DIVISION ALGEBRAS OF PRIME PERIOD $\ell \neq p$ OVER
FUNCTION FIELDS OF p-ADIC CURVES

ERIC BRUSSEL AND EDUARDO TENGAN

Abstract. Let F be a field finitely generated and of transcendence degree one over a p-adic field, and let $\ell \neq p$ be a prime. Results of Merkurjev and Saltman show that $H^2(F, \mu_\ell)$ is generated by \mathbb{Z}/ℓ-cyclic classes. We prove the “\mathbb{Z}/ℓ-length” in $H^2(F, \mu_\ell)$ equals the ℓ-Brauer dimension, which Saltman showed to be two. It follows that all F-division algebras of period ℓ are crossed products, either cyclic (by Saltman’s cyclicity result) or tensor products of two cyclic division algebras. Our result was originally proved by Suresh assuming F contains μ_ℓ.

1. Introduction

It is widely believed that for a field F and a prime-to-char(F) number n, the n-torsion $H^2(F, \mu_n) = n\text{Br}(F)$ of the Brauer group of F is generated by \mathbb{Z}/n-cyclic classes, i.e., the cup product map $H^1(F, \mu_n) \otimes \mathbb{Z}H^1(F, \mathbb{Z}/n) \rightarrow H^2(F, \mu_n)$ is surjective. This is true, for example, when F contains the n-th roots of unity by Merkurjev-Suslin’s theorem ([9, Theorem 16.1]), when $n = 3$ by [9, Corollary 16.4], and when $n = 5$ by a recent result of Matzri ([7, Theorem 4.5]). When $H^2(F, \mu_n)$ is generated by \mathbb{Z}/n-cyclic classes we define the \mathbb{Z}/n-length $nL(F)$ in $H^2(F, \mu_n)$ to be the smallest number of \mathbb{Z}/n-cyclic classes needed to write any class, or ∞ if no such number exists. If $nL(F) = c$ then any class in $H^2(F, \mu_n)$ has index at most n^c, so that the n-Brauer dimension $n\text{Br.dim}(F)$ is (finite and) bounded by c. It is not known whether finite n-Brauer dimension implies finite \mathbb{Z}/n-length, or even whether finite n-Brauer dimension implies $H^2(F, \mu_n)$ is generated by cyclic classes.

We study this problem when F is a field that is finitely generated and of transcendence degree one over the p-adic field \mathbb{Q}_p. In [10, Theorem 3.4], Saltman showed that then $n\text{Br.dim}(F)$ equals two, for any (prime-to-p) n. Recently Suresh showed that when $n = \ell$ is prime and F contains μ_ℓ, the \mathbb{Z}/ℓ-length in $H^2(F, \mu_\ell)$ is also two ([13, Theorem 2.4]). The assumption on roots of unity excludes important cases such as the rational function field $F = \mathbb{Q}_p(T)$ (if $\ell \neq 2, 3$ and $p \neq 1$ (mod ℓ)). But in this case the cup product map is surjective by Merkurjev’s theorem [8, Theorem 2] and Saltman’s cyclicity result for classes of prime index [12, Theorem 5.1], so in any case $H^2(F, \mu_\ell)$ is known to be generated by \mathbb{Z}/ℓ-cyclic classes.

We show that for a prime $\ell \neq p$ the \mathbb{Z}/ℓ-length in $H^2(F, \mu_\ell)$ is two, hence that all F-division algebras of period ℓ and index ℓ^2 decompose into two cyclic F-division algebras of index ℓ. It follows immediately that all F-division algebras of period ℓ are (abelian) crossed products. Noncrossed products of larger ℓ-power period exist by [3] and [4].
Our results rely heavily on Saltman’s degree-\(\ell\) cyclicity result and his hot point criterion [12 Corollary 5.2], and our lifting results from [4], which use the machinery of Grothendieck’s existence theorem. We show an \(F\)-division algebra \(\Delta\) of period \(\ell\) and index \(\ell^2\) is decomposable by explicitly constructing a tensor factor of degree \(\ell\), lifting a class constructed over the generic points of the closed fiber of a 2-dimensional model \(X/\mathbb{Z}_p\), as developed in [3]. Since the function fields of the closed fiber are global fields, we can use class field theory (esp. Grunwald-Wang’s theorem) to manipulate the lifted class so that it cancels the hot points of \(\Delta\), which implies it is part of a decomposition of \(\Delta\) by the hot point criterion. The cyclicity result then shows the remaining factor is cyclic. Suresh’s approach in [13] similarly cancels \(\Delta\)’s hot points using a tensor factor, but his tensor factor is constructed as a symbol algebra, which requires \(\mu_\ell \subset F\). There is no obvious way to get to the general case from that construction.

2. Background and Conventions

2.1. Brauer Group Conventions. In this paper an \(F\)-division algebra is a division ring that is central and finite-dimensional over \(F\). If \(D\) is an \(F\)-division algebra we write \([D]\) for the class of \(D\) in the Brauer group \(\text{Br}(F)\), \(\text{ind}(D)\) for the index or degree of \(D\), and \(\text{per}(D)\) for the period of \(D\). We say \(D\) is a crossed product if it contains a maximal subfield that is Galois over \(F\). See [1] for a discussion of crossed product and noncrossed product division algebras.

We write \(\text{H}^2(F, \mu_n) = \eta \text{Br}(F)\) for the \(n\)-torsion subgroup, where \(n\) is prime-to-\(\text{char}(F)\) and \(\mu_n\) is the group of \(n\)-th roots of unity. In the terminology of [1 Section 4], the \(n\)-Brauer dimension \(\eta \text{Br}.\text{dim}(F)\) of \(F\) is the smallest number \(d\) such that every class in \(\text{H}^2(F, \mu_n)\) has index dividing \(n^d\), or \(\infty\) if no such number exists. We say \(\text{H}^2(F, \mu_n)\) is generated by \(\mathbb{Z}/n\)-cyclic classes if the cup product map \(\text{H}^1(F, \mu_n) \otimes_{\mathbb{Z}} \text{H}^1(F, \mathbb{Z}/n) \to \text{H}^2(F, \mu_n)\) is surjective, and a class is \(\mathbb{Z}/n\)-cyclic if it has the form \((f) \cdot \theta\) for some \((f) \in \text{H}^1(F, \mu_n)\) and \(\theta \in \text{H}^1(F, \mathbb{Z}/n)\). If \(\text{H}^2(F, \mu_n)\) is generated by cyclic classes, the \(\mathbb{Z}/n\)-length \(\eta \text{L}(F)\) is the smallest number of \(\mathbb{Z}/n\)-cyclic classes needed to express an arbitrary class, or \(\infty\) if no such number exists. See [1] Section 3] for a discussion of known results regarding \(\mathbb{Z}/n\)-length, usually called “symbol length” when \(F\) contains an \(n\)-th root of unity.

It is clear that if \(\text{H}^2(F, \mu_n)\) is generated by cyclic classes and \(\eta \text{L}(F)\) is finite then \(\eta \text{Br}.\text{dim}(F) \leq \eta \text{L}(F)\). Conversely, as mentioned above, it is not known whether a finite Brauer dimension implies a finite \(\mathbb{Z}/n\)-length, or even that \(\text{H}^2(F, \mu_n)\) is generated by \(\mathbb{Z}/n\)-cyclic classes. However, when \(n = \ell\) Merkurjev proved that \(\text{H}^2(F, \mu_\ell)\) is generated by classes of index \(\ell\) ([8 Theorem 2]), hence for the fields considered in this paper \(\text{H}^2(F, \mu_\ell)\) is generated by \(\mathbb{Z}/\ell\)-cyclic classes by Saltman’s cyclicity result.

2.2. General Conventions. Let \(S\) be an excellent scheme and suppose \(n\) is invertible on \(S\). We write \(\mathbb{Z}/n(r)\) for the étale sheaf \(\mathbb{Z}/n\) twisted by an integer \(r\), and \(\text{H}^0(S, r) = \text{H}^0(S, \mathbb{Z}/n(r))\) for the étale cohomology group. If \(S = \text{Spec} \ A\) for a ring \(A\), we write \(\text{H}^0(A, r)\). If \(T\) is a subscheme of \(S\) we write \(\kappa(T)\) for its ring of meromorphic functions, which is the localization of \(O_T\) at all associated points. If \(T \rightarrow S\) is a morphism of schemes then the restriction \(\text{res}_{T|S} : \text{H}^0(T, r) \rightarrow \text{H}^0(S, r)\)
is defined, and we write $\beta_S = \text{res}_{T|S}(\beta)$, and if $S = \text{Spec} \ A$ we write β_A. If $Z \subset S$ is a subscheme we write Z_T for the preimage $Z \times_S T$.

If v is a valuation on a field F, we write $\kappa(v)$ for the residue field of the valuation ring O_v, and F_v for the completion of F with respect to v. If v arises from a prime divisor D on S, we write $v = v_D$, $\kappa(D)$, and F_D. If a set $\{v_i\}$ arises from a divisor $D = \sum_i D_i$, we write $F_D = \prod_i F_{D_i}$. Recall that if $F = (F,v)$ is a discretely valued field and $\alpha \in H^q(F,r)$, then α has a residue $\partial_v(\alpha)$ in $H^{q-1}(\kappa(v), r-1)$. More generally if ξ is a generic point of a scheme S, $F = \kappa(\xi)$, and $\alpha \in H^q(S, r)$, then for each discrete valuation v on F we define

$$\partial_v(\alpha) \triangleq \partial_v(\alpha_F) \in H^{q-1}(\kappa(v), r-1)$$

We say α is unramified with respect to v if $\partial_v(\alpha) = 0$, and in that case the value of α at v is the element $\alpha(v) = \text{res}_{F/F_v}(\alpha) \in H^q(\kappa(v), r) \leq H^q(F_v, r)$ ([5, 7.13, p.19]).

If v arises from a prime divisor D on a scheme, we will substitute the notations ∂_D and $\alpha(D)$. If S is noetherian we write D_α for the ramification divisor of α on S, which is the sum of (finitely many) prime divisors on S at which α ramifies.

2.3. Setup. In the following, F will always be a finitely generated field extension of \mathbb{Q}_p of transcendence degree one, n will be a prime-to-p number, and X/\mathbb{Z}_p will be a connected regular (projective, flat) relative curve over \mathbb{Z}_p with function field $F = K(X)$. Such a surface exists for any F by a theorem of Lipman (see [6, Theorem 8.3.44]). We write $X_0 = X \otimes_{\mathbb{Z}_p} \mathbb{F}_p$ for the closed fiber, $C = X_0_{\text{red}}$ for the reduced scheme underlying the closed fiber, C_1, \ldots, C_m for the irreducible components of C, and S for the set of singular points of C. We assume that X_0 has normal crossings, hence that each C_i is regular, and at most two of them meet (transversally) at each singular point of C. This is permitted by embedded resolution of curves in surfaces (see [3, Theorem 9.2.26]).

We say an effective divisor D on X is horizontal if each of its irreducible components maps surjectively to $\text{Spec} \mathbb{Z}_p$. By [4, Proposition 2.4] there exists for each closed point $z \in X \setminus S$ a regular irreducible horizontal divisor $D \subset X$ that intersects C transversally. Let D_S denote the support of these lifts. We say a divisor D is distinguished and write $D \subset D_S$ if it is reduced and supported in D_S. Each $D \subset D_S$ is a disjoint union of its irreducible components, each of which has a single closed point and meets C transversally.

By weak approximation ([11, Lemma]), we may choose an element $\pi \in F$ such that $\text{div}(\pi) = C + E \subset X$, where E is horizontal and avoids all closed points of any finite set containing S.

Suppose $\ell \neq p$ is prime, $\alpha \in H^2(F, \mu_\ell)$, and $D_\alpha \subset X$ has normal crossings. Following Saltman’s terminology in [12] we say α has a hot point z on X if (and only if) z is a nodal point of D_α, and if $D, D' \subset D_\alpha$ are the two irreducible components meeting transversally at z, then $\partial_D(\alpha)$ and $\partial_{D'}(\alpha)$ are unramified at z, and $\langle \partial_D(\alpha)(z) \rangle \neq \langle \partial_{D'}(\alpha)(z) \rangle$. By [12, Corollary 5.2], α has index ℓ if and only if D_α has no hot points (hot point criterion), and by [12, Theorem 5.1], if α has index ℓ then it is cyclic.

Theorem 2.4 ([4, Lemma 4.4, Theorem 4.6]). Assume the setup of (2.3).

a) There is a decomposition $H^1(O_{C,S}, \mathbb{Z}/n) \simeq (\mathbb{Z}/n)^{BC} \oplus \Gamma$, where BC is the Betti number of the dual graph of C, and $\Gamma \leq H^1(\kappa(C), \mathbb{Z}/n)$ is the set of tuples $\theta_C = \ldots
(θ₁, . . . , θₘ) ∈ H¹(κ(C), Z/n) such that each θᵢ is unramified at each z ∈ S ∩ Cᵢ, and θₖ(z) = θ₁(z) = θ₂(z) ∈ H¹(κ(z), Z/n) whenever z ∈ Cᵢ ∩ Cₖ.

b) For q ≥ 0 and any integer r there is a map

\[\lambda : H^q(\mathcal{O}_C, S) \to H^q(F, r) \]

and a commutative diagram

\[
\begin{array}{c}
H^q(\mathcal{O}_C, S) \\
\downarrow \text{res}_i \\
H^q(\kappa(C), r)
\end{array}
\begin{array}{c}
\text{inf} \\
\downarrow \\
\oplus_i H^q(F_C, r)
\end{array}
\]

such that if α_C ∈ H^q(\mathcal{O}_C, S, r) and α = \lambda(α_C) then:

i) α is defined at the generic points of C_i, and α(C_i) = \text{res}_i(α_C).

ii) The ramification locus of α (on X) is contained in \mathcal{D}_S.

iii) If D ∈ \mathcal{D}_S is prime and z = D \cap C, then \partial_D \cdot \lambda = \text{inf}_{κ(z)|κ(D)}(\partial_z(\theta_C)) \cdot \partial_z.

iv) If α_C is unramified at a closed point z, and D is any (horizontal) prime lying over z, then α is unramified at D, and has value α(D) = \text{inf}_{κ(z)|κ(D)}(α_C(z)).

3. Computations

We first construct the cyclic class γ ∈ H²(F, μₙ) using a lift from H¹(κ(C), Z/n).

Lemma 3.1. Assume the setup of Theorem 2.4. Suppose θ_C ∈ Γ ≤ H¹(\mathcal{O}_C, S, Z/n) lifts (θ₁, . . . , θₘ) ∈ H¹(κ(C), Z/n) as in Theorem 2.4(a), such that θ_C is unramified at all z ∈ E \cap C, with value of \text{res}_z(θ_C) = 0 (in addition to being unramified at S). Let γ = (π) · \lambda(θ_C) ∈ H²(F, μₙ). Then for any prime divisor D on X

\[\partial_D(\gamma) = \begin{cases} \theta_i & \text{if } D = C_i \\ -\text{res}_{κ(z)|κ(D)}(\partial_z(θ_C)) \cdot (π) & \text{if } D ∈ \mathcal{D}_S \text{ and } z = D \cap C \\ 0 & \text{otherwise} \end{cases} \]

The ramification divisor D_γ has normal crossings, and consists of each C_i at which θ_i is nonzero, together with all D ∈ \mathcal{D}_S lifting z : \partial_z(θ_C) ≠ 0.

Proof. Set θ = \lambda(θ_C). For any prime divisor D on X we compute

\[\partial_D(\gamma) = [v_D(π)θ - \partial_D(θ) \cdot (π) + v_D(π)\partial_D(θ) \cdot (-1)]_{F_D} \]

This element is in the subgroup H¹(κ(D), Z/n) ≤ H¹(F_D, Z/n). Let z = D \cap C. There are several cases to consider.

If D = C_i is an irreducible component of C then since E contains no components of C (by Theorem 2.4) we have v_D(π) = 1, and since θ_C ∈ H¹(\mathcal{O}_C, S, Z/n) we have \partial_D(θ) = 0 by Theorem 2.4(b)(ii). Therefore \partial_D(γ) = \text{res}_{F_D}(θ) = θ_i ∈ H¹(κ(C_i), Z/n).

If D is horizontal and runs through a point of S, then v_D(π) = 0 since E avoids S, and \partial_D(θ) = 0 by Theorem 2.4(b)(ii), hence \partial_D(γ) = 0.

If D is horizontal, avoids S, and v_D(π) ≠ 0, then D is a component of E, so by assumption, \partial_z(θ_C) = 0 for z ∈ E \cap C and θ_C(z) = 0. Thus \partial_D(θ) = 0 and \partial_D(γ) = 0 by Theorem 2.4(b)(iv). Therefore \partial_D(γ) = 0.
If D is horizontal, avoids S, and $v_D(\pi) = 0$, then $\partial_D(\gamma) = -\partial_D(\theta)(\pi)$. If $D \notin \mathcal{R}_S$ this is zero by Theorem 2.4 b)(ii). If $D \in \mathcal{R}_S$ then $\partial_D(\gamma) = -\inf_{\kappa(z)|\kappa(D)}(\partial_z(\theta_C)) \cdot (\pi)$ by Theorem 2.4 b)(iii), and since π is a local equation for C at z and D intersects C transversally at z, the image of π in the local field $\kappa(D)$ is a uniformizer, hence (π) has order n in $H^1(\kappa(D), \mu_n)$. Thus if D is horizontal then $\partial_D(\gamma)$ is nonzero if and only if $D \in \mathcal{R}_S$ and $\partial_z(\theta_C) \neq 0$, and then $\partial_D(\gamma) = -\inf_{\kappa(z)|\kappa(D)}(\partial_z(\theta_C)) \cdot (\pi)$.

We conclude the ramification divisor D_γ of γ consists of the components C_i of C for which θ_i is nonzero, together with the distinguished prime divisors $D \in \mathcal{R}_S$ lying over points z at which θ_C is ramified. Since all such D are regular and intersect C transversally, D_γ has normal crossings.

Next we show an F-division algebra of prime period $\ell \neq p$ and index ℓ^2 is decomposable by constructing a cyclic factor using Lemma 3.1 designed to cancel the division algebra's hot points.

Theorem 3.2. Let F be a field finitely generated of transcendence degree one over \mathbb{Q}_p, and suppose Δ is an F-division algebra of prime period $\ell \neq p$ and index ℓ^2. Then Δ is decomposable.

Proof. We may assume ℓ is odd, since if $\ell = 2$ the result is a classical theorem of Albert. Assume the setup (2.3), let $\alpha = [\Delta] \in H^2(F, \mu_\ell)$, and let D_α be the ramification divisor of α on X. We may assume $D_\alpha \cup C$ has normal crossings and horizontal components contained in \mathcal{R}_S, and that we have an element $\pi \in F$ as in (2.3) with $\text{div}(\pi) = C + E$, where E is horizontal and avoids the nodal points of $D_\alpha \cup C$.

By Grunwald-Wang's theorem applied over the global fields $\kappa(C_i)$ there exist elements $\theta_i \in H^1(\kappa(C_i), \mathbb{Z}/\ell)$, $i = 1, \ldots, m$, with the following properties:

a) $\partial_\gamma(<\theta_i>) = 0$ when $z \in C_i$ is a singular point of $C \cup D_\alpha \cup E$.

b) $\theta_i(z) = \theta_j(z)$ whenever $z \in C_i \cap C_j$.

c) $\theta_i(z) = 0$ at all $z \in E \cap C_i$.

d) If $z \in D_\alpha \cap S$ then

 (i) $\langle \partial_i(\alpha)(z) - \theta_i(z) \rangle = \langle -\theta_i(z) \rangle$ if $z \in C_i$ is a curve point of D_α;

 (ii) $\theta_i(z) = 0$ if $z \in C_i$ is a not-hot nodal point of D_α;

 (iii) $\langle \partial_i(\alpha)(z) - \theta_i(z) \rangle = \langle \partial_j(\alpha)(z) - \theta_i(z) \rangle$ if $z \in C_i \cap C_j$ is a hot point of α.

e) If $z \in D_\alpha \setminus S$ then

 (i) $\langle -\theta_i(z) \rangle = \langle \partial_D(\alpha)(z) \rangle$ if $z \in C_i$ is a curve point of D_α;

 (ii) $\theta_i(z) = 0$ if $z \in C_i$ is a not-hot nodal point of D_α;

 (iii) $\langle \partial_i(\alpha)(z) - \theta_i(z) \rangle = \langle \partial_D(\alpha)(z) \rangle$ if $z \in C_i \cap D$ is a hot point of α.

Note that (d)(i,iii) and (e)(i,iii) makes sense since the given residues of α are unramified at the given z; (d)(i,iii) and (e)(iii) are possible since ℓ is odd; (c) does not conflict with (d)(i,iii) and (e)(i,iii) since E avoids the nodal points of $D_\alpha \cup C$; and (b) does not conflict with (d)(ii,iii) and (e)(ii,iii) by symmetry.

The θ_i are unramified with equal values at all nodal points $z \in S$ by (a,b), so they glue together to produce an element $\theta_C \in F \leq H^1(Q_{C,S}, \mathbb{Z}/\ell)$ by Theorem 2.4 a). Note that θ_C is nonzero by (d)(iii) (or (e)(iii)) since α has at least one hot point by the hot point criterion, and then $\theta_C(z) = \theta_i(z)$ is necessarily nonzero.
Let $\gamma_1 = (\pi) \cdot \lambda(\theta_C)$. Then γ_1 and E satisfy the hypotheses of Lemma 5.1 by (c) and the assumptions on E, hence $D_{\gamma_1} \cup C$ has normal crossings and distinguished horizontal components, and since θ_C is ramified at all nodal points of D_{γ_1}, γ_1 has no hot points, hence it has index ℓ by [12 Corollary 5.2]. Write

\[
D_\alpha = C' + H \\
D_{\gamma_1} = C'' + H'
\]

where $C', C'' \subset C$, and $H, H' \subset \mathcal{D}_S$ are distinguished horizontal divisors. Set

\[\gamma_2 = \alpha - \gamma_1\]

We intend to show that γ_2 has index ℓ. Since θ_C is unramified at all singular points of $D_\alpha \cup C$ by (a), H' avoids all of these points by Lemma 5.1, hence $H \cap H' = \emptyset$. Evidently then $D_{\gamma_2} \subset C + H + H'$. Now D_{γ_2} has normal crossings on X since $D_\alpha \cup C$ and $D_{\gamma_1} \cup C$ both have normal crossings. Since D_{γ_2} has normal crossings, γ_2 has index ℓ if and only if γ_2 has no hot points on X. For the following analysis, note the nodal points S_{γ_2} of D_{γ_2} are in H', S, and H, and in the latter two cases θ_C is unramified at z, hence it has a value $\theta_C(z)$.

Suppose $z \in S_{\gamma_2}$ and $z \notin D_\alpha$. Then z's status as a point of D_{γ_2} (hot, not hot) is the same as its status as a point of D_{γ_1}, hence it is not hot by Lemma 3.1 (it is a “cold” point in the terminology of [12]).

Suppose $z \in S_{\gamma_2} \cap D_\alpha \cap H'$. Then $z \in C_i \cap D$ for some C_i and some prime divisor $D \subset H'$, and θ_C is ramified at z by Lemma 3.1. We have $\partial_D(\alpha) = 0$ since $D \notin D_\alpha$, and by Lemma 3.1

\[
\partial_\pi(\partial_D(\gamma_2)) = \partial_\pi(-\partial_D(\gamma_1)) = \partial_\pi(\partial_\pi(\theta_C) \cdot (\pi)) = v_\pi(\pi)\partial_\pi(\theta_C)
\]

where π is the image of π in $\kappa(D)$. Since $\text{div}(\pi)$ has normal crossings at z, $v_\pi(\pi) = 1$, hence $\partial_\pi(\partial_D(\gamma_2)) = \partial_\pi(\theta_C) \neq 0$. Since $\partial_\pi(\partial_D(\gamma_2)) \neq 0$, z is not a hot point of γ_2.

Suppose $z \in S_{\gamma_2} \cap D_\alpha \cap S$. If z is a curve point of D_α on C_i, i.e., $\partial_{C_i}(\alpha) = 0$ where C_i is the other component of C at z, then $\partial_{C_i}(\gamma_2)(z) = \partial_{C_i}(\alpha)(z) - \theta_C(z)$ and $\partial_{C_i}(\gamma_2)(z) = -\theta_C(z)$ by Lemma 3.1 and so z is not a hot point of γ_2 by (d)(i). If z is a nodal point of D_α on $C_i \cap C_j$, then $\theta_C(z) = 0$ if z is not a hot point of α by (d)(ii), so the status of z for γ_2 is the same as for α (not hot); otherwise $\langle \partial_{C_i}(\gamma_2)(z) \rangle = \langle \partial_{C_j}(\gamma_2)(z) \rangle$ by (d)(iii), hence z is not a hot point for γ_2 in any case.

Suppose $z \in S_{\gamma_2} \cap C_i \cap H$. Assume $z \in C_i \cap D$ for a prime divisor $D \subset H$. Then $\partial_D(\gamma_1) = 0$ since $H \cap H' = \emptyset$. If z is a curve point of D_α, i.e., $\partial_{C_i}(\alpha) = 0$, then $\partial_{C_i}(\gamma_2)(z) = -\theta_C(z)$ and $\partial_D(\gamma_2) = \partial_D(\alpha)$, hence $\langle \partial_{C_i}(\gamma_2)(z) \rangle = \langle \partial_D(\gamma_2)(z) \rangle$ by (e)(i), so z is not a hot point for γ_2. If z is a not-hot nodal point of D_α then $\theta_C(z) = 0$ by (e)(ii), so the status of z is unchanged (not hot) for γ_2. If z is a hot point of α then $\langle \partial_{C_i}(\alpha)(z) - \theta_C(z) \rangle = \langle \partial_D(\alpha)(z) \rangle$ by (e)(iii), hence z is not a hot point for γ_2. This completes the analysis. We conclude γ_2 has no hot points on X, hence γ_1 and γ_2 both have index ℓ.

Let Δ_1 and Δ_2 be the F-division algebras underlying γ_1 and γ_2, respectively, so that $[\Delta] = [\Delta_1 \otimes_F \Delta_2]$. Since $\text{ind}(\Delta_1 \otimes_F \Delta_2) = \text{ind}(\Delta) = \ell^2$ and $\text{ind}(\Delta_i) = \ell$, it follows that $\Delta_1 \otimes_F \Delta_2$ is a division algebra, hence we have a decomposition $\Delta \simeq \Delta_1 \otimes_F \Delta_2$. \(\square\)
As mentioned in [21], it is known that \(\ell \text{Br.dim}(F) = 2 \), but not known in general whether the \(\mathbb{Z}/\ell \)-length in \(H^2(F, \mu_\ell) \) is finite. We now have the following.

Corollary 3.3. Let \(F \) be a field finitely generated and of transcendence degree one over \(\mathbb{Q}_p \). Then every element of \(H^2(F, \mu_\ell) \) is a sum of two \(\mathbb{Z}/\ell \)-cyclic classes.

Proof. If \(\alpha \in H^2(F, \mu_\ell) \) then the index of \(\alpha \) is either \(\ell \) or \(\ell^2 \) by [10, Theorem 3.4]. If it is \(\ell \), then \(\alpha \) is already \(\mathbb{Z}/\ell \)-cyclic by [12, Theorem 5.1]. If it is \(\ell^2 \) then \(\alpha = \gamma_1 + \gamma_2 \) for classes \(\gamma_i \) in \(H^2(F, \mu_\ell) \) of index \(\ell \) by Theorem 3.2. These classes are again \(\mathbb{Z}/\ell \)-cyclic by Saltman’s theorem, and the result follows.

Saltman proved that all \(F \)-division algebras of prime degree \(\ell \) are cyclic crossed products in [12], and Suresh proved the prime period case when \(F \) contains the \(\ell \)-th roots of unity in [13]. We now have the prime period case in general:

Corollary 3.4. Let \(F \) be a field finitely generated and of transcendence degree one over \(\mathbb{Q}_p \), and let \(\Delta \) be a division algebra of prime period \(\ell \neq p \). Then \(\Delta \) is a crossed product.

Proof. The index of \(\Delta \) is either \(\ell \) or \(\ell^2 \) by [10, Theorem 3.4]. If it is \(\ell \), then \(\Delta \) is a cyclic crossed product by [12, Theorem 5.1]. If it is \(\ell^2 \) then \(\Delta = \Delta_1 \otimes_F \Delta_2 \) by Theorem 3.2 and each \(\Delta_i \) is cyclic by Saltman’s theorem. Let \(L_i/F \) be a cyclic Galois maximal subfield of \(\Delta_i \). Then \(L = L_1 \otimes_F L_2 \) is a commutative Galois subalgebra of \(\Delta \) of degree \(\ell^2 \), hence it is a Galois field extension of \(F \), since \(\Delta \) is a division algebra. Since \(L \) obviously splits \(\Delta \), it is a Galois maximal subfield of \(\Delta \), hence \(\Delta \) is a crossed product.

References

[1] A. Auel, E. Brussel, S. Garibaldi, and U. Vishne. Open problems on central simple algebras. *Transform. Groups*, 16(1):219–264, March 2011.
[2] E. Brussel. On Saltman’s \(p \)-adic curves papers. In *Quadratic forms, linear algebraic groups, and cohomology*, volume 18 of *Dev. Math.*., pages 13–39. Springer, New York, 2010.
[3] E. Brussel, K. McKinnie, and E. Tengan. Indecomposable and noncrossed product division algebras over function fields of smooth \(p \)-adic curves. *Adv. in Math.*, 226:4316–4337, 2011.
[4] E. Brussel and E. Tengan. Tame covers and cohomology of relative curves over complete discrete valuation rings, with applications to the Brauer group. http://arxiv.org/abs/1104.0439, 2011.
[5] S. Garibaldi, A. Merkurjev, and J.-P. Serre. Cohomological invariants in Galois cohomology, volume 28 of *University Lecture Series*. Amer. Math. Soc., 2003.
[6] Q. Liu. *Algebraic Geometry and Arithmetic Curves*, volume 6 of *Oxford Graduate Texts in Mathematics*. Oxford University Press, Oxford, 2002. Translated from the French by Reinie Erné, Oxford Science Publications.
[7] E. Matzri. All dihedral algebras of degree 5 are cyclic. *Proc. Amer. Math. Soc.*, 136:1925–1931, 2008.
[8] A. Merkurjev. Brauer groups of fields. *Comm. Alg.*, 11:2611–2624, 1983.
[9] A. Merkurjev and A. Suslin. \(K \)-cohomology of Severi-Brauer varieties and the norm residue homomorphism. *Math. USSR Izv.*, 21(2):307–340, 1983.
[10] D. Saltman. Division algebras over \(p \)-adic curves. *J. Ramanujan Math. Soc.*, 12:25–47, 1997. see also the erratum [11] and survey [2].
[11] D. Saltman. Correction to division algebras over \(p \)-adic curves. *J. Ramanujan Math. Soc.*, 13:125–129, 1998.
[12] D. Saltman. Cyclic algebras over \(p \)-adic curves. *J. Algebra*, 314:817–843, 2007.
[13] V. Suresh. Bounding the symbol length in the Galois cohomology of function fields of p-adic curves. *Comment. Math. Helv.*, 85(2):337–346, 2010.

Department of Mathematics & Computer Science, Emory University, Atlanta, GA 30322, USA

E-mail address: brussel@mathcs.emory.edu

Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos, São Paulo, Brazil

E-mail address: etengan@icmc.usp.br