Energy Flux Positivity and Unitarity in CFTs

Manuela Kulaxizia and Andrei Parnachevb

aDepartment of Physics, University of Amsterdam
Valckenierstraat 65, 1018XE Amsterdam, The Netherlands
bC.N.Yang Institute for Theoretical Physics, Stony Brook University
Stony Brook, NY 11794-3840, USA

Abstract
We show that in most conformal field theories the condition of the energy flux positivity, proposed by Hofman and Maldacena, is equivalent to the absence of ghosts. At finite temperature and large energy and momenta, the two-point functions of the stress energy tensor develop lightlike poles. The residues of the poles can be computed, as long as the only spin two conserved current, which appears in the stress energy tensor OPE and acquires nonvanishing expectation value at finite temperature, is the stress energy tensor. The condition for the residues to stay positive and the theory to remain ghost free is equivalent to the condition of positivity of energy flux.
1. Introduction

Recently, considerable discussion was devoted to the AdS/CFT correspondence for gravitational theories with higher derivative interactions. In particular, it has been observed that conformal field theories (CFTs) dual to some of these models share an interesting property. Namely, the requirement of causal propagation of high energy modes at finite temperature [1] is equivalent to requiring the positivity of energy flux [2]. (Positivity of energy flux and its equivalence to causality has also been studied in [3-10]. See also [11] for earlier work in this direction and [12] for a check of energy flux positivity in a number of interacting superconformal theories.) The causality constraints follow from the dispersion relation in the regime where the frequency \(w \) and momentum \(q \) are much larger than the temperature \(T \). The positivity of energy constraints involve the two and three point functions of the stress energy tensor, which can be determined from the singular terms in the OPE of stress energy tensor with itself. Hence, both sets of constraints follow from the high energy (UV) properties of the CFT, and it is natural to ask whether there is a general argument which relates them.

In this paper we investigate this question from the field theoretic point of view\(^1\). We start by considering a CFT where the only operator which takes an expectation value at finite temperature is the stress energy tensor. This condition seems natural for consistent CFTs defined by pure gravitational theories where the only degree of freedom is a massless graviton in the bulk dual to the boundary stress energy tensor. We then compute the first non-trivial finite temperature correction to the two-point function of the stress energy tensor in the regime of small temperatures, \(q/T, w/T \gg 1 \). We show that whenever the flux positivity conditions of [2] are violated, the residue of the lightlike pole acquires a negative sign, signifying the appearance of ghosts in the spectrum and violation of unitarity.

More precisely, the positivity of energy flux constraints in a four-dimensional CFT are given by eq. (2.38) of [2]:

\[
\begin{align*}
C_{\text{tensor}} &= \left(1 - \frac{t_2}{3} - \frac{t_4}{15} \right) \geq 0 \\
C_{\text{vector}} &= \left(1 - \frac{t_2}{3} - \frac{t_4}{15} \right) + \frac{t_2}{2} \geq 0 \\
C_{\text{scalar}} &= \left(1 - \frac{t_2}{3} - \frac{t_4}{15} \right) + \frac{2t_2}{3} + \frac{2t_4}{3} \geq 0
\end{align*}
\]

\(^1\) Earlier arguments for the positivity of energy flux in CFTs can be found in an interesting paper [4].
where the subscript in C corresponds to the properties of the state with respect to rotation around the unit vector which specifies the point on S^2 where the energy flux is measured [2]. The variables t_2 and t_4 can be expressed as functions of the parameters a, b, c that determine the two and three point functions of the stress energy tensor. They are given by eq. (C.12) in [2] and upon substitution into (1.1) give rise to

$$C_{\text{tensor}} = -\frac{5(7a + 2b - c)}{(14a - 2b - 5c)} \geq 0$$
$$C_{\text{vector}} = \frac{10(16a + 5b - 4c)}{(14a - 2b - 5c)} \geq 0$$
$$C_{\text{scalar}} = -\frac{45(4a + 2b - c)}{(14a - 2b - 5c)} \geq 0$$

(1.2)

In the next Section we compute the two-point function of stress energy tensor in the regime $w/T, q/T \gg 1$. There are three independent propagators which correspond to scalar, shear and sound modes. We show that the residues of the lightlike poles in scalar, shear, and sound channels are equal (up to a positive numerical coefficient) to $C_{\text{tensor}}, C_{\text{vector}}$ and C_{scalar} respectively. This means that the energy flux positivity is related to the absence of ghosts in the spectrum. In Section 3 we discuss our results and outline some open questions. We explain that the only case where our results can be modified involves a conserved spin two current, other than the stress energy tensor, which appears in the stress energy tensor OPE and takes an expectation value at finite temperature. The only such case we are aware of involves a sum of decoupled CFTs.

2. Flux positivity and ghosts

In this section we are going to compute the leading finite temperature contribution to the short-distance behavior of the two-point function of the stress energy tensor. We start by considering the OPE of the stress energy tensor $T_{\mu\nu}$ with itself, which takes the form [13]:

$$T_{\mu\nu}(x)T_{\sigma\rho}(0) \sim \frac{C_T T_{\mu\nu,\rho\sigma}(x)}{x^{2d}} + \hat{A}_{\mu\nu\sigma\rho\alpha\beta}(x)T_{\alpha\beta}(0) + \ldots$$

(2.1)

where $T_{\mu\nu,\rho\sigma}(x)$ and $\hat{A}_{\mu\nu\sigma\rho\alpha\beta}(x)$ are known functions of x which can be found in [13]. In (2.1) we only keep the composites of the stress energy tensor in the right hand side. In

2 These expressions, as well as (1.1), have been generalized to six [5] and arbitrary [6,7] space-time dimensions.
principle, there can be other contributing terms, including relevant and marginal operators, but we postpone the discussion of those until Section 3. At this stage, we would just like to comment that consistent CFTs dual to pure gravitational theories, whose operator content in this limit consists only of the stress energy tensor and its composites, should be described by (2.1). This is natural from the point of view of gravity where the sole degree of freedom is a massless graviton. Interestingly, studies of the superconformal algebra of the $\mathcal{N} = 4$ SYM in the strong coupling and large N limit have also provided evidence in favor of the OPE (2.1) [14].

To compute the two-point function, one takes the expectation value of both sides in (2.1). Upon the Fourier transform to the momentum space, the first term in the right hand side of (2.1) produces the usual Lorentz invariant (zero temperature) two-point function,

$$G_0(k) \sim k^d \log k^2$$

where k is the energy-momentum d-vector, and the suppressed index structure is uniquely determined by Lorentz invariance and conformality. We will be interested in the finite temperature correction to (2.2), obtained by subtracting the zero temperature term

$$\langle T_{\mu\nu}(x)T_{\sigma\rho}(0) \rangle_T = \langle T_{\mu\nu}(x)T_{\sigma\rho}(0) \rangle - \langle T_{\mu\nu}(x)T_{\sigma\rho}(0) \rangle|_{T=0}$$

where the expectation value $\langle \ldots \rangle$ is taken at finite temperature T; consequently $\langle \ldots \rangle_T$ denotes the finite temperature expectation value with the zero temperature contribution subtracted. The leading contribution to $\langle T_{\mu\nu}(x)T_{\sigma\rho}(0) \rangle_T$ in the limit $k/T \gg 1$ ($xT \ll 1$) comes from the second term in (2.1). Contributions from less singular terms [denoted by the dots in (2.1)] are suppressed by powers of T/k. Since we are interested in the small temperature limit, it is sufficient to compute (2.3) in Euclidean signature, use integral Fourier transform, and then Wick rotate to Minkowski space. One can presumably recover interesting subleading finite temperature effects by performing this calculation in the real time formalism.

In the following we will restrict our attention to the $d = 4$ case, although the generalization to arbitrary d should be straightforward. We also choose the coordinates so that the spatial momentum is oriented along the x_3 direction, $k = (w, 0, 0, q)$. We start by considering the case of transversely polarized $T_{\mu\nu}$:

$$G_{12,12}(w, q)_T = \int d^4x\langle T_{12}(x)T_{12}(0) \rangle_T e^{-iwx_0 - iqx_3}$$

(2.4)
The leading contribution to $\langle T_{12}(x)T_{12}(0) \rangle_T$ can be written as

$$
\langle T_{12}(x)T_{12}(0) \rangle_T = C T^4 \left(-3 \hat{A}_{121200}(x) + \sum_{i=1}^{3} \hat{A}_{1212i}(x) \right) + \ldots
$$

(2.5)

where C is a positive real constant and the dots denote terms suppressed by powers of $T/w, T/q$. In deriving (2.5) we took the expectation value of (2.1) at finite temperature, subtracted the zero-temperature term and used the nonzero expectation values of $T_{\mu\nu}$:

$$
\langle T_{00} \rangle = -3CT^4, \quad \langle T_{ii} \rangle = CT^4, \quad i = 1, \ldots, 3
$$

(2.6)

where the familiar Lorentzian result $T_{\mu\nu} = C \times \text{diag}[3p, p, p, p]$, with p denoting the pressure, has been Wick rotated to Euclidean signature. Hence, to compute $G_{12,12}(w, q)_T$ we only need to know $\hat{A}_{121200}(x)$ and $\hat{A}_{121233}(x)$. Fortunately, it has already been computed: it is given by eq. (6.38) in [13]. There are two terms in $\hat{A}_{121200}(x)$ computed in [13]: the power-like term $\sim x^{-4}$ and a delta function term $\sim \delta^{(4)}(x)$. We will be interested in the former, since the latter produces a constant upon the Fourier transform (2.4).

The first step in performing the Fourier transform (2.4) on the power-like term in (2.5) involves integrating over the transverse coordinates x_1, x_2. The only contributions that survive this integration come from $\hat{A}_{121200}(x)$ and $\hat{A}_{121233}(x)$. The expression for $G_T(w, q)$ takes a simple form:

$$
G_{12,12}(w, q)_T = C_{\text{tensor}} \int dx_0 dx_3 e^{-iwx_0 - iq x_3} \frac{x_3^2 - x_0^2}{(x_0^2 + x_3^2)^2}
$$

(2.7)

where we neglected an overall positive numerical factor, and C_{tensor} is defined in the first line of (1.2). Remarkably, the correlator is proportional to the combination of parameters required to be positive by the condition of energy flux positivity.

To complete the integration in (2.7) we make use of the following trick. We exponentiate the denominator in (2.7) via

$$
\frac{1}{(x_0^2 + x_3^2)^2} = \int_0^\infty ds se^{-s(x_0^2 + x_3^2)}/s^2
$$

(2.8)

We then substitute (2.8) into (2.7) and perform the Gaussian integration over x_0, x_3. The result (up to a positive and real overall constant) is

$$
G_{12,12}(w, q)_T = C_{\text{tensor}} \int_0^\infty ds \frac{q^2 - w^2}{s^2} e^{-\frac{q^2 + w^2}{s}}
$$

(2.9)
We can now perform the integration over s and Wick rotate to Lorentzian signature to obtain

$$G_{12,12}(w, q)_T = C_{\text{tensor}} \frac{w^2 + q^2}{w^2 - q^2}$$

(2.10)

There is a lightlike pole whose residue changes when C_{tensor} changes sign. We see that the first line in (1.1) is equivalent to the absence of ghosts in the scalar channel.

The situation is similar for the other polarizations of the stress energy tensor. Recall that generally there are three independent components in the two-point function of the stress energy tensor: scalar, shear and sound. (Such a separation is a result of imposing Ward identities on all consistent tensor structures which can appear in the two-point functions.) The corresponding correlators take the form (see e.g. [15]):

$$G_{12,12}(k) = \frac{1}{2} G_{3}(w, q)$$
$$G_{10,13}(k) = -\frac{1}{2} \frac{wq}{w^2 - q^2} G_{1}(w, q)$$
$$G_{00,00}(k) = \frac{2q^4}{3(w^2 - q^2)^2} G_{2}(w, q)$$

(2.11)

The correlator computed in (2.10) corresponds to the scalar mode, $G_{12,12}(k)$. The computation in the shear channel involves

$$\langle T_{10}(x) T_{13}(0) \rangle_T = C T^4 \left(-3 \hat{A}_{101300}(x) + \sum_{i=1}^{3} \hat{A}_{1013ii}(x) \right)$$

(2.12)

Now all $\hat{A}_{1013ii}(x)$ contribute, and after integration over x_1, x_2, we have

$$G_{10,13}(k)_T = \int dx_0 dx_3 e^{-iwx_0 - iqx_3} \frac{(64a + 14b - 19c)x_0^3 x_3 - (64a + 26b - 13c)x_0 x_3^2}{(14a - 2b - 5c)(x_0^2 + x_3^2)^2}$$

(2.13)

where we omitted an overall positive numerical factor. We can use the exponentiation of the denominator [similar to (2.8)] once again to obtain

$$\int dx_0 dx_3 e^{-iwx_0 - iqx_3} \frac{x_0^3 x_3}{(x_0^2 + x_3^2)^3} = \frac{wq(13w^2 - 3q^2)}{(q^2 + w^2)^3}$$

(2.14)

Substituting (2.14), and an expression obtained from (2.14) by the simultaneous interchange $(x_0 \leftrightarrow x_3, w \leftrightarrow q)$, into (2.13) and (2.11) and performing a Wick rotation, we obtain

$$G_{1}(w, q) = -\frac{(512a + 130b - 143c)w^2 + (512a + 190b - 113c)q^2}{(14a - 2b - 5c)(w^2 - q^2)}$$

(2.15)
The residue of the pole at \(w^2 = q^2 \) in the limit \(q, w \to \infty \) is proportional to \(C_{\text{vector}} \), up to a positive number. The condition for the absence of ghosts in the shear channel is therefore equivalent to the second line in (1.1). Finally, we expect the last line in (1.1) to correspond to the absence of ghosts in the sound channel. This can be verified through the computation of \(G_{00,00}(k) \). The part that contains the pole takes the form

\[
G_{00,00}(k)_T = \int dx_0 dx_3 e^{-iw_0 - iq_3 x_3} \frac{(-14a + 11b + 5c)x_0^6 + (20c - 37(2a + b))x_0^4x_3^2 + 3(18a - 5c)x_0^2x_3^4 + 3(6a - 2b - 2c)x_3^6}{(14a - 2b - 5c)(x_0^2 + x_3^2)^4}
\]

This integral can be computed using the same techniques as above. The result, up to a positive real numerical factor, is

\[
G_2(w, q) = \frac{(-68a + 32b + 23c)q^6 + 3(52a + 16b - 15c)q^4w^2 + (116a - 32b - 35c)q^2w^4 - (76a - 16b - 25c)w^6}{-(14a - 2b - 5c)(w^2 - q^2)}
\]

which implies that the residue in \(G_2(w, q) \) at \(w^2 = q^2 \) is proportional to \(C_{\text{scalar}} \) in the limit \(w, q \to \infty \) and the absence of ghosts is equivalent to the third line in (1.1).

3. Discussion

We showed that the positivity of energy flux in a CFT, described by (1.1), is equivalent to the absence of ghosts\(^3\). Their positivity at finite temperature\(^4\), provided the only operator with non-vanishing expectation value which appears in the right hand side of (2.1) is the stress energy tensor itself. An irrelevant operator with nonvanishing expectation value would not alter the discussion, since its contribution would be further suppressed by positive powers of \(T/q, T/w \). However a marginal operator with nonvanishing finite temperature expectation value would contribute to \(G(w, q)_T \) at the same order, while the corresponding contribution from a relevant operator would dominate in the low temperature limit. We only need to consider primary operators, since the descendants involve

\(^3\) The positivity of the residues of the poles can be shown to be equivalent to the absence of ghosts in a number of ways. For example, the corresponding Wightman functions must be positive. This statement translates into reflection positivity of the Euclidean theory.

\(^4\) It would be interesting to understand how our work is related to the recent discussion of unitarity in the context of AdS/CFT [16].
∂_μ (something), and their expectation values vanish in the CFT at finite temperature. First, consider a scalar operator Φ, other than the identity, with conformal dimension ∆ between one and four and a nonvanishing expectation value. The Lorentz invariance of the OPE, together with the fact that \(\langle \Phi \rangle \sim T^\Delta \) does not break Lorentz invariance, implies that it does not contribute to the poles in \(G_i(w, q) \). This is because the contribution from such a scalar to \(G_i(w, q) \) would be proportional to \(T^\Delta (k^2)^{2-\Delta} \), which is non-singular for \(\Delta \leq 4 \). We have also explicitly checked this using the \(TT \sim \Phi \) OPE. As evident from (2.2) there can be corrections to the scaling which go as \(\log k^2 \), but these do not affect the pole structure.

The only relevant operator whose expectation value could break Lorentz invariance is a vector. Rotational invariance implies that only the time component of a vector could take an expectation value. One can then use a rotation by \(\theta = \pi \) in the \(x^0 - x^1 \) plane, which is still a symmetry of the finite temperature theory, to deduce that the time component of a vector has to vanish as well, as long as this residual symmetry is not spontaneously broken. Hence, the only operator which can spoil the correspondence between the positivity of energy flux and the absence of ghosts is a traceless symmetric spin-2 conserved current, which is not proportional to \(T^{\mu \nu} \). (The trace part does not violate Lorentz invariance, while a non-conserved spin-2 operator is necessarily irrelevant [17]; see also e.g. [18] for a recent discussion.)

Such an operator, which we denote by \(X^{\mu \nu} \) below, generates a copy of the conformal algebra, and can in principle appear in the \(T^{\mu \nu}(x)T^{\alpha \beta}(0) \) OPE. The simplest (and the only known to us) example is the case of two decoupled CFTs, whose stress energy tensors are denoted by \(T^{(1)}_{\mu \nu} \) and \(T^{(2)}_{\mu \nu} \). In this case the structure of the OPE implies that, in addition to \(T_{\mu \nu} = T^{(1)}_{\mu \nu} + T^{(2)}_{\mu \nu} \), there is another linear combination of \(T^{(1)}_{\mu \nu} \) and \(T^{(2)}_{\mu \nu} \) which appears in the right hand side of the OPE (2.1). Of course, in this case it is possible to diagonalize the OPE, so that \(T^{(1)}_{\mu \nu} T^{(1)}_{\mu \nu} \sim T^{(1)}_{\mu \nu} \) and \(T^{(2)}_{\mu \nu} T^{(2)}_{\mu \nu} \sim T^{(2)}_{\mu \nu} \). It is an interesting question whether this is always possible in general. A curious case of a spin-2 operator which is not proportional to \(T_{\mu \nu} \) occurs in two spacetime dimensions for the \(SU(2)_8 \) WZNW theory. This model admits a \(D_8 \) modular invariant which contains a \(\chi_8 \chi_0^* \) term (in the notations of

5 This scaling follows from \(T \) being the only dimensionful parameter in the theory.
6 The arguments in this paragraph are due to J. Maldacena.
7 The case of more than two decoupled CFTs is a simple generalization of this.
8 This example is due to N. Seiberg.
Hence, the spectrum contains a primary operator of dimension (2,0), other than the stress energy tensor. This operator, however, does not appear in the stress energy tensor OPE.

Given the appearance of $X_{\mu\nu}$ in the OPE (2.1), one may ask whether the stress energy tensor Ward identities may be helpful in establishing that $\langle X_{\mu\nu} \rangle = 0$. In particular, the conformal Ward identity implies

$$\langle T^\mu_\mu(x)T^\alpha\beta(0) \rangle = 4\langle T^\alpha\beta(0) \rangle \delta^{(4)}(x)$$

This may naively seem to imply that $\langle X_{\mu\nu} \rangle = 0$. This however is not the case, since only the $\delta^{(4)}(x)$ term in the $T^\mu_\mu(x)T^\alpha\beta(0)$ OPE produces the nonvanishing result upon contraction with $\eta^{\mu\nu}$ and taking expectation value at finite temperature. We neglected these terms in our computation in Section 2, since they do not contribute to the residues. The stress energy tensor Ward identities guarantee that the coefficients of such terms ensure (3.1), while analogous terms for the $X_{\mu\nu}$ in the $T^\mu_\mu(x)T^\alpha\beta(0)$ OPE are absent. Hence, a possible contribution from the $\langle X_{\mu\nu} \rangle$ to the two-point function of the stress energy tensor may exist, although it vanishes upon contraction with $\eta^{\mu\nu}$.

One may wonder whether there exists some rotationally and translationally invariant state, where the only spin-2 operator with nonvanishing expectation value is T^μ_μ, and the value of the pressure, given by $\langle T_{ii} \rangle$, is positive. In this case the results of the previous section would go through, because these were the only assumptions involved. (Of course, a finite temperature state described by the density matrix $\rho \sim e^{-H/T}$ satisfies these assumptions.) It would be interesting to see if one can find such state, perhaps subject to the constraints discussed in [11].

In CFTs dual to pure gravitational theories, the composites of the stress energy tensor should be the only operators appearing in (2.1). It is therefore not surprising that the correspondence between the energy flux positivity and the violation of causality has been first observed in CFTs dual to Gauss-Bonnet [1-7] and Lovelock theories of gravity [8,9] with negative cosmological constant. In these models, once the parameters of the theory are taken outside of the flux positivity region, a set of tachyonic quasinormal modes appears at finite temperature. The corresponding states in the dual CFT are stable in the limit $w/T, q/T \to \infty$, and have velocities which vary from unity to a finite number $c_g > 1$. These states form a continuum in the $w/T, q/T \to \infty$ limit. Presumably, our CFT calculation observes the lower edge of this continuum of states and predicts that these states are also
ghosts, in addition to being tachyonic. One may wonder whether this picture is compatible with the results from gravity in the regime where the inequalities in (1.1) are satisfied. In this case there is no metastable state from the gravity point of view. However, as the results of [15] suggest, the imaginary part of the pole goes to a constant in the limit \(q/T, w/T \gg 1 \) and therefore is not visible at leading order, which is indeed consistent with our results.

It would be interesting to verify this picture directly. It would also be interesting to understand better the situation with the quasi-topological gravity that has been recently discussed in [20,21,10]. Exploring consequences of our results in the theories at finite size is an interesting direction of research. The generalization of the results of this paper to the supersymmetric case should be straightforward. One would need to consider the OPE of the R-current operator with itself. The results should be consistent with vanishing \(t_4 \) in the supersymmetric case [22]. Finally, we would like to point out that the discussion of this paper should also apply to field theories which are defined via perturbing CFTs by relevant operators and subsequent RG flow. This is because the discussion concerns the UV limit, where one necessarily recovers the original CFT.

Acknowledgements: We thank A. Buchel, F. Dolan, J. Harvey, D. Kutasov, J. McGreevy, J. Minahan, M. Rangamani, L. Rastelli, K. Skenderis, E. Verlinde, L. Yaffe and especially K. Papadodimas for useful discussions and correspondence. We are especially grateful to J. Maldacena for numerous explanations, suggestions and comments on the manuscript. We thank Aspen Center for Physics and NORDITA, where parts of this work have been completed for hospitality.
References

[1] M. Brigante, H. Liu, R. C. Myers, S. Shenker and S. Yaida, “Viscosity Bound Violation in Higher Derivative Gravity,” Phys. Rev. D 77, 126006 (2008) [arXiv:0712.0805 [hep-th]]; “The Viscosity Bound and Causality Violation,” Phys. Rev. Lett. 100, 191601 (2008) [arXiv:0802.3318 [hep-th]].

[2] D. M. Hofman and J. Maldacena, “Conformal collider physics: Energy and charge correlations,” JHEP 0805, 012 (2008) [arXiv:0803.1467 [hep-th]].

[3] A. Buchel and R. C. Myers, “Causality of Holographic Hydrodynamics,” JHEP 0908, 016 (2009) [arXiv:0906.2922 [hep-th]].

[4] D. M. Hofman, “Higher Derivative Gravity, Causality and Positivity of Energy in a UV complete QFT,” Nucl. Phys. B 823, 174 (2009) [arXiv:0907.1625 [hep-th]].

[5] J. de Boer, M. Kulaxizi and A. Parnachev, “AdS7/CFT6, Gauss-Bonnet Gravity, and Viscosity Bound,” JHEP 1003, 087 (2010) [arXiv:0910.5347 [hep-th]].

[6] X. O. Camanho and J. D. Edelstein, “Causality constraints in AdS/CFT from conformal collider physics and Gauss-Bonnet gravity,” JHEP 1004, 007 (2010) [arXiv:0911.3160 [hep-th]].

[7] A. Buchel, J. Escobedo, R. C. Myers, M. F. Paulos, A. Sinha and M. Smolkin, “Holographic GB gravity in arbitrary dimensions,” JHEP 1003, 111 (2010) [arXiv:0911.4257 [hep-th]].

[8] J. de Boer, M. Kulaxizi and A. Parnachev, “Holographic Lovelock Gravities and Black Holes,” arXiv:0912.1877 [hep-th].

[9] X. O. Camanho and J. D. Edelstein, “Causality in AdS/CFT and Lovelock theory,” arXiv:0912.1944 [hep-th].

[10] R. C. Myers, M. F. Paulos and A. Sinha, “Holographic studies of quasi-topological gravity,” arXiv:1004.2055 [hep-th].

[11] J. I. Latorre and H. Osborn, “Modified weak energy condition for the energy momentum tensor in quantum field theory,” Nucl. Phys. B 511, 737 (1998) [arXiv:hep-th/9703196].

[12] A. Parnachev and S. S. Razamat, “Comments on Bounds on Central Charges in N=1 Superconformal Theories,” JHEP 0907, 010 (2009) [arXiv:0812.0781 [hep-th]].

[13] H. Osborn and A. C. Petkou, “Implications of Conformal Invariance in Field Theories for General Dimensions,” Annals Phys. 231, 311 (1994) [arXiv:hep-th/9307010].

[14] D. Anselmi, “The N = 4 quantum conformal algebra,” Nucl. Phys. B 541, 369 (1999) [arXiv:hep-th/9809192].

[15] P. K. Kovtun and A. O. Starinets, “Quasinormal modes and holography,” Phys. Rev. D 72, 086009 (2005) [arXiv:hep-th/0506184].

[16] I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, “Holography from Conformal Field Theory,” JHEP 0910, 079 (2009) [arXiv:0907.0151 [hep-th]].
[17] G. Mack, “All Unitary Ray Representations Of The Conformal Group SU(2,2) With Positive Energy,” Commun. Math. Phys. 55, 1 (1977).

[18] B. Grinstein, K. A. Intriligator and I. Z. Rothstein, “Comments on Unparticles,” Phys. Lett. B 662, 367 (2008) [arXiv:0801.1140 [hep-ph]].

[19] P. Di Francesco, P. Mathieu and D. Senechal, “Conformal Field Theory,” New York, USA: Springer (1997) 890 p

[20] J. Oliva and S. Ray, “A new cubic theory of gravity in five dimensions: Black hole, Birkhoff’s theorem and C-function,” arXiv:1003.4773 [gr-qc].

[21] R. C. Myers and B. Robinson, “Black Holes in Quasi-topological Gravity,” arXiv:1003.5357 [gr-qc].

[22] M. Kulaxizi and A. Parnachev, “Supersymmetry Constraints in Holographic Gravities,” arXiv:0912.4244 [hep-th].