The Role of Noncommunicable Diseases in the Pursuit of Global Health Security

Deliana Kostova, Patricia Richter, Gretchen Van Vliet, Michael Mahar, and Ronald L. Moolenaar

Noncommunicable diseases and their risk factors are important for all aspects of outbreak preparedness and response, affecting a range of factors including host susceptibility, pathogen virulence, and health system capacity. This conceptual analysis has 2 objectives. First, we use the Haddon matrix paradigm to formulate a framework for assessing the relevance of noncommunicable diseases to health security efforts throughout all phases of the disaster life cycle: before, during, and after an event. Second, we build upon this framework to identify 6 technical action areas in global health security programs that are opportune integration points for global health security and noncommunicable disease objectives: surveillance, workforce development, laboratory systems, immunization, risk communication, and sustainable financing. We discuss approaches to integration with the goal of maximizing the reach of global health security where infectious disease threats and chronic disease burdens overlap.

Keywords: Noncommunicable diseases, Public health preparedness/response, Global health security, Pandemic preparedness

Introduction

The ongoing COVID-19 pandemic has revealed the importance of noncommunicable diseases (NCDs) to health and economic outcomes. Within a few months of the pandemic’s emergence, disproportionate rates of hospitalization, intensity of care, and death were documented for COVID-19 patients with preexisting cardiovascular disease (CVD), hypertension, diabetes, chronic respiratory disease, or cancer. Prevalent NCD risk factors, such as obesity and tobacco use, have been implicated in the progression of and susceptibility to COVID-19 infection. During both of the world’s most recent pandemics, influenza A H1N1 and COVID-19, obesity has been a shared predictor of pathogen virulence and pandemic burden. The convergence between noncommunicable pathologies and infectious outcomes represents a critical switch point in the dynamics of epidemic outbreaks. The underlying health of a population is an aspect of key factors that determine the course of pandemics—ie, their severity and transmissibility—and our ability to plan and respond to them.
In 2005, the World Health Organization introduced the International Health Regulations (IHR) 2005—a diverse set of approaches to reduce the impact of international public health emergencies through improved country capacity to detect, assess, report, and respond to health security threats.16-17 In 2014, the Global Health Security Agenda (GHSA) emerged as a joint initiative among multiple countries to further support implementation of the IHR.18 However, despite the syndemic relationship between communicable and noncommunicable conditions worldwide and despite growing recognition that integrated health systems are important to health security objectives, NCD aspects of health security are not part of IHR- or GHSA-related preparedness approaches. In a world of overlapping disease risks, where NCDs can no longer be siloed away as an independent circumstance from pandemic outcomes, pandemic prevention strategies might benefit from incorporating select NCD elements as part of an integrated approach to health systems.

The objectives of this conceptual analysis are twofold. First, we outline a theoretical framework to inform the relevance of NCDs to global health security efforts, using an application of the Haddon matrix to outbreak preparedness. Second, we identify 6 technical areas in the IHR and GHSA that represent opportunities for integrating health security and NCD objectives. We present an approach for integrating applicable NCD components into these technical areas, with the goal of maximizing the reach of global health security where infectious disease threats and chronic disease burdens overlap.

Convergence of Infectious Diseases and NCDs—The Haddon Matrix

The relevance of NCDs to outbreak preparedness can be understood using the Haddon matrix,19 a tool developed in the 1970s to provide a conceptual framework of the circumstances before, during, and after an emergency event. When applied to disease outbreaks, the Haddon matrix classifies 3 event phases (preevent, event, postevent) across 4 interacting elements: host population, disease agent, physical environment, and social environment.20,21 As summarized in Table 1, NCDs play a role across all elements of outbreak preparedness and response, affecting a range of factors including host susceptibility, pathogen virulence, and health system capacity for addressing emergent and ongoing health threats. Because epidemics tend to occur against a baseline of chronic conditions, our understanding of epidemics has expanded to include the notion of syndemics—simultaneous elevations of 2 or more different diseases resulting in accelerated morbidity.22-24 Syndemics represent a shift in the global health security landscape, as planning for outbreaks

Pre-outbreak	Host (Population at Risk)	Disease Agent (Pathogen Virulence)	Physical Environment (Health System)	Social Environment (Budgets, Policy, Political Prioritization)
NCDs and their risk factors increase population susceptibility to pathogens; better NCD care, vaccination coverage, and appropriate risk communication increase host resilience	N/C	NCD-focused care is interlinked with and strengthens the primary care infrastructure	Budget priorities reflect dual disease burden; including NCD elements in health security initiatives can reinforce community trust and facilitate political cooperation	

Outbreak	Host (Population at Risk)	Disease Agent (Pathogen Virulence)	Physical Environment (Health System)	Social Environment (Budgets, Policy, Political Prioritization)
NCDs increase population susceptibility; infections can have immediate NCD sequelae, requiring treatment for both; understanding high-risk populations helps target interventions	NCDs can increase pathogen virulence, increasing adverse outcomes in affected populations	Health systems structured around NCD control and primary care can provide the infrastructure for medical response during outbreaks (staff, supply chains, healthcare access)	Community trust established through integrated health systems/NCD strengthening prior to an outbreak can facilitate emergency response during an outbreak	

Post-outbreak	Host (Population at Risk)	Disease Agent (Pathogen Virulence)	Physical Environment (Health System)	Social Environment (Budgets, Policy, Political Prioritization)
NCDs continue to affect population susceptibility; NCD burden may rise due to clinical after effects of infection	Understanding the role of pathogens in NCD complications can inform interventions	Health systems evolve to accommodate dual disease burden	Budget and policy priorities reflect dual disease burden	

Table 1. Application of the Haddon Matrix to Integrate NCDs with Outbreak Preparedness and Response

Abbreviation: n/a, not applicable; NCD, noncommunicable disease.
must now take place in a context where contagious diseases are no longer the dominant threat to health in low- and middle-income countries (LMICs), and where NCDs increasingly shape national public health priorities.

Host Population and Disease Agent

Chronic diseases increase host susceptibility to infection. At the population level, this may have a direct effect on the potential size of an outbreak, serving as a predictive factor for transmission. Underlying NCDs (eg, heart disease, diabetes) and their risk factors (eg, obesity, tobacco use) can also influence the severity of an outbreak by increasing pathogen virulence in affected persons. For example, a metaanalysis of 6 studies has linked preexisting cardiovascular disease to increased COVID-19 severity. A metaanalysis of 6 studies has found that COVID-19 progression is exacerbated by hypertension, diabetes, chronic obstructive pulmonary disease, and cerebrovascular disease. Diabetes has been shown to play a role in determining disease outcomes during the current COVID-19 pandemic, during the 2009 outbreak of H1N1, and during the 2003 outbreak of severe acute respiratory syndrome (SARS), and during outbreaks of Middle East respiratory syndrome. Diabetes worsens outcomes in endemic infectious diseases including malaria, tuberculosis, mucormycosis, and overall infections in developing countries. A metaanalysis of 65 studies established that preexisting hypertension and diabetes were significant factors in determining the severity of dengue and West Nile virus infections. During the 2014-2016 Ebola outbreak, a higher mortality rate was documented in older patients, representing a possible concentration of undiagnosed chronic conditions in this population. Correlations between infection outcomes and chronic conditions such as hypertension and diabetes have been recorded for Middle East respiratory syndrome, avian influenza H7N9, and H1N1. A leading NCD risk factor, tobacco use, has been implicated by numerous studies as a shared risk factor for increasing severity and progression of infections. Smoking has been shown to worsen illness from COVID-19 infection in a metaanalysis of 11 studies, possibly by increasing the expression of molecules in the lungs that COVID-19 uses to attach to and infect cells. Obesity, a condition affecting pulmonary function and inflammatory response, is independently associated with COVID-19 complications, particularly in younger patients. In H1N1, obesity aggravates not only individual patient outcomes but has been shown to increase the duration of viral shedding, intensifying transmission at the population level.

In a reverse effect, infectious disease agents may independently add to the chronic disease burden both during and after outbreaks by generating new NCD manifestations in affected patients. Within the Haddon matrix, this can generate postevent implications, reflecting increased morbidity not only during active public health emergencies but also thereafter. For example, acute cardiovascular disease (CVD) complications have been observed during COVID-19 infection in older adults and younger patients. After recovery from COVID-19, lingering myocardial inflammation has been documented in a majority of patients in a study using MRI (magnetic resonance imaging) followup. Influenza illness is a recognized trigger for heart attack and stroke, and SARS coronavirus infection during the 2003 outbreak was linked to a short-term increased risk of stroke, and to long-term alterations in lipid metabolism. Endemic infection with hepatitis B or C virus causes a majority of liver cancers. A systematic review of 10 articles has documented the significance of CVD complications from Zika virus in adults, which can occur in addition to the more widely reported neurological and cardiac consequences of the infection in infants. Persistent CVD complications also occur from Chagas disease, chikungunya, dengue, and tuberculosis, and the precipitating role of malaria in chronic renal disease has been known for decades. The added risk of NCDs with infectious etiology implies that emergency response efforts must have readiness to address both types of illness, with a possibility that continued NCD care might be needed beyond the outbreak recovery period.

Physical and Social Environments

As described by Barnett et al, the physical environment in which outbreaks occur is defined by health infrastructure elements like health facilities and staffing, whereas the social environment is represented by sociopolitical, policy, and resultant budgetary factors that shape a country’s health system. The physical and social environments are interdependent. In the context of outbreak preparedness, NCDs affect both of these environments through their influence on national health policy priorities, budgets, and expenditures. The growing burden of NCDs in LMICs has also motivated shifts in the direction of global health policy, as evidenced by the expanding focus on NCD prevention and access to care in the 2030 Sustainable Development Goals.

Health systems in lower-income countries are often unprepared to address the dual disease burden of infectious and chronic diseases in their populations. Access to healthcare staff, resources, and medications, which may already be scarce, can become increasingly inadequate. Focusing on epidemic containment during outbreaks can detract from the capacity to address underlying NCDs, draining resources for overall care. Even in high-resource countries like the United States, healthcare delivery during outbreaks can change in structural ways, such as shifting toward virtual care, modifying triage practices, and reducing care for nonepidemic patients.

During nonemergency periods, health systems in lower-income countries have responded to the growing demand for NCD care by integrating new health system elements such as primary care, NCD surveillance, and nonphysician health staffing. Provision of essential care through community health workers (CHWs) has been a cost-effective
In another instance of adapting to the rise in NCD needs, lower-income countries, such as many East Africa countries, increasingly incorporate civil society initiatives in addition to or instead of governmental action. Some national approaches to health system development have migrated toward a regional approach to increase efficiencies of scale. Efficiency gains from regional aggregating of medication procurement have been observed in East Africa and the Caribbean, and in staff training and health financing in Southeast Asian countries. The increased use of regional approaches to health systems development adds a new aspect to the physical and social environments for global health security efforts.

Integrating NCDs Into Technical Areas for Action

As health systems in LMICs evolve to adapt to the increase in NCD burden, improved integration between NCD and infection-containment initiatives can help build capacity in emergency preparedness by strengthening the foundation of health systems. Along with the recognition that such integration facilitates the efficient distribution of human and financial resources, NCDs merit a distinct place in the global health security formula.

The GHSA is organized around 8 major areas for action (called action packages) to advance the objectives of the IHR. These include antimicrobial resistance, biosafety and biosecurity, immunization, laboratory systems, surveillance, sustainable financing, workforce development, and zoonotic diseases. There are 2 main tools for evaluating progress toward IHR implementation: the Joint External Evaluation (JEE), a voluntary external assessment under the IHR Monitoring and Evaluation Framework, and the mandatory IHR State Party Self-Assessment Annual Reporting (SPAR) tool. The assessment areas covered by JEE and SPAR mostly overlap with the current set of GHSA action packages, but not all action packages are equally suited to assimilate NCD-related components. We identified 6 GHSA action packages—surveillance, workforce development, laboratory systems, immunization, risk communication, and sustainable financing—that are well positioned to incorporate NCD interventions and described aspects of NCD efforts that could be integrated into each area (Table 2).

Surveillance

Public health surveillance—the collection and analysis of population health data—is a principal action area of health security. Within the Haddon matrix, NCD surveillance applies to the preevent, event, and postevent periods of the

Table 2. GHSA and IHR Focus Areas with Relevance to NCDs

GHSA/IHR Technical Area	Sample Areas of Work	Crosscutting NCD Activities
Immunization	Maintain and improve vaccination coverage for vaccine-preventable illnesses	Integrate HPV, HBV, and influenza vaccination in community vaccination plans
Laboratory systems	Include a set of 10 core diagnostic tests in national laboratory capacities, including 6 predetermined infectious disease assays	Incorporate up to 4 core assays relevant to NCDs
Risk communication	Strengthen communication engagement with affected communities; develop a systematic approach to addressing perceptions, risky behaviors, and misinformation	Include information on preventable NCD risk factors in communications to communities
Surveillance	Strengthen health surveillance systems; use surveillance data to identify emerging public health events	Include NCD indicators in existing surveillance systems, including syndromic surveillance and population-based surveys; enforce NCD additions to the Integrated Disease Surveillance and Response Plan
Sustainable financing	Mobilize resources; engage national policy stakeholders	Financing through taxation of NCD risk factors such as tobacco use; coordinate shared procurement mechanisms for essential medicines and supplies
Workforce development	Train health workforce in outbreak prevention and response; develop epidemiologic knowledge across the health workforce spectrum including physicians, veterinarians, laboratory scientists	Include NCD curricula in FETP training; include NCD prevention approaches in CHW training

Abbreviations: CHW, community health worker; FETP, field epidemiology training program; GHSA, Global Health Security Agenda; HBV, hepatitis B virus; HPV, human papillomavirus; IHR, International Health Regulations 2005; NCD, noncommunicable disease.
host population element. It tracks underlying comorbidities in the population before an outbreak, helps identify high-risk groups for vaccination during an outbreak, and informs chronic health complications and long-term health effects after an outbreak. Although GHSA and IHR have traditionally focused on the surveillance of epidemic-prone diseases, the rising burden of NCDs has provided a strong incentive among health policymakers in LMICs to include coverage of NCD indicators in health surveillance programs. Population-based surveys in LMICs are already evolving toward a single information framework covering both communicable and noncommunicable conditions. For instance, the addition of NCDs into existing surveillance systems of village populations has been studied in India and Gambia. The Integrated Disease Surveillance and Response plan—a strategy formulated by the World Health Organization to improve the flow of infectious disease data in LMICs—has been endorsed, albeit with limited implementation, by multiple African countries. While the Integrated Disease Surveillance and Response plan did not include NCDs at the time of its inception in 1998, it has since been revised to include reporting of priority NCDs, specifically hypertension, diabetes, mental health, and malnutrition. Expanding implementation of this plan would represent a step toward a more comprehensive approach to public health surveillance.

Syndemic surveillance—in which data are obtained from patients at points of care rather than population surveys—is particularly suited to NCD integration as it allows the tracking of comorbid conditions that can influence epidemic outcomes in real time. In Mozambique, existing data collection tools have been successfully adapted to include tracking of NCDs in addition to communicable diseases in a hospital setting. In India, primary care registries have been successfully applied toward diabetes surveillance. In areas with limited patient access to care facilities, syndemic surveillance may be facilitated by mobile digital technologies or community health-care workers. Overall, the collection of NCD data points in existing health surveillance tools represents a significant opportunity to converge health security goals and local health needs, yet remains underutilized. Actionable items for integrating NCDs in the area of surveillance include adding indicators related to NCDs to existing surveillance systems and tracking such indicators in IHR monitoring and evaluation tools such as JEE and SPAR.

Workforce Development
IHR and GHSA call for strengthening workforce capacity in applied epidemiology in every country. This objective involves training health professionals in supporting national public health systems and managing local public health events. Within the Haddon matrix, workforce development applies to the preevent period of the physical environment element, where staff readiness is an important part of the health infrastructure. The field epidemiology training program is a mechanism for training applied epidemiologists globally, which has been a platform for strengthening public health competencies in LMICs for over 60 years. Countries have the flexibility to customize training programs to meet local priorities and can establish specialized tracks that focus on NCDs, laboratory, veterinary, or other courses of study. NCD areas of study within these programs have become increasingly common, and a survey of 57 programs estimated that over half offered training in NCD control. High interest in NCD-related curricula in many countries suggests that an actionable item for integrating NCDs in the area of workforce development is to expand country field epidemiology training programs to include practice and instruction on topics like obtaining and analyzing local NCD surveillance data.

Another workforce development approach is training CHWs who can help bridge gaps in healthcare access in LMICs. CHWs are at the front lines of response to infectious disease outbreaks, immunization events, and preventive services. Incorporating appropriate NCD training for CHWs can contribute to improved diagnosis and management of basic chronic conditions like hypertension, but this resource for addressing NCDs remains underutilized in many countries. The need is largely unmet in low-resource settings, where task sharing between CHWs and other healthcare providers could enhance basic preventive services such as lifestyle modification and CVD prevention. There is mounting evidence that elements of chronic disease management can be shifted to CHWs through appropriate training. Training in CVD prevention can be successfully applied to other healthcare providers as well, including physicians and nurses. In primary care, training in standardized treatment protocols is a way to expand CVD prevention when staff resources are limited. Incorporating NCD prevention in training initiatives for healthcare providers is another action item for NCD integration in the area of workforce development.

Laboratory Systems
Infection control is contingent on efficient pathogen identification. Within the Haddon matrix, laboratory systems strengthening applies to the preevent, event, and postevent periods of the physical environment element. The JEE refers to a set of 10 core diagnostic tests as a threshold for essential laboratory capacity in countries. These include 6 assays critical to the detection of epidemic-prone diseases: polymerase chain reaction testing for influenza virus, virus culture for poliovirus, serology for HIV, microscopy for Mycobacterium tuberculosis, rapid diagnostic testing for Plasmodium spp., and bacterial culture for...
Salmonella enterica serotype Typhi. The remaining 4 tests can be selected by individual countries, lending flexibility to include assays related to NCDs.

Laboratory capacity, a foundational element of health security, can be weakened in LMICs by workforce and infrastructure limitations. Broadening laboratory capacity beyond a singular focus on infectious pathogens to include chronic disease testing capabilities creates a path forward to filling gaps in comprehensive care while avoiding duplicate testing and supply chain costs. For example, a standardized national laboratory logistics system in Ethiopia, designed to meet the supply needs of individual laboratories, greatly reduced patient wait times for tests from multiple months to less than a day. Integrating biochemical testing for key chronic conditions into plans for laboratory strengthening could promote whole-patient care as well as economies of scale, but selection of appropriate NCD indicators can be complicated because some are better suited to clinical rather than laboratory testing. Malcolm et al. discussed testing for 3 indicators that may, in some circumstances, be candidates for inclusion in the set of core JEE diagnostic tests in resource-limited environments: creatinine for kidney disease, cholesterol for dyslipedemias, and hemoglobin A1c for diabetes.

Immunization

As the workhorse of infection control, immunization is an important component of GHSA. In the JEE, this technical area emphasizes tracking of national immunization coverage for epidemic-prone diseases such as measles. Adding a focus on vaccination against infectious pathogens that result in chronic conditions represents a unique opportunity to deliver NCD preventive services through national immunization networks. Presently, several vaccines can be used to reduce select NCD risks. These include the human papillomavirus (HPV) vaccine for the prevention of cervical cancer, the hepatitis B virus vaccine for the prevention of chronic liver disease and cancer, and the seasonal influenza vaccine that can prevent acute CVD complications provoked by influenza. Given the role of infections as a causal agent of NCDs, NCD control in some parts of the world, particularly Africa, depends on infection control throughout the life cycle. Where African countries are experiencing a significant burden from cervical cancer and other HPV-related conditions, HPV vaccination can be both effective and cost-saving. In countries and regions with relatively high burdens of liver cancer, such as China, Southeast Asia, and sub-Saharan Africa, the hepatitis B vaccine has been shown to reduce chronic liver disease in immunized cohorts. In Taiwan, a higher rate of influenza vaccination was shown to reduce CVD in high-risk populations. Including HPV, hepatitis B, or influenza vaccinations in community immunization plans is an approach to integrating NCD elements in the technical area of immunization, where these can complement health security goals by building upon and expanding vaccination outreach initiatives in vulnerable areas and among adults.

Risk Communication

The technical area of risk communication refers to establishing channels for communicating disease risk and disease containment approaches with the public, with affected communities, and between public health actors. Within the Haddon matrix, risk communication applies to the pre-event and event periods of the physical environment element, where it represents the development of infrastructural capacity for distributing public health information. Increasing the availability of dedicated staff and improving communication training resources can help to improve risk communication objectives, as demonstrated during the 2003 SARS outbreak in China and Taiwan. Capacity to communicate nonpharmaceutical interventions was an important aspect of emergency response in pandemic influenza. During the COVID-19 pandemic, effective public communication has been outlined as an essential component for behavioral modification necessary to limit the spread of disease, and fast intragovernmental communication between authorities has been credited with improving COVID-19 containment in Hong Kong, Singapore, and Japan. Effective risk communication relies on effective community engagement, often through personnel without prior communications training. In this regard, NCD prevention approaches offer many lessons. A systematic review of 16 studies from LMICs documents the practice of deploying CHWs for risk communication in the areas of tobacco cessation, hypertension, and diabetes control through the promotion of treatment adherence and behavior modification. One action item for integrating NCDs in the area of risk communication, presently addressed by many governments, is including NCD-related information in emergency risk communication plans. For example, identifying select comorbidities as risk factors for severe COVID-19 illness during the pandemic has helped with messaging around the need for added precautions and risk reduction. Additionally, messaging directed at people with NCDs about the need to maintain adequate supplies of medications for emergency scenarios can mitigate the risk of reduced access to care during an outbreak.

Sustainable Financing

The objective of the GHSA action package on sustainable financing is closing gaps in funding for health security. Within the Haddon matrix, sustainable financing fits within the pre-event, event, and postevent periods of the social environment element, where it impacts resource availability for health security. However, resources for health security are not fully separable from broader public health objectives because both exist within a shared health

Volume 19, Number 3, 2021
system infrastructure. For instance, key health system attributes, such as healthcare access or medical supply chains, are shared ingredients for both communicable and non-communicable aspects of population health. Allocating resources to strengthen these shared ingredients has comprehensive benefits such as health security. Recognizing the shared foundation for successful outcomes across the disease spectrum, local stakeholders are transitioning away from prioritizing single diseases and instead considering a more horizontal approach to health system financing. In this context, the sustainability of health security financing may be reinforced by including financing for horizontal health system elements, such as supply chains for essential medicines. A model of a horizontal initiative with broad health sector applicability is the Pan American Health Organization Strategic Fund—a mechanism for aggregate procurement of medicines for the region. By ensuring access to essential NCD medicines during epidemic outbreaks, joint procurement mechanisms can increase sustainability through economies of scale and a multipronged approach to financing support.

Additionally, NCD prevention approaches can be an independent source of funding for the health system, ultimately contributing to health security objectives. For example, Thailand and the Philippines have experienced success with using taxation of NCD risk products, such as tobacco and alcohol, as an earmarked source of domestic health financing. NCD fiscal policy conducted through the taxation of unhealthy products offers a path toward sustainable financing for national health priorities, including those related to health security.

DISCUSSION

We used the Haddon matrix as a framework to outline the relevance of NCDs to health security goals. NCDs play a role in all elements of outbreak preparedness and response: host population, disease agent, physical environment, and social environment. NCDs also affect all phases of the disaster life cycle: pre-event, event, and post-event. They can determine population susceptibility to epidemics before an outbreak occurs, can impact the capacity of health systems during outbreaks, and can complicate the recovery period through epidemic-related sequelae. Given the broad importance of NCDs for health security outcomes, we identified 6 action areas that are particularly suitable for integration of NCD components: surveillance, workforce development, laboratory capacity, immunization, risk communication, and sustainable financing. In the area of surveillance, integration can occur through tracking of NCD-related indicators alongside other priority data. Workforce development integration can occur through training of public health and healthcare staff in NCD prevention and control. Diagnostic tests for select NCD indicators can be included in national plans for developing laboratory capacity, and vaccination for HPV and hepatitis B can be included in community immunization plans. In risk communication plans, including information on NCD risk factors as part of preparedness can strengthen health messaging. In the area of sustainable financing, supporting horizontal health system elements such as shared procurement mechanisms for essential medicines and supplies can strengthen sustainability.

The importance of approaching GHSA strengthening activities from the perspective of health systems integration is well recognized. As the COVID-19 pandemic has demonstrated, a key test for health systems worldwide is their resilience in simultaneously addressing emergencies and ongoing health needs. An imbalance between emergency care and essential care can have negative repercussions and can raise equity concerns, especially in low-resource settings. For example, a review of lessons learned from the 2014 Ebola outbreak in communities that receive GHSA investment noted that individuals view health needs for infectious diseases and chronic diseases through a unified lens, not compartmentalized into separate pillars. A lack of access to primary and chronic care prior to emergencies therefore erodes individuals’ faith in health systems to manage infectious disease outbreaks when emergencies strike, even when emergency resources are plentiful, resulting in cross-border movement and distrust. Conversely, access to integrated healthcare strengthens the trust that is central to a health system’s ability to use measures necessary to contain epidemics.

The integration of NCD components in global health security action areas is subject to implementation barriers in resource-limited environments. Surveillance approaches may be challenged by limited access to vulnerable populations. Workforce development initiatives may face overburdened healthcare staff and limited capacity of CHWs to address long-term NCD needs. When strengthening laboratory capacity, determining which core NCD assays are suitable for laboratory rather than clinical settings may be difficult. Limited access to primary care can limit the objectives of immunization plans related to NCD prevention. Persistent vertical separation between financing for NCDs and health security objectives is a key challenge in developing a unified approach to health development. Finally, the integration of NCDs in health security plans may be limited unless all global frameworks recognize its importance, including GHSA, IHHR, and their respective evaluation tools.

The success of US investment in global health through programs such as the US President’s Emergency Plan For AIDS Relief (PEPFAR) has demonstrated the potential for public health improvement in LMICs. As health needs in LMICs continue to evolve, existing platforms for specialized disease-specific care can serve as catalysts for the integration of health services. For instance, in recent integration initiatives, the baseline PEPFAR infrastructure for HIV care has facilitated the delivery of hypertension...
control and cervical cancer prevention services. On a broader scale, the approach of “building once” when establishing health infrastructure in LMICs can be an optimal approach for health systems investment. The integration of services for communicable and noncommunicable diseases helps maintain investment in health systems between and during outbreaks, which ensures a more consistent source of health funding between outbreaks, mitigating the impacts of future outbreaks. While this approach requires advanced planning in its broader consideration of public health needs, it represents both a strategic and a sustainable investment in the long-term capacity of countries to address local and global health threats.

ACKNOWLEDGMENTS

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention. Open Access for this journal article was supported by Bloomberg Philanthropies and Resolve to Save Lives, an initiative of Vital Strategies, through a grant to the National Foundation for the Centers for Disease Control and Prevention (CDC Foundation).

REFERENCES

1. Stokes EK, Zambrano LD, Anderson KN, et al. Coronavirus disease 2019 case surveillance —United States, January 22–May 30, 2020. MMWR Morb Mortal Wkly Rep. 2020;69(24):759-765.
2. Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA. 2020;323(13):1239-1242.
3. Du R-H, Liang L-R, Yang C-Q, et al. Predictors of mortality for patients with COVID-19 pneumonia caused by SARS-CoV-2: a prospective cohort study. Eur Respir J. 2020;55(5):2000524.
4. Garg S, Kim L, Whitaker M, et al. Hospitalization rates and characteristics of patients hospitalized with laboratory-confirmed coronavirus disease 2019 — COVID-NET, 14 states, March 1-30, 2020. MMWR Morb Mortal Wkly Rep. 2020;69(15):458-464.
5. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506.
6. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10223):1054-1062.
7. Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507-513.
8. Guan W-J, Liang W-H, Zhao Y, et al. Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis. Eur Respir J. 2020;55(5):2000547.
9. Yang J, Zheng Y, Kou X. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis. Int J Infect Dis. 2020;94:91-95.
10. Richardson S, Hirsch JS, Narasimhan M, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA. 2020;323(20):2052-2059.
11. Hu Y, Sun J, Dai Z, et al. Prevalence and severity of coronavirus disease 2019 (COVID-19): a systematic review and meta-analysis. J Clin Virol. 2020;127:104371.
12. Wu C, Chen X, Cai Y, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med. 2020;180(7):934-943.
13. Zhao Q, Meng M, Kumar R, et al. The impact of COPD and smoking history on the severity of COVID-19: a systematic review and meta-analysis. J Med Virol. 2020;92(10):1915-1921.
14. Dietz W, Santos-Burgoa C. Obesity and its implications for COVID-19 mortality. Obesity. 2020;28(6):1005.
15. Luzi L, Radaelli MG. Influenza and obesity: its odd relationship and the lessons for COVID-19 pandemic. Acta Diabetol. 2020;57(6):759-764.
16. World Health Organization. Strengthening health security by implementing the International Health Regulations (2005). Accessed June 30, 2020. https://www.who.int/ihr/about/en/
17. World Health Organization (WHO). IHR Core Capacity Monitoring Framework: Checklist and Indicators for Monitoring Progress in the Development of IHR Core Capacities in State Parties. Geneva: WHO; 2013. Accessed June 30, 2020. https://apps.who.int/iris/bitstream/handle/10665/84933/WHO_HSE_GCR_2013.2_eng.pdf?sequence=1
18. Global Health Security Agenda. Accessed June 30, 2020. https://ghsagenda.org/
19. Runyan CW. Introduction: back to the future—revisiting Haddon’s conceptualization of injury epidemiology and prevention. Epidemiol Rev. 2003;25(1):60-64.
20. Barnett DJ, Balicer RD, Blodgett D, Fews AL, Parker CL, Links JM. The application of the Haddon matrix to public health readiness and response planning. Environ Health Perspect. 2005;113(5):561-566.
21. Barnett DJ, Balicer RD, Lucey DR, et al. A systematic analytic approach to pandemic influenza preparedness planning. PLoS Med. 2005;2(12):e359.
22. Singer M, Bulleid N, Ostrach B, Mendenhall E. Syndemics and the biosocial conception of health. Lancet. 2017;389(10072):941-950.
23. Singer M, Clair S. Syndemics and public health: reconceptualizing disease in bio-social context. Med Anthropol Q. 2003;17(4):423-441.
24. Carlson CJ, Mendenhall E. Preparing for emerging infections means expecting new syndemics. Lancet. 2019;394(10195):297.
25. Belser JA, Maines TR, Tumpey TM, Katz JM. Influenza A virus transmission: contributing factors and clinical implications. Expert Rev Mol Med. 2010;12:e39.
HEALTH SECURITY AND NCDS

26. Bastien N, Robinson JL, Tse A, Lee BE, Hart L, Li Y. Human coronavirus NL-63 infections in children: a 1-year study. J Clin Microbiol. 2005;43(9):4567-4573.
27. Li B, Yang J, Zhao F, et al. Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clin Res Cardiol. 2020;109(5):531-538.
28. Wang B, Li R, Lu Z, Huang Y. Does comorbidity increase the risk of patients with COVID-19: evidence from meta-analysis. Aging. 2020;12(7):6049-6057.
29. Roncon L, Zuin M, Rigatelli G, Zuliani G. Diabetic patients with COVID-19 infection are at higher risk of ICU admission and poor short-term outcome. J Clin Virol. 2020;127:104354.
30. Lighter J, Phillips M, Hochman S, et al. Obesity in patients younger than 60 years is a risk factor for COVID-19 hospital admission. Clin Infect Dis. 2020;71(15):896-897.
31. Maddaloni E, Buzzetti R. Covid-19 and diabetes mellitus: unveiling the interaction of two pandemics. Diabetes Metab Res Rev. 2020;36(7):e3321321.
32. Guo W, Li M, Dong Y, et al. Diabetes is a risk factor for the progression and prognosis of COVID-19. Diabetes Metab Res Rev. 2020;36(7):e3319.
33. Singh AK, Gupta R, Ghosh A, Misra A. Diabetes in COVID-19: prevalence, pathophysiology, prognosis and practical considerations. Diabetes Metab Syndr. 2020;14(4):303-310.
34. Allard R, Leclerc P, Tremblay C, Tannenbaum TN. Diabetes mellitus and increased risk for malaria infection. JAMA Cardiol. 2016;2(3):111-118.
35. Yang JK, Feng Y, Yuan MY, et al. Plasma glucose levels and diabetes are independent predictors for mortality and morbidity in patients with SARS. Diabet Med. 2006;23(6):623-628.
36. Badawi A, Ryoo SG. Prevalence of comorbidities in the Middle East respiratory syndrome coronavirus (MERS-CoV): a systematic review and meta-analysis. Int J Infect Dis. 2016;49:129-133.
37. Al-Tawfiq JA, Hinedi K, Ghandour J, et al. Middle East respiratory syndrome coronavirus (MERS-CoV): a systematic review and meta-analysis. PLoS One. 2018;13(7):e0200200.
38. Badawi A, Velumailum R, Ryoo SG, et al. Prevalence of chronic comorbidities in dengue fever and West Nile virus: a systematic review and meta-analysis. Int J Infect Dis. 2020;93:13-21.
39. Badawi A, Velumailum R, Ryoo SG, et al. Prevalence of chronic comorbidities in dengue fever and West Nile virus: a systematic review and meta-analysis. PLoS One. 2018;13(7):e0200200.
40. Bah EI, Toth DJA, Toth DJA, Gundlapalli AV. The potential pandemic of avian influenza A(H7N9) virus: a review. Epidemiol Infect. 2015;143(16):3359-3374.
41. Baigalmaa J, Tuul T, Darmaa B, Soyolmaa E. Analysis of fatal outcomes from influenza A(H1N1)pdm09 in Mongolia. Western Pac Surveill Response J. 2012;3(3):43-48.
42. Bagatikar J, Demuth DR, Scott DA. Tobacco use increases susceptibility to bacterial infection. Tob Induc Dis. 2008;6(1):12.
43. Remais JV, Zeng G, Li G, Tian L, Engelgau MM. Convergence of non-communicable and infectious diseases in low- and middle-income countries. Int J Epidemiol. 2013;42(1):221-227.
44. Arcavi L, Benowitz NL. Cigarette smoking and infection. Arch Intern Med. 2004;164(20):2206-2216.
45. Huttunen R, Heikkinen T, Syrjänen J. Smoking and the outcome of infection. J Intern Med. 2011;269(3):258-269.
46. Cai G, Bossé Y, Xiao F, Kheradmand F, Amos CI. Tobacco smoking increases the lung gene expression of ACE2, the receptor of SARS-CoV-2. Am J Respir Crit Care Med. 2020;109(12):1557-1559.
47. Sattar N, McNees IB, McMurray JJV. Obesity a risk factor for severe COVID-19 infection: multiple potential mechanisms. Circulation. 2020;142(1):4-6.
48. Simonnet A, Cherboun M, Poissy J, et al. High prevalence of obesity in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) requiring invasive mechanical ventilation. Obesity. 2020;28(7):1195-1199.
49. Maier HE, Lopez R, Sanchez N, et al. Obesity increases the duration of influenza A virus shedding in adults. J Infect Dis. 2018;218(9):1378-1382.
50. Guo T, Fan Y, Chen M, et al. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020;5(7):81-818.
51. Madjid M, Safavi-Naeini P, Solomon SD, Vardeny O. Potential effects of coronaviruses on the cardiovascular system: a review. JAMA Cardiol. 2020;5(7):831-840.
52. Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061-1069.
53. Li J-W, Han T-W, Woodward M, et al. The impact of 2019 novel coronavirus on heart injury: a systematic review and meta-analysis. Prog Cardiovasc Dis. 2020;63(4):518-524.
54. Shi S, Qin M, Shen B, et al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol. 2020;5(7):802-810.
62. Oxley TJ, Mocco J, Majidi S, et al. Large-vessel stroke as a presenting feature of Covid-19 in the young. *N Engl J Med*. 2020;382(20):e60.

63. Punnett VO, Careri ML, Wieters I, et al. Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from coronavirus disease 2019 (COVID-19). *JAMA Cardiol*. 2020;5(11):1265-1273.

64. Kwong JC, Schwartz KL, Campitelli MA, et al. Acute myocardial infarction after laboratory-confirmed influenza infection. *N Engl J Med*. 2018;378(4):345-353.

65. Foster ED, Cavanaugh JE, Haynes WG, et al. Acute myocardial infarctions, strokes and influenza: seasonal and pandemic effects. *Epidemiol Infect*. 2013;141(4):735-744.

66. Warren-Gash C, Bhaskaran K, Hayward A, et al. Circulating influenza virus, climatic factors, and acute myocardial infarction: a time series study in England and Wales and Hong Kong. *J Infect Dis*. 2011;203(12):1710-1718.

67. Umamathi T, Kor AC, Venkatasubramanian N, et al. Large artery ischaemic stroke in severe acute respiratory syndrome (SARS). *J Neurol*. 2004;251(10):1227-1231.

68. Wu Q, Zhou L, Sun X, et al. Altered lipid metabolism in recovered SARS patients twelve years after infection. *Sci Rep*. 2017;7(1):9110.

69. El-Seraq HB. Epidemiology of viral hepatitis and hepatocellular carcinoma. *Gastroenterology*. 2012;142(6):1264-1273.e1.

70. Minhas AM, Nayab A, Iyer S, et al. Association of Zika virus with myocarditis, heart failure, and arrhythmias: a literature review. *Careux*. 2017;9(6):e1399.

71. Reynolds MR, Jones AM, Petersen EE, et al. Vital signs: Acute atrial fibrillation due to Zika and chikungunya in Africa: a systematic review. *Epidemiol Infect*. 2018;146(16):2852-2860.

72. Orofino DHG, Passos SRL, de Oliveira RVC, et al. Cardiac findings in infants with in utero exposure to Zika virus- a cross sectional study. *PLoS Negl Trop Dis*. 2018;12(3):e0006362.

73. Vannucchi V, Tomberli B, Zammarchi L, et al. Chagas disease as a cause of heart failure and ventricular arrhythmias in patients long removed from endemic areas: an emerging problem in Europe. *J Cardiovasc Med*. 2015;16(12):817-823.

74. Mendoza I, Gonzalez K, Mendoza IM, et al. Managing acute atrial fibrillation due to Zika and chikungunya infections. *Heart Rhythm*. 2018;15(5 suppl):S158-S159.

75. Gonzalez KA, Mendoza IJ, Britto IJM, Thomas A, Moor I. Atrial fibrillation as a complication of arboviral diseases: chikungunya, Zika and dengue. *Euroease*. 2017;19(suppl 4):iv33.

76. Magee MJ, Salindri AD, Gujral UP, et al. Convergence of non-communicable diseases and tuberculosis: a two-way street? *Int J Tuberc Lung Dis*. 2018;22(11):1258-1268.

77. Rees PH, Barr RD, Cordy PE, Voller A. Possible role of malaria in the aetiology of the nephrotic syndrome in Nairobi. *Br Med J*. 1972;2(5806):130-131.

78. World Health Organization. SDG 3: ensure healthy lives and promote wellbeing for all at all ages. Accessed June 30, 2020. http://www.who.int/sdg/targets/en/
HEALTH SECURITY AND NCDS

96. Kumaresan, J, Huikuri S. Strengthening Regional Coopera-
tion, Coordination, and Response to Health Concerns in the
ASEAN Region: Status, Challenges, and Ways Forward. Ja-
karta, Indonesia: Economic Research Institute for ASEAN
and East Asia; 2015. Accessed June 30, 2020. http://www.
eria.org/ERIA-DP-2015-60.pdf

97. World Health Organization (WHO). Maximizing Positive
Synergies Between Health Systems and Global Health Ini-
tiatives. Geneva: WHO; 2009. Accessed April 19, 2021.
https://www.who.int/healthsystems/GHSsynergies/en/

98. Hanefeld J, Mayhew S, Legido-Quigley H, et al. Towards
an understanding of resilience: responding to health systems
shocks. Health Policy Plan. 2018;33(10):1144.

99. Kostova D, Husain MJ, Sugerman D, et al. Synergies be-
tween communicable and noncommunicable disease pro-
grams to enhance global health security. Emerg Infect Dis.
2017;23(13):S40-S46.

100. Samb B, Desai N, Nshat S, et al. Prevention and man-
agement of chronic disease: a litmus test for health-systems
strengthening in low-income and middle-income countries.
Lancet. 2010;376(9754):1785-1797.

101. Global Health Security Agenda. Action packages. Accessed
June 30, 2020. https://gshaagenda.org/home/action-packages/

102. World Health Organization. Joint external evaluations.
Accessed June 30, 2020. https://www.who.int/ihr/procedures/
joint-external-evaluations/en/

103. World Health Organization (WHO). International Health
Regulations (2005) State Party Self-Assessment Annual Re-
porting Tool. Geneva: WHO; 2018. Accessed June 30,
2020. https://www.who.int/ihr/publications/WHO-WHE-
CPI-2018-16/en/

104. Mercer AJ. Updating the epidemiological transition model.
Epidemiol Infect. 2018;146(6):680-687.

105. Ghosh S, Barik A, Majumder S, et al. Health & Demo-
graphic Surveillance System Profile: The Birbhum popu-
lation project (Birbhum HDSS). Int J Epidemiol. 2015;
44(1):98-107.

106. Jashe M, Gomez P, Greenwood BM, et al. Health & Demo-
graphic Surveillance System Profile: Farafenni Health
and Demographic Surveillance System in The Gambia. Int J
Epidemiol. 2015;44(3):837-847.

107. An integrated approach to communicable disease surveil-
lance. Epidemiol Bull. 2000;21(1):1-4. http://www.paho.org/english/dd/ais/EB_v21n1.pdf

108. Phalkey RK, Yamamoto S, Awate P, Marx M. Challenges
with the implementation of an Integrated Disease Surveil-
ance and Response (IDSR) system: systematic review of
the lessons learned. Health Policy Plan. 2015;30(1):131-143.

109. World Health Organization (WHO), Centers for Disease
Control and Prevention (CDC). Technical Guidelines for
Integrated Disease Surveillance and Response in the Afi-can
Region. 2nd ed. Brazzaville, Republic of Congo and Atlanta,
GA: WHO and CDC; 2010. Accessed June 30, 2020.
https://www.cdc.gov/globalhealth/healthprotection/idsr/pdf/
technicalguidelines/idsr-technical-guidelines-2nd-edition_
2010_english.pdf

110. Mocumbi AO, Langa DC, Chicumbe S, Schumacher AE,
Al-Delaimy WK. Incorporating selected non-communica-
tible diseases into facility-based surveillance systems from
a resource-limited setting in Africa. BMC Public Health.
2019;19:147.

111. Lakshminarayanan S, Kar SS, Gupta R, Xavier D, Reddy
SVB. Primary healthcare-diabetes registry in Pur-
ducherry: design and methods. Indian J Endocrinol Metab.
2017;21(3):373-377.

112. Tambo E, Xia S, Feng X-Y, Zhou X-N. Digital surveil-
lanse and communication strategies to infectious diseases
of poverty control and elimination in Africa. J Infect Dis Epi-
demiol. 2018;4(3): 056.

113. Lester J, Paige S, Chapman CA, et al. Assessing commit-
ment and reporting fidelity to a text message-based partic-
ipatory surveillance in rural Western Uganda. PLoS One.
2016;11(6):e0155971.

114. Menon J, Joseph J, Thachil A, Attecherel TV, Banerjee A.
Surveillance of noncommunicable diseases by community
health workers in Kerala: the Epidemiology of Non-
communicable Diseases in Rural Areas (ENDIRA) study.
Glob Heart. 2014;9(4):409-417.

115. Rainthara SJ, Kumar D, Amin AA. Training village health
workers in detection and monitoring of noncommunicable
diseases: a low cost option for rural areas facing the
emerging health epidemic. Fam Community Health. 2017;
40(3):253-257.

116. Centers for Disease Control and Prevention. About FETP.
Accessed June 30, 2020. https://www.cdc.gov/globalhealth/
healthprotection/fetp/about.html

117. Schneider D, Evering-Watley M, Walke H, Boland PB.
Training the global public health workforce through ap-
plicated epidemiology training programs: CDC’s experience,
1951-2011. Public Health Rev. 2011;33:190-203.

118. Jones DS, Dicker RC, Fontaine RE, et al. Building global
epidemiology and response capacity with Field Epide-
miology Training Programs. Emerg Infect Dis. 2017;23(13):
S158-S165.

119. Ario AR, Bulage L, Kadobera D, et al. Uganda public
health fellowship program’s contribution to building a re-
silient and sustainable public health system in Uganda. Glob
Health Action. 2019;12(1):1609825.

120. Senkomago V, Duran D, Loharikar A, et al. CDC activities
for improving implementation of human papillomavirus
vaccination, cervical cancer screening, and surveillance
worldwide. Emerg Infect Dis. 2017;23(13):S101-S107.

121. Subramanian RE, Herrera DG, Kelly PM. An evaluation
of the global network of field epidemiology and laboratory
training programmes: a resource for improving public
health capacity and increasing the number of public
health professionals worldwide. Hum Resour Health.
2013;11:45.

122. Kruk ME, Nigenda G, Knaul FM. Redesigning primary
care to tackle the global epidemic of noncommunicable
disease. Am J Public Health. 2015;105(3):431-437.

123. El Arifeen S, Christou A, Reichenbach L, et al. Community-
based approaches and partnerships: innovations in
health-service delivery in Bangladesh. Lancet. 2013;
382(9909):2012-2026.

124. Kien VD, Van Minh H, Giang KB, et al. Views by health
professionals on the responsiveness of commune health
stations regarding non-communicable diseases in urban
Hanoi, Vietnam: a qualitative study. BMC Health Serv Res.
2018;18:392.

125. Gaziano T, Abrahams-Gessel S, Surka S, et al. Cardiovas-
dular disease screening by community health workers can be
cost-effective in low-resource countries. *Health Aff (Millwood)*. 2015;34(9):1538-1545.

126. Abrahams-Gessel S, Denman CA, Montano CM, et al. Training and supervision of community health workers conducting population-based, noninvasive screening for CVD in LICs: implications for scaling up. *Glob Heart*. 2015;10(1):39-44.

127. Joshi R, Thrift AG, Smith C, et al. Task-shifting for cardiovascular risk factor management: lessons from the Global Alliance for Chronic Diseases. *BMJ Glob Health*. 2018;3(suppl 3):e001092.

128. Khan M, Lamelas P, Musa H, et al. Development, testing, and implementation of a training curriculum for nonphysician health workers to reduce cardiovascular disease. *Glob Heart*. 2018;13(2):93-100.e1.

129. Abdel-All M, Thrift AG, Riddell M, et al. Evaluation of a task-shifting program of hypertension for accredited social health activists (ASHA) in rural India. *BMCHServRes*. 2018;18:320.

130. Puoane T, Abrahams-Gessel S, Gaziano TA, Levitt N. Training community health workers to screen for cardiovascular disease risk: experiences from Cape Town, South Africa. *Cardiovasc J Afr*. 2017;28(3):170-175.

131. Binany CA, Akwanalo CO, Aruasa W, et al. Building sustainable capacity for cardiovascular care at a public hospital in Western Kenya. *J Am Coll Cardiol*. 2015;66(22):2550-2560.

132. Aliku TO, Adong C, Kamarembo J, Akech R, Odong F, Apiyo P. PO552 Assessment of the impact of a training program on knowledge and clinical practices of health workers regarding rheumatic heart disease prevention in lower level health centers in Gulu Municipality, Uganda. *Glob Heart*. 2018;13(4):495.

133. Suriyawongsapaisal P, Akplakorn W, Leerapan B, Lakha F, Sritamrongsawat S, von Bormann S. Assessing system-based trainings for primary care teams and quality-of-life of patients with multimorbidity in Thailand: patient and provider surveys. *BMCFamPract*. 2019;20:85.

134. dos Santos MLM, Zafalon EJ, Bomfim RA, et al. Impact of distance education on primary health care indicators in central Brazil: an ecological study with time trend analysis. *PLoS One*. 2019;14(3):e0214485.

135. Borim BC, Croti UA, Silveira PC, et al. Development and evaluation of a continuing education program for nursing technicians at a pediatric cardiac intensive care unit in a developing country. *World J Pediatr Congenit Heart Surg*. 2017;8(6):694-698.

136. Hristova IA, Georgieva DP, Koleva GV. Interventional procedures in cardiovascular diseases—training of nurses to work in a catheterization laboratory. *J Vasc Nurs*. 2019;37(2):144-149.

137. Kane J, Landes M, Carroll C, Nolen A, Sodhi S. A systematic review of primary care models for non-communicable disease interventions in Sub-Saharan Africa. *BMC Fam Pract*. 2017;18:46.

138. World Health Organization (WHO). *HEARTS: Technical Package for Cardiovascular Disease Management in Primary Health Care*. Geneva: WHO; 2016. Accessed June 30, 2020. https://www.who.int/cardiovascular_diseases/heart/Hearts_package.pdf

139. World Health Organization (WHO). *Joint External Evaluation Tool. International Health Regulations (2005)*. Geneva: WHO; 2016. Accessed June 30, 2020. https://apps.who.int/iris/bitstream/handle/10665/204368/9789241510172_eng.pdf;jsessionid=6357F4B5AB4D0FE33955EEFFD35EE5C?sequence=1

140. Wilson ML, Fleming KA, Kuti MA, Looi LM, Lago N, Ru K. Access to pathology and laboratory medicine services: a crucial gap. *Lancet*. 2018;391(10133):1927-1938.

141. Davies J, Abimiku A, AlObro M, et al. Sustainable clinical laboratory capacity for health in Africa. *Lancet Glob Health*. 2017;5(3):e248-e249.

142. Orozco JD, Greenberg LA, Desai IK, et al. Building laboratory capacity to strengthen health systems: the Partners in Health experience. *Clin Lab Med*. 2018;38(1):101-117.

143. Dhillon P, McCarthy S, Gibbs M. Where time is not of the essence—stroke treatment and care in an Ebola treatment centre. *Int J Stroke*. 2015;10(suppl 2):436.

144. Perkins MD, Kessel M. What Ebola tells us about outbreak diagnostic readiness. *Nat Biotechnol*. 2015;33(5):464-469.

145. Parsons LM, Somoskovi A, Lee E, et al. Global health: integrating national laboratory health systems and services in resource-limited settings. *Afr J Lab Med*. 2012;1(1):11.

146. Ondoa P, van der Broek A, Jansen C, de Bruijn H, Schultz C. National laboratory policies and plans in sub-Saharan African countries: gaps and opportunities. *Afr J Lab Med*. 2017;6(1):a578.

147. Sayed S, Cherniak W, Lawler M, et al. Improving pathology and laboratory medicine in low-income and middle-income countries: roadmap to solutions. *Lancet*. 2018;391(10133):1939-1952.

148. Malcolm S, Cadet J, Crompton L, DeGennaro V Jr. A model for point of care testing for non-communicable disease diagnosis in resource-limited countries. *Glob Health Epidemiol Genom*. 2019;4:e7.

149. Ogoina D, Onyemelukwe GC. The role of infections in the emergence of non-communicable diseases (NCDs): compelling needs for novel strategies in the developing world. *J Infect Public Health*. 2009;2(1):14-29.

150. Mbounba Bouassa RS, Prauzuck T, Lethu T, Meye JF, Belec L. Cervical cancer in sub-Saharan Africa: an emerging and preventable disease associated with oncogenic human papillomavirus. *Med Sainte Trop*. 2017;27(1):16-22.

151. Ginindza TG, Sartorius B, Dlamini X, Ostensson E. Cost analysis of human papillomavirus-related cervical diseases and genital warts in Swaziland. *PLoS One*. 2017;12(5):e0177762.

152. Chang MH. Hepatitis B vaccination: disease and cancer prevention—a Taiwanese experience. *Clin Liver Dis*. 2010;14(3):521-530.

153. Kane MA. Global control of primary hepatocellular carcinoma with hepatitis B vaccine: the contributions of research in Taiwan. *Cancer Epidemiol Biomarkers Prev*. 2003;12(1):2-3.

154. Viviani S, Jack A, Hall AJ, et al. Hepatitis B vaccination in infancy in The Gambia: protection against carriage at 9 years of age. *Vaccine*. 1999;17(23-24):2946-2950.

155. Chang MH, Chen CJ, Lai MS, et al. Universal hepatitis B vaccination in Taiwan and the incidence of hepatocellular carcinoma in children. *N Engl J Med*. 1997;336(26):1855-1859.
156. Lee CL, Ko YC. Hepatitis B vaccination and hepatocellular carcinoma in Taiwan. *Pediatrics*. 1997;99(3):351-353.

157. Wu H-H, Chang Y-Y, Kuo S-C, Chen Y-T. Influenza vaccination and secondary prevention of cardiovascular disease among Taiwanese elders—a propensity score-matched follow-up study. *PLoS One*. 2019;14(7):e0219172.

158. Frost M, Li R, Moolenaar R, Mao Q, Xie R. Progress in public health risk communication in China: lessons learned from SARS to H7N9. *BMC Public Health*. 2019;19(suppl 3):475.

159. Hsu Y-C, Chen Y-L, Wei H-N, Yang Y-W, Chen Y-H. Risk and outbreak communication: lessons from Taiwan's experiences in the post-SARS era. *Health Secur*. 2017;15(2):165-169.

160. Kenney J, Crumly J, Qualls N. Nonpharmaceutical interventions for pandemic influenza: communication, training, and guidance needs of public health officials. *Disaster Med Public Health Prep*. 2020;14(6):719-724.

161. Betsch C, Wieler LH, Habersaat K, on behalf of the COSMO group. Monitoring behavioural insights related to COVID-19. *Lancet*. 2020;395(10232):1255-1256.

162. Zhou WK, Wang AL, Xiao F, Xiao YN, Tang SY. Effects of media reporting on mitigating spread of COVID-19 in the early phase of the outbreak. *Math Biosci Eng*. 2020;17(3):2693-2707.

163. Legido-Quigley H, Asgari N, Teo YY, et al. Are high-performing health systems resilient against the COVID-19 epidemic? *Lancet*. 2020;395(10227):848-850.

164. World Health Organization. Risk communication. Accessed December 17, 2020. https://www.who.int/emergencies/risk-communications

165. US Centers for Disease Control and Prevention. Assessing risk factors for severe COVID-19 illness. Accessed June 30, 2020. https://www.cdc.gov/coronavirus/2019-ncov/covid-data/investigations-discovery/assessing-risk-factors.html

166. Jakovljevic M, Jakab M, Gerdhram U, et al. Comparative financing analysis and political economy of noncommunicable diseases. *J Med Econ*. 2019;22(8):722-727.

167. Koonin LM, Pillai S, Kahn EB, Mouilla D, Patel A. Strategies to inform allocation of stockpiled ventilators to healthcare facilities during a pandemic. *Health Secur*. 2020; 18(2):69-74.

168. Ragun G, Girard P-M. Toward a global health approach: lessons from the HIV and Ebola epidemics. *Global Health*. 2018;14(1):114.

169. Bennett B, Cohen IG, Davies SE, et al. Future-proofing global health: governance of priorities. *Glob Public Health*. 2018;13(5):519-527.

170. Pan American Health Organization (PAHO). *Recommendations of the Expert Committee for the Selection and Inclusion of Medicines in the Pan American Health Organization's Strategic Fund 2015*. Washington, DC: PAHO; 2016. Accessed June 30, 2020. http://iris.paho.org/xmlui/handle/123456789/28205

171. Charoenca N, Kunskulniti N, Mock J, Hamann S, Vathesatogkit P. How Thailand’s greater convergence created sustainable funding for emerging health priorities caused by globalization. *Glob Health Action*. 2015;8:28630.

172. Clark G, O’Dwyer M, Chapman Y, Rolle B. An ounce of prevention is worth a pound of cure—universal health coverage to strengthen health security. *Asia Pac Policy Stud*. 2018;5(1):155-164.

173. Watkins DA, Yamey G, Schäferhoff M, et al. Alma-Ata at 40 years: reflections from the Lancet Commission on Investing in Health. *Lancet*. 2018;392(10156):1434-1460.

174. Ottersen T, Elsvainio R, Evans DB, et al. Towards a coherent global framework for health financing: recommendations and recent developments. *Health Econ Policy Law*. 2017;12(2):285-296.

175. Heymann DL, Chen L, Takemi K, et al. Global health security: the wider lessons from the west African Ebola virus disease epidemic. *Lancet*. 2015;385(9980):1884-1901.

176. Dzau V, Fuster V, Frazer J, Snair M. Investing in global health for our future. *N Engl J Med*. 2017;377(13):1292-1296.

177. Jacobsen KH, Aguirre AA, Bailey CL, et al. Lessons from the Ebola outbreak: action items for emerging infectious disease preparedness and response. *EcoHealth*. 2016;13(1):200-212.

178. Gostin LO, Mundaca-Shah CC, Kelley PW. Neglected dimensions of global security: the Global Health Risk Framework Commission. *JAMA*. 2016;315(14):1451-1452.

179. Hick JL, Biddinger PD. Novel coronavirus and old lessons — preparing the health system for the pandemic. *N Engl J Med*. 2020;382(20):e55.

180. Carter P, Anderson M, Mossialos E. Health system, public health, and economic implications of managing COVID-19 from a cardiovascular perspective. *Eur Heart J*. 2020; 41(27):2516-2518.

181. Kretchy IA, Asiedu-Danso M, Kretchy JP. Medication management and adherence during the COVID-19 pandemic: perspectives and experiences from low-and middle-income countries. *Res Soc Adm Pharm*. 2021;17(1):2023-2026.

182. Legido-Quigley H, Mateos-Garcia JT, Campos VR, Gea-Sanchez M, Muntaner C, McKee M. The resilience of the Spanish health system against the COVID-19 pandemic. *Lancet Public Health*. 2020;5(5):e251-e252.

183. Chattu VK, Yaya S. Emerging infectious diseases and outbreaks: implications for women’s reproductive health and rights in resource-poor settings. *Reprod Health*. 2020; 17(1):43.

184. Hanefeld J, Powell-Jackson T, Balabanova D. Understanding and measuring quality of care: dealing with complexity. *Bull World Health Organ*. 2017;95(5):368-374.

185. Gilson L. Editorial: building trust and value in health systems in low-and middle-income countries. *Soc Sci Med*. 2005;61(7):1381-1384.

186. Kiery MP, Dovlo D. Beyond Ebola: a new agenda for resilient health systems. *Lancet*. 2015;385(9963):91-92.

187. US President’s Emergency Plan for AIDS Relief (PEPFAR). *PEPFAR 2016 Annual Report to Congress*. Washington, DC: Office of the US Global AIDS Coordinator and Health Diplomacy; 2016. https://et.usembassy.gov/wp-content/uploads/sites/188/2017/04/PEPFAR-2016-Progress-Result.pdf

188. Rabkin M, Kruk ME, El-Sadr WM. HIV, aging and continuity care: strengthening health systems to support services for noncommunicable diseases in low-income countries. *AIDS*. 2012;26(suppl 1):S77-S83.
189. Njuguna B, Vorkoper S, Patel P, et al. Models of integration of HIV and noncommunicable disease care in sub-Saharan Africa: lessons learned and evidence gaps. *AIDS*. 2018;32(suppl 1):S33-S42.

190. Patel P, Speight C, Maida A, et al. Integrating HIV and hypertension management in low-resource settings: lessons from Malawi. *PLoS Med*. 2018;15(3):e1002523.

191. Parham GP, Mwanahamuntu MH, Kapambwe S, et al. Population-level scale-up of cervical cancer prevention services in a low-resource setting: development, implementation, and evaluation of the cervical cancer prevention program in Zambia. *PLoS One*. 2015;10(4): e0122169.