Multidrug resistant *Kluyvera ascorbata* septicemia in an adult patient: a case report

Shannon Moonah*, Kavita Deonarine and Clyde Freeman

Abstract

Introduction: *Kluyvera ascorbata* has become increasingly significant due to its potential to cause a wide range of infections, as well as its ability to transfer gene encoding for CTX-M-type extended spectrum B-lactamases (ESBLs) to other Enterobacteriaceae.

Case presentation: We report the case of a 64-year-old African-American male diagnosed with severe sepsis due to a multidrug resistant *Kluyvera ascorbata*, which was isolated from his blood. He was treated with meropenem and had a favorable outcome.

Conclusion: To the best of our knowledge, this is the first case report of a multidrug resistant *Kluyvera ascorbata* isolated from the blood in an adult patient with sepsis.

Introduction

Kluyvera ascorbata is a gram negative microorganism belonging to the family Enterobacteriaceae. Although it causes infections infrequently, it is responsible for causing a wide range of infections including severe sepsis [1,2]. It is believed to be the source of genes encoding CTX-M-type extended spectrum B-lactamases (ESBLs) and it has the ability to transfer these genes to other Enterobacteriaceae [3]. Only three cases of *K. ascorbata* isolated from the blood of adult patients have been reported [4-6]. We report what we believe to be the first case of a multidrug resistant *K. ascorbata* isolated from the blood of an adult patient with sepsis.

Case presentation

A 64-year-old African-American man with a past medical history of hypertension, type 2 diabetes mellitus, bilateral above knee amputation, prostate cancer post radical prostatectomy in 1999, quadraparesis secondary to cervical spine fracture of C4, neurogenic bladder with an indwelling suprapubic catheter and recurrent urinary tract infections was transferred from a nursing home to Howard University Hospital in June 2009 because of lethargy, fever and low blood pressure (BP). There was no history of cough, chest pain, vomiting, diarrhea or headache.

His admitting temperature was 101.4°F and blood pressure 61/34 mmHg, which responded to intravenous fluid boluses. His initial white blood count (WBC) was 14.4×10⁹/L. His chest radiograph showed mild left lung base atelectasis, but the rest of the lung fields were clear. Urinalysis showed large amounts of red cells, white cells and numerous bacteria. He was admitted to the medical intensive care unit (MICU) and started empirically on vancomycin and levofloxacin.

Over the following five days his condition improved, with normalization of his mental status, temperature, BP and WBC. His initial blood culture bottle grew gram-positive cocci, identified as Coagulase-negative staphylococci, thought to be a contaminant. Both urine cultures were sterile.

He was transferred to the medical floor for further care. 24 hours later he developed a low grade temperature of 95.9°F and blood pressure 61/34 mmHg, which responded to intravenous fluid boluses. His initial white blood count (WBC) was 14.4×10⁹/L. His chest radiograph showed mild left lung base atelectasis, but the rest of the lung fields were clear. Urinalysis showed large amounts of red cells, white cells and numerous bacteria. He was admitted to the medical intensive care unit (MICU) and started empirically on vancomycin and levofloxacin.

Over the following five days his condition improved, with normalization of his mental status, temperature, BP and WBC. His initial blood culture bottle grew gram-positive cocci, identified as Coagulase-negative staphylococci, thought to be a contaminant. Both urine cultures were sterile.

He was transferred to the medical floor for further care. 24 hours later he developed a low grade temperature of 95.9°F, his BP decreased to a systolic of 75 mmHg and WBC increased to 13×10⁹/L. There was no change in his mental status. He was given boluses of intravenous fluids. Meropenem was immediately added to his antibiotic regimen. A gram stain of his repeat blood culture revealed gram negative rods which were later identified as *K. ascorbata*. The isolate was susceptible to amikacin, tobramycin and imipenem, but resistant to ampicillin, piperacillin, cefazolin, cefuroxime, cefotaxime, ceftriaxone, ceftazidime.
one, ceftazidime, aztreonam, ciprofloxacin and levofloxa-
cin. Species identification and antimicrobial susceptibility
testing was performed using Microscan panels (Dade
Behring). He was placed on contact isolation and levo-
floxacinc was discontinued. Over the next five days he
maintained a normal temperature, BP and WBC. Repeat
blood cultures and a urine culture were negative for
growth. He was discharged back to the nursing home
after 13 days of hospitalization for continued care.

Discussion
Kluyvera spp was first described in 1936 by Kluyver and
van Neil [7], but it was not until 1981 that it was defined
completely using molecular characterization [8]. Four
species are described: K. cryocrescens, K. ascorbata, K.
georgiana, and K. cochleae. K. ascorbata causes a wide
range of infectious diseases in different age groups and of
varying severity [1,2,9].

Only three cases isolating K. ascorbata from the blood
of adult patients with sepsis have been reported. In all
three cases the organism was susceptible to third genera-
tion cephalosporins (Table 1). To the best of our knowl-
dge, this is the first case report describing an isolate of
multidrug resistant K. ascorbata from the blood of an
adult patient with sepsis. The isolate was resistant to
third generation cephalosporins and fluoroquinolones. In
addition to its ability to cause severe sepsis, we also
report its multidrug resistant potential. This must be
considered when choosing appropriate antimicrobial
therapy. We believe that the prompt administration of a
carbapenem resulted in a favorable outcome for the
patient.

ESBLs are enzymes produced by certain types of bacte-
ria such as E. coli. They mediate resistance to extended-
spectrum cephalosporins (e.g. ceftriaxone) but do not
affect carbapenems (e.g. meropenem). Molecular and
genetic evidence indicates that CTX-M-type ESBLs
found in E. coli and other Enterobacteriaceae evolved
from chromosomal genes from K. ascorbata. In the past
decade CTX-M enzymes have become the most preva-

Table 1: Summary of the four reported Kluyvera ascorbata cases isolated from the blood of adult patients

Ref.	Age/sex	Past medical history	Antimicrobial susceptibility	Treatment	Outcome
[4]	72/M	Liver cirrhosis, Hepatocellular carcinoma, Hepatitis C	Amoxicillin/Clavulanate 3rd generation cephalosporins Aminoglycosides Ciprofloxacin Imipenem	Ampicillin Ticarcillin Cephalothin Cefuroxime	Cefotaxime Recovered
[5]	23/M	Liver cirrhosis, Hepatitis B	Amoxicillin/ Clavulanate Piperacillin Ceftriaxone Gentamcin Ciprofloxacin	Ampicillin Cefazolin Ticarcillin	Ceftriaxone Recovered
[6]	57/F	Colon adenocarcinoma, Chemotherapy, Neutropenia	Aminoglycosides 3rd generation cephalosporins Flouroquinolones Ureidopenicillins	Ampicillin Amoxicillin/ Clavulanate 2nd generation cephalosporins Cotrimazole	Ceftazidime Amikacin Expired
Present report	64/M	Neurogenic bladder with an indwelling suprabupic catheter, Recurrent urinary tract infections	Amikacin Tobramycin Imipenem	Ampicillin Aztreonam Ceftazidime Cefotaxime Ceftriaxone Cefuroxime Cefazolin Ciprofloxacin Levofloxacin Piperacillin	Meropenem Recovered
lent ESBLs and CTX-M producing *E. coli* is becoming a major public health problem. This rise will result in the narrowing of effective options to treat infections caused by these organisms. There will likely be increased usage of carbapenems, thus generating further selective pressure for carbapenemases and carbapenem resistance in the future [3,10-12].

Conclusion

K. ascorbata is an infrequent cause of infection, but can result in severe sepsis. Clinicians should be aware of its infectious and multidrug resistant potential as early and appropriate treatment can result in recovery.

Consent

Written informed consent was obtained from the patient for the publication of the case report and any accompanying images. A copy of the written consent is available for review by the Editor-in-Chief of this journal.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

SM, KD, and CF were involved in the direct care of the patient, and contributed to the literature search, data collection, data analysis, and manuscript preparation. All authors have read and approve of the submitted manuscript.

Author Details

Department of Medicine, Howard University Hospital, 2041 Georgia Avenue NW, Washington DC, 20060, USA

References

1. Sarria JC, Vidal AM, Kimbrough RC: *Infections caused by Kluyvera species in humans*. Clin Infect Dis 2001, 33:E69-74.

2. Carter JE, Evans TN: *Clinically significant Kluyvera infections: a report of seven cases*. Am J Clin Pathol 2005, 123:334-338.

3. Muller-Pebody B, Lillie M, Johnson AP: Isolation and antimicrobial sensitivities of *Kluyvera* spp. from humans in England, Wales and Northern Ireland, 2005-2006. Int J Antimicrob Agents 2007, 30:371-372.

4. Padilla E, Tudela P, Giménez M, Gimeno JM: *Kluyvera ascorbata* bacteremia. Med Clin (Barc) 1997, 108:479.

5. Oteo J, Gómez-Garcés JL, Alós J: Acute cholecystitis and bacteremia caused by *Kluyvera ascorbata* in a cirrhotic patient. Clin Microbiol Infect 1998, 4:113-115.

6. Linares P, Castañón C, Llano C, Díaz P, García-Palomó A, González LM, Fernández-Natal I: Bacteremia by *Kluyvera ascorbata* in a patient with neutropenia and fever. Enferm Infec Microb Clin 2000, 18:48-49.

7. Kluyver A, van Neil CB: Prospects for a natural system of classification of bacteria. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt II 1936, 95:369-403.

8. Farmer JJ, Fanning GR, Huntley-Carter GP, Holmes B, Hickman FW, Richard C, Brenner DJ: *Kluyvera*, a new (redefined) genus in the family Enterobacteriaceae:identification of *Kluyvera ascorbata* sp. nov. and *Kluyvera cryocrescens* sp. nov. in clinical specimens. J Clin Microbiol 1981, 13:919-933.

9. Carter JE, Laurini JA, Mizell KN: *Kluyvera* infections in the pediatric population. Pediatr Infect Dis J 2008, 27:839-841.

10. Hümenniemi C, Arlet G, Gautier V, Grimpont P, Labia R, Philippom A: Beta-lactamases of *Kluyvera ascorbata*, probable progenitors of someplasmid-encoded CTX-M types. Antimicrob Agents Chemother 2002, 46:3045-3049.

11. Cantón R, Coque TM: The CTX-M beta-lactamase pandemic. Curr Opin Microbiol 2006, 9:466-475.

12. Denton M: *Enterobacteriaceae*. Int J Antimicrob Agents 2007, 29(Suppl 3):S59-S22.