Anti-protease and Immunomodulatory Activities of Bacteria Associated with Caribbean Sponges

Paula Tabares · Sheila M. Pimentel-Elardo · Tanja Schirmeister · Thomas Hünig · Ute Hentschel

Abstract Marine sponges and their associated bacteria have been proven to be a rich source of novel secondary metabolites with therapeutic usefulness in cancer, infection, and autoimmunity. In this study, 79 strains belonging to 20 genera of the order Actinomycetales and seven strains belonging to two genera of the order Sphingomonadales were cultivated from 18 different Caribbean sponges and identified by 16S rRNA gene sequencing. Seven of these strains are likely to represent novel species. Crude extracts from selected strains were found to exhibit protease inhibition against cathepsins B and L, rhodesain, and falcipain-2 as well as immunomodulatory activities such as induction of cytokine release by human peripheral blood mononuclear cells. These results highlight the significance of marine sponge-associated bacteria to produce bioactive secondary metabolites with therapeutic potential in the treatment of infectious diseases and disorders of the immune system.

Keywords Actinomycetes · Sphingomonads · Marine sponge · Anti-protease · Immunomodulatory · Phylogenetic analysis

Introduction

Infection, cancer, and autoimmunity pose serious problems to mankind (WHO 2009), and thus, there is a clear and continued need for new therapeutic agents against human diseases (Caspi 2008). Natural product discovery programs have yielded an exhaustive supply of biologically active secondary metabolites from terrestrial plants and microorganisms (Challis 2008). In the last four decades, drug discovery efforts have shifted to the marine environment where invertebrates (sponges, soft corals, ascidians), and plants have been subject to elaborate screening programs. In recent years, marine microorganisms, either free living or as symbionts, have moved into the forefront of attention (Gulder and Moore 2009) fueled largely by the recognition of untapped actinomycete diversity in the marine environment.

Many marine sponges are associated with dense and phylogenetically diverse microbial consortia that can account for nearly half of the animal’s biomass (Hentschel et al. 2006; Taylor et al. 2007). Of special interest are members of the phylum Actinobacteria which have been identified in sponges both by cultivation and cultivation-independent approaches (Abdelmohsen et al. 2010; Hentschel et al. 2002; Jiang et al. 2008; Kim et al. 2005; Montalvo et al. 2005; Pimentel-Elardo et al. 2010; Webster et al. 2001; Zhang et al. 2008). Actinobacteria and specifically...
members of the order actinomycetes are in fact quite abundant in the marine environment (Maldonado et al. 2005; Minic et al. 2002; Stach and Bull 2005). A number of obligately marine actinomycete species and genera have been described which indicates true adaptations to the marine environment rather than them simply being washed into the ocean as spores from terrestrial soils. The actinomycetes are of particular relevance due to their marine environment rather than them simply being cut into pieces of ca. 1 cm³, and then thoroughly homogenized in a sterile mortar with 10 volumes of sterile seawater. The supernatant was diluted in ten-fold series (10⁻¹, 10⁻², 10⁻³) and subsequently plated out on agar plates. The same protocol was repeated for sediment and seawater samples.

Bacterial Isolation

Six different media were used for the isolation of Actinobacteria, such as M1 (1 L artificial sea water (ASW) containing 10 g starch, 4 g yeast extract, 2 g peptone, 18 g Bacto Agar, and 1 L ASW), M2 (1 L ASW was made up of 6 ml of 100% glycerol, 1 g arginine, 1 g K₂HPO₄, 0.5 g MgSO₄, and 18 g Bacto Agar; Mincer et al. 2002), ISP medium 2 (1 L ASW containing 4 g yeast extract, 10 g malt extract, 4 g dextrose, and 18 g Bacto Agar; Shirling and Gottlieb 1966), M7 (1 L ASW containing 2 g peptone, 0.1 g asparagine, 4 g sodium propionate, K₂HPO₄, 0.1 g MgSO₄, 0.0001 g FeSO₄, 5 g glycerol, 20 g NaCl, and 18 g Bacto Agar; Webster et al. 2001), NaST21Cx (solution A 750 ml of artificial seawater containing 1 g K₂HPO₄ and 10 g Bacto Agar and solution B 250 ml artificial seawater containing 1 g KNO₃, 1 g MgSO₄, 1 g CaCl₂·2H₂O, 0.2 g FeCl₃, and 0.1 g MnSO₄·7H₂O; Magarvey et al. 2004), and oligotropic medium (1 L ASW containing 0.5 g tryptone, 0.1 g sodium glycerophosphate, 0.05 g yeast extract, and 12 g Bacto Agar; Santavy et al. 1990). Heat shock (95°C for 10 min) and incubation with 1.5% phenol at 30°C for 30 min were applied to the sponge homogenates to select for spore-forming actinomycetes and rare actinomycete genera. All plates were incubated and observed for growth of colonies for 6–8 weeks. All media were supplemented with the following antibiotics: cycloheximide (100 μg/ml), nystatin, and nalidixic acid (25 μg/ml) to inhibit the growth of fungi and Gram-negative bacteria. Sphingomonads were isolated on M1, ISP medium 2, and oligotropic medium. The isolates from the Bahamas are abbreviated as “BA” and those from Colombia as “CO”.

Materials and Methods

Sponge Collection

The first group of sponges (Aplysina fistularis, Plakortis sp., Amphimedon compressa, Aiolochroia crassa, Agelas clathrodes, Agelas cerebrum, Ircinia felix, Scopalina ruetzleri, Erylus formosus, Chondrilla nucula, and Aplysina archeri) was collected by SCUBA diving at depths of 3–20 m in Bahamas in July 2008 (GPS—26°27′3.25″ N, 77°54′14.59″ W). The second group of sponges (A. clathrodes, Aplysina insularis, Agelas tubulata, Bienna cribaria, A. crassa, Discoderma dissoluta, S. ruetzleri, Draggmacidon reticulata, I. felix, Monanchora arbuscula, and Plakinastrella onkodes) was collected at depths of 11–23 m including sediments and seawater in El Morro, Santa Marta Bay, Colombia (GPS—11°14′59.04″ N, 74°13′44.47″ W) in December 2008. Sponges were transferred to plastic bags containing seawater and immediately transported to the laboratory. Sponge specimens were rinsed in sterile seawater, cut into pieces of ca. 1 cm³, and then thoroughly homogenized in a sterile mortar with 10 volumes of sterile seawater. The supernatant was diluted in ten-fold series (10⁻¹, 10⁻², 10⁻³) and subsequently plated out on agar plates. The same protocol was repeated for sediment and seawater samples.

Molecular Identification and Phylogenetic Analysis

The 16S rRNA genes from all Bahamian sponge isolates were amplified, cloned, and sequenced according to...
Hentschel et al. (2001) using the universal primers 27F and 1492R (Lane 1991). Isolates from the Colombian sponges were first sorted into groups according to their morphological characteristics. Restriction length fragment polymorphism (RFLP) analysis was then performed on all isolates to reduce strain replication. Following 16S rRNA gene amplification using the universal primers 27F and 1492R (Lane 1991) and 341F and 907R (Muyzer et al. 1993), the PCR products were digested with the restriction enzymes Hae III andMsp I for 2 h. One to two isolates from each RFLP group were selected for 16S rRNA gene sequencing. Chimeric sequences were identified using the Pintail program (Ashelford et al. 2005). Sequence alignment and phylogenetic analysis were performed using the ARB software package (Ludwig et al. 2004). The genus-level affiliation of the isolates was validated using the Ribosomal Database Project Classifier (Wang et al. 2007). Tree construction was conducted using neighbor-joining algorithm (Jukes–Cantor correction) with bootstrap values based on 1,000 replications. The 16S rRNA gene sequences of the putatively novel isolates were deposited in GenBank under the accession numbers indicated in parentheses: BA21 (HM005239), BA53 (HM005240), CO58 (HM005241), CO104 (HM005242), CO105 (HM005243), CO132 (HM005244), and CO155 (HM005245). All other 16S rRNA gene sequences (Suppl. Tables 1 and 2) were deposited in GenBank under the accession numbers: HQ398366–HQ398418.

Organic Extract Preparation

Sixteen strains were selected based on phylogenetic novelty (four actinomycetes, three sphingomonads, Fig. 1a, b) or their affiliation to clades for which secondary metabolites had not been reported (nine strains). The isolates were cultured in 100 ml Erlenmeyer flasks each containing 20 ml liquid M1 medium. The cultures were grown for 4–21 days depending on their growth rate at 30°C while shaking at 150 rpm, and 3–ml culture aliquots were taken at different time points (days 4, 7, 14, and 21); 1.5 ml methanol was added to each culture aliquot for cell lysis, and shaking was continued at 150 rpm for 2 h at room temperature (Shaker SM 30, E. Bühler). The broths were centrifuged in 15-ml Falcon tubes at 5,000 rpm for 15 min at room temperature (Megafuge 1.0R, Heraeus), and the supernatants were dried using a rotary evaporator (Heidolph, Germany). The macerations were subsequently filtered by gravity using a Whatman filter paper No. 1. The filtrates were combined and dried by rotary evaporation. Media control using uninoculated M1 agar was extracted using the same method above.

Screening for Anti-protease Activity

Cathepsins B and L and rhodesain protease inhibition assays were performed according to Vicik et al. (2006a, b). Briefly, assays were done at 25°C in a 20-mM Tris–HCl buffer pH 6.0 (cathepsins) or in a 50-mM acetic acid buffer pH 5.5 (rhodesain) in a total volume of 200 μl. The final substrate concentration was 6.25 and 100.0 μM for cathepsins B and L and 10.0 μM for rhodesain. The final enzyme concentration was 53 ng/ml for cathepsins B and L and 41 nM for rhodesain. The falcipain-2 inhibition assay was performed as described previously by Breuning et al. (2010). Shortly, the enzyme was incubated with crude extracts for 5 min prior to substrate addition in a total volume of 200 μl. The following buffer was used: 50 mM acetate, pH 5.5 supplemented with 5 mM 1,4-dithiothreitol. Substrate (Cbz-Phe-Arg-AMC for all four enzymes) and inhibitor stock solutions were prepared in 10% final concentration dimethyl sulfoxide and were diluted with assay buffer. Crude extracts were tested in duplicates at a final concentration of 20 μg/ml. Protease inhibition assays were carried out on a Cary Eclipse fluorescence spectrophotometer (Varian, Darmstadt, Germany) using a microplate reader (excitation 365 nm, emission 460 nm).

The fluorometric SARS Mpro and Plpro protease inhibition assays were performed according to Kaeppler et al. (2005). Briefly, assays were performed at 25°C in a 20 mM Tris–HCl buffer pH 7.5 in a total volume of 200 μl. The final substrate (H2N-Abz-Ser-Val-Thr-Leu-Gln-Ser-Gly-(NO2)Tyr-Arg-(MTS)-TFA-salt for Mpro and Z-Arg-Leu-Arg-Gly-Gly-AMC-acetate salt for Plpro) concentration for inhibition assays was 50 μM, and the final enzyme concentration was 4.25 μg/ml. Crude extracts were tested in duplicates at a final concentration of 20 μg/ml. Assays were carried out at 325 nm excitation and 425 nm emission.

Screening for Immunomodulatory Activity

PBMC from healthy donors were prepared as a by-product of platelet concentrates obtained with leukoreduction system chambers. The cell concentrate was then diluted in versene (ethylenediaminetetraacetic acid). PBMCs were isolated from this preparation using density gradient centrifugation with lymphocyte separation medium (PAA
Laboratories GmbH, Pasching, Austria) and washed with ice-cold buffered salt solution/bovine serum albumin. Cells were counted and cultured in Roswell Park Memorial Institute medium 1640 plus L-glutamine, supplemented with 50 mM mercaptoethanol, MEM non-essential amino acids (100×), 1 mM sodium pyruvate (Gibco BRL, Gaithersburg, MD, USA), 100 U/ml penicillin (Grüenthal GmbH, Aachen, Germany) and 100 U/ml streptomycin sulfate (Riemser Arzneimittel, Greifswald, Germany), 10 mM (2-hydroxyethyl)-1-piperazineethanesulfonic acid (AppliChem GmbH, Darmstadt, Germany), and 10% AB-positive heat-inactivated (30 min at 56°C) human serum (PAA Laboratories GmbH, Pasching, Austria). Cells were stimulated in triplicates using 96-well cell culture plates (Greiner Bio-One, Kremsmünster, Austria; 2×10^5 cells in 200 μl per well) in a humidified incubator at 37°C with 5% CO₂. To increase sensitivity of T cells to stimulation, PBMC were precultured for 48 h at 1.5×10^7 cells in 1.5 ml medium in 24-well plates (T.H., unpublished). Supernatants were collected after 24 h and stored at −20°C. A panel of cytokines (TNF, IFN-γ, IL-2, and IL-10) was measured by cytometric bead array (BD Biosciences, San Jose, CA, USA), using an LSR II flow cytometer (BD Biosciences, San Jose, CA, USA) following the manufacturer’s instructions. Results were analyzed using FCAP Array software (Soft Flow, Inc., USA). Forty-eight hours after the stimulation, cell proliferation was measured as radioactivity incorporated into DNA from tritiated thymidine during a 24-h pulse, using a liquid scintillation counter (PerkinElmer, Waltham, MA, USA).
Results and Discussion

Cultivation and Identification of Actinomycetes

A total of 79 actinomycetes were recovered from 18 different Caribbean sponge species, sediment, and seawater, 56 of which were identified based on nearly complete 16S rRNA gene sequence information (Supplementary Table 1). The highest number of actinomycete isolates was recovered from *S. ruetzleri* (20 isolates), followed by *A. insularis* (12), *D. dissoluta* (12), *A. fistularis* (7), *D. reticulata* (5), *A. clathrodes* (5), *P. onkodes* (4), *I. felix* (2), *Plakortis* sp. (3), *M. arbuscule* (1), *A. crassa* (1), and *E. formosus* (1). Actinomycetes were not recovered from the remaining six sponges. Additionally, five isolates were recovered from marine sediments and one isolate from natural seawater. To our knowledge, this is the first report on the isolation of actinomycetes from the sponges *A. cerebrum*, *A. tubulata*, *A. compressa*, *A. archeri*, *B. cribaria*, and *C. nucula*.

In terms of actinomycete diversity, the 79 cultivated strains are represented by 20 different genera namely *Microbacterium* (21 isolates), *Rhodococcus* (10), *Streptomyces* (5), *Myco bacterium* (6), *Micromonospora* (5), *Knoellia* (4), *Gordonia* (4), *Curto bacterium* (4), *Arthrobacter* (4) *Salinispora* (3), *Saccharopolyspora* (2), *Nocardio dioides* (2), *Citromicrobium* (2), *Sanguibacter* (1), *Lapillicoccus* (1), *Kocuria* (1), *Diezia* (1), *Cellulosimicrobium* (1), *Cellulomonas* (1), and *Agrococcus* (1; Supplementary Table 1).

Several recent publications have shown that *Streptomyces*, *Micromonospora*, and *Rhodococcus* are among the dominant genera commonly isolated from marine sponges (Abdelmohsen et al. 2010; Schneemann et al. 2010; Sun et al. 2010; Zhang et al. 2008). In our study, *Microbacterium* (27%) was the most dominant strain followed by *Rhodococcus* (12%) and *Streptomyces* (9%). Nevertheless, we also present here the isolation of rare *Actinobacteria* genera namely *Cellulosimicrobium*, *Citromicrobium*, *Sanguibacter*, and *Lapillicoccus*. Moreover, this is the first report on the cultivation of the genera *Citromicrobium*, *Sanguibacter*, and *Lapillicoccus* from marine sponges and of the genus *Lapillicoccus* from the marine environment in general.

Remarkably, four actinomycete strains exhibited less than 98.1% 16S rRNA gene sequence similarities to validly described species. These low similarity values suggest that the strains belong to novel taxa (Stackebrandt and Ebers 1996). Phylogenetic analysis (Fig. 1a) revealed that these strains belong to the order Actinomycetales under the following genera: *Lapillicoccus*, *Microbacterium*, *Rhodococcus*, and *Nocardio dioides*. Phenotypic and genotypic characterization is further required to confirm the taxonomic affiliation of these strains. Moreover, the isolation of novel actinomycete taxa has previously yielded new chemistry (Feling et al. 2003; Fiedler et al. 2005; Pimentel-Elardo et al. 2008), and thus, this targeted approach offers a more productive route to natural products discovery.

Cultivation and Identification of Sphingomonads

Seven isolates were identified belonging to the order *Sphingomonadales* and the genera *Sphingobium* (six isolates) and *Sphingomonas* (one isolate). Nearly complete 16S rRNA gene information is provided for four isolates (Supplementary Table 2). The low 16S rRNA gene sequence similarities (<98.5%) of two of these strains also suggest the taxonomic novelty at the species level (Fig. 1b). While members of the genus *Sphingomonas* have previously been isolated from marine organisms such as from a bivalve (Heindl et al. 2010; Romanenko et al. 2007, 2009) and sponges (Dieckmann et al. 2005; Laroche et al. 2007), we report here on the isolation of members of the genus *Sphingobium* from a marine source for the first time.

Anti-protease Activity

The crude extracts of 16 isolates cultivated in M1 medium and extracted at four different time points were tested for their anti-protease activities. This involved testing against the human cysteine proteases and cathepsins B and L, which are involved in tumor metastasis (Calcins and Sloane 1995). Extracts were furthermore tested against proteases from the human parasites *Plasmodium falciparum* (falcipain-2) and *Trypanosoma brucei rhodesiense* (rhodesain) which are responsible for causing malaria and African trypanosomiasis (sleeping sickness), respectively. Moreover, crude extracts were tested for their capacity to inhibit the papain-like (SARS-CoV PLpro) and the main protease (SARS-CoV Mpro) of the SARS coronavirus. These enzymes are essential for the replication of the severe acute respiratory syndrome (SARS) coronavirus (Anand et al. 2003; Ratia et al. 2006). Cathepsins B and L, rhodesain, and falcipain-2 enzymes belong to the cathepsin L subfamily of cysteine proteases (clan CA, family C1; CAC1). SARS-CoV PLpro also belongs to the clan of cysteine proteases CA but is affiliated to the family C16, which contains polyprotein endopeptidases from coronaviruses. The protease SARS-CoV Mpro belongs to the clan PA (family 30) with a catalytic type of mixed cysteine, serine, and threonine (Rawlings et al. 2010).

The extracts of eight isolates showed a certain specificity to the clan CA (family C1; CAC1) group of proteases, whereas no protease inhibition was observed against viral proteases (Table 1). Extracts were considered active when, at a concentration of 20 µg/ml, an inhibition of at least 40% was observed. The strains *Nocardio dioides* sp. BA21, *Saccha-
ropolyspora shandongensis strain CO86 and Sphingobium sp. CO132 inhibited rhodesain. The isolates Agrococcus jenensis strain BA22 and Sphingomonas mucosissima strain CO180 inhibited cathepsin B and falcipain-2. Micromonospora coxensis strain CO74 was active only against falcipain-2, and Rhodococcus sp. CO155 was only active against cathepsin L. Extracts of M. coxensis strain CO164 were most active, inhibiting all four proteases tested.

In fluorometric assays, the enzyme activity is measured by the hydrolysis rate of a fluorogenic or chromogenic substrate (Ludewig et al. 2010). This means that substrate and inhibitor compete for the enzyme’s active site and that depends on the substrate concentration and on the affinity of the substrate to the target enzyme. The inhibition of rhodesain, to which the substrate (Cbz-Phe-Arg-AMC) has a particularly high affinity, by extracts of Nocardioides sp. BA21, S. shandongensis CO86, M. coxensis strain CO164, and Sphingobium sp. CO132, is thus remarkable. Future efforts will be directed at structure elucidation of the anti-protease secondary metabolites from these isolates.

Most of the protease inhibitors reported to date are synthetic molecules developed by structure-based design (Turk 2006). Nevertheless, protease inhibitors have been also found in natural sources. Miraziridine A, a pentapeptide inhibitor of cathepsins B and L, which was isolated from the marine sponge Theonella mirabilis, is one such example (Nakao et al. 2000). A family of aeruginosin inhibitors is active against human serine proteases and was isolated from marine sponges and cyanobacterial water-blooms (Ersmark et al. 2008). Only few protease inhibitors have so far been reported from actinomycetes, leupeptin being a notable exception (Hozumi et al. 1972). In this study, we report on six actinomycete and two sphingomonad isolates as potential sources of novel protease inhibitors.

Stimulation of PBMC

Human PBMC were stimulated with crude extracts prepared from bacterial isolates at four different time points as well as grown on solid media. The CD3-specific monoclonal antibody OKT3, which addresses the T cell antigen receptor complex, was used as a positive control. After 24 h, a panel of cytokines (TNF, IFN-γ, IL-2, and IL-10) was measured in the culture supernatants, and after 48 h, cell proliferation was determined by incorporation of tritiated thymidine.

Table 1 Anti-protease activities of crude extracts from actinomycete and sphingomonad strains grown on M1 media and extracted at different time points (4, 7, 14, and 21 days)

Strain	% protease inhibition			
	Cathepsin B	Cathepsin L	Falcipain-2	Rhodesain
Actinomycetes				
Nocardioides sp. BA21^a	ND	ND	ND	40±1^e
Agrococcus jenensis strain BA22	41±1^c	ND	44±2^b, 40±4^e	ND
Micromonospora coxensis strain CO74	ND	ND	42±2^e	ND
Saccharopolyspora shandongensis strain CO86	ND	ND	ND	52±1^d
Rhodococcus sp. CO155^a	ND	44±4^d	ND	ND
Micromonospora coxensis strain CO164	45±3^b	43±2^d	41±2^d	46±3^e, 57±5^c
Sphingomonads				
Sphingobium sp. CO132^a	ND	ND	ND	53±3^d
Sphingomonas mucosissima strain CO180	49±5^b	ND	45±1^d	ND

Samples were tested in duplicates at a concentration of 20 μg/ml

^a Putatively novel species

^b 4 days

^c 21 days

^d 7 days

^e 14 days

ND Not detected
the principal mediator of the acute inflammatory response to gram-negative infectious microbes, is responsible for many of the systemic complications of severe infections. IFN-γ is the principal macrophage-activating cytokine and serves critical functions in innate and in adaptive cell-mediated immunity. IL-2 is a cytokine responsible for T cell clonal expansion after antigen recognition. IL-10, a cytokine with anti-inflammatory properties, has a central role in infection by limiting the immune response to pathogens and thereby preventing damage to the host.

When culturing PBMC in the presence of our crude extracts, different patterns of cytokine release were observed. Even though this assay does not distinguish which cells are responsible for cytokine production, we can make some assumptions about their cellular source. This is facilitated by the fact that individual extracts induced quite distinct patterns of cytokine release. For example, A. jenensis strain BA22 was very active in inducing TNF and IL-10, suggesting that this preparation addresses monocytes. In contrast, M. coxensis strain CO164 was a potent inducer of IFN-γ, IL-2, and, to a lesser extent, IL-10. Since the main sources of IFN-γ are TH1 CD4+ T cells and CD8+ T cells, this preparation appears to have T cell activating properties. Furthermore, the induction of IL-2 but not of IFN-γ by S. shandongensis strain CO86 suggests a further specificity for CD4+ T cell activation. Isolates A. jenensis strain BA22, A. oxydans strain BA30, A. oxydans strain BA34, and M. coxensis strain CO164 were grown on M1 agar plates for 7–10 days. Crude extract from isolate A. oxydans strain BA34b was obtained after 4 days of liquid culture, and active extracts from strains Lapillicoccus sp. BA53, S. shandongensis strain CO86 and Sphingobium sp. CO132 were prepared after 7 days of liquid culture.

![Fig. 2 Cytokine responses of precultured human peripheral blood mononuclear cells to crude extracts from bacterial isolates. a TNF, b IFN-γ, c IL-2, and d IL-10. Crude extracts were tested in triplicates at three different concentrations (preparations from liquid cultures—25, 2.5, and 0.25 μg/ml, from solid cultures—10, 1, and 0.1 μg/ml), and the most active one is shown. The isolates A. jenensis strain BA22, A. oxydans strain BA30, A. oxydans strain BA34a, and M. coxensis strain CO164 were grown on M1 agar plates for 7–10 days. Crude extract from isolate A. oxydans strain BA34b was obtained after 4 days of liquid culture, and active extracts from strains Lapillicoccus sp. BA53, S. shandongensis strain CO86 and Sphingobium sp. CO132 were prepared after 7 days of liquid culture](image-url)

![Fig. 3 PBMC proliferation, measured as radioactivity incorporated into DNA from tritiated thymidine, in response to stimulation with crude extract from strain Sphingobium sp. CO105. Crude extract was tested in triplicates at a concentration of 65 ng/ml](image-url)
With regard to the induction of proliferation, crude extract prepared from solid culture of strain Sphingobium sp. CO105 exhibited the strongest mitogenic activity, reaching 14% of the positive control (OKT3, activating all T cells; Fig. 3). When strain Sphingobium sp. CO105 was tested for its capacity to induce cytokine release, a weak induction of IL-2 was observed (data not shown), which suggests that T cells are the responsive cell type. The remainder of the samples did not stimulate PBMC proliferation.

Sphingomonads are well-known for their production of glycosphingolipids. For example, the glycosphingolipid GSL-1 was found to be produced by a Sphingomonas strain isolated from the sponge Plakortis simplex (Laroche et al. 2007). The immunomodulatory activities of the two sphingomonads presented in this study also do not come as a surprise. Glycosphingolipids are a class of compounds that have been shown to serve as immunomodulatory agents (Long et al. 2007). The substance KRN7000, a synthetic analog of the natural product agelasphin 9b from the sponge Agelas mauritianus, is one such example and is currently in clinical trials for its capacity to stimulate NKT cells (Park et al. 2010). To our knowledge, we present here, for the first time, immunomodulatory activities from actinomycetes.

Conclusions

The cultivation of 79 strains belonging to 20 different Actinomycetales genera as well as seven strains belonging to two Sphingomonadales genera represents considerable diversity of culturable bacteria in 18 Caribbean sponges as shown in this study. The isolation of rare actinomycete genera which have previously not been reported from marine organisms and the identification of seven putatively novel actinomycete and sphingomonad species based on the phylogenetic analysis of their 16S rRNA gene sequence interestingly adds to this caveat. These results further prove that marine sponges still remain a relatively untapped resource for actinomycetes.

Moreover, anti-protease activities against cathepsins B and L, rhodesain, and falcipain-2, as well as immunomodulatory activities specifically the induction of cytokine release by PBMC and induction of cell proliferation, were found to be exhibited by the crude extracts of selected strains. The anti-protease and immunomodulatory activities exhibited by these strains further warrant the need for a bioassay-guided purification and identification of the bioactive secondary metabolites. Furthermore, it will be necessary to identify the responsive immune cell types and to obtain a more detailed mechanistic understanding of the processes underlying their modulation.

Acknowledgments

We gratefully acknowledge H. Angermeier (U. Würzburg) and J. Pawlik (U. North Carolina, Wilmington) for sponge collection from the Bahamas, C. Heindl, S. Herr, and C. Gernert for technical assistance in the laboratory and P. Römer for the introduction into the immunological techniques (U. Würzburg). We furthermore thank S. Zea (INVEMAR, Santa Marta, Colombia) for help in sponge identification as well as L. Velozo and L.E. Ramírez (Universidad Tecnológica de Pereira, Colombia) for providing the laboratory conditions for the cultivation of the Colombian strains. Financial support was provided by a doctoral fellowship (Graduate College “Immunomodulation GK 520” funded by the DFG) to P.T. and the DFG (SFB 630 TP A5) to U.H.

References

Abdelmohsen UR, Pimentel-Elardo SM, Hanora A, Radwan M, Abou-El-Ela SH, Ahmed S, Hentschel U (2010) Isolation, phylogenetic analysis and anti-infective activity screening of marine sponge-associated actinomycetes. Mar Drugs 8:399–412

Anand K, Ziebuhr J, Wadhwani P, Messers JR, Hilgenfeld R (2003) Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs. Science 300:1763–1767

Ashelford KE, Chuzhanova NA, Fry JC, Jones AJ, Weightman AJ (2005) At least 1 in 20 16S rRNA sequence records currently held in public repositories is estimated to contain substantial anomalies. Appl Environ Microbiol 71:7724–7736

Azuma I, Seya T (2001) Development of immunoadjuvants for immunotherapy of cancer. Int Immunopharmacol 1:1249–1259

Breuning A, Degel B, Schulz F, Buchold C, Stempka M, Machon U, Heppner S, Gellhaus C, Leippe M, Lehyn M, Kisker C, Rath J, Stich A, Gut J, Rosenthal PJ, Schmuck C, Schirmeister T (2010) Michael acceptor based antiplasmodial and antityrososomal cysteine protease inhibitors with unusual amino acids. J Med Chem 53:1951–1963

Buchanan GO, Williams PG, Feling RH, Kauffman CA, Jensen PR, Fenical W (2005) Sporolides A and B: structurally unprecedented halogenated macrolides from the marine actinomycete Salinispora tropica. Org Lett 7:2731–2734

Calkins CC, Sloane BF (1995) Mammalian cysteine protease inhibitors: biochemical properties and possible roles in tumor progression. Biol Chem Hoppe Seyler 376:71–80

Caspi RR (2008) Immunotherapy of autoimmunity and cancer: the penalty for success. Nat Rev Immunol 8:970–976

Challis GL (2008) Mining microbial genomes for new natural products and biosynthetic pathways. Microbiology 154:1555–1569

Danner SA, Carr A, Leonard JM, Lehman LM, Gadiol F, Gonzales J, Raventos A, Rubio R, Bouza E, Pintado V, Aguado AG, Delomas JG, Delgado R, Borleiffs JCC, Hsu A, Valdes JM, Boucher CAB, Cooper DA, Gimeno C, Clotet B, Tor J, Ferrer E, Martinez PL, Moreno S, Zancada G, Alcami J, Noriega AR, Pulido F, Glassman HN (1995) A short-term study of the safety, pharmacokinetics, and efficacy of Ritonavir, an inhibitor of HIV-1 protease. New Engl J Med 333:1528–1533

Dieckmann R, Graeb R, Kasaesler I, Szewczyk U, von Döhren H (2005) Rapid screening and dereplication of bacterial isolates from marine sponges of the Sula Ridge by intact-cell-MALDI-TOF mass spectrometry (ICM-MS). Appl Microbiol Biotechnol 67:539–548

Ersmark K, Del Valle JR, Hanssian S (2008) Chemistry and biology of the aeruginosin family of serine protease inhibitors. Angew Chem Int Edit 47:1202–1223

Feling RH, Buchanan GO, Mincer TJ, Kauffman CA, Jensen PR, Fenical W (2003) Salinosporamide A: a highly cytotoxic
proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus *Salinospora*. Angew Chem Int Edit 42:355–357

Fenical W, Jensen PR, Palladino MA, Lam KS, Lloyd GK, Potts BC (2009) Discovery and development of the anticancer agent salinosporamide A (NPI-0052). Bioorg Med Chem 17:2175–2180

Fiedler HP, Bruntner C, Bull AT, Ward AC, Goodfellow M, Poterat O, Puder C, Mihm G (2005) Marine actinomycetes as a source of novel secondary metabolites. Antonie van Leeuwenhoek 87:37–42

Gulder TA, Moore BS (2009) Chasing the treasures of the sea—bacterial marine natural products. Curr Opin Microbiol 12:252–260

Heindl H, Wiese J, Thiel V, Imhoff JF (2010) Phylogenetic diversity and antimicrobial activities of bryozoan-associated bacteria isolated from Mediterranean and Baltic Sea habitats. Syst Appl Microbiol 33:94–104

Hentschel U, Schmid M, Wagner M, Fieseler L, Gernert C, Hacker J (2001) Isolation and phylogenetic analysis of bacteria with antimicrobial activities from the Mediterranean sponges *Aplysina aerophoba* and *Aplysina cavernicola*. FEMS Microbiol Ecol 35:305–312

Hentschel U, Hopke J, Horn M, Friedrich AB, Wagner M, Hacker J, Moore BS (2002) Molecular evidence for a uniform microbial community in sponges from different oceans. Appl Environ Microbiol 68:4431–4440

Hentschel U, Usber KM, Taylor MW (2006) Marine sponges as microbial fermenters. FEMS Microbiol Ecol 55:167–177

Hozumi M, Ogawa M, Sugimura T, Takeuchi T, Umezawa H (1972) Inhibition of tumorigenesis in mouse skin by leupeptin, a protease inhibitor from actinomycetes. Cancer Res 32:1725–1728

Jensen PR, Mincer TJ, Williams PG, Fenical W (2005) Marine actinomycete diversity and natural product discovery. Antonie van Leeuwenhoek 87:43–48

Jiang S, Li X, Zhang L, Sun W, Dai S, Xie L, Liu Y, Lee K (2008) Culturable actinobacteria isolated from marine Sponge *Iotrochota* sp. Mar Biol 153:945–952

Kaeppler U, Stiefl N, Schiller M, Vicik R, Breuning A, Schmitz W, Konig A, Liss T, Lussmann R, May M, Konig A, Liss T, Ussmann R, May M, Nonhoff B, Reichel B, Streithoff R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371

Margarvey NA, Keller JM, Berman V, Dworkin M, Sherman DH (2004) Isolation and characterization of novel marine-derived actinomycete taxa rich in bioactive metabolites. Appl Environ Microbiol 70:7520–7529

Maldonado LA, Stach JEM, Pathom-aroe W, Ward AC, Bull AT, Goodfellow M (2005) Diversity of cultivable Actinobacteria in geographically widespread marine sediments. Antonie van Leeuwenhoek 87:11–18

Mincer TJ, Jensen PR, Kauffman CA, Fenical W (2002) Widespread and persistent populations of a major new marine actinomycete taxon in ocean sediments. Appl Environ Microbiol 68:5005–5011

Montalvo NF, Mohamed NM, Enticknap JJ, Hill RT (2005) Novel actinobacteria from marine sponges. Antonie van Leeuwenhoek 87:29–36

Muyzer G, Waal ECD, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

Nakao Y, Fujita M, Warabi K, Matsunaga S, Fusetani N (2000) Bioactive marine metabolites. Part 104. Miraziridine A, a novel cysteine protease inhibitor from the marine sponge *Theonella aff. mirabilis*. J Am Chem Soc 122:10462–10463

Park JJ, Lee JH, Seo KC, Bricard G, Venkataswamy MM, Porcelli SA, Chung SK (2010) Syntheses and biological activities of KN7000 analogues having aromatic residues in the acyl and backbone chains with varying stereochemistry. Bioorg Med Chem Lett 20:814–818

Pimentel-Erardo S, Gulder TAM, Hentschel U, Bringmann G (2008) Cebulactams A1 and A2, new macrolactams isolated from *Saccharopolyspora cebrusrus*, the first obligate-marine strain of the genus *Saccharopolyspora*. Tetrahedron Lett 49:6889–6892

Pimentel-Erardo SM, Koziytska S, Bugni TS, Ireland CM, Moll H, Hentschel U (2010) Anti-parasitic compounds from *Streptomycetes* sp. strains isolated from Mediterranean sponges. Mar Drugs 8:373–380

Ratia K, Saikatendu KS, Santarsiero BD, Barretto N, Baker SC, Stevens RC, Meseac AD (2006) Severe acute respiratory syndrome coronavirus papain-like protease: structure of a viral deubiquitinating enzyme. Proc Natl Acad Sci USA 103:5717–5722

Rawlings ND, Barrett AJ, Bateman A (2010) MEROPS: the peptidase database. Nucleic Acids Res 38:D227–D233

Romanenko LA, Uchino M, Frolova GM, Tanaka N, Kalinovskaya NI, Latsyrev N, Mikhailov VV (2007) *Sphingomonas mollusicola* sp. nov., a novel marine isolate with antimicrobial activity. Int J Syst Evol Microbiol 57:358–363

Romanenko LA, Tanaka N, Frolova GM, Mikhailov VV (2009) *Arenicella xantha* gen. nov., sp. nov., a novel Gammmaproteobacterium isolated from a marine sandy sediment from the Sea of Japan. Int J Syst Evol Microbiol. doi: 10.1099/ijs.0.017194-0

Santawy DL, Willenz P, Colwell RR (1990) Phenotypic study of bacteria associated with the Caribbean sponges, *Ceratoporella nicholsoni*. Appl Environ Microbiol 56:1750–1762

Schneemann I, Nagel K, Kajahn I, Labes A, Wiese J, Imhoff JF (2010) Comprehensive investigation of marine *Actinobacteria*
associated with the sponge *Halichondria panicea*. Appl Environ Microbiol 76:3702–3714

Shirling E, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:317–327

Stach JE, Bull AT (2005) Estimating and comparing the diversity of marine actinobacteria. Antonie van Leeuwenhoek 87:3–9

Stackebrandt E, Ebers J (2006) Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33:152–155

Sun W, Dai S, Jiang S, Wang G, Liu G, Wu H, Li X (2010) Culture-dependent and culture-independent diversity of Actinobacteria associated with the marine sponge *Hymeniacidon perleve* from the South China Sea. Antonie van Leeuwenhoek 98:65–75

Taylor MW, Radax R, Steger D, Wagner M (2007) Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev 71:295–347

Turk B (2006) Targeting proteases: successes, failures and future prospects. Nat Rev Drug Discov 5:785–799

Vicik R, Busemann M, Gelhaus C, Stiefl N, Scheiber J, Schmitz W, Schulz F, Mladenovic M, Engels B, Leippe M, Baumann K, Schirmeister T (2006a) Aziridine-based inhibitors of cathepsin L: synthesis, inhibition activity, and docking studies. ChemMedChem 1:1126–1141

Vicik R, Hoerr V, Glaser M, Schultheis M, Hansell E, Mckerrow JH, Holzgrabe U, Caffrey CR, Ponte-Sucre A, Moll H, Stich A, Schirmeister T (2006b) Aziridine-2,3-dicarboxylate inhibitors targeting the major cysteine protease of *Trypanosoma brucei* as lead trypanocidal agents. Bioorg Med Chem Lett 16:2753–2757

Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

Webster NS, Wilson KJ, Blackall LL, Hill RT (2001) Phylogenetic diversity of bacteria associated with the marine sponge *Rhopaloeides odorabile*. Appl Environ Microbiol 67:434–444

WHO (2009) World malaria report 2009. World Health Organization, Geneva

Zhang HT, Zhang W, Jin Y, Jin MF, Yu XJ (2008) A comparative study on the phylogenetic diversity of culturable Actinobacteria isolated from five marine sponge species. Antonie van Leeuwenhoek 93:241–248