Chemicals to enhance microalgal growth and accumulation of high-value bioproducts

Xinheng Yu1,2,3, Lei Chen1,2,3 and Weiwen Zhang1,2,3 *

1 Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
2 Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
3 SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, China

INTRODUCTION

Microalgae are autotrophic organisms, which utilize light energy, and inorganic nutrients such as CO₂, nitrogen and phosphorus, to generate biomass and synthesize valuable metabolites. Some algal species cultivated under stress conditions accumulate specific secondary metabolites (i.e., pigments, vitamins, or lipids), which are high-value bioproducts that can be applied in the cosmetic, food, or pharmaceutical sectors (Skjanes et al., 2013). In contrast to higher plants that contain large amount of cellulose and hemicellulose, larger portion of algal biomass can be directly converted into biofuels or other high-value bioproducts via downstream processes (Wijffels et al., 2010; Vanthoor-Koopmans et al., 2013; Yen et al., 2013). One well-known area of such applications is the production of pharmaceutically and high-value industrial chemicals to trigger or enhance cell growth and accumulation of bioproducts. Herein, we summarized recent progresses in applying chemical triggers or enhancers to improve cell growth and accumulation of bioproducts in algal cultures. Based on their enhancing mechanisms, these chemicals can be classified into four categories: chemicals regulating biosynthetic pathways, chemicals inducing oxidative stress responses, phytohormones and analogs regulating multiple aspects of microagal metabolism, and chemicals directly as metabolic precursors. Taken together, the early researches demonstrated that the use of chemical stimulants could be a very effective and economical way to improve cell growth and accumulation of high-value bioproducts in large-scale cultivation of microalgae.

Keywords: chemicals, microalgae, growth, accumulation, bioproducts

Photosynthetic microalgae have attracted significant attention as they can serve as important sources for cosmetic, food and pharmaceutical products, industrial materials and even biofuel biodiesels. However, current productivity of microalgae-based processes is still very low, which has restricted their scale-up application. In addition to various efforts in strain improvement and cultivation optimization, it was proposed that the productivity of microalgae-based processes can also be increased using various chemicals to trigger or enhance cell growth and accumulation of bioproducts. Herein, we summarized recent progresses in applying chemical triggers or enhancers to improve cell growth and accumulation of bioproducts in algal cultures. Based on their enhancing mechanisms, these chemicals can be classified into four categories: chemicals regulating biosynthetic pathways, chemicals inducing oxidative stress responses, phytohormones and analogs regulating multiple aspects of microalgae metabolism, and chemicals directly as metabolic precursors. Taken together, the early researches demonstrated that the use of chemical stimulants could be a very effective and economical way to improve cell growth and accumulation of high-value bioproducts in large-scale cultivation of microalgae.

MINI REVIEW ARTICLE

doi: 10.3389/fmicb.2015.00056
published: 17 February 2015

www.frontiersin.org
Table 1 | Summary of chemicals used in enhancing growth and product accumulation in microalgae.

Species	Products	Chemicals	Reference
Haematococcus pluvialis	Astaxanthin	2, 4-Epibrassinolide (EBR)	Gao et al. (2013b)
Chlorella vulgaris	Biomass	Brassinosteroids (BRs)	Bajguz and Piotrowska-Niczyporuk (2013)
Haematococcus pluvialis	Astaxanthin	Jasmonic acid (JA)	Gao et al. (2012b)
Haematococcus pluvialis	Astaxanthin	Salicylic acid (SA)	Gao et al. (2012a)
Haematococcus pluvialis	Astaxanthin	Methyl jasmonate (MJ), gibberellic acid (GA3)	Ly et al. (2010)
Microcystis aeruginosa	Biomass	Polycyclic aromatic hydrocarbons	Zhu et al. (2012)
Chlorella zofingiensis	Astaxanthin	Pyruvate, citrate, and malic acid	Chen et al. (2009)
Haematococcus pluvialis	Astaxanthin	Gibberellic acid (GA3)	Gao et al. (2013a)
Haematococcus pluvialis	Astaxanthin	Salicylic acid (SA), methyl jasmonate (MJ)	Vidhyavathi et al. (2008)
Schizochytrium sp. HX-308	DHA	Ethanol, sodium acetate, malic acid	Ren et al. (2009)
Chlorella vulgaris	Biomass	Indomethacin (IM)	Piotrowska et al. (2008)
Haematococcus pluvialis	Astaxanthin	Fe, sodium acetate	Kobayashi et al. (1993), Choi et al. (2002), Li et al. (2008), Wang et al. (2009), Su et al. (2014)
Synechocystis sp. PCC680,	Biomass, lipid, and fatty acid composition	Ethanolamine	Cheng et al. (2012)
Anabaena sp PCC7120, Scenedesmus obliquus			
Haematococcus pluvialis	Astaxanthin	MethylenediethylMB, methyl viologen (MV), H2O2, 2,2′-azobis(2-aminopropanediol)-dihydrochloride (AAPH)	Kobayashi et al. (1993), Rioboo et al. (2011)
Chlorococcum sp.	Astaxanthin	H2O2, methyl viologen (MV), Fe	Ma and Chen (2001a)
Chlorella zofingiensis	Astaxanthin	H2O2 and NaClO	Ip and Chen (2005)
Haematococcus pluvialis	Carotenoid	Sodium acetate, sodium chloride, Fe, methyl viologen (MV)	Steinbrenner and Linden (2001)
Dunaliella salina	β-carotene	Fe, cate, malonate	Mojaat et al. (2008)
Chlorococcum sp.	Free trans-astaxanthin	H2O2	Ma and Chen (2001b)
Chlorella sorokiniana	Biomass and lipid	2-phenyleic acid (PAA), Indole butyric acid (IBA), 1-naphthalenecetic acid (NAA), Gibberellic acid (GA3), Zeatin, thidiazuron, Humic acid, Kelp extracts, Methanol, Fe, Putrescine, Superimine	Hunt et al. (2010)
Species	Products	Chemicals	Reference
---------	----------	-----------	-----------
Chlorella pyrenoidosa	Biomass	Kinetin, gibberellic acid (GA3), indole acetic acid (IAA)	Vance (1987)
Chlorella pyrenoidosa	Biomass and carotenoids	Indole butyric acid (IBA), indole acetic acid (IAA), indole-3-lactic acid, tryptamine, 2-(2,4-dichlorophenoxy) acetic acid (2,4-D), naphthaleneacetic acid (NAA), N-6-benzylaminopurine, N-6-furfurylamino-purine, allantoin (AT)	Czerpak and Bajguz (1997)
Chlorella vulgaris	Biomass	Brassinosteroids (BRs)	Bajguz and Czerpak (1996)
Chlorella vulgaris	Biomass	Salicylic acid (SA)	Czerpak et al. (2002)
Chlorella vulgaris	Biomass	Diamines, polyamines	Czerpak et al. (2003)
Monoraphidium convolutum and *Monoraphidium minutum*	Biomass	Humic substances	Karasyova et al. (2007)
Chlamydomonas reinhardtii and *Chlorella vulgaris*	Lipid	Brefeldin A	Kim et al. (2013)
Spirulina platensis	Total carotenoids and α-tocopherol, glutathione (GSH), and ascorbic acid (AsA)	H$_2$O$_2$	Abd El-Baky et al. (2009)
Dunaliella salina	Biomass and glycerol	Copper	Lustigman et al. (1987)
Haematococcus pluvialis	Biomass and astaxanthin	Fe$^{2+}$-EDTA, Fe$^{3+}$-EDTA, Fe(OH)$_3$$^{2+}$x and Re$_6H_8O_7$	Cai et al. (2009)
Spirulina platensis	Biomass and free proline concentration	2-(2,4-dichlorophenoxy) acetic acid (2,4-D)	Saygideger and Deniz (2008)
Chlorella vulgaris and *Spirulina platensis*	Biomass	2, 4-Epibrassinolide (EBR)	Saygideger and Okkay (2008)
Chlorella pyrenoidosa	Biomass	Anthranilic acid, tryptamine, 2-phenylacetic acid (PAA), 2-(2,4-dichlorophenoxy) acetic acid (2,4-D), naphthaleneacetic acid (NAA), naphthyl-3-sulphonic acid, indole acetic acid (IAA)	Czerpak et al. (1994)

(Continued)
Table 1 | Continued

Species	Products	Chemicals	Reference
Haematococcus pluvialis	Carotenoids	Abscisic acid (ABA) and its analogs	Kobayashi et al. (1997, 1998)
Selenastrum capricornutum	Biomass	Ethyl 2-methyl acetoacetate (EMA)	Hong et al. (2008)
Nannochloropsis salina, Nannochloropsis oculata, Nannochloris sp. and Phaeodactylum tricornutum	Lipid	Multiple chemical triggers (Forskolin, quinacrine, butyl hydroxy anisd [BHA], epigallocatechin gallate etc.)	Franz et al. (2013)
Chlamydomonas reinhardtii	Biomass and fatty acid	Indole acetic acid (IAA), gibberellic acid (GA3), kinetin, 1-triacontanol, abscisic acid	Park et al. (2013)
Synechocystis PCC 6803	Biomass and lipid	Callitrepinone	Patel et al. (2013)
Nostoc muscorum and Tolypothrix tenuis	Biomass	2-phenylacetic acid (PAA)	Ahmad and Winter (1970)
Chlorella vulgaris	Biomass	Zeatin	Piotrowska and Czerpak (2009)
Scenedesmus obliquus	Biomass	Methanol	Theodoridou et al. (2002), Navakoudis et al. (2007)
Chlorella minutissima	Biomass	Methanol	Kotzabasis et al. (1999)
Chlorella vulgaris	Lipid	Fe	Liu et al. (2008)
Dunaliella primolecta	Biomass	Diamines and polyamines	Hourmant et al. (1994)
PHYTOHORMONES AND ANALOGS REGULATING MULTIPLE ASPECTS OF METABOLISM

TARGETING ON BIOSYNTHETIC PATHWAYS OF HIGH-VALUE PRODUCTS

It has been established that plants have developed a broad spectrum of molecular mechanisms to resist unfavorable environmental perturbations (Ren et al., 2009). Microalgae that share the evolutionary merits with plants also have mechanisms to deal with various environmental stress. One well-studied example is antioxidant pigment astaxanthin that plays a critical role in response to various stress conditions, such as high light, salinity, nutrient stress, and high carbon/nitrogen ratio, in chlorophyceae Haematococcus pluvialis (Tripathi et al., 1999; Sarada et al., 2002).

The pathway of astaxanthin synthesis in H. pluvialis has been deciphered (Grünewald et al., 2006; Vidhyavathi et al., 2008) and several biosynthetic genes related to carotenoid pigments have also been cloned and characterized (Lotan and Hirschberg, 1995; Sun et al., 1998; Linden, 1999; Steinbrenner and Linden, 2003; Huang et al., 2006). To increase the astaxanthin productivity, chemicals as metabolism enhancers were also evaluated recently. In one study, Lu et al. (2010) reported that gibberellic acid (GA3) and methyl jasmonate (MJ) played roles in regulating gene expression of bkt that catalyzes β-carotene to canthaxanthin in the astaxanthin biosynthetic pathway (Lu et al., 2010). More recently, Gao et al. (2012a,b, 2013a,b) found that 5-ppm IAA up-regulated the transcriptional expression of psds, crt-R-B, and lyc of the astaxanthin biosynthetic pathway (>10-fold up-regulation) the most, while 50 μg/mL JA impacted the transcriptional expression of ipi-1, ipi-2, psy, crtR-B, and crtO than on psds, lyc, and bkt2 more significantly (Gao et al., 2012b). Based on a correlation analysis between their maximum mRNA transcripts of five carotenoid genes and astaxanthin production, Li et al. (2010) proposed that multiple regulatory mechanisms at transcriptional, translational, and post-translational levels of astaxanthin biosynthetic genes co-existed in controlling the overall carotenogenesis process in H. pluvialis (Li et al., 2010). Interestingly, different modes of regulation can be issued by the same chemical in H. pluvialis, such as JA that up-regulated psy, psds, crtR-B, lyc, bkt, and crtO genes at the transcriptional level, and up-regulated ipi-1 and ipi-2 genes at both transcriptional and post-transcriptional levels, respectively; and SA up-regulated ipi-1, ipi-2, psy, crtR-B, bkt, and crtO gene at the transcriptional level, and lyc at the post-transcriptional level and psds at both levels, respectively (Gao et al., 2012a,b).

INDUCING OXIDATIVE STRESS RESPONSES

Photosynthetic algae, like higher plants, generate reactive oxygen species (ROS) through chloroplast photosynthesis and mitochondrial respiration under stress condition, and ROS will then be used as signal molecules to initiate production and accumulation of many bioproducts (Asada, 1994). The effects of SA and MJ on the antioxidant systems in H. pluvialis were investigated, and the results showed that at low concentrations, 100 μM SA increased astaxanthin content to 6.8-fold under low light (30 μmol m$^{-2}$ s$^{-1}$), while 10 μM MJ showed marginal increase in astaxanthin. However, at high concentration of 500 μM, both SA and MJ reduced the growth of microalgae and inhibited astaxanthin accumulation. Further mechanism analysis showed that SA at high concentrations increased superoxide dismutase activity to 4.5- and 3.3-fold and ascorbate peroxidase (APX) activity to 15.5- and 7.1-fold under low and high light, respectively, while MJ increased catalase activity (1.4-fold) under high light and APX activity (5.4-fold) under low light, suggesting the low astaxanthin accumulation may be due to the free radicals being scavenged (Raman and Ravi, 2010).

REGULATING OTHER ASPECTS OF CELLULAR METABOLISM

Phytohormones are signal molecules synthesized by plants, and capable of efficiently regulating cellular metabolism at very low concentrations (Park et al., 2013). The application of phytohormones to improve growth and productivity has been reported, and the results with Chlorella species showed that use of natural and synthetic auxins, as well as their precursors, have considerable effects on algal growth and biomass composition (Czerpak et al., 1994, 1999; Czerpak and Baiguz, 1997; Hunt et al., 2010). In addition, a combination of chemicals from within the auxin family as well as with that of other families, such as 5 ppm 1-naphthaleneacetic acid (NAA) + 10 ppm GA3 + 1 ppm zeatin (ZT), dramatically increased biomass productivity by 170% over the control in Chlorella sorokiniana (Hunt et al., 2010). Another study investigated the effects of phytohormones on microalgal growth and oil accumulation for biodiesel production in Chlamydomonas reinhardtii. The results indicated that all five of the tested phytohormones (i.e., indole-3-acetic acid, gibberellic acid, kinetin, 1-triacontanol, and abscisic acid) promoted cell growth. In particular, hormone treatment increased biomass production by 54–69% relative to the control growth medium, demonstrating their values in decreasing cost of commercial biodiesel production (Park et al., 2013).

Brassinosteroids (BRs) are hydroxylated derivatives of 5-cholestan-3-ol and important plant growth regulators in multiple developmental processes, such as cell division and cell elongation (Bajguz and Czerpak, 1996; Bajguz and Tretyn, 2003). A recent study found that BRs cooperated synergistically with auxins in stimulating cell proliferation and endogenous accumulation of proteins, chlorophylls, and monosaccharides in C. vulgaris (Bajguz and Piotrowska-Niczyporuk, 2013).

In terms of the molecular mechanisms, auxins and their analogs have been found to affect photosynthetic efficiency and CO$_2$ fixation in microalgae. For example, a study showed that auxins had incentive effects on reactions of binding CO$_2$ to 1, 5-bisphosphoribulose and photosynthetic phosphorylation. As expected, the increase in intensity of photosynthesis reactions correlated well with higher contents of chlorophylls, phytohtins, and total carotenoids in cells treated with indomethacin that shares structural similarity with natural auxins (Piotrowska et al., 2008). Other studies also indicated that low concentrations of synthetic auxins, such as 2-(2,4-dichlorophenoxy) acetic acid (2,4-D), NAA and 2-phenylacetic acid (PAA), stimulated the photosynthetic rate and chlorophylls as well as carotenoids synthesis in green

www.frontiersin.org

February 2015 | Volume 6 | Article 56 | 5
algaes *C. pyrenoidosa*, *Scenedesmus acuminatus*, and *S. quadricauda* (Czerpak et al., 1994, 1999, 2002; Wong, 2000).

Diamines and polyamines are polycation nitrogen compounds presented in almost all prokaryotic and eukaryotic microorganisms and belonged to specific cellular regulators of growth and metabolism (Rayle and Cleland, 1992). The study showed that in *C. vulgaris* treated with diamines and polyamines, the content of monosaccharides, primary products of Calvin cycle were intensively stimulated on 3 days of *C. vulgaris* culture, while chlorophyll content was enhanced on 9 days of *C. vulgaris* culture, indicating that the amines stimulated the dark phase of photosynthesis in the young cells, and the light synthesis phase in aging cells, respectively (Czerpak et al., 2003).

An acid growth theory has been proposed to explain the cell elongation triggered by auxins in plant cells, which refers to the auxin-induced acidification of free space in cell wall. The decrease of pH enhances the plasticity of cell wall thus contributes to the increased elongation rate of the plant tissues, and the phenomenon is presumably related to the activation of membrane-binding proton pumps by auxin (Rayle and Cleland, 1992; Hobbie et al., 1994). A study with algal *C. vulgaris* also showed that BR-stimulated cell growth depended at least partly on acid growth theory (Bajguz and Czerpak, 1996).

Cell phase and mitosis regulated by phytohormones was also reported in microalgae. A recent study showed that NAA (30 ppm) treatment stimulated higher biomass productivity between days 5 and 10 while PAA (5 ppm) treatment affected on the first 5 days in *C. sorokiniana*, suggesting that NAA might prolong exponential phase and PAA might short initial lag phase before initiation of cell division. The combination of NAA (5 ppm) + PAA (30 ppm) showed 104% increase of biomass and demonstrated that auxins enhanced biomass growth by reducing generation time thus contributing to reducing generation time (Hunt et al., 2010). Another study on the synchronous culture of *C. pyrenoidosa* showed that the time to incipient cell division was reduced by GA and 6-furfurylaminopurine, suggesting these two phytohormones had increased elongation rate of the plant tissues, and the phenomenon is presumably related to the activation of membrane-binding proton pumps by auxin (Rayle and Cleland, 1992; Hobbie et al., 1994). A study with algal *C. vulgaris* also showed that BR-stimulated cell growth depended at least partly on acid growth theory (Bajguz and Czerpak, 1996).

Cell phase and mitosis regulated by phytohormones was also reported in microalgae. A recent study showed that NAA (30 ppm) treatment stimulated higher biomass productivity between days 5 and 10 while PAA (5 ppm) treatment affected on the first 5 days in *C. sorokiniana*, suggesting that NAA might prolong exponential phase and PAA might short initial lag phase before initiation of cell division. The combination of NAA (5 ppm) + PAA (30 ppm) showed 104% increase of biomass and demonstrated that auxins enhanced biomass growth by reducing generation time thus contributing to reducing generation time (Hunt et al., 2010). Another study on the synchronous culture of *C. pyrenoidosa* showed that the time to incipient cell division was reduced by GA and 6-furfurylaminopurine, suggesting these two phytohormones had played roles in eliminating the initial lag phase (Vance, 1987). Similarly, the cell number and dry weight of *C. vulgaris* was also significantly increased in response to optimal dose of IM (10−7 M) on a 5-day cultivation, suggesting that growth elicited by natural and synthetic auxins encompassed the stimulation of mitosis (Piotrowska et al., 2008).

Chlorophyll pigment presents challenges to lipid extraction and biodiesel conversion in downstream processing of algal biomass. Hence, chemicals led to higher biomass and lower pigment production will bring benefits. A study showed that the addition of NAA (30 ppm) and PAA (5 ppm) significantly increased biomass production, meanwhile decreased chlorophyll a synthesis in *C. sorokiniana* (Hunt et al., 2010). In addition, auxins at high concentrations can activate key regulatory enzyme in ethylene biosynthesis (Grossmann, 2000), and large amount of ethylene could then induce the degradation of photosynthetic pigments (Sunohara and Matsumoto, 1997).

As for other regulatory functions, an exposure of *C. vulgaris* cells to exogenous IM, synthetic analog of IAA, has been reported to increase cellular DNA level up to 48% and 20–43% more soluble proteins excreted to the environments (Piotrowska et al., 2008); and cytokinins and allantoin (AT) were found to stimulate carotenoids content by 185–190% and 124% in *C. pyrenoidosa*, possibly due to their inhibition of oxidases and dehydrogenases that are responsible for oxidation process and degradation of chlorophylls and carotenoids (Czerpak and Bajguz, 1997).

OTHER CHEMICALS INDUCING OXIDATIVE STRESS RESPONSES

Apart from phytohormones and analogs, other chemicals capable of inducing oxidative response for enhancing microalgal growth and accumulation of high-value bioproducts were also investigated. An early study showed that Fe2+, methylene blue (MB) for singlet oxygen (1O2), methyl viologen (MV) for superoxide anion radical (O2−), H2O2, and 2,2′-azo-bis(2-amidinopropane)-dihydrochloride (AAPH) for peroxide radical (AO2−), were capable of triggering astaxanthin biosynthesis in *H. pluvialis*, in which Fe2+ possibly served as an HO· generator via an iron-catalyzed Fenton reaction (Kobayashi et al., 1993). HO· or other active oxygen species (1O2, O2−, H2O2, and AO2−) might then enhance carotenoid formation in algal cyst cells by participating directly in the carotenogenic enzyme reactions as an oxidizer or an H acceptor (Beyer and Kleing, 1989). In a recent study, Ip and Chen (2005) proposed sodium hypochlorite (NaClO) as another oxygen species to enhance astaxanthin production of *C. zofingiensis* in the heterotrophic cultivation medium.

CHEMICALS AS METABOLIC PRECURSORS

An early study showed that an addition of 100 mM pyruvate into the culture medium of *C. zofingiensis* enhanced the yield of astaxanthin from 8.36 to 10.72 mg/L. In addition, citrate and malic acid also had the similar stimulatory effects on the formation of astaxanthin. Pyruvate might serve as a precursor for isopentenyl pyrophosphate (IPP), the carotenoid precursor in *C. zofingiensis* and *H. pluvialis*, while the stimulatory effects of citrate and malic acid on astaxanthin biosynthesis in *C. zofingiensis* could be due to their conversions to pyruvate (Chen et al., 2009). For docosahexaenoic acid (DHA) accumulation in *Schizochytrium* sp. HX-308, an addition of 4 g/L malic acid to the culture medium at the rapid lipid accumulation stage can increase DHA content of total fatty acids from 35 to 60%. In addition to functioning as a possible carbon precursor, it was speculated that malic acid added at rapid lipid accumulation stage could activate malic enzyme activity and enhance NADPH generating reaction from malic acid to pyruvate (Ren et al., 2009). In addition, ethanol was also found to enhance lipid content by 35% in *Cryptothecodium comnii*, in which ethanol can be converted to acetyl-CoA directly and in its metabolism might generate additional reducing power NADPH for lipogenesis (Lolke et al., 2005).

To aid in identifying metabolites associated with enhanced production of bioproducts, metabolomics, a measurement, and study of the small-molecule metabolites that constitute cellular metabolic networks, has been recently applied. In one study, Cheng et al. (2012) compared the metabolites between two cyanobacteria *Synechocystis* sp. PCC6803 and *Anabaena* sp. PCC 7120, and one microalga *S. obliquus* by gas chromatography coupled with time-of-flight mass spectrometry to
detect important metabolites intricately tied to the lipid content in cyanobacteria and microalgae. The results showed that nine metabolites including ethanolamine were associated with the different lipid accumulation, and further study confirmed that addition of exogenous ethanolamine (2 mmol/L) could increase the lipid content by 22% in *S. obliquus* (Cheng et al., 2012). In another study, Su et al. (2014) investigated mechanism of astaxanthin induction under various stress conditions using a metabolomics and network analysis, and found that several metabolites, such as D-(-) altrose, D-ribose 5-phosphate, L-glutamic acid, and α-ketoglutaric acid, were positively associated with the increased astaxanthin accumulation in *H. pluvialis*. Although further confirmation is still needed, it was speculated that the increased abundances of these metabolites might contribute to the enhanced carbon flow into the astaxanthin biosynthesis (Su et al., 2014). Taken together, these early studies demonstrated that metabolomics could be a valuable tool in identifying potential metabolites for enhancing target production in algae (Zhang et al., 2010). Effective mechanisms of the chemicals were schemed in Figure 1.

CONCLUSION

To produce bioproducts from microalgae in an economically feasible and sustainable way, one major hurdle that needs to be overcome is the low productivity. To address the issues, efforts have been undertaken to identify and apply chemical triggers or enhancers to enhance cell growth and accumulation of bioproducts in microalgae, and the studies have demonstrated that application of chemical triggers or enhancers could be a very practical method in large-scale fermentation of microalgae. In addition, the possible stimulatory mechanisms were also partially deciphered for some of the chemicals. However, to uncover new chemicals and expand the application, it is necessary to determine more accurately the metabolic mechanisms related to cell growth,

FIGURE 1 | Scheme of enhancing mechanisms of chemicals on microalgae. The major stimulatory mechanisms were indicted inside the cell. (I) Chemicals targeting on biosynthetic pathways of high-value product, such as JA, SA, GA, and EBR controlling the overall carotenogenesis process in *H. pluvialis*; (II) Chemicals inducing oxidative stress responses, including direct or indirect addition of active oxygen species and chemical triggers inducing antioxidant production; (III) Phytohormones and analogs effecting on photosynthetic efficiency, namely the light phase, including photosynthetic phosphorylation, photosynthetic rate, and chlorophylls synthesis; (IV) Phytohormones and analogs impacting CO₂ fixation, namely the dark phase of photosynthesis, such as diamines and polyamines stimulating production of Calvin cycle; (V) Phytohormones and analogs encompassed acid growth theory, alternating the plasticity of cell wall thus contributing to cell elongation; (VI) Degradation of photosynthetic pigments due to large amount of ethylene caused by high concentration of auxins; (VII) Phytohormones and analogs regulating genome and protein expression, such as IM modulating DNA and protein content in *C. vulgaris*; (VIII) Chemicals as metabolic precursors, such as pyruvate serving as a precursor of carotenoid synthesis thus stimulating the formation of astaxanthin and NADPH (led by malic acid) acting as a precursor of fatty acid synthesis increasing DHA content.
production and accumulation of bioproducts, and the modes of action (MOA) of chemicals in microalgae. For this regard, the application of various global-focused technologies, such as genomics, proteomics, and metabolomics, could be valuable tools in the future research.

ACKNOWLEDGMENTS

The research was supported by grants from the National High-Tech R&D Program (No. 2012AA02A707), and the Doctoral Program of Higher Education of China (No. 20120032110020 and 20130032120022).

REFERENCES

Abd El-Baky, H., El Baz, F., and El-Baroty, G. (2009). Enhancement of antioxidant production in Spirulina platensis under oxidative stress. Acta physiol. plant. 31, 623–631. doi: 10.1007/s11738-009-0273–278

Ahmad, M., and Winter, A. (1970). The effect of weak auxins on the growth of blue-green algae. Hydrobiologia 36, 305–316. doi: 10.1007/bf0035329

Asada, K. (1994). “Production and action of active oxygen species in photosynthetic tissues,” in Causes of Photooxidative Stress and Amelioration of Defense Systems in Plants, eds C. H. Foyer and P. M. Mullineaux (Boca Raton, FL: CRC Press), 77–104.

Bajguz, A., and Czerpak, R. (1996). Effect of brassinosteroids on growth and protein extrusion in the alga Chlorella vulgaris Beijerinck (Chlorophyceae). J. Plant Growth Regul. 15, 133–156. doi: 10.1016/bf00198931

Bajguz, A., and Piotrowska-Niczyporuk, A. (2013). Synergistic effect of auxins and brassinosteroids on the growth and metabolism of carotenoid in the alga Chlorella vulgaris (Trebouxiophyceae). Plant Physiol. Biochem. 71, 290–297. doi: 10.1016/j.phytochem.2013.08.003

Bajguz, A., and Tretyn, A. (2003). The chemical characteristic and distribution of brassinosteroids in plants. Phytochemistry 62, 1027–1046. doi: 10.1003/s0031-9422(02)00656-8

Ben-Amotz, A. (1995). New mode of Dunaliella biotechnology: two-phase growth for β-carotene production. J. Appl. Phycol. 7, 65–68. doi: 10.1007/bf00035552

Beyer, P., and Kleinig, H. (2000). “Mode of action of auxin herbicides: a new ending to a long, drawn out story.” Trends Plant Sci. 5, 506–508. doi: 10.1016/S1360-1385/0010791–x

Cheng, J., Niu, Y., Lu, S., and Yuan, Y. (2012). Metabolome analysis reveals ethanolamine as potential marker for improving lipid accumulation of model green alga Chlorella pyrenoidosa. J. Biotechnol. 162, 2400–2414. doi: 10.1016/j.jbiotec.2015.09.002

Czerpak, R., Dobrzensy, P., Krotke, A., and Kicinska, E. (2002). The effect of auxins and salicylic acid on chlorophyll and carotenoid contents in Wolffia arrhiza (L.) Wimm. (Lemnaceae) growing on water of various trophicities. Pol. J. Environ. Stud. 11, 231–235.

Czerpak, R., Krotke, A., and Mical, A. (1999). Comparison of stimulatory effect of auxins and cytokinins on protein, saccharides and chlorophyll content in Chlorella pyrenoidosa Chick. Pol. Arch. Hydrobiol. 46, 71–82.

Czerpak, R., Piotrowska, A., Dobrogowska, R., Matejczyk, M., and Wieslawski, W. (2003). Biochemical activity of di- and polyamines in the green alga Chlorella vulgaris Beijerinck (Chlorophyceae). Acta soc. bot. Pol. 72, 19–24. doi: 10.5586/absp.2003.003

Franz, A., Danielewicz, M., Wong, D., Anderson, L., and Boothe, J. (2015). Phenotypic screening with oleaginous microalgae reveals modulators of lipid productivity. ACS Chem. Biol. 10, 1053–1062. doi: 10.1021/ cb5005737

Gao, Z., Meng, C., Gao, H., Li, Y., Zhang, X., Xu, D., et al. (2013a). Carotenoid genes transcriptional regulation for astaxanthin accumulation in fresh water unicellular alga Haematococcus pluvialis by gibberellin A3 (GA3). Indian J. Biochem. Biophys. 50, 548–553.

Gao, Z., Meng, C., Gao, H., Zhang, X., Xu, D., Su, Y., et al. (2013b). Analysis of mRNA expression profiles of carotenogenesis and astaxanthin production in Haematococcus pluvialis under exogenous 2, 4-epibrassinolide (EBR). Biol. Res. 60, 201–206. doi: 10.4067/S0717-96202013000200012

Gao, Z., Meng, C., Zhang, X., Xu, D., Xiao, X., Wang, Y., et al. (2012a). Induction of salicylic acid (SA) on transcriptional expression of eight carotenoid genes and astaxanthin accumulation in Haematococcus pluvialis. Enzyme Microb. Technol. 51, 225–230. doi: 10.1016/j.enzmictec.2012.07.001

Gao, Z., Meng, C., Zhang, X., Xu, D., Zhao, Y., Wang, Y., et al. (2012b). Differential expression of carotenogenic genes, associated changes on astaxanthin production and photosynthesis features induced by JA in H. pluvialis. PLoS ONE 7:e42243. doi: 10.1371/journal.pone.0042243

Grossmann, K. (2000). Mode of action of auxin herbicides: a new ending to a long, drawn out story. Trends Plant Sci. 5, 506–508. doi: 10.1016/S1360-1385(00)01791–x

Grünewald, K., Eckert, M., Hirschberg, J., and Hagen, C. (2000). Phytoene desaturase is localized exclusively in the chloroplast and up-regulated at the mRNA level during accumulation of secondary carotenoids in Haematococcus pluvialis (Volvocales, Chlorophyceae). Plant Physiol. 122, 1261–1268. doi: 10.1104/pp.122.4.1261

Hobbie, L., Timppe, C., and Estelle, M. (1994). “Molecular genetics of auxin and cytokinin,” in Signals and Signal Transduction Pathways in Plants, ed. K. Palme (Amsterdam: Springer), 263–283. doi: 10.1007/978-94-011-0239-1_15

Hong, Y., Hu, H., and Li, F. (2008). Growth and physiological responses of freshwater green alga Selenastrum capricornutum to allelochemical ethyl 2-methyl acetate (EMA) under different initial algal densities. Pestic. Biochem. Physiol. 90, 203–211. doi: 10.1016/j.psbio.2007.11.009

Houmard, A., Mereau, N., Penot, M., Cann, C., and Caroff, J. (1994). Influence of polyamines on growth and metabolism of Dunaliella tertiolecta. J. Biotechnol. 38, 129–136. doi: 10.1111/j.1438-8677.1994.tb00740.x

Huang, I., Chen, F., and Sandmann, G. (2006). Stress-related differential expression of multiple β-carotene ketolase genes in the unicellular green alga Haematococcus pluvialis. J. Biotechnol. 122, 176–185. doi: 10.1016/j.jbiotec.2005.09.002

Hunt, R., Chinnasamy, S., Bhatnagar, A., and Das, K. (2010). Effect of biochemical stimulants on biomass productivity and metabolite content of the microalga, Chlorella sorokiniana. Appl. Biochem. Biotechnol. 162, 2400–2414. doi: 10.1007/s12010-010-9012–9012

Ip, P., and Chen, F. (2005). Employment of reactive oxygen species to enhance astaxanthin formation in Haematococcus pluvialis. Appl. Microbiol. Biotechnol. 68, 203–206. doi: 10.1007/s00253-004-1656-5

Karasyova, T., Klose, E., Mensel, R., and Steinberg, C. (2007). Natural organic matter differently modulates growth of two closely related coccal green algal species. Environ. Sci. Pollut. Res. 14, 88–93. doi: 10.1007/s11356-006-0637-7

Kilian, O., Benemann, C., Niyogi, K., and Vick, B. (2011). High-efficiency homologous recombination in the oil-producing alga Nannochloropsis sp. Proc. Natl. Acad. Sci. U.S.A. 108, 21265–21269. doi: 10.1073/pnas.1105861108
Yu et al., Chemical enhancers in microalgae

Kim, S., Kim, H., Ko, D., Yamaoka, Y., Otsuru, M., Kawai-Yamada, M., et al. (2013). Rapid induction of lipid droplets in Chlamydomonas reinhardtii and Chlorella vulgaris by Brefeldin A. *Pho One* 8, 81978. doi: 10.1371/journal.pone.0081978

Kobayashi, M., Hira, N., Kurimura, Y., Ohigashi, H., and Tsuji, Y. (1997). Abscisic acid-dependent algal morphogenesis in the unicellular green alga Haematococcus pluvialis. *Plant Growth Regul.* 22, 79–85. doi: 10.1007/BF00609711

Kobayashi, M., Kakizoe, T., and Nagai, S. (1993). Enhanced carotenoid biosynthesis by oxidative stress in acetate-induced cyt cells of a green unicellular alga, *Haematococcus pluvialis*. *Appl. Environ. Microbiol.* 59, 867–873.

Kotzabasis, K., Hatziathanasiou, A., Bengoa-Ruigomez, M., Kentouri, M., and Norsker, N., Barbosa, M., Vermue, M., and Wijffels, R. (2011). *Microalgal production—a close look at the economics.* Biotechnol. Adv. 29, 24–27. doi: 10.1016/j.biortech.2010.08.003

Norsker, N., Barbosa, M., Vermue, M., and Wijffels, R. (2011). *Microalgal production—a close look at the economics.* Biotechnol. Adv. 29, 24–27. doi: 10.1016/j.biortech.2010.08.003

Park, W., Yoo, G., Moon, M., Kim, C., Choi, Y., and Yang, J. (2013). Phytohormone supplementation significantly increases growth of *Chlamydomonas reinhardtii* cultured for biodiesel production. *Appl. Biochem. Biotechnol.* 171, 1128–1142. doi: 10.1007/s12010-013-0386-389

Patel, V., Maji, D., Singh, A., Suseela, M., Sundaram, S., and Kalra, A. (2013). A natural plant growth promoter, callicerpenone, enhances growth and biomass, carbohydrate, and lipid production in cyanobacterium *Synechocystis* PCC 6803. *J. Appl. Phycol.* 25, 279–286. doi: 10.1007/s10811-013-0103–107

Piotrowska, A., and Czerpak, R. (2009). Cellular response of light/dark-grown green alga *Chlorella vulgaris* Beijerinck (Chlorophyceae) to exogenous adenine- and phenylurea-type cytokinins. *Acta Physiol. Plant.* 31, 573–585. doi: 10.1007/s11738-008-0267-y

Raman, V., and Ravi, S. (2010). Effect of salicylic acid and methyl jasmonate on antioxidant systems of *Haematococcus pluvialis*. *Acta Physiol. Plant.* 33, 1043–1049. doi: 10.1007/s11738-010-0623–626

Rayle, D., and Clendel, R. (1992). The Acid Growth Theory of auxin-induced cell elongation is alive and well. *Plant Physiol.* 99, 1271–1274. doi: 10.1104/pp.99.4.1271

Razon, L., and Tan, R. (2011). *Net energy analysis of the production of biodiesel and biogas from the microalgae: Haematococcus pluvialis and Nannochloropsis.* *Appl. Energy* 88, 3507–3514. doi: 10.1016/j.apenergy.2010.10.005

Ren, L., Huang, H., Xiao, A., Lian, M., Jin, L., and Ji, X. (2009). Enhanced docosahexaenoic acid production by reinforcing acetyl-CoA and NADPH supply in *Chlorella* sp. *Bioresour. Biotech.* 32, 837–843. doi: 10.1007/s00449-009-0310–314

Rioboo, C., Gonzalez, O., Albalde, J., and Cid, A. (2011). Flow cytometric analysis of the encystment process induced by paraquat exposure in *Haematococcus pluvialis* (Chlorophyceae). *Eur. J. Phycol.* 46, 89–97. doi: 10.1080/09670262.2011.561773

Sarada, R., Tripathi, U., and Ravishankar, G. (2002). Influence of stress on astaxanthin production in *Haematococcus pluvialis* grown under different culture conditions. *Process Biochem.* 37, 623–627. doi: 10.1016/S0032-9592(01)00246-1

Saydiger, S., and Deniz, F. (2008). Effect of 24-epibrassinolide on biomass, growth and free proline concentration in *Spirulina platensis* (Cyanophyta) under NaCl stress. *Plant Growth Regul.* 56, 219–223. doi: 10.1007/s11725-008-9310–9317

Saydiger, S., and Okkay, O. (2008). Effect of 2,4-dichlorophenoxyacetic acid on growth, protein and chlorophyll-a content of *Chlorella vulgaris* and *Spirulina platensis* cells. *J. Environ. Biol.* 29, 175–178.

Sheehan, J., Dunahay, T., Benemann, J., and Roessler, P. (1998). *The Life Cycle of Algae: A Complete Guide to the Natural Plant Growth Promoter Callitrisporone.* Golden: National Renewable Energy Laboratory.

Skjanes, K., Rebours, C., and Lindblad, P. (2011). Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process. *Crit. Rev. Biotechnol.* 33, 172–215. doi: 10.3109/07388551.2012.681625

Soratana, K., and Landis, A. (2011). Evaluating industrial symbiosis and algae cultivation from a life cycle perspective. *Bioresour. Technol.* 102, 6892–6901. doi: 10.1016/j.biortech.2011.04.018

Steinbrener, J., and Linden, H. (2001). Regulation of two carotenoid biosynthesis genes coding for phytoene synthase and carotenoid hydroxylase during stress-induced astaxanthin formation in the green alga *Haematococcus pluvialis*. *Plant Physiol.* 125, 810–817. doi: 10.1104/pp.125.2.810

Steinbrener, J., and Linden, H. (2003). Light induction of carotenoid biosynthesis genes in the green alga *Haematococcus pluvialis*: regulation by photosynthetic redox control. *Plant Mol. Biol.* 52, 343–356. doi: 10.1023/A:1023984929663

Sun, Z., Cunningham, F., and Ganot, E. (1998). Differential expression of two isopentenyl pyrophosphate isomerase and enhanced carotenoid accumulation in a unicellular chlorophyte. *Proc. Natl. Acad. Sci. U.S.A.* 95, 11482–11488. doi: 10.1073/pnas.95.19.11482
Sunohara, Y., and Matsumoto, H. (1997). Comparative physiological effects of quinclorac and auxins, and light involvement in quinclorac-induced chlorosis in corn leaves. Pestic. Biochem. Physiol. 58, 125–132. doi: 10.1006/pest.1997.2289

Theodoridou, A., Dörnemann, D., and Kötzbasis, K. (2002). Light-dependent induction of strongly increased microalgal growth by methanol. Biochim. Biophys. Acta 1573, 189–198. doi: 10.1016/S0304-4165(02)00438-5

Tripathi, U., Sarada, R., Rao, S., and Ravishankar, G. (1999). Production of astaxanthin in Haematococcus pluvialis cultured in various media. Bioresour. Technol. 68, 197–199. doi: 10.1016/S0960-8524(98)00143-6

Vance, B. (1987). Phytohormone effects on cell division in Chlorella pyrenoidosa chick (TX-7-11-05) (chlorellaceae). J. Plant Growth Regul. 5, 169–173. doi: 10.1007/bf02087185

Vanthoor-Koopmans, M., Wijffels, R., Barbosa, M., and Eppink, M. (2013). Biorefinery of microalgae for food and fuel. Bioresour. Technol. 135, 142–149. doi: 10.1016/j.biortech.2012.10.135

Wang, J., Sommerfeld, M., and Hu, Q. (2009). Occurrence and environmental stress responses of two plastid terminal oxidases in Haematococcus pluvialis (Chlorophyceae). Planta 230, 191–203. doi: 10.1007/s00425-009-0932-934

Wijffels, R., Barbosa, M., and Eppink, M. (2010). Microalgae for the production of bulk chemicals and biofuels. Biofuels Bioprod. Biorefin. 4, 287–295. doi: 10.1002/bbb.215

Wong, P. (2000). Effects of 2, 4-D, glyphosate and parquat on growth, photosynthesis and chlorophyll-a synthesis of Scenedesmus quadricauda Berb 614. Chemosphere 41, 177–182. doi: 10.1016/S0045-6535(99)00408-7

Yu et al. Chemical enhancers in microalgae

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 14 November 2014; accepted: 16 January 2015; published online: 17 February 2015.

Citation: Yu X, Chen L and Zhang W (2015) Chemicals to enhance microalgal growth and accumulation of high-value bioproducts. Front. Microbiol. 6:56. doi: 10.3389/fmicb.2015.00056

This article was submitted to Food Microbiology, a section of the journal Frontiers in Microbiology.

Copyright © 2015 Yu, Chen and Zhang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.