CHARACTERIZATION AND FRACTIONATION OF PHOSPHORUS USING SEQUENTIAL EXTRACTION FROM MARINE SEDIMENT OF JAKARTA BAY

Budiawan¹, Askal Maimulyanti²,*, Asep Saefumillah¹ and Heny Suseno³

¹Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Indonesia
²Department of Analytical Chemistry, Politeknik AKA Bogor, Indonesia
³Marine Radiology Group, Center for Technology and Meterology, National Nuclear Energy Agency, Indonesia

*Corresponding Author: askal_m@yahoo.com

ABSTRACT
Characterization and fractionation of phosphorus (P) in the marine sediment of Jakarta Bay were investigated in this study. IR spectroscopy resulted from the main peaks at the wavenumber were 900 – 1500 cm⁻¹ indicates the minerals, oxide, and phosphates. Physicochemical with pH (5.8-6.7), lost on ignition (11.73-16.03 %), Fe content (8.40-59.12 mg/g), Mn content (0.17-1.38 mg/g), Ca content (0.01-8.25 mg/g) and total phosphorus (8.73-994.72 µg/g).

Fractionation of phosphate using sequential extraction resulted in water-soluble P (H₂O-P) of 0.27-0.76 µg/g, loosely bound-P (NH₄Cl-P) of 0.54-2.27 µg/g, exchangeable fraction-P (NaHCO₃-P) of 3.53-9.69 µg/g, P bound to Fe (NaOH-P) of 1.63-11.23 µg/g and P bound to Ca (HCl-P) of 1.20-2.21 µg/g. The linear correlation between Mn content in sediment to HCl-P fraction with R² = 0.9126 and between calcium content in sediment to HCl-P fraction with R² = 0.8476.

Keywords: Jakarta Bay, Marine Sediment, Phosphorus, Sequential Extraction.

INTRODUCTION
Phosphorus is an important nutrient in both marine and freshwater ecosystems for the phosphorus cycle in marine environments.¹ Many pollutants are accumulated to sediment in the river, marine, or lake. The phosphorus can pollute the water into the sediment with a chemical reaction such as adsorption and precipitation.² Phosphorus has a strong association with particulate matter in the water system, both inorganic and organic forms which commonly occur. The chemical characterization of sediment is necessary for predicting the phosphorus exchange between water and sediment.³⁻⁷ The method for separation and determination of phosphorus content in marine sediment is the sequential extraction method.⁸ This method has the advantages of simple operation, easily accessible reagent, and less interference between various form.⁹ The concentration of phosphorus fractions from sequential extractions was used to describe different forms of phosphorus in the sediment.¹⁰ Phosphorus in marine sediment was fractionated using a sequential extraction scheme such as extraction using NH₄Cl, NaOH, and HCl.¹¹ Some of the studies about fractionation phosphorus include sediment from river¹² and sediment from lakes.¹³-¹⁵ Limited study about characteristics and fractionation phosphorus from marine sediment. The objective of this study is to explore the characteristics and fractionation of phosphorus in marine sediment from Jakarta Bay and to give information about relationships between phosphorus form and sediment characterization in the marine environment.

EXPERIMENTAL
Materials
The reagent used in this research was from Merck with an analytical grade. KH₂PO₄, NH₄Cl (1.0 M), NaHCO₃ (0.5M), NaOH (2M), HCl (0.5M), and aqua distillation.

Rasayan J. Chem., 14(3), 1544-1550(2021)

http://doi.org/10.31788/ RJC.2021.1436050

This work is licensed under a CC BY 4.0 license.
Sediment Sampling
Sediment samples were obtained from Jakarta Bay, Indonesia. Location of study with six station were station 1 (106° 32’ 17.6” E, 06° 00’ 47.3” S), station 2 (106° 33’ 29.8” E, 06° 00’ 51.0” S), station 3 (106° 34’ 32.6” E, 06° 01’ 24.2” S), station 4 (106° 34’ 45.6” E, 06° 00’ 55.2” S), station 5 (106° 35’ 48.3” E, 06° 00’ 51.6” S) and station 6 (106° 37.6’ 44.3” E, 06° 00’ 26.6” S).

Infra-Red Analysis
Characterization of a functional group from sediment used the infrared analysis method. FTIR analysis was used for the identification of the functional group of sediment including organic and inorganic compounds.

Chemical Characterization.
The measurement of pH was carried out in suspensions formed with distillation water. Nitric acid and perchloric acid were used in the digestion process. The determination of Fe, Mn, and Ca content using atomic absorption spectrometry.

Fractionation of Phosphorus
The phosphorus form in the sample was separated by sequential extraction. The first extraction used H2O as solvent. The next extraction used NH4Cl (1.0 M), NaHCO3 (0.5M), NaOH (2 M), and HCl (0.5 M). The phosphorus concentration was measured using a UV-Vis spectrometer at 891 nm.

RESULTS AND DISCUSSION
Sediment Characterization.
Sediment from six stations (S1, S2, S3, S4, S5, S6) was used in this study. Functional group analysis was done to know the active group of sediment by using spectroscopy infrared spectrum of IR analysis and the peak of wavenumber showed in Fig.-2. The organic and organic compounds can be identified by FTIR spectroscopy. The wavenumber of the IR spectrum can be seen in Table-1.

Table-1: Wavenumber of IR Spectrum from Marine Sediment of Jakarta Bay

Sediment	Location	Wavenumber (cm⁻¹)
S1	106° 32’ 17.6” E, 06° 00’ 47.3” S	1002.7 ; 909.5
S2	106° 33’ 29.8” E, 06° 00’ 51.0” S	1420 ; 1006
S3	106° 34’ 32.6” E, 06° 01’ 24.2” S	3693.8 ; 3623 ; 909.5 ; 998.9
S4	106° 34’ 45.6” E, 06° 00’ 55.2” S	3693.8 ; 3623 ; 1638 ; 909.5 ; 993.9
S5	106° 35’ 48.3” E, 06° 00’ 51.6” S	3693.8 ; 3623 ; 1636.3 ; 905.5 ; 998.9
S6	106° 37.6’ 44.3” E, 06° 00’ 26.6” S	3693 ; 3623 ; 3388 ; 1636 ; 909.5 ; 995.2
The sediment at each station was coded as S1, S2, S3, S4, S5, and S6. All spectrum showed the peak at 900-1000 cm\(^{-1}\) that indicated fingerprint for metal and minerals. The peak at 1400 cm\(^{-1}\) for carbonates and 683 cm\(^{-1}\), 790 cm\(^{-1}\), 1009 cm\(^{-1}\) were predicted for silicates dan iron-oxide. Phosphates usually at 850-1075 cm\(^{-1}\), PO\(_4^3-\) at 1005 cm\(^{-1}\), and mineral geothite-phosphate and TiO\(_2\) were present in these peaks. Phosphates as HPO\(_4^{2-}\) at peaks of 850 cm\(^{-1}\), H\(_2\)PO\(_4\) at peaks of 875 cm\(^{-1}\), 940 cm\(^{-1}\), 1075 cm\(^{-1}\). The IR spectra of PO\(_4^{3-}\), HPO\(_4^{2-}\), H\(_2\)PO\(_4\) and H\(_3\)PO\(_4\) will show the differences peaks. The dominant species of phosphorus in the sediment is H\(_2\)PO\(_4\). The low intensity in 3700-3000 cm\(^{-1}\) indicates the presence of clay minerals. The peak at 3623 cm\(^{-1}\) referred to the OH stretch of H\(_2\)O.

Spectrum with wavenumber at 110-913 cm\(^{-1}\) was the contributed to Si-O stretching band of kaolinite. Spectrum at a wavenumber of 676-693 cm\(^{-1}\) was the deformation of metal oxide.

The physicochemical of marine sediment can be seen in Table-2.

Sediment	pH	LOI (%)	Fe content (mg/g)	Mn content (mg/g)	Ca content (mg/g)	Total P (µg/g)
S 1	6.5 ± 0.1	15.83 ± 0.24	55.18 ± 3.57	1.21 ± 0.11	0.31 ± 0.26	363.43 ± 22.20
S 2	6.7 ± 0.2	12.72 ± 0.39	8.40 ± 0.68	0.17 ± 0.05	8.25 ± 1.00	21.74 ± 10.17
S 3	6.0 ± 0.1	11.76 ± 0.02	59.12 ± 1.62	1.51 ± 0.05	0.01 ± 0.01	994.72 ± 13.01
S 4	6.0 ± 0.1	15.90 ± 0.06	54.19 ± 2.62	1.38 ± 0.02	0.01 ± 0.00	979.69 ± 21.36
S 5	5.8 ± 0.0	11.73 ± 0.05	57.20 ± 1.93	1.35 ± 0.03	0.07 ± 0.00	24.36 ± 7.87
S 6	5.9 ± 0.1	16.03 ± 0.09	58.33 ± 0.96	1.36 ± 0.02	0.04 ± 0.00	316.70 ± 31.12

The pH range of sediment was found from 5.8 to 6.7. The effect of pH on total phosphorus showed that the acid condition can increase the total phosphorus. The H\(_2\)PO\(_4\)\(^-\) species at pH 2-7 and HPO\(_4^{2-}\) species are present in the pH region between 7 and 11. The pH higher than 12 the concentration of PO\(_4^{3-}\) becomes. Organic matter was measured as a loss of ignition (550°C for 4 hours). The LOI indicated the organic component in the sediment. The result showed that Fe in sediment ranged from 8.40 to 59.12 mg/g. The highest iron content was found in station 6 and the lowest iron content at station 2 was 8.40 mg/g. Manganese content were 0.17 mg/g -

Table-2: Physicochemical Analysis of Marine Sediment from Jakarta Bay

The sediment pH range was found from 5.8 to 6.7. The effect of pH on total phosphorus showed that the acid condition can increase the total phosphorus. The H\(_2\)PO\(_4\)\(^-\) species at pH 2-7 and HPO\(_4^{2-}\) species are present in the pH region between 7 and 11. The pH higher than 12 the concentration of PO\(_4^{3-}\) species becomes. Organic matter was measured as a loss of ignition (550°C for 4 hours). The LOI indicated the organic component in the sediment. The result showed that Fe in sediment ranged from 8.40 to 59.12 mg/g. The highest iron content was found in station 6 and the lowest iron content at station 2 was 8.40 mg/g. Manganese content were 0.17 mg/g -
1.38 mg/g. The highest manganese content was at station 4 was 1.38 and the lowest at station 2. Calcium was analyzed 0.01-8.25 mg/g. The highest calcium content was at station 2.

The total phosphorus concentration of sediment samples was 21.74 – 994.72 µg/g (dry weight). The highest TP was found at station 4 and the lowest Total P was at station 2. Increasing total phosphorus at the sediment has been related to eutrophication.24-29

Fractionation of Phosphorus in Marine sediment

Fractionation of phosphorus in marine sediment used a sequential extraction method. The fractionation of phosphorus can be seen in Table-3.

Sediment	H\(_2\)O-P (µg/g)	NH\(_4\)Cl-P (µg/g)	NaHCO\(_3\)P(µg/g)	NaOH-P (µg/g)	HCl-P(µg/g)
S 1	0.76 ± 0.43	0.92 ± 0.07	6.49 ± 0.84	3.29 ± 0.09	2.19 ± 0.58
S 2	0.27 ± 0.02	2.27 ± 0.04	5.69 ± 0.12	3.13 ± 0.37	2.21 ± 0.23
S 3	0.45 ± 0.07	0.99 ± 0.20	4.19 ± 0.73	9.78 ± 0.26	1.20 ± 0.07
S 4	0.44 ± 0.20	0.75 ± 0.03	3.66 ± 0.32	6.95 ± 0.05	1.33 ± 0.26
S 5	0.27 ± 0.06	0.62 ± 0.33	3.53 ± 0.09	11.23±0.14	1.91 ± 0.21
S 6	0.30 ± 0.08	0.54 ± 0.10	5.12 ± 0.37	7.92 ± 0.76	1.88 ± 0.03

Speciation of inorganic P was carried out using the method on sequential extraction procedure which divided inorganic P-fraction in a sediment into water-soluble P (H\(_2\)O-P), loosely bound-P (NH\(_4\)Cl-P), exchangeable fraction-P (NaHCO\(_3\)-P), P bound to iron (NaOH-P), P bound to calcium (HCl-P). Phosphorus content in H\(_2\)O (0.27-0.76 µg/g), NH\(_4\)Cl (0.54-2.27 µg/g), NaHCO\(_3\) (3.53-9.69 µg/g), NaOH (1.63- 11.23 µg/g) and HCl (1.20-2.21 µg/g) from six stations. Stations 1, 2, and 4 indicated the highest fraction as P-NaHCO\(_3\) (exchangeable fraction) with content 6.49 µg/g, 9.69 µg/g, and 7.36 µg/g respectively. Sediment at stations 3, 5, and 6 was the highest component was extracted by NaOH with content were 9.78 µg/g, 11.23 µg/g, and 7.92 µg/g. The knowledge of the chemical speciation of phosphorus is important to known the biogeochemical of phosphorus in the ocean.30 The relationship of Mn content with phosphorus fractionations from sediment of Jakarta Bay can be seen in Fig.-3
Figure-3 showed the relationship between Mn content with phosphorus fractionation in the samples. There was no correlation between Mn content with H$_2$O-P and NaHCO$_3$-P. Mn content showed a negative correlation to the NH$_4$Cl-P fraction. This indicated that the greater Mn content in sediment affected the smaller NH$_4$Cl-P fraction. A negative correlation also showed the relationship of Mn content with HCl-P. It showed a linear correlation with an R2 value was 0.9126 and a regression linear of 0.2189x + 2.5527. The HCl-P fraction indicated Ca-bound phosphorus but this value is also influenced by Mn content. The larger Mn content affected the smaller calcium-bound phosphorus was found in sediment. The result indicated no correlation between Mn content with H$_2$O-P and NaHCO$_3$-P and a negative correlation between the NH$_4$Cl-P fraction and HCl-P. It happened because the Mn was an unstable ion. Mn can be found as Mn(II) and Mn(IV). The form of Mn depending on the pH of the solution was generated from each solvent. The relationship of Fe content with phosphorus fractionations from the sediment of Jakarta Bay can be seen in Fig.-4.

![Graphs showing relationships between Fe content and phosphorus fractionations](image)

Fig.-4: Relationship of Fe Content with Phosphorus Fractionations

Characteristics of phosphorus can be determined from iron and calcium content. It can predict P behavior and estimate the potential risk for eutrophication and environmental condition. From Fig.-4 it can be seen there is no correlation between Fe Content with the fractionation of phosphorus. It happened because the Fe was an unstable ion. Fe can exchange from Fe(II) to Fe(III). which is influenced by the environmental conditions.

The relationship of Ca content with phosphorus fractionations from the sediment of Jakarta Bay can be seen in Fig.-5.

Linear correlation can be found in the relationship between Ca content with the HCl-P fraction with R2 value was 0.8476 and regression linear equation was 0.207x + 1.283. The correlation of Ca content to HCl-P fraction indicated if the sediment has the rich of calcium showed the high HCl-P fraction (calcium bound to phosphate).

CONCLUSION

Characteristics of marine sediment of Jakarta Bay in six stations were characterized by IR spectroscopy, physicochemical properties, and fractionation of phosphorus by sequential extraction. The relationship of metal content to phosphorus fractionation showed that there is no correlation between Fe, Mn and Ca content against total phosphorus in the marine sediment of Jakarta Bay. There was a linear correlation between Mn content in sediment to HCl-P fraction showed by R2 value was 0.9126 and regression linear...
was 0.2189x+2.5527. The curve obtained a negative correlation. A linear correlation between calcium content in sediment to the HCl-P fraction with the R^2 value of 0.8476 and regression linear was 0.207x + 1.283 and the curve showed a positive correlation.

![Graphs showing relationship between Ca content and phosphorous fractionations](image)

Fig.-5: Relationship Between Ca Content with Phosphorous Fractionations

ACKNOWLEDGEMENT

This research was funded by the Ministry of Industry, Indonesia. Thanks for the financial support.

REFERENCES

1. H.Y. Chen, T.H. Fang, M.R. Preston and S. Lin, *Atmospheric Environment*, 40(2), 279(2006), https://doi.org/10.1016/j.atmosenv.2005.09.051
2. L.H. Kim, E. Choi and M.K. Stenstrom, *Chemosphere*, 50(1), 53(2003), https://doi.org/10.1016/S0045-6535(02)00310-7
3. I. Aydin, F. Aydin, A. Saydut and C. Hamamci, *Journal of Hazardous Materials*, 168(2–3), 664(2009), https://doi.org/10.1016/j.jhazmat.2009.02.095
4. Y. Sahin, A. Demirak and F. Keskin, *Lakes, Reservoirs and Ponds*, 6(2), 139(2012).
5. N. Zaaboub, A. Ounis, M.A. Helali, B. Béjaoui, A.I. Lillebo, E.F. Silva and L. Aleya, *Ecological Engineering*, 73, 115(2014), https://doi.org/10.1016/j.ecoleng.2014.09.017
6. J. Meng, P. Yao, Z. Yu, T.S. Bianchi, B. Zhao, H. Pan and D. Li, *Estuarine, Coastal and Shelf Science*, 144, 27(2014), https://doi.org/10.1016/j.ecss.2014.04.015
7. H. Wang, A. Appan and J.S. Gulliver, *Water Research*, 37(16), 3928(2003), https://doi.org/10.1016/S0043-1354(03)00304-X
8. K. C. Ruttenberg, *Limnology and Oceanography*, 37(7), 1460(1992), https://doi.org/10.4319/lo.1992.37.7.1460
9. B. Shan, J. Li, W. Zhang, Z. Di and X. Jin, *Ecological Engineering*, 97, 426(2016), https://doi.org/10.1016/j.ecoleng.2016.10.042
10. Q. Liu, S. Liu, H. Zhao, L. Deng, C. Wang, Q. Zhao and S. Dong, *Chemosphere*, 120, 653(2015), https://doi.org/10.1016/j.chemosphere.2014.10.012
11. H.S. Jensen, P. Kristensen, E. Jeppesen, A. Skythf, *Hydrobiologia*, 235(1), 731(1992), https://doi.org/10.1007/978-94-011-2783-7_66
12. S. Sun, S. Huang, X. Sun, W. Wen, *Journal of Environmental Sciences*, 21(3), 291(2009), https://doi.org/10.1016/S1001-0742(08)62266-4
13. X. Ding, M. Behbahani, C. Gruden, and Y. Seo, *Journal of Environmental Management*, 160, 193(2015), https://doi.org/10.1016/j.jenvman.2015.06.010
14. A. Kaiserli, D. Voutsa and C. Samara, *Chemosphere*, 46(8), 1147(2002), https://doi.org/10.1016/S0045-6535(01)00242-9
15. S. Wang, X. Jin, H. Zhao, X. Zhou and F. Wu, *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 297(1–3), 154(2007), https://doi.org/10.1016/j.colsurfa.2006.10.040
16. W.A. House and F.H. Denison, *The Science of the Total Environment* 282, 341(2002), https://doi.org/10.1016/S0048-9697(01)00923-8
17. S. Veerasingam and R Venkatachalapathy, *Infrared Physics and Technology*, 66, 136(2014), https://doi.org/10.1016/j.infrared.2014.06.005
18. S. Azzouz and C. Boukhalfa, (2012). *Procedia Engineering*, 33, 121(2012), https://doi.org/10.1016/j.proeng.2012.01.1184
19. G. Lefèvre, *Advances in Colloid and Interface Science*, 107(2–3), 109(2004), https://doi.org/10.1016/j.cis.2003.11.002
20. E.J. Elzinga and D.L. Sparks, *Journal of Colloid and Interface Science*, 308(1), 53(2007), https://doi.org/10.1016/j.jcis.2006.12.061
21. H. Langford, A. Hodson and S. Banwart, *Applied Geochemistry*, 26, 206(2011), https://doi.org/10.1016/j.apgeochem.2011.03.105
22. F.K. Abdel-Gawad, H.S Ibrahim, N.S Ammar and M. Ibrahim, *Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy*, 97, 771(2012), https://doi.org/10.1016/j.saa.2012.07.050
23. P.G. Hatcher, A. Ravin, F. Behar, F. Baudin, *Organic Geochemistry*, 75, 8(2014), https://doi.org/10.1016/j.orggeochem.2014.05.016
24. S.G. Tuncel, S. Tugrul, T. Topal, *Water Research*, 41(2), 365(2007), https://doi.org/10.1016/j.watres.2006.10.001
25. A. Avilés, F.X. Niell, *Estuarine, Coastal and Shelf Science*, 64(4), 786(2005), https://doi.org/10.1016/j.ecss.2005.05.002
26. J. Buanuam, M. Mirò, E.H Hansen, J. Shiowatana, J.M. Estela and V. Cerdà, *Talanta*, 71(4), 1710(2007), https://doi.org/10.1016/j.talanta.2006.08.007
27. B. Gunduz, F. Aydin, I. Aydin and C. Hamamci, *Microchemical Journal*, 98(1), 72(2011), https://doi.org/10.1016/j.microc.2010.11.006
28. C. Liu, J. Sui and Z.Y. Wang, *International Journal of Sediment Research*, 23(1), 44(2008), https://doi.org/10.1016/S1001-6279(08)60004-9
29. M. Cong, T. Jiang, Y. Qi, Zao, H. Dong, P. Teng, D. Qiang, and S. Lu, *International Journal of Sediment Research, 29*(2), 278(2014), https://doi.org/10.1016/S1001-6279(14)60043-3
30. J. Ni, P. Lin, Y. Zhen, X. Yao, L. Guo, *Deep Sea Research Part I: Oceanographic Research Papers* 105, 74(2015), https://doi.org/10.1016/j.dsr.2015.08.008

[RJC-6050/2020]