Association between Thyroiditis and Multifocality in Papillary Thyroid Carcinoma

Rogério Aparecido Dedivitis1,2, Leandro Luongo de Matos1,3, Felipe Guilherme Silva Souza4, Jose Luis Bogado Ortiz4

1 Department of Surgery, Faculdade de Medicina, Universidade de São Paulo, São Paulo, São Paulo, Brazil
2 Department of Head and Neck Surgery, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, São Paulo, Brazil
3 Department of Head and Neck Surgery, Instituto do Câncer do Estado de São Paulo (Icesp), São Paulo, São Paulo, Brazil
4 Department of Head and Neck Surgery, Hospital Ana Costa, Santos, São Paulo, Brazil

Address for correspondence Rogério Aparecido Dedivitis, Departmento de Cirurgia, Faculdade de Medicina, Universidade de São Paulo, Av. Conselheiro Nébias, 444, 16º Andar, 11045-000, Santos, SP, Brazil (e-mail: dedivitis.hns@uol.com.br).

Abstract

Introduction Hashimoto thyroiditis (HT) shares many characteristics with papillary thyroid carcinoma (PTC), and some studies show that, when associated, PTC is diagnosed mostly with smaller lesions and multifocal pattern.

Objective To evaluate the relationship between HT and PTC.

Methods A retrospective study of 155 patients who underwent total thyroidectomy from 2009 to 2015. Demographical, clinical and ultrasonographical data, as well as anatomopathological findings were evaluated.

Results There were signs of thyroiditis in 35 patients, and 114 patients had a unifocal disease. There was no statistical significance between the variables studied and thyroiditis. However, when compared with the occurrence of unifocal or multifocal lesions, there was statistical significance regarding age (p = 0.038) and mass (p = 0.031). There was no direct relationship between thyroiditis and multifocality (p = 0.325) nor between thyroiditis and cervical extension of the disease (p = 0.300 and p = 0.434).

Conclusion There was no relationship between thyroiditis and multifocality in cases of PTC.

Keywords
► thyroiditis
► papillary thyroid carcinoma
► thyroid cancer

Introduction

Hashimoto thyroiditis (HT) was first described in 1912 by the Japanese surgeon Hakaru Hashimoto, in Berlin, Germany.1 It is the most common disease in the thyroid gland, and it occurs mainly in women.2 It is an inflammatory autoimmune disease with diffuse infiltration of the gland by lymphocytes, leading to fibrosis and atrophy, and is the most common cause of hypothyroidism.3–5 Papillary thyroid carcinoma (PTC) is the most common thyroid cancer, responsible for ~ 70% to 80% of cases of this tumor.

The first causal association between both conditions was proposed in 1955 by Dailey et al.6 However, some
controversy still remains. Some papers suggest a strong relationship between them,²⁻⁹ whereas others do not.¹⁰,¹¹

Hashimoto thyroiditis shares many characteristics with PTC, such as similar morphology, immunohistochemical pattern, and molecular profile, suggesting that it could be a predisposing factor for PTC.¹⁰ Thus, some papers show that, in patients with HT, there is an increase of ~ 30% in cases of PTC. When associated with HT, PTC is diagnosed mostly in young women, with smaller lesions, in an early and multifocal pattern, and with better prognosis.³⁵,⁷,⁸,¹²

The objective of the present study was to evaluate the relationship between these diseases.

Methods

The present study was approved by the Ethics and Research Committee of the institution in which it was performed under number 83977318.4.0000.5509.

It is a retrospective study to evaluate the medical records of patients treated in a tertiary reference facility. In total, 155 patients treated between 2009 and 2015 were evaluated. They underwent total thyroidectomy, with or without neck dissection and radioiodine therapy, according to the protocol of the institution.

Demographical data (gender and age), clinical and ultrasonographic data, as well as anatomo-pathological findings (presence of chronic thyroiditis, size and multicentricity of the lesions and staging of the neck) were evaluated. All histopathological data was reviewed by the same pathologist. Based on the histopathological findings, the possible risk factors for multicentricity, including the presence of chronic thyroiditis, were evaluated.

Frequency distribution was used to describe the categorical variables, (number of cases and percentage) the central measurement tendencies (average and median) and dispersion measurements. The Student t-test was used to check the association between the numerical variables, and the Fisher exact test was employed to compare the categorical variables. A significance level of 5% was used for all statistical tests.

Results

In total, 155 files of patients were evaluated after the anatomo-pathological analysis of the surgical specimens: 120

Table 1 Patient distribution (n = 155)

Aspect	With thyroiditis (n = 35)	Without thyroiditis (n = 120)	Total
Men	6 (17.1%)	13 (10.9%)	19
Women	29 (82.9%)	107 (89.1%)	136
Unifocal	28 (80%)	86 (71.6%)	114
Multifocal	7 (20%)	36 (28.4%)	41
N0	34 (97.1%)	109 (90.8%)	143
N1a	1 (2.9%)	8 (6.6%)	9
N1b	0	3 (2.6%)	3

Table 2 Average characteristics of the patients according to the presence of thyroiditis

	Without thyroiditis	With thyroiditis	p-value
Age (years)	50.37	52.71	0.434
Mass (grams)	26.91	25.20	0.795
Measurement of the higher focus (mm)	12.77	12.26	0.737

showed no signs of thyroiditis, 114 showed unifocal disease, and 143 didn’t developed regional metastasis (→Table 1).

After the evaluation and comparison of the results, the main variables were age, size of the largest focus and glandular mass. There was no statistical significance when these variables were related to the presence of thyroiditis (→Table 2). However, when compared with the occurrence of unifocal or multifocal lesions, there was statistical significance for age (p = 0.038) and mass (p = 0.031) (→Table 3). Nevertheless, the tests did not show the same results for multifocality and uni/bilaterality (→Tables 4).

There was no direct relationship between thyroiditis and multifocality (p = 0.325) nor between thyroiditis and cervical extension of the disease (p = 0.300 and p = 0.434) (→Table 5).

Discussion

Some controversy in the literature still remains about the relationship between HT and PTC. Some papers³⁻⁵,¹² suggest a strong positive relationship between them, as well as a cause and effect relation in which the inflammatory process

Table 3 Average characteristics of the patients according to multifocality

	Unilateral multifocal lesions	Bilateral lesions	p-value
Age (years)	48	46	0.707
Mass (grams)	28.16	19.37	0.53
Measurement of the higher focus (mm)	15	16.48	0.99

Table 4 Comparison between unifocal and multifocal lesions

	Unifocal lesion	Multifocal lesions	p-value
Age (years)	52.45	46.59	0.038
Mass (grams)	28.17	21.95	0.031
Measurement of the higher focus (mm)	11.43	16.05	0.104
The mechanism of such an association is unknown. It is possible that TgAb has a tumorigenic effect or is strongly associated with a specific tumorigenic inflammatory response. Changed processing or mutation in the molecular structure of thyroglobulin can increase its antigenicity. On the other hand, some studies suggest that there is no relation-ship or difference in age and glandular mass with unifocal or multifocal PTC. Thyroiditis was more frequently observed in multifocal PTC than in the unifocal disease; however, a significant statistical heterogeneity was verified in the studies.7

Our study showed positive and statistical significance between multifocality, age and glandular mass. Some articles28–30 in the literature remain controversial on this point. In spite of the fact that the age of the patients is similar in the studies, some28,29 point out that there is no relationship or difference in age and glandular mass with unifocal or multifocal lesions, whereas others30 show a positive relationship between these variables. It is possible that more studies, with a larger number of patients enrolled, would be necessary in order to reach a definitive conclusion.

We did not find statistical significance in the analysis of cervical extension (neck metastasis) when compared with multifocality and thyroiditis when associated, just like many studies.31–33 However, other studies show that multifocality is an independent risk factor for the occurrence of neck metastasis, mainly in the central neck34–43 and regarding young male patients.29

Conclusion

There was no relationship between thyroiditis and the occurrence of multifocality in cases of PTC. However, we found statistical significance between multifocality, glandular mass and the age of the patients in the study.
Conflict of Interests
The authors have no conflict of interests to declare.

References
1. Mazokopakis EE, Tzortzinis AA, Dalieraki-Ott E, et al. Coexistence of Hashimoto’s thyroiditis with papillary thyroid carcinoma. A retrospective study. Hormones (Athens) 2010;9(04):312–317
2. Jankovic B, Le KT, Hershman JM. Clinical Review: Hashimoto’s thyroiditis and papillary thyroid carcinoma: is there a correlation? J Clin Endocrinol Metab 2013;98(02):474–482
3. Ahn D, Heo SJ, Park JH, et al. Clinical relationship between Hashimoto’s thyroiditis and papillary thyroid cancer. Acta Oncol 2011;50(08):1228–1234
4. Zhu F, Shen YB, Li FQ, Fang Y, Hu L, Wu YJ. The effects of Hashimoto thyroiditis on lymph node metastasis in unifocal and multifocal papillary thyroid carcinoma: A retrospective Chinese cohort study. Medicine (Baltimore) 2016;95(06):e2674
5. Repplinger D, Bargren A, Zhang YW, Adler JT, Haymert M, Chen H. Is Hashimoto’s thyroiditis a risk factor for papillary thyroid cancer? J Surg Res 2008;150(01):49–52
6. Dailey ME, Lindsay S, Skahen R. Relation of thyroid neoplasms to Hashimoto disease of the thyroid gland. AMA Arch Surg 1955;70(02):291–297
7. Lee JH, Kim Y, Choi JW, Kim YS. The association between papillary thyroid carcinoma and histologically proven Hashimoto’s thyroiditis: a meta-analysis. Eur J Endocrinol 2013;168(03):343–349
8. Konturek A, Barczyński M, Nowak W, Wierczkowski W. Risk of lymph node metastases in multifocal papillary thyroid cancer associated with Hashimoto’s thyroiditis. Langenbecks Arch Surg 2014;399(02):229–236
9. Cipolla C, Sandojota L, Graceffa G, et al. Hashimoto thyroiditis coexists with papillary thyroid carcinoma. Am Surg 2005;71(10):874–878
10. Arif S, Blanes A, Díaz-Cano SJ. Hashimoto’s thyroiditis shares features with early papillary thyroid carcinoma. Histopathology 2002;41(04):357–362
11. Rojer MC, Zhang H, Fan CY, Kokoska MS. Genetic alterations in papillary thyroid carcinoma and hashimoto thyroiditis: An analysis of hOGG1 loss of heterozygosity. Arch Otolaryngol Head Neck Surg 2010;136(03):240–242
12. Cordioli MI, Cury AN, Nascimento AO, Oliveira AK, Mello M, Saieg MA. Study of the histological profile of papillary carcinoma associated with Hashimoto’s thyroiditis. Arq Bras Endocrinol Metabol 2013;57(06):445–449
13. Azizi G, Keller JM, Lewis M, et al. Association of Hashimoto’s thyroiditis with thyroid cancer. Endocr Relat Cancer 2014;21(06):845–852
14. Latrofa F, Ricci D, Montanelli L, et al. Lymphocytic thyroiditis on histology correlates with serum thyroglobulin autoantibodies in patients with papillary thyroid carcinoma: impact on detection of serum thyroglobulin. J Clin Endocrinol Metab 2012;97(07):2380–2387
15. Kurukahveciglu O, Taneri F, Yüksel O, Aydin A, Tezel E, Onuk E. Total thyroidectomy for the treatment of Hashimoto’s thyroiditis coexisting with papillary thyroid carcinoma. Adv Ther 2007;24(03):510–516
16. Brady DP, Reddy V, Prinz RA, Gattuso P. Incidental papillary carcinoma in patients treated surgically for benign thyroid diseases. Surgery 2009;146(06):1099–1104
17. Nguyen GK, Ginsberg J, Croxford PM, Villanueva RR. Hashimoto’s thyroiditis: cytodiagnostic accuracy and pitfalls. Diagn Cytopathol 1997;16(06):531–536
18. Ravinsky E, Safneck JR. Differentiation of Hashimoto’s thyroiditis from thyroid neoplasms in fine needle aspirates. Acta Cytol 1988;32(06):854–861
19. Kumara Singh ME, De Silva S. Pitfalls in cytological diagnosis of autoimmune thyroiditis. Pathology 1999;31(01):1–7
20. MacDonald L, Yazdi HM. Fine needle aspiration biopsy of Hashimoto’s thyroiditis. Sources of diagnostic error. Acta Cytol 1999;43(03):400–406
21. Seifman MA, Godski SF, Bailey M, Yeung MJ, Serpell JW. Surgery in the setting of Hashimoto’s thyroiditis. ANZ J Surg 2011;81(7-8):519–523
22. Singh B, Shaha AR, Trivedi H, Carew JF, Poluri A, Shah JP. Coexistent Hashimoto’s thyroiditis with papillary thyroid carcinoma: impact on presentation, management, and outcome. Surgery 1999;126(06):1070–1076, discussion 1076–1077
23. Gul K, Dirikoc A, Kiyak G, et al. The association between thyroid carcinoma and Hashimoto’s thyroiditis: the ultrasonographic and histopathologic characteristics of malignant nodules. Thyroid 2010;20(08):873–878
24. Muzza M, Degli’Innocenti D, Colombo C, et al. The tight relationship between papillary thyroid cancer, autoimmunity and inflammation: clinical and molecular studies. Clin Endocrinol (Oxf) 2010;72(05):702–708
25. Matsubayashi S, Kawai K, Matsumoto Y, et al. The correlation between papillary thyroid carcinoma and lymphocytic infiltration in the thyroid gland. J Clin Endocrinol Metab 1995;80(12):3421–3424
26. Gupta S, Patel A, Folstad A, et al. Infiltration of differentiated thyroid carcinoma by proliferating lymphocytes is associated with improved disease-free survival for children and young adults. J Clin Endocrinol Metab 2001;86(03):1346–1354
27. Del Rio P, Cataldo S, Sommaruga L, Concione L, Arcuri MF, Sianesi M. The association between papillary carcinoma and chronic lymphocytic thyroiditis: does it modify the prognosis of cancer? Minerva Endocrinol 2008;33(01):1–5
28. Wang F, Yu X, Shen X, et al. The prognostic value of tumor multifocality in clinical outcomes of papillary thyroid cancer. J Clin Endocrinol Metab 2017;102(09):3241–3250
29. Kiriaikopoulos A, Petralias A, Linos D. Multifocal versus solitary papillary thyroid carcinoma. World J Surg 2016;40(09):2139–2143
30. Kim KJ, Kim SM, Lee YS, Chung WY, Chang HS, Park CS. Prognostic significance of tumor multifocality in papillary thyroid carcinoma and its relationship with primary tumor size: a retrospective study of 2,309 consecutive patients. Ann Surg Oncol 2015;22(01):125–131
31. Lebouilleux S, Rubino C, Baudin E, et al. Prognostic factors for persistent or recurrent disease of papillary thyroid carcinoma with neck lymph node metastases and/or tumor extension beyond the thyroid capsule at initial diagnosis. J Clin Endocrinol Metab 2005;90(10):5723–5729
32. Ross DS, Litofsky D, Ain KB, et al. Recurrence after treatment of micropapillary thyroid cancer. Thyroid 2009;19(10):1043–1048
33. Neuhold N, Schultheis A, Hermann M, Krotla G, Koperek O, Birner P. Incidental papillary microcarcinoma of the thyroid—further evidence of a very low malignant potential: a retrospective clinicopathological study with up to 30 years of follow-up. Ann Surg Oncol 2011;18(12):3430–3436
34. Zhao Q, Ming J, Liu C, et al. Multifocality and total tumor diameter predict central neck lymph node metastases in papillary thyroid microcarcinoma. Ann Surg Oncol 2013;20(03):746–752
35. Vasileiadis I, Karakostas E, Charitoudis G, et al. Papillary thyroid microcarcinoma: clinicopathological characteristics and implications for treatment in 276 patients. Eur J Clin Invest 2012;42(06):657–664
36 He Q, Zhuang D, Zheng L, et al. The surgical management of papillary thyroid microcarcinoma: a 162-month single-center experience of 273 cases. Am Surg 2012;78(11):1215–1218
37 Kim HJ, Sohn SY, Jang HW, Kim SW, Chung JH. Multifocality, but not bilaterality, is a predictor of disease recurrence/persistence of papillary thyroid carcinoma. World J Surg 2013;37(02):376–384
38 Lin JD, Chao TC, Hsueh C, Kuo SF. High recurrent rate of multicentric papillary thyroid carcinoma. Ann Surg Oncol 2009;16(09):2609–2616
39 Hay ID, Hutchinson ME, Gonzalez-Losada T, et al. Papillary thyroid microcarcinoma: a study of 900 cases observed in a 60-year period. Surgery 2008;144(06):980–987, discussion 987–988
40 So YK, Son YI, Hong SD, et al. Subclinical lymph node metastasis in papillary thyroid microcarcinoma: a study of 551 resections. Surgery 2010;148(03):526–531
41 Ito Y, Miyauchi A. Lateral lymph node dissection guided by preoperative and intraoperative findings in differentiated thyroid carcinoma. World J Surg 2008;32(05):729–739