Controller Synthesis with Inductive Proofs for Piecewise Linear Systems: an SMT-based Algorithm

Zhenqi Huang, Yu Wang, Sayan Mitra, Geir E. Dullerud and Swarat Chaudhuri

Abstract—We present a controller synthesis algorithm for reach-avoid problems for piecewise linear discrete-time systems. Our algorithm relies on SMT solvers and in this paper we focus on piecewise constant control strategies. Our algorithm generates feedback control laws together with inductive proofs of unbounded time safety and progress properties with respect to the reach-avoid sets. Under a reasonable robustness assumption, the algorithm is shown to be complete. That is, it either generates a controller of the above type along with a proof of correctness, or it establishes the impossibility of the existence of such controllers. To achieve this, the algorithm iteratively attempts to solve a weakened and strengthened versions of the SMT encoding of the reach-avoid problem. We present preliminary experimental results on applying this algorithm based on a prototype implementation.

I. INTRODUCTION

A Satisfiability Modulo Theory (SMT) problem is a classical decision problem in computer science [6]. It takes as input a logical formula in first-order logic that can involve combinations of background theories, and requires one to decide whether or not the formula has a satisfying solution. For a bounded time horizon \(k \), a simplest SMT problem in Equation (1), for instance, is an encoding of a search for a sequence of control inputs vectors \(u_1, \ldots, u_k \) that drives a discrete time linear open-loop control system from every initial state in the hypercube \([0,1]^n\) to the hypercube \([0.9,1]^n\) in \(k \) steps, while always keeping the state inside the hypercube \([0,1]^n\).

\[
\exists u_1, \ldots, u_k, \forall x_0 \in [0,0.1]^n, \forall t \in \{1, \ldots, k-1\}, \quad \text{let } x_{t+1} = Ax_t + Bu_t, \quad \text{such that } x_t \in [0,1]^n \text{ and } x_k \in [0.9,1]^n.
\]

(1)

This example has several constraints that are defined in terms of the quantified variables \(u_i \) and \(x_i \), numerical constants (including those in the matrices \(A \) and \(B \)), and the background theory of linear real arithmetic. An SMT solver is a software tool that solves SMT problems by either giving an assignment to the variables that satisfy all the constraints or by saying that none exists. Modern SMT solvers routinely handle linear problems with thousands of variables and millions of constraints, so much as they have become the engines for innovation in verification and synthesis for computer software and hardware [2], [10], [13]. Although many control systems can only be modeled by means of nonlinear arithmetic over the real numbers involving transcendental functions that make the corresponding SMT problems undecidable, the solvers are evolving rapidly and several incorporate approximate decision procedures for nonlinear arithmetic [15]. These technological developments motivated us (and others [20], [21]) to explore SMT-based controller synthesis.

In this paper, we present an algorithm that uses SMT solvers for synthesizing controllers for discrete time systems. The dynamics of the system is given as a piecewise linear feedback control system. The control requirements are the standard reach-avoid specification [7], [8]: a set of states \(\text{Goal} \) that has to be reached while always staying inside a \(\text{Safe} \) set.

A key difficulty in using SMT for synthesis, is that the resulting SMT problem has to encode the unrolled dynamics of the system with the unknown controller inputs. In the above simple example, this gave rise to \(k \) control input variables and the intermediate states. For more general nonlinear models, the intermediate states cannot be written down in closed form and one has to unroll the over-approximations of the dynamics. This can then lead to overly conservative answers from the solver. We present a technique that avoids this problem by synthesizing the control law together with an inductive proof of its correctness. The proof has two parts: (a) an inductive invariant that implies safety and (b) a ranking function that implies progress. A positive side-effect of this is that it can not only synthesize controllers with understandable correctness proofs, but it can also establish the nonexistence of provably correct controllers (of a certain template).

In Section III we define the system model, the reach-avoid synthesis problem and a particular notion of robustness of models. In Section IV we first present a basic SMT encoding of the synthesis problem and then a strengthened and a weakened version this encoding. Using these two encodings, in Section V we present the synthesis algorithm, its soundness and relative completeness. In Section VI we illustrate an application of the algorithm in a vehicle navigation problem and conclude in Section VII.

II. RELATED WORK

Researchers have recently used SMT solvers for synthesizing programs and strategies in games. The approach in [21] uses SMT to find controllers for general linear temporal logic (LTL) specifications by stitching together motion primitives from a library. Unlike our encoding with inductive proofs, the approach of [21] involves bounded unrolling of the dynamics.

In [20], the authors used SMT solvers to synthesize integrated task and motion plans by constructing a placement graph. In [4], a constraint-based approach was developed to solve games on infinite graphs between the system and
the adversary. Our work can be seen as introducing control theoretic constraints to the SMT formulation.

The authors of [11], [26] proposed a game theoretical approach to synthesize controller for the reach-avoid problem, first for continuous and later for switched systems. In these approaches, the reach set of the system is computed by solving a non-linear Hamilton-Jacobi-Isaacs PDE. Our methodology, instead of formulating a general optimization problem for which the solution may not be easily computable, solves a special case exactly and efficiently. With this building block, we are able to solve more general problems through abstraction and refinement.

Model predictive control (MPC) can as well be used to solve the reach-avoid problem [3], [24]. In each cycle of an MPC, the optimal input for reaching the goal while avoiding the obstacle, is computed for a fixed prediction horizon. Then, the first part of the optimal control input is applied, and a new input is computed from the new state, and so on. As the prediction horizon increases, the applied input converges to the optimal reach-avoid input. In the contrast, our approach can be used to synthesis controls for possibly unbounded horizon with safety and progress guarantees and can establish nonexistence of controller of certain type.

There is a large body of results on automata theoretic approaches for controller synthesis [1], [16], [18], [23], [25]. The approach here is to construct a finite abstraction of the dynamical system and then invoke the LTL synthesis algorithms such as the one in [5]. This approach has been applied to several systems and several software tools for synthesis have been implemented [9], [19].

The authors of [17], [22] build Markov decision trees to synthesize control policies with maximum probability of satisfying the specifications. Our method is very different since we consider deterministic systems and try to synthesize controller that are guaranteed to satisfy the specifications.

III. PRELIMINARIES AND BACKGROUND

Sets and Functions: For a natural number N, $[N]$ denotes the set $\{0, 1, \ldots, N - 1\}$. Given two functions $f, g : A \to \mathbb{R}^n$, we use $d(f, g) = \|f(a) - g(a)\|_\infty$ to denote the ∞-distance between f and g, where $\cdot \infty$ is the standard ∞-norm.

We will use finite collections of sets to approximate arbitrary compact subsets in \mathbb{R}^n. For a finite collection P of subsets of \mathbb{R}^n and a subset $S \subseteq \mathbb{R}^n$, we say that P preserves S if there exists a subset $P' \subseteq P$ such that (i) $\bigcup_{P \in P'} P = S$, and (ii) $\forall P \in P \setminus P' \cap S = \emptyset$. In other words, P' completely and exactly represents S.

A finite partition P of a compact subset $S \subseteq \mathbb{R}^n$ is a finite disjoint collection of sets that exactly cover S. The resolution of a partition P is the maximum diameter of the sets in P.

For two partitions P, P' of a compact set S, we say that P subsumes P', if for any $I \in P$, there exists $I' \in P'$ such that $I \subseteq I'$.

Piecewise Linear Systems, Feedback, and Robustness: A piecewise linear system M is a tuple $(\mathcal{X}, \mathcal{U}, \text{loc}, \mathcal{I}, \mathcal{F})$

where (a) $\mathcal{X} \subseteq \mathbb{R}^n$ is a compact set called the state space, (b) $\mathcal{U} \subseteq \mathbb{R}^m$ is a compact set called the input space, (c) loc is a finite set called the set of locations, (d) $\mathcal{I} = \{I\}_{I \in \text{loc}}$ is a partition of \mathcal{X} and each element of \mathcal{I} is called a location invariant, and (e) $\mathcal{F} = \{ f_I \}_{I \in \text{loc}}$ is a collection of linear dynamic functions $f_I : \mathcal{X} \times \mathcal{U} \to \mathcal{X}$.

The evolution of the continuous state of the system is governed by the dynamic function of the location invariant and is currently in \mathcal{I}. For any time $t \in \mathbb{N}$, a state $x_t \in P_I$ and an input $u_t \in \mathcal{U}$ the next state of the system is given by the discrete-time dynamics:

$$x_{t+1} = f_I(x_t, u_t).$$

A general static state-feedback control law can be thought of as a function $u : \mathcal{X} \to \mathcal{U}$ that maps each state to an input.

In many systems, sensors and controller hardware have a finite resolution, and therefore, such a general law cannot be implemented. In this paper, we assume that M is associated with a controller table C which is a partition of the state space \mathcal{X} and the map $u : C \to \mathcal{U}$ maps each partition in C to an input. Essentially u is a look-up table, which assigns an input for every equivalence class defined by C.

For a feedback control policy u and a system M the next state is just a function of the current state. We denote $\text{post}_M(x, u) = f_I(x, u(x))$ if $x \in P_I$. The subscript M is dropped if it is clear in the context. We denote by $\text{post}^t(x, u)$ the state reached from x after the tth step. For a compact set of states $S \subseteq \mathcal{X}$, we define $\text{post}(S, u) = \{ x' : \exists x \in S \text{ such that } x' = \text{post}(x, u) \}$. The t step post operation $\text{post}^t(S, u)$ is defined similarly.

Our synthesis algorithm will be complete for system models up to some imprecision in the model. For a system $M = (\mathcal{X}, \mathcal{U}, \text{loc}, \mathcal{I}, \mathcal{F})$ and $\epsilon > 0$, another system M' is an ϵ-perturbation of M if it is identical to M except that the set of dynamic functions for M' is $f'_I = \{ f_{I, \epsilon} \}_{I \in \text{loc}}$, such that for each $I \in \text{loc}$, $\| f_I - f_{I, \epsilon} \| \leq \epsilon$. We denote by $B_\epsilon(M)$ the set of all models that are ϵ-perturbations of M.

Reach-Avoid Control Problem (RAC): A reach-avoid control (RAC) problem is parameterized by the system model M, the controller table C, and three sets of states $\text{Init}, \text{Safe}, \text{Goal} \subseteq \mathcal{X}$ called the initial, safe and goal states. We will assume that these sets have some finite representation (for example, hyperrectangles, polytopes). We define what it means to solve a RAC problem with a feedback control policy u.

Definition 1. A solution to a RAC is a feedback control policy $u : C \to \mathcal{U}$ such that for any initial state $x \in \text{Init}$, the states visited by the system satisfies the condition:

- (Safety) for all $t \in \mathbb{N}$, $x_t \in \text{Safe}$ and
- (Progress) there exists $T \in \mathbb{N}$ such that $x_T \in \text{Goal}$.

Throughout the paper a RAC is uniquely specified by a model M as the rest parameters are fixed.

IV. CONSTRAINT-BASED SYNTHESIS

A major barrier in encoding RAC as an SMT problem is that the safety and progress requirements are over unbounded
time. Moreover, these requirements are stated in terms of the future reachable states of the system and computing that in and on itself is a hard problem. Instead of working with unbounded time reach sets, we address this problem by encoding a set of rules that inductively prove safety and progress of the control system.

A. Inductive Synthesis Rules

In addition to searching for the feedback control law \(u : C \rightarrow U \), the SMT problem will encode the search for (a) an inductive invariant \(Inv \subseteq X \) that proves safety with \(u \), and (b) a ranking function \(V \) that proves progress with \(u \).

In order to constrain the search, we will fix a template for the ranking function. For this purpose, we will use the template \(C \rightarrow \mathbb{N} \), that is, any function that is piecewise constant on the partition of the state space \(C \). This choice has an easy interpretation: each entry in the controller table gives the rank of the controller along with the feedback law. Let \(V \) denote the countable set of all such functions. Each ranking function \(V \in \mathcal{V} \) maps every state in \(X \) to a natural number. For any \(C \in C, V(C) \) is the natural number that all the states \(x \in C \) map to.

We are now ready to present the basic rules encoding inductive synthesis of RAC:

Rule	Description
R1:	\(\text{Init} \subseteq Inv \)
R2:	\(\text{post}(Inv, u) \subseteq Inv \)
R3:	\(Inv \subseteq \text{Safe} \)
R4:	\(C \subseteq \text{Goal} \iff V(C) = 0 \)
R5:	\(C \subseteq Inv \land \text{post}(C, u) \land C' \neq \emptyset \)
	\(\Rightarrow V(C) > V(C') \)
R6:	\(C \subseteq Inv \land \text{Goal} \land \text{post}^k(C, u) \land C' \neq \emptyset \)
	\(\Rightarrow V(C) > V(C') \).

Fig. 1: Basic rules \(\Pi(M, C, V) \) for synthesis for RAC.

Rules R1-R3 imply that \(Inv \) is a fixed-point of \(\text{post} \) with control \(u \) that contains \(\text{Init} \) and is contained in \(\text{Safe} \), and therefore, is adequate for proving safety. Rule R4 states the rank of any region \(C \) vanishes if it is in \(\text{Goal} \). Rule R5 encodes the (Lyapunov-like) property that the rank of any region \(C \) is nonincreasing along trajectories. Finally, rule R6 states that for any non-Gal region \(C \), the rank decreases with \(u \) within \(k \) steps, where \(k \) is an induction parameter of this encoding. For RAC specified by model \(M \) with controller table \(C \) and a template \(V \), we denote the SMT problem (Figure 1) as \(\Pi(M, C, V) \). For some control \(u \), ranking function \(V \in \mathcal{V} \) and \(Inv \subseteq X \), we write \(u, V, Inv \models \Pi(M, C, V) \) if the Rules R1-R6 are satisfied.

Theorem 2 (Soundness). If \(u, V, Inv \models \Pi(M, C, V) \), then \(u \) solves RAC specified by \(M \).

Proof. Let \(u, V, Inv \) satisfy rules in Figure 1. Fixing any \(x \in \text{Init} \), we prove safety and progress conditions separately.

From R1, \(x \in Inv \). Combined with R2, we have for any \(t \in \mathbb{N}, post_u(x, t) \in Inv \). Since \(Inv \subseteq \text{Safe} \) (R3) we have \(post_u(x, t) \in \text{Safe} \) for any \(t \). Thus the safety condition holds.

We assume \(x \in C \) such that \(C \cap \text{Goal} = \emptyset \); otherwise the progress condition holds trivially. From R4 we have \(V(C) > 0 \). From R5 and R6, in at most \(kV(C) \) steps, \(V \) decreases to 0. By R4 this implies that \(x \) reaches the goal.

a) Robustness Modulo Templates: In Section III we defined perturbations of system models, here we lift the definition to the corresponding synthesis rules: \(\Pi(M', C', V') \) is an \(\epsilon \)-perturbation of \(\Pi(M, C, V) \) if (i) the controller table and the ranking templates are identical \(C' = C, V' = V' \), and (ii) the model \(M' \in \mathcal{B}_\epsilon(M) \) is an \(\epsilon \)-perturbation of \(M \).

Definition 3. For a controller table \(C \) and a template of ranking functions \(V \), a RAC specified by \(M \) is robust modulo \((C, V) \) if there exists \(\epsilon > 0 \) such that either of the following holds:

(i) there exists a control \(u \) and a ranking function \(V \in \mathcal{V} \) such that for any \(M' \in \mathcal{B}_\epsilon(M) \), \(u, V, Inv \models \Pi(M', C, V) \) with some \(Inv \subseteq X \), or

(ii) for none of \(M' \in \mathcal{B}_\epsilon(M) \), the synthesis problem \(\Pi(M', C, V) \) is satisfiable.

In Theorem 7 we will show that our synthesis algorithm is also relatively complete with respect to this notion of robustness.

B. Weakened and Strengthened Rules

The main challenge in solving \(\Pi(M, C, V) \) is the post operator in Rules R2, R5, and R6. We need a reasonable representation of \(post \) for this computation to be effective. In this work, we use a finite partition \(P \) of the state space (which preserves \(C, \text{Init}, \text{Safe}, \text{Goal} \)) for computing the post. This choices is somewhat independent of the rest of the methodology and any other template (for example, linear functions, support functions, zonotopes) could be used instead of the fixed partitions.

The key idea to solve it is to create over and under approximations of the post operator with respect to the representation of choice—in this case representation using the fixed partition \(P \). These operators are then used to create weakened and strengthened versions of the basic inductive rules that can be effectively solved as SMT problems.

We define an under-approximation \(\mathcal{P}_{\text{post}} \) and an over-approximation \(\mathcal{P}_{\text{post}} \) of the post operator with respect to a partition \(P \) as follows: for any compact \(S \subseteq X \),

\[
\mathcal{P}_{\text{post}}(S, u) = \bigcup_{P \in \mathcal{P} \land \mathcal{P}_{\text{post}}(S, u) \neq \emptyset} P \tag{3}
\]

\[
\mathcal{P}_{\text{post}}(S, u) = \bigcup_{P \in \mathcal{P} \land \mathcal{P}_{\text{post}}(S, u) \neq \emptyset} P \tag{4}
\]

Roughly, the over-approximation \(\mathcal{P}_{\text{post}}(S, u) \) computes the minimum superset of \(S \) which is preserved by \(P \) and the under-approximation \(\mathcal{P}_{\text{post}}(S, u) \) computes the maximum subset of \(S \) which is preserved by \(P \). We define
Proof. Inv fixed point Must

Lemma 5. For any measurable $S \subseteq X$, a post operator and any partition P, the following properties hold:

(i) $P \cdot post(S, u) \subseteq post(S, u) \subseteq P \cdot post(S, u)$,
(ii) If P' subsumes P, then $P' \cdot post(S, u) \supseteq P \cdot post(S, u)$ and $P' \cdot post(S, u) \subseteq P \cdot post(S, u)$,
(iii) For any $\epsilon > 0$, $\exists \delta > 0$ such that for any P with resolution less than δ, $d(P \cdot post(S, u), P \cdot post(S, u)) < \epsilon$.

Instead of searching for an exact inductive invariant Inv, the weakened and strengthened versions of the synthesis rules presented below try to find under (Must) and over-approximations (May) of the invariant using the $P \cdot post(S, u)$ and $P \cdot post(S, u)$ operators.

\begin{align*}
\text{Find } u : C \rightarrow U, V \in V, \text{ Must } & \subseteq X \text{ such that} \\
W1: \text{ Init } & \subseteq \text{ Must} \\
W2: P \cdot post(\text{Must}, u) & \subseteq \text{ Must} \\
W3: \text{ Must } & \subseteq \text{ Safe} \\
W4: C \subseteq \text{ Goal } & \iff V(C) = 0 \\
W5: C \subseteq \text{ Must } \land C' & \subseteq P \cdot post(C, u) \\
& \implies V(C) \supseteq V(C') \\
W6: C \subseteq \text{ Must } \setminus \text{ Goal } \land C' & \subseteq P \cdot post^k(C, u) \\
& \implies V(C) > V(C')
\end{align*}

Fig. 2: Weakened rules $P \cdot post(M, C, V)$ for synthesis.

\begin{align*}
\text{Find } u : C \rightarrow U, V \in V, \text{ May } & \subseteq X \text{ s.t.:} \\
S1: \text{ Init } & \subseteq \text{ May} \\
S2: P \cdot post(\text{May}, u) & \subseteq \text{ May} \\
S3: \text{ May } & \subseteq \text{ Safe} \\
S4: C \subseteq \text{ Goal } & \iff V(C) = 0 \\
S5: C \subseteq \text{ May } \land C' & \subseteq P \cdot post(C, u) \\
& \implies V(C) \supseteq V(C') \\
S6: C \subseteq \text{ May } \setminus \text{ Goal } \land C' & \subseteq P \cdot post^k(C, u) \\
& \implies V(C) > V(C')
\end{align*}

Fig. 3: Strengthened rules $P \cdot post(M, C, V)$ for synthesis.

Lemma 6. If a RAC specified by M is robust modulo C, V, then there exists a sufficiently fine partition P such that either (i) $P \cdot post(M, C, V)$ is unsatisfiable or (ii) $P \cdot post(M, C, V)$ is satisfiable.

Proof. We discuss the two cases in Definition 3. In this prove post, $P \cdot post, P \cdot post$ without a subscript denote the operator with respect to model M.

Suppose there exists $\epsilon > 0$ such that some controller u and ranking function $V \in V$ solves all ϵ-perturbations of $P(M, C, V)$. That is, for each $M' \in B(M)$, there exists a $Inv_{M'}$, such that $u, V, Inv_{M'} \models P(M')$. We define Inv_e as the union of all such $Inv_{M'}$’s. Roughly, Inv_e is the set of states that can be visited for some ϵ-perturbation of M with controller u. Since every $Inv_{M'}$ satisfies R3, R5, R6 in Figure 1, it can be shown that (i) $Inv_e \subseteq Safe$, (ii) $C \subseteq Inv_e \land post(C, u) \cap C' \neq \emptyset \iff V(C) \supseteq V(C')$, and (iii) $C \subseteq Inv_e \setminus Goal \land post^k(C, u) \cap C' \neq \emptyset \iff V(C) > V(C')$. Also, any subset of Inv_e also satisfy the above three formula. From Proposition 4 for sufficiently fine partition P, for any $S \subseteq X$, $d(P \cdot post(S, u), post(S, u)) \leq \epsilon$. We will inductively prove that the May set with respect to this partition P is a subset of Inv_e. (i) Initially, $Init \subseteq Inv_e$. (ii) For any set $S \subseteq Inv_e$, and any state $x \in P \cdot post(S, u)$, it suffice to prove $x \in Inv_e$. First, since $d(P \cdot post(S, u), post(S, u)) \leq \epsilon$. We can find a state $x' \in post(S, u) \subseteq Inv_e$ such that $\|x-x'\| \leq \epsilon$. Since x' is in Inv_e, it is reached by some model $M' \in B(M)$ for the first time. We construct a model M'' that is identical to M' elsewhere except that at state x' the dynamics is $x' = post_{M''}(x, u)$. It is easy to show that M'' is a ϵ-perturbation of M which visit x with controller u. Thus $x \in Inv_e$. By (i) and (ii) above, we derive $May \subseteq Inv_e$. It follows that the strengthened rules S3, S5 and S6 are satisfied. In addition, S1-S2 is satisfied by the definition of May and S4 is just inherited from R4. Therefore, the strengthened rules are satisfiable.

Otherwise suppose exists $\epsilon > 0$ such that none of the ϵ-perturbation of $P(M, C, V)$ is satisfiable. Again from Proposition 4 for sufficiently fine partition P, for any $S \subseteq X$, $d(P \cdot post(S, u), post(S, u)) \leq \epsilon$. We on the contrary assume there exists some controller $u, V, May \models P \cdot post(M, C, V)$. We define a model M'' such that for any cell $C \in C$ and each state $x \in C$, the dynamics of M'' is captured by $post_{M''}(x, u) = Proj(post(x, u), P \cdot post(C, u))$. The operator $Proj(x, A)$ is a projection that maps x to a state in A that is closest to x. It can be shown that
M' is an ϵ-perturbation of M. Moreover, for any cell $C \subseteq X$, post$_M(C) = \mathcal{P}$-post(C, u). Thus, the problem of $\Pi'(M', C, V)$ and $\Pi_p'(M, C, V)$ are identical. It follows that $u, V, \text{Must} \models \Pi'(M', C, V)$, which contradicts the fact none of ϵ-perturbation of Π is satisfiable modulo C, V.

\section{SMT-based Synthesis Algorithm}

We introduce an algorithm for controller synthesis for RAC using the strengthened and weakened inductive SMT encodings of the previous section. The algorithm takes as input the model M, the controller table/partition C, the template for the ranking function V and the three sets Init, Safe and Goal that define RAC problem. It iteratively refines the partition P for representing invariants and makes subroutine calls to the SMT solver with the strengthened and weakened rules until it either finds a controller law u or outputs \perp. Specifically, in each iteration, (a) if the strengthened problem Π_p^s is satisfiable then it returns the satisfying u. (b) if the weakened problem Π_p^w is unsatisfiable then it returns \perp. Otherwise, (c) it refines the partition P (using the Must set computed from Π_p^w). The Refine(P, Must) function creates a finer partition of P. For the completeness result, we require that for any P, by iteratively applying Refine, the resolution of the resulting partition can be made arbitrarily fine. In Section V-B we discuss several heuristics for refinement that potentially improve the performance of the algorithm.

A. Soundness and Relative Completeness

We will next sketch the arguments for the correctness of the algorithm. Soundness of the algorithm implies that whenever it outputs u, (i) that u is a control law that solves the RAC problem, (ii) the May set obtained from solving Π_p^w in the final iteration is an inductive proof certificates for safety with u, and (iii) the V is a k-step inductive proof certificate for progress with u. And, whenever the algorithm outputs \perp then there does not exists a controller u, a ranking function $V \in V$ and an invariant $Inv \subseteq \mathcal{P}$ such that the above (i)-(iii) holds.

In addition, we show that the algorithm is relative complete. That is, if RAC is robust modulo C, V, then the algorithm terminates with one of the above answers.

\section*{Algorithm 1: SMT-based Synthesis Algorithm}

\begin{algorithm}
\caption{SMT-based Synthesis Algorithm}
\begin{algorithmic}[1]
\State $\text{input: } M, C, V, \text{Init}, \text{Safe}, \text{Goal}$;
\State $P \leftarrow \text{initPartition}$;
\While{True}
\State $(\text{val}_s, u) \leftarrow \text{Solve}(\Pi_p^s(M, C, V))$;
\State $(\text{val}_w, \text{Must}) \leftarrow \text{Solve}(\Pi_p^w(M, C, V))$;
\If{$\text{val}_s = \text{SAT}$}
\State \text{return} u
\ElsIf{$\text{val}_w = \text{UNSAT}$}
\State \text{return} \perp
\Else
\State $P \leftarrow \text{Refine}(P, \text{Must})$;
\EndIf
\EndWhile
\end{algorithmic}
\end{algorithm}

There are different ways in which the refinement of the partition P can be implemented without compromising the soundness and the relative completeness guarantees. The naive strategy of subdividing every equivalence class in P, increases the size of the SMT problems quickly. As our algorithm solves both the weakened and strengthened versions of the problem simultaneously, we can marshall extra information in performing refinement. For example, when the weakened rules return a possible control u along with its proof V, Must, even though this controller u cannot be proven (to be safe and progress making) with the strengthened rules, it can provide useful information for guiding the refinement.

Definition 8. For a partition P and a set S that is preserved by P, P' is a S-guided refinement of P if P' is derived by refining the cells of P that are in S.

One key observation is that, a \textbackslash{}Must-guided refinement helps in generating safety proofs (S3 and W3), while a Must-guided refinement can improve the precision of progress proofs (S5-S6 and W5-W6). The following proposition formalizes part of this intuition and states that for given a controller u, refining the cells in Must does not improve the precision of the fixed-point Must, May computed by rules S1-S2 and W1-W2.

Proposition 9. For any control u, any set Init and any partitions P, let Must, May be the fixed point of operator \mathcal{P}-post(\cdot, u) and \mathcal{P}-post(\cdot, u) containing Init. Let P' be a Must-guided refinement of P and Must', May' be the fixed point of P'-post(\cdot, u) and P'-post(\cdot, u) containing Init. Then, Must $\subseteq \text{Must}'$ and May $\subseteq \text{May}'$.

By above proposition, a Must-guided refinement provides no help in generating better safety proofs. However, from Proposition 4, a finer partition P and P-post(C, u) and P-post(C, u) increase the precision of \mathcal{P}-post(C, u) and \mathcal{P}-post(C, u). Since the rules S5-S6 and W5-W6 involve computing \mathcal{P}-post(C, u) and \mathcal{P}-post(C, u)
for cells in May and Must respectively, a Must-guided refinement possibly increases the precision of these rules. Based on the above observations, we can adopt to the following heuristics for refinement: If the Must set is close to the unsafe set, perform \(\mathcal{X} \setminus \text{Must} \)-guided refinement, otherwise perform Must-guided refinement.

VI. Prototype Implementation and Experiments

We implemented the synthesis algorithm in Python using the CVC4 SMT solver [2]. In this section, we briefly report preliminary results on applying it to a simple class of navigation problems. With this implementation, we were able to automatically synthesize correct controls (and their inductive proofs) for some configurations and proved impossibility for others.

Vehicle Navigation Problem: We consider a reach-avoid problem for a vehicle that follows piecewise linear approximation of Dubin’s dynamics. The system model has 4 state variables \([x, y, v, \theta]^T\): position, velocity and heading angle of the vehicle. It has input variables \([\alpha, \beta]^T\): the acceleration and the turning rate. From the continuous Dubin’s vehicle model: \(\dot{x} = v \cos \theta \), \(\dot{y} = v \sin \theta \), \(\dot{v} = \alpha \), \(\dot{\theta} = v \beta \). We construct a switched linear model by partitioning the domain of \(\theta \) and \(v \) into 24 locations, and for each location we compute an approximate linear dynamics. The result is a switched-linear model:

\[
x^+ = x + av + b, \quad y^+ = y + cv + d, \quad v^+ = v + \alpha, \quad \theta^+ = \theta + e \beta,
\]

where \(a, b, c, d, e \) have different values in different locations. The piecewise linearized model preserves some properties of the original system. For example, the linearized model cannot turn in place: if the velocity is close to 0, the heading \(\theta \) cannot change. Moreover, the velocity is non-negative, which further restricts its maneuverability. These properties give rise to interesting RAC problem instances where the system has no satisfying control law.

We allow finitely many discrete input values and compute \(P_{\text{post}}(C, u) \) and \(P_{\text{post}}(C, u) \) offline as follows: For a given partition \(P \), and a cell \(C \in P \), we first identify a set of cells \(\mathcal{N}(C) \) such that \(C' \in \mathcal{N}(C) \) can visit some state in \(C \) in one step. Then, for each possible input \(u \), we compute the one step reach set of \(\text{post}(\mathcal{N}(C), u) \) with the help from reachability tools such as [12], [14]. Thus we just need to identify the input combinations such that \(C \) is covered by or intersected with \(\text{post}(\mathcal{N}(C), u) \).

Experimental Results: We performed several experiments for the above class of problems using our prototype implementation. We search for a control policy as a look-up table, specified by a controller table. We utilize a controller table \(C \) with 768 cells in total. In Figure 5 and 4, the grids illustrate the projection of controller table to \(x, y \) coordinates.

We create a partition \(P \) by further partitioning each cell in \(C \) into 4 pieces, with which we construct both the weakened and the strengthened rules. For some cases, we proved the impossibility of synthesis. We visualize such a case in Figure 4. We performed several experiments on applying it to a simple class of problems using our prototype implementation. In this section, we briefly report preliminary results on applying it to a simple class of navigation problems. With this implementation, we were able to automatically synthesize correct controls (and their inductive proofs) for some configurations and proved impossibility for others.

Vehicle Navigation Problem: We consider a reach-avoid problem for a vehicle that follows piecewise linear approximation of Dubin’s dynamics. The system model has 4 state variables \([x, y, v, \theta]^T\): position, velocity and heading angle of the vehicle. It has input variables \([\alpha, \beta]^T\): the acceleration and the turning rate. From the continuous Dubin’s vehicle model: \(\dot{x} = v \cos \theta \), \(\dot{y} = v \sin \theta \), \(\dot{v} = \alpha \), \(\dot{\theta} = v \beta \). We construct a switched linear model by partitioning the domain of \(\theta \) and \(v \) into 24 locations, and for each location we compute an approximate linear dynamics. The result is a switched-linear model:

\[
x^+ = x + av + b, \quad y^+ = y + cv + d, \quad v^+ = v + \alpha, \quad \theta^+ = \theta + e \beta,
\]

where \(a, b, c, d, e \) have different values in different locations. The piecewise linearized model preserves some properties of the original system. For example, the linearized model cannot turn in place: if the velocity is close to 0, the heading \(\theta \) cannot change. Moreover, the velocity is non-negative, which further restricts its maneuverability. These properties give rise to interesting RAC problem instances where the system has no satisfying control law.

We allow finitely many discrete input values and compute \(P_{\text{post}}(C, u) \) and \(P_{\text{post}}(C, u) \) offline as follows: For a given partition \(P \), and a cell \(C \in P \), we first identify a set of cells \(\mathcal{N}(C) \) such that \(C' \in \mathcal{N}(C) \) can visit some state in \(C \) in one step. Then, for each possible input \(u \), we compute the one step reach set of \(\text{post}(\mathcal{N}(C), u) \) with the help from reachability tools such as [12], [14]. Thus we just need to identify the input combinations such that \(C \) is covered by or intersected with \(\text{post}(\mathcal{N}(C), u) \).

Experimental Results: We performed several experiments for the above class of problems using our prototype implementation. We search for a control policy as a look-up table, specified by a controller table. We utilize a controller table \(C \) with 768 cells in total. In Figure 5 and 4, the grids illustrate the projection of controller table to \(x, y \) coordinates.

We create a partition \(P \) by further partitioning each cell in \(C \) into 4 pieces, with which we construct both the weakened and the strengthened rules. For some cases, we proved the impossibility of synthesis. We visualize such a case in Figure 4. While for other cases, we successfully synthesized a control policy. An example is illustrated in Figure 5. The satisfying control policy is synthesized with an inductive proof, namely the May set and the ranking function \(\mathcal{V} \).

In the constraints of this synthesis problem, there are 768 real-valued variables for control input in each cell, 3072 integer variables for values of the ranking function for each partition and 3072 boolean variables indicates whether a partition is reached. The weakened or strengthened inductive rules are encoded in roughly 7000 constraints. The constraints are solved by CVC4 [2] in 10 minutes.

VII. Conclusion

In this work, we studied the controller synthesis problem of discrete-time systems with possibly unbounded time safety and progress specifications. Leveraging the growing strength of modern SMT tools, we propose an algorithm that finds controllers as well as inductive proofs of their correctness. Specifically, the algorithm creates a weaker and a stronger version of the synthesis problem and encodes them as SMT problems. By solving the controller synthesis problems for these two bounding systems automatically with SMT solvers, we can solve the synthesis problem for the original system. We prove that this algorithm is sound and relatively complete and show that the solution given by the strengthened system
provide a guidance for refining the bounding system. Our experimental results based on a prototype implementation suggest that this can be a promising direction of investigation for controller synthesis research.

Since the core problem of computing over-approximations of post are decoupled from synthesis in this formulation, one future direction of research that this work opens up is to extend this framework to nonlinear system models. The performance of the algorithm depends on the templates of the control, ranking function and invariants. Thus, to explore different classes of templates and study their performance in our synthesis framework is also a natural next step.

REFERENCES

[1] E. Aydin Gol, Xuchu Ding, M. Lazar, and C. Belta. Finite Bisimulations for Switched Linear Systems. IEEE Transactions on Automatic Control, 59(12):3122–3134, December 2014.

[2] Clark Barrett, Christopher L Conway, Morgan Deters, Liana Hadarean, Dejan Jovanović, Tim King, Andrew Reynolds, and Cesare Tinelli. CVC4. In Computer aided verification, pages 171–177. Springer, 2011.

[3] Alberto Bemporad, Francesco Borrelli, Manfred Morari, et al. Model predictive control based on linear programming: the explicit solution. IEEE Transactions on Automatic Control, 47(12):1974–1985, 2002.

[4] Tewodros Beyene, Swarat Chaudhuri, Cornelio Poncea, and Andrzej Rybalchenko. A constraint-based approach to solving games on infinite graphs. In Proceedings of the 41st annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages 221–234. ACM, 2014.

[5] Roderick Bloem, Barbara Jobstmann, Nir Piterman, Amir Pnueli, and Yaniv Sa’ar. Synthesis of reactive(1) designs. Journal of Computer and System Sciences, 78(3):911 – 938, 2012. In Commemoration of Amir Pnueli.

[6] Egon Börger, Erich Grädel, and Yuri Gurevich. The classical decision problem. Perspectives in mathematical logic. Springer, Berlin, Heidelberg, New York, 1997.

[7] Alvaro Cardenas, Saurabh Amin, Bruno Sinopoli, Annarita Giani, Adrian Perrig, and Shankar Sastry. Challenges for securing cyber physical systems. In Workshop on future directions in cyber-physical systems security, 2009.

[8] Alvaro A Cárdenas, Saurabh Amin, and Shankar Sastry. Research challenges for the security of control systems. In HotSec, 2008.

[9] Feng Chen and Grigore Rosu. Mop: Reliable software development using abstract aspects. Technical Report UIUCDCS-R-2006-2776, Department of Computer Science, University of Illinois at Urbana-Champaign, October 2006.

[10] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In Tools and Algorithms for the Construction and Analysis of Systems, pages 337–340. Springer, 2008.

[11] Jerry Ding, Eugene Li, Haomiao Huang, and Claire J Tomlin. Reachability-based synthesis of feedback policies for motion planning under bounded disturbances. In Robotics and Automation (ICRA), 2011 IEEE International Conference on, pages 2160–2165. IEEE, 2011.

[12] Parasara Sridhar Duggirala, Sayan Mitra, Mahesh Viswanathan, and Matthew Potok. C2e2: A verification tool for stateflow models.

[13] Bruno Dutertre and Leonardo De Moura. The yices smt solver. Tool paper at http://yices.csl.is/ yices3 yices csl com/tool-paper.pdf, 2(2), 2006.

[14] Goran Frehse, Colin Le Guernic, Alexandre Donzé, Scott Cotton, Rajarsi Roy, Olivier Lebeltel, Rodolfo Ripado, Antoine Girard, Thao Dang, and Oded Maler. Spaceace: Scalable verification of hybrid systems. In Computer Aided Verification, pages 379–395. Springer, 2011.

[15] Sicun Gao, Soonho Kong, and Edmund M. Clarke. dReal: An SMT Solver for Nonlinear Theories over the Reals. In Maria Paola Bonacina, editor, Automated Deduction – CADE-24, number 7898 in Lecture Notes in Computer Science, pages 208–214. Springer Berlin Heidelberg, 2013.

[16] H. Kress-Gazit, G.E. Fainekos, and G.J. Pappas. Temporal-Logic-Based Reactive Mission and Motion Planning. IEEE Transactions on Robotics, 25(6):1370–1381, December 2009.

[17] M. Lahijanian, S.B. Andersson, and C. Belta. Temporal Logic Motion Planning and Control With Probabilistic Satisfaction Guarantees. IEEE Transactions on Robotics, 28(2):396–409, April 2012.

[18] Jun Liu and Necmiye Ozay. Abstraction, Discretization, and Robustness in Temporal Logic Control of Dynamical Systems. In Proceedings of the 17th International Conference on Hybrid Systems: Computation and Control, HSCC ’14, pages 293–302, New York, NY, USA, 2014. ACM.

[19] Manuel Mazo Jr, Anna Davitian, and Paulo Tabuada. Pessoa: A tool for embedded controller synthesis. In Computer Aided Verification, pages 566–569. Springer, 2010.

[20] S. Nedunuri, S. Prabhu, M. Moll, S. Chaudhuri, and L.E. Kavraki. SMT-based synthesis of integrated task and motion plans from plan outlines. In 2014 IEEE International Conference on Robotics and Automation (ICRA), pages 655–662, May 2014.

[21] I. Saha, R. Ramaiththam, V. Kumar, G.J. Pappas, and S.A. Seshia. Automated composition of motion primitives for multi-robot systems from safe LTL specifications. In 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014), pages 1525–1532, September 2014.

[22] María Svoreňová, Martin Chmelík, Kevin Leahy, Hasan Ferit Eniser, Krishnendu Chatterjee, Ivana Černá, Calin Belta, et al. Temporal logic motion planning using pomdps with parity objectives. 2015.

[23] Maria Svoreňová, Jan Krejčínsky, Martin Chmelík, Krishnendu Chatterjee, Ivana Černá, and Calin Belta. Temporal Logic Control for Stochastic Linear Systems using Abstraction Refinement of Probabilistic Games. arXiv:1410.5387 [cs], October 2014. arXiv: 1410.5387.

[24] Valerio Turri, Adriano Carvalho, H Eric Tseng, Karl H Johansson, and Francesco Borrelli. Linear model predictive control for lane keeping and obstacle avoidance on low curvature roads. In Intelligent Transportation Systems-(ITSC), 2013 16th International IEEE Conference on, pages 378–383. IEEE, 2013.

[25] T. Wongpiromsarn, U. Topcu, and R.M. Murray. Receding Horizon Temporal Logic Planning. IEEE Transactions on Automatic Control, 57(11):2817–2830, November 2012.

[26] Zhengyuan Zhou, Ryo Takei, Haomiao Huang, and Claire J Tomlin. A general, open-loop formulation for reach-avoid games. In CDC, pages 6501–6506, 2012.