Early modified gravity in light of the H_0 tension and LSS data

Matteo Braglia, a,b,c Mario Ballardini, a,b,c Fabio Finelli, b,c Kazuya Koyama e

a Dipartimento di Fisica e Astronomia, Alma Mater Studiorum Università di Bologna, via Gobetti 93/2, I-40129 Bologna, Italy
b INAF/OAS Bologna, via Piero Gobetti 101, I-40129 Bologna, Italy
c INFN, Sezione di Bologna, via Irnerio 46, I-40126 Bologna, Italy
e Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Portsmouth PO1 3FX, United Kingdom

E-mail: matteo.braglia2@unibo.it, mario.ballardini@inaf.it, fabio.finelli@inaf.it, kazuya.koyama@port.ac.uk

Abstract. We present a model of Early Modified Gravity (EMG) consisting in a scalar field σ with a non-minimal coupling to the Ricci curvature of the type $M_{\text{pl}}^2 + \xi \sigma^2$ plus a cosmological constant and a small effective mass and demonstrate its ability to alleviate the H_0 tension while providing a good fit to Cosmic Microwave Background (CMB) anisotropies and Baryon Acoustic Oscillations (BAO) data. In this model the scalar field, frozen deep in the radiation era, grows around the redshift of matter-radiation equality because of the coupling to non-relativistic matter. The small effective mass, which we consider here as induced by a quartic potential, then damps the scalar field into coherent oscillations around its minimum at $\sigma = 0$, leading to a weaker gravitational strength at early times and naturally recovering the consistency with laboratory and Solar System tests of gravity. We analyze the capability of EMG with positive ξ to fit current cosmological observations and compare our results to the case without an effective mass and to the popular early dark energy models with $\xi = 0$. We show that EMG with a quartic coupling of the order of $\lambda \sim O(eV^4/M_{\text{pl}}^4)$ can substantially alleviate the H_0 tension also when the full shape of the matter power spectrum is included in the fit in addition to CMB and Supernovae (SN) data.
1 Introduction

The long-standing success of the cosmological ΛCDM model has been challenged in the recent years by the growing discrepancy between direct measurements of the Hubble constant H_0 and its inference from CMB anisotropies data \cite{1}. The most recent measurements range from $H_0 = (67.36 \pm 0.54)$ km s$^{-1}$Mpc$^{-1}$ for ΛCDM and Planck 2018 data release \cite{2} and $H_0 = (73.5 \pm 1.4)$ km s$^{-1}$Mpc$^{-1}$ \cite{3} for SH0ES, showing a 4.1σ tension on the H_0 parameter. However, the tension is not restricted to these two data sets. With the recent progress, it is now clear that, rather than being only between Planck and SH0ES, the H_0 tension is in general between indirect, or early time, measurements obtained by inferring H_0 assuming a model (usually ΛCDM) and analyzing it with cosmological data such as the CMB \cite{2} or the combination of clustering and weak lensing data with BAO and Big Bang Nucleosynthesis ones \cite{4}, and direct, or late time, measurements of H_0, which are instead model independent.

A number of H_0 probes belonging to the latter class are in tension with estimates from CMB up to $\sim 4\sigma$ level, see \cite{1} for a review. Another independent determination of H_0, important for this paper, is obtained with the strong-lensing time delay by the H0LiCOW team \cite{5}, i.e. $H_0 = (73.3_{-1.8}^{+1.7})$ km s$^{-1}$Mpc$^{-1}$, which is in a 3.2σ tension with CMB (see however \cite{6}). By combining SH0ES and H0LiCOW measurements the estimate $H_0 = (73.4 \pm 1.1)$ km s$^{-1}$Mpc$^{-1}$ is obtained, raising the tension with CMB to the 4.9σ level. Given the relevance of this tension, several groups have investigated whether it might be due to unaccounted effects such as uncertainties in calibration \cite{7–10} or in the luminosity functions of SNIa \cite{7–13}.

Although unaccounted systematic effects might alter its statistical significance, these discrepant determinations of H_0 spark interest towards new physics beyond ΛCDM. This point of view has stimulated the proposal of a wealth of physical mechanisms leading to a large H_0 through modifications of both the early \cite{14–18} and the late time \cite{19–26} expansion history of the Universe. The former ones, however, seem to be preferred over since reduce the value of the comoving size of the sound horizon at baryon drag r_s, without spoiling the
fit to CMB and BAO data [27–29]. Two well studied frameworks to modify the early time
dynamics of the Universe and inject the required energy into the cosmic fluid to lower \(r_s \) with
respect to the \(\Lambda \text{CDM} \) one are modified gravity (MG) [30–42] and Early Dark Energy (EDE)
models [43–59].

In this paper, we extend the model with a scalar field on-minimally coupled to the
Ricci scalar of the form \(F(\sigma) = M^2_{\text{pl}} + \xi \sigma^2 \) in presence of a cosmological constant \(\Lambda \) [38, 39],
by providing it with a small effective mass. For the sake of simplicity we consider a quartic
potential, i.e. \(V(\sigma) = \lambda \sigma^4/4 \), as effective mass: in this Early Modified Gravity (EMG) model,
the scalar field starts to move around the redshift of matter-radiation equality driven by the
coupling to non-relativistic matter, and then rolls faster when the effective mass become larger
than the Hubble parameter and ends in a regime of coherent oscillations around the minimum
of the potential. The choice of a quartic potential is dictated by the fact that coherent
oscillations of \(\sigma \) are in conformal time and therefore tractable by an Einstein-Boltzmann
code, without ad-hoc modifications, see e.g. Ref. [60]. Thanks to the fast rolling of \(\sigma \) towards
the bottom of the potential, the tight constraints on \(G_{\text{eff}} \) from laboratory experiments and
Solar System measurements on post-Newtonian parameters are automatically satisfied by the
small cosmological values of \(\sigma \) within the EMG model, as it happens in the range of \(\xi < 0 \) in
the massless case where \(\sigma \) is decreased just by coupling to non-relativistic matter [34, 38, 39].
The small effective mass and the consequent naturally achieved consistency of cosmology
with laboratory and Solar System constraints are particularly important for positive values
of the coupling, since \(\sigma \) would grow for \(\xi > 0 \) for \(\lambda = 0 \), and therefore we mainly focus in
this range in this paper.

In our EMG model, we consider the two possible dimensionless couplings for a cosmolo-
gical scalar field, which rule the coupling to the Ricci scalar (\(\xi \)) and its self-interaction (\(\lambda \)),
respectively. Note that our model differs from previously introduced ones also named Early
Modified Gravity [61–63].

Another interesting feature of this EMG is that the effective Newtonian constant \(G_{\text{eff}} \)
grows with time, as opposed to nearly massless models [34, 38–40], implying a weaker gravity
at early times. As we show in this paper, such an effect implies different predictions on Large
Scale Structure (LSS) observables that can help disentangle EMG and EDE. The latter
models have indeed been recently claimed not to be able to solve the \(H_0 \) tension when LSS
data are included in the analysis [64–66]. As we show in this paper, the suppression of the
matter power spectrum induced by the positive coupling helps us obtain a value for \(H_0 \) larger
than EDE with \(\xi = 0 \), thanks to a better fit to LSS data.

Our paper is organized as follows. We introduce our model and describe in details its
background evolution, as well as its imprints on CMB and LSS observables in Sec. 2. We
describe the dataset and the methodology used in our MCMC exploration in Sec. 3, present
our results in Sec. 4 and compare them with existing works on the EDE and NMC models
in Sections 5 and 6, before concluding in Sec. 7. We collect the tables with the results of our
MCMC analysis in Appendix A.

2 The model

The model we consider is described by the following action:

\[
S = \int d^4x \sqrt{-g} \left[\frac{F(\sigma)}{2} R - \frac{g^\mu\nu}{2} \partial_\mu \sigma \partial_\nu \sigma - \Lambda - V(\sigma) + \mathcal{L}_m \right], \quad (2.1)
\]
where $F(\sigma) = M_{pl}^2 + \xi \sigma^2$, R is the Ricci scalar, and \mathcal{L}_m is the Lagrangian density for matter fields. In the following, we consider a quartic potential for the scalar field of the form $V(\sigma) = \lambda \sigma^4/4$, where λ is a dimensionless constant. With these conventions, our model reduces to the NMC model considered in Ref. [39] for $\lambda = 0$ and to the Rock ‘n’ Roll (RnR) model of Ref. [45] for $\xi = 0$.

The Friedmann and Klein-Gordon equations are given by:

\begin{align}
3FH^2 &= \rho + \frac{\dot{\sigma}^2}{2} + \Lambda + V - 3\dot{F}H \equiv \rho + \rho_\sigma, \quad (2.2a) \\
\ddot{\sigma} + 3H\dot{\sigma} &= \frac{F_\sigma}{2F + 3F_\sigma^2} \left[\rho - 3p + 4\Lambda + 4V - 2\frac{F V_\sigma}{F_\sigma} - (1 + 3F_\sigma)\dot{\sigma}^2 \right]. \quad (2.2b)
\end{align}

where $\rho \equiv \rho_m + \rho_r$ ($p \equiv p_r$) denotes the sum of the matter and radiation energy density (pressure) and a subscript σ denotes the derivative with respect to the scalar field σ. For theories described by the action 2.1, it is useful to define an effective dark energy density as follows [67, 68]:

\begin{equation}
\rho_{DE} = \frac{F_0}{F} \rho_\sigma + (\rho_m + \rho_r) \left(\frac{F_0}{F} - 1 \right), \quad (2.3)
\end{equation}

where the subscript 0 denotes that a quantity is evaluated at $z = 0$. The energy fraction of the scalar field is simply given by $\Omega_\sigma \equiv \rho_{DE}/3H^2F_0$.

The coupling between gravity and the scalar degree of freedom induces a time varying Newton’s gravitational constant G_N, which is given by $G_N = 1/(8\pi F)$. This quantity is usually named the cosmological Newton’s gravitational constant, as opposed to the one that is actually measured in laboratory Cavendish-type experiments which, for a nearly massless scalar tensor theory of gravity, is rather given by [67]:

\begin{equation}
G_{\text{eff}} = \frac{1}{8\pi F} \frac{2F + 4F_\sigma^2}{2F + 3F_\sigma^2}, \quad (2.4)
\end{equation}

Note that, strictly speaking, given the non-vanishing potential for the scalar field $V(\sigma) = \lambda \sigma^4/4$, we would have scale-dependent fifth forces corrections in G_{eff} that are proportional to V_σ and $V_\sigma\sigma$ (see e.g. Refs. [69, 70]). However, since $V_\sigma \simeq V_\sigma\sigma \simeq 0$ at late times for the models considered in this paper (see also Fig. 1), such scale dependent corrections vanish and so we will use Eq. (2.4) throughout this paper.

The deviations from general relativity (GR) can also be parameterized by means of the so-called Post-Newtonian (PN) parameters [71], which are given within NMC by the following equations [67]:

\begin{align}
\gamma_{PN} &= 1 - \frac{F_\sigma^2}{F + 2F_\sigma^2}, \quad (2.5) \\
\beta_{PN} &= 1 + \frac{F F_\sigma}{8F + 12F_\sigma^2} \frac{d\gamma_{PN}}{d\sigma}. \quad (2.6)
\end{align}

Note that $\gamma_{PN} < 1$ in our models. Solar-system experiments agree with GR predictions, for which both γ_{PN} and β_{PN} are identically equal to unity, at a very precise level. Measurements of the perihelion shift of Mercury constrain $\beta_{PN} - 1 = (4.1 \pm 7.8) \times 10^{-5}$ at 68% CL [71] and Shapiro time delay constrains $\gamma_{PN} - 1 = (2.1 \pm 2.3) \times 10^{-5}$ at 68% CL [72]. As we will see below, such limits are automatically satisfied in our model.
Figure 1. [Top] We plot the evolution of the scalar field (left) and the energy injection Ω_σ defined in the main text. [Bottom] We plot the evolution of the variation of the effective Newton constant $(G_{\text{eff}} - G)/G$ (left) and of the post-Newtonian parameter $\gamma_{PN} - 1$ (right). The model parameters used in the plot are $\sigma_i = 0.54M_{\text{pl}}$ and $V_0 = 2$ and we vary the value of the non-minimal coupling ξ according to the legend in the top-left panel.

2.1 Background evolution

The evolution of relevant background quantities is shown in Fig. 1. For our comparison, we consider the bestfit cosmological parameters given in Table 3 of Ref. [45], that is

$$\begin{align*}
\theta_s &= 1.0417, \quad 100 \omega_b = 2.264, \quad \omega_c = 0.1267, \quad \tau_{\text{reio}} = 0.081, \quad \ln 10^{10} A_s = 3.105, \\
n_s &= 0.981, \quad \sigma_i[M_{\text{pl}}] = 0.54, \quad V_0 = 2
\end{align*}$$

(2.7)

for EMG, for which we vary the non-minimal coupling ξ according to the legend in the figures, and

$$\begin{align*}
\theta_s &= 1.0422, \quad 100 \omega_b = 2.236, \quad \omega_c = 0.1177, \quad \tau_{\text{reio}} = 0.077, \quad \ln 10^{10} A_s = 3.080, \quad n_s = 0.969
\end{align*}$$

(2.8)

for the ΛCDM model to which we compare our results. Note that the constant V_0 is related to λ by $\lambda = 10^{2V_0}/(3.516 \times 10^{10})^4$. We stress that these values are only used to build our model parameters $\sigma_i = 0.54M_{\text{pl}}$ and $V_0 = 2$ and we vary the value of the non-minimal coupling ξ according to the legend in the top-left panel.

3.516×10^{10} is the numerical value of M_{pl}^4 in eV4
intuition and will be superseded the cosmological parameter estimation that we present in Sec. 4. As can be seen from the top-left panel, the addition of the effective mass makes EMG more similar to EDE models with respect to nearly massless NMC models [34, 38, 39]. Indeed, σ starts frozen deep in the radiation era and, when its effective mass becomes larger than the Hubble flow, eventually rolls down the potential and starts oscillating around its effective minimum located at $\sigma = 0$. It is clear from Fig. 1, that the corrections to the effective mass of the scalar field induced by the non-minimal coupling $F(\sigma)$ modify the dynamics of σ, which, for $\xi \geq 0$, experiences a temporary growth before falling down the potential. Because of this initial growth, the oscillations around $\sigma = 0$ have a visibly larger amplitude and their phase is slightly shifted compared to the case with $\xi = 0$.

The importance of such a modification to the dynamics for $\xi = 0$ can be understood by looking at the shape of Ω_σ in the top-right panel of Fig. 1. For the same values of $\{\sigma_i, V_0\}$, a larger ξ sizeably increases the energy that the scalar field injects into the cosmic fluid once it starts to roll down its potential, an effect which, at a fixed value of ξ, can also be obtained by increasing the initial value of the scalar field σ_i. On the other hand, for larger values of ξ, we observe that Ω_σ becomes gradually more negative, therefore suppressing $H(z)$, with respect to the $\xi = 0$ case, before σ starts to thaw, reducing the degeneracy of the non-minimal coupling ξ with the initial condition σ_i (see also next Subsection). Therefore our model offers a broader phenomenology than EDE ones, which is interesting since the exact shape in redshift of the energy injection plays a crucial role in physical models that aim at solving the H_0 tension [29]. We stress that having $\Omega_\sigma < 0$ is not a physical problem as Ω_σ only parameterizes the contribution of the scalar field to the total expansion rate when the Friedmann equations are recast in Einstein gravity form [67, 68]. Although the main focus of this paper is the $\xi \geq 0$ regime, it is also instructive to show the behavior of Ω_σ when the coupling is negative. We take the conformal coupling $\xi = -1/6$ as an example (see also Section 6). For such a large and negative ξ, the profile of the energy injection is continuous and resembles the one in models with extra dark radiation, exactly as the massless case with $\lambda = 0$ [34, 38, 39].

We stress again that the quartic potential drastically modifies the scalar field evolution compared to the case in which $\lambda = 0$. By the addition of the effective mass, consistency of G_{eff} and PN parameters with Cavendish-type measurements and Solar System constraints, respectively, can be obtained without any fine tuning for $\xi > 0$, as can be seen from the bottom panels of Fig. 1. Note also that, thanks to the potential $V(\sigma)$, we have that G_{eff} grows with time, which is not possible in standard scalar-tensor models involving only the coupling $F(\sigma)$, for which G_{eff} decreases with time regardless of the sign of the non-minimal coupling [34, 39]. However, in the conformally coupled case, G_{eff} decreases as in the massless case [39].

2.2 Imprints of the Non-Minimal coupling on CMB and LSS

We now show the imprints of EMG on CMB and LSS observables. The temperature and E-mode polarization CMB angular power spectra are shown in the top panels of Fig. 2, from which it can be seen that the coupling sizeably affects the acoustic peaks structure of the CMB spectra, as a consequence of the modification to gravity around recombination. However, note that thanks to the potential $V(\sigma)$ and the different cosmological evolution of σ, the imprint of ξ is drastically reduced with respect to the massless case with $\lambda = 0$. Indeed, in the latter case, relative changes in $\Delta C_\ell / C_\ell$ of the same magnitude of the ones shown in the top panels of Fig. 2 can be obtained with much smaller values of ξ, see e.g.
Figure 2. [Top] We plot the lensed CMB TT (left) and EE (right) angular power spectrum as a function of the non-minimal coupling ξ. [Center] We plot the lensed CMB TT (left) and EE (right) angular power spectrum as a function of the initial condition on the scalar field σ_i with $\xi = 0$. [Bottom] We plot the lensed CMB TT (left) and EE (right) angular power spectrum as a function of the potential parameter V_0 keeping the non-minimal coupling fixed to $\xi = 0.1$. We utilize the set of parameters used to produce Fig. 1.
Figure 3. We plot the CMB BB angular power spectrum due to tensor perturbations. In order to clarify the distinction between effects due to the shift in cosmological parameters and the genuine effects of the non-minimal coupling, we plot both the relative differences between the EDE and ΛCDM baselines in Eq. (2.7) and (2.8) and the ones obtained by fixing and varying \(\xi \) (right). We set the tensor-to-scalar ratio to \(r_{0.05} = 0.05 \). The lensing spectra are almost unaffected by varying our parameters, so the relative differences for the total spectra do not change from the ones in our plots.

Fig. 9 of Ref. [34]. We also note that the modifications to acoustic peaks for \(\xi = -1/6 \) are out of phase with respect to the case of a positive coupling.

As discussed in the previous Subsection, the non-minimal coupling \(\xi \) enhances the energy injection of the scalar field into the cosmic fluid, similarly to what can be obtained with a larger \(\sigma_i \). In order to compare the two effects, in the bottom panels of Fig. 2, we fix \(\xi = 0 \) and plot the residual CMB spectra for a set of initial conditions \(\sigma_i \) that give the same maximum energy injection of the curves presented in the top panel. Although both parameters modify the acoustic structure of the CMB, the pattern of the CMB residuals is different. In particular, given the same energy injection obtained by varying \(\xi \) or \(\sigma_i \) with \(\xi = 0 \) respectively, the former has a stronger impact on the CMB since, thanks to the non-minimal coupling, the scalar field modifies the expansion history already while it is frozen, slightly decreasing \(H(z) \) since its effective energy density is negative (see Fig. 1).

In the perspective of future experiments dedicated to CMB polarization, it is also instructive to show the imprints of EMG on primordial B-mode polarization. These are shown in Fig. 3, where we vary \(\xi \) in the left panel and fix \(\xi = 0 \) and vary \(\sigma_i \) in the right one. Note that a non-minimal coupling modifies the propagation equation for the two polarization states of the gravitational waves \(h_{+,\times} \) as (neglecting anisotropic stresses for simplicity)

\[
\ddot{h}_{+,\times} + \left(3 + \frac{\dot{F}}{HF} \right) \dot{h}_{+,\times} + \frac{k^2}{a^2} = 0.
\]

As shown in Refs. [63, 75, 76], the additional friction term induced by the non-minimal coupling may leave interesting observational signatures. In the case of \(V(\sigma) = 0 \), the impact on B-mode polarization was analyzed in Ref. [34], where it was found the effects increase with \(|\xi| \). In our model, where the potential \(V(\sigma) \) enlarge the range of \(\xi \) which is compatible

\[^1\text{The term } \dot{F}/HF \text{ is sometimes referred to as } \alpha_M \text{ or } \delta \text{ in the literature [73, 74]}.\]
Figure 4. We plot the ratio of the EMG and ΛCDM linear matter power spectra at $z = 0$ (left) and the evolution of the dark matter perturbation $δρ_c$ for $k = 0.1\ h/Mpc$ divided by the one for the ΛCDM model (right) as a function of the non-minimal coupling $ξ$. As in the previous plot, for solid lines, we utilize the set of parameters used to produce Fig. 1 and we compute relative differences between the EDE and ΛCDM baselines in Eq. (2.7) and (2.8). To make clear which are the effects due only to the variation of $ξ$, we also plot in dashed lines $P(k)$ by keeping fixed the EDE baseline parameters in Eq. (2.7) and varying $ξ$ in dashed lines.

with the data (see next Section), the effects can indeed be larger, as can be seen from the left panel of Fig. 3. The effect of an increasing $ξ$ is twofold. First it changes the acoustic structure of the $C_ℓ$’s for $ℓ ≥ 100$, with a pattern which cannot be mimicked by a change in $σ_i$, similarly to what happens with the other CMB spectra, as can be appreciated by looking at the right panel of Fig. 3. Second, it also decreases the power in the range $10 ≤ ℓ ≤ 100$ compared to the ΛCDM model. Our plots also show a bump at very large scales. This, however, is a feature which is not directly ascribed to the EMG model or the EDE one. In fact, such a peak comes from the interplay of the different cosmological parameters in Eqs. (2.7) and (2.8). Nevertheless, we have verified that such a bump also occurs when considering the relative differences between the bestfit values for ΛCDM and EMG/EDE cosmologies shown in the next Section, and thus it may constitute an indirect signature of EMG and EDE models that can be tested with future CMB B modes experiments.

Since EDE scenarios have been recently shown to be constrained by the matter power spectrum at low redshift [64–66, 77, 78], it is important to investigate the imprints of our model also on LSS and compare them to the ones of NMC and EDE models. We plot the ratio between the linear matter power spectra for our EMG model and the ΛCDM one in the left panel of Fig. 4. As previously studied in [30–34], the matter power spectrum is enhanced at small scales in effectively massless scalar-tensor models aiming at alleviating the H_0 problem since gravity was relatively stronger at early times. Analogously, EDE models also enhance the matter power spectrum at small scales compared to the ΛCDM one, as can be seen from the orange line in the plot. It is however important to understand that this effect is not due to the EDE component itself, but rather by the shift towards a larger $ω_c$ that is needed to maintain the fit to the CMB data, see Eqs. (2.7) and (2.8). In fact, the larger is the fraction of EDE the greater is the suppression of the growth of the perturbations within the horizon during the epoch when EDE is not negligible. We see from the right panel
Figure 5. We plot the 1 loop $\ell = 0$ (left) and $\ell = 2$ (right) multipole moments of the galaxy power spectrum as a function of the non-minimal coupling ξ. We utilize the set of parameters used to produce Fig. 1. We also plot the ΛCDM results in magenta dotted lines for a comparison.

of Fig. 4 that, fixing all the other parameters, the non-minimal coupling ξ goes instead in the direction of suppressing the power at small scales, as it weakens the strength of gravity during the EMG epoch, see Fig. 1. This is not true anymore for the $\xi = -1/6$ case in which a stronger gravity ($G_{\text{eff}}/G > 1$) at early times leads to an enhancement of the power at smaller scales. Again, the results are completely different from the case with $\lambda = 0$, for which the G_{eff} always decreases with time, leading to a stronger gravity at early times and a consequent larger power in $P(k)$ at small scales [34].

The results in Fig. 4 can be better understood by looking at the evolution of dark matter perturbations. For this purpose, we plot the evolution of the ratio of the dark matter perturbation $\delta \rho_c$ for the EMG and the ΛCDM model for the mode $k = 0.1 \ h/\text{Mpc}$ in the right panel of Fig. 4. As can be seen, for a positive ξ, initially scalar field perturbations enhance the growth of dark matter perturbations with respect to the ΛCDM case, overcoming the suppression factor due to having $G_{\text{eff}}/G < 1$. The opposite occurs for a negative value, as can be seen from the brown line. On even smaller scales (larger k), we also have a fifth force (scale dependent) contribution from the scalar field perturbations that further enhances the growth of dark matter perturbations at very early times with respect to the ΛCDM case, which explains the raise in the $P(k)$ at small scales for $\xi = 0.5$ in the left panel of Fig. 4.

Once the scalar field starts to roll down the potential, however, the scalar field perturbations become negligible and the only effect of the modification to gravity is to suppress (enhance) the gravitational potentials by a factor of $F(\sigma) < 1$ (> 1) depending on the sign of ξ, leading to the observed suppression (enhancement) in the left panel of Fig. 4.

Furthermore, it is instructive to show the effects on the observed redshift-space galaxy-spectrum. We plot the multipole moments in Fig. 5 where we show the monopole $\ell = 0$ (left panel) and the quadrupole $\ell = 2$ (right panel) resummed at 1 loop order in perturbation theory, which we have produced with the publicly available code PyBird1 [79]. Although PyBird works in the framework of a ΛCDM effective field theory of LSS, the deviations from General Relativity at the relevant redshift considered by PyBird are so small that its

1https://github.com/pierrexyz/pybird
use in this context is safe (see Fig. 1). As an example we have considered the multipole moments at \(z = 0.38 \), which corresponds to the redshift of the low-\(z \) NGC BOSS data (see next Section). Note that the effect of \(\xi \) is to reduce the amplitude of both \(P_0(k) \) and \(P_2(k) \).

It is very interesting to note that, starting from the parameters in Eqs. (2.7) and (2.8), we recover very similar spectra for \(\Lambda \)CDM and the EMG model with \(\xi = 0.1 \), suggesting that the non-minimal coupling can help reconcile EDE models with LSS observations.

3 Methodology and datasets

We perform a Markov-chain Monte Carlo (MCMC) analysis using a modified version of the hiCLASS code [80–83] interfaced to the publicly available sampling code MontePython-v3 [84, 85] and to the PyBird code for the calculation of the full shape of the galaxy power spectrum in the effective field theory of large scale structure [79]. We obtain plots using the GetDist package [86].

For all our runs, we set the initial velocity of the scalar field to zero, use adiabatic initial conditions for the scalar field perturbations [34, 87] and consider massless neutrinos (\(N_{\text{eff}} = 3.046 \)). We sample over the cosmological parameters \(\{ \omega_b, \omega_{cdm}, \theta_s, \ln 10^{10}A_s, n_s, \tau_{\text{reio}}, \xi, \sigma_i, V_0 \} \) using the Metropolis-Hastings algorithm and with a Gelman-Rubin [88] convergence criterion \(R - 1 < 0.03 \). For the extra parameters we consider flat priors \(\xi \in [0, 1], \sigma_i/M_{\text{pl}} \in [0, 0.9] \) and \(V_0 \in [0.6, 3.5] \). Note that EDE models are usually parametrized with two parameters describing the redshift at which the scalar field starts to roll down the potential, usually denoted as critical redshift \(z_c \), and the maximum energy injection \(f_{\text{scl}} \) [43–45]. For the particular case of the RnR model, the correspondence between \(\{ V_0, \sigma_i \} \) and \(\{ z_c, f_{\text{scl}} \} \) is unique under the assumption of the same initial velocity of the scalar field. However, as explained in Section 2, this one to one correspondence is not possible in our model, where also \(\xi \) contributes to the energy injection into the cosmic fluid. For this reason, we prefer to use the physical parameters describing our model (2.1) as previously done [39]. Nevertheless, we quote \(\log_{10} z_c \) and \(f_{\text{scl}} \equiv \Omega_{\text{scl}} \) as derived parameters. Note that we model the non-linear power spectra using HALOFIT [89, 90]. In this respect, see also Ref. [91] for a comparison between of HALOFIT and HMcode [92] in the context of EDE.

For each run, we also compute the best-fit values extracted using the MINUIT algorithm [93] implemented in the IMINUIT python package [94] and quote the difference in the model \(\chi^2 \) with respect to \(\Lambda \)CDM one, i.e. \(\Delta \chi^2 = \chi^2 - \chi^2(\Lambda \text{CDM}) \), where negative values indicate an improvement in the fit of the given model with respect to the \(\Lambda \)CDM for the same dataset.

In order to quantify to what extent the improvement in the fit to the data warrants the increase in the model complexity compared to the baseline \(\Lambda \)CDM model, we compute the Bayes factor defined as the ratio of the evidences for the extended model \(M_E \) with respect to the baseline \(M_L \), as [94]:

\[
B_{EL} = \frac{\int d\theta_E \pi(\theta_E|M_E)\mathcal{L}(x|\theta_E,M_E)}{\int d\theta_L \pi(\theta_L|M_L)\mathcal{L}(x|\theta_L,M_L)},
\]

1. https://github.com/brinckmann/montepython_public
2. https://getdist.readthedocs.io/en/latest
3. We have tested that the differences with respect to having one massive neutrino with \(m_{\nu} = 0.06 \, \text{eV} \) in the estimate of the cosmological parameters are small except for a shift in \(H_0 \) towards larger values and a smaller \(\sigma_8 \) (though \(S_8 \) does not change appreciably).
4. https://iminuit.readthedocs.io/en/stable/
where \(\pi(\theta_{E,L}) \) is the prior for the parameters \(\theta_{E,L} \) and \(\mathcal{L}(x | \theta_{E,L}) \) the likelihood of the data given the model \(\mathcal{M}_{E,L} \). The extent to what the extended model \(\mathcal{M}_E \) is preferred over the baseline \(\mathcal{M}_L \) can be qualitatively assessed using the Jeffreys scale reported in Table 1 [95]. We compute the evidence directly from our MCMC using the method introduced in Ref. [96] implemented in the MCEvidence code\(^1\).

\(\ln B \approx \ln B_{EL} \)	Strength of preference for model \(\mathcal{M}_i \)
\(0 \leq \ln B < 1 \)	Weak
\(1 \leq \ln B < 3 \)	Definite
\(3 \leq \ln B < 5 \)	Strong
\(\ln B \geq 5 \)	Very strong

Table 1. Revised Jeffreys scale used to interpret the values of \(\ln B \) obtained when comparing two competing models through their Bayesian evidence [95]. A value of \(\ln B > 0 \) indicates that the extended model is favoured with respect to the ΛCDM baseline model.

We constrain the cosmological parameters using several combination of datasets. Our CMB measurements are those from the Planck 2018 legacy release (hereafter P18) on temperature, polarization, and weak lensing CMB anisotropies angular power spectra [97, 98]. The high-multipoles likelihood \(\ell \geq 30 \) is based on Plik likelihood. We use the low-\(\ell \) likelihood combination at \(2 \leq \ell < 30 \): temperature-only Commander likelihood plus the SimAll EE-only likelihood. For the Planck CMB lensing likelihood, we consider the conservative multipoles range, i.e. \(8 \leq \ell \leq 400 \). We marginalize over foreground and calibration nuisance parameters of the Planck likelihoods [97, 98] which are also varied together with the cosmological ones. We refer to this CMB dataset as P18.

We use the baryon acoustic oscillation (BAO) of Baryon Spectroscopic Survey (BOSS) DR12 [99] post-reconstructed power spectrum measurements in three redshift slices with effective redshifts \(z_{\text{eff}} = 0.38, 0.51, 0.61 \) [100–102], in combination with the ‘small-\(z \)’ measurements from 6dF [103] at \(z_{\text{eff}} = 0.106 \) and the one from SDSS DR7 [104] at \(z_{\text{eff}} = 0.15 \). We refer to this combination of BAO data as BAO.

We also use the full shape of the BOSS DR12 pre-reconstructed power spectrum measurements [105]. In particular we consider the combination of the monopole and quadrupole of the power spectra of the three different sky-cuts CMASS NGC and CMASS SGC at effective redshift \(z_{\text{eff}} = 0.57 \) and LOWZ NGC at \(z_{\text{eff}} = 0.32 \) and we follow the conventions of Refs. [79, 106, 107] for the maximum wavenumber that we consider (\(k_{\text{max}} = 0.23 \, h/\text{Mpc} \) for CMASS and \(k_{\text{max}} = 0.20 \, h/\text{Mpc} \) for NGC). We combine this dataset with the \(H r_s \) and \(D_A/r_s \) parameters measured from the post-reconstructed power spectra corresponding to the same sky-cuts, see Ref. [79] for an explanation of how the covariances between these datasets are calculated. We refer to such a dataset, combined with ‘small-\(z \)’ BAO mentioned in the previous paragraph as BAO+FS.

Additionally, we use the Pantheon supernovae dataset [108], which includes measurements of the luminosity distances of 1048 SNe Ia in the redshift range \(0.01 < z < 2.3 \). We refer to Pantheon data as SN. As discussed in [39], we do not consider any corrections due to the change in the peak luminosity of SNe induced by the time evolution of the gravitational

\(^1\)https://github.com/yabebalFantaye/MCEvidence
constant [109–112], since they should lead to a negligible effect for the models considered here.

We also consider the combination with a Gaussian likelihood based on the latest determination of the Hubble constant from Hubble Space Telescope (HST) observations (hereafter R19), i.e. \(H_0 = (73.5 \pm 1.4) \text{ km s}^{-1} \text{Mpc}^{-1} \) [3] and from time delay from gravitationally lensed quasars from the H0LiCOW collaboration [5], that is \(H_0 = (73.3^{+1.7}_{-1.8}) \text{ km s}^{-1} \text{Mpc}^{-1} \). Since there is no correlation between the two measurements, they can be combined again in an inverse-variance weighted Gaussian prior as \(H_0 = (73.4 \pm 1.1) \text{ km s}^{-1} \text{Mpc}^{-1} \). We refer to this prior simply as \(H_0 \).

Finally, in order to include weak lensing data from photometric surveys, we follow Refs. [64, 65] and implement them through a Gaussian prior on the parameter \(S_8 = \sigma_8 \sqrt{\Omega_m/0.3} \). Compressing a large amount of data in a single data point obtained for ΛCDM is just an approximation and the correct way would be to perform a full fledged analysis with the correct likelihood. However, it was demonstrated in Ref. [64], that, when combined with CMB, BAO, SN, the DES-Y1 likelihood from two-point correlations of photometric galaxy clustering, galaxy-galaxy lensing and cosmic shear is well approximated by a Gaussian prior on \(S_8 = 0.773 \pm 0.026 \) in ΛCDM and EDE models. Note also that another thorough analysis of EDE models with weak lensing surveys is performed in Ref. [91]. In that paper, the analysis with the full KiDS+VIKING likelihood and the one where the joint KiDS+VIKING and DES data are approximated by a Gaussian prior again show a qualitative agreement between the two approaches, although the joint KiDS+VIKING and DES data are somewhat more constraining. Given these results, we use as a proxy for complementary measurements on \(S_8 \) from galaxy weak lensing a Gaussian prior for the inverse-variance weighted combination of the measurements of DES [113], KV-450 [114, 115] and HSC [116], i.e. \(S_8 = 0.770 \pm 0.017 \). We refer to this prior simply as \(S_8 \).

4 Results

In this Section, we present the results of our MCMC analysis performed using several combinations of the data sets introduced in the previous section. We comment on each combination in turn and we only present plots of the posterior distribution of the cosmological parameters varied in the analysis and refer the reader to Appendix A for the tables containing their mean and best-fit values, as well as the \(\chi^2 \) for each data set and the Bayes factors.

We start by discussing the results obtained using the data set \(\text{P18 + BAO + FS + SN + } H_0 \), which are presented in Fig. 6 and Table 2. They clearly show that in the EMG model a large value of \(H_0 = 71.00^{+0.87}_{-0.79} \text{ km s}^{-1} \text{Mpc}^{-1} \) at 68% CL is obtained, reducing the tension with SH0ES + H0LiCOW at 1.7σ, better than the 2.1 (4) σ reduction for the EDE (ΛCDM) obtained for \(H_0 = 70.57^{+0.77}_{-0.98} \) (68.82 ± 0.39) km s^{-1}Mpc^{-1} at 68% CL. This reduction comes both from the larger mean value of \(H_0 \) and the larger errors compared to ΛCDM. As for other models aiming at solving the \(H_0 \), we obtain a larger \(\omega_c \) and \(n_s \) compared to the ΛCDM model.

It is interesting to note that EMG helps fitting CMB data better with respect to EDE (and also to the ΛCDM). This is reflected in our 68 % CL estimate for \(\xi = 0.15^{+0.06}_{-0.07} \), its 95 % CL upper limit \(\xi < 0.42 \), and a best-fit value of \(\xi = 0.178 \). We also get \(\sigma_i = 0.49^{+0.11}_{-0.06} \).

\footnote{Note that, taken at face value, a larger \(n_s \) would have profound implications on inflationary physics [117–119].}
68%CL, or equivalently $f_{scf} = 0.084^{+0.030}_{-0.021}$. Note however the remarks in Section 2 about the meaning of f_{scf} in the context of EMG.

Compared to ΛCDM, both the EMG and the EDE model exacerbate the tension with measurements of σ_8 and S_8. We get consistent results in terms of σ_8 for EMG and EDE, i.e. $\sigma_8 = 0.830 \pm 0.008$ at 68%CL for EMG and $\sigma_8 = 0.832^{+0.009}_{-0.011}$ at 68%CL for EDE. However, the larger ω_c and H_0 leads to essentially to the same $S_8 = 0.829 \pm 0.011(\pm 0.13)$ at 68%CL for EMG (EDE).

Overall, the EMG models fits the data much better than the ΛCDM model with an improvement of $\Delta \chi^2 = -16.0$. Such an improvement (better than $\Delta \chi^2 = -9.3$ for the EDE model) is largely due to the better fit to the H_0 prior, but there is also some improvement in the fit to CMB data, in particular to high-ℓ TTTEEE data. As for LSS data, there is only a very small degradation compared to ΛCDM due to the $\Delta \chi^2 = +2.5$ in the fit to BAO DR12 FS + BAO, high-z NGC. The suppression of the matter power spectrum given by the large positive coupling ξ helps fitting FS + BAO data keeping the value of H_0 large at the same time. This large improvement in the fit corresponds to a Bayes factor of $\ln B_{ij} = +1.0$ for EMG. The EDE model, which leads to a smaller improvement in the fit, i.e. $\Delta \chi^2 = -9.3$, has nevertheless a a slightly larger Bayes factor of $\ln B_{ij} = +1.5$ due to the smaller number of extra parameters compared to EMG. Note that, from its definition in Eq. (3.1), the Bayes factor depends on the prior range of the extra parameter ξ and as such has to be interpreted with some caution. In fact, especially if a parameter is not well constrained (as for the case of some the EMG parameters as V_0 and ξ, see next Section) one could enhance the evidence for the EMG model by reducing the prior range and therefore the sampling volume. For attempts towards model selection techniques which are less dependent on the specific choice of the prior see e.g. Ref. [120].

With the choice of V_0 prior as above, however, it is not possible to recover the model studied in Ref. [39] as the particular $\lambda \to 0$ limit. The reason of this choice is to make sure that for every possible combination of parameters the scalar field always decreases toward $\sigma = 0$, so to be able to safely use the FS data. Indeed, for $\lambda = 0$, the deviation from GR grows at late times, invalidating the use of the FS likelihood and PyBird for a large portion of the parameter space.

On the other hand, it is instructive to study the effects of widening the V_0 prior to see if the data constrain the model with $\lambda = 0$. For this purpose we perform an MCMC analysis with the data set $P18 + BAO + SN + H_0$ that does not suffer from the issue raised above and we set the prior range $V_0 \in [-4, 3.5]$. We have checked that for $V_0 \leq -3$, the potential is essentially negligible.

The posteriors obtained for this MCMCs analysis are shown as red contours in Fig. 6 and they show that data do not prefer the small V_0 region for which the scalar field grows. The results also show another interesting feature of the EMG model, i.e. there is only a small difference in constraints on the EMG model when using BAO in place of the more complete BAO + FS data. As can be seen, the only effect of using BAO is have slightly larger posteriors, but with the same mean as those obtained with BAO + FS data. Note that this is in agreement for the findings of Ref.[57] in the context of the New Early Dark Energy model.

In order to further assess the role of BAO + FS data, we also perform an MCMC analysis without considering them, and use the data set $P18 + SN + H_0$. The results are presented in Fig. 7 and Table 3. As can be seen, removing BAO and FS data leads to a somewhat larger value of $H_0 = 70.85 \pm 0.92$ km s$^{-1}$Mpc$^{-1}$ for the EDE (and a much larger bestfit of
$H_0 = 71.38 \text{ km s}^{-1}\text{Mpc}^{-1}$), confirming that BAO + FS have the power to constrain these models, as shown in Refs. [64–66]. On the other hand, H_0 for the EMG model increases only a bit to $H_0 = 71.21 \pm 0.93 \text{ km s}^{-1}\text{Mpc}^{-1}$, since BAO + FS data constrain it less than they constrain EDE models. It is very interesting to note that the best-fit value for the coupling $\xi = 0.17$ is very close to the one found including BAO + FS data. The EMG model fits all the data (except for Planck lensing) better than both the EDE and the ΛCDM model, leading to a $\Delta^2 / \chi^2 = -17.1$. This time, however, the improvement in the fit does not warrant the increase in the model complexity compared to ΛCDM and we obtain a Bayes factor of $\ln B_{ij} = -0.2$.

We have shown that the EMG model leads to a larger value of S_8 compared to the ΛCDM one. Therefore, we would like to test it against weak lensing data. Strictly speaking, this would require using data from e.g. the KiDS-VIKING galaxy shear measurements. However, it was claimed in Refs. [64, 65] that the same results can be obtained by implementing weak lensing data through a Gaussian prior on the parameter $S_8 = 0.770 \pm 0.017$ (see also Ref. [91] for a thorough comparison of this method to the correct use of cosmic shear measurements).

With these caveats, we follow Refs. [64, 65] and present in Fig. 8 and Table 4 the results for the data set $P18 + BAO + FS + SN + S_8 + H_0$. Note, despite being far from a resolution to the S_8 tension, the EMG model shows now a much smaller $S_8 = 0.809 \pm 0.009$ and a best fit value of $S_8 = 0.807$, lower than the one obtained for ΛCDM i.e. $S_8 = 0.811$. This confirms the conclusion of Ref. [91] for EDE models that, even though it is true that the S_8 tension is not resolved within this model, the same holds for the ΛCDM model which, however, is not able to address the H_0 tension, as opposed to the EMG model, for which we obtain a mean $H_0 = 70.63^{+0.80}_{-1.06}$ and a best fit of $H_0 = 71.59 \text{ km s}^{-1}\text{Mpc}^{-1}$.

Even in this case, however, we note that the large improvement in the fit (not followed by a preference from the model-selection point of view) is coming mainly from the substantial improvement in the fit to H_0. It is therefore natural to ask what happens when we remove H_0 prior from the data set.

We present the results obtained without the combined SHOES-Holicow determination of H_0 in Fig. 9 and Table 5 for the data set $P18 + BAO + FS + SN^2$. The results show that the mean value for H_0 in the EMG model (and in the EDE one) is only slightly larger then the one in ΛCDM, as also found in previous studies of effectively massless models of scalar-tensor theories [30, 31]. This can be appreciated by looking at the larger posterior distributions of H_0 and ω_c for the EMG and EDE models in Figs. 9. The incapability of EDE to solve the H_0 tension when prior information on H_0 is not included, has been recently discussed in the literature [64]. A similar result holds for EMG. 3

Although the best-fit parameters shown in the third column of Table 5 do not lead to a very large H_0, we confirm the results of Refs. [91, 124] for EMG and find some set of

1Note that our results slightly differ from the ones in Ref. [66]. The main reason is that we use a different H_0 prior which has a stronger impact on our MCMC analysis, whereas they used a prior obtained from earlier SHOES results, i.e. $H_0 = 74.03 \pm 1.42 \text{ km s}^{-1}\text{Mpc}^{-1}$ [121]. Also, we fix $N_{\text{eff}} = 3.046$ in our analysis which leads results slightly different from the ones obtained with the Planck assumption of one massive neutrino with $m_\nu = 0.06 \text{ eV}$ (see main text). Finally, we do not use high redshift Lyman-α forest data from eBOSS DR14 measurements [122, 123]. We have checked that we recover the results that are consistent with Ref. [66] when using the EDE model with $\xi = 0$ and their dataset and conventions.

2We have checked that the addition of a prior on S_8 to this data set does not change appreciably the results.

3However, it has also been proposed in Refs. [91, 124] (see also next Section), that a distinction should be made between looking at the posterior distributions and the fact that there are some parameters that fit the data in a way that is statistically indistinguishable from ΛCDM and still lead to a large H_0.

- 14 –
Figure 6. 1D and 2D posterior distributions of a subset of parameters for ΛCDM, EDE and EMG obtained using the data set \(P18 + BAO + FS + SN + H_0 \). Red contours show the results obtained for EMG with a larger prior on \(V_0 \) (see main text), for which we use the data set \(P18 + BAO + SN + H_0 \). 2D contours contain 68% and 95% of the probability. We also plot the 68% and 95% CL for the priors on \(H_0 \) and \(S_8 \) described in Sec. 4.

parameters exist that lead to a large \(H_0 \) without a significant change in \(\Delta \chi^2 \). For example, we find that \(100 \omega_b = 2.285, \omega_c = 0.1308, 100 + \theta_s = 1.04089, \tau_{reio} = 0.057, \ln 10^{10}A_s = 3.066 \), \(n_s = 0.9840, \xi = 0.151, V_0 = 2.19 \), and \(\sigma_i = 0.57 \) leads to \(\Delta \chi^2 = 0.7 \), fitting the data very similarly to ΛCDM, with an improvement in the fit to CMB data and a slight worsening to the fit to BAO DR12 FS + BAO, high-z NGC data. Such a parameter set, leads to a large \(f_{scf} = 0.081 \) and and a large \(H_0 = 70.15 \text{ km s}^{-1}\text{Mpc}^{-1} \).

5 Analysis of the 1 parameter extension

The ΛCDM model predictions can be recovered in both the EDE and the EMG models when \(\sigma_i \), or equivalently the energy injection of the scalar field into the cosmic fluid, goes to zero. In this regime, both \(V_0 \) and the coupling \(\xi \) essentially play no role. When using the
Metropolis-Hasting algorithm, this can give rise to a large portion of the parameter space that can artificially enhance the statistical weight of ΛCDM models. This issue has been recently addressed, within EDE models, in Refs. [48, 51, 52, 55, 66].

Here, we take a similar, but somewhat alternative approach, and follow the lines of Refs. [91, 124], where it was shown that by fixing $^\dagger \log_{10} z_c$ (or V_0 in our language) it is possible to extend the $f_{\text{act}} - H_0$ degeneracy even for a choice of datasets without prior information on H_0, avoiding problems related to the volume sampling and to the choice of a prior that allows for a ΛCDM limit. Such a degeneracy is clearly disrupted (see Fig. 9) when a prior on H_0 is not included in the data set and a tight upper bound on f_{act} is obtained.

Note, however, that in absence of theoretical motivations, this must be seen only as a purely phenomenological approach, which is rather unorthodox from the standard Bayesian perspective.

†In the EDE model of Refs. [91, 124] also a second parameter related to the axion decay constant f, namely Θ_i, has to be fixed.

Figure 7. 1D and 2D posterior distributions of a subset of parameters for ΛCDM, EDE and EMG obtained using the data set $P_{18} + SN + H_0$. 2D contours contain 68% and 95% of the probability. We also plot the 68% and 95% CL for the priors on H_0 and S_8 described in Sec. 4.
Based on the former argument, we perform an analysis similar to the one of Ref. [55, 91] for the EMG model, for which we fix V_0 and ξ to their best-fit values in the third column of Table 2 and leave σ_i free to vary. We do not include H_0 data and we use the $P18 + BAO + FS + SN$ data set. The results are presented in Fig. 10, where we confront our results to ones for EMG obtained in the previous section considering the data sets $P18 + BAO + FS + SN$ and $P18 + BAO + FS + SN + H_0$.

From the plot, it is easy to see that the degeneracy between σ_i and H_0 is now more visible leading to a larger of $H_0 = 69.18^{+0.79}_{-1.00}$ km s$^{-1}$ Mpc$^{-1}$ at 68% CL and slightly reducing the tension with SH0ES+H0LiCOW (3.2σ vs 4.2σ in the 3 parameter case using the same data.
Figure 9. 1D and 2D posterior distributions of a subset of parameters for ΛCDM, EDE and EMG obtained using the data set P18 + BAO + FS + SN. 2D contours contain 68% and 95% of the probability. We also plot the 68% and 95% CL for the priors on \(H_0 \) and \(S_8 \) described in Sec. 4.

However, the value of \(\sigma_i \) remains consistent with \(\sigma_i = 0 \) and most of the improvement in reducing the tension is ascribed to a larger error on \(H_0 \) compared to the 3 parameters case. In fact, the best-fit value for \(H_0 \) that we obtain is \(H_0 = 68.79 \) km s\(^{-1}\)Mpc\(^{-1}\), corresponding to \(\sigma_i = 0.30 \) \(M_\odot \). The best-fit cosmology for the 1 parameter EMG leads to a total \(\chi^2 \) of 4001.5, i.e. \(\Delta \chi^2 = 1.8 \), nearly indistinguishable from the 3 parameters one. Compared to the 3 parameters models we have a \(\Delta \chi^2 \sim -1.3 \) and a \(\Delta \chi^2 \sim -0.9 \) gain in the fitting Planck high-\(\ell \) TTTEEE data and BAO DR12 FS + BAO, low-z NGC and high-z SGC respectively, whereas the fit to BAO DR12 FS + BAO, high-z NGC is worsen by a factor of \(\sim +1.6 \), all the other partial \(\chi^2 \)'s being essentially the same.

It is interesting to note that now there is only 1 extra parameter and the model is not as penalized as for the case with 3 parameters. In fact, the Bayes factor is now ln \(B = 1.4 \) and for the data set P18 + BAO + FS + SN, the model results slightly preferred over ΛCDM according to the Jeffreys scale in Table 1.
Figure 10. 1D and 2D posterior distributions of a subset of parameters for the EMG model. Blue and dark red contours are drawn from the samples in Fig. 6 and 9 respectively, while the green ones are drawn from the sample obtained by using the data set P18 + BAO + FS + SN and fixing V_0 and ξ to their best-fit values in the third column of Table 2. 2D contours contain 68% and 95% of the probability. We also plot the 68% and 95% CL for the prior on H_0 described in Sec. 4.

We therefore conclude that by fixing two parameters does not help much alleviate the H_0 tension, which is only addressed when additional prior information from local measurements of the Hubble constant is added, as shown in the previous Section. As in Section 4, though, we note that we do find some choices of parameters for which the fit to the data is not substantially different from the one in the ΛCDM model, but lead to a larger H_0, as in Refs. [91, 124], with which we qualitatively agree. A fully quantitative comparison with Refs. [91, 124] is however not possible because of the presence of the non-minimal coupling and the different potential considered. Indeed, potentials with a different curvature such as those with flattened wings and power-law minima are well known to lead to a larger value of H_0 compared to the simpler quartic potential [44, 51, 52, 54].

As a last comment, note that it would be an interesting exercise to fix also σ_i to search for the σ_i that exactly solves the H_0 tension, as proposed in Ref. [21]. However, this is not the purpose of this paper and we hope to return to this point in a future work.
6 The $\xi = -1/6$ case

So far, we have focused on the case of a positive coupling $\xi \geq 0$. As a representative example of the parameter space with $\xi < 0$, we also show the results obtained by fixing $\xi = -1/6$ [34].

From Fig. 1 in Section 2, we see that the energy injection is not sharp in redshift anymore, but rather we observe a continuous energy injection in the early Universe, until the scalar field contribution redshifts away. The similarity between the background dynamics of this model and the one of a model with extra dark-radiation parameterized by N_{eff} and the consequent difficulty in constraining the coupling ξ has been studied in Ref. [39]. Here, the contribution of the scalar field to the total energy budget is similar so we do not expect significant differences between the results here and the ones found in Ref. [39]. However, note that thanks to the small effective mass, the scalar field decreases more rapidly compared to the massless case with $\lambda = 0$, see e.g. Fig. 1 of Ref. [39].

For our MCMC analysis we use the data set $\text{P18 + BAO + FS + SN + } H_0$ and we fix $\xi = -1/6$. Our results are shown in Fig. 11, where we compare to results of the previous section and show also the results for the case with $\xi = -1/6$ and $\lambda = 0$ obtained with the same prior on σ_i for a comparison (for simplicity we refer to it as CC). Note that, for the $\lambda = 0$, we have used the data set $\text{P18 + BAO + SN + } H_0$, since for a large portion of the σ_i prior we have $G_{\text{eff}}/G - 1 \sim 10^{-5}$ and the use of the FS likelihood might be less accurate.

Fig. 11 shows that the EMG case with $\xi = -1/6$ leads to $H_0 = 70.11 \pm 0.79$ km s$^{-1}$Mpc$^{-1}$ at 68% CL a value smaller than the one obtained in the EDE and EMG model with $\xi \geq 0$. This is expected, as the ability of the EDE and EMG model with $\xi \geq 0$ to alleviate the H_0 tension relies on an energy injection very localized in redshift, a feature that is not shared by the EMG model with $\xi = -1/6$. The bestfit value of $\sigma_i = 0.46 M_{\odot}$ leads to $H_0 = 70.30$ km s$^{-1}$Mpc$^{-1}$, again smaller than the $\xi = 0$ and $\xi \leq 0$ case. The improvement in the fit is $\Delta \chi^2 = -9.0$ accompanied by a Bayes factor of $\ln B_{ij} = -1.4$, as in the EDE case, which has the same number of parameters. The main improvement in the $\Delta \chi^2$ comes from a better fit to Planck high-ℓ data compared to the other EMG and EDE models, but it is compensated by a degradation in the fit to LSS and H_0 data.

On the other hand, in the latter model, the energy density of the scalar field redshifts away much faster than for $\lambda = 0$, since the scalar field is driven towards $\sigma \simeq 0$ by the quartic potential. This is the reason why the H_0 in this model is larger than $H_0 = 69.78 \pm 0.66$ km s$^{-1}$Mpc$^{-1}$ at 68% CL, obtained for $\lambda = 0$, for which the scalar field contribution is not completely negligible after recombination. For the very same argument, we observe that a larger $|\xi \sigma_i^2|$, which is a measure of the scalar field contribution to the fractional $\Delta H(z)/H(z)$ before recombination when $\xi < 0$, is allowed in the EMG model compared to the CC one. Also, the value of γ_{PN} is orders of magnitude larger in the CC model, i.e. $\gamma_{\text{PN}} > -2.1 \cdot 10^{-5}$ at 95%CL, compared to the EMG case with $\xi = -1/6$ in which $\gamma_{\text{PN}} > -3.5 \cdot 10^{-9}$ at 95%CL. If the former is comparable to Solar System experiments, the latter is much smaller.

Furthermore, as expected from the discussion in Section 2 and Fig. 4, the negative coupling leads to larger σ_8. We get $\sigma_8 = 0.837^{+0.013}_{-0.021}$ and $\sigma_8 = 0.835 \pm 0.010$ for $\lambda \neq 0$ and $\lambda = 0$, respectively, larger than the EDE or EMG model with a positive coupling (see Table 2). However, this is accompanied by a comparable $S_8 = 0.833^{+0.016}_{-0.022}$ for EMG with $\xi = -1/6$ and a smaller $S_8 = 0.822 \pm 0.011$ for $\xi = -1/6$, $\lambda = 0$, since H_0 is smaller and therefore the shift in the value of ω_c necessary to restore the fit with CMB data is slightly smaller as well. This is again in line with the observation that models that lead to a larger H_0 modifying the sound horizon inevitably lead to a larger ω_c and therefore S_8 [125].
Figure 11. 1D and 2D posterior distributions of a subset of parameters for the EDE (orange), EMG (blue) and conformally coupled EMG (brown) using the data set $P18 + BAO + FS + SN + H_0$. We also show in green the results for the case with $\xi = -1/6$ and $\lambda = 0$ for a comparison. Note that for the latter case the data set $P18 + BAO + SN + H_0$ is instead used. 2D contours contain 68% and 95% of the probability. We also plot the 68% and 95% CL for the priors on H_0 and S_8 described in Sec. 4.

7 Conclusions

We have presented a model of Early Modified Gravity (EMG) where a scalar field with a non-minimal coupling to the Ricci scalar of the type $M^2_{\text{pl}} + \xi \sigma^2$ has a self-interacting potential. In this model, which extends the massless one of Ref. [39] and reduces to the Rock’n’Roll Early Dark Energy (EDE) model of Ref. [45] for $\xi = 0$, the scalar field σ, which is frozen during radiation era, grows around the time of recombination driven by the coupling to pressureless matter and is subsequently driven into damped oscillations around its minimum at $\sigma = 0$ by the small effective mass induced by the quartic potential. The rolling of the field towards $\sigma = 0$ suppresses the modification to gravity at late times, recovering an excellent agreement of the laboratory experiments and Solar System tests with General Relativity. The addition of the effective potential has the virtue of reconciling the $\xi > 0$ branch of the model studied in [39] with GR without any fine tuning.

The modification to gravity at early times, however, has the important consequence of alleviating the H_0 tension as it modifies the redshift profile of the energy injected into the cosmic fluid when the scalar field thaws. Our MCMC analysis, performed with a variety of
cosmological data, show that the tension can be reduced substantially and at the same time a positive coupling $\xi > 0$ suppresses the small scale matter power spectrum and thus help fit the full shape of the matter power spectrum data, that have recently claimed to constrain the EDE resolution of the H_0 tension. In particular, the tension with the combination of recent SH0ES and H0LiCOW measurements, i.e. $H_0 = 73.4\pm1.1\text{ km s}^{-1}\text{Mpc}^{-1}$, is reduced at the 1.7$\sigma$ level when this is added to Cosmic Microwave Background, SNe, Baryonic Acoustic Oscillations and the Full Shape of the matter power spectrum data. For this data set, we obtain $H_0 = 71.00^{+0.87}_{-0.79}\text{ km s}^{-1}\text{Mpc}^{-1}$ at 68 % CL which is larger than the one we get for EDE for $\xi = 0$ i.e. $H_0 = 70.57^{+0.77}_{-0.98}\text{ km s}^{-1}\text{Mpc}^{-1}$.

Performing the MCMC analysis with different combinations of the data mentioned above helps us trace the origin of the larger H_0 back to the suppression of the power spectrum caused by the non minimal coupling ξ, for which we get a mean value of $\xi = 0.15^{+0.06}_{-0.07}$ at 68% CL (however it is only an upper bound $\xi < 0.39$ at 95%CL). In fact, for all the data set that we use we get a similar constrain on the parameter ξ. Although the fit to data is always improved, however, the Bayesian model selection for EMG depends on the data set considered, and is penalized by the larger number (3) of extra parameters compared to ΛCDM, therefore never resulting in a strong preference.

In order to confirm the argument above we have performed the same analysis fixing ξ to the conformal coupling $\xi = -1/6$. In this case rather than a suppression we have an enhancement of the matter power spectrum and the capability of the model to ease the tension is therefore reduced, with $H_0 = 70.11\pm0.79\text{ km s}^{-1}\text{Mpc}^{-1}$, smaller than the the $\xi = 0$ case, showing a clear hierarchy for negative, null and positive couplings. Note, however, that the addition of the small effective mass to the $\xi = -1/6$ case leads to larger H_0 than the one for the conformally coupled massless case of Ref. [39] for which $H_0 = 69.78 \pm 0.66\text{ km s}^{-1}\text{Mpc}^{-1}$ (see Section 6).

As a last comment, in this paper we have considered two dimensionless couplings for a cosmological scalar field, which rule the coupling to the Ricci scalar (ξ) and its self-interaction (λ). A quartic potential for the scalar field σ, implies that we recover the RnR [45] for $\xi = 0$. However, it is known that potentials with flattened wings that have a different curvature around the minimum at $\sigma = 0$, such as those in the original EDE proposal of Ref. [44] or in the α-attractor EDE model of Ref. [54], provide a better fit to Planck polarization data and lead to an even larger H_0. It would be interesting to explore different choices of the potential in the EMG framework.

Acknowledgments

The authors thank Guillermo F. Abellan, Riccardo Murgia and Vivian Poulin for help with the implementation of IMINUIT in MontePython and for comments on the draft. MBa and FF acknowledge financial contribution from the contract ASI/INAF for the Euclid mission n.2018-23-IIH.0. FF acknowledges financial support by ASI Grant 2020-9-II.0. KK received funding from the European Research Council under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 646702 “CosTesGrav”). KK is also supported by the UK STFC ST/S000550/1. Numerical computations for this research were done on the Sciama High Performance Compute cluster, which is supported by the ICG, SEPNet, and the University of Portsmouth.
A Tables

Parameter	ΛCDM	EDE	EMG
$10^2 \omega_b$	2.256 ± 0.013 (2.255)	2.280 ± 0.018 (2.286)	2.273 ± 0.017 (2.281)
ω_c	0.1182 ± 0.0009 (0.1184)	$0.1254^{+0.0033}_{-0.0038}$ (0.1242)	$0.1282^{+0.0042}_{-0.0033}$ (0.1302)
$100 \times \theta_s$	1.04209 ± 0.00028 (1.04216)	1.04152 ± 0.00036, (1.04170)	$1.04118^{+0.00046}_{-0.00039}$ (1.04120)
t_{reio}	0.058 ± 0.007 (0.052)	$0.058^{+0.007}_{-0.008}$ (0.059)	0.056 ± 0.007 (0.057)
$\ln (10^{10} A_s)$	3.049 ± 0.014 (3.038)	3.059 ± 0.016 (3.059)	3.061 ± 0.015 (3.067)
n_s	0.9701 ± 0.0036 (0.9710)	$0.9783^{+0.0054}_{-0.0061}$ (0.9813)	0.9782 ± 0.0055 (0.9849)
$\sigma_8 [M_{\text{pl}}]$	--	< 0.70 (0.48)	$0.49^{+0.11}_{-0.10}$ (0.53)
V_0	--	$2.21^{+0.07}_{-0.38}$ (2.09)	2.21 ± 0.15 (2.25)
ξ	--	< 0.42 (0.18)	< 0.42 (0.18)

Table 2

H_0 [km s$^{-1}$Mpc$^{-1}$]	68.82 \pm 0.39 (68.74)	70.57$^{+0.49}_{-0.38}$ (70.90)	71.00$^{+0.59}_{-0.79}$ (71.59)
r_s [Mpc]	147.37 \pm 0.22 (147.33)	143.5 \pm 1.8 (143.78)	142.2$^{+1.5}_{-2.0}$ (141.21)
σ_8	0.821 \pm 0.006 (0.818)	0.832$^{+0.009}_{-0.011}$ (0.831)	0.830 \pm 0.008 (0.850)
S_8	0.817 \pm 0.010 (0.815)	0.829 \pm 0.013 (0.820)	0.829 \pm 0.011 (0.847)
$\log_{10} z_c$	--	$3.58^{+0.04}_{-0.16}$ (3.53)	$3.60^{+0.06}_{-0.05}$ (3.63)
f_{scf}	--	< 0.119 (0.057)	$0.084^{+0.050}_{-0.021}$ (0.099)
$\xi \sigma_8^2 [M_{\text{pl}}]$	--	--	< 0.067 (0.050)
$\gamma_{\text{PN}} - 1$	--	--	$> -1.7 \cdot 10^{-9}$ $(-8.9 \cdot 10^{-9})$
$\Delta \chi^2$	--	-9.3	-16.0
$\ln B_{ij}$	--	$+1.5$	$+1.0$

Table 2. [Upper table] Constraints on main and derived parameters considering the data set $\text{P18} + \text{BAO} + \text{FS} + \text{SN} + H_0$ for ΛCDM, $\xi = 0$ and $\xi \geq 0$. We report mean values and the 68% CL, except for the case of upper or lower limits, for which we report the 95% CL. We also report the best-fit values in round brackets. [Lower table] Best-fit χ^2 per experiment for the data set $\text{P18} + \text{BAO} + \text{FS} + \text{SN} + H_0$ for ΛCDM, EDE and EMG model.
Table 3. [Upper table] Constraints on main and derived parameters considering the data set $\text{P18} + \text{SN} + H_0$ for ΛCDM, $\xi = 0$ and $\xi \geq 0$. We report mean values and the 68% CL, except for the case of upper or lower limits, for which we report the 95% CL. We also report the best-fit values in round brackets. [Lower table] Best-fit χ^2 per experiment for the data set $\text{P18} + \text{SN} + H_0$ for ΛCDM, EDE and EMG model.

References

[1] L. Verde, T. Treu and A. G. Riess, doi:10.1038/s41550-019-0902-0 [arXiv:1907.10625 [astro-ph.CO]].

[2] N. Aghanim et al. [Planck], Astron. Astrophys. 641 (2020), A6 doi:10.1051/0004-6361/201833910 [arXiv:1807.06209 [astro-ph.CO]].

[3] M. J. Reid, D. W. Pesce and A. G. Riess, Astrophys. J. Lett. 886 (2019) no.2, L27 doi:10.3847/2041-8213/ab552d [arXiv:1908.05625 [astro-ph.GA]].

[4] T. M. C. Abbott et al. [DES], Mon. Not. Roy. Astron. Soc. 480 (2018) no.3, 3879-3888 doi:10.1093/mnras/sty1939 [arXiv:1711.00403 [astro-ph.CO]].

[5] K. C. Wong, S. H. Suyu, G. C. F. Chen, C. E. Rusu, M. Millon, D. Sluse, V. Bonvin,
\(10^4\theta_b\)	\(\omega_c\)	\(100 \times \theta_s\)	\(\tau_{\text{reio}}\)	\(\ln (10^{10} A_s)\)	\(n_s\)	\(\sigma_8\)	\(V_0\)	\(\xi\)	\(H_0\) [\(\text{km s}^{-1}\text{Mpc}^{-1}\)]	\(r_s\) [Mpc]	\(\log_{10} z_c\)	\(f_{\text{scf}}\)	\(\xi\sigma_8^2\) [\(M_8^2\)]	\(\gamma_{\text{PN} - 1}\)	\(\Delta\chi^2\)	\(\ln B_{ij}\)		
2.262 ± 0.013 (2.265)	0.1174 ± 0.0008 (0.1178)	1.04213 ± 0.00029 (1.04229)	0.055 ± 0.007 (0.057)	3.041 ± 0.014 (3.047)	0.9716 ± 0.0035 (0.9719)	2.59 ± 0.64 (3.21)	< 0.60 (0.47)	< 0.101 (0.064)	69.17 ± 0.35 (69.09)	147.51 ± 0.21 (147.38)	3.72 ± 0.41 (4.12)	< 0.101 (0.064)	6.00 ± 0.42 (4.82)	< 0.60 (0.47)	3.72 ± 0.41 (4.12)	< 0.101 (0.064)	6.00 ± 0.42 (4.82)	< 0.60 (0.47)
2.277 ± 0.016 (2.276)	0.1218 ± 0.0022 (0.1228)	1.0416 ± 0.0053 (1.0415)	0.055 ± 0.007 (0.057)	3.044 ± 0.015 (3.042)	0.9756 ± 0.0043 (0.9752)	< 0.60 (0.47)	< 0.101 (0.064)	6.00 ± 0.42 (4.82)	145.0 ± 1.75 (144.43)	0.819 ± 0.009 (0.8162)	0.808 ± 0.010 (0.804)	< 0.101 (0.064)	< 0.101 (0.064)	2.59 ± 0.64 (3.21)	< 0.60 (0.47)	2.59 ± 0.64 (3.21)	< 0.60 (0.47)	
2.272 ± 0.016 (2.275)	0.1234 ± 0.0028 (0.1262)	1.04154 ± 0.00043 (1.04148)	0.054 ± 0.007 (0.057)	3.047 ± 0.015 (3.058)	0.9775 ± 0.0046 (0.9791)	< 0.60 (0.47)	< 0.101 (0.064)	6.00 ± 0.42 (4.82)	145.0 ± 1.75 (144.43)	0.819 ± 0.009 (0.8162)	0.808 ± 0.010 (0.804)	< 0.101 (0.064)	< 0.101 (0.064)	2.59 ± 0.64 (3.21)	< 0.60 (0.47)	2.59 ± 0.64 (3.21)	< 0.60 (0.47)	

Table 4. [Upper table] Constraints on main and derived parameters considering the data set \(\text{P18 + BAO + FS + SN + } H_0 + S_8\) for \(\Lambda\text{CDM}, \xi = 0\) and \(\xi \geq 0\). We report mean values and the 68% CL, except for the case of upper or lower limits, for which we report the 95% CL. We also report the best-fit values in round brackets. [Lower table] Best-fit \(\chi^2\) per experiment for the data set \(\text{P18 + BAO + FS + SN + } H_0 + S_8\) for \(\Lambda\text{CDM}, \text{EDE and EMG model.}\)
Parameter	\(\Lambda \text{CDM} \)	EDE	EMG
\(\Omega \text{bh} \)	2.243 ± 0.013 (2.251)	2.245±0.013 (2.240)	2.244 ± 0.015 (2.247)
\(\omega_c \)	0.1195 ± 0.0009 (0.1186)	0.1206±0.0008 (0.1200)	0.1206±0.0011 (0.1234)
\(100 * \theta_s \)	1.04193 ± 0.00029 (1.04199)	1.04182 ± 0.00032, (1.04181)	1.04181±0.00029 (1.04168)
\(\tau_{reio} \)	0.054 ± 0.007 (0.059)	0.054 ± 0.007, (0.054)	0.054 ± 0.007 (0.054)
\(\ln (10^{10} A_s) \)	3.043 ± 0.014 (3.050)	3.045 ± 0.014 (3.044)	3.045 ± 0.014 (3.0491)
\(n_s \)	0.9666 ± 0.0037 (0.9699)	0.9678±0.0037 (0.9663)	0.9673 ± 0.0044 (0.9686)
\(\sigma_8 \)	0.	0.	0.
\(V_0 \)	2.14 ± 0.78 (0.69)	2.47±0.86 (2.28)	< 0.45 (0.31)
\(\xi \)	0.	0.	0.
\(H_0 [\text{km} \text{s}^{-1}\text{Mpc}^{-1}] \)	68.16 ± 0.41 (68.55)	68.46±0.68 (67.90)	68.39±0.67 (68.94)
\(r_s [\text{Mpc}] \)	147.16 ± 0.22 (147.32)	146.53±0.23 (147.08)	146.59±0.38 (145.17)
\(\sigma_8 \)	0.822 ± 0.0058 (0.823)	0.823±0.0067 (0.824)	0.822 ± 0.007 (0.824)
\(S_8 \)	0.830 ± 0.010 (0.823)	0.831 ± 0.011 (0.836)	0.830 ± 0.011 (0.834)
\(\log_{10} z_c \)	3.26+0.59 (2.07)	3.44±0.52 (3.54)	< 0.0617 (0.0004)
\(f_{scf} \)	0.	0.	< 0.0726 (0.037)
\(\xi \sigma_8^2 [\text{M}_8^2] \)	0.	0.	< 0.0381 (0.0172)
\(\gamma_{PN} - 1 \)	0.	0.	> −1.7 · 10⁻⁸ (−5.0 · 10⁻¹⁰)
\(\Delta \chi^2 \)	0.	0.	0.
\(\ln B_{ij} \)	0.	0.	0.

Table 5. [Upper table] Constraints on main and derived parameters considering the data set \textbf{P18 + BAO + FS + SN} for \(\Lambda \text{CDM} \), \(\xi = 0 \) and \(\xi \geq 0 \). We report mean values and the 68% CL, except for the case of upper or lower limits, for which we report the 95% CL. We also report the best-fit values in round brackets. [Lower table] Best-fit \(\chi^2 \) per experiment for the data set \textbf{P18 + BAO + FS + SN} for \(\Lambda \text{CDM} \), EDE and EMG model.

[8] W. L. Freedman, B. F. Madore, D. Hatt, T. J. Hoyt, I. S. Jang, R. L. Beaton, C. R. Burns, M. G. Lee, A. J. Monson and J. R. Neeley, \textit{et al.} doi:10.3847/1538-4357/ab2f73 [arXiv:1907.05922 [astro-ph.CO]].

[9] W. L. Freedman, B. F. Madore, T. Hoyt, I. S. Jang, R. Beaton, M. G. Lee, A. Monson, J. Neeley and J. Rich, doi:10.3847/1538-4357/ab7339 [arXiv:2002.01550 [astro-ph.GA]].

[10] W. Yuan, A. G. Riess, L. M. Macri, S. Casertano and D. Scolnic, \textit{Astrophys. J.} \textbf{886} (2019), 61 doi:10.3847/1538-4357/ab4bc9 [arXiv:1908.00993 [astro-ph.GA]].

[11] M. Rigault, G. Aldering, M. Kowalski, Y. Copin, P. Antilogus, C. Aragon, S. Bailey, C. Baltay,
D. Baugh and S. Bongard, et al., Astrophys. J. 802 (2015) no.1, 20 doi:10.1088/0004-637X/802/1/20 [arXiv:1412.6501 [astro-ph.CO]].

[12] M. Rigault et al. [Nearby Supernova Factory], [arXiv:1806.03849 [astro-ph.CO]].

[13] G. Efstathiou, [arXiv:2007.10716 [astro-ph.CO]].

[14] E. Di Valentino, C. Boehm, E. Hivon and F. R. Bouchet, Phys. Rev. D 97 (2018) no.4, 043513 doi:10.1103/PhysRevD.97.043513 [arXiv:1710.02559 [astro-ph.CO]].

[15] F. D’Eramo, R. Z. Ferreira, A. Notari and J. L. Bernal, JCAP 11 (2018), 014 doi:10.1088/1475-7516/2018/11/014 [arXiv:1808.07430 [hep-ph]].

[16] V. Poulin, K. K. Boddy, S. Bird and M. Kamionkowski, Phys. Rev. D 97 (2018) no.12, 123504 doi:10.1103/PhysRevD.97.123504 [arXiv:1803.02474 [astro-ph.CO]].

[17] C. D. Kreisch, F. Y. Cyr-Racine and O. Doré, Phys. Rev. D 101 (2020) no.12, 123505 doi:10.1103/PhysRevD.101.123505 [arXiv:1902.00534 [astro-ph.CO]].

[18] N. Blinov, K. J. Kelly, G. Z. Krnjaic and S. D. McDermott, Phys. Rev. Lett. 123 (2019) no.19, 191102 doi:10.1103/PhysRevLett.123.191102 [arXiv:1905.02727 [astro-ph.CO]].

[19] E. Di Valentino, A. Melchiorri and J. Silk, Phys. Lett. B 761 (2016), 242-246 doi:10.1016/j.physletb.2016.08.043 [arXiv:1606.00634 [astro-ph.CO]].

[20] R. E. Keeley, S. Joudaki, M. Kaplinghat and D. Kirkby, JCAP 12 (2019), 035 doi:10.1088/1475-7516/2019/12/035 [arXiv:1905.10198 [astro-ph.CO]].

[21] S. Vagnozzi, Phys. Rev. D 102 (2020) no.2, 023518 doi:10.1103/PhysRevD.102.023518 [arXiv:1907.07569 [astro-ph.CO]].

[22] E. Di Valentino, A. Melchiorri, O. Mena and S. Vagnozzi, Phys. Dark Univ. 30 (2020), 100666 doi:10.1016/j.dark.2020.100666 [arXiv:1908.04281 [astro-ph.CO]].

[23] G. Benevento, W. Hu and M. Raveri, Phys. Rev. D 101 (2020) no.10, 103517 doi:10.1103/PhysRevD.101.103517 [arXiv:2002.11707 [astro-ph.CO]].

[24] G. Alestas, L. Kazantzidis and L. Perivolaropoulos, Phys. Rev. D 101 (2020) no.12, 123516 doi:10.1103/PhysRevD.101.123516 [arXiv:2004.08363 [astro-ph.CO]].

[25] E. Di Valentino, E. V. Linder and A. Melchiorri, Phys. Dark Univ. 30 (2020), 100733 doi:10.1016/j.dark.2020.100733 [arXiv:2006.16291 [astro-ph.CO]].

[26] R. Calderón, R. Gannouji, B. L’Huillier and D. Polarski, [arXiv:2008.10237 [astro-ph.CO]].

[27] J. L. Bernal, L. Verde and A. G. Riess, JCAP 10 (2016), 019 doi:10.1088/1475-7516/2016/10/019 [arXiv:1607.05617 [astro-ph.CO]].

[28] K. Aylor, M. Joy, L. Knox, M. Millea, S. Raghunathan and W. L. K. Wu, Astrophys. J. 874 (2019) no.1, 4 doi:10.3847/1538-4357/ab0898 [arXiv:1811.00537 [astro-ph.CO]].

[29] L. Knox and M. Millea, Phys. Rev. D 101 (2020) no.4, 043533 doi:10.1103/PhysRevD.101.043533 [arXiv:1908.03663 [astro-ph.CO]].

[30] C. Umiltà, M. Ballardini, F. Finelli and D. Paoletti, JCAP 08 (2015), 017 doi:10.1088/1475-7516/2015/08/017 [arXiv:1507.00718 [astro-ph.CO]].

[31] M. Ballardini, F. Finelli, C. Umiltà and D. Paoletti, JCAP 05 (2016), 067 doi:10.1088/1475-7516/2016/05/067 [arXiv:1601.03387 [astro-ph.CO]].

[32] R. C. Nunes, JCAP 05 (2018), 052 doi:10.1088/1475-7516/2018/05/052 [arXiv:1802.02281 [gr-qc]].

[33] M. X. Lin, M. Raveri and W. Hu, Phys. Rev. D 99 (2019) no.4, 043514 doi:10.1103/PhysRevD.99.043514 [arXiv:1810.02333 [astro-ph.CO]].
[34] M. Rossi, M. Ballardini, M. Braglia, F. Finelli, D. Paoletti, A. A. Starobinsky and C. Umiltà, Phys. Rev. D 100 (2019) no.10, 103524 doi:10.1103/PhysRevD.100.103524 [arXiv:1906.10218 [astro-ph.CO]].

[35] J. Solà Peracaula, A. Gomez-Valent, J. de Cruz Pérez and C. Moreno-Pulido, Astrophys. J. Lett. 886 (2019) no.1, L6 doi:10.3847/2041-8213/ab53e9 [arXiv:1909.02554 [astro-ph.CO]].

[36] M. Zumalacarregui, Phys. Rev. D 102 (2020) no.2, 023523 doi:10.1103/PhysRevD.102.023523 [arXiv:2003.06396 [astro-ph.CO]].

[37] D. Wang and D. Mota, Phys. Rev. D 102 (2020) no.6, 063530 doi:10.1103/PhysRevD.102.063530 [arXiv:2003.10095 [astro-ph.CO]].

[38] G. Ballesteros, A. Notari and F. Rompineve, JCAP 11 (2020), 024 doi:10.1088/1475-7516/2020/11/024 [arXiv:2004.05049 [astro-ph.CO]].

[39] M. Braglia, M. Ballardini, W. T. Emond, F. Finelli, A. E. Gumrukcuoglu, K. Koyama and D. Paoletti, Phys. Rev. D 102 (2020) no.2, 023529 doi:10.1103/PhysRevD.102.023529 [arXiv:2004.11161 [astro-ph.CO]].

[40] M. Ballardini, M. Braglia, F. Finelli, D. Paoletti, A. A. Starobinsky and C. Umiltà, JCAP 10 (2020), 044 doi:10.1088/1475-7516/2020/10/044 [arXiv:2004.14349 [astro-ph.CO]].

[41] J. Sola, A. Gomez-Valent, J. d. Perez and C. Moreno-Pulido, doi:10.1088/1361-6382/abbc43 [arXiv:2006.04273 [astro-ph.CO]].

[42] S. Joudaki, P. G. Ferreira, N. A. Lima and H. A. Winther, [arXiv:2010.15278 [astro-ph.CO]].

[43] V. Poulin, T. L. Smith, D. Grin, T. Karwal and M. Kamionkowski, Phys. Rev. D 98 (2018) no.8, 083525 doi:10.1103/PhysRevD.98.083525 [arXiv:1806.10608 [astro-ph.CO]].

[44] V. Poulin, T. L. Smith, T. Karwal and M. Kamionkowski, Phys. Rev. Lett. 122 (2019) no.22, 221301 doi:10.1103/PhysRevLett.122.221301 [arXiv:1811.04083 [astro-ph.CO]].

[45] P. Agrawal, F. Y. Cyr-Racine, D. Pinner and L. Randall, [arXiv:1904.01016 [astro-ph.CO]].

[46] N. Kaloper, Int. J. Mod. Phys. D 28 (2019) no.14, 1944017 doi:10.1142/S0218271819440176 [arXiv:1903.11676 [hep-th]].

[47] S. Alexander and E. McDonough, Phys. Lett. B 797 (2019), 134830 doi:10.1016/j.physletb.2019.134830 [arXiv:1904.08912 [astro-ph.CO]].

[48] F. Niedermann and M. S. Sloth, [arXiv:1910.10739 [astro-ph.CO]].

[49] K. V. Berghaus and T. Karwal, Phys. Rev. D 101 (2020) no.8, 083537 doi:10.1103/PhysRevD.101.083537 [arXiv:1911.06281 [astro-ph.CO]].

[50] J. Sakstein and M. Trodden, Phys. Rev. Lett. 124 (2020) no.16, 161301 doi:10.1103/PhysRevLett.124.161301 [arXiv:1911.11760 [astro-ph.CO]].

[51] M. X. Lin, G. Benevento, W. Hu and M. Raveri, Phys. Rev. D 100 (2019) no.6, 063542 doi:10.1103/PhysRevD.100.063542 [arXiv:1905.12618 [astro-ph.CO]].

[52] T. L. Smith, V. Poulin and M. A. Amin, Phys. Rev. D 101 (2020) no.6, 063523 doi:10.1103/PhysRevD.101.063523 [arXiv:1908.06995 [astro-ph.CO]].

[53] G. Ye and Y. S. Piao, Phys. Rev. D 101 (2020) no.8, 083507 doi:10.1103/PhysRevD.101.083507 [arXiv:2001.02451 [astro-ph.CO]].

[54] M. Braglia, W. T. Emond, F. Finelli, A. E. Gumrukcuoglu and K. Koyama, Phys. Rev. D 102 (2020) no.8, 083513 doi:10.1103/PhysRevD.102.083513 [arXiv:2005.14053 [astro-ph.CO]].

[55] F. Niedermann and M. S. Sloth, Phys. Rev. D 102 (2020) no.6, 063527 doi:10.1103/PhysRevD.102.063527 [arXiv:2006.06686 [astro-ph.CO]].
[56] M. Gonzalez, M. P. Hertzberg and F. Rompineve, JCAP 10 (2020), 028
doi:10.1088/1475-7516/2020/10/028 [arXiv:2006.13959 [astro-ph.CO]].

[57] F. Niedermann and M. S. Sloth, [arXiv:2009.00006 [astro-ph.CO]].

[58] M. X. Lin, W. Hu and M. Raveri, [arXiv:2009.08974 [astro-ph.CO]].

[59] M. Carrillo González, Q. Liang, J. Sakstein and M. Trodden, [arXiv:2011.09895 [astro-ph.CO]].

[60] R. Hložek, D. J. E. Marsh, D. Grin, R. Allison, J. Dunkley and E. Calabrese, Phys. Rev. D 95 (2017) no.12, 123511
doi:10.1103/PhysRevD.95.123511 [arXiv:1607.08208 [astro-ph.CO]].

[61] P. Brax, C. van de Bruck, S. Clesse, A. C. Davis and G. Sculthorpe, Phys. Rev. D 89 (2014) no.12, 123507
doi:10.1103/PhysRevD.89.123507 [arXiv:1312.3361 [astro-ph.CO]].

[62] N. A. Lima, V. Smer-Barreto and L. Lombriser, Phys. Rev. D 94 (2016) no.8, 083507
doi:10.1103/PhysRevD.94.083507 [arXiv:1603.05239 [astro-ph.CO]].

[63] V. Pettorino and L. Amendola, Phys. Lett. B 742 (2015), 353-357
doi:10.1016/j.physletb.2015.02.007 [arXiv:1408.2224 [astro-ph.CO]].

[64] J. C. Hill, E. McDonough, M. W. Tooney and S. Alexander, Phys. Rev. D 102 (2020) no.4, 043507
doi:10.1103/PhysRevD.102.043507 [arXiv:2003.07355 [astro-ph.CO]].

[65] M. M. Ivanov, E. McDonough, J. C. Hill, M. Simonović, M. W. Tooney, S. Alexander and M. Zaldarriaga, Phys. Rev. D 102 (2020) no.10, 103502
doi:10.1103/PhysRevD.102.103502 [arXiv:2006.11235 [astro-ph.CO]].

[66] G. D’Amico, L. Senatore, P. Zhang and H. Zheng, [arXiv:2006.12420 [astro-ph.CO]].

[67] B. Boisseau, G. Esposito-Farese, D. Polarski and A. A. Starobinsky, Phys. Rev. Lett. 85 (2000), 2236
doi:10.1103/PhysRevLett.85.2236 [arXiv:gr-qc/0001066 [gr-qc]].

[68] R. Gannouji, D. Polarski, A. Ranquet and A. A. Starobinsky, JCAP 09 (2006), 016
doi:10.1088/1475-7516/2006/09/016 [arXiv:astro-ph/0606287 [astro-ph]].

[69] K. Koyama, Rept. Prog. Phys. 79 (2016) no.4, 046902
doi:10.1088/0034-4885/79/4/046902 [arXiv:1504.04623 [astro-ph.CO]].

[70] T. A. de Pirey Saint Alby and N. Yunes, Phys. Rev. D 96 (2017) no.6, 064040
doi:10.1103/PhysRevD.96.064040 [arXiv:1703.06341 [gr-qc]].

[71] C. M. Will, Living Rev. Rel. 17 (2014), 4
doi:10.12942/lrr-2014-4 [arXiv:1403.7377 [gr-qc]].

[72] B. Bertotti, L. Iess and P. Tortora, Nature 425 (2003), 374-376
doi:10.1038/nature01997 [arXiv:astro-ph/0305030 [astro-ph]].

[73] E. Bellini and I. Sawicki, JCAP 07 (2014), 050
doi:10.1088/1475-7516/2014/07/050 [arXiv:1404.3713 [astro-ph.CO]].

[74] E. Belgacem et al. [LISA Cosmology Working Group], JCAP 07 (2019), 024
doi:10.1088/1475-7516/2019/07/024 [arXiv:1906.01593 [astro-ph.CO]].

[75] A. Riazuelo and J. P. Uzan, Phys. Rev. D 62 (2000), 083506
doi:10.1103/PhysRevD.62.083506 [arXiv:astro-ph/0004156 [astro-ph]].

[76] L. Amendola, G. Ballesteros and V. Pettorino, Phys. Rev. D 90 (2014), 043009
doi:10.1103/PhysRevD.90.043009 [arXiv:1405.7004 [astro-ph.CO]].

[77] P. Bull, M. White and A. Slosar, [arXiv:2007.02865 [astro-ph.CO]].

[78] A. Klypin, V. Poulin, F. Prada, J. Primack, M. Kamionkowski, V. Avila-Reese, A. Rodriguez-Puebla, P. Behroozi, D. Hellinger and T. L. Smith, [arXiv:2006.14910 [astro-ph.CO]].

[79] G. D’Amico, L. Senatore and P. Zhang, [arXiv:2003.07956 [astro-ph.CO]].

[80] J. Lesgourgues, [arXiv:1104.2932 [astro-ph.IM]].
[81] D. Blas, J. Lesgourgues and T. Tram, JCAP **07** (2011), 034
doi:10.1088/1475-7516/2011/07/034 [arXiv:1104.2933 [astro-ph.CO]].

[82] M. Zumalacárregui, E. Bellini, I. Sawicki, J. Lesgourgues and P. G. Ferreira, JCAP **08** (2017),
019 doi:10.1088/1475-7516/2017/08/019 [arXiv:1605.06102 [astro-ph.CO]].

[83] E. Bellini, I. Sawicki and M. Zumalacárregui, JCAP **02** (2020), 008
doi:10.1088/1475-7516/2020/02/008 [arXiv:1909.01828 [astro-ph.CO]].

[84] B. Audren, J. Lesgourgues, K. Benabed and S. Prunet, JCAP **02** (2013), 001
doi:10.1088/1475-7516/2013/02/001 [arXiv:1210.7183 [astro-ph.CO]].

[85] T. Brinckmann and J. Lesgourgues, Phys. Dark Univ. **24** (2019), 100260
doi:10.1016/j.dark.2018.100260 [arXiv:1804.07261 [astro-ph.CO]].

[86] A. Lewis, [arXiv:1910.13970 [astro-ph.IM]].

[87] D. Paoletti, M. Braglia, F. Finelli, M. Ballardini and C. Umiltà, Phys. Dark Univ. **25** (2019),
100307 doi:10.1016/j.dark.2019.100307 [arXiv:1809.03201 [astro-ph.CO]].

[88] A. Gelman and D. B. Rubin, Statist. Sci. **7** (1992), 457-472 doi:10.1214/ss/1177011136
[89] R. E. Smith et al. [VIRGO Consortium], Mon. Not. Roy. Astron. Soc. **341** (2003), 1311
doi:10.1046/j.1365-8711.2003.05603.x [arXiv:astro-ph/0207664 [astro-ph]].

[90] R. Takahashi, M. Sato, T. Nishimichi, A. Taruya and M. Oguri, Astrophys. J. **761** (2012), 152
doi:10.1088/0004-637X/761/2/152 [arXiv:1208.2701 [astro-ph.CO]].

[91] R. Murgia, G. F. Abellán and V. Poulin, [arXiv:2009.10733 [astro-ph.CO]].

[92] A. Mead, J. Peacock, C. Heymans, S. Joudaki and A. Heavens, Mon. Not. Roy. Astron. Soc. **454** (2015) no.2, 1958-1975 doi:10.1093/mnras/stv2036 [arXiv:1505.07833 [astro-ph.CO]].

[93] F. James and M. Roos, Comput. Phys. Commun. **10** (1975), 343-367
doi:10.1016/0010-4655(75)90039-9

[94] H. Jeffreys,

[95] R. E. Kass and A. E. Raftery, J. Am. Statist. Assoc. **90** (1995) no.430, 773-795
doi:10.1080/01621459.1995.10476572

[96] A. Heavens, Y. Fantaye, A. Mootoovaloo, H. Eggers, Z. Hosenie, S. Kroon and E. Sellentin,
[arXiv:1704.03472 [stat.CO]].

[97] N. Aghanim et al. [Planck], Astron. Astrophys. **641** (2020), A5
doi:10.1051/0004-6361/201936386 [arXiv:1907.12875 [astro-ph.CO]].

[98] N. Aghanim et al. [Planck], Astron. Astrophys. **641** (2020), A8
doi:10.1051/0004-6361/201833886 [arXiv:1807.06210 [astro-ph.CO]].

[99] S. Alam et al. [BOSS], Mon. Not. Roy. Astron. Soc. **470** (2017) no.3, 2617-2652
doi:10.1093/mnras/stx721 [arXiv:1607.03155 [astro-ph.CO]].

[100] A. J. Ross et al. [BOSS], Mon. Not. Roy. Astron. Soc. **464** (2017) no.1, 1168-1191
doi:10.1093/mnras/stw2372 [arXiv:1607.03145 [astro-ph.CO]].

[101] M. Vargas-Magaña, S. Ho, A. J. Cuesta, R. O’Connell, A. J. Ross, D. J. Eisenstein,
W. J. Percival, J. N. Grieb, A. G. Sánchez and J. L. Tinker, et al. Mon. Not. Roy. Astron. Soc. **477** (2018) no.1, 1153-1188 doi:10.1093/mnras/sty571 [arXiv:1610.03506 [astro-ph.CO]].

[102] F. Beutler et al. [BOSS], Mon. Not. Roy. Astron. Soc. **464** (2017) no.3, 3409-3430
doi:10.1093/mnras/stw2373 [arXiv:1607.03149 [astro-ph.CO]].

[103] F. Beutler, C. Blake, M. Colless, D. H. Jones, L. Staveley-Smith, L. Campbell, Q. Parker,
W. Saunders and F. Watson, Mon. Not. Roy. Astron. Soc. **416** (2011), 3017-3032
doi:10.1111/j.1365-2966.2011.19250.x [arXiv:1106.3366 [astro-ph.CO]].
[104] A. J. Ross, L. Samushia, C. Howlett, W. J. Percival, A. Burden and M. Manera, Mon. Not. Roy. Astron. Soc. 449 (2015) no.1, 835-847 doi:10.1093/mnras/stv154 [arXiv:1409.3242 [astro-ph.CO]].

[105] H. Gil-Marín, W. J. Percival, J. R. Brownstein, C. H. Chuang, J. N. Grieb, S. Ho, F. S. Kitaura, C. Maraston, F. Prada and S. Rodríguez-Torres, et al. Mon. Not. Roy. Astron. Soc. 460 (2016) no.4, 4188-4209 doi:10.1093/mnras/stw1096 [arXiv:1509.06386 [astro-ph.CO]].

[106] G. D’Amico, J. Gleyzes, N. Kokron, K. Markovic, L. Senatore, P. Zhang, F. Beutler and H. Gil-Marín, JCAP 05 (2020), 005 doi:10.1088/1475-7516/2020/05/005 [arXiv:1909.05271 [astro-ph.CO]].

[107] T. Colas, G. D’amico, L. Senatore, P. Zhang and F. Beutler, JCAP 06 (2020), 001 doi:10.1088/1475-7516/2020/06/001 [arXiv:1909.07951 [astro-ph.CO]].

[108] D. M. Scolnic, D. O. Jones, A. Rest, Y. C. Pan, R. Chornock, R. J. Foley, M. E. Huber, R. Kessler, G. Narayan and A. G. Riess, et al. Astrophys. J. 859 (2018) no.2, 101 doi:10.3847/1538-4357/aab9bb [arXiv:1710.00845 [astro-ph.CO]].

[109] E. Garcia-Berro, E. Gaztanaga, J. Isern, O. Benvenuto and L. Althaus, [arXiv:astro-ph/9907440 [astro-ph]].

[110] A. Riazuelo and J. P. Uzan, Phys. Rev. D 66 (2002), 023525 doi:10.1103/PhysRevD.66.023525 [arXiv:astro-ph/0107386 [astro-ph]].

[111] S. Nesseris and L. Perivolaropoulos, Phys. Rev. D 73 (2006), 103511 doi:10.1103/PhysRevD.73.103511 [arXiv:astro-ph/0602053 [astro-ph]].

[112] B. S. Wright and B. Li, Phys. Rev. D 97 (2018) no.8, 083505 doi:10.1103/PhysRevD.97.083505 [arXiv:1710.07018 [astro-ph.CO]].

[113] T. M. C. Abbott et al. [DES], Phys. Rev. D 98 (2018) no.4, 043526 doi:10.1103/PhysRevD.98.043526 [arXiv:1708.01530 [astro-ph.CO]].

[114] H. Hildebrandt, M. Viola, C. Heymans, S. Joudaki, K. Kuijken, C. Blake, T. Erben, B. Joachimi, D. Klaes and L. Miller, et al. Mon. Not. Roy. Astron. Soc. 465 (2017), 1454 doi:10.1093/mnras/stw2805 [arXiv:1606.05338 [astro-ph.CO]].

[115] H. Hildebrandt, F. Köhlinger, J. L. van den Busch, B. Joachimi, C. Heymans, A. Kannawadi, A. H. Wright, M. Asgari, C. Blake and H. Hoekstra, et al. Astron. Astrophys. 633 (2020), A69 doi:10.1051/0004-6361/201834878 [arXiv:1812.06076 [astro-ph.CO]].

[116] C. Hikage et al. [HSC], Publ. Astron. Soc. Jap. 71 (2019) no.2, Publications of the Astronomical Society of Japan, Volume 71, Issue 2, April 2019, 43, https://doi.org/10.1093/pasj/psz010 doi:10.1093/pasj/psz010 [arXiv:1809.09148 [astro-ph.CO]].

[117] Y. Akrami et al. [Planck], Astron. Astrophys. 641 (2020), A10 doi:10.1051/0004-6361/201833887 [arXiv:1807.06211 [astro-ph.CO]].

[118] J. Martin, C. Ringeval and V. Vennin, Phys. Dark Univ. 5-6 (2014), 75-235 doi:10.1016/j.dark.2014.01.003 [arXiv:1303.3787 [astro-ph.CO]].

[119] V. Vennin, K. Koyama and D. Wands, JCAP 11 (2015), 008 doi:10.1088/1475-7516/2015/11/008 [arXiv:1507.07575 [astro-ph.CO]].

[120] S. Gariazzo, Eur. Phys. J. C 80 (2020) no.6, 552 doi:10.1140/epjc/s10052-020-8126-0 [arXiv:1910.06646 [astro-ph.CO]].

[121] A. G. Riess, S. Casertano, W. Yuan, L. M. Macri and D. Scolnic, Astrophys. J. 876 (2019) no.1, 85 doi:10.3847/1538-4357/ab1422 [arXiv:1903.07603 [astro-ph.CO]].

[122] V. de Sainte Agathe, C. Balland, H. du Mas des Bourboux, N. G. Busca, M. Blomqvist, J. Guy, J. Rich, A. Font-Ribera, M. M. Pieri and J. E. Bautista, et al. Astron. Astrophys. 629 (2019), A85 doi:10.1051/0004-6361/201935638 [arXiv:1904.03400 [astro-ph.CO]].
[123] M. Blomqvist, H. du Mas des Bourboux, N. G. Busca, V. de Sainte Agathe, J. Rich, C. Ballard, J. E. Bautista, K. Dawson, A. Font-Ribera and J. Guy, et al. Astron. Astrophys. 629 (2019), A86 doi:10.1051/0004-6361/201935641 [arXiv:1904.03430 [astro-ph.CO]].

[124] T. L. Smith, V. Poulin, J. L. Bernal, K. K. Boddy, M. Kamionkowski and R. Murgia, [arXiv:2009.10740 [astro-ph.CO]].

[125] K. Jedamzik, L. Pogosian and G. B. Zhao, [arXiv:2010.04158 [astro-ph.CO]].