Aggregation of ranked votes considering different relative gaps between rank positions

Byeong Seok Ahn*

College of Business and Economics, Chung-Ang University, 221 Heukseok, Dongjak, Seoul 156-756, South Korea

This paper considers ranked voting systems to determine the rank order of candidates who compete for a limited number of positions. We show that the preferential voting problems based on the data envelopment analysis (DEA) (Wang et al., 2007) can be solved using the extreme points of constraints on rank position importance incorporated in the formulation. This is basically due to the fact that the so-called inverse positive property of the constraints makes it possible to easily find their extreme points. Further, we emphasize that this finding is not restricted to Wang et al’s two linear models, but is also applicable to other DEA-based preferential voting problems, which include the constraints accounting for different relative gaps between rank positions.

Journal of the Operational Research Society (2017) 68, 1307–1311. doi:10.1057/s41274-016-0153-8; published online 9 January 2017

Keywords: preference vote; data envelopment analysis (DEA); rank position; extreme points

1. Introduction

Decision-making involves choosing the best alternative (course of action, project, candidate, option, or system) or constructing a total or partial order over a multitude of alternatives. In almost all decision-making problems, there are multiple bases (criteria, attributes, objectives, scenarios, or voters) on which to judge the alternatives. Ranking methods can be placed into two basic categories: cardinal and ordinal. Cardinal methods require a decision-maker to express his/her degree of preference for one alternative over another for each criterion. Ordinal methods, on the other hand, require that only the rank order of the alternatives be known for each criterion. Many ordinal ranking methods have been presented during the past two centuries, and they fall into one of several categories, including positional voting, mathematical programming, outranking techniques, and fuzzy ranking (Lansdowne, 1996).

The data envelopment analysis (DEA)-based preferential voting models pioneered by Cook and Kress (1990) have attracted much attention because of their innovative and practical approach. A key concern common to ordinal approaches, however, is how to discriminate between rank positions. With regard to this, we find that various forms of constraints on rank position importance are incorporated in DEA models for the purpose of obtaining a clear ranking of candidates (Hashimoto, 1997; Noguchi et al., 2002; Wang et al., 2007).

The purpose of this paper is to derive the extreme points of those constraints and then to solve the DEA-based linear programming (LP) problems proposed by Wang et al (2007), using the identified extreme points. This naturally extends to the DEA-based preferential voting problems, which include other types of constraints that account for the relative gaps between rank positions. Finally, we emphasize that the proposed method can be used to derive the extreme points of incomplete criteria weights frequently found in the multi-criteria decision-making (MCDM) field.

2. Ranking candidates with constraints on rank position importance

Cook and Kress (1990) developed a DEA-based model to aggregate votes into an overall index in a way that allows each candidate to be assessed in a fair manner. In their research framework, multiple voters select m candidates from a set of n (n ≥ m) candidates by ranking them from first to the mth place. Briefly, the problem is to determine an ordering of all n candidates by computing a total aggregated score \(Z_i = \sum_{j=1}^{m} y_{ij} u_j \) for each candidate \(i = 1, \ldots, n \) where \(y_{ij} \) is the number of the jth place votes received by the ith candidate and \(u_j \) the weights given to the jth place (i.e., rank position). The resulting DEA-based mathematical model appears as
Maximize \[\sum_{j=1}^{m} y_ju_j \]
\text{s.t.} \[\sum_{j=1}^{m} y_ju_j \leq 1, \quad j = 1, \ldots, n \]
\[u_j - u_{j+1} \geq d(j, \epsilon), \quad j = 1, \ldots, m - 1 \]
\[u_m \geq d(m, \epsilon) \]
\text{where} \[d(j, \epsilon) \] \text{is a positive function implying the minimum gap between successively ranked weights, the so-called discrimination intensity function.}

As can be seen in the model (1), the discrimination intensity function \[d(j, \epsilon) \] plays an important role in determining the final ranking of candidates and, in due course, dissimilar rankings are induced by different forms of the function. Hashimoto (1997) introduced a DEA/AR exclusion model where the constraints (2a) and (2a) are incorporated for the purpose of restricting the weight space:

\[u_j - u_{j+1} \geq \epsilon, \quad j = 1, \ldots, m - 1, \quad u_m \geq \epsilon \]
\text{(2a)}

\[u_j - u_{j+1} \geq u_{j+1} - u_{j+2}, \quad j = 1, \ldots, m - 2. \]
\text{(2b)}

Here we note that if \(\epsilon = 0 \) in (2a), only (2b) affects the ranking of candidates since (2a) is rendered redundant. When we denote \(q_j = u_j - u_{j+1} \) in (2b), a set of constraints (2b) simply becomes \(q_j \geq q_{j+1} \geq 0 \), implying \(q_j \geq 0 \) and \(q_{j+1} \geq 0 \) as in (2a). Noguchi et al. (2002) employed a strong ordering that emphasizes the complete categorization of ranking by imposing the following strict ordinal relations:

\[u_1 \geq 2u_2 \geq \cdots \geq mu_m, \quad u_m \geq \epsilon \]
\text{where} \(N \) \text{is the number of voters. Wang et al. (2007) proposed three new models for preference voting and aggregation; two are linear models, partially based on Noguchi et al.'s model, and one is a nonlinear model.}

In this paper, we present an easy method for solving the two linear models proposed by Wang et al. (2007) and extend these models by incorporating other constraints on rank position importance. First, we denote a strict ordering with the sum-to-unity constraint as \(S_W \) in (3a) and a strict ordering without the sum-to-unity constraint as \(S_{WO} \) in (3b), respectively:

\[S_W = \left\{ u_1 \geq 2u_2 \geq \cdots \geq mu_m \geq 0, \sum_{j=1}^{m} u_j = 1 \right\} \]
\text{(3a)}

\[S_{WO} = \left\{ 1 \geq u_1 \geq 2u_2 \geq \cdots \geq mu_m \geq 0 \right\}. \]
\text{(3b)}

Then, we attempt to find a set of extreme points \(H \) of \(S_{WO} \) and \(K \) of \(S_W \) in sequence. Rewriting \(S_{WO} \) in terms of matrix notation yields

\[\begin{pmatrix} 1 - 2 & 0 & \cdots & 0 \\ 0 & 2 - 3 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & m - 1 - m \end{pmatrix} \]
\text{and} \[u^T = (u_1, \ldots, u_m). \]

The lemma below provides a theoretical background for finding the extreme points of two types of constraints on rank position importance, \(S_W \) and \(S_{WO} \).

Lemma The nonsingular matrix \(A_{m \times m} \) is an M-matrix, a class of inverse-positive matrices, of which the inverse matrix \(A^{-1} \) yields the extreme directions of the set \(S_{WO} \) and their normalized vectors result in the extreme points of the set \(S_W \).

Proof The inverse matrix of \(A \), denoted below in (4) as \(H = A^{-1} \), is surely inverse-positive where all elements are nonnegative. A closed convex cone \(C \), defined by \(C = \{ u \in \mathbb{R}^m : Au \geq 0, u \geq 0 \} \), is a simplicial cone with exactly \(m \) extremal rays since \(A \) is a nonsingular matrix of order \(m \). Then, it follows that \((AR^n)^+ = (A^{-1})^T R^n \), based on the dual of \(C \), defined by \(C^* = \{ y \in \mathbb{R}^m : s \in C \implies s \cdot y \geq 0 \} \) where \(s \cdot y \) denotes the inner product (Berman and Plemmons, 1994). Therefore, a set of extreme vectors of \(C \) is composed of \(h_i \), \(i = 1, \ldots, m \), where \(h_i \) is the \(i \)th column vector of \(A^{-1} \) as shown below:

\[H = (h_1, h_2, \ldots, h_m) = \begin{pmatrix} 1 & 1 & 1 & \cdots & 1 \\ 0 & \frac{1}{2} & \frac{1}{2} & \cdots & \frac{1}{2} \\ 0 & 0 & \frac{1}{3} & \cdots & \frac{1}{3} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \frac{1}{m} \end{pmatrix} \]
\text{(4)}

A set of extreme points \(K \) of \(S_W \) can be determined by dividing each column vector \(h_i \) by its column sum \(h^T_i \cdot 1 \) to satisfy the sum-to-unity constraint as shown below:

\[K = (k_1, k_2, \ldots, k_m) = \begin{pmatrix} 1 & \frac{2}{3} & \frac{6}{11} & \cdots & 1/\sum_{j=1}^{m} 1 \\ 0 & \frac{1}{2} & \frac{3}{11} & \cdots & 1/\sum_{j=1}^{m} 2 \\ 0 & 0 & \frac{2}{3} & \cdots & 1/\sum_{j=1}^{m} 3 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1/\sum_{j=1}^{m} m \end{pmatrix} \]
\text{(5)}
Other approaches to find the extreme points of S_W have also been presented (Carrizosa et al., 1995; Mármol et al., 1998; Puerto et al., 2000; Mármol et al., 2002; Ahn, 2015).

In what follows, we present how to solve the two DEA-based LP models, so-called LP-1 and LP-2 to aggregate preferential votes and thus to rank candidates (Wang et al., 2007).

LP-1:
\[
\text{Maximize } \alpha \quad \text{s.t. } \quad Z_i = \sum_{j=1}^{m} y_{ij} u_j \geq \alpha, \quad i = 1, \ldots, n \\
\quad \quad \quad \quad u_j \geq 2 u_l \geq \cdots \geq m u_m \geq 0 \\
\quad \quad \quad \quad \sum_{j=1}^{m} u_j = 1
\]

Theorem 1 The optimal solution to LP-1 is obtained by
\[
\alpha^* = \max_{1 \leq j \leq m} [z_j], \quad z_j = \min_{1 \leq i \leq n} [y_{ij}^T \cdot k_j], \quad y_{ij}^T = (y_{i1}, \ldots, y_{in}), \quad k_j \in K \quad \text{and } \quad u^* = k_j \text{ for } \{j|\alpha^* = \max_{1 \leq j \leq m} [z_j]\}.
\]

Proof Let us denote the preference voting data by
\[
Y = [y_{ij}], \quad i = 1, \ldots, n, \quad j = 1, \ldots, m.
\]

Then, LP-1 can be equivalently written by
\[
\text{Maximize } \alpha \quad \text{s.t. } \quad Y \cdot u \geq \alpha \quad \text{and } \quad u \in K, \quad \alpha^T = (\alpha, \ldots, \alpha)
\]

Note that $Z_i = y_{ij}^T \cdot u$ represents the ith candidate’s aggregated score evaluated by u. For a given extreme weighting vector $u = k_j \in K$, we can always find a feasible $z_j > 0$ such that
\[
Y \cdot k_j \geq z_j, \quad z_j = \min_{1 \leq i \leq n} [z_{ij}], \quad z_{ij} = y_{ij}^T \cdot k_j.
\]

Therefore, the optimal objective value is achieved at
\[
\max_{1 \leq j \leq m} [z_j]
\]

when evaluated by every extreme weighting vector, thus yielding
\[
\alpha^* = \max_{1 \leq j \leq m} [z_j].
\]

According to Theorem 1, the final rank order of candidates can be obtained by arranging the elements of $Y \cdot u^*$ in descending order. In addition to LP-1, Wang et al. (2007) introduced a second DEA-based LP, so-called LP-2 as follows:

LP-2:
\[
\text{Maximize } \alpha \quad \text{s.t. } \quad Z_i = \sum_{j=1}^{m} y_{ij} u_j \leq 1, \quad i = 1, \ldots, n \\
\quad \quad \quad \quad 1 \geq u_1 \geq 2 u_2 \geq \cdots \geq m u_m \geq 0
\]

Theorem 2 The optimal solution to LP-2 is obtained by
\[
\alpha^* = \min \left(\frac{1}{\beta} Y \cdot h_m \right) \text{ and the optimal weighting vector } u^* = \left(\frac{1}{\beta} \right) h_m \text{ where } \beta = \max [Y \cdot h_m].
\]

Example We illustrate the proposed method with an example adopted from Cook and Kress (1990) where 20 voters are involved in selecting four among six candidates via ranking. The detailed preference votes are recorded in Table 1. First, we attempt to determine the rank order of candidates by solving LP-1 with the preferential voting data in Table 1. The product of $Y \cdot K$ results is the aggregated preference scores evaluated by the extreme points of S_W where K is given by
\[
K = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix}
\]

The optimal objective value is determined by
\[
\alpha^* = \max [0, \frac{4}{11}, \frac{48}{23}] = \frac{48}{23} \text{ and } u^T = k_m^T = \left(\frac{12}{23}, \frac{4}{23}, \frac{4}{23}, \frac{1}{23}, \frac{1}{23}, \frac{1}{23} \right)
\]

According to Theorem 1, the final rank order of candidates can be obtained by arranging the elements of $Y \cdot u^*$ in descending order. In addition to LP-1, Wang et al. (2007) introduced a second DEA-based LP, so-called LP-2 as follows:

LP-2:
\[
\text{Maximize } \alpha \quad \text{s.t. } \quad Z_i = \sum_{j=1}^{m} y_{ij} u_j \leq 1, \quad i = 1, \ldots, n \\
\quad \quad \quad \quad 1 \geq u_1 \geq 2 u_2 \geq \cdots \geq m u_m \geq 0
\]

Table 1 Preference votes received by six candidates

Candidate	First place	Second place	Third place	Fourth place
A	3	3	4	3
B	4	5	5	2
C	6	2	3	2
D	6	2	2	6
E	0	4	3	4
F	1	4	3	3

Even though $u_t \leq 1$ was not designated in the original LP-2 model, it is legitimate to consider it such a way because of $Z_i = \sum_{j=1}^{m} y_{ij} u_j \leq 1$.

Proof It is obvious that $y_{ij}^T \cdot h_m > y_{ij}^T \cdot h_i$, $i = 1, \ldots, n, j = 1, \ldots, m - 1$ when evaluating each candidate $Z_i = y_{ij}^T \cdot u$ in terms of the extreme point of S_W (thus we only have to focus on the extreme weighting vector h_m). Furthermore, we obtain the following feasible set of constraints by dividing each $y_{ij}^T \cdot h_m$ by $\beta = \max [Y \cdot h_m] > 1$:

\[
\begin{cases}
\left(\frac{1}{\beta} \right) y_{ij}^T \cdot h_m = 1 & \text{for some } k \mid \max_k [y_{ij}^T \cdot h_m] \\
\left(\frac{1}{\beta} \right) y_{ij}^T \cdot h_m < 1, & j \neq k
\end{cases}
\]

Then, the optimal objective value is given by
\[
\alpha^* = \min \left(\frac{1}{\beta} Y \cdot h_m \right) = \min \left(\frac{1}{\beta} Y \cdot h_j \right) \text{ for } j \neq m,
\]

which is the maximum that α can attain and accordingly, the optimal weighting vector is $u^* = \left(\frac{1}{\beta} \right) h_m$.

Table 1 Preference votes received by six candidates

Candidate	First place	Second place	Third place	Fourth place
A	3	3	4	3
B	4	5	5	2
C	6	2	3	2
D	6	2	2	6
E	0	4	3	4
F	1	4	3	3
To solve LP-2, on the other hand, we use a set of extreme points \(H \) as shown below instead of \(K \) in LP-1:

\[
H = \begin{pmatrix}
1 & 1 & 1 & 1 \\
0 & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
0 & 0 & \frac{1}{2} & \frac{1}{2} \\
0 & 0 & 0 & \frac{1}{2}
\end{pmatrix}.
\]

Based on Theorem 2, we obtain \(x^* = \min \left(\frac{1}{N} Y \cdot h_4 \right) = \frac{48}{110} \) where \(\beta = \max [Y \cdot h_4] = \max \left[\frac{120}{110}, \frac{102}{110}, \frac{48}{12}, \frac{57}{12} \right] = \frac{110}{112} \). Therefore, the optimal weighting vector becomes \(u^T = \left(\frac{1}{N} \right) h_4 = \left(\frac{12}{110}, \frac{6}{110}, \frac{4}{110}, \frac{5}{110} \right) \) and the resulting rank order of candidates is

\[
D(1) \succ B(0.9455) \succ C(0.9273) \succ A(0.7182) \succ F(0.5182) \succ E(0.4364).
\]

Constraints other than (3a) and (3b) can be considered to account for different relative gaps between rank positions. Specifically, the constraints in (2a) and (2b) are good candidates for that purpose and the proposed method can be directly applied to solve the DEA-based preferential voting problems. Aguayo et al. (2014) presents a different approach for finding these extreme points.

We illustrate the following sets of weights constraints, which are the hybrids of (2b) and (3a), and (2b) and (3b):

\[Q_W = \left\{ \begin{array}{l}
1 \geq u_1 - u_2 \geq 2(u_2 - u_3) \geq \cdots \geq (m - 1) \\
(u_{m-1} - u_m) \geq mu_m \geq 0, \sum_{j=1}^{m} u_j = 1
\end{array} \right\} \]

\[Q_{WO} = \left\{ \begin{array}{l}
1 \geq u_1 - u_2 \geq 2(u_2 - u_3) \geq \cdots \geq (m - 1) \\
(u_{m-1} - u_m) \geq mu_m \geq 0
\end{array} \right\} \]

To solve LP-1 (or LP-2) constrained by \(Q_W \) (or \(Q_{WO} \)), we attempt to find the extreme points of the constraints. Consider \(Q_{WO} \) and denote \(q_i = u_i - u_{i-1} \), \(i = 1, \ldots, m \) to give \(Q_{WO} = \left\{ q_i \geq 2q_2 \geq \cdots \geq (m - 1)q_{m-1} \geq mq_m \geq 0 \right\} \). A set of extreme points of \(Q_{WO} \) is given by \(H \) in (4) in terms of \(q_i \). Thus, to derive the extreme points of \(Q_{WO} \), we only have to transform the extreme points in terms of \(q_i \) into those in terms of \(u_i \) by solving the following set of equations:

\[q_i = u_i - u_{i-1}, \quad i = 1, \ldots, m - 1. \]

For example, for \(q_1 = (1, 0, 0, 0) \), we solve a system of equations \(u_1 - u_2 = 1, u_2 - u_3 = 0, u_3 - u_4 = 0, u_4 = 0 \) to derive \(u_1^T = (1, 0, 0, 0) \). Similarly, \(u_2^T = (1, 1, 0, 0) \) is obtained for \(q_2 = (1, 0, 0, 0) \) by solving \(u_1 - u_2 = 1, u_2 - u_3 = \frac{1}{2}, u_3 - u_4 = 0, u_4 = 0 \). Finally, \(u_3^T = (1, \frac{1}{2}, \frac{1}{2}, 0) \) and \(u_4^T = (1, \frac{1}{2}, \frac{1}{2}, 0) \) correspond to \(q_3^T = (1, 0, 0, 0) \) and \(q_4^T = (1, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}) \), respectively. The extreme points of \(Q_W \) are obtained by normalizing each \(u_i, i = 1, \ldots, 4 \).

3. Concluding remarks

In the paper, we have shown that the two DEA-based LP models proposed by Wang et al. (2007) can be solved by simple matrix computations when the extreme points of the constraints used in the models are determined. The constraints that account for the relative gaps between rank positions are revealed to be inverse-positive, which consequently makes it easier to find their extreme points. These findings can be effectively used to identify the extreme points of other types of incomplete criteria weights frequently found in the MCDM field.

Furthermore, other types of constraints could represent the decision-maker’s quantifying metrics for rank position. To this end, we illustrated two sets of constraints and showed that the proposed method can also be applied to rank candidates when they are incorporated into the DEA-based preferential voting problems.

Acknowledgments—The author would like to thank Eun Young Kim and Eugene Ahn for their assistance.

References

Aguayo EA, Mateos A and Jiménez-Martín A (2014). A new dominance intensity method to deal with ordinal information about a DM’s preference within MAVT. Knowledge-Based Systems 69(10):159–169.

Ahn BS (2015). Extreme point-based multi-attribute decision analysis with incomplete information. European Journal of Operational Research 240(3):748–755.

Berman A and Plemmons RJ (1994). Nonnegative Matrices in the Mathematical Sciences. Society for Industrial and Applied Mathematics (SIAM), Philadelphia.

Carrizosa E, Conde E, Fernandez FR and Puerto J (1995). Multi-criteria analysis with partial information about the weighting coefficients. European Journal of Operational Research 81(2):291–301.

Cook WD and Kress M (1990). A data envelopment model for aggregating preference rankings. Management Science 36(11):1302–1310.

Hashimoto A (1997). A ranked voting system using a DEA/AR exclusion model: A note. European Journal of Operational Research 97(3):600–604.

Lansdowne ZF (1996). Ordinal ranking methods for multicriteria decision making. Naval Research Logistics 43(5):613–627.

Mármol AM, Puerto J and Fernandez FR (1998). The use of partial information on weights in multicriteria decision problems. Journal of Multi-Criteria Decision Analysis 7(6):322–329.

Mármol AM, Puerto J and Fernandez FR (2002). Sequential incorporation of imprecise information in multiple-criteria decision processes. European Journal of Operational Research 137(1):123–133.
Noguchi H, Ogawa M and Ishii H (2002). The appropriate total ranking method using DEA for multiple categorized purposes. *Journal of Computational and Applied Mathematics* **146**(1):155–166.

Puerto J, Már mol AM, Monlo y L and Fern an dez FR (2000). Decision criteria with partial information. *International Transactions in Operations Research* **7**(1):51–65.

Wang YM, Chin KS and Yang JB (2007). Three new models for preference voting and aggregation. *Journal of the Operational Research Society* **58**(10):1389–1393.

Received 23 April 2015; accepted 15 November 2016