Computing the solutions of the van der Pol equation to arbitrary precision

Paolo Amore
Facultad de Ciencias, CUICBAS, Universidad de Colima, Bernal Díaz del Castillo 340, Colima, Colima, Mexico
paolo@ucol.mx

November 25, 2021

Abstract

We describe an extension of the Taylor method for the numerical solution of ODEs that uses Padé approximants to obtain extremely precise numerical results. The accuracy of the results is essentially limited only by the computer time and memory, provided that one works in arbitrary precision. In this method the stepsize is adjusted to achieve the desired accuracy (variable stepsize), while the order of the Taylor expansion can be either fixed or changed at each iteration (variable order).

As an application, we have calculated the periodic solutions (limit cycle) of the van der Pol equation with an unprecedented accuracy for a large set of couplings (well beyond the values currently found in the literature) and we have used these numerical results to validate the asymptotic behavior of the period, of the amplitude and of the Lyapunov exponent reported in the literature. We have also used the numerical results to infer the formulas for the asymptotic behavior of the fast component of the period and of the maximum velocity, which have never been calculated before.

1 Introduction

The Taylor method is one of the oldest methods for the numerical solution of ODEs: in fact the well-known Euler method is essentially a Taylor method of order one. Higher order Taylor methods have been explored in the literature, but their use is still not widespread. From our (partial) exploration of the literature, we have found refs. [1, 2, 3, 4, 5, 6, 7, 8] to be the most relevant to our discussion.

The paper by Deprit and Zahar [1] is possibly the first to show the advantages of using the Taylor method compared to a more standard Runge-Kutta-Nystrom algorithm: these authors found that the latter needs to use step size about 4000 smaller to reach the same accuracy of the former. Corliss and Chang [2, 3] have
applied the Taylor method to a series of problems (using fortran). The remaining papers, ref. [4] by Jorba and Zou and refs. [5, 6, 7, 8] by Barrio and collaborators, are particularly important because of their emphasis on achieving high precision. In general it is found that the high-order Taylor method is very competitive with other numerical methods when high accuracy is needed; moreover this method can be used to calculate the numerical solutions to certain class of ODEs with unprecedented accuracy (from the abstract of ref. [7]: "this methodology is the only one capable of reaching precision up to thousands of digits for ODEs").

At the same time, Jorba and Zou clearly state a limitation to the Taylor method: "The main drawback is that the Taylor method is an explicit method, so it has all the limitations of these kind of schemes. For instance, it is not suitable for stiff systems.")

The main goal of our paper is to describe an extension of the Taylor method that allows to obtain arbitrarily accurate numerical solutions even for stiff differential equations, such as the van der Pol equation that will be used in this paper as the ideal testing ground. The method that we propose is based on the use of Padé approximants rather than Taylor polynomials; we will show that the performance of the standard Taylor method is drastically improved both by enlarging the class of problems that can be attacked (e.g. stiff ODEs) and also by increasing the accuracy of the solutions with respect to the Taylor method with the same number of coefficients.

We will illustrate our method by applying it to the van der Pol oscillator, the most famous example of ODE supporting a limit cycle. For this problem there is an extensive literature, but surprisingly enough numerical solutions have never been calculated to a high level of accuracy, particularly for the stiff regime. Moreover the behavior of the period and amplitude of the limit cycle has been studied in depth both for small coupling (using perturbation theory, i.e. the Lindstedt-Poincaré method) and for large coupling (using asymptotic methods): by producing extremely accurate numerical solutions for a wide range of couplings we plan to show that it is possible to reproduce the known analytical results, but also to predict the asymptotic behavior of quantities not yet studied.

In our opinion, the quest for extremely precise numerical solutions is not a mere exercise of virtuosity but it has real applications: one cannot overstate the importance of predicting the behavior of a dynamical system while keeping under control the precision of the results. We believe that the technique described in this paper may be applied to a large number of problems for which accuracy is important.

The paper is organized as follows: in Section 2 we introduce our Padé – Taylor method (PTM) and discuss its main features; in Section 3 we consider the van der Pol oscillator and discuss the application of the Padé–Taylor method to it; in the subsections 3.1 and 3.2 we present the numerical results and apply appropriate extrapolation method to extract the leading asymptotic behavior for

1One of the examples considered in that paper is the van der Pol equation; in this case the authors state:"If the parameter is large, the differential system becomes stiff, and we will need implicit methods in its solution."
different quantities (particularly the period and the amplitude of the oscillator); finally, in Section 4 we draw our conclusions and discuss the possible directions of future work.

2 The Padé – Taylor method

Consider the ODE

\[\frac{dX}{dt} = F(t, X(t)), \quad X \in \mathbb{R}^d, \quad t \in \mathbb{R} \]

with initial conditions

\[X(t_0) = X_0 \]

At \(t > t_0 \) the solution of eq. (1) can be approximated by a Taylor polynomial of order \(N \)

\[X(t) \approx X(t_0) + \frac{dX}{dt} \bigg|_{t_0} (t - t_0) + \cdots + \frac{1}{N!} \frac{d^N X}{dt^N} \bigg|_{t_0} (t - t_0)^N \]

The Taylor coefficients in eq. (3) can be obtained by repeated derivations of eq. (1) and by subsequently setting \(t = t_0 \). Let \(T_0 \) be the radius of convergence of the power series obtained by taking the limit \(N \to \infty \): clearly we are justified to use the polynomial (3) only for \(t_0 < t \ll t_0 + T_0 \). Without going to the extreme case where the power series is divergent (\(T_0 = 0 \)), the reader may recognize that a finite value of \(T_0 \) sets an upper limit to the stepsize in the numerical integration of eq. (1). As a time step \(\tau_0 \ll T_0 \) is chosen (in some way – we will discuss this point soon), a new approximation to the function at \(t_1 \equiv t_0 + \tau_0 \): from this approximate solution one can estimate the new Taylor coefficients corresponding to eq. (3) expanded around \(t_1 \) and repeat the same arguments. In general we will have \(\tau_1 \neq \tau_0 \) (variable stepsize): additionally, at each step one can use polynomials of different order if needed (variable order).

Of course we run into trouble if the power series becomes divergent (vanishing radius of convergence) at any finite time \(t_i \): in this case \(\tau_i = 0 \) is the only allowed stepsize.

The natural choice to extend the range of applicability of the power expansion is to substitute the Taylor expansion with a Padé approximant of appropriate order:

\[\mathcal{P}[X(t)]_{[m,n]} = \frac{P_m(t - t_0)}{Q_n(t - t_0)} \]

where \(P_m(t - t_0) \) and \(Q_n(t - t_0) \) are polynomials of order \(m \) and \(n \) and the expansion of eq. (4) reproduces the first \(N + 1 \) Taylor coefficients \((m + n = N) \). Let \(\tau^{(0)}_i \), with \(i = 1, \ldots, n \), be the (complex) roots of the polynomial \(Q_n(\tau) \): the smallest positive real root (if any) will limit the region of applicability of (1) to smaller values of the stepsize.

Let us now how come to the important question: how do we select a suitable stepsize \(\tau_0 \)? The only limitations on \(\tau_0 \) that we have discussed so far are related
to the radius of convergence of the power series at \(t = t_0 \) and to the possible presence of spurious singularities of the Padé approximant on the positive real axis. As a matter of fact one needs to select time-steps that are far enough from this spurious pole of the Padé approximant to avoid catastrophic loss of precision.

To determine the stepsize in a suitable way, we consider the residual

\[
R[\tilde{X}] = \left| \frac{d\tilde{X}}{dt} - F(t, \tilde{X}(t)) \right| \geq 0
\]

(5)

obtained by substituting the approximate solution \(\tilde{X}(t) = P[X(t)]_{m,n} \) inside eq. (1). Since the residual vanishes at \(t = t_0 \), \(R[\tilde{X}]_{t=t_0} = 0 \), we expect it to grow in size at later times \(t > t_0 \), unless \(\tilde{X} \) is a solution of eq. (1) (in this case it vanishes identically). In other words, the residual grows monotonically in a sufficiently small region to the right of \(t_0 \) and we can constrain the loss of precision of the numerical solution for \(t_0 < t < t_0 + \tau_0 \), by choosing \(\tau_0 \) in a suitable way.

This is done by introducing a real parameter \(\delta \), with \(0 < \delta \ll 1 \), such that \(R[\tilde{X}] \leq \delta \) for \(t_0 \leq t \leq t_0 + dt_0 \). The value of the time step \(dt_0 \) found in this way ensures that the error made in approximating the exact solution with \(\tilde{X} \) is bounded at all times \(t_0 \leq t \leq t_0 + dt_0 \).

The process can now be iterated: moving at the time \(t_1 = t_0 + dt_0 \) we can repeat the previous steps by considering eq. (1) with initial conditions \(X(t_1) = \tilde{X}(t_1) \) and find a new time step and consequently new initial conditions at a time \(t_2 = t_1 + dt_1 \).

At each stepsize there is the freedom of changing the order of the Padé approximant used in the calculation, so that we can regard our method as a variable stepsize variable order Padé-Taylor (VSVO-PT) method.

In the next section we illustrate the method by applying it to the van der Pol equation.

3 The van der Pol oscillator

The van der Pol equation \(^9\)

\[
\ddot{x}(t) + x(t) = \mu \dot{x}(t) \left(1 - x^2(t) \right), \quad \mu \geq 0
\]

(6)

is an example of nonlinear ordinary differential equation that supports a limit cycle: for \(\mu > 0 \), regardless of the initial conditions (with the exclusion of \(x(0) = \dot{x}(0) = 0 \)), the system evolves in time towards a limit cycle with fixed period and amplitude (both functions of the parameter \(\mu \)). The trajectory that the solution describes in phase space spirals in or out (depending on the initial conditions) towards a close orbit that for \(0 < \mu \ll 1 \) closely resembles that of a

\(^2\)If the equation \(R[\tilde{X}] = \delta \) has multiple real roots we select the root closest to \(t_0 \), on the right.
harmonic oscillator while for $\mu \gg 1$ results in a highly deformed loop (reflecting the presence of two very different – slow and fast – regimes).

The van der Pol equation constitutes the perfect testing ground for our method, because it represents a challenging problem, which has attracted (and continues to attract) much interest in the literature. This interest is reflected in Fig. 1 where we report the number of publications per year found in google scholar under the keyword "van der Pol equation". The recent paper by Ginoux and Letellier provides an historical account on the origins of the van der Pol equation \[10\].

Following \[11\] we classify the strategies for studying the limit cycle of the \textsc{vdP} equation into three categories:

- numerical studies \[12, 13, 14, 15, 16, 17\], where the eq. \[9\] is solved numerically for some finite value of μ (apparently the largest value of μ for which the period and amplitude have been calculated is $\mu = 200$ in ref. \[14\]); the accuracy of the results progressively worsens as μ gets larger\[5\].

- asymptotic studies \[23, 24, 25, 26, 27, 28, 29, 14, 30, 31, 32\], where the behavior of the solution (particularly the period and the amplitude of the limit cycle) is established for $\mu \to \infty$; it is remarkable that as early

\[5\]In this category we only consider papers that concern the numerical calculation of the period and the amplitude of the \textsc{vdP} oscillator: the \textsc{vdP} equation has been considered in a much larger set of publications, particularly in the stiff regime, as an ideal testing ground for numerical techniques(see for example ref. \[18, 19, 20, 21\]).

Figure 1: Publications per year found with a search of the keyword "van der Pol equation" in google scholar. The solid line is the fit $N(t) = -28.17 + 6.31 \times e^{0.034t} - 64.66$.
as in 1944 Haag [25] and then in 1947 Dorodnitsyn [26] were able to approximate the asymptotic behavior of the period and the amplitude of the limit cycle of the van der Pol oscillator. For a discussion of the work of Dorodnitsyn, see ref. [33], written to celebrate the centenary of the birth of A.A. Dorodnitsyn.

- perturbative studies [35, 36, 37, 38, 39, 40, 41, 42, 11], where the behavior of the solution is established for $\mu \to 0$ (the perturbative series is a power series in μ with finite radius of convergence);

In the first category we find the works of Krogdahl [12], Urabe [13], Zonenfeld [15], Clenshaw [16] and Greenspan [17] (all published between 1960 and 1972!). Note that the second method used by Greenspan in [17] to solve numerically eq. (6) is a Taylor method of order 8.

Later works on the van der Pol oscillator are mainly interested in the study of the perturbation series for the solution, which is most efficiently obtained by applying the Lindstedt-Poincaré method. The numerical results of refs. [12, 13, 15, 16, 17] are used in those works to validate the accuracy of the resummation schemes adopted (see for instance Table 4 of [38], Table 2 of [39] and Table 2 of [40]). Strictly speaking, the use of the perturbation series for the period (amplitude) of the oscillator is limited to the region $\mu \leq \mu_T$ ($\mu \leq \mu_A$), where μ_T is the radius of convergence of the series [4]. For $\mu > \mu_{T,A}$, different techniques can be applied to improve the convergence of the series, with some success (see [38, 40, 11]). In this regime however the numerical results are far more precise than the results based on perturbation theory, which can explain only in part the lack of interest in deriving far more precise numerical results. In our view another reason for the scarcity of numerical results is the difficulty in obtaining accurate numerical solutions of eq. (6) in the stiff regime ($\mu \gg 1$).

We will now apply to the van der Pol equation the procedures explained in the previous section for the general case.

We start at $t = t_0$, where the initial conditions $x(t_0) = x_0$ and $\dot{x}(t_0) = x'_0$ are provided and consider the power series solution

$$x(t) = \sum_{k=0}^{\infty} c_k (t - t_0)^k$$

with $c_0 = x(t_0)$ and $c_1 = \dot{x}(t_0)$. The coefficients c_k with $k \geq 2$ can be obtained in terms of the nonlinear recurrence relation

$$c_{k+2} = \frac{-c_k + \mu(k+1)c_{k+1} - \mu \sum_{k_1=1}^{k+1} \sum_{k_2=0}^{k-k_1+1} k_1 c_{k_1} c_{k_2} c_{k-k_1-k_2+1}}{(k+1)(k+2)}$$

This equation allows one to calculate exactly a large number of coefficients of the power series and thus estimate its radius of convergence. In Fig. 2 we estimate the radius of convergence of the power series (7) for $\mu = 100$, $x_0 = 2$ and $x'_0 = 0$, which turns out to be $\approx 1/26$.

Remarkably, ref. [11] contains the most precise determination of μ_T and μ_A, together
Figure 2: Approximate radius of convergence of the power series obtained from eq. (8), for \(\mu = 100, x_0 = 2 \) and \(x_0' = 0 \). We plot \(1/R \approx |c_n^{1/n}| \) as a function of the order \(n \) of the Taylor coefficient (root test). A similar estimate can be obtained using the Padé approximants.

In Fig. 3 we plot the real poles of the Padé approximant of order \([n, n]\) for \(\mu = 100, x_0 = 2 \) and \(x_0' = 0 \): we see that Padé of order 3, 5, 7, and 9 have a positive real root. For example for \(n = 3 \) the root is approximately \(\tau \approx 0.0309136759 \), which constitutes an upper limit to the stepsize. Similar behaviors are also observed for smaller values of \(\mu \), but in that case the real positive roots are much larger (thus allowing to span a much greater interval of time).

In Fig. 4 we plot the residual for \(\mu = 100, x_0 = 2 \) and \(x_0' = 0 \), again using only the first 13 coefficients: the residual obtained using a diagonal Padé approximant is about \(10^6 \) smaller than the corresponding residual built on the Taylor polynomial with the same number of coefficients. To get an idea, in this case the region for which \(R < 10^{-30} \) is about 3 times larger when the Padé approximants are used.

There is an important advantage in using our method (or the Taylor method) for the calculation of the period and amplitude of the limit cycle (or more in general of any periodic solution): although these methods work by performing discrete time steps, \(t_0 \rightarrow t_1 \rightarrow t_2 \rightarrow \ldots \), the solution is also known at any arbitrary time between any two consecutive times steps, in terms of a Padé approximant (in our case) or of a Taylor polynomial (for the Taylor method). In our method, when moving from time \(t_i \) to time \(t_{i+1} \), we expect that the maximum error occurs at \(t = t_{i+1} \), where the residual takes the maximum value \(\delta \). In this way we can estimate within the same accuracy both the location of a maximum or a minimum and the value of the solution at this point.

The situation is be completely different using the Runge-Kutta method: for

with a strong numerical evidence that \(\mu_2^T = \mu_2^A \approx 3.420187909357 \ldots \) (see ref. [1] for the value of \(\mu \) accurate to 100 digits).
Figure 3: Real poles of the Padé approximant of order $[n, n]$ for $\mu = 100$, $x_0 = 2$ and $x'_0 = 0$. Multiple real roots of the same order are joined by a dashed line.

Figure 4: Residual obtained using the first 13 Taylor coefficients for $\mu = 100$, $x_0 = 2$ and $x'_0 = 0$. The solid line is the result obtained using diagonal Padé approximants while the dashed line uses the polynomial of order 12.
example, Odani [43] has estimated the amplitude of the van der Pol oscillator for a limited set of values of the coupling using the Runge-Kutta method with a stepsize of 2^{-20}. Even so, the results reported by Odani contain only 5 decimals. Notice that refs. [43, 44, 45, 46, 47] deal with the problem of determining the maximum amplitude of the limit cycle.

In our case the procedure to estimate the period and the amplitude of the oscillator is straightforward: we pick the initial conditions (typically we choose $x_0 = 2$ and $x'_0 = 0$) and iterate our method until a change in the sign of the velocity is detected; at this point we know that a minimum of the solution can be found between the two last time steps and we can look for the zero of the derivative of the Padé approximant contained in this region. The value of the solution at this point (changed of sign) is then used as the new x_0 in the initial conditions (we set the time to zero at this point) and the whole procedure is repeated. The time elapsed from $t = 0$ to the instant where the derivative changes sign is essentially the half-period. This process is iterated until the amplitude and the period have converged to a sufficiently large number of digits (alternatively, the same process can be carried out by looking for two changes of sign in the derivative, which in turn would provide directly the period).

Importantly, we have the nice bonus that the number of iterations that are needed to reach the desired level of accuracy is much smaller in the stiff regime, where the transient behavior of the solution decays more rapidly with time (the number of time steps however increases, both because of the larger period, which grows with μ, and because of the need for smaller steps in the regions where the derivative is large).

The accuracy that we can hope to reach for the period and the amplitude is essentially determined by δ (provided that the number of digits used in the calculation is sufficiently large); in this way, one can expect to improve the numerical estimates by using a sufficiently small δ and working with large enough digits. In the next section we provide an independent check of this claim can be done by comparing the purely numerical results with the analytical results both for $\mu \ll 1$ (perturbative) and for $\mu \gg 1$ (asymptotic – stiff).

3.1 Numerical results

We have obtained numerical results for the period and the amplitude of the limit cycle of the vdP oscillator for a series of values of μ, starting at $\mu = 1$ and going up to $\mu = 500$ (well beyond the range of values studied in the literature). In the tables 1 and 2 we report the period and the amplitude of the limit cycle, obtained by working with the Padé-Taylor method, for $\mu = 100$ (stiff), with different values of δ. From these tables we see that the results appear to converge quite fast (we expect that the best results in the table, corresponding to $\delta = 10^{-100}$, have more than 100 digits correct).

In separate tables we have reported the values of the period (tables 3, 4, 5), of the amplitude (tables 6, 7, 8), of the maximum velocity (tables 9, 10, 11), of
the fast component of the period \(T \) (tables 12, 13, 14) and of \(-\lambda_2/\mu\), \(\lambda_2\) being the Lyapunov exponent (tables 15, 16, 17).

Although Tables 1 and 2 provide an indication of the accuracy of our results, it is possible to perform an independent check by comparing these numerical results with the perturbative results obtained with the Lindstedt-Poincaré method (in ref. [11] we have worked out analytically the LP to order 308 and numerically to order 859 – in this case the coefficients are calculated with 1000 digits).

This comparison can be done directly only for \(\mu < \mu_{T,A} \approx 1.85 \) (radius of convergence of the perturbative series): for \(\mu = 1 \) the sum of the first 308 terms of the LP series for the period and the amplitude are in excellent agreement with the numerical results obtained with the PTm:

\[
T^{(\text{num})} - T^{(\text{LP})} \approx 3.57 \times 10^{-87} \tag{9}
\]

and

\[
A^{(\text{num})} - A^{(\text{LP})} \approx 1.97 \times 10^{-87} \tag{10}
\]

The perturbative results, however, can be extended beyond the radius of convergence of the series, by using a Padé approximant (we opted for a diagonal Padé [150, 150]). For \(\mu = 1 \), the agreement between the Padé approximant and the numerical results is now extended to more than 100 decimals:

\[
T^{(\text{num})} - T^{(\text{LP} - \text{Pade})} \approx -8.2 \times 10^{-104} \tag{11}
\]

and

\[
A^{(\text{num})} - A^{(\text{LP} - \text{Pade})} \approx -5.17 \times 10^{-107} \tag{12}
\]

Even for \(\mu > \mu_{T,A} \), where the LP series does not converge, there is a remarkable agreement between the numerical results and those obtained using the Padé approximants, for \(\mu \leq 10 \).

This comparison is performed in Fig. 5, where we appreciate that, for \(\mu \leq 4 \), the results agree to more than 20 decimals. This observation justifies using the Padé approximant for the amplitude to estimate quite precisely the maximum amplitude of limit cycle of the van der Pol equation, that has been studied in a series of papers, ref. [43, 44, 45, 46, 47], but never calculated with high precision. In Fig. 6 we plot the Padé approximant for the amplitude (solid line) and compare it with the upper bound conjectured by Odani [43]. Our estimated value for the maximum amplitude is \(A^{(\text{max})} = 2.023422255606133094 \) for \(\mu = 3.2940126635728034197 \) (which complies with Odani’s conjectured upper bound 2.0235).

In Fig. 7 we compare the stepsize of the PTm (normalized to the period) for different values of \(\mu \); observe that the number of steps required to cover the whole period appears to scale as \(\propto \mu^{5/3} \) (see Fig. 8). The corresponding solutions are displayed in Fig. 9.

5By fast component of the period we mean the sum of the times it takes to the oscillator to go from 0 to a minimum, and from 0 to a maximum, within the limit cycle. For \(\mu \to \infty \) this time becomes increasingly short, whereas the total period is growing linearly with \(\mu \).
Figure 5: $\Delta T = |T^{(\text{num})} - T^{(LP-Pade)}|$ and $\Delta A = |A^{(\text{num})} - A^{(LP-Pade)}|$ as functions of μ. Diagonal Padé approximants of order $[150, 150]$ are used.

Figure 6: Amplitude of the limit cycle of the van der Pol oscillator obtained from the Padé approximant of order $[150, 150]$ of the perturbative (LP) expansion. The horizontal dashed line corresponds to the upper bound conjectured by Odani \cite{Odani}, $A^{(\text{Odani})} = 2.0235$. The red dot is the maximum value taken by the Padé approximant, $A^{(\text{max})} = 2.0234222556061133094$ for $\mu = 3.2940126635728034197$.

11
Figure 7: Stepsize of the Padé-Taylor method with $\delta = 10^{-100}$, using 201 coefficients, for $\mu = 1, 10, 100, 500$.

Figure 8: Number of steps used by the Padé-Taylor method with $\delta = 10^{-100}$, and 201 coefficients, as function of μ.
Figure 9: Solutions to the vdP equation for $\mu = 1, 10, 100, 500$ using the Padé-Taylor method with $\delta = 10^{-100}$, and 201 coefficients.

The reader may be skeptical on the necessity of calculating the period, the amplitude and more in general the limit cycle with such large precision as we claim having reached, but we hope that our next application will convince the most critical reader.

3.2 Extrapolation

In this section we adapt the discussion of Ref. [48], where the Richardson extrapolation was applied to the finite difference calculation of the Laplacian eigenvalues on complicated non-tensor domains in two dimensions.

In the previous section we have obtained very precise numerical results for different quantities (period, amplitude, maximum velocity, Lyapunov exponent, etc) related to the limit cycle of the van der Pol equation for different values of μ. Let O be such quantity and consider a sequence of values O_1, O_2, ..., corresponding to different values of the parameter, μ_1, μ_2,

For $\mu \gg 1$, the behavior of $O(\mu)$ may be approximated as

$$O(\mu) \approx \sum_{k=0}^{\infty} c_k f_k(\mu) = c_0 f_0(\mu) + c_1 f_1(\mu) + \ldots$$ \hspace{1cm} (13)$$

where $f_0(\mu) \gg f_1(\mu) \gg f_2(\mu) \gg \ldots$, for $\mu \to \infty$. For the case $O(\mu) = T(\mu)$, for example, several terms of the asymptotic formula has been derived in
and correspond to choosing
\[
\begin{align*}
 f_0(\mu) &= \mu \\
 f_1(\mu) &= \mu^{-1/3} \\
 f_2(\mu) &= \frac{\log \mu}{\mu} \\
 f_3(\mu) &= \frac{1}{\mu}
\end{align*}
\] (14)

If we dispose of \(N\) values of \(O\), for different values of \(\mu\), and restrict our calculation to the first \(N\) functions \(f_i(\mu)\), we can write the system of equations
\[
\begin{align*}
 O_1 &= c_0 f_0(\mu_1) + c_1 f_1(\mu_1) + \cdots + c_{N-1} f_{N-1}(\mu_1) \\
 O_2 &= c_0 f_0(\mu_2) + c_1 f_1(\mu_2) + \cdots + c_{N-1} f_{N-1}(\mu_2) \\
 \cdots \\
 O_N &= c_0 f_0(\mu_N) + c_1 f_1(\mu_N) + \cdots + c_{N-1} f_{N-1}(\mu_N)
\end{align*}
\] (15)

which can be cast in matrix form as
\[
R \begin{pmatrix} c_0 \\ c_1 \\ \cdots \\ c_{N-1} \end{pmatrix} = \begin{pmatrix} O_1 \\ O_2 \\ \cdots \\ O_{N-1} \end{pmatrix}
\] (16)

where
\[
R = \begin{pmatrix} f_0(\mu_1) & f_1(\mu_1) & \cdots & f_{N-1}(\mu_1) \\ f_0(\mu_2) & f_1(\mu_2) & \cdots & f_{N-1}(\mu_2) \\ \cdots & \cdots & \cdots & \cdots \\ f_0(\mu_N) & f_1(\mu_N) & \cdots & f_{N-1}(\mu_N) \end{pmatrix}
\] (17)

The solution to eq. (15) can be obtained either by using the inverse matrix \(R^{-1}\)
\[
\begin{pmatrix} c_0 \\ c_1 \\ \cdots \\ c_{N-1} \end{pmatrix} = R^{-1} \begin{pmatrix} O_1 \\ O_2 \\ \cdots \\ O_{N-1} \end{pmatrix}
\] (18)

or by using Cramer’s rule.

A further improvement can be obtained by performing a Richardson-Padé extrapolation, as done in ref. [48]; in this case we assume
\[
O(\mu) \approx \frac{\sum_{k=0}^{N} c_k f_k(\mu)}{1 + \sum_{k=1}^{M} d_k g_k(\mu)}
\] (19)

where \(\lim_{\mu \to \infty} g_k(\mu) = 0\) (a convenient choice is \(g_k(\mu) = \frac{1}{\mu^k}, k = 1, 2, \ldots\)). By using a rational extrapolation, we may be able to describe more precisely also the behavior of the observable for smaller values of \(\mu\).
Using \(N + M + 1 \) numerical results one can write the system of equations

\[
\begin{align*}
\mathcal{O}_1 &= c_0 f_0(\mu_1) + c_1 f_1(\mu_1) + \cdots + c_{N-1} f_{N-1}(\mu_1) \\
&- [d_1 g_1(\mu_1) + \cdots + d_M g_M(\mu_1)] \mathcal{O}_1 \\
\mathcal{O}_2 &= c_0 f_0(\mu_2) + c_1 f_1(\mu_2) + \cdots + c_{N-1} f_{N-1}(\mu_2) \\
&- [d_1 g_1(\mu_2) + \cdots + d_M g_M(\mu_2)] \mathcal{O}_1 \\
&\qquad \cdots \nonumber \\
\mathcal{O}_{N+M+1} &= c_0 f_0(\mu_{N+M+1}) + \cdots + c_{N-1} f_{N-1}(\mu_{N+M+1}) \\
&- [d_1 g_1(\mu_{N+M+1}) + \cdots + d_M g_M(\mu_{N+M+1})] \mathcal{O}_1
\end{align*}
\]

which can be cast in matrix form as

\[
\hat{\mathbf{R}} \begin{pmatrix} c_0 \\ c_1 \\ \vdots \\ c_N \\ d_1 \\ \vdots \\ d_M \end{pmatrix} = \begin{pmatrix} \mathcal{O}_1 \\ \mathcal{O}_2 \\ \vdots \\ \mathcal{O}_{N+M+1} \end{pmatrix}
\]

where

\[
\hat{\mathbf{R}} \equiv \begin{pmatrix} f_0(\mu_1) & \cdots & f_{N-1}(\mu_1) & -g_1(\mu_1)\mathcal{O}_1 & \cdots & -g_M(\mu_1)\mathcal{O}_1 \\ f_0(\mu_2) & \cdots & f_{N-1}(\mu_2) & -g_1(\mu_2)\mathcal{O}_1 & \cdots & -g_M(\mu_2)\mathcal{O}_2 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ f_0(\mu_{N+M+1}) & \cdots & f_{N-1}(\mu_{N+M+1}) & -g_1(\mu_{N+M+1})\mathcal{O}_{N+M+1} & \cdots & -g_M(\mu_{N+M+1})\mathcal{O}_{N+M+1} \end{pmatrix}
\]

Once again we can solve these equations either by using the inverse of \(\hat{\mathbf{R}} \) or by applying Cramer’s rule.

Of course the implementation of the Richardson and Richardson-Padé extrapolation requires to identify as many \(f_i(\mu) \) as possible, which may be a difficult task in general. Some of these functions may be provided by previous asymptotic calculations, as for the case of the period and the amplitude of the limit cycle, but the remaining functions need to be "guessed". In an empirical approach one may select functions that lead to a faster convergence of the extrapolated results and discard functions whose coefficients are abnormally small.

Determining these functions rigorously is most likely a very difficult task: for the case of the Dirichlet eigenvalues of the Laplacian on a L-shaped membrane, for which the first correction to the lowest eigenvalue has been proved to behave as \(h^{4/3} \) (\(h \) is the grid spacing), the next few non-integer exponents have not been derived rigorously and, quoting Kuttler and Sigillito [51], “the exact form of the first several terms in the asymptotic formula for specific regions where no boundary interpolation is required is a nice problem at about the level of a doctoral thesis”\(^a\). The fact that this problem is still open can be taken as an indication of its difficulty.
The extrapolation carried out in [48], where we tried to guess these exponents, resulted in obtaining very precisely the lowest eigenvalues of the L-shaped membrane (later confirmed by the results obtained in ref. [52] using a different method) and the most precise estimate to date of the lowest eigenvalues of the pair of isospectral domains of ref. [53] (see also Refs. [49, 50] for further example of applications of the Richardson and Richardson-Padé extrapolations).

In Tables 12, 13 and 14 we report the precise numerical values of the times T_{fast} for different values of μ.

We perform a Richardson extrapolation using the functions

\[f_0(\mu) = \frac{\log \mu}{\mu}, \quad f_1(\mu) = \frac{1}{\mu}, \quad f_2(\mu) = \frac{1}{\mu^2} \quad \ldots \]

and use the last 50 numerical values to estimate the leading behavior of $T_{\text{fast}}(\mu)$ for $\mu \gg 1$.

Our analysis shows that

\[T_{\text{fast}}(\mu) \approx 1.3333333333333334 \log \frac{\mu}{\mu} + \frac{3.5305579106695527878}{\mu} + \ldots \]

where one can observe that $1.3333333333333334 - 4/3 \approx 6.6 \times 10^{-21}$ and $3.5305579106695527878 - (\frac{4}{3} + \log 9) \approx 7.2 \times 10^{-17}$.

We then have

\[T_{\text{fast}}(\mu) \approx \frac{4}{3} \frac{\log \mu}{\mu} + \left(\frac{4}{3} + \log 9 \right) \frac{1}{\mu} + \ldots \]

The slow component of the period, T_{slow} is obtained from the condition $T_{\text{slow}} = T - T_{\text{fast}}$. In this case the Richardson extrapolation provides

\[T_{\text{slow}}(\mu) \approx 1.6137056388801093811656 \mu + \frac{7.0143222313792851710947}{\mu^{1/3}} \]

\[- 1.99999999955 \log \frac{\mu}{\mu} - \frac{4.853823019}{\mu} + \ldots \]

The accuracy of the first 3 numerical coefficients allows to guess their exact values

\[T_{\text{slow}}(\mu) \approx (3 - \log 4)\mu - \frac{3\alpha}{\mu^{1/3}} - \frac{2\log \mu}{\mu} - \frac{4.853823019}{\mu} + \ldots \]

where α is the first zero of the Airy function $\text{Ai}(x)$.

We can improve the estimate of the last coefficient by performing the Richardson extrapolation on the data where the contributions of the three first terms is taken out: in this case we obtain the slightly better value -4.85382301173.

By combining the formulas for the fast and slow periods, we obtain the asymptotic formula for the period of the vdP oscillator in the form

\[T(\mu) \approx (3 - \log 4)\mu - \frac{3\alpha}{\mu^{1/3}} - \frac{2\log \mu}{\mu} - \frac{1.323265101}{\mu} + \ldots \]

16
which coincides with eq. (4) of Ref. [14], apart from last term that reads \(-\frac{1.3246}{\mu}\). The coefficient \(-1.3246\) used by Ponzo and Wax had been estimated earlier by Urabe [13].

It is interesting to observe that the formulas for the period given by Dorodnitsyn [26, 27] and Urabe [13] contain a different coefficient for the term \(\log \mu / \mu\), \(-22/9\) and \(-1/3\) respectively. Ponzo and Wax were able to establish what is now accepted as the correct coefficient \(-2/3\) by performing a numerical calculation up to \(\mu = 200\) (see Table 1 of ref. [14]).

By performing a Richardson-Padé extrapolation we are able to describe the numerical values for the amplitude in an excellent way, up to \(\mu \approx 2\) (see Fig. 10).

It is easy to guess the exact form for the first three coefficients and obtain

\[
A \approx 2 - \frac{0.5925925919 \log(\mu)}{\mu^2} - \frac{0.8761741716}{\mu^2} - \frac{0.198699974}{\mu^{8/3}} + \frac{0.1914226901}{\mu^3} - \frac{0.01149412656 \log(\mu)}{\mu^3} + \ldots
\]

It is easy to guess the exact form for the first three coefficients and obtain

\[
A \approx 2 - \frac{\alpha}{3 \mu^{4/3}} - \frac{27 \log(\mu)}{16 \mu^2} - \frac{0.8761741716}{\mu^2} - \frac{0.198699974}{\mu^{8/3}} + \frac{0.1914226901}{\mu^3} - \frac{0.01149412656 \log(\mu)}{\mu^3} + \ldots
\]

which agrees with the asymptotic formula for the amplitude, while adding few extra terms.

In the case of the maximum of \(\dot{x}\) (corresponding to the numerical results in Tables 9, 10 and 11) using Richardson extrapolation we have found, on purely numerical grounds, the behavior

\[
\max \{\dot{x}\} \approx 4 \frac{\mu}{3} - \frac{\alpha}{\mu^{1/3}} + \frac{4 \log(\mu)}{9 \mu} + \ldots
\]

This formula has not been obtained before.

Finally we consider the Lyapunov exponent, for which the asymptotic behavior has been established in ref. [34]. By performing the Richardson-Padé extrapolation of the numerical results, we have found that, for \(\mu \gg 1\), the
Figure 10: Richardson-Padé extrapolation for the amplitude of the limit cycle of the vdP oscillator (solid line). The dots are the numerical values for the amplitude reported in Tables 6, 7 and 8.

Figure 11: \(-\lambda_2/\mu\) as a function of \(\mu\) (\(\lambda_2\) is the Lyapunov exponent). The dots are the precise numerical results obtained with the TPm; the solid blue line is the Richardson-Padé extrapolation of the numerical results, whereas the dashed line is the [50, 50] Padé approximant of the Lindstedt-Poincaré series.
quantity $-\lambda_2/\mu$ behaves approximately as

$$-\lambda_2/\mu \approx 1.7886126760534475020333538 - 3.427876368721168125\mu^{-4/3}$$

$$- 0.91358588576346183705582275127144801985703792607697195 \frac{\log(\mu)}{\mu^2}$$

$$- 1.016871272807540550530978993562345482080521280 + \ldots$$

(32)

The coefficient of the term μ^0 agrees to 24 digits with the predicted coefficient of $[34]$, $\frac{3 + \log(16)}{6 - \log(16)}$; the coefficient of the term $\mu^{-4/3}$ agrees to 15 digits with the predicted coefficient of $[34]$, $\frac{3(\log(256) - 3)\alpha}{2(\log(4) - 3)^2}$.

Alternatively one can obtain a perturbative expression for $-\lambda_2/\mu$ using the Lindstedt-Poincaré method; using the results previously obtained in [11] we can write the first few terms read

$$-\lambda_2 \mu^{-1}_{\text{LP}} = 1 + \frac{\mu^2}{16} - \frac{11\mu^4}{4608} - \frac{4859\mu^6}{5308416} + \frac{12921629\mu^8}{76441190400} + \frac{22269589099\mu^{10}}{1100753141760000} + O(\mu^{12})$$

(33)

Notice that our coefficient of order μ^4 does not agree with the corresponding coefficient of eq.(14) of [34]. In Fig. 11 we plot the numerical results for $-\lambda_2/\mu$ and compare them with the Padé approximant of order [50, 50] built on the perturbative LP series (dashed line) and the Richardson-Padé extrapolation of the numerical results (solid line). In Fig. 12 we plot the quantity $|(-\lambda_2/\mu)^{\text{Pade LP}} - (-\lambda_2/\mu)_{\text{numerical}}|$ of Fig. 11. We observe a remarkable agreement between the perturbative Padé approximant and the numerical results for $\mu \leq 5$. The numerical results presented in [34] appear to have limited accuracy (even

6We have calculated the coefficients up to order μ^{100}, but we do not report them here.
for \(\mu = 1 \), the result reported in table I of \[34\], \(-\frac{\lambda}{\mu} \approx 1.0648\), appears to have only two digits correct).

4 Conclusions

The sentence that stiff ODE cannot be solved by means of explicit methods, such as the Taylor method, is sometimes used as a definition of stiffness (pag.2 of ref. \[18\]). In particular, refs. \[4\] and \[5\], that describe explicit Taylor methods, also state this limitation and consider only non–stiff applications.

In this paper we have devised a different explicit method, that uses Padé approximants rather than Taylor series; our method does not suffer from this limitation and in fact it can be used to obtain arbitrarily accurate numerical solutions both for stiff and non–stiff problems. The accuracy of the solutions is limited only by the computing time and by the computer memory, provided that one works with a sufficiently large number of digits.

To illustrate the virtues and potentialities of our method we have applied it to the van der Pol equation, that is often used as an example of stiff ODE. The advantage of considering this equation lies on the fact that there it has been widely studied, both numerically and analytically: in particular, the perturbative Lindstedt-Poincaré expansion has been calculated to very high order in our previous paper \[11\], while the asymptotic behavior for large coupling has been established with the pioneer work of Dorodnitcyn \[26, 27\] and subsequent improvements by Urabe \[13\] and by Ponzo and Wax \[14\]. All the numerical calculations of both period and amplitude of the vdP oscillator are quite old and with a limited precision. Despite the fact that the vdP equation is a standard example in many textbooks, we are unaware of recent attempts in improving these numerical results. With the exception of ref. \[14\], where the numerical experiment has lead to the determination of the correct coefficient of the term \(1/\mu^2\) in the expression for the period, the numerical approximations have only been used to provide a qualitative validation of the asymptotic behaviors of the period and amplitude.

By disposing with our method of extremely precise numerical results (roughly 100 digits) we have been able to infer the asymptotic behaviors of the period and of the amplitude of the vdp oscillator by means of both Richardson and Richardson-Padé extrapolations. The expressions for the period and the amplitude reproduce the asymptotic formulas of \[26, 27, 13, 14\]. Similarly our extrapolation of the Lyapunov exponent agrees with the formula of ref. \[34\].

Additionally, we have been able to infer the asymptotic behavior of the portion of the period corresponding to fast (slow) motion, and of the maximum amplitude of the velocity, which have never been derived before. It would be nice that our numerical work could stimulate the interest in deriving such behaviors from an asymptotic analysis.

We plan to apply our method to discuss further examples in future work.
Acknowledgements

The research of P.A. was supported by Sistema Nacional de Investigadores (México). The plots in this paper have been plotted using MaTeX [54]. Numerical calculations have been carried out using Mathematica [55].

References

[1] Deprit, André, and R. V. M. Zahar, "Numerical integration of an orbit and its concomitant variations by recurrent power series." Zeitschrift für angewandte Mathematik und Physik ZAMP 17.3 (1966): 425-430.

[2] Corliss, George, and Y. F. Chang, "Solving ordinary differential equations using Taylor series." ACM Transactions on Mathematical Software (TOMS) 8.2 (1982): 114-144.

[3] Chang, Y. F., and George Corliss, "ATOMFT: solving ODEs and DAEs using Taylor series." Computers & Mathematics with Applications 28.10-12 (1994): 209-233.

[4] Jorba, Àngel, and Maorong Zou, "A software package for the numerical integration of ODEs by means of high-order Taylor methods." Experimental Mathematics 14.1 (2005): 99-117.

[5] Barrio, R., F. Blesa, and M. Lara, "VSVO formulation of the Taylor method for the numerical solution of ODEs." Computers & Mathematics with Applications 50.1-2 (2005): 93-111.

[6] Barrio, Roberto, "Performance of the Taylor series method for ODEs/-DAEs." Applied Mathematics and Computation 163.2 (2005): 525-545.

[7] Abad, Alberto, Roberto Barrio, and Angeles Dena, "Computing periodic orbits with arbitrary precision." Physical review E 84.1 (2011): 016701.

[8] Abad, Alberto, et al, "Algorithm 924: TIDES, a Taylor series integrator for differential equations." ACM Transactions on Mathematical Software (TOMS) 39.1 (2012): 1-28.

[9] van Der Pol, Balth, and Jan van Der Mark. "LXXII. The heartbeat considered as a relaxation oscillation, and an electrical model of the heart." The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 6.38 (1928): 763-775.

[10] J.M. Ginoux and C. Letellier, “van der Pol and the history of relaxation oscillations: Toward the emergence of a concept", Chaos 22, 023120 (2012)

[11] Amore, Paolo, John P. Boyd, and Francisco M. Fernández. "High order analysis of the limit cycle of the van der Pol oscillator." Journal of Mathematical Physics 59.1 (2018): 012702
[12] Krogdahl, Wasley S. "Numerical solutions of the van der Pol equation." Zeitschrift für angewandte Mathematik und Physik ZAMP 11.1 (1960): 59-63.

[13] Urabe, Minoru. "Periodic Solutions of van der Pol's Equations with Large Damping Coefficient $\lambda = 0 \sim 10."$ IRE Transactions on Circuit Theory 7.4 (1960): 382-386.

[14] Ponzo, P., and N. Wax. "On the periodic solution of the van der Pol equation." IEEE Transactions on Circuit Theory 12.1 (1965): 135-136.

[15] Zonneveld, Jacob Anton. "Periodic solutions of the van der Pol equation." Indag. Math 28 (1966): 620-622.

[16] Clenshaw, C. W. "The solution of van der Pol's equation in Chebyshev series." Numerical Solution of Nonlinear Differential Equations (Greenspan, D., Hrsg.), S (1966): 55-63.

[17] Greenspan, Donald. "Numerical approximation of periodic solutions of van der Pol's equation." Journal of Mathematical Analysis and Applications 39.3 (1972): 574-579.

[18] Wanner, Gerhard, and Ernst Hairer. Solving ordinary differential equations II. Vol. 375. Springer Berlin Heidelberg, 1996.

[19] Kværnø, Anne. "Singly diagonally implicit Runge–Kutta methods with an explicit first stage." BIT Numerical Mathematics 44.3 (2004): 489-502.

[20] Eriksson, Kenneth, Claes Johnson, and Anders Logg. "Explicit time-stepping for stiff ODEs." SIAM Journal on Scientific Computing 25.4 (2004): 1142-1157.

[21] Fazio, Riccardo. "Numerical scaling invariance applied to the van der Pol model." Acta Applicandae Mathematicae 104.1 (2008): 107-114.

[22] Boom, Pieter D., and David W. Zingg. "Optimization of high-order diagonally-implicit Runge–Kutta methods." Journal of Computational Physics 371 (2018): 168-191.

[23] Haag, Jules. "Étude asymptotique des oscillations de relaxation (suite et fin)." Annales scientifiques de l'École Normale Supérieure 60 (1943): 65-111.

[24] Haag, Jules. "Étude asymptotique des oscillations de relaxation." Annales scientifiques de l'École Normale Supérieure 60 (1943): 289-289.

[25] Haag, Jules. "Exemples concrets d’étude asymptotique d’oscillations de relaxation." Annales scientifiques de l'École Normale Supérieure 61 (1944): 73-117.
[26] A. A. Dorodnitsyn, “Asymptotic Solution of the van der Pol Equation,” Prikl. Mat. Mekh. 11, 313–328 (1947) [translated to English in "Asymptotic solution of van der Pol's equation". No. 88. American Mathematical Society, 1953.

[27] A. A. Dorodnitsyn, Asymptotic laws of distribution of the characteristic values for certain special forms of differential equations of the second order, Uspekhi Mat. Nauk (1952), 7, 6 (52), 3–96

[28] Urabe, Minoru. "Numerical study of periodic solutions of the van der Pol equation." International Symposium on Nonlinear Differential Equations and Nonlinear Mechanics. Academic Press, 1963.

[29] Ponzo, Peter J., and Nelson Wax. "On certain relaxation oscillations: Asymptotic solutions." Journal of the Society for Industrial and Applied Mathematics 13.3 (1965): 740-766.

[30] O’Malley Jr, Robert E. "Topics in singular perturbations." Advances in Mathematics 2.4 (1968): 365-470.

[31] MacGillivray, A. D. "On the leading term of the inner asymptotic expansion of van Der Pol's equation." SIAM Journal on Applied Mathematics 43.3 (1983): 594-612.

[32] MacGillivray, A. D. "On the leading term of the outer asymptotic expansion of van Der Pol's equation." SIAM Journal on Applied Mathematics 43.6 (1983): 1221-1239.

[33] Kerimov, Movlud Kerimovich. "Special functions in Academician AA Dorodnicyn's scientific legacy: Special functions associated with the van der Pol equation." Computational Mathematics and Mathematical Physics 51.5 (2011): 781-802.

[34] Grasman, Johan, Ferdinand Verhulst, and Shagi-Di Shih. "The Lyapunov exponents of the Van der Pol oscillator." Mathematical methods in the applied sciences 28.10 (2005): 1131-1139.

[35] A. Deprit and A. Rom, "Asymptotic Representation of the Cycle of van der Pol's Equation for Small Damping Coefficients", ZAMP, 18 (1967), 736-747

[36] A. Deprit and A. Rom, Lindstedt’s series on a computer, The astronomical journal, 73 (1968), 210-213

[37] A. Deprit and D. S. Schmidt, Exact coefficients of the limit cycle in the van der Pol's equation, Journal of Research of the National Bureau of standards, 84 (1979), 293-298

[38] Andersen, C. M., and James F. Geer. "Power series expansions for the frequency and period of the limit cycle of the van der Pol equation." SIAM Journal on Applied Mathematics 42.3 (1982): 678-693.
[39] Dadfar, Mohammad B., James Geer, and Carl M. Andersen. "Perturbation analysis of the limit cycle of the free van der Pol equation." SIAM Journal on Applied Mathematics 44.5 (1984): 881-895.

[40] Buonomo, Antonio. "The periodic solution of van der Pol’s equation." SIAM Journal on Applied Mathematics 59.1 (1998): 156-171.

[41] Amore, Paolo, and Héctor Montes Lamas. "High order analysis of nonlinear periodic differential equations." Physics Letters A 327.2-3 (2004): 158-166.

[42] S.P. Suetin, Numerical Analysis of Some Characteristics of the Limit Cycle of the Free van der Pol Equation, Proceedings of the Steklov Institute of Mathematics, 2012, Vol. 278, Suppl. 1, pp. S1–S54.

[43] Odani, Kenzi. "On the limit cycle of the Liénard equation." Archivum mathematicum 36.1 (2000): 25-31.

[44] Lijun, Yang, and Zeng Xianwu. "An upper bound for the amplitude of limit cycles in Liénard systems with symmetry." Journal of Differential Equations 258.8 (2015): 2701-2710.

[45] Turner, Norman, Peter VE McClintock, and Aneta Stefanovska. "Maximum amplitude of limit cycles in Liénard systems." Physical Review E 91.1 (2015): 012927.

[46] Cao, Yuli, and Changjian Liu. "The estimate of the amplitude of limit cycles of symmetric Liénard systems." Journal of Differential Equations 262.3 (2017): 2025-2038.

[47] Ignat’ev, A. O. "Estimate for the amplitude of the limit cycle of the Liénard equation." Differential equations 53.3 (2017): 302-310.

[48] Amore, Paolo, et al. "High order eigenvalues for the Helmholtz equation in complicated non-tensor domains through Richardson extrapolation of second order finite differences." Journal of Computational Physics 312 (2016): 252-271.

[49] Amore, Paolo, John P. Boyd, and Natalia Tene Sandoval. "Isospectral heterogeneous domains: A numerical study." Journal of Computational Physics: X 1 (2019): 100018.

[50] Amore, Paolo, and Martin Jacobo. "Thomson problem in one dimension: Minimal energy configurations of N charges on a curve." Physica A: Statistical Mechanics and its Applications 519 (2019): 256-266.

[51] Kuttler, James R., and Vincent G. Sigillito. "Eigenvalues of the Laplacian in two dimensions." Siam Review 26.2 (1984): 163-193.

[52] Jones, Robert Stephen. "Computing ultra-precise eigenvalues of the Laplacian within polygons." Advances in Computational Mathematics 43.6 (2017): 1325-1354.
[53] Gordon, Carolyn, David L. Webb, and Scott Wolpert. "One cannot hear the shape of a drum." Bulletin of the American Mathematical Society 27.1 (1992): 134-138.

[54] Szabolcs Horvát, "LaTeX typesetting in Mathematica", http://szhorvat.net/pelican/latex-typesetting-in-mathematica.html

[55] Wolfram Research, Inc., Mathematica, Version 12.3.1, Champaign, IL (2021).
Table 1: Period of the limit cycle of the vdP oscillator calculated with the PTM for $\mu = 100$ for different values of δ, using Padé approximants of order $[100, 100]$. We are working with 400 digits of accuracy. Underlined digits have converged to the result for $\delta = 10^{-100}$.

$-\log \delta$	T
10	162.837071092370012132463707167168616680181839251756941333330629148899313424297715660870141334674
30	162.837071092370012132463707167168616680181839103855961135766672854022692827637159152988577327590
50	162.837071092370012132463707167168616680181839103855961135766672854022692827637159990178783311025
70	162.837071092370012132463707167168616680181839103855961135766672854022692827637159990178783311025
90	162.837071092370012132463707167168616680181839103855961135766672854022692827637159990178783311025
100	162.837071092370012132463707167168616680181839103855961135766672854022692827637159990178783311025
Table 2: Amplitude of the limit cycle of the vdP oscillator calculated with the PTM for $\mu = 100$ for different values of δ, using Padé approximants of order $[100, 100]$. We are working with 400 digits of accuracy. Underlined digits have converged to the result for $\delta = 10^{-100}$.

$-\log \delta$	A
10	$2.0013186811772241612374127656748248266679222625521957901610567138094890079994152788556570113501359$
30	$2.0013186811772241612374127656748248266679222625521860829478606636459447185412570758748292891139$
50	$2.001318681177224161237412765674824826667922262552186082947860663645944718541257075874824291065133$
	$5970990091517397119495895612305437072973177$
70	$2.001318681177224161237412765674824826667922262552186082947860663645944718541257075874824291065133$
	$5970990091517401667571422742334320536187643$
90	$2.001318681177224161237412765674824826667922262552186082947860663645944718541257075874824291065133$
	$597099009151740166757142274233432053605137307005018891708761643$
100	$2.001318681177224161237412765674824826667922262552186082947860663645944718541257075874824291065133$
	$597099009151740166757142274233432053605137307005018891708741188$
Table 3: Period of the limit cycle of the vdP oscillator calculated with the PTM with $\delta = 10^{-100}$ and using Padé approximants of order [100, 100]. We are working with 400 digits of accuracy.

μ	T
1	6.663286859323101896996820304823287068126463168838565511486318208092586484560686486866620053271223
2	7.629874479674841631969352574636585522428587629692901447701015386657008410006341189416420810954316218
3	8.850905499719917151051514310463877906020714102264032968895369779521275441233406049867411814504144379
4	10.203523690993674223248994443265290919328985625140926957076637791288894606342105279048256084375084
5	11.6122306677195700345550662297385231826271132807440533346140310979401962620255595598026664353518727
6	13.061874472550272101137522614931513926584687387304436001662964376108166229543648433625630756910465
7	14.5974774448424937257021485659788884491227135001325280022234023529434557878813603167335765113955300
8	16.03817623218046573464954629073100521038686081165776010304458797832279349566390537465014875784
9	17.55218431556205969667406507570975646548723673845619502820566067031822261169285330210848834642978791
10	19.0783695668939014074031128258151723269495091319455157625858656843824505331274411577388716007112246
11	20.3863233116526383567120000110680432413995603654520753979839964255953220814833151481417843551741048142
12	30.5436864827405120702827386466837046838248278586073506538947527935622292657662902442086062638175210
13	40.66501394280447699869719249433873750984381172820746854571937159149884655132506863494765198559898212
14	50.5083338932307821868336689749987593740598586162778675384410212400351709502326480487387499695
15	60.5447885887890341182365683019522186958016654049523151659545600429935330650563194910715057125
16	70.114600663004441624697121202317540586518545116203457627958019052391129487645226986060638321691671215
17	80.3001609129028547309677257783317978197033332668676016596307438384540945823097922106414554763429
18	90.14679789654308140561374421250366854262190114879122183612587391566562555806861263744268577020044
19	100 162.837071092370012132463707167168616680181839103855961135766672854022692827637159990178733110252656
Table 4: Period of the limit cycle of the vdP oscillator calculated with the PTM with $\delta = 10^{-100}$ and using Padé approximants of order $[100, 100]$. We are working with 400 digits of accuracy.

μ	T
110	178.93039569070336789716883106956571593234171681359379224727119368626347987970659100737784430031100491
120	195.02858025560765290160058643286113856413040774148397015025046291085887580765675619398098597197
130	211.130747780414602601308323186359023274183258081525543799926552127456346094091236370031713445624906
140	227.23623169105330125214448637923455193179263529621534097212434470538699636331704863156601505403007
150	243.344514508795393113550208209878889157127347138713188404282363159463349384656987942353946883401312
160	259.45518715520899540315172772722064731999859774124356579973732325140948403982037303780223559037179
170	275.567921132752321157651486355320960580031645969284306833900520902209914645207652127999437789348208
180	291.68244901044291766360242125292041405241634945169625409121142673649934897428092298787488332050626
190	307.7955042410694579220155917809203786146063164077088976119847467447302885165313654169338108651136
200	323.9160418323321960527443347435145732305135240211850032724006547649561782732555219016088358064
210	340.03476888806522434904351346013267369517001473734489397699024873869405751245968207911050023418178
220	356.156006641400306792458586325331982255704671016791168214958695562261553978982253192645944044064
230	372.275425248209893625346022849458514979880819616678978592535781044097256174822511959807497831772816
240	388.397146261061801101303819981697539552267727218941941422465212700521107477504912973272058422858532
250	404.51968019651453871870483254217343129149893308985534118257674185692704039639556637641937278
260	420.64295423544117151258720158629502003271485977340565247244349583714124204159084267757055628205757
270	436.766904618378460199777460615479830552268581597591579839021809412437496513849994889809197347
280	452.891475073085833332397712255647607217954080152594118401826238360545426359833714379551739495594771
290	469.0166158515163208328751034153758826339751354043153325719881051948320685564349337012616812121935
300	485.1422827394258644411994738128162629528511278967565610619365505973036022082905924814438907274623181
Table 5: Period of the limit cycle of the vdP oscillator calculated with the PTM with $\delta = 10^{-100}$ and using Padé approximants of order $[100, 100]$. We are working with 400 digits of accuracy.

μ	T
310	501.268436235172727804324621978862246745341525121958552398015219983866728091885023537176781085341815970038
320	517.3950409722495917962169555853434381978429512865886321961149836442728538619817664738133788941608835
330	533.5220651462458453909377093980997527266195900109261289048964018477769281509036125868534661492522214782
340	549.64980066769348394991548676563191406962973686216402215619015467247310447341255294202112060095546
350	565.777259774235251395754584188044891972324418362059662852878315745185659164044373258793966102439117355
360	581.90538094371611599899490528461970250760793093241177055544180490767523725389192976519318505965
370	598.0382141727417085547427464638097871784657137005092471428145972290309656563980522605583563614616
380	614.1625623467065316667294878459766934907192942445613684806017892972137956241597388869487329968018
390	630.291555977279002588325318270425179584336562224820273981195152721692507775053825636924507305593747
400	646.42087467325890181723575408754667005066752069937044219285197917172073891282189403517007231212122
410	662.550414767458793547268172823212596053856889920611348665053451855914390881326795083751161107143
420	678.680191728496281171671542771830337224258485711648490650262028465201253679559370907588586503602049
430	694.810192838406651011117104415475357627350731012393975983819735762877899341686382922655295
440	710.94040265719762230440250084136102108511568057723287903810936632527892043865554930231362263023076
450	727.0708210189951894034096387862684901871433733465026811373298258977410795037769608257479752148460392
460	743.2014269834326052204807523295191248420342221402006802756639471152601996913062154331985466478
470	759.3322146091985929582604284675477376565190071596350044144396300656133940892613873226111758234
480	775.46317518549310134703432324432023633140733969616965047832135462539340067800370265770758382435831
490	791.594300483101012594352854731351736811830218884057142057900337763540865493304581277861246171618416
500	807.725582846737485514209934459440107318627917629009770871427505976451821298143567529523778622997872
Table 6: Amplitude of the limit cycle of the vdP oscillator calculated with the PTM with $\delta = 10^{-100}$ and using Padé approximants of order [100, 100]. We are working with 400 digits of accuracy.

μ	A
1	2.0086198608748431365096401883626403661920261377207114461127703247615558726584991115953057790709097765
2	2.01989134667361302411284789105850993050825481200094166454954312485830284826252034906272251568995642
3	2.0233041416822143065137861304550645257390136798727609909993697656058657272576092802646061447915499
4	2.02296250096881184608206122439038518302581354903948050111389353975515410119621175675937092917287882
5	2.0215080615623213238387420245962124615237461624864225861960635127894986168530050183097939110542784
6	2.019830213891253240477287224737578444042958217990898066178680436700927411293781750295660484568965
7	2.018215300688362659084273113428370538253120476351772201246205824350791436123416051201516053594633
8	2.01674747924561379041684958696058970854114588530824472788097882245170160119058217773734887359369
9	2.01544079796239496183207612047058084240804877732353523511102407691929200754905228558454263913898855
10	2.0142853609264052853276398191519210181322053633536581375785514775840505595191629394412431198122197533
20	2.007789970865430927248673500945733630371927262512696580222467839163820644590094385995046731852068
30	2.00516245414655570517771868600497219884907635907894482130586573344080726268641376518606048353802
40	2.00378938161944378957120314528784492308913534477911195767470762435360070757222296917610924278488704
50	2.00295593375756484028626109178495877164979914720146069416392689122828094125506589344456892241808044
60	2.00240191906388147392090209028466432515627199825830687422113141268600481080681056348881636454035
70	2.002009560682690928969746208351411912183772856077413775296690472388780496279987779118177699394
80	2.001785271070868690535746423537017247172821628318894524355092265745360472606814182673333938101
90	2.0014951688618629082529150780707936356207334258878280256078853823446051353795329029021218813904855
100	2.001318811772241612374127567647842826667922262552186082947860663645947185412570758784292106513597
Table 7: Amplitude of the limit cycle of the vdP oscillator calculated with the PTM with $\delta = 10^{-100}$ and using Padé approximants of order $[100, 100]$. We are working with 400 digits of accuracy.

μ	\(A\)
110	2.00117615066420212365115548981623923293908363919700083896165021635090622731953166376363185345190468
120	2.001058895654125927029329274380891933109863653150541935707866583791851904968412470011465259065
130	2.00096092784488853419742132919721351316153353960469976963193568753625230840143421594954910815664533
140	2.0008779836528670708956966662862202269263563408608634986331923320526624808139976404077573457873
150	2.0008069552716258172864351393999723629539327892806948949673929377968027220636151449820511239386658
160	2.000745524381279979653399402526338459501029215022413403802471156496719380286552841303498699166454
170	2.000691928650507049010444698310276888632234923699748845764204325369807162600992606870049753693914348
180	2.000644806183587288954560918219707872421639629764757465050988868301208956235564167846005183167098
190	2.000603088546078420297503652613722564006448889487938284504370859832829403205040074134903940089866
200	2.0005659265767602115224178247729329172675627901916891240291985028956359680876332599753138742066905
210	2.000532637350753826167807899544044994026166754728478281570232899410650744957001382965323763015167
220	2.00050266573653184383254325972124155180951760968820976920362789794403182541639460411490411599806
230	2.00047556236845686369543201718560546713732093877928232708102379157775737175758037349221405510316
240	2.000450935178303686945375107442024897611434586542128210823176047146010144604394305189436058597541
250	2.000428476977787524518502904069579363264970156262994117702980159946519985016234323264645319412040036
260	2.000407297747650893284937837852821816127954199809028425738914432554707882092172149764902564719009
270	2.000389695824254201730672864978391061557986008590737889575154409117827715876419626020966061424629
280	2.000371683245317609157227970950056679593343398383556475142208149602798177554564109723946722435718
290	2.000355631774970119931882114768567816619242450227935535829992917199117312065767995403444410931703946892
300	2.0003407672365358480381118336572999553385449901440431020937886115010063007680327063664378494352625
Table 8: Amplitude of the limit cycle of the vdP oscillator calculated with the PTM with $\delta = 10^{-100}$ and using Padé approximants of order $[100, 100]$. We are working with 400 digits of accuracy.

μ	A
310	2.0003269667543184917528821582872666634782226917455588819685335381219042214539507445589914126673444
320	2.0003141242285143650475907387480224800388011045630717020905023094977428913063351067002023154363910683
330	2.0003021469517348161613840323767290831309237400821216110882487677683585416959621768557526
340	2.0002909535873292482348873545485020183061540972779095237030161293542463363606927569459213936921866
350	2.00028047249567352014780180430428145022834146751154149402383792845458390614590018139282388728999713
360	2.000270640343641872974273279654927343840709723809457625301021912279926785202157761023007066233136422
370	2.000261400960778407272014150919879490328851961702490111973205517604442731436470785107417568540835796
380	2.000252704340780169883024954575103776332039887880106187365966367674615954233486090162346090156807203
390	2.0002445058513417292541863528958764734990251911257153000195680479204146824751944159064234618604729996
400	2.00023676552796369270142463629800756599533529414210369885870990924705207984905021905264276738379989
410	2.00022944748819989218336500664887650793613357696444772898983221452007178409049796559582411329859935
420	2.000225194292897049999221159375293324346050896027355321076117058432538190172640086919196041257453
430	2.000215952197659532147091449803696619020676193834136262545013805083761077484865400110123077591425039
440	2.00020971941863785507335353648847162792740151388072266145842312792949240058072694083945543996263235
450	2.000203797176831785484489994634091962887707480896472133778935604952800003342716031081808748670106876
460	2.0001981637390046900156757279678371962466692030323941781372683240020901101244595054864243212047358
470	2.000192799315017326282138568875406762617187038199023400878993002246676752073783363623637545
480	2.00018765524226716315391997510390663860906566981771010897327668316751520675221771603463303289276
490	2.00018208602101734333307640451560964642584760774067749603379510237248236860107757251910941250839
500	2.0001781471811448723671856525505949565588507795231205946274908215891589874712255970865077462000262459
Table 9: Maximum value of \dot{x} for the limit cycle of the vdP oscillator calculated with the PTM with $\delta = 10^{-100}$ and using Padé approximants of order $[100, 100]$. We are working with 400 digits of accuracy.

μ	\dot{x}
1	2.6784414796069779492758218717041165621077368697191220964124546113071122686772143437815944
2	3.817221640831220563965799781101066245898607996904959302878480206566251386554161251558923
3	5.06487738197231633109411685352420322601973980317821036819802328561052810978640741388417
4	6.341577400432038683444489495718068948685902242889595120372918990750631357798315295800320
5	7.6371582738602544895374957268018859485060769729194880056807697928384354636782906331
6	8.93792658194136242,48656909506114288656746615148297593254782758864921186294876902860246242
7	10.24379465697724117241506839737270936829830364880316887707229147049879457120948591090658
8	11.5533237550409568334577618023644622718497189835206692188077822200414279169925365982556
9	12.86563557437577020906622665841184691319266720982347691123306753264282122412459813282810
10	14.180147287056470109063698143632562534202857436059307253774820857605903106639033810558353
20	27.39033256317111413226813847441744336423398212408383295506378840995597126423886649706583
30	40.6538361352050710657098932101601012432995580637952077272531087003246517160591013941182905
40	53.9394801467542832221810378086305396823975975294897351542494679584494962135154624339179
50	67.23714817996824076471281083776472788220723262653646569391243920401181569816904295428902
60	80.54229993177091811747686019013104713615173385702628076500836056046448077205082880468764
70	93.8525220461935372763126096210441626817759748390775027959973501001465942801592916712924
80	107.1663861733233277185198253861727105751757496753624444749152365251483641745753929637063
90	120.4829089413821751788260889725636283310955229133719092225459533635819634172119234500904
100	133.80169145553263028831023868627805726314887728137538640478489874691868312722921925081722
Table 10: Maximum value of \dot{x} for the limit cycle of the vdP oscillator calculated with the PTM with $\delta = 10^{-100}$ and using Padé approximants of order $[100, 100]$. We are working with 400 digits of accuracy.

μ	\dot{x}
110	$147.12208452923183079223354494148704870316218792442327102974136328427411539330912071137610$
120	$160.443844273133609267044455849716320341628072672621822158311421948760631510643918746755420$
130	$173.766737416324075297268077838429180573819805883235021921792275854331997267287055093528806$
140	$187.905709721340664921120499464188273529406059245752398610363425678248494619167859075974$
150	$200.4152134159486636210974580450032433135652173315649368356252591661747429011656568823433$
160	$213.74054747506599932847051940969531349229878515672981751927500668136016870060062717611692$
170	$227.066481269739660704671425100742298647028146047841056792826246089368198489202245780853$
180	$240.3929351412513904239597521758691504000488921717616405602561106988731904995178999393722$
190	$253.7198598069111519415722917340267325910912729767030946816204181534803261709446446450976$
200	$267.0471898948847934002673374274446706993337572325474692208178275058654460941091737537682$
210	$280.37488620081388562707094782039201013762336536077924810746281714266781397075902393572$
220	$293.70909556438114998808448667606052552541675548552547968395677279342256713516715086473$
230	$307.03122880303500190335586104025071620322164174798282183680177835036681285362235565895880$
240	$320.359816041133672819834468557282008884514945216723055112727362380760473281611539018771350$
250	$333.68646789115967266185585827970795100050096967938808742962801141680553845363693950139$
260	$347.0176998074894164493011278628991527964507191327213255022934559198859526410513503666$
270	$360.34656421621742690555423982485694195246758205536208967730042930829802812183048460$
280	$373.676400127542928137043264219371486128964606820294632759377479439738928376880508176$
290	$387.066012680227927870867730171586802499206616289671859832051152934792255806737660857592$
300	$400.3357918243259013427316975846527931562438027791521849707629780978885026488846159552034$
Table 11: Maximum value of \dot{x} for the limit cycle of the vdP oscillator calculated with the PTM with $\delta = 10^{-100}$ and using Padé approximants of order [100, 100]. We are working with 400 digits of accuracy.

μ	\dot{x}
310	413.66571507890014386066250291257692578257057563521511040203592064184860137911214924792803
320	426.9957755377900952862333160230425625363319171416843296415468741232115203698955685014774
330	440.32596379614279083992572283454818966379847649003282347590544564737312983239326930351950
340	453.65627126061890845953267930252102119319685866974909849995144879267654170297506646452663
350	466.98669019890611973039844885154003331143862270416183166980828253113432559419873822267697
360	480.31721356549783356906991260738344982568663609377113694924670048035834303819499183430127
370	493.647834936790776912266721628778280687310487121984986466244295956821515082933928703536
380	506.9785484441377745134519841645569487731232766716641095061387966613559905720586259465229
390	520.3093486997316121656629886183432452117499936267313174319055948823137910566162425916609
400	533.6402307718137124784663399461768946648017962098470143012628279727636257054225955478361
410	546.971190111397012118578118642122907997237266343174256470797933562563288729689028790331
420	560.3022252610967178010395844821226485793463404844805182965721453448040906442232165315607
430	573.633241423532508247844215607398730271862862006430174111368297803846118429878629
440	586.96449137442548972469906386939454002775813234388253219611735946295828419737049857184323
450	600.29572089724120121499455064828289120021397796613819368079498845117944773201750940243
460	613.627006221751624910744370358412364196157041092799433250685698588990848038041774241
470	626.958354765072891569830144748019910018319274329817901155143002606915486727249704658
480	640.2897533981858440067041399096685986507847705795822830270356862649790488716420
490	653.62120323537755180615526442051502959027708390123239603349702479389648832284203780
500	666.9527019086819212486652715629504037072636597442109398015505559130486827694533441169989
Table 12: T_{fast} for the limit cycle of the vdP oscillator calculated with the PTM with $\delta = 10^{-100}$ and using Padé approximants of order $[100, 100]$. We are working with 400 digits of accuracy.

μ	T_{fast}
1	2.316802059232911234391249956151434841331999719060398155979705824437813817051451534984399423223249902
2	1.77713493687930228693089098131985222064778506181032706420636917648572368767435536184857306910408
3	1.43471367025219736794288495396690225383079334067934398171595887626416279784216058747272189405444
4	1.205488824913180452128110106137254471424619708157288530504984976300657048034663125087981102605123689
5	1.042385826116529616294724230644415842420960022001060023691884345803915095592647093700998108343964
6	0.920371127232169591441807524727045208092081627541267544828771337920825847998759211137955224407453848
7	0.8255270478047021629407361545269671130752310491652286640745426815504146367190814510472226819970958
8	0.74507092426767007504677624102731544297022639103232970549046305815571251668394951472313058227776429
9	0.6872890373963839619984049707112223821375817647520512801955074242591256485241401206307631421380487956
10	0.63523049817332297095221265355957156162940811374726752724512526115312095985290707147135939703442227
20	0.37005171141316077253030324571377345456674085058123833103466836467601039358776259199881695557925490048
30	0.2661647559294058983195734514406998950605054271287034011139375617298842268438937895703508894907482
40	0.209754430399234895743063093543811452348211505152182331645069578351429643841138347043210270942
50	0.17401163874811883980904260458297625120289676338191072632961613471976694907271
60	0.1492076519494202628317273201450366276797981712142029681714087666780353540376812030497413358159289
70	0.1309098422119537568637583589831360255606300885521759427441169854707542910209830947668550945587847
80	0.11682709559031492455528748746062253787476764411007064160212031174265446775472541060391550260743352
90	0.10562912530507365028485741092094965284105587519877900104876019288298721870496396912832175880588711
100	0.09649798263085640399621285796476339416835886787477010364996693042574994319792286310313956590068728237
Table 13: T_{fast} for the limit cycle of the vdP oscillator calculated with the PTM with $\delta = 10^{-100}$ and using Padé approximants of order $[100, 100]$. We are working with 400 digits of accuracy.

μ	T_{fast}
110	0.088900547586765757399339737954614725712072152234213635592637970573064215877018871310561743652508994131
120	0.08247395262540540949758178539485851747581501992816754421584924011902522349282223674842377763542014062
130	0.076962349091198101978794345379877379111010769425976361468879978092560998947686990367596754362940068
140	0.072179957742700611521589264668553179213593477586364372803009257513850194981792840956772362097937678
150	0.0679855386204053436480059541527934102209594461692608111478293557145848352220682620795863860553181
160	0.0642830426911257493556333426674313315068043475639546043965692234626152760227195632052010919849036
170	0.06092807541842125986517863159899375497802739168538463248981769968052515010950749240986396865421
180	0.058021658546900505790297863229282089242635317354438673365631631879965447542430356683610198108244012
190	0.055350737607642411593126029215030074826260753925240320135601788109002056506492112473591755632260775979
200	0.05292806751914626723697644880052620350920049556531746138671186205899858611451120768582209148608999
210	0.05071995242422124024248224878028974451954848401817914614309677328567117128751074069361155486900566307
220	0.0486898551209476978794574524352771969828343907917289228280364969341276861489699579234345549856734148832
230	0.0468408761087438730185716664950894254817687342100594470621217042314831206524363757139912623301244
240	0.045127173420118494247883470945280057391640594183555299056980554114852937775867221828625996
250	0.043561228654355464406967658315529828375549046065391643154879954715122485962877938535209475406579617
260	0.0420895470567674021710531067402502071413751351003759192889349852817095820564931690759210809697060587
270	0.0406983308408867102383201166116149570942363800443461541932786695083074494395703427301575
280	0.0394189895604993721435694761038626243598827799011656015873401746348734824032485534583208312462283
290	0.038221939369322445282419070395810715824523267099072860702451291229552865587442137590330830217
300	0.03709934312545045421570367284167161358297777705296003272956967121356923301470068787691652535451559648
Table 14: T_{fast} for the limit cycle of the vdP oscillator calculated with the PTM with $\delta = 10^{-100}$ and using Padé approximants of order $[100, 100]$. We are working with 400 digits of accuracy.

μ	T_{fast}
310	0.03604437218641308130342640036432609994125661966181821195000089260858952244538989025791531658193299878
320	0.035050884357740316638577037708396554668999410478335608192621514034447001149760398727274625438587
330	0.0341136526061423919023639537898199550803422130711134898235286132703155309728758940279785447487918791224
340	0.033227912177302216732673263326858816302019129955156874891280700778154314720725275145833064350196303277
350	0.03238945157082491863891844940561590977740853704142215400346724890306483970231183399627269635960467
360	0.031594529931972124388129649936134766292301990853961501000024210419127067640502982463232691603440669385
370	0.0308397648540474070009654039959811149099957090353842353860591616108752371635650117130813121993403
380	0.03012213774368818252377085471455525741770846071976993376112418413933647884700998564121681769864462
390	0.029438923408292432861203364735304330455257062256869775578141147036265728285154925599885264302368431
400	0.02878659352945971639777263523785791217926989194616732736082704362390842948856673339231505734338515
410	0.028166114837275107307369411616589555851925263938364099681144648956630416504742255804274739113474034
420	0.02757263813692925792148783486741719455811755522336748543494044824868086247814237426178186826046
430	0.027004210711441260573257737310805035822559541548634956230568542559437692403276101529681147961
440	0.0264604271246403851815777298109091819275163496262876947298671359127278791899034890352941397692
450	0.02593922089635869348798386955311275196922302990389828558472672401488573805367811520734328386174
460	0.02543923395095476574587973397939151219554958513522711867201408831668329059338373015550424779983068977
470	0.024959172887442917402703697277873806997755385293285910219478778637442782778386575413803858258264017321
480	0.02449782892188038351876698349924428616084174002120724953097567944218050352007094872490344468578
490	0.024054164708822886058593581502339058495845146716021124910414536593487703944927659011346484285356514
500	0.02362710955253510555549371533589272768459511168489055499050676783601099888984889400234576677485265714
Table 15: $-\lambda_2/\mu$ for the limit cycle of the vdP oscillator calculated with the PTM with $\delta = 10^{-100}$ and using Padé approximants of order $[100, 100]$. We are working with 400 digits of accuracy.
Table 16: $-\lambda_2/\mu$ for the limit cycle of the vdP oscillator calculated with the PTM with $\delta = 10^{-100}$ and using Padé approximants of order $[100, 100]$. We are working with 400 digits of accuracy.

μ	$-\lambda_2/\mu$	
110	1.7817417761171178561928827587863025739224996437	
120	1.78250392937082941610724480011541707889164832944677706711792991199012605451994430665082438886460679	
130	1.783130280000576277667326593369960630470197016792330933312494238534719463590010406658115773094781	
140	1.78365284338464253621204416692650183429620137623910499814113624630908746377894070976535630353929235	
150	1.784094489474281384775781089735677536861981176623433450021721638599529601577652025870138700433793632	
160	1.7844719550310100135393545267883564339384278650521775774833236888347464688185859506758351012645	
170	1.78479774397897689317468893005097928635235893813817742776247383023387329032634672652905655073469093	
180	1.7850813857556651353716878455041473733113048978931491488988732881327030124221578915310917061227	
190	1.785330238285626983940515713680162731133602067838367019361120762648997832671422501488887959497406314	
200	1.7855500656176158303250043686660106108894588779644411585066347442755893628189952070729580058828599	
210	1.7857457153929018761906010073244762753374752991654059054006527398180248009324404673341310369089923	
220	1.785920152382954857581870251563661415730721418582478831553131688819300008923659347520109979634651	
230	1.78607709576433483458050814320925625010100723267896790577213062892200215137142644043780069385592768	
240	1.78621864218880432666141602650328455888777028242935062422468466843520235945387897018160595975864711	
250	1.7863471918225207675860263018010957365719695877578972310258294366824673573470078599821537278119116799	
260	1.78646407455974861580521083271621386904466083595546071015980841096771770927139739876830699848280506	
270	1.786570836585677596850587542528272894483680724589545887857935180926481328471104819648946604728776	
280	1.786668683149796316538550658528656894742449513732663205719913880404726743570129954166538455285657	
290	1.786758638207754471919636844348120047515028720504879464825540323273295096269209970571599617525039	
300	1.786841578931394234762525152135118915838517266491600497379522166726047689934421913201377666690037	
Table 17: $-\lambda_2/\mu$ for the limit cycle of the vdP oscillator calculated with the PTM with $\delta = 10^{-100}$ and using Padé approximants of order $[100, 100]$. We are working with 400 digits of accuracy.

μ	$-\lambda_2/\mu$
310	1.7869182600029727673597152003923831414730216898318076648842973224979232446064090615790200414200407189
320	1.786989337629455931661049319641564910481790825723031923904587053553234660575707455704543255062053
330	1.7870553670302173043773369971807219363844056477168011988334805127768294002200108710935191890001124151
340	1.7871168544630425549719410515096400605442493705882987648162724681485479221412973068857837595516424
350	1.787172294755949622270813795125046574828634758936425040263911671968868749211504303315697767991469
360	1.787227873329173638842466056820317976341785085274115037187242717356825305778005223761050312930600055
370	1.7872781226065060493503830043551893593116947812401825951895124190481442849176124411636760433224566
380	1.78732575544539468140766059554097350460457138093721401903771704267414341752063775305503969961407
390	1.787369579208141295020175549763917328519462963091142673040983315391092792637724438750655709670007
400	1.78741132394241746627004994746814329090893365912883597498643245618153417122852332673112879429068705
410	1.787450667100508488455778812942116424086362427920748538023274495073201991195781681181840406396373946
420	1.78749162162012631217656107122300769948271113437573919500300848142429586114030265442062864099058
430	1.78752294107862246014027319137451426738456114312584519468709367969398063989010159500063230616684
440	1.7875561972005651470936953238290201139742119945826491904716798402091028061627663758359330530948315725
450	1.7875877215080659977592895143012526665304134592667153611703894251799888412617813802116762523874582
460	1.78761740359595150107354845875690390830752063997057781986370925266336760411321062298405807461
470	1.787640067866913179064813724119945826491904716798402091028061627663758359330530948315725
480	1.787673107487592450914058646464786161575422336916547213315919220881781385745031811935460598944
490	1.7876988549146374503290783372522943784488958534405638431868945959936268838849740536326528344106
500	1.78772339547246725106511069698064466410839419315228358238365991387804113862476695523341720712451181