Global prevalence of cardiometabolic risk factors in the military population

A systematic review and meta-analysis

Baygi, Fereshteh; Herttua, Kimmo; Jensen, Olaf Chresten; Djalalinia, Shirin; Mahdavi Ghorabi, Armita; Asayesh, Hamid; Qorbani, Mostafa

Published in:
BMC Endocrine Disorders

DOI:
10.1186/s12902-020-0489-6

Publication date:
2020

Document version
Final published version

Document license
CC BY

Citation for published version (APA):
Baygi, F., Herttua, K., Jensen, O. C., Djalalinia, S., Mahdavi Ghorabi, A., Asayesh, H., & Qorbani, M. (2020). Global prevalence of cardiometabolic risk factors in the military population: A systematic review and meta-analysis. BMC Endocrine Disorders, 20, [8]. https://doi.org/10.1186/s12902-020-0489-6

Terms of use
This work is brought to you by the University of Southern Denmark through the SDU Research Portal. Unless otherwise specified it has been shared according to the terms for self-archiving. If no other license is stated, these terms apply:

• You may download this work for personal use only.
• You may not further distribute the material or use it for any profit-making activity or commercial gain.
• You may freely distribute the URL identifying this open access version.

If you believe that this document breaches copyright please contact us providing details and we will investigate your claim. Please direct all enquiries to puresupport@bib.sdu.dk
Global prevalence of cardiometabolic risk factors in the military population: a systematic review and meta-analysis

Fereshteh Baygi¹, Kimmo Herttua¹, Olaf Chresten Jensen¹, Shirin Djalalinia²,³, Armita Mahdavi Ghorabi², Hamid Asayesh⁴ and Mostafa Qorbani⁵,⁶*

Abstract

Background: Although there are numerous studies on the global prevalence of cardiometabolic risk factors (CMRFs) in military personnel, the pooled prevalence of CMRFs in this population remains unclear. We aimed to systematically review the literature on the estimation of the global prevalence of CMRFs in the military population.

Methods: We simultaneously searched PubMed and NLM Gateway (for MEDLINE), Institute of Scientific Information (ISI), and SCOPUS with using standard keywords. All papers published up to March 2018 were reviewed. Two independent reviewers assessed papers and extracted the data. Chi-square-based Q test was used to assess the heterogeneity of reported prevalence among studies. The overall prevalence of all CMRFs, including overweight, obesity, high low-density lipoprotein (LDL), high total cholesterol (TC), high triglyceride (TG), low high-density lipoprotein (HDL), hypertension (HTN) and high fasting blood sugar (FBS) was estimated by using the random effects meta-analysis. A total of 37 studies met the eligibility criteria and were included in the meta-analysis.

Results: According to the random effect meta-analysis, the global pooled prevalence (95% confidence interval) of MetS, high LDL, high TC, high TG, low HDL and high FBS were 21% (17–25), 32% (27–36), 34% (10–57), 24% (16–31), 28% (17–38) and 9% (5–12), respectively. Moreover, global pooled prevalence of overweight, generalized obesity, abdominal obesity and HTN were estimated to be 35% (31–39), 14% (13–16), 29% (20–39) and 26 (19–34), respectively.

Conclusions: The overall prevalence of some cardio-metabolic risk factors was estimated to be higher in military personnel. Therefore, the necessary actions should be taken to reduce risk of developing cardiovascular diseases.

Systematic review registration number in PROSPERO: CRD42018103345

Keywords: Metabolic syndrome, Obesity, Military personnel, Systematic review

* Correspondence: mqorbani1379@gmail.com

¹Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
²Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran

Full list of author information is available at the end of the article

© The Author(s). 2020 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Key messages

- The global prevalence of metabolic syndrome in the military population was estimated to be 21%.
- The overall prevalence of obesity in the military population was estimated to be 14%.
- There was considerable variation in the overall prevalence of cardio-metabolic risk factors among military personnel.
- The findings suggest that implementing interventions for the control of cardio-metabolic risk factors among military personnel seems necessary.

Background

The global prevalence of cardiovascular diseases and Metabolic syndrome (MetS) has increased over the last 20 years. The prevalence of Mets in men and women varies from 8% in India to 24% in USA, and from 7% in France to 43% in Iran, respectively [1]. Studies conducted on subjects over the past 20 years revealed that overweight, obesity, hypertension and hypercholesterolemia are the four leading causes of risk factors with the highest share of cardiovascular diseases [2, 3]. Mets is defined as a group of metabolic disorders that can lead to developing cardiovascular diseases, including central obesity, dyslipidemia, type II diabetes mellitus, certain cancers and all-cause mortality [1].

Sociodemographic factors (e.g. age, race and ethnicity), health behaviors (e.g. smoking, physical activity) and neuropsychiatric outcomes (depression, post-traumatic disorders) play a decisive role in the development of Mets [4–6]. Some of these factors are independently associated with military service [7, 8]. Military service personnel work in a unique environment characterized by high risk conditions and high levels of occupational stress [9]. It has been reported that military personnel with their heavy responsibilities are more likely to expose a greater risk of developing cardiovascular risk factors [10, 11].

Obesity and MetS have become the main health threat factors in military health system and their alarming incidence is a serious challenge for authorized organizations [12]. A study conducted on a population of military personnel in Iran reported that the prevalence of Mets, overweight and abdominal obesity in this group was estimated to be 11, 48 and 45%, respectively [13]. The prevalence of MetS in Chinese general population (16.5%) was much lower than that in the military population (35%) [14]. Obesity has been called as a serious national security threat by military institute in the United States [12]. A study on military personnel in Saudi Arabia revealed that the prevalence rates of overweight, obesity and current smoking were 41, 29 and 35% respectively [15].

There are numerous studies on the global prevalence of cardio metabolic risk factors (CMRFs) among military personnel. It is thus important to obtain an overall estimation on the prevalence of above-mentioned risk factors by synthesizing available studies. To date, the current study is the first meta-analysis conducted on this topic globally. Therefore, this study aimed to systematically review the literature on the estimation of the global pooled prevalence of CMRFs, including overweight, obesity, high low-density lipoprotein (LDL), high total cholesterol (TC), high triglyceride (TG), low high-density lipoprotein (HDL), hypertension (HTN) and high fasting blood sugar (FBS) in the military population.

Methods

Identification of relevant studies

This is a comprehensive systematic review of all available evidences on the prevalence of CMRFs in the military personnel. We developed a systematic review adhering to the PRISMA-P guidelines [16]. All the documents are based on the details of the study protocol. Registration number of current study in PROSPERO is CRD42018103345.

The main root of developing the search strategies is based on the two main components of “cardio metabolic risk factors” and “metabolic syndrome” in military personnel. To assess the optimal sensitivity of search for documents, we simultaneously searched PubMed and NLM Gateway (for MEDLINE), Institute of Scientific Information (ISI), and SCOPUS as the main international electronic data sources (Additional file 1).

Inclusion and exclusion criteria

All available observational studies conducted up to March 2018 on relevant subjects were included. There was no limitation for the target groups in terms of age and gender and language of published studies. In situation of more than one paper from the one study, the most complete data were considered. We also excluded papers with duplicate citation. Non-peer reviewed articles, conference proceedings and book chapters were considered for more access to relevant data.

Quality assessment and data extraction

After completing all three steps of data assessment for titles, abstracts and full texts, the full texts of each article selected were retrieved for more detailed analysis. The quality assessment and data extraction were followed a check list recorded citation, publication year, study year, place of study, type of study, population characteristics and methodological criteria (sample size, mean age, type of measure, results of measures and other information).

The whole process of searching for the data extraction and quality assessment was followed independently by two research experts. The kappa statistic for agreement of quality assessment was 0.94. Probable discrepancies between experts were resolved by discussion. Any disagreements were resolved by consensus by a third person. The quality
assessments were performed using a validated quality assessment checklist for prevalence studies [17]. This tool comprises 10 items which cover methodological quality of prevalence studies, including sampling method (2 questions), data collection (5 questions) and data analysis (3 questions). Each item can be answered either Yes/No or Unclear/Not applicable. The overall score for 10 studies was the total score ≥ 6, considered as acceptable in terms of quality.

Statistical analysis
The prevalence and 95% confidence intervals (CI) were used for presenting the results. Chi-square based on Q test and I square statistics were used to assess the heterogeneity of reported prevalence among the studies. P < 0.05 was regarded as statistically significant at. Due to severe heterogeneity among studies regarding reported prevalence, the pooled prevalence was estimated using a random-effect meta-analysis proposed by Der-Simionian and Laird. We undertook a meta-regression analysis to assess the effect of study covariates, including the mean age of participants, quality score, type of personnel, and years of publication of reported prevalence. Meta-analysis was performed for risk factors reported in more than four studies. If a study was reported separately the prevalence of CMRFs over a time period, the weighted prevalence for the entire period would calculate and then this value could be considered as an overall prevalence in the meta-analysis. The prevalence of MetS was extracted according to International Diabetes Federation (IDF), World Health Organization (WHO) and National Cholesterol Education Program-Adult Treatment Panel III (ATPIII) criteria. Since most studies had reported MetS by ATP-III criteria, only these studies were included in meta-analysis. To assess the effect of each study on overall prevalence, we performed sensitivity analyses by sequentially removing each study and rerunning the analysis. Statistical analysis was performed using STATA software, V.11.1 (StataCorp LP, College Station, Texas, USA).

Results
Study selection process
Figure 1 shows the flowchart of selection of studies for inclusion in the meta-analysis. In total, 2395 papers were identified after initial database search. Of these, 51 full-text papers were assessed for eligibility. In the next phase, 14 full text papers were excluded and finally 37 studies were eligible for inclusion in this meta-analysis: [9, 13, 15, 18–51].

Study characteristics
The selected articles were published between 2001 and 2017. Out of 37 studies, 8 contained the prevalence information for navy, 16 for military personnel, 5 for army, 5 for soldier’s /warship personnel and 3 for air force staff. Six studies had reported trends in the prevalence of CMRFs over a time period [22, 24, 26, 28, 30, 40], so that their weighted prevalence was considered as an overall prevalence. Among all publications, 15 studies were conducted in the American countries [9, 19, 20, 24–27, 29–32, 36, 38, 41, 51], 13 in Europe [22, 28, 33–35, 37, 39, 40, 44, 45, 48–50] and 9 in Asia [13, 15, 18, 21, 23, 42, 43, 46, 47].

Qualitative synthesis
Table 1 shows the general characteristics of the selected studies for the prevalence of MetS. According to ATP-III criteria, the highest and lowest prevalence rates of MetS were 39 and 9% in US mariners [31] and French military staffs [49], respectively. The prevalence range of MetS was 3.8–39% according to the different definition criteria.

Characteristics of the selected studies for the prevalence of overweight, generalized obesity and abdominal obesity are shown in Table 2. The highest prevalence of overweight (66%) and obesity (62%) was reported in Danish seafarers and the US submariners, respectively.

Table 3 shows the characteristics of the selected studies for the prevalence of abnormal lipid profile and other CMRFs. A study carried out by Smoley et al. [41] in the US found the highest prevalence (63%) of Pre-HTN. The highest and lowest prevalence rates of HTN were observed in the Brazilian military (55.8%) and the Iranian military (2.6%), respectively. The highest and lowest prevalence rates of high TG were 50.9% [9] and 5.0% [32] for American military personnel.

Meta-analysis
The results of meta-analysis are shown in Table 4. The total sample size of the studies included in meta-analysis was n = 12,153,936. The study population consisted of men and women aged 16–66 years. The eligible studies for estimation of the prevalence of MetS, overweight, obesity, high LDL, high TC and HTN were 10, 19, 22, 29, 6 and 13, respectively.

According to random effect meta-analysis, the rates of the global pooled prevalence (95% confidence interval) of MetS, high LDL, high TC, high TG, low HDL and high FBS were 21% (17–25), 32% (27–36), 34% (10–57), 24% (16–31), 28% (17–38) and 9% (5–12), respectively. Moreover, the rates of the global estimated pooled prevalence of overweight, generalized obesity, abdominal obesity and HTN were 35% (31–39), 14% (13–16), 29% (20–39) and 26% (19–34), respectively. Figure 2 shows a forest plot of eligible articles for the estimation of MetS prevalence.

Quality assessment
The quality assessment of the included studies was performed by using a critical appraisal tool for use in
systematic reviews addressing questions of prevalence. Accordingly, all studies had an acceptable quality score (Table 5).

**Meta-regression**
Results of meta-regression analysis demonstrated that effect of study characteristics, including the mean age of participant, quality score, type of personnel, and years of publication on reported prevalence was not statistically significant ($p > 0.05$).

**Sensitivity analysis**
Sensitivity analyses were performed to assess effect of each individual study on pooled prevalence rates. The results showed that no significant changes in in the pooled prevalence was found in the included studies ($p > 0.05$).

**Discussion**
To the best of our knowledge, this is the first meta-analysis to estimate the global pooled prevalence of CMRFs in the military population. In the current study, the overall prevalence of MetS was estimated to be 21% according to ATP-III criteria. The prevalence of Mets was among Iranian male military personnel 11% [13]. Corresponding prevalence was 35% in Chinese military population, while it was 17% in the Chinese general population [14]. The prevalence of Mets was 39% among Brazilian soldiers [9], whereas it was 15% among Royal Jordanian Air Force pilots [4]. In a study conducted by Baygi et al. on Iranian seafarers demonstrated that the prevalence of Mets was 15% which was lower than that (33%) for urban dwellers of Tehran [21]. The wide variation in these prevalence rates may be due to differences in study samples, age and gender.

In the present study, the estimated prevalence rates of overweight, obesity and abdominal obesity were 35, 14 and 29%, respectively. Bin Horaib et al. in their study of 5 military regions of Kingdom of Saudi Arabia among 10,500 active military personnel reported that the proportions of overweight, obesity and abdominal obesity were 41, 29 and 42%, respectively [15]. The prevalence rate of overweight was 52% in the U.S.
| Author, year, Country | Study type | Study year | Study population | Sampling | Sample size | Mean age/Range | Outcome | Definition/Criteria | Prevalence% (95% CI) |
|-----------------------|------------|------------|------------------|----------|-------------|----------------|---------|---------------------|----------------------|
| Payab, 2017 [13], Iran | C/S        | 2015       | Military         | Convenience | 2200        | 37.73          | Mets    | ATPIII              | 11.1 (9.8–12.5)      |
|                       |            |            |                  |           |             |                |         | ATPIII with waist> 90 cm | 26.6 (24.7–28.5)     |
|                       |            |            |                  |           |             |                |         | ATPIII> 95 cm       | 19.6 (17.9–21.3)     |
|                       |            |            |                  |           |             |                |         | MS-4                | 33.0 (26.6–39.7)     |
|                       |            |            |                  |           |             |                |         | ATPIII              | 11.9 (7.6–16.7)      |
|                       |            |            |                  |           |             |                |         | IDF                 | 7.1 (4.0–11.7)       |
|                       |            |            |                  |           |             |                |         | WHO                 | 3.8 (1.8–7.6)        |
| Sharma, 2016 [18], India | C/S        | Not provided | Military aircrew | Convenience | 210         | 20–50          | Mets    | MS-4                | 33.0 (26.6–39.7)     |
|                       |            |            |                  |           |             |                |         | ATPIII              | 11.9 (7.6–16.7)      |
|                       |            |            |                  |           |             |                |         | IDF                 | 7.1 (4.0–11.7)       |
|                       |            |            |                  |           |             |                |         | WHO                 | 3.8 (1.8–7.6)        |
| Gasier, 2016 [20], US | C          | Not provided | Navy (Submariners) | Convenience | 53          | 29             | Mets    | ATP-III             | 30.0 (18.7–44.5)     |
| Baygi, 2016 [21], Iran | C/S        | 2015       | Seafarers        | Convenience | 234         | 36             | Mets    | IDF                 | 14.9 (10.8–20.3)     |
| Rhee, 2015 [23], Korea | C/S        | 2014       | Military aviators | Convenience | 911         | 24–49          | Mets    | WHO                 | 9.8 (7.9–11.9)       |
| Herzog, 2015 [27], US | C/S        | 2012       | Military         | Convenience | 79,139      | 18–66          | Mets    | ATP-III             | 16.7 (15.7–16.2)     |
| Filho, 2014 [9], Brazil | C/S        | 2012       | Military         | Convenience | 452         | 45.8           | Mets    | ATP-III             | 38.5 (34.0–43.2)     |
| Scovill, 2012 [31], US | C/S        | Not provided | Mariner          | Convenience | 388         | 44             | Mets    | IDF                 | 39.0 (34.1–43.9)     |
| Hagnas, 2012 [33], Finland | Prospectiv | Not provided | Military         | Convenience | 1046        | 19.2           | Mets    | IDF                 | 6.1 (4.8–7.8)        |
| Costa, 2011 [36], Brazil | C/S        | 2008       | Navy             | Convenience | 1383        | 30.7           | Mets    | IDF                 | 17.6 (15.6–19.7)     |
| Khazale, 2007 [43], Jordan | C          | 2006       | Air force        | Convenience | 111         | 32.5           | Mets    | ATP-III             | 18 (11.6–26.7)       |
| Al-Qahtani, 2005 [47], Saudi Arabia | C/S | 2004 | Soldiers          | Convenience | 1079        | 20–60          | Mets    | ATP-III             | 20.8 (18.4–23.3)     |
| Author, year, Country | Study type | Study year | Study population | Sampling | Sample size | Mean age/ Range | Outcome | Definition/Criteria | Prevalence% (95% CI) |
|-----------------------|------------|------------|------------------|----------|-------------|-----------------|---------|---------------------|----------------------|
| Athyros, 2005 [48], Greece | C/S | 2003 | Military | Convenience | 300 | 37.0 | Mets | ATPIII | 9.4 (6.4–13.3) |
| Bauduceau, 2005 [49], France | C/S | 2003 | Military | Convenience | 2045 | 38.6 | Mets | ATPIII WHO | 9.0 (78–10.3) 14.0 (12.5–15.6) |

C/S: Cross-sectional; C: Cohort; Mets: Metabolic Syndrome; ATPIII: Adult Treatment Panel III; IDF: International Diabetes Federation; WHO: World Health Organization
| Author, year   | Country      | Study type | Study year | Study population | Sampling                  | Sample size | Mean age/Range | Outcome                      | Definition/Criteria              | Prevalence% (95% CI) |
|---------------|--------------|------------|------------|------------------|---------------------------|-------------|----------------|-------------------------------|--------------------------------|---------------------|
| Payab, 2017   | Iran         | C/S        | 2015       | Military         | Convenience               | 2200        | 37.73          | Overweight Obesity            | BMI ≥ 25 kg/m²          | 47.99 (45.4–49.7) |
|               |              |            |            |                  |                           |             |                | Abdominal Obesity             | BMI ≥ 30 kg/m²          | 15.05 (13.6–16.6) |
|               |              |            |            |                  |                           |             |                |                               | WC > 90 cm                 | 45.4 (43.3–47.5)  |
| Rush, 2016    | US           | C/S        | 2001       | Military         | Randomly                  | 77,047      | 42             | Overweight Obesity            | BMI ≥ 25 kg/m²          | 51.0 (50.6–51.3)  |
|               |              |            |            |                  |                           |             |                |                               | BMI ≥ 30 kg/m²          | 23.0 (22.7–23.3)  |
| Gasier, 2016  | US           | C          | Not provided| Navy (Submariners)| Convenience               | 53          | 29             | BF% Overweight Obesity        | BF ≥ 25%                  | 27.0 (15.7–40.6) |
|               |              |            |            |                  |                           |             |                |                               | BMI ≥ 25 kg/m²          | 6.0 (15.1–16.6)   |
|               |              |            |            |                  |                           |             |                |                               | BMI ≥ 30 kg/m²          | 62.0 (47.8–74.9) |
|               |              |            |            |                  |                           |             |                |                               | WC > 95 cm               | 38.5 (32.3–45.0) |
|               |              |            |            |                  |                           |             |                |                               | BMI > 25 kg/m²          | 51.1 (44.7–57.8) |
| Baygi, 2016   | Iran         | C/S        | 2015       | Sefarers         | Convenience               | 234         | 36             | Abdominal obesity             | WC > 90 cm               | 38.5 (32.3–45.0) |
|               |              |            |            |                  |                           |             |                | Excess weight                 |                             | 51.1 (44.7–57.8) |
| Fajfrova, 2016| Czech Republic| C/S        | 2016       | Armed Forces     | Convenience               | 69,962      | 40             | Overweight Obesity            | –                           | 51.5 (51.0–52.0) |
|               |              |            |            |                  |                           |             |                |                               |                             | 14.0 (13.7–14.2) |
| Rhee, 2015    | Korea        | C/S        | 2014       | Military aviators| Convenience               | 911         | 24–49          | Abdominal obesity             | WC > 90 cm               | 25.3 (22.5–28.2) |
| Reyes-Guzman, | US           | C/S        | 2008       | Military         | Randomly                  | 90,905      | 25–46          | Overweight Obesity            | BMI ≥ 25 kg/m²          | 47.8 (47.4–48.3) |
| 2015          |              |            |            |                  |                           |             |                |                               | BMI ≥ 30 kg/m²          | 9.6 (94–9.7)      |
| Lennon, 2015  | US           | C/S        | 2012       | Sailor           | Convenience               | 313,513     | 17–50          | Obesity                      | BMI > 25 kg/m²          | 13.6 (134–13.7)  |
| Hruby, 2015   | US           | C/S        | 2012       | Army             | Convenience               | 1,703,150   | 20–40          | Overweight Obesity            | BMI ≥ 25 kg/m²          | 33.6 (33.5–33.6) |
|               |              |            |            |                  |                           |             |                |                               | BMI ≥ 30 kg/m²          | 8.2 (81–8.2)      |
| BinHoraib, 2013| Saudi Arabia| C/S        | 2009       | Military         | Multi-stage stratified   | 10,229      | 34.1           | Overweight Obesity            | BMI ≤ 25 kg/m²          | 40.9 (399–40.7)  |
|               |              |            |            |                  | random                    |             |                | Abdominal obesity             | BMI ≥ 30 kg/m²          | 29.0 (281–29.9)  |
|               |              |            |            |                  |                           |             |                |                               | WC > 90 cm               | 42.4               |
| Author, year | Country | Study type | Study year | Study population | Sampling | Sample size | Mean age/Range | Outcome | Definition/Criteria | Prevalence% (95% CI) |
|-------------|---------|------------|------------|------------------|----------|-------------|---------------|---------|---------------------|----------------------|
| Binkowska-Bury, 2013 [28], Poland | C/S | 2010 | Military | Convenience | 37,916 | 19 | Overweight | 25 ≤ BMI < 29.9 kg/m² | 12.6 (12.2–12.9) |
| Marion, 2012 [29], US | C/S | 2008 | Navy | Convenience | 26,341 | 26.5 | Obesity | BMI ≥ 30 kg/m² | 15.9 (15.4–16.3) |
| Smith, 2012 [30], US | Not provided | 2005 | Military | Convenience | 28,602 | 17–40 | Excess weight | BMI ≥ 25 kg/m² | 58.9 (58.3–59.4) |
| Scovill, 2012 [31], US | C/S | Not provided | Mariner | Convenience | 388 | 44 | Obesity | BMI ≥ 30 kg/m² | 61.0 (56.0–65.9) |
| Pasiakos, 2012 [32], US | L | Not provided | Army | Convenience | 209 | 21 | Obesity | BMI ≥ 30 kg/m² | 14.0 (9.6–19.5) |
| Sundin, 2011 [34], UK | Not provided | 2006 | Armed Forces | Stratified Random Sampling | T2470 M:2148 F:311 | 28.3 | Overweight | 25 ≤ BMI < 30 kg/m² | 29.6 (27.7–31.4) |
| Hansen, 2011 [35], Denmark | Not provided | 2010 | Seafarers | Convenience | 2101 | 18–64 | Overweight | 25 ≤ BMI < 30 kg/m² | 66.0 (36.9–67.9) |
| Costa, 2011 [36], Brazil | C/S | 2008 | Navy | Convenience | 1383 | 30.7 | Abdominal obesity | WC ≥ 90 cm | 35.0 (32.5–37.6) |
| Mullie, 2010 [37], Belgium | C/S | 2007 | Army | Random | 974 | 44.0 | Obesity | BMI ≥ 30 kg/m² | 15.2 (13.3–17.9) |
| Wenzel, 2009 [38], Brazil | C/S | 2000 | Military Air force | Convenience | 380 | 19–49 | Overweight | BMI ≥ 30 kg/m² | 36.0 (31.3–41.1) |
| Saely, 2009 [39], Switzerland | C | 2004 | Army | Convenience | 56,784 | 19.7 | Overweight | BMI ≥ 30 kg/m² | 8.0 (5.5–11.2) |
| Mullie, 2008 [40], Belgium | C/S | 1992–2005 | Army | Convenience | 43,343 | 20–59 | Overweight | BMI ≥ 30 kg/m² | 34.9 (34.4–35.3) |
| Author, year | Country       | Study type | Study year | Study population | Sampling          | Sample size | Mean age/Range | Outcome | Definition/Criteria | Prevalence% (95% CI) |
|--------------|---------------|------------|------------|------------------|-------------------|-------------|----------------|---------|---------------------|----------------------|
| Napradit, 2007 [42], Thailand | C/S          | 2005      | Army       | Convenience      | 4276              | 41.5        |                | Overweight | 25 ≤ BMI < 30 kg/m² BMI ≥ 30 kg/m² | 27.1 (25.7–28.4) |
| Khazale, 2007 [43], Jordan | C            | 2006      | Air force  | Convenience      | 111               | 32.5        |                | Abdominal obesity | WC > 102 cm | 9.3 (46–163) |
| Hoeyer, 2005 [45], Denmark | Not provided | Not provided | Seafarers | Convenience      | 1257              | 16–66       |                | Overweight obesity | 25 ≤ BMI < 30 kg/m² BMI ≥ 30 kg/m² | 17.1 (15.1–19.2) |
| Al-Qahtani, 2005 [46], Saudi Arabia | C/S          | 2004      | Soldiers   | Convenience      | 1049              | 36.1        |                | Overweight | 25 ≤ BMI < 30 kg/m² BMI ≥ 30 kg/m² | 37.5 (34.5–40.4) |
| Al-Qahtani, 2005 [47], Saudi Arabia | C/S          | 2004      | Soldiers   | Convenience      | 1079              | 20–60       |                | Abdominal obesity | WC > 102 cm | 31.6 (287–34.4) |
| Athyros, 2005 [48], Greece | C/S          | 2003      | Military   | Convenience      | 300               | 37.0        |                | Abdominal obesity | WC > 102 cm | 13.7 (101–18.2) |
| Bauduceau, 2005 [49], France | C/S          | 2003      | Military   | Convenience      | 2045              | 38.6        |                | Abdominal obesity | WC > 102 cm | 17.0 (154–18.7) |
| Mazokopakis, 2004 [50], Greece | C/S          | 1998      | Warship personnel | Convenience | 274               | 24.4        |                | Overweight obesity | 25 ≤ BMI < 299 kg/m² BMI ≥ 30 kg/m² | 26.5 (21.2–31.9) |
| Lindquist, 2001 [51], US | C/S          | 1995–1998 | Military   | Convenience      | 33,457            | 20–35       |                | Overweight | BMI ≥ 25 kg/m² | 52.0 (51.4–52.5) |

C/S: Cross-sectional; L: Longitudinal; BF: Body Fat; BMI: Body Mass Index; ATPIII: Adult Treatment Panel III; IDF: International Diabetes Federation; WC: Waist circumferences; F: Female; M: Male; T: Total
| Author, year | Country | Study type | Study year | Study population | Sampling | Sample size | Mean age/Range | Outcome | Definition/Criteria | Prevalence% (95% CI) |
|--------------|---------|------------|------------|------------------|----------|-------------|----------------|---------|---------------------|----------------------|
| Payab, 2017 [13], Iran | C/S | 2015 | Military | Convenience | 2200 | 37.73 | HTN | SBP ≥130 mmHg or DBP ≥85 mmHg | 2.6 (1.98–3.37) |
| Gasier, 2016 [20], US | C | Not provided | Obese Navy (Submariners) | Convenience | 53 | 29 | Insulin resistant | HOMA> 2.73 | 30.0 (18.7–44.5) |
| Baygi, 2016 [21], Iran | C/S | 2015 | Sefarers | Convenience | 234 | 36 | High TG, Low HDL, High LDL, High TC, HTN | SBP ≥130 mmHg or DBP ≥85 mmHg | 26.5 (21.1–32.7) |
| Rhee, 2015 [23], Korea | C/S | 2014 | Military aviators | Convenience | 911 | 24–49 | High BP, Impaired glucose, High TG, Low HDL | SBP ≥130 mmHg or DBP ≥85 mmHg | 31.7 (27.7–35.9) |
| Filho, 2014 [9], Brazil | C/S | 2012 | Military | Convenience | 452 | 45.8 | HTN, High TG, Low HDL, High FBS | SBP ≥130 mmHg or DBP ≥85 mmHg | 55.8 (51.0–60.4) |
| Scovill, 2012 [31], US | C/S | Not provided | Mariner | Convenience | 388 | 44 | HTN, High TG, Low HDL, High FBS | SBP ≥130 mmHg or DBP ≥85 mmHg | 42.0 (37.1–47.1) |
| Pasiakos, 2012 [32], US | L | Not provided | Army | Convenience | 209 | 21 | High TC, High TG, Low HDL, High LDL, High FBS | TC ≥200 mg/dl | 8.0 (4.9–12.9) |
Table 3 Characteristic of the included studies on the prevalence of high level lipid profile, high glycemic indices and hypertension (Continued)

| Author, year | Country       | Study type | Study year | Study population | Sampling       | Sample size | Mean age/Range | Outcome | Definition/Criteria | Prevalence% (95% CI) |
|--------------|---------------|------------|------------|------------------|----------------|-------------|----------------|---------|---------------------|----------------------|
| Costa, 2011  | Brazil        | C/S        | 2008       | Navy             | Convenience    | 1383        | 30.7           | Low HDL | HDL < 40 mg/dl       | 43.0 (32.2–45.7)     |
|              |               |            |            |                  |                |             |                | HTN     | SBP ≥ 130 mmHg       | 8.0 (49–12.9)        |
|              |               |            |            |                  |                |             |                | High TG | DBP ≥ 85 mmHg        |                      |
|              |               |            |            |                  |                |             |                | High FBS| TG ≥ 150 mg/dl       |                      |
|              |               |            |            |                  |                |             |                |         | FBS ≥ 100 mg/dl      |                      |
| Mullie, 2010 | Belgium       | C/S        | 2007       | Army             | Random         | 974         | 44.0           | High TC | TC ≥ 190 mg/dl       | 65.0 (61.7–67.9)     |
| Wenzel, 2009 | Brazil        | C/S        | 2000       | Military Air force| Convenience    | 380         | 19–49          | HTN     | SBP ≥ 140 mmHg or     | 75.5 (68.1–82.9)     |
|              |               |            |            |                  |                |             |                | DBP ≥ 90 mmHg |                      |
| Saely, 2009  | Switzerland   | C          | 2004       | Army             | Convenience    | 56,784      | 19.7           | Pre-HTN| SBP ≥ 130 mmHg or     | 9.6 (3.3–15.9)       |
|              |               |            |            |                  |                |             |                | HTN     | DBP ≥ 90 mmHg         |                      |
|              |               |            |            |                  |                |             |                | High TC | TC ≥ 190 mg/dl       |                      |
| Smoley, 2008 | US            | C/S        | 2004       | Service members  | Convenience    | 15,391      | 27.8           | Pre HTN| 120 ≤ SBP < 139 mmHg | 69.3 (67.4–71.2)     |
|              |               |            |            |                  |                |             |                | HTN     | 80 ≤ DBP < 89 mmHg    |                      |
|              |               |            |            |                  |                |             |                |         | SBP ≥ 140 mmHg or     |                      |
|              |               |            |            |                  |                |             |                |         | DBP ≥ 90 mmHg         |                      |
| Napradit, 2005 | Thailand   | C/S        | 2005       | Army             | Convenience    | 4276        | 41.5           | HTN     | SBP ≥ 140 mmHg or     | 35.7 (32.8–38.7)     |
|              |               |            |            |                  |                |             |                | DBP ≥ 90 mmHg |                      |
| Khazale, 2006 | Jordan       | C          | 2006       | Air force        | Convenience    | 111         | 32.5           | High SBP| SBP > 130 mmHg        | 9.6 (46–16.3)        |
|              |               |            |            |                  |                |             |                | High DBP| DBP > 85 mmHg         |                      |
|              |               |            |            |                  |                |             |                | High TC | TC ≥ 150 mg/dl        |                      |
|              |               |            |            |                  |                |             |                | Low HDL | HDL < 40 mg/dl        |                      |
|              |               |            |            |                  |                |             |                | High FBS| FBS ≥ 100 mg/dl       |                      |
| Vaicatiene, 2006 | Lithuania     | C/S        | Not provided| Military        | Random         | 200         | 25–54          | High TC | TC ≥ 240 mg/dl       | 43.4 (36.5–50.6)     |
| Al-Qahtani, 2005 | Saudi Arabia | C/S        | 2004       | Soldiers         | Convenience    | 1079        | 20–60          | High TG| TG ≥ 150 mg/dl        | 32.2 (29–35.5)       |
|              |               |            |            |                  |                |             |                | High BP | SBP > 130 mmHg         |                      |
|              |               |            |            |                  |                |             |                |         | DBP > 85 mmHg         |                      |
| Author, year | Country | Study type | Study year | Study population | Sampling   | Sample size | Mean age/Range | Outcome | Definition/Criteria | Prevalence% (95% CI) |
|-------------|---------|------------|------------|------------------|------------|-------------|----------------|---------|------------------|----------------------|
| Athyros, 2005 [48] | Greece | C/S | 2003 | Military | Convenience | 300 | 37.0 | | High FBS | FBS > 100 mg/dl | 4.0 (2.2–7.1) |
| | | | | | | | | | High TG | TG ≥ 150 mg/dl | 25.0 (20.3–30.4) |
| | | | | | | | | Low HDL | HDL < 40 mg/dl | 9.4 (6.4–13.3) |
| | | | | | | | | Impaired Glucose | | 3.0 (1.5–5.8) |
| | | | | | | | | | | 1.0 (0.3–3.1) |

| Bauduceau, 2005 [49] | France | C/S | 2003 | Military | Convenience | 2045 | 38.6 | | HTN | SBP > 130 mmHg or DBP > 85 mmHg | 51.0 (48.7–53.1) |
| | | | | | | | | | High TG | TG ≥ 150 mg/dl | 17.0 (15.4–18.7) |
| | | | | | | | | | Low HDL | HDL < 40 mg/dl | 9.6 (8.4–10.9) |
| | | | | | | | | | High FBS | FBS > 100 mg/dl | 5.0 (4.1–6.0) |

C/S: Cross-sectional; C: Cohort; L: Longitudinal; ATPIII: Adult Treatment Panel III; IDF: International Diabetes Federation; WHO: World Health Organization; FBS, fasting blood sugar; TC, total cholesterol; TG, triglycerides; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; BP, blood pressure; SBP: Systolic blood pressure; DBP: Diastolic blood pressure; HTN: Hypertension; HOMA: Homeostasis model assessment
nearly [51], whereas it was 66% among Danish seafarers [35]. Using the dissimilar cutoff points and including females in some of the studies may explain differences between the prevalence figures. Because of the nature of their job, military individuals are generally assumed to be healthier. However, our findings showed an alarming trend in the global prevalence rates of overweight and obesity, which might be due to unhealthy diet practice among military personnel [13].

In the present study, the reported prevalence rates of Pre-HTN and HTN were 62 and 26%, respectively. A study conducted on male subjects in Saudi Arabia showed that the prevalence rate of HTN was 33%, indicating a progressive increase in body fat with age [52]. The results of a National survey conducted in the U.S. demonstrated that the estimated age-adjusted prevalence of HTN was 27% in men and 30% in women [53]. The corresponding estimate in general population of Korea was 33%, increased progressively with age from 14% among 14–24-year-olds to 71% among subjects aged 75 years or older [54]. The prevalence rate of HTN in people with regular and intensive physical activity was 13% lower than that in their non-active peers [55]. Our results showed that the prevalence rate of

| Variables            | No. of studies | Sample Size  | Prevalence (CI 95%) | Model | I²(%) | *P-value |
|----------------------|----------------|--------------|---------------------|-------|-------|---------|
| MetS                 | 10             | 4,912,369    | 21 (17–25)          | Random| 97    | < 0.001 |
| Overweight           | 19             | 2,867,867    | 35 (31–39)          | Random| 99    | < 0.001 |
| Obesity              | 22             | 3,211,654    | 14 (13–16)          | Random| 99    | < 0.001 |
| Abdominal obesity    | 8              | 17,581       | 29 (20–39)          | Random| 99    | < 0.001 |
| HTN                  | 13             | 816,414      | 26 (19–34)          | Random| 99    | < 0.001 |
| High TG              | 9              | 7001         | 24 (16–31)          | Random| 98    | < 0.001 |
| Low HDL              | 9              | 6033         | 28 (17–38)          | Random| 99    | < 0.001 |
| High LDL             | 29             | 157,730      | 32 (27–36)          | Random| 99    | < 0.001 |
| High TC              | 6              | 58,512       | 34 (10–57)          | Random| 99    | < 0.001 |
| High FBS             | 6              | 4436         | 9 (5–12)            | Random| 92    | < 0.001 |

*According to Q test (Chi-square test)
### Table 5: Quality assessment of the included studies

| Study                | Total score | Item 1 | Item 2 | Item 3 | Item 4 | Item 5 | Item 6 | Item 7 | Item 8 | Item 9 | Item 10 |
|----------------------|-------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|
| Payab, 2017          | 7           | N      | Y      | Y      | Y      | Y      | N      | Y      | Y      | Y      | Y       |
| Sharma, 2016         | 5           | N      | –      | Y      | Y      | N      | Y      | N      | Y      | Y      | Y       |
| Rush, 2016           | 6           | N      | Y      | Y      | Y      | N      | Y      | N      | Y      | Y      | Y       |
| Gasier, 2016         | 3           | N      | N      | N      | N      | N      | Y      | UC     | N      | Y      | Y       |
| Baygi, 2016          | 7           | N      | Y      | Y      | Y      | NA     | Y      | Y      | N      | Y      | Y       |
| Fajfrova, 2016       | 4           | N      | Y      | Y      | Y      | NA     | Y      | N      | N      | N      | N       |
| Rhe, 2015            | 8           | N      | Y      | Y      | Y      | NA     | Y      | Y      | Y      | Y      | Y       |
| Reyes-Guzman, 2015   | 7           | N      | Y      | Y      | Y      | N      | Y      | N      | Y      | Y      | Y       |
| Lennon, 2015         | 6           | N      | Y      | Y      | Y      | NA     | Y      | N      | N      | Y      | Y       |
| Hrub, 2015           | 7           | N      | Y      | Y      | Y      | NA     | Y      | UC     | Y      | Y      | Y       |
| Herzog, 2015         | 7           | N      | Y      | Y      | Y      | NA     | Y      | UC     | Y      | Y      | Y       |
| Filho, 2014          | 5           | N      | N      | Y      | Y      | N      | Y      | UC     | N      | Y      | Y       |
| Bin-Horaib, 2013     | 8           | N      | Y      | Y      | Y      | N      | Y      | Y      | Y      | Y      | Y       |
| Binkowska-Bury, 2013 | 4           | N      | Y      | Y      | N      | NA     | Y      | UC     | Y      | N      | N       |
| Marion, 2012         | 7           | N      | Y      | Y      | Y      | NA     | Y      | UC     | Y      | Y      | Y       |
| Smith, 2012          | 7           | N      | Y      | Y      | Y      | NA     | Y      | UC     | Y      | Y      | Y       |
| Scovill, 2012        | 3           | N      | Y      | Y      | N      | N      | Y      | UC     | N      | N      | N       |
| Pasiakos, 2012       | 5           | N      | N      | Y      | Y      | N      | Y      | UC     | Y      | N      | Y       |
| Hagnas, 2012         | 3           | N      | Y      | Y      | N      | N      | N      | Y      | N      | N      | N       |
| Sundin, 2011         | 7           | N      | Y      | Y      | Y      | N      | Y      | N      | Y      | Y      | Y       |
| Hansen, 2011         | 7           | N      | Y      | Y      | Y      | NA     | Y      | Y      | N      | Y      | Y       |
| Costa, 2011          | 6           | N      | N      | Y      | Y      | N      | Y      | N      | Y      | Y      | Y       |
| Mullie, 2010         | 6           | N      | N      | Y      | Y      | Y      | Y      | UC     | N      | Y      | Y       |
| Wenzel, 2009         | 7           | N      | N      | Y      | Y      | N      | Y      | Y      | Y      | Y      | Y       |
| Saely, 2009          | 5           | N      | Y      | Y      | N      | NA     | Y      | UC     | N      | Y      | Y       |
| Mullie, 2008         | 7           | N      | Y      | Y      | Y      | N      | Y      | N      | Y      | Y      | Y       |
| Smokey, 2008         | 8           | N      | Y      | Y      | Y      | NA     | Y      | Y      | Y      | Y      | Y       |
| Napradit, 2007       | 7           | N      | Y      | Y      | Y      | N      | Y      | N      | Y      | Y      | Y       |
| Khazale, 2007        | 5           | N      | Y      | N      | Y      | N      | Y      | N      | N      | Y      | Y       |
| Vaicaitiene, 2006    | 7           | N      | Y      | Y      | Y      | N      | Y      | Y      | N      | Y      | Y       |
| Hoeyer, 2005         | 5           | N      | N      | Y      | Y      | N      | Y      | N      | Y      | Y      | Y       |
| Al-Qahtani, 2005     | 6           | N      | N      | Y      | N      | Y      | Y      | N      | Y      | Y      | Y       |
| Al-Qahtani, 2005     | 6           | N      | N      | Y      | N      | Y      | Y      | N      | Y      | Y      | Y       |
| Athyros, 2005        | 6           | N      | Y      | Y      | Y      | N      | Y      | N      | N      | Y      | Y       |
| Bauduceau, 2005      | 5           | N      | Y      | Y      | N      | Y      | Y      | N      | N      | N      | N       |
| Mazokopakis, 2004    | 3           | N      | N      | Y      | Y      | N      | Y      | N      | N      | N      | N       |
| Lindquist, 2001      | 6           | N      | Y      | Y      | Y      | Y      | Y      | N      | N      | Y      | N       |

**Item 1:** Was the sample representative of the target population?

**Item 2:** Were study participants recruited in an appropriate way?

**Item 3:** Was the sample size adequate?

**Item 4:** Were subjects and setting described in detail?

**Item 5:** Was the data analysis conducted with sufficient coverage of the identified sample?

**Item 6:** Were objective, standard criteria used for measurement of the condition?

**Item 7:** Was the condition measured reliably?

**Item 8:** Was there appropriate statistical analysis?

**Item 9:** Are all important confounding factors/subgroups/different identified and accounted for?

**Item 10:** Were subpopulations identified using objective criteria?

Y: Yes, N: No, UC: Unclear, NA: Not applicable
HTN in military personnel was 26% that was lower than that in the general population. This is likely explained by a reverse association between intensive physical activity and HTN.

Based on our findings, the estimated prevalence rates of high TG, low HDL, high LDL and high TC were 24, 28, 32 and 34%, respectively. The results of a study conducted among 911 Korean military aviators demonstrated that the prevalence rates of elevated TG and reduced HDL were 16.6 and 7.9%, respectively [23]. The prevalence rates of mentioned figures in the general Korean population were significantly lower than those of their peers in Air Force [56]. A meta-analysis conducted by Tabatabaei et al. in Iranian general population showed that these figures for high TG, low HDL, high LDL and high TC were 41.6, 46, 35.5 and 43.9%, respectively [57]. The significant differences between general population and military personnel with respect to lipid profile could be explained by their strict standards for physical activity on a regular basis as which might have positive effects on their overall health status.

In the current study, the overall prevalence rates of high FBS and diabetes were 9 and 5%, respectively. The global prevalence rates of diabetes for all age groups has been estimated to be 2.8% in 2000 and 4.4% in 2030 [58]. The results of a study performed in Greece showed that the prevalence rate of diabetes was 10.6% in general population and 3.0% among military staff [48]. This is likely due to higher physical activity levels in the military personnel compared to their peers in the general population. Additionally, nutrition and physical activity of military individuals are strictly controlled for maintaining their healthy body weight which has a positive effect on managing FBS level and preventing Diabetes and other non-communicable diseases and their risk factors.

The limitations of this study are as follows, in most of the included studies, convenience sampling was used to estimate the prevalence which might be decreased generalizability of reported prevalence. Moreover, definition of some cardio-metabolic risk factors in the included primary studies was heterogeneous which the pooled prevalence might be limited by the different definitions.

Conclusions
The overall estimated prevalence of some cardio-metabolic risk factors was estimated to be higher in military personnel. Therefore, this study provides strong evidence to the military healthcare providers’ and policy makers for devising and implementing feasible interventions in order to control risk factors in this occupation. Moreover, further studies are needed to identify associated risk factors and reveal best predictors of high-risk subpopulation.
53. Hajjar I, Kotchen TA. Trends in prevalence, awareness, treatment, and control of hypertension in the United States, 1988–2000. JAMA. 2003;290:199–206.
54. Jo I, Ahn Y, Lee J, Shin KR, Lee HK, Shin C. Prevalence, awareness, treatment, control and risk factors of hypertension in Korea: the Ansan study. J Hypertens. 2001;19(9):1523–32.
55. Bassett DR Jr, Fitzhugh EC, Crespo CJ, King GA, McLaughlin JE. Physical activity and ethnic differences in hypertension prevalence in the United States. Prev Med. 2002;34(2):179–86.
56. Lim S, Shin H, Song JH, Kwak SH, Kang SM, Won Yoon J, et al. Increasing prevalence of metabolic syndrome in Korea: the Korean National Health and nutrition examination survey for 1998-2007. Diabetes Care. 2011;34(6):1323–8.
57. Tabatabaei-Malazy O, Qorbani M, Sarnavat T, Sharifi F, Larijani B, Fakhrazadeh H. Prevalence of dyslipidemia in Iran: A systematic review and meta-analysis study. Int J Prev Med. 2014;5(4):373–93.
58. Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes. Diabetes Care. 2004;27:1047–53.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:
- fast, convenient online submission
- thorough peer review by experienced researchers in your field
- rapid publication on acceptance
- support for research data, including large and complex data types
- gold Open Access which fosters wider collaboration and increased citations
- maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.
Learn more biomedicalcentral.com/submissions