THE TRIGONOMETRIC CASIMIR CONNECTION OF A SIMPLE LIE ALGEBRA

VALERIO TOLEDANO LAREDO

To Corrado De Concini, on his 60th birthday

Abstract. Let \(\mathfrak{g} \) be a complex, semisimple Lie algebra, \(G \) the corresponding simply-connected Lie group and \(H \subset G \) a maximal torus. We construct a flat connection on \(H \) with logarithmic singularities on the root hypertori and values in the Yangian \(Y(\mathfrak{g}) \) of \(\mathfrak{g} \). By analogy with the rational Casimir connection of \(\mathfrak{g} \), we conjecture that the monodromy of this trigonometric connection is described by the quantum Weyl group operators of the quantum loop algebra \(U_\hbar(\mathcal{L}\mathfrak{g}) \).

CONTENTS

1. Introduction 1
2. The trigonometric connection of a root system 4
3. The trigonometric Casimir connection 17
4. The monodromy conjecture 21
5. The trigonometric Casimir connection of \(\mathfrak{gl}_n \) 22
6. Bispectrality 30
7. The affine KZ connection 34
8. Appendix: Tits extensions of affine Weyl groups 36
Acknowledgments 43
References 43

1. Introduction

1.1. Let \(\mathfrak{g} \) be a complex, simple Lie algebra, \(\mathfrak{h} \subset \mathfrak{g} \) a Cartan subalgebra, \(\Phi \subset \mathfrak{h}^* \) the corresponding root system and \(W \) its Weyl group. For each \(\alpha \in \Phi \), let \(\mathfrak{sl}_\alpha^2 = \langle e_\alpha, f_\alpha, h_\alpha \rangle \subset \mathfrak{g} \) be the corresponding three-dimensional subalgebra and denote by

\[
\kappa_\alpha = \frac{(\alpha, \alpha)}{2} (e_\alpha f_\alpha + f_\alpha e_\alpha)
\]
its truncated Casimir operator with respect to the restriction to \(\mathfrak{sl}_2 \) of a fixed non–degenerate, ad–invariant bilinear form \((\cdot, \cdot)\) on \(\mathfrak{g} \). Let

\[
\mathfrak{h}_{\text{reg}} = \mathfrak{h} \setminus \bigcup_{\alpha \in \Phi} \text{Ker}(\alpha)
\]

be the set of regular elements in \(\mathfrak{h} \), \(V \) a finite–dimensional \(\mathfrak{g} \)--module, and \(\nabla \) the holomorphically trivial vector bundle over \(\mathfrak{h}_{\text{reg}} \) with fibre \(V \). Recall that the Casimir connection of \(\mathfrak{g} \) is the holomorphic connection on \(\nabla \) given by

\[
\nabla_\kappa = d - \hbar \sum_{\alpha \in \Phi_+} \frac{d\alpha}{\alpha} \kappa_\alpha
\]

where \(d \) is the de Rham differential, \(\Phi_+ \subset \Phi \) is a system of positive roots and \(\hbar \) is a complex number. This connection was discovered independently by C. De Concini around 1995 (unpublished), by J. Millson and the author [MTL, TL1] and Felder et al. [FMTV], and shown to be flat for any \(\hbar \in \mathbb{C} \).

The monodromy of \(\nabla_\kappa \) gives representations of the generalised braid group \(B = \pi_1(\mathfrak{h}_{\text{reg}}/W) \) which are described by the quantum Weyl group operators of the quantum group \(U_\hbar \mathfrak{g} \), a fact which was conjectured by De Concini (unpublished) and independently in [TL1, TL2] and proved in [TL1, TL3].

1.2. Let \(P \subset \mathfrak{h}^* \) be the weight lattice of \(\mathfrak{g} \) and \(H = \text{Hom}_\mathbb{Z}(P, \mathbb{C}^*) \) the dual algebraic torus with Lie algebra \(\mathfrak{h} \) and coordinate ring given by the group algebra \(\mathbb{C}P \). We denote the function corresponding to \(\lambda \in P \) by \(e^\lambda \in \mathbb{C}[H] \).

The main goal of the present paper is to define a trigonometric version of the connection (1.1), that is a connection defined on \(H \) with the logarithmic forms \(d\alpha/\alpha \) replaced by \(d\alpha/(e^\alpha - 1) \).

As is well known from the study of Cherednik’s affine KZ (AKZ) connection (see, e.g. [Ch3]), both the flatness and \(W \)--equivariance of such a connection require that it possess a ‘tail’, that is be of the form

\[
\hat{\nabla}_\kappa = d - \hbar \sum_{\alpha \in \Phi_+} \frac{d\alpha}{e^\alpha - 1} \kappa_\alpha - A
\]

where \(A \) is a translation–invariant one–form on \(H \). The analogy with the AKZ equations further suggests that \(A \) should take values in a suitable extension of the enveloping algebra \(U \mathfrak{g} \), which is to \(U \mathfrak{g} \) what the degenerate affine Hecke algebra \(\mathcal{H}' \) is to the group algebra \(\mathbb{C}W \).

1.3. The correct extension turns out to be the Yangian \(Y(\mathfrak{g}) \), which is a deformation of the enveloping algebra \(U(\mathfrak{g}[t]) \) over the ring \(\mathbb{C}[t] \). Let \(\nu : \mathfrak{h} \to \mathfrak{h}^* \) be the isomorphism determined by the inner product \((\cdot, \cdot)\), set \(t_i = \nu^{-1}(\alpha_i) \), where \(\alpha_1, \ldots, \alpha_n \) are the simple roots of \(\mathfrak{g} \) relative to \(\Phi_+ \) and let \(t^i = \lambda^i \) be the dual basis of \(\mathfrak{h} \) given by the fundamental coweights. Let \(T(u)_r, u \in \mathfrak{h}, r \in \mathbb{N} \) be the Cartan loop generators of \(Y(\mathfrak{g}) \) in Drinfeld’s new realisation (see [Dr2] and [B3] for definitions). Let \(\{u^i\} \) be a basis of \(\mathfrak{h} \), \(\{u_i\} \) the dual basis of \(\mathfrak{h}^* \) and regard the differentials \(du_i \) as translation–invariant one–forms on \(H \). The main result of this paper is the following
Theorem. The $Y(\mathfrak{g})$–valued connection on H given by

$$\tilde{\nabla}_\kappa = d - \hbar \sum_{\alpha \in \Phi^+} \frac{d\alpha}{e^\alpha - 1} \kappa_\alpha + du_i \left(2T(u^i)_1 - \frac{\hbar}{2} (u^i, u^j)_1 t^j \right)$$

is flat and W–equivariant.

1.4. We call $\tilde{\nabla}_\kappa$ the trigonometric Casimir connection of \mathfrak{g}. Its monodromy defines representations of the affine braid group $\hat{B} = \pi_1(H_{\text{reg}}/W)$ on any finite–dimensional module over $Y(\mathfrak{g})$, where

$$H_{\text{reg}} = H \setminus \bigcup_{\alpha \in \Phi} \{ e^\alpha = 1 \}$$

is the set of regular elements in H. By analogy with the rational case, we conjecture that these representations are equivalent to the quantum Weyl group action of \hat{B} on finite–dimensional modules over the quantum loop algebra $U_\hbar(\mathfrak{g}[z, z^{-1}])$.

1.5. We turn now to a detailed description of the paper.

In Section 2 we obtain a necessary and sufficient condition for a connection of the form (1.2) to be flat and equivariant under the Weyl group W (Theorem 2.5 and Proposition 2.22), thus effectively determining the Lie algebras of the fundamental groups $\pi_1(H_{\text{reg}})$ and $\pi_1(H_{\text{reg}}/W)$. Consistently with Cherednik’s study of the AKZ connection, the quadratic equations giving the flatness and equivariance of $\tilde{\nabla}_\kappa$ specialise, when κ_α is replaced by the orthogonal reflection $s_\alpha \in W$ to the defining relations of the degenerate affine Hecke algebra corresponding to W.

In Section 3 we review Drinfeld’s two presentations of the Yangian $Y(\mathfrak{g})$ of a simple Lie algebra \mathfrak{g}. We then use their interplay to solve the above quadratic equations in $Y(\mathfrak{g})$, thereby obtaining the trigonometric Casimir connection of \mathfrak{g} (Theorem 3.8).

In Section 4 we explain how to define monodromy representations of the affine braid group from $\tilde{\nabla}_\kappa$ and conjecture that these are described by the quantum Weyl group operators of the quantum loop algebra $U_\hbar(\mathfrak{g}[z, z^{-1}])$.

In Section 5 we define a trigonometric connection with values in the Yangian of \mathfrak{sl}_n by using the interplay between its loop and RTT presentations (Theorem 5.7). We then relate it to the trigonometric Casimir connection of \mathfrak{sl}_n. We also check that, when computed in a tensor product of m evaluation modules, it coincides with the trigonometric dynamical differential equations [TV] which are differential equations on $(\mathbb{C}^*)^n$ with values in $U_\hbar(\mathfrak{gl}_n^\otimes m)$.

In Section 6 we show that the trigonometric Casimir connection commutes with qKZ difference equations of Frenkel–Reshetikhin determined by the rational R–matrix of $Y(\mathfrak{g})$ (Theorem 6.6), a fact which was checked in [TV] for the trigonometric dynamical differential equations.

\footnote{1We follow the standard convention that in any expression involving u_i and u^i, or t_i and t^i, summation over i is implicit.}
In Section 7, we review the definition of the degenerate affine Hecke algebra H' of W [Lu] and of the corresponding H'–valued AKZ connection [Ch3]. We then show that if V is a $Y(g)$–module whose restriction to g is small, that is such that 2α is not a weight for any root α [Br, Re], the zero weight space $V[0]$ carries a natural action of H'. Moreover, the trigonometric Casimir connection with coefficients in $V[0]$ coincides with the AKZ connection with values in this H'–module (Theorem 7.5).

The final appendix, Section 8 contains a discussion of the Tits extensions of affine Weyl groups which is needed for Section 4.

2. THE TRIGONOMETRIC CONNECTION OF A ROOT SYSTEM

2.1. General form. Let E be a Euclidean vector space, $\Phi \subset E^*$ a reduced, crystallographic root system. Let $Q^\vee \subset E$ be the lattice generated by the co-roots α^\vee, $\alpha \in \Phi$ and $P \subset E^*$ the dual weight lattice. Let $H = \text{Hom}_\mathbb{Z}(P, \mathbb{C}^*)$ be the complex algebraic torus with Lie algebra $\mathfrak{h} = \text{Hom}_\mathbb{Z}(P, \mathbb{C})$ and coordinate ring given by the group algebra $\mathbb{C}P$. We denote the function corresponding to $\lambda \in P$ by $e^\lambda \in \mathbb{C}[H]$ and set

$$H_{\text{reg}} = H \setminus \bigcup_{\alpha \in \Phi} \{e^\alpha = 1\} \tag{2.1}$$

Let A be an algebra endowed with the following data:

- a set of elements $\{t_\alpha\}_{\alpha \in \Phi} \subset A$ such that $t_{-\alpha} = t_\alpha$
- a linear map $\tau : \mathfrak{h} \to A$

Consider the A–valued connection on H_{reg} given by

$$\nabla = d - \sum_{\alpha \in \Phi^+} \frac{d\alpha}{e^\alpha - 1} t_\alpha - du_i \tau(u^i) \tag{2.2}$$

where $\Phi^+ \subset \Phi$ is a chosen system of positive roots, $\{u_i\}$ and $\{u^i\}$ are dual bases of \mathfrak{h}^* and \mathfrak{h} respectively, the differentials du_i are regarded as translation–invariant one–forms on H and the summation over i is implicit.

2.2. Positive roots. The form of the connection (2.2) depends upon the choice of the system of positive roots $\Phi^+ \subset \Phi$. Let however $\Phi'_+ \subset \Phi$ be another such system, then

Proposition. The connection (2.2) may be rewritten as

$$\nabla = d - \sum_{\alpha \in \Phi'_+} \frac{d\alpha}{e^\alpha - 1} t_\alpha - du_i \tau'(u^i)$$

where $\tau' : \mathfrak{h} \to A$ is given by

$$\tau'(v) = \tau(v) - \sum_{\alpha \in \Phi^+_+ \cap \Phi'_-} \alpha(v) t_\alpha \tag{2.3}$$
Proof. Write the second summand in (2.2) as
\[
\sum_{\alpha \in \Phi_+ \cap \Phi'_+} \frac{d\alpha}{e^{\alpha} - 1} t_{\alpha} - \sum_{\alpha \in \Phi_- \cap \Phi'_+} \frac{d\alpha}{e^{-\alpha} - 1} t_{-\alpha}
\]
where $\Phi_- = -\Phi_+$. Since
\[
\frac{1}{1 - e^{-\alpha}} = \frac{e^\alpha}{e^\alpha - 1} = \frac{1}{e^\alpha - 1} + 1
\]
and $t_{-\alpha} = t_\alpha$, the above is equal to
\[
\sum_{\alpha \in \Phi'_+} \frac{d\alpha}{e^\alpha - 1} t_{\alpha} + \sum_{\alpha \in \Phi_- \cap \Phi'_+} d\alpha t_{\alpha}
\]
which yields the required result since $\alpha = u_i(\alpha^i)$.

Definition. If W is the Weyl group of Φ and $w \in W$ the unique element such that $\Phi'_+ = w\Phi_+$, we denote τ' by τ_w. Thus,
\[
\tau_w(v) = \tau(v) - \sum_{\alpha \in \Phi_+ \cap w\Phi_-} \alpha(v) t_{\alpha}
\]

2.3. Delta form. Choose $\Phi'_+ = \Phi_-$ in Proposition 2.2. Comparing the corresponding expressions for ∇ shows that it may be more invariantly rewritten as
\[
\nabla = d - \frac{1}{2} \sum_{\alpha \in \Phi} \frac{d\alpha}{e^\alpha - 1} t_{\alpha} - du_i \delta(u^i)
\]
where $\delta : h \to A$ is given by
\[
\delta(v) = \tau(v) - \frac{1}{2} \sum_{\alpha \in \Phi_+} \alpha(v) t_{\alpha}
\]
Alternatively, substituting (2.6) into (2.2) yields
\[
\nabla = d - \frac{1}{2} \sum_{\alpha \in \Phi_+} \frac{e^\alpha + 1}{e^\alpha - 1} d\alpha t_{\alpha} - du_i \delta(u^i)
\]
We shall occasionally refer to (2.2) and (2.7) as the τ and δ-forms of the connection ∇ respectively. Note that the latter does not depend upon the choice of $\Phi_+ \subset \Phi$.

2.4. Root subsystems. For a subset $\Psi \subset \Phi$ and subring $R \subset \mathbb{R}$, let $\langle \Psi \rangle_R \subset E^*$ be the R-span of Ψ.

Definition. A root subsystem of Φ is a subset $\Psi \subset \Phi$ such that $\langle \Psi \rangle_{\mathbb{Z}} \cap \Phi = \Psi$. Ψ is complete if $\langle \Psi \rangle_{\mathbb{R}} \cap \Phi = \Psi$. If $\Psi \subset \Phi$ is a root subsystem, we set $\Psi_+ = \Psi \cap \Phi_+$.
Remark. According to the above definition, the short roots of the root system B_2 (resp. G_2) are not a root subsystem, but the long ones constitute a root subsystem of type $A_1 \times A_1$ (resp. A_2) which is not complete. Another root subsystem of $\Phi = G_2$ is given by $\{ \pm \alpha, \pm \beta \}$ where α, β are two orthogonal roots (necessarily of different lengths).

2.5. Integrability. The following is the main result of this section.

Theorem.
(1) The connection ∇ is flat if, and only if the following relations hold
- For any rank 2 root subsystem $\Psi \subset \Phi$ and $\alpha \in \Psi$,
 \[[t_\alpha, \sum_{\beta \in \Psi_+} t_\beta] = 0 \]

- For any $u, v \in \mathfrak{h}$,
 \[[\tau(u), \tau(v)] = 0 \]
- For any $\alpha \in \Phi_+, w \in W$ such that $w^{-1} \alpha$ is a simple root and $u \in \mathfrak{h}$ such that $\alpha(u) = 0$,
 \[[t_\alpha, \tau_w(u)] = 0 \]

(2) Modulo the relations (tt), the relations (tτ) are equivalent to
 \[[t_\alpha, \delta(v)] = 0 \]
for any $\alpha \in \Phi$ and $v \in \mathfrak{h}$ such that $\alpha(v) = 0$, where $\delta : \mathfrak{h} \to A$ is given by (2.6).

The proof of Theorem 2.5 occupies the paragraphs 2.7–2.19.

2.6. We spell out below the relations (tt) in the case when Φ is of rank 2. For $\Psi = \Phi$, they read
 \[[t_\alpha, \sum_{\beta \in \Phi_+} t_\beta] = 0 \text{ for any } \alpha \in \Phi \]

In particular, if $\Phi = \{ \pm \alpha, \pm \beta \}$ is of type $A_1 \times A_1$ then
 \[[t_\alpha, t_\beta] = 0 \]

For $\Phi = B_2$, the long roots $\{ \pm \beta_1, \pm \beta_2 \}$ form an $A_1 \times A_1$ subsystem so that
 \[[t_{\beta_1}, t_{\beta_2}] = 0 \]

For $\Phi = G_2$, there are two types of root subsystems: that formed by the A_2 configuration of long roots $\{ \pm \beta_1, \pm \beta_2, \pm \beta_3 \}$, leading to
 \[[t_{\beta_i}, t_{\beta_j} + t_{\beta_k}] = 0 \]

and the A_1 configurations $\{ \pm \beta, \pm \gamma \}$ formed by a long root and an orthogonal short one, leading to
 \[[t_\beta, t_\gamma] = 0 \]
Combining relations \(Φ\), \((A_2 \subset G_2)\) and \((A_1 \times A_1 \subset G_2)\) yields in particular the following relations

\[
[t_β, t_{γ'} + t_{γ''}] = 0 \tag{2.8}
\]

where \(β \in G_2\) is long and \(γ', γ''\) are the short positive roots which are not orthogonal to \(β\).

Remark. If \(Φ\) is not simply–laced, the relations \((tt)\) are stronger than those yielding the flatness of the rational connection

\[
∇ = d - \sum_{α ∈ Φ_+} \frac{dα}{α} t_α
\]

Indeed, the latter involve two dimensional subspaces of \(h^*\) spanned by elements of \(Φ \ [K]\) and therefore only those rank 2 subsystems of \(Φ\) which are complete. The relevance of additional relations corresponding to non–complete subsystems was first pointed out in the closely related context of the Yang–Baxter equations by Cherednik \[Ch3, §6.1\].

2.7. Let \(Q ⊂ P\) be the root lattice generated by \(Φ\) and \(T = \text{Hom}_Z(Q, C^*)\) the corresponding complex algebraic torus of adjoint type. \(T\) has coordinate ring \(CQ\) and is birationally isomorphic to the standard torus \((C^*)^n\) by sending \(p ∈ T\) to the point with coordinates \(z_i = e^{-α_i}(p)\), where \(α_i\) varies over the simple roots of \(Φ\) relative to \(Φ_+\).

2.8. The torus \(T\) is a quotient of \(H\) and the form of \(∇\) shows that it may be regarded as a connection on the trivial vector bundle with fibre \(A\) over \(T\). As such, \(∇\) has singularities on the codimension one subtori

\[T_α = \{e^α = 1\} \subset T\]

where \(α ∈ Φ\). Given a subset \(Ψ ⊂ Φ\), we shall be interested in the connectedness of the intersection \(\bigcap_{α ∈ Ψ} T_α\). Let \(⟨Ψ⟩_Z ⊂ Q\) be the \(Z\)-span of \(Ψ\) and set \[DCP\ §3.1\]

\[⟨Ψ⟩_Z = \{γ ∈ Q| mγ ∈ ⟨Ψ⟩_Z \text{ for some } m ∈ Z^*\}\]

Since

\[C[\bigcap_{α ∈ Ψ} T_α] = C Q/⟨Ψ⟩_Z ≅ C Q/⟨Ψ⟩_Z ⊗ C (⟨Ψ⟩_Z/⟨Ψ⟩_Z)\]

the connected components of \(\bigcap_{α ∈ Ψ} T_α\) are tori labelled by the characters of the finite abelian group \(⟨Ψ⟩_Z/⟨Ψ⟩_Z\). In particular, if \(Ψ = \{α\}\), we see that each \(T_α\) is connected since \(α\) is indivisible in \(Q\).

2.9. The necessity of relations \((tt)–(tτ)\) follows from the computation of the residues of the curvature \(Ω\) of \(∇\) to be carried out in \[2.10–2.14\].
Specifically, write $\nabla = d - A$. Since $dA = 0$, Ω is equal to $A \wedge A = \Omega_1 + \Omega_2 + \Omega_3$, where

$$\Omega_1 = \frac{1}{2} \sum_{\alpha, \beta} \frac{d\alpha}{e^\alpha - 1} \wedge \frac{d\beta}{e^\beta - 1} [t_\alpha, t_\beta]$$

(2.9)

$$\Omega_2 = \sum_{\alpha, i} \frac{d\alpha}{e^\alpha - 1} \wedge du_i [t_\alpha, \tau(u^i)]$$

(2.10)

$$\Omega_3 = \frac{1}{2} \sum_{i,j} du_i \wedge du_j [\tau(u^i), \tau(u^j)]$$

(2.11)

2.10. Let $\alpha \in \Phi$ and denote the inclusion $T_\alpha \hookrightarrow T$ by ι_α. Then

$$\text{res}_{T_\alpha} \Omega_1 = \iota_\alpha^* \sum_{\beta \neq \alpha} \frac{d\beta}{e^\beta - 1} [t_\alpha, t_\beta]$$

$$\text{res}_{T_\alpha} \Omega_2 = \iota_\alpha^* du_i [t_\alpha, \tau(u^i)]$$

and $\text{res}_{T_\alpha} \Omega_3 = 0$ since Ω_3 is regular on T_α.

2.11. Let $\Psi \subset \Phi$ be a rank 2 root subsystem and set

$$T_{\Psi} = \bigcap_{\beta \in \Psi} T_\beta$$

By §2.8, T_{Ψ} is a codimension two subtorus of T with group of components $\text{Hom}(\langle \Psi \rangle_{\mathbb{Z}}/\langle \Psi \rangle_{\mathbb{Z}}, \mathbb{C}^*)$.

Since $\langle \Psi \rangle_{\mathbb{Z}}/\langle \Psi \rangle_{\mathbb{Z}}$ is cyclic (of order 1, 2 or 3 depending on the type of Ψ and $\langle \Psi \rangle_{\mathbb{Z}} \cap \Phi$), there exists a character χ of $\langle \Psi \rangle_{\mathbb{Z}}/\langle \Psi \rangle_{\mathbb{Z}}$ with trivial kernel. It follows that the corresponding component T^χ_{Ψ} of T_{Ψ} is contained in some T_γ if, and only if, $\gamma \in \Psi$.

Together with §2.10 this implies that for any $\alpha \in \Psi$,

$$\text{res}_{T^\chi_{\Psi}} \text{res}_{T_\alpha} \Omega = [t_\alpha, \sum_{\beta \in \Psi_+} t_\beta]$$

thus showing the necessity of (12).

2.12. Let $\mathbf{T} \cong \mathbb{C}^n$ be the partial compactification determined by the embedding $T \hookrightarrow (\mathbb{C}^*)^n$ given by sending $p \in T$ to the point with coordinates $z_i = e^{-\alpha_i(p)}$. We wish to determine the residues of Ω on the divisors

$$T_i = \{z_i = 0\} \subset \mathbf{T}$$

To this end, we first rewrite ∇ in the coordinates z_i. Choosing $u_i = \alpha_i$ as basis of \mathfrak{h}^*, so that the dual basis $\{u^i\}$ of \mathfrak{h} is given by the fundamental coweights $\{\lambda^\vee_i\}$ yields $du_i = -dz_i/z_i$ and

$$du_i \tau(u^i) = -\frac{d z_i}{z_i} \tau(\lambda^\vee_i)$$
Further, if $\alpha = \sum_i m^i_\alpha \alpha_i$ is a positive root, then $e^\alpha = \prod_i z_i^{-m^i_\alpha}$ so that
\[
\frac{d\alpha}{e^\alpha - 1} = \frac{e^{-\alpha}}{1 - e^{-\alpha}} d\alpha = -\sum_i m^i_\alpha \frac{\prod_j z_j^{-m^j_\alpha}}{1 - \prod_j z_j^{-m^j_\alpha}} dz_i
\]
which is a regular on each T_i. It follows that $\text{res}_{T_i} \Omega_1 = 0$ and
\[
\text{res}_{T_j \cap T_i} \Omega_2 = s_i^* \sum_\alpha \frac{d\alpha}{e^\alpha - 1} [t_\alpha, \tau(\lambda^j_\vee)]
\]
\[
\text{res}_{T_j \cap T_i} \Omega_3 = s_i^* \sum_{j \neq i} \frac{dz_j}{z_j} [\tau(\lambda^j_\vee), \tau(\lambda^i_\vee)]
\]
where s_i is the inclusion $T_i \hookrightarrow T$.

2.13. Thus, for any $j \neq i$,
\[
\text{res}_{T_j \cap T_i} \Omega = [\tau(\lambda^j_\vee), \tau(\lambda^i_\vee)]
\]
which shows the necessity of the relations (2.7).

2.14. Let now $\alpha = \sum_i m^i_\alpha \alpha_i$ be a positive root and let $T_\alpha = \{ \prod_i z_i^{-m^i_\alpha} = 1 \}$ be the closure of T_α in T. The intersection
\[
T_{\alpha,i} = T_\alpha \cap T_i \subset T
\]
is clearly nonempty if, and only if $\alpha(\lambda^i_\vee) = m^i_\alpha = 0$. When that is the case, $T_{\alpha,i}$ is connected and contained in no other T_β, $\beta \neq j$ or T_j for $j \neq i$.

It follows that whenever $\alpha(\lambda^j_\vee) = 0$,
\[
\text{res}_{T_{\alpha,i}} \text{res}_{T_\alpha} \Omega = [t_\alpha, \tau(\lambda^i_\vee)]
\]
thus showing the necessity of (2.7) for α simple and $w = 1$. The general case follows by repeating the computations of the last two subsections in the compactification of T corresponding to a different basis Δ of simple roots and using the alternative form of the connection ∇ given by Proposition 2.2.

2.15. We next turn to the sufficiency of the relations (2.7)–(2.11). This may be proved by embedding T in the toric variety corresponding to the fan determined by the chambers of Φ in E and using a general integrability criterion of E. Looijenga as in \[Lo, \S 1–2\]. We prefer a more direct approach which will occupy \[2.16–2.19\].

\[\text{Note however that line 2 of the statement of Corollary 1.3 in } [Lo] \text{ should read ”for every irreducible component } I \text{ of a codimension two intersection”, the words in bold are missing in } [Lo].\]
2.16. Since the relations (17) imply that $\Omega_3 = 0$, we need to show that the relations (11)–(17) imply that $\Omega_1 + \Omega_2 = 0$. To this end, we rewrite Ω_2 in a different form below and, in §2.17, rewrite Ω_1.

Lemma. Modulo the relations (17), the curvature term

$$\Omega_2^\alpha = \sum_i \frac{d\alpha}{e^{\alpha} - 1} \wedge du_i \left[t_\alpha, \tau(u^i) \right]$$

corresponding to $\alpha \in \Phi_+$ is equal to

$$\sum_{\beta \in \Phi_+ \cap w\Phi_-} \frac{d\alpha}{e^{\alpha} - 1} \wedge d\beta \left[t_\alpha, t_\beta \right]$$

for any $w \in W$ such that $w^{-1} \alpha$ is a simple root.

Proof. Let $w \in W$ be such that $w^{-1} \alpha$ is a simple root α_i. By (2.5),

$$\Omega_2^\alpha = \sum_j \frac{d\alpha}{e^{\alpha} - 1} \wedge du_j \left[t_\alpha, \tau_w(u^j) \right] + \sum_{\beta \in \Phi_+ \cap w\Phi_-} \beta(u^j) \left[t_\alpha, t_\beta \right]$$

Choosing $u_j = w\alpha_j$ yields a commutator $\left[t_\alpha, \tau_w(u^j) \right] = \left[t_\alpha, \tau_w(w\lambda^j) \right]$ which is zero for all $j \neq i$ by (17). Since $d\alpha \wedge w\alpha_i = 0$, this yields

$$\Omega_2^\alpha = \sum_j \frac{d\alpha}{e^{\alpha} - 1} \wedge du_j \left[t_\alpha, \sum_{\beta \in \Phi_+ \cap w\Phi_-} \beta(u^j) t_\beta \right] = \sum_{\beta \in \Phi_+ \cap w\Phi_-} \frac{d\alpha}{e^{\alpha} - 1} \wedge d\beta \left[t_\alpha, t_\beta \right]$$

since $\beta = \beta(u^i)u_i$.

2.17. For any $a \in Q$, let η_a be the meromorphic one–form on T given by

$$\eta_a = \frac{da}{e^{\alpha} - 1}$$

Lemma. Let $\Psi \subset \Phi$ be a rank 2 root subsystem and consider the curvature term

$$\Omega_1^\Psi = \frac{1}{2} \sum_{\alpha, \beta \in \Psi_+} \eta_\alpha \wedge \eta_\beta \left[t_\alpha, t_\beta \right]$$

Assume that the relations (17) hold. Then, if Ψ is of type $A_1 \times A_1$,

$$\Omega_1^\Psi = 0 \hspace{1cm} (2.12)$$

If Ψ is of type A_2 with $\Psi_+ = \{ \alpha, \beta, \alpha + \beta \}$

$$\Omega_1^\Psi = -\eta_{\alpha + \beta} \wedge d\beta \left[t_{\alpha + \beta}, t_\beta \right] \hspace{1cm} (2.13)$$

If Ψ is of type B_2 with $\Psi_+ = \{ \alpha, \beta, \alpha \pm \beta \}$

$$\Omega_1^\Psi = -\eta_{\alpha + \beta} \wedge d\beta \left[t_{\alpha + \beta}, t_\beta \right] - \eta_\alpha \wedge d(\alpha - \beta) \left[t_\alpha, t_{\alpha - \beta} \right] \hspace{1cm} (2.14)$$
If Ψ is of type G_2, with $\Psi_+ = \{\alpha_1, \alpha_2, \alpha_1 + \alpha_2, \alpha_1 + 2\alpha_2, \alpha_1 + 3\alpha_2, 2\alpha_1 + 3\alpha_2\}$

$$\Omega_1^\Psi = -\eta_{\alpha_1+\alpha_2} \wedge da_1 \left[t_{\alpha_1+\alpha_2}, t_{\alpha_1} \right]$$

(2.15)

$$- \eta_{\alpha_1+2\alpha_2} \wedge (da_2 \left[t_{\alpha_1+2\alpha_2}, t_{\alpha_2} \right] + d(\alpha_1 + 3\alpha_2) \left[t_{\alpha_1+3\alpha_2}, t_{\alpha_1+3\alpha_2} \right])$$

$$- \eta_{\alpha_1+3\alpha_2} \wedge da_2 \left[t_{\alpha_1+3\alpha_2}, t_{\alpha_2} \right]$$

$$- \eta_{2\alpha_1+3\alpha_2} \wedge (da_1 \left[t_{2\alpha_1+3\alpha_2}, t_{\alpha_1} \right] + d(\alpha_1 + \alpha_2) \left[t_{2\alpha_1+3\alpha_2}, t_{\alpha_1+3\alpha_2} \right])$$

Proof. If Ψ is of type $A_1 \times A_1$, the result follows from $(A_1 \times A_1)$. For other types, we shall need the following easily verified identity. For $a, b \in Q$, set

$$\eta_{a,b} = \frac{da \wedge db}{e^{a+b} - 1}$$

Then,

$$\eta_a \wedge \eta_b = \eta_a \wedge \eta_{a+b} + \eta_{a+b} \wedge \eta_b + \eta_{a,b}$$

(2.16)

We shall apply (2.16) to Ω_1^Ψ repeatedly, specifically to terms of the form $\eta_a \wedge \eta_b$ with $\alpha + \beta \in \Phi_+$, until no such terms are left.

For $\Psi_+ = \{\alpha, \beta, \alpha + \beta\}$ of type A_2, this yields

$$\Omega_1^\Psi = \eta_{\alpha+\beta} \wedge \eta_\alpha \left[t_{\alpha+\beta} + t_\beta, t_\alpha \right] + \eta_{\alpha+\beta} \wedge \eta_\beta \left[t_{\alpha+\beta} + t_\alpha, t_\beta \right] + \eta_\alpha \wedge \eta_\beta \left[t_\alpha, t\beta \right]$$

By (2.15), the first two commutators are 0 and the third is equal to $[t_\alpha, t_\beta] = [t_\alpha + t_\beta, t_\beta] = -[t_{\alpha+\beta}, t_\beta]$. This yields the required answer since

$$\eta_{a,b} = \eta_{a+b} \wedge db = -\eta_{a+b} \wedge da$$

(2.17)

To keep track of the repeated applications of (2.16) for Ψ of type B_2, G_2, we proceed as follows. Recall that the height of $\alpha = \sum_i m^i_\alpha \alpha_i \in \Phi_+$ is defined by $ht(\alpha) = \sum_i m^i_\alpha$. Arrange pairs of distinct roots (α, β) on consecutive rows according to the value of $ht(\alpha) + ht(\beta)$: each (α, β) stands for a term $\eta_\alpha \wedge \eta_\beta$. From each pair (α, β) such that $\alpha + \beta \in \Phi_+$ draw an arrow to $(\alpha, \alpha + \beta)$ and $(\alpha + \beta, \beta)$ to signify that (2.16) has been applied with $a = \alpha$ and $b = \beta$.

For $\Psi_+ = \{\alpha, \beta, \alpha \pm \beta\}$ of type B_2 with simple roots $\alpha_1 = \alpha - \beta, \alpha_2 = \beta$, the corresponding graph is

\[
\begin{align*}
(\alpha - \beta, \beta) & \quad \rightarrow \\
(\alpha - \beta, \alpha) & \quad \rightarrow \\
(\alpha - \beta, \alpha + \beta) & \quad \rightarrow \\
(\alpha, \alpha + \beta) & \\
(\alpha, \beta) & \quad \rightarrow \\
(\alpha + \beta, \beta) &
\end{align*}
\]
This yields an \(\eta_a \land \eta_b \) component of \(\Omega_1^\Psi \) equal to
\[
\eta_{a-\beta} \land \eta_a [t_{a-\beta}, t_\alpha + t_\beta] + \eta_{a-\beta} \land \eta_{a+\beta} [t_{a-\beta}, t_\alpha + t_\beta] + \eta_{a+\beta} \land \eta_\beta [t_{a+\beta} + t_\alpha + t_{a-\beta}, t_\beta] + \eta_\alpha \land \eta_{a+\beta} ([t_\alpha, t_{a+\beta} + t_\beta] + [t_{a-\beta}, t_\beta])
\]
The second commutator is equal to zero by \(A_1 \times A_1 \subset B_2 \), the first by \(\Phi \) and \(A_1 \times A_1 \subset B_2 \) and the third by \(\Phi \). By \(\Phi \), the coefficient of \(\eta_a \land \eta_{a+\beta} \) is equal to \(-[t_{a+\beta}, t_\beta] + [t_{a-\beta}, t_\alpha] = [t_{a-\beta}, t_\alpha + t_\beta] = 0 \).
\(\Omega_1^\Psi \) is therefore equal to its \(\eta_{a,b} \) component, namely
\[
\eta_{a-\beta, \beta} [t_{a-\beta}, t_\beta] + \eta_{a, \beta} [t_\alpha + t_{a-\beta}, t_\beta]
\]
which yields the required answer since, by \(\Phi \)
\[
[t_\alpha + t_{a-\beta}, t_\beta] = -[t_{a+\beta}, t_\beta]
\]
and by \(\Phi \) and \(A_1 \times A_1 \subset B_2 \)
\[
[t_{a-\beta}, t_\beta] = -[t_{a-\beta}, t_\alpha + t_\beta] = -[t_{a-\beta}, t_\alpha]
\]
while, as previously noted
\[
\eta_{a,b} = \eta_{a+b} \land db = -\eta_{a+b} \land da
\]
Assume now that \(\Psi \) is of type \(G_2 \) and has simple roots \(\alpha_1, \alpha_2 \), with \(\alpha_1 \) long. The sets of long and short positive roots are, respectively
\[
\Psi_+ = \{\alpha_1, 2\alpha_1 + 3\alpha_2, \alpha_1 + 3\alpha_2\} \quad \text{and} \quad \Psi_+^s = \{\alpha_1 + \alpha_2, \alpha_1 + 2\alpha_2, \alpha_2\}
\]
and the pairs \((\beta, \gamma) \) of orthogonal positive roots are
\[
(\alpha_1, \alpha_1 + 2\alpha_2), \quad (2\alpha_1 + 3\alpha_2, \alpha_2), \quad (\alpha_1 + 3\alpha_2, \alpha_1 + \alpha_2)
\]
The corresponding graph reads
\[
\begin{align*}
(\alpha_1, \alpha_2) & \quad \longrightarrow \quad (\alpha_1 + \alpha_2, \alpha_2) \\
(\alpha_1, \alpha_1 + \alpha_2) & \quad \longrightarrow \quad (\alpha_1 + \alpha_2, \alpha_2) \\
(\alpha_1, \alpha_1 + 2\alpha_2) & \quad \longrightarrow \quad (\alpha_1 + 2\alpha_2, \alpha_2) \\
(\alpha_1, \alpha_1 + 3\alpha_2) & \quad \longrightarrow \quad (\alpha_1 + \alpha_2, \alpha_1 + 2\alpha_2) \\
(\alpha_1 + 2\alpha_1 + 3\alpha_2) & \quad \longrightarrow \quad (\alpha_1 + \alpha_2, \alpha_1 + 3\alpha_2) \\
(\alpha_1 + \alpha_2, 2\alpha_1 + 3\alpha_2) & \quad \longrightarrow \quad (\alpha_1 + 2\alpha_2, \alpha_1 + 3\alpha_2) \\
(\alpha_1 + 2\alpha_2, 2\alpha_1 + 3\alpha_2) & \quad \longrightarrow \quad (\alpha_1 + 3\alpha_2, 2\alpha_1 + 3\alpha_2) \\
(\alpha_1 + 3\alpha_2, 2\alpha_1 + 3\alpha_2) & \quad \longrightarrow \quad (\alpha_1 + 3\alpha_2, 2\alpha_1 + 3\alpha_2)
\end{align*}
\]
This yields an \(\eta_{a,b} \) component of \(\Omega^\Psi_1 \) equal to
\[
\eta_{a,1,2} [t_{a_1}, t_{a_2}] + \eta_{1+a_2,2} [t_{a_1+a_2} + t_{a_1}, t_{a_2}]
+ \eta_{1+a_2,2} [t_{a_1+a_2} + t_{a_1}, t_{a_2} + t_{a_1}]
+ \eta_{1+a_2,3} [t_{a_1}, t_{a_1+3}]
+ \eta_{1+a_2,2+2} [t_{a_1+a_2} + t_{a_1+2} + t_{a_2} + t_{a_1}]
\]
By (2.8), the first commutator is equal to \(-[t_{a_1}, t_{a_1+a_2}]\). By (Ψ) and (\(\Phi \) and (\(A_1 \times A_1 \subset G_2 \)), the third commutator is equal to \(-[t_{a_1+3}, t_{a_2}]\). The second commutator is therefore equal to
\[
-[t_{a_1+3} + t_{a_1+2}, t_{a_2} + t_{a_1+3}]
\]
where we used (2.5). By (\(A_2 \subset G_2 \)), the fourth commutator is equal to \(-[t_{a_1}, t_{2a_1+3}]\). Finally, the coefficient of \(\eta_{a_2,1+3} \) is equal to
\[
-[t_{a_1+a_2}, t_{a_1} + t_{2a_1+3}] + [t_{a_1}, t_{a_2}] = [t_{2a_1+3}, t_{a_1+a_2}]
\]
where we used (2.8). Using (2.17) shows that the right–hand side of (2.15) is equal to the \(\eta_{a_2,1} \) component of \(\Omega^\Psi_1 \). A similar use of relations (Φ), (\(A_2 \subset G_2 \)) and (\(A_1 \times A_1 \subset G_2 \)) shows that the \(\eta_a \wedge \eta_b \) component of \(\Omega^\Psi_1 \) is zero and therefore completes the proof.

2.18.

Corollary. Assume that the relations (11) and (17) hold. Then, for any rank 2 root subsystem \(\Psi \subset \Phi \), the curvature term \(\Omega^\Psi_1 \) is equal to
\[
\Omega^\Psi_1 = - \sum_{\alpha \in \Psi_+} \sum_{\beta \in \Psi_+ \cap w_\alpha \Psi_-} \eta_\alpha \wedge d\beta [t_\alpha, t_\beta]
\]
where \(w_\alpha \) is any element of the Weyl group of \(\Psi \) such that \(w_\alpha^{-1} \alpha \) is simple in \(\Psi \).

Proof. Lemma 2.17 and a simple case–by–case inspection show that \(\Omega^\Psi_1 \) does indeed have the above form for well–chosen elements \(w_\alpha \) (specifically, \(w_\alpha \) should be an element of shortest length such that \(w_\alpha^{-1} \alpha \) is simple in \(\Psi \)). But Lemma 2.16 applied to \(\Psi \) implies that the expression
\[
\sum_{\beta \in \Psi_+ \cap w_\alpha \Psi_-} \eta_\alpha \wedge d\beta [t_\alpha, t_\beta]
\]
is independent of the choice of \(w_\alpha \), hence the conclusion.

2.19. **Completion of the proof of (1) of Theorem 2.5.** Fix \(\alpha \in \Phi_+ \) and let \(\mathcal{R}_2(\alpha) \) be the set of complete, rank 2 subsystems \(\Psi \subset \Phi \) containing \(\alpha \) as a non–simple root. For \(\Psi \in \mathcal{R}_2(\alpha) \), denote the corresponding Weyl group by \(W(\Psi) \).

For any \(w \in W \), denote by \(N(w) \subset \Phi_+ \) the set
\[
N(w) = \{ \beta \in \Phi_+ | w_\beta \in \Phi_- \}
\]
Proposition. Let \(w \in W \) be such that \(w^{-1} \alpha \) is simple in \(\Phi \).

1. For any \(\Psi \in \mathcal{R}_2(\alpha) \), the intersection \(N(w^{-1}) \cap \Psi \) is non-empty.

2. The following holds

\[
N(w^{-1}) = \bigcup_{\Psi \in \mathcal{R}_2(\alpha)} N(w^{-1}) \cap \Psi
\]

3. For any \(\Psi \in \mathcal{R}_2(\alpha) \), there exists a unique \(w_\Psi \in W(\Psi) \) such that

\[
N(w^{-1}) \cap \Psi = N_\Psi(w_\Psi^{-1})
\]

Proof. For any pair of non-proportional roots \(\beta, \gamma \in \Phi \), let \(\langle \beta, \gamma \rangle \subset \Phi \) be the complete, rank 2 subsystem generated by \(\beta \) and \(\gamma \). We claim that the map \(\beta \to \langle \alpha, \beta \rangle \) induces a bijection

\[
\rho : N(w^{-1})/\sim \longrightarrow \mathcal{R}_2(\alpha)
\]

where \(\sim \) is the equivalence relation defined by \(\beta \sim \beta' \) if \(\langle \alpha, \beta \rangle = \langle \alpha, \beta' \rangle \).

This clearly proves (1) and (2) since \(\rho^{-1}(\Psi) = \Psi \cap N(w^{-1}) \).

To see this, we shall need some notation. For any complete subsystem \(\Psi \subset \Phi \), let \(\Psi^\perp = \bigcap_{\beta \in \Psi} \mathcal{H}_\beta \subset E \), where \(\mathcal{H}_\beta = \text{Ker}(\beta) \). Set \(E_\Psi = E/\Psi^\perp \) so that \(\Psi \) may be regarded as a root system in \(E_\Psi \), and let \(\pi_\Psi : E \to E_\Psi \) be the corresponding projection. If \(\beta \in N(w^{-1}) \), the wall \(\mathcal{H}_\beta \) separates the fundamental chamber \(C \subset E \) of \(\Phi \) and \(C' = w(C) \). Thus, if \(\Psi = \langle \alpha, \beta \rangle \), \(\pi_\Psi(\mathcal{H}_\beta) \) separates the fundamental chamber \(\pi_\Psi(C) \) of \(\Psi \) and \(\pi_\Psi(C') \). It follows that \(\pi_\Psi(C) \neq \pi_\Psi(C') \) so that \(\alpha \) is not simple in \(\Psi \) since \(\pi_\Psi(\mathcal{H}_\alpha) \) is a wall of \(\pi_\Psi(C') \), whence \(\langle \alpha, \beta \rangle \in \mathcal{R}_2(\alpha) \) and \(\rho \) is a well-defined embedding.

It is also surjective since if \(\Psi \in \mathcal{R}_2(\alpha) \), there exists a \(\beta \in \Psi^\perp \) such that \(\pi_\Psi(\mathcal{H}_\beta) \) separates \(\pi_\Psi(C) \) and \(\pi_\Psi(C') \) so that \(\mathcal{H}_\beta \) separates \(C \) and \(C' \) and therefore lies in \(N(w^{-1}) \).

Finally, for a given \(\Psi \in \mathcal{R}_2(\alpha) \), the set \(N(w^{-1}) \cap \Psi \) consists of those \(\beta \in \Psi^\perp \) which separate \(C \) and \(C' \) and therefore \(\pi_\Psi(C) \) and \(\pi_\Psi(C') \). It is therefore equal to \(\Psi^\perp \cap w_\Psi \Psi^{-} \) where \(w_\Psi \in W(\Psi) \) is the unique element such that \(\pi_\Psi(C') = w_\Psi \pi_\Psi(C) \).

\[\blacksquare\]

2.20. We now turn to part (2) of Theorem 2.15. We shall need the following

Lemma. The relations (11) imply that the following holds for any \(\alpha \in \Phi^+ \), \(w \in W \) such that \(w^{-1} \alpha \) is simple and \(v \in \mathfrak{h} \) such that \(\alpha(v) = 0 \)

\[
[t_\alpha, \sum_{\beta \in \Phi^+} \text{sign}(w^{-1} \beta) \beta(v) \xi_\beta] = 0 \quad (t^w t)
\]

where \(\text{sign}(\gamma) = \pm 1 \) depending on whether \(\gamma \in \pm \Phi^+ \).
Proof. Let \mathcal{T} be the algebra generated by symbols t_α, $\alpha \in \Phi$ subject to the relations $t_{-\alpha} = t_\alpha$ and (II). The Weyl group acts on \mathcal{T} by $w t_\alpha = t_{w \alpha}$ and it is easy to check that the above relation holds for a triple (α, w, v) if, and only if, it holds for $(w^{-1} \alpha, 1, w^{-1} v)$. We may therefore assume that α is simple and that $w = 1$. Since the left–hand side of (II) may be written as

$$\sum_{\Psi} \sum_{\beta \in \Psi_+} [t_\alpha, \beta(v)t_\beta]$$

where Ψ ranges over the complete, rank 2 subsystems of Φ containing α, it is sufficient to prove (II) when Φ is of rank 2. In this case, it follows by a simple case–by–case verification. For example, if $\Phi_+ + \{\alpha_1, \alpha_2, \alpha_1 + 2\alpha_2, \alpha_1 + 3\alpha_2, 2\alpha_1 + 3\alpha_2\}$ is of type G_2, we have

$$[t_{\alpha_2}, \sum_{\beta \in \Phi_+} \beta(\lambda_\alpha) t_\beta] = [t_{\alpha_2}, \sum_{\beta \in \Phi_+} t_\beta] + [t_{\alpha_2}, t_{2 \alpha_1 + 3 \alpha_2}] = 0$$

by (III) and $(A_1 \times A_1 \subset G_2)$, while

$$[t_{\alpha_1}, \sum_{\beta \in \Phi_+} \beta(\lambda_\alpha) t_\beta] = [t_{\alpha_1}, \sum_{\beta \in \Phi_+} t_\beta] + [t_{\alpha_1}, t_{\alpha_1 + 2 \alpha_2}] + 2[t_{\alpha_1}, t_{2 \alpha_1 + 3 \alpha_2} + t_{\alpha_1 + 3 \alpha_2}]$$

which is equal to zero by (III), $(A_1 \times A_1 \subset G_2)$ and $(A_2 \subset G_2)$.

2.21. Recall from §2.3 that $\delta : \mathfrak{h} \to A$ is defined by

$$\delta(v) = \tau(v) - \frac{1}{2} \sum_{\alpha \in \Phi_+} \alpha(v)t_\alpha$$

The following proves part (2) of Theorem 2.5

Proposition. Modulo the relations (II), the relations (II) are equivalent to

$$[t_\alpha, \delta(v)] = 0$$

(tδ)

for any $\alpha \in \Phi$ and $v \in \mathfrak{h}$ such that $\alpha(v) = 0$.

Proof. For any $w \in W$ (2.5), yields

$$\tau_w(v) = \tau(v) - \sum_{\alpha \in \Phi_+ \cap w \Phi_+} \alpha(v)t_\alpha = \delta(v) + \frac{1}{2} \sum_{\beta \in \Phi_+} \text{sign}(w^{-1} \beta)\beta(v)t_\beta(v)$$

The result now follows from Lemma 2.20.

2.22. Equivariance under W. Assume now that the algebra A is acted upon by the Weyl group W of Φ.

Proposition.

(1) The connection ∇ is W–equivariant if, and only if

$$s_i(t_\alpha) = t_{s_i \alpha}$$

$$s_i(\tau(x)) - \tau(s_i x) = (\alpha_i, x)t_{\alpha_i}$$

for any $\alpha \in \Phi$, simple reflection $s_i \in W$ and $x \in \mathfrak{h}$.
(2) Modulo \((2.18)\), the relation \((2.19)\) is equivalent to the \(W\)--equivariance of the linear map \(\delta : \mathfrak{h} \to A\) defined by \((2.6)\).

Proof. (1) Since \(s_i\) permutes the set \(\Phi_+ \setminus \{\alpha_i\}\) and, by \((2.4)\)
\[
\frac{1}{1 - e^{-\alpha_i}} = \frac{1}{e^{\alpha_i} - 1} + 1
\]
we get
\[
s_i^* \nabla = d - \sum_{\alpha \in \Phi_+} \frac{d\alpha}{e^\alpha - 1} s_i(t_{\alpha}) - d\alpha_i s_i(t_{\alpha}) - s_i(\tau(\alpha))d(s_i u_j)
\]
Requiring that \(s_i^* \nabla = \nabla\) and taking residues along each subtorus \(\{e^{\alpha_i} = 1\}\) yields \((2.18)\). To proceed, note that
\[
s_i(\tau(x))d(s_i u_j) = s_i(\tau(s_i u_j))d(u_j)
\]
since \(\tau(x)d(u_j)\) is independent of the choice of the dual bases \(\{x_i\}, \{u_j\}\). Thus, \(s_i^* \nabla = \nabla\) reduces to
\[
\tau(x)d(u_j) = s_i(\tau(s_i u_j))d(u_j) + t_{\alpha_i} d\alpha_i
\]
which, upon being contracted along the tangent vector \(u^k\) yields \((2.19)\) with \(x = s_i w^i\).

(2) It is easy to check that the map \(\tau(x) = 1/2 \sum_{\alpha \in \Phi_+} (x, \alpha)t_{\alpha}\) satisfies \((2.19)\). The result now follows since any two maps \(\tau_i : \mathfrak{h} \to A\) satisfying \((2.19)\) differ by a \(W\)--equivariant map.

2.23. Flatness and equivariance. The following is a direct corollary of Theorem \(2.5\) and Proposition \(2.22\).

Theorem. The trigonometric connection
\[
\nabla = d - \sum_{\alpha \in \Phi_+} \frac{d\alpha}{e^\alpha - 1} t_{\alpha} - d(u) \tau(x)
\]
is flat and \(W\)--equivariant if, and only if the following relations hold

- For any rank 2 root subsystem \(\Psi \subset \Phi\) and \(\alpha \in \Psi\),
 \[
 [t_{\alpha}, \sum_{\beta \in \Psi_+} t_{\beta}] = 0
 \]
- For any \(u, v \in \mathfrak{h}\),
 \[
 [\tau(u), \tau(v)] = 0
 \]
- For any simple root \(\alpha_i\) and \(u \in \text{Ker}(\alpha_i)\),
 \[
 [t_{\alpha_i}, \tau(u)] = 0
 \]
- For any \(\alpha \in \Phi\) and simple reflection \(s_i \in W\),
 \[
 s_i(t_{\alpha}) = t_{s_i \alpha}
 \]
- For any \(\alpha \in \Phi\) and \(u \in \mathfrak{h}\),
 \[
 s_i(\tau(u)) - \tau(s_i u) = (\alpha_i, u)t_{\alpha_i}
 \]
Remark. Theorem 2.23 was first proved by Cherednik in the special case when t_0 is equal to the orthogonal reflection $s_0 \in W$ and shown to lead to the definition of the degenerate affine Hecke algebra of W [Ch1 Ch2].

3. The trigonometric Casimir connection

3.1. The Yangian $Y(\mathfrak{g})$ [Dr1]. Let \mathfrak{g} be a finite–dimensional, simple Lie algebra over \mathbb{C} and (\cdot, \cdot) a non–degenerate, invariant bilinear form on \mathfrak{g}. Let h be a formal variable. The Yangian $Y(\mathfrak{g})$ is the associative algebra over $\mathbb{C}[h]$ generated by elements $x, J(x), x \in \mathfrak{g}$ subject to the relations

$$\lambda x + \mu y \quad (\text{in } Y(\mathfrak{g})) = \lambda x + \mu y \quad (\text{in } \mathfrak{g})$$
$$xy - yx = [x, y]$$
$$J(\lambda x + \mu y) = \lambda J(x) + \mu J(y)$$
$$[x, J(y)] = J([x, y])$$
$$[J(x), J([y, z])] + [J(z), J([x, y])] + [J(y), J([z, x])] = h^2([x, [x, y]], [y, [x, z]], [z, x]]) \{x^a, x^b, x^c\}$$
$$[[J(x), J(y)], [z, J(w)]] + [[J(z), J(w)], [x, J(y)]] = h^2([x, x_a], [y, x_b], [z, w], [w, x_c]) \{x^a, x^b, J(x^c)\}$$

for any $x, y, z, w \in \mathfrak{g}$ and $\lambda, \mu \in \mathbb{C}$, where $\{x_a\}, \{x^a\}$ are dual bases of \mathfrak{g} with respect to (\cdot, \cdot) and

$$\{z_1, z_2, z_3\} = \frac{1}{24} \sum_{\sigma \in S_3} z_{\sigma(1)} z_{\sigma(2)} z_{\sigma(3)}$$

$Y(\mathfrak{g})$ is an \mathbb{N}–graded $\mathbb{C}[h]$–algebra provided one sets $\deg(x) = 0$, $\deg(J(x)) = 1$ and $\deg(h) = 1$.

3.2. Drinfeld’s new realisation of $Y(\mathfrak{g})$ [Dr2]. Let $\mathfrak{h} \subset \mathfrak{g}$ be a Cartan subalgebra of \mathfrak{g}, $\Phi = \{\alpha\} \subset \mathfrak{h}^*$ the corresponding root system. Let $\{\alpha_i\}_{i \in I}$ be a basis of simple roots of Φ and $a_{ij} = 2(\alpha_i, \alpha_j)/(\alpha_i, \alpha_i)$ the entries of the Cartan matrix A of \mathfrak{g}. Set $d_i = (\alpha_i, \alpha_i)/2$, so that $d_i a_{ij} = d_j a_{ji}$ for any $i, j \in I$.

Let $\nu : \mathfrak{h} \to \mathfrak{h}^*$ be the isomorphism determined by the inner product (\cdot, \cdot) and set $t_i = \nu^{-1}(\alpha_i) = d_i \alpha_i^\vee$. For any $i \in I$, choose root vectors $x_i^\pm \in \mathfrak{g}_{\pm \alpha_i}$ such that $[x_i^+, x_i^-] = t_i$. Recall that \mathfrak{g} has a (slightly non–standard) presentation in terms of the generators t_i, x_i^\pm with relations

$$[t_i, t_j] = 0$$
$$[t_i, x_j^\pm] = \pm d_i a_{ij} x_j^\pm$$
$$[x_i^+, x_j^-] = \delta_{ij} t_i$$
$$\text{ad}(x_i^\pm)^{1-a_{ij}} x_j^\pm = 0$$
The Yangian $Y(A)$ is the associative algebra over $\mathbb{C}[\hbar]$ with generators $X^\pm_{i,r}, T_{i,r}, i \in I, r \in \mathbb{N}$ and relations

$$[T_{i,r}, T_{j,s}] = 0,$$

$$[T_{i,0}, X^\pm_{j,s}] = \pm d_i a_{ij} X^\pm_{j,s},$$

$$[T_{i,r+1}, X^\pm_{j,s}] - [T_{i,r}, X^\pm_{j,s+1}] = \pm \hbar (d_i a_{ij} (T_{i,r} X^\pm_{j,s} + X^\pm_{j,s} T_{i,r})),$$

$$[X^+_i, X^-_j] = \delta_{ij} T_{i,r+s},$$

$$[X^\pm_{i,r+1}, X^\pm_{j,s}] - [X^\pm_{i,r}, X^\pm_{j,s+1}] = \pm \frac{\hbar}{2} d_i a_{ij} (X^\pm_{i,r} X^\pm_{j,s} + X^\pm_{j,s} X^\pm_{i,r}),$$

$$\sum_{\pi} [X^\pm_{i,r_{\pi(1)}}, [X^\pm_{i,r_{\pi(2)}}, \cdots, X^\pm_{i,r_{\pi(m)}}, X^\pm_{j,s}], \cdots] = 0$$

where $i \neq j$ in the last relation, $m = 1 - a_{ij}, r_1, \ldots, r_m \in \mathbb{N}$ is any sequence of non-negative integers, and the sum is over all permutations π of $\{1, \ldots, m\}$. $Y(A)$ is \mathbb{N}–graded by $\text{deg}(T_{i,r}) = r = \text{deg}(X^\pm_{i,r})$ and $\text{deg}(\hbar) = 1$.

3.3. Isomorphism between the two presentations [Dr2]. Choose root vectors $x_\alpha \in \mathfrak{g}_\alpha$ for any $\alpha \in \Phi$ such that $(x_\alpha, x_{-\alpha}) = 1$ and let

$$\kappa_\alpha = x_\alpha x_{-\alpha} + x_{-\alpha} x_\alpha$$

be the truncated Casimir operator of the \mathfrak{sl}_2–subalgebra of \mathfrak{g} corresponding to α. Then, the assignment

$$\varphi(t_i) = T_{i,0}, \quad \varphi(x^\pm_{i,0}) = X^\pm_{i,0},$$

$$\varphi(J(t_i)) = T_{i,1} + \hbar \varphi(v_i)$$

$$\varphi(J(x^\pm_{i})) = X^\pm_{i} + \hbar \varphi(w^\pm_{i})$$

extends to an isomorphism $\varphi : Y(\mathfrak{g}) \to Y(A)$, where

$$v_i = \frac{1}{4} \sum_{\beta \in \Phi_+} (\alpha_i, \beta) \kappa_\beta - t_i^2 / 2$$

$$w^\pm_i = \pm \frac{1}{4} \sum_{\beta \in \Phi_+} ([x^\pm_i, x_{\pm\beta}] x_{\mp\beta} + x_{\mp\beta} [x^\mp_i, x_{\pm\beta}]) - \frac{1}{4} (x^\pm_i t_i + t_i x^\pm_i)$$

3.4. The W–equivariant embedding $\delta_{a,b} : \mathfrak{h} \to Y(\mathfrak{g})$. The Yangian $Y(\mathfrak{g})$ is acted upon by the Lie algebra spanned by the elements $x \in \mathfrak{g}$ and is an integrable \mathfrak{g}–module under this action. In particular, the zero–weight subalgebra $Y(\mathfrak{g})^0$ is acted upon by the Weyl group W of \mathfrak{g}. Moreover, for any $a, b \in \mathbb{C}$, the linear map

$$\delta_{a,b} : \mathfrak{h} \to Y(\mathfrak{g})^0, \quad \delta_{a,b}(t) = at + bJ(t)$$

is W–equivariant.
In terms of the new realisation of $Y'(g)$, the map $\delta_{a,b}$ becomes

$$\tilde{\delta}_{a,b} = \varphi \circ \delta_{a,b} : h \rightarrow Y(A)^h$$

$$\tilde{\delta}_{a,b}(t) = at + b \left(T(t) + \frac{h}{4} \sum_{\beta \in \Phi_+} \beta(t) \kappa_{\beta} - \frac{h}{2} \sum_i (t_i t'_i) t_i^2 \right) \quad (3.3)$$

where $\{t^i = \lambda^*_i\}$ is the basis of h dual to $\{t_i\}$ given by the fundamental coweights, $T(-)_1 : h \rightarrow Y(A)$ is the embedding $t \rightarrow (t, t^i) T_{i,1}$ and, deviating slightly from the notation of §3.2, we identify $g \subset Y'(g)$ with the Lie subalgebra of $Y(A)$ spanned by $T_i, X_{\pm i,0}$.

3.5. The linear map $\tau_{a,b} : h \rightarrow Y(g)$. Let $\epsilon \in \mathbb{C}$. For any root α, set

$$K_{\alpha} = \kappa_{\alpha} + \epsilon q_{\alpha} \quad \text{where} \quad q_{\alpha} = \frac{\nu^{-1}(\alpha)^2}{(\alpha, \alpha)} \quad (3.4)$$

and κ_{α} is the truncated Casimir given by (3.1). For any $a, b \in \mathbb{C}$, define a map $\tau_{a,b} : h \rightarrow Y(g)^h$ by

$$\tau_{a,b}(t) = \frac{h}{2} \sum_{\alpha \in \Phi_+} (t, \alpha) K_{\alpha} + \delta_{a,b}(t)$$

where $\delta_{a,b}$ is given by (3.2).

Proposition.

1. The elements K_{α} satisfy

$$K_{-\alpha} = K_{\alpha} \quad \text{and} \quad w(K_{\alpha}) = K_{w\alpha}$$

for any $w \in W$.

2. The following holds for any $t \in h$

$$s_i(\tau_{a,b}(t)) - \tau_{a,b}(s_i t) = h(\alpha_i, t) K_{\alpha_i}$$

3. If $b = -2$, then $\tilde{\tau}_{a,-2} = \varphi \circ \tau_{a,-2} : h \rightarrow Y(A)^h$ is given by

$$\tilde{\tau}_{a,-2}(t) = at - 2 \left(T(t) - \frac{h}{2} \sum_i (t_i t'_i) t_i^2 \right) + \epsilon \frac{h}{2} \sum_{\alpha \in \Phi_+} \alpha(t) q_{\alpha}$$

and satisfies in addition

$$[\tilde{\tau}_{a,-2}(t), \tilde{\tau}_{a,-2}(t')] = 0$$

for any $t, t' \in h$.

4. For any $\alpha \in \Phi_+$ and $t \in h$ such that $\alpha(t) = 0$

$$[K_{\alpha}, \delta_{a,b}(t)] = 0$$
Proof. (1) is obvious. (2) follows from the second part of Proposition 2.22 and the W-equivariance of $\delta_{a,b}$. For (3), we have by (3.3)

$$\tilde{\tau}_{a,b}(t) = \frac{\hbar}{2} \sum_{\alpha \in \Phi^+} \alpha(t)K_\alpha + at + b \left(T(t)_1 + \frac{\hbar}{4} \sum_{\beta \in \Phi^+} \beta(t)\kappa_\beta - \frac{\hbar}{2} \sum_i (t, t^i) t^i_1 \right)$$

$$= at + \frac{\hbar}{2} \sum_{\alpha \in \Phi^+} \alpha(t)(K_\alpha + \frac{b}{2}\kappa_\alpha) + b(T(t)_1 - \frac{\hbar}{2} \sum_i (t, t^i) t^i_1)$$

which, for $b = -2$ reduces to the claimed expression. The commutativity of $\tilde{\tau}_{a,-2}(t)$ and $\tilde{\tau}_{a,2}(t')$ then follows from that of the $T_i, 1$. (4) follows easily from the defining relations of $Y(g)$. □

3.6. For simplicity, we henceforth set $\epsilon = 0 = a$ and $b = -2$ in equations (3.2) and (3.4), although Theorem 3.8 below is true for any values of a, ϵ. Thus, $K_\alpha = \kappa_\alpha$, $\delta = \delta_{0,-2} : \mathfrak{h} \to Y(g)$ is given by $\delta(t) = -2J(t)$ and the corresponding map $\tilde{\tau} = \tilde{\tau}_{0,-2} : \mathfrak{h} \to Y(A)^b$ by

$$\tilde{\tau}(t) = -2T(t)_1 + h(t, t^i) t^i_1$$

3.7. The trigonometric Casimir connection of \mathfrak{g}. Let $H_{reg} \subset H$ be given by (2.1) and Y^b the trivial bundle over H_{reg} with fibre $Y(g)^b \cong Y(A)^b$.

Definition. The trigonometric Casimir connection of \mathfrak{g} is the connection ∇ on Y^b given by either of the following forms

$$\nabla = d - \frac{\hbar}{2} \sum_{\alpha \in \Phi^+} e^\alpha + 1 e^{-\alpha} - 1 d\alpha \kappa_\alpha + 2du_i J(u^i)$$ \hspace{1cm} (3.5)

$$= d - h \sum_{\alpha \in \Phi^+} \frac{d\alpha}{e^\alpha - 1} \kappa_\alpha + 2du_i \left(T(u^i)_1 - \frac{\hbar}{2}(u^i, t^j) t^j_1 \right)$$ \hspace{1cm} (3.6)

whose equality follows from (2.3) and (3.6).

3.8.

Theorem. The trigonometric Casimir connection is flat and W-equivariant.

Proof. By Theorem 2.5, Proposition 2.22 and Proposition 3.5 we need only check that the elements $t_\alpha = \kappa_\alpha$ satisfy the relations (11). This follows as in [MTL, Thm. 2.3] and [TL1, Thm 2.2]. Specifically, if $\Psi \subset \Phi$ is a rank 2 root subsystem, the sum $\sum_{\alpha \in \Phi, \kappa_\alpha}$ is, up to Cartan terms, the Casimir operator for the rank 2 subalgebra $\mathfrak{g}_\Psi \subset \mathfrak{g}$ determined by Ψ and therefore commutes with each summand $\kappa_\alpha, \alpha \in \Phi^+$. □
Remark. Since the relations of Theorem 2.5 and Proposition 2.22 are homogeneous, Theorem 3.8 proves in fact the flatness and W–equivariance of the one–parameter family of connections

$$\nabla = d - \lambda^{-1} \left(\frac{\hbar}{2} \sum_{\alpha \in \Phi_+} \frac{e^\alpha + 1}{e^\alpha - 1} d\alpha \kappa_\alpha - 2d u_i J(u^i) \right)$$

$$= d - \lambda^{-1} \left(\hbar \sum_{\alpha \in \Phi_+} \frac{d\alpha}{e^\alpha - 1} \kappa_\alpha - 2d u_i \left(T(u^i) - \frac{\hbar}{2} (u^i, t^j) \right) \right)$$

where λ varies in \mathbb{C}^\times.

4. THE MONODROMY CONJECTURE

We show in this section that the monodromy of the trigonometric Casimir connection ∇ gives rise to representations of the affine braid group \hat{B} corresponding to g and give a conjectural description of it in terms of the quantum Weyl group operators of the quantum loop algebra $U_\hbar(Lg)$.

4.1. Monodromy representation. Since H is of simply–connected type, the Weyl group W acts freely on H and the fundamental group of the quotient H/W is isomorphic to the affine braid group \hat{B} [NVD, vdL].

Let V be a finite–dimensional $Y(g)$–module and ∇ the holomorphically trivial vector bundle over H with fibre V. The connection ∇ induces a flat connection on V. To push it down to the quotient by W we use the ‘up and down’ trick of [MTL, p. 224] to circumvent the fact that W does not in general act on V. To this end, we shall need a few basic results about Tits extensions of (affine) Weyl groups which are gathered in §8.

Specifically, since V is an integrable g–module, the triple exponentials defined by a choice of simple root vectors $e_{\alpha_i}, f_{\alpha_i} \in g_{\alpha_i}$, $f_{\alpha_i} \in g_{-\alpha_i}$, are well–defined elements of $GL(V)$. They give rise to an action on V of an extension of W by the sign group $\mathbb{Z}_2^{\dim h}$ called the Tits extension \hat{W} of W (Definition 8.2 and Prop. 8.3). By Theorem 8.10, \hat{W} is a quotient of the affine braid group \hat{B} which may therefore be made to act on V. It is then easy to check that the pull–back of the flat vector bundle (∇, V) to the universal cover of H is equivariant under \hat{B} acting by deck transformations on the base and through the \hat{W}–action on the fibres.

4.2. Let $Lg = g[t, t^{-1}]$ be the loop algebra of g and $U_\hbar(Lg)$ the corresponding quantum loop algebra, viewed as a topological Hopf algebra over the ring of formal power series $\mathbb{C}[[h]]$. Thus, $U_\hbar(Lg)$ has Chevalley generators E_i, F_i, where i ranges over the set $\hat{I} = \hat{I} \sqcup \{0\}$ of nodes of the affine Dynkin diagram of g and a Cartan subalgebra isomorphic to h and spanned by H_i, H_0.

\[\text{THE TRIGONOMETRIC CONNECTION OF A SIMPLE LIE ALGEBRA} \]
\(i \in I \) and \(H_0 = -H_\theta = -\sum_{i \in I} a_i H_i \), where \(\theta \in \mathfrak{h}^* \) is the highest root and the integers \(a_i \) are given by \(\theta^\vee = \sum a_i \alpha_i^\vee \).

4.3. Finite-dimensional representation

By a finite-dimensional representation of \(U_\hbar(Lg) \) we shall mean a module \(V \) which is topologically free and finitely-generated over \(\mathbb{C}[\hbar] \). Such a \(V \) is integrable and therefore endowed with a quantum Weyl group action of the affine braid group \(\hat{B} \). This action is given by letting the generator corresponding to \(i \in \hat{I} \) act by

\[
\mathcal{S}_i^\hbar v = \sum_{a,b,c \in \mathbb{Z} : a - b + c = -\lambda(\alpha_i^\vee)} (-1)^b q_i^{b-ac} E_i^{(a)} F_i^{(b)} E_i^{(c)} v
\]

where \(v \in V \) if of weight \(\lambda \in \mathfrak{h}^* \) and \(X_i^{(a)} \) is the divided power \(X^a/[a]! \) with

\[
q = e^\hbar, \quad q_i = q^{(\alpha_i,\alpha_i)/2}
\]

\[
[n]_i = \frac{q_i^n - q_i^{-n}}{q_i - q_i^{-1}} \quad \text{and} \quad [n]_i! = [n]_i[n - 1]_i \cdots [1]_i
\]

4.4. Monodromy conjecture

It is known that the Yangian \(Y(g) \) and the quantum loop algebra \(U_\hbar(Lg) \) have the same finite-dimensional representation theory (see [Va] and [GTL1]). By analogy with the quantum Weyl group description of the monodromy of the (rational) Casimir connection of \(g \) conjectured by De Concini (unpublished) and independently in [TL1, TL2], and proved in [TL1, TL3], we make the following

Conjecture. The monodromy of the trigonometric Casimir connection is equivalent to the quantum Weyl group action of the affine braid group \(\hat{B} \) on finite-dimensional \(U_\hbar(Lg) \)-modules.

We will return to this conjecture in forthcoming work in collaboration with S. Gautam [GTL2].

5. The trigonometric Casimir connection of \(\mathfrak{gl}_n \)

We consider in this section the Yangian \(Y(\mathfrak{gl}_n) \) of the Lie algebra \(\mathfrak{gl}_n \). The latter does not possess a presentation of the form given in [§3.1] but may be defined via a ternary, or \(RTT \) presentation. By exploiting the interplay between the latter and its loop presentation, we construct a flat, trigonometric connection with values in \(Y(\mathfrak{gl}_n) \). We then relate it to the corresponding connection for \(\mathfrak{sl}_n \) and show that, when it is taken with values in a tensor product of evaluation modules, it coincides with the trigonometric dynamical equations [TV].
5.1. **The RTT presentation of** \(Y(\mathfrak{gl}_n) \). The Yangian \(Y(\mathfrak{gl}_n) \) is the unital, associative algebra over \(\mathbb{C} \) generated by elements \(t_{ij}^{(r)} \), \(1 \leq i, j \leq n \), \(r \geq 0 \), subject to the relations\(^3\)

\[\begin{split}
[&t_{ij}^{(r+1)}, t_{kl}^{(s)}] - [t_{ij}^{(r)}, t_{kl}^{(s+1)}] = t_{kj}^{(r)} t_{il}^{(s)} - t_{kj}^{(s)} t_{il}^{(r)} \\
&\quad \text{where } r, s \in \mathbb{N} \text{ and } t_{ii}^{(0)} = \delta_{ij}.
\end{split}\] (5.1)

where \(E, t \) are again elementary matrices and the superscript \(V \) is used to stress the fact that they should be thought of as elements of the algebra \(\text{End}(V) \) rather than the underlying Lie algebra \(\mathfrak{gl}_n \).

Let \(V = \mathbb{C}^n \) with standard basis \(e_1, \ldots, e_n \) and let \(E_{ij} e_k = \delta_{jk} e_i \) be the corresponding basis of elementary matrices of \(\mathfrak{gl}_n \). The map \(i : E_{ij} \to t_{ij}^{(1)} \) defines an embedding of \(\mathfrak{gl}_n \) into \(Y(\mathfrak{gl}_n) \) and we will often identify \(\mathfrak{gl}_n \) with its image under \(i \). Moreover, for every \(s \geq 1 \), the subspace spanned by the elements \(t_{ij}^{(s)} \) transforms like the adjoint representation under the commutator action of \(\mathfrak{gl}_n \).

The above relations may be more compactly rewritten as follows. For any \(r \geq 0 \), let \(T^{(r)} \) be the \(n \times n \) matrix with values in \(Y(\mathfrak{gl}_n) \) given by

\[T^{(r)} = \sum_{1 \leq i, j \leq n} E_{ij}^V \otimes t_{ij}^{(r)} \]

where \(E_{ij}^V \) are again elementary matrices and the superscript \(V \) is used to stress the fact that they should be thought of as elements of the algebra \(\text{End}(V) \) rather than the underlying Lie algebra \(\mathfrak{gl}_n \).

Let \(u \) be a formal variable and set

\[T = \sum_{r \geq 0} T^{(r)} u^{-r} \in \text{End}(V) \otimes Y(\mathfrak{gl}_n)[[u^{-1}]] \]

Finally, let

\[R(u) = 1 - Pu^{-1} \in \text{End}(V \otimes V)[[u^{-1}]] \]

be Yang’s \(R \)-matrix, where \(P \in \text{End}(V \otimes V) \) acts as the permutation of the two tensor factors. Then the relations (5.1) are equivalent to

\[R(u - v) T_1(u) T_2(v) = T_2(v) T_1(u) R(u - v) \]

where \(T_1(u), T_2(u) \in \text{End}(V \otimes V) \otimes Y(\mathfrak{gl}_n)[[u^{-1}]] \) are given by

\[T_1(u) = \sum_{i,j,r} E_{ij}^V \otimes 1 \otimes t_{ij}^{(r)} u^{-r} \quad \text{and} \quad T_2(v) = \sum_{i,j,r} 1 \otimes E_{ij}^V \otimes t_{ij}^{(r)} v^{-r} \]

5.2. **The loop presentation of** \(Y(\mathfrak{gl}_n) \). Let \(E(u), H(u), F(u) \) be the factors of the Gauss decomposition of \(T(u) \). Specifically,

\[\begin{align*}
F(u) &= 1 + \sum_{i > j} E_{ij}^V \otimes f_{ij}(u) \\
E(u) &= 1 + \sum_{i < j} E_{ij}^V \otimes e_{ij}(u) \\
H(u) &= \sum_i E_{ii}^V \otimes h_i(u),
\end{align*} \]

\(^3\)we follow here the conventions of [Mo] and [NO].
are, respectively, the unique lower unipotent, upper unipotent and diagonal matrices with coefficients in $\text{Y}(\mathfrak{gl}_n)[[u^{-1}]]$ such that

$$T(u) = F(u)H(u)E(u) \quad (5.2)$$

Noting that $H(u), E(u), F(u) = 1 \mod u^{-1}$, write

$$h_i(u) = 1 + \sum_{r \geq 1} h_i^{(r)} u^{-r}, \quad f_{ij}(u) = \sum_{r \geq 1} f_{ij}^{(r)} u^{-r}, \quad e_{ij}(u) = \sum_{r \geq 1} e_{ij}^{(r)} u^{-r}$$

The coefficients of $e_{ii+1}(u), f_{ii+1}(u)$ and $h_i(u)$ give another system of generators of $\text{Y}(\mathfrak{gl}_n)$. Moreover, The elements $h_i(u)$ commute and their coefficients generate a maximal commutative subalgebra of $\text{Y}(\mathfrak{gl}_n)$ called the Gelfand–Zetlin subalgebra H_n.

5.3. The Gauss decomposition [5.2] yields in particular

$$t_{ij}^{(1)} = \begin{cases} e_{ij}^{(1)} & \text{if } i < j \\ h_i^{(1)} & \text{if } i = j \\ f_{ij}^{(1)} & \text{if } i > j \end{cases}$$

which we will use to identify the copies of \mathfrak{gl}_n inside each presentation. Moreover,

$$t_{ii}^{(2)} = h_i^{(2)} + \sum_{j < i} E_{ij}E_{ji} = h_i^{(2)} + \frac{1}{2} \sum_{j < i} (\kappa_{\theta_j - \theta_i} - (E_{jj} - E_{ii})) \quad (5.3)$$

where θ_a is the linear form given by $\theta_a(E_{bb}) = \delta_{ab}$ and $\kappa_{\theta_a - \theta_b} = E_{ab}E_{ba} + E_{ba}E_{ab}$ is the truncated Casimir operator corresponding to the root $\theta_a - \theta_b$.

5.4. Define the elements $D_i \in H_n$ by

$$D_i = 2h_i^{(2)} - \sum_{j < i} (E_{jj} - E_{ii}) - E_{ii}^{2} = 2t_{ii}^{(2)} - \sum_{j < i} \kappa_{\theta_j - \theta_i} - E_{ii}^{2} \quad (5.4)$$

The symmetric group S_n acts by algebra automorphisms on $\text{Y}(\mathfrak{gl}_n)$ by

$$\sigma(t_{ij}^{(r)}) = t_{\sigma(i)\sigma(j)}^{(r)} \quad (5.6)$$

Lemma. The following holds

1. $[D_i, D_j] = 0$.
2. $(i+1)D_j = D_j$ if $j \notin \{i, i+1\}$.
3. $(i+1)D_i - D_{i+1} = \kappa_{\theta_i - \theta_{i+1}}$.

Proof. (1) follows from (5.4) and the fact that the $h_i^{(r)}$ commute. (2) and (3) follows from (5.5).
5.5. The following is a direct consequence of (5.5) and (5.3)

Lemma. The element $D = D_1 + \cdots + D_n$ is given by

$$D = 2 \sum_i t^{(2)}_{ii} - C_{\mathfrak{gl}_n}$$

$$= 2 \sum_i h^{(2)}_{ii} - 2\rho^\vee - \sum_i E^2_{ii}$$

where

$$C_{\mathfrak{gl}_n} = \sum_{i<j} \kappa_{\theta_i - \theta_j} + \sum_i E^2_{ii}$$

and

$$2\rho^\vee = \sum_{i<j} (E_{ii} - E_{jj})$$

are the Casimir operator and sum of the positive coroots of \mathfrak{gl}_n.

5.6. **The trigonometric Casimir connection of \mathfrak{gl}_n.** Let D_i be given by (5.5) and define elements $\Delta_i \in H_n$ by (cf. §2.3)

$$\Delta_i = D_i - \frac{1}{2} \sum_{a<b} (\theta_a - \theta_b)(E_{ii}) \kappa_{\theta_a - \theta_b}$$

$$= 2t^{(2)}_{ii} - \frac{1}{2} \sum_{j \neq i} \kappa_{\theta_i - \theta_j} - E^2_{ii}$$

Let $H \subset \text{GL}_n$ be the maximal torus consisting of diagonal matrices, H_{reg} its set of regular elements and $\mathcal{Y}(\mathfrak{gl}_n)$ the trivial $\mathcal{Y}(\mathfrak{gl}_n)$–bundle over H_{reg}.

Definition. The trigonometric Casimir connection of \mathfrak{gl}_n is the connection on $\mathcal{Y}(\mathfrak{gl}_n)$ given by either of the following forms

$$\nabla = d - \sum_{i<j} \frac{d(\theta_i - \theta_j)}{e^{\theta_i - \theta_j} - 1} \kappa_{\theta_i - \theta_j} - \sum_{i=1}^n d\theta_i D_i$$

$$= d - \frac{1}{2} \sum_{i<j} \frac{e^{\theta_i - \theta_j} + 1}{e^{\theta_i - \theta_j} - 1} d(\theta_i - \theta_j) \kappa_{\theta_i - \theta_j} - \sum_{i=1}^n d\theta_i \Delta_i$$

5.7. Let the symmetric group \mathfrak{S}_n act on the vector bundle $\mathcal{Y}(\mathfrak{gl}_n)$ by permutations of the base and automorphisms (5.6) of the fibre.

Theorem. The trigonometric Casimir connection of \mathfrak{gl}_n is flat and equivariant under \mathfrak{S}_n.

Proof. Let $\overline{U}, U \subset H$ be the subtori consisting respectively of diagonal matrices of determinant 1 and multiples of the identity, and let $\overline{\mathfrak{h}}, \mathfrak{u} = \mathbb{C}\mathbf{1}_n$ and \mathfrak{h} be their Lie algebras, where $\mathbf{1}_n = \sum_{i=1}^n E_{ii}$. Thus

$$\mathfrak{h} = \overline{\mathfrak{h}} \oplus \mathbb{C}\mathbf{1}_n$$

and

$$\mathfrak{h}^* \cong \overline{\mathfrak{h}}^* \oplus \mathbb{C} \text{ tr}$$

where $\text{tr} : \mathfrak{h} \to \mathbb{C}$ is the trace. Clearly, $H \cong \overline{U} \times U$ and the connection ∇ decomposes as the product of the following $\mathcal{Y}(\mathfrak{gl}_n)$–valued connections on
Rational form.

5.8. follows easily from (5.5).

Connections on GL_n type for the connection 5.6. (τ)

\[(\text{the latter commutes with the coefficients of } \tau) \]

3.8. The relations (\ref{eq:relations}) and the equivariance relations (2.19) follow from Lemma 5.5 on ∇_U. Since the latter acts trivially on U and, by Lemma 5.5 on ∇_D, the flatness and equivariance of ∇_U reduces to that of ∇, which, in turn is determined by Theorem 2.5 and Proposition 2.22. The relations (\ref{eq:relations}) have already been checked in the proof of the flatness of the trigonometric Casimir connection for \mathfrak{sl}_n in Theorem 3.8. The relations (\ref{eq:relations}) and the equivariance relations (2.19) follow from Lemma 5.7. There remains to check that, for any $i = 1, \ldots, n - 1$ and $u \in \text{Ker}(\theta_i - \theta_{i+1})$, $[\kappa_{\theta_i - \theta_{i+1}}, D(u)] = 0$. This reduces to checking that $[\kappa_{\theta_i - \theta_{i+1}}, D_j] = 0$ for $j \notin \{i, i+1\}$ and that $[\kappa_{\theta_i - \theta_{i+1}}, D_i + D_{i+1}] = 0$ which follows easily from (5.5).

5.8. **Rational form.** It is well known that trigonometric connections of type GL_n may be put into a rational form, thus expressing them as KZ type connections on $n + 1$ points, with one frozen to 0. We carry this step below for the connection 5.6.

Let $z_i = e^{\theta_i}$, $i = 1, \ldots, n$ be the standard coordinates on the torus $H \cong (\mathbb{C}^*)^n$. Since $d\theta_i = dz_i/z_i$ and

\[d(\theta_i - \theta_j) = \frac{d(z_i - z_j)}{z_i - z_j} - \frac{dz_i}{z_i} \]

the connection 5.6 is equal to

\[\nabla = d - \sum_{i<j} \frac{d(z_i - z_j)}{z_i - z_j} \kappa_{\theta_i - \theta_j} - \sum_i \frac{dz_i}{z_i} \bar{D}_i \]

where

\[\bar{D}_i = D_i - \sum_{j>i} \kappa_{\theta_i - \theta_j} = 2t_{ii}^{(2)} - \sum_{j \neq i} \kappa_{\theta_i - \theta_j} - E_{ii}^2 \]

5.9. **Relation to $Y(\mathfrak{sl}_n)$.** Following Olshanski and Drinfeld, we realise the Yangian $Y(\mathfrak{sl}_n)$ as a Hopf subalgebra of $Y(\mathfrak{gl}_n)$ as follows (see [Mo §1.8]). Let $\Lambda = 1 + u^{-1}\mathbb{C}[u^{-1}]$ be the abelian group of formal power series in u^{-1} with constant term 1. $\Lambda \ni f$ acts on $Y(\mathfrak{gl}_n)$ by Hopf algebra automorphisms given by

\[T(u) \rightarrow f(u)T(u) \]

The Hopf subalgebra $Y(\mathfrak{gl}_n)^\Lambda \subset Y(\mathfrak{gl}_n)$ of elements fixed by Λ is isomorphic to $Y(\mathfrak{sl}_n)$.

\[\text{note that these differ from the coordinates } z_i = e^{\alpha_i} = e^{\theta_i - \theta_{i+1}} \text{ used in (2.12)}. \]
5.10. The generators T_{ir} of the presentation of $Y(\mathfrak{sl}_n)$ described in §3.2 may be obtained within the RTT realisation of $Y(\mathfrak{gl}_n)$ as follows [BK, Rk. 5.12]. Consider their generating function $T_i(u) = 1 + \sum_{r \geq 0} T_{ir} u^{-r-1}$. Then,

$$T_i(u) = h_i(u - \frac{i-1}{2})^{-1} \cdot h_{i+1}(u - \frac{i-1}{2})$$

To spell this out, consider a formal power series $a(u) = 1 + a_1 u^{-1} + a_2 u^{-2} + \cdots$ Then, for any $\lambda \in \mathbb{C}$ one has

$$a(u - \lambda) = 1 + a_1 u^{-1}(1 - \frac{\lambda}{u})^{-1} + a_2 u^{-2}(1 - \frac{\lambda}{u})^{-2} + \cdots$$

$$= 1 + a_1 u^{-1} + (a_2 + \lambda a_1)u^{-2} + \cdots$$

and therefore

$$(a(u - \lambda))^{-1} = 1 - a_1 u^{-1} - (a_2 + \lambda a_1 - a_1^2)u^{-2} + \cdots$$

It follows that $T_{i,0} = -(E_{ii} - E_{i+1,i+1})$ and

$$T_{i,1} = -(h^{(2)}_i - h^{(2)}_{i+1}) - \frac{i-1}{2} (E_{ii} - E_{i+1,i+1}) + E_{ii}^2 - E_{ii} E_{i+1,i+1}$$

(5.9)

5.11. Let $\mathcal{H} \subset H$ be the torus of SL_n consisting of diagonal matrices with determinant 1.

Proposition. The restriction of the trigonometric Casimir connection of \mathfrak{gl}_n to \mathcal{H}_{reg} takes values in $Y(\mathfrak{sl}_n)$ and is equal to the sum of the trigonometric Casimir connection of \mathfrak{sl}_n with the $\mathcal{H} \subset Y(\mathfrak{sl}_n)$–valued, closed one–form

$$-\sum_{i=1}^n d\lambda_i (E_{ii} - E_{i+1,i+1})$$

where $\{\lambda_i\}$ are the fundamental weights of \mathfrak{sl}_n.

Proof. The restriction of the trigonometric Casimir connection of \mathfrak{gl}_n to \mathcal{H}_{reg} is given by (5.7), namely

$$\nabla = \partial - \sum_{i<j} \frac{d(\theta_i - \theta_j)}{\theta_i - \theta_j - 1} \kappa_{\theta_i - \theta_j} - du^i D(u^i)$$

where $D : \mathfrak{h} \to Y(\mathfrak{gl}_n)$ is given by $D(E_{ii}) = D_i$ and $\{u_i\}, \{u^i\}$ are dual bases of \mathfrak{h} and \mathfrak{h} respectively. Choosing $u_i = \lambda_i$ so that $u^i = E_{ii} - E_{i+1,i+1}$, $i = 1, \ldots, n - 1$ and comparing with the form (3.6) we need to show that

$$D_i - D_{i+1} = -2T_{i,1} + (E_{ii} - E_{i+1,i+1})^2 + (E_{ii} - E_{i+1,i+1})$$

By (3.4), the left–hand side is equal to

$$2(h^{(2)}_i - h^{(2)}_{i+1}) + i (E_{ii} - E_{i+1,i+1}) - E_{ii}^2 + E_{i+1,i+1}^2$$

and the result follows from (5.9).
5.12. **Evaluation homomorphism.** The Yangian $Y(gl_n)$ possesses an evaluation homomorphism $ev : Y(gl_n) \to Ugl_n$ defined by
\[
ev(t_{ij}(u)) = \delta_{ij} + E_{ij}u^{-1}
\]
where $t_{ij}(u) = \sum_{r \geq 0} t_{ij}^{(r)}u^{-r}$. When composed with the translation automorphisms τ_a, $a \in \mathbb{C}$ given by $\tau_a T(u) = T(u-a)$, that is
\[
\tau_a T^{(r)} = \delta_{r0} + \sum_{s=1}^{r} T^{(s)} \left(\frac{r-1}{r-s} \right) a^{r-s}
\]
this yields a one–parameter family of evaluation homomorphisms $ev_a = ev \circ \tau_a$ given by
\[
ev_a(t_{ij}^{(r)}) = \delta_{r0}\delta_{ij} + E_{ij}a^{r-1}
\]
(5.10)

5.13. **Hopf algebra structure.** $Y(gl_n)$ is a Hopf algebra with coproduct
\[
\Delta(t_{ij}(u)) = \sum_{k=1}^{n} t_{ik}(u) \otimes t_{kj}(u)
\]
For any $m \geq 2$, let $\Delta^{(m)} : Y(gl_n) \to Y(gl_n)^{\otimes m}$ denote the corresponding iterated coproduct. Then,
\[
\Delta^{(m)}(t_{ij}^{(2)}) = \sum_{p=1}^{m} (t_{ij}^{(2)})_p + \sum_{1 \leq k \leq n \atop 1 \leq p < q \leq m} (E_{ik})_p (E_{kj})_q
\]
(5.11)
where $X_p = 1^{\otimes (p-1)} \otimes X \otimes 1^{\otimes (m-p)}$.

5.14. **Evaluation modules.** For any $\underline{a} = (a_1, \ldots, a_m) \in \mathbb{C}^m$ define $ev_{\underline{a}} : Y(gl_n) \to Ugl_n^{\otimes m}$ by
\[
ev_{\underline{a}} = ev_{a_1} \otimes \cdots \otimes ev_{a_m} \circ \Delta^{(m)}
\]

Proposition. The image of the trigonometric Casimir connection of gl_n under the homomorphism $ev_{\underline{a}}$ is the $Ugl_n^{\otimes m}$–valued connection given by
\[
\nabla_{\underline{a}} = d - \sum_{i<j} \frac{d(\theta_i - \theta_j)}{e^{\theta_i - \theta_j} - 1} \Delta^{(m)}(\kappa_{\theta_i - \theta_j}) - \sum_{i=1}^{n} d\theta_i D_{i,\underline{a}}
\]
where
\[
D_{i,\underline{a}} = 2 \sum_{p=1}^{m} a_p (E_{ii})_p + 2 \sum_{1 \leq j \leq n \atop 1 \leq p < q \leq m} (E_{ij})_p (E_{ji})_q - \sum_{j<i} \Delta^{(m)}(\kappa_{\theta_j - \theta_i}) - \Delta^{(m)}(E_{ii}^2)
\]

Proof. By construction $D_{i,\underline{a}} = ev_{\underline{a}}(D_i)$ and is given by the above expression by [5.5], [5.11] and [5.10].
5.15. The trigonometric dynamical differential equations for \mathfrak{gl}_n. In [TV], Tarasov and Varchenko considered differential operators D_1, \ldots, D_n in the variables $z_1, \ldots, z_n \in \mathbb{C}^n$ with coefficients in $U \mathfrak{g}_n \otimes^m$ given by

$$D_i = z_i \partial_{z_i} + \lambda L_i(a, z)$$

where $\lambda \in \mathbb{C}$, $a = (a_1, \ldots, a_m) \in \mathbb{C}^m$, $z = (z_1, \ldots, z_n)$ and

$$L_i(a, z) = \frac{\Delta^{(m)}(E_{ii})^2}{2} - \sum_{p=1}^{m} a_p(E_{ii})_p - \sum_{1 \leq j \leq n, \ 1 \leq p < q \leq m} \frac{z_j}{z_i - z_j} \Delta^{(m)}(E_{ij}E_{ji} - E_{ii})$$

Set $z_i = e^{\theta_i}$ so that $z_i \partial_{z_i} = \theta_i$ and

$$\frac{z_j}{z_i - z_j} = \frac{1}{e^{\theta_i} - \theta_j - 1} = -\left(\frac{1}{e^{\theta_j} - \theta_i - 1} + 1\right)$$

Since

$$E_{ij}E_{ji} - E_{ii} = \frac{1}{2}(\kappa_{\theta_i - \theta_j} - (E_{ii} + E_{jj}))$$

the operators D_i are the covariant derivatives for the connection

$$\nabla'_a = d - \frac{\lambda}{2} \left(\sum_{i<j} \frac{d(\theta_i - \theta_j)}{e^{\theta_i} - \theta_j - 1} \Delta^{(m)}(\kappa_{\theta_i - \theta_j} - (E_{ii} + E_{jj})) + \sum_{i=1}^{n} d\theta_i D'_{i,a} \right)$$

where

$$D'_{i,a} = -\Delta^{(m)}(E_{ii})^2 + 2 \sum_{p=1}^{m} a_p(E_{ii})_p + 2 \sum_{1 \leq j \leq n, \ 1 \leq p < q \leq m} (E_{ij})_p(E_{ji})_q - \sum_{j<i} \Delta^{(m)}(\kappa_{\theta_j - \theta_i} - (E_{ii} + E_{jj}))$$

By Proposition 5.14, ∇'_a is the image of the trigonometric Casimir connection for \mathfrak{gl}_n under the homomorphism $\text{ev}_a : Y(\mathfrak{gl}_n) \rightarrow (U \mathfrak{g}_n) \otimes^m$ plus the \mathfrak{h}-valued, closed one-form

$$\frac{\lambda}{2} \Delta^{(m)} \left(\sum_{i<j} \frac{d(\theta_i - \theta_j)}{e^{\theta_i} - \theta_j - 1} (E_{ii} + E_{jj}) - \sum_{i} d\theta_i \sum_{j<i} (E_{ii} + E_{jj}) \right)$$

⁵ when the latter is scaled by a factor of $\lambda/2$, as in Remark [8].
6. Bispectrality

We show in this section that the trigonometric Casimir connection with values in a tensor product of \(Y(\mathfrak{g}) \)-modules commutes with the \(q \)-KZ difference equations of Frenkel–Reshetikhin determined by the rational \(R \)-matrix of \(Y(\mathfrak{g}) \). This was checked by Tarasov–Varchenko for \(\mathfrak{g} = \mathfrak{gl}_n \) in the case where all representations are evaluation modules \([TV]\).

6.1. Hopf algebra structure \([Dr1]\). If \(\mathfrak{g} \) is simple, \(Y(\mathfrak{g}) \) is a Hopf algebra with coproduct \(\Delta : Y(\mathfrak{g}) \to Y(\mathfrak{g}) \otimes Y(\mathfrak{g}) \) given on generators by

\[
\Delta(x) = x \otimes 1 + 1 \otimes x
\]

\[
\Delta(J(x)) = J(x) \otimes 1 + 1 \otimes J(x) + \frac{\hbar}{2}[x \otimes 1, t]
\]

where \(t = \sum_a x_a \otimes x^a \in (\mathfrak{g} \otimes \mathfrak{g})^\mathfrak{g} \), with \(\{x_a\}, \{x^a\} \) dual bases of \(\mathfrak{g} \) with respect to the given inner product. Thus, if \(\Delta^{(n)} : Y(\mathfrak{g}) \to Y(\mathfrak{g})^{\otimes n} \) is the iterated coproduct, then

\[
\Delta^{(n)}(x) = \sum_{i=1}^{n} x^{(i)}
\]

\[
\Delta^{(n)}(J(x)) = \sum_{i=1}^{n} J(x)^{(i)} + \frac{\hbar}{2} \sum_{1 \leq i < j \leq n} [x^{(i)}, t^{ij}]
\]

where \(x^{(i)} = 1 \otimes (i-1) \otimes x \otimes 1 \otimes (n-i) \) and \(t^{ij} = \sum_{a} x_{a}^{(i)} (x^a)^{(j)} \).

6.2. Translation automorphisms \([Dr1]\). \(Y(\mathfrak{g}) \) possesses a one–parameter group of Hopf algebra automorphisms \(T_v, v \in \mathbb{C} \) given by

\[
T_v x = x \quad \text{and} \quad T_v J(x) = J(x) + vx
\]

If \(v_1, \ldots, v_n \in \mathbb{C} \), we set \(T_{v_1} \cdots T_{v_n} = T_{v_1} \otimes \cdots \otimes T_{v_n} \in \text{Aut}(Y(\mathfrak{g})^{\otimes n}) \) and

\[
\Delta_{v_1, \ldots, v_n} = T_{v_1} \cdots T_{v_n} \circ \Delta^{(n)} : Y(\mathfrak{g}) \to Y(\mathfrak{g})^{\otimes n}
\]

6.3. The universal \(R \)-matrix of \(Y(\mathfrak{g}) \) \([Dr1]\). Let \(R(u) \in Y(\mathfrak{g}) \otimes Y(\mathfrak{g})[[u^{-1}]] \) be the universal \(R \)-matrix of \(Y(\mathfrak{g}) \). \(R(u) \) satisfies

\[
\Delta \otimes \text{id}(R(u)) = R^{13}(u)R^{23}(u)
\]

\[
\text{id} \otimes \Delta(R(u)) = R^{13}(u)R^{12}(u)
\]

\[
\Delta^{21}(x) = R(u)\Delta(x)R(u)^{-1}
\]

\[
T_{v,w} R(u) = R(u + v - w)
\]

The above relations imply that \(R \) satisfies the quantum Yang–Baxter equations (QYBE) with spectral parameter

\[
R^{12}(u)R^{13}(u + v)R^{23}(v) = R^{23}(v)R^{13}(u + v)R^{12}(u)
\]

and the more general form of (6.6)

\[
R(u)(T_{v,w}\Delta(x))R(u)^{-1} = T_{v,w} \Delta^{21}(x)
\]
6.4. The rational qKZ equations [FR]. Let V_1, \ldots, V_n be $Y(g)$–modules and $d_j \in GL(V_j)$ be such that $d_i d_j R^{ij}(u) = R^{ij}(u) d_i d_j$ for any $1 \leq i < j \leq n$. Fix a step $\kappa \in \mathbb{C}^\times$, let $a_1, \ldots, a_n \in \mathbb{C}$ be distinct and define operators

$$A_i = A_i(a_1, \ldots, a_n) \in \text{End}(V_1 \otimes \cdots \otimes V_n)$$

for $i = 1, \ldots, n$ by

$$A_i = R^{i-1}(a_{i-1} - a_i - \kappa)^{-1} R^{i-2}(a_{i-2} - a_i - \kappa)^{-1} \cdots R^1(a_1 - a_i - \kappa)^{-1} \cdot d_i \cdot R^{n}(a_i - a_n) R^{n-1}(a_i - a_{n-1}) \cdots R^{i+1}(a_i - a_{i+1})$$

The (rational) qKZ equations of Frenkel–Reshetikhin are the system of difference equations $T_i f = A_i f$ where f takes values in $V_1 \otimes \cdots \otimes V_n$ and

$$T_i f(a_1, \ldots, a_n) = f(a_1, \ldots, a_{i-1}, a_i + \kappa, a_{i+1}, \ldots, a_n)$$

They are a consistent system in that $[T_i, T_j] = 0$, where $T_i = A_i^{-1} T_i$ are the covariant difference operators.

6.5.

Lemma. The following holds for any $i = 1, \ldots, n$

$$\mathcal{T}_1 \mathcal{T}_2 \cdots \mathcal{T}_i = (\tilde{A}_i)^{-1} T_1 \cdots T_i$$

where $\tilde{A}_i = \tilde{A}_i(a_1, \ldots, a_n)$ is given by

$$\tilde{A}_i = d_1 \cdots d_i \left(R^n(a_1 - a_n) \cdots R^n(a_i - a_n) \right)$$

$$\left(R^{n-1}(a_1 - a_{n-1}) \cdots R^{n-1}(a_i - a_{n-1}) \right) \cdots$$

$$\left(R^{i+1}(a_1 - a_{i+1}) \cdots R^{i+1}(a_i - a_{i+1}) \right)$$

(6.8)

Thus, $\tilde{A}_n = d_1 \cdots d_n$ and for any $i \leq n - 1$

$$\tilde{A}_i = d_1 \cdots d_i \Delta^{(i)}_{a_{i-1}, \ldots, a_{i-1}, a_i, a_i} \Delta^{(n-i)}_{a_{i+1}, a_{i+1}, \ldots, a_{i+1}, a_n, a_n} (R(a_i - a_n))$$

(6.9)

Proof. Clearly, $\mathcal{T}_1 \mathcal{T}_2 \cdots \mathcal{T}_i = (T_i \cdots T_{i-1} A_i) \cdots T_1 (A_2) A_1)^{-1} T_1 \cdots T_i$

and, for any $j \leq i$,

$$T_1 \cdots T_{j-1} (A_j) = (R^{i-1})^{-1}(R^{i-2})^{-1} \cdots (R^1)^{-1} \cdot d_i \cdot R^{i+n} R^{i+n-1} \cdots R^{i+1}$$

where R^{kl} is shorthand for $R^{kl}(a_k - a_l)$. The first claimed identity now follows by induction on i using the QYBE. The second follows from the relations (6.3)–(6.5) and (6.7). ■
6.6. Bispectrality. To couple the \(qKZ \) and trigonometric Casimir connection equations with values in the tensor product \(V_1 \otimes \cdots \otimes V_n \), assume that each \(V_i \) is an integrable \(g \)-module and that \(d_i \) is the \(GL(V_i) \)-valued function on the torus \(H \) given by

\[
d_i(e^u) = (e^{-u})^{(i)}
\]

(6.10)

Let also \(\nabla_{\mathfrak{g}} \) be the trigonometric Casimir connection with values in the \(\mathcal{Y}(g) \)-module \(T^{* a_1, \ldots, a_n} V_1 \otimes \cdots \otimes V_n \) and scaled by a factor of \(2\kappa \) as in Remark 3.8. Thus, \(\nabla_{\mathfrak{g}} \) is the \(\text{End}(V_1 \otimes \cdots \otimes V_n) \)-valued connection given by

\[
\nabla_{\mathfrak{g}} = d - \frac{1}{2\kappa} \Delta_{a_1, \ldots, a_n}^{(n)}(B)
\]

where

\[
B = \frac{\hbar}{2} \sum_{\alpha \in \Phi_+} \frac{e^\alpha + 1}{e^\alpha - 1} d\alpha - 2du_i J(u^i)
\]

Theorem. The \(qKZ \) operators \(T_i \) commute with the trigonometric Casimir connection \(\nabla_{\mathfrak{g}} \).

Proof. It suffices to prove that \([\nabla_{\mathfrak{g}}, T_1 \cdots T_i] = 0 \) for any \(i = 1, \ldots, n \). Since

\[
[d - (2\kappa)^{-1} \Delta_{a_1, \ldots, a_n}^{(n)}(B), (\tilde{A}_i)^{-1} T_1 \cdots T_i] (T_1 \cdots T_i)^{-1}
\]

\[
= d\tilde{A}_i^{-1} - (2\kappa)^{-1} \tilde{A}_i^{-1}(\text{id} - \text{Ad}(T_1 \cdots T_i))\Delta_{a_1, \ldots, a_n}^{(n)}(B)
\]

\[
= (2\kappa)^{-1}[\text{Ad}(T_1 \cdots T_i) - \text{id}]\Delta_{a_1, \ldots, a_n}^{(n)}(B)
\]

the claim follows from the two lemmas below.

6.7.

Lemma.

\[
(d\tilde{A}_i)\tilde{A}_i^{-1} = (2\kappa)^{-1}(\text{Ad}(T_1 \cdots T_i) - \text{id})\Delta_{a_1, \ldots, a_n}^{(n)}(B)
\]

(6.11)

Proof. By (6.8), the left–hand side of (6.11) is equal to

\[
d(d_1 \cdots d_i) (d_1 \cdots d_i)^{-1} = -\sum_{j=1}^i du_a(u^a)^{(j)}
\]

where we used (6.10). Write \(B = B_1 + B_2 \) where

\[
B_1 = \frac{\hbar}{2} \sum_{\alpha \in \Phi_+} \frac{e^\alpha + 1}{e^\alpha - 1} d\alpha - 2du_i J(u^i)
\]

\[
B_2 = -2du_i J(u^i)
\]

Since \(B_1 \) takes values in \(Ug \), \(\Delta_{a_1, \ldots, a_n}(B_1)^{(n)} \) is independent of \(a_1, \ldots, a_n \) and the right–hand side of (6.11) is equal to \((2\kappa)^{-1}(\text{Ad}(T_1 \cdots T_i) - \text{id})\Delta_{a_1, \ldots, a_n}(B_2) \).

By (6.2), for any \(x \in \mathfrak{g} \),

\[
(\text{Ad}(T_1 \cdots T_i) - \text{id})\Delta_{a_1, \ldots, a_n}(J(x)) = \sum_{j=1}^i \kappa x^{(i)}
\]
so that the right–hand side of (6.11) is equal to \(-\sum_{j=1}^{i} du_{a}(u^{a})^{(j)}\).

6.8.

Lemma.

\[[\tilde{A}_{i}, \Delta_{a_{1}, \ldots, a_{n}}^{(n)}(B)] = 0 \]

Proof. For any \(x \in Y(\mathfrak{g}) \) and \(1 \leq i \leq n \),

\[\Delta_{a_{1}, \ldots, a_{n}}^{(n)}(x) = \Delta_{a_{1}-a_{i}, \ldots, a_{i-1}-a_{i}, 0}^{(i)} \otimes \Delta_{a_{i+1}-a_{n}, \ldots, a_{n-1}-a_{n}, 0}^{(n-i)} \]

so that, by (6.9) and the fact that \(d_{1} \cdots d_{i} = \Delta^{(i)}(d_{1}) \), it suffices to prove the claimed identity for \(n = 2 \) and \(i = 1 \). We have

\[
d_{1}^{-1} [d_{1}R(a_{1} - a_{2}), \Delta_{a_{1}, a_{2}}(B)] R(a_{1} - a_{2})^{-1} = (\text{id} - \text{Ad}(d_{1}^{-1})) \Delta_{a_{1}, a_{2}}(B) + (\text{Ad}(R(a_{1} - a_{2})) - \text{id}) \Delta_{a_{1}, a_{2}}(B) \quad (6.12)
\]

Let \(u \in \mathfrak{h} \). By (6.2),

\[
(\text{id} - \text{Ad}(d_{1}^{-1})) \Delta_{a_{1}, a_{2}}(J(u)) = \frac{h}{2} (\text{id} - \text{Ad}(d_{1}^{-1}))[u^{(1)}]_{e} t
\]

and, by (6.3),

\[
(\text{Ad}(R(a_{1} - a_{2})) - \text{id}) \Delta_{a_{1}, a_{2}}(J(u)) = \frac{h}{2} [u^{(2)} - u^{(1)}]_{e} t = -h [u^{(1)}]_{e} t
\]

Thus, the right–hand side of (6.12) with \(B \) replaced by \(B_{2} = -2du_{a}J(u^{a}) \)

is equal to

\[
h du_{a}(\text{id} + \text{Ad}(d_{1}^{-1}))[u^{a(1)}]_{e} t
\]

Since \(R(a_{1} - a_{2}) \) commutes with \(\Delta_{a_{1}, a_{2}}(B_{1}) \), we have left to compute

\[
(\text{id} - \text{Ad}(d_{1}^{-1})) \Delta_{a_{1}, a_{2}}(B_{1}) = h \sum_{\alpha \in \Phi_{+}} da \frac{e^{\alpha} + 1}{e^{\alpha} - 1} (\text{id} - \text{Ad}(d_{1}^{-1})) \bar{t}_{\alpha}
\]

where \(\bar{t}_{\alpha} = x_{\alpha} \otimes x_{-\alpha} + x_{-\alpha} \otimes x_{\alpha} \), with \(x_{\pm \alpha} \in \mathfrak{g}_{\pm \alpha} \) such that \((x_{\alpha}, x_{-\alpha}) = 1 \), so that \(\Delta(\kappa_{\alpha}) = \kappa_{\alpha} \otimes 1 + \frac{1}{2} \kappa_{\alpha}. \) By (6.10),

\[
(\text{id} - \text{Ad}(d_{1}^{-1})) \bar{t}_{\alpha} = (1 - e^{\alpha})(x_{\alpha} \otimes x_{-\alpha} - e^{-\alpha} x_{-\alpha} \otimes x_{\alpha})
\]

so that, for any \(\alpha \in \Phi_{+} \) and \(u \in \mathfrak{h} \),

\[
\alpha(u) \frac{e^{\alpha} + 1}{e^{\alpha} - 1} (\text{id} - \text{Ad}(d_{1}^{-1})) \bar{t}_{\alpha}
\]

\[
= -\alpha(u) \left((e^{\alpha} + 1) x_{\alpha} \otimes x_{-\alpha} - (e^{-\alpha} + 1) x_{-\alpha} \otimes x_{\alpha}\right)
\]

\[
= -[u^{(1)}]_{e}, (\text{id} + \text{Ad}(d_{1}^{-1}))) \bar{t}_{\alpha}
\]

whence the claimed result.

Remark. The proof of Theorem 6.6 works almost verbatim for \(\mathfrak{g} = \mathfrak{gl}_{n} \) and gives the commutation of the rational \(q \)-KZ connection and trigonometric Casimir connections for \(Y(\mathfrak{g}l_{n}) \).
7. THE AFFINE KZ CONNECTION

We show in this section that the degenerate affine Hecke algebra \mathcal{H}' of W is, very roughly speaking, the ‘Weyl group’ of the Yangian $\mathcal{Y}(g)$. More precisely, we show that if V is a $\mathcal{Y}(g)$–module whose restriction to g is small, the canonical action of W on the zero weight space $V[0]$ extends to one of \mathcal{H}'. Moreover, the trigonometric Casimir connection with values in $V[0]$ coincides with Cherednik’s affine KZ connection with values in this \mathcal{H}'–module.

7.1. The degenerate affine Hecke algebra. Let K be the vector space of W–invariant functions $\Phi \to \mathbb{C}$ and denote the natural linear coordinates on K by $k_\alpha, \alpha \in \Phi/W$. Recall [Lu] that the degenerate affine Hecke algebra \mathcal{H}' associated to W is the algebra over $\mathbb{C}[K]$ generated by the group algebra $\mathbb{C}W$ and the symmetric algebra $S\mathfrak{h}$ subject to the relations

$$s_i x_u - x_{s_i(u)} s_i = k_\alpha \alpha_i(u)$$

(7.1)

for any simple reflection $s_i \in W$ and linear generator $x_u, u \in \mathfrak{h}$, of $S\mathfrak{h}$.

7.2. The affine KZ connection. The AKZ connection is the trigonometric, \mathcal{H}'–valued connection given by

$$\nabla = d - \sum_{\alpha \in \Phi_+} \frac{d\alpha}{e^{\alpha} - 1} k_\alpha s_\alpha - du_i x_u$$

(7.2)

where $\{u_i\}, \{u^i\}$ are dual bases of $\mathfrak{h}^*, \mathfrak{h}$ respectively. This connection was defined by Cherednik in [Ch1, Ch2] and proved to be flat and W–equivariant. This may also be obtained as a consequence of Theorem 2.23. Indeed, the relations (7.1), with $t_\alpha = k_\alpha s_\alpha$ are easily verified and, as pointed out by Cherednik, the remaining relations are precisely those defining \mathcal{H}'.

Remark. The δ–form (2.7) of the AKZ connection corresponds to Drinfeld’s presentation of \mathcal{H}' in terms of $\mathbb{C}W$ and non–commuting elements y_u which transform like the reflection representation of W (see [Dr3] and [RS]). Indeed, it is given by

$$\nabla = d - \frac{1}{2} \sum_{\alpha \in \Phi_+} \frac{e^{\alpha} - 1}{e^{\alpha} - 1} d\alpha k_\alpha s_\alpha - du_i y_u$$

where the elements y_u are defined by (2.6) as

$$y_u = x_u - \frac{1}{2} \sum_{\alpha \in \Phi_+} \alpha(u) k_\alpha s_\alpha$$

(7.3)

and therefore satisfy $s_i y_u s_i = y_{s_i(u)}$ by Proposition 2.22.

6I owe this observation to Pavel Etingof.
7.3. **W-action on zero weight spaces of g-modules.** Let G be the complex, simply-connected Lie group with Lie algebra \mathfrak{g}, H the maximal torus with Lie algebra \mathfrak{h} and $N(H) \subset G$ its normaliser. If V is an integrable \mathfrak{g}-module, the action of $N(H)$ on V permutes the weight spaces compatibly with the action of $N(H)$ on H. In particular, it acts on the zero weight space $V[0]$ and this action factors through $W = N(H)/H$.

7.4. **Small g-modules.** Recall that a \mathfrak{g}-module V is small if 2α is not a weight of V for any root α. If V is a small \mathfrak{g}-module with a non-trivial zero weight space $V[0]$, the restriction to $V[0]$ of the square e_α^2 of a raising operator maps to the weight space $V[2\alpha]$ and is therefore zero. This implies the following result [11.2, Prop. 9.1]

Lemma. If V is an integrable, small \mathfrak{g}-module, the following holds on the zero weight space $V[0]$

$$\kappa_\alpha = (\alpha, \alpha)(1 - s_\alpha)$$

where the right-hand side refers to the action of the reflection $s_\alpha \in W$ on $V[0]$.

7.5. Let \mathcal{H}'_h be the degenerate affine Hecke algebra of W with parameters

$$k_\alpha = -h(\alpha, \alpha)$$

(7.4)

Theorem. Let V be a finite-dimensional $Y(\mathfrak{g})$-module whose restriction to \mathfrak{g} is small.

1. The canonical W-action on the zero weight space $V[0]$ together with either of the equivalent assignments

$$x_u \to -2T(u)_1 + \frac{1}{2} \sum_{\alpha \in \Phi_+} k_\alpha \alpha(u)$$

$$y_u \to -2J(u)$$

(7.5)

yield an action of \mathcal{H}'_h on $V[0]$.

2. The trigonometric Casimir connection of \mathfrak{g} with values in $\text{End}(V[0])$ is equal to the sum of the AKZ connection with values in the \mathcal{H}'_h-module $V[0]$ and the scalar valued one-form

$$A = \frac{1}{2} \sum_{\alpha \in \Phi} k_\alpha \frac{d\alpha}{e^\alpha - 1}$$

(7.7)

Proof. The trigonometric Casimir connection with values in $\text{End}(V[0])$ reads, by Lemma 7.4

$$\nabla = d - h \sum_{\alpha \in \Phi_+} \frac{d\alpha}{e^\alpha - 1} (\alpha, \alpha)(1 - s_\alpha) + 2du_i T(u^i)_1$$

$$= d - \sum_{\alpha \in \Phi_+} \frac{d\alpha}{e^\alpha - 1} k_\alpha s_\alpha + 2du_i T(u^i)_1 + \sum_{\alpha \in \Phi_+} k_\alpha \frac{d\alpha}{e^\alpha - 1}$$
where the weights k_α are given by (7.4). By (2.4)
\[
\sum_{\alpha \in \Phi} (\alpha, \alpha) \frac{d\alpha}{e^{\alpha} - 1} = 2 \sum_{\alpha \in \Phi_+} (\alpha, \alpha) \frac{d\alpha}{e^{\alpha} - 1} + \sum_{\alpha \in \Phi_+} (\alpha, \alpha) d\alpha
\]
so that if A is given by (7.7), then
\[
\nabla - A = d - \sum_{\alpha \in \Phi_+} k_\alpha \frac{d\alpha}{e^{\alpha} - 1} s_\alpha + du_i \left(2T(u^i)_1 - \frac{1}{2} \sum_{\alpha \in \Phi_+} k_\alpha \alpha(u^i) \right)
\]
Applying Proposition 2.22 to $\nabla - A$ which is W–equivariant since ∇ and A are, shows that the map (7.5) gives an action of H' on $V[0]$. This proves (1) and (2). The equivalence of (7.5) and (7.6) follows easily from §3.3 and (7.3). ■

Remark. Theorem 7.5 extends to the trigonometric setting the relation between the rational Casimir and KZ connections proved in [TL2, Prop. 9.1].

7.6. The adjoint representation. Drinfeld proved that, for any simple \mathfrak{g}, the direct sum $\overline{\mathfrak{g}} = \mathfrak{g} \oplus \mathbb{C}$ of the adjoint and trivial representations of \mathfrak{g} admits an extension to an action of $Y(\mathfrak{g})$ on $\overline{\mathfrak{g}}$ [Dr2, Thm. 8]. It is easy to check that the corresponding action of H'_h on $\overline{\mathfrak{g}}[0] = \mathfrak{h} \oplus \mathbb{C}$ given by Theorem 7.5 coincides with its action on affine linear functions on \mathfrak{h}^* given by rational Dunkl operators (see, e.g. [Kr]).

7.7. The case of \mathfrak{sl}_n. Let $\mathfrak{g} = \mathfrak{sl}_n$ and $V = \mathbb{C}^n$ its vector representation. A simple inspection shows that $V^{\otimes n}$ is a small [Re2]. The zero weight space $V^{\otimes n}[0]$ possesses two actions of the symmetric group: one arising from the Weyl group action of \mathfrak{S}_n, the other from the permutation of the tensor factors, under which it identifies with the group algebra $\mathbb{C}\mathfrak{S}_n$.

The \mathfrak{sl}_n–module $V^{\otimes n}$ may be endowed with an action of $Y(\mathfrak{g})$ depending on $a_1, \ldots, a_n \in \mathbb{C}$ obtained by composing the coproduct $\Delta^{(n)} : Y(\mathfrak{g}) \to Y(\mathfrak{g})^{\otimes n}$ with the evaluation homomorphisms $ev_{a_i} : Y(\mathfrak{g}) \to U\mathfrak{g}$. It is easy to check that the action of H'_h on $V^{\otimes n}[0]$ given by Theorem 7.5 coincides with that on the induced representation $\text{ind}_{\mathfrak{g}_n}\mathbb{C}_{a_1,\ldots,a_n}$.

8. Appendix: Tits extensions of affine Weyl groups

In this appendix, we review the definition of the Tits extension \tilde{W} of a Weyl group W. We then define the reduced Tits extension \tilde{W}_red of W and show that, when W is an affine Weyl group, \tilde{W}_red is isomorphic to the semi–direct product of the Tits extension of the finite Weyl group underlying W by the corresponding coroot lattice (Theorem 8.10).
8.1. Weyl groups and braid groups. Let \(A = (a_{ij})_{i,j \in I} \) be a generalised Cartan matrix and \((\mathfrak{h}, \Delta, \Delta^\vee)\) its unique realisation. Thus, \(\mathfrak{h} \) is a complex vector space of dimension \(2|I| - \text{rank}(A) \), \(\Delta = \{ \alpha_i \}_{i \in I} \subset \mathfrak{h}^* \) and \(\Delta^\vee = \{ \alpha_i^\vee \}_{i \in I} \subset \mathfrak{h} \) are linearly independent sets and
\[
\langle \alpha_i^\vee, \alpha_j \rangle = a_{ij}
\]
Recall that the Weyl group \(W = W(A) \) attached to \(A \) is the subgroup of \(GL(\mathfrak{h}^*) \) generated by the reflections \([3.7]\)
\[
s_i(\lambda) = \lambda - \langle \lambda, \alpha_i^\vee \rangle \alpha_i
\]
or, equivalently, the subgroup of \(GL(\mathfrak{h}) \) generated by the dual reflections
\[
s_i^\vee(t) = t - \langle t, \alpha_i \rangle \alpha_i^\vee
\]
By \([3.13]\), the defining relations of \(W \) are
\[
s_i^2 = 1
\]
\[
(s_is_j)^{m_{ij}} = 1
\]
where for any \(i \neq j \), \(m_{ij} \) is equal to 2, 3, 4, 6 or \(\infty \) according to whether \(a_{ij}a_{ji} \) is equal to 0, 1, 2, 3 or \(\geq 4 \).

The braid group \(B = B(A) \) attached to \(A \) is the group with generators \(S_i, i \in I \) and relations
\[
\underbrace{S_iS_j\cdots}_{m_{ij}} = \underbrace{S_jS_i\cdots}_{m_{ij}}
\]
for any \(i \neq j \).

8.2. Tits extensions of Weyl groups.

Definition \((\text{Ti})\). The Tits extension of \(W \) is the group \(\tilde{W} \) with generators \(\tilde{s}_i, i \in I \) and relations
\[
\underbrace{\tilde{s}_i\tilde{s}_j\cdots}_{m_{ij}} = \underbrace{\tilde{s}_j\tilde{s}_i\cdots}_{m_{ij}}
\]
(8.1)
\[
\tilde{s}_i^4 = 1
\]
(8.2)
\[
\tilde{s}_i^2\tilde{s}_j^2 = \tilde{s}_j^2\tilde{s}_i^2
\]
(8.3)
\[
\tilde{s}_i^2\tilde{s}_j^2\tilde{s}_i^{-1} = \tilde{s}_j^2(\tilde{s}_i^2)^{-a_{ji}}
\]
(8.4)

8.3. Let \(\mathfrak{g} = \mathfrak{g}(A) \) be the Kac–Moody algebra corresponding to the Cartan matrix \(A \) with generators \(t \in \mathfrak{h} \) and \(e_i, f_i, i \in I \). Recall that a representation of \(\mathfrak{g} \) is integrable if \(\mathfrak{h} \subset \mathfrak{g} \) acts semi–simply with finite–dimensional eigenspaces and \(e_i, f_i \) act locally nilpotently. The next two results explain the relevance and structure of the Tits extension \(\tilde{W} \).

Proposition. Let \(V \) be an integrable representation of \(\mathfrak{g} \). Then, the triple exponentials
\[
r_i = \exp(e_i) \exp(-f_i) \exp(e_i)
\]
are well–defined elements of $GL(V)$ and the assignment $\tilde{s}_i \to r_i$ yields a representation of \tilde{W} on V mapping \tilde{s}_i^2 to $\exp(\pi\sqrt{-1}\alpha_i^\vee)$.

Proof. The r_i are clearly well defined and satisfy

$$r_i \cdot t \cdot r_i^{-1} = s_i^\vee(t)$$

for any $t \in h$ and $r_i^2 = \exp(\pi\sqrt{-1}\alpha_i^\vee)$ \cite[3.8]{K}, from which (8.2)–(8.4) readily follow. Let now $i \neq j$ be such that $m_{ij} < \infty$. Then, the Lie subalgebra g_{ij} of g generated by e_i, f_i, α_i^\vee and e_j, f_j, α_j^\vee is finite–dimensional and semi–simple and V integrates to a representation of the complex, connected and simply–connected Lie group G_{ij} with Lie algebra g_{ij}. By \cite{T}, r_i and r_j satisfy the braid relations (8.1) when regarded as elements of G_{ij}, and these therefore hold in $GL(V)$.

8.4. Let $Q^\vee \subset \mathfrak{h}$ be the lattice spanned by the coroots $\alpha_i^\vee, i \in I$.

Proposition (\cite{T}). \widetilde{W} is an extension of W by the abelian group Z generated by the elements \tilde{s}_i^2. Z is isomorphic, as W–module to $Q^\vee/2Q^\vee \cong \mathbb{Z}_2^{|I|}$.

Proof. Let $K \supset Z$ the kernel of the canonical projection $\widetilde{W} \to W$. By (8.4), Z is a normal subgroup of \widetilde{W} and \widetilde{W}/Z is generated by the images \tilde{s}_i of \tilde{s}_i which, in addition to the braid relations (8.1), satisfy $\tilde{s}_i^2 = 1$. Thus, \widetilde{W}/Z is a quotient of W, $K = Z$ and $\widetilde{W}/Z \cong W$. Note next that, by (8.2)–(8.4), the assignment $\alpha_i^\vee \to \tilde{s}_i^2$, \tilde{s}_i^2 extends to a W–equivariant surjection $Q^\vee/2Q^\vee \to Z$. To prove that this is an isomorphism it suffices to exhibit, for any $i \in I$ a \mathbb{Z}_2–valued character χ_i of Z such that $\chi_i(\tilde{s}_i^2) = (-1)^{\delta_{ij}}$. Let λ_i be the ith fundamental weight of g, so that $\langle \lambda_i, \alpha_j^\vee \rangle = \delta_{ij}$, V_i the irreducible g–module with highest weight λ_i and $v_i \in V_i$ a nonzero highest weight vector. V_i is integrable and since $r_i^2 = \exp(\sqrt{-1}\pi\alpha_i^\vee)$, we have $r_i^2 v_i = (-1)^{\delta_{ij}} v_i$.

8.5. **Reduced Tits extensions.** For any $v = \sum_i m_i \alpha_i^\vee \in Q^\vee$, set

$$\tilde{s}_v^2 = \prod_i (\tilde{s}_i^2)^{m_i} \in Z$$

so that for any $w \in W$ and lift $\tilde{w} \in \widetilde{W}$, $\tilde{w}s_v^2\tilde{w}^{-1} = \tilde{s}_v^2$. By \cite[Prop. 1.6]{K}, the center c of g is equal to

$$c = \{ t \in h | \langle t, \alpha_i \rangle = 0 \text{ for any } i \in I \}$$

(8.5)

The Weyl group operates trivially on $c \subset \mathfrak{h}$ and it follows from (8.4) that the subgroup $Z_c \subset Z$ generated by the elements \tilde{s}_v^2, with $v \in c \cap Q^\vee$ lies in the centre of \widetilde{W}.

Definition. The reduced Tits extension $\widetilde{W}^{\text{red}}$ of W is the quotient $\widetilde{W}^{\text{red}} = \widetilde{W}/Z_c$.

\footnote{Tits’ argument is reproduced in the proof of (i) of Proposition 8.9}
By Proposition 8.4, \(\widetilde{W}^{\text{red}} \) is an extension of \(W \) by \(Q^\vee/(2Q^\vee + \mathfrak{c} \cap Q^\vee) \cong \mathbb{Z}_2^{\operatorname{rank}(A)} \).

8.6. Reduced Tits extensions of affine Weyl groups.

Assume henceforth that \(A = (a_{ij})_{0 \leq i,j \leq n} \) is an affine Cartan matrix of untwisted type. Altering our notations, we denote by \(\mathfrak{g} \) the underlying complex, semi–simple Lie algebra and by \(\mathfrak{h} \), \(\{\alpha_i\}_{i=1}^n \), \(\{\alpha_i^\vee\}_{i=1}^n \), \(W \) and \(Q^\vee \) its Cartan subalgebra, simple roots, simple coroots, Weyl group and coroot lattice respectively. Thus, for any \(1 \leq i,j \leq n \),

\[
a_{ij} = \langle \alpha_i^\vee, \alpha_j \rangle, \quad a_{0j} = -\langle \theta^\vee, \alpha_j \rangle \quad \text{and} \quad a_{j0} = -\langle \alpha_j^\vee, \theta \rangle
\]

where \(\theta \in \mathfrak{h}^* \) is the highest root of \(\mathfrak{g} \). It is well known that the (affine) Weyl group \(W_a \) attached to \(A \) is isomorphic to the semi–direct product \(W \ltimes Q^\vee \) [Kac prop. 6.5]. The isomorphism is given by mapping \(s_i \) to \((s_i, 0)\) for \(i \geq 1 \) and \(s_0 \) to \((s_0, -\theta^\vee)\).

The subspace \(\mathfrak{c} \) defined by (8.5) is spanned by the element

\[
K = \alpha_0^\vee + \sum_{i=1}^n m_i \alpha_i^\vee
\]

where the \(m_i \) are the positive integers such that \(\theta^\vee = \sum_{i=1}^n m_i \alpha_i^\vee \) [Kac Prop. 6.2]. It follows that the reduced Tits extension \(\widetilde{W}_a \) of \(W_a \) is the quotient of \(\widetilde{W}_a \) by the relation

\[
\frac{-s_0}{s_0^2} \cdot \prod_{i=1}^n \frac{s_i}{s_i^2} = 1
\]

8.7. Loop groups.

The structure of the reduced Tits extension of \(W_a \) will be determined in [8.7]–[8.10] by embedding \(\widetilde{W}_a \) into the loop group corresponding to \(\mathfrak{g} \).

Let \(L_\mathfrak{g} = \mathfrak{g}[z, z^{-1}] \) be the loop algebra of \(\mathfrak{g} \) and \(d \) the derivation of \(L_\mathfrak{g} \) defined by \(dx(m) = mx(m) \), where \(x(m) = x \otimes z^m \). Then, \(L_\mathfrak{g} \ltimes \mathbb{C}d \) is the quotient of the Kac–Moody algebra corresponding to \(A \) by the central element \(K \) defined above. Let \(G \) be the complex, connected and simply connected Lie group with Lie algebra \(\mathfrak{g} \) and \(LG = G(\mathbb{C}[z, z^{-1}]) \) the group of polynomial loops into \(G \). Let \(H \subset G \) be the maximal torus with Lie algebra \(\mathfrak{h} \). The group \(\mathbb{C}^* \) acts on \(LG \) by reparametrisation fixing \(G \supset H \) and \(H \times \mathbb{C}^* \) is a maximal abelian subgroup of the semi–direct product \(LG \ltimes \mathbb{C}^* \). By [PS], Prop. 5.2, the normaliser of \(H \times \mathbb{C}^* \) in \(LG \ltimes \mathbb{C}^* \) is equal to \((N(H) \ltimes H^\vee) \times \mathbb{C}^* \) where \(N(H) \) is the normaliser of \(H \) in \(G \) and \(H^\vee = \operatorname{Hom}_\mathbb{Z}(\mathbb{C}^*, H) \subset LG \) is isomorphic to the coroot lattice \(Q^\vee \) by

\[
\lambda \in Q^\vee \rightarrow \left(z \rightarrow z^\lambda = \exp_H(-\ln(z)\lambda) \right)
\]

The quotient \(N(H \times \mathbb{C}^*)/H \times \mathbb{C}^* \) is therefore isomorphic to the affine Weyl group \(W_a = W \ltimes H^\vee \).
8.8. For each real root $\tilde{\alpha} = (\alpha,n)$ of LG, the subalgebra \mathfrak{sl}_2^α of Lg spanned by

$$e_\tilde{\alpha} = e_\alpha(n), \quad f_\tilde{\alpha} = f_\alpha(-n) \quad \text{and} \quad h_\alpha$$

is the Lie algebra of a closed subgroup of LG isomorphic to $SL_2(\mathbb{C})$. This is obvious if $n = 0$ and follows in the general case from the fact that $\mathfrak{sl}_2^{(\alpha,n)}$ is conjugate to $\mathfrak{sl}_2^{(\alpha,0)}$. Indeed, any element γ_λ of the coweight lattice $\text{Hom}(\mathbb{C}^*, H/Z) \subset L(G/Z)$ induces by conjugation an automorphism of LG such that

$$\text{Ad}(\gamma_\lambda)e_\alpha(n) = e_\alpha(n - \langle \lambda, \alpha \rangle) \quad \text{and} \quad \text{Ad}(\gamma_\lambda)f_\alpha(n) = f_\alpha(n + \langle \lambda, \alpha \rangle)$$

8.9. Let now $\alpha_i = (\alpha_i,0)$, $i = 1 \ldots n$ and $\alpha_0 = (-\theta,1)$ be the simple roots of LG. For each $i = 0 \ldots n$, let $SL_2(\mathbb{C}) \cong G_i \subset LG$ be the corresponding subgroup, $H_i \subset G_i$ its torus and N_i the normaliser of H_i in G_i. Note that any element of $N_i \setminus H_i$ is of the form

$$\exp(e_i)\exp(-f_i)\exp(e_i) = \exp(-f_i)\exp(e_i)\exp(-f_i)$$

for some choice of root vectors $e_i \in (Lg)_{\alpha_i}, f_i \in (Lg)_{-\alpha_i}$ such that $[e_i,f_i] = \alpha_i^\vee$ if $i \geq 1$ and $-\theta^\vee$ if $i = 0$.

Let B_a be the (affine) braid group corresponding to A and S_0, S_1, \ldots, S_n its generators.

Proposition.

1. For any choice of $\sigma_i \in N_i \setminus H_i$, $i = 0 \ldots n$, the assignment $S_i \mapsto \sigma_i$ extends uniquely to a homomorphism $\sigma : B_a \rightarrow N(H) \times H^\vee$.

2. σ factors through an isomorphism of the reduced Tits extension \tilde{W}_a^red onto its image in $N(H) \times H^\vee$.

3. If $\sigma, \sigma' : \tilde{W}_a^\text{red} \rightarrow N(H) \times H^\vee$ are the homomorphisms corresponding to the choices $\{\sigma_i\}$ and $\{\sigma'_i\}$ respectively, there exists $t \in H \times \mathbb{C}^*$ such that, for any $\tilde{s} \in \tilde{W}_a^\text{red}$, $\sigma(\tilde{s}) = t\sigma'(\tilde{s})t^{-1}$.

Proof. (1) the following argument is due to Tits [11]. Let $i \neq j$ be such that m_{ij} is finite and set $s_{ij} = s_is_j \cdots \in W_a$ and $\sigma_{ij} = \sigma_i\sigma_j \cdots \in N(H) \times H^\vee$ where each product has $m_{ij} - 1$ factors. The braid relations in W_a may be written as $s_{ij}s_{j'} = s_{j}s_{ij}$ where $j' = j$ or i according to whether m_{ij} is even or odd. Thus, $s_{ij}^{-1}s_{ij} = s_{j}$ and therefore,

$$\Delta_{ij} = \sigma_j^{-1}\sigma_{ij}^{-1}\sigma_j\sigma_{ij} \in H \cap \left(\sigma_{j'}^{-1}\sigma_{ij}^{-1}N_j\sigma_{ij}\right) = H \cap \sigma_j^{-1}N_{j'} = H_{j'}$$

Repeating the argument with i and j permuted, we find that $\Delta_{ji} \in H_{i'}$ with $i' = i$ or j according to whether m_{ij} is even or odd. Thus, $\Delta_{ij} = \Delta_{ji}^{-1} \in H_{i'} \cap H_{j'} = \{1\}$ where the latter assertion follows by follows from the simple connectedness of G.

(2) The σ_i satisfy (8.2)–(8.4) and (8.6) since, for any $x_j \in N_j \setminus H_j$, $x_j^2 = \exp(i\pi\alpha_j^\vee)$ for $j \geq 1$ and $x_0^2 = \exp(-i\pi\theta^\vee)$. Thus σ descends to W_a^{red}.

Since the diagram
\[\tilde{W}_a^{\text{red}} \to N(H) \rtimes H^\vee \to W_a \]
is commutative, the kernel of \(\sigma \) is contained in \(Z/Z_c \cong \mathbb{Z}_2^n \) and is therefore trivial since, due to the simple-connectedness of \(G \), the subgroup of \(G \) generated by \(\sigma_j^2 = \exp(\pi i \alpha_j^\vee) \), \(j = 1 \ldots n \) is isomorphic to \(\mathbb{Z}_2^n \).

(3) For \(i = 1, \ldots, n \), let \(t_i \in H_i \) be such that \(\sigma_i = t_i \sigma_i' \) and choose \(c_i \in \mathbb{C} \) such that \(\exp(c_i h_{\alpha_i}) \). Since \(s_i \lambda_j^\vee = \lambda_j^\vee - \delta_{ij} \alpha_i^\vee \), where the \(\lambda_j^\vee \in \mathfrak{h} \) are the fundamental coweights of \(\mathfrak{g} \), we find, with \(\tilde{t} = \exp(\sum_{j=1}^n c_j \lambda_j^\vee) \in H \),
\[\tilde{t} \cdot \sigma_i' \cdot \tilde{t}^{-1} \exp(c_i h_{\alpha_i}) \cdot \sigma_i' = \sigma_i \]
Let now \(t_0 = \exp(c_0 h_{\theta}) \in H_0 \) be such that \(\sigma_0 = t_0 \sigma_0' \). Since for any \(x \in \mathbb{C} \),
\[\exp(x d) \sigma_0' \exp(-x d) = \exp(-x h_{\theta}) \sigma_0' \]
we find, with \(y = \sum_j c_j \langle \lambda_j^\vee, \theta \rangle - c_0 \), that
\[\tilde{t} \exp(yd) \sigma_0' \exp(-yd) \tilde{t}^{-1} = \exp((-y + \sum_j c_j \langle \lambda_j^\vee, \theta \rangle) h_{\theta}) \sigma_0' = \sigma_0 \]
so that \(t = \tilde{t} \exp(yd) \) is the required element.

8.10. The following is the main result of this appendix.

Theorem. The inclusion \(\tilde{W} \hookrightarrow \tilde{W}_a^{\text{red}} \) extends to an isomorphism \(\tilde{W} \times Q^\vee \to \tilde{W}_a^{\text{red}} \) making the following a commutative diagram
\[\begin{array}{ccc}
\tilde{W} \times Q^\vee & \longrightarrow & \tilde{W}_a^{\text{red}} \\
\downarrow & & \downarrow \\
W \times Q^\vee & \longrightarrow & W_a
\end{array} \]

Proof. We wish to construct a \(\tilde{W} \)-equivariant section \(s \) to the restriction to \(Q^\vee \) of the extension
\[1 \to Z/Z_c \to \tilde{W}_a^{\text{red}} \to W_a \to 1 \]
Identify for this purpose \(\tilde{W}_a^{\text{red}} \) with its image inside \(N(H \times \mathbb{C}^*) \cap LG \) by using Proposition [8.9]. We claim that there exists \(x \in \mathbb{C} \) such that, for any \(\lambda \in Q^\vee \), \(\exp_H(x \lambda) \cdot z^\lambda \) lies in \(\tilde{W}_a^{\text{red}} \). It is then clear that \(s(\lambda) = \exp_H(x \lambda) \cdot z^\lambda \) yields the required section.

Let \(\alpha_i^\vee \) be a short simple coroot and \(w \in W \) an element such that \(\theta^\vee = w \alpha_i^\vee \). Let \(\tilde{w} \in \tilde{W} \) be a lift of \(w \) and lift \(\theta^\vee \in Q^\vee \) to
\[\tau^{\theta^\vee} = \tilde{s}_0 \tilde{w} \tilde{s}_i \tilde{w}^{-1} \in \tilde{W}_a^{\text{red}} \]
Let \(e_\theta, f_\theta \in \mathfrak{g}_\theta, \mathfrak{g}_- \) be root vectors such that \([e_\theta, f_\theta] = \theta^\vee\) and denote by \(\rho_{\theta^\vee} : SL_2 \rightarrow G\) the embedding whose differential maps \(e, f, h \in \mathfrak{sl}_2\) to \(e_\theta, f_\theta, \theta^\vee\). We may assume \(e_\theta, f_\theta \) chosen so that \(\tilde{s}_0 \) is of the form
\[
\exp(f_\theta \otimes z) \exp(-e_\theta \otimes z^{-1}) \exp(f_\theta \otimes z) = \rho_{\theta^\vee}(\begin{pmatrix} 0 & -z^{-1} \\ z & 0 \end{pmatrix})
\]
Since \(\tilde{w} \tilde{s}_1 \tilde{w}^{-1} \in N_\theta \setminus H_\theta \) is necessarily of the form
\[
\exp(te_\theta) \exp(-t^{-1}f_\theta) \exp(te_\theta) = \rho_{\theta^\vee}(\begin{pmatrix} 0 & t \\ -t^{-1} & 0 \end{pmatrix})
\]
for some \(t \in \mathbb{C}^\ast \), we find that
\[
\tau^{\theta^\vee} = \rho_{\theta^\vee}(\begin{pmatrix} (tz)^{-1} & 0 \\ 0 & tz \end{pmatrix}) = \exp(x\theta^\vee) \cdot z^{\theta^\vee}
\]
with \(x = -\ln(t) \) which proves our claim for \(\lambda = \theta^\vee \). Let now \(w \in \tilde{W} \) with lift \(\tilde{w} \in \tilde{W} \), then
\[
\tilde{w} \tau^{\theta^\vee} \tilde{w}^{-1} = \exp(xw(\theta^\vee)) \cdot z^{w\theta^\vee}
\]
so that that \(\exp(x\alpha_i^\vee) \cdot z^{\alpha_i^\vee} \in \tilde{W}_a^{\text{red}} \) for any short coroot \(\alpha_i^\vee \). Since the short coroots span \(Q^\vee \), the claim holds for any \(\lambda \in Q^\vee \).

Since \(s(Q^\vee) \) is free abelian and \(\tilde{W} \) is finite, their intersection is trivial and the map \(\tilde{W} \times Q^\vee \rightarrow \tilde{W}_a^{\text{red}}, (\tilde{w}, \lambda) \rightarrow \tilde{w}s(\lambda) \) is injective. It is moreover surjective since \(Z/Z_c \) is generated by \(\tilde{s}_i^2, i = 1 \ldots n \) and therefore lies in \(\tilde{W} \).

8.11.

Remark. Unlike \(\tilde{W}_a^{\text{red}} \), the (non–reduced) Tits extension \(\tilde{W}_a \) of \(W_a \) is not a semi–direct product in general. For example, for \(\mathfrak{g} = \mathfrak{sl}_2 \), with affine Cartan matrix
\[
A = \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix}
\]
\(\tilde{W}_a \) is generated by \(\tilde{s}_0, \tilde{s}_1 \) with relations \(\tilde{s}_1^4 = 1 \),
\[
\tilde{s}_0 \tilde{s}_1 \tilde{s}_0^{-1} = \tilde{s}_1^2(\tilde{s}_0^2)^2 = \tilde{s}_1^2 \quad \text{and} \quad \tilde{s}_1 \tilde{s}_0 \tilde{s}_1^{-1} = \tilde{s}_0^2
\]
In particular, the group \(Z \cong \mathbb{Z}_2^2 \) generated by \(\tilde{s}_0, \tilde{s}_1^2 \) lies in the centre of \(\tilde{W}_a \). Any lift in \(\tilde{W}_a \) of the generator of \(Q^\vee \cong \mathbb{Z} \) is of the form \(\tau = z \tilde{s}_0 \tilde{s}_1 \), for some \(z \in Z \) and gives rise a \(\tilde{W} \)–equivariant section \(Q^\vee \rightarrow \tilde{W}_a \) if, and only if, \(\tilde{s}_1 \tilde{s}_0 \tilde{s}_1^{-1} = \tau^{-1} \). Since \(z = z^{-1} \) is central, such a section exists iff \(\tilde{s}_1(\tilde{s}_0 \tilde{s}_1) \tilde{s}_1^{-1} = \tilde{s}_1^{-1} \tilde{s}_0^{-1} \) and therefore iff \(\tilde{s}_1^2 \tilde{s}_0^2 = 1 \) which holds in \(\tilde{W}_a^{\text{red}} \) but not in \(\tilde{W}_a \).

Remark. The section \(Q^\vee \rightarrow \tilde{W}_a^{\text{red}} \) constructed in Theorem 8.10 does not in general coincide with that obtained from the canonical section \(Q^\vee \rightarrow B_a \) [Mc, §3.2–3.3]. For example, for \(\mathfrak{g} = \mathfrak{sl}_3 \), the canonical lift of \(\theta^\vee \in Q^\vee \) in \(B_a \) is \(T^{\theta^\vee} = S_0S_1S_2S_1 \). When regarded as an element \(\tau^{\theta^\vee} \) of \(\tilde{W}_a^{\text{red}} \), this does
not give rise to a \(\tilde{W} \)-equivariant section since \(\text{Ad}(\tilde{s}_\theta)\tau^{\theta'} \neq (\tau^{\theta'})^{-1} \) where \(\tilde{s}_\theta = \tilde{s}_1 \tilde{s}_2 \tilde{s}_1 \) is a lift in \(\tilde{W} \) of the reflection \(s_\theta \). Indeed, \(\text{Ad}(\tilde{s}_2)\tilde{s}_1^2 = \tilde{s}_1^2 \tilde{s}_2 \) in \(\tilde{W} \), so that

\[
\tilde{s}_\theta^2 = \tilde{s}_1 \text{Ad}(\tilde{s}_2)(\tilde{s}_1^2 \tilde{s}_2 \tilde{s}_1) = \tilde{s}_1^3 \tilde{s}_2 \tilde{s}_1 = 1
\]

Thus, since \(\tau^{\theta'} = \tilde{s}_0 \tilde{s}_\theta \),

\[
\text{Ad}(\tilde{s}_\theta)\tau^{\theta'} = \tilde{s}_0 \tilde{s}_\theta \quad \text{while} \quad (\tau^{\theta'})^{-1} = \tilde{s}_0 \tilde{s}_\theta^{-1}
\]

which are different elements of \(\tilde{W}_a^{\text{red}} \) by (8.6).

Acknowledgments

I am grateful to Raphaël Rouquier for pointing me towards the Yangian at the early stages of this project. I am also grateful to Sachin Gautam for spotting a gap in my initial proof of Theorem 2.5 and to the referee for a very careful reading of this manuscript. This paper was begun at the summer home of Pénélope Riboud and Romain Graziani. It is a pleasure to thank them for their warm and friendly hospitality, and their daughter Léonore for a number of inspiring comments.

References

[Br] A. Broer, The sum of generalized exponents and Chevalley’s restriction theorem for modules of covariants, Indag. Math. (N.S.) 6 (1995), 385–396.

[BK] J. Brundan, A. Kleshchev, Parabolic presentations of the Yangian \(Y(\mathfrak{gl}_n) \), Comm. Math. Phys. 254 (2005), 191–220.

[Ch1] I. Cherednik, Affine extensions of Knizhnik–Zamolodchikov equations and Lusztig’s isomorphisms, Special functions (Okayama, 1990), 63–77, ICM-90 Satell. Conf. Proc., Springer, 1991.

[Ch2] I. Cherednik, A unification of Knizhnik–Zamolodchikov and Dunkl operators via affine Hecke algebras, Invent. Math. 106 (1991), no. 2, 411–431.

[Ch3] I. Cherednik, Lectures on Knizhnik–Zamolodchikov equations and Hecke algebras, Quantum many-body problems and representation theory, 1–96, MSJ Mem., 1, Math. Soc. Japan, 1998.

[DCP] C. De Concini, C. Procesi, On the geometry of toric arrangements, Transform. Groups 10 (2005), 387–422.

[Dr1] V. G. Drinfeld, Hopf algebras and the quantum Yang–Baxter equation, Soviet Math. Dokl. 32 (1985), 254–258.

[Dr2] V. G. Drinfeld, A new realization of Yangians and of quantum affine algebras, Soviet Math. Dokl. 36 (1988), 212–216.

[Dr3] V. G. Drinfeld, Degenerate affine Hecke algebras and Yangians, Functional Anal. Appl. 20 (1986), 62–64.

[FMTV] G. Felder, Y. Markov, V. Tarasov, and A. Varchenko, Differential Equations Compatible with KZ Equations, Math. Phys. Anal. Geom. 3 (2000) 139–177.

[FR] I. B. Frenkel, N. Yu. Reshetikhin, Quantum affine algebras and holonomic difference equations, Comm. Math. Phys. 146 (1992), 1–60.

[GTL1] S. Gautam, V. Toledano Laredo, Yangians and quantum affine algebras, in preparation.

[GTL2] S. Gautam, V. Toledano Laredo, in preparation.

[Ka] V. G. Kac, Infinite–Dimensional Lie Algebras, 3rd Edition, Cambridge University Press, 1990.
A. A. Kirillov Jr., *Lectures on affine Hecke algebras and Macdonald’s conjectures*, Bull. Amer. Math. Soc. (N.S.) 34 (1997), 251–292.

A. N. Kirillov, N. Reshetikhin, *q–Weyl Group and a Multiplicative Formula for Universal R–Matrices*, Comm. Math. Phys. 134 (1990), 421–431.

T. Kohno, *Integrable connections related to Manin and Schechtman’s higher braid groups*, Illinois J. Math. 34 (1990), 476–484.

E. Looijenga, *Arrangements, KZ systems and Lie algebra homology*, Singularity theory (Liverpool, 1996), 109–130, London Math. Soc. Lecture Note Ser., 263, Cambridge Univ. Press, 1999.

G. Lusztig, *Affine Hecke algebras and their graded version*, J. Amer. Math. Soc. 2 (1989), 599–635.

I. G. Macdonald, *Affine Hecke algebras and orthogonal polynomials*, Cambridge Tracts in Mathematics, 157. Cambridge University Press, Cambridge, 2003.

A. Molev, *Yangians and classical Lie algebras*, Mathematical Surveys and Monographs, 143. American Mathematical Society, 2007.

J. J. Millson, V. Toledano Laredo, *Casimir operators and monodromy representations of generalised braid groups*, Transform. Groups 10 (2005) 217–254.

M. Nazarov, G. Olshanski, *Bethe subalgebras in twisted Yangians*, Comm. Math. Phys. 178 (1996), 483–506.

M. Nazarov, G. Olshanski, *Bethe subalgebras in twisted Yangians*, Comm. Math. Phys. 178 (1996), 483–506.

M. Reeder, *Exterior powers of the adjoint representation*, Canad. J. Math. 49 (1997), 133–159.

M. Reeder, *Zero weight spaces and the Springer correspondence*, Indag. Math. (N.S.) 9 (1998), 431–441.

A. Ram, A. Shepler, *Classification of graded Hecke algebras for complex reflection groups*, Comment. Math. Helv. 78 (2003), 308–334.

Y. S. Soibelman, *Algebra of Functions on a Compact Quantum Group and its Representations*, Leningrad Math. J. 2 (1991), 161–178.

M. Varagnolo, *Quiver varieties and Yangians*, Lett. Math. Phys. 53 (2000), 273–283.

V. Tarasov, A. Varchenko, *Dynamical differential equations compatible with rational qKZ equations*, Lett. Math. Phys. 71 (2005), 101–108.

J. Tits, *Normalisateurs de tores. I. Groupes de Coxeter étendus*, J. Algebra 4 (1966), 96–116.

V. Toledano Laredo, *A Kohno–Drinfeld theorem for quantum Weyl groups*, Duke Math. J. 112 (2002), 421–451.

V. Toledano Laredo, *Flat Connections and Quantum Groups*, Acta Appl. Math. 73 (2002), 155–173.

V. Toledano Laredo, *Quasi–Coxeter algebras, Dynkin diagram cohomology and quantum groups*, Int. Math. Res. Pap. 2008, Art. ID rpn009, 167 pp.

H. van der Lek, *Extended Artin groups*. Singularities, Part 2 (Arcata, Calif., 1981), 117–121, Proc. Sympos. Pure Math., 40, Amer. Math. Soc., 1983.

V. Toledano Laredo

Department of Mathematics, Northeastern University, 567 Lake Hall, 360 Huntington Avenue, Boston, MA 02115.

E-mail address: V.ToledanoLaredo@neu.edu