DICKSON INVARIANTS IN THE IMAGE OF THE STEENROD SQUARE

KAI XU

Abstract. Let D_n be the Dickson invariant ring of $\mathbb{F}_2[X_1, \ldots, X_n]$ acted by the general linear group $\text{GL}(n, \mathbb{F}_2)$. In this paper, we provide an elementary proof of the conjecture by [3]: each element in D_n is in the image of the Steenrod square in $\mathbb{F}_2[X_1, \ldots, X_n]$, where $n > 3$.

1. Introduction

A polynomial in $\mathbb{F}_2[X_1, X_2, \ldots, X_n]$ is hit if it is in the image of the summation of the Steenrod square: $\sum_{i \geq 1} \text{Sq}^i$. Let D_n be the Dickson invariant algebra of n-variables. In this paper, we will prove the following,

Theorem 1.1. When $n > 3$, each polynomial in the Dickson invariant ring D_n is hit.

In [3], Hung studies the Dickson invariants in the image of the Steenrod square. Since it is trivial that D_1 and D_2 are not hit, the problem starts interesting from $n = 3$. In the same paper, Hung shows that each element in D_3 is hit and conjectured that it is true for $D_{n>3}$. So our result provides a positive answer to the conjecture, which supports to the positive answer of the conjecture on the spherical classes: there are no spherical classes in Q_0S^0, except the Hopf invariant one and Kervaire invariant one elements. We refer to [3] and an excellent expository paper [5], p501 for more background regarding to this conjecture.

Remark 1.2. Recently, K. F. Tan and the author [4] has obtained an elementary proof of the case $n = 3$.

2. Proof of Theorem 1.1

We first recall some basic properties regarding the Dickson algebra. Write V_n for the product

$$\prod_{\alpha_i \in \{0,1\}, i=1,\ldots,n-1} (\alpha_1 x_1 + \cdots + \alpha_{n-1} x_{n-1} + x_n).$$

Then we have the following theorem.

Theorem 2.1 (Hung [3]).

$$\text{Sq}^i V_n = \begin{cases}
V_n & \text{if } i = 0 \\
V_n Q_{n-1, s} & \text{if } i = 2^{n-1} - 2^s, \ 0 \leq s \leq n - 1 \\
V_n^2 & \text{if } i = 2^{n-1} \\
0 & \text{otherwise.}
\end{cases}$$

1991 Mathematics Subject Classification. 55S10, 55Q45, 55S10, 55T15.
Using the previous observation, the last polynomial is hit, since the order of each time.

We use the induction on n to prove Theorem 1.1. Suppose that the statement is true for n. Then we will prove that each polynomial in D_{n+1} is hit.

Recall that

$$Q_{n+1,k} = Q_{n,k-1}^2 + V_{n+1}Q_{n,k}$$ for $1 \leq k \leq n$.

So any monomial in $F_2[Q_{n+1,0}, Q_{n+1,1}, ..., Q_{n+1,n}]$ can be written as the summation of the following form:

$$A := V_{n+1}^{a.n}Q_{n,0}^{n_0}Q_{n,1}^{n_1}Q_{n,2}^{n_2} \cdots Q_{n,n-1}^{n_{n-1}}.$$

Hence by the hypothesis of the induction, it is sufficient to show that A is hit for any $a > 0$. Notice that

$$V_{n+1} = \sum_{s=1}^{n} \text{Sq}^1(Q_{n,s}X_{n+1}^{2^s-1}). \quad (1)$$

When n_1 is even, we have the hit polynomial

$$A = \text{Sq}^1(\left(\sum_{s=1}^{n} Q_{n,s}x_{n+1}^{2^s-1}\right) V_{n+1}^{a-1} Q_{n,0}^{n_0} Q_{n,1}^{n_1} Q_{n,2}^{n_2} \cdots Q_{n,n-1}^{n_{n-1}}).$$

If n_1 is odd and n_2 is even, then A can be written as the hit polynomial:

$$\text{Sq}^2(\sum_{s=1}^{n} Q_{n,s}x_{n+1}^{2^s-1}) V_{n+1}^{a-1} Q_{n,0}^{n_0} Q_{n,1}^{n_1} Q_{n,2}^{n_2} \cdots Q_{n,n-1}^{n_{n-1}} + \text{Sq}^1(\left(\sum_{s=1}^{n} Q_{n,s}x_{n+1}^{2^s-1}\right) V_{n+1}^{a-1} Q_{n,0}^{n_0} (\text{Sq}^1 Q_{n,1}^{n_1-1})^2 Q_{n,2}^{n_2+1} \cdots Q_{n,n-1}^{n_{n-1}}).$$

In the following, we will always assume that n_1 and n_2 are both odd. When $n = 3$, n_0 is even and a is odd, we have

$$A = (V_4^{a-1} \text{Sq}^4 V_4)Q_{3,0}^{n_0} Q_{3,1}^{n_1} Q_{3,2}^{n_2-1} = V_4 \chi(\text{Sq}^4)[V_4^{a-1} Q_{3,0}^{n_0} Q_{3,1}^{n_1} Q_{3,2}^{n_2-1}] \pmod{\text{the hits}} = V_4^n Q_{3,1} \left(\text{Sq}^2[Q_{3,0}^{n_0} Q_{3,1}^{n_1-1} Q_{3,2}^{n_2-1}]\right)^2 \pmod{\text{the hits}}.$$

Using the previous observation, the last polynomial is hit, since the order of $Q_{3,2}$ is even.

When $n = 3$, n_0 is even and a is even, notice that

$$Q_{3,0}^{n_0} Q_{3,1}^{n_1} Q_{3,2}^{n_2} = Q_{3,0}^{n_0} Q_{3,1}^{n_1-1} Q_{3,2}^{n_2-1} \text{Sq}^4 Q_{3,1}.$$
Then using the \(\chi \)-trick and doing some basic computation, we can see that the monomial \(Q_{3,1}^{n_1}Q_{3,2}^{n_2}Q_{3,3}^{n_3} \) is in the image of \(\sum_{i=1}^{4} \text{Sq}^i \). In fact,

\[
Q_{3,1}^{n_1}Q_{3,2}^{n_2}Q_{3,3}^{n_3} = \text{Sq}^i \text{Sq}^{2i} \text{Sq}^{3i} \text{Sq}^{4i} (
\text{mod the hits})
\]

Using the previous discussion, we can conclude that all these polynomials are hit, except for those when \(n_i \) is odd. Then \(\chi\text{Sq}^{i}\text{Sq}^{2i}\text{Sq}^{3i}\text{Sq}^{4i} = 0 \) for \(i = 1, 2, 3 \) and 4. Therefore using the \(\chi \)-trick, we know that \(A \) is hit.

When \(n = 3 \), \(n_0 \) is odd and \(a \) is even, \(\nu \) is the integer such that \(a = 2^\nu b \) where \(b \) is odd. Then

\[
V_4^{n_0} = \text{Sq}^{4a} \text{Sq}^{2a} \ldots \text{Sq}^{8b} V_4^b.
\]

Hence

\[
A = (\text{Sq}^{4a} \text{Sq}^{2a} \ldots \text{Sq}^{8b} V_4^b)(Q_{3,0}^{n_0}Q_{3,1}^{n_1}Q_{3,2}^{n_2})
\]

\[
\equiv V_4^{n_0} \chi(\text{Sq}^{2b}) \ldots \chi(\text{Sq}^{4a}) \chi(Q_{3,0}^{n_0}Q_{3,1}^{n_1}Q_{3,2}^{n_2}) \quad (\text{mod the hits}).
\]

After expanding the last polynomial using Theorem 2, it is easy to see that each resulting term belongs to one of the previous cases. Therefore \(A \) is hit.

When \(n \geq 4 \), the polynomial \(A \) takes the following form,

\[
V_4^{n_0} (\text{Sq}^{2n-4} Q_{n,0}^{n_0} Q_{n,1}^{n_1} Q_{n,2}^{n_2} \ldots Q_{n,n-1}^{n_{n-1}}).
\]

Using a result of Don Davis, Theorem 2. of [1] and the \(\chi \)-trick, we know that it is sufficient to show the polynomial:

\[
Q_{n,1}^{n_1} \text{Sq}^{2n-1} \ldots \text{Sq}^{n_0} \chi(\text{Sq}^{4}) \{ V_{n+1}^{a} Q_{n,0}^{n_0} Q_{n,1}^{n_1} Q_{n,2}^{n_2} \ldots Q_{n,n-1}^{n_{n-1}} \}
\]

is hit.

After expansion using the Steenrod operation, the above polynomial can be written as the summation of the form:

\[
V_{n+1}^{a} Q_{n,0}^{k_0} Q_{n,1}^{k_1} Q_{n,2}^{k_2} \ldots Q_{n,n-1}^{k_{n-1}}.
\]

Using the previous discussion, we can conclude that all these polynomials are hit, except for those when \(k_1 \) and \(k_2 \) are both odd. But in this case, we can replace \(n_i \) by \(k_i \) for all \(i \) in [1] and carry out the above process again. After using this process sufficiently many times with modulo the hits, we can conclude that the new \(k_0, k_1 \)
and \(k_2 \) are independent of the process. To keep \(k_0, k_1 \) and \(k_2 \) unchanged with the process, we must require that

\[
\text{Sq}^{2^{n-1}} \cdots \text{Sq}^8 \chi(\text{Sq}^4) \left\{ V_{n+1}^a Q_n^k \cdots Q_n^{k_{n-1}} \right\} \mod \text{the hits}
\]

contributes \(Q_{n,2} \) after each process is done, since for \(j \leq 2^{n-1} \) and \(t < n \), \(\text{Sq}^j Q_{n,0} = Q_{n,0} Q_{n,t} \) only if \(j = t = n - 1(> 2) \). Finally because all \(k_i \) \((0 \leq i < n) \) are finite, we conclude that \(A \) is hit after carrying on the process further for enough many times.

References

[1] Davis, D.M., *The antiautomorphism of the Steenrod algebra*, Proc. Amer. Math. Soc. **44** (1974), 235-236.

[2] Hung, H.H.V., *The action of the Steenrod squares on the modular invariants of linear groups*, Proc. Amer. Math. Soc. **113** (1991), 1097-1104.

[3] Hung, H.H.V., *Spherical classes and the algebraic transfer*, Trans. Amer. Math. Soc. **10** (1997), 3893–3910.

[4] Tan K. F. and Xu, K, *Dickson invariants hit by the Steenrod square*, preprint

[5] Wood, R.M.W, *Problems in the Steenrod algebra*, Bull. London Math. Soc. **30** (1998), 449–517.

E-mail address, Kai Xu: matxukai@leonis.nus.edu.sg

Department of Mathematics, National University of Singapore, 2 Science Drive 2, 117543 Singapore