On systems of interacting populations influenced by multiplicative white noise

Nikolay K. Vitanov, Kaloyan N. Vitanov

Institute of Mechanics, Bulgarian Academy of Sciences
Acad. G. Bonchev Str., Bl. 4, 1113 Sofia, Bulgaria

Abstract

We discuss a model of a system of interacting populations for the case when: (i) the growth rates and the coefficients of interaction among the populations depend on the populations densities; and (ii) the environment influences the growth rates and this influence can be modelled by a Gaussian white noise. The system of model equations for this case is a system of stochastic differential equations with: (i) deterministic part in the form of polynomial nonlinearities; and (ii) state-dependent stochastic part in the form of multiplicative Gaussian white noise. We discuss both the cases when the formal integration of the stochastic differential equations leads: (i) to integrals of Ito kind; or (ii) to integrals of Stratonovich kind. The systems of stochastic differential equations are reduced to the corresponding Fokker-Planck equations. For the Ito case and for the case of 1 population analytic results is obtained for the stationary PDF of the the population density. For the case of more than one population and for the both Ito case and Stratonovich case the detailed balance conditions are not satisfied and because of this exact analytic solutions of the corresponding Fokker-Planck equations for the stationary PDFs for the population densities are not known. We obtain approximate solutions for this case by the methodology of the adiabatic elimination.

1 Introduction

The research on the nonlinear dynamics of the complex systems increases steadily in the last two decades (for several examples see Appendix A). Many complex systems are influenced by random events. Because of this the theory of stochastic processes is much used in the modeling of the processes in the complex systems [1]-[5]. In this paper we discuss some mathematical aspects of the theory of interacting populations for the case when the growth rates are influenced by environmental fluctuations. For the case when the fluctuations can be modelled by Gaussian white noise we shall obtain as model equations a system of stochastic differential equations that contain multiplicative noise. For the case of single population the model equation will be of the kind

\[\dot{\rho} = F(\rho) + \eta G(\rho) \]

(1.1)
where \(F(\rho) \) and \(G(\rho) \) are polynomials of \(\rho \) and \(\eta \) is Gaussian white noise. For the case of system of interacting populations the corresponding model equations will be of the kind

\[
\dot{\rho}_i = F_i(\rho_1, \ldots, \rho_n) + \eta_i G_i(\rho_1, \ldots, \rho_n); \quad i = 1, \ldots, n \tag{1.2}
\]

where \(F \) and \(G \) are polynomials and \(\eta_i \) are Gaussian white noises.

The organization of the article is as follows. We discuss the model equations for the dynamics of interacting populations in the following section. The presence of Gaussian white noise in the growth rates of populations leads to a system of stochastic differential equations with multiplicative noise. The integration of these stochastic differential equations leads in principle to stochastic integrals of Itô kind or to stochastic integrals of Stratonovich kind. Section 3 is devoted to the theory for the case when the stochastic integrals are of Itô kind. Section 4 is devoted to theory for the case when the stochastic integrals are of Stratonovich kind. Several concluding remarks are summarized in Section 5. In addition four appendices supply the reader with information about the examples of research on complex systems, about the theory of stochastic differential equations containing multiplicative white noise, theory of stochastic differential equations of Itô and Stratonovich kind and their relation to the Fokker-Plank equation (known also as forward Kolmogorov equation).

2 Investigated equations and population dynamics

The classical model of interacting populations is based on a system of equations of Lotka-Volterra kind [6, 7]:

\[
\dot{\rho}_i = r_i \rho_i(t) \left(1 - \sum_{j=1}^{n} \alpha_{ij} \rho_j(t) \right) \tag{2.1}
\]

where \(\rho_i \) are the densities of the population members, \(r_i \) are the birth rates, and \(\alpha_{ij} \) are coefficients of interaction between the populations \(i \) and \(j \). Let us now suppose that the birth rates and interaction coefficients depend on the density of the populations and in addition the birth rates fluctuate:

\[
r_i = r_i^0 \left(1 + \sum_{j=1}^{n} r_{ij} \rho_j \right) + \eta_i; \quad \alpha_{ij} = \alpha_{ij}^0 \left(1 + \sum_{j=1}^{n} \alpha_{ijk} \rho_k \right) \tag{2.2}
\]

in Eq. (2.2) \(r_{ij} \) and \(\alpha_{ijk} \) are parameters and \(\eta_i \) are Gaussian white noises. The system of equations (2.2) for \(\eta_i = 0 \) has been introduced and investigated in [8]-[14]. The presence of \(\eta_i \) however influences much the system dynamics [15, 16].

The substitution of Eq. (2.2) in Eq. (2.1) leads to a system of model equations.
of the kind

\[\dot{\rho}_i = F_i(\rho_1, \ldots, \rho_n) + \eta_i G_i(\rho_1, \ldots, \rho_n); \]

\[F_i(\rho_1, \ldots, \rho_n) = r_i^0 \rho_i \left\{ 1 - \sum_{j=1}^{n} (\alpha_{ij}^0 - r_{ij}) \rho_j - \sum_{j=1}^{n} \sum_{k=1}^{n} \alpha_{ij}^0 (\alpha_{ij} + r_{ij}) \rho_j \rho_k \right\} \]

\[G_i(\rho_1, \ldots, \rho_n) = \rho_i \left(1 - \sum_{j=1}^{n} \alpha_{ij}^0 \rho_j - \sum_{j=1}^{n} \sum_{k=1}^{n} \alpha_{ij}^0 \alpha_{ijk} \rho_j \rho_k \right) \] (2.3)

For the case of one population (we set \(r_i^0 = r; r_{11} = 0; \alpha_{11}^0 = \alpha; \alpha_{111} = 0 \)) the model equation is

\[\dot{\rho} = F(\rho) + \eta G(\rho) \]

\[F(\rho) = r \rho - \alpha \rho^2; \quad G(\rho) = \rho - \alpha \rho^2 \] (2.4)

Below we shall discuss more general equation in comparison to Eq. (2.4). We shall discuss the case where \(F(\rho) \) and \(G(\rho) \) are polynomials of arbitrary orders \(p_1 \) and \(p_2 \), i.e.,

\[F(\rho) = \sum_{i=1}^{p_1} \mu_i \rho^i; \quad G(\rho) = \sum_{i=1}^{p_2} \theta_i \rho^i \] (2.5)

where \(\mu_i \) and \(\theta_i \) are parameters. In this case Eq. (2.4) becomes

\[\dot{\rho} = \sum_{i=1}^{p_1} \mu_i \rho^i + \sum_{i=1}^{p_2} \theta_i \rho^i \] (2.6)

The formal integration of Eq. (2.4) (see also Appendix B) leads to the equation

\[\rho(t) = \rho(t = 0) + \int_0^t d\tau F[\rho(\tau)] + \int_0^t dW_\tau G[\rho(\tau)], \] (2.7)

where \(W_\tau \) is a Wiener process. The integral \(\int_0^t dW_\tau G(\rho(\tau)) \) can be integral of Ito kind or integral of Stratonovich kind (for more discussion see Appendix B). In the next two sections we shall discuss these two cases.

3 Case of stochastic differential equations of Ito kind

For this case Eq. (2.6) can be written as

\[d\rho_i = F(\rho_i)dt + G(\rho_i)dW_t, \] (3.1)
where we denote the time dependence as subscript and in general F and G are
given by Eqs.(2.5). The Fokker-Planck equation that corresponds to Eq.(3.1) is
\[
\frac{\partial}{\partial t} p(x, t) = -\frac{\partial}{\partial x} \left\{ p(x, t) \left[\sum_{i=1}^{p_1} \mu_i x^i \right] \right\} + \frac{1}{2} \frac{\partial^2}{\partial x^2} \left\{ p(x, t) \left[\sum_{i=1}^{p_2} \sum_{j=1}^{p_2} \theta_i \theta_j x^{i+j} \right] \right\}
\]
(3.2)

We can formulate the following

Proposition 1. Let b_1 and b_2 be natural boundary points ($-\infty \leq b_1 < b_2 \leq \infty$). Let in addition \(\sigma(x) = \sum_{i=1}^{p_2} \theta_i x^i > 0 \) in \((b_1, b_2)\). Then the diffusion process X_t that is solution of the stochastic differential equation Eq.(3.1) has unique invariant distribution with p.d.f.

\[
p^0(x) = \frac{N}{\sum_{i=1}^{p_2} \sum_{j=1}^{p_2} \theta_i \theta_j x^{i+j}} \exp \left(\int_c^x dy \frac{2 \sum_{i=1}^{p_1} \mu_i y^i}{\sum_{i=1}^{p_2} \sum_{j=1}^{p_2} \theta_i \theta_j y^{i+j}} \right), \quad \forall x \in (b_1, b_2) \]
(3.3)

if the quantity

\[
N^{-1} = \int_{b_1}^{b_2} dx \frac{1}{\sum_{i=1}^{p_2} \sum_{j=1}^{p_2} \theta_i \theta_j x^{i+j}} \exp \left(\int_c^x dy \frac{2 \sum_{i=1}^{p_1} \mu_i y^i}{\sum_{i=1}^{p_2} \sum_{j=1}^{p_2} \theta_i \theta_j y^{i+j}} \right), \quad b_1 < c < b_2 \]
(3.4)

has finite value. In addition each time-dependent solution $p(x, t)$ of the Fokker-Planck equation (3.2) in \((b_1, b_2)\) satisfies

\[
\lim_{t \to \infty} p(x, t) = p^0(x) \]
(3.5)

Proof. The proposition follows from the Observation 1 from the Appendix B for the case when

\[
f(x) = \sum_{i=1}^{p_1} \mu_i x^i; \quad \sigma(x) = \sum_{i=1}^{p_2} \theta_i x^i.\]

\[\square\]

Let us apply the Proposition 1 to the case of one population modelled by Eq.(2.4). In this case $\mu_1 = r; \mu_2 = -\alpha r; \theta_1 = 1; \theta_2 = -\alpha$. We note that Proposition 1 is valid when $\sigma > 0$. In our case this means that $\rho < 1/\alpha$ ($\rho \geq 0$).

For the quantity N from Eq.(3.3) we obtain

\[
N^{-1} = \frac{(\alpha c - 1)^{2r}}{r(4r^2 - 1)c^{2r}} \left[\frac{b_2^{2r-1}((r - \alpha b_2)(2r + 1) + \alpha^2 b_2^2)}{(1 - \alpha b_2)^{2r+1}} - \frac{b_1^{2r-1}((r - \alpha b_1)(2r + 1) + \alpha^2 b_1^2)}{(1 - \alpha b_1)^{2r+1}} \right]
\]
(3.6)
and for $p^0(x)$ from Eq. (3.3) we obtain

$$p^0(x) = r(1 - 4r^2) \left[- \frac{b_2^{2r-1}((r - \alpha b_2)(2r + 1) + \alpha^2 b_2^2)}{(1 - \alpha b_2)^{2r+1}} + \frac{b_1^{2r-1}((r - \alpha b_1)(2r + 1) + \alpha^2 b_1^2)}{(1 - \alpha b_1)^{2r+1}} \right]^{-1} \frac{1}{x^{2-2r}(1 - \alpha x)^{2r+2}} \quad (3.7)$$

Let us now discuss the case of more than one population. For this case we have to solve the system of stochastic differential equations

$$dX_i(t) = F_i[X_1(t), \ldots, X_n(t)] + G_i[X_1(t), \ldots, X_n(t)]dW_i(t), \ i = 1, \ldots, n \quad (3.8)$$

where $W_j(t)$ are independent Wiener processes and

$$F_i(\rho_1, \ldots, \rho_n) = r_i^0 \rho_i \left\{ 1 - \sum_{j=1}^{n} (\alpha_{ij} - r_j)\rho_j - \sum_{j=1}^{n} \sum_{l=1}^{n} \alpha_{ij}(\alpha_{ijl} + r_l)\rho_j\rho_l - \sum_{j=1}^{n} \sum_{l=1}^{n} \sum_{k=1}^{n} \alpha_{ij}\alpha_{ijkl}\rho_j\rho_l \rho_k \right\}$$

$$G_i(\rho_1, \ldots, \rho_n) = \rho_i \left(1 - \sum_{j=1}^{n} \alpha_{ij}\rho_j - \sum_{j=1}^{n} \sum_{k=1}^{n} \alpha_{ij}\alpha_{ijk}\rho_j\rho_k \right) \quad (3.9)$$

The corresponding Fokker-Planck equation is ($G_{ij} = G_i \delta_{ij}$ where δ_{ij} is the Kronecker delta-symbol)

$$\frac{\partial}{\partial t}p = -\sum_{i=1}^{n} \frac{\partial}{\partial x_i}[pF_i(x_1, \ldots, x_n, t)] + \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial}{\partial x_i} \frac{\partial}{\partial x_j}[pG_{ij}(x_1, \ldots, x_n, t)G_{ji}(x_1, \ldots, x_n, t)] \quad (3.10)$$

We are interested in stationary solutions p_s of Eq. (3.10). In the general case such solutions can be obtained numerically. A hope to obtain analytic solutions exists mainly when the conditions for detailed balance are satisfied [17]. For the case of Eq. (3.10) these conditions are

$$\epsilon_i F_i(\vec{c} \cdot \vec{x})p_s(\vec{x}) = -F_i(\vec{x})p_s(\vec{x}) + \sum_{j=1}^{n} \frac{\partial}{\partial x_j}[G_{ij}(\vec{x})p_s(\vec{x})]$$

$$\epsilon_i^2 G_{ii}(\vec{c} \cdot \vec{x}) = G_{ii}^2(\vec{x}) \quad (3.11)$$

where $\epsilon_i = \pm 1$. One can easily show that that the structure of G_i from (3.9) is such that the second condition for existence of detailed balance from (3.11) is not satisfied. Then one can hope to obtain approximate analytic solutions for particular cases of Eq. (3.10).

One possible way for obtaining approximate solutions of the Fokker-Planck equation for the case of more than one population is the connected to the method of adiabatic elimination [17]. In order to illustrate this method we consider the following particular case of the Eqs. (2.3). Let $\alpha_{ij}^0 = 0$ and $\alpha_{ijk} = 0$. In addition
let $\eta_2 = 0$. For the case of two populations we obtain the following system of equations

\begin{align*}
\frac{d\rho_1}{dt} &= r_0^1 \rho_1 (1 + r_{11} \rho_1 + r_{12} \rho_2) dt + \rho_1 dW_1 \\
\frac{d\rho_2}{dt} &= r_0^2 \rho_2 (1 + r_{21} \rho_1 + r_{22} \rho_2) dt
\end{align*}

(3.12)

Let ρ_2 be the fast relaxing variable, i.e., $d\rho/\,dt$ tends to 0 very fast in the time. Then in the second equation of Eqs. (3.12) one can set $d\rho/\,dt = 0$ and then the resulting equation has solutions $\rho_2 = 0$ (extinction of the second population) or

$$
\rho_2 = -\frac{1}{r_{22}} - \frac{r_{21}}{r_{22}} \rho_1
$$

(3.13)

which corresponds to a ”slaving” of the ”fast” variable ρ_2 by the ”slow” variable ρ_1. The substitution of Eq. (3.13) in the first equation of Eqs. (3.12) leads to the stochastic differential equation

$$
\frac{d\rho_1}{dt} = \left[r_1^0 \left(r_{11} - \frac{r_{12} r_{21}}{r_{22}} \right) \rho_1^2 + r_1^0 \left(1 - \frac{r_{12}}{r_{22}} \right) \rho_1 \right] dt + \rho_1 dW_1
$$

(3.14)

Eq. (3.14) can be treated by the methodology discussed above. In order to obtain an analytic result we have to assume

$$
r_1^0 = \frac{2}{1 - r_{12}/r_{22}}
$$

(3.15)

The application of the methodology connected to Proposition 1 leads to the distribution

$$
p^0(\rho_1) = A \rho_1^2 \exp(2\mu_2 \rho_1)
$$

(3.16)

where

$$
A = \frac{\mu_2^3}{\left(\frac{\mu_2^2 b_2^2}{2} - \frac{\mu_2 b_2}{2} + \frac{1}{4} \right) \exp(2\mu_2 b_2) - \left(\frac{\mu_2^2 b_1^2}{2} - \frac{\mu_2 b_1}{2} + \frac{1}{4} \right) \exp(2\mu_2 b_1)}
$$

and

$$
\mu_2 = \frac{2r_{11}(r_{22} - r_{11})}{r_{22} - r_{12}} < 0
$$

(3.17)

4 Case of stochastic differential equations of Stratonovich kind

For this case Eq. (2.6) can be written as

$$
\frac{d\rho_t}{dt} = \left[F(\rho_t) + \frac{1}{2} G'(\rho_t)G(\rho_t) \right] dt + G(\rho_t) dW_t,
$$

(4.1)

where we again again denote the time dependence as subscript and in general F and G are given by Eqs. (2.5). According to Appendix B the Fokker-Planck
The equation that corresponds to Eq.(4.1) is

\[\frac{\partial}{\partial t} p(x,t) = -\frac{\partial}{\partial x} \left\{ p(x,t) \left[\left(\sum_{i=1}^{p_1} \mu_i \rho^i \right) + \frac{1}{2} \left(\sum_{i=1}^{p_1} \sum_{j=1}^{p_2} i \theta_i \theta_j \rho^{i+j-1} \right) \right] \right\} + \frac{1}{2} \frac{\partial^2}{\partial x^2} \left\{ p(x,t) \left[\sum_{i=1}^{p_2} \sum_{j=1}^{p_2} \theta_i \theta_j \rho^{i+j} \right] \right\} \]

(4.2)

We can formulate the following

Proposition 2. Let \(b_1 \) and \(b_2 \) be natural boundary points \((-\infty \leq b_1 < b_2 \leq \infty)\). Let in addition \(\sigma(x) = \sum_{i=1}^{p_2} \theta_i x^i > 0 \) in \((b_1, b_2)\). Then the diffusion process \(X_t \) that is solution of the stochastic differential equation Eq.(4.1) has unique invariant distribution with p.d.f.

\[p^0(x) = \frac{\mathcal{N}}{\sum_{i=1}^{p_2} \sum_{j=1}^{p_2} \theta_i \theta_j x^{i+j}} \exp \left(\int_c^x dy \frac{2 \left(\sum_{i=1}^{p_1} \mu_i y^i + \frac{1}{2} \sum_{i=1}^{p_1} \sum_{j=1}^{p_2} i \theta_i \theta_j y^{i+j-1} \right)}{\sum_{i=1}^{p_2} \sum_{j=1}^{p_2} \theta_i \theta_j y^{i+j}} \right), \quad \forall x \in (b_1, b_2), \]

(4.3)

if the quantity

\[\mathcal{N}^{-1} = \int_{b_1}^{b_2} dx \frac{1}{\sum_{i=1}^{p_1} \sum_{j=1}^{p_2} \theta_i \theta_j x^{i+j}} \exp \left(\int_c^x dy \frac{2 \left(\sum_{i=1}^{p_1} \mu_i y^i + \frac{1}{2} \sum_{i=1}^{p_1} \sum_{j=1}^{p_2} i \theta_i \theta_j y^{i+j-1} \right)}{\sum_{i=1}^{p_2} \sum_{j=1}^{p_2} \theta_i \theta_j y^{i+j}} \right), \]

(4.4)

has finite value. In addition each time-dependent solution \(p(x,t) \) of the Fokker-Planck equation (4.2) in \((b_1, b_2)\) satisfies

\[\lim_{t \to \infty} p(x,t) = p^0(x) \]

(4.5)

Proof. The proposition follows from the Observation 2 from the Appendix C for the case when

\[f(x) = \sum_{i=1}^{p_1} \mu_i x^i; \quad \sigma(x) = \sum_{i=1}^{p_2} \theta_i x^i. \]

\(\square \)

Let us apply the Proposition 2 to the case of one population modelled by Eq.(2.4). In this case \(\mu_1 = r; \ \mu_2 = -\alpha r; \ \theta_1 = 1; \ \theta_2 = -\alpha \). We note that
Proposition 2 is valid when $\sigma > 0$. In our case this means that $\rho < 1/\alpha$ ($\rho \geq 0$). For the quantity N from Eq. (4.4) we obtain

$$N^{-1} = \int_{b_1}^{b_2} dx \frac{(\alpha c - 1)^{2r-3} x^{2r-1}}{e^{2r+1}(\alpha x - 1)^{2r-1}} \exp \left[-2\alpha c + \frac{2\alpha x}{(\alpha x - 1)(\alpha c - 1)} \right]$$ \hspace{1cm} (4.6)

and for the distribution $p^0(x)$ we obtain

$$p^0(x) = \int_{b_1}^{b_2} dy \frac{y^{2r-1}}{(\alpha y - 1)^{2r-1}} \exp \left[-2\alpha c + \frac{2\alpha y}{(\alpha y - 1)(\alpha c - 1)} \right]$$ \hspace{1cm} (4.7)

Let us now discuss the case of more than one population. For this case we have to solve the system of stochastic differential equations

$$dX_i(t) = \left\{ F_i[X_1(t), \ldots, X_n(t)] + \frac{1}{2} G_i(X_1(t), \ldots, X_n(t)) \frac{\partial}{\partial x_i} [G_i(X_1(t), \ldots, X_n(t))] \right\} + G_i[X_1(t), \ldots, X_n(t)]dW_i(t), \; i = 1, \ldots, n \hspace{1cm} (4.8)$$

where $W_j(t)$ are independent Wiener processes and $F_i(\rho_1, \ldots, \rho_n)$ and $G_i(\rho_1, \ldots, \rho_n)$ are the same as in Eq. (3.29). The corresponding Fokker-Planck equation is ($G_{ij} = G_i\delta_{ij}$ where δ_{ij} is the Kronecker delta-symbol)

$$\frac{\partial}{\partial t} p = -\sum_{i=1}^{n} \frac{\partial}{\partial x_i} \left\{ p \left[F_i(x_1, \ldots, x_n, t) + \frac{1}{2} \sum_{j=1}^{n} \sum_{k=1}^{n} G_{ij}(x_1, \ldots, x_n, t) \frac{\partial}{\partial x_i} [G_{ik}(x_1, \ldots, x_n, t)] \right] \right\} + \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial}{\partial x_i} \frac{\partial}{\partial x_j} \left[p G_{ij}(x_1, \ldots, x_n, t) G_{ji}(x_1, \ldots, x_n, t) \right]$$ \hspace{1cm} (4.9)

We are interested in stationary solutions p_s of Eq. (4.9). In the general case such solutions can be obtained only numerically. Analytic solutions can be obtained when the conditions for detailed balance are satisfied \cite{17}. For the case of Eq. (4.9) the second of these conditions is the same as the second condition from (3.11). G_i for the case of Stratonovich is the same as G_i from the case of Ito. Then the second condition for existence of detailed balance is not satisfied. Then one can hope to obtain approximate analytic solutions for particular cases of Eq. (4.9) by the method of the adiabatic elimination discussed in the previous section.

Let us consider the following particular case of the Eqs. (2.3). Let $\alpha_{ij} = 0$ and $\alpha_{ijk} = 0$. In addition let $\eta_2 = 0$. For the case of two populations we obtain the following system of equations

$$d\rho_1 = [\rho_1^0(1 + r_{11}\rho_1 + r_{12}\rho_2) + \rho_1/2]dt + \rho_1dW_1$$

$$d\rho_2 = r_2^0\rho_2(1 + r_{21}\rho_1 + r_{22}\rho_2)dt$$ \hspace{1cm} (4.10)
Let again ρ_2 be the fast relaxing variable, i.e., $d\rho/dt$ tends to 0 very fast in the time. Then in the second equation of Eqs. (4.10) one can set $d\rho/dt = 0$ and then the resulting equation has solutions $\rho_2 = 0$ (extinction of the second population) or

$$\rho_2 = -\frac{1}{r_{22}} - \frac{r_{21}}{r_{22}} \rho_1$$

which corresponds to a "slaving" of the "fast" variable ρ_2 by the "slow" variable ρ_1. The substitution of Eq. (4.11) in the first equation of Eqs. (4.10) leads to the stochastic differential equation

$$d\rho_1 = \left[r_1^0 \left(r_{11} - \frac{r_{12}r_{21}}{r_{22}}\right) \rho_1^2 + \left[r_1^0 \left(1 - \frac{r_{12}}{r_{22}}\right) + 1/2\right] \rho_1\right] dt + \rho_1 dW_1$$

Eq. (4.12) can be treated by the methodology discussed above. In order to obtain an analytic result we have to assume

$$r_1^0 = \frac{3/2}{1 - r_{12}/r_{22}}$$

The application of the methodology connected to Proposition 2 leads to the distribution

$$p^0(\rho_1) = A \rho_1^{b_1} \exp(2\mu_2 \rho_1)$$

where

$$A = \frac{\mu_2^3}{\left(\frac{\mu_2 b_2^2}{2} - \frac{\mu_2 b_2}{2} + \frac{1}{4}\right) \exp(2\mu_2 b_2) - \left(\frac{\mu_2 b_1^2}{2} - \frac{\mu_2 b_1}{2} + \frac{1}{4}\right) \exp(2\mu_2 b_1)}$$

and

$$\mu_2 = \frac{3r_{11}(r_{22} - r_{11})}{2(r_{22} - r_{12})} < 0$$

5 Concluding remarks

We note that the environment can influence not only the birth rates of the interacting populations. The environment can influence also the interaction coefficients. Thus the discussed above model is the simplest of the three categories models of interacting populations: (i) Models accounting for the influence of environment on the growth rates (one model of this class is discussed in this paper); (ii) Models accounting for the influence of the environment on the coefficients of the interaction among the populations; and (iii) Models accounting for the influence of the environment both on the growth rates and the coefficients of interactions among the populations. The equations for all classes of the models are discussed elsewhere [15].

One result of our study above is that analytic solutions of the Fokker-Planck equations connected to the dynamic of interacting populations can be obtained for the case of one population. For two or more populations one can obtain approximate solutions in some particular cases. In the general case one has to solve the model equations numerically with the help of computers.
A Nonlinear dynamics and interacting populations

The nonlinear characteristics of the complex systems are intensively studied in different areas of science \[18, 19\] such for an example as the optics \[20, 21\], fluid mechanics \[22\], biology \[23\] or population dynamics \[24\] - \[27\], etc. \[28\] - \[44\]. Various mathematical methods connected to nonlinear time series analysis \[45\] and nonlinear PDEs \[46\] - \[55\] are used in the study of these systems. In this paper we discuss a class of models of the the dynamics of interacting populations. These models consist of equations that contain only time dependence of the population densities. What we add to the previous version of the models \[8\] - \[12\] is an influence of the environment on the growth rates of the interacting populations. This (random) influence has the following effect: instead of equations for the trajectories of the populations in the phase space of the population densities we shall write and solve equations for the probability density functions of the population densities.

B Multiplicative white noise. Stochastic integrals of Ito and Stratonovich kind

Let us consider a system that is influenced by noise. The current state of the system is \(X(t)\) and the intensity of the noise depends on \(X(t)\). Let the evolution of the system state be described by the stochastic differential equation

\[
\dot{X}(t) = f[X(t)] + \sigma[X(t)]\zeta(t), \quad X(0) = X_0 \tag{B.1}
\]

If \(\sigma[X(t)] = 0\) then Eq.\,(B.1) is deterministic one. If \(\sigma[X(t)] = \text{const}\) and if \(\zeta(t)\) is Gaussian white noise then Eq.\,(B.1) is equation of Langevin kind. As a more general case \(\sigma[X(t)]\) is not a constant and if \(\zeta(t)\) is a Gaussian white noise then Eq.\,(B.1) describes the case of multiplicative Gaussian white noise. Below we shall discuss several features of the solution of Eq.\,(B.1) for the case of presence of the multiplicative Gaussian white noise.

The formal integration of eq.(B.1) leads to the integral equation \[56, 57\]

\[
X_t = X_0 + \int_0^t d\tau \ f(X_\tau) + \int_0^t dW_\tau \ \sigma(X_\tau), \tag{B.2}
\]

where \(W_\tau\) is a Wiener process \((dW_\tau = \zeta(\tau)d\tau)\). The second integral from Eq.\,(B.2), namely \(\int_0^t dW_\tau \ \sigma(X_\tau)\), is a stochastic integral. There are two interpretations of this integral: (a) as integral of Ito kind; and (b) as integral of Stratonovich kind. It depends on the characteristics of the modelled system which kind of integral has to be used.

B.1 Interpretation of the stochastic integral as an integral of Ito kind

Let us interpret the above stochastic integral as

\[
I_t = \int_0^t dW_\tau \sigma(X_\tau) = \lim_{\delta_n \downarrow 0} I_t^{(n)} \tag{B.3}
\]
In Eq. (B.3) qa lim,\(n \rightarrow 0 \) is a quadratic average limit. This limit has to be understood as tendency to 0 of the expectation \(E \mid I_t - I_t^{(n)} \mid^2 \):

\[
\lim_{\delta_n \downarrow 0} E \mid I_t - I_t^{(n)} \mid^2 = 0,
\]

(B.4)

where

\[
I_t^{(n)} = \sum_{i=0}^{n-1} \sigma(X_{t_i})(W_{t_{i+1}} - W_{t_i}),
\]

(B.5)

and \(0 = t_0 < t_1 < \cdots < t_n \); \(\delta_n = \max_i(t_{i+1} - t_i) \). The integral of kind (B.3) is called integral of Ito kind. Then the equation (B.2) can be written in the following differential form

\[
dX_t = f(X_t)dt + \sigma(X_t)dW_t
\]

(B.6)

The initial condition is \(X_0 = X(0) \) and \(X_0 \) is a random variable which probability density function is independent on the Wiener process \(W_t \).

B.2 Interpretation of the stochastic integral as an integral of Stratonovich kind

The model system can be of such kind that the stochastic integral in Eq. (B.2) is not an integral of Ito kind. This situation arises when for an example the noise process has a finite correlation time. Such processes are present frequently in the real systems and the corresponding stochastic integral is integral of Stratonovich kind. The interpretation of the stochastic integral from Eq. (B.2) for the last case is as follows:

\[
S_t = \int_0^t dW(\tau) \circ \sigma(X_\tau) = qalim_{\delta_n \downarrow 0} \sum_{i=0}^{n-1} \sigma\left[\frac{1}{2}(X_{t_{i+1}} + X_{t_i})\right](W_{t_{i+1}} - W_{t_i}).
\]

(B.7)

Then Eq. (B.2) can be written in the following differential form

\[
dX_t = f(X_t)dt + \sigma(X_t) \circ dW_t.
\]

(B.8)

Let \(\sigma \) be continuous differentiable function. Then a relationship exists between the integrals of Ito and Stratonovich kind. The relationship is as follows:

\[
\int_0^t dW_\tau \circ \sigma(X_\tau) = \int_0^t dW_\tau \sigma(X_\tau) + \frac{1}{2} \int_0^t d\tau \sigma'(X_\tau)\sigma(X_\tau)
\]

(B.9)

We note that for the case of additive white noise \(\sigma = \text{const} \). Then \(\sigma' = 0 \) and the Ito integral coincides with the Stratonovich integral.

We obtain on the basis of Eq. (B.9) that the Stratonovich differential equation (B.8) is equivalent to the following stochastic differential equation of Ito kind:

\[
dX_t = [f(X_t) + \frac{1}{2} \sigma'(X_t)\sigma(X_t)]dt + \sigma(X_t)dW_t
\]

(B.10)

In this paper we shall assume that \(\sigma \) is continuously differentiable.
C Probability density function for the case of multiplicative white noise and Ito kind of stochastic differential equation

In this case the solution X_t of the Eq.(B.6) is a Markov process and the p.d.f. $p(x,t)$ for the values of X (if the p.d.f. exists) is given by the Fokker-Planck equation [17]:

$$\frac{\partial}{\partial t}p(x,t) = -\frac{\partial}{\partial x}[p(x,t)f(x)] + \frac{1}{2} \frac{\partial^2}{\partial x^2}[p(x,t)\sigma^2(x)],$$ \hspace{1cm} (C.1)

with initial condition $p(x,0) = p_0(x)$. Let us now discuss the behavior of the solution $p(x,t)$ of Eq.(C.1) at $t \to \infty$. We shall formulate an Observation and for this we need the notion of natural boundary point.

Let the interval of possible values of the diffusion process X that is solution of Eq.(B.6) be within the interval $[b_1, b_2]$. If f and σ are continuously differentiable in this interval then the solution of Eq.(B.6) exists till the time point when one of the boundary points $b_{1,2}$ is reached. After that time the behavior of the system depends on the boundary conditions. When the boundary point b_1 can’t be reached for finite time it is called inaccessible (the same is the situation with the point b_2). The inaccessible boundary point b_1 is called natural when the solution $X(x_0)$ that starts from $x_0 \in (b_1,c), c < b_2$ accesses first the point c with probability 1. This means that for $t \to \infty$ the point b_1 almost surely will be not accessed.

What follows is [58]

Observation 1:

Let b_1 and b_2 be natural boundary points ($-\infty \leq b_1 < b_2 \leq \infty$). Let in addition $\sigma(x) > 0$ in (b_1, b_2). Then the diffusion process X_i that is solution of the stochastic differential equation Eq.(B.6) has unique invariant distribution with p.d.f.

$$p^0(x) = \frac{N}{\sigma^2(x)} \exp \left(\int_c^x dy \frac{2f(y)}{\sigma^2(y)} \right), \hspace{1cm} \forall x \in (b_1, b_2) \hspace{1cm} (C.2)$$

if the quantity

$$N^{-1} = \int_{b_1}^{b_2} dx \frac{1}{\sigma^2(x)} \exp \left(\int_c^x dy \frac{2f(y)}{\sigma^2(y)} \right), \hspace{1cm} b_1 < c < b_2 \hspace{1cm} (C.3)$$

has finite value. In addition each time-dependent solution $p(x,t)$ of the Fokker-Planck equation (C.1) in (b_1, b_2) satisfies

$$\lim_{t \to \infty} p(x,t) = p^0(x) \hspace{1cm} (C.4)$$

Let us now consider the system of coupled stochastic equations

$$\dot{X}_i(t) = f_i[X_1(t), \ldots, X_n(t)] + \sum_{j=1}^m g_{ij}[X_1(t), \ldots, X_n(t)]\zeta_j(t), \hspace{1cm} i = 1, \ldots, n \hspace{1cm} (C.5)$$
where \(\zeta_j(t) \) are independent white Gaussian noises. If the arising in the process of solution of Eq. (C.5) stochastic integrals are of Ito kind then one has to solve the system of coupled stochastic differential equations

\[
dX_i(t) = f_i[X_1(t), \ldots, X_n(t)] + \sum_{j=1}^{m} g_{ij}[X_1(t), \ldots, X_n(t)]dW_j(t), \quad i = 1, \ldots, n
\]

(C.6)

where \(W_j(t) \) are independent Wiener processes. For the conditional probability density \(p = p(x_1, \ldots, x_n, t \mid x_{01}, \ldots, x_{0n}, t) \) of \(\mathbf{X} = (X_1, \ldots, X_n) \) one obtains the Fokker-Planck equation

\[
\frac{\partial}{\partial t} p = -\sum_{i=1}^{n} \frac{\partial}{\partial x_i} [pf_i(x_1, \ldots, x_n, t)] + \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{m} \frac{\partial}{\partial x_i} \frac{\partial}{\partial x_j} [pg_{ij}(x_1, \ldots, x_n, t)g_{ji}(x_1, \ldots, x_n, t)]
\]

(C.7)

D Probability density function for the case of multiplicative white noise and Stratonovich kind of stochastic differential equation

In this case the solution \(X_t \) of the Eq. (B.10) is a Markov process and the p.d.f. \(p(x, t) \) for the values of \(X \) (if the p.d.f. exists) is given by the Fokker-Planck equation \([50, 57] \):

\[
\frac{\partial}{\partial t} p(x, t) = -\frac{\partial}{\partial x} [p(x, t)f^*(x)] + \frac{1}{2} \frac{\partial^2}{\partial x^2} [p(x, t)\sigma^2(x)],
\]

(D.1)

where

\[
f^*(X_t) = f(X_t) + \frac{1}{2} \sigma'(X_t)\sigma(X_t)
\]

(D.2)

with initial condition \(p(x, 0) = p_0(x) \). The behavior of the solution \(p(x, t) \) of Eq. (C.11) at \(t \to \infty \) is as follows. Let the interval of possible values of the diffusion process \(X \) that is solution of Eq. (B.6) be within the interval \([b_1, b_2] \). Let \(f^* \) and \(\sigma \) are continuously differentiable in this interval then the solution of Eq. (B.6) exists till the time point when one of the boundary points \(b_{1,2} \) is accessed. Then we can formulate \([58]\).

Observation 2:

Let \(b_1 \) and \(b_2 \) be natural boundary points \((-\infty \leq b_1 < b_2 \leq \infty)\). Let in addition \(\sigma(x) > 0 \) in \((b_1, b_2)\). Then the diffusion process \(X_t \) that is solution of the stochastic differential equation Eq. (B.6) has unique invariant distribution with p.d.f.

\[
p^0(x) = \frac{\mathcal{N}}{\sigma^2(x)} \exp \left(\int_c^x dy \frac{2f^*(y)}{\sigma^2(y)} \right), \quad \forall x \in (b_1, b_2)
\]

(D.3)

if the quantity

\[
\mathcal{N}^{-1} = \int_{b_1}^{b_2} dx \frac{1}{\sigma^2(x)} \exp \left(\int_c^x dy \frac{2f^*(y)}{\sigma^2(y)} \right), \quad b_1 < c < b_2
\]

(D.4)
has finite value. In addition each time-dependent solution \(p(x,t) \) of the Fokker-Planck equation (D.1) in \((b_1,b_2)\) satisfies

\[
\lim_{t \to \infty} p(x,t) = p^0(x)
\]

Let us now consider the system of coupled stochastic equations

\[
\dot{X}_i(t) = f_i[X_1(t), \ldots, X_n(t)] + \sum_{j=1}^{m} g_{ij}[X_1(t), \ldots, X_n(t)]\zeta_j(t), \ i = 1, \ldots, n
\]

where \(\zeta_j(t)\) are independent white Gaussian noises. If the arising in the process of solution of Eq.(C.5) stochastic integrals are of Stratonovich kind then one has to solve the system of coupled stochastic differential equations

\[
dX_i(t) = \left\{ f_i[X_1(t), \ldots, X_n(t)] + \frac{1}{2} \sum_{j=1}^{n} \sum_{k=1}^{n} g_{kj}(X_1(t), \ldots, X_n(t)) \frac{\partial}{\partial x_i} [g_{jk}(X_1(t), \ldots, X_n(t))] \right\} + \sum_{j=1}^{m} g_{ij}[X_1(t), \ldots, X_n(t)]dW_j(t), \ i = 1, \ldots, n
\]

where \(W_j(t)\) are independent Wiener processes. For the conditional probability density \(p = p(x_1, \ldots, x_n, t \mid x_{01}, \ldots, x_{0n}, t) \) of \(X = (X_1, \ldots, X_n)\) one has the Fokker-Planck equation

\[
\frac{\partial}{\partial t} p = - \sum_{i=1}^{n} \frac{\partial}{\partial x_i} \left\{ p \left[f_i(x_1, \ldots, x_n, t) + \frac{1}{2} \sum_{j=1}^{n} \sum_{k=1}^{n} g_{jk}(x_1, \ldots, x_n, t) \frac{\partial}{\partial x_j} [g_{jk}(x_1, \ldots, x_n, t)] \right] \right\} + \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{m} \frac{\partial}{\partial x_i} \frac{\partial}{\partial x_j} [p g_{ij}(x_1, \ldots, x_n, t) g_{ji}(x_1, \ldots, x_n, t)]
\]

References

[1] M. A. Pinsky, S. Karlin, *An Introduction to Stochastic Modeling*, Elsevier, Amsterdam, 2011.

[2] W. T. Coffey, Yu. P. Kalmykov, J. T. Waldron, *The Langevin Equation*, World Scientific, Singapore, 2004.

[3] S. M. Ross, *Introduction to Probability Models*, Elsevier, Amsterdam, 2010.

[4] X. Gabaix, *Power Laws in Economics and Finance*, Annu. Rev. Econ., 1 (2009) 255 – 293.
[5] A. A. Borovkov, K. A. Borovkov, *Asymptotic Analysis of Random Walks*, Cambridge University Press, Cambridge, UK, 2008.

[6] J.D. Murray, *Lectures on Nonlinear Differential Equation Models in Biology.*, Oxford University Press, Oxford, England, 1977.

[7] P. Turchin, *Complex population dynamics: a theoretical/empirical synthesis*, Princeton University Press, Princeton, NJ, 2003.

[8] Z. I. Dimitrova, N. K. Vitanov, *Influence of Adaptation on the Nonlinear Dynamics of a System of Competing Populations*, Phys. Lett. A, **272** (2000) 368 – 380.

[9] Z. I. Dimitrova, N. K. Vitanov, *Dynamical Consequences of Adaptation of Growth Rates in a System of Three Competing Populations*, J. Phys. A:Math. Gen., **34** (2001) 7459 – 7473.

[10] Z. I. Dimitrova, N. K. Vitanov, *Adaptation and its Impact on the Dynamics of a System of Three Competing Populations*, Physica A, **300** (2001) 91 – 115.

[11] Z. I. Dimitrova, N. K. Vitanov, *Chaotic Pairwise Competition*, Theoretical Population Biology, **66** (2004) 1 – 12.

[12] N. K. Vitanov, Z. I. Dimitrova, H. Kantz, *On the Trap of Extinction and its Elimination*, Phys. Lett. A, **349** (2006) 350 – 355.

[13] N. K. Vitanov, I. P. Jordanov, Z. I. Dimitrova, *On Nonlinear Dynamics of Interacting Populations: Coupled Kink Waves in a System of Two Populations*, Commun. Nonlinear Sci. Numer. Simulat., **14** (2009) 2379 – 2388.

[14] N. K. Vitanov, I. P. Jordanov, Z. I. Dimitrova, *On Nonlinear Population Waves*, Applied Mathematics and Computation, **215** (2009) 2950 – 2964.

[15] N. K. Vitanov, Z. I. Dimitrova, *On Waves and Distributions in Population Dynamics*, BIOMAT, **1** (2012) Article No. 1209253.

[16] N. K. Vitanov, Z. I. Dimitrova, K. N. Vitanov, *Traveling Waves and Statistical Distributions Connected to Systems of Interacting Populations*, Computers & Mathematics with Applications (in press), doi: 10.1016/j.camwa.2013.04.002

[17] C. W. Gardiner, *Handbook of Stochastic Methods*, Springer, Berlin, 1997.

[18] H. Haken, A. S. Mikahilov, *Interdisciplinary Approach to Nonlinear Complex Systems*, Springer, Berlin, 1993.

[19] M. J. Feigenbaum, *Universal behavior in nonlinear systems*, Physica D, **7** (1983) 16 – 39.

[20] K. Otsuka, *Nonlinear Dynamics in Optical Complex Systems*, Kluwer, Dordrecht, 1999.

[21] H. Kang, Y. Zhu, *Observation of large Kerr nonlinearity at low light intensities*, Phys. Rev. Lett., **91** (2003) Article Nr. 093601.
[22] N. K. Vitanov, F. H. Busse, *Bounds on the heat transport in a horizontal layer with stress-free boundaries*, ZAMP, 48 (1997) 310 – 324.

[23] V. Volpert, S. Petrovskii, *Reaction-diffusion waves in biology*, Physics of Life Reviews, 6 (2009), 267 – 310.

[24] N. K. Vitanov, M. Ausloos, G. Rotundo, *Discrete model of ideological struggle accounting for migration*, Advances in Complex Systems, 15, Supplement 1 (2012) Article Number 1250049.

[25] E. van Leeuwen, V. A. A. Jansen, P.W. Bright, *How population dynamics shapes the functional response in a one-predator-two-prey system*, Ecology, 88 (2007) 1571 – 1581.

[26] B. Dennis, R. A. Desharnais, J. M. Cushing, R. F. Constantino, *Nonlinear Demographic Dynamics: Mathematical Models, Statistical Methods, and Biological Explanations*, Ecological Monographs, 65 (1995) 261 – 282.

[27] I. Jordanov, E. Nikolova, *On nonlinear waves in the spatio-temporal dynamics of interacting populations*, Journal of Theoretical and Applied Mechanics, Sofia, 43, No. 2 (2013), 69-76.

[28] L. S. Pontryagin, A. A. Andronov, A. A. Vitt, *On Statistical Considerations of Dynamical Systems*, JETP, 3 (1933) 165 – 180.

[29] N. K. Vitanov, M. R. Ausloos, *Knowledge Epidemics and Population Dynamics Models for Describing Idea Diffusion*, in A. Scharnhorst, K. Börner (Eds.), Models of Science Dynamics, Springer, Berlin, 2012, P.P. 69 – 125.

[30] N. K. Vitanov, *Convective Heat Transport in a Fluid layer of Infinite Prandtl Number: Upper Bounds for the Case of Rigid Lower Boundary and Stress-Free Upper Boundary*, Eur. Phys. J. B 15 (2000) 349 – 355.

[31] N. K. Vitanov, *Upper Bounds on Convective Heat Transport in a Rotating Fluid Layer of Infinite Prandtl Number: Case of Intermediate Taylor Numbers*, Phys. Rev. E, 62 (2000) 3581 – 3591.

[32] N. K. Vitanov, *Upper Bounds on the Convective Heat Transport in a Rotating Fluid Layer of Infinite Prandtl Number: Case of Large Taylor Numbers*, Eur. Phys. J. B, 23 (2001) 249 – 266.

[33] C. S. Holling, *The components of predation as revealed by a study of small-mammal predation of the European pine sawfly*, The Canadian Entomologist, 91 (1959) 293 – 320.

[34] W. Hereman, A. Nuseir, *Symbolic methods to construct exact solutions of nonlinear partial differential equations*, Mathematics and Computers in Simulation, 43 (1997) 13 - 27.

[35] Y.-Z. Peng, *Exact solutions for some nonlinear partial differential equations*, Phys. Lett. A, 314, (2003) 401 – 408.

[36] W. Malfliet, W. Hereman, *The tanh method: I. Exact solutions of nonlinear evolution and wave equations*, Phys. Scripta, 54, (1996) 563 – 568.
[37] N. K. Vitanov, On travelling waves and double-periodic structures in two-dimensional sine-Gordon systems, J. Phys. A: Math. Gen., 29 (1996) 5195 – 5207.

[38] N. K. Martinov, N. K. Vitanov, New Class of Running-Wave Solutions of the (2+1)-Dimensional Sine-Gordon Equation, J. Phys. A: Math. Gen., 27 (1994) 4611 – 4618.

[39] N. K. Vitanov, Breather and soliton wave families for the sine-Gordon equation, Proc. Roy. Soc. London A, 424 (1998) 2409 – 2423.

[40] N. K. Vitanov, N. K. Martinov, On the solitary waves in the sine-Gordon model of the two-dimensional Josephson junction, Zeitschrift fur Physik B, 100 (1996) 129 – 135.

[41] N. A. Kudryashov, Simplest Equation Method to Look for Exact Solutions of Nonlinear Differential Equations, Chaos Solitons & Fractals, 24 (2005) 1217 – 1231.

[42] N. A. Kudryashov, N. B. Loguinova, Extended Simplest Equation Method for Nonlinear Differential Equations, Commun. Nonlinear Sci. Numer. Simulat., 14 (2009) 3507 – 3529.

[43] M. V. Demina, N. A. Kudryashov, Explicit expressions for meromorphic solution of autonomous nonlinear ordinary differential equations, Commun. Nonlinear Sci. Numer. Simulat., 16 (2011) 1127–1134.

[44] M. V. Demina, N. A. Kudryashov, From Laurent series to exact meromorphic solutions: the Kawahara equation, Phys. Lett. A, 374 (2010) 4023–4029.

[45] H. Kantz, T. Schreiber, Nonlinear time series analysis, Cambridge University Press, Cambridge, 2004.

[46] N. A. Kudryashov, Exact Solitary Waves of the Fisher Equation, Phys. Lett. A, 342 (2005) 99 – 106.

[47] W. X. Ma, B. Fuchssteiner, Explicit and exact solutions to a Kolmogorov-Petrovskii-Piskunov equation, Int. J. Non-Linear Mechanics, 31, 329-338 (1996).

[48] N. K. Vitanov, Z. I. Dimitrova, H. Kantz, Modified Method of Simplest Equation and its Application to Nonlinear PDEs, Applied Mathematics and Computation, 216 (2010) 2587 – 2595.

[49] N. K. Vitanov, Modified Method of Simplest Equation: Powerful Tool for Obtaining Exact and Approximate Traveling-Wave Solutions of Nonlinear PDEs, Commun. Nonlinear Sci. Numer. Simulat., 16 (2011) 1176 – 1185.

[50] N. K. Vitanov, Z. I. Dimitrova, Application of The Method of Simplest Equation for Obtaining Exact Traveling-Wave Solutions for Two Classes of Model PDEs from Ecology and Population Dynamics., Commun. Nonlinear Sci. Numer. Simulat., 15 (2010) 2836 – 2845.
[51] N. K. Vitanov, Application of Simplest Equations of Bernoulli and Riccati Kind for Obtaining Exact Traveling Wave Solutions for a Class of PDEs with Polynomial Nonlinearity, Commun. Nonlinear Sci. Numer. Simulat., 15 (2010) 2050 – 2060.

[52] N. K. Vitanov, Z. I. Dimitrova, K. N. Vitanov, On the Class of Nonlinear PDEs that can be Treated by the Modified Method of Simplest Equation. Application to Generalized Degasperis - Processi Equation and B-Equation, Commun. Nonlinear Sci. Numer. Simulat., 16 (2011) 3033 – 3044.

[53] W. Hereman, A. Nuseir, Symbolic methods to construct exact solutions of nonlinear partial differential equations, Mathematics and Computers in Simulation, 43 (1997) 13 - 27.

[54] Y.-Z. Peng, Exact solutions for some nonlinear partial differential equations, Phys. Lett. A, 314, (2003) 401 – 408.

[55] W. Malfliet, W. Hereman, The tanh method: I. Exact solutions of nonlinear evolution and wave equations, Phys. Scripta, 54, (1996) 563 – 568.

[56] A. D. Wentzell, Course in the Theory of Stochastic Processes, McGraw-Hill, NY, 1981.

[57] G. Jetschke, Mathematik der Selbstorganisation, VEB Deutscher Verlag der Wissenschaften, Berlin, 1989.

[58] W. Horsthemke, R. Lefever, Noise-Induced Transitions, Springer, Berlin, 1984.