Gene bank accessions are necessary for implementing many research and breeding projects. However, a great number of accessions are contaminated or confused. If such accessions are used, the results obtained from these projects are inaccurate and non-reproducible. There are methods that allow almost perfect genotype identification; nevertheless, they are relatively recent and results cannot be compared with the characteristics of the original accessions. Growing resistant cultivars is an environmentally safe and cheap way of disease management and knowledge of diverse resistance genes and their combinations can be used to identify varieties and verify their authenticity and homogeneity. For this purpose, all 172 accessions of the core collection (CC) of the Czech winter barley (Hordeum vulgare) gene bank, originating from 35 countries, were studied. For resistance tests, 51 reference isolates of Blumeria graminis f. sp. Hordei, collected in all nonpolar continents over a period of 63 years and representing the global virulence/avirulence diversity of the pathogen, were used. Only 25 barley accessions were homogeneous (genetically uniform), whereas 147 accessions were heterogeneous due to presence of different genotypes. In total, 17 resistance genes were found singly or in combinations; 76.3% of accessions with identified resistance genes carried alleles at the Mla locus. To purify the CC, progenies of individual plants must be multiplied and authenticity and homogeneity of the seed should be confirmed with resistance tests, and subsequently can be studied with more advanced methods.

Keywords: Blumeria graminis f. sp. Hordei; gene bank; Hordeum vulgare; pathogen isolates; infection response arrays; resistance gene postulation

1. Introduction

Biological diversity (biodiversity) of living organisms and their conservation is one of the basic preconditions for the development and well-being of mankind. Plants have a key role because they fix solar energy in their tissue and create the conditions necessary for other organisms, including humans. Cultivation of plant species, their selection and subsequently their breeding, resulted in a high diversity of crops represented by landraces, cultivars and other genotypes. These varieties, together with related wild species, comprise part of the available genetic resources. At present, many of these are maintained in gene banks, but there are numerous duplications of varieties [1]. Therefore, model collections—so-called core collections (CCs), which provide as much genetic diversity as possible in a limited number of genotypes—have been created [2–4]. Genetic resources are needed for improving crops, including their genetic resistance, which plays an essential role in disease management.

The genus barley (Hordeum) belongs to the grass family (Poaceae) and includes more than 30 species [5]. Hordeum vulgare L. is divided into two subspecies, wild (subsp. spontaneum) and cultivated barley (subsp. vulgare), an important cereal. Powdery mildew caused by the fungus Blumeria graminis f. sp. Hordei Marchal (Bgh) is a worldwide problem and one of the most frequent diseases of barley [6,7].

Department of Integrated Plant Protection, Agrotest Fyto Ltd., Havlíčkova 2787, CZ-767 01 Kroměříž, Czech Republic; dreiseitl@vukrom.cz; Tel.: +420-573-317-139

Abstract: Gene bank accessions are necessary for implementing many research and breeding projects. However, a great number of accessions are contaminated or confused. If such accessions are used, the results obtained from these projects are inaccurate and non-reproducible. There are methods that allow almost perfect genotype identification; nevertheless, they are relatively recent and results cannot be compared with the characteristics of the original accessions. Growing resistant cultivars is an environmentally safe and cheap way of disease management and knowledge of diverse resistance genes and their combinations can be used to identify varieties and verify their authenticity and homogeneity. For this purpose, all 172 accessions of the core collection (CC) of the Czech winter barley (Hordeum vulgare) gene bank, originating from 35 countries, were studied. For resistance tests, 51 reference isolates of Blumeria graminis f. sp. Hordei, collected in all nonpolar continents over a period of 63 years and representing the global virulence/avirulence diversity of the pathogen, were used. Only 25 barley accessions were homogeneous (genetically uniform), whereas 147 accessions were heterogeneous due to presence of different genotypes. In total, 17 resistance genes were found singly or in combinations; 76.3% of accessions with identified resistance genes carried alleles at the Mla locus. To purify the CC, progenies of individual plants must be multiplied and authenticity and homogeneity of the seed should be confirmed with resistance tests, and subsequently can be studied with more advanced methods.

Keywords: Blumeria graminis f. sp. Hordei; gene bank; Hordeum vulgare; pathogen isolates; infection response arrays; resistance gene postulation

1. Introduction

Biological diversity (biodiversity) of living organisms and their conservation is one of the basic preconditions for the development and well-being of mankind. Plants have a key role because they fix solar energy in their tissue and create the conditions necessary for other organisms, including humans. Cultivation of plant species, their selection and subsequently their breeding, resulted in a high diversity of crops represented by landraces, cultivars and other genotypes. These varieties, together with related wild species, comprise part of the available genetic resources. At present, many of these are maintained in gene banks, but there are numerous duplications of varieties [1]. Therefore, model collections—so-called core collections (CCs), which provide as much genetic diversity as possible in a limited number of genotypes—have been created [2–4]. Genetic resources are needed for improving crops, including their genetic resistance, which plays an essential role in disease management.

The genus barley (Hordeum) belongs to the grass family (Poaceae) and includes more than 30 species [5]. Hordeum vulgare L. is divided into two subspecies, wild (subsp. spontaneum) and cultivated barley (subsp. vulgare), an important cereal. Powdery mildew caused by the fungus Blumeria graminis f. sp. Hordei Marchal (Bgh) is a worldwide problem and one of the most frequent diseases of barley [6,7].
Because of spontaneous mutations, genes of specific resistance against Bgh have occurred randomly in wild barley and barley landraces and have been used for the directed breeding of resistant varieties, first in Germany [8], and subsequently in other, mainly central and northwest European countries [9,10].

The Czech gene bank of winter barley includes about 2200 accessions and 172 of them have been selected for the CC. Cultivation of resistant cultivars is an environmentally safe and cheap way of crop protection and breeding barley resistant to powdery mildew has been traditionally based on use of specific genes. Even old cultivars and landraces can be characterized according to presence or absence of these genes. Changes in gene bank management provided an opportunity to reconsider the current state of conserved varieties. Therefore, the aims of this research were: (i) to test accessions of the Czech winter barley CC with a wide set of Bgh isolates; (ii) to detect seed homo/heterogeneity; and (iii) to postulate specific powdery mildew resistance genes in homogeneous accessions.

2. Materials and Methods

2.1. Plant Material and Pathogen Isolates

All accessions of the CC of the Czech gene bank of winter barley were studied. The varieties originated from 35 countries, 80% of which were from Europe. The most frequent were those from Germany, including the former German Democratic Republic (DDR) (43 accessions), followed by the USA (13), the Czech Republic including the former Czechoslovakia (12), France (11) and the Soviet Union (10 accessions).

For resistance tests, 51 selected reference isolates of Bgh were used, which had been collected in 11 countries in all nonpolar continents over a period of 63 years (1953–2016) and representing the global virulence/avirulence diversity of the pathogen. Their responses on 35 standard barley genotypes, carrying different specific resistance genes, were presented in [11]. Before inoculation, all isolates were checked for their purity and their correct pathogenicity phenotypes were verified on standard barley lines [12]. The isolates were multiplied on leaf segments of susceptible Stirling [13].

2.2. Testing Procedure

About 50 seeds of each accession were sown in two pots (80 mm diameter) filled with a gardening peat substrate and placed in a mildew-proof greenhouse under natural daylight. The primary leaves were excised when the second leaves were emerging and leaf segments 20 mm long were cut from the middle part of healthy fully-expanded leaves. Three segments of each accession were placed on the surface of media (0.8% water agar containing 40 mg L⁻¹ of benzimidazole—a leaf senescence inhibitor) in a 150 mm Petri dish. Leaf segments were placed adjacently to each other along with four segments of Stirling oriented diagonally with their adaxial surfaces facing upward.

For inoculation, a cylindrical metal settling tower of 150 mm diameter and 415 mm in height was used and a dish with leaf segments was placed at the bottom of the tower. Conidia of each isolate, taken from a leaf segment of the susceptible cultivar with fully-developed pathogen colonies, were shaken onto a square piece (40 × 40 mm) of black paper to visually control the amount of inoculum deposited. Then the paper was rolled to form a blowpipe and conidia of the isolate were blown through a side hole of 13 mm diameter in the upper part of the settling tower over the Petri dish at a concentration of ca. 10 conidia mm⁻². The dishes with inoculated leaf segments were incubated at 20 ± 1 °C under artificial light (cool-white fluorescent lamps providing 12 h light at 30 ± 5 µmol m⁻² s⁻¹).

2.3. Evaluation

Seven days after inoculation, infection response (IR = phenotype of accession x isolate interaction) on the middle part of the adaxial side of leaf segments were scored on a scale 0–4, where 0 = no mycelium and sporulation, and 4 = strong mycelial growth and sporulation [14]. IRs 3, 3–4 and 4 were considered susceptible. Each accession was tested with a minimum of two replications. If there were significant differences in IRs between
replicates, additional tests were done. A set of 51 IRs provided an infection response array (IRA) for each accession. Based on the gene-for-gene model [15] the resistance genes in accessions were postulated by comparing the IRAs with previously determined IRAs of standard barley genotypes possessing known resistance genes.

Generally, IRs 0 to 2–3 were considered resistant, but a typical IR of each resistance gene was also taken into account; e.g., Mlra has a typical IR 0, but if IR 2–3 was found without detecting any other resistance gene then it was considered as a susceptible response [16].

3. Results

Of the 172 CC accessions of winter barley, only 25 were characterized by homogeneous IRAs demonstrating the genotypic uniformity of these single-line varieties. Resistance genes were identified in 20 of these accessions, while in five the IRAs did not correspond with the reported resistances and were therefore marked as unknown (u).

Heterogeneous IRAs, which revealed presence of multiple genotypes, were detected in 147 accessions, but in 59 of them the corresponding resistance genes were identified. In 42 of these, the genes were identified by excluding a low proportion of IRs that indicated an admixture with other genotypes. In 17 accessions, their resistances were deduced according to their being composed of two lines based on different homogeneous IRAs within each accession. Thirty-four IRAs obtained in resistance tests of accessions and representing identified specific genes and their combinations are shown in Table 1. In 88 accessions, resistance genes could not be identified due to the high heterogeneity of their IRAs.

A total of 76 accessions, phenotypes of 17 known specific resistance genes were obtained individually (13 genes) or in combinations, and in three accessions (Krakowski, Krusevacki and Opolski 152) no resistance genes were detected. Among the 17 Ml genes, the most frequent—aLo, a8, Ch, h and ra—were found in 25, 19, 12, 12 and 12 accessions, respectively. However, some genes, for example a8, Ch and ra, may also be present in other varieties because their phenotype is masked by resistance genes such as a6, a7, a12, a13 or g that were detected in 15 accessions. Besides the abovementioned three accessions, full susceptibility was found in one of two lines of four accessions. Fifty-eight of the 76 accessions with identified resistances (= 76.3%) carried genes located at the Mla locus (Table 2).
Table 1. Infection response arrays produced by nine *Blumeria graminis* f. sp. *hordei* isolates on 34 barley genotypes and their powdery mildew resistance genes.

No.	Ml Gene(s)	Race I	J-462	EA30	PF512	C-132	3-33	65	GH	54	
1	none	4	4	4	4	4	4	4	4	4	
2	a6	0	4	2	4	4	0	0	0	0	
3	a6, h	0	4	2	4	1–2	0	0	0	0	
4	a6, h, ra	0	4	0–1	4	1–2	0	0	0	0	
5	a6, ra	0	4	0–1	4	4	0	0	0	0	
6	a7	0	0	1–2	4	4	0	0	1–2	1–2	
7	a7, h	0	0	1–2	4	1–2	0	0	1–2	1–2	
8	a8	0	4	4	4	4	4	4	4	4	
9	a8, Dr2, ra	0	4	0–1	4	4	0–1	2	4	4	
10	a8, h	0	4	4	4	1–2	1–2	0	1–2	1–2	
11	a8, h, ra	0	4	0–1	4	1–2	1–2	0–1	1–2	1–2	
12	a8, He2	0	4	4	4	4	4	4	4	2–3	
13	a8, VIR	0	4	4	1	4	4	4	4	4	
14	a12	1	4	4	4	4	1	1	1	1	
15	a13	0	0	0	0	4	0	0	0	0	
16	aLo	0	0	4	4	4	4	4	4	4	
17	aLo, Dr2,	0	0	4	4	4	4	4	4	4	
18	aLo, h	0	0	4	4	1–2	1–2	4	1–2	1–2	
19	aLo, Lu	0	0	4	4	4	4	1–2	1–2	1–2	
20	aLo, Lu, Ru2	0	0	4	2–3	4	4	1–2	1–2	2–3	
21	aLo, VIR	0	0	4	1	4	4	4	4	4	
22	a2	2	4	2	2	4	2	2	4	2	
23	at, h	2	4	2	2	4	1–2	2	2	1–2	1–2
24	Dr2, ra	4	4	0–1	4	4	4	0–1	2	4	
25	g	0	4	0	4	4	0	0	4	4	
26	h	4	4	4	4	1–2	1–2	4	1–2	1–2	
27	h, ra	4	4	0–1	4	1–2	1–2	0–1	1–2	1–2	
28	Ch	2	4	4	4	4	4	4	4	4	
29	Ch, Dr2, ra	2	4	0–1	4	4	4	0–1	2	4	
30	Ch, ra	2	4	0–1	4	4	4	0–1	4	4	
31	ra	4	4	0–1	4	4	4	0–1	4	4	
32	Ru2	4	4	4	2–3	4	4	2–3	2–3	2–3	
33	VIR	4	3	4	1	3	3	3	3	3	
34	Wo	(2)	(3)	(3)	(3)	(3)	(3)	(3)			

1. Phenotypes of host-pathogen interactions evaluated according to [14], where 0 = resistant and 4 = susceptible.
2. Genotype of standard variety Peruvian; Mlat was found only in combination with Mlh and response types of both these genes are similar (2 or 1–2). Parentheses indicate smaller number of colonies.

Table 2. Specific resistance genes against *Blumeria graminis* f. sp. *hordei* in 172 accessions of the Czech core collection of winter barley.

Variety	State	Gene Bank No.	Het	Ml Gene(s)
Ager	FRA	01C0500254	H	Ch, Dr2, ra
Agrilo	DEU	01C0501570	H	
Aizn Coiled Necn	JPN	01C0500490	H	
Alaska	USA	01C0500491	H	aLo + aLo, h
Alissa	DEU	01C0501710	H	
Alterna	DDR	01C0500492	a8	
Angela	FRA	01C0501850	H	
Anson	GBR	01C0501355	a8	
Antoninski	POL	01C050048	H	aLo + Ch
Argovia	CHE	01C0500891	H	a6, h, ra
Aviron	DEU	01C0501830	H	a6
Babylone	FRA	01C0501571		
Table 2. Cont.

Variety	State	Gene Bank No.	Het	MI Gene(s)
Bahadar	ETH	01C0500785	H	
Bankutti 14	HUN	01C0500257	H	
Beloruskij	SUN	01C0500747	H	aLo
Boehmerwaelder	DEU	01C0500112	H	
Bonanza	CAN	01C0500798	H	
Bora	AUT	01C0501848	H	
Bordia	BEL	01C0500047	H	
Borwina	DDR	01C0500836	H	
Breustedts Atlas	DEU	01C0500174	H	aLo
Breustedts Schladener	DEU	01C0500025	H	aLo
Brucker Vierzeilige No. 4	AUT	01C0500175	H	
Brucker Zweizeilige No. 34	AUT	01C0500176	H	a8 + a8, He2
Camera	GBR	01C0501807	H	a7, h
Capri	BEL	01C0500771	H	
Carola	DEU	01C0501703	H	u4
Carstens Zweizeilige	DEU	01C0500130	aLo	
Carstenuv dvourady	DEU	01C0500040	aLo	
Cenad 450	ROM	01C0500505	H	aLo
Cenader Sechszeilige Typ B	DDR	01C0500053	H	Ch
Cirpan 5652	BGR	01C0500189	H	
Clerix	FRA	01C0501556	ra	
Condorcor	DZA	01C0500749	u	
Cyklon	SUN	01C0500981	H	
Dagestanskij (Samuricum 293)	AZE	01C0500036	H	aLo + none
Dana	ROM	01C0501501	H	
Decatur	USA	01C0500372	H	
Dover	CAN	01C0500369	H	
Drop	FRA	01C0501816	H	
Duet	GBR	01C0501683	H	
Eckendorfer Glatta	DEU	01C0500277	H	
Eckendorfer	DEU	01C0500026	H	
Eckendorfer Vulkan	DEU	01C0500420	H	
Engelens Dea	DEU	01C0500197	H	
Erfa	DDR	01C0500806	aLo,	Lu
Esther	DEU	01C0500989	H	
Fimbull II	SWE	01C0500212	H	Ch
Firlbecks Astrid	DEU	01C0500196	H	
Franger	USA	01C0500894	H	
Freya	DEU	01C0500918	a6	
Friedrichswerther Berg	DEU	01C0500003	aLo,	Dr2
Frolic	GBR	01C0501399	g	
Frost	SWE	01C0501400	H	a6, h
Gerum	BGR	01C0501491	H	
GK Eszter	HUN	01C0501812	H	
GK Metal	HUN	01C0501814	H	
Gloria	ROM	01C0500868	a8	
Groninger	DEU	01C0500518	aLo	Ch
Grosier	GBR	01C0501362	a12	
Guadiana	ESP	01C0500914	H	
Hardy	AUT	01C0501758	H	
Hatif de Grignon	FRA	01C0500274	aLo	aLo, Dr2
Hatvanit 377	HUN	01C0500677	a8	Ch
Table 2. Cont.

Variety	State	Gene Bank No.	Het	MI Gene(s)
Hauters Wintergerste	DEU	01C0500199	H	
Hokkaidou Hadaka	JPN	01C0501937	H	
Hooded 10	USA	01C0500525	H	
Cordzay 18	TJK	01C0500297	H	a8
Ibiza	BEL	01C0501762	H	
Intensiv 2	ROM	01C0500752	H	a8, h, ra
Iskra	SUN	01C0500871	H	
Jolante	DEU	01C0501704	a6	
Jubilej 100	BCR	01C0501381	H	a8 + Ch
Jubilejnij	UKR	01C0500299	H	
Juduraki	JPN	01C0500533	H	
Jura	DEU	01C0501646	a7	
Jutta	DDR	01C0500084	H	a8
Kamil	CSK	01C0501070	aLo, Lu, Ru2	
Karcagi 1039	HUN	01C0500168	Ch	
Karnobat	BGR	01C0501367	H	Ch
KIM M3 53/54	CSK	01C0500221	aLo	
Kirgizskij 247	KGZ	01C0500188	aLo	
Kleinwanzlebener Record	DDR	01C0500007	H	Ch + Ch, ra
Kompolti 4	HUN	01C0501836	H	Ru2
Konjicski	SUN	01C0500304	H	
Kostek	POL	01C0501813	a8 + aLo none	
Krakowski	POL	01C0501814	H	
Krasnodarskij 2929	SUN	01C0500034	H	
Kromir	CSK	01C0501131	H	
Kromoz	CSK	01C0501106	H	
Kruglik 21	SUN	01C0501000	H	Ch
Krusevacki	YUG	01C0500543	H	none
Kujawiak III	POL	01C0501815	H	aLo + aLo, h
Ledeci Beta	HUN	01C0500246	H	a8 + Ch
Leon	NLD	01C0500310	H	
Local (Balkan)	GRC	01C0500225	H	
Local (Merkez-Kaza)	TUR	01C0500291	H	at, h, aLo, VIR
Lomerit	DEU	01C0501835	H	
Lunet	CSK	01C0501016	H	
Luran	CZE	01C0501538	H	u
Luxor	CSK	01C0501234	H	
Maguelone	FRA	01C0500782	H	
Marconee	USA	01C0500545	H	u
Marinka	NLD	01C0501081	H	a7
Marjorie	FRA	01C0501820	H	a8, h
Marna	FRA	01C0501572	H	ra
Martha	AUT	01C0500770	H	u
Mc Nair 601	USA	01C0500434	H	
Merlot	DEU	01C0501890	H	a6, h, ra
Michigan Winter	USA	01C0500312	H	aLo
Mijana	MDA	01C0501672	H	aLo
Miraj 1	ROM	01C0500869	H	
Mironovskij 82	UKR	01C0501676	H	
Monaco	FRA	01C0501289	H	ra
Muellers	DEU	01C0500135	H	
Boehmmerwaelder	DEU	01C0500135	H	
Nachicivandany	AZE	01C0500098	H	
Nakaizumi Zairai	JPN	01C0500548	H	a8 + none
Nelly	DEU	01C0501709	H	
Noveta	DNK	01C0501495	H	
Novosadski 703	YUG	01C0501569	H	
O.A.C. Halton	CAN	01C0501045	H	
Odesskij 2095	UKR	01C0501097	H	
Table 2. Cont.

Variety	State	Gene Bank No.	Het	MI Gene(s)
Okal	CSK	01C0501032	H	
Okayama Mitsuki	JPN	01C0501946	H	
Hadaka				
Oksamyt	UKR	01C0500881	H	aLo
Oma	USA	01C0500326	H	
Opolski 152	POL	01C0500760	H	none
Pallidium 310/1	AZE	01C0501099	H	
Pallidium 728/15	SUN	01C0501102	H	
Pamina	DDR	01C0500744	H	
Pavlovicky	CSK	01C0500002		a8
Peragis Mittelfruehe	DEU	01C0500006	a8	
Perga	DEU	01C0500202	H	
Persikum 64	SUN	01C0500332	H	
Poljarnyj 14	SUN	01C0500563	H	
Po-ri	PRK	01C0500018	H	
Probsdorfer Robusta	AUT	01C0500866	H	
Protidor	ITA	01C0500973	H	
Ragusa 34-40	YUG	01C0500335	H	
Rapidan	USA	01C0500902	H	a8, VIR
Rengapolbordi	PRK	01C0500800	H	
Reni	DEU	01C0501843	H	Ch, ra + ra
Rozen	BGR	01C0501377	H	
Russe 85	BGR	01C0500008	H	
Scorpio	BEL	01C0501623	H	
Schwarze	DEU	01C0500123	aLo	
Wintergerste	DEU	01C0500917	H	Dr2, ra
Sigra	DEU	01C0501797	H	a6, ra
Silke	DEU	01C0500030	H	aLo + ra
Sirvandany 30	AZE	01C0500012	H	aLo
Slaski Il	POL	01C0501038	H	
Sorra	DDR	01C0500271	H	
Strengs Dura	DEU	01C0500042	H	
Stupicky dvouradry	CSK	01C0500001	H	
Stupicky sestirady	CSK	01C0500100	H	
Sumovský	CSK	01C0500101	aLo	
Tamaris	FRA	01C0501714	H	h, ra
Tiffany	DEU	01C0501580	H	a7
Traminer	DEU	01C0501889		
Tschermaks	AUT	01C0500348	H	a8
Vierzellige Glatte	TKM	01C0500352	H	
Uzen-czjan 64	ITA	01C0500585	H	
Ventitrite	NLD	01C0501849	H	
Vilna	ARM	01C0500355	VIR	
VIR 6139	NLD	01C0501815	H	
Virgo	ARM	01C0500945	H	
Vogelsanger Gold	USA	01C0500586	H	
Volbar	USA	01C0500373	H	a7 + a7, h
Wade	USA	01C0500219	H	Wo
Will	USA	01C0500102	H	
Zalarinec	SUN	01C0500591	H	
Zend	TUR	01C0500592	a8	
Zenit	BGR	01C0501382	a13	

1 [17]. 2 ARM Armenia, AUT Austria, AZE Azerbaijan, BEL Belgium, BGR Bulgaria, CAN Canada, CSK Czechoslovakia, CZE Czech Republic, DDR German Democratic Republic, DEU Deutschland, DNK Denmark, DZA Algeria, ESP España, FRA France, GBR Great Britain, GRC Greece, HUN Hungary, CHE Switzerland, ITA Italy, JPN Japan, KGŻ Kyrgyzstan, MDA Moldavia, NLD Netherlands, POL Poland, PRK Democratic People’s Republic of Korea, ROM Romania, SUN Soviet Union, SWE Sweden, TJK Tajikistan, TKM Turkmenistan, TUR Turkey, UKR Ukraine, USA United States of America, YUG Yugoslavia. 3 Heterogeneous—the variety is composed of two or more genotypes with different resistance genes. 4 Unknown.
4. Discussion

The heterogeneity of accessions in the collection is high and can have several causes [18], including methods of breeding cultivars or collecting landraces, out-crossing and mechanical admixtures. The frequency of heterogeneous accessions may be even higher, especially in the groups of accessions with identical resistances (in this study mainly MlaLo and Mla8) possibly resulting from cross-contamination. For example, a mixture of Belorusskij and Breustedts Atlas, which both contain MlaLo, would be homogeneous in resistance tests and its heterogeneity through contamination of these varieties would not be revealed.

A second possibility for incomplete detection of heterogeneity is that for each of M_l genes $a8$, Ch, Dr2, Ho2 and VIR there was only one avirulent isolate available. Since accessions were represented by only three leaf segments in the tests, it is possible that this small sample might not have detected underlying heterogeneity.

Another possibility of not detecting possible heterogeneity is the overlap of IRAs of resistance genes. For example, Mla8 can only be detected by the avirulent isolate Race I, which is also avirulent on accessions containing the unlinked resistance gene Mlg (characterized by IR 0); and hence, Mla8 cannot be detected in the presence of Mlg.

Brown and Jørgensen [19] compiled published results of specific resistance genes in European barley cultivars. The catalog includes 699 barley varieties, almost all grown in the 20th century and among them are 117 winter barleys. The spring Haisa II and Union, carrying Mlg derived from Pflugs Intensiv, and the winter varieties Dea and Hauters Wintergerste derived from Ragusa b, are among the first varieties with powdery mildew resistance genes introduced in breeding programs (Table 3). In the present report, Mlh and Mlra were the most frequent genes used by breeders, whereas Mlg was found only in Frolic. However, evolution of the pathogen in winter and spring cultivars has occurred over a long period [20] and the virulence frequencies to these genes in a central European population increased to almost 100% in 2002 [21], although later the virulence frequency to Mlg decreased to 84.3% in 2017 [22]. The three M_l genes (g, h and ra) have no practical value in grown cultivars but can be used for characterizing barley genotypes.

Table 3. First recorded use of specific resistance genes to powdery mildew in the breeding of European barley cultivars.

M_l Gene(s)	Cultivar	Growth Habit	Year of Registration
g	Haisa II	S	1950 2
g	Union	S	1955 3
g	Tipper	W	1980 3
ra	Dea	W	1953 2
h, ra	Hauters Wintergerste	W	1953 3
$a6$	Maris Badger	S	1963 3
$a6$	Vogelsanger Gold	W	1965 3
Wo	Doris, Ogra	W	1974 3
Wo, ra	Hexa	W	unknown 3
$a12$	Maris Trojan	W	1975 3
$a13$	Rupal	S	1972 3
$a13$	NR 468	W	1977 4
$a13$, g	Koral	S	1978 5
$a13$	Zenit	S	1985 5
$a13$	Zenit	W	1987 6
$a13$	Pipkin	W	1983 3
$a7$	Marinka	W	1985 3 4
$a7$	Ola	W	unknown 3

1 S spring, W winter. 2 [17]. 3 [19]. 4 [23]. 5 [24]. 6 This contribution.

Completely ineffective genes with no positive effect on resistance in agricultural cultivation were uncovered. These included first, Mla8, often present in old and mainly spring barleys [25,26], second, MlaLo, so far found only in winter barleys [27,28] and
third, *MlCh*, found in both winter and spring varieties [29]. These genes must have been contained in barley varieties for a long time since the global pathogen population has completely adapted to them, because no corresponding avirulent pathotypes have been found in cultivated barley over almost seven decades. Therefore, these genes could only be revealed through resistance tests using avirulent old Japanese isolates (*Mla8* and *MlCh*) or isolates collected from wild barley in Israel (*MlaL*). In these tests, these three genes and especially *MlaL* were the most frequent. A new gene, *MlVIR*, initially found in this CC and reported recently [29], was resistant to only one of 51 isolates used. This gene, similar to the above three genes discussed in this paragraph, can also be used for genetic characterization of barley varieties. A current complete list of barley powdery mildew resistance genes also can be found in [29].

We found *Mla7* in Marinka, which confirmed the result of Dreiseitl [23]. However, in the European catalog, a combination of *Mla7* and *Mlg* genes is listed [19]. A possible explanation is that some authors reported the identified resistance genes regardless of whether they were a single-line variety or a variety consisting of two or more similar genotypes. As an example, Alaska tested here is composed of two genotypes, one carrying *MlaL* and the other with the same resistance (*MlaL*) supplemented by another gene (*Mlh*). Therefore, during maintenance breeding, one of these lines may be inadvertently selected.

Of the set of 79 accessions with an identified resistance, Zenit from Bulgaria was the only one carrying *Mla13*. This gene was first used in Swedish spring barley varieties Rupal (1972) and Seru (1973) and its source was the Indian landrace Rupee [19]. The same allele, derived from the Balkan landrace Imunne 25 [30], became the most important gene of specific resistance in barley, especially in the former Czechoslovakia where it was first transferred into the high-quality spring malting varieties Koral and Safir registered in 1978 [24]. *Mla13* was at the time fully effective in the field and present in several new varieties. These cultivars contributed to 57% of the crop’s area in 1983 and until 1985 they had been grown on 1.5 Mha [31]. In 1985, a strong *Bgh* epidemic occurred especially in these varieties and the “Czechoslovakian” pathogen population was the cause of overcoming the resistance; it resulted in reduced yield and quality and led to changes in the varietal composition of barley in much of Europe [32].

It was subsequently found that *Mla13*, derived from the breeding strain Platen 49–49 bred in Germany, was used in the Bulgarian winter barley NR 468 registered in that country one year before the registration of Koral in the Czech Republic [23]. Zenit, tested in our study, was registered in Bulgaria 10 years after NR 468, but is still among the first winter varieties carrying *Mla13*. It is likely that the donor of this allele was also Platen 49–49.

In the Czech Republic, Zenit was registered in 1985 and also carries *Mla13* [24]. When the same and formerly rarely encountered allele, especially in winter barley, was found in Bulgarian Zenit, the first conclusion drawn was that Bulgarian and Czech Zenit cultivars were identical. Nevertheless, although they had the same names and resistance alleles and similar years of registration, the Bulgarian Zenit is six-rowed and has a winter habit whereas the Czech Zenit is a spring type and two-rowed. As mentioned above, specific resistance genes can be useful to characterize varieties and confirm their authenticity and pedigree [33]. However, the unique case of both Zenit varieties shows the contrary.

In gene banks, the resistance of accessions to pathogens is assessed during their multiplication in the field [34,35]. As has been shown here, most accessions are heterogeneous with different resistance of individual components (genotypes). Almost all accessions carry specific resistance genes, the efficacy of which on small plots of gene banks can be significant, while the same specific resistance in large commercial fields can be negligible. Genetic resources are used primarily for breeding new varieties and for further research. From this point of view, it is especially important to exploit non-specific resistance caused by minor genes [29]. However, because of the masking effects of major genes, evaluation of gene bank accessions in the field may not allow the recognition of minor genes which could be pyramided to provide valuable durability.
5. Conclusions

- Crop genetic resources are among the basic preconditions for the development and well-being of mankind and they are maintained in gene banks. However, many accessions are not genetically uniform, mostly due to mechanical admixtures of other genotypes.
- Growing resistant cultivars is an environmentally safe and cheap way of disease management but knowledge of diverse resistance genes and their combinations, together with knowing the history of individual genes, can be also used to identify varieties and verify their authenticity and homogeneity.
- In 172 accessions of the core collection (CC) of the Czech winter barley gene bank, resistance genes against powdery mildew were studied; however, 147 accessions were heterogeneous due to presence of different genotypes.
- In total, 17 resistance genes were found singly or in combinations; 76.3% of accessions with identified resistance genes carried alleles at the \(Mla \) locus.
- For purifying the accessions, progenies of individual plants are multiplied and authenticity and homogeneity of the seed will be confirmed with resistance tests. Subsequently the accessions can be used without risk of false results and can be studied with more advanced methods.

Author Contributions: A.D. is the sole author of this contribution. All authors have read and agreed to the published version of the manuscript.

Funding: The study was funded by the Ministry of Agriculture of the Czech Republic, institutional support nos. MZE-RO1118.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: I am grateful to Dagmar Krejčírová for the excellent preparation of resistance tests and to Zdeněk Nesvadba and the Czech gene bank of winter barley for provision of barley accessions. Information about registration of Zenit from Nikolay Neykov is greatly appreciated.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Van Hintum, T.J.L. Duplication within and between germplasm collections. III. A quantitative model. *Genet. Resour. Crop Evol.* **2000**, *47*, 507–513. [CrossRef]
2. Frankel, O.H.; Brown, A.H.D. Plant genetic resources today: A critical appraisal. In *Crop Genetic Resources: Conservation and Evaluation*; Bolden, J.H.W., Williams, J.T., Eds.; Allen & Unwin: London, UK, 1984; pp. 249–257.
3. Van Hintum, T.J.L.; Haalman, D. Pedigree analysis for composing a core collection of modern cultivars, with examples from barley (*Hordeum vulgare* s lat). *Theor. Appl. Genet.* **1994**, *88*, 70–74. [CrossRef]
4. Ottosson, F.; von Bothmer, R.; Diaz, O. Genetic variation in three species of *Hordeum*, and the selection of accessions for the Barley Core Collection. *Hereditas* **2002**, *137*, 7–15. [CrossRef]
5. von Bothmer, R.; Sato, K.; Komatsuda, T.; Yasuda, S.; Fischbeck, G. The domestication of cultivated barley. In *Diversity in Barley (Hordeum Vulgare)*; Von Bothmer, R., van Hintum, T., Knüpfer, H., Sato, K., Eds.; Elsevier Science, B.V.: Amsterdam, The Netherlands, 2003; pp. 9–27.
6. Murray, G.M.; Brennan, J.P. Estimating disease losses to the Australian barley industry. *Australas. Plant Pathol.* **2010**, *39*, 85–96. [CrossRef]
7. Dreiseitl, A. Differences in powdery mildew epidemics in spring and winter barley based on 30-year variety trials. *Ann. Appl. Biol.* **2011**, *159*, 49–57. [CrossRef]
8. Honecker, L. Beiträge zum Mehltauproblem bei der Gerste mit besonderer Berücksichtigung der züchterischen Seite. *Pflanzenbau* **1931**, *8*, 78–84.
9. Brückner, F. Powdery mildew (*Erysiphe graminis* DC.) on barley. V. The resistance of barley varieties to physiological races of *Erysiphe graminis* DC. detected in Czechoslovakia and the possibility to use it in breeding for resistance. *Rostl. Vyrob.* **1964**, *10*, 395–408.
10. Wiberg, A. Sources of resistance to powdery mildew in barley. *Hereditas* **1974**, *78*, 1–40. [CrossRef]
11. Dreiseitl, A. A novel resistance against powdery mildew found in winter barley cultivars. *Plant Breed.* 2019, 138, 840–845. [CrossRef]

12. Kolster, P.; Munk, L.; Stölen, O.; Løhde, J. Near-isogenic barley lines with genes for resistance to powdery mildew. *Crop Sci.* 1986, 26, 903–907. [CrossRef]

13. Dreiseitl, A.; Platz, G. Powdery mildew resistance genes in barley varieties grown in Australia. *Crop Pasture Sci.* 2012, 63, 997–1006. [CrossRef]

14. Torp, J.; Jensen, H.P.; Jørgensen, J.H. Powdery Mildew Resistance Genes in 106 Northwest European Spring Barley Cultivars; Year-book, 1978; Royal Veterinary and Agricultural University: Copenhagen, Denmark, 1978; pp. 75–102.

15. Kosman, E.; Chen, X.; Dreiseitl, A.; McCallum, B.; Lebeda, A.; Ben-Yehuda, P.; Gul'tyaeva, E.; Manisterski, J. Functional variation of plant-pathogen interactions: New concept and methods for virulence data analyses. *Phytopathology* 2019, 109, 1324–1330. [CrossRef]

16. Flor, H.H. Current status of the gene-for-gene concept. *Annu. Rev. Phytopathol.* 1971, 9, 275–296. [CrossRef]

17. Dreiseitl, A. Heterogeneity of powdery mildew resistance revealed in accessions of the ICARDA wild barley collection. *Front. Plant Sci.* 2017, 8. [CrossRef]

18. Brown, J.K.M.; Jørgensen, J.H. A catalogue of mildew resistance genes in European barley varieties. In *Integrated Control of Cereal Mildews: Virulence and Their Change, Proceedings of the Second European Workshop on Integrated Control of Cereal Mildews, Riso National Laboratory, Roskilde, Denmark, 23–25 January 1990*; Jørgensen, J.H., Ed.; Riso National Laboratory: Roskilde, Denmark, 1991; p. 263286.

19. Dreiseitl, A. Pathogenic divergence of Central European and Australian populations of *Blumeria graminis f. sp. hordei*. *Ann. Appl. Biol.* 2014, 165, 364–372. [CrossRef]

20. Dreiseitl, A. Virulence frequencies to powdery mildew resistance genes of winter barley cultivars. *Plant Protect. Sci.* 2004, 40, 135–140. [CrossRef]

21. Dreiseitl, A. Great pathotype diversity and reduced virulence complexity in a Central European population of *Blumeria graminis f. sp. hordei* in 2015–2017. *Eur. J. Plant Pathol.* 2019, 153, 801–811. [CrossRef]

22. Database GRIN. Available online: https://www.vurv.cz/vyzkum/databaze/ (accessed on 10 February 2021).

23. Dreiseitl, A. Powdery mildew resistance in winter barley cultivars. *Plant Breed.* 2007, 126, 268–273. [CrossRef]

24. Dreiseitl, A.; Jørgensen, J.H. Powdery mildew resistance in Czech and Slovak barley cultivars. *Czech J. Genet. Plant Breed.* 2007, 53, 95–100. [CrossRef]

25. Hiura, U.; Heta, H. Studies on the disease resistance in barley. III. Further studies on the physiologic races of *Erysiphe graminis hordei* in Japan. *Ber. des Ohara Inst. für Landwirtsch. Biol.* 1955, 10, 135–156.

26. Jørgensen, J.H.; Jensen, H.P. Powdery mildew resistance gene Ml-a8 (Reg1h8) in northwest European spring barley varieties. *Barley Genet. News.* 1983, 13, 51–52.

27. Dreiseitl, A. Dissimilarity of barley powdery mildew resistances Heils Hanna and Lomerit. *Czech J. Genet. Plant Breed.* 2011, 47, 95–100. [CrossRef]

28. Dreiseitl, A. A novel way to identify specific powdery mildew resistance genes in hybrid barley cultivars. *Sci. Reps.* 2020, 10. [CrossRef]

29. Dreiseitl, A. Specific resistance of barley to powdery mildew, its use and beyond. A concise critical review. *Genes* 2020, 11. [CrossRef]

30. Brückner, F. The finding of powdery mildew (*Erysiphe graminis DC. var. hordei Marchal*) race on barley: A race virulent to resistance genes Mla9 and Mla14. *Ochr. Rostl.* 1982, 18, 101–105.

31. Dreiseitl, A. Analysis of breeding Czechoslovak barley varieties for resistance to fungal diseases particularly powdery mildew. *Polnochospodarstvo* 1993, 39, 467–475.

32. Wolfe, M.S.; Brändle, U.; Koller, B.; Limpert, E.; McDermott, J.M.; Müller, K.; Schaffner, D. Barley mildew in Europe: Population biology and host resistance. *Euphytica* 1992, 63, 125–139. [CrossRef]

33. Dreiseitl, A.; Zavřelová, M. Identification of barley powdery mildew resistances in gene bank accessions and the use of gene diversity for verifying seed purity and authenticity. *PloS ONE* 2018, 13. [CrossRef] [PubMed]

34. Davies, L.R.; Allender, C.J. Who is sowing our seeds? A systematic review of the use of plant genetic resources in research. *Genet. Resour. Crop Evolut.* 2017, 64, 1999–2008. [CrossRef]

35. Krugman, T.; Nevo, E.; Beharav, A.; Sela, H.; Fahima, T. The Institute of Evolution Wild Cereal Gene Bank at the University of Haifa. *Israel J. Plant Sci.* 2018, 65, 129–146. [CrossRef]