Radiofluorination and biological evaluation of N-aryl-oxadiazolyl-propionamides as potential radioligands for PET imaging of cannabinoid CB$_2$ receptors

Rodrigo Teodoro1,1, Rareș-Petru Moldovan1,1, Corinna Lueg2,1, Robert Günther1, Cornelius K Donat1, Friedrich-Alexander Ludwig1, Steffen Fischer1, Winnie Deuther-Conrad1, Bernhard Wünsch2 and Peter Brust2,*

Abstract

Background: The level of expression of cannabinoid receptor type 2 (CB$_2$R) in healthy and diseased brain has not been fully elucidated. Therefore, there is a growing interest to assess the regional expression of CB$_2$R in the brain. Positron emission tomography (PET) is an imaging technique, which allows quantitative monitoring of very low amounts of radiolabelled compounds in living organisms at high temporal and spatial resolution and, thus, has been widely used as a diagnostic tool in nuclear medicine. Here, we report on the radiofluorination of N-aryl-oxadiazolyl-propionamides at two different positions in the lead structure and on the biological evaluation of the potential of the two tracers $[^{18}\text{F}]_1$ and $[^{18}\text{F}]_2$ as CB$_2$ receptor PET imaging agents.

Results: High binding affinity and specificity towards CB$_2$ receptors of the lead structure remained unaffected by the structural changes such as the insertion of the aliphatic and aromatic fluorine in the selected labelling sites of 1 and 2. Aliphatic and aromatic radiofluorinations were optimized, and $[^{18}\text{F}]_1$ and $[^{18}\text{F}]_2$ were achieved in radiochemical yields of ≥30% with radiochemical purities of ≥98% and specific activities of 250 to 450 GBq/μmol. Organ distribution studies in female CD1 mice revealed that both radiotracers cross the blood–brain barrier (BBB) but undergo strong peripheral metabolism. At 30 min after injection, unmetabolized $[^{18}\text{F}]_1$ and $[^{18}\text{F}]_2$ accounted for 60% and 2% as well as 68% and 88% of the total activity in the plasma and brain, respectively. The main radiometabolite of $[^{18}\text{F}]_2$ could be identified as the free acid $[^{18}\text{F}]_{10}$, which has no affinity towards the CB$_1$ and CB$_2$ receptors but can cross the BBB.

Conclusions: N-aryl-oxadiazolyl-propionamides can successfully be radiolabelled with 18F at different positions. Fluorine substitution at these positions did not affect affinity and specificity towards CB$_2$R. Despite a promising in vitro behavior, a rather rapid peripheral metabolism of $[^{18}\text{F}]_1$ and $[^{18}\text{F}]_2$ in mice and the generation of brain permeable radiometabolites hamper the application of these radiotracers in vivo. However, it is expected that future synthetic modification aiming at a replacement of metabolically susceptible structural elements of $[^{18}\text{F}]_1$ and $[^{18}\text{F}]_2$ will help to elucidate the potential of this class of compounds for CB$_2$R PET studies.

Keywords: Blood–brain barrier; Cannabinoid receptors; 18F labelling; Molecular imaging; Positron emission tomography
Background

Cannabinoid receptors (CBR) belong to the superfamily of G protein-coupled receptors (GPCR) and are involved in various physiological processes. Besides the CBR identified so far, the cannabinoid receptor type 1 (CB1R) [1] and type 2 (CB2R) [2], another GPCR natively interacting with endogenous cannabinoids (GPR55) has been proposed as a third type of CBR [3,4]. While the CB1R is primarily expressed in the central nervous system, the CB2R is predominantly located in the periphery, especially in tissues related to the immune system. In pathological conditions, the up-regulation of CB2R expression is mostly associated with inflammatory processes [5,6], neuropathic pain [7-9], Alzheimer’s disease, and amyotrophic lateral sclerosis (ALS) [10-13]. It has also been shown that the activation of CB2R is connected with the induction of apoptosis in several cancer cell lines [14-17]. However, CB2R are also expressed in healthy brain under physiological conditions at very low expression levels [18,19]. Therefore, the non-invasive quantification of CB2R in the brain, possibly in general by application of highly sensitive imaging techniques such as positron emission tomography (PET), requires the availability of radioligands binding with high affinity and high specificity towards CB2R [20]. Apart from the numerous specific pharmacologically relevant ligands of CB2R reported so far (see [21,22]), only a limited number have been applied for the development of PET radiotracers for imaging of CB2R [23-29]. As we reported earlier, the increase of brain uptake and metabolic stability and decrease of non-specific binding remained as a challenge for further development [29]. Even a follow-up study on [11C]AZD1940 in non-human primate with PET confirmed a relatively low CNS exposure of this radioligand [28]. Mu et al. reported on N-(1-adamantyl)-8-methoxy-4-oxo-1-phenyl-1,4-dihydroquinoline-3-carboxamide as a 11C-labelled PET probe for imaging of CB2R [30]. Although the study showed a rather low brain uptake, and two blocking experiments with GW4058233 to demonstrate the specificity of brain uptake were not conclusive, the potential of the compound for PET imaging of amyotrophic lateral sclerosis has been proposed.

Further, a whole-body biodistribution and radiation dosimetry study of the CB2R ligand [11C]NE40 has been performed in healthy subjects [31]. It showed the expected biodistribution being compatible with lymphoid tissue (spleen) uptake and an appropriate uptake and kinetics in the brain. This underscores the potential of this tracer for application in central and peripheral inflammation imaging. Despite this considerable progress in CB2R PET imaging, a suitable ligand [32] radiolabelled with the advantageous longer-lived isotope 18F is still missing.

Recently, we reported on the synthesis, radiofluorination, and first biological investigation of the N-aryl-oxadiazolyl-propionamide [18F]2 as a potential radioligand for the PET imaging of CB2R [29]. Although the initial radiofluorination approach using a nitro precursor proved to be unsatisfactory (yields ≤ 3%), the promising biological findings encouraged us to revise and upgrade the radiosynthesis of [18F]2 and to perform a more detailed biological evaluation.

Methods

We describe an improved synthesis of [18F]2 using a trimethylammonium precursor for the radiolabelling at the aromatic site of the lead structure (Figure 1, compound 13, X2 = NMe3+I). In parallel, we explored the aliphatic radiofluorination at the carbazole N-alkyl chain (Figure 1, compound 15, X4 = OTs). The labelling of the lead compound at two different sites opens up the possibility to investigate the dependence of affinity, biodistribution and metabolism of these radiotracers on the site of radiolabelling.

Results and discussion

Synthesis of N-arylamide oxadiazoles: precursors for radiochemistry and reference compounds

In a previous study, we have described the synthesis of >20 fluorinated N-arylamide oxadiazoles including labelling precursors for radiochemistry [29]. Here we describe a modified and improved route to obtain novel derivatives for high-yield radiochemistry. In brief, treatment of the nitriles 3 and 4 with excess of hydroxylamine hydrochloride under alkaline conditions delivered the (Z)-amidoximes 5 and 6 in 55% and 73% yield together with amides 7 and 8 (Scheme 1), which have been separated by column chromatography on silica. The Z configuration of

![Figure 1 Aliphatic and aromatic radiofluorination of N-aryl-oxadiazolyl-propionamides.](https://example.com/figure1.png)
the amidoximes was determined by two-dimensional nuclear magnetic resonance (NMR) spectroscopy. Treatment of the amidoximes 5 and 6 with excess of succinic anhydride delivered the acids 9 and 10 in a nearly quantitative manner. The \(N \)-aryl-oxadiazolyl-propionamides 11 and 2 were obtained in high yields (85% and 78%) by using \(N, N' \)-diisopropylcarbodiimide (DIC) as coupling reagent [33].

For the aromatic radiofluorination, trimethylammonium iodide has been used as a leaving group. Although methyl iodide (MeI) has a very high nucleophilicity, the choice of I\(^-\) as a counter ion speeds up the displacement of the trimethylammonium salt in an aromatic ring during radiofluorination under mild conditions [34], thus lowering the amount of potential formation of non-radioactive and radioactive by-products. The trimethylammonium salt 13 was synthesized from the nitro derivative 11 by reduction, reductive methylation with paraformaldehyde and NaBH\(_4\) [35], and quaternization by employing large excess of Mel (Scheme 2) [36].

The ethanol derivative 14 was synthesized in four steps and 28% overall yield starting from the commercially available carbazole (23). The synthesis started with deprotonation of carbazole with \(n \)-BuLi, reaction of the carbazolyl anion with ethylene sulfate, and subsequent hydrolysis with dilute H\(_2\)SO\(_4\) to afford the hydroxyethyl derivative 25 (see ‘Experimental’ section). The crystalline cyclic ethylene sulfate represents a non-toxic but reactive alternative to the gaseous and toxic oxirane. However, there are only few examples for the introduction of a 2-hydroxyethyl group using ethylene sulfate. Nitration of the hydroxyethylcarbazole 25 was performed with concentrated nitric acid at 5°C to 10°C to give the 3-nitrocarbazole derivative 24 in 54% yield (Scheme 1).

Reduction of the nitrocarbazole 24 with H\(_2\) in the presence of Pd/C provided the primary aromatic amine 26, which was precipitated as HCl salt. The final coupling of the carbazolamine 26 with the propionic acid 10 was induced by COMU\(^{\circ}\) providing the amide 14 (Scheme 1).

The fluoroethyl reference compound 1 was prepared by treatment of 14 with the fluorinating agent diethylaminodifluorosulphonium tetrafluoroborate (XtalFluor-E\(^{\circ}\)) (Scheme 2). In order to obtain the precursor for the radiosynthesis, the alcohol 14 was transformed into the tosylate 15 since the tosylxy moiety represents a good leaving group for the nucleophilic substitution with \([^{18}\text{F}]\)fluoride.
For investigations regarding the main metabolite 18F10, the trimethylammonium salt 18 and reference compound 17 were synthesized. Intermediate 16 was obtained by acid protection followed by reduction from 9. To synthesize the reference compound 17, Sandmeyer reaction has been applied [38]. The use of tetrafluoroborate as fluorinating reagent led to the formation of a complex reaction mixture whereas the use of KF delivered 17 in 40% yields. Alternatively, 17 could also be obtained from 10 (not shown in Scheme 3, see ‘Experimental’ section) in improved yield. The trimethylammonium salt 18 was obtained as described above in 48% over two steps.

Radiochemistry

Reaction conditions, purification, and formulation procedures were optimized to achieve a high radiochemical yield (RCY) and a high radiochemical purity in a short synthesis time. Aliphatic and aromatic radiolabellings were carried out at 82°C in MeCN under no-carrier-added (NCA) conditions (Scheme 4). High labelling yields (Figure 2) were obtained using 2 mg of precursor. For 18F1, the optimal conversion of the tosylate 15 was achieved after 10 min (53 ± 6%, n = 12). For 18F2, a maximum was reached after 10 min (63 ± 5%, n = 7), along with a steady loss of product (51 ± 6%, 15 min).
thereafter, probably due to the decomposition of the trimethylammonium salts under prolonged heating \cite{39}. Altogether, evaluating the current results of labeling of $^{[18F]}2$, a great improvement was obtained by using the herein described new trimethylammonium precursor 13 instead of the formerly applied nitro compound 11 (see Scheme 4) where a radiochemical yield of only 3\% has been achieved \cite{29}.

Reaction mixtures were separated by isocratic semi-preparative HPLC, fractions were collected, and the identities confirmed by spiked analytical HPLC samples with the respective reference compounds of $^{[18F]}1$ and $^{[18F]}2$ (Figure 3). Final purification was performed by solid phase extraction (SPE) using Sep-Pack cartridges, and for biological investigations, the products were formulated in isotonic saline containing 10\% EtOH. The radiotracers were produced with 30\% to 35\% RCY, high radiochemical purities ($\geq 98\%$), and high specific activities (250 to 450 GBq/μmol, $n = 4$).

In vitro stability and logD determination

Investigations on the *in vitro* stability of $^{[18F]}1$ and $^{[18F]}2$ were performed prior to the experimental determination of logD values. $^{[18F]}1$ exhibited a slight tendency to de-fluorinate at 40°C in Tris–HCl, EtOH, 0.9\% NaCl, and Dulbecco’s phosphate buffer with 89\%, 93\%, 95\%, and 94\% of intact tracer after 30 min of incubation and no further decrease up to 90 min. $^{[18F]}2$ showed a very high stability with $\geq 98\%$ of intact tracer at incubation in all selected media up to 90 min. Radio-thin-layer chromatography (TLC) and radio-HPLC analyses were in good agreement, and no further radioactive degradation products were observed.

Regarding the HPLC-based logD determination, differences were noticed between isocratic and gradient elutions using the same column. However, as compiled in Table 1, the logD values using ReproSil-Pur C18 AQ column under gradient conditions are in good agreement with those found with Prodigy 5 μm C8 column.

Receptor affinity

The substitution of the ethyl chain of the carbazole moiety in 2 with a fluorine-ethyl chain in 1 had little effect on target affinity and specificity as reflected by comparable K_i values for the CB$_2$-R ($K_i = 2.32 \pm 2.12$ nM; 2, $K_i = 4.27 \pm 3.03$ nM) \cite{29}. Based on the data published by Cheng et al. \cite{40} (JCPDS 42–44), an agonistic profile of 1 and 2 can be assumed. Both compounds possess no affinity towards the CB$_1$-R ($K_i > 1$ μM). By contrast, one major brain-penetrating metabolite, compound 10, shows almost no binding towards the CBRs ($K_i_{CB1R} > 1$ μM, $K_i_{CB2R} > 1$ μM). In accordance with the *ex vivo* autoradiographic studies on $^{[18F]}2$ in spleen tissue slices \cite{29}, compound $^{[18F]}1$ targets CB$_2$R *in vivo* too. The autoradiograms are shown in Figure S1 of Additional file 1.

Organ distribution of $^{[18F]}1$ and $^{[18F]}2$ in mice

The biodistribution of compounds $^{[18F]}1$ and $^{[18F]}2$ in percentage of injected dose per gram (% ID/g) at 5, 30,
and 60 min post injection (p.i.) is compiled in Tables 2 and 3. For both radiotracers, the highest uptake was detected at 5 min p.i. in the spleen. Comparable kinetics were observed in the brain and most other organs such as the lung, liver, kidney, thymus, and adrenals after administration of \([^{18}\text{F}]\)1 and \([^{18}\text{F}]\)2, respectively. Both compounds showed a high gastrointestinal excretion as reflected by the constant increase of activity uptake in the small intestine. A constantly low uptake of activity in the femur indicates no confounding defluorination during the experiment.

The highest accumulation of activity was found in the kidneys and liver for both compounds. While the activity uptake is higher in the kidneys for \([^{18}\text{F}]\)1, the values for \([^{18}\text{F}]\)2 are higher in the liver, indicating different excretion patterns.

Blocking experiments were performed with pre-administration of the CB₂R-specific inverse agonist SR144528. At 60 min, the animals were sacrificed and the percentage of injected dose per gram of activity uptake was calculated for the various organs. No significant reduction of percentage of injected dose per gram could be observed for both compounds in any of

Table 1 Experimental logD coefficients of compounds 1 and 2

Compound	Reposil-Pur C18-AQ¹	Prodigy 5 µC 8³	
	Isocratic	Gradient	Isocratic
1	4.21 ± 0.32	3.82 ± 0.10	3.86 ± 0.33
2	4.87 ± 0.36	4.35 ± 0.11	4.40 ± 0.35

¹Experiments performed with the respective reference compounds (n = 3 to 6).
the organs investigated including CB2R-expressing organs (details are compiled in Additional file 1: Table S1). For [18F]2, the pre-administration of SR144528 led to an increase of percentage of injected dose per gram in some organs, which might be related to metabolic processes. Interestingly, major differences between the radioactivity uptakes in various organs were found for [18F]1 and [18F]2. Figure 4 shows all organs (plus the blood and liver) in which significant differences in radioactivity uptake were found at 60 min after injection of the two radio-tracers. The measured radioactivity was higher after application of [18F]1 in those organs expressing CB2R natively [18] in comparison to the data obtained after injection of [18F]2. This relation is reversed in those organs associated to excretion. The cause of this is probably related to the much faster metabolism of [18F]2 and its radiometabolites compared to that of [18F]1, which is in agreement with the observation of significantly lower accumulation of radiolabelled compounds in the plasma and kidney.

The significant differences in the pancreas and femur can be considered as a further indicator of different metabolic processes of [18F]1 and [18F]2 leading to different radiometabolites with diverse organ distribution patterns. Thus, the activity measured in the ex vivo biodistribution study is largely determined by metabolites bearing the 18F label.

Metabolism of [18F]1 and [18F]2 in mice

Typical HPLC radiochromatograms of brain extracts are shown in Figure 5. In general, radio-TLC analytics of plasma, urine, and brain samples obtained at 30 and 60 min p.i. of [18F]1 or [18F]2 are consistent with the data obtained by radio-HPLC. As shown in Table 4, unmetabolized [18F]1 accounted for 60% of the recovered activity in plasma samples at 30 min p.i., while 36% of the total radioactivity can be addressed to a more hydrophilic metabolite M1a. The amount of intact radiotracer [18F]1 is further reduced at 60 min p.i. to 7% with a concomitant increase of M1a to 92%.

Radiochromatograms of brain samples at 30 min p.i. shown in Figure 5 revealed that unmetabolized radiotracer [18F]1 is further reduced at 60 min p.i. to 7% with a concomitant increase of M1a to 92%.

Organ	Control (% ID/g)	Blocking (% ID/g)	
	5 min a	30 min b	60 min c
Blood	1.94 ± 0.44	1.44 ± 0.41	1.94 ± 0.69
Plasma	2.52 ± 0.58	1.88 ± 0.58	2.50 ± 0.87
Brain	1.31 ± 0.24	0.76 ± 0.22	0.92 ± 0.27
Heart	3.39 ± 0.45	1.43 ± 0.47	1.66 ± 0.37
Lung	3.68 ± 0.62	1.65 ± 0.70	1.77 ± 0.74
Stomach	2.05 ± 0.33	1.23 ± 0.36	2.70 ± 1.47
Small intestine	4.36 ± 2.09	10.51 ± 8.38	22.03 ± 8.32
Large intestine	1.91 ± 2.66	3.24 ± 5.61	1.54 ± 0.42
Liver	11.00 ± 1.04	4.38 ± 1.19	5.29 ± 1.22
Kidney	13.40 ± 5.66	2.68 ± 0.37	1.65 ± 0.49
Bladder	2.23 ± 1.39	1.65 ± 0.43	3.27 ± 1.94
Spleen	3.44 ± 0.77	1.46 ± 0.56	1.52 ± 0.62
Thymus	3.30 ± 0.58	1.57 ± 0.80	1.90 ± 0.98
Pancreas	4.97 ± 0.62	1.50 ± 0.74	1.13 ± 0.11
Adrenals	4.16 ± 6.23	3.31 ± 0.09	3.16 ± 1.25
Gonads	1.06 ± 0.94	1.02 ± 0.26	1.33 ± 0.50
Muscle	2.10 ± 0.33	1.02 ± 0.50	0.89 ± 0.19
Femur	2.00 ± 0.38	1.37 ± 0.50	1.84 ± 0.35

Blocking was performed with pre-administration of SR144528 (3 mg/kg i.p.). Values are mean ± SD. a n = 4 , b n = 5 , c n = 6 .
The total amount of activity measured in, e.g. the plasma at particular times p.i. also depends on the kinetics of the excretion of radiotracer/radiometabolites. For 18F2, this is more pronounced than for 18F1 with unmetabolized 18F2 accounting for only 2% of the total radioactivity in the plasma at 30 min p.i. At this time, more than 90% of the recovered activity in plasma samples for 18F2 consisted of the single radiometabolite M1b. As this value decreases only slightly up to 60 min p.i. (88%), M1b can be assumed as a rather metabolically stable compound. This radiometabolite of 18F2 probably corresponds to the N-aryl-oxadiazolyl-propanoic acid resulting from enzymatic hydrolysis of the amide bond of 40. To prove this assumption, the trimethylammonium salt 18 was synthesized as the precursor of this metabolite. In order introduce 18F into the molecule, the carbon acid moiety was protected as a methyl ester resulting in the labelled compound 18F17 (Scheme 5). It was expected that after injection of this compound in mice, the ester will be converted into the free acid 18F10. Those metabolic pathways are common for drug inactivation and excretion [41] as well as for the prodrug concept providing pharmacologically active metabolites in vivo from pharmacologically inactive compounds [42]. After intravenous injection of 18F17 in CD1 mice, samples of the plasma, brain, and spleen were analyzed at 30 and 60 min p.i. (Table 5).

As expected, the methylester 18F17 ($t_R = 36$ min) is completely converted to free acid 18F10 ($t_R = 22$ min) in the plasma samples already at 30 min p.i. (Scheme 5). Radio-HPLC analysis of brain samples at 60 min p.i., spiked with the reference compounds 2 and 10, confirmed

Table 3 Radioactivity uptake in major organs of female CD1 mice after intravenous administration of 300 to 400 kBq 18F2

Organ	Control (%ID/g)	Blocking (%ID/g)	
	5 min a	30 min b	60 min a
Blood	2.29 ± 0.48	3.42 ± 0.39	2.50 ± 0.42
Plasma	3.87 ± 0.90	6.82 ± 1.19	5.22 ± 0.73
Brain	0.62 ± 0.22	0.86 ± 0.34	0.26 ± 0.07
Heart	3.42 ± 0.57	2.32 ± 0.24	1.45 ± 0.20
Lung	4.62 ± 0.21	3.36 ± 0.02	2.52 ± 0.60
Stomach	1.57 ± 1.18	2.09 ± 0.81	2.21 ± 0.43
Small intestine	3.86 ± 2.64	20.78 ± 3.28	27.31 ± 2.44
Large intestine	0.46 ± 0.06	1.25 ± 0.30	1.86 ± 0.36
Liver	31.31 ± 9.91	8.84 ± 0.83	6.27 ± 0.68
Kidney	5.86 ± 0.96	5.90 ± 0.15	3.96 ± 1.25
Bladder	1.01 ± 0.29	2.02 ± 0.39	1.45 ± 0.57
Spleen	10.42 ± 7.67	1.34 ± 0.10	0.68 ± 0.11
Thymus	2.30 ± 1.06	1.96 ± 0.22	1.04 ± 0.08
Pancreas	2.04 ± 0.59	1.71 ± 0.15	0.82 ± 0.21
Adrenals	7.67 ± 2.18	5.38 ± 0.61	2.44 ± 0.72
Gonads	1.14 ± 0.32	2.08 ± 0.03	2.29 ± 0.57
Muscle	1.00 ± 0.30	0.92 ± 0.15	0.70 ± 0.27
Femur	1.63 ± 0.93	1.10 ± 0.03	0.58 ± 0.11

Blocking was performed with pre-administration of SR144528 (3 mg/kg i.p.). Values are mean ± SD. a $n = 3$, b $n = 2$.
that the radiometabolite M1b co-elutes with compound 10 (Figure 6).

Furthermore, in combination with the time-activity data presented in Table 5, this result indicates that the main radiometabolite M1b of [18F]2 derived from peripheral metabolism ([18F]10) penetrates the blood–brain barrier (BBB). In addition, analyses of brain and spleen sample data revealed that no further metabolic transformation of [18F]10 could be observed up to 60 min p.i. as shown in Figure 7.

In vitro investigation of the affinity of 10 towards both hCB2R and hCB1R revealed no specific binding (K_i > 1 μM). Altogether, these data suggest that non-target binding radiometabolites of [18F]1 and [18F]2 account for the vast majority of ex vivo activity measured in the spleen and other organs known to express CB2R. This corresponds very well with the insignificant displacement of activity after administration of [18F]1 and [18F]2 by the CB2R-specific SR144528. Hence, radiometabolites generated in the periphery penetrate the BBB leading to a pronounced accumulation of the main radiometabolites in the brain, hampering the application of [18F]1 and [18F]2 for imaging of CB2R in the brain.

Experimental

Materials and general procedures

Unless otherwise noted, moisture-sensitive reactions were performed under dry nitrogen or argon. All chemicals and reagents were purchased from commercially available sources and used without further purification unless otherwise specified. Tetrahydrofuran (THF) was dried with sodium/benzophenone and was freshly distilled before use. For the TLC, silica gel 60 F254 plates (Merck KGaA, Darmstadt, Germany) were used. For the flash chromatography (fc), silica gel 60, 40 to 64 μm, (Merck) was used. Room temperature (rt) was 20°C. Melting point was determined using Stuart™ Melting point apparatus SMP3 (Bibby Scientific Ltd, Staffordshire, UK), uncorrected. Mass spectrometry (MS) was done using MAT GCQ (Thermo Finnigan

Table 4 Relative percentages of intact tracer and radiometabolites in plasma samples

Compound	t_e (min)^a	Plasma	
	30 min p.i. (%)	60 min p.i. (%)	
[18F]1	38.8	60	7
M1_a	4.2	36	92
M2_a	30.2	3	1
[18F]2	41.7	2	2
M1_b	22.9	95	88
M2_b	36.4	≤1	≤1

At 30 and 60 min p.i. of [18F]1 and [18F]2. "Radio-HPLC (separation conditions, see 'Experimental' section)."
were conducted on a semi-preparative radio-HPLC (raytest Isotopenmessgeräte GmbH, Straubenhardt, Germany). Purification and isolation of the radiotracers ware (AIDA 2.31 soft-

Radio-TLC was recorded using a BAS-1800 II system (doublet of doublets), and dt (doublet of triplets). HPLC metabolite evaluation of [18F]17 (tR = 19.5 min) semi-

For radiochemistry, TLC was performed on silica gel pre-coated plates (Polygram, SIL G/UV254) with petrol-

Radio-TLC was recorded using a BAS-1800 II system Bioimaging Analyzer (Fujifilm Photo Film, Co. Ltd., Tokyo, Japan), and images were evaluated with AIDA 2.31 software (raytest Isotopenmessgeräte GmbH, Straubing, Germany). Purification and isolation of the radiotracers were conducted on a semi-preparative radio-HPLC consisting of a S1021 pump (Sykam GmbH, Eresing, Germany), UV detector (Wellchrom Filter-Photometer K-2001; Wissenschaftl. Gerätebau Dr. Ing. Herbert Knauer GmbH, Berlin, Germany), NaI(Tl) counter, and data acquisition by an automated system (Nina, Nuclear Interface, GE Medical Systems, Munich, Germany) on a Reprosil Gold C18, 10 μm, 150 × 4.6 mm, eluent: 58% MeCN/20 mM NH4OAc, at a flow rate of 2.0 mL/min, and Multospher 120 RP-18 AQ, 5 μm, 150 × 10 mm, eluent: 60% MeCN/20 mM NH4OAc at a flow rate of 2.0 mL/min, respectively for [18F]1 (tR = 35.3 min) and [18F]2 (tR = 35.6 min). For the in vivo pharmacokinetic metabolite evaluation of [18F]17 (tR = 19.5 min) semi-preparative isolation was performed on a Multospher 120 RP 18 AQ, 5 μm, 150 × 10 min, eluent: 56% MeCN/20 mM NH4OAc at a flow rate of 2.0 mL/min. Analytical chromatographic separations were performed on a JASCO LC-2000 system (JASCO Labor- und Datentechnik GmbH, Gross-Umstadt, Germany), incorporating a PU-2080Plus pump, AS-2055Plus auto injector (100 μL sample loop) and a UV-2070Plus UV detector (monitoring at 254 nm). All analytical radio-HPLC analyses were performed using a gradient mode on a Multospher 120 RP18 AQ, 5 μm, 250 × 4.6 m. Solvents: A: 10% MeCN/20 mM NH4OAc, B: 90% MeCN/20 mM NH4OAc. Gradient elution (A%): 0 to 10 min, 100%; 10 to 40 min, gradient from 100% to 0%; 40 to 50 min, 0%; 50 to 50 min, 100% at a flow rate of 1 mL/min.

(Z)-2-Bromo-N-hydroxy-4-nitrobenzimidamide (5) and 2-bromo-4-nitrobenzamide (7)

To a solution of 2-bromo-4-nitrobenzonitrile 3 (100 mg, 0.44 mmol, 1 eq.) in 5 mL MeOH under argon, Na2CO3 (56 mg, 0.52 mmol, 1.2 eq.) and NH2OH-HCl (76 mg, 1.11 mmol, 2.5 eq.) were added at rt, and the reaction mixture was refluxed for 15 h. Upon cooling to rt, 10 mL of H2O was added and the aqueous phase was washed three times with 10 mL ethyl acetate (EtOAc). The combined organic extracts were dried over sodium sulfate and filtered. Upon evaporation of the solvent, column chromatography was performed (silica, EtOAc/isohexane (IH) 2:8) to give 5 (62 mg, 0.24 mmol, 55%) and 7 (41 mg, 0.17 mmol, 32%) as colorless solids. 5: 1H NMR (400 MHz, DMSO-d6): δ

Sample	30 min p.i. (% ID/g)	60 min p.i. (% ID/g)
Plasma	18.21	15.38
Brain	0.28	0.29
Spleen	1.35	1.31

Scheme 5 Radiosynthesis and metabolism of [18F]17. (a) Radiolabelling with K[18F]F-K2.2.2-carbonate complex (5.6 mg, 15 μmol), 2 mg of 18. MeCN, 82°C, 10 min; (b) in vivo metabolism.

Table 5 [18F]10 uptake in female CD1mice after intravenous administration of 100 to 200 kBq [18F]17

MAT GmbH, Bremen, Germany). 1H, 13C, and 19F NMR spectra were recorded on VARIAN GEMINI 2000 (200 MHz for 1H NMR, 50 MHz for 13C NMR, 188 MHz for 19F NMR), VARIAN MERCURY plus (300 MHz for 1H NMR, 75 MHz for 13C NMR, 228 MHz for 19F NMR), and VARIAN MERCURY plus and BRUKER DRX-400 (400 MHz for 1H NMR, 100 MHz for 13C NMR, 367 MHz for 19F NMR); 6 (in ppm) was related to tetramethylsilane and trichloro-fluoro-methane (CF3Cl), respectively; coupling constants (J) were given with 0.1-Hz resolution. Multiplicities of NMR signals are indicated as follows: s (singlet), d (doublet), t (triplet), m (multiplet), dd (doublet of doublets), and dt (doublet of triplets). HPLC method for determination of the product purity was done with Merck Hitachi Equipment; L-7400 UV de-

[57x157]were conducted on a semi-preparative radio-HPLC [57x169]Germany). Purification and isolation of the radiotracers ware (raytest Isotopenmessgeräte GmbH, Straubenhardt, Germany). Purification and isolation of the radiotracers ware (AIDA 2.31 soft-

Radio-TLC was recorded using a BAS-1800 II system (doublet of doublets), and dt (doublet of triplets). HPLC metabolite evaluation of [18F]17 (tR = 19.5 min) semi-

For radiochemistry, TLC was performed on silica gel pre-coated plates (Polygram, SIL G/UV254) with petrol-

Radio-TLC was recorded using a BAS-1800 II system Bioimaging Analyzer (Fujifilm Photo Film, Co. Ltd., Tokyo, Japan), and images were evaluated with AIDA 2.31 software (raytest Isotopenmessgeräte GmbH, Straubing, Germany). Purification and isolation of the radiotracers were conducted on a semi-preparative radio-HPLC consisting of a S1021 pump (Sykam GmbH, Eresing, Germany), UV detector (Wellchrom Filter-Photometer K-2001; Wissenschaftl. Gerätebau Dr. Ing. Herbert Knauer GmbH, Berlin, Germany), NaI(Tl) counter, and data acquisition by an automated system (Nina, Nuclear Interface, GE Medical Systems, Munich, Germany) on a Reprosil Gold C18, 10 μm, 150 × 4.6 mm, eluent: 58% MeCN/20 mM NH4OAc, at a flow rate of 2.5 mL/min, and Multospher 120 RP-18 AQ, 5 μm, 150 × 10 mm, eluent: 60% MeCN/20 mM NH4OAc at a flow rate of 2.0 mL/min, respectively for [18F]1 (tR = 35.3 min) and [18F]2 (tR = 35.6 min). For the in vivo pharmacokinetic metabolite evaluation of [18F]17 (tR = 19.5 min) semi-preparative isolation was performed on a Multospher 120 RP 18 AQ, 5 μm, 150 × 10 min, eluent: 56% MeCN/20 mM NH4OAc at a flow rate of 2.0 mL/min. Analytical chromatographic separations were performed on a JASCO LC-2000 system (JASCO Labor- und Datentechnik GmbH, Gross-Umstadt, Germany), incorporating a PU-2080Plus pump, AS-2055Plus auto injector (100 μL sample loop) and a UV-2070Plus UV detector (monitoring at 254 nm). All analytical radio-HPLC analyses were performed using a gradient mode on a Multospher 120 RP18 AQ, 5 μm, 250 × 4.6 m. Solvents: A: 10% MeCN/20 mM NH4OAc, B: 90% MeCN/20 mM NH4OAc. Gradient elution (A%): 0 to 10 min, 100%; 10 to 40 min, gradient from 100% to 0%; 40 to 45 min, 0%; 45 to 50 min, 100% at a flow rate of 1 mL/min.

(Z)-2-Bromo-N-hydroxy-4-nitrobenzimidamide (5) and 2-bromo-4-nitrobenzamide (7)

To a solution of 2-bromo-4-nitrobenzonitrile 3 (100 mg, 0.44 mmol, 1 eq.) in 5 mL MeOH under argon, Na2CO3 (56 mg, 0.52 mmol, 1.2 eq.) and NH2OH-HCl (76 mg, 1.11 mmol, 2.5 eq.) were added at rt, and the reaction mixture was refluxed for 15 h. Upon cooling to rt, 10 mL of H2O was added and the aqueous phase was washed three times with 10 mL ethyl acetate (EtOAc). The combined organic extracts were dried over sodium sulfate and filtered. Upon evaporation of the solvent, column chromatography was performed (silica, EtOAc/isohexane (IH) 2:8) to give 5 (62 mg, 0.24 mmol, 55%) and 7 (41 mg, 0.17 mmol, 32%) as colorless solids. 5: 1H NMR (400 MHz, DMSO-d6): δ

Sample	30 min p.i. (% ID/g)	60 min p.i. (% ID/g)
Plasma	18.21	15.38
Brain	0.28	0.29
Spleen	1.35	1.31
Figure 6 Analytical radio-HPLC profile of $[^{18}\text{F}]2$ at 60 min p.i spiked with the reference 2 and 10 (M1b). Conditions: Multospher 120 RP 18 AQ, 5 μm, 250 × 4.6 mm. Solvents: A: 10% MeCN/20 mM NH₄OAc, B: 90% MeCN/20 mM NH₄OAc. Gradient elution (A%): 0 to 10 min, 100%; 10 to 40 min, gradient from 100% to 0%; 40 to 45 min, 0%; 45 to 50 min, 100% at a flow rate of 1 mL/min.

Figure 7 In vivo metabolism conversion of $[^{18}\text{F}]17$ to $[^{18}\text{F}]10$. Analytical radio-HPLC profiles of the in vivo metabolism conversion of $[^{18}\text{F}]17$ ($t_R = 36$ min) to $[^{18}\text{F}]10$ ($t_R = 22$ min, Scheme 5b) in plasma, brain, and spleen samples. (A) At 30 min p.i. and (B) at 60 min p.i. Conditions: Multospher 120 RP 18 AQ, 5 μm, 250 × 4.6 mm. Solvents: A: 10% MeCN/20 mM NH₄OAc, B: 90% MeCN/20 mM NH₄OAc. Gradient elution (A%): 0 to 10 min, 100%; 10 to 40 min, gradient from 100% to 0%; 40 to 45 min, 0%; 45 to 50 min, 100% at a flow rate of 1 mL/min.
(ppm) = 9.70 (s, 1H), 8.41 (d, J = 2.3 Hz, 1H), 8.21 (dd, J = 8.4/2.3 Hz, 1H), 7.64 (d, J = 8.4 Hz, 1H), 5.99 (s, 2H), 5.99 (s, 2H); 13C NMR (100 MHz, DMSO-6D): δ (ppm) = 150.4, 147.8, 141.7, 132.2, 127.3, 122.5, 122.3; MS (ESI+): m/z (%) = 260/262 (100/100) [M+H]+.

(Z)-2-Bromo-4-fluoro-N'-hydroxybenzimidamide (6) and 2-bromo-4-fluorobenzamide (8)

Compounds 6 and 8 (pale yellow solids) were obtained under the same synthetic procedure described for compounds 5 and 7 with 2-bromo-1-fluoro-4-nitrobenzene 4 as starting reagent. 6 (yield 73%): 1H NMR (400 MHz, CDCl3): δ (ppm) = 8.49 (d, J = 2.2 Hz, 1H), 8.24 (dd, J = 8.5, 2.2 Hz, 1H), 7.79 (d, J = 8.5 Hz, 1H); 13C NMR (100 MHz, CDCl3): δ (ppm) = 164.0, 130.6, 128.7, 122.7, 120.0; MS (ESI+): m/z (%) = 245/247 (100/100) [M+H]+.

3-(3-(2-Bromo-4-nitrophenyl)-1,2,4-oxadiazol-5-yl)-N-(9-ethyl-9H-carbazol-3-yl)propanamide (19)

To a solution of acid 9 (50 mg, 0.14 mmol, 1 eq.) and 9-ethyl-9H-carbazol-3-amine 12 (30 mg, 0.14 mmol, 1 eq.) in 5 mL dichloromethane (DCM), N,N'-disopropylcarbodiimide (45 μL, 0.21 mmol, 1.5 eq.) was added at 0°C, and the reaction was stirred at rt until 9 and 12 were not visible by TLC control (silica, EtOAc/CH2Cl2 1:1) (2 h). The reaction was diluted with 5 mL of DCM and washed once with 10 mL 0.5 M aq. HCl, 10 mL 0.5 M NaOH and 10 mL aq. NaCl saturated solution. The organic phase was dried over sodium sulfate and filtered. Evaporation of the solvent afforded a brown solid which was recrystallized from THF to give 19 (63 mg, 0.11 mmol, 85%) as a white solid. 1H NMR (400 MHz, CDCl3): δ (ppm) = 8.57 (d, J = 2.0 Hz, 1H), 8.36 to 8.14 (m, 2H), 8.03 (d, J = 8 Hz, 2H), 7.62 to 7.13 (m, 4H), 4.35 (q, J = 7.3 Hz, 2H), 3.49 (t, J = 7.4 Hz, 2H), 3.04 (t, J = 7.4 Hz, 2H), 1.43 (t, J = 7.2 Hz, 3H); MS (ESI+): m/z (%) = 556/558 (100/100) [M+Na]+.

3-(3-(2-Bromo-4-nitrophenyl)-1,2,4-oxadiazol-5-yl)-N-(9-ethyl-9H-carbazol-3-yl)propanamide (19)

To a solution of oxadiazole 11 (30 mg, 0.05 mmol, 1 eq.) and SnCl2-2H2O (63 mg, 0.28 mmol, 5 eq.) in 2 mL of EtOH, concentrated aq. HCl (37%) was added at rt. Upon completion (TLC silica, EtOAc/CH2Cl2 1:1), 10 mL of saturated aq. NaHCO3 solution was added, and the mixture was extracted three times with 10 mL of EtOAc. The combined organic extracts were dried over sodium sulfate and filtered. Evaporation of the solvent afforded 19 (17.6 mg, 0.04 mmol, 70%) as a brown solid which was used in the next step without further purification. 1H NMR (300 MHz, CDCl3): δ (ppm) = 8.17 (d, J = 1.9 Hz, 1H), 7.89 (d, J = 7.8 Hz, 1H), 7.47 (d, J = 8.4 Hz, 1H), 7.37 (dt, J = 9.1, 4.6 Hz, 1H), 7.34 to 7.14 (m, 3H), 7.09 to 6.99 (m, 1H), 6.94 (d, J = 2.2 Hz, 1H), 6.61 (dd, J = 8.4, 2.3 Hz, 1H), 4.19 (q, J = 7.2 Hz, 2H), 3.24 (t, J = 7.4 Hz, 2H), 2.86 (t, J = 7.4 Hz, 2H), 1.25 (t, J = 7.2 Hz, 3H); 13C NMR (75 MHz, CDCl3): δ (ppm) = 178.2, 170.6, 169.2, 167.5, 157.9, 140.4, 137.2, 133.0, 129.7, 125.7, 122.8, 122.7, 120.5, 120.4, 119.4, 118.6, 114.5, 112.7, 108.5, 108.4, 37.5, 32.6, 22.4, 13.6; MS (ESI+): m/z (%) = 528/526 (100/100) [M+Na]+.

3-(3-(2-Bromo-4-fluoro-N'-hydroxybenzene-1-carboximidamide 6 as starting reagent (yield 95%, mp = 104°C).

1H NMR (400 MHz, DMSO-d6): δ (ppm) = 7.86 (dd, J = 8.7, 6.1 Hz, 1H), 7.82 (dd, J = 8.6, 2.6 Hz, 1H), 7.50 to 7.41 (m, 1H), 3.20 (t, J = 6.9 Hz, 2H), 2.81 (t, J = 6.9 Hz, 2H); 13C NMR (100 MHz, DMSO-d6): δ (ppm) = 179.2, 172.7, 164.1, 161.6, 133.6 (d, J = 9.4 Hz, 2H), 124.3 (d, J = 3.5 Hz, 2H), 122.1 (d, J = 10.1 Hz), 121.4 (d, J = 25.1 Hz), 115.5 (d, J = 21.6 Hz), 29.9, 21.64; MS (ESI+): m/z (%) = 315/317 (100/100) [M+H]+.
3-(3-(2-Bromo-4-(dimethylamino)phenyl)-1,2,4-oxadiazo-5-yl)-N-(9-ethyl-9H-carbazol-3-yl)propanamid (20)

To a solution of paraformaldehyde (PFA) (7.2 mg, 0.24 mmol, 6 eq.) in 90 μL of H2O, concentrated H2SO4 (13 μL, 0.24 mmol, 6 eq.) was added, and the reaction was cooled in an ice bath. To the resulting solution, 19 (20 mg, 0.04 mmol, 1 eq.) in 1 mL THF was added, and the reaction mixture was stirred for 30 min at 0°C. Next, NaBH4 (granules, 9.1 mg, 0.24 mmol, 6 eq.) was added in one portion, and the reaction was stirred for a further 18 h at rt. The reaction was quenched by addition of a concentrated aqueous NaOH solution (pH = 10 to 12), and the resulting aqueous phase was washed with EtOAc.

Dried to give 20 as a colorless solid (11 mg, 0.12 mmol, 53%). Purity (HPLC): 98.1% (β = 178.4, 168.6, 167.0, 156.7, 152.1, 139.9, 136.1, 132.2, 131.1, 125.7, 122.0, 121.8, 120.1, 118.8, 118.5, 116.0, 113.4, 111.1, 110.7, 109.1, 108.9, 40.6, 36.9, 32.0, 21.7, 13.6; MS (ESI+): m/z (%) = 556/554 (100/100) [M+Na]+.

2-(9H-Carbazol-9-yl)ethanol (25)

Under N2, 9H-carbazole (23, 5.43 g, 32.5 mmol, 1.0 eq.) was dissolved in THF (55 mL) and cooled down to −78°C. n-Butyllithium (1.2 M in n-hexane, 32.4 mL, 38.9 mmol, 1.2 eq.) was added dropwise, and the mixture was stirred for 30 min at −78°C. Then, a solution of ethylene sulfate (4.51 g, 36.3 mmol, 1.1 eq.) in THF (15 mL) was added, and the mixture was stirred for 1 h at −78°C and 24 h at rt. H2O was added and the mixture was acidified to pH 1 with concentrated H2SO4 and heated to reflux for 24 h. Afterwards, the solution was neutralized with 5 M NaOH, brine was added and the mixture was extracted with CH2Cl2. The organic layers were dried (Na2SO4) and concentrated under reduced pressure, and the residue was purified by fc (d = 8 cm, l = 12 cm, cyclohexane/THF 3:7) to give 25 as a pale yellow solid, mp = 80°C, yield 4.66 g (68%). Purity (HPLC): 98.1% (β = 19.28 min). 1H NMR (400 MHz, DMSO-d6): δ (ppm) = 3.86 (quart, J = 5.9 Hz, 2H), 4.47 (t, J = 5.5 Hz, 2H), 4.99 (t, J = 5.0 Hz, 1H), 7.24 (t, J = 7.4 Hz, 2H), 7.48 (t, J = 7.6 Hz, 2H), 8.18 (d, J = 7.8 Hz, 2H); 13C NMR (CDCl3): δ (ppm) = 45.3, 59.6, 109.6 (2C), 118.6 (2C), 120.2 (2C), 122.2 (2C), 125.0 (2C), 140.5 (2C); exact mass (APCI): m/z = calculated for C14H13NOH 212.1069, found 212.1060.

3-Bromo-4-(5-(3-(9-ethyl-9H-carbazol-3-yl)-amino)-3-oxopropyl)-1,2,4-oxadiazo-3-yl)-N,N-trimethylbenzenaminium iodide (13)

To a solution of dimethylaniline (53 mg, 0.1 mmol, 1 eq.) in 1 mL of dry DMF under argon, Mel (124 μL, 20 mmol, 20 eq.) was added at rt. The reaction was sealed and warmed up to 35°C. Additional Mel (124 μL, 20 mmol, 20 eq.) was added after 2 and 5 days, while the reaction temperature was maintained at 35°C. Upon solvent evaporation, the resulting thick mass was washed three times with 4 mL of EtOAc to remove trace impurities and unreacted starting material (20). Upon drying, 4 mL of H2O was added. The mixture was sonicated and placed in a fridge (+4°C) for 1 h. The solid was filtrated and rewash with 4 mL of ice-cold H2O. The trimethylammonium salt 13 was obtained as a light brown solid (57 mg, 0.85 mmol, 85%) with mp = 109°C. 1H NMR (400 MHz, CDCl3); δ (ppm) = 8.71 (s, 1H), 8.41 (d, J = 1.9 Hz, 1H), 8.25 (d, J = 2.7 Hz, 1H), 8.08 (d, J = 7.8 Hz, 1H), 8.05 (d, J = 8.8 Hz, 1H), 7.93 (dd, J = 8.9, 2.8 Hz, 1H), 7.57 (dd, J = 8.7, 2.1 Hz, 1H), 7.49 (dt, J = 15.4, 8.2 Hz, 3H), 7.20 (dd, J = 7.9, 6.9, 1.2 Hz, 1H), 4.40 (q, J = 7.2 Hz, 2H), 3.59 (s, 9H), 3.39 (t, J = 6.9 Hz, 2H), 3.05 (t, J = 6.9 Hz, 2H), 1.37 (t, J = 7.2 Hz, 3H); 13C NMR (101 MHz, CDCl3); δ (ppm) = 181.1, 169.8, 167.4, 149.2, 141.3, 137.7, 134.1, 131.7, 131.6, 127.5, 126.8, 123.9, 123.4, 121.2, 121.0, 120.0, 119.5, 112.6, 109.9, 109.8, 58.1 (3C), 38.2, 33.2, 22.9, 14.0; HRMS (ESI+): m/z (%) = 546.1531/548.1436 (100/100) [M]+.
2-(3-Amino-9H-carbazol-9-yl)ethanol-hydrochloride (26-HCl)
3-Nitro-9-(hydroxyethyl)carbazole (24, 500 mg, 1.95 mmol, 1.0 eq.) was dissolved in THF (10 mL/100 mg) and Pd/C (100 mg) was added. The reaction mixture was stirred for 24 h at rt under H2 (balloon). The catalyst was removed by filtration over Celite® and the filtrate was concentrated under reduced pressure. The residue was dissolved in diethyl ether. Under N2, HCl-EtO (2 mol/L, 2 mL, 4 mmol, 2.0 eq.) was added drop wise under vigorous stirring to produce the respective HCl salt. The precipitate was filtered, washed with cold MeOH, and used without further purification. Rf 0.35 (cyclohexane/ethyl acetate 30:70). Colorless solid with mp = 230°C, yield 492 mg (96%). 1H NMR (26-HCl, DMSO-d6): δ (ppm) = 3.78 (t, J = 5.5 Hz, 2H), 4.47 (t, J = 5.5 Hz, 2H), 7.24 (t, J = 7.4 Hz, 1H), 7.45 (dd, J = 8.7/2.1 Hz, 1H), 7.50 (t, J = 7.4 Hz, 1H), 7.66 (d, J = 8.3 Hz, 1H), 7.74 (d, J = 8.7 Hz, 1H), 8.12 (d, J = 2.1 Hz, 1H), 8.18 (d, J = 7.7 Hz, 1H), 10.4 (s, 3H); 13CN M R

Compound 26-HCl, DMSO-d6: δ (ppm) = 45.5, 59.7, 110.2, 110.8, 114.8, 119.3, 120.6, 121.5, 122.3, 122.8, 126.7 (2C), 139.7, 141.2; exact mass (APCI): m/z = calculated for C14H15N2O 217.1179, found 217.1179.

24 h at rt under H2 (balloon). The catalyst was removed by filtration over Celite® and the filtrate was concentrated under reduced pressure. The residue was dissolved in diethyl ether. Under N2, HCl-EtO (2 mol/L, 2 mL, 4 mmol, 2.0 eq.) was added drop wise under vigorous stirring to produce the respective HCl salt. The precipitate was filtered, washed with cold MeOH, and used without further purification. Rf 0.35 (cyclohexane/ethyl acetate 30:70). Colorless solid with mp = 230°C, yield 492 mg (96%). 1H NMR (26-HCl, DMSO-d6): δ (ppm) = 3.78 (t, J = 5.5 Hz, 2H), 4.47 (t, J = 5.5 Hz, 2H), 7.24 (t, J = 7.4 Hz, 1H), 7.45 (dd, J = 8.7/2.1 Hz, 1H), 7.50 (t, J = 7.4 Hz, 1H), 7.66 (d, J = 8.3 Hz, 1H), 7.74 (d, J = 8.7 Hz, 1H), 8.12 (d, J = 2.1 Hz, 1H), 8.18 (d, J = 7.7 Hz, 1H), 10.4 (s, 3H); 13CN M R

Compound 26-HCl, DMSO-d6: δ (ppm) = 45.5, 59.7, 110.2, 110.8, 114.8, 119.3, 120.6, 121.5, 122.3, 122.8, 126.7 (2C), 139.7, 141.2; exact mass (APCI): m/z = calculated for C14H15N2O 217.1179, found 217.1179.

3-[3-(2-Bromo-4-fluorophenyl)-1,2,4-oxadiazol-5-yl]-N-(9-ethyl-9H-carbazol-3-yl)propanamide (14)
Compound 10 (400 mg, 1.3 mmol 1 eq.) was treated with COMU® (652 mg, 1.5 mmol, 1.2 eq.) and triethylamine (0.54 mL, 3.9 mmol, 3.3 eq.) in DMF (15 mL) for 30 min at rt. The reaction mixture was cooled down to 0°C, and a solution of the 3-aminocarbazole hydrochloride 26 (222 mg, 0.9 mmol, 1.0 eq.) in DMF was added dropwise. The mixture was stirred for 24 h at 10°C. Then, H2O and brine were added, the mixture was extracted with CH2Cl2 and the organic layer was dried (Na2SO4) and concentrated in vacuo. The product (14) was recrystallized from ethyl acetate yielding 82 mg of colorless solid (yield 20%) with mp of 210°C. Purity (HPLC), 96.7% (tR = 24.16 min). 1H NMR (CDCl3): δ (ppm) = 2.97 (t, J = 7.0 Hz, 2H), 3.39 (t, J = 7.0 Hz, 2H), 4.51 (dt, J = 24.5/5.1 Hz, 2H), 4.72 (dt, J = 46.8/5.1 Hz, 2H), 7.03 to 7.09 (m, 1H), 17.16 (t, J = 7.0 Hz, 1H), 7.27 (d, J = 8.6 Hz, 1H), 7.32 (d, J = 8.2 Hz, 1H), 7.36 to 7.43 (m, 3H), 7.56 (s, 1H), 7.76 (dd, J = 8.7/6.0 Hz, 1H), 7.97 (d, J = 7.8 Hz, 1H), 8.41 (d, J = 1.8 Hz); 13CN M R

DMSO-d6: δ (ppm) = 21.8, 32.0, 42.9 (d, J = 19.7 Hz), 82.6 (d, J = 167.9 Hz), 109.5, 109.6, 110.9, 115.5 (d, J = 21.7 Hz), 118.8, 118.9, 120.0, 121.4 (d, J = 25.1 Hz), 121.9, 122.1, 122.2 (d, J = 9.9 Hz), 124.5 (d, J = 3.4 Hz), 125.8, 131.4, 133.6 (d, J = 9.3 Hz), 136.7, 140.6, 162.9 (d, J = 253.2 Hz), 166.4, 168.5, 179.6; HRMS (APCI): m/z = calculated for C26H1979BrF2N4O3H 525.0732, found 525.0757.

2-[3-[3-(2-Bromo-4-fluorophenyl)-1,2,4-oxadiazol-5-yl]-N-(9-ethyl-9H-carbazol-3-yl)propanamido]-9H-carbazol-3-yl(ethyl) 4-methylbenzenesulfonate (15)
Under N2, XtaFluor® (263 mg, 1.2 mmol, 1.5 eq.) was suspended in CH2Cl2 (15 mL). Triethylamine trihydrofluoride (NEt3·3HF) (0.2 mL, 1.2 mmol, 1.5 eq.) and a solution of 14 (400 mg, 0.8 mmol, 1 eq.) in CH2Cl2 (20 mL) were added to the suspension via cannula at −78°C. The resulting mixture was warmed up to rt within 3 h. An aequous solution of Na2CO3 (5% m/m) was added, and the reaction mixture was stirred for 15 min at rt. After the addition of brine, the mixture was extracted with CH2Cl2, the organic layer was dried (Na2SO4) and concentrated in vacuo, and the residue was purified by fc (d = 6 cm, l = 15 cm, cyclohexane/EtOAc 20:80, Rf = 0.53 (EtOAc)). The product (15) was recrystallized from ethyl acetate yielding 197 mg (colorless solid, mp = 136°C, yield 61%). Purity...
(HPLC), 96.2% (t_r = 22.85 min). 1H NMR (CDCl₃): δ (ppm) = 2.24 (s, 3H), 3.04 (t, J = 7.0 Hz, 2H), 3.47 (t, J = 7.0 Hz, 2H), 4.38 (t, J = 5.4 Hz, 2H), 4.49 (t, J = 5.3 Hz, 2H), 6.85 (d, J = 8.0 Hz, 2H), 7.15 (t, J = 7.4 Hz, 1H), 7.17 to 7.23 (m, 5H), 7.33 (dd, J = 8.7/1.9 Hz, 1H), 7.39 (t, J = 8.1 Hz, 1H), 7.46 (dd, J = 8.2/2.4 Hz, 1H), 7.74 (s, 1H), 7.83 (dd, J = 8.7/6.0 Hz, 1H), 7.94 (d, J = 7.8 Hz, 1H), 8.31 (d, J = 1.7 Hz, 1H); 13C NMR (DMSO-d₆): δ (ppm) = 21.0, 21.8, 32.0, 41.3, 68.8, 109.2, 109.3, 110.8, 115.5 (d, J = 21.1 Hz, 1C), 118.5, 118.8, 119.9, 121.4 (d, J = 24.9 Hz, 1C), 122.0, 122.1 (d, J = 9.9 Hz, 1C), 122.2, 124.5 (d, J = 3.3 Hz, 1C), 125.7, 126.6 (2C), 129.5 (2C), 131.0, 131.3, 133.6 (d, J = 9.2 Hz, 1C), 136.3, 140.3, 144.4, 162.9 (d, J = 253.5 Hz, 1C), 166.6, 168.5, 179.7; HRMS (APCI): m/z = calculated for C₃₂H₃₀BrFN₄O₅SH 677.0864, found 677.0858.

Methyl-3-(3-(2-bromo-4-(dimethylamino)phenyl)-1,2,4-oxadiazol-3-yl)propanoate (17)

To a solution of 21 (50 mg, 0.13 mmol, 1 eq.) in 2 mL EtOH, SnCl₂·2H₂O (149 mg, 0.66 mmol, 5 eq.) was added and the reaction was stirred for 2 h at rt. Saturated aq. NaHCO₃ solution (5 mL) was added, and the mixture was extracted with EtOAc. The organic phase was dried over sodium sulfate and filtered. Upon solvent evaporation under reduced pressure, amine 16 was obtained as a brown solid (45 mg, 0.13 mmol, quant). 1H NMR (400 MHz, DMSO-d₆): δ (ppm) = 7.45 (d, J = 8.5 Hz, 1H), 6.92 (d, J = 2.2 Hz, 1H), 6.64 (dd, J = 8.5, 2.2 Hz, 1H), 3.55 (s, 4H), 3.13 (dd, J = 7.6, 5.9 Hz, 2H), 2.93 – 2.74 (m, 2H); 13C NMR (100 MHz, DMSO-d₆): δ (ppm) = 178.6, 172.8, 167.7, 152.5, 133.2, 122.4, 118.7, 114.1, 113.6, 52.4, 30.2, 22.0; MS (ESI+): m/z (%) = 348/350 (100/100) [M+Na]⁺.

Radiochemistry

No-carrier-added [¹⁸F]fluoride (t₁/₂ = 109.8 min) was produced via the [¹⁸O(p,n)¹⁸F] nuclear reaction by irradiation of a [¹⁸O]H₂O target (Hyox 18 enriched water, Rotem Industries Ltd, Israel) on a Cyclone18/9 (iba RadioPharma Solutions, Belgium) with a fixed energy proton beam using Nirta™ [¹⁸F]fluoride XL target. Aqueous [¹⁸F]fluoride was dried by azetropic distillation using MeCN in the presence of K₂CO₃ (1.78 mg, 12.9 mmol) and Kryptofix 2.2.2 (K₂2.2, 11.2 mg, 29.7 mmol), resulting in the reactive anhydrous K[¹⁸F]F-K₂2.2-carbonate complex. Optimization of the aliphatic and aromatic radiolabellings of tosylate 15 and trimethylammonium salt 13, respectively, were performed by varying the amount of precursor for radiolabelling and reaction time under thermal heating.
(82°C) in MeCN (Scheme 1). Under optimized conditions, the reaction mixtures of [18F]1 and [18F]2 were diluted with water and directly applied to an isocratic semi-preparative RP-HPLC for isolation of the desired radiotracers (see ‘Experimental’ section). The collected fractions were analyzed by radio-TLC, and those with the highest radiochemical purity were combined, diluted with water, passed through a Sep-Pak C18 light cartridge (Waters, Milford, MA, USA), and eluted with 0.6 mL of diethyl ether (DEE). The elution of [18F]1 and [18F]2 was performed in polypropylene vials containing 75 to 100 μL of EtOH. For biological investigations, the solvent was evaporated to dryness under a gentle argon stream, and the desired radiotracers were formulated in a sterile isotonic solution containing 10% EtOH (v/v). The identities of [18F]1 and [18F]2 were verified by radio-HPLC of samples of the respective radiotracer spiked with the non-radioactive reference compound. Radiochemical and chemical purities were assessed by radio-TLC and analytical HPLC. Specific activities were calculated using the HPLC method described in [43]. For evaluation of radiometabolites, the radiosynthesis of the trimethylammonium salt [18F]2 was performed following the same conditions as above stated for [18F]1 and [18F]2 (Scheme 5).

Determination of lipophilicity (logD) and stability

The distribution coefficients of [18F]1 and [18F]2 were also calculated from RP-HPLC retention times in three different systems: (1) isocratic elution (60% MeCN/20 mM NH4OAc at a flow rate of 1 mL/min) and (2) gradient elution (starting from 10% MeCN/20 mM NH4OAc aq. for 10 min with a gradient to 90% MeCN/20 mM NH4OAc aq. over 30 min at a flow rate of 1 mL/min) on a Reprosil-Pur C18-AQ column (5 µm, 250 × 4.6 mm, Dr. Maisch HPLC GmbH, Ammerbuch-Entringen, Germany), and (3) isocratic elution (52.5% MeCN/20 mM NH4OAc at a flow rate of 1 mL/min) on a Prodigy 5 μm C8 (250 × 4 mm; Phenomenex Ltd, Aschaffenburg, Germany) using the reference compounds following the protocol according to the EU guideline 67/548/EWG [44].

In vitro radiochemical stabilities of [18F]1 and [18F]2 were investigated in 0.9% NaCl solution, Dulbecco’s phosphate buffer, 0.01 M Tris–HCl (pH 7.4 at 21°C), and EtOH at 40°C for 90 min. Samples were taken at 15, 30, 60, and 90 min after incubation and analyzed by radio-TLC and radio-HPLC.

In vitro CB receptor affinity assay

For binding experiments, Chinese hamster ovary (CHO) cell lines stably transfected with human CB1R human and CB2R were used according to the procedures previously described [29]. Briefly, displacement of CB1R/CB2R-specific radioligand [3H]CP55,940 (6,438 GBq/mmol; PerkinElmer Life and Analytical Sciences GmbH, Rodgau, Germany; working concentration, 0.2 to 0.5 nM) by test compounds in the range of 0.1 nM to 10 μM was assessed, and IC50 values were estimated by non-linear regression (GraphPad Prism; version 3.0, GraphPad Software, Inc., San Diego, CA, USA). KD values of 2.4 and 1.5 nM were previously determined for [3H]CP55,940 binding to hCB1R and hCB2R, respectively, and used for calculation of Ki values of the test compounds according to Cheng et al. [45]. The binding experiments were performed in triplicates, and data were given as mean values from independent experiments.

Ex vivo biodistribution studies

Animals for in vivo studies were obtained from the Medizinisch-Experimentelles Zentrum, Universität Leipzig. All procedures that include animals were approved by the respective State Animal Care and Use Committee and conducted in accordance with the German Law for the Protection of Animal.

Female CD1 mice (10 to 12 weeks old, 20 to 25 g) received an injection of 300 to 400 kBq of [18F]1 or [18F]2 with specific activities of >450 GBq/μmol in 200 μL of 0.9% NaCl/10% EtOH into the tail vein. The animals were anesthetized (CO2/O2 mixture) for blood and urine sampling and euthanized by luxation of the cervical spine at 5, 30, and 60 min after injection (p.i.) (n = 2 to 5 per time). The organs of interest were removed and weighed, and the activities were measured by γ counting using a calibrated γ counter Wallac Wizard 1470 (Perkin Elmer Inc., Waltham, MA, USA). The percentage of injected dose per gram of wet tissue (% ID/g wet weight) was calculated.

To verify the specificity of [18F]1 and [18F]2 towards CB2R, blocking experiments were performed with pre-administration of the highly selective CB2R inverse agonist SR144528 [46] (3 mg/kg i.p. in 0.9% saline, 10 min before the injection of the radiotracer) at 60 min p.i. (n = 2 to 5). The unpaired two-tailed t test was used to compare the results between the groups. We considered differences to be significant at a p value <0.05.

Ex vivo metabolite studies

[18F]1 and [18F]2 (100 to 150 MBq, 250 to 450 GBq/μmol in 150 μL NaCl 0.9%/10% EtOH) were injected via the tail vein in CD1 male mice (10 to 12 weeks old, 20 to 25 g). Blood and urine samples were obtained at 30 and 60 min p.i. (n = 3 per time point). Twofold extractions of plasma and brain samples (n = 3) were performed using ice-cold MeCN according to the standard protocol established in our group (see [47,48]). Briefly, plasma samples were obtained by centrifugation of the blood at 4,000×g at 4°C for 10 min, and brain samples were homogenized...
in ice-cold 50 mM Tris–HCl (pH = 7.4). The samples were vortexed, incubated on ice, and centrifuged at 10,000×g for 3 min. Supernatants were collected, and the precipitates were re-dissolved in ice-cold MeCN for the second extraction. The supernatants from the two extractions were combined, concentrated under a gentle argon stream at 65°C, and analyzed by radio-TLC and gradient analytical HPLC (see ‘Radiochemistry’ section). Aliquots from each extraction supernatant and the precipitates were also taken and quantified by γ counting (Wallac Wizard 1470, Perkin Elmer Inc., Waltham, MA, USA) along with the respective aliquots of intact plasma samples and brain homogenates. A moderate recovery of radioactivity was obtained from plasma samples and brain homogenates (60% to 70%). Radiometabolites of [18F]17 in the plasma, spleen, and brain were assessed at 30 and 60 min p.i.

Conclusions
In conclusion, N-aryl-oxadiazoxy-propionamides were successfully radiolabelled with 18F at different positions. Fluorine substitution at these positions did not affect affinity and specificity towards CB2R. However, the radiotracers investigated in this study undergo a fast metabolism in vivo with the main radiometabolites crossing the blood–brain barrier. Therefore, structural changes in the enzymatic cleavage sites of the evaluated candidates have to be performed to enhance their potential as CB2R PET imaging agents for the brain.

Additional file
Additional file 1: Supplementary information. In the additional file, data of the blocking studies (% blocking, p values) are compiled.

Abbreviations
ALS: Amyotrophic lateral sclerosis; CB1R: Cannabinoid receptor type 1; CB2R: Cannabinoid receptor type 2; CHO: Chinese hamster ovary; COMU: (1-Cyano-2-ethoxy-2-oxoethyldenaminooxy)dimethylamino-morphino-carbenium hexafluorophosphate; DCM: Dichloromethane; DEE: Diethyl ether; DIC: N,N′-dicyclohexylcarbodiimide; DMF: Dimethylformamide; EtOAc: Ethyl acetate; fc: Flash chromatography; GPCR: G protein-coupled receptor; ID: Injected dose; IH: Isotach; I: Injected; Me: Methyl iodide; mp: Melting point; NCA: No-carrier added; p.i.: Post injection; PET: Positron emission tomography; PFA: Paraformaldehyde; RCF: Radiochemical yields; Succ anh: Succinic anhydride; THF: Tetrahydrofuran; TLC: Thin-layer chromatography; XtaFluor-E: Diethylamindifluorosulfonium tetrafluoroborate; 4-DMAP: 4-dimethylaminopyridine.

Competing interests
The authors declare that they have no competing interests.

Acknowledgements
This work has been supported by the DFG (project BR 1360/12-1). The authors wish to thank the Institute of Analytical Chemistry of Universität Leipzig, Faculty of Chemistry and Mineralogy for the NMR spectra as well as Juliane Schaller for the technical assistance.

Author details
1Department of Neuroradiopharmaceuticals, Institute of Radio pharmaceutical Cancer Research, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf e.V., Permoserstr 15, 04318 Leipzig, Germany.
2Department of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstraße 58-62, 48149 Münster, Germany.

Received: 2 August 2013 Accepted: 15 September 2013 Published: 24 September 2013

References
1. Matsuda LA, Lolić SJ, Brownstein MJ, Young AC, Bonner TI (1990) Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature. 346(6284):561–564
2. Munro S, Thomas KL, Abu-Shaar M (1993) Molecular characterization of a peripheral receptor for cannabinoids. Nature 366(6441):61–65
3. Ryberg E, Larsson N, Sjögren S, Hjorth S, Hermansson N-O, Leonova J, Elebring T, Nilsson K, Demota T, Greasley PJ (2007) The orphan receptor GPR55 is a novel cannabinoid receptor. Br J Pharmacol 152(7):1092–1101
4. Ross RA (2009) The enigmatic pharmacology of GPR55. Trends Pharmacol Sci 30(3):156–163
5. Basu S, Dittel BN (2011) Unraveling the complexities of cannabinoid receptor 2 (CB2) immune regulation in health and disease. Immunol Res 51(1):26–38
6. Fernández-Ruiz J, Romero J, Velasco G, Toldón RM, Ramos JA, Güzmán M (2007) Cannabinoid CB2 receptor: a new target for controlling neural cell survival? Trends Pharmacol Sci 28(1):39–45
7. Jhaveri MD, Sagar DR, Elmes SJ, Kendall DA, Chapman V (2007) Cannabinoid CB2 receptor-mediated anti-nociception in models of acute and chronic pain. Mol Neurobiol 36(1):26–35
8. Cheng Y, Hitchcock SA (2007) Targeting cannabinoid agonists for inflammatory and neuropathic pain. Expert Opin Investig Drugs 16(7):951–965
9. Pertwee RG (2009) Emerging strategies for exploiting cannabinoid receptor agonists as medicines. Br J Pharmacol 156(3):397–411
10. Roche M, Finn DP (2010) Brain CB2 receptors: implications for neuropathic disorders. Pharmaceuticals 3(8):2517–2533
11. Scatter EL, Abood ME, Glass M (2010) The endocannabinoid system as a target for the treatment of neurodegenerative disease. Br J Pharmacol 160(3):480–498
12. Zhang H, Hilton DA, Hanemann CO, Zajicek J (2011) Cannabinoid CB2 receptor and N-aroyl phosphatidylethanolamine phospholipase D—evidence for altered expression in multiple sclerosis. Brain Pathol 21(5):544–557
13. Yangou Y, Facer P, Durrenberger P, Chessell IP, Naylor A, Boutrin C, Banati RR, Anand P (2006) COX-2, CB2, and P2X7-immunoreactivities are increased in activated microglial cells/macrophages of multiple sclerosis and amyotrophic lateral sclerosis spinal cord. BMC Neurol 6:12
14. Velasco G, Carascoso A, Blázquez C, Lorente M, Aguado T, Haro A, Sánchez G, Galve-Roperh I, Güzmán M (2007) Cannabinoids and gliomas. Mol Neurobiol 36(1):60–67
15. Hermanson DJ, Marnett LJ (2011) Cannabinoids, endocannabinoids, and cancer. Cancer Metast Rev 30(3–4):599–612
16. Alexander A, Smith PF, Rosengren RJ (2009) Cannabinoids in the treatment of cancer. Cancer Lett 285(1):15–12
17. Cudaback E, Marris W, Moeller T, Stella N (2010) The expression level of CB1 and CB2 receptors determines their efficacy at inducing apoptosis in astrocytomas. PLoS ONE 5(1):e8702
18. Atwood BK, Mackie K (2010) CB2; a cannabinoid receptor with an identity crisis. Br J Pharmacol 160(3):467–479
19. O’neil ES, Ishiguro M, Gu S, Liu QR (2012) CNS effects of CB2 cannabinoid receptors beyond neuro-immuno-cannabinoid activity. J Psychopharmacol 26(1):92–103
20. Evers N, Bormans GM (2010) Non-invasive imaging of the type 2 cannabinoid receptor, focus on positron emission tomography. Curr Top Med Chem 10(15):1527–1543
21. Thakur GA, Tichkule R, Bajaj S, Makriyannis A (2009) Latest advances in cannabinoid receptor agonists. Expert Opin Ther Pat 19(12):1647–1673
22. Pertwee RG, Howlett AC, Abood ME, Alexander SPH, Di Marzo V, Eppich MR, Greasley PJ, Hans-Jürgen KG, Mackie K, Mechoulam R, Ross RA (2010) International union of basic and clinical pharmacology. LXIX. Cannabinoid receptors and their ligands: beyond CB1 and CB2. Pharmacol Rev 62(4):588–631
