Abstract. Let Ω be a circular domain, that is, an open disk with finitely many closed disjoint disks removed. Denote by $H^\infty(\Omega)$ the Banach algebra of all bounded holomorphic functions on Ω, with pointwise operations and the supremum norm. We show that the topological stable rank of $H^\infty(\Omega)$ is equal to 2. The proof is based on Suarez’s theorem that the topological stable rank of $H^\infty(D)$ is equal to 2, where D is the unit disk. We also show that for domains symmetric to the real axis, the Bass and topological stable ranks of the real symmetric algebra $H^\infty_R(\Omega)$ are 2.

14.9.2009

1. Introduction

The aim of this short note is to prove that the topological stable rank of the Banach algebra $H^\infty(\Omega)$ of all bounded analytic functions on Ω is equal to 2, where Ω denotes a circular domain. By conformal equivalence, the same assertion will hold for any finitely connected, proper domain in \mathbb{C} whose boundary does not contain any one-point components. We shall also show that for circular domains Ω that are symmetric to the real axis, the real algebra $H^\infty_R(\Omega)$ has the Bass and topological stable rank 2. Here z^* denotes the complex conjugate of z. The precise definitions are given below.

The notion of the topological stable rank of a Banach algebra was introduced by M. Rieffel in [6], in analogy with the notion of the (Bass) stable rank of a ring defined by H. Bass [1]. We recall these definitions now.

Definition 1.1. Let R be a commutative ring with identity element 1. An n-tuple $a := (a_1, \ldots, a_n) \in R^n$ is said to be invertible or unimodular, (for short $a \in U_n(R)$), if there exists a solution $(x_1, \ldots, x_n) \in R^n$ of the Bezout equation $\sum_{j=1}^n a_j x_j = 1$. We say that $a = (a_1, \ldots, a_n, a_{n+1}) \in U_{n+1}(R)$
is reducible if there exist \(h_1, \ldots, h_n \in \mathbb{R} \) such that \((a_1 + h_1 a_{n+1}, \ldots, a_n + h_n a_{n+1}) \in U_n(R)\).

The Bass stable rank of \(R \) (denoted by \(\text{bsr} \ R \)) is the least \(n \in \mathbb{N} \) such that every element \(a = (a_1, \ldots, a_n, a_{n+1}) \in U_{n+1}(R) \) is reducible, and it is infinite if no such integer \(n \) exists.

Let \(A \) be a commutative Banach algebra with unit element \(1 \). The least integer \(n \) for which \(U_n(A) \) is dense in \(A^n \) is called the topological stable rank of \(A \) (denoted by \(\text{tsr} \ A \)) and we define \(\text{tsr} \ A = \infty \) if no such integer \(n \) exists.

It is well known that \(\text{bsr} \ A \leq \text{tsr} \ A \); see [6, Corollary 2.4].

In the case of the classical algebra \(H^\infty(\mathbb{D}) \) of the unit disk \(\mathbb{D} = \{ z \in \mathbb{C} : |z| < 1 \} \), D. Suarez [9] showed that the topological stable rank is 2. We will use this result in order to derive our result for \(H^\infty(\Omega) \) when \(\Omega \) is a circular domain.

Theorem 1.1 (Suarez [9]). The topological stable rank of \(H^\infty(\mathbb{D}) \) is 2.

Let us recall that previously Tolokonnikov [10] showed that the Bass stable rank of \(H^\infty(\Omega) \) is 1. That was based on S. Treil’s [11] fundamental result that \(H^\infty(\mathbb{D}) \) has the Bass stable rank 1.

In [5] Mortini and Wick showed that the Bass and topological stable ranks of the real symmetric algebra

\[
H^\infty_\mathbb{R}(\mathbb{D}) = \{ f \in H^\infty(\mathbb{D}) : (f(z^*))^* = f(z) \ (z \in \mathbb{D}) \}
\]

are 2. Using this we will show that \(\mathbb{D} \) can be replaced by an arbitrary circular domain symmetric to the real axis.

We now give the precise definition of a circular domain, and also fix some convenient notation.

Notation. Let \(\Omega \) be a circular domain, of connectivity \(n \), that is, an open disk, \(D \), with \(n - 1 \) closed disjoint disks removed. Then \(\Omega \) is the intersection of \(n \) simply connected domains, \(\Omega = \Omega_0 \cap \Omega_1 \cap \cdots \cap \Omega_{n-1} \), where \(\Omega_i = \mathbb{C} \setminus D_i \), the \(D_i \) being open disks in the extended complex plane \(\overline{\mathbb{C}} = \mathbb{C} \cup \{ \infty \} \). We assume that \(\infty \in D_0 \). The boundary of a set \(\Omega \subset \mathbb{C} \) is denoted by \(\partial \Omega \).

Let \(H(\Omega) \) denote the set of all holomorphic functions on \(\Omega \), and let \(H^\infty(\Omega) \) be the Banach algebra of all bounded holomorphic functions on \(\Omega \), with pointwise operations and the supremum norm.

If \(\Omega \) is real symmetric (that is, \(z \in \Omega \) if and only if \(z^* \in \Omega \)), then we use the symbol \(H^\infty_\mathbb{R}(\Omega) \) to denote the set of functions \(f \) belonging to \(H^\infty(\Omega) \) that are real symmetric, that is, \(f(z) = (f(z^*))^* \ (z \in \Omega) \).

An example of a circular domain is the annulus \(\Lambda = \{ z \in \mathbb{C} : r_1 < |z| < r_2 \} \), where \(0 < r_1 < r_2 \). In this case \(\Lambda = \Omega_0 \cap \Omega_1 \), where

\[
\Omega_0 := \{ z \in \mathbb{C} : |z| < r_2 \},
\]

\[
\Omega_1 := \{ z \in \mathbb{C} : |z| > r_1 \}.
\]

\(^1\)We tacitly assume that the closures of the removed disks are contained within \(D \).
Thus \(\Omega_0 = \mathbb{C} \setminus D_0 \) and \(\Omega_1 = \mathbb{C} \setminus D_1 \), where
\[
D_0 := \{ z \in \mathbb{C} : |z| > r_2 \}, \\
D_1 := \{ z \in \mathbb{C} : |z| < r_1 \}.
\]

Our main results are the following:

Theorem 1.2. Let \(\Omega \) be a circular domain. The topological stable rank of \(H^\infty(\Omega) \) is 2.

Theorem 1.3. Let \(\Omega \) be a circular domain symmetric to the real axis. Then the topological and Bass stable rank of \(H^\infty(\Omega) \) is 2.

2. Preliminaries

The following Cauchy decomposition is well known (for \(H^p(\Omega) \) functions, \(1 \leq p \leq \infty \)) [4, Proposition 4.1, p. 86] or [3, Theorem 10.12, p.181].

Lemma 2.1. Let \(\Omega = \bigcap_{j=0}^{n-1} \Omega_j \) be a circular domain of connectivity \(n \), \(n \in \mathbb{N} \). Then any \(f \in H(\Omega) \) can be decomposed as \(f = f_0 + f_1 + \cdots + f_{n-1} \), where \(f_j \in H(\Omega_j) \). If additionally the real part of \(f \) is bounded above on \(\Omega \), then the same is true for the \(f_j \).

Proof. Apply Cauchy’s integral formula for a null homologic cycle, close to the boundary of \(\Omega \), and use the principle of analytic continuation. Now let us assume that the real part of \(f \) is bounded above on \(\Omega \). Fix \(k \in \{0, 1, \ldots, n-1\} \). Since \(f_j(\infty) = 0 \) for \(j = 1, 2, \ldots, n-1 \) and \(\sum_{j \neq k} f_j \) is holomorphic in a neighborhood of the set \(\overline{\mathbb{C}} \setminus \Omega_k \), we see that the real part of each \(f_j \) is bounded above on \(\Omega_j \), for \(j = 0, 1, \ldots, n-1 \). \(\square \)

We will use the following factorization result; the non-symmetric version appears in [10, Lemma 1]. Since in our viewpoint, the proof of the annulus-case by Tolokonnikov is not complete, we give a more general proof, that includes also the symmetric case.

Recall that a Blaschke product \(B \) with zeros \((z_j) \) in the disk
\[
D(a, r) = \{ z \in \mathbb{C} : |z - a| < r \}
\]
has the form \(B(z) = b(\frac{z-a}{r}) \), where \(b \) is the usual Blaschke product of the unit disk with zeros \(w_j = \frac{z_j-a}{r} \). Similarly, the Blaschke product \(B_e \) with zeros \((z_j) \) in the exterior of the disk \(D(a, r) \) has the form \(B_e(z) = b(\frac{r}{z-a}) \) where \(b \) is the usual Blaschke product of the unit disk with zeros \(w_j = \frac{r}{z_j-a} \).

We call these functions generalized Blaschke products.

Proposition 2.2. Let \(\Omega \) be a circular domain of connectivity \(n \), \(n \in \mathbb{N} \), and let \(\overline{D_j} \) denote the bounded components of \(\overline{\mathbb{C}} \setminus \Omega \), \((j = 1, \ldots, n-1) \), that is, \(D_j \) is the open disk \(D(a_j, r_j) \). Define
\[
\Omega_j = \mathbb{C} \setminus \overline{D_j}, \quad j = 1, \ldots, n-1, \\
\Omega_0 = \Omega \cup \left(\bigcup_{j=1}^{n-1} D_j \right).
\]
Then every function f in $H^\infty(\Omega)$, $f \neq 0$, can be decomposed as:

$$f = f_0 \cdot f_1 \cdot f_2 \cdots f_{n-1} \cdot r,$$

where

$$f_j \in H^\infty(\Omega_j) \cap \left(H^\infty\left(\bigcup_{k \neq j} D_k \right) \right)^{-1}, \quad j = 0, 1, 2, \ldots, n - 1,$$

and where r is a rational function with poles and zeros contained in the set $\{a_1, \cdots, a_{n-1}\}$.

If Ω is a domain symmetric to the real axis, and $f \in H^\infty_R(\Omega)$, then each of the functions f_j and r above can be taken to be real symmetric themselves.

Proof. We may assume that Ω is the circular domain

$$\Omega = D(a_0, r_0) \setminus \bigcup_{j=1}^{n-1} D(a_j, r_j),$$

where $D_j = \overline{D(a_j, r_j)} \subseteq D(a_0, r_0)$ and where the closures of the D_j ($j = 1, \ldots, n - 1$) are disjoint.

Let $D_0 := D(a_0, r_0)$. Set $\Omega_j = \overline{\Omega \setminus D_j}$, $(j = 0, 1, \ldots, n - 1)$. It is well known that the sequence (z_k) of zeros of f satisfies the generalized Blaschke condition; that is $\sum_k \text{dist}(z_k, \partial \Omega)$ converges (see [4, 8]). Split (z_k) into n sequences $(z_{k,j})_k$, $j = 0, 1, \ldots, n - 1$, so that the cluster points of $(z_{k,j})_k$ are exactly those of (z_k) that belong to ∂D_j, $j = 0, 1, \ldots, n - 1$. Let B_j be the generalized Blaschke product formed with the zeros $(z_{k,j})_k$ of f, $j = 0, 1, \ldots, n - 1$. It is clear that the zeros of B_j cluster only at ∂D_j, $0 \leq j \leq n - 1$.

Then f can be written as $f = B_0 \cdot B_1 \cdot B_{n-1} \cdot g$, where $g \in H^\infty(\Omega)$ and g has no zeros in Ω (note that here we have used the fact that division by B_j does not change the relative supremum of f on the boundary of Ω_j).

By [2] p. 111-112], there exist $k_j \in \mathbb{Z}$ and h holomorphic in Ω, such that

$$g(z) = \prod_{j=1}^{n-1} (z - a_j)^{k_j} e^{h(z)}.$$

Note that the real part of h is bounded above on Ω.

By Lemma 2.1 there exist $h_j \in H(\Omega_j)$ such that $h = h_0 + h_1 + \cdots + h_{n-1}$ and the real part of each h_j is bounded above on Ω_j, for $j = 0, 1, \ldots, n - 1$.

Hence the functions $e^{h_j} \in H^\infty(\Omega_j)$.

Now $f = r \prod_{j=0}^{n-1} B_j e^{h_j}$, where $r(z) = \prod_{j=1}^{n-1} (z - a_j)^{k_j}$ gives the desired factorization.

In case of a symmetric domain Ω and $f \in H^\infty_R(\Omega)$, we can choose a_j to be real if the disk $D(a_j, r_j)$ meets the real line, and the other a_j in pairs
Thus we can ensure that \(r \) is real symmetric, because the exponents \(k_j \) are the same for \(a_j \) and \(a_j^* \) due to the fact that

\[
k_j = \frac{1}{2\pi i} \oint_{\Gamma} \frac{g'(z)}{g(z)} \, dz,
\]

where \(\Gamma \) denotes a suitable small circle around \(a_j \).

The Blaschke products above are easily seen to be choosable in a real symmetric fashion. Hence, since \(f \) is real symmetric, we conclude that \(g \) is real symmetric as well. Therefore, \(e^h \) is real symmetric; that is

\[
e^{h(z)} = (e^{h(z^*)})^* = e^{(h(z^*))^*}.
\]

Since \(\Omega \) is a domain, \(h(z) - (h(z^*))^* \) equals a constant \(2k\pi i \) for some \(k \in \mathbb{Z} \). Therefore

\[
h(z) = \frac{h(z) + (h(z^*))^*}{2} + \frac{h(z) - (h(z^*))^*}{2} = \frac{h(z) + (h(z^*))^* + k\pi i}{2},
\]

Now in Cauchy’s decomposition, we simply consider the symmetric functions \(H_j(z) := \frac{h_j(z) + (h_j(z^*))^*}{2} \), and derive

\[
h(z) = \sum_{j=0}^{n-1} H_j(z) + k\pi i.
\]

Thus we have one of the following cases

\[
e^{h(z)} = e^{\sum_{j=0}^{n-1} H_j(z)} \quad (z \in \Omega)
\]

or

\[
e^{h(z)} = -e^{-\sum_{j=0}^{n-1} H_j(z)} \quad (z \in \Omega).
\]

In the latter case we take \(-r\) instead of \(r \). Thus all the factors in

\[
f = r \prod_{j=0}^{n-1} B_j e^{H_j}
\]

are symmetric.

We recall that the corona theorem holds for \(H^\infty(\Omega) \) when \(\Omega \) is a circular domain; see for example [4, Theorem 6.1, p.195].

Proposition 2.3. Let \(\Omega \) be a circular domain. Then \((f_1, \ldots, f_n)\) is invertible in \(H^\infty(\Omega) \) if and only if there exists a \(\delta > 0 \) such that

\[
\sum_{j=1}^{n} |f_j(z)| \geq \delta \quad (z \in \Omega).
\]

This corona-theorem is of course true for \(H^\infty_{\mathbb{R}}(\Omega) \). Indeed, if \(f_j \in H^\infty_{\mathbb{R}}(\Omega) \) and \((g_1, \ldots, g_n)\) is a solution of \(\sum_{j=1}^{n} g_j f_j = 1 \) in \(H^\infty(\Omega) \), then \((\bar{g}_1, \ldots, \bar{g}_n)\) is a solution of the Bezout equation \(\sum_{j=1}^{n} \bar{g}_j f_j = 1 \) in \(H^\infty_{\mathbb{R}}(\Omega) \), where \(\bar{g}_j(z) := \frac{g(z) + (g_j(z^*))^*}{2} \quad (z \in \Omega) \).
We will need two technical results, which are proved below. In the following, the notation $M(R)$ is used to denote the maximal ideal space of the unital commutative Banach algebra R. Also the complex homomorphism from $H^\infty(\Omega)$ to \mathbb{C} of point evaluation at a point $z \in \Omega$ will be denoted by φ_z, that is, $\varphi_z(f) = f(z)$, $f \in H^\infty(\Omega)$.

Let $z_0 \in \Omega$. The set

$$M_{z_0}(H^\infty(\Omega)) = \{ \varphi \in M(H^\infty(\Omega)) : \varphi(z) = z_0 \}$$

is called the fiber of $M(H^\infty(\Omega))$ over z_0. It is well known (see [4]), that we have $\varphi(f) = 0$ for some $\varphi \in M_{z_0}(H^\infty(\Omega))$ if and only if $\liminf_{z \to z_0} |f(z)| = 0$. The zero set of $f \in H^\infty(\Omega)$ is the set $\{ \varphi \in M(H^\infty(\Omega)) : \varphi(f) = 0 \}$.

We need a Lemma that lets us decompose two functions that live on different circular domains. To this end, let D_1, D_2 be open disks in \mathbb{C} such that $\overline{D_1} \cap \overline{D_2} = \emptyset$. Next, define $\Omega_j := \mathbb{C} \setminus \overline{D_j}$ for $j = 1, 2$. Suppose that $f_j \in H^\infty(\Omega_j)$ for $j = 1, 2$ are non-zero functions. Next, set

\[
Z_1 = \left\{ \xi \in \partial D_1 = \partial \Omega_1 : f_2(\xi) = 0 \text{ and } \liminf_{z \to \xi} |f_1(z)| = 0 \right\},
\]

\[
Z_2 = \left\{ \xi \in \partial D_2 = \partial \Omega_2 : f_1(\xi) = 0 \text{ and } \liminf_{z \to \xi} |f_2(z)| = 0 \right\}, \text{ and}
\]

\[
Z_3 = \left\{ a \in \Omega_1 \cap \Omega_2 : f_1(a) = f_2(a) = 0 \right\}.
\]

Lemma 2.4. Let D_1, D_2 be open disks in \mathbb{C} such that $\overline{D_1} \cap \overline{D_2} = \emptyset$. Define $\Omega_j := \mathbb{C} \setminus \overline{D_j}$. Let $f_j \in H^\infty(\Omega_j)$ be nonzero functions. Then the zero sets of f_1 and f_2 meet in at most a finite number of fibers of $H^\infty(\Omega_1 \cap \Omega_2)$. In other words, there exist at most finitely many $z_j \in \Omega_1 \cap \Omega_2$ for which

$$\liminf_{z \to z_j} |f_1(z)| = \liminf_{z \to z_j} |f_2(z)| = 0.$$

Moreover, f_1 and f_2 can be written as

\[
f_1 = \prod_{z_j \in Z_2 \cup Z_3} (z - z_j)^{m_j} F_1, \text{ and}
\]

\[
f_2 = \prod_{z_j' \in Z_1 \cup Z_3} (z - z_j')^{m_j'} F_2
\]

where F_j is in $H^\infty(\Omega_1 \cap \Omega_2)$ and has the property that for any element $\varphi \in M(H^\infty(\Omega_1 \cap \Omega_2))$ either $\varphi(F_1) \neq 0$ or $\varphi(F_2) \neq 0$.

Additionally, when $\lambda \in \Omega_1 \cap \Omega_2$, each $\varphi \in M_\lambda(H^\infty(\Omega_1 \cap \Omega_2))$ is such that $\varphi = \varphi_\lambda \in M(H^\infty(\Omega_1))$ whenever $\lambda \in \Omega_2$, or $\varphi = \varphi_\lambda \in M(H^\infty(\Omega_2))$ whenever $\lambda \in \Omega_1$.

Proof. It is clear that if $\varphi \in M(H^\infty(\Omega_1 \cap \Omega_2))$, then $\varphi \in M(H^\infty(\Omega_1))$ and $\varphi \in M(H^\infty(\Omega_2))$.

Now the set \(Z_3 = \{ z \in \Omega_1 \cap \Omega_2 \mid f_1(z) = f_2(z) = 0 \} \) is finite, for otherwise, there is an accumulation point of zeros in \(\partial \Omega_1 \) or in \(\partial \Omega_2 \). But \(\partial \Omega_1 \) is contained in \(\Omega_2 \), and \(\partial \Omega_2 \) is contained in \(\Omega_1 \). So either \(f_1 \) or \(f_2 \) is identically 0, a contradiction.

Consider the set \(Z_2 \) and let \(\lambda \in Z_2 \). There are only finitely many zeros of \(f_1 \) on the circle \(\partial D_2 \subset \Omega_1 \), since \(f_1 \) is not identically zero. Similarly, we can argue in the case when \(\lambda \in Z_1 \). Thus, \(Z_1 \) is finite as well. This completes the proof.

It is clear that an analogous version holds true for the symmetric case.

Lemma 2.5. Let \(D_1, D_2 \) be open disks in \(\mathbb{C} \) such that \(\overline{D_1} \cap \overline{D_2} = \emptyset \). Define \(\Omega_1 := \mathbb{C} \setminus \overline{D_1} \) and \(\Omega_2 := \mathbb{C} \setminus \overline{D_2} \). Let \(f_1, g_1 \in H^\infty(\Omega_1) \) and \(f_2, g_2 \in H^\infty(\Omega_2) \) be nonconstant functions such that there exists \(\delta > 0 \) such that the following hold:

\[
\begin{align*}
\text{(P1)} & \quad \text{For all } z \in \Omega_1, \ |f_1(z)| + |g_1(z)| \geq \delta. \\
\text{(P2)} & \quad \text{For all } z \in \Omega_2, \ |f_2(z)| + |g_2(z)| \geq \delta.
\end{align*}
\]

Then, for every \(\varepsilon > 0 \), there exist \(F_1, G_1 \in H^\infty(\Omega_1) \), \(F_2, G_2 \in H^\infty(\Omega_2) \) such that

\[
\begin{align*}
\text{(C1)} & \quad (F_1, G_2) \text{ is invertible in } H^\infty(\Omega_1 \cap \Omega_2), \\
\text{(C2)} & \quad (G_1, F_2) \text{ is invertible in } H^\infty(\Omega_1 \cap \Omega_2), \\
\text{(C3)} & \quad (F_1, G_1) \text{ is invertible in } H^\infty(\Omega_1), \\
\text{(C4)} & \quad (F_2, G_2) \text{ is invertible in } H^\infty(\Omega_2), \text{ and} \\
\text{(C5)} & \quad \|f_1 - F_1\| + |g_1 - G_1| + |f_2 - F_2| + |g_2 - G_2| < \varepsilon.
\end{align*}
\]

In particular, \((F_1F_2, G_1G_2)\) is invertible in \(H^\infty(\Omega_1 \cap \Omega_2) \).

Proof. Consider the pair \((f_1, g_2) \in H^\infty(\Omega_1) \times H^\infty(\Omega_2)\). By Lemma 2.4 we may perturb the finitely many zeros of \(f_1 \) belonging to \(S_2 \cup S_3 \) and those of \(g_2 \) that lie in \(S_1 \) so that the new functions \(F_1 \) and \(G_2 \) form an invertible pair in \(H^\infty(\Omega_1 \cap \Omega_2) \). Now we do the same with the pair \((g_1, f_2) \in H^\infty(\Omega_1) \times H^\infty(\Omega_2)\). This gives an invertible pair \((G_1, F_2) \in H^\infty(\Omega_1 \cap \Omega_2)\). By choosing these perturbations sufficiently small, we see that the pairs \((F_1, G_1)\) and \((F_2, G_2)\) stay invertible in the associated space \(H^\infty(\Omega_1) \), respectively \(H^\infty(\Omega_2) \). This yields that \((F_1F_2, G_1G_2)\) is invertible in \(H^\infty(\Omega_1 \cap \Omega_2) \).

It is clear that an analogous version holds true for the symmetric case.

3. Proof of \(\text{tsr}(H^\infty(\Omega)) = 2 \)

Proof of Theorem 3.2. Let \(f, g \in H^\infty(\Omega) \). By Proposition 2.2 we can write

\[
\begin{align*}
f &= f_0 \cdot f_1 \cdots \cdot f_{n-1} \cdot r, \\
g &= g_0 \cdot g_1 \cdots \cdot g_{n-1} \cdot s.
\end{align*}
\]

where \(f_j \) and \(g_j \in H^\infty(\Omega_j) \). We note that since the rational functions \(r, s \) have zeros and poles only in the set \(\{a_1, \ldots, a_{n-1}\} \), it follows that \(r, s \) are invertible in \(H^\infty(\Omega) \). Since each \(\Omega_i \) is simply connected, it follows from
the fact that the topological stable rank of $H^\infty(\mathbb{D})$ is 2 and the Riemann mapping theorem, that also the topological stable rank of $H^\infty(\Omega_i)$ is equal to 2. Hence the pairs $(f_0, g_0), \ldots, (f_{n-1}, g_{n-1})$ can be replaced by unimodular pairs $(\tilde{f}_0, \tilde{g}_0), \ldots, (\tilde{f}_{n-1}, \tilde{g}_{n-1})$ such that for every $i = 0, 1, \ldots, n - 1$
\[\|f_i - \tilde{f}_i\|_\infty + \|g_i - \tilde{g}_i\|_\infty < \epsilon. \]
By a repeated application of Lemma 2.5 to the pairs $(\tilde{f}_k, \tilde{g}_j)$ with $j \neq k$, we get the existence of $F_0, \ldots, F_{n-1}, G_0, \ldots, G_{n-1}$, such that
\[\|F_k - f_k\|_\infty + \|G_k - g_k\|_\infty < \epsilon, \]
and the pair (F_k, G_j) is unimodular in $H^\infty(\Omega_k \cap \Omega_j)$ for all $0 \leq k, j \leq n - 1$.

By the elementary theory of Banach algebras, it follows that there exists a $\delta > 0$ such that
\[|F_k(z)| + |G_j(z)| \geq \delta \quad (z \in \Omega_k \cap \Omega_j). \]
Thus there exists a $\delta' > 0$ such that with
\[\tilde{f} := F_0 \cdot F_1 \cdots \cdot F_{n-1} \cdot r, \]
\[\tilde{g} := G_0 \cdot G_1 \cdots \cdot G_{n-1} \cdot s, \]
we have for all $z \in \Omega = \Omega_0 \cap \cdots \cap \Omega_{n-1}$,
\[|\tilde{f}(z)| + |\tilde{g}(z)| \geq \delta'. \]
By the corona theorem for $H^\infty(\Omega)$, we obtain that (\tilde{f}, \tilde{g}) is a unimodular pair in $H^\infty(\Omega)$. Also, it can be seen that given $\epsilon' > 0$, we can choose $\epsilon > 0$ small enough at the outset so that
\[\|f - \tilde{f}\|_\infty + \|f - \tilde{g}\|_\infty \leq \epsilon'. \]
This completes the proof. \hfill \square

The same proof shows that the topological stable rank of $H^\infty(\Omega)$ is 2 as well. Since the unimodular pair $(z, 1 - z^2)$ is not reducible (here we assume that $]-1, 1[\subseteq \Omega$, $-1, 1 \notin \Omega_i$) we have that the Bass stable rank of $H^\infty(\Omega)$ is not one. Since the Bass stable rank is always less than the topological stable rank, we obtain that it must be 2.

\section*{References}

[1] H. Bass, \textit{K-theory and stable algebra}, Publications Mathématiques de L’I.H.É.S., 22 (1964), 5–60.
[2] R. B. Burckel, \textit{An Introduction to Classical Complex Analysis}, Birkhäuser, Basel+Stuttgart, 1979.
[3] P. Duren, \textit{Theory of H^p Spaces}, Academic Press, New York, 1970.
[4] S. D. Fisher, \textit{Function Theory on Planar Domains: A Second Course in Complex Analysis}, Dover, Mineola, New York, 1983.
[5] R. Mortini, B. D. Wick, \textit{The Bass and topological stable ranks of $H^\infty(\mathbb{D})$ and $A_\infty(\mathbb{D})$} to appear in J. Reine Angewandte Math.
[6] M. A. Rieffel, \textit{Dimension and stable rank in the K-theory of C^*-algebras}, Proc. London Math. Soc. (3) 46 (1983), no. 2, 301–333.
TOPOLOGICAL STABLE RANK OF $H^\infty(\Omega)$

[7] H. L. Royden, *Invariant subspaces of H^p for multiply connected regions*. Pacific J. Math. **134** (1988), 151–172.

[8] R. Rupp. *Analytic functions on circular domains*, Publ. CUL, Sém. Math. Lux. Travaux Math. 4 (1992), 1–82.

[9] D. Suarez, *Trivial Gleason parts and the topological stable rank of H^∞*, Amer. J. Math. **118** (1996), 879–904.

[10] V. Tolokonnikov. *Stable rank of H^∞ in multiply connected domains*, Proceedings of the AMS, **123** (1995), 3151–3156.

[11] S. Treil, *The stable rank of the algebra H^∞ equals 1*, J. Funct. Anal. **109** (1992), 130–154.

Département de Mathématiques, LMAM, UMR 7122, Université Paul Verlaine, Ile du Saulcy, F-57045 Metz, France
E-mail address: mortini@poncelet.univ-metz.fr

Fakultät Allgemeinwissenschaften, Georg-Simon-Ohm-Hochschule
Nürnberg, Kesslerplatz 12, D-90489 Nürnberg, Germany
E-mail address: rudolf.rupp@ohm-hochschule.de

Department of Mathematics, London School of Economics, Houghton Street, London WC2A 2AE, United Kingdom
E-mail address: A.J.Sasane@lse.ac.uk

School of Mathematics, Georgia Institute of Technology, 686 Cherry Street, Atlanta, GA 30332-0160 USA
E-mail address: wick@math.gatech.edu