Composition and distribution of lice (Insecta: Phthiraptera) on Colombian and Peruvian birds: New data on louse-host association in the Neotropics

Juliana Soto-Patiño‡, Gustavo A Londoño§, Kevin P Johnson‖, Jason D Weckstein¶, Jorge Enrique Avendaño†, Therese A Catanach†, Andrew D Sweet‖, Andrew T Cook‡, Jill E Jankowski‡, Julie Allen‡

‡ Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
§ Departamento de Ciencias Biológicas, Facultad de Ciencias Naturales, Universidad Icesi, Cali, Colombia
‖ Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Urbana-Champaign, Champaign, IL, United States of America
¶ Department of Ornithology, Academy of Natural Sciences and Department of Biodiversity, Earth, and Environmental Science, Drexel University, Philadelphia, United States of America
† Laboratorio de Biología Evolutiva de Vertebrados, Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
‖ Department of Biological Sciences, University of Alberta, Alberta, Canada
¶ Biodiversity Research Centre, Department of Zoology, University of British Columbia, Vancouver, BC, Canada
" Department of Biology, University of Nevada, Reno, United States of America

Abstract

The diversity of permanent ectoparasites is likely underestimated due to the difficulty of collecting samples. Lice (Insecta: Phthiraptera) are permanent ectoparasites of birds and mammals; there are approximately 5,000 species described and many more undescribed, particularly in the Neotropics. We document the louse genera collected from birds sampled in Peru (2006–2007) and Colombia (2009–2016), from 22 localities across a variety of...
ecosystems, ranging from lowland tropical forest and Llanos to high elevation cloud forest. We identified 35 louse genera from a total of 210 bird species belonging to 37 avian families and 13 orders. These genera belong to two suborders and three families of lice: Amblycera, families Menoponidae (present on 131 bird species) and Ricinidae (39 bird species); and Ischnocera, family Philopteridae (119 bird species). We compared our bird-louse associations with data in Price et al. (2003) and recently published Neotropical studies. The majority of bird-louse associations (51.9%) were new, with most of these coming from Passeriformes, the most diverse avian order, with the most poorly known louse fauna. Finally, we found geographical variation in louse infestation and prevalence rates. With this study, we report the first comprehensive documentation of bird-louse associations for Colombia and substantially increase the known associations documented for Peru.

Keywords

Ectoparasites, Feather Lice, Tropical Forests

Introduction

Parasites are one of the most common forms of life on the planet (Price 1980). They have evolved repeatedly in every major clade (Poulin and Morand 2000). Although parasites are amongst the most diverse organisms in the world, few are well studied. Permanent ectoparasites are particularly difficult to study because they live their entire life cycle on hosts (Marshall 1981) and require capturing the host to sample them.

Lice (Insecta: Phthiraptera) are permanent parasites occurring on both birds and mammals. There are approximately 5,000 described species of lice, about 3,000 of which are known from birds (Price et al. 2003, Smith et al. 2011). The taxonomic diversity of lice is positively correlated with the taxonomic diversity of their hosts (Eichler 1942, Vas et al. 2012). Colombia and Peru harbor the richest avifaunas in the world (Jetz et al. 2012), with 1,878 and 1,852 bird species, respectively (Avendaño et al. 2017), and, correspondingly, the highest diversity of avian lice is thought to be found in these regions (e.g. Valim and Weckstein 2013)). Currently, however, there is limited knowledge of louse-host associations and louse diversity from these countries (e.g. Clayton et al. 1992) and the Neotropics in general (Clayton et al. (1992), Marini et al. (1996), Valim and Weckstein (2013). This is due in part to the poor representation of louse specimens in museum collections and the lack of louse specialists and field workers who sample parasites when collecting or handling birds. Therefore, the diversity of known louse species at regional scales is not on par with lists of avian host diversity from these countries. Our main objective is to provide novel information about the composition and distribution of lice on Colombian and Peruvian birds.
From large collections of louse specimens from birds in Peru, Clayton et al. (1992) and Clayton and Walther (2001) examined how host ecology and morphology influence louse diversity across a sample of 127 bird species. These two studies, amongst other taxonomic studies published using the same specimens e.g. Price and Clayton (1995), Price and Clayton (1989), provide most of the known louse-host associations from Peruvian birds. Much less information is available for Colombia, apart from the work of Melbourne A. Carriker (1879–1965), who collected mostly non-passerine birds and their associated lice and a study by Parra-Henao et al. (2011) where they identified lice from 18 bird species from the Cordillera Central near Medellín (Valle de Aburrá). Although this previous work provides an excellent starting point for understanding the diversity of lice in the Neotropics, the numbers of birds examined for lice is a small sample of the total avian diversity in this region.

In this study, we provide data from extensive sampling and description of louse-host associations from Colombia and Peru. Material was collected from 22 localities over nine years. From these samples, we identified 36 unique genera of lice and compared our results with those found in previous studies and with data compiled in the published checklist in Price et al. (2003). We found that over 50% of the louse-host associations were previously unreported and suggest that further data from these collections will be important to identify factors associated with louse diversity in the Neotropics. The data presented here provide the foundation for a long-term project sampling louse diversity across the Andes. This dataset will provide the basis for answering large-scale questions about patterns of diversity along elevational, habitat and host taxonomic gradients. The long-term project will include species level identification, taxonomic description and exploration of macro-ecological patterns along with archiving and storage of louse specimens.

Material and methods

Lice were collected at 22 localities in Peru (2006–2007) and Colombia (2009–2016) (Table 1). In Peru, samples were collected by GAL and JEJ at four stations from Andean foothill forest (800 m a.s.l.) to high elevation cloud forest (3,000 m a.s.l.) inside Manu National Park or its buffer zone along a contiguously forested altitudinal gradient (Fig. 1a). In Colombia, samples were collected by GAL, JEA and JSP at 18 sites across the country, which ranged in elevation and habitat from 100 m a.s.l. to 2,800 m a.s.l., including savannah and gallery forest, lowland tropical forest and humid premontane and montane cloud forest (Fig. 1b).

Country	Department	Locality	Coordinates	Elevation (m a.s.l)	Habitat	Collector(s)
Peru	Cusco	1. Buenos Aires (Mun. Paucartambo)	13°9'S, 71°35'W	2480-2550	Highland cloud forest	GAL-JEJ
Country	Department	Locality	Coordinates	Elevation (m a.s.l)	Habitat	Collector(s)
---------	------------	----------	-------------	-------------------	---------	--------------
Cusco	2. Tono (Mun. Patria)	12°57'S, 71°34'W	800-1100	Andean foothill forest	GAL-JEJ	
Cusco	3. Lodge Gallito de las rocas (Mun. San Pedro)	13°03'S, 71°32'W	1200-1500	Montane cloud forest	GAL-JEJ	
Cusco	4. Wayqecha Biological Station (Mun. Paucartambo)	13°10'S, 71°35'W	2600-3000	Highland cloud forest	GAL-JEJ	
Columbia	Santander	5. El Rasgón Reserve (Mun. Piedecuesta)	07°02'N, 72°59'W	2200	Primary cloud forest and borders	JEA
Antioquia	6. Remedios (Mun. Remedios)	06°54'N, 74°34'W	500	Lowland humid forest	GAL	
Santander	7. Salabuga farm (Mun. San Andrés)	06°45'N, 72°46'W	2650	Primary cloud forest and borders	JEA	
Santander	8. El Tablón farm (Mun. San Andrés)	06°43'N, 72°49'W	2770-2800	Primary cloud forest and borders	JEA	
Santander	9. La Rinconada farm (Mun. San Andrés)	06°43'N, 72°47'W	2880	Primary cloud forest and borders	JEA	
Risaralda	10. Montezuma, Tatama Nationla Park (Mun. Pueblo Rico)	05°13'N, 76°05'W	1200-2500	Forest types from foothills, to mid and high elevation cloud forests	GAL	
Casanare	11. El Porvernir farm (Mun. Aguazul)	05°13'N, 72°30'W	350-400	Secondary humid tropical forest	JEA	
Meta	12. Universidad de los Llanos (Mun. Villavicencio)	04°4'N, 73°35'W	400-440	Secondary humid tropical forest	JEA	
Meta	13. Mitimiti farm (Mun. Puerto Gaitán)	04°31'N, 71°48'W	141	Savannah, gallery forest	JEA	
Cundinamarca	14. San Antonio farm (Mun. Medina)	04°26'N, 73°24'W	570	Secondary humid tropical forest	JEA	
Meta	15. Manacacías farm (Mun. Puerto Gaitán)	04°10'N, 72°02'W	200-250	Savannah, gallery forest	JEA	
Valle del Cauca	16. La Minga farm (Mun. La Cumbre)	03°33'N, 76°35'W	2000	Cloud forest on top of the Western cordillera	GAL	
Valle del Cauca	17. Icesi University research station, Zygia, Farallones de Cali National Park (Mun. Cali)	03°27'N, 76°46'W	2400	High elevation cloud forest	GAL	
Valle del Cauca	18. Danubio (Mun. Cali)	03°24'N, 76°39'W	2200	High elevation cloud forest	GAL-JSP	
Guaviare	19. Laguna Grande (Mun. San José del Guaviare)	02°33'N, 72°39'W	400	Savannah, gallery forest	JEA	
Country	Department	Locality	Coordinates	Elevation (m a.s.l)	Habitat	Collector(s)
---------	------------	----------	-------------	--------------------	---------	--------------
Cauca	20.	Mirabillis-Swarovski Reserve (Mun. El Tambo)	02°31'N, 76°59'W	2270	Primary humid montante forest	JEA
Cauca	21.	Tambito Reserve (Mun. El Tambo)	02°30'N, 76°59'W	1500	Primary premontane forest	JEA
Nariño	22.	El Pangán Reserve (Mun. Barbacoas)	01°21'N, 78°05'W	710	Primary humid tropical forest	JEA

At each site, 10 to 20 netting stations were run and, at each station, 10 mist nets were opened for three days to capture birds. Each netting station was sampled twice during each 4 to 6 month field season. After removing birds from the nets, each individual host was placed in a clean cloth bag until processing for ectoparasites. We used three methods for collecting ectoparasites, detailed in Clayton and Drown (2001): 1) Post-mortem ruffling, 2) visual examination and, for the majority of samples 3) dust-ruffling. To dust-ruffle the birds, we applied ~1 ml of EverGreen pyrethrum dust (McLaughlin Gormley King Company, MN, USA) to captured birds and then ruffled feathers from all body regions except the head. Five minutes after we applied the powder, we ruffled each bird's feather tracts over a plastic sheet for 30 to 60 seconds to remove powder and ectoparasites. We transferred all powder...
and ectoparasites that fell on to the sheet to a 1.5ml Eppendorf tube filled with 96% ethyl alcohol and inserted a label with host metadata.

JEА also collected ectoparasite specimens using Clayton and Drown's (2001) post-mortem ruffling method for euthanised avian hosts. These hosts were collected and prepared as museum voucher specimens. To collect ectoparasites, JEA placed each euthanised host in a Ziploc bag with cotton soaked in ethyl acetate for 20 minutes. He then removed the bird from the bag and ruffled the plumage for 60 seconds over a white sheet of paper. Each specimen was returned to its Ziploc bag (with cotton soaked with ethyl acetate), ruffling the plumage two additional times, at intervals of 15 minutes. The ectoparasites were collected from the paper with a small brush and placed in a vial with 96% ethyl alcohol with a label including host specimen metadata. Bird voucher specimens were deposited in the bird collection of Instituto de Ciencias Naturales (ICN) of Universidad Nacional (Bogotá, Colombia) and the Museum of Natural History (MHNU) at Universidad de los Llanos (Villavicencio, Meta, Colombia). Lice were separated from the other ectoparasites, placed into individual vials and identified to genus using taxonomic keys Price et al. (2003). Host taxonomy followed the South American Classification Committee Remsen et al. (2017).

We compared our findings with the world checklist of chewing lice in Price et al. (2003) and recently published taxonomic literature on Neotropical lice in Price et al. (2005), Price et al. (2008), Price and Dalgleish (2006), Sychra et al. (2007), Kounek et al. (2011a), Kounek et al. (2011b), Valim et al. (2011). Using these resources, for each host species in our study, we classified the louse fauna documented amongst our samples combined from both Colombia and Peru into one of four categories.

0) Not previously reported - avian species with no louse association data reported.

1) Same as reported - avian species for which our study found the same louse genera as reported.

2) Fewer than reported - avian species for which our study found fewer louse genera than reported

3) More than reported - avian species for which our study found more louse genera than reported
Results

In Colombia, we sampled 1,032 individual birds from 280 species. Just over half, 51.6% (532), of these birds were infected with ectoparasites (i.e. feather mites, ticks, parasitic flies, fleas and lice) and we found lice on 30% (310) of individual hosts from 138 avian species, 36 avian families and 13 avian orders (Table 2). In Peru, we found lice on 262 individual birds from 98 species, 19 families and 5 orders (Table 3). In both countries combined, we identified 35 louse genera on 210 bird species from 37 avian families and 13 avian orders. Lice documented in this study are from two suborders and three families: Suborder Amblycera (Menoponidae and Ricinidae); and suborder Ischnocera (Philopteridae).

Bird taxa	Louse genera	N	Ni
Tinamiformes			
Tinamidae (1)			
Crypturellus soui	Strongylocotes sp.¹	1	1
Galliformes			
Odontophoridae (1)			
Colinus cristatus	Gonioides sp.²	2	2
	Lipeurus sp.²		
	Oxylipeurus sp.²		
Columbiformes			
Columbidae (3)			
Leptotila rufaxilla	Columbicola sp.²	2	2
Columbina talpacoti	Columbicola sp.²	2	2
Zentrygon frenata	Campanulotes sp.²	1	1
Cuculiformes			
Cuculidae (2)			
Crotophaga ani	Osborniella sp.²	1	1

Table 2. Louse-host associations from birds captured in Colombia. N - number of birds examined, Ni - Number of infected birds. Superscripts A and I represent louse suborders Amblycera or Ischnocera and * indicates a previously unrecorded louse host association.
Bird taxa	Louse genera	N	Ni
Playa cayana	Cuculoecus sp.¹	1	1
Caprimulgiformes			
Caprimulgidae (2)			
Systellura longirostris	Multicola sp.²	1	1
Nyctidromus albicollis	Multicola sp.²	3	3
Apodiformes			
Apodidae (1)			
Chaetura meridionalis	Eureum sp.²	1	1
Trochilidae (2)			
Anthracothorax nigricollis	Trochiliphagus sp.²	2	2
Thalurania colombica	Myrsidea sp.²	1	1
Charadriiformes			
Scolopacidae (1)			
Gallinago paraguaiae	Saemundssonia sp.²	1	1
	Rhynonirmus sp.²		
Jacanidae (1)			
Jacana jacana	Rallicola sp.²	1	1
Accipitriformes			
Accipitridae (1)			
Accipiter striatus	Degeeriella sp.²	1	1
Coraciiformes			
Alcedinidae (3)			
Chloroceryle americana	Alcedoffula sp.²	2	2
Chloroceryle inda	Alcedoffula sp.²	2	2
Chloroceryle aenea	Alcedoffula sp.²	3	2
Momotidae (2)			
Momotus momota	Philopterus sp.²	2	2
Momotus aequatorialis	Brueella s.l.²	4	1
Galbuliformes			
Bird taxa	Louse genera	N	Ni
---------------------------	-----------------------	----	----
Buccoconidae (1)			
Hypnelus ruficollis	*Picicola sp.*	3	3
Piciformes			
Capitonidae (1)			
Eubucco bourcierii	*Penenirmus sp.*	3	1
Ramphastidae (1)			
Aulacorhynchus haematopygus	*Austrophilopterus sp.*	4	1
Picidae (6)			
Picumnus squamulatus	*Penenirmus sp.*	1	1
Melanerpes formicivorus	*Penenirmus sp.*	1	1
Melanerpes rubricapillus	*Brueelia s.l.*	1	1
Picoides fumigatus	*Brueelia s.l.*	5	1
Colaptes rubiginosus	*Penenirmus sp.*	1	1
Dryocopus lineatus	*Picicola sp.*	1	1
Psittaciformes			
Psittacidae (3)			
Brotogeris cyanoptera	*Psittacobrosus sp.*	1	1
Forpus conspicillatus	*Psittacobrosus sp.*	1	1
Eupsittula pertinax	*Psittacobrosus sp.*	2	2
Dryocopus lineatus	*Paragoniocotes sp.*		
Passeriformes			
Thamnophilidae (3)			
Dysithamnus puncticeps	*Ricinus sp.*	1	1
Myrmotherula schisticolor	*Ricinus sp.*	6	1
Formicivora grisea	*Myrsidea sp.*	1	1
Conopophagidae (1)			
Conopophaga castaneiceps	*Formicaphagus sp.*	1	1
Grallaridae (1)			
Grallaria alleni	*Picicola sp.*	1	1
Rhynochephytidae (1)			
Bird taxa	Louse genera	N	Ni
-----------------------------------	------------------	----	----
Scytalopus griseicollis	Rallicola sp.1,*	3	1
Fumarilidae (12)			
Dendrocincla fuliginosa	Rallicola sp.1	10	2
	Ricinus sp.1,*		
Glyphorhynchus spirurus	Rallicola sp.1	23	1
Xiphorhynchus obsoletus	Rallicola sp.1,*	2	2
Dendroplex picus	Rallicola sp.1,*	3	2
Anabacerthia variegatae	Philopterus sp.1*	1	1
Syndactyla subalaris	Rallicola sp.1,*	8	1
	Myrsidea sp.1		
Clibanornis rubiginosus	Rallicola sp.1,*	2	2
Thripadectes ignobilis	Rallicola sp.1,*	2	2
Thripadectes virgaticeps	Rallicola sp.1,*	4	2
	Myrsidea sp.1		
Premnoplex brunnescens	Rallicola sp.1	10	1
	Myrsidea sp.1		
Cranioleuca vulpina	Rallicola sp.1,*	1	1
	Myrsidea sp.1		
Synallaxis unirufa	Rallicola sp.1,*	2	1
Tyrannidae (13)			
Elaenia flavogaster	Myrsidea sp.1	1	1
Elaenia parvirostris	Ricinus sp.1,*	1	1
Elaenia chiriquensis	Menacanthus sp.1,*	1	1
Elaenia pallatangae	Myrsidea sp.1,*	2	1
Mecocerculus leucophrys	Menacanthus sp.1,*	2	1
Mionectes striaticollis	Myrsidea sp.1	28	12
	Philopterus sp.1*		
Mionectes olivaceus	Myrsidea sp.1	13	4
	Philopterus sp.1*		
Mionectes oleagineus	Myrsidea sp.1	18	2
Bird taxa	Louse genera	N	Ni
---------------------------------	-----------------------	----	----
Leptopogon amaurocephalus	*Philopterus* sp. i.*	16	3
Atalotriccus pilaris	*Philopterus* sp. i.*	1	1
Rhynchocyclus olivaceus	*Myrsidea* sp. i.	4	1
Platyrinchus coronatus	*Myrsidea* sp. i.*	2	1
Myiarchus tyrannulus	*Philopterus* sp. i.*	1	1
Cotingidae (3)			
Pipreola riefferii	*Cotingacola* sp. i.	26	8
	Philopterus sp. i.*		
	Myrsidea sp. i.*		
Pipreola arcuata	*Pseudocophorus* sp. i	1	1
Pipreola jucunda	*Ricinus* sp. i.*	1	1
Pipridae (4)			
Chloropipo flavicapilla	*Philopterus* sp. i.*	7	2
Manacus manacus	*Ricinus* sp. i.	9	2
	Philopterus sp. i.		
Pipra illicauda	*Ricinus* sp. i.*	7	6
	Philopterus sp. i.*		
	Myrsidea sp. i.*		
Machaeropetrum regulus	*Ricinus* sp. i.	21	3
Tytiridae (1)			
Pachyramphus polychopterus	*Myrsidea* sp. i.*	3	3
	Ricinus sp. i.		
Corvidae (1)			
Cyanocorax violaceus	*Bruella* s. i.	1	1
	Myrsidea sp. i.		
Hirundinidae (1)			
Progne tapera	*Philopterus* sp. i.*	2	2
	Myrsidea sp. i.		
Troglytidae (2)			
Troglytes aedon	*Penenirmus* sp. i.	6	2
Bird taxa	Louse genera	N	Ni
-----------------------------------	-------------------------	----	-----
Cyphorhinus thoracicus	Penenirmus sp.	8	1
Turdidae (10)			
Myadestes ralloides	Philopterus sp.	29	15
	Myrsidea sp.	4	
Catharus ustulatus	Philopterus sp.	10	4
	Myrsidea sp.	4	
Entomodestes coracinus	Brueelia s.l.	8	4
	Myrsidea sp.	6	
	Myrsidea sp.	2	
Turdus leucops	Brueelia s.l.	13	2
Turdus leucomelas	Myrsidea sp.	4	4
	Brueelia s.l.	1	
Turdus nudigenis	Myrsidea sp.	6	6
	Brueelia s.l.	1	
Turdus ignobilis	Myrsidea sp.	1	1
	Brueelia s.l.	1	
Turdus fuscater	Myrsidea sp.	2	1
	Brueelia s.l.	1	
Turdus serranus	Myrsidea sp.	19	12
	Brueelia s.l.	1	
Turdus albicollis	Myrsidea sp.	2	2
	Brueelia s.l.	1	
Thraupidae (34)			
Paroaria nigrogenis	Myrsidea sp.	1	1
	Brueelia s.l.	1	
Schistochlamys melanopis	Myrsidea sp.	1	1
Hemip Pinkus atropleus	Myrsidea sp.	2	1
Hemip Pinkus frontalis	Myrsidea sp.	7	1
Ramphocelus carbo	Myrsidea sp.	15	15
	Brueelia s.l.	1	
Bird taxa	Louse genera	N	Ni
-------------------------	---------------------------	----	----
Louse genera			
Ricinus sp.			
Ramphocelus flammigerus	Myrsidea sp.	3	2
Bangsia edwardsi	Myrsidea sp.	2	2
Bangsia aureocincta	Philopterus sp.	3	1
	Myrsidea sp.		
Buthraupis montana	Myrsidea sp.	2	2
Chlorornis riefferii	Myrsidea sp.	3	1
Anisognathus somptuosus	Myrsidea sp.	10	6
Iridosornis rufivertex	Myrsidea sp.	1	1
Chlorochrysa phoenicotic	Myrsidea sp.	4	2
Thraupis palmarum	Myrsidea sp.	3	2
	Ricinus sp.		
Thraupis cyanopephala	Myrsidea sp.	3	2
	Brueelia s.l.		
Tangara heinei	Myrsidea sp.	4	2
Tangara cayana	Myrsidea sp.	9	9
	Machaerilaemus sp.		
Tangara vitriolina	Myrsidea sp.	1	1
Tangara rugigula	Myrsidea sp.	3	3
Tangara nigroviridis	Myrsidea sp.	5	1
Tangara gyrola	Myrsidea sp.	1	1
Tangara arthus	Myrsidea sp.	8	1
Tangara icterocephala	Myrsidea sp.	3	3
	Ricinus sp.		
Tersina viridis	Menacanthus sp.	1	1
Diglossa albilatera	Myrsidea sp.	14	2
Diglossa caerulescens	Myrsidea sp.	4	2
	Philopterus sp.		
Catamblyrhynchus diadema	Myrsidea sp.	3	2
Haplospiza rustica	Philopterus sp.	2	1
Bird taxa	Louse genera	N	Ni
--------------------------	---------------------	----	----
Saltator maximus	Myrsidea sp.	2	2
Saltator coerulescens	Myrsidea sp.	1	1
Volatinia jacarina	Myrsidea sp.	2	2
Sporophila minuta	Ricinus sp.	1	1
Sporophila crassirostris	Philopterus sp.	1	1
Coereba flaveola	Brueelia s.l.	1	1
Emberizidae (6)			
Oreothraupis arremonops	Myrsidea sp.	3	1
Chlorospingus flavicuHar	Myrsidea sp.	3	2
Chlorospingus flavopectus	Myrsidea sp.	10	9
	Ricinus sp.		
	Philopterus sp.		
	Penenirnis sp.l.*		
Chlorospingus semifuscus	Myrsidea sp.	8	5
	Philopterus sp.		
	Brueelia s.l.*		
Arremonops conirostris	Myrsidea sp.	3	3
Arremon brunneinucha	Myrsidea sp.	18	8
Cardinalidae (1)			
Habia cristata	Myrsidea sp.	1	1
	Brueelia s.l.*		
Parulidae (5)			
Setophaga fusca	Ricinus sp.	2	1
Myiothlyps fulvicauda	Menacanthus sp.	1	1
Myiothlyps coronata	Myrsidea sp.	17	7
	Brueelia s.l.*		
Basileuterus tristriatus	Myrsidea sp.	18	4
	Menacanthus sp.		
	Myrsidea sp.		
Table 3.

Host-louse associations from sites in Peru. *Ni Number of birds infested. Superscripts A and I represent the suborders of lice Amblycera and Ischnocera, * represents new host-louse association reported in this study. *New genus reported for a host species with louse associations known (No) Number of host species representing each bird family.

Bird taxa	Louse genera	N	Ni
Columbiformes			
Columbidae (1)			
Geotrygon montana	Columbicola sp. I	1	
Apodiformes			
Trochilidae (2)			
Coeligena violifer	Trochiloecetes sp. A *	1	
Thalurania furcata	Trochiliphagus sp. A *	1	
Coraciiformes			
Momotidae (1)			
Baryphthengus martii	Brueelia s.l. I	1	
Piciformes			

Bird taxa	Louse genera	N	Ni
Myioborus miniatus	Ricinus sp. A *	7	2
Icteridae (4)			
Psarocolius decumanus	Myrsidea sp. A	1	1
Caciclus cela	Myrsidea sp. A	1	1
	Brueelia s.l. I		
Caciclus chrysonotus	Myrsidea sp. A *	4	1
	Brueelia s.l. I		
Gymnomystax mexicanus	Myrsidea sp. A *	1	1
Fringillidae (3)			
Euphonia chlorotica	Myrsidea sp. A *	1	1
Euphonia laniirostris	Myrsidea sp. A	1	1
Chlorophonia pyrrhophrys	Philopterus sp. I *	1	1
	Brueelia s.l. I *		
TOTAL (138)		641	310
Bird taxa	Louse genera	Ni	
---------------------------	-----------------------	----	
Capitonidae (1)			
Eubucco versicolor	*Myrsidea* sp. A. *	1	

Passeriformes

Thamnophilidae (7)		
Thamnophilus caerulescens	*Formicaphagus* sp. I. *	1
Dysithamnus mentalis	*Formicaphagus* sp. I. *	3
Pyriglena leuconota	*Formicaphagus* sp. I.	1
Myrmoborus myotherinus	*Formicaphagus* sp. I. *	1
Sciaphylax hemimelaena	*Ricinus* sp. A. *	1
Rhegmatorhina melanosticta	*Ricinus* sp. A. *	1
Phlegopsis nigromaculata	*Myrsidea* sp. A. *	1

Grallaridae (1)		
Grallaricula flavirostris	*Myrsidea* sp. A. *	1

Formicariidae (1)		
Chamaeza campanisona	*Myrsidea* sp. A. *	1

Furnariidae (15)		
Dendrocincla fuliginosa	*Rallicola* sp. I.	1
Glyphorynchus spirurus	*Myrsidea* sp. A. *	3
Xiphocolaptes promeropirhynchus	*Rallicola* sp. I.	1
Xiphorhynchus triangularis	*Rallicola* sp. I.	2
Anabacerthia striaticollis	*Philopterus* sp. I. *	3
Syndactyla ucayalae	*Myrsidea* sp. A. *	1
Clibanornis rubiginosus	*Myrsidea* sp. A. *	2
Thripadectes holostictus	*Furnariphilus* sp. I. *	2
Bird taxa	Louse genera	Ni
---------------------------	-----------------------	----
Myrsidea sp.*	*	
Thripadectes melanorhynchus	Myrsidea sp.*	5
Rallicola sp.*		
Automolus ochroaemus	Myrsidea sp.*	2
Automolus subulatus	Myrsidea sp.*	1
Rallicola sp.*		
Premnoplex brunnescens	Myrsidea sp.*	1
Margaronis squamiger	Rallicola sp.*	1
Asthenes helleri	Philopterus sp.*	2
Synallaxis azarae	Furnariphilus sp.*	1
Tyrannidae (16)		
Phylloscartes poecilotis	Myrsidea sp.*	1
Phylloscartes ophthalmicus	Philopterus sp.*	1
	Myrsidea sp.*	
Mionectes olivaceus	Myrsidea sp.*	17
Mionectes striaticollis	Myrsidea sp.*	26
	Philopterus sp.*	
Mionectes oleagineus	Myrsidea sp.*	6
Leptopogon superciliaris	Myrsidea sp.*	7
	Philopterus sp.*	
Myiotriccus ornatus	Myrsidea sp.*	1
Lophotriccus pileatus	Philopterus sp.*	1
Myiophobus inornatus	Ricinus sp.*	1
Pyrrhomyias cinnamomeus	Philopterus sp.*	1
Mitrephanes olivaceus	Philopterus sp.*	1
Ochthoeca frontalis	Philopterus sp.*	6
	Myrsidea sp.*	
Ochthoeca pulchella	Philopterus sp.*	6
	Myrsidea sp.*	
Ochthoeca cinnamomeiiventris	Philopterus sp.*	1
Bird taxa	Louse genera	Ni
------------------------	--------------	----
Ochthoea rufipectoralis	Philopterus sp.¹ *	2
Conopias cinchoneti	Philopterus sp.¹ *	1
Cotingidae (2)		
Pipreola intermedia	Myrsidea sp.² *	2
	Philopterus sp.¹ *	
Pipreola pulchra	Myrsidea sp.² *	1
Pipridae (4)		
Chiroxiphia boliviana	Myrsidea sp.² *	6
	Philopterus sp.¹	
	Ricinus sp.²	
Lepidothrix coeruleocapilla	Myrsidea sp.² *	8
	Philopterus sp.¹ *	
	Ricinus sp.² *	
Pipra fasciculauda	Myrsidea sp.² *	1
	Philopterus sp.¹ *	
Machaeropterus pyrocephalus	Philopterus sp.¹ *	2
	Ricinus sp.²	
Troglodytidae (1)		
Henicorhina leucophrys	Myrsidea sp.² *	1
Turdidae (6)		
Myadestes ralloides	Myrsidea sp.² *	4
	Philopterus sp.¹ *	
	Brueelia s.l.² *	
Catharus ustulatus	Myrsidea sp.²	5
	Brueelia s.l.²	
Entomodestes leucotis	Myrsidea sp.² *	4
	Brueelia s.l.²	
	Sturnidoecus sp.² *	
Turdus leucops	Myrsidea sp.² *	1
Turdus fuscater	Myrsidea sp.² *	1
Bird taxa	Louse genera	Ni
---------------------------	------------------------	----
Philopterus sp.		
Turdis serranus	Myrsidea sp.	3
Menacanthus sp.		
Philopterus sp.		
Brueelia s.l.	*	
Ricinus sp.		
Thraupidae (25)		
Hemispingus superciliaris	Ricinus sp.	1
Hemispingus melanotis	Myrsidea sp.	4
Ricinus sp.		
Trichotheauss melanops	Myrsidea sp.	3
Thlypopsis ruficeps	Philopterus sp.	2
Ricinus sp.		
Ramphocelus carbo	Myrsidea sp.	2
Buthraupis montana	Myrsidea sp.	1
Chlorornis riefferii	Myrsidea sp.	1
Iridosornis analis	Myrsidea sp.	
Brueelia s.l.	*	
Iridosornis jelskii	Myrsidea sp.	
Chlorochrysa calliparaea	Myrsidea sp.	1
Thraupis cyancephala	Myrsidea sp.	1
Tangara cyanicollis	Myrsidea sp.	1
Brueelia s.l.	*	2
Tangara punctata	Myrsidea sp.	
Tangara nigroviridis	Myrsidea sp.	2
Tangara chilensis	Myrsidea sp.	2
Tangara gyrola	Myrsidea sp.	1
Tangara schrankii	Myrsidea sp.	1
Tangara arthus	Myrsidea sp.	2
Conirostrum albifrons	*Ricinus* sp.	2
Bird taxa	Louse genera	Ni
-----------	--------------	----
Diglossa mystacalis	*Myrsidea* sp. A, *	2
Diglossa brunneiventris	*Myrsidea* sp. A, *	2
Diglossa glauca	*Myrsidea* sp. A, *	1
	Ricinus sp. A, *	1
Diglossa cyanea	*Myrsidea* sp. A, *	
Saltator maximus	*Brueelia* s.l.	3
Coereba flaveola	*Myrsidea* sp. A	1

Emberizidae (6)

Bird taxa	Louse genera	Ni
Chlorospingus flavigularis	*Myrsidea* sp. A, *	8
Chlorospingus parvirostris	*Myrsidea* sp. A, *	2
Chlorospingus flavopectus	*Myrsidea* sp. A	1
Arremon taciturnus	*Myrsidea* sp. A	2
Arremon branneinucha	*Brueelia* s.l.	1
Atlapetes melanolaemus	*Ricinus* sp. A, *	4

Cardinalidae (1)

Bird taxa	Louse genera	Ni
Piranga leucoptera	*Myrsidea* sp. A, *	1

Parulidae (5)

Bird taxa	Louse genera	Ni
Myiothlypis luteoviridis	*Myrsidea* sp. A, *	5
	Ricinus sp. A, *	
Myiothlypis signata	*Myrsidea* sp. A, *	3
	Menacanthus sp. A, *	
	Picicola sp. I, *	
	Ricinus sp. A, *	
Myiothlypis bivittata	*Myrsidea* sp. A, *	5
	Ricinus sp. A	
Myiothlypis coronata	*Myrsidea* sp. A, *	7
	Brueelia s.l. I, *	
Myioborus miniatus	*Myrsidea* sp. A	6
	Menacanthus sp. A, *	
	Ricinus sp. A, *	
Composition and distribution of lice (Insecta: Phthiraptera) on Colombian …

Bird taxa	Louse genera	Ni
Icteridae (1)		
Amblycercus holosericeus	Philopterus sp. 1 *	1
Fringillidae (2)		
Euphonia mesochrysa	Ricinus sp. A *	1
Euphonia xanthogaster	Myrsidea sp. A *	7
TOTAL (98)		262

Suborder Amblycera

Menoponidae - Six menoponid louse genera were distributed on 131 bird species: Myrsidea Waterston 1915 (120 bird species), Menacanthus Neumann 1912 (8), Psittacobrosus Carriker 1954 (3), Machaerilaemus Harrison 1915 (2), Eureum Nitzsch 1818 (1) and Osborniella Thompson 1948 (1).

Ricinidae – Three ricinid louse genera were distributed on 39 bird species: Ricinus De Geer 1778 (36 bird species), Trochiliphagus Carriker 1960 (2) and Trochiloecetes Paine and Mann 1913 (1).

Suborder Ischnocera

Philopteridae – Twenty six philopterid genera were distributed on 119 bird species: Philopterus Nitzsch 1818 (42 bird species), Brueelia Kéler 1936 (30), Rallicola Johnston and Harrison 1911 (18), Penenirmus Clay and Meinertzhagen 1938a (7), Formicaphagus Carriker 1957 (5), Picicola Clay and Meinertzhagen 1938a (4), Alcedocephula Clay and Meinertzhagen 1939 (3), Columbicola Ewing 1929 (3), Fumarophilus Price and Clayton 1995 (2), Mulcticola Clay and Meinertzhagen 1938b (2), Physconelloides Ewing 1927 (2), Austrophilopterus Ewing 1929 (1), Campanulotes Kéler 1939 (1), Cotingacola Carriker 1956 (1) Cuculoecus Ewing 1936 (1), Degeeriella Neumann 1906 (1), Goniodes Nitzsch 1818 (1), Lipeurus Nitzsch 1818 (1) Oxylieurus Mjöberg 1910 (1), Paragoniocotes Cummings 1916 (1), Pseudocophorus Carriker 1940 (1), Rhynonirmus Thompson 1935 (1), Strongylocotes Tachenberg 1882 (1), Saemundssonia Timmermann 1936 (1), Sturnidoecus Eichler 1944 (1) and Vermoiella Guimarães 1942 (1).

In total, including the two louse suborders, 131 bird species had one louse genus, 61 had two louse genera, 16 had three louse genera, 1 had four and 1 had five louse genera.

We compared our findings with the world checklist of chewing lice in Price et al. (2003) and more recent publications. We report new louse generic associations for 109 of 210 bird species (51.6% of the host species sampled; Tables 2 and 3). For 52 bird species (24.8% of the host species sampled), we found the same number of louse genera as previously reported and, in 29 bird species (13.8% of the host species sampled), we found fewer
genera than previously reported. In addition, for 20 bird species (9.5% of the host species sampled), we found more louse genera than previously reported Fig. 2.

Figure 2. Bird-lice associations included in each category described in the methods above. The Y axis represents the number of bird species and the X axis indicates the categories in which bird species were grouped according to reported louse-bird associations.

Data resources

The dataset is the result of several trips to 22 localities to study Neotropical bird communities in Colombia and Peru Table 1. In this study, we report lice on a total of 572 individual hosts totalling 210 bird species from 37 avian families and 13 orders. We identified 35 louse genera from two suborders and three families: Suborder Amblycera (Menoponidae and Ricinidae); and suborder Ischnocera (Philopteridae) Suppl. material 1

Discussion

In the present study, we report the genera of lice collected from 210 bird species at 22 sites in Colombia and Peru. We compared the louse-host association found in our study with the known genera of lice from these species of birds. We used Price et al. (2003), the most complete published bird-lice association list, along with recent Neotropical host-lice faunistic and taxonomic publications to assess the novelty of the host-parasite associations documented by our study.
We report 109 novel host-louse generic associations. This was not unexpected as we sampled several lowland and Andean habitats which have previously had few studies of bird-louse associations.

The majority (87.1%) of these new records were from Passeriformes. Knowledge of lice from many Passeriformes is relatively poor compared to non-passerines Sychra et al. (2007) and thus the diversity and number of undescribed parasites from these hosts is likely high e.g. Valim and Weckstein (2013), as confirmed by recent taxonomic descriptions and new associations of lice from Neotropical birds in the families Tyrannidae Price et al. 2005, Thraupidae Price and Johnson 2009, Furnariidae Sychra et al. 2007, Parulidae Kounek et al. 2011a and Cardinalidae, Emberizidae and Fringillidae Kounek et al. 2011b. These studies are likely only the beginning of describing new species in these mega-diverse louse groups found on Neotropical passerine birds. For example, Valim and Weckstein (2013) point out that louse genera such as *Myrsidea* harbour large numbers of undescribed species. Our data show that the majority of Passeriformes sampled (64.5%) have *Myrsidea* and many of them are likely to be new species.

The distribution of lice is related to the distribution of their hosts Rózsa and Vas (2015) and many orders and families typically have parasites of distinctive louse faunas Smith (2001). Our data are consistent with generalised patterns across avian groups. For example, members of the Ricinidae are known to infect hummingbirds and small Passeriformes, whereas members of the Menoponidae are widely distributed across most avian families Rózsa and Vas (2015). Similarly, we found lice from the genus *Ricinus* on 36 species of Passeriformes from 11 host families. *Myrsidea* is a broadly distributed, mega-diverse genus of lice, infecting avian hosts from many orders, including Coraciiformes, Passeriformes and Piciformes Valim and Weckstein (2013), found mostly on Passeriformes and is considered to have a high degree of host-specificity Price and Dalgleish (2007). We also found that the louse genus *Myrsidea*, from the family Menoponidae, was distributed on 120 bird species, two of which were non-Passeriformes.

In Ischnocera, the family Philopteridae is widely distributed on birds Rózsa and Vas (2015). The various genera of Philopteridae are often specialised morphologically and behaviourally for living on a single microhabitat in the plumage (e.g. wing, head and/or body feathers) where lice can avoid host preening Johnson et al. (2012). This microhabitat specialisation may in part explain the host specificity and diversity of these lice. The three most common genera of Philopteridae found in our study were *Philopterus*, *Brueelia* and *Rallicola*. Of these, *Philopterus* was the most widely distributed genus in this family, occurring on a diverse array of passerine host families and a single non-passerine host species (42 bird species). *Brueelia*, the most speciose genus of lice in the family Philopteridae, infects avian hosts from many orders, including Coraciiformes, Passeriformes and Piciformes Valim and Weckstein (2011)Valim and Weckstein (2013)Gustafsson and Bush (2017). Similarly, we found *Brueelia* on 30 bird species, including two species of Coraciiformes, two species of Piciformes and 26 species of Passeriformes. Finally, the third most frequently collected genus was *Rallicola*, found on 18 bird species, including one host species in the order Charadriiformes and 17 host species
in the order Passeriformes. *Ralicola* is one of the most speciose of ischnoceran louse genera and has been reported from the avian host orders Apterygiformes, Charadriiformes, Gruiformes and Passeriformes Price et al. (2003), Smith (2001).

Thirty percent of the Colombian birds sampled (138 host species) were infected with lice. In Peru, Clayton et al. (1992) found that 48% of birds examined (127 host species) were infected by lice, whereas in Brazil, Marini et al. (1996) and Oniki (1999) found that 20% of 313 individual birds (53 species) and 63% of 60 birds (38 species) had lice, respectively. Enout et al. (2012) found that 65% of 57 avian host species sampled were infected with lice. These studies suggest that louse prevalence may vary geographically. For example, for the flycatcher, *Leptopogon amaurocephalus*, in Brazil, Marini et al. (1996) and Oniki (1999), sampled two and one individual hosts respectively and all were infected with lice, whereas found two of three individuals sampled infected with lice. We found that in Remedios, Colombia, only 16.6% (n=12) of *L. amaurocephalus* individuals were infected. However, other host species had similar prevalence rates as reported in previous studies. For example, in Brazil, Oniki (1999) found that 67% of *Turdus leucomelas* sampled (n=3) were infected with lice and we found that all individuals of *Turdus leucomelas* sampled at two localities by us (n=4) were infected. However, a second Brazilian study conducted by Enout et al. (2012) found a 43% infestation rate (n=35) for the same bird species. It is difficult to determine the drivers behind variation in prevalence. It is possible that we are seeing an ecological pattern due to differences in humidity at the different sampling localities Moyer et al. (2002), Bush et al. (2009), host distributions or due to the different methods used by researchers to collect the lice. Additional work, examining sites where lice were collected with the same methodology, will help to address these issues.

Conclusions

This manuscript presents data on avian lice from 210 host species. We report and document significant new host-louse association records from poorly sampled yet diverse regions of the world. This information provides an important basis for future studies in the tropics and further enriches our knowledge of the parasite fauna associated with Neotropical birds.

Acknowledgements

This study was possible thanks to hundreds of volunteers that extracted birds and dusted them and to the private land owners in Colombia and Peru who both allowed us to work at their properties and provided housing and logistic support. We thank SERNAP for giving us permission to work in the buffer zone of Manu National Park in Peru and Parques Naturales de Colombia that allowed us to work in Colombia. This study was supported in part by scholarship fund “Colombia Biodiversa” of the Alejandro Angel Escobar Foundation to JSP, US National Science Foundation grants DEB-1503804 to JDW and DEB-1239788, DEB-1342604 to KPJ and DEB-1120682 to JEJ and GAL.
References

- Avendaño JE, Bohórquez CI, Rosselli L, Arzuza-Buelvas D, Estela FA, Cuervo AM, Stiles FG, Renjifo LM (2017) Lista de chequeo de las aves de Colombia: una síntesis del estado de conocimiento desde Hilty & Brown (1986). Ornitología Colombiana 16: eA01.
- Bush S, Harbison C, Slager D, Peterson AT, Price R, Clayton D (2009) Geographic Variation in the Community Structure of Lice on Western Scrub-Jays. Journal of Parasitology 95 (1): 10-13. https://doi.org/10.1645/ge-1591.1
- Carriker M (1940) Studies in Neotropical Mallophaga - Part II. New genera and species. Lloydia 281-30.
- Carriker M (1954) Studies in Neotropical Mallophaga (XIII) - The Menoponidae of the Neotropical Psitacidae. Rev. Brasil. Entomol 145-173.
- Carriker M (1956) Estudios sobre Mallophaga Neotropicales (XIV) (Piojos de los Cotingidae). Rev. Acad. Colombiana Cienc. Exact., Fis. y Nat 9: 365-380.
- Carriker M (1957) Studies in Neotropical Mallophaga, XVI: Bird Lice of the Suborder Ischnocera. Proceedings of the United States National Museum 106 (3375): 409-439. https://doi.org/10.5479/si.00963801.106-3375.409
- Carriker M (1960) Studies in Neotropical Mallophaga, XVII: A New Family (Trochiliphagidae) and a New Genus of the Lice of Hummingbirds. Proceedings of the United States National Museum 112 (3438): 307-342. https://doi.org/10.5479/si.00963801.112-3438.307
- Clay T, Meinertzhagen R (1938a) Two new genera of mallophaga . Entomologist 71: 73-76.
- Clay T, Meinertzhagen R (1938b) New Genera and Species of Mallophaga . Entomologist 275-27.
- Clay T, Meinertzhagen R (1939) New genera and species of Mallophaga . Entomologist 72: 161-168.
- Clayton D, Drown D (2001) Critical Evaluation of Five Methods for Quantifying Chewing Lice (Insecta: Phthiraptera). The Journal of Parasitology 87 (6): 1291. https://doi.org/10.2307/3285290
- Clayton DH, Gregory RD, Price RD (1992) Comparative Ecology of Neotropical Bird Lice (Insecta: Phthiraptera). The Journal of Animal Ecology 61 (3): 781. https://doi.org/10.2307/5631
- Clayton DH, Walther BA (2001) Influence of host ecology and morphology on the diversity of Neotropical bird lice. Oikos 94 (3): 455-467. https://doi.org/10.1034/j.1600-0706.2001.940308.x
- Cummings BF (1916) New species of lice. Ann. Mag. Nat. Hist 17: 90-107.
- De Geer C (1778) Mémories pour servir à l`histoire naturelle des insectes aptères. Hesselber, Stockolm. [chewing lice in Vol. 7:69:82].
- Eichler W (1942) Die Entfaltungsregel und andere Gesetzmäßigkeiten in den parastogenetischen Beziehungen der Mallophagen und anderer ständiger Parasiten zu ihren Wirten. Zool Anz 137: 77-83.
- Eichler W (1944) Notulæ Mallophagologicae. XI. Acht neue Gattungen der Nirmi und Docophori. Stettiner Entomologische Zeitung 105: 80-82.
• Enout AMJ, Lobato DNC, Diniz FC, Antonini Y (2012) Chewing lice (Insecta, Phthiraptera) and feather mites (Acari, Astigmata) associated with birds of the Cerrado in Central Brazil. Parasitology research 111 (4): 1731-42. https://doi.org/10.1007/s00436-012-3016-5

• Ewing HE (1927) Descriptions of new genera and species of Mallophaga together with keys to some related genera of Menoponidae and Philopteridae . Journal of the Washington Academy of Sciences 17: 86-96.

• Ewing HE (1929) A Manual of External Parasites. Transactions of the American Microscopical Society 48 (4): 447. https://doi.org/10.2307/3222065

• Ewing HE (1936) The Taxonomy of the Mallophagan Family Trichodectidae, with Special Reference to the New World Fauna. The Journal of Parasitology 22 (3): 233. https://doi.org/10.2307/3271530

• Guimarães L (1942) Nota sobre genero Vernonia. Pap. Avul. Dept. Zool. II: 11.

• Gustafsson DR, Bush SE (2017) Morphological revision of the hyperdiverse Brueelia-complex (Insecta: Phthiraptera: Ischnocera: Philopteridae) with new taxa, checklists and generic key. Zootaxa 4313 (1): 1. https://doi.org/10.11646/zootaxa.4313.1.1

• Harrison L (1915) On a New Family and Five New Genera of Mallophaga . Parasitology 7 (04): 383. https://doi.org/10.1017/s0031182000009793

• Jetz W, Thomas GH, Joy JB, Hartmann K, Mooers AO (2012) The global diversity of birds in space and time. Nature 491 (7424): 444-448. https://doi.org/10.1038/nature11631

• Johnson KP, Shreve SM, Smith VS (2012) Repeated adaptive divergence of microhabitat specialization in avian feather lice. BMC Biology 10 (1): 52. https://doi.org/10.1186/1741-7007-10-52

• Johnston TH, Harrison L (1911) Notes on some Mallophagan generic names. Proceedings of the Linnean Society of New South Wales. 36: 321-328. https://doi.org/10.5962/bhl.part.21901

• Kéler Sv (1936) Über einige Mallophagen aus Rossitten. Arbeiten über morphologische und taxonomische Entomologie aus Berlin-Dahlem 3: 256-26.

• Kéler Sv (1939) Baustoffe zu einer Monographie der Mallophagen II. Teil: Überfamilie Nirmoidea (1). Die Familien Trichophilopteridae, Goniodidae, Heptapsogastridae . Nova Acta Leopoldina 1-254.

• Kounek F, Sychra O, Capek M, Literak I (2011a) Chewing Lice Of The Genus Myrsidea (Phthiraptera: Menoponidae) From New World Warblers (Passeriformes: Parulidae) From Costa Rica, With Descriptions Of Four New Species. Zootaxa 63: 56-6.
https://doi.org/10.5281/ZENODO.205057

• Kounek F, Sychra O, Capek M, Lipkova A, Literak I (2011b) Chewing Lice Of The Genus Myrsidea (Phthiraptera: Menoponidae) From The Cardinalidae, Emberizidae, Fringillidae And Thraupidae (Aves: Passeriformes) From Costa Rica, With Descriptions Of Four New Species. Zootaxa 3032: 1-16. https://doi.org/10.5281/ZENODO.278715

• Marini MA, Reinert BL, Bornschein MR, Pinto JC, Pichorim MA (1996) Ecological correlates of ectoparasitism on Atlantic Forest birds, Brazil. Ararajuba 4: 93-102.

• Marshall AG (1981) The ecology of ectoparasitic insects. Academic Press

• Mjöberg E (1910) Studien über Mallophagen und Anopluren. Arkiv för zoologi / utgivet af K. Svenska vetenskaps-akademien. 6: 1-296. https://doi.org/10.5962/bhl.part.26907
• Moyer B, Drown D, Clayton D (2002) Low humidity reduces ectoparasite pressure: implications for host life history evolution. Oikos 97 (2): 223-228. https://doi.org/10.1034/j.1600-0706.2002.970208.x

• Neumann G (1906) Note sur les Mallophages. Bulletin de la Société zoologique de France. 31: 54-60. https://doi.org/10.5962/bhl.part.18334

• Neumann L (1912) Notes sur les Mallophages - II. Arch. Parasitol 15: 353-384.

• Nitzsch CL (1818) Die familien undGattungen der Thierinsekten (Insecta Epizoica); als Prodromus einer Naturgeschichte derselben. Magazin der Entomologie (Germar) 3: 261-316.

• Oniki Y (1999) Avian parasites and notes on habits of lice from Mato Grosso, Brazil. Iheringia, Sér, Zool 183-19.

• Paine JH, Mann W (1913) Mallophaga From Brazilian Birds. Psyche: A Journal of Entomology 20 (1): 15-23. https://doi.org/10.1155/1913/70596

• Parra-Henao G, Alarcón Pineda EP, López Valencia G, Ramírez Monroy DM, Jaramillo Crespo GE (2011) Detection of ectoparasites in wild birds evaluated in Medellin (Colombia). Revista Colombiana de Ciencias Pecuarias 24: 29-37.

• Poulin R, Morand S (2000) The Diversity of Parasites. The Quarterly Review of Biology 75 (3): 277-293. https://doi.org/10.1086/393500

• Price PW (1980) Evolutionary Biology of Parasites. 15. Princeton University Press

• Price R, Clayton D (1989) Kaysius emersoni (Mallophaga: Menoponidae), a New Genus and New Species of Louse from the Wedge-Billed Woodcreeper (Passeriformes: Dendrocolaptidae) of Peru. Annals of the Entomological Society of America 82 (1): 29-31. https://doi.org/10.1093/aes/82.1.29

• Price R, Clayton D (1995) A new genus and three new species of chewing lice (Phthiraptera: Philopteridae) from Peruvian ovenbirds (Passeriformes: Furnariidae). Proceedings of the Entomological Society of Washington 97: 839-844. URL: http://www.phthiraptera.info/Publications/0045.pdf

• Price R, Hellenthal RA, Dalgleish R (2005) The genus Myrsidea Waterston (Phthiraptera: Menoponidae) from tyrant-flycatchers (Passeriformes: Tyrannidae), with descriptions of 13 new species. Zootaxa 1048: 1-20.

• Price R, Dalgleish R (2006) Myrsidea Waterston (Phthiraptera: Menoponidae) from tanagers (Passeriformes: Thraupidae), with descriptions of 18 new species. Zootaxa 1174: 1-25.

• Price R, Dalgleish R (2007) Myrsidea Waterston (Phthiraptera: Menoponidae) from the Emberizidae (Passeriformes), with descriptions of 13 new species. Zootaxa 1467: 1-18.

• Price R, Johnson K, Dalgleish R (2008) Five New Species Of Myrsidea Waterston (Phthiraptera: Menoponidae) From Saltators And Grosbeaks (Passeriformes: Cardinalidae). Zootaxa 1873: 1-10.

• Price R, Johnson K (2009) Five New Species Of Myrsidea Waterston (Phthiraptera: Menoponidae) From Tanagers (Passeriformes: Thraupidae) In Panama. Zootaxa 2200: 61-68.

• Price RD, Hellenthal RA, Palma RL (2003) World checklist of chewing lice with host associations and keys to families and genera. In: Price RD, Hellenthal RA, Palma RL, Johnson KP, Clayton DH (Eds) The Chewing Lice: World Checklist and Biological Overview. Illinois Natural History Survey Special Publication 24, x+501 pp.

• Remsen JV, Areta JI, Cadena CD, Claramunt S, Jaramillo A, Pacheco JF, Pérez-Emán J, Robbins MB, Stiles FG, Stotz DF, Zimmer KJ (2017) A classification of the bird
species of South America. American Ornithologists' Union. http://www.museum.lsu.edu/~Remsen/SACCBaseline.htm. Accessed on: 2017-2-21.

- Rózsa L, Vas Z (2015) Host correlates of diversification in avian lice. In: Morand S, Krasnov BR, Littlewood DT (Eds) Parasite Diversity and Diversification: Evolutionary Ecology Meets Phylogenetic. Cambridge University Press https://doi.org/10.1017/cbo9781139794749.015

- Smith VS (2001) Avian louse phylogeny (Phthiraptera: Ischnocera): A cladistic study based on morphology. Zoological Journal of the Linnean Society 132: 81 – 144-81 – 144.

- Smith VS, Ford T, Johnson KP, Johnson PCD, Yoshizawa K, Light JE (2011) Multiple lineages of lice pass through the K-Pg boundary. Biology Letters 7 (5): 782-785. https://doi.org/10.1098/rsbl.2011.0105

- Sychra O, Literák I, Capek M, Havlícek M (2007) Chewing Lice (Phthiraptera) From Ovenbirds, Leaf-tossers and Woodcreepers (Passeriformes: Furnariidae: Furnariinae, Sclerurinae, Dendrocolaptinae) from Costa Rica, With Descriptions of Four New Species of the Genera Ralllicola and Myrsidea . Caribbean Journal of Science 43 (1): 117-126. https://doi.org/10.18475/cjos.v43i1.a11

- Tachenberg O (1882) Die Mallophagen mit besonderer Berücksichtigung der von Dr. Meyer gesammelten Arten. Nova Acta Ksl. Leop. -Carol. -Deut. Akad. Naturforscher 1: 48-58.

- Thompson G (1935) New Genera of Mallophaga. I. Parasitology 27: 281-287. https://doi.org/10.1017/s0031182000015171

- Thompson G (1948) III.—Records and descriptions of Mallophaga from Jamaican birds.—Part I. Journal of Natural History Series 12 1 (1): 48-58. https://doi.org/10.1080/00222934808653887

- Timmermann VG (1936) Saemundssonia nov. gen., ein neues Mallophagengenus, aufgestellt für Philopterus gonothorax (Giebel) und verwandte Arten. Zool. Anz 114: 97-100.

- Valim M, Weckstein J (2011) Two new species of Brueelia Kéler, 1936 (Ischnocera, Philopteridae) parasitic on Neotropical trogons (Aves, Trogoniformes). Zookeys 128: 1-13.

- Valim M, Price R, Johnson K (2011) New host records and descriptions of five new species of Myrsidea Waterston, 1915 (Phthiraptera: Menoponidae) from passerine birds (Aves: Passeriformes). Zootaxa 3097: 1-19.

- Valim M, Weckstein J (2013) A drop in the bucket of the megadiverse chewing louse genus Myrsidea (Phthiraptera, Amblycera, Menoponidae): ten new species from Amazonian Brazil. Folia Parasitologica 60 (5): 377-400. https://doi.org/10.14411/fp.2013.040

- Vas Z, Csorba G, Rózsa L (2012) Evolutionary co-variation of host and parasite diversity—the first test of Eichler’s rule using parasitic lice (Insecta: Phthiraptera). Parasitology Research 111 (1): 393-401. https://doi.org/10.1007/s00436-012-2850-9

- Waterston J (1915) On two new species of Mallophaga (Menoponidae): Menacanthus balfouri n. sp. and Myrsidea victrix n. sp. from Colombia. The Entomologist's monthly magazine. 51: 12-16. https://doi.org/10.5962/bhl.part.7786
Supplementary material

Suppl. material 1: Lice from Colombian and Peruvian birds

Authors: Juliana Soto-Patiño, Gustavo A Londoño, Jorge Enrique Avendaño, Jill E Jankowski, Andrew T Cook and Julie Allen
Data type: Taxonomic
Filename: Colombia_Peru_Lice.xlsx - Download file (68.55 kb)