Taxonomic Diversity of Carabid Beetles in the Agricultural Landscape under Hot Semi-Arid Climate in Mandi Bahauddin, Punjab, Pakistan

Mubashar Hussain*, Habiba Razaq, Muhammad Faheem Malik, Kiran Aftab, Jaweria Riaz and Somia Liaqat

Department of Zoology, University of Gujrat, Gujrat, Punjab, Pakistan

ABSTRACT

Ground beetles are recognized as important biological control agents and environmental indicators that inhabit a wide range of habitats. The diversity of carabid beetles in Pakistan has yet to be studied extensively, despite their diversified ecological roles. In the present study, the ground beetle communities from three subdivisions of district Mandi Bahauddin (Phalia, Malakwal and Mandi Bahauddin) were sampled by handpicking and placing pitfall traps from August 2020 to July 2021. A total of 4008 specimens were collected which belonged to 18 species, 11 genera, nine tribes, and five subfamilies. Data were analyzed with Similarities Percentage (SIMPER) analysis and diversity indices were compared among those three croplands. We found that *Pheropsophus litosoderus* was the most abundant and dominant species in all three study sites whereas *Pheropsophus lissoderus*, *Dioryche subrecta* and *Pheropsophus verticalis* was the most abundant and dominant genus representing six species in all three sites. Overall Shannon index (H:2.545), Simpson index (1-D:0.893), and evenness (e˄H/S: 0.709) indicated relatively greater carabid species richness in district Mandi Bahauddin. Comparative values of indices showed similar patterns of species diversity and evenness i.e. Mandi Bahauddin (1-D = 0.902, e˄H/S = 0.866), followed by Malakwal (1-D = 0.893, e˄H/S = 0.769) and Phalia (1-D = 0.876, e˄H/S = 0.712). Similarity Percentage analysis by using the Bray-Curtiss dissimilarity matrix showed the highest overall dissimilarity between Malakwal and Mandi Bahauddin (42.68%), followed by Phalia, and Malakwal (28.88%), whereas the least dissimilarity was recorded between Phalia and Mandi Bahauddin (26.53%). We conclude that carabid beetles in district Mandi Bahauddin have relatively greater species richness. The study reports *Poecilus versicolor* for the first time from Pakistan.

INTRODUCTION

The ground beetles (*Carabidae: Coleoptera*) also called carabid beetles represent approximately 40,000 described species (*Riddick and Capinera, 2008*) that inhabit almost all terrestrial habitats, especially in agroecosystems (*Della Rocca et al., 2021*). Carabid beetles consume several agricultural pests and weeds (*De Heij and Willenborg, 2020*), and their diversity in agroecosystems is mainly related to the microclimate rather than crop type (*Reich et al., 2020*). Ground beetles are key species in agricultural landscapes contributing significantly to the ecosystem as natural enemies of many pest species (*Piotrowska et al., 2020*).

Several beneficial insect species have shown a decline in the population due to agricultural intensification (*Forister et al., 2016*; *Raven and Wagner, 2021*; *van der Sluijs, 2020; Wepprich et al., 2019*). Agricultural intensification (*Rusch et al., 2016*), climate change (*Brandmayr and Pizzolotto, 2016*), and habitat fragmentation (*Niemelä, 2001*) affect carbid diversity. Landscape assessments and consequently re-establishment of semi-natural habitats contribute significantly to detecting and minimizing biodiversity losses, which will be beneficial to agricultural production (*Raven and Wagner, 2021; Wang et al., 2021*). Extensive works at global, regional and local assessment of carabid beetles assemblages have been made to explore taxonomic diversity in different agroecosystems (*Rischen et al., 2021; Rouabah et al., 2015; Zajicek et al., 2021; Zou et al., 2015*). The carabid fauna has not been explored from different agricultural zones of Pakistan though some work on diversity were reported from different parts of Pakistan.
Pitfall traps. Three transects of 500 m length were placed from August 2020 to July 2021 by hand picking and collection of specimens. Chibbar (kala toot) and Morus nigra, Dherak (dactylon), khabal (Cynodon Tribulus terrestris), and residents are involved in agriculture. Wheat (Triticum), and rice (Oryza sativa) are amongst dominant species in tehsil Mandi Bahauddin. We considered all those species dominant comprising over 5% were considered dominant species whereas those who showed at least 1% abundance were designated as common species in a given habitat. P. lissoderus, C. auropunctatum, C. herbacea, C. platycollis, P. versicolor, S. quinquepustulatus, P. africanaus, P. catorei, P. h. hilaris and S. quadriiceps were dominant species in tehsil Mandi Bahauddin. Five species were amongst dominant species in Malkwal tehsil (P. africanaus, P. catorei, P. lissoderus, P. versicolor, and S. quinquepustulatus). In Phalia, six species occurred with greater than 5% abundance (P. africanaus, P. catorei, P. lissoderus, Chlaenius pictus, P. versicolor, and S. quinquepustulatus) and these were designated as dominant for data collection. Ten pitfall traps were built at 150 m distance along transects in all locations (Andrade et al., 2011; Larsen and Forsyth, 2005). Plastic flasks were used to prepare the pitfall traps and then burrowed into the soil with their edge leveled with soil surface. Vinegar was used as an attractant in pitfall traps and traps were emptied after 72 h (Steward et al., 2017).

Identification of specimens

The morphological characters of preserved samples were identified under dissecting microscope, using available taxonomic identification keys, pictorial keys and online resources (Abdullah and Azmir, 2021; Choate, 2001; Klimaszewski and Watt, 1997).

Statistical analysis

Species richness measures biodiversity by taking into account the number of species in a given area. Margalef’s diversity index and Menhinick’s diversity indices report species richness whereas Richness–Evenness indices like Shannon–Wiener diversity index, Brillouin index, Fisher’s alpha, Pielou index, and Simpson’s index (Hussain et al., 2021; Magurran, 2004). We calculated ecological indicator these indices for measuring species diversity by using PAST3 software (Kumar et al., 2022). We also performed similarity of percentages analysis (SIMPER) to identify the species which were contributing the most to differences in communities spatiotemporally (Umar et al., 2022).

RESULTS

Species composition

In our study, 4008 ground beetle individuals were collected, belonging to 11 genera and 18 species and representing five subfamilies, nine tribes. Brachininae (7 species) and Harpalinae (6 species) were two most dominant subfamilies. Genus Pheropsophus (6 species) was dominant genus in the study area (Table I). We considered all those species dominant comprising over 5% were considered dominant species whereas those who showed at least 1% abundance were designated as common species in a given habitat. P. lissoderus, C. auropunctatum, C. herbacea, C. platycollis, P. versicolor, S. quinquepustulatus, P. africanaus, P. catorei, P. h. hilaris and S. quadriiceps were dominant species in tehsil Mandi Bahauddin. Five species were amongst dominant species in Malkwal tehsil (P. africanaus, P. catorei, P. lissoderus, P. versicolor, and S. quinquepustulatus). In Phalia, six species occurred with greater than 5% abundance (P. africanaus, P. catorei, P. lissoderus, Chlaenius pictus, P. versicolor, and S. quinquepustulatus) and these were designated as dominant

MATERIALS AND METHODS

Study area

Mandi Bahauddin (32.4105° N, 73.3709° E; 220 m asl) is located in the province of Punjab, Pakistan. It has three subdivisions (Tehsils) i.e. Mandi Bahauddin, Phalia and Malakwal. The district has predominantly agricultural economy. The district is located between two major rivers Jhelum and Chenab and is commonly known as Chajjdoab. Mostly irrigated through Lower Jhelum Canal and partly through Upper Jhelum Canal. The climate of this district is classified as BSh (hot semi-arid climate) by the Koppen-Geiger system (Ranjha et al., 2018). The climate of the district is moderate, hot during summer, and cold during winter. The highest temperature in summer may rise to 48 °C and may fall below 3 °C in winter. Generally, weather reverberates with Islamabad with an average rainfall of 388 millimeters. Most of the land near this town is arable and residents are involved in agriculture. Wheat (Triticum aestivum), rice (Oryza sativa), sugarcane (Saccharum officinarum), corn (Zea mays) and potato (Solanum tuberosum) are commonly cultivated crops. Wild plants include bhakra (Tribulus terrestris), khabal (Cynodon dactylon), baer (Ziziphus jujuba), pipal (Ficus religiosa), kala toot (Morus nigra), Dherak (Melia azedarach) and chibbar (Cucumis melo var. agrestis) (Nisar et al., 2011).

Collection of specimens

Adult carabid beetles were collected fortnightly from August 2020 to July 2021 by hand picking and pitfall traps. Three transects of 500 m length were placed by the Koppen-Geiger system (Ranjha et al., 2018). The climate of the district is moderate, hot during summer, and cold during winter. The highest temperature in summer may rise to 48 °C and may fall below 3 °C in winter. Generally, weather reverberates with Islamabad with an average rainfall of 388 millimeters. Most of the land near this town is arable and residents are involved in agriculture. Wheat (Triticum aestivum), rice (Oryza sativa), sugarcane (Saccharum officinarum), corn (Zea mays) and potato (Solanum tuberosum) are commonly cultivated crops. Wild plants include bhakra (Tribulus terrestris), khabal (Cynodon dactylon), baer (Ziziphus jujuba), pipal (Ficus religiosa), kala toot (Morus nigra), Dherak (Melita azedarach) and chibbar (Cucumis melo var. agrestis) (Nisar et al., 2011).

Collection of specimens

Adult carabid beetles were collected fortnightly from August 2020 to July 2021 by hand picking and pitfall traps. Three transects of 500 m length were placed by the Koppen-Geiger system (Ranjha et al., 2018). The climate of the district is moderate, hot during summer, and cold during winter. The highest temperature in summer may rise to 48 °C and may fall below 3 °C in winter. Generally, weather reverberates with Islamabad with an average rainfall of 388 millimeters. Most of the land near this town is arable and residents are involved in agriculture. Wheat (Triticum aestivum), rice (Oryza sativa), sugarcane (Saccharum officinarum), corn (Zea mays) and potato (Solanum tuberosum) are commonly cultivated crops. Wild plants include bhakra (Tribulus terrestris), khabal (Cynodon dactylon), baer (Ziziphus jujuba), pipal (Ficus religiosa), kala toot (Morus nigra), Dherak (Melita azedarach) and chibbar (Cucumis melo var. agrestis) (Nisar et al., 2011).
species in this habitat.

Table I. Relative abundance (%) of carabid beetles (Carabidae: Coleoptera) in different tehsils of district Mandi Bahauddin.

Subfamilies/ Tribe/ Species	Relative abundance (%)	Phalia	Malakwal	Mandi Bahauddin
Subfamily: Brachininae				
Tribe: Brachinchini				
Brachinus bilineatus	2.48	6.25	9.86	
Pheropsophus africanus	8.01	6.70		
P. catoirei	12.98	14.63		
P. hilaris hilaris	4.81	3.05	5.69	
P. hilaris sobrinus	3.61	2.44	3.79	
P. lissoderus	27.64	23.46	21.24	
P. verticalis	--	4.62	--	
Subfamily: Carabinae				
Tribe: Carabini				
Calosoma auropunctatum	3.85	4.88	5.31	
C. inquisitor	2.40	4.88	3.03	
Subfamily: Cicindelinae				
Tribe: Cicindelini				
Cicindela herbacea	3.37	4.27	5.31	
Subfamily: Harpalinae				
Tribe: Chlaenini				
Chlaenius pictus	9.13	3.81	4.93	
Tribe: Lebini				
Cymindis platicollis	3.85	5.18	6.83	
Tribe: Harpalini				
Diorcyhe subrecta	--	2.13	--	
Tribe: Pterostichini				
Galerita lecontei veracrusi	2.72	--	--	
Tribe: Harpalini				
Poecilus versicolor	5.53	8.08	7.59	
Stenolophus quinguepustulatus	5.29	6.40	8.34	
Subfamily: Scaritinae				
Tribe: Scaritini				
Scarites quadriceps	2.40	3.35	7.96	
Scarites subterraneus	1.92	2.59	3.41	

Relative abundance

Pheropsophus lissoderus (24.33%) was the most abundant species followed by *Pheropsophus catoirei* (13.17%), *Poecilus Versicolor* (7.19%) and *Pheropsophus africanus* (6.89%) whereas the least relative abundance was recorded for *Galerita lecontei* (0.85%), and *Brachinus bilineatus* (0.77%) (Fig. 1).

Fig. 1. Overall relative abundance of species at district Mandi Bahauddin from August 2020 to July 2021.

Community diversity

Species richness and the abundance was the highest in Malakwal (16 species and 1969 specimens), followed by Phalia (16 species and 1248 specimens), and Mandi Bahauddin (14 species and 791 specimens). The diversity indices show that maximum diversity has been recorded from Phalia (D = 0.125) followed by Malakwal (D = 0.108) and Mandi Bahauddin (D = 0.098). Shannon (H) index points to that the highest richness of ground beetles was present in Malakwal (2.51) followed by Mandi Bahauddin (2.5) and Phalia (2.4). Highest evenness was observed at Mandi Bahauddin (e^H/S = 0.87) followed by Malakwal (e^H/S = 0.77) and Phalia (e^H/S = 0.72). Similar trend in the values of the other indices were observed (Table II).

Table II. Diversity indices calculated for three subdivisions of district Mandi Bahauddin from August 2020 to July 2021.

	Phalia	Malakwal	Mandi Bahauddin	Overall
Taxa_S	16	16	14	18
Individuals	1248	1969	791	4008
Dominance_D	0.125	0.108	0.098	0.107
Simpson_1-D	0.876	0.893	0.902	0.893
Shannon_H	2.433	2.510	2.495	2.545
Evenness_e^H/S	0.712	0.769	0.866	0.709
Brillouin	2.400	2.486	2.449	2.531
Menhinick	0.453	0.361	0.498	0.284
Margalef	2.104	1.978	1.948	2.049
Equitability_J	0.877	0.905	0.945	0.881
Fisher_alpha	2.589	2.381	2.416	2.429
Berger-Parker	0.276	0.235	0.212	0.243
Community contributions

SIMPER analysis showed that the overall dissimilarity between Phalia and Mandi Bahauddin is (26.53%). Pheropsophus lissoderus (8.681 %), Pheropsophus catoirei (4.12 %), Chlaenius pictus (3.678%), Pheropsophus africanus (2.31 %) showed maximum contribution in average dissimilarity between Phalia and Mandi Bahauddin. Pheropsophus verticalis, Stenolophus quinquepustulatus, Cicindela herbacea, and Dioryche subrecta showed no contribution in dissimilarity between Phalia and Mandi Bahauddin (Table III).

The overall dissimilarity between Malakwal and Mandi Bahauddin is 42.62%. Pheropsophus lissoderus (10.65 %), Pheropsophus catoirei (7.60 %), Poecilius versicolor (3.58 %), Pheropsophus verticalis (3.29 %), Calasoma inquisitor (2.60 %), Pheropsophus africanus (2.54 %), Stenolophus quinquepustulatus (2.17 %) show maximum contribution in dissimilarity between Malakwal

Species	Overall dissimilarity	Mean abundance Phalia	Mean abundance Malakwal	Mean dissimilarity Phalia	Mean dissimilarity Malakwal	Contribution Phalia	Contribution Malakwal	Cumulative Phalia	Cumulative Malakwal
Phalia									
Pheropsophus catoirei	28.88%	162	288	3.917	162	288	288		
P. lissoderus	345	159	3.637	345	159	345	345		
P. verticalis	0	91	2.829	0	91	0	91		
Poecilius versicolor	69	159	2.798	69	159	69	159		
Calasoma inquisitor	30	96	2.052	30	96	30	96		
Calasoma auropunctatum	48	96	1.492	48	96	48	96		
Stenoloplius quinquepustulatus	66	126	1.865	66	126	66	126		
Cymindis platicollis	30	102	1.679	30	102	30	102		
Dioryche subrecta	0	42	1.306	0	42	0	42		
Cicindela herbacea	42	84	1.306	42	84	42	84		
Malakwal									
Pheropsophus lissoderus	26.53%	345	168	8.681	32.72	32.72	32.72		
P. catoirei	162	78	4.12	15.53	48.24	48.24	101		
P. africanus	100	53	2.305	8.688	70.79	70.79	70.79		
Chlaenius pictus	114	39	3.678	13.86	62.11	62.11	62.11		
G. lecontei veracrusis	34	0	1.667	6.285	77.08	77.08	77.08		
Scarites quadriceps	30	63	1.618	6.1	83.18	83.18	83.18		
Brachinus bilineatus	31	0	1.52	5.73	88.91	88.91	88.91		
P. hilaris sobrinus	45	30	0.7357	2.773	91.68	91.68	91.68		
P. hilaris hilaris	60	45	0.7357	2.773	94.45	94.45	94.45		
Poecilius versicolor	69	60	0.4414	1.664	96.12	96.12	96.12		
Mandi Bahauddin									
Pheropsophus lissoderus	42.68%	168	10.65	24.96	24.96	24.96	24.96		
Pheropsophus catoirei	288	78	7.609	17.83	42.78	42.78	42.78		
Poecilius versicolor	159	60	3.587	8.404	51.19	51.19	51.19		
Pheropsophus verticalis	91	0	3.297	7.725	58.91	58.91	58.91		
Calasoma inquisitor	96	24	2.609	6.112	65.03	65.03	65.03		
Pheropsophus africanus	123	53	2.536	5.942	70.97	70.97	70.97		
S. quinquepustulatus	126	66	2.174	5.093	76.06	76.06	76.06		
Calasoma auropunctatum	96	42	1.957	4.358	80.65	80.65	80.65		
Cymindis platicollis	102	54	1.739	4.075	84.72	84.72	84.72		
Cicindela herbacea	84	42	1.522	3.565	88.29	88.29	88.29		
and Mandi Bahauddin. There is no contribution of *Brachinus bilineatus* and *Galerita lecontei veracrusis* in average dissimilarity among Malakwal and Mandi Bahauddin. An overall dissimilarity of 28.88% was observed between Phalia and Malakwal. *Pheropsophus catoirei* (3.92 %), *Pheropsophus lissoderus* (3.64 %), *Pheropsophus verticalis* (2.83 %), *Poecilus versicolor* (2.8 %), *Calasoma inquisitor* (2.05 %) show maximum contribution in dissimilarity between Phalia and Malakwal. On the other hand, *Pheropsophus hilaris hilaris* showed no contribution in dissimilarity between Phalia and Malakwal (Table III).

DISCUSSION

In this study, 4008 carabid beetles belonging to 11 genera and 16 species were collected, which is comparable to the species recorded in Sukkur (05 species) (Soomro et al., 2021), Haripur (03 genera and 05 species) (Bibi and Rehman, 2020), and Chakwal (21 species and 11 genera; Mishkatullah, 2018). We recorded 14 species common in all three subdivisions with *Pheropsophus lissoderus* was most abundant in all three locations. Phalia and Mandi Bahauddin tehsils have extended suburbs with sugarcane, rice and wheat as major crops.

Pheropsophus lissoderus (24.33%) was the most abundant species followed by *Pheropsophus catoirei* (13.17%) and *Poecilus versicolor* (7.19%). In Malakwal, we observed only five species which were dominant ≥ 5 % abundance as compared to six in Phalia and ten in Mandi Bahauddin. Agroecosystems are expected to harbor decreased number of ground beetles because of their sensitivity habitat modification and agricultural practices (Rischen et al., 2022). Ground beetle assemblages have shown associations with broad habitat types (Niemelä et al., 1992) and individual ground beetle species affect community structure (Clark et al., 1997). Malakwal showed the higher values of indices (Shannon index: 2.51; Brillouin: 2.486) which may be owed to less anthropogenic disturbance (except for agricultural practices) as compared to Phalia and Mandi Bahauddin. Malakwal, Phalia and Mandi Bahauddin being an agricultural lands with dominant vegetation includes citrus fruits, wheat, sugarcane and rice (Hussain et al., 2020).

In our study area, habitat type at local scale was either crops or field margins surrounded with tree plantation or interspersed citrus plants in all study sites. This has provided favorable microenvironment for the ubiquitous species to be distributed equally in all three sites. Higher diversity was recorded in the heterogeneous habitat which provides diverse niches and more means for resources utilization as compared to homogenous habitat (Liu et al., 2015). However, earlier reported that the isolation from the herbaceous habitats increase carabid species richness and abundance (Uzman et al., 2020). Ground beetles have shown non-significant difference in diversity between forest and agricultural fields (Avgın, 2006).

Predatory ground beetles have limited food options in agricultural landscapes, therefore, track resources around field margins. Ground beetles with a predatory life style were found in greater proportion the crop fields as compared to the grasslands (Hanson et al., 2016). Phytophagous ground beetles are directly affected by the disruption of agricultural landscapes and vegetation (Bommarco, 1998). All these factors contribute to the lower diversity at Mandi Bahauddin which is characterized by more habitat disruption as compared to Phalia and Malakwal where more land is arable and vegetation cover is dense.

CONCLUSION

In conclusion, our results show that ground beetle assemblages in the district Mandi Bahauddin have relatively greater diversity and abundance compared to number of species and their abundance reported from other districts of Pakistan. These results imply that predator-prey relationship have existed in these croplands which suggested that these generalist predator communities. Our results suggest that ground beetle fauna in Mandi Bahauddin could serve as natural biological control agents. Our study reported *Poecilus versicolor* for the first time from Pakistan.

IBR approval

This study was approved by the Ethical Committee of the University of Gujrat.

Funding

There is no funding available for this research.

Ethical statement

All efforts were taken to minimize pain and discomfort to the animal while conducting this research according to the ethical protocol of the University of Gujrat.

Statement of conflict of interest

The authors have declared no conflict of interest.

REFERENCES

Abdullah, N.H. and Azmir, I.A., 2021. A pictorial key for the identification of beetle (Order: Coleoptera) and diversity study in selected area within Pelangai Forest Reserve, Negeri Sembilan, Malaysia. *Biodiv. J. Biol. Divers.*, 22: 947-955. https://doi.org/...
Andrade, R.B.D., Barlow, J., Louzada, J., Vaz-de-Mello, F.Z., Souza, M., Silveira, J.M. and Cochrane, M.A., 2011. Quantifying responses of dung beetles to fire disturbance in tropical forests: The importance of trapping method and seasonality. PLoS One, 6: e26208. https://doi.org/10.1371/journal.pone.0026208

Avgın, S.S., 2006. Distribution and diversity of ground beetles in Başkonuş Mountain National Park of Turkey. J. environ. Biol., 27: 515-521.

Azadbakhsh, S. and Rafi, M.A., 2017. Checklist of ground beetles (Coleoptera, Carabidae) deposited in National Insect Museum of Pakistan. Orient Insects, 51: 305-312. https://doi.org/10.1080/00305316.2017.1283256

Bibi, S., and Rehman, A., 2020. Systematic and diversity of ground beetles (Carabidae: Coleoptera) from district Haripur KPK, Pakistan. Acta Ent. Zool., 1: 5-7. https://doi.org/10.33545/27080013.2020.v1.i1a.2

Bommarco, R., 1998. Reproduction and energy reserves of a predatory carabid beetle relative to agroecosystem complexity. Ecol. Appl., 8: 846-853. https://doi.org/10.1890/1051-0761(1998)008[0846:RAEROA]2.0.CO;2

Brandmayr, P., and Pizzolotto, R., 2016. Climate change and its impact on epigean and hypogean carabid beetles. Period Biol., 118: 147-162. https://doi.org/10.18054/pb.2016.118.3.4062

Choate, P., 2001. The ground beetles of Florida (Coleoptera: Carabidae) including tiger beetles, tribe Cicindelini. Department of Entomology and Nematology, University of Florida, EUA Gainesville, 32611: 40.

Clark, M.S., Gage, S.H. and Spence, J.R., 1997. Habitats and management associated with common ground beetles (Coleoptera: Carabidae) in a Michigan agricultural landscape. Environ. Ent., 26: 519-527. https://doi.org/10.1093/ce/26.3.519

De Heij, S.E. and Willenborg, C.J., 2020. Connected carabids: Network interactions and their impact on biocontrol by carabid beetles. Bioscience, 70: 490-500. https://doi.org/10.1093/biosci/biaa039

Della Rocca, F., Venturo, A., Milanesi, P. and Bracco, F., 2021. Effects of natural and seminatural elements on the composition and dispersion of carabid beetles inhabiting an agroecosystem in Northern Italy. Ecol. Evol., 11: 10526-10537. https://doi.org/10.1002/eece.3.7857

Forister, M.L., Cousens, B., Harrison, J.G., Anderson, K., Thorne, J.H., Waetjen, D., Nice, C.C., De Parsia, M., Hladik, M.L. and Meese, R., 2016. Increasing neonicotinoid use and the declining butterfly fauna of lowland California. Biol. Lett., 12: 20160475. https://doi.org/10.1098/rsbl.2016.0475

Hanson, H.I., Palmu, E., Birkhofer, K., Smith, H.G. and Hedlund, K., 2016. Agricultural land use determines the trait composition of ground beetle communities. PLoS One, 11: e0146329. https://doi.org/10.1371/journal.pone.0146329

Hussain, M., Kanwal, M., Aftab, K., Khalid, M., Liaqat, S., Iqbal, T., Rahman, G. and Umar, M., 2021. Distribution patterns of dung beetle (Coleoptera: Scarabaeidae) assemblages in croplands and pastures across two climatic zones of Pakistan. Orient Insects, pp. 1-16. https://doi.org/10.1080/00305316.2021.2010617

Hussain, S., Liaqat, A., Siddiqui, S., Younes, I. and Shafiq, M., 2020. Landuse and community-based assessment of 2014 flood damages in Tehsil Phalia, Punjab, Int. J. econ. env. Geol., 11: 55-60. https://doi.org/10.46660/ijeeg.Vol11.Iss2.2020.446

Kazi, A., Khatri, I., Rustamani, M. and Wagan, M., 2016. Records of Carabidae in fauna of British India segregated for present boundaries of Pakistan. Sindh Univ. Res. J., 48: 833-838.

Khatri, I., Nizamuddin Baloch, M.A., Rustamani, W.A.P., Ghulam, R.S. and Lakho, M., 2016. Ground beetle fauna (Carabidae) of Mekran Division, Balochistan. Pak. J. Ent. Karachi, 31: 219-225.

Klimaszewski, J. and Watt, J.C., 1997. Coleoptera: Family-group review and keys to identification, Fauna of New Zealand. Manaaki Whenua Press. Landcare Research, Lincoln, Canterbury, New Zealand, pp. 199.

Kumar, P., Dobriyal, M., Kale, A., Pandey, A., Tomar, R. and Thounaojam, E., 2022. Calculating forest species diversity with information-theory based indices using sentinel-2A sensor’s of Mahavir Swami Wildlife Sanctuary. PLoS One, 17: e0268018. https://doi.org/10.1371/journal.pone.0268018

Larsen, T.H. and Forsyth, A., 2005. Trap spacing and transect design for dung beetle biodiversity studies I. Biotropica, 37: 322-325. https://doi.org/10.1111/j.1744-7429.2005.00042.x

Liu, Y., Duan, M., Zhang, X., Zhang, X., Yu, Z. and Axmacher, J.C., 2015. Effects of plant diversity, habitat and agricultural landscape structure on the functional diversity of carabid assemblages in the North China Plain. Insect Conserv. Divers, 8: 163-176. https://doi.org/10.1111/icad.12096

Magurran, A.E., 2004. Measuring biological diversity.
Blackwell Publishing, Oxford, New Jersey, USA. pp. 29.

Mishkatullah, 2018. *Ground beetles fauna of moist temperate forests of Mansehra Division, Khyber Pakhtunkhwa, Pakistan.* Museum of Natural History Garden Avenue, Shakarpur, Islamabad-44000.

Niemelä, J., 2001. Carabid beetles (Coleoptera: Carabidae) and habitat fragmentation: A review. *Eur. J. Ent.*, 98: 127-132. https://doi.org/10.14411/eje.2001.023

Niemelä, J., Spence, J.R. and Spence, D.H., 1992. *Non-crop habitats increase diversity of ground-dwelling beetles (Coleoptera) but support different communities. Biodivers Conserv.*, 30: 3965-3981. https://doi.org/10.1007/s10531-021-02284-7

Rouabah, A., Villerd, J., Amiaud, B., Plantureux, S. and Lasserre-Joulain, F., 2015. Response of carabid beetle diversity and size distribution to the vegetation structure within differently managed field margins. *Agric. Ecosyst. Environ.*, 200: 21-32. https://doi.org/10.1016/j.agee.2014.10.011

Rusch, A., Binet, D., Delbac, L. and Thiéry, D., 2016. Local and landscape effects of agricultural intensification on Carabid community structure and weed seed predation in a perennial cropping system. *Landsc. Ecol.*, 31: 2163-2174. https://doi.org/10.1007/s10980-016-0390-x

Sahito, R., Memon, N. and Ansari, A., 2021. Biodiversity of ground beetles (Coleoptera: Carabidae) in Upper Sindh Plains, Pakistan. *J. Anim. Pl. Sci.*, 31: 1645-1651. https://doi.org/10.36899/IAPS.2021.6.0368

Soomro, F.A., Panhwar, W.A., Shaikh, A.M., Memon, K.H., Memon, Z.U.N., Ujjan, S.A. and Ujan, J.A., 2021. Ground beetles (Coleoptera: Carabidae) collected from different ecological zones of Sukkur Sindh, Pakistan with new records. *Int. J. Emerg. Technol.*, 12: 103-107.

Steward, A.L., Langhans, S.D., Corti, R. and Datry, T., 2017. The biota of intermittent rivers and ephemeral streams: Terrestrial and semiaquatic invertebrates. Intermittent rivers and ephemeral streams. *Ecol. Manage.* Elsevier, pp. 245-271. https://doi.org/10.1016/B978-0-12-803835-2.00008-5

Umar, M., Hussain, M. and Lee, D.C., 2022. Seasonal diversity and distribution patterns of birds in agricultural landscapes of Gujrat, Pakistan. *Pakistan J. Zool.*, 1-12. https://doi.org/10.17582/journal.p2020027190214

Uzman, D., Enfling, M.H., Leyer, I. and Reinke, A., 2020. Mutual and opposing responses of carabid beetles and predatory wasps to local and landscape factors in vineyards. *Insects*, 11: 746. https://doi.org/10.3390/insects11110722

Van der Sluijs, J.P., 2020. Insect decline, an emerging global environmental risk. *Curr. Opin. Environ. Sustain.*, 46: 39-42. https://doi.org/10.1016/j.cosust.2020.08.012

Wang, M., Axmacher, J.C., Yu, Z., Zhang, X., Duan, M., Wu, P., Zou, Y. and Liu, Y., 2021. Perennial crops can complement semi-natural habitats in enhancing ground beetle (Coleoptera: Carabidae) diversity in agricultural landscapes. *Ecol. Indic.*, 126: 107701. https://doi.org/10.1016/j.ecolind.2021.107701
Wepprich, T., Adrion, J.R., Ries, L., Wiedmann, J. and Haddad, N.M., 2019. Butterfly abundance declines over 20 years of systematic monitoring in Ohio, USA. *PLoS One*, **14**: e0216270. https://doi.org/10.1371/journal.pone.0216270

Zajicek, P., Welti, E.A., Baker, N.J., Januschke, K., Brauner, O. and Haase, P., 2021. Long-term data reveal unimodal responses of ground beetle abundance to precipitation and land use but no changes in taxonomic and functional diversity. *Sci. Rep.*, **11**: 1-12. https://doi.org/10.1038/s41598-021-96910-7

Zou, Y., Sang, W., Wang, S., Warren-Thomas, E., Liu, Y., Yu, Z., Wang, C. and Axmacher, J.C., 2015. Diversity patterns of ground beetles and understory vegetation in mature, secondary, and plantation forest regions of temperate northern China. *Ecol. Evol.*, **5**: 531-542. https://doi.org/10.1002/ece3.1367