Synthesis of a Magnetic Co@C Material via the Design of a MOF Precursor for Efficient and Selective Adsorption of Water Pollutants

Yu Liu¹ · Yan Wang¹ · Xiao-Sa Zhang¹ · Wen-Ze Li¹ · Ai-Ai Yang¹ · Jian Luan² · Hong-Zhu Liu³ · Zhong-Gang Wang⁴

Received: 7 September 2021 / Accepted: 9 November 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
3D metal–organic frameworks (MOFs) can be appropriate templates for the fabrication of nanomaterials due to they have active sites exposed on the channel or surface, which thus provide them with improved catalytic performance. In this study, a 3D cobalt-based MOF [Co(H₂bpta)]ₙ (Co-MOF), where H₄bpta denotes 2,2',4,4'-biphenyltetracarboxylic acid, has been constructed with the use of a ligand with a high carbon content. On this basis, a 2D magnetic carbon-coated cobalt nanoparticle composite (Co@C) was prepared by using the title MOF under different temperatures. Magnetic Co@C can readily absorb dye from the solution and can thus act as an inexpensive and fast-acting adsorbent. Moreover, we have explored the adsorption isotherms, kinetics and thermodynamics of the anion dyes in detail. The adsorption capacity of the Co@C-800 for investigated methyl orange (MO) and congo red (CR) dyes were 773.48 and 495.66 mg g⁻¹, respectively. It is noteworthy that MO adsorption is higher in existing materials. Thermodynamic studies suggest that the adsorption processes are spontaneous and exothermic. This study opens a new insight into the synthesis and application of carbon-based materials that enable the selective removal of organic dyes.

Graphical Abstract
A Co-MOF has been solvothermal synthesized and structurally characterized, which was used as a combined catalyst and carbon source for the synthesis of magnetic Co@C. Interestingly, the as-grown Co@C-800 exhibits high-performance selective adsorption of anionic dyes (MO and CR) with high adsorption capacities.

Keywords MOF precursor · Magnetic Co@C material · Selective adsorption · Kinetics and thermodynamics
1 Introduction

With the growth of the printing, textile, and other industries in recent years, the discharge of dye wastewater has increased each year [1–4]. Methyl orange (MO) and Congo red (CR) are two common anionic dyes which have been widely used in the industries and research laboratories [5, 6]. Nowadays, a variety of methods such as oxidation, ozonation or degradation have been exploited to remove anionic dyes from wastewater [7–10]. However, aforementioned techniques have poor selectivity and are relatively expensive because they cannot be reused. Therefore, there is an urgent need for an efficient way to selectively remove anionic dyes.

Carbon-based materials are regarded as ideal candidates for the adsorption heavy metal ions and organic pollutants because of their good stabilities and high specific surface areas [11–14]. However, these materials have only offered modest anionic dye removal performance [5, 15–17]. Therefore, achieving selective, efficient, and reversible anionic dye adsorption and desorption using a carbon-based material continues to pose a daunting challenge.

Metal–organic frameworks (MOFs) as sacrificial precursors or templates for preparing highly dispersed inorganic, organometallic, and composite materials with good stabilities and high specific surface areas after the calcined or pyrolysis process have been widely used [18–21]. Notably, MOF-derived materials can remain the original morphologies of the MOFs under appropriate conditions. Among them, Co-doped carbon-based materials synthesized by the pyrolysis of Co-containing MOF precursors are considered as good adsorbents [8, 22–24]. Carbon-coated cobalt composites (Co@C-800) have been regarded as adsorbents for the removal of organic and inorganic pollutants from solutions, and they have been found to offer performances comparable to commercial adsorbents [25–29]. Furthermore, the outstanding adsorption capabilities of Co@C-800 relative to other adsorbents may be caused by strong interactions between Co@C-800 and the targeted compounds through π–π interactions, which result from the presence of delocalized electrons in hexagonal arrays of carbon atoms that thus facilitate adsorption onto the surfaces of Co@C-800 materials [30, 31].

In this work, [Co(H₂bpta)]ₙ (Co-MOF), where H₄bpta denotes 2,2’,4,4’-biphenyltetracarboxylic acid, was synthesized under solvothermal conditions (Tables S1 and S2). The Co-MOF was thermally annealed under an N₂ atmosphere to form carbon-based composites (Co@C-600, Co@C-800, Co@C-1000) (Scheme 1). The dye adsorption performances of the Co-MOF and Co@C-600, Co@C-800, Co@C-1000 have been studied. Moreover, the effects of growth temperatures of Co@C-800 composites and the kinetics and thermodynamics parameters of the dye adsorption were investigated in detail to gain insight regarding the adsorption mechanism.

2 Experimental Section

2.1 Materials and Methods

The Co-MOF was synthesized by the methods described in the literature [32]. All other reagents and solvents were reagent grade, which employed from commercial sources and used without further purification.

2.2 Synthesis of the Carbon-Based Composites of [Co(H₂bpta)]ₙ (Co@C-600, Co@C-800, Co@C-1000)

Co@C-600: Firstly, the Co-MOF complex was placed in a quartz boat and situated in a tubular furnace. Secondly, the furnace temperature was increased to 600 °C under the N₂ flow (200 mL/min, 99.999% purity) with the heating rate of 20 °C min⁻¹. Thirdly, the carbon-based material was prepared with N₂ (200 mL min⁻¹) for 60 min. Finally, it was cooled to room temperature with N₂ flow, the carbon-based material had been synthesized.

Co@C-800: Except that the calcination temperature was changed into 800 °C, the synthesis method was the same as that of Co@C-600.

Co@C-1000: Except that the calcination temperature was changed into 1000 °C, the synthesis method was the same as that of Co@C-600.
2.3 Characterization

The elemental analyses (C, H, and N) of the samples were performed with a Perkin-Elmer 240C elemental analyzer. FT-IR spectra (KBr pellets) were recorded with a Varian 640-IR spectrometer over the spectral range from 500 to 4000 cm$^{-1}$. Powder X-Ray diffraction (PXRD) data was collected using a Rigaku diffractometer with CuKα radiation. Meanwhile, the morphology of the carbon-based material was characterized via scanning electron microscopy (SEM, Nova Nano SEM 430) and high-resolution transmission electron microscopy (HRTEM, JEOL2010 at 200 kV). The thermal stabilities of Co-MOF and the carbon-based composite of Co@C-600, Co@C-800, Co@C-1000 were measured with a thermogravimetric analyzer (NETZSCH STA 449C). The specific surface area and pore structure of Co@C-600, Co@C-800, Co@C-1000 was measured by an automatic volumetric sorption analyzer (ASAP 2020 M) using N$_2$ as the adsorbate at -196 °C. UV–Vis absorption spectra were recorded using an SP–1900 UV–Vis spectrophotometer.

3 Results and Discussion

3.1 Preparation and Characterization of the Cobalt-Coated Carbon-Nanoparticle Composite

It should be noted that the Co-MOF is the same that had been reported previously by Pan and co-workers [32]. According to reported research, the MOF-derived carbon-based materials could improve the energy conversion and storage capabilities as well as the adsorption properties of the resultant composite materials [33]. As a result, researchers have investigated the in situ growth carbon-based composites using MOFs as precursors, which is an efficient strategy for enhancing the properties of the MOF-derived materials [34, 35]. On this basis, the Co@C-800 was synthesized via the pyrolysis method with the use of Co-MOF as a precursor. The morphology of the Co@C-800 was observed by SEM and TEM characterization. After calcined, the Co-MOF formed Co nanoparticles, and the surrounding organic ligands were pyrolyzed into a Co-doped carbon skeleton which surrounded the nanoparticles. It can be seen that Co@C-800 maintains a 2D layered structure, and Co particles are loading on the carbon surface (Fig. 1). The diameter of the Co particles is in the range of 30–40 nm, and the Co nanoparticles in the carbon matrix are well dispersed without exhibiting significant agglomeration. The morphological analyses of the as-prepared nanomaterials, Co@C-600 and Co@C-1000 nanocomposite, are examined by SEM technique and presented in Fig. S1. It is evident that Co@C-600 and Co@C-1000 exhibit irregular morphologies with carbon coating and without pore distribution. Thus, the structure and properties of Co@C-800 was studied in detail. The FT-IR spectrum of the Co@C-800 was recorded in the frequency range of 500–4000 cm$^{-1}$, as shown in Fig. 2a. The band at 3437 cm$^{-1}$ corresponds to the stretching and bending vibrations of the hydroxyl groups of Co@C-800, while the peaks observed at 1653 cm$^{-1}$ correspond to the asymmetric and symmetric vibrations of the carboxyl groups of Co@C-800 [34, 35]. Moreover, we have investigated the thermal stability and the components in Co@C-800 by thermogravimetric analysis (TGA) measurements in air at temperatures...
reaching up to 800 °C (Fig. 2b), and found that the weight loss of Co@C-800 occurred via a single step. This weight loss of 25% in the range of 220–310 °C is the decomposition of amorphous carbon. Moreover, the residual catalyst content is 74% after oxidation, suggesting that the majority of the catalyst residue remains in the sample. The PXRD pattern of the Co@C-800 material prepared via the calcine of Co-MOF is demonstrated in Fig. 2c. The materials show metallic Co and weak CoO and Co3O4 diffraction peaks, the latter two sets of peaks can be attributed to the oxidation of the surface Co nanoparticles undergoing oxidation in the air [36]. Additionally, the cobalt particles gradually aggregate and separate from the carbon layer, then they are oxidized during the high temperature. Meanwhile, the Co@C-800 sample has a specific surface area of 340.54 m² g⁻¹ and a pore size distribution from 2 to 10 nm, suggesting that it possesses mesoporous structures (Fig. 2d). It is well known that the pores with variety of sizes is an appropriate way to increase active centers and can yield high-efficiency sorbents [22].

3.2 Dye Adsorption Properties of Co-MOF and Co@C

MOFs are excellent adsorbents and are generally used on account of their specific surface areas, diverse range of functional groups, and controllable channel sizes [37, 38]. Herein, the adsorption properties of dyes from wastewater brought about widespread attention [39, 40]. In this study, three cationic dyes [methylene blue (MB), rhodamine B (RhB) and gentian violet (GV)] and two anionic dye (MO and CR) were chosen as models to investigate the adsorption properties of Co-MOF. More details of adsorption experiments are given in the supporting information. As illustrated in Fig. 3, the adsorption capacities of the Co-MOF for MB, RhB, CR, and GV at room temperature are 44.93, 3.92, 81.4, and 10.10 mg g⁻¹ at 360 min, respectively. However, Co-MOF exhibited an adsorption capacity of 235.64 mg g⁻¹ for MO in only 10 min, thus demonstrating it is highly selective toward MO and offers rapid and efficient capture of this dye (Fig. 3). According to the literatures, the mechanism of dye adsorption is host–guest interactions with electrostatic interaction, hydrogen bonding or π–π stacking [41].

However, the existing dye adsorption techniques are expensive due to their poor recyclabilities. It is of great significance to find an inexpensive adsorbent with reversible adsorption capabilities. On this basis, we have synthesized Co@C-800 using the Co-MOF as a combined catalyst and precursor via the pyrolysis method. At time intervals of 360 min, the dye concentration was measured via UV–Vis spectroscopy (Fig. 4a–e). The dye adsorption capacities of the Co@C-800 adsorbent for MB, RhB, MO, CR, and GV at room temperature are 65.35, 50.88, 773.48, 495.66, and 43.62 mg g⁻¹, respectively (Fig. 4f). In comparison with other adsorbents, the adsorption capacities of the Co@C-800 for MB, RhB and CR are not the highest [42]. However, we note that the adsorption capacities of our Co@C-800 adsorbent for CR and MO are much higher than those of other dyes. The presence of –OH and –COOH in the Co@C-800 and amino groups of MO and CR might promote the formation of numerous
hydrogen bonding interactions [43]. Moreover, the favorable adsorption of MO and CR could be attributed to the electrostatic attraction between the negatively charged aqueous solution of MO and CR and the positively charged surfaces of the Co@C-800 [44]. At the same time, π–π interaction between the surface of the carbon-based material and the aromatic compounds of dyes was considered to be the main contributor of the adsorption mechanism. Hence, these features demonstrate that the title Co@C-800 can be a highly effective sorbent for the selective removal of dye species from water. Interestingly, the magnetic separation of Co@C-800 was further tested with a magnet (Fig. S2). Co@C-800 quickly to external magnetic fields and can be absolutely isolated from an aqueous solution by a magnet. This feature facilitates the recycling of this adsorbent.

Fig. 3 a–e UV–Vis spectra of MB, RhB, MO, CR, and GV solutions after various adsorption times with Co-MOF; f The capacities of MB, RhB, MO, CR, and GV absorbed from aqueous solutions by Co-MOF under similar conditions.

Fig. 4 a–e UV–Vis spectra of MB, RhB, GV, MO, and CR solutions after different adsorption times with Co@C-800; f The amounts of MB, RhB, MO, CR, and GV adsorbed from aqueous solutions by Co@C-800 under similar conditions.
Comparatively, at time intervals of 240 min, the dye concentration was measured via UV–Vis spectroscopy (Figs. S3 and S4). The dye adsorption capacities of the Co@C-600 adsorbent for MB, RhB, MO, CR, and GV at room temperature are 0.48, 1.93, 14.78, 10.88, and 40.95 mg g⁻¹, respectively (Fig. S3f). The dye adsorption capacities of the Co@C-1000 adsorbent for MB, RhB, MO, CR, and GV at room temperature are 1.26, 0.96, 17.28, 5.66, and 27.82 mg g⁻¹, respectively (Fig. S4f). It can be clearly seen that the adsorption capacity is much lower than that of C@Co-800, which is found that the adsorption properties of the Co@C materials depending on their structures.

3.3 Effect of Contact Time on Adsorption Performance

The effect of contact time on the adsorption of MO and CR by Co@C-800 is displayed in Fig. 4f. The initial concentration of MO and CR are 40 and 80 mg L⁻¹, respectively, at room temperature. It can be seen that the adsorption capacities of Co@C-800 for MO and CR increase rapidly as the contact time is increased from 0 to 180 min, due to the large number of vacant adsorption sites and the large surface area of this adsorbent. The adsorption rate began to slow down gradually during 180 min, mainly due to the lower MO and CR concentration, resulting in a weaker adsorption driving force while the number of surface active adsorption sites also decreased. After 360 min, the adsorption capacity reached equilibrium, and the equilibrium adsorption capacities were 733.33 and 495.66 mg g⁻¹ for MO and CR, respectively.

3.4 Effect of Temperature on Adsorption Performance

Temperature is one of the significant factors influencing the adsorption process. In particular, it affects the physical and chemical properties of the adsorbent and the diffusion rate of the adsorbed molecules and determines the adsorption capacity [45]. In this experiment, the effect of temperature on the adsorption of MO and CR by Co@C-800 was studied at 298, 303, 313, and 323 K, respectively. It can be seen that the initial concentration of MO and CR is 40 mg L⁻¹ and 80 mg L⁻¹ and the adsorption capacity reaches 733.33 and 495.66 mg g⁻¹ (Figs. 5 and S5). These results show that the adsorption capacity increases at higher temperatures. It may be caused by the electrostatic interactions between Co@C-800 and dye molecules at higher temperatures. The results suggest that the adsorption of MO and CR on Co@C-800 is an endothermic process [10].

3.5 Effect of Concentration on Adsorption Performance

The initial concentration of the solution is another crucial factor affecting the adsorption process. It affects adsorption by changing the adsorbent and the protonation of the adsorbent’s surface functional groups. The effect of the concentration of the solution on the MO and CR adsorption capacity of Co@C-800 is shown in Figs. 6 and S6, and it can be seen that the adsorption capacity increases at higher dye concentrations. As the concentration of the dyes
Fig. 6 Effect of the concentration on MO adsorbed by Co@C-800
is increases, eventually the adsorption sites on Co@C-800 become occupied, so that a certain adsorption capacity is eventually reached.

3.6 Adsorption Isotherms

Many mathematical models have been used to describe the relationship between the adsorption capacity of adsorbents and the residual concentration in solution. The choice of isotherm model depends on the properties and types of adsorbents and adsorbates under investigation [46]. In this work, the Langmuir and Friedrich models were used to further investigate the adsorption performance of Co@C-800 and the reaction between adsorbents and adsorbates. The Langmuir model assumes that happens uniformly on the surface to form a monolayer of the adsorbed complex on the surface of Co@C-800, and all adsorption sites are identical and independent of each other. By linear fitting the scatter plot of the above equation, a linear curve can be obtained (Figs. S7 and S8). According to the slope and intercept of the curve in the figures, the values of \(q_{\text{max}} \) and \(k_L \) can be obtained (Tables 1 and S3). The maximum of MO theoretical adsorption capacities at 298, 303, 313, and 323 K are 772.75, 772.95, 773.09 and 773.33 mg g\(^{-1}\) respectively, while the maximum theoretical adsorption capacities of CR are 476.86, 483.20, 491.15 and 495.66 mg g\(^{-1}\), respectively. The decision coefficient of the Langmuir equation (\(R^2 \)) is > 0.99. These results show that the adsorption of MO and CR onto Co@C-800 are in accordance with the Langmuir model, thus suggesting that they are adsorbed in the form of a monolayer. As shown in Table 1, all \(R_L \) values are between 0 and 1, indicating that Co@C-800 has a higher adsorption capacity for MO and CR than for the other dyes [47].

As shown in Figs. S9 and S10, the values of \(K_F \) and \(1/n \) can be respectively determined from the slope and intercept of a Freundlich plot. The decision coefficient of Freundlich equation is \(R^2 \) > 0.99, thus suggesting that the adsorption of MO and CR by Co@C-800 is in accordance with the Freundlich model (Table 1). The Langmuir and the Freundlich isotherm charts and parameters indicate that the adsorption conformed to the two models. According to the calculations performed via the Langmuir equation, the biggest adsorption capacity of Co@C-800 reaches 773.33 and 495.66 mg g\(^{-1}\) for MO and CR, respectively, which indicates that Co@C-800 is an excellent adsorbent calculated by the Freundlich equation, \(1/n \) is less than 1 which indicates that it is conducive to the adsorption reaction [48].

3.7 Adsorption Kinetics

Several kinetic models, such as the quasi-first-order kinetic model, the quasi-second-order kinetic model and the internal particle diffusion model, are often used to evaluate adsorption data [49]. As shown in Table 2, the values of \(k_1 \) and \(q_e \) can be determined from the intercept and slope of the plots shown in Fig. 7. Although the coefficient of determination (\(R^2 \)) is close to 1, there is a significant difference between the calculated \(q_e \) (2.97 and 0.97 mg g\(^{-1}\)) and the experimental \(q_e \) values (773.33 and 495.66 mg g\(^{-1}\)), indicating that the quasi-first-order kinetic model is unsuitable for this experiment. A plot of \(t/q_t \) versus \(t \) is shown in Fig. 7c and d, and the values of \(k_2 \) and \(q_e \) are acquired from the slope and intercept of this

| Table 1 | The adsorption isotherm constants of the Langmuir and Freundlich models for the adsorption of MO onto Co@C-800 |
Temperature (K)	Langmuir model	Freundlich model					
	\(q_{\text{max}} \) (mg g\(^{-1}\))	\(k_L \) (L mg\(^{-1}\))	\(R^2 \)	\(R_L \)	\(k_F \) (L mg\(^{-1}\))	\(1/n \)	\(R^2 \)
298	772.875	2.68 × 10\(^{-4}\)	0.9687	0.0362–0.0447	6.9566	0.6432	0.8197
303	772.951	2.63 × 10\(^{-4}\)	0.9698	0.0368–0.0455	6.9141	0.6178	0.8003
313	773.092	2.56 × 10\(^{-4}\)	0.9721	0.0378–0.0472	6.9177	0.6127	0.8026
323	773.339	2.49 × 10\(^{-4}\)	0.9734	0.0388–0.0489	6.9208	0.6078	0.8145

| Table 2 | The parameters of the pseudo-first-order, pseudo-second-order, and intra-particle diffusion models |
Kinetic model	Parameters	MO (40 mg L\(^{-1}\))	CR (80 mg L\(^{-1}\))
Pseudo-first-order model	\(k_1 \) (min\(^{-1}\))	– 0.00427	– 0.00625
	\(q_e \) (mg g\(^{-1}\))	2.97978	2.39548
	\(R^2 \)	0.98130	0.96398
Pseudo-second-order model	\(k_2 \) (g mg\(^{-1}\) min\(^{-1}\))	0.00169	0.00196
	\(q_e \) (mg g\(^{-1}\))	0.05196	0.08215
	\(R^2 \)	0.97230	0.96416
Intra-particle diffusion model	\(k_{id} \) (mg g\(^{-1}\) min\(^{-1/2}\))	– 239.70	– 258.33
	\(C \) (mg g\(^{-1}\))	32.8970	32.9037
	\(R^2 \)	0.98510	0.98923
plot. The determination coefficients are 0.9723 and 0.9641 for MO and CR, respectively, the obtained results (Table 2) indicating that the pseudo-second-order model more accurately describes the kinetics of adsorption of the investigated MO and CR on Co@C-800. Therefore, the adsorption rate is controlled by chemical adsorption, and the adsorbent and the adsorbed material exchange electrons through shared electrons or covalent forces [49].

The internal particle diffusion model is usually used to determine the rate control steps in porous structures [49]. As shown in Fig. S11 and described in Table 2. The determination coefficients \(R^2 \) of the internal particle diffusion model are 0.98510 and 0.98923, which are higher than those of the quasi-second order equation. The curve is nonlinear and the intercept is unequal to zero and does not pass through the origin, which indicates that the internal particle diffusion is the only rate determining step, and the adsorption of MO and CR on Co@C-800 are simple process [50].

3.8 Adsorption Thermodynamics

Due to the impact of temperature on the adsorption of MO and CR by Co@C-800, the thermodynamic parameters of Co@C-800, MO, and CR were studied at different temperatures. The values of \(\Delta H \) and \(\Delta S \) are calculated according to the slope and intercept of the corresponding van’t Hoff plot (Fig. S12) [51]. \(\Delta G \) is negative, suggesting that the adsorption process is spontaneous (Tables 3 and S4). Additionally, as the temperature is ranged from 298 to 323 K, the \(\Delta G \) of MO cut down about 2.00 kJ mol\(^{-1}\), while the \(\Delta G \) of CR reduces from \(-5.47\) to \(-5.99\) kJ mol\(^{-1}\), suggesting that a higher temperature is more beneficial for adsorption. Otherwise, the negative value of \(\Delta H \) (3.87 and 0.79 kJ mol\(^{-1}\)) indicated that the interactions between Co@C-800 and MO or CR are endothermic processes. The positive \(\Delta S \) suggests that the randomness of the system increases as the MO and CR are adsorbed onto Co@C-800 [51].

3.9 Comparison of Adsorption Efficiencies with Other Adsorbents

Table 4 shows the adsorption efficiencies of the Co@C-800 nanocomposite and those of other adsorbents reported in the literatures [28, 52–65]. The results demonstrate that the Co@C-800 shows a higher adsorption capacity than the other MOF-based and carbon-based adsorbents. In spite of some adsorbents may have demonstrated competitive adsorption efficiency, their removal conditions such as

\(T \) (K)	\(\Delta G \) (kJ mol\(^{-1}\))	\(\Delta H \) (kJ mol\(^{-1}\))	\(\Delta S \) (kJ mol\(^{-1}\) K\(^{-1}\))
298	\(-19.97\)	3.87	0.08
303	\(-20.37\)		
313	\(-21.17\)		
323	\(-21.97\)		

Table 3 Thermodynamic arguments at various temperatures

Fig. 7 Adsorption kinetics of MO and CR adsorbed by Co@C-800: a and b Pseudo-first-order models; c and d Pseudo-second-order models
adsorbent amount are quite high. The enhanced dye adsorption performance of the magnetic Co@C-800 material indicates that it can afford a selective and high-efficient adsorbent for the removal of wastewater. Sum up, the magnetic properties of the Co@C-800 nanocomposite is an excellent adsorbent for wastewater treatment in demanding conditions.

4 Conclusions

In summary, a magnetic Co@C-800 material was successfully synthesized with the use of Co-MOF as a catalyst precursor via the pyrolysis method. The as-grown Co@C-800 shown a highly selective adsorption capacity toward anionic dyes, and the adsorption capacities were 773.33 mg g⁻¹ and 495.66 mg g⁻¹ for MO and for CR, respectively. Moreover, a viable adsorption mechanism has been proposed, which is including that hydrogen-bonding interactions and π–π stacking interactions along with the effect of mesopores. The internal particle diffusion is the only rate determining step which the adsorptions of MO and CR on Co@C-800 are simple processes. Thermodynamic parameters suggest that the adsorption is an exothermic and spontaneous process. The resulting Co@C-800 was discovered to be an efficient adsorbent material for the removal of anionic dyes from aqueous solutions. This research may open up new routes toward.

Acknowledgements This work was financially supported by the Liaoning Provincial Department of Education Fund (LQ2019004 and LZ2019005).

Authors Contribution YL and YW—Crystal synthesis, writing-original draft preparation. XSZ and AAY—formal analysis, investigation; HZL and ZGW—Software; WZL and JL—Writing-review and editing.

Funding The funder was funded by Department of Education of Liaoning Province, Grant Nos (LQ2019004) and (LZ2019005).

Declarations

Conflict of interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

1. C.J. Vörösmarty, P.B. McIntyre, M.O. Gessner, D. Dudgeon, A. Prusevich, P. Green, S. Glidden, S.E. Bunn, C.A. Sullivan, C.R. Liermann, P.M. Davies, Global threats to human water security and river biodiversity. Nature 467, 555–561 (2010)
2. S. Wang, B. Zhang, C. Shan, X. Yan, H. Chen, B. Pan, Occurrence and transformation of phosphonates in textile dyeing wastewater along full-scale combined treatment processes. Water Res. 184, 116173 (2020)
3. C. Ding, M. Yi, B. Liu, C. Han, X. Yu, Y. Wang. Forward osmosis-extraction hybrid process for resource recovery from dye wastewater. J Membrane Sci. 612, 118376 (2020)
4. Z. Gong, T. Ma, F. Liang, Syntheses of magnetic blackberry-like Ni@Cu@Pd nanoparticles for efficient catalytic reduction of organic pollutants. J Alloys Compd. 873, 159802 (2021)
5. L. Yang, Y. Zhan, R. Yu, J. Lan, J. Shang, B. Dou, H. Liu, R. Zou, S. Lin. Facile and scalable fabrication of antibacterial CO2-responsive cotton for ultrafast and controllable removal of anionic dyes. ACS Appl. Mater. Inter. 13, 2694–2709 (2021)

6. A. Malik, M. Nath. Synthesis of Ag/ZIF-7 by immobilization of Ag nanoparticles onto ZIF-7 microrystals: a heterogeneous catalyst for the reduction of nitroaromatic compounds and organic dyes. J. Environ. Chem. Eng. 8, 105457 (2020)

7. Y. Gao, S. Yan, Y. He, Y. Fan, L. Zhang, J. Ma, R. Hou, L. Chen, J. Chen. A photo-Fenton self-cleaning membrane based on NH2-MIL-88B (Fe) and graphene oxide to improve dye removal performance. J. Membrane Sci. 626, 119192 (2021)

8. D. Wang, F. Zeng, X. Hu, C. Li, Z. Su. Synthesis of a magnetic 2D Co@NC-600 material by designing a MOF precursor for efficient catalytic reduction of water pollutants. Inorg. Chem. 59, 12672–12680 (2020)

9. S. Zhou, X. Feng, J. Zhu, Q. Song, G. Yang, Y. Zhang, B. Van der Bruggen. Self-cleaning loose nanofiltration membranes enabled by photocatalytic Cu-triazolate MOFs for dye/salt separation. J. Membrane Sci. 623, 119058 (2021)

10. X. Zhang, Z. Li, S. Lin, P. Théato. Fibrous materials based on polymeric silicone active esters as efficient adsorbents for selective removal of anionic dye. ACS Appl. Mater. Inter. 12, 21100–21113 (2020)

11. H.X. Chen, X.Y. Lu, H.H. Wang, D.P. Sui, F.B. Meng, W. Qi. Controllable fabrication of nitrogen-doped porous nanocarbons for high-performance supercapacitors via supramolecular modulation strategy. J. Energy Chem. 49, 348–357 (2020)

12. D.S. Wang, L. Xu, F.M. Zeng, X.L. Hu, B.L. Liu, C. Li, Z.M. Su. J. Sun. Synthesis of ultrathin COx/CoO nanoparticle-embedded N-doped carbon framework magnetic material and application for 4-nitrophenol catalytic reduction. New J. Chem. 45, 13751–13754 (2021)

13. X. Wu, D. Huang, Y. Wu, J. Zhao, X. Liu, W. Dong, S. Li, D. Li, J. Li. In Situ Synthesis of Nano CuS-Embedded MOF hierarchical structures and application in dye adsorption and hydrogen evolution reaction. ACS Appl. Energy Mater. 2, 5698–5706 (2019)

14. W. Shao, C. He, M. Zhou, C. Yang, Y. Gao, S. Li, L. Ma, L. Qiu, C. Cheng, C. Zhao. Core–shell-structured MOF-derived 2D hierarchical nanocatalysts with enhanced Fenton-like activities. J. Mater. Chem. A 8, 3168–3179 (2020)

15. C. Yu, J. Chen, Y. Zhang, W. Song, X. Li, F. Chen, Y. Zhang, D. Liu, L. Liu. Highly efficient and selective removal of anionic dyes from aqueous solution by using a protomolecular–organic–metal framework. J. Alloy Compd. 853, 157383 (2021)

16. T. Selkälä, T. Suopajärvi, J.A. Sirviö, T. Luukkonen, P. Kinnunen, A.L.C.B. de Carvalho, H. Liimatainen. Surface modification of cured inorganic foams with cationic cellulose nanocrystals and their use as reactive filter media for anionic dye removal. ACS Appl. Mater. Inter. 12, 27745–27757 (2020)

17. S. Das, P. Chakraborty, R. Ghosh, S. Paul, S. Mondal, A. Panja, A.K. Nandi. Folic acid-polyaniline hybrid hydrogel for adsorption/reduction of chromium(VI) and selective adsorption of anionic dye from water. ACS Sus. Chem. Eng. 10, 9325–9337 (2017)

18. Z. Li, K. Zou, X. Zhang, T. Han, Y. Yang. Hierarchically flower-like N-doped porous carbon materials derived from an explosive 3-fold interpenetrating diamondoid copper metal-organic framework for a supercapacitor. Inorg. Chem. 55, 6552–6562 (2016)

19. X. Wu, J. Zhao, Y. Wu, W. Dong, D. Li, J. Li, Q. Zhang. Ultrathin Pt nanoparticles and amorphous nickel supported on 3D mesoporous carbon derived from Cu-Metal–organic framework for efficient methanol oxidation and nitrogen reduction. ACS Appl. Mater. Inter. 10, 12740–12749 (2018)

20. K. Nath, C.K. Karan, K. Biradha. Metal–organic frameworks and metal–organic framework-derived N-doped porous carbon materials as heterogeneous catalysts: chemical fixation of carbon dioxide under mild conditions and electrochemical hydrogen evolution. Cryst. Growth Des. 19, 6672–6681 (2019)

21. B. Volosskiy, H. Fei, Z. Zhao, S. Lee, M. Li, Z. Lin, B. Papandrea, C. Wang, Y. Huang, X. Duan. Tuning the catalytic activity of a metal–organic framework derived copper and nitrogen Co-doped carbon composite for oxygen reduction reaction. ACS Appl. Mater. Inter. 8, 26769–26774 (2016)

22. R. Rajak, M. Saraf, A. Mohammad, S.M. Mobin. Design and construction of a ferrocene based inclined polycatenated Co-MOF for supercapacitor and dye adsorption applications. J. Mater. Chem. A 5, 17998–18011 (2017)

23. Y. Zhang, H. Zhang, X. Wu, Z. Deng, E. Zhou, Z. Yu. Nanolayered Cobalt@Carbon Hybrids derived from metal–organic frameworks for microwave absorption. ACS Appl. Nano. Mater. 2, 2325–2335 (2019)

24. M. Hasanazadeh, A. Simchi, H. Shahriyari Far. Nanoporous composites of activated carbon-metal organic frameworks for organic dye adsorption: synthesis, adsorption mechanism and kinetics studies. J. Ind. Eng. Chem. 81, 405–414 (2020)

25. O. Mahi, K. Khaldi, M.S. Belardja, A. Belmokhtar, A. Benyousef. Development of a new hybrid adsorbent from Opuntia Ficus Indica NaOH activated with PANI reinforced and its potential use in orange G dye removal. J. Inorg. Organomet. Polym. Mater. 31, 2095–2104 (2021)

26. Y. Zhang, H. Zhang, X. Wu, Z. Deng, E. Zhou, Z. Yu. Nanolayered cobalt@carbon hybrids derived from metal–organic frameworks for microwave absorption. ACS Appl. Nano. Mater. 2, 2325–2335 (2019)

27. S.Y. Mendiola-Alvarez, P.G. Turnes, J. Guzman-Mar, A. Hernandez-Ramirez, L. Hinojosa-Reyes, C.C. Palomino. Magnetic porous carbons derived from cobalt(ii)-based metal-organic frameworks for the solid-phase extraction of sulfonamides. Dalton Trans. 49, 8959–8966 (2020)

28. J. Liu, S. Ma, L. Zhang. Preparation and characterization of ammonium-functionalized silica nanoparticle as a new adsorbent to remove methyl orange from aqueous solution. Appl. Surf. Sci. 265, 393–398 (2013)

29. M.A. Ahsan, O. Fernandez-Delgado, E. Deemer, H. Wang, A.A. El-Gendy, M.L. Curry, J.C. Noveron. Carbonization of Co-BDC MOF results in magnetic Co@C-800 nanomaterials that catalyze the reduction of methyl orange and 4-nitrophenol in water. J. Mol. Liquid 290, 111059 (2019)

30. M.A. Nazir, N.A. Khan, C. Cheng, S.S.A. Shah, T. Najam, M. Arshad, A. Sharif, A. Akhtar, A.U. Rehman. Surface induced growth of ZIF-67 at Co-layered double hydroxide: removal of methylene blue and methyl orange from water. Appl. Clay Sci. 190, 105564 (2020)

31. M. Trukawka, K. Cendrowski, M. Peruzynska, A. Augustyniak, P. Nawrotek, M. Drozdzik, E. Mijowska. Carbonized metal-organic frameworks with trapped cobalt nanoparticles as biocompatible and efficient azo-dye adsorbent. Environ. Sci. Eur. 31, 56 (2019)

32. Z. Pan, J. Xu, X. Yao, L. Li, Z. Guo, H. Zheng. Syntheses, structures, magnetic and photoluminescence properties of metal–organic frameworks based on aromatic polycarboxylate acids. CrystEngComm 13, 1617–1624 (2011)

33. J. Long, K. Shen, Y. Li. Bifunctional N-doped Co@C-800 cata-lysts for base-free transfer hydrogenations of nitriles: Controllable selectivity to primary amines vs imines. ACS Catal. 7, 275–284 (2017)

34. I. Toumi, H. Djelad, F. Chouli, A. Benyousef. Synthesis of PANI@ZnO hybrid material and evaluations in adsorption of congo red and methylene blue dyes: structural characterization and adsorption performance. J. Inorg. Organomet. Polym. (2021). https://doi.org/10.1007/s10904-021-02084-0

35. S. Gutiérrez-Tarriño, J.L. Olloqui-Sariego, J.J. Calvente, G.M. Espallargas, F. Rey, A. Corma, P. Oña-Burgos. Cobalt
metal–organic framework based on layered double nanosheets for enhanced electrocatalytic water oxidation in neutral media. J. Am. Chem. Soc. 142, 19198–19208 (2020)

36. P.L. Feng, J.J. Perry, S. Nikodemski, B.W. Jacobs, S.T. Meek, M.D. Allendorf, Assessing the purity of metal–organic frameworks using photoluminescence: MOF-5, ZnO quantum dots, and framework decomposition. J. Am. Chem. Soc. 132, 15487–15489 (2010)

37. D. Wang, J. Zhang, G. Li, J. Yuan, J. Li, Q. Huo, Y. Liu, Mesoporous hexanuclear copper cluster-based metal–organic framework with highly selective adsorption of gas and organic dye molecules. ACS Appl. Mater. Inter. 10, 31233–31239 (2018)

38. X. Yang, Y. Yan, W. Wang, Z. Hao, W. Zhang, W. Huang, Y. Wang, A 2-fold interpenetrated nitrogen-rich metal-organic framework: dye adsorption and CO2 capture and conversion. Inorg. Chem. 60, 3156–3164 (2021)

39. W. Fan, X. Wang, B. Xu, Y. Wang, D. Liu, M. Zhang, Y. Shang, F. Dai, L. Zhang, D. Sun, Amino-functionalized MOFs with high physicochemical stability for efficient gas storage/separation, dye adsorption and catalytic performance. J. Mater. Chem. A 6, 24486–24495 (2018)

40. S. Zhan, D. Zhu, G. Ren, Z. Shen, M. Qiu, S. Yang, H. Yu, Y. Li, Coaxial-electrospun magnetic core–shell Fe@TiSi nanofibers for the rapid purification of typical dye wastewater. ACS Appl. Mater. Inter. 6, 16841–16850 (2014)

41. J. Zhao, J. Luan, H.X. Yu, G.C. Liu, H.Y. Lin, X.L. Wang, B.K. Chen, Five naphthalene-amide-bridged Ni(II) complexes: electrochemistry, bifunctional fluorescence responses, removal of contaminants and optimization by pyrolysis. CrystEngComm 22 (2020), 1330–1339 (2020)

42. S.K. Konavarapu, A. Goswami, A.G. Kumar, S. Banerjee, K. Biradha, MOFs containing a linear bis-pyridyl-tris-amide and angular carboxylates: exploration of proton conductivity, water vapor and dye sorptions. Inorg. Chem. Front. 6, 184–191 (2019)

43. L.J. Han, F.Y. Ge, G.H. Sun, X.J. Gao, H.G. Zheng, Effective adsorption of Congo red by a MOF-based magnetic material. Dalton Trans. 48, 4650–4656 (2019)

44. W.A. El-Mehalawy, Y. Safwat, M. Bassouyi, M.H. Alkordi, Strong interplay between polymer surface charge and MOF cage chemistry in mixed-matrix membrane for water treatment applications. ACS Appl. Mater. Inter. 12, 27625–27631 (2020)

45. S.C.C. van der Lubbe, F. Zaccaria, X. Sun, C. Fonseca Guerra, Secondary electrostatic interaction model revised: prediction comes mainly from measuring charge accumulation in hydrogen-bonded monomers. J. Am. Chem. Soc. 141, 4878–4885 (2019)

46. F. Gritti, G. Guiochon, Analytical solution of the ideal model of chromatography for a Bi-Langmuir adsorption isotherm. Anal. Chem. 85, 8552–8558 (2013)

47. S. Nufier, M.J. Large, A.A.K. King, S.P. Ogilvie, A. Branton, A.B. Dalton, Edge-selective gas detection using Langmuir films of graphene platelets. ACS Appl. Mater. Inter. 18, 21740–21745 (2018)

48. I. Abe, K. Hayashi, T. Hirashima, M. Kitagawa, Relationship between the Freundlich adsorption constants K and 1/N hydrophobic adsorption. J. Am. Chem. Soc. 104, 6452–6453 (1982)

49. A.J.S. Ribeiro, K. Zaleta-Rivera, E.A. Ashley, B.L. Pruit, Stable, covalent attachment of laminin to microposts improves the contractility of mouse neonatal cardiomyocytes. ACS Appl. Mater. Inter. 6, 15516–15526 (2014)

50. X. Ni, G. Dong, L. Li, Q. Yang, Z. Wu, Kinetic study of electron transport behaviors used for ion sensing technology in air/EGR diluted methane flames. Fuel 288, 119825 (2021)

51. J.C. Moreno-López, A. Pérez Paz, S. Gottardi, L. Soliani, J. Li, L. Monjas, A.K.H. Hirsch, D.J. Mowbray, M. Stöhr, Unveiling adatoms in on-surface reactions: combining scanning probe microscopy with van’t Hoff plots. J. Phys. Chem. C 125, 9847–9854 (2021)

52. Y. Yao, B. Hing, X. Feifei, C. Xiaofeng, Equilibrium and kinetic studies of methyl orange adsorption on multilayered carbon nanotubes. Chem. Eng. J. 170, 82–89 (2011)

53. H.Y. Zhu, R. Jiang, L. Xiao, G.M. Zeng, Preparation, characterization, adsorption kinetics and thermodynamics of novel magnetic chitosan entrapping nanosized γ-Fe2O3 and multi-walled carbon nanotubes with enhanced adsorption properties for methyl orange. Bioresour. Technol. 101, 5063–5069 (2010)

54. Y. Tian, X. Wang, Y. Pan, Simple synthesis of Ni-containing ordered mesoporous carbons and their adsorption/desorption of methylene orange. J. Hazard. Mater. 213–214, 361–368 (2012)

55. G. Li, Y. Du, Y. Tao, H. Deng, X. Luo, J. Yang, Iron(II)-cross-linked chitin-based gel beads: preparation, magnetic property and adsorption of methyl orange. Carbohydr. Polym. 82, 706–713 (2010)

56. Z. Liu, W. He, Q. Zhang, H. Shapour, M.F. Bakhari, Preparation of a GO/MIL-101(Fe) composite for the removal of methyl orange from aqueous solution. ACS Omega 6, 4597–4608 (2021)

57. W. Cheah, S. Hosseini, M.A. Khan, T.G. Chuah, T.S.Y. Choong, Acid modified carbon coated monolith for methyl orange adsorption. Chem. Eng. J. 215–216, 747–754 (2013)

58. K. Guesh, C.A.D. Cauby, A. Mayoral, M. Diaz-Garcia, I. Diaz, M. Sanchez-Sanchez, Sustainable preparation of MIL-100(Fe) and its photocatalytic behavior in the degradation of methyl orange in water. Cryst. Growth Des. 17, 1806–1813 (2017)

59. J. Ma, F. Yu, L. Zhou, L. Jin, M. Yang, Y. Tang, H. Fan, Z. Yuan, J. Chen, Enhanced adsorptive removal of methyl orange and methylene blue from aqueous solution by alkali-activated multiwalled carbon nanotubes. ACS Appl. Mater. Inter. 4, 5749–5760 (2012)

60. Z. Ni, S. Xia, L. Wang, F. Xing, G. Pan, Treatment of methyl orange by calcined layered double hydroxides in aqueous solution: Adsorption property and kinetic studies. J. Colloid Interface Sci. 316, 284–291 (2007)

61. N. Mohammad, H. Khani, V.K. Gupta, E. Amereh, S.agarwal, Adsorption process of methyl orange dye onto mesoporous carbon material–kinetic and thermodynamic studies. J. Colloid Interface Sci. 362, 457–462 (2011)

62. T. Kou, Y. Wang, C. Zhang, J. Sun, Z. Zhang, Adsorption behavior of methyl orange onto nanoporous core–shell Cu@Cu2O nano-composite. Chem. Eng. J. 223, 76–83 (2013)

63. P. Zhang, Q. An, J. Guo, C. Wang, Synthesis of mesoporous magnetic Co-NPs/carbon nanocomposites and their adsorption property for methyl orange from aqueous solution. J. Colloid Interface Sci. 389, 10–15 (2013)

64. W. Deligeer, Y.W. Gao, S. Asuha, Adsorption of methyl orange on mesoporous γ-Fe2O3/SiO2 nanocomposites. Appl. Surf. Sci. 257, 3524–3528 (2011)

65. M. Arshadi, F. SalimiVahid, J.W.L. Salvacion, M. Soleymanzadeh, Adsorption studies of methyl orange on an immobilized Mn-nanoparticle: kinetic and thermodynamic. Rsc Adv. 4, 16005–16017 (2014)
Authors and Affiliations

Yu Liu¹ · Yan Wang¹ · Xiao-Sa Zhang¹ · Wen-Ze Li¹ · Ai-Ai Yang¹ · Jian Luan² · Hong-Zhu Liu³ · Zhong-Gang Wang⁴

¹ College of Science, Shenyang University of Chemical Technology, Shenyang 110142, People’s Republic of China
² College of Sciences, Northeastern University, Shenyang 100819, People’s Republic of China
³ Post-Doctoral Research Station of Dalian Zhenbang, Fluorocarbon Paint Stock Co., Ltd., Dalian 116036, People’s Republic of China
⁴ State Key Laboratory of Fine Chemicals, Department of Polymer Science and Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, People’s Republic of China