STABLE CLT FOR DETERMINISTIC SYSTEMS

ZEMER KOSLOFF AND DALIBOR VOLNÝ

Abstract. We show that for every ergodic and aperiodic probability preserving transformation and \(\alpha \in (0, 2) \) there exists a function whose associated time series is in the standard domain of attraction of a non-degenerate symmetric \(\alpha \)-stable distribution.

1. Introduction

A random variable \(Y \) is stable if there exists a sequence \(Z_1, Z_2, \ldots \) of i.i.d. random variables and sequences \(a_n, b_n \) such that

\[
\frac{\sum_{k=1}^{n} Z_k - a_n}{b_n},
\]

converges in distribution to \(Y \), as \(n \to \infty \).

In other words, \(Y \) arises as a distributional limit of a central limit theorem, see \[3\]. Furthermore in this case, \(b_n \) is regularly varying of index \(\frac{1}{\alpha} \) which implies that \(b_n = n^{1/\alpha} L(n) \) where \(L(n) \) is a slowly varying function. The Normal and the Cauchy distribution are stable distributions and one can parametrize the class of stable distribution via their characteristic functions (Fourier transform). Namely a random variable is \(\alpha \)-stable, \(0 < \alpha \leq 2 \), if there exists \(\sigma > 0, \beta \in [-1, 1] \) and \(\mu \in \mathbb{R} \) such that for all \(\theta \in \mathbb{R} \).

\[
\mathbb{E}(\exp(i\theta Y)) = \begin{cases}
\exp \left(-\sigma^\alpha |\theta|^\alpha (1 - i\beta (\text{sign}(\theta) \tan(\frac{\pi \alpha}{2}) + i\mu \theta))\right), & \alpha \neq 1, \\
\exp \left(-\sigma^\alpha |\theta|^\alpha (1 + i\beta (\text{sign}(\theta) \ln(\theta) + i\mu \theta))\right), & \alpha = 1.
\end{cases}
\]

The constant \(\sigma > 0 \) is the dispersion parameter and \(\beta \) is the skewness parameter. In this case we will say that \(Y \) is a \(S_\alpha(\sigma, \beta, \mu) \) random variable. If \(\mu = \beta = 0 \) and \(\sigma > 0 \) then the random variable is symmetric \(\alpha \) stable and we will abbreviate \(Y \) is \(S_\alpha S(\sigma) \). See \[5\] for a detailed account of infinite variance (\(\alpha \neq 2 \)) stable processes and its appearance in various fields of mathematics and science.

A probability preserving dynamical system is a quadruplet \((\mathcal{X}, \mathcal{B}, m, T)\) where \((\mathcal{X}, \mathcal{B}, m)\) is a standard probability space and \(T : \)

2010 Mathematics Subject Classification. 37A40, 37A20, 37A35, 60F99, 60G10.

Key words and phrases. Stable laws, Central limit theorem, stationary processes.

The research of Z.K. was partially supported by ISF grant No. 1570/17.
\(\mathcal{X} \to \mathcal{X} \) is measurable and \(m \circ T^{-1} = m \). The system is \textbf{aperiodic} if the collection of all periodic points is a null set. It is \textbf{ergodic} if every \(T \)-invariant set is either a null or a co-null set.

A function \(f : \mathcal{X} \to \mathbb{R} \) generates a stationary process \((f \circ T^n)_{n=1}^\infty\) and \(S_n(f) = \sum_{k=0}^{n-1} f \circ T^k \) is its corresponding \textbf{sum process}. Given \(Y \) a \(\mathcal{S} \alpha \mathcal{S}(\sigma) \) random variable, a function \(f \) is a \(Y \)-\textbf{CLT function} if there exists \(b_n \to \infty \) and \(a_n \) such that \(\frac{S_n(f) - a_n}{b_n} \) converges in distribution to \(Y \). Since the distribution of \(Y \) is non-atomic, this is equivalent to: for all \(t \in \mathbb{R} \),

\[
\lim_{n \to \infty} m \left(\frac{S_n(f) - a_n}{b_n} \leq t \right) = \mathbb{P}(Y \leq t)
\]

If in addition \(a_n = 0 \) and \(b_n = n^{1/\alpha} \) then the time series generated by \(f \) is in the \textbf{standard domain of attraction} of \(Y \).

It seems that general methods of proof of the central limit theorem in the dynamical systems setting work only in the case of positive entropy systems. For example, if \((f \circ T^n)_{n=0}^\infty\) is a martingale difference sequence and \(T \) has zero entropy then \(f \equiv 0 \). Consequently martingale approximation can hardly be used. It was a natural open problem whether every aperiodic dynamical system admits a function which satisfies the CLT with a nondegenerate normal distribution as a limit.

In 1986, Burton and Denker \cite{Bur86} answered this question in the affirmative by showing that for every aperiodic dynamical system, even very deterministic ones such as irrational rotations, there exists a CLT function \(f \) for \(Y \), a standard normal distribution.

For the moment suppose that \(Y \) is a standard normal random variable. By \(L^2_0 \) we denote the space of \(L^2 \) functions with zero mean. One can notice that the functions found by Burton and Denker are from \(L^2_0 \). As remarked in \cite{Bur86}, because coboundaries are dense in \(L^2_0 \), the set of \(Y \)-CLT functions is dense in \(L^2_0 \). As shown in \cite{Kos94} for any sequence \(b_n \to \infty \), \(b_n = o(n) \), there exists a dense \(G_\delta \) subset of \(f \in L^2_0 \) such that every probability law is a weak limit of the distributions of \((1/b_n)S_n(f)\).

The set of \(Y \)-CLT functions is therefore meagre.

Burton and Denker asked whether there exists a function \(f \) which satisfies the Weak Invariance Principle (WIP), meaning that the partial sums process \(W_n : X \times [0,1], W_n(t) = \frac{1}{\sqrt{n}} \sum_{k=0}^{[nt]} f \circ T^k \), when viewed as a random process with values in the space of C\(à\)dl\(à\)g functions converges in distribution to a Brownian motion. This question was resolved in the affirmative by the second author in \cite{Vol89} and recently we showed in \cite{Kos99} that when \(T \) is ergodic and aperiodic there exists a function \(f : X \to \mathbb{Z} \) for which the lattice local central limit theorem holds.
Weiss and Thouvenot showed in [6] that for every free probability preserving system and random variable Y there exists a function f such that $\frac{1}{n}S_n(f)$ converges in distribution to Y. See also [1] where a refined result for positive valued processes is obtained with normalizing constants of the form $\frac{1}{c_n}$ with c_n a 1-regularly varying sequence.

In this work we show the existence of CLT functions for the whole range of symmetric α stable distributions with the scaling $b_n = n^{1/\alpha}$. This normalization corresponds to that for iid sequences, unlike the others mentioned above.

Theorem 1. Let $(\mathcal{X}, \mathcal{B}, m, T)$ be an ergodic, aperiodic probability preserving system, For every $\alpha \in (0, 2)$, $\sigma > 0$, there exists $f : \mathcal{X} \to \mathbb{R}$ such that $\frac{1}{n^{1/\alpha}}S_n(f)$ converges in distribution to a $S\alpha S(\sigma)$ random variable.

We remark that a considerable part of the statement is that the scaling is of the form $n^{1/\alpha}$. One reason for interest in this scaling is that if a stationary process satisfies a WIP with a non-degenerate $S\alpha S$ Lévy motion as a limit then b_n must be $1/\alpha$ regularly varying. Furthermore, by Fact 3 when $\alpha \in (0, 1)$, this scaling is the largest possible growth rate of the dispersion parameter for the sum process of a stationary $S\alpha S$ process.

1.1. **Organisation of the paper.** In Section 2 we introduce a carefully chosen triangular array and use a Proposition 2 from [4] to embed it in a given aperiodic, ergodic probability preserving system. We then construct, using the functions from the embedding, the function which satisfies the α-stable CLT.

Section 3 is concerned with the proof of the CLT for the function from Section 2. The last section is a short appendix containing some standard properties of $S\alpha S$ random variables which are used in Section 3.

1.1.1. **Notations.** In what follows we will write for f, g two positive valued functions (or sequences), $f(t) \sim g(t)$ if $\lim_{t \to \infty} \frac{f(t)}{g(t)} = 1$. We will denote by $f(t) \preceq g(t)$ if there exists $C > 0$ such that $f(t) \leq C g(t)$ for all large t and $f \asymp g$ if $f(t) \preceq g(t)$ and $g(t) \preceq f(t)$.

In addition when f and g are real valued functions with $2 \leq f(t) \leq g(t)$, we write $\sum_{k=f(t)}^{g(t)} a_k$ for the sum $\sum_{k=\lceil f(t) \rceil}^{\lceil g(t) \rceil} a_k$ where $\lceil x \rceil$ is the floor function of x.

Given a sequence $(Y_n)_{n=1}^{\infty}$ of random variables and a random variable Y, $Y_n \Rightarrow^d Y$ denotes Y_n converges in distribution to Y, $X =^d Z$.
means X and Y are equally distributed and $Y \sim^d S\alpha S(\sigma)$ means Y is distributed $S\alpha S(\sigma)$.

For a sequence of random variables $Y(1), Y(2), \ldots$ and $n \in \mathbb{N}$, we write $S_n(Y) = \sum_{j=1}^{n} Y(j)$.

2. Stable laws and a CLT for a target process

2.1. Target triangular array. The first step is to describe a triangular array, consisting of finite valued random variables, which we will be able to embed in subsection 2.2 in every aperiodic, ergodic, probability preserving system.

Let $d_k := \left\lfloor \frac{2^{2k}}{2^{2k} - \alpha} \right\rfloor$.

Consider the following triangular array of random variables:

(a) For each $k \in \mathbb{N}$, $\{X_k(i) : 0 \leq i \leq 2d_k\}$ are i.i.d, $S\alpha S\left(k^{-1/\alpha} \right)$ random variables.

(b) For each $k \in \mathbb{N}$, $\{X_k(i) : 0 \leq i \leq 2d_k\}$ is independent of $\{X_j(i) : 1 \leq j < k, 0 \leq i \leq 2d_j\}$.

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a standard probability space on which all these random variables are defined.

We now define a sequence of finite valued random variables as follows; First set

\[Y_k(j) := X_k(j)1_{\left[2^k \leq |X_k(j)| \leq 2^{k+2} \right]} \]

Now let $(t^{(k)}_l)_{l=0}^{L_k} \subset \left[2^k, 2^{k+2} \right]$, satisfying:

- $t^{(k)}_0 = 2^k, t^{(k)}_{L_k} = 2^{k+2}$. Here $L_k + 1 \in \mathbb{N}$ is the number of points in the partition.
- For all $0 \leq l < L_k$, $0 < t^{(k)}_{l+1} - t^{(k)}_l \leq \frac{1}{d_k}$.

Now for all $1 \leq j \leq 2d_k$, let

\[Z_k(j) = \begin{cases} \text{sign}(Y_k(j)) t^{(k)}_l, & \exists 0 \leq l < L_k, \ t^{(k)}_l \leq |Y_k(j)| < t^{(k)}_{l+1}, \\ 0, & |Y_k(j)| \notin \left[2^k, 2^{k+2} \right] \end{cases} \]

The following claim follows easily from the definition.

Fact 1. The sequence $(Z_k(j))_{k \in \mathbb{N}, 1 \leq j \leq 2d_k}$ is a triangular array of random variables so that for every $k \in \mathbb{N}$, $(Z_k(j))_{j=1}^{2d_k}$ are finite-valued, i.i.d. random variables.

We summarise several key properties of the sequences defined above which will be used in the sequel.

Lemma 2. For every $k \in \mathbb{N}$, $1 \leq j \leq 2d_k$:
(a) \(|Z_k(j) - Y_k(j)| \leq \frac{1}{dk}\).
(b) \(\mathbb{P}(Z_k(j) \neq 0) \leq \mathbb{P}(|X_k(j)| \geq 2^k) \leq C_\alpha 2^{-\alpha k}\). Here \(C_\alpha\) is a global constant independent of \(k\) and \(j\).

Proof. Part (a) and the first inequality in part (b) are immediate consequences of the definitions of \(Y_k\) and \(Z_k\) as functions of \(X_k\). By Proposition 3 we find that the array \(\{Z_k\}_{k \in \mathbb{N}, 1 \leq j \leq 2d_k}\) is i.i.d. distributed as the finite-valued random variable \(X\). Let \((f \circ T^j)_{j=0}^{n-1}\) be distributed as \((U_j)_{j=1}^n\) and \((f \circ T^j)_{j=0}^{n-1}\) is independent of \(\mathcal{P}\).

\[\mathbb{P}(|X_k(j)| \geq 2^k) \leq \frac{C_\alpha}{k} 2^{-\alpha k}.\]

\[\square\]

2.2. Embedding the array in the dynamical system. Let \((\mathcal{X}, \mathcal{B}, m)\) be a standard probability space. A finite partition of \(\mathcal{X}\) is measurable if all of its pieces (atoms) are Borel-measurable. Recall that a finite sequence of random variables \(X_1, \ldots, X_n : \mathcal{X} \to \mathbb{R}\), each taking finitely many of values, is independent of a finite partition \(\mathcal{P} = (P)_{P \in \mathcal{P}}\) if for all \(s \in \mathbb{R}^n\) and \(P \in \mathcal{P}\),

\[m\left(\left(X_j\right)_{j=1}^n = s | P\right) = m\left(\left(X_j\right)_{j=1}^n = s\right).\]

We will embed the triangular array using the following key proposition.

Proposition 3. [4, Proposition 2] Let \((\mathcal{X}, \mathcal{B}, m, T)\) be an aperiodic, ergodic, probability preserving transformation and \(\mathcal{P}\) a finite-measurable partition of \(\mathcal{X}\). For every finite set \(A\) and \(U_1, U_2, \ldots, U_n\) an i.i.d. sequence of \(A\) valued random variables, there exists \(f : \mathcal{X} \to \mathcal{X}\) such that \((f \circ T^j)_{j=0}^{n-1}\) is distributed as \((U_j)_{j=1}^n\) and \((f \circ T^j)_{j=0}^{n-1}\) is independent of \(\mathcal{P}\).

An easy corollary of this proposition and Fact 4 is the following.

Corollary 4. Let \((\mathcal{X}, \mathcal{B}, m, T)\) be an aperiodic, ergodic, probability preserving transformation and \((Z_k(j))_{k \in \mathbb{N}, 1 \leq j \leq 2d_k}\) be the triangular array from subsection 2.1. There exist functions \(f_k : \mathcal{X} \to \mathbb{R}\) such that \((f_k \circ T^{j-1})_{k \in \mathbb{N}, 1 \leq j \leq 2d_k}\) is distributed as \((Z_k(j))_{k \in \mathbb{N}, 1 \leq j \leq 2d_k}\).

Proof. Starting with \(\mathcal{P} = \{\mathcal{X}\}\), the trivial partition, and applying Proposition 3 we find \(f_1 : \mathcal{X} \to \mathbb{R}\) such that \(f_1, f_1 \circ T, \ldots, f \circ T^{2d-1}\) are i.i.d. distributed as the finite-valued random variable \(Z(1)\).

In the inductive step we are given \(f_k : \mathcal{X} \to \mathbb{R}, 1 \leq k \leq m\), such that the array \(\{f_k \circ T^{j-1} : 1 \leq k \leq m, 1 \leq j \leq 2d_k\}\) is distributed as \(\{Z_k(j) : 1 \leq k \leq m, 1 \leq j \leq 2d_k\}\).

Let \(\mathcal{P}_m\) be the finite partition of \(\mathcal{X}\) according to the values of the (finite valued) random vector \(V := (f_k \circ T^{j-1} : 1 \leq k \leq m, 1 \leq j \leq 2d_k)\).
Apply Proposition 3 and obtain a function $f_{m+1} : \mathcal{X} \to \mathbb{R}$ such that \(\{f_{m+1} \circ T^{j-1} : 1 \leq j \leq 2d_{m+1}\} \) is an i.i.d. sequence distributed as \(\{Z_{m+1}(j) : 1 \leq j \leq 2d_{m+1}\} \) and independent of \(\mathcal{P}_m \). Since being independent of \(\mathcal{P}_m \) is equivalent to being independent of \(\mathcal{V} \), we see that the array \(\{f_k \circ T^{j-1} : 1 \leq k \leq m+1, 1 \leq j \leq 2d_k\} \) is distributed as \(\{Z_k(j) : 1 \leq k \leq m+1, 1 \leq j \leq 2d_k\} \). □

2.3. Definition of the function. Let \((\mathcal{X}, \mathcal{B}, m, T)\) be an aperiodic, ergodic, probability preserving system and \((f_k)_{k=1}^{\infty}\) the functions from Corollary 4.

Lemma 5. For \(m \) almost every \(\omega \in \mathcal{X} \), there exists \(K(\omega) \in \mathbb{N} \) such that for all \(k > K(\omega) \), \(f_k(\omega) - f_k \circ T^{d_k}(\omega) = 0 \).

Proof. By the definition of the functions, we have for all \(k \in \mathbb{N} \),
\[
m(f_k \neq 0) = P(Z_k(0) \neq 0).
\]
By Lemma 2(b), there exists \(C_\alpha \) such that for all \(k \),
\[
P(Z_k(0) \neq 0) \leq \frac{C_\alpha}{k^{2\alpha}}.
\]
Consequently, as \(T \) is \(m \) preserving,
\[
\sum_{k=1}^{\infty} m(f_k - f_k \circ T^{d_k} \neq 0) \leq 2 \sum_{k=1}^{\infty} m(f_k \neq 0) \leq 2 \sum_{k=1}^{\infty} P(Z_k(0) \neq 0) < \infty.
\]
The conclusion follows from the Borel-Cantelli lemma. □

Set
\[
f := \sum_{k=1}^{\infty} (f_k - f_k \circ T^{d_k}).
\]
This function is well defined as it is almost surely a sum of finitely many values. The following theorem implies Theorem 4. In what follows, \(\log(x) \) denotes the logarithm of \(x \) in base 2 and \(\ln(x) \) is the natural logarithm of \(x \).

Theorem 1.b. \(\frac{S_n(f)}{n^{\frac{1}{\alpha}}} \Rightarrow^d S_{\alpha S}(\sigma) \) with \(\sigma^\alpha = 2 \ln \left(\frac{2}{2-\alpha}\right) \).
3. Proof of Theorem 1.b

For a measurable function \(g : \mathcal{X} \to \mathbb{R} \) and \(k \in \mathbb{N} \), we write \(U^k g = g \circ T^k \). The proof of Theorem 1.b begins by writing

\[
S_n(f) = S_n^{(S)}(f) + S_n^{(M)}(f) + S_n^{(L)}(f)
\]

where

\[
S_n^{(M)}(f) := \sum_{k=(\frac{1}{\alpha} - \frac{1}{2}) \log(n)+1}^{\frac{1}{\alpha} \log(n)} (S_n(f_k) - U^d_k S_n(f_k))
\]

\[
S_n^{(S)}(f) := \sum_{k=1}^{(\frac{1}{\alpha} - \frac{1}{2}) \log(n)} (S_n(f_k) - U^d_k S_n(f_k))
\]

\[
S_n^{(L)}(f) := \sum_{k=\frac{1}{\alpha} \log(n)+1}^{\infty} (S_n(f_k) - U^d_k S_n(f_k))
\]

Theorem 1.b follows from the following proposition, (1) and the converging together lemma (also known as Slutsky’s Theorem).

Proposition 6.

(a) \(\frac{1}{n^{1/\alpha}} S_n^{(S)}(f) \to 0 \) in probability.

(b) \(\frac{1}{n^{1/\alpha}} S_n^{(M)}(f) \Rightarrow d S_{\alpha} S \left(\sqrt{2 \log \left(\frac{2}{2-\alpha} \right)} \right) \).

(c) \(\lim_{n \to \infty} m \left(S_n^{(L)}(f) \neq 0 \right) = 0 \).

We first prove the simplest part.

Proof of Proposition 6(c). By Corollary 4 and Lemma 2(b) for every \(k > \frac{1}{\alpha} \log(n) \),

\[
m(f_k \neq 0) = \mathbb{P} (Z_k(1) \neq 0) \leq C_{\alpha} \frac{2^{-\alpha k}}{k}.
\]

We have for all \(k > \frac{1}{\alpha} \log(n) \),

\[
m \left(S_n(f_k) - U^d_k S_n(f_k) \neq 0 \right) \leq m \left(\exists j \in [0, n] \cup [d_k, d_k + n], f_k \circ T^j \neq 0 \right)
\]

\[
\leq \sum_{j=0}^{n-1} \left[m \left(f_k \circ T^j \neq 0 \right) + m \left(f_k \circ T^{d_k+j} \neq 0 \right) \right]
\]

\[
\leq 2n \cdot m(f_k \neq 0) \leq 2n C_{\alpha} \frac{2^{-\alpha k}}{k}.
\]
Here the third inequality is the union bound. A similar argument using the union bound gives
\[
\Pr \left(S_n^{(L)}(f) \neq 0 \right) \leq \sum_{k=\frac{1}{\alpha} \log(n)+1}^{\infty} m \left(S_n(f_k) - U^{dk} S_n(f_k) \neq 0 \right)
\]
\[
\leq 2nC_{\alpha} \sum_{k=\frac{1}{\alpha} \log(n)+1}^{\infty} \frac{2^{-k\alpha}}{k}
\]
\[
\leq \frac{2nC_{\alpha}}{\alpha \log(n)} \sum_{k=\frac{1}{\alpha} \log(n)+1}^{\infty} 2^{-k\alpha} \lesssim \frac{1}{\log(n)} \to 0 \text{ as } n \to \infty.
\]

3.1. Proving Proposition 6(b). For \(W \in \{X, Y, Z\} \), write
\[
S_n^{(M)}(W) = \sum_{k=(\frac{1}{\alpha} - \frac{1}{2}) \log(n)+1}^{\frac{1}{\alpha} \log(n)} \sum_{j=1}^{n} (W_k(j) - W_k(j + d_k))
\]
Proposition 6(b) follows from the following two Lemmas.

Lemma 7. For all large \(n \),
\[
S_n^{(M)}(Z) n^{1/\alpha} \rightarrow d S_{\alpha S} \left(\sqrt{2 \ln \left(\frac{2}{2 - \alpha} \right)} \right)
\]

Proof of Proposition 6(b). By Lemma 7, it suffices to show convergence of \(S_n^{(M)}(Z) n^{1/\alpha} \). To that end, write
\[
\frac{S_n^{(M)}(Z)}{n^{1/\alpha}} = \frac{S_n^{(M)}(Z) - S_n^{(M)}(Y)}{n^{1/\alpha}} + \frac{S_n^{(M)}(Y)}{n^{1/\alpha}}.
\]
It follows from Lemma 8 and the convergence together lemma that
\[
\frac{S_n^{(M)}(Z)}{n^{1/\alpha}} \rightarrow d S_{\alpha S} \left(\sqrt{2 \ln \left(\frac{2}{2 - \alpha} \right)} \right).
\]

Proof of Lemma 7 and Lemma 8(a). Note that if \(k \geq (\frac{1}{\alpha} - \frac{1}{2}) \log(n) \) then \(d_k = \left[\frac{2^{2k - \alpha}}{2} \right] \geq n \). Consequently \(n + d_k \leq 2d_k \) and
\[
S_n^{(M)}(f) = d G_n \left(f_k \circ T^{j-1} : k \in \mathbb{N}, 1 \leq j \leq 2d_k \right)
\]
where
\[
G_n(x_{k,j} : k \in \mathbb{N}, 1 \leq j \leq 2d_k) = \sum_{k=(\frac{1}{\alpha} - \frac{1}{2}) \log(n) + 1}^{\frac{1}{\alpha} \log(n)} \sum_{j=1}^{n} (x_{k,j} - x_{k,j+d_k})
\]

Since \(G_n\) is continuous and \((f_k \circ T^j)\) is distributed as \((Z_k(j))\), we see that for all large \(n\),
\[
S_n^{(M)}(f) = G_n(Z_k(j) : k \in \mathbb{N}, 1 \leq j \leq 2d_k) = S_n^{(M)}(Z),
\]
concluding the proof of Lemma 7.

Now by Lemma 2(a), if \(k \geq (\frac{1}{\alpha} - \frac{1}{2}) \log(n)\), then
\[
\sum_{j=1}^{n} (|Z_k(j) - Y_k(j)| + |Z_k(j + d_k) - Y_k(j + d_k)|) \leq \frac{n}{d_k} \leq 1.
\]

Lemma 8(a) readily follows from this as for all large \(n\)
\[
|S_n^{(M)}(Z) - S_n^{(M)}(Y)| \leq \frac{1}{\alpha} \log(n).
\]

The proof of Lemma 8(b) is more involved and is done in two stages. The first stage, which is Lemma 9, is to interchange the \(Y_k\) random variables with \(X_k\)’s. The second, Lemma 10, is to show the distributional convergence of \(n^{-1/\alpha} S_n^{(M)}(X)\).

\section*{Lemma 9.} \(\frac{1}{n^{1/\alpha}} \left(S_n^{(M)}(Y) - S_n^{(M)}(X) \right) \) converges to 0 in probability.

\section*{Lemma 10.} \(\frac{1}{n^{1/\alpha}} S_n^{(M)}(X) \Rightarrow S_{\alpha S} \left(\sqrt{2 \ln \left(\frac{2}{1-\alpha} \right)} \right)\).

\textit{Proof of Lemma 10.} For every \(k > (\frac{1}{\alpha} - \frac{1}{2}) \log(n)\), \(d_k > n\) and \(d_k + n \leq 2d_k\).

Therefore, for all \(n\) and \(k > (\frac{1}{\alpha} - \frac{1}{2}) \log(n)\), \((X_k(j) - X_k(j + d_k))_{k \in \mathbb{N}, 1 \leq j \leq n}\) is a sequence of i.i.d. \(S_{\alpha S} \left(\sqrt{\frac{2}{k}} \right)\) random variables. It follows that
\[
\sum_{j=1}^{n} (X_k(j) - X_k(j + d_k)) \sim S_{\alpha S} \left(\sqrt{\frac{2n}{k}} \right) \left(\frac{2}{1-\alpha} \right)^{1/\alpha}.
\]

Secondly, since \(\{X_k(j) : k \in \mathbb{N}, 1 \leq j \leq 2d_k\}\) are independent, we see that
\[
\left\{ \sum_{j=1}^{n} (X_k(j) - X_k(j + d_k)) : k > (\frac{1}{\alpha} - \frac{1}{2}) \log(n) \right\}
\]
are independent $S\alpha S$ random variables. As a result, $\frac{1}{n^{1/\alpha}}S^{(M)}_{n}(X)$ is $S\alpha S(\sigma_{n})$ distributed with

$$\sigma_{n}^{\alpha} = \frac{1}{n} \sum_{k=\left(\frac{1}{\alpha} - \frac{1}{2}\right) \log(n) + 1}^{\log(n)} \frac{2n}{k} \sim 2 \ln \left(\frac{2}{2 - \alpha} \right), \text{ as } n \to \infty.$$

We conclude from this and Fact 2 that

$$\frac{1}{n^{1/\alpha}}S^{(M)}_{n}(X) \Rightarrow \mathcal{D} S\alpha S \left(\alpha \sqrt{2 \ln \left(\frac{2}{2 - \alpha} \right)} \right).$$

□

The rest of this subsection is concerned with the proof of Lemma 9. Observe that

$$S^{(M)}_{n}(X) - S^{(M)}_{n}(Y) = V^{(M)}_{n} + V^{(M)}_{n}$$

where

$$V^{(M)}_{n} = \frac{1}{n} \sum_{k=\left(\frac{1}{\alpha} - \frac{1}{2}\right) \log(n) + 1}^{\log(n)} \sum_{j=1}^{n} \left(X_{k}(j)1[|X_{k}(j)| \geq 2^{k^{2}}] - X_{k}(j + d_{k})1[|X_{k}(j + d_{k})| \geq 2^{k^{2}}] \right)$$

$$V^{(M)}_{n} = \frac{1}{n} \sum_{k=\left(\frac{1}{\alpha} - \frac{1}{2}\right) \log(n) + 1}^{\log(n)} \sum_{j=1}^{n} \left(X_{k}(j)1[|X_{k}(j)| \leq 2^{k}] - X_{k}(j + d_{k})1[|X_{k}(j + d_{k})| \leq 2^{k}] \right).$$

Lemma 11. $\frac{1}{n^{1/\alpha}}V^{(M)}_{n} \to 0$ in probability.

Proof. We write for all $k, j \in \mathbb{N}$, $\hat{X}_{k}(j) = X_{k}1[|X_{k}(j)| \geq 2^{k^{2}}]$ so that for every $n \in \mathbb{N}$,

$$V^{(M)}_{n} = \frac{1}{n} \sum_{k=\left(\frac{1}{\alpha} - \frac{1}{2}\right) \log(n) + 1}^{\log(n)} \sum_{j=1}^{n} \left(\hat{X}_{k}(j) - \hat{X}_{k}(j + d_{k}) \right).$$

For $k \in \mathbb{N}$, let A_{k} be the event

$$\left\{ \exists j \in [1, 2d_{k}], \hat{X}_{k}(j) \neq 0 \right\}.$$

Similarly to the proof of Proposition 3(c), there exists $C_{\alpha} > 0$ such that for all but finitely many $k \in \mathbb{N}$,

$$\mathbb{P}(A_{k}) \leq 2d_{k}\mathbb{P} \left(|X_{k}(1)| \geq 2^{k^{2}} \right) \leq 2C_{\alpha}d_{k}2^{-\alpha k^{2}}.$$
The right hand side being summable, the Borel-Cantelli lemma implies that \(P \)- almost surely, \(A_k \) happens only for finitely many \(k \)'s. We now deduce the claim from this fact.

For all \(\left(\frac{1}{\alpha} - \frac{1}{2} \right) \log(n) \leq k \leq \frac{1}{\alpha} \log(n) \), \(n \leq d_k \) and

\[
\left[\sum_{j=1}^{n} \left(\tilde{X}_k(j) - \tilde{X}_k(j + d_k) \right) \neq 0 \right] \subset A_k.
\]

Since \(\log(n) \to \infty \) and almost surely \(A_k \) happens finitely often we have \(\lim_{n \to \infty} \frac{1}{n^{1/\alpha}} V_M^{(M)} = 0 \) almost surely.

\(\square \)

Lemma 12. \(\frac{1}{n^{1/\alpha}} V_M^{(M)} \to 0 \) in probability.

For the proof of Lemma 12 we need the following variance bound.

Proof of Lemma 12. Write \(\tilde{X}_k(j) = X_k(j) 1_{|X_k(j)| \leq 2^k} \). Fix \(k > \left(\frac{1}{\alpha} - \frac{1}{2} \right) \log(n) \) so that \(n \leq d_k \). The sequence \(\{ \tilde{X}_k(j) : 1 \leq j \leq n + d_k \} \) is an i.i.d sequence of symmetric random variables. We have,

\[
\mathbb{E} \left(\left(\sum_{j=1}^{n} \left(\tilde{X}_k(j) - \tilde{X}_k(j + d_k) \right) \right)^2 \right) = \sum_{j=1}^{n} \left(\text{Var} \left(\tilde{X}_k(j) \right) + \text{Var} \left(\tilde{X}_k(j + d_k) \right) \right)
= 2n \text{Var} \left(\tilde{X}_k(1) \right).
\]

Since \(X_k(1) \) is \(S_{\alpha}S \left(k^{-1/\alpha} \right) \) distributed, it follows from Lemma 17 with \(K = 2^k \) that,

\[
\mathbb{E} \left(\left(\sum_{j=1}^{n} \left(\tilde{X}_k(j) - \tilde{X}_k(j + d_k) \right) \right)^2 \right) \leq 2Cn \frac{2^{(2-\alpha)k}}{k}.
\]

Now by properties (a) and (b) of the array \((X_k(j))_{k,j \in \mathbb{N}} \),

\[
\left\{ \sum_{j=1}^{n} \left(\tilde{X}_k(j) - \tilde{X}_k(j + d_k) \right) : \left(\frac{1}{\alpha} - \frac{1}{2} \right) \log(n) < k \leq \frac{1}{\alpha} \log(n) \right\}
\]
are independent, zero mean random variables, therefore

\[
\mathbb{E} \left(\left(n^{-1/\alpha} V_n(M) \right)^2 \right) = n^{-2/\alpha} \sum_{k=\left(\frac{1}{n} - \frac{1}{2}\right) \log(n)+1}^{\frac{1}{2} \log(n)} \mathbb{E} \left(\left(\sum_{j=1}^{n} (\tilde{X}_k(j) - \tilde{X}_k(j + d_k)) \right)^2 \right)
\]

\[
\leq 2C n^{-2/\alpha} \sum_{k=\left(\frac{1}{n} - \frac{1}{2}\right) \log(n)+1}^{\frac{1}{2} \log(n)} \frac{n2(2-\alpha)k}{k}
\]

\[
\lesssim n^{-\frac{2}{\alpha}+1} \frac{2(2-\alpha) \log(n)}{\log(n)} = \frac{1}{\log(n)} \to 0.
\]

A routine application of Markov’s inequality shows that \(n^{-1/\alpha} V_n(M) \) tends to 0 in probability.

\[\square\]

Proof of Lemma 6. The result readily follows from Lemmas 11 and 12 and equation (2).

\[\square\]

We have now concluded the proof of Proposition 6.(b).

3.2. Proving Proposition 6.(a). Write

\[
G_n(f) = \sum_{k=1}^{(\frac{1}{\alpha} - \frac{1}{2}) \log(n)} S_{d_k}(f_k)
\]

Proposition 13.

(a) For all \(n \in \mathbb{N} \), \(S_n^{(S)}(f) = G_n(f) - U^n (G_n(f)) \).

(b) \(\frac{1}{n^{1/\alpha}} G_n(f) \to 0 \) in probability.

Proof of Proposition 13.(a). For all \(k \leq (\frac{1}{\alpha} - \frac{1}{2}) \log(n), d_k \leq n \). Consequently,

\[
S_n(f_k) - U^{d_k} S_n(f_k) = S_{d_k}(f_k) - U^n S_{d_k}(f_k).
\]

Identity (a) follows from summing these identities over all \(1 \leq k \leq (\frac{1}{\alpha} - \frac{1}{2}) \log(n) \).

\[\square\]

The proof of part(b) in 13 is longer and goes along identical lines as in Subsection 3.1. Recall the notation

\[
\tilde{X}_k(j) = X_k(j)1_{[|X_k(j)| > 2^k]} \text{ and } \tilde{X}_k(j) = X_k(j)1_{[|X_k(j)| < 2^k]}.
\]
For \(W \in \{ X, \tilde{X}, \hat{X}, Y, Z \} \), write
\[
G_n(W) = \frac{1}{n^{1/\alpha}} \sum_{k=1}^{d_k} \sum_{j=1}^{(\frac{1}{\alpha} - \frac{1}{2}) \log(n)} W_k(j)
\]

Proposition 13(b) follows directly from the following lemma.

Lemma 14.

(a) For every \(n \in \mathbb{N} \), \(G_n(f) = d \cdot G_n(Z) \).

(b) \(\frac{G_n(Z) - G_n(Y)}{n^{1/\alpha}} \xrightarrow{n \to \infty} 0 \) pointwise.

(c) \(\frac{G_n(Y) - G_n(X)}{n^{1/\alpha}} \xrightarrow{n \to \infty} 0 \) in probability.

(d) \(\frac{G_n(X)}{n^{1/\alpha}} \xrightarrow{n \to \infty} 0 \) in probability.

Proof. Fix \(n \in \mathbb{N} \) and note that \(G_n(f) \) is a continuous function of \(F_n := (f_k \circ T^j : 1 \leq k \leq (\frac{1}{\alpha} - \frac{1}{2}) \log(n), 0 \leq j < d_k) \). Since \(F_n \) and \((Z_k(j) : 1 \leq k \leq (\frac{1}{\alpha} - \frac{1}{2}) \log(n), 1 \leq j \leq d_k)\) are equally distributed we see that part (a) holds.

Similarly as in the proof of Lemma 8(a), for all \(n \in \mathbb{N} \),
\[
|G_n(Z) - G_n(Y)| \leq \sum_{k=1}^{(\frac{1}{\alpha} - \frac{1}{2}) \log(n)} \sum_{j=1}^{d_k} |Z_k(j) - Y_k(j)| \leq \sum_{k=1}^{(\frac{1}{\alpha} - \frac{1}{2}) \log(n)} \sum_{j=1}^{d_k} \frac{1}{d_k} = o \left(n^{1/\alpha}\right),
\]

concluding the proof of part (b).

Now for all \(n \in \mathbb{N} \),
\[
G_n(X) - G_n(Y) = G_n(\hat{X}) - G_n(\tilde{X}).
\]

Part (c) follows from Lemma 15.

As in the proof of Lemma 11, \(\sum_{j=1}^{d_k} X_k(j) \sim d \cdot S \alpha S \left(\sqrt{\frac{d_k}{k}} \right) \) as sum of \(d_k \) i.i.d. \(S \alpha S \left(\sqrt{\frac{1}{k}} \right) \) random variables. By the triangular array property, \(\{ \sum_{j=1}^{d_k} X_k(j) : k \in \mathbb{N} \} \) are independent and consequently,
\[
G_n(X) = \frac{1}{n^{1/\alpha}} \sum_{k=1}^{d_k} \left(\sum_{j=1}^{d_k} X_k(j) \right) \sim d \cdot S \alpha S \left(\sigma(n) \right),
\]
where
\[
\sigma(n)^\alpha = \frac{1}{n} \sum_{k=1}^{d_k} \frac{d_k}{k} \lesssim \frac{1}{\log(n)} \rightarrow 0.
\]

Part (d) now follows from Fact 2. \qed

Lemma 15.

- Almost surely, \(\lim_{n \to \infty} G_n(\hat{X}) = \sum_{k=1}^{\infty} \sum_{j=1}^{d_k} \hat{X}_k(j) \in \mathbb{R}\).
- \(n^{-1/\alpha} G_n(\bar{X}) \rightarrow 0\) in probability.

Proof. The proof of the first claim goes along similar lines to the proof of Lemma 11. Write \(A_k := \{\exists j \in [1, d_k], \hat{X}_k(j) \neq 0\}\). By the union bound and Proposition 16,
\[
P(A_k) \leq d_k P(|X_k(1)| > 2^k) \leq C\alpha d_k k^{-\alpha} k^2.
\]
Since the right hand side is summable, it follows from the Borel-Cantelli lemma that almost surely, \(A_k\) holds for only finitely many \(k\). This implies that almost surely
\[
\# \{(k, j) \in \mathbb{N}^2 : X_k(j) \neq 0\} < \infty.
\]
Consequently \(\sum_{k=1}^{\infty} \sum_{j=1}^{d_k} \hat{X}_k(j)\) is almost surely a sum of finitely many terms. This concludes the proof of the first part.

For the second part, note that by independence of \((X_k(j))_{j=1}^{d_k}\) and Lemma 17, there exists \(C > 0\) so that
\[
\text{Var} \left(\sum_{j=1}^{d_k} \bar{X}_k(j) \right) = \sum_{j=1}^{d_k} \text{Var} \left(\bar{X}_k(j) \right) \leq C \frac{d_k 2^{(2-\alpha)k}}{k}.
\]
As \(\{\sum_{j=1}^{d_k} \tilde{X}_k(j) : k \in \mathbb{N}\}\) are independent, centred and square integrable random variables, writing \(\kappa_n = \left(\frac{1}{\alpha} - \frac{1}{2} \right) \log(n)\), we have

\(^1\)recall that for \(k \leq \left(\frac{1}{\alpha} - \frac{1}{2} \right) \log(n)\), \(d_k \leq n\).
\[
\mathbb{E} \left(\left(n^{-1/\alpha} G_n(\tilde{X}) \right)^2 \right) = n^{-2/\alpha} \sum_{k=1}^{\kappa n} \text{Var} \left(\sum_{j=1}^{d_k} \tilde{X}_k(j) \right) \\
\leq C n^{-2/\alpha} \sum_{k=1}^{\kappa n} \frac{d_k 2^{(2-\alpha)k}}{k} \\
\leq n^{-2/\alpha} d_{\kappa n} \frac{2^{(2-\alpha)\kappa n}}{\kappa n} \\
\leq n^{1-\frac{2}{\alpha} 2^{(2-\alpha)2} \log(n)} = n^{1-\frac{2}{\alpha} 2^{(2-\alpha)2} \kappa n} \xrightarrow{n \to \infty} 0,
\]
since for \(\alpha \in (0, 2) \),
\[1 - \frac{2}{\alpha} + \frac{(2 - \alpha)^2}{2\alpha} = \frac{\alpha^2 - 2\alpha}{2\alpha} < 0.\]
The second part follows from a routine application of Markov’s inequality.

We can now conclude the proof of Proposition 6.(a).

Proof of Proposition 6.(a). Since \(G_n(f) = d U_n^m (G_n(f)) \), it follows from Proposition 13(b) that \(\frac{1}{n^{1/\alpha}} G_n(f) \) and \(\frac{1}{n^{1/\alpha}} U_n^m (G_n(f)) \) converge to 0 in probability. By Proposition 13 we see that \(\frac{1}{n^{1/\alpha}} S_n(f) \) converges to 0 in probability. \(\square \)

4. APPENDIX: GROWTH OF DISPERSION FOR STATIONARY \(S\alpha S \) PROCESSES

As \(S\alpha S \) random variables are defined by their characteristic functions, Lévy’s continuity theorem implies the following fact.

Fact 2. If for all \(n \in \mathbb{N} \), \(Z_n \) is \(S\alpha S(\sigma_n) \) distributed and \(\lim_{n \to \infty} \sigma_n^\alpha = A^\alpha \), then \(Z_n \Rightarrow^d S\alpha S(A) \). In addition, If \(\sigma_n \to 0 \) then \(Z_n \Rightarrow^d 0 \).

The following tail bound is used extensively in this work.

Proposition 16. There exists \(C_\alpha > 0 \) such that for all \(0 < \sigma \leq 1 \), if \(X \) is an \(S\alpha S(\sigma) \) random variable and \(t \geq 1 \) then,
\[\mathbb{P} (|X| \geq t) \leq C_\alpha \sigma^\alpha t^{-\alpha}\]

Proof. By Proposition 1.2.15 in [5], there exists \(c_\alpha > 0 \) such that if \(X \sim^d S\alpha S(1) \), then
\[\mathbb{P} (|X| \geq t) \sim c_\alpha t^{-\alpha}, \quad \text{as } t \to \infty.\]
We deduce that
\[C_\alpha := \sup_{t \geq 1} \frac{\mathbb{P}(|X| \geq t)}{t^{-\alpha}} < \infty. \]

Finally if \(X \sim^d S\alpha S(\sigma) \) with \(\sigma \leq 1 \) and \(t \geq 1 \), we have
\[\mathbb{P}(|X| \geq t) = \mathbb{P}\left(\frac{|X|}{\sigma} \geq \frac{t}{\sigma}\right) \leq C_\alpha \left(\frac{t}{\sigma}\right)^{-\alpha}. \]

The tail bound implies the following inequality for the variance.

Lemma 17. There exists \(c = c(\alpha) > 0 \) such that for all \(K \geq 1 \), \(0 < \sigma \leq 1 \) and \(m \in \mathbb{N} \), if \(X \) is a \(S\alpha S(\sigma) \) random variable, then
\[\text{Var}(X_{1|[X| \leq K]}) \leq cK^{2-\alpha}\sigma^\alpha. \]

Proof. As \(X \) is symmetric the random variable \(X_{1|[X| \leq K]} \) has zero mean. By Proposition [16] there exists \(C_\alpha > 0 \) such that,
\[
\text{Var}(X_{1|[X| \leq K]}) = \mathbb{E}((X_{1|[X| \leq K]})^2) = \int x^2 \mathbb{P}(|X| \geq K > x) dx \\
\leq 1 + \int_1^K x \mathbb{P}(|X| > x) dx \\
\leq [1 + o_{K \to \infty}(1)]C_\alpha \sigma^\alpha \int_1^K x^{1-\alpha} dx \\
= C_\alpha \cdot \sigma^\alpha K^{2-\alpha} \left[1 + o_{K \to \infty}(1)\right].
\]

We conclude that there exists \(C \) depending only on \(\alpha \) such that for all \(K \geq 1 \),
\[\text{Var}(X_{1|[X| \leq K]}) \leq C\sigma^\alpha K^{2-\alpha}. \]

In our construction of CLT functions we used a triangular array of random variables \(Y_k \) which are not \(S\alpha S \) distributed but are in the domain of attraction of an \(S\alpha S \) distribution. A main reason for this choice lies in the fact that the dispersion of a stationary \(S\alpha S \) process does not go fast enough for the methods of [13] to work.

A real valued stationary process \((X_n)_{n=1}^\infty \) is a \(S\alpha S \) process if every \(Z \) in the linear span of \(\{X_n : n \in \mathbb{N}\} \) is \(S\alpha S \) distributed. In that case the function
\[\|X\|_\alpha = \left(-\log \mathbb{E}(e^{iX})\right)^{1/\alpha}, \]
is a quasi-norm from \(\text{Lin}(X) := \text{span}\{X_n : n \in \mathbb{N}\} \) to \([0, \infty)\) and for all \(Z \in \text{Lin}(X), \|Z\|_\alpha \) equals the dispersion parameter of \(Z \). The following is a well known fact on stationary \(S\alpha S \) processes.

Fact 3. If \(0 < \alpha < 1 \) and \((X_n)_{n=1}^\infty \) is a stationary \(S\alpha S \) process, then for every \(N \in \mathbb{N} \),

\[
\left\| \sum_{j=1}^N X_j \right\|_\alpha \leq N \|X_1\|_\alpha^\alpha.
\]

Proof. By [5, Property 2.10.5], if \(X, Y \) are \(S\alpha S \) random variables with \(0 < \alpha < 1 \), then

\[
\|X\|_\alpha^\alpha + \|Y\|_\alpha^\alpha - \|X + Y\|_\alpha^\alpha \geq 0.
\]

A straightforward inductive procedure gives the claim. \(\square \)

Remark 18. One can show using stochastic integrals that there is equality if and only if \(X_1, \ldots, X_N \) are independent.

Acknowledgement. We thank the referee for his/her valuable remarks.

References

[1] J. Aaronson and B. Weiss. Distributional limits of positive, ergodic stationary processes and infinite ergodic transformations. *Ann. Inst. Henri Poincaré Probab. Stat.*, 54(2):879–906, 2018.

[2] R. Burton and M. Denker. On the central limit theorem for dynamical systems. *Trans. Amer. Math. Soc.*, 302(2):715–726, 1987.

[3] I. A. Ibragimov and Y. V. Linnik. *Independent and stationary sequences of random variables*. Wolters-Noordhoff Publishing, Groningen, 1971. With a supplementary chapter by I. A. Ibragimov and V. V. Petrov, Translation from the Russian edited by J. F. C. Kingman.

[4] Z. Kosloff and D. Volný. Local limit theorem in deterministic systems. *Ann. Inst. Henri Poincaré Probab. Stat.*, 58(1):548–566, 2022.

[5] G. Samorodnitsky and M. S. Taqqu. *Stable non-Gaussian random processes*. Stochastic Modeling. Chapman & Hall, New York, 1994. Stochastic models with infinite variance.

[6] J.-P. Thouvenot and B. Weiss. Limit laws for ergodic processes. *Stoch. Dyn.*, 12(1):1150012, 9, 2012.

[7] D. Volný. On limit theorems and category for dynamical systems. *Yokohama Math. J.*, 38(1):29–35, 1990.

[8] D. Volný. Invariance principles and Gaussian approximation for strictly stationary processes. *Trans. Amer. Math. Soc.*, 351(8):3351–3371, 1999.
