Optimization of PET Expression Vector for Fusion of Recombinant Protein and Elastin-Like Polypeptide Biopolymer

Mohammad Reza Soleymani1, Mostafa Khalili2,3, Ali Reza Soleiman Meiguni4, *Maryam Baazm5,6

1. Department of Biotechnology, School of Medicine, Arak University of Medical Sciences, Arak, Iran.
2. Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran.
3. Blood Transfusion Center, Arak, Iran.
4. Department of Management, Yadegar Emam Khomeini Branch, Islamic Azad University, Shahre Rey, Iran.
5. Department of Anatomy, School of Medicine, Arak University of Medical Sciences, Arak, Iran.
6. Cellular and Molecular Research Center, Arak University of Medical Sciences, Arak, Iran.

Background and Aim

Recombinant DNA technique is a powerful and appropriate method for the production of protein biopolymers with specificity in amino acid sequence and spatial chemistry. Elastin-Like Polypeptide (ELP) is a biocompatible, biodegradable and non-immunological biopolymer used in various biotechnology studies. The ELP tag is a cheap, fast and non-chromatographic technique for purifying target proteins. In this study, PET expression vector was designed for the combination of ELP gene sequences and target recombinant protein in order to produce recombinant fusion protein with the ELP tag.

Methods & Materials

MOD gene was transformed to E. coli-BL21 (DE3) cells after designing and synthesis among the XbaI and XhoI restriction sites in the pET-32a (+) vector of the clone. Then, colonies were isolated based on plasmid size and examined by cutting using restriction enzymes. The final recombinant colonies was verified using polymerase chain reaction method and DNA sequencing.

Ethical Considerations

The Research Ethics Committee of Arak University of Medical Sciences approved all ethical considerations of working on laboratory animals (Code: 92-146-11).

Results

Replacing the MOD sequence in the pET-32a vector (+) eliminated the components expressing the fusion tags (Thioredoxin, Histidine, and S-tag), the identification site of protease enzyme (tobacco etch virus), and multiple cloning site. In addition, it added specific restriction enzyme identification sequences of ELP gene and target gene. As a result, in the optimized pET-MOD vector, 466 nucleotides reduced in size and the secondary structure was improved.

Conclusion

Considering the improvement of spatial structure and reduction of pET-MOD vector size, as well as the possibility of the fusion of recombinant protein with the ELP tag, it is possible to use this vector for ELPation of the target protein.

Key words: Elastin-Like Polypeptide, Recombinant protein, Protein fusion
By binding the protein at the gene level to the ELP, the resulting aggregated proteins will have the same properties [7]. Due to the thermal sensitivity of the ELP molecule, purification by chromatography is not required for protein purification [5]. Studies to produce the fusion of recombinant protein bound to the ELP tag, as well as for the oligomerization of ELP, require several cloning steps in the nonspecific vector and re-subcloning [13, 15]. Therefore, in this study, we optimized the pET expression vector, for recombinant ELP tag fusion protein for biotechnological and pharmaceutical applications. Accordingly, the inexpensive purification of the recombinant protein by the Inverse Transition Cycling (ITC) technique and the targeted drug conjugate delivery, etc. will be generated.

Materials and Methods

The MOD gene was designed with the structure required for the cloning, expression, and purification of the recombinant protein. Then, the XbaI and XhoI restriction enzyme cleavage sites were added at the 5′ and 3′ ends, respectively. The prediction of secondary structures and stability of mRNA expressed in pET-32a(+) and pET-MOD were evaluated by the centerfold server. Additionally, the G+C content of these two fragments was evaluated by Rare Codon Analysis Tools. The designed gene was synthesized by the Biomatic Spa company. The designed pUC-57 gene carrier was cleaved by XbaI and XhoI enzymes to release the synthetic MOD fragment.

The pET-32a(+) vector was also cleaved by XbaI and XhoI enzymes and dephosphorylated by alkaline phosphatase to linearize the plasmid. The purification of linearized plasmid and MOD cut DNA was performed by agarose gel purification kit. The pET vector and the MOD extension fragment were joined by T4 DNA ligase to form the pET-MOD vector. The obtained vectors were heat-transfected to 100 μL of E.coli-BL21 (DE3) cells transfected using CaCl2; then, the bacteria were spread on a cell culture plate containing Luria-Bertani medium and 100 μg/mL ampicillin. They were incubated overnight at 37°C. After transformation, recombinant colonies were separated based on plasmid size. Furthermore, the positive colonies were examined for the presence of insert fragment using restriction enzyme cleavage analysis. The PCR colonization technique conducted the final confirmation of recombinant colonies, and the PCR product was confirmed by 1% agarose gel and DNA sequencing.

Results

Predicting mRNA secondary structure suggested that the optimization of the pET expression vector could prevent the formation of a stable secondary structure. The free energy of the second mRNA structure also changed from -122.8 to -20. Besides, the percentage of the G+C content of these two genes was similar and in the ideal range (50%-51%). After the enzymatic digestion of pUC-57, the 111bp fragment was released from the MOD synthesized gene; then, it was ligated into the XbaI and XhoI sequences and replaced with the 577bp sequence from the pET-32a(+) sequence.

In this optimized nucleotide sequence, genes expressing amino acid sequences, including Trx-Tag with His-Tag (thrombin protease enzyme digestion site), S-tag (TEV protease enzyme digestion site), and multiple cloning site (multiple cloning site) followed, were deleted. The pET-32a(+) vector length decreased from 5900 bp to 5434bp (466bp decrease). Furthermore, the identification site of the restriction enzymes Sfi-I, BamH-I, and EcoR-I were replaced with the pET-MOD sequence. By the cleavage of the BamH-I and EcoR-I sequences, adherent sequences were created to bind the target protein gene with a similar tail. After the cleavage of the pET-MOD vector with Sfi-I, a linear plasmid with adherent ends consistent with the adherent end of the ELP gene cut by Bgl-I and pfM-I was generated. The nucleotide sequence encoding GGSGGSG (glycine + cysteine) was added to the MOD sequence, as a flexible linker region between the target protein sequence and the ELP tag.

Moreover, the WYWYW (tryptophan + tyrosine) coding nucleotide sequence was added to the MOD sequence to estimate recombinant protein concentration. The recombinant plasmid was purified from the transformed cell and identified based on plasmid size. Eventually, colony-PCR was performed to confirm the recombinant pET-MOD plasmid. Besides, the presence of 160bp band on 1% agarose gel and the sequencing of the resulting gene revealed the accuracy of cloning. The resulting pET-MOD plasmid sequence is available (Code: KP834588.1).

Discussion

The production of large amounts of the bioactive fusion protein is a critical issue in biotechnology, and ELP fusion is an appropriate choice for this purpose [21]. The ELP tag, like many other tags, might reduce the bioactivity of the fusion protein based on the size and orientation of it [23]. Studies on the production of recombinant protein fusion and the ELP tag, have used the full-length synthesis of the target gene to put these
genes together. As a result, that method will be costly, and the sequence development will be complex and time-consuming (due to its timely nature) [24].

Alternatively, primary cloning in the non-expression vector, followed by sub-cloning, was applied. This method is also time-consuming, and because of the non-specificity of vectors, oligomerization will be complicated [25, 26]. The present study, for the first time, used the pET vectors and the MOD synthetic gene, to design and generate the pET-MOD specific vector in high volumes of the bioactive fusion protein with the oligomerization ability of the ELP tag. The synthetic MOD gene was designed based on the following requirements: 1. Reduce the sequence length of the pET-MOD vector by omitting the unnecessary sequence in the pET-32a(+) base vector; 2. Add Sfi-I locus sequence sequences that complement the inserted gene resulting from the oligomerization of the ELP gene generated by the RDL technique. Furthermore, it will reduce the complexity of the oligomerization of the ELP gene in non-specific vectors; 3. Incorporate the sequence identification of BamHI and EcoRI to the sequence integration and construction of fusion protein with ELP; 4. Incorporate a nucleotide sequence box encoding a flexible linker between the ELP tag and the target protein. This process helps to reduce the spatial interference on recombinant protein activity, particularly concerning its effect on the function of ELP5 tag fusion growth factors. The incorporation of the nucleotide sequence box encoding aromatic side-chain amino acids to absorb the UV light of the recombinant protein (to calculate protein concentration), particularly for proteins lacking aromatic amino acids [29].

Conclusion

The pET-MOD properties highlight the appropriate application of this vector for purifying recombinant protein and generating fusion protein with ELP tag (for use as a scaffold containing elastin as part of extracellular matrix). Furthermore, considering the presence of growth factors based on the study purpose, it is recommended for various studies, including wound healing research.

Ethical Considerations

Compliance with ethical guidelines

This study obtained its ethical approval form the Research Ethics Committee of Arak University of Medical Sciences (code: 92-146-11).

Funding

This study received financial support from the Deputy for Research and Technology of this university.

Authors' contributions

Investigation and initial draft preparation: Mohammad Reza Soleyman and Mostafa Khalili; Initial draft preparation and data analysis: Ali Reza Soleiman Meiguni; Review & editing, supervision, project administration: Maryam Baazm.

Conflicts of interest

The authors declare no conflict of interest.

Acknowledgements

The authors would like to thank the Deputy for Research and Technology of Arak University of Medical Sciences for their support.
پیوند نوترکیب و پلی پپتید شبه الاستین به‌عنوان پیشگیرنده پروتئین نوترکیب و بیوپلیمر پلی پپتید برای تهیه استانداردهای بیولوژیک

محمدرضا سلیمانی 1، مصطفی خلیلی 2، علیرضا سلیمانی 3، مسعود قلیپوری 4

درمان‌های شیمی‌ای و تولید نوترکیب پروتئین در دسترسی‌های پلی پپتید برای تولید پلی‌پپتید‌های از طریق آنتی‌ژن‌های بیولوژیکی

۱. کیهان‌سازی نوترکیب به عنوان پیشگیرنده پروتئین نوترکیب و بیوپلیمر پلی پپتید برای تهیه استانداردهای بیولوژیک

۲. نژادی‌سازی نوترکیب به‌عنوان پیشگیرنده پروتئین نوترکیب و بیوپلیمر پلی پپتید برای تهیه استانداردهای بیولوژیک

۳. بررسی نژادی‌سازی نوترکیب به‌عنوان پیشگیرنده پروتئین نوترکیب و بیوپلیمر پلی پپتید برای تهیه استانداردهای بیولوژیک

۴. بررسی نژادی‌سازی نوترکیب به‌عنوان پیشگیرنده پروتئین نوترکیب و بیوپلیمر پلی پپتید برای تهیه استانداردهای بیولوژیک

۵. بررسی نژادی‌سازی نوترکیب به‌عنوان پیشگیرنده پروتئین نوترکیب و بیوپلیمر پلی پپتید برای تهیه استانداردهای بیولوژیک

۶. بررسی نژادی‌سازی نوترکیب به‌عنوان پیشگیرنده پروتئین نوترکیب و بیوپلیمر پلی پپتید برای تهیه استانداردهای بیولوژیک

موارد مطالعه

امنیت‌های مطالعه

۱۳۹۸ آذر و دی ماه

نتایج و جستجو

 spécifique، مافوق از پیوند پلی اتیلنگلکولی تا طول توالی آمینواسیدها، نوترکیب سیستم تولید نوترکیب پروتئین‌ها را از طریق آنتی‌ژن‌های بیولوژیکی و کاهش در نسل‌های کریتیکال دارد. این نتایج نشان می‌دهد که کاهش در نسل‌های کریتیکال دارد. این نتایج نشان می‌دهد که کاهش در نسل‌های کریتیکال دارد. این نتایج نشان می‌دهد که کاهش در نسل‌های کریتیکال دارد. این نتایج نشان می‌دهد که کاهش در نسل‌های کریتیکال دارد. این نتایج نشان می‌دهد که کاهش در نسل‌های کریتیکال دارد. این نتایج نشان می‌دهد که کاهش در نسل‌های کریتیکال دارد. این نتایج نشان می‌دهد که کاهش در نسل‌های کریتیکال دارد. این نتایج نشان می‌دهد که کاهش در نسل‌های کریتیکال دارد. این نتایج نشان می‌دهد که کاهش در نسل‌های کریتیکال دارد. این نتایج نشان می‌دهد که کاهش در نسل‌های کریتیکال دارد. این نتایج نشان می‌دهد که کاهش در نسل‌های کریتیکال دارد. این نتایج نشان می‌دهد که کاهش در نسل‌های کریتیکال دارد. این نتایج نشان می‌دهد که کاهش در نسل‌های کریتیکال دارد. این نتایج نشان می‌دهد که کاهش در نسل‌های کریتیکال دارد. این نتایج نشان می‌دهد که کاهش در نسل‌های کریتیکال دارد. این نتایج نشان می‌دهد که کاهش در نسل‌های کریتیکال دارد. این نتایج نشان می‌دهد که کاهش در نسل‌های کریتیکال دارد. این نتایج نشان می‌دهد که کاهش در نسل‌های کریتیکال دارد. این نتایج نشان می‌دهد که کاهش در نسل‌های کریتیکال دارد. این نتایج نشان M. شماره ۲۲. دوره ۱۳۹۸ آذر و دی

* نویسنده مسئول

دکتر مریم باعزم

اراک، دانشگاه علوم پزشکی اراک، دانشکده پزشکی، گروه علوم تشریح.

نشانی: +۹۸۲۱۳۸۶۶۱۱۳۱

تلفن: dr.baazm@arakmu.ac.ir

پست الکترونیکی: dr.baazm@arakmu.ac.ir
پایه‌پیچیده‌های تکراری در ژن‌های مولکولی موثر نظیر دی‌ناسیکه ساخته شده و با تولید خواهد شد. و انتقال همداننده‌ها را داریور کاژیگوک و کریم تولید خواهد شد.

DHSa در این مطالعه به رهبری کاربرد، میزبانی E.coli (Novagen, USA) pET-32a (+) و پلاسیدم (Invitrogen) برای انجام کلونیست هستند. استحکام از انتخابی T4 DNA ligase و آنزیم اکتانیک اعمال شده (Xhol و SfiI) بود. DNA را با کاهش توانایی و توانایی اکتانیک اعمال شده (XhoI و XbaI) را توسط شرکت خودکار (Vivantis) ساخت. خلاصه شکست هر یک تحقیق استحکام شد.

4. Inverse Transition Cycling (ICT)
5. Shine-Dalgarno
6. Linker
7. Http://www.ncrna.org/centroidfold
8. Http://www.genscript.com
9. Fermentas-Lithuania
در ترانسفرم شدند CaCl2 مستخدم شد با استفاده از BL21 Ω [DE3] و سپس با مکرورگنم و میکروویروس آمیپاساین Luria-Bertani گسترش یافته در انجام نشده و در 37 درجه سانتی گراد به صورت شیب شده تکوین شدند. پس از اتصال پلاسمید خودکاری کرده شده (n=17) با استفاده از آنالیز برش با آنزیم های انرژی آزاد ساختار دوم مناسب باشد. این دو ژن نیز مشابه و در G+C-

10. Multiple cloning site

پهپادی	پیشنهاد	پیشنهاد	پیشنهاد
pET-32a (+)	plasmid backbone	plasmid backbone	plasmid backbone
pUC-57	pUC-57	pUC-57	pUC-57
pET-MOD	pET-MOD	pET-MOD	pET-MOD
pET-32a	pET-32a	pET-32a	pET-32a
plasmid backbone	plasmid backbone	plasmid backbone	plasmid backbone
pUC-57	pUC-57	pUC-57	pUC-57
pET-32a	pET-32a	pET-32a	pET-32a
plasmid backbone	plasmid backbone	plasmid backbone	plasmid backbone
pUC-57	pUC-57	pUC-57	pUC-57
pET-32a	pET-32a	pET-32a	pET-32a
plasmid backbone	plasmid backbone	plasmid backbone	plasmid backbone
pUC-57	pUC-57	pUC-57	pUC-57
pET-32a	pET-32a	pET-32a	pET-32a
plasmid backbone	plasmid backbone	plasmid backbone	plasmid backbone
pUC-57	pUC-57	pUC-57	pUC-57
pET-32a	pET-32a	pET-32a	pET-32a
plasmid backbone	plasmid backbone	plasmid backbone	plasmid backbone
pUC-57	pUC-57	pUC-57	pUC-57
pET-32a	pET-32a	pET-32a	pET-32a
plasmid backbone	plasmid backbone	plasmid backbone	plasmid backbone
pUC-57	pUC-57	pUC-57	pUC-57
pET-32a	pET-32a	pET-32a	pET-32a
plasmid backbone	plasmid backbone	plasmid backbone	plasmid backbone
pUC-57	pUC-57	pUC-57	pUC-57
pET-32a	pET-32a	pET-32a	pET-32a
plasmid backbone	plasmid backbone	plasmid backbone	plasmid backbone
pUC-57	pUC-57	pUC-57	pUC-57
pET-32a	pET-32a	pET-32a	pET-32a
plasmid backbone	plasmid backbone	plasmid backbone	plasmid backbone
pUC-57	pUC-57	pUC-57	pUC-57
pET-32a	pET-32a	pET-32a	pET-32a
plasmid backbone	plasmid backbone	plasmid backbone	plasmid backbone
pUC-57	pUC-57	pUC-57	pUC-57
pET-32a	pET-32a	pET-32a	pET-32a
plasmid backbone	plasmid backbone	plasmid backbone	plasmid backbone
pUC-57	pUC-57	pUC-57	pUC-57
پیپرهیدزای شیب‌الاستین هسته‌ای از بی‌پروتئین‌های حساس به دما یا کلوستر‌های پپتیدی و پروتئین‌های گروه‌های قلو توانایی‌های منحصر به فردی دارد که جمله اینکه می‌تواند به‌طور پذیرش ویژه‌ای 20GGSGSG20 از مولکول‌های را فراهم کند. دی این تغییر (21) مولکول‌های خارجی و داخلی همانند مولکول ELP زمان برش پیش‌بینی کننده ELP مسیر نکوداشتگ، از جمله اینکه می‌تواند روی فیوزن پروتئین فیوژن تولید شود و از این طریق فرمی کننده تولید ELP دسته ای از بی‌پروتئین‌های حساس به دما با کاربردهای بیولوژیکی و زیست‌پزشکی گوناگون هستند.

x 160مایه‌ای حساس به دما از این طریق فرمی کننده (جلوگین + سیستئین) به عنوان ناحیه لینکر GGSGSG منطقه بین ELP و توالی pET به‌طور خاص در صورت آماده‌سازی و شناسایی مولکول ها برای استفاده از طریق انسان‌پردازی حلالیون مولکول ELP دسته ای از بی‌پروتئین‌های حساس به دما با کاربردهای بیولوژیکی و زیست‌پزشکی گوناگون هستند.

تصویر 3. شکل شماتیک از ژن سنتزی طراحی شده MOD در فضاهای مایه‌ای حساس به دما.
پروتئین فیوژن، موضوع حیاتی در بیوتکنولوژی است و انتخاب مناسبی برای این موضوع است. محل قرارگیری نسبت به پروتئین هدف، اثر مهمی بر فعالیت ELP و جهت گیری در ELP اختصاصی و میزان بیان پروتئین هدف دارد. هنگامی که ELP ترمینال پروتئین هدف قرار گرفته باشد (Pro-ELP)، پروتئین هندسه پیشتری در مقایسه با هنگامی که در ELP-هدف قرار گرفته باشد (ELP-Pro)، به علت اینکه ژن ها در اندازه و جهت قرار گیری، همانند بسیاری از فن تگ انس با کوتاهیتر از میزان تولید پروتئین ممکن است. مشخص شده است که در میکس با ELP، تغییرات در ساختار وکتور انجام شده است.

تصویر A: شماتیک از تغییرات در ساختار وکتور (pET-32α(+)) با وزن 5/9 kbp (a) آمی‌تیون در pET-MOD.

تصویر B: الکتروفوژیسیون بر روی ژل آگارز 6/5 kbp (b) در pET-32α با وزن (pET-MOD) و سایر لاین‌ها حاوی پلاسید وکتورهای پیشرفته تولید شده‌اند.
استفاده در تولید مقادیر بالای پروتئین فیوژن، از فیوژن نوترکیب و کلون ایجاد کننده مقداری از GELP برای اسید آمینه‌های زیر اجسام آزمایشی استفاده شده است که این روش نیز زمان‌زا و نیز به علت فشرده‌سازی پروتئین و پیچیدگی و مقداری از زمان، این روش به علت غیراختصاصی بودن وکتور، مورد نظر نیست.

در مطالعه انجام شده توسط عمومی و همکاران، برای ساخت وکتورهای گوناگونی، در الیگومریزه کردن پیچیدگی دارد. در مطالعه انجام شده توسط عمومی و همکاران، برای ساخت 8xELP-Intein-hEGF کاست کلون شد و پس از تکمیل شدن سازه در pUC57 کلون شد. به صورت چند مرحله ای سه توالی به سایت برش و توالی‌های جهت استفاده از این وکتور، امکان الیگومریزه کردن و تنظیم طول موردنظر بر pET-MOD ممکن است. همچنین با توجه سایت برش و توالی‌های در نظر گرفته شده در وکتور طراحی شده، امکان استفاده از این وکتور همانند وکتور تجاری جهت کلون کردن انواع پروتئین های ELP نوترکیب در کنار تگ گروه تحقیقاتی ما، در مطالعات قبلی از وکتورهای دستگاهی، ولی با استفاده کردند ELP برای الیگومریزه کردن تگ های مکمل ژن Sfi-1 شناسایی است و پیچیدگی ناشی از RDL تولید شده با تکنیک ELP الیگومریزه کردن ژن با تکنیک از EcoRI و BamHI. الحاق جعبه توالی نوکلئوتیدی کد کننده آمینواسیدها با زنجیره جانبی آروماتیک برای جذب UV نور، پروتئین را لیزر نوترکیب که مکمل است. در این مطالعه برای اولین بار، با استفاده از وکتورهای pET-MOD، وکتور اختصاصی MOD و ژن سنتزی رشته DNA در کنار تولید مقادیر بالای پروتئین فیوژن در میزبان سلولی، حویلایی حاوی فاکتورهای و گروه تحقیقاتی ما، در مطالعات قبلی از وکتورهای دستگاهی، ولی با استفاده کردند ELP برای الیگومریزه کردن تگ های مکمل ژن Sfi-1 شناسایی است و پیچیدگی ناشی از RDL تولید شده با تکنیک ELP الیگومریزه کردن ژن با تکنیک از EcoRI و BamHI. الحاق جعبه توالی نوکلئوتیدی کد کننده آمینواسیدها با زنجیره جانبی آروماتیک برای جذب UV نور، پروتئین را لیزر نوترکیب که مکمل است. در این مطالعه برای اولین بار، با استفاده از وکتورهای pET-MOD، وکتور اختصاصی MOD و ژن سنتزی رشته DNA در کنار تولید مقادیر بالای پروتئین فیوژن در میزبان سلولی، حویلایی حاوی فاکتورهای و

![تصویر 1](https://example.com/image1.png)

![تصویر 2](https://example.com/image2.png)
نویسنده‌گان: محمدرضا سلیمان و مصطفی خلیلی

پژوهشگر: محمدرضا سلیمان و همکاران

نتیجه‌گیری

در این مطالعه، این پلاسمید به منظور تولید وکتور مناسب، در جهت اجرای آزمایشات مختلف، مورد استفاده قرار گرفت.

ملاحظات

پیشنهاد مالی

این پژوهش با حمایت مالی معاونت پژوهشی دانشگاه علوم پزشکی اراک انجام شده است.

مشارکت نویسندگان

محمدرضا سلیمان و مصطفی خلیلی: تحقیق و بررسی، تحلیل

پیش‌نیا: عمل‌ها و اجراها، تولید وکتور

نیازمندی: راهبردی، مطالعات و تحقیقات

تعارض منافع

نویسنده‌گان تصریح می‌کنند؛ نهضای تعارض منافع.

تشکر و قدردانی

نویسنده‌گان کمال قدردانی و امتنان را از معاونت پژوهشی دانشگاه علوم پزشکی اراک می‌کنند.
References

[1] Le DH, Sugawara-Narutaki A. Elastin-like polypeptides as building motifs toward designing functional nanobiomaterials. Mol Syst Des Eng. 2019; 4(3):545-65. [DOI:10.1039/C9ME00002J]

[2] Kouhi A, Yao Z, Zheng L, Li Z, Hu P, Epstein AL, et al. Generation of a monoclonal antibody to detect Elastin-Like Polypeptides. Biomacromolecules. 2019; 20(6):2942-52. [DOI:10.1021/acs.biomac.9b00503] [PMID]

[3] Duro-Castano A, Conejos-Sánchez L, Vicent MJ. Peptide-based polymer therapeutics. Polymers. 2014; 6(2):515-51. [DOI:10.3390/polym6020515]

[4] Coenen AMJ, Bernaerts KV, Harings JAW, Jockenhoefseel, S Gazhanfar S. Elastic materials for tissue engineering applications: Natural, synthetic, and hybrid polymers. Acta Biomateria. 2018; 79:60-82. [DOI:10.1016/j.actbio.2018.08.027]

[5] Meyer DE, Chilkoti A. Genetically encoded synthesis of protein-based polymers with precisely specified molecular weight and sequence by recursive directional ligation: Examples from the elastin-like polypeptide system. Biomacromolecules. 2002; 3(2):357-67. [DOI:10.1021/bm015630n] [PMID]

[6] Fletcher EE, Yan D, Kosiba AA, Zhou Y, Shi H. Biotechnological applications of elastin-like polypeptides and the inverse transition cycle in the pharmaceutical industry. Protein Expr Purif. 2018; 153:114-20. [DOI:10.1016/j.pep.2018.09.006] [PMID]

[7] Kuna M, Mahdi F, Chade AR, Bidwell GL. Molecular size modulates pharmacokinetics, biodistribution, and renal deposition of the drug delivery biopolymer elastin-like polypeptide. Sci Report. 2018; 8(1):1-12. [DOI:10.1038/s41598-018-24897-9] [PMID] [PMCID]

[8] Floss DM, Schallau K, Rose-John S, Conrad U, Scheller J. Elastin-like polypeptides revolutionize recombinant protein expression and their biomedical application. Trends Biotechnol. 2010; 28(1):37-45. [DOI:10.1016/j.tibtech.2009.10.004] [PMID]

[9] Floss MD, Conrad U, Rose-John S, Scheller J. ELP-Fusion technology for biopharmaceuticals. Fusion protein technologies encoding up to 251 repeats of the elastomeric pentapeptide. Enzyme Microb Technol. 2010; 46(2):87-91.[DOI:10.1016/j.enzmictec.2010.11.003]

[10] McDaniel JR, Mackay JA, Quirao FG, Chilkoti A. Recursive directional ligation by plasmid reconstruction allows rapid and seamless cloning of oligomeric genes. Biomacromolecules. 2010; 11(4):944-52. [DOI:10.1021/bm901387t] [PMID] [PMCID]

[11] Zhu Y, Hoshi R, Chen S, Yi J, Duan C, Galiano RD, et al. Sustained release of stromal cell derived factor-1 from an antioxidant thermonresponsive hydrogel enhances dermal wound healing in diabetes. J Control Release. 2016; 238:114-22. [DOI:10.1016/j.jconrel.2016.07.043] [PMID]

[12] Koria P, Yagi H, Kitagawa Y, Megeed Z, Nahmias Y, Robert Sheri dan R, et al. Self-assembling elastin-like peptides growth factor chimeric nanoparticles for the treatment of chronic wounds. Proc Natl Acad Sci USA. 2011; 108(3):1034-9. [DOI:10.1073/pnas.1009881108] [PMID] [PMCID]

[13] Ke C, Xiong H, Zhao C, Zhang Z, Zhao X, Rensing C, et al. Expression and purification of a human ELS-elastin-like polypeptide fusion and its enzymatic properties. Appl Microbiol Biotechnol. 2019; 103(6):2809-20. [DOI:10.1007/s00253-019-09638-w] [PMID]

[14] Akhani RC, Patel A, Patel MJ, Dedania S, Patel JS, Darshan H, et al. Column chromatography free purification of recombinant α-amylase from bacillus licheniformis by taggig with hydrophobic elastin like polypeptide. Biol Sci. 2018; 88(3): 1249-55. [DOI:10.1007/s40011-017-0862-z]

[15] Saranginem V, Cho EA, Yi A, Kim SK, Lee BH, Park RW. Application of bid-1-embedded elastin-like polypeptides in tumor targeting. Sci Reports. 2018; 8(1):1-6. [DOI:10.1038/s41598-018-21910-2] [PMID] [PMCID]

[16] Sambrook J, Fritsch E, Maniatis T. Molecular Cloning: A laboratory manual+ cold Spring Harbor. New York: Cold Spring Harbor Laboratory Press; 1989.

[17] Khali M, Soleyman MR, Baazm M, Beyer C. High-level expression and purification of soluble bioactive recombinant human heparin-binding epidermal growth factor in Escherichia coli. Cell Biol Int. 2015; 39(7):858-64. [DOI:10.1002/cbin.10545] [PMID]

[18] Li W, Ng I, Fang B, Yu J, Zhang G. Codon optimization of 1, 3-propanediol oxidoreductase expression in Escherichia coli and enzymatic properties. Electron J Biotechnol. 2011; 14(4):7-17. [DOI:10.2225/vol14-issue4-fulltext-9]

[19] Hassounew W, MacEwan SR, Chilkoti A. Fusions of elastin-like polypeptides to pharmaceutical proteins, in Methods in enzymology. Methods Enzymol. 2012; 502:215-37. [DOI:10.1016/B978-0-12-416039-2.00024-0] [PMID] [PMCID]

[20] Chilkoti A, Christensen T, Mackay JA. Stimulus responsive elastin biopolymers: Applications in medicine and biotechnology. Cur Opin chem biol. 2006; 10(6):562-57. [DOI:10.1016/j.cbpa.2006.10.010] [PMID] [PMCID]

[21] Conley AJ, Joensuu JJ, Jevnikar AM, Menassa R, Brandle JE. Optimization of elastin-like polypeptide fusions for expression and purification of recombinant proteins in plants. Biotechnol Bioengine. 2009; 103(3):562-73. [DOI:10.1002/biot.22278] [PMID]

[22] Chu HS, Lee HK, Park JE, Kim DM, kim BG, Won JI. Expression analysis of an Elastin-Like polypeptide (ELP) in a cell-free protein synthesis system. Enzyme Microb Technol. 2010; 46(2):87-91. [DOI:10.1016/j.enzmictec.2009.10.003]

[23] Shamji MF, Betre H, Kraus VB, Chen J, Chilkoti A, Pichika R, et al. Development and characterization of a fusion protein between thermally responsive elastin-like polypeptide and interleukin-1 receptor antagonist: Sustained release of a local antiinflammatory therapeutic. Anti Rheumat. 2007; 50(11): 3650-61. [DOI:10.1002/art.22952] [PMID]

[24] McPherson DT, Xu J, Urry DW. Product purification by reversible phase transition followingescherichia coli expression of genes encoding up to 251 repeats of the elastomeric pentapeptide GVGVP. Protein Expr Purif. 1996; 27(1):51-7. [DOI:10.1006/prep.1996.0008] [PMID]

[25] Chen THH, Bae Y, Furgeson DY. Intelligent biosynthetic nanobiomaterials (BNs) for hyperthermic gene delivery. Pharm Res. 2008; 25(3):683-91. [DOI:10.1007/s11095-007-9382-5] [PMID]

[26] Fujita Y, Funabashi H, Mie M, Kobatake E. Design of a thermocontrollable protein complex. Bioconjugate Chem. 2007; 18(5):1619-24. [DOI:10.1021/bc070120x] [PMID]

[27] Omomui N, Shokrgozar MA, Noormohammadi Z. Design and construction of recombinant ELP-Inein cassette for use in simple and new purification methods of recombinant proteins. Modern Med Lab J. 2017; 1(2):84-90. [DOI:10.30699/mmlj17.1.2.84]
[28] Soleyman MR, Khalili M, Soleyman Meigoni A, Mohammadzadeh Ghasghaii H, Zendedel A, Baazm M. Gene cassette design, cloning and expression of recombinant elastin like polypeptide to produce a functional biomaterial in tissue engineering. Koomesh. 2016; 17(4):1006-16.

[29] Noble JE, Bailey MJ. Quantitation of protein, In: Noble JE, Bailey MJ. Methods in Enzymology. Amsterdam: Elsevier; 2009. [DOI:10.1016/S0076-6879(09)63008-1]

[30] Ramos CR, Abreu PA, Nascimento AL, Ho PL. A high-copy T7 Escherichia coli expression vector for the production of recombinant proteins with a minimal N-terminal His-tagged fusion peptide. Braz J Med Biol Res. 2004; 37(8):1103-9. [DOI:10.1590/S0100-879X2004000800001] [PMID]