Signatures of gluon saturation from structure-function measurements arXiv:2203.05846

DIS2022 WG6

Nestor Armesto ¹ Tuomas Lappi ² ³ Heikki Mäntysaari ² ³
Hannu Paukkunen ² ³ Mirja Tevio ² ³

¹ Instituto Galego de Física de Altas Enerxías IGFAE, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia-Spain

² Department of Physics, University of Jyväskylä, P.O. Box 35, 40014 University of Jyväskylä, Finland

³ Helsinki Institute of Physics, P.O. Box 64, 00014 University of Helsinki, Finland

3.5.2022
Motivation

- Color Glass Condensate (CGC) framework describes non-linear effects (gluon saturation)
 - Bjorken-\(x \) dependence from Balitsky-Kovchegov (BK) evolution equation
Motivation

- Color Glass Condensate (CGC) framework describes non-linear effects (gluon saturation)
 - Bjorken-x dependence from Balitsky-Kovchegov (BK) evolution equation

- In collinear factorization framework the Q^2 evolution comes from Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equations
Color Glass Condensate (CGC) framework describes non-linear effects (gluon saturation)

- Bjorken-x dependence from Balitsky-Kovchegov (BK) evolution equation

In collinear factorization framework the Q^2 evolution comes from Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equations

To see saturation effects on experimental data we have to distinguish the genuine difference between DGLAP and BK dynamics
Motivation

- Color Glass Condensate (CGC) framework describes non-linear effects (gluon saturation)
 - Bjorken-\(x\) dependence from Balitsky-Kovchegov (BK) evolution equation

- In collinear factorization framework the \(Q^2\) evolution comes from Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equations

- To see saturation effects on experimental data we have to distinguish the genuine difference between DGLAP and BK dynamics

- Both frameworks require input which are fitted to the same experimental data
 - The results do not deviate dramatically and the distinguishing DGLAP/BK evolution is difficult
Our method to see difference in DGLAP/BK

We want to be as independent as possible of initial condition parametrization.
1. We want to be as independent as possible of initial condition parametrization

2. We "force" collinear factorization and CGC $F_{2,L}$ to agree in a line in (x, Q^2) plane

Matching line in (x, Q^2) plane
Our method to see difference in DGLAP/BK

1. We want to be as independent as possible of initial condition parametrization

2. We "force" collinear factorization and CGC $F_{2,L}$ to agree in a line in (x, Q^2) plane

3. Differences between the two frameworks outside the chosen line quantify signatures of gluon saturation

Matching line in (x, Q^2) plane
Our method to see difference in DGLAP/BK

1. We want to be as independent as possible of initial condition parametrization

2. We "force" collinear factorization and CGC $F_{2,L}$ to agree in a line in (x, Q^2) plane

3. Differences between the two frameworks outside the chosen line quantify signatures of gluon saturation

4. With differences we can approximate the accuracy of $F_{2,L}$ saturation measurements in EIC and LHeC/FCC-he
Collinear factorization:
- Collinear factorization $F_{2,L}$ using APFEL [1] and LHAPDF [2] libraries
- NNPDF31_nlo_as_0118_1000 as proton PDF set
- nNNPDF20_nlo_as_0118_Au197 as nuclear PDF set
- Both PDF sets have 1000 Monte Carlo replicas

Color Glass Condensate (CGC):
- Dipole picture $F_{2,L}$ fitted to HERA data
- Leading order total photon-nucleus cross sections
- Running coupling BK evolution

We match collinear factorization $F_{2,L}$ to corresponding CGC structure functions in a line in (x, Q^2) plane

1 T. Lappi and H. Mäntysaari. “Single inclusive particle production at high energy from HERA data to proton-nucleus collisions”. In: *Phys. Rev. D* 88 (2013), p. 114020. arXiv: 1309.6963 [hep-ph]
PDF matching

Bayesian reweighting method [4, 5]:

For each PDF replica \(f_k \) we define

\[
\chi_k^2 = \sum_{i=1}^{N_{\text{data}}} \frac{(O_i - O_i[f_k])^2}{(\delta_{\text{BK}} O_i)^2}
\]

and so called Giele-Keller weights \([6]\)

\[
\omega_k = e^{-\frac{1}{2} \chi_k^2} \frac{1}{N_{\text{rep}} \sum_{k=1}^{N_{\text{rep}}} e^{-\frac{1}{2} \chi_k^2}}
\]

which always sum up to unity,

\[
\frac{1}{N_{\text{rep}}} \sum_{k=1}^{N_{\text{rep}}} \omega_k = 1
\]

Giele-Keller weights favor replicas with \(\chi_k^2 \approx 0 \).

Then we define reweighted observables as

\[
O_{\text{Rew}} = \frac{1}{N_{\text{rep}}} \sum_{k=1}^{N_{\text{rep}}} \omega_k O[f_k]
\]

We also construct a PDF set matched to BK in \((x, Q^2)\) line (Back up)
Bayesian reweighting method [4, 5]:
For each PDF replica f_k we define

$$
\chi_k^2 = \sum_{i=1}^{N_{\text{data}}} \frac{(O_i - O_i[f_k])^2}{(\delta_{\text{BK}} O_i)^2}
$$

and so called **Giele-Keller** weights [6]

$$
\omega_k = \frac{e^{-\frac{1}{2} \chi_k^2}}{\frac{1}{N_{\text{rep}}} \sum_{k=1}^{N_{\text{rep}}} e^{-\frac{1}{2} \chi_k^2}},
$$
PDF matching

Bayesian reweighting method [4, 5]:

For each PDF replica f_k we define

$$
\chi^2_k = \sum_{i=1}^{N_{data}} \frac{(O_i - O_i[f_k])^2}{(\delta_{BK} O_i)^2}
$$

and so called Giele-Keller weights [6]

$$
\omega_k = \frac{e^{-\frac{1}{2}\chi^2_k}}{\frac{1}{N_{rep}} \sum_{k=1}^{N_{rep}} e^{-\frac{1}{2}\chi^2_k}},
$$

which always sum up to unity,

$$
\frac{1}{N_{rep}} \sum_{k=1}^{N_{rep}} \omega_k = 1.
$$
PDF matching

Bayesian reweighting method [4, 5]:

For each PDF replica \(f_k \) we define

\[
\chi^2_k = \sum_{i=1}^{N_{\text{data}}} \frac{(O_i - O_i[f_k])^2}{(\delta_{\text{BK}} O_i)^2}
\]

and so called Giele-Keller weights [6]

\[
\omega_k = \frac{e^{-\frac{1}{2} \chi^2_k}}{\frac{1}{N_{\text{rep}}} \sum_{k=1}^{N_{\text{rep}}} e^{-\frac{1}{2} \chi^2_k}},
\]

which always sum up to unity,

\[
\frac{1}{N_{\text{rep}}} \sum_{k=1}^{N_{\text{rep}}} \omega_k = 1.
\]

Giele-Keller weights favor replicas with \(\chi^2 \approx 0 \).
PDF matching

Bayesian reweighting method [4, 5]:

For each PDF replica f_k we define

$$\chi^2_k = \sum_{i=1}^{N_{\text{data}}} \frac{(O_i - O_i[f_k])^2}{(\delta_{BK} O_i)^2}$$

and so called **Giele-Keller** weights [6]

$$\omega_k = \frac{e^{-\frac{1}{2} \chi^2_k}}{\frac{1}{N_{\text{rep}}} \sum_{k=1}^{N_{\text{rep}}} e^{-\frac{1}{2} \chi^2_k}},$$

which always sum up to unity,

$$\frac{1}{N_{\text{rep}}} \sum_{k=1}^{N_{\text{rep}}} \omega_k = 1.$$

Giele-Keller weights favor replicas with $\chi^2 \approx 0$.

Then we define reweighted observables as

$$O^{\text{Rew}} = \frac{1}{N_{\text{rep}}} \sum_{k=1}^{N_{\text{rep}}} \omega_k O[f_k]$$

We also construct a PDF set matched to BK in (x, Q^2) line (Back up)
Fixing matching parameters

- We want to match the reweighted values to BK values as closely as possible
 - Finite number of replicas (1000) prevent the absolute match
- Effective number of replicas \([4, 7]\)

\[
N_{\text{eff}} = \exp \frac{1}{N_{\text{rep}}} \sum_{k=1}^{N_{\text{rep}}} \omega_k \ln \left(\frac{N_{\text{rep}}}{\omega_k} \right)
\]

gives an approximation on how many PDF replicas have significant weight

- We adjust \(\delta_{\text{BK}}\) in \(\chi_k^2\) in order to fix \(N_{\text{eff}} \approx 10\)

\[
\begin{align*}
\chi_k^2 &= \sum_{i=1}^{N_{\text{data}}} \frac{(y_i - y_i[f_k])^2}{(\delta_{\text{BK}} y_i)^2} \\
\omega_k &= e^{-\frac{1}{2} \chi_k^2} \frac{1}{N_{\text{rep}}} \sum_{k=1}^{N_{\text{rep}}} e^{-\frac{1}{2} \chi_k^2} \\
O^{\text{Rew}} &= \frac{1}{N_{\text{rep}}} \sum_{k=1}^{N_{\text{rep}}} \omega_k O[f_k]
\end{align*}
\]
Choosing the matching line

We want to do the matching in a common region of validity for both frameworks:
Choosing the matching line

- We want to do the matching in a common region of validity for both frameworks:
 - In a region $Q^2 \gg Q_s^2$ where saturation effects are moderate.
Choosing the matching line

- We want to do the matching in a common region of validity for both frameworks:
 - In a region \(Q^2 \gg Q_s^2 \) where saturation effects are moderate
 - With enough small \(\alpha_s \log(Q^2) \) so that DGLAP evolution dynamics is reliable
Choosing the matching line

- We want to do the matching in a common region of validity for both frameworks:
 - In a region $Q^2 \gg Q_s^2$ where saturation effects are moderate
 - With enough small $\alpha_s \log(Q^2)$ so that DGLAP evolution dynamics is reliable

\rightarrow We choose to do the matching on points $Q^2(x) \approx 10 \times Q_s^2(x)$
Proton matching

(a) F_2
(b) F_L

The structure functions for proton as a function of x at $Q^2 \approx 10Q_s^2(x)$

- Separate matching for proton F_2 and F_L are both almost perfect
Relative difference of proton F_2^{Rew} to F_2^{BK}

For proton F_2 the relative difference is only a few percent

Generically slower x dependence in BK evolution
Relative difference of proton F_L^{Rew} to F_L^{BK}

For proton F_L the relative difference is:

- $\lesssim 10\%$ for $x = 10^{-3} \ldots 5.6 \times 10^{-3}$ (EIC)
- $\lesssim 40\%$ for $x = 10^{-5} \ldots 10^{-4}$ (LHeC/FCC-he)

F_L is much more sensitive to saturation than F_2
The structure functions for 197Au as a function of x at $Q^2 \approx 10Q_s^2(x)$.

- Nuclear reweight is not as successful as for proton since there are not enough Monte Carlo replicas to get a precise match.
Relative difference of nuclear F_2 to F_2^{BK}

For nuclear F_2 the relative difference is $\lesssim 10\%$

The relative difference is much larger than in the proton case
 - It is expected since saturation effects are stronger in nuclei
Relative difference of nuclear F_L^{Rew} to F_L^{BK}

The relative difference $(F_L^{\text{BK}} - F_L^{\text{Rew}})/F_L^{\text{BK}}$.

For nuclear F_L the relative difference is:

- $\lesssim 15\%$ for $x = 10^{-3} \ldots 10^{-2}$ (EIC)
- $\lesssim 60\%$ for $x = 10^{-5} \ldots 10^{-4}$ (LHeC/FCC-he)
With Bayesian reweighting we match proton/nuclear structure functions to corresponding BK values in a line $Q^2 \approx 10 \times Q_s^2(x)$
With Bayesian reweighting we match proton/nuclear structure functions to corresponding BK values in a line $Q^2 \approx 10 \times Q_s^2(\chi)$.

The deviation outside the matching line describes signatures of saturation.
With Bayesian reweighting we match proton/nuclear structure functions to corresponding BK values in a line $Q^2 \approx 10 \times Q_s^2(x)$.

The deviation outside the matching line describes signatures of saturation.

In order to see saturation in protons in EIC:

- F_L the measurements have to be $\mathcal{O}(10\%)$.
- F_2 the measurements have to be $\mathcal{O}(1\%)$.
Summary

- With Bayesian reweighting we match proton/nuclear structure functions to corresponding BK values in a line $Q^2 \approx 10 \times Q_s^2(x)$

- The deviation outside the matching line describes signatures of saturation

- In order to see saturation in protons in EIC
 - F_L the measurements have to be $\mathcal{O}(10\%)$
 - F_2 the measurements have to be $\mathcal{O}(1\%)$

- In LHeC/FCC-he the differences are a few times larger
With Bayesian reweighting we match proton/nuclear structure functions to corresponding BK values in a line $Q^2 \approx 10 \times Q_s^2(x)$.

The deviation outside the matching line describes signatures of saturation.

In order to see saturation in protons in EIC:

- F_L the measurements have to be $\mathcal{O}(10\%)$.
- F_2 the measurements have to be $\mathcal{O}(1\%)$.

In LHeC/FCC-he the differences are a few times larger.

Saturation is stronger in heavy nuclei than in proton.
With Bayesian reweighting we match proton/nuclear structure functions to corresponding BK values in a line $Q^2 \approx 10 \times Q_s^2(x)$

The deviation outside the matching line describes signatures of saturation

In order to see saturation in protons in EIC

- F_L the measurements have to be $O(10\%)$
- F_2 the measurements have to be $O(1\%)$

In LHeC/FCC-he the differences are a few times larger

Saturation is stronger in heavy nuclei than in proton

F_L is more sensitive to saturation than F_2
References

[1] Valerio Bertone, Stefano Carrazza, and Juan Rojo. “APFEL: A PDF Evolution Library with QED corrections”. In: Comput. Phys. Commun. 185 (2014), pp. 1647–1668. DOI: 10.1016/j.cpc.2014.03.007. arXiv: 1310.1394 [hep-ph].

[2] Andy Buckley et al. “LHAPDF6: parton density access in the LHC precision era”. In: Eur. Phys. J. C 75 (2015), p. 132. DOI: 10.1140/epjc/s10052-015-3318-8. arXiv: 1412.7420 [hep-ph].

[3] T. Lappi and H. Mäntysaari. “Single inclusive particle production at high energy from HERA data to proton-nucleus collisions”. In: Phys. Rev. D 88 (2013), p. 114020. arXiv: 1309.6963 [hep-ph].

[4] Richard D. Ball et al. “Reweighting NNPDFs: the W lepton asymmetry”. In: Nucl. Phys. B 849 (2011). [Erratum: Nucl.Phys.B 854, 926–927 (2012), Erratum: Nucl.Phys.B 855, 927–928 (2012)], pp. 112–143. DOI: 10.1016/j.nuclphysb.2011.03.017. arXiv: 1012.0836 [hep-ph].

[5] Richard D. Ball et al. “Reweighting and Unweighting of Parton Distributions and the LHC W lepton asymmetry data”. In: Nucl. Phys. B 855 (2012), pp. 608–638. DOI: 10.1016/j.nuclphysb.2011.10.018. arXiv: 1108.1758 [hep-ph].

[6] Walter T. Giele and Stephane Keller. “Implications of hadron collider observables on parton distribution function uncertainties”. In: Phys. Rev. D 58 (1998), p. 094023. DOI: 10.1103/PhysRevD.58.094023. arXiv: hep-ph/9803393.

[7] Hannu Paukkunen and Pia Zurita. “PDF reweighting in the Hessian matrix approach”. In: JHEP 12 (2014), p. 100. DOI: 10.1007/JHEP12(2014)100. arXiv: 1402.6623 [hep-ph].
Reweighting has slightly stronger effect on gluon distribution than on up quark.

Moderate effects expected since NNPDF3.1 PDFs are fitted to same HERA data as BK boundary conditions.
Nuclear PDFs are affected more than proton PDFs

Reweighting has stronger effect on gluon distribution than on up quark
Back up: Reweight with smaller x region

![Diagram of $197\text{Au} F_2$ and $197\text{Au} F_L$ with Q^2 versus x](image)

(a) F_2

(b) F_L

Nuclear reweight in region $x = 10^{-4} \ldots 10^{-2}$
Back up: Reweight with smaller x region

(a) F_2

The relative difference $(F_2^{BK} - F_2^{Rew})/F_2^{BK}$ with nuclear reweight in region $x = 10^{-4} \ldots 10^{-2}$.

(b) F_2

The relative difference $(F_2^{BK} - F_2^{Rew})/F_2^{BK}$ with nuclear reweight in region $x = 10^{-4} \ldots 10^{-2}$.

(c) F_L

The relative difference $(F_L^{BK} - F_L^{Rew})/F_L^{BK}$ with nuclear reweight in region $x = 10^{-4} \ldots 10^{-2}$.
Back up: Reweight in line $Q^2(x) \approx 27 \times Q_s^2(x)$

\begin{align*}
\text{(a) } F_2 \\
\text{Nuclear reweight in line } Q^2(x) &\approx 27 \times Q_s^2(x).
\end{align*}
Back up: Reweight in line $Q^2(x) \approx 27 \times Q_s^2(x)$

The relative difference $(F_2^{\text{BK}} - F_2^{\text{Rew}})/F_2^{\text{BK}}$ with nuclear reweight in line $Q^2(x) \approx 27 \times Q_s^2(x)$.

(a) F_2

(b) F_2

The relative difference $(F_L^{\text{BK}} - F_L^{\text{Rew}})/F_L^{\text{BK}}$ with nuclear reweight in line $Q^2(x) \approx 27 \times Q_s^2(x)$.

(a) F_L

(b) F_L
Giele-Keller weights which favor replicas with $\chi^2/N_{\text{data}} \approx 0$

$$\omega_k = \frac{e^{-\frac{1}{2}\chi_k^2}}{\frac{1}{N_{\text{rep}}} \sum_{k=1}^{N_{\text{rep}}} e^{-\frac{1}{2}\chi_k^2}}$$

Weights used with experimental data favor replicas with $\chi^2/N_{\text{data}} \approx 1$

$$\omega_k = \frac{(\chi_k^2)(N_{\text{data}}-1)/2 e^{-\frac{1}{2}\chi_k^2}}{\frac{1}{N_{\text{rep}}} \sum_{k=1}^{N_{\text{rep}}} (\chi_k^2)(N_{\text{data}}-1)/2 e^{-\frac{1}{2}\chi_k^2}}$$