Entropy Numbers of Spheres in Banach and quasi-Banach spaces

Aicke Hinrichs
Institut für Analysis, Johannes Kepler Universität Linz
Altenbergerstraße 69, 4040 Linz, Austria
email: aicke.hinrichs@jku.at

Sebastian Mayer
Institut für numerische Simulation
Endenicher Allee 62, 53115 Bonn, Germany
email: mayer@ins.uni-bonn.de

January 16, 2015

Abstract
We prove sharp upper bounds on the entropy numbers $e_k(S^d_{p}, \ell_q^d)$ of the p-sphere in ℓ_q^d in the case $k \geq d$ and $0 < p \leq q \leq \infty$. In particular, we close a gap left open in recent work of the second author, T. Ullrich and J. Vybiral. We also investigate generalizations to spheres of general finite-dimensional quasi-Banach spaces.

1 Introduction
Entropy numbers are a central concept in approximation theory. They quantify the compactness of a given set with respect to some reference space. For K being a subset of a finite-dimensional (quasi-)Banach space Y, the k-th (dyadic) entropy number $e_k(K, Y)$ is defined as

$$e_k(K, Y) = \min \left\{ \varepsilon > 0 : K \subset \bigcup_{j=1}^{2^{k-1}} (x_j + \varepsilon B_Y) \text{ for some } x_1, \ldots, x_{2^{k-1}} \in Y \right\}. \quad (1)$$

A detailed discussion and historical remarks can be found in the monographs [1, 2].

Recall the (quasi-)norms $\|x\|_p := \left(\sum_{i=1}^d |x_i|^p \right)^{1/p}$ for $0 < p < \infty$ and $\|x\|_{\infty} := \max_{i=1}^d |x_i|$. The entropy numbers $e_k(B_p^d, \ell_q^d)$ of the unit balls $B_p^d = \{ x \in \mathbb{R}^d : \|x\| \leq 1 \}$
in $\ell_q^d = (\mathbb{R}^d, \| \cdot \|_q)$ for $0 < p, q \leq \infty$ are well-understood for more than a decade now \cite{5, 7, 8}. Regarding p-spheres $S_p^{d-1} = \{ x \in \mathbb{R}^d : \| x \|_p = 1 \}$, a rigorous proof has been provided just recently \cite{6}. For the reader’s convenience, let us restate the result.

Lemma 1. Let $d \in \mathbb{N}$, $d \geq 2$, $0 < p \leq q \leq \infty$ and $\bar{p} = \min\{1, p\}$. Then,

(i) $$2^{-k/(d-1)}d^{1/q-1/p} \lesssim e_k(S_p^{d-1}, \ell_q^d) \lesssim 2^{-k/(d-\bar{p})}d^{1/q-1/p} \quad \text{for } k \geq d.$$

(ii) $$e_k(S_p^{d-1}, \ell_q^d) \asymp \begin{cases} 1 & \text{for } 1 \leq k \leq \log d, \\ \left(\frac{\log(1+d/k)}{k}\right)^{1/p-1/q} & \text{for } \log d \leq k \leq d. \end{cases}$$

To a large extent, the proof just mimics the corresponding proof for p-unit balls, including the volume arguments which are utilized in the case $k \geq d$. Once $p < 1$ however, the volume arguments get too coarse for the upper bound. They do no longer lead to the correct order of decay; instead of $2^{-k/(d-1)}$, we only see $2^{-k/(d-\bar{p})}$.

In this work, we present an alternative proof for the case $k \geq d$ which gives the correct decay behaviour in k. In essence, the proof relies on a scheme to construct a covering of S_p^{d-1} from a covering of B_p^{d-1}. In Section 2 we prove

Theorem 2. Let $d \in \mathbb{N}$, $d \geq 2$, $0 < p \leq q \leq \infty$. Then,

$$e_k(S_p^{d-1}, \ell_q^d) \asymp 2^{-k/(d-1)}d^{1/q-1/p}, \quad \text{for } k \geq 3d.$$

Finally in Section 3 we generalize the methods presented in Section 2 to study entropy numbers $e_k(S_X, Y)$ for general finite-dimensional quasi-Banach spaces X and Y.

Notations For $e \in \{-1, 1\}^d$ a diagonal vector, we denote the associated orthant by $Q_e := \{ x \in \mathbb{R}^d : 0 \leq \text{sign } e \cdot x \leq 1 \}$. Furthermore, by H_i we denote the hyperplane where the i-th coordinate of every vector equals 0 and $C_i = \{ x \in \mathbb{R}^d : |x| \leq |x_j| \text{ for } j = 1, \ldots, d \}$. Whenever we write $|x| \leq |y|$, then this is meant coordinate-wise: $|x_j| \leq |y_j|$ for each $j = 1, \ldots, d$.

2 Entropy numbers of p-pheres

Let us start this section with a simple proof that the entropy numbers of the p-sphere S_p^{d-1} are always bounded from below by the respective entropy numbers of the p-unit ball B_p^{d-1}. The known behaviour of the latter immediately implies all the lower bounds in Lemma 1 and Theorem 2.

Theorem 3. Let $0 < p, q \leq \infty$. For all natural numbers k, we have

$$e_k(S_p^{d-1}, \ell_q^d) \geq e_k(B_p^{d-1}, \ell_q^{d-1}).$$
Proof. Let \(\varepsilon = e_k(S_p^{d-1}, \ell_q^d) \) and choose an associated covering

\[S_p^{d-1} \subset \bigcup_{j=1}^{2^{k-1}} (x_j + \varepsilon B_q^d). \]

Let \(P_1 \) be the orthogonal projection in \(\mathbb{R}^d \) onto the hyperplane \(H_1 \) setting the first coordinate to zero. Now, identify \(B_d^{d-1} \) and \(B_q^{d-1} \) with its natural isometric embedding into \(H_1 \). Then

\[P_1(B_d^d) = B_q^{d-1} \quad \text{and} \quad P_1(S_p^{d-1}) = B_p^{d-1} \]

and the linearity of \(P_1 \) imply

\[B_p^{d-1} = P_1(S_p^{d-1}) \subset \bigcup_{j=1}^{2^{k-1}} (P_1 x_j + \varepsilon P_1(B_q^d)) = \bigcup_{j=1}^{2^{k-1}} (P_1 x_j + \varepsilon B_q^{d-1}). \]

By definition of the entropy numbers this gives \(e_k(B_p^{d-1}, \ell_q^{d-1}) \leq \varepsilon \) and proves the theorem.

The upper bounds in (ii) of Lemma 4 directly follow from the corresponding upper bounds for \(B_p^d \) and the inclusion \(S_p^{d-1} \subset B_p^d \). We turn to the proof of the upper bound on the entropy numbers of \(S_p^{d-1} \) for \(k \geq d \) in Theorem 2. The covering construction is based on the bijective shifting map

\[\Delta_e : B_p^d \cap Q_e \cap H_i \to S_p^{d-1} \cap Q_e \cap C_i, \quad x \mapsto x + s(x)e, \]

which shifts \(x \) by \(0 \leq s(x) \leq 1 \) along the diagonal \(e \) until it hits the \(p \)-sphere. Since the vectors in the domain of \(\Psi_e^p \) all have the \(i \)-th coordinate equal to 0, the shift \(s(x) \) corresponds to the \(i \)-th coordinate of \(\Delta_e(x) \). Below we provide bounds on the difference between two shifts \(s(x), s(y) \) that depend on the \(\ell_\infty \)-distance of \(x \) and \(y \).

Lemma 4. Let \(x, y \in B_p^d \cap Q_e \cap H_i \) such that \(|x| \leq |y| \). Then

\[s(y) \leq s(x) \leq s(y) + \|x - y\|_\infty. \]

Proof. We give the argument for \(p < \infty \), the proof is easily adapted for \(p = \infty \). By symmetry, it is enough to check the claim for the positive orthant associated with \(e = (1, \ldots, 1) \) and \(i = d \). Then \(x_d = y_d = 0 \) and the assumption \(|x| \leq |y| \) translates into \(0 \leq x_j \leq y_j \) for \(j = 1, \ldots, d - 1 \). Moreover, \(\sigma = s(x) \geq 0 \) and \(\tau = s(y) \geq 0 \) are given as the unique nonnegative solutions of the equations

\[\sum_{j=1}^{d-1} (x_j + \sigma)^p + \sigma^p = 1 \quad \text{and} \quad \sum_{j=1}^{d-1} (y_j + \tau)^p + \tau^p = 1. \]
Now $\tau \leq \sigma$ directly follows from $0 \leq x_j \leq y_j$ for $j = 1, \ldots, d - 1$. The remaining inequality $\sigma \leq \|x - y\|_\infty + \tau$ is a consequence of

$$
\sum_{j=1}^{d-1} (x_j + \sigma)^p + \sigma^p = \sum_{j=1}^{d-1} (y_j + \tau)^p + \tau^p \\
\leq \sum_{j=1}^{d-1} (x_j + (y_j - x_j) + \tau)^p + \tau^p \\
\leq \sum_{j=1}^{d-1} (x_j + \|x - y\|_\infty + \tau)^p + (\|x - y\|_\infty + \tau)^p.
$$

Now it is easy to establish the following for Δ^p_z:

Lemma 5. For any $x, y \in B_p^d \cap Q_e \cap H_i$, we have

$$
\|\Delta^p_z(x) - \Delta^p_z(y)\|_\infty \leq 2\|x - y\|_\infty.
$$

Proof. For the moment, assume that $|x| \leq |y|$. The previous lemma and $|x| \leq |y|$ immediately give

$$
-\|x - y\|_\infty \leq |x_j| - |y_j| + s(x) - s(y) \leq \|x - y\|_\infty
$$

for every $j = 1, \ldots, d$. Hence, we have $\|\Delta^p_z(x) - \Delta^p_z(y)\|_\infty \leq \|x - y\|_\infty$.

Now for arbitrary $x, y \in B_p^d \cap Q_e \cap H_i$, let $z \in B_p^d \cap Q_e \cap H_i$ be the vector given by $z_j = \text{sign}(x_j, y_j)$ for $j = 1, \ldots, d$. But for this vector, both $|z| \leq |x|$ and $|z| \leq |y|$ hold true. Hence, a simple application of the triangle inequality yields $\|\Delta^p_z(x) - \Delta^p_z(y)\|_\infty \leq 2\|x - y\|_\infty$. \qed

Theorem 6. Let $0 < p, q \leq \infty$ and $d \geq 2$. Assume $k \geq 3d$. Then

$$
e_k(S_p^{d-1}, L_p^d) \lesssim 2^{-\frac{d}{d - 1}} d^{1/q - 1/p}.
$$

Proof. We first treat the case $q = \infty$. Let $\mathcal{N}_{e,i}(\varepsilon)$ be a minimal ε-covering of $B_p^d \cap Q_e \cap H_i$ in ℓ_∞. Since $B_p^d \cap Q_e \cap H_i$ is a subset of a $(d - 1)$-dimensional ℓ_p-ball, we have

$$
|\mathcal{N}_{e,i}(\varepsilon)| \leq N_e(B_p^{d-1}, \ell_\infty^{d-1}).
$$

Lemma$\text{[\text{[}}$implies that the set $\Delta^p_z(\mathcal{N}_{e,i}(\varepsilon))$ is a 2ε-covering of $S_p^{d-1} \cap Q_e \cap C_i$. Consequently,

$$
\tilde{\mathcal{N}}(2\varepsilon) := \bigcup_{e \in \{-1, 1\}^d} \bigcup_{1 \leq i \leq d} \Delta^p_z(\mathcal{N}_{e,i}(\varepsilon))
$$

is a 2ε-covering of S_p^{d-1}. Moreover

$$
|\tilde{\mathcal{N}}(2\varepsilon)| \leq \sum_{e \in \{-1, 1\}^d} \sum_{1 \leq i \leq d} |\mathcal{N}_{e,i}(\varepsilon)| \leq 2^d d N_e(B_p^{d-1}, \ell_\infty^{d-1}).
$$
By definition of entropy numbers,
\[e_k(S_d^{-1}, \ell_p^d) \leq 2e_k - d - \log d(B_p^{d-1}, \ell_\infty^{d-1}). \]
Hence the assertion follows from the known upper bound for the entropy numbers of
\(B_p^{d-1} \) in \(\ell_\infty^{d-1} \).

The case of general \(q \) is a consequence of the factorization property of entropy num-
bers, see for instance \[2\], Section 1.3,\]
\[e_k(S_p^{d-1}, \ell_q^d) \leq \| \text{id} : \ell_\infty^d \rightarrow \ell_q^d \| e_k(S_p^{d-1}, \ell_\infty^d) = d^{1/q} e_k(S_p^{d-1}, \ell_\infty^d). \]

Remark 7. For \(p = q \), the Mazur mapping provides a different technique to derive
matching bounds for \(p < 1 \) in Lemma 1. This mapping forms a homeomorphism between
\(p \)-spheres with the \(\ell_p \)-metric for different \(p \). In particular, for \(0 < p < 2 \) the Mazur map
\(M : S_p^{d-1} \rightarrow S_p^{d-1} \) is Lipschitz with constant \(L = L(p) \) independent of the dimension, see \[9\]. Hence, any \(\varepsilon \)-covering of the 2-sphere yields an \(L\varepsilon \)-covering of the \(p \)-sphere by
mapping the centers to \(S_p^{d-1} \) with the Mazur map. This shows that
\[e_k(S_p^{d-1}, \ell_p) \leq L e_k(S_p^{d-1}, \ell_2), \]
which allows to transfer the upper bounds for the case \(p = 2 \) in Lemma 1 to the case
\(0 < p < 1 \).

3 Entropy numbers of spheres in general quasi-Ba-

nach spaces

In this section, we elaborate on the methods presented in the previous section, general-
izing them to arbitrary finite-dimensional quasi-Banach spaces. To this end, let \(X \) be
\(\mathbb{R}^d \) equipped with some quasi-norm \(\| \cdot \| \). Let \(S_X \) be the unit sphere in \(X \). Let \(X_i \) be
the hyperplane \(H_i \) considered as a subspace of \(X \), i.e. its unit ball is \(B_X \cap H_i \). Let \(X^i \)
be the hyperplane \(H_i \) with the quasi-norm whose unit ball is the image of \(B_X \) under the
orthogonal projection of \(\mathbb{R}^d \) onto \(H_i \). Observe that the quasi-norms of \(X_i \) and \(X^i \)
coincide for \(X = \ell_p^d, 0 < p \leq \infty \). That \(X_i \) and \(X^i \) are the same is always true if the
orthogonal projection onto \(H_i \) is a norm 1 projection, which is the case, in particular, if
\(X \) is a Banach space.

The following theorem provides a generalization of Theorem 3.

Theorem 8. Let \(X \) and \(Y \) be \(\mathbb{R}^d \) with quasi-norms as above. For all natural numbers
\(k \), we have
\[e_k(S_X, Y) \geq \max_{1 \leq i \leq d} e_k(B_{X^i}, Y^i). \]

5
Proof. The proof of Theorem 3 can be easily adapted to this situation. Let \(\varepsilon = e_k(S_X, Y) \) and choose an associated covering

\[
S_X \subseteq \bigcup_{j=1}^{2^{k-1}} (x_j + \varepsilon B_Y).
\]

Let \(P_i \) be the orthogonal projection in \(\mathbb{R}^d \) onto the hyperplane \(H_i \) setting the first coordinate to zero. Then we have

\[
P_i(B_Y) = B_{Y^i} \quad \text{and} \quad P_i(S_X) = B_{X^i}.
\]

Since \(P_i \) is linear this implies

\[
B_{X^i} = P_i(S_X) \subseteq \bigcup_{j=1}^{2^{k-1}} (P_i x_j + \varepsilon P_i(B_Y)) = \bigcup_{j=1}^{2^{k-1}} (P_i x_j + \varepsilon B_{Y^i}).
\]

By definition of the entropy numbers this gives \(e_k(B_{X^i}, Y^i) \leq \varepsilon \) and proves the theorem.

To generalize the upper bounds, we have to assume a monotonicity property of the quasi-norm of \(X \) in each orthant \(Q_e \). Let us call \(X \) monotone if for any \(e \in \{-1, 1\}^d \) and for \(x, y \in Q_e \) with \(|x| \leq |y| \) we have \(\|x\| \leq \|y\| \). Again, we define a bijective shifting map by

\[
\Delta^X_e : B_X \cap Q_e \cap H_i \to S_X \cap Q_e \cap C_i, \quad x \mapsto x + s(x)e,
\]

which shifts \(x \) by \(0 \leq s(x) \leq 1 \) along the diagonal \(e \) until it hits the sphere of \(X \). Then analogues of Lemmas 4 and 5 hold true.

Lemma 9. Let \(x, y \in X \cap Q_e \cap H_i \) such that \(|x| \leq |y| \). Then

\[
s(y) \leq s(x) \leq s(y) + \|x - y\|_{\infty}.
\]

Lemma 10. For any \(x, y \in X \cap Q_e \cap H_i \), we have

\[
\|\Delta^X_e(x) - \Delta^X_e(y)\|_{\infty} \leq 2\|x - y\|_{\infty}.
\]

We leave the modifications of the proofs to the attentive reader. Now we obtain the following generalization of Theorem 6.

Theorem 11. Let \(X \) and \(Y \) be \(\mathbb{R}^d \) with quasi-norms as above and assume that \(X \) is monotone. Let \(k \geq d - \lceil \log d \rceil \). Then

\[
e_k(S_X, Y) \leq 2 \|Id : Y \to \ell^d_{\infty}\| \max_{1 \leq i \leq d} e_{k-d-\lceil \log d \rceil}(B_{X_i}, \ell^d_{\infty}).
\]

6
Proof. At first, we treat the case \(Y = \ell^d_{\infty} \). Let \(\mathcal{N}_{E,i}(\varepsilon) \) be a minimal \(\varepsilon \)-covering of \(B_X \cap Q_e \cap H_i \) in \(\ell^d_{\infty} \). Since \(B_X \cap Q_e \cap H_i \) is a subset of \(B_X \), we have

\[
|\mathcal{N}_{E,i}(\varepsilon)| \leq N_\varepsilon(B_X, \ell^d_{\infty}).
\]

Lemma \[10\] implies that the set \(\Psi^X_e(\mathcal{N}_{E,i}(\varepsilon)) \) is a \(2\varepsilon \)-covering of \(S_X \cap Q_e \cap C_i \). Consequently, \(\tilde{\mathcal{N}}(2\varepsilon) := \bigcup_{e \in \{-1, 1\}} \bigcup_{1 \leq i \leq d} \Delta^X_e(\mathcal{N}_{E,i}(\varepsilon)) \) is a \(2\varepsilon \)-covering of \(S_X \). Moreover

\[
|\tilde{\mathcal{N}}(2\varepsilon)| \leq \sum_{e \in \{-1, 1\}} \sum_{1 \leq i \leq d} |\mathcal{N}_{E,i}(\varepsilon)| \leq 2^d \sum_{i=1}^d N_\varepsilon(B_X, \ell^d_{\infty}) \leq 2^d d \max_{1 \leq i \leq d} N_\varepsilon(B_X, \ell^d_{\infty}).
\]

By definition of entropy numbers,

\[
e_k(S_X, \ell^d_{\infty}) \leq 2 \max_{1 \leq i \leq d} e_{k-d-[\log d]}(B_X, \ell^d_{\infty}).
\]

The case of general \(Y \) is a consequence of the factorization property of entropy numbers:

\[
e_k(S_X, Y) \leq \|\text{id} : \ell^d_{\infty} \to Y\| e_k(S_X, \ell^d_{\infty}).
\]

To conclude this note, let us discuss the situation that both \(X \) and \(Y \) are Banach spaces with norms being symmetric with respect to the canonical basis. Then it is possible to make the bounds in the Theorems \[8\] and \[11\] concrete by applying the results of Schütz \[7\]. We call a Banach space \(X \) with norm \(\| \cdot \| \) symmetric if the canonical basis \(\{e_1, \ldots, e_d\} \) has the following property. For all permutations \(\pi \), all sings \(\varepsilon_i \), and all \(x_i \in \mathbb{R} \), we have

\[
\left\| \sum_{i=1}^d \varepsilon_i x_{\pi(i)} e_i \right\| = \left\| \sum_{i=1}^d x_i e_i \right\|.
\]

Below we use the notation

\[
\lambda_E(k) = \left\| \sum_{i=1}^k e_i \right\|
\]

where \(E \) denotes a \(d \)-dimensional, symmetric Banach space and \(\{e_1, \ldots, e_d\} \) its canonical basis.

Corollary 12. Let \(X \) and \(Y \) be symmetric Banach spaces and assume the canonical basis in both spaces to be normalized. Then, we have

\[
e_k(S_X^{d-1}, Y) \geq \frac{1}{2e} \max_{\ell = k, \ldots, d - 1} \frac{\lambda_{X}(\ell)}{\lambda_{Y}(\ell)}
\]

7
for \(k \leq d - 1 \) and
\[
\frac{1}{e} 2^{-k/(d-1)} \frac{\lambda_Y(d-1)}{\lambda_X(d-1)} \leq e_k(S_X^{d-1}, Y) \leq 32e 2^{-k/(d-1)} \frac{\lambda_Y(d-1)}{\lambda_X(d-1)}
\]
for \(k \geq 2d + \lceil \log d \rceil - 1 \).

Proof. Since \(X \) is symmetric, so is \(X_i \). Moreover, \(X_i \) and \(X_j \) are isometrically isomorphic for \(i \neq j \) by the symmetry of \(X \). The same holds true for \(Y \). Hence, \(e_k(B_{X_i}, Y_i) = e_k(B_{X_j}, Y_j) \) for \(i \neq j \) and all \(k \). By virtue of [7, Theorem 5 (1)] we know that
\[
eq \frac{1}{e} \max_{\ell = k, \ldots, d-1} \frac{\lambda_Y(\ell)}{\lambda_X(\ell)}.
\]
Combining with Theorem 8 and noting that \(\lambda_X(\ell) = \lambda_X(1) \) as well as \(\lambda_Y(\ell) = \lambda_Y(1) \) for \(\ell = 1, \ldots, d-1 \), we obtain the stated lower bound for \(k \leq d - 1 \).

Regarding the bounds for \(k \geq 2d - \lceil \log d \rceil - 1 \), we get from [7, Theorem 5 (2)] that
\[
\frac{1}{e} 2^{-k/(d-1)} \frac{\lambda_Y(d-1)}{\lambda_X(d-1)} \leq e_k(B_{X_1}, Y_1) \quad \text{for } k \geq d - 1
\]
as well as
\[
eq c 2^{-m/(d-1)} \frac{\lambda_{\ell_m^{-1}}(d-1)}{\lambda_{X_1}(d-1)} \quad \text{for } m \geq d - 1.
\]
Equation (2) and Theorem 8 immediately give the lower bound. For the upper bound, put \(m = k - d - \lfloor \log d \rfloor \). Noting that \(\| \id : Y \to \ell_{d-1}^\infty \| = \lambda_Y(d) \leq 2\lambda_Y(d-1) \) and \(\lambda_{\ell_{d-1}^{-1}}(d-1) = 1 \), Theorem 11 combined with (3) then gives
\[
\frac{1}{e} 2^d 2^{(d+\lfloor \log d \rfloor)/(d-1)} 2^{-k/(d-1)} \frac{\lambda_Y(d-1)}{\lambda_X(d-1)} \quad \text{for } k \geq 2d - \lfloor \log d \rfloor - 1.
\]
Since we have assumed that \(d \geq 2 \), we can estimate \(2^d 2^{(d+\lfloor \log d \rfloor)/(d-1)} \leq 8 \).

Example 13 (Lorentz norms). For \(x \in \mathbb{R}^d \), let \(x^* = (x_1^*, \ldots, x_n^*) \) denote the non-increasing rearrangement of \(x \). We consider generalized Lorentz norms
\[
\| x \|_{w,q} := \left(\sum_{i=1}^{d} (w(i)|x_i^*|^q)^{1/q} \right)^{1/q}
\]
for \(0 < q \leq \infty \) and a non-increasing function \(w : [1, \infty) \to (0, \infty) \) with \(w(1) = 1 \), \(\lim_{t \to \infty} w(t) = 0 \) and \(\sum_{i=1}^{\infty} w(i) = \infty \). Then
\[
\lambda_{w,q}(k) := \left\| \sum_{i=1}^{k} e_i \right\|_{w,q} = \left(\sum_{i=1}^{k} w(i)^q \right)^{1/q}.
\]
Particularly, for the choice \(w(t) = t^{1/p-1/q} \) for \(0 < q < p < \infty \) we obtain the standard Lorentz norm
\[
\|x\|_{w,q} = \|x\|_{p,q} = \left(\sum_{i=1}^{d} t^{q/p-1}|x_i^*|^q \right)^{1/q}.
\]
A simple calculation, where one approximates the sum by an integral, shows that \(\lambda_{p,q}(k) \asymp k^{1/p} \). So, if we consider \(X = \ell_{p,q}^d \) and \(Y = \ell_r^d \), we obtain from Corollary 12 that
\[
e_k(S_{p,q}^{d-1}, \ell_{r}^d) \asymp 2^{-k/(d-1)} \frac{d^{1/p-1/r}}{d^{1/p-1/r}} \asymp e_k(S_{p,q}^{d-1}, \ell_{r}^d)
\]
for \(k \geq 2d + \lceil \log d \rceil - 1 \).

Example 14 (Orlicz norms). A convex function \(M : \mathbb{R}_+ \to \mathbb{R}_+ \) with \(M(0) = 0 \) and \(M(t) > 0 \) for \(t \neq 0 \) is called an *Orlicz function*, which we associate with the norm \(\| \cdot \|_M \) given by
\[
\|x\|_M := \inf\{\rho > 0 : \sum_{i=1}^{d} M(|x_i|/\rho) \leq 1\}.
\]
It is easy to calculate that
\[
\lambda_M(k) := \lambda_{(\mathbb{R}^d,\|\cdot\|_M)}(k) = \frac{1}{M^{-1}(1/k)},
\]
where \(M^{-1} \) is the inverse function of \(M \). Let us consider some specific examples. In the following we always choose \(Y = \ell_q^d \) for some \(0 < q < \infty \).

(i) Let \(M(t) = \exp(-1/t^2) \) for \(0 \leq t < 1/2 \). See [3] for an application where the associated Orlicz norm appears naturally. We have \(M^{-1}(t) = \sqrt{-\ln t} \) and consequently
\[
e_k(S_{M}^{d-1}, \ell_q^d) \asymp \sqrt{\ln d} d^{1/q} 2^{-k/(d-1)}.
\]

(ii) The following Orlicz function is taken from [4]. For \(p > 1 \) and \(\alpha > 0 \), let \(M \) on \([0, t_0)\) be given by \(M(t) = t^p \ln(1/t)^\alpha \). Here, \(t_0 = 1/\exp(\beta + \sqrt{\beta^2 - \gamma}) \) with \(\beta = \alpha(2p - 1)/(p^2 - p) \) and \(\gamma = (\alpha^2 - \alpha)/(p^2 - p) \). There is a \(t_0' \leq t_0 \) such that
\[
M^{-1}(y) \asymp_{p,\alpha} \left(\frac{y}{\log(1/y)^\alpha} \right)^{1/p} \quad \text{for} \quad y < M(t_0').
\]
Hence, for \(k \) sufficiently large, we find
\[
e_k(S_X^{d-1}, \ell_q^d) \asymp \log(d)^{\alpha/p} d^{1/q-1/p} 2^{-k/(d-1)}.
\]

References

[1] B. Carl, I. Stefani. *Entropy, compactness and the approximation of operators*. Cambridge Tracts in Mathematics, vol. 98, Cambridge University Press, Cambridge, 1990.
[2] D.E. Edmunds, H. Triebel. *Function Spaces, Entropy Numbers, Differential Operators*. Cambridge Tracts in Mathematics, vol. 120, Cambridge University Press, Cambridge, 1996.

[3] Y. Gordon, A. Litvak, C. Schütt, E. Werner. Orlicz Norms of Sequences of Random Variables. *Ann. Probab.* 30:1833–1853, 2002.

[4] J. Lindenstrauss, L. Tzafriri. *Classical Banach Spaces I - Sequence Spaces*. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 92, Springer, Berlin-New York, 1977.

[5] T. Kühn. A lower estimate for entropy numbers. *J. Approx. Theory* 110:120–124, 2001.

[6] S. Mayer, T. Ullrich, and J. Vybiral. Entropy and sampling numbers of classes of ridge functions. to appear in *Constructive Approximation*, preprint available at arXiv:1311.2005.

[7] C. Schütt. Entropy numbers of diagonal operators between symmetric Banach spaces. *J. Approx. Theory* 40:121–128, 1984.

[8] H. Triebel. *Fractals and Spectra*. Birkhäuser, Basel, 1997.

[9] A. Weston, On the uniform classification of $L_p(\mu)$ spaces, *Proc. Centre Math. Appl. Austral. Nat. Univ.* 29:231–237, 1992.