Strong decays of the $\Xi_b(6227)$ as a $\Sigma_b \bar{K}$ molecule

Yin Huang
School of Physics and Nuclear Engineering, Beihang University, Beijing 100191, China

Cheng-jian Xiao
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China

Li-Sheng Geng
School of Physics and Nuclear Energy Engineering, International Research Center for Nuclei and Particles in the Cosmos and Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beihang University, Beijing 100191, China

Jun He
Department of Physics and Institute of Theoretical Physics, Nanjing Normal University, Nanjing 210097, Peoples Republic of China

(Dated: November 28, 2018)

We study the strong decays of the newly observed $\Xi_b(6227)$ assuming that it is a pure $\Sigma_b \bar{K}$ molecular state. Considering four possible spin-parity assignments $J^P = 1/2^+$ and $3/2^+$, the partial decay widths of the $\Sigma_b \bar{K}$ molecular state into $\Lambda_b \bar{K}$, $\Xi_b \pi$, and $\Xi_b \pi$ final states through hadronic loops are evaluated with the help of the effective Lagrangians. In comparison with the LHCb data, the spin-parity $1/2^+$ assignment is preferred while those of $J^P = 1/2^+$ and $3/2^+$ are disfavored. In addition, we show that the two allowed decay modes $\Lambda_b \bar{K}$ and $\Xi_b \pi$ of the $\Xi_b(6227)$, being a S-wave $\Sigma_b \bar{K}$ molecular state, have almost equal branching ratios, consistent with the data.

PACS numbers:

I. INTRODUCTION

During the past decade, many new narrow baryon resonances containing a b quark, such as $\Lambda_b(5912)$, $\Lambda_b(5920)$, $\Sigma_b(5815)$, Σ_b^*, and Ξ_b, were discovered experimentally [1–3]. Very recently, a bottom baryon $\Xi_b(6227)$ was reported by the LHCb Collaboration in both the $\Lambda_b^0 K^-$ and $\Xi_b^0 \pi^-$ final states from pp collisions [4]. Its mass and width are, respectively,

\[M = 6226.9 \pm 2.0(stat) \pm 0.3(syst) \pm 0.2(\Lambda_b^0) \text{ MeV} \]
\[\Gamma = 18.1 \pm 5.4(stat) \pm 1.8(syst) \text{ MeV}. \] (1)

Its spin-parity, however, remains unknown.

Before the discovery of the Ξ_b^* state, there were already a few theoretical studies on the existence of such a state. For instance, different quark models predicted that there exists a $d sb$ three quark excited state with a mass about 6200 MeV [5–7]. The mass spectra of bottom baryons around 6200 MeV were investigated in a Faddeev equation approach [8]. A molecule Ξ_b state with a narrow width and a mass around 6200 MeV was predicted in the unitarized coupled channels approach [9]. In Ref [10] the authors also found that the $\bar{K}\Sigma_b$ interaction is strong enough to form a bound state both in isospin $3/2$ and $1/2$ [35].

Following the discovery of the Ξ_b^*, several theoretical studies have been performed [11–13]. In the heavy quark-light diquark model, based on the analysis of the mass spectrum and the two-body OZI-allowed strong decays, the Ξ_b^* was suggested to be a $1P$ Ξ_b state with spin-parity $J^P = 3/2^+$ or $J^P = 5/2^+$ [11]. In the chiral quark model, based on the two-body strong decays studied, Ref. [12] assigned the Ξ_b^* as a three-quark state with spin-parity $J^P = 3/2^+$ or $J^P = 5/2^-$. While in Ref. [13] the mass and two-body strong decays of the Ξ_b^* were studied in the QCD sum rules approach and it was shown that the $\Xi_b(6227)$ might be a $1P$ orbitally excited $\Xi_b(5955)$ state with $J^P = 3/2^-$. Although the studies of Refs. [11–13] seem to indicate that this state is a conventional three-quark state, the Ξ_b^* might still be a $\bar{K}\Sigma_b$ hadronic molecule state, because the mass gap between the Ξ_b^* and the ground Ξ_b, about 440 MeV, is large enough to excite a light quark-antiquark pair to form a molecular state. Indeed, it is shown in Refs. [9, 10] that the interaction between a \bar{K} meson and a Σ_b baryon is strong enough to form a bound state with a mass about 6200 MeV. One way to distinguish the two scenarios is to study the two-body strong decay widths of the Ξ_b^* baryon. In the present paper we consider the following strong decay modes, $\Xi_b^* \rightarrow \Lambda_b^0 \bar{K}$, $\Xi_b^* \rightarrow \Xi_b \pi$, and $\Xi_b^* \rightarrow \Xi_b^0 \pi$, of the $\Xi_b(6227)$ with the following spin-parity assignments: $J^P = 1/2^+$ and $3/2^+$, using an effective Lagrangian approach and assuming that the $\Xi_b(6227)$ is a hadronic molecule state of \bar{K} and Σ_b.

This work is organized as follows. The theoretical formalism is explained in Sec. II. The predicted partial decay widths are presented in Sec. III, followed by a short summary in the last section.
II. FORMALISM AND INGREDIENTS

In this section, we explain how to calculate the strong decay widths $\Xi_b^* \to \Lambda_b \bar{K}$, $\Xi_b^* \to \Xi_b \pi$, and $\Xi_b^* \to \Xi_b \pi$ in the molecular scenario with different spin-parity assignments for the Ξ_b^* state. The molecular structure of the Ξ_b baryon with $J^P = 1/2^+$ is described by the following Lagrangian [14]

$$\mathcal{L}_{\Xi_b}(x) = g_{\Xi_b} \bar{K} \int d^4 y \Phi(y^2) \times \bar{\Lambda}(x + \omega_{\Xi_b} y) \Gamma \cdot \Sigma_b(x - \omega_K y) \Xi_b^*(x),$$ \hspace{1cm} (2)

while for $J^P = 3/2^+$ the Lagrangian contains a derivative $\bar{K} \Sigma_b$ coupling

$$\mathcal{L}_{\Xi_b}(x) = g_{\Xi_b} \bar{K} \int d^4 y \Phi(y^2) \times \bar{\Lambda}(x + \omega_{\Xi_b} y) \Gamma \cdot \partial \Sigma_b(x - \omega_K y) \Xi_b^*(x),$$ \hspace{1cm} (3)

where $\omega_{\Lambda} = m_\Lambda/(m_\Lambda + m_{\Xi_b})$, $\omega_{\Xi_b} = m_{\Xi_b}/(m_K + m_{\Xi_b})$, and Γ is the corresponding Dirac matrix reflecting the spin-parity of Ξ_b^*. In particular, for $J^P = 1/2^+$ and $3/2^+$, $\Gamma = \gamma^5$, while for $J^P = 1/2^+$ and $3/2^+$, $\Gamma = 1$. In the Lagrangian, an effective correlation function $\Phi(\gamma^2)$ is introduced to describe the distribution of the two constituents, the \bar{K} and the Σ_b, in the hadronic molecular Ξ_b^* state. The introduced correlation function also makes the Feynman diagrams ultraviolet finite. Here we choose the Fourier transformation of the correlation to be a Gaussian form in the Euclidean space [14–30].

$$\Phi(p^2_E) \equiv \exp(-p^2_E/\Lambda^2)$$ \hspace{1cm} (4)

with Λ being the size parameter which characterizes the distribution of the components inside the molecule. Though the value of Λ could not be determined from first principles, it is usually chosen to be about 1 GeV in the literature [14–30]. In this work, we vary Λ in a range of 0.9 GeV ≤ Λ ≤ 1.10 GeV.

With the effective Lagrangian in Eq. (2) and Eq. (3) and the Feynman diagram shown in Fig 1, we can obtain the self-energy of the Ξ_b^*,

\begin{align*}
\Sigma_{\Xi_b^*}^{1/2}(k_0) &= g_{\Xi_b}^2 \int \frac{d^4 k_1}{(2\pi)^4} \frac{\{2\Phi^2[(k_1 - k_0 \omega_{\Xi_b})^2] \Gamma [k_1 + m_{\Xi_b}] } {k_1^2 - m_{\Xi_b}^2} \frac{\Gamma [k_1 + m_{\Xi_b}] } {k_1^2 - m_{\Xi_b}^2} \times \frac{1}{(k_1 - k_0)^2 - m_{\Xi_b}^2}, \\
\Sigma_{\Xi_b^*}^{3/2}(k_0) &= g_{\Xi_b}^2 \int \frac{d^4 k_1}{(2\pi)^4} \frac{\{2\Phi^2[(k_1 - k_0 \omega_{\Xi_b})^2] \Gamma [k_1 + m_{\Xi_b}] } {k_1^2 - m_{\Xi_b}^2} \times \frac{1}{(k_1 - k_0)^2 - m_{\Xi_b}^2},
\end{align*}

(5)

where $k_0^2 = m_{\Xi_b}^2$, with k_0, m_{Ξ_b} denoting the four momenta and mass of the Ξ_b^*, respectively, k_1, m_{Ξ_b}, and m_{Ξ_b} are the four-momenta, the mass of the \bar{K} meson, and the mass of the Σ_b baryon, respectively. The coupling constant $g_{\Xi_b} \bar{K} \Sigma_b$ is determined by the compositeness condition [14–30]. It implies that the renormalization constant of the hadron wave function is set to zero, i.e.,

$$Z_{\Xi_b} = 1 - \frac{d\Sigma_{\Xi_b}^{1/2}(k_0)}{dk_0} \bigg|_{k_0 = m_{\Xi_b}} = 0,$$ \hspace{1cm} (7)

where the $\Sigma_{\Xi_b}^{3/2}$ is the transverse part of the self-energy operator $\Sigma_{\Xi_b}^{1/2}$, related to $\Sigma_{\Xi_b}^{3/2}$ via

$$\Sigma_{\Xi_b}^{3/2}(k_0) = (g_{\Xi_b}^2 - \frac{k_0^2}{k_0^2}) \Sigma_{\Xi_b}^{1/2} + \cdots.$$ \hspace{1cm} (8)

The strong decay modes of the Ξ_b^* are $\Xi_b^* \to \Lambda_b^{(*)} K^-$, $\Xi_b^* \to \Lambda_b^{(*)} K^0$, $\Xi_b^* \to \Xi_b^{(*)} \pi^-$, $\Xi_b^* \to \Xi_b^{(*)} \pi^0$, and $\Xi_b^* \to \Xi_b^{(*)} \rho$. Here, we only calculate the decay widths in the channels $\Xi_b \to \Lambda_b K^-$ and $\Xi_b^* \to \Xi_b^{(*)} \pi^-$. The decay widths in the other channels can be obtained by isospin symmetry as $\Gamma(\Xi_b \to \Lambda_b K^-) = \Gamma(\Xi_b \to \Lambda_b' K^-)$ and $\Gamma(\Xi_b \to \Xi_b^{(*)} \pi^0) = \Gamma(\Xi_b \to \Xi_b^{(*)} \pi^-) = \frac{1}{6} \Gamma(\Xi_b \to \Xi_b^{(*)} \rho)$. The sum of these partial decay widths is the total decay width of the Ξ_b^*.

Fig. 2 shows the hadronic decay of the $\Sigma_b \bar{K}$ molecular state into $\Lambda_b^0 K^-$, $\Xi_b^{(*)} \pi^0$, and $\Xi_b^{(*)} \rho$ mediated by the exchange of the ρ and \bar{K} mesons. In Refs. [31, 32], the couplings of the vector meson with the charm baryons are obtained using the hidden-gauge formalism and assuming SU(4) flavor symmetry:

$$\mathcal{L}_{VBB} = \frac{g}{8} \sum_{i,j,k,l=1}^4 \bar{B}_{ijk} V_{i j} (Y_{i j}^k B_{j k} + 2 V_{i j}^k B_{j k}),$$ \hspace{1cm} (9)

where the coupling constant $g = 6.6$ is taken from Ref. [31]. The symbol $V_{i j}$ represents the vector fields of the 16-plet of
where
\[K = \left(\begin{array}{c} K^+ \\ K^0 \end{array} \right), \quad \bar{K} = \left(\begin{array}{c} -K^- \\ K^0 \end{array} \right) \] (14)

with \(\bar{\tau} \) being the usual Pauli matrices and \(\bar{\rho}^\mu \) the field operators of the \(\rho \) meson. In the \(SU(3)_f \) limit, the coupling constant satisfies \(g_{KK\rho} = 2.9 \), which is determined by the Kawarabayashi-Suzuki-Riazuddin-Fayyazuddin relation [33]. The coupling \(g_{KK\rho} \) is fixed from the strong decay width of \(K^+ \to K\pi \). With the help of Eq. (13), the two-body decay width \(\Gamma(K^+ \to K^0\pi^-) \) is related to \(g_{KK\rho} \) as

\[\Gamma(K^+ \to K^0\pi^-) = \frac{g_{KK\rho}^2}{6\pi m_{K^0}} P_{\pi K^0}, \] (15)

where \(P_{\pi K^0} \) is the three-momentum of the \(\pi \) in the rest frame of the \(K^+ \). Using the experimental strong decay width we obtain \(g_{KK\rho} = 4.61 \) [34].

Putting all the pieces together, we obtain the following amplitudes,

\[M^{1/2}_d(\Xi^{-}_b \to \Lambda^{0}_c K^+ \pi^-) = \sqrt{3} g_{\Xi_b \Lambda_c K^+ G K K} \int \frac{d^4k}{(2\pi)^4 i} \]
\[\times \Phi[(k_1 \omega_{k^o})^2] \tilde{u}(p_1)\gamma_\mu k_1 - m_{\Xi_b} - m_{\Lambda_c} \Gamma(0) \]
\[\times \frac{1}{k_2^2 - m_{K^0}^2} \frac{-g^{\mu\nu} + q^\mu q^\nu}{q^2 - m_{\rho}^2}, \] (16)

\[M^{1/2}_b(\Xi^{-}_b \to \Lambda^{0}_c K^+ \pi^-) = \sqrt{3} g_{\Xi_b \Lambda_c K^+ G K K} \int \frac{d^4k}{(2\pi)^4 i} \]
\[\times \Phi[(k_1 \omega_{k^o})^2] \tilde{u}(p_1)\gamma_\mu k_1 - m_{\Xi_b} - m_{\Lambda_c} \Gamma(0) \]
\[\times \frac{1}{k_2^2 - m_{K^0}^2} \frac{-g^{\mu\nu} + q^\mu q^\nu}{q^2 - m_{\rho}^2}, \] (17)

\[M^{1/2}_d(\Xi^{-}_b \to \Xi^{0}_{c} \pi^-) = \sqrt{3} g_{\Xi_b \Xi_c K^+ G K K} \int \frac{d^4k}{(2\pi)^4 i} \]
\[\times \Phi[(k_1 \omega_{k^o})^2] \tilde{u}(p_1)\gamma_\mu k_1 - m_{\Xi_b} - m_{\Xi_c} \Gamma(0) \]
\[\times \frac{1}{k_2^2 - m_{K^0}^2} \frac{-g^{\mu\nu} + q^\mu q^\nu}{q^2 - m_{\rho}^2}, \] (18)

\[M^{1/2}_d(\Xi^{-}_b \to \Xi^{0}_{c} \pi^-) = -\sqrt{3} g_{\Xi_b \Xi_c K^+ G K K} \int \frac{d^4k}{(2\pi)^4 i} \]
\[\times \Phi[(k_1 \omega_{k^o})^2] \tilde{u}(p_1)\gamma_\mu k_1 - m_{\Xi_b} - m_{\Xi_c} \Gamma(0) \]
\[\times \frac{1}{k_2^2 - m_{K^0}^2} \frac{-g^{\mu\nu} + q^\mu q^\nu}{q^2 - m_{\rho}^2}, \] (19)
\[M_{\text{d}}^{3/2}(\Xi_b^{*-} \to \Lambda^0 K^-) = \frac{i}{\sqrt{3}} g_{\Xi \Xi \Lambda} g^{\Xi \Xi \Lambda} \int \frac{d^4k_1}{(2\pi)^4} \times \Phi[(k_1\omega_{\Xi_b} - k_2\omega_{\Sigma^+})^2] \frac{k_1 + m_{\Sigma^+} + \Gamma u(k_0)}{k_1^2 - m_{\Xi_b}^2} \times \frac{1}{k_2^2 - m_{\Xi_b}^2} \left(k_2^2 + p_2^2 \right) \frac{-g^{\rho\rho'} + g^{\rho''\rho'''} / m_{\Xi_b}^2}{q^2 - m_{\Xi_b}^2} \frac{1}{k_1^4}, \]

\[M_{\text{h}}^{3/2}(\Xi_b^{*-} \to \Lambda^0 K^-) = \frac{\sqrt{3}}{2} g_{\Xi \Xi \Lambda} g^{\Xi \Xi \Lambda} \int \frac{d^4k_1}{(2\pi)^4} \times \Phi[(k_1\omega_{\Xi_b} - k_2\omega_{\Sigma^+})^2] \frac{k_1 + m_{\Sigma^+} + \Gamma u(k_0)}{k_1^2 - m_{\Xi_b}^2} \times \frac{1}{k_2^2 - m_{\Xi_b}^2} \left(k_2^2 + p_2^2 \right) \frac{-g^{\rho\rho'} + g^{\rho''\rho'''} / m_{\Xi_b}^2}{q^2 - m_{\Xi_b}^2} \frac{1}{k_1^4}, \]

\[M_{\text{d}}^{3/2}(\Xi_b^{*-} \to \Xi_b^{0} \pi^-) = -i \mathcal{K} g_{\Xi \Xi \Lambda} g^{\Xi \Xi \Lambda} \int \frac{d^4k_1}{(2\pi)^4} \times \Phi[(k_1\omega_{\Xi_b} - k_2\omega_{\Sigma^+})^2] \frac{k_1 + m_{\Sigma^+} + \Gamma u(k_0)}{k_1^2 - m_{\Xi_b}^2} \times \frac{1}{k_2^2 - m_{\Xi_b}^2} \left(k_2^2 + p_2^2 \right) \frac{-g^{\rho\rho'} + g^{\rho''\rho'''} / m_{\Xi_b}^2}{q^2 - m_{\Xi_b}^2} \frac{1}{k_1^4}, \]

\[M_{\text{h}}^{3/2}(\Xi_b^{*-} \to \Xi_b^{0} \pi^-) = -i \mathcal{H} g_{\Xi \Xi \Lambda} g^{\Xi \Xi \Lambda} \int \frac{d^4k_1}{(2\pi)^4} \times \Phi[(k_1\omega_{\Xi_b} - k_2\omega_{\Sigma^+})^2] \frac{k_1 + m_{\Sigma^+} + \Gamma u(k_0)}{k_1^2 - m_{\Xi_b}^2} \times \frac{1}{k_2^2 - m_{\Xi_b}^2} \left(k_2^2 + p_2^2 \right) \frac{-g^{\rho\rho'} + g^{\rho''\rho'''} / m_{\Xi_b}^2}{q^2 - m_{\Xi_b}^2} \frac{1}{k_1^4}, \]

where \(\mathcal{K} = (\sqrt{3}, \sqrt{2}) \) and \(\mathcal{H} = (\sqrt{2}, 1) \) for amplitude \(M(\Xi_b^{*-} \to \Xi_b^{0} \pi^-) \) and \(M(\Xi_b^{*-} \to \Xi_b^{0} \pi^-) \), respectively.

Once the amplitudes are determined, the corresponding partial decay widths can be obtained, which read,

\[\Gamma(\Xi_b^{*-} \to MB) = \frac{1}{2J + 1} \frac{1}{8\pi m_{\Xi_b}^2} |M|^2, \]

where \(J \) is the total angular momentum of the \(\Xi_b^{*-} \) state, the \(|p_1| \) is the three-momenta of the decay products in the center of mass frame, the overline indicates the sum over the polarization vectors of the final hadrons, and \(MB \) denotes the decay channel of \(MB \), i.e., \(\Lambda_b \bar{K}, \Xi_b^0 \pi, \Xi_b \rho \pi \).

III. RESULTS AND DISCUSSIONS

In this work, we study the strong decays of the \(\Xi_b^{*-} \) to the two-body final states \(\Lambda_b \bar{K}, \Xi_b \rho \pi \), and \(\Xi_b \rho \pi \) assuming that it is a \(\bar{K} \Sigma_b \) molecular state. In order to obtain the two body decay width through the triangle diagrams shown in Fig. 2, we first compute the coupling constant \(g_{\Xi \Xi \Lambda} \).

With a value of the cutoff \(\Lambda \approx 0.9 - 1.1 \) GeV, the corresponding coupling constants are listed in Table 1. The \(\Lambda \) dependence of these coupling constants are shown in Fig 3. We note that they decrease slowly with the increase of the cut-off, and the coupling constant is almost independent of \(\Lambda \) for the \(J^P = 1/2^- \) case, where the \(\Xi_b^{*-} \) is an \(S \)-wave \(\bar{K} \Sigma_b \) molecular state. It is consistent with the conclusion in Refs. [14–30] that for an \(S \)-wave loosely bound state the effective coupling strength of the bound state to its components is insensitive to its inner structure.

\(J^P \)	\(g_{\Xi \Xi \Lambda}^{1/2} \)	\(g_{\Xi \Xi \Lambda}^{3/2} \)	\(g_{\Xi \Xi \Lambda}^{P} \)
\(1/2^- \)	1.84 - 1.71	12.01 - 10.39	4.50 - 3.37
\(3/2^- \)	3.87 - 2.95		

![FIG. 3: The coupling constants of the \(\Xi_b^{*-} \) state with different \(J^P \) assignments as a function of the parameter \(\Lambda \).](image)

We show the dependence of the total decay width on the cutoff \(\Lambda \) in Fig 4. In the present calculation, we vary \(\Lambda \) from 0.9 to 1.1 GeV. In this \(\Lambda \) range, the total decay width increases for the cases of \(J^P = 1/2^+ \) and \(J^P = 3/2^+ \), while decreases for the \(J^P = 3/2^- \) case. For the case of \(J^P = 1/2^+ \), the predicted total decay width is much smaller than the experimental total width, which disfavors such a spin-parity assignment for the \(\Xi_b^{*-} \) in the \(\bar{K} \Sigma_b \) molecular picture. The \(J^P = 3/2^+ \) assignment is not favored by our study as well. In this case the \(\bar{K} \Sigma_b \) molecular state should be in \(P \)-wave. Hence, the \(J^P = 3/2^+ \) assumption for \(\Xi_b^{*-} \) (6227) can be excluded. The \(J^P = 3/2^- \) case is disfavored due to the smallest width predicted, and a \(D \)-wave \(\bar{K} \Sigma_b \) molecular with \(J^P = 3/2^- \) is difficult to form through long range meson exchanges. In other words, the \(J^P = 1/2^- \) and \(J^P = 3/2^- \) \(\Xi_b \rho \pi \) molecular assumptions for the \(\Xi_b^{*-} \) are excluded. Hence, only the assignment as an \(S \)-wave \(\bar{K} \Sigma_b \) molecular state is possible for the \(\Xi_b^{*-} \) based on the total decay width experimentally measured.

In Fig 4, we show the partial decay widths of the \(\Xi_b^{*-} \to \Lambda_b \bar{K}, \Xi_b \rho \pi \), and \(\Xi_b \rho \pi \) as a function of the cutoff parameter \(\Lambda \). The two-body decays in the \(\Xi_b^{*-} \to \bar{K} \Lambda_b, \Xi_b \rho \pi \), and \(\Xi_b \rho \pi \) channels are insensitive to the cut-off parameter \(\Lambda \). The transition \(\Xi_b^{*-} \to \bar{K} \Lambda_b \) and \(\Xi_b^{*-} \to \Xi_b \rho \pi \) are the main decay channels in the \(J^P = 1/2^+ \) case, the sum of which almost saturates the total width. For the \(J^P = 3/2^+ \) assignment, the transi-
the experimental result in the eleventh line. For comparison, we show the results of the quark models [11–13] as well. In Ref [12] and Ref [13], although the Ξ^*_b state can decay into both $K\Lambda_b$ and $\pi\Xi_b$ channels, the partial decay width of the $K\Lambda_b$ mode is much smaller than that of the $\pi\Xi_b$ mode. It contradicts with the experimental data, where the ratio of the partial decay widths of the Ξ^*_b into $K\Lambda_b$ and $\pi\Xi_b$ channels is about 0.5–1.5. In Ref. [11] the new Ξ^*_b state can be well interpreted as a conventional three quark state in comparison with the experimental total width and the ratio of the partial decay widths of the Ξ^*_b into $K\Lambda_b$ and $\pi\Xi_b$. One should note that the difference between the results of Ref. [11] and Refs. [12, 13] mainly originates from the different choices on fixing some parameters accounting for the strength of the quark-meson couplings and/or the harmonic oscillator (SHO) wave functions.

In Fig. 5, we show the ratio of the partial decay widths into Λ_bK and $\Xi_b\pi$. For the $J^P = 1/2^+$ case, the ratio is about 1.06 but the total decay width is much smaller than the experimental value. The ratio for the $J^P = 3/2^+$ cases are obviously consistent with the experimental results. Therefore, our results, in terms of not only the total decay width but also the ratio of the partial decay widths into Λ_bK and $\Xi_b\pi$, support the Ξ^*_b state as a S–wave $K\Xi_b$ molecular state.

IV. SUMMARY

We studied the strong decays of the newly observed Ξ^*_b baryon into $K\Lambda_b^0$, $\Xi_b\pi$, and $\pi^-\Xi_b$ with different spin-parity assignments and assuming that it is a $K\Sigma_b$ molecular structure. With the couplings constants between the Ξ_b^* and its components determined by the composition condition, we calculated the partial decay widths into $K\Lambda_b^0$, $\Xi_b\pi$, and $\pi^-\Xi_b$ final states through triangle diagrams in an effective Lagrangian approach. In such a picture, the decays $\Xi^*_b \rightarrow K\Lambda_b^0$, $\Xi^*_b \rightarrow \pi\Xi_b$, and $\Xi^*_b \rightarrow \Xi_b\pi$ occur by exchanging ρ and K^* mesons. We found that both the total decay width and the ratio of the partial decay widths into Λ_bK and $\Xi_b\pi$ can be reproduced with the assumption that the Ξ^*_b is an S–wave $K\Sigma_b$ bound state with $J^P = 1/2^+$, while the P– and D–wave $K\Sigma_b$ assignments are excluded. Our study shows that the experimental measurement of the spin-parity of the Ξ^*_b will be able to tell whether it is a molecular state or a conventional three-quark state.

Acknowledgements

YH thank Qi-Fang Li for valuable discussions. This work is partly supported by the National Natural Science Foundation of China under Grants No.11522539, No.11675228, and No.11735003.

[1] R. Aaij et al. [LHCb Collaboration], Observation of excited Λ_b^0 baryons, Phys. Rev. Lett. 109, 172003 (2012).

[2] T. Aaltonen et al. [CDF Collaboration], First observation of heavy baryons Σ_b and Σ_b^*. Phys. Rev. Lett. 99, 202001 (2007).
TABLE II: Partial decay widths of $\Xi_c^+ \to \Lambda_c K, \Xi_c^0, \Xi_c^-\pi$, and the total decay width Γ_{total} with $\Lambda = 0.9 - 1.1$ MeV, in comparison with the results of the quark model [11-13] and the total width obtained from the LHCb experiments [4]. The relative decay ratio of the $\Lambda_c K$ and $\Xi_c\pi$ channels are also shown in the eleventh row. All masses and widths are in units of MeV.

Decay models	This work	Reference [12]	Reference [11]	Reference [13]	Exp.[4]		
$J^P = 1/2^-$	Ξ_c^+	$\Xi_c^0(6224)$	$\Xi_c^0(6226)$	$\Xi_c^0(6213)$	$\Xi_c^0(6217)$		
$\Lambda_c K$	5.76 - 6.87	5.9	4.2	10.2	11.0	15.8 ± 0.45	
$\Xi_c\pi$	4.45 - 5.26	16.0	16.4	11.4	11.7	15.2i ± 2.52	
$\Xi_c\pi$	1.76 - 2.16	1.3	0.6	1.0	0.5		
$\Xi_c\pi$	-	-	-	1.0	1.7		
$\Xi_c(6954)\pi$	1.0	3.2	-	-			
$\Xi_c(6096)\pi$	-	-	-	-			
$\Xi_c(6102)\pi$	-	-	-	-			
Ratio	1.29 - 1.30	0.37	0.26	0.89	0.94	0.10	0.5 - 1.5
Total	11.97 - 14.28	24.2	24.4	23.6	24.9	16.7 ± 2.57	18.1 ± 5.4 ± 1.8

[3] R. Aaij et al. [LHCb Collaboration], Precision Measurement of the Mass and Lifetime of the Ξ_c^+ Baryon, Phys. Rev. Lett. 113, no. 24, 242002 (2014).
[4] R. Aaij et al. [LHCb Collaboration], Observation of a new Ξ_c^0 resonance, Phys. Rev. Lett. 121, 072002 (2018).
[5] D. Ebert, R. N. Faustov and V. O. Galkin, Masses of excited heavy baryons in the relativistic quark model, Phys. Lett. B 659, 612 (2008).
[6] D. Ebert, R. N. Faustov and V. O. Galkin, Spectroscopy and Regge trajectories of heavy baryons in the relativistic quark-diquark picture, Phys. Rev. D 84, 014025 (2011).
[7] K. Thakkar, Z. Shah, A. K. Rai and P. C. Vinodkumar, Excited State Mass spectra and Regge trajectories of Bottom Baryons, Nucl. Phys. A 965, 57 (2017).
[8] A. Valcarce, H. Garcilazo and J. Vijande, Towards an understanding of heavy baryon spectroscopy, Eur. Phys. J. A 37, 217 (2008).
[9] C. Garcia-Recio, J. Nieves, O. Romanets, L. L. Salcedo and L. Tolos, Odd parity bottom-flavored baryon resonances, Phys. Rev. D 87, 034032 (2013).
[10] J. X. Lu, Y. Zhou, H. X. Chen, J. J. Xie and L. S. Geng, Dynamically generated $J^P = 1/2$ (3/2$^+$) singly charmed and bottom heavy baryons, Phys. Rev. D 92, 014036 (2015).
[11] B. Chen, K. W. Wei, X. Liu and A. Zhang, Role of newly discovered $\Xi_c(6227)$ for constructing excited bottom baryon family, Phys. Rev. D 98, 031502 (2018).
[12] K. L. Wang, Q. F. Lü and X. H. Zhong, Interpretation of the newly observed $\Xi_c(6097)^+$ and $\Xi_c(6227)^-$ states as the P-wave bottom baryons, arXiv:1810.02205 [hep-ph].
[13] T. M. Aliev, K. Azizi, Y. Sarac and H. Sundu, Structure of the $\Xi_c(6227)^-$ resonance, Phys. Rev. D 98, 094014 (2018).
[14] Y. Dong, A. Faessler, T. Gutsche and V. E. Lyubovitskij, Charmed baryon Sigma(2800) as a ND hadronic molecule, Phys. Rev. D 81, 074011 (2010).
[15] A. Faessler, T. Gutsche, V. E. Lyubovitskij and Y. L. Ma, Strong and radiative decays of the $\Delta^+_c(2317)$ meson in the DK-molecule picture, Phys. Rev. D 76, 014005 (2007).
[16] A. Faessler, T. Gutsche, V. E. Lyubovitskij and Y. L. Ma, D_sK molecular structure of the $\Delta^+_c(2460)$ meson, Phys. Rev. D 76, 114008 (2007).
[17] Y. Dong, A. Faessler, T. Gutsche and V. E. Lyubovitskij, Estimate for the $X(3872) \to \gamma J/\psi$ decay width, Phys. Rev. D 77, 094013 (2008).
[18] Y. Dong, A. Faessler, T. Gutsche and V. E. Lyubovitskij, $J/\psi/\gamma$ and $\psi(2S)/\gamma$ decay modes of the $X(3872)$, J. Phys. G 38, 015001 (2011).
[19] Y. Dong, A. Faessler, T. Gutsche, S. Kovalenko and V. E. Lyubovitskij, $X(3872)$ as a hadronic molecule and its decays to charmonium states and pions, Phys. Rev. D 79, 094013 (2009).
[20] Y. Dong, A. Faessler, T. Gutsche, Q.F. Lü and V. E. Lyubovitskij, Selected strong decays of $\eta(2225)$ and $\phi(2170)$ as $\Lambda\Lambda$ bound states, Phys. Rev. D 96, 074027 (2017).
[21] Y. Dong, A. Faessler, T. Gutsche and V. E. Lyubovitskij, Role of the hadron molecule $\Lambda_c(2940)$ in the $p\bar{p} \to pD\bar{\Lambda}_c(2286)$ annihilation reaction, Phys. Rev. D 90, 094001 (2014).
[22] Y. Dong, A. Faessler, T. Gutsche and V. E. Lyubovitskij, Radiative decay $Y(4260) \to X(3872) + \gamma$ involving hadronic molecular and charmonium components, Phys. Rev. D 90, 074032 (2014).
[23] Y. Dong, A. Faessler, T. Gutsche and V. E. Lyubovitskij, Selected strong decay modes of $Y(4260)$, Phys. Rev. D 89, 034018 (2014).
[24] Y. Dong, A. Faessler, T. Gutsche and V. E. Lyubovitskij, Strong decays of molecular states Ξ_c^+ and $\Xi_c^-\pi^+$, Phys. Rev. D 88, 014030 (2013).
[25] Y. Dong, A. Faessler, T. Gutsche and V. E. Lyubovitskij, A Study of New Resonances in a Molecule Scenario, Few Body Syst. 54, 1011 (2013).
[26] Y. Dong, A. Faessler, T. Gutsche and V. E. Lyubovitskij, Decays of Ξ_c^+ and $\Xi_c^-\pi^+$ as Hadronic Molecules, J. Phys. G 40, 015002 (2013).
[27] Y. Dong, A. Faessler, T. Gutsche, S. Kumano and V. E. Lyubovitskij, Strong three-body decays of $\Lambda_c(2940)^+$, Phys. Rev. D 83, 094005 (2011).
[28] Y. Dong, A. Faessler, T. Gutsche, S. Kumano and V. E. Lyubovitskij, Radiative decay of $\Lambda_c(2940)^+$ in a hadronic molecule picture, Phys. Rev. D 82, 034035 (2010).
[29] Y. Dong, A. Faessler, T. Gutsche and V. E. Lyubovitskij, Strong two-body decays of the $\Lambda_c(2940)^+$ in a hadronic molecule picture, Phys. Rev. D 81, 014006 (2010).
[30] Y. Dong, A. Faessler and V. E. Lyubovitskij, Description of heavy exotic resonances as molecular states using phenomenological Lagrangians, Prog. Part. Nucl. Phys. 94, 282 (2017).
[31] J. Hofmann and M. F. M. Lutz, Coupled-channel study of crypto-exotic baryons with charm, Nucl. Phys. A 763, 90
[32] G. Montañá, A. Feijoo and . Ramos, A meson-baryon molecular interpretation for some Ω, excited states, Eur. Phys. J. A 54, 64 (2018).

[33] K. Kawarabayashi and M. Suzuki, Partially conserved axial vector current and the decays of vector mesons, Phys. Rev. Lett. 16, 255 (1966).

[34] M. Tanabashi et al. [Particle Data Group], Review of Particle Physics, Phys. Rev. D 98, 030001 (2018).

[35] We note that in Ref. [10], the predicted \(\bar{K}\Sigma_b \) molecular state in isospin 1/2 is much lower than that in isospin 3/2, whose position is closer to that of the \(\Xi_c \).