Induction of K562 Cell Apoptosis by As$_4$S$_4$ via Down-Regulating miR181

Jiangjiang Gong
Shunli Zheng
Lei Zhang
Yi Wang
Jiali Meng

Background: Chronic myelogenous leukemia (CML) has unsatisfactory treatment efficacy at present. As the major component of red orpiment, tetra-arsenic tetra-sulfide (As$_4$S$_4$) has been recently used in treating leukemia, but with unclear mechanism targeting CML. MicroRNA (miR) is a group of endogenous non-coding RNAs regulating pathogenesis. MiR181 has been shown to exert important roles in tumor progression. The relationship between miR181 and As$_4$S$_4$ in inducing K562 cell apoptosis, however, is still unclear.

Material/Methods: CML cell line K562 was cultured in vitro in a control group and in groups receiving various dosages (20 μM and 40 μM) of As$_4$S$_4$. MTT assay was employed to detect the effect on K562 cell survival. MiR181 expression was quantified by real-time PCR. MTT assay and assay kit were used to determine K562 cell survival and caspase 3 expression. Cell apoptosis was assessed by flow cytometry. Bcl-2 expression was determined by flow cytometry and Western blotting.

Results: As$_4$S$_4$ significantly suppressed proliferation of K562 cells (p<0.05) and decreased miR181 expression, and increased caspase3 activity compared to the control group. It can induce K562 cell apoptosis via remarkably down-regulating mRNA and protein expressions of Bcl-2 (p<0.05).

Conclusions: As$_4$S$_4$ can facilitate K562 cell apoptosis via down-regulating miR181, inhibiting Bcl02 expression, and enhancing apoptotic protein caspase3 activity.

MeSH Keywords: bcl-2-Associated X Protein • Caspase 14 • Caspase Inhibitors • Genes, bcl-2 • Tacrine

Full-text PDF: http://www.medscimonit.com/abstract/index/idArt/899214
Background

Chronic myelogenous leukemia (CML) is the third most common type of leukemia [1,2], after acute granulocytic leukemia and acute lymphocytic leukemia. It is a malignant proliferation of granulocytic lineage of hematological stem cells [3,4]. CML is mainly caused by translocation of Abl and Bcr genes, which are located at chromosomes 9q34 and 22q11, respectively, thus forming the so-called Philadelphia (Ph) chromosome, which expresses BCR-ABL fusion protein. This protein has inherent tyrosine kinase activity for inducing tumorigenesis by anti-apoptosis and cell cycle disruption [5]. Currently, targeted drugs for BCR/ABL fusion protein combined with tyrosine kinase inhibitors are major approaches for treating CML. Currently available tyrosine kinase inhibitors such as imatinib are only effective during the chronic phase, but have poor efficacy in BCR/ABL fusion protein-positive disease during the acute phase, and is ineffective for CML stem cells during the latent stage [6,7]. Other common chemotherapy agents such as hydroxyurea and myleran lack tumor specificity, thus causing poor efficacy in CML [8]. Moreover, the long-term application of chemotherapy medicine or tyrosine kinase inhibitor (such as imatinib) also leads to the development of drug resistance in tumor cells, as well as more adverse effects. Xenograft bone marrow transplantation is an approach to curing CML, but is often restricted by donor, disease course, condition, and transplantation, plus high cost [9,10]. Therefore, it is of critical importance to develop novel treatment approaches for CML. As the major component of red orpiment, which is a traditional Chinese medicine, tetra-arsenic tetra-sulfide (As₄S₄) has been recently implicated in treating leukemia [11]. However, its treatment effects and mechanism targeting CML are unknown.

MicroRNA (miR) is a kind of small molecule RNA that participates in various biological functions via negative regulation and pairing for inhibiting downstream target protein expression, degrading mRNA, and regulating protein translation at the post-transcriptional level. miR has pluripotent functions in regulating body development and enhancing acclimation to the environment [12,13]. Among various endogenous non-coding RNAs regulating multiple diseases and physiological events, miR181 has been shown to be involved in the progression of multiple tumors [14,15]. The role of As₄S₄ in inducing CML tumor cell line K562 apoptosis via miR181 is unknown.

Material and Methods

Reagents and equipment

CML cell line K562 was purchased from the ATCC cell bank (USA). RPMI 1640 culture medium and penicillin/streptomycin were purchased from Hyclone (USA). As₄S₄ was extracted from red orpiment crystals and was dissolved in RPMI 1640 medium (160 mM stock). DMSO and MTT powder were purchased from Gibco (USA). Trypsin-EDTA buffer was obtained from Sigma (USA). PVDF membrane and caspase 3 activity kit were purchased from Pall Life Sciences (USA). Reagents for Western blotting were provided by Beyotime (China). ECL kits were purchased from Amersham Biosciences (USA). Rabbit anti-human Bcl2 monoclonal antibody and goat anti-rabbit IgG conjugated with horseradish peroxidase (HRP) were obtained from Cell Signaling (USA). Annexin V-FITC apoptotic assay kit, RNA extraction kit, reverse transcription kit, and microplate reader were obtained from BD (USA). MiR-181 mimic was purchased from Shanghai Genechem Co., Ltd. (Shanghai, China). DNA amplifier was purchased from PE (Gene Amp PCR System 2400). Other common reagents were purchased from Sangon (China).

K562 cell culture and grouping

K562 cells in liquid nitrogen were resuscitated at 37°C until complete thawing. Cells were collected by 1000 rpm centrifugation for 3 min and were re-suspended in 1 ml fresh culture medium in a 35-ml culture flask containing 2 ml fresh culture medium in a 37°C humidified chamber with 5% CO₂ for 24-48 h. Cells were then seeded into a 6-well plate at 1×10⁴ per ml using high-glucose RPMI-1640 medium containing 10% FBS and 100 μ/ml penicillin and 100 μg/ml streptomycin in a 37°C humidified chamber with 5% CO₂. Cells at log phase with 3-8 generations of passage were randomly divided into 3 groups for 48-h drug treatment: the control group, the low dosage (20 μM) As₄S₄ group, and high dosage (40 μM) As₄S₄ group.

MTT assay

K562 cells at log phase were digested, counted, and inoculated into a 96-well plate (3000 cells per well). Cells were randomly divided into 3 groups: control group, low dosage (20 μM) As₄S₄ group, and high dosage (40 μM) As₄S₄ group (N=5 each) for 48-h drug treatment. We added 5 g/L MTT solution into each group (20 μl each) for 4-h incubation. Supernatant was then removed, followed by the addition of 150 μl MTS for 10-min vortexing until complete resolving of violet crystals. A microplate reader was used to detect absorbance (A) value at 570 nm wavelength of each well for calculating cell proliferation rate in triplicate.

Real-time PCR

Trizol reagent was used to extract total RNA from K562 cells following the manual’s instructions. DNA was then synthesized by reverse transcription using pre-designed primers (by Primer6.0, synthesized by Yingjun Biotech, China, see Table 1) for real-time PCR under the following conditions: (for GAPDH

145
Table 1. Primer sequences.

Gene	Forward primer 5’-3’	Reverse primer 5’-3’
GADPH	AGTACCAGTCTGTGCTGG	TAATAAGCCGCGATGTCTGTT
miR181	AFTCTGTTTCTGGAAGCTGG	TTACGGCCCTGCTTGACCA
BCL-2	CCTCTGTCCCACATAAG	GTACCAATGGGGGTAATT

and miR188), 55°C 1 min, followed by 35 cycles each containing 92°C 30 s, 58°C 45 s, and 72°C 35 s; (for Bcl-2), 55°C 1 min, followed by 35 cycles each containing 92°C 30 s, 57°C 50 s, and 72°C 35 s. Data were collected to calculate CT values of all samples using GAPHD as the reference based on fluorescent quantification on PCR equipment. Using CT values of the standard samples as the reference, a standard curve was plotted for semi-quantitative analysis by 2-ΔΔCT approach.

Flow cytometry

Tumor cells were digested and inoculated in a 50-mL culture flask at 5×10⁶/mL and were randomly divided into 3 groups: control group; low dosage (20 μM) As₄S₄ group, and high dosage (40 μM) As₄S₄ group for 48-h drug treatment. To study the effect of As₄S₄ on apoptosis in cells with miR-181 overexpression, K562 cells were seeded for 12 h to reach a confluence of 70–80% and then transfected by miR-181 mimic (sequence: 5’-ACGUUCGAAUCGGUUGGA-3’) or negative control (5’-AUUCCGGAUAGCAUGUG-3’) using Lipofectamine 2000 (Invitrogen, Carlsbad, CA) following manufacturer’s instructions. Then, cells were digested, inoculated in a 50-mL culture flask at a density of 5×10⁶/mL, and then randomly divided into another 3 groups: control group, miR-181 overexpression group, and As₄S₄ (40 μM) group. After that, cells were then digested and collected in 1XPBS at 2×10⁶ per mL. After 1000 rpm centrifugation and 5 min washing, 75% cold ethanol was used to fix cells, which were incubated at 4°C overnight. After discarding ethanol, cells were re-washed in 1×PBS by 1000 rpm centrifugation for 5 min. Cells were then re-suspended into 0.8 mL 1×PBS with 1% BSA. After adding 100 μg/ml PI dye (3.8% sodium citrate, pH7.0), 100 RNA enzyme (RNase A, 10 mg/ml) was added for 37°C dark incubation for 30 min. Flow cytometry was used to collect data for analysis in FCSEXpress 3.0 software.

Caspase3 activity assay

The activity of caspase3 in all cells was detected by use of a test kit following manual instructions. In brief, trypsin was first used to digest cells, which were centrifuged at 600 g for 5 min to discard the supernatants. Cell lysis buffer was then added for ice incubation for 15 min. The mixture was centrifuged at 20 000 g for 5 min at 4°C. We added 2 mM Ac-DEVD-pNA to detect OD value at 405 nm wave length for calculating activity of caspase3.

Western blotting

K562 cells were collected and lysed on ice for 15–30 min. Ultrasound was used to rupture cells (5 s × 4 times). The mixture was then centrifuged at 10 000 g for 15 min at 4°C to collect supernatant, in which protein was quantified. In Western blotting assay, proteins were separated by 10% SDS-PAGE and transferred to PVDF membrane by semidy method. Non-specific background was removed by 5% defatted milk powder for 2 h at room temperature. Bcl-2 monoclonal antibody (1:1000 dilution) was added for 4°C overnight incubation. On the next day, the membrane was washed in PBST and mixed with 1:2000 goat anti-rabbit secondary antibody for 30-min incubation. ECL chromogenic substrate was used to develop the membrane for 1 min, followed by X-ray exposure. Quantity One software was used to scan X-ray films and measuring optical density of each band (N=4 in each group).

Statistical analysis

SPSS16.0 software was used to process all collected data, and measurement data are presented as mean ± standard deviation (SD). One-way analysis of variance (ANOVA) was employed to compare means across multiple groups. The LSD test was employed for paired comparison. Statistical significance was defined when p<0.05.

Results

Effects of As₄S₄ on the expression level of miR181

Real-time PCR was used to quantify miR181 expression levels under different concentrations of As₄S₄. Results showed significant suppression of miR181 expression in CML K562 cells after adding As₄S₄, in a dose-dependent manner; 40 μM drug has more potent effects than 20 μM (p<0.05, Figure 1).

As₄S₄ and K562 cell proliferation

We used MTT assay to describe the proliferation of CML K562 cells after 48-h drug treatment. Results showed that As₄S₄ could effectively inhibit cell proliferation in a dose-dependent manner; as 40 μM drug had more potent effects than 20 μM
These results suggested that As$_4$S$_4$ could inhibit the proliferation of CML K562 cells after down-regulating miR181.

As$_4$S$_4$ regulates apoptosis of CML K562 cells

Flow cytometry was used to detect the effect of different concentrations of As$_4$S$_4$ on the apoptosis of CML K562 cells. Results showed that As$_4$S$_4$ could induce tumor cell apoptosis in a dose-dependent manner; 40 μM drug has more potent effects than 20 μM (p<0.05, Figures 3, 4). These results suggested that As$_4$S$_4$ could induce the apoptosis of CML cells after down-regulating miR181.

Effects of As$_4$S$_4$ on the apoptosis of K562 cells with miR-181 overexpression

K562 cells with miR-181 overexpression was established through transfection of miR-181 mimic and then treated by As$_4$S$_4$ followed by measurement of cell apoptosis. As seen in (p<0.05, Figure 2). These results suggested that As$_4$S$_4$ could inhibit the proliferation of CML K562 cells after down-regulating miR181.

Figures 5 and 6, the apoptosis rate of cells with miR-181 overexpression was significantly lower compared to controls (p<0.05). The apoptosis rate in the miR-181 overexpression group was also significantly lower than in the As$_4$S$_4$ group (p<0.05).
Using a caspase3 activity assay kit to analyze the effect of different dosages of As$_4$S$_4$ on the caspase3 activity, we found that As$_4$S$_4$ remarkably increased the activity of caspase3 in K562 cells compared to the control group (p<0.05). We found that 40 μM drug has more potent effects than 20 μM (p<0.05, Figure 7). These results suggested that As$_4$S$_4$ could enhance the activity of caspase3 after down-regulating miR181 for further inducing CML cell apoptosis.

Bcl-2 mRNA expression in K562 cells

Real-time PCR was employed to detect the mRNA expression of Bcl-2 gene in CML K562 cells after treatment with different concentrations of As$_4$S$_4$. Results showed that As$_4$S$_4$ could remarkably inhibit the expression of Bcl-2 mRNA in K562 cells compared to controls (p<0.05). We found that 40 μM drug has more potent effects than 20 μM (p<0.05, Figure 8).
Effects of As₄S₄ on BCL-2 protein expression in CML K562 cells

Western blotting was employed to further reveal the protein expression level of BCL-2 in CML K562 cells treated with different concentrations of As₄S₄. Results showed that, similar to those of mRNA level, As₄S₄ could remarkably inhibit the expression of BCL-2 protein in K562 cells compared to the control group (p<0.05). We found that 40 μM drug has more potent effects than 20 μM (p<0.05, Figures 9, 10). These results suggest that As₄S₄ can inhibit the expression of anti-apoptotic protein BCL-2 expression after down-regulating miR181 to induce tumor cell apoptosis.

Discussion

The pathogenesis of CML has been illustrated as clinical symptoms and occurrence of Ph chromosome or Bcr/Abl fusion gene [5]. Clinically, CML can be divided into chronic, accelerating, and blastic phases. In chronic phase, CML has slow disease onset and late occurrence of symptoms. After diagnosis, however, patients are mostly in the accelerating phase, thus increasing the difficulty of treatment [7]. Although significant improvements have been obtained, CML is inherently insensitive to chemotherapy and other classical approaches, thus impeding the improvement of 5-year survival rate [6]. The development of a novel drug for CML can benefit the life quality of patients. As₄S₄ is a paragenetic mineral of As₂S₃, which has shown to be effective in treating tumors, including leukemia [16]. As₄S₄ has also been reported to have potential roles in treating CML [14,17], but details of its mechanism are unclear.

At present, understanding of the miRNA-related regulatory mechanism involved in CML pathogenesis is incomplete. The role of tumor-related miRNA in diagnosis and treatment of CML, including the identification of key target miR along with Bcr/Abl fusion gene, has become a focus of CML pathogenesis research. The abnormal expression of miR can affect the regulation of multiple biological processes, including development, cell proliferation/apoptosis, cell growth/differentiation, and cell cycle modulation [18]. miR can regulate the post-translational level and can modulate certain signal molecules such as cell growth factor, transcriptional factor, and death gene expression, thus affecting cell death, proliferation, differentiation, development, and metabolism [19]. miR181 has been reported to be over-expressed in CML cells [20]; therefore, we investigated the regulator effect of As₄S₄ on miR181 and its role in CML. Our results proved that in an in vitro K562 cell line of CML at different concentrations of As₄S₄ could significantly down-regulate miR181 expression in K562 cells, further causing higher apoptotic rates of cells and inhibiting cell proliferation.

Figure 9. BCL-2 protein expression in CML K562 cells.

Figure 10. Analysis of BCL-2 protein expression after As₄S₄ treatment. * p<0.05 compared to control group; * p<0.05 compared to 20 μM As₄S₄ group.
Conclusions

As$_4$S$_3$ can inhibit Bcl-2 mRNA and protein expression via down-regulating miR181 expression, and increase caspase3 activity for facilitating the apoptosis of CML cells and inhibiting disease progression. Our study provides potential drug candidates for a novel strategy for treating CML.

References:

1. Noh H, Park MS, Kim SH et al: Optimization of radotinib doses for the treatment of Asian patients with chronic myelogenous leukemia based on dose-response relationship analyses. Leuk Lymphoma, 2015 [Epub ahead of print].

2. Yilmaz M, Jabbour E: Tyrosine kinase inhibitors early in the disease course: Lessons from chronic myelogenous leukemia. Semin Oncol, 2015; 42(6): 876–86.

3. Jabbour E, Makenbaeva D, Linoehr-Smith M, Lin J: Use of Real-World Claim Databases to assess prevalence of comorbid conditions relevant to the treatment of chronic myelogenous leukemia based on National Comprehensive Network Treatment Guidelines. Clin Lymphoma Myeloma Leuk, 2015; 15(12): 797–802.e1.

4. Liu X, Kung A, Malinoski B et al: Development of alkyne-containing pyrazolopyrimidines to overcome drug resistance of Bcr-Abl Kinase. J Med Chem, 2015; 58(23): 9228–37.

5. Bruzzoni-Giovanelli H, Gonzalez JR3, Sigaux F et al: Genetic polymorphisms between Bcr-Abl and PKC signaling by PEITC, augments imatinib sensitivity in chronic myelogenous leukemia cells. Pediatr Transplant, 2015; 19(7): 767–75.

6. Roy M, Sarkar R, Mukherjee A, Mukherjee S et al: Inhibition of crosstalk between Bcr-Abl and PKC signaling by PEITC, augments imatinib resistance. Leuk Lymphoma, 2015 [Epub ahead of print].

7. Rejali L, Poopak B, Hasanzad M et al: Characterizing of four common BCR-ABL kinase domain mutations (T315I, Y253H, M351T and E255K) in Iranian chronic myelogenous leukemia patients with imatinib resistance. Iran J Cancer Prev, 2015; 8(3): 36269–77.

8. Mattsson K, Honkanieri E, Barbany G, Gustafsson B: Increased p53 protein expression as a potential predictor of early relapse after hematopoietic stem cell transplantation in children with acute myelogenous leukemia. Pediatr Transplant, 2015; 19(7): 767–75.

9. Yoon HS, Choi YS, Park TS: Chronic myelogenous leukemia after therapy for langerhans cell histiocytosis in an adolescent. Pediatr Hematol Oncol, 2015; 37(7): 572–73.

10. Lu J, Jiang H, Jiang Q et al: [Effect of additional chromosome abnormalities on the outcome of newly diagnosed acute promyelocytic leukemia treated with red arsenic sulfide and all trans-retinoic acid plus anthracyclin based protocol]. Zhonghua Yi Xue Za Zhi, 2008; 88(32): 2254–57 [in Chinese].

11. Gandhi NS, Tekade RK, Chougule MB: Nanocarrier mediated delivery of siRNA/miRNA in combination with chemotherapeutic agents for cancer therapy: Current progress and advances. J Control Release, 2014; 194: 238–56.

12. Orang AV, Barzagari A: MicroRNAs in colorectal cancer: From diagnosis to targeted therapy. Asian Pac J Cancer Prev, 2014; 15(17): 6989–99.

13. Dan C, Jinjun B, Zhi-Chun H et al: Modulation of TNF-alpha mRNA stability by human antigen R and miR181s in sepsis-induced immunoparalysis. EMBO Mol Med, 2015; 7(2): 140–57.

14. Zhou WY, Chen JC, Jiao TT et al: MicroRNA-181 targets Yin Yang 1 expression and inhibits cervical cancer progression. Mol Med Rep, 2015; 11(6): 4541–46.

15. Ding W, Zhang L, Kim S et al: Arsenic sulfide as a potential anticancer drug. Mol Med Rep, 2015; 11(2): 968–74.

16. Mao JH, Sun XY, Liu JX et al: As4S4 targets RING-type E3 ligase c-CBL to induce degradation of BCR-ABL in chronic myelogenous leukemia. Proc Natl Acad Sci USA, 2010; 107(50): 21683–88.

17. Ren F, Ding H, Huang S et al: Expression and clinicopathological significance of miR-193a-3p and its potential target astrocyte elevated gene-1 in non-small lung cancer tissues. Cancer Cell Int, 2015; 15: 80.

18. Noh H, Park MS, Kim SH et al: Optimization of radotinib doses for the treatment of Asian patients with chronic myelogenous leukemia based on dose-response relationship analyses. Leuk Lymphoma, 2015 [Epub ahead of print].

19. Rich G, Williams D, Roche E: Gastrointestinal: Hepatocellular carcinoma in an adolescent. J Pediatr Hematol Oncol, 2014; 29(12): 1961–66.