Anconeus-Sparing Minimally Invasive Approach for Lateral Ulnar Collateral Ligament Reconstruction in Posterolateral Elbow Instability
Andreas Voss, M.D., and Stefan Greiner, M.D.

Abstract: Posterolateral elbow instability with an insufficiency of the lateral ulnar collateral ligament commonly results from elbow trauma. However, other etiologies such as iatrogenic injuries after primary surgical treatment for lateral epicondylitis or repetitive corticosteroid injections also may lead to a lateral ulnar collateral ligament insufficiency. In these cases, surgical treatment can help to restore posterolateral stability of the elbow. Besides the stabilizing effect of the ligamentous structures, the anconeus muscle is the most import active stabilizer against posterolateral elbow instability. Therefore, the aim of the present technique is to present an anconeus-sparing, minimally invasive approach to restore posterolateral stability. This technique may serve as an alternative for typically used all open access.
Surgical Technique (With Video Illustration)

All patients received detailed information about the technique before surgery. The patient is placed in a lateral decubitus position with the shoulder flexed about 90° and the upper arm resting on an adjustable arm holder (TRIMANO; Arthrex GmbH, Munich, Germany) with an elbow platform.

A diagnostic arthroscopy of the elbow is first performed to evaluate the bony articulating surfaces and the instability of the elbow. A Wissinger rod is used to perform a “drive-through” test through the radiocapitellar joint. The rod is then placed in front of the coronoid process and levered to stress the LUCL and to evaluate the posterolateral stability. Moreover, a posterior drawer test under arthroscopic visualization is performed to confirm the instability. With an easy movement, the elbow platform can be flipped to bring the elbow and forearm in a horizontal working position.

A 4-cm dorsal incision is made approximately 2 cm proximal to the olecranon fossa. The triceps fascia is incised. Approximately a 0.7- × 5- to 6-cm strip of the ulnar triceps tendon is incised. Care is taken not to incise the tendon too close to the bony tip of the olecranon.

Fig 1. Right elbow with the patient in a lateral decubitus position. (A) A 4-cm dorsal incision is made approximately 2 cm proximal to the olecranon fossa. Approximately a 0.7- × 5- to 6-cm strip of the ulnar triceps tendon is incised. Care is taken not to incise the tendon too close to the bony tip of the olecranon. (B) The tendon is then detached from the olecranon side and (C) sutured with a nonabsorbable suture material in a baseball-stitch technique, following the proximal detachment of the graft. (LE, lateral epicondyle; ME, medial epicondyle; O, olecranon; RH, radial head; STD, striped triceps tendon; TD, triceps tendon.)

Fig 2. Right elbow with the patient in a lateral decubitus position. (A) A 3- to 4-cm incision is made at the ulnar side and the forearm fascia is incised, the upper border of the anconeus muscle (yellow arrow) is identified and retracted posteriorly, (B) completely preserving its origin and insertion and exposing the ulnar insertion of the lateral ulnar collateral ligament (yellow asterisk). (LE, lateral epicondyle; O, olecranon; RH, radial head.)
olecranon (Fig 1). The remaining defect of the triceps tendon is closed side to side using absorbable sutures. Two separate incisions of 3 to 4 cm are made, one on the humeral side and one on the ulnar side, thus affording a minimally invasive anconeus-sparing approach. At the ulnar side, the forearm fascia is incised, and the anconeus muscle is identified and retracted posteriorly, completely preserving its origin and insertion (Fig 2). At the humeral side, a part of the common extensor origin along with a part of the extensor carpi radialis is sharply elevated proximally to expose the lateral epicondyle with the origin of the lateral ligamentous complex and the upper quarter of the capitulum. A 3.2-mm monocortical drill hole is made in the proximal ulna distal to the radial neck at approximately a 60° angle to the long axis of the ulna.

The triceps graft is armed at one side with nonabsorbable no. 2 sutures and the sutures are placed in a 2-mm flip button (BicepsButton; Arthrex GmbH). The button is inserted in the drill hole and flipped under the cortex of the ulna. By pulling on the sutures and tying them, the graft is fixed epiosseously. The suture limbs are then shuttled superficial to the capsule and the remnants of the LUCL, but underneath the extensor tendons proximally using blunt dissection following the upper border of the anconeus and brought out proximally. (LE, lateral epicondyle; O, olecranon; RH, radial head).

Fig 3. Right elbow with the patient in a lateral decubitus position. After ulnar fixation of the tendon graft, the free suture limbs are shuttled superficial to the capsule and the remnants of the lateral ulnar collateral ligament, but underneath the extensor tendons proximally using blunt dissection following the upper border of the anconeus and brought out proximally. (LE, lateral epicondyle; O, olecranon; RH, radial head).

Fig 4. Right elbow with the patient in a lateral decubitus position. At the humeral side, a part of the common extensor origin along with a part of the extensor carpi radialis is sharply elevated proximally to expose the lateral epicondyle with the origin of the lateral ligamentous complex. The anatomic origin of the LUCL is identified on the humerus, and a Kirschner wire is inserted perpendicularly. Subsequently, the remaining sutures are wound around the Kirschner wire and the elbow is brought into full extension and full flexion to test for the isometric insertion of the LUCL on the humerus. (LUCL, lateral ulnar collateral ligament; RH, radial head.)
Germany) (Fig 5) is used to push the end of the graft in the drill hole in an interference screw fashion, with care taken to tighten the anchor and the graft with the elbow in a reduced position. To avoid knot irritation of the skin, the common extensors are repaired using the nonabsorbable sutures from the anchor with knots tied on the deep tendon surface, and the fascia is closed using absorbable sutures. The wounds are closed in layers (Video 1).

Postoperatively, an immobilization splint is applied with the elbow flexed up to 90° and the forearm mid-prone. The joint is braced for 14 days for soft-tissue consolidation; afterwards, an elbow brace with a 30° extension block allowing free flexion is used for another 2 weeks. The extension block is removed afterwards, and the brace is removed 6 weeks after the operation (Table 1).

Discussion
This technique provides a minimally invasive approach to reconstruct the LUCL in patients with posterolateral elbow instability. Biomechanical data have shown that the humeral most isometric insertion point of the LUCL is between the 3:00- and 4:30-o’clock position on a circle on the lateral epicondyle. Therefore, there is no need for an extensive debridement or weakening of the common extensor origin at the epicondyle. In this technique, only 25% of the circle need to be visualized to identify the center of the circle and the isometric area. The anconeus muscle has been lately described as an important stabilizer of the elbow, preventing posterolateral instability and serving as an active lateral ligament of the elbow. The advantage of

Time Point	Aftercare and Rehabilitation Program
1 d	Fixed elbow brace in 90° of flexion and full pronation for 14 days
1-2 wk	- cryotherapy, passive motion of shoulder and wrist
	- active fist training using a soft ball (active ball compression and relaxing)
3-4 wk	- elbow immobilization in 90° of flexion and full pronation
	- active shoulder and wrist mobilization
	- posture training
	- lymphatic drainage and cryotherapy
5 wk	- adjustable elbow brace with 30° extension block in full pronation, free active flexion
6-11 wk	- active elbow mobilization in brace
	- start with physiotherapy
	- active pro- and supination in 90° of elbow flexion
	- no weights and no training against resistance
>12 wk	- removal of pronation and extension block
	- isometric training of elbow extension and flexion
	- muscles within the closed training chain without brace
	- no varus or valgus stress
	- capsular stretching
	- active muscle training
	- slow transition to full weight bearing (no heavy loads)
	- after surgeon consultation removal of elbow brace

LUCL, lateral ulnar collateral ligament.

Table 2. Pearls and Pitfalls of the Anconeus-Sparing, Minimally Invasive Approach for Lateral Ulnar Collateral Ligament Reconstruction in Posterolateral Elbow Instability

Pearls	Pitfalls
limited exposure due to 3-incision technique	malpositioning of the humeral isometric center
protection of anconeus	maldetermination of needed graft length
optimal identification of anatomic landmarks due to separate incisions	incorrect identification of layers for graft passage
this approach is the maximal preservation of the anconeus muscle origin and insertion and reduces dissection around this important structure, thereby avoiding denervation or injury to its vascular supply. Since the origin and insertion points and the graft harvesting are done using separate incisions, there is no compromise regarding accuracy of the intervention. A risk of this technique may be that the surgeon cannot find the right layer for graft passage. It is very important to pass the graft superficial to the capsule and the remnants of the LUCL to be able to restore physiological movement. Moreover, no compromises regarding the correct identification of the respective insertion points should be made due to the smaller incisions. However, in case of uncertainty regarding graft positioning, it is easy to connect the 2 incisions to a more extensive approach. Limitations to this technique are patients suffering from advanced osteoarthritis or major cartilage defects. Posterolateral stabilization may cause an overtightening of the posterolateral elbow and therefore induce more pain. See also Tables 2 and 3. In conclusion, this technique allows accurate graft placement and fixation with maximal protection of the active elbow stabilizers like the common extensor tendons and the anconeus muscle.

References
1. O’Driscoll SW, Bell DF, Morrey BF. Posterolateral rotatory instability of the elbow. J Bone Joint Surg Am 1991;73:440-446.
2. Fitzpatrick MJ, Diltz M, McGarry MH, Lee TQ. A new fracture model for "terrible triad" injuries of the elbow: Influence of forearm rotation on injury patterns. J Orthop Trauma 2012;26:591-596.
3. Capo JT, Collins C, Beutel BG, et al. Three-dimensional analysis of elbow soft tissue footprints and anatomy. J Shoulder Elbow Surg 2014;23:1618-1623.
4. Hackl M, Leschinger T, Ries C, Neiss WF, Muller LP, Wegmann K. Lateral ulnar collateral ligament reconstruction: A biomechanical analysis of posterolateral rotatory instability of the elbow. Orthopade 2016;45:895-900 [in German].
5. O’Driscoll SW, Spinner RJ, McKee MD, et al. Tardy posterolateral rotatory instability of the elbow due to cubitus varus. J Bone Joint Surg Am 2001;83:1358-1369.
6. Anakwe RE, Middleton SD, Jenkins PJ, McQueen MM, Court-Brown CM. Patient-reported outcomes after simple dislocation of the elbow. J Bone Joint Surg Am 2011;93:1220-1226.
7. Badre A, Axford DT, Banayan S, Johnson JA, King GJW. Role of the anconeus in the stability of a lateral ligament and common extensor origin-deficient elbow: An in vitro biomechanical study. J Shoulder Elbow Surg 2019;28:974-981.
8. Goren D, Budoff JE, Hipp JA. Isometric placement of lateral ulnar collateral ligament reconstructions: Abiomechanical study. Am J Sports Med 2010;38:153-159.