Perspective: Drawing on Findings From Critical Illness to Explain Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

Dominic Stanculescu and Jonas Bergquist

We propose an initial explanation for how myalgic encephalomyelitis / chronic fatigue syndrome (ME/CFS) could originate and perpetuate by drawing on findings from critical illness research. Specifically, we combine emerging findings regarding (a) hypoperfusion and endotheliopathy, and (b) intestinal injury in these illnesses with our previously published hypothesis about the role of (c) pituitary suppression, and (d) low thyroid hormone function associated with redox imbalance in ME/CFS. Moreover, we describe interlinkages between these pathophysiological mechanisms as well as “vicious cycles” involving cytokines and inflammation that may contribute to explain the chronic nature of these illnesses. This paper summarizes and expands on our previous publications about the relevance of findings from critical illness for ME/CFS. New knowledge on diagnostics, prognostics and treatment strategies could be gained through active collaboration between critical illness and ME/CFS researchers, which could lead to improved outcomes for both conditions.

Keywords: post-viral fatigue, hypoperfusion, endotheliopathy, gut permeability, endotoxemia, pituitary, non-thyroidal illness syndrome, myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS)

INTRODUCTION

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating illness that affects millions of people worldwide (an estimated 800,000 to 2.5 million in the USA) (1, 2). Impaired function, post-exertional malaise, and unrefreshing sleep are core symptoms (1, 3, 4). At least one-quarter of ME/CFS patients are house- or bedbound at some point in their lives (1); the illness can be completely incapacitating (5). The etiology of the illness is unclear (6, 7) and peri-onset events include infection-related episodes, stressful incidents, and exposure to environmental toxins (8).

Critical illness refers to the physiological response to virtually any severe injury or infection, such as head injury, burns, cardiac surgery, SARS-CoV-2 infection and heat stroke (9). Researchers make a distinction between the acute phase of critical illness—in the first hours or days following severe trauma or infection; and the chronic or prolonged phase—in the case of patients who survive the acute phase but for unknown reasons do not start recovering and continue to require intensive care (10–13). Regardless of the initial injury or infection, these “chronic Intensive Care Unit (ICU) patients” experience profound muscular weakness, cognitive impairment, pain, vulnerability to
infection, etc. (9, 11, 14). The treatment of prolonged critical illness is incomplete and remains an active area of research. Moreover, cognitive and/or physical disability can last for months or even years after treatment in ICUs (i.e., post intensive care syndrome, PICS) for as of yet unexplained reasons (15–17).

Drawing on findings from critical illness, we here propose an initial explanation for how ME/CFS could originate and perpetuate. Specifically, we combine emerging findings regarding (a) hypoperfusion and endotheliopathy, and (b) intestinal injury in these illnesses with our previously published hypothesis about the role of (c) pituitary suppression, and (d) low thyroid hormone function associated with redox imbalance in ME/CFS. Moreover, we describe interlinkages between these pathophysiological mechanisms as well as “vicious cycles” involving cytokines and inflammation that may contribute to explain the chronic nature of these illnesses. This explanation summarizes and expands on our previous publications about the relevance of findings from critical illness for ME/CFS (18–20) and builds on the work by Nacul et al. (21). The general lack of large high-quality ME/CFS studies (a reflection of the lack of funding in this field) poses a challenge for the assessment of overlaps between the two conditions.

PATHOPHYSIOLOGICAL MECHANISMS

In the following sections we describe four central pathophysiological mechanisms in critical illness, including their relationship to inflammation. We also provide initial arguments for suggesting that similar mechanisms may underlie ME/CFS. Readers are referred to our prior publications for additional details about these mechanisms in critical illness (including heart stroke) and possible lessons for understanding ME/CFS (18–20).

Hypoperfusion and Endotheliopathy

It has long been suggested that inadequate oxygen circulation is central to critical illness (22). Specifically, the redistribution of blood away from the splanchnic area to critical tissues is considered an adaptive androgenic response to physiological stress (23, 24). However, the resulting ischemia / reperfusion (I/R) can contribute to tissue injury driving sepsis and multi-organ dysfunction (25, 26). The relative importance of reduced blood flow, vasoconstriction (27), capillary flow disturbances (28) and impaired cellular oxygen utilization (29, 30) in driving critical illness continues to be debated.

Endothelial dysfunction appears to occur in parallel with circulation disturbances during critical illness. Probable drivers of distortions in the structure and function of endothelial lining (i.e., glyocalyx) are cytokines (31), inflammation, exposure to oxidative stress (28, 32) and/or sympatho-adrenal hyperactivation (33). Crucially, endothelial dysfunction during critical illness has been associated with altered cerebral blood flow (34, 35) and increased blood–brain barrier (BBB) permeability resulting in long-term cognitive impairment (36, 37). A leaky BBB could also contribute to increased intracranial pressure (38, 39). Finally, researchers have found that endotheliopathy and coagulation disorder bolster each other via inflammatory pathways (40). Coagulation abnormalities vary in critical illness, but coagulopathy is associated with unfavorable outcomes in prolonged critical illness (i.e., length of ICU stay and mortality) (41).

We propose that similar alterations of the vascular system in response to a physical, infectious and / or emotional stressor (i.e., physiological insult) may also contribute to explain the emergence of ME/CFS. This is consistent with recent hypotheses describing vasoconstriction in muscle and brain as a principal element of ME/CFS (42–46), and findings of cerebral hypoperfusion (47–49) and intracranial hypertension (50) in ME/CFS patients. It is also consistent with studies that have shown that endothelial function is impaired in ME/CFS (51, 52), both in large vessels and in the microcirculation (53, 54)—associated with redox imbalance (51). Finally, it is consistent with a new hypothesis for ME/CFS which suggests that endothelial senescence underpins ME/CFS by disrupting the intestinal barri er and BBBs (55), as well as with suggestions that leakage from dysfunctional blood vessels could explain many of the symptoms in ME/CFS (56).

Intestinal Injury

Critical illness researchers have found profound intestinal alterations within hours following a physiological insult: a dramatic shift in the composition and virulence of intestinal microbes (57–59), an erosion of the mucus barrier, an increase in the permeability of the gut (i.e., “leaky gut”) (60–62), and a disruption in gut motility (63). This intestinal injury is thought to be largely a consequence of local I/R and redox imbalance resulting from splanchnic hypoperfusion (58, 61, 64–67). Indeed, studies in the field of exercise immunology have shown that even relatively low levels of splanchnic hypoperfusion during exercise result in intestinal injury (68).

Critically, this intestinal injury may lead to bacterial translocation from the gut into circulation (i.e., endotoxemia) and/or the formation of toxic gut-derived lymph (57, 60). This in turn can induce pro-inflammatory cytokines and systemic inflammation (69, 70). Moreover, changes in the intestinal microbiome or the mucus barrier may also impact the immune system directly (57). Thus, researchers have long considered the gut “the motor of critical illness” driving sepsis and distant organ dysfunction (71). Some have suggested that a self-perpetuating vicious inflammatory cycle centered around intestinal injury can hinder recovery from critical illness (61, 72).

We propose that the sequence during critical illness—from splanchnic hypoperfusion to hypoxia, redox imbalance, altered gut microbiome, intestinal injury, gut-related endotoxemia,
pro-inflammatory cytokines and systemic inflammatory—may also contribute to explain the emergence of ME/CFS following a physiological insult. Our proposal is in alignment with others’ findings that intestinal injury and resulting inflammation are central to ME/CFS (73–81) and consistent with findings linking the gut microbiome to inflammation (82–85) and to fatigue symptoms in ME/CFS (86). If verified, the existence of a vicious inflammatory cycle centered around intestinal injury could contribute to explain the perpetuation of ME/CFS. Post-exertional malaise—a key symptom of ME/CFS—could be the manifestation of an accentuation in intestinal injury following exertion. Moreover, the translocation of gut microbes or toxin from the intestines to the brain (55) might contribute to explain central nervous system inflammation in ME/CFS (87–89). Finally, leaky gut is also associated with auto-immunity (90, 91)—an important factor in ME/CFS pathology (92–94).

Pituitary Suppression

Almost immediately after a physiological insult, endocrine axes experience profound alterations considered a vital response to severe stress or injury to allow for a shift in energy and resources necessary to recover, endocrine axes essentially normalize within 28 days of illness, in cases of prolonged critical illness the pituitary’s pulsatile secretion of tropic hormones (unexpectedly) remains suppressed.

Why and how this central suppression is maintained in prolonged critical illness continues to be debated. Inflammatory pathways likely play a role irrespective of the nature of the original injury or infection. For example, cytokines increase the abundance and affinity of glucocorticoid receptors (GR) at the level of the hypothalamus / pituitary, thereby enhancing the negative feedback loop of the hypothalamic-pituitary-adrenal (HPA) axis, and consequently suppressing pituitary release of adrenocorticotropic hormone (ACTH) (95, 98). Similarly, cytokines up-regulate deiodinase enzymes in the hypothalamus resulting in higher local levels of the active thyroid hormone (T3), thereby enhancing the hypothalamic-pituitary-thyroid (HPT) axis’ negative feedback loop and consequently suppressing pituitary secretion of thyroid stimulating hormone (TSH) irrespective of circulating thyroid hormone concentrations (99–101). Cytokines may also suppress the release of TSH by the pituitary directly (102, 103) contributing to a virtual complete loss of pulsatile TSH secretion (96).

The loss of pulsatile pituitary secretions has important implications for the autonomic nervous system, metabolism, and the immune system. Without sufficient pulsatile stimulation by ACTH, adrenal glands begin to atrophy (104, 105), compromising patients’ ability to cope with external stressors and permitting excessive inflammatory responses. Erratic rather than pulsatile pituitary production of growth hormone (GH) leads to an imbalance between catabolic and anabolic hormones, resulting in loss of muscle and bone mass, muscle weakness, and changes in glucose and fat metabolism (106–108). Finally, suppression of the HPT axis is associated with tiredness and other hypothyroid-like symptoms (109, 110).

We propose that the sequence during critical illness—from increased release of pituitary hormones during the acute phase to suppression of the pituitary gland’s pulsatile secretion in the prolonged phase—could also contribute to explain the emergence of ME/CFS following a physiological insult. This proposal is consistent with descriptions of ME/CFS as a progression from a hypermetabolic to hypometabolic state (21). It also aligns with a recent hypothesis relating many of the symptoms in severe ME/CFS to impaired pituitary function (111). Further support for this proposal is provided by the many previous ME/CFS studies that have documented dysfunctions in the hypothalamic–pituitary–somatotropic (HPS) axis (112–114), the HPT axis (115–120), and the HPA axis (121–136)—notably associated with inflammation and oxidative & nitrosative stress (O&NS) (137–140). Strikingly, models relating the persistence of a suppressed HPA axis in ME/CFS to a change in central GRs concentrations resemble the explanations provided for pituitary suppression in critical illness (141–146). Moreover, suppression of ACTH release would explain why in a small study ME/CFS patients were found to have 50% smaller adrenals than controls (147), resembling adrenal atrophy in prolonged critical illness. However, the relationship between the pituitary’s pulsatile secretions, physiological alterations and severity of illness—which proved revelatory in understanding prolonged critical illness—remains unexplored in ME/CFS.

Low Thyroid Hormone Function

Peripheral mechanisms involving cytokines lead to the rapid depression of thyroid hormone activity following a severe physiological insult (148–152). This is termed “non-thyroidal illness syndrome” (NTIS), “euthyroid sick syndrome” or “low T3 syndrome” and is thought to be an adaptive response to conserve energy resources during critical illness (152–154). The mechanisms involved include alterations in the half-life of thyroid hormone in circulation (155–157); modifications in the uptake of thyroid hormone by cells (158, 159); down- and up-regulation of deiodinase enzymes that convert the thyroid hormone into active and inactive forms respectively (156, 160); and alterations in sensitivity of cells to thyroid hormones (161–163). These alterations can lead to important tissue-specific depression in thyroid hormone function (164, 165) which is, however, often missed altogether in clinical settings (166) because most of the alterations do not translate into changes in the blood concentrations of thyroid hormones (164, 167, 168). Indeed, the decrease in the ratio of the active form of thyroid hormone (T3) relative to the inactivated thyroid hormone (rT3) (150, 152, 169)—considered the most sensitive marker of NTIS—may be just the “tip of the iceberg” of the depressed thyroid hormone function in target tissues (120, 170).

While NTIS may be beneficial in the acute phase of critical illness, it is increasingly seen as maladaptive and hampering the recovery of patients in the case of prolonged critical illness (96, 101, 152, 169, 171–173). Low thyroid hormone function may hamper the function of organs (170) and the activity of immune cells, including natural killer cells (174–185). Immune dysfunctions might in turn explain other pathologies, such as viral reactivation observed in ICU patients (186–188). Some
critical illness researchers have proposed a model that describes how NTIS is maintained by reciprocal relationships between inflammation (notably pro-inflammatory cytokines), O&NS and reduced thyroid hormone function, forming a “vicious cycle” (101, 173). This model can help to explain the perplexing failure to recover of some critically ill patients in ICUs that survive their initial severe illness or injury.

We propose that low thyroid hormone function could also contribute to explain the emergence of ME/CFS following a physiological insult. An immune-mediated loss of thyroid hormone function in ME/CFS has long been suspected (117). A recent study showed that the thyroid panel of ME/CFS patients resembles that of critical illness patients, including significantly lower ratio of T3 to rT3 hormones (120). Moreover, the other elements for a “vicious cycle” which researchers have suggested perpetuate a hypometabolic and inflammatory state in critical illness are also present in ME/CFS, including inflammation (140, 189), increased O&NS (190–192) and altered cytokine profiles (193, 194).

DISCUSSION

Hypoperfusion and endotheliopathy, intestinal injury, pituitary suppression, and low thyroid hormone function are each central to prolonged critical illness regardless of the nature of the initial severe injury or infection (101, 173, 195, 196). We propose that, similarly, these mechanisms and their reciprocal relationships with inflammation could underlie ME/CFS regardless of the nature of the peri-onset event (i.e., infection, stressful incident, exposure to environmental toxins or other) (Table 1). Moreover, the severity of ME/CFS may be a function of the strength of these mechanisms.

However, each of these pathological mechanisms has largely been studied in isolation and rarely have the linkages between them been explored. Yet, the aggregate of these mechanisms is likely necessary to fully explain the perpetuation of critical illness—and to inform the understanding of ME/CFS (Figure 1). Additional areas for inquiry thus include the following:

Linkages Between Intestinal Injury and Pituitary Suppression

Intestinal injury during critical illness results in decreased secretion of gastrointestinal hormones including ghrelin (63, 197). Decreased stimulation of the pituitary and hypothalamus by ghrelin during prolonged critical illness in turn results in lower secretion of GH by the pituitary (199). Researchers have found that the administration of an artificial ghrelin in chronic ICU patients reactivated the pulsatile secretion of GH by the pituitary and—when done in combination with thyrotropin-releasing hormones (TRH)—had beneficial metabolic effects (96, 108, 198). Similarly, the administration of ghrelin to the I/R rats “inhibited pro-inflammatory cytokine release, reduced neutrophil infiltration, ameliorated intestinal barrier dysfunction, attenuated organ injury, and improved survival” (200). The sequence between intestinal injury, ghrelin secretion and GH release by the pituitary could be particularly relevant for solving ME/CFS given that “several of the main typical symptoms in severe ME/CFS, such as fatigue, myalgia, contractility, delaying muscle recovery and function, exertional malaise, neurocognitive dysfunction, and physical disability may be related to severe GH deficiency” (111).

Linkages Between Pituitary Suppression and Low Thyroid Hormone Function

There are several pathways linking the activity of the pituitary with that of thyroid hormones. Firstly, GH secreted by the pituitary co-regulates the activity of the deiodinase enzyme (D3) responsible for the conversion of thyroid hormones into inactive forms (i.e., rT3 and inactivate forms of T2) (106, 201). Researchers showed that normalization of the GH secretion in prolonged critically ill patients is necessary to inhibit the increase in plasma rT3 concentrations (96, 108, 198). In other words, dampened GH release by the pituitary during prolonged critical illness enables low thyroid hormone function. Secondly, the lack of stimulation of the adrenals by ACTH could (by causing an atrophy of adrenals) create the condition necessary for persistent inflammation which depresses the activity of thyroid hormones during critical illness (148–152). In other words, dampened ACTH release by the pituitary during prolonged critical illness might permit the vicious inflammatory cycles described above. Thirdly, there is evidence that thyroid hormone conversely also stimulates ACTH secretion (202, 203). In summary, the bi-directional relationships between the endocrine axes and thyroid hormone function (in addition to reciprocal relationships with inflammation) could contribute to explain the persistence of chronic ICU and ME/CFS.

Linkages Between Low Thyroid Hormone Function and Endothelial Function

Upon binding to specific receptors on endothelial cells, thyroid hormones (T3 and T4) activate the endothelial nitric oxide synthase (eNOS) responsible for nitric oxide (NO) production (204), which in turn impacts vasodilation and inflammation (205–207). A further line of inquiry may thus be the role of thyroid hormone function in endotheliopathy in ME/CFS, including as it relates to the new finding that plasma from ME/CFS patients inhibits eNOS and NO production in endothelial cells (208). Relatedly, critical illness researchers have found that serum from patients with NTIS inhibits the uptake of thyroid hormone (209, 210); the mechanisms remain unresolved (165).

Linkages to Mitochondrial Function

The impaired perfusion, redox imbalance, lower thyroid hormone function and inflammation appear to collectively affect mitochondrial activity in critical illness (via inhibition, damage, and/or decreased turnover of new mitochondrial protein) (30, 211–213). Mitochondrial activity may be similarly affected in ME/CFS (190). Some have suggested that this down-regulation of mitochondrial activity (and oxygen utilization) in critical illness may be an adaptive form of “hibernation” to protect cells from death pathways (30, 213). This suggestion echoes the hypothesis...
TABLE 1 | Central pathophysiological mechanisms in prolonged critical illness, probable drivers and implications, and initial evidence suggesting similar mechanisms in ME/CFS.

Pathophysiological mechanisms	In prolonged critical illness (Probable drivers and implications)	In ME/CFS (Initial evidence)
Hypoperfusion	Drivers: • Redistribution of blood away from the splanchnic area to critical tissues (23, 24) • Reduced blood flow, vasoconstriction (27) • Capillary flow disturbances (28) • Additional: impaired cellular oxygen utilization (29, 30) Implications: • Ischemia / reperfusion (I/R) • Tissue injury driving sepsis and multi-organ dysfunction (25, 26)	Initial evidence • Vasoconstriction in muscle and brain (42–45) • Cerebral hypoperfusion (47–49) • Intracranial hypertension (53)
Endotheliopathy	Drivers: • Cytokines (31), Inflammation, exposure to oxidative stress (28, 32) • Sympatho-adrenal hyperactivation (33) Implications: • Altered cerebral blood flow (34, 35) • Increased blood–brain barrier (BBB) permeability (36, 37) • Increased intracranial pressure (38, 39), • (variable) Coagulation disorder (40)	Initial evidence • Impaired endothelial function (51, 52), in large vessels and microcirculation (53, 54)—associated with redox imbalance (51) • Endothelial senescence disrupting the intestinal barriers and BBVs (55) • Redox imbalance
Intestinal injury	Drivers: • Local I/R and redox imbalance resulting from splanchnic hypoperfusion (58, 61, 64–67) • Disruption in gut motility (63) • Shift in the composition and virulence of intestinal microbes (57–59) Implications: • Erosion of the mucus barrier, increase in the permeability of the gut (i.e., “leaky gut”) (60–62) • Bacterial translocation from the gut into circulation (i.e., endotoxemia) and/or the formation of toxic gut-derived lymph (57, 60) • Pro-inflammatory cytokines and systemic inflammation (69, 70) • Direct impacts on the immune system (67) • Vicious inflammatory cycle centered around intestinal injury (61, 72) • Decreased secretion of gastrointestinal hormones including ghrelin (63, 197) impacting pituitary activity	Initial evidence • Intestinal injury and resulting inflammation (73–81) • Altered gut microbiome linked to inflammation (82–85). • Lack of beneficial gut bacteria linked to fatigue symptoms (86) • Endothelial senescence disrupting the intestinal barriers (55) • Auto-immunity (92–94)
Suppression of pulsatile pituitary function	Drivers: • Cytokines acting on abundance and affinity of glucocorticoid receptors (GR) at central level (85, 86) • Cytokines affecting deiodinase enzymes in the hypothalamus (99–101) • Direct action of cytokines on TSH release by the pituitary directly (102, 103) Implications • Loss of ACTH pulsatility: atrophy of adrenal glands (104, 105) compromising patients’ ability to cope with external stressors and permitting excessive inflammatory responses • Loss of GH pulsatility: imbalance between catabolic and anabolic hormones, resulting in loss of muscle and bone mass, muscle weakness, and changes in glucose and fat metabolism (106–108). Alterations in deiodinase enzyme (D3) activity enabling low thyroid hormone function (96, 108, 198) • Loss of TSH pulsatility (109, 110)	Initial evidence • Progression from a hypermetabolic to hypometabolic state (21) • Impaired pituitary function (hypothesis) (111) • Dysfunctions in HPS axis (112–114), HPT axis (115–120) and HPA axis (121–138) – associated with inflammation O&NS (137–140) • Changes in central GRs concentrations (models) (141–146) • Smaller adrenals (147)
that ME/CFS is a form of “dauer” or “cell danger response” (214–216). Lower mitochondrial activity in turn affects the immune system and the gut endothelial “such that the host’s immune response and physical barriers to infection are simultaneously compromised” (29).

Relevance of Critical Illness Treatment Trials for ME/CFS

Although prolonged critical illness remains unresolved, early treatment trials—such as the reactivation of the pituitary, or interruption of the vicious inflammatory cycles centered around
either gut injury or low thyroid hormone function—may provide therapeutic avenues for ME/CFS (19). Longitudinal studies of (spontaneous) recovery from critical illness may also give clues about prerequisites for recovery from ME/CFS. Researchers have, for example, found that “supranormal TSH precedes onset of recovery” from prolonged critical illness (96) and that metabolic rate rises > 50% above normal in the recovery phase (213).

Commonality With Other Illnesses

Researchers have suggested commonality in the illnesses induced by physical, infectious, and / or emotional stressors (132, 217). These include heat stroke, fibromyalgia, ME/CFS, prolonged critical illness, PICS, cancer-related fatigue, post-viral fatigue, post-acute COVID-19 syndrome (PACS) and long-COVID. Specifically, it is necessary to explore whether the pathological mechanisms described above also underlie long COVID—a disease which resembles ME/CFS (218–228) and can arise even after mild COVID-19 cases.

CONCLUSION

Decades of research in the field of critical illness medicine have demonstrated that in response to the stress of severe infection or injury, the vascular system, intestines, endocrine axes and thyroid hormone function experience profound alterations. Self-reinforcing interlinkages between these pathophysiological mechanisms as well as “vicious cycles” involving cytokines and inflammation may perpetuate illness irrespective of the initial severe infection or injury. Without excluding possible predisposing genetic or environmental factors, we propose that the pathological mechanisms—and the interlinkages between them—that prevent recovery of some critically ill patients may also underlie ME/CFS. This initial proposal is in line with and complements several existing hypotheses of ME/CFS pathogenesis. If this hypothesis is validated, past treatment trials for critical illness may provide avenues for a cure for ME/CFS. Certainly, given the similarities described above, active collaboration between critical illness and ME/CFS researchers could lead to improved understanding of not only both conditions, but also PICS, long-COVID, PACS, and fibromyalgia.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/supplementary material, further inquiries can be directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

DS wrote the first draft of the manuscript. All authors contributed to manuscript revision, read, and approved the submitted version.

FUNDING

The Open Medicine Foundation (JB) is acknowledged for support.

REFERENCES

1. Institute of Medicine. Beyond Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Redefining an Illness. Washington, DC: The National Academies Press (2015).
2. Jason LA, Mirin AA.更新 the National Academy of Medicine ME/CFS prevalence and economic impact figures to account for population growth and inflation. Fatigue Biomed Health Behav. (2021) 9:9–13. doi: 10.1080/21641462.2021.1878716
3. Open Medicine Foundation. Symptoms of ME/CFS. (2020). Available online at: https://www.omf.ngo/symptoms-mecfs (accessed March 27, 2021).
4. Nacul L, Authier FJ, Scheibenbogen C, Lorusso L, Helland IB, Martin JA, et al. European Network on Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (EUROMENE): expert consensus on the diagnosis, service provision, and care of people with ME/CFS in Europe. Medicina. (2021) 57:510. doi: 10.3390/medicina57050510
5. Dafoe W. Extremely severe ME/CFSra personal account. Healthcare. (2021) 9:504. doi: 10.3390/healthcare9050504
6. Komaroff AL. Advances in understanding the pathophysiology of chronic fatigue syndrome. JAMA. (2019) 322:499–500. doi: 10.1001/jama.2019.8312
7. Komaroff AL. Myalgic encephalomyelitis/chronic fatigue syndrome: when suffering is multiplied. Healthcare. (2021) 9:919. doi: 10.3390/healthcare9070919
8. Cui L, Valencia IJ, Garvert DW, Montoya JG. Onset patterns and course of myalgic encephalomyelitis/chronic fatigue syndrome. Front Pediatr. (2019) 7:12. doi: 10.3389/fped.2019.00012
9. Loss SH, Nunes DSL, Franzosi OS, Salazar GS, Teixeira C, Vieira SRR. Chronic critical illness: are we saving patients or creating victims? Rev Bras Ter Intensiva. (2017) 29:87–90. doi: 10.5935/0103-307X.20170013
10. Van den Berghe G. Novel insights into the neuroendocrinology of critical illness. Eur J Endocrinol. (2000) 143:1–13. doi: 10.1530/eje.0.1430001
11. Nelson JE, Cox CE, Hope AA, Carson SS. Chronic critical illness. Am J Respir Crit Care Med. (2010) 182:446–44610espir C1164/rccm.201002-0210CI
12. Van den Berghe GH. Acute and prolonged critical illness are two distinct neuroendocrine paradigms. Verh K Acad Geneesk Bels. (1998) 60:487–518; discussion —20.
13. Vanhorebeek I, Van den Berghe G. The neuroendocrine response to critical illness is a dynamic process. Crit Care Clin. (2006) 22:1–15, v. doi: 10.1016/j.ccc.2005.09.004
14. Vanhorebeek I, Latronico N, Van den Berghe G. ICU-acquired weakness. Intensive Care Med. (2020) 46:637–53. doi: 10.1007/s00134-020-05944-4
15. Van Eerde N, Van Dyck L, Vanhorebeek I, Van den Berghe G. Endocrinopathy of the Critically Ill. In: Preiser J-C, Herridge M, Azoulay E, editors. Post-Intensive Care Syndrome. Cham: Springer International Publishing (2020). p. 125–43.
16. Rawal G, Yadav S, Kumar R. Post-intensive care syndrome: an overview. J Transl Int Med. (2017) 5:90–2. doi: 10.1515/jtim-2016-0016
17. Smith S, Rahman O. Post Intensive Care Syndrome. Treasure Island, FL: StatPearls Publishing (2020).
18. Stanculescu D, Larsson L, Bergquist J. Hypothetical mechanisms that prevent recovery in prolonged ICU patients also underlie Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Front Med. (2021) 8:628029. doi: 10.3389/fmed.2021.628029
19. Stanculescu D, Larsson L, Bergquist J. Theory: treatments for prolonged ICU patients may provide new therapeutic avenues for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Front Med. (2021) 8:672370. doi: 10.3389/fmed.2021.1672370
Stanculescu and Bergquist

20. Stanculescu D, Sepulveda N, Lim CL, Bergquist J. Lessons from heat stroke for understanding Myalgic Encephalomyelitis / Chronic Fatigue Syndrome. *Front. Neurol.* (2021) 12:789784. doi: 10.3389/fneur.2021.789784

21. Nacul L, O’Boyle S, Palla L, Nacul FE, Mudie K, Kingsdon CC, et al. How Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) progresses: the natural history of ME/CFS. *Front. Neurol.* (2020) 11:826. doi: 10.3389/fneur.2020.00826

22. Broder G, Weil MH. Excess lactate: an index of reversibility of shock in human patients. *Science* (1964) 143:1457–9. doi: 10.1126/science.143.3613.1457

23. Halter JB, Pflug AE, Porte D. Jr. Mechanism of plasma catecholamine release in sepsis and the multiple organ dysfunction syndrome. *Am J Gastroenterol.* (2001) 15:139–44. doi: 10.1111/j.1572-0241.2001.tb04622.x

24. Zang D, Li H, Li Y, Qu L. Gut rest strategy and trophic feeding in the acute phase of critical illness with acute gastrointestinal injury. *Nutr Res Rev.* (2019) 32:176–82. doi: 10.1095/1005442190000227

25. Rock P, Yao Z. Ischemia reperfusion injury, preconditioning and critical illness. *Curr Opin Anaesthesiol.* (2002) 15:139–46. doi: 10.1097/00001503-200204000-00001

26. Schwarte L, Stevens M, Ince C. Splanchnic perfusion and oxygenation in critical illness. *Intensive Care Med.* (2006) 627–40. doi: 10.1007/s00134-004-2857-0

27. Pastores SM, Katz DP, Kvetan V. Splanchnic ischemia and gut mucosal injury in sepsis and the multiple organ dysfunction syndrome. *Am J Gastroenterol.* (1996) 91:1697–6979

28. Ostergaard L, Granfeldt A, Secher N, Tietze A, Iversen NK, Jensen MS, et al. Shock induced endotheliopathy and critical illness. *Acta Anaesthesiol Scand.* (2015) 59:1246–59. doi: 10.1111/aas.12581

29. Crouser ED. Mitochondrial dysfunction in septic shock and multiple organ dysfunction syndrome. *Mitochondrion.* (2004) 4:729–41. doi: 10.1016/j.mito.2004.07.023

30. Singer M. The role of mitochondrial dysfunction in sepsis-induced multi-organ failure. *Virology.* (2014) 5:66–72. doi: 10.4161/viru.26907

31. Kang S, Kishimoto T. Intercalary between interleukin-6 signaling and the vascular endothelium in cytokine storms. *Exp Mol Med.* (2021) 53:1116–23. doi: 10.1038/s41276-021-00649-0

32. Cerny V, Astapenko D, Brettner F, Benes J, Hyspler R, Lehmans C, et al. Targeting the endothelial glyocalyx in acute critical illness as a challenge for clinical and laboratory medicine. *Crit Rev Clin Lab Sci.* (2017) 54:343–57. doi: 10.1080/08939673.2017.1379943

33. Johansson PJ, Stensballe J, Ostrowski SR. Shock induced endotheliopathy (SHINE) in acute critical illness - a unifying pathophysiologic mechanism. *Circ Res.* (2017) 21:25. doi: 10.1161/01.res.101.01605-5

34. Messare M, Mahmoud O, McIntyre CW, Ellis CG. Cerebral blood flow deviations in critically ill patients: potential insult contributing to ischemic and hyperemic injury. *Front. Med.* (2020) 7:615318. doi: 10.3389/fmed.2020.615318

35. Bowton DL, Bertels NH, Prough DS, Stump DA. Cerebral blood flow is reduced in patients with sepsis syndrome. *Crit Care Med.* (1989) 17:399–399894eroMed1097/00003246-198905000-00004

36. Hughes CG, Patel MB, Brummel NE, Thompson JL, McNeil McG, et al. Cerebral blood flow is reduced in ME/CFS patients. *J Neurol.* (2021) 21:25. doi: 10.1007/s00415-021-02833-2

37. Hughes CG, Morandi A, Girard TD, Riedel B, Thompson JL, Shintani K, et al. Reduced endothelial function in Myalgic Encephalomyelitis/chronic fatigue syndrome. *Eur Heart Fail.* (2020) 22:1064–71. doi: 10.1002/ehf2.12633

38. Newton DJ, Kennedy G, Chan KK, Lang CC, Belch JJ, Smerdon JA. Orthostatic symptoms and reductions in cerebral blood flow in Long-Haul COVID-19 patients: similarities with myalgic encephalomyelitis/chronic fatigue syndrome. *Medicina.* (2021) 58:28. doi: 10.3390/medicina58010028

39. van Campen C, Visser FC. Psychogenic pseudosyncope: real or imaginary? Results from a case-control study in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) patients. *Medicina.* (2022) 58:98. doi: 10.3390/medicina58010098

40. van Campen CMC, Verheugt FWA, Rowe PC, Visser FC. Cerebral blood flow is reduced in ME/CFS during head-up tilt testing even in the absence of hypotension or tachycardia: A quantitative, controlled study using Doppler echography. *Clinical Neuropsychiatry Pract.* (2020) 5:50–8. doi: 10.1016/j.cnpp.2020.01.003

41. Bragee B, Michos A, Drum B, Fahlgren M, Szkulkin R, Bertulson BC. Signs of intracranial hypertension, hypermobility, and craniofacial obstructions in patients with myalgic encephalomyelitis/chronic fatigue syndrome. *Front Neurol.* (2020) 11:828. doi: 10.3389/fneur.2020.00828

42. Blauenstein J, Bertinat R, Leon LE, Riederer M, Sepulveda N, Westermeier F. Altered endothelial dysfunction-related mls in plasma from ME/CFS patients. *Sci Rep.* (2021) 11:10604. doi: 10.1038/s41598-021-89834-9

43. Scherbakov N, Siklarski M, Hartwig J, Sotzny F, Lorenz S, Meyer A, et al. Peripheral endothelial dysfunction in myalgic encephalomyelitis/chronic fatigue syndrome. *Eur Heart Fail.* (2020) 7:1064–71. doi: 10.1002/ehf2.12633

44. Newton DJ, Kennedy G, Chan KK, Lang CC, Belch JJ, Khan F. Large and small artery endothelial dysfunction in chronic fatigue syndrome. *Int J Cardiol.* (2021) 15:642–710. doi: 10.3389/fmed.2021.642710

45. Sfera A, Osorio C, Zapata Martin Del Campo CM, Pereida S, Maurer S, Maldonado JC, et al. Endothelial senescence and chronic fatigue syndrome, a COVID-19 based hypothesis. *Front Cell Neurosci.* (2021) 15:673217. doi: 10.3389/fncel.2021.673217

46. Alverdy JC, Krezalek MA. Collapse of the Microbiome, Emergence of the Pathobiome, and the Immunopathology of Sepsis. *J Transl Med.* (2021) 19:471. doi: 10.1186/s12967-021-03143-3

47. Alverdy JC, Krezalek MA. Collapse of the Microbiome, Emergence of the Pathobiome, and the Immunopathology of Sepsis. *J Transl Med.* (2021) 19:471. doi: 10.1186/s12967-021-03143-3

48. Alverdy JC, Krezalek MA. Collapse of the Microbiome, Emergence of the Pathobiome, and the Immunopathology of Sepsis. *J Transl Med.* (2021) 19:471. doi: 10.1186/s12967-021-03143-3
Ojima M, Motooka D, Shimizu K, Gotoh K, Shintani A, Yoshiya K, et al. Metagenomic analysis reveals dynamic changes of whole gut microbiota in the acute phase of intensive care unit patients. *Dig Dis Sci.* (2016) 61:1628–34. doi: 10.1007/s10620-015-4011-3

Mittal R, Coopersmith CM. Redefining the gut as the motor of critical illness. *Trends Mol Med.* (2014) 20:214–23. doi: 10.1016/j.tree.2013.08.004

Sertaridou E, Papaioannou V, Kolios G, Pneumatikos I. Gut failure in critical care: old school versus new school. *Ann Gastroenterol.* (2015) 28:309–22.

Doig CJ, Sutherland LR, Sandham JD, Fick GH, Verhoef M, Meddings JB. Increased intestinal permeability is associated with the development of multiple organ dysfunction syndrome in critically ill ICU patients. *Am J Respir Crit Care Med.* (1998) 158:444–51. doi: 10.1164/ajccrc.198.2.9710092

Martinez EE, Fasano A, Mehta NM. Gastrointestinal function in critical illness—a complex interplay between the nervous and enteroinnervation systems. *Pediatr Res.* (2020) 3:26. doi: 10.21037/pm-20-74

Bischoff SC, Barbara G, Buurman W, Ockhuizen T, Schulze JD, Serino M, et al. Exercise-induced splanchnic hypoperfusion results in gut dysfunction in healthy men. *PloS ONE.* (2011) 6:e22366. doi: 10.1371/journal.pone.0022366

Fink MP, Delude RL. Endpoint barrier dysfunction: a unifying theme to explain the pathogenesis of multiple organ dysfunction at the cellular level. *Crit Care Clin.* (2005) 21:177–96. doi: 10.1016/j.ccc.2005.01.005

Holland J, Carey M, Hughes N, Sweeney K, Byrne PJ, Healy M, et al. Prospective study of intraoperative splanchnic hypoperfusion, increased intestinal permeability, and postoperative organ failure. *Surgery.* (2005) 137:396–400. doi: 10.1016/j.surg.2005.03.038

Meaks J, Marshall J. Multi-organ-failure syndrome. The “motor” of MOF. *Arch Surg.* (1986) 121:196–208. doi: 10.1001/archsurg.1986.01400020082010

Deitch EA. Gut-origin sepsis: evolution of a concept. *Surgery.* (2012) 10:350–6. doi: 10.1016/j.surge.2012.03.003

Maes M, Berk M, Galecki P, Maes M. The emerging role of autoimmunity and excessive acute phase response in multiple organ dysfunction syndrome in critically ill ICU patients. *Crit Care Med.* (2016) 49:741–56. doi: 10.1097/CCM.0000000000001887

Morris G, Berk M, Carvalho AF, Caso JR, Sanz Y, Maes M. The role of microbiota and intestinal permeability in the pathophysiology of autoimmunity and neuroinflammation processes with an emphasis on inflammatory bowel disease type 1 diabetes and chronic fatigue syndrome. *Curr Pharm Des.* (2016) 22:6058–75. doi: 10.2174/138161282266160914182282

Morris G, Maes M, Berk M, Puri BK. Myalgic encephalomyelitis or chronic fatigue syndrome: how could the illness develop? *Metab Brain Dis.* (2019) 34:385–413. doi: 10.1007/s11011-019-00388-6

Maes M, Mihaylova I, Leunis JC. Increased serum IgA and IgM against LPS of enterobacteria in chronic fatigue syndrome (CFS): indication for the involvement of gram-negative enterobacteria in the etiology of CFS and for the presence of an increased gut-intestinal permeability. *J Affect Disord.* (2007) 99:237–40. doi: 10.1016/j.jad.2006.08.021

Zhang ZT, Du XM, Ma XJ, Zong Y, Chen JK Yu CL, et al. Activation of the NLRP3 inflammasome in lipopolysaccharide-induced mouse fatise and its relevance to chronic fatigue syndrome. *J Neuroinflammation.* (2016) 13:71. doi: 10.1186/s12974-016-0359-1

Maes M, Leunis JC. Normalization of leaky gut in chronic fatigue syndrome (CFS) is accompanied by a clinical improvement: effects of age, duration of illness and the translocation of LPS from gram-negative bacteria. *Neuro Endocrinol Lett.* (2008) 29:902–10.
137. Morris G, Anderson G, Maes M. Hypothalamic-pituitary-adrenal hypofunction in Myalgic Encephalomyelitis (ME)/Chronic Fatigue Syndrome (CFS) as a consequence of activated immune-inflammatory and oxidative and nitrosative pathways. Mol Neurobiol. (2017) 54:6806–19. doi: 10.1007/s12035-016-1170-z.

138. Hatzigalis E, Adamaki M, Tsilioni I, Dimitriadis G, Theocharides TC. Myalgic encephalomyelitis/chronic fatigue syndrome-metabolic disease or disturbed homeostasis due to focal inflammation in the hypothalamus? J Pharmacol Exp Ther. (2018) 367:155–67. doi: 10.1124/jpet.118.250845.

139. Jason LA, Porter N, Herrington J, Sorenson M, Kubow S. Kindling and oxidative stress as contributors to myalgic encephalomyelitits/chronic fatigue syndrome. J Behav Neurosci. (2009) 7:1–17.

140. Morris G, Maes M. Oxidative and nitrosative stress and immune-inflammatory pathways in patients with Myalgic Encephalomyelitis (ME)/Chronic Fatigue Syndrome (CFS). Curr Neuropharmacol. (2014) 12:168–85. doi: 10.2174/1570159X11661120224653.

141. Gupta S, Aslakson E, Gurbaxani BM, Vernon SD. Inclusion of the glucoconocitid receptor in a hypothalamic pituitary adrenal axis model reveals bistability. Theor Biol Med Model. (2007) 4:8. doi: 10.1186/1472-6788-4-8.

142. Ben-Zvi A, Vernon SD, Broderick G. Model-based therapeutic correction of hypothalamic-pituitary-adrenal axis dysfunction. PLoS Comput Biol. (2009) 5:e1000273. doi: 10.1371/journal.pcbi.1000273.

143. Sedghamiz H, Morris M, Craddock TJ, Whitley D, Broderick G. High-fidelity discrete modeling of the HPA axis: a study of regulatory plasticity in biology. BMC Syst Biol. (2018) 12:76. doi: 10.1186/s12918-018-0599-1.

144. Hosseinichimeh N, Rahmandad H, Wittenborn AK. Modeling the hypothalamus-pituitary-adrenal axis: A review and extension. Math Biosci. (2015) 268:52–65. doi: 10.1016/j.mbs.2015.08.004.

145. Craddock TJ, Del Rosario RR, Rice M, Zysman JP, Fletcher MA, Klimas NG, et al. Achieving remission in gulf war illness: a simulation-based approach to treatment design. PLoS ONE. (2015) 10:e0132774. doi: 10.1371/journal.pone.0132774.

146. Morris MC, Cooney KE, Sedghamiz H, Abreu M, Collado F, Balbin EG, et al. Leveraging prior knowledge of endocrine immune regulation in the therapeutically relevant phenomenology of women with chronic fatigue syndrome. Clin Ther. (2019) 41:656–74 e4. doi: 10.1016/j.clinthera.2019.03.002.

147. Scott LV, Teh J, Reznik R, Martin A, Sohaib A, Dinan TG. Small adrenal glands in chronic fatigue syndrome: a preliminary computer tomography study. Psychoneuroendocrinology. (1999) 24:759–68. doi: 10.1016/S0306-4530(99)00028-1.

148. Boelen A, Platvoet-Ter Schiphorst MC, Wiersinga WM. Association between serum interleukin-6 and serum 3,5,3'-triiodothyronine in non-thyroidal illness. J Clin Endocrinol Metab. (1993) 77:1695–9. doi: 10.1210/jcem.77.6.8263160.

149. Davies PH, Black EG, Sheppard MC, Franklyn JA. Relation between serum interleukin-6 and thyroid hormone concentrations in 270 hospital in-patients with non-thyroidal illness. Clin Endocrinol. (1996) 44:199–205. doi: 10.1111/j.1365-2265.1996.tb04889.x.

150. Warner MH, Beckett GJ. Mechanisms behind the non-thyroidal illness syndrome: an update. J Endocrinol. (2010) 205:1–13. doi: 10.1677/JOE-09-0412.

151. Wajner SM, Goemmen JM, Bueno AL, Larsen PR, Maia AL. IL-6 promotes nonthyroidal illness syndrome by blocking thyroxine activation while promoting thyroid hormone inactivation in human cells. J Clin Invest. (2011) 121:1833–45. doi: 10.1172/JCI44678.

152. Wajner SM, Maia AL. New insights toward the acute non-thyroidal illness syndrome. Front Endocrinol. (2012) 3:8. doi: 10.3389/fendo.2012.00008.

153. Carter IN, Eastman CJ, Corcoran JM, Lazarus L. Effect of severe, chronic illness on thyroid function. Lancet. (1974) 2:971–4. doi: 10.1016/S0140-6736(74)90704-7.

154. Van den Berghe G. Novel insights in the HPA-axis during critical illness. Acta Clin Belg. (2014) 69:497–506. doi: 10.1179/229533714Y disclosures/0000000093.

155. Bartalena L, Farsetti A, Fink IL, Robbins J. Effects of interleukin-6 on the expression of thyroid hormone-binding protein genes in cultured human hepatoblastoma-derived (Hep G2) cells. Mol Endocrinol. (1992) 6:935–42. doi: 10.1210/mend.6.6.1320358.
modulation of lymphocyte activity through the protein kinase C signaling pathway. J Endocrinol. (2006) 189:45–55. doi: 10.1677/jo.
c1.06137

177. Klein JR. The immune system as a regulator of thyroid hormone activity. Exp
Biol Med. (2008) 231:229–36. doi: 10.17711/1537-0262.100301

178. Hans VH, Lenzlinger PM, Joller-Jemelka HJ, Morganti-Kossmann MC, Kossmann T. Low T3 syndrome in head-injured patients is associated with prolonged suppression of markers of cell-mediated immune response. Eur J Trauma. (2005) 31:359–68. doi: 10.1007/s00068-00
5-2068-y

179. Hodkinson CF, Simpson EE, Beattie JH, O’Connor JM, Campbell DJ, Strain JJ, et al. Preliminary evidence of immune function modulation by thyroid hormones in healthy men and women aged 55-70 years. J Endocrinol. (2009) 202:55–63. doi: 10.1677/JOE-08-0488

180. Straub RH, Cutolo M, Buttigereit F, Pongratz G. Energy regulation and neuroendocrine-immune control in chronic inflammatory diseases. J Intern Med. (2010) 267:543–60. doi: 10.1111/j.1365-2796.2010.02218.x

181. Jara EL, Munoz-Durango N, Llanos C, Fardella C, Gonzalez PA, al. Reactivation of multiple viruses in patients with sepsis. PLoS ONE. (2014) 9:e87922. doi: 10.1371/journal.pone.0087922

182. Textoris J, Mallet F. Immunosuppression and herpes viral reactivation in intensive care unit patients: one size does not fit all. Crit Care. (2017) 21:230. doi: 10.1186/s13054-017-1803-1

183. Coskun O, Yazici E, Sahiner F, Karaaş K, Kılıç S, Tekin M, et al. Cytomegalovirus and Epstein–Barr virus reactivation in the intensive care unit. Md Klin Intensivmed Notfallmed. (2017) 112:239–45. doi: 10.1007/s00063-016-0198-0

184. Walton AH, Munzer JT, Rasche D, Boomer JS, Sato B, Brownstein BH, et al. Thyroid hormones interaction with immune response, inflammation and non-thyroidal illness syndrome. Front Cell Dev Biol. (2020) 8:614030. doi: 10.3389/fcell.2020.614030

185. Pall M. The NO/ONOO- cycle mechanism as the cause of chronic fatigue syndrome/myalgia encephalomyelitis. In: Svoboda E, Zelenjcik K, editors. Chronic Fatigue Syndrome: Symptoms, Causes and Prevention. Hauppauge, NY: Nova Publishers (2009), p. 27–56

186. Morris G, Maes M. Mitochondrial dysfunctions in myalgic encephalomyelitis/chronic fatigue syndrome explained by activated immuno-inflammatory, oxidative and nitrosative stress pathways. Metab Brain Dis. (2014) 29:19–36. doi: 10.1007/s11011-013-9435-x

187. Armstrong CW, McGregor NR, Lewis DP, Butt HL, Goiter PR. Metabolic profiling reveals anomalous energy metabolism and oxidative stress pathways in chronic fatigue syndrome patients. Metabolomics. (2015) 11:1626–39. doi: 10.1007/s11306-015-0816-5

188. Shungu DC, Weiduschat N, Murrough JW, Mao X, Pillemer S, Dyke JP, et al. Increased ventricular lactate in chronic fatigue syndrome. III Relationships to cortical glutathione and clinical symptoms implicating oxidative stress in disorder pathophysiology. NMR Biomed. (2012) 25:1073–87. doi: 10.1002/nbm.2772

189. Montoya JG, Holmes TH, Anderson JN, Maecker HT, Rosenberg-Hasson Y, Valencia HH, et al. Cytokine signature associated with disease severity in chronic fatigue syndrome patients. Proc Natl Acad Sci USA. (2017) 114:E7150–8. doi: 10.1073/pnas.17105 19114

190. Morris G, Montoya JG, Klimas NG, Levine S, Felsenstein D, Bateman L, et al. Distinct plasma immune signatures in ME/CFS are present early in the course of illness. Sci Adv. (2015) 1:e1400121. doi: 10.1126/sciadv.1400121

191. Langouche L, Van den Berge G. Hypothalamic-pituitary hormones during critical illness: a dynamic neuroendocrine response. Handb Clin Neurol. (2014) 124:115–26. doi: 10.1016/B978-0-444-59602-4.00008-3

192. Boonen E, Van den Berge G. Endocrine responses to critical illness: novel insights and therapeutic implications. J Clin Endocrinol Metab. (2014) 99:1569–82. doi: 10.1210/jc.2013-4115

193. Deane A, Chapman MJ, Fraser RJ, Horowitz M. Bench-to-bedside review: the gut as an endocrine organ in the critically ill. Crit Care. (2010) 14:228. doi: 10.1186/cc9309

194. Hornig M, Montoya JG, Klimas NG, Levine S, Felsenstein D, Bateman L, et al. Distinct plasma immune signatures in ME/CFS are present early in the course of illness. Sci Adv. (2015) 1:e1400121. doi: 10.1126/sciadv.1400121
213. Singer M. Critical illness and flat batteries. *Crit Care*. (2017) 21:309. doi: 10.1186/s13054-017-1913-9

214. Naviaux RK, Naviaux JC Li K, Bright AT, Alaynick WA, Wang L, et al. Metabolic features of chronic fatigue syndrome. *Proc Natl Acad Sci USA*. (2016) 113:E5472–80. doi: 10.1073/pnas.1607571113

215. Naviaux RK. Perspective: Cell danger response Biology—The new science that connects environmental health with mitochondria and the rising tide of chronic illness. *Mitochondrion*. (2020) 51:40–5. doi: 10.1016/j.mito.2019.12.005

216. Naviaux RK. Metabolic features and regulation of the healing cycle-a new model for chronic disease pathogenesis and treatment. *Mitochondrion*. (2019) 46:278–97. doi: 10.1016/j.mito.2018.08.001

217. Arnett SV, Clark IA. Inflammatory fatigue and sickness behaviour - lessons for the diagnosis and management of chronic fatigue syndrome. *J Affect Disord*. (2012) 141:130–42. doi: 10.1016/j.jad.2012.04.004

218. Greenhalgh T, Knight M, A’Court C, Buxton M, Husain I. Management of post-acute covid-19 in primary care. *BMJ*. (2020) 370:m3026. doi: 10.1136/bmj.m3026

219. Dani M, Dirksen A, Taraborrelli P, Torocastro M, Panagopoulos D, Sutton R, et al. Autonomic dysfunction in long COVID: rationale, physiology and management strategies. *Clin Med*. (2020) 21:e63–7. doi: 10.7861/climmed.2020-0896

220. Huang C, Huang L, Wang Y, Li X, Ren L, Gu X, et al. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. *Lancet*. (2021) 397:220–32. doi: 10.1016/S0140-6736(20)33656-8

221. Townsend L, Dyer AH, Jones K, Dunne J, Mooney A, Gaffney F, et al. Persistent fatigue following SARS-CoV-2 infection is common and independent of severity of initial infection. *PLoS ONE*. (2020) 15:e0240784. doi: 10.1371/journal.pone.0240784

222. Komaroff AL, Bateman L. Will COVID-19 lead to myalgic encephalomyelitis/chronic fatigue syndrome? *Front Med*. (2021) 7:606824. doi: 10.3389/fmed.2020.606824

223. Wildwing T, Holt N. The neurological symptoms of COVID-19: a systematic review of open access articles, comparison with other neurological conditions and implications for healthcare services. *Ther Adv Chronic Dis*. (2021) 12. doi: 10.1177/204062320976979

224. Proal AD, VanElzakker MB. Long COVID or post-acute sequelae of COVID-19 (PASC): an overview of biological factors that may contribute to persistent symptoms. *Front Microbiol*. (2021) 12:698169. doi: 10.3389/fmicb.2021.698169

225. Mackay A. A. Paradigm for post-Covid-19 fatigue syndrome analogous to ME/CFS. *Front Neurol*. (2021) 12:701419. doi: 10.3389/fneur.2021.701419

226. Komaroff AL, Lipkin WI. Insights from myalgic encephalomyelitis/chronic fatigue syndrome may help unravel the pathogenesis of postacute COVID-19 syndrome. *Trends Mol Med*. (2021) 27:895–906. doi: 10.1016/j.molmed.2021.06.002

227. Comella PH, Gonzalez-Kozlova E, Kosoy R, Charney AW, Chandrasekar S, et al. A Molecular network approach reveals shared cellular and molecular signatures between chronic fatigue syndrome and other fatiguing illnesses. [Preprint] *medRxiv*. (2021). Available at: https://www.medrxiv.org/content/10.1101/2021.01.29.21250755v1 (accessed February 21, 2021).

228. Paul BD, Lemle MD, Komaroff AL, Snyder SH. Redox imbalance links COVID-19 and myalgic encephalomyelitis/chronic fatigue syndrome. *Proc Natl Acad Sci USA*. (2021) 118:e2024358118. doi: 10.1073/pnas.2024358118

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Stanculescu and Bergquist. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.