In vitro ACTIVITY OF THE ANTIBIOTIC BATUMIN AGAINST Candida albicans BIOFILM

L. N. Churkina¹
N. B. Perunova²
O. V. Bukharin²
E. V. Ivanova²
L. V. Yaroshenko¹

¹Zabolotnyi Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, Kyiv
²Institute of Cellular and Intracellular Symbiosis of the Ural Branch of Russian Academy of Sciences, Orenburg, Russian Federation

E-mail: LNKogut@hotmail.com

Received 14.02.2020
Revised 12.05.2020
Accepted 30.06.2020

The aim of this work was to study action of batumin on the strains of Candida albicans and Candida krusei in planktonic and biofilm form and also to obtain more detailed insights into the influence of batumin on biofilm formation by using atomic-force microscopy. The Minimum Inhibitory Concentration (MIC) of batumin was studied according to CLSI standards. Formation of a biofilm was studied by the photometric O’Toole method by means of a plate photometer ELx808 (BioTek, USA) at wavelength of 630 nanometers.

The batumin has a high selective activity against staphylococci (MIC ≥ 0,25 μg/ml), at the same time, antibiotic, being not active concerning yeast of the genus Candida (MIC ≥ 512 μg/ml) showed the inhibiting action on biofilm formation of these microorganisms. Batumin influence on biofilm formation was studied in type, collection strains C. albicans, C. krusei and clinical isolates. Presence 0,125 μg/ml of batumin in the broth (1/2 MIC for staphylococci) reduced the biofilm formation at 55.6% of the studied strains. Their biofilm formation values varied for C. albicans from 1,5–3,9 CU (conventional unit: OD 630 in experimental samples/OD 630 in control samples), for C. krusei of 2,3–3,0. Batumin was more effective against Candida strains with strong biofilm formation.

Atomic force microscopy revealed qualitative changes in the exopolymeric matrix due to batumin treatment, as well as a significant reduction in the number of cells adhered to the coverslip, preventing formation of Candida 127 biofilm, However, C. albicans ATCC 24433 a significant reduction in the number of cells adhered to the coverslip weren’t observed.

The data obtained by an Atomic force microscopy confirm ability of a batumin to prevent formation of a biofilm at the studied strains that allows to consider it as the preventive agent at treatment of the infections caused by yeast-like fungi of the genus Candida.

Key words: batumin, Candida, biofilm, atomic force microscopy.

Candida spp. are serious causes of hospital-acquired blood and urinary tract infections, and the most of these infections are associated with implanted medical devices such as central venous and bladder catheters with biofilm formation within these devices [1].

A relevant characteristic of Candida biofilms is resistance to antifungal agents, which can be intrinsic or acquired by transfer of genetic material between biofilm cells [2].

It has already been shown that antibacterial drugs can affect Candida biofilm formation. Tigecycline, for instance, is highly active against growing and mature biofilms of Candida albicans [3], whilst rifampicin can induce biofilm formation by this Candida species [4].

The polyketide antibiotic batumin synthesized by the producer strain Pseudomonas batumici has a high selective activity against staphylococci. At the same time strains of the yeast species C. tropicalis, C. utilis and C. albicans are resistant to batumin (MIC ≥ 512 μg/ml) [5, 6]. However, our data indicate that the addition of antibiotic in concentration of 0.125 μg/ml reduces the formation of biofilm not only in staphylococci strains, but in C. albicans as well [7].
The objective of this work was to study action of batumin on the strains of *C. albicans* and *C. krusei* in planktonic and biofilm form and also to obtain more detailed insights into the influence of batumin on biofilm formation by using atomic-force microscopy.

Materials and Methods

Batumin, obtained by fermentation of *Pseudomonas batumici*, was purified by silica gel preparative chromatography to 85% of purity. Batumin is commercially available from Santa Cruz Biotechnology (Santa Cruz, CA) or Enzo Life Sciences Antwerp, Belgium.

The object of the study were type and collection strains of *C. albicans* (*n* = 33) and *C. krusei* (*n* = 12) (Table 1), isolated from patients after examination for intestinal dysbiosis, from skin microbial dysbiosis (microbial collection of the Institute of Cellular and Intracellular Symbiosis, Ural Branch of Russian Academy of Sciences, Orenburg, Russia).

Identification of *C. albicans* and *C. krusei* was carried out on the basis of morphological, cultural and biochemical properties with the use of the commercial test system API20CAUX (bioMerieux, France).

The Minimal inhibitory concentration (MIC) of batumin was studied according to CLSI Standards in Mueller-Hinton agar [8]. The minimal inhibitory concentration of batumin against *C. albicans* was 0.5 × 10^7 cfu/ml and the Petri dishes were incubated at 37 °C for 24 hours.

Concentration of batumin (0.125 μg/ml) was used to study its effect upon biofilm formation by *Candida*. Biofilm formation was studied by a photometric method determining the bacterial capacity to adhere to the 96-well polystyrene plane-table surface (Thermo Scientific, USA) with subsequent crystal violet staining [9]. An antibiotic was added into culture medium simultaneous with the culture of fungi and cultivated 24 hours. At the study of influence of batumin (0.125 μg /ml) on the different stages of biofilm formation by *C. albicans* strains the antibiotic was added into culture medium simultaneously with yeast-like fungi in 90 minutes, 24 and 48 hours from the beginning of incubation.

Optical density measurement was done using a photometer ELx808 (BioTek, USA) at a wavelength of 630 nm. Degree of biofilm formation was presented in conditional units (CU) which was the optical density of the broth after growth of the strain relative to the nutrient broth optical density.

For the study of batumin effect on biofilm formation by atomic force microscopy, we used *C. albicans* ATCC 24433 as test-culture and *C. albicans* 127 (clinical isolate). For testing the influence of batumin on biofilm production, glass coverslips were immersed into Luria-Bertani broth with 0.125 μg/ml of batumin and incubated for 48 h at 37 °C.

Visualization of the biofilms was done by atomic force microscopy using the SMM-2000 microscope (Proton-MIET Closed JOINT Stock Company, Russia), in contact mode in an air environment [10][11].

Statistic analysis was performed by non-parametric method using Mann Whitney U-test [12].

Results and Discussion

All the studied 45 strains of *C. albicans* and *C. krusei* were highly resistant to batumin (MIC of 512 μg/ml), in correspondence with earlier data [6]. The resistance of strains to batumin was studied according to CLSI Standards in Mueller-Hinton agar [8]. At the same time, our preliminary research showed effectiveness of the antibiotic on inhibition of formation of a biofilm in the cultures of the genus *Candida* [7, 13].

In experiments on batumin effect on biofilm formation by strains of *Candida* we used concentration 0.125 μg/ml, which causes only modification of biological properties, including biofilm formation and did not influence on grows properties of cultures.

The obtained results showed that the effect of batumin on the formed biofilm in the representatives of the genus *Candida* was variable for different strains and species (Table 1).

The biofilm formation values varied for *C. albicans* from 1.5 to 3.9 CU, for *C. krusei* from 2.3 to 3.0. Presence of batumin (0.125 μg /ml) in the broth reduced the biofilm formation for 55.6% in the studied strains of fungi, whereas for staphylococci this was 85% [14].

Of special interest is the fact that the change in biofilm in the presence of batumin differs for different strains of *Candida*, and that these differences are caused at a concentration of only 0.125 μg/ml, for strains resistant to the studied antibiotic (Table 1).

Apparently, the changes we have detected in the biofilms of yeast-like fungi under the influence of batumin made them unstable, incapable of persistence and dissemination in the human body.

It should be noted that batumin is more effective against *C. albicans* strains with
Table 1. Batumin effect against biofilm formation by Candida albicans and Candida krusei

Strains	Source	Biofilm formation before batumin	Biofilm formation after 0.125 μg/ml batumin			
		optical density (OD₆₃₀)	CU*	optical density (OD₆₃₀)	CU*	
1	C. albicans 24433	Reference ATCC 24433¹	0.12	2.4	0.13	2.6
2	C. albicans 3	Vaginal	0.2	4.0	0.105	2.1
3	C. albicans 4	Vaginal	0.155	3.1	0.135	2.7
4	C. albicans 8	Vaginal	0.075	1.5	0.085	1.7
5	C. albicans 13-2	Vaginal	0.195	3.9	0.075	1.5
6	C. albicans 27	Vaginal	0.136	2.7	0.135	2.7
7	C. albicans 18s	Skin	0.185	3.7	0.13	2.6
8	C. albicans 118	Colon	0.145	2.9	0.085	1.7
9	C. albicans 53	Skin	0.115	2.3	0.115	2.3
10	C. albicans 54b	Skin	0.105	2.1	0.11	2.0
11	C. albicans 1-n	Nose	0.075	1.5	0.086	1.7
12	C. albicans 123	Colon	0.09	1.8	0.1	2.0
13	C. albicans 127	Colon	0.145	2.9	0.09	1.8
14	C. albicans 128 c	Colon	0.215	4.3	0.125	2.5
15	C. albicans 139	Colon	0.256	5.1	0.195	3.9
16	C. albicans 145-1	Colon	0.25	5.0	0.135	2.7
17	C. albicans 146	Colon	0.47	3.4	0.106	2.1
18	C. albicans 147	Colon	0.16	3.2	0.101	2.0
19	C. albicans 172	Colon	0.225	4.5	0.14	2.8
20	C. albicans 173	Colon	0.105	2.1	0.105	2.1
21	C. albicans 174	Colon	0.09	1.8	0.1	2.1
22	C. albicans 175-2	Colon	0.1	2.0	0.105	2.1
23	C. albicans 176	Colon	0.09	1.8	0.09	1.8
24	C. albicans 177	Colon	0.11	2.2	0.1	2.0
25	C. albicans 178c	Colon	0.105	2.1	0.105	2.1
26	C. albicans 183	Colon	0.075	1.5	0.085	1.7
27	C. albicans 28	Vaginal	0.115	2.3	0.105	2.1
28	C. albicans 29	Vaginal	0.096	1.9	0.095	1.9
29	C. albicans 30	Vaginal	0.125	2.5	0.0125	2.5
30	C. albicans 23s	Skin	0.171	3.4	0.075	1.5
31	C. albicans 212	Colon	0.145	2.9	0.09	1.8
32	C. albicans 213	Colon	0.135	2.7	0.105	2.1
33	C. albicans 215-1	Colon	0.09	1.8	0.1	2.0
34	C. krusei 9	Colon	0.075	1.5	0.085	1.7
35	C. krusei 10	Colon	0.16	3.2	0.115	2.3
36	C. krusei 21	Colon	0.1	2.0	0.095	1.9
37	C. krusei 22	Colon	0.12	2.4	0.135	2.7
38	C. krusei 23	Colon	0.24	4.8	0.13	2.6
39	C. krusei 2-n	Nose	0.175	3.5	0.145	2.9
40	C. krusei 2	Vaginal	0.135	2.7	0.125	2.5

¹ Reference ATCC 24433.
strong biofilm formation (CU values between 2.6 and 3.1).

The analysis of the experimental data on batumin at the stage of biofilm formation for *C. albicans* showed dependence of batumin effectiveness at the stage of biofilm formation (Table 2).

Addition of batumin to the cultivation medium simultaneously with *C. albicans* did not influence biofilm formation of fungi in 40% of cases, and promoted reduction of biofilm formation values in 60% of cases for 63.1 ± 3.4% of the initial level (\(P < 0.05\)).

Addition of batumin in 90 min after incubation of *C. albicans* (an initial stage of biofilm formation) reduced values of biofilm formation in 70% of cases on average by 48.8 ± 4.4% versus control (\(P < 0.05\)). Addition after 24 hours of growth, the antibiotic reduced formation of biofilm in culture in 50% of cases versus 24.8% of control (\(P < 0.05\)), and in 50% of cases — stimulated this parameter by 32.4%.

After incubation of *C. albicans* with the antibiotic during the 48 hours in 70% of cases the lack of the preparation influence was noted and only in 30% of strains decrease in biofilm formation was noted only by 5.6%.

Thus, the biofilm of the studied strains of *C. albicans* is sensitive to batatum at early stages of its formation whereas the well-established biofilm was more resistant to studied preparation.

On the contrary, batumin in 22.2% of cases stimulated low level of biofilm formation in yeast-like fungi. Possibly, the obtained data reflect the developed relationship between species of microorganisms in a microbiocenosis, as it is known that in interaction of bacteria of the genus *Pseudomonas* and fungi of the genus *Candida* there is a mutual depression of biofilm formation of microorganisms at all stages of development [15, 16].

By its action on biofilms of cultures of *Candida* batumin is similar to action on biofilms of *Staphylococci* [13]. Sidrim et al. (2015) reported a similar effect when studying \(\beta\)-lactam antibiotics and vancomycin effects on formation of biofilms of *Candida* spp.

A more detailed study of batumin action upon *C. albicans* biofilm formation was carried out using atomic force microscopy for *C. albicans* ATCC 244337 and *C. albicans* 127 (clinical isolate).

On the coverslip incubated with the cells *C. albicans* ATCC 244337 without batumin the set of cells adhered to its surface (Figure, A). The glass coverslips were immersed into Luria-Bertani broth with 0.125 μg/ml of batumin and incubated for 48 h at 37 °C. At visualization of the surface of microorganisms, the spherical formations which are presumably gemmating daughter cells (Figure, B) are clearly visible. However, a significant decrease of the number of adherent cells in the presence of the antibiotic was not observed (Figure, C, D).

A detailed study of the surface of bacterial cells treated with batumin allows establishing significant reduction of their roughness values (Table 3).

The cells of *C. albicans* 127 were observed in the form of a monolayer of separate islets (Figure, F). This strain formed biofilm on the

Table 1. End

Strains	Source	Biofilm formation before batumin	Biofilm formation after 0.125 μg/ml batumin			
		optical density (\(OD_{630}\))	CU*	optical density (\(OD_{630}\))	CU*	
40	*C. krusei* 2	Vaginal	0.135	2.7	0.125	2.5
41	*C. krusei* 5	Vaginal	0.19	3.8	0.13	2.6
42	*C. krusei* 6	Vaginal	0.215	4.3	0.151	3.0
43	*C. krusei* 7	Vaginal	0.075	1.5	0.065	1.3
44	*C. krusei* 25	Colon	0.075	1.5	0.09	1.8
45	*C. krusei* 26	Colon	0.11	2.2	0.11	2.2

Note: * — CU: conventional unit: \(OD_{630}\) in experimental samples / \(OD_{630}\) in control samples. The optic density of control samples is 0.05, which is the nutrient broth density; ** — the results are representative on three separate experiments. \(P < 0.05\) (Mann-Whitney U-test).
Atomic force microscopy — topography images of *C. albicans* ATCC 24433\(^T\) ((A) (B)) without batumin; ((C) (D)) — in the presence of 0.125 μg/ml of batumin and *C. albicans* 127 without batumin (F, G), with antibiotic (H, I).

Scale bars: 1 μm.

Atomic force microscopy revealed qualitative changes in the exopolymeric matrix due to batumin treatment, as well as a significant reduction in the number of cells adhered to the coverslip, preventing formation of *C. albicans* 127 biofilm. In *C. albicans* ATCC 24433\(^T\), a significant reduction in the number of cells adhered to the coverslip was not observed. In this case a nonspecific interaction of batumin and a surface ligand of *C. albicans* ATCC 24433\(^T\) is probable.

Surface biofilm was formed by an exopolymeric matrix with cells of round shape immersed in it (Figure, G). The addition in the medium of batumin caused, on the one hand, the lack of signs of an exopolymeric matrix (Figure, H, I), and on the other hand, the change of cell morphology. So the mean diameter of cells was equal to 1.88 ± 0.43 μm, which was significantly less than control values 2.29 ± 0.20 (Table 3).
The results presented in this work showed that all studied \textit{C. albicans} and \textit{C. krusei} strains were highly resistant against batumin (MIC $\geq 512 \mu g/ml$). However, the antibiotic showed inhibition of biofilm formation of these microorganisms.

The biofilm of the studied strains of \textit{C. albicans} and \textit{C. krusei} was sensitive to batumin at early stages of its formation, whereas the well-established biofilm was more resistant to studied preparation.

The data obtained by an atomic-force microscopy confirm the ability of batumin to prevent formation of biofilm in the studied strains that allows to consider it as the preventive agent for treatment of yeast-like fungi of the genus \textit{Candida}.

\textbf{Acknowledgement}

We thank prof, Mario Vaneechoutte (University of Gent, Belgium) for critical reading of the manuscript and Vasilchenko Alexey for provided pictures by AFM.

\textbf{Financial support}

This work was carried out in the framework A PROJECT No 12-C-4-1010 Role of microbial metabolite in the forming of biofilms of microorganisms (in accordance with a general competition of the National Academy of Sciences of Ukraine and Russian fund of fundamental researches (2012–2014).
REFERENCES
1. Sardi J. C. O., Scorzoni L., Bernardi T., Fuco-Almeida A. M., Mendes Giannini M. J. S. Candida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. J. Med. Microbiol. 2013, V. 62, P. 10–24.
2. Fanning S., Mitchell A. P. Fungal biofilms. PLoS Pathog. 2012, V. 8, P. e1002585.
3. Ku T. S. N., Palanisamy S. K., Lee S. A. Susceptibility of Candida albicans biofilms to azithromycin, tigecycline and vancomycin and the interaction between tigecycline and antifungals. Int. J. Antimicrob. Agents. 2010, V. 36, P. 441–446.
4. Vogel M., Köberle M., Scäffer H., Treiber M., Autenrieth I. B., Schumacher U. K. Rifampicin induced virulence determinants increase. Candida albicans biofilm formation. F1000Research. 2013, V. 2, P. 106.
5. Kiprianova E. A., Klochko V. V., Zelena L. B., Churkina L. N., Avdeeva L. V. Pseudomonas batumici sp.nov., the antibiotic-producing bacteria isolated from soil of the Caucasus Black Sea coast. Microbiol. J. 2011, V. 73, P. 3–8. (In Ukrainian).
6. Klochko V. V., Kiprianova E. A., Churkina L. N., Avdeeva L. V. Antimicrobial spectrum of antibiotic batumin. Microbiol. J. 2008, V. 70, P. 41–46. (In Ukrainian).
7. Bukharin O.V., Churkina L. N., Perunova N. B., Ivanova E. V., Novikova I. V., Avdeeva L. V., Yaroshenko L. V. Influence of antistaphylococcal antibiotic batumin on microorganisms biofilm formation. Zh. Mikrobiol. Epidemiol. Immunobiol. 2012, V. 2, P. 8–12. (In Russian).
8. Performance Standards for Antimicrobial Susceptibility Testing; Fifteenth Informational Supplement. CLSI/ NCCLS Document M100-S. Clinical and Laboratory Standards NCCLS. 2005, 165 p.
9. O’Toole G., Kaplan H., Kolter R. Biofilm formation as microbial development. Ann. Rev. Microbiol. 2000, N 54, P. 49–79.
10. Megan E. N., Martin M. O., Chan P. H. Atomic force microscopy of bacterial communities, Methods Enzymology. 2005, V. 397, P. 256–258. http://dx.doi.org/10.1016/S0076-6879(05)97015-8
11. Eaton P., Fernandes J. C., Pereira E., Pintado M. E., Xavier Malcata F. Atomic force microscopy study of the antibacterial effects of chitosans on Escherichia coli and Staphylococcus aureus. Ultramicroscopy. 2008, V. 108, P. 1128–1134. http://dx.doi.org/10.1016/j.ultramic.2008.04.015
12. Lakin G. F. Biometry. Higher school. 1990, P. 352.
13. Ivanova Y. V., Churkina L. N., Avdeeva L. V., Perunova N. B. Effect of anti-staphylococcal antibiotic batumin on stages of biofilm formation in Candida albicans. Abstract of the materials of the 3rd Congress of Mycologists of Russia. Modern Micology in Russia. Moscow, Russia. 10–12 October 2013.
14. Churkina L., Vaneechoutte M., Kiprianova E., Perunova N., Avdeeva L., Bukharin O. Batumin — a selective inhibitor of staphylococci — reduces biofilm formation in methicillin resistant Staphylococcus aureus. Open J. Med. Microbiol. 2015, N 5, P. 193–201. http://doi.org/10.4236/ojmm.2015.54024
15. Bukharin O.V., Churkina L. N., Perunova N. B., Ivanova Y. V., Vasilchenko A. S., Avdeeva L. V., Yaroshenko L. V. Morpho-functional changes in biofilms of Staphylococcus aureus under the effect of batumin. Zh. Mikrobiol. Epidemiol. Immunobiol. 2013, V. 5, P. 3–8.
16. Gibson J., Sood A., Hogan D. Pseudomonas aeruginosa — Candida albicans interactions: localization and fungal toxicity of a phenazine derivative A. and E. Microbiology. 2009, 75 (2), 504–513.
17. Sidrima J. J. C., Teixeira C. E. C., Cordeiro R. A., Brithante R. S. N., Castelo-Branco D. S. C. M., Bandeira S., Alencar L. P., Oliveira J. S., Monteiro A. J., Moreira J. L. B., Bandeira T. J. P. G., Rocha M. F. G. β-Lactam antibiotics and vancomycin inhibit the growth of planktonic and biofilm Candida spp.: An additional benefit of antibiotic-lock therapy. Int. J. Antimicrob. Agents. 2015, V. 45, P. 420–423.
Активність in vitro антibiотика батуміну щодо біоплівок Candida albicans

Л. М. Чуркина 1, Н. Б. Перунова 2, О. В. Бухарін 2, О. В. Іванова 2, Л. В. Ярошенко 2

1 Інститут мікробіології і вірусології ім. Д. К. Заболотного НАН України, Київ
2 Інститут клітинного і внутрішньоклітинного симбіозу УрО РАН, Оренбург, Російська Федерація

E-mail: LNKogut@hotmail.com

Метою роботи було вивчити дію батуміну на штами Candida albicans і Candida krusei в планктонній і біоплівковій формі, а також оцінювати більш детальні відомості щодо впливу батуміну на формування біоплівки з використанням атомно-силової мікроскопії. Мінімальну інгібувальну концентрацію (МІК) батуміну досліджували відповідно до стандартів CLSI. Формування біоплівки вивчали фотометричним методом O’Tооле за допомогою планшетного фотометра ELx808 (BioTek, USA) за довжини хвилі 630 нм.

Полінетидний антibiотик батумін має високу селективну активність стосовно стафілокоців. Водночас антibiотик, до є неактивним стосовно дріжджів роду Candida (МІК 512 мкг/мл), показав інгібувальну дію на формування біоплівок у цих мікроорганізмів. Вплив батуміну на утворення біоплівок виявився на типових і колекційних штамах C. albicans, C. krusei та клінічних ізолятах. Присутність у середовищі 0,125 мкг/мл батуміну (1/2 МІК для стафілокоців) знижувало утворення біоплівки у 55,6% штамів. Іхні значення варіювали від 2,3 до 3,0 УЕ, для C. albicans від 1,5 до 3,9 УЕ, для C. krusei від 2,3 до 3,0. Батумін був ефективнішішим щодо штамів Candida з високими значеннями біоплівкоутворення.

Атомно-силова мікроскопія виявила якісні зміни в екзополімерному матриксе за дії батуміну, а також значне зменшення кількості адгезованих клітин, запобігаючи утворенню біоплівки C. albicans 127. Однак у C. albicans ATCC 24433 суттєвого зменшення числа адгезованих клітин у присутності антибіотика не спостерігалося.

Отримані за допомогою атомно-силової мікроскопії дані підтверджують здатність батуміну запобігати утворенню біоплівки у досліджуваних штамах, що дає змогу розглядати його як превентивний засіб при лікуванні інфекцій, які спричинені дріжджеподібними грибами роду Candida.

Ключові слова: батумін, Candida, біоплівка, атомно-силова мікроскопія.

Активність in vitro антibiотика батуміну в отношении біоплівок Candida albicans

Л. Н. Чуркина 1, Н. Б. Перунова 2, О. В. Бухарін 2, Е. В. Іванова 2, Л. В. Ярошенко 2

1 Інститут мікробіології і вірусології ім. Д. К. Заболотного НАН України, Київ
2 Інститут клєтового і внутрішньоклітинного симбіозу УрО РАН, Оренбург, Російська Федерація

E-mail: LNKogut@hotmail.com

Целью работы было изучение действия батуміна на штаммы Candida albicans и Candida krusei в планктонной и біоплівковій формах, а также получение более подробных сведений о влиянии батуміна на формирование біоплівок с использованием атомно-силовой микроскопии. Минимальную ингибиторную концентрацию (МІК) батуміна исследовали в соответствии со стандартами CLSI. Формирование біоплівки изучали фотометрическим методом O’Toole с помощью планшетного фотометра Elx808 (BioTek, USA) при длине волны 630 нм.

Полиамидный антibiотик батумін обладает высокой селективной активностью в отношении стафілокоокков, в то же время антibiотик, будучи неактивным в отношении дрожжей рода Candida (МІК 512 мкг/мл), показал ингибиторное действие на формирование біоплівки у этих микроорганизмов. Влияние батуміна на образование біоплівки изучали на типовых и колекційних штамах C. albicans, C. krusei, а также клинических изолятах. Присутствие в среде 0,125 мкг/мл батуміна (1/2 МІК для стафілокоокков) снижало образование біоплівки у 55,6% исследуемых штаммов. Их значения варьировали для C. albicans от 1,5 до 3,9 УЕ, для C. krusei від 2,3 до 3,0. Батумін был более эффективным в отношении штаммов Candida с высокими значениями біоплівкоутворения.

Атомно-силовая микроскопия выявила качественные изменения в экзополимерном матриксе при действии батуміна, а также значительное уменьшение числа адгезированных клеток, предотвращая образование біоплівок C. albicans 127. Однако у C. albicans ATCC 24433 существенного уменьшения числа адгезированных клеток в присутствии антибиотика не наблюдалось.

Полученные с помощью атомно-силовой микроскопии данные подтверждают способность батуміна предотвращать образование біоплівок у исследуемых штаммов, что позволяет рассматривать его как превентивное средство при лечении инфекций, вызванных дріжджеподібними грибами роду Candida.

Ключевые слова: батумін, Candida, біоплівка, атомно-силовая микроскопия.