PALEY-WIENER-SCHWARTZ NEARLY PARSEVAL FRAMES
AND BESOV SPACES ON NONCOMPACT SYMMETRIC
SPACES

ISAAC Z. PESENSON

ABSTRACT. Let X be a symmetric space of the noncompact type. The goal of
the paper is to construct in the space $L^2(X)$ nearly Parseval frames consist-
ing of functions which simultaneously belong to Paley-Wiener spaces and to
Schwartz space on X. We call them Paley-Wiener-Schwartz frames in $L^2(X)$.
These frames are used to characterize a family of Besov spaces on X. As a
part of our construction we develop on X the so-called average Shannon-type
sampling.

1. Introduction

Wavelet systems and frames which build up of bandlimited functions with a
strong localization on the space became very popular in theoretical and applied
analysis on Euclidean spaces. Frames with similar properties were recently con-
structed in non-Euclidean settings in L^2-spaces on spheres [19], compact Riemann-
ian manifolds [12]-[15], certain metric-measure spaces [6]. In [15] Parseval ban-
dimited and localized frames were developed on compact homogeneous manifolds.
Bandlimited (\equiv Paley-Wiener) frames in Paley-Wiener spaces on noncompact man-
ifolds of bounded geometry (in particular on noncompact symmetric spaces) were
constructed in [24]-[30], [10], [11], [5], [7], [8]. In [22], [23] bandlimited frames in
Paley-Wiener spaces (in subelliptic framework) were constructed on stratified Lie
groups. Bandlimited and localized nearly Parseval frames on domains in \mathbb{R}^n with
smooth boundaries can be found in [31].

The goal of our development is to construct Paley-Wiener localized (Schwartz)
frames in L^2 spaces on symmetric manifolds of the noncompact type. It should be
noted that such manifolds do not satisfy requirements of the paper [6].

A Riemannian symmetric space of the noncompact type is a Riemannian man-
ifold X of the form $X = G/K$ where G is a connected semisimple Lie group with
finite center and K is a maximal compact subgroup of G. The most known examples
of such spaces are the real, complex, and quaternionic hyperbolic spaces.

Let f be a function in the space $L^2(X, d\mu(x)) = L^2(X)$, where X is a symmetric
space of noncompact type and dx is an invariant measure. The notations $Ff = \hat{f}$
will be used for the Helgason-Fourier transform of f. The Helgason-Fourier
transform \hat{f} can be treated as a function on $\mathbb{R}^n \times B$ where B is a certain compact
homogeneous manifold and n is the rank of X. Moreover, \hat{f} belongs to the space
$L^2 (\mathbb{R}^n \times B; |c(\lambda)|^{-2}d\lambda db)$, where $c(\lambda)$ is the Harish-Chandra’s function, $d\lambda$
is the

Euclidean measure and db is the normalized invariant measure on B. The notation $\Pi_{[\omega_1, \omega_2]} \subset \mathbb{R}^n \times B$, $0 < \omega_1 < \omega_2$, will be used for the set of all points $(\lambda, b) \in \mathbb{R}^n \times B$ for which $\omega_1 \leq \sqrt{(\lambda, \lambda)} \leq \omega_2$, where (\cdot, \cdot) is the Killing form. In particular the notation $\Pi_{[0, \omega]} \subset \mathbb{R}^n \times B$ will be used for $\Pi_{[0, \omega]}$.

The Paley-Wiener space $PW_{[\omega_1, \omega_2]}(X)$, $0 < \omega_1 < \omega_2$, is defined as the set of all functions in $L_2(X)$ whose Helgason-Fourier transform has support in $\Pi_{[\omega_1, \omega_2]}$ and belongs to the space $\Lambda_\omega = L_2\left(\Pi_{[\omega_1, \omega_2]}; |c(\lambda)|^{-2} d\lambda db\right)$. In particular, $PW_\omega(X)$ will be used for $PW_{[0, \omega]}(X)$.

Using the K-invariant distance on X to the "origin" (see formula (2.2) below) one can introduce a notion of an L_2-Schwartz space $S^2(X)$ (see Definition 3 below) which was considered by M. Eguchi [9]. A theorem of M. Eguchi [9] states that if a function f is in $C_0^\infty(\mathbb{R}^n \times B)$ and satisfies certain symmetry conditions (see (2.13) below) then its inverse Helgason-Fourier transform is a function in $S^2(X)$. A refinement of this result was given by N. B. Andersen in [1] (see Theorems 3.3 and 3.4 below).

Although some facts that we discuss in this development already appeared in our previous papers the main result about existence of Paley-Wiener-Schwartz nearly Parseval frames in $L_2(X)$ is completely new. Here is a formulation of our main theorem.

Theorem 1.1. Suppose that X is a Riemannian symmetric spaces of the noncompact type. For every $0 < \delta < 1$ there exists a countable family of functions $\{\Theta_{j, \gamma}\}$ such that

1. Every function $\Theta_{j, \gamma}$ is bandlimited to $[2^j-1, 2^{j+1}]$ in the sense that $\Theta_{j, \gamma} \in PW_{[2^{j-1}, 2^{j+1}]}(X)$.
2. Every function $\Theta_{j, \gamma}$ belongs to $S^2(X)$.
3. $\{\Theta_{j, \gamma}\}$ is a frame in $L_2(X)$ with constants $1 - \delta$ and $1 + \delta$, i.e.

$$(1 - \delta)\|f\|^2 \leq \sum_{j \in \mathbb{N}} \sum_{\gamma} |(f, \Theta_{j, \gamma})|^2 \leq (1 + \delta)\|f\|^2, \quad f \in L_2(X).$$

In section 2 we summarize basic facts about harmonic analysis on Riemannian symmetric spaces of the noncompact type. In subsection 2.2 we prove a covering Lemma for Riemannian manifolds of bounded geometry whose Ricci curvature is bounded from below. In section 3 we introduce Paley-Wiener spaces $PW_\omega(X)$, $\omega > 0$. In section 4 we develop average sampling and almost Parseval frames in Paley-Wiener spaces on Riemannian manifolds. The main result is obtained in section 5 where we construct nearly Parseval Paley-Wiener-Schwartz frames in $L_2(X)$. In the last section we characterize Besov spaces $B_{2,q}^\omega(X)$ in terms of coefficients with respect to constructed frames. The entire scale of Besov spaces will be considered in a separate paper.

2. **Harmonic analysis on Riemannian symmetric spaces of the noncompact type**

2.1. **Riemannian symmetric spaces of the noncompact type.** A Riemannian symmetric space of the noncompact type is a Riemannian manifold X of the form $X = G/K$ where G is a connected semisimple Lie group with finite center and K is a maximal compact subgroup of G. The Lie algebras of the groups G and K will be denoted respectively as \mathfrak{g} and \mathfrak{k}. The group G acts on X by left translations.
If \(e \) is the identity in \(G \) then the base point \(eK \) is denoted by \(0 \). Every such \(G \) admits Iwasawa decomposition \(G = NAK \), where the nilpotent Lie group \(N \) and the abelian group \(A \) have Lie algebras \(n \) and \(a \) respectively. Correspondingly \(g = n \oplus a \oplus k \). The dimension of \(a \) is known as the rank of \(X \). The letter \(M \) is usually used to denote the centralizer of \(A \) in \(K \) and the letter \(B \) is commonly used for the homogeneous space \(K/M \).

The Killing form on \(g \) induces an \(\text{Ad}K \)-invariant inner product on \(n \oplus a \oplus k \) which generates a \(G \)-invariant Riemannian metric on \(X \). With this metric \(X = G/K \) becomes a Riemannian globally symmetric space of the noncompact type.

Let \(a^* \) be the real dual of \(a \) and \(W \) be the Weyl's group. Let \(\Sigma \) be the set of restricted roots, and \(\Sigma^+ \) will be the set of all positive roots. The notation \(a^+ \) has the following meaning

\[
a^+ = \{ H \in a | \alpha(H) > 0, \alpha \in \Sigma^+ \}
\]

and is known as positive Weyl's chamber. Let \(\rho \in a^* \) is defined in a way that \(2\rho \) is the sum of all positive restricted roots. The Killing form \(<,> \) on \(a \) defines a metric on \(a \). By duality it defines an inner product on \(a^* \).

We denote by \(a^*_- \) the set of \(\lambda \in a^* \), whose dual belongs to \(a^+ \). According to Iwasawa decomposition for every \(g \in G \) there exist a unique \(A(g) \), \(H(g) \in a \) such that

\[
g = n \exp A(g)k = k \exp H(g)n, \quad k \in K, \quad n \in N, \quad A(g) = -H(g^{-1}),
\]

where \(\exp : a \to A \) is the exponential map of the Lie algebra \(a \) to Lie group \(A \). On the direct product \(X \times B \) we introduce function with values in \(a \) using the formula

\[
A(x, b) = A(u^{-1}g)
\]

where \(x = gK, g \in G, b = uX, u \in K \).

According to Cartan decomposition every element \(g \) of \(G \) has representation \(g = k_1 \exp(H)k_2 \), where \(H \) belongs to the closure of \(\exp a^+ \). The norm of an \(g \) in \(G \) is introduced as

\[
|g| = |k_1 \exp(H)k_2| = \|H\|.
\]

It is the \(K \)-invariant geodesic distance on \(X \) of \(gK \) to \(eK \).

2.2. A covering Lemma for Riemannian manifolds of bounded geometry whose Ricci curvature is bounded from below. Let \(X \), \(\dim X = d \), be a connected \(C^\infty \)-smooth Riemannian manifold with a \((2,0)\) metric tensor \(g \) that defines an inner product on every tangent space \(T_x(X), x \in X \). The corresponding Riemannian distance \(d \) on \(X \) and the Riemannian measure \(d\mu(x) \) on \(X \) are given by

\[
d(x, y) = \inf \int_a^b \sqrt{g \left(\frac{dx}{dt}, \frac{dx}{dt} \right)} \, dt, \quad d\mu(x) = \sqrt{|\det(g_{ij})|} \, dx,
\]

where the infimum is taken over all \(C^1 \)-curves \(\alpha : [a, b] \to X, \alpha(a) = x, \alpha(b) = y \), the \(\{g_{ij}\} \) are the components of the tensor \(g \) in a local coordinate system and \(dx \) is the Lebesgue’s measure in \(R^d \). Let \(\exp_p : T_x(X) \to X \) be the exponential geodesic map i. e. \(\exp_p(u) = \gamma(1), u \in T_x(X) \), where \(\gamma(t) \) is the geodesic starting at \(x \) with the initial vector \(u \) : \(\gamma(0) = x, \frac{dx}{dt}(0) = u \). We denote by \(\text{inj} \) the largest real number \(r \) such that \(\exp_x \) is a diffeomorphism of a suitable open neighborhood of \(0 \) in \(T_xX \) onto \(B(x, r) \), for all sufficiently small \(r \) and \(x \in X \). Thus for every choice
of an orthonormal basis (with respect to the inner product defined by g) of $T_x(X)$ the exponential map \exp defines a coordinate system on $B(x, r)$ which is called geodesic. The volume of the ball $B(x, r)$ will be denoted by $|B(x, r)|$. Throughout the paper we will consider only geodesic coordinate systems.

A Riemannian symmetric space X equipped with an invariant metric has bounded geometry which means that

(a) X is complete and connected;
(b) the injectivity radius $\text{inj}(X)$ is positive;
(c) for any $r \leq \text{inj}(X)$, and for every two canonical coordinate systems $\varphi_x : T_x(X) \to B(x, r), \varphi_y : T_y(X) \to B(x, r)$, the following inequalities holds true:

$$\sup_{x \in B(x, r)/B(y, r)} \| \varphi_x^{-1} \varphi_y \| \leq C(r, k).$$

The Ricci curvature Ric of X is bounded from below, i.e.

$$\text{Ric} \geq -kg, \ k \geq 0$$

According to the Bishop-Gromov Comparison Theorem this fact implies the so-called local doubling property: for any $0 < \sigma < \lambda < r < \text{inj}(X)$:

$$|B(x, \lambda)| \leq (\lambda/\sigma)^d e^{(kr(d-1))^{1/2}} |B(x, \sigma)|, \ d = \dim X.$$

We will need the following lemma which was proved in [25].

Lemma 2.1. If X is a Riemannian manifold of bounded geometry and its Ricci curvature is bounded from below then there exists a natural N_X such that for any $0 < r < \text{inj}(X)$ there exists a set of points $X_r = \{x_i\}$ with the following properties

1. the balls $B(x_i, r/4)$ are disjoint,
2. the balls $B(x_i, r/2)$ form a cover of X,
3. the height of the cover by the balls $B(x, r)$ is not greater than N_X.

Proof. Assumptions (a)-(c) imply that there exist constants $a, b > 0$ such that

$$a \leq \frac{|B(x, r)|}{|B(y, r)|} \leq b, x, y \in X, r < \text{inj}(X),$$

where $\text{inj}(X)$ is the injectivity radius of the manifold. Let us choose a family of disjoint balls $B(x_i, r/4)$ such that there is no ball $B(x, r/4), x \in X$, which has empty intersections with all balls from our family. Then the family $B(x_i, r/2)$ is a cover of X. Every ball from the family $\{B(x_i, r)\}$ having non-empty intersection with a particular ball $B(x_j, r)$ is contained in the ball $B(x_j, 3r)$. Since any two balls from the family $\{B(x_i, r/4)\}$ are disjoint, the inequalities (2.5) and (2.4) give the following estimate for the multiplicity N of the covering $\{B(x_i, r)\}$:

$$N \leq \frac{\sup_{y \in X} |B(y, 3r)|}{\inf_{x \in X} |B(x, r/4)|} \leq C(X)b12^d = N_X, \ d = \dim X.$$

Thus the lemma is proved. \hfill \square

Definition 1. Every set of point $X_r = \{x_i\}$ that satisfies conditions of Lemma 2.1 will be called a r-lattice.

To construct Sobolev spaces $H^k(X)$, $k \in \mathbb{N}$, we fix a λ-lattice $X_\lambda = \{y_\nu\}$, $0 < \lambda < \text{inj}(X)$ and introduce a partition of unity φ_ν that is subordinate to the family $\{B(y_\nu, \lambda/2)\}$ and has the following properties:

1. $\varphi_\nu \in C^\infty_0 B(y_\nu, \lambda/2)$,
(2) $\sup_x \sup_{|\alpha| \leq k} |\varphi^{(\alpha)}(x)| \leq C(k)$, where $C(k)$ is independent on ν for every k in geodesic coordinates.

The exponential map $\exp_{y_{\nu}} : T_{y_{\nu}} M \to M$ is a diffeomorphism of a ball $B_{T_{y_{\nu}}}(0, r) \subset T_{y_{\nu}} M$ with center 0 and of radius r on a ball $B(y_{\nu}, r)$ in Riemannian metric on M (assuming that $r > 0$ is sufficiently small). If M is homogeneous and a metric is invariant then every ball $B(y_{\nu}, r)$ is a translation on a single ball. In this case there exist two constants c_1, C_1 such that for any ball $B(x, r)$ with $x \in B(y_{\nu}, r)$ and $\rho < r$ one has

$$B_{T_{y_{\nu}}}(\exp_{y_{\nu}}^{-1}(x), c_1 r) \subset \exp_{y_{\nu}}^{-1} (B(x, r) \cap B(y_{\nu}, r)) \subset B_{T_{y_{\nu}}}(\exp_{y_{\nu}}^{-1}(x), C_1 r).$$

Note that for a Riemannian measure $d\mu(x)$ and a locally integrable function F on $U \subset M$ the integral of F over U is defined as follows

$$\int_U F(x) d\mu(x) = \int_{\exp_{y_{\nu}}^{-1}(U)} F \circ \exp_{y_{\nu}}(x_1, \ldots, x_d) \sqrt{\det(g_{ij})} \, dx_1 \ldots dx_d,$$

where $g_{ij} = g(\partial_i, \partial_j)$, and g is the Riemann inner product in tangent space. By choosing a basis $\partial_1, \ldots, \partial_d$, which is orthonormal with respect to g we obtain $|\det(g_{ij})| = 1$.

We introduce the Sobolev space $H^k(X), k \in \mathbb{N}$, as the completion of $C^0_0(X)$ with respect to the norm

$$\| f \|_{H^k(X)} = \left(\sum_{\nu} \| \varphi_{\nu} f \|_{H^k(B(y_{\nu}, \lambda/2))}^2 \right)^{1/2},$$

where

$$\| \varphi_{\nu} f \|_{H^k(B(y_{\nu}, \lambda/2))}^2 = \sum_{1 \leq |\alpha| \leq k} \| \partial^{(\alpha)} \varphi_{\nu} f \|_{L^2(B(y_{\nu}, \lambda/2))}^2$$

and all partial derivatives are computed in a fixed canonical coordinate system $\exp_{y_{\nu}}$ on $B(y_{\nu}, \lambda/2)$.

Remark 2.2. A geodesic coordinate system \exp_y^{-1} depends on the choice of a basis in the tangent space $T_y, y \in X$. We assume that such basis is fixed and orthonormal for every $y = y_{\nu} \in X_r = \{y_{\nu}\}$.

The Laplace-Beltrami which is given in a local coordinate system by the formula

$$\Delta f = \sum_{m,k} \frac{1}{\sqrt{\det(g_{ij})}} \partial_m \left(\sqrt{\det(g_{ij})} g^{mk} \partial_k f \right),$$

where g_{ij} are components of the metric tensor, $\det(g_{ij})$ is the determinant of the matrix (g_{ij}), g^{mk} components of the matrix inverse to (g_{ij}). It is known that the operator $(-\Delta)$ is a self-adjoint positive definite operator in the corresponding space $L_2(X, d\mu(x))$, where $d\mu(x)$ is the G-invariant measure. The regularity Theorem for the Laplace-Beltrami operator Δ states that domains of the powers $(-\Delta)^{s/2}$ coincide with the Sobolev spaces $H^s(X)$ and the norm $\|f\|_{L_2(X)}$ is equivalent to the graph norm $\|f\| + \|(-\Delta)^{s/2} f\|$ (see [24], Sec. 7.4.5.) Moreover, since the operator Δ is invertible in $L_2(X)$ the Sobolev norm is also equivalent to the norm $\|(-\Delta)^{s/2} f\|$.
2.3. Helgason-Fourier transform on Riemannian symmetric spaces of the noncompact type. For every \(f \in C_0^\infty(X) \) the Helgason-Fourier transform is defined by the formula

\[
\hat{f}(\lambda, b) = \int_X f(x)e^{-(i\lambda + \rho)(A(x, b))}dx,
\]

where \(\lambda \in a^* \), \(b \in B = K/X \), and \(dx \) is a \(G \)-invariant measure on \(X \). This integral can also be expressed as an integral over the group \(G \). Namely, if \(b = uX, u \in K \), then

\[
\hat{f}(\lambda, b) = \int_G f(gK)e^{-(i\lambda + \rho)(A(u^{-1}g))}dg.
\]

The invariant measure on \(X \) can be normalized so that the following inversion formula holds for \(f \in C_0^\infty(X) \)

\[
f(x) = w^{-1} \int_{a^* \times B} \hat{f}(\lambda, b)e^{(i\lambda + \rho)(A(x, b))}|c(\lambda)|^{-2}d\lambda db,
\]

where \(w \) is the order of the Weyl’s group and \(c(\lambda) \) is the Harish-Chandra’s function, \(d\lambda \) is the Euclidean measure on \(a^* \) and \(db \) is the normalized \(K \)-invariant measure on \(B \). This transform can be extended to an isomorphism between the spaces \(L_2(X, d\mu(x)) \) and \(L_2(a^*_+ \times B, |c(\lambda)|^{-2}d\lambda db) \) and the Parseval’s formula holds true

\[
\int_X f_1(x)f_2(x)d\mu(x) = \int_{a^*_+ \times B} \hat{f}_1(\lambda, b)\hat{f}_2(\lambda, b)c(\lambda)|^{-2}d\lambda db
\]

which implies the Plancherel’s formula

\[
\|f\| = \left(\int_{a^*_+ \times B} |\hat{f}(\lambda, b)|^2|c(\lambda)|^{-2}d\lambda db \right)^{1/2}.
\]

Let \(\Delta \) be the Laplace-Beltrami operator of the \(G \)-invariant Riemannian structure on \(X \). It is known that the following formula holds

\[
\widehat{\Delta f}(\lambda, b) = -\left(\|\lambda\|^2 + \|\rho\|^2\right)\hat{f}(\lambda, b), f \in C_0^\infty(X),
\]

where \(\|\lambda\|^2 = \langle \lambda, \lambda \rangle, \|\rho\|^2 = \langle \rho, \rho \rangle \), \(\langle \cdot, \cdot \rangle \) is the Killing form.

2.4. A Paley-Wiener Theorem on \(X \). A function \(\phi(\lambda, b) \) in \(C^\infty(a^*_+ \times B) \), holomorphic in \(\lambda \), is called a holomorphic function of uniform exponential type \(\sigma \), if there exists a constant \(\sigma \geq 0 \), such that, for each \(N \in \mathbb{N} \) one has

\[
\sup_{(\lambda, b) \in a^*_+ \times B} e^{-\sigma|3\lambda|(1 + |\lambda|)^N}|\phi(\lambda, b)| < \infty.
\]

The space of all holomorphic functions of uniform exponential type \(\sigma \) will be denoted \(\mathcal{H}_\sigma(a^*_+ \times B) \) and

\[
\mathcal{H}(a^*_+ \times B) = \bigcup_{\sigma > 0} \mathcal{H}_\sigma(a^*_+ \times B).
\]

One also need the space \(\mathcal{H}(a^*_+ \times B)^W \) of all functions \(\phi \in \mathcal{H}(a^*_+ \times B) \) that satisfy the following property

\[
\int_B e^{(iw\lambda + \rho)(A(x, b))}\phi(w\lambda, b)db = \int_B e^{(i\lambda + \rho)(A(x, b))}\phi(\lambda, b)db,
\]

for all \(w \in W \) and all \(\lambda \in a^*_+ \), \(x \in X \).

The following analog of the Paley-Wiener Theorem is known.
Theorem 2.3. The Helgason-Fourier transform \((2.10) \) is a bijection of \(C^\infty_0(X) \) onto the space \(\mathcal{H}(a_+^\infty \times B)^W \) and the inverse of this bijection can be expressed as

\[
(2.14) \quad f(x) = \int_{a_+^\infty \times B} \hat{f}(\lambda, b) e^{(i\lambda + \rho)(A(x,b))} |c(\lambda)|^{-2} d\lambda db.
\]

In particular, \(\hat{f} \) belongs to the space \(\mathcal{H}_\sigma(a_+^\infty \times B)^W \) if and only if the support of \(f \) is in the ball \(B_\sigma \). Here \(B_\sigma \) is the ball in invariant metric on \(X \) whose radius is \(\sigma \) and center is \(eK \).

3. Paley-Wiener spaces \(PW_\omega(X) \)

Definition 2. We will say that \(f \in L^2(X, d\mu(x)) \) belongs to the class \(PW_\omega(X) \) if its Helgason-Fourier transform \(\hat{f} \in L^2(a_+^\infty \times B) \) has compact support in the sense that \(\hat{f}(\lambda, b) = 0 \) a.e. for \(\|\lambda\| > \omega \). Such functions will be also called \(\omega \)-band limited.

Using the spectral resolution of identity \(P_\lambda \) we define the unitary group of operators by the formula

\[
e^{it\Delta} f = \int_0^\infty e^{i\tau} dP_\tau f, \quad f \in L^2(X), \quad t \in \mathbb{R}.
\]

Let us introduce the operator

\[
(3.1) \quad R_\Delta^\sigma f = \frac{\sigma}{\pi^2} \sum_{k \in \mathbb{Z}} \frac{(-1)^{k-1}}{(k-1/2)^2} e^{i\frac{\pi}{2}(k-1/2)} \Delta f, \quad f \in L^2(X), \quad \sigma > 0.
\]

Since \(\|e^{it\Delta} f\| = \|f\| \) and

\[
(3.2) \quad \frac{\sigma}{\pi^2} \sum_{k \in \mathbb{Z}} \frac{1}{(k-1/2)^2} = \sigma,
\]

the series in \((3.1) \) is convergent and it shows that \(R_\Delta^\sigma \) is a bounded operator in \(L^2(X) \) with the norm \(\sigma \):

\[
(3.3) \quad \|R_\Delta^\sigma f\| \leq \sigma \|f\|, \quad f \in L^2(X).
\]

The next theorem contains generalizations of several results from the classical harmonic analysis (in particular the Paley-Wiener theorem) and it follows essentially from our more general results in [24]-[31] (see also [1], [20]).

Theorem 3.1. Let \(f \in L^2(X) \). Then the following statements are equivalent:

1. \(f \in PW_\omega(X) \);
2. \(f \in C^\infty(X) = \bigcap_{k=1}^{\infty} H^k(X) \), and for all \(s \in \mathbb{R}_+ \) the following Bernstein inequality holds:

\[
(3.4) \quad \|\Delta^s f\| \leq (\omega^2 + \|\rho\|^2)^s \|f\|;
\]

3. \(f \in C^\infty(X) \) and the following Riesz interpolation formula holds

\[
(3.5) \quad (i\Delta)^n f = \left(R_\Delta^{\omega^2+\|\rho\|^2} \right)^n f, \quad n \in \mathbb{N};
\]

4. For every \(g \in L^2(X) \) the function \(t \mapsto \langle e^{it\Delta} f, g \rangle, t \in \mathbb{R} \), is bounded on the real line and has an extension to the complex plane as an entire function of the exponential type \(\omega^2 + \|\rho\|^2 \).
(5) The abstract-valued function \(t \mapsto e^{it\Delta}f \) is bounded on the real line and has an extension to the complex plane as an entire function of the exponential type \(\omega^2 + ||\rho||^2 \).

(6) A function \(f \in L_2(X) \) belongs to the space \(PW_\omega(X) \), \(0 < \omega_f < \infty \), if and only if \(f \) belongs to the set \(C^\infty(X) \), the limit
\[
\lim_{k \to \infty} \|\Delta^k f\|^{1/k}
\]
exists and
\[
\lim_{k \to \infty} \|\Delta^k f\|^{1/k} = \omega_f^2 + ||\rho||^2.
\]

(7) A function \(f \in L_2(X) \) belongs to \(PW_\omega(X) \) if and only if \(f \in C^\infty(X) \) and the upper bound
\[
\sup_{k \in \mathbb{N}} \left((\omega^2 + ||\rho||^2)^{-k} \|\Delta^k f\| \right) < \infty
\]
is finite.

(8) A function \(f \in L_2(X) \) belongs to \(PW_\omega(X) \) if and only if \(f \in C^\infty(X) \) and
\[
\lim_{k \to \infty} \|\Delta^k f\|^{1/k} = \omega^2 + ||\rho||^2 < \infty.
\]
In this case \(\omega = \omega_f \).

(9) The solution \(u(t), t \in \mathbb{R}^1 \), of the Cauchy problem
\[
\frac{\partial u(t)}{\partial t} = \Delta u(t), u(0) = f, i = \sqrt{-1},
\]
has a holomorphic extension \(u(z) \) to the complex plane \(\mathbb{C} \) satisfying
\[
\|u(z)\|_{L_2(X)} \leq e^{(\omega^2 + ||\rho||^2)|z|} \|f\|_{L_2(X)}.
\]

Now we are going to prove the following density result which shows that for every \(\omega > 0 \) the subspace \(PW_\omega(X) \) contains "many" functions.

Theorem 3.2. For every \(\omega > 0 \) and every open set \(V \subset X \) if a function \(f \in C^\infty_0(V) \) is orthogonal to all functions in \(PW_\omega(X) \) then \(f \) is zero.

Proof. Assume that \(f \in C^\infty_0(V) \) is a such function and extend it by zero outside of \(V \). By the Paley-Wiener Theorem and Parseval’s formula the transform \(\hat{f}(\lambda, b) \) is in \(C^\infty(\mathfrak{a}^*_+ \times \mathcal{B}) \) and holomorphic in \(\lambda \) and at the same time should be orthogonal to all functions in \(L_2(\Pi(0, \omega) \times B; |e(\lambda)|^{-2}d\lambda db) \), where \(\Pi(0, \omega) = \{ \lambda \in \mathfrak{a}^*_+ : ||\lambda|| \leq \omega \} \).
It implies that \(\hat{f} \) is zero. The theorem is proved. \(\square \)

3.1. On decay of Paley-Wiener functions. In this section we closely follow Andersen [1]. Let us introduce the following spherical function
\[
\varphi_0(g) = \int_K e^{\mu A(k^{-1}g)}dk = \int_K e^{\mu H(g^{-1}k)}dk.
\]

Definition 3. The \(L_2 \)-Schwartz space \(S^2(X) \) is introduced as the space of all \(f \in C^\infty(X) \) such that
\[
\sup_{x \in X} (1 + |x|)^N \varphi_0(x)^{-1} |Df(x)| \leq \infty, \quad N \in \mathbb{N} \cup 0,
\]
for all \(D \in U(g) \), where \(U(g) \) is the universal enveloping algebra of \(g \). Here \(|x| = |g| \), for \(x = gK \in X \) where \(| \cdot | \) is defined in (2.3).
The space $S^2(X)$ can also be characterized as the space of all functions for which

$$(1 + |g|)^N Df(g) \in L_2(X), \quad N \in \mathbb{N} \cup 0,$$

for all $D \in U(g)$, where $|x| = |g|$, for $x = gK \in X$.

Let $C_0^\infty(a^* \times B)^W$ be a subspace of functions in $C_0^\infty(a^* \times B)$ that satisfy the symmetry condition (2.13) for all $w \in W$, $\lambda \in a^*$, $x \in X$.

The following fact is proved by M. Eguchi in [9], Theorem 4.1.1.

Theorem 3.3. The inverse Helgason-Fourier transform (2.14) maps $C_0^\infty(a^* \times B)^W$ into Schwartz space $S^2(X)$.

In order to give a more detailed statement we will introduce several notations.

Definition 4. The space $PW_S_\omega(X)$ is defined as the set of all functions f in $PW_\omega(X)$ such that for all natural m, n

$$(1 + |x|)^m \Delta^n f(x) \in L_2(X),$$

where $|x| = |g|$, for $x = gK \in X$. The space $PW_S(X)$ is defined as the union

$$\bigcup_{\omega > 0} PW_{S_\omega}(X).$$

We will also need the function subspace $C_\omega^\infty(a^* \times B)$ which is defined as the set of all functions f in $C_0^\infty(a^* \times B)$ for which

$$\sup_{(\lambda, b) \in \text{supp} f} ||\lambda|| = \omega.$$

The space $C_\omega^\infty(a^* \times B)^W$ is a subspace of functions in $C_\omega^\infty(a^* \times B)$ that satisfy symmetry condition (2.13) for all $w \in W$, $\lambda \in a^*$, $x \in X$.

The following theorem was proved by N. B. Andersen in [1], Theorem 5.7.

Theorem 3.4. The inverse Helgason-Fourier transform is a bijection of $C_\omega^\infty(a^* \times B)^W$ onto $PW_{S}(X)$, mapping $C_\omega^\infty(a^* \times B)^W$ onto $PW_{S_\omega}(X)$.

4. Average sampling and almost Parseval frames in Paley-Wiener spaces on Riemannian manifolds

Let $X_r = \{x_k\}$ be a r-lattice and $\{B(x_k, r)\}$ be an associated family of balls that satisfy only properties (1) and (2) of the Lemma 2.1. We define

$$U_1 = B(x_1, r/2) \setminus \bigcup_{i \neq 1} B(x_i, r/4),$$

and

$$U_k = B(x_k, r/2) \setminus \left(\bigcup_{j < k} U_j \cup \bigcup_{i \neq k} B(x_i, r/4) \right).$$

One can verify the following.

Lemma 4.1. The sets $\{U_k\}$ form a disjoint measurable cover of X and

$$(4.1) \quad B(x_k, r/4) \subset U_k \subset B(x_k, r/2)$$

With every U_k we associate a function $\psi_k \in C_0^\infty(U_k)$ and we will always assume that for every k it is not identical zero and

$$(4.2) \quad 0 \leq \psi_k \leq 1,$$

We introduce the following family $\Psi = \{\Psi_k\}$ of functionals Ψ_k on $L_2(X)$:

$$\Psi_k(F) = \frac{1}{|U_k|\psi_k} \int_{U_k} F(x)\psi_k(x) d\mu(x) = \frac{1}{|U_k|\psi_k} \int_{exp^{-1}(U_k)} F(expy_w(x))\psi_k(expy_w(x)) dx,$$
where \(x = (x_1, \ldots, x_d), \) \(dx = dx_1 \ldots dx_d \) and
\[
|U_k| \psi_k = \int_{\exp^{-1}U_k} \psi_k(\exp_{y_k}x)dx = \int_{U_k} \psi_k(x)d\mu(x).
\]

Our local Poincare-type inequality is the following [23].

Lemma 4.2. For \(m > d/2 \) there exist constants \(C = C(X, m) > 0, \) \(r(X, m) > 0, \) such that for any \(r \)-lattice \(X_r \) with \(r < r(X, m) \) and any associated functional \(\Psi_k \) the following inequality holds true for \(f \in H^m(X) \):
\[
(4.3) \quad \| (\varphi_{\nu} f) - \Psi_k((\varphi_{\nu} f)) \|_{L_2(U_k)}^2 \leq C(X, m) \sum_{1 \leq |\alpha| \leq m} r^{2|\alpha|} \| \delta^\alpha (\varphi_{\nu} f) \|_{L_2(B(x_k, r))}^2,
\]
where for \(\alpha = (\alpha_1, \ldots, \alpha_d) \) \(\partial^\alpha f = \partial^{\alpha_1} \ldots \partial^{\alpha_d} f \) is a partial derivative of order \(|\alpha| \) in a fixed geodesic coordinate system \(\exp_{y_k} \) in \(B(y, \lambda) \) (see [23]).

Proof. It is obvious that the following relations hold:
\[
B_{T_{y_k}}(x_k, r/4) = \exp_{y_k}^{-1}B(x_k, r/4) \subset \exp_{y_k}^{-1}U_k \subset \exp_{y_k}^{-1}B(x_k, r) = B_{T_{y_k}}(x_k, r)
\]

For every smooth \(f \) and all \(y = (y_1, \ldots, y_d) \in \exp_{y_k}^{-1}U_k \subset B(x_k, r/2), x = (x_1, \ldots, x_d) \in B(x_k, r/2), \) we have the following
\[
\varphi_{\nu} f(\exp_{y_k}x) = \varphi_{\nu} f(\exp_{y_k}y) + \sum_{1 \leq |\alpha| \leq m-1} \frac{1}{|\alpha|!} \partial^\alpha \varphi_{\nu} f(\exp_{y_k}y)(x-y)^\alpha + \frac{1}{|\alpha|!} \int_0^t t^{m-1} \partial^\alpha \varphi_{\nu} f(\exp_{y_k}(y+t\vartheta))\vartheta^\alpha dt,
\]
where \(\alpha = (\alpha_1, \ldots, \alpha_d), \) \(\alpha! = \alpha_1! \ldots \alpha_d!, \) \((x - y)^\alpha = (x_1 - y_1)^{\alpha_1} \ldots (x_d - y_d)^{\alpha_d}, \)
\(\eta = ||x - y||, \) \(\vartheta = (x - y)/\eta. \)

We multiply this inequality by \(\psi_k(\exp_{y_k}y) \) and integrate over \(\exp_{y_k}^{-1}U_k \subset B_{T_{y_k}}(x_k, r) \) with respect to \(d\mu(y). \) It gives
\[
\varphi_{\nu} f(\exp_{y_k}x) - \Psi_k(\varphi_{\nu} f) = |U_k|^{-1} \psi_k \int_{\exp_{y_k}^{-1}U_k} \left(\sum_{1 \leq |\alpha| \leq m-1} \frac{1}{|\alpha|!} \partial^\alpha \varphi_{\nu} f(\exp_{y_k}y)(x-y)^\alpha \right) \psi_k(\exp_{y_k}y)dy + |U_k|^{-1} \psi_k \int_{\exp_{y_k}^{-1}U_k} \left(\sum_{|\alpha| = m} \frac{1}{(m-1)!} \int_0^t t^{m-1} \partial^\alpha \varphi_{\nu} f(\exp_{y_k}(y+t\vartheta))\vartheta^\alpha dt \right) \psi_k(\exp_{y_k}y)dy,
\]
where
\[
\Psi_k(\varphi_{\nu} f \circ \exp_{y_k}) = \int_{\exp_{y_k}^{-1}U_k} \varphi_{\nu} f \circ \exp_{y_k}(x) \psi_k(\exp_{y_k}(x))dx = \int_{U_k} \varphi_{\nu} f(x) \psi_k(x)d\mu(x) = \Psi_k(\varphi_{\nu} f).
\]

Then since \(\psi_k \geq 0 \)
\[
|\varphi_{\nu} f(\exp_{y_k}x) - \Psi_k(\varphi_{\nu} f)| \leq |U_k|^{-1} \sum_{1 \leq |\alpha| \leq m-1} \frac{1}{|\alpha|!} \int_{\exp_{y_k}^{-1}U_k} |\partial^\alpha \varphi_{\nu} f(\exp_{y_k}y)(x-y)^\alpha| \psi_k(\exp_{y_k}y)dy +
\]
We square this inequality and integrate over $exp_{y_v}^{-1}U_k$:

$$\|\varphi_v f - \Psi_k(\varphi_v f)\|_{L^2(U_k)}^2 = \|\varphi_v f(y_v) - \Psi_k(\varphi_v f)\|_{L^2(exp_{y_v}^{-1}U_k)}^2 \leq C(m)\|U_k\|_{L^2}^{-2} \sum_{1 \leq |\alpha| \leq m-1} \int_{exp_{y_v}^{-1}U_k} \left(\int_{exp_{y_v}^{-1}U_k} |\partial^\alpha \varphi_v f(y_v) (x-y)^\alpha| \psi_k(y_v) dy \right)^2 dx +$$

$$C(m)\|U_k\|_{L^2}^{-2} \sum_{|\alpha|=m} \int_{exp_{y_v}^{-1}U_k} \left(\int_{exp_{y_v}^{-1}U_k} \int_0^\eta t^{m-1} |\partial^\alpha \varphi_v f(y_v) (y_v + t\vartheta)^\alpha| \psi_k(y_v)dy \right)^2 dx =$$

(4.5) \[I + II. \]

Since $exp_{y_v}^{-1}U_k \subset B_{r/2}(x_k, r)$, $x, y \in U$, one has $x - y \in B(x_k, r)$, and an application of the Schwartz inequality gives

$$\int_{exp_{y_v}^{-1}U_k} \left| \partial^\alpha \varphi_v f(y_v) (x-y)^\alpha \right| \psi_k(y_v) dy \leq \rho^{|\alpha|} \|U_k\|_{L^2}^{-1/2} \|\partial^\alpha \varphi_v f \circ exp_{y_v} \|_{L^2(U_k)}.$$

After all we obtain

(4.6) \[I \leq C(X, m) \sum_{1 \leq |\alpha| \leq m-1} \rho^{2|\alpha|} \|\partial^\alpha \varphi_v f \|^2_{L^2(B(x_k, r))}. \]

Another application of the Schwartz inequality gives for $|\alpha| = m$

$$\left(\int_{exp_{y_v}^{-1}U_k} \left. \int_0^\eta t^{m-1} |\partial^\alpha \varphi_v f(y_v) (y_v + t\vartheta)^\alpha| \psi_k(y_v) dy \right| dx \right)^2 \leq$$

$$\left(\int_{exp_{y_v}^{-1}U_k} \psi_k(y_v) dy \right) \left(\int_{exp_{y_v}^{-1}U_k} \int_0^\eta t^{m-1} |\partial^\alpha \varphi_v f(y_v) (y_v + t\vartheta)^\alpha| \psi_k(y_v) dy \right)^2 =$$

$$|U_k|_{\psi_k} \left(\int_{exp_{y_v}^{-1}U_k} \int_0^\eta t^{m-1} |\partial^\alpha \varphi_v f(y_v) (y_v + t\vartheta)^\alpha| \psi_k(y_v) dy \right)^2.$$

By the same Schwartz inequality using the assumption $m > d/2$ one can obtain the following estimate

$$\left(\int_0^\eta t^{m-1} |\partial^\alpha \varphi_v f(y_v) (y_v + t\vartheta)^\alpha| \psi_k(y_v) dy \right)^2 \leq C\eta^{2m-d} \int_0^\eta t^{d-1} |\partial^\alpha \varphi_v f(y_v) (y_v + t\vartheta)|^2 dt.$$

Next,

$$\left(\int_{exp_{y_v}^{-1}U_k} \left. \int_0^\eta t^{m-1} |\partial^\alpha \varphi_v f(y_v) (y_v + t\vartheta)^\alpha| \psi_k(y_v) dy \right| dx \right)^2 \leq$$

$$C \left(\int_{exp_{y_v}^{-1}U_k} \eta^{2m-d} \int_0^\eta t^{d-1} |\partial^\alpha \varphi_v f(y_v) (y_v + t\vartheta)|^2 dt \psi_k(y_v) dy \right)$$

Thus, we have

$$II \leq$$
We will need the inequality (4.9) below. One has for all ψ is not identical to zero. Our Lemma 4.3. (compare to [24], [25]).

\begin{align*}
C \int \frac{r}{2} t^{-d-1} (\int_0^r \eta^{2m-d} |\partial^\alpha \varphi_{\nu} f(x) dx|) \psi_k d\mu(x) & \leq C \int \frac{r}{2} t^{-d-1} (\int_0^r \eta^{2m-d} |\partial^\alpha \varphi_{\nu} f(x) dx|) \psi_k d\mu(x) \\
& \leq \left(1 + \frac{\delta}{3} \right) \|f\|^2 \\
& \leq 2 \|A\| \|f\|^2 + \|A - B\| \|f\|^2, \quad \|A - B\| \leq \alpha^{-1} \|B\|^2, \\
& \alpha > 0.
\end{align*}

We have

\begin{align*}
(1 - \alpha) |\varphi_{\nu} f|^2 & \leq (1 - \alpha) |\varphi_{\nu} f - \Psi_k(\varphi_{\nu} f)|^2 + |\Psi_k(\varphi_{\nu} f)|^2, \\
& \leq \frac{1}{\alpha} |A - B|^2 + |B|^2, \quad 0 < \alpha < 1.
\end{align*}

We introduce the following set of functionals

$$A_k(f) = \sqrt{|U_k|} \Psi_k(f) = \sqrt{|U_k|} \Psi_k \int_{U_k} f(x) \psi_k d\mu(x),$$

where $|U_k| = \int_{U_k} d\mu(x)$, and

$$|U_k| \psi_k = \int_{U_k} \psi_k(x) d\mu(x), \quad \psi_k \in C_0^\infty(U_k),$$

where ψ_k is not identical to zero. Our global Poincare-type inequality is the following (compare to [24], [25]).

\textbf{Lemma 4.3.} For any $0 < \delta < 1$ and $m > d/2$ there exist constants $c = c(X), C = C(X, m)$, such that the following inequality holds true for any r-lattice with $r < c\delta$

\begin{equation}
(1 - 2\delta/3) \|f\|^2 \leq \sum_k |A_k(f)|^2 + C \delta^{-1} \|\Delta^{m/2} f\|^2 \quad \text{for all } f \in H^m(X).
\end{equation}

\textbf{Proof.} We will need the inequality (4.9) below. One has for all $\alpha > 0$

$$|A|^2 = |A - B|^2 + 2|A - B| |B|, \quad 2|A - B| |B| \leq \alpha^{-1} |A - B|^2 + \alpha |B|^2,$$

which imply the inequality

$$(1 + \alpha)^{-1} |A|^2 \leq \alpha^{-1} |A - B|^2 + |B|^2, \quad \alpha > 0.$$

If, in addition, $0 < \alpha < 1$, then one has

$$|A|^2 \leq \frac{1}{\alpha} |A - B|^2 + |B|^2, \quad 0 < \alpha < 1.$$

We have

$$\frac{1}{\alpha} |\varphi_{\nu} f|^2 \leq \frac{1}{\alpha} |\varphi_{\nu} f - \Psi_k(\varphi_{\nu} f)|^2 + |\Psi_k(\varphi_{\nu} f)|^2,$$

and since U_k form a disjoint cover of X we obtain

\begin{align*}
(1 - \alpha) \|\varphi_{\nu} f\|^2_{L^2(B(y_\nu, \lambda/2))} & \leq \sum_k (1 - \alpha) \|\varphi_{\nu} f\|^2_{L^2(U_k)} \\
& \leq \alpha^{-1} \sum_k \|\varphi_{\nu} f - \Psi_k(\varphi_{\nu} f)\|^2_{L^2(U_k)} + \sum_k |U_k| \|\Psi_k(\varphi_{\nu} f)\|^2, \quad |U_k| = \int_{U_k} d\mu(x).
\end{align*}
For $\alpha = \delta/3$ by using (4.3) we have
\[
(1-\delta/3)\|\varphi f\|_{L^2_2(B(y,\lambda/2))}^2 \leq \sum_{k} |U_k| |\Psi_k(\varphi f)|^2 + 3\delta^{-1} \sum_{k} \|\varphi f - \Psi_k(\varphi f)\|_{L^2_2(U_k)}^2 \\
\sum_{k} |U_k| |\varphi f|^2 + 3C\delta^{-1} \sum_{k=1}^{\lfloor \alpha \rfloor} \sum_{\nu \leq \alpha \leq m} r^{2|\alpha|} \|\varphi f\|_{L^2_2(B(x_k,\nu\cdot r))}^2 \\
\sum_{k} |U_k| |\varphi f|^2 + 3CNX \delta^{-1} \sum_{\nu \leq \alpha \leq m} r^{2|\alpha|} \|\varphi f\|_{L^2_2((B(y,\lambda/2)))}^2,
\]
and summation over ν gives
\[
(1-\delta/3)\|f\|_{L^2_2(X)}^2 = (1-\delta/3) \sum_{\nu} \|\varphi f\|_{L^2_2(B(y,\lambda/2))}^2 \\
\sum_{\nu} \sum_{k} |U_k| |\Psi_k(\varphi f)|^2 + 3C\delta^{-1} \sum_{\nu \leq \alpha \leq m} \sum_{j=1}^{m} r^{2j} \|f\|_{H^j(X)}^2 \\
\sum_{\nu} \sum_{k} |U_k| |\varphi f|^2 + 3CNX \delta^{-1} \sum_{\nu \leq \alpha \leq m} \sum_{j=1}^{m} r^{2j} \|f\|_{H^j(X)}^2
\]

The regularity theorem for the elliptic second-order differential operator Δ shows that for all $j \leq m$ there exists a $b = b(X, m)$ such that
\[
\|f\|_{H^j(X)}^2 \leq b \left(\|f\|_{L^2_2(X)}^2 + \|\Delta^{j/2} f\|_{L^2_2(X)}^2 \right), \quad f \in \mathcal{D}(\Delta^{m/2}), \quad b = b(X, m).
\]
Together with the following interpolation inequality which holds for general self-adjoint operators
\[
r^{2j} \|\Delta^{j/2} f\|_{L^2_2(X)}^2 \leq 4a^{m-j} r^{2m} \|\Delta^{m/2} f\|_{L^2_2(X)}^2 + ca^{-j} \|f\|_{L^2_2(X)}^2, \quad c = c(X, m),
\]
for any $a, r > 0, 0 \leq j \leq m$, it implies that there exists a constant $C'' = C''(X, m)$ such that the next inequality holds true
\[
(1-\delta/3)\|f\|_{L^2_2(X)}^2 \leq \sum_{\nu} \sum_{k} |U_k| |\Psi_k(\varphi f)|^2 +
C'' \left(r^{2\delta^{-1}} \|f\|_{L^2_2(X)}^2 + r^{2m\delta^{-1}} \|\Delta^{m/2} f\|_{L^2_2(X)}^2 + a^{-1} \|f\|_{L^2_2(X)}^2 \right),
\]
where $m > d/2$. By choosing $a = (6C''/\delta) > 1$ we obtain, that there exists a constant $C''' = C'''(X, m)$ such that for any $0 < \delta < 1$ and $r > 0$
\[
(1-\delta/2)\|f\|_{L^2_2(X)}^2 \leq \sum_{\nu} \sum_{k} |U_k| |\Psi_k(\varphi f)|^2 + C''' \left(r^{2\delta^{-1}} \|f\|_{L^2_2(X)}^2 + r^{2m\delta^{-1}} \|\Delta^{m/2} f\|_{L^2_2(X)}^2 \right).
\]
The last inequality shows, that if for a given $0 < \delta < 1$ the value of r is choosen such that
\[
r < c\delta, \quad c = \frac{1}{\sqrt{6C'''}, \quad C''' = C'''(X, m),
\]
then we obtain for a $m > d/2$
\[
(1-2\delta/3)\|f\|_{L^2_2(X)}^2 \leq \sum_{\nu} \sum_{k} |U_k| |\Psi_k(\varphi f)|^2 + C''' \delta^{-1} r^{2m} \|\Delta^{m/2} f\|_{L^2_2(X)}^2,
\]
where $|U_k| = \int_{U_k} d\mu(x)$. Lemma is proved.
Definition 5. We introduce the following functions θν,k ∈ C∞(X)

\[\theta_{\nu,k} = \frac{\sqrt{U_k}}{|U_k|\psi_k} \varphi_{\nu}. \]

Thus for any \(f \in L_2(X) \) we have

\[\langle f, \theta_{\nu,k} \rangle = \frac{\sqrt{U_k}}{|U_k|\psi_k} \int_{U_k} f \varphi_{\nu} d\mu(x). \]

Theorem 4.4. There exists a constant \(a_0 = a_0(X) \) such that, if for a given \(0 < \delta < 1 \) and an \(\omega > 0 \) one has

\[r < a_0 \delta^{1/d} (\omega^2 + \|\rho\|_2^2)^{-1/2}, \]

and the weight functions \(\psi_k \) chosen in a way that

\[1 \leq \sup_k \frac{|U_k|}{|U_k|\psi_k} \leq 1 + \delta, \]

then for the corresponding set of functions \(\theta_{\nu,k} \) defined in (4.13) the following inequalities hold

\[(1 - \delta) \|f\|_{L_2(X)}^2 \leq \sum_{\nu} \sum_k |\langle f, \theta_{\nu,k} \rangle|^2 \leq (1 + \delta) \|f\|_{L_2(X)}^2, \]

or

\[(1 - \delta) \|f\|_{L_2(X)}^2 \leq \sum_k |U_k| |\Psi_k(\varphi_{\nu} f)|^2 \leq (1 + \delta) \|f\|_{L_2(X)}^2, \]

where \(0 < \delta < 1, \ f \in PW_\omega(X) \).

Remark 4.5. Note that functions \(\theta_{\nu,k} \) do not belong to \(PW_\omega(X) \). The theorem actually says that projections \(\theta_{\nu,\omega,k} \) of these functions onto \(PW_\omega(X) \) form an almost Parseval frame in \(PW_\omega(X) \).

Proof. By using the Schwartz inequality we obtain for \(f \in L_2(X) \)

\[\sum_{\nu} \sum_k |U_k| |\Psi_k(\varphi_{\nu} f)|^2 = \sum_{\nu} \sum_k \frac{|U_k|}{|U_k|\psi_k} \left| \int_{U_k} \psi_k \varphi_{\nu} f d\mu(x) \right|^2 \leq \]

\[\sum_{\nu} \sum_k \frac{|U_k|}{|U_k|\psi_k} \int_{U_k} |\varphi_{\nu} f|^2 d\mu(x) \leq (1 + \delta) \sum_{\nu} \int_{B(y_{\nu},\lambda)} |\varphi_{\nu} f|^2 d\mu(x) = (1 + \delta) \|f\|_{L_2(X)}^2, \]

where we used the assumption (5.5). According to the previous lemma, there exist \(c = c(X), \ C = C(X) \) such that for any \(0 < \delta < 1 \) and any \(\rho < c\delta \)

\[(1 - 2\delta/3) \|f\|_{L_2(X)}^2 \leq \sum_k |U_k| |\Psi_k(\varphi_{\nu} f)|^2 + Cr^{2d}\delta^{-1} \|\Delta^{d/2} f\|_{L_2(X)}^2. \]

Notice, that if \(f \in PW_\omega(X) \), then the Bernstein inequality holds

\[\|\Delta^{d/2} f\|_{L_2(X)}^2 \leq (\omega^2 + \|\rho\|_2^2)^d \|f\|_{L_2(X)}^2. \]

Inequalities (4.18) and (4.19) show that for a certain \(a_0 = a_0(X) \), if

\[r < a_0 \delta^{1/d} (\omega^2 + \|\rho\|_2^2)^{-1/2}, \]
then
\begin{equation}
(1 - \delta)\|f\|^2_{L^2(X)} \leq \sum_k |U_k|\|\Psi_k(\varphi)f\|^2 \leq (1 + \delta)\|f\|^2_{L^2(X)},
\end{equation}
where \(0 < \delta < 1\), \(f \in PW_\omega(X)\). Theorem is proved.

5. Nearly Parseval Paley-Wiener frames on \(X = G/K\)

5.1. Paley-Wiener almost Parseval frames on \(X = G/K\). Let \(g \in C^\infty(\mathbb{R}_+^\infty)\) be a monotonic function such that \(\text{supp } g \subset [0, 2]\), and \(g(s) = 1\) for \(s \in [0, 1]\), \(0 \leq g(s) \leq 1, s > 0\). Setting \(Q(s) = g(s) - g(2s)\) implies that \(0 \leq Q(s) \leq 1, s \in \text{supp } Q \subset [2^{-1}, 2]\). Clearly, \(\text{supp } Q(2^{-j}s) \subset [2^{-1}, 2^{j+1}], j \geq 1\). For the functions
\begin{equation}
F_0(\lambda, b) = \sqrt{g(|\lambda|)} \otimes 1_B, \quad F_j(\lambda, b) = \sqrt{Q(2^{-j}||\lambda||)} \otimes 1_B, \quad j \geq 1,
\end{equation}
one has
\begin{equation}
\sum_{j \geq 0} F_j^2(\lambda, b) = 1_{\mathbb{R}^n \times B}.
\end{equation}
By using the fact the Helgason-Fourier transform \(F\) and its inverse \(F^{-1}\) are isomorphisms between the spaces \(L^2(X, d\mu(x)) = L^2(X)\) and \(L^2(a_+^\infty \times B, |c(\lambda)|^{-2}d\lambda db)\) and by using the Paseval’s formula we can introduce the following self-adjoint bounded operator for every smooth compactly supported function \(\Phi\) in \(C^\infty_0(\mathbb{R}^n \times B)\)
\begin{equation}
\Phi(\Delta)f = F^{-1}(\Phi(\lambda, b)f(\lambda, b))
\end{equation}
which maps \(L^2(X)\) onto \(PW_{[\omega_1, \omega_2]}(X)\) if \(\text{supp } \Phi \subset [\omega_1, \omega_2]\).

We are using this definition in the case \(F_j^2 = \Phi:\)
\begin{equation}
F_j^2(\Delta)f = F^{-1}_j(\Phi(\lambda, b)f(\lambda, b)).
\end{equation}
Taking inner product with \(f\) we obtain
\begin{equation}
\|F_j(\Delta)f\|^2 = \langle F_j^2(\Delta)f, f \rangle
\end{equation}
and then \(\text{sum}\) gives
\begin{equation}
\|f\|^2 = \sum_{j \geq 0} \langle F_j^2(\Delta)f, f \rangle = \sum_{j \geq 0} \|F_j(\Delta)f\|^2.
\end{equation}

Let \(\theta_{\nu, k}\) be the same as in Definition 5.1 and \(\theta_{\nu, j, k} \in PW_{2j+1}(X)\) be their orthogonal projections on \(PW_{2j+1}(X)\).

According to Theorem 5.4 for a fixed \(0 < \delta < 1\) there exists a constant \(a_0 = a_0(X)\) such that if for \(\omega_j = 2^{j+1}\) and
\begin{equation}
r_j = a_0\delta^{1/d}(\omega^2 + ||\rho||^2)^{-1/2} = a_0\delta^{1/d}(2^{2j+2} + ||\rho||^2)^{-1/2}, \quad j \in \mathbb{N} \cup 0,
\end{equation}
and the weight functions \(\psi_{j, k}\) chosen in a way that
\begin{equation}
1 \leq \sup_{j, k} \frac{|U_{j, k}|}{|U_{j, k}|\psi_{j, k}} \leq 1 + \delta,
\end{equation}
then the set of functions \(\theta_{\nu, j, k} \in PW_{2j+1}(X)\) form a frame in \(PW_{2j+1}(X)\) and
\begin{equation}
(1 - \delta)\|f\|^2 \leq \sum_{\nu} \sum_k |\langle f, \theta_{\nu, j, k} \rangle|^2 \leq (1 + \delta)\|f\|^2,
\end{equation}
where $0 < \delta < 1$, $f \in PW_{2^{j+1}}(X)$. Since $F_j(\Delta)f \in PW_{2^{j+1}}(X)$ we can apply (5.3), (5.4), (5.6) to obtain

$$(5.7) \quad (1 - \delta) \|F_j(\Delta)f\|^2 \leq \sum_{\nu} \sum_k |\langle F_j(\Delta)f, \theta_{\nu,j,k}\rangle|^2 \leq (1 + \delta) \|F_j(\Delta)f\|^2.$$

Since operator $F_j(\Delta)$ is self-adjoint we obtain (via 5.4), that for the functions

$$(5.8) \quad \Theta_{\nu,j,k} = F_j(\Delta)\theta_{\nu,j,k}$$

which belong to $PW_{[2^{j-1}, 2^{j+1}]}(X)$, the following frame inequalities hold

$$(5.9) \quad (1 - \delta)\|f\|^2 \leq \sum_{j \geq 0} \sum_{\nu} \sum_k |\langle f, \Theta_{\nu,j,k}\rangle|^2 \leq (1 + \delta)\|f\|^2, \quad f \in L_2(X).$$

5.2. Space localization of functions $\Theta_{\nu,j,k}$. One has

$$(5.10) \quad \Theta_{\nu,j,k} = F_j(\Delta)\theta_{\nu,j,k} = \sqrt{\frac{U_k}{|U_k|}}\mathcal{F}^{-1}(F_j(\lambda, b)\mathcal{F}\psi_{j,k}\varphi_{\nu}(\lambda, b))$$

Since $\psi_{j,k}$ and φ_{ν} belong to $C_0^\infty(X)$ the Paley-Wiener Theorem for the Helgason-Fourier transform shows that $\mathcal{F}\psi_{j,k}\varphi_{\nu}$ belongs to $\mathcal{H}(\mathbb{R}^n \times \mathcal{B})^W$. Note that F_j belongs to $C_0^\infty(\mathbb{R}^n \times \mathcal{B})$, radial in λ, and independent on $b \in \mathcal{B}$. In other words the function $F_j(\lambda, b)\mathcal{F}\psi_{j,k}\varphi_{\nu}$ belongs to $C_0^\infty(\mathbb{R}^n \times \mathcal{B})^W$ and by the Eguchi Theorem 3.3 the function $\mathcal{F}^{-1}(F_j(\lambda, b)\mathcal{F}\psi_{j,k}\varphi_{\nu})$ belongs to the Schwartz space $S^2(X)$.

To summarize, we proved the frame inequalities (5.9) for any $0 < \delta < 1$, where every function $\Theta_{\nu,j,k}$ belongs to $PW_{[2^{j-2}, 2^{j+2}]}(X) \cap S^2(X)$. The Theorem 1.1 is proved.

6. Besov spaces

We are going to remind a few basic facts from the theory of interpolation and approximation spaces spaces [3, 4, 18].

Let E be a linear space. A quasi-norm $\| \cdot \|_E$ on E is a real-valued function on E such that for any $f, f_1, f_2 \in E$ the following holds true

1. $\|f\|_E \geq 0$;
2. $\|f\|_E = 0 \iff f = 0$;
3. $\|f - g\|_E = \|f\|_E$;
4. $\|f_1 + f_2\|_E \leq CE(\|f_1\|_E + \|f_2\|_E), C_E > 1$.

We say that two quasi-normed linear spaces E and F form a pair, if they are linear subspaces of a linear space \mathcal{A} and the conditions $\|f_k - g\|_E \rightarrow 0$, and $\|f_k - h\|_F \rightarrow 0$, $f_k, g, h \in \mathcal{A}$, imply equality $g = h$. For a such pair E, F one can construct a new quasi-normed linear space $E \cap F$ with quasi-norm

$$\|f\|_{E \cap F} = \max (\|f\|_E, \|f\|_F)$$

and another one $E + F$ with the quasi-norm

$$\|f\|_{E + F} = \inf_{f = f_0 + f_1, f_0 \in E, f_1 \in F} (\|f_0\|_E + \|f_1\|_F).$$
All quasi-normed spaces H for which $E \cap F \subset H \subset E+F$ are called intermediate between E and F. A group homomorphism $T : E \to F$ is called bounded if
\[\|T\| = \sup_{f \in E, f \neq 0} \|Tf\|_F/\|f\|_E < \infty.\]

One says that an intermediate quasi-normed linear space H interpolates between E and F if every bounded homomorphism $T : E + F \to E + F$ which is a bounded homomorphism of E into E and a bounded homomorphism of F into F is also a bounded homomorphism of H into H.

On $E + F$ one considers the so-called Peetre’s K-functional
\[(6.1) \quad K(f, t) = K(f, t, E, F) = \inf_{f = f_0 + f_1, f_0 \in E, f_1 \in F} (\|f_0\|_E + \|f_1\|_F).\]

The quasi-normed linear space $(E, F)_{\theta, q}^K, 0 < \theta < 1, 0 < q \leq \infty$, or $0 \leq \theta \leq 1, q = \infty$, is introduced as a set of elements f in $E + F$ for which
\[(6.2) \quad \|f\|_{\theta, q} = \left(\int_0^\infty (t^{-\theta} K(f, t))^q \frac{dt}{t} \right)^{1/q}.\]

It turns out that $(E, F)_{\theta, q}^K, 0 < \theta < 1, 0 < q \leq \infty$, or $0 \leq \theta \leq 1, q = \infty$, with the quasi-norm (6.2) interpolates between E and F.

Let us introduce another functional on $E + F$, where E and F form a pair of quasi-normed linear spaces
\[(E, F) = \inf_{g \in F, \|g\|_F \leq t} \|f - g\|_E.\]

Definition 6. The approximation space $\mathcal{E}_{\alpha, q}(E, F), 0 < \alpha < \infty, 0 < q \leq \infty$ is a quasi-normed linear spaces of all $f \in E + F$ with the following quasi-norm
\[(6.3) \quad \left(\int_0^\infty (t^\alpha \mathcal{E}(f, t))^q \frac{dt}{t} \right)^{1/q}.\]

Theorem 6.1. Suppose that $\mathcal{T} \subset F \subset E$ are quasi-normed linear spaces and E and F are complete.

If there exist $C > 0$ and $\beta > 0$ such that for any $f \in F$ the following Jackson-type inequality is verified
\[(6.4) \quad t^\beta \mathcal{E}(t, f, E, F) \leq C \|f\|_F, t > 0,
\]
then the following embedding holds true
\[(6.5) \quad (E, F)_{\theta, q}^K \subset \mathcal{E}_{\theta\beta, q}(E, \mathcal{T}), 0 < \theta < 1, 0 < q \leq \infty.\]

If there exist $C > 0$ and $\beta > 0$ such that for any $f \in \mathcal{T}$ the following Bernstein-type inequality holds
\[(6.6) \quad \|f\|_F \leq C \|f\|_{\mathcal{T}}^\beta \|f\|_E
\]
then
\[(6.7) \quad \mathcal{E}_{\theta\beta, q}(E, \mathcal{T}) \subset (F, F)_{\theta, q}^K, 0 < \theta < 1, 0 < q \leq \infty.\]

Now we return to the situation on X. The inhomogeneous Besov space $\mathbb{B}_{2,q}^\alpha(X)$ is introduced as an interpolation space between the Hilbert space $L_2(X)$ and Sobolev space $H^r(X)$ where r can be any natural number such that $0 < \alpha < r, 1 \leq q \leq \infty$. Namely, we have
\[\mathbb{B}_{2,q}^\alpha(X) = (L_2(X), H^r(X))_{\theta, q}^K, 0 < \theta = \alpha/r < 1, 1 \leq q \leq \infty.\]
where K is the Peetre’s interpolation functor.

We introduce a notion of best approximation

$$
\mathcal{E}(f, \omega) = \inf_{g \in PW_\omega(X)} \| f - g \|_{L^2(X)}.
$$

Our goal is to apply Theorem 6.1 in the situation where E is the linear space $L^2(X)$ with its regular norm, F is the Sobolev space $H^r(X)$, with the graph norm $(I + \Delta)^{r/2}$, and $T = PW_\omega(X)$ which is equipped with the quasi-norm

$$
\| f \|_T = \sup \{ |\lambda| : (\lambda, b) \in \text{supp} \hat{f} \}.
$$

By using Plancherel Theorem it is easy to verify a generalization of the Bernstein inequality for Paley-Wiener functions $f \in PW_\omega(X)$:

$$
\| \Delta^r f \|_{L^2(X)} \leq \omega^r \| f \|_{L^2(X)}, \quad r \in \mathbb{R}^+,
$$

and an analog of the Jackson inequality:

$$
\mathcal{E}(f, \omega) \leq \omega^{-r} \| \Delta^r f \|_{L^2(X)}, \quad r \in \mathbb{R}^+.
$$

These two inequalities and Theorem 6.1 imply the following result (compare to [21], [28]-[30]).

Theorem 6.2. The norm of the Besov space $B^{\alpha, q}_{2, q}(X)$, $\alpha > 0$, $1 \leq q \leq \infty$ is equivalent to the following norm

$$
\| f \|_{L^2(X)} + \left(\sum_{k=0}^{\infty} \left(2^{k\alpha} \mathcal{E}(f, 2^k) \right)^q \right)^{1/q}.
$$

Let function F_j be the same as in subsection 5.1 and

$$
F_j(\Delta) : L^2(X) \to PW_{2^{j-1}, 2^{j+1}}(X), \quad \| F_j(\Delta) \| \leq 1.
$$

Theorem 6.3. The norm of the Besov space $B^{\alpha, q}_{2, q}(X)$ for $\alpha > 0$, $1 \leq q \leq \infty$ is equivalent to

$$
\left(\sum_{j=0}^{\infty} \left(2^{j\alpha} \| F_j(\Delta) f \|_{L^2(X)} \right)^q \right)^{1/q},
$$

with the standard modifications for $q = \infty$.

Proof. In the same notations as above the following version of Calderón decomposition holds:

$$
\sum_{j \in \mathbb{N}} F_j(\Delta) f = f, \quad f \in L^2(X).
$$

We obviously have

$$
\mathcal{E}(f, 2^k) \leq \sum_{j > k} \| F_j(\Delta) f \|_{L^2(X)}.
$$

By using the discrete Hardy inequality [4] we obtain the estimate

$$
\| f \| + \left(\sum_{k=0}^{\infty} \left(2^{k\alpha} \mathcal{E}(f, 2^k) \right)^q \right)^{1/q} \leq C \left(\sum_{j=0}^{\infty} \left(2^{j\alpha} \| F_j(\Delta) f \|_{L^2(X)} \right)^q \right)^{1/q}
$$

Conversely, for any $g \in PW_{2^{j-1}}(X)$ we have

$$
\| F_j(\Delta) f \|_{L^2(X)} = \| F_j(\Delta) (f - g) \|_{L^2(X)} \leq \| f - g \|_{L^2(X)}.$$
It gives the inequality
\[\| F_j(\Delta) f \|_{L^2(X)} \leq E(f, 2^{j-1}), \]
which shows that the inequality opposite to (6.12) holds. This completes the proof. \[\square\]

Theorem 6.4. The norm of the Besov space \(B^{\alpha}_{2,q}(X) \) for \(\alpha > 0, 1 \leq q \leq \infty \) is equivalent to
\[
\left(\sum_{j=0}^{\infty} 2^{j\alpha q} \left(\sum_{\nu,k} |\langle f, \Theta_{\nu,j,k} \rangle|^2 \right)^{q/2} \right)^{1/q},
\]
with the standard modifications for \(q = \infty \).

Proof. According to (5.7) we have
\[
(6.14) \quad (1 - \delta) \| F_j(\Delta) f \|_{L^2(X)}^2 \leq \sum_{\nu,k} |\langle F_j(\Delta) f, \theta_{\nu,j,k} \rangle|^2 \leq (1 + \delta) \| F_j(\Delta) f \|_{L^2(X)}^2,
\]
where \(F_j(\Delta) f \in PW_{2^{j+1}}(X) \). Since \(\Theta_{\nu,j,k} = F_j(\Delta) \theta_{\nu,j,k} \) we obtain for any \(f \in L^2(X) \)
\[
\frac{1}{1 + \delta} \sum_{\nu,k} |\langle f, \Theta_{\nu,j,k} \rangle|^2 \leq \| F_j(\Delta) f \|_{L^2(X)}^2 \leq \frac{1}{1 - \delta} \sum_{\nu,k} |\langle f, \Theta_{\nu,j,k} \rangle|^2.
\]
Theorem is proved. \[\square\]

References

1. N. Andersen, *Real Paley-Wiener theorem for the inverse Fourier transform on a Riemannian symmetric space*, Pacific J. Math., 213 (2004), 1-13.
2. M. Birman and M. Solomyak, *Spectral theory of selfadjoint operators in Hilbert space*, D.Reidel Publishing Co., Dordrecht, 1987.
3. J. Bergh, J. Lofsström, *Interpolation spaces*, Springer-Verlag, 1976.
4. P. Butzer, H. Berens, *Semi-Groups of operators and approximation*, Springer, Berlin, 1967.
5. M. Calixto, J. Guerrero, J. C. Sanchez-Monreal, *Sampling theorem and discrete Fourier transform on the hyperboloid*, J. Fourier Anal. Appl. 17 (2011), no. 2, 240-264.
6. T. Coulhon, G. Kerkyacharian, P. Petrushev, *Heat kernel generated frames in the setting of Dirichlet spaces*, arXiv:1206.0463.
7. M. Ebata, M. Eguchi, S. Koizumi, K. Kumahara, On sampling formulas on symmetric spaces, J. Fourier Anal. Appl. 12 (2006), no. 1, 1–15.
8. M. Ebata, M. Eguchi, S. Koizumi, K. Kumahara, Analogues of sampling theorems for some homogeneous spaces, Hiroshima Math. J. 36 (2006), no. 1, 125–140.
9. M. Eguchi, Asymptotic expansions of Eisenstein integrals and Fourier transform on symmetric spaces, J. Funct. Anal., 34 (1979), 167-216.
10. H. Feichtinger, I. Pesenson, Iterative recovery of band limited functions on manifolds, Contemp. Math., 2004, 137-153.
11. H. Feichtinger, I. Pesenson, A reconstruction method for band-limited signals on the hyperbolic plane, Samp. Theory Signal Image Process., 4 (2005), no. 2, 107-119.
12. D. Geller and A. Mayeli, Nearly Tight Frames and Space-Frequency Analysis on Compact Manifolds (2009), Math. Z. 263 (2009), 235-264.
13. D. Geller and A. Mayeli, Besov spaces and frames on compact manifolds, Indiana Univ. Math. J. 58 (2009), no. 5, 2003-2042.
14. D. Geller and D. Marinucci, Mixed needlets, J. Math. Anal. Appl. 375 (2011), no. 2, 610-630.
15. D. Geller and I. Pesenson, Band-limited localized Parseval frames and Besov spaces on compact homogeneous manifolds, J. Geom. Anal. 21 (2011), no. 2, 334-37.
16. E. Hebey, *Sobolev Spaces on Riemannian Manifolds*, Springer-Verlag, Berlin, Heidelberg, 1996.

17. S. Helgason, *Groups and Geometric Analysis*, Pure and Applied Mathematics, 113. Academic Press, Inc., Orlando, FL, 1984. xix+654 pp. ISBN: 0-12-338301-3.

18. S. Krein, Y. Petunin, E. Semenov, *Interpolation of linear operators*, Translations of Mathematical Monographs, 54. AMS, Providence, R.I., 1982.

19. F.J. Narcowich, P. Petrushev and J. Ward, *Localized Tight frames on spheres*, SIAM J. Math. Anal. 38, (2006), 574-594.

20. A. Pasquale, *A Paley-Wiener theorem for the inverse spherical transform*, Pacific J. Math., 193 (2000), 143-176.

21. I. Pesenson, *The Best Approximation in a Representation Space of a Lie Group*, Dokl. Akad. Nauk USSR, v. 302, No 5, pp. 1055-1059, (1988) (Engl. Transl. in Soviet Math. Dokl., v.38, No 2, pp. 384-388, 1989.)

22. I. Pesenson, *Reconstruction of Paley-Wiener functions on the Heisenberg group*, Voronezh Winter Mathematical Schools, 207-216, Amer. Math. Soc. Transl. Ser. 2, 184, Amer. Math. Soc., Providence, RI, 1998.

23. I. Pesenson, *Sampling of Paley-Wiener functions on stratified groups*, J. of Fourier Analysis and Applications 4 (1998), 269–280.

24. I. Pesenson, *A sampling theorem on homogeneous manifolds*, Trans. Amer. Math. Soc. 352 (2000), no. 9, 4257–4260.

25. I. Pesenson, *Poincare-type inequalities and reconstruction of Paley-Wiener functions on manifolds*, J. of Geometric Analysis, 14 (1), (2004), 101-121.

26. I. Pesenson, *Deconvolution of band limited functions on symmetric spaces*, Houston J. of Math., 32, No. 1, (2006), 183-204.

27. I. Pesenson, *Frames in Paley-Wiener spaces on Riemannian manifolds*, in Integral Geometry and Tomography, Contemp. Math., 405, AMS, (2006), 137-153.

28. I. Pesenson, *A Discrete Hilgason-Fourier Transform for Sobolev and Besov functions on noncompact symmetric spaces*, Contemp. Math., 464, AMS, (2008), 231-249.

29. I. Pesenson, *Paley-Wiener approximations and multiscale approximations in Sobolev and Besov spaces on manifolds*, J. of Geometric Analysis, 4, (1), (2009), 101-121.

30. I. Pesenson, M. Pesenson, *Approximation of Besov vectors by Paley-Wiener vectors in Hilbert spaces*, Approximation Theory MIII: San Antonio 2010 (Springer Proceedings in Mathematics), by Marian Neamtu and Larry Schumaker, 249-263.

31. I. Pesenson, *Localized Bandlimited nearly tight frames and Besov spaces on domains in Euclidean spaces*, submitted, arXiv:1208.5165v1.

32. H. Triebel, *Spaces of Hardy-Sobolev-Besov type on complete Riemannian manifolds*, Ark. Mat. 24, (1986), 299-337.

33. H. Triebel, *Function spaces on Lie groups*, J. London Math. Soc. 35, (1987), 327-338.

34. H. Triebel, *Theory of function spaces II*, Monographs in Mathematics, 84. Birkhauser Verlag, Basel, 1992.