Sample size re-estimation incorporating prior information on a nuisance parameter

Tobias Mütze (tobias.muetze@novartis.com)

Workshop “Design of experiments under uncertainty”
December 09, 2022
Disclaimer

The views and opinions expressed in this presentation and on the slides are solely those of the presenter and not necessarily those of Novartis. Novartis does not guarantee the accuracy or reliability of the information provided herein.
Agenda

Sample size planning in clinical trials
Incorporating prior information into the sample size planning
Sample size re-estimation
Incorporating prior information into the sample size re-estimation
Discussion and outlook
Sample size planning in a clinical trial

- From a statistical perspective, sample size of a clinical trial is affected by multiple parameters
 - Type I error rate \(\alpha \)
 - Target power \(1 - \beta \)
 - Target effect size: \(\delta^* \)
 - Outcome variance: \(\sigma^2 \)
- Type I error rate is usually chosen as \(\alpha = 2.5\% \) (one-sided)
- Target power usually a value \(\geq 80\% \)
- Target effect size often determined by what is clinically relevant
- Making assumptions about the outcome variance \(\sigma^2 \) is often a key issue
 - Where to get information on variance from?
 - How to (formally) use historical information on the variance in the sample size planning?
Clinical trial setting

- Two-arm parallel group superiority trials with normally distributed endpoints planned and analyzed using frequentist methods
- $X_{ij} | \mu_i, \sigma^2 \sim N(\mu_i, \sigma^2); \quad j = 1, \ldots, n; \quad i = T, C$
- Hypothesis of interest: $H_0: \mu_T \leq \mu_C$ vs $H_1: \mu_T > \mu_C$
- Analysis method: two-sample Student’s t-test with test statistic $T = \sqrt{\frac{n}{2}} \frac{\bar{X}_T - \bar{X}_C}{\hat{\sigma}}$
- (Approximate) sample size required for a power of $1 - \beta$:
 $$n = 2 \frac{(q_{1-\alpha} + q_{1-\beta})^2}{\delta^2} \sigma^2$$
Agenda

Sample size planning in clinical trials

Incorporating prior information into the sample size planning

Sample size re-estimation

Incorporating prior information into the sample size re-estimation

Discussion and outlook
Summarizing prior information on σ^2

- **Goal**: Summarize prior information on variance through a random effects meta-analysis using a Bayesian hierarchical model (Schmidli et al, 2017)
- **Meta-analytic-predictive (MAP) approach**: Use hierarchical model to account for between-trial heterogeneity in order to derive an informative prior from historical data
- Posterior predictive distribution for the variance of a new clinical trial is the MAP prior
- Information about $j = 1, ..., J$ historical clinical trials
 - Sample variance: s_j^2
 - Degrees of freedom: ν_j
- (Unknown) true variance: σ_j^2
Summarizing prior information on σ^2

- Model for determining posterior predictive distribution of σ^2:

 $s_j^2 | \sigma_j^2 \sim \text{Gamma} \left(\frac{\nu_j}{2}, \frac{\nu_j}{2\sigma_j^2} \right)$

 $\log(\sigma^2), \log(\sigma_1^2), ..., \log(\sigma_J^2) | \mu, \tau \sim \mathcal{N}(\mu, \tau^2)$

- Use noninformative or weakly informative prior for μ

- Use Half-normal prior for between-study variability: $\tau \sim \text{HN} \left(sd = \frac{\sqrt{2}}{2} \right)$ or $\tau \sim \text{HN} \left(sd = \frac{\sqrt{2}}{4} \right)$

Heterogeneity	Small	Moderate	Substantial	Large	Very Large
τ	0.09	0.18	0.35	0.7	1.4

95% PI for σ^2:

- Small: [0.84, 1.19]
- Moderate: [0.7, 1.42]
- Substantial: [0.5, 1.99]
- Large: [0.25, 3.94]
- Very Large: [0.06, 15.55]

$\mu = \log(1)$. Table taken from Schmidli et al.
Prior information on σ^2 and sample size planning

- Various approaches for possible
- Bayes estimator of σ^2 can be plugged into the sample size formula
 - Natural choices are prior mean or prior median
 - Uncertainty of the prior information of σ^2 is not considered
- To consider the variability of the prior, the sample size can be planned either based on quantiles of the prior or based on the unconditional power
- Unconditional power $B(n, \delta, \alpha, \beta) = \int P(T > t_{1-\alpha} | n, \delta, \sigma, \alpha, \beta) \cdot f_{\sigma^2}(x)dx$
Clinical trial in hypertension

Trial setting

- Aim is to plan the sample size of a clinical trial assessing the efficacy of an intervention for blood pressure control
 - Population: Patients with hypertension
 - Treatment: Experimental intervention vs standard of care
 - Endpoint: Change in systolic blood pressure between baseline and timepoint T

- Assumed parameters for sample size calculation
 - Effect size: $\delta = -6.3$ mmHg
 - One-sided significance level: $\alpha = 0.025$
 - Target power: 90%

- Glynn et al. published a meta-analysis that includes reported sample variances
Clinical trial in hypertension
Summary of historical sample variances
Clinical trial in hypertension

MAP prior for σ^2

Statistic	Value
10% Percentile	201
25% Percentile	215
Mean	250
Median	243
75% Percentile	276
90% Percentile	318
ESS	41

Black line: $0.35 \cdot \text{InvGamma}(12.2,2813.6) + 0.65 \cdot \text{InvGamma}(42.9,10467.6)$
Clinical trial in hypertension

Effect of variance σ^2 on sample size

- Effect size: $\delta = -6.3$ mmHg
- Significance level: $\alpha = 0.025$
- Target power: 90%

Statistic	σ^2	Total sample size
10% Percentile	201	160
25% Percentile	215	172
Mean	250	200
Median	243	194
75% Percentile	276	220
90% Percentile	318	254
Clinical trial in hypertension

Power depending on variance σ^2
Agenda

Sample size planning in clinical trials
Incorporating prior information into the sample size planning

Sample size re-estimation
Incorporating prior information into the sample size re-estimation
Discussion and outlook
Sample size re-estimation

General considerations

- Trial designs with an internal pilot study can be used to re-estimate the outcome variance and sample size of the ongoing clinical trial (Wittes and Brittain, 1990).
- Sample size re-estimation (SSR) is performed based on the results of the internal pilot study.
 - Here we focus on SSR based on the variance.
- SSR either be done based on blinded or unblinded data.
- Blinded SSR has logistical advantages and allows preserving trial integrity without requirement of further steps.
 - Focus on unblinded sample size re-estimation first in this presentation.
 - Extension to blinded sample size re-estimation is discussed later.
Sample size re-estimation
Step-by-step approach

1. Calculate initial sample size N_0
 - Based on estimates of the outcome variance from previous studies

2. Review sample size
 - Performed when $p \cdot N_0$ (e.g., $p = 0.5$) patients have completed the study
 - Re-estimation of sample size based on sample variance from $p \cdot N_0$ patients

3. Recruit remaining patients

4. Conduct final analysis
 - Analysis based on all patients
Sample size re-estimation

Illustration

SSR: $N_{\text{new}} = 20$
Sample size re-estimation without prior information

- Estimate variance and plug estimate into the same sample size formula
- Unblinded SSR: Variance is estimated using pooled sample variance
- Blinded SSR: Variance is estimated using one-sample variance estimator
 - One-sample variance estimator: Sample variance ignore treatment group
 - Generally, maintains type I error rate control
- For more information: Friede and Kieser (2013)
Agenda

Sample size planning in clinical trials
Incorporating prior information into the sample size planning
Sample size re-estimation
Incorporating prior information into the sample size re-estimation
Discussion and outlook
Sample size re-estimation
Incorporating prior information

- Idea for incorporating prior information into the sample size re-estimation
 - Update MAP prior for σ^2 with data from the internal pilot study
 - Re-estimate sample based on posterior distribution for σ^2

- Assume that prior (and thus posterior) for (μ_T, μ_C) and σ^2 are independent
- Assume that prior $p_{\sigma^2}(\cdot)$ is a mixture inverse-Gamma distribution
- Posterior distribution of σ^2 is a mixture of inverse-Gamma distributions

$$\sigma^2 | s_{SSR}^2 \sim \sum_l w_l^* \text{InvGamma} \left(a_l + \frac{n_1 - 2}{2}, b_l + \frac{n_1 - 2}{2} s_{SSR}^2 \right)$$

- Closed form expression for updated weights w_l^* (see Mütze et al)
Clinical trial in hypertension

SSR incorporating prior information

Prior for \(\sigma^2 \):
\[0.35 \cdot \text{InvGamma}(12.2, 2813.6) + 0.65 \cdot \text{InvGamma}(42.9, 10467.6) \]

Assumed effect: \(\delta = -6.3 \)
Operating characteristics
Simulation study setup

- Comparison of two sample size re-estimation approaches
 - based on unblinded sample variance s^2 (frequentist)
 - posterior mean (Bayesian)
- Operating characteristics of interest
 - Power
 - Variability of final sample size
- Sample size of fixed design trial: 128

Parameter Value

Parameter	Value
Significance level	0.025
Target power	0.8
Treatment effect δ	0.5
True variance σ^2	1
IPS size n_1	10, 20, ..., 100
Expected value of prior $p_{\sigma^2}(\cdot)$ (no prior-data conflict)	1
Expected value of prior $p_{\sigma^2}(\cdot)$ (prior-data conflict)	0.49
Effective sample size ESS of $p_{\sigma^2}(\cdot)$	6, 25, 50
Power of SSR procedures
No prior data conflict
Final sample size of SSR procedures

No prior-data conflict

ESS = 6

ESS = 25

ESS = 50

10/50/90 perc. of final sample size

Internal pilot study sample size n_1

Prior information

No prior information
Power of SSR procedures

Prior-data conflict
Robustifying the prior

- **Idea**: Mitigate the risk of a prior-data conflict by robustifying the prior (Schmidli et al., 2014)
- Robustified MAP prior $p_{rMAP}(\cdot)$ is the mixture distribution of the MAP prior and the vague conjugate prior with mixture probability w_R

\[
p_{rMAP}(x) = w_R \cdot p_V(x) + (1 - w_R) \cdot p_{MAP}(x)
\]
- Prior probability w_R of a prior-data conflict reflects the initial information of how likely a prior-data conflict is
- In the following vague prior is an $InvGamma(2,1)$ distribution
Power of SSR procedures
Prior-data conflict: Robustified prior and $n_{IPS} = 60$
Extension to blinded data

- Various approaches for updating the variance prior based on blinded information:
 - blinded one-sample variance estimator
 - model the data of the internal pilot study as a mixture of two normal distributions
 - randomized block design: update prior information based on distribution of block sums (Xing and Ganju, 2005)
- All methods face same issue concerning prior-data conflict
 - Internal pilot study too small to dominate prior and thereby resolve prior-data conflict
Agenda

Sample size planning in clinical trials
Incorporating prior information into the sample size planning
Sample size re-estimation
Incorporating prior information into the sample size re-estimation
Discussion and outlook
Discussion and outlook

- Incorporating prior information into sample size re-estimation
 - Reduces variability of re-estimated sample size
 - Bears risk of under- or overpowered clinical trials in the case of prior-data conflict

- Extension to blinded data: methods face same issue concerning prior-data conflict as re-estimation based on unblinded data

- Other methods for selecting final sample size such as decision theoretic approaches (Stallard, 1998)

- GitHub repository: https://github.com/tobiasmuetze/varmap

- Future research
 - Extension to non-normally distributed endpoints
 - Incorporating prior information into effect-based sample size re-estimation
References

Glynn, L. G., Murphy, A. W., Smith, S. M., Schroeder, K., & Fahey, T. (2010). Interventions used to improve control of blood pressure in patients with hypertension. Cochrane database of systematic reviews, (3).

Wittes, J., & Brittain, E. (1990). The role of internal pilot studies in increasing the efficiency of clinical trials. Statistics in medicine, 9(1-2), 65-72.

Schmidli, H., Neuenschwander, B., & Friede, T. (2017). Meta-analytic-predictive use of historical variance data for the design and analysis of clinical trials. Computational Statistics & Data Analysis, 113, 100-110.

Friede, T., & Kieser, M. (2013). Blinded sample size re-estimation in superiority and noninferiority trials: Bias versus variance in variance estimation. Pharmaceutical Statistics, 12(3), 141-146.

Mütze, T., Schmidli, H., & Friede, T. (2018). Sample size re-estimation incorporating prior information on a nuisance parameter. Pharmaceutical statistics, 17(2), 126-143.

Schmidli, H., Gsteiger, S., Roychoudhury, S., O'Hagan, A., Spiegelhalter, D., & Neuenschwander, B. (2014). Robust meta-analytic-predictive priors in clinical trials with historical control information. Biometrics, 70(4), 1023-1032.

Xing, B., & Ganju, J. (2005). A method to estimate the variance of an endpoint from an on-going blinded trial. Statistics in Medicine, 24(12), 1807-1814.

Stallard, N. (1998). Sample size determination for phase II clinical trials based on Bayesian decision theory. Biometrics, 279-294.
Thank you