Defects in the COG complex and COG-related trafficking regulators affect neuronal Golgi function

Leslie K. Climer¹, Maxim Dobretsov² and Vladimir Lupashin¹*

¹Department of Physiology and Biophysics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA, ²Department of Anesthesiology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA

The Conserved Oligomeric Golgi (COG) complex is an evolutionarily conserved hetero-octameric protein complex that has been proposed to organize vesicle tethering at the Golgi apparatus. Defects in seven of the eight COG subunits are linked to Congenital Disorders of Glycosylation (CDG)-type II, a family of rare diseases involving misregulation of protein glycosylation, alterations in Golgi structure, variations in retrograde trafficking through the Golgi and system-wide clinical pathologies. A troublesome aspect of these diseases are the neurological pathologies such as low IQ, microcephaly, and cerebellar atrophy. The essential function of the COG complex is dependent upon interactions with other components of trafficking machinery, such as Rab-GTPases and SNAREs. COG-interacting Rabs and SNAREs have been implicated in neurodegenerative diseases like Alzheimer’s disease and Parkinson’s disease. Defects in Golgi maintenance disrupts trafficking and processing of essential proteins, frequently associated with and contributing to compromised neuron function and human disease. Despite the recent advances in molecular neuroscience, the subcellular bases for most neurodegenerative diseases are poorly understood. This article gives an overview of the potential contributions of the COG complex and its Rab and SNARE partners in the pathogenesis of different neurodegenerative disorders.

Keywords: conserved oligomeric Golgi complex, COG, congenital disorders of glycosylation, neurodegeneration, glycosylation, vesicular trafficking, Rab, SNARE

INTRODUCTION

The Conserved Oligomeric Golgi (COG) complex is an evolutionarily conserved hetero-octameric protein complex that is a proposed membrane tether during vesicular trafficking at the Golgi apparatus (Lupashin and Ungar, 2008; Reynders et al., 2011; Miller and Ungar, 2012; Willett et al., 2013b). COG is composed of two functionally distinct subcomplexes lobe A (COG1-4) and lobe B (COG5-8) (Fotso et al., 2005; Ungar et al., 2005). Secretory and transmembrane proteins make up 30–50% of all cellular proteins, and are trafficked through the endoplasmic reticulum (ER) to the Golgi for folding and modifications before delivery to their final destination. Secretory cargo molecules are thought to travel through the Golgi complex mostly inside flat cisternae that are constantly maturing in a cis-to-trans (anterograde) fashion via the so called cisternal maturation mechanism (Glick and Malhotra, 1998). However, resident Golgi proteins and Soluble NSF Attachment protein Receptors (SNAREs) are constantly recycled back in vesicular
Intracellular pathways rely on these protein families at each step of vesicular transport. Though the functional interaction between the tethers and other trafficking regulators is not completely understood, a multi-subunit tethering complex (MTC), like the COG complex, may coordinate the interactions between all other components of the trafficking machinery at the site of vesicle docking on the target membrane for efficient fusion of the two membranes (Cottam and Ungar, 2012; Willett et al., 2013b).

SNAREs are an essential COG partner. SNAREs catalyze the fusion of the vesicle membrane with the target membrane by the assembly of a quaternary SNARE complex that functions as a zipper to coalesce the opposing lipid bilayers. While SNAREs alone have an innate ability to fuse membranes, the SNARE regulatory proteins and tethering complexes are thought to be necessary for physiologically relevant fusion events (Rizo and Südhof, 2012). The COG complex interacts with at least two Golgi SNARE complexes: the cis-Golgi STX5/GOSR1(GS28)/YKT6/BET1L(GS15) complex; and the trans-Golgi STX16/STX6/VTI1a/VAMP4 complex (Shestakova et al., 2007; Laufman et al., 2009, 2013b). Additionally, SNARE complexes that contain Sec22b, GOSR2(GS27), or SNAP29 are evidenced to interact with COG (Kudlyk et al., 2013; Willett et al., 2013a). SNARE partner transitions connect all compartments of the endocytic and secretory pathways. Thus, it is likely that a defect in one trafficking step may have a cascading effect on all other cargo trafficking steps. In this review we will focus on those SNAREs where deficiency was shown to be associated with neuronal abnormalities, i.e., Ykt6, Sec22b, STX5, SNAP29, GS27, GS28, and Vti1a/b (Table 1).

The essential function of the COG complex has been proposed to depend not only upon SNAREs interactions, but also interactions with Rabs (Miller et al., 2013; Willett et al., 2013a; Figure 1). Within this context, Rabs are believed to act as molecular switches that cycle between GDP-bound (inactive) and GTP-bound (active) states and regulate cargo trafficking by acting in an intracellular compartment-specific manner. Active (GTP-bound) Rabs regulate trafficking by binding effector molecules like tethering factors and motor proteins (D’Adamo et al., 2014). Binding to some effectors leads to the activation of other Rabs, in a sequence known as the Rab Cascade (Pfeffer, 2013). Nine distinct, Golgi-localized Rabs are known to interact with COG (Miller et al., 2013; Willett et al., 2013b, 2014). The compartment-specific nature of these different Rabs makes them a potential landmark for COG membrane localization and interaction. As with the SNAREs, this review will limit the discussion to COG partners Rab1a, Rab1b, Rab2, Rab4a, and Rab6a that are implicated in neuronal abnormalities (Table 1).

Neurophysiological Abnormalities and COG Defects

Since 2004, defects in seven out of the eight COG subunits have been associated with human Congenital Disorders of Glycosylation (CDG)-type II, a growing family of diseases involving malfunctions in the processing of N- and O-linked glycans and resulting from mutations in proteins involved with glycosylation (Wu et al., 2004; Spaapen et al., 2005; Foulquier et al., 2006, 2007; Kranz et al., 2007; Ng et al., 2007, 2011; Paesold-Burda et al., 2009; Reyners et al., 2009; Richardson et al., 2009; Lübbehuesen et al., 2010; Fung et al., 2012; Huybrechts et al., 2012; Rymen et al., 2012, 2015; Koder et al., 2015; Table 1). Glycosylation is a highly dynamic process that occurs in the ER and Golgi which requires an estimated two percent of the human genome to encode the enzymes and trafficking components for the proper maturation of newly formed glycan chains (Freeze et al., 2014). COG deficiency can cause a redistribution of COG-dependent Golgi resident proteins, including glycosylation enzymes. Most COG-CDG patients have defects in siaylation and galactosylation, as indicated by fluorescent lectin staining of plasma membrane glycoconjugates from patient fibroblasts and MALDI-TOF mass spectrometry of serum glycoproteins (Foulquier et al., 2007; Kranz et al., 2007; Paesold-Burda et al., 2009; Reyners et al., 2009; Zeevaert et al., 2009a,b). Along with other multi-system pathologies, COG-CDG patients display mild to severe neurological defects including hypotonia, intellectual disability, developmental delays, epilepsy, and ataxia (Table 1). Specific symptoms and the severity of condition appears to relate to the COG subunit that is deficient with COG6 and COG7 patients demonstrating the most severe phenotypes (Rymen et al., 2015). Additionally, COG defects have not yet been attributed to any other subtype of CDG.

Several CDGs result from mutated COG subunits that are either severely truncated or rapidly degraded. Loss of one COG subunit can destabilize the remaining subunits and reduce their expression and association with the Golgi. Early studies of the COG3 subunit invoked participation of the COG complex in the proper distribution of Golgi enzymes. COG3 depletion by siRNA in HeLa cells causes extensive Golgi fragmentation and destabilization of the COG complex (Zolov and Lupashin, 2005). COG3 and COG7 knockdown generates an accumulation of COG complex-dependent (CCD) vesicles carrying the SNAREs GS15 and GS28, and Golgi enzymes MAN2A1 and GALNT2 (Zolov and Lupashin, 2005; Shestakova et al., 2006). The accumulation of CCD vesicles suggests that in COG deficient cells a significant fraction of Golgi glycosylation enzymes are separated from the proteins they need to modify. COG8-CDG patient fibroblasts have decreased levels of the other lobe B subunits (COG5, COG6, and COG7) all of which have lost their association with the Golgi (Foulquier et al., 2007; Kranz et al., 2007). COG lobe B destabilization was also seen in COG7-CDG patient fibroblasts, resulting in the loss of COG6 association with the Golgi (Kudlyk et al., 2013). The loss of COG also challenges the function of interacting SNAREs. The endosome-to-trans-Golgi Network (TGN) SNARE protein STX16 was mislocalized in COG8-CDG patient fibroblasts (Willett et al., 2013a), and the
TABLE 1 | Neurological phenotypes associated with COG and COG-interacting Rabs and SNAREs.

Protein	Disorder	Associated neurological manifestation	References
COG PROTEINS			
COG1	CDG-IIg (COG1-CDG)	Cerebral atrophy, developmental delay, hypotonia	Foulquier et al., 2006
COG2	CDG-II (COG2-CDG)	Developmental delay, epilepsy	Koder et al., 2015
COG4	CDG-IIj (COG4-CDG)	Developmental delay, epilepsy, hypotonia, lack of speech, nystagmus	Reynders et al., 2009; Ng et al., 2011
COG5	CDG-III (COG5-CDG)	Ataxia, cerebral atrophy, developmental delay, epilepsy, hypotonia	Paesold-Burda et al., 2009; Fung et al., 2012; Rymen et al., 2012
COG6	CDG-III (COG6-CDG)	Ataxia, cerebral atrophy, developmental delay, epilepsy, hypotonia, optic nerve atrophy, sensorineural hearing loss	Lübbehuesen et al., 2010; Huybrechts et al., 2012; Shaheen et al., 2013; Rymen et al., 2015
COG7	CDG-Ile (COG7-CDG)	Cerebral atrophy, developmental delay, hypotonia	Wu et al., 2004; Morava et al., 2007; Ng et al., 2007, Zevevaert et al., 2009a
COG8	CDG-Ill (COG8-CDG)	Cerebral atrophy, developmental delay, hypotonia	Foulquier et al., 2007; Kranz et al., 2007
SNARE PROTEINS			
Ykt6	Parkinson’s Disease	Trafficking defects and cytotoxicity in vitro in NRK and PC12 cell lines	Hasegawa et al., 2003, 2004
Sec22b	Parkinson’s Disease	Trafficking defects and cytotoxicity in vitro in NRK and PC12 cell lines	Hasegawa et al., 2003, 2004
STX5	Parkinson’s Disease	Trafficking defects and cytotoxicity in vitro in NRK and PC12 cell lines	Suga et al., 2005b; Thayanidhi et al., 2010; Rendón et al., 2013; Suga et al., 2015
SNAP29	CEDNIK-Neuro-cutaneous syndrome	Cerebral Dysgenesis, Neuropathy, Ichthyosis, and Keratoderma	Sprecher et al., 2005; Fuchs-Telem et al., 2011
GS27	Myoclonus epilepsy/early ataxia Parkinson’s Disease	Action myoclonus, mild cerebral atrophy, and early ataxia	Thayanidhi et al., 2010; Corbett et al., 2011
GS28	Neurodegeneration	Retinal degeneration in in vivo Drosophila photoreceptors	Rosenbaum et al., 2014
Vti1a/b	Neurodegeneration	Perinatal lethality in double knockouts in an in vivo mouse model. Neuronal axon tracks missing, reduced in size or misrouted	Kunwar et al., 2011; Walter et al., 2014
RAB PROTEINS			
Rab1a	Parkinson’s Disease	Neuroprotective in C. elegans, D. melanogaster and primary rat neuron cultures. Rescue from the neurotoxic effects of α-synuclein	Cooper et al., 2006; Gitter et al., 2008
Rab1b	Alzheimer’s Disease	Dominant negative mutant of Rab1b blocks trafficking of APP and decreases the secretion of Aβ	Dugan et al., 1995
Rab2	Parkinson’s Disease	Reduced expression of Rab2 can rescue Golgi fragmentation in PD models	Rendón et al., 2013
Rab4a	Neumann-Pick disease Alzheimer’s Disease Down’s syndrome	Reduced Rab4-dependent recycling in vitro in Neumann-Pick type A and type C fibroblasts. Postmortem samples: increased Rab4 in patients with AD and mild cognitive disorder Aβ partially co-localizes with Rab4 in a mouse model of Down Syndrome	Catado et al., 2000; Chouchury et al., 2004; Arriagada et al., 2010; Ginsberg et al., 2010
Rab6a	Alzheimer’s Disease	Dominant negative mutant of Rab6 increases the secretion of soluble APP and decreased Aβ secretion	McConlogue et al., 1996

STX5/GS28/Ykt6/GS15 and STX6/STX16/Vti1a/VAMP4 SNARE complexes were destabilized in both COG7- and COG8-CDG patient fibroblasts (Laufman et al., 2013a). In a non-CDG patient presenting intellectual disability, Shaheen et al. identified a mutation in COG6 which resulted in reduced COG6 and STX6 protein expression (Shaheen et al., 2013). Anterograde trafficking does not appear to be affected in cells with COG mutations, but retrograde trafficking is affected as indicated by a partial resistance to treatment with the transport inhibitor brefeldin A (Steet and Kornfeld, 2006; Foulquier et al., 2007; Kranz et al., 2007; Ng et al., 2007; Paesold-Burda et al., 2009; Reynders et al., 2009) and by endosome-to-TGN trafficking defects elucidated by application of Shiga toxin and SubAB toxin (Zolov and Lupashin, 2005; Smith et al., 2009). Therefore, retrograde intra-Golgi and endosome-to-TGN sorting are particularly impaired by COG deficiency.

NEUROPATHOLOGY AND DEFECTS IN COG-ASSOCIATED PROTEINS

Extensive in vitro analyses in control and disease models demonstrate that genetic deficiency in SNARE and Rab COG partners may also result in disintegration of the Golgi apparatus, thereby potentially influencing neurological impairment (Table 1). Interestingly, the therapeutic implications of studying neurodegeneration associated with defective COG function is broader than the COG-CDG patient population (D’Adamo et al., 2014; Rymen et al., 2015). Golgi fragmentation is a common feature of neurodegenerative diseases (Gonatas et al., 2006). Current theories argue that the Golgi fragmentation seen in Alzheimer’s Disease (AD) and Parkinson’s Disease (PD) is either a result of misfolded or aggregated proteins, or that fragmented Golgi causes etiologically important proteins...
Climer et al. COG function in neurons

FIGURE 1 | Model of COG trafficking within neurons. A cartoon depicting the proposed roles for the COG complex (depicted as red shapes for lobe A and green shapes for lobe B subcomplexes) and its interacting protein partners in Golgi trafficking: Rabs (yellow circles), and SNAREs (purple lines). Right panel: Immunofluorescence images of COG complex subunit COG3 (top-red) and Golgi SNARE GS15 (middle-green) in rat dorsal root ganglion. Perinuclear (DAPI) co-localization is indicated by yellow in the merged image (bottom). Scale Bar = 10 microns.

to aggregate and misfold leading to further progression of these diseases (Gonatas et al., 2006; Nakagomi et al., 2008; Bellouze et al., 2014; Joshi and Wang, 2015). However, Golgi fragmentation has also been linked to SNARE and Rab proteins making it difficult to pinpoint a single disease progression. Thus, the COG-Rab-SNARE dynamic is important for understanding neurodegenerative phenotypes.

SNAREs

Genetic deficiency in SNAREs was shown to be associated with the progression of neurodegenerative diseases like AD and PD. PD is marked by the presence of Lewy bodies which are principally composed of aggregated α-synuclein. Under physiological conditions, α-synuclein may regulate vesicle trafficking and promote synaptic transmission by binding directly to SNAREs and stimulating SNARE complex formation (Burré et al., 2010; Thayanidhi et al., 2010). Overexpression of wild type or the PD-associated mutant of α-synuclein (A53T) leads to cytotoxicity and inhibition of ER-to-Golgi trafficking in in vitro models which can be partially suppressed by co-overexpression of SNAREs Ykt6 or Sec22. Ykt6—a protein enriched in neurons—was more protective than Sec22 and suggests a specialized role in mammals (Hasegawa et al., 2003, 2004). In vitro binding experiments also point toward the direct interaction of α-synuclein with STX5 and GS27 along with mutant α-synuclein which destabilizes the STX5-GS27-rbet1-sec22b SNARE complex (Thayanidhi et al., 2010). This line of evidence further implicates trafficking defects in bringing about neurodegenerative cytotoxicity.

Although the exact molecular mechanisms connecting Golgi fragmentation and disease mutations is still much under investigation, in vitro models can be used to recapitulate Golgi fragmentation seen in neurodegenerative disorders (Suga et al., 2005a). Fragmentation has been recreated in vitro and can be rescued by regulating levels of SNAREs. A STX5 knockdown is known to induce Golgi fragmentation in HeLa cells and cultured neurons (Suga et al., 2005a; Amessou et al., 2007). On the other hand, in PC12 cells treated with 6-hydroxydopamine or methamphetamine (an established in vitro PD model), a decrease in the level of STX5 rescues Golgi fragmentation (Rendón et al., 2013). This same study also demonstrated
that Golgi fragmentation could intensify disease progression by
inducing α-synuclein aggregation and the formation of Lewy

bodies.

STX5 defects have also been shown to affect processing of
AD-related proteins. In AD, amyloid precursor protein
(APP) undergoes a series of proteolytic events by β- and γ-
secretes to create the amyloidogenic variants of β-amyloid
(Aβ) that are longer and more likely to form aggregates
(Peric and Annaert, 2015). Presenilins form a complex with
γ-secretase, and mutations in presenilin 1 (PS1) are the most

frequently associated mutations found in AD which result
in increased production of Aβ, or altered ratios of amyloid
peptide species (Hardy, 2006; Saito et al., 2011; De Strooper
et al., 2012). Overexpressed STX5 was shown to co-localize
with and directly bind to PS1. Further, STX5 overexpression
increased the accumulation of APP in the ER and cis-Golgi and
inhibited Aβ secretion in a neuroblastoma cell line (NG108-
15)(Suga et al., 2005b). In NG108-15 cells expressing the
familial AD mutation PS1ΔE9, STX5 was shown to have a
decreased association with presenilin. A study of ER stress
in an AD model demonstrated that ER stressors can increase
synthesis of STX5 and its accumulation in the ER-Golgi
intermediate compartment (ERGIC) and transport vesicles.
Thus, upregulation of trafficking machinery induced by ER stress
could be a cellular mechanism for correcting the accumulation
of the amyloidogenic cleavage products of APP (Suga et al.,
2015).

As stated above, the cis-Golgi SNARE GS27 (GOSR2) binds
to α-synuclein and is part of a SNARE complex that

is destabilized by mutant α-synuclein. GS27 has also been
shown to be associated with a neurological disorder in humans.
Six patient were identified baring a mutation that results in
improper subcellular localization and loss of function of GS27
leading to symptoms common in COG-CGD patients such as
cerebral atrophy, epilepsy, and early ataxia (Corbett et al., 2011;
Table 1).

GS28 (GOSR1) is a Golgi SNARE involved in both ER-
to-Golgi and intra-Golgi transport (Nagahama et al., 1996;
Subramaniam et al., 1996), and accordingly has been shown to
be associated with three SNARE complexes (Zhang and Hong,
2001; Parlati et al., 2002; Xu et al., 2002; Siddiqi et al., 2010).
GS28 mutants have been used to study retinal degeneration in
Drosophila photoreceptors (Rosenbaum et al., 2014). Lack of
expression of GS28 in mutant flies alters trafficking and
glycosylation of rhodopsin (Rh1). The photoreceptors in these
mutants also exhibit enlarged ER and Golgi membranes and
retinal degeneration over time.

Vti1a is a TGN-localized SNARE that functions in vesicle
generation and Ca2+ channel trafficking (von Mollard et al.,
1997; Lupashin et al., 1997; Walter et al., 2014). A double
knockout of Vti1a and Vti1b genes results in progressive
neurodegeneration and perinatal lethality in a mouse model
(Kunwar et al., 2011). Single knockout of Vti1a or Vti1b
does not result in a lethal phenotype indicating overlapping
functions of these proteins. The death-after-birth clearly
demonstrates that these SNAREs are not required during
organismal development, indicating a specialized requirement
for Vti1a and Vti1b in neurons leading to neurodegeneration
in the double-knockout animals (Walter et al., 2014). Vti1a
SNARE partners, STX6 and STX16, are also required for
neurite outgrowth (Chua and Tang, 2008; Kabayama et al.,
2008).

In humans, a disease known as CEDNIK (Cerebral
Dysgenesis, Neuropathy, Ichthyosis, and Keratoderma)
syndrome has been linked with loss of function mutations
in SNAP29 (Sprecher et al., 2005; Fuchs-Telem et al., 2011).
SNAP29 is a member of the SNAP25 family that localizes to the
Golgi, endosomal, and lysosomal compartments (Steegmaier
et al., 1998). CEDNIK patients exhibit severe neuropathy
likely due to the loss of SNAP29 functional involvement in
neurotransmission (Pan et al., 2005) and trafficking within
neurolgia during active myelination (Schardt et al., 2009).

RABS

As for SNAREs, regulating levels of Rabs has been shown to
rescue Golgi fragmentation in multiple in vitro models of AD
and PD. For example, overexpression of Rab1 can rescue Golgi
fragmentation while reduced expression of Rab2 has the same
effect in PD models which demonstrates the delicate balance in
the regulatory functions of Golgi-associated Rabs (Rendon et al.,
2013). Overexpression of Rab1 was shown to be neuroprotective
in Caenorhabditis elegans, Drosophila melanogaster and primary
rat neuron cultures (Cooper et al., 2006; Gitler et al., 2008). Rab1
is a key protein in maintaining Golgi architecture and function
(Haas et al., 2007). It can also promote the restoration of ER-
to-Golgi trafficking and thus afford rescue from the neurotoxic
effects of α-synuclein (Cooper et al., 2006; Gitler et al., 2008).

Multiple Rabs are associated with processing of APP. For
example, ERGIC and cis-Golgi Rab1b-dependent trafficking
could modulate the processing of APP as demonstrated in
an in vitro system in which a dominant-negative mutant of
Rab1b blocked trafficking of APP and decreased the secretion of
Aβ (Dugan et al., 1995). trans-Golgi Rab6A is also implicated
in APP trafficking. The dominant negative mutant of Rab6
increased the secretion of soluble APP and decreased Aβ
secretion (McConlogue et al., 1996). Rab6 membrane association
is dependent upon PS1 based on studies using PS1 knockout
fibroblasts, thus implicating PS1 in vesicular trafficking (Scheper
et al., 2004).

Golgi-associated and endosomal Rab4 is important for a
specific pool of constitutively recycling endosomes which are
apparently critical for dendritic spine size. Rab4-dependent
recycling is greatly reduced in fibroblasts of patients with type
A/B Niemann-Pick disease, a sphingolipid storage disorder
which commonly manifests with neurological symptoms such
as developmental delay and dementia (Choudhury et al., 2004).
Postmortem samples revealed that Rab4 is upregulated in
patients with AD and mild cognitive disorder (Cataldo et al.,
2000; Ginsberg et al., 2010), and Aβ is known to partially
localize within Rab4 positive compartments in a mouse model of
Down Syndrome (Arriagada et al., 2010) indicating that defects
in endosomal sorting may underpin these disorders (Peric and
Annaert, 2015).
CONCLUSIONS AND PERSPECTIVES

The COG complex and its Rab and SNARE partners are evolutionarily conserved and ubiquitously expressed across multiple tissues and organ systems in humans. Yet, neurological symptoms are the most debilitating and troublesome clinical manifestations of COG-associated disorders. Why is this the case? We propose that brain-specific manifestations of COG defects result from either COG-dependent (a) glycosylation defects and/or (b) trafficking defects and/or (c) a yet unknown neuron/neuroglia-specific function of the COG complex and its partners.

Neuronal function critically depends on coordinated delivery of properly modified ion channels, transporters and components of the synaptic apparatus at the appropriate rates and over long distances, to specific subcellular compartments. Remarkably, the localization of the synaptobrevin homolog Syn1 is altered in COG deficient yeast cells (Whyte and Munro, 2002). In addition, underglycosylated low density lipoprotein receptor is severely destabilized in CHO cells deficient for COG1 or COG2 proteins (Kingsley et al., 1986). Since glycosylation of channels, transporters and transport regulators is essential for their correct delivery, stability and/or activity (Gong et al., 2002; Watanabe et al., 2004; Scott and Panin, 2014), it is reasonable to predict that a majority of underglycosylated ion channels and transporters may similarly be destabilized, thus altering the functionality of COG-CDG patient neurons.

Smooth transport of cargo by the trafficking machinery is very important during development and synaptic transmission. Defective glycosylation of proteins and lipids disrupts development pathways and alters brain function (Freeze et al., 2012). COG deficient cells also display altered glycosphingolipid biosynthesis. Complex gangliosides are sialic acid containing glycosphingolipids synthesized sequentially, beginning with GM3 and then extended by glycosyltransferases to the more elaborate GM1 gangliosides. Biochemical studies revealed decreased levels of sphingomyelin and GM3 gangliosides in COG2 deficient CHO cells (Spessott et al., 2010a,b). Gangliosides are ubiquitously expressed, but in the brain the expression of gangliosides and their glycosyltransferases change dramatically during development, from an abundance in of the precursor GM3 to a greater abundance of GM1 (Yu et al., 1988; Kracun et al., 1991, 1992; Ngamukote et al., 2007). Therefore, altered glycosphingolipid biosynthesis could be another reason for the specific neurological manifestation in COG-related congenital disorders.

An additional factor that may add to the apparently higher neuronal vulnerability to COG deficiency is that unlike many other cells, neurons are non-dividing cells and hence cannot easily dilute toxic proteins, peptides, and organelles. Another possibility is that COG is playing a specific and yet uncovered role in neuronal cells. Although the COG complex has been largely detected at the established perinuclear Golgi location in neurons (Figure 1) this does not exclude some sort of moonlighting function for COG subunits at other neuron-specific locations where it could be involved in tethering of specialized vesicles.

Considering the systemic and complex character of COG-related diseases, multiple questions regarding the associated neurological symptoms remain to be addressed. Thus, more in vivo studies are needed to dissect the role of COG and its Rab and SNARE partners in these symptoms. Input from COG deficiencies within neuroglia and subtypes of neuroglia presents yet another poorly studied field and avenue requiring further studies. Further research is also needed to establish in which diseases COG-deficiency-associated neurological syndromes are secondary manifestations of some other primary disease state.

ACKNOWLEDGMENTS

We are thankful to Rachel D. Hendrix and Wezley C. Griffin for critical reading of the manuscript. This work was supported by the NIH grants GM083144 and U54 GM105814, and by the Pilot grant from the Arkansas Biosciences Institute.

REFERENCES

Amessou, M., Fradagarda, A., Falquières, T., Lord, J. M., Smith, D. C., Roberts, L. M., et al. (2007). Syntaxin 16 and syntaxin 5 are required for efficient retrograde transport of several exogenous and endogenous cargo proteins. J. Cell Sci. 120, 1457–1468. doi: 10.1242/jcs.03436

Arriagada, C., Bustamante, M., Atwater, I., Rojas, E., Caviedes, R., and Caviedes, P. (2010). Apoptosis is directly related to intracellular amyloid accumulation in a cell line derived from the cerebral cortex of a trisomy 16 mouse, an animal model of Down syndrome. Neurosci. Lett. 470, 81–85. doi: 10.1016/j.neulet.2009.12.062

Bellouze, S., Schäfer, M. K., Buttigieg, D., Baillat, G., Rabouille, C., and Haase, G. (2014). Golgi fragmentation in pmn mice is due to a defective ARF1/TBCE cross-talk that coordinates COPI vesicle formation and tubulin polymerization. Hum. Mol. Genet. 23, 5961–5975. doi: 10.1093/hmg/ddu320

Bonifacino, J. S., and Glick, B. S. (2004). The mechanisms of vesicle budding and fusion. Cell 116, 153–166. doi: 10.1016/S0092-8674(03)01079-1

Burré, J., Sharma, M., Tsotsenis, T., Buchman, V., Etherton, M. R., and Südhof, T. C. (2010). Alpha-synuclein promotes SNARE-complex assembly in vivo and in vitro. Science 329, 1663–1667. doi: 10.1126/science.1195227

Cataldo, A. M., Peterhoff, C. M., Troncoso, J. C., Gomez-Isla, T., Hyman, B. T., and Nixon, R. A. (2000). Endocytic pathway abnormalities precede amyloid beta deposition in sporadic Alzheimer’s disease and down syndrome: differential effects of APOE genotype and presenilin mutations. Am. J. Pathol. 157, 277–286. doi: 10.1016/S0002-9440(10)64536-5

Choudhury, A., Sharma, D. K., Marks, D. L., and Pagano, R. E. (2004). Elevated endosomal cholesterol levels in Niemann-Pick cells inhibit rab4 and perturb membrane recycling. Mol. Biol. Cell 15, 4500–4511. doi: 10.1091/mbc.E04-05-0432

Chua, C. E., and Tang, B. L. (2008). Syntaxin 16 is enriched in neuronal dendrites and may have a role in neurite outgrowth. Mol. Membr. Biol. 25, 35–45. doi: 10.1080/09687680701504649

Cooper, A. A., Gitler, A. D., Cashikar, A., Haynes, C. M., Hill, K. J., Bhullar, B., et al. (2006). Alpha-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson’s models. Science 313, 324–328. doi: 10.1126/science.1129462

Corbett, M. A., Schwake, M., Bahle, M., Dibbens, L. M., Lin, M., Gandolfo, L. C., et al. (2011). A mutation in the Golgi Qb-SNARE gene GOSR2 causes progressive myoclonus epilepsy with early ataxia. Am. J. Hum. Genet. 88, 657–663. doi: 10.1016/j.ajhg.2011.04.011
VSD and episodes of hyperthermia. *Eur. J. Hum. Genet.* 15, 638–645. doi: 10.1038/sj.ehjg.5201813

Nagahama, M., Orci, L., Ravazzola, M., Amherdt, M., Lacomis, L., Tempst, P., et al. (1996). A v-SNARE implicated in intra-Golgi transport. *J. Cell Biol.* 133, 507–516. doi: 10.1083/jcb.133.3.507

Nakagomi, S., Barshay, M. J., Bossy-Wetzel, E., Sütterlin, C., Malhotra, V., and Lipton, S. A. (2008). A Golgi fragmentation pathway in neurodegeneration. *Neurobiol. Dis.* 29, 221–231. doi: 10.1016/j.nbd.2007.08.015

Ng, B. G., Kraus, C., Hagebeuk, E. E., Duran, M., Abeling, N. G., Wuyts, B., et al. (2009). Deficiency in COG5 causes a moderate form of congenital disorders of glycosylation. *Hum. Mol. Genet.* 18, 4350–4356. doi: 10.1093/hmg/ddp389

Pan, P. Y., Cai, Q., Lin, L., Lu, P. H., Duan, S., and Sheng, Z. H. (2005). SNAP-29-mediated modulation of synaptic transmission in cultured hippocampal neurons. *J. Biol. Chem.* 280, 25769–25779. doi: 10.1074/jbc.M50356200

Parlati, F., Varlamov, O., Paz, K., McNew, J. A., Hurtado, D., Söllner, T. H., et al. (2002). Distinct SNARE complexes mediating membrane fusion in Golgi transport based on combinatorial specificity. *Proc. Natl. Acad. Sci. U.S.A.* 99, 5424–5429. doi: 10.1073/pnas.082100899

Peric, A., and Annaert, W. (2015). Early etiology of Alzheimer’s disease: tipping the balance toward autophagy or endosomal dysfunction? *Acta Neuropathol.* 129, 363–381. doi: 10.1007/s00401-014-1379-7

Pfeffer, S. R. (2013). Rab GTPase regulation of membrane identity. *Curr. Opin. Cell Biol.* 25, 414–419. doi: 10.1016/j.ceb.2013.04.002

Rendón, W. O., Martínez-Alonso, E., Tomás, M., Martínez-Martínez, N., and Martínez-Menárguez, J. A. (2013). Golgi fragmentation is Rab and SNARE dependent in cellular models of Parkinson’s disease. *Histochem. Cell Biol.* 139, 671–684. doi: 10.1007/s00418-012-1059-4

Reyners, E., Foulquier, F., Annaert, W., and Matthijs, G. (2011). How Golgi glycosylation meets and needs trafficking: the case of the COG complex. *J. Neurochem.* 103, 2327–2341. doi: 10.1111/j.1471-4159.2007.04910.x

Rosal-Palacios, B., Maag, C., Troxler, H., Foulquier, F., Kleinert, P., Schnabl, S., et al. (2009). Deficiency in COG5 causes a moderate form of congenital disorders of glycosylation. *Hum. Mol. Genet.* 18, 4350–4356. doi: 10.1093/hmg/ddp389

Rosenbaum, E. E., Vasiljevic, E., Cleland, S. C., Flores, C., and Colley, N. J. (2014). B3GAL1L1 mutation in a type II patient. *Mol. Genet. Metab.* 112, 201–204. doi: 10.1016/j.ymgme.2014.04.009

Rymen, D., Winter, J., van Hasselt, P. M., Jaeken, J., Kasapkaras, C., Gokcay, G., et al. (2011). Potent amyloidogenicity and pathogenicity of Abeta43. *J. Neurochem.* 120, 364–367. doi: 10.1111/j.1471-4192.2010.07466.x

Sesia, R., Angelini, S., Alves, K., and Hey, N. (2013). A novel syndrome of hypohidrosis and intellectual disability is linked to COG6 deficiency. *J. Med. Genet.* 50, 431–436. doi: 10.1136/jmedgenet-2013-101527

Shestakova, A., Zolov, S., and Lupashin, V. (2006). COG complex-mediated recycling of Golgi glycosyltransferases is essential for normal protein glycosylation. *Traffic* 7, 191–204. doi: 10.1111/j.1600-0854.2005.00376.x

Siddiqi, S., Mani, A. M., and Siddiqi, S. A. (2010). The identification of the SNARE complex required for the fusion of VLDL-transport vesicle with hepatic cis-Golgi. *Biochem. J.* 429, 391–401. doi: 10.1042/BJ20100336

Sugrue, K., Willett, R., Kudylk, T., Pokrovskaya, I., Paton, A. W., Paton, J. C., et al. (2009). The COG complex, Rab and COPI define a novel Golgi retrograde trafficking pathway that is exploited by SubAB toxin. *Traffic* 10, 1502–1517. doi: 10.1111/j.1600-0854.2009.00965.x

Spaanen, L. J., Bakker, J. A., van der Meer, S. R., Bijsterbosch, M. A., Steen, R. A., Neefs, J. M., et al. (2005). Clinical and biochemical presentation of siblings with COG-7 deficiency, a lethal multiple O- and N-glycosylation disorder. *J. Inherit. Metab. Dis.* 28, 707–714. doi: 10.1016/s1088-9760(05)00151-9

Spessott, W., Uliana, A., and MacCioni, H. J. (2010a). Cog2 null mutant CHO cells show defective sphingomyelin synthesis. *J. Biol. Chem.* 285, 41472–41482. doi: 10.1074/jbc.M110.150011

Spessott, W., Uliana, A., and MacCioni, H. J. (2010b). Defective FG synaptic assembly in Cog2 null mutant CHO cells associates to mislocalization of lysosomal enzyme sialyltransferase in the Golgi complex. *Neurochem. Res.* 35, 2161–2167. doi: 10.1007/s11064-010-0193-8

Thayanidhi, N., Helm, J. R., Nycz, D. C., Bentley, M., Liang, Y., and Hay, J. C. (2015). Rab6 membrane association is dependent of Presenilin 1 and cellular phosphorylation events. *Brain Res. Mol. Brain Res.* 122, 17–23. doi: 10.1016/j.molbrainres.2003.11.013

Scott, H., and Panin, V. M. (2014). N-glycosylation in regulation of the nervous system. *Adv. Neurobiol.* 9, 367–394. doi: 10.1007/978-1-4939-1154-7_17

Shaher, R., Ansari, S., Alshammari, M. J., Alkhalidi, H., Alrawkhan, H., Eyaid, W., et al. (2013). A novel syndrome of hypohidrosis and intellectual disability is linked to COG6 deficiency. *J. Med. Genet.* 50, 431–436. doi: 10.1136/jmedgenet-2013-101527

Shestakova, A., Suzurova, O., Pavlov, O., Khaidakov, G., and Lupashin, V. (2007). Interaction of the conserved oligomeric Golgi complex with t-SNARE Syntaxin5a/Sec5 enhances intra-Golgi SNARE complex stability. *J. Cell Biol.* 179, 1179–1192. doi: 10.1083/jcb.200705145
von Mollard, G. F., Nothwehr, S. F., and Stevens, T. H. (1997). The yeast v-SNARE Vti1p mediates two vesicle transport pathways through interactions with the t-SNAREs Sed5p and Pep12p. *J. Cell Biol.* 137, 1511–1524. doi: 10.1083/jcb.137.7.1511

Walter, A. M., Kurps, J., de Wit, H., Schoning, S., Toft-Bertelsen, T. L., Lauks, J., et al. (2014). The SNARE protein vti1a functions in dense-core vesicle biogenesis. *EMBO J.* 33, 1681–1697. doi: 10.15252/embj.201387549

Watanabe, I., Zhu, J., Recio-Pinto, E., and Thornhill, W. B. (2004). Glycosylation affects the protein stability and cell surface expression of Kv1.4 but Not Kv1.1 potassium channels. A pore region determinant dictates the effect of glycosylation on trafficking. *J. Biol. Chem.* 279, 8879–8885. doi: 10.1074/jbc.M309802200

Whyte, J., R., and Munro, S. (2002). Vesicle tethering complexes in membrane traffic. *J. Cell Sci.* 115, 2627–2637.

Willett, R., Kudlyk, T., Pokrovskaya, I., Schönherr, R., Ungar, D., Duden, R., et al. (2013a). COG complexes form spatial landmarks for distinct SNARE complexes. *Nat. Commun.* 4, 1553. doi: 10.1038/ncomms2535

Willett, R., Pokrovskaya, I., Kudlyk, T., and Lupashin, V. (2014). Multipronged interaction of the COG complex with intracellular membranes. *Cell. Logist.* 4:e27888. doi: 10.4161/cl.27888

Willett, R., Ungar, D., and Lupashin, V. (2013b). The Golgi puppet master: COG complex at center stage of membrane trafficking interactions. *Histochem. Cell Biol.* 140, 271–283. doi: 10.1007/s00418-013-1117-6

Wu, X., Steet, R. A., Bohorov, O., Bakker, J., Newell, J., Krieger, M., et al. (2004). Mutation of the COG complex subunit gene COG7 causes a lethal congenital disorder. *Nat. Med.* 10, 518–523. doi: 10.1097/00001107-200402000-00008

Xu, Y., Martin, S., James, D. E., and Hong, W. (2002). GS15 forms a SNARE complex with syntaxin 5, GS28, and Ykt6 and is implicated in traffic in the early cisternae of the Golgi apparatus. *Mol. Biol. Cell* 13, 3493–3507. doi: 10.1091/mbc.E02-01-0004

Yu, R. K., Macala, L. J., Taki, T., Weinfield, H. M., and Yu, F. S. (1988). Developmental changes in ganglioside composition and synthesis in embryonic rat brain. *J. Neurochem.* 50, 1825–1829. doi: 10.1111/j.1471-4159.1988.tb02484.x

Zeevaert, R., Foulquier, F., Cheillan, D., Cloix, L., Guffon, N., Sturiale, L., et al. (2009a). A new mutation in COG7 extends the spectrum of COG subunit deficiencies. *Eur. J. Med. Genet.* 52, 303–305. doi: 10.1016/j.ejmg.2009.06.006

Zeevaert, R., Foulquier, F., Dimitrov, B., Reyniers, E., Van Damme-Lombaerts, R., Simeonov, E., et al. (2009b). Cerebrocostomandibular-like syndrome and a mutation in the conserved oligomeric Golgi complex, subunit 1. *Hum. Mol. Genet.* 18, 517–524. doi: 10.1093/hmg/ddn379

Zhang, T., and Hong, W. (2001). Ykt6 forms a SNARE complex with syntaxin 5, GS28, and Bet1 and participates in a late stage in endoplasmic reticulum-Golgi transport. *J. Biol. Chem.* 276, 27480–27487. doi: 10.1074/jbc.M102786200

Zolov, S. N., and Lupashin, V. V. (2005). Cog3p depletion blocks vesicle-mediated Golgi retrograde trafficking in HeLa cells. *J. Cell Biol.* 168, 747–759. doi: 10.1083/jcb.200412003

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2015 Climer, Dobretsov and Lupashin. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.