Medication safety practices in healthcare facilities in Kaduna State, Nigeria: a study protocol

Basira Kankia Lawal, Alhaji A. Aliyu, Umar Idris Ibrahim, Bilkisu Bello Maiha and Shafiu Mohammed

Abstract
Background: In recent years, there has been growing concern about patient safety and this is becoming a global problem. Medication safety can be used to describe systematic assessments of healthcare professionals’ practices as related to safe use of medicines. Identification and prevention of medication errors is the key component of medication safety. This includes multiple aspects of medication practice and other factors that affect it, such as organisational structure, communication, technologies such as those used for dispensing, and strategies pursued by leadership in cultivating and promoting a culture of safety.

Methods: The study adopted a mixed method approach divided into three phases. Phase I is a quantitative phase and involves an assessment of core medication safety practices in the study sites together with an assessment of patient safety culture through the use of the Hospital Survey on Patient Safety Culture (HSOPSC) developed by US Agency for Health Care Research and Quality (AHRQ). Phase II will involve semi-structured interviews with health care providers and focus group discussions with patients to explore their perspectives on medication safety and to explore their experiences concerning medication safety respectively. Phase III will be an intervention study and will utilise the World Health Organisation (WHO) Patient Safety Curriculum Guide: Multi professional edition as the intervention tool.

Discussion: The study findings will offer substantial opportunity for improvements. The study will also open up an area of patient safety culture, where not much research has been conducted in Nigeria.

Keywords: healthcare, HSOPSC, mixed methods, patient safety, quality, safety culture

Received: 5 August 2019; revised manuscript accepted: 24 April 2020.

Lay summary
Exploring medication safety practices in public healthcare facilities in Kaduna State, Nigeria: a study protocol

Patient safety is a global problem and there has been growing concern regarding it in recent years. Much less is known about medication safety in Nigeria. We are conducting this study in four public health facilities in Kaduna State, Nigeria in multiple phases that involve multiple stakeholders and data collection methods. In phase Ia, we assessed the presence of basic medication safety practices (such as use of information technology, transition in care practices, and others) by having structured questionnaire based interviews with the Head of Pharmacy department of each of the health facilities. In phase Ib, we are conducting a survey to assess patient safety culture amongst doctors, nurses and pharmacists of the selected health facilities.
In phase IIa, we will be conducting one-on-one interviews with healthcare providers to explore their perspectives on medication safety, while phase IIb will involve group discussions with patients to explore their experiences regarding their safety in healthcare.

Phase III will be the final phase, which will be an educational intervention phase that will be carried out as a pre- and post-intervention study. We will distribute a questionnaire to participants (pharmacists only), after which we will conduct seminars with the study participants using a patient safety curriculum developed by the World Health Organisation (WHO). Three (3) months later, we will distribute the same pre intervention questionnaire to participants who had responded to the earlier questionnaire and participated in the educational sessions.

This study is the first to be conducted in Kaduna State that explores medication safety and patient safety culture. On completion, it will open up an area of patient safety where not much research has been conducted in Nigeria. We expect that the study findings will offer substantial opportunity for making improvements in healthcare safety and quality.

Background

In recent years, there has been growing concern about patient safety and this is becoming a global problem. It is estimated that 10 million patients worldwide are harmed unnecessarily and suffer from disabling injuries or death each year as a result of unsafe medical practices and care. The Institute of Medicine (IOM) in the United States (US) reported that around 44,000–98,000 patients die each year as a result of medical errors in various hospitals.

The discipline of patient safety has emerged in response to the high burden of avoidable adverse events. The World Health Organisation (WHO) defined patient safety as ‘the absence of preventable harm to a patient during the process of health care’. Patient safety has also been defined by the Institute of Medicine as ‘freedom from accidental injury’. In the last two decades, patient safety has received a significant amount of attention. The 1999 publication *To Err is Human* by the Institute of Medicine, shed light on preventable medical errors and on the importance of safe medical care, and, since its release, patient safety has become the prominent issue for health care. The IOM suggested that the biggest challenge to moving toward a safer health care system is changing the patient safety culture from one in which individuals are blamed for errors to one in which errors are treated as opportunities to improve the system and prevent harm.

Another key principle for quality and patient safety that has emerged is ‘patient-centred care’. In its report the IOM suggested that patients and their families should be informed about uncertainties, risks, and treatment choices. It also stressed that safety and quality should be seen from the perspective of the eyes of patients as well.

In 2004, the WHO and its partners launched the World Alliance for Patient Safety in response to patient safety issues, and its goal was to improve patient care worldwide by proposing measures to reduce risks, organising concepts and definitions on patient safety and suggesting that countries pay greater attention to the theme. The WHO has also established the ‘WHO Patient Safety Curriculum for Medical Schools’ and also the ‘WHO multi-professional patient safety curriculum guide’. The Guides have the capacity to provide health-care professionals with the underpinning and applied knowledge that will facilitate the incorporation of patient safety principles into their practice, in a wide range of health-care delivery environments and health systems. The Guides target education in the fields of dentistry, medicine, midwifery, nursing and pharmacy, and other related health-care professions.

In low- and middle-income countries, the little evidence available shows there is a deficiency of safety culture and this is compromising patient safety. However, a steadily growing knowledge base indicates the need for improvement on patient safety.

The African Partnerships for Patient Safety was introduced to shape and lead the implementation of the WHO programme focussed on improving patient safety in Africa through the use of hospital partnerships. This is being implemented through a phased approach through establishment of mutually beneficial hospital partnerships. The
initial phase consisted of six hospitals in six
African countries (Cameroon, Ethiopia, Malawi,
Mali, Senegal and Uganda) and partner hospitals
in England and Switzerland. By 2013, five more
African countries (Ghana, Mozambique, Rwanda,
Tanzania and Zambia) were in the partnership,
with five more hospitals in England.13

In Nigeria, the overall incidence of adverse drug
events (ADEs) is unknown and poorly docu-
dmented.14 A study identified a mean prescribing
error rate of 28.7\% and concluded there was poor
compliance with the Nigeria Standard Treatment
Guidelines.15 Furthermore, a large-scale multi-
centre study with 2386 participating healthcare
providers (HCPs; doctors, nurses and pharmacists)
identified a prevalence of self-reported medication
errors amongst HCPs in Nigeria of 47\%.16 The
study also found that overwork was the most reason
for HCPs being error prone (59.2\%), only 35.5\% of
HCPs had ever reported medication error and
33.4\% did not think reporting was necessary and
suggested that interventions were necessary for
knowledge gaps and practice deficiencies.

This present study is based on the premise that
medication error is a serious problem in Nigeria, as
it is elsewhere in the world. The findings from this
study will provide baseline information of current
medication safety practices in healthcare facilities
in Kaduna State, Nigeria, and explore patient
safety culture amongst healthcare professionals.
The findings will not only provide a baseline from
which to work, they will also help raise patient
safety awareness. The study also intends to make a
case for the need of national initiatives and support
from national healthcare bodies to promote the
implementation of medication safety practices.

Aim and objectives

The aim of the study is to explore medication
safety practices in healthcare facilities in Kaduna
State, Nigeria, which will answer the questions
‘What core medication safety practices are pre-
sent in these healthcare facilities, what are the
perspectives of healthcare practitioners on cur-
cent issues about medication safety and the chal-
enges regarding medication safety and modes of
making improvement?’. The objectives of the
study are as follows.

\begin{itemize}
 \item To assess core medication safety practices
 in the selected healthcare facilities.
 \item To evaluate patient safety culture of the
 selected healthcare facilities.
 \item To explore the factors influencing medication
 safety practices and medication error
 reporting.
 \item To explore the perspectives of patients on
 their safety in the healthcare facilities.
 \item To assess the effect of an educational inter-
 vention on healthcare providers to promote
 medication safety.
\end{itemize}

Methods

This study is being carried out as mixed methods
study across four (two tertiary and two second-
ary) healthcare facilities located in Kaduna State,
Nigeria. Kaduna state is the third most populous
state in Nigeria, with an estimated population of
8.6 million people as at 2018. There are 1692
healthcare facilities; 40.2\% being of the private
sector; 3.2\% secondary healthcare; 0.3\% tertiary
healthcare facilities.

The healthcare facilities for this study were
selected from the three Senatorial zones of the
State. These are:

\begin{itemize}
 \item Zone 1: Ahmadu Bello University Teaching
 Hospital, Zaria
 \item Zone 2: Barau Dikko Teaching Hospital and
 Yusuf Dantsoho Memorial Hospital, Kaduna
 \item Zone 3: Patrick Yakowa Hospital, Kafanchan
\end{itemize}

The choice of these healthcare facilities was based
on selection of the largest healthcare facility from
each zone. However, two facilities were selected
in Zone 2 as it is the zone with the largest popula-
tion and houses the State capital.

There are three phases to the study. Phase I is a
quantitative phase further subdivided into 1a and
1b and was conducted in the four healthcare facili-
ties. Phase II is also subdivided into 2a and 2b.
This phase will be conducted in one tertiary facil-
ity and one secondary facility. Phase III will be an
educational intervention phase and will be con-
ducted in the four facilities.

\begin{itemize}
 \item Phase 1a: a study to assess the presence
 of core medication safety practices in
 the selected healthcare facilities
 This phase is a structured questionnaire
 based interview with heads of pharmacy department of
\end{itemize}
the four study sites using an adopted questionnaire.17 The questionnaire was developed by Aljadhey \textit{et al.},17 based on recommendations of WHO patient safety solutions, the Joint Commission International (JCI), and the Institute for Safe Medication Practices (ISMP).18–20 The questionnaire contains two sections, with section one asking background questions about the facility and section two containing seven parts with a total of 44 questions. The questions relate to medication safety practices, such as presence of medication safety officer, medication safety committee, availability of a look-alike-sound-alike (LASA) medications list, availability of information technology and availability of drug information resources, amongst other questions.

Prior to data collection, the questionnaire was pretested at two non-participating healthcare facilities to ascertain understanding and its local suitability for adoption in Nigeria. The questionnaire was administered in a face-to-face interaction after an appointment had been made with the participants at their convenient time and place. The interview was in English as it is the official language in Nigeria and took approximately 45–60 min to complete. A written consent was obtained from participants prior to the interview.

\textit{Phase Ib: a cross-sectional study to assess patient safety culture amongst HCPs in healthcare facilities}

This survey study aims to assess patient safety culture in Kaduna State healthcare facilities. The study adopted the Hospital Survey on Patient Safety Culture (HSOPSC) developed by the Agency for Healthcare Research and Quality (AHRQ).21 It has been used widely in assessing patient safety culture and has also been validated in non-US countries.22 It is composed of 42 items that measure 12 composites of patient safety culture. Seven of the composites measure patient safety at departmental level and three composites at hospital level. Two composites (frequency of events reported and overall perception of safety), in addition to questions on patient safety grade and number of events reported, are the four outcome variables. The survey will be administered in English as it is the official language in Nigeria. The questionnaire will be distributed to HCPs (doctors, nurses and pharmacists) in the four facilities based on stratified proportionate to size allocation of sample size, followed by a convenience sampling. The sample size was calculated to be 422 by considering 95% confidence interval (CI), a 5% margin of error, and a 10% contingency for non-response, while assuming that patient safety was scored at 50% by respondents.

The HSOPSC survey is considered to be valid as it had been piloted on 1419 hospital employees from 20 hospitals across the US. The results showed that all 12 dimensions had high levels of reliability (Cronbach’s alpha ranging from 0.63 to 0.84).21 The survey items are measured on a 5-point Likert scale and range from (1) ‘Strongly Disagree’ to (5) ‘Strongly Agree’ and take an average of about 15 min to complete. Beside the 12 listed dimensions, the survey includes an item that asks about the number of events reported the past 12 months. Participants are also asked to grade patient safety in their work area on a 5-point Likert scale ranging from ‘Excellent’ to ‘Failing’.

The survey data will be entered into SPSS version 23, where it will take the form of descriptive statistics (frequency of positive response and their percentages) of 12 patient safety culture dimensions measured on three HCP groups from four different facilities. The raw data will be analysed in a number of different ways. Firstly, composite frequencies of positive response will be calculated by grouping the 42 survey items into 12 patient safety culture dimensions. Each dimension includes three or four survey items, which will be used for the calculation of one overall frequency for each dimension. Univariate analyses will be conducted to summarise demographic characteristics of healthcare facilities and respondents. Bivariate analyses [\textit{t} test and analysis of variance (ANOVA)] will be used to examine differences in patient safety culture composites across facilities. Pearson’s chi-squared test will be used to examine statistical associations between healthcare facility characteristics, patient safety grade and number of events reported. The tests will be carried out at 5\% level of significance.

\textit{Phase Ila: a study to explore the factors influencing medication safety practices and medication error reporting}

This phase will be conducted as key informant interviews with HCPs (doctors, nurses and pharmacists) working in one tertiary facility and once secondary facility. It aims to explore factors influencing medication safety practices and error
Phase IIb: a study on perspectives of patients on their safety in the healthcare facilities

This study aims to explore the perspectives of patients on their safety in healthcare facilities. Data will be collected through focus group discussions (FGDs) with patients in one tertiary facility and one secondary facility. There will be separate FGD sessions for female and male patients of each facility, thereby making a total of four FGD sessions. Patients will be those who are admitted in medical wards and are relatively well enough to participate. Participants will be informed about the aim of the FGD and those who consent will be given further information on the study. The FGD will take place at a convenient place for the participants in groups of 6–8 persons and will last for about 60 min. The sessions will all be conducted in the local language, which is Hausa. A topic guide for the FGD will be developed based on a similar study.24 Prior to the interview, participants will be informed about the aim of the interview, those who consent will be given further information about the study. The interview will take place at a place convenient for the respondents and will last approximately 20–40 min. Participants will be assured of confidentiality and will be asked for permission for the use of a tape recorder to record the interview session. They will also be assured that their views are of utmost importance, and there are no right or wrong answers. Interviews will be conducted by the principal researcher (BKL) in English, and participants will be given refreshments at the end of the interview. Data will be collected until a point of saturation is reached. After data collection is completed, data will be transcribed and thematic analysis will be conducted.

Phase III: an educational intervention using the WHO multi-professional patient safety curriculum guide

This phase will take place in the four healthcare facilities but will be amongst pharmacists only. It will be in the form of a pre- and post-intervention study where a questionnaire (adopted from the WHO patient safety curriculum assessment) will be administered to participants.10 Total sampling will be targeted with all pharmacy staff with a Bachelor of Pharmacy degree working at the four healthcare facilities at the time of data collection. The questionnaire will consist of a demographic section that asks questions about staff position, level of education, years of experience and whether the participant has ever participated in a patient safety course before. The survey section on participants’ perceptions and attitudes contains a total of 23 questions grouped in four domains (Patient safety knowledge; Health-care system safety; Personal influence over safety; and Personal attitudes about safety). For the patient safety knowledge questions, questions will be selected based on the topics considered for this research as the intervention topics.

The educational curriculum will be adopted from WHO Patient Safety Curriculum Guide: multi-professional edition, which contains 11 topics.10 However, for this study, three topics will be chosen as the educational intervention: Topic 1 (What is Patient Safety), Topic 5 (How we understand and learn from errors to prevent harm) and Topic 11 (Improving medication safety).10 Handouts will be given to participants immediately after they have completed the pre-intervention survey and then a seminar session will take place to explain the topics further. After 3 months, the same questionnaire will be administered to the participants who participated in the pre-intervention phase. The post-intervention survey will include an additional third section that asks for general feedback concerning the educational intervention.

Data analysis for pre- and post-intervention will be conducted using SPSS software Version 23, where Student’s t tests will be carried out. The analysis of the pre- and post-intervention data will consist of comparisons of the pre- and
post-intervention average means score of the four domains of the questionnaire. Differences in values for the two time periods will be tested for statistical significance. For the knowledge questions, the measures to assess changes will be the percentages of the relevant questions that each participant answers correctly. These percentages will be calculated for the aggregate of all topics that will be taught. The analysis of these knowledge questions will consist of comparisons of the percentages of correct answers given on the pre- and post-intervention surveys. Differences in values for the two time periods will be tested for statistical significance.

Discussion
The concept of patient safety as a whole, and also medication safety continues to become a matter of growing interest and increasing priority for hospital managers. Safety culture in healthcare settings is usually assessed through quantitative questionnaires based on a combination of the dimensions. Some studies suggest focusing on the unit-level for the study and assessment of safety culture because culture is a local phenomenon, that is, culture often varied between units of a single hospital.

Medication safety can be used to describe systematic assessments of HCPs’ practices as related to safe use of medicines. Identification and prevention of medication errors is the key component of medication safety. This includes multiple aspects of medication practice and other factors that affect it such as, organisational structure, communication, technologies such as those used for dispensing, and strategies pursued by leadership in cultivating and promoting a culture of safety. Medication safety can thus be said to be the responsibility of all members of the healthcare team.

Over previous years, research has shown that many interventions could decrease the frequency of medication errors. Many of these interventions, particularly in developed countries, include the use of information technology and automation, while others use methods such as involving a pharmacist with the medical team or the application of core practices aimed at preventing ADEs. One study suggested that the use of computerised physician order entry reduced the serious medication error rate by 55%, whereas another suggested having a medication safety officer in the hospital may be associated with lower levels of ADEs.

This study has several strengths, amongst which is that it is the first study in Kaduna State to assess presence of medication safety practices and safety culture. The use of a multi-phased mixed-methods research approach will also add substantial strength. The educational intervention will provide an avenue to inform and educate health care workers about patient safety. However, the study is not without some limitations. The number of healthcare facilities sampled to participate in the study, although representing the various zones of the State may still be limited. The convenience sampling technique in phase Ib may also create some bias, although efforts will be made to collect data from all clinical departments of the hospitals.

Acknowledgements
The authors would like to acknowledge the support, interest and permission given by the selected healthcare facilities for this study.

Author contributions
BKL, UII, BBM, AAA, and SM were actively involved in the study design. BKL prepared the initial manuscript. BKL, UII and SM critically read through and revised the manuscript. All authors have read the manuscript for publication.

Conflict of interest statement
The authors declare that there is no conflict of interest.

Ethical approval and consent to participate
Ethical approval was obtained from the selected healthcare facilities and also from the Ministry for Health and Human Services, Kaduna State (MOH/ADM/744/VOL.1/499). All study participants will be provided with information regarding the study and their consent sought. Consent will be in the form of verbal consent, and in some cases written consent.

Funding
The authors received no financial support for the research, authorship, and/or publication of this article.
References

1. World Health Organization. Better Knowledge for safer care. Global priorities for research in patient safety. 1st ed. Geneva, Switzerland: World Health Organization, 2008.

2. World Health Organization. 10 facts on patient safety, https://www.who.int/features/factfiles/patient_safety/en/ (2014, accessed 21 March 2018).

3. Kohn LT, Corrigan JM and Donaldson MS. To err is human: building a safer health system. Washington, DC: National Academy Press, 2000.

4. Emanuel L, Berwick D, Conway J, et al. What exactly is patient safety? In: Henriksen K, Battles JB, Keyes MA and Grady ML (eds) Advances in patient safety: new directions and alternative approaches (Vol 1: assessment). Rockville, MD: Agency for Healthcare Research and Quality, 2008.

5. World Health Organization. Patient safety, www.who.int/patientsafety/about/en/ (accessed 21 March 2018).

6. Committee on Quality of Health Care in America, Institute of Medicine. Crossing the quality chasm: a new health system for the 21st century. Washington, DC: National Academy Press, 2001.

7. Carayon P, Wetterneck TB, Rivera-Rodriguez AJ, et al. Human factors systems approach to healthcare quality and patient safety. Appl Ergon 2014; 45: 14–25.

8. World Health Organization. World alliance for patient safety, http://www.who.int/patientsafety/worldalliance/en/ (accessed 10 March 2018).

9. World Health Organization. WHO patient safety curriculum guide for medical schools, https://www.who.int/patientsafety/education/curriculum_guide_medical_schools/en/ (2009, accessed 17 June 2018).

10. World Health Organization. Patient safety curriculum guide: multi-professional edition. Geneva pp. 1–265, https://www.who.int/patientsafety/education/mp_curriculum_guide/en/ (2011, accessed 17 June 2018).

11. Farley D, Zheng H, Rouzi E, et al. Field test of the world health organization multi-professional patient safety curriculum guide. PLoS One 2015; 10: e0138510.

12. Jha AK, Larizgoitia I, Audera-Lopez C, et al. The global burden of unsafe medical care: analytic modelling of observational studies. BMJ Qual Saf 2013; 22: 809–815.

13. World Health Organization. Partnership for safer health service delivery: evaluation of WHO African partnerships for patient safety 2009–2014, http://www.who.int/patientsafety/implementation/apps/evaluation-report.pdf (accessed 15 March 2017).

14. Erah PO and Suleiman IA. Medicine management, use and safety in non communicable disease. Int J Health Res 2010; 3: 3–11.

15. Ajemigbitse AA, Omole MK and Erhun WO. An assessment of the rate, types and severity of prescribing errors in a tertiary hospital in southwestern Nigeria. Afr J Med Med Sci 2013: 339–346.

16. Ogunleye OO, Oreagba IA, Falade C, et al. Medication errors among health professionals in Nigeria: a national survey. Int J Risk Saf Med 2016; 28: 77–91.

17. Aljadhey H, Alhossan A, Alburikan K, et al. Medication safety practices in hospitals: a national survey in Saudi Arabia. Saudi Pharm J 2013; 21: 159–164.

18. World Health Organization. The nine patient safety solutions, 2007, http://www.who.int/patientsafety/events/07/02_05_2007/en/ (2011, accessed 03 March 2017).

19. Institute for Safe Medication Practices. http://www.ismp.org/selfassessments/default.asp (2011, accessed 3 March 2017).

20. Joint Commission International. http://www.jointcommissioninternational.org (2011, accessed 3 March 2017).

21. Sorra J and Nieva V. Hospital survey on patient safety culture. (Prepared by Westat, under contract no. 290-96-0004). AHRQ publication no. 04-0041. Rockville, MD: Agency for Healthcare Research and Quality, 2004.

22. Smits M, Christiaans-Dingelhoff I, Wagner C, et al. The psychometric properties of the ‘Hospital Survey on Patient Safety Culture’ in Dutch hospitals. BMC Health Serv Res 2008; 8: 230.

23. Guest G, Bunce A and Johnson L. How many interviews are enough? An experiment with data
saturation and variability. *Field Methods* 2006; 18: 59–82.

24. Mekonnen AB, McLachlan AJ, Jo-anne EB, et al. Medication reconciliation as a medication safety initiative in Ethiopia: a study protocol. *BMJ Open* 2016; 6: e012322.

25. Pronovost P and Sexton B. Assessing safety culture: guidelines and recommendations. *Qual Saf Health Care* 2005; 14: 231–233.

26. McCarthy D and Blumenthal D. Stories from the sharp end: case studies in safety improvement. *Milbank Q* 2006; 84: 165–200.

27. Bates DW, Leape LL, Cullen DJ, et al. Effect of computerized physician order entry and a team intervention on prevention of serious medication errors. *JAMA* 1998; 280: 1311–1316.

28. Cohen M, Kimmel N, Benage M, et al. Medication safety program reduces adverse drug events in a community hospital. *Qual Saf Health Care* 2005; 14: 169–174.

29. Gleason KM, Groszek JM, Sullivan C, et al. Reconciliation of discrepancies in medication histories and admission orders of newly hospitalized patients. *Am J Health Syst Pharm* 2004; 61: 1689–1695.

30. Strunk LB, Matson AW and Steinke D. Impact of a pharmacist on medication reconciliation on patient admission to a veterans affairs medical center. *Hosp Pharm* 2008; 43: 643–649.