ON THE UNIRULED VOISIN DIVISOR ON THE LLSVS VARIETY

FRANCO GIOVENZANA

Abstract. Let Y be a smooth cubic fourfold, F be its Fano variety of lines and Z be its associated LLSvS variety, parametrizing families of twisted cubics and some of their degenerations. In this short note, we show that the divisor of singular cubic surfaces on Z has two irreducible components, one of which coincides with the uniruled branch divisor of a resolution of the Voisin map $F \times F \rightarrow Z$.

Introduction

Given a smooth cubic fourfold $Y \subset \mathbb{P}^5$, its Fano variety of lines F is a hyperkähler variety [1, Proposition 1]. Assuming further that Y does not contain any plane, one constructs starting from the variety of twisted cubics another hyperkähler variety Z of dimension 8 [9, Theorem B]. Their geometry is deeply related as Voisin showed by constructing a degree 6 rational map [12, Proposition 4.8]

$$\varphi : F \times F \rightarrow Z.$$

Twisted cubics have Hilbert polynomial $3t + 1$, their flat degenerations are called generalised twisted cubics. Generalised twisted cubics on a singular cubic surface of type A_1 fall in three different types, which we are going to call α, β, and γ. They determine two divisors D_α, D_β, on Z, see Definition 4.

Theorem 1. The divisor $D \subset Z$ of generalised twisted cubics lying on singular cubic surfaces has two irreducible components

$$D = D_\alpha \cup D_\beta.$$

The first component coincides with the uniruled branch divisor of a resolution of the Voisin map.

Acknowledgements. The content of this paper is part of my PhD thesis, I would like to express my gratitude to Christian Lehn for having introduced me to the problem and for his constant support. I was supported by DFG research grants Le 3093/2-1 and Le 3093/2-2.
Basic properties of the LLSvS variety

Construction of the LLSvS variety. We recollect basic properties of the variety Z from [9]. Let $Y \subset \mathbb{P}(V) \simeq \mathbb{P}^5$ be a smooth cubic fourfold not containing any plane and let M be the variety of generalised twisted cubics on Y, that is, the irreducible component of $\text{Hilb}^{3t+1}(Y)$ containing smooth twisted cubics. For any curve $C \in M$ its linear span $E := \langle C \rangle$ is a \mathbb{P}^3 that cuts Y in the cubic surface $S_C := E \cap Y$. These associations give rise to the diagram

$$
\begin{array}{c}
M \\
\downarrow \sigma \\
\mathbb{P}(S^3W^*) \\
\downarrow s \\
\text{Gr}(V, 4)
\end{array}
$$

where W is the universal quotient bundle over the Grassmannian $\text{Gr}(V, 4)$ and the section s is given by cutting Y with a \mathbb{P}^3. The morphism σ factors through a smooth irreducible variety Z' of dimension 8:

$$
\begin{array}{c}
M \\
\downarrow a \\
Z' \\
\downarrow b \\
\text{Gr}(V, 4)
\end{array}
$$

where a is an étale locally trivial \mathbb{P}^2-fibration and b is generically finite [9, Theorem B]. It is in effect finite over the open set $U_{ADE} \subset Z'$ of surfaces that are either smooth or with ordinary double points. For the complement we have the following estimate [9, Corollary 3.11, Proposition 4.2, Proposition 4.3]:

$$\dim(Z' \setminus U_{ADE}) \leq 6. \quad (1)$$

The irreducible holomorphically symplectic variety Z is obtained by the contraction $\pi : Z' \to Z$ of the irreducible divisor $D_{nCM} \subset Z'$ of families of curves that are not arithmetically Cohen-Macaulay [9, Theorem 4.11].

The divisor of singular cubic surfaces. The projection $\mathbb{P}(S^3W^*) \to \text{Gr}(V, 4)$ is equivariant for the natural action of $\text{PGL}(6)$. The locus $D_{\text{sing}} \subset \mathbb{P}(S^3W^*)$ of all singular cubic surfaces in $\mathbb{P}(V)$ surjects onto the Grassmannian, the fiber over a point W_0 is the divisor $D_{\text{sing}, W_0} \subset \mathbb{P}(S^3W^*_0)$ of singular cubic surfaces in $\mathbb{P}(W_0)$. Furthermore, D_{sing, W_0} is irreducible [8, Theorem 2.2] and locally stratified depending on the singularity type of the parametrised surfaces, the A_1 locus forming an open set in D_{sing, W_0}. Since D_{sing} coincides with the orbit of D_{sing, W_0} under the action of $\text{PGL}(6)$ we conclude that D_{sing} is an irreducible divisor and the A_1-locus is open in it. Pulling back this divisor along $s \circ b : Z' \to \mathbb{P}(S^3W^*)$ and taking advantage of both the finiteness of $s \circ b$ on the ADE-locus and the estimate (1) we get the following
Proposition 2. Let \(D' \subset Z' \) be the image under \(a \) of the locus of curves lying on singular cubic surfaces. Then \(D' \) is a divisor. Moreover, the preimage under \(s \circ b \) of singular cubic surfaces of type \(A_1 \) is a dense open set in \(D' \).

Analogously singular cubic surfaces determine a divisor \(D_{Gr} := s^{-1}(D_{sing}) \) in \(\text{Gr}(V, 4) \) and a divisor \(D := \pi(D') \) in \(Z \). In light of this proposition, when discussing the irreducible components of \(D' \) it will suffice to treat only the \(A_1 \) locus.

Twisted cubics on \(A_1 \)-singular cubic surfaces. Whereas twisted cubics on smooth cubic surfaces are a classical subject of study, twisted cubics on surfaces with ordinary double points are well explained in \([9, \S \, 2.1]\), whose content we briefly recall here and then make explicit in the specific case of \(A_1 \) singularities. For basic facts on the root lattice \(E_6 \) in connection with the geometry of the cubic surface we point to \([6, \S \, 9], [5]\), for lines on singular cubic surfaces \([2]\).

Given a singular cubic surface \(S \) with ordinary double points, its minimal resolution \(\tilde{S} \) is a weak del Pezzo surface and the orthogonal complement \(K_{\tilde{S}}^\perp \subset \text{Pic}(\tilde{S}) \) is a lattice of type \(E_6 \). The exceptional divisor of the resolution \(r : \tilde{S} \to S \) consists of \((-2)\)-curves, which form a subset of the root system \(R := \{ \alpha : \alpha^2 = 0 \} \subset K_{\tilde{S}}^\perp \) and generate a subroot system \(R_0 \subset R \). Let \(W(R_0) \) be the Weyl group generated by reflections of elements in \(R_0 \), then \([9, \text{Theorem 2.1}]\) gives a description of the Hilbert scheme with the reduced structure of generalised twisted cubics on \(S \):

\[
\text{Hilb}^{gtc}(S)_{\text{red}} \simeq R/W(R_0) \times \mathbb{P}^2.
\]

For any \(\alpha \in R \setminus R_0 \) and for any curve \(C \in |\alpha - K_{\tilde{S}}| \) the image \(r(C) \) is a generalised twisted cubic on \(S \). Conversely, the pullback of any aCM-curve on \(S \) lies in such a linear system \([9, \text{Proposition 2.2, Proposition 2.5, Proposition 2.6}]\). On the other hand, roots in \(R_0 \) correspond to families of nCM curves. We now want to make (2) explicit for \(A_1 \)-singular surfaces.

Let \(S \subset \mathbb{P}^3 \) be a singular cubic surface of type \(A_1 \) with singular point \(P \), then its minimal resolution \(\tilde{S} \) is the blow-up with center \(P \), whose exceptional divisor is a \((-2)\)-curve \(\Gamma \). The linear system \(|-\Gamma - K_{\tilde{S}}| \) realises \(\tilde{S} \) as a blow-up of \(\mathbb{P}^2 \) in 6 points \(P_1, \ldots, P_6 \) lying on a quadric \(Q \), which is exactly the image of \(\Gamma \). In a picture:

\[
\begin{array}{c}
\pi \\
\downarrow \\
\mathbb{P}^2
\end{array} \quad \begin{array}{c}
\longrightarrow \quad r \\
\downarrow \\
\tilde{S} \\
\longrightarrow \quad \rho \\
\downarrow \\
S \subset \mathbb{P}^3.
\end{array}
\]

Here \(\rho \) is the rational map given by the linear system of cubics passing through the 6 points.

The Picard group of \(\tilde{S} \) is generated by the pullback \(H \) of the hyperplane class of \(\mathbb{P}^2 \) and the 6 exceptional divisors \(E_1, \ldots, E_6 \). The surface \(S \) contains 21
Proposition 3. Let ρ be mapped via the singular point; moreover, the line trough any two distinct points P_i, P_j is mapped via ρ to the unique line R_{ij} on S intersecting both E_i and E_j not in P.

The canonical bundle K_S has class $-3H + E_1 + E_2 + E_3 + E_4 + E_5 + E_6$, its orthogonal complement $K_S^\perp \subset \text{Pic}(\tilde{S})$ is a root lattice of type E_6. It has 72 roots:

$$\alpha_{ij} = E_i - E_j, \text{ for } i \neq j$$
$$\pm \beta_{ijk} = \pm(H - E_i - E_j - E_k), \text{ for } i, j, k \text{ pairwise distinct; }$$
$$\pm \gamma = \pm(2H - E_1 - E_2 - E_3 - E_4 - E_5 - E_6).$$

We are going to call the roots $\alpha_{i,j}$ of type α, the roots $\pm \beta_{i,j,k}$ of type β, and the roots $\pm \gamma$ of type γ. The unique effective root is γ, the reflection with center γ fixes the roots of type α, whereas its action on β-roots is:

$$\pm \beta_{ijk} \mapsto \mp \beta_{lmn}$$

with $\{i, j, k, l, m, n\} = \{1, 2, 3, 4, 5, 6\}$. Hence according to [9, Theorem 2.1] the Hilbert scheme with the reduced structure is the disjoint union of 51 copies of \mathbb{P}^2

$$\text{Hilb}^{\text{gic}}(S)_{\text{red}} \simeq \bigcup_{i,j,i\neq j} |\alpha_{ij} - K_\tilde{S}| \cup \bigcup_{i,j,k \text{ pairwise distinct}} |\beta_{ijk} - K_\tilde{S}| \cup | - \gamma - K_\tilde{S}|.$$

The curves parametrised by $| - \gamma - K_\tilde{S}|$ are not arithmetically Cohen Macaulay and will play no role in the following. For any curve C in $|\alpha_{ij} - K_\tilde{S}|$ or in $|\beta_{ijk} - K_\tilde{S}|$ the schematic image $r(C)$ is a generalised twisted cubic on S.

An ordered pair (E_i, E_j) of distinct lines through the singular point determines the family of generalised twisted cubic on S corresponding to the linear system $|E_i - E_j - K_\tilde{S}|$. In contrast any triple (E_i, E_j, E_k) of pairwise distinct lines through the singular point determines the family of generalised twisted cubic on S corresponding to the linear system $|H - E_i - E_j - E_k - K_\tilde{S}|$.

We recapitulate what so far discussed in the following

Proposition 3. Let S be a singular cubic surface of type A_1, let P be the singular point.

(i) The surface S has 6 distinguished lines $E_1, ..., E_6$, they are the only ones through the singular point. For each pair (E_i, E_j) there exists a unique line R_{ij} meeting both of them not in P.

(ii) Each ordered pair (E_i, E_j) determines the family of twisted cubics of type α corresponding to the linear system $|E_i - E_j - K_\tilde{S}|$.

(iii) Each triple (E_i, E_j, E_k) determines the family of twisted cubics of type β corresponding to the linear system $|H - E_i - E_j - E_k - K_\tilde{S}|$.

\[1\text{Even though } H \text{ seems to depend on the choice of the resolution it does not because } H = -\Gamma - K_\tilde{S} \text{ where } \Gamma \text{ is the } (-2)-\text{curve.}\]
The general element of the divisor D' is a family of generalised twisted cubic lying on a singular surface of type A_1 and can be of type α, β or γ.

Definition 4. We define D'_α, respectively D'_β and D'_γ, as the closure of the sets in Z' of families of generalised twisted cubics lying on A_1-singular cubic surfaces of type α, respectively β and γ. We call D_α, respectively D_β, the image $\pi(D'_\alpha)$ in Z, respectively $\pi(D'_\beta)$.

Proposition 5. The closed set D'_γ is an irreducible divisor in Z'.

Proof. The set D'_γ coincides with the divisor of nCM generalised twisted cubics, which is irreducible [9, Proposition 4.5].

In the next sections we show the irreducibility of D'_α, D_α (Corollary 8) and of D'_β, D_β (Corollary 10).

The irreducible components of D

The irreducible component D_α. Let Y be a smooth cubic fourfold not containing a plane and let F be its Fano variety of lines, which is an irreducible holomorphically symplectic variety of dimension 4. Voisin [12, Proposition 4.8] constructed a degree 6 rational map

$$\varphi: F \times F \rightarrow Z.$$

The construction goes as follows. Let (l, l') be a general point in $F \times F$. It corresponds to a pair of non-coplanar lines L, L'. After having chosen a point x on L, one takes the residual conic Q_x to L' of the intersection $Y \cap \langle x, L' \rangle$. The union of Q_x and L determines then the class of a generalised twisted cubic on the cubic surface $S := \langle L, L' \rangle \cap Y$. In other words, the lines L and L' determine the family $|O_S(-K_S + L - L')|$ of generalised twisted cubics on S.

The indeterminacy locus of φ coincides with the variety I of incident lines, which is irreducible of dimension 6, [10, Theorem 1.2, Lemma 2.3]. The branch divisor of a resolution of φ is a uniruled divisor, as remarked in [12, Remark 4.10], for details see [10, Lemma 4.4]. We consider the rational maps

$$\varphi' := \pi^{-1} \circ \varphi: F \times F \rightarrow Z'$$

$$\psi := b \circ \pi^{-1} \circ \varphi: F \times F \rightarrow Gr$$

where $\pi : Z' \rightarrow Z$ is the morphism discussed above and π^{-1} is its rational inverse map. Here $Gr := Gr(V, 4)$ parametrises 3-dimensional projective spaces in $\mathbb{P}^5 = \mathbb{P}(V)$. As natural resolution of the indeterminacy locus of ψ we consider the closure Γ of its graph with projections $p: \Gamma \rightarrow F \times F$, $q: \Gamma \rightarrow Gr$. We study its points by taking flat limits along curves λ on $F \times F$ through points where the rational map is not defined.
Lemma 6. About the fiber of the graph over I we have:

$$q(p^{-1}(I)) = D^{Gr}.$$

Moreover, for the general point (l, l') in I we have:

$$p^{-1}(l, l') = \{ E \in Gr : \langle L, L' \rangle \subset E \subset T_y Y \} \simeq \mathbb{P}^1$$

where y is the unique intersection point of L and L'.

Proof. Let $i = (l, l')$ be a general point in I and $\lambda \subset F \times F$ a smooth curve in an affine open intersecting I exactly in i. By the properness of the Grassmannian we get a morphism $\lambda \rightarrow Gr$ and the curve parametrises a family $f : S \rightarrow \lambda$ of cubic surfaces contained in Y. Since singular cubic surfaces determine a divisor in the Grassmannian, we may assume that S_t is smooth for every $i \neq t \in \lambda$. By [7, III, Theorem 10.2] the smoothness of the morphism f is equivalent to the smoothness of the surface S_i.

We claim that the surface S_i is not smooth. Suppose to the contrary that the family were smooth, then the Picard groups $\text{Pic}(S_t) = H^2(S_t, \mathbb{Z})$ would glue together in the local system $R^2f_*\mathbb{Z}$ on λ. Every point $t \in \gamma$ parametrises a pair of lines (l_t, l'_t), which are disjoint for $t \neq i$. Taking their intersection product in $\text{Pic}(S_t)$ we then get

$$0 = L_t \cdot L'_t = L_i \cdot L'_i = 1.$$

Hence, we conclude that S_i is singular.

This shows the factorisation $p^{-1}(I) \rightarrow D^{Gr} \subset Gr$. Choosing λ accurately, one proves that the morphism is dominant onto D^{Gr} and thus surjective.

Indeed, let $E \in D^{Gr}$ be a \mathbb{P}^3 that contains two distinct incident lines L and L' meeting in a point y, in which the cubic surface $E \cap Y$ is singular. We consider the following diagram involving the tangent space $T_y Y$ at y, the normal bundle $N_{L|Y}$ of L in Y and its stalk $N_{L|Y}(y)$ at the point y with the natural maps:

$$\begin{array}{ccc}
T_y Y & \rightarrow & H^0(L, N_{L|Y}) \xrightarrow{ev} N_{L|Y}(y).
\end{array}$$

The general line L is of type I [3, Definition 6.6], that is, $N_{L|Y} \cong \mathcal{O}_L^{\oplus 2} \oplus \mathcal{O}_L(1)$, thus we may assume that the evaluation map ev is surjective. Let e be a vector in $T_y E$ not contained in $T_y \langle L, L' \rangle$. The image of e under $T_y E \subset T_y Y \rightarrow N_{L|Y}(y)$ lifts to a vector $\tilde{e} \in H^0(L, N_{L|Y})$, which corresponds to a deformation of L and is represented by a curve λ' in F through l. If we set $\lambda = \lambda' \times \{l'\} \subset F \times F$, then the limit \mathbb{P}^3 computed along λ coincides with E.

The first assertion is now proven.

The limit surface \mathcal{S}_i is in effect singular in the intersection point y of L_i and L'_i. Indeed, we may assume \mathcal{S}_i has one A_1-singularity in the point
In virtue of [11, §2], after restricting to an analytic neighbourhood of \(i \), there is a diagram

\[
\begin{array}{ccc}
T & \xrightarrow{r} & S \\
\downarrow & & \downarrow \\
(\lambda', i') & \xrightarrow{f} & (\lambda, i)
\end{array}
\]

where \(f: (\lambda', i') \rightarrow (\lambda, i) \) is a finite Galois cover mapping \(i' \) to \(i \) and where \(T \rightarrow \lambda' \) is a family of smooth surfaces such that \(T_t \rightarrow \mathcal{J}_{f(t)} \) is an isomorphism for any \(i' \neq t \in \lambda' \) and \(T_{i'} \rightarrow \mathcal{J}_{i'} \) is the minimal resolution of \(\mathcal{J}_{i'} \). The surfaces \(T_t \) are isomorphic to blow-ups of \(\mathbb{P}^2 \) in 6 points, which are in general position for any \(t \neq i' \), hence the groups \(\text{Pic}(T_t) \) form a local system over the all \(\lambda' \). After further shrinking \(\lambda' \) to a contractible neighbourhood of \(i' \) the latter becomes trivial. The lines \(L_{f(t)} \subset \mathcal{J}_{f(t)} \approx T_t \) form a flat family over \(\lambda \setminus \{i'\} \). Taking its closure we find a curve \(X \) in \(T_{i'} \), which completes the family to a flat family over all \(\lambda' \) and corresponds to a section of the local system of Picard groups. The curve \(X \) can be either the strict transform \(\tilde{L} \) of the line \(L \) or the union of \(\tilde{L} \) and the \((-2)\)-curve \(\Gamma \), which arises as exceptional divisor of the resolution of \(\mathcal{J}_{i'} \). Analogously, for the lines \(L'_{i'} \) we find the curve \(X' \) in \(T_{i'} \), which can be either \(\tilde{L}' \) or the union of \(\tilde{L}' \) and the curve \(\Gamma \). Since the intersection product of \(X \) and \(X' \) in \(\text{Pic}(T_{i'}) \) must coincide with \(L_{f(t)} \cdot L'_{f(t)} = 0 \) for any \(t \neq i' \), the only possibility is that \(P \) lies on both the lines \(L \) and \(L' \).

Let \(\lambda \) be a curve as the one in the proof above, since \(Z' \) is proper the Voisin map extends to a well-defined morphism

\[\varphi'_{\lambda}: \lambda \rightarrow Z'. \]

We are interested in the image of \(i \), which is represented by a family of generalised twisted cubic. By the previous lemma we know that any such curve lies on a singular surface.

Lemma 7. For the general point \(i \in I \) and the general curve \(\lambda \) the limit twisted cubic \(\varphi'_{\lambda}(i) \) is of type \(\alpha \).

Proof. We may assume that the limit family of twisted cubics lies on a singular surface \(S_t \) of type \(A_1 \) with one singularity at the point of intersection of \(L, L' \). The point \(\varphi'_{\lambda}(i) \) is represented by a family of generalised twisted cubics on \(S_t \), which in turn corresponds to a linear system \(A \) on the minimal resolution \(\tilde{S} \) of \(S_t \). In contrast, for any other point \(t \neq i \) in \(\lambda \) the image \(\varphi_{\lambda}(t) \) consists of the family of curves in \(|\mathcal{O}_{S_t}(-K_{S_t} + L_t - L'_t)| \). After passing to a Galois cover of an analytic neighbourhood of \(i \) in \(\lambda \) as before, we see that the linear system \(A \) is equal to \(|\mathcal{O}_{\tilde{S}}(-K_{\tilde{S}} + \tilde{L} - \tilde{L}')| \), where \(\tilde{L} \) and \(\tilde{L}' \) are the strict transforms of the two lines \(L \) and \(L' \). Thus the limit family \(\varphi'_{\lambda}(i) \) is of type \(\alpha \).

In terms of the geometry of \(Z \) we have thus proven the following.
Corollary 8. The closed set D'_α is an irreducible uniruled divisor in Z'. Its image D_α in Z coincides with the branch locus of a resolution of the Voisin map.

The irreducible component D_β. We consider the variety of triples of lines with non-trivial common intersection:

\[I_3 := \{(l_1, l_2, l_3) \in F \times F \times F : L_1 \cap L_2 \cap L_3 \neq \emptyset \}. \]

Lemma 9. The variety I_3 is irreducible of dimension 7.

Proof. Let $\mathbb{L} \subset F \times Y$ be the universal family of lines on Y parametrised by F, its threefold product fits in the diagram

\[
\begin{array}{ccc}
\mathbb{L} \times \mathbb{L} \times \mathbb{L} & \xrightarrow{p} & Y \times Y \times Y \\
\downarrow q & & \\
F \times F \times F,
\end{array}
\]

where p and q denote the natural projections. The variety I_3 is the image via q of $J := p^{-1}(\Delta)$, where $Y \cong \Delta \subset Y \times Y \times Y$ is the diagonal embedding. Since J is locally cut out by 8 equations, all its irreducible components have dimension greater than or equal to 7. The restriction of q to J is birational and just contracts the large diagonal

\[\{(l_1, l_2, l_3) \in I_3 : l_{i_1} = l_{i_2} \text{ for some } i_1 \neq i_2 \} \]

which has dimension 6. Thus all irreducible components of I_3 have dimension at least 7. Via the projection $F \times F \times F \to F \times F$ onto the first two factors the variety I_3 is fibred over the irreducible variety I of dimension 6 [10, Lemma 2.3]:

\[p_{12} : I_3 \to I. \]

We study its fibres.

- if (l, l') lies on the diagonal of $F \times F$, that is $L = L'$, then its preimage is the variety F_L of lines intersecting L.
- In contrast, if $(l, l') \in I$ is a point such that $L \cap L' = \{y\}$ then the fibre $p_{12}^{-1}(l, l')$ is the variety C_y of lines through y. The variety C_y of lines through a given point y is a curve, which in general irreducible, except for finitely many points in Y for which it is a surface [4, Proposition 2.4]. The variety F_L admits a rational map to L well-defined away from $l \in F_L$:

\[F_L \dashrightarrow L, \; r \mapsto R \cap L. \]

The fibre over a point $y \in L$ is the variety C_y, thus F_L is a surface. It follows that I_3 is irreducible.

A general triple (l_1, l_2, l_3) in I_3 spans a \mathbb{P}^3 which intersects the cubic fourfold Y in a singular cubic surface of type A_1: the singular point being the unique common intersection point of the three lines. According to our discussion in the previous section, this data determines the class of a
generalised twisted cubic of type β (cf. Proposition 3). We have therefore constructed a rational map

$$\rho: I_3 \longrightarrow Z'.$$

which is dominant onto D'_β. As immediate consequence we get

Corollary 10. The closed set D'_β in Z' as well as its image D_β in Z is an irreducible divisor.

References

[1] Arnaud Beauville and Ron Donagi. La variété des droites d’une hypersurface cubique de dimension 4. *C. R. Acad. Sci. Paris Sér. I Math.*, 301(14):703–706, 1985.

[2] J. W. Bruce and C. T. C. Wall. On the classification of cubic surfaces. *J. London Math. Soc. (2)*, 19(2):245–256, 1979.

[3] C. Herbert Clemens and Phillip A. Griffiths. The intermediate Jacobian of the cubic threefold. *Ann. of Math. (2)*, 95:281–356, 1972.

[4] Izzet Coskun and Jason Starr. Rational curves on smooth cubic hypersurfaces. *Int. Math. Res. Not. IMRN*, (24):4626–4641, 2009.

[5] Michel Demazure, Henry Charles Pinkham, and Bernard Teissier, editors. *Séminaire sur les Singularités des Surfaces*, volume 777 of *Lecture Notes in Mathematics*. Springer, Berlin, 1980. Held at the Centre de Mathématiques de l’École Polytechnique, Palaiseau, 1976–1977.

[6] Igor V. Dolgachev. *Classical algebraic geometry*. Cambridge University Press, Cambridge, 2012. A modern view.

[7] Robin Hartshorne. *Algebraic geometry*. Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52.

[8] Daniel Huybrechts. The geometry of cubic hypersurfaces. available at http://www.math.uni-bonn.de/people/huybrech/Notes.pdf.

[9] Christian Lehn, Manfred Lehn, Christoph Sorger, and Duco van Straten. Twisted cubics on cubic fourfolds. *J. Reine Angew. Math.*, 731:87–128, 2017.

[10] Giosuè Emanuele Muratore. The indeterminacy locus of the Voisin map. *Beitr. Algebra Geom.*, 61(1):73–88, 2020.

[11] Oswald Riemenschneider. Special surface singularities: a survey on the geometry and combinatorics of their deformations. Number 807, pages 93–118. 1992. Analytic varieties and singularities (Japanese) (Kyoto, 1992).

[12] Claire Voisin. Remarks on zero-cycles of self-products of varieties. In *Moduli of vector bundles (Sanda, 1994; Kyoto, 1994)*, volume 179 of *Lecture Notes in Pure and Appl. Math.*, pages 265–285. Dekker, New York, 1996.

Fakultät für Mathematik, Technische Universität Chemnitz, Reichenhainer Strasse 39, 09126 Chemnitz, Germany,

E-mail address: franco.giovenzana@mathematik.tu-chemnitz.de