Cryptosporidiosis in HIV-positive patients and related risk factors: A systematic review and meta-analysis

Ehsan Ahmadpour1,13,a,*, Hanie Safarpour2,a, Lihua Xiao3, Mehdi Zarean4, Kareem Hatam-Nahavandi5, Aleksandra Barac6, Stephane Picot7,*, Mohammad Taghi Rahimi7, Salvatore Rubino9, Mahmoud Mahami-Oskouei10, Adel Spotin11, Sanam Nami12, and Hossein Bannazadeh Baghi13

1 Research Center for Evidence Based Medicine (RCEBM), Tabriz University of Medical Sciences, 5166-15731 Tabriz, Iran
2 Student Research Committee, Tabriz University of Medical Sciences, 5166-15731 Tabriz, Iran
3 College of Veterinary Medicine, South China Agricultural University, 510642 Guangzhou, China
4 Department of Parasitology and Mycology, Faculty of Medicine, Mashhad University of Medical Sciences, 91779-48964 Mashhad, Iran
5 Iranshahr University of Medical Sciences, 99147-86138 Iranshahr, Iran
6 Clinic for Infectious and Tropical Diseases, Clinical Centre of Serbia, 11000 Belgrade, Serbia
7 University Lyon, ICBMS UMR 5246 CNRS-INSA-CPE & Institute of Parasitology and Medical Mycology, Croix-Rousse Hospital, Hospices Civils de Lyon, 69004 Lyon, France
8 Center for Health Related Social and Behavioral Sciences Research, Shahroud University of Medical Sciences, 36147-73947 Shahroud, Iran
9 Department of Biomedical Sciences, University of Sassari, 07100 Sardinia, Italy
10 Department of Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, 5166-15731 Tabriz, Iran
11 Immunology Research Center, Tabriz University of Medical Sciences, 5166-15731 Tabriz, Iran
12 Drug Applied Research Center, Tabriz University of Medical Sciences, 5166-15731 Tabriz, Iran
13 Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, 5166-15731 Tabriz, Iran

Received 1 October 2019, Accepted 9 April 2020, Published online 29 April 2020

Abstract – Cryptosporidium is one of the major causes of diarrhea in HIV-positive patients. The aim of this study is to systematically review and meta-analyze the prevalence of Cryptosporidium in these patients. PubMed, Science Direct, Google Scholar, Web of Science, Cochrane and Ovid databases were searched for relevant studies dating from the period of 1 January 2000 to 31 December 2017. Data extraction for the included studies was performed independently by two authors. The overall pooled prevalence was calculated and subgroup analysis was performed on diagnostic methods, geographical distribution and study population. Meta-regression for the included studies was performed on the year of publication, proportion of patients with diarrhea, and proportion of patients with CD4 < 200 cells/mL. One hundred and sixty-one studies and 51,123 HIV-positive participants were included. The overall pooled prevalence of Cryptosporidium infection in HIV-positive patients was 11.2% (CI95%: 9.4%–13.0%). The pooled prevalence was estimated to be 10.0% (CI95%: 8.4%–11.8%) using staining methods, 13.5% (CI95%: 8.9%–19.8%) using molecular methods, and 26.3% (CI95%: 15.0%–42.0%) using antigen detection methods. The prevalence of Cryptosporidium in HIV patients was significantly associated with the country of study. Also, there were statistical differences between the diarrhea, CD4 < 200 cells/mL, and antiretroviral therapy risk factors with Cryptosporidiosis. Thus, Cryptosporidium is a common infection in HIV-positive patients, and safe water and hand-hygiene should be implemented to prevent cryptosporidiosis occurrence in these patients.

Key words: Cryptosporidium infection, HIV, AIDS, Systematic review.

Résumé – Cryptosporidiose chez les patients VIH-séropositifs et facteurs de risque associés : revue systématique et méta-analyse. Cryptosporidium est l’une des principales causes de diarrhée chez les patients séropositifs pour le VIH. Le but de cette étude est de revoir et méta-analyser systématiquement la prévalence de Cryptosporidium chez ces patients. Les bases de données PubMed, Science Direct, Google Scholar, Web of Science, Cochrane et Ovid ont été recherchées pour des études pertinentes datant du 1er janvier 2000 au 31 décembre 2017. L’extraction des données pour les études incluses a été réalisée indépendamment par deux auteurs. La prévalence globale combinée a été calculée et une analyse en sous-groupes a été effectuée sur les méthodes de...
Introduction

Cryptosporidium is an intracellular protozoan parasite that infects the gastrointestinal epithelium of a wide range of animals as well as humans, and causes diarrheal disease [29, 103]. Among the 38 species of Cryptosporidium currently recognized, Cryptosporidium hominis and Cryptosporidium parvum are responsible for the majority of human infections [43]. However, other species including C. meleagris, C. canis, C. felis, and C. muris have been identified in immunocompromized patients [178]. Transmission of the infection is most common by the fecal-oral route, via the consumption of contaminated water and food, and contact with infected persons or animals [29]. Infection in immunocompetent patients is either asymptomatic or presents with profuse acute or persistent watery diarrhea, nausea and vomiting, stomach cramps, and occasionally fever that lasts approximately 2 weeks. However, in patients with immune deficiencies, the infection might cause prolonged symptoms and lead to chronic diarrhea that lasts more than 2 months, or fulminant diarrhea with more than 2 L of watery stools per day [29].

It is estimated that in 2016, 36.7 million people were infected with HIV worldwide. During the onset of the AIDS epidemic in the early 1980s Cryptosporidium became widely recognized as a human pathogen [160]. Diarrhea is a common problem in AIDS patients and about 30%–60% of patients in developed countries and 90% in developing countries experience diarrhea [44]. Diarrhea significantly influences quality of life and can lead to complications such as dehydration, malnutrition, weight loss and even death [101]. Cryptosporidiosis was considered one of the original AIDS-defining illnesses and a major risk factor for mortality compared to other AIDS-defining illnesses [32]. The prevalence of Cryptosporidium in immunocompetent patients varies widely, ranging from 0% to 10%, depending on country socioeconomic status [28]. Several studies have investigated the prevalence of Cryptosporidium in HIV-positive patients and have reported a wide range of estimates in different settings.

The aim of the study was to systematically review and meta-analyze the worldwide prevalence and geographic distribution of Cryptosporidium in HIV-positive patients and to compare the estimated prevalence using different diagnostic methods.

Methods

Search strategy and study selection

We performed this systematic review and meta-analysis according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statement [87]. PubMed, Science Direct, Google Scholar, Web of Science, Cochrane and Ovid databases were searched from 1 January 2000 to 31 December 2017 restricted to the English language using the following keywords: “Cryptosporidium”, “cryptosporidiosis”, “HIV”, “immunodeficiency”, “acquired immune deficiency syndrome”, or “AIDS”. After removing duplicate records, two authors independently reviewed the titles and/or abstracts of all records identified by the search. Full-texts were retrieved and evaluated for potentially relevant studies. All disagreements were resolved by consensus.

Inclusion and exclusion criteria

Studies were included in the systematic review and meta-analysis if the study was performed on HIV/AIDS patients with or without diarrhea and the prevalence of Cryptosporidium was evaluated using staining, antigen detection or molecular methods. Conference abstracts, animal studies, case reports, comments, and reviews were excluded. When duplicate reports of the same research were suspected, the paper reporting more relevant data was included.

Data extraction

Data extraction was performed independently by two authors and the following information was extracted: first author, year of publication, country of study, average level of income in the country of study, region of study, study design, number of HIV/AIDS participants, sex ratio of participants, mean age, diagnostic methods, number of participants co-infected with Cryptosporidium, number of participants with CD4 counts < 200 cell/mm³, and number of participants with diarrhea. The region of study was determined according to the WHO Global Burden of Disease Regions [176]. The level of income was retrieved from the 2017 World Bank classification of countries by income [175].
Meta-analysis

Comprehensive meta-analysis 2.2 (Biostat Inc., USA) was used to calculate the pooled prevalence using a random-effects model. Heterogeneity was assessed using the I^2 index and Cochran-Q test. An I^2 index $>70\%$ or a significant Cochran-Q test indicated heterogeneity [37]. Also, publication bias was assessed using Egger’s intercept and visual inspection of the funnel plot. Univariate analysis was performed on the following risk factors and variables: diagnostic method, country of study, average level of income in the country of study, region of study, number of participants >100, proportion of patients with diarrhea, and proportion of patients with low CD4 counts. Meta-regression was performed using the method of moments on the following variables: year of publication, the proportion of patients with diarrhea, and proportion of patients with low CD4 counts.

In all analyses, if a study used multiple diagnostic methods, we preferred the prevalence estimated using molecular methods to the other two, and staining methods to antigen detection methods. This procedure was implemented for all analyses except in the subgroup analysis of diagnostic methods. In these studies, all estimates of prevalence using different diagnostic methods were included. Publication bias was assessed using Egger’s regression and visual inspection of the Funnel plot. A significant Egger’s regression and an asymmetric Funnel plot indicated publication bias [37]. The level of significance for all tests was $p < 0.05$.

Results

Search results

After removing duplicates, titles and/or abstracts of 1986 records retrieved by the search were screened and 237 studies were selected to be reviewed in more detail using their full-texts. Of these, 161 studies fit the inclusion criteria and were included in the systematic review and meta-analysis (Fig. 1).
Characteristics of studies

A total of 51,123 HIV/AIDS patients participated in these studies of which 5408 patients were co-infected with Cryptosporidium. The overall male to female ratio was 61.2% to 38.8% (M:F = 1.58:1) among all participants and 67.2% to 32.8% (M:F = 2.08:1) among infected participants. The mean age of participants in the included studies was 33.9 years (ranged from 10 months to 45 years). In total, studies from 40 countries worldwide were included. The countries with the most included studies were India (25%, 41/161), Ethiopia (11%, 18/161), Brazil (8%, 12/161), Nigeria and Iran (6%, 10/161). More than 40% of studies were performed in lower-middle-income countries (68/161), followed by upper-middle-income countries (32%, 52/161), low-income countries (20%, 33/161) and only 5% were performed in high-income countries (8/161). Studies were also categorized based on the WHO Global Burden of Disease Regions (Table 1). Among these studies, meta-analysis showed that the proportion of participants with diarrhea and CD4 counts < 200 cells/mL significantly correlated with the pooled prevalence (p < 0.0001). Similarly, the proportion of participants who received ART significantly correlated with the pooled prevalence (p < 0.0001) (Table 3). Our study indicated that having diarrhea and having less than 200 CD4 cells µL in HIV-infected patients, increase the risk of infection by Cryptosporidium, whereas using antiretroviral therapy in HIV-infected patients meaningfully decreases the risk of cryptosporidiosis. The funnel plot showing an asymmetric plot with studies missing on the right side and a statistically significant Egger's regression suggest the possibility of publication bias (Fig. 6).

Discussion

Diarrhea caused by opportunistic intestinal protozoa is a common problem in HIV-infected patients. With a total number of 36 million HIV-infected patients and 11.2% prevalence of Cryptosporidium co-infection with HIV, approximately 4 million HIV patients are estimated to be infected with Cryptosporidium worldwide. The present meta-analysis of 161 studies published from 2000 to 2017 on the topic of Cryptosporidium infections in patients with HIV shows that the pooled worldwide prevalence of Cryptosporidium in patients with HIV is 14.4%. A systematic review previously assessed the worldwide prevalence of Cryptosporidium among patients with HIV, but did not establish the risk factors [170]. The prevalence of Cryptosporidium in the immunocompetent population has been estimated to be not more than 1% in high-income and 5%–10% in low-income countries [28]. In a case-control study, it was shown that HIV-positive patients had a 20-fold risk of becoming infected with Cryptosporidium [97, 98]. Therefore, in addition to a greater risk of developing symptomatic disease and having more severe and prolonged symptoms, patients with HIV have a greater risk of infection with Cryptosporidium [60].

Several mechanisms have been suggested to explain the susceptibility of AIDS patients to cryptosporidiosis. CD4 cells play a major role in the immune response to gastrointestinal pathogens, and it has been shown that low CD4 counts are associated with increased risk of infection with enteric parasites and chronic diarrhea [104]. Due to immunosuppression, symptoms of cryptosporidiosis in patients with AIDS are expressed differently in terms of severity, duration, and responses to drug treatment. It has been shown that there is a significant relationship between increased mortality rates and cryptosporidiosis in AIDS patients [19, 179]. Similarly, in the present meta-analysis,
Table 1. Baseline characteristics of the included studies.

Paper ID	First author	Year	Country/State	Number of participants	Number infected	Diagnostic method	Patients with diarrhea	Patients with CD4<200	
1	Inungu J	2000	Louisiana	6913	239	Staining	NR	NR	
2	Chokephaibulkit K	2001	Thailand	82	7	Ziehl-Neelsen	100.00%	NR	
3	Gassama A	2001	Senegal	318	15	Ziehl-Neelsen	49.70%	NR	
4	Lebbad M	2001	Guinea-Bissau	37	9	Ziehl-Neelsen	NR	NR	
5	Wiwanitkit V	2001	Thailand	60	2	Odine and Modified	Trichromes	46.70%	41.70%
6	Brink AK	2002	Uganda	358	18	Ziehl-Neelsen	70.10%	NR	
7	Joshi M	2002	India	94	8	Ziehl-Neelsen	NR	NR	
8	Kumar SS	2002	India	150	14	Ziehl-Neelsen	66.70%	NR	
9	Leav BA	2002	Congo	101	25	Ziehl-Neelsen	NR	NR	
10	Mohandas K	2002	India	120	13	Ziehl-Neelsen	67.50%	NR	
11	Sakarisiamant W	2002	Thailand	156	20	Ziehl-Nelson	NR	NR	
12	Wanachiwanawin D	2002	Thailand	95	3	Ziehl-Neelsen	100.00%	NR	
13	Adeji A	2003	Ghana	21	6	Ziehl-Neelsen	100.00%	NR	
14	Arenas-Pinto A	2003	Venezuela	304	45	Ziehl-Neelsen	71.40%	NR	
15	Cama VA	2003	Peru	2672	354	Ziehl-Neelsen	NR	NR	
16	Cranendonk R	2003	Malawi	348	16	Phenol-auramine-O-	fluorescence	49.80%	NR
17	Shenoy S	2003	India	120	21	Ziehl-Neelsen	100.00%	NR	
18	Silva CV	2003	Brazil	52	3	Safranin/Methylene	NR	NR	
19	Singh A	2003	India	100	47	Ziehl-Neelsen	NR	NR	
20	Carcamo C	2004	Peru	294	39	Modified Safranin	50.00%	NR	
21	Ribiero PC	2004	Brazil	75	7	Safranin/Methylene	NR	NR	
22	Zali MR	2004	Iran	206	3	Ziehl-Neelsen	13.60%	NR	
23	Certad G	2005	Venezuela	397	59	Ziehl-Neelsen	75.60%	NR	
24	Guk SM	2005	Korea	67	7	Ziehl-Neelsen	NR	NR	
25	Houpt ER	2005	Tanzania	127	22	IFA	48.00%	NR	
26	Lim YA	2005	Malaysia	66	2	Ziehl-Neelsen	9.10%	NR	
27	Marques FR	2005	Brazil	94	8	Ziehl-Neelsen, ELISA	NR	NR	
28	Pinlaor S	2005	Thailand	78	9	Ziehl-Neelsen	32.10%	NR	
29	Sadraei J	2005	India	200	84	Ziehl-Neelsen	38.00%	41.00%	
30	Silva CV	2005	Brazil	100	4	Safranin/Methylene	38.00%	NR	
31	Tadesse A	2005	Ethiopia	70	20	Ziehl-Neelsen	100.00%	NR	
32	Tumwine JK	2005	Uganda	91	67	IFA	NR	NR	
33	Adhikari NA	2006	Nepal	112	6	Ziehl-Neelsen	NR	NR	
34	Chinh S	2006	Cambodia	80	36	Ziehl-Neelsen	50.00%	NR	
35	Navarro-i-Martinez L	2006	Colombia	103	6	PCR, Ziehl-Neelsen	NR	NR	
36	Oguntibeju OO	2006	Lesotho	60	6	Ziehl-Neelsen	56.70%	NR	
37	Sarfati C	2006	Cameroon	154	6	Ziehl-Neelsen	28.60%	NR	
38	de Oliveira-Silva MB	2007	Brazil	359	31	Ziehl-Neelsen	70.20%	NR	
39	Dwivedi KK	2007	India	75	25	Ziehl-Neelsen	66.70%	NR	
40	Hung CC	2007	Taiwan	332	4	PCR, Ziehl-Neelsen	NR	40.10%	
41	Ramakrishnan K	2007	India	80	23	Ziehl-Neelsen	NR	NR	
42	Rossit AR	2007	Brazil	55	34	ELISA	16.40%	NR	
43	Stark D	2007	Australia	628	14	Modified iron-	hematotoxlin	100.00%	NR
44	Taherkhani H	2007	Iran	75	20	Ziehl-Neelsen	NR	NR	
45	Vignesh R	2007	India	245	7	Ziehl-Neelsen	100.00%	NR	
46	Bachur TP	2008	Brazil	582	47	Ziehl-Neelsen	NR	NR	
47	Gupta S	2008	India	113	9	Ziehl-Neelsen	30.10%	NR	
48	Jayalakshmi J	2008	India	89	11	Ziehl-Neelsen, ELISA	100.00%	NR	
49	Kaushik K	2008	India	206	27	PCR, Ziehl-Neelsen	ELISA	48.10%	32.50%
50	Nuchjangreec C	2008	Thailand	46	2	PCR, Ziehl-Neelsen	28.30%	NR	
51	Racourt CP	2008	Haiti	74	45	PCR	NR	NR	
52	Tuli L	2008	India	366	146	Ziehl-Neelsen	100.00%	64.50%	

(continued on next page)
Paper ID	First author	Year	Country/State	Number of participants	Number infected	Diagnostic method	Patients with diarrhea	Patients with CD4<200	Ref.
53	Werneck-Silva AL	2008	Brazil	690	1	Ziehl-Neelsen	NR	NR	[173]
54	Zaidah AR	2008	Malaysia	59	9	PCR, Ziehl-Neelsen	NR	NR	[182]
55	Zavvar M	2008	Iran	35	21	PCR, Ziehl-Neelsen	NR	NR	[184]
56	Assefa S	2009	Ethiopia	214	43	Ziehl-Neelsen	NR	NR	[14]
57	Daryani A	2009	Iran	64	6	Ziehl-Neelsen	NR	NR	[34]
58	Dillingham RA	2009	Haiti	243	39	Ziehl-Neelsen	NR	100.00%	[39]
59	Gautam H	2009	India	43	7	ELISA	NR	100.00%	[47]
60	Kulkarni SV	2009	India	137	16	Ziehl-Neelsen	NR	47.40%	[80]
61	Kurniawan A	2009	Indonesia	318	30	Ziehl-Neelsen	NR	NR	[82]
62	Lule JR	2009	Uganda	879	30	Ziehl-Neelsen	NR	29.90%	[90]
63	Saksirisampant W	2009	Thailand	90	31	PCR, Ziehl-Neelsen	NR	78.90%	[130]
64	Uppal B	2009	India	100	3	ELISA	NR	50.00%	[161]
65	Dehkordy AB	2010	Iran	33	3	ELISA	NR	NR	[38]
66	Getaneh A	2010	Ethiopia	192	48	Ziehl-Neelsen	NR	NR	[49]
67	Idris NS	2010	Indonesia	22	1	Ziehl-Neelsen	NR	NR	[61]
68	Kashyap B	2010	India	64	8	Safranin-methylene blue	NR	48.40%	[74]
69	Tuli L	2010	India	450	163	Ziehl-Neelsen	NR	100.00%	[157]
70	Akinbo FO	2011	Nigeria	2000	80	Ziehl-Neelsen	NR	12.80%	[8]
71	Alemu A	2011	Ethiopia	188	82	Ziehl-Neelsen	NR	NR	[10]
72	Cardoso LV	2011	Brazil	500	1	Ziehl-Neelsen	NR	28.60%	[25]
73	Erhabor O	2011	Nigeria	105	3	Ziehl-Neelsen	NR	24.80%	[41]
74	Kucerova Z	2011	Russia	46	19	ELISA	NR	NR	[79]
75	Lim YA	2011	Malaysia	122	27	Ziehl-Neelsen	NR	NR	[88]
76	Ojurongbe O	2011	Nigeria	96	52	Ziehl-Neelsen	NR	NR	[112]
77	Patel SD	2011	India	100	20	Ziehl-Neelsen	NR	32.00%	[118]
78	Santos RB	2011	Brazil	1010	4	Staining	NR	NR	[134]
79	Srisuphanunt M	2011	Thailand	152	33	PCR, Ziehl-Neelsen, Staining	ELISA	NR	[144]
80	Stensvold CR	2011	Denmark	96	1	Staining	NR	13.50%	[146]
81	Boaitey YA	2012	Ghana	500	70	Ziehl-Neelsen	NR	51.60%	[21]
82	Iqbal A	2012	Malaysia	346	18	PCR	NR	NR	[63]
83	Izadi M	2012	Iran	47	7	Ziehl-Neelsen	NR	NR	[65]
84	Jha AK	2012	India	154	87	Ziehl-Neelsen	NR	35.10%	[69]
85	Kang’e the E	2012	Kenya	155	7	Ziehl-Neelsen	NR	NR	[72]
86	Khurana S	2012	India	671	40	PCR, Ziehl-Neelsen, Staining	ELISA	NR	[77]
87	Lehman LG	2012	Cameroon	201	13	Ziehl-Neelsen	NR	18.40%	[86]
88	Masarat S	2012	India	45	45	Ziehl-Neelsen, Staining	ELISA	NR	[92]
89	Netor Velasquez J	2012	Argentina	11	3	PCR	NR	NR	[105]
90	Ojuromi OT	2012	Nigeria	193	44	Ziehl-Neelsen	NR	34.70%	[111]
91	Pavie J	2012	France	143	8	Ziehl-Neelsen	NR	59.40%	[119]
92	Roka M	2012	Guinea	260	24	Ziehl-Neelsen	NR	NR	[126]
93	Sharma P	2012	India	970	44	Ziehl-Neelsen	NR	NR	[137]
94	Tian LG	2012	China	302	25	Ziehl-Neelsen	NR	NR	[153]
95	Vyas N	2012	India	366	75	Ziehl-Neelsen	NR	72.70%	[166]
96	Wang L	2013	China	683	10	PCR	NR	44.50%	[169]
97	Adamu H	2013	Ethiopia	378	32	Ziehl-Neelsen	NR	45.30%	[2]
98	Agholi M	2013	Iran	356	34	Ziehl-Neelsen	NR	28.90%	[5]
99	Ahmed NH	2013	India	242	40	Ziehl-Neelsen	NR	NR	[6]
100	Akinbo FO	2013	Nigeria	285	4	PCR	NR	37.90%	[9]
101	Assis DC	2013	Brazil	59	6	Ziehl-Neelsen	NR	39.00%	[15]
102	Ayinmode AB	2013	Nigeria	132	8	PCR	NR	59.80%	[16]
103	Bartelt LA	2013	South Africa	193	146	ELISA	NR	NR	[18]
104	Dash M	2013	India	115	14	Ziehl-Neelsen	NR	36.50%	[35]
105	Gupta K	2013	India	100	4	Ziehl-Neelsen	NR	19.00%	[55]
106	Janagond AB	2013	India	100	2	Ziehl-Neelsen	NR	68.00%	[67]
107	Rashmi KS	2013	India	90	15	Ziehl-Neelsen	NR	NR	[71]

(continued on next page)
Paper ID	First author	Year	Country/State	Number of participants	Number infected	Diagnostic method	Patients with diarrhea	Patients with CD4<200	Ref.
108	Mathur MK	2013	India	544	135	Ziehl-Neelsen	73.50%	NR	[93]
109	Mehta KD	2013	India	100	2	Ziehl-Neelsen	NR	24.00%	[94]
110	Missaye A	2013	Ethiopia	272	2	Ziehl-Neelsen	NR	10.70%	[96]
111	Mohanty I	2013	India	250	13	Ziehl-Neelsen	80.00%	NR	[100]
112	Teklemariam Z	2013	Ethiopia	371	8	Ziehl-Neelsen	20.20%	27.00%	[151]
113	Tian LG	2013	China	79	8	Ziehl-Neelsen	NR	100.00%	[154]
114	Tiwari BR	2013	Nepal	745	23	Ziehl-Neelsen	33.30%	43.90%	[155]
115	Vyas N	2013	India	75	11	Ziehl-Neelsen	NR	42.70%	[167]
116	Zeynudin A	2013	Ethiopia	91	8	Ziehl-Neelsen	NR	NR	[185]
117	Adamu H	2014	Ethiopia	520	140	PCR	NR	NR	[1]
118	Blanco MA	2014	Guinea	171	31	PCR	NR	NR	[20]
119	Girma M	2014	Ethiopia	268	92	Ziehl-Neelsen	90.30%	69.80%	[52]
120	Tiwari BR	2014	India	745	23	Ziehl-Neelsen	33.30%	43.90%	[155]
121	Vyas N	2014	India	75	11	Ziehl-Neelsen	NR	42.70%	[167]
122	Zeynudin A	2013	Ethiopia	91	8	Ziehl-Neelsen	NR	NR	[185]
123	Ahmed NH	2015	India	142	6	Ziehl-Neelsen	NR	NR	[7]
124	Angal L	2015	Malaysia	131	5	Ziehl-Neelsen	NR	18.30%	[11]
125	Asma I	2015	Malaysia	346	43	Ziehl-Neelsen	NR	NR	[13]
126	Fregonesi BM	2015	Brazil	17	4	Ziehl-Neelsen	NR	NR	[45]
127	Khalil S	2015	India	200	15	Ziehl-Neelsen	50.00%	50.00%	[76]
128	Kiros H	2015	Ethiopia	399	23	Ziehl-Neelsen	NR	16.80%	[78]
129	Mengist HM	2015	Ethiopia	180	7	Ziehl-Neelsen	NR	NR	[95]
130	Ojuromi OT	2015	Nigeria	90	4	PCR	74.40%	NR	[110]
131	Oyedeeji OA	2015	Nigeria	52	10	Ziehl-Neelsen	NR	NR	[114]
132	Pavlinac PB	2015	Kenya	56	1	Ziehl-Neelsen	NR	NR	[120]
133	Petrinová A	2015	Slovak Republic	20	0	PCR	NR	NR	[121]
134	Rami H	2015	Iran	53	4	Ziehl-Neelsen	100.00%	100.00%	[51]
135	Salehi Sangani G	2016	Iran	80	1	Ziehl-Neelsen	NR	100.00%	[131]
136	Salehi Sangani G	2016	Iran	90	4	PCR	34.30%	NR	[177]
137	Sathiraj CN	2017	India	829	19	Modified acid-fast	100.00%	NR	[147]
138	Swathiraj CR	2017	Nigeria	238	131	Ziehl-Neelsen	NR	NR	[108]
139	Thamiraj CR	2017	India	829	19	Modified acid-fast	100.00%	NR	[147]
140	Uysal HK	2017	Turkey	115	3	PCR	100.00%	28.70%	[159]
141	Yang Y	2017	China	46	2	Modified acid-fast	NR	NR	[180]
142	Yang Y	2017	China	14	3	Modified acid-fast	NR	NR	[181]

Abbreviations: ELISA: Enzyme-Linked Immunosorbent Assay, IFA: Immunofluorescence Assay, PCR: Polymerase Chain Reaction, NR: not reported.
Figure 2. Forest plot diagram: The estimated pooled prevalence of Cryptosporidium infection in people with HIV infection by random-effect meta-analysis in included studies based on the PCR technique (first author, year of publication, and country). Note: The area of each square is proportional to the study’s weight in the meta-analysis, and each line represents the confidence interval around the estimate. The diamond represents the pooled estimate.
we showed that the patients with low CD4 counts had a higher prevalence rate of *Cryptosporidium* infection (*p* < 0.0001). It seems that IFN-γ is associated with T-cell memory and is a critical regulator of both innate and adaptive immune responses against *Cryptosporidium* infection. Also, the findings of immunological research suggest that *Cryptosporidium* induced an inflammatory response in intestinal epithelial cells. Accordingly, the higher expression of inflammatory and pro-inflammatory cytokines, such as CXCL-10 and substance P is present in AIDS patients (compared to AIDS patients without cryptosporidiosis or negative controls) [116]. The opportunistic parasites *Cryptosporidium* spp. are not only associated with the immune state in HIV-infected patients, but are also more evident with antiretroviral therapy. Utilization of chemoprophylaxis could increase the immunity of HIV-positive individuals and reduce the infection. Our findings suggested that in HIV-infected patients, especially with low CD4 counts, ART should be prescribed.

Substantial heterogeneity was observed between the studies included in this meta-analysis. In addition to using the random-effects model, which incorporates some of this heterogeneity, we investigated possible causes of heterogeneity and compared the estimated prevalence in different subgroups and settings [37]. The diagnostic method that was used to detect

Figure 3. Forest plot diagram: The estimated pooled prevalence of *Cryptosporidium* infection in people with HIV infection by random-effect meta-analysis in included studies based on serological methods (first author, year of publication, and country). Note: The area of each square is proportional to the study’s weight in the meta-analysis, and each line represents the confidence interval around the estimate. The diamond represents the pooled estimate.

Silva CV, 2003, Brazil 0.135 (0.056, 0.258)
Marques FR, 2005, Brazil 0.085 (0.037, 0.161)
Houpt ER, 2005, Tanzania 0.173 (0.112, 0.250)
Tumwine JK, 2005, Uganda 0.736 (0.633, 0.823)
Rosit AR, 2007, Brazil 0.618 (0.477, 0.746)
Kaushik K, 2008, India 0.198 (0.138, 0.250)
Jayalakshmi J, 2008, India 0.112 (0.055, 0.197)
Uppal B, 2009, India 0.030 (0.006, 0.085)
Gautam H, 2009, India 0.163 (0.068, 0.307)
Dehkordy AB, 2010, Iran 0.091 (0.019, 0.243)
Kucerova Z, 2011, Russia 0.413 (0.270, 0.568)
Omoruyi B, 2011, South Africa 0.000 (0.900, 1.000)
Srisuphanunt M, 2011, Thailand 0.270 (0.201, 0.348)
Mesarat S, 2012, India 0.000 (0.921, 1.000)
Khurana S, 2012, India 0.048 (0.033, 0.067)
Bartelt LA, 2013, South Africa 0.756 (0.690, 0.815)
Omoruyi BE, 2014, Africa 0.743 (0.567, 0.875)
Uppal B, 2014, India 0.672 (0.537, 0.790)
Zhang L, 2015, China 0.137 (0.091, 0.194)
Kanyarakal V, 2016, India 0.025 (0.008, 0.057)
combined 0.355 (0.213, 0.512)
Cryptosporidium infection significantly influenced the estimated prevalence. The included studies had utilized three main categories of diagnostic methods. PCR is considered the gold standard in diagnosing Cryptosporidium infection with an excellent sensitivity of 97% and specificity of 100%, but is not commonly used due to its high cost and high expertise requirement, especially in low-income countries [28]. The estimated pooled prevalence using PCR was 16.5%, which could be considered as the "real" prevalence. Conventional microscopy, most commonly using Ziehl-Neelsen staining, is an inexpensive and widely available method but has a low sensitivity of 75% [27]. The estimated pooled prevalence using staining methods was 11.9%, which was the lowest estimate among used diagnostic methods. Enzyme Immunoassays (EIA), based on detection of Cryptosporidium antigens, cost more than the staining methods and have a moderate to high diagnostic accuracy, with a sensitivity of 75%–93%. However, confirmatory testing has been suggested when using EIA, since some false-positive reactions have been confirmed [27, 28, 172]. The pooled prevalence using antigen detection methods was the highest among diagnostic methods with an estimate of 35.5%. In addition to false-positive reactions, we propose that the higher prevalence in studies that utilized EIA methods could be due to possible continued shedding of Cryptosporidium antigens in the stools, even after the resolution of infection, although this effect has not been studied.

The geographical distribution was another confounding factor. The estimated prevalence within countries was in a range of 1% in Denmark to 57% in South Africa. Among the countries with more than ten included studies, India (14.1%), Iran (11.1%) and Nigeria (10.6%) had the highest prevalence. The economic status of different countries could be the most probable explanation for these findings. The prevalence in high-income countries, with an estimate of 4.1%, was significantly lower than in middle and low-income countries, but there was no statistically significant difference between the estimated prevalence in the middle-income and low-income countries. Additionally, the source of drinking water can contribute to the different prevalence observed within different countries. A meta-analysis showed that drinking unsafe water significantly increases the risk of Cryptosporidium infection [53]. However, we were unable to evaluate its effect on prevalence since very
Figure 5. Pooled prevalence of Cryptosporidium in HIV-positive patients in different countries (source of image: https://commons.wikimedia.org/wiki/File:BlankMap-World.svg).

Table 2. Pooled prevalence of Cryptosporidium in HIV-positive patients and subgroup analyses.

Group	Number of studies	Pooled prevalence (CI 95%)	Heterogeneity	p-value
Diagnostic method				p < 0.05
Staining	140	10.0% (8.4%–11.8%)	<0.001	96.00
Antigen detection	19	26.3% (15.0%–42.0%)	<0.001	96.90
Molecular	28	13.5% (8.9%–19.8%)	<0.001	95.60
Country*				p < 0.05
Brazil	12	5.4% (2.5%–11.6%)	<0.001	93.90
China	6	7.2% (3.5%–14.3%)	<0.001	87.50
Ethiopia	18	9.8% (6.5%–14.7%)	<0.001	95.70
India	41	14.1% (10.5%–18.7%)	<0.001	95.90
Iran	10	11.1% (6.0%–19.5%)	<0.001	89.40
Malaysia	7	9.1% (5.0%–15.8%)	<0.001	86.60
Nigeria	11	10.6% (3.9%–25.6%)	<0.001	98.30
Thailand	8	11.0% (6.2%–18.7%)	<0.001	85.40
Region				p = 0.46
African Region	53	11.9% (8.8%–16.0%)	<0.001	97.00
Eastern Mediterranean Region	10	11.1% (6.0%–19.5%)	<0.001	89.40
European Region	5	5.4% (1.0%–23.7%)	<0.001	92.00
Region of the Americas	23	9.8% (6.4%–14.8%)	<0.001	97.30
South-East Asia Region	53	12.7% (9.7%–16.4%)	<0.001	95.50
Western Pacific Region	17	7.7% (4.7%–12.3%)	<0.001	92.60
Income Level				p = 0.43
High income	8	4.1% (2.4%–6.9%)	<0.001	77.80
Upper-middle income	52	10.4% (8.0%–13.5%)	<0.001	94.10
Lower-middle income	68	13.1% (10.2%–16.6%)	<0.001	96.30
Low income	33	10.9% (7.6%–15.2%)	<0.001	96.30
Number of Participants				p < 0.05
<100	66	15.4% (11.8%–19.8%)	<0.001	91.00
>100	95	8.9% (7.2%–11.0%)	<0.001	97.30

* Only countries with more than 5 included studies are shown.
few studies reported the sources of drinking water. Our study showed that the pooled prevalence across WHO Global Burden of Disease regions was not significantly different.

The association of Cryptosporidium prevalence and the proportion of symptomatic HIV patients has been investigated. No statistically significant difference was observed between the prevalence in studies with a high proportion of symptomatic patients and studies with a low proportion of symptomatic patients, although the meta-regression showed a correlation between prevalence and the proportion of symptomatic patients. Another significant confounding variable was the number of participants in the included studies. Studies with a lower number of participants reported higher prevalence rates. This could be due to the fact that lower sample sizes are associated with higher sampling error [133].

The studies also differed in the period when they were conducted, but meta-regression showed that the year of publication did not correlate to estimated prevalence. A meta-analysis suggested seasonality in the prevalence of Cryptosporidium, and showed that precipitation and temperature are strongly associated with the rate of infection [66]. However, it was not possible to investigate the impact of seasons and different climates on the prevalence in the present meta-analysis, due to the limited data reported. Nonetheless, the heterogeneity after considering these confounding variables was still high. Other unknown and uninvestigated differences in study design and population might exist, but it is not uncommon for meta-analyses to have high heterogeneity. In addition to high heterogeneity, our study was also limited by the publication bias. This occurs when the results of studies influence the decision of the author or publisher. Therefore, we recommend developing a database of HIV patients infected with Cryptosporidium to estimate the overall prevalence of cryptosporidiosis and the geographical and time distribution of infection more accurately.

Conclusion

The prolonged and severe diarrhea caused by Cryptosporidium is associated with significant morbidity and mortality, especially in the HIV-infected population. This highlights the importance of preventive measures such as drinking safe water, using community-based or household water treatment systems, and education on hand hygiene after using toilets and before preparing food. Additionally, clinicians should consider early symptoms of cryptosporidiosis, such as diarrhea, in HIV patients, with the aim of initiating treatment early in the disease course. Also, patients with a CD4 count below 200 should receive prophylactic antiparasite treatment. If implemented correctly, these measures could lead to decreased morbidity, mortality, and transmission.
Conflict of interest

Authors declare there is no conflict of interest.

Funding

This study was supported by the Research Center for Evidence Based Medicine (RCEBM), Tabriz University of Medical Sciences, Tabriz, Iran.

References

1. Adamu H, Petros B, Zhang G, Kassa H, Amer S, Ye J, Feng Y, Xiao L. 2014. Distribution and clinical manifestations of Cryptosporidium species and subtypes in HIV/AIDS patients in Ethiopia. PLOS Neglected Tropical Diseases, 8(4), e2831.

2. Adhikari NA, Rai SK, Singh A, Dahal S, Ghimire G. 2006. Intestinal parasitic infections among HIV seropositive and high risk group subjects for HIV infection in Nepal. Nepal Medical College journal, 8(3), 166–170.

3. Adjeti A, Larney M, Adiku T, Rodrigues O, Renner L, Sifah E, Mensah J, Akanmori B, Otchere J, Bentum B. 2003. Cryptosporidium oocysts in Ghanaian AIDS patients with diarrhea. East African Medical Journal, 80(7), 369–372.

4. Ahmed NH, Chowdhary A. 2015. Pattern of co-infection by enteric pathogenic parasites among HIV sero-positive individuals in a Tertiary Care Hospital, Mumbai, India. Indian Journal of Sexually Transmitted Diseases, 36(4), 40–47.

5. Ahmed NH, Chowdhary A. 2013. Comparison of different methods of detection of enteric pathogenic protozoa. Indian Journal of Medical Microbiology, 31(2), 154–160.

6. Ahmed NH, Chowdhary A. 2015. Pattern of co-infection by enteric pathogenic parasites among HIV sero-positive individuals in a Tertiary Care Hospital, Mumbai, India. Indian Journal of Sexually Transmitted Diseases, 36(4), 40–47.

7. Ahmed NH, Chowdhary A. 2013. Prevalence of intestinal parasites in relation to CD4 counts and anemia among HIV-infected patients in Benin City, Edo State, Nigeria. Tanzania Journal of Health Research, 13(1), 8–13.

8. Akinbo FO, Okada CE, Omoroghe R. 2011. Unusual Enterocytozoon bieneusi genotypes and Cryptosporidium hominis subtypes in HIV-infected patients on highly active antiretroviral therapy. American Journal of Tropical Medicine and Hygiene, 89(1), 157–161.

9. Alemu A, Shiferaw Y, Getnet G, Yalaw A, Addis Z. 2011. Opportunistic and other intestinal parasites among HIV/AIDS patients attending Gambi higher clinic in Bahar Dar city, North West Ethiopia. Asian Pacific Journal of Tropical Medicine, 4(8), 661–665.

10. Angal L, Mahmud R, Samin S, Yap NJ, Ngu R, Amir A, Ithoi I, Kamanzaman A, Lim YA. 2015. Determining intestinal parasitic infections (IPIs) in inmates from Kajang Prison, Selangor, Malaysia for improved prison management. BMC Infectious Diseases, 15, 467.

11. Arenas-Pinto A, Cerrad G, Ferrara G, Castro J, Bello M, Nunez L. 2003. Association between parasitic intestinal infections and acute or chronic diarrhea in HIV-infected patients in Caracas, Venezuela. International journal of STD & AIDS, 14(7), 487–492.

12. Assifa S, Erko B, Medhin G, Assifa Z, Shimelis T. 2009. Intestinal parasitic infections in relation to HIV/AIDS status, diarrhea and CD4 T-cell count. BMC Infectious Diseases, 9, 155.

13. Asma I, Sim BL, Brent RD, Johari S, Yvonne Lim AL. 2015. Molecular epidemiology of Cryptosporidium in HIV/AIDS patients in Malaysia. Tropical Biomedicine, 32(2), 310–322.

14. Assefa S, Erko B, Medhin G, Assefa Z, Shimelis T. 2009. Intestinal parasitic infections in relation to HIV/AIDS status, diarrhea and CD4 T-cell count. BMC Infectious Diseases, 9, 155.

15. Assefa S, Erko B, Medhin G, Assefa Z, Shimelis T. 2009. Intestinal parasitic infections in relation to HIV/AIDS status, diarrhea and CD4 T-cell count. BMC Infectious Diseases, 9, 155.

16. Ayinmode AB, Zhang H, Dada-Adebola HO, Xiao L. 2014. Cryptosporidium hominis subtypes and Enterocytozoon bieneusi genotypes in HIV-infected persons in Ibidan, Nigeria. Zoonoses and Public Health, 61(4), 297–303.

17. Bachur TP, Vale JM, Coelho IC, Queiroz TR, Chaves Cde S. 2008. Enteric parasitic infections in HIV/AIDS patients before and after the highly active antiretroviral therapy. Brazilian Journal of Infectious Diseases, 12(2), 115–122.

18. Bartelt LA, Sevilleja JE, Barrett JJ, Warren CA, Guerrant RL, Bessong PO, Dillingham R, Samie A. 2013. High anti-Cryptosporidium parvum IgG seroprevalence in HIV-infected adults in Limpopo, South Africa. American Journal of Tropical Medicine and Hygiene, 89(3), 531–534.

19. Bartelt LA, Sevilleja JE, Barrett JJ, Warren CA, Guerrant RL, Bessong PO, Dillingham R, Samie A. 2013. High anti-Cryptosporidium parvum IgG seroprevalence in HIV-infected adults in Limpopo, South Africa. American Journal of Tropical Medicine and Hygiene, 89(3), 531–534.

20. Bartelt LA, Sevilleja JE, Barrett JJ, Warren CA, Guerrant RL, Bessong PO, Dillingham R, Samie A. 2013. High anti-Cryptosporidium parvum IgG seroprevalence in HIV-infected adults in Limpopo, South Africa. American Journal of Tropical Medicine and Hygiene, 89(3), 531–534.

21. Bartelt LA, Sevilleja JE, Barrett JJ, Warren CA, Guerrant RL, Bessong PO, Dillingham R, Samie A. 2013. High anti-Cryptosporidium parvum IgG seroprevalence in HIV-infected adults in Limpopo, South Africa. American Journal of Tropical Medicine and Hygiene, 89(3), 531–534.

22. Bartelt LA, Sevilleja JE, Barrett JJ, Warren CA, Guerrant RL, Bessong PO, Dillingham R, Samie A. 2013. High anti-Cryptosporidium parvum IgG seroprevalence in HIV-infected adults in Limpopo, South Africa. American Journal of Tropical Medicine and Hygiene, 89(3), 531–534.

23. Bartelt LA, Sevilleja JE, Barrett JJ, Warren CA, Guerrant RL, Bessong PO, Dillingham R, Samie A. 2013. High anti-Cryptosporidium parvum IgG seroprevalence in HIV-infected adults in Limpopo, South Africa. American Journal of Tropical Medicine and Hygiene, 89(3), 531–534.

24. Bartelt LA, Sevilleja JE, Barrett JJ, Warren CA, Guerrant RL, Bessong PO, Dillingham R, Samie A. 2013. High anti-Cryptosporidium parvum IgG seroprevalence in HIV-infected adults in Limpopo, South Africa. American Journal of Tropical Medicine and Hygiene, 89(3), 531–534.

25. Bartelt LA, Sevilleja JE, Barrett JJ, Warren CA, Guerrant RL, Bessong PO, Dillingham R, Samie A. 2013. High anti-Cryptosporidium parvum IgG seroprevalence in HIV-infected adults in Limpopo, South Africa. American Journal of Tropical Medicine and Hygiene, 89(3), 531–534.

26. Bartelt LA, Sevilleja JE, Barrett JJ, Warren CA, Guerrant RL, Bessong PO, Dillingham R, Samie A. 2013. High anti-Cryptosporidium parvum IgG seroprevalence in HIV-infected adults in Limpopo, South Africa. American Journal of Tropical Medicine and Hygiene, 89(3), 531–534.

27. Bartelt LA, Sevilleja JE, Barrett JJ, Warren CA, Guerrant RL, Bessong PO, Dillingham R, Samie A. 2013. High anti-Cryptosporidium parvum IgG seroprevalence in HIV-infected adults in Limpopo, South Africa. American Journal of Tropical Medicine and Hygiene, 89(3), 531–534.

28. Bartelt LA, Sevilleja JE, Barrett JJ, Warren CA, Guerrant RL, Bessong PO, Dillingham R, Samie A. 2013. High anti-Cryptosporidium parvum IgG seroprevalence in HIV-infected adults in Limpopo, South Africa. American Journal of Tropical Medicine and Hygiene, 89(3), 531–534.

29. Bartelt LA, Sevilleja JE, Barrett JJ, Warren CA, Guerrant RL, Bessong PO, Dillingham R, Samie A. 2013. High anti-Cryptosporidium parvum IgG seroprevalence in HIV-infected adults in Limpopo, South Africa. American Journal of Tropical Medicine and Hygiene, 89(3), 531–534.

30. Bartelt LA, Sevilleja JE, Barrett JJ, Warren CA, Guerrant RL, Bessong PO, Dillingham R, Samie A. 2013. High anti-Cryptosporidium parvum IgG seroprevalence in HIV-infected adults in Limpopo, South Africa. American Journal of Tropical Medicine and Hygiene, 89(3), 531–534.
14. E. Ahmadpour et al.: Parasite 2020, 27, 27

L. Huston CD, Kotloff KL, Kang G, Mead JR, Miller M, Petri WA, Priest JW, Roos DS, Strepen B, Thompson RCA, Ward HD, Van Voorhis WA, Xiao L, Zhu G, Houpt ER. 2015. A review of the global burden, novel diagnostics, therapeutics, and vaccine targets for cryptosporidiosis. Lancet Infectious Diseases, 15(1), 85–94.

29. Chen X-M, Keithly JS, Paya CV, LaRusso NF. 2002. Cryptosporidiosis. New England Journal of Medicine, 346 (22), 1723–1731.

38. Dehkordy AB, Rajabi M, Arabi E, Ebrahimi H, Yousefi A, Soltani S, Baratian J. 2018. Prevalence of intestinal parasites in HIV/AIDS patients on HAART in Bushehr, Iran. Journal of International Medical Research, 46(7), 2552–2560.

47. Gautam H, Bhalla P, Saini S, Upal B, Kaur R, Baveja CP, Dewan R. 2009. Epidemiology of opportunistic infections and its correlation with CD4 T-lymphocyte counts and plasma viral load among HIV-positive patients at a tertiary care hospital in India. Journal of the International Association of Physicians in AIDS Care, 8(6), 333–337.

56. Gupta S, Narang S, Nunavath V, Singh S. 2008. Chronic diarrhea in HIV patients: prevalence of coccidian parasites. Indian Journal of Medical Microbiology, 26(2), 172–175.

65. Gualberto FA, Heller L. 2006. Endemic strongyloides stercolaris infections among people with and without HIV infection and efficiency of diagnostic methods for Strongyloides in Yuzgdem Hospital, southern Ethiopia. BMC Research Notes, 3, 90.

74. Ghafari R, Rajabi A, Tavalla M, Moradi Choghakabodi P, Nashibi R, Rajabi R. 2018. Prevalence of Cryptosporidium species isolated from HIV/AIDS patients in southwest of Iran. Comparative Immunology, Microbiology & Infectious Diseases, 56, 39–44.

83. Gholami R, Gholami S, Emadi-Kouchak H, Abdollahi A, Shahiriari M. 2016. Clinical Characteristic of the HIV/AIDS patients with cryptosporidiosis referring to Behavioral Diseases Consultation Center, Imam Khomeini Hospital, Tehran in 2013. Iranian Journal of Pathology, 11(1), 27–34.

91. Girma M, Teshome W, Petros B, Endeshaw T. 2014. Cryptosporidiosis and Isosporiasis among HIV-positive individuals in south Ethiopia: a cross sectional study. BMC Infectious Diseases, 14, 100.

100. Gualberto FA, Heller L. 2006. Endemic Cryptosporidium infection and drinking water source: a systematic review and meta-analyses. Water Science and Technology, 54(3), 231–238.

109. Guo SM, Seo M, Park YK, Oh MD, Choe KW, Kim JL, Choi MH, Hong ST, Choi JY. 2005. Parasitic infections in HIV-infected patients who visited Seoul National University Hospital during the period 1995–2003. Korean Journal of Parasitology, 43(1), 1–5.

118. Gupta K, Bala M, Deb M, Muralidhar S, Sharma DK. 2013. Prevalence of intestinal parasitic infections in HIV-infected individuals and their relationship with immune status. Indian Journal of Medical Microbiology, 31(2), 161–165.

127. Gupta S, Narang S, Nunavath V, Singh S. 2008. Chronic diarrhea in HIV patients: prevalence of coccidian parasites. Indian Journal of Medical Microbiology, 26(2), 172–175.
85. Lebbad M, Norrgren H, Nauclé A, Dias F, Andersson S, Linder E. 2001. Intestinal parasites in HIV-2 associated AIDS cases with Chronic diarrhoea in Guinea-Bissau. Acta Tropic, 80(1), 45–49.

86. Lehman LG, Kangam L, Mbennoul ML, Zemo Nguepi E, Essomba N, Tonga C, Bilong Bilong CF. 2013. Intestinal parasitic and candida infection associated with HIV infection in Cameroon. Journal of Infection in Developing Countries, 7(2), 137–143.

87. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, Clarke M, Devereaux PJ, Kleijnen J, Moher D. 2009. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. PLOS Medicine, 6(7), e1000100.

88. Lim YA, Iqbal A, Surin J, Sim BL, Jex AR, Nolan MJ, Smith HV, Gasser RB. 2011. First genetic classification of Cryptosporidium and Giardia from HIV/AIDS patients in Malaysia. Infection, Genetics and Evolution, 11(5), 968–974.

89. Lim YA, Rohela M, Sim BL, Jamaiah I, Nurbayah M. 2005. Prevalence of cryptosporidiosis in HIV-infected patients in Kajang Hospital, Selangor, Southeast Asian Journal of Tropical Medicine and Public Health, 36(Suppl 4), 30–33.

90. Lule JR, Mermin J, Awor A, Hughes P, Kigozi A, Wafula W, Nakanjako D, Kahrurza F, Downing R, Quick R. 2009. Aetiology of diarrhoea among persons with HIV and their family members in rural Uganda: a community-based study. East African Medical Journal, 86(9), 422–429.

91. Marques FR, Cardoso LV, Cavasini CE, Almeida MC, Bassi NA, Almeida MT, Rossit AR, Machado RL. 2005. Performance of an immunoenzymatic assay for Cryptosporidium diagnosis of fecal samples. Brazilian Journal of Infectious Diseases, 9(1), 3–5.

92. Masarat S, Ahmad F, Chisti M, Hamid S, Sofi BA. 2012. Prevalence of Cryptosporidium species among HIV positive asymptomatic and symptomatic immigrant population in Kashmir, India. Iranian Journal of Microbiology, 4(1), 35–39.

93. Mathur MK, Verma AK, Makwana GE, Sinha M. 2013. Study of opportunistic intestinal parasitic infections in human immunodeficiency virus/acquired immunodeficiency syndrome patients. Journal of Global Infectious Diseases, 5(4), 164–167.

94. Mehta KD, Vacchani A, Mistry MM, Kavathia GU, Goswami E, Linder E. 2001. Intestinal parasites in HIV-2 associated AIDS patients in Addis Ababa, Ethiopia. PLoS One, 10(2), e0117715.

95. Missaye A, Dagnew M, Alemu M, Alemu A. 2013. Prevalence of intestinal parasites and associated risk factors among HIV/ AIDS patients with pre-ART and on-ART attending dessie hospital ART clinic, Northeast Ethiopia. AIDS Research and Therapy, 10(1), 7.

96. Mitra S, Mukherjee A, Khanra D, Bhowmik A, Roy K, Talukdar A. 2016. Enteric parasitic infection among antiretroviral therapy naive HIV-seropositive people: infection beget sex infection-experience from Eastern India. Journal of Global Infectious Diseases, 8(2), 82–86.

97. Moss PJ, Read RC, Kudesia G, McKenzie MW. 1995. Prolonged cryptosporidiosis during primary HIV infection. Journal of Infection, 30(1), 51–53.

98. Mohandas K, Sehgal R, Sud A, Malla N. 2002. Prevalence of intestinal parasitic pathogens in HIV-seropositive individuals in Northern India. Japanese journal of infectious diseases, 55(3), 83–84.

99. Mohanty I, Panda P, Sahu S, Dash M, Narasimham MV, Padhi S, Parida B. 2013. Prevalence of isosporiasis in relation to CD4 cell counts among HIV-infected patients with diarrhea in Odisha, India. Advanced Biomedical Research, 2, 61.

100. Monkmuller KE, Wilcox CM. 2000. Investigation of diarrhea in AIDS. Canadian Journal of Gastroenterology and Hepatology, 14(11), 933–940.

101. Navarro-i-Martinez L, da Silva AJ, Botero Garces JH, Montoya Palacio MN, del Aguila C, Bornay-Linares FJ. 2006. Cryptosporidiosis in HIV-positive patients from Medellin, Colombia. Journal of Eukaryotic Microbiology, 53(Suppl 1), S37–S39.

102. Navin TR, Jurukek DD. 1984. Cryptosporidiosis: clinical, epidemiologic, and parasitologic review. Reviews of Infectious Diseases, 6(3), 313–327.

103. Navin TR, Weber R, Vugia DJ, Rimland D, Roberts JM, Addiss DG, Visvesvara GS, Wahqlquist SP, Hogan SE, Gallagher LE, Jurukerek DD, Schwartz DA, Wilcox CM, Stewart JM, Thompson SE 3rd, Bryan RT. 1999. Declining CD4+ T-lymphocyte counts are associated with increased risk of enteric parasitosis and chronic diarrhea: results of a 3- year longitudinal study. Journal of Acquired Immune Deficiency Syndromes and Human Retrovirology, 20(2), 154–159.

104. Netor Velasquez J, Marta E, Alicia di Risio C, Etchart C, Gancedo E, Victor Chertoff A, Bruno Malandrinji J, German Astudillo O, Carnevale S. 2012. Molecular identification of protozoa causing AIDS-associated cholangiopathy in Buenos Aires, Argentina. Acta Gastroenterologica Latinoamericana, 42(4), 301–308.

105. Nsagha DS, Njunda AL, Assob NJC, Ayima CW, Tanue EA, Kibu OD, Kvente TE. 2016. Intestinal parasitic infections in relation to CD4(+) T cell counts and diarrhea in HIV/AIDS patients with or without antiretroviral therapy in Cameroon. BMC Infectious Diseases, 16, 9.

106. Nuchjangreed C, Boonrod K, Ongerth J, Karanis P. 2008. Prevalence and molecular characterization of human and bovine Cryptosporidium isolates in Thailand. Parasitology Research, 103(6), 1347–1353.

107. Obateru OA, Bojuwoye BJ, Olokoba AB, Fadeyi A, Fowotade OA, Kibu OD, Kvente TE. 2006. Cryptosporidiosis in HIV-seropositive patients from Ilorin, Nigeria. Malaysian Journal of Medical Sciences, 13(1), 68–73.

108. Oguntibeju OO. 2006. Prevalence of intestinal parasites in HIV-positive/AIDS patients. Malaysian Journal of Medical Sciences, 13(1), 68–73.

109. Ojioro OT, Duan L, Ziefer F, Fenoy SM, Oyibo WA, Del Aguila C, Ashafa AO, Feng Y, Xiao L. 2016. Genotypes of Cryptosporidium spp. and Enterocytozoon bieneusi in human immunodeficiency virus-infected patients in Lagos, Nigeria. Journal of Eukaryotic Microbiology, 63(4), 414–418.

110. Ojioro OT, Izquierdo F, Fenoy S, Fogbenro-Beyioku A, Oyibo W, Akannuu A, Oduukwe N, Henriquez-Gil N, del Aguila C. 2012. Identification and characterization of microsporidia from fecal samples of HIV-positive patients from Lagos, Nigeria. PLoS One, 7(4), e35259.

111. Ojioro Oj, Rahi OA, Akindele AA, Karzem ML, Adefiyoe OA, Adeyeba AO. 2011. Cryptosporidium and other enteric parasitic infections in HIV-seropositive individuals with and without diarrhea in Osogbo, Nigeria. British Journal of Biomedical Science, 68(2), 75–78.
113. Omoruyi BE, Nwoodo UU, Udem CS, Okonkwo FO. 2014. Comparative diagnostic techniques for Cryptosporidium infection. Molecules, 19(2), 2674–2683.

114. Oyedeji OA, Adejuwugbe E, Oninla SO, Akindele AA, Adedokun SA, Agelebe E. 2015. Intestinal parasitoses in HIV infected children in a Nigerian tertiary hospital. Journal of Clinical and Diagnostic Research, 9(11), Sc01-5.

115. Paboriboune P, Phoumindr N, Borel E, Sourinphoumy K, Phaxayasing S, Luangkhot E, Sengphilom B, Vansilalom Y, Odermatt P, Delaporte E, Etard JF, Rabodonirina M. 2014. Intestinal parasitic infections in HIV-infected patients, Lao People’s Democratic Republic. PLoS One, 9(3), e91452.

116. Pantenburg B, Dann SM, Wang H-C, Robinson P, Castellanos-Gonzalez A, Lewis DE, White AC. 2008. Intestinal immune response to human Cryptosporidium sp. infection. Infection and Immunity, 76(1), 23–29.

117. Parghi E, Dash L, Shastri J. 2014. Evaluation of different modifications of acid-fast staining techniques and stool enzyme-linked immunosorbent assay in detecting fecal Cryptosporidium in diarrheic HIV seropositive and seronegative patients. Tropical Parasitology, 4(2), 99–104.

118. Patel SD, Kinariwala DM, Javadekar TB. 2011. Clinico-microbiological study of opportunistic infection in HIV seropositive patients. Indian Journal of Sexually Transmitted Diseases and AIDS, 32(2), 90–93.

119. Pavie J, Menotti J, Porcher R, Donay JL, Gallien S, Sarfati C, Derouin F, Molina JM. 2012. Prevalence of opportunistic intestinal parasitic infections among HIV-infected patients with low CD4 cells counts in France in the combination antiretroviral therapy era. International Journal of Infectious Diseases, 16(9), e677–e679.

120. Pavlinac PB, John-Stewart GC, Nwodo UU, Udem CS, Okonkwo FO. 2014. Cryptosporidiosis occurrence in HIV+ patients attended in a hospital, Brazil. Revista de Saúde Pública, 38(3), S375–S379.

121. Petrincova A, Valencakova A, Luptakova L, Ondriska F, Pavlinac PB, John-Stewart GC, Naulikha JM, Onchiri FM, Pavlie J, Menotti J, Porcher R, Donay JL, Gallien S, Sarfati C, Pavie J, Menotti J, Porcher R, Donay JL, Gallien S, Sarfati C, Derouin F, Molina JM. 2012. Prevalence of opportunistic intestinal parasitic infections among HIV-infected patients, Lao People’s Democratic Republic. PLoS ONE, 9(3), e91452.

122. Pabonboune P, Phoumindr N, Borel E, Sourinphoumy K, Phaxayasing S, Luangkhot E, Sengphilom B, Vansilalom Y, Odermatt P, Delaporte E, Etard JF, Rabodonirina M. 2014. Intestinal parasitic infections in HIV-infected patients, Lao People’s Democratic Republic. PLoS One, 9(3), e91452.

123. Raccurt CP, Fouche B, Agnamey P, Menotti J, Chouaki T, Likanonsakul S, Wiwanitkit V, Nasingkar A, Demasea N. 2002. A prevalence of Cryptosporidium infections among Thai HIV-infected patients. Journal of the Medical Association of Thailand = Chotmaihet thaphaeg, 85, S424–S428.

124. Raccurt CP, Fouche B, Agnamey P, Menotti J, Chouaki T, Likanonsakul S, Wiwanitkit V, Nasingkar A, Demasea N. 2002. A prevalence of Cryptosporidium infections among Thai HIV-infected patients. Journal of the Medical Association of Thailand = Chotmaihet thaphaeg, 85, S424–S428.

125. Rajendran R, Thirumalaikolundusubramanian P. 2007. Prevalence of opportunistic and non-opportunistic intestinal parasites and liver flukes in children with acute diarrhoea. AIDS, 28(15), 2287–2296.

126. Roka M, Goni P, Rubio E, Clavel A. 2012. Prevalence of intestinal parasites in HIV-positive patients on the island of Bioko, Equatorial Guinea: its relation to sanitary conditions and socioeconomic factors. Science of the Total Environment, 432, 404–411.

127. Rossit AR, de Almeida MT, Nogueira CA, da Costa Oliveira JG, Barbosa DM, Moscardini AC, Mascarenhas JD, Gabbay YB, Marques FR, Cardoso LV, Cavasini CE, Machado RL. 2007. Bacterial, yeast, parasitic, and viral enteropathogens in HIV-infected children from Sao Paulo State, Southeastern Brazil. Diagnostic Microbiology and Infectious Disease, 57(1), 59–66.

128. Sadraei J, Rizvi MA, Baveja UK. 2005. Diarrhea, CD4+ cell counts and opportunistic protozoa in Indian HIV-infected patients. Parasitology Research, 97(4), 270–273.

129. Salehi Sangani G, Mirjalali H, Farnia S, Rezaeinian M. 2016. Prevalence of intestinal coxsackial infections among different groups of immunocompromised patients. Iranian Journal of Parasitology, 11(3), 332–338.

130. Sarfati C, Bourgeois A, Menotti J, Liegeois F, Moyou-Somo S, Mbat P, Bessong PO. 2014. Parasitic infection among HIV/AIDS patients at Bela-Bela clinic, Limpopo province, South Africa with special reference to Cryptosporidium. Southeast Asian Journal of Tropical Medicine and Public Health, 45(4), 783–795.

131. Sanchez JM. 2016. An exercise in sampling: The effect of sample size and number of samples on sampling error. World Journal of Chemical Education, 4(2), 45–48.

132. Santos RB, Fonseca LE Jr, Santana AT, Silva CA, Guedes JC. 2011. Clinical, endoscopic and histopathological profiles of parasitic duodenitis cases diagnosed by upper digestive endoscopy. Arquivos de Gastroenterologia, 48(4), 225–230.

133. Sarfati C, Bourgeois A, Menotti J, Liegeois F, Moyou-Somo R, Delaporte E, Derouin F, Ngole EM, Molina JM. 2006. Prevalence of intestinal parasites including microsporidia in human immunodeficiency virus-infected adults in Cameroon: a cross-sectional study. American Journal of Tropical Medicine and Hygiene, 74(1), 162–164.

134. Shah S, Kongre V, Kumar V, Bharadwaj R. 2016. A study of parasitic and bacterial pathogens associated with diarrhea in HIV-positive patients. Cureus, 8(9), e807.

135. Sharma P, Sharma A, Sehgal R, Mallia N, Khurana S. 2013. Genetic diversity of Cryptosporidium isolates from patients in North India. International Journal of Infectious Diseases, 17 (8), e601–e605.

136. Shenoy S, Baliga S, Kurnvilla T, Prashanth H, Dominic RS. 2003. Opportunistic intestinal parasitic infections in human immunodeficiency virus infected patients in Mangalore, South India. Tropical Doctor, 33(4), 250.

137. Shimelis T, Tadesse E. 2014. Performance evaluation of point-of-care test for detection of Cryptosporidium stool antigen in children and HIV infected adults. Parasites & Vectors, 7, 227.

138. Shimelis T, Tassachew Y, Lambiyo T. 2016. Cryptosporidium and other intestinal parasitic infections among HIV patients in southern Ethiopia: significance of improved HIV-related care. Parasites & Vectors, 9(1), 270.

139. Silva CV, Ferreira MS, Borges AS, Costa-Cruz JM. 2005. Intestinal parasitic infections in HIV/AIDS patients: experience at a teaching hospital in central Brazil. Scandinavian Journal of Infectious Diseases, 37(3), 211–215.
142. Silva CV, Ferreira MS, Gonçalves-Pires MdRd, Costa-Cruz JM. 2003. Detection of Cryptosporidium-specific coproantigen in human immunodeficiency virus/acquired immunodeficiency syndrome patients by using a commercially available immunoenzymatic assay. Memórias do Instituto Oswaldo Cruz, 98(8), 1097–1099.

143. Singh A, Bairy I, Shivananda P. 2003. Spectrum of opportunistic infections in AIDS cases. Indian Journal of Medical Sciences, 57(1), 16–21.

144. Sriruphanunt M, Saksirisampant W, Karanis P. 2011. Prevalence and genotyping of Cryptosporidium isolated from HIV/AIDS patients in urban areas of Thailand. Annals of Tropical Medicine & Parasitology, 105(6), 463–468.

145. Stark D, Fotedar R, van Hal S, Beebe N, Marriott D, Ellis JT, Harkness J. 2007. Prevalence of enteric protozoa in human immunodeficiency virus (HIV)-positive and HIV-negative men who have sex with men from Sydney, Australia. American Journal of Tropical Medicine and Hygiene, 76(3), 549–552.

146. Stensvold CR, Nielsen SD, Badsberg JH, Engberg J, Friis-Moller N, Nielsen SS, Nielsen HV, Friis-Moller A. 2011. The prevalence and clinical significance of intestinal parasites in HIV-infected patients in Denmark. Scandinavian Journal of Infectious Diseases, 43(2), 129–135.

147. Swathiiran CR, Vineeth R, Pradeep A, Solomon SS, Solomon S, Balakrishnan P. 2017. Occurrence of enteric parasitic infections among HIV-infected individuals and its relation to CD4 T-cell counts with a special emphasis on coccidian parasites at a tertiary care centre in South India. Indian Journal of Medical Microbiology, 35(1), 37–40.

148. Tadesse A, Kassu A. 2005. Intestinal parasite isolates in AIDS patients with chronic diarrhea in Gondar Teaching Hospital, North west Ethiopia. Ethiopian Medical Journal, 43(2), 93–96.

149. Taherkhani H, Fallah M, Jadihian K, Vaziri S. 2007. A study on the prevalence of Cryptosporidium in HIV positive patients. Journal of Research in Health Sciences, 7(2), 20–24.

150. Taye B, Desta K, Eijigu S, Dori GU. 2014. The magnitude and risk factors of intestinal parasitic infection in relation to Human Immunodeficiency Virus infection and immune status, at ALERT Hospital, Addis Ababa, Ethiopia. Parasitology International, 63(3), 550–556.

151. Teklemariam Z, Abate D, Mitiku H, Dessie Y. 2013. Prevalence of intestinal parasitic infection among HIV positive persons who are naive and on antiretroviral treatment in Jimma Fana specialized University Hospital, Eastern Ethiopia. International Scholarly Research Notices, 2013, 324329.

152. Tellekve MG, Moyo SJ, Blomberg B, Hjollo T, Maselle SY, Langeland N, Hanevik K. 2015. Prevalence of Cryptosporidium parvum/dominis, Entamoeba histolytica and Giardia lamblia among young children with and without diarrhea in Dar es Salaam, Tanzania. PLOS Neglected Tropical Diseases, 9(10), e0004125.

153. Tian LG, Chen JX, Wang TP, Cheng GJ, Steinnmann P, Wang FF, Cai YC, Yin XM, Guo J, Zhou L, Zhou XN. 2012. Co-infection of HIV and intestinal parasites in urban areas of China: an immunological profile. Infectious Diseases of Poverty, 2(1), 18.

154. Tiwari BR, Ghimire P, Mallia S, Sharma B, Karki S. 2013. Intestinal parasitic infection among the HIV-infected patients in Nepal. Journal of Infection in Developing Countries, 7(7), 550–555.

155. Tuli L, Gulati AK, Sundar S, Mohapatra TM. 2008. Correlation between CD4 counts of HIV patients and enteric protozoan in different seasons – an experience of a tertiary care hospital in Varanasi (India). BMC Gastroenterology, 8, 36.

156. Tuli L, Singh DK, Gulati AK, Sundar S, Mohapatra TM. 2010. A multivariate utility evaluation of different methods for the detection of enteric protozoa causing diarrhea in AIDS patients. BMC Microbiology, 10, 11.

157. Tumwine JK, Kekitiinwa A, Bakeera-Kitaka S, Ndegezi G, Downing R, Feng X, Akiyoshi DE, Tzipori S. 2005. Cryptosporidiosis and microsporidiosis in Ugandan children with persistent diarrhea with and without concurrent infection with the human immunodeficiency virus. American Journal of Tropical Medicine and Hygiene, 73(5), 921–925.

158. Ukub WH, Ezozou JM, Ezozou CT, Roellig D, Xiao L. 2017. Cryptosporidium species and subtypes in diarrheal children and HIV-infected persons in Ebonyi and Nsukka, Nigeria. Journal of Infection in Developing Countries, 11(2), 173–179.

159. UNAIDS. 2017. Fact sheet - Latest global and regional statistics on the status of the AIDS epidemic. [cited 2018, 28 June]; Available from: http://www.unaids.org/sites/default/files/media_asset/UNAIDS_FactSheet_en.pdf.

160. Uppal B, Kashyap B, Bhalla P. 2009. Enteric pathogens in HIV/AIDS from a tertiary care hospital. Indian Journal of Community Medicine, 34(3), 237–242.

161. Uppal B, Singh O, Chadha S, Jha AK. 2014. A comparison of nested PCR assay with conventional techniques for diagnosis of intestinal cryptosporidiosis in AIDS cases from Northern India. Journal of Parasitology Research, 2014, 706105.

162. Uysal HK, Adas GT, Atalik C, Altipparmak S, Akgul O, Saribas S, Gurcan M, Yuksel P, Yildirmak T, Kocazeybek B, Ziver T, Oner YA. 2017. The prevalence of Cyclospora cayetanensis and Cryptosporidium spp. in Turkish patients infected with HIV-1. Acta Parasitologica, 62(3), 557–564.

163. Vignesh R, Balakrishnan P, Shankar EM, Murugavel KG, Hansa S, Cecelia AJ, Thayagarajan SP, Solomon S, Kumar-asamy N. 2007. High proportion of isosporiasis among HIV-infected patients with diarrhea in southern India. American Journal of Tropical Medicine and Hygiene, 77(5), 823–824.

164. Vouking MZ, Enoka P, Tamo CV, Tadenfok CN. 2014. Prevalence of intestinal parasites among HIV patients at the Yaounde Central Hospital. Cameroon. Pan African Medical Journal, 18, 136.

165. Vyas N, Pathan N, Aziz A. 2012. Enteric pathogens in HIV-positive patients with diarrhea and their correlation with CD4+ T-lymphocyte counts. Tropical Parasitology, 2(1), 29–34.

166. Vyas N, Sood S, Sharma B, Kumar M. 2013. The prevalence of intestinal parasitic infection and the related profile of the CD4 (+) counts in HIV/AIDS people with diarrhoea in Jaipur City. Journal of Clinical and Diagnostic Research, 7(3), 454–456.

167. Wanachiwanawin D, Chokephaibulkit K, Lertlauit P, Ongrotchakanun J, Chinabut P, Thakerngpol K. 2002. Intestinal microsporidiosis in HIV-infected children with diarrhea. Southeast Asian Journal of Tropical Medicine and Public Health, 33(2), 241–248.

168. Wong L, Zhang H, Zhao X, Zhang L, Zhang G, Guo M, Liu L, Feng Y, Xiao L. 2013. Zoonotic Cryptosporidium species and Enterocytozoon bieneusi genotypes in HIV-positive patients on antiretroviral therapy. Journal of Clinical Microbiology, 51(2), 557–563.

169. Yang Z-D, Liu Q, Liu H-H, Li S, Zhang L, Zhao Y-K, Zhu X-Q. 2018. Prevalence of Cryptosporidium, microsporidia and Isospora infection in HIV-infected people: a global systematic review and meta-analysis. Parasites & vectors, 11(1), 28.

170. Wanyiri JW, Kanji H, Maina S, Wang DE, Steen A, Ngugi P, Kamau T, Waithera T, O’Connor R, Gachuhi K, Wamae CN,
Mwamburi M, Ward HD. 2014. Cryptosporidiosis in HIV/AIDS patients in Kenya: clinical features, epidemiology, molecular characterization and antibody responses. American Journal of Tropical Medicine and Hygiene, 91(2), 319–328.

Weitzel T, Dittrich S, Möhl I, Adusu E, Jelinek T. 2006. Evaluation of seven commercial antigen detection tests for *Giardia* and *Cryptosporidium* in stool samples. Clinical Microbiology and Infection, 12(7), 656–659.

Werneck-Silva AL, Prado IB. 2009. Gastroduodenal opportunistic infections in HIV-infected patients with different immunity status. BMC Gastroenterology, 1(1), 3.

World Bank. World Bank Country and Lending Groups. 2017 [cited 2018/28/6]; Available from: https://datahelpdesk.worldbank.org/knowledgebase/articles/906519.

World Health Organization. 2003. List of Member States by WHO region and mortality stratum. World Health Report, 2003, 182.

Wumba RD, Zanga J, Mbanzulu KM, Mandina MN, Kahindo AK, Aloni MN, Ekila MB. 2015. *Cryptosporidium* identification in HIV-infected humans. Experience from Kinshasa, the Democratic Republic of Congo. Acta Parasitologica, 60(4), 638–644.

Xiao L. 2010. Molecular epidemiology of cryptosporidiosis: an update. Experimental parasitology, 124(1), 80–89.

Xiao L, Cama VA. 2018. *Cryptosporidium* and cryptosporidiosis, in Foodborne parasites. Springer. p. 73–117.

Yang Y, Zhou Y, Cheng W, Pan X, Xiao P, Shi Y, Gao J, Song X, Chen Y, Jiang Q. 2017. Prevalence and determinants of *Cryptosporidium* infection in an underdeveloped rural region of Southwestern China. American Journal of Tropical Medicine and Hygiene, 96(3), 595–601.

Yang Y, Zhou Y, Xiao P, Shi Y, Chen Y, Liang S, Yihuo WL, Song XX, Jiang QW. 2017. Prevalence of and risk factors associated with *Cryptosporidium* infection in an underdeveloped rural community of southwest China. Infectious Diseases of Poverty, 6(1), 2.

Zaidah AR, Chan YY, Asma HS, Abdullah S, Nurhasindawati AR, Salleh M, Zeehaida M, Lalitha P, Mustafa M, Ravichandran M. 2008. Detection of *Cryptosporidium parvum* in HIV-infected patients in Malaysia using a molecular approach. Southeast Asian Journal of Tropical Medicine and Public Health, 39(3), 511–516.

Zali MR, Mehr AJ, Rezaian M, Meamar AR, Vaziri S, Mohraz M. 2004. Prevalence of intestinal parasitic pathogens among HIV-positive individuals in Iran. Japanese Journal of Infectious Diseases, 57(6), 268–270.

Zavvar M, Sadraei J, Emadi H, Pirestani M. 2008. The use of a nested PCR-RFLP technique, based on the parasite’s 18S ribosomal RNA, to characterise *Cryptosporidium* isolates from HIV/AIDS patients. Annals of Tropical Medicine & Parasitology, 102(7), 597–601.

Zeynudin A, Hemalatha K, Kannan S. 2013. Prevalence of opportunistic intestinal parasitic infection among HIV infected patients who are taking antiretroviral treatment at Jimma Health Center, Jimma, Ethiopia. European Review for Medical and Pharmacological Sciences, 17(4), 513–516.

Zhang L, Fu Y, Jing W, Xu Q, Zhao W, Feng M, Tachibana H, Sui G, Cheng X. 2015. Rapid microfluidic immunoassay for surveillance and diagnosis of *Cryptosporidium* infection in human immunodeficiency virus-infected patients. Biomicrofluidics, 9(2), 024114.

Cite this article as: Ahmadpour E, Safarpour H, Xiao L, Zarean M, Hatami-Nahavandi K, Barac A, Picot S, Rahimi MT, Rubino S, Mahami-Oskouei M, Spotin A, Nami S & Baghi HB. 2020. Cryptosporidiosis in HIV-positive patients and related risk factors: A systematic review and meta-analysis. Parasite 27, 27.