Parthenolide Inhibits Migration and Reverses the EMT Process in Breast Cancer Cells by Suppressing TGFβ and TWIST1

Hazera Binte Sufian
Texas Tech University

Julianna Maria Santos
Texas Tech University Health Sciences Center School of Medicine - Lubbock Campus: Texas Tech University Health Sciences Center School of Medicine

Zeina Shreen Khan
Texas Tech University

Maliha Tabassum Munir
Texas Tech University

MD Khurshidul Zahid
Texas Tech University

Ahmed Al-Harrasi
University of Nizwa

Lauren S. Gollahon
Texas Tech University

Fazle Hussain
Texas Tech University

Shaikh Mizanoor Rahman (_shaikh.rahman@unizwa.edu.om)
University of Nizwa https://orcid.org/0000-0002-4879-2663

Research Article

Keywords: Parthenolide, Breast cancer, EMT, Transcription factor, Migration, Metastasis

DOI: https://doi.org/10.21203/rs.3.rs-706964/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Breast cancer metastasis is the leading cause of mortality among breast cancer patients. Epithelial to mesenchymal transition (EMT) is a biological process that plays a fundamental role in facilitating breast cancer metastasis. The present study assessed the efficacy of parthenolide (PTL, *Tanacetum parthenium*) on EMT and its underlying mechanisms in both lowly metastatic, estrogen-receptor positive, MCF-7 cells and highly metastatic triple-negative MDA-MB-231 cells. Cell viability was determined by MTT (3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay. Apoptosis was analyzed by FITC (fluorescein isothiocyanate) annexin V apoptosis detection kit. The monolayer wound scratch assay was employed to evaluate cancer cell migration. Proteins were separated and identified by Western blotting. Gene expression was analyzed by quantitative real-time PCR. PTL treatment significantly reduced cell viability and migration while inducing apoptosis in both cell lines. Also, PTL treatment reverses the EMT process by decreasing the mesenchymal marker vimentin and increasing the epithelial marker E-cadherin compared to the control treatment. Importantly, PTL downregulates TWIST1 (a transcription factor and regulator of EMT) gene expression concomitant with the reduction of transforming growth factor beta (TGFß) protein and gene expression in both cell lines. Our findings provide insights into the therapeutic potential of PTL to mitigate EMT and breast cancer metastasis. These promising results demand in vivo studies.

Introduction

Breast cancer is a complex and heterogeneous disease and common cancer in females that accounts for the 2nd greatest number of cancer-related deaths among women worldwide [1, 2]. It is estimated that breast cancer is responsible for about 15% of all cancer-related deaths among women globally [3]. Recently, increased awareness and early detection have substantially reduced mortality. However, late diagnosis can increase the risk of spreading cancer cells from the primary tumor to neighboring tissues and distant organs, a process known as metastasis. In breast cancer, metastasis is responsible for the majority of deaths[4]. Thus, understanding the molecular basis of metastasis is critical to prevent and reduce breast cancer-related mortality.

The epithelial to mesenchymal transition (EMT) is a biological process that is intimately associated with cancer cell invasiveness and metastasis [5]. Evidence now suggests that in EMT, epithelial cells lose cellular polarity and interaction with the basement membrane while acquiring mesenchymal phenotypes such as cell migration and invasiveness [6]. EMT is also characterized by reduced expression of epithelial cell markers like E-cadherin and higher expression of mesenchymal cell markers such as vimentin and N-cadherin [7]. Substantial evidence suggests that signal transduction pathways including NOTCH and WNT are associated with EMT and contribute to disease progression [8]. EMT is also activated by the cytokine transforming growth factor beta (TGFß) [9] and can be controlled by transcription factors like SNAIL and TWIST [10]. Because of the clear roles of EMT in breast cancer metastasis and recurrence, research targeting EMT related pathways and/or transcription factors to regulate EMT is currently
drawing considerable attention as this may open a new avenue for drug development to treat and prevent metastatic breast cancer.

Phytochemicals have been gaining considerable research interests for their effectiveness and safety to treat different diseases including cancer [11, 12]. Parthenolide (PTL) is a sesquiterpene lactone extracted from the flowers and fruits of the plant *Tanacetum parthenium* (Feverfew). PTL has shown many biological activities including anti-inflammatory and anti-cancer activities. PTL reduced MCF-7 breast cancer stem cell proliferation by regulating the NF-κB pathway [13]. Berdan et al. reported that PTL regulates breast cancer cell proliferation, survival, and motility by targeting focal adhesion kinase 1 (FAK1) signaling pathway [14]. Carlisi et al. revealed that PTL and its soluble analog dimethylaminoparthenolide (DMAPT) promote cytotoxicity in breast cancer stem-like cells. Additionally, they found that PTL and DMAPT mediated induction of cytotoxicity was associated with increased reactive oxygen species (ROS) production, upregulation of NADPH oxidases, and downregulation of manganese superoxide dismutase and catalase [15]. Moreover, PTL was found to inhibit proliferation, migration, and invasion in pancreatic cancer cells [16]. However, PTL's effects on EMT in both MCF-7 and MB-231 breast cancer cells and its underlying mechanism remains unknown.

The present study evaluated the effects of PTL (2 and 5 µM) on migration, EMT, and apoptosis in both lowly (MCF-7) and highly (MDA-MB-231) metastatic breast cancer cells. Additionally, we assessed the role of TGFβ and EMT-related transcription factors, SNAIL1 and TWIST1, in PTL mediated regulation of EMT in breast cancer cells.

Our results revealed that PTL treatment significantly reduced cell viability and migration as predicted, but also induced apoptosis in both MCF-7 and MB-231 breast cancer cells. Furthermore, PTL treatment reversed EMT by reducing vimentin and increasing E-cadherin. This PTL-mediated reversal of EMT was associated with the suppression of TGFβ and TWIST1 gene expression in both cell lines.

Materials And Methods

Cell culture and treatment

MCF-7 (estrogen-receptor positive) and MDA-MB-231 (triple-negative) breast cancer cells were obtained from American Type Culture Collection (ATCC) (Manassas, VA, USA). Cells were grown in Dulbecco's Modified Eagle Medium (DMEM) (11965-118, Life Technologies, Carlsbad, CA, USA) which contained 10% fetal bovine serum (FBS, 10437-028, Thermo Fisher Scientific, Waltham, MA, USA) and 1% penicillin streptomycin, at 37°C in 5% CO2 incubator. Cells between passages 10 and 15 were used for the experiments. For treatment purposes, MCF-7 and MB-231 cells were serum starved for twelve hours with DMEM without FBS and Penicillin Streptomycin. 70-80% confluent cells were treated with 2 and 5µM parthenolide (PTL) (Parthenolide, Item No 70080, Cayman Chemical Company, Ann Arbor, MI, USA) and untreated (control) for 24 hours using DMEM media with 0.5% FBS. Cells were harvested post treatment for RNA isolation and Western Blot Analysis. Key proteins and genes were analyzed by Western blot and qRT-PCR respectively.
MTT assay

Cell proliferation/viability were measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay kit (k299-1000, BioVision Inc., Milpitas, CA, USA). Cells were seeded at 1×10^4 cells/well in 96-well plates and treated (2 µM or 5 µM) and untreated (control) PTL for 24 hours. After 24 hours of treatment, the medium was discarded and 50 µl of serum free medium and 50 µl of MTT reagent were added into each well. For background control, 50 µl of MTT reagent were added into a well containing medium only. Plates were incubated at 5% CO₂ and at 37°C temperature for 3 hours. After incubation, 150 µl of MTT solvent was added into each well. The plate was wrapped in aluminum foil, shaken on a shaker for 15 minutes, and then the absorbance was taken at 590 nm wavelength and proliferation was measured using the data of three independent experiments as previously described [17].

Monolayer wound scratch assay

MCF-7 and MDA-MB-231 cells were plated at 5×10^5 cells/well in 12-well plates. After reaching total confluence, a “scratch” was created using a 10 µl pipette tip by scraping the monolayer in a neat, straight line. The previous media was discarded, cells were washed with Dulbecco's phosphate buffered saline (DPBS, 1 ml for each well) and treated with and without PTL (2 and 5µM) for 24 hours. Wounds were imaged every 10 min for 24 hours, using a Nikon Eclipse motorized microscope with incubator at 5% CO₂ and 37°C temperature (Nikon Instruments Inc., Melville, NY, USA). The initial and the final wound widths were measured and the migration speed was calculated by taking the difference of the initial and final wound width and dividing them by the total elapsed time [18].

Apoptosis analysis

To detect apoptosis, MCF-7 and MBA-231 cells were plated at 5×10^5 cells/well in a 12 well plate until sub-confluent. Then the cells were treated with and without parthenolide (2 and 5 µM) for 24 hours. After 24 hours, the medium was removed from the wells and 100 µl annexin V binding buffer was added along with the stain fluorochrome conjugated annexin V (5 µl) using the FITC Annexin V Apoptosis Detection Kit I (BD Biosciences, San Jose, CA, USA) following manufacturer’s protocol. Then the cells were incubated for 15 minutes at room temperature and the plate was wrapped with foil for protection from light. The cells were washed again and resuspended with 200 µl binding buffer and analyzed using a Nikon Eclipse motorized microscope with incubator (Nikon Instruments Inc., Melville, NY, USA).

Cytosolic fraction preparation

Cells were plated at 1×10^6 cells/well in 6 cm plates until sub-confluent, then treated with and without PTL (2 and 5 µM) for 24 hours. After that, the medium was removed from the wells and washed with cold DPBS (2ml/plate). Then the cell lysate was collected using a scrapper after adding 75µl of Buffer A (10 mM HEPES, pH 7.5, 10 mM KCL, 0.1 mM EDTA, 0.1 mM EGTA, 1 mM DTT, 1mM PMSF, 2 µg/ml each of aprotinin and leupeptin). It was then centrifuged at 12,000 xg for 1 minute. The supematant cytoplasmic
extracts were saved. Protein concentration was measured with a protein assay kit (Bio-Rad, Hercules, CA, USA).

Western-blot analysis

Equal amount of proteins (40-60 µg) were separated by electrophoresis on 12% SDS PAGE gels and transferred to PVDF membranes. Membranes were blocked using protein-free Tween 20 blocking buffer (37571, Thermo Scientific) for one hour, and probed using primary and secondary antibodies as described before [19, 20]. The primary antibodies used for the study are vimentin (DSHB, University of Iowa, Iwoa City, USA, dilution 1:300) and E-cadherin (701134, Thermo Fisher, dilution 1:200), TGF-β (sc-146, Santa Cruz Biotechnology, Inc., Dallas, TX, USA, dilution 1:300). The secondary antibodies used were (anti-rabbit 0711-625-152, or anti-mouse 115-625-146, 1:5000 dilution, Jackson ImmunoResearch Laboratories, Inc., West Grove, PA, USA). Membranes were scanned and bands quantified using the Odyssey infrared Imaging System (LiCor Biosciences, Lincoln, NE, USA).

Gene expression by quantitative real-time PCR (qRT-PCR)

Both MCF-7 and MBA-231 cells were serum starved for 12 hours with DMEM without FBS and Penicillin Streptomycin and, when the cells were 70-80% confluent, treated with PTL 2 and 5 µM for 24 hours. Total RNA was isolated from treated MCF-7 cells (plated at 5× 10^5 cells/well in 6-well plates) using the Qiagen RNeasy Plus kit (74136, Qiagen, Germantown, MD, USA). Reverse transcription was performed using total RNA with the iScript cDNA synthesis kit (Bio-Rad, Hercules, CA, USA). qPCR was performed using primer sets (Sigma-Aldrich, St. Louis, MO, USA) for genes of interest and reference gene and iQ SYBR Supermix (Bio-Rad) following manufacturer's protocol. Total RNA isolation, reverse transcription, and quantitative real-time PCR (qPCR) were performed as previously described [21]. RNA expression data were normalized to levels of reference gene GAPDH using the comparative threshold cycle method.

The primer sequences used are:

Human GAPDH: F- AGCCTCAAGATCATCAGCAATGCC
Human GAPDH: R- TGTGGTCATGAGTCCTTCCACGAT
Human TWIST1: F- GCACCATCCTCACACCTCT
Human TWIST1: R- CTGATTGGCACGACCTCTTG
Human SNAIL1: F- TCGCTGCCAATGCTCATC
Human SNAIL1: R- GGAAGAGACTGAAGTAGAGGAGAA
Human TGFβ: F- GGCCCTGCCCCTACATTT
Human TGFβ: R- CCGGGTTATGCTGGTTGTACA
F; Forward, R; Reverse

Statistical analysis

Statistical comparisons between groups were made either using Student's t-test, or one-way ANOVA. All values are reported as mean ± SEM. Differences were considered to be statistically significant at P values of 0.05 or less.

Results

PTL treatment significantly decreased viability and apoptosis in MCF-7 and MDA-MB-231 breast cancer cells

We first investigated the effects of PTL treatment on cell growth by checking cell viability using the MTT assay. We used both low metastatic MCF-7 (estrogen-receptor positive) and highly metastatic MDA-MB-231 (triple negative) breast cancer cells and used 2 and 5 µM PTL based on published studies [12, 15]. The results revealed that PTL treatment (2 µM) did not significantly change cell viability at 0 and 24 hours compared to the control treatment but significantly reduced cell viability after 48 hours (P < 0.01, Fig. 1a). In contrast, 5 µM of PTL was found to more efficiently decrease MCF-7 cell viability after 24 and 48 hours (70% and 85% compared with the control treatment, P < 0.05, Fig. 1a). Surprisingly, 5µM PTL treatment also exerted a significant reduction of cell viability in MCF-7 cells at 0 hour (Fig. 1a, P < 0.05).

Treatment of MB-231 cells with 5 µM of PTL also significantly decreased (30–40%) cell viability at 0, 24 and 48 hours (P < 0.05, Fig. 1b). In contrast, 2 µM of PTL treatment demonstrated a trend to reduce cell viability after 24 and 48 hours though the reduction was not statistically significant when compared to the controls. The results suggest that PTL can inhibit cell growth by reducing cell viability.

To determine the mechanism by which PTL inhibits growth in breast cancer cells, we assessed the effect of PTL on apoptosis. In apoptotic cells, the membrane phospholipid phosphatidylserine translocates from the inner to the outer portion of the membrane and can be detected by annexin V-FITC, a phospholipid-binding protein [22]. To assess the effects of PTL on apoptosis, MCF-7, and MB-231 cells were treated with (2 and 5 µM) or untreated (control) for 24 hours. FITC Annexin V apoptosis detection kit I (BD Biosciences) was used [23]. Numbers of dead cells were analyzed using a Nikon Eclipse motorized microscope with an incubator (Nikon Instruments Inc.). PTL treatment (2 µM) showed a trend to induce apoptosis in MCF-7 cells compared to the controls but was not statistically significant. PTL (5 µM) significantly increased apoptosis after 24 hours of treatment in MCF-7 breast cancer cells (P > 0.05, Fig. 1c). In contrast, both 2 and 5 µM of PTL significantly increased apoptosis in MB-231 cells (P < 0.05, P < 0.01, Fig. 1d). These results indicate that PTL (5µM) treatment is more effective at inducing apoptosis.
in both MCF-7 and MB-231 breast cancer cells and may be responsible for the reduction of PTL-mediated cell viability.

PTL treatment inhibited migration of MCF-7 and MB-231 breast cancer cells

In a metastatic condition, breast cancer cells can spread from the primary site of origin to a distant organ. The metastasis of breast cancer cells causes the majority of breast cancer-related deaths. The underlying mechanism of metastasis remains largely unknown. The prerequisite for breast cancer spread and metastasis is the ability of the cells’ to migrate and invade the surrounding tissues [24]. We have found that PTL treatment decreased breast cell viability and increased apoptosis. Next, we evaluated if there is an association of these results to breast cancer cell migration. We treated both breast cancer cells with 2 and 5 µM PTL for 24 hours. The motility of MCF-7 and MB-231 cells was assessed by the monolayer wound scratch assay. PTL 2 and 5µM treatment significantly reduced MCF-7 cell migration when compared to the control treatment (P < 0.05, Fig. 2a). Similar results were found with MB-231 cells (P < 0.05, Fig. 2b). These observations revealed that PTL mediated induction of apoptosis and reduced cell viability may contribute to the reduced migration of both MCF-7 and MB-231 cells.

PTL treatment reversed the EMT process in MCF-7 and MB-231 cells

Invasion and subsequent migration of cancer cells are often preceded and mediated by an epithelial-to-mesenchymal transition [25]. We found that PTL treatment reduced migration in breast cancer cells. We wanted to evaluate whether PTL-mediated reduction of migration has any influence on EMT. We checked key proteins (vimentin and E-cadherin) implicated in the EMT process by Western blotting. Treatment with 2 µM of PTL showed a trend in reducing the mesenchymal marker vimentin and modestly increased (not significantly) the epithelial marker E-cadherin in MCF-7 cells compared to the controls (Fig. 3a). However, treatment with 5 µm of PTL significantly reduced vimentin (P < 0.01) and increased E-cadherin (P < 0.05) in MCF-7 breast cancer cells (Fig. 3a). In MBA-231 cells, 2 µM of PTL did not significantly change vimentin expression but increased E-cadherin expression compared to the controls (P < 0.05, Fig. 3b). Similar to MCF-7 cells, 5 µM of PTL significantly decreased vimentin (P < 0.05) and induced E-cadherin protein expression (P < 0.01) in MBA-231 cells (Fig. 3b). The results suggest PTL (5µM) is more efficient at reversing EMT by reducing mesenchymal markers and inducing epithelial markers.

PTL treatment reduced TGFβ expression in MCF-7 and MBA-231 cells

TGFβ is a cytokine, plays a critical role in migration, EMT activation, and tumor progression [26]. To understand the mechanism of PTL-mediated regulation of migration and the EMT process, we checked TGFβ protein and gene expression in breast cancer cells. MCF-7 cells treated with 2 and 5 µM of PTL significantly reduced TGFβ protein expression (P < 0.05, Fig. 4a). Similarly, 2 and 5µM of PTL significantly reduced TGFβ protein expression in MB-231 cells compared to the controls (P < 0.05 and P < 0.01, Fig. 4b). We also checked the TGFβ gene expression in PTL treated MCF-7 and MBA-231 cells. Only PTL at 5µM significantly reduced TGFβ gene expression in MCF-7 cells (P < 0.05, Fig. 4c). Interestingly, TGFβ gene expression was significantly reduced by both PTL 2 µM and PTL 5 µM treatments in MBA-231 cells.
(P < 0.01, Fig. 4d). These results suggest that PTL treatment may regulate migration and EMT in breast cancer cells by targeting TGFβ.

PTL treatment reduced TWIST1 gene expression in MCF-7 and MB-231 cells

Transcription factors TWIST and SNAIL play an essential role in EMT regulation [27, 28]. Accumulating evidence suggests that TGFβ activates EMT by inducing SNAIL1 and TWST1and in hepatic and prostate cancer cells [29, 30]. To gain further insight into the mechanisms of PTL-mediated reversal of EMT in breast cancer cells, we checked the gene expression of TWIST1 and SNAIL1. PTL treatment (2 and 5 µM) did not exert any significant changes in SNAIL1 gene expression in MCF-7 and MB-231 breast cancer cells (Fig. 5a and 5b). Only 5 µM of PTL significantly reduced TWIST1 gene expression in MCF7 breast cancer cells (P < 0.05, Fig. 5a). Similarly, TWIST1 gene expression was significantly reduced in MB-231 cells by 5 µM of PTL treatment (P < 0.05, Fig. 5b). The results suggest that PTL may reverse EMT in breast cancer cells by downregulating TWIST1.

Discussion

The present study investigated the anticancer properties and underlying molecular mechanisms of PTL in both low/non metastatic, estrogen-receptor positive, MCF-7 cells and highly metastatic triple-negative MDA-MB-231 cells. We demonstrated here, for the first time, that PTL treatment reverses the EMT process by significantly reducing the mesenchymal marker vimentin and inducing the epithelial marker E-cadherin protein expression in both MCF-7 and MDA-MB-231 cells. The reversal of EMT was concurrent with the reduction of TGFβ protein and gene expression, and the EMT inducing transcription factor TWIST1 gene expression.

EMT is a biological process that enhances tumor cell invasiveness and aids tumor cells during intravasation from the primary site, facilitating tumor metastasis [6, 31]. Substantial evidence now suggests that EMT is also linked to cancer drug and chemotherapy resistance in a variety of cancers, including breast cancer [32, 33]. Accumulating evidence also suggests that breast cancer metastasis accounts for most of the breast cancer mortality in women worldwide [4]. Thus, the present findings of the reversal of EMT in breast cancer cells following PTL treatment is significant.

The present study also demonstrated PTL-mediated induction of apoptosis and inhibition of cell viability and migration in both MCF-7 and MBA-231 breast cancer cells and is consistent with previous findings [16, 34]. Cell migration is considered the key early event in the EMT process [6]. The PTL-mediated reduction of migration and induction of apoptosis in both MCF-7 and MB-231 cells may be associated with the reversal of the EMT process. Moreover, the reversal of EMT and inhibition of breast cancer cell migration will eventually prevent breast cancer progression and metastasis.

Understanding the molecular regulation of EMT is critical to prevent metastasis and cancer-related mortality. EMT is also robustly regulated by transcription factors (TFs) [6]. These include SNAIL that represses E-cadherin [35] and TWIST which controls EMT and metastasis [27]. Strong evidence suggests
that these transcription factors regulate EMT by downregulating epithelial markers and upregulating mesenchymal markers [27, 35]. For example, higher TWIST1 expression was found to correlate with lower epithelial marker E-cadherin expression [36]. It was also revealed that TWIST1 is required for intravasation and cell migration while deletion of TWIST1 reduced the number of micrometastases in the lung in a mouse model of breast cancer [36]. Brenot et al. revealed that SNAIL1 promotes breast cancer progression and metastasis by increasing the production of granulocyte-macrophage colony-stimulating factor (GM-CSF) and regulating tumor-associated macrophages (TAMs) function in the mouse model of breast cancer. These results indicate that both TWIST1 and SNAIL1 are crucial to regulate tumor progression by modulating EMT.

PTL was found to reduce vimentin in MCF-7 cells, although the mechanism was unknown [37]. We have observed a PTL-mediated downregulation of TWIST1 gene expression in breast cancer cells. It is thus possible that PTL-mediated suppression of TWIST1 may be linked with PTL-mediated regulation of the EMT process.

TGFβ, a cytokine, plays a fundamental role in cancer progression by regulating EMT [26]. Evidence supports that TGF-β acts as a tumor suppressor during the initial stage of tumorigenesis [38]. In contrast, during tumor progression, cancer cells secrete high levels of TGFβ, facilitating EMT, invasion, and metastasis [38]. Zhu et al. reported that PTL mitigates TGFβ-mediated EMT induction by regulating vimentin, E cadherin and SNAIL in colorectal cancer cells [39]. To gain more insight into the mechanisms of PTL-mediated reversal of EMT and suppression of TWIST1 gene expression in breast cancer, we checked TGFβ protein and gene expression in MCF-7 and MB-231 cells. We observed a significant reduction of TGFβ protein and gene expression in PTL treated MCF-7 and MB-231 cells. Our results suggest that PTL-mediated inhibition of TGFβ, may, in part, be responsible for the reversal of the EMT process in breast cancer cells.

Regarding the mechanism of TGFβ-mediated regulation of EMT, studies suggest that TGFβ-SMAD signaling plays a significant role [40]. In the SMAD-dependent pathway, TGFβ activates the receptor complex and phosphorylates SMAD2 and SMAD3. The phosphorylated SMAD proteins form a complex with SMAD4 and translocate to the nucleus, where they interact with EMT-inducing transcription factors to regulate the expression of target genes implicated in EMT [40, 41]. Studies have shown that inhibition of TGFβ-SMAD2 reverses EMT and mitigates breast cancer metastasis [42, 43]. We have demonstrated that PTL treatment significantly reduced the expression of TGFβ protein and gene and TWIST1 gene in both MCF-7 and MB-231 cells. It is thus presumed that PTL, by suppressing TGFβ may downregulate the transcription factor TWIST1 and its target genes and ultimately reverses EMT in breast cancer. However, we did not evaluate the expression of other proteins in the TGFβ signaling pathways, especially the downstream SMAD proteins, in our study. Additionally, TGFβ may regulate EMT by modulating other signaling pathways [44–46]. EMT, in vivo, can also be regulated by signals elicited from the stromal cells in the tumor microenvironment [47]. Thus, future studies evaluating the effects of PTL, between the tumor-stroma interaction, will be required for more clarification.
Though this present study reported some important anticancer properties of PTL, it has some limitations. We reported here the downregulation of TGFβ after PTL treatment, which may be responsible for the reversal of EMT. However, we do not yet know the underlying molecular details of PTL-mediated regulation of TGFβ. Recent studies have shown that microRNAs (miRNAs), long non-coding RNAs (lncRNAs), transcriptional regulators TAZ and YAP, regulate EMT by modulating TGFβ signaling \[48–50\]. It is also not clear about the exact role of estrogen receptors (ERs) in PTL-mediated downregulation of TGFβ. Thus, future studies are warranted for clarification.

Altogether, our study revealed that PTL treatment (5 µM) is effective in reducing migration, decreasing cell viability, and increasing apoptosis in both MCF-7 and MDA-MB-231 breast cancer cells. Importantly, PTL significantly reversed the EMT process by decreasing the mesenchymal signature protein vimentin and increasing the epithelial signature protein E-cadherin in both cancer cells. The reversal of EMT by PTL was associated with the suppression of both TWIST1 and TGFβ (Fig. 5c). Thus, PTL might have important therapeutic potential, either alone or in combination, with other existing cancer drugs toward preventing breast cancer aggressiveness and metastasis. This potential warrants future studies in a mouse model of breast cancer metastasis.

Abbreviations

ERα; estrogen receptor α, EMT; Epithelial to mesenchymal transition, MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide), TGFβ; transforming growth factor beta, TAZ; Tafazzin, YAP; yes-associated protein, ROS; reactive oxygen species. GM-CSF; granulocyte-macrophage colony-stimulating factor

Declarations

Data availability

Data will be made available from the corresponding author on reasonable request.

Funding

This work didn’t receive any funding.

Contributions

Conceptualization: SMR, HBS, FH; Methodology and Data Curation: HBS, JMS, JSK, MTM; Analysis: HBS, JMS, JSK, SMR, MKZ; Writing- Original draft preparation: HBS, SMR; Writing - review and editing: SMR, FH, LSG; All authors read and approved the final manuscript.

Conflict of interest

The authors don’t have any conflict of interest.
Ethics approval

Not applicable.

Acknowledgments

Hazera Binte Sufian was supported by a fellowship provided by the College of Human Sciences, Texas Tech University.

References

1. Siegel R, Naishadham D, Jemal A, *Cancer statistics, 2012. CA: A Cancer Journal for Clinicians, 2012.* 62(1): p. 10–29 DOI: 10.3322/caac.20138

2. Bombonati A, Sgroi DC (2011) The molecular pathology of breast cancer progression. J Pathol 223(2):307–317. DOI:10.1002/path.2808

3. *WHO / Breast cancer* (2020) Sunday, September 6, 2020, 3:43:16 AM; Available from: https://www.who.int/cancer/prevention/diagnosis-screening/breast-cancer/en/

4. Lorusso G, Rüegg C (2012) New insights into the mechanisms of organ-specific breast cancer metastasis. Semin Cancer Biol 22(3):226–233. DOI:10.1016/j.semcancer.2012.03.007

5. Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119(6):1420–1428. DOI:10.1172/jci39104

6. Thiery JP et al (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139(5):871–890. DOI:10.1016/j.cell.2009.11.007

7. Thiery JP (2003) Epithelial-mesenchymal transitions in development and pathologies. Curr Opin Cell Biol 15(6):740–746. DOI:10.1016/j.cceb.2003.10.006

8. Micalizzi DS, Farabaugh SM, Ford HL (2010) Epithelial-mesenchymal transition in cancer: parallels between normal development and tumor progression. J Mammary Gland Biol Neoplasia 15(2):117–134. DOI:10.1007/s10911-010-9178-9

9. Oft M et al (1996) TGF-beta1 and Ha-Ras collaborate in modulating the phenotypic plasticity and invasiveness of epithelial tumor cells. Genes Dev 10(19):2462–2477. DOI:10.1101/gad.10.19.2462

10. Brabletz T (2012) To differentiate or not–routes towards metastasis. Nat Rev Cancer 12(6):425–436. DOI:10.1038/nrc3265

11. Cojocneanu Petric R et al (2015) Phytochemicals modulate carcinogenic signaling pathways in breast and hormone-related cancers. Onco Targets Ther 8:2053–2066. DOI:10.2147/ott.S83597

12. Mitra T, Bhattacharya R, *Phytochemicals modulate cancer aggressiveness: A review depicting the anticancer efficacy of dietary polyphenols and their combinations.* Journal of Cellular Physiology. n/a(n/a) DOI: 10.1002/jcp.29703

13. Zhou J et al (2008) NF-kappaB pathway inhibitors preferentially inhibit breast cancer stem-like cells. Breast Cancer Res Treat 111(3):419–427. DOI:10.1007/s10549-007-9798-y
14. Berdan CA et al (2019) Parthenolide Covalently Targets and Inhibits Focal Adhesion Kinase in Breast Cancer Cells. Cell chemical biology 26(7):1027–1035.e22. DOI:10.1016/j.chembiol.2019.03.016
15. Carlisi D et al (2016) Parthenolide and DMAPT exert cytotoxic effects on breast cancer stem-like cells by inducing oxidative stress, mitochondrial dysfunction and necrosis. Cell Death Dis 7(4):e2194. DOI:10.1038/cddis.2016.94
16. Liu J-W et al (2010) Parthenolide induces proliferation inhibition and apoptosis of pancreatic cancer cells in vitro. Journal of experimental clinical cancer research: CR 29:108. DOI:10.1186/1756-9966-29-108
17. Inc B (2018). MTT Cell Proliferation Assay Kit (Colorimetric)K299. BioVision, Inc.; Available from: https://www.biovision.com/mtt-cell-proliferation-assay-kit-colorimetric.html
18. Valster A et al (2005) Cell migration and invasion assays. Methods 37(2):208–215. DOI:10.1016/j.ymeth.2005.08.001
19. Santos JM et al (2018) Vitamin D(3) decreases glycolysis and invasiveness, and increases cellular stiffness in breast cancer cells. J Nutr Biochem 53:111–120. DOI:10.1016/j.jnutbio.2017.10.013
20. Santos JM, Hussain F (2020) Higher Glucose Enhances Breast Cancer Cell Aggressiveness. Nutr Cancer 72(5):734–746. DOI:10.1080/01635581.2019.1654527
21. Rahman SM et al (2012) CCAAT/enhancer-binding protein β (C/EBPβ) expression regulates dietary-induced inflammation in macrophages and adipose tissue in mice. J Biol Chem 287(41):34349–34360. DOI:10.1074/jbc.M112.410613
22. Vermes I et al (1995) A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods 184(1):39–51. DOI:10.1016/0022-1759(95)00072-i
23. Georgakis GV et al (2006) Inhibition of the phosphatidylinositol-3 kinase/Akt promotes G1 cell cycle arrest and apoptosis in Hodgkin lymphoma. Br J Haematol 132(4):503–511. DOI:10.1111/j.1365-2141.2005.05881.x
24. Palmer TD et al (2011) Targeting tumor cell motility to prevent metastasis. Adv Drug Deliv Rev 63(8):568–581. DOI:10.1016/j.addr.2011.04.008
25. Hayashida T et al (2011) Cooperation of Cancer Stem Cell Properties and Epithelial-Mesenchymal Transition in the Establishment of Breast Cancer Metastasis. Journal of Oncology 2011:591427. DOI:10.1155/2011/591427
26. Roberts AB, Wakefield LM, The two faces of transforming growth factor β in carcinogenesis. Proceedings of the National Academy of Sciences (2003) 100(15): p. 8621–8623 DOI:10.1073/pnas.1633291100
27. Yang J et al (2004) Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117(7):927–939. DOI:10.1016/j.cell.2004.06.006
28. Martin TA et al (2005) Expression of the transcription factors snail, slug, and twist and their clinical significance in human breast cancer. Ann Surg Oncol 12(6):488–496. DOI:10.1245/aso.2005.04.010
29. Franco DL et al (2010) Snail1 suppresses TGF-beta-induced apoptosis and is sufficient to trigger EMT in hepatocytes. J Cell Sci 123(Pt 20):3467–3477. DOI:10.1242/jcs.068692

30. Shiota M et al (2012) Clusterin mediates TGF-β-induced epithelial-mesenchymal transition and metastasis via Twist1 in prostate cancer cells. Cancer Res 72(20):5261–5272. DOI:10.1158/0008-5472.can-12-0254

31. Baum B, Settleman J, Quinlan MP (2008) Transitions between epithelial and mesenchymal states in development and disease. Semin Cell Dev Biol 19(3):294–308. DOI:10.1016/j.semcdb.2008.02.001

32. Theys J et al (2011) E-Cadherin loss associated with EMT promotes radioresistance in human tumor cells. Radiother Oncol 99(3):392–397. DOI:10.1016/j.radonc.2011.05.044

33. Foroni C et al (2012) Epithelial-mesenchymal transition and breast cancer: role, molecular mechanisms and clinical impact. Cancer Treat Rev 38(6):689–697. DOI:10.1016/j.ctrv.2011.11.001

34. Liu YC et al (2017) Parthenolide promotes apoptotic cell death and inhibits the migration and invasion of SW620 cells. Intestinal research 15(2):174–181. DOI:10.5217/ir.2017.15.2.174

35. Batlle E et al (2000) The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2(2):84–89. DOI:10.1038/35000034

36. Blanco MJ et al (2002) Correlation of Snail expression with histological grade and lymph node status in breast carcinomas. Oncogene 21(20):3241–3246. DOI:10.1038/sj.onc.1205416

37. Jafari N, Nazeri S, Enferadi ST (2018) Parthenolide reduces metastasis by inhibition of vimentin expression and induces apoptosis by suppression elongation factor α – 1 expression. Phytomedicine 41:67–73. DOI:10.1016/j.phymed.2018.01.022

38. Valcourt U et al (2005) TGF-beta and the Smad signaling pathway support transcriptomic reprogramming during epithelial-mesenchymal cell transition. Mol Biol Cell 16(4):1987–2002. DOI:10.1091/mbc.e04-08-0658

39. Zhu SM et al (2019) Parthenolide inhibits transforming growth factor β1-induced epithelial-mesenchymal transition in colorectal cancer cells. Intest Res 17(4):527–536. DOI:10.5217/ir.2019.00031

40. Wu G et al., Structural basis of Smad2 recognition by the Smad anchor for receptor activation. Science (New York, N.Y.), 2000. 287(5450): pp 92–97 DOI:10.1126/science.287.5450.92

41. Lv ZD et al (2013) Transforming growth factor-β 1 enhances the invasiveness of breast cancer cells by inducing a Smad2-dependent epithelial-to-mesenchymal transition. Oncol Rep 29(1):219–225. DOI:10.3892/or.2012.2111

42. Jiang F et al (2016) Glabridin inhibits cancer stem cell-like properties of human breast cancer cells: An epigenetic regulation of miR-148a/SMAd2 signaling. Mol Carcinog 55(5):929–940. DOI:10.1002/mc.22333

43. Derynck R, Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 425(6958):577–584. DOI:10.1038/nature02006
44. Moustakas A, Heldin CH, *Non-Smad TGF-beta signals*. J Cell Sci (2005) **118**(Pt 16): p. 3573-84 DOI: 10.1242/jcs.02554

45. Zavadil J, Böttinger EP (2005) TGF-beta and epithelial-to-mesenchymal transitions. Oncogene 24(37):5764–5774. DOI:10.1038/sj.onc.1208927

46. Quail DF, Joyce JA (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19(11):1423–1437. DOI:10.1038/nm.3394

47. Yu Y et al (2018) miR-190 suppresses breast cancer metastasis by regulation of TGF-β-induced epithelial-mesenchymal transition. Mol Cancer 17(1):70. DOI:10.1186/s12943-018-0818-9

48. Richards EJ et al (2015) Long non-coding RNAs (LncRNA) regulated by transforming growth factor (TGF) β: LncRNA-hit-mediated TGFβ-induced epithelial to mesenchymal transition in mammary epithelia. J Biol Chem 290(11):6857–6867. DOI:10.1074/jbc.M114.610915

49. Hiemer SE, Szymaniak AD, Varelas X (2014) The transcriptional regulators TAZ and YAP direct transforming growth factor β-induced tumorigenic phenotypes in breast cancer cells. J Biol Chem 289(19):13461–13474. DOI:10.1074/jbc.M113.529115

50. Tang X et al (2017) SIRT7 antagonizes TGF-β signaling and inhibits breast cancer metastasis. Nat Commun 8(1):318. DOI:10.1038/s41467-017-00396-9

Figures
Figure 1

Effect of PTL on viability and apoptosis in MCF-7 and MB-231 breast cancer cells. a MCF-7 and b MB-231 cells were treated without (control) and with 2 and 5 µM of PTL for 24-48 hours. Cell viability/proliferation were measured using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay kit (BioVision k299-1000). Data are mean ± SEM. N=3. * P<0.05 and **P<0.01 as tested by one-way ANOVA followed by Tukey’s post hoc test. All comparisons were considered significant when
P<0.05. Apoptosis was measured by FITC Annexin V Apoptosis Detection Kit I (BD Biosciences) in (c) MCF-7 and (d) MB-231 cells. Representative images are shown. Data are mean ± SEM and expressed as percent change over control. N=3. *P < 0.05 and **P<0.01 as tested by one-way ANOVA followed by Tukey’s post hoc test. All comparisons were considered significant when P<0.05.

Figure 2
Effect of PTL on migration in breast cancer cells. Cell migration was determined by Monolayer wound scratch assay. Representative migration images in (a) MCF-7, and (b) MB-231 cells. Data are mean ± SEM and expressed as percent change over control. N=3. *P < 0.05 as tested by one-way ANOVA followed by Tukey's post hoc test. All comparisons were considered significant when P<0.05.

Figure 3

PTL reverses EMT in breast cancer cells. Immunoblots and densitometric values of vimentin and E-cadherin in (a) MCF-7 and (b) MB-231 cells. Representative blots are shown. MCF-7 and MB-231 cells were treated without (control) or with 2 and 5 µM of PTL for 24 hours. Representative blots are shown. Data are mean ± SEM and expressed as percent change over control. N=3. *P<0.05 and **P<0.01 as tested by one-way ANOVA followed by Tukey's post hoc test. All comparisons were considered significant when P<0.05.
Figure 4

Effects of PTL on TGFβ protein and gene expression. Immunoblots and densitometric values for TGFβ in (a) MCF-7 and (b) MB-231 cells. Representative blots are shown. Data are presented as mean ± SEM. Relative TGFβ gene expression in (c) MCF-7 and (d) MB-231 cells analyzed by qRT-PCR. *P<0.05 and **P<0.01 as tested by one-way ANOVA followed by Tukey's post hoc test. All comparisons were considered significant when P<0.05.
Figure 5

Effects of PTL on SNAIL1 and TWIST1 gene expression. SNAIL1 and TWIST gene expression in (a) MCF-7 and (b) MB-231 cells, analyzed by qRT-PCR. Data are mean ± SEM. N=3. *P<0.05 as tested by one-way ANOVA followed by Tukey's post hoc test. All comparisons were considered significant when P<0.05. c Model of PTL mediated regulation of EMT in breast cancer cells. PTL treatment increased apoptosis, inhibited migration, and reversed EMT via suppression of TGFβ and TWIST1.