The relationship between ITPA rs1127354 polymorphisms and efficacy of antiviral treatment in Northeast Chinese CHC patients

Zhenhua Liu, MS¹, Song Wang, MD², Wenqian Qi, MS³, Xu Wang, MS³, Derong Sun, MS⁴, Hongguang Wang, MD⁵, Yonggui Zhang, MD⁶, Zhongxie Li, MD⁶, Liying Zhu, MD⁶, Ping Zhao, MD⁶, Honghua Guo, MD⁶, Changyu Zhou, MD⁷, Jiangbin Wang, MD⁸, *

Abstract
This prospective study investigated the relationship between 2 inosine triphosphatase (ITPA) polymorphisms (rs7270101 and rs1127354) and the efficacy of ribavirin-based antiviral therapy in hepatitis C virus (HCV)-infected Chinese patients. A total of 906 patients diagnosed with chronic hepatitis C receiving pegylated interferon (PEG-IFN) plus ribavirin combination therapy between January 2011 and January 2014 from 5 hepatitis centers in Northeast China were enrolled. The patients were divided into genotype 1 and non-genotype 1 groups according to the genotype of infected HCV. ITPA single nucleotide polymorphism (SNP) genotyping was performed for all patients. Ribavirin-induced hemolytic anemia and virological response (VR) were monitored during treatment and follow-up. Multivariate regression analysis was used to analyze the predictors for sustained virological response (SVR).

ITPA rs7270101 variants were not detected. ITPA rs1127354 variants were detected and showed no difference between the genotype 1 and non-genotype 1 groups. ITPA rs1127354 genotype CC was related to a higher incidence of ribavirin-induced hemolytic anemia. For patients who received >80% of the planned ribavirin dose, rs1127354 variants and related ITPase were related to better SVR. Multivariate analysis showed that ITPA rs1127354 non-genotype CC, HCV genotype, a baseline HCV RNA level $<4 \times 10^7$IU/mL, IL-28B rs12979860 genotype CC, and low liver fibrosis were independent predictors for SVR during the combination therapy.

ITPA rs1127354 variants and related ITPase were not only related with ribavirin and hemolytic anemia but also directly affected the SVR to PEG-IFN plus ribavirin combination therapy in Chinese HCV-infected patients.

Abbreviations: ADSS = adenosylsuccinate synthase, DAAs = direct-acting antiviral agents, ETR = end-of-treatment response, EVR = early virological response, GTP = guanosine-5’-triphosphate, HCV = hepatitis C virus, IMP = inosine monophosphate, ITP = inosine triphosphate, ITPA = inosine triphosphatase, ITPase = inosine triphosphate pyrophosphohydrolase, PEG-IFN = pegylated interferon, RBV = ribavirin, SNP = single nucleotide polymorphism, SVR = sustained virological response, VR = virological response, XTP = xanthosine triphosphate.

Keywords: chronic hepatitis C, hemolytic anemia, ITPA polymorphisms, ITPase activity, ribavirin, sustained virological response

1. Introduction
The inosine triphosphatase (ITPA) gene encodes an inosine triphosphate pyrophosphohydrolase (ITPase), which specifically recognizes and catalyzes the pyrophosphohydrolysis of inosine triphosphate (ITP)/dITP and xanthosine triphosphate (XTP)/dXTP to maintain the concentration of nucleoside triphosphate in cells.

Sumi et al[1-3] first found that ITPA mutation resulted ITPase deficiency, thus affecting the metabolism of some purine drugs such as 6-dithiouric and azathioprine. The metabolic products of purine drugs are involved the synthesis of 6-thio-ITP which is toxic, while 6-thio-ITP can be degraded to inosine monophosphate (IMP) and 6-thio-derivatives by ITPase. When ITPA mutates, the hydrolysis of 6-thio-ITP is affected, leading to the accumulation of 6-thio-ITP and increasing the toxicity of purine drugs, thus increasing the side-effects of purine drugs.[4-7]

However, this phenomenon is neglected because ITPA polymorphisms do not affect the efficacy of purine drugs. Until recent years, researchers found that ITPA polymorphisms affect the metabolism of ribavirin (RBV)[8] and RBV-based therapy in hepatitis C virus (HCV)-infected patients, the relationship between ITPA polymorphisms and metabolism of some drugs attracts the attention of the researchers. Before the development
of direct-acting antiviral agents (DAAs), pegylated interferon (PEG-IFN) plus RBV combination therapy has been the only standard therapy for HCV infection for many years. Although DAAs have been wildly applied in the treatment of chronic hepatitis C (CHC), PEG-IFN plus RBV combination therapy continues to be the recommended standard therapy in many developing countries. Moreover, some DAAs are recommended in combination with RBV due to its synergistic effect on DAAs.

RBV is orally absorbed into blood circulation and taken by red cells, where RBV is phosphorylated to be activated by phosphotransferase and released to function against virus. However, during the phosphorylation of RBV in red cells, guanosine-5’-triphosphate (GTP) is consumed, which affects the synthesis of ATP in red cells, thereby inducing hemolytic anemia. ITPase deficiency due to ITPA mutation results in the accumulation of ITP in red cells, thus decreasing the incidence of hemolytic anemia. In 2010, using a genome-wide association study, Fellay et al found that 2 ITPA mutants were related to the incidence of RBV-induced hemolytic anemia in patients with CHC receiving RBV-based antiviral therapy. One single nucleotide polymorphism was located at Chromosome 2 (ITPA rs1127354, P32T); the other single nucleotide polymorphism was also located at Chromosome 2 (ITPA rs7270101, IVS2). However, studies from Japan and Korea only found ITPA rs1127354 to be related with RBV-induced hemolytic anemia. These studies did not detect the ITPA rs7270101 mutant.

More evidence is needed to determine whether ITPA polymorphisms are directly associated with the anti-HCV efficacy of RBV. Moreover, whether ITPA polymorphisms directly affect the efficacy of RBV-based therapy in HCV-infected patients and whether the effect of ITPA polymorphisms on RBV-induced hemolytic anemia affect the dose of RBV in treatment (thereby affecting efficacy) remain unclear. Thompson et al found in genotype 1 HCV-infected patients and Eskesen et al in genotype 2/3 HCV-infected patients that the ITPA polymorphisms rs7270101 and rs1127354 are related with the occurrence of RBV-induced hemolytic anemia but not efficacy. Sakamoto et al also found that ITPA polymorphisms affected the RBV dose during treatment, thereby affecting the sustained virological response (SVR) in genotype 2/3 and low viral load of genotype 1 HCV-infected patients but not in the high viral load of genotype 1 HCV-infected patients. Rembeck et al found that the ITPA polymorphisms rs7270101 and rs1127354 were directly related with the efficacy of RBV-based therapy independently of the RBV dose in chronic genotype 2/3 HCV-infected patients.

HCV infection was the fourth most common infectious disease in China and the HCV prevalence in China ranges from 1.3% to 28.9%. Our previous epidemic study also showed that the HCV prevalence in 50 cities of Northeastern China was 3%. HCV infection in China shows unique distributions of HCV genotypes and host IL-28 polymorphisms and the concept of antiviral therapy is needed to be improved. Investigating the relationship between ITPA polymorphisms and RBV-induced hemolytic anemia as well as anti-viral efficacy of RBV-based therapy in China is very important because RBV plus PEG-IFN therapy continues to be recommended for anti-HCV treatment in China and worldwide. The present study investigated the distribution of 2 ITPA polymorphisms (rs7270101 and rs1127354) in genotype 1 as well as non-genotype 1 HCV-infected Chinese patients and sought to determine whether the ITPA polymorphisms rs7270101 and rs1127354 affect the incidence of RBV-induced hemolytic anemia and the efficacy of RBV-based therapy.

2. Patients and methods

2.1. Patients

This prospective study included patients diagnosed with CHC between January 2011 and January 2014 from 5 regional representative hepatitis centers (China-Japan Union Hospital of Jilin University and the People’s Hospital of Jilin City in the middle region, the Fourth Hospital of Harbin Medical University in the north, the Yanbian People’s Hospital of Hunchun City in the east, and the Second Hospital of Daqing in the west) in the Heilongjiang and Jilin provinces, the most northeastern in China. The patients were diagnosed according to the EASL Clinical Practice Guidelines for the management of hepatitis C virus infection. The inclusion criteria were as follows: the patients were anti-HCV core and HCV RNA-positive (HCV RNA was quantified using the Roche COBAS AmpliPrep/TaqMan 48 [Roche Diagnostics, Branchburg, NJ] with a lower limit of 15IU/mL) before the treatment and were appropriate for the treatment according to the EASL Guidelines. The exclusion criteria were as follows: the patients were receiving or had been receiving a combination of IFN and RBV therapy for HCV infection; they also had comorbidities including decompensated liver cirrhosis, chronic hepatitis B or co-infection with human immunodeficiency virus, alcoholic liver disease, drug-induced liver disease, or autoimmune liver disease. A total of 943 patients were enrolled in the present study. Of them, 37 quit because they could not tolerate the treatment or were lost of follow-up. Finally, 906 patients were included in the present study.

This study was approved by the Institutional Review Board of China-Japan Union Hospital affiliated with Jilin University and has been registered in the Chinese Clinical Trial Registry (No. ChiCTR-ONRC-12002207). Written informed consent was obtained from each participant before therapy.

2.2. Treatment and outcomes

All patients received a combination regimen of PEG-IFN-2α (subcutaneous injection, 180 µg/w) and RBV (1000 mg/d for genotype 1 and 800 mg/d for non-genotype 1) according to the EASL HCV Guidelines. The regimen was adjusted according to the HCV genotype and the virological response during treatment. If patients infected with HCV genotype 1 achieved a rapid virological response (RVR, HCV RNA is undetectable at Week 4 post therapy) and had a low viral load at baseline (HCV RNA <400,000IU/mL), the treatment course was 24 weeks; if the patient achieved a complete early virological response (cEVR, HCV RNA is undetectable in the Week 12 post therapy), the treatment course was 48 weeks; if no cEVR was achieved, the treatment course was 72 weeks. In patients not infected with HCV genotype 1 who achieved RVR without low response risk factors (insulin resistance, metabolic syndrome, liver cirrhosis, and advanced age), the treatment course was 12 weeks; otherwise, the treatment course was 24 weeks. If the patient...
achieved cEVR, the treatment course was 48 weeks. The treatment was stopped when the patient only achieved a partial response (PR, the decrease in HCV RNA at Week 12 post therapy compared with baseline is >2Log and HCV RNA is detectable at Week 12 and 24 post therapy) or null response (NR, the decrease in HCV RNA at Week 12 post therapy compared with the baseline is <2Log).

During treatment, half the routine dose of PEG-IFN is applied when the number of neutrophil granulocytes is <0.75 × 10^9/L or the number of platelets is <50 × 10^9/L. The treatment was stopped when the number of neutrophil granulocytes was <0.5 × 10^9/L or the number of platelets was <25 × 10^9/L. The dose of RBV was adjusted according to the hemoglobin level after 12 weeks of treatment. When the hemoglobin level decreased to 10 g/dL, the dose of RBV was decreased to 600 mg/d; when the hemoglobin level decreased to 8 g/dL, the dose of RBV was further decreased to a minimum of 200 mg/d. No erythrogenin or other therapy for anemia was provided during treatment.

The outcomes were as follows: early virological response (EVR) was indicated by a decrease in HCV RNA at Week 12 post therapy compared with the baseline of >2Log; for end-of-treatment response (ETR), HCV RNA was undetectable at the end of treatment; for SVR, HCV RNA was undetectable at Week 24 after the end of treatment.

2.3. Biochemical analysis

Before treatment, the patients received examinations for routine blood, routine urine, serum biochemical indexes (automatic biochemical analyzing equipment, Beckmann, San Diego, CA), thyroid function, quantification of HCV RNA (Roche COBAS AmpliPrep/TaqMan 48 with a lower limit of 15 IU/mL), and liver fibrosis staging (FibroScan, Echosens, France).

Before 12 weeks post therapy, routine blood examination, serum biochemical indexes, and HCV RNA level were detected every 4 weeks. After 12 weeks post therapy, these parameters were detected every 12 weeks until 24 weeks after the end of therapy.

Hemolytic anemia was defined as a decrease in hemoglobin of >3 g/dL or hemoglobin levels <10 g/dL.

2.4. SNP genotyping

Peripheral blood was collected from all patients before starting treatment. Human genomic DNA was extracted from the peripheral blood using a commercial Puregene DNA extraction kit SK8224 (Sangon Biotech, Shanghai, China) according to the manufacturer’s protocol. The quantity of the extracted genomic DNA was determined using the absorbance ratio of 260 nm/280 nm.

HCV genotyping was performed using a commercial kit based on PCR and direct sequencing according to the manufacturer’s protocol (SinoMDgene, Beijing, China).

HCV genotyping was performed using a commercial kit based on PCR and direct sequencing according to the manufacturer’s protocol (SinoMDgene, Beijing, China).

2.5. HCV genotyping

HCV genotyping was performed using a commercial kit based on PCR and direct sequencing according to the manufacturer’s protocol (SinoMDgene, Beijing, China). The details are shown in Table 1.

2.7. Statistical analysis

Statistical analysis was performed using SPSS for Windows, Version 19.0 (SPSS, Chicago, IL). Measurement data were presented as the means ± standard deviation (SD). Measurement data were used to perform a normality and homogeneity of variance test. Normally distributed data were compared using Student t test, and non-normally distributed data were compared using the Wilcoxon Rank Sum Test. The enumeration data were presented as a frequency and carried out using Fisher exact test. The relative risk associated was estimated as an odds ratio (OR) with a 95% confidence interval (CI). Logistic regression analysis was performed to identify predictors for the factors affecting SVR during treatment. A two-tailed value of P < .05 was considered statistically significant.

3. Results

3.1. Baseline characteristics of the included patients

The included 906 patients were divided into genotype 1 and non-genotype 1 according to HCV genotyping. The baseline characteristics between these 2 groups were compared. As shown in Table 2, no significant differences were found between the 2 groups regarding sex, age, body mass index, homeostasis model assessment of insulin resistance, hemoglobin, platelet, aspartate aminotransferase, alanine aminotransferase, creatinine clearance rate, HCV RNA, liver fibrosis staging or IL-28B rs12979860.

**Table 1**

| Grading of ITPase activity. |
|-----------------------------|
| ITPA rs1127354 | ITPA rs7270101 | ITPase activity (%) |
| CC  | AA | 100 |
| CC  | AC | 60 |
| CC  | CC | 30 |
| CA  | AA | 25 |
| CA  | AC | 10 |
| AA  | CC | <5 |

ITPA = inosine triphosphatase, ITPase = inosine triphosphate pyrophosphohydrolase.
**Table 2**

Baseline characteristics of the included 906 HCV-infected patients.

|                          | All chronic HCV-infected patients |                      | P    |
|--------------------------|-----------------------------------|----------------------|------|
|                          | Genotype 1 (n = 612)              | Non-genotype 1 (n = 294) |      |
| Gender (male/female)     | 323/289                           | 152/142              | .761 |
| Age (y)                  | 49.76 ± 10.68                     | 50.69 ± 12.05        | .238 |
| BMI, kg/m²               | 22.89 ± 4.16                      | 22.98 ± 4.10         | .783 |
| HOMA-IR                  | 1.98 ± 0.59                       | 2.01 ± 0.56          | .681 |
| Hemoglobin, g/dL         | 13.42 ± 1.42                      | 13.38 ± 1.44         | .682 |
| Platelet, 10³/µL         | 134.21 ± 14.18                    | 133.79 ± 14.44       | .682 |
| AST, IU/L                | 53.34 ± 11.52                     | 53.26 ± 11.24        | .986 |
| ALT, IU/L                | 48.25 ± 12.31                     | 48.14 ± 11.95        | .976 |
| CCR, mL/min              | 97.65 ± 13.89                     | 99.46 ± 13.87        | .076 |
| HCV RNA, log10 IU/mL     | 4.65 ± 1.46                       | 4.65 ± 1.43          | .972 |
| Fatty liver              |                                   |                      |      |
| Yes                      | 140 (22.9%)                       | 73 (24.8%)           |      |
| No                       | 472 (77.1%)                       | 221 (75.2%)          | .516 |
| Fibrosis (FibroScan)     |                                   |                      |      |
| F3–2 (n, %)              | 506 (82.7%)                       | 234 (79.6%)          |      |
| F3–4 (n, %)              | 106 (17.3%)                       | 60 (20.4%)           | .261 |
| RBV >80% of the planned dose |                               |                      |      |
| Yes                      | 420 (68.6%)                       | 212 (72.1%)          |      |
| No                       | 192 (31.4%)                       | 82 (27.9%)           | .283 |
| IL-28B rs12973540        |                                   |                      |      |
| CC                       | 508 (83.0%)                       | 250 (85.0%)          |      |
| CT                       | 104 (17.0%)                       | 44 (15.0%)           | .437 |

**Table 3**

Distribution of ITPA polymorphisms rs7270101 and rs1127354 and ITPase activity between 906 chronic HCV-infected patients.

|                          | Genotype 1 (n = 612) | Non-genotype 1 (n = 294) (%) | OR (95% CI) | P    |
|--------------------------|----------------------|-------------------------------|-------------|------|
| ITPA rs1127354           |                      |                               |             |      |
| CC                       | 467 (76.3%)          | 229 (77.9%)                   | 1            |      |
| CA                       | 139 (22.7%)          | 63 (21.4%)                    | 1.082 (0.772–1.516) | .647 |
| AA                       | 6 (1.0%)             | 2 (0.7%)                      | 1.471 (0.295–7.346) | .636 |
| C                        | 1073 (87.7%)         | 521 (88.6%)                   | 1            |      |
| A                        | 151 (12.3%)          | 65 (11.4%)                    | 1.128 (0.628–1.536) | .445 |
| ITPA rs7270101           |                      |                               |             |      |
| AA                       | 612 (100.0%)         | 294 (100.0%)                  | 1            |      |
| Non-AA                   | 0                    | 0                             | 1            |      |
| ITPase activity (%)      |                      |                               |             |      |
| 100                      | 467 (76.3%)          | 229 (77.9%)                   | 1            |      |
| 25                       | 139 (22.7%)          | 63 (21.4%)                    | 1.082 (0.447–1.516) | .647 |
| <5                       | 6 (1.0%)             | 2 (0.7%)                      | 1.471 (0.295–7.346) | .636 |

3.3. Relationship between ITPA rs1127354 genotypes and RBV-induced hemolytic anemia

The incidence rate of hemolytic anemia (defined as a decrease in hemoglobin of >3 g/dL or hemoglobin levels <10 g/dL) during the first 4 weeks of treatment in all patients was analyzed. As shown in Fig. 1, 29.0% of the patients showed a decrease in hemoglobin of >3 g/dL, and 7.2% of the patients had a hemoglobin level <10 g/dL. Patients with rs1127354 genotype CC showed a higher incidence rate of hemolytic anemia than those with rs1127354 non-genotype CC regardless of HCV genotype. The baseline hemoglobin level in the HCV genotype 1 group showed no difference between rs1127354 genotype CC and rs1127354 non-genotype CC, whereas the hemoglobin in patients with rs1127354 genotype CC decreased more rapidly than those with rs1127354 non-genotype CC and was lowest at Week 12 (Fig. 2A). Similar changes were observed in the HCV non-genotype 1 group (Fig. 2B).

3.4. Relationship between ITPA rs1127354 genotypes and the total dose of RBV during treatment

ITPA rs1127354 variants affect the incidence of hemolytic anemia; we questioned whether this could affect RBV use during the treatment. As shown in Table 4, the percentage of patients who achieved >80% of the total planned RBV dose was significantly lower in patients with the rs1127354 genotype CC than those with rs1127354 non-genotype CC (63.3% vs 79.3% in HCV genotype 1 group, 69.0% vs 83.1% in HCV non-genotype 1 group).

3.5. Relationship between ITPA rs1127354 genotypes as well as between ITPase and the virological response

For 632 patients who achieved >80% of the total planned RBV dose, the RVR, EVR, ETR, and SVR rates were compared between the genotype 1 and non-genotype 1 groups and further analyzed between the rs1127354 genotype CC (with 100% ITPase) and rs1127354 non-genotype CC (with ITPase <25%) groups. As shown in Table 5, for patients infected with HCV genotype 1, ETR and SVR (but not RVR or EVR rates) were significantly lower in the rs1127354 genotype CC group than in the rs1127354 non-genotype CC group (P < .001 for ETR and 0.018 for SVR, respectively). For patients infected with HCV...
non-genotype 1, EVR, ETR, and SVR (but not RVR) rates were significantly lower in the rs1127354 genotype CC group than in the rs1127354 non-genotype CC group ($P = .034$ for EVR, 0.035 for ETR, and 0.005 for SVR, respectively).

3.6. Univariate and multivariate analysis of the factors affecting SVR during treatment

Next, the factors affecting SVR during the PEF-IFN combination with RBV treatment were analyzed. A univariate analysis showed that age $< 40$ y, low liver fibrosis (FibroScan 0–2), HCV non-genotype 1, a baseline HCV RNA level $< 4 \times 10^5$ IU/mL, IL-28B rs12979860 genotype CC, and IPTA rs1127354 non-genotype CC were the factors affecting SVR rates. A multivariate analysis showed that low liver fibrosis (FibroScan 0–2), HCV non-genotype 1, a baseline HCV RNA level $< 4 \times 10^5$ IU/mL, IL-28B rs12979860 genotype CC, and IPTA rs1127354 non-genotype CC were independent predictors for SVR (Table 6).

4. Discussion

In the present study, IPTA rs1127354 variants but not rs7270101 were found in Chinese patients infected with HCV. IPTA rs1127354 genotype CC was related with a higher incidence of RBV-induced hemolytic anemia, a lower total RBV dose, and lower ETR and SVR rates regardless of the HCV genotype. IPTA rs1127354 non-genotype CC was an independent predictor for SVR during PEG-IFN combination with RBV treatment.

RBV plus PEG-IFN combination treatment is always the standard recommended therapy for CHC. Although DAAs have been widely applied in CHC therapy, RBV plus PEG-IFN combination treatment is currently recommended for CHC therapy.[8,9] Moreover, RBV is recommended for combination with many DAAs during CHC treatment. Thus, it is important to investigate the relationship between *ITPA* polymorphisms and RBV-induced hemolytic anemia as well as the anti-viral efficacy of RBV-based therapy in various regions and races.

Sumi et al[1–3] first found that an *ITPA* mutation resulted in ITPase deficiency, thereby affecting the metabolism of some purine drugs, such as 6-dithiopurine and azathioprine, and resulting in adverse events in patients. However, this phenomenon is neglected because *ITPA* polymorphisms do not affect the efficacy of purine drugs. Researchers recently found that *ITPA* polymorphisms affect the metabolism of RBV[8] and RBV-based therapy in HCV-infected patients; the relationship between *ITPA* polymorphisms and metabolism of some drugs has attracted the attention of the researchers.

A genome-wide association study of *ITPA* found that the 2 *ITPA* polymorphisms rs7270101 and rs1127354 were related with the occurrence of RBV-induced hemolytic anemia during RBV-based therapy for CHC. *ITPA* rs1127354 genotype CA/AA and rs7270101 genotype AC/CC were related with a lower incidence of hemolytic anemia.[27] Different from this report, 2 other reports from Japan and Korea did not find rs7270101 polymorphisms.[18,19] The present study found that the rate of rs1127354 non-genotype CC was 23.7% (genotype CA 22.7% and AA 1.0%) in Chinese patients infected with HCV genotype 1 and 22.1% (genotype CA 21.4% and AA 0.7%) in Chinese patients infected with HCV non-genotype 1, which is similar to those reported in Japan and Korea (27.2% and 19.0%, respectively)[18,19] but higher than those reported from Europe and the USA (15.0% and 13.2%, respectively).[20,21] No rs7270101 polymorphisms were found in the present study. ITPase activity in Chinese patients with a different rs1127354 genotype showed greater difference than those observed in European and American studies.

Reports regarding the relationship between *ITPA* polymorphisms and the incidence of RBV-induced hemolytic anemia are currently controversial due to regional differences.[17–19] Our data showed that the incidence of hemolytic anemia was higher in
Table 4
Relationship between ITPA rs1127354 genotypes and the total dose of RBV during treatment.

| Genotype 1 (n = 612) | RBV planned dose |
|----------------------|------------------|
|                      | >80% (%) | <80% OR (95% CI) | P |
| ITPA rs1127354       |           |                   |   |
| CC                   | 305 (65.3%) | 162 (34.7%) | 1 |
| CA/AA                | 115 (79.3%) | 30 (20.7%) | 2.036 (1.305–3.176) | .002 |
| Non-genotype 1 (n = 294) |          |                   |   |
| ITPA rs1127354       |           |                   |   |
| CC                   | 158 (69.0%) | 71 (31.0%) | 1 |
| CA/AA                | 54 (83.1%) | 11 (16.9%) | 2.206 (1.089–4.470) | .025 |

CI = confidence interval, ITPA = inosine triphosphatase, OR = odds ratio, RBV = ribavirin.

Table 5
Relationship between ITPA rs1127354 genotypes as well as between ITPase and virological response.

| HCV genotype 1 (n = 420) | 100% ITPase activity (rs1127354CC) | ITPase activity >25% (rs1127354 CA/AA) | OR (95% CI) | P |
|--------------------------|----------------------------------|----------------------------------------|-------------|---|
| RVR                      | No                               | 204 (66.9%) | 72 (62.6%) | 1 |
|                         | Yes                              | 101 (33.1%) | 43 (37.4%) | 0.829 (0.530–1.296) | .410 |
| EVR                      | No                               | 174 (57.0%) | 60 (52.2%) | 1 |
|                         | Yes                              | 131 (43.0%) | 55 (47.8%) | 0.821 (0.534–1.263) | .370 |
| ETR                      | No                               | 73 (23.9%) | 9 (7.8%) | 1 |
|                         | Yes                              | 232 (76.1%) | 106 (92.2%) | 0.270 (0.130–0.560) | <.001 |
| SVR                      | No                               | 123 (40.3%) | 32 (27.8%) | 1 |
|                         | Yes                              | 182 (59.7%) | 63 (72.2%) | 0.570 (0.357–0.911) | .18 |
| HCV non-genotype 1 (n = 212) |          |                   |   |
| RVR                      | No                               | 63 (39.9%) | 21 (38.9%) | 1 |
|                         | Yes                              | 95 (60.1%) | 33 (61.1%) | 0.960 (0.510–1.807) | .898 |
| EVR                      | No                               | 50 (31.6%) | 9 (16.7%) | 1 |
|                         | Yes                              | 108 (68.4%) | 45 (83.3%) | 0.432 (0.192–0.952) | .034 |
| ETR                      | No                               | 18 (11.4%) | 1 (1.9%) | 1 |
|                         | Yes                              | 140 (88.6%) | 53 (98.1%) | 0.147 (0.019–1.127) | .035 |
| SVR                      | No                               | 40 (25.3%) | 4 (7.4%) | 1 |
|                         | Yes                              | 118 (74.7%) | 50 (92.6%) | 0.236 (0.080–0.695) | .005 |

CI = confidence interval, ETR = end-of-treatment response, EVR = early virological response, HCV = hepatitis C virus, ITPA = inosine triphosphatase, ITPase = inosine triphosphate pyrophosphohydrolase, OR = odds ratio, RVR = rapid virological response, SVR = sustained virological response.

Table 6
Univariate and multivariate analysis of the factors affecting SVR during treatment.

| Baseline characteristics | Univariate analysis | Multivariate analysis |
|-------------------------|---------------------|-----------------------|
|                         | OR (95% CI) | P          | OR (95% CI) | P          |
| Female vs male          | 1.792 (1.342–2.338) | .001 | 1.279 (0.959–1.705) | .094 |
| Age <40 vs age ≥40      | 1.030 (0.726–1.459) | .870 | 1.113 (0.768–1.672) | .458 |
| BMI <27 vs ≥27, kg/m²   | 1.161 (0.845–1.593) | .357 | 1.178 (0.883–1.566) | .353 |
| ALT >2ULN vs ALT ≤2ULN, IU/L | 1.145 (0.820–1.600) | .427 | 1.074 (0.718–1.608) | .728 |
| AST >2ULN vs AST ≤2ULN, IU/L | 1.326 (0.837–2.100) | .228 | 1.420 (0.814–2.478) | .271 |
| HCV-RNA <4 × 10⁵ IU/mL vs ≥4 × 10⁵ IU/mL | 2.221 (1.690–2.891) | <.001 | 2.236 (1.676–2.983) | <.001 |
| Non-genotype 1 vs HCV genotype 1 | 1.790 (1.342–2.338) | <.001 | 2.034 (1.488–2.779) | .001 |
| IL-28B rs12979860 CC vs CT | 3.660 (2.505–5.347) | <.001 | 3.537 (2.607–4.761) | <.001 |
| ITPA rs1127354 CC vs CA/AA | 2.228 (1.634–3.180) | <.001 | 2.184 (1.520–3.138) | .001 |
| 4W HGB <10g/dL vs ≥10g/dL | 2.327 (1.381–3.922) | .002 | 2.954 (1.698–5.140) | <.001 |
| Fatty liver Yes vs No    | 0.807 (0.593–1.098) | .171 | 1.355 (0.969–1.854) | .075 |
| Liver fibrosis (F0–2) vs F3–4 | 0.485 (0.345–0.683) | <.001 | 1.553 (1.062–2.269) | .023 |

ALT = alanine aminotransferase, AST = aspartate aminotransferase, BMI = body mass index, CI = confidence interval, HCV = hepatitis C virus, OR = odds ratio, ULN = upper limits of normal.
patients with rs1127354 genotype CC than those with rs1127354 non-genotype CC during the first 4 weeks during treatment. As treatment was prolonged, hemoglobin decreased more rapidly in patients with rs1127354 genotype CC than those with rs1127354 non-genotype CC. The changes showed no difference between patients infected with HCV genotype 1 and non-genotype 1. The incidence of hemolytic anemia in the present study is 29.0%, which is similar to previous studies from Japan and Korea (35.4% and 16.5%, respectively) and is lower than in the USA.

The present study showed that the percentage of patients who achieved 80% of the planned RBV dose was significantly higher in those with rs1127354 non-genotype CC than in those with rs1127354 genotype CC, which is in accordance with the results of the effects on hemolytic anemia and hemoglobin. Kuroso et al. found that patients with rs1127354 genotype AA/CA can receive RBV at >80% of the planned dose and achieved a higher SVR and lower relapse rate. A decreased incidence of hemolytic anemia avoids reducing the RBV dose or stopping RBV, thereby improving the virological response. Thus, we speculated that the high virological response in Chinese patients infected with HCV genotype 1 (compared with those from Europe and USA) is not only related with IL-28B polymorphisms but is also related with the high percentage of patients with rs1127354 non-genotype CC, which is related with a higher RBV dose.

The direct effect of ITPA polymorphisms on the efficacy of Peg-IFN combined with RBV therapy was recently studied with no consistent conclusions. ITPA polymorphisms were first thought to affect SVR indirectly by affecting the incidence of RBV-induced hemolytic anemia and thus the RBV dose used during therapy. However, Rembeck et al. found that in patients who received RBV at >80% of the planned dose, those with lower ITPase activity because of ITPA polymorphisms achieved better SVR. They speculated that the ITPA polymorphisms rs7270101 and rs1127354 could affect the SVR independently of the RBV dose. However, they only included patients infected with HCV genotype 2/3 but not genotype 1. The present study showed no effect for the HCV genotype. Patients with a higher ITPase activity achieved a lower SVR rate that was not related with the RBV dose or treatment course. Notably, in 2010, Sakamoto et al. found that patients with rs1127354 non-genotype CC achieved a higher SVR rate than those with rs1127354 genotype CC in patients with low viral load and HCV genotype 1. However, their study did not apply individual therapy for the patient. Based on the theoretical hypothesis, if they analyzed the data from patients who finished receiving >80% of the planned RBV dose, they should conclude that patients with rs1127354 non-genotype CC achieved a higher SVR rate than those with rs1127354 genotype CC independent of the serum HCV RNA level and genotype, as well as RBV-induced hemolytic anemia; they should have also found that rs1127354 non-genotype CC directly affects the response to Peg-INF combined with RBV therapy.

In conclusion, the present study found ITPA rs1127354 variants in Chinese patients infected with HCV. The rate of rs1127354 genotype CC was similar to that in other Asian populations but higher than that in European and American populations. During Peg-IFN combined with RBV treatment, patients with rs1127354 genotype CC showed a higher incidence of hemolytic anemia, a slower reduction in hemoglobin, a smaller percentage of patients who received RBV at >80% of the planned dose, and lower EVR, ETR and SVR rates. We also found that ITPA rs1127354 non-genotype CC was an independent predictor for SVR. Our data suggested ITPA polymorphism rs1127354 should be screened before RBV-based therapy to avoid hemolytic anemia and obtain a better SVR.

References

[1] Sumi S, Marinaki AM, Arenas M, et al. Genetic basis of inosine triphosphate pyrophosphohydrolase deficiency. Hum Genet 2002;111: 360–7.
[2] Maceta T, Sumi S, Ueta A, et al. Genetic basis of inosine triphosphate pyrophosphohydrolase deficiency in the Japanese population. Mol Genet Metab 2005;85:271–9.
[3] Shipkova M, Lorenz K, Oellerich M, et al. Measurement of erythrocyte inosine triphosphate pyrophosphohydrolase (ITPA) activity by HPLC and correlation of ITPA genotype-phenotype in a Caucasian population. Clin Chem 2006;52:240–7.
[4] Stocco G, Cheok MH, Crews KR, et al. Genetic polymorphism of inosine triphosphate pyrophosphohydrolase is a determinant of mercaptopurine metabolism and toxicity during treatment for acute lymphoblastic leukemia. Clin Pharmacol Ther 2009;85:164–72.
[5] Bierau J, Lindhout M, Bakker JA. Pharmacogenetic significance of inosine triphosphatase. Pharmacogenomics 2007;8:1221–8.
[6] Xiong H, Xin HW, Wu XC, et al. Association between inosine triphosphate pyrophosphohydrolase deficiency and azathioprine-related adverse drug reactions in the Chinese kidney transplant recipients. Fundam Clin Pharmacol 2010;24:393–400.
[7] Wessels JA, Koools WM, De Jonge R, et al. Relationship between genetic variants in the adenosine pathway and outcome of methotrexate treatment in patients with recent-onset rheumatoid arthritis. Arthritis Rheum 2006;54:2830–9.
[8] Fried MW, Shifman ML, Reddy KR, et al. Peginterferon alfa-2a plus ribavirin for chronic hepatitis C virus infection. N Engl J Med 2002;347: 971–82.
[9] EASL . EASL recommendations on treatment of Hepatitis C 2015. J Hepatol 2015;63:199–236.
[10] Page T, Connor JD. The metabolism of ribavirin in erythrocytes and nucleated cells. Int J Biochem 1990;22:379–83.
[11] De Franceschi L, Fattovich G, Turrini F, et al. Hemolytic anemia induced by ribavirin therapy in patients with chronic hepatitis C virus infection: role of membrane oxidative damage. Hepatology 2000;31: 997–1004.
[12] Cao H, Hegele RA. DNA polymorphisms in ITPA including basis of inosine triphosphatase deficiency, J Hum Genet 2002;47:620–2.
[13] Arenas M, Duley J, Sumi S, et al. The ITPA c.94C>A and IVS2+21A>C sequence variants contribute to missplicing of the ITPA gene. Biochim Biophys Acta 2007;1777:96–102.
[14] Stepchenkova EI, Tarakhkovskaya ER, Spitler K, et al. Functional study of the P32T ITPA variant associated with drug sensitivity in humans. J Biol Chem 2009;392:602–13.
[15] Atanasova S, Shipkova M, Sivinov D, et al. Analysis of ITPA genotype-phenotype correlation in the Bulgarian population revealed a novel gene variant in exon 6. Ther Drug Monit 2007;29:6–10.
[16] Hitomi Y, Cirulli ET, Fellay J, et al. Inosine triphosphate protects against ribavirin-induced adenosine triphosphate loss by adenosine/sulfate synthase function. Gastroenterology 2011;140:1314–21.
[17] Fellay J, Thompson AJ, Ge D, et al. ITPA gene variants protect against anaemia in patients treated for chronic hepatitis C. Nature 2010;464: 405–8.
[18] Sakamoto N, Tanaka Y, Nakagawa M, et al. ITPA gene variant protects against anaemia induced by pegylated interferon-alpha and ribavirin therapy for Japanese patients with chronic hepatitis C. Hepatol Res 2010;40:1063–71.
[19] Kom JS, Ahn SM, Jung YK, et al. The impact of inosine triphosphatase variants on hemoglobin level and sustained virologic response of chronic hepatitis C in Korean. J Korean Med Sci 2013;28:1213–9.
[20] Thompson AJ, Fellay J, Patel K, et al. Variants in the ITPA gene protect against ribavirin-induced hemolytic anemia and decrease the need for ribavirin dose reduction. Gastroenterology 2010;139: 1181–9.
[21] Eskesen AN, Melum E, Moghadam A, et al. Genetic variants at the ITPA locus protect against ribavirin-induced hemolytic anemia and dose reduction in an HCV G2/G3 cohort. Eur J Gastroenterol Hepatol 2012;24:890–6.
[22] Rembeck K, Waldenstrom J, Hellstrand K, et al. Variants of the inosine triphosphate pyrophosphatase gene are associated with reduced relapse risk following treatment for HCV genotype 2/3. Hepatology 2014;59:2131–9.

[23] Qin Q, Smith MK, Wang L, et al. Hepatitis C virus infection in China: an emerging public health issue. J Viral Hepat 2015;22:238–44.

[24] Bennett H, Waser N, Johnston K, et al. A review of the burden of hepatitis C virus infection in China, Japan, South Korea and Taiwan. Hepatol Int 2015;9:378–90.

[25] Zhang Q, Qi W, Wang X, et al. Epidemiology of Hepatitis B and Hepatitis C infections and benefits of programs for Hepatitis prevention in Northeastern China: a cross-sectional study. Clin Infect Dis 2016;62:305–12.

[26] EASL. EASL clinical practice guidelines: management of hepatitis C virus infection. J Hepatol 2011;55:245–64.

[27] Cowie BC, Carville KS, MacLachlan JH. Mortality due to viral hepatitis in the Global Burden of Disease Study 2010: new evidence of an urgent global public health priority demanding action. Antivir Ther 2013;18:953–4.

[28] Kurosaki M, Tanaka Y, Tanaka K, et al. Relationship between polymorphisms of the inosine triphosphatase gene and anaemia or outcome after treatment with pegylated interferon and ribavirin. Antivir Ther 2011;16:685–94.