Helminth immunoregulation: The role of parasite secreted proteins in modulating host immunity

Citation for published version:
Hewitson, JP, Grainger, JR & Maizels, RM 2009, 'Helminth immunoregulation: The role of parasite secreted proteins in modulating host immunity' Molecular and Biochemical Parasitology, vol 167, no. 1, pp. 1-11. DOI: 10.1016/j.molbiopara.2009.04.008

Digital Object Identifier (DOI):
10.1016/j.molbiopara.2009.04.008

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Molecular and Biochemical Parasitology

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Helminth immunoregulation: The role of parasite secreted proteins in modulating host immunity

James P. Hewitson, John R. Grainger, Rick M. Maizels*
Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK

Abstract

Helminths are masterful immunoregulators. A characteristic feature of helminth infection is a Th2-dominated immune response, but stimulation of immunoregulatory cell populations, such as regulatory T cells and alternatively activated macrophages, is equally common. Typically, Th1/17 immunity is blocked and productive effector responses are muted, allowing survival of the parasite in a “modified Th2” environment. Drug treatment to clear the worms reverses the immunoregulatory effects, indicating that a state of active suppression is maintained by the parasite. Hence, research has focussed on “excretory–secretory” products released by live parasites, which can interfere with every aspect of host immunity from initial recognition to end-stage effector mechanisms. In this review, we survey our knowledge of helminth secreted molecules, and summarise current understanding of the growing number of individual helminth mediators that have been shown to target key receptors or pathways in the mammalian immune system.

Keywords:
Antioxidant
Cystatin
Cytokine
Helminth
Immune evasion
Lectin
Protease
Serpin

Contents

1. Immune modulation during helminth infection
2. Helminth secreted products: the rationale
3. Functional and molecular analyses of helminth products
 3.1. Trematodes: S. mansoni and Fasciola hepatica
 3.2. Filarial nematodes: B. malayi and Acanthocheilonema viteae
 3.3. Rodent intestinal nematodes: Nippostrongylus brasiliensis and Heligmosomoides polygyrus
 3.4. Human and canine hookworms: Anclylostoma caninum and Necator americanus
 3.5. Trichostrongyles of ruminants: Haemonchus contortus and related species
 3.6. Toxocara canis and Trichinella spiralis
 3.7. Toxins and Echinococcus
4. Immunomodulatory molecules from helminths
 4.1. Alpha to omega of schistosome Th2 induction
 4.2. ES-62 and phosphorylcholine inhibition of immune cell signalling
 4.3. Glycans and lipid molecules—connecting with DCs?
 4.4. Cytokine homologues—on the host’s home turf
 4.5. C-type lectins and galectins—targetting mammalian glycans?
 4.6. Protease inhibitors—blocking innate cell functions
 4.7. Antioxidants and acetylcholinesterases
 4.8. Venom allergen/ASP-like (VAL) homologues
 4.9. Novel proteins
5. Conclusion
Note added in proof
Acknowledgements
References

* Corresponding author. Tel.: +44 131 650 5511; fax: +44 131 650 5450. E-mail address: rick.maizels@ed.ac.uk (R.M. Maizels).
1. Immune modulation during helminth infection

The capacity of helminth parasites to modulate the immune system underpins their longevity in the mammalian host [1,2]. There is consequently intense interest in understanding the molecular basis of helminth immunomodulation [3,4]. The remarkable range of parasite life histories, transmission strategies, and physiological niches, is reflected in the variety of immunomodulatory activities observed across the three taxonomic categories (nematodes, cestodes, and trematodes) that comprise the helminth grouping [5–9]. However, general patterns have emerged, revealing the ways in which helminths can dampen host immunity, and how immunopathology may result from a dysregulated response to infection [10]. For instance, both schistosome (for example, Schistosoma mansoni) and filarial (e.g. Brugia malayi) infections result in antigen-specific unresponsiveness in the peripheral T cell populations of heavily infected patients [11–13]. Moreover, helminth infection is associated with diminished reactivity to bystander allergens and autoantigens, both in model systems [8,14] and in human studies [15,16].

A key feature is that helminth immune suppression is dependent on live parasites, as shown in vivo by the recovery of responsiveness following curative chemotherapy [17], as well as by the regulatory effects of live parasites in vitro [18]. Hence, there is a particular focus on mediators released by live parasites and the analysis of how these products, in total and as individual components, may be responsible for the noted ability of helminths to redirect the host immune system.

2. Helminth secreted products: the rationale

Mechanistically, parasite modulation of the immune system is most likely to be effected through the release of soluble mediators which ligate, degrade or otherwise interact with host immune cells and molecules [19]. Modulation may also occur through the release (and death of some proportion) of transmission stages such as the eggs of schistosomes or the newborn microfilarial larvae of filarial parasites. In tissue-dwelling parasites, important engagements also occur at the surface of the helminth itself. Much of the earlier literature on immunological effects of helminth products depended on crude extracts (such as SEA schistosome egg antigen), although the degree to which the host is exposed to constituent molecules was uncertain. While both somatically derived and secreted products are known to have immunological activity [4], the secreted helminth modulators are those most likely to be physiological actors at the interface between live parasites and the host, and these are the subject of this review.

“Excretory/secretory” (ES) is inevitably a working definition, with an imprecise line between products actively exported through secretory pathways and those which may diffuse or leak from the parasite soma. In vivo, “secreted” antigens will include digestive enzymes emanating from the intestine of adult worms, as well as uterine contents which female worms release along with transmission stage eggs or larvae. However, parasites may well have adapted such “secretions” to fulfill a new role in the host, once they are released from their primary locale within the worm. Hence, it is rational to analyse all ES products without prejudice as to their physiological origin, and subject them to a full range of biochemical, immunological and proteomic analyses.

Biochemical analyses have primarily concerned enzymatic activities in helminth ES, such as the proteases ranging in activity from parasite invasion [20] to degradation of host chemokines [21]. Where enzymes (also including antioxidant, acetylcholinesterases and platelet activating factor hydrolase) act in an immunological context, these are detailed further in Section 4.7 below. Immunological assays of ES have included the induction of Th2 responsiveness, leading in the case of S. mansoni to the products described in Section 4.1. An alternative, transcriptomic-based, avenue led to identifying ES products which are encoded by abundant mRNA species (e.g. filarial ALT proteins [22], see Section 4.9 below). More recently, with the development of helminth genomics, systematic proteomic analyses of many major helminth ES products have become possible (Table 1). These studies revealed a common set of proteins secreted by helminths, including proteases, protease inhibitors, venom allergen homologues, glycolytic enzymes and lectins. However, the relative abundance of each of these varied between different parasites and individual life cycle stage, reflecting the range of sites of parasitism.

Available parasitic helminth genomes encode >10,000 genes [23], a figure supported by independent transcriptomic analyses [24,25]. Bioinformatic approaches to predict secreted proteins on the basis of signal peptide sequences [26,27] have some merit, but in a metazoan not all secretory proteins will be exported from the organism, and proteomic data show a surprisingly large proportion of ES proteins are not encoded with a signal peptide [28–30]; hence empirical proteomic studies remain essential. Although ES products will only represent a fraction of the full genomic complement, determining the function of several hundred secreted proteins is a formidable task involving cloning and recombinant expression, as well as the production of neutralising antibodies.

Several other caveats about our current technologies should be borne in mind. While proteomic analysis can reveal the composition of helminth secretions and the relative abundance of each protein, it gives no information on the non-protein components (e.g. carbohydrates [31,32]), and post-translational modifications are not easily ascertained. Secondly, not all secreted products are macromolecules: filarial parasites secrete prostanoyl and prostaglandin for example [33], and schistosome eggs release free glycans [34]. Thirdly, while proteomic techniques allow unbiased identification of the more abundant ES proteins (Fig.1), they may still miss those expressed at low, but bioactive, levels [29,30,35]. Even with these reservations in mind, however, it is clear that a rich and fascinating set of parasite modulators have already been discovered.

In the following sections, we briefly summarise in Section 3 the molecular and immunological information available on the secreted products from each major helminth species, before discussing in Section 4 the key individual molecular mediators now identified from the ES products of these parasites.

3. Functional and molecular analyses of helminth products

3.1. Trematodes: S. mansoni and Fasciola hepatica

Schistosome infections commence when cercariae of this trematode penetrate the vertebrate skin, transforming into schistosomula larvae in the process. Schistosomulae migrate to the lung, mature as adults in the vasculature, and produce eggs which exit through the intestine. Each of these stages is implicated in immune modulation. Larval secretions are also highly immunogenic vaccine targets as passive immunisation with antisera to ES confers around 50% protection against challenge infection [36]. The same skin-stage schistosome ES directs DCs to drive Th2 responses in vivo [37]. This ES contains abundant proteases, including several elastases that facilitate parasite skin penetration [38], and can cleave host IgE antibodies [39]. The presence of multiple isoforms of cecral elastase and a metalloprotease was confirmed by proteomics of cultured parasites [40,41], and by proteomic analysis of human skin traversed by invading cercariae [42]. Additionally, skin-stage parasites were shown to secrete a number of glycolytic enzymes, such as triose phosphate isomerase, GADPH, aldolase and enolase, as well as several homologues of the venom allergen-like (VAL) family, as discussed in Section 4.8. Cercarial ES also contains the...
Table 1
Proteomic analyses of helminth secretions.

Species	Stage/niche	Proteins identified	Prominent proteins	Reference	Notes
Ancylostoma caninum	Adult/duodenum	105	ASPs (VALs)	[70]	
			C-type lectins and galectins, proteases		
Brugia malayi	Adult, male and female/lymphatics	80	Triose phosphate isomerase	[29,30]	
			Galectin, GlcNAcT, LAP, NPA, MIF-1		
	Microfilaria/blood	193	Serpin-2	[30]	
Haemonchus contortus	Adult/abomosum	107	VALs, proteases, globin	[78]	
Heligmosomoides polygyrus	Adult/duodenum	44	VALs, proteases, NPA, acetylcholinesterase		
			BmR1		
Nippostrongylus brasiliensis	Adult/duodenum	3	Multiple VALs		
Ostertagia ostertagi	Adult/abomosum	2	VALs	[80]	
Schistosoma mansoni	larva (schistosomula)/skin and lung	16	Cercarial elastase	[40-42]	
			Metalloproteinase VALs, Sm16	[167]	Gut contents likely to be released as “ES”
Teladorsagia circumcincta	Larva (L3/L4) and adult/abomosum	15 larval	VALs, proteases, TPX	[81]	
Toxocara canis	Larva (L2)/tissues	8	Mucins, C-type lectins, PEBP	[168]	
				[88]	
Trichinella spiralis	Muscle-stage (L1) larva	43	Cystatin, 5′ nucleotidase	[47]	
			Galectin, proteases		
Stages or species not parasitic to vertebrates	Mollusc-dwelling larva	8	Antioxidants (SOD, TRX)		
Fasciola hepatica				[47]	
Meloidogyne incognita	Plant parasitic	486	Heat shock proteins	[51]	
Schistosoma mansoni	Sporocyst (snail dwelling)	7	Glycolytic enzymes Antioxidants (SOD, GST)	[169]	

Abbreviations: ASP, ancylostoma secreted protein; FABP, fatty acid binding protein; GlcNAcT, N-acetylgalcosaminyltransferase; GST, glutathione-S-transferase; IPSE, IL-4-inducing principle of schistosome eggs; LAP, leucyl aminopeptidase; MIF, macrophage migration inhibitory factor homologue; NPA, nematode polyprotein allergen; PC, phosphorylcholine; PEBP, phosphatidylethanolamine binding protein; SOD, superoxide dismutase; TRX, thioredoxin; VAL, venomallergen/Ancylostoma secreted protein-like proteins; BmR1 and Sm16 are non-acronymic designations.

*Harcs, Y., Hewitson, J., Curwen, R., Dowie, A., Ashton, P., Wilson, R.A. and Maizels, R.M., manuscript in preparation.

immunomodulator Sm16 that can inhibit toll-like receptor signalling in monocytes [43].

Completion of the schistosome life cycle requires that eggs transit from the mesenteric veins, through the intestinal mucosa, into the lumen of the intestine, in a manner dependent on the inflammatory response of the host. Proteomic analysis of egg ES reveals two abundant proteins, alpha-1 (since renamed IPSE, IL-4-inducing principle of schistosome eggs) and a ribonuclease omega-1 [28,44] (see Section 4.1). Glycolytic enzymes (particularly aldolase and enolase) are again well represented in the secretions, as are VAL homologues.

The trematode liver fluke *F. hepatica* releases an extensive series of cathepsin L thiol proteases, which can induce significant protection in vaccine form [45]. Adult flukes also secrete thioredoxin peroxidase, which stimulates the alternative activation of macrophages both *in vitro* and *in vivo* [46]. A recent proteomic analysis of larval *F. hepatica* has identified additional antioxidant enzymes as prominent ES products [47].

3.2. *Filarial nematodes: B. malayi and Acanthocheilonema vitae*

The immunomodulatory potential of secretions of adult *Brugia* (BES) were noted some years ago, when BES treatment of infected dogs resulted in the loss of antigen-driven lymphocyte proliferation [48]. Further, in mice, BES injection generated suppressive alternatively activated macrophages [49]. Together these studies show that *Brugia* secretions mimic at least some of the immunomodulatory effects of actual infection.

The secretomes of adult and microfilarial stages of *B. malayi* have recently been analysed [29,30], matching data
Helminth ES proteins: an example of the complexity of secreted proteins, from adult B. malayi [29], highlighting products discussed in the text. (A) One-dimensional gel, Coomassie Blue stained, showing selective secretion compared to whole somatic extract, indicating the migration of N-acetylglucosaminyltransferase (GlcNAcTase), leucyl aminopeptidase (LAP, the homologue of ES-62), galectin, triose phosphate isomerase (TPI) and B. malayi homologue of macrophage migration inhibitory factor-1 (Bm-MIF-1). (B) Two-dimensional, silver stained gel, with the positions of the same proteins indicated.

Fig. 1. Helminth ES proteins: an example of the complexity of secreted proteins, from adult B. malayi [29], highlighting products discussed in the text. (A) One-dimensional gel, Coomassie Blue stained, showing selective secretion compared to whole somatic extract, indicating the migration of N-acetylglucosaminyltransferase (GlcNAcTase), leucyl aminopeptidase (LAP, the homologue of ES-62), galectin, triose phosphate isomerase (TPI) and B. malayi homologue of macrophage migration inhibitory factor-1 (Bm-MIF-1). (B) Two-dimensional, silver stained gel, with the positions of the same proteins indicated.

...to the recently published genome [23]. Abundant proteins secreted by adult parasites include the cytokine homologue Bm-MIF-1 [50], a leucyl aminopeptidase, the PC-bearing protein N-acetylgalactosaminyltransferase, and a Brugia galectin Bm-GAL-1 [29]. Surprisingly, the most abundant protein released by adult parasites, highly enriched compared to worm homogenate, was the glycolytic enzyme triose phosphate isomerase (TPI). TPI is also preferentially secreted by the plant nematode Meloidogyne incognita [51], and its role may not therefore be specific to the mammalian immune system. Experimental testing of TPI and the other major ES products are now under way in our laboratory.

B. malayi microfilariae secrete quantitatively and qualitatively different proteins to adult parasites, likely reflecting their different location within the host [30]. Abundant proteins include the diagnostic antigen R1 [52], and a serpin (serine protease inhibitor, SPN-2; [53]). Both adults and microfilariae release phosphatidylethanolamine binding protein (homologous to Onchocerca volvulus Ov-16 and Toxocara canis secreted TES-26 [54]). Secretions from the mosquito-borne infective larval (L3) stage are more difficult to analyse due to limitations on material, although it is known from biochemical studies that a novel protein family (abundant novel transcript, ALT) is released from glandular stockpiles, while other products include cysteine protease inhibitors and a homologue of VAL (B Gregory and J Murray, unpublished observations).

Rodent models for filariasis include A. viteae, in which adult worms can be recovered from the peritoneal cavity of gerbils. Adults secrete a single predominant molecule, ES-62, a leucyl aminopeptidase carrying multiple phosphorylcholine (PC) sidechains [55], as discussed in Section 4.2 below.

3.3. Rodent intestinal nematodes: Nippostrongylus brasiliensis and Heligmosomoides polygyrus

N. brasiliensis is a widely used model of nematode infection of rodents characterised by robust Th2 differentiation and parasite clearance within a week [56]. In vivo administration of N. brasiliensis adult ES (NES), directly [57] or through NES-pulsed dendritic cells (DCs) [58], results in strong Th2 responses. NES also induces alternative activation of macrophages [49]. Notably, NES results in strong IL-4 production, even in the presence of Th1/Th17-inducing complete Freund’s adjuvant, indicating a dominant Th2-inducing component which is heat- and protease-labile [57,58], but is not itself a protease. As well as driving Th2 responses in vivo, NES can also regulate pro-inflammatory Th1 responses, inhibiting both mitogen-dependent interferon-γ production by naïve mesenteric lymph node cells [59] and LPS-induced IL-12p70 production by DCs [58]. Notably, NES under the same conditions does not reduce IL-6 production, and heat-inactivated NES has no inhibitory properties, indicating that a selective and heat-sensitive pathway is in play. Blocking IL-12p70 responsiveness is a common property of many helminth ES products, and may represent a shared strategy to forestall Th1 responses [10].

Surprisingly, despite acting as a Th2-inducing adjuvant, NES can also inhibit Th2-mediated pathology. Both N. brasiliensis infection [60] and NES alone can inhibit allergen-induced lung inflammation [61]. In vivo studies showed that ES from N. brasiliensis L3 larvae (L-NES) inhibited LPS-dependent neutrophil recruitment to the lungs [62]. Despite the protective effects of NES against lung inflammation, L-NES is intrinsically allergenic [63], suggesting that different components may be acting in opposing manners over the longer term. Currently, few individual components of NES have been identified (for example, at least two VAL homologues, Table 1), but as the genome sequencing of this parasite is undertaken, this deficiency should soon be addressed.

H. polygyrus is closely related to N. brasiliensis but is able to establish chronic infections in mice. Immunosuppressive properties of H. polygyrus ES (HES) were first shown by Pritchard and colleagues on KLH-specific bystander responses in vitro [64]. More recently, a single HES fraction was reported to inhibit T cell proliferation and macrophage nitric oxide production [65]. HES treatment of DCs ablates IL-12p70 responsiveness to TLR agonists such as LPS [66]. Furthermore, HES-exposed DCs can induce differentiation of IL-10-producing CD4+ Tregs, which suppress bystander T cell proliferation [66]. One candidate immunomodulator is calreticulin, secreted by tissue-phase intestinal larvae, which can induce Th2 differentiation [67]. We have also established that at least six homologues of VAL are secreted by the adult worm (Table 1), as well as a TGF-β-like ligand which induces functional, suppressive Tregs from naive precursors (see Section 4.4 below).
3.4. Human and canine hookworms: Anclylostoma caninum and Necator americanus

Hookworm research has focussed on both the infective L3 stage, as a vaccine target, and on the blood-feeding adult worms. *A. caninum* L3 release the VAL homologue *Anclylostoma* secreted protein (ASP) [68], and a similar antigen from the human hookworm *N. americanus* is now in a vaccine trial [69]. ASPs are also abundant in adult *A. caninum* ES [70], together with proteases which play a role as anti-coagulants and in digestion of blood contents [71]. *A. caninum* adult-secreted mediators include a fatty acid/retinol binding protein [72], and a tissue inhibitor of metalloprotease [73] while an adult *N. americanus* protein binds to human NK cells, resulting in IFN-γ production [74]. Finally, *A. caninum* ES can reduce TNBS-induced intestinal inflammation, demonstrating its immunomodulatory potential [75].

3.5. Trichostrongyles of ruminants: Haemonchus contortus and related species

H. contortus is a trichostrongyle nematode and one of the most prevalent helminth parasites, distributed in ruminant livestock worldwide. Vaccination of sheep with *H. contortus* adult ES proteins induces significant protection (>70%) against challenge [76]; the major antigens are Hc15, and Hc24, the latter being a VAL homologue [77]. Proteomic analysis of the ES [78] indicates both Hc24 and a further VAL homologue Hc40 are expressed as numerous isoforms; galectins (GALs) are also prominent. Other intestinal nematodes of livestock, very closely related to *H. contortus*, secrete a similar GAL/VAL-dominated suite of ES proteins including Cooperia spp. [79], Ostertagia ostertagi [80], and Teladorsagia circumcincta [81].

3.6. Toxocara canis and Trichinella spiralis

T. canis is a parasite which, in its larval form, can infect a wide variety of hosts, causing visceral larva migrans in humans. Larval TES is type-2 stimulating [82] and comprises a relatively simple set of glycoproteins which is dominated by three gene families [83]. Most ES proteins match a small transcriptomic dataset [84], reflecting the secretion of a small number of relatively abundant proteins, including two C-type lectins [85,86] and three mucins [87,88]. The latter carry abundant O-linked glycans, similar in structure to mammalian blood group H [89], which are the target of dominant IgM antibodies in infected hosts [90].

T. spiralis (the pork worm) can also infect a broad host range, and ES antigens from this parasite were among the first to be characterised by biosynthetic labelling [91]. An intriguing set of functional properties have been discovered in ES, including the only known secreted protein kinase [92], a 5′-nucleotidase [93], macrophage migration inhibitory factor [94], and a prosaposin [95]. A *T. spiralis* nucleoside diphosphate kinase is secreted [96] and a similar product reported in ES from other nematodes [78,81]. Detailed proteomic analyses of the muscle-stage (infective) larvae have been undertaken [97,98].

3.7. Taenia and Echinococcus

Larval forms of cestode Taeniid tapeworms cause cystercerosis in humans; a model of this disease is *T. crassiceps* in mice, in which larval parasites in the peritoneal cavity can multiply asexually, accompanied by suppression of Th1 responses [99]. Larval ES products suppress in vitro T cell responses [100], although individual components of the secreted material were not identified. Additionally, larval ES contains a functional mimic of host IFN-γ, but the role of this protein in immunoregulation is unclear [101]. Hydatid cysts, surrounding metacestodes of *Echinococcus* granulo-
sus, are considered to comprise both host proteins and parasite secretions: prominent among the latter are the antigen B family which is implicated in Th2 induction and is reported to inhibit neutrophil migration [102].

4. Immunomodulatory molecules from helminths

4.1. Alpha to omega of schistosome Th2 induction

The schistosome-secreted proteins alpha-1 and omega-1 promote Th2 differentiation. Alpha-1, released by schistosome eggs [28], induces IL-4 release and degranulation by human and mouse basophils, thereby initiating a Th2 environment [103,104]. Also named IL-4-inducing principle of schistosome eggs (IPSE), alpha-1 is a dimer that binds and cross-links surface IgE on basophils, in an antigen-independent manner. IPSE has also been shown to function as a chemokine binding protein, which by sequestering ligands, can prevent chemokine-mediated recruitment of inflammatory cells such as neutrophils [105]. Neutralisation of IPSE, using polyclonal sera, leads to increased egg-induced inflammation, directly implicating IPSE in the modulation of egg granulomatous responses. Omega-1 is a ribonuclease abundantly secreted by eggs [106] which is hypothesised to stimulate the immune response necessary for egg transit across host tissues, allowing excretion. Supporting this, recent evidence indicates omega-1 can directly induce Th2 responses (M. Mohrs, M. Yazdanbakhsh and G. Schramm personal communication).

4.2. ES-62 and phosphorylcholine inhibition of immune cell signalling

Phosphorylcholine is a small hapten-like moiety present in secretions of many helminths. ES-62 is the leucine aminopeptidase secreted by *A. vitaeae*, which is heavily conjugated with phosphorylcholine and represents the dominant ES product of adult worms of this species [107]. Through PC modifications, ES-62 can inhibit the proliferation of CD4+ T cells and conventional B2 cells in vivo, and reduces CD4+ cell IL-4 and IFN-γ production [108,109]. Conversely, ES-62 promotes proliferation and IL-10 production by peritoneal B1 cells [110]. Antigen-presenting cells are also targeted, as ES-62 pulsed bone marrow-derived DCs drive Th2 differentiation in vitro [111], and pre-treatment of DC and macrophages with ES-62 inhibits their ability to produce IL-12p70 in response to LPS [112]. Inhibition of pro-inflammatory Th1 responses occurs as ES-62 interacts with toll-like receptor (TLR) 4 through its PC residues [113], and in mast cells TLR4 binding results in the sequestration and degradation of intracellular PKCs, thereby inhibiting degranulation and release of inflammatory mediators [114]. ES-62 also protects mice against collagen-induced arthritis [115].

Notably, in *B. malayi* PC is not found on the ES-62 homologue (LAP), but on another secretory protein, *N*-acetylglucosaminyltransferase [29]. In the rodent filarial parasite *Litomosoides sigmodontis*, the major ES product is modified with DMAE (dimethylaminoethanol) [116], which contains one less methyl group than PC, giving rise to suggestions that DMAE may function immunologically in a manner similar to PC [117].

4.3. Glycans and lipid molecules—connecting with DCs?

Helminth ES preparations are generally rich in glycoproteins and lipids, leading to many potential interactions with innate pattern-recognition receptors, such as TLRs and C-type lectins on host DCs. Blood-group-like glycans from *T. canis* bind the lectin DC-SIGN, hypothesised to favour immune regulation [90]. Schistosome glycoproteins show extensive glycosylation [32], including Lewis^x^ motifs that trigger Th2 responses in vivo through TLR4 ligation [118]. The
consequences of glycan-dependent stimulation include granuloma
development in vivo [119]. Additionally, macrophage stimulation
by schistosome larval secretions is dependent on carbohydrates
[120]. Helminth lipids have also been implicated in immune modu-
lation; schistosome phosphatidylserine (PS) induces DCs to polarise
IL-4/IL-10-producing T cells. In contrast, schistosome lyso-PS, con-
taining only a single acyl chain, conditions DCs to induce IL-10
secreting regulatory T cells, thus swaying the immune system away
from a protective Th2 response [121].

4.4. Cytokine homologues—on the host’s home turf

It is now clear that certain highly conserved cytokine gene families
are present in helminths, and that their products can
ligate receptors on mammalian immune cells. For example, B. malayi and A. ceylanicum express homologues of the mammalian
cytokine macrophage migration inhibitory factor (MIF) [122]. Mam-
malian MIF is considered to be pro-inflammatory, playing a key
role for example in septic shock. Perhaps surprisingly, nematode
MIF homologues mimic host MIF by induction of pro-inflammatory
cytokines [50,123,124]. However, we have recently shown that Brug-
gia MIF synergises with IL-4 to induce the development of fully
suppressive alternatively activated macrophages in vitro [125], to a
level beyond that observed for IL-4 alone [126]. One pathway for
this effect may be through the induction by MIF of IL-4R expres-
sion on macrophages [125], thereby amplifying the potency of IL-4
itself. Thus, in a Th2 environment, MIF may prevent the classical,
pro-inflammatory, activation of macrophages.

Worms also express members of the TGF-β and TGF-β recep-
tor superfamilies. B. malayi adults secrete TGH-2, a homologue of
host TGF-β and of the C. elegans developmental protein, DAF-7
[35]. Recombinant TGH-2 can bind to the mammalian TGF-β recep-
tor, suggesting it may promote the generation of regulatory T cells
[127], as has been found for mammalian TGF-β. However, TGH-2
is secreted at very low levels, below the limit of detection for pro-
teomics, and it is unclear whether this is sufficient for bioactivity
[29,30]. In contrast, a H. polygyrus TGF-β mimetic is able to directly
induce Foxp3+ expression in activated T cells, implying a key role
in parasite immune avoidance (Grainger et al., submitted for pub-
lication). Parasite TGF-β homologues also have non-immune roles,
and one such S. mansoni protein is involved in egg development
[128].

4.5. C-type lectins and galectins—targetting mammalian glycans?

Lectins are carbohydrate binding proteins, and host C-type
lectins and galectins are involved in a variety of immune processes,
such as antigen uptake and presentation, cell adhesion, apoptosis
and T cell polarisation [129]. C-type lectins (C-TLs) are particularly
abundant in the secretions of T. canis [85,86] and those of hook-
worms [70]. The biological roles of parasite C-TLs are unclear, but
two T. canis C-TLs (TES-32 and TES-70) show greater homology
to mammalian proteins such as CD23 (low affinity IgE receptor)
and macrophage mannose receptor, than to any C. elegans protein
[86]. Furthermore, TES-70 is able to bind mammalian carbohy-
drates in a calcium-dependent manner [85] suggesting a role in
immune evasion by e.g. inhibiting the migration of host cells.
Alternatively, parasite C-TLs may bind to and mask worm carbo-
hydrates from host immune cells. Additionally, nematode C-TLs
have roles unconnected with immune evasion. The acquisition of
symbiotic bacteria by the marine nematode Laxus oneistus requires
its secretion of a C-TL [130], while a non-secretary C-TL from A.
ceylonicum, specifically expressed by sperm cells, has a putative
role in nematode reproduction [131]. Secreted galectins are more
apparent in other species such as H. contortus [132] and particu-
larly B. malayi [29]. A recombinant Brugia galectin, Bm-GAL-1, is
able to bind to host immune cells in a carbohydrate dependent
manner (J.P.H. unpublished observations), but does not share the
eosinophil chemoattractant properties reported for a H. contortus
galectin [133].

4.6. Protease inhibitors—blocking innate cell functions

Two highly expressed sets of protease inhibitors are the cystatins
and the serpins, each with proposed immunomodulatory roles.
Cystatins (cysteine protease inhibitors) from A. viteae, B. malayi, O.
volvulus and N. brasiliensis act as immunomodulators, through at
least two mechanisms [134,135]. Firstly, they inhibit cysteine pro-
teases (cathepsins and aspartyl endopeptidase) required for host
APC antigen processing and presentation, so leading to reduced T
cell priming [136,137]. Secondly, they elicit the immunosuppressive
cytokine IL-10, leading to a reduction in costimulatory molecule
expression by APCs, and the direct inhibition of T cell proliferation
[138]. The immunomodulatory potential of parasite cystatins is also
evident in vivo, in inhibition of both allergic lung inflammation and
colitis, mediated by Tregs and IL-10-producing macrophages [139].

The serpins are serine protease inhibitors [140], and one mem-
ber of this family, SPN-2, is the major mRNA and secreted protein
product [30,141] of B. malayi microfilariae. The function of SPN-2 is
disputed; in collaboration with a leading serpin laboratory we
reported specific inhibition of the neutrophil proteinases cathepsin
G and neutrophil elastase, and no activity against a range of other
enzymes such as pancreatic chymotrypsin and coagulation factors
[53]. However, an independent group reported that recombinant
protein was devoid of inhibitory activity [142]. Irrespective of direct
anti-enzymatic activity, SPN-2 stands out as unusual because of its
ability to stimulate a Th1 response in mice, corresponding to the
ability of live microfilariae to drive this type of immune response
[141].

4.7. Antioxidants and acetylcholinesterases

Production of reactive oxygen species (oxygen radicals, super-
oxide, and hydrogen peroxide) by phagocytes is a primary pathway
of immune attack against parasites. Correspondingly, most par-
asites express high levels of antioxidants, including superoxide
dismutases (SODs), catalases, glutathione and thioredoxin peroxi-
dases, and peroxiredoxins. Secreted helminth antioxidant enzymes
include B. malayi glutathione peroxidase [29] and SOD [143], and
thioredoxin peroxidase from F. hepatica [46]. In the latter case,
the enzyme is also responsible for inducing alternatively activated
macrophages [46].

Acetylcholinesterase (ACHE) breaks down the neurotransmit-
er acetylcholine in order to terminate neuronal signals, and is
active in the neuromuscular system of helminths. ACHE has been
identified in the ES of many gut-dwelling nematodes, including
H. polygyrus [144], N. brasiliensis [145], the lungworm Dictyocaulus
viviparus [146], and adult B. malayi [147]. It has been proposed that
their secretion may also hydrolyse acetylcholine from the enteric
nervous system of the host [148]. Since acetylcholine-mediated sig-
nalling stimulates intestinal chloride and mucus production, ACHEs
may prevent fluid increases in the gut that promote parasite clear-
ance. Finally, another N. brasiliensis secreted enzyme is platelet
activating factor (PAF) hydrolase, which is likely to act in an anti-
flammatory capacity on the platelet population [149].

4.8. Venom allergen/ASP-like (VAL) homologues

In 1996, the Hotez laboratory described the A. caninum secreted
protein, ASP [68], the first of an enigmatic gene family expressed
across a wide variety of parasitic helminths, including human hook-
worm [150] filarial nematodes [30,151], trichostrongylids such as
4.9. Novel proteins

Helminths secrete numerous products lacking discernable sequence similarity to known proteins. Examples include the filarial ALT-1 and ALT-2 proteins which are highly abundant in the infective larval stage [158,159]. One route to determine the function of these proteins has been by heterologous expression in Leishmania parasites, studying changes in immune responsiveness resulting from filarial gene expression. L. mexicana parasites expressing B. malayi ALT-1 or ALT-2 were found to reach significantly higher levels of infection in macrophages in vitro, inhibiting killing mechanisms, and were more virulent in vivo [160]. Cells harboring transgenic parasites upregulated SOCS-1, an inhibitor of IFN-γ signalling, suggesting that the ALT proteins impair Th1 responsiveness known to be required for immunity in this system [160].

A B. malayi polyprotein “ladder” gp15/400 represents another unusual filarial immunomodulator. Adults synthesise this protein as a large 400-kDa precursor, subsequently processed into secreted 15-kDa subunits [161]. Released subunits can bind host retinoids [162], a property that may be shared with another family of secreted proteins, the transthyretin-like proteins [29]. Given that retinoic acid can synergise with TGF-β to induce Foxp3+ Tregs [163], it is possible that such proteins could enhance vitamin A uptake by host tissues to favour conversion to RA and thus enhance Foxp3+ Treg induction. The homologue of gp15/400 from Dirofilaria immitis, a filarial worm of dogs, stimulates mouse B cell synthesis of IgE through direct binding to CD40 [164] and can also inhibit insulin-dependent diabetes in mice [165].

5. Conclusion

The systematic analysis of ES products, which has become possible through the combination of proteomics and genomics,
is now providing us with a comprehensive catalogue of potential immunomodulators, each pointing the way towards critical immunomodulators, each pointing the way towards critical
is now providing us with a comprehensive catalogue of potential immunomodulators, each pointing the way towards critical
is now providing us with a comprehensive catalogue of potential immunomodulators, each pointing the way towards critical
is now providing us with a comprehensive catalogue of potential immunomodulators, each pointing the way towards critical
is now providing us with a comprehensive catalogue of potential immunomodulators, each pointing the way towards critical
is now providing us with a comprehensive catalogue of potential immunomodulators, each pointing the way towards critical
is now providing us with a comprehensive catalogue of potential immunomodulators, each pointing the way towards critical
is now providing us with a comprehensive catalogue of potential immunomodulators, each pointing the way towards critical
is now providing us with a comprehensive catalogue of potential immunomodulators, each pointing the way towards critical
is now providing us with a comprehensive catalogue of potential immunomodulators, each pointing the way towards critical
is now providing us with a comprehensive catalogue of potential immunomodulators, each pointing the way towards critical
is now providing us with a comprehensive catalogue of potential immunomodulators, each pointing the way towards critical
is now providing us with a comprehensive catalogue of potential immunomodulators, each pointing the way towards critical
is now providing us with a comprehensive catalogue of potential immunomodulators, each pointing the way towards critical
is now providing us with a comprehensive catalogue of potential immunomodulators, each pointing the way towards critical
is now providing us with a comprehensive catalogue of potential immunomodulators, each pointing the way towards critical
is now providing us with a comprehensive catalogue of potential immunomodulators, each pointing the way towards critical
is now providing us with a comprehensive catalogue of potential immunomodulators, each pointing the way towards critical
is now providing us with a comprehensive catalogue of potential immunomodulators, each pointing the way towards critical
is now providing us with a comprehensive catalogue of potential immunomodulators, each pointing the way towards critical
is now providing us with a comprehensive catalogue of potential immunomodulators, each pointing the way towards critical
is now providing us with a comprehensive catalogue of potential immunomodulators, each pointing the way towards critical
is now providing us with a comprehensive catalogue of potential immunomodulators, each pointing the way towards critical
is now providing us with a comprehensive catalogue of potential immunomodulators, each pointing the way towards critical
is now providing us with a comprehensive catalogue of potential immunomodulators, each pointing the way towards critical
is now providing us with a comprehensive catalogue of potential immunomodulators, each pointing the way towards critical
is now providing us with a comprehensive catalogue of potential immunomodulators, each pointing the way towards critical
is now providing us with a comprehensive catalogue of potential immunomodulators, each pointing the way towards critical
is now providing us with a comprehensive catalogue of potential immunomodulators, each pointing the way towards critical
is now providing us with a comprehensive catalogue of potential immunomodulators, each pointing the way towards critical
is now providing us with a comprehensive catalogue of potential immunomodulators, each pointing the way towards critical
is now providing us with a comprehensive catalogue of potential immunomodulators, each pointing the way towards critical
is now providing us with a comprehensive catalogue of potential immunomodulators, each pointing the way towards critical
is now providing us with a comprehensive catalogue of potential immunomodulators, each pointing the way towards critical
is now providing us with a comprehensive catalogue of potential immunomodulators, each pointing the way towards critical
is now providing us with a comprehensive catalogue of potential immunomodulators, each pointing the way towards critical
is now providing us with a comprehensive catalogue of potential immuni...
Hawdon JM, Jones BF, Hoffman DR, Hotez PJ. Cloning and characterization of the meloidogyne incognita secretory reagent proteins with host cell reprogramming potential. PLoS Pathogens 2008;4:e1000192.

Rzepecka J, Lucius R, Doligalska M, Beck S, Rausch S, Hartmann S. Screening of secretory products from infective forms of the intestinal parasitic nematode. Parasite Immunol 1998;20:241–7.

Marsland BJ, Camberis M, Le Gros G. Secretory products from infective forms of the intestinal parasitic nematode. Parasite Immunol 1998;20:241–7.

Bellofare S, Shen Z, Rossano MN, Abd P, Shih P, Briggs SP. Direct identification of the M. ovipara genotypic secretome reagent proteins with host cell reprogramming potential. PLoS Pathogens 2008;4:e1000192.

Rahmah N, Lim BH, Khairul Anuar A, et al. A recombinant antigen-based IgG4 ELISA for the specific and sensitive detection of Brugia malayi infection. Trans R Soc Trop Med Hyg 2001;95:280–4.

Zang XX, Yazdanbakhsh M, Kiang H, Kanost MR, Maizels RM. A novel serpin expressed by the blood-borne microflora of the parasitic nematode Brugia malayi inhibits human neutrophil serine proteinases. Blood 1999;94:1603–11.

Gems DH, Ferguson CJ, Robertson BD, Page AP, Blaxter ML, Maizels RM. An abundantly expressed mucin-like protein from the parasitic nematode Nippostrongylus brasiliensis act as adjuvants for Th2 responses.

Miller S, Schreuer D, Hammerberg B. Inhibition of antigen-driven proliferative responses and enhancement of antibody production during infection with Brugia pahangi. J Immunol 1991;147:1007–13.

Dalton JP, Neill SO, Stack C, et al. Molecular cloning and purification of Ac-TMF, a developmentally regulated putative tissue inhibitor of metalloprotease released in relative abundance by adult Ancylostoma hookworms. Am J Trop Med Hyg 2000;62:238–44.

Diemert DJ, Bethony JM, Hotez PJ. Hookworm vaccines. Clin Infect Dis 2003;37:63–72.

J.P. Hewitson et al. / Molecular & Biochemical Parasitology 167 (2009) 1–1 1

Spolski RJ, Corson J, Thomas PG, Kuhn RE. Parasite-secreted products regulate the host response to larval Trichinella spiralis. J Biol Chem 1995;270:18517–22.

Basavaraju S, Zhan B, Kennedy MW, Liu Y, Hawdon J, Hotez PJ. Ac-FAR-1, a 20kDa fatty acid- and retinol-binding protein secreted by adult Ancylostoma caninum hookworms: gene transcription pattern, ligand binding properties and structural characterisation. Mol Biochem Parasitol 2003;126:63–72.

Zhan B, Badamchian M, Meihu B, et al. Molecular cloning and purification of Ac-TMF, a developmentally regulated putative tissue inhibitor of metalloprotease released in relative abundance by adult Ancylostoma hookworms. Am J Trop Med Hyg 2000;62:238–44.

Hsieh GC-F, Loukas A, Wahl AM, et al. A secreted protein from the human hookworm Necator americanus binds selectively to NK cells and induces IFN-γ production. J Immunol 2004;173:2699–704.

Buyxues NE, De Vries PJ, Tan TH, Visser A, Nisbet AJ, et al. Therapeutic potential of helminth soluble proteins in TNBS-induced colitis in mice. Inflamm Bowel Dis 2009;15:491–500.

Schalig HDFH, Van Leeuwen MAW, Cornelissen AWCA. Protective immunity induced by vaccination with two Haemonchus contortus excretory-secretory proteins in sheep. Parasite Immunol 1997;19:447–54.

Schalig HDFH, Van Leeuwen MAW, Verstrepen BE, Cornelissen AWCA. Molecular characterization and expression of two putative protective excretory secretory proteins of Haemonchus contortus. Mol Biochem Parasitol 1997;88:203–13.

Yatsuda AP, Krijgsveeld J, Cornelissen AWCA, Heck AJ, De Vries E. Comprehensivew analysis of the secreted proteins of the parasite Haemonchus contortus reveals extensive sequence variation and differential immune recognition. J Biol Chem 2003;278:16941–51.

Yatsuda AP, Eysker M, Vieria-Bressan MCR, De Vries E. A family of activation associated secreted protein (ASP) homologues of Cooperia punctata. Res Vet Sci 2002;73:297–306.

Dalton JP, Neill SO, Stack C, et al. Proteins secreted by the filarial nematode secreted product, ES-62. Parasitology 2004;128:91–8.

Averbeck BM, Rezende SP, Coldburg J, et al. Cytokine regulation of host defense against parasitic gastrointestinal nematodes: lessons from studies with rodent models. Annu Rev Immunol 1997;15:505–33.

Holland MJ, Harcus YM, Riches PL, Maizels RM. Proteins secreted by the parasitic nematode Nippostrongylus brasiliensis act as adjuvants for Th2 responses. Eur J Immunol 2000;30:99–77.

Gems DH, Ferguson CJ, Robertson BD, Page AP, Blaxter ML, Maizels RM. A novel secretin expressed by the blood-borne microflora of the parasitic nematode Brugia malayi inhibits human neutrophil serine proteinases. Blood 1999;94:1603–11.

Zhan B, Badamchian M, Meihu B, et al. Molecular cloning and purification of Ac-TMF, a developmentally regulated putative tissue inhibitor of metalloprotease released in relative abundance by adult Ancylostoma hookworms. Am J Trop Med Hyg 2000;62:238–44.

Rzepecka J, Rausch S, Klotz C, et al. Purified protein derivative of Mycobacterium tuberculosis and excretory-secretory antigen(s) of Toxocara canis expand human T cells with stable and opposite (type 1 Th helper or type 2 helper) profile of cytokine production. J Clin Invest 1991;88:346–50.

Maizels RM, Tettet KK, Loukas A, Krijgsveeld J, Cooperia punctata genes expressed by the arrested infectious larval stage of a parasitic nematode. Int J Parasitol 2000;30:495–508.

Tettet KKA, Loukas A, Tripp C, Maizels RM. Identification of abundantly expressed novel and conserved genes from infective stage larvae of the parasitic nematode with an expressed sequence tag strategy. Infect Immun 1999;67:4771–9.

Yatsuda AP, Krijgsveeld J, Blaxter ML, Maizels RM. Identification of a new C-type lectin, TES-70, secreted by infective larvae of Toxocara canis, which binds to CD8 and CD56. Parasitology 2004;129:545–52.

Loukas AC, Mullin NP, Tettet KKA, Moens L, Maizels RM. A novel C-type lectin secreted by a tissue-dwelling parasitic nematode. Curr Biol 1999;9:825–8.

Gems DH, Maizels RM. An abundantly expressed mucin-like protein from Toxocara canis infective larvae: the precursor of the larval surface coat glycoprotein. Proc Natl Acad Sci USA 1996;93:1665–70.

Terrazas LI, Bojalil R, Govezensky T, Larralde C. Shift from an early protective Th1-type immune response to a late permissive Th2-type response in murine T. spiralis infections. Int J Parasitol 2007;37:97–109.

Parkhouse RME, Clark NWT. Stage specific secreted and somatic antigens of Trichinella spiralis. Mol Biochem Parasitol 1983;9:319–37.

Arden SR, Smith AM, Booth MJ, Twedde S, Gounaris K, Selikirke MJ. Identification of serine/threonine protein kinases secreted by Trichinella spiralis infective larvae. Mol Biochem Parasitol 1997;90:111–7.

Gounaris K, Selikirke MJ, Sadeghi SJ. A neuropeptide with unique catalytic properties is secreted by Trichinella spiralis. Mol Biochem Parasitol 2004;136:257–64.

Phielix FD, De Rosa SC, Strobel SA, Martin A, de la Torre J, Blaxter ML. Cluster analysis using a two-dimensional proteomic approach. Mol Biochem Parasitol 2008;156:26–32.

Trichinella spiralis Proteomics 2005;5:4525–32.

Terras LL, Bojalil R, Govezensky T, Larralde C. The effect of T. spiralis infection on the induction of a late permissive Th2-type response in murine cestocercus (Taenia crassiceps). J Parasitol 1998;84:74–81.

Spolski RJ, Corson J, Thomas PG, Kuhn RE. Parasite-secreted products regulate the host response to larval Taenia crassiceps. Parasite Immunol 2000;22:297–305.
Zang XX, Thomas GC, McInnes IB, Leung BP, Harnett MM. A novel nematode-derided immunomodulator with anti-inflammatory potential. Immun Lett 2004;94:27–33.

Wilson EH, Deehan MK, Katz E, et al. Hyporesponsiveness of murine B lymphocytes to the filarial nematode-derived phosphorylcholine-containing secreted product ES-62 in vivo. Immunology 2003;109:235–45.

Marshall FA, Grieson AM, Garside P, Harnett W, Harnett MM. ES-62, an immunomodulator secreted by filarial nematodes suppresses clonal expansion of CD4+ T cells, interacts with HLA-DR function of heterologous antigen-specific T cells in vivo. J Immunol 2005;175:5817–26.

Wilson EH, Katz E, Goodridge HS, Harnett MM. In vivo activation of murine peritoneal B1 cells by the filarial nematode phosphorylcholine-containing glycoprotein ES-62. Parasite Immunol 2003;25:463–6.

Goodridge HS, Goodridge HS, Harnett W, Liew FY, Harnett MM. Differential regulation of interleukin-12 p40 and p35 induction via Erk mitogen-activated protein kinase-dependent and -independent mechanisms and the implications for bioactive IL-12 and IL-23 responses. Immunology 2003;109:415–25.

Ou X, Tang L, McCrossan M, Henkle-Dührsen K, Selkirk ME. BmSPN2, a serpin secreted by the filarial nematode Brugia malayi, reduces strong, but short-lived, immune responses in mice and humans. J Immunol 2000;165:5161–9.

Stanley P, Stein PE. BmSNP2, an elastin secreted by the filarial nematode Brugia malayi, does not inhibit human neutrophil proteinases but plays a non-enzymatic role. Biochim Biophys Acta 2001;1542:6241–8.

Ou X, Tang L, McCrossan M, Henkle-Dührsen K, Selkirk ME. Brugia malayi: localisation and differential expression of extracellular and cytoplasmic C1q superoxide dismutases in adults and microfilariae. Exp Parasitol 1998;88:373–84.

Lawrence CE, Pritchard DJ. Differential secretion of acetylcholinesterase and proteases during the development of Heligmosomoides polygyrus. Int J Parasitol 1993;23:309–14.

Husseini A, Harel M, Selkirk M. A distinct family of acetylcholinesterase is secreted by Nippostrongylus brasiliensis. Mol Biochem Parasitol 2002;123:125–34.

McAread JB. Vaccine development and diagnostics of Dicyoeca vivax. Parasitology 2000;120:517–23.

Rathaur S, Robertson BD, Selkirk ME, Maizels RM. Secreted acetylcholinesterases from Brugia malayi adult and microfilarial parasites. Mol Biochem Parasitol 2002;113:333–9.

Selkirk ME, Lazari O, Hussein AS, Matthews JB. Nematode acetylcholinesterases are encoded by multiple genes and perform non-overlapping functions. Chem-Biol Interact 2005;157–158:263–8.

Grigg ME, Gouraris N, Selkirk ME. Characterization of a platelet-activating factor acetylhydrolase secreted by the nematode parasite Nippostrongylus brasiliensis. Biochem J 1996;317:541–7.

Bin Z, Hawdon J, Jiang S, et al. Ancylostoma secreted protein 1 (ASP-1) homologues in human hookworms. Mol Biochem Parasitol 1999;98:143–5.

Murray JA, Jones DG. Characterization and functional characterization of a secreted hhookworm macrophage migration inhibitory factor (MIF) that interacts with the human MIF receptor CD74. J Biol Chem 2007;282:23457–67.

Zhang X, Jones DW, Selkirk ME, et al. A nematode-secreted product ES-62 in vivo. J Immunol 2003;169:5561–7.

Harnett W, Meikert MJ, Proctor DJ, et al. Developmentally regulated CuZn superoxide dismutases in adults and microfilariae. Exp Parasitol 1998;80:515–29.

Brown AC, Harrison LM, Kapulkin W, et al. Molecular cloning and characterisation of a C-type lectin from Ankylostoma caninum: evidence for a role in hhookworm reproductive physiology. Mol Biochem Parasitol 2007;151:141–7.

Rijserhuis S, Schaboschka I, Chen T, Mullin NP, Maizels RM, Ott JA. A new C-type lectin similar to the human immunoreceptor DC-SIGN mediates sion by a marine nematode. Appl Environ Microbiol 2008;74:72950–6.

Brown AC, Harrison LM, Kapulkin W, et al. Molecular cloning and characterization of a C-type lectin from Ankylostoma caninum: evidence for a role in hhookworm reproductive physiology. Mol Biochem Parasitol 2007;151:141–7.

Harnett W, Meikert MJ, Proctor DJ, et al. Developmentally regulated CuZn superoxide dismutases in adults and microfilariae. Exp Parasitol 1998;80:515–29.

Zhang X, Jones DW, Selkirk ME, et al. A nematode-secreted product ES-62 in vivo. J Immunol 2003;169:5561–7.

Harnett W, Meikert MJ, Proctor DJ, et al. Developmentally regulated CuZn superoxide dismutases in adults and microfilariae. Exp Parasitol 1998;80:515–29.

Harnett W, Meikert MJ, Proctor DJ, et al. Developmentally regulated CuZn superoxide dismutases in adults and microfilariae. Exp Parasitol 1998;80:515–29.

Harnett W, Meikert MJ, Proctor DJ, et al. Developmentally regulated CuZn superoxide dismutases in adults and microfilariae. Exp Parasitol 1998;80:515–29.

Harnett W, Meikert MJ, Proctor DJ, et al. Developmentally regulated CuZn superoxide dismutases in adults and microfilariae. Exp Parasitol 1998;80:515–29.

Harnett W, Meikert MJ, Proctor DJ, et al. Developmentally regulated CuZn superoxide dismutases in adults and microfilariae. Exp Parasitol 1998;80:515–29.

Harnett W, Meikert MJ, Proctor DJ, et al. Developmentally regulated CuZn superoxide dismutases in adults and microfilariae. Exp Parasitol 1998;80:515–29.

Harnett W, Meikert MJ, Proctor DJ, et al. Developmentally regulated CuZn superoxide dismutases in adults and microfilariae. Exp Parasitol 1998;80:515–29.

Harnett W, Meikert MJ, Proctor DJ, et al. Developmentally regulated CuZn superoxide dismutases in adults and microfilariae. Exp Parasitol 1998;80:515–29.

Harnett W, Meikert MJ, Proctor DJ, et al. Developmentally regulated CuZn superoxide dismutases in adults and microfilariae. Exp Parasitol 1998;80:515–29.
[157] Bower MA, Constant SL, Mendez S. *Necator americanus*: the Na-ASP-2 protein secreted by the infective larvae induces neutrophil recruitment in vivo and in vitro. Exp Parasitol 2008;118:569–75.

[158] Gregory WF, Atmadja AK, Allen JE, Maizels RM. The abundant larval transcript 1/2 genes of *Brugia malayi* encode stage-specific candidate vaccine antigens for filariasis. Infect Immun 2008;17:4174–9.

[159] Wu Y, Egerton G, Pappins DYC, et al. The secreted larval acidic proteins (SLAPs) of *Onchocerca* spp. are encoded by orthologues of the alt gene family of *Brugia malayi* and have host protective potential. Mol Biochem Parasitol 2004;134:213–24.

[160] Gomez-Escobar N, Bennett C, Prieto-Lafuente L, Aebsicher T, Blackburn CC, Maizels RM. Heterologous expression of the filarial nematode alt gene products reveals their potential to inhibit immune function. BMC Biol 2005;3(8):1–16.

[161] Selkirk ME, Gregory WF, Jenkins RE, Maizels RM. Localization, turnover and conservation of gp15/400 in different stages of *Brugia malayi*. Parasitology 1995;107:449–57.

[162] Kennedy MW, Allen JE, Wright AS, McCruden AB, Cooper A. The gp15/400 polyprotein antigen of *Brugia malayi* binds fatty acids and retinoids. Mol Biochem Parasitol 1995;71:41–50.

[163] Mucida D, Park Y, Kim G, et al. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoid acid. Science 2007;317:256–60.

[164] Imai S, Tezuka H, Fujita K. A factor of inducing IgE from a filarial parasite is an agonist of human CD40. J Biol Chem 2001;276:46118–24.

[165] Imai S, Tezuka H, Fujita K. A factor of inducing IgE from a filarial parasite prevents insulin-dependent diabetes mellitus in nonobese diabetic mice. Biochem Biophys Res Commun 2001;286:1051–8.

[166] Maizels RM. Infections and allergy—helminths, hygiene and host immune regulation. Curr Opin Immunol 2005;17:656–61.

[167] Delcroix M, Medzhiradsky K, Caffrey CR, Fetter RD, McKerrow JH. Proteomic analysis of adult *S. mansoni* gut contents. Mol Biochem Parasitol 2007;154:95–7.

[168] Smith SK, Nisbet AJ, Meikle LJ, et al. Proteomic analysis of excretory/secretory products released by *Teladorsagia circumcincta* larvae early post-infection. Parasite Immunol 2009;31:10–9.

[169] Guilhou F, Roger E, Caffrey CR, Fetter RD, McKerrow JH. Proteomic analysis of larval *Schistosoma mansoni* and *Echinostoma caproni*, two parasites of *Biomphalaria glabrata*. Mol Biochem Parasitol 2007;155:45–56.

[170] Robinson MW, Menon R, Donnelly SM, Dalton JP, Ranganathan S. An integrated transcriptomic and proteomic analysis of the secretome of the helminth pathogen, *Fasciola hepatica*: proteins associated with invasion and infection of the mammalian host. Mol Cell Proteomics 2009 in press.