Naturally Acquired Lactic Acid Bacteria from Fermented Cassava Improves Nutrient and Anti-dysbiosis Activity of Soy Tempeh

Rio Kusuma1,2*, Jaka Widada1,2, Emy Huriyati1,2, Madarina Julia3,4

1Department of Nutrition and Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia; 2Doctorate Program of Medicine and Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia; 3Department of Agricultural Microbiology, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta, Indonesia; 4Department of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia

Abstract

BACKGROUND: Dysbiosis of the gut microbiota has been associated with impaired glucose metabolism. Tempeh is a traditional fermented soy food that can stimulate the growth of beneficial bacteria. In Indonesia, the process of making tempeh involved adding an acidifier that contains lactic acid bacteria. This process may affect the nutritional and anti-dysbiosis activity of tempeh.

AIM: The objective of the study was to evaluate the effects of acidifiers on the nutrient and gut microbiota profile of a diabetic animal model.

METHODS: Modified tempeh was prepared by adding water extract from fermented cassava. Standard tempeh and modified tempeh were subjected to proximate and dietary fiber analysis. Diabetic animals were fed a standard tempeh or modified tempeh diet for 4 weeks, replacing 15% or 30% of the protein in the diet, respectively. At the end of the experiment, the contents of the appendix were collected. The short-chain fatty acids (SCFAs) and microbiota composition were analyzed by 16s rDNA next-generation sequencing.

RESULTS: There is a significant difference (p < 0.05) in fat, protein, water, and fiber content between regular soy tempeh and modified tempeh. There is a significant difference (p < 0.05) between the groups in serum glucose and SCFA composition. The diabetic animal has a low ratio of Firmicutes/Bacteroidetes. The addition of both tempehs increases bacterial diversity, Firmicutes/Bacteroidetes ratio, and SCFA-producing bacteria.

CONCLUSION: The addition of naturally occurring lactic acid bacteria from fermented cassava during tempeh processing improved both nutrient and microbiota compositions in the gut of diabetes mellitus.

Introduction

Diabetes mellitus is a group of metabolic diseases caused by a disturbance in insulin secretion, insulin action, or both, manifested by chronic hyperglycemia or high blood glucose levels [1]. Diabetes mellitus is an emerging disease with a rapidly increasing incidence worldwide. It is estimated that 451 million people worldwide had diabetes in 2017, and this number will increase to 473 million in just 2 years [2], [3]. The increasing rise in obesity and overweight is factors associated with the sharp rise in diabetes incidence worldwide [4].

Numerous studies have reported the role of gut microbiota alterations and diversity in the development of many metabolic diseases such as diabetes mellitus [5], [6], [7]. In people with diabetes mellitus, alterations in the composition and diversity of the gut microbiota or gut dysbiosis have been found to be associated with disease. Diabetics tend to have fewer bacteria that produce short-chain fatty acids (SCFAs) and increased levels of Gram-negative bacteria such as Bacteroidetes, which promote inflammation and impaired glucose metabolism [8], [9], [10], [11]. The goal of normalizing the composition and diversity of the gut microbiota in people with diabetes mellitus has been associated with improved glycemic status in diabetic patients [12].

Tempeh is a traditional fermented soy food from Indonesia that has anti-dysbiotic activity. Several studies have reported the ability of tempeh to inhibit the growth and adhesion of pathogenic bacteria and promote the growth of beneficial bacteria such as Lactobacillus. Conventional, and...
tempeh was produced by soaking soybeans with water or lactic acid bacteria to lower the pH of soy. Some tempeh producers in Indonesia used lactic acid bacteria during the souring process, which may affect the diversity of microbiota and mold composition in tempeh [18], [19], [20].

Alternatively, there are several sources of naturally acquired lactic acid bacteria that can be used to reduce the acidity of soy during the soaking phase. One of them is fermented cassava or gaplek which contain several beneficial lactic acid bacteria [21], [22]. Our preliminary study found that the addition of water extract of fermented cassava can significantly lower the pH of soaking water up to 4.7 ± 0.02 and promote the growth of Rhizopus molds. However, little is known about the effects of this modified process on the nutrient content and anti-dysbiotic activity of tempeh. Therefore, we aimed to investigate how the addition of naturally acquired lactic acid bacteria from fermented cassava affects the proximate and dietary fiber composition of tempeh, as well as the gut microbiota composition of a diabetic animal model.

Methods

Preparation of the water extract of fermented cassava

The fermented cassava tuber was obtained from the traditional market. The fermented cassava tuber was cleaned, washed, and cut into small pieces. The fermented cassava tuber was immersed in distilled water for 2 h at room temperature, the ratio of fermented cassava tuber to water was 1:5. The water was removed and another distilled water was added and incubated in a closed flask at room temperature for another 10 h. After 10 h, the mixture was filtered with a sterile cheesecloth to obtain the water extract of fermented cassava tuber.

Preparation of modified tempeh

Soybean was obtained from the local market. Tempeh was developed with modifications according to our previous study [23]. Briefly, the soybean was cleaned, washed, and immersed in distilled water for 2 h. The soybean was boiled for 15 min and dehulled. The water extract of fermented cassava was added in the ratio of 1:5 and incubated in a closed vessel for 10 h. The water extract was removed and the dehulled soybean was boiled in sterile distilled water for another 15 min. The soybean was air dried and 2 g of a commercial tempeh mold (Raprima)/kg soybean was added. The soybean was aerobically incubated for 72 h to obtain modified tempeh. The modified tempeh was dried, milled, and sieved through 70 mesh sieves to obtain modified tempeh flour. Regular tempeh (Kadar) from the local market was also subjected to lipoylation using a similar method to that used for modified tempeh. This manufacturer was selected because it uses acidifiers from cooked soybeans in the second soaking of tempeh. Both tempeh flours were stored at 4°C before use.

Proximate and dietary fiber analysis of tempeh

Proximate analysis of tempeh was carried out according to Cempaka et al. [24]. Total protein was analyzed using Kjeldahl with a protein conversion factor of 5.71. Fat was determined by Soxhlet method using ether as extracting agent. Moisture content was determined by thermogravimetric method. Dietary fiber was analyzed by the enzymatic gravimetric method using AOAC 991.43[25]. All analyses were performed in triplicate.

Animal and diet

Thirty (30) male Wistar rats aged 8 weeks were purchased from the Centre of Nutrition and Food Science, PAU, Universitas Gadjah Mada, Indonesia. These numbers were obtained from Arifin and Zahirudin [26] equation. Rats were housed in groups (5 rats/cage) for 5 days during the acclimation period. The cage was 1800 cm² wide and 24 cm high. The rats were given food (AIN −93M standard diet) and water ad libitum. Room temperature was set at 22°C, humidity at 70%, and lighting on a 12 h dark-light cycle.

After the acclimation period, 25 rats were injected with nicotinamide 230 mg/kg body weight followed by streptozotocin 65 mg/kg body weight after 15 min of the first injection [27]. Five rats served as control group. Blood was drawn for serum glucose pre-test 4 days after injection after overnight fasting. The diabetic rats were randomly divided into five diet groups: Rats were fed a standard diet (negative control), a modified standard diet in which 15% and 30% of protein were replaced with tempeh (TP −15 and TP −30), and a modified standard diet in which 15% and 30% of protein were replaced with modified tempeh (TG-15 and TG-30). The composition of the animal diets is shown in Table 1. Randomization was performed using the Microsoft Excel program.

After 4 weeks of treatment, blood was drawn from the overnight fasting rats for post-test analysis of serum glucose level. The rats were euthanized by injection of ketamine (100 mg/kg body weight) and xylazine (10 mg/kg body weight) followed by cervical dislocation. The appendix was removed from each rat and immediately used for DNA isolation. All animal experiments were approved by the Ethics Committee of the Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia, under ethics number KE/FK/0918/EC/2020.
Table 1: Animal diet composition

Composition (g/kg)	Standard diet	TP-15 diet	TP-30 diet	TG-15 diet	TG-30 diet
Corn starch	62.07	56.18	48.86	57.72	52.41
Casin	14.0	11.9	9.83	11.9	9.83
Sucrose	10.0	10.0	10.0	10.0	10.0
Cellulose	5.00	1.80	-	2.02	-
Soybean oil	4.00	2.86	17.12	28.52	17
AN-93 vitamin mix	1.00	1.00	10	10	10
AN-93 mineral mix	3.50	3.50	35	35	35
L-Sistine	0.18	0.18	0.18	1.8	1.8
Choline bitartrate	0.25	0.25	0.25	2.5	2.5
Tempeh	-	12.35	24.70	-	-
Modified tempeh	-	10.58	24.70	-	-
µL of 1 mg/ml lysozyme	-	-	-	-	-

Cecal SCFA

About 100 mg of cecal content were homogenized with 1 ml of deionized water. The mixture was sonicated and centrifuged at 14,000 x g for 10 min. The supernatant was collected and injected into the Thermo Scientific Trace 1310 gas chromatography (GC) coupled to the Thermo Scientific ISQ LT single quadrupole mass spectrometer (MS). The injector temperature was set to 260°C, the ion source to 230°C, the quadrupole to 150°C, and the GC/MS interphase to 280°C. Helium was used as the carrier gas.

Cecal total DNA isolation

Total DNA from the cecum was isolated using the modified FavorPrep Stool DNA Isolation Mini Kit (Favorgen, Taiwan). Briefly, 100 mg of cecum was weighed and homogenized in lysis buffer using Precellys homogenizer (Bertin instrument, France). Approximately 100 µl of 1 mg/ml lysozyme (Sigma-Aldrich, Singapore) was added to the mixture and incubated at 37°C for 2 h in a water bath. Proteinase K was added according to the instructions in the kit and incubated at 55°C for 8 h. Samples were processed according to the manufacturer’s instructions. The quality and quantity of DNA was checked using a nanodrop (MaestroNano Pro MN -913A, Taiwan).

Amplicon generation

16S rRNA from the V3-V4 region was barcoded amplified with specific primers (forward: 5-CCTAYGGGRBGCASCAG-3 and reverse: 5-GGACTACNNGGGTATCTAAT-3). All polymerase chain reaction (PCR) reactions were performed using Phusion High Fidelity PCR Master Mix (New England Biolabs) according to the manufacturer’s instructions. The PCR products were run in a 2% agarose gel and the samples with a bright major band between 450 and 470 bp were selected for further experiments. The gel was purified using Qiagen Gel Extraction Kit (Qiagen, Germany) and libraries were prepared using NEBNext Ultra TM DNA Library Preparation Kit for Illumina. The purified amplicons were sequenced in Illumina NovaSeq 6000 in pairs.

Raw tags were merged and filtered using FLASH (version 1.2.7) and QIIME (version 1.7.0) to obtain high-quality clean tags. The tags were compared with the reference database (Gold Database) using UCHIME algorithm and chimeras were removed to get effective tags. The effective tags were analyzed using Uparse software to obtain OTU. For each representative sequence, Mothur software was used to obtain a species annotation for each taxonomic rank. The phylogenetic relationship of all OTUs was determined using MUSCLE.

Data analysis

Proximate, dietary fiber, and antioxidant activity of tempeh were analyzed using the independent samples t-test when normality of the data was met according to Kolmogorov–Smirnov test. The Friedman and Wilcoxon non-parametric tests were used to analyze the diversity index and relative abundance of major bacterial phyla and families among groups [28]. Principal component analysis (PCA) was performed to discriminate the differences of the gut microbiome between groups. Analysis of molecular variance (AMOVA) was performed to analyze the differences in gut microbiota between groups. Significant was set at p < 0.05. All statistical analyses were performed in R.

Results

Proximate, dietary fiber, and antioxidant activity of tempeh

There is a significant difference (p < 0.001) between regular tempeh and modified tempeh in water content, protein, fat, and antioxidant activity. There were also differences (p = 0.002) in dietary fiber between tempeh, with the highest dietary fiber content found in modified tempeh (8.20 ± 0.19%). Modified tempeh has higher fat, protein, and fiber content compared to normal tempeh (Table 2).

Effect of tempeh supplementation on serum glucose

There is a significant difference (p < 0.001) in fasting serum glucose before and after treatment. After induction of diabetes mellitus, blood glucose was significantly increased and was above 200 mg/dl in all rats, indicating successful induction of diabetes mellitus in the animals (Figure 1).

Effect of tempeh supplementation on SCFA

There are significant differences (p < 0.001) in the composition of SCFA (acetate, propionate, and...
butyrate) between the groups. Acetate and propionate in the caeca were significantly higher in diabetic rats treated with modified tempeh replacing 30% of the protein in the diet (TG-30) than in the other groups. However, the cecal butyrate of this group was not statistically different from that of the healthy control group, the group with modified tempeh or the group with normal tempeh replacing 15% of the protein in the diet (Table 3).

| Variable | Groups | p-value |"
Lactococcus, Pediococcus, Weissella, and Enterobacter in the soaked water [30], [31]. These conditions have been reported to affect the growth of tempeh mold and the nutritional composition of...
tempeh, in particular the moisture, fat, carbohydrate, and fiber content [32], [33], [34].

The lactic acid bacteria in tempeh are also an important aspect for the enhancement of aglycone isoflavones due to the presence of the enzyme β-glucosidase [35]. It has been reported that aglycone isoflavone stimulates the growth of Gram-positive bacteria such as Firmicutes, Lactobacillus, %LeuGREDWHubIahnospiraceae, and Coriobacteriaceae [15], [36], [37], which was also found in this study. The high number of Lachnospiraceae in the tempeh-fed group was associated with high production of SCFA from fermentation of carbohydrates [38], while high number of Coriobacteriaceae indicated high equol production from isoflavones [39].

Figure 3: Principal component analysis plot of cecal microbiome VDPShVxKHdJUWPSRQHGW HSDLQHQ RIWKMRWDG variance while the PC2 - 11.86%. The same labels indicate samples from similar group

In addition, consumption of tempeh also increased the abundance of Prevotella, which was previously reported by another group [17]. High abundance of Prevotella was found in the intestines of people who consumed a high proportion of plant foods [40], [41], [42], and this effect was associated with the anti-inflammatory and antidiabetic effects of plant foods [43], [44].

Table 5: Relative abundance (%) of top 5 gut microbiota in the cecal of rats

Microbiota	Group	CN	TP-15	TP-30	TG-15	TG-30
Control						
Bacteroidetes	34.18	36.31	27.48	32.31	22.55	23.99
Firmicutes	13.85	23.72	37.07	41.58	29.47	46.49
Fusobacteria	36.46	11.68	3.73	0.30	5.26	0.40
Proteobacteria	6.22	17.35	12.71	7.76	14.28	7.48
Actinobacteria	7.86	4.11	17.02	14.79	27.34	11.58

Ratio F/B

Family						
Fusobacteria	36.46	11.67	3.72	0.28	5.26	0.40
Prevotellaceae	20.96	2.23	8.06	17.07	10.85	7.68
Bacteroides	6.57	1.79	5.28	1.18	24.45	9.19
Firmicutes	6.09	13.63	3.99	1.26	3.15	2.12
Lachnospiraceae	5.62	8.09	17.77	15.03	16.03	17.31

References

1. Punthakee Z, Goldberg R, Katz P. Definition, classification and diagnosis of diabetes, prediabetes and metabolic syndrome. Can J Diabetes. 2018;42 Suppl 1:S10-5. https://doi.org/10.1016/j.cjdiab.2017.10.003
PMid:29650080

2. Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW, et al. IDF diabetes atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract. 2018;138:271-81. https://doi.org/10.1016/j.driabe.2018.02.023
PMid:29496507

3. Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the international diabetes federation diabetes atlas, 9th edition. Diabetes Res Clin Pract. 2019;157:107843. https://doi.org/10.1016/j.diabres.2019.107843
PMid:31518657

4. Boles A, Kandimalla R, Reddy PH. Dynamics of diabetes and obesity: Epidemiological perspective. Biochim Biophys Acta Mol Basis Dis. 2017;1863(5):1026-36. https://doi.org/10.1016/j.bbadis.2017.01.016
PMid:28130199

5. Grigorescu I, Dumitrascu DL. Implication of gut microbiota in diabetes mellitus and obesity. Acta Endocrinol (Buchar). 2016;12(2):206-14. https://doi.org/10.4183/aeb.2016.206
PMid:3149088

6. Harsch I, Konturek P. The role of gut microbiota in obesity and Type 2 and Type 1 diabetes mellitus: New insights into “old” diseases. Med Sci (Basel). 2018;6(2):32. https://doi.org/10.3390/medsci6020032
PMid:29673211

7. Gurung M, Li Z, You H, Rodrigues R, Jump DB, Morgun A, et al. Role of gut microbiota in Type 2 diabetes pathophysiology. EBioMedicine. 2020;51:102590. https://doi.org/10.1016/j.ebiom.2019.11.051
PMid:31901868

Conclusion

Modifying the preprocessing of tempeh has implications for the nutrients, fiber, and antioxidants of tempeh. Consumption of tempeh favors the growth of the gut microbiota, which was important for the antidiabetic effect of tempeh. Further studies are needed to investigate the effects of tempeh supplementation on the composition and function of the gut microbiota in a human study.

Acknowledgment

We thank Mr. Yulianto for helping us with animal treatment.

Open Access Maced J Med Sci. 2021 Dec 03; 9(A):1148-1155.
8. Larsen N, Vogensen FK, van den Berg FW, Nielsen DS, Andreasen AS, Pedersen BK, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One. 2010;5(2):e9085. https://doi.org/10.1371/journal.pone.0009085 PMID:20140211

9. Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490(7418):55-60. https://doi.org/10.1038/nature11450 PMID:23023125

10. Sun W, Zhang D, Wang Z, Sun J, Xu B, Chen Y, et al. Insulin resistance is associated with total bile acid level in type 2 diabetic and non-diabetic population: A cross-sectional study. Medicine (Baltimore). 2016;95(10):e2778. https://doi.org/10.1097/MD.0000000000002778 PMID:26962776

11. d’Hennezel E, Abubucker S, Murphy LO, Cullen TW. Total lipopolysaccharide from the human gut microbiome silences toll-like receptor signaling. mSystems. 2017;2(6):e00046-17. https://doi.org/10.1128/mSystems.00046-17 PMID:29152585

12. Houghton D, Hardy T, Stewart C, Errington L, Day CP, Trenell MI, et al. Systematic review assessing the effectiveness of dietary intervention on gut microbiota in adults with Type 2 diabetes. Diabetologia. 2018;61(8):1700-11. https://doi.org/10.1007/s00125-018-4632-0 PMID:29754286

13. Roubos-van den Hil PJ, Nout MJ, van der Meulen J, Gruppen H. Bioactivity of tempe by inhibiting adhesion of ETEC to intestinal cells, as influenced by fermentation substrates and starter pure cultures. Food Microbiol. 2010;27(5):638-44. https://doi.org/10.1016/j.fm.2010.02.008 PMID:20510782

14. Roubos-van den Hil PJ, Dalmas E, Nout MJR, Abeet T. Soybean tempe extracts show antibacterial activity against Bacillus cereus cells and spores. J Appl Microbiol. 2010;109(1):137-45. https://doi.org/10.1111/j.1365-2672.2009.04367.x PMID:20002864

15. Kuligowski M, Jasinska-Kuligowska I, Nowak J. Evaluation of bean and soy tempeh influence on intestinal bacteria and estimation of antibacterial properties of bean tempeh. Pol J Microbiol. 2013;62(2):185-94. PMID:24053022

16. Stephanie S, Kartawidjajaaputra F, Silo W, Yogia Y, Suwanto A. Tempeh consumption enhanced beneficial bacteria in the human gut. Food Res. 2018;18:399-405. https://doi.org/10.1007/s11274-013-1349-6 PMID:23576016

17. Huang YC, Wu BH, Chu YL, Chang WC, Wu MC. Effects of Tempeh Fermentation with Lactobacillus plantarum and Rhizopus oligosporus on streptozotocin-induced Type II diabetes mellitus in rats. Nutrients. 2018;10(9):1143. https://doi.org/10.3390/nu10091143 PMID:30135362

18. Seumah CA, Suwanto A, Rusmana I, Solihin DD. Bacterial and fungal communities in tempeh as reveal by amplified ribosomal intergenic sequence analysis. HAYATI J Biosci. 2013;20:65-71.

19. Pisof B, Nuraida L, Abdullah N, Suliarti, Khalil KA. Isolation and characterization of lactic acid bacteria from indonesian soybean tempeh. Int Proc Chem Biol Environ Eng. 2013;58:32-46.

20. Radita R, Suwanto A, Kurosawa N, Wahyudi A, Rusmana I. Metagenome analysis of tempeh production: Where did the bacterial community in tempeh come from? Malaysian J Microbiol. 2017;13(4):280-82. Available from: https://www.semanticscholar.org/paper/metagenome-analysis-of-tempeh-production-3a-where-did-radita-suwanto/7bf4d74c4b1eaa9374bf29364677bee8af61ead [Last accessed on 2021 Jun 23].

21. Nuraida L. A review: Health promoting lactic acid bacteria in traditional Indonesian fermented foods. Food Sci Hum Wellness. 2015;4:47-55.

22. Astriani A, Dinijnah Y, Jayus J, Nurhayati N. Phenotypic identification of indigenous fungi and lactic acid bacteria isolated from ‘gatot’ an Indonesian fermented food. Biodiversitas J Biol Divers. 2018;19:947-54.

23. Jati Kusuma R, Ermamilla A. Fortification of tempeh with encapsulated iron improves iron status and gut microbiota composition in iron deficiency anaemia condition. Nutr Food Sci. 2018;48:962-72.

24. Cempaka L, Eliza N, Ardiannya Y, Handoko DD, Astuti RM. Proximate composition, total phenolic content, and sensory analysis of rice bran tempeh. Makara J Sci. 2018;22:89-94.

25. McCleary BV, DeVries JW, Rader JI, Cohen G, Prosky LS, Mugford DC, et al. Determination of insoluble, soluble, and total dietary fiber (CODEX Definition) by enzymatic-gravimetric method and liquid chromatography: Collaborative study. JAOAC Int. 2012;95(3):824-44. https://doi.org/10.5740/jaoacint.cs2011_25 PMID:22816275

26. Arifin WN, Zahiruddin WM. Sample size calculation in animal studies using resource equation approach. Malays J Med Sci. 2017;24(5):101-5. https://doi.org/10.21315/mjms2017.24.5.11 PMID:29386977

27. Ghassemi A, Khalifi S, Jredi S. Streptozotocin-nicotinamide-induced rat model of type 2 diabetes (review). Acta Physiol Hung. 2014;101(4):408-20. https://doi.org/10.1556/APhysiol.101.2014.4.2 PMID:25532953

28. Sivixay S, Bai G, Tsuruta T, Nishino N, Sivixay S, Bai G, et al. Cucum microbiota in rats fed soy, milk, meat, fish, and egg proteins with prebiotic oligosaccharides. AIMS Microbiol. 2021;7(1):1-12. https://doi.org/10.3934/microbiol.2021001 PMID:33659765

29. Ahnhan-Winarno AD, Cordeiro L, Winarno FG, Gibbons J, Xiao H. Tempeh: A semicentennial review on its health benefits, fermentation, safety, processing, sustainability, and affordability. Compr Rev Food Sci Food Saf. 2021;20(2):1717-87. https://doi.org/10.1111/1541-4337.12710 PMID:33569911

30. Efiwati, Suwanto A, Rahayu G, Nuraida L. Population dynamics of yeasts and lactic acid bacteria (LAB) during tempeh production. HAYATI J Biosci. 2013;20:57-64.

31. Yan Y, Wolkers-Rooijackers J, Nout MJ, Han B. Microbial diversity and dynamics of microbial communities during back-slop soaking of soybeans as determined by PCR-DGGE and molecular cloning. World J Microbiol Biotechnol. 2013;29(10):1969-74. https://doi.org/10.1007/s11274-013-1349-6 PMID:23576016

32. Vig AP, Walla A. Beneficial effects of Rhizopus oligosporus fermentation on reduction of glucosinolates, fibre and phytic acid in rapeseed (Brassica napus) meal. Bioresearch Technol. 2001;78(3):309-12. https://doi.org/10.1016/s0960-8524(01)00030-x PMID:11341693

33. Nurdini AL, Nuraida L, Suwanto A, Suliarti. Microbial growth dynamics during tempe fermentation in two different home industries. Int Food Res J. 2015;22(4):1668-74.

34. Starzyńska-Janiszewska A, Duliński R, Stodolak B. Fermentation with edible rhizopus strains to enhance the bioactive potential of hull-less pumpkin oil cake. Molecules. 2020;25:5782.

35. Yuksedag Z, Acar BC, Aslim B, Tucmenoz U. β-Glucosidase activity and bioconversion of isoflavone glycosides to aglycones by potential probiotic bacteria. Int J Food
Kusum et al. Anti-dysbiosis effect of modified soy tempeh

36. Soka S, Suwanto A, Sajuthi D, Rusmana I. Impact of tempeh supplementation on gut microbiota composition in sprague-dawley rats. Res J Microbiol. 2014;9:189-98.

37. Guadamuro L, Azcárate-Peril MA, Tojo R, Mayo B, Delgado S. Use of high throughput amplicon sequencing and ethidium monoazide dye to track microbiota changes in an equol-producing menopausal woman receiving a long-term isoflavones treatment. AIMS Microbiol. 2019;5(1):102-16. https://doi.org/10.3934/microbiol.2019.1.102 PMid:31384706

38. Vacca M, Celano G, Calabrese FM, Portincasa P, Gobbetti M, de Angelis M. The controversial role of human gut lachnospiraceae. Microorganisms. 2020;8(4):573. https://doi.org/10.3390/microorganisms8040573 PMid:32326636

39. Mayo B, Vázquez L, Flórez AB. Equol: A bacterial metabolite from the daidzein isoflavone and its presumed beneficial health effects. Nutrients. 2019;11(9):2231. https://doi.org/10.3390/nu11092231 PMid:31527435

40. de Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA. 2010;107(33):14691-6. https://doi.org/10.1073/pnas.1005963107 PMid:20679230

41. Ruengsomwong S, La-ongkham O, Jiang J, Wannissorn B, Nakayama J, Nitisinprasert S. Microbial community of healthy thai vegetarians and non-vegetarians, their core gut microbiota, and pathogen risk. J Microbiol Biotechnol. 2016;26(10):1723-35. https://doi.org/10.4014/jmb.1603.03057 PMid:27381339

42. Jain A, Li XH, Chen WN. Similarities and differences in gut microbiome composition correlate with dietary patterns of Indian and Chinese adults. AMB Express. 2018;8:104. https://doi.org/10.1186/s13568-018-0632-1 PMid:29936607

43. Kovatcheva-Datchary P, Nilsson A, Akrami R, Lee YS, de Vadder F, Arora T, et al. Dietary fiber-induced improvement in glucose metabolism is associated with increased abundance of prevotella. Cell Metab. 2015;22(6):971-82. https://doi.org/10.1016/j.cmet.2015.10.001 PMid:26552345

44. Tomova A, Buvosky I, Rembert E, Yonas W, Alwarith J, Barnard ND, et al. The effects of vegetarian and vegan diets on gut microbiota. Front Nutr. 2019;6:47. https://doi.org/10.3389/fnut.2019.00047 PMid:31058160