Global Λ-hyperon polarization in Au+Au collisions at $\sqrt{s_{NN}} = 3$ GeV

M. S. Abdallah, B. E. Aboona, J. Adam, L. Adamicz, J. R. Adams, J. K. Adkins, G. Agakishiev, I. Aggarwal, M. M. Aggarwal, Z. Ahammed, A. Alekseev, D. M. Anderson, A. Apiran, E. C. Aschenauer, M. U. Ashraf, F. G. Atetalla, A. Attrí, G. S. Averichev, V. Bairathi, W. Baker, J. G. Ball Cap, K. Barish, A. Behera, R. Bellwied, P. Bhagat, A. Bhasin, J. Bielcik, J. Bielickova, I. G. Bordyuzhin, J. D. Brandenburg, A. V. Brandin, I. Bunzarov, J. Butterworth, X. Z. Cal, H. Caines, M. Calderón de la Barca Sánchez, D. Cebra, I. Chakaberia, P. Chaloupka, B. K. Chan, F.-H. Chang, Z. Chang, N. Chankova-Bunzarov, A. Chatterjee, S. Chattopadhyay, D. Chen, J. Chen, X. Chen, G. Z. Chen, J. Cherg, M. Chevalier, S. Choudhary, W. Christie, X. Chu, H. J. Crawford, M. Csanád, M. Daugherity, J. G. Dedovich, I. M. Deppner, A. A. Derevschikov, A. Dhamija, L. Di Carlo, D. Didenko, P. Dixit, X. Dong, O. J. Drachenberg, E. Duckworth, J. C. Dunlop, N. Elsey, J. Engelke, G. Eppley, E. Esposito, V. D. Evdokimov, A. Eyegleben, R. Fateni, F. M. Fawzi, S. Fazio, P. Federic, J. Fedorisin, C. J. Feng, Y. Feng, F. Filip, E. Finch, Y. Fisyak, A. Francisco, C. Fu, L. Fulek, C. A. Gagliardi, T. Galatyuk, F. Geurts, N. Ghimire, A. Gibson, K. Gopal, X. Gou, D. Grosnick, A. Gupta, W. Gury, A. I. Hamad, A. Hamed, Y. Han, S. Harabaz, M. D. Harasty, J. W. Harris, H. Harrison, S. He, W. H. He, X. H. He, Y. He, S. Heppelmann, S. Heppelmann, N. Herrmann, E. Hoffman, L. Holub, Y. Hu, H. Huang, Z. H. Huang, S. L. Huang, T. Huang, X. Huang, Y. Huang, T. J. Humanic, G. Igo, D. Isenhower, W. W. Jacobs, C. Jena, A. Jentsch, Y. Ji, J. Ji, K. Jiang, X. Ju, E. G. Judd, S. Kabana, M. L. Kabir, S. Kaganamster, D. Kalinka, K. Kang, D. Kapukchan, K. Kauder, H. W. Ke, D. Keane, A. Kechekian, M. Kelsey, Y. V. Khyzhniak, D. P. Kikola, K. Kim, B. Kimelman, D. Kincses, I. Kisel, A. Kiselev, A. G. Knose, H. Ko, L. Kochenda, L. K. Kosarzewski, L. Kramarik, P. Kravtsov, L. Kumar, S. Kumar, S. R. Kumarwalkam Elayavalli, J. H. Kwaiszur, R. Lacey, S. Lan, J. M. Landgraf, J. Lauret, A. Lebedev, R. Lednicky, J. H. Lee, Y. H. Leung, C. Li, C. Li, W. Li, X. Li, Y. Li, L. Xiang, Y. Liang, R. Liceńik, T. Lin, Y. Liu, M. A. Liska, F. Liu, H. Liu, H. Liu, P. Liu, T. Liu, Z. Liu, G. T. Lubicic, R. S. Longacre, E. Loyd, N. S. Lukov, Y. X. Luo, L. Ma, R. Ma, Y. G. Ma, N. Magdy, D. Mallick, S. Maretgis, C. Markert, H. J. Matoes, G. M. Matias, M. M. Mondal, I. Mooney, D. A. Morozov, A. Mukherjee, M. Nagy, J. Nam, M. Nasini, K. Nayak, D. Neff, J. M. Nelson, D. B. Nemes, M. Nie, G. Nigmatulov, T. Niida, N. Nishitani, L. V. Nogach, T. Nonaka, A. S. Nunez, G. Odyniec, A. Ogawa, S. Oh, A. Okorokov, B. S. Page, R. Pak, J. Pan, A. Panday, A. K. Pandey, Y. Pantebratsev, P. Parfenov, B. Pawlik, D. Pawłowska, H. L. Pei, C. Perkins, L. Pinsky, R. L. Pinter, J. Pluta, B. R. Pokhrel, G. Ponimatkin, J. Porter, M. Posik, V. Prozorova, N. K. Pruthi, M. Przybylcien, J. Putschke, H. Qin, A. Quintero, C. Racz, S. K. Radhakrishnan, R. Rah, S. Ray, R. Reed, H. G. Ritter, M. Robotkova, V. O. Rogachev, J. L. Romero, D. Roy, L. Ruan, J. Rusnak, R. N. Sahoo, H. Sako, S. Salur, J. Sandweiss, S. Sato, W. B. Schmidlo, N. Schmitz, B. R. Schweid, F. Seck, J. Seger, M. Sergeeva, R. Seto, P. Seyboth, N. Shah, E. Shahaliev, P. V. Shankmanganathan, M. Shao, T. Shao, A. I. Sheikh, D. Shen, S. S. Shih, Y. Shi, Q. Y. Shou, E. P. Sichtermann, R. Sikora, M. Simko, J. Singh, S. Sinha, M. J. Skoby, N. Smirnov, Y. Söding, W. Solyst, P. Sorensen, H. M. Spinka, B. Srivastava, T. S. Stanislaus, M. Stefañii, D. J. Steward, M. Strikhanov, B. Stringfellow, A. A. Psuade, M. Sumbera, B. Summa, X. Sun, Y. Sun, Y. Sun, B. Surrow, D. N. Svirida, Z. W. Sweiger, P. Szmyczynski, A. H. Tang, Z. Tang, A. Taranenko, T. Tarasnyov, J. H. Thomas, A. R. Timmins, D. Thusty, T. Todoroki, M. Tokarev, C. A. Tomkiel, S. Trelantan, R. E. Tribble, P. Tribedy, K. Tripathy, T. Truhlár, B. A. Trzebiat, O. D. Tsai, Z. Tu, T. Ullrich, J. E. Underwood, F. I. Upsal, G. Van Buren, J. Vanek, A. N. Vasiliev, I. Vassiliev, V. Verkest, F. Videbæk, S. Vokal, S. A. Voloshin, F. Wang, G. Wang, J. S. Wang, P. Wang, Y. Wang, Y. Wang, Z. Wang, J. C. Webb, P. C. Weidenkaff, L. Wen, G. D. Westfall, H. Wiemann, S. W. Wissink, J. Wu, Y. Wu, B. Xi, Z. G. Xiao, G. Xie, W. Xie, H. Xu, N. Xu, X. Xu, Z. Xu, Z. Xu, C. Yang, Q. Yang, S. Yang, Y. Yang, Z. Ye, Z. Ye, L. Yi, K. Yip, Y. Yu, H. Zborszczak, W. Zha, C. Zhang, D. Zhang, J. Zhang, S. Zhang, S. Zhang, S. Zhang, S. Zhang, J. Zhao, C. Zhou, X. Zhu, M. Zurek, M. Zyzak (STAR Collaboration)
1 Abilene Christian University, Abilene, Texas 79699
2 AGH University of Science and Technology, FPACS, Cracow 30-059, Poland
3 Alikhanov Institute for Theoretical and Experimental Physics NRC "Kurchatov Institute", Moscow 117218, Russia
4 Argonne National Laboratory, Argonne, Illinois 60439
5 American University of Cairo, New Cairo 11835, New Cairo, Egypt
6 Brookhaven National Laboratory, Upton, New York 11973
7 University of California, Berkeley, California 94720
8 University of California, Davis, California 95616
9 University of California, Los Angeles, California 90095
10 University of California, Riverside, California 92521
11 Central China Normal University, Wuhan, Hubei 430079
12 University of Illinois at Chicago, Chicago, Illinois 60607
13 Creighton University, Omaha, Nebraska 68178
14 Czech Technical University in Prague, FNSPE, Prague 115 19, Czech Republic
15 Technische Universität Darmstadt, Darmstadt 64289, Germany
16 ELTE Eötvös Loránd University, Budapest, Hungary H-1117
17 Frankfurt Institute for Advanced Studies FIAS, Frankfurt 60438, Germany
18 Fudan University, Shanghai, 200433
19 University of Heidelberg, Heidelberg 69120, Germany
20 University of Houston, Houston, Texas 77204
21 Huzhou University, Huzhou, Zhejiang 313000
22 Indian Institute of Science Education and Research (IISER), Berhampur 760010, India
23 Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
24 Indian Institute of Technology, Patna, Bihar 801106, India
25 Indiana University, Bloomington, Indiana 47408
26 Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000
27 University of Jammu, Jammu 180001, India
28 Joint Institute for Nuclear Research, Dubna 141 980, Russia
29 Kent State University, Kent, Ohio 44242
30 University of Kentucky, Lexington, Kentucky 40506-0055
31 Lawrence Berkeley National Laboratory, Berkeley, California 94720
32 Lehigh University, Bethlehem, Pennsylvania 18015
33 Max-Planck-Institut für Physik, Munich 80805, Germany
34 Michigan State University, East Lansing, Michigan 48824
35 National Institute of Science Education and Research, HBNI, Jatni 752050, India
36 National Institute of Science Education and Research, HBNI, Jatni 752050, India
37 National Cheng Kung University, Tainan 70101
38 Nuclear Physics Institute of the CAS, Rez 250 68, Czech Republic
39 Ohio State University, Columbus, Ohio 43210
40 Institute of Nuclear Physics PAN, Cracow 31-342, Poland
41 Panjab University, Chandigarh 160014, India
42 Pennsylvania State University, University Park, Pennsylvania 16802
43 NRC "Kurchatov Institute", Institute of High Energy Physics, Protvino 142281, Russia
44 Purdue University, West Lafayette, Indiana 47907
45 Rice University, Houston, Texas 77251
46 Rutgers University, Piscataway, New Jersey 08854
47 Universidade de São Paulo, São Paulo, Brazil 05314-970
48 University of Science and Technology of China, Hefei, Anhui 230026
49 Shandong University, Qingdao, Shandong 266237
50 Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800
51 Southern Connecticut State University, New Haven, Connecticut 06515
52 State University of New York, Stony Brook, New York 11794
53 Instituto de Alta Investigación, Universidad de Tarapacá, Arica 0000000, Chile
54 Temple University, Philadelphia, Pennsylvania 19122
55 Texas A&M University, College Station, Texas 77843
56 University of Texas, Austin, Texas 78712
57 Tsinghua University, Beijing 100084
58 University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
59 Valparaiso University, Valparaiso, Indiana 46383
60 Variable Energy Cyclotron Centre, Kolkata 700064, India
61 Warsaw University of Technology, Warsaw 00-661, Poland
62 Wayne State University, Detroit, Michigan 48201
63 Yale University, New Haven, Connecticut 06520

(Dated: February 7, 2022)
Global hyperon polarization, \(\overline{P}_H \), in \(\text{Au+Au} \) collisions over a large range of collision energy, \(\sqrt{s_{\text{NN}}} \), was recently measured and successfully reproduced by hydrodynamic and transport models with intense fluid vorticity of the quark-gluon plasma. While naive extrapolation of data trends suggests a large \(\overline{P}_H \) as the collision energy is reduced, the behavior of \(\overline{P}_H \) at small \(\sqrt{s_{\text{NN}}} < 7.7 \) GeV is unknown. Operating the STAR experiment in fixed-target mode, we measured the polarization of \(\Lambda \) hyperons along the direction of global angular momentum in \(\text{Au+Au} \) collisions at \(\sqrt{s_{\text{NN}}} = 3 \) GeV. The observation of substantial polarization of \(4\sqrt{s_{\text{NN}}} \) λ hyperons along the direction of global angular momentum in Au+Au collisions at \(\sqrt{s_{\text{NN}}} = 3 \) GeV.

Collisions between heavy nuclei at the highest energies at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC) produce the quark-gluon plasma (QGP), a strongly interacting system characterized by colored degrees of freedom\(^1\). Viscous relativistic hydrodynamics is one of the most powerful tools to understand this system theoretically\(^2\); it is the dynamical heart of the “standard model of the Little Bang”\(^3\). Systematic comparisons of data and the hydrodynamic response to anisotropies in the initial state have yielded considerable insight on transport coefficients and the equation of state of the QGP\(^4\). Recently, considerable experimental and theoretical efforts have focused on the polarization of particles emitted from the fluid\(^5\)—mostly \(\Lambda \) hyperons\(^6\)\(^-\)\(^11\) and, very recently, multi-strange hyperons\(^12\)—which probe the local vorticity of the fluid.

Hydrodynamic\(^5\) and transport\(^13\)\(^-\)\(^14\) simulations each reproduce rather well the measured “global” polarization, the component directed along the total angular momentum of the collision, \(J \). In most hydrodynamic calculations, particle properties (e.g., momentum and flavor) are derived from fluid properties (e.g., stress-energy tensor and chemical potentials) through the Cooper-Frye ansatz\(^4\), which assumes equilibrium at the point of hadronization. This formalism has been generalized\(^15\) to calculate particle polarization directly from the thermal vorticity\(^5\) of the fluid. Equilibration of orbital angular momentum and spin degrees of freedom is assumed, though spin relaxation times are not fully understood\(^16\). In transport simulations, the vorticity is calculated from the particles in small cells, and polarization is extracted through the generalized Cooper-Frye formalism discussed above.

The first measurement of \(\overline{P}_H \) by the STAR Collaboration at \(\sqrt{s_{\text{NN}}} = 62.4 \) and 200 GeV was consistent with zero\(^9\); however, subsequent measurements across a range of lower collision energies \(7.7 \leq \sqrt{s_{\text{NN}}} \leq 39 \) GeV and with higher statistics at \(\sqrt{s_{\text{NN}}} = 200 \) GeV by the STAR Collaboration showed statistically significant \(\overline{P}_H > 0 \)\(^10\)\(^-\)\(^17\). Together with high-statistics measurements at \(\sqrt{s_{\text{NN}}} = 2.76 \) and 5.02 TeV by the ALICE Collaboration showing \(\overline{P}_H \) consistent with zero, these measurements demonstrated a rising \(\overline{P}_H \) with decreasing \(\sqrt{s_{\text{NN}}} \)\(^10\)\(^-\)\(^11\)\(^-\)\(^17\).

While a simple extrapolation of this trend would suggest that \(\overline{P}_H \) continues to rise as \(\sqrt{s_{\text{NN}}} \) decreases, we expect vanishing \(\overline{P}_H \) at \(\sqrt{s_{\text{NN}}} = 2m_N \) due to the lack of system angular momentum\(^18\). A peak \(\overline{P}_H \) therefore likely exists in the region \(2m_N \approx 1.9 < \sqrt{s_{\text{NN}}} < 7.7 \) GeV; recent model calculations predict this peak in the vicinity of \(\sqrt{s_{\text{NN}}} \approx 3 \) GeV\(^18\)\(^-\)\(^20\). Furthermore, these calculations, which at \(\sqrt{s_{\text{NN}}} \geq 7.7 \) GeV agree fairly well with each other and with other higher-\(\sqrt{s_{\text{NN}}} \) calculations\(^13\)\(^-\)\(^14\)\(^-\)\(^15\)\(^-\)\(^19\)\(^-\)\(^21\)\(^-\)\(^22\), diverge for \(\sqrt{s_{\text{NN}} < 7.7 \) GeV. Measurements of \(\overline{P}_H \) at \(\sqrt{s_{\text{NN}} < 7.7 \) GeV will provide constraints on which sets of assumptions are valid at such small \(\sqrt{s_{\text{NN}}} \).

As in previous studies, \(\overline{P}_H \) represents the spin polarizations of \(\Lambda \) and \(\bar{\Lambda} \) hyperons, \(\overline{P}_\Lambda \) and \(\overline{P}_{\bar{\Lambda}} \); however, \(\Lambda \)-hyperon yields at \(\sqrt{s_{\text{NN}} = 3 \) GeV are insufficient for a meaningful study of \(\overline{P}_{\bar{\Lambda}} \) and we therefore refer directly to \(\overline{P}_\Lambda \). We report in this work our observation of nonzero \(\overline{P}_\Lambda \), with a statistical significance of nearly 6\(\sigma \). This observation raises important questions: What is the spin equilibrium timescale, and how does it compare to the thermal equilibration timescale? How viscous is the region of nuclei overlap? Our observation of significant, nonzero global \(\overline{P}_\Lambda \) at \(\sqrt{s_{\text{NN}} = 3 \) GeV is the largest \(\overline{P}_\Lambda \) yet observed and the lowest energy at which \(\overline{P}_\Lambda \) has been measured.

The dataset discussed in this work was collected in 2018 by the STAR experiment\(^24\). The STAR detector configuration features the cylindrical geometry characteristic of collider experiments. In order to explore various regions of the QCD phase diagram, RHIC has undertaken a multiyear Beam Energy Scan\(^24\) program, extending observations to lower energies. While the maximum energy of a gold beam in the RHIC ring is 100 GeV per nucleon, the facility is remarkably flexible and beams with energy as low as 3.85 GeV per nucleon can be maintained for reasonable times; thus, the lowest energy measured in beam-on-beam collisions is \(\sqrt{s_{\text{NN}} = 7.7 \) GeV. However, operating the facility and experiment in fixed-target mode, in which the beam collides with a foil target inside the beam pipe positioned 200 cm away from the center of the Time Projection Chamber (TPC), produces collisions at energies as low as \(\sqrt{s_{\text{NN}} = 3 \) GeV. See Ref.\(^25\) for details of the STAR fixed-target configuration.

Charged-particle tracks in the pseudorapidity range \(-2 \lesssim \eta \lesssim 0 \) are measured in the TPC\(^26\). For \(-1.5 \lesssim \eta \lesssim 0 \), additional identification is performed.

* Deceased
by time-of-flight measurements in the Barrel Time-of-Flight (BTOF) detector \cite{27, 28}. At $\eta < -2.55$, charged particles are registered in the Event Plane Detector (EPD) \cite{29}. Pseudorapidity is reported in the laboratory frame while rapidity, y, is reported in the collision center-of-momentum frame, boosted by the beam rapidity, $y_{beam} = 1.045$. After basic offline selections to ensure that the reconstructed collision occurred in the target foil, 253×10^6 events were available for this analysis.

The centrality of an event, which describes the degree to which the colliding nuclei overlap, was estimated based on the number of “primary” tracks, which are mainly determined by checking if a track’s helical path comes within 3 cm of the primary vertex. Fitting this multiplicity distribution to a Monte Carlo Glauber model \cite{30} calculated a measure of the centrality and an estimate of the trigger efficiency. Details of the Glauber calculation provided a measure of the centrality and an estimate distribution to a Monte Carlo Glauber model \cite{30}.

Charged particles with $-2.84 < \eta < -2.55$, measured in the outer four rings of the EPD, are used to determine Ψ, \cite{29}, and the three-subevent method \cite{34} is used to measure $R^{(1)}_{EPD}$. The two reference subevents used in this method use particles measured at $-0.5 < \eta < -0.4$ and $-0.2 < \eta < -0.1$ in the TPC. In this analysis, the event-plane resolution $R^{(1)}_{EPD} \approx 40\%$ for 20–50% central collisions. Because the STAR magnetic field along z causes charged particles to curve and also because produced particles are disproportionately positive as $\sqrt{\sigma_{NN}}$ becomes smaller, Ψ as measured by the EPD is twisted by an angle $\Delta \Psi_{1,EPD}$. $\Delta \Psi_{1,EPD}$ can be calculated by correlating $\Psi_{1,EPD}$ with $\Psi_{1,TPC}$, as the TPC is able to trace tracks to the collision point and therefore does not suffer this rotation effect; $\Delta \Psi_{1,EPD} = 0.063 \pm 0.011$ by which we correct $\Psi_{1,EPD}$.

A fraction of $[p, \pi^-]$ pairs that enter our analysis will not arise from true hyperons, but will instead originate from combinatorial background. To statistically extract the true polarization signal from the false background signal, we used the invariant-mass method \cite{17, 33, 36}, in which the observed $\langle \sin (\Psi_1 - \phi^*_p) \rangle$ is measured as a function of invariant mass and written as a sum of signal and background contributions:

$$\langle \sin (\Psi_1 - \phi^*_p) \rangle_{\text{obs}} (m_{\text{inv}}) = f_{bg} (m_{\text{inv}}) \langle \sin (\Psi_1 - \phi^*_p) \rangle_{bg} + (1 - f_{bg} (m_{\text{inv}})) \langle \sin (\Psi_1 - \phi^*_p) \rangle_{\text{sig}}.$$ (2)

Here, $\langle \sin (\Psi_1 - \phi^*_p) \rangle_{\text{sig}}$ is the average Λ-hyperon polarization, while the term $\langle \sin (\Psi_1 - \phi^*_p) \rangle_{bg}$ is the false polarization of the combinatoric background. The combinatoric fraction $f_{bg} (m_{\text{inv}})$ is extracted through fits to the m_{inv} distribution.

The direction of the STAR magnetic field, \vec{B}_{STAR}, which is aligned with the direction of the beam momentum ($-z$) in the laboratory frame, drives charged particles to follow helical paths and breaks a right-left symmetry in the Λ-hyperon decay. Consider a “right” and a “left” class of decays. A “right” decay is one in which the proton decays to the right side of the Λ hyperon as viewed along $-z$, or equivalently when $\vec{p}_A \times \vec{p}_p > 0$. A “left” decay simply flips the sign of \vec{p}_p. Due to their helical paths, the tracks of daughters from “left” decays diverge while those from “right” decays cross paths in the transverse plane. STAR’s Λ-hyperon reconstruction efficiency, resolution, and purity therefore depend on $(\vec{p}_A \times \vec{p}_p) \cdot \vec{B}_{\text{STAR}}$, leading to the differences in the invariant-mass spectra shown in Fig. \cite{1}.

Directed flow, v_1, modulates the yield of Λ hyperons as $\sim (1 + v_1 \cos (\phi_A - \Psi_1))$ \cite{37} and in fixed-target mode.
our acceptance is greater for \(y > 0 \) than for \(y < 0 \); there is therefore a net directed flow when integrating over all \(\Lambda \) hyperons such that \(\phi_\Lambda \) is positive when correlated with \(\Psi_1 \).

Recall the polarization correlator, \(\langle \sin(\Psi_1 - \phi_\Lambda^*) \rangle \), from Eq. (2): because of the net, flow-driven correlation between \(\phi_\Lambda \) and \(\Psi_1 \), the aforementioned “right” (“left”) decay will correspond to \(\langle \sin(\Psi_1 - \phi_\Lambda^*) \rangle > 0 (< 0) \). Since “left” decays also have a wider \(m_{\text{inv}} \) distribution, they dominate the sides of the net \(m_{\text{inv}} \) distribution while “right” decays dominate the center. The observed net polarization correlation term from Eq. (2) is therefore sharply peaked and positive for \(m_{\text{inv}} \approx m_{\Lambda, \text{PDG}} \), and becomes negative as \(|m_{\text{inv}} - m_{\Lambda, \text{PDG}}| \) becomes larger, and therefore does not follow the form of the observed net \(f^{\text{sig}} (m_{\text{inv}}) \). For this reason, we generalize the invariant-mass method by performing the method separately for narrow bins in \(\phi_\Lambda - \phi_\Lambda^* \).

By expanding the correlator \(\langle \sin(\Psi_1 - \phi_\Lambda^*) \rangle \) and taking advantage of the fact that \(\langle \sin(\Psi_1 - \phi_\Lambda) \rangle = 0 \) through symmetry, each bin in \(\phi_\Lambda - \phi_\Lambda^* \) has a contribution to \(\langle \sin(\Psi_1 - \phi_\Lambda^*) \rangle \) proportional to \(\langle \sin(\phi_\Lambda - \phi_\Lambda^*) \rangle \). Across all bins in \(\phi_\Lambda - \phi_\Lambda^* \) the net, flow-driven correlation between \(\phi_\Lambda \) and \(\Psi_1 \) present in our data, therefore generates a sinusoidal component in Eq. (1) unrelated to global polarization, so that

\[
8 \pi \alpha_\Lambda \frac{1}{R_{\text{EP}}^{(1)}} \langle \sin(\Psi_1 - \phi_\Lambda^*) \rangle^{\text{sig}} = \mathcal{P}_\Lambda + c \sin(\phi_\Lambda - \phi_\Lambda^*), \tag{3}
\]

where the coefficient \(c \) depends on \(v_1 \). Figure 2 shows the signal polarizations extracted using Eq. (2) across small bins in \(\phi_\Lambda - \phi_\Lambda^* \) and fitted according to Eq. (3). The vertical shift corresponds to \(\mathcal{P}_\Lambda \); this procedure removes any contributions from potentially nonzero polarization in the production plane, spanned by \(\vec{p}_\Lambda \times \vec{p}_\text{beam} \), as seen in Refs. [38, 39]. This procedure is performed separately for \(y_\Lambda > 0 \) and \(y_\Lambda < 0 \), and the weighted average is extracted. We performed detailed simulations of the STAR acceptance and tracking reconstruction to verify the above procedure to extract \(\mathcal{P}_\Lambda \). Previous analyses [9–11, 17] have focused on particles measured near mid-rapidity (\(|y| < 1 \)) and at higher collision energies, where directed flow [34] is small; as well, the \(\Lambda \)-hyperon acceptance is symmetric in \(y \) in collider mode. The azimuthal dependencies discussed above were therefore not an issue.

Finite detector acceptance and efficiency necessitate two additional corrections on the measured polarization. Equation (1) assumes that the efficiency to measure daughter protons is independent of \(\vec{p}_\Lambda^* \), the daughter momentum direction in the hyperon rest frame. However, rapidity cuts and efficiencies introduce a weak dependence on \(\vec{p}_\Lambda^* \), leading to a correction factor \(\frac{2}{3} \sin \theta^*_\Lambda \), which depends on \(p_T, y, \) and centrality and is \(\mathcal{O}(1\%) \). Similarly, the \(\Lambda \)-hyperon detection efficiency, \(\varepsilon (y, p_T) \), depends on \(\vec{p}_\Lambda \).

A suite of tests was performed to search for unexpected systematic effects [11]. This included analyzing collisions measured at different times during the experiment, checking both time of day and day of the week; restricting the analysis to various regions of \(\phi_\Lambda \) in the laboratory system; separately analyzing collisions recorded when the collision rate was high or low, or with high or low experimental background rates; changing the \(\Lambda \)-finding algorithm; changing the numerous fit parameters in the invariant-mass method; changing the width in \(\eta \) of the subevent used for \(\Psi_1 \) calculation; and changing
the set of topological cuts used to identify Λ hyperons. Contributions to systematic uncertainty originate in the uncertainties on our measurements of the corrections. These contributions include a 2% systematic uncertainty is associated with the uncertainty \(\delta \alpha \) on α_L; $a < 1%$ statistical uncertainty on $\varepsilon(y, p_T)$ corresponding to the statistical precision of the Monte Carlo simulations; $a < 1%$ statistical uncertainty on $\frac{1}{2} \sin \vec{\mathbf{\omega}}_F$; $a < 1%$ uncertainty on $\Delta \Psi_{1,\text{EPD}}$; $a < 1%$ statistical uncertainty on $R_{\text{EPD}}^{(1)}$; and $a < 1%$ uncertainty arising from the assumptions made about the background polarization’s dependence on m_{inv} when applying Eq. (2). These systematic uncertainties are added in quadrature to get the full systematic uncertainty.

Figure 3 shows the global polarization at mid-rapidity, alongside previous measurements whose data points have been scaled according to the updated decay parameter $\alpha_L = 0.732$ [31]. The polarization of $\overline{P}_\Lambda = 4.91 \pm 0.81(\text{stat.}) \pm 0.15(\text{syst.})\%$, reported in this paper, is the largest global Λ-hyperon polarization yet observed. We find that the steady increase of \overline{P}_Λ with decreasing $\sqrt{s_{\text{NN}}}$ continues almost to the Λ-hyperon production threshold.

Nevertheless, this trend has been reproduced by hydrodynamic and transport calculations [5, 13, 14, 21] above $\sqrt{s_{\text{NN}}} = 7.7$ GeV. Vorticity from the three-fluid hydrodynamics (3FD) [40] as well as partonic-transport (AMPT) [20] calculations have been extended to the lowest energies, as shown in Fig. 3. For the hydrodynamic 3FD calculation, $\mathbf{\omega}_h$ is calculated directly from the local flow and temperature distributions. In the AMPT calculations, the thermal vorticity is calculated in coarse-grained “cells” from particle ensembles [14].

Polarizations predicted by 3FD calculations depend on the range of hydrodynamic rapidity $y_h \equiv \ln\left((u_0 + u_z)/(u_0 - u_z)\right)$ of the fluid contributing to the Λ hyperons [42]. The shaded band representing the 3FD model in Fig. 3 corresponds to varying the selection between $|y_h| < 0.35$ and $|y_h| < 0.6$. Calculations were performed using one equation of state in which the deconfinement transition is characterized as first order and using another assuming a crossover transition; the resulting difference in polarization between these two methods is much smaller than the width of the band.

We find that, while the central value of the 3FD calculation [10] overshoots the measurement at $\sqrt{s_{\text{NN}}} = 3$ GeV by ~ 30%, the prediction and our measurement roughly agree within uncertainties. The partonic-transport calculation [20], which reproduces the measurements quite well at $\sqrt{s_{\text{NN}}} \geq 7.7$ GeV, dramatically underestimates \overline{P}_Λ at $\sqrt{s_{\text{NN}}} = 3$ GeV; the model was tuned for very low collision energy and therefore differs from previous calculations using the same model at larger $\sqrt{s_{\text{NN}}}$ [31, 43, 44]. The difference between the predictions made using the 3FD and AMPT models becomes larger at low collision energy and suggests that the polarization is strongly dependent on the state of the system. We
observe rough agreement with the calculations made using the 3FD model, which may imply that the system evolves hydrodynamically even at low collision energies. At a more general level than $\sim 1\sigma$ discrepancies, the observation of large polarization demonstrates that the hadron gas supports enormous vorticity at low collision energies.

As seen in Fig. 1, we observe larger hyperon polarization for more peripheral collisions, consistent with the increased global angular momentum in the system15. This expectation is borne out by the 3FD calculations as well as the partonic-transport calculations, though the overall scale of the latter is much lower than the data. A similar dependence of \bar{P}_H was observed in collisions at two orders of magnitude higher energy, $\sqrt{s_{NN}} = 200$ GeV17. In Fig. 5, \bar{P}_A is seen to be independent of transverse momentum, within uncertainties, similar to the lack of dependence seen in top-energy RHIC collisions17. At both $\sqrt{s_{NN}} = 3$ and 200 GeV17, partonic-transport calculations predict only a mild dependence.

Global polarization is directly related to \vec{J}, a manifestly three-dimensional phenomenon correlating transverse and longitudinal degrees of freedom. However, \bar{P}_H decreases with increasing collision energy, even as $|\vec{J}|$ increases with $\sqrt{s_{NN}}$; cf. Fig. 3. This may be partly due to longer evolution times at higher energies, increasing the viscosity-driven decay of vorticity before polarized hyperon emission16. An increased system temperature at higher $\sqrt{s_{NN}}$ may also play a small role in decreased polarization17. Several models associate the $\sqrt{s_{NN}}$ dependence of \bar{P}_H with the vorticity becoming increasingly concentrated at forward rapidity, $|y| \gtrsim 1-1.5$, including transport15, hydrodynamics19, 42, 48, 49, and geometric-driven calculations20. Correspondingly, these models predict a strong increase of \bar{P}_H as $|y|$ is increased. Still other calculations predict a dramatic reduction of \bar{P}_H away from mid-rapidity43, 51, 52. In most models, the dependence becomes stronger at lower $\sqrt{s_{NN}}$ since higher-energy collisions better approximate boost invariance in the mid-rapidity region.

While all previous measurements were confined to the region $|y| \ll |y_{beam}|$ and were unable to reconstruct forward-rapidity Λ hyperons, the present measurement covers the range $-0.2 \leq y \lesssim y_{beam}$ which reaches the upper limit of y_{Λ} at this collision energy. As shown in Fig. 6 we find no significant dependence of \bar{P}_A on rapidity, though statistical uncertainties are relatively large and a loose centrality selection is used. This is already sufficiently precise to disagree with the prediction of AMPT.

Our measurement of nonzero \bar{P}_A at $\sqrt{s_{NN}} = 3$ GeV demonstrates that vorticity aligned with \hat{J} is at a maximum below $\sqrt{s_{NN}} = 7.7$ GeV. The data agree roughly with calculations made using the 3FD model, integrated over mid-rapidity, but are dramatically larger than such calculations made using the partonic-transport model AMPT. As in Ref. 17, we observe a significant centrality dependence of \bar{P}_A that is consistent with increasing \hat{J}. Our measurement of the dependence of \bar{P}_A on y is uniquely valuable because we have access to the most forward-rapidity Λ hyperons. Interestingly, despite the variety of model calculations predicting quite strong dependence of \bar{P}_H on y 19, 42, 43, 45, 48, 52, we see no statistically significant dependence. A migration of \bar{P}_H towards forward rapidity has been offered as a potential explanation of the monotonic fall of \bar{P}_H with $\sqrt{s_{NN}}$15. Given our observation, such an explanation may be incorrect, though this does not dispel such arguments as the state of the system at higher energy is notably different;
measurements of P_H using the STAR forward upgrade will provide indispensable comparisons to the work presented here.

We thank the RHIC Operations Group and RCF at BNL, the NERSC Center at LBNL, and the Open Science Grid consortium for providing resources and support. This work was supported in part by the Office of Nuclear Physics within the U.S. DOE Office of Science, the U.S. National Science Foundation, the Ministry of Education and Science of the Russian Federation, Natural Science Foundation of China, Chinese Academy of Science, the Ministry of Science and Technology of China and the Chinese Ministry of Education, the Higher Education Sprout Project by Ministry of Education at NCKU, the National Research Foundation of Korea, Czech Science Foundation and Ministry of Education, Youth and Sports of the Czech Republic, Hungarian National Research, Development and Innovation Office, New National Excellency Programme of the Hungarian Ministry of Human Capacities, Department of Atomic Energy and Department of Science and Technology of the Government of India, the National Science Centre of Poland, the Ministry of Science, Education and Sports of the Republic of Croatia, RosAtom of Russia and German Bundesministerium für Bildung, Wissenschaft, Forschung and Technologie (BMBF), Helmholtz Association, Ministry of Education, Culture, Sports, Science, and Technology (MEXT) and Japan Society for the Promotion of Science (JSPS).

[1] Y. Akiba et al., The Hot QCD White Paper: Exploring the Phases of QCD at RHIC and the LHC (2015), arXiv:1502.02730 [nucl-ex].
[2] D. A. Teaney, Viscous Hydrodynamics and the Quark Gluon Plasma in Quark-gluon plasma [edited by R. C. Hwa and X.-N. Wang (World Scientific Publishing Company, 2010) p. 207–266. arXiv:0905.2433 [nucl-th].
[3] U. W. Heinz, J. Phys. Conf. Ser. 455, 012044 (2013) arXiv:1304.3634 [nucl-th].
[4] J. E. Bernhard, J. S. Moreland, S. A. Bass, J. Liu, and U. Heinz, Phys. Rev. C 94, 024907 (2016) arXiv:1605.03954 [nucl-th].
[5] F. Becattini and M. A. Lisa, Ann. Rev. Nucl. Part. Sci. 70, 395 (2020) arXiv:2003.03640 [nucl-ex].
[6] Z.-T. Liang and X.-N. Wang, Phys. Rev. Lett. 94, 102301 (2005) [Erratum: Phys. Rev. Lett. 96, 039901(E) (2006)], arXiv:nucl-th/0410079.
[7] F. Becattini, F. Piccinini, and J. Rizzo, Phys. Rev. C 77, 024906 (2008) arXiv:0711.1253 [nucl-th].
[8] B. Betz, M. Gyulassy, and G. Torrieri, Phys. Rev. C 76, 044901 (2007) arXiv:0708.0935 [nucl-th].
[9] B. T. Abelev et al. (STAR), Phys. Rev. C 76, 024915 (2007) [Erratum: Phys. Rev. C 95, 039906 (2017)], arXiv:0705.1681 [nucl-ex].
[10] L. Adamczyk et al. (STAR), Nature 548, 62 (2017) arXiv:1701.06657 [nucl-ex].
[11] S. Acharya et al. (ALICE), Phys. Rev. C 101, 044611 (2020) arXiv:1909.01281 [nucl-ex].
[12] J. Adam et al. (STAR), Phys. Rev. Lett. 126, 162301 (2021) arXiv:2012.13601 [nucl-ex].
[13] O. Vitek, L. V. Bravina, and E. E. Zabrodin, Phys. Lett. B 803, 135298 (2020) arXiv:1910.06292 [hep-ph].
[14] H. Li, L.-G. Pang, Q. Wang, and X.-L. Xia, Phys. Rev. C 96, 054908 (2017) arXiv:1704.01507 [nucl-th].
[15] F. Becattini, V. Chandra, L. Del Zanna, and E. Grossi, Annals Phys. 338, 32 (2013) arXiv:1303.3431 [nucl-th].
[16] S. Bhadury, W. Florkowski, A. Jaiswal, A. Kumar, and R. Ryplewski, Phys. Lett. B 814, 136996 (2021) arXiv:2002.03937 [hep-ph].
[17] J. Adam et al. (STAR), Phys. Rev. C 98, 014910 (2018) arXiv:1805.04400 [nucl-ex].
[18] X.-G. Deng, X.-G. Huang, Y.-G. Ma, and S. Zhang, Phys. Rev. C 101, 064908 (2020) arXiv:2001.01371 [nucl-th].
[19] Y. B. Ivanov, V. D. Toneev, and A. A. Soldatov, Phys. Rev. C 100, 014908 (2019) arXiv:1903.05455 [nucl-th].
[20] Y. Guo, J. Liao, E. Wang, H. Xing, and H. Zhang, Locating the most vortical fluid in nuclear collisions with beam energy scan (2021), arXiv:2105.13481 [nucl-th].
[21] Y. Sun and C. M. Ko, Phys. Rev. C 96, 024906 (2017) arXiv:1706.09467 [nucl-th].
[22] I. Karpenko and F. Becattini, Eur. Phys. J. C77, 213 (2017) arXiv:1610.04717 [nucl-th].
[23] K. H. Ackermann et al. (STAR), Nucl. Instrum. Meth. A499, 624 (2003).
[24] M. M. Aggarwal et al. (STAR), An Experimental Exploration of the QCD Phase Diagram: The Search for the Critical Point and the Onset of De-confinement (2010), arXiv:1007.2613 [nucl-ex].
[25] J. Adam et al. (STAR), Phys. Rev. C 103, 034908 (2021) arXiv:2007.14005 [nucl-ex].
[26] M. Anderson et al., Nucl. Instrum. Meth. A 695, 655 (2003) arXiv:nucl-ex/0301015.
[27] W. J. Llope (STAR), Nucl. Instrum. Meth. A 661, S110 (2012).
[28] M. Shao, O. Y. Baramnikova, X. Dong, Y. Fisyak, L. Ruan, P. Sorensen, and Z. Xu, Nucl. Instrum. Meth. A 558, 419 (2006) arXiv:nucl-ex/0505026.
[29] J. Adams et al., Nucl. Instrum. Meth. A 968, 163970 (2020) arXiv:1912.05243 [physics.ins-det].
[30] R. L. Roy and M. Daugherty, J. Phys. G 35, 125106 (2008) arXiv:nucl-ex/0702039.
[31] P. A. Zyla et al. (Particle Data Group), PTEP 2020, 083C01 (2020).
[32] S. Gorbunov, Ph.D. thesis, Johann Wolfgang Goethe University (2013).
[33] M. Zyzak, Ph.D. thesis, Johann Wolfgang Goethe University (2015).
[34] A. M. Poskanzer and S. A. Voloshin, Phys. Rev. C 58, 1671 (1998), arXiv:nucl-ex/9805001.
[35] L. Adamczyk et al. (STAR), Phys. Rev. C 88, 014902 (2013) arXiv:1301.2349 [nucl-ex].
[36] N. Borghini and J. Y. Ollitrault, Phys. Rev. C 103,014902 (2018), arXiv:nucl-ex/0301015.
[37] A. M. Poskanzer, S. A. Voloshin, and R. Snellings, Landolt-Bornstein 23, 293 (2010) arXiv:0809.2949 [nucl-ex].
[38] A. Lesnik, D. M. Schwartz, I. Ambats, E. Hayes, W. T. Meyer, C. E. W. Ward, T. M. Knasel, E. G. Swallow, R. Winston, and T. A. Romanowski, Phys. Rev. Lett. 35, 770 (1975).

[39] G. Bunce et al., Phys. Rev. Lett. 36, 1113 (1976).

[40] Y. B. Ivanov, Phys. Rev. C 103, L031903 (2021), arXiv:2012.07597 [nucl-th].

[41] R. Barlow, in Conference on Advanced Statistical Techniques in Particle Physics (2002) pp. 134–144, arXiv:hep-ex/0207026.

[42] Y. B. Ivanov and A. A. Soldatov, Phys. Rev. C 102, 024916 (2020), arXiv:2004.05166 [nucl-th].

[43] D.-X. Wei, W.-T. Deng, and X.-G. Huang, Phys. Rev. C 99, 014905 (2019), arXiv:1810.00151 [nucl-th].

[44] S. Shi, K. Li, and J. Liao, Phys. Lett. B 788, 409 (2019), arXiv:1712.00878 [nucl-th].

[45] Y. Jiang, Z.-W. Lin, and J. Liao, Phys. Rev. C 94, 044910 (2016), [Erratum: Phys.Rev.C 95, 049904(E) (2017)], arXiv:1602.06580 [hep-ph].

[46] I. Karpenko and F. Becattini, Nucl. Phys. A 967, 764 (2017), arXiv:1704.02142 [nucl-th].

[47] D. J. Wang, Z. Néda, and L. P. Csernai, Phys. Rev. C 87, 024908 (2013), arXiv:1302.1691 [nucl-th].

[48] Y. B. Ivanov and A. A. Soldatov, Phys. Rev. C 97, 044915 (2018), arXiv:1803.01525 [nucl-th].

[49] H.-Z. Wu, L.-G. Pang, X.-G. Huang, and Q. Wang, Phys. Rev. Research. 1, 033058 (2019), arXiv:1906.09385 [nucl-th].

[50] Z.-T. Liang, J. Song, I. Upsal, Q. Wang, and Z.-B. Xu, Chin. Phys. C 45, 014102 (2021), arXiv:1912.10223 [nucl-th].

[51] W.-T. Deng and X.-G. Huang, Phys. Rev. C 93, 064907 (2016), arXiv:1603.06117 [nucl-th].

[52] Y. Xie, D. Wang, and L. P. Csernai, Eur. Phys. J. C 80, 39 (2020), arXiv:1907.00773 [hep-ph].