Hard pion bremsstrahlung in the Coulomb region

Göran Fältd and Ulla Tengblad

Department of nuclear and particle physics
Uppsala University
Box 535, S-751 21 Uppsala

Abstract

Hard high-energy pion-nucleus bremsstrahlung, $\pi^- + A \rightarrow \pi^- + \gamma + A$, is studied in the Coulomb region, i.e. the small-angle region where the nuclear scattering is dominated by the Coulomb interaction. Special attention is focussed on the possibility of measuring the pion polarizability in such reactions. We study the sensitivity to the structure of the underlying pion-Compton amplitude through a model with σ, ρ, and a_1 exchanges. It is found that the effective energy in the virtual pion-Compton scattering is often so large that the threshold approximation does not apply.

PACS: 13.40-f, 24.10.Ht, 25.80.Ht

1E-mail: goran.faldt@tsl.uu.se
2E-mail: ulla.tengblad@tsl.uu.se
1 Introduction

High-energy pionic bremsstrahlung, i.e. the coherent nuclear reaction

\[\pi^− + A \rightarrow \pi^− + \gamma + A \]

can proceed through a one-photon exchange. In fact, at small momentum transfers to the nucleus \(A\), the reaction is dominated by the virtual pion-Compton reaction \(\gamma + \pi^− \rightarrow \gamma + \pi^−\). A long time ago it was suggested [1, 2], that by studying pionic bremsstrahlung important information on the pion-Compton amplitude could be extracted. Of particular interest is the pion electric and magnetic polarizabilities, which are low-energy parameters that have been calculated in chiral-Lagrangian theory [3]. A bremsstrahlung experiment aiming at measuring the polarizabilities has been performed [4], and reasonable values of these parameters were extracted. The pion polarizabilities can also be determined in other reactions, such as pion photoproduction [5].

At low energies the pion-Compton amplitude can be regarded as a sum of two contributions, a structure-independent Born term, and a structure-dependent term fixed by the pion polarizabilities. At higher energies the situation is more complex. Therefore, we have chosen to model the pion-Compton amplitude as a sum of the Born amplitudes, and the amplitudes generated by the \(\sigma\), \(\rho\), and \(a_1\) exchanges. This model should be fairly reliable also in the early GeV region.

In a previous paper [6] we developed a Glauber model for pion-nucleus bremsstrahlung. Such a model includes nuclear scattering and is also valid for momentum transfers outside the Coulomb region of small momentum transfers. For the pion-Compton amplitude only the Born terms and the polarizabilities were retained. However, it was pointed out that in applications one quickly comes into a region of high energies in the virtual pion-Compton scattering. In the present paper we direct our interest at exactly this energy dependence. The meson-exchange model is then the reasonable starting point. Furthermore, we consider only the small-angle region where it is sufficient to retain the Coulomb interaction alone, and neglect all nuclear interactions.
2 Pion-Compton scattering

The primary mechanism responsible for pion-nucleus bremsstrahlung in the Coulomb region is pion-Compton scattering, involving a virtual photon exchange between the pion and the nucleus. In our previous investigation [6] we used the low-energy approximation of the pion-Compton amplitude, as parametrised by the pion polarizabilities. Now, we want to go beyond this approximation, and investigate, in a model, the limits of the low-energy approximation in actual applications. We shall assume that, in addition to the Born terms, the pion-Compton amplitude receives contributions also from the σ, ρ and a_1 exchange diagrams.

The Compton amplitude is written as

$$M(\gamma(q_1)\pi^-(p_1) \to \gamma(q_2)\pi^-(p_2)) = M_{\mu\nu}e_1^\mu(q_1)e_2^\nu(q_2).$$

Gauge invariance requires that, for real as well as virtual photons with $q^2 \neq 0$, the Compton tensor satisfies

$$M_{\mu\nu}q_1^\mu = M_{\mu\nu}q_2^\nu = 0.$$

The Compton tensor $M_{\mu\nu}$ is conveniently decomposed as

$$M_{\mu\nu} = ie^2\left[A(s,t)A_{\mu\nu} + B(s,t)B_{\mu\nu}\right],$$

with the gauge-invariant tensors $A_{\mu\nu}$ and $B_{\mu\nu}$ defined as

$$A_{\mu\nu} = 2g_{\mu\nu} - \frac{(2p_2 + q_2)_\nu(2p_1 + q_1)_\mu}{s - m^2_\pi} - \frac{(2p_1 - q_2)_\nu(2p_2 - q_1)_\mu}{u - m^2_\pi},$$

$$B_{\mu\nu} = q_1 \cdot q_2 g_{\mu\nu} - q_2 \nu q_1 \nu,$$

and the Mandelstam kinematic variables by

$$s = (p_2 + q_2)^2,$$

$$t = (p_1 - p_2)^2,$$

$$u = (p_1 - q_2)^2.$$

For pions there are three Born amplitudes described by the Feynman diagrams of fig. 1. In the decomposition of eq.(2.1) the invariant functions $A(s,t)$ and $B(s,t)$ are

$$A(s,t) = 1,$$

$$B(s,t) = 0.$$
In our previous study we went beyond the Born approximation, adding
the threshold contributions represented by the electric and magnetic polar-
izabilities, α_π and β_π, leading to the result

\[A(s, t) = 1 + \frac{\alpha_\pi + \beta_\pi}{4m_\pi\alpha}(s - m_\pi^2)(u - m_\pi^2), \]
\[B(s, t) = \frac{2m_\pi\beta_\pi}{\alpha}. \]

(2.7) (2.8)

In chiral-Lagrangian theory [3] numerical values are $\alpha_\pi + \beta_\pi = 0$ and $\alpha_\pi = 2.7 \cdot 10^{-4}$ fm3.

A model for the energy dependence of the Compton amplitude can be
obtained by invoking, in addition to the Born terms, the contributions from
the $\sigma(0^+)$, $\rho(1^-)$ and $a_1(1^+)$ exchanges graphed in fig. 2.

Figure 2: Feynman diagrams for the σ, ρ and a_1 contributions to pion-
Compton scattering.

Such models have been investigation in connection with studies of the reac-
tion $\gamma\gamma \rightarrow \pi\pi$, and its t-channel counterpart $\gamma\pi \rightarrow \gamma\pi$. Numerical values of
the model parameters have been extracted from experimental data by Fil’kov
and Kashevarov [7].

The evaluation of the diagrams of fig. 2 is straightforward. We parametrise
the Compton amplitude through dimensionless functions $\lambda_1(s, t)$ and $\lambda_2(s, t)$
rather than $\alpha_\pi + \beta_\pi$ and β_π. Thus we introduce for the invariant functions
\[A(s, t) = 1 + \frac{(s - m^2)(u - m^2)}{4m^4} \lambda_1(s, t) , \quad (2.9) \]
\[B(s, t) = \frac{2}{m^2} \lambda_2(s, t) , \quad (2.10) \]

with the generalised polarizability functions as

\[
\lambda_1(s, t) = -\frac{m^4}{2} \left\{ g^2_{\rho \to \pi \gamma} \left(\frac{1}{s - m^2_{\rho}} + \frac{1}{u - m^2_{\rho}} \right) \\
+ g^2_{a_1 \to \pi \gamma} \left(\frac{1}{s - m^2_{a_1}} + \frac{1}{u - m^2_{a_1}} \right) \right\} , \quad (2.11) \]
\[
\lambda_2(s, t) = m^2 \left\{ g_{\sigma \to \pi \pi} g_{\sigma \to \gamma \gamma} \frac{1}{s - m^2_{\sigma}} - \frac{1}{4} g^2_{\rho \to \pi \gamma} \left(\frac{s + m^2_{\rho}}{s - m^2_{\rho}} + \frac{u + m^2_{\rho}}{u - m^2_{\rho}} \right) \\
+ \frac{1}{4} g^2_{a_1 \to \pi \gamma} \left(\frac{s - m^2_{a_1}}{s - m^2_{a_1}} + \frac{u - m^2_{a_1}}{u - m^2_{a_1}} \right) \right\} . \quad (2.12) \]

At the pion-Compton threshold \(s = u = m^2_{\pi} \) and \(t = 0 \). In chiral-Lagrangian theory the threshold values of the polarizability functions are \(\lambda_1(m^2_{\pi}, 0) = 0 \) and \(\lambda_2(m^2_{\pi}, 0) = -0.013 \). In the exchange model the threshold functions are dominated by \(\sigma \) exchange. However, the parameters of the \(\sigma \) are rather uncertain and we choose to fix them so that the \(\sigma \) contribution to the polarizability functions is twice as large as the chiral-Lagrangian prediction, and more in agreement with experiment [4, 5]. This is further discussed in the Appendix. Thus, the \(\sigma \)-, \(\rho \)- and \(a_1 \)-exchange contributions to our threshold polarizability functions are

\[
\lambda_1(s, t) = 0 + 0.0003 + 0.0003 , \quad (2.13) \]
\[
\lambda_2(s, t) = -0.0261 + 0.0004 + 0 . \quad (2.14) \]
3 Nuclear cross sections

We are interested in a kinematic region where the transverse momentum components of particles can be neglected compared with their longitudinal momentum components. Details of the kinematics are given in \[6\]. The cross-section distribution in the pion-nucleus lab system is

\[
d\sigma = \frac{1}{4p_1 M_A} |M|^2 \, d\text{Lips}, \tag{3.15}
\]

where \(p_1\) is the incident pion lab momentum. The Lorentz-invariant phase space can be parametrised as

\[
d\text{Lips} = \frac{1}{16\pi M_A (2\pi)^2 (2\pi)^2 p_{2\perp}q_{2\perp} q_{2z}}. \tag{3.16}
\]

The nuclear Born approximation is represented by the one-photon exchange graph is pictured in fig. 3. The small blob in the graph represents the full pion-Compton amplitude; the large blob the photon-nucleus electromagnetic vertex. The pion charge is \(-e\), the nuclear charge \(Ze\), and the nucleus is treated as a spin-zero particle. With \(q_1\) the virtual photon four-momentum, these assumptions lead to a Coulomb production amplitude

\[
\mathcal{M}_B = \frac{-i}{q_1^2} \mathcal{M}_{\mu\nu}(p_2, q_2; p_1, q_1)(-iZ e)(p + p')^\mu \epsilon_2^\nu. \tag{3.17}
\]

Since the Compton tensor \(\mathcal{M}_{\mu\nu}\) is gauge invariant we may also make the replacement \(p + p' = 2p + q_1 \rightarrow 2p\).
The reduction of \mathcal{M}_B is much simplified if we first introduce the parameter
$$
x = \frac{q_{2z}}{p_1} = \frac{\omega_2}{E_1}.
$$
(3.18)

Inserting in eq.(3.17) the expansion of the pion-Compton amplitude from eq.(2.1) and exploiting the techniques of [6] we get
$$
\mathcal{M}_B = \frac{-8\pi i Z M_A e \alpha}{q_1^2} \left[4 E_2 A(s, t) \left\{ \frac{q_{2\perp}}{q_{2\perp}^2 + x^2 m_\pi^2} - \frac{q_{2\perp} - x q_{1\perp}}{(q_{2\perp} - x q_{1\perp})^2 + x^2 m_\pi^2} \right\}
\right.
+ \left. \omega_2 B(s, t) q_{1\perp} \right] \cdot \epsilon_2.
$$
(3.19)

The subscript \perp indicates a vector component in the impact plane, i.e. the plane orthogonal to the incident momentum p_1, which is along the z-direction. Note that the polarisation vector ϵ_2 is orthogonal to q_2, and therefore has both transverse and longitudinal components, the dominant one being transverse. Since $p_{1\perp} = 0$ the transverse vector components are related by
$$
q_{1\perp} = p_{2\perp} + q_{2\perp}.
$$
(3.20)

The second term on the right hand side of eq.(3.19) has been slightly rewritten as compared with the corresponding term in eq.(6.49) of [6]. As a consequence we see directly that the matrix element is proportional to $q_{1\perp}$, as it should be.

We are interested in hard photons. Therefore, the parameter x of eq.(3.18) is sizeable, but still in the region $0 < x < 1$. We are also limiting ourselves to the Coulomb region, where $q_{1\perp}$ is of the same size as q_{1z}, which is equal to
$$
q_{\text{min}} = \frac{m_\pi^2 \omega_2}{2 E_1 E_2} = x m_\pi (m_\pi/2 E_2),
$$
so that $q_{1\perp} \ll m_\pi$. The momentum components $p_{2\perp}$ and $q_{2\perp}$, on the other hand, may both be in the GeV region but only in such a way that their sum $q_{1\perp}$ remains the size of q_{min}. It follows that
$$
|x q_{2\perp} \cdot q_{1\perp}| \ll (q_{2\perp}^2 + x^2 m_\pi^2).
$$
(3.21)

Application of this inequality simplifies the Born amplitude into
$$
\mathcal{M}_B = \frac{-8\pi i Z M_A e \alpha}{q_1^2} \frac{4 x E_2}{q_{2\perp}^2 + x^2 m_\pi^2} \left[\tilde{A}(x, q_{2\perp}^2) \left\{ q_{1\perp} - 2 q_{2\perp} \frac{q_{2\perp} \cdot q_{1\perp}}{q_{2\perp}^2 + x^2 m_\pi^2} \right\}
\right.
+ \left. \tilde{B}(x, q_{2\perp}^2) q_{1\perp} \right] \cdot \epsilon_2,
$$
(3.22)
with
\[
\begin{align*}
\tilde{A}(x, q^2_{\perp}) &= A(s, t), \\
\tilde{B}(x, q^2_{\perp}) &= \frac{1}{4(1-x)}(q^2_{\perp} + x^2m^2_\pi)B(s, t).
\end{align*}
\] (3.23)
(3.24)

Here, we have replaced the variables \(s\) and \(t\) by the variables \(x\) and \(q^2_{\perp}\). That this is possible follows from a study of the kinematic variables \(s\), \(t\), and \(u\) of the virtual pion-Compton scattering, defined in eq. (2.4). Evaluating them with the on-shell four-momenta \(p_1\), \(p_2\), and \(q_2\), and making use of the inequality (3.21) leads to the simple expressions

\[
\begin{align*}
s - m^2_\pi &= \frac{1}{x(1-x)}\left[q^2_{\perp} + x^2m^2_\pi\right], \\
t &= \frac{-1}{1-x}\left[q^2_{\perp} + x^2m^2_\pi\right], \\
u - m^2_\pi &= \frac{-1}{x}\left[q^2_{\perp} + x^2m^2_\pi\right].
\end{align*}
\] (3.25)

We stress that these expressions are valid only for hard bremsstrahlung in the Coulomb region. Furthermore, we may on the right hand sides replace \(q^2_{\perp}\) by \(p^2_{\perp}\) without any numerical consequences.

Up to now we have been concerned with the Born approximation, the one-photon exchange. Including elastic scattering to all orders induces some changes. The external radiation contributions, corresponding to the unit term in \(A(s, t)\), comes multiplied by an off-shell elastic Coulomb amplitude. In [6] we were not able to show whether the off-shellness gives rise to a phase factor different from the elastic one. In absence of a firm prediction we assume the phase to be the same as the elastic one. The polarizability contributions were shown to have a form factor being the sum of the elastic Coulomb amplitude plus an extra term \(f_P\). This second contribution is however finite at the Coulomb peak and does not exhibit the characteristic cross-section peak. It can be neglected at the our level of accuracy. The same remark applies to the nuclear contributions. Adopting these caveats we put

\[
|M|^2 = |M^2_B|.
\] (3.26)

The summation over the photon polarisation is trivial. It replaces scalar products like \(|q_{\perp} \cdot e_\gamma|^2\) by \(|q_{\perp}|^2\). In view of the relation (3.20) we may also replace the phase-space volume \(d^2q_{\perp}d^2p_{\perp}\) by \(d^2q_1d^2q_2\). The cross-section
distribution in the pion-nucleus lab system, as defined in eq. (3.15), then takes the form

\[
\frac{d\sigma}{d^2q_1 \, d^2q_2 \, dx} = \frac{4Z^2\alpha^3}{\pi^2m^4} \left[\frac{q_{1\perp}^2}{(q_{1\perp}^2 + q_{2\perp}^2)^2} \right] \left[\frac{1 - x}{x^3} \right] \left[\left(\frac{x^2m^2_\pi}{q_{2\perp}^2 + x^2m^2_\pi} \right)^2 \right] \cdot \\
\left[\tilde{A}(x, q_{2\perp}^2) \left(q_{1\perp}^2 - 2q_{2\perp}^2 \frac{q_{2\perp} \cdot q_{1\perp}}{q_{2\perp}^2 + x^2m^2_\pi} \right) \right] \cdot \\
+ \tilde{B}(x, q_{2\perp}^2) q_{1\perp}^2 \right] \cdot \\
\] \quad (3.27)

The scalar functions \(\tilde{A}(x, q_{2\perp}^2)\) and \(\tilde{B}(x, q_{2\perp}^2)\) are defined in eqs (3.23) and (3.24). Introducing the functions \(\lambda_1(x, q_{2\perp}^2)\) and \(\lambda_2(x, q_{2\perp}^2)\) of eqs (2.11) and (2.12) that describe the non-Born contributions we get

\[
\tilde{A}(x, q_{2\perp}^2) = 1 - \frac{x^2}{4(1 - x)} \left(\frac{q_{2\perp}^2 + x^2m^2_\pi}{x^2m^2_\pi} \right)^2 \lambda_1(x, q_{2\perp}^2), \quad (3.28) \\
\tilde{B}(x, q_{2\perp}^2) = \frac{x^2}{2(1 - x)} \left(\frac{q_{2\perp}^2 + x^2m^2_\pi}{x^2m^2_\pi} \right) \lambda_2(x, q_{2\perp}^2). \quad (3.29)
\]

The approximations leading to the cross-section distributions described by eqs (3.27-3.29) demand that the pionic radiation is hard, that the transverse components of the vectors \(q_2\) and \(p_2\) are much smaller than their longitudinal components, and that we are in the Coulomb dominated region where the length of the vector \(q_{1\perp} = p_{2\perp} + q_{2\perp}\) is of a size similar to that of \(q_{1z} = q_{\text{min}}\).

It is important to realise that although the cross-section distribution in general depends on the angle

\[
\mu = \hat{q}_{1\perp} \cdot \hat{q}_{2\perp} = \cos \varphi_{12}, \quad (3.30)
\]

the arguments of the polarizability functions \(\lambda_1\) and \(\lambda_2\) do not.

We end by re-emphasising that \(s, t,\) and \(u\) are variables of the virtual pion-Compton scattering. The momentum transfer squared to the nucleus is

\[
-t_A = q_{1\perp}^2 + q_{2\perp}^2. \quad (3.31)
\]

4 Under the Coulomb peak: I

Results concerning the pion polarizabilities are most easily discussed if we limit ourselves to the phase-space region where both momenta $p_{2\perp}$ and $q_{2\perp}$ are in the Coulomb region, i.e. the size of their momenta are of the order of q_{min} and hence negligible in comparison with xm_π. In this kinematical situation the variables s, t, and u of the pion-Compton amplitude, eq.(3.25), become simple functions of x

$$s = m_\pi^2/(1-x),$$
$$t = -x^2m_\pi^2/(1-x),$$
$$u = (1-x)m_\pi^2.$$ (4.32)

The cross section can be written as

$$\frac{d\sigma}{d^2q_{1\perp}d^2q_{2\perp}dx} = \frac{4Z^2\alpha^3}{\pi^2m_\pi^4}\left[\frac{q_{1\perp}^2}{(q_{1\perp}^2 + q_{\text{min}}^2)^2}\right]\left[\frac{1-x}{x^3}\right]^2 \left[1 + \frac{x^2}{1-x}\left(-\frac{1}{4}\lambda_1(x) + \frac{1}{2}\lambda_2(x)\right)\right]^2,$$ (4.33)

with $x = \omega_2/E_1$ from eq.(3.18). We conclude that in general the contributions from the pion structure terms are small. Only if x is very near unity do we get a substantial contribution. This means bremsstrahlung photons of energies very near those of the incident pion. We also observe that when $x \approx 1$ the energy in the pion-Compton scattering may become so large that the threshold approximation to the polarizability functions breaks down.

We illustrate the sensitivity to the polarizability functions and their energy dependence by plotting in fig. 4 the proportionality function

$$R(x, \lambda(x)) = \left|1 + \frac{x^2}{1-x}\left(-\frac{1}{4}\lambda_1(x) + \frac{1}{2}\lambda_2(x)\right)\right|^2,$$ (4.34)

together with $R(x, \lambda(0))$. The curves are plotted for x in the interval (0.6, 0.97) and the input parameters are those of the exchange model of Sect. 2. It is feasible to extract information about the polarizability functions only if $R(x, \lambda(x))$ deviates appreciably from unity, which occurs when x approaches one. When this happens the curves for $R(x, \lambda(x))$ and $R(x, \lambda(0))$ start to diverge from each other. Thus, when the polarizability contributions become appreciable the threshold approximation deteriorates. The structure in the
Figure 4: Proportionality function $R(x, \lambda(x))$ in the double Coulomb region. The solid line obtains in the full calculation, the dashed line in the threshold approximation.

solid curve at $x \approx 0.96$, corresponding to $\sqrt{s} \approx m_\rho$, is caused by the ρ-exchange contribution.
5 Under the Coulomb peak: II

Our investigation presumes two conditions; the transverse components of the vectors p_2 and q_2 must be much smaller than their longitudinal components, and their sum $p_{2\perp} + q_{2\perp} = q_{1\perp}$ must be in the Coulomb region, i.e. in the region where the length of $q_{1\perp}$ is of a size similar to q_{min}. If these conditions are not met, we are outside the Coulomb peak and nuclear contributions play a role. Even though the sum of the two vector components $p_{2\perp}$ and $q_{2\perp}$ must be very small, this need not be so for the two vector components individually. We shall now consider the case where the two components are large, which we shall take to mean large in comparison with m_π.

Returning to the general expression (3.27) we have

$$\frac{d\sigma}{d^2q_{1\perp}d^2q_{2\perp}dx} = \frac{4Z^2\alpha^3}{\pi^2m_\pi^4} \left[\frac{q_{1\perp}^2}{(q_{1\perp}^2 + q_{\text{min}}^2)^2} \right] \left[\left(\frac{x^2m_\pi^2}{q_{2\perp}^2 + x^2m_\pi^2} \right)^2 \right],$$

$$\left[\tilde{A}^2(x, q_{2\perp}^2) \{1 - \mu^2(1 - \kappa^2)\} \right. + 2\tilde{A}(x, q_{2\perp}^2)\tilde{B}(x, q_{2\perp}^2) \{1 - \mu^2(1 - \kappa)\} + \tilde{B}^2(x, q_{2\perp}^2) \right], \quad (5.35)$$

with κ a parameter defined as

$$\kappa(x, q_{2\perp}^2) = \frac{x^2m_\pi^2 - q_{2\perp}^2}{x^2m_\pi^2 + q_{2\perp}^2}. \quad (5.36)$$

The angular dependence comes in through $\mu = \hat{q}_{1\perp} \cdot \hat{q}_{2\perp}$ of eq.(3.30). It is quite simple, and integrating over angles means replacing μ^2 by its average, which is $\frac{1}{2}$.

In Sect. 4 we considered the region $q_{2\perp}^2 \ll x^2m_\pi^2$ where the parameter $\kappa = 1$ so that the angular dependent terms in eq.(5.35) dropped out. Also, the dependence on $q_{2\perp}^2$ in the right hand side of this equation goes away, leaving a dependence on x, and the characteristic point-like Coulomb peak factor depending on $q_{1\perp}^2$.

Now, we consider the region of large transverse momenta where

$$q_{2\perp}^2 \gg x^2m_\pi^2, \quad (5.37)$$

an inequality equally valid for $p_{2\perp}^2$. The expressions for the kinematic vari-
ables in the Compton process now simplify, replacing eq. (3.25) by

\[s = m_\pi^2 + \frac{q_{2\perp}^2}{x(1-x)}, \]

\[t = -\frac{q_{2\perp}^2}{1-x}, \]

\[u = m_\pi^2 - \frac{q_{2\perp}^2}{x}. \]

(5.38)

In the region defined by the inequality (5.37) we infer from the definition (5.36) that \(\kappa = -1 \). As a consequence there is no angular dependence in the term proportional to \(\tilde{A}^2 \). Furthermore, if we average over angles the cross term proportional to \(\tilde{A}\tilde{B} \) vanishes. The term proportional to \(\tilde{B}^2 \) carries no angular dependence. Thus, after integration over angles the cross-section distribution becomes

\[
\frac{d\sigma}{dq_{1\perp}^2dq_{2\perp}^2dx} = \frac{4Z^2\alpha^3}{q_{2\perp}^4} \left[\frac{q_{1\perp}^2}{(q_{1\perp}^2 + q_{2\perp}^2)^2} \right] x(1-x) \cdot \left[\tilde{A}^2(x,q_{2\perp}^2) + \tilde{B}^2(x,q_{2\perp}^2) \right].
\]

(5.39)

The invariant functions entering this equation are defined in eqs (3.23) and eqs (2.7,2.8) and become

\[
\tilde{A}(x,q_{2\perp}^2) = 1 - \frac{1}{4x^2(1-x)} \left(\frac{q_{2\perp}^2}{m_\pi^2} \right)^2 \lambda_1(x,q_{2\perp}^2), \]

\[
\tilde{B}(x,q_{2\perp}^2) = \frac{1}{2(1-x)} \left(\frac{q_{2\perp}^2}{m_\pi^2} \right) \lambda_2(x,q_{2\perp}^2).
\]

We notice that the polarizability contributions are enhanced by powers of the factor \(q_{2\perp}^2/m_\pi^2 \).

Finally, in the phase-space element of the cross-section distribution (5.39) we may introduce the momentum transfer to the nucleus \(t_A \) via the identity

\[dq_{1\perp}^2 = -dt_A. \]

(5.42)

We illustrate the sensitivity of the cross-section distributions to the polarizability functions and their energy dependences in the same way as we did for small transverse momenta in Sect. 4. Thus, introduce the proportionality function

\[
R(x,q_{2\perp}^2;\lambda(x,q_{2\perp}^2)) = \left[\tilde{A}^2(x,q_{2\perp}^2) + \tilde{B}^2(x,q_{2\perp}^2) \right],
\]

(5.43)
which now depends on both x and $q_{2\perp}^2$. Putting λ_1 and λ_2 equal to zero leads to $R = 1$, the value for a point-like pion.

In fig. 5 we graph the proportionality function $R(x, q_{2\perp}^2; \lambda(x, q_{2\perp}^2))$ and the function $R(x, q_{2\perp}^2; \lambda(0))$, which is the same function but evaluated with the threshold values of the polarizabilities. For the illustration we have chosen $q_{2\perp} = 3.5m_\pi$. From eq.(5.38) it then follows that $s \geq 50m_\pi^2$ and far from its threshold value $s = m_\pi^2$. The curves are plotted for x in the region $0.2 \leq x \leq 0.8$, corresponding to \sqrt{s} in the region $990 \leq \sqrt{s} \leq 1230$, in units of MeV. In view of the large energies it is not astonishing to realise that the threshold approximation is unrealistic. The solid curve which represents the full calculation is not symmetric around $x = 0.5$ even though the energy s is. The reason is that neither t nor u is symmetric. Therefore, the cross-section distributions at $x = 0.4$ and $x = 0.6$, e. g., measures the pion-Compton cross-section distribution at completely different scattering angles. But it is futile attempting to extract values of the functions $\tilde{A}(x, q_{2\perp})$ and $\tilde{B}(x, q_{2\perp})$ which are both complex.

![Figure 5: Proportionality function $R(x, q_{2\perp}^2; \lambda(x, q_{2\perp}^2))$ for $q_{2\perp} = 3.5m_\pi$ in the single Coulomb region. The solid line obtains in the full calculation, the dashed line in the threshold approximation.](image)
6 Summary

Hard bremsstrahlung in high-energy pion-nucleus scattering in the Coloumb region has been investigated. The kinematics of the reaction can be read off from
\[\pi^- (p_1) + A(p) \rightarrow \gamma (q_2) + \pi^- (p_2) + A(p') \, . \]
The restriction to the Coulomb region means that the momentum transfer to the nucleus is of the order of \(q_{\text{min}} = m_\pi^2 \omega_2 / (2E_1 E_2) \). As a consequence, the production amplitude is dominated by the one-photon exchange diagram and the cross-section distribution exhibits the well-known Coloumb-production peak structure. In the Coloumb region the sum of the transverse momenta
\[p_{2\perp} + q_{2\perp} = q_{1\perp} \, , \]
is tiny, although the transverse momenta themselves need not be that small.

We have derived an expression for the cross-section distribution, eq. (5.35), valid when the transverse momenta of the emerging photon and pion are much smaller than their longitudinal momenta. The arguments of this expression are \(x = \omega_2 / E_1 \) and \(q_{2\perp}^2 \), which for all practical purposes is the same as \(p_{2\perp}^2 \). The nuclear production amplitude involves the on-shell pion-Compton amplitude at energies and angles that depend on the values of \(x \) and \(q_{2\perp}^2 \), eq. (3.25). The pion-Compton amplitude is modelled as a sum of the point-like Born terms and the polarizability terms, represented by \(\sigma \), \(\rho \), and \(a_1 \) exchange-diagram terms.

We have illustrated our model by considering two limits; in the first one, the double Coloumb region, the sizes of both \(|q_{2\perp}| \) and \(|p_{2\perp}| \) are of the order \(q_{\text{min}} \), whereas in the second one, the single Coloumb region, their sizes are both much larger than \(m_\pi \), but in such a way that their vector sum remains small.

In the double-Coloumb region the pion-Compton amplitude depends only on \(x \). When \(x \) is small the influence of the polarizability functions is weak. In order to be noticed we must go to \(x \)-values near unity. Then, the energy in the pion-Compton becomes so large that the threshold approximation of the polarizability functions becomes questionable. To extract reliable values for the famous coefficients \(\alpha_\pi \) and \(\beta_\pi \) requires accurate experiments.

In the single-Coloumb region the effective pion-Compton energies are several times larger than the pion mass and the threshold approximation to the polarizability functions becomes unrealistic. Moreover, the polarizability functions develop imaginary parts that are important. Furthermore, the nuclear cross-section distribution is not related in a simple way to a pion-Compton distribution at a fixed energy, since the energy \(s \) and momentum transfer \(t \) in the pion-Compton scattering are functions of \(x \) and \(q_{2\perp}^2 \).
7 Appendix

In this Appendix the parameters of the pion-Compton model are discussed. The radiative decay of the sigma meson has width and coupling constant related by

\[
\Gamma(\sigma \to \gamma\gamma) = \pi\alpha^2 g_{\sigma\to\gamma\gamma}^2 m_\sigma^3.
\]

(7.44)

For the strong decay of the sigma meson the corresponding relation is

\[
\Gamma(\sigma \to \pi^+\pi^-) = \frac{1}{16\pi m_\sigma} g_{\sigma\to\pi\pi}^2 \sqrt{1 - \frac{4m_\pi^2}{m_\sigma^2}}.
\]

(7.45)

Numerical values for the coupling constants have been extracted by Fil’kov and Kashevarov [4] from a study of data for the reaction $\gamma\gamma \to \pi^0\pi^0$. Their results are: $\Gamma(\sigma \to \gamma\gamma) = 0.62$ keV, $\Gamma(\sigma \to \pi^+\pi^-) = 803$ MeV, and $m_\sigma = 547$ MeV. For the product of coupling constants these numbers give $g_{\sigma\to\gamma\gamma} g_{\sigma\to\pi\pi} = 0.762$, which results in a value for β_{π^+} almost four times as large as the chiral-Lagrangian prediction. In view of the uncertainty of the σ parameters we shall choose

\[
g_{\sigma\to\gamma\gamma} g_{\sigma\to\pi\pi} = 0.400.
\]

(7.46)

giving a value more in line with experimental prejudices [4, 5].

The s-channel propagators of the ρ and a_1 mesons are given Breit-Wigner shapes

\[
B^L(s) = \frac{m_0^2}{(m_0^2 - s) - im_0 \Gamma^L(s)},
\]

(7.47)

\[
\Gamma^L(s) = \Gamma_0 \left(\frac{k}{k_0} \right)^{2L+1} \frac{m_0}{\sqrt{s}} \theta(\sqrt{s} - m_1 - m_2),
\]

(7.48)

where Γ_0 and m_0 are nominal values and k_0 the decay momentum at mass m_0. The momentum is

\[
k(s) = \frac{1}{2m_0} \left[(s - (m_1 + m_2)^2)(s - (m_1 - m_2)^2) \right]^{1/2}.
\]

(7.49)

Furthermore, $L = 1$ for $\rho \to \pi\pi$ whereas $L = 0$ for $a_1 \to \rho\pi$. The total nominal widths are $\Gamma_\rho = 150$ MeV, $\Gamma_{a_1} = 450$ MeV, and the masses are $m_\pi = 139.6$ MeV, $m_\rho = 775$ MeV, $m_{a_1} = 1230$ MeV.

The relations between width and coupling constant for the ρ meson is

\[
\Gamma(\rho^+ \to \pi^+\gamma) = \frac{1}{3} \alpha g_{\rho\to\pi\gamma}^2 \left[\frac{m_\rho^2 - m_\pi^2}{2m_\rho} \right]^3.
\]

(7.50)
With a numerical value for the width $\Gamma(\rho^+ \to \pi^+\gamma) = 68$ keV the coupling constant becomes
\[m_\rho g_{\rho\pi\gamma} = 0.5644 . \quad (7.51) \]

The relations between width and coupling constant for the a_1 meson is
\[\Gamma(a_1^+ \to \pi^+\gamma) = \frac{1}{3} \alpha g_{a_1\pi\gamma}^2 \left[\frac{m_{a_1}^2 - m_\pi^2}{2m_{a_1}} \right]^3 . \quad (7.52) \]

This relation is exactly the same as the one for the ρ meson even though the parities of the ρ and a_1 mesons differ. With a numerical value for the width $\Gamma(a_1^+ \to \pi^+\gamma) = 640$ keV the coupling constant becomes
\[m_{a_1} g_{a_1\pi\gamma} = 1.334 . \quad (7.53) \]
References

[1] A. Halprin, C.M. Andersen, and H. Primakoff, Phys.Rev. 152 (1966) 1295.

[2] A.S. Gal’perin et al., Sov.J.Nucl.Phys. 32 (1980) 545.

[3] M.V. Terent’ev, Sov.J.Nucl.Phys. 16 (1973) 87; J. Bijnens and F. Cornet, Nucl.Phys. B296 (1988) 557; J.F. Donoghue and B.R. Holstein, Phys.Rev. D40 (1989) 2378.

[4] Yu.M. Antipov et al., Phys.Lett. 121B (1983) 445; Yu.M. Antipov et al., Z.Phys. C24 (1984) 39; Yu.M. Antipov et al., Z.Phys. C26 (1984) 495.

[5] J. Ahrens et al., Eur.Phys.J. A23 (2005) 113.

[6] G. Fäldt, Phys.Rev. C76 (2007) 014608.

[7] L.V. Fil’kov and V.L. Kashevarov, Eur.Phys.J. A5 (1999) 285.