and z is the other vertex. Such a path between x and y is shown as a dotted path in Figure 1. It follows that there are six internal vertex disjoint paths in G, namely $P(x, u), P(x, v), P(y, u), P(y, v), P(x, y)$ and $P(u, v)$ via z. Thus, there is a K_4-subdivision on the vertex set $\{u, v, x, y\}$ in G. This is a contradiction that G is a partial 2-tree. Therefore, $\{u, v\}$ is a vertex separator in G whose removal gives at least three components. □

Figure 1: A K_4-subdivision on the vertex set $\{u, v, x, y\}$

Lemma 2.5 Let G' be a weighted subgraph of a weighted graph G. Let P be a path and C be a cycle contained both in G and G'.
(a) If P in G is lex shortest, then P in G' is lex shortest.
(b) If $C \in LSC(G)$, then $C \in LSC(G')$.

Proof Suppose if the path P in G' is not lex shortest, then the path P in G would not be lex shortest. Hence, the P in G' is lex shortest.

Recall that C is a lex short cycle if for every $x, y \in V(C)$, lsp(x, y) is contained in C. Since C is in G' and for every $x, y \in C$, lsp(x, y) is same as lsp$_{G'}(x, y)$, C is a lex short cycle in G'. □

Lemma 2.6 The intersection of two lex shortest paths is either empty or a lex shortest path.

Proof Consider two lex shortest paths lsp(x, y) and lsp(u, v) in G. Let $G' = (V(G'), E(G'))$, where $V(G') = V(lsp(x, y)) \cap V(lsp(u, v))$, $E(G') = E(lsp(x, y)) \cap E(lsp(u, v))$. Suppose $V(G') \neq \emptyset$ and G' is not a path, then we have at least two maximal paths $P(a, b)$ and $P(a', b')$ which are common to both lsp(x, y) and lsp(u, v), where $b \neq a'$. Consequently, the path $P_1(b, a')$ contained in $lsp(x, y)$ and the path $P_2(b, a')$ contained in $lsp(u, v)$ are different. Since a subpath of a lex shortest path is a lex shortest path, both P_1 and P_2 are lex shortest paths between b and a'; a contradiction to the fact that for any two vertices in a graph, there is a unique lex shortest path. □

We decompose a weighted partial 2-tree G that is not outerplanar into two weighted partial 2-trees G_1 and G_2 in such a way that $LSC(G)$ is equal to the disjoint union of $LSC(G_1)$ and $LSC(G_2)$. From Lemma 2.4 there exist two vertices $u, v \in V(G)$ such that $G - \{u, v\}$ is disconnected and has at least three components. Let P be the lex shortest path between u and v in G. By Lemma 2.3 there exist a component H in $G - \{u, v\}$ such that $V(P) \cap V(H) = E(P) \cap E(H) = \emptyset$. The operation $\text{decomp}(G, u, v)$ decomposes G into G_1 and G_2, where $V(G_1) = V(H) \cup V(P)$, $E(G_1) = E(H) \cup E(P) \cup \{x, y\} | x \in V(H), y \in \{u, v\}$ and $(x, y) \in E(G)$, $G_2 = G[V(G) \setminus V(H)]$. An example is shown in Figure 2 to illustrate the operation $\text{decomp}(G, u, v)$.

We use the following notation for the rest of the paper. G is a weighted partial 2-tree that is not outerplanar. $\{u, v\}$ is a vertex separator that disconnects G into at least three components. H is a component in $G - \{u, v\}$ such that $V(lsp(u, v)) \cap V(H) = \emptyset$ and $E(lsp(u, v)) \cap E(H) = \emptyset$. G_1 and G_2 are the graphs obtained from the operation $\text{decomp}(G, u, v)$.

From the definition of $\text{decomp}(G, u, v)$, we have the following two observations.
Observation 1 For $x, y \in V(lsp(u, v))$, $lsp(x, y)$ is in G_1.

Proof This observation follows, since every subpath of a lex shortest path is a lex shortest path. □

Observation 2 For $x \in V(G_i)$ and $y \in V(G_i) \setminus V(lsp(u, v))$, every path $P(x, y)$ in G such that the internal vertices of P are in $V(G_i) \setminus \{u, v\}$, is present in G_i.

Proof Assume that $P(x, y)$ is not in G_i. In the path P from x to y, let (a, b) be the first edge such that $(a, b) \notin E(P)$. Clearly, $b \notin V(G_i)$. It follows that a is an intermediate vertex in P and $a \in \{u, v\}$; a contradiction to the premise that no intermediate vertex in P belong to $\{u, v\}$. Hence, the observation. □

Lemma 2.7 For $i \in \{1, 2\}$, for every two vertices $x, y \in V(G_i)$, $lsp(x, y)$ is in G_i.

Proof If no vertex is common in $lsp(x, y)$ and $lsp(u, v)$, then from Observation 2 $lsp(x, y)$ is in G_i. If at least one vertex is common in $lsp(x, y)$ and $lsp(u, v)$, then due to Lemma 2.6 $lsp(x, y) \cap lsp(u, v)$ is $lsp(a, b)$ for some $a, b \in V(lsp(u, v)) \cap V(lsp(x, y))$. The $lsp(x, y)$ can be viewed as a union of three paths $P(x, a)$, $P(a, b)$ and $P(b, y)$. From Observation 1 $P(a, b)$ is contained in G_i. If $x = a$, then trivially $P(x, a)$ appears in G_i. Also, if $y = b$, then clearly $P(b, y)$ appears in G_i. If $x \neq a$, then $x \notin V(lsp(u, v))$. Similarly, if $y \neq b$, then $y \notin V(lsp(u, v))$. From Observation 2 it follows that both $P(x, a)$ and $P(b, y)$ appear in G_i. These observations imply that $lsp(x, y)$ is in G_i. □

Corollary 2.8 For $i \in \{1, 2\}$, if there is a cycle C in $LSC(G_i)$, then C is in $LSC(G)$.

Proof From Lemmas 2.7 and 2.9(a), for every $x, y \in V(G_i)$, $lsp_G(x, y)$ and $lsp(x, y)$ are same. Since $C \in LSC(G_i)$, for every $x, y \in V(C)$, $lsp_G(x, y)$ is contained in C. Consequently, for every $x, y \in V(C)$, $lsp(x, y)$ is contained in C. Hence $C \in LSC(G)$. □

Theorem 2.9 $LSC(G) = LSC(G_1) \cup LSC(G_2)$.

Proof Since $E(G_1) \cap E(G_2) = E(lsp(u, v))$, $LSC(G_1)$ and $LSC(G_2)$ are disjoint. We now prove that $LSC(G) \subseteq LSC(G_1) \cup LSC(G_2)$. Let $C \in LSC(G)$. If C contains at most one vertex from $\{u, v\}$, then C is contained either in G_1 or G_2, because $\{u, v\}$ is a vertex separator. Consider the other case when C contains both u and v. Since $C \in LSC(G)$, C contains $lsp(u, v)$. Note that $lsp(u, v)$ is contained both in G_1 and G_2. Observe that $E(C) \setminus E(lsp(u, v))$ belongs to $E(G_i)$ for some $i \in \{1, 2\}$, because $E(G_1) \cap E(G_2) = E(lsp(u, v))$. Hence, C is either in G_1 or G_2. In both of the cases, by Lemma 2.9(b), C is either in $LSC(G_1)$ or $LSC(G_2)$. Therefore, $LSC(G) \subseteq LSC(G_1) \cup LSC(G_2)$. From Corollary 2.8 $LSC(G_1) \cup LSC(G_2) \subseteq LSC(G)$. Hence, $LSC(G) = LSC(G_1) \cup LSC(G_2)$. □

Lemma 2.10 The number of $K_{2,3}$-subdivisions in each of G_1 and G_2 is less than the number of $K_{2,3}$-subdivisions in G.
Proof Recall that there is a $K_{2,3}((u,v),\{x,y,z\})$-subdivision in G, and G_1 and G_2 are obtained from $\text{decomp}(G,u,v)$. Without loss of generality, assume that $x \in V(H)$. Then at most one vertex from $\{y,z\}$ is in G_1. Further, observe that x is not in G_2. Therefore, no $K_{2,3}((u,v),\{x,y,z\})$-subdivision exist in G_1 and G_2. Thus the lemma holds. □

Proof of Theorem 1.1

Proof We use induction on the number of $K_{2,3}$-subdivisions in G. If the number of $K_{2,3}$-subdivisions in G is zero, then G is outerplanar, since G is a partial 2-tree. From Lemma 2.2, $|\text{LSC}(G)| = m - n + 1$ when G is outerplanar. Hence base case is true. If G is not an outerplanar graph, then there exists a $K_{2,3}((u,v),\{x,y,z\})$-subdivision in G. From Lemma 2.4, $G - (u,v)$ is disconnected and contains at least three components. Let P be the lsp(u,v) in G and $k = |V(P)|$. We apply $\text{decomp}(G,u,v)$ to obtain G_1 and G_2 from G. For $i \in \{1,2\}$, m_i and n_i indicate $|E(G_i)|$ and $|V(G_i)|$, respectively. Now, we can apply induction hypothesis due to Lemma 2.10. By induction hypothesis, it follows that $|\text{LSC}(G_i)| = m_i - n_i + 1$ for $i \in \{1,2\}$. As P is present in G_1 and G_2, it follows that $n_1 + n_2 = n + k$ and $m_1 + m_2 = m + k - 1$. From Theorem 2.9, $\text{LSC}(G) = \text{LSC}(G_1) \cup \text{LSC}(G_2)$. Hence $|\text{LSC}(G)| = |\text{LSC}(G_1)| + |\text{LSC}(G_2)| = m_1 - n_1 + 1 + m_2 - n_2 + 1 = m - n + 1$. Therefore, $|\text{LSC}(G)| = m - n + 1$. □

Proof of Theorem 1.2

Proof For a simple weighted graph G, from Lemma 2.1, an $\text{MCB}(G) \subseteq \text{LSC}(G)$. The cardinality of any cycle basis in a graph is known to be $m - n + 1$. For a weighted partial 2-tree G, by Theorem 1.1, we have $|\text{LSC}(G)| = m - n + 1$. Therefore, the set of lex short cycles is a minimum cycle basis in weighted partial 2-trees. □

Figure 3: For the wheel graph shown, if $b \gg a$, then the set of all triangles and the exterior face are lex short cycles.

We present a family of partial 3-trees for which the set of lex short cycles is not a cycle basis, whose construction is as follows: Let $G_n = K_1 + C_{n-1}$ be a wheel graph on n vertices, where $n \geq 4$. A wheel graph on 9 vertices is depicted in Figure 3. Note that G_n is planar. For every edge $e \in E(G_n)$, assign $w(e) = a$ if e is in external face, otherwise $w(e) = b$, where $a,b \in \mathbb{N}$ and $b \gg a$. Since every face in G_n is a lex short cycle, $|\text{LSC}(G_n)| = m - n + 2$ by Euler’s formula. Therefore, $\text{LSC}(G_n)$ can not be a cycle basis.

References

[1] E. Amaldi, C. Iuliano, and R. Rizzi. Efficient deterministic algorithms for finding a minimum cycle basis in undirected graphs. IPCO, pages 397–410, 2010.
[2] G. Chartrand, L. Lesniak, and P. Zhang. Graphs & Digraphs, Fifth Edition. Chapman & Hall/CRC, 2010.
[3] W.-K. Chen. On vector spaces associated with a graph. SIAM J. Appl. Math., 20:525–529, 1971.
[4] D. Hartvigsen and R. Mardon. The all-pairs min cut problem and the minimum cycle basis problem on planar graphs. SIAM J. Discrete Math., 7:403–418, 1994.
[5] J. D. Horton. A polynomial-time algorithm to find the shortest cycle basis of a graph. SIAM J. Comput., 16:358–366, 1987.
[6] T. Kavitha, C. Liebchen, K. Mehlhorn, D. Michail, R. Rizzi, T. Ueckerdt, and K. Anna Zweig. Cycle bases in graphs characterization, algorithms, complexity, and applications. *Computer Science Review, 3*(4):199–243, 2009.

[7] J. Leydold and P. F. Stadler. Minimal cycle bases of outerplanar graphs. *Elec. J. Comb.*, pages 209–222, 1998.

[8] T. Liu and H. Lu. Minimum cycle bases of weighted outerplanar graphs. *Inf. Process. Lett.*, 110:970–974, 2010.

[9] S. MacLane. A combinatorial condition for planar graphs. *Fund. Math. 28*, pages 22–32, 1937.

[10] N. Robertson and P. D. Seymour. Graph minors. II. algorithmic aspects of tree-width. *Journal of Algorithms, 7*(3):309–322, 1986.

[11] P. F. Stadler. Minimum cycle bases of Halin graphs. *J. Graph Theory, 43*:150–155, 2000.

[12] M. M. Syslo and A. Prokurowski. On Halin graphs. In *Graph theory, Proc. Conf., Lagow/Pol., volume 1018 of Lecture Notes Math.*, pages 248–256, New York, Springer, 1983.

[13] D.B. West. *Introduction to graph theory - second edition*. Prentice Hall, 2001.