Comparação do desempenho do SAPS 3 em pacientes com e sem tumor sólido admitidos a uma unidade de terapia intensiva no Brasil: um estudo de coorte retrospectiva

Comparison of SAPS 3 performance in patients with and without solid tumor admitted to an intensive care unit in Brazil: a retrospective cohort study

INTRODUÇÃO

Os escores de gravidade de doença são utilizados nos ambientes de unidade de terapia intensiva (UTI) em todo o mundo, para avaliação e monitoramento do desempenho, melhoria da qualidade e comparação. (1-3) Desde sua primeira descrição nos anos 1980, desenvolveram-se muitos modelos prognósticos. Entretanto, dentre eles, o Simplified Acute Physiology Score 3 (SAPS 3) foi o único desenvolvido a partir de uma coorte multinacional (35.784 pacientes de 33 países).(4,5) No Brasil, Moralez et al. demonstraram recentemente que o SAPS 3 (equação padrão) persiste como o modelo prognóstico mais preciso.(6) Contudo, o desempenho dos escores de gravidade da doença podem ser diferentes em algumas instituições, em razão da mescla de casos e representatividade de subgrupos, como os pacientes oncológicos.

Como os intensivistas vem atendendo cada vez mais os pacientes oncológicos,(7) são bem-vindos estudos que avaliem esses modelos prognósticos em pacientes oncológicos.
críticos com câncer. Embora se tenham publicado diversos estudos em relação a esse tópico, isso ocorreu há quase 10 anos, e, como previamente demonstrado, um fenômeno bem conhecido compromete o desempenho (principalmente a calibração) dos modelos prognósticos com o passar do tempo. Nenhum desses estudos comparou o desempenho do modelo entre pacientes oncológicos e não oncológicos.

Assim, nossos objetivos, no presente estudo, foram avaliar o desempenho do SAPS 3 em pacientes com câncer admitidos em uma UTI, comparar o desempenho do escore nos pacientes com e sem câncer e estudar as tendências temporais do desempenho do SAPS 3.

MÉTODOS

Este foi um estudo de coorte retrospectiva de todos os pacientes consecutivamente admitidos à nossa UTI clínico-cirúrgica (uma UTI de 30 leitos no Hospital Sírio-Libanês, um hospital terciário privado com uma unidade oncológica dedicada, localizado em São Paulo, SP) e foi aprovado pelo comitê de ética local. Uma descrição detalhada da nossa unidade foi previamente publicada, a qual não se alterou durante o período do estudo. Os critérios de exclusão foram idade inferior a 18 anos e gravidez. Se algum paciente tivesse mais de uma admissão durante o período de inclusão, foram idade inferior a 18 anos e gravidez. Se algum paciente tivesse mais de uma admissão durante o período de inclusão, só a primeira era incluída. Alguns pacientes deste estudo foram também incluídos em uma análise prévia de nosso grupo, referente a readmissões à UTI (1.702 pacientes).

Nossa análise utilizou dados administrativos que foram colhidos prospectivamente em um programa de base de dados na nuvem (Sistema Epimed) por enfermeiros treinados. O período do estudo foi entre 1º de janeiro de 2012 e 31 de julho de 2016. A condição oncológica foi definida como qualquer paciente admitido com câncer sólido ativo (atualmente sob quimioterapia curativa ou paliativa, radioterapia, imunoterapia ou cirurgia) nos últimos 12 meses. Excluíram-se os pacientes hematológicos, por terem, em geral, características distintas comparativamente aos pacientes portadores de tumores sólidos (por exemplo, um maior ônus de doença ativa, necessidade de tratamento oncológico durante a permanência na UTI, tempo prolongado de neutropenia, maior intensidade da imunossupressão, transplante concomitante de medula óssea e maior incidência de complicações específicas, como infecções fúngicas e por citomegalovírus).

Os dados registrados incluíram idade, sexo, data da admissão à UTI, SAPS 3 local de origem, diagnóstico de admissão, procedimentos cirúrgicos antes da admissão, índice de Charlson para comorbididades, utilização de recursos durante a permanência na UTI (ventilação mecânica, fármacos vasoativos ou terapia de substituição renal), condição oncológica (locorregional ou metastático) e mortalidade hospitalar. O SAPS 3 foi calculado utilizando os dados da admissão à UTI. Como recomendado, os valores faltantes foram codificados como “normal” para cada variável.

Análise dos dados

Os dados paramétricos quantitativos foram apresentados como médias ± desvio padrão (DP). Os dados não paramétricos foram apresentados como medianas (faixa interquartis - IQR - 25% - 75%), e as variáveis categóricas foram apresentadas como porcentagens. As variáveis categóricas foram comparadas utilizando o teste qui-quadrado.

O desfecho primário foi mortalidade hospitalar. A taxa de mortalidade estimada foi calculada utilizando a equação padrão para o SAPS 3. A discriminação do SAPS 3 foi avaliada utilizando a área sob a curva Característica de Operação do Receptor (ASC COR). As comparações entre as ASC CORs foram realizadas utilizando o método de Delong. A calibração foi avaliada utilizando o método de faixa de calibração, conforme descrito pelo GiViTI. Esse método aplica uma função logística polinomial generalizada entre o desfecho e a transformação logit da probabilidade preda estimada, com os respectivos limites de intervalo de confiança (IC) de 95% e 80%. Um desvio estatisticamente significante do bissetor (a linha de calibração perfeita) ocorre quando os limites do IC95% da faixa de calibração não incluem o bissetor. As taxas de mortalidade padronizadas (TMPs) com os respectivos IC95% foram calculadas pela divisão das taxas de mortalidade observada pela predita. O escore de Brier é uma medida geral de desempenho que foi calculada utilizando uma fórmula padrão. Para estudar as tendências temporais do desempenho do SAPS 3, dividimos a coorte em dois subgrupos segundo a data da admissão à UTI (em relação a 1º de outubro de 2014, para criar dois subgrupos com tamanhos similares).

Os dados foram analisados utilizando os programas IBM SPSS Statistics, versão 21 e R (http://www.r-project.org). Todos os dados estatísticos foram bicaudais, sendo o valor de p < 0,05 considerado estatisticamente significante.

RESULTADOS

Durante o período do estudo, ocorreram 8.345 admissões à UTI. Após exclusão de 846 readmissões e 945 pacientes hematológicos, restaram 7.390 pacientes. Entretanto, 136 pacientes (1,8%) não tinham registrada em nossa base de dados a condição quando da alta hospitalar. Assim, nossa coorte final do estudo compreendeu 7.254 pacientes (41,5% oncológicos). Os pacientes oncológicos eram mais jovens e tinham SAPS 3 mais baixo, foram mais frequentemente admitidos para cirurgia eletiva e tiveram mortalidade hospitalar mais elevada do que os não oncológicos (respectivamente, 14,1% e 10,6%; p < 0,001; Tabela 1).
Tabela 1 - Características gerais dos pacientes incluídos

	Todos os pacientes	Oncológicos	Não oncológicos	Valor de p
n	7.254	3.008	4.246	
Idade (anos)	66,2 ± 18,4	62,6 ± 16,6	68,7 ± 19,2	< 0,001
Masculino	3911 (53,9)	1711 (56,9)	2200 (51,8)	< 0,001
SAPS 3	41 (32 - 51)	38 (30 - 51)	42 (33 - 51)	< 0,001
Tipo de admissão				< 0,001
Clínica	3.744 (51,6)	1.014 (33,7)	2.730 (64,3)	
Cirurgia de emergência	640 (8,8)	176 (5,9)	464 (10,9)	
Cirurgia eletiva	2.867 (39,5)	1.817 (60,4)	1.050 (24,7)	
Tempo de permanência no hospital antes da admissão à UTI (dias)	1 (0 - 2)	1 (0 - 3)	1 (0 - 2)	< 0,001
Índice de comorbidades de Charlson	2 (0 - 3)	2 (2 - 6)	0 (0 - 1)	< 0,001
Condição de performance*				< 0,001
Independente	3.688 (80,3)	1.652 (89,2)	2.046 (74,3)	
Necessária a assistência	547 (11,9)	128 (6,9)	419 (15,2)	
Restrito ao leito	362 (7,9)	73 (3,9)	289 (10,5)	
Locais mais comuns do tumor				
Colo	---	538 (17,9)	---	
SNC	---	471 (15,7)	---	
Pâncreas	---	265 (8,8)	---	
Pulmão	---	260 (8,6)	---	
Tipo de câncer				
Locorregional	---	2.147 (71,4)	---	
Metastático	---	861 (28,6)	---	
Principal diagnóstico de admissão à				
Gastrintestinal	1.575 (21,7)	975 (32,4)	520 (12,2)	
Neurológico	1.385 (19,1)	662 (22,0)	723 (17,0)	
Infecção	1.368 (18,9)	393 (13,1)	975 (23,0)	
Ventilação mecânica durante permanência na UTI	1.398 (19,3)	573 (19)	825 (19,5)	0,67
Vasopressores durante permanência na UTI	2.054 (28,3)	874 (28,1)	1.180 (27,8)	0,25
Terapia de substituição renal durante permanência na UTI	368 (5,1)	97 (3,2)	271 (6,4)	< 0,001
Mortalidade hospitalar	876 (12,1)	424 (14,1)	452 (10,6)	< 0,001

SAPS 3 - Simplified Acute Physiology Score 3; UTI - unidade de terapia intensiva. *Dentre 4.607 pacientes cujos dados foram avaliados. Resultados expressos por média ± desvio-padrão, n (%) e medianas (intervalo interquartis 25% - 75%).

Com a utilização da equação preditiva padrão SAPS 3, a TMP geral foi de 0,93 (IC95% 0,88 - 0,98) com o escore de Brier de 0,088 e ASC COR de 0,82 (IC95% 0,81 - 0,83). A análise com faixa de calibração demonstrou que o SAPS 3 tendeu a superestimar a mortalidade em toda nossa coorte de pacientes (Tabela 2).

Tabela 2 - Comparação do desempenho do Simplified Acute Physiology Score 3 em todos os pacientes, em subgrupos de pacientes oncológicos e não oncológicos

	TMP (IC95%)	Discriminação ASC COR (IC95%)	Calibração*	Precisão	
		Sobre o bissetor IC95%	Sob o bissetor IC95%	Escoro de Brier	
Todos os pacientes	0,93 (0,88 - 0,98)	0,82 (0,81 - 0,83)	Nunca	0,18 - 0,80	0,088
Pacientes oncológicos	1,09 (1,01 - 1,17)	0,85 (0,83 - 0,86)	Nunca	Nunca	0,986
Pacientes não oncológicos	0,82 (0,75 - 0,89)	0,79 (0,78 - 0,81)	Nunca	0,08 - 0,43	0,082

TMP – taxa de mortalidade padronizada; IC95% - intervalo de confiança de 95%; ASC COR – área sob a curva Característica de Operação do Receptor. *Descrita como intervalos de desvio dos bissetor usando o método de faixa de calibração.
Comparação do desempenho do SAPS 3 em pacientes oncológicos e não oncológicos

A discriminação do SAPS 3 foi mais alta para pacientes oncológicos do que para não oncológicos ($p < 0,001$; Tabela 2). A análise com faixa de calibração demonstrou que, em pacientes oncológicos, não se observou qualquer calibração inadequada. Entretanto, em pacientes não oncológicos, o SAPS 3 superestimou a mortalidade nos pacientes com risco predito baixo a moderado (Figura 1).

Avaliação da tendência temporal

A frequência de pacientes oncológicos não se alterou entre os dois períodos avaliados (1.498 de 3.542 pacientes, ou seja, 42,3% versus 1.510 de 3.712 pacientes, ou seja, 40,7%; $p = 0,16$). A discriminação do SAPS 3 não foi afetada entre os subgrupos por período (Figura 2). A análise com faixa de calibração mostrou ausência de calibração inadequada no subgrupo oncológico de pacientes em qualquer dos períodos. Contudo, no grupo não oncológico, observaram-se infracalibração no primeiro período e supraacalibração no segundo período (Figura 3 e Tabela 3).

Figura 1 - Faixa de calibração para Simplified Acute Physiology Score 3 em pacientes oncológicos (A) e não oncológicos (B), descrito como intervalos de desvio do bissetor. Intervalos de mortalidade prevista, nos quais o faixa de calibração se desvia significativamente do bissetor e os níveis de confiança de 80% e 95% são descritos na região inferior direita dos gráficos. SAPS 3 - Simplified Acute Physiology Score 3.

Figura 2 - Área sob as curvas Características de Operação do Receptor para Simplified Acute Physiology Score 3 em pacientes oncológicos (parte superior) e não oncológicos (parte inferior). Os subgrupos foram divididos por período em que ocorreu admissão à unidade de terapia intensiva (primeira e segunda metade).

Figura 3 - Faixa de calibração para Simplified Acute Physiology Score 3 em pacientes oncológicos (A e C) e não oncológicos (B e D), descrito como intervalos de desvio do bissetor. Os intervalos de mortalidade prevista, nos quais a faixa de calibração se desvia significativamente do bissetor, e níveis de confiança de 80% e 95% estão descritos na região inferior direita dos gráficos. Os subgrupos foram divididos por período da admissão à unidade de terapia intensiva (primeiro período A e B, segundo período C e D). SAPS 3 - Simplified Acute Physiology Score 3.
Tabela 3 - Desempenho do Simplified Acute Physiology Score 3 para pacientes oncológicos em comparação com não oncológicos no primeiro e segundo períodos

	Primeiro período (2012 - 2014)	Segundo período (2014 - 2016)			
	TMP (IC95%)	Discriminação ASC COR (IC95%)	Calibração*	Precisão	
Pacientes oncológicos	1,27 (1,15 - 1,40)	0,85 (0,83 - 0,87)	Nunca	Nunca	0,10
Pacientes não oncológicos	1,08 (0,95 - 1,20)	0,79 (0,77 - 0,80)	0,00 - 0,04	Nunca	0,08
Pacientes oncológicos	1,01 (0,91 - 1,12)	0,85 (0,83 - 0,87)	Nunca	Nunca	0,095
Pacientes não oncológicos	0,71 (0,62 - 0,81)	0,81 (0,79 - 0,83)	Nunca	0,02 - 0,74	0,075

TMP – taxa de mortalidade padronizada; IC95% - intervalo de confiança de 95%; ASC COR – área sob a curva Característica de Operação do Receptor. *Calibração descrita como intervalos de desvio dos bissetor usando o método de faixa de calibração.

DISCUSSÃO

Nesta coorte retrospectiva, avaliamos o desempenho do SAPS 3 em pacientes críticos oncológicos e não oncológicos. Identificamos que a discriminação e calibração do SAPS 3 foram precisas para pacientes oncológicos em nossa coorte, a discriminação foi maior e a calibração mais precisa para pacientes oncológicos do que para não oncológicos, e a calibração só foi afetada pelo tempo no caso de pacientes não oncológicos.

Recentemente, Moralez et al. publicaram o maior estudo de validação de escore de gravidade no Brasil, utilizando dados contemporâneos de uma coorte multicêntrica. Os autores demonstraram que a equação padrão do SAPS 3 foi precisa na predição dos desfechos em nosso país, dando suporte à iniciativa nacional da Associação de Medicina Intensiva Brasileira (AMIB) para comparação (benchmarking) entre unidades. Entretanto, a variação da mescla de casos entre as unidades pode levar a uma deterioração do desempenho. Um subgrupo de particular interesse é o dos pacientes oncológicos críticos, porque 15% dos pacientes admitidos às UTIs europeias têm câncer.

Alguns publicações prévias avaliaram o desempenho do SAPS 3 em pacientes oncológicos. Em geral, esses estudos sugerem que o escore é precisa tanto em termos de discriminação quanto de calibração, conforme demonstrado por nossa base de dados. Esse achado é reconfortante, já que os pacientes oncológicos são, em geral, mal representados nas coortes de desenvolvimento (8% da coorte original do SAPS 3). Entretanto, a mortalidade hospitalar de pacientes críticos com câncer depende mais da condição aguda do que da presença de características da própria doença oncológica. Assim, os escores gerais de gravidade da doença devem captar a maior parte do prognóstico em curto prazo dessa população.

Uma abordagem nova, no presente estudo, foi a comparação do desempenho do SAPS 3 em pacientes oncológicos com o desempenho em pacientes não oncológicos. Observamos que esse escore foi superior em pacientes oncológicos admitidos à UTI, em termos de discriminação e calibração. Até onde sabemos, este foi o primeiro estudo a comparar esses subgrupos em uma mesma coorte. As razões para essa observação não são claras, porém salientam a importância das diferenças, em termos de mescla de casos entre as unidades, e, como isso, podem afetar as comparações entre modelos.

Outra observação relevante foi o efeito do tempo nos componentes do desempenho. A calibração é particularmente suscetível às tendências temporais. Zimmermann et al. demonstraram que a discriminação do Acute Physiology And Chronic Health Evaluation (APACHE) IV foi robusta e mudou pouco durante o período avaliado, porém a calibração se deteriorou na população geral de UTI. Soares et al. também demonstraram essa deterioração em sua análise temporal da calibração do SAPS 3 em pacientes oncológicos. Novamente, observamos diferentes efeitos na análise da tendência temporal em pacientes oncológicos em comparação com não oncológicos. Não se observou calibração inadequada nos pacientes oncológicos em qualquer dos períodos. Entretanto, nos pacientes não oncológicos, não apenas ocorreu calibração inadequada, como esta se moveu de subestimação para superestimação entre o primeiro e o segundo período avaliados. Estes efeitos não se observaram em pacientes oncológicos, mas essa sugestão pode ser excessivamente simplista. Viés de seleção na pré-admissão à UTI e práticas relacionadas ao final da vida podem ter também afetado a calibração.

Nosso estudo tem alguns pontos fortes, como uma amostra grande, que permitiu a realização de análises de subgrupos geradoras de hipóteses (pacientes oncológicos versus não oncológicos) que não tinham sido antes realizadas. Nosso estudo também avaliou um escore validado nas mesmas condições que em estudos prévios em pacientes oncológicos, assim como ocorreu em uma das maiores coortes de validação externa. Contudo, este...
CONCLUSÃO

A discriminação do SAPS 3 foi melhor para pacientes oncológicos do que para não oncológicos. O SAPS 3 não mostrou desvios importantes da calibração ideal em pacientes oncológicos. Em nossa coorte em um único centro, o desempenho do SAPS 3 (principalmente a calibração) variou ao longo do tempo de forma diferente, segundo a condição oncológica.

FINANCIAMENTO

Este trabalho teve apoio financeiro local do Hospital Sírio-Libanês, São Paulo, SP.

CONTRIBUIÇÃO DOS AUTORES

L.U. Taniguchi foi responsável pela concepção do estudo, interpretação dos dados e redação do manuscrito. E.M.P. Siqueira procedeu à aquisição dos dados. L.U. Taniguchi e E.M.P. Siqueira analisaram os dados. Ambos os autores leram e aprovaram a versão final do manuscrito.

ABSTRACT

Objective: To compare the performance of the Simplified Acute Physiology Score 3 (SAPS 3) in patients with and without solid cancer who were admitted to the intensive care unit of a comprehensive oncological hospital in Brazil.

Methods: We performed a retrospective cohort analysis of our administrative database of the first admission of adult patients to the intensive care unit from 2012 to 2016. The patients were categorized according to the presence of solid cancer. We evaluated discrimination using the area under the Receiver Operating Characteristic curve (AUROC) and calibration using the calibration belt approach.

Results: We included 7,254 patients (41.5% had cancer, and 12.1% died during hospitalization). Oncological patients had higher hospital mortality than non-oncological patients (14.1% versus 10.6%, respectively; \(p < 0.001 \)). SAPS 3 discrimination was better for oncological patients (AUROC = 0.85) than for nononcological patients (AUROC = 0.79) \((p < 0.001) \). After we applied the calibration belt in oncological patients, the SAPS 3 matched the average observed rates with a confidence level of 95%. In nononcological patients, the SAPS 3 overestimated mortality in those with a low-middle risk. Calibration was affected by the time period only for nononcological patients.

Conclusion: SAPS 3 performed differently between oncological and nononcological patients in our single-center cohort, and variation over time (mainly calibration) was observed. This finding should be taken into account when evaluating severity-of-illness score performance.

Keywords: Simplified acute physiology score; Prognostic; Neoplasms; Intensive care units

REFERÊNCIAS

1. Salluh JI, Soares M. ICU severity of illness scores: APACHE, SAPS and MPM. Curr Opin Crit Care. 2014;20(5):557-65.
2. Le Gall JR. The use of severity scores in the intensive care unit. Part 1: Objectives, methods and cohort description. Intensive Care Med. 2005;31(12):1818-23.
3. Keegan MT, Soares M. What every intensivist should know about prognostic scoring systems and risk-adjusted mortality. Rev Bras Ter Intensiva. 2016;28(3):264-9.
4. Metnitz PG, Moreno RP, Almeida E, Jordan B, Bauer P, Campos RA, Iapichino G, Edbrooke D, Capuzzo M, Le Gall JR, SAPS 3 Investigators. SAPS 3—From evaluation of the patient to evaluation of the intensive care unit. Part 1: Objectives, methods and cohort description. Intensive Care Med. 2005;31(10):1336-44.
5. Moreno RP, Metnitz PG, Almeida E, Jordan B, Bauer P, Campos RA, Iapichino G, Edbrooke D, Capuzzo M, Le Gall JR, SAPS 3 Investigators. SAPS 3—From evaluation of the patient to evaluation of the intensive care unit. Part 2: Development of a prognostic model for hospital mortality at ICU admission. Intensive Care Med. 2005;31(10):1345-55.
11. Zimmerman JE, Kramer AA, McNair DS, Malila FM. Acute Physiology and Chronic Health Evaluation (APACHE) IV: hospital mortality assessment for today’s critically ill patients. Crit Care Med. 2006;34(5):1297-310.

12. Rodrigues CM, Pires EM, Feliciano JP, Vieira JM Jr, Taniguchi LU. Admission factors associated with intensive care unit readmission in critically ill oncohematological patients: a retrospective cohort study. Rev Bras Ter Intensiva. 2016;28(1):33-9.

13. Zampieri FG, Soares M, Borges LP, Salluh JI, Ranzani OT. The Epimed Monitor ICU Database®: a cloud-based national registry for adult intensive care unit patients in Brazil. Rev Bras Ter Intensiva. 2017;29(4):418-26.

14. Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987;40(5):373-83.

15. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44(3):837-45.

16. Finazzi S, Poole D, Luciani D, Cogo PE, Bertolini G. Calibration belt for quality-of-care assessment based on dichotomous outcomes. PLoS One. 2011;6(2):e16110.

17. Steyerberg EW, Vickers AJ, Cook NR, Gerds T, Obuchowski N, et al. Assessing the performance of prediction models: a framework for traditional and novel measures. Epidemiology. 2010;21(1):128-38.

18. Associação de Medicina Intensiva Brasileira (AMIB). UTIs brasileiras. Registro Nacional de Terapia Intensiva [internet]. [citado 2019 out 01]. Disponível em http://www.utisbrasileiras.com.br/

19. Keegan MT, Gajic O, Afessa B. Severity of illness scoring systems in the intensive care unit. Crit Care Med. 2011;39(1):163-9.

20. Taccone FS, Artigas AA, Sprung CL, Moreno R, Sakr Y, Vincent JL. Characteristics and outcomes of cancer patients in European ICUs. Crit Care. 2009;13(1):R15.

21. Schellongowski P, Sperr WR, Wohlfarth P, Knoebl P, Rabitsch W, Watzke HH, et al. Critically ill patients with cancer: chances and limitations of intensive care medicine—a narrative review. ESMO Open. 2016;1(5):e000018.