Binary Merge Coding for Lossless Image Data Compression

N. Subhash Chandra, M. Bala Raju, M. Arya bahanu, B. Raja Vikram, A. Govardhan and S. Mahaboob Basha
1Department of Computer Science and Engineering, Jawaharlal Nehru Technological University, Hyderabad, AP., India
2Department of Electronic and Communication Engineering, Vidya Jyothi Institute of Technology, Hyderabad, AP., India
3Department of Computer Science and Engineering, College of Engineering, jawaharlal Nehru Technological University, Hyderabad, AP., India
4Department of Computer Science and Engineering, Al-Habeeb College of Engineering, Chevella, Ranga Reddy

Abstract: Problem statement: Image processing applications were drastically increasing over the years. In such a scenario, the fact that, the digital images need huge amounts of disk space seems to be a crippling disadvantage during transmission and storage. So, there arises a need for data compression of images. Approach: This study proposed a novel technique called binary merge coding for lossless compression of images. This method was based on spatial domain of the image and it worked under principle of Inter-pixel redundancy reduction. This technique was taken advantage of repeated values in consecutive pixels positions. For a set of repeated consecutive values only one value was retained. Results: The proposed binary merge coding achieved the compression rate of the brain image was 1.6572479. Comparatively, it is 100% more than the compression rate achieved by standard JPEG. Conclusion/Recommendations: This technique was simple in implementation and required no additional memory area. The experimental results of binary merge coding were compared with standard JPEG and it showed that, the binary merge coding improved compression rate compared to JPEG. The same algorithm can be extending to color images. This algorithm can also use for lossy compression with few modifications.

Key words: Huffman coding technique, JPEG, bit plane, data table

INTRODUCTION

Data Compression is a technique of encoding information using fewer bits than an un encoded representation would use through specific encoding or compression algorithms2,4. All forms of data which includes text, numerical and image contain redundant elements. Through compression, the data can be compressed by eliminating the redundant elements.

The History of image data compression started probably about a half of century ago with the works on predictive coding and variable length codes. The technological breakthrough that took place in 60’s, 70’s and 80’s resulted in efficient compression algorithms that have been standardized in early 1990’s and currently are in common use together with the improvements achieved during the last decade. These advances have brought substantial increase in efficiency of earlier basic techniques. Nevertheless, the last decade was also a period of strenuous search for new technologies of image data compression7.

Image compression technique is divided into two major categories: which lossless compression technique and Lossy compression technique. In lossless compression, no information is lost and the decompressed data are identical to the original un-compressed data. While in Lossy compression, the decompressed data may be an acceptable approximation to the original un compressed data.

This study focuses Loss less compression and proposed Binary merge coding Technique which works under the principle of removing Inter-pixel redundancy in spatial domain of the image.
MATERIALS AND METHODS

Proposed method: Binary Merge Coding is based on spatial domain of the image and is suitable for compression of medical images\(^1\). The main objective of this technique is to take advantage of repeated values in consecutive pixels positions. For a set of repeated consecutive values only one value is retained.

In the binary merge coding two codes are used to build the bit plane\(^1\). The codes are as given below:

- Code 1 (one) is used to indicate that current pixel is different from previous pixel. In this case the current pixel is moved to the data table
- Code 0 is used to indicate that the current pixel is exactly same as previous pixel. This eliminates the storage of current pixel

After generating and merging the Bit Plane and data table, Huffman coding is applied to generate final form of compressed file.

In Binary Merge Coding Compression and Reconstruction model, as shown in Fig. 1 and Fig. 2 added one popular Coding Redundancy technique Huffman Coding to get good Compression rate over Binary Merge Coding Technique alone. The results given in table 1 are achieved as per this model to reach real need.

Compression algorithm for binary merge coding:

Procedure binary data compress ():

```
// subroutine to generate bit plane and data
/* Data Items Used */
prev_pixel // holds previous pixel
cur_pixel // holds current pixel
bit_plane // 8 bit number to hold the status bits to indicate whether pixel is retained or not retained. */

Begin
open raw image file
open bitplane file
open data table file
cur_pixel = read (image)
write cur_pixel to data table file
append bit 1 to bit_plane
prev_pixel = cur_pixel
while((cur_pixel = read(image))!= eof)
Begin
/* if repeated consecutive pixel value append 0 to bit plane to indicate that pixel duplicate so not retained */
if (cur_pixel = prev_pixel) then
append bit 0 to bit_planee
else
Begin
/* otherwise append 1 to bit plane to indicate that pixel is different so retained */
append bit 1 to bit_plane
write cur_pixel to datatable file
prev_pixel=cur_pixel
End
if bit_plane is full then
write bit_plane to bitplane file
End
```

End

Procedure binary data merge ():

```
/*To merge Bit Plane and Data table files and generate intermediate compressed file */
/* Data Items Used */
cur_byte

Begin
if bit_plane not empty then
write bit_plane to bitplane file
```

End

Begin
open bitplane file
open data table file
open bpd file
while ((cur_byte = read(bitplane file))! = eof)
Begin
write cur_byte to bpd file
End
while ((cur_byte = read(data table file))! = eof)
Begin
write cur_byte to bpd file
End
close bitplane file
close data table file
close bpd file
End

Reconstruction of the image in binary merge coding:
In the reconstruction of the image, first the intermediate file is generated from the compressed file. The bit plane and data tables are extracted from the intermediate file. By checking each bit of bit plane either a fresh byte from the binary plane is read and written to the reconstructed image file or earlier byte itself is written based on the current bit checked.

Reconstruction algorithm for binary merge coding:
Procedure binary_merge_reconstruction:
Begin
 // To retrieve intermediate file from Huffman format call INVERSE_HUFFMANCODE()
 // To separate the Bit Plane and data tables call BINARY_DATA_DEMERGE()
 // To build original image from Bit Plane and Data table call BINARY_DATA_DECOMPRESS()
End

Procedure binary_data_demerge () :
/* Subroutine to separate the Bit Plane and data tables
// Data Items
left// holds the no of bits in the last byte of the bit plane
bpcount // holds no of bytes of bit plane
cur_byte
Begin
open bitplane file
open data table file
left = read(bpd file)
bpcount = read(bpd file)
for i = 1 to bpcound
Begin
cur byte = read(bpd file)
write cur byte to bitplane file
End
while ((cur_byte = read(bpd file))! = eof)
Begin
write cur byte to datatable file
End
close bitplane file
close data table file
close bpd file
End

Procedure binary_data_decompress () :
// Subroutine to build original image from Bit Plane and data table
 //Data Items
cur_pixel
bit plane
aBit//the current bit of current bit plane
Begin
open bitplane file
open data table file
open image file.
cur_pixel = read(data table file)
while((bit_plane = read(bitplane file))! = eof)
Begin
 for i = 1-8
 Begin
 move ith bit of bitplane to aBit
 if aBit = 1 then
 Begin
cur pixel = read(data table file)
 End
RESULTS AND DISCUSSION

The brain image which is taken as one sample source image, its histogram and statistical information are as shown in the Fig. 3. The histogram gives the distribution of the pixels in the range 0-255.

The generated results after executing Binary Merge Coding are shown in the Table 1. The memory requirement for BMC technique is very less compare to JPEG, because the processing is done byte by byte. In the case of JPEG the entire image needs to be brought into memory. As per as the process complexity is concerned, the Binary Merge Coding is simple to implement comparatively JPEG. The graph in Fig. 4 is drawn as the results shown in the Table1.

Table 1: The size and compression rate of BMC and JPEG compression techniques

Image name	RAW Size	JPEG Size	Comp rate	BMC Size	Comp rate
Brain	12610	15109	0.8346019	7609	1.6572479
Chest X ray	18225	16180	1.1263906	17207	1.0591619
Knee joint	18225	17193	1.0600244	13245	1.3759909
Head Scan	15625	15184	1.0290437	12532	1.2460808
Shoulder	18225	16962	1.0744606	12562	1.4508840

CONCLUSION

The compression rate of Binary Merge Coding is better than JPEG in medical images.

The reconstructed image matches 100% with the original image because this is loss less Image compression technique.

The memory requirements for processing the images in this technique are significantly less compared to JPEG. The JPEG technique requires more memory because the entire image needs to be brought into memory. But for the Binary Merge Coding some sizable amount memory is required, because they process the image pixel by pixel.

The Binary Merge Coding is also applied for color images, which is producing equally good results in comparison with monochrome images.

REFERENCES

1. Subhash Chandra, N., 2009. An Hybrid approach of Lossless compression for Color Images. Asian J. Inform. Technol., 8: 472-472.
2. Skodras, A., C. Christopoulos and E. Ebrahimi, 2001. The JPEG2000 still image compression standard. IEEE. Signal Process. Mag., 18: 36-58. DOI: 10.1109/79.952804
3. Wallace, G.K., 1992. The JPEG still picture compression standard. IEEE. Trans. Consum. Elect., 38: xviii-xxxiv. DOI: 10.1109/30.125072
4. Jayant, N., 1992. Signal compression: Technology targets and research directions. IEEE. J. Select Areas Commun., 10: 796-818. DOI: 10.1109/49.138986
5. Rafael, C., G. Richard and E. Woods, 2007. Digital Image Processing. 3rd Edn., Pearson Education, Printice Hall, ISBN: 013168728X, pp: 954.
6. Huffman, D.A., 1952. A method for construction of min redundancy codes. Proc. IRE., 40: 1098-1101. DOI: 10.1109/JRPROC.1952.273898
7. Taskin, C. and S.K. Sarikoz, 2008. An overview of image compression approaches. Proceeding of the 3rd International Conference on Digital Telecommunications, June 29-July 5, IEEE Xplore Press, Bucharest, pp: 174-179. DOI: 10.1109/ICDT.2008.38
8. Salmon, D., 2007. Data Compression. 4th Edn., Springer-Verlag Ltd., London, pp: 125-128.