Transcriptome alterations of vascular smooth muscle cells in aortic wall of myocardial infarction patients

Thidathip Wongsurawat, Chin Cheng Woo, Antonis Giannakakis, Xiao Yun Lin, Esther Sok Hwee Cheow, Chuen Neng Lee, Mark Richards, Siu Kwan Sze, Intawat Nookaew, Vladimir A. Kuznetsov, Vitaly Sorokin

A R T I C L E I N F O
Article history:
Received 23 January 2018
Accepted 30 January 2018
Available online 6 February 2018

A B S T R A C T
This article contains further data and information from our published manuscript [1]. We aim to identify significant transcriptome alterations of vascular smooth muscle cells (VSMCs) in the aortic wall of myocardial infarction (MI) patients. Microarray gene analysis was applied to evaluate VSMCs of MI and non-MI patients. Prediction Analysis of Microarray (PAM) identified genes that significantly discriminated the two groups of samples. Incorporation of gene ontology (GO) identified a VSMCs-associated classifier that...
discriminated between the two groups of samples. Mass spectrometry-based iTRAQ analysis revealed proteins significantly differentiating these two groups of samples. Ingenuity Pathway Analysis (IPA) revealed top pathways associated with hypoxia signaling in cardiovascular system. Enrichment analysis of these proteins suggested an activated pathway, and an integrated transcriptome-proteome pathway analysis revealed that it is the most implicated pathway. The intersection of the top candidate molecules from the transcriptome and proteome highlighted overexpression.

© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Specifications Table

Subject area	Biology
More specific subject area	Genomics, Proteomics, Bioinformatics, Cardiovascular
Type of data	Tables, figures
How data was acquired	Microarray (Gene Titan Instrument, Affymetrix), mass spectrometry (LC-MS/MS system comprised of a Dionex Ultimate 3000 RSLC nano-HPLC system, coupled to an online Q-Exactive hybrid quadrupole-Orbitrap mass spectrometer (Thermo Scientific, Hudson, NH, USA)), RT-qPCR (QuantStudio™ 12K Flex system (Life Technologies; Thermo Fisher Scientific Inc, USA))
Data format	Raw, analyzed
Experimental factors	Laser capture microdissection, total RNA extraction and protein extraction from aortic tissues from surgical patients
Experimental features	Data analysis with Principal Component Analysis (PCA), Prediction Analysis of Microarray (PAM), Gene Ontology (GO), Ingenuity Pathway Analysis (IPA)
Data source location	Singapore
Data accessibility	Data is with this article.

Value of the data

- Combination of multiple technologies and bioinformatics analysis performed in this study reveals the molecular changes induced by myocardial infarction on aortic smooth cells in humans.
- The alterations of the VSMCs transcriptome are congruent with alterations at the protein levels. Both levels show notably the up-regulation of the superoxide dismutase (SOD) with the activation of superoxide radical degradation pathway.
- Differentially expressed genes and pathways identified in these comparisons may be used in future experiments investigating response in myocardial infarction.

1. Data

1.1. Clinical analysis

The characteristics of the myocardial infarction (MI) and non-MI samples undergoing transcriptomics and proteomics studies are presented in Tables 1(A) and 1(B) respectively. The baseline demographic and clinical characteristics of samples undergoing transcriptomics study were
Table 1A
Demographic characteristics of MI and non-MI groups undergoing transcriptomics analysis.

Characteristics	Transcriptomics	Transcriptomics	p-value
	MI (n=17)	Non-MI (n=19)	
Ethnic			
Chinese	12	10	0.557
Malay	2	6	
Indian	2	2	
Others	1	1	
Gender			
Male	14	16	0.881
Female	3	3	
Age (Mean ± SD)	59.53 ± 8.28	59.68 ± 8.85	0.957
Ejection Fraction			
Good (>45%)	11	13	0.292
Fair (30–45%)	4	6	
Poor (<30%)	2	0	
Smoking			
No	8	9	0.985
Yes	9	10	
Renal Impairment			
No	15	19	0.124
Yes	2	0	
Diabetes Mellitus			
No	9	7	0.332
Yes	8	12	
Hypertension			
No	1	3	0.345
Yes	16	16	
Hyperlipidaemia			
No	0	0	-
Yes	17	19	
Antihyperlipidemic Medication			
No	0	0	-
Yes	17	19	
Troponin I (µg/L) (Mean ± SD)	12.20 ± 20.86	0.01 ± 0.004	<0.05
	(n=15)	(n=4)	

Table 1B
Demographic characteristics of MI and non-MI proteomics groups.

Characteristics	Proteomics	Proteomics	p-value
	MI n=25	Non-MI n=25	
Ethnic			
Chinese	11	13	0.745
Malay	8	7	
Indian	5	5	
Others	1	0	
Gender			
Male	20	18	0.508
Female	5	7	
Age (Mean ± SD)	60.88 ± 12.34	61.68 ± 8.26	0.789
Ejection Fraction			
Good (>45%)	14	16	0.344
Fair (30–45%)	9	9	
Poor (<30%)	2	0	
Smoking			
No	12	12	1
Yes	13	13	
Renal Impairment			
No	25	25	NA
Yes	0	0	
Diabetes Mellitus			
No	10	9	0.771
Yes	15	16	
Hypertension			
No	3	1	0.297
Yes	22	24	
Hyperlipidaemia			
No	1	0	0.312
Yes	24	25	
Antihyperlipidemic Medication			
No	4	1	0.157
Yes	21	24	
Troponin I (µg/L) (Mean ± SD)	19.54 ± 19.24	0.015 ± 0.006	<0.05
	(n=22)	(n=9)	
compared with those of the samples from the proteomics study (Table 2). In addition, the characteristics of the transcriptomic MI and non-MI samples with those of the independent cohorts comprising additional MI and non-MI patients undergoing RT-qPCR were compared (Tables 3 and 4).

1.2. Gene expression data analysis and class prediction by Prediction Analysis of Microarray (PAM)

The samples were preprocessed through several steps, including quality assessment and outlier identification, normalization, batch effect correction and evaluation (Fig. 1). To interrogate differentially expressed genes between MI and non-MI we conducted gene-expression profiling using the Affymetrix U219 microarray platform. The R ‘limma’ package (https://www.bioconductor.org/help/workflows/arrays/) identified 4,357 probe sets, selected at a ‘limma’-defined p-value < 0.05. Based on this set of differentially expressed genes (DEGs), we performed principal component analysis (PCA) (Fig. 1).

To determine subgroup of genes distinguishing MI from non-MI subjects, we performed supervised PAM [2] and identified a set of differentially expressed genes (DEGs) that discriminated between the two subtypes at Wilcox FDR < 0.1 (Table 5).

Gene Ontology (GO) analysis of the DEGs was performed using DAVID Bioinformatics tools [3] (http://david.abcc.ncifcrf.gov/). The GO results for the down-regulated transcripts were not enriched for any GO terms. The GO analysis revealed biological processes (Table 6).

Clustering of genes were done by two methods, hierarchical and k-mean clustering. Hierarchical clustering with multiscale bootstrap resampling was done by Pvclust, an R statistical software package [4]. The Pvclust is an R package for assessing the uncertainty in hierarchical cluster analysis. For each cluster in hierarchical clustering, quantities called p-values are calculated via multiscale bootstrap resampling. The parameters (https://cran.r-project.org/web/packages/pvclust/pvclust.pdf)
used here were 10000 bootstrap replications, cluster method: Ward algorithm and distance method: Euclidean. For the heat maps plot, we used log2 scale.

The k-mean clustering was performed by R (https://stat.ethz.ch/R-manual/R-devel/library/stats/html/kmeans.html), showing that the selection of features gave a higher accuracy than PAM alone. The genes were discriminated between the MI and non-MI vascular smooth muscle cells (VSMCs) samples (Table 7). A clustered result is shown in Fig. 2 of Ref. [1].

1.3. Protein processing, electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) and LC-MS/MS analysis using Q-Exactive mass spectrometer

Differential expressed proteins identified are shown in Table 8. Only peptides identified with strict spectral false discovery rate of less than 1% (q-value ≤ 0.01) were considered.

1.4. Hierarchical cluster analysis of RT-qPCR-based detected genes

Using six RT-qPCR-supported genes as a representative gene classifier characterizing the differences between MI and non-MI aortic samples, hierarchical clustering was performed with multiscale bootstrap resampling by Pvclust. The result is shown in Fig. 2.

1.5. Transcriptomic and proteomic pathways analysis

Systemic evaluation was performed using IPA (www.ingenuity.com) to identify transcriptomic and proteomic pathways, and significantly enriched canonical pathways are shown in Table 9. An integrated transcriptome-proteome correlation is performed to identify common enriched pathway and molecule (Table 10).

Table 3
Demographic characteristics of MI study group and MI validation group.

Characteristics	MI Microarray (n=17)	MI Validation (n=20)	p-value
Ethnic Chinese	12	14	0.662
Malay	2	4	
Indian	2	2	
Others	1	0	
Gender Male	14	17	0.828
Female	3	3	
Age (Mean ± SD)	59.53 ± 8.28	61.40 ± 7.88	0.487
Ejection Fraction Good (> 45%)	11	10	0.661
Ejection Fraction Fair (30–45%)	4	7	
Ejection Fraction Poor (< 30%)	2	3	
Smoking No	8	8	0.666
Smoking Yes	9	12	
Renal Impairment No	16	20	0.272
Renal Impairment Yes	1	0	
Diabetes Mellitus No	9	6	0.157
Diabetes Mellitus Yes	8	14	
Hypertension No	1	4	0.211
Hypertension Yes	16	16	
Hyperlipidaemia No	0	1	0.35
Hyperlipidaemia Yes	17	19	
Antihyperlipidemic Medication No	0	1	0.35
Antihyperlipidemic Medication Yes	17	19	
Troponin I (µg/L) (Mean ± SD)	12.20 ± 20.86 (n=15)	20.94 ± 27.80 (n=17)	0.319
2. Experimental design, materials and methods

2.1. Sample collection

Aortic tissue samples were obtained from patients who presented with coronary artery disease undergoing coronary artery bypass graft (CABG) surgery at the National University Hospital of Singapore from 2009 to 2013. Patients underwent CABG either after a recent myocardial infarction (MI group) or as stable angina patients (non-MI group). An aortic punch tissue was collected at the time of proximal anastomosis between the aorta and saphenous vein grafts. The tissues from the aortic punch were immediately preserved on dry ice, and stored in liquid nitrogen tank. The study was approved by the National Healthcare Group Domain Specific Review Board (Tissue Bank registration: NUH/2009-0073), and written informed consent was obtained from all patients. The study protocol conforms to the ethical guidelines of the 1975 Declaration of Helsinki.

2.2. Sample grouping

17 MI and 19 non-MI samples were recruited for laser capture microdissection (LCM) and microarray profiling. The proteomic study included 25 MI and 25 non-MI samples. Four MI and six non-MI samples overlapped between the microarray and proteomic studies. RT-qPCR was done on an independent cohort of samples, including an additional 20 MI and 20 non-MI samples. A schematic of the design and workflow is presented in Fig. 3.

Table 4

Characteristics	Non-MI Microarray (n=19)	Non-MI Validation (n=20)	p-value
Ethnic			
Chinese	10	12	0.763
Malay	6	6	
Indian	2	2	
Others	1	0	
Gender			
Male	16	17	0.946
Female	3	3	
Age (Mean ± SD)	59.68 ± 8.85	59.95 ± 8.34	0.924
Ejection Fraction			
Good (> 45%)	13	13	0.083
Fair (30–45%)	6	3	
Poor (<30%)	0	4	
Smoking			
No	9	11	0.634
Yes	10		
Renal Impairment			
No	18	15	0.088
Yes	1	5	
Diabetes Mellitus			
No	7	8	0.839
Yes	12	12	
Hypertension			
No	3	4	0.732
Yes	16	16	
Hyperlipidaemia			
No	0	0	
Yes	19	20	
Antihyperlipidemic Medication			
No	0	0	
Yes	19	20	
Troponin I (µg/L) (Mean ± SD)	0.01 ± 0.004	NA	NA

T. Wongsurawat et al. / Data in Brief 17 (2018) 1112–1135 1117
2.3. Sample processing

The protocols for (1) cryosectioning and staining of aortic tissue, (2) LCM of VSMCs, total RNA isolation and complementary DNA (cDNA) synthesis, and (3) protein processing, ERLIC and LC-MS/MS analysis using Q-Exactive mass spectrometer are described in our manuscript [1].

2.4. RT-qPCR on an independent cohort of MI and non-MI samples

The RT-qPCR protocol is described in our manuscript [1]. The primers for ARF6, ATP1A2, GUCY1A3, HIF-1A, KLHL1, MYOCD, SOD1, and UBB were obtained from the Primer Bank: ARF6 forward primer 5′-GGGAAGGTGCTATCCAAAATCTT-3′ and reverse primer 5′-CACATCCCATACGTTGAACTTGA-3′; ATP1A2 forward primer 5′-TCTATCCACGCGAGAACAGAC-3′ and reverse primer 5′-CCATGAGGCATTTCCGCAGGC-3′; GUCY1A3 forward primer 5′-TCAGCTCCTACTTGGTCTTACTCC-3′ and reverse primer 5′-CCAGATAGCGATGGAATACACC-3′; HIF-1A forward primer 5′-GAACGTCTGGGAAAGAGATCTTCG-3′ and reverse primer 5′-CCCTATATAGAGTCAGTGTTGAATCAAACCTACA-3′; KLHL1 forward primer 5′-TCAGGTCTGGTGGCGGAAAGG-3′ and reverse primer 5′-AAAAATAGCCACACCCTTCTC-3′; MYOCD forward primer 5′-ACGATGCTTTTGCCTTGAAGAGGAACAGC-3′ and reverse primer 5′-AACCTGTCGAAGGGGTATCTG-3′; SOD1 forward primer 5′-AAAGATGGTGTGGCCGATGTG-3′ and reverse primer 5′-CAAGCCCAAAGCTCCACACG-3′; UBB forward primer 5′-GGTCCCTGCTGCTGAGAGGT-3′ and reverse primer 5′-GGCCCTCAGATTTTCGATGCTG-3′.

Fig. 1. (A) Normalized data. (B) Pseudo three dimensional plot of PCA analysis of the 4,357 DEGs between MI (red) and non-MI (blue). The sizes of the dot represent the loading values of the Comp.3 that perpendicular on the Comp.1 and Comp.2 plane. (C) Scree plot shows the variances explained by the individual principle component. (D) Volcano plot of expression data. Green dot represents differentially expressed genes.
Table 5
List of differentially expressed transcripts.

Probe ID	Gene symbol	Up/down regulated in MI	wilcox	wilcox FDR
11760204_x_at	CKMT1B	Upregulated in MI	0.00035204	0.00224576
11760991_a_at	CKMT1B	Upregulated in MI	0.00101536	0.00364739
1178483_s_at	UBE2N	Upregulated in MI	0.0001261	0.00150508
11752082_a_at	CDH12	Upregulated in MI	0.00010799	0.00377744
1174327_s_at	UBB	Upregulated in MI	1.4127E-06	0.0026136
1173320_s_at	RBMS3	Upregulated in MI	4.8014E-05	0.00093501
11743116_s_at	RPNB1	Upregulated in MI	4.2217E-06	0.003841
11766989_s_at	PNC2	Upregulated in MI	0.00053133	0.00252042
11761378_at	NAALADL2	Upregulated in MI	0.0006064	0.00276999
11754075_s_at	KRT222	Upregulated in MI	0.0053077	0.00250242
1178123_at	AIMP1	Upregulated in MI	0.0010799	0.00377744
11732126_s_at	UBB	Upregulated in MI	0.00014694	0.0016669
11717422_s_at	RBM8A	Upregulated in MI	0.0001261	0.00150508
11785158_s_at	FOXP1	Upregulated in MI	0.0078736	0.030992
11740398_a_at	TARSL2	Upregulated in MI	9.2259E-05	0.00137744
1175501_s_at	IGFBP7	Upregulated in MI	9.2259E-05	0.00137744
11725969_a_at	THUMP1D1	Upregulated in MI	0.0026334	0.0003841
11760913_at	ASAH2	Upregulated in MI	2.0029E-05	0.00061757
1178344_a_at	CNOT7	Upregulated in MI	0.00146865	0.0044541
11735389_at	CYLC2	Upregulated in MI	0.0036725	0.00780935
11747800_a_at	HIF1A	Upregulated in MI	0.0443046	0.0488685
11721215_a_at	TMEM106B	Upregulated in MI	0.00019823	0.0016669
11750502_s_at	GYPE	Upregulated in MI	0.00013007	0.00242165
11717433_a_at	ECHDC1	Upregulated in MI	4.8104E-05	0.00093501
11752628_a_at	ECHDC1	Upregulated in MI	0.00376444	0.00791387
11747485_a_at	SR140	Upregulated in MI	0.00019823	0.0016669
11735657_a_at	GLB1	Upregulated in MI	0.00069158	0.00284317
1175402_s_at	MED13	Upregulated in MI	0.0026521	0.0012411
11730368_at	ZNF557	Upregulated in MI	0.02104398	0.028626
1178577_s_at	NET1	Upregulated in MI	0.00409148	0.00813896
11732339_at	BCL11A	Upregulated in MI	0.02493936	0.0323838
11744873_a_at	KRP1	Upregulated in MI	0.00089487	0.00334446
11763952_at	–	Upregulated in MI	0.0030585	0.00205755
1176870_at	SETBP1	Upregulated in MI	0.0006064	0.00276999
11727433_s_at	NUTF2	Upregulated in MI	0.02423264	0.03248578
11726614_at	CDH2	Upregulated in MI	0.00505725	0.00926328
11744333_s_at	AMY2B	Upregulated in MI	3.4121E-05	0.00081464
11720250_a_at	RWDD1	Upregulated in MI	0.00010799	0.00137744
11724140_s_at	CRIPAK	Upregulated in MI	0.0053077	0.00250242
11754192_s_at	SFRS1I	Upregulated in MI	2.3988E-05	0.00682747
11759666_s_at	LOC284861	Upregulated in MI	0.0006064	0.00276999
11764171_s_at	DCUN1D1	Upregulated in MI	0.00687991	0.01183985
1175153_s_at	TXNDC6	Upregulated in MI	0.0026334	0.0063836
11758715_s_at	DEFB126	Upregulated in MI	0.00502731	0.00926328
11755681_x_at	HMGB1	Upregulated in MI	9.4442E-06	0.0038514
11737234_s_at	LOC162632	Upregulated in MI	0.04365745	0.05177326
11751041_x_at	PCMTD2	Upregulated in MI	0.00146865	0.0044541
11720954_s_at	RPL30	Upregulated in MI	0.0026334	0.0063836
11732933_s_at	RUNX1	Upregulated in MI	0.00115015	0.00390417
11750455_s_at	CNOT7	Upregulated in MI	0.01229819	0.01883032
1176615_s_at	REEP5	Upregulated in MI	0.01477913	0.02163607
Entrez ID	Symbol	Description	Log2 Fold Change	p-Value
-----------	--------	-------------	-----------------	---------
200037_PM_s_at	CBX3	Upregulated in MI	0.00561109	0.01012733
11749445_a_at	ARHGap15	Upregulated in MI	0.00053077	0.00252042
11719713_a_at	PPM1B	Upregulated in MI	0.00455191	0.00871434
11725073_s_at	PHF17	Upregulated in MI	0.02104398	0.028626
11715490_a_at	AMY1A	Upregulated in MI	0.0026334	0.00636836
11757108_a_at	GSTP1	Upregulated in MI	0.0036725	0.00780935
11758637_x_at	AMY1A	Upregulated in MI	0.0147944	0.02168302
11743386_s_at	PRPF40A	Upregulated in MI	0.00010799	0.00137774
11719932_x_at	KIAA0319L	Upregulated in MI	0.01229819	0.01880302
11750815_s_at	DDX5	Upregulated in MI	0.03190866	0.04002103
11761866_at	NCOA7	Upregulated in MI	0.01229819	0.01880302
11762842_s_at	PLEKH8B	Upregulated in MI	0.0036725	0.00780935
11758021_s_at	DDX3	Upregulated in MI	0.00416865	0.0094541
11755779_a_at	ADAMTS20	Upregulated in MI	0.00294638	0.00689976
11734919_s_at	TCEA1	Upregulated in MI	0.00053077	0.00252042
11741476_x_at	MAPK7	Upregulated in MI	0.00455191	0.00871434
11745795_s_at	DDX5	Upregulated in MI	0.0118421	0.01603471
11746794_a_at	CSorf33	Upregulated in MI	0.01617252	0.0232834
11758181_s_at	HMG21	Upregulated in MI	0.0119828	0.01740908
11758811_x_at	HRNRPA1	Upregulated in MI	0.00329182	0.00729325
11761671_a_at	ETV7	Upregulated in MI	0.00186355	0.00526347
11758000_s_at	CKADR	Upregulated in MI	0.0036725	0.00780935
11733216_s_at	USP53	Upregulated in MI	0.0143891	0.02012593
200012_PM_x_at	RPL21	Upregulated in MI	5.1905E-06	0.00038514
11722616_at	URLCP1	Upregulated in MI	0.00329182	0.00729325
11743186_a_at	KIAA1430	Upregulated in MI	0.01018421	0.01603471
11758697_x_at	MATR3	Upregulated in MI	0.0062978	0.01284168
11739605_a_at	CDC88A	Upregulated in MI	0.00839186	0.01392372
11718654_s_at	PKD2	Upregulated in MI	0.0119828	0.01740908
11740007_at	POLR3G	Upregulated in MI	0.0036725	0.00780935
11723448_x_at	MALL	Upregulated in MI	0.0026334	0.00636836
11725386_a_at	HOMER1	Upregulated in MI	0.00329182	0.00729325
11721237_a_at	LHFP2	Upregulated in MI	0.00925052	0.01488126
11740255_x_at	UBE2NL	Upregulated in MI	0.0069158	0.00284317
11763843_a_at	UACA	Upregulated in MI	0.0069158	0.00284317
11753332_a_at	TJP1	Upregulated in MI	0.0019528	0.0016699
11731400_s_at	TMCO1	Upregulated in MI	0.00089487	0.00334446
11755203_x_at	RPL21	Upregulated in MI	7.6666E-05	0.00137774
11746807_at	PTPR8	Upregulated in MI	0.02710422	0.03543661
11751975_a_at	SGIP1	Upregulated in MI	0.0036725	0.00780935
11739563_s_at	ITPR1	Upregulated in MI	0.00010799	0.00137774
11719614_a_at	LAPR4	Upregulated in MI	0.00030585	0.00205955
11722359_x_at	EPB41L2	Upregulated in MI	0.00146865	0.0044541
11754410_s_at	APLNR	Upregulated in MI	0.00235021	0.00680896
11739606_x_at	CCDC88A	Upregulated in MI	0.00505725	0.00926328
11737468_at	PDC	Upregulated in MI	0.00409148	0.00813896
11732569_at	SLCO1B3	Upregulated in MI	0.04365745	0.05177326
11733180_a_at	ETVI	Upregulated in MI	0.02493936	0.0283831
11742053_a_at	COG5	Upregulated in MI	0.05746656	0.05859759
11733720_a_at	EREG	Upregulated in MI	0.00376444	0.00791387
11722645_s_at	ZNBTF6	Upregulated in MI	0.02104398	0.028626
11727892_a_at	EPNH	Upregulated in MI	1.145E-05	0.0038514
11746051_s_at	HP1BP3	Upregulated in MI	0.00066163	0.0173715
11758520_s_at	JUCY1A3	Upregulated in MI	0.00209437	0.00574011
11751517_a_at	PRKAA1	Upregulated in MI	0.00235021	0.00680896
11757817_s_at	BASP1	Upregulated in MI	0.00165565	0.00486183
11719053_s_at	CEP250	Upregulated in MI	0.0062173	0.0110067
11763534_x_at	CNTNAP3	Upregulated in MI	0.00235021	0.00680896
11715329_at	SLC6A15	Upregulated in MI	0.0069158	0.00284317
11761881_at	ZNF33A	Upregulated in MI	0.0146865	0.0044541
11723314_x_at	PXMP2	Upregulated in MI	2.476E-07	9.161E-05
11758802_a_at	ENY2	Upregulated in MI	0.00069158	0.00284317
ProbeID	Description	Expression Level	Fold Change	
------------------	-----------------	------------------	-------------	
11758108_s_at	EFEMP1	Upregulated in MI	0.0027968	
11739011_s_at	PAFAH1B1	Upregulated in MI	0.0026334	
11749062_a_at	ERG	Upregulated in MI	0.00103627	
11761958_s_at	TRA@	Upregulated in MI	0.01348981	
1173646_x_at	CFL1	Upregulated in MI	0.00455191	
11723447_at	MALL	Upregulated in MI	0.00053077	
11725729_s_at	C1orf56	Upregulated in MI	0.0040442	
11726588_a_at	MTFR1	Upregulated in MI	0.0092502	
11725466_a_at	AGPAT9	Upregulated in MI	0.00687991	
11735325_at	ZNF660	Upregulated in MI	0.00186327	
11754898_s_at	ZNF573	Upregulated in MI	0.00839186	
11719509_a_at	CSR2P28	Upregulated in MI	0.00039848	
11729721_s_at	LILRB3	Upregulated in MI	5.1905E-06	
11728429_a_at	LCOR	Upregulated in MI	4.053E-05	
11750795_a_at	KLHL1	Upregulated in MI	1.145E-05	
11754487_x_at	C5orf33	Upregulated in MI	0.01018421	
11727856_s_at	NUP50	Upregulated in MI	0.00069158	
11732303_a_at	CREB1	Upregulated in MI	0.00035204	
11738720_s_at	OR2T3	Upregulated in MI	0.00209437	
11718993_at	CRKL	Upregulated in MI	0.00409148	
11727390_a_at	STEAP2	Upregulated in MI	0.00121855	
1175724_s_at	TMEM14B	Upregulated in MI	0.00186355	
11765010_x_at	SS18	Upregulated in MI	0.02292193	
11720574_s_at	OR6R2	Upregulated in MI	0.00017084	
11772747_s_at	ARGLU1	Upregulated in MI	0.00035204	
11729916_s_at	ARL5B	Upregulated in MI	0.00224576	
11722126_s_at	TMEM106B	Upregulated in MI	0.0017084	
11759049_at	ACS5	Upregulated in MI	0.08324897	
11736190_a_at	OGN	Upregulated in MI	0.01929797	
11734314_at	SPTA1	Upregulated in MI	0.00089487	
11753680_x_at	RPL21	Upregulated in MI	0.00186355	
11736501_x_at	SS18	Upregulated in MI	0.02292193	
11771574_s_at	PFN1	Upregulated in MI	0.00186355	
11757274_s_at	ARGLU1	Upregulated in MI	0.00035204	
11729916_s_at	ARL5B	Upregulated in MI	0.00224576	
11729216_s_at	TMEM106B	Upregulated in MI	0.0017084	
11759047_x_at	ACS5	Upregulated in MI	0.08324897	
1173995_x_at	C5orf33	Upregulated in MI	0.00406184	
11719660_at	ATP1A2	Upregulated in MI	0.00069158	
11732982_at	OR2J2	Upregulated in MI	0.0026334	
11720945_x_at	SRP1A	Upregulated in MI	0.05534295	
11759697_at	SLITRK3	Upregulated in MI	0.00209437	
11757257_at	PIR2	Upregulated in MI	0.04365745	
11722149_a_at	YTHDC2	Upregulated in MI	0.05462796	
11748766_a_at	FBXW7	Upregulated in MI	0.0002952	
11765080_s_at	MASP1	Upregulated in MI	0.00235021	
11733995_x_at	C5orf33	Upregulated in MI	0.00046374	
11759047_x_at	ABC1	Upregulated in MI	0.0146865	
1173995_x_at	C5orf33	Upregulated in MI	0.00245118	
11759047_x_at	ABC1	Upregulated in MI	0.0146865	
11733995_x_at	C5orf33	Upregulated in MI	0.00046374	
11747000_at	ASPN	Upregulated in MI	0.00089487	
11753282_a_at	CMTM4	Upregulated in MI	0.00089487	
11759361_at	SHOX	Upregulated in MI	0.00089487	
11742378_a_at	AKR1B10	Upregulated in MI	0.00089487	
Gene ID	Description	Fold Change	P-Value	
----------	-------------	-------------	---------	
11757489_x_at	RPL22	Upregulated in MI	0.00078736	0.0030992
11720443_s_at	BAZ1A	Upregulated in MI	0.03470276	0.04597682
11756351_x_at	SOD1	Upregulated in MI	0.00069158	0.00284317
11716368_x_at	PRR13	Upregulated in MI	0.0019823	0.0016669
11741875_x_at	AKTIP	Upregulated in MI	0.02104398	0.028626
11756560_s_at	KRR1	Upregulated in MI	0.02493936	0.03283831
11720443_s_at	BAZ1A	Upregulated in MI	0.0019823	0.0016669
11756351_x_at	SOD1	Upregulated in MI	0.00069158	0.00284317
11716368_x_at	PRR13	Upregulated in MI	0.0019823	0.0016669
11721520_at	ZDHHC17	Upregulated in MI	0.04709299	0.05549174
11753061_a_at	SLFN5	Upregulated in MI	0.0026334	0.00636836
11728110_at	GRIP1	Upregulated in MI	0.00505725	0.00926328
11753820_s_at	ZDHHC17	Upregulated in MI	0.04709299	0.05549174
11741875_x_at	AKTIP	Upregulated in MI	0.02104398	0.028626
11756560_s_at	KRR1	Upregulated in MI	0.02493936	0.03283831
11720443_s_at	BAZ1A	Upregulated in MI	0.0019823	0.0016669
11756351_x_at	SOD1	Upregulated in MI	0.00069158	0.00284317
11716368_x_at	PRR13	Upregulated in MI	0.0019823	0.0016669
11721520_at	ZDHHC17	Upregulated in MI	0.04709299	0.05549174
11753061_a_at	SLFN5	Upregulated in MI	0.0026334	0.00636836
11728110_at	GRIP1	Upregulated in MI	0.00505725	0.00926328
11738606_s_at	KCTD16	Upregulated in MI	0.0119828	0.01740908
11728882_at	KRR1	Upregulated in MI	0.00329182	0.00729325
11737293_at	TACR3	Upregulated in MI	0.02104398	0.028626
11746047_x_at	KGFLP2	Upregulated in MI	0.00409148	0.00813896
11734530_x_at	HLA-F	Upregulated in MI	4.4442E-06	0.00038514
11723507_s_at	ZNF609	Upregulated in MI	0.05074665	0.05885975
11742902_s_at	CORO2A	Upregulated in MI	0.00839186	0.01392372
11724290_x_at	ZNF641	Upregulated in MI	0.0119828	0.01740908
11738606_s_at	KCTD16	Upregulated in MI	0.00115015	0.00390417
11728882_at	KRR1	Upregulated in MI	0.00329182	0.00729325
11737293_at	TACR3	Upregulated in MI	0.02104398	0.028626
11746047_x_at	KGFLP2	Upregulated in MI	0.00409148	0.00813896
11738606_s_at	KCTD16	Upregulated in MI	0.00115015	0.00390417
11728882_at	KRR1	Upregulated in MI	0.00329182	0.00729325
11737293_at	TACR3	Upregulated in MI	0.02104398	0.028626
11746047_x_at	KGFLP2	Upregulated in MI	0.00409148	0.00813896
11738606_s_at	KCTD16	Upregulated in MI	0.00115015	0.00390417
11728882_at	KRR1	Upregulated in MI	0.00329182	0.00729325
Probe ID	Description	Fold Change (Control/MI)		
---------	-------------	-------------------------		
AFFX-r2-Ec-bioB-5_at	Upregulated in MI	0.00019823/0.0016669		
1175938_a_at	ITFG2	0.0662173/0.0110067		
1175468_a_at	MAP3K2	0.00235021/0.00608096		
11717578_a_at	VPS26A	0.03190866/0.0402103		
11744671_x_at	CTBP2	0.0631128/0.0718515		
11751946_a_at	ARHGAP21	0.00130072/0.00422165		
11729687_at	LYRM7	0.02104398/0.028626		

... (remaining entries in the table)
Gene ID	Symbol	Description	Fold Change (Control)	Fold Change (MI)								
11743193_at	PARD6G	Downregulated in MI	0.00019823	0.0016669								
11726367_at	ERICH1	Downregulated in MI	0.03740276	0.04597682								
11750342_at	FRMPD1	Downregulated in MI	0.08324897	0.09305777								
11744231_at	MAPK7	Downregulated in MI	0.00294638	0.00689976								
11724255_at	OAS1	Downregulated in MI	0.0176765	0.02515502								
11737305_at	FAM166A	Downregulated in MI	0.00561109	0.01012733								
11733958_at	GTPBP3	Downregulated in MI	0.0176765	0.02515502								
11739429_at	ZDHHC24	Downregulated in MI	0.01900683	0.02694455								
11751172_at	TRIB3	Downregulated in MI	0.05732237	0.06586732								
11737677_at	BTBD18	Downregulated in MI	0.02104398	0.028626								
11725393_s_at	MAK16	Downregulated in MI	0.0631128	0.0718515								
11744029_at	BBS4	Downregulated in MI	0.04043046	0.0488865								
11743134_x_at	FBKP8	Downregulated in MI	0.00022952	0.00176918								
11745187_at	BET1L	Downregulated in MI	0.00925052	0.01488126								
11737856_at	OPCML	Downregulated in MI	0.00101536	0.00364739								
11759126_at	THRA	Downregulated in MI	0.04365745	0.05177326								
11722129_at	FAM102B	Downregulated in MI	0.00165565	0.00486183								
11762149_at	C18orf45	Downregulated in MI	0.00115015	0.00390417								
11734407_at	MATN4	Downregulated in MI	0.00760327	0.0128457								
11730872_x_at	RASSF5	Downregulated in MI	0.00409148	0.00813896								
11753413_x_at	DLK1	Downregulated in MI	0.07262653	0.08242889								
Category	Term	Count	%	p-value	Genes	List Total	Pop Hits	Pop Total	Fold Enrichmen	tBonferroni	Benjamini	FDR
------------------	--	-------	---------	-------------	--	------------	----------	-----------	----------------	-------------	------------	-----------
G0007647	protein modification by small protein conjugation or removal	12	4.109589	4.96E-05	ENY2, UBE2N, SUZ12, SUPT3H, ATG10, FBXW7, UBE3A, UBB, UBE2D1, TMEM189, FBXW11, LN1	216	160	13528	4.697222222	0.08427547	0.084275	0.084054
G0003246	protein modification by small protein conjugation	10	3.4246575	2.56E-04	UBE2N, SUZ12, ATG10, FBXW7, UBE3A, UBB, UBE2D1, TMEM189, FBXW11, LN1	216	132	13528	4.744668911	0.365690828	0.203565	0.433849
G00016567	protein ubiquitination	9	3.0821918	6.19E-04	UBE2N, SUZ12, FBXW7, UBE3A, UBB, UBE2D1, TMEM189, FBXW11, LN1	216	119	13528	4.736694768	0.666812995	0.30674	1.044247
G0006940	regulation of smooth muscle contraction	5	1.7123288	0.00299912	TAC3, MYOCD, GUCY1A3, ATP1A2, SOD1	216	38	13528	8.240740741	0.995162875	0.736278	4.964734
G0005114	regulation of muscle cell differentiation	5	1.7123288	0.00330086	TBX3, MYOCD, EREG, UBB, HDAC9	216	39	13528	8.029439696	0.99717351	0.690793	5.451184
G0006414	translational elongation	7	2.3972603	0.00544585	TAC3, MYOCD, GUCY1A3, ATP1A2, SOD1	216	101	13528	4.3406674	0.999938274	0.801202	8.842269
G0006937	regulation of muscle contraction	6	2.0547945	0.00571597	TAC3, MYOCD, TNNC1, GUCY1A3, ATP1A2, SOD1	216	72	13528	5.219135802	0.999961887	0.766265	9.261108
G0008472	regulation of skeletal muscle fiber development	4	1.369863	0.00703496	TBX3, MYOCD, UBB, HDAC9	216	25	13528	10.02074074	0.999996388	0.791204	11.28038
G0007507	heart development	10	3.4246575	0.00750053	CRKL, TBX3, MYOCD, HEXIM1, TNNC1, PKD2, HDAC9, CXADR, ITGB1, FOXP1	216	215	13528	2.913006029	0.999998429	0.773463	11.98298
G00016202	regulation of striated muscle tissue development	5	1.7123288	0.00807194	TBX3, MYOCD, UBB, HDAC9, CXADR, ITGB1	216	50	13528	6.262962963	0.99999435	0.762736	12.83814
G00048634	regulation of muscle development	5	1.7123288	0.00865211	TBX3, MYOCD, UBB, HDAC9, CXADR, ITGB1	216	51	13528	6.140159768	0.9999998	0.753948	13.69842
G00048534	hemopoietic or lymphoid organ development	11	3.7671233	0.00874561	PTPRC, CRKL, RPL22, BCL11A, TCEA1, SPTA1, ITGB1, HDAC9, SOD1, RUNX1, ITGB1, FOXP1	216	260	13528	2.6497151	0.99999831	0.727281	18.36332
G00030036	actin cytoskeleton organization	10	3.4246575	0.01017938	EPB41L2, FFN1, CALD1, CFL1, PAFH1B1, ARF6, SPTA1, PRKG1, ITGB1, KLHL1	216	226	13528	2.77122255	0.99999987	0.752662	15.92501
G0008641	regulation of skeletal muscle tissue development	4	1.369863	0.01066911	TBX3, MYOCD, UBB, HDAC9	216	29	13528	8.638569604	0.999999995	0.743329	16.62747
G0006417	regulation of muscle development	19	6.5068493	0.01072364	ENY2, BMP3, PTPRC, TBX3, GRP1, CREB1, MED13	216	624	13528	1.906991928	0.99999995	0.720797	16.70534
Category	Term	Count	%	p-value	Genes	List	Pop Hits	Pop Total	Fold Enrichmen	tBonferroni	Benjamini	FDR
----------	------	-------	-------	---------	--	------	----------	-----------	----------------	-------------	-----------	---------
						197	515	12782	2.393750924	0.246766301	0.246766	1.275853
GO:0045935~positive regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolism	DDX5, CNOT7, UBE2N, YWHAH, HIF1A, MYOCD, EREG, ZNF48, GU											
GO:0005829~ribonucleoprotein complex	KRR1, SNRP1, ERG, RPL15, SYNCRIP, HSPA1A, DDX5, HNRNP1, HNRNP3, MRPL20, RPL30, RBM8A, RPL22, PNRCT, R											
GO:0030529~ribonucleoprotein complex	NAMPT, ENAH, UBE3A, GRP1, RPL15, MAP3K7, RPL30, MAP3K2, MAP7, GSTZ1, GUCY1A3, PAFAH1B1, PPP5CA, RPL12											
GO:0005654~nucleoplasm	CCDC88A, AIMP1, BECN1, PTRP, AP3S1, ARF6, ARFIP1, CXADR, PRKGI, GCC2, TJAP1, B2M, ARH-GAP21, PNPLA8, ZDHHC22											
GO:0005654~nucleoplasm	ENY2, HMG1, SYNCP, ZNF655, CNOT7, ZNF330, CORO2A, DDX3, RBM8A, ZNF148, NUP50, TCEA1, UBE2D											
GO:0005794~Golgi apparatus	CDC68A, AIM1, BECN1, PTRP, AP3S1, ARF6, ARFIP1, CXADR, PRKGI, GCC2, TJAP1, B2M, ARH-GAP21, PNPLA8, ZDHHC22											
GO:0005794~Golgi apparatus	ENY2, HMG1, SYNCP, ZNF655, CNOT7, ZNF330, CORO2A, DDX3, RBM8A, NUP50, TCEA1, UBE2D											
GO:0005654~nucleoplasm	CDC68A, AIM1, BECN1, PTRP, AP3S1, ARF6, ARFIP1, CXADR, PRKGI, GCC2, TJAP1, B2M, ARH-GAP21, PNPLA8, ZDHHC22											
GO:0005654~nucleoplasm	ENY2, HMG1, SYNCP, ZNF655, CNOT7, ZNF330, CORO2A, DDX3, RBM8A, NUP50, TCEA1, UBE2D											
GO:0005864~cortical actin cytoskeleton	EPB41L2, CALD1, CFL1, SPTA1											
GO:0005635~nuclear envelope	UACA, NUP50, CBX3, PAFAH1B1, TMPO, RANBP2, KPNB1, PRP40A, POLR											
GO:0005635~nuclear envelope	ENY2, HMG1, SYNCP, ZNF655, CNOT7, ZNF330, MRPL20, CORO2A, DDX3, RBM8A, ZNF148, NUP50, TCEA											
GO:0007001~intracellular organelle lumen	ENY2, HMG1, SYNCP, ZNF655, CNOT7, ZNF330, MRPL20, CORO2A, DDX3, RBM8A, ZNF148, NUP50, TCEA											
GO:0004451~nucleoplasm part	ENY2, POLR3G, SYNCP, U1A, CREB1, YY1, MED13, CNOT7, SUZ12, CORO2A, DDX3											

T. Wongsurawat et al. / Data in Brief 17 (2018) 1112–1135
GOTERM_CC_FAT	GO:0031965--nuclear membrane	5	1.7857143	0.02568978	PHF17, HIF1A, DDX3x, RBM8A, HDAC9, CDX3, PAFAH1B1, TMPO, MATR3, ITPR1	197	73	12782	4.444058132	0.999524672	0.534736	29.29883
GOTERM_CC_FAT	GO:0043233--organelle lumen	39	13.928571	0.0276102	ENY2, SUPT3H, HMG1B, SYNRIP, ZNF655, CN017, ZNF330, MRPL20, CORO2A, DDX3x, RBM8A, ZNF418, NUP50, TCEA, ARHGAP21, PTPRC, ENAH, CTBP2, CADPS2, GRIP1, PVR13, CD99L2, ABC81, CDH2, HOMER1, CXADR, ITGB1, RIM51, TJA RPL30, PFDN1, UACA, RPL22, RPL21, GUCY1A3, UBB	197	1820	12782	1.39035533	0.999733881	0.526841	31.13293
GOTERM_CC_FAT	GO:0030054--cell junction	15	5.3571429	0.02853488	PTPRC, ENAH, PVRL3, ABC81, CDH2, CXADR, ITGB1 RPL30, PFDN1, UACA, RPL22, RPL21, GUCY1A3, UBB	197	518	12782	1.878858554	0.9999799239	0.508085	32.0679
GOTERM_CC_FAT	GO:0044445--cytosolic part	7	2.5	0.02964735	RPL30, PFDN1, UACA, RPL22, RPL21, GUCY1A3, UBB	197	152	12782	2.988044349	0.999856352	0.4937	33.0304
GOTERM_CC_FAT	GO:0005912--adherens junction	7	2.5	0.03218777	PTPRC, ENAH, PVRL3, ABC81, CDH2, CXADR, ITGB1	197	155	12782	2.930211233	0.999933536	0.496948	35.32875
GOTERM_CC_FAT	GO:0031974--membrane-enclosed lumen	39	13.928571	0.03603007	ENY2, SUPT3H, HMG1B, SYNRIP, ZNF655, CN017, ZNF330, MRPL20, CORO2A, DDX3x, RBM8A, ZNF418, NUP50, TCEA	197	1856	12782	1.363387231	0.999973962	0.512871	38.6672
GOTERM_MF_FAT	GO:0003723--RNA binding	23	8.2142857	0.0016071	KRR1, SNRPA1, AIM1P, CPE2, RPL15, SYNRIP, MBN1, IGF2BP3, DDX5, HRNRPA1, HRNRPU, MRPL20, RPL30, LARP4	201	718	12983	2.069104339	0.477004104	0.477004	2.220802
GOTERM_MF_FAT	GO:0003702--RNA polymerase II transcription factor activity	11	3.9285714	0.00457311	SUPT3H, ET7V, HIF1A, TBX3, ZNF418, CREB1, TCEA1, MED13, TCEB1, LCOR, FOX1	201	244	12983	2.911936221	0.815507665	0.36985	6.199674
GOTERM_MF_FAT	GO:0016879--ligase activity, forming carbon-nitrogen bonds	10	3.5714286	0.00955683	UBE2N, AKTIP, UBE3A, HERC4, UBE2NL, UBE2D1, TMEM189, FBXW11, LNX1, UBE2R2	201	231	12983	2.796192199	0.979140063	0.538828	12.54851
GOTERM_MF_FAT	GO:003735--structural constituent of ribosome	8	2.8571429	0.01527537	UBE2N, AKTIP, UBE3A, HERC4, UBE2NL, UBE2D1, TMEM189, FBXW11, LNX1, UBE2R2	201	168	12983	3.075811419	0.997977614	0.644387	19.34096
Category	Term	Count	p-value	Genes
GOTERM_MF_FAT	GO:0016566--specific transcriptional repressor activity	4	0.01770409	RPL30, RPL22, RPL21, RPL15, UBB, RPL10A, RPL12, MRPL20, HEXIM1, YY1, HDAC9, FOXP1
GOTERM_MF_FAT	GO:0030528--transcription regulator activity	34	0.02428221	ENY2, SUPT3H, ETV7, GRIP1, CBX3, CNOT7, MXII, MYOCD, HEXIM1, ZNF148, BCL11A, ETV1, TCEA1, ERG, ZNF33A, SSB
GOTERM_MF_FAT	GO:0003712--transcription cofactor activity	12	0.02515659	RPL30, RPL22, RPL21, RPL15, UBB, RPL10A, RPL12, MRPL20, HEXIM1, YY1, HDAC9, FOXP1
GOTERM_MF_FAT	GO:0004842--ubiquitin-protein ligase activity	7	0.0262357	UBE2N, UBE3A, UBE2NL, UBE2D1, FBXW11, LNX1, UBE2R2
GOTERM_MF_FAT	GO:0008134--transcription factor binding	15	0.02754274	RPL30, RPL22, RPL21, RPL15, UBB, RPL10A, RPL12, MRPL20, HEXIM1, YY1, HDAC9, FOXP1
GOTERM_MF_FAT	GO:0003779--actin binding	11	0.02969715	RPL30, RPL22, RPL21, RPL15, UBB, RPL10A, RPL12, MRPL20, HEXIM1, YY1, HDAC9, FOXP1
GOTERM_MF_FAT	GO:0019899--enzyme binding	15	0.03171181	RPL30, RPL22, RPL21, RPL15, UBB, RPL10A, RPL12, MRPL20, HEXIM1, YY1, HDAC9, FOXP1
GOTERM_MF_FAT	GO:0008092--cytoskeletal protein binding	14	0.04821415	RPL30, RPL22, RPL21, RPL15, UBB, RPL10A, RPL12, MRPL20, HEXIM1, YY1, HDAC9, FOXP1
GOTERM_MF_FAT	GO:0016564--transcription repressor activity	10	0.05535048	RPL30, RPL22, RPL21, RPL15, UBB, RPL10A, RPL12, MRPL20, HEXIM1, YY1, HDAC9, FOXP1
Table 7
Contingency table of prediction results from 21 genes.

Prediction	Reference	MI	Non-MI	Total
MI	16	2	18	18
Non-MI	1	18	20	37
Total	17	20	37	

Prediction	Reference	Event	No-Event	Total
Event	A	B	A+B+C+D	
No-Event	C	D	C+D	
Total	A+C	B+D	A+B+C+D	

Sensitivity = \(\frac{A}{A+C} \) = 0.94
Specificity = \(\frac{D}{B+D} \) = 0.9
Accuracy = \(\frac{(A+D)}{(A+B+C+D)} \) = 0.92

Fig. 2. Hierarchical clustering on six RT-qPCR-based validation genes.
Table 8
Differentially expressed proteins.

Number	Accession	Protein name	Description	MI/NMI	NMI/MI
1	P35527	KRT9	Keratin, type I cytoskeletal 9 OS=Homo sapiens GN=KRT9 PE=1 SV=3 - [K1C9_HUMAN]	0.608	1.644737
2	P67954	FH	Fumarate hydratase, mitochondrial OS=Homo sapiens GN=FH PE=1 SV=3 - [FUMH_HUMAN]	0.641	1.560062
3	P36405	ARL3	ADP-ribosylation factor-like protein 3 OS=Homo sapiens GN=ARL3 PE=1 SV=2 - [ARL3_HUMAN]	0.663	1.508296
4	H0Y614	UFM1	Ubiquitin-fold modifier 1 (Fragment) OS=Homo sapiens GN=UFM1 PE=4 SV=1 - [HOY614_HUMAN]	0.667	1.49925
5	J3QLR1	RUVBL1	RuvB-like 1 (Fragment) OS=Homo sapiens GN=RUVBL1 PE=4 SV=1 - [J3QLR1_HUMAN]	0.693	1.443001
6	C0Y2Z2	TTN	Titin OS=Homo sapiens GN=TTN PE=2 SV=1 - [C0Y2Z2_HUMAN]	0.705	1.41844
7	Q9BQB4	SOST	Sclerostin OS=Homo sapiens GN=SOST PE=1 SV=1 - [SOST_HUMAN]	0.708	1.412429
8	E5JR3	SKP1	S-phase kinase-associated protein 1 OS=Homo sapiens GN=SKP1 PE=2 SV=1 - [E5JR3_HUMAN]	0.737	1.356852
9	D6RL4	CD14	Monocyte differentiation antigen CD14, urinary form (Fragment) OS=Homo sapiens GN=CD14 PE=2 SV=1 - [D6RL4_HUMAN]	0.738	1.355014
10	H0YN19	MYF2	Myelin expression factor 2 (Fragment) OS=Homo sapiens GN=MYF2 PE=4 SV=1 - [H0YN19_HUMAN]	0.76	1.315789
11	P61006	RAB8A	Ras-related protein Rab-8A OS=Homo sapiens GN=RAB8A PE=1 SV=1 - [RAB8A_HUMAN]	0.768	1.302083
12	Q5TG3	LRRC1	Leucine rich repeat containing 1 OS=Homo sapiens GN=LRRC1 PE=4 SV=1 - [Q5TG3_HUMAN]	0.775	1.290323
13	P43686	PSMC4	26S protease regulatory subunit 6B OS=Homo sapiens GN=PSMC4 PE=1 SV=2 - [P43686_HUMAN]	0.778	1.285347
14	B2RN4	TUBGCP6	TUBGCP6 protein OS=Homo sapiens GN=TUBGCP6 PE=2 SV=1 - [B2RN4_HUMAN]	0.778	1.285347
15	O00168	FXYD1	Phospholemman OS=Homo sapiens GN=FXYD1 PE=1 SV=2 - [FXYD1_HUMAN]	0.781	1.28041
16	G3V220	TCERG1	Transcription elongation regulator 1 OS=Homo sapiens GN=TCERG1 PE=2 SV=1 - [G3V220_HUMAN]	0.783	1.277139
17	E5JR90	C1orf198	Uncharacterized protein C1orf198 (Fragment) OS=Homo sapiens GN=C1orf198 PE=2 SV=1 - [E5JR90_HUMAN]	0.789	1.267427
18	Q86Y22	COL23A1	Collagen alpha-1(XXIII) chain OS=Homo sapiens GN=COL23A1 PE=2 SV=1 - [COL23A1_HUMAN]	0.79	1.265823
19	H0YA15	SGC6	Beta-sarcoglycan (Fragment) OS=Homo sapiens GN=SGCB PE=4 SV=1 - [H0YA15_HUMAN]	0.792	1.262626
20	P15270	SPR	Septaperin reductase OS=Homo sapiens GN=SPR PE=1 SV=1 - [SPR_HUMAN]	0.803	1.24533
21	Q4G1A8	CAMK2D	CAMK2D protein (Fragment) OS=Homo sapiens GN=CAMK2D PE=2 SV=1 - [Q4G1A8_HUMAN]	0.803	1.24533
22	P30050	RPL12	60S ribosomal protein L12 OS=Homo sapiens GN=RPL12 PE=1 SV=1 - [RPL12_HUMAN]	0.806	1.246059
23	Q53GN4	WDR1	WD repeat domain 1, isoform CRA_a (Fragment) OS=Homo sapiens GN=WDR1 PE=2 SV=1 - [Q53GN4_HUMAN]	0.806	1.246095
24	E5R135	CPQ	Carboxypeptidase Q (Fragment) OS=Homo sapiens GN=CPQ PE=2 SV=1 - [E5R135_HUMAN]	0.81	1.234568
25	K7ER23	PLIN3	Perilipin-3 (Fragment) OS=Homo sapiens GN=PLIN3 PE=4 SV=1 - [K7ER23_HUMAN]	0.813	1.230012
26	Q562M3	ACT	Actin-like protein (Fragment) OS=Homo sapiens GN=ACT PE=2 SV=1 - [Q562M3_HUMAN]	0.815	1.226994
27	Q9H4B7	TUBB1	Tubulin beta-1 chain OS=Homo sapiens GN=TUBB1 PE=1 SV=1 - [TUBB1_HUMAN]	0.822	1.216545
28	P82987	ADAMTSL3	ADAMTS-like protein 3 OS=Homo sapiens GN=ADAMTSL3 PE=2 SV=4 - [ADAMTSL3_HUMAN]	0.823	1.215067
29	Q5SW55	ITLN1	Intelectin 1 OS=Homo sapiens GN=ITLN1 PE=2 SV=1 - [Q5SW55_HUMAN]	0.824	1.213592
30	Q5T1H1	EYS	Protein eyes shut homolog OS=Homo sapiens GN=EYS PE=1 SV=5 - [EYS_HUMAN]	0.826	1.210654
31	E5R1H4	CCAR2	DBIRD complex subunit KIAA1967 (Fragment) OS=Homo sapiens GN=KIAA1967 PE=2 SV=1 - [E5R1H4_HUMAN]	0.826	1.210654
#	Gene	Protein Function	OS = Homo sapiens	NSO = Other Species	
----	------------	--	------------------	---------------------	
52	ITBRM5	COX5A, mitochondrial COX3 oxidase subunit 5A	0.826	1.216654	
33	IL2LT3	Meteorin (Fragment) OS = Homo sapiens	0.826	1.216654	
34	P53396	ACP5, citrate synthase OS = Homo sapiens	0.827	1.20919	
35	P53304	BLVR, biliverdin reductase A OS = Homo sapiens	0.828	1.207729	
36	O94760	DDAH1, (N,G,N) dimethylarginine dimethylaminohydrolase 1 OS = Homo sapiens	0.83	1.204819	
1	Q12860	CTNNT1, contactin-1 OS = Homo sapiens	1.201	0.832639	
2	Q8TE77	SOD3, protein-phosphatase Siphollogon homolog 3 OS = Homo sapiens	1.201	0.832639	
3	Q9Y317	CHMP3, charged monoevolutionary body protein 3 OS = Homo sapiens	1.201	0.832639	
4	Q53117	ADAM23, paracrine uncharacterized protein ADAM23 (Fragment) OS = Homo sapiens	1.203	0.831255	
5	P08319	LPA, apolipoprotein(a) OS = Homo sapiens	1.206	0.829187	
6	P19562	ORM2, alpha-1-acid glycoprotein 2 OS = Homo sapiens	1.208	0.827815	
7	P03930	ANG, angiotensin OS = Homo sapiens	1.21	0.826446	
8	A1WWW4	SOD1, superoxide dismutase 1 (Fragment) OS = Homo sapiens	1.211	0.825764	
9	G3V4Y7	BTN, kinesin OS = Homo sapiens	1.212	0.825083	
10	Q8N105	DSW, protein-Dos OS = Homo sapiens	1.214	0.823723	
11	P54040	CAT, catalase OS = Homo sapiens	1.217	0.821693	
12	H7C036	CPA69, uncharacterized protein C7orf63 (Fragment) OS = Homo sapiens	1.219	0.820345	
13	Q5Q16	PPA1, inorganic pyrophosphatase OS = Homo sapiens	1.22	0.819672	
14	Q9Y333	LSM2, U6 snRNA-associated Sm-like protein LSM2 OS = Homo sapiens	1.223	0.817661	
15	Q5UL6B	VIH, immunoglobulin heavy chain (Fragment) OS = Homo sapiens	1.231	0.812348	
16	Q10888	BST1, ADP-ribosyl cyclase OS = Homo sapiens	1.232	0.811688	
17	Q9Q76U	DBNL, Drosophila-like protein OS = Homo sapiens	1.232	0.811688	
18	I9P9QY	EIF3F, eukaryotic translation initiation factor 3 subunit B OS = Homo sapiens	1.236	0.809061	
19	F55J35	NDUF9, NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 9, mitochondrial	5.1	0.809061	
20	H10YA6	GNB2L1, guanine nucleotide-binding protein subunit beta-2-like 1 (Fragment) OS =	1.237	0.808407	
21	Q5TCY1	TTBK1, tubulin kinase I OS = Homo sapiens	1.238	0.807754	
22	Q9UE8I	NDUFS2, 24-KDa subunit of complex 1 (Fragment) OS = Homo sapiens	1.241	0.805802	
23	Q8WWX9	SELM, Selene protein OS = Homo sapiens	1.245	0.803213	
24	Q9R82X	FAM213A, redox-regulatory protein FAM213A OS = Homo sapiens	1.254	0.797448	
25	FSWDN7	SACM1L, phosphatidylinositol phosphatase SAC1 OS = Homo sapiens	1.278	0.782473	
26	3QQRO	VWA1, von Willebrand factor A domain-containing protein 1 (Fragment) OS = Homo	1.281	0.78064	
27	P08311	CTGP, cathepsin G OS = Homo sapiens	1.295	0.772201	
28	K7EP6E	EIF3G, eukaryotic translation initiation factor 3 subunit G (Fragment) OS = Homo	1.298	0.770416	
29	Q6PIK2	SFQ, SFQ protein (Fragment) OS = Homo sapiens	1.3	0.769231	
30	O00231	PSDM11, 26S proteasome non-ATPase regulatory subunit 11 OS = Homo sapiens	1.309	0.763942	
#	Accession	Description	Organism	Year	PMID
----	------------	---	------------------------------	-------	-------
31	G3V2K7	TMED10 Transmembrane empr24 domain-containing protein 10 OS=Homo sapiens	GN=TMED10 PE=2 SV=1 - [G3V2K7_HUMAN]	1.311	0.762777
32	G3V333	SYNE3 Nesprin-3 OS=Homo sapiens GN=SYNE3 PE=2 SV=1 - [G3V333_HUMAN]		1.318	0.758725
33	Q5IQ44	DKFZp547A061 Putative uncharacterized protein DKFZp547A0616 (Fragment) OS=Homo sapiens GN=DKFZp547A0616 PE=2 SV=1 - [Q5IQ44_HU]		1.321	0.757002
34	Q4LE33	TNC TNC variant protein (Fragment) OS=Homo sapiens GN=TNC variant protein PE=2 SV=1 - [Q4LE33_HUMAN]		1.322	0.756435
35	F6T1Q0	PDE12 2',5'-phosphodiesterase 12 OS=Homo sapiens GN=PDE12 PE=2 SV=1 - [F6T1Q0_HUMAN]		1.331	0.751315
36	B2ZP79	BID BID interacting domain death agonist, isoform CRA_b OS=Homo sapiens GN=BID PE=2 SV=1 - [B2ZP79_HUMAN]		1.332	0.750751
37	Q9HDP7	ACBD3 Golgi resident protein GCP60 OS=Homo sapiens GN=ACBD3 PE=1 SV=4 - [GCP60_HUMAN]		1.334	0.749625
38	P36543	ATP5V1E V-type proton ATPase subunit E 1 OS=Homo sapiens GN=ATP5V1E1 PE=1 SV=1 - [VATE1_HUMAN]		1.336	0.748503
39	C936K0	SPP2 Secreted phosphoprotein 2 (Fragment) OS=Homo sapiens GN=SPP2 PE=2 SV=1 - [C936K0_HUMAN]		1.347	0.74239
40	E9PLT0	CSDE1 Cold shock domain-containing protein 1 OS=Homo sapiens GN=CSDE1 PE=2 SV=1 - [E9PLT0_HUMAN]		1.351	0.740192
41	Q9BY32	ITPA Inosine triphosphate pyrophosphatase OS=Homo sapiens GN=ITPA PE=1 SV=2 - [ITPA_HUMAN]		1.365	0.752691
42	C93F6	TBC1D5 TBC1 domain family member 5 OS=Homo sapiens GN=TBC1D5 PE=2 SV=1 - [C93F6_HUMAN]		1.369	0.73046
43	Q9UI1L	SCOC Short coiled-coil protein OS=Homo sapiens GN=SCOC PE=1 SV=2 - [SCOC_HUMAN]		1.378	0.725689
44	G3V2V6	ATP6V1D V-type proton ATPase subunit D OS=Homo sapiens GN=ATP6V1D PE=2 SV=1 - [G3V2V6_HUMAN]		1.4	0.714286
45	Q9H3K6	BOLA2 BolA-like protein 2 OS=Homo sapiens GN=BOLA2 PE=1 SV=1 - [BOLA2_HUMAN]		1.454	0.678758
46	L3L4N8	ACTG1 Actin, cytoplasmic 2, N-terminally processed (Fragment) OS=Homo sapiens GN=ACTG1 PE=3 SV=1 - [L3L4N8_HUMAN]		1.47	0.680272
47	E9PP06	EEF1D Elongation factor 1-delta (Fragment) OS=Homo sapiens GN=EEF1D PE=2 SV=1 - [E9PP06_HUMAN]		1.486	0.672948
48	P13553	MYH6 Myosin-6 OS=Homo sapiens GN=MYH6 PE=1 SV=5 - [MYH6_HUMAN]		1.516	0.659631
49	E9PPK0	TNKS1BP1 182 kDa tankyrase-1-binding protein OS=Homo sapiens GN=TNKS1BP1 PE=2 SV=1 - [E9PPK0_HUMAN]		1.551	0.644745
50	Q96RI1	RPS4X RPS4X protein (Fragment) OS=Homo sapiens GN=RPS4X PE=2 SV=2 - [Q96RI1_HUMAN]		1.561	0.640615
51	P50711	GSTT1 Glutathione S-transferase theta-1 OS=Homo sapiens GN=GSTT1 PE=1 SV=4 - [GSTT1_HUMAN]		1.573	0.635728
52	P50395	GID2 Rab GDP dissociation inhibitor beta OS=Homo sapiens GN=GID2 PE=1 SV=2 - [GID2_HUMAN]		1.602	0.62422
53	Q6PCC8	URB2 URB2 protein (Fragment) OS=Homo sapiens GN=URB2 PE=2 SV=1 - [Q6PCC8_HUMAN]		1.609	0.621504
54	F5GXW5	C12orf57 Protein C10 OS=Homo sapiens GN=C12orf57 PE=2 SV=1 - [F5GXW5_HUMAN]		1.623	0.616143
55	C9JLS9	PSMC2 26S proteasome regulatory subunit 7 (Fragment) OS=Homo sapiens GN=PSMC2 PE=4 SV=1 - [C9JLS9_HUMAN]		1.675	0.597015
56	P13645	KRT10 Keratin, type I cytoskeletal 10 OS=Homo sapiens GN=KRT10 PE=1 SV=6 - [K1C10_HUMAN]		1.744	0.573394
57	Q9BXO0	EMILN2 EMILN-2 OS=Homo sapiens GN=EMILN2 PE=1 SV=3 - [EMIL2_HUMAN]		2.539	0.398856
58	C9JNH9	SERPINE2 Glia-derived nexin (Fragment) OS=Homo sapiens GN=SERPINE2 PE=2 SV=1 - [C9JNH9_HUMAN]		2.703	0.369959
Table 9
Pathway mapping of 370 transcripts (highlighted in light blue) and 94 proteins (highlighted in yellow).

Ingenuity Canonical Pathways	-log(p-value)	Ratio	Molecules
Hypoxia Signaling in the Cardiovascular System	3.02	0.0952	UBE2N,UBE2R2,CREB1,UBE2V1,HIF1A,UBE2D1
Protein Ubiquitination Pathway	2.63	0.0472	H2M,UBB,UBE2N,USP5,UBE2R2,UBE2V1,HSPA1A,HSPA1B,FBXW7,USP6,TCEB1,UBE2C3,UBE2D1
Nrf2, Sirt7 Signaling in T Lymphocytes	2.03	0.087	HDAC9,MAPK7,PPP3CA,MAP3K2
Sertoli Cell-Sertoli Cell Junction Signaling	1.9	0.0468	ITGB1,T1AP1,PRKGI,GUCY1A3,NECTIN3,MAPK7,SP1A1,MAP3K2
Gap Junction Signaling	1.7	0.0464	PRKGI,CSNK1G1,GUCY1A3,MAPK7,ITPR1,PPP3CA,MAP3K2
Dopamine-DARPP32 Feedback in cAMP Signaling	1.62	0.0446	PRKGI,CSNK1G1,GUCY1A3,PPP1R12A,CREB1,ITPR1,PPP3CA
ERK5 Signaling	1.59	0.0645	YWHAH,CREB1,MAPK7,MAP3K2
Nrlin Signaling	1.48	0.076	PRKGI,PPP3CA,ENAH
β Cell Receptor Signaling	1.48	0.0417	PTPRC,CPL1,CREB1,MAPK7,RASSF5,PPP3CA,MAP3K2
Neuroprotective Role of THOP1 in Alzheimer's Disease	1.45	0.075	MAP7,CREB1,J1H-A-F
EIF2 Signaling	1.44	0.0409	RPL15,RPL22,RPS27L1,RPL30,RPL21,RPL12,RPL10A
AMPK Signaling	1.39	0.0398	PP1B,CPT1B,CREB1,PRKAA1,SMARCE1,MAP3K7,PPAT
Lipid Antigen Presentation by CD1	1.34	0.105	B2M,ARF6
Superoxide Radicals Degradation	3.27	0.4	CAT,SOD1
Acetyl-CoA Biosynthesis III (from Citrate)	2.13	1	ACLY
Amyotrophic Lateral Sclerosis Signaling	2.04	0.0517	CAT,BID,SOD1
Mitochondrial Dysfunction	1.9	0.0331	NDUFA9,NDUFV2,AT,COX5A
Crosstalk between Dendritic Cells and Natural Killer Cells	1.77	0.074	CAMK2D,ACTG1
Oxidative Phosphorylation	1.66	0.0375	NDUFA9,NDUFV2,COX5A
Tetrahydrobiopterin Biosynthesis I	1.65	0.333	SPTR
Tetrahydrobiopterin Biosynthesis II	1.65	0.333	SPTR
EIF2 Signaling	1.64	0.0276	EIF3G,EIF3F,RPL12,RPS4X
Mechanisms of Viral Exit from Host Cells	1.58	0.0588	ACTG1,CHMP3
Rhodanese Signaling	1.57	0.0345	RACK1,GID2,ACTG1
Heme Degradation	1.53	0.25	HLRV
GM-Csf Signaling	1.35	0.0444	CAMK2D,RACK1

Table 10
Pathway mapping of combined 21 gene signature and 94 proteins.

Ingenuity Canonical Pathways	-log(p-value)	Ratio	Molecules
Superoxide Radicals Degradation	3.1	0.4	CAT,SOD1
Rhodanese Signaling	2.11	0.046	ITGB1,RACK1,GID2,ACTG1
Acetyl-CoA Biosynthesis III (from Citrate)	2.04	1	ACLY
Clathrin-mediated Endocytosis Signaling	1.9	0.04	ITGB1,UBB,ARF6,ACTG1
Amyotrophic Lateral Sclerosis Signaling	1.82	0.052	CAT,BID,SOD1
Paxillin Signaling	1.82	0.052	ITGB1,ARF6,ACTG1
Regulation of eIF4 and p70S6K Signaling	1.69	0.035	ITGB1,EIF3G,EIF3F,RPS4X
Actin Cytoskeleton Signaling	1.64	0.033	ITGB1,PFN1,SSH3,ACTG1
Mitochondrial Dysfunction	1.63	0.033	NDUFA9,NDUFV2,AT,COX5A
Crosstalk between Dendritic Cells and Natural Killer Cells	1.61	0.074	CAMK2D,ACTG1
NRF2-mediated Oxidative Stress Response	1.57	0.032	UBB,CAT,SOD1,ACTG1
Acknowledgements

This work was supported by the National University Health System Clinician Scientist Program, Singapore and Biomedical Institutes of A*STAR, Singapore. We thank Ms Chan Yang Sun (Genomic Institute of Singapore, A*STAR, Singapore) for laboratory support and tissue processing. We thank Dr. Zhiqun Tang (Bioinformatics Institute, A*STAR, Singapore) for bioinformatics suggestions. We also thank Dr. Yenamandra S.P. for useful discussion of the experimental design and optimization of the experimental study protocols.

Fig. 3. Work flow and study design.
Transparency document. Supplementary material

Transparency data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2018.01.108.

References

[1] T. Wongsurawat, C.C. Woo, A. Giannakakis, X.Y. Lin, E.S.H. Cheow, C.N. Lee, M. Richards, S.K. Sze, J. Nookaew, V.A. Kuznetsov, V. Sorokin, Distinctive molecular signature and activated signaling pathways in aortic smooth muscle cells of patients with myocardial infarction, Atherosclerosis (2018), http://dx.doi.org/10.1016/j.atherosclerosis.2018.01.024.

[2] R. Tibshirani, T. Hastie, B. Narasimhan, G. Chu, Diagnosis of multiple cancer types by shrunken centroids of gene expression, Proc. Natl. Acad. Sci. USA 99 (2002) 6567–6572. http://dx.doi.org/10.1073/pnas.082099299.

[3] W. Huang, B.T. Sherman, R.A. Lempicki, Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources, Nat. Protoc. 4 (2009) 44–57. http://dx.doi.org/10.1038/nprot.2008.211.

[4] R. Suzuki, H. Shimodaira, Pvclust: an R package for assessing the uncertainty in hierarchical clustering, Bioinformatics. 22 (2006) 1540–1542. http://dx.doi.org/10.1093/bioinformatics/btl117.