Error Diffusion Halftoning Against Adversarial Examples

ICIP 2021

Shao-Yuan Lo and Vishal M. Patel
Johns Hopkins University
Recall: Adversarial Examples

\[x_{\text{adv}} = x + \delta \]

\[f(x_{\text{adv}}) \neq y \]
Recall: Adversarial Examples

• Deep networks are **vulnerable** to adversarial examples.

Goodfellow et al. Explaining and Harnessing Adversarial Examples. ICLR’15.
Recall: Adversarial Examples

- White-box attack
- Black-box attack
- Gray-box attack
Defense Methods

• **Adversarial training**: Enhance the robustness of networks itself.

\[
\theta^* = \arg \min_{\theta} \mathbb{E}_{(x,y) \sim D} \left[\max_{\delta \in \mathcal{S}} L(x + \delta, y; \theta) \right]
\]

• **Image transformation**: Remove perturbations from input images.

\[
C(x_{adv}) \neq y.
\]

\[
C(T(x_{adv})) = y.
\]

Madry et al. Towards deep learning models resistant to adversarial attacks. ICLR’18.
Image Transformation-based Defenses

• JPEG compression
• Bit-depth reduction
• Image denoising
 • Gaussian blur
 • Mean/median filter
 • Non-local means
• ...etc

Raff et al. Barrage of random transforms for adversarially robust defense. CVPR’19.
Image Transformation-based Defenses

• Most existing image transformation-based defenses are **NOT** robust against **white-box attacks**.

Defense	Dataset	Distance	Accuracy
Buckman et al. (2018)	CIFAR	$0.031 (\ell_\infty)$	0%*
Ma et al. (2018)	CIFAR	$0.031 (\ell_\infty)$	5%
Guo et al. (2018)	ImageNet	$0.005 (\ell_2)$	0%*
Dhillon et al. (2018)	CIFAR	$0.031 (\ell_\infty)$	0%
Xie et al. (2018)	ImageNet	$0.031 (\ell_\infty)$	0%*
Song et al. (2018)	CIFAR	$0.031 (\ell_\infty)$	9%*
Samangouei et al. (2018)	MNIST	$0.005 (\ell_2)$	55%**

Athalye et al. Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples. ICML’18.
Proposed Method: Error Diffusion Halftoning

• Quantize each pixel in the raster order one-by-one, and spread the quantization error to the neighboring pixels.

\[
\hat{I}(i, j) = I(i, j) + \sum_{m, n \in S} h(m, n)e(i - m, j - n)
\]

\[
Q(i, j) = u(\hat{I}(i, j) - \theta) \quad e(i, j) = \hat{I}(i, j) - Q(i, j)
\]

Floyd and Steinberg. An adaptive algorithm for spatial grey scale. Proceedings of the Society of Information Display, 1976.
Proposed Method: Error Diffusion Halftoning

- The **quantization operation** invalid the adversarial variations.

- **Updating the values of the neighboring pixels repeatedly** makes the adaptive attacks hard to identify the mapping between the original image and the corresponding halftone.

- **Spreading quantization errors produces** better halftoning quality and tends to enhance edges and object boundary in an image.

- Take **both** adversarial robustness and clean data performance.

- Complementary to adversarial training.
Experimental Results

- Dataset: CIFAR-10
- Attacks (white-box): PGD [Madry et al.] and Mult [Lo and Patel]

Method	Training	Clean	PGD-ℓ_∞	PGD-ℓ_2	Mult-ℓ_∞	Mult-ℓ_2	Avg$_{adv}$	Avg$_{all}$
Vanilla		94.03	0.01	0.20	0.05	0.01	0.07	18.86
Gaussian blur	Standard training	90.17	0.20	1.34	0.17	0.05	0.44	18.39
Non-local means		88.66	0.02	0.49	0.03	0.00	0.14	17.84
JPEG compression		90.06	2.97	4.82	1.81	0.22	2.46	19.98
Bit-depth reduction		78.87	15.26	10.84	10.79	4.52	10.35	24.06
Halftoning (ours)		88.57	9.53	11.98	5.54	1.07	7.03	23.34
Vanilla	Adversarial training	83.31	51.15	50.68	54.10	40.29	49.06	55.91
Gaussian blur		75.96	44.59	47.12	45.07	32.48	42.32	49.04
Non-local means		75.47	44.67	45.29	16.59	14.53	30.27	39.31
JPEG compression		24.97	38.99	43.72	59.15	44.72	46.65	42.31
Bit-depth reduction		71.66	47.34	42.40	48.50	41.63	44.97	50.31
Halftoning (ours)		84.37	60.01	56.56	67.37	88.44	68.10	71.35
Feature Visualization

vanilla blur	Gaussian blur	Non-local means	JPEG	Bit-depth reduction	Halftone		
Transformed image	Transformed image	Feature at the last conv layer	Feature at the last conv layer	Transformed image	Transformed image	Feature at the last conv layer	Feature at the last conv layer
Feature Analysis

• Mean square differences between the features of clean images and the features of adversarial examples.
Conclusion

• Propose a new image transformation-based defense method using error diffusion halftoning.

• Remove adversarial perturbations and weaken adaptive attacks.

• Robust against white-box attacks.

• Produce high quality halftones and thus guarantee good clean data performance.