Clinical Profiles of Asians with NAFLD: A Systematic Review and Meta-Analysis

Leslie Y. Kam, Daniel Q. Huang, Margaret L.P. Teng, Hirokazu Takahashi, Kenichi Tanaka, Satoshi Yasuda, James Fung, Teng-Yu Lee, Hideyuki Hyogo, Masafumi Ono, Junji Saruwatari, Kentaro Oniki, Yee Hui Yeo, Scott Barnett, Linda Henry, Jie Li, Biyao Zou, Ramsey C. Cheung, Takashi Kumada, Man-Fung Yuen, Yuichiro Eguchi, Hidenori Toyoda, Mindie H. Nguyen

Division of Gastroenterology and Hepatology, Stanford University Medical Center, Palo Alto, CA, USA; Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Singapore, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Liver Center, Saga University Hospital, Saga, Japan; Division of Metabolism and Endocrinology, Facility of Medicine, Saga University, Saga, Japan; Department of Gastroenterology, Ogaki Municipal Hospital, Ogaki, Japan; Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, Hong Kong SAR; Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Gastroenterology and Hepatology, JA Hiroshima General Hospital, Hiroshima, Japan; Department of Internal Medicine, Tokyo Women’s Medical University Medical Center East, Tokyo, Japan; Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan; Department of Infectious Disease, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China; Division of Gastroenterology and Hepatology, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA; Department of Nursing, Faculty of Nursing, Gifu Kyoritsu University, Ogaki, Japan; Loco Medical General Institute, Loco Medical Eguchi Hospital, Saga, Japan

Keywords
Nonalcoholic fatty liver disease · Epidemiology · Liver function tests · Obesity · Fibrosis

Abstract
Introduction: NAFLD is increasingly prevalent in Asia, where people suffer more metabolic comorbidities at a lower body mass index (BMI), suggesting potential differences in their clinical profile. Therefore, we attempted to characterize the clinical profile of Asians with NAFLD via a meta-analytic approach. Methods: We searched PubMed, EMBASE, and Cochrane databases from January 1, 2000, to January 17, 2019. Two authors independently reviewed and selected 104 articles (2,247,754 persons) that identified NAFLD in Asians and reported relevant data, especially BMI and ALT, and excluded individuals with other liver disease and excessive alcohol consumption. Individual patient-level data were obtained from seven cohorts in Asia to complement meta-analyzed data. Results: Overall, the mean age was 52.07 (95% CI: 51.28–52.85) years, with those from Southeast Asia (42.66, 95% CI: 32.23–53.11) being significantly younger. The mean BMI was 26.2 kg/m², higher in moderate-severe versus mild hepatic steatosis (28.3 vs. 25.7) patients and NFS ≥ −1.455 versus <−1.455 (27.09 vs. 26.02), with 34% having nonobese NAFLD. The mean ALT was 31.74 U/L, higher in NFS < −1.455 versus ≥−1.455 (27.09 vs. 26.02), though no differences were found by obesity or steatosis severity. The majority of males...
(85.7%) and females (60.7%) had normal to minimally elevated ALT (1–1.5 × 95% ULN). Individual patient-level data analysis (N = 7,668) demonstrated similar results. **Conclusion:**

About one-third of Asians with NAFLD were nonobese, and the majority did not have markedly elevated ALT. Therefore, abnormal ALT or BMI is not recommended as a criterion for NAFLD screening in this population. Additionally, there were significant differences in the clinical profiles of NAFLD among the different regions of Asia.

© 2021 The Author(s).
Published by S. Karger AG, Basel

Introduction

Nonalcoholic fatty liver disease (NAFLD) is considered a metabolic disorder of the liver associated with increased body mass index (BMI) that can progress to nonalcoholic steatohepatitis (NASH), cirrhosis, hepatocellular carcinoma, and death [1]. In recent decades, NAFLD has also become more prevalent in Asia [2]. In fact, the overall prevalence of NAFLD in Asia is about 30%, closely tracking that of the West [1]. However, obesity is defined at a lower BMI for Asians, as the risk of metabolic comorbidities is known to rise at these lower BMI cutoffs [3]. In addition, ALT thresholds for normal ALT may also be lower in Asians [4, 5]. Therefore, it is important to profile the Asian NAFLD population to provide ethnic and region-specific data to inform local practice and public health policy. This is particularly relevant as a recent population-based study from the USA reported very poor liver disease awareness in people affected by NAFLD [6]. This is due to a lack of knowledge specific to Asian patients with NAFLD.

Through a systematic review and meta-analytic approach, we characterized the demographic, anthropometric, and laboratory characteristics, as well as the severity of hepatic steatosis and fibrosis in Asians with NAFLD, with a focus on BMI and ALT distributions. We also obtained individual patient-level data to complement our meta-analyzed results.

Methods

Search Strategy

This study was carried out using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses and was not registered (online suppl. File; for all online suppl. material, see www.karger.com doi:10.1159/000521662). The search was conducted using PubMed, EMBASE, and Cochrane databases from January 1, 2000, to January 17, 2019, and details of the search strategy were previously published and provided in the online supplementary material. We included studies that provided data for specific characteristics of NAFLD patients, especially BMI and ALT. Excluded studies included individuals with other liver diseases (e.g., viral hepatitis and autoimmune hepatitis) or excessive alcoholic consumption (>30 g/day for men and >20 g/day for women).

Systematic Literature Review, Data Extraction, and Quality Assessment

Two authors independently reviewed, selected, and extracted relevant data using a standardized form. Studies using duplicate cohorts were excluded. Discordance between the two reviewers was resolved by discussion between the two reviewers and/or consultation with a senior investigator (M.H.N.).

Baseline characteristics recorded included age, BMI, ALT, aspartate aminotransferase (AST), gamma-glutamyl transferase, alkaline phosphatase, total cholesterol, high-density lipoprotein (HDL), low-density lipoprotein, and triglycerides. We also collected data on diabetes mellitus, degree of hepatic steatosis, and fibrosis scores when available. Characteristics of NAFLD patients were further categorized by sex, BMI, severity of NAFLD, or presence of fibrosis. Obesity in Asians was defined as BMI ≥25 kg/m^2 as this was the cutoff most often used in the studies included in this meta-analysis. For the purpose of this study, we defined severity of hepatic steatosis using the following ultrasound criteria, since ultrasound is the most commonly used diagnostic method for NAFLD [7]. Mild steatosis was defined as a mild increase in liver echogenicity with normal or slightly increased visualization of the diaphragm and intrahepatic vessel borders, moderate steatosis as moderate increase in liver echogenicity with decreased visualization of the diaphragm and intrahepatic vessel borders, and severe steatosis as gross increase in liver echogenicity with poor visualization of the diaphragm, intrahepatic vessel borders, and posterior section of the right lobe. We assessed for the presence of fibrosis by NAFLD fibrosis score (NFS) and Fibrosis-4 (FIB-4) index [8, 9]. We used NFS < −1.455 to define the absence of advanced fibrosis (negative predictive value = 93%) and NFS > 0.676 as a cutoff for advanced fibrosis. We used FIB-4 ≥ 2.67 as the cutoff for advanced fibrosis, since it has been shown to have a highly positive predictive value for advanced fibrosis among NAFLD patients [10, 11].

The quality assessment tool was based on the Newcastle-Ottawa scale (NOS) to evaluate the risk of bias and methodological quality of the included studies [12]. Each article was evaluated for its representativeness, comparability, and outcome. Studies with 7 or more stars were considered to have low risk of bias, 4–6 stars as moderate risk of bias, and 3 or less stars as high risk of bias.

Individual Patient Data

In addition to study-level data, we obtained individual patient-level data from seven centers for additional analysis (Taichung Veterans General Hospital, Taichung, Taiwan; University of Hong Kong, Hong Kong; Kumamoto University, Kumamoto, Japan; Ogaki Municipal Hospital, Ogaki, Japan; Eguchi Hospital, Saga, Japan; Kawamura Clinic Health Center, Hiroshima, Japan; and Kochi Medical School Hospital, Kochi, Japan). All patients were diagnosed with NAFLD by ultrasound. The data derived from Ku-
mamoto University were obtained from a health screening program performed by the Japanese Red Cross Kumamoto Health Center, Kumamoto (May 2003–April 2012) [13]. The data derived from Ogaki Municipal Hospital were obtained from clinic records of consecutive patients who presented for either health screening or a medical visit (March 2010–September 2015). The data derived from Saga Prefecture (Eguchi Hospital Health Center from 2009 to 2010), Kawamura Clinic Health Center, Hiroshima (April 2009–March 2010), and Kochi Medical School Hospital, Kochi (April 2009–March 2010) were all obtained from general health checkup clinics. The data derived from Taichung Veterans General Hospital were collected from the Medical Screening Center (January–December 2009) [14]. The data derived from the University of Hong Kong were obtained from blood donors from the Hong Kong Red Cross Blood Transfusion Center and volunteers from the general population (August 2010–March 2012) [15].

The study was performed in accordance with the Declaration of Helsinki and was approved by the institutional review board at each study center that provided individual patient-level data.

Statistical Analysis

We calculated the pooled estimates for mean values of characteristics of NAFLD patients using a random-effects model. For studies reporting only median values, interquartile range values were used to calculate the mean and standard deviation based on the assumption that the distribution of data was symmetrical with large sample size and with other liver diseases excluded. We performed subanalysis for the following populations: male, female, obese, nonobese, Western Pacific, Southeast Asian, Eastern Mediterranean, mild steatosis, moderate steatosis, severe steatosis, moderate to severe steatosis, NPS ≥ −1.455, and NPS < −1.455 (as data were generally reported using these cutoffs in the studies included in this meta-analysis).

We determined the ALT distribution among males and females with NAFLD using a bootstrap model with 10,000 resamples from the included study cohorts. Based on the corresponding mean and standard deviations of ALT values in the included studies, we estimated the proportion of patients with ALT <95% upper limit of normal (ULN), ALT (defined as 30 and 19 U/L in males and females, respectively), 1–1.5 × 95% ULN ALT (30–45 and 19.1–28.5 U/L), 1.5–2 × 95% ULN ALT (45–60 and 28.5–38 U/L), and >2 × 95% ULN ALT (60 and 38 U/L) [16].

Heterogeneity was assessed using I² statistic, and estimates with I² < 50% and p value of <0.05 in Q-statistic were considered to have moderate to severe heterogeneity. We used Egger’s test to evaluate publication bias.

All meta-analyses were conducted using the meta-analysis package in R statistical software (version 3.5.1). Bootstrap modeling was performed with SAS (version 9.4; Cary, NC, USA).

Results

Study-Level Analysis

As described in Figure 1, 4,995 citations were initially identified with our search strategy where 104 articles (2,247,754 participants) met study criteria and were included in study analysis. Of these, 103 studies (n = 2,245,083 participants) provided BMI data, and 87 studies (n = 2,204,503 participants) provided ALT data for participants with NAFLD. Seven studies used either CT, MRI, controlled attenuation parameter, or the fatty liver index to diagnose NAFLD while the remaining studies were diagnosed by ultrasound. All were from January 1, 2000, to January 17, 2019 (online suppl. Table 1). Overall, the pooled mean age of NAFLD participants was 52.07 (95% CI: 51.28–52.85) years, the mean BMI was 26.2 kg/m² (95% CI: 25.94–26.46), the mean ALT was 31.74 U/L (95% CI: 30.75–32.72), and the prevalence of diabetes was 16.7% (95% CI: 13.6–20.1) (Table 1a).

There was no difference between males or females in the pooled mean age (49.33 vs. 53.43, p = 0.07) or BMI (26.01 vs. 26.73, p = 0.36), though males had a higher ALT level (37.91 vs. 27.84, p < 0.001) (Table 1b). While 74% of males compared to 53% of females had ALT levels between 1 and 1.5 × 95% ULN, more females than males (37% vs. 12%) had a higher degree of ALT elevation 1.5–2 × 95% ULN (shown in Fig. 2a).

We also found that 66% of NAFLD participants were considered obese while 34% were nonobese (Table 1c). Obese and nonobese patients had similar mean age (p = 0.78), but the obese group had a higher mean ALT level and a lower mean HDL (p = 0.01 for both) (Table 1c).

For subanalysis by region, there were 94 studies (n = 2,244,590) from the Western Pacific, 5 studies (n = 1,981) from Southeast Asia, and 5 studies (n = 1,183) from the Eastern Mediterranean (Table 1d). The ages of those from Southeast Asia (42.66, 95% CI: 32.23–53.11) were significantly younger than those from the Western Pacific (52.80, 95% CI: 51.85–53.75) or the Eastern Mediterranean regions (47.83, 95% CI: 46.62–49.04, p < 0.001), but there was no significant difference in the pooled mean ALT or AST levels among the regions (p = 0.79 and 0.16, respectively) (Table 1d).

For analysis of steatosis severity, 4 studies provided data for mild, moderate, and severe steatosis and 6 for mild versus moderate-severe steatosis. In total, 6,262 patients with mild steatosis, 1,576 patients with moderate steatosis, 543 patients with severe steatosis, and 3,952 patients with moderate-severe steatosis were included in this analysis (Table 2). NAFLD participants with severe steatosis had a significantly higher pooled mean BMI (29.89, 95% CI: 27.94–31.84) compared to those with moderate (27.85, 95% CI: 26.66–29.06) and mild steatosis (25.71, 95% CI: 24.90–26.53, p < 0.001), as well as a significantly higher pooled mean ALT level (50.34 vs. 49.61 vs. 34.62, respectively, p = 0.01) (Table 2a; online suppl. Table 2). We found similar results in analysis comparing...
4,995 citations identified by electronic search (to January 17, 2019)
(PubMed: 1,784; Embase: 2,998; Cochrane: 213)

1,081 duplicated citations removed

3,914 citations: title and abstract screening

3,225 ineligible citations excluded

689 potentially relevant citations: full text review

452 citations excluded
(78 no full text; 125 irrelevant; 89 reported prevalence of NAFLD in neither general nor planned subgroup population; 45 included viral hepatitis/other liver diseases; 45 inpatient/outpatient data; 63 without prevalence report; 36 other study design or format)

237 articles included in original meta-analysis

133 citations excluded
(130 did not include NAFLD characteristic data; 3 with missing SD)

452 citations excluded
(78 no full text; 125 irrelevant; 89 reported prevalence of NAFLD in neither general nor planned subgroup population; 45 included viral hepatitis/other liver diseases; 45 inpatient/outpatient data; 63 without prevalence report; 36 other study design or format)

104 articles (n = 2,247,754) included in current meta-analysis

Overall:
BMI = *103 studies
(n = 2,245,083)
ALT = *87 studies
(n = 2,204,503)

*29 male (n = 2,068,577)
*28 female (n = 2,078,871)
*10 obese (n = 13,513)
*10 non-obese (n = 6,775)
*94 Western Pacific (n = 2,244,590)
*5 Southeast Asia (n = 1,981)
*5 Eastern Mediterranean (n = 1,183)
*6 mild steatosis (n = 6,262)
*4 moderate steatosis (n = 1,576)
*4 severe steatosis (n = 543)
*6 moderate-severe steatosis (n = 3,952)
*3 NFS < –1.455 (n = 16,729)
*3 NFS ≥ –1.455 (n = 3,008)

Subgroup analysis:

*Note: Some of the 104 articles were used in multiple analyses resulting in a higher total count than 104.

Fig. 1. Flowchart of systemic literature search and screening for analysis of characteristics in Asian NAFLD patients.
(a) Overall	Studies, n	Participants, n	Pooled mean	95% CI
Age	102	2,245,268	52.07	48.92–55.23
BMI, kg/m²	103	2,245,083	26.20	25.94–26.46
ALT, U/L	87	2,204,503	31.74	30.75–32.72
AST, U/L	73	2,156,655	27.07	25.44–28.70
GGT, U/L	58	2,122,760	38.53	37.30–40.03
ALP, U/L	9	18,607	135.52	123.44–147.58
TC, mg/dL	82	2,221,329	201.21	199.19–203.23
HDL, mg/dL	84	2,24,546	120.46	47.44–48.25
TG, mg/dL	86	2,229,552	163.13	154.26–172.00

(b) By sex	Male	Female	p value
Age	20	19	0.07
BMI, kg/m²	21	20	0.01
ALT, U/L	12	11	<0.001
AST, U/L	7	6	0.02
GGT, U/L	11	10	<0.001
TC, mg/dL	13	12	<0.001
HDL, mg/dL	14	12	<0.001
LDL, mg/dL	8	7	<0.001
TG, mg/dL	15	13	0.01

(c) By BMI	Obese (BMI ≥25)	Nonobese (BMI <25)	p value
Age	8	8	0.80
BMI, kg/m²	9	9	<0.001
ALT, U/L	9	9	0.09
AST, U/L	7	7	0.14
GGT, U/L	6	6	0.06
ALP, U/L	2	2	0.99
TC, mg/dL	7	7	0.43
HDL, mg/dL	7	7	0.01
LDL, mg/dL	6	6	0.97
TG, mg/dL	8	8	0.43

(d) By geographic region	Western Pacific	Southeast Asia	Eastern Mediterranean	p value
Age	92	94	94	<0.001
BMI, kg/m²	94	80	80	0.03
ALT, U/L	80	77	77	0.02
AST, U/L	66	66	66	0.16
GGT, U/L	56	57	57	0.01
ALP, U/L	29	32	32	0.04
TC, mg/dL	57	57	57	0.02
HDL, mg/dL	74	79	79	0.03
LDL, mg/dL	64	64	64	<0.001
TG, mg/dL	82	82	82	0.03

1 Some articles did not present data on each characteristic resulting in a lower number of studies presented for each characteristic compared to the total number of studies used in the male or female subgroup. 2 Some articles did not present data on each characteristic resulting in a lower number of studies presented for each characteristic compared to the total number of studies used in the obese or nonobese subgroup.
NAFLD participants with moderate to severe steatosis to those with mild steatosis (Table 2b).

In analysis of fibrosis, there were three studies with 16,729 patients with NFS <-1.455 and 3,008 patients with NFS ≥ -1.455. Those with an NFS <-1.455 had a significantly lower BMI (26.02, 95% CI: 25.66–26.40) compared to those with an NFS >-1.455 (27.09, 95% CI: 26.36–27.83, $p < 0.001$), but a higher pooled mean ALT level (33.74 vs. 27.83, respectively, $p = 0.01$) (Table 2c). As mentioned above, most studies provided NFS data using cutoff of -1.455 but not for the 0.676 cutoff.

Online supplementary Tables 3a–g and 4a–e provide the quality assessment of the studies included in the overall and subanalyses with overall scores of 7.45 and 8.83 indicating that the majority of included studies had a low risk of bias and used sound methodology in their respec-

![Fig. 2. ALT distribution of the overall population: by bootstrap modeling of data derived from meta-analysis (a); by individual patient-level data (b).](image-url)
Table 2. Pooled means for characteristics by severity of NAFLD: (a) mild, moderate, and severe steatosis by ultrasound; (b) mild versus moderate-severe steatosis by ultrasound; and (c) no fibrosis versus fibrosis by NFS

(a) By steatosis degree	Mild	Moderate	Severe	p value									
	studies	participants	pooled	95% CI	studies	participants	pooled	95% CI	studies	participants	pooled	95% CI	
Age	5	5,175	49.06	45.68–52.46	4	1,576	49.03	47.14–50.94	4	543	52.32	48.35–56.3	0.33
BMI, kg/m²	6	6,262	25.71	24.9–26.53	4	2,499	33.49	32.61–34.37	3	1,034	36.50	34.2–38.82	0.87
ALT, U/L	6	6,262	34.62	32.12–37.12	4	2,499	45.74	42.26–49.22	3	1,034	36.50	34.2–38.82	0.87
TC, mg/dL	5	5,175	199.98	192.26–207.7	4	1,576	209.19	183.63–234.75	4	543	213.22	179.91–246.54	0.06
HDL, mg/dL	5	5,175	46.49	43.84–49.15	4	1,576	47.23	43.11–51.35	4	543	38.46	27.27–49.66	0.38
LDL, mg/dL	4	3,674	117.53	108.33–126.74	4	3,674	127.77	118.29–132.67	4	543	137.23	118.29–156.19	0.08
TG, mg/dL	5	5,174	151.98	133.33–170.64	4	5,174	169.98	138.9–201.08	4	543	186.20	155.26–217.15	0.16

(b) By steatosis degree	Mild	Moderate and severe	p value						
	studies	participants	pooled	95% CI	studies, nparticipants	pooled	95% CI		
Age	5	5,175	49.06	45.68–52.46	5	3,096	50.61	48.7–52.54	0.44
BMI, kg/m²	6	6,262	25.71	24.9–26.53	6	3,952	28.28	27.31–29.25	<0.001
ALT, U/L	6	6,262	34.62	32.12–37.12	6	3,952	48.20	35.97–60.44	0.06
AST, U/L	4	2,499	33.49	32.61–34.37	3	1,034	41.78	11.41–72.17	0.65
TC, mg/dL	5	5,175	199.98	192.26–207.7	5	3,096	209.69	187.73–231.65	0.43
HDL, mg/dL	5	5,175	46.49	43.84–49.15	5	3,096	43.03	41.73–44.34	0.02
LDL, mg/dL	4	3,674	117.53	108.33–126.74	4	2,119	131.00	121.66–140.36	<0.001
TG, mg/dL	5	5,174	151.98	133.33–170.64	5	3,096	181.74	158.33–205.15	0.05

(c) By fibrosis level	NFS < −1.455	NFS ≥ −1.455	p value						
	studies, n	participants	pooled	95% CI	studies, n	participants	pooled	95% CI	
Age	3	16,729	42.80	35.67–49.94	3	16,729	53.36	40.96–65.78	0.15
BMI, kg/m²	3	16,729	26.02	25.66–26.4	3	16,729	27.09	26.36–27.83	<0.001
ALT, U/L	3	16,729	33.74	32.24–35.25	3	16,729	27.83	23.62–32.05	0.0096
AST, U/L	2	15,600	26.79	25.23–28.37	2	15,600	26.04	24.03–32.06	0.57
GGT, U/L	2	12,343	39.49	30.67–48.31	2	939	42.89	33.78–51.42	0.63
TC, mg/dL	3	16,729	204.64	202.17–207.12	3	16,729	205.99	191.8–220.18	0.86
HDL, mg/dL	3	16,729	44.97	41.6–48.34	3	16,729	45.91	42.92–48.91	0.68
LDL, mg/dL	3	16,729	127.46	120.11–134.83	3	16,729	124.92	112.91–136.93	0.72
TG, mg/dL	3	16,729	154.61	149.45–159.77	3	16,729	161.26	153.52–169.01	0.16

Mild, mild increase in liver echogenicity with normal or slightly increased visualization of the diaphragm and intrahepatic vessel borders. Moderate, moderate increase in liver echogenicity with decreased visualization of the diaphragm and intrahepatic vessel borders. Severe, gross increase in liver echogenicity with poor visualization of the diaphragm, intrahepatic vessel borders, and posterior section of the right lobe. Insufficient data available for NFS 0.676 cutoff.
Table 3. Characteristics of patients from the individual patient dataset: (a) overall and by sex; (b) by obesity and fibrosis

	Overall (n = 7,668)	Male (n = 4,499)	Female (n = 3,169)	p value
Age	55.1±13	55.6±13.1	57.3±12.5	<0.001
BMI, kg/m²	25±4	25.6±3.3	25.5±3.6	0.45
ALT, U/L	20–43	32 (22–47)	25 (18–36)	<0.001
AST, U/L (n = 6,615; 3,988; 2,677)	20 (19–30)	23 (19–30.75)	22 (18–30)	0.30
GGT, U/L (n = 7,168; 4,194; 2,974)	33 (23–53)	38 (27–52.88)	26 (19–41)	<0.001
ALP, U/L (n = 2,016; 263; 3,766)	218 (181–263)	215 (181–257)	226.5 (235–281)	<0.001
TC, mg/dL (n = 6,470; 3,766; 2,604)	206.1±37.7	202.9±37.3	210.7±37.8	<0.001
HDL, mg/dL (n = 5,937; 3,564; 2,373)	50±12.5	47.2±11.1	54.2±13.3	<0.001
LDL, mg/dL (n = 5,567; 3,303; 2,264)	124.1±36.9	123.5±36.6	124.9±37.4	0.17
TG, mg/dL (n = 6,109; 3,369; 2,440)	133 (96–189)	141 (101–201)	122 (89–172)	<0.001
Albumin, g/dL (n = 4,069; 2,198; 1,871)	4.4±0.4	4.4±0.4	4.3±0.4	<0.001
Platelet, 10³/μL (n = 6,085; 3,622; 2,463)	234 (194–283)	232 (189–298)	266 (204–298)	<0.001
Diabetes, % (n = 6,615; 3,938; 2,677)	1.76 (26.3)	1.02 (26.1)	715 (26.7)	0.58
FIB-4 with 2.67 cutoff, % (n = 3,622)	684 (22.4)	747 (20.6)	613 (24.9)	<0.001
FIB-4 > 2.67	384 (63)	214 (5.8)	170 (6.9)	<0.001
FIB-4 with 3.25 cutoff, % (n = 4,194; 2,974)	4,341 (71.3)	2,661 (73.5)	1,489 (68.2)	<0.001
FIB-4 > 3.25	1,489 (24.5)	816 (22.5)	673 (27.3)	<0.001
NFS, % (n = 2,016; 263; 3,766)	220 (183.5–262)	217 (179–264)	135 (97–191)	0.43
NFS < −1.455	2,664 (65.5)	1,464 (66.6)	1,200 (64.1)	0.07
NFS > −1.455 < x ≥ 0.676	1,267 (31.1)	671 (30.5)	596 (31.9)	
NFS > 0.676	138 (34)	63 (2.9)	75 (4)	

Values as mean ± SD or median (IQR). Obese defined as BMI ≥ 25. Nonobese defined as BMI < 25.

	Obese (n = 3,952)	Nonobese (n = 3,716)	p value
Age	54±13.2	55.6±12.8	<0.001
Male, %	2,905 (59.8)	2,134 (57.4)	0.03
BMI, kg/m²	28±3.3	22.9±1.6	<0.001
ALT, U/L	30 (20–45)	28 (19–41)	<0.001
AST, U/L (n = 3,315; 3,302)	23 (19–31)	23 (19–30)	0.97
GGT, U/L (n = 3,747; 3,421; 1,401; 2,660)	34 (23–54)	32 (22–52)	0.50
ALP, U/L (n = 1,015; 1,001)	220 (183–262)	217 (179–264)	0.43
TC, mg/dL (n = 3,099; 3,271; 1,403; 2,660)	204±38.1	206±37.3	0.86
HDL, mg/dL (n = 2,969; 2,773; 1,247; 2,144)	495±12.7	50.5±12	<0.001
LDL, mg/dL (n = 2,794; 2,773; 1,256; 2,173)	125±23.7	123±36.1	0.02
TG, mg/dL (n = 2,060; 3,049; 1,295; 2,268)	135 (97–191)	132 (95–188)	0.27
Albumin, g/dL (n = 2,075; 1,994)	4.4±0.4	4.4±0.4	0.02
Platelet, 10³/μL (n = 3,090; 2,955)	235 (195–282)	234 (193–283)	0.89
Diabet, % (n = 331; 302; 1,405; 2,664)	899 (27.1)	844 (25.6)	0.15
FIB-4 with 2.67 cutoff, % (n = 3,909)	2,236 (72.4)	2,105 (70.3)	<0.001
FIB-4 > 2.67	2,236 (72.4)	2,105 (70.3)	<0.001
FIB-4 > 3.25	712 (23)	777 (25.9)	<0.001
NFS, % (n = 2,073; 2,073)	142 (46)	113 (3.8)	0.01
NFS > −1.455 < x ≥ 0.676	754 (36.3)	513 (25.7)	<0.001
NFS > 0.676	107 (52)	31 (1.6)	<0.001

Values as mean ± SD or median (IQR). Obese defined as BMI ≥ 25. Nonobese defined as BMI < 25.
tive studies, respectively (online suppl. Tables 3–4). However, heterogeneity was considerable for the majority of studies included with $I^2 > 50$ for most analyses and >70 for subanalyses for liver steatosis and liver fibrosis. There was no significant publication bias found using Egger’s test for the analysis of ALT in the overall population ($p = 0.15$).

Individual Patient Data Analysis

Overall ($n = 7,668$), the mean age was 55.1 (±13) years, the mean BMI was 25.5 (±3.4) kg/m2, the median ALT was 29 (range 20–43) U/L, 26.3% were diabetic, 4.2% had FIB-4 ≥ 3.25, and 3.4% had NFS > 0.676 (Table 3a). Females ($n = 3,169$) were significantly older than males ($n = 4,499$) (57.3 ± 12.5 vs. 53.5 ± 13.1, $p < 0.001$), had significantly lower median ALT levels (25 vs. 31, $p < 0.001$), were significantly less likely to have FIB-4 ≤ 1.45 (68.2% vs. 73.5%), and were more likely to have FIB-4 ≥ 2.67 (6.9% vs. 5.8%, $p < 0.001$) and FIB-4 ≥ 3.25 (4.5% vs. 4%, $p < 0.001$) (Table 3a). However, ALT levels were low for both males and females (shown in Fig. 2b), as 46% of males and 32% of females had ALT levels <95% ULN.

About half (48.5%) were obese, and obese NAFLD participants were younger ($p < 0.001$), more likely male ($p = 0.03$), and had a higher median ALT ($p < 0.001$), low-density lipoprotein ($p = 0.02$), and a lower HDL ($p < 0.001$) (Table 3b). Obese patients were also more likely to have lower FIB-4 ($p < 0.001$).

When comparing participants with high versus low FIB-4, high FIB-4 participants using the FIB-4 cutoff of 2.67 were about 10 years older (67.4 ± 10.7 years vs. 56.1 ± 12.8 years, $p < 0.001$), had higher BMIs (26.3 ± 12.8 years, $p = 0.01$), higher ALT levels (34 vs. 26 U/L, $p < 0.001$), and a greater proportion of diabetes (36.7% vs. 24.2%, $p < 0.001$). We found similar findings for those with an FIB-4 of 3.25 or above (online suppl. Table 5).

Discussion

Our study found that patients with NAFLD in Asia were approximately 52 years old, overweight by Asian cutoffs, about 34% nonobese, with slightly elevated ALT and total cholesterol levels, around 17% diabetic, and 85% with NFS < −1.455 indicating a very low probability of having advanced fibrosis. Males tended to be approximately 4 years younger than females, but their BMIs were similar. As with other populations, neither the absence of obesity nor an elevated ALT should be used to guide the screening or diagnosis of NAFLD for Asians [2, 17, 18].

We also found different clinical phenotypes of NAFLD among the various Asian subregions. Those with NAFLD in Southeast Asia were significantly younger, with mean age only 43 years, suggesting that the possibility of NAFLD should not be excluded in young patients. Those from the Western Pacific were older by 10 years and 5 years than those from Southeast Asia or the Eastern Mediterranean, respectively. Those from the Eastern Mediterranean had the highest BMIs though there was no statistical difference among regions. However, all three regions demonstrated only slightly elevated ALT levels without regional differences, again showing that ALT levels should not be a criterion for detecting the presence of NAFLD. Notably, ALT levels were also lower in subgroups with higher likelihood for advanced fibrosis, which is likely due to the increase in the AST/ALT ratio that is part of the NFS, and AST/ALT ratio has been shown to correlate with liver fibrosis in chronic liver disease [19].

Notably, when we reviewed the characteristics of patients by classification of their hepatic steatosis as mild, moderate, and severe by ultrasound, we found those with severe steatosis on average had BMIs that were 14% greater than those with mild hepatic steatosis and 7% greater than those with moderate steatosis. In addition, those with severe steatosis demonstrated average ALT levels that were increased at 1.5–2 × 95% ULN ALT and were 31% higher than those with mild steatosis. Such a finding suggests that if an elevated ALT level is found in one suspected of having NAFLD, that patient may in fact have severe steatosis and require further assessment.

To strengthen our meta-analysis findings, we used individual patient-level data from 7,668 subjects in seven Asian cities in three countries and found that overall the trends of differences between males and females, obese and nonobese, and those with NFS ≤ −1.455 or ≥ −1.455 that we reported in our meta-analysis were similar to those in the analyzed individual patient-level data. Of particular interest are our findings on the percent of NAFLD patients with fibrosis, since fibrosis is the single most important predictor of death for those with NAFLD [20, 21]. Since we had individual data, we were able to calculate both the NFS and FIB-4 scores and found similar findings to our meta-analysis in that between 66% and 71% (respectively) fell into the low probability of having advanced fibrosis, while 3.4% and 4.2% (respectively) had a high probability of having advanced fibrosis or cirrhosis. In addition, we found that older, female, obese, and diabetic were more likely to have advanced fibrosis. Therefore, although the percentage of patients with advanced fibrosis is low, the large number of patients with NAFLD amplifies...
the number of patients negatively affected, especially as the NAFLD burden continues to grow in Asia [22, 23]. Consequently, efforts must continue to raise awareness about NAFLD and its risk factors as well as its management, which includes weight loss through diet and exercise as well as management of patients’ cardiometabolic risk factors [24, 25]. Furthermore, efforts must be made to raise awareness about the negative effects of NAFLD among older women as seen in this study and in light of a recent study that found that NASH is now the number one indicator for liver transplant among women [26].

This study has its strengths. First, the number of studies included is large, which provided a study population of over 2 million for many of the analyses. As a result, the majority of our reported findings have a good level of precision as noted in our relatively tight 95% confidence intervals. In addition, the quality of our included studies overall was high. Besides published data, we also obtained individual patient data from seven centers for additional patient-level data. We also recognize that there are several limitations. One was the lack of data to determine the NFS >0.676 for the meta-analysis. We are aware that a score between −1.455 and 0.676 is in the indeterminate zone, where certainty of the presence or absence of advanced fibrosis is not available, but we were able to determine the level of fibrosis with data from our patient-level data, which indicate that the vast majority of patients are at low risk for having advanced fibrosis. Another limitation is that the severity of steatosis was determined by ultrasound which may have interobserver variability. To account for this limitation, we included analyses of mild versus moderate versus severe steatosis as well as mild versus moderate-severe steatosis and found that the trends presented were similar. Third, a few of our subanalyses were from only a few studies; however, these studies provided a large number of patients such that our confidence in our reported findings is relatively high, especially as the majority of our findings were replicated using individual data. Lastly, for both our study level and individual patient-level data analyses, the majority of the data were from the Western Pacific region, so our data may be most representative of the Western Pacific region, and thus additional studies are needed for other regions of Asia.

Conclusion

In Asia, using a BMI of 25 or greater as an indicator of obesity, 66% of the studied population with NAFLD were obese, while 34% were nonobese. ALT levels were not found to be elevated except in cases with combined moderate-severe as well as severe steatosis, with the majority of both males and females presenting with ALT within 1–1.5 × 95% ULN or lower, suggesting that ALT levels should not be used as a screening or diagnostic criterion for the presence of NAFLD. Among the three regions, Southeast Asians were significantly younger, Western Pacific Asians had the lowest BMIs, and Eastern Mediterranean Asians had the highest BMIs. Additional efforts to raise awareness about NAFLD among Asians are needed.

Statement of Ethics

The study was performed in accordance with the World Medical Association Declaration of Helsinki. The individual patient-level database was approved by each study center that provided individual patient-level data, received written informed consent, and the study protocol was approved by the Institutional Review Board at their respective institution (Approval No. CF14040 from the Ethics Committee of the Taichung Veterans General Hospital; No. UW-10-325 from the Ethics Committee/IRB of the University of Hong Kong and Hospital Authority Western Cluster; No. 169 from Faculty of Life Sciences, Kumamoto University; No. 20190328-7 from Ogaki Municipal Hospital; No. 2011-06-04 from Saga University Hospital).

Conflict of Interest Statement

D.Q.H. has received grant support from Exxon Mobil-NUS Research Fellowship for Clinicians and Singapore Ministry of Health’s National Medical Research Council under its NMRC Research Training Fellowship. J.F. is on the advisory board/consulting for Gilead. R.C.C. has received grant support from Gilead. T.K. has received grant support and personal speaker fees from Gilead and AbbVie. M.Y. is on the advisory board/consulting for AbbVie, Arbutus Biopharma, Assembly Biosciences, Bristol Myers Squibb, Dicerna Pharmaceuticals, GlaxoSmithKline, Gilead Sciences, Janssen, Merck Sharp and Dohme, ClearB Therapeutics, and Springbank Pharmaceuticals. H.T. has received grant support from AbbVie, Merck Sharp and Dohme, and Bayer. M.H.N. has received grant support from Pfizer, Gilead, and Enanta and is on the advisory board/consulting for Intercept and Gilead. Other authors have no disclosures.

Funding Sources

There is no funding to disclose.
Author Contributions

All authors participated in data acquisition, data interpretation, and review/revision of the manuscript. L.Y.K.: study design, data analysis, and manuscript drafting. D.Q.H.: study design. Y.H.Y.: study design. S.B.: data analysis. L.H.: manuscript drafting. M.H.N.: study concept and design, data analysis, manuscript drafting, and study supervision.

Data Availability Statement

The majority of data generated or analyzed during this study are included in this article and its online supplementary files. Further enquiries can be directed to the corresponding author.

References

1 Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64:73–84.
2 Li J, Zou B, Yeo YH, Feng Y, Xie X, Lee DH, et al. Prevalence, incidence, and outcome of non-alcoholic fatty liver disease in Asia, 1999–2019: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2019;4:389–98.
3 WHO Expert Consultation. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet. 2004;363:157–63.
4 Lee JK, Shim JH, Lee HC, Lee SH, Kim KM, Lim YS, et al. Estimation of the healthy upper limits for serum alanine aminotransferase in Asian populations with normal liver histology. Hepatology. 2010;51:1577–83.
5 Wu WC, Wu CY, Wang YJ, Hung HH, Yang HH, Kao WY, et al. Updated thresholds for serum alanine aminotransferase level in a large-scale population study composed of 34 346 subjects. Aliment Pharmacol Ther. 2012;36:560–8.
6 Le MH, Yeo YH, Cheung R, Wong VW, Nguyen MH. Ethnic influence on nonalcoholic fatty liver disease prevalence and lack of disease awareness in the United States, 2011–2016. J Intern Med. 2020 Jun;287(6):711–22.
7 Saadeh S, Younossi ZM, Remer EM, Gramlich T, Ong IP, Hurley M, et al. The utility of radiologic imaging in nonalcoholic fatty liver disease. Gastroenterology. 2002;123:745–50.
8 Angulo P, Hui JM, Marchesini G, Bugianesi E, George J, Farrell GC, et al. The NAFLD fibrosis score: a noninvasive system that identifies liver fibrosis in patients with NAFLD. Hepatology. 2007;45:846–54.
9 Wong VW, Adams LA, de Ledinghen V, Wong GL, Sookooian S. Noninvasive biomarkers in NAFLD and NASH – current progress and future promise. Nat Rev Gastroenterol Hepatol. 2018;15:461–78.
10 Sterling RK, Lissen E, Clumeck N, Sola R, Correa MC, Montaner J, et al. Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection. Hepatology. 2006;43:1317–25.
11 Shah AG, Lydecker A, Murray K, Tetri BN, Contos MJ, Sanyal AJ, et al. Comparison of noninvasive markers of fibrosis in patients with non-alcoholic fatty liver disease. Clin Gastroenterol Hepatol. 2009;7:1104–12.
12 Ottawa Hospital Research Institute [Internet]. [cited 2019 Sept 11]. Available from: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp.
13 Oniki K, Saruwatari J, Izuza T, Kajiwara A, Morita K, Sakata M, et al. Influence of the PNPLA3 rs738409 polymorphism on non-alcoholic fatty liver disease and renal function among normal weight subjects. PLoS One. 2015;10:e0132640.
14 Lee SW, Lee TY, Yang SS, Tung CF, Yeh HZ, Chang CS. Risk factors and metabolic abnormality of patients with non-alcoholic fatty liver disease: either non-obese or obese Chinese population. Hepatobiliary Pancreatic Dis Int. 2018;17:45–8.
15 Fung J, Lee CK, Chan M, Seto WK, Lai CL, Yuen MF, et al. High prevalence of non-alcoholic fatty liver disease in the Chinese – results from the Hong Kong liver health census. Liver Int. 2015;35:542–9.
16 Prati D, Taitoli E, Zanella A, Della Torre E, Butelli S, Del Vecchio E, et al. Updated definitions of healthy ranges for serum alanine aminotransferase levels. Ann Intern Med. 2002;137:1–10.
17 Ye Q, Zou B, Yeo YH, Li J, Huang DQ, Wu Y, et al. Global prevalence, incidence, and outcomes of non-obese or lean non-alcoholic fatty liver disease: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2020;5(8):739–52.
18 Younossi ZM, Stepanova M, Negro F, Hallaj S, Younossi Y, Lam B, et al. Nonalcoholic fatty liver disease in lean individuals in the United States. Medicine. 2012;91:319–27.
19 Giannini E, Rioso D, Botta F, Chiarbonello B, Fasoli A, Malfatti F, et al. Validity and clinical utility of the aspartate aminotransferase-alanine aminotransferase ratio in assessing disease severity and prognosis in patients with hepatitis C virus-related chronic liver disease. Arch Intern Med. 2003;163:218–24.
20 Angulo P, Kleiner DE, Dam-Larsen S, Adams LA, Bjorsson ES, Charatcharoenwitthaya P, et al. Liver fibrosis, but no other histologic features, is associated with long-term outcomes of patients with nonalcoholic fatty liver disease. Gastroenterology. 2015;149:389–97.e10.
21 Chalasani N, Younossi Z, Lavine JE, Charlton M, Cusi K, Rinella M, et al. The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American Association for the study of liver diseases. Hepatology. 2018;67:328–57.
22 Estes C, Anstee QM, Arias-Losie MT, Bantel H, Bellentani S, Caballeria J, et al. Modeling NAFLD disease burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the period 2016–2030. J Hepatol. 2018;69:896–904.
23 Tampi RP, Wong VW, Wong GL, Shu SS, Chan HL, Fung J, et al. Modelling the economic and clinical burden of nonalcoholic steatohepatitis in East Asia: data from Hong Kong. Hepatol Res. 2020 Sep;50(9):1024–31.
24 Cleveland ER, Ning H, Vas MB, Lewis CE, Rinella ME, Carr JJ, et al. Low awareness of non-alcoholic fatty liver disease in a population-based cohort sample: the CARDIA Study. J Gen Intern Med. 2019;34:2772–8.
25 Golabi P, Locklear CT, Austin P, Afshald S, Byrns M, Gerber L, et al. Effectiveness of exercise in hepatic fat mobilization in non-alcoholic fatty liver disease: systematic review. World J Gastroenterol. 2016;22:6318–27.
26 Noureddin M, Vipani A, Bresce C, Todo T, Kim IK, Alkhouri N, et al. NASH leading cause of liver transplant in women: updated analysis of indications for liver transplant and ethnic and sex variances. Am J Gastroenterol. 2018;113:1649–59.