Impacts of gravitational-wave standard siren observations from Einstein Telescope and Cosmic Explorer on weighing neutrinos in interacting dark energy models

Shang-Jie Jin,† Rui-Qi Zhu,† Ling-Feng Wang,† Hai-Li Li,† Jing-Fei Zhang,† and Xin Zhang*1,2,3,†

†Department of Physics, College of Sciences, Northeastern University, Shenyang 110819, China
‡Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang 110819, China
§Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang 110819, China

Multi-messenger gravitational-wave (GW) observation for binary neutron star merger events could provide a rather useful tool to explore the evolution of the universe. In particular, for the third-generation GW detectors, i.e., the Einstein Telescope (ET) and the Cosmic Explorer (CE), proposed to be built in Europe and the U.S., respectively, lots of GW standard sirens with known redshifts could be obtained, which would exert great impacts on the cosmological parameter estimation. The total neutrino mass could be measured by cosmological observations, but such a measurement is model-dependent and currently only gives an upper limit. In this work, we wish to investigate whether the GW standard sirens observed by ET and CE could help improve the constraint on the neutrino mass, in particular in the interacting dark energy (IDE) models. We find that the GW standard siren observations from ET and CE can only slightly improve the constraint on the neutrino mass in the IDE models, compared to the current limit. The improvements in the IDE models are weaker than those in the standard cosmological model. Although the limit on neutrino mass can only be slightly updated, the constraints on other cosmological parameters can be significantly improved by using the GW observations.

I. INTRODUCTION

In the recent two decades, the study of cosmology has entered the era of precision cosmology. A standard model of cosmology has been established, usually called the Λ cold dark matter (ΛCDM) model. The measurements of cosmic microwave background (CMB) anisotropies from the Planck satellite mission have constrained the six primary parameters of the ΛCDM model with unprecedented precision. However, with the measurement precisions of the cosmological parameters improved, some puzzling issues appeared. For example, the inferred values of the Hubble constant from the Planck observation of the CMB anisotropies (based on the ΛCDM model) [1] and from the Cepheid-supernova distance ladder measurement [2] are inconsistent, with the tension between them more than 4σ significance [2]. Namely, there is an inconsistency of measurements between the early and late universe, which is the so-called “Hubble tension” problem. The Hubble tension recently has been widely discussed in the literature (see, e.g., Refs. [3–31]). Furthermore, theoretically, for the ΛCDM model, the cosmological constant Λ, which is equivalent to the density of vacuum energy, has always been suffering from serious theoretical challenges, such as the “fine-tuning” and “cosmic coincidence” problems [32, 33]. Thus, it is hard to say that the ΛCDM model with only six base parameters is the eventual model of cosmology. All of these facts actually imply that the ΛCDM model needs to be further extended and some extra parameters concerning new physics need to be introduced into the new models. Of course, some novel cosmological probes should also be further developed.

To extend the ΛCDM cosmology, the primary idea is to consider the dynamical dark energy with the dark-energy density no longer a constant. In this class of models, the simplest one is the model with a dark energy having a constant equation-of-state (EoS) parameter, \(w = p_{\text{de}}/\rho_{\text{de}} = \text{constant} \), which is usually called the wCDM model. For some popular dark energy models, see, e.g., Refs. [34–51]. There is also a class of models known as the interacting dark energy (IDE) models in which some direct, non-gravitational interaction between dark energy and dark matter is considered. The interaction between dark sectors could help resolve (or alleviate) the coincidence problem of dark energy, and also can help alleviate the Hubble tension. The IDE models have been widely studied and deeply explored till now (see, e.g., Refs. [11, 13, 52–97]).

Currently, the mainstream cosmological probes mainly include, e.g., the CMB anisotropies, baryon acoustic oscillations (BAO), type Ia supernovae (SN), direct determination of the Hubble constant (\(H_0 \)), weak gravitational lensing, redshift space distortions, and clusters of galaxies. The combinations of these cosmological data based on the electromagnetic (EM) observations have provided precise measurements for the base cosmological parameters. But for some extended parameters beyond the standard ΛCDM model, e.g., the EoS parameter of dark energy, the tensor-to-scalar ratio, and the total mass of neutrinos, they still cannot be precisely measured. Therefore, on one hand, the EM observations should be further greatly developed, and on the other hand, some novel
cosmological probes are also needed to be developed in the future. In the next few decades, the gravitational-wave (GW) standard siren observation is one of the most promising cosmological probes.

The detection of the GW event GW170817 [98] from the binary neutron star (BNS) merger initiated the multi-messenger astronomy era. Because in this event, not only GWs but also the EM signals in various bands were detected for the same transient source [99, 100]. From the analysis of the waveform of GW, one can obtain the absolute luminosity distance to the source. Furthermore, the redshift of the source can also be determined by identifying the EM counterpart of the GW source. With the known distance and redshift of a celestial source, a distance-redshift relation can be established, which can be used to explore the expansion history of the universe [101]. Such a tool of exploring the evolution of the universe provided by GWs is called “standard sirens” (note here that the case having EM counterparts is usually referred to as bright sirens, to be differentiated with the case of dark sirens without EM counterparts) [102].

The main advantage of the GW standard siren method is that the absolute luminosity distances can be measured. This is obviously superior to the SN observation, in that the latter can only measure the ratio of luminosity distances at different redshifts. In addition, the GW observation can observe much higher redshift events, compared to the SN observation.

It is indisputable that the GW standard siren will be developed into a powerful cosmological probe in the future. The third-generation (3G) ground-based GW detectors, such as the Einstein Telescope (ET) [103, 104] in Europe and the Cosmic Explorer (CE) [105, 106] in the United States, have been proposed. In the 2030s, ET will be brought into operation. CE will start its observation in the mid-2030s. The 3G ground-based GW detectors have a much wider detection-frequency range and a much better detection sensitivity, which can observe much more BNS events at much deeper redshifts. Recently, the GW standard sirens have been widely discussed in the literature [107–134] (see Ref. [135] for a recent review). It is found that the GW standard siren observations from ET and CE would play an important role in the cosmological parameter estimation [136–141].

In cosmology, neutrinos play a crucial role in helping shape the large-scale structure and the expansion history of the universe. The phenomenon of neutrino oscillation indicates that neutrinos have masses and there are mass splittings between different neutrino species. However, it is extremely difficult to measure the absolute masses of neutrinos. Neutrino oscillation experiments cannot measure the absolute neutrino masses, but can only give the squared mass differences between the different mass eigenstates of neutrinos. The solar and reactor experiments give $\Delta m_{21}^2 \simeq 7.5 \times 10^{-5}$ eV2 and the atmospheric and accelerator beam experiments give $|\Delta m_{31}^2| \simeq 2.5 \times 10^{-3}$ eV2 [142, 143]. Thus, there are two possible mass hierarchies of the neutrino mass spectrum, namely, the normal hierarchy (NH) with $m_1 < m_2 \ll m_3$ and the inverted hierarchy (IH) with $m_3 \ll m_1 < m_2$. In addition, in some cases one also considers the cosmological models of neglecting the neutrino mass splittings, namely $m_1 = m_2 = m_3$, which is usually called the degenerate hierarchy (DH).

Although the neutrino masses can hardly be measured by particle physics experiments, they can be effectively constrained by the cosmological observations. This is because massive neutrinos can exert some impacts on the evolution of the universe. Using the current cosmological observations, an upper limit on the total neutrino mass $\sum m_\nu$ can be obtained. So far, the most stringent limit on the total neutrino mass comes from the Planck 2018 CMB observation, and the combination CMB+BAO+SN gives the 95% CL upper limit $\sum m_\nu < 0.12$ eV, for the DH case in the ΛCDM model. See e.g. Refs. [144–181] for studies on neutrino mass in cosmology.

In a recent forecast [138], it was shown that the standard sirens observed by the ET can be used to improve the constraints on the total neutrino mass in the ΛCDM model. Using 1000 GW standard siren data points of the BNS merger events, it is found that the upper limits on $\sum m_\nu$ can be tightened by about 10% [138]. However, weighing neutrinos in cosmology depends on the cosmological model considered, and thus one would be curious about whether the role the GW data play in helping measure the neutrino mass will change if an extension to the ΛCDM model is considered. In this work, we consider the IDE models, and we wish to see what will happen on measuring neutrino mass when the IDE models are considered.

In an IDE model, the energy conservation equations for dark energy and CDM satisfy

$$\dot{\rho}_{de} = -3H(1 + w)\rho_{de} + Q,$$
$$\dot{\rho}_c = -3H\rho_c - Q,$$

where Q is the energy transfer rate, ρ_{de} and ρ_c represent the energy densities of dark energy and CDM, respectively. H is the Hubble parameter, and a dot represents the derivative with respect to the cosmic time t. In this work, we consider the interaction form of $Q = \beta H\rho_c$, where β is a dimensionless coupling parameter. Here, $\beta > 0$ and $\beta < 0$ means CDM decaying into dark energy and dark energy decaying into CDM, respectively.

In this work, we consider the IDE versions of the ΛCDM and wCDM models, which are called the IΛCDM and IwCDM models. We will discuss the cosmological parameter estimation in the IΛCDM+$\sum m_\nu$ and IwCDM+$\sum m_\nu$ models. Moreover, we will consider the three neutrino mass hierarchy cases, i.e., the NH, IH, DH cases. To avoid the perturbation divergence problem in the IDE models, in this work we employ the extended parameterized post-Friedmann (ePPF) framework [182, 183] to calculate the perturbations of dark energy.

We simulate the GW standard siren data observed by ET and CE, and we use these simulated GW data
to investigate how well they can be used to improve the constraints on the neutrino mass as well as other cosmological parameters on the basis of the current CMB+BAO+SN constraints.

The rest of this paper is organized as follows. In Sec. II A, we introduce the methods of simulating the GW standard siren data. In Sec. II B we describe the EM cosmological observations used in this work. In Sec. II C, we briefly describe the methods of constraining cosmological parameters. In Sec. III, we give the constraint results and make some relevant discussions. The conclusion is given in Sec. IV.

II. METHOD AND DATA

In this section, we first introduce the method of simulating the GW standard siren data from ET and CE. Then, we describe the current mainstream EM cosmological observations used in this work. Finally, we briefly introduce the method of constraining cosmological parameters.

A. Simulation of the GW standard sirens

The primary GW sources in the detection frequency band of the ground-based GW detectors are the mergers of BNS, binary stellar-mass black hole (BBH), and so on. The BNS mergers could produce rich EM signals [184] that can be detected by the EM observatories, thus enabling precise redshift measurements. Owing to the fact that there are no EM signals produced in the process of the BBH mergers, their redshifts could not be precisely measured through the detection of the EM counterparts. Hence, in this work, we only simulate the GW standard sirens from the BNS mergers.

Following Refs. [107, 185], the redshift distribution of the BNS mergers takes the form

$$P(z) \propto \frac{4\pi d_c^2(z)R(z)}{H(z)(1+z)},$$

where $d_c(z)$ is the comoving distance at the redshift z, and $R(z)$ represents the redshift evolution of the burst rate, which takes the form [107, 186, 187]

$$R(z) = \begin{cases}
1 + 2z, & z \leq 1, \\
\frac{2}{3}(5-z), & 1 < z < 5, \\
0, & z \geq 5.
\end{cases}$$

In Fig. 1, we show the redshift distribution of BNS mergers.

Considering the transverse-traceless gauge, the strain $h(t)$ in the GW interferometers can be described by two independent polarization amplitudes, $h_+(t)$ and $h_\times(t)$,

$$h(t) = F_+(\theta, \phi, \psi)h_+(t) + F_\times(\theta, \phi, \psi)h_\times(t),$$

where F_+ and F_\times are the antenna response functions, θ and ϕ describe the location of the GW source relative to the GW detector, and ψ is the polarization angle.

The antenna response functions of ET are [185]

$$F_+^{(1)}(\theta, \phi, \psi) = \frac{\sqrt{3}}{2} \left[\frac{1}{2} \left(1 + \cos^2(\theta) \right) \cos(2\phi) \cos(2\psi) - \cos(\theta) \sin(2\phi) \sin(2\psi) \right],$$

$$F_+^{(1)}(\theta, \phi, \psi) = \frac{\sqrt{3}}{2} \left[\frac{1}{2} \left(1 + \cos^2(\theta) \right) \cos(2\phi) \sin(2\psi) + \cos(\theta) \sin(2\phi) \cos(2\psi) \right].$$

Since ET has three interferometers with 60° inclined angles between each other, the other two response functions are $F_+^{(2)}(\theta, \phi, \psi) = F_+^{(1)}(\theta, \phi + 2\pi/3, \psi)$ and $F_+^{(3)}(\theta, \phi, \psi) = F_+^{(1)}(\theta, \phi + 4\pi/3, \psi)$.

For CE, the antenna response functions are

$$F_+(\theta, \phi, \psi) = \frac{1}{2} \left(1 + \cos^2(\theta) \right) \cos(2\phi) \cos(2\psi) - \cos(\theta) \sin(2\phi) \sin(2\psi),$$

$$F_+(\theta, \phi, \psi) = \frac{1}{2} \left(1 + \cos^2(\theta) \right) \cos(2\phi) \sin(2\psi) + \cos(\theta) \sin(2\phi) \cos(2\psi).$$

We consider the waveform in the inspiralling stage for a non-spinning BNS system. Here we adopt the restricted post-Newtonian (PN) approximation and calculate the waveform to the 3.5 PN order [188, 189],

$$h(f) = A f^{-7/6} \exp[i(2\pi f t_c - \pi/4 - 2\psi_c + 2\Psi(f/2) - \varphi_{(2,0)})].$$
where the Fourier amplitude A is given by
\[A = \frac{1}{d_L} \sqrt{F_2^2 (1 + \cos^2(\ell))^2 + 4F_\infty^2 \cos^2(\ell)} \times \sqrt{\frac{5\pi}{96\pi^{-7/6}M_c^{5/6}}} \]
where $M_c = (1 + z)M\eta^{3/5}$ is the observed chirp mass, $M = m_1 + m_2$ is the total mass of the coalescing binary system with m_1 and m_2 being the component masses, $\eta = m_1m_2/M^2$ is the symmetric mass ratio, d_L is the luminosity distance to the GW source, ℓ is the inclination angle between the binary’s orbital angular momentum and the line of sight, t_c is the coalescence time, and ψ_c is the coalescence phase. The definitions of the functions Φ and $\varphi_{(2,0)}$ can refer to Refs. [188, 189].

The signal-to-noise ratio (SNR) for the network of N (i.e., $N = 3$ for ET and $N = 1$ for CE) independent interferometers can be calculated by
\[\rho = \sqrt{\sum_{i=1}^{N} (\rho(i))^2} \],
where $\rho(i) = \sqrt{\langle h(i), h(i) \rangle}$. The inner product is defined as
\[\langle a, b \rangle = 4 \int_{f_{\text{lower}}}^{f_{\text{upper}}} \frac{a(f)b^*(f) + a^*(f)b(f)}{2} \frac{df}{S_n(f)} \]
where f_{lower} is the lower cutoff frequency ($f_{\text{lower}} = 1$ Hz for ET and $f_{\text{lower}} = 5$ Hz for CE), $f_{\text{upper}} = 2/(6^{3/2}2\pi M_{\text{obs}})$ is the frequency at the last stable orbit with $M_{\text{obs}} = (m_1 + m_2)(1 + z)$ [185], and $S_n(f)$ is the one-side noise power spectral density (PSD). We adopt PSD of ET from Ref. [190] and that of CE from Ref. [191]. In this work, we choose the threshold of SNR to be 8 in our simulation.

For the 3G ground-based GW detectors, a few $\times 10^5$ BNS merger events per year could be detected, but only about 0.1% of them may have γ-ray bursts toward us [192]. Recently, in Ref. [193] Chen et al. made a forecast and showed that 910 GW standard sirens could be observed by a 10-year observation of CE and Swift++. Therefore, in our forecast in the present work, for ET and CE, we simulate 1000 GW standard sirens from BNS mergers based on the 10-year observation.

We consider three measurement errors of d_L, consisting of the instrumental error $\sigma^\text{inst}_{d_L}$, the weak-lensing error $\sigma^\text{lens}_{d_L}$, and the peculiar velocity error $\sigma^\text{pv}_{d_L}$. Therefore, the total error of d_L is
\[\sigma_{d_L} = \sqrt{(\sigma^\text{inst}_{d_L})^2 + (\sigma^\text{lens}_{d_L})^2 + (\sigma^\text{pv}_{d_L})^2} \]

We first use the Fisher information matrix to calculate $\sigma^\text{inst}_{d_L}$. For a GW event, when using Fisher information matrix to estimate $\sigma^\text{inst}_{d_L}$, we consider a 9×9 Fisher information matrix consisting of nine parameters of a GW source $(d_L, M_c, \eta, \theta, \phi, \iota, t_c, \psi_c, \psi)$, and thus the correlations between the nine parameters are considered in the analysis. For a network of N independent interferometers, the Fisher information matrix can be written as
\[F_{ij} = \left\langle \frac{\partial h(f)}{\partial \theta_i}, \frac{\partial h(f)}{\partial \theta_j} \right\rangle, \]
with h given by
\[h(f) = [\tilde{h}_1(f), \tilde{h}_2(f), \ldots, \tilde{h}_N(f)], \]
where θ_i denotes nine parameters $(d_L, M_c, \eta, \theta, \phi, \iota, t_c, \psi_c, \psi)$ for a GW event. Then we have
\[\Delta \theta_i = \sqrt{(F^{-1})_{ii}}, \]
where F_{ij} is the total Fisher information matrix for the network of N interferometers. Note that here $\sigma^\text{inst}_{d_L} = \Delta \theta_1$.

The error caused by weak lensing is adopted from Refs. [194, 195],
\[\sigma^\text{lens}_{d_L}(z) = F_{\text{delens}}(z) \times d_L(z) \times 0.066 \left[1 - (1 + z)^{-0.25} \right]^{1.8} \]
Here, we consider a delensing factor F_{delens}. We use dedicated matter surveys along the line of sight of the GW event in order to estimate the lensing magnification distribution, which can remove part of the uncertainty due to weak lensing. This reduces the weak lensing uncertainty. The delensing factor is given by
\[F_{\text{delens}}(z) = 1 - \frac{0.3}{\pi/2} \arctan \left(\frac{z}{0.073} \right). \]

The error caused by the peculiar velocity of the GW source is given by [196]
\[\sigma^\text{pv}_{d_L}(z) = d_L(z) \times \left[1 + \frac{c(1+z)^2}{H(z)d_L(z)} \frac{\sqrt{\langle v^2 \rangle}}{c} \right], \]
where $H(z)$ is the Hubble parameter. $\sqrt{\langle v^2 \rangle}$ is the peculiar velocity of the GW source and we roughly set $\sqrt{\langle v^2 \rangle} = 500$ km s$^{-1}$.

For each simulated GW source, the sky location, the binary inclination, the coalescence phase, and the polarization angle are randomly chosen in the ranges of $\cos \theta \in [-1, 1]$, $\phi \in [0, 360^\circ]$, $\iota \in [0, 20^\circ]$, $\psi_c \in [0, 360^\circ]$, and $\psi \in [0, 360^\circ]$. The mass of an NS is randomly chosen in the range of $[1, 2] M_\odot$. Without loss of generality, the merger time is chosen to $t_c = 0$ in our analysis. Here we wish to note that the inclination angle should be randomly chosen in the range of $\cos \iota \in [-1, 1]$ when simulating isotropic GW sources. However, in this work, we simulate GW events by detecting short γ-ray bursts (SGRBs) to determine sources’ redshifts. Owing to the fact that SGRBs are strongly beamed [197], the
detectable inclination angle is about $\iota \leq 20^\circ$ [192, 198]. Hence, in the present work, we set the inclination angle to be in the range of $[0, 20^\circ]$. This is an ideal treatment, but for this work, since the number of simulated GW standard sirens is fixed, it has little effect on showing the impact of GW standard sirens on breaking cosmological parameter degeneracies and improving constraints on the cosmological parameters.

In Fig. 2, we show the σ_{dL}/d_L scatter plot of the simulated standard siren data from ET (upper panel) and CE (lower panel). We can see that: (i) the total errors of d_L from CE are smaller than those from ET; (ii) SNR of CE is higher than that of ET at the same redshift.

In Fig. 3, we show the simulated GW standard sirens from ET and CE. In the left panel, we show the standard siren data points without Gaussian randomness, where the central value of the luminosity distance is calculated by the fiducial cosmological model. In the right panel, in order to reflect the fluctuations in measured values resulting from actual observations, we show the standard siren data points with Gaussian randomization (the central values are populated according to a Gaussian distribution with mean being d_L and standard deviation being σ_{dL}). In principle, the right panel is more representative of actual observational data, but the central values of d_L have no effect on determining the absolute errors of cosmological parameters. Therefore, we use the data points in the left panel to constrain the cosmological models, because this is more helpful in investigating how the parameter degeneracies are broken to improve measurement precisions of cosmological parameters. We can clearly see that the measurement errors of d_L from CE are smaller than those from ET, because CE has a better sensitivity than ET.

B. Other cosmological observations

In this work, we consider three current mainstream EM cosmological observations, including CMB, BAO, and SN. For the CMB data, we consider the Planck TT, TE, EE spectra at $\ell \geq 30$, the low-ℓ temperature Commander likelihood, and the low-ℓ SimAll EE likelihood from the Planck 2018 release [1]. For the BAO data, we consider the measurements from 6dFGS ($z_{\text{eff}} = 0.106$) [199], SDSS-MGS ($z_{\text{eff}} = 0.15$) [200], and BOSS DR12 ($z_{\text{eff}} = 0.38, 0.51, \text{and } 0.61$) [201]. For the SN data, we use the latest Pantheon sample, which is comprised of 1048 data points from the Pantheon compilation [202].

C. Method of constraining cosmological parameters

To resolve the large-scale instability problem in the IDE cosmology [203], we apply the ePPF approach [182, 183] for the IDE scenario so that the whole parameter space of IDE models can be explored without any divergence of the dark-energy perturbation. In this work, we employ the modified version of the available Markov-Chain Monte Carlo package CosmoMC [204], with the ePPF code [182, 183] inserted, to constrain the neutrino mass and other cosmological parameters. In order to show the impacts of GW data difficult to visually compare SNRs of the two detectors from the figure.

\[\log(\sigma_{dL}/d_L) \]

FIG. 2: Distribution of σ_{dL}/d_L as a function of redshift. The color indicates SNR of the simulated GW standard sirens. Upper: 1000 GW standard sirens from a 10-year observation of ET. Lower: 1000 GW standard sirens from a 10-year observation of CE.

\[\log(\sigma_{dL}/d_L) \]

1 Here we wish to note that in the colorbars of Fig. 2, we set the maximum value to be 50, i.e., a GW event with SNR greater than 50 has the same color as the GW event with SNR of 50. In fact, many red dots have SNRs greater than 50, e.g., SNR at $z = 0.146$ for ET is 105.9, while for CE is 158.2. The reason of the design is that we can better highlight the comparison between ET and CE from the figure. If we set the maximal value of SNR higher (to about 100), almost all the data points are in blue, so it is
from CE and ET on constraining cosmological parameters, we use CMB+BAO+SN, CMB+BAO+SN+ET, and CMB+BAO+SN+CE to make our analysis. For convenience, we use CBS to standard for CMB+BAO+SN in the following.

For the GW standard siren observation with N data points, the χ^2 function can be written as

$$\chi^2_{GW} = \sum_{i=1}^{N} \left(\frac{d^i_L - d_L(z_i; \bar{\Omega})}{\sigma^i_{d_L}} \right)^2,$$

(19)

where z_i, d^i_L, and $\sigma^i_{d_L}$ are the ith GW event’s redshift, luminosity distance, and the measurement error of the luminosity distance, respectively. $\bar{\Omega}$ represents the set of cosmological parameters.

When considering the combination of the current EM observations and the GW standard siren observations, the total χ^2 function is

$$\chi^2_{tot} = \chi^2_{CMB} + \chi^2_{BAO} + \chi^2_{SN} + \chi^2_{GW}.$$

(20)

III. RESULTS AND DISCUSSION

In this section, we report the constraint results of cosmological parameters in the ΛCDM+$\sum m_\nu$, ΛCDM+$\sum m_\nu$, and ΛCDECDM+$\sum m_\nu$ models. In these models, the three mass hierarchy cases of neutrinos, i.e., the NH, IH, and DH cases, have been considered. The constraint results of the NH case are shown as a representative in Figs. 4–6 and the constraint results are summarized in Tables I–III. Note that for the constraints on the total neutrino mass, the 2σ upper limits are given.

Note also that using the squared mass differences derived from the neutrino oscillation experiments, one can obtain the lower limits on the total neutrino mass, i.e., 0.05 eV for NH and 0.1 eV for IH; in the case of DH, the smallest value of the total neutrino mass is zero. For a parameter ξ, we use $\sigma(\xi)$ and $\varepsilon(\xi)$ to represent its absolute and relative errors, respectively, with $\varepsilon(\xi)$ defined as $\varepsilon(\xi) = \sigma(\xi)/\xi$.

We first take a look at the results in the ΛCDM+$\sum m_\nu$ model. In Fig. 4, we show the constraints on the ΛCDM+$\sum m_\nu$ model in the $\sum m_\nu$–H_0 and Ω_m–H_0 planes from the CBS, CBS+ET, and CBS+CE data. We find that the addition of the GW data to the CBS data could lead to the reduction of the upper limits of $\sum m_\nu$ to some extent. The CBS+CE data give slightly smaller upper limits on $\sum m_\nu$ than those from the CBS+ET data. Concretely, when adding the ET data to the CBS data, the upper limits on $\sum m_\nu$ could be reduced by 2.7%–12.4% in the three hierarchy cases. While for CE, the upper limits on $\sum m_\nu$ could be reduced by 4.3%–14.0% in the three hierarchy cases. Here the results of ET are consistent with the previous results in Ref. [138].

Although using the GW data could only slightly improve the limits on the neutrino mass, they can significantly help improve the constraints on other cosmological parameters. We find that the constraints on Ω_m and H_0 could be improved by 29.0%–32.8% and 30.4%–34.7%, respectively, when adding the ET data to the CBS data, and by 40.3%–43.8% and 43.5%–46.9%, respectively, for the case of CE.

In Fig. 5, we show the constraints on the ΛCDM+$\sum m_\nu$ model in the $\sum m_\nu$–β and Ω_m–H_0 planes from the CBS, CBS+ET, and CBS+CE data. We can clearly see that, when considering the interaction be-
FIG. 4: Two-dimensional marginalized contours (68.3% and 95.4% confidence level) in the $\sum m_\nu-H_0$ and Ω_m-H_0 planes using the CBS, CBS+ET, and CBS+CE data. Here CBS stands for CMB+BAO+SN.

FIG. 5: Two-dimensional marginalized contours (68.3% and 95.4% confidence level) in the $\sum m_\nu-\beta$ and Ω_m-H_0 planes using the CBS, CBS+ET, and CBS+CE data. Here CBS stands for CMB+BAO+SN.

twixt vacuum energy and dark matter, the improvement of the limits on $\sum m_\nu$ by adding GW data is rather not evident. In the case of ET, the improvement of the limit on $\sum m_\nu$ is only 0.7%–1.8%, and in the case of CE, the improvement is 1.8%–4.1%. Therefore, we find that compared with the standard ΛCDM model, in its interaction version, the ΛCDM model, the improvement of the limits on $\sum m_\nu$ by GW data from ET and CE becomes weaker. This is because the ΛCDM model considers an extra cosmological parameter β compared with the ΛCDM model, which will degenerate with other cosmological parameters when the CBS data are used to constrain the ΛCDM model. Hence, compared with the ΛCDM model, the addition of the GW data to the CBS
FIG. 6: Two-dimensional marginalized contours (68.3% and 95.4% confidence level) in the $\sum m_\nu - w$ and $w-\beta$ planes using the CBS, CBS+ET, and CBS+CE data. Here CBS stands for CMB+BAO+SN.

TABLE I: The absolute and relative errors of cosmological parameters in the ΛCDM+$\sum m_\nu$ model using the CBS, CBS+ET, and CBS+CE data. Note that H_0 is in units of km s$^{-1}$ Mpc$^{-1}$ and CBS stands for CMB+BAO+SN. Here, 2σ upper limits on $\sum m_\nu$ are given.

Parameter	NH	IH	DH	NH	IH	DH	NH	IH	DH
$\sigma(\Omega_m)$	0.0062	0.0064	0.0044	0.0044	0.0043	0.0036	0.0037	0.0036	
$\sigma(H_0)$	0.47	0.46	0.49	0.47	0.46	0.47	0.47	0.47	
$\varepsilon(\Omega_m)$	1.98%	1.97%	2.07%	1.41%	1.40%	1.39%	1.15%	1.18%	1.16%
$\varepsilon(H_0)$	0.70%	0.68%	0.72%	0.47%	0.48%	0.47%	0.39%	0.39%	0.38%
$\sum m_\nu$ [eV]	< 0.156	< 0.184	< 0.121	< 0.146	< 0.179	< 0.106	< 0.144	< 0.176	< 0.104

TABLE II: The absolute and relative errors of cosmological parameters in the IΛCDM+$\sum m_\nu$ model using the CBS, CBS+ET, and CBS+CE data. Note that H_0 is in units of km s$^{-1}$ Mpc$^{-1}$ and CBS stands for CMB+BAO+SN. Here, 2σ upper limits on $\sum m_\nu$ are given.

Parameter	NH	IH	DH	NH	IH	DH	NH	IH	DH
$\sigma(\Omega_m)$	0.0081	0.0082	0.0081	0.0046	0.0045	0.0046	0.0037	0.0037	0.0037
$\sigma(H_0)$	0.65	0.65	0.65	0.35	0.35	0.36	0.27	0.27	0.27
$\sigma(\beta)$	0.0013	0.0013	0.0013	0.0010	0.0010	0.0010	0.0006	0.0006	0.0010
$\varepsilon(\Omega_m)$	2.62%	2.65%	2.65%	1.49%	1.46%	1.50%	1.20%	1.20%	1.20%
$\varepsilon(H_0)$	0.96%	0.96%	0.96%	0.52%	0.52%	0.53%	0.40%	0.40%	0.40%
$\sum m_\nu$ [eV]	< 0.191	< 0.224	< 0.148	< 0.188	< 0.220	< 0.147	< 0.187	< 0.220	< 0.142
data for its interaction version leads to weaker improvement.

We also find that the constraints on the coupling parameter β can be improved by using the GW data to a certain extent. In the IwCDM+$\sum m_\nu$ model, the constraints on β are improved by $19.2\%–20.8\%$ and $22.3\%–26.2\%$, respectively, when the GW data of ET and CE are added on the basis of the CBS case.

In Fig. 6, we show the constraints on the IwCDM+$\sum m_\nu$ model in the $\sum m_\nu-w$ and $w-\beta$ planes from the CBS, CBS+ET, and CBS+CE data. We find that in this case the improvement of the limits on the neutrino mass is better than in the previous case. For ET, the improvement of the limit on $\sum m_\nu$ is $2.0\%–5.4\%$, and for CE, the improvement is $5.3\%–8.7\%$.

We find that in this case the constraints on the coupling parameter β and the EoS parameter of dark energy w can both be significantly improved by considering the addition of GW data. The constraints on β and w are improved by $2.4\%–8.0\%$ and $10.8\%–12.2\%$, respectively, when considering the ET data, and by $7.1\%–10.2\%$ and $18.9\%–21.1\%$, respectively, when considering the CE data.

In this work, we discuss the cosmological constraints on the IDE models in the cases of considering the GW standard siren observations from 3G ground-based GW detectors ET and CE. The results show that the limits on the neutrino mass can only be slightly improved with the help of the GW data, on the basis of the CBS constraint. Since the GW data can precisely constrain the Hubble constant H_0, the addition of them in the cosmological fit can help break the cosmological parameter degeneracies formed by other cosmological observations. Therefore, the consideration of GW standard siren data can help significantly improve the constraints on the most cosmological parameters. However, the effect of massive neutrinos in the late universe and on the large scales cannot be distinctively distinguished from that of the cold dark matter, leading to the improvement of the limits on the neutrino mass by considering GW data is not obvious. Anyway, even though the impact on constraining the neutrino mass is not apparent, the GW standard sirens are rather useful in helping improve the constraints on the most cosmological parameters including the EoS of dark energy and the coupling between dark energy and dark matter.

IV. CONCLUSION

In the era of 3G ground-based GW detectors, a lot of GW standard siren data with the know redshifts could be obtained by the multi-messenger observation for BNS merger events. Obviously, these standard sirens would exert great impacts on the cosmological parameter estimation. Since the GW standard sirens can tightly constrain the Hubble constant, the consideration of them in a joint cosmological fit can lead to the cosmological parameter degeneracies formed by other cosmological observations being well broken. The GW standard sirens can thus be used to help significantly improve the constraints on cosmological parameters in the future.

It is of great interest to investigate whether the limits on the total neutrino mass can also be effectively improved by considering the GW standard siren data. In particular, the cosmological constraints on the neutrino mass are strongly model-dependent, and so the cases in different cosmological scenarios are needed to be detailedly discussed. In this work, we discuss the issue of weighing neutrinos in the IDE models by using the GW standard siren observations by ET and CE.

We consider the simplest IDE models, namely the IACDM and IwCDM models with $Q = \beta H \rho_c$. We simulate the GW standard siren data of the BNS mergers...
observed by ET and CE (in a way of multi-messenger detection). We investigate whether the GW standard sirens observed by ET and CE could help improve the constraint on the neutrino mass in the IDE models.

It is found that the GW standard siren observations from ET and CE can only slightly improve the constraint on the neutrino mass in the IDE models, compared to the current limit given by CMB+BAO+SN. This is mainly because the effect of massive neutrinos in the late universe and on the large scales cannot be distinctively distinguished from that of the CDM, leading to the improvement of the limits on the neutrino mass by considering GW data is not obvious. Although the limit on neutrino mass can only be slightly updated by considering the GW standard sirens observed by ET and CE (in a way of multi-messenger detection), we investigate whether the GW standard sirens, they are fairly useful in helping improve the constraints on the most cosmological parameters including the EoS of dark energy and the coupling between dark energy and dark matter.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grants Nos. 11975072, 11835009, 11875102, and 11690021), the Liaoning Revitalization Talents Program (Grant No. XLYC1905011), the Fundamental Research Funds for the Central Universities (Grant No. N2005030), the National 111 Project of China (Grant No. B16009), and the Science Research Grants from the China Manned Space Project (Grant No. CMS-CSST-2021-B01).

[1] N. Aghanim et al. (Planck), Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641, A6 (2020), arXiv:1807.06209 [astro-ph.CO].
[2] A. G. Riess, S. Casertano, W. Yuan, L. M. Macri, and D. Scolnic, Large Magellanic Cloud Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics beyond ΛCDM, Astrophys. J. 876, 85 (2019), arXiv:1903.07603 [astro-ph.CO].
[3] A. G. Riess, The Expansion of the Universe is Faster than Expected, Nature Rev. Phys. 2, 10 (2019), arXiv:2001.03624 [astro-ph.CO].
[4] L. Verde, T. Treu, and A. G. Riess, Tensions between the Early and the Late Universe, Nature Astron. 3, 891 (2019), arXiv:1907.10625 [astro-ph.CO].
[5] M. Li, X.-D. Li, Y.-Z. Ma, X. Zhang, and Z. Zhang, Planck Constraints on Holographic Dark Energy, JCAP 09, 021, arXiv:1305.5302 [astro-ph.CO].
[6] J.-F. Zhang, Y.-H. Li, and X. Zhang, Sterile neutrinos help reconcile the observational results of primordial gravitational waves from Planck and BICEP2, Phys. Lett. B 740, 359 (2015), arXiv:1403.7028 [astro-ph.CO].
[7] L.-Y. Gao, Z.-W. Zhao, S.-S. Xue, and X. Zhang, Relieving the H 0 tension with a new interacting dark energy model, JCAP 07, 005, arXiv:2101.10714 [astro-ph.CO].
[8] R.-G. Cai, Editorial, Sci. China Phys. Mech. Astron. 63, 290401 (2020).
[9] R.-G. Cai, Z.-K. Guo, L. Li, S.-J. Wang, and W.-W. Yu, Chameleon dark energy can resolve the Hubble tension, Phys. Rev. D 103, 121302 (2021), arXiv:2102.02020 [astro-ph.CO].
[10] M.-M. Zhao, D.-Z. He, J.-F. Zhang, and X. Zhang, Search for sterile neutrinos in holographic dark energy cosmology: Reconciling Planck observation with the local measurement of the Hubble constant, Phys. Rev. D 96, 043520 (2017), arXiv:1703.08456 [astro-ph.CO].
[11] R.-Y. Guo, J.-F. Zhang, and X. Zhang, Can the H 0 tension be resolved in extensions to ΛCDM cosmology?, JCAP 02, 054, arXiv:1809.02340 [astro-ph.CO].
[12] R.-Y. Guo, J.-F. Zhang, and X. Zhang, Inflation model selection revisited after a 1.91% measurement of the Hubble constant, Sci. China Phys. Mech. Astron. 63, 290406 (2020), arXiv:1910.13944 [astro-ph.CO].
[13] W. Yang, S. Pan, E. Di Valentino, R. C. Nunes, S. Vagnozzi, and D. F. Mota, Tale of stable interacting dark energy, observational signatures, and the H 0 tension, JCAP 09, 019, arXiv:1805.08252 [astro-ph.CO].
[14] S.-F. Yan, P. Zhang, J.-W. Chen, X.-Z. Zhang, Y.-F. Cai, and E. N. Saridakis, Interpreting cosmological tensions from the effective field theory of torsional gravity, Phys. Rev. D 101, 121301 (2020), arXiv:1909.06388 [astro-ph.CO].
[15] S. Vagnozzi, New physics in light of the H 0 tension: An alternative view, Phys. Rev. D 102, 023518 (2020), arXiv:1907.07569 [astro-ph.CO].
[16] E. Di Valentino, A. Melchiorri, O. Mena, and S. Vagnozzi, Nonminimal dark sector physics and cosmological tensions, Phys. Rev. D 101, 063502 (2020), arXiv:1910.09853 [astro-ph.CO].
[17] E. Di Valentino, A. Melchiorri, O. Mena, and S. Vagnozzi, Interacting dark energy in the early 2020s: A promising solution to the H 0 and cosmic shear tensions, Phys. Dark Univ. 30, 100666 (2020), arXiv:1908.04281 [astro-ph.CO].
[18] M. Liu, Z. Huang, X. Luo, H. Miao, N. K. Singh, and L. Huang, Can Non-standard Recombination Resolve the Hubble Tension?, Sci. China Phys. Mech. Astron. 63, 290405 (2020), arXiv:1912.00190 [astro-ph.CO].
[19] X. Zhang and Q.-G. Huang, Measuring H 0 from low-z datasets, Sci. China Phys. Mech. Astron. 63, 290402 (2020), arXiv:1911.09439 [astro-ph.CO].
[20] Q. Ding, T. Nakama, and Y. Wang, A gigaparsec-scale local void and the Hubble tension, Sci. China Phys. Mech. Astron. 63, 290403 (2020), arXiv:1912.12600 [astro-ph.CO].
[21] L. Feng, D.-Z. He, H.-L. Li, J.-F. Zhang, and X. Zhang, Constraints on active and sterile neutrinos in an interacting dark energy cosmology, Sci. China Phys. Mech. Astron. 63, 290404 (2020), arXiv:1910.03872 [astro-ph.CO].
[22] M.-X. Lin, W. Hu, and M. Raveri, Testing H 0 in Acous-
L.-F. Wang, J.-H. Zhang, D.-Z. He, J.-F. Zhang, and S. Vagnozzi, Consistency tests of ΛCDM from the early Universe, Sci. China Phys. Mech. Astron. 63, 270431 (2020), arXiv:2002.00572 [astro-ph.CO].

H. Li and X. Zhang, A novel method of measuring cosmological distances using broad-line regions of quasars, Sci. Bull. 65, 1419 (2020), arXiv:2005.10458 [astro-ph.CO].

A. Hryczuk and K. Jodlowksi, Self-interacting dark matter from late decays and the H0 tension, Phys. Rev. D 102, 043024 (2020), arXiv:2006.16139 [hep-ph].

L.-F. Wang, J.-H. Zhang, D.-Z. He, J.-F. Zhang, and X. Zhang, Constraints on interacting dark energy models from time-delay cosmography with seven lensed quasars, (2021), arXiv:2102.09331 [astro-ph.CO].

S. Vagnozzi, F. Pacucci, and A. Loeb, Implications for cosmic Dark Energy with Planck and ACT Polarization, Phys. Rev. D 104, 063524 (2021), arXiv:2105.10425 [astro-ph.CO].

E. Di Valentino, O. Menas, S. Pan, L. Visinelli, W. Yang, A. Melchiorri, D. F. Mota, A. G. Riess, and J. Silk, In the realm of the Hubble tension—a review of solutions, Class. Quant. Grav. 38, 153001 (2021), arXiv:2103.01183 [astro-ph.CO].

S. Vagnozzi, Consistency tests of ACDM from the early integrated Sachs-Wolfe effect: Implications for early-time new physics and the Hubble tension, Phys. Rev. D 104, 063524 (2021), arXiv:2105.10425 [astro-ph.CO].

E. V. Linder, The paths of quintessence, Phys. Rev. D 73, 063010 (2006), arXiv:astro-ph/0601052.

X. Zhang and F.-Q. Wu, Constraints on holographic dark energy from Type Ia supernova observations, Phys. Rev. D 72, 043524 (2005), arXiv:astro-ph/0506310.

X. Zhang, Dynamical vacuum energy, holographic quintom, and the reconstruction of scalar-field dark energy, Phys. Rev. D 74, 103505 (2006), arXiv:astro-ph/0609699.
B. F. Schutz, Determining the Hubble Constant from gravitational-wave standard sirens, Astrophys. J. 629, 15 (2005), arXiv:astro-ph/0504616.

ET, https://www.et-gw.eu/.

M. Punturo et al., The Einstein Telescope: A third-generation gravitational wave observatory, Class. Quant. Grav. 27, 194002 (2010).

CE, https://cosmicexplorer.org/.

B. P. Abbott et al. (LIGO Scientific), Exploring the Sensitivity of Next Generation Gravitational Wave Detectors, Class. Quant. Grav. 34, 044001 (2017), arXiv:1607.08697 [astro-ph.IM].

R.-G. Cai and T. Yang, Estimating cosmological parameters by the simulated data of gravitational waves from the Einstein Telescope, Phys. Rev. D 95, 044024 (2017), arXiv:1608.08008 [astro-ph.CO].

R.-G. Cai, T.-B. Liu, X.-W. Liu, S.-J. Wang, and T. Yang, Probing cosmic anisotropy with gravitational waves as standard sirens, Phys. Rev. D 97, 103005 (2018), arXiv:1712.00952 [astro-ph.CO].

R.-G. Cai and T. Yang, Standard sirens and dark sector with Gaussian process, EPJ Web Conf. 168, 01008 (2018), arXiv:1709.00837 [astro-ph.CO].

X. Zhang, Gravitational wave standard sirens and cosmological parameter measurement, Sci. China Phys. Mech. Astron. 62, 110431 (2019), arXiv:1905.11122 [astro-ph.CO].

W. Zhao, B. S. Wright, and B. Li, Constraining the time variation of Newton’s constant G with gravitational-wave standard sirens and supernovae, JCAP 10, 052 (2019), arXiv:1907.09376 [astro-ph.CO].

M. Du, W. Yang, L. Xu, S. Pan, and D. F. Mota, Future constraints on dynamical dark-energy using gravitational-wave standard sirens, Phys. Rev. D 100, 043535 (2019), arXiv:1812.01440 [astro-ph.CO].

Y.-F. Cai, C. Li, E. N. Saridakis, and L. Xue, f(T) gravity after GW170817 and GRB170817A, Phys. Rev. D 97, 103513 (2018), arXiv:1801.05827 [gr-qc].

W. Yang, S. Pan, E. Di Valentino, B. Wang, and A. Wang, Forecasting interacting vacuum-energy models using gravitational waves, JCAP 05, 050 (2019), arXiv:1904.11980 [astro-ph.CO].

W. Yang, S. Vagnozzi, E. Di Valentino, R. C. Nunes, S. Pan, and D. F. Mota, Listening to the sound of dark sector interactions with gravitational wave standard sirens, JCAP 07, 037 (2019), arXiv:1905.08286 [astro-ph.CO].

R. R. A. Bachega, A. A. Costa, E. Abdalla, and K. S. F. Fornazier, Forecasting the Interaction in Dark Matter-Dark Energy Models with Standard Sirens From the Einstein Telescope, JCAP 05, 021 (2019), arXiv:1906.08909 [astro-ph.CO].

Z. Chang, Q.-G. Huang, S. Wang, and Z.-C. Zhao, Low-redshift constraints on the Hubble constant from the baryon acoustic oscillation “standard rulers” and the gravitational wave “standard sirens”, Eur. Phys. J. C 79, 177 (2019).

J.-h. He, Accurate method to determine the systematics due to the peculiar velocities of galaxies in measuring the Hubble constant from gravitational-wave standard sirens, Phys. Rev. D 100, 023527 (2019), arXiv:1903.11254 [astro-ph.CO].

T. Liu, X. Zhang, and W. Zhao, Constraining f(R) gravity in solar system, cosmology and binary pulsar systems, Phys. Lett. B 777, 286 (2018), arXiv:1711.08991 [astro-ph.CO].

E. Berti, K. Yagi, and N. Yunes, Extreme Gravity Tests with Gravitational Waves from Compact Binary Coa-
lescences: (I) Inspiral-Merger, Gen. Rel. Grav. 50, 46 (2018), arXiv:1801.03208 [gr-qc].

[121] T. Liu, X. Zhang, W. Zhao, K. Lin, C. Zhang, S. Zhang, X. Zhao, T. Zhu, and A. Wang, Waveforms of compact binary inspiral gravitational radiation in screened modified gravity, Phys. Rev. D 98, 083023 (2018), arXiv:1806.05674 [gr-qc].

[122] C. M. Will, Testing scalar - tensor gravity with gravitational wave observations of inspiraling compact binaries, Phys. Rev. D 50, 6058 (1994), arXiv:gr-qc/9406022.

[123] Z.-W. Zhao, L.-F. Wang, J.-F. Zhang, and X. Zhang, Prospects for improving cosmological parameter estimation with gravitational-wave standard sirens from Taiji, Sci. Bull. 65, 1340 (2020), arXiv:1912.11629 [astro-ph.CO].

[124] L.-F. Wang, S.-J. Jin, J.-F. Zhang, and X. Zhang, Forecast for cosmological parameter estimation with gravitational-wave standard sirens from the LISA-Taiji network, Sci. China Phys. Mech. Astron. 65, 210411 (2022), arXiv:2101.11882 [gr-qc].

[125] J.-Z. Qi, S.-J. Jin, X.-L. Fan, J.-F. Zhang, and X. Zhang, Using a multi-messenger and multi-wavelength observational strategy to probe the nature of dark energy through direct measurements of cosmic expansion history, JCAP 12 (12), 042, arXiv:2102.01292 [astro-ph.CO].

[126] S.-J. Jin, L.-F. Wang, P.-J. Wu, J.-F. Zhang, and X. Zhang, How can gravitational-wave standard sirens and 21-cm intensity mapping jointly provide a precise late-universe cosmological probe?, Phys. Rev. D 104, 103507 (2021), arXiv:2106.01850 [astro-ph.CO].

[127] W. Buchmuller, V. Domcke, H. Murayama, and K. Schmitz, Probing the scale of grand unification with gravitational waves, Phys. Lett. B 809, 135764 (2020), arXiv:1912.03695 [hep-ph].

[128] S. Borhaniaan and B. S. Sathyaprakash, Listening to the Universe with Next Generation Ground-Based Gravitational-Wave Detectors, (2022), arXiv:2202.11048 [gr-qc].

[129] E. O. Colgáin, Probing the Anisotropic Universe with Gravitational Waves (2022) arXiv:2203.03956 [astro-ph.CO].

[130] L.-G. Zhu, L.-H. Xie, Y.-M. Hu, S. Liu, E.-K. Li, N. R. Napolitano, B.-T. Tang, J.-d. Zhang, and J. Mei, Constraining the Hubble constant to a precision of about 1% using multi-band dark standard siren detections, Sci. China Phys. Mech. Astron. 65, 259811 (2022), arXiv:2110.05224 [astro-ph.CO].

[131] J. M. S. de Souza, R. Sturani, and J. Alcaniz, Cosmography with standard sirens from the Einstein Telescope, JCAP 03 (03), 025, arXiv:2110.13316 [gr-qc].

[132] L.-F. Wang, G.-P. Zhang, Y. Shao, and X. Zhang, Achieving precision cosmology with gravitational-wave bright sirens from SKA-era pulsar timing arrays, (2022), arXiv:2201.00607 [astro-ph.CO].

[133] S.-J. Jin, T.-N. Li, J.-F. Zhang, and X. Zhang, Precisely measuring the Hubble constant and dark energy using only gravitational-wave dark sirens, (2022), arXiv:2202.11882 [gr-qc].

[134] P.-J. Wu, Y. Shao, S.-J. Jin, and X. Zhang, A path to precision cosmology: Synergy between four promising late-universe cosmological probes, (2022), arXiv:2202.09726 [astro-ph.CO].

[135] L. Bian et al., The Gravitational-wave physics II: Progress, Sci. China Phys. Mech. Astron. 64, 120401 (2021), arXiv:2106.10235 [gr-qc].

[136] J.-F. Zhang, H.-Y. Dong, J.-Z. Qi, and X. Zhang, Prospect for constraining holographic dark energy with gravitational wave standard sirens from the Einstein Telescope, Eur. Phys. J. C 80, 217 (2020), arXiv:1906.07504 [astro-ph.CO].

[137] X.-N. Zhang, L.-F. Wang, J.-F. Zhang, and X. Zhang, Improving cosmological parameter estimation with the future gravitational-wave standard siren observation from the Einstein Telescope, Phys. Rev. D 99, 063510 (2019), arXiv:1804.08379 [astro-ph.CO].

[138] L.-F. Wang, X.-N. Zhang, J.-F. Zhang, and X. Zhang, Impacts of gravitational-wave standard siren observation of the Einstein Telescope on weighing neutrinos in cosmology, Phys. Lett. B 782, 87 (2018), arXiv:1802.04720 [astro-ph.CO].

[139] J.-F. Zhang, M. Zhang, S.-J. Jin, J.-Z. Qi, and X. Zhang, Cosmological parameter estimation with future gravitational wave standard siren observation from the Einstein Telescope, JCAP 09, 068, arXiv:1907.03328 [astro-ph.CO].

[140] H.-L. Li, D.-Z. He, J.-F. Zhang, and X. Zhang, Quantifying the impacts of future gravitational-wave data on constraining interacting dark energy, JCAP 06, 038, arXiv:1908.03098 [astro-ph.CO].

[141] S.-J. Jin, D.-Z. He, Y. Xu, J.-F. Zhang, and X. Zhang, Forecast for cosmological parameter estimation with gravitational-wave standard siren observation from the Cosmic Explorer, JCAP 03, 051, arXiv:2001.05393 [astro-ph.CO].

[142] K. A. Olive et al. (Particle Data Group), Review of Particle Physics, Chin. Phys. C 38, 090001 (2014).

[143] Z.-z. Xing, Flavor structures of charged fermions and massive neutrinos, Phys. Rept. 854, 1 (2020), arXiv:1909.09610 [hep-ph].

[144] W. Hu, D. J. Eisenstein, and M. Tegmark, Weighing neutrinos with galaxy surveys, JCAP 01, 003, arXiv:astro-ph/9712057.

[145] B. A. Reid, L. Verde, R. Jimenez, and O. Mena, Robust Neutrino Constraints by Combining Low Redshift Observations with the CMB, JCAP 01, 003, arXiv:0910.0008 [astro-ph.CO].

[146] S. A. Thomas, F. B. Abdalla, and O. Lahav, Upper Bound of 0.28eV on the Neutrino Masses from the Largest Photometric Redshift Survey, Phys. Rev. Lett. 105, 031301 (2010), arXiv:0911.5291 [astro-ph.CO].

[147] C. Carbone, L. Verde, Y. Wang, and A. Cimatti, Neutrino constraints from future nearly all-sky spectroscopic galaxy surveys, JCAP 03, 030, arXiv:1012.2868 [astro-ph.CO].

[148] Y. Huo, T. Li, Y. Liao, D. V. Nanopoulos, and Y. Qi, Constraints on Neutrino Velocities Revisited, Phys. Rev. D 85, 034022 (2012), arXiv:1112.0264 [hep-ph].

[149] X. Wang, X.-L. Meng, T.-J. Zhang, H. Shan, Y. Gong, C. Tao, X. Chen, and Y. F. Huang, Observational constraints on cosmic neutrinos and dark energy revisited, JCAP 11, 018, arXiv:1210.2136 [astro-ph.CO].

[150] Y.-H. Li, S. Wang, X.-D. Li, and X. Zhang, Holographic dark energy in a Universe with spatial curvature and massive neutrinos: a full Markov Chain Monte Carlo exploration, JCAP 02, 033, arXiv:1207.6679 [astro-ph.CO].

[151] B. Audren, J. Lesgourgues, S. Bird, M. G. Haehnelt,
and M. Viel, Neutrino masses and cosmological parameters from a Euclid-like survey: Markov Chain Monte Carlo forecasts including theoretical errors, JCAP 01, 026, arXiv:1210.2194 [astro-ph.CO].

[152] S. Riemer-Sorensen, D. Parkinson, and T. M. Davis, Combining Planck data with large scale structure information gives a strong neutrino mass constraint, Phys. Rev. D 89, 103505 (2014), arXiv:1306.4153 [astro-ph.CO].

[153] A. Font-Ribera, P. McDonald, N. Mostek, B. A. Reid, H.-J. Seo, and A. Slosar, DESI and other dark energy experiments in the era of neutrino mass measurements, JCAP 05, 023, arXiv:1308.4164 [astro-ph.CO].

[154] J.-F. Zhang, Y.-H. Li, and X. Zhang, Cosmological constraints on neutrinos after BICEP2, Eur. Phys. J. C 74, 2964 (2014), arXiv:1404.3598 [astro-ph.CO].

[155] J.-F. Zhang, J.-J. Geng, and X. Zhang, Neutrinos and dark energy after Planck and BICEP2: data consistency tests and cosmological parameter constraints, JCAP 10, 044, arXiv:1408.0481 [astro-ph.CO].

[156] X.-Y. Zhou and J.-H. He, Weighing neutrinos in f(R) gravity in light of BICEP2, Commun. Theor. Phys. 62, 102 (2014), arXiv:1406.6822 [astro-ph.CO].

[157] P. A. R. Ade et al. (Planck), Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594, A13 (2016), arXiv:1502.01589 [astro-ph.CO].

[158] J.-F. Zhang, M.-M. Zhao, Y.-H. Li, and X. Zhang, Neutrinos in the holographic dark energy model: constraints from latest measurements of expansion history and growth of structure, JCAP 04, 038, arXiv:1502.04028 [astro-ph.CO].

[159] C.-Q. Geng, C.-C. Lee, R. Myrzakulov, M. Sami, and E. N. Saridakis, Observational constraints on varying neutrino-mass cosmology, JCAP 01, 049, arXiv:1504.08141 [astro-ph.CO].

[160] J. Lu, M. Liu, Y. Wu, Y. Wang, and W. Yang, Cosmic constraint on massive neutrinos in viable f(R) gravity with producing ΛCDM background expansion, Eur. Phys. J. C 76, 679 (2016), arXiv:1606.02987 [astro-ph.CO].

[161] S. Kumar and R. C. Nunes, Probing the interaction between dark matter and dark energy in the presence of massive neutrinos, Phys. Rev. D 94, 123511 (2016), arXiv:1608.02454 [astro-ph.CO].

[162] L. Xu and Q.-G. Huang, Detecting the Neutrino Mass Hierarchy from Cosmological Data, Sci. China Phys. Mech. Astron. 61, 039521 (2018), arXiv:1611.05178 [astro-ph.CO].

[163] S. Vagnozzi, E. Giusarma, O. Mena, K. Freese, M. Gerbino, S. Ho, and M. Lattanzi, Unveiling ν secrets with cosmological data: neutrino masses and mass hierarchy, Phys. Rev. D 96, 123503 (2017), arXiv:1701.08172 [astro-ph.CO].

[164] X. Zhang, Weighing neutrinos in dynamical dark energy models, Sci. China Phys. Mech. Astron. 60, 060431 (2017), arXiv:1703.00651 [astro-ph.CO].

[165] M.-M. Zhao, J.-F. Zhang, and X. Zhang, Measuring growth index in a universe with massive neutrinos: A revisit of the general relativity test with the latest observations, Phys. Lett. B 779, 473 (2018), arXiv:1710.02391 [astro-ph.CO].

[166] S. Vagnozzi, S. Dhawan, M. Gerbino, K. Freese, A. Goo-bar, and O. Mena, Constraints on the sum of the neutrino masses in dynamical dark energy models with w(z) ≥ −1 are tighter than those obtained in ΛCDM, Phys. Rev. D 98, 083501 (2018), arXiv:1801.08553 [astro-ph.CO].

[167] E.-K. Li, H. Zhang, M. Du, Z.-H. Zhou, and L. Xu, Probing the Neutrino Mass Hierarchy beyond ΛCDM Model, JCAP 08, 042, arXiv:1703.01554 [astro-ph.CO].

[168] S. Wang, Y.-F. Wang, and D.-M. Xia, Constraints on the sum of neutrino masses using cosmological data including the latest extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample, Chin. Phys. C 42, 065103 (2018), arXiv:1707.00588 [astro-ph.CO].

[169] L. Feng, J.-F. Zhang, and X. Zhang, Search for sterile neutrinos in a universe of vacuum energy interacting with cold dark matter, Phys. Dark Univ. 23, 100261 (2019), arXiv:1712.03148 [astro-ph.CO].

[170] M.-M. Zhao, Y.-H. Li, J.-F. Zhang, and X. Zhang, Constraining neutrino mass and extra relativistic degrees of freedom in dynamical dark energy models using Planck 2015 data in combination with low-redshift cosmological probes: basic extensions to ΛCDM cosmology, Mon. Not. Roy. Astron. Soc. 469, 1713 (2017), arXiv:1608.01219 [astro-ph.CO].

[171] X. Zhang, Impacts of dark energy on weighing neutrinos after Planck 2015, Phys. Rev. D 93, 083011 (2016), arXiv:1511.02651 [astro-ph.CO].

[172] Q.-G. Huang, K. Wang, and S. Wang, Constraints on the neutrino mass and mass hierarchy from cosmological observations, Eur. Phys. J. C 76, 489 (2016), arXiv:1512.05899 [astro-ph.CO].

[173] S. Wang, Y.-F. Wang, D.-M. Xia, and X. Zhang, Impacts of dark energy on weighing neutrinos: mass hierarchies considered, Phys. Rev. D 94, 083519 (2016), arXiv:1608.00672 [astro-ph.CO].

[174] E. Giusarma, M. Gerbino, O. Mena, S. Vagnozzi, S. Ho, and K. Freese, Improvement of cosmological neutrino mass bounds, Phys. Rev. D 94, 083522 (2016), arXiv:1605.04320 [astro-ph.CO].

[175] R. Allahverdi, Y. Gao, B. Knockel, and S. Shalgar, Indirect Signals from Solar Dark Matter Annihilation to Long-lived Right-handed Neutrinos, Phys. Rev. D 95, 075001 (2017), arXiv:1612.03110 [hep-ph].

[176] S. Gariazzo, M. Archidiacono, P. F. de Salas, O. Mena, C. A. Ternes, and M. Törtola, Neutrino masses and their ordering: Global Data, Priors and Models, JCAP 03, 011, arXiv:1801.04946 [hep-ph].

[177] S. Roy Choudhury and S. Choubey, Updated Bounds on Sum of Neutrino Masses in Various Cosmological Scenarios, JCAP 09, 017, arXiv:1806.10832 [astro-ph.CO].

[178] J. Han, R. Wang, W. Wang, and X.-N. Wei, Neutrino mass matrices with one texture equality and one vanishing neutrino mass, Phys. Rev. D 96, 075043 (2017), arXiv:1705.05725 [hep-ph].

[179] J.-F. Zhang, B. Wang, and X. Zhang, Forecast for weighing neutrinos in cosmology with SKA, Sci. China Phys. Mech. Astron. 63, 280411 (2020), arXiv:1907.00179 [astro-ph.CO].

[180] A. Diaz Rivero, V. Miranda, and C. Dvorkin, Observable Predictions for Massive-Neutrino Cosmologies with Model-Independent Dark Energy, Phys. Rev. D 100, 063504 (2019), arXiv:1903.03125 [astro-ph.CO].

[181] M. Zhang, J.-F. Zhang, and X. Zhang, Impacts of dark energy on constraining neutrino mass after Planck
C. M. Hirata, D. E. Holz, and C. Cutler, Reducing the weak lensing noise for the gravitational wave Hubble diagram using the non-Gaussianity of the magnification distribution, Phys. Rev. D 81, 124046 (2010), arXiv:1004.3988 [astro-ph.CO].

Y.-H. Li, J.-F. Zhang, and X. Zhang, Parametrized Post-Friedmann Framework for Interacting Dark Energy, Phys. Rev. D 90, 063005 (2014), arXiv:1404.5220 [astro-ph.CO].

Y.-H. Li, J.-F. Zhang, and X. Zhang, Exploring the full parameter space for an interacting dark energy model with recent observations including redshift-space distortions: Application of the parametrized post-Friedmann approach, Phys. Rev. D 90, 123007 (2014), arXiv:1409.7205 [astro-ph.CO].

L.-X. Li and B. Paczynski, Transient events from neutron star mergers, Astrophys. J. Lett. 507, L59 (1998), arXiv:astro-ph/9807272.

W. Zhao, C. Van Den Broeck, D. Baskaran, and T. G. F. Li, Determination of Dark Energy by the Einstein Telescope: Comparing with CMB, BAO and SNIa Observations, Phys. Rev. D 83, 023005 (2011), arXiv:1009.0206 [astro-ph.CO].

R. Schneider, V. Ferrari, S. Matarrese, and S. F. Portegies Zwart, Gravitational waves from cosmological compact binaries, Mon. Not. Roy. Astron. Soc. 324, 797 (2001), arXiv:astro-ph/0002055.

C. Cutler and D. E. Holz, Ultra-high precision cosmology from gravitational waves, Phys. Rev. D 80, 104009 (2009), arXiv:0906.3752 [astro-ph.CO].

B. S. Sathyaprakash and B. F. Schutz, Physics, Astro-

tics and Cosmology with Gravitational Waves, Liv-80

ing Rev. Rel. 12, 2 (2009), arXiv:0903.0338 [gr-qc].

L. Blanchet and B. R. Iyer, Hadamard regularization of the third post-Newtonian gravitational wave generation of two point masses, Phys. Rev. D 71, 024004 (2005), arXiv:gr-qc/0409094.

https://www.et-gw.eu/index.php/etssensitivities/.

https://cosmicexplorer.org/sensitivity.html.

J. Yu, H. Song, S. Ai, H. Gao, F. Wang, Y. Wang, Y. Lu, W. Fang, and W. Zhao, Multimessenger Detection Rates and Distributions of Binary Neutron Star Mergers and Their Cosmological Implications, Astrophys. J. 916, 54 (2021), arXiv:2104.12374 [astro-ph.HE].

H.-Y. Chen, P. S. Cowperthwaite, B. D. Metzger, and E. Berger, A Program for Multimessenger Standard Siren Cosmology in the Era of LIGO A+, Rubin Observatory, and Beyond, Astrophys. J. Lett. 908, L4 (2021), arXiv:2011.01211 [astro-ph.CO].

C. M. Hirata, D. E. Holz, and C. Cutler, Reducing the weak lensing noise for the gravitational wave Hub-

ble diagram using the non-Gaussianity of the magnification distribution, Phys. Rev. D 81, 124046 (2010), arXiv:1004.3988 [astro-ph.CO].

L. Speri, N. Tamanini, R. R. Caldwell, J. R. Gair, and B. Wang, Testing the Quasar Hubble Diagram with LISA Standard Sirens, Phys. Rev. D 103, 083526 (2021), arXiv:2010.09049 [astro-ph.CO].

B. Kocsis, Z. Frei, Z. Haiman, and K. Menou, Finding the electromagnetic counterparts of cosmological standard sirens, Astrophys. J. 637, 27 (2006), arXiv:astro-ph/0505394.

L. Rezzolla, B. Giacomazzo, L. Baiotti, J. Granot, C. Kouveliotou, and M. A. Aloy, The missing link: Merging neutron stars naturally produce jet-like structures and can power short Gamma-Ray Bursts, Astrophys. J. Lett. 732, L6 (2011), arXiv:1101.4298 [astro-ph.HE].

T. G. Li, Extracting physics from gravitational waves: testing the strong-field dynamics of general relativity and inferring the large-scale structure of the Universe (Springer, 2015).

F. Beutler, C. Blake, M. Colless, D. H. Jones, L. Staveley-Smith, L. Campbell, Q. Parker, W. Saunders, and F. Watson, The 6dF Galaxy Survey: Baryon Acoustic Oscillations and the Local Hubble Constant, Mon. Not. Roy. Astron. Soc. 416, 3017 (2011), arXiv:1106.3366 [astro-ph.CO].

A. J. Ross, L. Samushia, C. Howlett, W. J. Percival, A. Burden, and M. Manera, The clustering of the SDSS DR7 main Galaxy sample – I. A 4 per cent distance measure at z = 0.15, Mon. Not. Roy. Astron. Soc. 449, 835 (2015), arXiv:1409.3242 [astro-ph.CO].

S. Alam et al. (BOSS). The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample, Mon. Not. Roy. Astron. Soc. 470, 2617 (2017), arXiv:1607.03155 [astro-ph.CO].

D. M. Scolnic et al., The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample, Astrophys. J. 859, 101 (2018), arXiv:1710.00845 [astro-ph.CO].

J. Valiviita, E. Majerotto, and R. Maartens, Instability in interacting dark energy and dark matter fluids, JCAP 07, 020, arXiv:0804.0232 [astro-ph].

A. Lewis and S. Bridle, Cosmological parameters from CMB and other data: A Monte Carlo approach, Phys. Rev. D 66, 103511 (2002), arXiv:astro-ph/0205436.