Ligand Free One-Pot Synthesis of Pyrano[2,3-c]pyrazoles in Water Extract of Banana Peel (WEB): A Green Chemistry Approach

Kartikey Dhar Dwivedi, Biplob Borah and L. Raju Chowhan*

Centre for Applied Chemistry, Central University of Gujarat, Gandhinagar, India

Here, we have developed a novel, simple, efficient, and green protocol for one-pot synthesis of pyrano[2,3-c]pyrazole using arylidene malononitrile and pyrazolone in Water Extract of Banana Peels (WEB) as a reaction medium at room temperature (r.t.). This is a green and general synthetic protocol without utilization of any toxic organic solvent, ligand, base that could be applicable for the wide substrate scope in good to excellent yields. This protocol has various advantages such as fast reactions, eco-friendly reaction conditions, easy isolation of the product without using column chromatography. The green chemistry matrices calculation like atom economy reaction, environmental factor, as well as process mass intensity indicates the eco-friendly nature of the protocol.

Keywords: pyrano[2,3-c]pyrazoles, web, arylidene malononitrile, 3-methyl-5-pyrazolone, green chemistry

INTRODUCTION

The development of a reaction under green and mild condition by employing naturally available waste material is highly advantageous in organic synthesis (Marvaniya et al., 2011; Parmar et al., 2013; Maleki and Ashrafi, 2014). From the green chemistry point of view, the designing of a novel, efficient and clean reaction protocol is done by using a catalyst which is easy to separate, reusable and inexpensive. The synthesis of pharmaceutical product and fine chemicals via green chemistry approach has recently gained significant interest from academia and industry (Bazgir et al., 2013; Naeimi et al., 2014; Dalal et al., 2016; Dwivedi et al., 2018a,b, 2019). However, most of the organic synthesis uses catalysts which are expensive and toxic in nature. Therefore, choice of catalyst for green reaction is limited and has become a matter of concern for researchers nowadays (Kumarswamyreddy and Kesavan, 2016; Maddila et al., 2016b; Sebenzile et al., 2016; Zhang et al., 2017; Reddy et al., 2018). On the other hand, the use of renewable feedstock in organic transformations provides not only environmentally benign protocol but is also easily available in bulk (Saikia and Borah, 2015). The use of nature-derived reaction medium in organic synthesis successfully replaced toxic solvents, reagents, and expensive catalysts. Importantly, these methods are very efficient, suitable and generates negligible hazardous by-products (Saikia and Borah, 2015; Reddy et al., 2018). There are several naturally available plant based waste materials such as banana plants (trunk, rhizome, and peel) which have no use after collecting the banana fruits (Deka and Talukdar, 2007; Neog and Deka, 2013; Leitemberger et al., 2019). Finding a new method to use these type of waste material in organic transformation is worthwhile. Several organic transformations have been reported using WEB as reaction medium and catalyst such as synthesis of 3-carboxycoumarins (Bagul et al., 2017), Suzuki–Miyaura cross-coupling reactions (Boruah et al., 2015), The Henry reaction (Surneni et al., 2016) using WEB etc.

*Correspondence:
L. Raju Chowhan
rchowhan@cug.ac.in

Specialty section:
This article was submitted to Green and Sustainable Chemistry, a section of the journal Frontiers in Chemistry

Received: 17 September 2019
Accepted: 31 December 2019
Published: 22 January 2020

Citation:
Dwivedi KD, Borah B and Chowhan LR (2020) Ligand Free One-Pot Synthesis of Pyrano[2,3-c]pyrazoles in Water Extract of Banana Peel (WEB): A Green Chemistry Approach. Front. Chem. 7:944. doi: 10.3389/fchem.2019.00944
The pyranopyrazoles (Figure 1) is an important heterocyclic compound containing five-membered pyrazole ring fused with a six-membered pyran ring that occupies an important and wide area in medicinal chemistry (Maddila et al., 2017). Among other isomer the pyrano[2,3-c]pyrazole shows various biological activity including anti-bacterial (Das et al., 2014), anti-HIV (Fadda et al., 2013; Sirous et al., 2019), insecticidal, anti-tumors (Mariappan et al., 2010), anti-inflammatory (Babaie and Sheibani, 2011; Gangu et al., 2017), cupreine (Gogoi and Zhao, 2009), per-6-amino-β-cyclodextrin (per-6-ABCD catalyst) (Kanagaraj and Pitchumani, 2010). However, these methods have certain limitations viz. use of harsh reaction conditions, low yields, longer reaction time, tedious work up procedures, use of volatile and toxic organic solvent that negatively impact human health and the environment. Therefore, development of simple, clean, efficient, and high yielding protocol using natural waste materials and their extracts for the synthesis of pyrano[2,3-c]pyrazoles is highly desirable (Maddila et al., 2016a; Mamaghani and Hossein Nia, 2019; Shi et al., 2019). Therefore, here we describe an efficient ligand-free one-pot green methodology for the synthesis of pyranopyrazoles by the reaction of aryldiene malononitrile and pyrazolone in WEB.

EXPERIMENTAL SECTION

General Experimental Detail

All commercially available chemicals were used without further purification. 1H NMR spectra were obtained on Bruker 500 MHz FT-NMR spectrometer. 13C NMR spectra were recorded at 125 MHz Chemical shifts are reported relative to the TMS signal. Multiplicity is indicated as follows: s (singlet); br s (broad singlet); d (doublet); t (triplet); q (quartet); m (multiplet); dd (doublet of doublets), etc. TOF and quadrupole mass analyzer types are used for the HRMS. FT-IR spectrometer (Shimadzu) in the range of 400–4,000 cm$^{-1}$.

General Procedure for the Synthesis of pyrano[2,3-c]pyrazole, 3(a-r)

To a solution of aryldiene malononitrile (1 mmol) and WEB (3 mL/mmol), 3-methyl-5-pyrazolone (1 mmol) was added and the mixture was stirred for the indicated time (Table 1) at

TABLE 1 | Optimization of reaction condition for the synthesis of pyrano[2,3-c]pyrazoles

Entry	Solvent	T°C	Time (min)b	Yield (%)c
1	MeOH	r.t.	300	5%
2	EtOH	r.t.	300	5%
3	MeOH + WEB (1:1)	r.t.	240	20
4	EtOH + WEB (1:1)	r.t.	120	25
5	MeOH + WEB (2:8)	r.t.	120	55
6	EtOH + WEB (2:8)	r.t.	120	60
7	DCM + WEB (1:1)	r.t.	240	25
8	DCM + WEB (2:8)	r.t.	120	40
9	WEB		30	96

aReaction condition: All reactions were carried out on 1 mmol scale using equimolar amount of starting materials in WEB. bTime for overall reaction. cIsolated yield.
room temperature. The progress of reaction was monitored by TLC (thin layer chromatography); however, the same can be inferred by disappearance of color and white precipitate formation. After completion of the reaction, as indicated by the TLC, the reaction mixture was filtered by using Whatman filter paper No 1 and washed with cold water. The obtained crude solid was then dissolved in ethyl acetate and passed through celite bed to remove any particulate impurities. The solvent was evaporated under reduced pressure and the obtained solid product was recrystallized by using methanol to give analytically pure 6-amino-3-methyl-4-phenyl-2,4-dihydro-pyran[2,3-c]pyrazole-5-carbonitrile products (3a-3q) (Data shown in Supplementary Material).

Spectral Data for Selected Compounds of pyran[2,3-c]pyrazole (3a, 3d, 3l, 3o)

6-amino-3-methyl-4-phenyl-2,4-dihydropyran[2,3-c]pyrazole-5-carbonitrile, 3a:
- 89% yield, white solid. Rf = 0.45 (80% EtOAc/Hexane). M.P. 195–197°C IR (KBr) \(\nu_{\text{max}} \) (cm\(^{-1}\)) 3363, 3083, 2912, 1627, 1599, 1481, 1354, 1300, 1220, 1182, 1066, 867, 833, 761, 612; \(^1\)H NMR (500 MHz, CDCl\(_3\)+DMSO-d\(_6\)) \(\delta \) 8.16 (s, 1H), 7.30 (t, \(J = 7.3 \text{ Hz}, 2H \)), 7.21 (t, \(J = 6.3 \text{ Hz}, 1H \)), 7.18 (t, \(J = 6.9 \text{ Hz}, 2H \)), 6.71 (s, 2H), 4.55 (s, 1H), 1.80 (s, 3H). \(^{13}\)C NMR (125 MHz, CDCl\(_3\)+DMSO-d\(_6\)) \(\delta \) 158.96, 152.91, 142.47, 133.59, 126.42, 125.56, 124.73, 118.88, 95.63, 55.40, 34.50, 7.87. HRMS (ESI\(^+\)): m/z calculated for [C\(_{14}\)H\(_{12}\)N\(_2\)O\(_2\)+H\(^+\)]: 253.1115; found 253.1115.

6-amino-4-(2-chlorophenyl)-3-methyl-2,4-dihydropyran[2,3-c]pyrazole-5-carbonitrile, 3d:
- 92% yield, white solid. Rf = 0.40 (80% EtOAc/Hexane). M.P 214–215°C. IR (KBr) \(\nu_{\text{max}} \) (cm\(^{-1}\)) 3351, 3098, 2924, 1637, 1582, 1479, 1341, 1317, 1230, 1194, 1079, 878, 842, 751, 601; \(^1\)H NMR (500 MHz, CDCl\(_3\)+DMSO-d\(_6\)) \(\delta \) 8.15 (s, 1H), 7.36 (d, \(J = 7.7 \text{ Hz}, 1H \)), 7.28 (t, \(J = 7.2 \text{ Hz}, 1H \)), 7.22 (t, \(J = 7.1 \text{ Hz}, 1H \)), 7.17 (d, \(J = 7.1 \text{ Hz}, 1H \)), 6.79 (s, 2H), 5.10 (s, 1H), 1.80 (s, 3H). \(^{13}\)C NMR (125 MHz, CDCl\(_3\)+DMSO-d\(_6\)) \(\delta \) 158.93, 153.11, 145.59, 143.50, 133.84, 133.50, 119.20, 118.10, 113.51, 109.56, 95.95, 56.30, 53.85, 34.38, 8.18. HRMS (ESI\(^+\)): m/z calculated for [C\(_{14}\)H\(_{11}\)ClN\(_2\)O\(_2\)+H\(^+\)]: 287.0700; found 287.0736.

6-amino-4-(furan-2-yl)-3-methyl-2,4-dihydropyran[2,3-c]pyrazole-5-carbonitrile, 3I:
- 91% yield, pale yellow color. Rf = 0.42 (80% EtOAc). M.P 215-217°C. IR (KBr) \(\nu_{\text{max}} \) (cm\(^{-1}\)) 3344, 3068, 2912, 1646, 1513, 1498, 1347, 1243, 1198, 1087, 875, 833, 751, 586; \(^1\)H NMR (500 MHz, CDCl\(_3\)+DMSO-d\(_6\)) \(\delta \) 7.93 (s, 1H), 7.37 (s, 1H), 6.50 (s, 2H), 6.31 (s, 1H), 6.13 (s, 12H), 4.72 (s, 1H), 2.05 (s, 3H). \(^{13}\)C NMR (125 MHz, CDCl\(_3\)+DMSO-d\(_6\)) \(\delta \) 160.10, 154.25, 140.16, 134.33, 119.15, 108.55, 103.95, 93.50, 52.89, 28.59, 8.23. HRMS (ESI\(^+\)): m/z calculated for [C\(_{12}\)H\(_{10}\)N\(_2\)O\(_2\)+H\(^+\)]: 243.0882; found 243.0921.

6-amino-1-benzyl-3-methyl-2-oxo-2′H-spiro[indoline-3,4′-pyran[2,3-c]pyrazole]-5-carbonitrile, 3o:
- 87% yield, white solid. Rf = 0.49 (80% EtOAc/Hexane). M.P 236°C. IR (KBr) \(\nu_{\text{max}} \) (cm\(^{-1}\)) 3368, 3098, 2923, 1622, 1716, 1584, 1482, 1343, 1302, 1242, 1161, 1046, 852, 821, 752, 623; \(^1\)H NMR (500 MHz, CDCl\(_3\)+DMSO-d\(_6\)) \(\delta \) 7.70 (s, \(J = 6.4 \text{ Hz}, 1H \)), 7.39 (d, \(J = 7.2 \text{ Hz}, 2H \)), 7.34–7.30 (m, 2H), 7.27 (d, \(J = 7.3 \text{ Hz}, 1H \)), 7.22 (t, \(J = 7.5 \text{ Hz}, 1H \)), 7.11 (d, \(J = 7.2 \text{ Hz}, 1H \)), 7.07–7.03 (m, 1H), 6.84 (d, \(J = 7.7 \text{ Hz}, 1H \)), 6.50 (s, 2H), 5.04 (d, \(J = 15.5 \text{ Hz}, 1H \)), 4.88 (d, \(J = 15.5 \text{ Hz}, 1H \)), 1.46 (s, \(J = 6.3 \text{ Hz}, 3H \)). \(^{13}\)C NMR (125 MHz, CDCl\(_3\)+DMSO-d\(_6\)) \(\delta \) 175.93, 161.88, 154.56, 140.97, 134.55, 134.25, 130.95, 127.90, 127.64, 126.60, 126.38, 123.64, 122.37, 117.82, 108.12, 94.21, 55.37, 46.20, 42.88, 8.36. HRMS (ESI\(^+\)): m/z calculated for [C\(_{22}\)H\(_{17}\)N\(_3\)O\(_2\)+H\(^+\)]: 384.1460; found 384.1506.

![FIGURE 2](image-url) | Preparation of water extract of banana peels (WEB).
RESULTS AND DISCUSSION
Preparation and Characterization of “Water Extract of Banana Peels” (WEB)

Banana peels are naturally available waste material. The banana peels (Figure 2) was dried under sunlight and were burned to get the ash at 500°C for 2 h. This ash was transferred into a glass beaker containing distilled water (3 gm of ash to 100 ml of distilled water) and the mixture was stirred for 10 min at room temperature. The slurry was filtered using a sintered glass funnel and the filtrate was termed as WEB (Boruah et al., 2015; Bagul et al., 2017). As mentioned earlier the WEB consists of different hydroxides and carbonated of metals such as Na and K etc. (Deka and Talukdar, 2007). These metal hydroxides and carbonates contributes the basicity of the extract. The pH of the extract was found to be 9.3, which confirms the basic nature of the WEB and catalyzes the reaction.

For optimizing the reaction condition, the model reaction was planned with an equimolar amount of arylidene malononitrile 1a (1 mmol) and 3-methyl-5-pyrazolone 2 (1 mmol) in WEB under different solvents at room temperature (Scheme 1; Table 1). Initially, the reaction in simple methanol and ethanol as a solvent yielded trace amount of product even after 300 min (Table 1, entry 1,2). The reaction in a ratio of MeOH/EtOH to WEB in (1:1) afforded the desired product in 25% yield in 240 min (Table 1, entry 3,4). An increase in the ratio of MeOH:WEB (2:8) yielded the product in 55% (Table 1, entry 5,6). However, the yield was decreased when the reaction was performed in combination of DCM and WEB (Table 1, entry 7, 8). Thereafter, the reaction was examined in neat WEB which afforded the desired product in 96% (Table 1, Entries 9). Thus, by using WEB the yield of product was excellent and found to be the best optimized condition for the synthesis of pyrano[2,3-c]pyrazole as reaction medium without using other organic solvents.

To optimize the amount of WEB required for the reaction, the reaction was performed in different amount of WEB and equimolar amount of arylidene malononitrile 1a (1 mmol), 3-methyl-5-pyrazolone 2 (1 mmol) at room temperature. It was found that 3 ml of WEB is sufficient enough to complete the reaction in 30 min to give quantitative amount of product (Scheme 2).

By employing the optimized condition, the reaction was performed with various substituted arylidene malononitrile 1a-q and 3-methyl-5-pyrazolone 2 in WEB at r.t. The methodology was found to have wide substrate scope. All halogenated substrates afforded the pyrano[2,3-c]pyrazoles 3 with excellent yield without any side reaction. It is interesting to note that different arylidene malononitrile with various electron-withdrawing group and electron-donating groups at C-2, C-3, C-4, position successfully give the desired product in quantitative yield (Table 2).

To further explore the scale-up performance of this protocol for one-pot preparation of pyrano[2,3-c]pyrazole derivative 3a which is important for possible large-scale application. Therefore, we performed a gram-scale reaction for the preparation of 3a (10 mmol) and the yield obtained was quantitative in nature (Scheme 3).

Green chemistry matrices (Bahuguna et al., 2017; Chowhan et al., 2017) like atom economy (A.E.) reaction mass efficiency (R. M. E) should be high, and environmental factor (E), as well as process mass intensity (P. M. I) should be low (Constable et al., 2002). Green chemistry matrixes were calculated for the reaction, and we found low E-factor (0.086), P. M. I (1.164), high R. M. E (91.99%), high atom economy (A.E. = 100%), and process mass...
TABLE 2 | Substrate scope for the synthesis of pyrano[2,3-c]pyrazoles.

Substrate	Reaction Condition	Product
NC\text{Ph}CN + N\text{Me}CN	WEB (3 mL), No organic solvent, r. t., 30 min	Ar-CN-NH$_2$

1a = Ar = Ph
1b = Ar = m-F-Ph
1c = Ar = p-F-Ph
1d = Ar = o-Cl-Ph
1e = Ar = p-Cl-Ph
1f = Ar = p-Br-Ph
1g = Ar = o-NO$_2$-Ph
1h = Ar = p-NO$_2$-Ph
1i = Ar = p-Me-Ph
1j = Ar = p-OCH$_3$-Ph
1k = Ar = p-OH-m-OMePh
1l = Ar = Furan
1m = Ar = Thiophene
1n = Ar = Isatin
1o = Ar = 5-Cl-Isatin
1p = Ar = 5-Br-Isatin
1q = Ar = N-Bn-Isatin

3a, 92%
3b, 96%
3c, 95%
3d, 94%
3e, 93%
3f, 92%
3g, 90%
3h, 91%
3i, 92%
3j, 91%
3k, 90%
3l, 94%
3m, 92%
3n, 93%
3o, 92%
3p, 95%
3q, 93%
intensity (P.M.I. factor = 1.164). These values clearly indicate the efficacy of the present protocol.

The mechanism involved is as follows. Initially, in the presence of WEB, 3-methyl-5-pyrazolone 2 can form its enolic form 4, which undergoes Michael addition with arylidene malononitrile 1 to give intermediate 5 (Figure 3). Abstraction of the proton from B-H by intermediate 5 generates the intermediate 6 which could undergo intramolecular cyclization and give the intermediate 7 which could isomerize and gives the desired product 3 (Ahadi et al., 2010; Zou et al., 2011).

CONCLUSIONS

A simple, efficient and green protocol has been developed for the synthesis of pyrano[2,3-c]pyrazole at room temperature using WEB as reaction medium without using other organic solvents, base, additives. The method has a broad range of substrate scope. The waste material was successfully used as a reaction medium for the organic transformation. The main advantage of this method is mild reaction condition, faster reaction, high yield, ecofriendly, and sustainable from the economic point of view. Calculated green chemistry matrices calculated prove the efficacy of the protocol. The method is very efficient for practical synthesis. Therefore, waste derived reaction medium can be efficient and ecofriendly alternative for the organic synthesis.

DATA AVAILABILITY STATEMENT

All datasets generated for this study are included in the article/Supplementary Material.

AUTHOR CONTRIBUTIONS

KD, BB, and LC contributed in designing the work, execution, and analysis of the results.
ACKNOWLEDGMENTS

KD gratefully acknowledges the financial support from the UGC for Non-NET fellowship. Authors thank the Central University of Gujarat for the infrastructure to carry out the work.

REFERENCES

Ahadi, S., Yasaei, Z., and Bazigir, A. (2010). A clean and one-pot synthesis of spiropyrrolidine-pyranopyrazoles. Indian J. Heterocycl. Chem. 47, 1090–1094. doi: 10.1002/jhet.437

Babaie, M., and Sheibani, H. (2011). Nanosized magnesium oxide as a highly effective heterogeneous base catalyst for the rapid synthesis of pyrano[2,3-c]pyrazoles via a tandem four-component reaction. Arab. J. Chem. 4, 159–162. doi: 10.1016/j.arabjc.2010.06.032

Bagul, S. D., Rajput, J. D., and Bendre, R. S. (2017). Synthesis of 3-hydroxy oxindole by a decarboxylative aldol reaction of β-ketoacid and isatin in WERSA. Chem. Sel. 6, 72–78. doi: 10.1002/slct.20190138

Bazigir, A., Hosseini, G., and Ghahremanzadeh, R. (2013). Copper ferrite nanoparticles: an efficient and reusable nanocatalyst for a green one-pot, three-component synthesis of spiroxindoles in water. ACS Comb. Sci. 15, 530–534. doi: 10.1021/co400057h

Mandour, A., El-Sawy, E., Ebaid, M., and Hassan, S. (2012). Synthesis and potential biological activity of some novel 3-[(N-substituted indol-3-yl)methyleneamino]-6-aminopyrano[2,3-c]pyrazole-4-aryl-pyrano(2,3-c)pyrazole-5-carboxylic acid derivatives. RSC Adv. 4, 42873–42891. doi: 10.1039/C4RA07813F

Tetrahedron Lett. 51, 13312–13316. doi: 10.1016/j.tetlet.2010.04.087

Kasiotis, K., Tzanetou, E. N., and Haroutounian, S. A. (2014). Pyrazoles as potential anti-angiogenesis agents: a contemporary overview. Front. Chem. 2/78. doi: 10.3389/fchem.2014.00078

Kumaraswamyreddy, N., and Kesavan, V. (2016). Enantioselective synthesis of dihydrostipiro[4,3-c]pyrazole derivatives via Michael/hemiketalization reaction. Org. Lett. 18, 1354–1357. doi: 10.1021/acs.orglett.6b00287

Lilat, K., Chandres, T., and Vivek, S. (2012). Biological significance of pyrazolone: a review. Int. J. Res. Pharm. Sci. 2, 13–22. Available online at: http://ijrpsonline.com/vol2issue2/april-june2012.php

Leitemberger, A., Böh, L. M. C., Rosa, C. H., Silva, C. D., Galetto, F. Z., and Godoi, M. (2019). 273 Synthesis of symmetrical diorganyl disulfides employing WEB as an eco-friendly oxidative 274 system. Chem. Sci. 4, 7686–7690. doi: 10.1039/C9SC02138s

Maddila, S. N., Maddila, S., Zyl, W. E., and Jonnalagadda, S. B. (2016a). Ruthypospyratie: an efficient and reusable catalyst for the multicomponent synthesis of pyranopyrazoles under facile green conditions. Curr. Org. Synth. 13, 893. doi: 10.2174/1570794136661512802439

Maddila, S. N., Maddila, S., Zyl, W. E., and Jonnalagadda, S. B. (2016b). Cerianavandia-silica-catalyzed cascade for C–C and C–O bond activation: green one-pot synthesis of 2-amino-3-cyano-4H-pyrazines. ChemistryOpen 5, 38–42. doi: 10.1002/open.201501159

Maddila, S. N., Maddila, S., Zyl, W. E., and Jonnalagadda, S. B. (2017). CeO2/V2O5 as green catalyst for one-pot synthesis of new pyrano[2,3-c]pyrazoles. Res. Chem. Intermed. 43, 4313–4325. doi: 10.1007/s11164-017-2878-7

Maleki, B., and Asrafari, S. S. (2014). Nano α-Al2O3 supported ammonium dihydrogen phosphate (NH4H2PO4/Al2O3): preparation, characterization and its application as a novel and heterogeneous catalyst for the one-pot synthesis of tetrahydrobenzo[b]pyran and pyran [2,3-c]pyrazole derivatives. RSC Adv. 4, 12520–12526. doi: 10.1039/C4RA07813F

Mamaghani, M., and Hossein Nia, R. (2019). A review on the recent multicomponent synthesis of pyranopyrazoles. doi: 10.1002/046638.201915457

Mandour, A., El-Sawy, E., Elbadin, M., and Hassan, S. (2012). Synthesis and potential biological activity of some novel 3-[N-substituted indol-3-yl]-methyleneamino]-6-aminopyrano[2,3-c]pyrazole-4-aryl-pyrano(2,3-c)pyrazole-5-carboxylic acid derivatives. RSC Adv. 4, 42873–42891. doi: 10.1039/C4RA07813F

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fchem.2019.00944/full#supplementary-material
and 3, 6-diamo-4-(N-substituted indol-3-yl) pyrano (2, 3-c) pyrazole-5-carbonitriles. Acta Pharm. 62, 15–30. doi: 10.2478/v10007-012-0007-0

Mariatapan, G., Saha, B. P., Sutharson, L., Ankits, G., Pandey, L., and Kumar, D. (2010). The diverse pharmacological importance of pyrazolone derivatives: a review. J. Pharm. Res. 3, 2856–2859. Available online at: https://pdfs.semanticscholar.org/b16c/6e8577e220f9635601edd2db7b8231de9.pdf?ga_2=2.17991291.332792044.1578919756-1634417742.1566909052

Marvaniya, H. M., Modhi, K. N., and Sen, D. J. (2011). Greener reactions under solvent free conditions. Int. J. Drug Dev. Res. 3, 42–51. Available online at: https://www.researchgate.net/profile/Prof_Dr_Dhrubo_Jyoti_Sen/publication/286462167_Greener_reactions_under_solvent_free_conditions/links/5b9955e92851ace21b1d5b3/Greener-reactions-under-solvent-free-conditions.pdf

Naeimi, H., Rashid, Z., Zarnani, A. H., and Ghahremanzadeh, R. (2014). Efficient synthesis of novel spiro-furo-pyrido-pyrimidine-indolines by mangane ferrite nanoparticles as a highly active magnetically reusable nanocatalyst in water. New J. Chem. 38, 348–357. doi: 10.1039/C3NJ00940H

Nagarajan, A. S., and Reddy, B. S. (2009). Synthesis of substituted pyranopyrazoles under neat conditions via a multicomponent reaction. Synlett 12, 2002–2004. doi: 10.1055/s-0029-1217526

Neog, S. R., and Deka, C. D. (2013). Salt substitute from banana plant (Musa Balbiciana Colla). J. Chem. Pharm. Res. 5, 155–159. Available online at: https://pdfs.semanticscholar.org/5d58/1a53568e0477d1966fb48283f1a3ec7c998.pdf

Parmar, N. J., Barad, H. A., Passuriya, B. R., and Talpada, N. P. (2013). A highly efficient, rapid one-pot synthesis of some new heteroaryl pyrano [2, 3-c] pyrazoles in ionic liquid under microwave-irradiation. RSC Adv. 3, 8064–8070. doi: 10.1039/c3ra00068k

Reddy, M. M., Jayashankara, V. P., and Pasha, M. A. (2010). Glycine-catalyzed efficient synthesis of pyran -pyrazoles via one-pot multicomponent reaction. Synth. Commun. 40, 2930–2934. doi: 10.1080/00397910903340686

Reddy, M. S., Kumar, N. S., and Chowhan, L. R. (2018). Heterogeneous graphene oxide as recyclable catalyst for azomethine ylide mediated 1, 3 dipolar cycloaddition reaction in aqueous medium. RSC Adv. 8, 35587–35593. doi: 10.1039/C8RA06714G

Saikia, B., and Borah, P. (2015). A new avenue to the Dakin reaction in H2O2 - WERSA. RSC Adv. 5, 105583–105586. doi: 10.1039/C5RA0133K

Sebnzelte, S., Maddila, S., Zyl, W. E., and Jonnalagadda, S. B. (2016). A facile, efficacious and reusable Sm2O3/ZrO2 catalyst for the novel synthesis of functionalized 1,4-dihydropyridine derivatives. Catal. Com. 79, 21–25. doi: 10.1016/j.catcom.2016.02.017

Sharanina, L. G., Promonenkov, V. K., Marshutpa, V. P., Pashchenko, A. V., Puzanova, V. V., Sharanin, Y. A., et al. (1982). 6-Amino-5-cyano-1H, 4H-pyrazolo [3, 4-b] pyrans. Chem. Heterocycl. Compd. 18, 607–611. doi: 10.1007/BF00360614

Shi, X., Li, X., and Shi, D. (2019). Ligand-and additive-free 2-position-selective trifluoromethylation of heteroarenes under ambient conditions. Front. Chem. 7:613. doi: 10.3389/chem.2019.00613

Sirous, H., Chemi, G., Gemma, S., Butini, S., Debyser, Z., Christ, F., et al. (2019). Identification of novel 3-hydroxy-pyran-4-one derivatives as potent HIV-1 integrase inhibitors using in silico structure-based combinatorial library design approach. Front. Chem. 7:574. doi: 10.3389/chem.2019.00574

Surneni, N., Barua, N. C., and Saikia, B. (2016). Application of natural feedstock extract: the Henry reaction. Tetrahedron Lett. 57, 2814–2817. doi: 10.1016/j.tetlet.2016.05.048

Tacconi, G., Gatti, G., Desimoni, G., and Messi, V. (1980). A new route to 4H-pyran [2,3-c] pyrazoles. J. Prakt. Chem. 332, 831–834. doi: 10.1002/prac.19803220519

Vasuki, G., and Kumaravel, K. (2008). Rapid four-component reactions in water: synthesis of pyranopyrazoles. Tetrahedron Lett. 49, 5636–5638. doi: 10.1016/j.tetlet.2008.07.055

Zhang, M., Liu, Y. H., Shi, Z. R., Hu, H. C., and Zhang, Z. H. (2017). Supported molybdenum on graphene oxide/Fe3O4: an efficient, magnetically separable catalyst for one-pot construction of spiro-oxindole dihydropyridines in deep eutectic solvent under microwave irradiation. Catal. Commun. 88, 39–44. doi: 10.1016/j.catcom.2016.09.028

Zou, Y., Hu, Y., Liu, X., and Shi, D. (2011). Rapid and efficient ultrasound-assisted method for the combinatorial synthesis of spiro [indoline-3, 4’-pyran [2, 3-c] pyrazole] derivatives. ACS Comb. Sci. 14, 38–43. doi: 10.1021/cco200128k

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Dwivedi, Borah and Chowhan. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.