Giant Chemical and Excellent Synergistic Raman Enhancement from a 3D MoS$_{2-x}$O$_x$−Gold Nanoparticle Hybrid

Avijit Pramanik,* Ye Gao, Kaelin Gates, Salma Begum, and Paresh Chandra Ray*

Department of Chemistry and Biochemistry, Jackson State University, Jackson 39217, Mississippi, United States

ABSTRACT: Raman spectroscopy fingerprinting features many technological applications. For this purpose, the weak Raman signals need to be boosted dramatically by surface-enhanced Raman spectroscopy (SERS), which provides immense Raman enhancement via plasmonic and chemical mechanisms (CM). In this manuscript, we reveal the giant chemical as well as extremely high SERS enhancement from a three-dimensional MoS$_{2-x}$O$_x$−gold nanoparticle (GNP) hybrid, which has capability for ultrasensitive label-free sensing of chemical and biological molecules. Notably, reported data show that the chemical enhancement for the MoS$_{2-x}$O$_x$ surface is $\sim 10^5$, which is comparable with the plasmonic enhancement factor (EF) by GNP. Reported data show that the total Raman EF is $\sim 10^{13}$ from the GNP−MoS$_{2-x}$O$_x$ hybrid. Intriguingly, combined experimental and theoretical finite difference time domain stimulation modeling findings show that the synergistic effect of electromagnetic mechanism and CM is responsible for huge SERS enhancement. Experimental results demonstrate that a proposed hybrid SERS platform can be used for fingerprint sensing of different multiple drug resistance bacteria at 5 cfu/mL concentration. Importantly, the current manuscript provides a good strategy for manipulating the SERS sensitivity to 13 orders of magnitude, which is instrumental for next-generation technological applications of Raman spectroscopy.

1. INTRODUCTION

Raman spectroscopy is highly promising for fingerprint identification of chemical and biological molecules. Because of the above unique ability and multiplex detection capability, the Raman technique is highly valuable in forensics, homeland security, and medical diagnosis industry. However, because of the inherently low cross section of Raman scattering, it has not been used as an analytical tool for practical applications. In last few decades, it has been reported that extremely weak Raman signals can be dramatically enhanced by surface-enhanced Raman scattering (SERS) via plasmonic and chemical boosting mechanisms. On the other hand, chemical enhancement occurs via chemical mechanism (CM), which originated from the charge transfer between the Raman active molecule and the SERS substrate. In the last 2 decades, we and other groups have reported different types of SERS materials which are based on the noble plasmonic metal nanoparticle, where Raman intensity can be enhanced several orders of magnitude (10^6 or higher) via EM. On the other hand, for most of the reported SERS substrate, the reported chemical enhancement factor (EF) is $\sim 10^2$. Recently, the SERS substrate based on two-dimensional (2D) transition-metal dichalcogenides has been reported, where the chemical EF can be much higher than 10^5, and in this case, the laser excitation can be resonant to charge transfer and exciton transitions in an analyte 2D system. For real-life applications, an SERS probe should possess strong electromagnetic as well as strong chemical enhancement capability for providing excellent sensitivity. Herein, we report huge chemical (CM) and electromagnetic (EM) enhancements from a three-dimensional (3D) MoS$_{2-x}$O$_x$−gold nanoparticle (GNP) hybrid. Experimental data reported here indicate that the chemical EF is $\sim 10^5$ from the MoS$_{2-x}$O$_x$ surface, which is comparable with the plasmonic enhancement by GNP. Reported data demonstrated that oxygen incorporation on MoS$_2$ can effectively improve the SERS performance via a strong chemical enhancement mechanism. On the other hand, the total SERS enhancement from the GNP−MoS$_{2-x}$O$_x$ hybrid was observed to be $\sim 10^{13}$. Our experimental and theoretical finite difference time domain (FDTD) stimulation modeling shows that the synergistic effect of EM and CM is responsible for huge SERS enhancement. To demonstrate that MoS$_{2-x}$O$_x$−GNP-based ultrasensitive SERS is versatile for fingerprinting biological analysis, we have shown that an SERS platform can be used for fingerprint sensing of different...
multiple drug resistance bacteria such as carbapenem-resistant *Escherichia coli*, drug-resistant *Shigella*, and *Campylobacter*, at 5 cfu/mL concentration.

2. RESULTS AND DISCUSSION

As shown in Figure 1, we used a three-step method for the synthesis of a 3D MoS$_2$$_xO_y$–GNP hybrid. In the first step, a facile hydrothermal synthetic method was used for the synthesis of MoS$_2$ nanosheets. Experimental details have been reported in the Experimental Section. In brief, in the first step, molybdenum(VI) oxide powder, sodium sulphide (Na$_2$S), and HCl were mixed and kept into a Teflon-lined stainless steel autoclave. After that, the mixture was heated for 200 °C overnight. A black precipitate was obtained by centrifugation from the final reaction products and then the 2D MoS$_2$ was washed with distilled water and ethanol. Because it is now well-known that oxygen incorporation is the effective way to improve the SERS performance of nonmetal oxide semiconductors,20–23 in the next step, we have synthesized a 2D MoS$_2$$_xO_y$ nanosheet. For this purpose, we have developed a MoS$_2$$_xO_y$, nanosheet, via annealing of 2D MoS$_2$ at 350 °C temperature in air. In the third step, we have developed a 3D MoS$_2$$_xO_y$–GNP hybrid. For this purpose, we have used GNP as a linker between 2D MoS$_2$$_xO_y$ nanosheets to form the 3D MoS$_2$$_xO_y$–GNP hybrid, via a −Mo–S–Au− bond.

After that, we have used different electron microscopic and spectroscopic techniques6,11–16 to characterize the 3D MoS$_2$$_xO_y$–GNP hybrid as reported in Figures 2A–C and S1A–G. The elemental molar ratios of the 3D MoS$_2$$_xO_y$–GNP hybrid were determined using energy-dispersive X-ray (EDX), X-ray diffraction (XRD), and Raman data. Figure S1A reports the transmission electron microscopy (TEM) image which indicates that the size of the GNP we have synthesized is about 25 nm. Figure S1B reports the scanning electron microscopy (SEM) which shows the morphology of 2D MoS$_2$$_xO_y$ nanosheets. Figure 2A reports the SEM image which shows the morphology of the 3D MoS$_2$$_xO_y$–GNP hybrid, which indicates that a porous structure is developed with a pore diameter varying from 10 to 400 nm. Both Figures 2A and S1C show the formation of a “hot spot” by the GNP on the MoS$_2$$_xO_y$ nanosheets. Figure S1E shows the EDX data from the MoS$_2$$_xO_y$–GNP hybrid, which clearly shows the presence of Mo, S, O, and Au. Similarly, Figure S1F shows the EDX data from MoS$_2$, before annealing, which clearly shows the presence of Mo and S.

Figure S1G shows the powder XRD data from the MoS$_2$$_xO_y$–GNP hybrid, which shows the presence of (002), (100), (104), and (201) reflection for MoS$_2$,20–23 (020) reflection for MoO$_3$,16–18 and (111) and (311) reflection for GNP. Figure 2B shows the absorption spectra for GNP, 2D MoS$_2$$_xO_y$, GNP, and MoS$_2$$_xO_y$–GNP hybrid. For this purpose, we have used a GNP as a linker between 2D MoS$_2$ nanosheets to form the MoS$_2$$_xO_y$–GNP hybrid. Experimental details have been reported in the Supporting Information. The TEM image from the MoS$_2$$_xO_y$–GNP hybrid, as reported in Figure
S1D, clearly shows the aggregation of GNP on the MoS2 surface. Figure 2C shows that the Raman spectra from the 3D MoS2−xOy−GNP hybrid and MoS2−GNP hybrid clearly indicate the presence of an in-plane (E2g) Raman band at ~384 cm−1 and an out-of-plane (A1g) Raman band at ~409 cm−1, which is due to Mo=S vibration of MoS2.20−23 We have observed a (E2g) Raman band and a (A1g) Raman band for MoS2−O−GNP hybrid, as well as for MoS2−GNP hybrid. Similarly, as reported in Figure 2C, we have also observed Raman peaks at ~820 and ~996 cm−1, which are due to the Mo=O vibration.19−22 Raman peaks at ~820 and ~996 cm−1 are only observed for the MoS2−O−GNP hybrid, which has been developed after annealing of MoS2, as we have discussed previously.

Because Raman EF is most important for a Raman substrate, we have measured Raman EF using a 4-aminothiophenol (4-ATP) and Rh-6G dye. For the Raman EF measurement, we have used a portable Raman probe, where a continuous wavelength 670 nm diode-pumped solid-state laser was used as the excitation source. We have used fiber optics probe for excitation and data collection.6,11−16 Experimental details are reported in the Experimental Section. Figure 3A shows strong Raman spectra from 4-ATP (10−6 M) on MoS2−O2 surface. On the other hand, in the same condition, we have not observed any Raman peak from 4-ATP (10−6 M), when a bulk sample was used. Reported Raman data reported in Figure 3A show that dominated vibrational peaks are due to the a1 vibrational mode peaks and these are ν(CC + NH2) at ~1590 cm−1 and ν(CS) at ~1078 cm−1.6−8 As reported in Figure 3A, we have also observed Raman peaks due to b1 modes, at ~1435 cm−1 due to the CC str in Ph ring + NH2 rock, and at ~1170 cm−1 due to CH bend vibration.9−13

As reported in Figure 3A, we have observed a clear 1078 cm−1 vibrational band from ATP in the bulk and on all surfaces, and as a result, we have used 1078 cm−1 vibrational band intensity for Raman EF calculation. From the Raman spectra, we have measured the Raman EF using the following equation.10−12

\[
G = \left[\frac{I_{\text{MoS}_2\text{−O}_2}}{I_{\text{bulk}}} \right] \times \left[\frac{M_{\text{bulk}}}{M_{\text{ads}}} \right]
\]

(1)

where \(I_{\text{MoS}_2\text{−O}_2}\) is the intensity of 1078 cm−1 vibrational mode from 4-ATP on MoS2−O2 surface. Similarly, \(I_{\text{bulk}}\) is the intensity of 1078 cm−1 vibrational band in the absence of MoS2−O2 surface. \(M_{\text{bulk}}\) is the number of 4-ATP used in the bulk experiment without MoS2−O2 surface and \(M_{\text{ads}}\) is the number of 4-ATP used for the Raman experiment on MoS2−O2 surface. For bulk experiment, a Si/SiO2 wafer was used as the normal Raman reference. For Raman experiment on all different surfaces, we have assumed that the analytes were distributed uniformly on the surface. The number of molecules is calculated using a laser spot size of 40 μm. From the experimental data on MoS2−O2 surface as reported in Figure 3A, we found out that the EF is ~1.3 × 105. Because of the lack of surface plasmons in the visible light for MoS2−O2 surface, the observed huge Raman enhancement on MoS2−O2 surface can be attributed to the chemical enhancement mechanism.

The huge chemical enhancement on MoS2−O2 surface is due to the photon-induced charge transfer from the MoS2−O2 surface to the adsorbed 4-ATP molecule. As reported in Figure S2C in the Supporting Information, the GNP-adsorbed 4-ATP molecule exhibits a new absorption peak with \(\lambda_{\text{max}}\) around 670 nm. We believe that the charge-transfer resonance from the MoS2−O2 surface to the adsorbed 4-ATP molecule coupled with exciton resonance as well as with molecular resonances, and as a result, we have observed huge chemical enhancement.16−19 As we have discussed previously, a recent report indicates that oxygen incorporation can effectively improve the
SERS performance of a semiconductor.22−25 To understand better, we have also performed Raman experiment on the MoS2 surface. Reported experimental data in Figure 3A clearly indicate that Raman EF is much higher on MoS2−xOx surface than that of MoS2 surface. From the experimental data, we found out that the Raman EF for MoS2 surface is ~2.3 × 102, whereas the EF is ~1.3 × 105 for MoS2−xOx. To understand how oxygen incorporation affects Raman intensity, we have developed MoS2−xOx surface from MoS2 by annealing at different temperatures, where the x value should be higher at higher temperature. As reported in Figure 3C, experimental data show that the Raman EF increases as the annealing temperature increases, which is due to the high amount of oxygen incorporation. Reported data in Figure 3C also indicate that the Raman EF decreases above 400 °C, which is mainly due to the phase change as we have noted from the XRD study. We have measured the S and O ratio using EDX, XRD, and Raman data and we found out that the oxygen percentage increases from 4% at 200 °C to 20% at 350 °C. As reported in Figure 3C, experimental data show that the Raman EF increases with the high amount of oxygen incorporation. As reported in Figure 3B, from experimental data using Rh-6G as a bulk and on the surface, we have found out that the Raman EF for MoS2 surface is ~1.3 × 102 and the EF is ~1.8 × 104 for MoS2−xOx, which is very similar to the observed data with 4-ATP. Figure 3A indicates that the Raman EF on MoS2−xOx surface is comparable with the GNP surface. From experimental data using 4-ATP, we have found out that the Raman EF is ~2.2 × 106 for GNP, which is around an order of magnitude higher than the MoS2−xOx surface. As reported in Figure S2A in the Supporting Information, the GNP-adsorbed 4-ATP molecule exhibits a new absorption peak with λmax around 670 nm, which is due to the GNP aggregation because of the interaction between GNP and 4-ATP. Very interestingly, Raman data reported in Figure 3A,B indicate that the Raman EF is ~4.5 × 1013 for GNP−MoS2−xOx surface, which is around 8 orders of magnitude higher than the GNP surface. The observed extremely high Raman EF from GNP−MoS2−xOx surface is due to the strong electromagnetic as well as strong chemical enhancement capability, which provide excellent enhancement.

For our GNP−MoS2−xOx surface, the GNP enhances the Raman signal via EM, and on the other hand, MoS2−xOx enhances the Raman signal via a chemical enhancement mechanism. As we have reported in this manuscript, the Raman EF for only GNP is 2.2 × 106 and the same for MoS2−xOx is ~2.0 × 105, whereas the Raman EF is ~4.5 × 1013 for the GNP−MoS2−xOx surface. We observed 2 orders of magnitude higher Raman EF for GNP. The MoS2−xOx surface...
is mainly due to the formation of a ‘hot spot’ by a GNP in 3D interior and exterior surfaces, as shown in the SEM and TEM images reported in Figures 2A and S1C. To find out the origin of a synergistic enhancement mechanism, we have performed the 3D FDTD simulation to understand the ‘hot spot’-based plasmon coupling, which allows a huge EM enhancement mechanism.6,11 Calculation details are reported in the Experimental Section and also reported previously by our group.6,11 As reported in Figure 4A, FDTD simulation data show that the field enhancement for GNP aggregates in “hot spots” can be more than an order of magnitude higher than that of the individual GNP.

Because Raman EF varies with the square of field EF, we expect to increase the Raman enhancement around 2−3 orders of magnitude because of the “hot spot” formation. It is well documented that the reproducibility and stability of Raman EF are very important criteria for applications.1−5 For this purpose, we have developed a GNP−MoS2−Ox surface and only MoS2−Ox surface in different batches and then monitored the reproducibility of the Raman EF using 4-ATP. Figure 3D reports the reproducibility data for Raman EF and chemical enhancement, which indicate very good reproducibility with a relative standard deviation around 6.2%.

Next, to understand whether our 3D GNP−MoS2−Ox can be used for trace-level fingerprint sensing of multi-drug-resistant superbugs, we have used carbapenem-resistant E. coli, drug-resistant Shigella, and Campylobacter. For this purpose, we have added different superbugs such as carbapenem-resistant E. coli, drug-resistant Shigella, and Campylobacter at different concentrations (cfu/mL) to the GNP−MoS2−Ox surface. As shown in Figure 4B, drug-resistant Campylobacter bacteria are on the surface of 3D MoS2−Ox−GNP. Figure 4C,D shows strong Raman peak from carbapenem-resistant E. coli even at 5 cfu/mL level. On the other hand, we have not observed the Raman peak from carbapenem-resistant E. coli in the absence of GNP−MoS2−Ox surface, even at 3000 cfu/mL level. Although we have observed huge Raman enhancement using GNP−MoS2−Ox surface, as we have not observed any Raman peak from carbapenem-resistant E. coli in the absence of GNP−MoS2−Ox, as reported in Figure 4C, we are not able to determine the Raman EF using carbapenem-resistant E. coli. As reported in Figure 4D, in Raman spectra, we have observed in-plane (E2g) Raman and out-of-plane (A1g) Raman bands because of the MoS2−Ox surface. On the other hand, as reported in Table 1 and Figure 4D, we have observed amide I, II, and III bands, phenyl alanine, tyrosine, collagen, phospholipid, and glycosidic bands5−7,11,14−16,33,34 because of carbapenem-resistant E. coli. Raman spectra from carbapenem-resistant E. coli, drug-resistant Shigella, and Campylobacter, reported in Figure 4E and Table 1, clearly indicate that 3D GNP−MoS2−Ox can be used for fingerprint Raman detection of different superbugs. As reported in Figure 4E, phospholipid and amide-III bands are unique for carbapenem-resistant E. coli, which have not been observed for drug-resistant Shigella and Campylobacter. On the other hand, guanine, tyrosine, and adenine nucleic acid bands are more prominent for Campylobacter, which we have not been observed for carbapenem-resistant E. coli and drug-resistant Shigella. Similarly, lipid bands near 1480 cm−1 are unique for Shigella.

Table 1. Fingerprint Raman Modes Observed from Drug-Resistant E. coli, Shigella, and Campylobacter

Raman peak (cm−1) for E. coli	Raman peak (cm−1) for Shigella	Raman peak (cm−1) for Campylobacter	vibration mode
1646	1240	814	—O—P—O— for DNA
1574	1180	780	Collagen
1507	1110	747	tyrosine
1301		676	guanine

All the bands have been assigned using reported data from different microorganisms.5−7,11,14−16,33,34

4. EXPERIMENTAL SECTION

Molybdenum(VI) oxide powder, sodium sulfide (Na2S) and HCl, different solvents, and other chemicals were purchased from Sigma-Aldrich (St. Louis, MO, USA). Superbugs such as carbapenem-resistant E. coli, drug-resistant Shigella, and Campylobacter and growth media were purchased from American Type Culture Collection (ATCC, Rockville, MD).

4.1. Synthesis of the Gold Nanoparticles. Spherical-shaped gold nanoparticles (AuNPs) were synthesized according to the previous work by our group.6,11−16 For this purpose, we have used 1.25 mL of 10 mM HAuCl4 solution and 2 mL of 1% trisodium citrate dihydrate. At the end, the purified AuNPs were characterized by a microscopic technique, as reported in Figure S1A.

4.2. Synthetic Procedure of MoS2 Nanosheets. A facile hydrothermal synthetic method was adopted for the synthesis of MoS2−Ox nanosheets. In a typical experiment, 0.72 g of molybdenum(VI) oxide (MoO3) powder and 3.6 g of sodium sulfide (Na2S) were mixed gently and the mixture was transferred into a Teflon-lined stainless steel autoclave of capacity 100 mL. Then, approximately 70 mL of 0.2 N HCl chemical enhancement mechanisms, as well synergistic plasmonic enhancement mechanism. Reported data show that because of the presence of MoS2−Ox in our hybrid, the chemical EF is ~105, which is comparable with plasmonic EF by plasmonic nanoparticle. We have demonstrated that oxygen incorporation on MoS2 can effectively improve the SERS performance via a strong chemical enhancement mechanism, which is due to the photon-induced charge transfer from the MoS2−Ox surface to the adsorbed molecule. On the other hand, the total Raman EF is ~1013 from GNP−MoS2−Ox hybrid because of the synergistic effect of electromagnetic and chemical enhancement mechanisms. The reported synergistic Raman EF is mainly due to the “hot spot” formation by GNP in 3D interior and exterior surfaces. Our experimental results show that the GNP−MoS2−Ox hybrid has the capability for ultrasensitive label-free sensing of carbapenem-resistant E. coli, drug-resistant Shigella, and Campylobacter, even at 5 cfu/mL concentration level.

3. CONCLUSIONS

In conclusion, our findings reveal that the 3D MoS2−Ox−GNP hybrid provides immense Raman enhancement via giant
was added to fill the autoclave up to 75–80% of the total volume. After that, the autoclave was tightly sealed, maintained at 200 °C overnight, and then cooled to room temperature. A black precipitate was obtained by centrifugation from the final reaction products and washed successively with distilled water and ethanol several times. Finally, the semisolid MoS$_2$–O$_x$ nanosheets were dried in vacuum at 60 °C for 6 h. The pure products are characterized by SEM and other spectroscopic and microscopic techniques, as reported in Figure S1.

4.3. Synthesis of the MoS$_2$–GNP Hybrid. To synthesize AuNP-decorated MoS$_2$ nanosheets, 5.0 mL of 10 nM gold nanoparticle solution was dropped in 10 mL of 5 ppm of dispersed in freshly prepared MoS$_2$ solutions in phosphate-buffered saline (PBS) buffer and the mixture was sonicated for 2 h at room temperature. The mixture was continuously stirred at very low speed overnight at room temperature for the completion of the reaction. To remove excess regents and buffer solution, the mixed solution was washed with methanol two to three times by centrifugation at 5000 rpm for 15 min followed by decantation. Finally, the AuNP-decorated MoS$_2$ pellet was dried under vacuum at room temperature for a week. Figure S1D shows the TEM image of freshly prepared MoS$_2$–GNP hybrid.

4.4. Synthetic Procedure of MoS$_2$–O$_x$ Nanosheets. Because it is now well-known that oxygen incorporation is the effective way to improve the SERS performance of nonmetal oxide semiconductors, we have synthesized a 2D MoS$_2$–O$_x$ nanosheet. For this purpose, we have developed a MoS$_2$–O$_x$ nanosheet, via annealing of 2D MoS$_2$ at 350 °C temperature in air. The pure products are characterized by SEM and other spectroscopic and microscopic techniques, as reported in Figure S1.

4.5. Synthesis of the MoS$_2$–O$_x$–GNP Hybrid. To synthesize AuNP-decorated MoS$_2$–O$_x$ nanosheets, 5.0 mL of 10 nM gold nanoparticle solution was dropped in 10 mL of 5 ppm of dispersed in freshly prepared MoS$_2$–O$_x$ solutions in PBS buffer and the mixture was sonicated for 2 h at room temperature. The mixture was continuously stirred at very low speed overnight at room temperature for the completion of the reaction. To remove excess regents and buffer solution, the mixed solution was washed with methanol two to three times by centrifugation at 5000 rpm for 15 min followed by decantation. Finally, the AuNP-decorated MoS$_2$–O$_x$ pellet was dried under vacuum at room temperature for a week. After that, the purified MoS$_2$–O$_x$–GNP hybrid was characterized by powder XRD, high-resolution tunneling electron microscopy, EDX spectroscopy, and Raman spectroscopy, as reported in Figure S1A–G. The elemental molar ratios for MoS$_2$–O$_x$–GNP hybrid were determined using inductively coupled plasma–mass spectrometer data and EDX data.

4.6. Superbug Sample Preparation. Carbapenem-resistant *E. coli*, drug-resistant *Shigella*, and *Campylobacter* superbugs were cultured according to the ATCC protocol, as we have reported previously.

4.7. Raman Experimental Details. We have used a portable Raman probe for the fingerprint detection of different superbugs, as we have reported previously. For the Raman experiments using MoS$_2$–O$_x$–GNP hybrid and other materials, we have used 670 nm light as the excitation light source and a QE65000 spectrometer for Raman data collection.

4.8. 3D FDTD Simulation. We have used the 3D FDTD simulation age for full-field electromagnetic wave calculations, as we have reported previously. For the calculation, we have used a gold nanoparticle of 30 nm diameter which is decorated on the MoS$_2$–O$_x$ nanosheet as we have observed experimentally. 670 nm was used as the incident wavelength and the entire process has been performed under 0.001 nm mesh resolution and 4000 fs duration.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsomega.9b00866.

Microscopic and spectroscopic characterization data (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: paresh.c.ray@jsums.edu. Fax: +16019793674.

ORCID

Avijit Pramanik: 0000-0002-4623-2099
Paresh Chandra Ray: 0000-0001-3398-9930

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Dr. Ray thanks NSF-PREM grant no. DMR-1205194 and NSF CREST grant no. 1547754 for their generous funding.

REFERENCES

(1) Lane, L. A.; Qian, X.; Nie, S. SERS Nanoparticles in Medicine: From Label-Free Detection to Spectroscopic Tagging. *Chem. Rev.* 2015, 115, 10489–10529.
(2) Ding, S.-Y.; You, E.-M.; Tian, Z.-Q.; Moskovits, M. Electro-magnetic theories of surface-enhanced Raman spectroscopy. *Chem. Soc. Rev.* 2017, 46, 4042–4076.
(3) Cong, S.; Wang, Z.; Gong, W.; Chen, Z.; Lu, W.; Lombardi, J.; Zhao, J. Electrochromic semiconductors as colorimetric SERS substrates with high reproducibility and renewability. *Nat. Commun.* 2019, 10, 678.
(4) Henry, A.-I.; Sharma, B.; Cardinal, M. F.; Kurouski, D.; Van Duyne, R. P. Surface-Enhanced Raman Spectroscopy Biosensing: In Vivo Diagnostics and Multimodal Imaging. *Anal. Chem.* 2016, 88, 6638–6647.
(5) Li, J.-F.; Zhang, Y.-J.; Ding, S.-Y.; Panneerselvam, R.; Tian, Z.-Q. Core-Shell Nanoparticle-Enhanced Raman Spectroscopy. *Chem. Rev.* 2017, 117, 5002–5069.
(6) Sinha, S. S.; Jones, S.; Pramanik, A.; Ray, P. C. Nanoarchitecture Based SERS for Biomolecular Fingerprinting and Label-Free Disease Markers Diagnosis. *Acc. Chem. Res.* 2016, 49, 2725–2735.
(7) Cialla-May, D.; Zheng, X.-S.; Weber, K.; Popp, J. Recent Progress in Surface-Enhanced Raman Spectroscopy for Biological and Biomedical Applications: From Cells to Clinics. *Chem. Soc. Rev.* 2017, 46, 3945–3961.
(8) Cardinal, M. F.; Vander Ende, E.; Hackler, R. A.; McNally, M. O.; Stair, P. C.; Schatz, G. C.; Van Duyne, R. P. Expanding Applications of SERS through Versatile Nanomaterials Engineering. *Chem. Soc. Rev.* 2017, 46, 3886–3903.
(9) Matricardi, C.; Hanks, C.; Garcia-Pomar, J. L.; Langer, J.; Mihi, A.; Liz-Marzán, L. M. Gold Nanoparticle Plasmonic Superlattices as Surface-Enhanced Raman Spectroscopy Substrates. *ACS Nano* 2018, 12, 8531–8539.
(10) DeJesus, J. F.; Trujillo, M. J.; Camden, J. P.; Jenkins, D. M. N-Heterocyclic Carbenes as a Robust Platform for Surface-Enhanced Raman Spectroscopy. *J. Am. Chem. Soc.* 2018, 140, 1247–1250.
(11) Jones, S.; Sinha, S. S.; Pramanik, A.; Ray, P. C. Three-dimensional (3D) plasmonic hot spots for label-free sensing and effective photothermal killing of multiple drug resistant superbugs. *Nanoscale* 2016, 8, 18301–18308.

(12) Fan, Z.; Kanchanapally, R.; Ray, P. C. Hybrid Graphene Oxide Based Ultrasensitive SERS Probe for Label-Free Biosensing. *J. Phys. Chem. Lett.* 2013, 4, 3813–3818.

(13) Singh, A. K.; Khan, S. A.; Fan, Z.; Demeritte, T.; Senapati, D.; Kanchanapally, R.; Ray, P. C. Development of a Long-Range Surface-Enhanced Raman Spectroscopy Ruler. *J. Am. Chem. Soc.* 2012, 134, 8662–8669.

(14) Paul, A. M.; Fan, Z.; Sinha, S. S.; Shi, Y.; Le, L.; Bai, F.; Ray, P. C. Bioconjugated Gold Nanoparticle Based SERS Probe for Ultraviolet Identification of Mosquito-Borne Viruses Using Raman Fingerprinting. *J. Phys. Chem. C* 2015, 119, 23669–23675.

(15) Demeritte, T.; Viraka Nellore, B. P.; Kanchanapally, R.; Sinha, S. S.; Pramanik, A.; Chavva, S. R.; Ray, P. C. Hybrid Graphene Oxide Based Plasmonic-Magnetic Multifunctional Nanoplateform for Selective Separation and Label-Free Identification of Alzheimer’s Disease Biomarkers. *ACS Appl. Mater. Interfaces* 2015, 7, 13693–13700.

(16) Fan, Z.; Yust, B.; Nellore, B. P. V.; Sinha, S. S.; Kanchanapally, R.; Crouch, R. A.; Pramanik, A.; Chavva, S. R.; Sardar, D.; Ray, P. C. Accurate Identification and Selective Removal of Rotavirus Using a Plasmonic-Magnetic 3D Graphene Oxide Architecture. *J. Phys. Chem. Lett.* 2014, 5, 3216–3221.

(17) Bodelón, G.; Montes-García, V.; López-Puente, V.; Hill, E. H.; Hamon, C.; Sanz-Ortiz, M. N.; Rodal-Cedeira, S.; Costas, C.; Celiksoy, S.; Pérez-Juste, I.; Scarchelli, L.; La Porta, A. Detection and Imaging of Quorum Sensing in Pseudomonas aeruginosa Biofilm Communities by Surface-Enhanced Resonance Raman Scattering. *Nat. Mater.* 2016, 15, 1203–1211.

(18) Shutov, A. D.; Yi, Z.; Wang, J.; Sinyukov, A. M.; He, Z.; Tang, C.; Chen, J.; Ocola, E. J.; Laane, J.; Sokolov, A. V.; Voronine, D. V.; Scully, M. O. Giant Chemical Surface Enhancement of Coherent Raman Scattering on MoS2. *ACS Photonics* 2018, 5, 4960–4968.

(19) Tan, Y.; Ma, L.; Gao, Z.; Chen, M.; Chen, F. Two-Dimensional Heterostructure as a Platform for Surface-Enhanced Raman Scattering. *Nano Lett.* 2017, 17, 2621–2626.

(20) Zheng, Z.; Cong, S.; Gong, W.; Xuan, J.; Li, G.; Lu, W.; Geng, F.; Zhao, Z. Semiconductor SERS Enhancement Enabled by Oxygen Incorporation. *Nat. Commun.* 2017, 8, 1993.

(21) Liu, W.; Bai, H.; Li, X.; Li, W.; Zhai, J.; Li, J.; Xi, G. Improved surface-enhanced Raman spectroscopy sensitivity on metallic tungsten oxide by the synergistic effect of surface plasmon resonance coupling and charge transfer. *J. Phys. Chem. Lett.* 2018, 9, 4096–4100.

(22) Zhang, Q.; Li, X.; Ma, Q.; Zhng, Q.; Bai, H.; Yi, W.; Liu, J.; Han, J.; Xi, G. A metallic molybdenum dioxide with high stability for surface enhanced Raman spectroscopy. *Nat. Commun.* 2017, 8, 14903.

(23) Su, S.; Zhang, C.; Yuwen, L.; Chao, J.; Zuo, X.; Liu, X.; Song, C.; Fan, C.; Wang, L. Creating SERS Hot Spots on MoS2 Nanosheets with in Situ Grown Gold Nanoparticles. *ACS Appl. Mater. Interfaces* 2014, 6, 18735–18741.

(24) Muehlthaler, C.; Considine, C. R.; Menon, V.; Lin, W.-C.; Lee, Y.-H.; Lombardi, J. R. Ultrahigh Raman Enhancement on Monolayer MoS2. *ACS Photonics* 2016, 3, 1164–1169.

(25) Lin, J.; Liang, L.; Ling, X.; Zhang, S.; Mao, N.; Zhang, N.; Sumpter, B. G.; Meunier, V.; Tong, L.; Zhang, J. Enhanced Raman Scattering on in-Plane Anisotropic Layered Materials. *J. Am. Chem. Soc.* 2015, 137, 15511–15517.

(26) Ling, X.; Fang, W.; Lee, Y.-H.; Araujo, P. T.; Zhang, X.; Rodriguez-Nieva, J. F.; Lin, Y.; Zhang, J.; Kong, J.; Dresselhaus, M. S. Raman Enhancement Effect on Two-Dimensional Layered Materials: Graphene, h-BN and MoS2. *Nano Lett.* 2014, 14, 3033–3040.

(27) Tan, Y.; Ma, L.; Gao, Z.; Chen, M.; Chen, F. Two-Dimensional Heterostructure as a Platform for Surface-Enhanced Raman Scattering. *Nano Lett.* 2017, 17, 2621–2626.

(28) Huang, S.; Ling, X.; Liang, L.; Song, Y.; Fang, W.; Zhang, J.; Kong, J.; Meunier, V.; Dresselhaus, M. S. Molecular Selectivity of Graphene-Enhanced Raman Scattering. *Nano Lett.* 2015, 15, 2892–2901.

(29) Yan, D.; Qiu, W.; Chen, X.; Liu, L.; Lai, Y.; Meng, Z.; Song, J.; Liu, Y.; Liu, X.-Y.; Zhan, D. Achieving High-Performance Surface-Enhanced Raman Scattering through One-Step Thermal Treatment of Bulk MoS2. *J. Phys. Chem. C* 2018, 122, 14467–14473.

(30) Cong, S.; Yuan, Y.; Chen, Z.; Hou, J.; Yang, M.; Su, Y.; Zhang, Y.; Li, L.; Li, Q.; Geng, F.; Zhao, Z. Noble Metal-Comparative SERS Enhancement from Semiconducting Metal Oxides by Making Oxygen Vacancies. *Nat. Commun.* 2015, 6, 7800.

(31) Lee, Y.; Kim, H.; Lee, J.; Yu, S. H.; Hwang, E.; Lee, C.; Ahn, J.-H.; Cho, J. H. Enhanced Raman Scattering of Rhodamine 6G Films on Two-Dimensional Transition Metal Dichalcogenides Correlated to Photoinduced Charge Transfer. *Chem. Mater.* 2016, 28, 180–187.

(32) Cai, Q.; Mateti, S.; Yang, W.; Jones, R.; Watanabe, K.; Taniguchi, T.; Huang, S.; Chen, Y.; Li, L. H. Boron Nitride Nanosheets Improve Sensitivity and Reusability of Surface-Enhanced Raman Spectroscopy. *Angew. Chem., Int. Ed.* 2016, 55, 8405–8409.

(33) Stöckel, S.; Kirchhoff, J.; Neugebauer, U.; Rösch, P.; Popp, J. The application of Raman spectroscopy for the detection and identification of microorganisms. *J. Raman Spectros.* 2016, 47, 89–109.

(34) Lorenz, B.; Wichmann, C.; Stöckel, S.; Rösch, P.; Popp, J. Cultivation-Free Raman Spectroscopic Investigations of Bacteria. *Trends Microbiol.* 2017, 25, 413–424.

(35) Zhao, J.; Pinchuk, A. O.; McMahon, J. M.; Li, S.; Ausman, L. K.; Atkinson, A. L.; Schatz, G. C. Methods for Describing the Electromagnetic Properties of Silver and Gold Nanoparticles. *Acc. Chem. Res.* 2008, 41, 1710–1720.

(36) Knight, M. W.; King, N. S.; Liu, L.; Everitt, H. O.; Nordlander, P.; Halas, N. J. Aluminum for Plasmonics. *ACS Nano* 2014, 8, 834–840.