Pattern of somatic mutations in patients with Waldenström macroglobulinemia or IgM monoclonal gammopathy of undetermined significance

Marzia Varettoni,1 Silvia Zibellini,1 Irene Defrancesco,1 Virginia Valeria Ferretti,2 Ettore Rizzo,3 Luca Malcovati1,2, Anna Galli,2 Matteo Giovanni Della Porta,4 Emanuela Boveri,2 Luca Arcaini,1,2 Chiara Candido,1 Marco Paulli5 and Mario Cazzola1,2

1Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia; 2Department of Molecular Medicine, University of Pavia; 3enGenome srl, Pavia; 4Cancer Center, IRCCS Humanitas Research Hospital & Humanitas University, Milan, and 5Anatomic Pathology Section, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy

©2017 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2017.172718

Received: May 15, 2017.
Accepted: September 28, 2017.
Pre-published: October 5, 2017.
Correspondence: m.varettoni@smatteo.pv.it
SUPPLEMENTAL METHODS

Sample collection and cell separation
Samples were collected in untreated patients in 236/260 patients (91%) and after treatment in 24 (9%). Bone marrow mononuclear cells (BMMNCs) were separated by standard density gradient centrifugation (Lympholyte-H; CEDARLANE Laboratories Ltd). CD19+ cells were further isolated from BMMNCs by immunomagnetic adsorption on MiniMACS separation columns using an anti-CD19 antibody (Miltenyi Biotec GmbH) according to the manufacturer’s recommendations. The purity of CD19+ separated cells was assessed by flow cytometry using anti-CD19 monoclonal antibodies (Becton Dickinson). CD19-depleted BMMNCs cells were used as control tissue. DNA was extracted following standard protocols for human tissue.

Mutation analysis of MYD88 using allele-specific RT-qPCR for MYD88 (265P)

RT-qPCR based allelic discrimination assay was developed for MYD88 (L265P) mutation. For the allelic discrimination of the c.794T>C, a common forward primer (MYD88_F 5’-AATGTGTGCCAGGGGTACTTAG-3’) and 2 reverse primers (MYD88_Rwt 5’-GCCCTTGTACTTGATGGGGAaCA-3’ and MYD88_Rmut 5’-CCTTGACTTGATGGGGAAcG-3’) were designed based on the nucleotide difference at the 3’ terminal base (T or C). To prevent the amplification of the nonmatching primer, an additional nucleotide mismatch (A_C) located 3 bases from the 3’ termini of the allele-specific primers was incorporated. PCR was performed on RotorGeneQ real-time analyzer on a 100-well Gene Disk (Qiagen, Milan, Italy) in two separate tubes for normal and mutated alleles. In all, 20 nanograms of genomic DNA were amplified in a 40-cycle PCR at an annealing temperature of 61 °C. All reactions were carried out in a final volume of 20 ul
containing 1X Brilliant SYBR Green QPCR master mix (Stratagene, Cedar Creek, TX, USA) and 100 nM of both forward and reverse primers. Cell lines OCI-LY19 (MYD88 wt) and OCI-LY3 (MYD88 MUT, L265P) were used to construct two different standard curves by dilution series of 7 different concentrations ranging from 40 ng/μl to 0.08 ng/μl corresponding to allele burdens ranging from 100% to 0.5%. Allele burden quantification was performed by the ratio MYD88 L265P mutated/MYD88 (mutant and wild-type alleles).

Mutation analysis of CXCR4 using Sanger sequencing

The C-terminal domain of the CXCR4 gene was sequenced by Sanger sequencing. The forward PCR primer 5'-CATCCTGGCTTTCTTCGCCT-3' and reverse PCR primer 5'-TTGCTGTATGTCTCGTGGTAGG-3' were designed to amplify a 572 bp fragment. PCR was carried out in a final volume of 25 μl containing 50 ng genomic DNA, 1X reaction buffer, 0.2 μM of each primer, 200 μM dNTPs, 2 mM MgCl2 and 2.5 U of HotStarTaq (Qiagen, Milan, Italy). PCR consisted of an initial denaturation step of 15 minutes at 95°C, followed by 35 cycles of 95°C for 30 seconds, 60°C for 30 seconds and 72°C for 60 seconds, with a final extension step of 10 minutes at 72°C. PCR products were purified and sequenced using BigDye® Terminator v3.1 Cycle Sequencing Kit and an ABI 3500 automatic sequencer (Applied Biosystems, Foster City, CA, USA).

Sequences were aligned to the corresponding germline RefSeqGene (NG_011587.1) using the MultAlin software after manual curation to detect variants.
Table 1. Clinical characteristics of patients according to diagnosis

Characteristic	IgM MGUS (n=130)	WM (n=130)
Age (years), median (range)	64 (20-83)	65 (27-86)
Sex (male/female), % of patients	56/44	59/41
Hemoglobin (g/dL), median (range)	13.8 (10-17.4)	12.9 (6.1-16.1)
Platelets (x10^9/L), median (range)	241 (16-593)	258 (34-800)
IgM levels (mg/dL), median (range)	433 (101-4728)	1240 (60-8940)
Serum albumin (g/dL), median (range)	4.2 (2.9-5)	4.1 (2.3-4.9)
Abnormal serum free light chain k/λ ratio, % of patients	25	67
β2-microglobulin (mcg/L), median (range)	1893 (900-6820)	2662 (1230-11600)
Detectable BJ proteinuria, % of patients	22	49
Bone marrow involvement by IHC, %, median (range)	NA	35 (0-90)
Extramedullary involvement, % of patients	NA	23

NA= not applicable
Table 2. Correlation of CXCR4 mutational status with clinical characteristics and MYD88 allele burden in WM patients

Characteristic	CXCR4 mutated	CXCR4 wild type	P value
Age (years), median (range)	67 (44-83)	65 (37-85)	>0.900
Sex (male/female), % of patients	45/55	66/34	0.121
Hemoglobin (g/dL), median (range)	12.2 (8.3-16.1)	13.3 (8-16)	0.113
Platelets (x10⁹/L), median (range)	246 (69-368)	262 (65-548)	0.490
Serum M-protein (g/L), median (range)	1 (0.1-2.9)	1.3 (0.2-6.3)	0.316
Serum albumin (g/dL), median (range)	4.2 (2.5-4.8)	4.1 (2.3-4.9)	>0.900
Abnormal serum free light chain k/λ ratio, % of patients	64	66	>0.900
β₂-microglobulin (mcg/L), median (range)	2281 (1430-4360)	2530 (1230-10465)	0.761
Detectable BJ proteinuria, % of patients	40	48	0.776
Bone marrow involvement by IHC, %, median (range)	50 (5-90)	30 (0-90)	0.042
Extramedullary involvement, % of patients	20	19	>0.900
MYD88 allele burden (%), median (range)	24.5 (4.3 – 93.3)	9.4 (0.1 – 49.7)	0.010
Table 3. Mutually-adjusted effect of CXCR4 mutation and other clinical factors on risk of progression to symptomatic WM requiring treatment

Covariates	Hazard ratio	95% confidence interval	P value
CXCR4	20.15	2.12-191	0.009
Hemoglobin levels	0.98	0.59-1.63	0.951
BM infiltration %	0.98	0.94-1.02	0.218
Serum monoclonal protein	4.76	1.48-15.28	0.009