Performance of Survivin mRNA as a Biomarker for Bladder Cancer in the Prospective Study UroScreen

Georg Johnen1,*, Katarzyna Gawrych1, Heike Bontrup1, Beate Pesch1, Dirk Taeger1, Séverine Banek2, Matthias Kluckert1,3, Harald Wellhäuser3, Friedhelm Eberle4, Michael Nasterlack5, Gabriele Leng5, Arnulf Stenzl2, Thomas Brüning1, and the UroScreen Study Group1

1 Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bochum, Germany, 2 Institute of Urology, Eberhard Karls University, Tübingen, Germany, 3 German Social Accident Insurance's Institution for the Raw Materials and Chemical Industry (BG RCI), Heidelberg, Germany, 4 Occupational Medicine and Health Protection, BASF SE, Ludwigshafen, Germany, 5 Safety - Health Protection, Currenta GmbH & Co. OHG (formerly Bayer), Leverkusen, Germany

Abstract

Background: Urinary biomarkers have the potential to improve the early detection of bladder cancer. Most of the various known markers, however, have only been evaluated in studies with cross-sectional design. For proper validation a longitudinal design would be preferable. We used the prospective study UroScreen to evaluate survivin, a potential biomarker that has multiple functions in carcinogenesis.

Methods/Results: Survivin was analyzed in 5,716 urine samples from 1,540 chemical workers previously exposed to aromatic amines. The workers participated in a surveillance program with yearly examinations between 2003 and 2010. RNA was extracted from urinary cells and survivin was determined by Real-Time PCR. During the study, 19 bladder tumors were detected. Multivariate generalized estimation equation (GEE) models showed that β-actin, representing RNA yield and quality, had the strongest influence on survivin positivity. Inflammation, hematuria and smoking did not confound the results. Survivin had a sensitivity of 21.1% for all and 36.4% for high-grade tumors. Specificity was 97.5%, the positive predictive value (PPV) 9.5%, and the negative predictive value (NPV) 99.0%.

Conclusions: In this prospective and so far largest study on survivin, the marker showed a good NPV and specificity but a low PPV and sensitivity. This was partly due to the low number of cases, which limits the validity of the results. Compliance, urine quality, problems with the assay, and mRNA stability influenced the performance of survivin. However, most issues could be addressed with a more reliable assay in the future. One important finding is that survivin was not influenced by confounders like inflammation and exhibited a relatively low number of false-positives. Therefore, despite the low sensitivity, survivin may still be considered as a component of a multimarker panel.

Introduction

Bladder cancer is one of the leading cancers in the U.S. and in Europe. In Germany, the incidence is about 29,000 cases per year [1]. Because of the high rate of tumor recurrence, close monitoring and repeated use of therapies are necessary. As a consequence, bladder cancer is the most costly cancer disease [2]. Tumors of the urinary bladder can be caused by occupational exposure to aromatic amines but tobacco smoking is considered to be the strongest contributor to the development of these malignancies [3].

The availability of effective treatments, the access to the target organ via urine, and the relatively good overall survival makes bladder cancer a candidate for screening programs in high-risk populations [4]. Unfortunately, cystoscopy, which is the current gold standard for bladder cancer detection, is an invasive and rather painful method. In some countries high costs may also play an important role [4]. These facts preclude cystoscopy from being used in screening cohorts. In contrast, urinary tumor markers are non-invasive tools to detect bladder cancer. Typical markers are proteins, RNA, DNA, metabolites, or cellular features, which have the advantage that they can be determined in urine samples [5,6].
Of the numerous known markers, however, only few have been tested in prospective studies or trials and were successful to be approved by the FDA. Consequently, more longitudinal studies are necessary to prove the value of these markers for cancer screening and clinical decision-making [7].

Survivin is a relatively small protein of 16.4 kDa encoded by the gene \textit{BIRC5} [8,9]. Its three-dimensional structure was resolved and suggested an adaptor or docking function [10,11]. Binding to a number of other macromolecules has in fact been demonstrated and survivin emerged as a central node in multiple cellular networks [9,12–14]. While survivin belongs to the inhibitor of apoptosis (IAP) gene family its functions are not restricted to a regulatory role in apoptosis. Other functions are the control of cell division and chromosome segregation, promotion of proliferation, stress response and angiogenesis, and it plays a role in metastasis [9,15–19]. Dysregulation of survivin would therefore affect four of the six so-called ‘hallmarks of cancer’ in the model of tumorigenesis described by Hanahan and Weinberg, suggesting a central function of survivin in carcinogenesis and tumor progression [20].

The multiple mechanistic roles of survivin are also reflected in its widespread occurrence in all stages of tumor development, though with preference to later stages in several cancers [21–25]. Survivin is overexpressed in most human cancers but rarely detectable in healthy adult tissues [8,26]. It has, therefore, been proposed as a potential tumor marker and target for therapy [8,27]. Due to the fact that non-invasive detection in urine samples is possible, survivin could be used specifically for screening of urogenital malignancies. Several studies, mostly of cross-sectional design and with a relatively limited number of cases, have demonstrated that survivin is a promising candidate for further validation in longitudinal studies [28–34]. Shariat \textit{et al.} performed a larger prospective study on recurrent bladder cancer that was based on immunohistochemical staining of tumor samples. Herein, survivin improved the prediction of recurrence and survival in a subgroup of patients [21].

In the present study, we determined survivin in the prospective screening cohort UroScreen [35–37] using an mRNA-based assay in order to validate its function as a tumor marker for early detection of bladder cancer.

Results

The participants of the UroScreen cohort were active or retired chemical workers with former exposure to aromatic amines as described previously [35–37]. They were examined between September 2003 and June 2010. Urine samples were collected for urine status, cytology, the determination of NMP22H, chromosomal aberrations (UroVysionTM), and – if sufficient material was available – for survivin [36,37]. For survivin measurements 5,716 urine samples could be obtained from 1,540 participants (Tables 1 and 2). Median age of the cohort was 62 years (range 27–90 years). Of the 1,540 persons, 18 developed tumors, including one person who developed two tumors during the study resulting in 19 tumors in total for the investigation of survivin. For another two cases no suitable urine sample was available for survivin determination. Of the 19 tumors, three were papillomas, eleven high-grade, and five low-grade tumors (Table 3). Cytology detected eight tumors. The survivin assay detected four tumors, all of which were high-grade.

Table 1. Characteristics of male participants of UroScreen with former occupational exposure to aromatic amines.

Characteristics	Category	All	Cases	Non-cases
Subjects		1540	18* (1.2\%)	1522 (98.8\%)
Age in 2010 (years)	Median (range)	62 (27–90)	68 (43–80)	62 (27–90)
Smoking status at baseline	Never	424	14	420
	Ever	1116	4	1102
Former bladder cancer at baseline		18	2	16

*One person with two tumors.

doi:10.1371/journal.pone.0035363.t001

Table 2. Characteristics of urine samples of the UroScreen study.

Characteristics	Category	All	Cases	Non-cases	
Number of urine samples		5716 (100\%)	75 (1.3\%)	5641 (98.7\%)	
Creatinine*	N	4806	63	4552	191
	Median	1.15	1.01	1.15	1.19
	(Inter-quartile range)	(0.68–1.64)	(0.57–1.53)	(0.68–1.64)	(0.76–1.56)
b-actin	Median	16600	24600	15900	73600
	(Inter-quartile range)	(5770–48950)	(9850–77600)	(5540–45700)	(20880–221000)

*Creatinine was only available for the 4806 samples of subcohort A.

doi:10.1371/journal.pone.0035363.t002
Table 3. Characteristics and test results of cases.

Case	Histopathological finding	Months before diagnosis	Creatinine (g/l)	Leukocytes	Albumin (mg/l)	β-actin (copies)	Survivin (copies)	Assay	Test result NMP22	Test result cytology
2	Low-grade	10	0.23	Traces	Missing	872000	82.8	Negative	Negative	Negative
3	Low-grade	2	1.59	Traces	Missing	1020	48	Negative	Positive	Negative
4a	Papilloma	10	0.35	Traces	Missing	73500	51.5	Negative	Negative	Negative
4b	High-grade	24	0.87	Traces	1556	363000	83000	Positive	Positive	Negative
5	High-grade	26	1.01	Traces	Missing	125000	61.9	Positive	Negative	Negative
6	High-grade	1	0.24	None	2	80800	88200	Invitex/FDI	Positive	Negative
7	High-grade	14	2.92	Traces	19	136000	5870	Invitex/FDI	Negative	Negative
8	High-grade	0/14	1.53	Medium	82	2260000	1300	Qiagen/FDI	Negative	Positive
9	High-grade	2	0.32	Medium	63	295000	52400	Invitex/FDI	Positive	Positive
10	High-grade	18	2.93	Traces	22	2370	3820	Invitex/FDI	Negative	Negative
11	Low-grade	2	0.44	None	22	2040	1	Invitex/FDI	Negative	Positive
13	High-grade	1	Missing	Missing	Missing	74300	4580	Invitex/FDI	Negative	Negative
14	Low-grade	3	0.74	Traces	35	25200	85900	Invitex/IPA	Negative	Positive
15	High-grade	2	0.72	Traces	13	11400	42.3	Invitex/FDI	Negative	Negative
16	Papilloma	2	Missing	Missing	Missing	11300	19.5	Invitex/IPA	Negative	Positive
17	Papilloma	2	0.77	Traces	2	81200	12000	Invitex/IPA	Negative	Positive
18	Low-grade	2	1.06	Missing	22.2	45100	50600	Invitex/IPA	Negative	Positive
19	High-grade	3	Missing	Missing	Missing	280000	229000	Invitex/IPA	Positive	Positive
20	High-grade	6	0.44	Missing	8.7	9930	10	Invitex/IPA	Negative	Negative

Results are from the last screening round before diagnosis.

1Cases number 1 and 12 are omitted because no samples were available for survivin determination.

2Traces = 1–5 leukocytes, medium = 5–250 leukocytes, abundant >250 leukocytes (dipstick or microscopic sediment analysis).

3Cut-off: 10,000 (Qiagen/FDI), 40,000 (Invitex/FDI), 100,000 (Invitex/IPA).

doi:10.1371/journal.pone.0035363.t003
only. It did not detect any of the five low-grade tumors. The tumors but without papillomas, and 36.4% for high-grade tumors reached a sensitivity of 21.1% for all tumor entities, 25.0% for all tumors. Calculations were based on the test results obtained in urine for survivin determination.

Survivin, cytology, NMP22, and UroVysion detected 13 of the tumors. For two additional tumors (number 1 and 12) no sample was available for survivin determination.

Figure 1. Venn diagram of all cases detected in UroScreen and correlation with marker results. A total of 19 tumors were detected in 18 cases. Survivin, cytology, NMP22, and UroVysion detected 13 of the tumors. *For two additional tumors (number 1 and 12) no sample was available for survivin determination.

doi:10.1371/journal.pone.0035363.g001

those were also detected by cytology and other markers; one was detected by survivin and NMP22 only (Figure 1).

The tumor marker survivin was determined by an mRNA-based assay that was not commercially available. During the seven years of this longitudinal study, unforeseen events regarding the reliability and availability of assay components (RNA isolation kits from Qiagen and Invitrek, survivin reagents from FDI and IPA) prompted us to modify the assay design twice, leading to three different assay variants (Qiagen/FDI, Invitrek/FDI, Invitrek/IPA). We standardized the survivin copy numbers and could demonstrate by using a multivariate generalized estimation equation (GEE) model that the assay variants did not confound the test results when implementing the standardized survivin copy numbers (Table 4). All other results were, therefore, derived from the standardized values.

Potential predictors of a positive survivin result were explored as shown in Table 4. Indicators of infection and inflammation (leukocytes), hematuria, or factors like age, smoking, or previous bladder cancer did not show a significant effect on survivin levels. The ‘concentration’ (specific density) of the urine sample, reflected in the urinary creatinine concentration, tended towards an inverse correlation with survivin, but this influence was not significant. As expected, bladder cancer observed during UroScreen was a predictor of positive survivin tests (OR 2.54, 95% CI 1.02–6.33). ß-actin (OR 3.11, 95% CI 2.51–3.85) was an effect modifier, indicating a strong influence of the amount and quality of the recovered mRNA on the PCR performance. A tenfold increase in the copy numbers of ß-actin was associated with a threefold higher probability of a positive survivin test. We tested whether ß-actin was correlated with urine density by calculating the Spearman’s rank correlation coefficient. There was a significant but only weak association of ß-actin copy numbers with urinary creatinine as a proxy of urine density (r, 0.17, 95% CI 0.12–0.23).

The cancer-predictive values for survivin are listed in Table 5. Calculations were based on the test results obtained in urine samples from the last screening round before diagnosis. Survivin reached a sensitivity of 21.1% for all tumor entities, 25.0% for all tumors but without papillomas, and 36.4% for high-grade tumors only. It did not detect any of the five low-grade tumors. The specificity was 97.5% in all (sub)groups (all tumors, tumors without papillomas, high-grade, and low-grade tumors). The positive predictive value (PPV) reached 9.5% in all groups, whereas the negative predictive value (NPV) ranged between 99.0 and 99.7%.

Receiver operating characteristic (ROC) analyses were performed with standardized survivin levels from the last screening round before diagnosis and adjusted for log10 (ß-actin) and age in 10-year classes. They resulted in area under curve (AUC) values of 0.74 (95% CI 0.61–0.86) for all tumor entities (Figure 2), 0.75 (95% CI 0.60–0.89) for all tumors without papillomas, 0.80 (95% CI 0.66–0.94) for high-grade tumors, and 0.66 (95% CI 0.36–0.96) for low-grade tumors only. To judge the performance of the assay variants, we calculated adjusted ROC curves for each variant. The resulting AUCs were 0.70 (95% CI 0.54–1.00) for Qiagen/FDI, 0.80 (95% CI 0.54–1.00) for Invitrek/FDI, and 0.79 (95% CI 0.67–0.91) for the assay variant Invitrek/IPA.

Possible reasons for negative test results in cases are compiled in Table 6. The last samples of cases 5 and 10 were obtained 26 and 18 months before tumor diagnosis, respectively. Case 8 showed a positive test result 14 months before diagnosis but the sample shortly before diagnosis was negative. All other false-negative results were in cases with papillomas and low-grade tumors; 31% were associated with a low density of the collected urine indicated by low creatinine (<0.50 g/l), and another 20% were likewise associated with low RNA integrity as indicated by ß-actin levels <2,500 copies. In comparison, 15% and 11% of all true-negative samples in the last screening round were associated with low creatinine and low ß-actin, respectively.

Discussion

While numerous potential markers have been described for the early detection of bladder cancer, none so far have been implemented in clinical guidelines for screening or clinical follow-up on recurrence. Ideally, marker assays suitable for clinical practice should be robust and cheap as well as fast and in an easy-to-use format, e.g., a point-of-care test [38]. However, before the assay format can be optimized, the performance of the marker itself has to be evaluated. For molecular markers like survivin the
development of stable and simple assays can be promising if their performance with currently available assays in bladder cancer screening has been demonstrated to be comparable with or better than approved tests. In UroScreen, we determined survivin with a relatively complex assay wherein positive test results were not followed-up with cystoscopy. Overall, survivin was detected in particular in high-grade bladder cancer and its performance was comparable to the other markers tested. However, mRNA integrity was an important modifier of positive test results, and therefore a more robust test should be developed.

To prove the value of new markers for clinical decision-making, their performance has to be assessed in longitudinal studies and clinical trials [7]. UroScreen was a prospective cohort study with more than 1,500 chemical workers aimed to assess NMP22, UroVysion, and survivin as tumor markers [36,37]. It was the first prospective study that investigated the performance of survivin in the early detection of bladder cancer. For 19 of the bladder tumors that were detected during the conduct of the study sufficient sample material was left for survivin determination. The low incidence of bladder cancer in UroScreen as well as in the general population is a critical issue for bladder cancer screening [4]. UroScreen was established as an extension of an already established surveillance program in chemical workers [35]. The initial power calculations were based on former data showing at

Variable at sampling	Category	N (Npos)	OR	95% CI
Leukocytes	None	1369 (50)	1	
	Traces	2884 (110)	0.82	0.57–1.17
	Non-abundant and abundant	293 (30)	0.80	0.47–1.39
Hematuria	None or traces	3584 (140)	1	
	Microhematuria and gross hematuria	962 (50)	1.08	0.76–1.53
Creatinine	<0.5 g/l	733 (30)	1.29	0.84–1.99
	0.5–2.5 g/l	3567 (151)	1	
	>2.5 g/l	246 (9)	0.76	0.39–1.50
Log10 (β-actin)		4546 (190)	3.11	2.51–3.85
Age in 10 years		4546 (190)	1.09	0.95–1.25
Smoking status	Never	1302 (52)	1	
	Ever	3244 (138)	11.04	0.75–1.45
Prevalent bladder cancer	None	4492 (189)	1	
	Yes	54 (1)	0.21	0.03–1.46
Bladder cancer*	None	4506 (186)	1	
	Yes	40 (4)	2.54	1.02–6.33
Assay**	Qiagen/FDI	876 (28)	1	
	Invitek/FDI	1947 (87)	1.17	0.75–1.84
	Invitek/IPA	1723 (75)	1.01	0.64–1.58

This analysis was performed with samples of subcohort A only because not all parameters were available for the full data set. Npos: number of samples positive for survivin, OR: odds ratio, CI: confidence interval.

*Bladder cancer detected during UroScreen.
**After standardization.

doi:10.1371/journal.pone.0035363.t004

True positive	4	4	4	0
False negative	15	12	7	5
True negative	1484	1484	1484	1484
False positive	38	38	38	38
Sensitivity	21.05	25.00	36.36	-
Specificity	97.50	97.50	97.50	97.50
Positive predictive value	9.52	9.52	9.52	-
Negative predictive value	99.00	99.20	99.53	99.66

Table 5. Cancer predictive values of the last survivin test before diagnosis of bladder cancer.

doi:10.1371/journal.pone.0035363.t005
that time a higher tumor incidence in the study population [39].
Currently, the incidence in this original high-risk cohort has
reached a level closer to that of the general population due to the
ban of carcinogenic aromatic amines from use in the chemical
industry decades ago. It is further likely that technological progress
and measures to improve work safety contributed to lowering the
bladder cancer incidence in this cohort of workers from two large
chemical companies. In addition, the median age of the
UroScreen cohort in 2010 was 62 years, whereas the median age for bladder cancer for men in Germany was 72 years [1].

It has been shown before that survivin expression is higher and
more frequent in high-grade tumors or later stages of cancer
development [21,23–25]. In accordance with this observation,
survivin did not detect cases with papilloma or low-grade bladder
cancer in UroScreen, whereas the sensitivity was better for high-
grade tumors. If this could be confirmed, survivin might be a
useful adjunct for the follow-up of patients with faster growing
tumors where detection should be as early as possible. Here,
a non-invasive marker panel would be a promising approach to
detect recurrence sooner and reduce the number of cystoscopies
[40]. Nevertheless, individual molecular markers are currently
lacking sufficient sensitivity to replace cystoscopy [39].

The low number of incident cases limited the power of the study
to assess the performance of the tumor markers and contributed to
their low PPVs. Previously published studies showed specificities
between 88% and 100% and sensitivities between 53% and 100%
[28–30,32–34]. While our results showed a similar specificity
(98%) the sensitivity (21%) was markedly lower in this cohort
study. In part, this may be due to the different assays applied. The
main reason for the differences most likely is, however, the cross-
sectional study design of the other studies [41]. Major shortcom-
ings are the lack of consideration of the dimension time in order to
calculate predictive values, and a potential selection bias because
cases and controls have been recruited from different populations.
The longitudinal and thus prospective design of the UroScreen
study avoids this bias. It also represents a setting that is closer to
clinical practice.

We observed various reasons that might be responsible for the
fact that cases were not detected in our cohort study. A lack of
compliance in a voluntary screening study is a typical problem that
influences the early detection of cases. For most of the participants
of the study, samples were not available for each consecutive year.
In several cases, the difference between sample acquisition and
tumor diagnosis was more than twelve months, in one case even 26
months. It can be expected that an increase of marker levels is less

Table 6. Selected sample characteristics of false-negative cases.

Case number	Months before diagnosis	Histopathology	Quality of urine	Quality of RNA
2		Low-grade	Creatinine low	
3		Low-grade	Creatinine low	β-actin low
4a		Papilloma	Creatinine low	
5	26			
7				
8	0/14²			β-actin low
10	18	Low-grade	Creatinine low	β-actin low
11		Low-grade	Creatinine low	β-actin low
13		Low-grade		
14		Papilloma		
15		Papilloma		
16	18	Low-grade	Creatinine low	β-actin low

¹For cases 1 and 12 no samples were available for survivin determination.
²Negative at last (0 months), positive at previous screen (14 months).
doi:10.1371/journal.pone.0035363.g002

Figure 2. ROC curve for log₁₀ (survivin) in the last screening
round before diagnosis, adjusted for log₁₀ (β-actin) and age in
10-year classes. Analysis was performed for all tumors entities. The
resulting area under curve (AUC) was 0.74 with a 95% CI (confidence
interval) of 0.61–0.86.
doi:10.1371/journal.pone.0035363.g002

Survivin for Early Detection of Bladder Cancer
likely with an increasing time interval between sample collection and diagnosis. Another problem was that participants frequently voided urine shortly before they arrived for an appointment and therefore the urine collected on-site was insufficient in quality and/or quantity for some of the marker tests. This kind of urine was typically associated with low creatinine, a low number of sedimented cells, and low β-actin.

In terms of confounding, survivin was less influenced than NMP22 and UroVysion by urine status [36,37]. According to the GEE model, creatinine and leukocytes did not influence the test results for survivin. As bladder infections are frequently observed in the elderly, it is important that inflammatory processes do not influence a tumor test. This is an advantage the survivin assay has in particular over NMP22, which is known to be frequently false positive when participants suffer from infections. It was reflected in the lower number of false-positive results of the survivin assay compared to the NMP22 assay [37]. Despite the limited sensitivity the relatively high specificity might allow survivin to be added to a marker panel. It is important to note that positive survivin tests did not result in a recommendation for cystoscopy. As a result, there is a possibility that a few tumors might have remained undetected and that we underestimated the performance of survivin. This impairs the comparison with the performance of the FDA-approved tests, i.e. NMP22 and UroVysion. The survivin assay was positive for one case (4b) that was not detected by cytology or UroVysion. Survivin was also positive for case number 8, which was not detected by the cell-based assays 14 months before diagnosis. Both cases were additionally tested positively by NMP22. However, more cases would be required to prove the point that expression-based markers like survivin might complement the cell-based assays UroVysion and cytology.

A specific issue with the quantification of survivin was the difficulty to maintain the quality of a still experimental assay over a period of several years. This can be a design-specific problem of prospective cohort studies in comparison to cross-sectional studies. Problems due to changes of the original RNA isolation kit and the discontinuation of the production of assay reagents by the original supplier resulted in three assay variants that led to different cut-off values for survivin positivity. The discontinuities prevented the determination of an optimized overall cut-off for the complete data set. We normalized the copy numbers and implemented the assay into the GEE model as potential confounder in order to test if residual confounding could be found with the standardized survivin data. The assay did not influence the test results but β-actin turned out to be a significant modifier of the test results. It appears possible that the specificity of survivin was reduced if more of the urine samples had been higher concentrated. However, the concentration of β-actin was not simply a function of urine density because the correlation with creatinine was weak, indicating that other factors like mRNA integrity may have contributed to the performance of β-actin in the PCR reactions.

Besides these unforeseen methodological factors that influenced the assay, the widely used mRNA format to detect survivin also contributed to the overall performance of the assay. The mRNA integrity assessed by copies of β-actin was evaluated as the strongest influence on the test results. The rationale behind the use of an mRNA-based assay for survivin was to be able to detect even weak signals of survivin that are present in the small numbers of exfoliated urothelial cells. PCR and RT-PCR are elegant and well-established methods to amplify and quantify very small amounts of nucleic acids. Nonetheless, the low stability of mRNA in general, even with the addition of RNase inhibitors, limits the applicability of such assays for samples collected outside the controlled conditions of a laboratory setting. There are better RNase inhibitors available nowadays that would even dispense with the necessity of sample freezing [42]. But the addition of these preservatives to the sample has to be immediate. A possible way to avoid delays would be a special collection tube, similar to those used for blood collection, which already contains the preservative. Another problem inherent to the survivin assay we used was the nonlinearity caused by the two PCR-based amplification steps that limited the accuracy of quantification and strategies for normalization. Even applying β-actin, which served as an internal control, for correction was not always sufficient to compensate for the large variations in mRNA content in the samples, probably because of the additional preamplification step of the survivin assay. For that reason, for clinical settings under real life conditions, more stable molecules like proteins might be better targets. While a PCR-like amplification of proteins is not possible, ELISA-based assays can achieve very good sensitivities and are now available for survivin in better quality than at the onset of the UroScreen study.

To date, UroScreen is the largest prospective study to evaluate survivin for the early detection of bladder cancer in a cohort of asymptomatic participants. Despite the low number of incident cases, valuable information has been gained on the performance of the mRNA-based assay of survivin, technical challenges, influence of confounders, and cancer predictive values. A more robust assay would greatly benefit the marker and its use in clinical practice. Survivin may have the potential to improve detection, especially of high-grade tumors; its sensitivity, however, rests on only four tumors (of 19) that were detected with three different assay variants. The high specificity implies that survivin might be considered to serve as part of a multimarker panel to complement other markers but further validation in a prospective study with more cases is warranted. Testing survivin within a cohort of patients with a high risk of recurrent tumors would be a promising approach.

Materials and Methods

Study population and diagnosis of tumors

Participants were recruited from the ODIN (Organisationsdienst für nachgehende Untersuchungen) cohort within the frame of a surveillance program of the statutory accident insurance of the chemical industry that offers yearly examinations of active and retired workers who have been exposed to aromatic amines. From September 2003 to June 2010 1,609 male workers at two large chemical sites in Germany (subcohort A: BASF, Ludwigshafen; subcohort B: Bayer, Leverkusen) participated in the UroScreen study. 1,540 of those provided sufficient sample material for survivin measurements. A questionnaire was applied to document smoking habits and relevant diseases. All participants gave written informed consent. The study was approved by the ethics committee of the University of Tübingen (No. 1/2003V).

As the other tumor tests (cytology, NMP22®, UroVysion™) applied in UroScreen were approved in contrast to survivin, it had lower priority when sample material was limited. Therefore, only 5716 of the 7091 urine samples were available for survivin measurements. Characteristics of the cohort are summarized in Tables 1–2 and are described in more detail elsewhere (Pesch et al., submitted and [37]). Positive test results for cytology, NMP22®, or UroVysion™ resulted in a recommendation for a cystoscopic examination, while positive results for the non-approved survivin assay did not.

As of November 2011, 21 tumors in 20 persons were detected by cystoscopy and confirmed by reference pathology. For 18 of the cases (19 tumors) urine samples were available for survivin determination. One case had two tumors (4a and 4b in Table 3).
Histopathological findings of all 21 tumors and parameters of the corresponding urine samples (last screening round before diagnosis of a tumor) are depicted in Table 3 and in [37].

Urine collection
Urine samples were collected on site at the chemical plants in Ludwigshafen and Leverkusen. For survivin determination, samples of 40–50 ml spontaneously voided urine were centrifuged in a swinging bucket rotor at 500×g for 10 minutes at 10°C. Supernatant was carefully removed and cell pellets were mixed with 500 μl Lysis Solution R (Invitek, Berlin, Germany), which contains RNase inhibitors. Finally, the cell sample was frozen at −20°C and sent to the laboratory in Bochum where they were stored until RNA isolation. Handling of samples for determination of urine status and other markers is described below.

Urine status and assessment of hematuria
In all samples the urine status was determined in fresh urine (before centrifugation) as described previously [36]. Urinary creatinine was determined with the CREA plus® test (Roche Diagnostics, Mannheim, Germany). Erythrocytes, hemoglobin (Hb), leukocytes, albumin and other parameters were determined with Combhar 10 test® strips (Roche). In addition, erythrocytes and leukocytes were also determined semi-quantitatively in urine sediment. Creatinine measurements were available for subcohort A only (4806 samples). For 4546 samples of these, complete information on all parameters (erythrocytes, leucocytes, etc.) was available.

NMP22®, UroVysion™, and cytology
Nuclear matrix protein 22 (NMP22®) was determined quantitatively with the NMP22® ELISA kit (Matritech/Alero GmbH, Köln, Germany) according to the manufacturer’s protocol. The cut-off for positive results was set to 10 units/ml. Chromosomal instability in sedimented urothelial cells was assessed using the UroVysion™ Bladder Cancer Kit (Abbott Laboratories, Abbott Park, IL). The test was considered positive if at least four nuclei had three signals of two or three chromosomes (3, 7, and 17) or at least 12 nuclei showed a signal for the 9p21 locus. Urinary cytology was performed as described previously [36,43].

RNA isolation and survivin assays
Quantification of survivin was based on Real-Time PCR with mRNA isolated from exfoliated urothelial cells in urine. For the determination of survivin three variants of the mRNA-based assay were employed. The variations were a consequence of changes by the manufacturers of the RNA isolation kit and the RT-PCR reagents, respectively. Initially, the protocol and reagents for the survivin assay were provided by Fujirebio Diagnostics, Inc. (FDI, Malvern, PA). The FDI protocol recommended the RNeasy Mini Kit (Qiagen, Hilden, Germany) for RNA isolation. This kit, as in variant 2. The assay (IPA assay) to quantify survivin and β-actin was very similar to the original FDI assay used in variant 1 and 2, except for small differences in some of the primers and probes [33]. Details of the assay are described below. The cut-off for survivin-positive samples was raised to 100,000 copies of survivin mRNA.

Variant 1 (Qiagen kit/FDI assay)
This variant was used from September 2003 until October 2005. RNA isolation was performed with RNeasy Mini Kits (Qiagen) according to the manufacturer’s protocol. Reverse transcription of mRNA, preamplification, and quantitative Real-Time PCR were done as described by Kenney et al., except that the reaction volumes of each step were cut in half to 25 μl [33]. Primers, reagents, and positive controls were provided by FDI at no charge. In contrast to the published assay, instead of an ABI PRISM Sequence Detection System a LightCycler II system (Roche) was used. To be able to use the capillaries of the LightCycler system it was necessary to add bovine serum albumin (BSA, AppliChem, Darmstadt, Germany) to the TaqMan reaction, with a final concentration of 0.16 μg/ml. The cut-off for survivin-positive samples was set to 10,000 copies of survivin mRNA as recommended by FDI. Parallel quantification of β-actin, without the preamplification step, served as a quality control. Samples with less than 1,000 copies of β-actin were excluded.

Variant 2 (Invitek kit/FDI assay)
This variant was employed from October 2005 until March 2008 and was identical to variant 1, except for the RNA isolation step. Here, instead of the RNeasy kit, an Invitrap® Spin Cell RNA Mini Kit (Invitek) was used according to the manufacturer’s protocol. The cut-off for survivin-positive samples was set to 40,000 copies of survivin mRNA.

Variant 3 (Invitek kit/IPA assay)
This variant was used from March 2008 until the end of the study in 2010. RNA was isolated using the Invitrap® Spin Cell RNA Mini Kit (Invitek), as in variant 2. The assay (IPA assay) to quantify survivin and β-actin was very similar to the original FDI assay used in variant 1 and 2, except for small differences in some of the primers and probes [33]. Details of the assay are described below. The cut-off for survivin-positive samples was raised to 100,000 copies of survivin mRNA.

Reverse transcription
In all assay variants cDNA was synthesized using a TaqMan® Reverse Transcription Reagent kit (Applied Biosystems, Foster City, CA). The 25 μl reaction volume contained 2.5 μl 10× RT buffer, 5 μl MgCl₂, 1.75 μl dNTP mixture, 0.75 μl random hexamers, 1 μl oligo (dT)₁₆, 1 μl RNase inhibitor, 1 μl reverse transcriptase, and 12 μl RNA sample (or control). The reaction was incubated at 42°C for 80 min and then heat inactivated at 95°C for 5 min.

Preamplification
The low abundance of survivin in urine samples required a preamplification step. This step was not necessary for β-actin. The following primers were used to amplify the survivin cDNA: 5'-ATG GGT GCC CCG AGG TTG CGG-3' (forward) and 5'-GGT CCG GCC AGA GGC CTC AA-3' (reverse). The primers were synthesized by Eurofins MWG Operon (Ebersberg, Germany) and provided in a concentration of 3 pmol/μl (HPSF-purified). The 20 μl PCR reaction contained 10 μl 2× TaqMan® Universal PCR Master Mix with UNG (uracil-N-glycosylase) (Applied Biosystems), 1 μl forward primer, 1 μl reverse primer, 4 μl DEPC-treated H₂O
Survivin for Early Detection of Bladder Cancer

Real-Time PCR
The preamplified cDNA of survivin and the cDNA of β-actin were quantified by Real-Time PCR. Both LightCycler-based measurements were carried out in parallel with an identical PCR protocol: 1 cycle of 30°C for 2 min and 95°C for 10 min, 20 cycles 95°C for 15 sec and 60°C for 1 min. The primers and probes were synthesized by Applied Biosystems with the following sequences: 5'-GAT GAC GAC CCC ATA GAG GAA C-3' (survivin forward, 10 pmol/µl), 5'-GGG TTA ATT CTG CAA ACT GCT TCT-3' (survivin reverse, 10 pmol/µl), VIC-5'- TCC GGT TGC GCT TTC CTT TCT GTC-3' (survivin probe, 12 pmol/µl) and 5'-CCT GCC ACC GAG CAC AA-3' (β-actin forward, 10 pmol/µl), 5'-GCC GAT CCA CAC GGA GTA CTG-3' (β-actin reverse, 10 pmol/µl), FAM-5'-AAG ATC AAG ATC ATT GCT CTT CCT GAG CG-3'-TAMRA (β-actin probe, 12 pmol/µl).

For the survivin quantification the 20 µl RT-PCR reaction contained 10 µl 2× TaqMan® Universal PCR Master Mix without UNG (Applied Biosystems), 2 µl survivin forward primer, 2 µl survivin reverse primer, 1 µl survivin probe, 1 µl H2O (Roth), 0.4 µl BSA (10 µg/µl, Roche), and 3.6 µl preamplified cDNA of survivin (or positive control, negative control, or standards of survivin). For β-actin quantification the 20 µl reaction contained 10 µl 2× TaqMan® Universal PCR Master Mix with UNG (Applied Biosystems), 2 µl β-actin forward primer, 2 µl β-actin reverse primer, 1 µl β-actin probe, 1 µl H2O (Roth), 0.4 µl BSA (10 µg/µl, Roche), and 3.6 µl cDNA of β-actin (or positive control, negative control, or standards of β-actin).

Recombinant survivin and β-actin cDNA were each subcloned into a pDrive vector (Qiagen) and served as positive controls: A dilution of about 10,000 copies of survivin mRNA (as well as a separate reaction with about 10,000 copies of β-actin mRNA) was run in parallel with each reverse transcription and the following steps.

For the standard curve, standard A contained 100, standard B 1,000, standard C 10,000, standard D 100,000, and standard E 1,000,000 copies of survivin/β-actin cDNA (each). DEPC-treated H2O (Roth) served as negative control.

Statistical analysis
Survivin was quantified in three assay variants. The logarithm of survivin was standardized by subtracting the assay-specific mean and dividing by the assay-specific standard deviation. For the evaluation of the performance of survivin the last urine sample during follow-up and for cases the last sample before diagnosis was used. To evaluate potential predictors for a positive test result multivariate generalized estimation equation (GEE) models were applied. In these models the following parameters were included: age in 10-year classes, smoking status (never vs. ever), prevalent bladder cancer and bladder cancer observed during UroScreen, diabetes mellitus, and urine status (creatinine, hematuria, and leukocytes). Detailed data on urine status was available for a subcohort. Hematuria and leukocytes were semi-quantitatively assessed according to [36]. ROC curves and AUC values were determined for the full dataset and different subsets. Cancer predictive values were calculated for all tumors and subtypes with 95% confidence intervals (CI). All calculations were performed with SAS/STAT and SAS/IML software, version 9.2 (SAS Institute Inc., Cary, NC).

Acknowledgments
UroScreen Study Group
Séverine Banek2, Christian Bayer3, Gundí Beger2, Kay-Gerald Bierfreund2, Nadine Bonberg1, Heike Bontrup1, Thomas Bruning1, Judith Delbanco1, Reinhard Detzner3, Friedhelm Eberle4, Gerhard Feil7, Katarzyna Gawrych1, Margarete Geiger2, Valentina Gerber6, Evelyn Heine2, Jörg Hennenlotter5, Andrea Holmner4, Georg Johnen6, Matthias Kluckert3, Ursula Kuehs2, Gabriele Leng5, Thomas Mayer4, Michael Nasterlack5, Beate Pesch1, Bernd Scherhammer1, Christian Schwentner2, Erika Senger4, Karl-Dietrich Sievert5, Arnulf Stenzl2, Dirk Taeger1, Harald Wellhaüßer3, Christian Wiens9
1 Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bochum, Germany,
2 Institute of Urology, Eberhard Karls University, Tübingen, Germany,
3 German Social Accident Insurance’s Institution for the Raw Materials and Chemical Industry (BG RCI), Heidelberg, Germany,
4 Occupational Medicine and Health Protection, BASF SE, Ludwigshafen, Germany,
5 Safety - Health Protection, Currenta GmbH & Co. OHG (formerly Bayer), Leverkusen, Germany
(*corresponding author of the UroScreen Study Group)

Author Contributions
Conceived and designed the experiments: GJ BP DT MK HW MN GL AS TB. Performed the experiments: KG HB SB FE. Analyzed the data: GJ KG HB BP DT. Wrote the paper: GJ KG HB BP DT MN TB.

References
1. Robert Koch-Institut. Gesellschaft der epidemiologischen Krebsregister in Deutschland e.V. (2010) Krebs in Deutschland 2003/2006. Häufigkeiten und Trends. Berlin: RKI. 120 p.
2. Lotan Y, Kamat AM, Porter MP, Robinson VL, Shore N, et al. (2009) Key concerns about the current state of bladder cancer: a position paper from the Bladder Cancer Think Tank, the Bladder Cancer Advocacy Network, and the Society of Urologic Oncology. Cancer 115: 4096–4103.
3. Freedman ND, Silverman DT, Hollenbeck AR, Schatzkin A, Abnet CC (2011) Association between smoking and risk of bladder cancer among men and women. JAMA 306: 737–745.
4. Lotan Y, Svatok RS, Sagalowsky AI (2006) Should we screen for bladder cancer in a high-risk population?: A cost per life-year saved analysis. Cancer 107: 982–990.
5. Habuchi T, Marberger M, Droller MJ, Hemstreet GP, 3rd, Grossman HB, et al. (2005) Prognostic markers for bladder cancer: International Consensus Panel on bladder tumor markers. Urology 66: 64–74.
6. Lokeshwar VB, Habuchi T, Grossman HB, Murphy WM, Haustmann SH, et al. (2005) Bladder tumor markers beyond cytology: International Consensus Panel on bladder tumor markers. Urology 66: 35–63.
7. Schmitz-Dräger BJ, Shariat SF, Droller M, Lokeshwar VB, Lotan Y, et al. (2012) Molecular markers for bladder cancer screening, early diagnosis, and surveillance. In: Kholuy S, ed. IUCD Bladder Tumors. 2012 ed. Paris: EDITIONS 21, pp 1–53.
8. Ambrosi G, Adela C, Akieri DC (1997) A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med 3: 917–921.
9. Altieri DC (2008) Survivin, cancer networks and pathway-directed drug discovery. Nat Rev Cancer 8: 61–70.
10. Verdeliva MA, Huang H, Dutt E, Kaiser DA, Hunter T, et al. (2000) Structure of the human anti-apoptotic protein survivin reveals a dimeric arrangement. Nat Struct Biol 7: 602–608.
11. Chantarat L, Skoufias DA, Kleman JP, Jung B, Dieleberg O, et al. (2000) Crystal structure of human survivin reveals a bow-tie-shaped dimer with two unusual alpha-helical extensions. Mol Cell 6: 183–189.
12. Jeyaprakash AA, Klein UR, Lindner D, Ebert J, Nigg EA, et al. (2005) The crystal structure of a Survivin-Borealin-INCENP core complex reveals how chromosomal passenger complexes travel together. Cell 131: 271–285.
13. Sun C, Nettesheim D, Liu Z, Olejniczak ET (2005) Solution structure of human survivin and its binding interface with Smac/Diablo. Biochemistry 44: 11–17.
Shariat SF, Casella R, Khoddami SM, Hernandez G, Sulser T, et al. (2004) Urine detection of survivin is a sensitive marker for the noninvasive diagnosis of bladder cancer. J Urol 171: 626–630.

Smith SD, Wheeler MA, Plescia J, Colberg JW, Weiss RM, et al. (2001) Quantitative analysis of survivin mRNA expression in urine and tumor tissue of bladder cancer patients and its potential relevance for disease detection and prognosis. Int J Cancer 116: 100–104.

Moussa O, Abel-Eenii H, Bassadla NK, Keane T, Ghoneim MA, et al. (2006) Evaluation of survivin reverse transcriptase-polymerase chain reaction for noninvasive detection of bladder cancer. J Urol 175: 2312–2316.

Kenney DM, Geschwindt RD, Kary MR, Linic JM, Sardesai NY, et al. (2007) Detection of newly diagnosed bladder cancer, bladder cancer recurrence and bladder cancer in patients with hematuria using quantitative RT-PCR of urinary survivin. Tumour Biol 28: 57–62.

Horenstamm M, Bontrup H, Hennenlotter J, Taeger D, Weber A, et al. (2010) Clinical experience with survivin as a biomarker for urothelial bladder cancer. World J Urol 28: 399–404.

Nasterlack M, Feil G, Leng G, Peisch B, Huber S, et al. (2011) Bladder cancer screening with urine-based tumour markers - occupational medical experience. Aktuelle Urol 42: 128–134.

Peisch B, Nasterlack M, Euler F, Bonberg N, Taeger D, et al. (2011) The role of haematuria in bladder cancer screening among men with former occupational exposure to aromatic amines. BJU Int 108: 546–552.

Huber S, Schwenzer C, Taeger D, Peisch B, Nasterlack M, et al. (2012) NMPP2 - prospective evaluation in a population at risk for bladder cancer: results from the UroScreen-Study. BJU Int In press.

Lotan Y, Shariat SF, Schmitz-Dragaj BJ, Sanchez-Carbayo M, Jankevicius F, et al. (2010) Considerations on implementing diagnostic markers into clinical decision making in bladder cancer. Urol Oncol 28: 441–448.

Nasterlack M, Scheuermann B, Messerer P, Pallapies D, Zober A (2001) Harbblasenkrebs in einem Risikokollektiv: Klinische und epidemiologische Aspekte. Symp Med 12: 17–19.

Sanchez-Carbayo M, Urrutia M, Gonzalez de Buitrago JM, Navajo JA (2001) Utility of serial urinary tumour markers to individualize intervals between cystoscopies in the monitoring of patients with bladder carcinoma. Cancer 92: 2820–2828.

Ransohoff DF, Gourlay ML (2010) Sources of bias in specimens for research about molecular markers for cancer. J Clin Oncol 28: 690–704.

Weber DG, Casjens S, Roszenik P, Lenert M, Zilch-Schoenweiss S, et al. (2010) Assessment of mRNA and microRNA Stabilization in Peripheral Human Blood for Multicenter Studies and Biobanks. Biomark Insights 5: 95–102.

Rathier P, Roth S (1991) Urinzytologie. Praxis und Atlas. Berlin: Springer. 232 p.