LOWER ORDER TERMS OF THE ONE LEVEL DENSITY OF A FAMILY OF QUADRATIC HECKE L-FUNCTIONS

PENG GAO AND LIANGYI ZHAO

Abstract. In this paper, we study lower order terms of the 1-level density of low-lying zeros of quadratic Hecke L-functions in the Gaussian field. Assuming the Generalized Riemann Hypothesis, our result is valid for even test functions whose Fourier transforms are supported in $(-2, 2)$. Moreover, we apply the ratios conjecture of L-functions to derive these lower order terms as well. Up to the first lower order term, we show that our results is consistent with each other, when the Fourier transforms of the test functions are supported in $(-2, 2)$.

Mathematics Subject Classification (2010): 11F11, 11L40, 11M06, 11M26, 11M50

Keywords: one level density, low-lying zeros, quadratic Hecke L-functions

1. Introduction

The work of H. L. Montgomery on the pair-correlation of zeros of $\zeta(s)$ in \[32\] revealed, for the first time, the ties between zeros of L-functions and eigenvalues of random matrices. In more recent years, there has been a growing interest in the study on low-lying zeros of L-functions due to important roles they play in problems such as determining the rank of the Mordell-Weil groups of elliptic curves and the size of class numbers of imaginary quadratic number fields. The relation between these low-lying zeros and the random matrices is predicted by the density conjecture of N. Katz and P. Sarnak \[24, 25\], which asserts that the distribution of zeros near the central point of a family of L-functions is the same as that of the eigenvalues near 1 of a corresponding classical compact group.

A rich literature exists on the density conjecture for various families of L-functions including the Dirichlet \[13, 21, 22, 31, 34, 38\], Hecke \[12, 31\], automorphic \[8, 14, 20, 23, 35, 37\], elliptic curve \[1, 2, 19, 28, 44\], Dedekind \[39, 43\], Artin \[3\] and symmetric power L-functions \[7, 18\]. Among these various families, the investigation of the families of quadratic Dirichlet L-functions has a relative long history. It was first carried by A. E. Özlük and C. Snyder in \[34\] on the 1-level density of low-lying zeros of the family, under the assumption of the Generalized Riemann Hypothesis (GRH). Further work in this direction can be found in \[13, 29, 38\].

The density conjecture predicts the main term behavior of the n-level density of low-lying zeros of families of L-functions for all n. One can actually do more on the number theory side by computing the lower order terms of these n-level densities. These lower order terms serve to provide better understandings on the n-level densities. Examples of such computations can be found in \[30, 36, 45\].

For the family of quadratic Dirichlet L-functions, the lower order terms of 1-level density was first analyzed by S. J. Miller in \[29\] for test functions whose Fourier transforms are supported in $(-1, 1)$. On the other hand, we note that the above-mentioned result of Özlük and Snyder \[34\] on the 1-level density is valid on GRH as long as the Fourier transforms of test functions are supported in $(-2, 2)$. Thus, one expects that the computation of the corresponding lower order terms for all such functions should be possible. This was indeed achieved by a recent result of D. Fiorilli, J. Parks and A. Södergren in \[10\] on GRH.

In \[15\], we studied the 1-level density of low-lying zeros of quadratic Hecke L-functions in the Gaussian field. Assuming GRH, we showed that our result confirms the density conjecture when the Fourier transforms of test functions are supported in $(-2, 2)$, a result analogous to that of the family of quadratic Dirichlet L-functions. In view of this, it is natural to ask whether one can compute the lower order terms as well, as in \[10\]. We also point out here that in \[32\], E. Waxman computed low order terms of the 1-level density for a symplectic family of L-functions attached to Hecke characters of infinite order in the Gaussian field. It is our goal in this paper to continue our work in this direction.

Date: February 23, 2022.
We shall write $K = \mathbb{Q}(i)$ for the Gaussian field and $\mathcal{O}_K = \mathbb{Z}[i]$ for the ring of integers in K. We write $N(n)$ for the norm of an element $n \in \mathcal{O}_K$ and we reserve the symbol χ_n for the quadratic Hecke character $(\cdot | \chi_n)$ defined in Section 2.1. We denote $\zeta_K(s)$ for the Dedekind zeta function of K. We assume GRH throughout this paper and we are concerned with the following family of L-functions:

$$F = \{ L(s, \chi_{1+i}^c) : c \text{ square-free, } (c, 1+i) = 1 \}.$$

Let $L(s, \chi)$ be one of the L-functions in F and we write χ here in brief for the corresponding Hecke character. We denote the non-trivial zeroes of $L(s, \chi)$ by $1/2 + i\gamma_{\chi,j}$ so that $\gamma_{\chi,j} \in \mathbb{R}$ under GRH. We order them as

$$\cdots \leq \gamma_{\chi,-2} \leq \gamma_{\chi,-1} < 0 \leq \gamma_{\chi,1} \leq \gamma_{\chi,2} \leq \cdots.$$

Let X a large real number and we set $L = \log X$ throughout the paper and we normalize the zeros by defining

$$\tilde{\gamma}_{\chi,j} = \frac{\gamma_{\chi,j}}{2\pi L}.$$

Fix two even Schwartz class functions ϕ, w such that w is non-zero and non-negative. We shall regard ϕ as a test function and w as a weight function. We define the 1-level density for the single L-function $L(s, \chi)$ with respect to ϕ by the sum

$$S(\chi, \phi) = \sum_j \phi(\tilde{\gamma}_{\chi,j}).$$

The 1-level density of the family F with respect to w is then defined as the weighted sum

$$(1.1) \quad D(\phi; w, X) = \frac{1}{W(X)} \sum_c^* w \left(\frac{N(c)}{X} \right) S(\chi_{1+i}^c \phi),$$

where we use \sum^* to denote a sum over square-free elements in \mathcal{O}_K throughout the paper and $W(X)$ here is the total weight given by

$$W(X) = \sum_c^* w \left(\frac{N(c)}{X} \right).$$

Our first result in this paper is an asymptotic expansion of $D(\phi; w, X)$ in descending powers of $\log X$, given in the following

Theorem 1.1. Suppose that GRH holds for the family of L-functions in F as well as for $\zeta_K(s)$. Let $\phi(x)$ be an even Schwartz function whose Fourier transform $\hat{\phi}(u)$ has compact support in $(-2, 2)$ and let w be an even non-zero and non-negative Schwartz function. Let $D(\phi; w, X)$ be defined as in (1.1). Then we have for any integer $M \geq 1$,

$$(1.2) \quad D(\phi; w, X) = \hat{\phi}(0) - \frac{1}{2} \int_{-1}^1 \hat{\phi}(u) \mathrm{d}u + \sum_{m=1}^M \frac{R_{w,m}(\phi)}{L^m} + O \left(\frac{1}{L^{M+1}} \right),$$

where the coefficients $R_{w,m}(\phi)$ are linear functionals in ϕ that can be given explicitly in terms of w and the derivatives of $\hat{\phi}$ at the points 0 and 1 (see (4.3)).

We note that Theorem 1.1 gives a refinement of [15] Theorem 1.1, which can be regarded as computing only the main term of the expansion for ϕ given in (1.2). Our result is similar to [10] Theorem 1.1, and we follow closely many of the steps in [10] in the proof of Theorem 1.1. Additionally, our proof of Theorem 1.1 proceeds along the same lines as that of [15] Theorem 1.1 with extra efforts to keep track of all the lower order terms.

When deriving these lower order terms, a powerful tool to deploy is the L-functions ratios conjecture of J. B. Conrey, D. W. Farmer and M. R. Zirnbauer in [1] Section 5]. This approach was applied by J. B. Conrey and N. C. Snaith in [5] to study the 1-level density function for zeros of quadratic Dirichlet L-functions. The general n-level density of the same family was carried out by A. M. Mason and N. C. Snaith in [20], and further enabled them to show in [27] that the result agrees with the density conjecture when the Fourier transforms of test functions are supported in $(-2, 2)$.

It is then highly desirable and interesting to compare the expressions for the n-level density functions conditional on the ratios conjecture to those obtained without the conjecture. For the family of quadratic Dirichlet L-functions, a result of S. J. Miller [29] matches the lower order terms of the 1-level density function obtained with or without assuming the ratios conjecture, when the Fourier transforms of test functions are supported in $(-1, 1)$. When the support is enlarged to $(-2, 2)$, D. Fiorilli, J. Parks and A. Södergren obtained the lower order terms of the 1-level density function in [10,11] by applying either the ratios conjecture or otherwise. Their work assumes GRH and the results obtained are
further shown to match up to the first lower order term in [11].

Motivated by the above works, our next objective in the paper is to evaluate \(D(\phi; w, X) \) using the ratios conjecture. We shall formulate the appropriate version of the ratios conjecture concerning our family \(F \) in Conjecture 5.1 and use it to prove in Section 5 the following asymptotic expression of \(D(\phi; w, X) \).

Theorem 1.2. Assume the truth of GRH for the family of L-functions in \(F \) as well as for \(\zeta_K(s) \) and Conjecture 5.1. Let \(w(t) \) be an even, non-zero and non-negative Schwartz function and \(\phi(x) \) an even Schwartz function whose Fourier transform \(\hat{\phi}(u) \) has compact support, then for any \(\varepsilon > 0 \),

\[
\begin{aligned}
D(\phi; w, X) &= \frac{1}{W(X)} \sum_{(c, 1+i) = 1}^* \frac{N(c)}{X} \left(\frac{1}{2\pi} \int_{\mathbb{R}} \left(2 \frac{\zeta_K'(1 + 2it)}{\zeta_K(1 + 2it)} + 2A_{\alpha}(it, it) + \log \left(\frac{32N(c)}{\pi^2} \right) + \frac{\Gamma'}{\Gamma} \left(\frac{1}{2} - it \right) \right) \\
&+ \frac{\Gamma'}{\Gamma} \left(\frac{1}{2} + it \right) - \frac{8}{\pi} Xc \left(\frac{1}{2} + it \right) \zeta_K(1 - 2it)A(-it, it) \right) \phi \left(\frac{tL}{2\pi} \right) dt + O_c \left(X^{-1/2+\varepsilon} \right),
\end{aligned}
\]

where the functions \(X_c, A \) and \(A_{\alpha} \) are given in [5.3], [5.7] and Lemma 5.2, respectively.

Our next goal is then to compare the expression given for \(D(\phi; w, X) \) in Theorem 1.2 with the one obtained in Theorem 1.1. To this end, we will prove (see Lemma 2.10), the following expression for \(D(\phi; w, X) \) when \(\phi \) is an even Schwartz test function with compactly supported Fourier transform.

\[
\begin{aligned}
D(\phi; w, X) &= \frac{\hat{\phi}(0)}{\mathcal{L}W(X)} \sum_{(c, 1+i) = 1}^* \frac{N(c)}{X} \log N(c) + \frac{\hat{\phi}(0)}{\mathcal{L}} \left(\log \frac{32}{\pi^2} + \frac{\Gamma'}{\Gamma} \left(\frac{1}{2} \right) \right) \\
- \frac{2}{\mathcal{L}W(X)} \sum_{(c, 1+i) = 1}^* \frac{N(c)}{X} \sum_{j \geq 1} S_j(\chi_{(1+i)^3}c, L; \hat{\phi}) + \frac{2}{\mathcal{L}} \int_0^\infty \frac{e^{-x/2}}{1 - e^{-x}} \left(\hat{\phi}(0) - \phi \left(\frac{x}{\mathcal{L}} \right) \right) dx,
\end{aligned}
\]

where

\[
S_j(\chi_{(1+i)^3}c, L; \hat{\phi}) = \sum_{\varpi \equiv 1 \pmod{(1+i)^3}} \frac{\log N(\varpi)}{\sqrt{N(\varpi^j)}} \chi_{(1+i)^3}c(\varpi^j) \hat{\phi} \left(\log N(\varpi^j) \frac{L}{\mathcal{L}} \right)
\]

with the sum over \(\varpi \) running over primes in \(\mathcal{O}_K \). Here we note that in \(\mathcal{O}_K \), every ideal co-prime to \((1+i) \) has a unique generator congruent to \(1 \) modulo \((1+i)^3 \) and such a generator is called primary. We shall use \(\sum_{\varpi \equiv 1 \pmod{(1+i)^3}} \) (or sum over other variables) to indicate a sum over primary elements in \(\mathcal{O}_K \).

For any function \(W \), we denote its Mellin transform by \(\mathcal{M}W \), so that

\[
\mathcal{M}W(s) = \int_0^\infty W(t)t^{s-1} dt.
\]

We further note that around \(s = 1 \),

\[
\zeta_K(s) = \frac{\pi}{4} \cdot \frac{1}{s - 1} + \gamma_K + O(|s - 1|),
\]

where \(\gamma_K \) is a constant. We write \(\gamma = 0.57 \ldots \) for the Euler constant.

Our following result shows the agreement of the two expressions for \(D(\phi; w, X) \) given in [1.3] and [1.4] up to the first lower order term.

Theorem 1.3. Assume the truth of GRH for the family of L-functions in \(F \) as well as for \(\zeta_K(s) \) and Conjecture 5.1. Let \(w(t) \) be an even, non-zero and non-negative Schwartz function and \(\phi(x) \) an even Schwartz function whose Fourier
transform \(\hat{\phi}(u)\) has compact support. Then the expression (1.3) gives that

\[
D(\phi; w, X) = \hat{\phi}(0) + \int_1^\infty \hat{\phi}(\tau) \, d\tau + \frac{\hat{\phi}(0)}{L} \left(\log \frac{32}{\pi^2} + 2 \gamma^\prime \left(\frac{1}{2} \right) + \frac{2}{w(0)} \int_0^\infty w(x) \log x \, dx \right)
\]

\[
+ \frac{2}{L} \int_0^\infty \frac{e^{-t/2}}{1 - e^{-t}} \left(\hat{\phi}(0) - \hat{\phi} \left(\frac{t}{L} \right) \right) \, dt
\]

\[
- \frac{2}{L} \sum_{\omega \equiv 1 \mod (1+i)^3} \frac{\log N(\omega)}{N(\omega)} \left(1 + \frac{1}{N(\omega)} \right)^{-1} \frac{\hat{\phi} \left(\frac{2j \log N(\omega)}{L} \right)}{L}
\]

\[
+ \frac{\hat{\phi}(1)}{L} \left(2\gamma + \log \left(\frac{\pi^2}{2^{7/3}} \right) + 2\zeta(2) - \frac{8}{\pi} \gamma_K - \frac{Mw'(1)}{Mw(1)} \right) + O \left(L^{-2} \right).
\]

Also, when \(\sup(\text{supp}(\hat{\phi}(u))) < 2\), the above expression agrees with that given in (1.4).

We give the proof of Theorem 1.3 in Section 3. Our approach is inspired by the proof of [11, Theorems 1.1 and 1.4], although the computation in our situation is more involved.

2. Preliminaries

2.1. Number fields background. Recall that in this paper, \(K = \mathbb{Q}(i)\) is the Gaussian field. We denote \(У_K\) for the group of units in \(О_K\), so that \(У_K = \{ \pm 1, \pm i \}\). As it is well-known that \(K\) has class number one, we shall not distinguish \(n\) and \((n)\) when this causes no confusion from the context. We therefore write \(\mu_\| (n)\) to mean the Möbius function \(\mu_\|((n))\). We shall use \(\omega\) to denote a prime (or prime ideal) in \(K\) and \(\Lambda(n)\) is the von Mangoldt function on \(О_K\) so that

\[
\Lambda(n) = \begin{cases}
\log N(\omega) & n = \omega^k, \ \omega \text{ prime}, \ k \geq 1 \\
0 & \text{otherwise}.
\end{cases}
\]

Let \((\frac{\omega}{n})_4\) stand for the quartic residue symbol on \(О_K\). For a prime \(\omega \in О_K\) with \(N(\omega) \neq 2\), the quartic symbol is defined for \(a \in О_K\), \((a, \omega) = 1\) by \((\frac{a}{\omega})_4 = a^{(N(\omega)-1)/4} \pmod{\omega}\), with \((\frac{a}{\omega})_4 \in \{ \pm 1, \pm i \}\). When \(\omega | a\), we define \((\frac{a}{\omega})_4 = 0\). Then the quartic symbol can be extended to any composite \(n\) with \((N(n), 2) = 1\) multiplicatively. We further define \((\frac{n}{\omega})_4 = (\frac{\omega}{n})_4^2\) to be the quadratic residue symbol for these \(n\).

We say an element \(c \in О_K\) (or the ideal \((c)\)) is odd if \((c, 1 + i) = 1\). Note that in \(О_K\), every odd ideal has a unique generator congruent to 1 modulo \((1+i)^3\). Such a generator is called primary. For two primary integers \(m, n \in О_K\), we note that the quadratic reciprocity law (see [13, (2.1)]) gives

\[
(\frac{m}{n}) = (\frac{n}{m})^\prime.
\]

Let \(\chi\) denote a Hecke character of \(K\) and we say that \(\chi\) is of trivial infinite type if its component at the infinite place of \(K\) is trivial. In particular, \(\chi_c\) defined earlier is a Hecke character of trivial infinite type. It is further shown in [13, Section 2.1] that when \(c\) is square-free and co-prime to \(1 + i\), \(\chi_\|(1+i)^5c\) defines a primitive Hecke character \(\mod((1+i)^5c)\) of trivial infinite type.

For any primitive Hecke character \(\chi\) \(\pmod{m}\) of trivial infinite type, let

\[
\Lambda(s, \chi) = |D_K|N(m)^{s/2}(2\pi)^{-s}\Gamma(s)L(s, \chi),
\]

where \(L(s, \chi)\) is the the \(L\)-functions attached to \(\chi\) and \(D_K = -4\) is the discriminant of \(K\). In particular, we use \(\zeta_K(s)\) to denote the Dedekind zeta function of \(K\).

It was shown by E. Hecke that \(\Lambda(s, \chi)\) is an entire function and satisfies the following functional equation (see [22, Theorem 3.8])

\[
\Lambda(s, \chi) = W(\chi)(N(m))^{-1/2}\Lambda(1 - s, \chi),
\]

where \(|W(\chi)| = (N(m))^{1/2}\).
2.2. Poisson Summation. For any \(r, n \in \mathcal{O}_K \) with \(n \) odd, we define the Gauss sum \(g(r, n) \) as
\[
g(r, n) = \sum_{x \mod n} \left(\frac{x}{n} \right) \overline{e} \left(\frac{rx}{n} \right)
\]
where \(\overline{e}(z) = \exp(2\pi i (\frac{z}{\overline{z}} - \frac{z}{\overline{z}})) \). It is shown in [15, Lemma 2.2] that, for a primary prime \(\varpi \),
\[
g(r, \varpi) = \left(\frac{ir}{\varpi} \right) N(\varpi)^{1/2}.
\]

We quote the following Poisson summation formula from [15, Lemma 2.7].

Lemma 2.3. Let \(n \in \mathcal{O}_K \) be primary and \(\chi \) a quadratic character \((\mod n)\) of trivial infinite type. For any Schwartz class function \(W \), we have
\[
\sum_{m \in \mathcal{O}_K} \chi(m) W \left(\frac{N(m)}{X} \right) = \frac{X}{N(n)} \sum_{k \in \mathcal{O}_K} g(k, n) \tilde{W} \left(\sqrt{\frac{N(k)X}{N(n)}} \right)
\]
and
\[
\sum_{m \in \mathcal{O}_K} W \left(\frac{N(m)}{X} \right) = X \sum_{k \in \mathcal{O}_K} \tilde{W} \left(\sqrt{\frac{N(k)X}{N(n)}} \right),
\]
where \(\tilde{W}(t) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} W(N(x + yi)) \overline{e}(-t(x + yi)) \, dx \, dy \), \(t \geq 0 \).

We include here our conventions for various transforms used in this paper. For any function \(W \), we write \(\tilde{W} \) for the Fourier transform of \(W \) and recall that its Mellin transform \(\mathcal{M}W \) is defined in [13]. We note that, for any Schwartz class function \(W \) and any integer \(E \geq 0 \), integration by parts \(E + 1 \) times yields that for \(\Re(s) > 0 \),
\[
\mathcal{M}W(s) \ll \frac{1}{|s|(1+|s|)^E}.
\]

Furthermore, we set
\[
\overline{W}(t) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \tilde{W}(N(u + vi)) \overline{e}(-t(u + vi)) \, du \, dv \), \(t \geq 0 \).
\]

When \(W(t) \) is a real smooth function, one follows the arguments that lead to the bounds given in [13] (2.12)] to get that both \(\overline{W} \) and \(\tilde{W} \) are real and
\[
\tilde{W}^{(j)}(t), \overline{W}^{(j)}(t) \ll j \text{ min}\{1, |t|^{-j}\}
\]
for all integers \(j \geq 0 \), \(j \geq 1 \) and all real \(t \).

2.4. Some consequences of GRH. In this section we state a few results that are derived by using GRH. The first one is for sums over primes.

Lemma 2.5. Suppose that GRH is true. For any Hecke character \(\chi \) \((\mod m)\) of trivial infinite type, we have for \(X \geq 1 \),
\[
\sum_{\varpi \equiv 1 \text{ mod } (1+i)^3, N(\varpi) \leq X} \chi(\varpi) \log N(\varpi) = \delta_X X + O(X^{1/2} \log^2(2X) \log N(m)),
\]
where \(\delta_X = 1 \) if \(\chi \) is principal and \(\delta_X = 0 \) otherwise. Moreover, we have
\[
\sum_{\varpi \equiv 1 \text{ mod } (1+i)^3, N(\varpi) \leq X} \frac{\log N(\varpi)}{N(\varpi)} = \log X + O(1).
\]

Proof. The formula in (2.7) follows directly from [22, Theorem 5.15] and (2.8) is derived from (2.7) by taking \(\chi \) to be the principal character modulo 1 and using partial summation. \(\square \)

Our next two lemmas provide estimations on certain weighted quadratic character sums. The following one is a generalization of [13, Lemma 2.10].
Lemma 2.6. Suppose that \(GRH \) is true. For any even, non-zero and non-negative Schwartz function \(w \), we have for any primary ideal \(n \in \mathcal{O}_K \) and \(\epsilon > 0 \),
\[
\sum_{c, 1+i=1}^* w \left(\frac{N(c)}{X} \right) \left(\frac{(1+i)^5 c}{{n}} \right) = \delta_X \frac{\pi X}{3\zeta_K(2)} \tilde{w}(0) \prod_{\varpi | n} \left(1 + \frac{1}{N(\varpi)} \right)^{-1} + O(N(n)^{3(1-\delta_n)/8+\epsilon}X^{1/4+\epsilon}).
\]
Here we recall that \(\sum^* \) denotes the sum over square-free elements in \(\mathcal{O}_K \).

Proof. Since each \(c \) co-prime to \(1+i \) can be uniquely written as the product of a unit and a primary element, it follows that
\[
\sum_{c, 1+i=1}^* w \left(\frac{N(c)}{X} \right) \left(\frac{(1+i)^5 c}{{n}} \right) = \delta_X \frac{\pi X}{3\zeta_K(2)} \tilde{w}(0) \prod_{\varpi | n} \left(1 + \frac{1}{N(\varpi)} \right)^{-1} \sum_{c \equiv 1 \mod (1+i)^3}^* w \left(\frac{N(c)}{X} \right) \left(\frac{(1+i)c}{{n}} \right)
\]
\[
= 2 \left(1 + \left(\frac{i}{n} \right) \right) \left(\frac{1+i}{n} \right) \sum_{c \equiv 1 \mod (1+i)^3}^* w \left(\frac{N(c)}{X} \right) \left(\frac{c}{{n}} \right).
\]

Note further that the quadratic reciprocity law (2.1) allows us to write \(\chi_n(c) \) for \(\left(\frac{c}{n} \right) \) and \(\chi_n \) is a Hecke character. We then apply the Mellin inversion formula and get
\[
\frac{1}{2\pi i} \int_{(2)} \prod_{\varpi | n} \left(1 + \frac{\chi_n(\varpi)}{N(\varpi)^s} \right) \mathcal{M}w(s)X^s \mathcal{M}w(s)ds = \frac{\mathcal{M}w(1)}{2\pi i} \int_{(2)} \frac{L(s, \chi_n)}{L(2s, \chi_n^2)} \left(1 + \frac{\chi_n(1+i)}{N(1+i)^s} \right)^{-1} \mathcal{M}w(s)X^s ds.
\]

Here and after, we write \(\int_{(c)} \) for the integral over the vertical line with \(\Re(s) = c \).

We shift the line of integration to \(\Re(s) = 1/4 + \epsilon \) and we encounter a pole at \(s = 1 \) only when \(\chi_n \) is a principal character. In that case, the residue is easily seen (recall that the residue of \(\zeta_K(s) \) at \(s = 1 \) is \(\pi/4 \)) to be
\[
\pi \zeta_K^{-1}(2) \prod_{\varpi | n} \left(1 + \frac{1}{N(\varpi)} \right)^{-1} \mathcal{M}w(1)X = \pi \zeta_K^{-1}(2) \prod_{\varpi | n} \left(1 + \frac{1}{N(\varpi)} \right)^{-1} \tilde{w}(0)X.
\]
by noting that \(\mathcal{M}w(1) = \tilde{w}(0)/2 \) when \(w \) is even. The remaining integral over the line \(\Re(s) = 1/4 + \epsilon \) can be estimated by using (2.5) for a suitable \(E \) and the bound that assuming \(GRH \),
\[
L^{-1}(2s, \chi_n) \ll (N(n)(1 + 3(s))^\epsilon,
\]
which follows from [22] Theorem 5.19]. This gives the result when \(\chi_n \) is a principal character.

When \(\chi_n \) is not principal, we apply the convexity bound [22] (5.20]) for \(L\)-functions attached to non-principal characters, such that
\[
L(s, \chi_n) \ll \epsilon (N(n)(|s| + 1)^2(1-\Re(s))/2 + \epsilon/2 \quad (0 \leq \Re(s) \leq 1),
\]
Combining this with [24] allows us to readily deduce the assertion of the lemma for \(\chi_n \) being non-principal. This completes the proof. \(\square \)

By taking \(n = 1 \) in Lemma 2.6, we immediately obtain that
\[
W(X) = \frac{\pi X}{3\zeta_K(2)} \tilde{w}(0) + O(X^{1/4+\epsilon}).
\]

Lemma 2.7. Suppose that \(GRH \) is true. For any even, non-zero and non-negative Schwartz function \(w \), we have
\[
\frac{1}{W(X)} \sum_{(c, 1+i)=1}^* w \left(\frac{N(c)}{X} \right) \log N(c) = \log X + \frac{2}{\tilde{w}(0)} \int_0^\infty w(x) \log x \, dx + O(X^{-1/2+\epsilon}).
\]
Proof. We have

\[
\sum_{(c,1+i)=1}^\ast \frac{w(N(c)/X)}{X} \log N(c) = -\frac{4}{2\pi i} \int \frac{d}{ds} \left(\sum_{c \equiv 1 \mod (1+i)^3} \mu_{\nu}^2(c) \right) Mw(s)X^s \, ds
\]

\[
= -\frac{4}{2\pi i} \int \frac{d}{ds} \left(\sum_{c \equiv 1 \mod (1+i)^3} \frac{\zeta_K(s)}{\zeta_K(2s)(1 + 2^{-s})} \right) Mw(s)X^s \, ds.
\]

We shall shift the contour of integration to the line \(\Re(s) = 1/4 + \varepsilon \). Note that under GRH, the only poles of the function

\[
\frac{d}{ds} \left(\frac{\zeta_K(s)}{\zeta_K(2s)(1 + 2^{-s})} \right)
\]

in the region \(1/4 + \varepsilon \leq \Re(s) \leq 2 \) are at \(s = 1 \) and \(s = 1/2 \). Only the contribution of the residues at \(s = 1 \) is \(\gg X \). It is then easy to compute the contribution of the residues to be

\[
\frac{2\pi}{3\zeta_K(2)} Mw(1)X \log X + \frac{2\pi}{3\zeta_K(2)} (Mw)'(1)X + O(X^{1/2+\varepsilon}).
\]

The assertion of the lemma follows from this and (2.10), by noting that \(Mw(1) = \hat{\omega}(0)/2 \).

\[\square\]

2.8. The Explicit Formula. Let \(f \) be an even, positive Schwartz function whose Fourier transform \(\hat{f} \) is a smooth function with compact support. Let \(\chi \) be a primitive Hecke character \(\chi \mod m \) of trivial infinite type. In this section we derive an explicit formula which allows us to convert the evaluation of \(f \) at the non-trivial zeros of \(L(s, \chi) \) to a sum over powers of prime ideals. Note that the non-trivial zeros of \(L(s, \chi) \) are precisely those of the corresponding \(\Lambda(s, \chi) \). For some \(c > 1 \), consider the following integral

\[
\frac{1}{2\pi i} \int_{(c)} \frac{N'}{\Lambda}(s, \chi) f \left(\frac{s - 1/2}{2\pi i} \right) \, ds.
\]

By moving the line of integration to \(1 - c \), we obtain

\[
\frac{1}{2\pi i} \int_{(c)} \frac{N'}{\Lambda}(s, \chi) f \left(\frac{s - 1/2}{2\pi i} \right) \, ds = \sum_j f \left(\frac{\gamma_{\chi,j}}{2\pi} \right) + \frac{1}{2\pi i} \int_{(1-c)} \frac{N'}{\Lambda}(s, \chi) f \left(\frac{s - 1/2}{2\pi i} \right) \, ds.
\]

Now the functional equation \(\Lambda(s, \chi) = W(\chi)(N(m))^{-1/2} \Lambda(1 - s, \overline{\chi}) \) implies

\[
\frac{N'}{\Lambda}(s, \chi) = -\frac{N'}{\Lambda}(1 - s, \overline{\chi}).
\]

It follows that

\[
\sum_j f \left(\frac{\gamma_{\chi,j}}{2\pi} \right) = \frac{1}{2\pi i} \int_{(c)} \frac{N'}{\Lambda}(s, \chi) f \left(\frac{s - 1/2}{2\pi i} \right) \, ds + \frac{1}{2\pi i} \int_{(c)} \frac{N'}{\Lambda}(s, \overline{\chi}) f \left(\frac{1/2 - s}{2\pi i} \right) \, ds.
\]

Using

\[
\frac{N'}{\Lambda}(s, \chi) = \frac{1}{2} \log \left(\frac{|D_K|N(m)}{(2\pi)^2} \right) + \frac{\Gamma'}{\Gamma}(s) + \frac{L'}{L}(s, \chi),
\]

we obtain that

\[
\frac{1}{2\pi i} \int_{(c)} \frac{N'}{\Lambda}(s, \chi) f \left(\frac{s - 1/2}{2\pi i} \right) \, ds + \frac{1}{2\pi i} \int_{(c)} \frac{N'}{\Lambda}(s, \overline{\chi}) f \left(\frac{1/2 - s}{2\pi i} \right) \, ds = T_1 + T_2,
\]

where

\[
T_1 = \frac{1}{2\pi i} \int_{(c)} \left(\frac{1}{2} \log \left(\frac{|D_K|N(m)}{(2\pi)^2} \right) + \frac{\Gamma'}{\Gamma}(s) \right) f \left(\frac{s - 1/2}{2\pi i} \right) \, ds + \frac{1}{2\pi i} \int_{(c)} \left(\frac{1}{2} \log \left(\frac{|D_K|N(m)}{(2\pi)^2} \right) + \frac{\Gamma'}{\Gamma}(s) \right) f \left(\frac{1/2 - s}{2\pi i} \right) \, ds,
\]

and

\[
T_2 = \frac{1}{2\pi i} \int_{(c)} \frac{L'}{L}(s, \chi) f \left(\frac{s - 1/2}{2\pi i} \right) \, ds + \frac{1}{2\pi i} \int_{(c)} \frac{L'}{L}(s, \overline{\chi}) f \left(\frac{1/2 - s}{2\pi i} \right) \, ds.
\]
For T_1, we move the line of integration to 1/2 and apply the change of variables $s = 1/2 + 2\pi it$. In so doing, we obtain

$$T_1 = \int_{-\infty}^{\infty} \left(\log \frac{|D_K|N(m)}{(2\pi)^2} + \frac{\Gamma'}{\Gamma} \left(\frac{1}{2} + 2\pi it \right) + \frac{\Gamma'}{\Gamma} \left(\frac{1}{2} - 2\pi it \right) \right) f(t) dt$$

$$= \int_{-\infty}^{\infty} \left(\log \frac{|D_K|N(m)}{(2\pi)^2} + 2\frac{\Gamma'}{\Gamma} \left(\frac{1}{2} \right) \right) f(t) dt + \int_{0}^{\infty} \frac{e^{-t/2}}{1 - e^{-t}} \left(2\hat{f}(0) - \hat{f}(t) - \hat{f}(-t) \right) dt,$$

where the second equality above follows from [33, Lemma 12.14).

We express T_2 as

$$T_2 = -\sum_{(n)\in\mathcal{O}_K} \chi(n) \Lambda(n) \frac{1}{2\pi i} \int \frac{1}{N(n)^s} f \left(\frac{s - 1/2}{2\pi i} \right) ds - \sum_{(n)\in\mathcal{O}_K} \overline{\chi(n)} \Lambda(n) \frac{1}{2\pi i} \int \frac{1}{N(n)^s} f \left(\frac{1/2 - s}{2\pi i} \right) ds.$$

Moving the lines of integration for T_2 to $\Re(s) = 1/2$ and setting $s = 1/2 + 2\pi it$, the integrations become

$$\int_{-\infty}^{\infty} \frac{1}{N(n)^{1/2 + 2\pi it}} f(t) dt = \frac{1}{\sqrt{N(n)}} \hat{f}(\mp \log N(n)).$$

Thus

$$T_2 = -\sum_{(n)\in\mathcal{O}_K} \chi(n) \Lambda(n) \frac{1}{\sqrt{N(n)}} \hat{f}(-\log N(n)) - \sum_{(n)\in\mathcal{O}_K} \overline{\chi(n)} \Lambda(n) \frac{1}{\sqrt{N(n)}} \hat{f}(\log N(n)).$$

We then derive from (2.11) and (2.12) that

$$\sum_j f \left(\frac{\gamma_j \chi_j}{2\pi} \right) = \int_{-\infty}^{\infty} \left(\log \frac{|D_K|N(m)}{(2\pi)^2} + 2\frac{\Gamma'}{\Gamma} \left(\frac{1}{2} \right) \right) f(t) dt + \int_{0}^{\infty} \frac{e^{-t/2}}{1 - e^{-t}} \left(2\hat{f}(0) - \hat{f}(t) - \hat{f}(-t) \right) dt$$

$$- \sum_{(n)\in\mathcal{O}_K} \chi(n) \Lambda(n) \frac{1}{\sqrt{N(n)}} \hat{f}(-\log N(n)) - \sum_{(n)\in\mathcal{O}_K} \overline{\chi(n)} \Lambda(n) \frac{1}{\sqrt{N(n)}} \hat{f}(\log N(n)).$$

Now an easy computation in Fourier transform gives

$$\sum_j f \left(\frac{\log X \gamma_j}{2\pi} \right) = \frac{1}{\log X} \int_{-\infty}^{\infty} \left(\log \frac{|D_K|N(m)}{(2\pi)^2} + 2\frac{\Gamma'}{\Gamma} \left(\frac{1}{2} \right) \right) f(t) dt$$

$$+ \frac{1}{\log X} \int_{0}^{\infty} \frac{e^{-t/2}}{1 - e^{-t}} \left(2\hat{f}(0) - \hat{f} \left(\frac{t}{\log X} \right) - \hat{f} \left(-\frac{t}{\log X} \right) \right) dt$$

$$- \frac{1}{\log X} \sum_{(n)\in\mathcal{O}_K} \chi(n) \Lambda(n) \frac{1}{\sqrt{N(n)}} \hat{f} \left(\frac{-\log N(n)}{\log X} \right) - \frac{1}{\log X} \sum_{(n)\in\mathcal{O}_K} \overline{\chi(n)} \Lambda(n) \frac{1}{\sqrt{N(n)}} \hat{f} \left(\frac{\log N(n)}{\log X} \right).$$

Recall that $L = \log X$ and note that as f is even, so is \hat{f}. Thus, when χ is a quadratic Hecke character, we can simplify the above expression as

$$\sum_j f \left(\frac{L \gamma_j \chi_j}{2\pi} \right) = \frac{1}{L} \left(\log \frac{|D_K|N(m)}{(2\pi)^2} + 2\frac{\Gamma'}{\Gamma} \left(\frac{1}{2} \right) \right) \hat{f}(0) + \frac{2}{L} \int_{0}^{\infty} \frac{e^{-t/2}}{1 - e^{-t}} \left(\hat{f}(0) - \hat{f} \left(\frac{t}{L} \right) \right) dt$$

$$- \frac{2}{L} \sum_{(n)\in\mathcal{O}_K} \chi(n) \Lambda(n) \frac{1}{\sqrt{N(n)}} \hat{f} \left(\frac{\log N(n)}{L} \right).$$

Recall that every odd prime $\varpi \in \mathcal{O}_K$ has a primary generator. In our paper, we work on explicitly with the Hecke characters $\chi_i(1+i)^c$ for odd, square-free c. Our choice for such characters is inspired by the Dirichlet characters χ_{sd} for odd, square-free rational integers d considered by K. Soundararajan [40] in his work on non-vanishing of quadratic Dirichlet L-functions at the central value. The advantage of using the characters $\chi_i(1+i)^c$ is that, besides
Proof. Our proof of the lemma is motivated by Riemann’s proof of the functional equation of the Riemann zeta function where

\[c \]

Now applying (2.3) to the second of the above sums and another change of variables, we get

\[W \]

where we recall that for any function \(\phi \)

\[z \]

Now, let \(h \) be an even Schwartz function whose Fourier transform \(\hat{\phi} \) has compact support. Then

\[x \]

(2.14) \(g(y) = \overline{w}(\sqrt{2y}) \), \(g_2(y) = \overline{g}(\sqrt{y}) \),

where we recall that for any function \(W \), the definition of \(\overline{W} \) is given in (2.4).

Our next lemma establishes a relation between the Mellin transforms of \(g \) and \(g_2 \). This is a generalization of (1.3) for \(D(\phi; w, X) \).

Lemma 2.10. Assume that \(\phi \) is an even Schwartz test function whose Fourier transform has compact support. Then we have

\[D(\phi; w, X) = \frac{\hat{\phi}(0)}{\mathcal{L}W(X)} \sum_{(c, 1 + i) = 1}^* w \left(\frac{N(c)}{X} \right) \log N(c) + \frac{\hat{\phi}(0)}{\mathcal{L}} \left(\log \frac{32}{\pi^2} + 2 \Gamma'(1/2) \right) \]

Now, let \(w(t) \) be an even, non-zero and non-negative Schwartz function as the theorems. We define

\[\ell \]

(2.14) \(g(y) = \overline{w}(\sqrt{2y}) \), \(g_2(y) = \overline{g}(\sqrt{y}) \),

where we recall that for any function \(W \), the definition of \(\overline{W} \) is given in (2.4).

Our next lemma establishes a relation between the Mellin transforms of \(g \) and \(g_2 \). This is a generalization of (1.3) for \(D(\phi; w, X) \).

Lemma 2.10. Assume that \(\phi \) is an even Schwartz test function whose Fourier transform has compact support. Then we have

\[D(\phi; w, X) = \frac{\hat{\phi}(0)}{\mathcal{L}W(X)} \sum_{(c, 1 + i) = 1}^* w \left(\frac{N(c)}{X} \right) \log N(c) + \frac{\hat{\phi}(0)}{\mathcal{L}} \left(\log \frac{32}{\pi^2} + 2 \Gamma'(1/2) \right) \]

Now, let \(w(t) \) be an even, non-zero and non-negative Schwartz function as the theorems. We define

\[\ell \]

(2.14) \(g(y) = \overline{w}(\sqrt{2y}) \), \(g_2(y) = \overline{g}(\sqrt{y}) \),

where we recall that for any function \(W \), the definition of \(\overline{W} \) is given in (2.4).

Our next lemma establishes a relation between the Mellin transforms of \(g \) and \(g_2 \). This is a generalization of (1.3) for \(D(\phi; w, X) \).

Lemma 2.11. For any \(z \in \mathbb{C}, z \neq 0, -1 \), we have

\[\zeta_K(z + 1)M_g(z + 1) = \zeta_K(-z)M_g(-z). \]

Proof. Our proof of the lemma is motivated by Riemann’s proof of the functional equation of the Riemann zeta function \(\zeta(s) \) (see [11, §8]). We first note that, for \(\Re(z) > 1 \),

\[\zeta_K(z)M_g(z) = \frac{1}{4} \sum_{k \in O_K \setminus \{0\}} \int_0^\infty g(t) \left(\frac{t}{N(k)} \right)^z \frac{dt}{t} = \frac{1}{4} \sum_{k \in O_K \setminus \{0\}} \int_0^\infty g(N(k)t)^z \frac{dt}{t} \]

\[\ell \]

Now applying (2.3) to the second of the above sums and another change of variables, we get

\[\zeta_K(z)M_g(z) = -\frac{1}{4} \frac{g(0)}{z} + \frac{1}{4} \frac{g(0)}{z - 1} + \int_0^\infty \frac{g(N(k)t)^z dt}{t} + \int_0^\infty \frac{g(N(k)t)^z dt}{t} \]

Note that the last two integrals converge absolutely for all \(z \in \mathbb{C} \), by applying estimation (2.7) to both \(g \) and \(\overline{g} \). The last expression above thus gives an analytical extension of \(\zeta_K(z)M_g(z) \) to all \(z \in \mathbb{C}, z \neq 0, 1 \).
Similarly, we also deduce from (2.14) that for \(\Re(z) > 0 \),
\[
\zeta_K(z + 1)\mathcal{M}g_1(z + 1) = \frac{1}{4} \sum_{k \in \mathcal{O}_K \setminus \{0\}} \int_0^\infty \tilde{g} \left(\sqrt{t} \right) \left(\frac{t}{N(k)} \right)^{z+1} \frac{dt}{t}
\]
\[
= \frac{1}{4} \frac{g(0)}{z} - \frac{1}{4} \frac{\tilde{g}(0)}{z+1} + \frac{1}{4} \sum_{k \in \mathcal{O}_K \setminus \{0\}} \tilde{g} \left(\sqrt{N(k)t} \right) t^{z+1} \frac{dt}{t} + \frac{1}{4} \int_1^\infty \sum_{k \in \mathcal{O}_K \setminus \{0\}} g(N(k)t) t^{-z} \frac{dt}{t}.
\]

Once again by applying estimation (2.14) to both \(g \) and \(\tilde{g} \), we see that the last two integrals above converge absolutely for all \(z \in \mathbb{C} \), so the last expression above thus gives an analytical extension of \(\zeta_K(z + 1)\mathcal{M}g_1(z + 1) \) to all \(z \in \mathbb{C}, z \neq 0, 1 \). Now, by comparing the above expressions for \(\zeta_K(z)\mathcal{M}g(z) \) and \(\zeta_K(z + 1)\mathcal{M}g_1(z + 1) \), we readily deduce the assertion of the lemma.

\[\square\]

3. Analyzing sums over primes

We devote this section to the analysis of the sum over primes in (1.4). We first separate the odd and the even prime powers, by writing
\[
S_{\text{odd}} = \frac{2}{\mathcal{L}W(X)} \sum_{\substack{c, \chi_{(1+i)^3} \equiv 1 \pmod{1+i} \backsimeq 1 \to \mathcal{L}, \phi_n}} \chi(c) \log \left(\frac{\mathcal{N}(c)}{\mathcal{N}(\chi)} \right) \sum_{j \equiv 1 \pmod{2}} S_j(\chi_{(1+i)^3}c, \mathcal{L}, \phi_n)
\]
and similarly for \(S_{\text{even}} \). Moreover, it follows from Lemma 2.6, (2.8) and (2.10) that
\[
S_{\text{even}} = \frac{-2}{\mathcal{L}} \sum_{\substack{\chi(1+i)^3 \equiv 1 \pmod{1+i} \leq X^\sigma}} \log \left(\frac{\mathcal{N}(\chi)}{\mathcal{N}(\chi)^j} \right) \left(1 + \frac{1}{\mathcal{N}(\chi)} \right)^{-1} \hat{\phi} \left(\frac{2j \log \mathcal{N}(\chi)}{\mathcal{L}} \right) + O \left(X^{-3/4+\varepsilon} \right),
\]

3.1. Estimation of \(S_{\text{even}} \). We first expand \(S_{\text{even}} \) into descending powers of \(\mathcal{L} \), we generalize [10] Lemma 3.7 to obtain the following result.

Lemma 3.2. Suppose that \(\sigma = \sup (\text{supp} \hat{\phi}) < \infty. \) Then for any integer \(M \geq 1 \), we have the expansion
\[
S_{\text{even}} = -\frac{\phi(0)}{2} + \sum_{m=1}^M \frac{d_m \hat{\phi}^{(m-1)}(0)}{\mathcal{L}^m} + O \left(\frac{1}{\mathcal{L}^{M+1}} \right),
\]
where the coefficients \(d_m \) are real numbers that can be given explicitly.

Proof. It suffices to show that the expansion given in (3.3) is valid if we ignore the \(O \left(X^{-3/4+\varepsilon} \right) \) term in (3.2). As \(\sigma \) is finite, the sum in (3.2) is finite as we must have \(N(\chi)^{2j} \leq X^{\sigma} \). It follows that sum of the terms with \(j \geq 2 \) can be expanded as follows:
\[
-\frac{2}{\mathcal{L}} \sum_{\substack{\chi(1+i)^3 \equiv 1 \pmod{1+i} \leq X^{\sigma} \atop j \geq 2}} \log \left(\frac{\mathcal{N}(\chi)}{\mathcal{N}(\chi)^j} \right) \left(1 + \frac{1}{\mathcal{N}(\chi)} \right)^{-1} \left(\sum_{m=0}^M \frac{\hat{\phi}^{(m)}(0)}{m!} \left(\frac{2j \log \mathcal{N}(\chi)}{\mathcal{L}} \right)^m \right) + O \left(\left(\frac{2j \log \mathcal{N}(\chi)}{\mathcal{L}} \right)^{M+1} \right)
\]
\[
= -\frac{2}{\mathcal{L}} \sum_{m=0}^M \frac{\hat{\phi}^{(m)}(0)}{m! \mathcal{L}^m} \sum_{\substack{\chi(1+i)^3 \equiv 1 \pmod{1+i} \leq X^{\sigma} \atop j \geq 2}} \log \left(\frac{\mathcal{N}(\chi) \left(2j \log \mathcal{N}(\chi) \right)^m}{\mathcal{N}(\chi)^j} \right) \left(1 + \frac{1}{\mathcal{N}(\chi)} \right)^{-1} + O \left(\mathcal{L}^{-M-2} \right)
\]
\[
= -\frac{2}{\mathcal{L}} \sum_{m=0}^M \frac{\hat{\phi}^{(m)}(0)}{m! \mathcal{L}^m} \sum_{\substack{\chi(1+i)^3 \equiv 1 \pmod{1+i} \leq X^{\sigma} \atop j \geq 2}} \log \left(\frac{\mathcal{N}(\chi) \left(2j \log \mathcal{N}(\chi) \right)^m}{\mathcal{N}(\chi)^j} \right) \left(1 + \frac{1}{\mathcal{N}(\chi)} \right)^{-1} + O \left(\mathcal{L}^{-M-2} \right),
\]
by noting the inner sum of the last expression above converges.
It remains to expand the terms with \(j = 1 \). For this, we first note that, using the Taylor expansion of \(\hat{\phi} \) around the origin and rewriting \((1 + \frac{N(\varpi)}{x})^{-1}\) as a geometric series,

\[
- \frac{2}{L} \sum_{\varpi \equiv 1 \pmod{(1+i)^3}} \frac{\log N(\varpi)}{N(\varpi)} \left(1 + \frac{1}{N(\varpi)} \right)^{-1} \hat{\phi} \left(\frac{2 \log N(\varpi)}{\mathcal{L}} \right)
\]

\[
= - \frac{2}{L} \sum_{\varpi \equiv 1 \pmod{(1+i)^3}} \frac{\log N(\varpi)}{N(\varpi)} \left(1 + \frac{1}{N(\varpi)} \right)^{-1} \left(\sum_{m=0}^{\infty} \frac{\hat{\phi}(m)(0)}{m!} \left(\frac{2 \log N(\varpi)}{\mathcal{L}} \right)^m + O \left(\left(\frac{\log N(\varpi)}{\mathcal{L}} \right)^{M+1} \right) \right)
\]

\[
= - \frac{2}{L} \sum_{\varpi \equiv 1 \pmod{(1+i)^3}} \frac{\log N(\varpi)}{N(\varpi)} \left(\sum_{m=0}^{\infty} \frac{\hat{\phi}(m)(0)}{m!} \left(\frac{2 \log N(\varpi)}{\mathcal{L}} \right)^m \right) + O \left(\left(\frac{\log N(\varpi)}{\mathcal{L}} \right)^{M+1} \right) + O(L^{-M-1})
\]

\[
= - \frac{2}{L} \sum_{\varpi \equiv 1 \pmod{(1+i)^3}} \frac{\log N(\varpi)}{N(\varpi)} \hat{\phi} \left(\frac{2 \log N(\varpi)}{\mathcal{L}} \right) - \sum_{\varpi \equiv 1 \pmod{(1+i)^3}} \frac{\hat{\phi}(m)(0)}{m!L^{m+1}} + O(M^{-1})
\]

where

\[
C_1(m) = \sum_{\varpi \equiv 1 \pmod{(1+i)^3}} \sum_{l \geq 1} (-1)^l \frac{(2 \log N(\varpi))^{m+1}}{N(\varpi)^l+1} < \infty.
\]

Next, we note that

\[
E(t) := \sum_{N(\varpi) \leq t} \log N(\varpi) - t \ll t^{1/2+\varepsilon}
\]

from (3.6).

We then apply partial summation to arrive at, with \(E(t) \) defined in (3.6),

\[
- \frac{2}{L} \sum_{\varpi \equiv 1 \pmod{(1+i)^3}} \frac{\log N(\varpi)}{N(\varpi)} \hat{\phi} \left(\frac{2 \log N(\varpi)}{\mathcal{L}} \right) = - \frac{2}{L} \int_1^\infty \frac{1}{t} \hat{\phi} \left(\frac{2 \log t}{\mathcal{L}} \right) d(t + E(t))
\]

\[
= - \int_0^\infty \hat{\phi}(u) \, du + \frac{2}{L} \int_1^\infty E(t) \frac{d}{dt} \left(\frac{1}{t} \hat{\phi} \left(\frac{2 \log t}{\mathcal{L}} \right) \right) \, dt = - \frac{1}{2} \hat{\phi}(0) + \frac{2}{L} \int_1^\infty E(t) \frac{d}{dt} \left(\frac{1}{t} \hat{\phi} \left(\frac{2 \log t}{\mathcal{L}} \right) \right) \, dt.
\]

We can now expand the derivative in the last integrand in (3.7) into Taylor expansions involving powers of \(2 \log t/\mathcal{L} \) and use the corresponding series to calculate the last integral above. Note that the new integrals emerging from this process are all convergent because of the bound (3.6). The assertion of the lemma now follows by combining (3.3), (3.3) and (3.7).

3.3 Estimation of \(S_{\text{odd}} \): Poisson summation

Starting from this section, we shall concentrate on the estimation of \(S_{\text{odd}} \). First note that the contribution from the terms with \(j \geq 3 \) in (3.1) is \(O(\varpi^{-3/4+\varepsilon}) \) by Lemma 2.6. It thus remains to treat the case for \(j = 1 \). For this case, we use the Möbius function to detect the condition that \(c \) is square-free to get

\[
S_{\text{odd}} = - \frac{2}{LW(X)} \sum_{l \equiv 1 \pmod{(1+i)^3}} \mu(l) \sum_{\varpi \equiv 1 \pmod{(1+i)^3}} \frac{\log N(\varpi)}{\varpi} \hat{\phi} \left(\frac{\log N(\varpi)}{\log X} \right) \sum_{(c,1+i)=1} \left(\frac{i(1+i)c^2}{\varpi} \right) w \left(\frac{N(c^2)}{X} \right) + O(\varpi^{-3/4+\varepsilon}).
\]

We divide the sum over \(l \) above into two parts, one over \(l \leq Z \) and the other over \(l \geq Z \), with \(Z \) to be chosen optimally later. Note that if \(c \) is odd, then \(i(1+i)c^2 \) is never a square. Similar to the treatment of \(S_R(X,Y; \hat{\phi}, \Phi) \) in [15 Section 3.3] except that we use Lemma 2.25 here instead of [15 Lemma 2.5], we get that the terms with \(l > Z \) are

\[
\ll X^{\varepsilon}(\log Z)^3Z^{-1}.
\]

For the terms with \(l \leq Z \), we apply the Poisson summation [2.25 given in Lemma 2.3] and argue as in [15 (the treatment here is essentially the same as that of \(S_M(X,Y; \hat{\phi}, \Phi) \) in [15 Section 3.2]) to arrive at the following lemma.
Lemma 3.4. Suppose that GRH is true. We have for any \(Z \geq 1 \) and any \(\epsilon > 0 \),
\[
S_{\text{odd}} = -\frac{X}{2W(X)} \sum_{l \equiv 1 \mod (1+i)^3}^{N(l) \leq Z} \frac{\mu_{\ell}(l)}{N(l^2)} \sum_{k \in \mathbb{Z}[i]} \left(\frac{1}{2} I_{(1+i)l}(X) - I_l(X) \right)
+ O \left(X^{-3/4+\epsilon} + X^\epsilon (\log Z)^3 Z^{-1} \right).
\]

We now generalize [10] Lemma 2.7 to further analyze the sums in (3.8), obtaining the following result.

Lemma 3.5. Suppose that GRH is true and that \(\sigma = \sup(\text{supp} \ \hat{\phi}) < \infty \). Then we have for any \(1 \leq Z \leq X^2 \) and any \(\epsilon > 0 \)
\[
S_{\text{odd}} = \frac{X}{W(X)} \sum_{l \equiv 1 \mod (1+i)^3}^{N(l) \leq Z} \frac{\mu_{\ell}(l)}{N(l^2)} \left(\frac{1}{2} I_{(1+i)l}(X) - I_l(X) \right)
+ O \left(X^{-3/4+\epsilon} + X^\epsilon (\log Z)^3 Z^{-1} + ZX^{\sigma/2-1+\epsilon} + X^{-1/2+\epsilon} Z^\epsilon \right),
\]
where
\[
I_l(X) = \int_0^\infty \hat{\phi}(u) \sum_{k \in \mathbb{Z}[i], k \neq 0} \hat{w} \left(2N(k) \sqrt{\frac{X^1-u}{2N(l^2)}} \right) du.
\]

Proof. Note that as in [15] Section 3.4] that the inner sum in (3.8) corresponding to \(k = 0 \) is zero. It also follows from the treatment of [15] Section 3.5] by setting \(U = 1 \) and dividing the estimation obtained in [15] (3.9)] by \(X \) (since our definition of \(S_{\text{odd}} \) differs from \(S_M(X,Y; \phi, \Phi) \) defined in [15] by an extra factor \(W^{-1}(X) \)) that the contribution of \(k \neq \Box \) (\(k \) is not a square) to the expression for \(S_{\text{odd}} \) given in (3.8) is
\[
\ll ZX^{\sigma/2-1+\epsilon}.
\]

We are left to consider the contribution from \(k = \Box \) (\(k \) is a square), \(k \neq 0 \) to the expression for \(S_{\text{odd}} \) given in (3.8). For this, we make a change of variables \(k \mapsto k^2 \) while noting that \(k_1^2 = k_2^2 \) if and only if \(k_1 = \pm k_2 \) and deduce that
\[
S_{\text{odd}} = -\frac{X}{2W(X)} \sum_{l \equiv 1 \mod (1+i)^3}^{N(l) \leq Z} \frac{\mu_{\ell}(l)}{N(l^2)} \sum_{\omega \equiv 1 \mod (1+i)^3}^{N(\omega) \leq k \neq 0} \log N(\omega) \left(\frac{1}{2} \right) \log N(\omega) \phi \left(\frac{\log N(\omega)}{\log X} \right) \sum_{k \in \mathbb{Z}[i], k \neq 0} \left(-1 \right)^{N(k)} \hat{w} \left(N(k) \sqrt{\frac{X}{2N(l^2\omega)}} \right)
+ O \left(X^{-3/4+\epsilon} + X^\epsilon (\log Z)^3 Z^{-1} + ZX^{\sigma/2-1+\epsilon} \right).
\]

In view of the rapid decay property of \(\hat{w} \) implied by (2.6), we now remove the condition that \((\omega, l) = 1 \) at the cost of an error
\[
\ll \frac{1}{X} \sum_{l \equiv 1 \mod (1+i)^3}^{N(l) \leq Z} \frac{1}{N(l^2)} \sum_{\omega \equiv 1 \mod (1+i)^3}^{N(\omega) \leq k \neq 0} \log N(\omega) \sqrt{N(\omega)} \ll X^{-1/2} Z^\epsilon,
\]
where we use the well-known fact that for \(N(l) \geq 3 \), the number, \(\omega(l) \), of distinct primes in \(\mathbb{Z}[i] \) dividing \(l \) can be bounded as
\[
\omega(l) \ll \frac{\log N(l)}{\log \log N(l)},
\]
One can show similarly that removing the condition \((k, \varpi) = 1\) introduces an error of size \(\ll X^{-1/2}Z^\varepsilon\). We thus derive, using (2.7), that

\[
S_{\text{odd}} = -\frac{X}{2\mathcal{L}(X)} \sum_{l \equiv 1 \mod (1+i)^3} \sum_{N(l) \leq Z} \frac{\mu_1(l)}{N(l)^2} \sum_{k \in \mathbb{Z}[i]} \sum_{k \neq 0} \frac{\log N(\varpi)}{N(\varpi)} \phi \left(\frac{\log N(\varpi)}{\log X} \right) \\
\times \sum_{k \in \mathbb{Z}[i]} (-1)^{N(k)} w \left(N(k) \sqrt{\frac{X}{2N(l^2)}} \right) \\
+ O \left(X^{-3/4+\varepsilon} + X^\varepsilon (\log Z)^3 Z^{-1} + ZX^{\sigma/2-1+\varepsilon} + X^{-1/2+\varepsilon} Z^\varepsilon \right) \\
= -\frac{X}{2\mathcal{L}(X)} \sum_{l \equiv 1 \mod (1+i)^3} \sum_{N(l) \leq Z} \frac{\mu_1(l)}{N(l)^2} \sum_{k \in \mathbb{Z}[i]} \sum_{k \neq 0} (-1)^{N(k)} \\
\times \sum_{k \in \mathbb{Z}[i]} (-1)^{N(k)} w \left(N(k) \sqrt{\frac{X}{2N(l^2)y}} \right) d(y + O(y^{1/2} \log^2(2y))) \\
+ O \left(X^{-3/4+\varepsilon} + X^\varepsilon (\log Z)^3 Z^{-1} + ZX^{\sigma/2-1+\varepsilon} + X^{-1/2+\varepsilon} Z^\varepsilon \right) \\
= S_1 + S_2 + O \left(X^{-3/4+\varepsilon} + X^\varepsilon (\log Z)^3 Z^{-1} + ZX^{\sigma/2-1+\varepsilon} + X^{-1/2+\varepsilon} Z^\varepsilon \right),
\]

where

\[
S_1 = -\frac{X}{2\mathcal{L}(X)} \sum_{l \equiv 1 \mod (1+i)^3} \sum_{N(l) \leq Z} \frac{\mu_1(l)}{N(l)^2} \sum_{k \in \mathbb{Z}[i]} \sum_{k \neq 0} (-1)^{N(k)} \int_1^\infty \frac{1}{y} \phi \left(\frac{\log y}{\mathcal{L}} \right) \tilde{w} \left(N(k) \sqrt{\frac{X}{2N(l^2)y}} \right) dy,
\]

and

\[
S_2 = -\frac{X}{2\mathcal{L}(X)} \sum_{l \equiv 1 \mod (1+i)^3} \sum_{N(l) \leq Z} \frac{\mu_1(l)}{N(l)^2} \sum_{k \in \mathbb{Z}[i]} \sum_{k \neq 0} (-1)^{N(k)} \int_1^\infty \frac{1}{y} \phi \left(\frac{\log y}{\mathcal{L}} \right) \tilde{w} \left(N(k) \sqrt{\frac{X}{2N(l^2)y}} \right) d(O(y^{1/2} \log^2(2y))).
\]

Note that

\[
S_2 \ll \frac{1}{\mathcal{L}} \sum_{N(l) \leq Z} \left(\frac{1}{N(l)^2} \sum_{k \in \mathbb{Z}[i]} \sum_{k \neq 0} \int_1^\infty y^{1/2} \log^2(2y) \frac{d}{dy} \left(\frac{1}{y} \phi \left(\frac{\log y}{\mathcal{L}} \right) \right) \tilde{w} \left(N(k) \sqrt{\frac{X}{2N(l^2)y}} \right) \right) dy \ll S_{2,1} + S_{2,2},
\]

where

\[
S_{2,1} = \frac{1}{\mathcal{L}} \sum_{N(l) \leq Z} \left(\frac{1}{N(l)^2} \sum_{k \in \mathbb{Z}[i]} \sum_{k \neq 0} \tilde{w} \left(N(k) \sqrt{\frac{X}{2N(l^2)y}} \right) \right)
\]

and

\[
S_{2,2} = \frac{1}{\mathcal{L}} \sum_{N(l) \leq Z} \left(\frac{1}{N(l)^2} \sum_{k \in \mathbb{Z}[i]} \sum_{k \neq 0} \int_1^\infty y^{1/2} \log^2(2y) \left(\left(\frac{1}{y^2} \phi' \left(\frac{\log y}{\mathcal{L}} \right) \right) \tilde{w} \left(N(k) \sqrt{\frac{X}{2N(l^2)y}} \right) \right) \right) dy.
\]

Using (2.6), we deduce that

\[
\sum_{k \in \mathbb{Z}[i]} \tilde{w} \left(N(k) \sqrt{\frac{X}{2N(l^2)y}} \right) \ll \sqrt{\frac{N(l^2)y}{X}} \quad \text{and} \quad \sum_{k \in \mathbb{Z}[i]} \tilde{w} \left(N(k) \sqrt{\frac{X}{2N(l^2)y}} \right) \ll \frac{N(l^2)y}{X}.
\]
Thus, it follows that

\[
S_{2,2} \ll \frac{1}{\mathcal{L}} \sum_{\substack{N(l) \leq Z \\
l \equiv 1 \mod (1+i)^3}} \frac{1}{N(l^2)} \int_{1}^{\infty} y^{1/2} \log^2(2y) \times \left(\frac{1}{y \mathcal{L}^2} \log \left(\frac{y}{\mathcal{L}} \right) + \frac{1}{y^2} \log \left(\frac{N(l^2)}{\mathcal{L} X} \right) + \log \left(\frac{N(l^2)y}{\mathcal{L}} \right) \right) dy \
\]

\[
\ll X^{-1/2} Y^2 \int_{1}^{\infty} \log^2(2y) \left(\left| \log \left(\frac{y}{\mathcal{L}} \right) \right| + \log \left(\frac{N(l^2)}{\mathcal{L} X} \right) \right) dy \ll X^{-1/2+\varepsilon} Z^\varepsilon,
\]

where the last estimation above follows by using a change of variable \(u = \log y/\mathcal{L} \) to evaluate the proceeding integral and noting that the integrand has compact support. Similarly, we have that \(S_{2,1} \ll X^{-1/2+\varepsilon} Z^\varepsilon \) so that

\[
S_2 \ll X^{-1/2+\varepsilon} Z^\varepsilon.
\]

It follows from this that \(S_2 \) contributes to the error term in \([3.9]\). It remains to evaluate \(S_1 \) and applying exactly the same change of variable as above now leads to

\[
S_1 = \frac{X}{2W(X)} \sum_{\substack{N(l) \leq Z \\
l \equiv 1 \mod (1+i)^3}} \frac{\mu_2(l)}{N(l^2)} \int_{0}^{\infty} \tilde{\phi}(u) \sum_{k \in \mathbb{Z}[i], k \neq 0} (-1)^{N(k)} \tilde{w} \left(N(k) \sqrt{\frac{X^{1-u}}{2N(l^2)}} \right) du.
\]

We note that, for any \(l \in \mathcal{O}_K \), we have

\[
\sum_{k \in \mathbb{Z}[i], k \neq 0} (-1)^{N(k)} \tilde{w} \left(N(k) \sqrt{\frac{X^{1-u}}{2N(l^2)}} \right) = \sum_{\substack{k \in \mathbb{Z}[i], k \neq 0 \\
(1+i,k) = 1}} \tilde{w} \left(N(k) \sqrt{\frac{X^{1-u}}{2N(l^2)}} \right) - \sum_{\substack{k \in \mathbb{Z}[i], k \neq 0 \\
(1+i,k) = 1}} \tilde{w} \left(N(k) \sqrt{\frac{X^{1-u}}{2N(l^2)}} \right)
\]

\[
= 2 \sum_{\substack{k \in \mathbb{Z}[i], k \neq 0 \\
(1+i,k) = 1}} \tilde{w} \left(N(k) \sqrt{\frac{X^{1-u}}{2N(l^2)}} \right) - \sum_{\substack{k \in \mathbb{Z}[i], k \neq 0 \\
(1+i,k) = 1}} \tilde{w} \left(N(k) \sqrt{\frac{X^{1-u}}{2N(l^2)}} \right)
\]

\[
= 2 \sum_{\substack{k \in \mathbb{Z}[i], k \neq 0 \\
(1+i,k) = 1}} \tilde{w} \left(2N(k) \sqrt{\frac{X^{1-u}}{2N(l^2)}} \right) - \sum_{\substack{k \in \mathbb{Z}[i], k \neq 0 \\
(1+i,k) = 1}} \tilde{w} \left(N(k) \sqrt{\frac{X^{1-u}}{2N(l^2)}} \right).
\]

Applying the above in \([3.11]\), we derive that

\[
S_1 = \frac{X}{W(X)} \sum_{\substack{N(l) \leq Z \\
l \equiv 1 \mod (1+i)^3}} \frac{\mu_2(l)}{N(l^2)} \left\{ \frac{1}{2} I_{(1+i)}(X) - I_l(X) \right\}.
\]

The above gives precisely the main term in \([3.9]\) for \(S_{\text{odd}} \) and this completes the proof. \(\square \)

3.6. Estimation of \(S_{\text{odd}} \): small support. In this section, we apply Lemma \([3.5]\) to show that there is no new lower order terms in powers of \(\mathcal{L}^{-1} \) when \(\sigma = \text{sup(supp } \hat{\phi}) < 1 \). We generalize \([10]\) Proposition 3.1] and state our result in the following

Proposition 3.7. Suppose that GRH is true and that \(\sigma = \text{sup(supp } \hat{\phi}) < 1 \). Then we have for any \(\varepsilon > 0 \),

\[
S_{\text{odd}} \ll X^{\sigma/4-1/2+\varepsilon} + X^{3\sigma/4-3/4+\varepsilon}.
\]

Proof. We let

\[
\Phi(X) = \sum_{\substack{N(l) \leq X \\
l \equiv 1 \mod (1+i)^3}} \frac{\mu_2(l)}{N(l)^2} = \frac{4}{3\zeta_K(2)} + O(X^{-3/2+\varepsilon}).
\]
where the last equality above follows from the observation that under GRH we have

\[
\sum_{N(l) \leq X} \mu_{1}(l) = X^{1/2+\varepsilon}.
\]

We then deduce that for \(0 \leq u \leq 1\),

\[
\sum_{N(l) \leq Z} \frac{\mu_{1}(l)}{N(l)^{2}} \tilde{w}(N(k) \sqrt{X^{1-u}/2N(l)^{2}}) = \int \frac{Z}{\phi(t)} \frac{1}{2} \sqrt{X^{1-u}/2} d\Phi(t)
\]

\[
= \int_{0^{+}} \frac{Z}{\phi(t)} \frac{1}{2} \sqrt{X^{1-u}/2} d\Phi(t) + O(t^{-3/2+\varepsilon})
\]

\[
= \frac{Z}{\phi(t)} \frac{1}{2} \sqrt{X^{1-u}/2} + N(k) \sqrt{X^{1-u}/2} \int_{0^{+}} \frac{Z}{\phi(t)} \frac{1}{2} \sqrt{X^{1-u}/2} d\Phi(t)
\]

\[
\ll Z^{-3/2+\varepsilon} \left| \int_{0^{+}} \frac{Z}{\phi(t)} \frac{1}{2} \sqrt{X^{1-u}/2} d\Phi(t) \right| + N(k)X^{(1-u)/2} \int_{0^{+}} \frac{Z}{\phi(t)} \frac{1}{2} \sqrt{X^{1-u}/2} d\Phi(t)
\]

Note that the part of the last integral for \(t \in (0, X^{(1-u)/2-\varepsilon}]\) is \(O((N(k)X)^{-A})\) for any \(A \geq 1\), by the rapid decay of \(\phi(t)\). Summing over \(k\) and integrating over \(u\), we obtain that

\[
\sum_{N(l) \leq Z} \frac{\mu_{1}(l)}{N(l)^{2}} I_{1}(X) \ll \frac{Z^{3/2+\varepsilon}}{\phi(u)} \int_{0}^{\infty} \frac{1}{2} \sqrt{X^{1-u}/2} d\Phi(t) + X^{-1}
\]

\[
+ N(k)X^{(1-u)/2} \int_{0^{+}} \frac{Z}{\phi(t)} \frac{1}{2} \sqrt{X^{1-u}/2} d\Phi(t) + X^{-1}
\]

\[
\ll \frac{X^{(\sigma-1)/2}}{Z^{1/2-\varepsilon}} + X^{3\sigma/4-3/4+\varepsilon}.
\]

Similarly, we have

\[
\sum_{N(l) \leq Z} \frac{\mu_{1}(l)}{N(l)^{2}} I_{1+i}(X) \ll \frac{X^{(\sigma-1)/2}}{Z^{1/2-\varepsilon}} + X^{3\sigma/4-3/4+\varepsilon}.
\]

Hence, it follows from Lemma 3.3 that for \(Z \leq X^{2}\),

\[
S_{\text{odd}} \ll \frac{X^{(\sigma-1)/2}}{Z^{1/2-\varepsilon}} + X^{3\sigma/4-3/4+\varepsilon} + X^{-3/4+\varepsilon} + X^{\varepsilon}Z^{-1} + ZX^{\sigma/2-1+\varepsilon} + X^{-1/2+\varepsilon}Z^{\varepsilon}.
\]

The result follows by taking \(Z = X^{1/2-\sigma/4}\).

\[\square\]

3.8. Estimation of \(S_{\text{odd}}\): extended support. In this section, we analyze the lower order terms of \(S_{\text{odd}}\) when \(\sigma = \sup(\text{supp} \hat{\phi}) \geq 1\).
Lemma 3.9. Suppose that $\sigma = \sup(\sup \hat{\phi}) < \infty$. Then concerning the function $I_l(X)$ defined in (3.10), we have

$$I_l(X) = -\tilde{w}(0) \int_{-\infty}^{\infty} \hat{\phi}(u) \, du + \frac{\hat{g}(0)}{2L} \int_0^\infty \phi(1 + \tau/L)e^{\tau/2}N(l) \, d\tau$$

$$+ \frac{1}{L} \int_0^\infty \hat{\phi}(1 + \tau/L) \left(e^{\tau/2}N(l) \sum_{j \in \mathbb{Z}[i], j \neq 0} \bar{g} \left(\sqrt{N(j)}e^{\tau/2}N(l) \right) \right) \, d\tau$$

$$+ \frac{1}{L} \int_0^\infty \hat{\phi}(1 - \tau/L) \sum_{k \in \mathbb{Z}[i], k \neq 0} g \left(\frac{N(k)}{2} \sqrt{e^{-\tau}/N(l)} \right) \, d\tau$$

(3.13)

and

$$I_{l+1}(X) = -\tilde{w}(0) \int_{-\infty}^{\infty} \hat{\phi}(u) \, du + \frac{2\hat{g}(0)}{2L} \int_0^\infty \phi(1 + \tau/L)e^{\tau/2}N(l) \, d\tau$$

$$+ \frac{1}{L} \int_0^\infty \hat{\phi}(1 + \tau/L) \left(2e^{\tau/2}N(l) \sum_{j \in \mathbb{Z}[i], j \neq 0} \bar{g} \left(2\sqrt{N(j)}e^{\tau/2}N(l) \right) \right) \, d\tau$$

$$+ \frac{1}{L} \int_0^\infty \hat{\phi}(1 - \tau/L) \sum_{k \in \mathbb{Z}[i], k \neq 0} g \left(\frac{N(k)}{2} \sqrt{e^{-\tau}/N(l)} \right) \, d\tau,$$

(3.14)

where $g(y)$ is given as in (2.14).

Proof. We first extend the integral in (3.10) to \mathbb{R} and make the substitution $\tau = L(u - 1)$ to obtain that

$$I_l(X) = \frac{1}{L} \int_{-\infty}^\infty \hat{\phi}(1 + \tau/L) \sum_{k \in \mathbb{Z}[i], k \neq 0} \tilde{w}(u) \left(2N(k) \sqrt{\frac{e^{-\tau}}{2N(l)}} \right) \, d\tau + O(N(l)X^{-1/2}),$$

(3.15)

since for $u \leq 0$, we have

$$\int_{-\infty}^0 \hat{\phi}(u) \sum_{k \in \mathbb{Z}[i], k \neq 0} \tilde{w}(u) \left(2N(k) \sqrt{\frac{X^{-1-u}}{2N(l)}} \right) \, du \ll \int_{-\infty}^0 \hat{\phi}(u) \sqrt{\frac{N(l)^2}{X^{-1-u}}} \, du \ll N(l)X^{-1/2}.$$

We then break the integral in (3.15) into integrals over $(-\infty, 0]$ and $[0, \infty)$ and denote them respectively by $I_l^-(X)$ and $I_l^+(X)$. By applying the Poisson summation formula (2.29) given in Lemma 2.3, we see that

$$I_l^+(X) = \frac{1}{L} \int_0^\infty \hat{\phi}(1 + \tau/L) \left(-\tilde{w}(0) + \sum_{k \in \mathbb{Z}[i]} g \left(N(k) \sqrt{\frac{e^{-\tau}}{N(l)}} \right) \right) \, d\tau$$

$$= \frac{1}{L} \int_0^\infty \hat{\phi}(1 + \tau/L) \left(-\tilde{w}(0) + e^{\tau/2}N(l) \sum_{j \in \mathbb{Z}[i]} g \left(\sqrt{N(j)}e^{\tau/2}N(l) \right) \right) \, d\tau$$

$$= \frac{1}{L} \int_0^\infty \hat{\phi}(1 + \tau/L) \left(-\tilde{w}(0) + e^{\tau/2}N(l)\bar{g}(0) + e^{\tau/2}N(l) \sum_{j \in \mathbb{Z}[i], j \neq 0} g \left(\sqrt{N(j)}e^{\tau/2}N(l) \right) \right) \, d\tau.$$
Combining the above expressions for $I^{-}_1(X)$ and $I^{+}_1(X)$, we readily derive the expression for $I(X)$ in \textbf{3.10}. The expression for $I_{1(1+i)}(X)$ in \textbf{3.11} can be similarly obtained via the expression of $I(X)$ with the function $g(y)$ being replaced by $g(y/2)$ and this completes the proof.

We define the functions
\[h_1(x) = \frac{3\zeta_K(2)}{\pi \hat{w}(0)} \sum_{l \equiv 1 \mod (1+i)^3} \frac{\mu_{[i]}(l)}{N(l)} \left(\hat{g} \left(\sqrt{2N(l)x} \right) - \hat{g} \left(\sqrt{N(l)x} \right) \right), \]
and
\[h_2(x) = \frac{3\zeta_K(2)}{\pi \hat{w}(0)} \sum_{l \equiv 1 \mod (1+i)^3} \frac{\mu_{[i]}(l)}{N(l^2)} \left(\frac{1}{2} \hat{g} \left(\frac{x}{2N(l)} \right) - g \left(\frac{x}{N(l)} \right) \right). \]

It is easy to see that $h_1(x)$ and $h_2(x)$ are smooth on $(0, \infty)$ and $[0, \infty)$, respectively. Moreover, we have the bounds $h_1(x) \ll x^{-A}$ for any $A > 1$ and $h_2(x) \ll x^{-3/2+\varepsilon}$ for any $\varepsilon > 0$ under GRH. We point out here that the above notations as well as their bounds are inspired by the corresponding notations introduced on page 1206 of \textbf{10}.

We now apply Lemma \textbf{3.9} to derive the following generalization of \textbf{10} Corollary 3.4.

\textbf{Lemma 3.10.} Suppose that GRH is true. Then we have for $\sigma < 2$,
\[S_{\text{odd}} = \int_1^\infty \hat{\phi}(u) \, du + J(X) + O(X^{\sigma/6-1/3+\varepsilon}), \]
where
\[J(X) = \frac{1}{L} \int_0^\infty \left(\hat{\phi}(1+\tau/L)e^{\tau/2} \sum_{j \in \mathbb{Z}[i]} \sum_{j \neq 0} h_1(N(j)e^{\tau/2}) + \hat{\phi}(1-\tau/L) \sum_{k \in \mathbb{Z}[i]} \sum_{k \neq 0} h_2(N(k)e^{\tau/2}) \right) \, d\tau, \]

\textit{Proof.} First note that by following the arguments that lead to estimation \textbf{15} (2.13)] there, we have
\[\hat{w}(0) = \frac{\pi}{2} \hat{w}(0). \]

It follows from \textbf{3.11}, \textbf{3.12} and \textbf{3.17} that
\[\frac{X}{W(X)} \int_1^\infty \hat{\phi}(u) \, du = 2 \int_1^\infty \hat{\phi}(u) \, du + O(Z^{-3/2+\varepsilon}). \]

We now combine Lemma \textbf{3.5}, Lemma \textbf{3.9} and \textbf{3.18} together to get that if $Z \leq X^2$, then
\[S_{\text{odd}} = \frac{X}{W(X)} \sum_{l \equiv 1 \mod (1+i)^3} \frac{\mu_{[i]}(l)}{N(l)} \left(\int_0^\infty \hat{\phi}(1+\tau/L) \left(e^{\tau/2} \sum_{j \in \mathbb{Z}[i]} \sum_{j \neq 0} \left(\hat{g} \left(\sqrt{N(j)e^{\tau/2}N(l)} \right) - \hat{g} \left(\sqrt{N(j)e^{\tau/2}N(l)} \right) \right) \right) \, d\tau \right. \]
\[+ \left. \int_0^\infty \hat{\phi}(1-\tau/L) \sum_{k \in \mathbb{Z}[i]} \sum_{k \neq 0} \left(\frac{1}{2} \hat{g} \left(\frac{N(k)}{2} \sqrt{\frac{e^{\tau/2}}{N(l^2)}} \right) - g \left(\sqrt{e^{\tau/2}/N(l^2)} \right) \right) \right) \, d\tau \]
\[+ \int_1^\infty \hat{\phi}(u) \, du + O \left(X^{-3/4+\varepsilon} + X^\varepsilon Z^{-1} + ZX^{\sigma/2-1+\varepsilon} + X^{-1/2+\varepsilon} Z^\varepsilon \right). \]

Note that for the first two integrals in the above expression, we have
\[\frac{1}{L} \int_0^\infty \hat{\phi}(1+\tau/L) \left(e^{\tau/2} \sum_{j \in \mathbb{Z}[i]} \sum_{j \neq 0} \left(\hat{g} \left(\sqrt{N(j)e^{\tau/2}N(l)} \right) - \hat{g} \left(\sqrt{N(j)e^{\tau/2}N(l)} \right) \right) \right) \, d\tau \ll \frac{1}{L} \int_0^\infty \hat{\phi}(1+\tau/L) \, d\tau \ll 1, \]
and
\[
\frac{1}{\mathcal{L}} \int_0^\infty \phi(1 - \tau/\mathcal{L}) \sum_{k \in \mathbb{Z}[i], k \neq 0} \left(1 + \frac{\varepsilon^2}{2 \sqrt{N(k)^2}} - \frac{(N(k) \sqrt{e^\tau N(k^2)})}{\mathcal{L}^2} - g \left(N(k) \sqrt{e^\tau N(k^2)} \right) \right) \, d\tau \ll \frac{1}{\mathcal{L}} \int_0^\infty \phi(1 - \tau/\mathcal{L}) N(l) e^{-\tau/2} d\tau \ll N(l).
\]

We can therefore use \(\Phi(X) \) defined in (3.12) and partial summation to extend the sum over \(l \) to all odd elements in \(\mathcal{O}_K \) by introducing an extra error term of size \(O(X^s Z^{-3/2}) \). We now set \(Z = X^{2/3 - \sigma/3} \), change the order of summation in (3.19) and apply (2.10) to derive the desired result. \(\square \)

4. Proof of Theorem 4.1

We combine Lemma 2.7, Lemma 2.10, Lemma 3.2 and Lemma 3.10 to arrive at the following

Lemma 4.1. Suppose that GRH is true. Let \(\hat{\phi}(x) \) be an even Schwartz function whose Fourier transform \(\hat{\phi}(u) \) has compact support in \((-2, 2)\) and let \(w \) be an even non-zero and non-negative Schwartz function. For any integer \(M \geq 1 \), the 1-level density of low-lying zeros in the family \(\mathcal{F} \) of quadratic Hecke \(L \)-functions is given by

\[
\mathcal{D}(\hat{\phi}; w, X) = \hat{\phi}(0) \left(1 + \frac{1}{2} \int_0^1 \phi(u) \, du + \frac{\hat{\phi}(0)}{\mathcal{L}} \left(\log \frac{3\sqrt{2}}{\pi} + \frac{1}{2} \frac{\Gamma'}{\Gamma} \left(\frac{1}{2} \right) + \frac{2}{\phi(0)} \int_0^\infty w(x) \log x \, dx \right) + J(X) \right) + \frac{2}{\mathcal{L}} \int_0^\infty \frac{e^{-x/2}}{1 - e^{-x}} \left(\phi(0) - \hat{\phi} \left(\frac{x}{\mathcal{L}} \right) \right) \, dx + \sum_{m=1}^M \frac{d_m \hat{\phi}^{(m-1)}(1)}{\mathcal{L}^m} + O \left(\frac{1}{\mathcal{L}^{M+1}} \right),
\]

where \(J(X) \) is given as in Lemma 3.11 and the coefficients \(d_k \) are explicitly computable numbers given in Lemma 3.6.

The next lemma allows us to expand \(J(X) \) in descending powers of \(\mathcal{L} = \log X \). This is a generalization of [10, Lemma 3.6].

Lemma 4.2. Suppose that GRH is true and suppose that \(\sigma = \sup(\text{supp } \hat{\phi}) < 2 \). Then for any integer \(M \geq 1 \), we have the expansion

\[
J(X) = \sum_{m=1}^M c_{w, m} \hat{\phi}^{(m-1)}(1) \frac{1}{\mathcal{L}^m} + O \left(\frac{1}{\mathcal{L}^{M+1}} \right),
\]

where the constants \(c_{w, m} \) can be given explicitly.

Proof. Note that as \(\sigma = \sup(\text{supp } \hat{\phi}) < 2 \), we have

\[
J(X) = \frac{1}{\mathcal{L}} \int_0^\mathcal{L} \left(\phi(1 + \tau/\mathcal{L}) \sqrt{2} e^{\tau/2} \sum_{j \in \mathbb{Z}[i], j \neq 0} h_1(N(j)e^{\tau/2}) + \phi(1 - \tau/\mathcal{L}) \sum_{k \in \mathbb{Z}[i], k \neq 0} h_2(N(k)e^{\tau/2}) \right) \, d\tau.
\]

Recall that we have the bounds \(h_1(x) \ll x^{-N} \) for any \(N \geq 1 \) and \(h_2(x) \ll x^{-3/2 + \varepsilon} \) for any \(\varepsilon > 0 \) under GRH. It follows from this that we can expand \(\hat{\phi} \) in Taylor series to obtain that

\[
J(X) = \sum_{m=1}^M \frac{\hat{\phi}^{(m-1)}(1)}{(m-1)!\mathcal{L}^m} \int_0^\mathcal{L} \left(\tau^{m-1} e^{\tau/2} \sum_{j \in \mathbb{Z}[i], j \neq 0} h_1(N(j)e^{\tau/2}) + (-\tau)^{m-1} \sum_{k \in \mathbb{Z}[i], k \neq 0} h_2(N(k)e^{\tau/2}) \right) \, d\tau
\]

since here the error term introduced can be estimated as

\[
\ll \mathcal{L}^{-M-1} \int_0^\mathcal{L} \left(\tau^M e^{-\tau/2} + (-\tau)^M e^{-(3/4+\varepsilon)\tau} \right) \, d\tau \ll \mathcal{L}^{-M-1} \int_0^\mathcal{L} \left(\tau^M e^{-\tau/2} + (-\tau)^M e^{-(3/4+\varepsilon)\tau} \right) \, d\tau \ll \mathcal{L}^{-M-1}.
\]

We now extend the integral in (4.3) to infinity and note that the error introduced by this extension can be easily shown to be

\[
\ll \sum_{m=1}^M \frac{\hat{\phi}^{(m-1)}(1)}{(m-1)!\mathcal{L}^m} \int_0^\infty \left(\tau^{m-1} e^{-\tau} + (-\tau)^{m-1} e^{-(3/4+\varepsilon)\tau} \right) \, d\tau \ll \mathcal{L}^{-M-1}.
\]
We then deduce from this and (4.3) that
\[J(X) = \sum_{m=1}^{M} \frac{\hat{\phi}^{(m-1)}(1)}{(m-1)!} L^m \int_0^\infty \left(\tau^{m-1/2} e^{\tau/2} \sum_{j \in \mathbb{Z}[i]} h_1(N(j)e^{\tau/2}) + (-\tau)^{m-1} \sum_{k \in \mathbb{Z}[i], k \neq 0} (-1)^{N(k)} h_2(N(k)e^{\tau/2}) \right) d\tau \\
+ O(L^{-M-1}), \]
As the integral in the above expression converges, the assertion of the lemma now follows from this. \(\square \)

We now substitute (4.2) into (4.1) and expand \(\hat{\phi}(x/L) \) into its Taylor series around 0 so that
\[\hat{\phi}(x/L) = \sum_{m=0}^{M} \frac{\hat{\phi}^{(m)}(0)}{(m)!} L^m \int_0^\infty \left(\tau^{m-1/2} e^{\tau/2} \sum_{j \in \mathbb{Z}[i]} h_1(N(j)e^{\tau/2}) + (-\tau)^{m-1} \sum_{k \in \mathbb{Z}[i], k \neq 0} (-1)^{N(k)} h_2(N(k)e^{\tau/2}) \right) d\tau \\
+ O(L^{-M-1}), \]
and an interchange of the series and the integral allow us to deduce (4.4). In particular, we see that we have for \(m \geq 2, \)
\[R_{w,m}(\phi) = c_{w,m} \hat{\phi}^{(m-1)}(1) + d_m \hat{\phi}^{(m-1)}(0) - 2\int_0^\infty e^{-x/2} x^{m-1} \left(\frac{e^{x/2}}{m-1} \right) \]}
This completes the proof of Theorem 1.1.

5. Proof of Theorem 1.2

We first follow the recipe given in [4] to derive a suitable version of the ratios conjecture for the family \(\mathcal{F} \). We start by considering the expression
\[R(\alpha, \beta) = \frac{1}{W(X)} \sum_{n \neq 0}^s w \left(\frac{N(c)}{X} \right) L(1/2 + \alpha, \chi_{i(1+i)^c}) L(1/2 + \beta, \chi_{i(1+i)^c}). \]

Similar to the treatment in [16] Section 4.1, we may approximate \(L(s, \chi_{i(1+i)^c}) \) by
\[L(s, \chi_{i(1+i)^c}) \approx \sum_{n \neq 0} \frac{\chi_{i(1+i)^c}(n)}{N(n)^s} + X_c(s) \sum_{n \neq 0} \frac{\chi_{i(1+i)^c}(n)}{N(n)^{1-s}}, \]
where \(\sum_{n \neq 0} \) denotes a sum over non-zero integral ideals in \(\mathcal{O}_K \) and \(\sum_{n \neq 0} \) denotes a sum over non-zero integral ideals in \(\mathcal{O}_K \) and
\[X_c(s) = \frac{\Gamma(1-s)}{\Gamma(s)} \left(\frac{\pi^2}{32N(c)} \right)^{s-1/2}. \]

Writing \(\mu_{\mathcal{O}} \) for the Möbius function on \(K \), we obtain that for \(\Re(s) > 1, \)
\[\frac{1}{L(s, \chi_{i(1+i)^c})} = \sum_{m \neq 0} \frac{\mu_{\mathcal{O}}(m) \chi_{i(1+i)^c}(m)}{N(m)^s}. \]

Applying (5.2) and (5.4) to (5.1), we see that
\[R(\alpha, \beta) \approx R_1(\alpha, \beta) + R_2(\alpha, \beta), \]
where
\[R_1(\alpha, \beta) = \frac{1}{W(X)} \sum_{n \neq 0}^s w \left(\frac{N(c)}{X} \right) \sum_{m,n \neq 0} \frac{\mu_{\mathcal{O}}(m) \chi_{i(1+i)^c}(nm)}{N(m)^{1/2+\beta} N(n)^{1/2+\alpha} \} \]
and
\[R_2(\alpha, \beta) = \frac{1}{W(X)} \sum_{n \neq 0}^s w \left(\frac{N(c)}{X} \right) X_c \left(\frac{1}{2} + \alpha \right) \sum_{m,n \neq 0} \frac{\mu_{\mathcal{O}}(m) \chi_{i(1+i)^c}(nm)}{N(m)^{1/2+\beta} N(n)^{1/2-\alpha}}. \]

When \(nm \) is an odd square, we expect to gain a main contribution to both \(R_1 \) and \(R_2 \). Applying Lemma 2.6, we have in this case
\[\sum_{n \neq 0}^s w \left(\frac{N(c)}{X} \right) \chi_{i(1+i)^c}(nm) \approx \prod_{\varepsilon \equiv 1 \mod (1+i)^3} \left(1 + \frac{1}{N(\varpi)} \right)^{-1}. \]
We then deduce that, upon writing □ for a perfect square,
\[
R_1(\alpha, \beta) \sim R_1(\alpha, \beta) = \sum_{n, m = \text{odd}} \frac{\mu_4(n)}{N(m)^{1/2+\beta}N(n)^{1/2+\alpha}} \prod_{\varpi \equiv 1 \mod (1+i)^3} \left(1 + \frac{1}{N(\varpi)}\right)^{-1}.
\]

A computation on the Euler product shows that
\[
R_1(\alpha, \beta) = \frac{\zeta_K(1+2\alpha)}{\zeta_K(1+\alpha+\beta)} A(\alpha, \beta),
\]
where
\[
A(\alpha, \beta) = \left(\frac{2^{1+\alpha+\beta} - 2^{\beta-\alpha}}{2^{1+\alpha+\beta} - 1}\right) \prod_{\varpi \equiv 1 \mod (1+i)^3} \left(1 - \frac{1}{N(\varpi)^{1+\alpha+\beta}}\right)^{-1}
\]
\[
\times \left(1 - \frac{1}{N(\varpi) + 1} \frac{1}{N(\varpi)^{1+2\alpha}} - \frac{1}{N(\varpi) + 1} \frac{1}{N(\varpi)^{\alpha+\beta}}\right).
\]

Note that the product A(\alpha, \beta) is absolutely convergent for \Re(\alpha), \Re(\beta) > -1/4.

Similarly, we obtain
\[
R_2(\alpha, \beta) \approx R_2(\alpha, \beta) = \frac{1}{W(X)} \sum_{(c,1+i)=1}^* w\left(\frac{N(c)}{X}\right) X_c \left(\frac{1}{2} + \alpha\right) \tilde{R}_1(-\alpha, \beta).
\]

Combining (5.6) with (5.7) and (5.8), we deduce the following appropriate version of the ratios conjecture for our family \(F\).

Conjecture 5.1. Let \(\varepsilon > 0\) and let \(w\) be an even and nonnegative Schwartz test function on \(\mathbb{R}\) which is not identically zero. For complex numbers \(\alpha\) and \(\beta\) satisfying \(|\Re(\alpha)| < 1/4\), \((\log X)^{-1} \ll \Re(\beta) < 1/4\) and \(\Im(\alpha), \Im(\beta) \ll X^{1-\varepsilon}\), we have that
\[
\frac{1}{W(X)} \sum_{(c,1+i)=1}^* w\left(\frac{N(c)}{X}\right) L(1/2 + \alpha, \chi_{1+i}) \zeta(c,1+i)^c
\]
\[
= \frac{\zeta_K(1+2\alpha)}{\zeta_K(1+\alpha+\beta)} A(\alpha, \beta) + \frac{1}{W(X)} \sum_{(c,1+i)=1}^* w\left(\frac{N(c)}{X}\right) X_c \left(\frac{1}{2} + \alpha\right) \zeta_K(1-2\alpha) A(-\alpha, \beta) + O_{\varepsilon}(X^{-1/2+\varepsilon}),
\]
where \(A(\alpha, \beta)\) is defined in (5.7) and \(X_c(s)\) is defined in (5.3).

Similar to the derivation of [16] Lemma 4.3, we deduce from Conjecture 5.1 the following result needed in the calculation of the 1-level density.

Lemma 5.2. Assuming the truth of GRH and Conjecture 5.1, we have for any \(\varepsilon > 0\), \((\log X)^{-1} \ll \Re(r) < 1/4\) and \(\Im(r) \ll X^{1-\varepsilon}\),
\[
\frac{1}{W(X)} \sum_{(c,1+i)=1}^* w\left(\frac{N(c)}{X}\right) \frac{L'}{L} \left(1/2 + r, \chi_{1+i}^c\right) \frac{1}{\pi W(X)} \sum_{(c,1+i)=1}^* w\left(\frac{N(c)}{X}\right) X_c \left(\frac{1}{2} + r\right) \zeta_K(1-2r) A(-r, r) + O_{\varepsilon}(X^{-1/2+\varepsilon}),
\]
where
\[
A_0(r, r) = \frac{\partial}{\partial \alpha} A(\alpha, \beta)\bigg|_{\alpha=\beta=r}.
\]

We now proceed as in [16] Section 4.4. Assuming the truth of GRH, it follows from Lemma 5.2 that
\[
D(\phi; w, X) = \frac{1}{W(X)} \sum_{(c,1+i)=1}^* w\left(\frac{N(c)}{X}\right) \frac{1}{2\pi i} \int_{(a-1/2)} \left(2 \frac{\zeta_K(1+2r)}{\zeta_K(1+2r)} + 2A_0(r, r) - \frac{X_c(1/2 + r)}{X_c(1/2 + r)} \phi\left(\frac{i\tilde{L}_r}{2\pi r}\right) dr + O_{\varepsilon}\left(X^{-1/2+\varepsilon}\right),
\]
where $D(\phi; w, X)$ is defined in (1.1). Note that the integrand in (5.3) is analytic in the region $\Re(r) \geq 0$ (in particular it is analytical at $r = 0$). The assertion of Theorem 1.2 now follows by moving the contour of integration from $\Re(r) = a - 1/2$ to $\Re(r) = 0$.

6. Proof of Theorem 1.3

6.1. Initial treatment. In this section, we consider the expansions of the $D(\phi; w, X)$ given in (1.3) as powers of $1/L$ with $L = \log X$. Recall from (5.9) that, up to an error term of size $O(L^{-2})$, we have

$$
D(\phi; w, X) = \frac{1}{W(X)} \sum_{(c,1+i)}^* w \left(\frac{N(c)}{X} \right) \frac{1}{2\pi i} \frac{1}{2\pi} \int \log \left(\frac{32N(c)}{\pi^2} \right) \phi \left(\frac{tL}{2\pi} \right) dt
$$

$$(6.1)$$

where $L^{-1} < a' < 1/4$.

We set

$$
I = -\frac{8}{\pi} \frac{1}{W(X)} \sum_{(c,1+i)}^* w \left(\frac{N(c)}{X} \right) \frac{1}{2\pi i} \frac{1}{2\pi} \int \log \left(\frac{32N(c)}{\pi^2} \right) \phi \left(\frac{tL}{2\pi} \right) dt
$$

$$(6.2)$$

We shall postpone the evaluation of I in the next section and proceed here the treatment on the other terms on the right-hand side of (6.1).

We deduce first from by Lemma 2.6 and (2.10), after partial summation, that

$$
I = \hat{\phi}(0) \frac{1}{L} \sum_{(c,1+i)}^* w \left(\frac{N(c)}{X} \right) \log \left(\frac{32N(c)}{\pi^2} \right)
$$

$$
= \hat{\phi}(0) \frac{1}{L} \sum_{(c,1+i)}^* w \left(\frac{N(c)}{X} \right) \log \left(\frac{32N(c)}{\pi^2} \right)
$$

Next note that, similar to (4.33), we have

$$
\frac{1}{W(X)} \sum_{(c,1+i)}^* w \left(\frac{N(c)}{X} \right) \frac{1}{2\pi i} \int \left(\Gamma \left(\frac{1}{2} + it \right) + \Gamma' \left(\frac{1}{2} + it \right) \right) \phi \left(\frac{tL}{2\pi} \right) dt
$$

$$
= \frac{1}{2\pi} \hat{\phi}(0) \frac{1}{L} + \frac{2}{L} \int_0^{\infty} \frac{e^{-t/2}}{1 - e^{-t}} \left(\hat{\phi}(0) - \hat{\phi} \left(\frac{t}{L} \right) \right) dt.
$$

Furthermore, we follow the treatment of Lemma 4.1] to obtain via a direct calculation (noting that $A(r, r) = 1$) that

$$
A_\alpha(r, r) + \frac{\zeta_K'(1 + 2r)}{\zeta_K(1 + 2r)} = -\frac{1}{N(w)} + \sum_{w \equiv 1 \mod (1+i)^3} \frac{N(w) \log N(w)}{N(w)^{1+2r} - 1}.
$$

It follows from this, after the substitution $u = -i\frac{Lr}{2\pi}$ and interchanging the summations and the integral, that

$$
\frac{1}{2\pi} \frac{1}{2\pi i} \int \left(\frac{2}{\zeta_K'(1 + 2r)} + 2A_\alpha(r, r) \right) \phi \left(\frac{i\frac{Lr}{2\pi}}{2\pi} \right) dr
$$

$$
= -\frac{2}{L} \sum_{w \equiv 1 \mod (1+i)^3} \frac{N(w) \log N(w)}{N(w) + 1} \sum_{j=1}^{\infty} \frac{1}{N(w)^{1+j}} \int \phi(u) \exp \left(-2\pi iu \frac{2j \log N(w)}{L} \right) du.
$$

where C' denotes the horizontal line $\Im(u) = -\frac{Lr'}{(2\pi)}$.

As \(\hat{\phi} \) is compactly supported and \(\phi(z) = \int_{\mathbb{R}} \hat{\phi}(x)e^{2\pi i x z} \, dx \), it follows from integration by parts that uniformly for \(-Lc'/(2\pi) \leq t \leq 0 \),

\[
|\phi(T + it)| \ll \frac{1}{|T| + 1}.
\]

In view of this, we can shift the contour of the last integration in (6.2) from \(C' \) to \(\Im(u) = 0 \) to deduce that

\[
\frac{1}{2\pi i} \int_{C}(2_{K}^{c'}(1 + 2r) - 2A_{\alpha}(r, r)) \phi \left(\frac{iLc}{2\pi} \right) \, dr
\]

\[
= - \frac{2}{L} \sum_{\omega \equiv 1 \mod (1+i^3)} \log N(\omega) N(\overline{\omega})^{-1} \phi \left(\frac{2j \log N(\omega)}{L} \right).
\]

6.2. Evaluation of \(I \). In this section, we evaluate \(I \), defined in (6.2). Our treatment here follows from the proof of [11] Lemma 4.6. We deduce from (5.7) that

\[
A(-\gamma, \gamma) = \frac{3(2 - 2^{2r})}{4 - 2^{2r}} \frac{\zeta(2)}{\zeta(2 - 2r)}.
\]

Substituting the above in the right-hand side of (6.2), we deduce from the definitions of \(X_c \) given in (5.3) and a change of variable \(r = 2\pi i \tau / L \) that

\[
I = -\frac{8}{\pi} \frac{\zeta(2)}{Lc'} \int_{C'} \left(\frac{1/2 - 2\pi i \tau / L}{1/2 + 2\pi i \tau / L} \right) \left(\frac{\pi^2}{32} \right)^{2n i \tau / L} \left(1 + \frac{2 - 2^{2n i \tau / L + 1}}{4 - 2^{4n i \tau / L - 1}} \right) \frac{\zeta(1 - 2\pi i \tau / L)}{\zeta(2 - 4\pi i \tau / L)} \phi(\tau)
\]

\[
\times \frac{1}{W(X)} \sum_{(c, 1+i)} w \left(\frac{N(c)}{X} \right) N(c)^{-2\pi i \tau / L} \, d\tau,
\]

where we also denote \(C' \) for the horizontal line \(\Im(\tau) = -Lc'/(2\pi) \).

We treat the last sum in (6.7) by applying Mellin inversion to see that for \(0 \leq \Re(r) \leq 1/2 \),

\[
\sum_{(c, 1+i)} w \left(\frac{N(c)}{X} \right) N(c)^{-r} = \frac{2\pi}{3\zeta(2)} X^{1-r} Mw(1-r) + O_{\varepsilon, w} \left(\left(|\Im(r)| + 1 \right)^{1/2 + \varepsilon} X^{1/2 - |\Im(r)| + \varepsilon} \right).
\]

We shift the contour of integration to the line \(\Re(r) = 1/2 - \Re(r) + \varepsilon \) to encounter a simple pole at \(s = 1 - r \). On the new line of integration, the convexity bound (see [22] Exercise 3, p. 100), together with the rapid decay of \(Mw \), gives

\[
\zeta(1 + r) \ll (1 + |s|^{2})^{1/4 + \varepsilon}.
\]

With this and recalling that the residue of \(\zeta(1) \) at \(s = 1 \) is \(\pi/4 \), we get

\[
\sum_{(c, 1+i)} w \left(\frac{N(c)}{X} \right) N(c)^{-r} = \frac{2\pi}{3\zeta(2)} X^{1-r} Mw(1-r) + O_{\varepsilon, w} \left(\left(|\Im(r)| + 1 \right)^{1/2 + \varepsilon} X^{1/2 - |\Im(r)| + \varepsilon} \right).
\]

Combining the above with (2.10), we deduce that for any \(\varepsilon > 0 \) and \(0 \leq \Re(r) \leq 1/2 \),

\[
\frac{1}{W(X)} \sum_{(c, 1+i)} w \left(\frac{N(c)}{X} \right) N(c)^{-r} = \frac{2}{w(0)} X^{-r} Mw(1-r) + O_{\varepsilon, w} \left(\left(|\Im(r)| + 1 \right)^{1/2 + \varepsilon} X^{-1/2 - |\Im(r)| + \varepsilon} \right).
\]

For small \(\varepsilon, \eta > 0 \), we change the contour \(C' \) in (6.7) to the path

\[
C = C_{0} \cup C_{1} \cup C_{2},
\]

where

\[
C_{0} = \{ \Im(\tau) = 0, |\Im(\tau)| \geq L \varepsilon \}, \quad C_{1} = \{ \Im(\tau) = 0, \eta \leq |\Im(\tau)| \leq L \varepsilon \}, \quad C_{2} = \{ |\tau| = \eta, \Im(\tau) \leq 0 \}.
\]

As \(\phi \) decays rapidly, the integration of \(I \) over \(C_{0} \) can be shown to be negligible. We now apply the Taylor expansion to treat the integration of \(I \) over \(C_{1} \cup C_{2} \) by noting that

\[
\frac{\Gamma(1/2 - 2\pi i \tau / L)}{\Gamma(1/2 + 2\pi i \tau / L)} = 1 - 2 \frac{\Gamma'(1/2)}{\Gamma(1/2)} \frac{2\pi i \tau}{L} + O \left(\frac{|\tau|^{2}}{L^{2}} \right),
\]

and hence
and that (see [17] Formula 2, Section 8.366)
\[\frac{\Gamma'(1/2)}{\Gamma(1/2)} = 2 \log 2 + \gamma. \]

Using Taylor expansion and (1.6), we get
\[\left(1 + \frac{2 - 2 \pi \tau}{4 - 2 \pi \tau} \right) \frac{1}{\zeta_K(2 - 4 \tau \epsilon)} = 1 + \frac{1}{\zeta_K(2)} \left(- \frac{2 \log 2}{3} \right) + \frac{\zeta_K''(2)}{\zeta_K(2)} \frac{4 \pi \tau}{L} + O \left(\frac{|\tau|^2}{L^2} \right), \]
and
\[\zeta_K \left(1 - \frac{4 \pi \tau}{L} \right) = - \frac{\pi}{4} \cdot \frac{L}{4 \pi \tau} + \gamma + O \left(\frac{|\tau|}{L} \right). \]

Using the above formulas, we get, after a short computation,
\[
= \frac{1}{2 \pi \tau} \left(1 + \frac{2 \pi \tau}{L} \right) \left(2 \gamma + 2 \log 4 + \log \left(\frac{\pi^2}{32} \right) + 2 \frac{\zeta_K''(2)}{\zeta_K(2)} - \frac{4}{3} \log 2 - \frac{8}{\pi} \frac{\gamma_K - \frac{Mw'(1)}{Mw(1)}}{Mw(1)} + O \left(\frac{|\tau|^2}{L^2} \right) \right) \phi(\tau) e^{-2 \pi \tau} + O_{e,w}(X^{-1/2+\epsilon}).
\]

We then deduce that
\[I = \frac{1}{2 \pi i} \int_{C_1 \cup C_2} \frac{\phi(\tau)}{\tau} e^{-2 \pi \tau} d\tau + I' + O_{w}(L^{-2}), \]
where, combining the logarithm terms,
\[
I' = \frac{1}{L} \left(2 \gamma + \log \left(\frac{\pi^2}{27/3} \right) + 2 \frac{\zeta_K''(2)}{\zeta_K(2)} - \frac{8}{\pi} \frac{\gamma_K - \frac{Mw'(1)}{Mw(1)}}{Mw(1)} \right) \int_{C_1 \cup C_2} \phi(\tau) e^{-2 \pi \tau} d\tau
\]
\[
= \frac{1}{L} \left(2 \gamma + \log \left(\frac{\pi^2}{27/3} \right) + 2 \frac{\zeta_K''(2)}{\zeta_K(2)} - \frac{8}{\pi} \frac{\gamma_K - \frac{Mw'(1)}{Mw(1)}}{Mw(1)} \right) \int_{R} \phi(\tau) e^{-2 \pi \tau} d\tau + O(L^{-2})
\]
\[= \frac{\phi(1)}{L} \left(2 \gamma + \log \left(\frac{\pi^2}{27/3} \right) + 2 \frac{\zeta_K''(2)}{\zeta_K(2)} - \frac{8}{\pi} \frac{\gamma_K - \frac{Mw'(1)}{Mw(1)}}{Mw(1)} \right) + O(L^{-2}). \]

Similar to the treatment of \(I_1 \) in the proof of [11] Lemma 4.6], we have
\[\int_{C_1 \cup C_2} \frac{1}{2 \pi i} \phi(\tau) e^{-2 \pi \tau} d\tau = \int_{1}^{\infty} \phi(\tau) d\tau + O(L^{-2}). \]

Thus, we conclude that
\[I = \int_{1}^{\infty} \phi(\tau) d\tau + \frac{\phi(1)}{L} \left(2 \gamma + \log \left(\frac{\pi^2}{27/3} \right) + 2 \frac{\zeta_K''(2)}{\zeta_K(2)} - \frac{8}{\pi} \frac{\gamma_K - \frac{Mw'(1)}{Mw(1)}}{Mw(1)} \right) + O(L^{-2}). \]

Combining the above expression for \(I \) and (6.2) - (6.4), (6.6) together, we deduce that the expression (1.7) is valid.

6.3. Comparing terms. In this section we show that the expression given in (1.7) is in agreement with that given in (1.4) when \(\sigma = \text{sup}(\text{supp } \phi) < 2 \). In fact, applying (6.3) and (6.4) in (1.3) and comparing it with (1.4), we see that, with the help of Lemma [2.6] it suffices to show that
\[
\frac{2}{L} \sum_{\text{(c,1+i)} = 1}^{*} w \left(\frac{N(c)}{X} \right) \sum_{j \geq 1} S_j \left(\chi_{i(1+i)} \zeta_c, L; \hat{\phi} \right)
\]
\[
= \frac{1}{W(X)} \sum_{\text{(c,1+i)} = 1}^{*} w \left(\frac{N(c)}{X} \right) \frac{1}{2\pi} \int_{R} \left(2 \frac{\zeta_K'(1 + 2it)}{\zeta_K(1 + 2it)} + 2A_i(it, it) - \frac{8}{\pi} X_c \left(\frac{1}{2} + it \right) \zeta_K(1 - 2it) A(-it, it) \right) \phi \left(\frac{tL}{2\pi} \right) dt
\]
\[
= \frac{1}{W(X)} \sum_{\text{(c,1+i)} = 1}^{*} w \left(\frac{N(c)}{X} \right) \frac{1}{2\pi} \int_{(\epsilon')} \left(2 \frac{\zeta_K'(1 + 2r)}{\zeta_K(1 + 2r)} + 2A_i(r, r) - \frac{8}{\pi} X_c \left(\frac{1}{2} + r \right) \zeta_K(1 - 2r) A(-r, r) \right) \phi \left(\frac{tL}{2\pi} \right) dr,
\]
where \((\log X)^{-1} < a' < 1/4\).

Now, similar to the treatment in Section 3, we write

\[
(6.9) \quad -\frac{2}{\mathcal{L}W(X)} \sum_{c, i+1} w \left(\frac{N(c)}{X} \right) \sum_{j \geq 1} S_{j}(\chi_{i+1}^{c}, \mathcal{L}; \hat{\phi}) = S_{\text{odd}} + S_{\text{even}},
\]

where

\[
S_{\text{odd}} = -\frac{2}{\mathcal{L}W(X)} \sum_{c, i+1} w \left(\frac{N(c)}{X} \right) \sum_{j \equiv 1 \pmod{2}} S_{j}(\chi_{i+1}^{c}, \mathcal{L}; \hat{\phi}),
\]

and

\[
S_{\text{even}} = -\frac{2}{\mathcal{L}W(X)} \sum_{c, i+1} w \left(\frac{N(c)}{X} \right) \sum_{j \equiv 0 \pmod{2}} S_{j}(\chi_{i+1}^{c}, \mathcal{L}; \hat{\phi}).
\]

We then deduce from (6.6), (6.8), (6.9) and (3.2) that it remains to show that

\[
(6.10) \quad S_{\text{odd}} = I + O(\mathcal{L}^{-2}),
\]

where \(I\) is defined in (6.2).

6.4. Evaluation of \(S_{\text{odd}}\)

In this section, we evaluate \(S_{\text{odd}}\) to the first lower order term. Our treatment here follows largely the approach in the proof of [11, Theorem 1.1]. We recall from (3.10) that

\[
(6.11) \quad S_{\text{odd}} = \int_{1}^{\infty} \hat{\phi}(u) \, du + J(X) + O(\mathcal{L}^{-2}),
\]

where

\[
J(X) = \frac{1}{\mathcal{L}} \int_{0}^{\infty} \left(\hat{\phi}(1 + \tau/\mathcal{L}) e^{\tau/2} \sum_{j \in \mathbb{Z}[i] \atop j \neq 0} h_{1}(N(j) e^{\tau/2}) + \hat{\phi}(1 - \tau/\mathcal{L}) \sum_{k \in \mathbb{Z}[i] \atop k \neq 0} h_{2}(N(k) e^{\tau/2}) \right) \, d\tau,
\]

We now evaluate \(h_{1}(x)\) by applying the Mellin inversion to recast it as

\[
h_{1}(x) = \frac{3\zeta_{K}(2)}{\pi w(0)} \frac{1}{2\pi i} \int \sum_{l \equiv 1 \pmod{(1+i)^{3}}} (2^{-z} - 1) \frac{\mu_{[i]}(l)}{N(l)^{1+z}} M_{g_{1}}(z) \frac{dz}{xz},
\]

\[
= \frac{3\zeta_{K}(2)}{\pi w(0)} \frac{1}{2\pi i} \int_{(5/2)} (2^{-z} - 1) (1 - 2^{-1-z}) \zeta_{K}(1 + z) \frac{M_{g_{1}}(z)}{xz} \frac{dz}{xz}.
\]

Similarly, we have, with a change of variables \(z \to -z\),

\[
h_{2}(x) = \frac{3\zeta_{K}(2)}{\pi w(0)} \frac{1}{2\pi i} \int \sum_{l \equiv 1 \pmod{(1+i)^{3}}} (2^{z-1} - 1) \frac{\mu_{[i]}(l)}{N(l)^{2-z}} M_{g}(z) \frac{dz}{xz},
\]

\[
= \frac{3\zeta_{K}(2)}{\pi w(0)} \frac{1}{2\pi i} \int_{(-1/2)} (2^{-z-1} - 1) \frac{M_{g}(-z)}{1 - 2^{-2-z}} \zeta_{K}(2 + z) x^{z} \, dz,
\]

\[
= \frac{3\zeta_{K}(2)}{\pi w(0)} \frac{1}{2\pi i} \int_{(-5/4)} (2^{-z-1} - 1) \frac{M_{g}(-z)}{1 - 2^{-2-z}} \zeta_{K}(2 + z) x^{z} \, dz.
\]
With the above expressions for \(h_1(x) \) and \(h_2(x) \), we can write \(J(x) \) given in (6.10) as

\[
J(X) = \frac{3\zeta_K(2)}{L\pi \hat{w}(0)} \frac{1}{2\pi i} \int_0^\infty \phi(1 + \tau/L) \int_{(5/2)} \frac{4(2^{-z} - 1)\zeta_K(z)}{(1 - 2^{-1-z})\zeta_K(1 + z)} M_{g_1}(z) \frac{dz}{e^{(z-1)\tau/2}}
\]

\[
+ \phi(1 - \tau/L) \int_{(5/4)} \frac{4(2^{-z} - 1)\zeta_K(-z)}{(1 - 2^{-2-z})\zeta_K(2 + z)} M_{g}(-z) e^{\tau/2} \frac{dz}{dz}
\]

(6.12)

Now we shift the contour of the last integration to the line \(\Re(z) = -1/2 \). By keeping only the constant terms, we see that their contribution to \(J(X) \) equals, with another change of variables \(z \to z + 1 \) in the first integral,

\[
\frac{3\zeta_K(2)}{L\pi \hat{w}(0)} \frac{8\phi(1)}{2\pi i} \int_{(1/2)} \frac{(2^{-z} - 1)\zeta_K(z + 1)}{(1 - 2^{-2-z})\zeta_K(2 + z)} M_{g_1}(z + 1) \frac{dz}{z} - \int_{(5/4)} \frac{(2^{-z} - 1)\zeta_K(-z)}{(1 - 2^{-2-z})\zeta_K(2 + z)} M_{g}(-z) \frac{dz}{z}.
\]

(6.13)

We now shift the contour of the last integration to the line \(\Re(z) = 1/2 \). We apply Lemma 2.11 to see that the quantity in (6.13) equals

\[
\frac{3\zeta_K(2)}{L\pi \hat{w}(0)} \frac{8\phi(1)}{2\pi i} R,
\]

where \(R \) is the residue of the function

\[
\frac{(2^{-z} - 1)\zeta_K(-z)}{(1 - 2^{-2-z})\zeta_K(2 + z)} M_{g}(-z)
\]

at \(z = 0 \). We observe via integration by parts that

\[
\mathcal{M}g(-z) = \int_0^\infty g(t) t^{-z} \frac{dt}{t} = \int_0^\infty g(t) d\left(t^{-z} \right) = \frac{1}{z} \int_0^\infty t^{-z} g'(t) dt.
\]

As

\[
\lim_{z \to 0} \int_0^\infty t^{-z} g'(t) dt = g(0) = \hat{w}(0) > 0,
\]

it follows that \(\mathcal{M}g(-z) \) has a pole at \(z = 0 \). We apply (3.17) and get that around \(z = 0 \),

\[
\mathcal{M}g(-z) = -\frac{g(0)}{z} - \int_0^\infty (\log t) g'(t) dt + O(z^2) = -\frac{\hat{w}(0)}{z} - \int_0^\infty (\log t) g'(t) dt + O(z^2)
\]

(6.14)

Moreover, we have around \(z = 0 \),

\[
\frac{2^{-z} - 1}{1 - 2^{-2-z}} = -\frac{2}{3} + \frac{-\log 2 (\frac{2}{3}) + \frac{1}{3}(\log 2) \frac{1}{2}}{(1 - 2^{-2})^2} z = -\frac{2}{3} - \frac{4}{9} (\log 2) z
\]

(6.15)

and

\[
\frac{\zeta_K(-z)}{\zeta_K(2 + z)} = \frac{\zeta_K(0)}{\zeta_K(2)} + \frac{-\zeta_K(0)\zeta_K(2) - \zeta_K(0)\zeta_K'(2)}{\zeta_K(2)} z + O(z^2).
\]

(6.16)
Using (6.14), (6.15) and (6.16), we get
\[R = -\frac{\pi}{2} \hat{w}(0) \left(-\frac{2}{3} \right) \frac{-\zeta'_K(0)\zeta_K(2) - \zeta_K(0)\zeta'_K(2)}{\zeta_K^2(2)} \]
\[\tag{6.17} \]
\[-\frac{\pi}{2} \hat{w}(0) \left(-\frac{4}{9} \log 2 \right) \frac{\zeta_K(0)}{\zeta_K(2)^2} - \frac{2}{3} \frac{\zeta_K(0)}{\zeta_K(2)} \left(-\int_0^\infty (\log t)g'(t)dt \right). \]

To further simplify \(R \), we use the fact that \(s\Gamma(s) = 1 \) (see [6, §10]) when \(s = 0 \) and the functional equation for \(\zeta_K(s) \) (see [22, Theorem 3.8]):
\[\pi^{-s}\Gamma(s)\zeta_K(s) = \pi^{-(1-s)}\Gamma(1-s)\zeta_K(1-s) \]
to obtain that \(\zeta_K(0) = -1/4 \).

We further use the relation (see [6, §10])
\[\Gamma(s)\Gamma(1-s) = \frac{\pi}{\sin(\pi s)} \]
to derive that
\[\tag{6.18} \]
\[\zeta_K(1-s) = \pi^{-2s}\Gamma(s)^2 \sin(\pi s) \zeta_K(s) \]
Applying (1.6), we see that around \(s = 1 \), we have
\[\zeta_K(s)\sin(\pi s) = -\frac{\pi^2}{4} - \pi\gamma_K(s-1) + O((s-1)^2). \]

Using the above expansion and the fact that \(\Gamma'(1) = -\gamma \) (see [17, Formula 1, Section 8.366] by noting also that \(\Gamma(1) = 1 \)), we take the derivative on both sides of (6.18) to see that
\[-\zeta'_K(0) = -\frac{1}{\pi} \gamma_K + \frac{\gamma}{2} + \frac{\log \pi}{2}. \]

Now, inserting the values of \(\zeta_K(0), -\zeta'_K(0) \) into (6.17), together with a short calculation, we obtain that
\[J(X) = \frac{3\zeta_K(2)}{2\pi i \hat{w}(0)} R + O(L^{-2}) \]
\[\tag{6.19} \]
\[= \frac{8\hat{\phi}(1)}{L} \left(-\frac{\gamma_K}{\pi} + \frac{\gamma}{2} + \frac{\log \pi}{2} + \frac{1}{4} \frac{\zeta'_K(2)}{\zeta_K(2)} \right) \zeta_K(0) - \frac{1}{2\pi \hat{w}(0)} \left(\int_0^\infty (\log t)g'(t)dt \right) + O(L^{-2}). \]

We evaluate the last integral above by noticing that for small \(\eta > 0 \), we have
\[\int_0^\infty (\log x)g'(x)dx = \int_0^\infty \sqrt{2} \log x \hat{w}'(\sqrt{2}x)dx = \int_0^\infty \log \left(\frac{x}{\sqrt{2}} \right) \hat{w}'(x)dx \]
\[= \hat{w}(0) \log(\sqrt{2}) + \int_\eta^\infty (\log x)\hat{w}'(x)dx + O(\eta \log(\eta^{-1})) \]

Now the above expression becomes, after integration by parts,
\[\hat{w}(0) \log(\sqrt{2}) - \int_\eta^\infty \frac{\hat{w}(x)}{x} - \hat{w}(0)I_{[0,1]}(x)dx + O(\eta \log(\eta^{-1})), \]
where \(I_{[0,1]} \) is the characteristic function of the interval \([0,1]\).

By evaluating \(\hat{w}(x) \) in polar coordinates, we see that
\[\hat{w}(x) = \frac{\pi^2}{2} \int_0^\infty \int_0^\infty \cos(2\pi x \sin \theta) w(r^2) r dr d\theta. \]
It follows from this and by letting \(\eta \to 0^+ \) and using [11] Example (e) on page 132, we obtain that

\[
\int_{0}^{\infty} (\log x) g'(x) dx = \int_{0}^{\infty} \frac{\tilde{w}(x) - \tilde{w}(0)}{x} dx
\]

(6.20)

\[
= \tilde{w}(0) \log(\sqrt{2}) - 4 \int_{0}^{\infty} w(r^2 t) \left(\int_{0}^{\pi/2} \frac{\cos(2\pi t x \sin \theta) - 1}{x} d\theta + \int_{\pi/2}^{\infty} \frac{\cos(2\pi t x \sin \theta)}{x} d\theta \right) dtdr
\]

Now the inner-most integrals over \(x \) become

\[
= \int_{0}^{2\pi r \sin \theta} \frac{\cos(u) - 1}{u} du + \int_{2\pi r \sin \theta}^{\infty} \frac{\cos(u)}{u} du = \gamma + \log(2\pi r \sin \theta).
\]

Hence the expression in (6.20) is

\[
\tilde{w}(0) \log(\sqrt{2}) + \frac{\pi \gamma \tilde{w}(0)}{2} + \frac{\pi \log \pi \tilde{w}(0)}{2} + \frac{\pi \log 2 \tilde{w}(0)}{2} + \frac{\pi}{2} \int_{0}^{\infty} w(r) \log r \, dr + 2 \int_{0}^{\infty} w(r) dr \int_{0}^{\pi/2} \log(\sin \theta) d\theta.
\]

As we have (see [17] Formula 3, Section 4.224)

\[
\int_{0}^{\pi/2} \log(\sin \theta) d\theta = -\frac{\pi}{2} \log 2.
\]

We thus conclude that

\[
\int_{0}^{\infty} (\log x) g'(x) dx = \frac{\pi \tilde{w}(0)}{4} \log 2 + \frac{\pi \gamma \tilde{w}(0)}{2} + \frac{\pi \log \pi \tilde{w}(0)}{2} + \frac{\pi}{2} M w'(1).
\]

Applying this to (6.19), we see that

\[
J(X) = \frac{\tilde{J}(1)}{\mathcal{L}} \left(2\gamma + 2 \log 4 + \log \left(\frac{\pi^2}{32} \right) + \frac{2 \zeta_K(2)}{\zeta_K(2)} - 4 \log 2 - \frac{8}{3} \gamma_K - \frac{M w'(1)}{M w(1)} \right) + O(\mathcal{L}^{-2}).
\]

With the above expression for \(J(X) \) and (6.11), we conclude that the expression given in (6.10) is valid and this completes the proof of Theorem [3].

Acknowledgments. P. G. is supported in part by NSFC grant 11871082 and L. Z. by the FRG Grant PS43707 and the Goldstar Award PS53450 from the University of New South Wales (UNSW). Parts of this work were done when P. G. visited UNSW in September 2019. He wishes to thank UNSW for the invitation, financial support and warm hospitality during his pleasant stay. Finally, the authors thank the anonymous referee for his/her very careful reading of this manuscript and many helpful comments and suggestions.

References

[1] S. Baier and L. Zhao, On the low-lying zeros of Hasse-Weil L-functions for elliptic curves, Adv. Math. 219 (2008), no. 3, 952–985.

[2] A. Brumer, The average rank of elliptic curves, I, Invent. Math. 109 (1992), no. 3, 445–472.

[3] P. J. Cho and H. H. Kim, Low lying zeros of arith L-functions, Math. Z. 279 (2015), no. 3-4, 669–688.

[4] J. B. Conrey, D. W. Farmer, and M. R. Zirnbauer, Autocorrelation of ratios of L-functions, Commun. Number Theory Phys. 2 (2008), no. 3, 593–636.

[5] J. B. Conrey and N. C. Snaith, Applications of the L-functions ratios conjectures, Proc. Lond. Math. Soc. (3) 94 (2007), no. 3, 594–646.

[6] H. Davenport, Multiplicative Number Theory, Third edition, Graduate Texts in Mathematics, vol. 74, Springer-Verlag, Berlin, etc., 2000.

[7] E. Duenes, The low lying zeros of a GL(4) and a GL(6) family of L-functions, Compos. Math. 142 (2006), no. 6, 1403–1425.

[8] E. Duenes and S. J. Miller, The effect of convolving families of L-functions on the underlying group symmetries, Proc. London Math. Soc. (3) 99 (2009), no. 3, 787–820.

[9] D. Fiorilli, J. Parks, and A. Södergren, Low-lying zeros of elliptic curve L-functions: beyond the ratios conjecture, Math. Proc. Cambridge Philos. Soc. 160 (2016), no. 2, 315–351.

[10] Low-lying zeros of quadratic Dirichlet L-functions: lower order terms for extended support, Compos. Math. 153 (2017), no. 6, 1196–1216.

[11] Low-lying zeros of quadratic Dirichlet L-functions: a transition in the ratios conjecture, Q. J. Math. 69 (2018), no. 4, 1129–1149.

[12] E. Fouvy and H. Iwaniec, Low-lying zeros of dihedral L-functions, Duke Math. J. 116 (2003), no. 2, 189–217.

[13] P. Gao, n-level density of the low-lying zeros of quadratic Dirichlet L-functions, Int. Math. Res. Not. 2014 (2014), no. 6, 1699–1728.
S. J. Miller and P. Peckner, Low-lying zeros of number field L-functions, Compos. Math. 147 (2011), no. 1, 1–18.

———, One level density of low-lying zeros of quadratic and quartic Hecke L-functions, Canad. J. Math. 72 (2020), no. 2, 427–454.

———, One level density of low-lying zeros of quadratic Hecke L-functions to prime moduli, Hardy-Ramanujan J. 43 (2020), 173–187.

I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, Sixth Edition, Academic Press, San Diego, 2000.

A. M. Güloengu, Low-lying zeros of symmetric power L-functions, Int. Math. Res. Not. 2005 (2005), no. 9, 517–550.

D. R. Heath-Brown, The average rank of elliptic curves, Duke Math. J. 122 (2004), no. 3, 225–320.

C. Hughes and S. J. Miller, Low-lying zeros of L-functions with orthogonal symmetry, Duke Math. J. 136 (2007), no. 1, 115–172.

C. P. Hughes and Z. Rudnick, Linear statistics of low-lying zeros of L-functions, Q. J. Math. 54 (2003), no. 3, 309–333.

H. Iwaniec and E. Kowalski, Analytic Number Theory, American Mathematical Society Colloquium Publications, vol. 53, American Mathematical Society, Providence, 2004.

H. Iwaniec, W. Luo, and P. Sarnak, Low lying zeros of families of L-functions, Inst. Hautes Etudes Sci. Publ. Math. 91 (2000), 55–131.

N. Katz and P. Sarnak, Zeros of zeta functions and symmetry, Bull. Amer. Math. Soc. 36 (1999), no. 1, 1–26.

———, Random matrices, Frobenius eigenvalues, and monodromy, American Mathematical Society Colloquium Publications, vol. 45, American Mathematical Society, Providence, 1999.

A. M. Mason and N. C. Sukth, Orthogonal and symplectic n-level densities. arXiv: 1509.05250.

———, A symplectic test of the L-functions ratios conjecture, Int. Math. Res. Not. IMRN (2008). Art. ID rnml46, 36 pp.

S. J. Miller and P. Peckner, Lower order terms in the 1-level density for families of holomorphic cuspidal newforms, Acta Arith. 137 (2009), no. 1, 51–98.

H. L. Montgomery, The pair correlation of zeros of the zeta function, Analytic number theory (Proc. Sympos. Pure Math., Vol. XXIV, St. Louis Univ., St. Louis, Mo., 1972 (1973), 181–193.

H. L. Montgomery and R. C. Vaughan, Multiplicative number theory. I. Classical theory, Cambridge Studies in Advanced Mathematics, vol. 97, Cambridge University Press, Cambridge, 2007.

A. E. Özlıgü and C. Snyder, On the distribution of the nontrivial zeros of quadratic L-functions close to the real axis, Acta Arith. 91 (1999), no. 3, 209–228.

G. Ricotta and E. Royer, Statistics for low-lying zeros of symmetric power L-functions in the level aspect, Forum Math. 23 (2011), no. 5, 969–1028.

———, Lower order terms for the one-level densities of symmetric power L-functions in the level aspect, Acta Arith. 141 (2010), no. 2, 153–170.

E. Royer, Petits zéros de fonctions L de formes modulaires, Acta Arith. 99 (2001), no. 2, 147–172.

M. O. Rubinstein, Low-lying zeros of L-functions and random matrix theory, Duke Math. J. 209 (2001), no. 1, 147–181.

A. Shankar, A. Södergren, and N. Templier, Sato-Tate equidistribution of certain families of Artin L-functions, Forum Math. Sigma 7 (2019), Paper No. e23, 62pp.

K. Soundararajan, Nonvanishing of quadratic Dirichlet L-functions at s = 1/2, Ann. of Math. (2) 152 (2000), no. 2, 447–488.

V. S. Vladimirov, Equations of mathematical physics, Translated from the Russian by Audrey Littlewood. Edited by Alan Jeffrey. Pure and Applied Mathematics, vol. 3, Marcel Dekker, Inc., New York, 1971.

E. Wexman, Lower order terms for the one-level density of a symplectic family of Hecke L-functions, J. Number Theory 221 (2021), 447–483.

A. Yang, Distribution problems associated to zeta functions and invariant theory, ProQuest LLC, Ann Arbor, MI, 2009. Thesis (Ph.D.)–Princeton University.

M. P. Young, Low-lying zeros of families of elliptic curves, J. Amer. Math. Soc. 19 (2005), no. 1, 205–250.

———, Lower-order terms of the 1-level density of families of elliptic curves, Int. Math. Res. Not. 10 (2005), 587–633.

School of Mathematical Sciences
Beihang University
Beijing 100191 China
Email: penggao@buaa.edu.cn

School of Mathematics and Statistics
University of New South Wales
Sydney NSW 2052 Australia
Email: l.zhao@unsw.edu.au