Parabolic Anderson model on critical Galton-Watson trees in a Pareto environment

Eleanor Archer * Anne Pein †

February 18, 2022

Abstract

The parabolic Anderson model is the heat equation with some extra spatial randomness. In this paper we consider the parabolic Anderson model with i.i.d. Pareto potential on a critical Galton-Watson tree conditioned to survive. We prove that the solution at time t is concentrated at a single site with high probability and at two sites almost surely as $t \to \infty$. Moreover, we identify asymptotics for the localisation sites and the total mass, and show that the solution $u(t, v)$ at a vertex v can be well-approximated by a certain functional of v. The main difference with earlier results on \mathbb{Z}^d is that we have to incorporate the effect of variable vertex degrees within the tree, and make the role of the degrees precise.

AMS 2020 Mathematics Subject Classification: 60J80, 35K40, 60J27

Keywords and phrases: parabolic Anderson model, Feynman-Kac formula, critical Galton-Watson tree

1 Introduction

In this paper we study the parabolic Anderson model (PAM) on a critical Galton-Watson tree conditioned to survive. Given an infinite tree T_∞, with root O, the PAM on T_∞ is the heat equation on T_∞ with a random potential:

$$\begin{align*}
\partial_t u(t, v) &= \Delta u(t, v) + \xi(v)u(t, v), \quad (t, v) \in (0, \infty) \times V(T_\infty), \\
u(0, v) &= 1\{v = O\}, \quad v \in V(T_\infty),
\end{align*}$$

(1)

where $V(T_\infty)$ denotes the set of vertices of T_∞. Here, Δ is the discrete Laplacian on T_∞, defined by

$$\begin{align*}
(\Delta f)(v) &= \sum_{y \sim v} [f(y) - f(v)], \quad v \in V(T_\infty), \quad f : V(T_\infty) \to \mathbb{R}.
\end{align*}$$

One can also work under other initial conditions, such as $u(0, v) = 1$ for all $v \in V(T_\infty)$, but we are interested here in studying spread of particles from a single initial seed. We work under the *quenched* law of T_∞, whereby we sample the tree T_∞ first, and then independently sample $(\xi(v) : v \in V(T_\infty))$ as a collection of independent identically distributed random variables, static in time.

The random operator $H := \Delta + \xi$ is known as the Anderson Hamiltonian and was originally analysed by Anderson in 1958 in the context of random Schroedinger equations that model electrons moving through a crystal with impurities [And58]. The parabolic analogue, the PAM, is now a classical model for mean-field spread of particles in an inhomogeneous random environment, with applications including population genetics, reaction kinetics and magnetism, to name but a few. See the book [Kön16] or the surveys [And58, Mör09, GK05] for more background.

The solution to the PAM is well-known to exhibit an *intermittency* effect, whereby almost all the solution is asymptotically concentrated in a small number of disjoint regions, known as *islands*. This effect has been

*Department of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel. Email: eleanor@mail.tau.ac.il.
†Department of Meteorology, University of Reading, United Kingdom. Email: a.pein@reading.ac.uk
observed by physicists for some time, but since the early 1990s there has been a concerted mathematical effort to prove this quantitatively, and on \(\mathbb{Z}^d \) this effect is now well-understood. The size and number of islands depend on the tail decay of the potential, which can give rise to several regimes on the behaviour of the islands.

In this paper we will be exclusively focused on the case where the potential is Pareto distributed, i.e. with polynomially decaying tails, for which the intermittency effect is strongly pronounced. In this case, it was shown in [KLMS09] that the solution to the PAM on \(\mathbb{Z}^d \) almost surely localises at two sites as time runs to infinity. In fact, the authors show that the solution localises at a single site with high probability, and identify the localisation site as the maximiser of a certain functional; this localisation site evolves in time, so that there will be a sequence of transition times when the solution “jumps” from one site to another, meaning that both sites contain non-negligible mass, and in particular that two-site localisation is the best result one can hope for in the almost sure setting.

The solution to the PAM on \(\mathbb{Z}^d \) in this regime was also studied by Ortgiese and Roberts, who showed in [OR16] that the solution can be well approximated by a mean-field “lilypad model” in which particles spread out from sites of high potential in a sequence of growing lilypads. Their main motivation was to study the behaviour of a branching random walk, for which the PAM describes the expected number of particles, but they show that the solution to the PAM at any given site corresponds roughly to the number of particles reaching that site from the centre of a nearby lilypad.

In this paper we prove similar results for the solution to the PAM on a critical Galton-Watson tree conditioned to survive. This extends the current literature since the underlying graph is now random, with fractal properties, and has non-uniform volume growth. One consequence of this is that the random walk appearing in the Feynman-Kac solution to (1) on \(T_\infty \) is known to be subdiffusive [Kes86, CK08], in contrast to the \(\mathbb{Z}^d \) case. Moreover, in contrast to most of the existing literature, we consider the PAM on a graph with unbounded degrees and we make the role of the degrees explicit.

The PAM has also been studied on supercritical Galton-Watson trees of unbounded degree in the recent article [dHW21]. Here the authors consider the (very different) regime where the potential has double-exponential tails, and show that results of [dKd20] on the PAM profile in the bounded degree case can be extended to the case where the offspring distribution decays super-double-exponentially. (The PAM was also considered on sequences of complete graphs in [FM90] and hypercubes in [AGH20], which both have extended to the case where the offspring distribution decays super-double-exponentially. (The PAM was also considered on complete graphs in [FM90] and hypercubes in [AGH20], which both have unbounded degrees in the limit, but in these cases the Laplace operator was multiplied by an appropriate prefactor to cancel out the effect, which is not the case in the present paper). In our case, due to the heavier tails on the potential \(\xi \), the localisation effect of the PAM is more pronounced and we will prove our results under weaker assumptions on the tail of the offspring distribution.

Before stating our main results, we give the setup. We suppose that \(T_\infty \) is an infinite Galton-Watson tree defined on a probability space \((\Omega, \mathcal{F}, \mathbb{P})\) and let \(d \) denote the fractal dimension of \(T_\infty \) (we will state \(d \) explicitly in Corollary 2.4: in particular \(d = 2 \) a.s. when the offspring distribution of \(T_\infty \) has finite variance). Conditionally on \(T_\infty \), we fix some \(\alpha > d \) (this restriction is both necessary and sufficient for a finite solution to (1) to exist, almost surely), and let \((\xi(v) : v \in V(T_\infty)) \) denote a sequence of i.i.d. random variables with law \(\mathcal{P} \), satisfying

\[
\mathcal{P}(\xi(v) \geq x) = x^{-\alpha}
\]

for all \(x \geq 1 \). This is known as the Pareto distribution with parameter \(\alpha \). If \(v \in V(T_\infty) \), we call \(\xi(v) \) the potential at \(v \). We let \(P \) denote the law of the product measure \(\mathbb{P} \times \mathcal{P} \).

Given vertices \(u, v \in V(T_\infty) \), we let \(|u - v| \) denote the graph distance between them in \(T_\infty \), and \(|v| = |v - O| \).

Given \(T_\infty \) and \((\xi(v) : v \in V(T_\infty)) \), we let \(u(t, v) \) denote the solution to (1), and let \(U(t) = \sum_{v \in V(T_\infty)} u(t, v) \) denote the total mass in the system at time \(t \). Following the notation of [KLMS09], we also set \(q := \frac{d}{\alpha - d} \), and define the two functions

\[
r(t) := \left(\frac{t}{\log t} \right)^{q+1}, \quad a(t) := \left(\frac{t}{\log t} \right)^q.
\]

We will see later that, roughly speaking, the bulk of the solution at time \(t \) is supported on a ball of radius \(r(t) \), and the highest potential seen on this ball will be of order \(a(t) \).
We first present some high probability bounds on the solution, starting with the total mass. We prove these under the following assumption.

Assumption 1.1. Assume the offspring distribution is critical and there exists $\beta \in (1, 2]$ such that the offspring distribution is in the domain of normal attraction of a β-stable law.

Recall that a critical offspring distribution μ is in the normal domain of attraction of a β-stable law if there exists a constant c such that

$$
\frac{S_n - n (d)}{cn^{-\beta}} \to X
$$

as $n \to \infty$, where $S_n = \sum_{i=1}^n Z_i$ with Z_i i.i.d. with law μ, and X is a β-stable random variable, i.e. such that $E[\exp(-\lambda X)] = \exp(-\lambda^\beta)$ for all $\lambda > 0$. In the finite variance case we have $\beta = 2$. One could also incorporate slowly-varying functions, but for simplicity we have not done this.

Theorem 1.2. Under Assumption 1.1,

$$
\lim_{\lambda \to \infty} \liminf_{t \to \infty} P\left\{ \log U(t) \in [\lambda^{-1}ta(t), \lambda ta(t)] \right\} = 1.
$$

This result follows by similar considerations to those in [KLMS09].

In light of the behaviour of the Pareto-distributed PAM on \mathbb{Z}^d, the main focus of this paper is to prove a localisation result; in particular the following. In order to prove this we have to make slightly stronger assumptions on the offspring distribution of T_∞.

Assumption 1.3. Assume the offspring distribution of T_∞ is critical and decays super-polynomially, i.e. for every $K < \infty$ it satisfies $P(\# \{\text{offspring}\} > x) = o(x^{-K})$ as $x \to \infty$.

Remark 1.4. 1. In particular, Assumption 1.3 implies that the distribution has finite variance and is thus in the domain of attraction of a $\beta = 2$ stable law (via the classical central limit theorem).

2. Assumption 1.3 is required as it allows us to control volumes of balls in T_∞ more tightly. This is useful in two places in particular. Firstly we use it to prove localisation on a smaller set Γ_t (Lemma 6.8) for which we require that the localisation site $\hat{Z}^{(1)}_t$ is also the maximiser of $\xi(v) - \deg v$ on Γ_t, which in turn requires that Γ_t is not too large. Secondly we use it when summing over paths that avoid $\hat{Z}^{(1)}_t$ to show that their contribution to the total mass is small (Propositions 7.4 and 7.7), for which we require that the number of such paths within a ball is not too large.

3. The assumption on the offspring distribution in Assumption 1.3 is not too restrictive since it is satisfied by most offspring distributions for which T_∞ is used as a local proxy for structures in statistical physics (for example the $\text{Po}(1)$ offspring distribution which gives a good approximation to critical percolation clusters [Ald97] and uniform spanning trees [NP20] in high dimensions).

4. Assumption 1.3 is somewhat reminiscent of [dHW21, Assumption 1.3], in that we require super-polynomial tail decay to deal straightforwardly with polynomial tails for the potential, and in [dHW21] the authors require super-double-exponential tail decay in their main result to deal straightforwardly with double-exponential tails for the potential. In fact, we could slightly weaken our assumption to the requirement that the tails are $O(x^{-K_{\alpha, \beta}})$ for some $K_{\alpha, \beta} < \infty$, but it was not possible to bound $K_{\alpha, \beta}$ uniformly in α and β.

Theorem 1.5. Let Assumption 1.3 hold. There exist processes $(\hat{Z}^{(1)}_t)_{t \geq 0}$ and $(\hat{Z}^{(2)}_t)_{t \geq 0}$ taking values in $V(T_\infty)$ such that, P-almost surely as $t \to \infty$,

$$
\frac{u(t, \hat{Z}^{(1)}_t) + u(t, \hat{Z}^{(2)}_t)}{U(t)} \to 1.
$$

As remarked above, two-site localisation is the best result we can hope for in the almost sure setting, due to the existence of transition times between the best sites. A consequence of the proof will be the fact that we actually have one-site localisation with high probability, as outlined in the following theorem.
Under Assumption 1.3, the main tool in our analysis is the Feynman-Kac formula, which allows us to represent the solution to (1) as

\[u(t, v) = \mathbb{E}_0 \left[\exp \left\{ \int_0^t \xi(X_s) \, ds \right\} 1\{X_t = v\} \right]\]

(4)

for all \(v \in V(T_{\infty})\), where \((X_s)_{s \geq 0}\) is a continuous time variable speed random walk on \(T_{\infty}\) with law \(\mathbb{P}\) and we denote the corresponding expectation as \(\mathbb{E}\). It is clear from the formula that random walk trajectories spending time at sites of higher potential will contribute more to the total mass, so to find the best trajectory we have to balance the high potential enjoyed at good sites against the cost of forcing the random walk to visit and then stay at that site.

Theorem 1.6. Let Assumption 1.1 hold. There exists a process \((\hat{Z}_t^{(1)})_{t \geq 0}\) taking values in \(V(T_{\infty})\) such that

\[\frac{u(t, \hat{Z}_t^{(1)})}{U(t)} \to 1 \text{ in } P\text{-probability as } t \to \infty.\]

(3)

Under Assumption 1.3, \(\hat{Z}_t^{(1)}\) is the same as in Theorem 1.5.

The main tool in our analysis is the Feynman-Kac formula, which allows us to represent the solution to (1) as

\[u(t, v) = \mathbb{E}_0 \left[\exp \left\{ \int_0^t \xi(X_s) \, ds \right\} 1\{X_t = v\} \right]\]

(4)

for all \(v \in V(T_{\infty})\), where \((X_s)_{s \geq 0}\) is a continuous time variable speed random walk on \(T_{\infty}\) with law \(\mathbb{P}\) and we denote the corresponding expectation as \(\mathbb{E}\). It is clear from the formula that random walk trajectories spending time at sites of higher potential will contribute more to the total mass, so to find the best trajectory we have to balance the high potential enjoyed at good sites against the cost of forcing the random walk to visit and then stay at that site.

Our strategy is broadly the same as that used to prove similar results for the PAM on \(\mathbb{Z}^d\) in [KLMS09], but the non-uniformity of the underlying graph presents extra challenges which take some effort to overcome. In particular, due to variable degree on \(T_{\infty}\) the random walk estimates are less precise, and the effect of the degree cannot be neglected when comparing the solution at different sites, since this quantifies the cost of forcing a random walk to remain at a given site. An important part of the localisation proof will be to prove an analogous localisation result for the principal eigenfunction of the Anderson Hamiltonian operator, and here in particular we have to work a lot harder to obtain the desired result. In addition, fluctuations in the tree \(T_{\infty}\) will lead to extra fluctuations in the solution of the PAM and the location of the concentration site, whereas on \(\mathbb{Z}^d\) the behaviour of these quantities is determined solely by the realisation of the random potential.

In order to balance the potential at a site and the cost of reaching and then staying at it, we define the functional (cf [KLMS09, Equation (1.9)]):

\[\psi_t(v) = \sup_{\rho \in [0, 1]} \left\{ (1 - \rho)(\xi(v) - \deg(v)) - \frac{|v|}{t} \log \left(\frac{|v|}{p\mathbb{E}} \right) \right\} \geq \left[(\xi(v) - \deg(v)) - \frac{|v|}{t} \log(\xi(v) - \deg(v)) \right] 1\{t(\xi(v) - \deg(v)) \geq |v|\}.\]

(5)

This can be understood as follows: \(e^{(1 - \rho)\xi(v)}\) is the contribution to the exponential term in the Feynman-Kac formula (4) if the random walk remains at site \(v\) for a time duration \((1 - \rho)t\), then \(e^{(1 - \rho)\deg(v)}\) is the cost of forcing the random walk to remain at site \(v\) for a time of \((1 - \rho)t\) after reaching it, and we will see in Proposition 2.10 that \(e^{-|v|\log(\frac{\mathbb{E}}{p})}\) is roughly the probability that the random walk hits \(v\) by time \(\rho t\). At the best sites, it turns out that \(u(t, v)\) is well-approximated by \(e^{\psi_t(v)}\).

The condition \(t(\xi(v) - \deg(v)) \geq |v|\) ensures that the optimal value of \(\rho = \frac{\xi(v) - \deg(v)}{t(\xi(v) - \deg(v))}\) in (5) is indeed in \([0, 1]\). A similar functional for the \(\mathbb{Z}^d\) case is defined in [KLMS09, Equation (1.9)], though they do not need to incorporate the degree term there. We define the processes \(\hat{Z}_t^{(1)}\) and \(\hat{Z}_t^{(2)}\) by

\[\hat{Z}_t^{(1)} := \arg \max_{v \in V(T_{\infty})} \psi_t(v), \quad \hat{Z}_t^{(2)} := \arg \max_{v \in V(T_{\infty}) \setminus \{\hat{Z}_t^{(1)}\}} \psi_t(v).\]

(6)

We will see in Section 5 that \(\hat{Z}_t^{(1)}\) and \(\hat{Z}_t^{(2)}\) are well-defined and in particular enjoy the following asymptotic.

Theorem 1.7. Let Assumption 1.1 hold. For each \(i = 1, 2\), we have that

\[\lim_{\lambda \to \infty} \liminf_{t \to \infty} P \left(\hat{Z}_t^{(i)} \in [\lambda^{-1}r(t), \lambda r(t)] \right) = 1.\]

Our final result approximates the solution and follows by similar arguments to [OR16, Theorem 1.4], though extra care is needed to deal with the unbounded degrees in our case. Analogously to [OR16], to state the result, for $v \in V(T_\infty)$ we define

$$\lambda(t, v) := \sup_{y \in V(T_\infty)} \left\{ t(\xi(y) - \deg y) - |y| \log \left(\frac{|y|}{te} \right) - |v - y| \log \left(\frac{|v - y|}{te} \right) \right\},$$

(7)

and $\lambda_+(t, v) = \lambda(t, v) \vee 0$. Note the similarity with the terms in ψ_1 in (5).

Theorem 1.8. Let Assumption 1.1 hold. With high P-probability,

$$(ta(t))^{-1} \sup_{v \in V(T_\infty)} |\log_+ (u(t, v)) - \lambda_+(t, v)| \to 0$$

The intuition here is that the vertex y achieving the supremum in (7) represents the “best” vertex that has the right balance between being close to v, and having high potential. The main contribution to the solution at v comes from particles that spend most of the time interval $[0, t]$ at site y where they reproduce at rate $\xi(y)$, and then dart to v just before time t. The total number of particles obtained in this way is roughly equal to $e^{\xi(y)}$, and the cost of darting quickly from O to y and then quickly from y to v is roughly equal to the exponential of the subtracted terms in (7).

We note that in the case of the PAM on \mathbb{Z}^d, the authors in [KLMS09] obtain stronger results than those in Theorems 1.2 and 1.7 by identifying the scaling limit of the relevant quantities. This is achieved by showing that the scaling limit of the random potential field $(\xi(z) : z \in \mathbb{Z}^d)$ can be represented by a Poisson point process in \mathbb{R}^d and then interpreting the other scaling limits in terms of this point process. Since Gromov-Hausdorff-Prokhorov scaling limits of critical Galton-Watson trees are well understood, we anticipate that a similar approach could be employed in our setting, and in this case the limiting Poisson point process would have a similar density but with respect to the canonical mass measure on the continuum random sin-trees of Aldous [Ald91] (in the finite variance case) and Duquesne [Duq09] (in the β-stable case). Due to space considerations, we have not attempted to prove this result in this article, but we believe this makes our proofs more robust since we have not relied on any information about the limiting random variables and their densities, which is not the case in [KLMS09].

Although the results of this paper are restricted to Galton-Watson trees and in certain proofs we take advantage of the tree structure, we anticipate that the PAM should exhibit similar behaviour on other critical random graphs, such as the Uniform Infinite Planar Triangulation, critical Erdös-Rényi graphs, and the critical configuration model. Moreover, critical Galton-Watson trees are conjectured and in many cases known to be good toy models for a range of stochastic structures such as high-dimensional critical percolation clusters and uniform spanning trees, and some classes of random planar maps, so we also expect that the PAM on these more complicated models will display similar behaviour.

This paper is organised as follows. In Section 2 we visit the definition of a critical Galton-Watson tree conditioned to survive and we derive several estimates regarding its volume growth. Furthermore, we also give bounds for the random walk defined on T_∞, which will be needed later on. In Section 3 we analyse extremal values of the potential on certain subsets of T_∞. In Section 4 we prove the asymptotic behaviour stated in Theorem 1.2 and 1.7, and the approximation for the solution as given in Theorem 1.8. Subsequently, we are concerned with proving the localisation result. In particular, in Section 5 we derive several estimates for the first maximisers of the functional defined in (5) and the gap between the largest values of this functional. Section 6 contains the spectral analysis that we mentioned above, that is, we prove that the support of the principal eigenfunction of the Anderson Hamiltonian restricted to certain time-dependent subsets is strongly concentrated as time goes to infinity. Finally, these auxiliary results are used to prove the almost sure two-site localisation of the PAM on T_∞ (Theorem 1.5) in Section 7 and the with high probability one-site localisation (Theorem 1.6) in Section 8.

Acknowledgements. We would like to thank Nadia Sidorova for suggesting to look at PAM on trees. EA would also like to thank Matt Roberts and Marcel Ortgiese for helpful discussions. The research of EA was supported by an LMS Early Career Fellowship and ERC starting grant 676970 RANDGEOM. AP was supported by the German Academic Exchange Service and a Lichtenberg-Professorship (Christian Kuehn).
Notation

To facilitate reading we summarise notation in the following table.

Notation	Definition								
α	Pareto parameter for the potential ξ								
β	parameter for the GW offspring distribution, in $(1, 2]$								
d	$\frac{\beta}{2}$								
T_∞	set of rooted trees with a single (one-ended) infinite path to infinity								
$O = s_0$	root of T_∞								
s_0, s_1, s_2, \ldots	ordered vertices of the backbone of T_∞								
$u \prec v$	u is an ancestor of v								
$[u, v]$	(unique) direct path from u to v, inclusive of endpoints								
$	u - v	$, $	v	$	the graph distance between u and v, $	v	:=	O - v	$
$B(v, r), B_r(v, r)$	closed ball in T_∞ of radius r around v, $B_r := B(O, r)$								
$B^t_r = \bar{B}(v, r) \cap T_t$ for subtree T_t of T_∞									
A_r	connected component containing O obtained after removing the vertex s_r from T_∞								
$V(T)$	set of vertices of a tree/subtree T								
$\# S$	number of vertices in S								
$\Height(T)$	$\Height(T) := \max_{v \in V(T)}	\bar{O} - v	$ for a finite tree T with root \bar{O}						
\bar{t}	$\{v \in V(T_\infty) : \deg(v) \leq 4\}$								
\bar{B}_r	$\{v \in \bar{B}_r(v) : \deg(v) \leq 4\}$								
D_r	$\sup_{v \in \bar{B}_r} \deg(v)$								
L	$\{u \in T_\infty : \deg u = 1\}$								
$p(u)$	parent of u in T_∞								
$\ell(u)$	leftmost child of u that is also a leaf								
$\eta_r(n, v)$	number of distinct paths of length n starting at O, passing through v, fully contained in B_r								
ξ	the potential								
$\xi^{(i)}$	the i^{th} highest value of ξ on B_r								
$\bar{\xi}^{(i)}$	the i^{th} highest value of ξ on \bar{B}_r								
q	$\left(\frac{d}{a-d}\right)^q \gamma$								
$a(t)$	$\left(\frac{1}{\log t}\right)^{q+1}$								
z	$\frac{a}{a-d}$								
p	$q + 2$								
$R(t)$	$r(t)(\log t)^p$								
C	$\frac{a}{a-d} + z + 1$								
F_t	$\{v \in V(B(t)) : \xi(v) \geq R(t)\gamma(\log t)^{-C}\}$								
E_t	$\{v \in V(B(t)) \setminus F_t : \exists z \in F_t$ such that $\xi(z) - \deg(z) \leq \xi(v) - \deg(v)\}$								
$\psi_t(v)$	$\left((\xi(v) - \deg(v)) - \frac{\log	\xi(v) - \deg(v)	}{m}\right)_{t \geq \log	\xi(v) - \deg(v)	} \mathbb{1}\{t(\xi(v) - \deg(v)) \geq	v	\}$		
$\lambda(t, v, y)$	$t(\xi(y) - \deg(y)) -	v	\log	y - \log t - 1	-	v - y	\log	v - y	- \log t - 1$
$\lambda(t, v)$	$\sup_{y \in T_\infty} \lambda(t, v, y)$								
$Y(t, v)$	$\arg\max_{y \in B_{r(t)}(\log t)} \{\lambda(t, v, y)\}$, where m is a constant in (q, ∞)								
$\bar{Y}(t, v)$	$\arg\max_{y \in \bar{B}_{r(t)}(\log t)} \{\lambda(t, v, y) + t \deg y\}$								
$\tilde{Z}^{(1)}$	$\arg\max_{v \in V(T_\infty)} \psi_t(v)$								
$\tilde{Z}^{(2)}$	$\arg\max_{v \in V(T_\infty) \setminus \{\tilde{Z}^{(1)}\}} \psi_t(v)$								
Z_{B_r}	$\arg\max_{z \in B_r} \{\xi(z)\}$								
\hat{Z}_{B_r}	$\arg\max_{z \in B_r, \xi(z) \neq \xi(z)} \{\xi(z)\}$								
g_{B_r}	$\xi(\hat{Z}_{B_r}) - \max_{\xi(z) \neq \xi(z)} \{\xi(z)\}$								
\hat{g}_{B_r}	$\xi(\hat{Z}_{B_r}) - \deg(\hat{Z}_{B_r}) - \max_{z \in B_r, \xi(z) \neq \xi(z)} \{\xi(z)\}$								
j_t	$\left(\frac{d+1}{d}\right)^{r(t)}$								
2 Critical Galton-Watson trees conditioned to survive

We assume that the reader is familiar with the definition of a Galton-Watson tree with offspring distribution \(\mu \), and simply recall that such a Galton-Watson tree can be formed from a single individual who reproduces with offspring number distributed according to \(\mu \), and that individuals in subsequent generations continue to reproduce independently with offspring distribution \(\mu \), ad infinitum (or until the process dies out). We refer to [AD15] for further background and definitions.

In this paper, we will restrict to the case of critical Galton-Watson trees where \(\sum_{k=0}^{\infty} k \mu(k) = 1 \). We let \(T \) denote such a GW tree, and \(O \) its root. For a given vertex \(v \in T \), its offspring number \(k_v \) is equal to the number of children under the natural genealogical structure (i.e. \(k_v = \deg v - 1 \)). Additionally, we will denote by \(T_v \) the subtree containing \(v \) and all its descendants under this genealogical structure, rooted at \(v \).

In order to consider the long-time behaviour of the PAM on a Galton-Watson tree, it is natural to restrict to the case of infinite trees. A natural candidate for such a tree would be a supercritical Galton-Watson tree; however, in the case of a Pareto potential, the exponential volume growth in a supercritical Galton-Watson tree causes the solution of the PAM to blow up, almost surely; hence the restriction to critical Galton-Watson trees. Although a critical Galton-Watson tree is known to have zero probability of survival, Kesten [Kes86] gave a construction of a critical Galton-Watson tree conditioned to survive, and showed that it arises as the local limit of finite Galton-Watson trees conditioned to have large height [Kes86, Lemma 1.14]. We give his construction below.

Definition 2.1. Let \(\mu = (\mu_n)_{n \geq 0} \) be a critical offspring distribution. Define its size-biased version \(\mu^* \) by

\[
\mu_n^* = n \mu_n
\]

for all \(n \geq 0 \). The Kesten’s tree \(T_\infty \) associated to the probability distribution \(\mu \) is a two-type Galton-Watson tree with the following properties:

- Each individual is of one of two types: normal or special.
- The root of \(T_\infty \) is special.
- A normal individual produces normal individuals according to \(\mu \).
- A special individual produces individuals according to the size-biased distribution \(\mu^* \). One of them is chosen uniformly at random. This individual is of type special, the rest of the produced individuals are of type normal.

We let \(P \) denote the law of \(T_\infty \).

We let \(T_\infty \) denote the set of rooted trees with a single (one-ended) infinite path to infinity. Note that, \(P \)-almost surely, \(T_\infty \in T_\infty \), since the special vertices form a unique one-ended infinite backbone of \(T_\infty \). We let \(s_0, s_1, s_2, \ldots \) denote the ordered vertices of the backbone, so that \(s_0 \) is the root, and \(s_n \) is at distance \(n \) from the root. Moreover, each of the subtrees emanating from normal children of the backbone vertices are independent unconditioned Galton-Watson trees with offspring distribution \(\mu \).
2.1 Properties of T_∞

In this section we give some properties of T_∞ that we will use later in the paper, mainly regarding its volume growth. Since T_∞ (P-almost surely) consists of a collection of finite Galton-Watson trees grafted to its infinite backbone, it will also be useful to state some bounds for an unconditioned Galton-Watson tree with the same offspring distribution μ, which we denote by T.

Lemma 2.2 ([Kor12, Lemma 1.11] and [Sla68, Theorem 2]). Under Assumption 1.1, there exist constants $c, c' < \infty$ such that, as $n \to \infty$,

$$P(\#T \geq n) \sim cn^{-\frac{1}{\beta}}$$
$$P(\text{Height}(T) \geq n) \sim c'n^{-\frac{1}{\beta}}.$$

Proposition 2.3. Take $r, \lambda > 1$. Then, for any $\varepsilon > 0$, there exist constants $c, C \in (0, \infty)$ such that

(i) [CK08, Proposition 2.5]. Under Assumption 1.1, $P\left(\#B_r \geq \lambda^\beta \right) \leq C\lambda^{-(\beta-1-\varepsilon)}$.

(ii) Under Assumption 1.3, for any $K < \infty$ there exists $C < \infty$ such that $P\left(\#B_r \geq \lambda^2 \right) \leq C\lambda^{-K}$.

(iii) [Arc20, Section 8.1]. Under Assumption 1.1, $P\left(\#B_r \leq \lambda^{-1} \right) \leq Ce^{-c\lambda^{-\frac{1}{\beta}}}.$

Proof. We just prove (ii). Take some $\varepsilon > 0$ and set $b = a + \varepsilon = \frac{1}{2}(1 - 4\varepsilon)$. We bound B_r by considering all subtrees attached to the backbone within distance r of the root. We say that a subtree is “tall” if it has height exceeding $r\lambda^b$. We start by identifying all tall subtrees attached to the backbone. If a subtree is tall, we can similarly decompose this subtree into subsubtrees by decomposing along its (leftmost) path of maximal height, which we call its spine, and again identify all tall subsubtrees that are attached somewhere within distance r of the root of the subtree. We can then keep repeating this process on tall subsubtrees in an inductive way until we eventually end with something as in Figure 1.

![Figure 1: Spines of tall subtrees](image1.png)

![Figure 2: One tall subtree T](image2.png)

This collection of tall subtrees can be indexed by a different branching process whereby the offspring of a given tall subtree correspond to the tall subtrees attached to its spine (so in Figure 1, different colours represent subsequent generations). We let the total number of tall subtrees (including the original tree T_∞) be N. Then N is an $O(1)$ random variable and moreover we can control $\#B_r$ by controlling the masses of all the non-tall subtrees in B_r.

Given a tall subtree T, we define its r-spine to be the collection of vertices in the spine of T that also lie within distance r of the root of T, and let $Sp_T(r)$ denote the set offspring of vertices in the r-spine of T. By Definition 2.1 and [GK98, Lemma 2.1] the offspring tails on the r-spine are at most size-biased, so under Assumption 1.3 they still decay super-polynomially. Consequently, for any $z > 0$ we have that $P(\#Sp_T(r) \geq r\lambda^a) \leq c_2\lambda^{-az}$. In particular, it follows from a union bound that for the first λ^r tall subtrees present in Figure 1 (say ordered in a breadth-first order), the probability that one of them has $\#Sp_T(r) \geq r\lambda^a$ is at most $c_2\lambda^{-az}$. Additionally, if $\#Sp_T(r) < r\lambda^a$, then the number of tall subtrees attached to the r-spine
of T is at most a Binomial($r\lambda^{\delta}, cr^{-1}\lambda^{-b})$ random variable by Lemma 2.2. Consequently, it follows from the main theorem of [Dwa69] applied to the indexing branching process that

$$P(N \geq \lambda^x) \leq P(\text{one of the first } \lambda^x \text{ tall subtrees has } \#Sp_T(r) \geq r\lambda^x)$$

$$+ P(N \geq \lambda^x, \text{none of the first } \lambda^x \text{ tall subtrees has } \#Sp_T(r) \geq r\lambda^x)$$

$$\leq c_2 \lambda^x \epsilon - \lambda - C \lambda e^{-c\lambda^x}.$$ \hspace{1cm} (8)

(e.g. see [Arc21, Proposition 5.1] for a similar proof). Also let M denote the number of subtrees attached to the r-spine of some tall subtree, with volume exceeding $r^2\lambda^{2b+2\epsilon}$ but with height less than $r\lambda^b$. On the event $N < \lambda^x$ and $\#Sp_T(r) < r\lambda^x$ for all tall subtrees, we have from [Kor17, page 5] that M is stochastically dominated by a Binomial($r\lambda^{b+\epsilon}, cr^{-1}\lambda^{-b-\epsilon}e^{-c\lambda^x}$) random variable, so that by Markov’s inequality,

$$P(M > 0) \leq Ce^{-c\lambda^x}. \hspace{1cm} (9)$$

We now look at a single tall subtree T. Its contribution to $\#B_r$ is equal to the sums of the volumes of the masses of small subtrees attached to its r-spine, plus r (which is the volume of its r-spine). Each of these small subtrees can be sorted into groups whereby two small subtrees are in the same group precisely when there are no tall subtrees between them in the contour exploration of T. These groups are indicated by colours in Figure 2. The number of groups is equal to $n+1$, where n is the number of tall subtrees attached to T. Therefore, if we sum over all tall subtrees T, the total number of such groups is at most $2N$. Label them as X_1, X_2, \ldots, X_{2N}. Moreover, by Lemma 2.2 the total volume of one single group falls into the framework of [Arc20, Lemma A.1] with $\beta = \frac{1}{2}$ there. We deduce that, on the event $N < \lambda^x$,

$$P\left(\sum_{i \leq 2N} \#X_i \geq r^2\lambda^{2b+4\epsilon} + \epsilon\right) \leq P(\exists i \leq 2N : \#X_i \geq r^2\lambda^{2b+3\epsilon} \leq 2N e^{-\lambda^x} \leq \lambda^x e^{-\lambda^x}. \hspace{1cm} (10)$$

Therefore, since $\#B_r \leq \sum_{i \leq 2N} \#X_i + Nr$, we have from a union bound on all the events described in (8), (9) and (10) above that

$$P(\#B_r \geq 2r^2\lambda^x) = P(\#B_r \geq 2r^2\lambda^{2b+3\epsilon}) \leq 3c_2\lambda^{5\epsilon - (1-5\epsilon)\epsilon}.$$

Therefore, choosing $z > K + 1$ and $\epsilon < \frac{1}{6(2z+1)}$ gives the stated result. \square

By applying Borel-Cantelli along the sequence $r_n = 2^n$, taking $\lambda_n = \delta(\log r_n)^{1+\epsilon}$ (and similarly for the other bounds), using monotonicity of volumes and then $\delta \downarrow 0$, we deduce the following result.

Corollary 2.4. Set $d := \frac{\beta}{\beta - 1}$. Under Assumption 1.1, P-almost surely for any $\epsilon > 0$ it holds that:

$$\lim_{n\to\infty} \sup_{r \leq r_n} \frac{\#B_r}{r^d(\log r)^{1+\epsilon}} = 0,$$

$$\lim_{r \to \infty} \inf \frac{\#B_r}{r^d(\log \log r)^{-(d+\epsilon)}} = \infty.$$

Under Assumption 1.3, P-almost surely for any $\epsilon > 0$ it holds that:

$$\lim_{n\to\infty} \sup_{r \leq r_n} \frac{\#B_r}{r^2(\log r)^{\epsilon}} = 0,$$

$$\lim_{r \to \infty} \inf \frac{\#B_r}{r^2(\log \log r)^{-(2+\epsilon)}} = \infty.$$

We will also need the following result on the largest degree in a ball.

Lemma 2.5. (i) For any $\epsilon > 0$, under Assumption 1.1 it holds eventually P-almost surely that

$$D_r := \sup_{v \in B_r} \deg(v) \leq r^{\frac{d+1}{\beta}} = r^{\frac{(1+\epsilon)}{\beta-1}}.$$

(ii) Under Assumption 1.3 we have for any $\epsilon > 0$ that eventually P-almost surely

$$D_r \leq r^\epsilon.$$
Proof. (i) Note that there are at most \(r \) backbone vertices in \(B_r \) with the size-biased offspring tail bound, and all other vertices have the original offspring tail bounds, independently of each other (by Definition 2.1). By Corollary 2.4, \(P \)-almost surely for all sufficiently large \(r \) we can compute

\[
P \left(D_r > 2 \left(\frac{1}{\beta} \log r \right)^{\frac{d+\varepsilon}{2}} \sup_{v \in B_r} P(\deg v > 2 \left(\frac{1}{\beta} \log r \right)^{\frac{d+\varepsilon}{2}}) \right) \leq r^d \left(\log r \right)^{\frac{d+\varepsilon}{2}} \sup_{v \in B_r \setminus \{s_0, \ldots, s_r\}} P(\deg v > \left(\frac{1}{\beta} \log r \right)^{\frac{d+\varepsilon}{2}})
\]

\[
+ r \sup_{v \in \{s_0, \ldots, s_r\}} P(\deg v > \left(\frac{1}{\beta} \log r \right)^{\frac{d+\varepsilon}{2}})
\]

\[
\leq cr^d \left(\log r \right)^{\frac{d+\varepsilon}{2}} \cdot r^{-d-\varepsilon} + crr \frac{d+\varepsilon}{\beta} \left(\log r \right)^{\frac{d+\varepsilon}{2}}
\]

\[
= r^{-\varepsilon/2}.
\]

This probability is summable along the sequence \(r_n = 2^n \) and thus by Borel-Cantelli along this sequence it holds eventually \(P \)-almost surely that \(\sup_{v \in B_{r_n}} \deg(v) \leq 2 \left(\frac{1}{\beta} \log r \right)^{\frac{d+\varepsilon}{2}} r_n \). Then note for \(r \in [r_n, r_{n+1}] \) we have by monotonicity that \(\sup_{v \in B_r} \deg(v) \leq 2 \left(\frac{1}{\beta} \log r \right)^{\frac{d+\varepsilon}{2}} r_{n+1} \neq r \left(\frac{1}{\beta} \log r \right)^{\frac{d+\varepsilon}{2}} r_n \).

(ii) Fix \(\varepsilon \in (0, 1) \). Since the offspring distribution tails decay super-polynomially under Assumption 1.3, the same holds for the size-biased offspring tails, so we certainly have that \(\sup_{v \in B_r} P(\deg v > x) = o(x^{-(2/\varepsilon+1)}) \) as \(x \to \infty \). The proof then proceeds exactly as in part (i).

Given \(v \in B_r, n \geq |v| \), we let \(N_r(n, v) \) denote the number of distinct paths starting at \(O \) and passing through \(v \) that are fully contained in \(B_r \) and have length exactly \(n \), and \(N_r(n, v) = \log \eta_r(n, v) \). The previous lemma allows us to bound \(\eta_r(n, v) \).

Lemma 2.6. Under Assumption 1.1, for all \(\varepsilon > 0 \), eventually almost surely, for all \(v \in B_r \) we have that

\[
\eta_r(n, v) \leq (n - |v|) \left(\frac{d+\varepsilon}{2\beta} (\log r) + \log \left(\frac{n}{n - |v|} \right) \right).
\]

Under Assumption 1.3, for all \(\varepsilon > 0 \), eventually almost surely, for all \(v \in B_r \) we have that

\[
\eta_r(n, v) \leq (n - |v|) \left(\varepsilon (\log r) + \log \left(\frac{n}{n - |v|} \right) \right).
\]

Proof. By counting deviations from the direct path from \(O \) to \(v \), and letting \(D_r = \sup_{v \in B_r} \deg v \) we have that

\[
N_r(n, v) \leq \left(\frac{n}{n - |v|} \right)^{D_r - n - |v|}.
\]

The factor of \(\frac{1}{2} \) appears since if we cross one edge not on the direct path we must return to the direct path by the same edge, so this reduces our number of choices by a factor of 2. Applying Stirling’s formula and the bound on \(D_r \) from Lemma 2.5(i) or 2.5(ii) then gives the results. For example, under Assumption 1.3 we get

\[
\eta_r(n, v) \leq \log \left(\left(\frac{n}{n - |v|} \right)^{D_r - n - |v|} \right) \leq \log \left(\left(\frac{ne}{n - |v|} \right)^{n - |v|} \left(\frac{2}{\beta} (\log r) \right)^{\frac{d+\varepsilon}{2}} \right) \leq (n - |v|) \left(\varepsilon (\log r) + \log \left(\frac{n}{n - |v|} \right) \right).
\]

Remark 2.7. As \(n \to \infty \), it is not possible to do much better than the result in Lemma 2.6 under Assumption 1.1, since the maximal degree of a vertex in \(B_r \) is really of order \(r^{\frac{d+\varepsilon}{2\beta}} \). Therefore one can really count paths that dart directly to this vertex of high degree, alternate between this vertex and its neighbours for as long as possible, and finally dart directly to \(v \) at the last possible moment. Counting these paths gives a lower bound asymptotic to \(\frac{d+\varepsilon}{2\beta} (n - |v|)(\log r) \) (and we will mainly use the result with \(\frac{n}{n - |v|} \ll r \)).
Lemma 2.8. Let $\tilde{B}_r = \{ v \in B_r : \deg v \leq 4 \}$. Then, under Assumption 1.1,
\[
P(\#\tilde{B}_r \leq r^d \lambda^{-1}) \leq C e^{-c\lambda^{\frac{\beta-1}{\beta}}} + (r\lambda^{-1})^{-(\beta-1-\varepsilon)}.
\]
Consequently, P-almost surely,
\[
\liminf_{r \to \infty} \frac{\#\tilde{B}_r}{r^d (\log \log r)^{-1-(d+\varepsilon)}} > 0.
\]

Proof. In any finite tree at least half of the vertices have at most degree 4. Taking care of the boundary vertices in B_r this yields
\[
\#\tilde{B}_r \geq \frac{1}{2} \#B_r - Z^*_r,
\]
where Z^*_r is the generation size at level r. Thus invoking Proposition 2.3(iii) and [CK08, Proposition 2.2]
\[
P(\#\tilde{B}_r \leq r^d \lambda^{-1}) \leq P \left(\frac{1}{2} \#B_r - Z^*_r \leq r^d \lambda^{-1} \right) \leq P(\#B_r \leq 4r^d \lambda^{-1}) + P(Z^*_r \geq r^d \lambda^{-1})
\]
\[
\leq C e^{-c\lambda^{\frac{\beta-1}{\beta}}} + (r\lambda^{-1})^{-(\beta-1-\varepsilon)}.
\]
The second claim follows by Borel-Cantelli exactly as in Corollary 2.4.\qed

We will also use the following result in the random walk estimates.

Lemma 2.9. Let Γ_r be the set of all direct paths between two vertices in B_r. Under Assumption 1.1 there exist deterministic constants $B, B < \infty$ such that P-almost surely,
\[
\sup_{\gamma \in \Gamma_r} \left\{ \sum_{v \in \gamma} \log(\deg v) - \tilde{B} |\gamma| - B \log r \right\} \leq 0
\]
for all sufficiently large r.

Proof. Let $\varepsilon \in (0, \beta - 1)$, define $c := \beta - 1 - \varepsilon > 0$ and choose $B > \frac{1}{2} \left(2 \frac{2+c}{\beta-1} + \varepsilon \right)$. Note that $E[(\deg v)^c] < \infty$ for all $v \in B_r$. We set $A := \log E[(\deg v)^c] < \infty$. Also note that the degrees of distinct vertices are independent of each other by Definition 2.1. Given $\gamma \in \Gamma_r$, we also define $\lambda_{\gamma,r} := \frac{B \log r}{|\gamma|} + A$ and $u_r := r^{\frac{2+c}{\beta-1}}$.

With this choice we calculate using a Chernoff bound that
\[
P \left(\sum_{v \in \gamma} \log(\deg v) \geq \lambda_{\gamma,r} |\gamma| \right) \leq E \left[\exp \left(c \sum_{v \in \gamma} \log(\deg v) \right) \right] \exp \left(-c \lambda_{\gamma,r} |\gamma| \right) \leq \exp \left(A |\gamma| - c \lambda_{\gamma,r} |\gamma| \right) = r^{-cB}.
\]

Note also that $|\Gamma_r| \leq B^2_r$ since we are only bounding direct paths. Applying a union bound over all $\gamma \in \Gamma_r$ and Proposition 2.3(i) therefore yields (for all sufficiently large r) that
\[
P \left(\sup_{\gamma \in \Gamma_r} \left\{ \sum_{v \in \gamma} \log(\deg v) - \lambda_{\gamma,r} |\gamma| \right\} \geq 0 \right) \leq P(B_r \geq u_r) + u_r^2 P \left(\sup_{\gamma \in \Gamma_r} \left\{ \sum_{v \in \gamma} \log(\deg v) - \lambda_{\gamma,r} |\gamma| \right\} \geq 0 \right)
\]
\[
\leq r^{\frac{c}{2}} + u_r^2 r^{-cB} = 2r^\frac{c}{2}.
\]
The result therefore follows by applying Borel-Cantelli along the subsequence $r_n = 2^n$, and then applying monotonicity if $r \in [2^n, 2^{n+1})$, since $\log r = o(r)$.\qed
2.2 Random walk on T_∞

Given a particular realisation of T_∞, we let $X = ((X_t)_{t \geq 0}, \mathbb{P}^x_{T_\infty}, x \in V(T_\infty))$ continuous time variable speed random walk on T_∞ started at $x \in V(T_\infty)$. This means that for $v, w \in V(T_\infty)$, X jumps from v to w at rate $\mathbb{1}{v \sim w}$, so the holding times at vertex v are exponentially distributed random variables with parameter $\deg v$. In particular, the mean holding time at vertex v is $\frac{1}{\deg v}$.

In the case where X is started from the root O of T_∞, we just write \mathbb{P} for the law of X.

Let $A \subset V(T_\infty)$. We denote the first exit time from A as τ_A, i.e. $\tau_A = \inf \{ t \geq 0 : X_t \notin A \}$. Given a vertex $v \in V(T_\infty)$, we also let $H_v = \inf \{ s \geq 0 : X_s = v \}$ denote the first hitting time of v.

The next proposition is actually a result about random walks on deterministic trees.

Proposition 2.10. Conditional on T_∞, for each $v \in V(T_\infty)$,

(i) If $|v| \geq 3$, then
$$\mathbb{P}(H_v \leq t) \leq \exp \{ -|v|((\log |v| - \log t - 1) \vee 0) \}.$$

(ii) For all $v \in V(T_\infty), t > 0$,
$$\mathbb{P}(H_v \leq t) \geq \left(\prod_{u<v} \frac{1}{\deg(u)} \right) e^{-|v|((\log |v| - \log t - 1) \vee 0) + O(t)}.$$

Proof. (i) Set $r = |v|$. Let $O = v_0 < v_1 < \ldots < v_r = v$ denote the ordered ancestors of v. To reach v from v_0, the random walk must first pass through each of the points v_1, \ldots, v_{r-1}. When it reaches the point v_1, the time to jump to v_{i+1} will stochastically dominate an $\text{Exp}(1)$ random variable (since it can only reach v_{i+1} through one edge which rings at rate 1). The time delay for the random walk to reach v will thus be greater than $\sum_{u<v} E_u$, where $(E_u)_{u<v}$ is a sequence of i.i.d. $\text{Exp}(1)$ random variables. Hence, using Stirling’s formula we obtain

$$\mathbb{P}(H_v \leq t) \leq \mathbb{P} \left(\sum_{u<v} E_u \leq t \right) = \mathbb{P}(\text{Poi}(t) \geq r) = e^{-t} \left(\frac{t^r}{r!} + \sum_{i=r+1}^\infty \frac{t^i}{i!} \right) \leq e^{-t} \frac{t^r e^{-t} e^t}{\sqrt{2\pi r} r^{r+1/2} e^{-r}} \leq \exp \{ -r(\log r - \log t - 1) \}.$$

(ii) We lower bound this by the probability of going directly to v in time t. Accordingly, again let $O = v_0 < v_1 < \ldots < v_r = v$ denote the ordered ancestors of v, but this time let $(E_i)_{i=0}^{r-1}$ be independent random variables, where $E_i \sim \text{Exp}(\deg(v_i))$ for each $i = 0, \ldots, r-1$. Also, recall that $e^{-x} + e^{-x^{-1}} \leq \frac{1}{1-x} + \frac{1}{1+x^{-1}} = 1$ for all $x > 0$.

Then, if $r(\log 2) > 3t$, since all vertices except perhaps v_0 have degree at least 2, we have (by Stirling’s formula) that for all sufficiently large r

$$\mathbb{P} \left(\sum_{i=0}^{r-1} E_i \leq t \right) \geq \mathbb{P}(E_0 \leq 1) \mathbb{P} \left(\sum_{i=1}^{r-1} E_i \leq t - 1 \right) \geq (1 - e^{-1}) \mathbb{P}(\text{Poi}(2(t-1)) \geq r - 1) \geq (1 - e^{-1}) \frac{e^{-2(t-1)(2t-2)^{(r-1)}}}{(r-1)!} \geq \exp \{-r(\log r - \log t - 1) - O(\log(r \vee t) + \frac{r}{t}) + (r+1) \log 2 - (2t + 1)\}. \quad (11)$$

The case $r(\log 2) > 3t > 50$ follows from the penultimate line above (the constant 50 is not optimal).
(iii) The case $r(\log 2) \leq 3t$ similarly follows from (11).

\[\mathbb{P}(\tau_{B_{r-1}} \leq t) \leq \exp \left\{ -\frac{r}{5} \log \left(\frac{r}{2ct} \right) \right\} \]

for all $t > 0$.

Proof. Let us define for $r > 0$ the set

\[C_r := \left\{ v \in V(T_\infty) : |v| = \frac{r}{2}, \exists u \in V(T_\infty) : |u| = r, v \prec u \right\}, \tag{12} \]

that is, the set of vertices in generation $\frac{r}{2}$ that have a descendant in generation r. We will first derive an upper bound for the volume of this set. Let Z_n^* denote the size of the n^{th} generation of T_∞ and let v_i, $i = 1, \ldots, Z_n^*$ denote the vertices of the n^{th} generation. Furthermore, let T_u denote the subtree emanating from v_i. Then

\[\#C_r = \sum_{w \in \{v_1, \ldots, v_{Z_n^*} \}} 1\{\text{Height}(T_w) \geq r/2\} = 1 + \sum_{w \in \{v_1, \ldots, v_{Z_n^*} \} \setminus \{v_r/2\}} 1\{\text{Height}(T_w) \geq r/2\}. \]

Recall from Lemma 2.2 that there exists $c < \infty$ such that for all $v_i \neq s_{r/2}$, \(\mathbb{P}(\text{Height}(T_{v_i}) \geq x) \sim cx^{-\frac{c}{c}} \). Consequently $\#C_r - 1$ is stochastically dominated by a $\text{Binomial}(Z_{r/2}^* - 1, cr^{-\frac{c}{c}})$ random variable. Hence, for $c_2 = \frac{1}{2c_{1/2} - \epsilon}$ and $c_1 = c_2 + \epsilon$,

\[\mathbb{P}(\#C_r \geq (\log r)^{c_1}) \leq \mathbb{P}(Z_{r/2}^* \geq r^{-\frac{1}{c_1}}(\log r)^{c_2}) + \mathbb{P}(X \geq (\log r)^{c_1} - 1), \tag{13} \]

where $X \sim \text{Binomial}(r^{-\frac{1}{c_1}}(\log r)^{c_2} - 1, cr^{-\frac{1}{c_1}})$. We have by [CK08, Proposition 2.2] that for every $\epsilon > 0$

\[\mathbb{P}(Z_{r/2}^* \geq r^{-\frac{1}{c_1}}(\log r)^{c_2}) \leq c_3(\log r)^{-c_2(\frac{1}{c_1} - 1)} = c_3(\log r)^{(1 - c_1)}, \tag{14} \]

for some constant $c_3 > 0$. Furthermore, since $c_1 > c_2$, by a Chernoff bound we have

\[\mathbb{P}(X \geq (\log r)^{c_1} - 1) \leq \frac{\mathbb{E}[e^X]}{e^{((\log r)^{c_1} - 1)}} \leq \frac{\exp((r^{-\frac{1}{c_1}}(\log r)^{c_2} - 1)cr^{-\frac{1}{c_1}}(e - 1))}{\exp((\log r)^{c_1} - 1))} \leq \exp((\log r)^{c_1} + 1). \tag{15} \]

Combining (14) and (15) with (13), we deduce that for any $\epsilon > 0$, there exists $c_4 < \infty$ such that

\[\mathbb{P}(\#C_r \geq (\log r)^{c_1}) \leq c_4(\log r)^{-(1 + \epsilon)}. \]

For $r_n = 2^n$ this probability is summable over n and thus by Borel-Cantelli \(\mathbb{P} \)-almost surely for n large enough $\#C_{r_n} \leq (\log r_n)^{c_1}$.

Now, since the random walk needs to visit a vertex in C_r before it can exit the ball B_{r-1}, we have by a union bound and Proposition 2.10(i) that

\[\mathbb{P}(\tau_{B_{r-1}} \leq t) \leq \mathbb{P}(\exists v \in C_r : H_v \leq t) \leq \sum_{v \in C_r} \mathbb{P}(H_v \leq t) \leq \#C_r \exp \left\{ -\frac{r}{2} \log \left(\frac{r}{2ct} \right) \right\}. \]

Therefore, \(\mathbb{P} \)-almost surely along the subsequence r_n, for all n sufficiently large it holds that

\[\mathbb{P}(\tau_{B_{r_n-1}} \leq t) \leq (\log r_n)^{c_1} \exp \left\{ -\frac{r_n}{2} \log \left(\frac{r_n}{2ct} \right) \right\} = \exp \left\{ -\frac{r_n}{2} \log \left(\frac{r_n}{2ct} \right) + c_1 \log(\log(r_n)) \right\}. \]

Consequently, for $r \in [r_n, r_{n+1}]$ sufficiently large:

\[\mathbb{P}(\tau_{B_{r-1}} \leq t) \leq \mathbb{P}(\tau_{B_{r_n}} \leq t) \leq \exp \left\{ -\frac{r_n}{2} \log \left(\frac{r_n}{2ct} \right) + c_1 \log(\log(r_n)) \right\} \leq \exp \left\{ -\frac{r}{5} \log \left(\frac{r}{ct} \right) \right\}. \]
Lemma 2.12. Take any \(\tilde{f}, \tilde{p} > 0 \). Under Assumption 1.1, we have with high \(\mathbf{P} \)-probability as \(t \to \infty \), that for all \(r \in [r(t)(\log t)^{-\tilde{f}}, r(t)(\log t)^{\tilde{p}}] \),

\[
\mathbb{P}(r_{B_{r-1}} \leq t) \leq \exp \left\{ -r \log \left(\frac{r}{ct} \right) + o(\log r(t)) \right\}.
\]

Proof. We follow a refined version of the previous proof, this time with several steps.

STEP 1. Choose some \(\varepsilon > 0 \) and \(0 < \delta < 1 \). Let \(m > \tilde{p} + 1, k > \frac{m + \tilde{f}}{\varepsilon} \) and \(\delta \) \(\varepsilon \), and set \(K := k + \frac{1}{\varepsilon} \). Given \(r > 0 \), this time let \(Z^*_r \) denote the number of vertices in generation \(\left(1 - \frac{1}{(\log r)^m} \right) r \), and let \(C_r \) denote the set of vertices in this generation that have a descendant at level \(r \). Then, similarly to the calculations in (13)-(15) we compute

\[
P(\#C_r \geq (\log r)^K) \leq P\left(Z^*_r \geq r^{\frac{1}{\varepsilon}}(\log r)^{k-\varepsilon}\right) + P\left(\text{Binomial} \left(r^{\frac{1}{\varepsilon}}(\log r)^{k-\varepsilon}, c'r^{\frac{1}{\varepsilon}}(\log r)^{\frac{k-\varepsilon}{\varepsilon}}\right) \geq (\log r)^K\right) \\
\leq c(\log r)^{-(k-\varepsilon)(\beta-1-\varepsilon)} + \exp\{-\varepsilon(\log r)^{\varepsilon}\} \\
\leq c(\log r)^{-(k-\varepsilon)(\beta-1-\varepsilon)}.
\]

(16)

Since the random walk needs to visit a vertex in \(C_r \) before it can exit the ball \(B_{r-1} \), we can lower bound the exit time of the set \(B_{r-1} \) by the hitting time of the set \(C_r \). For any \(r > 0 \), on the event \(\{\#C_r \leq (\log r)^K\} \), we can thus compute using Proposition 2.10(i) that

\[
P(r_{B_{r-1}} \leq t) \leq \sum_{v \in C_r} P(H_v \leq t) \leq \#C_r \exp \left\{ -\left(1 - \frac{1}{\log r} \right)^m \right\}
\]

\[
\leq \exp \left\{ K \log \log r - \left(1 - \frac{3}{\log r} \right)^m \right\}.
\]

(17)

STEP 2. We now define \(\tilde{f}(t) := r(t)(\log t)^{-\tilde{f}}, \tilde{R}(t) := r(t)(\log t)^{\tilde{p}} \) and for \(0 \leq n \leq N_f := \lceil \log(\tilde{R}(t))^{m+\delta} \rceil \) set

\[
r_n := \left(1 - \frac{1}{(\log \tilde{R}(t))^m}\right)^n \tilde{R}(t).
\]

Then \(r_0 = \tilde{R}(t) \) and for \(t \) large enough we have

\[
r_{N_f} \leq \exp \left(-\frac{\lceil \log(\tilde{R}(t))^{m+\delta} \rceil}{\log \tilde{R}(t)^m} \right) \tilde{R}(t) \leq \exp \left\{ -\frac{1}{2}(\log(\tilde{R}(t)))^\delta \right\} \tilde{R}(t) \leq \tilde{f}(t).
\]

Therefore, using (16), (17) and a union bound, we have that

\[
P\left(\exists n \leq N_f : P(r_{B_{r-1}} \leq t) \geq \exp \left\{ K \log \log r_n - \left(1 - \frac{3}{\log r_n} \right)^m \log \left(\frac{r_n}{ct} \right) \right\}\right) \\
\leq P\left(\exists n \leq N_f : \#C_r \geq (\log r)^K\right) \\
\leq \sum_{n \leq N_f} c(\log r)^{-(k-\varepsilon)(\beta-1-\varepsilon)}
\]

Applying the definition of \(r_n \) and the asymptotic \(\log(1-x) \geq -2x \) as for all sufficiently small \(x \), this is upper bounded by

\[
\sum_{n \leq N_f} c \left[\log(\tilde{R}(t)) + n \log \left(1 - \frac{1}{(\log \tilde{R}(t))^m}\right) \right]^{-(k-\varepsilon)(\beta-1-\varepsilon)} \\
\leq \sum_{n \leq N_f} c \left[\log(\tilde{R}(t)) - n \frac{2}{(\log \tilde{R}(t))^m} \right]^{-(k-\varepsilon)(\beta-1-\varepsilon)} \\
\leq cN_f \left[\log(\tilde{R}(t)) \left(1 - \frac{4}{(\log \tilde{R}(t))^{1+\delta}}\right) \right]^{m+\delta-(k-\varepsilon)(\beta-1-\varepsilon)} \\
\leq C \left[\log(\tilde{R}(t)) \right]^{m+\delta-(k-\varepsilon)(\beta-1-\varepsilon)}.
\]
Since $k > \frac{m+\delta}{\beta-1-\varepsilon} + 2\varepsilon$ this probability goes to zero as $t \to \infty$, i.e. with high P-probability

$$P(\tau_{B_{r_{n-1}}} \leq t) \leq \exp \left\{ K(\log \log r_n) - \left(1 - \frac{3}{(\log r_n)^m} \right) r_n \log \left(\frac{r_n}{et} \right) \right\} \quad \text{for all } n \leq N_t. \quad (18)$$

STEP 3. Moreover, on the event in (18), again using that $\log(1-x) \geq -2x$ for small x we have for all $r \in [\tilde{r}(t), \hat{R}(t)]$ with $r \in [r_{n+1}, r_n]$ that

$$P(\tau_{B_{r_{n-1}}} < t) \leq P(\tau_{B_{r_{n+1}-1}} < t) \leq \exp \left\{ K(\log \log r_{n+1}) - \left(1 - \frac{3}{(\log r_{n+1})^m} \right) r_{n+1} \log \left(\frac{r_{n+1}}{et} \right) \right\}$$

$$\leq \exp \left\{ K \log \log r - r_n \left(1 - \frac{1}{(\log \hat{R}(t))^m} \right) \log \left(\frac{r_{n+1}}{et} \right) + 3r \log \left(\frac{r_n}{et} \right) \right\}$$

$$\leq \exp \left\{ -r \log \left(\frac{r}{et} \right) + K(\log \log r) + \frac{2r}{(\log \hat{R}(t))^m} + \frac{r \log \left(\frac{r}{et} \right)}{(\log r)^m} + 6r \log \left(\frac{r_n}{et} \right) \right\}.$$

Then, since $m > \hat{p} + 1$, $r \in [\tilde{r}(t), \hat{R}(t)]$ and $r_{n+1} \in [\frac{1}{2}\tilde{r}(t), \hat{R}(t)]$ we have that $\log \log r > \frac{1}{2} \log \hat{r}(t) \geq \frac{1}{2} \log t$ for all n provided that t is sufficiently large, so it follows that

$$K(\log \log r) + \frac{2r}{(\log \hat{R}(t))^m} + \frac{r \log \left(\frac{r}{et} \right)}{(\log r)^m} + 6r \log \left(\frac{r_n}{et} \right) = O \left(\frac{r(t)(\log t)^{\hat{p}+1}}{(\log t)^m} \right) \leq o(r(t)),$$

which establishes the result. \(\square\)

2.3 Time reversal for Feynman-Kac formula on T_∞

Here we record the following well-known straightforward proposition which will be useful for manipulating the Feynman-Kac formula of (4).

Proposition 2.13 (Time reversal). For almost every realisation of T_∞, it holds for all $v \in T_\infty$ that

$$E_v \left[\exp \left\{ \int_0^\gamma (X_s) \, ds \right\} \mathbb{I} \{ X_t = v \} \right] = E_v \left[\exp \left\{ \int_0^\gamma (X_s) \, ds \right\} \mathbb{I} \{ X_t = 0 \} \right].$$

Proof. The proof is just a computation and applies to the Feynman-Kac formula on any locally finite graph. Let $\pi(X_{[0,t]})$ denote the path that consists of all the steps taken by the random walk $(X_s)_{s \geq 0}$ between times 0 and t. Note that

$$E_v \left[\exp \left\{ \int_0^\gamma (X_s) \, ds \right\} \mathbb{I} \{ X_t = v \} \right] = \sum_{\gamma \vdash 0 \to v} \exp(\gamma, t) \quad (19)$$

where, if γ denotes the path $0 = v_0, \ldots, v_n = v$, then (in what follows we cancelled $P(\pi(X_{[0,t]}) = \gamma) = \prod_{i=0}^{n-1} \frac{1}{\deg v_i}$ with the terms $\deg v_i$ in the density of each $(s_i)_{i=0}^{n-1}$):

$$f(\gamma, t) = E \left[\exp \left\{ \int_0^\gamma (X_s) \, ds \right\} \mathbb{I} \{ \pi(X_{[0,t]}) = \gamma \} \right]$$

$$= \int_0^\infty \cdots \int_0^\infty e^{(\xi(v_i) - \deg v_i)s_i} \int_0^{t - \sum_{i=1}^{n-1} s_i} e^{(\xi(v_0) - \deg v_0)s_0} \mathbb{I} \left\{ s_0 > 0, \sum_{i=1}^{n-1} s_i < t \right\} ds_0 \cdot e^{(\xi(v_n) - \deg v_n)(t - \sum_{i=0}^{n-1} s_i)} \prod_{i=1}^{n-1} ds_i.$$

We apply the substitution $s_n = t - \sum_{i=0}^{n-1} s_i = t - \sum_{i=1}^{n-1} s_i - s_0$ to the integral over s_0 to deduce that the expression in the square brackets is equal to

$$\int_0^{t - \sum_{i=1}^{n} s_i} e^{(\xi(v_n) - \deg v_n)s_n} \mathbb{I} \left\{ s_n > 0, \sum_{i=1}^{n} s_i < t \right\} ds_n \cdot e^{(\xi(v_0) - \deg v_0)(t - \sum_{i=1}^{n} s_i)}.$$

In other words, we can perfectly exchange the roles played by (v_n, s_n) and (v_0, s_0) to deduce that, if $\tilde{\gamma}$ is the reversal of the path γ, then $f(\gamma, t) = f(\tilde{\gamma}, t)$, from which the result follows by (19). \(\square\)
3 Potential estimates

3.1 Extremal values of the potential

The following lemma bounds the maximal potential on a ball.

Lemma 3.1. For any \(\varepsilon > 0 \), there exists \(C < \infty \) such that for all \(r > 1 \) and \(\lambda > 1 \),

\[
\begin{align*}
P \left(\sup_{v \in B_r} \xi(v) \geq r^{d/\alpha} \lambda \right) & \leq C \lambda^{-\frac{d-3}{2\alpha}} \quad \text{under Assumption 1.1}, \\
P \left(\sup_{v \in B_r} \xi(v) \geq r^{2/\alpha} \lambda \right) & \leq C \lambda^{-(\alpha - \varepsilon)} \quad \text{under Assumption 1.3}.
\end{align*}
\]

Proof. Set \(p = \frac{\varepsilon}{2} \). Using Proposition 2.3(i), under Assumption 1.1 we compute

\[
P \left(\exists v \in B_r : \xi(v) > r^{\frac{d}{2\alpha}} \lambda \right) \leq r^{d} \lambda^{p} P \left(\xi(O) > \frac{r^{d}}{2} \lambda \right) + P \left(\#B_r \geq r^{d} \lambda^{p} \right) < \lambda^{-\alpha} + c \lambda^{-p(\beta - 1 - \varepsilon)} \leq C \lambda^{-\frac{d-3}{2\alpha}}.
\]

Under Assumption 1.3, we instead take \(p = \frac{\varepsilon}{2} \) and choose \(K > 2\alpha \varepsilon^{-1} \) in Proposition 2.3(ii) to get

\[
P \left(\exists v \in B_r : \xi(v) > r^{\frac{d}{2\alpha}} \lambda \right) \leq r^{2} \lambda^{p} P \left(\xi(O) > \frac{r^{d}}{2} \lambda \right) + P \left(\#B_r \geq r^{2} \lambda^{p} \right) < \lambda^{-\alpha} + c \lambda^{-pK} \leq C \lambda^{-(\alpha - \varepsilon)}.
\]

Lemma 3.2. \(P \)-almost surely, we have for any \(\varepsilon > 0 \) that

\[
\lim_{r \to \infty} \frac{\sup_{v \in B_r} \xi(v)}{r^{d} (\log r)^{\frac{d-3}{2\alpha}}} = 0 \quad \text{under Assumption 1.1}, \quad \lim_{r \to \infty} \frac{\sup_{v \in B_r} \xi(v)}{r^{d} (\log r)^{\frac{d-3}{2\alpha}}} = 0 \quad \text{under Assumption 1.3}.
\]

Proof. We give the proof under Assumption 1.1; the proof under Assumption 1.3 is identical. Let \(\varepsilon > 0 \) be arbitrary and choose \(\varepsilon' \in (0, \varepsilon) \). Using Lemma 3.1 we deduce

\[
P \left(\exists v \in B_r : \xi(v) > r^\frac{d}{2\alpha} \lambda \right) \leq (\log r)^{-\varepsilon'}
\]

with \(\varepsilon' = \frac{\varepsilon}{1 + \beta/(\beta - 1)} > 0 \). This probability is summable along \(r_n = 2^n \), and thus by Borel-Cantelli and monotonicity if \(r \in [r_n, r_{n+1}] \), we deduce that \(P \)-almost surely

\[
\lim_{n \to \infty} \frac{\sup_{v \in B_{r_n}} \xi(v)}{r_n^{d} (\log r_n)^{\frac{d-3}{2\alpha}}} \leq 1, \quad \lim_{r \to \infty} \frac{\sup_{v \in B_r} \xi(v)}{r^{d} (\log r)^{\frac{d-3}{2\alpha}}} \leq 2^{\frac{d+1}{\alpha}}.
\]

Since \(\varepsilon' < \varepsilon \) this gives the result.

Define \(\tilde{B}_r = \{ v \in B_r : \deg(v) \leq 4 \} \). Given \(i > 0 \), let \(\xi^{(i)} \) denote the \(i \)th highest value of \(\xi \) on \(B_r \) and \(\tilde{\xi}^{(i)} \) denote the \(i \)th highest value of \(\xi \) on \(\tilde{B}_r \).

Lemma 3.3. \(P \)-almost surely under Assumption 1.1, for \(i = 1, 2, 3 \) and any \(\varepsilon > 0 \),

\[
\liminf_{r \to \infty} \left(\frac{\xi^{(i)}(v)}{r^{d} (\log log r)^{-\frac{(d-3) + 1}{\alpha(\beta - 1)}}} \right) = \infty, \quad \liminf_{r \to \infty} \left(\frac{\tilde{\xi}^{(i)}(v)}{r^{d} (\log log r)^{-\frac{(d-3) + 1}{\alpha(\beta - 1)}}} \right) = \infty.
\]

Proof. It is sufficient to prove the result for \(\tilde{\xi}^{(3)} \) only. By Lemma 2.8, \(\#\tilde{B}_r \geq r^{d}(\log log r)^{-\frac{(d+3)}{\beta - 1}} \) for all sufficiently large \(r \), \(P \)-almost surely. When this happens, we can stochastically dominate by the case \(\#\tilde{B}_r = r^{d}(\log log r)^{-\frac{(d+3)}{\beta - 1}} \) to deduce that

\[
P \left(\tilde{\xi}^{(3)}(v) \leq r^{\frac{d}{2\alpha}} \lambda^{-1} \right) \leq \left(r^{d}(\log log r)^{-\frac{(d+3)}{\beta - 1}} \right) \left(1 - r^{-d} \lambda^\alpha \right) r^{d}(\log log r)^{-\frac{(d+3)}{\beta - 1}} r^{-3} (r^{-d} \lambda^\alpha)^3 \leq Ce^{-c(\log log r)^{-\frac{(d+3)}{\beta - 1}} \lambda^\alpha}.
\]

Setting \(\lambda_r = 2e^{-1}(\log log r)^{\frac{d-1}{\beta - 1}} \) gives the result using Borel-Cantelli along the sequence \(r_n = 2^n \) and monotonicity as in Lemma 3.2.
3.2 Sites of high potential

It will also be useful to control some properties of the sites with atypically high potential. Set \(p = q + 2 \), \(z = \frac{d\alpha}{\alpha - d} \) and \(C = \frac{d}{\alpha} + z + 1 \). Let \(R(t) := r(t)(\log t)^p \). We define the set

\[
F_t := \{ v \in B_{R(t)} : \xi(v) \geq R(t)^{\frac{d}{\alpha}} (\log t)^{-C} = r(t)(\log t)^{-(z+1)} \}. \tag{21}
\]

Also let

\[
E_t := \{ v \in B_{R(t)} \setminus F_t : \exists z \in F_t \text{ such that } \xi(z) - \deg(z) \leq \xi(v) - \deg(v) \}.
\]

We now prove several estimates regarding these sets.

Proposition 3.4. Under Assumption 1.1 it holds that:

(i) There exists \(D < \infty \) such that \(\#F_t \leq (\log t)^D \) eventually almost surely.

(ii) There exists \(B < \infty \) such that \(\sup_{v \in E_t \cup F_t} \deg v \leq (\log t)^B \) eventually almost surely.

Proof.

(i) Define a related set

\[
\tilde{F}_t := \left\{ v \in V(B_{2R(t)}) : \xi(v) \geq \frac{1}{2} R(t)^{\frac{d}{\alpha}} (\log t)^{-C} \right\}.
\]

We have

\[
\# \tilde{F}_t = \sum_{v \in V(B_{2R(t)})} \mathbb{1}\{ \xi(v) \geq \frac{1}{2} R(t)^{\frac{d}{\alpha}} (\log t)^{-C} \}.
\]

Set

\[
p_t := \mathcal{P}\left(\frac{\xi(O)}{\exp(\theta) R(t)} \geq \frac{1}{2} R(t)^{\frac{d}{\alpha}} (\log t)^{-C} \right) \leq 2^\alpha R(t)^{-d}(\log t)^{C\alpha}.
\]

Since \(\#V(B_{2R(t)}) \leq R(t)^d (\log R(t))^{\frac{1}{\alpha + 1}} \) eventually almost surely (by Corollary 2.4) and we (almost surely) have that \(\# \tilde{F}_t \leq \text{Binomial}(R(t)^d (\log R(t))^{\frac{1}{\alpha + 1}}, p_t) \) for all sufficiently large \(t \). In this case, using a Chernoff bound we compute

\[
P(\# \tilde{F}_t \geq (\log t)^D) \leq \frac{\exp(\theta \# \tilde{F}_t)}{\exp(\theta (\log t)^D)} = \frac{\exp(\theta (R(t)^d (\log R(t))^{\frac{1}{\alpha + 1}} 2^\alpha R(t)^{-d}(\log t)^{C\alpha} (e^\theta - 1)))}{\exp(\theta (\log t)^D)}.
\]

and for \(D > \alpha C + \frac{1}{\alpha + 1} \) the right hand side is for \(t \) sufficiently large upper bounded by \(\exp(-C'(\log t)^D) \).

Now for \(t_n := 2^n \) we have

\[
\sum_{n=0}^{\infty} P(\# \tilde{F}_{t_n} \geq (\log t_n)^D) < \infty,
\]

and thus by Borel-Cantelli, \(\# \tilde{F}_{t_n} \leq (\log t_n)^D \) eventually almost surely. Finally, for \(t \in [t_n, t_{n+1}] \), note that \(F_t \subset \tilde{F}_{t_{n+1}} \) for all sufficiently large \(t \), which implies the result.

(ii) Since the potential is independent of \(T_{\infty} \), it follows that, given \(T_{\infty} \), each of the points in \(F_t \) is uniform on \(B_{R(t)} \). Now note that, if \(T \) is a finite tree and \(U \) a uniform vertex of \(T \), we have that

\[
\sum_{v \in V(T)} \deg v = 2(#V(T) - 1)
\]

so that \(\mathbb{E} [\deg U] \leq 2 \). Therefore, letting \(\deg_U(v) = \sum_{u \in V(B_{R(t)})} \mathbb{1}\{ u \sim v \} \) and \(U_t \) a uniform vertex of \(B_{R(t)} \), we have from Markov’s inequality that

\[
P(\deg_U(U_t) \geq x) \leq 2x^{-1}.
\]
Note that $\deg v = \deg t v$ unless $v \in \partial B_{R(t)}$. Therefore, if Z_t^* denotes the size of generation r, we can choose $\epsilon > 0$ small enough that we have from [CK08, Proposition 2.2] and Proposition 2.3(iii) that
\[
P(\deg(U_t) \geq x) \leq P(\deg t v \geq x) + P\left(Z_{R(t)}^* \geq R(t)^{\frac{d}{d+1} + \epsilon}\right) + P(V(B_{R(t)}) \leq R(t)^{d-\epsilon})
\]
\[
+ P\left(U_t \in Z^*_R, Z_{R(t)}^* < R(t)^{\frac{d}{d+1} + \epsilon}, V(B_{R(t)}) > R(t)^{d-\epsilon}\right)
\]
\[
\leq 2x^{-1} + C(R(t))^{-\epsilon (\beta - 1 - \epsilon)}.
\] (22)

Now, using (i) and (22), we can compute using a union bound that almost surely, for all sufficiently large t:
\[
P\left(\sup_{v \in F_t} \deg v \geq (\log t) B'\right) \leq (\log t)^D \left(2(\log t)^{-B'} + C(R(t))^{-\epsilon (\beta - 1 - \epsilon)}\right)
\]
eventually almost surely. For $B > D + 1 + \epsilon$, we can choose $B' \in (D + 1 + \epsilon, B)$ and the right hand side is summable along $t_n = 2^n$; that is, by Borel-Cantelli eventually almost surely $\sup_{v \in F_t} \deg v \leq (\log t_n) B'$ and for $t \in [t_n, t_{n+1}]$
\[
\sup_{v \in F_t} \deg v \leq \sup_{v \in F_{t_{n+1}}} \deg v \leq (\log t_{n+1})^B \leq C(\log t)^{B'} \leq (\log t)^B.
\]
If $v \in E_t$, there exists $z \in F_t$ such that $\xi(v) - \deg v \geq \xi(z) - \deg z$. But also $\xi(z) \geq \xi(v)$, so that
\[
\deg v \leq \xi(v) - \xi(z) + \deg z \leq \deg z,
\]
which proves the claim for $v \in E_t$ as well.

We will also need to consider the following slightly bigger set. For fixed $0 < \delta < \frac{\alpha}{\alpha + 1}$, let us also define the following set
\[
G_t = G_t(\delta) := \{v \in V(B_{R(t)}) : \xi(v) \geq R(t)^{\frac{d}{d+1} - \delta}\}.
\] (23)

Lemma 3.5. Let Assumption 1.1 hold. Then, eventually almost surely,

(i) $\# G_t(\delta) \leq t^{2\alpha(q+1)\delta}$.

(ii) G_t is disconnected, i.e. if $u \in G_t$ then for all $v \in V(B_{R(t)})$ with $v \sim u$ it holds $v \in G_t$. (Consequently the same is true for F_t).

Proof. (i) Fix $\delta > 0$ and define a related set
\[
\tilde{G}_t := \{v \in V(B_{R(t)}) : \xi(v) \geq \frac{1}{2} R(t)^{\frac{d}{d+1} - \delta}\}.
\] (24)

As in Proposition 3.4(i), we have that (almost surely) $\# \tilde{G}_t \leq \text{Binomial}(R(t)^d(\log R(t))^{1+\epsilon}, p_t)$ for all sufficiently large t, where here
\[
p_t := p_t \left(\xi(O) \geq \frac{1}{2} R(t)^{\frac{d}{d+1} - \delta}\right) \leq 2^\alpha R(t)^{-d+\alpha \delta}.
\]

Using a Chernoff bound we compute
\[
P(\# \tilde{G}_t \geq t^{2\alpha(q+1)\delta}) \leq \frac{E[\exp(\theta \# \tilde{G}_t)]}{\exp(\theta t^{2\alpha(q+1)\delta})} = \frac{\exp(\theta t^d(\log R(t))^{1+\epsilon} R(t)^{-d+\alpha \delta}(e^\theta - 1))}{\exp(\theta t^{2\alpha(q+1)\delta})},
\]
and the right hand side is for t sufficiently large upper bounded by $\exp(-Ct^{2\alpha(q+1)\delta})$. Now for $t_n := n$ we have
\[
\sum_{n=0}^{\infty} P(\# \tilde{G}_{t_n} \geq t_n^{2\alpha(q+1)\delta}) < \infty,
\]
and thus by Borel-Cantelli $\# \tilde{G}_{t_n} \leq t_n^{2\alpha(q+1)\delta}$ eventually almost surely. Finally, for $t \in [t_n, t_{n+1}]$, note that $G_t \subset \tilde{G}_{[t]}$ for all sufficiently large t, which implies the result.
Lemma 3.6. Under Assumption 1.1, for any \(f \) and \(\alpha \) of radius \(r \).

To prove Theorems 1.5 and 1.6 we will also need to control the gap between the highest values of \(\xi \).

Note that, since the law of \(\xi \) is non-atomic, these are well-defined, almost surely.

Recall that the distribution and density functions for the Pareto distribution are given by

\[
P(\xi \leq x) = \frac{1}{x^\alpha},
\]

and

\[
f(x) = \frac{\alpha}{x^{\alpha+1}}.
\]

Moreover, we have

\[
\xi \sim \text{Pareto}(\alpha).\]

We will start by proving the following: let \(X \)

Proof. (ii) Fix some \(v \in V(B_{R(t)}) \), suppose that \(u \in V(T_\infty) \) satisfies \(v \sim u \). Since the potentials at different vertices are independent, we have that

\[
P\left(\xi(v) \leq \xi(u) \right) \leq \frac{1}{2^d} R(t)^{-\delta}.
\]

The number of neighbouring vertices in \(B_{R(t)} \) is given by the number of edges in the ball, which is upper bounded by the number of vertices, i.e. by \#V(B_{2R(t)}) \).

Therefore, since \#V(B_{2R(t)}) \leq R(t)^d \text{log} t)\) eventually almost surely by Corollary 2.4, we get from a union bound that for all such \(t \), whenever \(\delta < \frac{1}{2}d \), we can choose \(\varepsilon, \varepsilon' > 0 \) small enough that

\[
P\left(\exists v, u \in V(B_{R(t)}) : v \sim u, [\xi(v) \geq \xi(u)] \right) \leq \frac{1}{2d} R(t)^{-\delta - \frac{1}{2}d} c(R(t))^{-2(d-\delta)}
\]

\[
\leq c(r(t))^{2d+\varepsilon - d} \leq t^{-\varepsilon'}.
\]

Taking \(t_n = 2^n \), and \(\tilde{G}_t \) as in (i), we obtain since \(d > 1 \) from Borel-Cantelli that

\[
P\left(\exists (v, u) \in V(B_{2R(t_{tn})}) : v \sim u, v \in \tilde{G}_{t_n}, u \in \tilde{G}_{t_n} \text{ i.o.} \right) = 0.
\]

We can extend to all \(t \) with \(\tilde{G}_t \) in place of \(\tilde{G}_t \) since \(G_t \subset \tilde{G}_{2^\text{log} 2 t} \) for all sufficiently large \(t \), which establishes the result.

\[\square \]

3.3 Gap between highest values

To prove Theorems 1.5 and 1.6 we will also need to control the gap between the highest values of \(\xi \) on a ball of radius \(r \). We therefore define

\[
Z_{B_r} := \arg\max_{z \in B_r} \max\{\xi(z)\}, \quad g_{B_r} := \xi(Z_{B_r}) - \max_{z \in B_r, z \neq Z_{B_r}} \{\xi(z)\},
\]

and

\[
\tilde{Z}_{B_r} := \arg\max_{z \in B_r} \{\xi(z) - \deg(z)\}, \quad \tilde{g}_{B_r} := \xi(\tilde{Z}_{B_r}) - \deg(\tilde{Z}_{B_r}) - \max_{z \in B_r, z \neq \tilde{Z}_{B_r}} \{\xi(z) - \deg(z)\}.
\]

Note that, since the law of \(\xi \) is non-atomic, these are well-defined, almost surely.

Lemma 3.6. Under Assumption 1.1, for any \(\varepsilon > 0 \) there \(P \)-almost surely exists \(c > 0 \) such that, for all \(r \geq 1 \),

\[
g_{B_r} \geq r^\frac{d}{2} (\log r)^{-\frac{1}{2} + \varepsilon}.
\]

Moreover, \(g_{B_r} \geq r^\frac{d}{2} (\log r)^{-\varepsilon} \) with high \(P \)-probability as \(r \to \infty \).

Proof. We will start by proving the following: let \(X_{i1} \) be i.i.d. Pareto random variables with parameter \(\alpha \), and let \(m_n = \max_{1 \leq i \leq n} X_i, g_n = \sup_{1 \leq i \leq n} X_i - \sup_{1 \leq i \leq n, i \neq m_n} X_i \). Then

\[
P(g_n \leq y) \leq (ny^{-\alpha} + 1)e^{-y^{-(n-1)}}.
\]

Recall that the distribution and density functions for the Pareto distribution are given by \(F(x) = 1 - e^{-x} \) and \(f(x) = \alpha x^{-(\alpha+1)} \). The maximum of \(X_1, \ldots, X_n \) has density \(nf(x)F(x)^{n-1} \), so that

\[
P(g_n \leq y) \leq \int_{2y}^{\infty} nf(x)F(x)^{n-1} \left[1 - \left(\frac{F(x-y)}{F(x)} \right)^{n-1} \right] dx
\]

\[
= (1 - (2y)^{-\alpha})^n + \int_{2y}^{\infty} \alpha x^{-(\alpha+1)} \left[(1 - x^{-\alpha})^{n-1} - (1 - (x-y)^{-\alpha})^{n-1} \right] dx
\]

\[
\leq (1 - (2y)^{-\alpha})^n + ny^{-\alpha}(1 - (2y)^{-\alpha})^{n-1}.
\]
i.e. (25). In particular, (25) decays to zero as $y,n \to \infty$ provided $y = o(n^{\frac{1}{\alpha}})$. Also, if $y = \frac{1}{3} n^{\frac{1}{\alpha}} (\log n)^{\frac{1}{\alpha}}$, then this probability is upper bounded by $(1 + 4^\alpha \log n) n^{-2^\alpha}$ for all sufficiently n, which is summable in n. Therefore, since the volumes of the sets $(B_r)_{r \geq 1}$ are strictly increasing, we deduce from Borel-Cantelli that

$$P \left(g_{B_r} \leq \frac{1}{3} (\#B_r)^{\frac{1}{\alpha}} (\log(\#B_r))^{\frac{1}{\alpha}} \right. \text{ i.o.}) = 0.$$

Since it also follows from Corollary 2.4 that there exists $c > 0$ such that

$$P \left(\#B_r \leq cr^{\frac{\alpha}{3-\alpha}} (\log r)^{\frac{\beta}{\alpha} - 1} \right. \text{ i.o.}) = 0,$$

we deduce from Borel-Cantelli that for any $\varepsilon > 0$

$$g_{B_r} \geq c' r^{\frac{\alpha}{3-\alpha}} (\log r)^{\frac{1+\varepsilon}{\alpha}}$$

eventually P-almost surely. \hfill \Box

Finally, the following lemma shows that eventually the maximisers Z_{B_r} and \tilde{Z}_{B_r} coincide.

Lemma 3.7. Take any $\varepsilon > 0$. Under Assumption 1.1, it holds eventually almost surely that

$$Z_{B_r} = \tilde{Z}_{B_r}, \quad \tilde{g}_{B_r} \geq r^{\frac{\alpha}{\alpha-\varepsilon}} (\log r)^{\frac{1+\varepsilon}{\alpha}}.$$

Proof. First note that it follows from Lemma 3.3 and Lemma 3.4(ii) that $2 \deg Z_{B_r} \leq g_{B_r}$ eventually almost surely. This proves the first statement, since on this event we have for all $z \in B_r$ with $z \neq Z_{B_r}$ that

$$[\xi(Z_{B_r}) - \deg(Z_{B_r})] - [\xi(z) - \deg z] = [\xi(Z_{B_r}) - \xi(z)] - [\deg(Z_{B_r}) - \deg z] \geq \frac{g_{B_r}}{2},$$

from which it follows that $\tilde{Z}_{B_r} = Z_{B_r}$ (uniquely) and $\tilde{g}_{B_r} \geq \frac{g_{B_r}}{2}$. \hfill \Box

4 PAM on T_∞

It follows exactly as in [GM90, Section 2] for the \mathbb{Z}^d case that (1) has a solution if and only if $\alpha > d$. Roughly speaking, this is because the rate of growth of the maximum potential attained on the annulus $B_{2r} \setminus B_r$ is less than the rate of decay for $(\frac{1}{t} \times \text{the log of})$ the probability of reaching the annulus, so the solution given by the Feynman-Kac formula (4) can’t blow up. Since the volume fluctuations for the volume of B_r are at most logarithmic in r (by Proposition 2.3), and since most vertices have degrees of constant order, this does not affect the existence threshold obtained in the \mathbb{Z}^d case, and the arguments carry through with minor adaptations.

Before proving the main localisation result, we prove some asymptotics for the total mass and the location of the localisation site. We then show that the solution at any single site v can be well-approximated by considering trajectories that spend most of their time at a nearby “good” site, and then jump to v just before time t. The strategy to prove this approximation broadly follows that used to prove analogous results for the \mathbb{Z}^d case in [OR16, Section 7], though we have to work harder to control the extra randomness in T_∞. We work under Assumption 1.1 for the whole of Section 4.

4.1 Asymptotics: proof of Theorems 1.2 and 1.7

In this subsection we prove Theorems 1.2 and 1.7. Recall ψ_t and $\tilde{Z}_t^{(1)}$ as defined in (5) and (6).
Proof of Theorems 1.2 and 1.7. Upper bounds. We start with the upper bound on \(U(t) \) and then on \(|\hat{Z}_t^{(1)}| \). First note that for all \(i \geq 1, \lambda, t > 0 \),

\[
P\left(\sup_{v \in B_{2^{i-1}r(t)}(1)} \xi(v) \geq \frac{1}{8} \frac{2^i r(t)}{5t} (\log t) \lambda \right) = P\left(\sup_{v \in B_{2^{i-1}r(t)}(1)} \xi(v) \geq \frac{2^{i+1}r(t)}{40} (\log t) \lambda^{(1 - \frac{d}{4})} \right) \leq c_q \left(\frac{2^i r(t)}{5t} \lambda \right)^{\frac{\alpha}{2}}.
\]

(26)

Now let \(A_\lambda = \{ \exists i : \sup_{v \in B_{2^{i-1}r(t)}(1)} \xi(v) \geq \frac{1}{8} \frac{2^i r(t)}{5t} (\log t) \lambda \} \) and \(B_\lambda = \{ \sup_{v \in B_{2^{i-1}r(t)}(1)} \xi(v) \geq \frac{1}{2} a(t) \lambda \} \). By a union bound, \(P(A_\lambda) \leq c \lambda^{\left(\frac{d}{2} - 1 \right)} \) and \(P(B_\lambda) \leq \lambda^{(\frac{d}{4} - 1)} \) by Lemma 3.1. Moreover, by Corollary 2.11, it follows that, as \(t \to \infty \),

\[
P \left(\sup_{t > T} \tau_{B_{2^{i-1}r(t)}(1)} \leq t \right) \leq \exp \left\{ - \frac{2^{i-1}r(t)}{5} \log \left(\frac{2^{i-1}r(t) \lambda}{et} \right) \right\} \geq 1 - o(1).
\]

For the rest of the proof we work on this event. We therefore have for all \(t > T \) that

\[
U(t) \leq \exp \left\{ \frac{1}{2} t a(t) \right\} + \sum_{i \geq 1} \exp \left\{ \frac{1}{4} \frac{2^i r(t)}{5t} (\log t) \lambda \right\} \exp \left\{ - \frac{2^{i-1}r(t)}{5} \log \left(\frac{2^{i-1}r(t) \lambda}{et} \right) \right\} \leq e^{ta(t)}.
\]

\(U(t) \leq ta(t) \lambda \). Also, since \(\psi_t(v) \leq \xi(v) - \frac{|v|}{t} \left(\log \left(\frac{|v|}{et} \right) \right) \) by respectively taking \(\rho = 0 \) and \(\rho = 1 \) in the two terms in (5), it additionally follows that on the event \(A_\lambda^\epsilon \),

\[
\psi_t(v) \leq \sup_{\xi(v) \in B_{r(t)}(1)} \left\{ \frac{1}{8} \frac{2^i r(t)}{5t} (\log t) \lambda - \frac{2^i r(t) \lambda}{t} \left(\log \left(\frac{2^i r(t) \lambda}{et} \right) \right) \right\} \leq \sup_{\xi(v) \in B_{r(t)}(1)} \left\{ \frac{q^2 r(t) \lambda}{40t} (\log t) - \frac{q^2 r(t) \lambda}{2t} (\log (t \lambda)) \right\} \leq 0.
\]

Since \(\psi_t(O) \to \infty \) as \(t \to \infty \), it therefore follows that \(|\hat{Z}_t^{(1)}| \leq r(t) \lambda \). This establishes the upper bounds in Theorems 1.2 and 1.7.

Lower bounds. We first make two observations.

(a) We have from Lemma 3.1 that with probability at least \(1 - c \lambda^{\left(\frac{1 + \epsilon}{4} \right)} \),

\[
\sup_{v \in B_{r(t)}(1)} \psi_t(v) \leq \sup_{v \in B_{r(t)}(1)} \xi(v) \leq \frac{1}{4} (r(t))^{d/\alpha} \lambda^{-d/2\alpha}.
\]

(b) Recall that \(\hat{B}_r = \{ v \in B_r : \deg v \leq 4 \} \). Choose some \(\epsilon > 0 \) small enough that \(\frac{1 + \epsilon}{4} d < \frac{1}{4} \frac{d}{2\alpha} \). By the same calculation as in (20), instead using that \(\# \hat{B}_r \geq r_d \lambda^{\frac{d}{4\alpha}} \) with probability at least \(1 - Ce^{-c\lambda^{\frac{1}{2}}} \), we obtain that, with probability at least \(1 - C\lambda^{-\frac{1 + \epsilon}{4}} \),

\[
\sup_{v \in \hat{B}_{r(t)}(1)} \xi(v) \leq r(t)^{d/\alpha} \lambda^{-\frac{(1 + \epsilon)d}{4d}}.
\]

21
Now suppose that the two events in (a) and (b) hold. If \(v \in \tilde{B}_{r(t)^{\lambda^{-1/4}}} \) satisfies \(\xi(v) > r(t)^{d/\alpha} \lambda^{\frac{(1+2\epsilon)d}{4n}} \), then:

\[
\psi_t(v) > r(t)^{d/\alpha} \lambda^{\frac{(1+2\epsilon)d}{4n}} - 4 - \frac{r(t)}{t} \lambda^{-1/4} \log(r(t) \lambda^{1/4}) > \frac{1}{2} \frac{r(t)^{d/\alpha} \lambda^{\frac{(1+2\epsilon)d}{4n}}}{t} - 4 - \frac{(q+1) r(t)}{t} \lambda^{-1/4} \log t
\]

\[
> \frac{1}{4} \frac{r(t)^{d/\alpha} \lambda^{\frac{(1+2\epsilon)d}{4n}}}{t} \lambda^{-1/4} \log t
\]

\[
> \sup_{v \in \tilde{B}_{r(t)^{\lambda^{-1/4}}}} \psi_t(v).
\]

This shows that \(\tilde{Z}_t^{(1)} \) as defined by (6) satisfies \(|\tilde{Z}_t^{(1)}| \geq r(t) \lambda^{-1} \). Finally, for the lower bound on \(\log U(t) \), take the same \(v \) and note that from Lemma 2.9 and Proposition 2.10(ii), and taking \(\rho = \frac{|v|}{t \tilde{\xi}(v) - \deg v} < \frac{r(t) \lambda^{-1/4}}{t (r(t)^{d/\alpha} \lambda^{\frac{(1+2\epsilon)d}{4n}} - 4)} < 1 \) below, it holds with probability \(1 - o(1) \) as \(t \to \infty \) that

\[
U(t) \geq \sup_{\rho \in (0,1)} \{ \mathbb{P}(H_v \leq \rho t, X_s = v \forall s \in [H_v, H_v + (1 - \rho)t]) \exp(\xi(v)(1 - \rho)t) \}
\]

\[
\geq \sup_{\rho \in (0,1)} \{ \mathbb{P}(H_v \leq \rho t) \exp(- (1 - \rho) t \deg v + \xi(v)(1 - \rho)t) \}
\]

\[
\geq \exp(t \psi_t(v) - C |v| + O(t)).
\]

We deduce that \(\log U(t) \geq \frac{1}{2} t \alpha(t) \lambda^{-\frac{(1+2\epsilon)d}{4n}} \) on these events, which proves the lower bound (i.e. by replacing \(\lambda^{-\frac{(1+2\epsilon)d}{4n}} \) with \(\lambda \) for the latter event).

\[
4.2 \text{ Solution to the PAM: proof of Theorem } 1.8
\]

Let \(u(t, v) \) denote the solution to the PAM at vertex \(v \in T_{\infty} \) at time \(t \). In this subsection we prove Theorem 1.8.

Recall from (7) that, analogously to [OR16, Section 1.4], for \(v \in T_{\infty} \) we define

\[
\lambda(t, v, y) = t(\xi(y) - \deg y) - |y| \log \left(\frac{|y|}{te} \right) - |v - y| \log \left(\frac{|v - y|}{te} \right),
\]

\[
\lambda(t, v) = \sup_{y \in T_{\infty}} \lambda(t, v, y),
\]

and set \(\lambda_+(t, v) = \lambda(t, v) \vee 0 \). We also fix some \(\delta \in (0,1) \) and some \(m \in (q, \infty) \) and set

\[
Y(t, v) = \arg \max_{y \in \tilde{B}_{r(t)^{\lambda^{-1/4}}}^{(1)}} \{ \lambda(t, v, y) \}, \quad \tilde{Y}(t, v) = \arg \max_{y \in \tilde{B}_{r(t)^{\lambda^{-1/4}}}^{(m)}} \{ \lambda(t, v, y) + t \deg y \}.
\]

Since the law of \(\xi \) is non-atomic, these are well-defined, almost surely.

Recall from Proposition 2.10 that if the random walk \((X_t)_{t \geq 0} \) starts at some point \(y \in T_{\infty} \) and \(r = |v - y| \), then

\[
\left(\prod_{u \in \langle y, v \rangle} \frac{1}{\deg(u)} \right) e^{-r(\log r - \log t - 1)^{\delta} - O(t)} \leq \mathbb{P}_y(H_v < t) \leq e^{-r(\log r - \log t - 1)^{\delta}}. \tag{27}
\]

We first state a couple of lemmas and then show how they can be used to prove Theorem 1.8.

The first lemma is similar in flavour to some of the results in Section 3.2, and allows us to control the location and potential of \(Y(t, v) \).

Lemma 4.1. Under Assumption 1.1, it holds with high \(P \)-probability as \(t \to \infty \) that

(i) \(\lambda(t, v, y) + t \deg y \leq 0 \) whenever \(v \in B_{r(t)^{\lambda^{-1/4}}}^{(1)} \) or \(y \in B_{r(t)^{\lambda^{-1/4}}}^{(m)} \). Consequently, \(Y(t, v) \) and \(\tilde{Y}(t, v) \) are in \(B_{r(t)^{\lambda^{-1/4}}}^{(m)} \) whenever \(\lambda(t, v) > 0 \).
(ii) \(\lambda(t, v) = \sup_{y \in B_{r(t)(\log t)\delta}} \lambda(t, v, y) \) for all \(v \in B_{r(t)(\log t)\delta} \).

(iii) \(\sup_{v \in B_{r(t)(\log t)\delta}} \xi(Y(t, v)) \leq a(t)(\log t)^{\frac{\beta}{\beta-1}}. \)

(iv) \(\log u(t, v) \leq 0 \) for all \(v \in B_{r(t)(\log t)\delta} \).

(v) For all \(v \in V(T_\infty) \), \(\mathbb{E}_0 \left[\exp \left\{ \int_0^t \xi(X_s) \, ds \right\} \mathbb{I}\{ \sup_{0 \leq s \leq t} \xi(X_s) \notin B_{r(t)(\log t)^m}, X_t = v \} \right] \leq 1. \)

The second lemma allows us to control the degree of good vertices.

Lemma 4.2. Take any \(\delta, \eta > 0 \). Under Assumption 1.1, it holds with high P-probability as \(t \to \infty \) that

\[
\sup_{v \in B_{r(t)(\log t)\delta}} \left\{ \text{deg}(Y(t, v)) \lor \text{deg}(\tilde{Y}(t, v)) \right\} \mathbb{I}\{\lambda(t, v) > 0\} \leq (\log t)^{\frac{\beta}{\beta-1} + \eta}.
\]

Finally, let \(L = \{ u \in T_\infty : \text{deg} u = 1 \} \) denote the set of leaves in \(T_\infty \). The third lemma will be useful as we will be able to lower bound the solution at a high degree vertex by considering trajectories that spend a lot of time at a neighbouring leaf and then jump to the high degree vertex just before time \(t \).

Lemma 4.3. Under Assumption 1.1, it holds with high P-probability as \(t \to \infty \) that

\[
\mathbb{P}(\exists v \in B_{r(t)(\log t)\delta} : \text{deg} v > a(t), \exists u \sim v \text{ with } u \in L) \to 0.
\]

On the event that \(\text{deg} v > a(t) \) and \(\exists u \sim v \) with \(p(u) = v \) and \(u \in L \), let \(\ell(v) \) denote the leftmost such choice of \(u \) amongst the children of \(v \).

Proof of Theorem 1.8, assuming Lemmas 4.1, 4.2 and 4.3. By Lemma 4.1(i) and (iv), it is sufficient to show that

\[
(ta(t))^{-1} \sup_{v \in B_{r(t)(\log t)\delta}} \left| \log_+ \left(u(t, v) \right) \right| - \sup_{y \in B_{r(t)(\log t)\delta}} \{ \lambda(t, v, y) \lor 0 \} \to 0
\]

with high P-probability.

Upper bound. For all \(v \in B_{r(t)(\log t)\delta} \), we deduce from Lemma 4.1(v) then (27) then Lemma 4.1(i) that

\[
u(t, v) \leq \sum_{y \in V(T_\infty) \setminus B_{r(t)(\log t)^m}} \mathbb{E}_0 \left[\exp \left\{ \int_0^t \xi(X_s) \, ds \right\} \mathbb{I}\{ \sup_{0 \leq s \leq t} \xi(X_s) = \xi(y), X_t = v \} \right] + \sum_{y \in B_{r(t)(\log t)^m}} \mathbb{E}_0 \left[\exp \left\{ \int_0^t \xi(X_s) \, ds \right\} \mathbb{I}\{ \sup_{0 \leq s \leq t} \xi(X_s) = \xi(y), X_t = v \} \right]
\]

\[
\leq 1 + \sum_{y \in B_{r(t)(\log t)^m}} \exp\{t \xi(y)\} \mathbb{P}(H_y < t) \mathbb{P}_y(H_v < t)
\]

\[
\leq 1 + \sum_{y \in B_{r(t)(\log t)^m}} \exp\{t \xi(y)\} \exp\{-|y| \left(\| \log |y| - \log t - 1 \| \lor 0 \right) \} - |v - y| \left(\| \log |v - y| - \log t - 1 \| \lor 0 \right) \}
\]

\[
\leq 1 + \#(B_{r(t)(\log t)^m}) \sup_{y \in B_{r(t)(\log t)\delta}} \exp \left\{ \lambda(t, v, y) + t \text{deg} \tilde{Y}(t, v) \lor 0 \right\}.
\]

Since \(\#(B_{r(t)(\log t)^m}) \leq (r(t))^{\frac{\beta}{\beta-1}} \) with high probability as \(t \to \infty \) by Proposition 2.3(i), taking logarithms and taking logarithms we get from Lemma 4.1(ii) that with high P-probability as \(t \to \infty \),

\[
\log(u(t, v)) \leq \lambda(t, v) + t \text{deg} \tilde{Y}(t, v) + \frac{1}{\beta - 1} \log r(t),
\]

so that, by Lemma 4.2,

\[
\sup_{v \in B_{r(t)(\log t)\delta}} (ta(t))^{-1} \log_+ u(t, v) - \lambda_+(t, v) \leq (ta(t))^{-1} \left[t(\log t)^{\frac{\beta}{\beta-1} + \eta} + \frac{\beta + 1}{\beta - 1} \log r(t) \right] \to 0.
\]

Finally we can extend this to the supremum over all \(v \in V(T_\infty) \) using Lemma 4.1(iv).

Lower bound. We break the proof into two cases, depending on \(\text{deg} v \).
a) **Case 1:** \(\deg v \leq a(t) \). By Lemma 4.1(i), we can assume w.l.o.g. that \(v \in B_{r(t)(\log t)^s} \). We obtain the complementary lower bound from (27) by writing

\[
\begin{align*}
 u(t, v) &\geq \sup_{y \in B_{r(t)(\log t)^s}} \mathbb{E}_O \left[\exp \left\{ \int_0^t \xi(X_s) \, ds \right\} \mathbb{I} \left\{ H_y \leq \frac{t}{\log t}, X_s = y \, \forall s \in \left[\frac{t}{\log t}, t - \frac{t}{\log t} \right], X_t = v \right\} \right] \\
 &\geq \sup_{y \in B_{r(t)(\log t)^s}} \mathbb{E}_O \left(t - 2\frac{t}{\log t} \xi(y) \right) \mathbb{P}_O \left(H_y \leq \frac{t}{\log t}, X_s = y \, \forall s \in \left[H_y, t - \frac{t}{\log t} \right], X_t = v \right).
\end{align*}
\]

To bound the probability appearing here, we use the Markov property to write

\[
\mathbb{P}_O \left(H_y \leq \frac{t}{\log t}, X_s = y \, \forall s \in \left[H_y, t - \frac{t}{\log t} \right], X_t = v \right) \geq \mathbb{P}_O \left(H_y \leq \frac{t}{\log t} \right) \mathbb{P}_y \left(X_s = y \, \forall s \in \left[0, t - \frac{t}{\log t} - H_y \right], H_y \leq \frac{t}{\log t} \right) \mathbb{P}_y \left(X_{\frac{t}{\log t}} = v \right).
\]

(28)

Combining these and using (27), we deduce that \(u(t, v) \) is lower bounded by

\[
\begin{align*}
 &\sup_{y \in B_{r(t)(\log t)^s}} \exp \left\{ \left(t - 2\frac{t}{\log t} \right) \xi(y) \right\} \mathbb{E}_O \left[\sum_{u \in [(O,y)]} \log(\deg u) - |y| \left(\log_+ \left(\frac{|y|}{tl} \right) + \log \log t \right) \right] e^{-t \deg y} \\
 &\quad \times \exp \left\{ - \sum_{u \in \left[|y,v| \right]} \log(\deg u) - |v - y| \left(\log_+ \left(\frac{|v - y|}{tl} \right) + \log \log t \right) + O(t) \right\} e^{-\frac{2t}{\log t} \deg v}.
\end{align*}
\]

Also recall from Lemma 4.1(i) that on the event \(\lambda(t, v) > 0 \), \(Y(t, v) \in B_{r(t)(\log t)^s} \). (If \(\lambda(t, v) < 0 \) then the lower bound is trivial). In this case we can therefore write, conditioning on the high probability events in Lemma 4.1:

\[
\begin{align*}
 \log u(t, v) &\geq \sup_{y \in B_{r(t)(\log t)^s}} t \xi(y) - |y| \left(\log_+ \left(\frac{|y|}{tl} \right) \right) - |v - y| \log t - \frac{2t}{\log t} \xi(y) \\
 &\quad - \sum_{u \in [(O,y)]} \log(\deg u) - \sum_{u \in \left[|y,v| \right]} \log(\deg u) - \frac{t}{\log t} \deg v - (|y| + |v - y|) \log \log t - O(t). \\
 &\geq \lambda(t, v) - \frac{2t}{\log t} \xi(Y(t, v)) - \sum_{u \in Y(t,v)} \log(\deg u) - \sum_{u \in \left[Y(t,v), v \right]} \log(\deg u) - \frac{ta(t)}{\log t} - O(r(t)(\log t)^s \log \log t) \\
 &\geq \lambda(t, v) - a(t)(\log t)^{\frac{2t}{\log t}} - 4B(t)(\log t)^s - 4(q + 1)B \log t - \frac{ta(t)}{\log t} - O(r(t)(\log t)^s \log \log t).
\end{align*}
\]

Here the penultimate line follows by the assumption that \(\deg v \leq a(t) \), and the last line follows by Lemmas 2.9 and 4.1(iii). Since \(\delta < 1 \), the result then follows since

\[
(ta(t))^{-1} \left(a(t)(\log t)^{\frac{2t}{\log t}} + 4B(t)(\log t)^s + 4(q + 1)B \log t + \frac{ta(t)}{\log t} + O(r(t)(\log t)^s \log \log t) \right) \to 0
\]

as \(t \to \infty \) (note that \(ta(t) = r(t)(\log t) \)).

b) **Case 2:** \(\deg v > a(t) \). In this second case we lower bound \(u(t, v) \) using a slightly different event. Again we can assume w.l.o.g. that \(v \in B_{r(t)(\log t)^s} \). We again proceed as in (28) and (29) but this time we observe that,
letting $H^+_v = \inf\{s \geq H_{\ell(v)} : X_s = v\}$, it follows from (27) and Lemma 4.3 that with high P-probability

$$P_y(X_t = v) \geq P_y(H_{\ell(v)} \leq \frac{t}{2 \log t}, H^+_v \in \left(\frac{t}{\log t} - \frac{2}{\deg v}, \frac{t}{\log t} - \frac{1}{\deg v}\right), X_s = v \forall s \in [H^+_v, \frac{t}{\log t}]) \geq \exp\left\{-\sum_{u \in [y,v]} \log(\deg u) - (|v - y| + 1) \left(\log + \left(\frac{|v|}{te} + \log \log t\right)\right) + O(t)\right\} e^{-\frac{2t}{2\deg v}} e^{-2}.$$

Substituting back into the second line of (29) and then the second line of (28), and then conditioning on the event in Lemma 4.1(i), we see that

$$\log u(t,v) \geq \sup_{y \in B_{r(t)\log t}^+} \left(t - \frac{2t}{\log t}\right) \xi(y) - \left\{\sum_{u \in [O,v]} \log(\deg u) + |y| \left(\log + \left(\frac{|y|}{te} + \log \log t\right)\right)\right\} - t \deg y$$

$$- \left\{\sum_{u \in [y,v]} \log(\deg u) + (|v - y| + 1) \left(\log + \left(\frac{2(|v - y| + 1)}{te} + \log \log t\right)\right)\right\} - \frac{2t}{\log t} - O(t)$$

$$= \lambda(t,v) - \frac{2t}{\log t} \xi(Y(t,v)) - \sum_{u \in [O,Y(t,v)]} \log(\deg u) - \sum_{u \in [Y(t,v),v]} \log(\deg u) - 2(|Y(t,v) + |v|) \log \log t - O(t)$$

$$\geq \lambda(t,v) - O(a(t)(\log t)^{\frac{2\delta}{1 - \delta} - 1}) - O(r(t)(\log t)^{\delta} \log \log t),$$

which implies the result as in a), since $\delta < 1$. \qed

We therefore just need to prove Lemmas 4.1, 4.2 and 4.3.

Proof of Lemma 4.1. (i) Just as in (26), it follows from Lemma 3.1 that for any $i \geq 1, \varepsilon > 0$,

$$P\left(\sup_{v \in B_{2^{i+1}r(t)\log t}^+} \xi(v) \geq \frac{1}{8} \frac{2^i r(t)}{t} (\log t)^{1+\delta}\right) \leq c_q \left(2^{(2^{-\delta}(\log t)^{\delta(1 - \frac{2}{\delta})})^{-\frac{(1 - 2)}{\alpha}}}
ight). \quad (30)$$

Therefore, given $v \in B_{r(t)\log t}^+$ and choosing $\varepsilon > 0$ small enough that $\frac{2^{-\delta}}{\delta}$ is positive, and since $|y| \land |v - y| \geq \frac{1}{2} |v|$ for all $v, y \in T_\infty$, we have that

$$P(\exists i \geq 0, y \in B_{2^{i+1}r(t)\log t}^+ \setminus B_{2^ir(t)\log t}^+ : \lambda(t,v) + t \deg y \geq 0)$$

$$\leq \sum_{i \geq 0} P\left(\sup_{v \in B_{2^{i+1}r(t)\log t}^+} \xi(v) \geq \frac{1}{8} \frac{2^i r(t)}{t} (\log t)^{1+\delta}\right)$$

$$\leq \sum_{i \geq 0} c_q \frac{-\frac{(1 - 2)}{\alpha}}{\delta^{-\frac{(1 - 2)}{\alpha} - \frac{\delta}{\alpha} - \frac{\delta}{\alpha}}} \log t \leq \sum_{i \geq 0} c_q \frac{-\frac{(1 - 2)}{\alpha}}{\delta^{-\frac{(1 - 2)}{\alpha} - \frac{\delta}{\alpha} - \frac{\delta}{\alpha}}} \log t,$$

which vanishes as $t \to \infty$.

(ii) Follows from (i), since $\lambda(t,v,y) \leq \lambda(t,y)$ for all $v \in T_\infty$.

(iii) Follows from (i) and Lemma 3.1.
(iv) Choose some $\varepsilon \in (0, m(\alpha - d) - d)$ (by our choice of m, such an ε always exists). Note that by Corollary 2.11, Lemma 2.12 and (30), we have whp as $t \to \infty$ that

$$\sum_{v \notin B_{r(t)}(\log t)^k} u(t, v) \leq E_\Theta \left[\exp \left\{ \int_0^t \xi(X_s) \, ds \right\} 1 \{ r(t) \leq t \} \right]$$

$$\leq \sum_{r \geq r(t)(\log t)^k} \mathbb{P}(r(B_r) \leq t) \exp \{ t \sup_{v \in B_r} \xi(v) \}$$

$$\leq \sum_{r(t)(\log t)^k \leq r \leq r(t)(\log t)^m} \exp \{ -r \log \left(\frac{r}{\varepsilon t} \right) + o(r(t)) \} \exp \left\{ \frac{1}{4} r(t) \right\}$$

$$+ \sum_{r \geq r(t)(\log t)^m} \exp \left\{ -\frac{r}{3} (\log r - \log t - 1) \right\} \exp \left\{ tr^\alpha (\log r)^{\frac{d+\varepsilon}{\alpha}} \right\},$$

The choice of ε implies that $m > \frac{d}{\alpha} + \frac{d+\varepsilon}{\alpha}$, which is exactly what is required for this sum to vanish as $t \to \infty$.

(v) The calculation in (iv) similarly gives (v) as well.

Proof of Lemma 4.2. Recall that

$$\lambda(t, v, y) = \{ t(\xi(y) - \deg(y)) - |y||\log |y| - \log t - 1| - |v - y||\log |v - y| - \log t - 1| \}$$

and $\lambda(t, v) = \sup_{y \in T_\infty} \lambda(t, v, y)$. We also define the set

$$C_{t,\varepsilon} = \left\{ y \in B_{r(t)}(\log t)^k : t\xi(y) > \varepsilon r(t) \log \left(\frac{r(t)}{t} \right) \right\}.$$

We will show that for any $\delta' > 0$, we can choose $\varepsilon > 0$ small enough so that for all sufficiently large t we have with probability at least $1 - \delta'$ that

1. $C_{t,\varepsilon} \neq \emptyset$;
2. $\{ Y(t, v) : v \in B_{r(t)} \} \subset C_{t,\varepsilon}$ and $\{ \tilde{Y}(t, v) : v \in B_{r(t)} \} \subset C_{t,\varepsilon}$;
3. For any $\varepsilon' > 0$, the cardinality of the set $C_{t,\varepsilon}$ is upper bounded by $(\log t)^{d\delta + \varepsilon'}$;
4. For any $\varepsilon' > 0$, $\sup_{v \in C_{t,\varepsilon}} \deg v \leq (\log t)^{d\delta + \varepsilon'}$.

We deal with each of these four points in four separate steps below.

Step 1. To deal with the first point, choose some $k < \alpha$ and note from Proposition 2.3(iii) that

$$P(C_{t,\varepsilon} = \emptyset) \leq P(V(B_{r(t)}) \leq \varepsilon^k r(t)^d) + P \left(C_{t,\varepsilon} = \emptyset \bigg| V(B_{r(t)}) > \varepsilon^k r(t)^d \right)$$

$$\leq e^{-\varepsilon^k r(t)^d} + \left(1 - t^\alpha r(t)^{-\alpha} \varepsilon^{-\alpha} \left(\log \left(\frac{r(t)}{t} \right) \right)^{-\alpha} \right)^{\frac{1}{\alpha}} \leq e^{-\varepsilon^k r(t)^d} + \exp \{ -\varepsilon^k \alpha q^{-\alpha} \},$$

which clearly vanishes as $\varepsilon \downarrow 0$.

Step 2. To deal with the second point: firstly, note that if $Y(t, v) \notin B_{r(t)}$ or $v \notin B_{r(t)}$, then it must be that $Y(t, v) \in C_{t,\varepsilon}$, since $\lambda(t, v, Y(t, v)) > 0$ on the event $\lambda(t, v) > 0$ (and similarly for $\tilde{Y}(t, v)$).

We will now show that, with high probability as $t \to \infty$, $\lambda(t, v) \geq \varepsilon r(t) \log \left(\frac{r(t)}{t} \right)$ for all $v \in B_{r(t)}$, which implies the result since $\xi(Y(t, v)) \geq \lambda(t, v)$. To do this, we first let $C_{k,t} = B_{(k+1)r(t)} \setminus A_{kr(t)}$ for $1 \leq k \leq \lceil \varepsilon^{-1} \rceil$, where A_r is the connected component containing the root obtained by deleting s_r from T_∞.

26
(recall that s_r is the r^{th} backbone vertex). Note that the definition of the set A_r ensures that $(C_k, t)_{k=1}^{(\varepsilon^{-1})}$ is a sequence of independent sets, each with law $B_{r(t)}$. Moreover, by Lemma 2.8, for each $k \geq 4$ we have for all sufficiently large t that

$$P \left(\exists v \in C_k, t : t(\xi(v) - \deg v) \geq (2k + 4)\varepsilon r(t) \log \left(\frac{r(t)}{t} \right) \right)$$

$$\geq P \left(\exists v \in C_k, t : \deg v \leq 4, \xi(v) \geq (2k + 5)\varepsilon \left(\frac{r(t)}{t} \right) \log \left(\frac{r(t)}{t} \right) \right)$$

$$\geq P \left(\{ v \in B_{r(t)} : \deg v \geq 4 \} \geq \epsilon^d r(t)^d \right) \left[1 - \left(1 - ((2k + 5)\varepsilon)\alpha r(t) \log \left(\frac{r(t)}{t} \right) \right)^{\epsilon^{-d} r(t)^d} \right]$$

$$\geq C \left(1 - \exp \left\{-\frac{q}{2}((2k + 5)\varepsilon)\alpha e^d\right\} \right).$$

In particular, for $1 \leq k \leq \epsilon^{-\frac{(\alpha - \beta)}{\alpha}}$, this is uniformly bounded below by a positive constant, so that

$$P \left(\exists k \leq \epsilon^{-\frac{(\alpha - \beta)}{\alpha}}, v \in C_k, t : t(\xi(v) - \deg v) \geq (2k + 4)\varepsilon r(t) \log \left(\frac{r(t)}{t} \right) \right) \geq 1 - Ce^{-c \epsilon^{-\frac{(\alpha - \beta)}{\alpha}}}.$$

Moreover, if $y \in C_k, t$ with $t(\xi(y) - \deg y) \geq (2k + 4)\varepsilon r(t) \log \left(\frac{r(t)}{t} \right)$ and $v \in B_{r(t)}$ we have that $|y| \leq (k + 1)\varepsilon r(t)$ and $|v - y| \leq (k + 2)\varepsilon r(t)$ so that $\lambda(t, v, y) \geq \varepsilon r(t) \log \left(\frac{r(t)}{t} \right)$, which proves the claim.

Step 3. The third step is therefore to bound the cardinality of this set. Setting $N_t = \left(\log \left(\frac{r(t)}{t} \right) \right)^{c_1} r(t)^d$ and $p_t = t^{-\alpha} r(t)^{-\alpha} \varepsilon^{-\alpha} (\log r(t))^{-\alpha}$, we have from Proposition 2.3(i) and a Chernoff bound that, if $c_2 > d\delta$ and $c_1 \in (d\delta, c_2)$, then

$$P(|C_t| \geq (\log t)^{c_2}) \leq P \left(V(B_{r(t) \log t^d}) \geq (\log t)^{c_1} r(t)^d \right) + P \left(\text{Binomial}(N_t, p_t) \geq (\log t)^{c_2} \right)$$

$$\leq (\log t)^{-\frac{1}{2}(\beta - 1)(c_1 - d\delta)} + \exp \left\{ e - 1 \right\} N_t p_t - (\log t)^{c_2}$$

$$= (\log t)^{-\frac{1}{2}(\beta - 1)(c_1 - d\delta)} + \exp \left\{ - (\log t)^{c_2} \left(1 - 2(\log t)^{-(c_2 - c_1)} (e - 1) \epsilon^{-\alpha} \right) \right\},$$

which clearly vanishes as $t \to \infty$.

Step 4. For the fourth point above, note that since the potential at each vertex in T_∞ is independent of the underlying tree structure, each vertex v in $C_{t, \varepsilon}$ is a uniform point of $B_{r(t) \log t^d}$, so whp it satisfies

$$P \left(\deg v \geq x \right) \leq e^{r(t) \log t^d \delta \frac{x^{-\beta}}{r(t)^d} + c x^{-\beta}}$$

for all $x \geq 0$. Therefore, by a union bound, and conditional on $|C_{t, \varepsilon}| \leq (\log t)^{d\delta + \varepsilon'}$, we have whp that (for any $M > 0$):

$$P \left(\sup_{v \in C_{t, \varepsilon}} \deg v \geq (\log t)^M \right) \leq (\log t)^{d\delta + \varepsilon' - M \beta}.$$

Conclusion. Therefore, to tie up, if we choose $M > \frac{2\delta}{\beta}$ this ensures that we can choose ε' small enough that

$$P \left(\sup_{v \in B_{r(t) \log t^d}} \deg Y(t, v) \geq (\log t)^M \right) \geq 1 - 2\delta'$$

for all sufficiently large t. The same holds for $Y(t, v)$. Since δ' was arbitrary, this proves the result.

Proof of Lemma 4.3. If $\deg v > a(t)$, then $P(\exists u \sim v \text{ with } u \in L) \leq (1 - p_0)^{a(t) - 1} \leq e^{-ca(t)}$. Therefore, taking a union bound over all vertices in $B_{r(t) \log t^d}$, we obtain from Proposition 2.3(i) that

$$P \left(\exists v \in B_{r(t) \log t^d} : \deg v > a(t), \exists u \sim v \text{ with } p(u) = v, u \in L \right) \leq P \left(V(B_{r(t) \log t^d}) \geq r(t)^{2d} \right) + r(t)^{2d} e^{-ca(t)} \to 0$$

as $t \to \infty$.

□
5 The concentration sites: bounds on $|\hat{Z}_t^{(i)}|$, $\psi_t(\hat{Z}_t^{(i)})$ and $\psi_t(\hat{Z}_t^{(1)}) - \psi_t(\hat{Z}_t^{(2)})$

In this section we derive some asymptotics for the functional ψ_t and the maximisers $\hat{Z}_t^{(1)}$ and $\hat{Z}_t^{(2)}$ introduced in (5) and (6).

5.1 Maximiser of the functional ψ_t

Recall from (5) and (6) the definition of the random functional $\psi_t : V(T_\infty) \to \mathbb{R}$ by

$$\psi_t(z) := \left[(\xi(z) - \deg(z)) - \frac{|z|}{t} \log(\xi(z) - \deg(z)) \right] \mathbb{1}\{t(\xi(z) - \deg(z)) \geq |z|\},$$

and its maximisers

$$\psi_t(\hat{Z}_t^{(1)}) = \max_{z \in V(T_\infty)} \psi_t(z), \quad \psi_t(\hat{Z}_t^{(2)}) = \max_{z \in V(T_\infty) \setminus \{\hat{Z}_t^{(1)}\}} \psi_t(z), \quad \psi_t(\hat{Z}_t^{(1),2}) = \max_{z \in V(T_\infty) \setminus \{\hat{Z}_t^{(1)}, \hat{Z}_t^{(2)}\}} \psi_t(z). \quad (31)$$

(We will show in Proposition 5.1 that these are almost surely uniquely defined). In this section we establish some elementary properties of these first maximisers. We first prove the following.

Proposition 5.1. P-almost surely under Assumption 1.1 or Assumption 1.3, we have for any $\varepsilon > 0$ that for all sufficiently large t, and $i = 1, 2, 3$,

(i) \(r(t)(\log t)^{-1/2+\varepsilon} \leq |\hat{Z}_t^{(i)}|, \)

(ii) \(a(t)(\log t)^{-\varepsilon} \leq \psi_t(\hat{Z}_t^{(i)}), \)

(iii) \(|\hat{Z}_t^{(i)}| \leq r(t)(\log t)^{\frac{d-2}{d}} + \varepsilon, \)

(iv) \(\psi_t(\hat{Z}_t^{(i)}) \leq a(t)(\log t)^{\frac{d-2}{d}} + \varepsilon. \)

Under Assumption 1.1 we instead have that for any $\varepsilon > 0$, whp:

(\textit{i}') \(r(t)(\log t)^{-\varepsilon} \leq |\hat{Z}_t^{(i)}|, \)

(\textit{ii}') \(a(t)(\log t)^{-\varepsilon} \leq \psi_t(\hat{Z}_t^{(i)}), \)

(\textit{iii}') \(|\hat{Z}_t^{(i)}| \leq r(t)(\log t)^{\varepsilon}, \)

(\textit{iv}') \(\psi_t(\hat{Z}_t^{(i)}) \leq a(t)(\log t)^{\varepsilon}. \)

Proof. Note that $d = 2$ under Assumption 1.3, but we carry d through the proofs in order to make the high probability extensions clearer.

(i) Let $\varepsilon > 0$ and let also $\varepsilon' \in (0, \frac{d}{2})$. Let $f(t) = (\log t)^{-\frac{1+\varepsilon}{2}}$, $g(t) = (\log t)^{-\varepsilon/16}$. We perform two calculations.

(a) We have from Lemma 3.2 that eventually almost surely

$$\sup_{v \in B_{r(f(t))}} \psi_t(v) \leq \sup_{v \in B_{r(f(t))}} \xi(v) \leq (r(t)f(t))^{d/\alpha} (\log(r(t)f(t)))^{\frac{d}{2\alpha}} \leq C_0 a(t)(\log t)^{-\varepsilon/2\alpha}.$$
Remark 5.2.

Proposition 5.1 also shows that \(\psi \) bounds on \(\hat{Z}_t \).

Lemma 5.3.

For the lower bound on \(\psi \), note that we can conclude from the proof of part (i) that for \(i = 1, 2, 3 \)
\[
\psi_i(\hat{Z}_t) \geq \min_{i=1,2,3} \psi_i(u_i) > a(t)(\log t)^{-\varepsilon d/\alpha}.
\]

Take \(b = \frac{1+2\varepsilon}{\alpha - \delta} \). If \(x > r(t)(\log t)^b \), then
\[
x^{\frac{\delta}{\alpha}} (\log x)^{\frac{1+\varepsilon}{\alpha}} \leq \frac{x}{t} \log t
\]
for all sufficiently large \(t \). Therefore, if \(v \in V(T_\infty) \) is such that \(|v| \geq r(t)(\log t)^b \), then either \(\xi(v) = \deg(v) \leq t \), in which case \(v \neq \hat{Z}_t \) by part (ii) (since \(\xi(\hat{Z}_t) \geq \psi_i(\hat{Z}_t) \)), or otherwise we have from Lemma 3.2 that
\[
\psi_i(v) \leq |v|^{\frac{\delta}{\alpha}} (\log |v|)^{\frac{1+\varepsilon}{\alpha}} - |v|^{\frac{\delta}{\alpha}} (\log(\deg(v)) \leq |v|^{\frac{\delta}{\alpha}} (\log |v|)^{\frac{1+\varepsilon}{\alpha}} - \frac{|v|}{t} \log t \leq 0
\]
by the computation above, so again \(v \neq \hat{Z}_t \) by part (ii).

(iv) From (iii) and Lemma 3.2, almost surely for all sufficiently large \(t \) we have that
\[
\psi_i(\hat{Z}_t) \leq t \sup_{v \in B_{r(t)(\log t)}(\hat{Z}_t)} \xi(v) \leq C_a \left(r(t)(\log t)^{\frac{1+\varepsilon}{\alpha}} \right)^{\frac{\delta}{\alpha}} (\log t)^{\frac{1+\varepsilon}{\alpha}} = r(t)^{\frac{\delta}{\alpha}} (\log t)^{\frac{1+\varepsilon}{\alpha} + 2\varepsilon}.
\]

(i') This is the same as above but instead taking \(f(t) = (\log t)^{-\varepsilon}, g(t) = (\log t)^{-\varepsilon/2} \).

(ii') Similarly follows from considering the largest value of \(\xi \) on \(B_{r(t)(\log t)} \) as above.

(iii') This follows from the computation in (30).

(iv') This also follows from the computation in (30). \(\square \)

Remark 5.2. Proposition 5.1 also shows that \(\hat{Z}_t(i) \) is well-defined for each \(i = 1, 2, 3 \).

The next lemma will be useful for converting bounds on \(\psi_i(\hat{Z}_t(i)) \) along some subsequence to almost sure bounds on \(\psi_i(\hat{Z}_t(i)) \) for all sufficiently large \(t \).

Lemma 5.3. Let \(\varepsilon > 0 \) be arbitrary. Under Assumption 1.3, we have for each \(i = 1, 2, 3 \) that eventually \(P \)-almost surely:

(i) \(\psi_u(\hat{Z}_u(i)) - \psi_i(\hat{Z}_t(i)) \leq \frac{a(u)(\log u)^{-1+\varepsilon}}{t}, \) for all \(u > t \),
Lemma 5.5. \(t \mapsto \psi_t(\hat{Z}_t^{(i)}) \) is increasing.

Proof. This follows exactly as in [KLMS09, Lemma 3.2(iv)], using Proposition 5.1(ii). \(\square \)

The third lemma will be useful for later running Borel-Cantelli arguments on the maximisers \(\hat{Z}_t^{(i)} \) for each \(i = 1, 2, 3 \).

Lemma 5.4. Let \(t_n = 2^n \). Under Assumption 1.3, we have for any \(\varepsilon > 0 \) that \(P \)-almost surely for all sufficiently large \(n \) and each \(i = 1, 2 \) that

\[
\# \left\{ \hat{Z}_t^{(i)} : t \in [t_n, t_{n+1}] \right\} \leq (\log t_n)^\varepsilon.
\]

Proof. Set \(r_n = 2^n \), define the set

\[
N_n := \left\{ v \in B_{r_{n+1}} \setminus B_{r_n} : \xi(v) > 2^{-d/\alpha} r_n^{d/\alpha} (\log r_n)^{-\varepsilon} \right\}
\]

and set

\[
p_n := P \left(\xi(O) > 2^{-d/\alpha} r_n^{d/\alpha} (\log r_n)^{-\varepsilon} \right) = 2d r_n^{-d} (\log r_n)^{\alpha \varepsilon}.
\]

Note that, conditionally on \(T_{\infty, 1} \mid N_n \sim \text{Binom}(\#(B_{r_{n+1}} \setminus B_{r_n}), p_n) \). By Corollary 2.4, almost surely for all \(n \) large enough it holds that \(\#(B_{r_{n+1}} \setminus B_{r_n}) \leq r_n^{d/\varepsilon} \). Using a Chernoff bound we thus obtain that with probability \(1 - o(1) \) as \(N \to \infty \), it holds for all \(n \geq N \) that

\[
P(\mid \mid N_n \mid \geq (\log r_n)^{2(1+\alpha)\varepsilon} \leq \frac{E[\#N_n]}{e(\log r_n)^{2(1+\alpha)\varepsilon}} \leq e^{-c(\log r_n)^{(2+\alpha)\varepsilon}}.
\]

This probability is summable over \(n \) and thus by Borel Cantelli \(\mid N_n \mid \leq (\log r_n)^{2(1+\alpha)\varepsilon} \) eventually almost surely.

To conclude, note that by Proposition 5.1(ii) that for each \(i = 1, 2 \), we have eventually almost surely that

\[
\left\{ \hat{Z}_t^{(i)} : r \in [r_n, r_{n+1}] \right\} \subset N_n.
\]

Since \(\varepsilon > 0 \) was arbitrary we deduce the result. \(\square \)

5.2 The gap between the highest values of \(\psi_t \)

To prove the localisation result, it will be important to have a bound between the largest values of \(\psi_t \). We start with a tail bound.

Lemma 5.5. Under Assumption 1.1, for any \(k < \infty \) and \(0 < \varepsilon < k \), we have for all \(t \) large enough that

\[
P(\psi(\hat{Z}_t^{(1)}) - \psi(\hat{Z}_t^{(2)}) < a(t)(\log t)^{-k}) < 4\alpha(\log t)^{-(k-\varepsilon)}, \tag{32}
\]

\[
P(\psi(\hat{Z}_t^{(2)}) - \psi(\hat{Z}_t^{(3)}) < a(t)(\log t)^{-k}) < 4\alpha(\log t)^{-(k-\varepsilon)} \tag{33}
\]

Proof. We just prove (32) (the proof of (33) is identical). Fix \(k, \varepsilon \) as above and note that it follows from the proofs of Proposition 5.1(i), (ii) and Lemma 3.3 that

\[
P\left(\left| \psi(\hat{Z}_t^{(2)}) \right| \leq a(t)(\log t)^{-\varepsilon} \right) + P\left(\left| \psi(\hat{Z}_t^{(1)}) \right| \leq a(t)(\log t)^{-\varepsilon} \right)
\]

for all sufficiently large \(t \).
We can therefore write for all sufficiently large t and any $x > 0$, $z > a(t)(\log t)^{-\varepsilon} + 1$ that

\[
P(\psi_t(\tilde{Z}_i^{(1)}) - \psi_t(\tilde{Z}_i^{(2)}) > x) \\
\geq \inf_{z > a(t)(\log t)^{-\varepsilon} + 1} P\left(\psi_t(\tilde{Z}_i^{(1)}) > x + z \mid \psi_t(\tilde{Z}_i^{(2)}) \in [z - 1, z], \psi_t(\tilde{Z}_i^{(2)}) \geq a(t)(\log t)^{-\varepsilon}, \tilde{Z}_i^{(1)} > et\right) \\
- P\left(\psi_t(\tilde{Z}_i^{(2)}) \leq a(t)(\log t)^{-\varepsilon}\right) - P\left(\tilde{Z}_i^{(1)} \leq et\right) \\
\geq \sup_{S_{\infty} \subset \mathcal{T}_\infty : \mathcal{P}(S_{\infty}) = 1} \inf_{T \in \mathcal{T}_{\infty}} \inf_{v \in F: z > a(t)(\log t)^{-\varepsilon} + 1} \sup_{|v| > et} \frac{P(\psi_t(v) > x + z \mid \psi_t(\tilde{Z}_i^{(2)}) \in [z - 1, z], \psi_t(v) > z - 1, |v| > et)}{P(\psi_t(v) > x + z)} - (\log t)^{-(k-\varepsilon)}.
\]

(Here the condition that $|v| > et$ is just for technical reasons later). Our aim is therefore to bound the quantity above. For $v \in V(T), t > 0$ we define the function

\[f_{v,t}(y) = y - \deg v - \frac{|v|}{t} \log((y - \deg v)),\]

so that $\psi_t(v) = f_{v,t}(\xi(v)) 1\{t(\xi(v) - \deg v) > |v|\}$. Note that for $y \in I_{v,t} := (|v|/t + \deg(v), \infty)$,

\[
\frac{d}{dy} f_{v,t}(y) = 1 - \frac{|v|}{t} \frac{1}{y - \deg(v)} > 0;
\]

that is, $f_{v,t}$ has a continuous, increasing inverse on the interval $I_{v,t}$, which we denote by $f_{v,t}^{-1}$. Also note that for $y \in I_{v,t}$ we have that $f_{v,t}(y) \in J_{v,t} := (|v|/t - |v|/t \log(|v|/t), \infty)$, and vice versa. We give two preliminary claims.

- **Claim 1**: Let $w > \deg(v) + e$ and $u > 0$. If $\frac{f_{v,t}(w + u)}{f_{v,t}(w)} < \frac{1}{1 - 2(\log t)^{-(k-\varepsilon)}}$, then

\[
\frac{w - \deg(v)}{w + u - \deg(v)} > 1 - 2(\log t)^{-(k-\varepsilon)}.
\]

Proof of Claim 1: We prove the contrapositive. Note that for $y > e$ the function $g(y) = \frac{\log(y)}{y}$ is decreasing. Therefore, if (35) does not hold then

\[
f_{v,t}(w + u) = u + w - \deg(v) - \frac{|v|}{t} \log((u + w - \deg(v))) \geq \frac{u + w - \deg(v)}{w - \deg(v)} \left[w - \deg(v) - \frac{|v|}{t} \log((w - \deg(v)))\right] \geq \frac{1}{1 - 2(\log t)^{-(k-\varepsilon)}} f_{v,t}(w),
\]

which proves the claim.

- **Claim 2**: Set $x_t = a(t)(\log t)^{-k}$. For all (deterministically) sufficiently large t and any $z \geq a(t)(\log t)^{-\varepsilon} + 1$,

\[
x_t + \frac{z}{z - 1} < \frac{1}{1 - 2(\log t)^{-(k-\varepsilon)}}.
\]

Proof of Claim 2: Note that for fixed x the function $h(z) = \frac{x + z}{z - 1}$ is decreasing on $z > 1$. We can thus compute, provided t is sufficiently large, that

\[
x_t + \frac{z}{z - 1} = 1 + \frac{x_t + 1}{z - 1} \leq 1 + \frac{a(t)(\log t)^{-k} + 1}{a(t)(\log t)^{-\varepsilon}} < \frac{1}{1 - 2(\log t)^{-(k-\varepsilon)}},
\]

which proves the claim.
Recall from the last line of (34) that we are assuming the following:

- $z > a(t)(\log t)^{-\varepsilon} + 1$,
- $|v| > et$.

Together, these imply that $z - 1 \in J_{v,t}$. Now set $w = f_{v,t}^{-1}(z - 1)$ and $u = f_{v,t}^{-1}(z + x) - w$, so that

$$\frac{x + z}{z - 1} = \frac{f_{v,t}(w + u)}{f_{v,t}(w)}.$$ (Recall that $x = a(t)(\log t)^{-k}$.) Since $z - 1 \in J_{v,t}$ and $|v| > et$, it follows that $w \in I_{v,t}$ and in particular that $w > \deg(v) + e$. Moreover, since u is increasing on $I_{v,t}$ it follows that $u > 0$.

First note that, by Claim 2 and the assumption that $z > a(t)(\log t)^{-\varepsilon} + 1$,

$$\frac{f_{v,t}(u + w)}{f_{v,t}(w)} = \frac{x + z}{z - 1} > \frac{x + z}{z - 1} < \frac{1}{1 - 2(\log t)^{-(k-\varepsilon)}}.$$

It therefore follows from Claim 1 that

$$\frac{f_{v,t}^{-1}(z - 1)}{f_{v,t}^{-1}(x + z)} = \frac{w}{w + u} > \frac{w - \deg v}{w + u - \deg v} > 1 - 2(\log t)^{-(k-\varepsilon)}. \tag{36}$$

Also note that the final expression in (34) can be written as

$$\frac{\mathbb{P}(\psi_t(v) > x_t + z)}{\mathbb{P}(\psi_t(v) > z - 1)} = \frac{\mathbb{P}(f_{t,v}(\xi(v)) > x_t + z \text{ and } t(\xi(v) - \deg(v)) > |v|)}{\mathbb{P}(f_{t,v}(\xi(v)) > z - 1 \text{ and } t(\xi(v) - \deg(v)) > |v|)} = \frac{\mathbb{P}(f_{t,v}(\xi(v)) > x_t + z)}{\mathbb{P}(f_{t,v}(\xi(v)) > z - 1)}.$$

Here, the final equality holds because of our restrictions on v and z; in particular, since $z - 1 \in J_{v,t}$ and $w = f_{v,t}^{-1}(z - 1) > \deg v + e$, the requirement that $\xi(v) > f_{v,t}^{-1}(z - 1)$ already implies that $\xi(v) > \deg v + e$, so we deduce that necessarily

$$\xi(v) - \deg v - \frac{|v|}{t} \geq f_{t,v}(\xi(v)) > 0.$$

From (34) and (36), for any $z > a(t)(\log t)^{-\varepsilon}$ we thus obtain the bound

$$P(\psi_t(\hat{Z}_t^{(1)}) - \psi_t(\hat{Z}_t^{(2)}) > x_t) \geq \sup_{s_\infty \subset T_{\infty}} \inf_{T \in T_{\infty}} \inf_{|v| > et} \inf_{x_{t-1} > a(t)(\log t)^{-\varepsilon}} \left(\frac{f_{v,t}^{-1}(z - 1)}{f_{v,t}^{-1}(x + z)} \right)^\alpha \cdot (\log t)^{-(k-\varepsilon)}$$

$$> (1 - 2(\log t)^{-(k-\varepsilon)})^\alpha - (\log t)^{-(k-\varepsilon)}.$$

Recalling that $1 - e^{-\varepsilon} < 3x/2$ for $x \leq 2/3$ we can conclude that

$$P(\psi_t(\hat{Z}_t^{(1)}) - \psi_t(\hat{Z}_t^{(2)}) < a(t)(\log t)^{-k}) \leq 1 - (1 - 2(\log t)^{-(k-\varepsilon)})^\alpha + (\log t)^{-(k-\varepsilon)}$$

$$\leq 4\alpha(\log t)^{-(k-\varepsilon)},$$

as required. \hfill \square

We can now use this to derive an almost sure lower bound on the gap of ψ_t between the maximiser and the third maximiser.

Proposition 5.6. Take any $k > 1 + \frac{1}{\alpha-\varepsilon}$. Under Assumption 1.3, eventually P-almost surely:

$$\psi_t(\hat{Z}_t^{(1)}) - \psi_t(\hat{Z}_t^{(3)}) \geq a(t)(\log t)^{-k}.$$

Proof. It holds that

$$P(\psi_t(\hat{Z}_t^{(1)}) - \psi_t(\hat{Z}_t^{(3)}) < x) \leq P(\psi_t(\hat{Z}_t^{(1)}) - \psi_t(\hat{Z}_t^{(2)}) < x, \psi_t(\hat{Z}_t^{(2)}) - \psi_t(\hat{Z}_t^{(3)}) < x)$$

$$= P(\psi_t(\hat{Z}_t^{(1)}) - \psi_t(\hat{Z}_t^{(2)}) < x | \psi_t(\hat{Z}_t^{(2)}) - \psi_t(\hat{Z}_t^{(3)}) < x) P(\psi_t(\hat{Z}_t^{(2)}) - \psi_t(\hat{Z}_t^{(3)}) < x).$$

32
Note from the proof of Lemma 5.5 that the estimate in (32) for $\psi_t(\tilde{Z}_t^{(1)}) - \psi_t(\tilde{Z}_t^{(2)})$ to be small does not depend on $\psi_t(\tilde{Z}_t^{(3)})$. Thus we can use the two estimates (32) and (33) to bound the probability above. That is, choosing some small $\varepsilon > 0$ (to be fixed precisely later), we obtain that

$$P\left(\psi_t(\tilde{Z}_t^{(1)}) - \psi_t(\tilde{Z}_t^{(3)}) < a(t)(\log t)^{-k}\right) \leq C(\log t)^{-2(k-\varepsilon)}.$$

(37)

Now, take $t_n = e^{n\gamma}$ for some $\frac{1}{2(k-\varepsilon)} < \gamma < \frac{1}{k+1} < 1$ (since $k > 1$ in view of Lemma 5.3 that we have the representation

$$\psi_t(\tilde{Z}_t^{(1)}) - \psi_t(\tilde{Z}_t^{(3)}) < a(t_n)(\log t_n)^{-k} \leq C \sum_{n \in \mathbb{N}} n^{-\gamma(2(k-\varepsilon))} < \infty,$$

so by Borel-Cantelli along the sequence t_n we have that eventually almost surely

$$\psi_t(\tilde{Z}_t^{(1)}) - \psi_t(\tilde{Z}_t^{(3)}) \geq a(t_n)(\log t_n)^{-k}.$$

Finally, for $t \in [t_n, t_{n+1})$, since $\psi_t(\tilde{Z}_t^{(i)})$ is an increasing function for each $i = 1, 2, 3$, we compute invoking Remark 5.7.

Remark 5.7. Note that in the proof above it was essential for (38) to have the 2 in the exponent in (37) coming from multiplying the probabilities for the gaps $\psi_t(\tilde{Z}_t^{(1)}) - \psi_t(\tilde{Z}_t^{(2)})$ and $\psi_t(\tilde{Z}_t^{(2)}) - \psi_t(\tilde{Z}_t^{(3)})$. For this reason the argument above would not give an almost sure bound for the gap $\psi_t(\tilde{Z}_t^{(1)}) - \psi_t(\tilde{Z}_t^{(2)})$ (for which we know the result is not true).

6 Spectral results

In this section we derive a concentration result for the principal eigenfunction of the Anderson Hamiltonian $H = \Delta + \xi$ restricted to a suitable subset of $V(T_\infty)$. This will be our main tool for proving the concentration result for $u(t, \cdot)$.

In Section 6.1 we explain how eigenfunction localisation implies a similar localisation result for $u(t, \cdot)$, and rephrase localisation of $u(t, \cdot)$ in terms of localisation of the principal eigenfunction (Lemma 6.1). In Sections 6.2 and 6.3 we establish an almost sure version of this criterion under Assumption 1.3, and in Section 6.4 we establish an analogous high probability version under Assumption 1.1.

6.1 Role of the principal eigenfunction

Take some finite, connected set $\Lambda \subset V(T_\infty)$, with $O \in \Lambda$, and consider the equation (1) restricted to Λ with zero boundary condition. As before, there is a Feynman-Kac representation for the solution on Λ, namely

$$u_\Lambda(t, z) = \mathbb{E}_O \left[\exp \left\{ \int_0^t \xi(X_s) \, ds \right\} \mathbb{1}\{X_t = z, \tau_\Lambda > t\} \right], \quad t > 0, z \in \Lambda.$$

Let $\lambda_\Lambda^{(1)} \geq \ldots \geq \lambda_\Lambda^{(|\Lambda|)}$ and $\phi_\Lambda^{(1)}, \ldots, \phi_\Lambda^{(|\Lambda|)}$ be the respective eigenvalues and corresponding orthogonal eigenfunctions of the Anderson Hamiltonian H_Λ restricted to the class of real-valued functions supported on Λ. If $y \in \Lambda$ and $\phi_\Lambda^{(1)}$ is normalised so that $\phi_\Lambda^{(1)}(y) = 1$, then (e.g. see [MP16, Proposition 3.3]; the same proof applies in our setting) we have the representation

$$\phi_\Lambda^{(1)}(x) = \mathbb{E}_x \left[\exp \left\{ \int_0^{H_y} (\xi(X_s) - \lambda_\Lambda^{(1)}) \, ds \right\} \mathbb{1}\{H_y < \tau_\Lambda\} \right].$$

(39)
We are interested in using (39) when y is a “good” site, in order to show that the contribution from other sites is negligible. In particular, suppose that $\Omega \subset \Lambda$ is a small set of good sites, and set

$$u_{\Omega, \Lambda}(t, z) := \mathbb{E}_O \left[\exp \left\{ \int_0^t \xi(X_s) \, ds \right\} \mathbb{1}\{X_t = z, \tau_\Lambda > t, H_\Omega < t\} \right], \quad t > 0, z \in \Lambda. \quad (40)$$

We also define the following gap

$$\tilde{g}_{\Omega, \Lambda} = \min_{z \in \Omega} [\xi(z) - \deg(z)] - \max_{z \in \Lambda \setminus \Omega} [\xi(z) - \deg(z)].$$

For $A \subset \Lambda$ also recall from page 19 that

$$\tilde{Z}_A = \arg \max_{z \in A} \{\xi(z) - \deg(z)\}, \quad \tilde{g}_A = \xi(\tilde{Z}_A) - \deg(\tilde{Z}_A) - \max_{z \in A, z \neq \tilde{Z}_A} [\xi(z) - \deg(z)].$$

We will use (39) to show that the principal eigenfunction localises on Ω, and transfer this result to (40) via the following lemma.

Lemma 6.1. (cf [KLMS09, Lemma 2.4]) If $\tilde{g}_{\Omega, \Lambda} > 0$, then for all $v \in V(T_\infty)$ and $t > 0$ we have

(i) $u_{\Omega, \Lambda}(t, v) \leq \sum_{y \in \Omega} u_{\Omega, \Lambda}(t, y) \|\phi(\Lambda \setminus \Omega) \cup \{y\}|^2 \phi(\Lambda \setminus \Omega) \cup \{y\}(v)$,

(ii) $\sum_{v \in \Lambda \setminus \Omega} u_{\Omega, \Lambda}(t, v) \leq \sum_{y \in \Omega} \|\phi(\Lambda \setminus \Omega) \cup \{y\}|^2 \sum_{v \in \Lambda \setminus \Omega} \phi(\Lambda \setminus \Omega) \cup \{y\}(v)$.

Proof. It follows from an eigenvalue expansion exactly as in the lower bound of [dKd20, Lemma 2.1] that for any $y \in T_\infty$,

$$\mathbb{E}_y \left[\exp \left\{ \int_0^t \xi(X_s) \, ds \right\} \mathbb{1}\{X_t = y, \tau_\Lambda > t, H_\Omega < t\} \right] \geq e^{u_{\Lambda, \Lambda}(t)} \frac{\phi(\Lambda \setminus \Omega) \cup \{y\}|^2 \phi(\Lambda \setminus \Omega) \cup \{y\}(y)}{\|\phi(\Lambda \setminus \Omega) \cup \{y\}|^2}.$$

(note that [dKd20, Lemma 2.1] is for the normalised eigenvectors, hence the extra renormalisation constant in our case). Recall that we also established the time reversal property for the Feynman-Kac formula in Proposition 2.13. The result therefore follows by exactly the same proof as in [KLMS09, Lemma 2.1], which gives the corresponding statement on \mathbb{Z}^d. \(\square\)

6.2 Choice of Λ_t

To apply Lemma 6.1, for each $t > 0$ we will need to make an appropriate choice of a set Λ. Following [KLMS09, Section 5.1], recall that $z = \frac{\text{deg}(z)}{\text{deg}(\Omega)}$ under Assumption 1.3 and let us define for $i = 1, 2$ the sets

$$\Gamma^{(i)}_t := \left\{ v \in V(T_\infty) : \text{d}(v, \tilde{Z}^{(i)}_t) + \min\{|v|, |\tilde{Z}^{(i)}_t|\} \leq \left(1 + (\log t)^{-2}\right) |\tilde{Z}^{(i)}_t| \right\},$$

i.e. the set of all points contained within a path of length $(1 + (\log t)^{-2}) |\tilde{Z}^{(i)}_t|$ that also contains $\tilde{Z}^{(i)}_t$. We will make the following choices for Λ and Ω at time t:

$$\Lambda_t := \Gamma^{(1)}_t \cup \Gamma^{(2)}_t \quad \text{and} \quad \Omega_t := \{\tilde{Z}^{(1)}_t, \tilde{Z}^{(2)}_t\}.$$

Note that, on the event $\{\tilde{g}_{\Omega_t, \Lambda_t} > 0\}$

$$\tilde{g}_{\Lambda_t, \Lambda_t} = \min\{\tilde{g}_{\Lambda \setminus \{\tilde{Z}^{(1)}_t\}}, \tilde{g}_{\Lambda \setminus \{\tilde{Z}^{(2)}_t\}}\}.$$
Lemma 6.2. Under Assumption 1.3, for any δ > 0, eventually P-almost surely, for each i = 1, 2:

\[\# \Gamma^{(i)}_{t} \leq \frac{1}{2} (\log t)^{-(z-\delta)} |Z^{(i)}_t| \leq \frac{1}{2} (\log t)^{-(z-\delta)+\frac{2}{2-2}} r(t)^2. \]

Proof. We just bound \# \Gamma^{(1)}_{t} (the same argument works for \# \Gamma^{(2)}_{t}). Note that d = 2 under Assumption 1.3. Set \(R = |Z^{(1)}_t|, r = \frac{1}{(\log t)^{z}} |Z^{(1)}_t|, \) and let \(\gamma^{(1)}_{O,t} \) denote the direct path from O to \(Z^{(1)}_t \). Note that, if \(v \in \gamma^{(1)}_{O,t} \) and \(u_1, \ldots, u_{\deg v-1} \) are the offspring of \(v \), then

\[P(\deg v = k + 1) = \mu_k \sum_{i=1}^{k} P\left(u_i \leq Z^{(1)}_t \bigg| \deg v = k + 1 \right) \leq k \mu_k. \]

We deduce that the offspring tails \(\hat{\mu} \) along the path \(\gamma^{(1)}_{O,t} \) independently satisfy a size-biased tail bound, which is therefore also super-polynomial under Assumption 1.3. Moreover, due to the Galton-Watson structure, the subtrees rooted at each of the \(u_i \) are independent Galton-Watson trees, of which one is conditioned to survive to \(Z^{(1)}_t \), a second of which may be conditioned to survive forever, and the rest of which are unconditioned. Let \(M = \sum_{v \in \gamma^{(1)}_{O,t}} (\deg v - 2) + 1 \) be the number of such subtrees attached to \(\gamma^{(1)}_{O,t} \) (including at the final vertex \(Z^{(1)}_t \)). We deduce the following (working under Assumption 1.3 throughout).

(a) For any \(p > 0, q < \infty \), there exists \(c < \infty \) such that \(P\left(\sum_{v \in \gamma^{(1)}_{O,t}} \deg v \geq R \lambda^{1/2} \right) \leq c \lambda^{-q} \) (e.g. by [Arc20, Lemma A.3(iii)])

(b) Conditionally on \(\sum_{v \in \gamma^{(1)}_{O,t}} \deg v < R \lambda^{1/2} \), the number \(N \) of subtrees attached to \(\gamma^{(1)}_{O,t} \) with volume exceeding \(r^2 \) is stochastically dominated by two more than a Binomial\((R \lambda^{1/2}, r^{-1})\) random variable (by Lemma 2.2, since \(\beta = 2 \) under Assumption 1.3). Therefore \(P(N > 2(\log t)^{z} \lambda^{1/2}) \leq e^{-c(\log t)^{z} \lambda^{1/2}} \) (by a Chernoff bound).

(c) Let \((T_i)_{i=1}^{M} \) be the subtrees attached to the path \(\gamma^{(1)}_{O,t} \). Conditionally on \(N \leq 2(\log t)^{z} \lambda^{1/2} \), we have by [Arc20, Lemma A.1] and a union bound that \(P\left(\sum_{i=1}^{M} \# V(T_i) \leq r^2 \right) \leq (\log t)^{z} \lambda^{1/2} e^{-c \lambda^{1/2}}. \)

(d) Now consider \#V(T_i) for some Galton-Watson tree where \#V(T_i) ≥ r^2. If \(\rho_i \) is the “root” of \(T_i \), then we have for any \(q < \infty \) that \(P\left(\#B_{T_i}(\rho_i, r) \geq r^2 \right) \leq c \lambda^{-3q} \) by Proposition 2.3(ii). (Proposition 2.3(ii) was written for \(T_{\infty} \) but applies to a finite GW tree by the same proof).

(e) It follows from the previous point that \(\sum_{i=1}^{M} B_{T_i}(\rho_i, r) \cdot \# V(T_i) \geq r^2 \) \(\xrightarrow{d} \ \mathbb{R}^+ \) \(Y + \sum_{i=1}^{N} X_i \) where \(P(X_i \geq \lambda) \leq c \lambda^{-3q} \) independently for each \(i \), and \(P(Y \geq \lambda) \leq \lambda^{-3q} \) too (\(Y \) is the sum of the volumes of the balls of radius \(r \) in the two subtrees that may be conditioned to survive). Conditionally on \(N \leq 2(\log t)^{z} \lambda^{1/2} \), we therefore have from (d) and [Arc20, Lemma A.3(iii)] that for any \(q < \infty \), there exists \(c < \infty \) such that

\[P\left(\sum_{i=1}^{M} \# B_{T_i}(\rho_i, r) \cdot \# V(T_i) \geq r^2 \right) \geq r^2 (\log t)^{z} \lambda \right) \leq P\left(Y + \sum_{i=1}^{N} X_i \geq N \lambda^{1/2} \right) \leq c \lambda^{-q}. \]

We combine the bounds in (a), (b), (c) and (e) above in the following union bound (to include the vertices
in $\gamma_{O,t}^{(1)}$ we have simply replaced $2(\log t)^2 \lambda r^2$ with $4(\log t)^2 \lambda r^2$ below):

$$P\left(\#\Gamma_t^{(1)} \geq 4(\log t)^2 r^2 \lambda \right) \leq P\left(\sum_{v \in \gamma_{O,t}^{(1)}} \deg v \geq R\lambda^{1/2} \right) + P\left(N \geq 2(\log t)^2 \lambda^{1/2} \right)$$

$$+ P\left(\sum_{i=1}^{M} \#V(T_i) \mathbb{I}\{V(T_i) \leq r^2\} \geq r^2(\log t)^2 \lambda \right) N < 2(\log t)^2 \lambda^{1/2}$$

$$+ P\left(\sum_{i=1}^{M} \#B_{T_i}(\rho_i, r) \mathbb{I}\{V(T_i) \geq r^2\} r^2(\log t)^2 \lambda \right) N < 2(\log t)^2 \lambda^{1/2}$$

$$\leq (\log t)^2 \lambda^{1/2} e^{-c\lambda^{1/2}} + C\lambda^{-q}.$$

Taking $\lambda = (\log t)^{\delta}$ and recalling that $r = \frac{1}{(\log t)^{\beta}}|\hat{Z}_t^{(1)}|$ we get for any $q > 0$ that there exists $C < \infty$ such that

$$P\left(\#\Gamma_t^{(1)} \geq 4(\log t)^{z+\delta-2}\hat{Z}_t^{(1)} \right) \leq C(\log t)^{-q}.$$

Therefore, taking $q > 1$, applying a union bound and using Lemma 5.4, we deduce that

$$P\left(\#\Gamma_t^{(1)} \geq 4(\log t)^{z+\delta-2}\hat{Z}_t^{(1)} \right) \leq \limsup_{T \to \infty} \sum_{t \geq T: \hat{Z}_t^{(1)} \neq \hat{Z}_t^{(1)}} P\left(\#\Gamma_t^{(1)} \geq 4(\log t)^{z+\delta-2}\hat{Z}_t^{(1)} \right)$$

$$\leq \limsup_{N \to \infty} \sum_{n=N}^{\infty} \sum_{t \in [2^n 2^{n+1}]} C(\log t)^{-q}$$

$$\leq \limsup_{N \to \infty} \left\{ o(1) + \sum_{n=N}^{\infty} cn^z n^{-q} \right\} = 0.$$

The same bound holds for $\#\Gamma_t^{(2)}$ in place of $\#\Gamma_t^{(1)}$ by exactly the same arguments. Finally, since $\delta > 0$ was arbitrary, we can replace 4 with $\frac{1}{2}$ in the statement of the result. The final upper bound follows from applying Proposition 5.1(iii). \hfill \Box

As a consequence of Lemma 6.2, we deduce the following.

Lemma 6.3. P-almost surely under Assumption 1.3, we have for all sufficiently large t that

(i) $\sup_{v \in \Lambda_t} |\hat{Z}_t^{(1)}, \hat{Z}_t^{(2)} \rangle \xi(v) \leq (\log t)^{-\frac{\alpha}{2}} a(t),$

(ii) $\hat{Z}_{\Lambda_t \setminus \hat{Z}_t^{(2)}} = \hat{Z}_t^{(2)}$ and $\hat{Z}_{\Lambda_t \setminus \hat{Z}_t^{(1)}} = \hat{Z}_t^{(1)},$

(iii) For any $\epsilon > 0$ and each $i = 1, 2$, $g_{\Lambda_t \setminus \hat{Z}_t^{(i)}} \geq a(t)(\log t)^{-\epsilon}.$

Proof. (i) Choose some $\delta < \frac{1}{2 - \epsilon}$. We have from Lemma 6.2 and Proposition 5.1(iii) that

$$\#\Lambda_t \leq (\log t)^{-(z+\epsilon)} + \frac{2}{\alpha - z} r(t)^2$$

eventually almost surely. On this event, since the potentials at different vertices are independent of each other, and since conditioning on $u \neq \hat{Z}_t^{(1)}, \hat{Z}_t^{(2)}$ can only (stochastically) reduce $\xi(u)$, we have from a union bound that for all sufficiently large t and any $m > 0,

$$P\left(\sup_{v \in \Lambda_t \setminus \hat{Z}_t^{(1)}, \hat{Z}_t^{(2)}} \xi(v) \geq (\log t)^{-m} a(t) \right) \leq (\log t)^{-(z+\epsilon)} + \frac{2}{\alpha - z} r(t)^2 (\log t)^{m\alpha} a(t)^{-\alpha} \leq (\log t)^{-y},$$

36
where $y = (z - \delta) - \frac{2}{\alpha - 2} - m\alpha > 1$ by our choice of m and z. Then, by Lemma 5.4 we can choose $\varepsilon > 0$ small enough that

$$
P\left(\sup_{v \in \Lambda \setminus \{\hat{Z}_t^{(1)}, \hat{Z}_t^{(2)}\}} \xi(v) \geq (\log t)^{-m} a(t) \text{ i.o.}\right) \leq \limsup_{T \to \infty} \sum_{t \geq T} P\left(\sup_{v \in \Lambda \setminus \{\hat{Z}_t^{(1)}, \hat{Z}_t^{(2)}\}} \xi(v) \geq (\log t)^{-m} a(t)\right)
$$

$$
\leq \limsup_{N \to \infty} \left\{ o(1) + \sum_{n=N}^{\infty} \sum_{t \in [x \cdot 2^{n+1}]} (\log t)^{-\varepsilon}\right\}
$$

$$
\leq \limsup_{N \to \infty} \left\{ o(1) + \sum_{n=N}^{\infty} cn^2n^{-\gamma}\right\} = 0.
$$

This gives the result.

(ii) Take some $\varepsilon < m$. It follows from (i) and Proposition 5.1(ii) that eventually almost surely, for each $i = 1, 2$,

$$
\xi(\hat{Z}_t^{(i)}) - \deg(\hat{Z}_t^{(i)}) \geq a(t)(\log t)^{-\varepsilon} > a(t)(\log t)^{-\frac{1}{2}} \geq \sup_{v \in \Lambda \setminus \{\hat{Z}_t^{(1)}, \hat{Z}_t^{(2)}\}} (\xi(v) - \deg(v)),
$$

(iii) For $0 < \varepsilon < m$, the statement follows from (i) since $\xi(\hat{Z}_t^{(i)}) - \deg\hat{Z}_t^{(i)} \geq 2a(t)(\log t)^{-\varepsilon}$ eventually almost surely by Proposition 5.1(ii) (clearly this implies the result for all $\varepsilon \geq m$ as well).

We now use Lemma 6.3 to control the paths contributing to (39), first defining some notation.

Given $x \in \Lambda_t$, we define the set of all paths from x to $\hat{Z}_t^{(1)}$ that end on the first hit to $\hat{Z}_t^{(1)}$ as $\Gamma_{x,t}^{(1)}$. Similarly, if $x \in \Gamma_{x,t}^{(2)}$ let $\Gamma_{x,t}^{(2)}$ denote the set of all paths from x to $\hat{Z}_t^{(2)}$ that end on the first hit to $\hat{Z}_t^{(2)}$. If $x \in \Gamma_{x,t}^{(1)} \cup \Gamma_{x,t}^{(2)}$ we denote the direct path from x to $\hat{Z}_t^{(1)}$ (respectively $\hat{Z}_t^{(2)}$) as $\gamma_{x,t}^{(1)}$ (respectively $\gamma_{x,t}^{(2)}$). Given $t > 0$, we also introduce the notation $\pi(X_{[0,t]})$ to denote the path that consists of all the steps taken by the random walk $(X_n)_{n \geq 0}$ between times 0 and t.

For $t > 0$ and $x \in \Lambda_t$, we let

$$
\Gamma_{x, t}^{(1, \text{bad})} := \left\{ \gamma \in \Gamma_{x, t}^{(1)} : \prod_{v \in \gamma \setminus \gamma_{x, t}^{(1)}} \deg v - \left[\xi(v) + \deg\hat{Z}_t^{(1)} - \xi(\hat{Z}_t^{(1)})\right] \geq 1 \right\},
$$

$$
\Gamma_{x, t}^{(2, \text{bad})} := \left\{ \gamma \in \Gamma_{x, t}^{(2)} : \prod_{v \in \gamma \setminus \gamma_{x, t}^{(2)}} \deg v - \left[\xi(v) + \deg\hat{Z}_t^{(2)} - \xi(\hat{Z}_t^{(2)})\right] \geq 1 \right\}.
$$

Lemma 6.4. P-almost surely under Assumption 1.3, there exists $t_0 < \infty$ such that for all $t \geq t_0$ and all $x \in \Lambda_1 \setminus \{\hat{Z}_t^{(1)}, \hat{Z}_t^{(2)}\}$, $\Gamma_{x, t}^{(1, \text{bad})} = \Gamma_{x, t}^{(2, \text{bad})} = \emptyset$.

Proof. It follows exactly as in the proofs of Proposition 5.1(ii) and (iii) that eventually almost surely, for all $v \in \Lambda_1 \setminus \{\hat{Z}_t^{(1)}, \hat{Z}_t^{(2)}\}$,

$$
\xi(v) < \xi(\hat{Z}_t^{(i)}) - \deg\hat{Z}_t^{(i)}
$$

for each $i = 1, 2$, which implies that each term in the products in (42) is less than 1.

Lemma 6.5. Fix some constant $C_{\alpha, \beta}$. Under Assumption 1.3, for any $\varepsilon > 0$, $\#B(\hat{Z}_t^{(2)}, C_{\alpha, \beta}) \leq (\log t)^{\varepsilon}$ eventually P-almost surely.
Lemma 5.4 similarly to the proofs of Lemmas 6.2 and 6.3.

Lemma 6.6. Eventually P-almost surely under Assumption 1.3, for each $i = 1, 2$ and each $x \in \Lambda_t \setminus \{\hat{Z}_t^{(1)}, \hat{Z}_t^{(2)}\}$,

$$\phi^{(1)}_{\Lambda_t \setminus \{\hat{Z}_t^{(1)}\}}(x) \leq \prod_{v \in \gamma_{\Lambda_t}^{(2)}} \frac{\deg v}{g_{\Lambda_t \setminus \{\hat{Z}_t^{(1)}\}}(v)} \quad \text{and} \quad \phi^{(1)}_{\Lambda_t \setminus \{\hat{Z}_t^{(2)}\}}(x) \leq \prod_{v \in \gamma_{\Lambda_t}^{(1)}} \frac{\deg v}{g_{\Lambda_t \setminus \{\hat{Z}_t^{(2)}\}}(v)}.$$

Proof. The proof follows a similar strategy to [KLMS09, Lemma 2.3]. We only prove the first statement; the proof of the second statement works analogously. Firstly, it follows from the Rayleigh-Ritz formula (e.g. see [DKd20, Equation (2.7)]) for the principal eigenvalue of the Anderson Hamiltonian that

$$\lambda^{(1)}_{\Lambda_t \setminus \{\hat{Z}_t^{(1)}\}} = \sup \{ \langle (\xi + \Delta)f, f \rangle_{L^2(T_\infty)} : f \in L^2(T_\infty), \text{supp}(f) \subset \Lambda_t \setminus \{\hat{Z}_t^{(1)}\}, ||f||_2 = 1 \} \geq \sup_{z \in \Lambda_t \setminus \{\hat{Z}_t^{(1)}\}} \{ \langle (\xi + \Delta)\delta_z, \delta_z \rangle \} = \sup_{z \in \Lambda_t \setminus \{\hat{Z}_t^{(1)}\}} \{ \xi(z) - \deg(z) \} = \xi(\hat{Z}_t^{(1)}) - \deg(\hat{Z}_t^{(1)}).$$

Then, taking $y = \hat{Z}_t^{(2)}$ in (39) we have for $x \in \Lambda_t \setminus \{\hat{Z}_t^{(1)}, \hat{Z}_t^{(2)}\}$,

$$\phi^{(1)}_{\Lambda_t \setminus \{\hat{Z}_t^{(1)}\}}(x) = \mathbb{E}_x \left[\exp \left\{ \int_0^{H_{\hat{Z}_t^{(2)}}} (\xi(X_s) - \lambda^{(1)}_{\Lambda_t \setminus \{\hat{Z}_t^{(1)}\}}) \, ds \right\} 1\{H_{\hat{Z}_t^{(2)}} < \tau_{\Lambda_t \setminus \{\hat{Z}_t^{(1)}\}} \} \right] \leq \mathbb{E}_x \left[\exp \left\{ \int_0^{H_{\hat{Z}_t^{(2)}}} (\xi(X_s) - [\xi(\hat{Z}_t^{(1)}) - \deg(\hat{Z}_t^{(1)})]) \, ds \right\} 1\{H_{\hat{Z}_t^{(2)}} < \tau_{\Lambda_t \setminus \{\hat{Z}_t^{(1)}\}} \} \right].$$

Now let $(T_v)_{v \in \gamma_{\Lambda_t}^{(1)}}$ denote a set of independent exponential random variables with respective parameters $(\deg v)_{v \in \gamma_{\Lambda_t}^{(1)}}$. By Lemma 6.3(ii), we can work on the event $\{\hat{Z}_{\Lambda_t \setminus \{\hat{Z}_t^{(1)}\}} = \hat{Z}_t^{(2)}\}$. Since every path $\gamma \in \Gamma_{\Lambda_t}^{(2)}$ contains $\gamma_{\Lambda_t}^{(1)}$ as a subset, we can therefore apply Lemma 6.4 to deduce that, eventually P-almost surely,

$$\phi^{(1)}_{\Lambda_t \setminus \{\hat{Z}_t^{(1)}\}}(x) \leq \mathbb{E}_x \left[\exp \left\{ \int_0^{H_{\hat{Z}_t^{(2)}}} (\xi(X_s) - \frac{[\xi(\hat{Z}_t^{(1)}) - \deg(\hat{Z}_t^{(1)})]}{\deg v}) \, ds \right\} 1\{H_{\hat{Z}_t^{(2)}} < \tau_{\Lambda_t \setminus \{\hat{Z}_t^{(1)}\}} \} \right] \leq \sum_{\gamma \in \Gamma_{\Lambda_t}^{(2)}} \mathbb{P}(\{X_{[0,H_{\hat{Z}_t^{(2)}]}] = \gamma\}) \prod_{v \in \gamma} \mathbb{E} \left[\exp \left\{ T_v[\xi(v) + \deg(\hat{Z}_t^{(2)} - \xi(\hat{Z}_t^{(2)}))] \right\} \right] \leq \sum_{\gamma \in \Gamma_{\Lambda_t}^{(2)}} \mathbb{P}(\{X_{[0,H_{\hat{Z}_t^{(2)}]}] = \gamma\}) \prod_{v \in \gamma} \mathbb{E} \left[\exp \left\{ T_v[\xi(v) + \deg(\hat{Z}_t^{(2)} - \xi(\hat{Z}_t^{(2)}))] \right\} \right].$$

Applying Lemma 6.4 and decomposing the product according to whether vertices are in $\gamma_{\Lambda_t}^{(2)}$ or not (if some vertices in $\gamma_{\Lambda_t}^{(2)}$ are visited more than once, we put repeat visits into the second product), we obtain that

$$\phi^{(1)}_{\Lambda_t \setminus \{\hat{Z}_t^{(1)}\}}(x) \leq \prod_{v \in \gamma_{\Lambda_t}^{(2)}} \frac{\deg v}{g_{\Lambda_t \setminus \{\hat{Z}_t^{(1)}\}}(v)} \sum_{\gamma \in \Gamma_{\Lambda_t}^{(2)}} \mathbb{P}(\{X_{[0,H_{\hat{Z}_t^{(2)}]}] = \gamma\}) \prod_{v \in \gamma} \mathbb{E} \left[\exp \left\{ T_v[\xi(v) + \deg(\hat{Z}_t^{(2)} - \xi(\hat{Z}_t^{(2)}))] \right\} \right] \leq \prod_{v \in \gamma_{\Lambda_t}^{(2)}} \frac{\deg v}{g_{\Lambda_t \setminus \{\hat{Z}_t^{(1)}\}}(v)}.$$
Finally, we will need the following lemma to bound the function appearing in the statement of Lemma 6.6.

Lemma 6.7. P-almost surely under Assumption 1.3, for all sufficiently large t we have the following.

(i) There exist $D,E < \infty$ such that for each $i = 1,2$,
\[
\sup_{x \in \Lambda \setminus \{\hat{Z}^{(1)}, \hat{Z}^{(2)}\}} \left\{ \sum_{v \in \gamma_{x,t}} \log(\deg v) - [D \log t + E] \gamma_{x,t} \right\} \leq 0.
\]

(ii) Fix any $C_{\alpha, \beta} < \infty$. Then for any $\delta > 0$, it holds for each $i = 1,2$ that
\[
\sup_{x \in \Lambda \setminus \{\hat{Z}^{(1)}, \hat{Z}^{(2)}\}} \left\{ \sum_{v \in \gamma_{x,t}} \log(\deg v) - \delta \log \log t \right\} \leq 0.
\]

Proof. (i) The statement follows from Lemma 2.9 and Proposition 5.1(iii).

(ii) Fix $i = 1$ or $i = 2$ and write $C = C_{\alpha, \beta}$. Take any $\varepsilon > 0$, and choose $c > 2(\varepsilon + 1)\delta^{-1} + 1$. Working backwards along the path $\gamma_{x,t}$ starting from $\hat{Z}^{(1)}_i$ and ending at x, the degrees of the vertices independently satisfy the size-biased tail bound of (41) (by the same logic), so that $A := \sup_{t \geq 0} \sup_{v \in \gamma_{x,t}} \mathbb{E}[(\deg v)^{\varepsilon}] < \infty$. Now let $x \in V(B(\hat{Z}^{(1)}_i, C)) \setminus \{\hat{Z}^{(1)}_i\}$. We compute, using a Chernoff bound, that
\[
P \left(\sum_{v \in \gamma_{x,t}} \log(\deg v) \geq \delta \log \log t \right) \leq \mathbb{E} \left[\exp \left(c \sum_{v \in \gamma_{x,t}} \log(\deg v) \right) \right] \exp(-c\delta \log \log t) \leq \exp \left(A|\gamma_{x,t}| - c\delta \log \log t \right) \leq e^{AC}(\log t)^{-c\delta}
\]

Now for $t > 0$ let us define the event in question as
\[
A_t := \left\{ \sup_{x \in \Lambda \setminus \{\hat{Z}^{(1)}, \hat{Z}^{(2)}\}} \left\{ \sum_{v \in \gamma_{x,t}} \log(\deg v) - \delta \log \log t \right\} \geq 0 \right\}.
\]

Applying a union bound over all vertices in $B(\hat{Z}^{(1)}_i, C)$ with the bound above and the bound in the proof of Lemma 6.5 yields
\[
P(A_t) \leq (\log t)^{\delta/2} e^{-AC}(\log t)^{-c\delta} + \mathbb{P}(\# B(\hat{Z}^{(1)}_i, C) > (\log t)^{\delta/2}) = e^{AC}(\log t)^{-(c-1)\delta/2} + c'(\log t)^{-c\delta/2}.
\]

Combining with Lemma 5.4 and a union bound, we deduce that
\[
P(A_t \text{ i.o.}) = \limsup_{N \to \infty} P \left(\{ A_t \}_{t \geq 2^N} \text{ i.o.} \right) \leq P \left(\exists n \geq N : \# \left\{ \hat{Z}^{(1)}_i : t \in [2^n, 2^{n+1}] \right\} \leq (\log t_n)^{\varepsilon} \right) + \sum_{n \geq N} n^\varepsilon P(A_{2n}) \leq o(1) + C \sum_{n \geq N} n^\varepsilon n^{-(c-1)\delta/2} \to 0,
\]

provided B is large enough. This concludes the proof.
Lemma 6.8. Eventually P-almost surely under Assumption 1.3, as $t \to \infty$

\[
\|\phi_{\Lambda_t \setminus \{\mathbf{Z}^{(1)}_t\}}(v)\|_2^2 \sum_{v \in \Lambda_t \setminus \{\mathbf{Z}^{(1)}_t, \mathbf{Z}^{(2)}_t\}} \phi_{\Lambda_t \setminus \{\mathbf{Z}^{(1)}_t\}}(v) + \|\phi_{\Lambda_t \setminus \{\mathbf{Z}^{(2)}_t\}}(v)\|_2^2 \sum_{v \in \Lambda_t \setminus \{\mathbf{Z}^{(1)}_t, \mathbf{Z}^{(2)}_t\}} \phi_{\Lambda_t \setminus \{\mathbf{Z}^{(2)}_t\}}(v) \to 0. \quad (43)
\]

Proof. We start by bounding the first sum above. Take $\varepsilon \in (0, \beta - 1)$ and let $c := \beta - 1 - \varepsilon > 0$. We set

\[
C_{\alpha, \beta} = \frac{3(q + 1)}{q}
\]

and split the sum into two parts, summing separately over $v \in U_t := \Lambda_t \setminus \left(\{\mathbf{Z}^{(1)}_t, \mathbf{Z}^{(2)}_t\} \cup B(\mathbf{Z}^{(2)}_t, C_{\alpha, \beta}) \right)$ and $v \in W_t := \left(\Lambda_t \setminus \{\mathbf{Z}^{(1)}_t, \mathbf{Z}^{(2)}_t\} \right) \cap B(\mathbf{Z}^{(2)}_t, C_{\alpha, \beta})$.

We estimate the two parts separately in the following.

- **Part 1:** U_t. Take some $\delta > 0$, $\varepsilon > 0$ and $E < \infty$ as in Lemma 6.7(i). Also let $h(t) = 8(\log t)^{-(z-\delta)+\frac{2}{\alpha-\delta}} r(t)^2$ (as in Lemma 6.2). Define the event

\[
E_1 := \{\#\Lambda_t \leq h(t) \} \cap \left\{ \sup_{v \in U_t} \left\{ \sum_{x \in \gamma_{v, t}^{(2)}} \log(\deg x) - 2E\gamma_{v, t}^{(2)} \right\} \leq 0 \right\}
\]

\[
\cap \left\{ \tilde{g}_{\Lambda_t \setminus \{\mathbf{Z}^{(1)}_t\}} \geq a(t)(\log t)^{-\varepsilon} \right\} \cap \left\{ \phi_{\Lambda_t \setminus \{\mathbf{Z}^{(1)}_t\}}(v) \leq \prod_{x \in \gamma_{v, t}^{(2)}} \frac{\deg x}{\tilde{g}_{\Lambda_t \setminus \{\mathbf{Z}^{(1)}_t\}}} \text{ for all } v \in \Lambda_t \setminus \{\mathbf{Z}^{(1)}_t, \mathbf{Z}^{(2)}_t\} \right\}
\]

Note that E_1 holds eventually almost surely by Proposition 5.1(i) and Lemmas 6.2, 6.7, 6.3(iii) and 6.6. Almost surely, i.e. on the event E_1, we can therefore calculate for all sufficiently large t that

\[
\sum_{v \in U_t} \phi_{\Lambda_t \setminus \{\mathbf{Z}^{(1)}_t\}}(v) \leq \sum_{v \in U_t} \exp \left(\sum_{x \in \gamma_{v, t}^{(2)}} \log(\deg(x)) - \log(\tilde{g}_{\Lambda_t \setminus \{\mathbf{Z}^{(1)}_t\}}) \right) \leq h(t) \sup_{v \in U_t} \left(\gamma_{v, t}^{(2)} (q \log t - O(\log \log t)) \right) \leq \exp \left(-(C_{\alpha, \beta}q - 2(q + 1)) \log t + O(\log \log t) \right),
\]

which converges to 0 as $t \to \infty$ by our choice of $C_{\alpha, \beta}$.

- **Part 2:** W_t. On the event

\[
E_2 := E_1 \cap \{ \#B(\mathbf{Z}^{(2)}_t, C_{\alpha, \beta}) \leq \log t \},
\]

By Lemma 6.5 it follows that and Part 1 above, it follows that E_2 holds eventually almost surely. We therefore calculate similarly to the first part that almost surely for sufficiently large t, i.e. on the event E_2,

\[
\sum_{v \in W_t} \phi_{\Lambda_t \setminus \{\mathbf{Z}^{(1)}_t\}}(v) \leq \sum_{v \in W_t} \exp \left(\sum_{x \in \gamma_{v, t}^{(2)}} \log(\deg(x)) - \log(\tilde{g}_{\Lambda_t \setminus \{\mathbf{Z}^{(1)}_t\}}) \right) \leq \exp \left(2E C_{\alpha, \beta} - q \log t + O(\log \log t) \right),
\]

which again goes to 0 as $t \to \infty$.

Combining these two calculations we deduce that $\sum_{v \in \Lambda_t \setminus \{\mathbf{Z}^{(1)}_t, \mathbf{Z}^{(2)}_t\}} \phi_{\Lambda_t \setminus \{\mathbf{Z}^{(1)}_t\}}(v) \to 0$ almost surely.

This also implies that $\|\phi_{\Lambda_t \setminus \{\mathbf{Z}^{(2)}_t\}}(v)\|_2^2 \leq \|\phi_{\Lambda_t \setminus \{\mathbf{Z}^{(1)}_t\}}(v)\|_2^2 \leq (1 + o(1))^2$ almost surely as $t \to \infty$, so we deduce that the first term in (43) goes to 0 almost surely as $t \to \infty$. The proof for the second term works analogously. \(\Box\)
6.4 High probability spectral statements

To prove the single site localisation whp (Theorem 1.6) we will have to prove localisation on a slightly bigger set. The strategy is the same as in the previous subsections, except that the results hold whp rather than almost surely. For this reason we do not give the full details of the proofs.

Define $R_t = |\hat{Z}_t^{(1)}| \left(1 + \frac{1}{(\log t)^{2+\alpha}} \right)$. We will prove localisation on B_{R_t} whp, for which we will need the following results.

Recall from Section 3.3 that

\[Z_{B_{\mathcal{P}_t}} = \arg\max_{z \in B_{\mathcal{P}_t}} \{ \xi(z) \}, \quad \hat{Z}_{B_{\mathcal{P}_t}} = \arg\max_{z \in B_{\mathcal{P}_t}} \{ \xi(z) - \deg z \}, \]

\[g_{B_{\mathcal{P}_t}} = \xi(Z_{B_{\mathcal{P}_t}}) - \max_{z \in B_{\mathcal{P}_t}, z \neq \hat{Z}_{B_{\mathcal{P}_t}}} \{ \xi(z) \}, \quad \hat{g}_B = \xi(\hat{Z}_B) - \deg(\hat{Z}_{B_{\mathcal{P}_t}}) - \max_{z \in B_{\mathcal{P}_t}, z \neq \hat{Z}_{B_{\mathcal{P}_t}}} \{ \xi(z) - \deg(z) \}. \]

Lemma 6.9. [cf Lemma 6.6]. Under Assumption 1.1,

\[P \left(\phi_{B_{\mathcal{P}_t}}^{(1)}(x) \leq \prod_{v \in V(B_{\mathcal{P}_t})} \frac{\deg v}{g_{\mathcal{P}_t}(v)} \right) \to 1 \text{ as } r \to \infty. \]

Proof. Exactly as in Lemma 6.6.

\[\phi_{B_{\mathcal{P}_t}}^{(1)}(x) \leq \prod_{v \in \gamma_{x,t} \setminus \hat{Z}_{t}^{(1)}} \frac{\deg v}{g_{\mathcal{P}_t}(v)} \sum_{\gamma \in \Gamma_{x,t}^{(1)}} \frac{\prod_{v \in \gamma_{x,t} \setminus \hat{Z}_{t}^{(1)}} \deg v}{\deg v - [\xi(v) + \deg(\hat{Z}_t^{(1)}) - \xi(\hat{Z}_t^{(1)})]} \]

Now recall from Proposition 5.1(ii) and Lemma 3.4(ii) that whp $\deg Z_{B_{\mathcal{P}_t}} \leq (\log t)^B$, and from Lemma 3.6 that $g_{B_{\mathcal{P}_t}} \geq 2a(t)(\log t)^{-\frac{c_1}{\log t}}$ for all sufficiently large t, almost surely. On these events, we have for all $v \neq \hat{Z}_t^{(1)}$

\[\xi(\hat{Z}_t^{(1)}) - \deg(\hat{Z}_t^{(1)}) - \xi(v) > g_{B_{\mathcal{P}_t}} - \deg(\hat{Z}_t^{(1)}) > 0, \]

which implies that the corresponding term in the product on the right-hand side above is at most 1. \(\square\)

We will also need the following lemma concerning the degrees of vertices in the direct path $\gamma_{x,r}$.

Lemma 6.10. [cf Lemma 6.7]. Under Assumption 1.1,

(i) There exist constants $D, E < \infty$ such that

\[P \left(\sup_{x \in B_r} \left\{ \sum_{v \in \gamma_{x,r}} \log(\deg v) - [D \log r + E \gamma_{x,r}] \right\} \leq 0 \right) \to 1 \text{ as } r \to \infty, \]

(ii) Fix any $C < \infty$. Then for any $\delta > 0$,

\[P \left(\sup_{x \in V(B(\hat{Z}_B, C)) \cap B_r \setminus \hat{Z}_B} \left\{ \sum_{v \in \gamma_{x,r}} \log(\deg v) - \delta \log r \right\} \leq 0 \right) \to 1 \text{ as } r \to \infty. \]

Proof. The proof is exactly the same as that of Lemma 6.7, except that some of the relevant events hold whp but not almost surely. For part (ii) we adapt the proof slightly by taking some $c \in (0, \beta - 1)$ and considering the event \{ $\#B(\hat{Z}_t^{(1)}, C) > (\log t)^{c/2}$\}. \(\square\)

We are now able to show that the principal eigenfunction is concentrated in \hat{Z}_B.

41
Lemma 6.11. Under Assumption 1.1,
\[\left| \phi_{B_r}^{(1)} \right|^2 \sum_{z \in B_r \setminus \tilde{Z}_{B_r}} \phi_{B_r}^{(1)}(z) \to 0 \text{ in } P\text{-probability as } r \to \infty. \]

Proof. The proof is exactly the same as that of Lemma 6.8, except that some of the relevant events hold whp but not almost surely, we use Proposition 2.3(i) to consider the event \#\{B_r \leq r^d (\log r)^\varepsilon\} in place of \{\Lambda_t \leq h(t)\}, and we instead take \(C_{x,\beta} = \frac{(d+1)(q+1)}{q} \).

7 Almost sure two site localisation

In this section we prove Theorem 1.5. The strategy is a refined version of that of [KLMS09, Section 5] and proceeds roughly as follows. Although this section is written under Assumption 1.3 in which case \(d = 2 \), we write some proofs under Assumption 1.1 in order to use them later for the proof of Theorem 1.6.

Recall from Section 3.2 that \(R_t = r(t)(\log t)^p \) where \(p = q + 2 \). Recall also that \(C = \frac{pd}{n_0} + 1 \), and

\[F_t = \{ v \in B_{R(t)} : \xi(v) \geq R(t)^{\frac{d}{2}} (\log t)^{-C} \}, \]
\[E_t = \{ v \in B_{R(t)} \setminus F_t : \exists z \in F_t \text{ such that } \xi(z) - \deg(z) \leq \xi(v) - \deg(v) \}, \]
\[\Lambda_t = \bigcup_{i=1,2} \left\{ v \in V(T_\infty) : d(v, \hat{Z}^{(i)}_t) + \min\{|v|, |\hat{Z}^{(i)}_t|\} \leq (1 + (\log t)^{-\varepsilon}) |\hat{Z}^{(i)}_t| \right\}. \]

Now take some \(\varepsilon > 0 \). We define
\[u_1(t, v) := \mathbb{E}_0 \left[\exp \left(\int_0^t \xi(X_s)ds \right) \mathbb{1}\{X_t = v\} \mathbb{1}\{\tau_{\Lambda_t} > t, H\{\hat{Z}^{(1)}_t, \hat{Z}^{(2)}_t\} \leq t\} \right]. \numberthis \tag{44} \]
and set \(U_1(t) := \sum_{v \in V(T_\infty)} u_1(t, v) \).

Also let \(J_t \) denote the number of jumps made by \((X_s)_{s \geq 0} \) up until time \(t \), and set \(j_t = t^{\frac{d}{n_0} + 1} r(t) \). We also define the five following contributions to the remaining total mass:

\[U_2(t) := \mathbb{E}_0 \left[\exp \left(\int_0^t \xi(X_s)ds \right) \mathbb{1}\{\tau_{F(t)} > t, \tau_{\Lambda(t)} < t, H\{\hat{Z}^{(1)}_t, \hat{Z}^{(2)}_t\} \leq t, \arg\max_{s \in [0, t]} [\xi(X_s) - \deg(X_s)] \in \{\hat{Z}^{(1)}_t, \hat{Z}^{(2)}_t\}, J_t \leq j_t\} \right], \]
\[U_3(t) := \mathbb{E}_0 \left[\exp \left(\int_0^t \xi(X_s)ds \right) \mathbb{1}\{\tau_{E(t)} \leq t\} \right], \]
\[U_4(t) := \mathbb{E}_0 \left[\exp \left(\int_0^t \xi(X_s)ds \right) \mathbb{1}\{\tau_{B(t)} > t, \exists u \in (F(t) \cup E(t)) \setminus \{\hat{Z}^{(1)}_t, \hat{Z}^{(2)}_t\} : \arg\max_{s \in [0, t]} [\xi(X_s) - \deg(X_s)] = u, J_t \leq j_t\} \right], \]
\[U_5(t) := \mathbb{E}_0 \left[\exp \left(\int_0^t \xi(X_s)ds \right) \mathbb{1}\{\tau_{B(t)} > t, H_{F(t)} > t\} \right], \]
\[U_6(t) := \mathbb{E}_0 \left[\exp \left(\int_0^t \xi(X_s)ds \right) \mathbb{1}\{\tau_{B(t)} > t, J_t \geq j_t\} \right]. \]
\numberthis \tag{45} \]

We will show in Proposition 7.3 that \(u_1(t, v) \) localises on \(\{\hat{Z}^{(1)}_t, \hat{Z}^{(2)}_t\} \), and in Propositions 7.4 to 7.9 that \(\frac{U_i(t)}{t} \to 0 \) for all \(i \in \{2, 3, 4, 5, 6\} \). This implies the result since \(u(t, v) \) is non-negative and \(u(t, v) \leq \sum_{i \leq 6} u_i(t, v) \) for all \(t > 0, v \in V(T_\infty) \).
We first derive some bounds for the contribution to U from a specific path. This will be particularly useful for proving a lower bound on $U(t)$ in Proposition 7.2, since the strategy employed to prove the analogous result in [KLMS09, Proposition 4.2] does not carry through in the variable degree setting.

Lemma 7.1. Let $\gamma = v_0, \ldots, v_n$ be a path in T_{i^*}, and let $i^* = \arg\max_{i \leq n} [\xi(v_i) - \deg(v_i)]$ (taking i^* to be the index of the first visit to v_i^* if v_i^* is visited more than once). Then:

(i)
\begin{align*}
E & \left[\exp \left\{ \int_0^t \xi(X_s)ds \right\} \mathbb{1}\{\pi(X_{[0,t]}) = \gamma \} \right] \\
& \leq e^{t(1+\xi(v_{i^*}) - \deg(v_{i^*}))} \prod_{i \neq i^*} \frac{1}{1 + [\xi(v_{i^*}) - \deg(v_{i^*})] - [\xi(v_i) - \deg(v_i)]}.
\end{align*}

(ii)
\begin{align*}
E & \left[\exp \left\{ \int_0^t \xi(X_s)ds \right\} \mathbb{1}\{\pi(X_{[0,t]}) = \gamma \} \right] \\
& \geq e^{t(\xi(v_{i^*}) - \deg(v_{i^*}))} \prod_{i \neq i^*} \frac{1 - e^{-\frac{t}{2}[\xi(v_{i^*}) - \deg(v_{i^*})] - [\xi(v_i) - \deg(v_i)]}}{[\xi(v_{i^*}) - \deg(v_{i^*})] - [\xi(v_i) - \deg(v_i)] + 1}.
\end{align*}

If γ is a direct path, the “+1” terms are not necessary.

Proof. Exactly the same computation as in the proof of Proposition 2.13, but by exchanging the roles of s_0 and s_{i^*} (i.e. instead applying the substitution $s_i = t - \sum_{i=0}^{n-1} s_i = t - \sum_{i \neq i^*} s_i - s_{i^*}$ to the integral over s_{i^*}) shows that

\begin{align*}
E & \left[\exp \left\{ \int_0^t \xi(X_s)ds \right\} \mathbb{1}\{\pi((X)_{[0,t]}) = \gamma \} \right] \\
& = e^{t(\xi(v_{i^*}) - \deg(v_{i^*}))} \int_{(0,\infty)^n} \exp \left\{ \sum_{i \neq i^*} y_i (\xi(v_i) - \deg v_i - [\xi(v_i) - \deg v_i]) \right\} \mathbb{1}\{\sum_i y_i < t\} \prod_{i \neq i^*} dy_i
\end{align*}

(i) To obtain the upper bound, we suppose instead that $\xi(v_{i^*})$ is replaced with $\xi(v_{i^*}) + 1$ only on the first visit to v_{i^*}. This can only increase the expectation in question. We can then remove the indicator function from the above integral and integrate over $(0,\infty)^n$ to obtain the upper bound.

(ii) For the lower bound, we instead replace $\xi(v_i)$ with $\xi(v_i) - 1$ for all i such that $v_i = v_{i^*}$ but $i \neq i^*$. We then integrate each variable over the interval $(0, \frac{t}{n})$.

We start by using this to give a lower bound for the total mass $U(t)$.

Proposition 7.2. (i) Under Assumption 1.3, there exists $c > 0$ such that for any $\epsilon > 0$,

\begin{align*}
U(t) = E & \left[\exp \left\{ \int_0^t \xi(X_s)ds \right\} \right] \\
& \geq e^{t\psi_1(\hat{Z}_t^{(1)}) - r(t)t^{-c}} \geq \exp\{ -ta(t)(\log t)^{-\epsilon} \}
\end{align*}

eventually almost surely.

(ii) Under Assumption 1.1, the same statement holds with high probability as $t \to \infty$.

Proof. (i) From Lemma 7.1(ii), taking γ to be the direct path from O to $\hat{Z}_t^{(1)}$, in which case $v_i = \hat{Z}_t^{(1)}$, $n = |\hat{Z}_t^{(1)}|$ and $v_i(\hat{Z}_t^{(1)}) > 0$, we see that

\begin{align*}
E & \left[\exp \left\{ \int_0^t \xi(X_s)ds \right\} \mathbb{1}\{\pi((X)_{[0,t]}) = \gamma \} \right] \\
& \geq e^{t(\xi(v_{i^*}) - \deg(v_{i^*}))} \prod_{i \neq i^*} \frac{1 - e^{-\frac{t}{2}[\xi(v_{i^*}) - \deg(v_{i^*})] - [\xi(v_i) - \deg(v_i)]}}{[\xi(v_{i^*}) - \deg(v_{i^*})] - [\xi(v_i) - \deg(v_i)]} \\
& \geq e^{t(\xi(v_{i^*}) - \deg(v_{i^*})) - |v_i| \log[\xi(v_{i^*}) - \deg(v_{i^*})]} \prod_{i \neq i^*} \left(1 - e^{-\frac{t}{2}[\xi(v_{i^*}) - \deg(v_{i^*})] - [\xi(v_i) - \deg(v_i)]} \right).
\end{align*}
Since \(v_\ast = \hat{Z}_t^{(1)} \), \(n = |\hat{Z}_t^{(1)}| \) and \(\psi_t(\hat{Z}_t^{(1)}) > 0 \), it follows from Proposition 5.1(ii) that eventually almost surely,
\[
\xi(v_\ast) - \deg(v_\ast) \geq \frac{q \log t}{2},
\]
Therefore, additionally applying Lemma 6.3(i) and Proposition 5.1(ii) we deduce that eventually almost surely for all \(i \neq i^* \)
\[
\frac{t}{n}||\xi(v_\ast) - \deg(v_\ast) \| - ||\xi(v) - \deg(v)\| \geq \frac{1}{2} \frac{t}{n}||\xi(v_\ast) - \deg(v_\ast)\| \geq \frac{q}{4} \log t.
\]
Therefore, the final term in (46) above is lower bounded by
\[
e^t(\xi(v_\ast) - \deg(v_\ast)) - |v_\ast| \log ||\xi(v_\ast) - \deg(v_\ast)\| \prod_{i \neq i^*} \left(1 - e^{-\frac{t}{4} \log t} \right) = e^{t \psi_t(\hat{Z}_t^{(1)})} \left(1 - e^{-q(\log t)/4} \right)^{|\hat{Z}_t^{(1)}|}.
\]
Therefore we have for all sufficiently large \(t \) that (using that \(\log(1 - x) \geq -2x \) for \(|x| < 1/2 \) and then Proposition 5.1(i)),
\[
\mathbb{E} \left[\exp \left\{ \int_0^t \xi(X_s)ds \right\} 1\{\pi((X)_{[0,t]} = \gamma) \} \right] \geq \exp \left\{ t \psi_t(\hat{Z}_t^{(1)}) + |\hat{Z}_t^{(1)}| \log \left(1 - e^{-q(\log t)/4} \right) \right\}
\geq \exp \left\{ t \psi_t(\hat{Z}_t^{(1)}) - |\hat{Z}_t^{(1)}| e^{-q(\log t)/4} \right\}
\geq \exp \left\{ t \psi_t(\hat{Z}_t^{(1)}) - t e^{-q(\log t)/8} \right\}.
\]
The deterministic lower bound then follows from Proposition 5.1(ii).

(ii) We can modify the proof above, noting that for any \(\epsilon > 0 \), \(|v_\ast| = |\hat{Z}_t^{(1)}| \leq r(t) (\log t)^\epsilon \) whp. Moreover, the same proof as in Lemma 6.3(i) shows that \(\inf_{i \neq i^*} ||\xi(v_\ast) - \deg(v_\ast)\| - ||\xi(v) - \deg(v)\| \geq c \log t \) whp as \(t \to \infty \), as above. The deterministic lower bound then follows from Proposition 5.1(ii').

Proposition 7.3. *Under Assumption 1.3, \(P \)-almost surely as \(t \to \infty \)
\[
\frac{\sum_{v \in T \setminus \{\hat{Z}_t^{(1)}, \hat{Z}_t^{(2)}\}} u_1(t,v)}{U(t)} \to 0
\]

Proof. By the definition in (44), \(u_1 \) is of the form (40) with \(\Lambda = \Lambda_t \) and \(\Omega = \{ \hat{Z}_t^{(1)}, \hat{Z}_t^{(2)} \} \). Moreover \(\tilde{g}_{1, \Lambda} > 0 \) by Lemma 6.3(ii). The result therefore follows directly from Lemmas 6.1(ii) and 6.8.

Proposition 7.4. *Under Assumption 1.3, \(P \)-almost surely as \(t \to \infty \)
\[
\frac{U_2(t)}{U(t)} \to 0.
\]

Proof. Recall the definition of \(F_t \) from Section 3.2.

The proof is similar to [KLMS09, Lemma 4.1]. Wlog we assume that \(\xi(\hat{Z}_t^{(1)}) - \deg(\hat{Z}_t^{(1)}) \geq \xi(\hat{Z}_t^{(2)}) - \deg(\hat{Z}_t^{(2)}) \) (otherwise we can just switch the roles of \(\hat{Z}_t^{(1)} \) and \(\hat{Z}_t^{(2)} \) in all that follows). We first consider the following sets of paths:

\[
\hat{\Gamma}_t^{(1)} := \left\{ \gamma \in B_{R(t)} : \hat{Z}_t^{(1)} \in \gamma, \gamma \not\subseteq \Gamma_t^{(1)}, \text{arg max}_{v \in \gamma} |\xi(v) - \deg(v)| = \hat{Z}_t^{(1)}, |\gamma| \leq j_t \right\},
\]

\[
\hat{\Gamma}_t^{(2)} := \left\{ \gamma \in B_{R(t)} : \hat{Z}_t^{(2)} \in \gamma, \hat{Z}_t^{(1)} \not\subseteq \gamma, \gamma \not\subseteq \Gamma_t^{(2)}, \text{arg max}_{v \in \gamma} |\xi(v) - \deg(v)| = \hat{Z}_t^{(2)}, |\gamma| \leq j_t \right\}.
\]
Furthermore, recall that $\gamma_{O,t}^{(1)}$ denotes the direct path from O to $\hat{Z}_t^{(1)}$. Now let $\gamma \in \hat{\Gamma}_t^{(1)}$ with $\gamma = v_1, \ldots, v_n$ and let $v^{*} = \arg\max_{v \in \gamma} \left(\xi(v) - \deg v \right)$, $i^{*} = \inf\{ j \geq 1 : v_j = v^{*} \}$. From Lemma 7.1(ii) we have that (since $v_{i^{*}} = \hat{Z}_t^{(1)}$ for $\gamma \in \hat{\Gamma}_t^{(1)}$)

$$
\mathbb{E} \left[\exp \left\{ \int_0^t \xi(X_s) ds \right\} \mathbb{I}\{ \pi((X)_{[0,t]} = \gamma) \} \right] \leq e^{t(1+\xi(v^{*}) - \deg(v^{*}))} \frac{1}{1 + |\xi(v^{*}) - \deg(v^{*})| - |\xi(v) - \deg(v)|}.
$$

(48)

Note that since γ escapes $\Gamma_t^{(1)}$ and hits $\hat{Z}_t^{(1)}$ we have that $n \geq (1 + (\log t)^{-\delta})|\hat{Z}_t^{(1)}|$ by definition of $\Gamma_t^{(1)}$. Since γ hits $\hat{Z}_t^{(1)}$ it must also contain $\gamma_{O,t}^{(1)}$ as a subpath, which contains at least $|\hat{Z}_t^{(1)}| - (\log t)^D$ vertices in F_t^{c} by Proposition 3.4(i). Furthermore, for the excursions from the direct path we have by Proposition 3.5(ii) and the fact that all excursions must have even length that at least $n - |\hat{Z}_t^{(1)}|$ vertices are in F_t^{c}. The intuition behind the proof is that each of these vertices contributes a penalty term to (48), which reduces the contribution from paths in $\hat{\Gamma}_t^{(1)}$.

Each term in the product above corresponding to a vertex in F_t^{c} is upper bounded by $

\frac{1}{1 + t\xi(\hat{Z}_t^{(1)}) - \deg(\hat{Z}_t^{(1)}) - R(t)^{\frac{D}{2}}(\log t)^{-C}}.

Moreover, for any $\delta > 0$, $\xi(\hat{Z}_t^{(1)}) - \deg(\hat{Z}_t^{(1)}) \geq r(t)(\log t)^{-\delta} = R(t)^{\frac{D}{2}}(\log t)^{-(C-1+\epsilon - \delta)}$ eventually almost surely by Proposition 5.1(ii). Incorporating this logic into (48), and using that $\log(1 - \epsilon x) \geq -2\epsilon x$ for all sufficiently small x, we therefore deduce that $\mathbb{E} \left[\exp \left\{ \int_0^t \xi(X_s) ds \right\} \mathbb{I}\{ \pi((X)_{[0,t]} = \gamma) \} \right]$ is upper bounded by

$$
e^{t(1+\xi(\hat{Z}_t^{(1)}) - \deg(\hat{Z}_t^{(1)}))} \left(\frac{1}{1 + |\xi(\hat{Z}_t^{(1)}) - \deg(\hat{Z}_t^{(1)})| - R(t)^{\frac{D}{2}}(\log t)^{-C}} \right)^{\frac{n - |\hat{Z}_t^{(1)}|}{2} + |\hat{Z}_t^{(1)}| - (\log t)^D}
$$

$$
\leq \exp \left\{ t(\xi(\hat{Z}_t^{(1)}) - \deg(\hat{Z}_t^{(1)})) - |\hat{Z}_t^{(1)}| \log(\xi(\hat{Z}_t^{(1)}) - \deg(\hat{Z}_t^{(1)})) + t \right\}
$$

$$
- \left(\frac{n - |\hat{Z}_t^{(1)}|}{2} - (\log t)^D \right) \log(\xi(\hat{Z}_t^{(1)}) - \deg(\hat{Z}_t^{(1)})) - \left(\frac{n + |\hat{Z}_t^{(1)}|}{2} - (\log t)^D \right) \log \left(1 - \frac{R(t)^{\frac{D}{2}}(\log t)^{-C} - 1}{\xi(\hat{Z}_t^{(1)}) - \deg(\hat{Z}_t^{(1)})} \right)
$$

$$
\leq \exp \left\{ t\psi(\hat{Z}_t^{(1)}) - \frac{n - |\hat{Z}_t^{(1)}|}{2} \right\} \log(\xi(\hat{Z}_t^{(1)}) - \deg(\hat{Z}_t^{(1)})) - (\log t)^{-(1+\epsilon - \delta)} + |\hat{Z}_t^{(1)}| (\log t)^{-(1+\epsilon - \delta)} + O(t)
$$

$$
\leq \exp \left\{ t\psi(\hat{Z}_t^{(1)}) - c_q(n - |\hat{Z}_t^{(1)}|) \log t + 2|\hat{Z}_t^{(1)}| (\log t)^{-(1+\epsilon - \delta)} \right\},
$$

for example taking $c_q = \frac{2}{3}$ (in fact we can take any $c_q < \frac{2}{3}$). Here we used that $\log(\xi(\hat{Z}_t^{(1)}) - \deg(\hat{Z}_t^{(1)})) - (\log t)^{-(1+\epsilon - \delta)} \geq \frac{2}{3}\log t$ eventually almost surely by Proposition 5.1(ii).

Thus, defining $U(\hat{\Gamma}_t^{(1)}) := \mathbb{E} \left[\exp \left\{ \int_0^t \xi(X_s) ds \right\} \mathbb{I}\{ \pi((X)_{[0,t]} \in \hat{\Gamma}_t^{(1)} \} \right]$ and applying Lemma 2.6, we deduce from the final line above that for any $\epsilon > 0$, eventually almost surely:

$$
\log(U(\hat{\Gamma}_t^{(1)}))
$$

$$
= \log \left(\sum_{(1 + (\log t)^{-\delta})|\hat{Z}_t^{(1)}| \leq n \leq j_t} \sum_{\gamma \in F_t^{c} | \gamma| = n} \mathbb{E} \left[\exp \left\{ \int_0^t \xi(X_s) ds \right\} \mathbb{I}\{ \pi((X)_{[0,t]} = \gamma) \} \right] \right)
$$

$$
\leq \sup_{(1 + (\log t)^{-\delta})|\hat{Z}_t^{(1)}| \leq n} \left\{ \max_{\gamma \in F_t^{c} | \gamma| = n} \log \left(\mathbb{E} \left[\exp \left\{ \int_0^t \xi(X_s) ds \right\} \mathbb{I}\{ \pi((X)_{[0,t]} = \gamma) \} \right] \right) + \eta_R(t)(n, |\hat{Z}_t^{(1)}|) \right\} + \log(j_t)
$$

$$
\leq \sup_{(1 + (\log t)^{-\delta})|\hat{Z}_t^{(1)}| \leq n} \left\{ t\psi(\hat{Z}_t^{(1)}) + (n - |\hat{Z}_t^{(1)}|) \right\} \log(R(t)) + \log \left(\frac{n}{n - |\hat{Z}_t^{(1)}|} \right) - c_q \log t + 3|\hat{Z}_t^{(1)}| (\log t)^{-(1+\epsilon - \delta)}
$$

For all $n \geq (1 + (\log t)^{-\delta})|\hat{Z}_t^{(1)}|$, the coefficient of n in the final line above is eventually almost surely upper
bounded by
\[-c_q \log t + \varepsilon \log(R(t)) + \log \left(\frac{n}{n - |Z_i^{(1)}|} \right) \leq -c_q \log t + \varepsilon \log(R(t)) + \log \left(\frac{1 + (\log t)^{-z}}{(\log t)^{-z}} \right) < -\frac{c_q}{2} \log t, \]
provided we chose \(\varepsilon > 0 \) sufficiently small. This implies that the supremum above is attained at the minimal value of \(n \). Therefore, we deduce that
\[\log(U(\hat{\Gamma}_t^{(1)})) \leq t \psi_t(\hat{Z}_t^{(1)}) - (n - |Z_i^{(1)}|) \frac{c_q}{2} \log t + 3|Z_i^{(1)}|(\log t)^{-(1+z-\delta)} \leq t \psi_t(\hat{Z}_t^{(1)}) - \frac{c_q}{3} |Z_i^{(1)}|(\log t)^{1-z}. \]
Invoking Proposition 7.2 thus yields that, almost surely,
\[\log \left(\frac{U(\hat{\Gamma}_t^{(1)})}{U(t)} \right) \leq -\frac{c_q}{3} r(t)(\log t)^{1-z} + r(t)t^{-c} \to -\infty. \]
An identical argument shows that same result with \(\hat{\Gamma}_t^{(2)} \) in place of \(\hat{\Gamma}_t^{(1)} \). This proves the result since \(U_2(t) = U(\hat{\Gamma}_t^{(1)}) + U(\hat{\Gamma}_t^{(2)}) \).

Remark 7.5. In the proof above, if the \(\varepsilon \) in the upper bound for \(\eta_{R(t)}(n, |Z_i|) \) is replaced by a constant larger than \(c_q \) (as could be the case under Assumption 1.1, see Remark 2.7) this argument fails. Since we can take any \(c_q < \frac{3}{2} \), this in particular fails when \(\frac{d}{q} > \frac{3}{2} \), or equivalently when \(\frac{\beta^2}{\beta + 1} = \beta + d < \alpha \).

Proposition 7.6. Under Assumption 1.1, \(P \)-almost surely as \(t \to \infty \)
\[\frac{U_3(t)}{U(t)} \to 0. \]

Proof. Recall that \(p = \max \{ h, q + 1 \} + 1 \). Since \(\alpha > d \), we can therefore choose \(\varepsilon > 0 \) small enough that
\[p > \max \left\{ q + 1, (q + 1) \frac{1}{\alpha} (d + \varepsilon) \right\}. \tag{49} \]
By Corollary 2.11 and Corollary 3.2 we have that \(P \)-almost surely for \(t \) sufficiently large
\[U_3(t) \leq \sum_{r \geq R(t)} \mathbb{E} \left[\exp \left\{ t \sup_{v \in B_r} \xi(v) \right\} \mathbb{I} \left\{ \sup_{s \leq t} |X_s| = r \right\} \right] \leq \sum_{r \geq R(t)} \exp \left\{ t \sup_{v \in B_r} \xi(v) \right\} \mathbb{P}(\tau_{B_{r-1}} \leq t) \leq \sum_{r \geq r(t)(\log t)^p} \exp \left\{ tr^{\frac{d}{h}}(\log r)^{\frac{d}{h}(d+\varepsilon)} - \frac{r}{5} \log \left(\frac{r}{ct} \right) \right\}. \]
Now note that for \(r \geq r(t)(\log t)^p \),
\[tr^{\frac{d}{h}}(\log r)^{\frac{d}{h}(d+\varepsilon)} < \frac{1}{10} r \log \left(\frac{r}{ct} \right), \tag{50} \]
provided \(t \) is sufficiently large. Thus we have for all sufficiently large \(t \) that
\[U_3(t) \leq \sum_{r \geq r(t)(\log t)^p} \exp \left\{ -\frac{1}{10} r \log \left(\frac{r}{ct} \right) \right\} \to 0 \]
as \(t \to \infty \). Since \(U(t) \geq 1 \) eventually almost surely by Proposition 7.2, the proof is complete. \(\square \)

Proposition 7.7. Under Assumption 1.3, \(P \)-almost surely as \(t \to \infty \)
\[\frac{U_4(t)}{U(t)} \to 0. \]
Proof. We proceed similarly to the proof of Proposition 7.4. For each \(u \in (F_t \cup E_t) \setminus \{ \hat{Z}_t^{(1)}, \hat{Z}_t^{(2)} \} \), let us define the following set of paths:

\[
\hat{\mathcal{I}}_t^{(4)}(u) := \left\{ \gamma \subset B_R(t) : \arg\max_{v \in \gamma} |\xi(v) - \deg(v)| = u, |\gamma| \leq j_t \right\}.
\]

Now fix some \(\gamma = v_0, \ldots, v_n \in \bigcup_{u \in (F_t \cup E_t) \setminus \{ \hat{Z}_t^{(1)}, \hat{Z}_t^{(2)} \}} \hat{\mathcal{I}}_t^{(4)}(u) \). Let \(v^* = \arg\max_{v \in \gamma} |\xi(v) - \deg(v)| \) and let \(i^* = \inf\{ j \geq 1 : v_j = v^* \} \). Take some \(\delta < \frac{1}{2\alpha(q+1)} \) and consider \(G_t \) as defined in (23). Then, using again (48) and the fact that \(\gamma \) contains at least \(\frac{n - |v^*|}{2} + |v^*| - t^{2\alpha(q+1)\delta} \) vertices in \(G_t^\gamma \) by Lemma 3.5(i), and \(v^* \in B_R(t) \) by assumption, we can deduce exactly as in the proof of Proposition 7.4 that

\[
\mathbb{E}\left[\exp \left\{ \int_0^t \xi(X_s)ds \right\} \mathbb{1}\{ \pi((X)_{[0,t]} = \gamma \} \right] \\
\leq \exp \left\{ t\psi_t(v^*) + t - \left(\frac{n - |v^*|}{2} - t^{2\alpha(q+1)\delta} \right) \log(|\xi(v^*) - \deg(v^*)|) - \left(\frac{n + |v^*|}{2} - t^{2\alpha(q+1)\delta} \right) \log(1 - R(t)^{-\frac{\alpha}{2}}) \right\}.
\]

Therefore, since we chose \(\delta < \frac{1}{2\alpha(q+1)} \) and \(\log(1 - x) \leq -x \) for \(x \in (0, 1) \), we have for any \(\varepsilon > 0 \) that

\[
\log(\mathbb{E}[U_4(t)]) \\
= \log \left(\sum_{|v^*| \in (F_t \cup E_t) \setminus \{ \hat{Z}_t^{(1)}, \hat{Z}_t^{(2)} \}} \sum_{|v^*| \leq n} \sum_{\gamma \in \mathcal{I}^{(4)}(v^*)} \mathbb{E}\left[\exp \left\{ \int_0^t \xi(X_s)ds \right\} \mathbb{1}\{ \pi((X)_{[0,t]} = \gamma \} \right] \\
\leq \sup_{|v^*| \in (F_t \cup E_t) \setminus \{ \hat{Z}_t^{(1)}, \hat{Z}_t^{(2)} \}} \sup_{|v^*| \leq n} \left\{ t\psi_t(v^*) + \left(\frac{n - |v^*|}{2} \right) \log(|\xi(v^*) - \deg(v^*)|) + \left(n + |v^*| \right) R(t)^{-\frac{\alpha}{2}} + \eta_{R(t)}(n, v^*) \right\} + O(t).
\]

Since \(v^* \in (F_t \cup E_t) \) the same argument as in the proof of Proposition 7.4 yields that the maximum in the expression above is attained at the smallest possible value of \(n \), provided that we choose \(\varepsilon > 0 \) small enough when applying the upper bound in Lemma 2.6. Therefore, substituting \(n = |v^*| \) we obtain that

\[
\log(\mathbb{E}[U_4(t)]) \leq t\psi_t(v^*) + O(R(t)^{1 - \frac{\alpha}{2}}), \quad (51)
\]

Invoking Propositions 5.6 and 7.2 therefore yields that almost surely,

\[
\log \left(\frac{U_4(t)}{U(t)} \right) \leq \sup_{v^* \in (F_t \cup E_t) \setminus \{ \hat{Z}_t^{(1)}, \hat{Z}_t^{(2)} \}} t(\psi_t(v^*) - \psi_t(\hat{Z}_t^{(1)})) + r(t)t^{-\varepsilon} + O(r(t)t^{-\frac{\alpha(q+1)\delta}{2}}) \to -\infty,
\]

as required. \(\square \)

Proposition 7.8. Under Assumption 1.3, \(P \)-almost surely as \(t \to \infty \)

\[
\frac{U_3(t)}{U(t)} \to 0.
\]

Proof. Clearly, \(U(5) \leq \exp \{ t \sup_{u \in E_t} |\xi(v)| \} \). Taking \(C \) as in (21) and taking \(\varepsilon = \frac{1}{2}(C - \frac{ql}{\alpha}) \) in Proposition 7.2(i), we deduce that

\[
\log \left(\frac{U_5(t)}{U(t)} \right) \leq ta(t)[(\log t)^{-(C - \frac{ql}{\alpha}) - (\log t)^{-\varepsilon}}] \to -\infty
\]

as required. \(\square \)

Proposition 7.9. Under Assumption 1.3, \(P \)-almost surely as \(t \to \infty \),

\[
\frac{U_6(t)}{U(t)} \to 0.
\]
Proof. Note that, for any \(\varepsilon > 0 \), \(\operatorname{sup}_{v \in B_R(t)} \deg(v) \leq t^{d+\frac{\varepsilon}{2}} \) eventually almost surely by Lemma 2.5(i). Therefore,
\[
P(J_t \geq t^{d+\frac{\varepsilon}{2}}+1) \leq \frac{P\left(\text{Poi}\left(t^{d+\frac{\varepsilon}{2}}+1\right) \geq t^{d+\frac{\varepsilon}{2}}+1\right)}{e^{-ct\frac{\varepsilon}{2}r(t)}}.
\]

Therefore, again applying Proposition 3.2 we deduce that
\[
\mathbb{E}_0 \left[\exp \left\{ \int_0^t \xi(X_s) ds \right\} \mathbb{1}\{\tau_{B_R(t)} > t, J_t \geq t^{d+\frac{\varepsilon}{2}}+1\} \right] \leq \exp\left(t \sup_{v \in B_R(t)} \xi(v) - ct\frac{\varepsilon}{2}r(t)\right) \leq \exp\{r(t)t^{\frac{\varepsilon}{4}} - ct\frac{\varepsilon}{2}r(t)\}.
\]

The result then follows from Proposition 7.2 similarly to the other cases.

Proof of Theorem 1.5. Since \(U(t) - U_1(t) \leq \sum_{i=2}^5 U_i(t) \), the theorem is a direct consequence of Propositions 7.3-7.8.

8 High probability single site localisation

Unlike in [KLMS09], we cannot directly read off a single site localisation result from the almost sure result because stronger analogues of Propositions 7.4 and 7.7 for \(\hat{U}_2 \) and \(U_4 \) do not necessarily hold with high probability under Assumption 1.1. In particular since the number of paths through a given vertex of length \(n \) grow fairly fast (cf Lemma 2.6) we cannot write high probability analogues of these results since we cannot justify the restriction to paths that are “as direct as possible”.

Instead we give a somewhat modified version of the proof, which nevertheless follows a similar structure to that used in [KMS06]. For this we keep \(p = q + 2 \) and define
\[
R(t) = r(t)(\log t)^p, \quad \tilde{R}_t = |\hat{Z}_1(t)| \left(1 + \frac{1}{(\log t)^{\frac{1}{2}+\frac{1}{t}}}\right).
\]

For ease of notation we define \(h_t = (\log t)^{\frac{1}{2}+\frac{1}{t}} \) for the rest of this section. Similar to Section 7 we define
\[
\hat{u}_1(t, v) = \mathbb{E}_0 \left[\exp \left\{ \int_0^t \xi(X_s) ds \right\} \mathbb{1}\{X_1 = v\} \mathbb{1}\{\tau_{B_{\tilde{R}_t}} > t, H_{\hat{Z}_1(t)} \leq t\} \right],
\]
\[
\hat{U}_2(t) = \mathbb{E}_0 \left[\exp \left\{ \int_0^t \xi(X_s) ds \right\} \mathbb{1}\{\tau_{B_{\tilde{R}_t}} \leq t, \tau_{B_R(t)} > t\} \right],
\]
\[
\hat{U}_3(t) = \mathbb{E}_0 \left[\exp \left\{ \int_0^t \xi(X_s) ds \right\} \mathbb{1}\{\tau_{B_{\tilde{R}_t}} \leq t\} \right],
\]
\[
\hat{U}_4(t) = \mathbb{E}_0 \left[\exp \left\{ \int_0^t \xi(X_s) ds \right\} \mathbb{1}\{H_{\hat{Z}_1(t)} > t\} \right].
\]

We show that \(\hat{u}_1 \) localises on \(\hat{Z}_1(t) \) whp, and that \(\hat{U}_2, \hat{U}_3 \) and \(\hat{U}_4 \) are asymptotically negligible whp. For this we define a modified functional
\[
\overline{\psi}_t(v) = t\xi(v) - |v| \log \left(\frac{|v|}{ct}\right).
\]

Although \(\overline{\psi}_t \) is “less precise” than \(\psi_t \), the advantage of working with \(\overline{\psi}_t \) is that it is easier to use it to give upper bounds \(u(t, v) \) for different \(v \). It is less of a natural lower bound for \(u(t, v) \) since we did not incorporate \(\rho \) as in (5), but in order to show that \(\exp\{t\hat{\psi}_t(\hat{Z}_1(t))\} \) is almost a lower bound for \(u(t, \hat{Z}_1(t)) \) one only has to condition on certain high probability events at the single site \(\hat{Z}_1(t) \). It would be harder to show that \(\exp\{t\psi_t(v)\} \) is an asymptotic upper bound for any \(v \neq \hat{Z}_1(t) \), since this involves conditioning on certain events occurring for all other \(v \neq \hat{Z}_1(t) \), which is much harder (and already we saw that the upper bounds in Propositions 7.4 and 7.7 do not carry through in the high probability setting).
Proposition 8.1. Take any \(\varepsilon > 0 \). Under Assumption 1.1, it holds with high \(P \)-probability as \(t \to \infty \) that
\[
\log U(t) \geq t\overline{\psi}_t(\hat{Z}_t^{(1)}) + o\left(\frac{ta(t)}{(\log t)^{1-\varepsilon}}\right).
\]

Proof. By Proposition 7.2(ii), it is enough to show that
\[
\overline{\psi}_t(\hat{Z}_t^{(1)}) - \psi_t(\hat{Z}_t^{(1)}) = \deg(\hat{Z}_t^{(1)}) + \frac{|\hat{Z}_t^{(1)}|}{t} \log \left(\frac{(\xi(\hat{Z}_t^{(1)}) - \deg(\hat{Z}_t^{(1)}))t}{|\hat{Z}_t^{(1)}|}\right) = o\left(\frac{a(t)}{(\log t)^{1-\varepsilon}}\right)
\]
whp as \(t \to \infty \). This is immediate from Proposition 5.1(iii') and Lemma 3.1 since whp we have:
\[
\frac{|\hat{Z}_t^{(1)}|}{t} \log \left(\frac{(\xi(\hat{Z}_t^{(1)}) - \deg(\hat{Z}_t^{(1)}))t}{|\hat{Z}_t^{(1)}|}\right) \leq \frac{r(t)(\log t)^{1/2}}{t} \log \left(\frac{a(t)t \log t}{r(t)}\right) = \frac{a(t)}{(\log t)^{1-\varepsilon/2}} \log((\log t)^2).
\]
A similar result holds for \(\deg(\hat{Z}_t^{(1)}) \) by Proposition 3.4(ii) and since \(\hat{Z}_t^{(1)} \in F_t \) whp by Proposition 5.1(ii'). □

Additionally, exactly the same proof as in Lemma 5.5 gives the following (note that Lemma 5.5 was written only under Assumption 1.1, and since \(\overline{\psi}_t(v) \geq \psi_t(v) \) for all \(v \) the same almost sure lower bounds hold for \(\overline{\psi}_t(v) \).

Lemma 8.2. Take any \(D > 0 \). Under Assumption 1.1, for any \(0 < K < D \), we have for all \(t \) large enough that
\[
P\left(\overline{\psi}_t(\hat{Z}_t^{(1)}) - \sup_{v \neq \hat{Z}_t^{(1)}} \overline{\psi}_t(v) < a(t)(\log t)^{-D}\right) \leq 4a(\log t)^{-K}.
\]

We will need the following result to complete the localisation proof for \(\hat{u}_1 \).

Lemma 8.3. Under Assumption 1.1,

(i) \(\lim_{t \to \infty} P(\hat{Z}_t^{(1)} = Z_{B_{\infty}} = \hat{Z}_{B_{\infty}}) = 1. \)

(ii) \(P(\hat{Z}_t^{(1)} \text{ is also the maximiser of } \overline{\psi}_t) \to 1. \)

Proof. (i) By Lemma 3.7, it is sufficient just to establish the first equality. Since \(\psi_t(\hat{Z}_t^{(1)}) \geq \psi_t(Z_{B_{\infty}}) \) by definition, we can rearrange to deduce that
\[
\xi(Z_{B_{\infty}}) - \xi(\hat{Z}_t^{(1)}) \leq \deg(Z_{B_{\infty}}) - \deg(\hat{Z}_t^{(1)}) + \frac{|Z_{B_{\infty}}|}{t} \log(\xi(Z_{B_{\infty}}) - \deg(Z_{B_{\infty}})) - \frac{|\hat{Z}_t^{(1)}|}{t} \log(\xi(\hat{Z}_t^{(1)}) - \deg(\hat{Z}_t^{(1)}))
\leq \deg(Z_{B_{\infty}}) + \left(\frac{|Z_{B_{\infty}}|}{t} - \frac{|\hat{Z}_t^{(1)}|}{t}\right) \log(\xi(Z_{B_{\infty}}) - \deg(Z_{B_{\infty}})) + \frac{|\hat{Z}_t^{(1)}|}{t} \log\left(\frac{\xi(Z_{B_{\infty}}) - \deg(Z_{B_{\infty}})}{\xi(\hat{Z}_t^{(1)}) - \deg(\hat{Z}_t^{(1)})}\right).\]

Now take any \(\varepsilon \in (0, \frac{1}{2}(1 + \frac{1}{\varepsilon}) \) and note that:

- By Lemma 3.1 and Lemma 3.4(iii), \(\deg(Z_{B_{\infty}}) \leq (\log t)^B \) whp as \(t \to \infty \).
- By Proposition 5.1(iii'), \(\hat{Z}_t^{(1)} \leq r(t)(\log t)^{\varepsilon} = ta(t)(\log t)^{\varepsilon-1} \) whp as \(t \to \infty \).
- By Lemma 3.1 \(\xi(Z_{B_{\infty}}) - \deg(Z_{B_{\infty}}) \leq R(t)(\log t)^{\varepsilon} = r(t)(\log t)^{p+\varepsilon} \) whp as \(t \to \infty \).
- By Proposition 5.1(iii') and (ii'), \(\xi(\hat{Z}_t^{(1)}) - \deg(\hat{Z}_t^{(1)}) \geq a(t)(\log t)^{-\varepsilon} \) whp as \(t \to \infty \).
Substituting these bounds above, and using the fact that we chose \(\varepsilon < \frac{1}{2} (1 + \frac{1}{a}) \), we deduce that, whp as \(t \to \infty \),
\[
\xi(\mathcal{B}_{\mathcal{M}_t}) - \xi(\hat{Z}_t^{(1)}) \leq (\log t)^{\rho} + a(t)(\log t)^{\varepsilon - \frac{1}{2} (1 + \frac{1}{a})} + (p + 2\varepsilon)a(t)(\log t)^{\varepsilon - 1} \log \log t \leq a(t)(\log t)^{\varepsilon - \frac{1}{2} (1 + \frac{1}{a})} < a(t)(\log t)^{-2\varepsilon}.
\]

By Lemma 3.6 and Proposition 5.1(i'), we also have that \(\mathcal{B}_{\mathcal{M}_t} \geq (R_t)^{\frac{3}{2}}(\log(R_t))^{-\varepsilon} \geq a(t)(\log t)^{-2\varepsilon} \) whp as \(t \to \infty \).

Combining these two calculations, we deduce that \(\xi(\mathcal{B}_{\mathcal{M}_t}) - \xi(\hat{Z}_t^{(1)}) < g_{\mathcal{B}_{\mathcal{M}_t}} \) whp, which in turn implies that \(B_{\mathcal{M}_t} = \hat{Z}_t^{(1)} \) whp.

(ii) By part (i), it follows that \(\overline{\psi}_t(\hat{Z}_t) \geq \overline{\psi}_t(v) \) for all \(v \in B_{\mathcal{M}_t} \setminus B_{\hat{Z}_t} \) whp. Additionally, by Proposition 5.1(ii') and Lemma 3.1, it follows that \(\overline{\psi}_t(\hat{Z}_t) \geq \overline{\psi}_t(v) \) for all \(v \in B_{r(t)(\log t)^{-\varepsilon}} \). Finally, by the same proof used to prove the upper bound in Theorem 1.7, it follows that the maximiser of \(\overline{\psi}_t \) is in \(B_{r(t)(\log t)^{-\varepsilon}} \).

Now suppose that both \(v \) and \(\hat{Z}_t^{(1)} \) are in \(B_{r(t)(\log t)^{-\varepsilon}} \setminus B_{r(t)(\log t)^{-\varepsilon}} \) and \(v \neq \hat{Z}_t \). Then, since in particular \(|v| \leq |\hat{Z}_t^{(1)}| \log t)^{2\varepsilon} \), we have that
\[
\overline{\psi}_t(v) - \overline{\psi}_t(\hat{Z}_t^{(1)}) \leq \psi_t(v) - \psi_t(\hat{Z}_t^{(1)}) + \frac{|v|}{t} \log \left(\frac{t(\xi(v) - \deg v)}{t} \right) - \frac{|\hat{Z}_t^{(1)}|}{t} \log \left(\frac{t(\xi(\hat{Z}_t^{(1)}) - \deg(\hat{Z}_t^{(1)}))}{t} \right)
\]
\[
\leq \psi_t(v) - \psi_t(\hat{Z}_t^{(1)}) + \frac{|\hat{Z}_t^{(1)}| \log t)^{2\varepsilon}}{t} \log \left(\frac{t(\xi(v) - \deg v)}{|v|(\xi(\hat{Z}_t^{(1)}) - \deg(\hat{Z}_t^{(1)}))} \right).
\]

Take \(\varepsilon \in (0, \frac{1}{6}) \). By Lemma 3.1 and Proposition 5.1(ii), we can assume that \(\xi(\hat{Z}_t^{(1)}) - \deg(\hat{Z}_t^{(1)}) \geq (\xi(v) - \deg v)(\log t)^{3\varepsilon} \), and since \(v \in B_{r(t)(\log t)^{-\varepsilon}} \setminus B_{r(t)(\log t)^{-\varepsilon}} \), we can also assume that \(\frac{|\hat{Z}_t^{(1)}|}{|v|} \leq (\log t)^{2\varepsilon} \) and \(|v| \leq r(t)(\log t)^{\varepsilon} \) by Proposition 5.1(iii'). Moreover, by Lemma 5.5, we can assume that \(\psi_t(v) - \psi_t(\hat{Z}_t^{(1)}) \leq -a(t)(\log t)^{-\varepsilon} \). Assuming these, we therefore have that
\[
\overline{\psi}_t(v) - \overline{\psi}_t(\hat{Z}_t^{(1)}) \leq \psi_t(v) - \psi_t(\hat{Z}_t^{(1)}) + \frac{r(t)(\log t)^{3\varepsilon}}{t} \log t \leq -a(t)(\log t)^{-\varepsilon} + a(t)(\log t)^{4\varepsilon - 1} < 0,
\]
as required.

\[\blacksquare\]

Proposition 8.4. Under Assumption 1.1,
\[
\sum_{v \in T_\infty \setminus \{\hat{Z}_t^{(1)}\}} \frac{\bar{u}_1(t, v)}{U(t)} \to 0 \tag{54}
\]
in \(P \)-probability as \(t \to \infty \).

Proof. This follows from Lemmas 3.7, 6.1, 6.11 and 8.3. \(\blacksquare \)

Proposition 8.5. Under Assumption 1.1, \(\frac{\hat{U}_2(t)}{U(t)} \to 0 \) whp.

Proof. We will show that
\[
\log \left(\hat{U}_2(t) \right) \leq \max \left\{ t \sup_{v \neq \hat{Z}_t^{(1)}} \overline{\psi}_t(v), t\xi(\hat{Z}_t^{(1)}) - \mathcal{R}_t \log \left(\frac{\mathcal{R}_t}{ct} \right) \right\} + o \left(\frac{ta(t)}{\log t} \right) \tag{55}
\]
whp as \(t \to \infty \). To do this, first note that by the definition of \(\hat{U}_2 \), Proposition 5.1\((i')\) and Lemma 2.12, we have with high probability that

\[
\log \left(\hat{U}_2(t) \right) \leq \log \left(\sum_{r \in [R_r, r(t)(\log t)^p]} \exp \left\{ t \sup_{v \in B_r} \xi(v) \right\} P(\tau_{B_{r-1}} \leq t) \right) \\
\quad \leq t \max_{r \in [R_r, r(t)(\log t)^p]} \left\{ \sup_{v \in B_r} \xi(v) - \frac{r}{t} \log \left(\frac{r}{ct} \right) \right\} + o \left(\frac{ta(t)}{\log t} \right).
\]

Let \(\hat{r}(t) \) denote the \(r \) for which the maximum is attained, and \(\hat{e}(t) = \arg \max \{ \sup \xi(v) : v \in B_{\hat{r}(t)} \} \). If \(\hat{e}(t) = \hat{Z}_t^{(1)} \), then

\[
t \max_{r \in [R_r, r(t)(\log t)^p]} \left\{ \sup_{v \in B_r} \xi(v) - \frac{r}{t} \log \left(\frac{r}{ct} \right) \right\} \leq t \xi(\hat{Z}_t^{(1)}) - \hat{R}_t \log \left(\frac{\hat{R}_t}{ct} \right).
\]

If \(\hat{e}(t) \neq \hat{Z}_t^{(1)} \), then

\[
t \max_{r \in [R_r, r(t)(\log t)^p]} \left\{ \sup_{v \in B_r} \xi(v) - \frac{r}{t} \log \left(\frac{r}{ct} \right) \right\} = t \xi(\hat{e}(t)) - \hat{r}(t) \log \left(\frac{\hat{r}(t)}{ct} \right) \leq t \xi(\hat{e}(t)) - |\hat{e}(t)| \log \left(\frac{|\hat{e}(t)|}{ct} \right)
\]

\[
\leq t \sup_{v \neq \hat{Z}_t^{(1)}} \overline{\psi}_t(v).
\]

This establishes (55). To complete the proof, we invoke Proposition 8.1 which implies that, for any \(\varepsilon > 0 \), we have with high probability as \(t \to \infty \),

\[
\frac{\hat{U}_2(t)}{U(t)} \leq \exp \left\{ \max_{v \neq \hat{Z}_t^{(1)}} \left\{ t \left(\sup_{v \neq \hat{Z}_t^{(1)}} \overline{\psi}_t(v) - \overline{\psi}_t(\hat{Z}_t^{(1)}) \right), |\hat{Z}_t^{(1)}| \log \left(\frac{|\hat{Z}_t^{(1)}|}{ct} \right) - \hat{R}_t \log \left(\frac{\hat{R}_t}{ct} \right) \right\} + o \left(\frac{ta(t)}{(\log t)^{1-\varepsilon}} \right) \right\}.
\]

- To deal with the first term in the maximum above, take \(\varepsilon = \frac{1}{4} \) and note from Lemma 8.2 that for \(\eta_t = (\log t)^{-\frac{1}{4}} \) we have that \(P \left(\overline{\psi}_t(\hat{Z}_t^{(1)}) - \sup_{v \neq \hat{Z}_t^{(1)}} \overline{\psi}_t(v) < \eta \mu(t) \right) \to 0 \) as \(t \to \infty \). Therefore,

\[
t \left(\sup_{v \neq \hat{Z}_t^{(1)}} \overline{\psi}_t(v) - \overline{\psi}_t(\hat{Z}_t^{(1)}) \right) + o \left(\frac{ta(t)}{(\log t)^{1-\varepsilon}} \right) \to -\infty
\]

in probability as \(t \to \infty \).

- To deal with the second term in the maximum above, recall that \(\overline{\psi}_t = |\hat{Z}_t^{(1)}|(1 + \overline{h}_t) \) where \(\overline{h}_t = \frac{1}{(\log t)^{\frac{1}{4}}} \), and choose \(\varepsilon \) small enough such that \(h_t \geq (\log t)^{-1-2\varepsilon} \). We then have by Proposition 5.1\((i')\) that, with high probability as \(t \to \infty \)

\[
\overline{R}_t \log \left(\frac{\overline{R}_t}{ct} \right) - |\hat{Z}_t^{(1)}| \log \left(\frac{|\hat{Z}_t^{(1)}|}{ct} \right) + o \left(\frac{ta(t)}{(\log t)^{1-\varepsilon}} \right) \geq |\hat{Z}_t^{(1)}| h_t \log \left(\frac{|\hat{Z}_t^{(1)}|}{ct} \right) + o \left(\frac{ta(t)}{(\log t)^{1-\varepsilon}} \right)
\]

\[
\geq C |\hat{Z}_t^{(1)}| h_t \log t + o \left(\frac{ta(t)}{(\log t)^{1-\varepsilon}} \right)
\]

\[
\geq C \mu(t) \left(\frac{\log t \varepsilon}{(\log t)^{1-2\varepsilon}} + o \left(\frac{ta(t)}{(\log t)^{1-\varepsilon}} \right) \right),
\]

which diverges as \(t \to \infty \).

This completes the proof.

\[\square\]

Proposition 8.6. Under Assumption 1.1, \(\frac{\hat{U}_2(t)}{U(t)} \to 0 \) whp.
Proof. This holds by Proposition 7.6 (note that we proved it under the weaker assumption), since we chose the same value of \(p \) when defining \(R(t) \), and in particular \(p > q + 1 \). \(\square \)

Proposition 8.7. Under Assumption 1.1, \(\frac{\hat{U}_4(t)}{U(t)} \to 0 \) whp.

Proof. We split the sum into two parts by writing,

\[
\hat{U}_4(t) \leq E \left[\exp \left\{ \int_0^t \xi(X_s)ds \right\} 1\{H_{\hat{Z}_t^{(1)}} > t\} 1\{\tau_{B_{\overline{\pi}_t}} > t\} \right]
\]

\[
\leq \sum_{r \leq R_t} E \left[\exp \left\{ \int_0^{r} \xi(X_s)ds \right\} 1\{H_{\hat{Z}_t^{(1)}} > t\} 1\{\sup_{s \leq t} |X_s| = r\} \right]
\]

\[
= \sum_{r \leq r(t)(\log t)^{-1}} E \left[\exp \left\{ \int_0^{r} \xi(X_s)ds \right\} 1\{H_{\hat{Z}_t^{(1)}} > t\} 1\{\sup_{s \leq t} |X_s| = r\} \right] \\
+ \sum_{r(t)(\log t)^{-1} \leq r \leq R_t} E \left[\exp \left\{ \int_0^{r} \xi(X_s)ds \right\} 1\{H_{\hat{Z}_t^{(1)}} > t\} 1\{\sup_{s \leq t} |X_s| = r\} \right].
\]

(56)

We now bound the two sums appearing here.

- By Lemma 3.1 it holds with high \(P \)-probability as \(t \to \infty \) that the logarithm of the first sum in (56) is upper bounded by

\[
t \sup_{v \in B_r(t)(\log t)^{-1}} \xi(v) + \log(r(t)(\log \log t)^{-1}) = o \left(\frac{ta(t)}{(\log t)^{d/2\alpha}} \right).
\]

- We know by Proposition 5.1 that for any \(\varepsilon > 0 \), it holds with high \(P \)-probability as \(t \to \infty \) that

\[
\overline{\pi}_t \leq r(t)(\log t)^{\varepsilon}.
\]

Thus by Lemma 2.12, it holds whp that the logarithm of the second sum in (56) is upper bounded by

\[
\max_{r \in [r(t)(\log t)^{-1}, r(t)(\log t)^{\varepsilon}]} \left\{ t \sup_{v \in B_r(\hat{Z}_t^{(1)})} \xi(v) - \log(\mathbb{P}(\tau_{B_{\overline{\pi}_t}} \leq t)) \right\} + \log(r(t)(\log t)^{\varepsilon})
\]

\[
\leq \max_{r \in [r(t)(\log t)^{-1}, r(t)(\log t)^{\varepsilon}]} \left\{ t \sup_{v \in B_r(\hat{Z}_t^{(1)})} \xi(v) - \log \left(\frac{t}{\varepsilon t} \right) + o(r(t)) \right\} + \log(r(t)(\log t)^{\varepsilon}) \leq t \sup_{v \neq \hat{Z}_t^{(1)}} \overline{\psi}_t(v) + o(r(t)).
\]

Combining these two calculations and applying Proposition 8.1 (with \(\varepsilon = 1/2 \)) and then Lemmas 8.2 and 8.3(ii) shows that whp as \(t \to \infty \),

\[
\log \left(\frac{\hat{U}_2(t)}{U(t)} \right) \leq t \sup_{v \neq \hat{Z}_t^{(1)}} \overline{\psi}_t(v) - \overline{\psi}_t(\hat{Z}_t^{(1)}) + o \left(\frac{ta(t)}{(\log t)^{d/2\alpha}} + r(t) + \frac{ta(t)}{(\log t)^{1/2}} \right) \leq - \frac{ta(t)}{(\log t)^{d/4\alpha}} + o \left(\frac{ta(t)}{(\log t)^{d/4\alpha}} \right)
\]

\[
\to -\infty,
\]

as required. \(\square \)

References

[AD15] R. Abraham and J.-F. Delmas. An introduction to Galton-Watson trees and their local limits. *ArXiv e-prints*, 1506.05571, June 2015.
[AGH20] L. Avena, O. Gün, and M. Hesse. The parabolic Anderson model on the hypercube. *Stochastic Processes and their Applications*, 130(6):3369–3393, 2020.

[Ald91] D. Aldous. The Continuum Random Tree II: an overview. *Stochastic analysis*, 167:23–70, 1991.

[Ald97] D. Aldous. Brownian excursions, critical random graphs and the multiplicative coalescent. *The Annals of Probability*, pages 812–854, 1997.

[And58] P. Anderson. Absence of diffusion in certain random lattices. *Physical review*, 109(5):1492, 1958.

[Arc20] E. Archer. Random walks on decorated Galton-Watson trees. 2020.

[Arc21] E. Archer. Brownian motion on stable looptrees. In *Annales de l’Institut Henri Poincaré, Probabilités et Statistiques*, volume 57, pages 940–979. Institut Henri Poincaré, 2021.

[CK08] D. Croydon and T. Kumagai. Random walks on Galton-Watson trees with infinite variance offspring distribution conditioned to survive. *Electron. J. Probab.*, 13:no. 51, 1419–1441, 2008.

[dHW21] F. den Hollander and D. Wang. The Parabolic Anderson Model on a Galton-Watson tree revisited, 2021.

[dKd20] F. den Hollander, W. König, and R. dos Santos. The parabolic Anderson model on a Galton-Watson tree. *arXiv e-prints*, page arXiv:2001.05106, January 2020.

[Duq09] T. Duquesne. Continuum random trees and branching processes with immigration. *Stochastic Process. Appl.*, 119(1):99–129, 2009.

[Dwa69] M. Dwass. The total progeny in a branching process and a related random walk. *Journal of Applied Probability*, 6(3):682–686, 1969.

[FM90] K. Fleischmann and S. Molchanov. Exact asymptotics in a mean field model with random potential. *Probability theory and related fields*, 86(2):239–251, 1990.

[GK98] J. Geiger and G. Kersting. The Galton–Watson tree conditioned on its height. *Probability Theory and Mathematical Statistics (Vilnius, 1998)*, pages 277–286, 1998.

[GK05] J. Gärtner and W. König. The parabolic Anderson model. In *Interacting stochastic systems*, pages 153–179. Springer, 2005.

[GM90] J. Gärtner and S. Molchanov. Parabolic problems for the Anderson model. *Communications in mathematical physics*, 132(3):613–655, 1990.

[Kes86] H. Kesten. Subdiffusive behavior of random walk on a random cluster. *Ann. Inst. H. Poincaré Probab. Statist.*, 22(4):425–487, 1986.

[KLMS09] W. König, H. Lacoin, P. Mörters, and N. Sidorova. A two cities theorem for the parabolic Anderson model. *Ann. Probab.*, 37(1):347–392, 2009.

[KMS06] W. König, P. Mörters, and N. Sidorova. Complete localisation in the parabolic Anderson model with Pareto-distributed potential. *arXiv preprint math/0608544*, 2006.

[Kön16] W. König. *The parabolic Anderson model*. Pathways in Mathematics. Birkhäuser/Springer, [Cham], 2016. Random walk in random potential.

[Kor12] I. Kortchemski. Invariance principles for Galton–Watson trees conditioned on the number of leaves. *Stochastic Processes and Their Applications*, 122(9):3126–3172, 2012.

[Kor17] I. Kortchemski. Sub-exponential tail bounds for conditioned stable Bienaymé-Galton-Watson trees. *Probab. Theory Related Fields*, 168(1-2):1–40, 2017.

[Mör09] P. Mörters. The parabolic Anderson model with heavy-tailed potential. In *Surveys in Stochastic Processes, Proceedings of the 33rd SPA Conference in Berlin*, 2009.
S. Muirhead and R. Pymar. Localisation in the bouchaud–anderson model. *Stochastic Processes and their Applications*, 126(11):3402–3462, 2016.

A. Nachmias and Y. Peres. The local limit of uniform spanning trees. 2020.

M. Ortgiese and M. Roberts. Intermittency for branching random walk in Pareto environment. *The Annals of Probability*, 44(3):2198–2263, 2016.

R. Slack. A branching process with mean one and possibly infinite variance. *Z. Wahrscheinlichkeitstheorie und Verw. Gebiete*, 9:139–145, 1968.
This figure "tallsubtree1.png" is available in "png" format from:

http://arxiv.org/ps/2202.08636v1
This figure "tallsubtree2.png" is available in "png" format from:

http://arxiv.org/ps/2202.08636v1