Determination of allelopathic properties of *Acacia catechu* (L.f.) Willd.

Kawsar HOSSEN1,2,*, Hisashi KATO-NOGUCHI1,2

1Kagawa University, Faculty of Agriculture, Department of Applied Biological Science, Miki, Kagawa 761-0795 Japan; kwsarbau@gmail.com (*corresponding author); kato.hisashi@kagawa-u.ac.jp
2Ehime University, The United Graduate School of Agricultural Sciences, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan

Abstract

Plants possessing allelopathic potential could be used as a source of bio-herbicide to help decrease the use of synthetic herbicides. *Acacia catechu* (L.f.) Willd., a deciduous tree from the Mimosaceae family, has been reported to have medicinal properties. However, there have been no reports on the allelopathy of this tree. Therefore, the leaf extracts of *A. catechu* were examined for allelopathic potential using six concentrations: 0.001, 0.003, 0.01, 0.03, 0.1, and 0.3 g dry weight equivalent extract mL$^{-1}$. The aqueous methanol extracts of *A. catechu* significantly suppressed the seedling growth of six test plants such as alfalfa, cress, lettuce, barnyard grass, Italian ryegrass, and timothy. The extracts inhibited the six test plants in a concentration-dependent manner. The shoot and root growth of all the test plant species were completely inhibited from the concentration of 0.3 g of dry weight equivalent extract mL$^{-1}$, except the shoot growth of barnyard grass. Concentrations needed for 50% growth inhibition (I_{50} values) ranged from 0.004 to 0.043 g dry weight equivalent extract mL$^{-1}$ for shoot growth, and 0.003 to 0.019 g dry weight equivalent extract mL$^{-1}$ for root growth. Moreover, the I_{50} values indicated that the root growth of all the test plants was more susceptible to the *A. catechu* extracts than the shoot growth. The inhibitory effects of the extracts of *A. catechu* suggest that the extracts may contain allelopathic potential and, therefore, may be a potential candidate for the isolation and characterization of allelochemicals to develop an ecofriendly bio-herbicide.

Keywords: *Acacia catechu*; allelopathy; bio-herbicides; weed control

Introduction

Weeds are plants that negatively affect farming and forestry industries, such as growing of crops, grazing of animals, and planting of forest trees (Popay, 2008). Most species of weed spread very fast and compete with crops for water, soil, nutrients, light, and space, resulting in crop yield reduction in agricultural ecosystems (McErlich and Boydston, 2013). It has been reported that weed infestation causes about 34% loss of major crop yields throughout the world (Jabran et al., 2015). Synthetic herbicides are commonly applied to control weeds. Indiscriminate use of herbicides results in the development of herbicide resistance in weeds, a serious risk to humans and animals (Mazumder, 2011; Daniel et al., 2013; Heap, 2014). Currently 514 unique cases (species x site of action) of weed have developed resistance to many herbicides (Heap, 2019). Therefore, it is crucial to find alternative ways to manage weeds that is sustainable and eco-friendly. The biological approach is considered a natural method of weed management in farming systems (Hunt et al., 2017; Xiao et al., 2017;...
Ojija et al., 2019). Biological approach of weed control is a method which integrates the use of various natural organisms and approaches like allelopathy, competition of crop, and different agronomic practices (Sodaeizadeh and Hosseini, 2012). Among them allelopathy is considered as one of the most important biological approach. The releasing of bioactive derivative metabolites by different organisms such as plants, insects, microbes, algae, and fungi, and the successive interaction with other organisms, inducing positive or negative effects, is termed allelopathy (Fujii, 2003; Weston and Duke, 2003; Zeng et al., 2008). The application of allelopathic plant species and allelopathic substances for sustainable weed control or management in agriculture has been investigated in various studies (Islam et al., 2019; Rob et al., 2020). Allelochemicals are released into the environment through leaching, root exudation, volatilization, or decomposition of crop residues (Fujii, 2003). Searching for allelopathic potential of various plants is an ongoing process and is the most important first step towards developing bio-herbicides in order to reduce dependence on synthetic herbicides.

Acacia catechu is a deciduous plant with a light feathery crown that reaches heights of 9-15 m. The plant grows well in Bangladesh, India, Pakistan, Sri Lanka, Bhutan, Indonesia, Mauritius, Myanmar, Nepal, Taiwan, Thailand, USA, Vietnam, and China in both natural and managed plantations (Chakrabarty and Gangopadhyay, 1996), and is an important species for bioresources and multipurpose use. *Acacia catechu* is the leading source of tannin, which is one of the important forest products currently traded globally (Singh and Lal, 2006). This plant is commonly known as kairi in Bangladesh. Katha and cutch are obtained from extracts of the heartwood of *A. catechu*. Katha is used in betel chewing together with the leaf of *Piper betle*. Cutch is a substance marketed as a solid extract and used as dye, polishes for furniture, and paints for various uses (Singh, 2000), and for tanning leather. *Acacia catechu* also has many medicinal properties. The extract of *A. catechu* has been recorded to have different pharmacological effects such as immunomodulatory (Ismail and Asad, 2009), antioxidative (Li et al., 2010; Lakshmi et al., 2011), antibacterial (Lakshmi and Arvind, 2011), antipyretic, hypoglycaemic (Singh et al., 1976), antidiarrhoeal (Ray et al., 2006), and hepatoprotective (Ray et al., 2006). It is beneficial for the treatment of colds and coughs (Anonymous, 2002; Wallis, 2005), ulcers, bleeding piles, boils and other skin eruptions, atonic dyspepsia, uterine haemorrhage, and chronic bronchitis. The medicinal properties of *A. catechu* are well known. The medicinal plants have relatively potent allelopathic potential (Fujii et al., 2003; Morikawa et al., 2012; Appiah et al., 2015).

Recently, different potent allelochemicals have been isolated from medicinal plants (Kato-Noguchi et al., 2013; Piyatida et al., 2013; Bich and Kato-Noguchi, 2014; Kato-Noguchi et al., 2014; Suwitchayanon et al., 2015; Appiah et al., 2017; Raihan et al., 2019). While the medicinal and other uses of *A. catechu* are well known, there is only one report in the literature about the allelopathic potential of this plant (Singh et al., 2006). Singh et al. (2006) did their study in field condition and they used only crop species for their study but in this study, we used crop and weed species. Therefore, this study was undertaken to evaluate and confirm the allelopathic activity of *A. catechu*.

Materials and Methods

Plant materials

Medium age and size plants were selected during warm and moist weather condition. These types of plants contain all of the typical characteristics of trees. Mature and healthy leaves (leaf size and number: 1-2 cm, approximately 10000 leaves) from middle part of *Acacia catechu* plant were collected from the Noakhali Science and Technology University (22° 47’ 31” N and 91° 06’ 07” E), Noakhali, Bangladesh, in August 2019. Professor Sarwar AKM Golam (Department of Crop Botany, Bangladesh Agricultural University) identified the species as *Acacia catechu*. The authors preserved a voucher and the voucher number is AGNSTU 19MP-0001 deposited in the Medicinal Plant Herbarium, Department of Agriculture, Noakhali Science and Technology University (NSTU), Bangladesh. The collected leaves were washed in running water to clear
debris. The leaves were then dried in the shade until constant weight was reached. Finally, the dried leaves were ground into powder, which was kept in a polythene bag, and stored in a refrigerator at 2 °C until use.

Test plant species

Six test plant species were selected for this experiment: alfalfa (*Medicago sativa* L.), cress (*Lepidium sativum* L.), lettuce (*Lactuca sativa* L.), Italian ryegrass (*Lolium multiflorum* Lam.), barnyard grass (*Echinochloa crus-galli* (L.) P. Beauv), and timothy (*Phleum pratense* L.). The first three plants are dicotyledonous and the latter three are monocotyledonous. Alfalfa, lettuce, cress, and timothy were chosen for their well-known growth characteristics, while Italian ryegrass and barnyard grass were chosen for their wide distribution, mostly in crop lands (Rob and Kato-Noguchi, 2019).

Extraction of Acacia catechu leaves

The leaf powder (50 g) of *A. catechu* was extracted with 450 mL of 70% (v/v) aqueous methanol for 48 h and filtered with one layer of filter paper (No. 2, 125 mm; Advantec Toyo Roshi Kaisha, Ltd., Tokyo, Japan) through a vacuum pump. The residue was re-extracted again with an equal amount of 100% (v/v) methanol for 24 h and filtered. Both filtrates were then mixed and evaporated until complete dryness through a rotary evaporator at 40°C.

Growth bioassays

The crude extract of *A. catechu* was dissolved in 150 mL of methanol to make six bioassay concentrations (0.001, 0.003, 0.01, 0.03, 0.1, and 0.3 g dry weight equivalent extract mL$^{-1}$). To produce those concentrations, aliquots of the methanol extract of *A. catechu* (3, 9, 30, 90, 300, and 900 µL, respectively) were put onto sheets of filter paper (No. 2, 28 mm; Advantec) in Petri dishes (28 mm). The filter papers were then desiccated in a draft chamber and wetted with 0.6 mL of 0.05% (v/v) aqueous solution of polyoxyethylene sorbitan monolaurate (Tween20; Nacalai Tesque, Inc., Kyoto, Japan). Tween 20 was used as a surfactant and had no noxious effects on the growth of the seedlings (Islam and Kato-Noguchi, 2016). Next, 10 seeds of cress, alfalfa, and lettuce, and 10 sprouted seeds of barnyard grass, Italian ryegrass, and timothy (seeds were moistened for 24 h in distilled water and then permitted to germinate at 25 °C in darkness for 72, 60, and 48 h, respectively) were placed on the filter papers (No. 2, 28 mm; Advantec) in Petri dishes (28 mm), and the seeds or sprouted seeds were also placed on a filter paper soaked with 0.6 mL of 0.05% (v/v) aqueous solution of Tween 20 as a control and kept in the growth chamber. After 48 h of incubation in the dark at 25 °C the growth seedling of the tested plants was estimated. The percentage of the seedling length growth was measured by referring to the control seedling lengths.

Statistical analysis

All the bioassay experiments were undertaken in a completely randomized design (CRD) with three replications and repeated twice using 10 seedlings. The resulting data were analyzed using SPSS software version 16.0 (IBM Corp., 2007). The data obtained from each experiment were then subjected to analysis of variance (ANOVA), and the significant differences between the mean of treatments and control were calculated using Tukey’s HSD test at the 0.05 probability level. The I_{50} values (Concentrations needed for 50% growth inhibition) were determined for each test plant species using a regression equation. The correlation of coefficient (R) between the extract concentrations and seedling growth was analyzed using a two-tailed Pearson correlation test (SPSS version 16.0) of the test plant species.
Results

Effect of aqueous methanol extracts of Acacia catechu on the shoot growth of the test plants

The aqueous methanol extracts of *A. catechu* significantly inhibited the shoot growth of the tested plants (Figures 1 and 2). At a concentration of 0.03 g dry weight equivalent extract mL⁻¹, the shoot growth of alfalfa, cress, and lettuce was less than 20% of control shoot growth, while Italian ryegrass, barnyard grass, and timothy were 31.75, 64.57, and 32.62% of control shoot growth, respectively. Likewise, at a concentration of 0.1 g dry weight equivalent extract mL⁻¹, the shoot growth of the tested plants was inhibited more than 90% by the extracts, except barnyard grass. In contrast, the shoot growth of cress and lettuce was inhibited more than 60%, while alfalfa, barnyard grass, Italian ryegrass, and timothy were inhibited to 54.21, 26.47, 29.94, and 32.76% of control, respectively, at the concentration of 0.01 g dry weight equivalent extract mL⁻¹ (Figure 2).

With exposure to the concentration of 0.3 g dry weight equivalent extract mL⁻¹, the shoot growth of the tested plants was completely inhibited, except barnyard grass. The correlation coefficient (R) measures the direction and strength of a linear relationship. It always has a value between 1 and -1. Strong positive linear relationships have values of R closer to 1. Strong negative linear relationships have values of R closer to -1. The correlation coefficient (R) between shoot growth and the concentration of the extracts of *A. catechu* ranged from −0.781 to −0.908 (Table 1). The concentration required for 50% growth inhibition (\(I_0\)) by the extracts of *A. catechu* on the shoot growth of the tested plants ranged from 0.004 to 0.043 g dry weight equivalent extract mL⁻¹ (Table 2). Further, the \(I_0\) values indicated that the lettuce shoots were the most sensitive to the extracts, while the barnyard grass shoots were the least sensitive.

Table 1. Correlation coefficient between the seedling growth of the tested plants and the concentration of the extracts of *A. catechu*

Test plant species	Correlation coefficient (R)	Shoot	Root
Alfalfa	−0.864**	−0.849**	
Cress	−0.908**	−0.931**	
Lettuce	−0.884**	−0.909**	
Italian ryegrass	−0.781**	−0.881**	
Barnyard grass	−0.798**	−0.854**	
Timothy	−0.830**	−0.870**	

** Indicates significance of correlation at p<0.01.

Table 2. The concentration needed for 50% growth inhibition (\(I_0\) values) of the shoot and root growth of the tested plants by the extracts of *Acacia catechu*

Test plant species	\(I_0\) (g dry weight equivalent extract mL⁻¹)	Shoot	Root
Alfalfa	0.008	0.006	
Cress	0.005	0.004	
Lettuce	0.004	0.003	
Italian ryegrass	0.018	0.010	
Barnyard grass	0.043	0.019	
Timothy	0.017	0.006	
Figure 1. Effect of *Acacia catechu* extracts on the seedling growth of alfalfa, cress, lettuce, Italian ryegrass, barnyard grass, and timothy.

Figure 2. Effect of *A. catechu* extracts on the shoot growth of the six tested plants. The tested plants were exposed to concentrations of 0.001, 0.003, 0.01, 0.03, 0.1, and 0.3 g dry weight equivalent extract mL$^{-1}$. Mean ± SE from 2 independent experiments with 3 replications for each treatment are presented (number of seedlings per treatment=10, n=60). Standard error of the mean is depicted by a vertical bar. The different letters in the same panel indicate significant difference according to Tukey’s HSD test at the 0.05 probability level.
Effect of aqueous methanol extracts of Acacia catechu on the root growth of the test plants

The aqueous methanol extracts of *A. catechu* significantly inhibited the root growth of the tested plants (Figures 1 and 3) in a concentration-dependent manner. At a concentration of 0.3 g dry weight equivalent extract mL\(^{-1}\), the root growth of the tested plants was completely inhibited (100%) by the extracts (Figure 3). The root length of alfalfa, cress, lettuce, and timothy was less than 45% compared with control, while the root length of Italian ryegrass and barnyard grass was restricted to 52.23 and 59.47% of control, respectively, by 0.01 g dry weight equivalent extract mL\(^{-1}\). When the tested plants were exposed to a concentration of 0.1 g dry weight equivalent extract mL\(^{-1}\), the root growth of the tested plants was inhibited to below 5% of control, except cress root length (Figure 3). In addition, the root lengths of the tested plants were markedly decreased by the concentration of 0.03 g dry weight equivalent extract mL\(^{-1}\), with alfalfa exhibiting the strongest inhibition (92.74%), followed by Italian ryegrass (89.4%), timothy (87.7%), cress (84.9%), lettuce (84.6%), and barnyard grass (64.58%). The correlation coefficient between the extract of *A. catechu* and root length varied from −0.849 to −0.931 (Table 1). The \(I_{50}\) values for the root growth of the tested plants varied from 0.003 and 0.019 g dry weight equivalent extract mL\(^{-1}\) (Table 2), with lettuce being the most susceptible to the extracts, while barnyard grass was least susceptible. In addition, the decrease in root growth of the tested plants was greater than that of the shoots.

Figure 3. Effect of *A. catechu* extracts on the root growth of the six tested plants. The tested plants were exposed to concentrations of 0.001, 0.003, 0.01, 0.03, 0.1, and 0.3 g dry weight equivalent extract of *A. catechu* mL\(^{-1}\). Mean ± SE from 2 independent experiments with 3 replications for each treatment are presented (number of seedlings per treatment=10, n=60). Standard error of the mean is depicted by a vertical bar. The different letters in the same panel indicate significant difference according to Tukey’s HSD test at the 0.05 probability level.

Discussion

The extracts of *A. catechu* significantly inhibited the growth of alfalfa, cress, and lettuce (dicotyledonous plants) and Italian ryegrass, barnyard grass, and timothy (monocotyledonous plants). Stronger inhibitory effects were found at higher extract concentrations, indicating that inhibition was concentration dependent. This type of concentration-dependent inhibition has been reported by Sinha and Samar (2004), Swain et al. (2005), Ishak and Sahid (2014), Gulzar et al. (2016), Al-Harbi (2018), Mushtaq et al. (2018), Zaman et al. (2020), and Hossen et al. (2020). The extracts of *A. catechu* had different inhibitory activities on different tested plants, showing that the growth inhibitory effects of this plant’s extracts depended on the target plant species. Rob and Kato-Noguchi (2019), and Islam and Kato-Noguchi (2016) also reported different inhibition of target plants by growth inhibitory substances, and some species are more susceptible compared with other species. The results of this study showed that the shoot growth of the tested plants was less sensitive to the
extracts than the root growth. The root system plays a vital role in plant adaptation to edaphic limitations, and biotic and abiotic stimuli (Yan et al., 1995). The measurement of shoot and root elongation is commonly used to determine allelopathic activity (Wu et al., 1999). However, many researchers also note that the inhibitory activity of plant extracts is more effective against root growth than shoot growth (Pukclai et al., 2010; Netsere and Mendesil, 2012; Sbai et al., 2016; Liu et al., 2018; Islam et al., 2017). Exposed roots are more sensitive to extracts because of direct contact with allelochemicals (Islam and Kato-Noguchi, 2016) as well as root tissue being more permeable to allelochemicals than shoot tissue (Nishida et al., 2005; Yoshimura et al., 2011). On the other hand, root growth is based on cell proliferation, which is severely affected by phytochemicals, leading to arrested root growth (Yoshimura et al., 2011; Tanveer et al., 2012). Moreover, based on the I_{50} values of the tested plants, the results of this study revealed a significant difference in sensitivity of the tested plants to the extracts of A. catechu. These results suggest that different allelochemicals have species-specific inhibition against test plant species (Mushtaq et al., 2018).

Conclusions

The aqueous methanol extracts of *Acacia catechu* inhibited the shoot and root growth of the tested dicotyledonous and monocotyledonous plants in a concentration- and species-dependent manner. These results indicate that the plant possesses strong allelopathic potential and may contain allelochemicals. Thus, the leaf extracts of *A. catechu* could be considered a viable candidate for the isolation and characterization of allelopathic substances

Authors’ Contributions

KH conducted the whole experiment, recorded and analyzed the data and wrote the manuscript. HKN designed and supervised the experiment. He also helps to improve the quality of manuscript by editing and giving proper guideline.

The authors read and approved the final manuscript.

Acknowledgements

We thank the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan for providing financial support to the first author for conducting this research. We also thank Professor Dennis Murphy, The United Graduate School of Agricultural Sciences, Ehime University, Japan for checking and editing the English of the manuscript.

Conflict of Interests

The authors declare that there are no conflicts of interest related to this article.
References

Al-Harbi NA (2018). Allelopathic effect of leaf extract of two wild plants on seed germination, shoot and root length of two weed species; *Portulaca oleracea* and *Chenopodium murale*. Bioscience Biotechnology Research Asia 15(4):929-935. http://doi.org/10.13005/bbra/2704

Anonymous (2002). Indian herbal pharmacopoeia. Revised edition; Indian Drug Manufacturer’s Association, Mumbai, pp 1-11.

Appiah KS, Li Z, Zeng RS, Luo S, Oikawa Y, Fujii Y (2015). Determination of allelopathic potentials in plant species in Sino-Japanese floristic region by sandwich method and dish pack method. International Journal of Basic and Applied Sciences 4:381-394. http://doi.org/10.14419/ijbas.v4i4.5147

Appiah KS, Mardani HK, Osivand A, Kpabitey S, Amoatey CA, Oikawa Y, Fujii Y (2017). Exploring alternative use of medicinal plants for sustainable weed management. Sustainability 9(8):1468. http://doi.org/10.3390/su9081468

Bich TTN, Kato-Noguchi H (2014). Isolation and identification of phytotoxic substance from emergent macrophyte *Centrostachys aquatica*. Botanical Studies 55:1-5. http://doi.org/10.1186/s40529-014-0059-1

Chakrabarty T, Gangopadhyay M (1996). The genus *Acacia* P. Miller. (Leguminosae: Mimosoideae) in India. Journal of Economic and Taxonomic Botany 20:599-633.

Daniel M, Duniya N, Adams IG (2013). Effect of continuous application of herbicide on soil and environment with crop protection machinery in southern Adamawa state. International Refereed Journal of Engineering and Science 2(6):4-9.

Fujii Y (2003). Allelopathy in the natural and agricultural ecosystems and isolation of potent allelochemicals from Velvet bean (*Mucuna pruriens*) and Hairy vetch (*Vicia villosa*). Biological Sciences in Space 17:6-13. https://doi.org/10.2187/bss.17.6

Fujii Y, Parvez SS, Parvez MM, Ohmae Y, Iida O (2003). Screening of 239 medicinal plant species for allelopathic activity using the sandwich method. Weed Biology and Management 3:233-241. https://doi.org/10.1046/j.1444-6162.2003.00111.x

Gulzar A, Siddiqui MB, Bi S (2016). Phenolic acid allelochemicals induced morphological, ultrastructural, and cytological modification on *Cassia sophera* L. and *Allium cepa* L. Protoplasma 253(5):1211-1221. https://doi.org/10.1007/s00709-015-0862-x

Heap I (2014). Global perspective of herbicide-resistant weeds. Pest Management Science 70:1306-1315. https://doi.org/10.1002/ps.3696

Heap I (2019). The international survey of herbicide resistant weeds. Retrieved 2019 August 5 from http://weedscience.org

Hossen K, Das KR, Okada S, Iwasaki A, Suenaga K, Kato-Noguchi H (2020). Allelopathic potential and active substances from *Wedelia chinensis* (Osbeck). Foods 9:1591. http://doi.org/10.3390/foods9111591

Hunt ND, Hill JD, Liebman M (2017). Reducing freshwater toxicity while maintaining weed control, profits, and productivity: Effects of increased crop rotation diversity and reduced herbicide usage. Environmental Science and Technology 51:1707-1717. http://doi.org/10.1021/acs.est.6b04086

IBM Corp (2007). IBM SPSS Statistics for Windows. Version 16.0. Armonk, NY, IBM Corp.

Ishak MS, Sahid I (2014). Allelopathic effects of the aqueous extract of the leaf and seed of *Leucaena leucocephala* on three selected weed species. AIP Conference Proceedings 1614(1):659-664. https://doi.org/10.1063/1.4895280

Islam MS, Zaman F, Iwasaki A, Suenaga K, Kato-Noguchi H (2019). Phytotoxic potential of *Chrysopogon aciculatus* (Retz.) Trin. (Poaceae). Weed Biology and Management 19:51-58. https://doi.org/10.1111/wbm.12175

Islam MS, Iwasaki A, Suenaga K, Kato-Noguchi H (2017). Evaluation of phytotoxic potential and identification of phytotoxic compounds in *Rumex maritimus*. Plant Biosystems https://doi.org/10.1080/11263504.2017.1338630

Islam MS, Kato-Noguchi H (2016). Phytotoxicity assessment of *Cyperus difformis* (L.) towards a sustainable weed management option. The Journal of Animal & Plant Sciences 26(6):1765-1771.

Ismail S, Asad M (2009). Immunomodulatory activity of *Acacia catechu*. Indian Journal of Pharmacology, 53(1):25-33.

Jabran K, Mahajan G, Sardana V, Chauhan BS (2015). Allelopathy for weed control in agricultural systems. Crop Protection 72:57-65. http://dx.doi.org/10.1016/j.cropro.2015.03.004

Kato-Noguchi H, Puklai P, Ohno O, Suenaga K (2014). Isolation and identification of plant growth inhibitor from *Tinospora tuberculata* Beemue. Acta Physiologiae Plantarum 36(7):1621-1626. https://doi.org/10.1007/s11738-014-1357-5
Kato-Noguchi H, Hamada N, Morita M, Suenaga K (2015). A novel allelopathic substance, 13-epi-orthosiphol N, in Orthosiphon stamineus. Journal of Plant Physiology 170(1):1-5. https://doi.org/10.1016/j.jplph.2012.08.007

Lakshmi T, Geetha RV, Anitha R (2011). Acacia catechu wild: A pharmacological review. International Journal of Current Research and Review 3(5):101-111.

Lakshmi T, Arvind KS (2011). Preliminary phytochemical analysis & invitro antibacterial activity of Acacia catechu wild Bark against Streptococcus mitis, Streptococcus sanguis & Lactobacillus acidophilus. International Journal of Phytomedicine 3(4):579.

Li X, Wang H, Liu C, Chen R (2010). Chemical constituents of Acacia catechu. China Journal of Chinese Materia Medica 35(11):1425-1427.

Liu J, Xie M, Li X, Jin H, Yang X, Yan Z, Qin B (2018). Main allelochemicals from the rhizosphere soil of Saussurea lappa (Decne.) Sch. Bip. and their effects on plants' antioxidase systems. Molecules 23:2506. https://doi.org/10.3390/molecules23102506

Mazumder B (2011). A study on the harmful effects of pesticides used in the cultivation of brinjal in longai river valley, Karimganj, Assam, India. Assam University Journal of Science & Technology: Biological and Environmental Sciences 7(1):84-88.

McErlich AF, Boydston RA (2013). Current state of weed management in organic and conventional cropping systems. Publications from USDA-ARS / UNL Faculty 1387. http://digitalcommons.unl.edu/usdaarsfacpub/1387

Morikawa CIO, Miyaura R, Figueroa MLT, Salgado ELR, Fujiy Y (2012). Screening of 170 Peruvian plant species for allelopathic activity by using the sandwich method. Weed Biology and Management 12:1-11. https://doi.org/10.1111/j.1445-6664.2011.00429.x

Mushtaq W, Ain Q, Siddiqui MB (2018). Screening of allelopathic activity of the leaves of Nicotiana plumbaginifolia Viv. on some selected crops in Aligarh, Uttar Pradesh, India. International Journal of Photochemistry and Photobiology 2(1):1-4. https://doi.org/10.11648/j.ijpp.20180201.11

Netsere A, Mendesil E (2012). Allelopathic effects of Parthenium hysterophorus L. aqueous extracts on soybean (Glycine max L.) and haricot bean (Phaseolus vulgaris L.) seed germination, shoot and root growth and dry matter production. Journal of Applied Botany and Food Quality 84:219-222.

Nishida N, Tamotsu S, Nagata N, Saito C, Sakai A (2005). Allelopathic effects of volatile monoterpenoids produced by Salvia leucophylla: Inhibition of cell proliferation and DNA synthesis in the root apical meristem of Brassica campestris seedlings. Journal of Chemical Ecology 31(5):1187-1203. https://doi.org/10.1007/s10886-005-4256-y

Ojija F, Arnold SEJ, Treydte AC (2019). Bio-herbicide potential of naturalised Desmodium uncinatum crude leaf extract against the invasive plant species Parthenium hysterophorus. Biological Invasions 21(12):3641-3653. https://doi.org/10.1007/s10530-019-02075-w

Piyatida P, Kimira P, Sato M, Kato-Noguchi H (2013). Isolation of β-sitosterol from Hibiscus sabdariffa L. Allelopathy Journal 32:289-300.

Popay I (2008). Weeds of agriculture - Introduction of weeds. Te Ara - the Encyclopedia of New Zealand. http://www.TeAra.govt.nz/en/weeds-of-agriculture/page-1

Pukclai P, Suenaga K, Kato-Noguchi H (2010). Allelopathic potential and chemical composition of Rhinacanthus nasutus extracts. Allelopathy Journal 26(2):207-215.

Raihan I, Miyaura R, Baki BB, Fujii Y (2010). Assessment of allelopathic potential of goniorthalam in allelochemical from Malaysian plant Goniorthalamus andersonii J. Sinclair by sandwich method. Allelopathy Journal 46:25-40.

Ray D, Sharatchandra KH, Thokchom IS (2006). Antipyretic, anti diarrhoeal, hypoglycaemic and hepatoprotective activities of ethyl acetate extract of Acacia catechu Willd. in albino rats. Indian Journal of Pharmacology 38(6):408-413.

Rob MM, Hossen K, Iwaza K, Suenaga K, Kato-Noguchi H (2020). Phytotoxic activity and identification of phytotoxic substances from Schumannianthus dichotomus. Plants 9:102. https://doi.org/10.3390/plants9010102

Rob MM, Kato-Noguchi H (2019). Study of the allelopathic activity of Garcinia pedunculata Roxb. Plant Omics Journal 12(01):31-36. https://doi.org/10.21475/poj.12.01.19.pt1773

Sbai H, Saad I, Ghezal N, Della GM, Haouala R (2016). Bioactive compounds isolated from Petroselinum crispum L. leaves using bio guided fractionation. Industrial Crops and Products 89:207-214. https://doi.org/10.1016/j.indcrop.2016.05.020

Singh B, Uniyal AK, Bhatt BP, Prasad S (2006). Effects of agroforestry tree spp. on crops. Allelopathy Journal 18(2):355-362.
Singh KN, Lal B (2006). Notes on traditional uses of khair (Acacia catechu Willd.) by inhabitants of shivalik range in Western Himalaya. Ethnobotanical Leaflets 10:109-112.

Singh KN (2000). Variation studies on katha content in relation to different forms of khair (Acacia catechu Willd.) trees. MSc Dissertation, University of Horticulture and Forestry, Solan, India.

Singh HP, Batish RD, Kohli RK (2003). Allelopathic interactions and allelochemicals: New possibilities for sustainable weed management. Critical Review Plant Sciences 22:239-311. https://doi.org/10.1080/713610858

Singh KN, Mittal RK, Barthwal KC (1976). Hypoglycaemic activity of Acacia catechu, Acacia suma, and Albizia odoratissima seed diets in normal albino rats. Indian Journal of Medical Research 64(5):754-757.

Sinha NK, Samar JS (2004). Allelopathic effects of Xanthium strumarium on Parthenium hysterophorus. Indian Journal of Plant Physiology 9:313-315.

Sodacizadeh H, Hosseini Z (2012). Allelopathy an environmentally friendly method for weed control. In: International Conference on Applied Life Sciences. https://doi.org/10.5772/intechopen.84109

Suwitchayanon P, Pukclai P, Ohno O, Suenaga K, Kato-Noguchi H (2015). Isolation and identification of an allelopathic substance from Hibiscus sabdariffa. Natural Products Communication 10:765-766.

Swain D, Pandey P, Paroha S, Singh M, Yaduraju N (2005). Effects of Physalis minima on Parthenium hysterophorus. Allelopathy Journal 15:275-283.

Tanveer A, Jabbar MK, Kahlq A, Matloob A, Abbas RN, Javid MM (2012). Allelopathic effects of aqueous and organic fractions of Euphorbia dracunculoides Lam. on germination and seedling growth of chickpea and wheat. Chilean Journal of Agricultural Research 72:495-501.

Wallis TE (2005). Textbook of pharmacognosy. 5th Edition; CBS Publishers and Distributors, New Delhi pp 461-463.

Weston LA, Duke SO (2003). Weed and crop allelopathy. Critical Reviews in Plant Sciences 22:367-389. https://doi.org/10.1080/713610861

Wu H, Pratley J, Lemerled D, Haig T (1999). Crop cultivars with allelopathic capability. Weed Research 39:171-180. https://doi.org/10.1046/j.1365-3180.1999.00136.x

Xiao ZX, Chang L, Xu ZH (2017). Vertical leaching of allelochemicals affecting their bioactivity and the microbial community of soil. Journal of Agricultural and Food Chemistry 65:7847-7853. https://doi.org/10.1021/acs.jafc.7b01551

Yan X, Lynch JP, Beebe SE (1995). Genetic variation for phosphorus efficiency of common bean in contrasting soil types. I. Vegetative response. Crop Science. 35:1086-1093. https://doi.org/10.2135/cropsic1995.00111833003500040028x

Yoshimura H, Sawai YS, Tamotsu S, Sakai A (2011). 1, 8-cineole inhibits both proliferation and elongation of BY-2 cultured tobacco cells. Journal of Chemical Ecology 37(3):320-328. https://doi.org/10.1007/s10886-011-9919-2

Zaman F, Iwasaki A, Suenaga K, Kato-Noguchi H (2020). Allelopathic potential and identification of two allelopathic substances in Eleocharis atropurpurea. Plant Biosystems https://doi.org/10.1080/11263504.2020.1762779

Zeng RS, Mallik AU, Luo S (2008). Allelopathy in sustainable agriculture and forestry. Retrieved 2019 January 22 from www.springer.com/gp/book/9780387773360