Discovery of anti-2019-nCoV agents from 38 Chinese patent drugs toward respiratory diseases via docking screening

Yong-Ming Yan1,†, Xin Shen2,†, Yong-Kai Cao1, Jiao-Jiao Zhang1, Yan Wang2,*, Yong-Xian Cheng1,*

1 School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen 518060, P.R. China

2 Center for Translation Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P.R. China

* To whom correspondence should be addressed: Tel: 86755-2690 2073; E-mail: yxcheng@szu.edu.cn (Y.-X. C.); 86755-2641 7985; E-mail: yan.wang@siat.ac.cn (Y. W.)

† These authors contributed equally to this paper.

Running Title: Natural agents against 2019-nCoV by docking screening

Keywords: 2019-nCoV, novel coronavirus pneumonia, docking, ACE2, viral main protease
Abstract

The 2019 novel coronavirus (2019-nCoV) causes novel coronavirus pneumonia (NCP). Given that approved drug repurposing becomes a common strategy to quickly find antiviral treatments, a collection of FDA-approved drugs can be powerful resources for new anti-NCP indication discoveries. In addition to synthetic compounds, Chinese Patent Drugs (CPD), also play a key role in the treatment of virus related infections diseases in China. Here we compiled major components from 38 CPDs that are commonly used in the respiratory diseases and docked them against two drug targets, ACE2 receptor and viral main protease. According to our docking screening, 10 antiviral components, including hesperidin, saikosaponin A, rutin, corosolic acid, verbascoside, baicalin, glycyrrhizin, mulberroside A, cynaroside, and bilirubin, can directly bind to both host cell target ACE2 receptor and viral target main protease. In combination of the docking results, the natural abundance of the substances, and botanical knowledge, we proposed that artemisinin, rutin, glycyrrhizin, cholic acid, hyodeoxycholic acid, puerarin, oleanic acid, andrographolide, matrine, codeine, morphine, chlorogenic acid, and baicalin (or Yinhuang Injection containing chlorogenic acid and baicalin) might be of value for clinical trials during a 2019-nCov outbreak.
Introduction

The 2019 novel coronavirus (2019-nCoV), named as the Wuhan coronavirus [the pneumonia caused by it is now named as novel coronavirus pneumonia (NCP)], is a positive-sense, single-strand RNA coronavirus (1). Up to date, global infections of 2019-nCoV surge past 40,000 (WHO website). Given that drug repurposing is the common strategy to search antiviral treatments, several approved drugs were reported to benefit patients (2). Besides synthetic compounds, natural products, especially Chinese Patent Drug (CPD), also play a key role in the treatment of virus related infections diseases in China. Although the mechanisms of CPDs might be associated with immune regulation, we focus on their antiviral properties. In this study, we compiled major components from 38 CPDs that are commonly used in the respiratory diseases and docked them against two drug targets, ACE2 receptor and viral main protease.

Like severe acute respiratory syndrome-related coronavirus (SARS-CoV), the 2019-nCoV attach to host cells through S protein and angiotensin converting enzyme 2 (ACE2) receptor interaction (3). The catalytic inhibitor of ACE2 receptor is likely to induce a conformational change of ACE2, therefore blocking the interaction between S protein and ACE2 receptor (4). S protein of 2019-nCoV is not currently available but the structure of ACE2 receptor is well-known (5). Thus ACE2 receptor was selected to quickly identify entry inhibitors of 2019-nCoV using marketed CPDs-derived natural products.
In addition to entry inhibitors, the replication inhibitors are also good strategies for antiviral drug discovery and development (6). Given that 2019-nCoV is a (+)SS RNA virus, its main protease is likely to be required to mediate viral replication and transcription through extensive cleavage of two replicase polyproteins. Therefore inhibition of viral main protease might block virus replication (7). Up to date, Rao et al reported the crystal structure of M protease of 2019-nCoV (PDB: 6LU7) and several drug repurposing docking screening studies were reported. We herein docked natural product database to main protease to look for antiviral replication agents.

Due to the limited time and lack of the available 2019-nCoV in hand, it is impossible to develop novel compounds against 2019-nCoV by biological screening. We here used docking screening to identify natural products from marketed CPDs that inhibit both virus entry and replication, therefore providing a potential prevention/treatment alternative against 2019-nCoV.

Material and Methods

The major components of each herb in the selected 38 CPDs were collected as the ligands, and all the ligands were in PDBQT format. The protein model 1R4L was selected as ACE2 receptor docking model while 6LU7 was selected as M protease docking model. Both PDB files of protein models were fetched from Protein Data Bank. The docking screenings were conducted by using AutoDock Vina v.1.0.2. The docking parameters for AutoDock Vina were kept at their default values. The grid box was 25 Å by 25 Å by 25Å, encompassing the catalytic pocket. The binding modes
were clustered through the root mean square deviation (RMSD) among the Cartesian coordinates of the ligand atoms.

Results and Discussion

A total of 38 marketed CPDs (bold line in Table 1) containing 93 herbs used for the treatment of respiratory diseases were selected. Totally we docked 95 components (Table 2) and the top 10 hits were summarized in Table 3. All of them provide good binding affinities against both two targets. The key residues for each ligand binding were also summarized in Table 4.

Analysis of the results from Table 3, it was found that the top 10 antiviral components are hesperidin, saikosaponin A, rutin, corosolic acid, verbascoside, baicalin, glycyrrhizin, mulberroside A, cynaroside, and bilirubin, and their binding sites toward 6LU7 and 1R4L are listed in Table 4. A close analysis found that 19 compounds directly bind to ACE2 receptor with high affinities (docking score <-10 kcal/mol), these compounds are hesperidin, saikosaponin A, mulberroside A, rutin, bilirubin, verbascoside, vincetoxicoside B, baicalin, prim-O-glucosylcimifugin, corosolic acid, cynaroside, orientin, corynoline, astragaloside A, protostemonine, ilexgenin A, amygdalin, paeoniflorin, and ursolic acid (Table 2). Whereas, in M protease docking screening, 12 phytochemicals, rutin, glycyrrhizin, dipsacoside B, saikosaponin A, corosolic acid, puerarin, morusin, hesperidin, polyphyllin I, verbascoside, baicalin, and cynaroside have been identified as potential M protease inhibitors (docking score ≤-8.4 kcal/mol), indicating their potential for 2019-nCov. Notably, artemisinin,
berberine, rutin, glycyrrhizin, chlorogenic acid, baicalin, cholic acid, hyodeoxycholic acid, puerarin, oleanic acid, andrographolide, catalpol, matrine, codeine, morphine, caffeic acid, α-asarone, α-pinene, and taurine are commercially available with good supply (already marketed drugs). However, a combination of their docking results, natural abundance, and traditional knowledge from their source herbs allows us to recommend artemisinin, rutin, glycyrrhizin, chlorogenic acid, baicalin, cholic acid, hyodeoxycholic acid, puerarin, oleanic acid, andrographolide, matrine, codeine, and morphine for clinical trials during a 2019-nCov outbreak. Yinhuang Injection, a marketed drug in China, might be also worth recommendation because it is mainly composed of chlorogenic acid and baicalin. In addition, the results of Table 5 in combination of the literature data indicate the natural sources of these active compounds with relatively high content. Basically, around 34 compounds are present in natural sources more than 1% (g/g), which are respectively hesperidin, baicalin, glycyrrhizin, puerarin, amygdalin, paeoniflorin, berberine, arctiin, forsythiaside A, chlorogenic acid, geniposide, tectoridin, timosaponin BII, dryocrassin, oleanic acid, genistein, trisalbaspidin ABA, daidzein, andrographolide, rosmarinic acid, quercetin (source plant: *Sophorae Flos*), curcumin (source plant: *Curcumae Longae Rhizoma*), dipsacoside B (source plant: *Lonicerae Dasystylae Flos*), rutin (source plant: *Potentilla chinensis*), and harpagide (source plant: *Ajuga pantantha*). This natural abundance information in combination with the docking results and the medicinal values of the source herbs suggests that the plants or herbs or their extracts with the above enriched active compounds might be valuable for fighting against
Although the content of magnolol, lobetyolin, pulegone, citrulline, L-menthol, 6-gingerol, catalpol, caffeic acid, and trans-cinnamaldehyde is also more than 1%, it might be not potential either from their docking results or botanical knowledge (Table 5). Despite that the other herbs or CPDs are not found to be active toward 2019-nCoV, this doesn’t mean that they are not useful for NCP because only limited compounds in herbs were selected which couldn’t exclude more compounds or their analogues in herbs of CPDs are active. In addition, the principles of formulating Chinese herbal prescription include eliminating evil and strengthening the body resistance, therefore, we couldn’t exclude that these CPDs do work against NCP via regulating immune system.

Acknowledgments

This study was supported by the National Science Fund for Distinguished Young Scholars (81525026) and National Natural Science Foundation of China (81903875).

Competing interest statement

The authors declare no conflict of interest.

References

1. Huang CL, Wang YM, Li XW, Ren LL, Zhao JP, Hu Y, Zhang L, Fan GH, Xu, JY, Gu, XY, Cheng ZS, Yu, T, Xia JA, Wei A, Wu, WJ, Xie XL, Yin W, Li H, Liu, M, Xiao Y, Gao H, Guo L, Xie JG, Wang GF, Jiang RM, Gao ZC, Jin Q, Wang JW, Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020; doi: 10.1016/S0140-6736(20)30183-5.
2. Wang ML, Cao RY, Zhang LK, Yang XL, Liu J, Xu MY, Shi ZL, Hu ZH, Zhong W, Xiao GF. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res., 2020; doi: 10.1038/s41422-020-0282-0.

3. Wan YS, Shang J, Graham R, Baric RS, Li F. Receptor recognition by novel coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS. J. Virol., 2020; doi: 10.1128/JVI.00127-20.

4. Du LY, He YX, Zhou YS, Liu SW, Zheng BJ, Jiang SB. The spike protein of SARS-CoV -a target for vaccine and therapeutic development. Nat. Rev. Microbiol., 2009; 7(3): 226–236.

5. Towler P, Staker B, Prasad SG, Menon S, Tang J, Parsons T, Ryan D, Fisher M, Williams D, Dales NA, Patane MA, Pantoliano MW. ACE2 X-ray structures reveal a large hinge-bending motion important for inhibitor binding and catalysis. J. Biol. Chem., 2004; 279(17):17996–8007.

6. Clercq ED. Strategies in the design of antiviral drugs. Nat. Rev. Drug Discov., 2002; 1: 13–25.

7. Wit ED, van Doremalen NV, Falzarano D, Munster VJ. SARS and MERS: recent insights into emerging coronaviruses. Nat. Rev. Microbiol., 2016; 14: 523–534.
| No. | CPDs | No. | CPDs | |
|---|---|---|---|---|
| 1 | Fengre Ganmao Granules | 20 | Kangbingdu Capsules |
| 2 | Xiaochaihu Granules | 21 | Fufang Banlangen Granules |
| 3 | Qingkailing Capsules | 22 | Ganmao Shufeng Capsules/Granules |
| 4 | Jinlianhua Capsules | 23 | Ganmao Qingre Granules |
| 5 | Zhongganling Capsules | 24 | Fufang Jinyinhua Granules |
| 6 | Lianhua Qingwen Capsules/Granules | 25 | Yinqiao Jiedu Pills/Granules |
| 7 | Lanqin Oral Solution | 26 | Vitamin C Yinqiao Tablets |
| 8 | Qingwen Jiedu Tablets | 27 | Fufang Yinqiao Anfen Capsules |
| 9 | Fangfeng Tongsheng Pills | 28 | Xiasangju Granules |
| 10 | Shuanghuanglian Oral Solution| 29 | Vitamin C Effervescent Tablets |
| 11 | Huoxiang Zhengqi Oral Solution| 30 | Xiaoer Ganmao Granules |
| 12 | Huoxiang Zhengqi Capsules | 31 | Banlangen Granules |
| 13 | Maxing Zhike Syrup | 32 | Qingkailing Oral Solution |
| 14 | Choulingdan Oral Solution | 33 | Yinqiao Jiedu Granules |
| 15 | Erding Capsules | 34 | Fufang Yinqiao Anfen Vitamin C Tablets |
| 16 | Zhiganjia Granules | 35 | Ganmao Soft Capsules |
| 17 | Kanggan Granules | 36 | Fenghan Ganmao Granules |
| 18 | Kangbingdu Granules | 37 | Qiangli Pipa Syrup |
| 19 | Kangbingdu Oral Emulsion | 38 | Fufang Anwanan Tablets |
| Ligand | Docking score (kcal/mol) | 6LU7 | 1R4L | SUM |
|------------------------|--------------------------|------|------|-------|
| Hesperidin | | -8.5 | -11.4| -19.9 |
| Saikosaponin A | | -8.8 | -11 | -19.8 |
| Rutin | | -8.9 | -10.7| -19.6 |
| Corosolic acid | | -8.8 | -10.2| -19 |
| Verbascoside | | -8.4 | -10.6| -19 |
| Baicalin | | -8.4 | -10.5| -18.9 |
| Glycyrrhizin | | -8.9 | -9.9 | -18.8 |
| Mulberroside A | | -7.7 | -11 | -18.7 |
| Cynaroside | | -8.4 | -10.2| -18.6 |
| Bilirubin | | -7.8 | -10.7| -18.5 |
| Vincetoxicoside B | | -7.9 | -10.6| -18.5 |
| Morusin | | -8.6 | -9.8 | -18.4 |
| Puerarin | | -8.6 | -9.8 | -18.4 |
| Orientin | | -8.1 | -10.2| -18.3 |
| Cynancersicoside A | | -8.3 | -9.9 | -18.2 |
| Protostemonine | | -8.1 | -10.1| -18.2 |
| Amygdalin | | -8.1 | -10 | -18.1 |
| Ilexgenin A | | -7.9 | -10.1| -18 |
| Prim-O-glucosylcimifugin | | -7.6 | -10.4| -18 |
| Corynoline | | -7.7 | -10.2| -17.9 |
| Astragaloside A | | -7.6 | -10.2| -17.8 |
| Paeoniflorin | | -7.7 | -10 | -17.7 |
| Polyphyllin I | | -8.5 | -9.1 | -17.6 |
| Nodakenin | | -7.9 | -9.6 | -17.5 |
| Tectoridin | | -7.9 | -9.5 | -17.4 |
| Ursolic acid | | -7.4 | -10 | -17.4 |
| Substance | Value 1 | Value 2 | Value 3 |
|----------------------------|---------|---------|---------|
| Swertiajaponin | -8 | -9.4 | -17.4 |
| Berberine | -7.5 | -9.7 | -17.2 |
| Timosaponin BII | -7.7 | -9.4 | -17.1 |
| Dryocrassin | -7.4 | -9.5 | -16.9 |
| Columbianadina | -7.2 | -9.6 | -16.8 |
| Arctiin | -7.3 | -9.5 | -16.8 |
| Oleanic acid | -7.4 | -9.3 | -16.8 |
| Luteolin | -7.6 | -9.1 | -16.7 |
| Quercetin | -7.7 | -9 | -16.7 |
| Forsythiaside A | -7.6 | -9.1 | -16.7 |
| Radix isatidis A | -7.6 | -9.1 | -16.7 |
| Genistein | -7.5 | -9.1 | -16.6 |
| Indirubin | -7.3 | -9.3 | -16.6 |
| Curcumin | -7 | -9.5 | -16.5 |
| Trisalbaspidin ABA | -7.2 | -9.3 | -16.5 |
| Artemisinin | -7.3 | -9.1 | -16.4 |
| Emodin | -7.2 | -9.2 | -16.4 |
| Cholic acid | -7 | -9.3 | -16.3 |
| Hyodeoxycholic acid | -7 | -9.3 | -16.3 |
| Daidzein | -7.4 | -8.8 | -16.2 |
| Xanthiside | -7.3 | -8.9 | -16.2 |
| Chlorogenic acid | -7.3 | -8.8 | -16.1 |
| Verbenalin | -7.4 | -8.7 | -16.1 |
| Poricoic acid A | -6.9 | -9.2 | -16.1 |
| Andrographolid | -6.9 | -8.8 | -15.7 |
| Dipsacoside B | -8.9 | -6.7 | -15.6 |
| Codeine | -7 | -8.5 | -15.5 |
| Rosmarinic acid | -7 | -8.4 | -15.4 |
| Notopterol | -7 | -8.4 | -15.4 |
| Compound | Value1 | Value2 | Value3 |
|---------------------------|--------|--------|--------|
| Harpagide | -7 | -8.3 | -15.3 |
| Imperatorin | -7.1 | -8.2 | -15.3 |
| Papaverine | -6.9 | -8.3 | -15.2 |
| Geniposide | -6.7 | -8.5 | -15.2 |
| Catalpol | -7.1 | -7.9 | -15 |
| Salidroside | -6.9 | -7.9 | -14.8 |
| Morphine | -6.6 | -8.1 | -14.7 |
| Atractylenolide I | -6.3 | -8.2 | -14.5 |
| Magnolol | -6.4 | -7.9 | -14.3 |
| Lobetyolin | -6.4 | -7.7 | -14.1 |
| Matrine | -6.1 | -7.9 | -14 |
| Pterodontic acid | -6 | -7.7 | -13.7 |
| Isoevodionol | -6.2 | -7.1 | -13.3 |
| Esculetin | -6.2 | -6.9 | -13.1 |
| Platycodin D | -7.5 | -5.5 | -13 |
| Scopoletin | -5.8 | -6.8 | -12.6 |
| Dhelwangin | -5.2 | -7.1 | -12.3 |
| Caffeic acid | -5.7 | -6.5 | -12.2 |
| Ferulic acid | -5.4 | -6.5 | -11.9 |
| 6-Gingerol | -4.8 | -6.6 | -11.4 |
| L(+)–Ascorbic acid | -5.1 | -6.1 | -11.2 |
| Atractyloidin | -4.9 | -6.3 | -11.2 |
| Ephedrine | -5.1 | -6.1 | -11.2 |
| Pulegone | -4.9 | -6.2 | -11.1 |
| α–Asarone | -5.1 | -5.9 | -11 |
| Coumalic acid | -4.9 | -5.9 | -10.8 |
| Citrulline | -4.9 | -5.8 | -10.7 |
| Linolenic acid | -4.6 | -6.1 | -10.7 |
| Amantadine Hydrochloride | -4.4 | -6.2 | -10.6 |
| Ligand | Docking score (kcal/mol) |
|----------------------|--------------------------|
| | 6LU7 | 1R4L | SUM |
| L-Menthol | -4.7 | -5.7 | -10.4 |
| trans-Cinnamaldehyde | -4.4 | -5.7 | -10.1 |
| β-Pinene | -4.3 | -5.7 | -10 |
| Arecoline | -4.6 | -5.4 | -10 |
| Glutamic acid | -4.5 | -5.3 | -9.8 |
| α-Pinene | -4.1 | -5.6 | -9.7 |
| Tetramethyl pyrazine | -4.5 | -5.1 | -9.6 |
| Succinic acid | -4.4 | -4.9 | -9.3 |
| Decanoy acetaldehyde | -3.9 | -4.9 | -8.8 |
| Taurine | -3.7 | -4.2 | -7.9 |
| Betaine | -3.5 | -4.1 | -7.6 |

Table 3. Natural products from CPDs docking results
Ligand	Key residues	6LU7	1R4L
Hesperidin	Gly143, Ser144, Cys145, Glu166	Cy3344, His345, Asp368, Arg514, Tyr515, Arg518	
Saikosaponin A	His41, Glu166, Arg188, Gln189, Thr190, Gln192	Ala348, Glu402, Arg514, Tyr515, Arg518	
Rutin	His163, Phe140, Glu166, Arg188	Asn149, Arg273, His345, Thr445, His505, Tyr515	
Corosolic acid	Gly143, Ser144, Cys145	Lys363, Thr371	
Verbascoside	Phe140, Gly143, Glu166, Thr190, Gln192	Ser128, Glu145, Asn277, Cys344, His345, Arg518	
Baicalin	Thr25, Thr26, Leu141, Gly143, Ser144, Cys145	His345, Lys363, Thr371, His505, Arg518	
Glycyrrhizin	Phe140, His163, His164, Arg188	Arg273, His345, Thr365, Thr371, Tyr515, Arg518	
Mulberroside A	Thr24, Thr26, Gly143, Ser144, Cys145, Gln189	Asn149, Arg273, Lys363, Asp367, Asp368, Tyr515, Arg518	
Cynaroside	Thr24, Thr25, Thr26, Gly143	Asn149, Pro346, Lys363, Asp368	
Bilirubin	Leu141, Ser144, His163, Gln189	Thr371, Glu406, Tyr515	
Table 5. The structure, natural source and content of active components, and weight ratio of a herb in Chinese patent drugs

Ligand	Structure	Herb origin	Weight ratioa	Content (mg/g)b
Hesperidin	![Structure](structure1.png)	Citri Reticulatae Pericarpium	11 (10.66%), 12 (10.10%), 36 (7.69%)	21.60–75.70
Saikosaponin A	![Structure](structure2.png)	Bupleuri Radix	2 (30.86%), 8 (4.00%), 23 (8.47%)	3.93–7.80
Rutin	![Structure](structure3.png)	Mori Folium	1c, 28 (23.18%)	0.32–3.25
Corosolic acid	![Structure](structure4.png)	Eriobotryae Folium	34 (42.86%)	7.64
Verbascoside	![Structure](structure5.png)	Rehmanniae Radix	19c, 20c, 30 (9.09%)	0.39–0.42
Baicalin

Scutellariae Radix 2 (11.52%), 3, 7, 9 (7.55%), 10 (50.00%), 24 (14.29%), 32, 35 (11.43%) 99.40–183.20

Glycyrrhizin

Glycyrrhizae Radix et Rhizome 2 (11.52%), 6, 8 (6.00%), 9 (15.09%), 11 (1.33%), 12 (10.10%), 13 (12.00%), 22 (5.88%), 25 (8.93%), 26 (8.51%), 33 (8.93%), 36 (7.69%) 20.30–71.70

Mulberroside A

Mori Ramulus 1 4.97–13.14

Cynaroside

Lonicerae Flos 26 (17.01%) 5.1–9.4

Bilirubin

Atificial Cow–bezoar 38 6.7–9.1

Vincetoxicosid e B

Cynanchi Stauntonii Rhizoma et Radix 37 (5.60%) No report

Morusin

Mori Cortex 37 (3.72%) 4.40–6.10

Puerarin

Puerariae Lobatae radix 5, 8 (8.00%), 23 (8.47%), 35 (8.57%), 36 (11.54%) 11.30–38.93
Orientin (Trollius Chinensis) 4 (100%) 8.56–20.51

Cynancersicosi de A (Cynanchi Atrati Radix et Rhizoma) 30 (9.09%) 0.04–0.11

Protostemonine (Stemonae Radix) 37 (9.31%) 2.80–3.80

Amygdalin (Armeniacae Semen Amarum) 1\(^c\), 6\(^c\), 13 (16.00%), 22 (8.82%), 23 (6.78%), 35 (11.43%), 36 (11.54%) 36.7–45.8

Ilexgenin A (Ilicis Pubescentis Radix et Caulis) 5\(^c\) 4.1–15.6

Prim-\(\text{O-glucosylcimifugin}\) (Saposhnikovi ae Radix) 8 (4.00%), 9 (3.77%), 22 (8.82%), 23 (8.47%), 35 (5.71%), 36 (11.54%) 1.16–9.49

Corynoline (Corydalis Bungeanae Herba) 23 (16.95%) 1.93–5.80

Astragaloside A (Astragali Radix) 8 (8.00%) 0.26–2.13
Paeoniflorin

Paeoniae Radix Rubra: 8 (4.00%), 17 (42.87%) 20.00–25.00

Polyphyllin I

Paridis Rhizoma 18c 2.87–10.10

Nodakenin

Notopterygii Rhizoma Et Radix 5c, 8 (6.00%), 16c, 35 (5.71%) 0.50–28.60

Tectoridin

Iridis Tectori Rhizoma 18c 33.27–58.63

Ursolic acid

Prunellae Spica 28 (66.22%) 2.21–4.15

Swertiajaponin

Lophatheri Herba 8 (8.00%), 25 (7.14%), 26, 33 (7.14%) 0.31–2.29

Berberine

Phellodendr i Chinensis Cortex 7c 17.76–80.32

Timosaponin BII

Anemarrhena e Rhizoma 19c, 20c 50.00–92.50
Dryocrassin (Dryopteridis Crassirhizomatous Rhizoma)

Columbianadin (Angelicae Pubescentis Radix)

Arctiin (Arctii Fructus)

Oleanic acid (Helicteres Angustifolia)

Luteolin (Lonicerae Japonicae Caulis)

Quercetin (Desmodium Triquetrum)

Forsythiaside A (Forsythiae Fructus)
Radix isatidis
\[\text{Isatidis Radix} \]
\[1^\text{c}, 3^\text{c}, 5^\text{c}, 6^\text{c}, 7^\text{c}, 15^\text{c}, \text{No report}\]

Genistein
\[\text{Sojae Semen Praeparatum} \]
\[25 (8.93\%), 26 (8.51\%), 33 (8.93\%) \]
\[29.38\pm11.65\]

Indirubin
\[\text{Isatidis Folium} \]
\[8^\text{c}, 21 (60.00\%), 30 (15.15\%) \]
\[0.02–4.15\]

Curcumin
\[\text{Curcumae Radix} \]
\[19^\text{c}, 20^\text{c} \]
\[0.84–1.12\]

Trisalbaspidin
\[\text{Dryopteris Setosa} \]
\[18^\text{c} \]
\[17.8\]

Artemisinin
\[\text{Artemisiae Annuae Herba} \]
\[5^\text{c} \]
\[1.91–5.19\]

Emodin
\[\text{Rhei Radix Et Rhizoma} \]
\[6^\text{c}, 9 (3.77\%) \]
\[0.29–0.66\]

Cholic acid
\[\text{Cholic acid} \]
\[3^\text{c}, 32^\text{c} \]

Hyodeoxycholic acid
\[\text{Hyodeoxycholic acid} \]
\[3^\text{c}, 32^\text{c} \]

Daidzein
\[\text{Sojae Semen Praeparatum} \]
\[25 (8.93\%), 26 (8.51\%), 33 (8.93\%) \]
\[18.69\pm1.28\]
Xanthiside

Massa Medicata Fermentata 1c 1.52–3.79

Lonicerae Japonicae Flos: 3c, 6c, 10
Lonicera Japonicae (25.00%), 17
(42.87%), 24
(42.86%), 25
(17.86%), 27c, 32c, 33
(17.86%), 34c
Chrysanthemi Flos: 28
(10.59%), 30 (9.09%)

Chlorogenic acid

Verbenalin

Verbenae Herba 5c 1.52–3.35

Poricoic acid A

Poria 11 (16.00%), 12
(5.05%) 0.24–0.40

Andrographolide

Andrographi s Herba 16c 14.9–17.2

Dipsacoside B

Lonicerae Flos 26 (17.01%) 4.30–9.30

Codeine

Papaveris Pericarpium 37 (31.05%) 0.23–0.60

Rosmarinic acid

Prunellae Spica 28 (66.22%) 19.23–25.67
Notopterol
Notopterygii Rhizoma Et Radix
5°, 16, 35 (5.71%)
3.50–15.00

Harpagide
Scrophulariae Radix
8 (8.00%)
3.59–4.86

Imperatorin
Angelicae Dahuricae Radix
8 (4.00%), 11 (16.00%), 12 (5.05%), 18°, 23 (5.08%), 35 (5.71%), 36 (7.69%)
0.75–1.37

Papaverine
Papaveris Pericarpium
37 (31.05%)
0.10–0.33

Geniposide
Gardeniae Fructus
3°, 7°, 9 (1.89%), 32 26.25–60.28

Catalpol
Rehmanniae Radix
19°, 20° 30 (9.09%)
2.03–11.40

Salidroside
Rhodiolae Crenulatae Radix Et Rhizoma
6°
7.83–11.09

Morphine
Papaveris Pericarpium
37 (31.05%)
0.32–0.93

Atractylenolide I
Atractylodis Macrocephalae Rhizoma
9 (1.89%), 12 (10.10%)
1.93–2.54
Magnolol 11 (10.66%), 12 (10.10%) 9.50–67.80

Lobetyolin Codonopsis Radix: 2 (11.52%) 29.50–59.40

Matrine Sophorae Tonkinensis Radix et Rhizoma 18c 0.24–9.62

Pterodontic acid Lagerae Herba 14 (100%) Unknown 4.77

Isoevodionol Evodia Lepta 16c 2.02–3.67

Esculetin Violae Herba 8 (6.00%), 9 (7.55%), 12 (10.10%), 22 (5.88%), 23 (5.08%), 25 (10.71%), 26 (10.21%), 35 (5.71%), 36 (7.69%), 37 (3.72%) 1.85–4.06

Platycodin D Platycodonis Radix 25 (10.71%), 26 (10.21%), 33 (10.71%), 35 (5.71%), 36 (7.69%), 37 (3.72%) 1.35–5.71

Scopoletin Lycii Cortex 30 (9.09%) 0.07

Dhelwangin Pogostemonis Herba 6c, 11 (5.33%), 12 (15.15%), 19c, 20c, 30 (9.09%) 1.35–5.71

Caffeic acid Taraxaci Herba 15c 1.84
Compound	Source	Concentration	Value
Ferulic acid	Phragmites Rhizoma:	1, 19, 20, 23	0.46–1.65
	Angelicae Sinensis Radix:		
	1, 19, 20, 23	8.47%, 26 (10.21%)	
6-Gingerol	Zingiberis Rhizoma:	2, 12	9.96–28.64
	Recens	36	
L(+)-Ascorbic acid	Atractylodis Rhizoma:	11	3.98–10.96
Atractylodin	Ephedrae Herba:	13, 22, 35	4.80–10.20
Ephedrine	Ephedrae Herba:	13, 22, 35	4.80–10.20
	6c	1 (1.89%), 23	
	Schizonepetae Spica:	26, 27, 33	294.27–754.02
Pulegone	Schizonepetae Spica:	26, 27, 33	294.27–754.02
	7.14%, 34, 35	(7.14%), 34, 35	
	Acori Tatarinowii Rhizoma:	19, 20, 35	0.84–1.07
α-Asarone		19, 20, 35	0.84–1.07
Coumalic acid	Phragmites Rhizoma:	1, 19, 20, 23	7.00–12.10
Citrulline	Trichosanthis Radix:	8	20.20–60.20
Linolenic acid

Perillae Folium

11 (2.67%), 12 (5.05%), 22 (5.88%), 23 (5.08%), 36 (11.54%)

0.09–0.68

Amantadine Hydrochloride

9 (3.77%), 16°, 23 (5.08%), 25 (10.71%), 26 (4.73%), 27°, 30 (6.06%), 33 (10.71%), 34°, 35°, 1°, 37 (3.72%)

25.76–226.10

L-Menthol

Menthae Haplocalycis Herba

9 (3.77%), 16°, 23 (5.08%), 25 (10.71%), 26 (4.73%), 27°, 30 (6.06%), 33 (10.71%), 34°, 35°, 1°, 37 (3.72%)

25.76–226.10

trans–Cinnamaldehyde

Cinnamomi Ramulus

22 (8.82%), 35 (8.57%), 36 (7.69%)

12.70–16.02

β–Pinene

Forsythiae Fructus Oil

27°, 34°

2.40–9.34

Arecoline

Arecae Pericarpium

11 (16.00%), 12 (5.05%)

1.92–3.80

Glutamic acid

Bubali Cornu

32°

2.25

α–Pinene

Forsythiae Fructus Oil

27°, 34°

0.75–3.00

Tetramethyl pyrazine

Chuanxiong Rhizoma

35 (5.71%), 8 (4.00%), 9 (3.77%)

0.15–0.24

Succinic acid

Pinelliae Rhizoma

2 (11.52%), 11 (10.66%), 12 (10.10%)

3.24–4.43

Decanoy acetaldehyde

Houttuyniae Herba

6°, 18°

Volatile oils

7.2%
Taurine

\[
\text{H}_2\text{N} \xrightarrow{\text{SO}_{3}^\text{H}} \text{Lycii Cortex} 30 \text{ (9.09%)} \quad 3.12–6.20
\]

Betaine

\[
\text{N} \xrightarrow{\text{CH}_{3}} \text{Lycii Cortex} 30 \text{ (9.09%)} \quad 5.40–10.10
\]

\(a\) The number of Chinese patent drugs is same as that in table 1.

\(b\) Data source: China National Knowledge Infrastructure (CNKI).

\(c\) Unknown.