PHF10 subunit of PBAF complex mediates transcriptional activation by MYC

Soshnikova N.V.¹*, Tatarskiy E.V.¹, Tatarskiy V.V.², Klimenko N.S.³, Shtil A. A.², Nikiforov M.A.⁴, Georgieva S.G.¹,⁵*

1 - Department of Eukaryotic Transcription Factors, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
2 - Laboratory of Molecular Oncobiology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
3 - Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
4 - Department of Cancer Biology, Wake Forest University, Medical Center Drive, Winston-Salem, NC 27101, USA
5 - Department of Transcription Factors, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, Moscow 119991, Russia

Figure S1. Interactions between MYC and chromatin remodeling complex determined by immunoprecipitation.

Top: Immunoprecipitation of recombinant FL-MYC by antibodies against PBAF-specific (PHF10, BAF180, BAF200), BAF-specific (BAF250) and the common core subunit BAF155 from HEK293T transiently transfected with FL-MYC construct.

Bottom: Precipitation of BAF250 by antibodies against BAF155 and BAF250 and depletion of BAF250 from cell lysates.
Figure S2. Knockdown of PHF10 and MYC in A375 cells using siRNA-I and siRNA-II.

Figure S3. Decreased amounts of PHF10 upon siRNA knockdown of BAF47, BAF200, BAF180 and PHF10 in HEK293T cells.
Figure S4. Senescence in A375 cells after knockdowns of PHF10 and MYC. Shown is staining for SA-β-galactosidase. See Figure 8 for bigger view fields. Numbers indicate independent view fields.
Table S1. Sequences of primers for cloning

Primer	Sequence
MYC-MB-I_for	5’-GCGAGTTGCACTCCGCCGCAGCCGCCTCGACTCTGC
MYC-MB-I_rev	5’-CGGGGGCTCAACTCCGCTCGACTCTGC
MYC-MB-II_for	5’-TCATCAAAAAACATATTCTGCAGAGAGCTTG
MYC-MB-II_rev	5’-GAGGATGTTTTTGGATGGGCTG
MYC-MB-III_for	5’-GAGGATGTTTTTGGATGGGCTG
MYC-MB-III_rev	5’-TCCTCATGAGGCCAGCGCGCGAGCG
MYC-MB-IV_for	5’-GCCAGGCGAGAGGCTTGAGCG
MYC-MB-IV_rev	5’-CTACTTGGGGCAGACGGCCACCTCCTG
MYC-wt(Xhol)_for	5’-GGAGAATGTCTAATCAGCCTCGACTGTGCCTT
MYC-wt(BamHI)_rev	5’-AGGCTGATTAGACATTCTCCTCGGTGTCC

Table S2. Sequences of siRNA

siRNA	Sequence
siControl_for	5’-AGGUGCAACUACCGGUGCAAAdTdT
siControl_rev	5’-UUGCACCGUAGUUCGGACCAdC
siPHF10-I_for	5’-CAAGAUUGGAGGGAGGCG
siPHF10-I_rev	5’-CUUCAUCACUGGCGAAGCG
siPHF10-II_for	5’-AAGGUGACAGUUCUACCAG
siPHF10-II_rev	5’-CAGCUGGUAAGACGACCUUdAdG
siMYC-I_for	5’-CCUGAGAAATGTCTAATCAGCCTCGACTGTGCCTT
siMYC-I_rev	5’-AGGCTGATTAGACATTCTCCTCGGTGTCC
siMYC-II_for	5’-CCAGAGGAGGAGAAGCAGCUAAdTdT
siMYC-II_rev	5’-UUGCACCGUAGUUCGGACCAdC

Table S3. Primers for ChIP

Primer	Sequence
DDX18_for	5’-CGTCTGGAGAGCATTTCCGC
DDX18_rev	5’-CTTACGAGGGAGGGAGAGG
APEX1_for	5’-AGAGAATTAGAGGAGGAGG
APEX1_rev	5’-CGTCTGGAGAGCATTTCCGC
NOV_for	5’-CCACCCCTCTGGAGGAGC
NOV_rev	5’-GTGGGAAGGTGGAGAGC
EIF4E_for	5’-GCCAGATGGGGATGGTGC
EIF4E_rev	5’-GCGAGTTGCACTCCGCC
E2F1_for	5’-AGAGGTTGAGGCTG
E2F1_rev	5’-GACGCTCCGCCATCC
TYMS_for	5’-CAGCAGGAGGAGGAG
TYMS_rev	5’-GCCCTCCTAGGAGGAGG
ETS1_for	5’-CAAGCAGGAGGAGGAG
ETS1_rev	5’-CAAGCAGGAGGAGGAG
Control_for	5’-CCTTTCCTGGTTGCTG
Control_rev	5’-CAAGCAGGAGGAGGAG
Table S4. Primers for RT-PCR

Primer	Sequence
CycE2 for	5’- TTACGTCACTGATGGTGCTTGC
CycE2 rev	5’- GCCAGGAGATGATTGTACAGG
ETS1 for	5’- GCTGGACAGAGATGGCTGG
ETS1 rev	5’- CGCTGTCTTGAGATGATGT
E2F1 for	5’- GACGTGTCAAGACCTTCGTAGC
E2F1 rev	5’- ACGGTCTCTCAGGGCACAG
E2F6 for	5’- GCTCCAGCAAAACCAGATTG
E2F6 rev	5’- CCGACACCTTCAGACCTTITG
TYMS for	5’- CCTGAATCACATCGAGCCACTG
TYMS rev	5’- CATCCAGCCCCACCCCTAAA
APEX1 for	5’- GACAAAGAGGCAGCAGGAGAGG
APEX1 rev	5’- GAAGGCACAGTATATCTGGG
RPLP0 for	5’- ACTGGGACAAAGTGGGAGCC
RPLP0 rev	5’- CAGACACTGGCAACATTGCG
MYC for	5’- CACCGAGTCGTAGTCGAGG
MYC rev	5’- TTTCGGGTAGTGAGAAACCA
PHF10 for	5’- CCGGGAAACGCATGGGAAGAAG
PHF10 rev	5’- CACCATCACTGTCTAGAGCAGGAGC