ELEMENTARY POLYNOMIAL IDENTITIES INVOLVING q-TRINOMIAL COEFFICIENTS

ALEXANDER BERKOVICH AND ALI KEMAL UNCU

To George E. Andrews, on the occasion of his 80th birthday

Abstract. We use q-binomial theorem to prove three new polynomial identities involving q-trinomial coefficients. We then use summation formulas for the q-trinomial coefficients to convert our identities into another set of three polynomial identities, which imply Capparelli’s partition theorems when the degree of the polynomial tends to infinity. This way we also obtain an interesting new result for the sum of the Capparelli’s products. We finish this paper by proposing an infinite hierarchy of polynomial identities.

1. Introduction

George Andrews is known for his many accomplishments and impeccable leadership in both his mathematical contributions and in service to the community of mathematics. His influence on research keeps opening new horizons, and at the same time, new doors to young researchers. There are many areas of study he introduced that are now saturated with world-class mathematicians, yet there are many more that the community is only catching up studying. Here, we look at one of these lesser-studied objects: q-trinomial coefficients. Introduced by Andrews in collaboration with Baxter, q-trinomial coefficients defined by

$$
\binom{L, b}{a; q}_2 := \sum_{n \geq 0} q^{n(n+b)} \frac{(q; q)_L}{(q; q)_n(q; q)_{n+a}(q; q)_{L-2n-a}},
$$

where, for any non-negative integer n, $(a; q)_n$ is the standard q-Pochhammer symbol [3],

$$(a; q)_n := (1 - a)(1 - aq)(1 - aq^2)\ldots(1 - aq^{n-1}).$$

It is easy to verify that

$$
\sum_{a=-L}^{L} \binom{L, b}{a; 1}_2 t^n = \left(t + \frac{1}{t}\right)^L,
$$

which implies the generalized Pascal Triangle for (1.1) with $q = 1$:

$$
\begin{array}{cccccccc}
& & & & & & 1 & \\
& & & & 1 & 1 & 1 & \\
& & 1 & 2 & 3 & 2 & 1 & \\
& 1 & 3 & 6 & 7 & 6 & 3 & 1 \\
1 & 4 & 10 & 16 & 19 & 16 & 10 & 4 & 1 \\
\vdots & \\
\end{array}
$$

Date: October 16, 2018.

2010 Mathematics Subject Classification. 11B65, 11C08, 11P81, 11P82, 11P83, 11P84, 05A10, 05A15, 05A17.

Key words and phrases. Happy Birthday; Capparelli’s Partition Theorems; q-Trinomial coefficients; q-Series; Polynomial Identities.

Research of the first author is partly supported by the Simons Foundation, Award ID: 308929. Research of the second author is supported by the Austrian Science Fund FWF, SFB50-07 and SFB50-09 Projects.
The \(q\)-trinomial coefficients were studied in \([1,2,4–10,14–17]\). Nevertheless, it appears that the following identities are new.

Theorem 1.1.

\[
\sum_{n \geq 0} (-1)^n q^{(3n^2+n)/2} \frac{(q^3; q^3)_L}{(q; q)_{L-2n}(q^3; q^3)_n} + q^{2L+1} \sum_{n \geq 0} (-1)^n q^{(3n^2-n)/2} \frac{(q^3; q^3)_L}{(q; q)_{L-2n}(q^3; q^3)_n} = \sum_{j=-L}^{L} \left\{ q^{L+j+1} \binom{L, j+1}{j} q^3 \binom{L, j-1}{j} q^3 \right\}.
\]

Theorem 1.2.

\[
\sum_{n \geq 0} (-1)^n q^{(3n^2-n)/2} \frac{(q^3; q^3)_L}{(q; q)_{L-2n}(q^3; q^3)_n} = \sum_{j=-L}^{L} q^{2L-j} \binom{L, j-1}{j} q^3.
\]

For \(|q| < 1\), it is not obvious how the right-hand sides of (1.2)-(1.4) behave as \(L\) tends to \(\infty\). However, from the left-hand sides we can easily discover the limiting formulas

\[
\frac{1}{(q; q^3)_\infty}, \quad \frac{1}{(q^2; q^3)_\infty}, \quad \text{and} \quad \frac{1}{(q; q^3)_\infty},
\]

respectively, as \(L \to \infty\) with the aid of the \(q\)-binomial theorem.

These identities are related to combinatorics and partition theory. As an example, we will show that (1.2) and (1.4) in Theorem 1.1 imply Capparelli’s partition theorems. Moreover, the same application will yield the following new interesting result.

Theorem 1.2.

\[
\sum_{m,n \geq 0} \frac{q^{2m^2+6mn+6n^2-2m-3n}}{(q; q)_m(q^3; q^3)_n} = (-q^2, -q^4, q^6)_\infty (-q^3, q^3)_\infty + (-q, -q^5, q^6)_\infty (-q^3, q^3)_\infty.
\]

In Section 2, we give a comprehensive list of definitions and identities that will be used in this paper. Section 3 has the proof of Theorem 1.1. This section also includes the dual of these identities and a necessary version of the Bailey lemma for the \(q\)-trinomial coefficients. We find new polynomial identities that yield Capparelli’s partition theorem in Section 4. Theorem 1.2, which includes the sum of two the Capparelli’s theorem’s products, is also proven in Section 4. This section also contains a comparison of the mentioned polynomial identities and the previously found polynomial identities \([10]\) that also imply the Capparelli’s partition theorems. Outlook section, Section 5, includes two new results the authors are planning on presenting soon: a doubly bounded identity involving Warana’s refinement of the \(q\)-trinomial coefficients, and also an infinite hierarchy of \(q\)-series identities.

2. Necessary Definitions and Identities

We use the standard notations as in \([3]\). For formal variables \(a_i\) and \(q\), and a non-negative integer \(N\)

\[
(a; q)_\infty := \lim_{n \to \infty} (a; q)_n,
\]

\[
(a_1, a_2, \ldots, a_k; q)_n := (a_1; q)_n (a_2; q)_n \ldots (a_k; q)_n \text{ for any } n \in \mathbb{Z}_{\geq 0} \cup \{\infty\}.
\]

We can extend the definition of \(q\)-Pochhammer symbols to negative \(n\) with

\[
(a; q)_n = \frac{(a; q)_\infty}{(aq^n; q)_\infty}.
\]

Observe that (2.3) implies

\[
\frac{1}{(q; q)_n} = 0 \text{ if } n < 0.
\]
Also observe that, for non-negative \(n \) we have
\[
(q^{-1}; q^{-1})_n = (-1)^n q^{\binom{n+1}{2}} (q; q)_n.
\]
We define the \(q \)-binomial coefficients in the classical manner as
\[
\binom{m+n}{m}_q := \frac{(q)_m (q)_n}{(q)_n}, \quad \text{for } m, n \geq 0,
\quad \text{otherwise.}
\]
It is well known that for \(m \in \mathbb{Z}_{\geq 0} \)
\[
\lim_{N \to \infty} \binom{N}{m}_q = \frac{1}{(q; q)_m},
\]
for any \(j \in \mathbb{Z}_{\geq 0} \) and \(\nu = 0 \) or \(1 \)
\[
\lim_{M \to \infty} \binom{2M + \nu}{M - j}_q = \frac{1}{(q; q)_\infty}.
\]
We define another \(q \)-trinomial coefficient for any integer \(n \):
\[
T_n \left(\frac{L}{a}; q \right) := q^{\binom{L(L-n)-a(n-a)}{2}} \left(\frac{L, a-n}{a}; \frac{1}{q} \right)^2.
\]
Theorem 2.1 (\(q \)-Binomial Theorem). For variables \(a, q, \) and \(z \),
\[
\sum_{k \geq 0} \frac{(a; q)_n}{(q; q)_n} z^n = \frac{(az; q)_{\infty}}{(z; q)_{\infty}}.
\]
Also note that the \(q \)-exponential sum
\[
\sum_{k \geq 0} q^{\binom{n-1}{2}} \frac{(q; q)_n}{(q; q)_n} z^n = (-z; q)_{\infty}
\]
is a limiting case \((a \to \infty \) after the variable change \(z \mapsto -z/a \) \) of (2.10).
Another ingredient we will use here is the Jacobi Triple Product Identity [3]
Theorem 2.2 (Jacobi Triple Product Identity).
\[
\sum_{j=-\infty}^{\infty} z^j q^{\binom{j^2}{2}} = (q^2, -zq, -\frac{q}{z}; q^2)_{\infty}.
\]

3. Proof of Theorem 1.1 and some \(q \)-Trinomial Summation Formulas

We start with the following lemma.

Lemma 3.1. For any integer \(n \), we have
\[
\sum_{k \geq 0} \sum_{j=-\infty}^{\infty} \frac{x^j t^k}{(q; q)_k} \left(\frac{L, j-n}{j}; q \right)_2 = \frac{(t^2 q^{-n}; q)_{\infty}}{(t, t^{-1} q^{-n}, t x; q)_2}.
\]
The \(n = 0 \) case of (3.1) first appeared in Andrews [2, p.153, (6.6)].

Proof. We start by writing the definition (1.1) on left-hand side of the formula (3.1). After a simple cancellation one sees that the triple sum can be untangled by the change of the summation variables \(\nu = k + j \), and \(\mu = L - 2k - j \). This change of summation variables, keeping (2.4) in mind, shows that the left-hand side sum of (3.1) can be written as:
\[
\sum_{k \geq 0} \frac{x^{-k} t^k q^{-nk}}{(q; q)_k} \sum_{\nu \geq 0} \frac{x^\nu t^\nu q^{\nu k}}{(q; q)_\nu} \sum_{\mu \geq 0} \frac{t^\mu}{(q; q)_\mu}.
\]
One can apply the \(q \)-Binomial Theorem starting from the innermost sum of (3.2). After applying the \(q \)-Binomial Theorem 2.1 with \((a, z) = (0, t) \), and \((a, z) = (0, xtq^k) \) we get

\[
\frac{1}{(t; q)_\infty} \sum_{k \geq 0} x^{-k} t^k q^{-nk} (q; q)_k (xtq^k; q)_\infty.
\]

We rewrite \((xtq^k; q)_\infty \) using (2.3), take the \(k \)-free portion out of the summation, and use (2.10) once again with \((a, z) = (xt, x^{-1}tq^n) \) to finish the proof.

\[\square\]

We can prove Theorem 1.1 using Lemma 3.1.

Proof of Theorem 1.1. Instead of proving these identities directly, we will prove the equality of their generating functions. It is clear that one can prove the equality of the two sides of polynomial identities of the form

\[A_L(q) = B_L(q)\]

by a multi-variable generating function equivalence

\[
\sum_{L \geq 0} \frac{t^L}{(q^3; q^3)_L} A_L(q) = \sum_{L \geq 0} \frac{t^L}{(q^3; q^3)_L} B_L(q).
\]

On the right-hand side of (3.4) with the choice of \(B_L(q) \) being the right-hand sides of (1.2)-(1.4), we get

\[
\frac{(t^2 q^2; q^3)_\infty}{(t; q)_\infty} (1 + q), \quad \frac{(t^2 q^2; q^3)_\infty}{(t; q)_\infty}, \text{ and } \frac{(t^2 q^2; q^3)_\infty}{(t; q)_\infty},
\]

respectively, by Lemma 3.1. Hence, all we need to do is to show that the left-hand side of (3.4) with the choice of \(A_L(q) \) being the left-hand sides of (1.2)-(1.4) yields the same products.

The left-hand side of (1.2) has two sums. The first sum of the left-hand side of (1.2) after being multiplied by \(t^L/(q^3; q^3)_L \), summing over \(L \) as suggested in (3.4), and after simple cancellations turns into

\[
\sum_{L, n \geq 0} (-1)^n q^{3n^2+n} t^L (q; q)_{L-2n} (q^3; q^3)_n.
\]

We introduce the new summation variable \(\nu = L - 2n \). This factors the double sum fully. Keeping (2.4) in mind, we rewrite (3.6) as

\[
\sum_{\nu \geq 0} \frac{t^\nu}{(q; q)_\nu} \sum_{n \geq 0} q^{3n(n-1)/2} (-t^2q)^n.
\]

Then, using (2.10) and (2.11) on the two sums, respectively, we see that (3.6) is equal to

\[
\frac{(t^2 q^2; q^3)_\infty}{(t; q)_\infty}.
\]

The same exact calculation can be done for the second sum on the left-hand side of (1.2), and the left-hand side sums of (1.3) and (1.4). After the simplifications we see that the products we get from the left-hand side sums after (3.4) is applied to them, are the same as the products (3.5).

\[\square\]

In the identities of Theorem 1.1, we replace \(q \mapsto 1/q \), multiply both sides of the equations by \(q^{3L^2/2} \), use (2.5) and (2.9), and do elementary simplifications to get the following theorem.
Theorem 3.2.

\[
\sum_{n \geq 0} q^{\binom{L-2n}{2}} \frac{(q^3; q^3)_L}{(q; q)_{L-2n}(q^3; q^3)_n} + q^{L+1} \sum_{n \geq 0} q^{\binom{L-2n+1}{2}+n} \frac{(q^3; q^3)_L}{(q; q)_{L-2n}(q^3; q^3)_n} = \sum_{j \geq 0} q^{\frac{j^2+j}{2}} \left\{ T_{-1} \left(L \atop j ; q^3 \right) + T_{-1} \left(L \atop j+1 ; q^3 \right) \right\} ,
\]

(3.7)

\[
\sum_{n \geq 0} q^{\binom{L-2n}{2}} \frac{(q^3; q^3)_L}{(q; q)_{L-2n}(q^3; q^3)_n} = \sum_{j \geq 0} q^{\frac{j^2+j}{2}} T_1 \left(L \atop j ; q^3 \right) ,
\]

(3.8)

\[
\sum_{n \geq 0} q^{\binom{L-2n}{2}} \frac{(q^3; q^3)_L}{(q; q)_{L-2n}(q^3; q^3)_n} = \sum_{j \geq 0} q^{\frac{j^2+j}{2}} T_0 \left(L \atop j ; q^3 \right) .
\]

(3.9)

Building on the development in [7], [9], and [14], Warnaar [15, eqns. (10),(14)] proved the following summation formulas.

Theorem 3.3 (Warnaar).

\[
\sum_{i \geq 0} q^{\frac{i^2}{2}} \frac{[L]}{[i]_q} T_0 \left(\frac{i}{a} ; q \right) = q^{\frac{i^2}{2}} \frac{2L}{L-a} \left. \right|_q ,
\]

(3.10)

\[
\sum_{i \geq 0} q^{\binom{i}{2}} (1 + q^i) \frac{[L]}{[i]_q} T_1 \left(\frac{i}{a} ; q \right) = (1 + q^a)q^{\binom{i}{2}} \frac{2L}{L-a} \left. \right|_q .
\]

(3.11)

We found a new similar summation formula:

Theorem 3.4.

\[
\sum_{i \geq 0} q^{\binom{i+1}{2}} \frac{[L]}{[i]_q} \left\{ T_{-1} \left(\frac{i}{a} ; q \right) + T_{-1} \left(\frac{i}{a+1} ; q \right) \right\} = q^{\binom{i+1}{2}} \frac{2L+1}{L-a} \left. \right|_q ,
\]

(3.12)

Proof. To prove (3.12), we need the following identity of Berkovich–McCoy–Orrick [8, p. 815, (4.8)]:

\[
T_{-1} \left(\frac{L}{a} ; q \right) + T_{-1} \left(\frac{L}{a+1} ; q \right) = \frac{1}{1-q^{L+1}} \left\{ T_1 \left(\frac{L+1}{a} ; q \right) - q^{(L+1-a)/2} T_0 \left(\frac{L+1}{a} ; q \right) \right\} .
\]

(3.13)

After the use of (3.13) on the left-hand side of (3.12), we employ

\[
\frac{1}{1-q^{L+1}} \frac{[L]}{[i]_q} = \frac{1}{1-q^{L+1}} \frac{[L+1]}{[i+1]_q} ,
\]

(3.14)

and summations (3.10) and (3.11). This yields the right-hand side of (3.12) after some elementary simplifications. \qed

Theorem 3.5. Let $F_i(L)$ and $\alpha_i(a)$ be sequences, depending on L and a, respectively, for $i = -1, 0$ or 1. If

\[
F_0(L) = \sum_{a=-\infty}^{\infty} \alpha_0(a) T_0 \left(\frac{L}{a} ; q \right) ,
\]

(3.15)

\[
F_1(L) = \sum_{a=-\infty}^{\infty} \alpha_1(a) T_1 \left(\frac{L}{a} ; q \right) ,
\]

(3.16)

\[
F_{-1}(L) = \sum_{a=-\infty}^{\infty} \alpha_{-1}(a) \left\{ T_{-1} \left(\frac{L}{a} ; q \right) + T_{-1} \left(\frac{L}{a+1} ; q \right) \right\} ,
\]

(3.17)
then
\begin{equation}
\sum_{i\geq 0} q^{\frac{i^2}{2}} \binom{L}{i}_q F_0(i) = \sum_{a=\infty}^{\infty} a_0(a) q^{\frac{i^2}{2}} \binom{2L}{L-a}_q,
\end{equation}
\begin{equation}
(1 + q^L) \sum_{i\geq 0} q^{\frac{i^2}{2}} \binom{L}{i}_q F_1(i) = \sum_{a=\infty}^{\infty} a_1(a)(1+q^a) q^{\frac{i^2}{2}} \binom{2L}{L-a}_q,
\end{equation}
\begin{equation}
\sum_{i\geq 0} q^{\frac{(i+1)^2}{2}} \binom{L}{i}_q F_{-1}(i) = \sum_{a=\infty}^{\infty} a_{-1}(a) q^{\frac{(i+1)^2}{2}} \binom{2L+1}{L-a}_q
\end{equation}
hold.

Proof. We apply (3.10)-(3.12) to (3.15)-(3.17) and get (3.18)-(3.20), respectively. \hfill \Box

4. New polynomial identities implying Capparelli’s partition theorems

We apply (3.18) to (3.9) to get
\begin{equation}
\sum_{L,n \geq 0} q^{\frac{(L-2n)^2+3L^2}{2}} \binom{q^3; q^3}_M \frac{(q^3; q^3)_M}{(q; q)_{L-2n}(q^3; q^3)_n(q^3; q^3)_{M-L}} = \sum_{j=-M}^{M} q^{3j^2+j} \binom{2M}{M+j}_q^3.
\end{equation}

We introduce the new variable $m = L - 2n$, and let
$$Q(m, n) := 2m^2 + 6mn + 6n^2$$
and, observe that
$$Q(m, n) = \frac{(L - 2n)^2 + 3L^2}{2},$$
after the change of variable. Hence, (4.1) can be written as

Theorem 4.1.
\begin{equation}
\sum_{m,n \geq 0} \frac{q^{Q(m, n)}(q^3; q^3)_M}{(q; q)_m(q^3; q^3)_n(q^3; q^3)_{M-2n-m}} = \sum_{j=-M}^{M} q^{3j^2+j} \binom{2M}{M+j}_q^3.
\end{equation}

Recall that (4.2) is Theorem 7.1 in [10]. Letting $M \to \infty$ in (4.2), using (2.8), and the Jacobi Triple Identity (2.12) on the right-hand side we get

Theorem 4.2.
\begin{equation}
\sum_{m,n \geq 0} \frac{q^{Q(m, n)}}{(q; q)_m(q^3; q^3)_n} = (-q^2, -q^4; q^6)_\infty (-q^3; q^3)_\infty.
\end{equation}

Authors recently discovered another polynomial identity [10, Thm 1.3, (1.12)] that imply the same q-series identity (4.3) as $N \to \infty$:

Theorem 4.3. For any non-negative integer N, we have
\begin{equation}
\sum_{m,n \geq 0} q^{Q(m, n)} \binom{3(N - 2n - m)}{m} \frac{2(N - 2n - m) + n}{n} q^3 = \sum_{l=0}^{N} q^{3(N-2l)} \binom{N}{2l} (-q^2, -q^4; q^6)_l.
\end{equation}

Recently, the identity (4.3) was independently proposed by Kanade–Russell [12] and Kursungöz [13]. They showed that (4.3) is equivalent to the following partition theorem.

Theorem 4.4 (Capparelli’s First Partition Theorem [11]). For any integer n, the number of partitions of n into distinct parts where no part is congruent to ± 1 modulo 6 is equal to the number of partitions of n into parts, not equal to 1, where the minimal difference between consecutive parts is 2. In fact, the difference between consecutive parts is greater than or equal to 4 unless consecutive parts are $3k$ and $3k + 3$ (yielding a difference of 3), or $3k - 1$ and $3k + 1$ (yielding a difference of 2) for some $k \in \mathbb{N}$.

Theorem 4.4 was first proven by Andrews in [2].

Analogously, we apply (3.19) to (3.8) and get

Theorem 4.5.

\[
\sum_{m,n \geq 0} \frac{q^{Q(m,n)-2m-3n}(q^3;q^3)_M}{(q;q)_m(q^3;q^3)_n(q^3;q^3)_M-2n-m}(1+q^{3M}) = \sum_{j=0}^{M} q^{3j^2-2j}(1+q^{2j}) \left[\frac{2M}{M+j} \right] q^j.
\]

Letting \(M \) tend to infinity, and using (2.8) and (2.12) on the right-hand side proves Theorem 1.2.

Similar to the above calculations, we apply (3.20) to (3.7) and get

Theorem 4.6.

\[
\sum_{m,n \geq 0} \frac{q^{Q(m,n)+m+3n}(q^3;q^3)_M}{(q;q)_m(q^3;q^3)_n(q^3;q^3)_M-2n-m} + \sum_{m,n \geq 0} \frac{q^{Q(m,n)+3m+6n+1}(q^3;q^3)_M}{(q;q)_m(q^3;q^3)_n(q^3;q^3)_M-2n-m} = \sum_{j=-M-1}^{M} q^{3j^2+2j} \left[\frac{2M+1}{M-j} \right] q^j.
\]

Letting \(M \rightarrow \infty \) and using (2.8) and (2.12) on the right-hand side, we get

Theorem 4.7.

\[
\sum_{m,n \geq 0} q^{Q(m,n)+m+3n} + \sum_{m,n \geq 0} q^{Q(m,n)+3m+6n+1} = (-q, -q^5; q^6)_{\infty}(-q^3; q^3)_{\infty}.
\]

It is instructive to compare (4.5) with the following polynomial identity [10, Thm 1.3, (1.12)], which also implies (4.6) as \(N \rightarrow \infty \):

Theorem 4.8. For any non-negative integer \(N \), we have

\[
\sum_{m,n \geq 0} q^{Q(m,n)+m+3n} \left[3(N-2n-m)+2 \right] q^m \left[2(N-2n-m)+n+1 \right] q^n
+ \sum_{m,n \geq 0} q^{Q(m,n)+3m+6n+1} \left[3(N-2n-m) \right] q^m \left[2(N-2n-m)+n \right] q^n
= \sum_{l=0}^{N} q^{l(N-2l)} \left[\frac{N+1}{2l+1} \right] (-q; q^6)_{l+1}(-q^5; q^6)_{l+1}.
\]

We note that (4.6) first appeared in Kurşungöz [13]. In fact, this is equivalent to the Capparelli’s Second Partition theorem.

Theorem 4.9 (Capparelli’s Second Partition Theorem [11]). For any integer \(n \), the number of partitions of \(n \) into distinct parts where no part is congruent to \(\pm 2 \) modulo 6 is equal to the number of partitions of \(n \) into parts, not equal to 2, where the minimal difference between consecutive parts is 2. In fact, the difference between consecutive parts is greater than or equal to 4 unless consecutive parts are \(3k \) and \(3k+3 \) (yielding a difference of 3), or \(3k-1 \) and \(3k+1 \) (yielding a difference of 2) for some \(k \in \mathbb{N} \).

We note that Kurşungöz [13] showed the equivalence of (4.6) to Theorem 4.9. On the other hand, Kanade–Russell [12] showed the equivalence of a slightly different (yet equivalent) double sum identity to the Capparelli’s second partition theorem.

Comparing Theorems 4.1 and 4.3, and Theorems 4.6 and 4.8, we see that the identities proven here look somewhat simpler. On the other hand, the objects that appear on both sides of the identities from [10] clearly come with combinatorial interpretations and are made up of objects with manifestly positive coefficients. It is not necessarily clear that the left-hand sides of (4.2), (4.4), and (4.5) have positive coefficients at first sight. A combinatorial study of these objects as generating functions, which would also show the non-negativity of the coefficients of these polynomials, is a task for the future.
5. Outlook

Identity (3.9) is a special case $M \to \infty$ of the following doubly bounded identity.

Theorem 5.1.

$$\sum_{m \geq 0, \atop L \equiv m \pmod{2}} q^{-\frac{m^2}{2}} \left[\frac{3M}{m} \right]_q \frac{2M + \frac{L - m}{2}}{2M} = \sum_{j = -\infty}^{\infty} q^{-\frac{j^2}{2} + 2j} T \left(\frac{L}{j}, \frac{M}{j} ; q^3 \right),$$

where

$$T \left(\frac{L}{a}, \frac{M}{b} ; q \right) := \sum_{n \geq 0, \atop L \equiv n \pmod{2}} q^{-\frac{n^2}{2}} \left[\frac{M}{n} \right]_q \left[\frac{M + b + \frac{L - q - n}{2}}{M + b} \right]_q \left[\frac{M - b + \frac{L + q - n}{2}}{M - b} \right]_q.$$

The refinement (5.2) of the q-trinomial coefficients were first introduced by Warnaar [16,17].

In the forthcoming paper, we will show that Theorem 5.1 implies the following infinite hierarchy of identities.

Theorem 5.2. Let ν be a positive integer, and let $N_k = n_k + n_{k+1} + \cdots + n_{\nu}$, for $k = 1, 2, \ldots, \nu$. Then,

$$\sum_{i, m_n, n_2, \ldots, n_{\nu} \geq 0, \atop i + m \equiv n_1 + n_2 + \cdots + n_{\nu} \pmod{2}} q^{-m^2 + 3n_1^2 + 3n_2^2 + \cdots + 3n_{\nu}^2} \left[\frac{L - N_1}{i} \right]_{q^3} \left[\frac{3n_{\nu}}{m} \right]_q$$

$$\times \left[\frac{2n_{\nu} + (i - N_1 - N_2 - \cdots - N_{\nu} - m)/2}{2n_{\nu}} \right] \prod_{j=1}^{\nu-1} \left[\frac{i - \sum_{k=1}^{j} N_k + n_j}{n_j} \right]_{q^3}$$

$$= \sum_{j = -\infty}^{\infty} q^{-\frac{(\nu + 2)^2}{2} + j} \left(\frac{L}{(\nu + 2)^j \left[\frac{(\nu + 2)^j}{\nu} \right]} \right)_q.$$

6. Acknowledgement

Authors would like to thank the Algorithmic Combinatorics group of the Research Institute for Symbolic Computation, lead by Peter Paule, for their hospitality and for providing them the research environment, where this work has flourished.

Research of the first author is partly supported by the Simons Foundation, Award ID: 308929. Research of the second author is supported by the Austrian Science Fund FWF, SFB50-07 and SFB50-09 Projects.

References

[1] G. E. Andrews, Euler’s ‘Exemplum memorabile inductionis fallacis’ and q-trinomial coefficients, J. Am. Math. Soc. 3, 653-669 (1990).
[2] G. E. Andrews, Schur’s theorem. Capparelli’s conjecture and q-trinomial coefficients, Contemporary Mathematics 166 (1994), 141–154.
[3] G. E. Andrews, The theory of partitions, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1998. Reprint of the 1976 original. MR1634067 (99c:11126)
[4] G. E. Andrews, Rogers–Ramanujan polynomials for modulus 6, in Analytic Number Theory: Proceedings of a Conference in Honor of Heini Halberstam, edited by B. C. Berndt, H. G. Diamond, and A. J. Hildebrand Birkhauser, Boston, (1996), Vol. 1, pp. 17-30.
[5] G. E. Andrews, q-Trinomial coefficients and Rogers–Ramanujan type identities, in Analytic Number Theory, edited by B. C. Berndt, H. G. Diamond, and A. J. Hildebrand Birkhauser, Boston, (1990), pp. 1-11.
[6] G. E. Andrews, and R. J. Baxter, Lattice gas generalization of the hard hexagon model. III. q-Trinomial coefficients, J. Statist. Phys. 47 (1987), no: 3-4, 297-330.
[7] G. E. Andrews, and A. Berkovich, A trinomial analogue of Bailey’s lemma and N = 2 superconformal invariance, Commun. Math. Phys. 192 (1998), 245-260.
[8] A. Berkovich, B. M. McCoy, and W. P. Orrick, Polynomial identities, indices, and duality for the N = 1 superconformal model SM(2,4), J. Stat. Phys. 83, 795-837 (1996).
[9] A. Berkovich, B. M. McCoy, and P. A. Pearce, The perturbations $\phi_{2,1}$ and $\phi_{1,5}$ of the minimal models $M(p,p')$ and the trinomial analogue of Bailey’s lemma, Nucl. Phys. B 519 [FS] (1998), 597-625.
[10] A. Berkovich and A. K. Uncu, *Polynomial identities implying Capparelli’s partition theorems*, preprint, arXiv:1807.10974.

[11] S. Capparelli, *A combinatorial proof of a partition identity related to the level 3 representation of twisted affine Lie algebra*, Communications in Algebra 23 (1995), no. 8, 2999-2969.

[12] S. Kanade and M. Russell, *Staircases to analytic sum-sides for many new integer partition identities of Rogers–Ramanujan type*, arXiv:1803.02515 [math.CO].

[13] K. Kurungöz, *Andrews–Gordon Type Series for Kanade–Russell Conjectures*, arXiv:1808.01432.

[14] S. O. Warnaar, *A note on the trinomial analogue of Baileys lemma*, J. Comb. Theory, Ser. A 81, 114-118 (1998).

[15] S. O. Warnaar, *q-Trinomial identities*, Jour. Math. Phys 40 (1999), 2514-2530.

[16] S. O. Warnaar, *Refined q-trinomial coefficients and character identities*, Proceedings of the Baxter Revolution in Mathematical Physics (Canberra, 2000). J. Statist. Phys. 102 (2001), no. 3-4, 1065-1081.

[17] S. O. Warnaar, *The generalized Borwein conjecture. II. Refined q-trinomial coefficients*, Discrete Math. 272 (2003), no. 2-3, 215-258.

E-mail address: alexb@ufl.edu

E-mail address: akuncu@risc.jku.at