Abstract
Pancreatic neuroendocrine neoplasms (PNENs) are rare and account for only 2%-4% of all pancreatic neoplasms. All PNENs are potential (neuroendocrine tumors PNETs) or overt (neuroendocrine carcinomas PNECs) malignant, but a subset of PNETs is low-risk. Even in case of low-risk PNETs surgical resection is frequently required to treat hormone-related symptoms and to obtain an appropriate pathological diagnosis. Low-risk PNETs in the body and the tail are ideal for minimally-invasive approaches which should be tailored to the individual patient. Generally, surgeons must aim for parenchyma sparing in these cases. In high-risk and malignant PNENs, indications for tumor resection are much wider than for pancreatic adenocarcinoma, in many cases due to the relatively benign tumor biology. Thus, patients with locally advanced and metastatic PNENs may benefit from extensive resection. In experienced hands, even multi-organ resections are accomplished with acceptable perioperative morbidity and mortality rates and are associated with excellent long term survival. However, poorly differentiated neoplasms with high proliferation rates are associated with a dismal prognosis and may frequently only be treated with chemotherapy. The evidence on surgical treat-
only 1%-4% of all clinically apparent pancreatic neoplasms\(^8\). Most PNENs are sporadic but about 10% are part of inherited disorders such as multiple endocrine neoplasia type 1, von Hippel-Lindau syndrome, neurofibromatosis and tuberous sclerosis.

PNENs seem to arise from the islet cells of the pancreas and may or may not secrete functionally active hormones and can therefore be classified as functional or non-functional tumors. Functional tumors are usually detected early due to the symptoms caused by hormone production. Recent studies suggest that most PNENs are non-functional and therefore diagnosed either incidentally or late due to unspecific symptoms caused by the local or distant tumor mass. However, the traditional distinction between functional and non-functional tumors has become clinically largely irrelevant since this distinction does not influence prognosis or treatment options.

A clinically much more relevant classification is the generally accepted grading of PNENs on the basis of the 2010 WHO classification for gastroenteropancreatic neuroendocrine tumors and the expression of the cell proliferation marker Ki-67. Accordingly, PNENs are graded as G1 [mitotic count < 2/10 high power fields (HPF) and a Ki-67 index < 3 %], G2 [mitotic count of 2-20/10 HPF and a Ki67 index of 3%-20%), and G3 [mitotic count > 20/10 HPF and/or a Ki-67 index > 20%]. Differentiation on the other hand refers to the extent to which the neoplastic cells resemble their non-neoplastic counterparts\(^4\). In general, well differentiated PNENs are either low or intermediate grade (G1 + G2) and are termed neuroendocrine tumors (PNETs), while poorly differentiated PNENs are considered high grade (G3) and are called neuroendocrine carcinomas (PNECs).

The differential diagnosis between PNETs and pancreatic ductal adenocarcinoma (PDAC) is especially important because major differences in tumor biology require different surgical treatment strategies. Since PNET patients have a much better prognosis than PDAC patients, surgery is more frequently the treatment of choice. This review will provide an update on current surgical treatment options for patients with PNENs.

**SURGICAL TREATMENT OF PNETS**

Surgical resection of PNETs remains the only curative approach and must therefore be regarded as the current standard of care even in many cases where advanced disease is found\(^\[15,16\]\). However, only about two thirds of the patients present with technically resectable disease. Tailored surgical approaches are therefore needed to deal with this very heterogenic disease.

**Management of low risk disease**

PNETs show a benign biological behavior in 10%-40%, most of them being insulinomas\(^8\). If benign PNETs are solitary and easily accessible, local resection/enucleation is generally preferred\(^9\). In this respect, a recent study demonstrated the importance of intraoperative bi-digital palpation and ultrasonography (IOUS) in localizing these lesions\(^8\). Besides,IOUS is useful in clarifying the association of the tumor lesions, the pancreatic vasculature and particularly, the main pancreatic duct. Therefore, it provides important information in deciding between enucleation and resection\(^10\). When the tumor is located further than 2-3 mm from the pancreatic duct, an enucleation is generally preferred to pancreatic resection\(^3\). Furthermore, preoperative endoscopic tattooing of lesions in the pancreatic head or tail seems to be a feasible alternative for intraoperative localization of the tumor especially for laparoscopic surgical procedures\(^11\). When enucleation seems possible, the tumor is carefully dissected off the surrounding pancreatic tissue\(^12\). After resection, a drain may be placed at the resection site\(^13\). As an alternative in cases where enucleation seems impossible, middle segmental pancreatic resection may be performed as a parenchyma-preserving technique\(^14\). Such organ preserving strategies are nowadays safe in experienced hands with low morbidity and mortality\(^15\). Although parenchyma-preserving techniques have slightly increased morbidities (76%) and pancreatic fistula (69%) compared to standard resections (58% and 42%), the patients do clearly benefit in terms of pancreatic endo- and exocrine function\(^14\). Organ preserving pancreatic surgery leads to only 3%-5% impairment of endo- and exocrine function, whereas in standard resections this rate can increase up to 21%-32%\(^14\). Furthermore it seems evident, that while performing organ preserving and locally limited surgery the patients are not at risk concerning postoperative survival compared to standard resections\(^14\).

Laparoscopic resection seems to be ideal for insulinomas that are usually benign, small, and located in the body or tail of the pancreas; this procedure has been shown to carry a low risk of morbidity and mortality\(^15\). However, because of the difficult preoperative assessment of the nature and extension of the tumor, a conversion to open surgery is frequent. Recently, robot-assisted minimally-invasive pancreatic resections have been suggested to be superior to the laparoscopic approach since conversions to open surgery can be significantly reduced (conversion rate of 0% vs 16%) without increased morbidity\(^17\). The robot-inherent disadvantages of a lack of haptics, a steep learning curve and high costs however prevent many centers from implementing this technique. Nevertheless, in the presence of tumors with a high probability of malignancy, or in the absence of a cleavage plane to duct and blood vessels, open surgery may be considered in the first place\(^12\).

There is an ongoing debate on the role of lymph node dissection in PNET surgery. When considering organ preserving surgery for low risk PNENs other than insulinomas, recent data showing a positive lymph node status in up to 23% of low risk PNENs with significantly shorter disease free survival (mean 4.5 years vs 14.6 years; P < 0.0001) should be considered\(^8\). The frequency of lymph node metastases was reported to be higher for tumors > 15 mm, tumors in the head as compared to tumors in the...
body and the tail, tumors with higher proliferation rates (G3), and with lymph vessel invasion (L1)\textsuperscript{18,19}. Partelli and colleagues developed two predictive models to assess the risk of positive lymph nodes in non-functional PNENs, one with histopathological grading and one without\textsuperscript{20}. In addition to the previously mentioned factors, radiological nodal status was associated with lymph node metastases in their study\textsuperscript{20}. However, considering current evidence, it seems that preoperative variables are not able to predict the probability of nodal involvement sufficiently enough to omit regional lymphadenectomy. Therefore, regional lymphadenectomy is suggested for patients undergoing pancreatic resections for PNENs.

**Management of high risk/malignant disease**

In case of malignancy, recent studies proved that extensive surgery is superior to conservative therapies in extending patients’ survival and in controlling local and metastatic disease.

**Early and locally advanced disease**

In case of localized tumors, the aim of surgery is to achieve curative resection and to prevent or delay local or metastatic recurrence. Here, oncological resections (partial pancreaticoduodenectomy or distal pancreatic resection) are required. A recent study showed a survival benefit of 79 mo for resected patients compared to those patients who were recommended for but did not undergo resection (114 mo vs 35 mo; \(P < 0.0001\))\textsuperscript{21}. However, one should note that in this study patients that were recommended for but did not undergo resection showed considerably more often distant metastases when compared to the group of resected patients (58.3% vs 28.4%). Nevertheless, the survival advantage of resection appeared to hold true also for the subgroup of patients with distant metastases (60 mo vs 31 mo, \(P = 0.01\)). Even though these data are retrospective, they suggest an impressive benefit of surgical resection in extending survival. Furthermore, resection has been shown to reduce the risk for the development of metachronous liver metastases. Patients with gastrinoma that underwent surgical resection developed significantly less metachronous liver metastasis (5%) than those without surgery (29%)\textsuperscript{22}.

In locally advanced tumors that involve surrounding organs or tissues, an aggressive surgical intervention is technically feasible in selected patients and may offer appropriate disease control\textsuperscript{23}. Besides, resection of locally advanced tumors with major blood vessel involvement and the necessity for vascular reconstruction can be beneficial\textsuperscript{24}. Unfortunately local recurrence is frequent after these interventions, and surgery in most cases is an intervention offering long term palliation rather than cure\textsuperscript{25}. Interestingly, a margin-positive resection in locally advanced PNENs seems to offer a similar overall survival compared to margin-negative resections\textsuperscript{26}. Therefore, a resection of locally advanced PNENs might even be attempted when margin-positivity is expected; however, a pre-operative assessment of putative tumor biology is the key to successful PNET surgery.

**Metastatic and recurrent disease**

Liver metastases are commonly observed in PNEN patients and are present in up to 60% at initial diagnosis\textsuperscript{27}. At that point, only a small fraction of patients are technically and/or oncologically resectable\textsuperscript{28}. However, the presence of both synchronous or metachronous liver metastases does not generally represent a contraindication to surgical treatment of PNEN patients\textsuperscript{29,30}. It is still unclear when and whether the primary tumor should be resected in non resectable metastatic disease\textsuperscript{31}. Concerning liver metastases, a significantly higher 5 year survival (72% vs 25%) and a longer median survival (96 mo vs 20 mo) has been observed in resected patients compared to non-resected ones\textsuperscript{32}. A relevant oncological benefit can be achieved by palliative surgical debulking of more than 90% of liver metastases, as well as advocated by the recent ENETS guidelines\textsuperscript{33,34}. In the presence of bilobar hepatic PNEN metastasis, resections may be performed safely in two-stage procedures in selected patients\textsuperscript{35}. In addition, in the palliative setting, surgical cytoreduction has proven more efficient than transarterial chemoembolisation alone\textsuperscript{36}. Another more recent option for the treatment of disseminated liver metastases is the selective internal radiation therapy (SIRT) with yttrium-90 labeled glass microspheres\textsuperscript{37}. This radioembolisation therapy has been shown to be especially effective for the treatment of liver metastases of colorectal and neuroendocrine tumors\textsuperscript{38}. However, multi-disciplinary therapeutic approaches in specialized centers are frequently required to maximize tumor mass reduction. In particular, surgical resection can be complemented by other liver-directed therapies such as radiofrequency ablation\textsuperscript{39} or transcatheter arterial (chemo)embolisation\textsuperscript{40}.

Recurrence is a frequent finding and therefore re-operation for metastatic disease is frequently needed and can result in excellent long term survival of up to 70% after 10 years\textsuperscript{30}. For early detection of PNEN recurrence, gallium-68 DOTATATE PET-CT may be helpful\textsuperscript{40}. PNENs with a Ki-67 index of more than 5%, positive lymph nodes, and tumor size > 4 cm are associated with a significantly higher risk for recurrence\textsuperscript{40,41}. These data demonstrate that aggressive surgical resection can improve survival even in metastatic and recurrent disease.

In selected individual cases liver transplantation may be a treatment option, but evidence is limited and the oncological outcome uncertain\textsuperscript{42}. Rosneau and colleagues reported 1-, 5- and 10- years survival rates of 89%, 80% and 50% in a study involving 17 patients\textsuperscript{43} which is not better than what can be achieved by aggressive surgical debulking\textsuperscript{44,45}. Furthermore, considering the lack of organs, this indication is reserved for highly selected patients\textsuperscript{7,44}. The UNOS/Eurotransplant waiting lists for liver transplantation stratify patients by disease severity using the (lab)MELD score based on laboratory parameters. For some diseases (e.g., HCC or cystic fibrosis) this labMELD score does not sufficiently mir-
PNECs-high grade disease
Pancreatic neuroendocrine carcinomas with a high Ki-67 index show an increased risk for recurrence and metastatic disease and survival is poor\(^\text{[46]}\). Therefore resection in patients with poorly differentiated PNECs with a high proliferation index should currently only be attempted when an R0 resection seems possible\(^\text{[5]}\). There is currently no role for cytoreductive surgery in these highly malignant cases. In advanced disease, targeted therapies (e.g., VEGF and mTOR inhibitors) are increasingly acknowledged to be superior to conventional chemotherapy in case of poorly differentiated PNECs.

PROGNOSTIC CONSIDERATIONS
For all PNENs, the 5- and 10-year survival rates are about 65% and 45%, respectively\(^\text{[37]}\). Tumor grade plays a significant prognostic role since patients with high grade PNENs have a much worse 5-year survival of less than 30%\(^\text{[40]}\). Other positive prognostic factors include young age < 55 years and absence of distant metastases\(^\text{[48]}\). Of these three parameters, Bilimoria and colleagues developed a prognostic score predicting survival after surgical resection\(^\text{[48]}\). For this prognostic score, points from 0 to 3 are given for age (< 55 years = 0 points, 55-75 years = 1 point, > 75 = 2 points), differentiation (well/moderately differentiated = 0 points, poorly differentiated = 1 point), and metastases (none = 0 points, liver = 1 point, other distant = 3 points)\(^\text{[48]}\). A prognostic score from 1 to 3 can then be assigned where prognostic score 1 was defined as a total of 0 points, a prognostic score of 2 was defined as a total of 1-2 points and a prognostic score 3 was defined as > 2 points\(^\text{[48]}\). Using this scoring system - which can be easily applied to every patient as soon as histology is available - Bilimoria and colleagues were able to show that patients with a prognostic score 1 had a favorable 5 year survival of 76.7% compared to 50.9% for prognostic score 2 and 35.7% for prognostic score 3\(^\text{[48]}\). While these data have been generated retrospectively and a validation on an independent cohort is lacking, this tool may still be helpful in estimating patient’s survival and may therefore assist in adjuvant treatment decisions.

CONCLUSION
PNENs are rare neoplasms of the pancreas with a disease course considerably different from PDAC. Aggressive and extensive surgery may be an option for many patients suffering from locally advanced and even metastatic disease. This may in select cases involve resection of multiple organs to achieve a significant reduction of the tumor mass. In patients with PNEN liver metastasis, debulking of > 90% of the macroscopically visible tumor mass - if technically feasible - seems to extend overall survival. However, current evidence stems from retrospective, non-randomized studies, but obvious ethical and feasibility considerations preclude realization of such a trial. In addition, exceptional heterogeneity of PNENs in terms of tumor biology renders thoughtful design of inclusion and exclusion criteria of such a trial impracticable.

REFERENCES
1. Yao JC, Hassan M, Phan A, Dagoehoy C, Leary C, Mares JE, Abdalla EK, Fleming JB, Vauthey JN, Rashid A, Evans DB. One hundred years after “carcinoid”: epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J Clin Oncol 2008; 26: 3063-3072 [PMID: 18565894 DOI: 10.1200/JCO.2007.15.4377]
2. Halfdanarson TR, Rabe KG, Rubin J, Petersen GM. Pancreatic neuroendocrine tumors (PNETs): incidence, prognosis and recent trend toward improved survival. Ann Oncol 2008; 19: 1727-1733 [PMID: 18515795 DOI: 10.1093/annonc/mdn351]
3. Milan SA, Yeo CJ. Neuroendocrine tumors of the pancreas. Curr Opin Oncol 2012; 24: 46-55 [PMID: 22808942 DOI: 10.1097/ /MPO.0b013e318225f54d]
4. Klimstra DS, Modlin IR, Coppola D, Lloyd RV, Suster S. The pathologic classification of neuroendocrine tumors: a review of nomenclature, grading, and staging systems. Pancreas 2010; 39: 707-712 [PMID: 20664470 DOI: 10.1097 /MPA.0b013e3181c124e]
5. Jensen RT, Cadiot G, Brandi ML, de Herder WW, Kaltas G, Komminoth P, Scacchi J, Salazar R, Sauvanet A, Kianmanesh R. ENETS Consensus Guidelines for the management of patients with digestive neuroendocrine neoplasms: functional pancreatic endocrine tumor syndromes. Neuroendocrinology 2012; 95: 98-119 [PMID: 22260199 DOI: 10.1159/000335591]
6. Pavel M, Baudin E, Couvelard A, Krenning E, Öberg K, Steinmüller T, Anlauf M, Wiedenmann B, Salazar R. ENETS Consensus Guidelines for the management of patients with liver and other distant metastases from neuroendocrine neoplasms of foregut, midgut, hindgut, and unknown primary. Neuroendocrinology 2012; 95: 157-176 [PMID: 22262022 DOI: 10.1159/000335597]
7. Falconi M, Bartsch DK, Eriksson B, Klöppel G, Lopes JM, O’Connor JM, Salazar R, Taal BG, Vullierme MP, O’Toole D. ENETS Consensus Guidelines for the management of patients with digestive neuroendocrine neoplasms of the digestive system: well-differentiated pancreatic non-functioning tumors. Neuroendocrinology 2012; 95: 120-134 [PMID: 22261872 DOI: 10.1159/000335587]
8. Ito T, Igarashi H, Jensen RT. Therapy of metastatic pancreatic neuroendocrine tumors (pNETs): recent insights and advances. J Gastroenterol 2012; 47: 941-960 [PMID: 22886480 DOI: 10.1007/s00535-012-0642-8]
9. Cauley CE, Pitt HA, Ziegler KM, Nakeeb A, Schmidt CM, Zyromski NJ, House MG, Lillehoe KD. Pancreatic enucleation: improved outcomes compared to resection. J Gastroint-

D’Haese JG et al. Surgical treatment of PNENs
Fendrich V, Bartsch DK. Surgical treatment of gastrointestinal neuroendocrine tumors. *Lancet Oncol* 2011; 12: 299-311 [PMID: 21279821 DOI: 10.1016/S1470-2045(10)70220-4]

Müller MW, Friess H, Kleeff J, Hinz U, Wente MN. Pancreatic neuroendocrine tumors: an option to treat benign pancreatic body lesions. *Ann Surg* 2006; 244: 909-918; discussion 918-920 [PMID: 17126161]

Espejo-Gómez MN, Velasquez-Fernández D, Bezaury P, Sierra M, Pantoja J, Herrera MF. Pancreatic islet cell tumor: a surgical experience. *World J Surg* 2009; 33: 1996-1970 [PMID: 19629581 DOI: 10.1007/s00268-009-0145-9]

Daoudi M, Zureikat AH, Zafatni MS, Choudry H, Tsung A, Bartlett DL, Hughes SJ, Lee KK, Moser AJ, Zeh HJ. Robotic-assisted minimally invasive distal pancreatectomy is superior to the laparoscopic technique. *Ann Surg* 2013; 257: 128-132 [PMID: 22968557 DOI: 10.1097/SLA.0b013e31825f0808]

Hashim YM, Trinkaus KM, Linehan DC, Strasberg SS, Fields RC, Cao D, Hawkins WG. Regional lymphadenectomy is indicated in the surgical treatment of pancreatic neuroendocrine tumors (PNETs). *Ann Surg* 2014; 260: 197-203 [PMID: 24253141 DOI: 10.1097/SLA.0000000000001348]

Tsutsui K, Ohtsuka T, Mori Y, Fujino M, Yasui T, Aishima M, Takahata S, Nakamura M, Ito T, Tanaka M. Analysis of neuroendocrine tumors in a hepatobiliary surgery database. *Gastrointest Surg* 2012; 33: 918-920 [PMID: 17122616]

Partelli S, Gaujoux S, Boninsegna L, Cherif R, Crippa S, Couvelard A, Scarpa A, Ruszniewski P, Sauvanet A, Falconi M. Pattern and clinical predictors of lymph node involvement in nonfunctioning pancreatic neuroendocrine tumors (NF-PanNETs). *JAMA Surg* 2013; 148: 932-939 [PMID: 23986355 DOI: 10.1001/jamasurg.2013.3376]

Hill JS, McPhee JT, McDade TP, Zhou Z, Sullivan ME, Whalen GF, Tseng JF. Pancreatic neuroendocrine tumors: the impact of surgical resection on survival. *Cancer* 2009; 115: 741-751 [PMID: 19130464 DOI: 10.1002/cncr.24065]

Norton JA, Fraker DL, Alexander HR, Gibril F, Liewehr DJ, Venzen DJ, Jensen RT. Surgery increases survival in patients with gastrinoma. *Ann Surg* 2006; 244: 410-419 [PMID: 16925657]

Abu Hilal M, McPhail MJ, Zeidan BA, Jones CE, Johnson CD,Pearce NW. Aggressive multi-visceral pancreatic resections for locally advanced neuroendocrine tumors. Is it worth it? *JOP* 2009; 10: 276-279 [PMID: 19454819]

Norton JA, Harris EJ, Chen Y, Visser BC, Poultides GA, Kunz PC, Fisher GA, Jensen RT. Pancreatic endocrine tumors with major vascular abutment, involvement, or encasement and indication for resection. *Arch Surg* 2011; 146: 724-732 [PMID: 21690450 DOI: 10.1001/archsurg.2011.129]

Norton JA, Kivlen M, Li M, Schneider D, Chuter T, Jensen RT. Morbidity and mortality of aggressive resection in patients with advanced neuroendocrine tumors. *Arch Surg* 2003; 138: 859-866 [PMID: 12912744 DOI: 10.1001/archsurg.138.8.859]

Pomianowska E, Gladhaug IP, Grzyb K, Røsok BI, Edwin B, Bergestuen DS, Mathisen O. Survival following resection of pancreatic endocrine tumors: importance of R-status and the WHO and TNM classification systems. *Scand J Gastroenterol* 2010; 45: 971-979 [PMID: 20441530 DOI: 10.1080/00365520.2010.52005792363]

Panzuto F, Nasoni S, Falconi M, Corleto VD, Capurso G, Cassetta S, Di Fonzo M, Tomontare V, Milione M, Angelletti S, Cattaruzza MS, Ziparo V, Bordi C, Pederzoli P, Delle Fave G. Prognostic factors and survival in endocrine tumor patients: comparison between gastrointestinal and pancreatic localization. *Endocr Relat Cancer* 2005; 12: 1083-1092 [PMID: 16322435 DOI: 10.1016/j.endcr.2005.02.009]

Fendrich V, Langer P, Celik I, Bartsch DK, Zielke A, Ramaswamy A, Rothmund M. An aggressive surgical approach leads to long-term survival in patients with pancreatic endocrine tumors. *Ann Surg 2006; 244: 845-851; discussion 852-853 [PMID: 17122649 DOI: 10.1016/j.annalsof肠胃Endocrine 2011; 93: 223-229 [PMID: 21358176 DOI: 10.1159/000324770]

Touzios JG, Kiely JM, Pitt SC, Rilling WS, Quebbemann EJ, Wilson SD, Pitt HA. Neuroendocrine hepatic metastases: does aggressive management improve survival? *Ann Surg 2005; 241: 776-783; discussion 783-785 [PMID: 15849513 DOI: 10.1097/SLA.0b013e31825f8a60]

Mayer EC, de Jong MC, Pulitano C, Clay BM, Reddy SK, Gamblin TC, Cellinksi SA, Koooy DA, Staley CA, Stokes JB, Chu CK, Ferrero A, Schullik RD, Choti MA, Mentha G, Grub J, Bauer TW, Adams RB, Aldriglletti G, Capussotti L, Pawlik TM. Surgical management of hepatic neuroendocrine tumor metastasis: results from an international multiinstitutional analysis. *Am Surg Oncol* 2010; 17: 3129-3136 [PMID: 20658879 DOI: 10.1245/s10434-011-1154-3]

Cusati D, Zhang L, Harmans WS, Hu A, Farnell MB, Nagonne DM, Donohue JH, Que FG, Reid-Lombardo KM, Kendrick ML. Metastatic nonfunctioning pancreatic neuroendocrine carcinoma to liver: surgical treatment and outcomes. *J Am Coll Surg* 2012; 215: 117-124; discussion 124-125 [PMID: 22276741 DOI: 10.1016/j.jamcollsurg.2012.05.002]

Kianmanesh R, Sauvanet A, Hentic O, Couvelard A, Liévy P, Vilgrain V, Ruszniewski P, Belghiti J. Two-step surgery for synchronous bilateral liver metastases from digestive neuroendocrine tumors: a safe approach for radical resection. *World J Surg* 2008; 32: 659-665 [PMID: 18362629 DOI: 10.1007/s00268-008-9671-6]

Osborne DA, Zervos EE, Strosberg J, Boe BA, Malafa M, Rosemurgy AS, Yeatman TJ, Carey L, Duhaine L, Kolvks L. Improved outcome with cytoreduction versus embolization for symptomatic hepatic metastases of carcinoma and neuroendocrine tumors. *Ann Surg Oncol* 2006; 13: 572-581 [PMID: 16511671 DOI: 10.1245/ASO.2006.03.071]

Rhee TK, Lewandowski RJ, Liu DM, Mukahy MF, Taka-
hashi G, Hansen PD, Benson AB, Kennedy AS, Omary RA, Salem R. 90Y Radioembolization for metastatic neuroendocrine liver tumors: preliminary results from a multi-institutional experience. Ann Surg 2008; 247: 1029-1035 [PMID: 18520231 DOI: 10.1097/SLA.0b013e3181728a45]

38 Benson AB, Geschwind JF, Mulcahy MF, Rilling W, Siskin G, Wiseman G, Cunningham J, Houghton B, Ross M, Memon K, Andrews J, Fleming CJ, Herman J, Nimeiri H, Lewandowski RJ, Salem R. Radioembolisation for liver metastases: results from a prospective 151 patient multi-institutional phase II study. Eur J Cancer 2013; 49: 3122-3130 [PMID: 23777743 DOI: 10.1016/j.ejca.2013.05.012]

39 Haug AR, Cindea-Drimus R, Auernhammer CJ, Reincke M, Beuschlein F, Wünderle B, Uebels C, Schmidt GP, Spitzweg C, Bartenstein P, Hacker M. Neuroendocrine tumor recurrence: diagnosis with 68Ga-DOTATATE PET/CT. Radiology 2014; 270: 517-525 [PMID: 24056402 DOI: 10.1148/radiol.13122501]

40 Hamilton NA, Liu TC, Cavatiao A, Mawad K, Chen L, Strasberg SS, Linehan DC, Cao D, Hawkins WG. Ki-67 predicts disease recurrence and poor prognosis in pancreatic neuroendocrine neoplasms. Surgery 2012; 152: 107-113 [PMID: 22503317 DOI: 10.1016/j.surg.2012.02.011]

41 Boninsega L, Panzuto F, Partelli S, Capelli P, Delle Fave G, Bettini R, Pederzoli P, Scarpa A, Falconi M. Malignant pancreatic neuroendocrine tumour: lymph node ratio and Ki67 are predictors of recurrence after curative resections. Eur J Cancer 2012; 48: 1608-1615 [PMID: 22129889 DOI: 10.1016/j.ejca.2011.10.030]

42 Pascher A, Klupp J, Neuhaus P. Endocrine tumours of the gastrointestinal tract. Transplantation in the management of metastatic endocrine tumours. Best Pract Res Clin Gastroenterol 2005; 19: 637-648 [PMID: 16185532 DOI: 10.1016/j.bpg.2005.03.008]

43 Rosenau J, Bahr MJ, von Wasielewski R, Mengel M, Schmidt HH, Nashan B, Lang H, Klemptmauer J, Manns MP, Boeker KH. Ki67, E-cadherin, and p53 as prognostic indicators of long-term outcome after liver transplantation for metastatic neuroendocrine tumors. Transplantation 2002; 73: 386-394 [PMID: 11884935 DOI: 10.1097/00007890-200202150-00012]

44 Mazzaferro V, Pulvirenti A, Coppa J. Neuroendocrine tumours metastatic to the liver: how to select patients for liver transplantation? J Hepatol 2007; 47: 460-466 [PMID: 17697723 DOI: 10.1016/j.jhep.2007.07.004]

45 Liver Disease and Transplant. Available from: URL: http://www.methodisthealth:healthcare-services/ transplant-institute/organ-transplants-in-tennessee/liver-transplants/index.dot

46 Evangelista B. Apple's Jobs has cancerous tumor removed. San Francisco Chronicle 2004; August 2. Available from: URL: http://www.sfgate.com/news/article/Apple-s-Jobs-has-cancerous-tumor-removed-He-ll-2736823.php

47 Ekeblad S, Skogseid B, Dunder K, Oberg K, Eriksson B. Prognostic factors and survival in 324 patients with pancreatic endocrine tumor treated at a single institution. Clin Cancer Res 2008; 14: 7798-7803 [PMID: 19047107 DOI: 10.1158/1078-0432.CCR-08-0734]

48 Bilimoria KY, Talamonti MS, Tomlinson JS, Stewart AK, Winchester DP, Ko CY, Bentrem DJ. Prognostic score predicting survival after resection of pancreatic neuroendocrine tumors: analysis of 3851 patients. Ann Surg 2008; 247: 490-500 [PMID: 18376195 DOI: 10.1097/SLA.0b013e31815b9ca6]
