Dynamic variability of the phytoplankton electron requirement for carbon fixation in eastern Australian waters

David J. Hughes1*, Joseph R Crosswell1,2, Martina A. Doblin1, Kevin Oxborough3, Peter J. Ralph1, Deepa Varkey1,4 and David J. Suggett1

1 Climate Change Cluster, University of Technology Sydney, Broadway 2007, NSW, Australia
2 CSIRO Oceans and Atmosphere, Brisbane, Queensland, Australia
3 Chelsea Technologies Group Ltd, 55 Central Avenue, West Molesey, KT8 2QZ, UK
4 Department of Molecular Sciences, Macquarie University, NSW 2109, Australia

*Corresponding author: David.Hughes@uts.edu.au

Declarations of interest: None
Abstract

Fast Repetition Rate fluorometry (FRRf) generates high-resolution measures of phytoplankton primary productivity as electron transport rates (ETRs). How ETRs scale to corresponding inorganic carbon (C) uptake rates (the so-called electron requirement for carbon fixation, \(\Phi_{e,C} \)), inherently describes the extent and effectiveness with which absorbed light energy drives C-fixation. However, it remains unclear whether and how \(\Phi_{e,C} \) follows predictable patterns for oceanographic datasets spanning physically dynamic, and complex, environmental gradients. We utilise a unique high-throughput approach, coupling ETRs and \(^{14}\)C-incubations to produce a semi-continuous dataset of \(\Phi_{e,C} \) (\(n = 80 \)), predominantly from surface waters, along the Australian coast (Brisbane to the Tasman Sea), including the East Australian Current (EAC). Environmental conditions along this transect could be generally grouped into cooler, more nutrient-rich waters dominated by larger size-fractionated Chl-a (>10 \(\mu \)m) versus warmer nutrient-poorer waters dominated by smaller size-fractionated Chl-a (<2 \(\mu \)m). Whilst \(\Phi_{e,C} \) was higher for warmer water samples, environmental conditions alone explained less than 20% variance of \(\Phi_{e,C} \), and changes in predominant size-fraction(s) distributions of Chl-a (biomass) failed to explain variance of \(\Phi_{e,C} \). Instead, normalised Stern-Volmer non-photochemical quenching (\(\text{NPQ}_{NSV} = F_0/F_v \)) was a better predictor of \(\Phi_{e,C} \), explaining ~55% of observed variability. \(\text{NPQ}_{NSV} \) is a physiological descriptor that accounts for changes in both long-term driven acclimation in non-radiative decay, and quasi-instantaneous PSII downregulation, and thus may prove a useful predictor of \(\Phi_{e,C} \) across physically-dynamic regimes, provided the slope describing their relationship is predictable.

We also consider recent advances in fluorescence-based corrections to evaluate the potential role of baseline fluorescence \((F_b) \) in contributing to overestimation of \(\Phi_{e,C} \) and the correlation between \(\Phi_{e,C} \) and \(\text{NPQ}_{NSV} \) – in doing so, we highlight the need for \(F_b \) corrections for future field-based assessments of \(\Phi_{e,C} \).
1. Introduction

Accurately quantifying marine primary production (MPP) at sufficient spatial and temporal scales needed to advance algorithms that retrieve carbon (C)-fixation rates from satellite ocean colour is a long-standing goal for oceanographers (Lee et al. 2015). Chlorophyll-α (Chl-α) fluorescence induction tools, such as Fast Repetition Rate fluorometry (FRRf, Kolber et al. 1998), can potentially realise this goal (e.g. Kolber & Falkowski 1993), provided FRRf-derived Photosystem II (PSII) electron transport rates per unit volume ($v_{ETR_{PSII}}$) can be robustly converted to C-fixation rates from knowledge of the “electron requirement for carbon fixation” ($\Phi_{e,C}$, Lawrenz et al. 2013; also termed K_C, Hancke et al. 2015). Whilst multiple studies have demonstrated robust empirical relationships between ETR_{PSII} and both gross (Suggett et al. 2009a; Robinson et al. 2014; Napoleon et al. 2013; Schuback et al. 2015), and net (Hoppe et al. 2015; Zhu et al. 2016) C-fixation, the derived values of $\Phi_{e,C}$ are highly-variable, often far exceeding the theoretical minimum stoichiometry of 4 e^- (mol C)$^{-1}$ (see Kolber and Falkowski, 1993). Such variability reflects (i) re-routing of electrons to non C-fixing pathways (e.g. Fisher and Halsey, 2016), (ii) consumption of photo-produced ATP and reductant for metabolisms other than cellular growth (e.g. Halsey and Jones, 2015), (iii) growth-rate dependent variability in the lifetime of fixed-C (Halsey et al. 2011) and/or (iv) methodological bias in the determination of either ETR_{PSII} or C-fixation (Suggett et al. 2009a; Hughes et al. 2018a).

Resolving variability of $\Phi_{e,C}$ over space and time poses a major challenge, since it remains unclear whether and how $\Phi_{e,C}$ follows predictable patterns, and hence, can be readily applied to broad FRRf datasets that often span complex oceanographic gradients. Through a comprehensive meta-analysis of parallel ETR_{PSII} and C-fixation measurements, Lawrenz et al. (2013) demonstrated empirical relationships between $\Phi_{e,C}$ and prevailing environmental variables known to regulate photosynthesis (e.g. light, inorganic nutrients and temperature).
However, the strength of these relationships varied considerably depending upon geographic location. More recent campaigns have similarly shown that a large proportion of $\Phi_{e,C}$ variability can be explained by corresponding changes in variability of light across sites in the South China Sea (Zhu et al. 2016, 2017) or inorganic nutrients (e.g. Fe; Schuback et al. 2015, 2017; and N; Hughes et al. 2018b) over space and time. Intriguingly, several of these most recent studies revealed a role for phytoplankton community taxonomic composition in moderating the covariance between $\Phi_{e,C}$ and environmental condition. Past controlled laboratory culture experiments (Suggett et al. 2009a; Napoleon et al. 2013) and field evaluations (Suggett et al. 2006; Lawrenz et al. 2013; Robinson et al. 2014) have indicated that $\Phi_{e,C}$ appears highly variable across phytoplankton taxa. However, isolating the relative role of environment versus taxonomy upon $\Phi_{e,C}$ variability remains problematic given that certain phytoplankton functional groups are often selected-for via specific environmental conditions (see Finkel et al. 2009; Hughes et al. 2018b).

Variability of $\Phi_{e,C}$ is inherently driven by physiological ‘re-wiring’ of the efficiency with which electrons are used to drive carbon uptake (Halsey et al. 2011; Fisher and Halsey, 2016). Thus, to overcome potential conflating roles of environment and taxonomy on regulation of $\Phi_{e,C}$, Schuback et al. (2015, 2016, 2017; Schuback and Tortell, 2019) recently considered use of a physiological trait metric as a potential overarching predictor for $\Phi_{e,C}$. These authors demonstrated an empirical relationship between the extent of non-photochemical quenching (NPQ) and $\Phi_{e,C}$, possibly driven by a positive feedback between the upregulation of non C-fixing pathways and ΔpH-activation of thermal dissipation mechanisms within the PSII antennae (e.g. Nawrocki et al. 2015). This relationship appears robust for Fe-limited conditions, and also appears to hold under N-limitation (Hughes et al. 2018b), yet remains generally untested for complex coastal waters where both environmental conditions, and phytoplankton community composition are highly dynamic. The parameter
NPQ describes the dynamic downregulation of PSII photochemistry and thus captures a snapshot of the prevailing physiological status of cellular excitation energy dissipation. However, other variables such as cell size, which frequently operate as a ‘master trait’ capturing efficiency of resource acquisition and utilisation independently of phytoplankton taxonomic identity (Key et al. 2010; Finkel et al. 2009) also appear to show promise in broadly explaining variance in $\Phi_{e,C}$ (Zhu et al. 2017).

Currently it remains unclear whether variance of $\Phi_{e,C}$ can in fact be explained from (relatively)-easily retrieved phytoplankton properties that potentially capture both environmental and taxonomic variance across physically complex oceanographic gradients. To address this question, we employed a high-throughput coupled ETR$_{PSI}$–14C-incorporation technique to yield a unique, semi-continuous dataset of $\Phi_{e,C}$ ($n = 80$), predominantly from surface waters, along the eastern Australian coast spanning Brisbane to the Tasman Sea and including near-shore waters of the East Australian Current (EAC). These water bodies comprise strong latitudinal gradients of temperature (~15-23ºC) and nutrients (0-3 µM dissolved nitrate, NO$_3^-$), moderated by eddies generated by the EAC that transiently incur nutrient-rich waters onto the continental shelf (Oke and Middleton, 2001). We examine the extent to which variance of $\Phi_{e,C}$ can be explained by corresponding changes of environmental condition. Furthermore, based on recent observations from contrasting water types in the South China Sea (Zhu et al. 2016, 2017) and eastern Australian coast (Robinson et al. 2014 Hughes et al. 2018b), we further tested how well $\Phi_{e,C}$ variance could also be explained by a broad descriptor of the capacity for phytoplankton to acquire and utilise resources.

Specifically, the predominant cell size fraction (measured as size-fractionated Chl-a) was chosen, since it is routinely incorporated into oceanographic studies as a broad identifier of community composition. Finally, as recent field studies of $\Phi_{e,C}$ have shown a strong relationship between NPQ and $\Phi_{e,C}$ (Schuback et al. 2015, 2016, 2017; Schuback and Tortell,
we also examined how well this photophysiological metric could predict $\Phi_{e,c}$ variance across a dynamic nutrient regime and whether a new method proposed for baseline correction (Boatman et al. 2019) might explain such variance.

2. Materials and Methods

2.1. Study area and sample collection

A total of 80 samples were obtained for coupled FRRf and 14C-uptake measurements from along the eastern coast of Australia between August 31st - September 22nd 2016, from the RV *Investigator* (voyage: IN2016_v04). Discrete seawater samples were collected from surface waters (5-7 m depth), and from the sub-surface chlorophyll maximum (SSCM) when discernible, via Conductivity Temperature Depth (CTD) casts (SBE32, Seabird Electronics, USA), using a 24 bottle rosette sampler. Presence of SSCMs was identified from vertical Chl-a fluorescence profiles from a passive fluorometer attached to the CTD frame. Additional surface samples were collected underway from the continuously-pumped surface seawater supply system (7 m intake depth, non-filtered supply). In total, $n = 64$ surface samples (21 discrete, 41 underway) and $n = 16$ discrete SSCM samples were collected (Fig. 1).
2.2. Physico-chemical parameters

Continuous measurements of photosynthetically active radiation (PAR) were taken in air using two quantum sensors (Li-190, Li-COR, Lincoln, NE, USA) positioned on the starboard and port sides of the upper deck. Salinity and temperature were determined for each discrete sample from probes attached to the CTD sensor (SeaBird SBE911 dual conductivity and temperature sensor) or the pumped underway seawater supply (Seabird SBE21 SeaCAT thermosalinograph). Analysis of dissolved inorganic nutrient concentrations: ammonium
(NH$_4^+$), nitrate (NO$_3^-$), phosphate (PO$_4^{3-}$) and silicate (Si) was conducted at sea immediately after sample collection (for both underway and discrete samples), following protocols outlined in Ajani et al. (2018). Analysis was performed using a SEAL AA3HR segmented flow injection analyser with instrument detection limits of: 0.02, 0.2, 0.02 and 0.2 µM for NH$_4^+$, NO$_3^-$, PO$_4^{3-}$ and Si respectively. Dissolved organic carbon (DIC) was immediately quantified onboard from the mean of triplicate measurements using an Apollo SciTech dissolved gas analyser (Model: AS-C3, Apollo SciTech, Newark, DE, USA).

2.3. Size-fractionated Chl-a

Total Chl-a content was determined by filtering 250 mL of seawater under low vacuum (<50 mg Hg) through a Sterlitech GF/F filter (0.3 µm nominal pore size). Filters were then transferred to 20 mL glass vials and pigments were immediately extracted using 3 mL 90% acetone and stored in the dark at 4°C for 24 hours. For the 2-10 µm and >10 µm fractions, a similar procedure was performed, using 2 µm Glass-fibre filters (Microanalytix, Sydney, Australia) and 10 µm polycarbonate filters (Merck Millipore, Bayswater, VIC, Australia) respectively. Chl-a was then determined fluorometrically using a Trilogy fluorometer (Turner Designs, California, USA, serial number: 720000354), equipped with a non-acidification Chl-a module (Turner Designs, USA) and calibrated against a pure Chl-a standard (Sigma-Aldrich Pty Ltd, Castle Hill, NSW, Australia).

2.4. Photophysiological characterisation and electron transport rates (FRRf)

Samples were maintained under very low light (2-3 µmol photons m$^{-2}$ s$^{-1}$) for a minimum of 20 minutes to relax non-photochemical processes prior to FRRf measurements. A FastOcean MKIII FRRf coupled to a FastAct laboratory system (Chelsea Technologies Group, London, UK) was programmed to deliver single turnover (ST) saturation of PSII from a succession of 100 flashlets (1 µs pulse with a 2 µs interval between flashes), followed by a relaxation phase
of 40 flashlets (1 μs pulse with a 50 μs interval between flashes). A total of 100 sequences were performed per acquisition, with an interval of 150 ms between sequences. For all ST measurements, the blue LED (450nm) was the sole excitation source used to drive closure of PSII reaction centres and generate fluorescence induction transients. The biophysical model of Kolber et al. (1998) was fitted to all fluorescent transients using FastPro8 software (V.1.0.55; Chelsea Technologies) to determine minimum \((F_0, F') \) and maximum fluorescence \((F_m, F'_m) \), functional absorption cross section of PSII \((\sigma_{PSII}, \sigma_{PSII}') \) and the PSII connectivity factor \((\rho, \rho') \) (where the prime notation denotes that samples were measured during exposure to actinic light). Contribution of background fluorescence emitted from fluorescent dissolved organic matter was measured from 0.2 μm-filtered samples and subsequently subtracted from all samples within the FastPro8 software. For this study we calculated \(vETR_{PSII} \) (mol electrons m\(^{-3}\) s\(^{-1}\)) according to the “absorption” algorithm of Oxborough et al. (2012) (Eq. 1):

\[
vETR_{PSII} = a_{LHII} \cdot \frac{F'_q}{F'_m} \cdot E
\]

Where \(a_{LHII} \) is the absorption coefficient for PSII light harvesting (units: m\(^{-1}\)), \(F'_q/F'_m \) is the effective PSII quantum yield under ambient light (Genty et al. 1989) and \(E \) is irradiance (mol photons m\(^{-2}\) s\(^{-1}\)). The absorption algorithm represents a modified version of the “sigma” algorithm (Kolber et al. 1998), which allows for parameterisation of \(a_{LHII} \) without \(\sigma_{PSII}' \) that can be difficult to resolve reliably under high ambient irradiance (see Oxborough et al. 2012) (Eq. 2):

\[
a_{LHII} = \frac{F_m \cdot F_0}{F_m - F_0} \cdot K_a
\]

Where \(K_a \) is an instrument-specific constant (units: m\(^{-1}\)). This approach does not require an assumption of the connectivity of PSII reaction centres (RCIIs) (see Kolber et al. 1998; Kramer et al. 2004) and thus the absorption algorithm can be alternatively expressed as per
Eq. 3. Strictly, this derivation is denoted JV_{PSII}, since it is a flux (see Oxborough et al. 2012) but for consistency with terminology in Eqs 1, we continue to refer to this as νETR_{PSII}:

$$\nu ETR_{PSII} = \frac{F_m - F_0}{F_m - F_0} \cdot \frac{V_{q'}}{V_{m'}} \cdot K_\alpha \cdot E$$ \hspace{1cm} (3)

Measurements of α_{LHII} are spectrally-weighted towards the FRRf excitation LED (450 nm for the instrument used in this study) and therefore were spectrally-adjusted using a spectral correction factor (SCF) informed by knowledge of the dominant phytoplankton class present in each sample, as assessed by on-board microscopy. Once the dominant phytoplankton group was identified, we followed the procedure of Hughes et al. 2018b and used previously-collected fluorescence excitation spectra (400–700 nm) from phytoplankton cultures pre-treated with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) to obtain spectrally-resolved values of $\alpha_{LHII}(\lambda)$ as:

$$\alpha_{LHII}(\lambda) = \left(\frac{\alpha_{LHII}(450)}{F_{730}(450)}\right) \cdot F_{730}(\lambda)$$ \hspace{1cm} (4)

Values of $\alpha_{LHII}(\lambda)$ were then adjusted to the spectral output of the actinic light source housed within the FRRf optical head as per Eq. 5.

$$\overline{\alpha_{LHII}(\lambda)} = \frac{\sum_{400}^{700} \alpha_{LHII}(\lambda) \cdot E(\lambda) \Delta \lambda}{\sum_{400}^{700} E(\lambda) \Delta \lambda}$$ \hspace{1cm} (5)

A total of four dominant phytoplankton classes were observed in this study (chlorophytes, diatoms, dinoflagellates and haptophytes), and SCFs applied to the data ranged from 0.37 – 0.44 (see Supplementary Fig. S1 for phytoplankton fluorescence excitation spectra used to derive SCFs). For 11 out of 80 samples there were insufficient (< 100) cells counted to allow reliable determination of taxonomic composition. For these samples, routine assessment of phytoplankton pigment group contributions to the FRRf signal was performed using a second custom multi-spectral FRRf (Soliense Inc, California, USA, no serial number). To screen for
pigment contributions to σ_{PSII}, the Soliense Inc. FRRf was programmed to deliver “Flash, Length, Delay, Inc” of “100, 1.6, 5, 1 (excitation) and “80, 1.6, 20, 1.06 (relaxation), sequentially cycling through three excitation LED wavelengths: 445 nm, 470 nm and 505 nm, with acquisitions averaged from 20-80 sequences (depending upon biomass). We then compared PSII fluorescence (as F_o) at each wavelength (normalised to 445 nm) against the fluorescence excitation spectra for each of the four dominant phytoplankton groups (also normalised to 445 nm) – selecting the “best match” phytoplankton group as the one with the lowest cumulative difference to our sample (see Supplementary Fig. S2). We acknowledge that applying SCFs based on phytoplankton class assessed purely by microscopy (or by FRRf pigment contribution) provides limited taxonomic resolution by not accounting for co-dominance of phytoplankton groups or potential contribution of picophytoplankton, and may therefore introduce a degree of uncertainty into our reported $\Phi_{e,C}$ values. Overall however, we consider this an improvement over not applying a SCF altogether which have been reported to introduce as much as 100-200% uncertainty in FRRf measurements of $\Phi_{e,C}$ (Silsbe et al. 2015).

Fluorescence light curves (FLCs) were performed to determine the light intensity for saturated electron transport (E_K) as a means to standardise irradiance values for subsequent incubations used to derive $\Phi_{e,C}$ (see following section). For this, we used a similar protocol and instrument settings as previously described in Suggett et al. (2015), with the exception that each light step was held for only 20 s to minimise the overall duration of the FLC and allow for increased sampling frequency. This protocol was consistently applied to all samples however as the FLC duration approximated a “rapid” light protocol, it is likely that steady-state fluorescence was not reached during the period of exposure (e.g. Ralph and Gademann, 2005). Parameterisation of each generated FLC was achieved by fitting the model of Platt et al. (1981) to the photosynthesis-irradiance response: i.e. $v\text{ETR}_{\text{PSII}}$ versus E data. Non-linear
curve fits were performed using Sigmaplot v11.0, (Systat Software Inc, California, USA). Least squares non-linear regression analysis of the model fit was performed to estimate the maximum rate of electron transport, \(v_{ETR_{PSII}}^{max} \), the light utilisation efficiency, \(\alpha \) (electrons m\(^{-3}\) s\(^{-1}\)) and thus the light saturation parameter, \(E_K \) (calculated as \(v_{ETR_{PSII}}^{max}/\alpha \)) with units of \(\mu \text{mol photons m}^{-2}\text{s}^{-1} \). A white LED was used to generate the FLC (hence \(E_K \) is strictly weighted to this spectra, as per Moore et al. 2006), but also to subsequently illuminate samples for the FRRf-\(^{14}\)C productivity comparisons.

2.5. High-throughput FRRf-\(^{14}\)C incubations (\(\Phi_{eC} \)) A total of 80 small-volume (3 mL), incubations were performed, where \(v_{ETR_{PSII}} \) and \(^{14}\)C-uptake were measured simultaneously upon the same sample (i.e. a “dual incubation”) at an irradiance approximating the light-saturation parameter (described below) and \(ETR_{PSII} \) was measured every 5 s during this period. To quantify \(^{14}\)C-uptake, we adopted the small-volume method of Lewis and Smith (1983) with several modifications. Aliquots of 3 mL seawater samples were transferred to a borosilicate test-tube and spiked to a final concentration of 0.4 \(\mu \text{Ci mL}^{-1} \) NaH\(^{14}\)CO\(_3\) (Perkin-Elmer, Melbourne, Australia). The test-tube containing the radiolabelled sample was then incubated for 2 hr within the FRRf optical head, using the FRRf’s in-built white LED array to provide actinic light. Such an approach avoids numerous errors associated with artefacts introduced by use of separate incubations (see Suggett et al. 2009a; Lawrenz et al. 2013) yet does not allow for replication as the instrument can only hold a single test tube at a time; previous assessments of laboratory cultures however demonstrated small variability between biological replicates when measured at saturating irradiance (Hughes, 2018). Upon completion of the incubation, samples were removed and immediately acidified with 150 \(\mu \text{L} \) of 6 M HCl to convert remaining unfixed inorganic \(^{14}\)C to \(^{14}\)CO\(_2\). Samples were then degassed for 24 hr in a fume hood before fixation with 10 mL scintillation fluid (Ultima Gold LLT, Perkin Elmer). Fixed samples were then boxed and stored in a cool location for analysis.
upon return to the University of Technology Sydney (UTS). At UTS, 14C samples were shaken vigorously for several minutes and left to stand overnight before three rounds of liquid scintillation counting (count time: 5 min) using a Tri-Carb 2810 TR, Perkin-Elmer, with automatic quench correction. Rates of 14C-fixation (mol C m$^{-3}$ hr$^{-1}$) were then calculated from the concentration of DIC and the quantity of 14C isotope incorporated during the incubation as per Knap et al. (1996). $v\text{ETR}_{\text{PSII}}$ was scaled to hourly-integrated rates as per Suggett et al. (2009a) to allow determination of $\Phi_{e,C}$ (mol e$^-$/[mol C$^-1$]) as:

$$\Phi_{e,C} = \frac{v\text{ETR}_{\text{PSII}}}{C-\text{fixation}}$$

Values of $\Phi_{e,C}$ have been shown to increase under saturating light intensities (i.e. the $v\text{ETR}_{\text{PSII}}^{\text{max}}$ region of a PE curve) compared to light-limiting irradiances (the α region of a PE curve) (Brading et al. 2013). Therefore, to standardise incubation conditions between samples, we opted to provide the irradiance level corresponding to the measured light-saturation parameter (E_K) for each sample rather than in-situ light levels (not measured in this study), since E_K provides a convenient indicator of photoacclimation status (Sakshaug et al. 1997). Due to constraints of instrumentation in the onboard radiation laboratory, E_K values were initially obtained from raw RLC data using FastPro8 software. Upon initial determination of E_K, the FRRf white LED array was then programmed to deliver the closest corresponding irradiance level available from a range of pre-defined irradiances allowed by the instrument software. All FLC data were however later exported for quality-controlling and subsequent fitting of the Platt et al. (1981) model using Sigmaplot to re-calculate all E_K values as described above. Chosen incubation irradiances were subsequently expressed relative to the re-calculated E_K values at a later time as E/E_K (dimensionless). Even so, the incubation irradiances chosen at the time of sampling were very close to the re-calculated E_K value (mean $E/E_K = 1.15$), with E/E_K values ranging from 0.7 – 1.7 across all samples (data
not shown). Thus, the incubation irradiances in this study represent a reasonably-constrained continuum of light-limited ($E/E_K < 1$) to light-saturated ($E/E_K > 1$) conditions for photosynthesis.

2.6. NPQ_{NSV} and PSU size

Non-photochemical quenching (NPQ) of fluorescence was calculated as the normalised Stern-Volmer coefficient (denoted here as NPQ_{NSV}) according to McKew et al. (2013) as:

$$NPQ_{NSV} = \frac{1}{F'/F_{m'}} - 1 \quad (7)$$

NPQ_{NSV} was measured every 5 s during the simultaneous 14C-FRRf incubations and values reported correspond to the average of the last three measurements taken after a period of 30 min. We chose this length of time as previous studies (e.g. Schuback et al. 2016) have calculated NPQ_{NSV} from measurements performed during FLCs where samples have been exposed to light for between 3-30 min. Indeed, we observed no differences in NPQ_{NSV} calculated from measurements after 3 and 30 min, yet saw a significant increase by the end of the incubation period (120 min) (Supplementary Fig. S3). The size of the photosynthetic unit (PSU, with units of mol Chl-α [mol RCII]$^{-1}$) was derived from the fluorometric estimate of RCII according to Oxborough et al. (2012) (see also Murphy et al. 2017) and the total Chl-α concentration for each sample determined fluorometrically using a Triology fluorometer as outlined above.

2.7. Statistical Analysis

All multivariate analysis was performed using the software package, PRIMER v6 (PRIMER-E, Plymouth, UK). Multidimensional scaling (MDS) plots were constructed to visualise patterns in physico-chemical variables. Hierarchical cluster analysis (HCA) with a SIMPROF test ($p = 0.05$) was performed on a Euclidean resemblance matrix of physico-chemical
variables (PAR, temperature, salinity, NH$_4^+$, NO$_3^-$, PO$_4^{3-}$ and Si) to identify groupings of similar hydrography. Student’s t-tests were used to test for statistical differences between data clusters identified by HCA for variables where assumptions of normality and equal variance were met, (tested by the Kolmogorov-Smirnov and Levene’s test respectively) using Sigmaplot v11.0 (Systat Software Inc, California, USA). Where one or both assumptions were not met, differences between clusters were assessed using the Mann-Whitney Rank Sum test (Sigmaplot v11.0, Systat Software Inc.). Distance-based linear modelling (DistLM) was performed to examine how much variability in $\Phi_{e,C}$ could be explained by core environmental variables (PAR, temperature, salinity and nutrients), E/E_K, total Chl-a, size-fractionated Chl-a and NPQ$_{NSV}$ within clusters identified by HCA and for all data pooled. To understand the respective predictive power of the measured variables, we initially performed DistLM analysis selecting only core environmental variables as available predictor variables. We then sequentially included E/E_K, total Chl-a, size-fractionated Chl-a and NPQ$_{NSV}$ as additional available predictor variables, repeating DistLM analyses after addition of each variable. To obtain the most parsimonious model at each step, we used the best model selection routine based on 9999 permutations with Akaike information criterion (AICc - corrected for small sample number), which incorporates a penalty factor for increasing the number of predictor variables (Anderson et al. 2008).

Prior to DistLM, the distribution of each physico-chemical variable was assessed using draftsman’s plots and co-correlations were identified from Pearson’s correlation matrices. Variables with skewed distribution were square-root transformed, and if pairs of variables had a Pearson’s correlation co-efficient of $>$0.8, one of the pair was excluded from subsequent analyses. Distance-based redundancy analysis (dbRDA) plots were generated to enable two-dimensional visualisation of the best DistLM models. Significant differences between NPQ$_{NSV}$ measured after variable incubation lengths (3, 30 and 120 min) and the
mean NPQ_{NSV} over the entire incubation were evaluated using the non-parametric Kruskal-Wallis test followed by Dunn’s post hoc test. An identical procedure was also used to assess statistical differences between Φ_{e,C} when binned into groups based on dominant Chl-a size fraction.

3. Results

3.1. Physico-chemical characterisation

Sampled water masses were characterised by a distinct gradient of both nutrients and temperature (Fig. 2a-f). NO₃⁻, PO₄³⁻ and Si exhibited higher concentrations in coastal samples and the southern Tasman Sea, compared to the EAC and northernmost coastal/oceanic samples (Fig. 2b-d). NH₄⁺ concentrations were generally highest in coastal samples (up to 0.6 µM), but relatively low in the Tasman Sea and EAC, where values occasionally fell below the limit of detection (0.02 µM; Fig. 2a). Temperature exhibited a distinct latitudinal pattern, ranging from ~15°C in the southern Tasman Sea to ~23.5°C for northernmost coastal samples, with a distinct thermal gradient also measured within the EAC, where surface temperatures cooled with southward travel (Fig. 2f). Salinity remained largely consistent throughout (~35-35.8 ppt), yet the highest values were consistently measured within the EAC water mass (Fig. 2e).

3.2. Φ_{e,C}, biomass and photophysiology

Measured Φ_{e,C} ranged from ~4.7 to 65 mol e⁻ (mol C)⁻¹, with a mean of ~16 mol e⁻ (mol C)⁻¹ during this study (Fig. 3a). Thus, all measurements of Φ_{e,C} were higher than the theoretical minimum value of 4 mol e⁻ (mol C)⁻¹, and the upper values agreed well with a previous meta-analysis of global FRRf-derived Φ_{e,C} data (Lawrenz et al. 2013) and recent field campaigns (e.g. Ko et al. 2019). Φ_{e,C} was generally lowest in coastal waters, where virtually all values
fell below the observed mean for this study (i.e. <16 mol e\(^{-}\) [mol C\(^{-1}\)]. The EAC and the Tasman Sea were both characterised by large variability in \(\Phi_{e,C}\) (values ranging from ~10-65 mol e\(^{-}\) [mol C\(^{-1}\)], and unlike physico-chemical variables measured, no latitudinal pattern in \(\Phi_{e,C}\) was evident (Fig. 3a). Carbon assimilation rate per unit Chl-a (carbon assimilation number, measured at saturating irradiance) ranged from 0.5 – 5.5 (mean: 2.2) mg C (mg Chl-a\(^{-1}\) hr\(^{-1}\) and was generally higher (>3 mg C [mg Chl-a\(^{-1}\) hr\(^{-1}\)) in coastal waters and the southern Tasman Sea, whilst lower values (<2.5 mg C [mg Chl-a\(^{-1}\) hr\(^{-1}\)) were consistently measured within the EAC (Fig. 3b).
Figure 2 Physicochemical characteristics of surface water sampled in coastal, Eastern Australian Current (EAC) and Tasman Sea water masses measured from the RV Investigator (August – September 2016, IN2016_v03): (a) ammonium (NH$_4^+$), (b) nitrate (NO$_3^-$), (c) phosphate (PO$_4^{3-}$), (d) silicate (Si) [all nutrient concentrations are reported as µM], (e) salinity (ppt) and (f) sea surface temperature (°C).
Figure 3 Photophysiological and productivity characteristics of surface water sampled in coastal, Eastern Australian Current (EAC) and Tasman Sea water masses measured from the RV Investigator (August – September 2016, IN2016_v04); (a) the electron requirement for carbon fixation ($\Phi_{e,C}$, mol e$^{-}$ [mol C]$^{-1}$), (b) carbon assimilation number (mg C [mg Chl-a] hr$^{-1}$), (c) Chlorophyll-a (Chl-a) biomass (mg/m3), (d) maximum photochemical efficiency (F_{v}/F_{m}, dimensionless), (e) functional absorption cross-section of PSII (σ_{PSII}, nm2 PSII$^{-1}$) and (f) light-saturation parameter ($E_{K[450]}$, µmol photons m$^{-2}$ s$^{-1}$).
Total Chl-a biomass ranged from 0.1 to 3.5 mg m\(^{-3}\), averaging ~0.8 mg m\(^{-3}\) during the study, with highest Chl-a concentrations occurring within coastal waters and the southernmost Tasman Sea (Fig. 3c). The 2-10 µm Chl-a size fraction was the most dominant size fraction in this study, representing the largest contributor to total Chl-a in nearly half (42%) of all samples (Fig. 4a). Conversely, the <2 µm size fraction was least dominant, accounting for the majority of total Chl-a in only 15 out of 80 samples (19%), with the >10 µm size-fraction intermediate (~30% of samples) (Fig. 4a). Notably, \(\Phi_{e,C}\) did not appear to exhibit an obvious pattern relating to the dominant Chl-a size fraction contributing to total Chl-a (Fig. 4a).

Values for the maximum photochemical efficiency (\(F_v/F_m\)) ranged from 0.24 to 0.57 and followed a similar pattern to Chl-a, with larger values measured in coastal waters and the southern Tasman Sea (Fig. 3d). Conversely, the functional absorption cross-section of PSII (\(\sigma_{PSII}\)), was generally lowest in coastal waters (albeit with a degree of variability), although the largest values recorded (>6 nm\(^2\) PSII\(^{-1}\)) corresponded to the southern Tasman Sea water mass (Fig. 3e).

FLC-retrieved values of the light saturation parameter (\(E_K\)) spanned a wide range of values (~85-700 µmol photons m\(^{-2}\) s\(^{-1}\)) with a mean value of ~270 µmol photons m\(^{-2}\) s\(^{-1}\). \(E_K\) was consistently low (< 400 µmol photons m\(^{-2}\) s\(^{-1}\)) in both the southern Tasman Sea water mass and the EAC (with the exception of a single sample), yet exhibited far greater variability in coastal waters (Fig. 3f).
Figure 4 a) Simplex plot of the electron requirement for carbon fixation, $\Phi_{e,C}$ (mol e$^-$ [mol C]$^{-1}$) showing % contribution of Chl-a size fractions (<2 µm, 2-10 µm and >10 µm) for individual samples ($n = 80$); b) Box-plot of $\Phi_{e,C}$ binned according to the dominant Chl-a size fraction ($n = 81$, note that one sample appears in both the <2 µm and 2-10 µm fractions due to equal dominance of both size fractions). For each cluster the median and mean values are indicated by the bold and red dashed lines respectively, the large box represent the 5th and 95th percentiles and the open circles denote outliers.
3.3. Predicting $\Phi_{e,C}$ from physico-chemical versus taxonomic variables

Previous studies modelling $\Phi_{e,C}$ variability have demonstrated improved predictive capacity by grouping samples according to similar hydrography (e.g. Lawrenz et al. 2013; Zhu et al. 2016, 2017), therefore we adopted a similar approach here. MDS identified a distinct separation of data based on nutrients and temperature (Fig. 5a), with HCA identifying two primary clusters (Supplementary Fig. S4), predominately separated latitudinally (Fig. 5b):

Cluster A) generally characterised by higher temperatures and lower dissolved nutrient levels, and Cluster B) characterised by lower temperatures and higher dissolved nutrient levels (Table 1). Overall, 12 of the 16 SSCM samples were assigned to cluster B (data not shown). Binning these various data according to the two clusters revealed broad differences in the physiology inherent to the two prevailing water types sampled:

Mean $\Phi_{e,C}$ was lower and carbon assimilation number was higher in cluster A (15.1 mol e$^-$ [mol C]$^{-1}$) and 2.6 mg C [mg Chl-a]$^{-1}$ hr$^{-1}$ respectively) compared to cluster B (18.96 mol e$^-$ [mol C]$^{-1}$) and 2.11 mg C [mg Chl-a]$^{-1}$ hr$^{-1}$ respectively) (Table 1). Cluster B was further characterised by significantly higher total Chl-a biomass, comprised of a greater proportion of large cells as inferred from >10µm Chl-a size fraction (35% vs. 20%) (Mann-Whitney Rank sum test, Table 1). Mean PSU size was similar between clusters (Table 1, Supplementary Fig. S5), with a value of ~600 mol Chl-a (mol RCII)$^{-1}$ - 20% larger than the commonly used reference value for eukaryotic-dominated phytoplankton assemblages (500 mol Chl-a [mol RCII]$^{-1}$) (Kolber and Falkowski, 1993; but see also Raateoja et al. 2004).
	Cluster A \(n = 33\)	Cluster B \(n = 47\)	test statistic
Physicochemical			
Temperature \(\degree C\)	21.45 (0.22)	18.60 (0.20)	\(p = < 0.001^{(MW)**}\)
Salinity (ppt)	35.69 (0.01)	35.65 (0.01)	\(p = 0.002^{(S)*}\)
\(\text{NH}_4^+\) (µM)	0.09 (0.02)	0.17 (0.02)	\(p = < 0.001^{(MW)**}\)
\(\text{NO}_3^-\) (µM)	0.24 (0.03)	1.82 (0.12)	\(p = < 0.001^{(MW)**}\)
\(\text{PO}_4^{3-}\) (µM)	0.14 (0.01)	0.26 (0.01)	\(p = < 0.001^{(MW)**}\)
Si (µM)	0.56 (0.02)	1.01 (0.03)	\(p = < 0.001^{(MW)**}\)
Biological			
Chl-\(a\) < 2 µm (%)	35.23 (2.81)	20.01 (2.52)	\(p = < 0.001^{(MW)**}\)
Chl-\(a\) 2-10 µm (%)	42.85 (2.14)	44.55 (2.70)	\(p = 0.346^{(MW)}\)
Chl-\(a\) > 10 µm (%)	21.91 (3.42)	35.44 (3.71)	\(p = < 0.001^{(MW)**}\)
Total Chl-\(a\) (mg m\(^3\))	0.63 (0.06)	1.05 (0.13)	\(p = 0.02^{(MW)*}\)
\(F_v/F_m\) (unitless)	0.39 (0.02)	0.42 (0.01)	\(p = 0.124^{(MW)}\)
\(\sigma_{PSII}\) (nm\(^2\) PSII\(^{-1}\))	5.40 (0.16)	5.12 (0.13)	\(p = 0.168^{(S)}\)
\(E_K\) (µmol photons m\(^{-2}\) s\(^{-1}\))	295.62	269.42	\(p = 0.257^{(MW)}\)
\(E/E_K\) (unitless)	1.16	1.15	\(p = 0.88^{(S)}\)
NPQ\(_{NSV}\) (unitless)	1.96 (0.78)	1.64 (0.58)	\(p = 0.135^{(MW)}\)
\(\Phi_{e,C}\) (mol e\(^{-}\) [mol C\(^{-1}\)])	18.96 (1.97)	15.1 (1.39)	\(p = 0.044^{(MW)*}\)
Carbon assimilation (mg C [mg Chl-\(a\)] hr\(^{-1}\))	2.11 (0.18)	2.60 (0.18)	\(p = 0.069^{(S)}\)
PSU size (mol Chl-\(a\) [mol RCII\(^{-1}\)])	617.33 (26.24)	600.83 (28.55)	\(p = 0.695^{(S)}\)

Table 1 Mean (± SE, standard error) of physicochemical variables and biological parameters within Cluster A and B (see Supplementary Fig. S4 for cluster information). * and ** denotes significance levels of 0.05 and <0.01 respectively assessed by either Student’s t-test (denoted by \(^{(S)}\)) or Mann-Whitney Rank sum test denoted by \(^{(MW)}\).

Changes in core environmental variables (temperature, salinity, \(\text{NH}_4^+\), \(\text{NO}_3^-\), \(\text{PO}_4^{3-}\), Si and PAR) explained only 19% of \(\Phi_{e,C}\) variation across the entire dataset (Table 2), indicating that prevailing environmental conditions were not strong predictors of \(\Phi_{e,C}\) in this study area.

When separated by cluster, the ability to explain variance in \(\Phi_{e,C}\) improved to 22% for cluster A, but decreased for cluster B to 10% (Table 2). Including \(E/E_K\) as an available predictor...
variable resulted in a slight improvement of $\Phi_{e,C}$ variance explained by the best model for all data combined (to 23%), yet was not selected in the models that best explained variability for cluster A or B individually (Table 2). Knowledge of total Chl-α resulted in only a marginal improvement to explained variance of $\Phi_{e,C}$ within cluster A (from 22 to 24%) yet did not feature in predictor variables that best explained variance within the combined dataset.

Similarly, inclusion of size-fractionated Chl-α as an available predictor variable resulted in no improvement of model performance for all data combined or cluster A, yet did improve $\Phi_{e,C}$ variance explained by core environmental variables from 10 to 19% in cluster B. The lack of an obvious pattern between $\Phi_{e,C}$ and the dominant Chl-α size fraction (Fig. 4a) likely explains the lack of model improvement when available as a predictor variable. However, intriguingly when $\Phi_{e,C}$ values were binned into three sample groups based on their dominant Chl-α size-fraction (i.e. the largest individual contributor to overall Chl-α pigment), mean $\Phi_{e,C}$ appeared to decrease with increasing size fraction (Fig. 4b), although no statistical differences could be determined ($p > 0.05$. Kruskal-Wallis test). $\Phi_{e,C}$ was thus lowest for assemblages dominated by cells/pigment in the >10 µm fraction (13.8 ± 1.2 mol e$^-$ [mol C]$^{-1}$, $n = 23$), increasing to 18.6 mol e$^-$ [mol C]$^{-1}$, $n = 15$ for the < 2 µm fraction, with the 2-10 µm fraction intermediate (16.1 mol e$^-$ [mol C]$^{-1}$) (Fig. 4b).
Finally, we included NPQ_{NSV} as an available predictor variable to evaluate its potential to explain variance of Φ_{e,C} within our dataset, as has been recently demonstrated in other FRRf-based studies (e.g. Schuback et al. 2015; Hughes et al. 2018b). Linear regression showed that NPQ_{NSV} in fact exhibited the strongest relationship with Φ_{e,C} of all predictor variables in this study ($r^2 = 0.51$, $p < 0.01$, Fig. 6a) with similar slopes between clusters (7.42 and 6.41 for cluster A and B respectively). Including NPQ_{NSV} as an available predictor variable thus resulted in a substantial improved ability to explain Φ_{e,C} variance by the best model for all data combined (from 23% to 54%). Within Cluster A, inclusion of NPQ_{NSV} within the best model yielded greatly increased ability to explain Φ_{e,C} variance, from 24% to 67%.

Interestingly, although the improvement was not as large for Cluster B, the best model consisted of NPQ_{NSV} as the single predictor variable, which alone explained 41% of Φ_{e,C} variance (Table 2).
Available variables	AICc	R^2	RSS	Selected variables (best)
All data (n = 80)				
Core env.	277.0	0.19	2293.6	Temperature, PO$_4^{3-}$, PAR
+ E/E_K	275.6	0.23	2191.1	Temperature, PO$_4^{3-}$, PAR, E/E_K
+ Chl-a	275.6	0.23	2191.1	Temperature, PO$_4^{3-}$, PAR, E/E_K
+ S/F Chl-a	275.6	0.23	2191.1	Temperature, PO$_4^{3-}$, PAR, E/E_K
+ NPQ$_{NSV}$	234.7	**0.54**	1313.0	Temperature, PO$_4^{3-}$, NPQ$_{NSV}$, E/E_K
Cluster A				
Core env.	159.4	0.22	3352.9	Temperature, PO$_4^{3-}$
+ E/E_K	159.4	0.22	3352.9	Temperature, PO$_4^{3-}$
+ Chl-a	158.4	0.24	3260.3	PO$_4^{3-}$, Chl-a
+ S/F Chl-a	158.4	0.24	3260.3	PO$_4^{3-}$, Chl-a
+ NPQ$_{NSV}$	136.7	**0.67**	1433.7	PO$_4^{3-}$, PAR, NPQ$_{NSV}$, Chl-a
Cluster B				
Core env.	228.1	0.10	5495.7	PO$_4^{3-}$
+ E/E_K	228.1	0.10	5495.7	PO$_4^{3-}$
+ Chl-a	228.1	0.10	5495.7	PO$_4^{3-}$
+ S/F Chl-a	227.8	0.19	4950.7	PO$_4^{3-}$, Chl-a <2µM, Chl-a >10µM
+ NPQ$_{NSV}$	208.66	**0.41**	3636.3	NPQ$_{NSV}$

Table 2. Variance in $\Phi_{e,C}$ explained by DistLM analysis using only core environmental variables (Core env.), consisting of surface irradiance (PAR), temperature, salinity and nutrients (NH$_4^+$, NO$_3^-$, PO$_4^{3-}$ and Si) as available predictor variables, then sequentially adding additional available predictor variables: irradiance relative to light saturation parameter (E/E_K), total chlorophyll-a content (Chl-a), size fractionated Chl-a % (<2µM, 2-10 µM and >10µM) and normalised Stern-Volmer non-photochemical quenching (NPQ$_{NSV}$). Shown are the selected variables from the best model generated after adding each new available predictor variable, together with the Akaike information criterion statistic (AICc – corrected for small sample number) and residual sum of squares (RSS). Bold text denotes variance explained by the best model generated from all available predictor variables.

3.4. Evaluating potential influence of baseline fluorescence on $\Phi_{e,C}$ and NPQ$_{NSV}$

Ours is the latest in a series of recent studies that have collectively demonstrated a strong relationship between $\Phi_{e,C}$ and NPQ$_{NSV}$. As the present dataset spans a dynamic environmental gradient of nutrients, and consists of a wide range of measured F_v/F_m values (from 0.24 to 0.57), it presents an opportunity to examine the potential significance of baseline fluorescence for FRRf-based measures of $\Phi_{e,C}$ and its apparent strong relationship with
NPQ$_{NSV}$. Boatman et al. (2019) used coupled O$_2$-flash yield and FRRf measurements to assess potential errors in νETR$_{PSII}$ determination caused by baseline fluorescence of cellular origin (denoted as F_b), proposing a fluorescence-based correction procedure to compensate for this effect. Therefore, following recommendations by Boatman et al. (2019) we estimated the contribution of F_b in the dark-adapted state as:

$$F_b = F_m - \frac{F_v}{0.5}$$ \hspace{1cm} (8)$$

And for each sample measurement in the light-adapted state as:

$$F'_b = F_b \cdot \frac{F'_m}{F_m}$$ \hspace{1cm} (9)$$

This estimation of F_b contribution makes two key assumptions, specifically that: i) a value of 0.5 approximates the assumed consensus photochemical efficiency for each sample (see Boatman et al. 2019) and ii) F_b is emitted from the same thylakoid membranes as F_v, and therefore is quenched to the same extent as F_m during PSII downregulation (Oxborough et al. 2012). Calculated F_b was then subtracted from dark-adapted values of F_o and F_m for each sample, before a_{LHII} was re-calculated as per Eq. 2. Light-adapted values of F'_v and F'_m were similarly corrected by subtracting F'_b to allow for recalculation of F'_q/F'_m, and subsequently of νETR$_{PSII}$ as per Eq. 1. For samples where the pre-corrected F_v/F_m was ≥ 0.5, no F_b correction procedure was applied (as per Boatman et al. 2019).
Available variables	AICc	R²	RSS	Selected variables (best)
All data (n = 80)				
Core env.	376.6	0.11	8185.3	Temperature, PO₄³⁻
+ E/Eₖ	373.4	0.17	7648.7	Temperature, PO₄³⁻, E/Eₖ
+ Chl-a	373.4	0.17	7648.7	Temperature, PO₄³⁻, E/Eₖ
+ S/F Chl-a	373.2	0.19	7417.0	PO₄³⁻, E/Eₖ, Chl-a <2µM, Chl-a >10µM
+ NPQ₉₅	341.6	0.46	4999.3	Temperature, PO₄³⁻, NPQ₉₅, E/Eₖ
Cluster A				
Core env.	161.6	0.21	3318.3	Temperature, salinity, PO₄³⁻
+ E/Eₖ	160.2	0.29	2925.1	Temperature, salinity, PO₄³⁻, E/Eₖ
+ Chl-a	156.4	0.32	2839.1	NO₃⁻, E/Eₖ, Chl-a
+ S/F Chl-a	156.4	0.32	2839.1	NO₃⁻, E/Eₖ, Chl-a
+ NPQ₉₅	139.3	0.69	1283.1	PO₄³⁻, NH₄⁺, PAR, NPQ₉₅, E/Eₖ, Chl-a
Cluster B				
Core env.	216.5	0.09	4302.1	PO₄³⁻
+ E/Eₖ	216.5	0.09	4302.1	PO₄³⁻
+ Chl-a	216.5	0.09	4302.1	PO₄³⁻
+ S/F Chl-a	216.5	0.14	4089.3	PO₄³⁻, Chl-a >10µM
+ NPQ₉₅	203.9	0.34	3127	NO₃⁻, NPQ₉₅

Table 3 Variance in Φₑ,C explained by DistLM analysis after correction for contribution of baseline fluorescence (Fₘ) using only core environmental variables (Core env.), consisting of surface irradiance (PAR), temperature, salinity and nutrients (NH₄⁺, NO₃⁻, PO₄³⁻ and Si) as available predictor variables, then sequentially adding additional available predictor variables: irradiance relative to light saturation parameter (E/Eₖ), total chlorophyll-a content (Chl-a), size fractionated Chl-a % (<2µM, 2-10 µM and >10µM) and normalised Stern-Volmer non-photochemical quenching (NPQ₉₅). Shown are the selected variables from the best model generated after adding each new available predictor variable, together with the Akaike information criterion statistic (AICc – corrected for small sample number) and residual sum of squares (RSS). Bold text denotes variance explained by the best model generated from all available predictor variables.
Figure 6 Relationship between a) the electron requirement for carbon fixation, $\Phi_{e,C}$ (mol e$^{-}$ [mol C]$^{-1}$) and the expression of non-photochemical quenching (NPQ$_{NSV}$, calculated as per McKew et al. 2013) with a generated regression equation for all data combined of $y = 7.186x + 2.7739$ ($R^2 = 0.51$), excluding outliers >40 mol e$^{-}$ (mol C)$^{-1}$ ($n = 2$) and b) $\Phi_{e,C}/nPSII$ against NPQ$_{NSV}$ (i.e. without estimation of Photosynthetic Unit [PSU] size as per Schuback et al. 2015). Data shown corresponds to clusters A and B (red circles = cluster A, blue circles = cluster B;) based on physicochemical variables (Table 1). NPQ$_{NSV}$ reflects an integrated value over a period of two hours, at an irradiance approximating the light-saturation parameter (E_k) for each sample.

Figure 7 Comparison of data pre- and post- correction for baseline fluorescence (F_b) a) the electron requirement for carbon fixation, $\Phi_{e,C}$ (mol e$^{-}$ [mol C]$^{-1}$) and b) the expression of non-photochemical quenching (NPQ$_{NSV}$, calculated as per McKew et al. 2013). Data shown corresponds to clusters A and B based on hydrography (red circles = cluster A, blue circles = cluster B, see Fig. 3, Table 1). NPQ$_{NSV}$ reflects an integrated value over a period of 2 hours, at an irradiance approximating the light-saturation parameter (E_k) for each sample.
Correcting for baseline fluorescence influence yielded a narrower range of $\Phi_{e,C}$ values (3.5 to 47 mol e$^{-}$ [mol C]$^{-1}$) compared to uncorrected (4.7 to 65 mol e$^{-}$ [mol C]$^{-1}$) – a reduction of approximately 30\% (Fig. 7a, Supplementary Fig. S6). Similarly, corrected NPQ$_{NSV}$ also exhibited a narrower range (0.49 – 5.96) compared to pre-correction (0.49 – 8.7) (Fig 7b). Interestingly, when corrected for baseline fluorescence, the ability to predict $\Phi_{e,C}$ from all available variables was reduced across the whole dataset (from 54\% to 46\%) (Table 3), yet this was largely driven by data within cluster B where the best model from all variables explained only 34\% of $\Phi_{e,C}$ variability after correction (Table 3). Notably, the corrected data still did not show any obvious trends with cell size (data not shown). Importantly, NPQ$_{NSV}$ remained the best overall predictor of $\Phi_{e,C}$ in this dataset even after F_b-correction, underscoring its potential value for retrieval of $\Phi_{e,C}$ during future field campaigns.
4. Discussion

Field-based campaigns have increasingly demonstrated that variability of $\Phi_{e,C}$ (the electron requirement for C-fixation) amongst natural phytoplankton communities can be explained by variance in prevailing environmental conditions (e.g. Lawrenz et al. 2013; Zhu et al. 2016, 2017, 2019), or more recently by photophysiological parameters (NPQ_{NSV}; Schuback et al. 2015) and traits governing resource acquisition (e.g. predominant cell size; Zhu et al. 2017).

In this study, we demonstrated that NPQ_{NSV} was a far improved predictor of $\Phi_{e,C}$ variability than prevailing environmental conditions across the physically complex Tasman Sea and EAC systems, determined by a high-throughput assessment of predominantly surface waters. Specifically, NPQ_{NSV} explained ~55% of observed variation across the dataset versus ~25% for environmental variables measured. NPQ_{NSV} accounts for changes in both long-term driven acclimation in non-radiative decay as well as quasi-instantaneous PSII downregulation (see McKew et al. 2013), the latter of which is also highly-dependent upon the environmental history of the cells (Dimier et al. 2007; Queval and Foyer, 2012; Giovagnetti et al. 2014). As such, it is perhaps unsurprising that NPQ_{NSV} ultimately proved a better predictor of $\Phi_{e,C}$ in this study, since the environmental descriptors used here typically account for prevailing, and not historical, environmental conditions. We did however attempt to account for previous light history of the sample by incubating as close as possible to the measured light-saturation parameter (E_k) – which can be interpreted as a simple indicator of photoacclimational status (Sakshaug et al. 1997) – and indeed, inclusion of E/E_k as a predictor variable yielded no improvement in ability to predict $\Phi_{e,C}$. We further examined whether historic environmental conditions potentially influenced $\Phi_{e,C}$, by attempting to use remotely sensed data (temperature, light and Chl-a) to hind cast historic light and nutrient availability (not shown). However, this analysis was based on data restricted to certain time bins and ultimately failed to improve models, presumably due to the fact that such an approach did not take into
account the position of phytoplankton cells over time and hence did not accurately capture the complex light and nutritional history experienced by cells in the water bodies sampled. Despite this, teasing apart prevailing versus historical conditioning of cell physiology (and its influence on $\Phi_{e,C}$) warrants more targeted investigation.

Although we included surface measurements of PAR at the time of sampling, our DistLM models did not include the diffuse attenuation coefficient for downwelling irradiance, K_d(PAR), which was not measured in this study, as a predictor variable. Whether inclusion of K_d(PAR) would have improved predictive retrieval of $\Phi_{e,C}$ is however uncertain, since this parameter was rarely identified to contribute significantly to empirical models developed by Lawrenz et al. (2013) during their global synthesis of $\Phi_{e,C}$ datasets, although was shown to be important in shelf waters and in the Baltic Sea (Lawrenz et al. 2013). Nevertheless, light availability has been shown to be an effective predictor of $\Phi_{e,C}$ over longer time scales of C-assimilation (e.g. 24 hr; see Zhu et al. 2016, 2017) and hence more prolonged environmental conditions driving acclimation states between phytoplankton communities along complex environmental gradients (Moore et al. 2003, 2006). As such, omission of K_d[PAR] and empirical descriptors of previous light history experienced by cells may have reduced the percentage of $\Phi_{e,C}$ variability explained by prevailing environmental conditions according to the models used in our study.

In the meta-analysis by Lawrenz et al. (2013), the greatest proportion of $\Phi_{e,C}$ variance explained by prevailing conditions was ~70%, and thus at face value, far higher than achieved with the current study. However, this appeared to be the exception rather than the rule in their meta-analysis, with many models actually performing far worse (either not statistically significant or explaining as little as 3% variability in $\Phi_{e,C}$). In fact, when averaged across all regions, prevailing conditions explained ~25% of $\Phi_{e,C}$ variance in their meta-analysis – relatively similar to findings in the present study. In contrast, recent studies
(Schuback et al. 2015, 2016; Hughes et al. 2018b; Wei et al. 2019) have reported that 50-95% of Φ_e,C variance can be explained from knowledge of NPQNSV, thus collectively supporting the premise that the parameter NPQNSV may be a promising predictor of Φ_e,C variability in the field. That being said, there are several important caveats which must be highlighted before reaching this conclusion:

Firstly, the calculations reported by Schuback et al. (2015, 2016; Schuback and Tortell, 2019) conflate variability of Φ_e,C and variability of PSII reaction centre content (n_{PSII}), whereas the present study inherently accounts for n_{PSII} variability via fluorometric estimation of [RCII] via the Oxborough et al. (2012) algorithm. Schuback et al. (2015, 2016) convincingly demonstrate that n_{PSII} is unlikely to be contributing to variance in their data (see also Hughes et al. 2018b). In fact, when n_{PSII} was removed from our calculations (thus Φ_e,C becomes $\Phi_e,C/n_{PSII}$), the predictive power of NPQNSV weakened by two-fold for pooled data in this study ($r^2 = 0.21, p <0.01$; Fig. 6b). This suggests that fluorometric estimation of [RCII] is likely required across a more dynamic system such as the one examined in this study to effectively utilise NPQNSV as a predictor of Φ_e,C.

Secondly, as calculated values of both NPQNSV and $v_{ETR_{PSII}}$ (and by extension Φ_e,C, as: $v_{ETR_{PSII}}$/C-incorporation) both rely on the fluorescence parameter $F_v(\cdot)$ (calculated as $F_m(\cdot) - F_0(\cdot)$) they are not strictly independent from one another. Moreover, NPQNSV and $v_{ETR_{PSII}}$ as calculated via the absorption method of Oxborough et al. (2012), are sensitive to the presence of baseline fluorescence (see Oxborough et al. 2012; Boatman et al. 2019). Specifically, baseline fluorescence contribution results in an increase to measured $F_v(\cdot)$ and $F_m(\cdot)$ (thus a lower $F_v(\cdot)/F_m(\cdot)$), and artificially inflates both NPQNSV and $v_{ETR_{PSII}}$ (Oxborough et al. 2012; Boatman et al. 2019). Incidentally, $v_{ETR_{PSII}}$ calculated according to the “Sigma method”
(Kolber et al. 1998) is also not immune to effects of baseline fluorescence if a fluorometric estimation of [RCII] is included (Oxborough et al. 2012).

Baseline fluorescence is defined by Oxborough et al. (2012) as that emitted from sources other than functional PSII units, and may include: i) light-harvesting complexes separated from functional PSII units, ii) photoinactivated PSII units (Murphy et al. 2017), ii) Pigments outside of PSII (Campbell and Tyystjärvi, 2012) and iv) fluorescent dissolved organic matter (Cullen and Davies, 2003). In the present study, any contribution from fluorescent dissolved organic material was removed through subtraction of 0.2-µm filtered “blanks” which were subtracted from all samples according to routine FRRf protocol (see Hughes et al. 2018a). This procedure does not, however, remove potential contribution from baseline fluorescence of cellular origin (i.e. from uncoupled LHII or photoinactivated PSII units).

Dark-acclimated F_v/F_m measurements of natural phytoplankton assemblages appear to be suppressed under nutrient-stress due to PSII photoinactivation (e.g. Moore et al. 2008) thus indicating that baseline fluorescence is a potential concern for field studies of $\Phi_{e,C}$. Even so, more recent work has explained observed empirical relationships between NPQ$_{NSV}$ and νETR$_{PSII}$ by the positive feedback link that exists between non-carbon fixing electron pathways and the build-up of ΔpH which activates certain components of NPQ (Nawrocki et al. 2015). In contrast, the role of baseline fluorescence in explaining such trends has been comparatively overlooked (but see Boatman et al. 2019). Interestingly, NPQ$_{NSV}$ is not a reliable predictor of $\Phi_{e,C}$ for unialgal phytoplankton strains grown under nutrient-replete, steady-state growth where the influence of baseline fluorescence is presumably minimal (see Hughes, 2018). However, it remains unclear whether this reflects limited influence of baseline fluorescence, or the fact that NPQ$_{NSV}$ is a good predictor of $\Phi_{e,C}$ only when one or more environmental stressors are at play, or indeed whether the relationship between NPQ$_{NSV}$ and $\Phi_{e,C}$ breaks down under the influence of a dominant species-specific NPQ$_{NSV}$ signature.
Thirdly, and perhaps most importantly, the slopes of the relationships between $\Phi_{e,C}$ and NPQ differ considerably between studies (Schuback et al. 2015, 2016; Hughes et al. 2018b), likely as a result of one or more of the aforementioned factors. Critically, this limits the applicability of NPQ$_{NSV}$ as a viable standalone predictor of $\Phi_{e,C}$, unless we can better understand and predict the slope of this relationship at any given point in space and time.

4.1. Correcting for baseline fluorescence (and package effect)

Our sensitivity analysis demonstrated how baseline fluorescence (F_b) could potentially contribute to strong correlations between NPQ$_{NSV}$ and $\Phi_{e,C}$ observed in recent field studies (e.g. Hughes et al. 2018b), by artificially forcing an increase in both values, which critically, may also yield inflated estimates of $\Phi_{e,C}$. This is a potentially significant finding depending on whether FRRf users wish to i) simply convert measured vETR$_{PSII}$ to a measure of C-fixation via a simple conversion factor or ii) gain mechanistic insight into the factors regulating “true” $\Phi_{e,C}$ – i.e. the absolute number of electrons invested into carbon biomass. For the former, an artificially-inflated measured $\Phi_{e,C}$ may ultimately exhibit the strongest correlation with NPQ$_{NSV}$, although this approach ultimately hinges on being able to reliably predict the slope of this relationship at any given point in space and time. For the latter, F_b-correction (and indeed correction for packaging effects, discussed below) will likely prove critical steps that become routinely incorporation into existing FRRf “best practice” recommendations (e.g. Hughes et al. 2018a). Of course, this would likely need to occur over a prolonged timeframe, depending on a number of factors not limited to: the life cycle and upgradability of existing instrumentation, generational evolution of single-turnover active fluorometers and indeed wider evaluation of the corrective procedures outlined in Boatman et al. (2019) in studies of natural phytoplankton assemblages. Certainly, future studies should fundamentally report the range of both corrected and non-corrected data (as we have done
here) to advance our understanding of the magnitude and extent to which R_h (and the package effect) may influence FRRf-datasets.

In addition to correcting for baseline fluorescence influence, Boatman et al. (2019) also demonstrated that cellular packaging effects contribute to errors in νETR$_{PSII}$ determined by the absorption method of Oxborough et al (2012). Specifically, the reabsorption of PSII fluorescence by pigments within the cell modifies the relationship between PSII photochemistry and fluorescence emission, thus violating a key assumption of the absorption algorithm (see Oxborough et al. 2012). Unfortunately, it was not possible to retrospectively apply the corrective procedure suggested by Boatman et al. (2019) to this dataset as it requires measurements from a fluorometer fitted with narrow bandpass filters (680 and 730nm). Clearly this warrants further examination for future field-based studies spanning broad environmental conditions and hence phytoplankton cell size distributions.

4.2. Cell size does not appear to significantly aid retrieval of $\Phi_{e,C}$

Phytoplankton cell size varies by 8 orders of magnitude, and governs a number of physiological characteristics including photosynthetic performance (Sarthou et al. 2005; Finkel et al. 2009). Many traits potentially linked with photosynthetic performance including: PSII absorption efficiency, PSII efficiency and nutrient uptake rate, have been shown to scale allometrically with cell volume (Ciotti et al. 2002; Suggett et al. 2009b, 2015; Litchman et al. 2007). Consequently, photosynthetic rates normalised to cellular volume are often lower for larger phytoplankton (Bouman et al. 2005; Barnes et al. 2015) due to biophysical constraints upon light absorption and nutrient-uptake, through reduced surface-area-to-volume ratios (Marra et al. 2007). However, whilst trends in $\Phi_{e,C}$ were apparent when data were binned according to dominant Chl-a size fraction in this study, overall we did not establish a strong
relationship between $\Phi_{e,C}$ and cell size, thus retrieval of $\Phi_{e,C}$ was only marginally improved with a descriptor of cell size, similar to findings of Zhu et al. (2017).

We utilised size-fractionated Chl-\textit{a} as a routinely measured descriptor of phytoplankton community size structure during our study. Aside from the disadvantage of information loss regarding species composition, the size-fractionated Chl-\textit{a} method relies on the assumption that Chl-\textit{a} biomass is directly related to primary productivity. Yet, reliability of Chl-\textit{a} as a pigment indicator for carbon fixation rates has been questioned (Bassett, 2015). In examining data from 27 studies, Bassett (2015) demonstrated that a strong relationship between Chl-\textit{a} biomass and 14C production was evident for just 17\% of the data, suggesting a large contribution of a given size fraction does not necessarily translate to an equivalent proportion of total production, and is likely strongly dependent upon physical and biological conditions (see also Pommier et al. 2008).

4.3. Using $\Phi_{e,C}$ to inform dynamics of the study region

In contrast to previous FRRF-based $\Phi_{e,C}$ field studies (e.g. Robinson et al. 2014; Zhu et al. 2017), we did not observe measurements of $\Phi_{e,C}$ to fall below the theoretical minimum of 4 mol e$^{-}$ (mol C)$^{-1}$, presumably since methodological contributors were kept to a minimum through: (i) use of coupled FRRF-14C incubations, (ii) application of spectral correction factors, and (iii) avoiding using assumed values of nPSII (discussed by Robinson et al. 2009; see also Suggett et al. 2004). Previous laboratory FRRF-based $\Phi_{e,C}$ studies that have also employed a “dual incubation” approach and therefore also removed such potential sources of error (Suggett et al. 2009a) similarly measured few values of $\Phi_{e,C} <4$ ($<5\%$ of $n = 48$). The wide range of $\Phi_{e,C}$ values measured in our study (~4 - 65 mol e$^{-}$[mol C]$^{-1}$) likely reflects the well-documented spatial and temporal complexity of physico-chemical conditions within the study area (Baird et al. 2011; Hassler et al. 2011), and is consistent with other datasets that
also span broad changes in environmental condition (e.g. Lawrenz et al. 2013; Zhu et al. 2017; Ko et al. 2019). Observed patterns in photophysiology however, were not as clearly evident as those for physico-chemical variables across the study area (Figs 2a-f, 3a-f), and we later discuss a possible role for diurnal effects on measured photophysiological parameters.

Initial analysis of the prevailing environmental conditions identified two discrete environmental regimes. Specifically, these were characterised by warmer, low-nutrient water dominated by small cells versus cooler, nutrient-rich waters dominated by larger cells: our clusters A, and B respectively. In turn, these were characterised by communities exhibiting a higher $\Phi_{e,C}$ in the nutrient-poor, small cell-dominated cluster A, thus appearing to support broader observations of taxonomy with $\Phi_{e,C}$ (Robinson et al. 2014; Zhu et al. 2017). This is also consistent with the oceanography of the region, whereby the EAC is warm, relatively low in nutrients and dominated by smaller cells (Hassler et al. 2011), whilst the Tasman Sea water mass is characterised by lower temperatures, increased nutrient availability, and a phytoplankton community often dominated by larger cells (Baird et al. 2008). Such an outcome is entirely consistent with previous work that has binned data into water masses (Lawrenz et al. 2013; Robinson et al. 2014) or environmental regime (Zhu et al. 2017).

However, it also consistent with these prior studies that have also shown environmental condition alone to be a poor predictor of $\Phi_{e,C}$ (mean $r^2 = \sim 25\%$). Thus, $\Phi_{e,C}$ appears to follow broad oceanographic trends with the prevailing environmental conditions measured, but ultimately requires a physiological descriptor of both prevailing (short-term dynamic physiological regulation) and historical conditions that drive acclimation states, such as NPQ$_{NSV}$. This presumably explains why cell size alone may also fail to provide a robust descriptor of $\Phi_{e,C}$ (see Zhu et al. 2017).

4.4. Consideration of incubation conditions, carbon lifetimes & diurnal effects
While our reported values of $\Phi_{e,C}$ correspond well with previous FRRf field studies (e.g. Lawrenz et al. 2013; Zhu et al. 2016; Ko et al. 2019) it is important to consider key differences in incubation conditions in the present study. Due to the “dual incubation” approach used we incubated samples under a single irradiance - corresponding to the light saturation parameter (E_K) - rather than deriving $\Phi_{e,C}$ from photosynthesis-irradiance (PE) curves. Indeed, largest divergence of $\Phi_{e,C}$ from the theoretical minimum ratio of 4 mol e$^-$ (mol CO$_2$)$^{-1}$ has most commonly been observed under saturating light (Schuback et al. 2016; Zhu et al. 2016), so it is notable that we observed significant decoupling of electrons and carbon incubating at E_K. Although a range of environmental factors (e.g. nitrogen limitation; Hughes et al. 2018b), and indeed taxonomy also appear to drive increases in $\Phi_{e,C}$ (reviewed by Hughes et al. 2018a), an obvious avenue of exploration to explain high $\Phi_{e,C}$ value in this study is influence of methodology – in particular surrounding quantification of C-fixation rates.

A historical challenge for oceanographers using the 14C-method is the complex relationship between incubation length and cellular retention time of fixed-C that can introduce uncertainty in $\Phi_{e,C}$ measurements (Hughes et al. 2018a). Variability in phytoplankton growth rates influences the lifetime of newly-fixed carbon (Halsey et al. 2010, 2011, 2013), and the 14C-method may measure a C-fixation rate somewhere between gross and net carbon production, unless either very short (<20 min) or long (>12 hr) incubations are used to reliably target either process respectively. Studies examining $\Phi_{e,C}$ in the field to date have routinely intermediate incubation lengths (1-4 hr) (Lawrenz et al. 2013), necessitated by low phytoplankton biomass, small sample size or limited 14C activity per sample due to radioisotope handling protocols on research vessels (Hughes et al. 2018a). An incubation time of two hours was used in the present study due to a combination of aforementioned factors, thus variation in carbon lifetimes may introduce a degree of variability in measured
\(\Phi_{e,C} \) between samples. Previous experimental work using natural phytoplankton communities from the Australian coast found an incubation length of two hours routinely resulted in a measured \(^{14}\text{C}\)-fixation rate close to net, rather than gross, carbon production (Hughes et al. 2018a). If that holds true for this dataset too, uncertainty in the current study would be expected to be relatively small, yet the comparison of ETR against net carbon production would result in overall inflated measurements of \(\Phi_{e,C} \).

Recent FRRf studies have also highlighted the importance to consider diurnal effects on photophysiology (e.g. Aardema et al. 2019), as many measured photophysiological parameters exhibit diurnal trends, including \(\Phi_{e,C} \) (Schuback et al. 2016; Aardema et al. 2019), linked to circadian rhythms, cell cycle status and short-term photoacclimatory responses (Behrenfeld et al. 2002; Cohen and Golden, 2015; Schuback et al. 2016). Schuback et al. (2016) convincingly demonstrated that NPQ\(_{\text{NSV}}\) was a good predictor of \(\Phi_{e,C} \) over a diurnal sampling period, and thus, provides an effective means to examine spatial variability in \(\Phi_{e,C} \) – an approach that we have employed here. Nevertheless, the robustness of NPQ\(_{\text{NSV}}\) as a means to assess spatial variability of \(\Phi_{e,C} \) requires further targeted examination (see Aardema et al. 2019), and therefore it is entirely plausible that diurnal effects may contribute to variability in \(\Phi_{e,C} \) reported in this study (see Supplementary Fig. S7).

4.5. Conclusions

Using a unique high-throughput “dual incubation” FRRf approach to retrieve values of \(\Phi_{e,C} \), we have demonstrated co-variance of \(\Phi_{e,C} \) with independently measured environmental variables (notably temperature, salinity and \(\text{PO}_4^{3-} \)), but particularly with the physiologically-dependent variable (NPQ\(_{\text{NSV}}\)). The latter outcome suggests that for our dataset, a modification of Eq. 3 with the calculation of NPQ\(_{\text{NSV}}\) \((F_0' = F_V')\) (McKew et al. 2013) adjusted for the specific relationship describing dependency between \(\Phi_{e,C} \) and NPQ\(_{\text{NSV}}\) (Fig. 6a) could
redifine the FRRf algorithm to retrieve C-fixation rates within this study region, yet this clearly warrants further validation. That said, we further demonstrate that baseline fluorescence can artificially strengthen the relationship between $\Phi_{e,C}$ and NPQ$_{NSV}$ which may prove advantageous for empirical prediction of C-fixation rates from FRRf datasets yet also lead to inflated estimates of $\Phi_{e,C}$ unless correction procedures are applied (Boatman et al. 2019). A logical next step would therefore be the retrospective incorporation of both NPQ$_{NSV}$ measurements and corrective procedures outlined above to historic FRRf–C-uptake data campaigns (e.g. those collated by Lawrenz et al. 2013). This will allow for additional comparison between the respective performance of NPQ$_{NSV}$ and prevailing conditions in predicting $\Phi_{e,C}$ variability across marine provinces (for both corrected and non-corrected FRRf data). Such steps will permit critical examination of the apparent discrepancy in the slopes of the relationship between $\Phi_{e,C}$ and NPQ$_{NSV}$ (see Schuback et al. 2015; Hughes et al. 2018b) and hence ‘global’ applicability of this approach through autonomous FRRf deployments.
5. References

Aardema, H.M., Rijkeboer, M., Lefebvre, A., Veen, A. and Kromkamp, J.C., 2019. High-resolution underway measurements of phytoplankton photosynthesis and abundance as an innovative addition to water quality monitoring programs. Ocean Science, 15(5), pp.1267-1285.

Ajani, P.A., Verma, A., Lassudrie, M., Doblin, M.A. and Murray, S.A., 2018. A new diatom species P. hallegraeffii sp. nov. belonging to the toxic genus Pseudo-nitzschia (Bacillariophyceae) from the East Australian Current. PloS one, 13(4), p.e0195622.

Anderson, M., Gorley, R.N. and Clarke, R.K., 2008. Permanova+ for primer: Guide to software and statisticl methods. Primer-E Limited.

Baird, M.E., Everett, J.D. and Suthers, I.M., 2011. Analysis of southeast Australian zooplankton observations of 1938–42 using synoptic oceanographic conditions. Deep Sea Res., Part II. 58(5): 699-711.

Baird, M.E., Timko, P.G., Middleton, J.H., Mullaney, T.J., Cox, D.R. and Suthers, I.M., 2008. Biological properties across the Tasman Front off southeast Australia. Deep Sea Res., Part I. 55(11): 1438-1455.

Barnes, M.K., Tilstone, G.H., Smyth, T.J., Widdicombe, C.E., Gloël, J., Robinson, C., Kaiser, J. and Suggett, D.J., 2015. Drivers and effects of Karenia mikimotoi blooms in the western English Channel. Prog. Oceanogr. 137: 456-469.

Bassett, L. A. 2015. Size-fractionated relationships between phytoplankton production and biomass. Ph.D. thesis. Univ of South Carolina.

Behrenfeld, M.J., Marañón, E., Siegel, D.A. and Hooker, S.B., 2002. Photoacclimation and nutrient-based model of light-saturated photosynthesis for quantifying oceanic primary production. Mar. Ecol.: Prog. Ser., 228, pp.103-117.

Boatman, T., Geider, R. and Oxborough, K., 2019. Improving the accuracy of single turnover active fluorometry (STAF) for the estimation of phytoplankton primary productivity (PhytoPP). Front. Mar. Sci., 6, p.319.
Bouman, H., Platt, T., Sathyendranath, S. and Stuart, V., 2005. Dependence of light-saturated photosynthesis on temperature and community structure. Deep Sea Res., Part I. 52(7): 1284-1299.

Brading, P., Warner, M.E., Smith, D.J. and Suggett, D.J., 2013. Contrasting modes of inorganic carbon acquisition amongst Symbiodinium (Dinophyceae) phylotypes. New Phytol., 200(2), pp.432-442.

Campbell, D.A. and Tyystjärvi, E. 2012. Parameterization of photosystem II photoinactivation and repair. Biochim. Biophys. Acta, Bioenerg., 1817(1), pp.258-265.

Ciotti, A.M., Lewis, M.R. and Cullen, J.J., 2002. Assessment of the relationships between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient. Limnol. Oceanogr. 47(2): 404-417.

Cohen, S.E. and Golden, S.S., 2015. Circadian rhythms in cyanobacteria. Microbiol. Mol. Biol. Rev., 79(4), pp.373-385.

Cullen, J.J. and Davis, R.F. 2003. The blank can make a big difference in oceanographic measurements. Limnol. Oceanogr. Bull. 12(2), pp.29-35.

Dimier, C., Corato, F., Tramontano, F. and Brunet, C., 2007. Photoprotection and xanthophyll-cycle activity in three marine diatoms. J. Phycol. 43(5): 937-947.

Finkel, Z.V., Beardall, J., Flynn, K.J., Quigg, A., Rees, T.A.V. and Raven, J.A., 2009. Phytoplankton in a changing world: cell size and elemental stoichiometry. J. Plankton Res. 32(1): 119-137.

Fisher, N.L. and Halsey, K.H., 2016. Mechanisms that increase the growth efficiency of diatoms in low light. Photosynth. Res. 129(2): 183-197.

Genty, B., Briantais, J.M. and Baker, N.R., 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta, Gen. Subj. 990: 87-92.
Giovagnetti, V., Flori, S., Tramontano, F., Lavaud, J. and Brunet, C., 2014. The velocity of light intensity increase modulates the photoprotective response in coastal diatoms. PloS One 9(8): e103782.

Halsey, K.H. and Jones, B.M., 2015. Phytoplankton strategies for photosynthetic energy allocation. Annu. Rev. Mar. Sci. 7: 265-297.

Halsey, K.H., Milligan, A.J. and Behrenfeld, M.J., 2010. Physiological optimization underlies growth rate-independent chlorophyll-specific gross and net primary production. Photosynth. Res. 103(2), pp.125-137.

Halsey, K. H., Milligan, A. J. and Behrenfeld, M. J. 2011. Linking time-dependent carbon-fixation efficiencies in Dunaliella tertiolecta (chlorophyceae) to underlying metabolic pathways. J. Phycol. 47(1): 66-76.

Halsey, K.H., O'Malley, R.T., Graff, J.R., Milligan, A.J. and Behrenfeld, M.J., 2013. A common partitioning strategy for photosynthetic products in evolutionarily distinct phytoplankton species. New Phytol., 198(4), pp.1030-1038.

Hancke, K., Dalsgaard, T., Sejr, M.K., Markager, S. and Glud, R.N., 2015. Phytoplankton productivity in an Arctic Fjord (West Greenland): Estimating electron requirements for carbon fixation and oxygen production. PloS One 10(7): e0133275.

Hassler, C.S., Djajadikarta, J.R., Doblin, M.A., Everett, J.D. and Thompson, P.A., 2011. Characterisation of water masses and phytoplankton nutrient limitation in the East Australian Current separation zone during spring 2008. Deep Sea Res., Part II. 58(5): 664-677.

Hoppe, C.J., Holtz, L.M., Trimborn, S. and Rost, B., 2015. Ocean acidification decreases the light-use efficiency in an Antarctic diatom under dynamic but not constant light. New Phytol. 207(1): 159-171.

Hughes, D. J. 2018. Using next-generation multi-spectral FRRf to improve current estimates of marine primary production (MPP) within Australian waters. Ph.D. thesis. University of Technology Sydney.
Hughes, D. J., Campbell, D. A., Doblin, M. A., Kromkamp, J. C., Lawrenz, E., Moore, C. M., and Suggett, D. J. 2018a. Roadmaps and Detours: Active Chlorophyll-a Assessments of Primary Productivity Across Marine and Freshwater Systems. Environ. Sci. Technol., 52(21), 12039-12054.

Hughes, D. J., Varkey, D., Doblin, M. A., Ingleton, T., McInnes, A., Ralph, P. J., van Dongen-Vogels, V. and Suggett, D. J. 2018b. Impact of nitrogen availability upon the electron requirement for carbon fixation in Australian coastal phytoplankton communities. Limnol. Oceanogr. doi:10.1002/lno.10814.

Key, T., McCarthy, A., Campbell, D.A., Six, C., Roy, S. and Finkel, Z.V., 2010. Cell size trade-offs govern light exploitation strategies in marine phytoplankton. Environ. Microbiol. 12(1): 95-104.

Knap, A.H., Michaels, A., Close, A.R., Ducklow, H. and Dickson, A.G., 1996. Protocols for the joint global ocean flux study (JGOFS) core measurements.

Ko, E., Park, J., Gorbunov, M.Y. and Yoo, S., 2019. Uncertainties in variable fluorescence and 14C methods to estimate primary production: a case study in the coastal waters off the Korean peninsula. Mar. Ecol.: Prog. Ser., 627, pp.13-31.

Kolber, Z., and Falkowski, P. G., 1993. Use of active fluorescence to estimate phytoplankton photosynthesis in situ. Limnol. Oceanogr. 38(8): 1646-1665.

Kolber, Z.S., Prášil, O. and Falkowski, P.G., 1998. Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols. Biochim. Biophys. Acta, Bioenerg. 1367(1–3): 88-106.

Kramer, D.M., Johnson, G., Kiirats, O. and Edwards, G.E., 2004. New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynth. Res. 79(2): 209-218.

Lawrenz, E., Silsbe, G., Capuzzo, E., Ylostalo, P., Forster, R.M., Simis, S.G.H., Prasil, O., Kromkamp, J., Hickman, A.E., Moore, C.M., Forget, M-H., Geider, R. and D Suggett, D.J. 2013. 2013. Predicting the electron requirement for carbon fixation in seas and oceans. PLoS One 8(3): e58137.
Lee, Z., Marra, J., Perry, M.J. and Kahru, M., 2015. Estimating oceanic primary productivity from ocean color remote sensing: A strategic assessment. J. Mar. Syst. 149: 50-59.

Lewis, M. R., and Smith, J. C., 1983. A small volume, short-incubation-time method for measurement of photosynthesis as a function of incident irradiance. Mar. Ecol.: Prog. Ser. 13: 99-102.

Litchman, E., Klausmeier, C.A., Schofield, O.M. and Falkowski, P.G., 2007. The role of functional traits and trade-offs in structuring phytoplankton communities: scaling from cellular to ecosystem level. Ecol. Lett. 10(12): 1170-1181.

Marra, J., Trees, C.C. and O’Reilly, J.E., 2007. Phytoplankton pigment absorption: a strong predictor of primary productivity in the surface ocean. Deep Sea Res., Part I. 54(2): 155-163.

McKew, B.A., Davey, P., Finch, S.J., Hopkins, J., Lefebvre, S.C., Metodiev, M.V., Oxborough, K., Raines, C.A., Lawson, T. and Geider, R.J., 2013. The trade-off between the light-harvesting and photoprotective functions of fucoxanthin-chlorophyll proteins dominates light acclimation in Emiliania huxleyi (clone CCMP 1516). New Phytol. 200(1): 74-85.

Moore, C.M., Suggett, D., Holligan, P.M., Sharples, J., Abraham, E.R., Lucas, M.I., Rippeth, T.P., Fisher, N.R., Simpson, J.H. and Hydes, D.J., 2003. Physical controls on phytoplankton physiology and production at a shelf sea front: a fast repetition-rate fluorometer based field study. Mar. Ecol.: Prog. Ser. 259: 29-45.

Moore, C.M., Suggett, D.J., Hickman, A.E., Kim, Y.N., Tweddle, J.F., Sharples, J., Geider, R.J. and Holligan, P.M., 2006. Phytoplankton photoacclimation and photoadaptation in response to environmental gradients in a shelf sea. Limnol. Oceanogr. 51(2): 936-949.

Moore, C.M., Mills, M.M., Langlois, R., Milne, A., Achterberg, E.P., La Roche, J. and Geider, R.J., 2008. Relative influence of nitrogen and phosphorous availability on phytoplankton physiology and productivity in the oligotrophic sub-tropical North Atlantic Ocean. Limnology and Oceanography, 53(1), pp.291-305.
Murphy, C.D., Ni, G., Li, G., Barnett, A., Xu, K., Grant-Burt, J., Liefer, J.D., Suggett, D.J. and Campbell, D.A., 2017. Quantitating active Photosystem II reaction center content from fluorescence induction transients. Limnol. Oceanogr.: Methods 15(1): 54-69.

Napoleon, C., Raimbault, V. and Claquin, P., 2013. Influence of nutrient stress on the relationships between PAM measurements and carbon incorporation in four phytoplankton species. PLoS One 8(6): e66423.

Nawrocki, W.J., Tourasse, N.J., Taly, A., Rappaport, F. and Wollman, F.A., 2015. The plastid terminal oxidase: its elusive function points to multiple contributions to plastid physiology. Annu. Rev. Plant Biol. 66: 49-74.

Oke, P. R., and Middleton J. H., 2001. Nutrient enrichment off Port Stephens: the role of the East Australian Current. Cont. Shelf Res. 21(6): 587-606.

Oxborough, K., Moore, C.M., Suggett, D.J., Lawson, T., Chan, H.G. and Geider, R.J., 2012. Direct estimation of functional PSII reaction center concentration and PSII electron flux on a volume basis: a new approach to the analysis of Fast Repetition Rate fluorometry (FRRf) data. Limnol. Oceanogr.: Methods 10(3): 142-154.

Platt, T.G.C.L., Gallegos, C.L. and Harrison, W.G., 1981. Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J. Mar. Res. 38: 103-111.

Pommier, J., Gosselin, M. and Michel, C., 2008. Size-fractionated phytoplankton production and biomass during the decline of the northwest Atlantic spring bloom. J. Plankton Res. 31(4): 429-446.

Queval, G., and Foyer C. H., 2012. Redox regulation of photosynthetic gene expression. Philos. Trans. R. Soc., B 367(1608): 3475-3485.

Raateoja, M., Seppälä, J. and Ylöstalo, P., 2004. Fast repetition rate fluorometry is not applicable to studies of filamentous cyanobacteria from the Baltic Sea. Limnol. Oceanogr. 49(4), pp.1006-1012.

Ralph, P. J., and Gademann, R. 2005. Rapid light curves: a powerful tool to assess photosynthetic activity. Aquat. Bot. 82(3): 222-237.
Robinson, C., Suggett, D.J., Cherukuru, N., Ralph, P.J. and Doblin, M.A., 2014. Performance of Fast Repetition Rate fluorometry based estimates of primary productivity in coastal waters. J. Mar. Syst. 139: 299-310.

Robinson, C., Tilstone, G.H., Rees, A.P., Smyth, T.J., Fishwick, J.R., Tarran, G.A., Luz, B., Barkan, E. and David, E., 2009. Comparison of in vitro and in situ plankton production determinations. Aquat. Microb. Ecol. 54(1): 13-34.

Sakshaug, E., Bricaud, A., Dandonneau, Y., Falkowski, P.G., Kiefer, D.A., Legendre, L., Morel, A., Parslow, J. and Takahashi, M., 1997. Parameters of photosynthesis: definitions, theory and interpretation of results. J. Plankton Res., 19(11), pp.1637-1670.

Sarthou, G., Timmermans, K.R., Blain, S. and Tréguer, P., 2005. Growth physiology and fate of diatoms in the ocean: a review. J. Sea Res. 53(1): 25-42.

Schuback, N., Flecken, M., Maldonado, M.T. and Tortell, P.D., 2016. Diurnal variation in the coupling of photosynthetic electron transport and carbon fixation in iron-limited phytoplankton in the NE subarctic Pacific. Biogeosciences 13(4): 1019-1035.

Schuback, N., Hoppe, C.J., Tremblay, J.É., Maldonado, M.T. and Tortell, P.D., 2017. Primary productivity and the coupling of photosynthetic electron transport and carbon fixation in the Arctic Ocean. Limnol. Oceanogr. 62: 898-921.

Schuback, N., Schallenberg, C., Duckham, C., Maldonado, M.T. and Tortell, P.D., 2015. Interacting effects of light and iron availability on the coupling of photosynthetic electron transport and CO2-assimilation in marine phytoplankton. PLoS One 10(7): e0133235.

Schuback, N. and Tortell, P.D., 2019. Diurnal regulation of photosynthetic light absorption, electron transport and carbon fixation in two contrasting oceanic environments. Biogeosciences, 16(7): 1381-1399.

Silsbe, G.M., Oxborough, K., Suggett, D.J., Forster, R.M., Ihnken, S., Komárek, O., Lawrenz, E., Prášil, O., Röttgers, R., Šicner, M. and Simis, S.G., 2015. Toward autonomous measurements of photosynthetic electron transport rates: An evaluation
of active fluorescence-based measurements of photochemistry. Limnol. Oceanogr.: Methods, 13(3), pp.138-155.

Suggett, D.J., Goyen, S., Evenhuis, C., Szabó, M., Pettay, D.T., Warner, M.E. and Ralph, P.J., 2015. Functional diversity of photobiological traits within the genus Symbiodinium appears to be governed by the interaction of cell size with cladal designation. New Phytol. 208(2): 370-381.

Suggett, D.J., Maberly, S.C. and Geider, R.J., 2006. Gross photosynthesis and lake community metabolism during the spring phytoplankton bloom. Limnol. Oceanogr. 51(5): 2064-2076.

Suggett, D.J., MacIntyre, H.L. and Geider, R.J., 2004. Evaluation of biophysical and optical determinations of light absorption by photosystem II in phytoplankton. Limnol. Oceanogr.: Methods, 2(10), pp.316-332.

Suggett, D.J., MacIntyre, H.L., Kana, T.M. and Geider, R.J., 2009a. Comparing electron transport with gas exchange: parameterising exchange rates between alternative photosynthetic currencies for eukaryotic phytoplankton. Aquat. Microb. Ecol. 56(2-3): 147-162.

Suggett, D.J., Moore, C.M., Hickman, A.E. and Geider, R.J., 2009b. Interpretation of fast repetition rate (FRR) fluorescence: signatures of phytoplankton community structure versus physiological state. Mar. Ecol.: Prog. Ser. 376: 1-19.

Wei, Y., Zhao, X. and Sun, J., 2019. Fast repetition rate fluorometry (FRRF) derived phytoplankton primary productivity in the Bay of Bengal. Front. Microbiol. 10, p.1164.

Zhu, Y., Ishizaka, J., Tripathy, S.C., Wang, S., Mino, Y., Matsuno, T. and Suggett, D.J., 2016. Variation of the photosynthetic electron transfer rate and electron requirement for daily net carbon fixation in Ariake Bay, Japan. J. Oceanogr. 72(5): 761-776. https://doi.org/10.1007/s10872-016-0370-4

Zhu, Y., Ishizaka, J., Tripathy, S.C., Wang, S., Sukigara, C., Goes, J., Matsuno, T. and Suggett, D.J., 2017. Relationship between light, community composition and the electron requirement for carbon fixation in natural phytoplankton assemblages of the
East China Sea. Mar. Ecol.: Prog. Ser. 580: 83-100.
https://doi.org/10.3354/meps12310.

Zhu, Y., Suggett, D., Liu, C., He, J., Lin, L., Le, F., Ishizaka, J., Goes, J. and Hao, Q., 2019. Primary productivity dynamics in the summer Arctic Ocean confirms broad regulation of the electron requirement for carbon fixation by light-phytoplankton community interaction. Front. Mar. Sci. 6: 275.

Acknowledgements
The authors would like to thank the crew of the RV Investigator and the Marine National Facility (MNF) for their support during the sampling campaign. We also wish to acknowledge invaluable assistance from Justin Ashworth regarding onboard phytoplankton identification. Marco Alvarez and Marco Giardina for providing technical support and advice at various stages during the research voyage. We also acknowledge valuable discussions across the peer community in distilling the concepts presented here; in particular, we thank Doug Campbell and Mark Moore. Contribution of DJS was supported by an ARC Future Fellowship (FT130100202), and input of MD and DJS enhanced through involvement with an ARC Linkage Infrastructure, Equipment and Facilities project LE160100146 led by David Antoine.
Supplementary Figure S1 Phytoplankton fluorescence excitation spectra measured from phytoplankton cultures used to derive spectral correction factors (SCFs) for dominant phytoplankton groups observed during the main study. Fluorescence excitation spectra (400 – 700 nm) were measured after treatment of with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) for several representatives of each taxonomic group. Light grey lines denote measurements for each species within the group (n = 4) with the exception of dinoflagellates (n = 2), while black line denotes the mean excitation spectra (error not shown for clarity) that was ultimately used to calculate the SCF for that taxonomic group (bottom left corner). SCFs were used to spectrally-adjust values of the absorption coefficient for PSII light harvesting, a_{LHII} prior to calculation of electron transport rates ($vETR_{PSII}$).
Supplementary Figure S2. Fluorescence excitation spectra (normalised to 445 nm) for the four dominant phytoplankton groups observed in this study (chlorophytes, diatoms, haptophytes and dinoflagellates) from which spectral correction factors (SCFs) were derived. For samples where it was not possible to ascertain phytoplankton dominant groups by microscopy \((n = 11)\), the relevant SCF was selected based on how closely minimal fluorescence \((F_o)\) at 445, 470 and 505 nm matched the spectral fluorescence for each representative excitation spectra (when both were normalized to 445 nm). \(F_o\) was measured with Fast Repetition Rate fluorometer (Soliense Benchtop Marine Lift-FRR) for three representative samples, CTD43_35m (black triangles), UWY29 (black circles) and UWY46 (black squares) are shown overlaid on the fluorescence excitation spectra (see break-out panel). The dominant taxa (underlined text) for each 11 samples was selected based on whichever taxonomic group exhibited the least cumulative difference between fluorescence at 445, 470 and 505 nm wavelengths (differences are shown in brackets for the three samples displayed). In total, observed cumulative differences for identified dominant taxonomic group ranged from 0.02 – 0.15 (mean: 0.08). Once the dominant phytoplankton group was identified, the relevant SCF was applied to adjust electron transport rates \((\nu\text{ETR}_{PSII})\) (see Supplementary Fig S1).
Supplementary Figure S3. Boxplot of measured normalised Stern-Volmer quenching (NPQ_{NSV}) during a two hour incubation for all samples in this study (n=80) at intervals of 4 min, 30 min and 120 min – where values are averaged from the last three acquisitions at that point in time). Also shown is the average (mean) value over the entire incubation for all samples. The length of the box corresponds to the interquartile range, whiskers represent the 10th and 90th percentile, solid black line denotes the median value, red dashed line shows the mean and open circles indicate outliers. Letters alongside boxes indicate means that are statistically indistinguishable (Kruskal-Wallis test, Dunn’s multiple comparison test, α=0.05).
Supplementary Figure S4 Hierarchical cluster analysis (HCA) of samples \((n = 80)\) based upon physic-chemical variables (temperature, salinity, \(\text{NH}_4^+, \text{NO}_x^-, \text{PO}_4^{3-}\) and Si). HCA identified two distinct hydrographic clusters, **A** and **B** (highlighted by blue and green sections respectively).

Supplementary Figure S5 Photosynthetic unit (PSU) size surface water sampled in coastal, Eastern Australian Current (EAC) and Tasman Sea water masses measured from the RV *Investigator* (August – September 2016, IN2016_v03)
Supplementary Figure S6 Dual-axis boxplots showing measured electron requirement for carbon fixation ($\Phi_{e,C}$) and normalised Stern-Volmer quenching (NPQ_{NSV}) a) prior to spectral correction, b) after application of spectral correction factors (S.C.F) to adjust electron transport rates (and thus $\Phi_{e,C}$) according to the dominant phytoplankton taxa present in the sample and c) after further correction for contribution of baseline fluorescence as proposed by Boatman et al. (2019). Note the different scale for the Y-axis in panel a ($\Phi_{e,C}$).
Supplementary Figure S7 a) the electron requirement for carbon fixation ($\Phi_{e,C}$) and b) light saturation parameter (E_K) for all data in this study binned into time periods, early morning (06:00–08:59, n=28), late morning (09:00–11:59, n=26), early afternoon (12:00–14:59, n=18) and late afternoon (15:00–18:00, n=8). A Kruskal-Wallis test detected significant differences between groups $\Phi_{e,C}$ ($p < 0.05$)(although post-hoc tests were unable to resolve specific differences between time bins). No significant differences were detected for E_K.