Global Microarray Analysis of Carbohydrate Use in Alkaliphilic Hemicellulolytic Bacterium Bacillus sp. N16-5

Yajian Song1,2, Yanfen Xue1, Yanhe Ma1*

1 State Key Laboratory of Microbial Resources and National Engineering Laboratory for Industrial Enzymes, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China, 2 Graduate School of the Chinese Academy of Sciences, Beijing, China

Abstract

The alkaliphilic hemicellulolytic bacterium Bacillus sp. N16-5 has a broad substrate spectrum and exhibits the capacity to utilize complex carbohydrates such as galactomannan, xylan, and pectin. In the monosaccharide mixture, sequential utilization by Bacillus sp. N16-5 was observed. Glucose appeared to be its preferential monosaccharide, followed by fructose, mannose, arabinose, xylose, and galactose. Global transcription profiles of the strain were determined separately for growth on six monosaccharides (glucose, fructose, mannose, galactose, arabinose, and xylose) and four polysaccharides (galactomannan, xylan, pectin, and sodium carboxymethylcellulose) using one-color microarrays. Numerous genes potentially related to polysaccharide degradation, sugar transport, and monosaccharide metabolism were found to respond to a specific substrate. Putative gene clusters for different carbohydrates were identified according to transcriptional patterns and genome annotation. Identification and analysis of these gene clusters contributed to pathway reconstruction for carbohydrate utilization in Bacillus sp. N16-5. Several genes encoding putative sugar transporters were highly expressed during growth on specific sugars, suggesting their functional roles. Two phosphoenolpyruvate-dependent phosphotransferase systems were identified as candidate transporters for mannose and fructose, and a major facilitator superfamily transporter was identified as a candidate transporter for arabinose and xylose. Five carbohydrate uptake transporter 1 family ATP-binding cassette transporters were predicted to participate in the uptake of hemicellulose and pectin degradation products. Collectively, microarray data improved the pathway reconstruction involved in carbohydrate utilization of Bacillus sp. N16-5 and revealed that the organism precisely regulates gene transcription in response to fluctuations in energy resources.

Introduction

Due to the diminishing supply of fossil fuel sources, exploiting alternative renewable energy sources has become increasingly necessary. Plant biomass, as a renewable resource, has great potential in bio-energy production [1–3]. Cellulose, hemicellulose, and pectin are the three main polysaccharides composing the plant cell wall; their natural degradation is carried out mainly by microorganisms which are either free or exist as part of the digestive system in higher organisms [4,5]. Because efficient conversion of biomass to fermentable sugars is a key step in bioenergy production, studies on carbohydrates utilization in microorganisms possessing this ability are important [6,7].

Microorganisms employ different strategies for degrading polysaccharides and utilizing the degradation products. Aerobic fungi such as Trichoderma and Aspergillus spp., secrete a number of free enzymes, such as cellulases, hemicellulases, and ligninases, which work cooperatively to completely degrade polysaccharides into mono- and disaccharides extracellularly to allow their assimilation [8–10]. Some cellulolytic anaerobic fungi and gram-positive bacteria produce efficient multienzyme complexes, referred to as cellulosomes, which contain cellulolytic and hemicellulolytic enzymes and are able to bind crystalline cellulose [11–13]. Due to the powerful ability to degrade crystalline cellulose, organization of the cellulosome and expression of relative enzymes on different substrates have been thoroughly examined, particularly in some Clostridium spp. [14–16]. It has been found that bacteria not containing cellulosome, such as Bacillus spp., secrete extracellular enzymes to degrade polysaccharides and transport partial degradation products into the cell for subsequent processing into fermentable sugars [17,18]. Although numerous extracellular and intracellular hydrolytic enzymes have been identified for this type of microorganism, how these organisms control transcription of enzymes and transport of their degradation products is not well understood [17,19].

Sugar transport is a crucial step in carbohydrate utilization of bacteria. Typically, for different sugar substrates, bacterial transport systems can be classified into three types: phosphoenolpyruvate-dependent phosphotransferase systems (PTSs), major facilitator superfamily (MFS) transporters, and ATP-binding cassette (ABC) transporters. PTS transporters catalyze phosphorylation of sugar substrates during their translocation across the cell membrane. Each PTS transporter consists of a sugar-specific multidomain enzyme II (EI) and two general energy coupling proteins, enzyme I (EI) and histidine-containing protein (HP). MFS transporters are secondary carriers which transport...
small solutes in response to chemiosmotic ion gradients and are ubiquitous in bacteria, archaea, and eukarya [21]. ABC transporters utilize energy from ATP hydrolysis to carry specific substrates across membranes. ABC transporters that mediate the uptake of sugars and other carbohydrates are classified into two families, carbohydrate uptake transporter 1 (CUT1) and carbohydrate uptake transporter 2 (CUT2). The CUT1 family transporter possesses one extracellular binding protein, two different membrane proteins, and two identical ATP-binding subunits which act as a homodimer. In contrast, the CUT2 family transporter possesses one extracellular binding protein, two identical membrane proteins acting as a homodimer, and one ATP-binding subunit [22]. CUT1 family members have been reported to transport di- or oligosaccharides, but few members of this family involved in the uptake of hemicellulolytic products have been characterized, making it difficult to predict the exact function based on homologous alignment methods [17].

In bacteria, translation of genes coding enzymes involved in the catabolism of less favorable carbon sources are often repressed in the presence of preferential sugars such as glucose or fructose, which is known as carbon catabolite repression (CCR). CCR is mediated by catabolite control protein A (CcpA) is widespread in gram-positive bacteria with low GC content. PTS plays an important role in this mechanism. In gram-positive bacteria with low GC content, HPr contains two phosphorylated sites, a histidine residue and a serine residue. The histidine residue is phosphorylated by phospho-EI, while serine residue is phosphorylated by HPr kinase (HPrK). HPrK is activated by fructose-1,6-bisphosphate, which rapidly accumulates in the present of glucose and other favorable sugars. When its serine residue is phosphorylated, HPr binds to the transcriptional regulator CcpA, inducing the binding of the complex to catabolite responsive element (cre) sites in the promoter region of target genes, including genes involved in less favorable carbohydrate utilization, preventing their transcription [23,24,25].

Bacillus sp. N16-5 is an alkaliphile isolated from the sediment of Wudunur Soda Lake in Inner Mongolia, China. It is a gram-positive and facultative anaerobe which can produce various extracellular or intracellular hydrolytic enzymes and exhibits an excellent ability to grow over the pH range of 8.5-11.5 and NaCl concentration of 0-15% [26]. Its extracellular mannanase and pectin lyase with high activity and extreme condition tolerance were thoroughly examined in our previous studies [27,28]. Furthermore, this strain has a broad substrate spectrum and exhibits the capability to grow on multiple soluble polysaccharides (e.g., xylan, mannan, and pectin), making it a good model for studying complex carbohydrate utilization of bacteria that do not contain cellulose. Transcriptional analysis based on microarrays has been shown to be an effective strategy for examining global gene expression patterns of *Bacillus* sp. N16-5 grown on ten different carbohydrates. All arrays exhibited a percent coefficient of variation (%CV) less than 15 (Dataset S1), indicating the intra-array reproducibility. The results generated for each biological replicate under each condition were compared to the results for samples grown on glucose. The flag of signals, fold changes, and t-test results are also shown in Dataset S1. Operons for the transport and metabolism of the six monosaccharides were identified. Gene transcription patterns are shown in Figures 2 and 3.

The fructose operon, which encodes a transcriptional regulator (orf_3542, a PTS system fructose-specific enzyme II (EI^Fru^, orf_3542), and a phosphofructokinase (orf_3543), was identified. The transcription levels of orf_3542 and orf_3543 were approximately 20-fold higher in the presence of fructose than in glucose. Similarly, the mannose operon, which encodes a transcriptional regulator (orf_3159), a PTS system mannose-specific enzyme II (EI^Man^, orf_3161), and a mannose-6-phosphate isomerase (orf_0160), was identified. The transcription levels of orf_3161 and orf_0160 were up-regulated by 39- and 28-fold, respectively, in the presence of mannose compared to glucose.

The operon for galactose metabolism, which encodes a transcriptional repressor (orf_2044), a galactose-1-phosphate uridylyltransferase (orf_2045), an UDP-glucose 4-epimerase (orf_2046), and a galactokinase (orf_2047), was identified. The induction level of the genes varied from 20- to 45-fold in the presence of galactose compared to glucose. Galactose also strongly induced the other two operons; their expression patterns are shown in Figure S1. One operon is related to an alternative fructose metabolism pathway and includes a fructose-bisphosphate aldolase (orf_3054), a PTS system fructose-specific enzyme II (orf_3053, 3056), a fructose-1-phosphate kinase (orf_3057), and a transcriptional regulator (orf_3058). In this pathway, fructose was transported and phosphorylated into fructose-1-phosphate rather than fructose-6-phosphate before being converted into fructose-1,6-bisphosphate. This result strongly suggests that cross-talk occurs between the galactose and fructose metabolism pathways and that

Results

Carbohydrate utilization patterns

First, the growth of *Bacillus* sp. N16-5 on ten different carbohydrate substrates was tested. Among substrates tested, glucose, fructose, mannose, arabinose, xylene, and galactose are the most abundant monosaccharides in the nature. Galactomanan, xylan, and pectin are polysaccharides widely present in plant biomass. *Bacillus* sp. N16-5 cannot break down insoluble forms of cellulose such as cotton fiber, filter paper, and microcrystalline cellulose, probably due to the crystalline nature of the sugar polymer. However, *Bacillus* sp. N16-5 can use sodium carboxymethylcellulose (CMC) which is a soluble cellulose derivative, so CMC was also chosen as a substrate. Our experimental data showed that the culture grew to a cell density of approximately 1.5×10^9 cells/mL on glucose, fructose, mannose, arabinose, and xylose, grew to a cell density of nearly 2.0×10^9 cells/mL on galactomannan, xylan, and pectin, and grew to a cell density of less than 1.0×10^9 cells/mL on galactose and CMC.

The preference of *Bacillus* sp. N16-5 for different pentoses and hexoses was tested by cultivating the cells on a mixture of six monosaccharides. The remaining amount of each monosaccharide was measured, and a clear order of use was observed (Figure 1). Glucose was the first sugar to be consumed, and its presence inhibited utilization of all other sugars. When glucose had been depleted, mannose and fructose were consumed simultaneously, but fructose was consumed faster than mannose. When fructose and mannose had been completely consumed, arabinose, xylose, and galactose were utilized in that order. This hierarchical sugar utilization pattern indicates that carbohydrate metabolism by *Bacillus* sp. N16-5 is under strict control.

Transcription profiles of Bacillus sp. N16-5 grown on different monosaccharides

One-color microarrays was employed to investigate global gene expression patterns of *Bacillus* sp. N16-5 grown on ten different carbohydrates. All arrays exhibited a percent coefficient of variation (%CV) less than 15 (Dataset S1), indicating the intra-array reproducibility. The results generated for each biological replicate under each condition were compared to the results for samples grown on glucose. The flag of signals, fold changes, and t-test results are also shown in Dataset S1. Operons for the transport and metabolism of the six monosaccharides were identified. Gene transcription patterns are shown in Figures 2 and 3.
galactose is a strong signal for both galactose and fructose utilization. The other highly expressed operon encodes a glycoside hydrolase (orf_0347), two β-galactosidases (orf_0348, 0350), a LacI family transcriptional regulator (orf_0349), and a CUT1 family ABC transporter (orf_0351–0353).

The operon for arabinose metabolism was identified and found to be up-regulated in the presence of arabinose by 194- to 604-fold.
compared to glucose. The operon encodes an arabinose utilization protein (orf_3181), an α-L-arabinosidase (orf_3182), an L-arabinose isomerase (orf_3183), a ribulokinase (orf_3184), and a ribulose-5-phosphate 4-epimerase (orf_3185). Arabinose also induced another operon encoding an endo-1,5-α-arabinosidase (orf_2831), a transcriptional repressor (orf_2832) and a CUT1 family ABC transporter (orf_2834–2836) (Figure S1).

Xylose metabolism pathway genes encoding xylulokinase (orf_3866) and xylose isomerase (orf_3867) were found to be highly transcribed in the presence of xylose, with induction levels of 290- to 553-fold compared to glucose. Additionally, an MFS family transporter (orf_3895) showed dramatically increased transcription in the presence of arabinose and xylose compared to other test monosaccharides, suggesting its possible function in pentose uptake. Compared to glucose, the induction levels of this gene on arabinose and xylose are 239- and 168-fold, respectively.

Comparing the microarray data of glucose to that of other test substrates, no putative glucose operon was identified.

Transcription profiles of Bacillus sp. N16-5 grown on different polysaccharides

A 17-kb gene cluster containing 12 genes (orf_3843–3857) was observed to be highly transcribed only in the presence of galactomannan (Figure 4). Neither galactose nor mannose, the main components of galactomannan, acted as inducers. Functions of enzymes in this cluster were predicted based on sequence homology analysis. Orf_3851 likely encodes an α-galactosidase from glycoside hydrolase family 31 (GH31), which shares 45% sequence identity with α-galactosidase from Helianthus annuus (GI: 29335747). Orf_3854 likely encodes an endo-β-1,4-mannanase of Alicyclobacillus acidocaldarius (GI: 197305048). Orf_3856 likely encodes a polysaccharide esterase from carbohydrate esterase family 7 (CE7), which shares 60% sequence identity with acetyl xylan esterase (GI: 268612269) from Thermoanaerobacterium sp. JW/SL YS485. Orf_3843 and orf_3845 were predicted to encode putative glycosidases. Proteins destined towards the secretory pathway contain signal peptide. Prediction using SignalP 3.0 showed that all enzymes in this cluster had no signal peptide sequence except for endo-1,4-β-mannanase (orf_3857), implying that most enzymes encoded by this cluster act in the cytoplasm. A CUT1 family ABC transporter (orf_3846, 3852, 3853), which is probably involved in uptake of galactomannan degradation products, was also found in this cluster.

A strong correlation of gene regulation was observed between cells grown on xylose and xylan. The transcription of a 21-kb gene cluster (orf_3866–3881) was induced by both substrates to a different extent (Figure 5). Transcription of orf_3866 (xylulokinase) and orf_3867 (xylose isomerase) were dramatically up-regulated to a similar extent in the presence of both xylan and xylose. Genes
encoding putative xylan degradation enzymes and two CUT1 family ABC transporters (orf_3871–3873, orf_3878–3880) showed significantly higher transcription in the presence of xylan than in the presence of xylose. The function of enzymes in this cluster was predicted based on sequence homology analysis. Orf_3869 and orf_3870 showed the highest identity with two glucuronidases (GI: 37926810, GI: 24987452) from Geobacillus stearothermophilus, with sequence identities of 70% and 42%, respectively, while orf_3875 and orf_3881 shared high identity with two \(\beta\)-xylosidases (GI: 82408136, GI: 93279336) from G. stearothermophilus, with sequence identities of 60% and 52%, respectively. Signal prediction analysis showed that no enzymes in this operon contain a signal peptide sequence, suggesting that these enzymes are intracellular.

In the presence of pectin, transcription of a 32-kb gene cluster containing 25 genes (orf_3695–3721) was strongly induced. The transcription patterns and functional annotations of the genes are summarized in Figure 6. Two CUT1 family ABC transporters (orf_3696–3698, orf_3707, 3710), two regulators (orf_3701, 3711), six pectin degradation enzymes, and seven uronate metabolism enzymes were present in this set of genes. The enzymes encoded by orf_3695 and orf_3703 were predicted to be members of the hydrolase family of GH105. This family contains only unsaturated rhamnogalacturonidase, which act specifically on unsaturated rhamnogalacturonic acid and release unsaturated galacturonic acid. The enzymes encoded by orf_3705 and orf_3714 belong to the hydrolase family of GH28. Enzymes in this family are all pectin hydrolases, such as endo- or exo-acting polygalacturonases and rhamnogalacturonan hydrolases. Orf_3704 and orf_3699 were found to encode a putative xylloseidase of GH43 and a putative rhamnogalacturonan acetyesterase of GE12, respectively. Orf_3715–3721 are likely to encode a series of enzymes involved in the isomerase pathway of galacturonic acid catabolism [31]. According to signal peptide prediction, all enzymes are intracellular.

Bacillus sp. N16-5 exhibits slower growth rate as well as lower final cell density on CMC compared to other polysaccharides tested, which is probably due to the lack of efficient hydrolytic enzymes, uptake systems, or/a mechanism for removing the carboxymethyl groups from glucose. Indeed, unlike galactomannan, xylan, and pectin, no gene cluster or transporter responding specifically to CMC was identified in the transcriptomic analysis. Bacillus sp. N16-5 produced a limited number of extracellular enzymes for polysaccharides degradation. We scanned the entire genome of Bacillus sp. N16-5 and found only five extracellular enzymes involved in galactomannan, xylan, pectin, and CMC degradation, including a pectate lyase (orf_2241), a family 10 xylanase (orf_4167), two cellulases (orf_1390, 1392), and an endo-\(\beta\)-1,4-mannanase (orf_3857). These enzymes likely act as extracellular endo-acting enzymes for depolymerizing polysaccharides. The Endo-\(\beta\)-1,4-mannanase (orf_3857) is up-regulated in the presence of galactomannan as mentioned previously. While, the other four enzymes were consistently and highly transcribed on all substrates except glucose, mannose, and fructose (Figure S1).

Glucose represses transcription of putative polysaccharides utilization genes

The relative transcription levels of nine genes on different substrates were determined using real-time PCR (Figure 7). Orf_3846 and 3857 were selected from the putative galactomannan utilization gene cluster. Their transcription was dramatically induced by galactomannan but repressed when the culture was grown on a mixture of glucose and galactomannan. Orf_3873, 3878, and 3881 were selected from the putative xylan utilization gene cluster. Their transcription was dramatically induced by xylan but repressed when the culture was grown on a mixture of glucose and xylan. Similarly, orf_3698, 3710, 3721, and 3695, selected from the putative pectin utilization gene cluster, also showed low transcription level when the mixture of glucose and pectin was taken as the substrate. This result demonstrates that glucose significantly inhibits the transcription of putative gene clusters involved in polysaccharide utilization. Additionally, the transcription levels of the selected genes identified using real-time PCR and microarray experiments had a correlation coefficient of 0.83, indicating a strong positive association between the two sets of data.
Discussion

The combination of microarray data with gene neighborhood and sequence analysis has been widely used in predicting gene function and analyzing metabolic pathways involved in carbohydrate utilization [29,30,32–35]. In this study, we carried out global transcriptional analysis of *Bacillus* sp. N16-5 by growing the cells on 10 different mono- and polysaccharides to identify genes related to carbohydrate utilization and to gain insight into its carbon catabolite mechanism. A one-color microarray strategy was employed because this strategy enables easy and flexible comparison of any two sample groups from multiple parallel conditions [36].

Putative operons for fructose, mannose, arabinose, xylose, and galactose, which contain regulators, metabolism enzymes, and transporters, were identified and their metabolic pathways were reconstructed (Figure 2, Figure 3). Candidate transporters were also identified based on global transcriptional analysis. Fructose and mannose were predicted to be transported by PTS transporters, while xylose and arabinose were likely to be transported by an MFS transporter. Transcription of some monosaccharide operons can be triggered by certain polysaccharides containing such monosaccharide residues. For instance, the operon for galactose metabolism was highly transcribed when the culture was grown on galactomannan, and operons for arabinose and xylose were highly transcribed in the presence of xylan. We inferred that specific monosaccharide can be released by polysaccharide degradation, and further induce the transcription of certain operons.

Monosaccharide operons have been widely studied in bacteria, while relatively limited information is available for operons related to polysaccharide utilization. In this study, three gene clusters were found to respond to galactomannan, xylan, and pectin according to polysaccharide transcriptomic analysis, and all of them contain multiple enzymes annotated as polysaccharide degradation-related. Polysaccharides in nature show high flexibility in composition and structures, and their degradation requires the collaboration of multiple enzymes. For example, complete degradation of galactomannan requires of the activity of mannanases, mannosidase, galactosidase, acetyl esterases, and other glycosidase [37]. The transcription of cluster orf_3843–3857 was strongly triggered by galactomannan, and all enzymes encoded by the cluster are annotated as galactomannan degradation-related, strongly suggesting its functional assignment as a galactomannan utilization gene cluster. Similarly, the transcription of cluster orf_3866–3881 was specifically up-regulated in the presence of xylan, and all enzymes encoded by it are annotated as xylan degradation- and xylose metabolism-related, so it is likely to be a xylan utilization gene cluster. The transcription of cluster orf_3695–3721 was triggered by pectin, and all enzymes encoded by it are annotated as pectin degradation- and galacturonic acid metabolism-related, so this cluster is likely to be involved in pectin utilization.

According to function annotation and signal peptide prediction of enzymes in putative polysaccharide gene clusters, the metabolic pathways of galactomannan, xylan, and pectin were reconstructed and the hypothetical carbohydrate utilization profiles of the strain was proposed (Figure 8). In *Bacillus* sp. N16-5, most polysaccharides degradation enzymes are intracellular, suggesting that this organism takes up partially polysaccharide degradation products and then processes them into fermentable sugars in the cell. The five transporters identified in the putative polysaccharide gene clusters likely transport oligomers produced by corresponding polysaccharides degradation since all of them are CUT1 family ABC transporters which are responsible for di- or oligosaccharides uptake. The oligosaccharide transport strategy makes the organism degrade oligomers in the cytoplasm instead of in the environment outside the cell, which may greatly reduce quantity demands on enzymes and speed up the degradation process.
Meanwhile, this strategy would also help the organism obtain more carbohydrate resource when in competition with other strains without oligosaccharide transporters. Additionally, no ABC transporter identified in this study contains an ATPase-encoding gene. Because ATPase subunits of the CUT1 family have been confirmed to be functionally exchangeable in heterologous transport systems [38,39], we presumed that several oligo-transporters may share one ATPase subunit in Bacillus sp. N16-5.

The carbohydrate utilization systems of Bacillus sp. N16-5 are not only invoked by specific substrates but also under global control. Sequential utilization by Bacillus sp. N16-5 was observed in the monosaccharide mixture. Glucose, the preferential sugar,
repressed utilization of all other monosaccharides tested. Real-time PCR results also indicated that the presence of glucose repressed transcription of genes within putative polysaccharide utilization gene clusters. Furthermore, key CCR genes were identified in the genome of *Bacillus* sp. N16-5, and their products, CcpA (orf_2342), Hpr (orf_2467), and Hpr kinase (orf_3818), share 71%, 63%, and 69% sequence identity with *Bacillus subtilis*, respectively. These results imply that *Bacillus* sp. N16-5 is likely to regulate its carbohydrate utilization by CCR, which is widespread in gram-positive bacteria with low GC content.

In summary, carbohydrate utilization patterns of alkaliphilic hemicellulolytic bacterium *Bacillus* sp. N16-5 were studied using transcriptomic analysis. Putative gene clusters for monosaccharide and polysaccharide utilization were identified, contributing to carbohydrate utilization pathway reconstruction. A variety of candidate carbohydrate uptake systems for monosaccharides and oligosaccharides were identified, including PTS, MFS, and ABC transporters. CUT1 family ABC transporters likely play an important role in polysaccharide utilization. Differential gene expression and growth experiments implied the presence of a global CCR regulatory network. Collectively, the results revealed that *Bacillus* sp. N16-5 builds efficient systems to utilize complex carbohydrates and precisely regulates its gene transcription to adapt to carbohydrate source fluctuations in the environment.

Methods

Bacterial Strains and media

Bacillus sp. N16-5 (CGMCC No. 0369) was isolated previously from sediment of the Wudunur Soda Lake in Inner Mongolia, China. Cells were cultivated in modified alkaline Horikoshi-II medium, which contains 5 g peptone, 1 g K2HPO4·3H2O, 0.2 g MgSO4·7H2O, 0.1 g yeast extract, and 5 g carbohydrate substrate per liter. Na2CO3 solution (10%) was added to the medium after sterilization to maintain the pH of the media at approximately 10. The 10 carbohydrate substrates used included D-glucose, D-fructose, D-mannose, L-arabinose, D-xylose, D-galactose, CMC, xylan (from oat spelt), galactomannan (from locust bean), and pectin (from citrus peel). All carbohydrates were purchased from Sigma (St. Louis, MO). Cultures were grown under aerobic conditions at 37°C while shaking. In the test of mixed sugar utilization, the medium contained 1 g of each monosaccharide per liter.

Analysis of residual sugar

The cultures were centrifuged at 10,000× g for 5 min, and then the supernatants were filtered using 0.22-μm size filters and subjected to analysis. Monosaccharide concentrations were determined using a Dionex HPAEC-PAD (high-performance anion-exchange chromatography with pulsed amperometric
Isolation of RNA

Bacillus sp. N16-5 cultures in the middle-log phase on various substrates were collected for extraction of total RNA. Three biological replicates were collected for each condition. Cells were rapidly harvested by centrifugation at 10,000 × g for 1 min and frozen in liquid nitrogen. Next, sediments were grinded in liquid nitrogen to prevent RNA degradation. Total RNA was isolated using TRIzol (Invitrogen, Carlsbad, CA) from homogenized cells according to the manufacturer’s instructions.

Microarray design and experiment

The microarray was designed using Agilent’s online design tool, eArray (https://earray.chem.agilent.com/earray/). Each customized microarray (8 × 15 k) contained spots in triplicate with 4210 specific 60-mer oligonucleotides representing the 4,210 ORFs of Bacillus sp. N16-5. Extracted RNAs were further purified using the RNeasy® Mini Kit (QIAGEN, Hilden, Germany). The quality and quantity of samples were determined and checked by Nanodrop ND-1000 and Agilent 2100 bioanalyzer (Agilent, Santa Clara, CA). The Agilent Quick Amp Kit (Agilent) and amino allyl-dUTP (Ambion, Austin, TX) was used to synthesize cDNA from total RNA. Amino allyl modified cRNAs were purified using the RNeasy® Mini Kit and labeled with Cy3 (Cy3 NHS ester, GE Healthcare, Piscataway, NJ). Labeled cRNA was then purified using the RNeasy® Mini Kit and fragmented in fragmentation buffer (Agilent). The prepared sample was mixed with the 2× Gene Expression Hybridization Kit (Agilent). Hybridization was performed in an Agilent hybridization chamber (G2534A) for 16 h at 65°C with rotation speed of 10 rpm. After hybridization, the slides were washed in Gene Expression Wash Buffer Kit (Agilent). Finally, arrays were scanned using the Agilent Microarray Scanner System (G2565BA) at a resolution of 5 μm. The array was scanned with 100% and 10% PMT and the two sets of data were combined automatically.

Microarray data collection and analysis

Feature extraction and image analysis software (Feature Extraction Software, Agilent) was used to locate and delineate and integrate the intensity of each spot in the array. Background correction, data normalization, and quality evaluation was performed using the same software. Spots within microarrays were flagged as P (present), A (absent), or M (marginal) according to the signal quality. The quantile method was used for data normalization [40]. The quality of each array was valued as the %CV of the replicated probes designed for quality control. A low %CV indicated high intra-array reproducibility, and microarrays with %CV less than 15% were eligible for analysis.

Statistical analysis of the microarray data was carried out using the SBC Analysis System (SAS) provided by the Shanghai Biochip Co., Ltd (http://www.ebioservice.com). The core arithmetic of the SAS system is R, which is an open source programming language and software environment for statistical computing and graphics. The normalized data was log2-transformed and then averaged to obtain the mean value for each gene under each treatment. To compare different treatments, statistical significance was examined using the t-test. Fold change was used to value differential gene expression between two treatments; the formula used to calculate this value was fold change = 2^[\text{mean1} - \text{mean2}]. Flags of all three replicates of the genes selected to calculate fold change should not be ‘A’ for at least one treatment. Genes that were differently transcribed by at least two-fold and have a P-value <0.05 were considered to be up- or down-regulated.

Bioinformatic analysis of enzymes and sugar transporters

Functional prediction of the transporters and enzymes was carried out by sequence homology searches using blastp in the non-redundant protein sequences (nr) database (http://blast.ncbi.nlm.nih.gov/Blast.cgi). Protein sequences of transporters were also subjected to similarity searches using TransportDB (http://www.membranetransport.org/). Family annotation of the enzymes was performed using sequence alignment with the Pfam database (http://pfam.sanger.ac.uk/) and with the Carbohydrate-Active enZymes Database using the CAZyMies Analysis Toolkit (http://cricket.ornl.gov/cgi-bin/cat.cgi). SignalP 3.0 (http://www.cbs.dtu.dk/services/SignalP/) was used to analyze the enzyme signal peptides.

Real-time PCR

Relative quantification of the specific transcript was accomplished by the comparative threshold cycle method using a Mastercycler® ep realplex thermal cycler (Eppendorf, Hamburg, Germany) detection system with fluorescein-spiked SYBR green as the fluorophore. The transcription levels of orf_3846 and 3857 were quantified when the culture was grown on media containing 0.5% glucose, 0.5% galactomannan, 0.5% mannose, and a mixture of 0.5% glucose and 0.5% galactomannan. The transcription levels of orf_3873, 3878, and 3881 were quantified when the culture was grown on media containing 0.5% glucose, 0.5% xylose, and a mixture of 0.5% glucose and 0.5% xylose. The transcription levels of orf_3996, 3710, 3721, and 3995 were quantified when the culture was grown on media containing 0.5% glucose, 0.5% pectin, 0.5% galacturonic acid, and a mixture of 0.5% glucose and 0.5% pectin. RNA isolated from cells grown on different substrates was reverse transcribed using PrimeScript® RT reagent Kit (TaKaRa, Shiga, Japan), and the real-time PCR reaction system was prepared using SYBR® Premix Ex Taq™ (TaKaRa). 16S rDNA was chosen as the internal control gene.

Microarray accession number and gene sequences

Microarray data details are deposited in the Gene Expression Omnibus database (http://www.ncbi.nlm.nih.gov/geo/) under accession number GSE38276. The fold changes in the transcription levels of genes for strains grown on various substrates versus glucose are shown in Dataset S1. All gene and protein sequences involved in the study are shown in Dataset S2.

Supporting Information

Figure S1 Differential transcription of other related genes. Abbreviations: G, glucose; F, fructose; M, mannose; Gal, galactose; A, arabinose; X, xylose; XYL, xylan; GAL, galactomannan; PEC, pectin. A reference indicating the range of values is located at the bottom of the figure. The value is the log2-transformed ratio of the transcription level of a specific gene to the mean of all genes in the genome.

Dataset S1 Results of microarray data analysis. %CV: the percent coefficient of variation of each microarray; different substrates vs glucose (>2-fold): the fold changes in the transcription levels of genes for the strain grown on specific substrates versus glucose (Genes that were differentially transcribed by at least two-fold and have P-value <0.05 were considered); different
substrates vs glucose (full): the log_2 transformed normalization signals and the flags of signal of each biological replicate under each condition, the fold changes in the transcription levels of genes for the strain grown on the specific substrate versus glucose and the t-test results.

(RAR)

Dataset S2 Gene and protein sequences involved in this study.

(TXT)

References

1. McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresource Technology 83: 37–46.
2. Lynd LR (1996) Overview and evaluation of fuel ethanol from cellulose: biomass. Technology, economics, the environment, and policy. Annual Review of Energy and the Environment 21: 403–465.
3. Woolery R, Ruth M, Glassner D, Schehan J (1999) Process design and cost of bioethanol technology: A tool for determining the status and direction of research and development. Biotechnology Progress 15: 794–803.
4. Perez J, Munez-Dorado J, de la Rubia T, Martinez J (2002) Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Microbiol 5: 53–63.
5. Hj Hj, Bayer EA, Kinoson MT, Lamed R, White RA (2008) Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat Rev Microbiol 6: 121–131.
6. Zaldivar J, Nielsen J, Olsson L (2001) Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol 56: 13–14.
7. Kumar R, Singh S, Singh OV (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 35: 377–394.
8. de Vries RP, Visser J (2001) Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol Mol Biol Rev 65: 497–522, table of contents.
9. Adav SS, Chao LT, Sue SK (2012) Quantitative secretomic analysis of *Trichoderma reesei* reveals enzymatic composition for lignocellulosic biomass degradation. Mol Cell Proteomics.
10. Forman PK, Brown D, Dankmeyer L, Dean R, Diner S, et al. (2003) Transcriptional regulation of biomass-degrading enzymes in the filamentous fungus *Trichoderma reesei*. J Biol Chem 278: 3390–33997.
11. Teunissen MJ, Smits AA, Lamed R, Lee J, Reijerse EM, et al. (2002) Op den Camp HJJ, Huis in ’t Veld JH, Vogels GD (1991) Fermentation of cellulose and production of cellulolytic and xylanolytic enzymes by anaerobic fungi from ruminal and non-ruminant herbivores. Arch Microbiol 156: 290–296.
12. Nury T, Tunicliffe RB, Higgins LD, Walters C, Gilbert HJ, et al. (2007) Characterization of a double dockerin from the cellulose of the anaerobic fungus *Petrosym sp.* J Mol Biol 373: 612–622.
13. Schwarz WH (2001) The cellulases and cellulose degradation by anaerobic bacteria. Appl Microbiol Biotechnol 56: 634–649.
14. Gold ND, Martin VJ (2007) Global view of the *Clostridium thermocellum* cellulose system revealed by quantitative proteomic analysis. J Bacteriol 189: 6787–6795.
15. Bayer EA, Setzer R, Lamed R (1985) Organization and distribution of the cellulose in *Clostridium thermocellum*. J Bacteriol 163: 552–559.
16. Han SO, Chao HY, Yukawa H, Inui M, Doh RK (2004) Regulation of expression of cellulases and non-cellulosomal hemi-cellulolytic enzymes in *Clostridium cellulovorans* during growth on different carbon sources. J Bacteriol 186: 4218–4227.
17. Shulami S, Rau-Parate A, Tabachnikov O, Gilad-Gropper S, Shner I, et al. (2011) The L-Arabian utilization system of *Gaeliacoccus stearothermophilus*. J Bacteriol 193: 2018–2020.
18. Inacio JM, Correia IL, de Sa-Nogueira I (2008) Two distinct arabinofuranosidases contribute to arabino-oligosaccharide degradation in *Bacillus subtilis*. Microbiology 154: 2719–2729.
19. Newcomb M, Chen CY, Wu JH (2007) Induction of the *coli* operon of *Clostridium thermocellum* by lamarinibiose. Proc Natl Acad Sci U S A 104: 3747–3752.
20. Saier MH Jr (2000) Families of transmembrane sugar transport proteins. Mol Microbiol 35: 699–710.
21. Saier MH Jr, Beatty JT, Golflau A, Harley KT, Hejne WH, et al. (1999) The major facilitator superfamily. J Mol Microbiol Biotechnol 1: 257–279.
22. Schneider E (2003) ABC transporters catalyzing carbohydrate uptake. Res Microbiol 152: 303–310.
23. Jozina T, Ominnasaah GA, Inui M, Yukawa H (2010) Sugar transporters in efficient utilization of mixed sugar substrates: current knowledge and outlook. Appl Microbiol Biotechnol 85: 471–480.
24. Dahl MK (2002) Cep-Indepenent carbon catabolite repression in *Bacillus subtilis*. J Mol Microbiol Biotechnol 4: 313–321.
25. Saier MH Jr (1998) Multiple mechanisms controlling carbon metabolism in bacteria. Biotechnol Bioeng 52: 170–174.
26. Li G, Song Y, Xue Y, Ruo L, Zhou C, et al. (2011) Comparative proteome analysis of alkaliphilic *Bacillus* sp. N16-5 grown on different carbon sources. Sci China Life Sci 54: 90–100.
27. Ma Y, Xue Y, Dou Y, Xu Z, Tao W, et al. (2004) Characterization and gene cloning of a novel beta-mannanase from alkaliphilic *Bacillus* sp. N16-5. Extremophiles 8: 447–454.
28. Li G, Zhao L, Xue Y, Zhou C, Zhang Y, et al. (2010) Cloning, expression, and characterization of a highly active alkaline pectate lyase from alkaliphilic *Bacillus* sp. N16-5. J Microbiol Biotechnol 20: 670–677.
29. Chikhara SR, Shockley KR, Conners SB, Scott KL, Wolflinger RD, et al. (2003) Carbohydrate-induced differential gene expression patterns in the hyperthermophilic bacteria *Thermotoga maritima*. J Biol Chem 278: 7349–7352.
30. Conners SB, Montero CI, Comfort DA, Shockley KR, Johnson MR, et al. (2005) An expression-driven approach to the prediction of carbohydrate transport and utilization regulators in the hyperthermophilic bacterium *Thermotoga maritima*. J Bacteriol 187: 7267–7282.
31. Richard P, Hilditch S (2009) D-galacturonic acid catabolism in microorganisms and its biotechnological relevance. Appl Microbiol Biotechnol 82: 597–604.
32. Barrangou R, Azcarate-Peril MA, Duong T, Conners SB, Kelly RM, et al. (2006) Global analysis of carbohydrate utilization by *Lactobacillus acidophilus* using cDNA microarrays. Proc Natl Acad Sci USA 103: 3821–3826.
33. Apic D, Pham VT (2007) Global transcriptional analysis of *Streptococcus mutans* sugar transporters using microarrays. J Bacteriol 191: 6415–6424.
34. Vanfossen AL, Verhaart MR, Kengen SM, Kelly RM (2009) Carbohydrate utilization patterns for the extremely thermophile bacterium *Caldicellulosiruptor saccharolyticus* reveal broad growth substrate preferences. Appl Environ Microbiol. 75:7718–7724.
35. Servinsky MD, Kiel JT, Dupuy NF, Sund CJ (2010) Transcriptional analysis of differential carbohydrate utilization by *Clostridium acetobutylicum*. Microbiology 156: 3478–3491.
36. Patterson TA, Lobenhofer EK, Fulmer-Smentek SB, Collins PJ, Chu TM, et al. (2006) Performance comparison of one-color and two-color platforms within the MicroArray Quality Control (MAQC) project. Nat Biotechnol 24: 1149–1150.
37. Moreira LR, Filho EX (2000) An overview of mannase structure and mannase-degrading enzyme systems. Appl Microbiol Biotechnol 79: 165–178.
38. Webb AJ, Homer KA, Hosie AHP (2008) Two closely related ABC transporters in *Streptococcus anastomosis* are involved in disaccharide and/or oligosaccharide uptake. J Bacteriol 190: 168–178.
39. Schlosser A, Kampers T, Schrempf H (1997) The Streptomyces ACP-binding protein from *Streptomyces* sp. N16-5. J Bacteriol 179: 2092–2095.
40. Boultra BM, Iriarry RA, Austrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19: 185–193.

Acknowledgments

We are grateful to Dr. Chaoquang Tian (Tianjin Institute of Industrial Biotechnology, CAS, China) for helpful suggestions during manuscript preparation.

Author Contributions

Conceived and designed the experiments: YS XY YM. Performed the experiments: YS. Analyzed the data: YS XY. Contributed reagents/materials/analysis tools: YS XY YM. Wrote the paper: YS XY YM.

PLOS ONE | www.plosone.org

10 January 2013 | Volume 8 | Issue 1 | e54090