Solvability of Langevin equations with two Hadamard fractional derivatives via Mittag–Leffler functions

Mohamed I. Abbas and Maria Alessandra Ragusa

Department of Mathematics and Computer Science, Faculty of Science, Alexandria University, Alexandria, Egypt; Dipartimento di Matematica e Informatica, Università di Catania, Catania, Italy; RUDN University, Moscow, Russia

ABSTRACT

In this paper we discuss the solvability of Langevin equations with two Hadamard fractional derivatives. The method of this discussion is to study the solutions of the equivalent Volterra integral equation in terms of Mittag–Leffler functions. The existence and uniqueness results are established by using Schauder’s fixed point theorem and Banach’s fixed point theorem, respectively. An example is given to illustrate the main results.

1. Introduction

In recent years, the fractional differential equations have elicited as a rich area of research due to their applications in various fields of science and engineering such as aerodynamics, viscoelasticity, control theory, economics and blood flow phenomena, etc. For more details, we refer the reader to the text books [1–4].

Besides the well-known Riemann–Liouville and Caputo type fractional derivatives, there is another fractional derivative introduced by Hadamard in 1892 [5], which is known as Hadamard derivative and differs from the preceding ones in the sense that the kernel of the integral in its definition contains logarithmic function of arbitrary exponent. A detailed description of Hadamard fractional derivative and integral can be found in [1,6–8] and the references therein. For some recent results in Hadamard fractional differential equations, we refer the reader to [9–11] and the references therein.

The Langevin equation was able to attract the attention of researchers due to its importance in mathematical physics that is used in modeling the phenomena occurring in fluctuating environment such as Brownian motion [12].

In 1908, P. Langevin [13] derived the classical form of this equation in terms of ordinary derivatives. For the systems in complex media, classical Langevin equation does not provide the correct description of the dynamics. The generalized Langevin equation was introduced in 1966 by Kubo [14], where a frictional memory kernel was incorporated into the Langevin equation to describe the fractal and memory properties. In the 1990s, Mainardi and collaborators [15,16] introduced the fractional Langevin equation. Many interesting results regarding the existence, uniqueness and
stability results for fractional order Langevin equations have been studied by many researchers, see for example [17–23] and references cited therein.

As far as we know, there are no contributions associated with the solutions of the equivalent Volterra integral equations of the fractional Langevin equations in terms of Mittag-Leffler functions.

The objective of this paper is to investigate the existence and uniqueness of solutions for the following Langevin equations with two Hadamard fractional derivatives:

\begin{equation}
\begin{aligned}
&D_{1,t}^{\beta}(H^\alpha_{1,t} - \lambda)x(t) = f(t, x(t)), \quad t \in [1, e], \quad \lambda > 0, \quad 0 < \alpha, \quad \beta \leq 1, \\
&(H^\alpha_{1,t} - \lambda)x(e) = 0, \quad H^1_{1+}x(1) = c_0, \quad c_0 \in \mathbb{R},
\end{aligned}
\end{equation}

where \(D^\alpha_{1,t}, H^\alpha_{1,t}\) denote Hadamard fractional derivatives of orders \(\alpha, \beta\) (\(0 < \alpha, \beta \leq 1\), respectively), \(H^1_{1+}\) denotes the left-sided Hadamard fractional integral of order \(1 - \alpha\) and \(f : [1, e] \times \mathbb{R} \to \mathbb{R}\) is given continuous function.

2. Preliminaries

Let \(C([1, e], \mathbb{R})\) be the Banach space of all continuous functions on \([1, e]\) to \(\mathbb{R}\) endowed with the norm \(\|x\|_C = \sup\{|x(t)| : t \in [1, e]\}\).

For \(0 < \gamma < 1\), we define the weighted space of functions \(g\) on \([1, e]\) by

\[C_{\gamma,ln}([1, e], \mathbb{R}) = \{g : [1, e] \to \mathbb{R}|(\ln t)^\gamma g(t) \in C([1, e], \mathbb{R})\}.\]

Clearly, \(C_{\gamma,ln}([1, e], \mathbb{R})\) is the Banach space with the norm

\[\|g\|_{\gamma,ln} = \|(\ln t)^\gamma g(t)\|_C = \sup_{t \in [1, e]} |(\ln t)^\gamma g(t)|.\]

The following definitions are devoted to the basic concepts of Hadamard fractional integrals and fractional derivatives.

Definition 2.1 (see [1, p.110]): The left-sided Hadamard fractional integral of order \(\alpha \in \mathbb{R}^+\) of function \(g(t)\) is defined by

\[H_1^{\alpha +}g(t) = \frac{1}{\Gamma(\alpha)} \int_1^t \left(\ln \frac{t}{s}\right)^{\alpha-1} g(s) \frac{ds}{s}, \quad 0 < 1 < t \leq b < \infty,\]

where \(\Gamma(\cdot)\) is the Gamma function.

Definition 2.2 (see [1, p.111]): The left-sided Hadamard fractional derivative of order \(\alpha \in [n - 1, n), n \in \mathbb{Z}^+\) of function \(g(t)\) is defined by

\[H_1^{\alpha +}g(t) = \frac{1}{\Gamma(n - \alpha)} \left(\frac{d}{dt}\right)^n \int_1^t \left(\ln \frac{t}{s}\right)^{n-\alpha+1} g(s) \frac{ds}{s}, \quad 0 < 1 < t \leq b < \infty,\]

where \(\Gamma(\cdot)\) is the Gamma function.

Proposition 2.3 (see [1, p.114,115]): Let \(\alpha > 0, \beta > 0\) and \(0 < 1 < b < \infty\). Then for \(f \in C_{\gamma,ln}([1, e], \mathbb{R})\), the following properties hold:

\[H_1^{\alpha +}H_1^{\beta - \alpha}f = H_1^{\beta - \alpha +}f \quad \text{and} \quad H_1^{\alpha +}H_1^{\beta - \alpha}f = f.\]
Lemma 2.4 (see [1, Theorem 2.3, p.116]): Let $\beta > 0$, $0 < b < \infty$ and $f \in C_{y, \ln}([1, e], \mathbb{R})$. Then

$$H^\beta_1 \mathcal{D}_{1,t}^\beta u(t) = u(t) - \sum_{j=1}^{n} c_j (\ln t)^{\beta-j},$$

where $c_j \in \mathbb{R}$ and $n - 1 < \beta < n$.

2.1. Auxiliary lemma

Lemma 2.5: Given $\sigma \in C_{y, \ln}([1, e], \mathbb{R})$. Then the linear problem

$$H^\beta_1 \mathcal{D}_{1,t}^\beta (H^\alpha_1 \mathcal{D}_{1,t}^\alpha - \lambda) x(t) = \sigma(t), \quad 1 < t < e,$$

$$(H^\alpha_1 \mathcal{D}_{1,t}^\alpha - \lambda) x(e) = 0, \quad H^{1-\alpha}_1 x(1) = c_0, \quad c_0 \in \mathbb{R},$$

is equivalent to the integral equation

$$x(t) = c_0 (\ln t)^{\alpha-1} E_{\alpha, \alpha} (\lambda (\ln t)^{\alpha}) + \int_1^t \left(\ln \frac{t}{s} \right)^{\alpha-1} E_{\alpha, \alpha} \left(\lambda \left(\ln \frac{t}{s} \right)^{\alpha} \right) \times \left[\frac{1}{\Gamma(\beta)} \int_1^s \left(\ln \frac{s}{r} \right)^{\beta-1} \sigma(r) \frac{dr}{r} - \frac{(\ln s)^{\beta-1}}{\Gamma(\beta)} \int_1^e \left(1 - \ln r \right)^{\beta-1} \sigma(r) \frac{dr}{r} \right] \frac{ds}{s}.$$

Proof: Firstly, we apply the Hadamard fractional integral of order β to both sides of (2) and using the result of Lemma 2.4, we get

$$(H^\alpha_1 \mathcal{D}_{1,t}^\alpha - \lambda) x(t) = H^\beta_1 \sigma(t) + c_1 (\ln t)^{\beta-1},$$

where $c_1 \in \mathbb{R}$. Using the boundary condition $(H^\alpha_1 \mathcal{D}_{1,t}^\alpha - \lambda) x(e) = 0$, we get

$$c_1 = -\frac{1}{\Gamma(\beta)} \int_1^e (1 - \ln s)^{\beta-1} \sigma(s) \frac{ds}{s}.$$

Then we can rewrite Equation (4) in the form

$$(H^\alpha_1 \mathcal{D}_{1,t}^\alpha - \lambda) x(t) = \frac{1}{\Gamma(\beta)} \int_1^t \left(\ln \frac{t}{s} \right)^{\beta-1} \sigma(s) \frac{ds}{s} - \frac{(\ln t)^{\beta-1}}{\Gamma(\beta)} \int_1^e \left(1 - \ln s \right)^{\beta-1} \sigma(s) \frac{ds}{s}.$$

Now, in view of [1, p. 234, (4.1.89)–(4.1.95)], we conclude the desired Equation (5) with the boundary condition $H^{1-\alpha}_1 x(1) = c_0$ has a solution $x \in C_{y, \ln}([1, e], \mathbb{R})$ that satisfies the volterra integral Equation (3), which yields the required solution. By direct computation we can prove the converse. This ends the proof.

Lemma 2.6 ([24]): Let $\alpha, \gamma \in (0, 1)$, $1 < t_1 < t_2 \leq e$ and $\alpha - 1 + \frac{1}{q} > 0, \gamma < \frac{1}{p}$. Then

$$\int_1^{t_2} (\ln s)^{-\gamma} \left(\left(\ln \frac{t_2}{s} \right)^{-\alpha-1} - \left(\ln \frac{t_1}{s} \right)^{-\alpha-1} \right) \frac{ds}{s} \leq \left(\ln \frac{t_2}{t_1} \right)^{1-p\gamma} \frac{q(\alpha-1)+1}{q(\alpha-1)+1},$$

where $p, q > 1$.
where \(\frac{1}{p} + \frac{1}{q} = 1, p, q > 1 \).

It is worth noting that the Mittag–Leffler function \(\mathbb{E}_{\alpha, \beta}(\cdot) \) in two variables is defined as

\[
\mathbb{E}_{\alpha, \beta}(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(\beta + k\alpha)}, \quad \alpha > 0, \beta > 0, \ z \in \mathbb{C}.
\]

Lemma 2.7 (see [25, 4.2.3 and 4.2.7]): The Mittag–Leffler function \(\mathbb{E}_{\alpha, \beta}(\cdot) \) satisfies the following identities:

(i) \(\mathbb{E}_{\alpha, \beta}(z) = \frac{1}{\Gamma(\beta)} + z \mathbb{E}_{\alpha, \beta + \alpha}(z) \),

(ii) \(\mathbb{E}_{\frac{1}{2}, 1}(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(\frac{k}{2} + 1)} = e^z \text{erfc}(-z) \),

where \(\text{erfc} \) is complementary to the error function \(\text{erf} \):

\[
\text{erfc}(z) = \frac{2}{\sqrt{\pi}} \int_{z}^{\infty} e^{-t^2} \, dt = 1 - \text{erf}(z), \quad z \in \mathbb{C}.
\]

Lemma 2.8 (The mean value theorem for integrals): If \(f \) is a continuous function on the closed, bounded interval \([a, b] \), then there is at least one number \(\xi \) in \((a, b)\) for which

\[
f(\xi) = \frac{1}{b - a} \int_{a}^{b} f(t) \, dt.
\]

In the following Lemma, we present some useful integrals which are used further in this paper.

Lemma 2.9: Using the famous beta function \(\mathbb{B}(m, n) = \int_{0}^{1} (1 - z)^{m-1} z^{n-1} \, dz \), we get

(i) \(\int_{1}^{t} \left(\ln \frac{t}{s} \right)^{\beta-1} (\ln s)^{-\gamma} \frac{ds}{s} = (\ln t)^{\beta - \gamma} \mathbb{B}(\beta, 1 - \gamma) \).

(ii) \(\int_{1}^{t} \left(\ln \frac{t}{s} \right)^{\beta-1} \frac{ds}{s} = \frac{1}{\beta} (\ln t)^{\beta} \).

(iii) \(\int_{1}^{e} (1 - \ln s)^{\beta-1} (\ln s)^{-\gamma} \frac{ds}{s} = \mathbb{B}(\beta, 1 - \gamma) \).

(iv) \(\int_{1}^{e} (1 - \ln s)^{\beta-1} \frac{ds}{s} = \frac{1}{\beta} \).

To end this section, we present the Schauder’s fixed point theorem which plays a main tool in the existence of the solution of (1).

Lemma 2.10 (Schauder’s fixed point theorem [26]): Let \(E \) be a Banach space and \(Q \) be a nonempty bounded convex and closed subset of \(E \), and \(N : Q \rightarrow Q \) is a compact and continuous map. Then \(N \) has at least one fixed point in \(Q \).
3. Main results

Let \(B_r = \{ x \in C_{L,n}([1, e], \mathbb{R}) : \| x \|_{L,n} \leq r \} \) with \(r \geq \frac{\omega_1}{1 - \omega_2} \), where

\[
\omega_1 = \left(|c_0| + \frac{L_2 B(\alpha, 1 + \beta)}{\Gamma(\beta + 1)} + \frac{L_2 B(\alpha, \beta)}{\Gamma(\beta + 1)} \right) E_{\alpha, \alpha}(\lambda),
\]

and

\[
\omega_2 = \frac{B(\beta, 1 - \gamma)}{\Gamma(\beta)} (B(\alpha, 1 + \beta - \gamma) + B(\alpha, \beta)) E_{\alpha, \alpha}(\lambda).
\]

We define the operator \((\mathcal{H}x)(t) : B_r \to C_{L,n}([1, e], \mathbb{R}) \) by

\[
(\mathcal{H}x)(t) = c_0 (\ln t)^{\alpha - 1} E_{\alpha, \alpha}(\lambda(\ln t)^\alpha)
+ \int_1^t \left(\frac{\ln \frac{t}{s}}{s} \right)^{\alpha - 1} E_{\alpha, \alpha}(\lambda\left(\frac{\ln \frac{t}{s}}{\tau} \right)^\alpha) \left[\frac{f(s)}{\Gamma(\beta)} \int_1^s \left(\frac{\ln \frac{t}{\tau}}{s} \right)^{\beta - 1} f(\tau, x(\tau)) \frac{d\tau}{\tau} \right] \frac{ds}{s}
\]

\[
(6)
\]

Theorem 3.1: Assume that:

\(f : [1, e] \times \mathbb{R} \to \mathbb{R} \) is a continuous function, \(f(\cdot, x(\cdot)) \in C_{L,n}([1, e], \mathbb{R}) \) and there exist constants

\(0 \leq L_1 < \omega_2^{-1}, L_2 > 0 \) such that

\[
|f(t, x)| \leq L_1 |x| + L_2, \quad \forall (t, x) \in [1, e] \times \mathbb{R}.
\]

Then (1) has at least one solution on \([1, e]\).

Proof: The proof will be through several steps.

Step 1: We show that \(\mathcal{H}(B_r) \subset B_r. \)

For any \(x \in C_{L,n}([1, e], \mathbb{R}) \) and Lemma 2.9, we have

\[
|\ln t|^\nu \left(\mathcal{H}x(t) \right)|
\leq |c_0| (\ln t)^{\nu + \alpha - 1} E_{\alpha, \alpha}(\lambda) + (\ln t)^{\nu} \int_1^t \left(\frac{\ln \frac{t}{\tau}}{s} \right)^{\alpha - 1} E_{\alpha, \alpha}(\lambda\left(\frac{\ln \frac{t}{\tau}}{s} \right)^\alpha) \left[\frac{f(s)}{\Gamma(\beta)} \int_1^s \left(\frac{\ln \frac{t}{\tau}}{s} \right)^{\beta - 1} f(\tau, x(\tau)) \frac{d\tau}{\tau} \right] \frac{ds}{s}
\]

\[
\leq |c_0| (\ln t)^{\nu + \alpha - 1} E_{\alpha, \alpha}(\lambda) + (\ln t)^{\nu} \int_1^t \left(\frac{\ln \frac{t}{\tau}}{s} \right)^{\alpha - 1} E_{\alpha, \alpha}(\lambda\left(\frac{\ln \frac{t}{\tau}}{s} \right)^\alpha) \left[\frac{f(s)}{\Gamma(\beta)} \int_1^s \left(\frac{\ln \frac{t}{\tau}}{s} \right)^{\beta - 1} f(\tau, x(\tau)) \frac{d\tau}{\tau} \right] \frac{ds}{s}
\]

\[
\leq |c_0| (\ln t)^{\nu + \alpha - 1} E_{\alpha, \alpha}(\lambda) + (\ln t)^{\nu} \int_1^t \left(\frac{\ln \frac{t}{\tau}}{s} \right)^{\alpha - 1} E_{\alpha, \alpha}(\lambda\left(\frac{\ln \frac{t}{\tau}}{s} \right)^\alpha) \left[\frac{1}{\Gamma(\beta)} \int_1^s \left(\frac{\ln \frac{t}{\tau}}{s} \right)^{\beta - 1} f(\tau, x(\tau)) \frac{d\tau}{\tau} \right] \frac{ds}{s}
\]

\[
+ \frac{\ln s^{\beta - 1}}{\Gamma(\beta)} \int_1^e (1 - \ln t)^{\beta - 1} \left(L_1 |x| + L_2 \right) \frac{d\tau}{\tau} \frac{ds}{s}
\]

\[
(6)
\]
\[
\begin{align*}
&\leq |c_0|E_{\alpha,\beta}(\lambda) + \int_1^t \left(\ln \frac{t}{s} \right)^{\alpha-1} E_{\alpha,\beta}\left(\ln \frac{t}{s} \right) \\
&\times \left[\frac{L_1}{\Gamma(\beta)} \int_1^s \left(\ln \frac{s}{\tau} \right)^{-\beta} (|x|_{\gamma, \ln} \ln \frac{\tau}{s}) \frac{d\tau}{\tau} + \frac{L_2}{\Gamma(\beta)} \int_1^s \left(\ln \frac{s}{\tau} \right)^{-\beta} \frac{d\tau}{\tau} \right] \\
&+ \frac{L_1 (\ln s)^{-\beta}}{\Gamma(\beta)} \int_1^e (1 - \ln \tau)^{-\beta} (|x|_{\gamma, \ln} \ln \frac{\tau}{s}) \frac{d\tau}{\tau} + \frac{L_2 (\ln s)^{-\beta}}{\Gamma(\beta)} \int_1^e (1 - \ln \tau)^{-\beta} \frac{d\tau}{\tau} \right] ds \\
&= |c_0|E_{\alpha,\beta}(\lambda) + \int_1^t \left(\ln \frac{t}{s} \right)^{\alpha-1} E_{\alpha,\beta} \\
&\times \left[\frac{L_1 |x|_{\gamma, \ln} \ln (\ln s)^{-\gamma} B(\beta, 1 - \gamma) + \frac{L_2}{\Gamma(\beta + 1)} (\ln s)^{\beta-1} \right] ds \\
\leq |c_0|E_{\alpha,\beta}(\lambda) + \frac{L_1 |x|_{\gamma, \ln} \ln (\ln s)^{-\gamma} B(\beta, 1 - \gamma) E_{\alpha,\beta}(\lambda) \int_1^t \left(\ln \frac{t}{s} \right)^{\alpha-1} (\ln s)^{\beta-\gamma} ds \\
&+ \frac{L_2}{\Gamma(\beta + 1)} E_{\alpha,\beta}(\lambda) \int_1^t \left(\ln \frac{t}{s} \right)^{\alpha-1} (\ln s)^{\beta-\gamma} ds \\
&\leq |c_0|E_{\alpha,\beta}(\lambda) + \frac{L_1 |x|_{\gamma, \ln} \ln (\ln s)^{-\gamma} B(\beta, 1 - \gamma) E_{\alpha,\beta}(\lambda) (\ln t)^{\alpha+\beta-\gamma} B(\alpha, 1 + \beta - \gamma) \\
&+ \frac{L_2}{\Gamma(\beta + 1)} E_{\alpha,\beta}(\lambda) (\ln t)^{\alpha+\beta} B(\alpha, 1 + \beta) \\
&+ \left(\frac{L_1 |x|_{\gamma, \ln} \ln (\ln s)^{-\gamma} B(\beta, 1 - \gamma) + \frac{L_2}{\Gamma(\beta + 1)} \right) E_{\alpha,\beta}(\lambda) (\ln t)^{\alpha+\beta-1} B(\alpha, \beta) \\
&\leq \omega_1 + L_1 \omega_2 |x|_{\gamma, \ln} \\
&\leq \omega_1 + L_1 \omega_2 r \leq r,
\end{align*}
\]

which implies that \(|\mathcal{H}x|_{\gamma, \ln} \leq r \), therefore \(\mathcal{H}(B_r) \subset B_r \).

Step 2. We show that \(\mathcal{H} \) is continuous.

\[
|\ln t)^{\gamma} ((\mathcal{H}x_n)(t) - (\mathcal{H}x)(t))| \\
\leq \left| \ln t)^{\gamma} \int_1^t \left(\ln \frac{t}{s} \right)^{\alpha-1} E_{\alpha,\beta}\left(\ln \frac{t}{s} \right) \left[\frac{1}{\Gamma(\beta)} \int_1^s \left(\ln \frac{s}{\tau} \right)^{-\beta} (f(\tau, x_n(\tau)) - f(\tau, x(\tau))) \frac{d\tau}{\tau} \right] ds \right| \\
\leq \left| \ln t)^{\gamma} \int_1^t \left(\ln \frac{t}{s} \right)^{\alpha-1} \left[\frac{1}{\Gamma(\beta)} \int_1^s \left(\ln \frac{s}{\tau} \right)^{-\beta} |f(\tau, x_n(\tau)) - f(\tau, x(\tau))| \frac{d\tau}{\tau} \right] ds \right| \\
\leq \left| \ln t)^{\gamma} \int_1^t \left(\ln \frac{t}{s} \right)^{\alpha-1} \left[\frac{1}{\Gamma(\beta)} \int_1^s \left(\ln \frac{s}{\tau} \right)^{-\beta} \left(|f(\tau, x_n(\tau)) - f(\tau, x(\tau))| \right) \frac{d\tau}{\tau} \right] ds \right|
\]
Hence, we get
\[\| \mathcal{H}x_n - \mathcal{H}x \|_{\gamma, \ln} \leq \omega_2 \| f(\cdot, x_n(\cdot)) - f(\cdot, x(\cdot)) \|_{\gamma, \ln} \]
and the continuity of \(f \) implies that \(\mathcal{H} \) is continuous.

Step 3. We show \(\mathcal{H} \) is relatively compact on \(B_r \).

According to **Step 1**, we showed that \(\mathcal{H}(B_r) \subset B_r \). Thus \(\mathcal{H}(B_r) \) is uniformly bounded. It remains to show that \(\mathcal{H} \) is equicontinuous.

For \(1 < t_1 < t_2 \leq e \) and \(x \in B_r \), we have
\[
| (\mathcal{H}(x)(t_2)) - (\mathcal{H}(x)(t_1)) | \\
\leq \left| c_0 \left(\ln t_2 \right)^{\alpha - 1} E_{\alpha, \alpha} \left(\lambda \left(\ln t_2 \right)^\alpha \right) - c_0 \left(\ln t_1 \right)^{\alpha - 1} E_{\alpha, \alpha} \left(\lambda \left(\ln t_1 \right)^\alpha \right) \right| \\
+ \left| c_0 \left(\ln t_1 \right)^{\alpha - 1} E_{\alpha, \alpha} \left(\lambda \left(\ln t_2 \right)^\alpha \right) - c_0 \left(\ln t_1 \right)^{\alpha - 1} E_{\alpha, \alpha} \left(\lambda \left(\ln t_1 \right)^\alpha \right) \right| \\
+ \left| \int_1^{t_1} \left(\ln \frac{t_1}{s} \right)^{\alpha - 1} E_{\alpha, \alpha} \left(\frac{0}{\Gamma(\beta)} \right) \int_1^s \left(\ln \frac{s}{\tau} \right)^{\beta - 1} f(\tau, x(\tau)) \frac{d\tau}{\tau} \right| \\
- \frac{\left(\ln s \right)^{\beta - 1}}{\Gamma(\beta)} \int_1^{t_1} \left(1 - \ln \tau \right)^{\beta - 1} f(\tau, x(\tau)) \frac{d\tau}{\tau} \right| \frac{ds}{s} \\
- \int_1^{t_1} \left(\ln \frac{t_1}{s} \right)^{\alpha - 1} E_{\alpha, \alpha} \left(\lambda \left(\ln \frac{t_1}{s} \right)^\alpha \right) \frac{1}{\Gamma(\beta)} \int_1^s \left(\ln \frac{s}{\tau} \right)^{\beta - 1} f(\tau, x(\tau)) \frac{d\tau}{\tau} \right| \frac{ds}{s} \\
- \frac{\left(\ln s \right)^{\beta - 1}}{\Gamma(\beta)} \int_1^{t_1} \left(1 - \ln \tau \right)^{\beta - 1} f(\tau, x(\tau)) \frac{d\tau}{\tau} \right| \frac{ds}{s} \\
\leq \left| c_0 E_{\alpha, \alpha} \left(\lambda \left(\ln t_2 \right)^\alpha \right) \left(\ln t_2 \right)^{\alpha - 1} - \left(\ln t_1 \right)^{\alpha - 1} \right| \\
+ \left| c_0 \left(\ln t_1 \right)^{\alpha - 1} \left(E_{\alpha, \alpha} \left(\lambda \left(\ln t_2 \right)^\alpha \right) - E_{\alpha, \alpha} \left(\lambda \left(\ln t_1 \right)^\alpha \right) \right) \right| \\
+ \left| \int_1^{t_1} \left(\ln \frac{t_1}{s} \right)^{\alpha - 1} E_{\alpha, \alpha} \left(\lambda \left(\ln \frac{t_1}{s} \right)^\alpha \right) \frac{1}{\Gamma(\beta)} \int_1^s \left(\ln \frac{s}{\tau} \right)^{\beta - 1} f(\tau, x(\tau)) \frac{d\tau}{\tau} \right| \frac{ds}{s} \\
\times \left[\frac{1}{\Gamma(\beta)} \int_1^s \left(\ln \frac{s}{\tau} \right)^{\beta - 1} f(\tau, x(\tau)) \frac{d\tau}{\tau} \right] \frac{ds}{s} \\
- \frac{\left(\ln s \right)^{\beta - 1}}{\Gamma(\beta)} \int_1^{t_1} \left(1 - \ln \tau \right)^{\beta - 1} f(\tau, x(\tau)) \frac{d\tau}{\tau} \right| \frac{ds}{s} \]
- \int_{1}^{t_2} \left(\ln \frac{t_2}{s} \right)^{\alpha-1} E_{\alpha,\alpha} \left(\lambda \left(\ln \frac{t_1}{s} \right)^{\alpha} \right) \left[\frac{1}{\Gamma(\beta)} \int_{1}^{s} \left(\ln \frac{s}{\tau} \right)^{\beta-1} f(\tau, x(\tau)) \frac{d\tau}{\tau} \right] \\
- \left(\ln s \right)^{\beta-1} \Gamma(\beta) \int_{1}^{e} (1 - \ln \tau)^{\beta-1} f(\tau, x(\tau)) \frac{d\tau}{\tau} \right] \frac{ds}{s} | \\
+ \int_{1}^{t_2} \left(\ln \frac{t_2}{s} \right)^{\alpha-1} E_{\alpha,\alpha} \left(\lambda \left(\ln \frac{t_1}{s} \right)^{\alpha} \right) \left[\frac{1}{\Gamma(\beta)} \int_{1}^{s} \left(\ln \frac{s}{\tau} \right)^{\beta-1} f(\tau, x(\tau)) \frac{d\tau}{\tau} \right] \\
- \left(\ln s \right)^{\beta-1} \Gamma(\beta) \int_{1}^{e} (1 - \ln \tau)^{\beta-1} f(\tau, x(\tau)) \frac{d\tau}{\tau} \right] \frac{ds}{s} | \\
+ \int_{t_1}^{t_2} \left(\ln \frac{t_2}{s} \right)^{\alpha-1} E_{\alpha,\alpha} \left(\lambda \left(\ln \frac{t_1}{s} \right)^{\alpha} \right) \left[\frac{1}{\Gamma(\beta)} \int_{1}^{s} \left(\ln \frac{s}{\tau} \right)^{\beta-1} f(\tau, x(\tau)) \frac{d\tau}{\tau} \right] \\
- \left(\ln s \right)^{\beta-1} \Gamma(\beta) \int_{1}^{e} (1 - \ln \tau)^{\beta-1} f(\tau, x(\tau)) \frac{d\tau}{\tau} \right] \frac{ds}{s} | \\
\leq E_{\alpha,\alpha}(\lambda) \left| c_0 \left((\ln t_2)^{\alpha-1} - (\ln t_1)^{\alpha-1} \right) \right|
+ \left| c_0 (\ln t_1)^{\alpha-1} \left(E_{\alpha,\alpha} \left(\lambda \left(\ln t_2 \right)^{\alpha} \right) - E_{\alpha,\alpha} \left(\lambda \left(\ln t_1 \right)^{\alpha} \right) \right) \right|
+ \int_{1}^{t_2} \left(\ln \frac{t_2}{s} \right)^{\alpha-1} \left(E_{\alpha,\alpha} \left(\lambda \left(\ln \frac{t_2}{s} \right)^{\alpha} \right) - E_{\alpha,\alpha} \left(\lambda \left(\ln \frac{t_1}{s} \right)^{\alpha} \right) \right) \\
\times \left[\frac{1}{\Gamma(\beta)} \int_{1}^{s} \left(\ln \frac{s}{\tau} \right)^{\beta-1} f(\tau, x(\tau)) \frac{d\tau}{\tau} \right] \\
- \left(\ln s \right)^{\beta-1} \Gamma(\beta) \int_{1}^{e} (1 - \ln \tau)^{\beta-1} f(\tau, x(\tau)) \frac{d\tau}{\tau} \right] \frac{ds}{s} | \\
+ \int_{t_1}^{t_2} \left(\ln \frac{t_2}{s} \right)^{\alpha-1} E_{\alpha,\alpha} \left(\lambda \left(\ln \frac{t_1}{s} \right)^{\alpha} \right) \left[\frac{1}{\Gamma(\beta)} \int_{1}^{s} \left(\ln \frac{s}{\tau} \right)^{\beta-1} f(\tau, x(\tau)) \frac{d\tau}{\tau} \right] \\
- \left(\ln s \right)^{\beta-1} \Gamma(\beta) \int_{1}^{e} (1 - \ln \tau)^{\beta-1} f(\tau, x(\tau)) \frac{d\tau}{\tau} \right] \frac{ds}{s} | \\
\leq |c_0| E_{\alpha,\alpha}(\lambda) \left((\alpha - 1) \frac{1}{\xi} (|t_2 - t_1|) \right) + |c_0| (O|t_2 - t_1|)
+ \int_{1}^{t_2} \left(\ln \frac{t_2}{s} \right)^{\alpha-1} \left(E_{\alpha,\alpha} \left(\lambda \left(\ln \frac{t_2}{s} \right)^{\alpha} \right) - E_{\alpha,\alpha} \left(\lambda \left(\ln \frac{t_1}{s} \right)^{\alpha} \right) \right)
\[
\times \left[\frac{1}{\Gamma(\beta)} \int_1^s \left(\ln \frac{s}{\tau} \right)^{\beta-1} |f(\tau, x(\tau))| \frac{d\tau}{\tau} \right]
+ \frac{(\ln s)^{\beta-1}}{\Gamma(\beta)} \int_1^e (1 - \ln \tau)^{\beta-1} |f(\tau, x(\tau))| \frac{d\tau}{\tau} \right] \frac{ds}{s}
+ \int_1^{t_2} \mathbb{E}_{\alpha, \alpha} \left(\ln \frac{t_2}{s} \right)^{\alpha} \left(\left(\ln \frac{t_2}{s} \right)^{\alpha-1} - \left(\ln \frac{t_1}{s} \right)^{\alpha-1} \right) \left[\frac{1}{\Gamma(\beta)} \int_1^s \left(\ln \frac{s}{\tau} \right)^{\beta-1} |f(\tau, x(\tau))| \frac{d\tau}{\tau} \right]
+ \frac{(\ln s)^{\beta-1}}{\Gamma(\beta)} \int_1^e (1 - \ln \tau)^{\beta-1} |f(\tau, x(\tau))| \frac{d\tau}{\tau} \right] \frac{ds}{s}
+ \int_1^{t_1} \mathbb{E}_{\alpha, \alpha} \left(\ln \frac{t_1}{s} \right)^{\alpha} \left(\left(\ln \frac{t_2}{s} \right)^{\alpha-1} - \left(\ln \frac{t_1}{s} \right)^{\alpha-1} \right) \left[\frac{1}{\Gamma(\beta)} \int_1^s \left(\ln \frac{s}{\tau} \right)^{\beta-1} |f(\tau, x(\tau))| \frac{d\tau}{\tau} \right]
+ \frac{(\ln s)^{\beta-1}}{\Gamma(\beta)} \int_1^e (1 - \ln \tau)^{\beta-1} |f(\tau, x(\tau))| \frac{d\tau}{\tau} \right] \frac{ds}{s}
\leq |c_0| \mathbb{E}_{\alpha, \alpha} \left(\ln \frac{t_2}{t_1} \right) + |c_0| (\mathcal{O}|t_2 - t_1|)
+ \int_1^{t_2} \left(\ln \frac{t_2}{s} \right)^{\alpha} \left(\mathbb{E}_{\alpha, \alpha} \left(\ln \frac{t_2}{s} \right)^{\alpha} - \mathbb{E}_{\alpha, \alpha} \left(\ln \frac{t_1}{s} \right)^{\alpha} \right) \left[\frac{1}{\Gamma(\beta)} \int_1^s \left(\ln \frac{s}{\tau} \right)^{\beta-1} (L_1|\! x(\tau)| + L_2) \frac{d\tau}{\tau} \right]
+ \frac{(\ln s)^{\beta-1}}{\Gamma(\beta)} \int_1^e (1 - \ln \tau)^{\beta-1} (L_1|\! x(\tau)| + L_2) \frac{d\tau}{\tau} \right] \frac{ds}{s}
+ \int_1^{t_1} \mathbb{E}_{\alpha, \alpha} \left(\ln \frac{t_1}{s} \right)^{\alpha} \left(\left(\ln \frac{t_2}{s} \right)^{\alpha-1} - \left(\ln \frac{t_1}{s} \right)^{\alpha-1} \right) \left[\frac{1}{\Gamma(\beta)} \int_1^s \left(\ln \frac{s}{\tau} \right)^{\beta-1} (L_1|\! x(\tau)| + L_2) \frac{d\tau}{\tau} \right]
+ \frac{(\ln s)^{\beta-1}}{\Gamma(\beta)} \int_1^e (1 - \ln \tau)^{\beta-1} (L_1|\! x(\tau)| + L_2) \frac{d\tau}{\tau} \right] \frac{ds}{s}
\leq |c_0| \mathbb{E}_{\alpha, \alpha} \left(\ln \frac{t_2}{t_1} \right) + |c_0| (\mathcal{O}|t_2 - t_1|)
+ \int_1^{t_2} \left(\ln \frac{t_2}{s} \right)^{\alpha} \left(\mathbb{E}_{\alpha, \alpha} \left(\ln \frac{t_2}{s} \right)^{\alpha} - \mathbb{E}_{\alpha, \alpha} \left(\ln \frac{t_1}{s} \right)^{\alpha} \right) \left[\frac{1}{\Gamma(\beta)} \int_1^s \left(\ln \frac{s}{\tau} \right)^{\beta-1} \|x\|_{\gamma, \text{lin}} \frac{d\tau}{\tau} + \frac{L_2}{\Gamma(\beta)} \int_1^e (1 - \ln \tau)^{\beta-1} \frac{d\tau}{\tau} \right] \frac{ds}{s}
+ \frac{L_1(\ln s)^{\beta-1}}{\Gamma(\beta)} \int_1^e (1 - \ln \tau)^{\beta-1} (\ln \tau)^{-\gamma} \|x\|_{\gamma, \text{lin}} \frac{d\tau}{\tau} + \frac{L_2(\ln s)^{\beta-1}}{\Gamma(\beta)} \int_1^e (1 - \ln \tau)^{\beta-1} \frac{d\tau}{\tau} \right] \frac{ds}{s}
\[
\begin{align*}
&+ \int_{t_1}^{t_2} \mathbb{E}_{\alpha,\alpha}(\lambda \left(\ln \frac{t_2}{s} \right)^{\alpha-1} - \left(\ln \frac{t_1}{s} \right)^{\alpha-1}) \left[\frac{L_1}{\Gamma(\beta)} \int_{t_1}^{t} \left(\ln \frac{s}{\tau} \right)^{\beta-1} (\ln \tau)^{-\gamma} \|x\|_{\gamma,\ln} \frac{d\tau}{\tau} \right. \\
&+ \frac{L_2}{\Gamma(\beta)} \frac{1}{\Gamma(\beta)} \left. \int_{t_1}^{t} \left(\ln \frac{s}{\tau} \right)^{\beta-1} \frac{d\tau}{\tau} \right] \frac{ds}{s} \\
&+ \frac{L_1}{\Gamma(\beta)} \left[\int_{t_1}^{t} \left(\ln \frac{s}{\tau} \right)^{\beta-1} (\ln \tau)^{-\gamma} \|x\|_{\gamma,\ln} \frac{d\tau}{\tau} + \frac{L_2}{\Gamma(\beta)} \int_{t_1}^{t} \left(\ln \frac{s}{\tau} \right)^{\beta-1} \frac{d\tau}{\tau} \right] \frac{ds}{s}
\end{align*}
\]

\[
= |c_0| \mathbb{E}_{\alpha,\alpha}(\lambda) \left((\alpha - 1) \left(\ln \frac{t_2}{t_1} \right)^{\alpha-2} \right) |t_2 - t_1| + |c_0| (O|t_2 - t_1|) + I_1 + I_2 + I_3,
\]

where \(\xi \in (t_1, t_2) \) and

\[
I_1 = \int_{t_1}^{t_2} \left(\ln \frac{t_2}{s} \right)^{\alpha-1} \left(\mathbb{E}_{\alpha,\alpha}(\lambda \left(\ln \frac{t_2}{s} \right)^{\alpha}) - \mathbb{E}_{\alpha,\alpha}(\lambda \left(\ln \frac{t_1}{s} \right)^{\alpha}) \right) \left[\frac{L_1}{\Gamma(\beta)} (\ln s)^{\beta-\gamma} (\beta, 1 - \gamma) + \frac{L_2}{\Gamma(\beta + 1)} (\ln s)^{\beta-1} \right] \frac{ds}{s}
\+
\int_{t_1}^{t_2} \left(\ln \frac{t_1}{s} \right)^{\alpha-1} \mathbb{E}_{\alpha,\alpha}(\lambda \left(\ln \frac{t_1}{s} \right)^{\alpha}) \left[\frac{L_1}{\Gamma(\beta)} (\ln s)^{\beta-\gamma} (\beta, 1 - \gamma) + \frac{L_2}{\Gamma(\beta + 1)} (\ln s)^{\beta-1} \right] \frac{ds}{s},
\]
For $\frac{1}{p} + \frac{1}{q} = 1, p, q > 1$, we have the following estimations.

$$I_1 = \int_1^{t_2} \left(\ln \frac{t_2}{s} \right)^{\alpha - 1} \left(E_{\alpha, \alpha} \left(\lambda \left(\ln \frac{t_2}{s} \right)^\alpha \right) - E_{\alpha, \alpha} \left(\lambda \left(\ln \frac{t_1}{s} \right)^\alpha \right) \right) \left[\frac{L_1 r}{\Gamma(\beta)} (\ln s)^{\beta - \gamma} B(\beta, 1 - \gamma) - \frac{L_2}{\Gamma(\beta + 1)} (\ln s)^{\beta} \right] \frac{ds}{s}$$

$$+ \frac{L_2}{\Gamma(\beta + 1)} (\ln s)^{\beta} + \left(\frac{L_1 r}{\Gamma(\beta)} B(\beta, 1 - \gamma) - \frac{L_2}{\Gamma(\beta + 1)} (\ln s)^{\beta - 1} \right) \frac{ds}{s}$$

$$= \frac{L_1 r}{\Gamma(\beta)} B(\beta, 1 - \gamma) \int_1^{t_2} \left(\ln \frac{t_2}{s} \right)^{\alpha - 1} (\ln s)^{\beta - \gamma} \left(E_{\alpha, \alpha} \left(\lambda \left(\ln \frac{t_2}{s} \right)^\alpha \right) - E_{\alpha, \alpha} \left(\lambda \left(\ln \frac{t_1}{s} \right)^\alpha \right) \right) \frac{ds}{s} + \frac{L_2}{\Gamma(\beta + 1)} \left[\int_1^{t_2} \left(\ln \frac{t_2}{s} \right)^{\alpha - 1} (\ln s)^{\beta} \left(E_{\alpha, \alpha} \left(\lambda \left(\ln \frac{t_2}{s} \right)^\alpha \right) - E_{\alpha, \alpha} \left(\lambda \left(\ln \frac{t_1}{s} \right)^\alpha \right) \right) \frac{ds}{s} \right]$$

$$+ \frac{L_2}{\Gamma(\beta + 1)} \left[\int_1^{t_2} \left(\ln \frac{t_2}{s} \right)^{\alpha - 1} (\ln s)^{\beta - 1} \left(E_{\alpha, \alpha} \left(\lambda \left(\ln \frac{t_2}{s} \right)^\alpha \right) - E_{\alpha, \alpha} \left(\lambda \left(\ln \frac{t_1}{s} \right)^\alpha \right) \right) \frac{ds}{s} \right]$$

$$\leq \frac{L_1 r}{\Gamma(\beta)} B(\beta, 1 - \gamma) \left[\left(\int_1^{t_2} \left(\ln \frac{t_2}{s} \right)^{\alpha - 1} (\ln s)^{p(\beta - \gamma)} \frac{ds}{s} \right)^{\frac{1}{p}} \right]$$

$$\times \left(\int_1^{t_2} \left(E_{\alpha, \alpha} \left(\lambda \left(\ln \frac{t_2}{s} \right)^\alpha \right) - E_{\alpha, \alpha} \left(\lambda \left(\ln \frac{t_1}{s} \right)^\alpha \right) \right) q \frac{ds}{s} \right)^{\frac{1}{q}}$$

$$+ \left(\int_1^{t_2} \left(\ln \frac{t_2}{s} \right)^{\alpha - 1} (\ln s)^{\beta - 1} \frac{ds}{s} \right)^{\frac{1}{p}}$$

$$\times \left(\int_1^{t_2} \left(E_{\alpha, \alpha} \left(\lambda \left(\ln \frac{t_2}{s} \right)^\alpha \right) - E_{\alpha, \alpha} \left(\lambda \left(\ln \frac{t_1}{s} \right)^\alpha \right) \right) q \frac{ds}{s} \right)^{\frac{1}{q}}$$

$$+ \frac{L_2}{\Gamma(\beta + 1)} \left(\int_1^{t_2} \left(\ln \frac{t_2}{s} \right)^{\alpha - 1} (\ln s)^{p(\beta - \gamma)} \frac{ds}{s} \right)^{\frac{1}{p}}$$

$$\times \left(\int_1^{t_2} \left(E_{\alpha, \alpha} \left(\lambda \left(\ln \frac{t_2}{s} \right)^\alpha \right) - E_{\alpha, \alpha} \left(\lambda \left(\ln \frac{t_1}{s} \right)^\alpha \right) \right) q \frac{ds}{s} \right)^{\frac{1}{q}}$$
\[
\times \left(\int_1^{t_2} \left(\mathbb{E}_{\alpha,\alpha} \left(\lambda \left(\ln \frac{t_2}{s} \right)^\alpha \right) - \mathbb{E}_{\alpha,\alpha} \left(\lambda \left(\ln \frac{t_1}{s} \right)^\alpha \right) \right) \frac{q}{s} ds \right)^{\frac{1}{q}}
\]
\[
+ \left(\int_1^{t_2} \left(\ln \frac{t_2}{s} \right)^{p(\alpha-1)} \left(\ln \frac{t_1}{s} \right)^{\beta-1} \frac{ds}{s} \right)^{\frac{1}{p}}
\]
\[
\times \left(\int_1^{t_2} \left(\mathbb{E}_{\alpha,\alpha} \left(\lambda \left(\ln \frac{t_2}{s} \right)^\alpha \right) - \mathbb{E}_{\alpha,\alpha} \left(\lambda \left(\ln \frac{t_1}{s} \right)^\alpha \right) \right) \frac{q}{s} ds \right)^{\frac{1}{q}}
\]
\[
\leq \frac{L_1}{\Gamma(\beta)} \mathbb{B}(\beta, 1 - \gamma) \left[\left(\mathbb{E}(p(\alpha - 1) + 1, p(\beta - 1) + 1) \right)^{\frac{1}{p}} \left(\int_1^{t_2} \mathcal{O}(|t_2 - t_1|) \frac{ds}{s} \right)^{\frac{1}{q}}
\right]
\]
\[
+ \left(\mathbb{E}(p(\alpha - 1) + 1, p(\beta - 1) + 1) \right)^{\frac{1}{p}} \left(\int_1^{t_2} \mathcal{O}(|t_2 - t_1|) \frac{ds}{s} \right)^{\frac{1}{q}}
\]
\[
+ \frac{L_2}{\Gamma(\beta)} \left[\left(\mathbb{E}(p(\alpha - 1) + 1, p(\beta + 1) + 1) \right)^{\frac{1}{p}} \left(\int_1^{t_2} \mathcal{O}(|t_2 - t_1|) \frac{ds}{s} \right)^{\frac{1}{q}}
\right]
\]
\[
+ \left(\mathbb{E}(p(\alpha - 1) + 1, p(\beta - 1) + 1) \right)^{\frac{1}{p}} \left(\int_1^{t_2} \mathcal{O}(|t_2 - t_1|) \frac{ds}{s} \right)^{\frac{1}{q}}
\]
which implies that \(I_1 \rightarrow 0 \) as \(t_1 \rightarrow t_2 \).

For \(I_2 \), using Lemma 2.6, we have

\[
I_2 \leq \frac{L_1}{\Gamma(\beta)} \mathbb{B}(\beta, 1 - \gamma) \mathbb{E}_{\alpha,\alpha}(\lambda) \left[\left(\int_1^{t_2} (\ln s)^{p(\beta - \gamma)} \frac{ds}{s} \right)^{\frac{1}{p}} \left(\int_1^{t_2} \left(\ln \left(\frac{t_2}{s} \right) \right)^{\alpha-1} - \left(\ln \left(\frac{t_1}{s} \right) \right)^{\alpha-1} \right) \frac{q}{s} ds \right)^{\frac{1}{q}}
\]
\[
+ \left(\int_1^{t_2} (\ln s)^{p(\beta-1)} \frac{ds}{s} \right)^{\frac{1}{p}} \left(\int_1^{t_2} \left(\ln \left(\frac{t_2}{s} \right) \right)^{\alpha-1} - \left(\ln \left(\frac{t_1}{s} \right) \right)^{\alpha-1} \right) \frac{q}{s} ds \right)^{\frac{1}{q}}
\]
\[
+ \frac{L_2}{\Gamma(\beta + 1)} \mathbb{E}_{\alpha,\alpha}(\lambda) \left[\left(\int_1^{t_2} (\ln s)^{p\beta} \frac{ds}{s} \right)^{\frac{1}{p}} \left(\int_1^{t_2} \left(\ln \left(\frac{t_2}{s} \right) \right)^{\alpha-1} - \left(\ln \left(\frac{t_1}{s} \right) \right)^{\alpha-1} \right) \frac{q}{s} ds \right)^{\frac{1}{q}}
\]
\[
+ \left(\int_1^{t_2} (\ln s)^{p(\beta-1)} \frac{ds}{s} \right)^{\frac{1}{p}} \left(\int_1^{t_2} \left(\ln \left(\frac{t_2}{s} \right) \right)^{\alpha-1} - \left(\ln \left(\frac{t_1}{s} \right) \right)^{\alpha-1} \right) \frac{q}{s} ds \right)^{\frac{1}{q}}
\]
\[
\leq \left\{ \frac{L_1}{\Gamma(\beta)} \mathbb{B}(\beta, 1 - \gamma) \mathbb{E}_{\alpha,\alpha}(\lambda) \left[\left(\ln t_2 \right)^{p(\beta - \gamma) + 1} \left(\ln \frac{t_2}{p(\beta - \gamma) + 1} \right) \left(\ln t_2 \right)^{p(\beta - 1) + 1} \left(\ln \frac{t_2}{p(\beta - 1) + 1} \right) \right]^{\frac{1}{p}}
\right\}
\]
\[
+ \frac{L_2}{\Gamma(\beta + 1)} \mathbb{E}_{\alpha,\alpha}(\lambda) \left[\left(\ln t_2 \right)^{p\beta + 1} \left(\ln \frac{t_2}{p\beta + 1} \right) + \left(\ln t_2 \right)^{p(\beta + 1) + 1} \left(\ln \frac{t_2}{p(\beta + 1) + 1} \right) \right]^{\frac{1}{p}}
\]
\[
\times \left(\frac{1}{q(\alpha - 1) + 1} \left(\ln t_2 \right)^{q(\alpha-1) + 1} - \left(\ln t_1 \right)^{q(\alpha-1) + 1} + \left(\ln \frac{t_1}{t_2} \right)^{q(\alpha-1) + 1} \right),
\]
which implies that \(I_2 \rightarrow 0 \) as \(t_1 \rightarrow t_2 \).
For I_3, using Lemma 2.8, we have
\[
I_3 = \frac{L_1}{\Gamma(\beta)} E(\beta, 1 - \gamma) \mathbb{E}_{\alpha, \lambda}(\lambda) \left[\left(\frac{\ln t_1}{\xi} \right)^{\alpha - 1} \left(\frac{\ln \xi}{s} \right)^{\beta - \gamma} |t_2 - t_1| + \left(\frac{\ln t_1}{\xi} \right)^{\alpha - 1} \left(\frac{\ln \xi}{t_2 - t_1} \right)^{\beta - 1} \right] \\
+ \frac{L_2}{\Gamma(\beta + 1)} E(\alpha, \lambda)(\lambda) \left[\left(\frac{\ln t_1}{\xi} \right)^{\alpha - 1} \left(\frac{\ln \xi}{s} \right)^{\beta} |t_2 - t_1| + \left(\frac{\ln t_1}{\xi} \right)^{\alpha - 1} \left(\frac{\ln \xi}{t_2 - t_1} \right)^{\beta - 1} \right],
\]
where $\xi \in (t_1, t_2)$. Then $I_3 \to 0$ as $t_1 \to t_2$.

Thus we get $|(\mathcal{H} x)(t_2) - (\mathcal{H} x)(t_1)| \to 0$ as $t_1 \to t_2$ which proves that the operator \mathcal{H} is equicontinuous. Hence, by Arzelà-Ascoli theorem, we conclude that \mathcal{H} is relatively compact on B_r. Therefore, the Schauder’s fixed point theorem shows that the operator \mathcal{H} has a fixed point which corresponds to the solution of (1). This completes the proof.

Next, we shall show that the following existence and uniqueness result via Banach’s fixed point theorem.

Theorem 3.2: Assume that:

(H2) Let $f : [1, e] \times \mathbb{R} \to \mathbb{R}$ be a continuous function. There exists a constant $L > 0$ such that $|f(t, x) - f(t, y)| \leq L|x - y|$, for each $t \in [1, e]$ and $x, y \in \mathbb{R}$.

Then (1) has a unique solution on $[1, e]$, provided that $L \omega_2 < 1$.

Proof: As previously proven in Step 1 of Theorem 3.1, the operator $\mathcal{H} : B_k \to B_k$ defined in (6) is uniformly bounded. Then it remains to show that \mathcal{H} is a contraction mapping.

For $x, y \in B_k$, where $B_k = \{x \in C_{\gamma, \ln}([1, e], \mathbb{R}) : \|x\|_{\gamma, \ln} \leq k\}$, we have
\[
|(\ln t)^{\gamma} ((\mathcal{H} x)(t) - (\mathcal{H} y)(t))| \\
= \left| (\ln t)^{\gamma} \int_1^t \left(\frac{\ln t}{s} \right)^{\alpha - 1} E_{\alpha, \beta}(\lambda) \left(\frac{\ln s}{s} \right)^{\alpha} \left[\frac{1}{\Gamma(\beta)} \int_1^s \left(\frac{\ln \tau}{\tau} \right)^{\beta - 1} (f(\tau, x(\tau)) - f(\tau, y(\tau))) \frac{d\tau}{\tau} \right] \right| \\
- \left| (\ln s)^{\beta - 1} \int_1^e (1 - \ln \tau)^{\beta - 1} (f(\tau, x(\tau)) - f(\tau, y(\tau))) \frac{d\tau}{\tau} \right| \right| \\
\leq \int_1^t \left(\frac{\ln t}{s} \right)^{\alpha - 1} E_{\alpha, \beta}(\lambda) \left(\frac{\ln s}{s} \right)^{\alpha} \left[\frac{1}{\Gamma(\beta)} \int_1^s \left(\frac{\ln \tau}{\tau} \right)^{\beta - 1} |f(\tau, x(\tau)) - f(\tau, y(\tau))| \frac{d\tau}{\tau} \right] \\
+ \int_1^e (1 - \ln \tau)^{\beta - 1} |f(\tau, x(\tau)) - f(\tau, y(\tau))| \frac{d\tau}{\tau} \\
\leq \int_1^t \left(\frac{\ln t}{s} \right)^{\alpha - 1} E_{\alpha, \beta}(\lambda) \left(\frac{\ln s}{s} \right)^{\alpha} \left[\frac{L}{\Gamma(\beta)} \int_1^s \left(\frac{\ln \tau}{\tau} \right)^{\beta - 1} |x(\tau) - y(\tau)| \frac{d\tau}{\tau} \right] \\
+ \frac{L(\ln s)^{\beta - 1}}{\Gamma(\beta)} \int_1^e (1 - \ln \tau)^{\beta - 1} |x(\tau) - y(\tau)| \frac{d\tau}{\tau} \\
\leq \int_1^t \left(\frac{\ln t}{s} \right)^{\alpha - 1} E_{\alpha, \beta}(\lambda) \left(\frac{\ln s}{s} \right)^{\alpha} \left[\frac{L}{\Gamma(\beta)} \int_1^s \left(\frac{\ln \tau}{\tau} \right)^{\beta - 1} (\ln \tau)^{-\gamma} \frac{d\tau}{\tau} \right] \\
+ (\ln s)^{\beta - 1} \int_1^e (1 - \ln \tau)^{\beta - 1} (\ln \tau)^{-\gamma} \frac{d\tau}{\tau} \right| |x - y|_{\gamma, \ln} \]
\[
\frac{L \beta(1-\gamma) \mathbb{E}_x(\lambda)}{\Gamma(\beta)} \left\{ \int_1^t \left(\ln \frac{t}{s} \right)^{\alpha-1} \left(\ln s \right)^{\beta-\gamma} \frac{ds}{s} + \int_1^t \left(\ln \frac{t}{s} \right)^{\alpha-1} \left(\ln s \right)^{\beta-1} \frac{ds}{s} \right\} \parallel x-y \parallel_{y, \ln} \leq \frac{L \beta(1-\gamma) \mathbb{E}_x(\lambda)}{\Gamma(\beta)} (\mathbb{E}(\alpha, 1+\beta-\gamma) + \mathbb{E}(\alpha, \beta)) \parallel x-y \parallel_{y, \ln},
\]

which implies that \(\|Hx-Hy\|_{y, \ln} \leq L\omega_2 \parallel x-y \parallel_{y, \ln} \). It follows that \(H \) is a contraction. As a consequence of Banach’s fixed point theorem, the operator \(H \) has a fixed point which corresponds to the unique solution of (1). This completes the proof.

\section*{4. An example}

Consider the following Langevin equation with two Hadamard fractional derivatives:

\textbf{Example 4.1:}

\begin{equation}
\begin{aligned}
H^\frac{2}{4} D_{1,t}^\frac{1}{4} (H^\frac{1}{4} D_{1,t}^\frac{1}{4} - 1)x(t) &= f(t, x(t)), \quad t \in [1, e], \\
(H^\frac{2}{4} D_{1,t}^\frac{1}{4} - 1)x(e) &= 0, \quad H^\frac{1}{4} D_{1,t}^\frac{1}{4} x(1) = 1.
\end{aligned}
\end{equation}

Here, \(\alpha = \frac{1}{2}, \beta = \frac{3}{4}, \lambda = 1, \gamma = \frac{1}{4} \) and \(c_0 = 1 \).

In order to illustrate Theorem 3.1, we take \(f(t, x) = \sin \frac{1}{81} |x| + \frac{1}{(1+t)^2} \) for all \(t \in [1, e] \).

Clearly, \(|f(t, x)| \leq \frac{1}{81} |x| + \frac{1}{4} \). According to the assumption (H1), we get \(L_1 = \frac{1}{81} \) and \(L_2 = \frac{1}{4} \).

Thus,

\[L_1 \omega_2 = \frac{\mathbb{B}(\frac{3}{4}, \frac{3}{4})}{81 \Gamma(\frac{3}{4})} \left[\mathbb{B} \left(\frac{1}{2}, \frac{3}{2} \right) + \mathbb{B} \left(\frac{1}{2}, \frac{3}{4} \right) \right] \mathbb{E}_{\frac{1}{4}, \frac{1}{2}}(1) = 0.06772116862 \mathbb{E}_{\frac{1}{4}, \frac{1}{2}}(1). \]

Using Lemma 2.7, we get

\[\mathbb{E}_{\frac{1}{4}, \frac{1}{2}}(1) = \frac{1}{\Gamma \left(\frac{1}{2} \right)} + \mathbb{E}_{\frac{1}{4}, \frac{1}{2}}(1) = \frac{1}{\sqrt{\pi}} + \text{erfc}(-1) \times e = 5.573170227. \]

Therefore, \(L_1 \omega_2 = 0.3774216007 < 1 \), and according to Theorem 3.1, we conclude that the Langevin equation (7) with \(f(t, x) = \sin \frac{1}{81} |x| + \frac{1}{(1+t)^2} \) has at least one solution on \([1, e]\).

For the illustration of Theorem 3.2, let us take \(f(t, x) = \frac{|x|}{(99+t^2)(1+|x|)} \) for all \(t \in [1, e] \). Obviously, \(|f(t, x) - f(t, y)| \leq \frac{1}{1000} |x - y| \). Thus, the assumption (H2) implies that \(L = \frac{1}{1000} \).

The direct computations give

\[L \omega_2 = \frac{\mathbb{B}(\frac{3}{4}, \frac{3}{4})}{100 \Gamma(\frac{3}{4})} \left[\mathbb{B} \left(\frac{1}{2}, \frac{3}{2} \right) + \mathbb{B} \left(\frac{1}{2}, \frac{3}{4} \right) \right] \mathbb{E}_{\frac{1}{4}, \frac{1}{2}}(1) = 0.05485414658 \mathbb{E}_{\frac{1}{4}, \frac{1}{2}}(1). \]

Hence \(L \omega_2 = 0.3057114966 < 1 \). According to Theorem 3.2, the Langevin equation (7) with \(f(t, x) = \frac{|x|}{(99+t^2)(1+|x|)} \) has a unique solution on \([1, e]\).

\section*{Acknowledgments}

The second author wish to thank the support of ‘RUDN University Program 5-100’.

\section*{Disclosure statement}

No potential conflict of interest was reported by the author(s).
Funding
The second author wish to thank the support of 'RUDN University Program 5-100'.

ORCID
Maria Alessandra Ragusa [http://orcid.org/0000-0001-6611-6370]

References

[1] Kilbas AA, Srivastava HM, Trujillo JJ. Theory and applications of fractional differential equations. Amsterdam: Elsevier Science B.V.; 2006. (North-Holland Mathematics Studies; 204).

[2] Lakshmikantham V, Leela S, Devi JV. Theory of fractional dynamic systems. Cambridge Scientific Publishers; 2009.

[3] Miller KS, Ross B. An introduction to the fractional calculus and differential equations. New York: John Wiley; 1993.

[4] Podlubny I. Fractional differential equations. San Diego: Academic Press; 1999.

[5] Hadamard J. Essai sur l'étude des fonctions données par leur développement de Taylor. J Mater Pure Appl Ser. 1892;8:101–186.

[6] Butzer PL, Kilbas AA, Trujillo JJ. Compositions of Hadamard-type fractional integration operators and the semigroup property. J Math Anal Appl. 2002;269:387–400.

[7] Butzer PL, Kilbas AA, Trujillo JJ. Fractional calculus in the Mellin setting and Hadamard-type fractional integrals. J Math Anal Appl. 2002;269:1–27.

[8] Butzer PL, Kilbas AA, Trujillo JJ. Mellin transform analysis and integration by parts for Hadamard-type fractional integrals. J Math Anal Appl. 2002;270:1–15.

[9] Abbas MI. On the Hadamard and Riemann–Liouville fractional neutral functional integrodifferential equations with finite delay, J Pseudo-Differ Oper Appl. 2019;10(2):505–514.

[10] Song S, Cui Y. Existence of solutions for integral boundary value problems of mixed fractional differential equations under resonance. Bound Value Prob. 2020;2020. Article number: 23.

[11] Zhai C, Wang W. Solutions for a system of Hadamard fractional differential equations with integral conditions. Num Func Ana Optim. 2020;41(2):209–229.

[12] Coffey WT, Kalmykov YP, Waldron JT. The Langevin equation. 2nd ed. River Edge (NJ): World Scientific Publishing; 2004. (World Scientific Series in Contemporary Chemical Physics; 14).

[13] Langevin P. Sur la théorie du mouvement brownien. C R Acad Sci Paris. 1908;146:530–533. (in French)

[14] Kubo R. The fluctuation-dissipation theorem. Rep Prog Phys. 1966;29:255–284.

[15] Mainardi F, Pironi P, Tampieri F. On a generalization of the Basset problem via fractional calculus. In: Tabarrok B, Dost S, editors, Proceedings CANCAM 95; Vol. 2. Canada: University of Victoria; 1995. p. 836–837.

[16] Mainardi F, Pironi P. The fractional langevin equation: Brownian motion revisited. Extracta Math. 1996;10:140–154.

[17] Ahmad B, Alsaedi A, Nieto JJ. Nonlinear Langevin equations and inclusions involving mixed fractional order derivatives and variable coefficient with fractional nonlocal-terminal conditions. AIMS Math. 2019;4(3):626–647.

[18] Ahmad B, Alsaedi A, Salem S. On a nonlocal integral boundary value problem of nonlinear Langevin equation with different fractional orders. Adv Differ Eqns. 2019;2019:530.

[19] Berhail A, Tabouche N, Matar MM, et al. On nonlocal integral and derivative boundary value problem of nonlinear Hadamard Langevin equation with three different fractional orders. Bol Soc Mat Mex. 2019; DOI: doi.org/10.1007/s40590-019-00257-z

[20] Gala S, Liu Q, Ragusa MA. A new regularity criterion for the nematic liquid crystal flows. Appl Anal. 2012;91(9):1741–1747.

[21] Gala S, Ragusa MA. Logarithmically improved regularity criterion for the Boussinesq equations in Besov spaces with negative indices. Appl Anal. 2016;95(6):1271–1279.

[22] Liu Y, Agarwal R. Piecewise continuous solutions of impulsive langevin type equations involving two Caputo fractional derivatives and applications. Dyn Sys Appl. 2019;28(2):409–439.

[23] Ragusa MA, Tachikawa A. Regularity for minimizers for functionals of double phase with variable exponents. Adv Nonlinear Anal. 2020;9:710–728.

[24] Li M, Wang J. Analysis of nonlinear Hadamard fractional differential equations via properties of Mittag–Leffler functions. J Appl Math Comput. 2016;51:487–508.

[25] Gorenflo R, Kilbas AA, Mainardi F, et al. Mittag–Leffler functions, related topics and applications. Springer: Berlin; 2014.

[26] Granas A, Dugundji J. Fixed point theory. Springer-Verlag: New York; 2003.