Simulation of pseudo-CT images based on deformable image registration of ultrasound images

Citation for published version (APA):
van der Meer, S., Camps, S. M., van Elmpt, W. J. C., Podesta, M., Sanches, P. G., Vanneste, B. G. L., Fontanarosa, D., & Verhaegen, F. (2016). Simulation of pseudo-CT images based on deformable image registration of ultrasound images: a proof of concept for transabdominal ultrasound imaging of the prostate during radiotherapy. Medical Physics, 43(4), 1-9. Article 1913. https://doi.org/10.1118/1.4944064

DOI:
10.1118/1.4944064

Document status and date:
Published: 01/04/2016

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.
Simulation of pseudo-CT images based on deformable image registration of ultrasound images: A proof of concept for transabdominal ultrasound imaging of the prostate during radiotherapy

Skadi van der Meer, Saskia M. Camps, Wouter J. C. van Elmpt, Mark Podesta, Pedro Gomes Sanches, Ben G. L. Vanneste, Davide Fontanarosa, and Frank Verhaegen

Citation: Medical Physics 43, 1913 (2016); doi: 10.1118/1.4944064

View online: http://dx.doi.org/10.1118/1.4944064

View Table of Contents: http://scitation.aip.org/content/aapm/journal/medphys/43/4?ver=pdfcov

Published by the American Association of Physicists in Medicine

Articles you may be interested in

A GPU based high-resolution multilevel biomechanical head and neck model for validating deformable image registration
Med. Phys. 42, 232 (2015); 10.1118/1.4903504

Semiautomatic registration of 3D transabdominal ultrasound images for patient repositioning during postprostatectomy radiotherapy
Med. Phys. 41, 122903 (2014); 10.1118/1.4901642

The need for application-based adaptation of deformable image registration
Med. Phys. 40, 011702 (2013); 10.1118/1.4769114

A CT based correction method for speed of sound aberration for ultrasound based image guided radiotherapy
Med. Phys. 38, 2665 (2011); 10.1118/1.3583475

A deformable image registration method to handle distended rectums in prostate cancer radiotherapy
Med. Phys. 33, 3304 (2006); 10.1118/1.2222077
Simulation of pseudo-CT images based on deformable image registration of ultrasound images: A proof of concept for transabdominal ultrasound imaging of the prostate during radiotherapy

Skadi van der Meer
Department of Radiation Oncology (MAASTRO), GROW—School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN, The Netherlands

Saskia M. Camps
Department of Radiation Oncology (MAASTRO), GROW—School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN, The Netherlands; Oncology Solutions Department, Philips Research, High Tech Campus 34, Eindhoven 5656 AE, The Netherlands; and Department of Biomedical Engineering, University of Technology Eindhoven, Den Dolech 2, Eindhoven 5600 MB, The Netherlands

Wouter J. C. van Elmpt, Mark Podesta, Pedro Gomes Sanches, and Ben G. L. Vanneste
Department of Radiation Oncology (MAASTRO), GROW—School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN, The Netherlands

Davide Fontanarosa
Department of Radiation Oncology (MAASTRO), GROW—School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN, The Netherlands and Oncology Solutions Department, Philips Research, High Tech Campus 34, Eindhoven 5656 AE, The Netherlands

Frank Verhaegen
Department of Radiation Oncology (MAASTRO), GROW—School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN, The Netherlands and Medical Physics Unit, Department of Oncology, McGill University, Montréal, Québec H4A 3J1, Canada

(Received 16 October 2015; revised 9 February 2016; accepted for publication 2 March 2016; published 25 March 2016)

Purpose: Imaging of patient anatomy during treatment is a necessity for position verification and for adaptive radiotherapy based on daily dose recalculation. Ultrasound (US) image guided radiotherapy systems are currently available to collect US images at the simulation stage (US$_{sim}$), coregistered with the simulation computed tomography (CT), and during all treatment fractions. The authors hypothesize that a deformation field derived from US-based deformable image registration can be used to create a daily pseudo-CT (CT$_{ps}$) image that is more representative of the patients’ geometry during treatment than the CT acquired at simulation stage (CT$_{sim}$).

Methods: The three prostate patients, considered to evaluate this hypothesis, had coregistered CT and US scans on various days. In particular, two patients had two US–CT datasets each and the third one had five US–CT datasets. Deformation fields were computed between pairs of US images of the same patient and then applied to the corresponding US$_{sim}$ scan to yield a new deformed CT$_{ps}$ scan. The original treatment plans were used to recalculate dose distributions in the simulation, deformed and ground truth CT (CT$_{gt}$) images to compare dice similarity coefficients, maximum absolute distance, and mean absolute distance on CT delineations and gamma index (γ) evaluations on both the Hounsfield units (HUs) and the dose.

Results: In the majority, deformation did improve the results for all three evaluation methods. The change in gamma failure for dose (γ_{Dose}, 3%, 3 mm) ranged from an improvement of 11.2% in the prostate volume to a deterioration of 1.3% in the prostate and bladder. The change in gamma failure for the CT images (γ_{CT}, 50 HU, 3 mm) ranged from an improvement of 20.5% in the anus and rectum to a deterioration of 3.2% in the prostate.

Conclusions: This new technique may generate CT$_{ps}$ images that are more representative of the actual patient anatomy than the CT$_{sim}$ scan. © 2016 American Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4944064]

Key words: ultrasound imaging, image guided radiotherapy, deformable image registration, adaptive radiotherapy, prostate cancer

1. INTRODUCTION

Image guidance has become an essential part of radiotherapy (RT) treatment to allow for safe delivery of radiation doses. Image guided RT (IGRT) is often performed for several or all treatment fractions to position the patient correctly. Beyond the aim of image guidance, the availability of daily imaging also allows for the possibility of adaptive RT (ART).

1913 Med. Phys. 43 (4), April 2016 0094-2405/2016/43(4)/1913/8/$30.00 © 2016 Am. Assoc. Phys. Med. 1913
The goal of ART is to improve RT treatment by systematically monitoring dose discrepancies and incorporating them to reoptimize the treatment plan. Normally only the planning computed tomography (CT) image, acquired at simulation stage, is available for the dose calculation, but both interfraction and intrafraction patient anatomy motion and changes (like tumor shrinkage, nodal volume changes, and weight loss) may alter the dose distribution.\(^3\,4\) In ART, the anatomy from the planning CT is updated by the anatomy from the daily imaging, acquired during the IGRT workflow to monitor dose distribution and if necessary adapt the treatment plan.

CT scanners are usually not available in the treatment room. Instead, cone-beam computed tomography (CBCT) can be used for dose calculations either directly\(^7\,\,8\) or indirectly with deformable image registration (DIR)\(^11,\,12\) even though they offer a lower image quality when compared to CT scanners. In some studies, using the CBCT directly for dose calculations, the inaccuracies in the Hounsfield units (HUs) are large enough to result in clinically relevant dose errors.\(^13\,\,15\)

In this paper, a workflow is introduced to produce pseudo-CT images based on deformable registration of ultrasound (US) volumes. A 3D US IGRT system can acquire volumetric, high-contrast soft-tissue images noninvasively on a daily basis without using ionizing radiation (Fig. 1). Subsequently, deformable registration of these volumes can reveal changes in tissue distribution that occurred over time.

Relatively few papers on US to US deformable registration can be found in the literature and as far as we could find, there are presently no papers involving deformable registration of pelvic or abdominal US volumes in RT. In other medical fields, however, some publications are available. For example, Shekhar et al.\(^16\) proposed a nonrigid method based on mutual information to register cardiac US images in different phases throughout the complete cardiac cycle.

A similar workflow as proposed in this study was presented for brain surgery applications by Pennec et al.\(^17\) In this study, preoperative magnetic resonance (MR) images and US images were acquired. Subsequently, intraoperative US images were used to create pseudo-MR images of the brain. This resulted in acceptable representations of the brain anatomy during surgery.

As these results were promising, we used a similar approach to create pseudo-CT (CT\(_{ps}\)) images. We hypothesize that a pseudo-CT image can be created based on CT\(_{sim}\) using a deformation field calculated between US\(_{sim}\) and US\(_{tx}\). We expect that the CT\(_{ps}\) so created gives a better representation of the patient’s anatomy during treatment delivery than the planning CT\(_{sim}\).

\section{2. MATERIALS AND METHODS}

\subsection*{2.A. The concept}

In the proposed workflow (Fig. 2) for CT\(_{ps}\) image creation, DIR has to be performed to calculate a deformation field between US\(_{sim}\) and US\(_{tx}\). Subsequently, this deformation field has to be applied to CT\(_{sim}\) which results in the creation of CT\(_{ps}\).

\subsection*{2.B. Patient scans}

Clinical examples with multiple coregistered US–CT combinations at the simulation stage (instead of the treatment stage) were used to validate the concept. In this study, three prostate cancer patients from a previous study\(^18\) were used. Due to clinical reasons, these patients underwent additional US and CT imaging next to US\(_{sim}\) and CT\(_{sim}\) acquisitions. In the normal clinical workflow, these extra CT and US images are not acquired. The extra CT scans were used as ground truth (CT\(_{gt}\)) scans to which the derived CT\(_{ps}\) scans can be compared in this proof of concept study. In Table I, the method used to calculate and evaluate the result from the deformations is described.

The coregistered CT–US images were acquired at two time points for patients 1 and 2 (three and one weeks apart, respectively). Acquisitions for patient 3 were made for five time points where the first two were two weeks apart and the following three time points were one week apart.

![Workflow of acquisition of CT\(_{sim}\), US\(_{sim}\), and US\(_{tx}\) images (Clarity US system; Elekta) (adapted from Elekta with their permission).](image-url)
All coregistered US–CT combinations were acquired in the CT-room with the patient’s external skin markers positioned along the room lasers. The 3D US scans (Clarity system; Elekta, Stockholm, Sweden, voxels: $1 \times 1 \text{mm}^2 \times 3 \text{mm}$ slice thickness; US probe type C5-2/60, center frequency 3.5 MHz; Sonix Series; Ultrasonix Medical Corporation, Richmond, BC, Canada) were performed transabdominally immediately before or after the CT scan. The number of voxels of the US images varied between $[512, 512, 90]$ and $[512, 512, 131]$. For each patient, the images were resampled to match the dimensions of the first acquired US volume (US$_{sim}$).

The CT scans were acquired using a SOMATOM Sensation Open (Syngo CT 2006A, Siemens, Germany; voxels: $1 \times 1 \text{mm}^2 \times 3 \text{mm}$ slice thickness). Both scans were performed in the same supine patient position, stabilized with knee fix and foot support (Combifix, Civco Medical Solutions, Kalona, IA, USA), resulting in a correct automatic fusion of the US and CT images.

In all US images, the prostate was delineated. All CT images had delineations of the body contour, prostate, seminal vesiculae (SV, except for patient 3), anus, rectum, and bladder (except for patient 1).

2.C. Deformation

For each US–CT combination (as detailed in Table I), deformation fields were calculated using a DIR algorithm (B-spline method from ElastiX; Utrecht, The Netherlands). Prior to the deformation field calculation, all volumes were resampled to the same image dimensions per patient. In addition, segmentation of the CT$_{sim}$ images resulted in a binary mask of the bones and the region of interest (ROI) was defined as the overlapping parts of the US images (ROI: $US_{sim} \cap US_{tx}$). All these preprocessing steps were performed in the MATLAB (MathWorks, Inc., Natick, MA) software.

During the acquisition of the different US–CT combinations, the patients were in the same position with the body markers aligned to the lasers. For this reason, no rigid transformation was performed prior to the deformable registration, in particular, to prevent erroneous full body shifts based on internal shifts of the prostate.

As mentioned before, the deformable registration was performed using the ElastiX software. This software package requires three inputs: fixed image (US$_{tx}$), moving image (US$_{sim}$), and a parameter file. The parameter file contains all the parameters that determine the characteristics of the registration. In Sec. A of the supplementary material, an example of such a parameter file is detailed.

In this study, the deformable registration was performed either on the overlapping parts of the US images or on binary masks of the delineated prostate volumes only. In total, five different parameter sets (parameters A–E in Table II) were defined for this purpose using the file in Sec. A of the supplementary material as a basis.

The deformation field calculations were based on the overlapping parts of the US images, but were propagated further through the image (Fig. 3). Also bones were sometimes present in these overlapping parts. As bones are in principle rigid structures, they are not expected to undergo deformations. Therefore, the binary bone mask defined during preprocessing was input in the rigidity penalty of ElastiX to prevent bones from deforming.

2.D. Evaluation of the deformation

The created CT$_{ps}$ and the deformed CT delineations were then compared to the ground truth, i.e., the corresponding CT$_{gt}$ and its delineations. The contours were evaluated using the dice similarity coefficient

$$DSC = \frac{2|X \cap Y|}{|X| + |Y|},$$

A DSC ratio of 1 indicates complete overlap, while 0 indicates no overlap.
Five different parameter sets (A–E) were used during the deformable registration. This registration could be based on the whole US volume or on the binary mask of the delineated prostate volume only (reported in the columns: fixed image and moving image). In addition, both the metric and iterations were varied among the different sets.

Parameter set	Fixed image	Moving image	Metric	Iterations
A	US_tx	US_sim	Normalized-correlation	10
B	US_tx	US_sim	Normalized-correlation	50
C	US_tx	US_sim	Normalized-correlation	100
D	Prostate mask	Prostate mask	Mean-squares	100
E	Prostate mask	Prostate mask	Mean-squares	300

Note: US_tx, daily acquired US image at treatment stage. US_sim, reference/planning US acquired at the time of CT simulations.

In addition, the prostate contours were also evaluated using both the maximum absolute distance (MAX) and the mean absolute distance (MAD).\(^{24}\) The MAX defines the largest difference between two contours, e.g., prostate contour A and prostate contour B. For each point a on prostate contour A, the minimal distance to all points on prostate contour B was calculated. The same was repeated for each point b on prostate contour B with respect to prostate contour A. This resulted in a set of minimal distances and the maximum of this set is referred to as MAX. Calculating the mean of this set gave the MAD.

The CT_sim and CT_ps images were compared to CT_gt using a gamma (γ) index evaluation.\(^{25,26}\) The γ index is commonly used for dose evaluations. Prior to the index calculation, two acceptance criteria need to be set: voxel-by-voxel numerical dose difference and distance-to-agreement (DTA: distance between a voxel on one volume and the nearest voxel in the other volume that has the same dose). The resulting index gives information on a voxel scale, while taking the voxels in the vicinity into account as well.

In this case, not only dose was evaluated with the γ index but also HU (γ_{CT}). The γ values were calculated using an in-house developed method\(^{27,28}\) using MATLAB and C++. The used method allows the sign of the γ value to indicate whether an overdose ($\gamma > 0$) or underdose ($\gamma < 0$) is found for each voxel.\(^{28}\) In this case, because we evaluate HU, a $\gamma > 0$ means that the HU is relatively higher than the reference and $\gamma < 0$ means that the HU is relatively lower. A value $|\gamma| > 1$ in a voxel indicates that the voxel fails to meet the acceptance criteria; in this case, a 50 HU voxel intensity difference and a 3 mm distance-to-agreement. (The 50 HU is a conservative measure based on that for typical radiotherapy beams; to produce a 1% error in dosimetry would require errors of over 8% in bone electron density\(^{29}\) and hence HU. The 3 mm distance-to-agreement is a commonly used criterion in dosimetry.\(^{26}\))

The percentages of the volume with a $|\gamma_{CT}| > 1$ within the contours “intersection body contours,” “prostate,” “anus and rectum,” and “bladder” were reported. The percentages of gamma failure and DSC evaluations are reported using the contours of the CT_gt, except for the intersection body contours which is the overlapping part of the body contours of both CT_sim and CT_gt.

2.E. Dose calculation and evaluation

Dose distributions were obtained by recalculating the original treatment plans (five-beam IMRT plans; XiO CMS 4.51, Elekta, Stockholm, Sweden) designed on the planning CT_sim, on the CT_sim, CT_ps, and CT_gt scans. For this, an in-house developed software was used, based on Monte Carlo

Fig. 3. Example of overlap between CT (gray) and US (color) (a) and between two US images (b) of patient 1. US-based DIR can only be performed on the area where both CT and US information (of both US_sim and US_tx) is available. In this example, only the prostate and its surrounding tissue, e.g., a part of the bladder, are present in both US images. In (c), only the overlapping area of both US images (yellow contour) contains information where the deformation field (2D representation with red arrows) is based on. The field propagates further beyond this border (see color version online).
Five evaluation methods were used to evaluate the delineated prostate contours. The first and second columns detail the patient and the used evaluation method. Both gamma index values show the volume percentage of gamma failure, $\gamma_{DCT(50, 3\,mm)}$ and $\gamma_{Dose(95, 3\,mm)}$, respectively. In the third column, the reference situation (comparison between CTsim and CTps) can be found. In the final five columns, the results for each of the parameter sets (A–E) are detailed. The bold numbers indicate which parameter sets resulted in the same result or in an improvement with respect to the reference.

Table III. Five evaluation methods were used to evaluate the delineated prostate contours. The first and second columns detail the patient and the used evaluation method. Both gamma index values show the volume percentage of gamma failure, $\gamma_{DCT(50, 3\,mm)}$ and $\gamma_{Dose(95, 3\,mm)}$, respectively. In the third column, the reference situation (comparison between CTsim and CTps) can be found. In the final five columns, the results for each of the parameter sets (A–E) are detailed. The bold numbers indicate which parameter sets resulted in the same result or in an improvement with respect to the reference.

Patient	Metric	Ref.	A	B	C	D	E	
	DSC		0.4	0.7	0.7	0.7	0.7	
1	MAD (mm)		7.5	3.3	3.5	3.7	2.7	
2	MAX (mm)		27.9	**15.3**	16.3	16.0	9.8	12.2
3	γ_{CT} (%)		12.0	**4.6**	2.9	3.0	5.3	7.1
3	γ_{Dose} (%)		18.3	**12.4**	8.1	7.1	**13.0**	13.7
1	DSC		0.5	0.5	0.5	0.6	0.6	
2	MAD (mm)		5.1	5.5	5.5	5.7	3.9	
3	MAX (mm)		16.0	18.1	21.6	23.2	**13.9**	
3	γ_{CT} (%)		11.5	14.6	12.8	12.3	**10.2**	
3	γ_{Dose} (%)		1.6	2.2	2.8	2.9	**1.4**	
3a	DSC		0.8	0.6	0.4	0.4	0.6	
3b	MAD (mm)		2.3	4.3	4.2	4.4	**2.1**	2.3
3c	MAX (mm)		8.4	16.4	18.9	19.1	**5.9**	6.1
3d	γ_{CT} (%)		6.6	6.6	7.0	6.8	**5.0**	5.1
3d	γ_{Dose} (%)		3.8	3.5	2.7	3.2	**1.8**	2.2
3	DSC		0.6	0.5	0.5	0.5	0.7	
3	MAD (mm)		4.4	**3.8**	4.4	4.9	2.5	2.2
3	MAX (mm)		12.4	14.0	**12.4**	13.0	**7.1**	6.2
3	γ_{CT} (%)		9.9	7.1	7.7	7.2	**7.9**	6.8
3	γ_{Dose} (%)		4.1	3.3	3.5	4.2	**3.4**	3.8
3	DSC		0.4	**0.5**	0.6	0.7	0.8	
3	MAD (mm)		6.6	**5.9**	4.5	4.0	**2.1**	1.9
3	MAX (mm)		20.1	22.0	25.7	27.5	**10.4**	9.7
3	γ_{CT} (%)		11.8	**6.7**	4.4	4.0	**10.1**	9.3
3	γ_{Dose} (%)		10.3	**9.9**	9.5	8.7	6.9	**6.5**

Note: DSC, dice similarity coefficient; MAD, mean absolute distance; MAX, maximum absolute distance; and γ_{CT}, $\gamma_{DCT(50, 3\,mm)}$, $\gamma_{Dose(95, 3\,mm)}$. For the changes in CT HU values, the percentage of the volume with a $|\gamma_{DCT(50, 3\,mm)}| > 1$ for prostate is shown in Table III and for the other contours, in the supplementary material [Table B and Figs. B(C,G,K,O,S,W)]23. A maximum improvement was seen of 20.5% (14.6% for contour based) and the poorest results gave an increase of 3.2% (2.2% for contour based) in the volume with $|\gamma_{DCT(50, 3\,mm)}| > 1$.

Looking at the prostate results as shown in Table III, in case an improvement was achieved, the contour parameter set (D, 100 iterations) seemed to give an improvement in most cases, yet it was not always the best one. The results for the other contours (body, anus and rectum, and bladder) that can be found in Table B in the supplementary material confirm this as well.
4. DISCUSSION

We have evaluated the impact of applying US-derived tissue deformations to approximate CT images to the real anatomical organ position of prostate patients during radiation therapy. As noted before, a similar workflow was presented by Pennec et al.17 for brain surgery applications. However, in that study, pseudo-MR images of the brain were created. To our knowledge, this is the first time a similar method is used for RT applications.

In this study, patients 1 and 3d would have benefited most from the deformations (>3% volume decrease for the volume...
with a $|\gamma_{Dose}| > 1)$. In addition, the difference in dose between
CT_{sim} and CT_{gt} was there also the largest (10% volume with
a $|\gamma_{Dose}| > 1)$. For the other patient cases, the improvements
were not clinically relevant.

Ideally, one should be able to evaluate beforehand which
patients would benefit from applying the deformations. The
only metric that is available prior to DIR and could be suitable
is the DSC of the prostate contours on US$_{sim}$ and US$_{gt}$. A statisti-
cal evaluation was performed to find a possible correlation
between these DSCs and the effect on the dose deposition
on the prostate ($|\gamma_{Dose}| > 1)$. Unfortunately such a correlation
was not found, possibly due to the limited number of patients.
However, there seems to be a trend that the patients with the
largest geometric changes benefit most from deformations, but
a future study with a larger image database will be necessary
to validate the predictive power of this DSC parameter to get
a clearer indication when it is worthwhile to perform DIR.

Besides a larger database to perform statistics, such a
database could be used to find an optimal metric and
parameter set for the DIR. For this proof-of-principle study,
two deformation metrics were used and only the number of
iterations varied. Optimization of the metrics and parameter
set may improve the results. In the current study, the results of
the evaluation methods were not always in agreement. Even
between the CT and dose values, there were some differences
due to the cumulative effect of the dose along the beam path.
The differences between change in γ_{CT} and γ_{Dose} are caused
by the fact that the dose in the organs is not only dependent on
the local HU but also on the HU along the beam path. The best
evaluation method is dependent on the purpose; the evaluation
of the best parameter set should therefore always be assessed
with the correct evaluation method. In case of ART, this could be
$\gamma_{Dose}(3\% , 3 \text{ mm})$.

A limitation of an US-based deformation field is that the
volume of the CT on which one can directly calculate the
deformation field is limited to the volume of the US data
available (Fig. 3). The deformation field propagates further,
but this is not based on image data and is therefore maybe less
reliable. For patient 2, a small overlap of US volumes resulted
in a failure in parameter set E. Standardization of scanning,
so that at least the complete prostate is visible and the US
volume overlap is maximal, and US images with larger fields
of view may improve the results. Transperineal scanning with
a larger image sector or perhaps even fusion of multiple US
scans from different directions can extend the field of view.

However the US image will never completely overlap
the CT image, therefore part of the deformation field will
still be based on only an extrapolated deformation field. For
an ideal exact extrapolation, it may be crucial to take into
account the mechanical properties of tissues and organs, such
as skin, bones, and bladder, which are positioned outside of
the overlapping US images. In this work, some deformation
field propagation outside of the overlapping US volumes is
already inherently taken into account, due to the use of the
so-called multiresolution approach during the deformable
registration. In this approach, the registration starts with
images that have a lower complexity. For example, images
that were smoothed and possibly down sampled. During the
registration, a B-spline control point grid is overlaid on the
fixed image. This grid is always rectangular. Control points
that are outside of the region of interest (overlapping parts of
the US volumes) are in principle not affected. However, due
to the multiresolution approach, the control point spacing is
larger at lower resolutions than at higher resolutions. For this
reason, a larger area around the region of interest is affected
at lower resolutions, which typically produces deformations
outside of the region of interest.

Another reason why it is important to have standardization
of the US scanning is that, just like with the IGRT usage
of the US images, it is important to have reproducible US
images. In particular, the probe pressure$^{18, 32}$ and speed-
of-sound aberration33 along the imaging beam should be
comparable. One cannot distinguish between the US imaging
dependent changes caused by nonstandardized procedures
or a real anatomy changes. Therefore it is best to prevent
them or correct$^{35–38}$ for them before the DIR procedure. For
our specific cases, preliminary inspection revealed that these
corrections were not necessary.

Validation of the DIR methods in general is also still neces-
sary to reliably perform DIR for ART. Different deformation
algorithms lead to different results, therefore more research is
necessary.

5. CONCLUSIONS

It was possible to generate a pseudo-CT$_{us}$ with the use of
DIR based on US imaging which was more representative of
CT$_{gt}$ than CT$_{sim}$. For the patients with the smaller prostate
change over time, the procedure did not improve the dose
calculations much. The largest improvements were seen for
patients with the largest anatomical changes. More research
with a larger image database is necessary to find an optimal
deformation metric and parameter set. With a larger database,
it might be possible to find a predictive measure and criteria
to decide whether DIR is worthwhile for individual patients.

ACKNOWLEDGMENTS

The authors would like to thank D. Bouvy, Professor Dr. J.
P.W. Pluim, and in particular Dr. B. Reniers for their help and
input on the DIR calculations. The authors disclosed receipt
of the following financial support for the research, authorship,
and/or publication of this paper: S.v.d.M. is partially funded
by GROW (School for Oncology and Developmental Biology,
Maastricht University). The authors declared no potential
conflict of interest with respect to the research, authorship,
and/or publication of this paper.

aS. van der Meer and S. M. Camps contributed equally to this work.

bAuthor to whom correspondence should be addressed. Electronic mail:
frank.verhaegen@maastro.nl; Telephone: +31 (0) 88 44 55 792; Fax: +31
(0) 88 44 55 776; Cell: +32 (0) 474 720 570.

cD. Yan, E. Ziaja, D. Jaffray, J. Wong, D. Brabbins, F. Vincini, and A.
Martinez, “The use of adaptive radiation therapy to reduce setup error: A
prospective clinical study,” Int. J. Radiat. Oncol., Biol., Phys. 41, 715–720
(1998).
1920 van der Meer et al.: US-based DIR derived pseudo-CT: Proof of concept for prostate USgRT

Q. J. Wu, T. Li, Q. Wu, and F. F. Yin, “Adaptive radiation therapy: Technical components and clinical applications,” Cancer J. 17, 182–189 (2011).

E. K. Hansen, M. K. Bucci, J. M. Quivey, V. Weinberg, and P. Xia, “Repeat CT imaging and replanning during the course of IMRT for head-and-neck cancer,” Int. J. Radiat. Oncol., Biol., Phys. 64, 355–362 (2006).

J. Fraser, Y. Chen, E. Poon, F. L. Cury, T. Falco, and F. Verhaegen, “Dosimetric consequences of misalignment and realignment in prostate 3D CRT using intramodality ultrasound image guidance,” Med. Phys. 37, 2787–2795 (2010).

J. Fraser, P. Wong, K. Sultanem, and F. Verhaegen, “Dosimetric evolution of the breast electron boost target using 3D ultrasound imaging,” Radiother. Oncol. 96, 185–191 (2010).

V. R. V. Kraken, A. Meneghelli, S. Van Beek, C. Rasch, M. Van Herk, and J. J. Sonke, “Adaptive radiotherapy with an average anatomy model: Evaluation and quantification of residual deformations in head and neck cancer patients,” Radiother. Oncol. 109, 463–468 (2013).

Y. Yang, E. Schreibmann, T. Li, C. Wang, and L. Xing, “Evaluation of on-board kV cone beam CT (CBCT)-based dose calculation,” Phys. Med. Biol. 52, 685–705 (2007).

F. Petit, W. J. van Elsmt, S. M. Nijsten, P. Lambin, and A. L. Dekker, “Calibration of megavoltage cone-beam CT for radiotherapy dose calculations: Correction of capping artifacts and conversion of CT numbers to electron density,” Med. Phys. 35, 849–865 (2008).

A. Richter, Q. Hu, D. Steglich, K. Baier, J. Wilbert, M. Guckenberger, and M. Flietner, “Investigation of the usability of conebeam CT data sets for dose calculation,” Radiat. Oncol. 3, 42 (13pp) (2008).

W. van Elsmt, S. Petit, D. De Ruyscher, P. Lambin, and A. Dekker, “3D dose delivery verification using repeated cone-beam imaging and EPID dosimetry for stereotactic body radiotherapy of non-small cell lung cancer,” Radiother. Oncol. 94, 188–194 (2010).

M. Moteabbed, G. C. Sharp, Y. Wang, A. Trofimov, I. A. Elfstathiou, and H. M. Lu, “Validation of a deformable image registration technique for cone beam CT-based dose verification,” Med. Phys. 42, 196–205 (2015).

C. Veiga, J. McClelland, S. Moinuddin, A. Lourenço, K. Ricketts, J. Annkah, M. Modat, S. Ourslens, D. D’Souza, and G. Royle, “Toward adaptive radiotherapy for head and neck patients: Feasibility study on using CT-to-CBCT deformable registration for ‘dose of the day’ calculations,” Med. Phys. 41, 031703 (12pp) (2014).

J. Hatton, B. McCarthy, and P. B. Greer, “Cone beam computerized tomography: The effect of calibration of the Hounsfield unit number to electron density on dose calculation accuracy for adaptive radiation therapy,” Phys. Med. Biol. 54, 329–346 (2009).

S. Yoo and F. F. Yin, “Dosimetric feasibility of cone-beam CT-based treatment planning compared to CT-based treatment planning,” Int. J. Radiat. Oncol., Biol., Phys. 66, 1553–1561 (2006).

C. Houser, A. O. Nawaz, J. Galvin, and Y. Xiao, “TH-D-ValA-04: Quantitative evaluation of cone beam CT data used for treatment planning,” Med. Phys. 33, 2285–2286 (2006).

R. Shekhar and V. Zagrodsky, “Mutual information-based rigid and nonrigid registration of ultrasound volumes,” IEEE Trans. Med. Imaging 21, 9–22 (2002).

X. Pennc, P. Cachier, N. Ayache, X. Pennc, P. Cachier, N. Ayache, and T. Brain, “Tracking brain deformations in time-sequences of 3D US images,” Pattern Recognit. Lett. 24, 801–813 (2003).

S. van der Meer, E. Bloemen-van Gurp, J. Hermans, R. Vonck, D. Heuvelmans, C. Gubbels, D. Fontanarosa, P. Visser, L. Lutgens, F. van Gils, and F. Verhaegen, “Critical assessment of intramodality 3D ultrasound imaging for prostate IGRT compared to fiducial markers,” Med. Phys. 40, 071707 (11pp) (2013).

S. van der Meer, E. Seravalli, D. Fontanarosa, E. J. B.v-Gurp, and F. Verhaegen, “Consequences of intermodality registration errors for intramodality 3D ultrasound IGRT,” Technol. Cancer Res. Treat. (2015) [E-pub ahead of print].

S. Klein, M. Staring, K. Murphy, M. A. Viergever, and J. P. W. Pluim, “Elastix: A toolbox for intensity-based medical image registration,” IEEE Trans. Med. Imaging 29, 196–205 (2010).

D. Shamoun, E. Bron, B. P. F. Lelleveldt, M. Smits, S. Klein, and M. Staring, “Fast parallel image registration on CPU and GPU for diagnostic classification of Alzheimer’s disease,” Front. Neuroinform. 7, Article 50 (15pp) (2013).

M. J. Ghilezan, D. A. Jaffray, J. H. Siewersden, M. Van Herk, A. Shetty, M. B. Sharpe, S. Z. Jafri, F. A. Vicini, R. C. Matter, D. S. Brabbins, and A. A. Martinez, “Prostate gland motion assessed with cine-magnetic resonance imaging (cine-MRI),” Int. J. Radiat. Oncol., Biol., Phys. 62, 406–417 (2005).

See supplementary material at http://dx.doi.org/10.1118/1.4944064 for basic deformable registration parameter files and additional results for anus and rectum, bladder, and body contours.

M. Staring, S. Klein, and J. P. W. Pluim, “A rigidity penalty term for nonrigid registration,” Med. Phys. 34, 4098–4108 (2007).

G. Gerig, M. Jomier, and M. Chakos, “Valmet: A new validation tool for assessing and improving 3D object segmentation,” in 4th International Conference on Medical Image Computing and Computer-Assisted Intervention (Springer, Berlin Heidelberg, 2001), pp. 516–523.

D. A. Low, W. B. Harms, S. Mutie, and J. A. Pundy, “A technique for the quantitative evaluation of dose distributions,” Med. Phys. 25, 656–661 (1998).

D. A. Low and J. F. Dempsey, “Evaluation of the gamma dose distribution comparison method,” Med. Phys. 30, 2455–2464 (2003).

L. C. G. G. Persoon, M. Podesta, W. J. C. van Elsmt, S. M. J. G. Nijsten, and F. Verhaegen, “A fast three-dimensional gamma evaluation using a GPU utilizing texture memory for on-the-fly interpolations,” Med. Phys. 38, 4032–4035 (2011).

M. Podesta, L. C. Persoon, and F. Verhaegen, “A novel time dependent gamma evaluation function for dynamic 2D and 3D dose distributions,” Phys. Med. Biol. 59, 5973–5985 (2014).

S. J. Thomas, “Relative electron density calibration of CT scanners for radiotherapy treatment planning,” Br. J. Radiol. 72, 781–786 (1999).

M. Fippel, “Fast Monte Carlo dose calculation for photon beams based on the VMC electron algorithm,” Med. Phys. 26, 1466–1473 (1999).

W. J. C. van Elsmt, S. M. J. G. Nijsten, R. F. H. Schiiffeeleers, A. L. A. J. Dekker, B. J. Mijnheer, P. Lambin, and A. W. H. A. Minken, “Monte Carlo based three-dimensional dose reconstruction method derived from portal dose images,” Med. Phys. 33, 2426–2434 (2006).

M. Baker and C. F. Behrens, “Prostate displacement during transabdominal ultrasound image-guided radiotherapy assessed by real-time four-dimensional transperineal monitoring,” Acta Oncol. 54, 1508–1514 (2015).

B. J. Salter, B. Wang, M. W. Szegedi, P. Rassiah-Szegedi, D. C. Shrieve, R. Cheng, and M. Fuss, “Evaluation of alignment error due to a speed artifact in stereotactic ultrasound image guidance,” Phys. Med. Biol. 53, N437–N445 (2008).

D. Fontanarosa, S. van der Meer, E. Harris, and F. Verhaegen, “A CT based correction method for speed of sound aberration for ultrasound based image guided radiotherapy,” Med. Phys. 38, 2665–2673 (2011).

D. Fontanarosa, S. van der Meer, E. Bloemen-van Gurp, G. Stroian, and F. Verhaegen, “Magnitude of speed of sound aberration corrections for ultrasound image guided radiotherapy for prostate and other anatomical sites,” Med. Phys. 39, 5286–5292 (2012).

D. Fontanarosa, S. van der Meer, and F. Verhaegen, “On the significance of density-induced speed of sound variations on US-guided radiotherapy,” Med. Phys. 39, 6316–6323 (2012).

D. Fontanarosa, S. Pesente, F. Pascoli, D. Ermacora, I. A. Rumeileh, and F. Verhaegen, “A speed of sound aberration correction algorithm for curvilinear ultrasound transducers in ultrasound-based image-guided radiotherapy,” Phys. Med. Biol. 58, 1341–1360 (2013).