Higher Order Corrections to the Grimus–Stockinger Formula

S. E. Korenblit and D. V. Taychenachev
Irkutsk State University 20, blvd Gagarin, 664003, Irkutsk, Russia
e-mail: korenb@ic.isu.ru

Abstract—For the Grimus–Stockinger formula the same dimensionless parameter of asymptotic expansion is found by several ways of calculations. This parameter strongly depends on the width of wave packet.

DOI: 10.1134/S1547477113070054

1. INTRODUCTION

For the modern theory of neutrino oscillations [1, 2] the main tool is Grimus–Stockinger theorem [3], which gives the leading asymptotic behaviour with $|R| = R \to \infty$ for the integral:

$$\mathcal{J}(R) = \int \frac{d^3q}{(2\pi)^3} \frac{e^{-i\mathbf{q} \cdot \mathbf{R}}}{\mathbf{q}^2 - \kappa^2 - i0} \Phi(q),$$

$$\approx \frac{e^{i\kappa R}}{4\pi R} \Phi(-\kappa \mathbf{n}) [1 + O(R^{-1/2})],$$

where $\mathbf{R} = \mathbf{R}_n$, $\mathbf{n}^2 = 1$, and the function $\Phi(q) \in C^3$ decreases at least like $1/q^2$ together with its first and second derivatives. In order to understand the physical conditions necessary for this expansion the dimensionless parameters should be determined from the higher order corrections to this formula. Here this parameter is defined unambiguously by the use of various asymptotic expansions allowing to calculate the further corrections.

2. CORRECTIONS

FOR THREE-DIMENSIONAL CASE

To obtain the higher corrections of order R^{-n} we suppose that $\Phi(q)$ and its first and second derivatives are represented by Fourier-transform as:

$$\Phi(q) = \int d^3x e^{i\mathbf{q} \cdot \mathbf{x}} \varphi(x),$$

$$\nabla_q \Phi(q) = i \int d^3x e^{i\mathbf{q} \cdot \mathbf{x}} x \varphi(x),$$

$$\nabla_q^2 \Phi(q) = i \int d^3x e^{i\mathbf{q} \cdot \mathbf{x}} x^2 \varphi(x),$$

and so on.

Since $1/|q|^3$ is also Fourier-image of $1/|x|$, Eqs. (2) are valid at least in the sense of distributions also for the functions defined above in [3]. By using the first equality of the following well known representations for spherical wave as a free Schrödinger 3-dimensional Green function with $\kappa = 2\lambda$, $q = 2p$:

$$e^{i|q|x}/4\pi|x| = \int \frac{d^3q}{(2\pi)^3} \frac{e^{i\mathbf{q} \cdot \mathbf{x}}}{\mathbf{q}^2 - \kappa^2 - i0}$$

$$= i \int d^3p e^{i\mathbf{p} \cdot \mathbf{x}} \int_0^\infty d\lambda e^{i\kappa \lambda^2 - i0},$$

and by interchanging the order of integration for integral (1) one finds:

$$\mathcal{J}(R) = \int d^3x \frac{e^{i\kappa \mathbf{R} \cdot \mathbf{x}}}{4\pi|\mathbf{R} - \mathbf{x}|} \varphi(x).$$

Substituting here the expansion, which in the exponential should always contain one additional order with respect to the ones in denominator:

$$|\mathbf{R} - \mathbf{x}| = R \left[1 - 2\frac{(\mathbf{n} \cdot \mathbf{x})}{R} + \frac{x^2}{R^2} \right]^{1/2}$$

$$= R - (\mathbf{n} \cdot \mathbf{x}) + \frac{x^2 - (\mathbf{n} \cdot \mathbf{x})^2}{2R} + \ldots,$$

we come to the corresponding expansion of integral (4) up to $O(R^{-2})$:

$$\mathcal{J}(R) = \frac{e^{i\kappa R}}{4\pi R} \int d^3x e^{-i\kappa (\mathbf{n} \cdot \mathbf{x})} \varphi(x)$$

$$\times \left[1 + \frac{(\mathbf{n} \cdot \mathbf{x})}{R} + \frac{i\kappa}{2R} (x^2 - (\mathbf{n} \cdot \mathbf{x})^2) + \ldots \right],$$

that by making use of (2) transcribes as:

$$\mathcal{J}(R) = \frac{e^{i\kappa R}}{4\pi R} \left[1 - i \frac{\mathbf{n} \cdot \nabla}{R} \right]$$

$$+ \frac{i\kappa}{2R} ((\mathbf{n} \cdot \nabla)^2 - \nabla^2) \varphi (x) + \ldots \Phi(q) \Big|_{q = -\kappa n}.$$
Higher Order Corrections to the Grimus-Stockinger Formula

with
\[
(n \cdot \nabla_q) \Phi(q) |_{\eta = -\kappa n} = -\partial_{\kappa} \Phi(-\kappa n), \text{ and so on. (6)}
\]
For any positive definite quadratic form of momentum \(q = (qA^{-1}q) > 0 \), with:
\[
\Phi(q) = \sqrt{\mathcal{H}(\zeta)}, \quad \overline{\alpha}(n) = (nA^{-1}n), \quad \alpha^2(n) = (nA^{-1}n), \quad (7)
\]
that is:
\[
\left[1 - \frac{i}{R} (n \cdot \nabla_q) + \frac{i\kappa}{2R} (n \cdot \nabla_q)^2 - \nabla_q^2 \right] \Phi(q) \bigg|_{\eta = -\kappa n}
\]
\[
\rightarrow \left[1 + \frac{i\kappa}{R} \left[3\overline{\alpha}(n) - Tr(A^{-1}) \right] \partial_{\zeta}
\]
\[
- \frac{i2\kappa^3}{R} \left(\alpha^2(n) - \overline{\alpha}^2(n) \right) \partial_{\zeta} \mathcal{H}(\zeta) \bigg|_{\zeta = \kappa^2 \pi n}.
\]

Then for Gaussian wave packet: \(\mathcal{H}(\zeta) = e^{-\zeta^2/4} \), the expression (5) reads:
\[
\mathcal{J}(R) = \frac{e^{i\kappa R - \frac{i}{2} \sigma_{\kappa}^2/4}}{4\pi R} \left[1 - \frac{i\kappa}{4R} \left[3\overline{\alpha}(n) - Tr(A^{-1}) \right] \right]
\]
\[
- \frac{i2\kappa^3}{R} \left(\alpha^2(n) - \overline{\alpha}^2(n) \right) \right]. \quad (8)
\]
Here the square bracket evidently represents corrections only to the phase of the exponential. It may be directly obtained by the saddle-point method.

To this end let’s transcribe the integral (1) for above Gaussian wave packet by using the second representation of Eq. (3). Gaussian integration gives:
\[
\mathcal{J}(R) = \frac{i}{4} \int_0^\infty dt \int \frac{K_t^2}{\pi} \frac{1}{\pi} e^{iF(t)}, \quad (9)
\]
where:
\[
iF(t) = it(\lambda^2 + i0) - (RK,R),
\]
\[
iF''(t) = 2R\{K_t^2\} R, \quad (10)
\]
\[
iF'(t) = i[\lambda^2 + i0 + (R\{K_t^2\} R)] \rightarrow 0,
\]
\[
t_0 = R/\lambda + i\overline{\alpha}(n) + \epsilon, \quad (11)
\]
is the saddle point as asymptotic solution of Eq. (11) for \(R \rightarrow \infty \) up to the \(\epsilon = O(\lambda/R) \). It is obtained by diagonalization \(A = O^{-1}\overline{A} O \) onto the eigenvalues \(\overline{A} = \text{diag}(\alpha_j) \), with \(0 < \alpha_j = 1/\alpha_j < \infty \) and determinant \(|A| = \text{det}(\overline{A}) = a_1a_2a_3 \), by using a suitable orthogonal rotation: \(\rho = \text{Or}, \rho^2 = \mathbb{R}^2 \), and due to Eq. (11) defines \(F(t_0) \) and \(|K_t| \), up to \(O(\epsilon^2) \). Along the path deformed according to \(\overline{\alpha}(n) > 0 \) we obtain:
\[
\mathcal{J}(R) = \frac{i}{4} \int_0^\infty \left[\int \frac{K_t^2}{\pi} \frac{1}{\pi} \right] e^{iF(t_0)} e^{-\kappa^2 R}
\]
\[
d = \frac{e^{i\Theta(R)}}{4\pi R} e^{-\kappa^2 \pi n}, \quad (12)
\]
\[
\Theta(R) = 2\lambda R - \frac{\lambda^2}{R} \left[3\overline{\alpha}(n) - Tr(A^{-1}) \right] \]
\[
- \frac{\lambda^3}{R} \left(\alpha^2(n) - \overline{\alpha}^2(n) \right), \quad (13)
\]
that for:
\[
\kappa = 2\lambda, \quad Tr(A^{-1}) = \sum_{j=1}^3 \alpha_j, \quad (14)
\]
\[
\sum_{j=1}^3 \rho_j^2 \left[\alpha^2(n) - \alpha_j^2 \right] = 0,
\]

exactly coincides with Eq. (8) with the same precision. The corrections in (8), (13) evidently disappear for degenerate case: \(\alpha_j = \alpha_j^* \); for \(j = 2, 3 \).

For the neutrino oscillations problem: \(\kappa = \sqrt{E_\kappa^2 - m^2} \approx E_\kappa \), and for the Gaussian wave packet with coordinate width \(\sigma_x \): \(A - \sigma_x^2 \), so \(Tr(A^{-1}) \sim \overline{\alpha}(n) - \sigma_x^2 \), whence, the true expansion parameters appear as combinations of two different dimensionless ones: \(\kappa \sigma_x \) and \(\sigma_x/R \), that define the application conditions of Grimus-Stockinger formula as:
\[
(\kappa \sigma_x \sigma_x \frac{\sigma_x}{R} \approx (E_\kappa \sigma_x \sigma_x \frac{\sigma_x}{R} \ll 1, \quad (15)
\]
and:
\[
(\kappa \sigma_x \sigma_x \frac{\sigma_x}{R} \approx (E_\kappa \sigma_x \sigma_x \frac{\sigma_x}{R} \ll 1.
\]

3. The Four-Dimensional Case

In fact the above integral (1) is only three-dimensional part of the four dimensional one defining macroscopic Feynman diagram [2] of the problem:
\[
J(R) = \int \frac{d^4q}{(2\pi)^2} e^{-\sqrt{q^2 + m^2}} \Phi(q)
\]
\[
= \int \frac{d^4q}{i} h(i0 - m^2) (R + r)^3 \Phi(r), \quad (16)
\]
with:
\[
R^m = (T, R) \rightarrow \infty, \quad (17)
\]
\[
\sqrt{R^2} = \sqrt{R^m R^m} = \sqrt{T^2 - R^2} = T^m E_\kappa \leq T,
\]
where:

\[
\frac{m^2}{l} h(m^2 a^2) = \int \frac{d^4 q}{(2\pi)^4} \frac{e^{-i(q x)}}{(q^2 - m^2 + i0)}
\]

\[
\approx \frac{m^2}{l} \frac{e^{-ma}}{\pi^2 (ma)^{3/2}},
\]

for \(a^2 = i0 - x^2 = e^{x^2} \), is the causal propagator in coordinate space, and now the four-dimensional Fourier representation is assumed for \(\Phi(q) \), which for relativistic Gaussian wave packet in coordinate space and now the four-dimensional Fourier representation is assumed for \(\Phi(q) \), which for relativistic Gaussian wave packet [2] reads as:

\[
\Phi(q) = \int d^4 r e^{-i(q r)} \phi(r), \quad \Phi(q) \mapsto e^{-i(4l^2 q^2)/4},
\]

\[
\phi(r) \mapsto A^{1/2} e^{-(r d r)}.
\]

Here again \(A^{-1} \sim \sigma^2 \) in terms of Gaussian coordinate width for any positively defined quadratic form of momentum \(q \) in Minkowski space: \(\zeta = (q A^{-1} q) > 0 \).

Then for \(\sigma^2 \to 0 \) one has: \(A \to \infty, \Phi(q) \leftrightarrow 1, \phi(r) \leftrightarrow \delta(r) \), whence: \(i\lambda(R) \to m^2 h(0 - i0 - R^2) \), that is reasonable from physical viewpoint.

Repeating now all the previous steps (4)–(8) for the second expression (16) of \(J(R) \), with the so approximated propagator (18), one obtains for arbitrary \(\Phi(q) \) (19) and \(\eta^\mu = R^\mu/\sqrt{R^2}, \quad l = |l|, \quad |l| = \sqrt{R^2}, \) with

\[
ma = ml \left[\frac{1 + 2i(\eta r)}{l} - \frac{r^2}{l^2} \right]^{1/2}
\]

\[
\approx \left[l + i(\eta r) + \frac{(\eta r)^2 - r^2}{2l} \right]^{1/2}.
\]

\[
J(R) \approx \frac{m^2}{l} \left[\frac{\pi e^{-ml}}{\sqrt{2} (ml)^{3/2}} \right]
\]

\[
\times \left\{ 1 + \frac{3(\eta \delta^2)}{2l} + \frac{m}{2l} \left((\eta \delta^2 - \delta^2) \right) \right\} \Phi(q)
\]

\[
\equiv m \eta^\mu,
\]

that for the relativistic Gaussian wave packet from (19), with \(\alpha(\eta) = (\eta A^{-1} \eta), \quad \alpha^2(\eta) = (\eta A^{-2} \eta) \), analogously gives:

\[
J(R) \approx \frac{m^2}{l} \left[\frac{\pi e^{-ml}}{\sqrt{2} (ml)^{3/2}} \right]
\]

\[
\times \left\{ 1 - \frac{m}{4l} \left(4\alpha(\eta) - Tr\{A^{-1}\} \right) - \frac{m^3}{8l} \left[\alpha^2(\eta) - (\alpha^2(\eta))^2 \right] \right\}.
\]

Such, on the first sight, rough calculations are exactly confirmed again by saddle point method. Indeed, by exponentiating like (3) the denominator of the first expression (16) with \(m = 2m \) and representation dependent \(g \to g_{\mu \nu} \) or \(\delta^\mu \), by means of Gaussian integration clarified in Appendix one has instead of (9)–(11):

\[
J(R) = \frac{1}{i} \int_0^\infty \frac{d|K(t)|}{t} \exp \left\{ -i\tilde{\Phi}(t) \right\},
\]

\[
K(t) = [A^{-1} - i t g]^{-1},
\]

\[
-i\tilde{\Phi}(t) = -it(m^2 - i0) - (RK(t) R),
\]

\[
-i\tilde{\Phi}'(t) = 2(R K^2(t) R),
\]

\[
t_0 = |l|/m - i\alpha(\eta) + \epsilon,
\]

\[
t_0 = \text{the saddle point as asymptotical solution of Eq. (25) for } |l| \to \infty \text{ up to the } \epsilon = O(m/|l|). \]

It is obtained now by diagonalization in Minkowski space as \(A = \xi^{(0)}(A) \eta \xi^{(0)}(A) \) onto the eigenvalues \((A)_{nn} = g_{\mu \nu} a_{nn} \) ordered [4] as \(0 < g_{\mu \nu} a_{nn} = g_{\mu \nu} a_{nn} < \infty \) with determinant \(|A| = |A_{nn}| = |(A)_{nn}| \), by using a suitable Lorentz transformation as \(\bar{\eta} = \xi_{\eta}^{(0)} R^\mu \) with \(\bar{\eta} \eta = g_{\mu \nu} \bar{\eta}^\mu \bar{\eta}^\nu \), \(\bar{Q}^2 = R^2 \), and due to Eq. (25) defines again \(\tilde{\Phi}(t_0) \) and \([K(t_0)] \) up to \(O(\epsilon^2) \).

Along the path deformed according to \(\alpha(\eta) > 0 \), instead of (12) one finds:

\[
J(R) \approx \frac{1}{i} \left[\frac{\sqrt{m} e^{-iB(R)}}{l} \right] \left[e^{-\frac{i\pi/2}{2l}} \right] \left[e^{-i\tilde{\Phi}(t_0)} \right]
\]

\[
\times \left[-i\tilde{\Phi}'(t_0) \right] \left[e^{-\frac{i\pi/2}{2l}} \right],
\]

\[
-iA(l) = -2m l - m \left(4\alpha(\eta) - Tr\{A^{-1}\} \right)
\]

\[
-\frac{3}{8l} \left[\alpha^2(\eta) - (\alpha(\eta))^2 \right],
\]

that for:

\[
Tr\{A^{-1}\} = (A^{-1})_{jj} = \sum_{j=0}^3 \alpha_j,
\]

\[
|A_{\mu \nu}| = \prod_{j=0}^3 g_{\mu \nu} a_{ij} > 0,
\]

\[
\bar{\alpha}^2(\eta) = \sum_{j=0}^3 (\alpha_j)^2 g_{\mu \nu} \bar{\eta}^\mu \bar{\eta}^\nu = (\eta A^a \eta),
\]

\[
g_{\mu \nu} = \text{diag}\{1, -1, -1, -1\},
\]

exactly coincides with Eq. (22) with the same precision.
The true parameters of expansion appear again as the following products of the two dimensionless parameters, that are now $m\sigma_x$ and $\sigma_x/|\mathbf{R}|$:

\[(m\sigma_x)\frac{\sigma_x}{|\mathbf{R}|} \ll 1, \quad \text{and:} \quad (m\sigma_x)^2 \frac{\sigma_x}{|\mathbf{R}|} \ll 1, \quad (30)\]

and they have the same order for $(m\sigma_x) \leq 1$.

It is easy to see that both the conditions for 3- and 4-dimensional cases are practically the same. Indeed, Eq. (17) implies that

\[v = \frac{\kappa}{E_k} = \frac{R}{T}, \quad (31)\]

whence: \[R^2 = |\mathbf{R}|^2 = \frac{R^2}{\kappa^2} = \frac{T^2}{m^2}. \quad (32)\]

Since for ultrarelativistic neutrino $T \approx |\mathbf{R}|$ and $E_k \approx \kappa = |\mathbf{R}|$, the conditions (30) may be rewritten as:

\[(\kappa \sigma_x) \frac{\sigma_x}{|\mathbf{R}|} = (E_k \sigma_x) \frac{\sigma_x}{|\mathbf{R}|} \approx (E_k \sigma_x) \frac{\sigma_x}{|\mathbf{R}|} \ll 1, \quad (33)\]

Thus, for $(m\sigma_x) \leq 1$ these both conditions are the same as the first one in 3-dimensional case (15). Moreover the same dimensionless product (32) defines in fact the asymptotical solutions of both the saddle points equations (11) and (25). Note that exact values of the first’s and second’s square brackets in (13) and/or (27) respectively may be different, and their determination in terms of σ_x for 4-dimensional case [2] (27)–(29) is different from 3-dimensional case (13), (14).

The authors thank V. Naumov, D. Naumov, E. Akhmedov, S. Lovtsov, and N. Iljin for useful discussions.

4. APPENDIX

In order to strictly calculate a standard Gaussian integral over the Minkowski space [2]:

\[\exp \{-(\mathbf{y}A\mathbf{y}) + 2(B\mathbf{y})\} = \int d^4y e^{-(\mathbf{y}A\mathbf{y}) + 2(B\mathbf{y})}, \quad (34)\]

where the quadratic form $(\mathbf{y}A\mathbf{y}) = y_\mu A^{\mu\nu} y_\nu$ is symmetric and positive definite, the following solution of the eigenvalue problem may be used:

\[A^{\mu\nu}_{(n)} = a_{(n)}^{\mu\nu}, \quad (\xi^{(n)})^2 = g^{\mu\nu}, \quad (35)\]

\[A^{\mu\nu} = \xi^{(n)}(\mathbf{A})_{\mu\nu} + \xi^{(n)}(\mathbf{A})_{\mu\nu} = g_{\mu\nu}a_{(n)}^{\mu\nu}. \quad (36)\]

In spite of ambiguity ([S] §94) of diagonalization procedure for symmetric tensor in Minkowski space, the positive definiteness of A leaves the used type of its diagonalization only, leading to eigenvectors $\xi^{(n)}$, $n = 0 \div 3$ (35), whose components $\xi^{(n)}_\nu$ define Lorentz transformation diagonalizing the form. Then with the substitutions $Y = \xi^{(n)}_\nu y^\nu$ transforming $(\mathbf{y}A\mathbf{y}) = (\mathbf{A}\mathbf{y})$, $b^m = b^\mu \xi^{(n)}_\mu$, $(B\mathbf{y}) = (B\mathbf{y}) = b^m g_{mn} y^n$, the integration (34) factorizes to:

\[\int d^4y e^{-(\mathbf{A}\mathbf{y}) + 2(B\mathbf{y})} = \int d^4y \exp \left\{ (b\mathbf{A}^{-1}b) \right\} = \int \frac{\pi^4}{\sqrt{\text{det} \mathbf{A}}^\alpha} \exp \left\{ (B\mathbf{A}^{-1}B) \right\}, \quad (36)\]

where $A_{\mu\nu}(A^{-1})^\nu\lambda = \delta_\mu^\lambda$, and $|A_{\mu\nu}| = |(\mathbf{A})_{\mu\nu}|$ is defined by (28).

Nevertheless it is instructive to obtain the same result without reference to diagonalization by using the direct integration over space and time variables separately. Since for n-dimensional Minkowski space with signature metric $g_{\mu\nu} = \text{diag}(1, -1, -1, \ldots, -1)$ in any given orthogonal basis the symmetric tensor \mathbf{A} is represented by the block matrix $A_{\mu\nu} = A_{ij}$ for $i, j, \mu, \nu = 0 \div n - 1$, with the right most bottom block $\mathcal{A}_{ij} = \mathcal{A}_{ij}$ for $i, j = 1 \div n - 1$:

\[A_{\mu\nu} = \begin{pmatrix} A_{00} & A_{0\beta} & A_{0\gamma} & A_{0\delta} & \cdots & A_{0k} & A_{0k} & A_{0\lambda} & A_{0\mu} & A_{0\nu} \end{pmatrix}, \quad (37)\]

the integral (34) with $d^4y \rightarrow d^ny$ may be rewritten as:

\[\int d^ny e^{-yA_{00}y + 2(y^0 A_{0k} - B_k)y^k} \times \int d^{n-1}y \exp \left\{ -y^j \mathcal{A}_{jk} y^k - 2(y^0 A_{0k} - B_k)y^k \right\}. \quad (38)\]

The both integrals are over Euclidian space now, so they are evaluated to

\[\int \frac{\pi^4}{\sqrt{\text{det} \mathcal{A}_{ij}}^\alpha} \times \exp \left\{ (B_i (\mathcal{A}^{-1})_{ik} B_k + \frac{1}{\alpha} (B_0 - B_i (\mathcal{A}^{-1})_{ik} A_{i0})^2 \right\}, \quad (39)\]

if $\alpha \equiv A_{00} - A_{0i} (\mathcal{A}^{-1})_{ik} A_{i0} > 0$. The expression is simplified by Laplace expansion of the determinant $|A_{\mu\nu}|$, where $M_{ij \cdots} = \begin{pmatrix} 1 & 1 & \cdots \end{pmatrix}$ means the minor of the matrix...
A_{uv}, whose rows i_1, i_2, ... and columns j_1, j_2, ... are deleted:

$$[A_{uv}] = \sum_{k=0}^{n-1} (-1)^k A_{0k} M \begin{pmatrix} 0 & k \\ 0 & 0 \end{pmatrix} = A_{00} M \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

- $\sum_{k=1}^{n-1} (-1)^{k+1} A_{0k} M \begin{pmatrix} 0 \\ k \end{pmatrix} = A_{00} M \begin{pmatrix} 0 \\ 0 \end{pmatrix} - \sum_{k=1}^{n-1} (-1)^{k+1} \cdots (39)$

$\times A_{0k} \sum_{i=1}^{n-1} A_{i0} (-1)^{i+1} M \begin{pmatrix} 0 & i \\ 0 & 0 \end{pmatrix}$

Thus $\alpha > 0$ due to positivity condition of the form (37) implying that $|A_{uv}| > 0$. Furthermore, if for any symmetric block matrix A:

$$AA^{-1} = AB = \begin{pmatrix} P_{11} & a_{12} \\ a_{12} & B_{22} \end{pmatrix} \begin{pmatrix} H_{11} & b_{12} \\ b_{12} & B_{22} \end{pmatrix} = \begin{pmatrix} I_{11} & 0_{12} \\ 0_{12} & 0_{22} \end{pmatrix} = I$$

then:

$$\overline{B}_{22} = (A^{-1})_{22} = (P_{11} a_{12} + b_{12} B_{22}^{-1} a_{12})^{-1} = \overline{P}_{11} a_{12} + B_{22}^{-1} a_{12}$$

whence the right most bottom block of the inverse to (37) is expressed for i, k, l, $j = 1 + n - 1$ as:

$$(A^{-1})_{ik} = (\overline{A}_{22})_{ik} = (\overline{A}_{22})_{ik} + \frac{1}{\alpha} A_{il} A_{jl} (A^{-1})_{ik}, \quad (40)$$

the argument of the exponential in (38) is also reduced to expression (36):

$$\frac{1}{\alpha} B_0 - \frac{2}{\alpha} B_1 B_i (A^{-1})_{ii} A_i + B_i \left((A^{-1})_{ik} + \frac{1}{\alpha} (A^{-1})_{il} A_i A_{lj} \right) \times (A^{-1})_{ik} B_k = B_i (A^{-1})_{ij} B_j = (BA^{-1} B)_{ij}$$

A generalization of the integral (34) with arbitrary polynomial or smooth function similar to the well-known approximations for Euclidian case [6] here is also straightforward. The Imaginary part of A_{uv} in integral (34) appearing for (23) as $i\alpha$ preserves convergence of the integral and may be included by analytical continuation of the expression (36).

REFERENCES

1. I. M. Beuthe, “Towards a unique formula for neutrino oscillation in vacuum,” Phys. Rev. D. 66, 013003 (2002), [arXiv:hep-ph/0202068].
2. V. Naumov and D. Naumov, “A diagrammatic treatment of neutrino oscillations,” J. Phys. G: Nucl. Part. Phys. 37, 105014 (2010).
3. W. Grimus and P. Stockinger, “Real oscillations of virtual neutrinos,” Phys. Rev. D. 54, 3414 (1996).
4. J. L. Synge, Relativity: General Theory (Noth-Holl. Pub. Company, Amsterdam, 1960).
5. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Nauka, Moscow, 1988) [in Russian].
6. B. Fedosov, Deformation Quantization and Index Theory (Akad. Verl., Berlin, 1996).