Study of DYRK1B gene expression and its association with metabolic syndrome in a small cohort of Egyptians

Yara Ahmed Mohamed1 · H. M. Hassaneen2 · Mohamed A. El-Dessouky3 · Gehan Safwat1 · Naglaa Abu-Mandil Hassan4 · Khalda Amr5

Received: 17 April 2021 / Accepted: 12 July 2021 / Published online: 21 July 2021 © The Author(s), under exclusive licence to Springer Nature B.V. 2021

Abstract

Background A cluster of many risk factors for type 2 diabetes and cardiovascular disease is used to describe the metabolic syndrome (MetS). Moreover, genetic differences associated with metabolic syndrome play a key role in its prevalence and side effects. This study aims to investigate the expression of DYRK1B and its association with metabolic syndrome in a small cohort of Egyptians.

Materials and methods A total of 100 adult Egyptians (50 with MetS and 50 healthy control subjects) were included to this study. Clinical, biochemical and anthropometric analysis were assessed. Relative gene expressions of DYRK1B were compared between two groups of subjects using real time PCR.

Results We observed marked overexpression in DYRK1B ($p < 0.05$) in MetS subjects when compared with the healthy control subjects.

Conclusion This is the first study to provide evidence that DYRK1B is highly expressed among the MetS subjects.

Keywords Metabolic syndrome · Gene expression · DYRK1B · Real Time PCR

Introduction

The metabolic syndrome (MetS) is an agglomeration of several risk factors for cardiovascular disease (CVD) such as hypertension, dyslipidemia, obesity, insulin resistance and high fasting plasma glucose [1]. Parallel to the rise in overweight and obesity, the prevalence of MetS has increased worldwide [2]. This can be a typical condition affecting approximately one-quarter of the world’s adult population; about 1 billion is affected by MetS [3]. In Egypt, about 60% of the adult population has MetS [4]. The development of metabolic risk factors is liable to implicate both genetic and environmental components [5]. Approximately fifty percent of serum lipid levels, including HDL and triglycerides are highly heritable [6]. Further confirmation of common genetic effects on multiple...
components of MetS is provided by the finding of a number of genome-wide linkage studies [7–9]. Moreover, the MetS has a significant genetic component that leads to changes in gene expression [10]. Previous study found that fifteen up-regulated and down-regulated genes for individuals with MetS versus healthy candidates [11].

DYRK1B (dual-specificity tyrosine(Y)-phosphorylation regulated kinase 1B) (also recognized as Mirk) appertain to the DYRK family of protein kinases, which comprise five conserved members, DYRK1A, DYRK1B, DYRK2, DYRK3, and DYRK4 [12]. DYRKs are dual function kinases family with the capability to autophosphorylate themselves on tyrosine during translation and subsequently phosphorylate other substrates on serine and threonine residues [13]. DYRK1B has been characterized as a regulator of cell differentiation such as myogenesis and undergoes differential splicing during adipogenesis [14, 15]. In fact, DYRK1B can trigger cell cycle arrest through various mechanisms, including cyclin D1 degradation enhancement [16]. Evidence from a previous study indicated that mutations in DYRK1B are an inherited sort of MetS associated with early-onset coronary artery disease, obesity, hypertension and diabetes [17]. However, the role of DYRK1B gene expression in MetS is not fully understood; hence, the objective of the present study is to explore the involvement of DYRK1B gene expression in MetS inside a small cohort of adult Egyptian subjects.

Materials and methods

Study design and subjects

A total of 100 Egyptians adult subjects was divided into 2 groups 50 with MetS (25 males and 25 females) and 50 healthy control subjects (12 males and 38 females). Samples were collected from local, public, and private hospitals after obtaining informed consent according to WHO instructions. The study was carried out at National Research Centre of Egypt. The study protocol was approved by the ethics committee board of the Ministry of Health and Population in Egypt (No: 23–2019/20). In the present study MetS was diagnosed by the presence of three or more of the following risk factors according to the International Diabetes Federation (IDF) [18]: waist circumference ≥ 94 cm in men and ≥ 80 cm in women, serum triglycerides (TG) ≥ 150 mg/dL; high-density lipoprotein cholesterol (HDL-C) ≤ 40 mg/dL in men and ≤ 50 mg/dL in women, blood pressure (BP) ≥ 130 ≥ 85 mmHg; or fasting plasma glucose (FPG) ≥ 5.6 mmol/L.

Anthropometric parameters and Biochemical analysis

Anthropometric measurements were obtained consistent with standardized equipment and following the recommendations of the International Biological Program. Weight, height, waist and hip circumferences were measured. All measurements were taken 3 times on the left side of the body, and also the mean of the three values was used. Weight was measured with the participants in light clothing and without shoes. Height was measured with the patients standing with their backs leaning against the stadiometer of the identical scale. Body mass index (BMI) was determined as weight in kilograms divided by height in meters squared (kg/m²). Waist circumference (WC) and hip circumference (HC) were measured in cm employing a plastic, non-stretchable tape. WC was measured with light clothing at level midway between the lower rib margin and also the iliac crest standing and breathing normally. Waist to hip ratio (WHR) was calculated. Blood pressure was measured by the auscultatory method after the participant had been sitting at rest for a minimum period of 5 min, and the cuff involved 80% of the right arm circumference. At the level of the pericardium, the arm rested on a support surface. Blood pressure was measured 3 times and was averaged for analysis.

After an overnight fasting, venous blood samples were taken via direct venipuncture. Enzymatic colorimetric methods were used to measure fasting plasma glucose and serum lipids (total cholesterol, high-density lipoprotein cholesterol (HDL-C) triglycerides (TG)) employing a Hitachi autoanalyzer 704 (Roche Diagnostics. Switzerland). Low density lipoprotein cholesterol (LDL-C) was calculated pursuant to a certain equation (LDL-C = Total cholesterol−Triglycerides/5 + HDL-C) [19].

RNA extraction and quantitative real-time PCR

RNA was extracted using RNeasy kit of Qiagen (Germany) according to the manufacturer’s instructions. For RNA reverse transcription, RNA was reverse transcribed to cDNA using RNA Reverse Transcription Kit (Applied Biosystems) and random primer according to the manufacturer’s instructions. Reverse transcription was performed under the following conditions: 2 h at 37 °C, 20 min at 85 °C, then the resulting cDNA was kept at − 80 °C until use. A real-time quantitative PCR (qRT-PCR) was carried out to quantify the expression levels in triplicate of RNA using Taqman® RNA Assay kit (Applied Biosystems) and Taqman® Universal Master Mix (Applied Biosystems) using step one real time PCR system (Applied
Biosystems) according to the manufacturer’s instructions. GAPDH (Applied Biosystems) was used as endogenous control to normalize the expression levels of DYRK1B gene. The qRT-PCR protocol was as follows: initial denaturation at 94 °C for 20 s followed by annealing at 56 °C for 20 s and extension at 72 °C for 30 s for 45 cycles. Relative quantification (Rq) of DYRK1B expression was calculated using the 2−ΔΔCT threshold cycle method. ΔCt was determined by subtracting the Ct values for GAPDH from the Ct values for the DYRK1B gene.

Statistical analysis

Data were statistically described in terms of mean ± standard deviation (± SD), median and range, or frequencies (number of cases) and percentages when appropriate. Numerical data were tested for the normal assumption using [20]. Comparison of numerical variables between the study groups was done using Student t test for independent samples. For comparing gender, Chi-square test was performed. Two-sided p values less than 0.05 was considered statistically significant. All statistical calculations were done using computer program IBM SPSS (Statistical Package for the Social Science; IBM Corp, Armonk, NY, USA) release 22 for Microsoft Windows.

Results

Clinical, biochemical characteristics and anthropometric parameters of 50 MetS patients and 50 healthy control subjects are summarized in Table 1. Compared with the healthy control group, anthropometric results showed that all the MetS patients were obese with high BMI (33.9 ± 6.023 kg/m²) and high waist to hip ratio (0.97 ± 0.0453). In addition, blood pressure (systolic and diastolic BP), fasting plasma glucose (FPG), total cholesterol and triglycerides (TG) were all statistically significantly higher (p < 0.05) in MetS patients compared to the healthy control group. However, results showed that values of HDL-C and LDL-C were not statistically significant in MetS patients compared to normal healthy control.

Real time PCR was used to investigate the expression of DYRK1B gene in both MetS patients and healthy control subjects. Table 2 shows the difference in fold change of DYRK1B in study groups. The results found that there is a significant increase (p < 0.05) in fold change in MetS patients when compared to healthy control subjects (Fig. 1).

Table 1 Clinical, biochemical characteristics and anthropometric parameters in study groups

Factors	MetS Patients (n = 50)	Healthy Control Subjects (n = 50)	p value
Gender			
Male (n, %)	25(50)	12(24)	0.007
Female (n, %)	25(50)	38(76)	0.007
Systolic BP (mmHg)	129.2 ± 14.3	110.5 ± 6.32	0.0001
Diastolic BP (mmHg)	81.7 ± 12.5	75 ± 11.24	0.0001
BMI (kg/m²)	33.9 ± 6.023	25.3 ± 5.6	3.999E-11
WHR	0.97 ± 0.0453	0.804 ± 0.052	2.092E-30
FPG (mmol/L)	8.5 ± 2.123	5.22 ± 0.444	3.454E-30
Lipid profile			
Total cholesterol(mg/dL)	197.44 ± 44.99	175.36 ± 45.3	0.016
HDL-C (mg/dL)	40.31 ± 9.45	40.44 ± 8.21	0.940
LDL-C (mg/dL)	120.538 ± 42.10	107.97 ± 41.25	0.135
TG (mg/dL)	191.6 ± 87.01	138.36 ± 54.33	0.0004

Bold values indicate statistically relevant differences

BP blood pressure, *BMI* Body mass index, *WHR* waist to hip ratio, *FPG* fasting plasma glucose, *HDL-C* high density lipoprotein-cholesterol, *LDL-C* low density lipoprotein-cholesterol, *TG* triglyceride

*Plus–minus values are means ± SD included in this analysis.

Table 2 Fold changes difference of DYRK1B gene between study groups

MetS patients (n = 50)	Control group (n = 50)	p value	
Fold change	9.95 ± 5.6	0.77 ± 0.42	0.0004

Bold value indicate statistically relevant differences

*Plus–minus values are means ± SD included in this analysis.
Discussion

The severity of MetS in Egypt is surprisingly high and also the etiology of MetS is related to many genetic and lifestyle variables [21]. Thus, over the long term, early diagnosis and management of the MetS will reduce health complications [3]. Therefore, we examined alterations in DYRK1B gene expression in 50 Egyptians adults with MetS to 50 healthy control group.

Because DYRK1B is a specific co-activator of the forkhead transcription factor FKHR, which transactivates the expression of the glucose-6-phosphatase enzyme, this discovery suggests that this protein kinase may play a role in regulating hepatic glucose synthesis [22]. Argaud et al. reported that glucose-6 phosphatase activity is responsible for the inappropriate elevated fasting glucose levels in patients with type 2 diabetes, where insulin is either low or absent or insulin insensitivity exist [23]. Our findings are consistent with those recent observations and showed a statistically significant increase in the expression of DYRK1B and fasting plasma glucose among MetS patients when compared to a healthy control group. Furthermore, DYRK1B has been shown to be a nutrient-sensing protein that is well-known for its role in glucose uptake and glycolysis regulation [24]. Likewise, a study found overexpression of DYRK1B in mice and drosophila contributes to an increase in food intake and body weight [25].

Our findings revealed that the DYRK1B gene is overexpressed in the majority of MetS Egyptian patients with high triglyceride levels. As there is a strong association between adipocyte triglyceride turnover and metabolic conditions [26]; this finding support prior research that suggested DYRK1B up-regulation during adipogenic differentiation [15]. Also, a study including three Iranian families postulated that DYRK1B promotes adipogenesis [17], since the gene inhibits sonic hedgehog (SHH) and Wnt signalling pathways [27, 28].

Hence, MetS has a clear connection to cancer [29]; DYRK1B is overexpressed and highly activated in several types of solid tumors, including pancreatic, lung, ovarian, colon cancer, rhabdomyosarcoma, osteosarcoma and breast cancer [30–36]. Moreover, a study confirmed the high expression of DYRK1B in liposarcoma [37]. Such researches have contributed to the belief that the inflammatory state plays a causal role in the growth of type 2 diabetes and metabolic syndrome [38]; so, a study related the up-regulation of DYRK1B expression might be involved in controlling the activation of astrocytes in neuroinflammation [39].

The key drawback of this study is the limited number of individuals and large population studies are necessary to validate these findings.

In conclusion, our study demonstrated for the first time the differentially expressed DYRK1B gene and its implementation in the pathogenesis of MetS in patients when compared with the healthy control group in a small cohort of Egyptian.

Authors’ contributions Authors equally contributed to this manuscript.

Funding No funding was received for this study.

Data availability There are no restrictions on availability of the presented materials data and associated protocols.

Declarations

Conflict of interest There is no conflict of interest.

Ethical approval The study protocol was approved by the ethics committee board of the Ministry of Health and Population in Egypt (No: 23-2019/20).

Consent to participate Written informed consent was provided by the participants, as per the guidelines of Helsinki declarations on human Experimentation.

References

1. Miranda PJ, DeFronzo RA, Califf RM, Guyton JR (2005) Metabolic syndrome: definition, pathophysiology, and mechanisms. Am Heart J 149(1):33–45. https://doi.org/10.1016/j.ahj.2004.07.013
2. Grundy SM (2008) Metabolic syndrome pandemic. Arterioscler Thromb Vasc Biol 28(4):629–636. https://doi.org/10.1161/ATVBAHA.107
3. Saklayen MG (2018) The global epidemic of the metabolic syndrome. Curr Hypertens Rep 20(2):1–8. https://doi.org/10.1007/s11906-018-0812-z
4. Assaad-Khalil SH, Mikhail MM, Aati TA, Zaki A, Helmy MA, Megallaa MH, Rohoma KH (2015) Optimal waist circumference cutoff points for the determination of abdominal obesity and detection of cardiovascular risk factors among adult Egyptian population. Indian J Endocrinol Metab 19(6):804–810. https://doi.org/10.4103/2230-8210.167556

5. Monda LK, North KE, Hunt SC, Rao DC, Province MA, Kraja AT (2010) The genetics of obesity and the metabolic syndrome. Endocr Metab Immune Disord Drug Targets (Formerly Current Drug Targets-Immune, Endocrine & Metabolic Disorders) 10(2):86–108

6. Argyropoulos G, Smith S, Bouchard C (2005) Genetics of the metabolic syndrome. In: Kumar S, O’Rahilly S (eds) Insulin Resistance: Insulin Action and Its Disturbances in Disease. John Wiley & Sons, Chichester, UK, pp 401–450

7. Tabur S, Oztuucu S, Ozguz ELIF, Korkmaz H, Eroglu S, Ozkaya M, Demiryürek AT (2015) Association of Rho/Rho-kinase gene polymorphisms and expressions with obesity-related metabolic syndrome. Eur Rev Med Pharmacol Sci 19(1680):c8

8. Kissébab AH, Sonnenberg GE, Myklebust J, Goldstein M, Brockman K, James RG, Comuzzie AG (2000) Quantitative trait loci on chromosomes 3 and 17 influence phenotypes of the metabolic syndrome. Proc Natl Acad Sci 97(26):14478–14483

9. Yeboah K, Dodam KK, Affrim PK, Adu-Gyami L, Bado AR, Mensah RNO, Gyan B (2018) Metabolic syndrome and parental history of cardiovascular disease in young adults in urban Ghana. BMC Public Health 18(1):1–8. https://doi.org/10.1186/s12889-017-5501M

10. Groop L (2000) Genetics of the metabolic syndrome. Br J Nutr 83(S1):S39–S48

11. Cox AJ, Zhang P, Evans TJ, Scott RJ, Cripps AW, West NP (2018) Gene expression profiles in whole blood and associations with metabolic dysregulation in obesity. Obes Res Clin Pract 12(2):204–213. https://doi.org/10.1016/j.orecp.2017.07.001

12. Aranda S, Laguna A, Luna SDL (2011) DYRK family of protein kinases: evolutionary relationships, biochemical properties, and functional roles. FASEB J 25(2):449–462. https://doi.org/10.1096/fj.10-165837

13. Soppa U, Becker W (2015) DYRK protein kinases. Curr Biol 25(12):R488–R489

14. Deng X, Ewton DZ, Pawlikowski B, Maimone M, Friedman E (2003) Mirk/DYRK1B is a Rho-induced kinase active in skeletal muscle differentiation. J Biol Chem 278(42):41347–41354. https://doi.org/10.1074/jbc.M306780200

15. Leder S, Czajkowska H, Maenz B, De Graaf K, Barthel A, Joost HG, Becker W (2003) Alternative splicing variants of dual specificity tyrosine phosphorylated and regulated kinase 1B exhibit distinct patterns of expression and functional properties. Biochemical Journal 372(3):881–888. https://doi.org/10.1042/bj20030182

16. Ewton DZ, Lee K, Deng X, Lim S, Friedman E (2003) Rapid turnover of cell_cycle regulators found in Mirk/DYRK1B transfectants. Int J Cancer 103(1):21–28. https://doi.org/10.1002/ijc.10743

17. Keramati AR, Fathzadeh M, Go GW, Singh R, Choi M, Faramarzi S, Mani A (2014) A form of the metabolic syndrome associated with mutations in DYRK1B. N Engl J Med 370:1909–1919. https://doi.org/10.1056/NEJMoa1308124

18. International Diabetes Federation, 2012. Worldwide definition of the metabolic syndrome. Available at http://www.idf.org/webdata/docs/Met Syndrome_FINAL.pdf (Accessed 19/05/2012).

19. Martin SS, Giugliano RP, Murphy SA, Wasserman SM, Stein EA, Češka R, Sabatine MS (2018) Comparison of low-density lipoprotein cholesterol assessment by Martin/Hopkins estimation, Friedewald estimation, and preparative ultracentrifugation: insights from the FOURIER trial. JAMA cardiology 3(8):749–753. https://doi.org/10.1001/jamacardio.2018.1533

20. Daniel WW, Cross CL (2013) Biostatistics. A foundation for analysis in health science, 10th edn. John Wiley & Sons Inc., USA, pp 698–704

21. El-Wahab EWA, Shatat HZ, Charl F (2019) Adapting a prediction rule for metabolic syndrome risk assessment suitable for developing countries. J Prim Care Community Health 10:1–13. https://doi.org/10.1177/2150132719882760

22. Von Groote-Bidlingmaier F, Schmoll D, Orth HM, Joost HG, Becker W, Barthel A (2003) DYRK1 is a co-activator of FKHR (FOXO1a)-dependent glucose-6-phosphatase gene expression. Biochem Biophys Res Commun 300(3):764–769. https://doi.org/10.1016/S0006-291X(02)02914-5

23. Argaud D, Zhang Q, Pan W, Maira S, Plikis SJ, Lange AJ (1996) Regulation of rat liver glucose-6-phosphatase gene expression in different nutritional and hormonal states: gene structure and 5'-flanking sequence. Diabetes 45(11):1563–1571. https://doi.org/10.2337/dbait.45.11.1563

24. Yun J, Rago C, Cheong I, Pagliarini R, Angenendt P, Rajagopalan H, Diaz LA (2009) Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells. Science 325(5947):1555–1559. https://doi.org/10.1126/science.1174229

25. Hong SH, Lee KS, Kwak SJ, Kim AK, Bai H, Jung MS, Yu K (2012) Minibrain/Dyrk1a regulates food intake through the Sir2-FOXO5/NP/NPY pathway in Drosophila and mammals. PLoS Genet 8(10):e1002857. https://doi.org/10.1371/journal.pgen.1002857

26. Arner P, Bernard S, Salehpour M, Possnert G, Liebl J, Steier P, Spalding KL (2011) Dynamics of human adipose lipid turnover in health and metabolic disease. Nature 478(7367):110–113. https://doi.org/10.1038/nature10426

27. Lauth M, Bergström Å, Shimokawa T, Tostar U, Jin Q, Fernich V, Toftgård R (2010) DYRK1B-dependent autocrine-to-paracrine shift of Hedgehog signaling by mutant RAS. Nat Struct Mol Biol 16(7):718–725. https://doi.org/10.1038/nsmb.1833

28. Borycki A, Brown AM, Emerson CP (2000) Shh and Wnt signaling pathways converge to control GlI gene activation in avian somites. Development 127(10):2075–2087

29. Bellastella G, Scappaticcio L, Esposito K, Giugliano D, Maiorino MI (2018) Metabolic syndrome and cancer: “The common soil hypothesis.” Diabetes Res Clin Pract 143:389–397. https://doi.org/10.1016/j.diabres.2018.05.024

30. Chen H, Shen J, Choy E, Horneick FJ, Shan A, Duan Z (2018) Targeting DYRK1B suppresses the proliferation and migration of liposarcoma cells. Oncotarget 9(17):13154–13166. https://doi.org/10.18632/oncotarget.22743

31. Deng X, Friedman E (2014) Mirk kinase inhibition blocks the in vivo growth of pancreatic cancer cells. Genes Cancer 5(9–10):337–347. https://doi.org/10.18632/genesandcancer.22743

32. Hu J, Deng H, Friedman EA (2013) Ovarian cancer cells, not normal cells, are damaged by Mirk/Dyrk1B kinase inhibition. Int J Cancer 132(10):2258–2269. https://doi.org/10.1002/ijc.27917

33. Yang C, Ji D, Weinstein JI, Choy E, Horneick FJ, Wood KB, Duan Z (2010) The kinase Mirk is a potential therapeutic target in osteosarcoma. Carcinogenesis 31(4):552–558. https://doi.org/10.1093/carcin/bgp530

34. Jin K, Ewton DZ, Park S, Hu J, Friedman E (2009) Mirk regulates the exit of colon cancer cells from quiescence. J Biol Chem 284(34):22916–22925. https://doi.org/10.1074/jbc.M109.035519

35. Gao J, Zheng Z, Rawal B, Schell MJ, Bepler G, Haura EB (2009) Mirk/Dyrk1B, a novel therapeutic target, mediates cell survival in non-small cell lung cancer cells. Cancer Biol Ther 8(17):1671–1679. https://doi.org/10.4161/cbt.8.17.9322

36. Mercer SE, Ewton DZ, Shah S, Naqvi A, Friedman E (2006) Mirk/Dyrk1b mediates cell survival in rhabdomyosarcomas. Can Res 66(10):5143–5150. https://doi.org/10.1158/0008-5472.CAN-05-1539
37. Chen Y, Wang S, He Z, Sun F, Huang Y, Ni Q, Cheng C (2017) Dyrk1B overexpression is associated with breast cancer growth and a poor prognosis. Hum Pathol 66:48–58. https://doi.org/10.1016/j.humpath.2017.02.033

38. Singh B, Arora S, Goswami B, Mallika V (2009) Metabolic syndrome: A review of emerging markers and management. Diabetes Metab Syndr: Clin Res Rev 3(4):240–254. https://doi.org/10.18632/oncotarget.22743

39. He M, Gu J, Zhu J, Wang X, Wang C, Duan C, Li J (2018) Upregulation of Dyrk1b promotes astrocyte activation following lipopolysaccharide-induced neuroinflammation. Neuropeptides 69:76–83. https://doi.org/10.1016/j.npep.2018.04.008

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.