Asset-light strategies and stock market reactions to COVID-19’s pandemic announcement: The case of hospitality firms

Cédric Poretti
HES-SO/University of Applied Sciences and Arts Western Switzerland, Switzerland

Cindy Yoonjoung Heo
HES-SO/University of Applied Sciences and Arts Western Switzerland, Switzerland

Abstract
This research note investigates the stock market reactions of international hospitality firms to COVID-19’s pandemic announcement by the World Health Organization. In line with the behavioral finance literature, the findings indicate that, in the short term, investors overestimated the risks underlying asset-heavy firms because of information uncertainty. Firms pursuing an asset-light (AL) strategy are associated to significantly less negative cumulative abnormal returns in the 4 days following the announcement, especially firms following an AL strategy that reduces significantly the operating leverage. However, this difference vanishes after 5 trading days, meaning that investors revised their expectations. This research note suggests that the cost structure of AL firms matters in reducing information uncertainty and sheds light on the consequences of the COVID-19 crisis on the hospitality industry. It also provides useful information to board members, financial analysts, and companies’ top managers when evaluating whether and how to pursue an AL strategy, and the potential consequences of it.

Keywords
asset-light, COVID-19, cumulative abnormal returns, event study, hospitality industry, operating leverage

Introduction
This research note investigates hotel and restaurant firms’ stock market reactions to the World Health Organization (WHO) announcement that the COVID-19 epidemic had officially become a
pandemic. Following this announcement, lockdown restrictions started to be imposed in Europe and in North America, drastically impacting consumer demand and threatening the survival of many firms in the hospitality industry. As this exogenous shock is exceptional both in scope and severity (Ding et al., 2020; Ramelli and Wagner, 2020), it provides an interesting laboratory to investigate how firms with different characteristics responded to this shock. Song et al. (2020) document that large internationalized US restaurant firms, with more leverage, more cash flows, and less return on assets (ROA), suffered less negative stock market declines over a 5-month period. This study explicitly contributes to this literature by investigating the stock market reaction of international hospitality firms to the pandemic announcement by the WHO.

The hotel and restaurant industry is specific because of firms’ high proportion of fixed assets and reliance on consumers’ discretionary spending (Kumcu and Kaufman, 2011; Singal, 2012; Upneja and Dalbor, 1999). The pursuit of a fee-oriented asset-light (AL hereafter) strategy reduces this risk (Choi et al., 2018) and enables firms to have greater flexibility (Gim and Jang, 2019), to stabilize cash flows (Andrew et al., 2007; Dogru et al., 2020), and to grow faster without heavy investments (Sohn et al., 2013), which led many hotel and restaurant firms worldwide to develop their managed and franchise businesses in recent decades (Li and Singal, 2019). This trend deeply impacted firms’ cost structure, as companies pursuing an AL strategy benefit from franchise and management fees, without having to support the significant fixed costs of owning and/or operating a business that make them struggle with profit variability during periods of unstable demand (Graham and Harris, 1999).

This relates to the concept of operating leverage (OL), a measure of operating profit’s sensitivity to variations in revenue. The risks associated with high OL have been well documented in the literature (e.g. Bessembinder, 1991; He et al., 2020; Kahl et al., 2014; Novy-Marx, 2011).

Fee-based income is more stable than operating profit earned from company-owned properties, contributing to risk reduction (Sohn et al., 2014). During a period of low demand, firms with higher fixed costs suffer the most and have more uncertain future cash flows. While the operating loss of company-owned properties is transferred directly to the owner’s bottom line, operators can still get profit since the base fee is positive, as long as the hotel under management contract or franchising generates revenue (Sohn et al., 2014). While previous research has examined the role of business strategies on various outcomes (e.g. O’Neill and Xiao, 2006; Panvisavas and Taylor, 2006; Poretti and Blal, 2020; Seo and Soh, 2019; Sohn et al., 2013), their influence on information uncertainty and in turn on stock market reaction to an exogenous shock lacks similar research.

Substantial evidence in the behavioral finance literature documents how behavioral biases influence risk perception and investors’ reaction to new information (e.g. Danbolt et al., 2015; Jegadeesh and Titman, 1993; Zhang, 2006). Zhang (2006) shows that greater information uncertainty produces higher expected returns following good news and lower expected returns following bad news, where information uncertainty is defined as (p. 1) “ambiguity with respect to the implications of new information for a firm’s value.” Moreover, sentiment influences the assessment of risk, as happy investors underestimate risk, while pessimistic investors overestimate risk (Danbolt et al., 2015; Johnson and Tversky, 1983; Kaplanski et al., 2015; Loewenstein et al., 2001). The COVID-19 crisis occurred unexpectedly after one of the longest bull markets ever and led to the biggest drop in investor sentiment on record. Relaxing the assumption of strict investor rationality, this study posits that investors, in response to the pandemic announcement, overestimated the risks underlying firms with a high degree of OL because of the greater information uncertainty related to future cash flows. To the best of our knowledge, no prior studies have examined how the information uncertainty related to the business strategy followed by hotel and restaurant companies influences investors’ reactions to a negative exogenous shock impacting the whole industry. This research note intends to fill this gap.
Using a sample of publicly listed hotel and restaurant firms in Europe and North America and applying an event study methodology, the findings documented in this research note contribute to the literature in several ways. First, it adds to the overall understanding of the consequences of the COVID-19 crisis on the hospitality industry (Ding et al., 2020; Ramelli and Wagner, 2020; Song et al., 2020) by showing that business strategies and the underlying information uncertainty affect investor reaction. More specifically, this study explicitly contributes to Song et al. (2020) by highlighting the role of AL strategies that reduce OL (i.e. that are substantial enough to modify the cost structure of the firm) in mitigating stock market reaction. Second, it provides additional insight into the AL phenomenon and its perception by market participants. Only AL strategies that lower OL significantly reduce information uncertainty and mitigate investors’ perception of the firm’s underlying risk and ability to survive a crisis. Finally, in line with Hirshleifer (2001) and Daniel et al. (1998, 2001), it sheds light on specific situations in which investors’ psychological biases (e.g. behavioral biases related to pricing anomalies, such as underreaction to new information and overconfidence, or the overweighting of prior information due to conservative (anchoring) biases) are increased when there is more uncertainty.

Data and methodology

Sample

To build the sample, this study started with all hotel and restaurant firms available on Thomson Reuters Datastream (N = 322), from which only companies from Europe and North America were retained (N = 140). Franchise and management fees information were collected in the available annual reports and 10-k forms (N = 88). The final sample is composed of 69 companies for which stock prices as well as accounting information were available on Datastream. Of the 69 firms, 28 (41%) are from Europe⁴ and 41 (59%) are from North America.

Event study

To capture the market’s reaction, this study implements an event study with the event being the COVID-19 pandemic announcement by the WHO. Event study is typically applied to estimate the stock market reaction to news announcements, in which the sign and significance of the abnormal returns following the announcements are evaluated (Graf, 2009). In line with Lee and Connolly (2010) and Gim and Jang (2020), using ordinary least-squares regressions, the parameters of the market model (model 1) were first estimated for each firm over 200 daily returns, from −210 days to −10 days before the event date:

\[R_{it} = \alpha_i + \beta_i R_{mt} + \varepsilon_{it} \] (1)

Next, the abnormal returns are calculated by comparing each firm’s effective stock return on a given day to the expected return using the estimated parameters derived from the market model and applied to the market return. In other words, the abnormal returns are the prediction errors from the market model:

\[AR_{it} = \hat{\varepsilon}_i = R_{it} - (\hat{\alpha}_i + \hat{\beta}_i R_{mt}) \] (2)

where \(R_{it} \) is the effective stock market return of firm \(i \) on day \(t \), \(R_{mt} \) is the market index return on the same day, and \(\hat{\alpha}_i \) and \(\hat{\beta}_i \) are the market model’s estimated parameters for firm \(i \) obtained during
the estimation period. Since the sample includes firms from Europe and North America, the EURO STOXX 50 index is used as the market index for European firms, and the S&P 500 index as the market index for North American companies. In a last step, cumulative abnormal returns (CARs) are computed as the sum of abnormal returns over a given event window (${-1; +t}$):

$$\text{CAR}_{it} = \sum_{t=-1}^{T} \text{AR}_{it}$$

(3)

Model development

To analyze the factors impacting the stock market reaction to COVID-19 pandemic announcement, the following ordinary least-squares models are used:

$$\text{CAR}_{i} = \beta_0 + \beta_1 \text{ASSET_LIGHT}_i + \beta_j \sum_{j=2}^{K} \text{CONTROLS} + \varepsilon_{i,t}$$

(4)

$$\text{CAR}_{i} = \partial_0 + \partial_1 \text{AL_LOW_OL}_i + \partial_2 \text{AL_HIGH_OL}_i + \partial_j \sum_{j=3}^{3} \text{CONTROLS} + \varepsilon_{i,t}$$

(5)

where $\text{CAR}_{i,t}$ is the cumulative abnormal returns of firm i over a given time window. ASSET_LIGHT is a dummy variable equal to 1 if the firm’s fee-income ratio is greater than the sample median, and 0 otherwise. AL_LOW_OL (AL_HIGH_OL) is a dummy variable equal to 1 if the firm is considered as “asset-light” and has an OL lower (higher) than the sample median, and 0 otherwise. In line with Novy-Marx (2011), OL is defined as $((\text{Revenue} - \text{EBITDA})/\text{Total asset})$. CONTROLS is a vector of control variables found in prior studies (Chen et al., 2000; Gim and Jang, 2020), including the fixed asset ratio, the number of countries in which the firm is doing business, the cash ratio, cash flow volatility, increases in net cash flows, leverage, size, and return on assets. In all tests, country fixed effects are included.

Results

Market reaction to WHO announcement

Table 1 provides descriptive statistics about mean CARs over five time windows (${-1; 0}$ to ${-1; +4}$). Regarding the full sample, it appears that mean CARs range from -7.22% for the ${-1; 0}$ time window to -33.17% for the ${-1; +3}$ time window. When the sample is split between AL and asset-heavy firms, results suggest that CARs are more negative for asset-heavy firms over the five time windows. Student’s t-tests indicate that the difference in mean CARs is statistically significant for three time windows out of five. Overall, these preliminary results indicate that the stock market reaction to the COVID-19 pandemic announcement significantly differed across firms following different business strategies.

The determinants of CARs

In this section, the determinants of CARs are investigated using multivariate analyses (models 4 and 5). Table 2 presents descriptive statistics of the variables used in the tests for the full sample (panel A), AL firms (panel B), and asset-heavy firms (panel C). AL firms have smaller fixed assets
ratios \((FA\text{_RATIO}) \), are more internationalized \((LN\text{_COUNTRIES}) \), have greater cash flow volatility \((CFO\text{_VOL}) \), disclose less frequent positive net cash flows \((POSITIVE\text{_CFO}) \), are larger \((SIZE) \), have more debt \((LEVERAGE) \), and generate better economic performance \((ROA) \).

Table 3 documents the results of the analysis of the determinants of CARs using ordinary least squares regressions. In columns 1 to 4, the coefficients on \(ASSET_LIGHT \) are positive and
Table 3. The impact of asset-light strategies on CARs.

Time window	CAR	1	2	3	4	5	6	7	8	9	10
ASSET_LIGHT		0.06***	0.14***	0.16***	0.11**	0.02	0.09***	0.21***	0.24***	0.16**	0.06
		(2.58)	(3.20)	(3.31)	(1.96)	(0.38)	(2.64)	(4.73)	(4.75)	(2.45)	(0.77)
AL_LOW_OL		-0.04	0.03	0.10	0.15	0.06	-0.02	0.08	0.17***	0.19***	0.09
		(-0.90)	(0.36)	(1.47)	(1.61)	(0.51)	(-0.38)	(1.17)	(2.44)	(2.09)	(0.79)
FA_RATIO		0.08	0.46*	0.54**	0.53	0.31	0.08	0.46**	0.53**	0.52	0.31
		(1.90)	(3.67)	(3.93)	(3.82)	(2.86)	(2.05)	(4.11)	(4.58)	(4.12)	(3.02)
LN_COUNTRIES		0.02*	0.05***	0.06***	0.08***	0.07***	0.02***	0.05***	0.06***	0.08***	0.07***
		(1.71)	(3.67)	(3.93)	(3.82)	(2.86)	(2.05)	(4.11)	(4.58)	(4.12)	(3.02)
CASH_RATIO		-0.02**	-0.03***	-0.03**	-0.01	-0.02	-0.01*	-0.02*	-0.02*	-0.01	0.03
		(-2.10)	(-2.54)	(-2.35)	(-0.75)	(1.37)	(-1.74)	(-1.82)	(-1.69)	(-0.42)	(1.59)
POSITIVE_CFO		0.06***	0.12**	0.16***	0.11	0.10	0.06***	0.13***	0.18***	0.12	0.10
		(2.82)	(2.52)	(2.71)	(1.41)	(1.44)	(2.48)	(2.89)	(2.99)	(1.47)	(1.52)
SIZE		0.01	-0.01	-0.02	-0.05**	-0.08***	-0.00	-0.02***	-0.04***	-0.06**	-0.08***
		(0.77)	(-0.53)	(-1.17)	(-2.42)	(-3.42)	(-0.13)	(-2.19)	(-2.70)	(-3.23)	(-3.89)
LEVERAGE		-0.06***	-0.17***	-0.16**	-0.05	-0.03	-0.05***	-0.17***	-0.16**	-0.05	-0.03
		(-2.05)	(-3.09)	(-2.51)	(-0.66)	(-0.41)	(-1.96)	(-3.14)	(-2.50)	(-0.60)	(-0.35)
ROA		0.12	0.42	0.37	-0.14	-0.16	0.21	0.67***	0.63**	0.03	-0.04
		(0.87)	(1.49)	(1.32)	(-0.34)	(-0.41)	(1.53)	(2.42)	(2.29)	(0.08)	(-0.10)
Constant		-0.07	-0.06	-0.13	0.00	0.36	-0.03	0.03	0.04	0.07	0.41
		(-0.79)	(-0.36)	(-0.68)	(0.02)	(1.35)	(-0.42)	(0.19)	(-0.22)	(0.25)	(1.53)
Country FE		Yes									
Observations		69	69	69	69	69	69	69	69	69	69
Adj. R^2		0.45	0.51	0.54	0.49	0.53	0.48	0.57	0.59	0.50	0.54
F-statistic		121.1***	145.7***	184.7***	406.9***	110.6***	134.3***	177.1***	373.3***	696.4***	114.2***

Note: CAR: cumulative abnormal return. All variables are defined in Online Appendix A. Robust z-statistics in parentheses.

*p < 0.1.

**p < 0.05.

***p < 0.01.
significant ($p < 0.01$ in columns 1 to 3, and $p < 0.05$ in column 4), meaning that pursuing an AL strategy led to less negative CARs following the announcement. However, the coefficient on \textit{ASSET_LIGHT} is not significant in column 5, meaning that the difference in CARs between AL and non-AL firms vanishes after 4 trading days. Next, in columns 6 to 10, we differentiate between AL firms with a high OL (\textit{AL_HIGH_OL}) and low OL (\textit{AL_LOW_OL}) to analyze how the cost structure of AL firms mitigated the stock market reaction to the pandemic announcement. The results indicate that firms applying an AL strategy that leads to a low degree of OL are associated to less negative CARs, as documented by the positive and significant ($p < 0.01$ in columns 6 to 8, $p < 0.05$ in column 9) coefficients on \textit{AL_LOW_OL} in columns 6 to 9. Again, this effect vanishes after 4 trading days as documented in column 10. In contrast, the coefficients on \textit{AL_HIGH_OL} are not statistically different from zero in all columns. In line with Song et al. (2020), internationalization (\textit{LN_COUNTRIES}) and positive cash flows (\textit{POSITIVE_CFO}) moderate the severity of CARs, while larger firms with more cash flow volatility and more leverage suffered form more negative CARs.

Overall, these results contribute to Song et al. (2020) by documenting an overreaction of investors in non-AL firms and AL firms with a high degree of OL. In other words, this study documents that abnormal returns for AL firms with low OL are less negative in the days following the pandemic announcement. However, after 4 trading days, the difference disappears as investors revised their expectations. In line with Hirshleifer (2001) and Daniel et al. (1998, 2001), psychological biases are increased when there is more uncertainty, and only an AL strategy that reduces OL leads to lower levels of information uncertainty.

Conclusion

The COVID-19 crisis provides an opportunity to investigate investors’ perception and understanding of firms pursuing AL strategies in a period of extraordinarily high uncertainty. Using a sample of hospitality firms, this research note analyses whether the stock market reaction to the pandemic announcement differs across firms with different business strategies. The findings indicate that CARs are significantly less negative for firms pursuing an AL strategy that reduces OL. This study contributes to the overall understanding of the consequences of the COVID-19 crisis on the hospitality industry. While Song et al. (2020) explain that, in the case of the COVID-19 crisis, the risk reduction role of franchising may be marginalized as damages from COVID-19 are omnipresent, we show that in the short term, AL strategies that reduce OL mitigated abnormal stock market reactions. Despite the uncertainty caused by the crisis and its consequences in the long run, we provide insight into investors’ perception of the risk underlying hospitality firms with different business models. The findings also aim to better inform executives about investors’ perception of a specific business strategy, namely the AL strategy. Finally, this study sheds light on the role played by OL for hospitality firms. These results are particularly useful to board members, hospitality financial analysts, and hotel and restaurant companies’ top managers when evaluating whether and how to pursue an AL strategy, and the potential consequences of it.

This study is not without limitations. The nature and the size of the sample potentially limits the extent to which the results can be generalized. By including country fixed effects, our models are accounting for country-specific differences. Moreover, given the range of control variables that are included in our tests, the heterogeneity underlying our sample (e.g., in terms of degree of internationalization, liquidity, profitability, size, leverage, and business volatility) should also be accounted for. Nevertheless, the sampled hospitality firms in different countries may be
heterogeneous in terms of various factors such as brand equity (i.e. firm level) and government regulations on business (i.e. country level). Also, the WHO’s COVID-19 pandemic announcement may not be sufficient to fully grasp investors’ perception and response to the crisis.

Future study topic can be inspired based on the findings of this study. While the focus of this study is on the short-term stock market reaction, it might be interesting to investigate the impact of the pandemic on hospitality firms in the longer run. The COVID-19 pandemic is still in progress; therefore, future studies are advised to continue observing the situation to find further research implications. Future research may examine investors’ reaction to firms pursuing AL strategies during global economic recovery from COVID-19. Furthermore, the results of this study can be compared with other types of negative announcements. It could also be a fruitful future research topic to explore how the various country-level initiatives undertaken to limit bankruptcies and boost consumption have impacted hospitality firms’ businesses.

Declaration of conflicting interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) received no financial support for the research, authorship, and/or publication of this article.

ORCID iDs
Cédric Poretti https://orcid.org/0000-0001-6414-8758
Cindy Yoonjoung Heo https://orcid.org/0000-0002-0038-306X

Supplemental material
Supplemental material for this article is available online.

Notes
1. Two companies with the same revenues and total costs, but with a different mix between fixed and variable costs, will be impacted differently by variations in revenue. All else equal, the higher the fixed costs, the greater the OL, and the higher the sensitivity of operating income to variations in revenue (Seal et al., 2015).
2. Which started in 2009 and lasted for more than 10 years.
3. Based on BofA Global Fund Manager Survey.
4. The European countries included in the sample are Croatia, France, United Kingdom, Spain, Norway, and Sweden.
5. In additional analyses (untabulated), the MSCI World Index is used as market index for all firms, and the results hold.
6. CARs are analyzed over time windows ranging from \([-1; 0]\) to \([-1; +4]\). In additional analyses (untabulated), alternative time windows are used starting from day 0 instead of day \(-1\), and the results hold.
7. Novy-Marx (2011) defines operating leverage as COGS plus SG&A divided by total assets.
8. The mere application of an AL strategy doesn’t necessarily lead to a reduced OL, as half of AL firms in the sample have less than 14% of total revenue derived from franchise and management fees.
References

Andrew WP, Damitio JW and Schmidgall RS (2007) Financial Management for the Hospitality Industry. Upper Saddle River, NJ: Pearson Education.

Bessembinder H (1991) Forward contracts and firm value: investment incentive and contracting effects. Journal of Financial and Quantitative Analysis 26(4): 519–532.

Chen SS, Ho KW, Lee CF, et al. (2000) Investment opportunities, free cash flow and market reaction to international joint ventures. Journal of Banking & Finance 24(11): 1747–1765.

Choi S, Lee S, Choi K, et al. (2018) Investment–cash flow sensitivities of restaurant firms: a moderating role of franchising. Tourism Economics 24(5): 560–575.

Danbolt J, Siganos A and Vagenas-Nanos E (2015) Investor sentiment and bidder announcement abnormal returns. Journal of Corporate Finance 33: 164–179.

Daniel K, Hirshleifer D and Subrahmanyan A (1998) Investor psychology and security market under-and overreactions. The Journal of Finance 53(6): 1839–1885.

Daniel K, Hirshleifer D and Subrahmanyan A (2001) Overconfidence, arbitrage, and equilibrium asset pricing. The Journal of Finance 56(3): 921–965.

Ding W, Levine R, Lin C, et al. (2020). Corporate Immunity to the COVID-19 Pandemic (No. w27055). Cambridge: National Bureau of Economic Research.

Dogru T, Kizildag M, Ozdemir O, et al. (2020) Acquisitions and shareholders’ returns in restaurant firms: the effects of free cash flow, growth opportunities, and franchising. International Journal of Hospitality Management 84: 102327.

Gim J and Jang SS (2019) Heterogeneous dividend behaviors: the role of restaurant franchising. International Journal of Hospitality Management 80: 183–191.

Gim J and Jang SS (2020) Share repurchases and stock market reactions: messages from the restaurant industry. International Journal of Hospitality Management 86: 102457.

Graf NS (2009) Stock market reactions to entry mode choice of multinational hotel firms. International Journal of Hospitality Management 28: 236–244.

Graham IC and Harris PJ (1999) Development of a profit planning framework in an international hotel chain: a case study. International Journal of Contemporary Hospitality Management 11(5): 198–204.

He J, Tian X, Yang H, et al. (2020) Asymmetric cost behavior and dividend policy. Journal of Accounting Research 58(4): 989–1021.

Hirshleifer D (2001) Investor psychology and asset pricing. The Journal of Finance 56(4): 1533–1597.

Jegadeesh N and Titman S (1993) Returns to buying winners and selling losers: implications for stock market efficiency. The Journal of Finance 48(1): 65–91.

Johnson EJ and Tversky A (1983) Affect, generalization, and the perception of risk. Journal of Personality and Social Psychology 45(1): 20.

Kahl M, Lunn J and Nilsson M (2014) Operating leverage and corporate financial policies. Working Paper.

Kaplan A, Levy H, Veld C, et al. (2015) Do happy people make optimistic investors? Journal of Financial and Quantitative Analysis 50: 145–168.

Kumcu A and Kaufman PR (2011) Food spending adjustments during recessionary times. Amber Waves: The Economics of Food, Farming, Natural Resources, and Rural America 9: 10–17.

Lee S and Connolly DJ (2010) The impact of IT news on hospitality firm value using cumulative abnormal returns (CARs). International Journal of Hospitality Management 29(3): 354–362.

Li Y and Singal M (2019) Capital structure in the hospitality industry: the role of the asset-light and fee-oriented strategy. Tourism Management 70: 124–133.

Loewenstein GF, Weber EU, Hsee CK, et al. (2001) Risk as feelings. Psychological Bulletin 127(2): 267.

Novy-Marx R (2011) Operating leverage. Review of Finance 15(1): 103–134.

O’Neil JW and Xiao Q (2006) The role of brand affiliation in hotel market value. Cornell Hotel and Restaurant Administration Quarterly 47(3): 210–223.
Panvisavas V and Taylor JS (2006) The use of management contracts by international hotel firms in Thailand. *International Journal of Contemporary Hospitality Management* 18(3): 231–245.

Poretti C and Blal I (2020) The asset-light strategies and the dividend puzzle: international evidence from the hospitality industry. *International Journal of Hospitality Management* 91: 102639.

Ramelli S and Wagner AF (2020) Feverish stock price reactions to COVID-19. *The Review of Corporate Finance Studies* 9(3): 622–655.

Seal W, Rohde C, Garrison RH, et al. (2015). *Management Accounting*, 5th ed. New York: McGraw-Hill Education.

Seo K and Soh J (2019) Asset-light business model: an examination of investment–cash flow sensitivities and return on invested capital. *International Journal of Hospitality Management* 78: 169–178.

Singal M (2012) Effect of consumer sentiment on hospitality expenditures and stock returns. *International Journal of Hospitality Management* 31(2): 511–521.

Sohn J, Tang CHH and Jang SS (2013) Does the asset-light and fee-oriented strategy create value? *International Journal of Hospitality Management* 32: 270–277.

Sohn J, Tang CHH and Jang SS (2014) Asymmetric impacts of the asset-light and fee-oriented strategy: the business cycle matters! *International Journal of Hospitality Management* 40: 100–108.

Song HJ, Yeon J and Lee S (2020) Impact of the COVID-19 pandemic: evidence from the US restaurant industry. *International Journal of Hospitality Management* 92: 102702.

Upneja A and Dalbor MC (1999) An examination of leasing policy, tax rates, and financial stability in the restaurant industry. *Journal of Hospitality & Tourism Research* 23(1): 85–99.

Zhang XF (2006) Information uncertainty and stock returns. *The Journal of Finance* 61(1): 105–137.

Author biographies

Cédric Poretti, PhD, is an assistant professor at Ecole hôtelière de Lausanne specializing in financial accounting and analysis. He is also a Chartered Financial Analyst (CFA®) charterholder. Before joining the world of academia, Cédric worked in the financial industry as a portfolio manager and economist in Switzerland. His research mainly focuses on capital markets, corporate finance, financial reporting, governance, and valuation.

Cindy Yoonjoung Heo, PhD, is an associate professor of Revenue Management at Ecole hôtelière de Lausanne. Her core research focuses on revenue management in the tourism and hospitality industry. Her supplementary research interests include SMEs in the service sector, corporate social responsibility (CSR), and peer-to-peer (P2P) sharing platforms.