Prevalence and molecular characterization of extended-spectrum \(\beta \)-lactamase-producing *Klebsiella pneumoniae* in Riyadh, Saudi Arabia

Mohammad H.M. Al-Agamy, Atef M. Shibl, Abdelkader F. Tawfik

From the College of Pharmacy, Pharmaceutics and Microbiology Department, King Saud University, Riyadh, Saudi Arabia

Correspondence: Asst. Prof. Mohammad H. Al-Agamy · College of Pharmacy, Pharmaceutics and Microbiology Department, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia · T: +966-55-322-7824 · elagamy71@yahoo.com · Accepted for publication May 2009

Ann Saudi Med 2009; 29(4): 253-257

BACKGROUND AND OBJECTIVES: Reports on extended-spectrum \(\beta \)-lactamases (ESBL) production by Enterobacteriaceae, and especially in *Klebsiella pneumoniae*, are few in Saudi Arabia. Therefore, we determined the prevalence of ESBL in *K pneumoniae* from Riyadh and characterized the predominant \(\beta \)-lactamase gene in these isolates.

METHODS: A total of 400 *K pneumoniae* samples were isolated from two hospitals in Riyadh during 2007 and screened for production of ESBL using ESBL-E-strips and combined disk methods. PCR assay was used to detect *bla*_{TEM}, *bla*_{SHV} and *bla*_{CTX-M} genes.

RESULTS: Phenotypic characterization identified a high ESBL rate of 55% of *K pneumoniae* isolates. ESBL-producing *K pneumoniae* were PCR positive for SHV, TEM and CTX-M \(\beta \)-lactamase genes with prevalences 97.3%, 84.1% and 34.1%, respectively. Within the CTX-M family, two groups of enzymes, CTX-M-1 and CTX-M-9-like genes were found with prevalences of 60% and 40%, respectively.

CONCLUSIONS: This study confirms the high rate of ESBL in *K pneumoniae* clinical isolates in hospitals in Riyadh. This study demonstrates the worldwide spread of *bla*_{CTX-M} genes. This first report of the presence of the *bla*_{CTX-M} gene in clinical isolates in Saudi Arabia is evidence of the continuing worldwide spread of this gene.
inhibitory concentration (MIC) was determined by an E-strip test (AB BIODISK, Solana, Sweden) as described by the manufacturer. A laboratory control strain, Escherichia coli ATCC 25922, was used in the sensitivity test and in the MIC determination. Phenotypic detection of ESBL was carried out by two different methods: 1) the combined disc method using discs containing cefotaxime and ceftazidime with and without clavulanate (Becton Dickinson, USA) with the ESBL phenotype defined as an increase of ≥5 mm in the zone around the disc containing clavulanate compared to the zone of corresponding discs without clavulanate; and 2) using the E-test ESBL-strip (AB BIODISK, Solana, Sweden) with a ceftazidime gradient at one end and a ceftazidime plus clavulanic acid gradient at the other end. These strips were applied according to the procedure described by the manufacturer. ESBL was detected if the ratio of the MIC of ceftazidime to the MIC of ceftazidime plus clavulanic acid was ≥8. PCR methods were used to detect bla_{TEM}, bla_{SHV}, and bla_{CTX-M}, using the primers and methods previously described. A further group-specific CTX-M PCR was performed to differentiate between the CTX-M-1, -2, -8 and -9 groups of enzymes using primers and methods previously described. The primers used in this study are listed in Table 1. All PCRs were conducted under standard conditions using plasmid DNA as templates.

RESULTS

ESBL phenotype was detected in 220 (55%) of 400 isolates. The antibiotic resistance rate and MIC distribution of ESBL-producing K pneumoniae are listed in Table 2. The resistance rate to cefotaxime, ceftazidime and amoxicillin/clavulanate were 97% (n=215/220), 95% (n=210/220) and 86% (n=190/220), respectively. A fourth-generation cephalosporin, cefepime, showed moderate activity (47%), but 4.5% (n=10/220) were resistant to cefotaxin and all ESBL-producing isolates were susceptible to imipenem. The resistance to cefotaxin in these isolates may be due to alteration in ompK35 or ompK36 and may not be due to AmpC enzymes because the MIC of β-lactam/β-lactamase inhibitors are markedly reduced in our isolates, but AmpC was not. In addition, the co-existence of other enzymes such as OXA may reduce susceptibility to β-lactam/β-lactamase inhibitors. Among non-β-lactam antibiotics, ESBL-producing isolates showed high resistance to gentamicin and amikacin (88.9% [200/220] and 77.3% [170/220], respectively). However, ESBL-producing isolates showed a lower resistance rate of 11% to ciprofloxacin.

The PCR assays revealed that the prevalence of SHV, TEM and CTX-M genes was 97.3% (n=214/220), 84.1% (n=185/220), and 34.1% (n=75/220), respectively, in ESBL-producing isolates. Further PCR experiments to characterize CTX-M groups indicated that 45 (60%) of 75 CTX-M-producing isolates carry bla_{CTX-M-1}-like genes and 30 (40%) of 75 CTX-M-producers harbor bla_{CTX-M-9}-like genes.

DISCUSSION

K pneumoniae is the most frequent ESBL-producing species worldwide. Production of ESBLs was detected in 220 (55%) of 400 clinical isolates of K pneumoniae isolated from hospital-acquired infections in Riyadh. There was no difference between the combined disk method and the E-test strip method in the phenotypic detection of ESBL for K pneumoniae isolates from Riyadh. Reports on ESBL production by Enterobacteriaceae, and especially in K pneumoniae, are few in Saudi Arabia. The overall prevalence of ESBL producers was found to vary greatly in different geographical areas and in different institutes in Saudi Arabia. In our study, the rate of ESBLs-producing isolates collected from two hospitals in Riyadh was relatively high (55%) and was similar to other rates reported from previous studies in Riyadh. However, lower rates for the prevalence of ESBL-producers were reported in other studies. This may be due to differences in the study population, geographic area, and time of sample collection.

Table 1. The primers used in amplification of β-lactamases genes.

Gene	Primers	Nucleotide sequence	Position
TEM	T1	5’-ATT CTT GAA GAC GAA AGG GCC TC-3’	F
	T3	5’-TTG GTC TGA CAG TTA CCA ATG C-3’	B
SHV	NI1	5’-GCC CGG GTT ATT CTT ATT TGT CGG-3’	F
	NI2	5’-GCC ATT CCA TGC CGC CAG TCA-3’	B
CTX-M	CTX-MA	5’-CGGTTGCAATTGTCGACG-3’	F
	CTX-MB	5’-ACCAGGATACGTTGCT-3’	B
CTX-M-1	ALA2	5’-ATGTTAAATAAATCCTGGCG-3’	F
	P2D	5’-CAACGCTTTTGGCGTAAAG-3’	B
CTX-M-2	CTX-M2GF	5’-TTA ATG ACT CAG AGC ATT C-3’	F
	CTX-M2GR	5’-GAC TTG CTC CTA CAT TTA TTG-3’	B
CTX-M-8	CTX-M8GF	5’-TGA ATA CTT CAG CCA CAC G-3’	F
	CTX-M8GR	5’-TAG AAT TAA TAA CCG TCG GT-3’	B
CTX-M-9	C1	5’-AACAGGATTAGCGCTTGG-3’	F
	C2	5’-TTAGCAGCGCTTCCGAT-3’	B

F= forward, B=backward
were identified as ESBL. In the present study, the dominant β-lactamase was SHV with a prevalence of 97.3% followed by TEM and CTX-M with prevalences of 64.0% and 69.4%, respectively.

Resistance to β-lactams, especially third-generation cephalosporins and non-β-lactams, among clinical isolates of gram-negative bacteria is increasing worldwide. The overall resistance rate of ESBL-producing K pneumoniae isolates studied was alarmingly high to most antibiotics tested including gentamicin, amikacin, cefepime, and trimethoprim/sulfamethoxazole. Imipenem and cefotaxime followed by ciprofloxacin were the antibiotics most active against ESBL-producers. Imipenem and cefotaxime followed by ciprofloxacin were the antibiotics most active against ESBL-producers. Imipenem and cefotaxime followed by ciprofloxacin were the antibiotics most active against ESBL-producers. Imipenem and cefotaxime followed by ciprofloxacin were the antibiotics most active against ESBL-producers.
84.1%, and 34.1%, respectively. In the present study the prevalence of CTX-M enzymes was 34%, but the prevalence of CTX-M enzymes in a study under preparation was 85%. This may be because the present study was done on the isolates were collected during 2007 while in the other study the isolates collected during 2008. In addition to an insertion sequence (ISEcp1), which enhances the mobilization of the CTX-M gene, was detected in 60% of CTX-M-producing Klebsiella (study under preparation), while the prevalence of ISEcp1 was relatively low (10%) in isolates included in the present study (Data not included). However, 32 (74%) of the 43 ESBL-producing isolates from Kuwait carried bla_{CTX-M}. In Iran, the prevalence of bla_{SHV} and bla_{TEM} among ESBL-producing K pneumoniae was 69.6% and 32.1%, respectively. The prevalence of CTX-M in the present study was lower than the prevalence in Kuwait. However, the prevalence of TEM and SHV was higher than reported in Iran. The higher prevalence of CTX-M in Kuwait is due to most of the CTX-M being detected in non-Kuwaiti immigrants, mainly from South Asia, where CTX-M is endemic. Dissemination of CTX-M ESBL enzymes is worldwide. CTX-M-1 and CTXM-9 groups were detected in our isolates and no CTX-M-2 and CTX-M-8 groups were detected. The occurrence of bla_{CTX-M-1}-like genes (60%) was higher than bla_{CTX-M-9}-like genes (40%) in CTX-M-producing K pneumoniae in the present study. In Arab countries, the first description of CTX-M-15 was in Egypt and then in the United Arab Emirates and in Kuwait. CTX-M-15 is the predominant ESBL in Egypt, United Arab Emirates and in Kuwait. The present study reporting the CTX-M-15-like gene (CTX-M-1 group) and the CTX-M-14/18-like gene (CTX-M-9 group) is the first report of CTX-M genes in Saudi Arabia. The bla_{SHV} gene was only found alone in 6.8% (n=15/220) of ESBL-producing isolates with elevated MIC for both cefotaxime and ceftazidime (≥256 mg/L). The presence of SHV β-lactamase alone suggests that these SHV genes are responsible for resistance to extended-spectrum cephalosporins in 6.8% of ESBL-producing K pneumoniae isolates. However, the bla_{SHV} gene was found to be associated with the bla_{TEM} gene in 56.8% (n=125/220) with three different patterns of resistance. Seventy-five of 125 (44%) isolates showed a higher MIC for both (≥256 mg/L), while 35 (20%) of 125 isolates exhibited an increase in MIC with cefotaxime and a decrease in MIC with ceftazidime, and 15 of 125 (7.2%) isolates exhibited a decrease in MIC with cefotaxime and an increase in MIC with ceftazidime. From this result either SHV or TEM or both are the ESBLs in 125 of 220 isolates producing ESBL. On the other hand, SHV β-lactamase was present with the CTX-M enzyme in 9.1% (n=20/220) of ESBL-producers. However, the SHV β-lactamase gene was present with both TEM and CTX-M in 25% (55/220). Thirty-five isolates belonged to the CTX-M-1 group with a higher MIC for cefotaxime and ceftazidime, while 20 isolates belonged to the CTX-M-9 group with a decrease in MIC with cefotaxime and an increase in MIC with ceftazidime.

CTX-M enzymes (CTX-M-1 like genes) were co-present with TEM in 5 isolates (2.7%) with an increase in MICs with cefotaxime and ceftazidime (≥256 mg/L). However, the CTX-M family of ESBLs has been increasingly detected worldwide. In the present study, the occurrence of CTX-M-producing K pneumoniae was relatively high (34.1%). In India, higher percentages (72%) of ESBL-producers harbor bla_{CTX-M} genes. In this study, we did not determine which β-lactamase was responsible for resistance to extended-spectrum cephalosporins because these genes were not sequenced. The DNA sequence of these genes must be done to know the type of β-lactamase gene and the prevalence of ESBL genes in ESBL-producing isolates in Saudi Arabia. To our knowledge, there is no published report of the discovery of bla_{CTX-M} genes in Saudi Arabia. In conclusion, this study confirms a high rate of ESBLs in K pneumoniae in Riyadh, Saudi Arabia, and further demonstrates the worldwide spread of genes coding for CTX-M enzymes in clinical isolates. Most ESBL producers were resistant to oxyimino-cephalosporins and other non-β-lactam agents at high levels.
ESBL-PRODUCING K. PNEUMONIAE

REFERENCES

1. Kiratison P, Apisarnthanarak A, Laesri C, Saifon P. Molecular characterization and epidemiology of extended-spectrum-β-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolates causing health care-associated infection in Thailand, where the CTX-M family is endemic. Antimicrob Agents Chemother. 2008;52(8):2818-2824.

2. Bush K, Jacoby GA, Medeiros AA. A functional classification scheme for β-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother. 1995;39:1211-1233.

3. Paterson DL, Bonomo RA. Extended-spectrum β-lactamases: a clinical update. Clin Microbiol Rev. 2005;18:579-608.

4. Knolle H, Shah P, Krcmery V, Antal M, Mitsuhashi S. Transferable resistance to cephalosporins, cefoxitin, cefamandole and ceftazidime in clinical isolates of Klebsiella pneumoniae and Serratia marcescens. Infect. 1983;13:315-317.

5. Bauernfeind A, Casellas JM, Goldberg M, Holley M, Jungrwirth M, Mangold P, Rohn T, Schweighart S, Wilhelm R. A new plasmidic cephalosporinase from patients infected with Salmonella typhimurium. Infect. 1990;20:159-163.

6. Barthélémy P, Peduzzi J, Bernard H, Tancrède C, Labia R. Close amino acid sequence relationship between the new plasmid-mediated extended spectrum β-lactamase M1-21 and chromosomally encoded enzymes of Klebsiella oxytoca. Biochem Biophys Acta. 1992;1122:15-22.

7. Bonnet R. Growing Group of Extended-Spectrum β-Lactamases: the CTX-M Enzymes. Antimicrob Agents Chemother. 2004;48(1):1-14.

8. Paterson DL, Hujer KM, Hujer AM, Yeise B, Bonomo RA, Rice LB, Bonomo RA, and International Klebsiella study group. Extended-spectrum β-lactamases in Klebsiella pneumoniae blood-stream isolates from seven countries: dominance and widespread prevalence of SHV- and CTX-M-type β-lactamases. Antimicrob Agents Chemother. 2003;47:3456-3460.

9. Al-agamy MHM, Ashour MSE, Wiegang I. First description of CTX-M-4 β-lactamase-producing clinical Escherichia coli isolates from Egypt. Int J Antimicrob Agents. 2006;27:545-548.

10. Soe GO, Queenan AM, Ojo KK, Adeniyi BA, Roberts MC. CTX-M-15 extended-spectrum β-lactamase from an Iranian Klebsiella pneumoniae. J Antimicrob Chemother. 2006;57:24-30.

11. Livermore DM, Cantor R, Gniadkowski M, Nordmann P, Rossoin GM, Arlet G, Ayala J, Coque TM, Bauernfeind A, Casellas JM, Goldberg M, Sirot D, Labia R, De Champs C, Sirot J. Novel cephalosporinase (CTX-M-16) with increased catalytic efficiency due to substitution Asp-240 Gly. Antimicrob Agents Chemother. 2001;45:2269-2275.

12. Barancki A, Rient J, Hrynewicz W, Nordmann P, Gniadkowski M. Ceftazidime-hydrolyzing CTX-M-15 extended-spectrum beta-lactamase (ESBL) in Poland. J Antimicrob Chemother. 2002;50:393-396.

13. Villegas MV, Correa A, Perez F, Miranda MC, Zuluga T, Quin JP, Colombian Nosocomial Resistance Study Group. Prevalence and characterization of extended-spectrum beta-lactamases in Klebsiella pneumoniae and Escherichia coli isolates from Colombian hospitals. Diagn Microbiol Infect Dis. 2004;49:217-222.

14. Chananwong A, Zali FHM, Heritage J, Xiong XH, Hawkey PM. Three cephalosporinases, CTX-M-9, CTX-M-13, and CTX-M-14, among Enterobacteriaceae in the People’s Republic of China. Antimicrob Agents Chemother. 2002;46:630-637.

15. Bilal NE, Gedebou M. Clinical and community strains of Klebsiella pneumoniae multiple and increasing rates of antibiotic resistance in Abha, Saudi Arabia. Br J Biomed Sci. 2001;57:185-191.

16. Goossens H. MYSTIC programme: summary of European data from 1997 to 2000. Diagn Microbiol Infect Dis. 2001;41:183-189.

17. Otmam J, Cavassin ED, Perugini ME, Vidotto MC. An outbreak of extended-spectrum beta-lactamase-producing Klebsiella species in a neonatal intensive care unit in Brazil. Infect Control Hosp Epidemiol. 2002;23:8-9.

18. Rosman J, Cavassin ED, Perugini ME, Vidotto MC. An outbreak of extended-spectrum beta-lactamase-producing Klebsiella species in a neonatal intensive care unit in Brazil. Infect Control Hosp Epidemiol. 2002;23:8-9.

19. Pfaffer MA, Jones RN, Doern GV. Multicenter evaluation of the antimicrobial activity for the six broad-spectrum beta-lactam antibiotics in Venezuela: A comparison of data from 1997 and 1998 using the E test method. Venezuelan Antimicrobial Resistance Study Group. Diagn Microbiol Infect Dis. 1999;35:150-156.

20. Sader HS, Gales GC, Grandner TD, Pfaffer MA, Jones RN. Prevalence of antimicrobial resistance among respiratory tract isolates in Latin America: results from SENTRY antimicrobial surveillance program (1997-98). J Bras J Infect Dis. 2000;4:245-254.

21. Lewis MT, Yamaguchi K, Biedenbach DJ, Jones RN. In vitro evaluation of cefepime and other broad-spectrum beta-lactams in 22 medical centers in Japan: a phase II trial comparing two annual organism samples. The Japan Antimicrobial Resistance Study Group. Diagn Microbiol Infect Dis. 1999;35:267-275.

22. Hawser SP, Bouchillon SK, Hoban DJ, Badal RE, Husein PR, Paterson D. Emergence of High Levels of Extended-Spectrum (β-lactamase)-producing Gram-negative Bacteria in Asia/Pacific: Data from SMART 2007. Antimicrob Agents Chemother. 2009 Jun 8. (Epub ahead of print).

23. Shah A, Hassan F, Ahmed M, Hameed A. Prevalence of extended spectrum β-lactamases in nosocomial and outpatient (ambulatory) Pak J Med Sci. 2004;19:187-191.

24. Jamal W, Rutimi VD, Khokhssaff S, Saleem R, Pazhoor A, Al Hashim G. Prevalence of extended-spectrum beta-lactamase-producing Enterobacteriaceae in the United Arab Emirates. Med Princ Pract. 2008;17(1):32-36.

25. Sherabi AA, Mahatza A, Baadran I, Qadah FA, Dajani N. High incidence of Klebsiella pneumoniae clinical isolates to extended-spectrum β-lactam drugs in intensive care units. Diagn Microbiol Infect Dis. 2000;36(1):53-56.

26. Goossens H. MYSTIC (Microenpen Yearly Susceptibility Test Information Collection) results from Europe: comparison of antibiotic susceptibility between countries and center types. J Antimicrob Chemother. 2006;46(Suppl S1):43-57.

27. Lautenbach E, Strom BL, Bilker WB, Patel JB, Edelstein PH, Fishman NO. Epidemiological investigation of fluoroquinolone resistance in infection due to extended-spectrum β-lactamases producing Enterobacteriaceae and Klebsiella pneumoniae. Clin Infect Dis. 2001;33:1288-1294.

28. Paterson DL, Rice LB, Bonomo RA. Rapid method of extraction and analysis of extended-spectrum β-lactamases of clinical strains of Klebsiella pneumoniae. Clin Microbiol Infect. 2001;7:709-711.

29. Shahcheraghi F, Moaezi H, Feizabadi MM. Distribution of TEM and SHV β-lactamase genes among Klebsiella pneumoniae strains isolated from Tehran, Med Sci Monit. 2007;13(11):BR247-250.

30. Ensor VM, Jamal W, Rutimi VO, Evans JT, Hawkey PM. Predominance of CTX-M-15 extended-spectrum beta-lactamases in diverse Escherichia coli and Klebsiella pneumoniae strains from hospital and community patients in Kuwait. Int J Antimicrob Agents. 2008;32(5):487-489.

31. Sonnevend A, Al Dhiabhi K, Mag T, Herpay M, Kaldoziejek J, Nowotny N, Usman A, Shehik FA, Pál T. CTX-M-15-producing multidrug-resistant enteraggregative Escherichia coli in the United Arab Emirates. Clin Microbiol Infect. 2008;14(9):852-855.

32. Jenima SA, Varghese S. Multiplex PCR for blaCTX-M and blaTEM in the extended spectrum beta lactamase (ESBL) producing gram-negative isolates Indian J Med Res. 2008;123(3):313-317.