Synthesis and Numerical Analysis of Compliant devices – A Topology Optimization Approach for Mechanisms and Robotic Systems

Premanand Sathyanarayanamurthi
KUS Automotive India Private Ltd, Chennai

ARUNKUMAR GOPAL (✉ garun55@gmail.com)
Sathyabama Institute of Science and Technology, Chennai

Original Article

Keywords: Topology Optimization methods, Mass Reduction, Compliant Mechanism and Robotics Devices, Design Synthesis, Numerical Analysis

Posted Date: October 11th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-940149/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Synthesis and Numerical Analysis of Compliant devices – A Topology Optimization Approach for Mechanisms and Robotic Systems

1 S. Premanand and 2 G. Arunkumar

1 KUS Automotive India Private Ltd, Chennai – 602 106, Tamilnadu, India. Email: sunprem12384@gmail.com
2 Sathyabama Institute of Science and Technology, Chennai – 600 119, Tamilnadu, India. Email: garun55@gmail.com (Corresponding Author)

ABSTRACT

The Topology Optimization design invariably shall be used in various applications like Mechanism and Robotics designs, Aircraft Engineering designs and innovative systems for improving the efficiency of structure. The paper emphasizes more on general Topology Optimization design for a rectangular domain. The domain numerically analyzed with defined geometry setting and defined boundary conditions for finding the Stress and displacement. In this Topology Optimization Design synthesis, the result is suitable volume and mass reduction in the Mechanism and Robotics application parts which further can be taken for Prototype development in 3D printing and experimentally test with safety characteristics and compares Objective functions chosen for design and development. The design can be used for other various automotive and aerospace devices based on deformation level and application of external forces. The Final destination of this design and development ends with passing Fatigue Endurance test cycle test pass condition in Mechanism and Robotic functions in static and dynamic state.

KEYWORDS Topology Optimization methods, Mass Reduction, Compliant Mechanism and Robotics Devices, Design Synthesis, Numerical Analysis.

INTRODUCTION

In the Automotive and Mechanism and Robotics applications Parts, we normally design and adapt for Rigid body mechanisms to achieve greater Fatigue strength and Shelf Life. But Recent design of engineers thought process of reduction of excess mass in all constructive Mechanism and Robotics assembly parts to Improve vehicle efficiency without compromising the safety. In current trend the combinations and comparisons of various materials comes in to picture during design synthesis like Rigid bodies, Flexural devices, reinforce structures with combination of metals and non-metals, Realization of flexible components added in all Mechanism designs of Automotive and Mechanism and Robotics applications, minimizing the joints and links is challenging perspective in design synthesis for Assembly components. Elastoplastic behavior design (Figure 1.0) is chosen for mechanical motion parts design is trending mechanism for précised motions and Accuracy.

As per Shinji nishiwaki et al, Stiffness Structures with allowable deformation design gives better performance, hence they took Optimal compliance is taken as an Objective function [1].

The Kinematic synthesis design is successful in applications because it has combination of both Rigid body Mechanisms and Compliant mechanisms composed of flexible pivots through PRBD models developed by Kyler A. Tolman and Howell [2]
The General Compliant mechanism design involves mainly for mass minimization in Mechanism and Robotics vehicles to improve the vehicle performance. Topology Optimization methods adopted for various components or assembly in tedious shape with reduced parts combined to form as a single continuum part with low risk in design synthesis [5].

Compliance in joints of robot gripper will lead to accuracy in pick and place of objects. Compliance in grippers will reduce contact forces acting on it. Maximize the Stiffness by distributing material available on stress affecting zones is the Primary Objective Function of Topology Optimization. The Optimization techniques decide amount of material and where it gets distributed. Primary Goals to achieve through the Topology Optimization is Maximum stiffness with mass reduction and balance the goals to achieve Optimal solution in Parts design [4].

The Topology optimization and its constraints to develop the part in 3D printing technologies and various methods of constraining topology optimization to obtain superior part functionality with Optimum cost is the current expectations in Mechanism and Robotics Industry. Whereas production vehicles require their components to be less cost with production in large scales, The Car performance is rated through its fuel efficiency and in which the components lesser mass is directly proportionate to that car’s performance[5].

The Motivation for design of Compliant devices in Mechanism and Robotics parts continues from previous research and success on converting Compliant Centrifugal Clutches, Compliant tweels (Tyre and wheel), Compliant Mechanical Brakes and Bicycle, In Compliant Mechanisms designs the Continuum synthesis approach is used here for design of Distributed Compliant mechanism which is purely based on Topology Optimization for structures. In this method the errors are minimized to achieve Geometrical and Mechanical advantage. In this Optimality criteria is based on finding suitable criteria for specialized design conditions and developing iterative procedure to find optimum design. Also, Less Objective Function subjected to Constraints and Convergence is quick compared to Other Optimization methods [6,7].

In many situations the Reverse engineering process is carried out for Study of various Mechanism and Robotics parts for example the Car wiper parts are converted as an Optimized Compliant Wiper through Topology Optimization to get Optimum Compliant design. The final design enables a significant weight reduction 20% obtained. The weight reduction is associated with material economy, coupled with reduced energy consumption in the manufacturing stages, and as a secondary consequence, a significant reduction in fuel consumption of the car [8].

The mass of Engine bracket support topology is Optimally designed and which resulted in effective lowering the mass of engine bracket support of nearly 20% (1243gms→989gms) and NVH result of Natural frequency reduction of 10% (1024Hz→1122Hz), ultimately made the Passenger Comfort [9].

Compliant mechanism-based rotation pointing mechanism is designed with 2 (DOF). Compliance analysis finds the relationship between the applied load and deflection of the mechanism and has been the focus of many researchers [10].

The Motor cycle piston is taken for analysis to reduce the mass by Topology Optimization and Maximize the Stiffness by distributing material available on stress affecting zones is the Primary Objective and Function of Topology Optimization. Topology Optimization is Maximum stiffness with mass reduction and balance the goals to achieve Optimal solution in Parts design. SIMP (Solid Isotropic material with Penalization) is one of the methods to achieve the maximum stiffness with proper material distribution process in Material [11]. Elastoplastic behavior is chosen for mechanical motion parts design is trending mechanism for précised motions and accuracy. Polymers with high fatigue resistance material like Delrin for application requires many Loading cycles [12]. Normality in design involves the property of material which does not deform easily and avoid wear out in all conditions and there is a conflict between two attributes (Flexibility and Stiffness [14]. many of macro and micro-Manipulator design, Single Compliant crank design with Multiple degrees of freedom used in Pumps and Compressors applications parts are analyzed in FEA and design optimized to achieve compliance and accuracy in Manipulator’s displacement [15,16]. Kinetostatic behavior in should be taken into account of design of desired application in which the force on an elastic object causes specific displacement [17].
TOPOLOGY OPTIMIZATION OF RECTANGULAR DOMAIN

The Boundary conditions of a rectangular domain is as shown in Figure 2. Topology optimization can be implemented through the use of finite element methods for the analysis and optimization techniques based on following methods as follows.

Topology Generation - Stress and Material Distribution

The below figures show the topology generation of general domain taken for analysis which is slowly distributed after various Iterations (Figure 3), and final Topology optimized design shows optimum material distribution in blue zones and material voids in red zones (Figure 3).

Figure 3. Stress Distribution after Multiple Iterations

Figure 4. Final Stress Distribution Plot
Objective Functions:

Total elastic strain energy (J)	Mass Minimization	Output Displacement
27.682	50%	0.066m

Table 1 Objective functions

The above table elucidates the Increase in compliance and mass minimizations is achieved through increased strain energy in the rectangular domain (Table 1) the same procedure will be adopted and numerically analyzed in all three following Mechanism and Robotics components.

![Objective function Vs Iteration numbers](image)

Figure 5. Volume reduction vs Iterations

TOPOLOGY OPTIMIZATION DESIGN APPLICATION DEVICES

Based on General Topology Optimization procedure (Figure 1 to 4) the rectangular domain is optimized and Objective functions also achieved mainly the optimum strain energy with mass minimization (Table 1). Also the volume reduction is converged quickly in components within minimum Iterations (Figure 5).

The major mechanical properties required for the above application are, high in flexibility, strength, durability, fatigue resistance and excellent abrasion resistance hence three materials are chosen for its characteristic study and synthesis. Hence some of the Application parts like L-Seat Plate, Clutch Clamp support plates. Hence Objective Function the Mass minimization with Optimum compliance is considered for taken Mechanism and Robotics devices.

Case – 1: The Numerical Analysis on L-Seat Plate in both Steel and ABS Plastics to find the Objective function after Centric Load application in Domain and Topology Optimization.
The above pictorial images are 2D L-Plate with Solid and Topology Optimized Views, After Optimization we found the mass minimization around 60% from original mass (Table-2).

The Linear Displacement after center force application and corresponding stress and displacement (Figure 6) in both the Materials are analyzed based mass minimization condition (Table-2).

Figure 6. Topology Optimized Compliant L-Seat Plate (Mild Steel and ABS Plastics)

The below Tabulation shows the Objective Functions between Steel Optimized Plate and ABS Optimized Plate.

Description	Mild Steel	ABS Plastic
Size	L-40mm W-60mm H-40mm Thickness: 5 mm	L-40mm W-60mm H-40mm Thickness: 5 mm
Mass	Initial: 0.17 Kg After optimization : 0.071 kg	Initial:0.023 Kg After optimization : 0.009 kg
Displacement	X-Displacement - 0.008mm Y-Displacement – 0.07mm	X-Displacement - 0.75mm Y-Displacement – 8mm
Safety factor	1.75 min UL	0.17 UL
Stress	118 MPa (Max)	117 MPa (Max)

Table 2 Objective functions – Steel Plate vs ABS Plastic
The model design of above L – seat is from the domain of Rectangular domain and in which the solid material is Topology Optimized and voids as shown and stress distribution analyzed numerically in expansion mode (Figure 7).

Case – 2: The Numerical Analysis on Clutch Circular- Clamp Plate in both Steel and ABS Plastics to find the Objective function after Centric Load application in Domain and Topology Optimization (Fig-8)

![C-Clamp Plate - Solid](image1)

![C-Clamp Plate - Topology Optimized](image2)

Figure 8. Topology Optimized Mechanism and Robotics clamp plate Design

The above pictorial images are 2D C Clamp- Plate with Solid and Topology Optimized Views, After Optimization we found the mass minimization around 20% from original mass (Table-3).
The Linear Displacement after center force application and corresponding stress and displacement (Fig-8) in both the Materials are analyzed based mass minimization condition (Table-3)

![Image: Topology Optimized Compliant C-Clamp Plate (Mild Steel and ABS Plastics)]

Figure 9. Topology Optimized Compliant C-Clamp Plate (Mild Steel and ABS Plastics)

The below Tabulation shows the C-Clamp Plate Objective Functions between Optimized Steel and ABS Materials

Description	Mild Steel	ABS Plastic
Size	Diameter (Dia) 1 - 186mm Dia 2 - 126mm Thick-18mm Locating Dia : 44 mm	Dia 1 - 186mm Dia 2 - 126mm Thick-18mm Locating Dia : 44 mm
Mass	Initial: 2.45 Kg	Initial: 0.33 Kg
	After optimization: 1.96 kg	After optimization: 0.26 kg
Displacement	X-Displacement – 0.000049mm	X-Displacement - 0.0047mm
	Y-Displacement – 0.00032mm	Y-Displacement – 0.029mm
Safety factor	3 min UL	7.27 UL
Stress	2.32 MPa (Max)	2.2 MPa (Max)

Table 3 Objective functions – Steel Plate vs ABS Plastic
The model design of above C Clamp –Plate is from the domain of Circular domain and in which the solid material is Topology Optimized and voids as shown (Figure 9) and stress distribution analyzed numerically in expansion mode (Figure 10)

ROBOTIC GRIPPER DEVICES TOPOLOGY OPTIMIZATION:

The model design of above Gripper Device is from the domain of Trapezium domain and in which the solid material is Topology Optimized and voids as shown (Figure 11) and stress distribution analyzed numerically in expansion mode (Figure 12)
RESULT.

With reference to Figure 5 to 9 and Table 2 and 3 elucidates the three different cases.

Case- 0 Rectangular Domain flexure with maximum deflection where its application is suitable for Support Part in Air jets (Rotors, Disc), Dampers in Cushioning part in Shock absorbers’.

Case- 1 In this condition the L-Seat will deflect inner side due to flexural points in itself with respect to application of external force this can be used in Robotic Gripper applications

Case- 2 Based on specimen mass, reduction clamping clutch plates engagement and disengagement efficiency from clamping position and retain its normal position easily. This can be used in mass clamping and dynamic clutch engagement devices with lesser force applications.

Case- 3 Based on the above 2 cases the Robotic Magnetic Gripper application is Topology Optimized for Considerable volume reduction to handle easily and to achieve accuracy in Pick and Place functions.

All the 3 Cases will Increase the efficiency, Speed and accuracy of the Mechanisms and Robotic Functions by achieving the Considerable mass minimization with acceptable stress load.

DISCUSSION

Topology Optimization and synthesis for general domain and relative applications are analyzed in this paper and based on analysis the surplus volume and mass reduction and in turn efficiency improvement in Mechanism and Robotics devices is fairly possible, Analysis is helpful to Identify the high-stress areas in the compliant devices with various material characteristics to achieve less deformation without fatigue failure. Optimized shape and mechanical advantage of the product is achieved for desirable strength. The desirable volume and mass reduction [Refer Table 2.0] happens with penalization method and following of design synthesis the application parts to be 3D printed through Additive Manufacturing Technology for Compliant flexural Anchor, Compliant gripper and Clutch clamp plate, Further the materialized parts will be experimentally tested and compared with numerical analysis objective functions and relative performance test of characteristics for its stability and rigidity, This formulation and design of topology optimization balances both the compliance and stiffness requirements and withstand the applied Loads in these devices. Future works Numerical analysis comparison of component design with experimental parts testing and part performance under loads. Thus, optimization technology and analysis conducted to achieve desired objective functions without affecting safety.

ACKNOWLEDGEMENT

The author acknowledges the Researchers and people who contributed in the field of Topology Optimization for flexible and stiffness mechanisms for the enhancement of Mechanism and Robotics, Aerospace Engineering industry and society
REFERENCES

[1] Mary i. Fracker, Shinji Nish Iwaki, (1998), Topology Optimization of Compliant Mechanisms using the Homogenization method, international journal for numerical methods in Engineering. J. Numer. Meth. Engng. Vol 42, PP 535-559

[2] Ezekiel G. Merriam, Kyler A. Tolman, Larry L. Howell, (2016), Compliant constant-force linear-motion mechanism, Published by Elsevier Ltd, Mechanism and Machine Theory Vol 106, PP 68–79

[3] Ignazio Lo Presti, Sara Mantovania, etal. Influence of manufacturing constraints on the topology optimization of an Mechanism and Robotics dashboard, Published by Elsevier Ltd, 27th International Conference on Flexible Automation and Intelligent Manufacturing, FAIM2017, 27-30 June 2017, Modena, Italy, Procedia Manufacturing 11 (2017) PP 1700 – 1708

[4] Aaron M. Dollar, Robert D. Howe, A Robust Compliant Grasper via Shape Deposition Manufacturing, ASME transactions on mechatronics, vol. 11, no. 2, April 2006, Digital Object Identifier 10.1109/TMECH.2006.871090

[5] Ahmad Barari, Davin Jankovicv etal, Customization of Mechanism and Robotics Structural Components using Additive Manufacturing and Topology Optimization Published by Elsevier Ltd, IFAC Papers Online (2019) Vol 52-10 PP 212–217

[6] Arun Kumar. G, and Srinivasan. PSS (2006), “Design of Displacement Amplifying Compliant Mechanism with integrated Strain Actuator using Topology Optimization”, Proceedings of Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, SAGE Publications, London, UK. Vol.220, Issue 8, pp.1219-1228.

[7] Arun Kumar. G, and Santha kumar, J, (2012) “Design of Complaint Mechanism by Topology Optimization for Strain Actuators and Engineering Support”, International Review of Mechanical Engineering, ITALY, Vol.6, No.5,pp.979-987.

[8] Andrea Merullaa, Andrea Gatto etal, Weight reduction by topology optimization of an engine subframe mount, designed for additive manufacturing production, , Published by Elsevier Ltd ,11th International Conference on Materials Science & Engineering, BraMat 2019, Materials ,Today : Proceedings 19 (2019) PP 1014–1018.

[9] Enrico Armantani, Etal Jan2020 Design for NVH – Topology Optimization of Engine bracket support, Published by Elsevier Ltd, The 1st Mediterranean Conference on Fracture and Structural Integrity, MedFract1, Procedia Structural Integrity vol 26 (2020) PP 211–218.

[10] ABID M et al. Conceptual design, modeling and compliance characterization of a novel 2-DOF rotational pointing mechanism for fast steering mirror, Chin J Aeronaut (2020), https://doi.org/10.1016/j.cja.2020.03.03216.

[11] Barbieria, matteo giacopinia Saverio giulio A design strategy based on Topology optimization techniques for an additive manufactured high performance engine piston, Published by Elsevier Ltd , 27th International Conference on Flexible Automation and Intelligent Manufacturing, FAIR2017,27-30 June 2017, Modena, Italy, Procedia Manufacturing Vol 11 (2017) PP 641 – 649

[12] P.Vishwabharathi etal, Static and Dynamic Analysis of Single Plate Clutch in Four Wheeler Application Using ANSYS International Journal of Emerging Technologies in Engineering Research (IJETER) Volume 5, Issue 3, March (2017) – Analysis reference

[13] M.Frecker etal A Topology Optimization of Compliant Mechanisms with multiple outputs, Published in Journal of Structural Optimization 17,269–278 C Springer – Verlag 1999

[14] A.Saxena,G.K.Anathasuresh etal Topology Optimization of Compliant mechanisms with Strength Consideration,Published in Mechanism of Structures and machines, Vol 29:2,199–221Taylor and Francis April2007

[15] Dan Zhang, Zhen Gao Performance analysis and optimization of a five-degrees-of-freedom compliant hybrid parallel micro manipulator, Published in Journal of Robotics and Computer-Integrated Manufacturing, http://dx.doi.org/10.1016/j.rcim.2015.01.002 0736-5845/© 2015 Elsevier Ltd

[16] Engin Tanık, Volkan Parlaktaş, Single piece compliant spatial slider–crank mechanism, Published in Elsevier Mechanism and Machine Theory. //doi.org/10.1016/j.mechmachtheory.2014.06.007

[17] A.Saxena,G.K.Anathasuresh etal A Computational Approach to the Number of Synthesis of Linkages,, Published in Journal of Mechanical Design 110 / Vol. 125, March 2003, @DOI: 10.1115/1.1539513
DECLARATIONS:

1. ETHICS APPROVAL AND CONSENT TO PARTICIPATE
The Authors Declare that they have no Conflicts of Interest

2. CONSENT FOR PUBLICATION
The Authors Declare that they have no Consent for Publication

3. Conflicts of Interest
The Authors Declare that they have no Conflicts of Interest

4. NOMENCLATURE
 1. L-Length of the Structure
 2. UL - Ultimate Load
 3. Kg-Kilogram,
 4. mm-Millimeter,
 5. Mpa-MegaPascal,
 6. W - Width of the Structure
 7. H – Height of the Structure
 8. Min-Minimum Shear Stress, Equivalent Stress
 9. Max- Maximum Shear Stress, Equivalent Stress
 10. ABS - acrylonitrile butadiene styrene Material
 11. O/P-Output Deflection
 12. 2D- 2Dimensions of the Domains
 13. Fig- Figure of the Stress Diagram

5. AVAILABILITY OF DATA AND MATERIALS
The Data and Materials Used to Find the Research Gaps, Support to Find the Numerical Analysis and Topology Optimization are Included within this Research Article.

COMPETING INTERESTS
Not Applicable

FUNDING
Not Applicable

AUTHORS’ CONTRIBUTIONS
Author -1 – Involved and Contributed in Preparing the Introduction of Compliant devices and Mechanisms, Method of Validation, Analysis of Shear Values comparison with Literatures, Searching relevant references in Literatures and Results discussion and Inference on Research work results.

Author- 2 – Involved and Contributed in General Design Domain development and chosen methods for design and Optimization, Mechanisms Analysis of Shear Values comparison with Literatures, Chosen Components for Topology Analysis.
AUTHORS’ INFORMATION

First Author
S. Premanand was born on 10th September 1981 at Chengalpattu, located in Tamil Nadu, India. He has completed his B.E., degree in Mechanical Engineering in the year 2003 at University of Madras, MBA (E-Business) from Annamalai University [Chidambaram] in 2008 and M Tech degree in Computer aided Manufacturing in the year 2013 at SRM University, Chennai. An incisive professional with 18 years of experience in Brakes Manufacturing, Steering Manufacturing and SCR systems Manufacturing Industry and work experience in Technical, Production planning, Delivery Operations, Process Enhancement, Quality, Maintenance Management and cost strategy. He is pursuing Ph.D. in Mechanical Engineering at Sathyabama Institute of science and Technology, Chennai in the year 2018 at present he is working as an Operations Plant Head in KUS Automotive India Private Limited, Chennai which is a Chinese based Global MNC in the World. we are Pioneers in Smart Material based Manufacturing and Intelligent systems Manufactures in the world, Experts in Ad blue Tanks and Sensors Manufacturing. He is Certified by ISI as Six Sigma Black Belt for Problem solving works, He is a Certified Internal auditor for Quality Systems (ISO/TS 16949), (ISO 14001) and Safety Systems (OHSAS 18001, He won Various awards in various Six Sigma competitions held at ISI Coimbatore, Anna University, ACMA, ABK AOTS.

In is PhD work his Research activity is in the Field of Mechanical Engineering, Mainly Research scope covers Design and Topology Optimization of Automotive field parts in which identifying and converting Rigid Body Mechanisms in into compliant mechanisms to Improve overall Vehicle efficiency, Reduction of no of Parts and mainly to achieve Mechanical and Geometric advantage on changing to Compliant devices instead of rigid bodies. He applied for membership and registered in Scopus. SERB, His Previous Publication is in International Journal of Mechanical Engineering and Technology (IJMET) Volume 9, Issue 4, April 2018, pp. 748–755, Article ID: IJMET_09_04_083 – Review on design of compliant mechanism for automotive application – a topology optimization approach. Design of Compliant Mechanisms for Engineering Support - A Topology Optimisation Approach | Chapter 16 | Advanced Aspects of Engineering Research Vol. 2, Development and Numerical Experiments of Compliant Anchor Mechanism for Clamping Purpose - A Topology Optimization Method’ was reviewed by experts in this research area and accepted by the board of ‘Blue Eyes Intelligence Engineering and Sciences Publication’ which has published in ‘International Journal of Recent Technology and Engineering (IJRTE)’, ISSN: 2277-3878 (Online), Volume-8 Issue-2, July 2019, Page No.: 1890-1895. The B Impact Factor of IJRTE is 5.92 for the year 2018. Your published paper and Souvenir are available at: https://www.ijrte.org/download/volume-8-issue-2,

First Author
Dr. G. Arunkumar was born on 2nd August 1975 at Vellore, located in Tamil Nadu, India. He has completed his B.E., degree in Mechanical Engineering in the year 1997 at University of Madras, Chennai and M.E degree in Engineering Design in the year 2000 at Bharathiar University, Coimbatore. He secured University second rank in M.E degree course. He has put in seventeen years of Engineering Teaching experience and three years of Industrial Experience. He has completed Ph.D in Mechanical Engineering at Anna University, Chennai in the year 2011. At present he is working as a Professor and Head of Sathyabama Institute of Science and Technology, Chennai. He obtained “Best Faculty Award” during the year 2005 at Kongu Engineering College, Erode. He has been awarded as “Best professor” by Association of Scientists, faculty and Developers (ASDF) in the year 2015. He has been awarded Best Academic Administrator in the year 2017. He secured “Professional Achievement Award 2017” from Society of Engineers and Technicians held at Kuala Lumpur, Malaysia. He has published papers in refereed International Journal, National Journals and conference proceedings. His research interest includes Design and Numerical Experiments of Compliant Mechanisms, Finite Element Analysis in and Mechanical Design of Heat Exchangers

He is a charted Engineer in IE (I), Kolkata, Member in The Institution of Engineers (I), Member in IET (UK), Life member in Indian Society for Mechanical Engineers and Technicians, Life member in Indian Society for Technical Education. Also, he is a Charted Engineer in IE (I). He was selected as a Lead Engineer by IBS-Cambridge, London, United Kingdom during the year 2007. His biography was published by Marquis Who’s Who in the World, USA in the year 2008.