Stationary resonances of rapidly-rotating Kerr black holes

Shahar Hod
The Ruppin Academic Center, Emek Hefer 40250, Israel
and
The Hadassah Institute, Jerusalem 91010, Israel
(Dated: November 22, 2013)

The Klein-Gordon equation for a massive scalar field in the background of a rapidly-rotating Kerr black hole is studied analytically. In particular, we derive a simple formula for the stationary (marginally-stable) resonances of the field in the black-hole spacetime. The analytically derived formula is shown to agree with direct numerical computations of the resonances. Our results provide an upper bound on the instability regime of rapidly-rotating Kerr black holes to massive scalar perturbations.

I. INTRODUCTION

The ‘no-hair’ conjecture [1, 2], put forward by Wheeler more than four decades ago, asserts that stationary black-hole spacetimes should be described by the Kerr-Newman metric. This conjecture therefore suggests that stationary black holes can be characterized by only three externally observable parameters: mass, charge, and angular momentum.

According to the no-hair conjecture, it is expected that static fields (with the exception of the electric field which is associated with a globally conserved charge) cannot survive in the exterior of black holes [1–8]. In particular, such fields are expected to be radiated away to infinity or to be swallowed by the black hole itself [3, 5]. Massless test fields indeed follow this scenario: their relaxation phase in the exterior of black holes is characterized by ‘quasinormal ringing’, damped oscillations with a discrete spectrum [9, 10] (see also [11] and references therein). These characteristic oscillations are then followed by late-time decaying tails [12, 13].

However, it turns out that (non-static) massive scalar fields [14] can survive in the exterior of rotating black holes due to the well-known phenomena of superradiant scattering [15–27]: a bosonic field of the form $e^{im\phi}e^{-i\omega t}$ impinging on a rotating Kerr black hole can be amplified as it scatters off the hole if it satisfies the superradiant condition

$$\omega \leq m\Omega, \quad (1)$$

where

$$\Omega = \frac{a}{2Mr_+} \quad (2)$$

is the angular velocity of the black-hole horizon. Here M, Ma, and r_+ are the black-hole mass, angular momentum, and horizon-radius, respectively. If in addition the scalar field has a non-zero rest mass, then the mass term (the gravitational attraction between the black hole and the massive field) effectively works as a mirror, preventing the field from escaping to infinity.

In a seminal work, Detweiler [20] studied the Klein-Gordon equation for the black-hole-scalar-field system in the regime $M\mu \ll 1$, that is in the regime where the Compton wavelength of the field is much larger than the length-scale set by the black hole. (Here $\mu \equiv M\mathcal{G}/\hbar c$, where \mathcal{M} is the mass of the field. We shall use natural units in which $G = c = 1$ [28].) Using Eqs. (18) and (26) of [20] one finds that marginally stable modes (that is, stationary modes which are characterized by $\Im\omega = 0$) of the massive scalar field exist for the marginal frequency

$$\omega = m\Omega \quad (3)$$

with the discrete spectrum

$$\mu = m\Omega \left[1 + \frac{1}{2} \left(\frac{mM\Omega}{l + 1 + n}\right)^2 + O((\mathcal{M}\Omega)^4)\right] \quad (4)$$

of the field-masses. Here l is the spherical harmonic index of the mode, m is the azimuthal harmonic index with $-l \leq m \leq l$, and n is the resonance parameter which is a non-negative integer [20].

It should be emphasized that the formula (4) is only valid in the regime $M\mu \ll 1$ studied in [20]. Thus, the formula (4) for the field-masses of the stationary resonances is only valid for slowly-rotating black holes (that is, in the regime $M\Omega \ll 1$).
The main goal of the present study is to obtain an analytical formula for the field-masses of the stationary resonances in the regime of rapidly-rotating black holes with \(a \approx M \) (that is, for \(M \Omega \approx 1/2 \)). It is worth mentioning that we have recently obtained a simple upper bound on the field-masses of the stationary (marginally-stable) resonances [26]:

\[
\mu < \sqrt{2}m\Omega .
\]

This upper bound is valid in the entire range \(0 \leq a/M \leq 1 \) of the dimensionless black-hole spin. Note that the formula above (which is only valid in the \(a \ll M \) regime) conforms to this upper bound.

II. DESCRIPTION OF THE SYSTEM

The physical system we consider consists of a test scalar field \(\Psi \) coupled to a rotating Kerr black hole of mass \(M \) and angular-momentum per unit mass \(a \). In Boyer-Lindquist coordinates \((t, r, \theta, \phi)\) the spacetime metric is given by [29, 30]

\[
\begin{align*}
ds^2 &= - \left(1 - \frac{2Mr}{\rho^2}\right)dt^2 - \frac{4Mar^2\sin^2 \theta}{\rho^2}dt d\phi + \frac{\rho^2}{\Delta}d\theta^2 + \left(r^2 + a^2 + \frac{2Ma^2r\sin^2 \theta}{\rho^2}\right)\sin^2 \theta d\phi^2, \\
\end{align*}
\]

where \(\Delta \equiv r^2 - 2Mr + a^2 \) and \(\rho \equiv r^2 + a^2 \cos^2 \theta \). The black-hole (event and inner) horizons are located at the zeroes of \(\Delta \):

\[
r_\pm = M \pm (M^2 - a^2)^{1/2}.
\]

We shall henceforth assume that the black hole is rapidly-rotating (near-extremal) with \(a \approx M \).

The dynamics of a massive scalar field \(\Psi \) in the Kerr spacetime is governed by the Klein-Gordon equation [31]

\[
(\nabla^a \nabla_a - \mu^2) \Psi = 0.
\]

One may decompose the field as

\[
\Psi_{lm}(t, r, \theta, \phi) = e^{im\phi} S_{lm}(\theta; a\omega) R_{lm}(r; a\omega)e^{-i\omega t},
\]

where \(\omega \) is the (conserved) frequency of the mode. (We shall henceforth omit the indices \(l \) and \(m \) for brevity.) With the decomposition, \(R \) and \(S \) obey radial and angular equations both of confluent Heun type coupled by a separation constant \(K(a\omega) \) [31, 30].

The angular functions \(S(\theta; a\omega) \) are the spheroidal harmonics which are solutions of the angular equation [31, 30]

\[
\left(\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial S}{\partial \theta} \right) \right) + \left[K + a^2(\mu^2 - \omega^2) - a^2(\mu^2 - \omega^2) \cos^2 \theta - \frac{m^2}{\sin^2 \theta} \right] S = 0 .
\]

The angular functions are required to be regular at the poles \(\theta = 0 \) and \(\theta = \pi \). These boundary conditions pick out a discrete set of eigenvalues \(\{ K_{lm} \} \) labeled by the integers \(l \) and \(m \). For \(a^2(\mu^2 - \omega^2) \leq m^2 \) one can treat \(a^2(\omega^2 - \mu^2) \cos^2 \theta \) in Eq. (10) as a perturbation term on the generalized Legendre equation and obtain the perturbation expansion [34]

\[
K_{lm} + a^2(\mu^2 - \omega^2) = l(l+1) + \sum_{k=1}^{\infty} c_k a^{2k}(\mu^2 - \omega^2)^k
\]

for the separation constants \(K_{lm} \). The expansion coefficients \(\{ c_k(l, m) \} \) are given in Ref. [34].

The radial Teukolsky equation is given by [31, 32]

\[
\Delta \frac{d}{dr} \left(\Delta \frac{dR}{dr} \right) + \left[H^2 + \Delta [2m \omega - K - \mu^2(r^2 + a^2)] \right] R = 0 ,
\]

where \(H \equiv (r^2 + a^2) \omega - am \). We are interested in solutions of the radial equation with the physical boundary conditions of purely ingoing waves at the black-hole horizon (as measured by a comoving observer) and a bounded (decaying) solution at spatial infinity [18, 27]. That is,

\[
R \sim \begin{cases}
e^{-\sqrt{\mu^2 - \omega^2}y} & \text{as } r \to \infty \ (y \to \infty) ; \\
e^{-i(\omega - m\Omega) y} & \text{as } r \to r_H \ (y \to -\infty) ,
\end{cases}
\]

where the “tortoise” radial coordinate \(y \) is defined by \(dy = [(r^2 + a^2)/\Delta]dr \).

Note that a bound state (a state decaying exponentially at spatial infinity) is characterized by \(\omega^2 < \mu^2 \). The boundary conditions [13] single out a discrete set of complex resonances \(\{ \omega_n(\mu) \} \) which correspond to the bound states of the massive field [18, 27, 34, 35]. The stationary (marginally-stable) resonances, which are the solutions we are interested in in this paper, are characterized by \(3\omega = 0 \).
III. THE STATIONARY SCALAR RESONANCES

As we shall now show, the field (3) with the marginal frequency (3) describes a stationary resonance of the Klein-Gordon equation (3) in the black-hole spacetime. In particular, we shall now derive an analytical formula for the discrete spectrum \(\{M\mu(m, l, n)\} \) of field-masses which satisfy the stationary resonance condition \(\Im \omega = 0 \). To that end, it is convenient to define new dimensionless variables

\[
x \equiv \frac{r - r_+}{r_+}, \quad \tau \equiv 8\pi M T_{BH} = \frac{r_+ - r}{r_+}; \quad k \equiv 2m\Omega r_+; \quad \epsilon \equiv \sqrt{\mu^2 - (m\Omega)^2} r_+,
\]

in terms of which the radial equation (12) becomes

\[
x(x + \tau) \frac{d^2 R}{dx^2} + (2x + \tau) \frac{dR}{dx} + VR = 0,
\]

where \(V \equiv H^2/r_+^2 x(x + \tau) - K_{lm} + 2m^2 a \Omega - \mu^2 r_+^2 (x + 1)^2 + a^2 \) and \(H = kr_+ x(x + 1) \).

We first consider the radial equation (15) in the far region \(x \gg \tau \). Then Eq. (15) is well approximated by

\[
x^2 \frac{d^2 R}{dx^2} + 2x \frac{dR}{dx} + V_{\text{far}} R = 0,
\]

where \(V_{\text{far}} = - (\epsilon x)^2 + k^2 x / 2 + [-K_{lm} + 2m^2 a \Omega + k^2 - \mu^2 (r_+^2 + a^2)] \). A solution of Eq. (16) that satisfies the boundary condition (12) can be expressed in terms of the confluent hypergeometric functions \(M(a, b; z) \) [34, 39]

\[
R = C_1 (2\epsilon)^{1/2 + \beta} x^{-1/2 + \beta} e^{-\epsilon x} M\left(\frac{1}{2} + \beta - \kappa, 1 + 2\beta, 2\epsilon x\right) + C_2 (\beta \to -\beta),
\]

where \(C_1 \) and \(C_2 \) are constants. Here

\[
\beta^2 \equiv K_{lm} + \frac{1}{4} + \mu^2 (r_+^2 + a^2) - k^2 - 2m^2 a \Omega
\]

and

\[
\kappa \equiv \frac{1}{4} k^2 - \epsilon^2.
\]

The notation \(\beta \to -\beta \) means “replace \(\beta \) by \(-\beta\) in the preceding term.”

We next consider the near horizon region \(x \ll 1 \). The radial equation is given by Eq. (15) with \(V \to V_{\text{near}} \equiv -K_{lm} + 2m^2 a \Omega - \mu^2 (r_+^2 + a^2) + k^2 x / (x + \tau) \). The physical solution obeying the ingoing boundary condition at the horizon is given by [34, 39]

\[
R = \left(\frac{x}{\tau} + 1\right)^{ik} 2F_1\left(\frac{1}{2} + \beta - ik, \frac{1}{2} - \beta - ik; 1; -x/\tau\right),
\]

where \(2F_1(a; b; c; z) \) is the hypergeometric function.

The solutions (17) and (20) can be matched in the overlap region \(\tau \ll x \ll 1 \). The \(x \ll 1 \) limit of Eq. (17) yields [34, 39]

\[
R \to C_1 (2\epsilon)^{1/2 + \beta} x^{-1/2 + \beta} + C_2 (\beta \to -\beta).
\]

The \(x \gg \tau \) limit of Eq. (20) yields [34, 39]

\[
R \to \tau^{1/2 - \beta} \frac{\Gamma(2\beta)}{\Gamma(\frac{1}{2} + \beta - ik)\Gamma(\frac{1}{2} + \beta + ik)} x^{-1/2 + \beta} + (\beta \to -\beta).
\]

By matching the two solutions in the overlap region one finds

\[
C_1 = \tau^{1/2 - \beta} \frac{\Gamma(2\beta)}{\Gamma(\frac{1}{2} + \beta - ik)\Gamma(\frac{1}{2} + \beta + ik)} (2\epsilon)^{-1/2 - \beta},
\]

and

\[
C_2 = \tau^{1/2 + \beta} \frac{\Gamma(-2\beta)}{\Gamma(\frac{1}{2} - \beta - ik)\Gamma(\frac{1}{2} - \beta + ik)} (2\epsilon)^{-1/2 + \beta}.
\]
Approximating Eq. (17) for \(x \to \infty \) one gets
\[R \to \left[C_1(2\epsilon)^{-\kappa} \frac{\Gamma(1 + 2\beta)}{\Gamma(1 + \beta - \kappa)} x^{-1 - \kappa} + C_2(\beta \to -\beta) \right] e^{\epsilon x} \]
\[+ \left[C_1(2\epsilon)^{\kappa} \frac{\Gamma(1 + 2\beta)}{\Gamma(1 + \beta + \kappa)} x^{-1 + \kappa} (1)^{-1/2 - \beta + \kappa} + C_2(\beta \to -\beta) \right] e^{-\epsilon x} . \]
\(\text{(25)} \)

A bound state is characterized by a decaying field at spatial infinity. The coefficient of the growing exponent \(e^{\epsilon x} \) in Eq. (25) should therefore vanish. Taking cognizance of Eqs. (23)–(25), one finds the characteristic equation
\[\frac{1}{\Gamma(1/2 + \beta - \kappa)} = \left[\frac{\Gamma(-2\beta)}{\Gamma(2\beta)} \right]^2 \frac{\Gamma(1/2 + \beta - ik)\Gamma(1/2 + \beta + ik)}{\Gamma(1/2 - \beta - ik)\Gamma(1/2 - \beta + ik)} (2\epsilon)^{2\beta} \]
\(\text{(26)} \)

for the stationary bound states of the massive scalar field. Note that the r.h.s. of Eq. (26) is of order \(O(\tau^{2\beta}) \ll 1. \)

Thus, using the well-known pole structure of the Gamma functions \(\text{[34]} \), one finds that the resonance condition (26) can be written as
\[\frac{1}{2} + \beta - \kappa = -n + O(\tau^{2\beta}) , \]
\(\text{(27)} \)
where \(n \geq 0 \) is a non-negative integer.

We shall henceforth assume that \(2\beta > 1 \text{ [40]} \) and expand all quantities to first order in the small parameter \(\tau \). Taking cognizance of Eqs. (11), (14), (18), and (19), one finds
\[\beta^2 = (l + \frac{1}{2})^2 - \frac{3}{2} m^2 + \frac{1}{4} m^2 \tau + O(\tau^2, \epsilon^2) \]
\(\text{(28)} \)
and
\[\kappa = \frac{m^2}{4\epsilon} - \epsilon + O(\tau^2) . \]
\(\text{(29)} \)

Substituting Eqs. (28)–(29) into (27), one finds that the resonance condition for the stationary modes can be expressed as a polynomial equation for the dimensionless variable \(\epsilon \):
\[4[(2l + 1)^2 - m^2(4 - \tau) - (2n + 1)^2] \epsilon^2 + 4m^2(2n + 1) \epsilon - m^4 + O(\tau^{2\alpha}, \epsilon^3) = 0 , \]
\(\text{(30)} \)
where \(\alpha \equiv \min\{1, \beta\} \). This simple equation can easily be solved to yield
\[\bar{\epsilon}(l, m, n) \equiv \frac{\epsilon}{m} \frac{m}{2(\ell + 1 + 2n)} - \frac{m^3}{4\ell(\ell + 1 + 2n)^2 \tau} + O(\tau^{2\alpha}, \bar{\epsilon}^3) , \]
\(\text{(31)} \)
where \(\ell \equiv \sqrt{(2l + 1)^2 - 4m^2} \text{ [42]} \). The field-masses of the stationary resonances are given by \(\mu = \sqrt{(m\Omega)^2 + (\epsilon/\tau)^2} \) [see Eq. (14)], which implies
\[\mu = m\Omega\left[1 + 2\bar{\epsilon}^2 + O(\tau^2, \bar{\epsilon}^4)\right] . \]
\(\text{(32)} \)

IV. NUMERICAL CONFIRMATION

We shall now test the accuracy of the analytically derived formula (32) for the field-masses of the stationary resonances. The stationary resonances can be computed using standard numerical techniques, see [23, 27] for details. In Table I we present a comparison between the *analytically* derived field-masses of the stationary resonances (32), and the *numerically* computed field-masses [23, 27] for the physically most interesting mode [18–27], \(l = m = 1 \) with \(n = 0 \). We find an almost perfect agreement between the two in the \(\tau \ll 1 \) \((a/M \gtrsim 0.99)\) regime. In fact, one finds that the agreement between the numerical data and the analytical formula (32) is quite good already at \(a/M = 0.9 \). This is quite surprising since the assumption \(\tau \ll 1 \) breaks down for this value of the dimensionless spin parameter.
TABLE I: Stationary resonances of a massive scalar field in the background of a rapidly-rotating Kerr black hole. The data shown is for the fundamental mode $l = m = 1$ with $n = 0$, see also [23, 27]. We display the ratio between the analytically derived field-mass, μ_{ana}, and the numerically computed values, μ_{num}. The agreement between the numerical data and the analytical formula (32) is better than 3% in the $a/M \gtrsim 0.9$ regime. (In fact, the agreement becomes much better than 1% in the $a/M \gtrsim 0.99$ regime).

a/M	0.9	0.95	0.99	0.995	0.999	1.0
$\mu_{\text{ana}}/\mu_{\text{num}}$	1.029	1.024	1.007	1.006	1.004	1.003

ACKNOWLEDGMENTS

This research is supported by the Carmel Science Foundation. I thank Yael Oren, Arbel M. Ongo and Ayelet B. Lata for stimulating discussions.

1. R. Ruffini and J. A. Wheeler, Phys. Today 24, 30 (1971).
2. B. Carter, in Black Holes, Proceedings of 1972 Session of Ecole d’ete de Physique Theorique, edited by C. De Witt and B. S. De Witt (Gordon and Breach, New York, 1973).
3. J. D. Bekenstein, Phys. Today 33, 24 (1980).
4. D. Núñez, H. Quevedo, and D. Sudarsky, Phys. Rev. Lett. 76, 571 (1996).
5. S. Hod, Phys. Rev. D 84, 124030 (2011) [arXiv:1112.3286].
6. J. E. Chase, Commun. Math. Phys. 19, 276 (1970); J. D. Bekenstein, Phys. Rev. Lett. 28, 452 (1972); C. Teitelboim, Lett. Nuovo Cimento 3, 326 (1972); I. Pena and D. Sudarsky, Class. Quant. Grav. 14, 3131 (1997).
7. J. D. Bekenstein, Phys. Rev. D 5, 1239 (1972); 5, 2403 (1972); M. Heusler, J. Math. Phys. 33, 3497 (1992); D. Sudarsky, Class. Quantum Grav. 12, 579 (1995).
8. J. Hartle, Phys. Rev. D 3, 2938 (1971); C. Teitelboim, Lett. Nuovo Cimento 3, 397 (1972).
9. H. P. Nollert, Class. Quantum Grav. 16, R159 (1999).
10. E. Berti, V. Cardoso and A. O. Starinets, Class. Quant. Grav. 26, 163001 (2009).
11. E. W. Leaver, Proc. Roy. Soc. A 402, 285 (1985); B. Mashhoon, Phys. Rev. D 31, 290 (1985); H. P. Nollert, Phys. Rev. D 47, 5253 (1993); S. Hod, Phys. Rev. Lett. 81, 4293 (1998) [arXiv:gr-qc/9812002]; G. T. Horowitz and V. E. Hubeny, Phys. Rev. D 62, 024027 (2000); K. Glampedakis and N. Andersson, Phys. Rev. D 64, 104021 (2001); U. Keshet and S. Hod, Phys. Rev. D 76, R061501 (2007) [arXiv:0705.1179]; S. Hod, Phys. Rev. D 75, 064013 (2007) [arXiv:gr-qc/0611004]; S. Hod, Class. and Quant. Grav. 24, 4235 (2007) [arXiv:0705.2306]; A. Gruzinov, arXiv:gr-qc/0705.1725; A. Pesci, Class. Quantum Grav. 24, 6219 (2007); S. Hod, Phys. Rev. D 78, 084035 (2008) [arXiv:0810.5419]; S. Hod, Phys. Rev. D 80, 064004 (2009) [arXiv:0909.0314]; V. Cardoso, A. S. Miranda, E. Berti, H. Witek, and V. T. Zanchin, Phys. Rev. D 79, 064016 (2009); S. Hod, Phys. Rev. A 374, 2901 (2010) [arXiv:1004.4539]; R. A. Konoplya and A. Zhidenko, Rev. Mod. Phys. 83, 793 (2011); S. Hod, Phys. Rev. D 84, 044041 (2011) [arXiv:1109.4080]; Y. Décanini, A. Folacci, and B. Raffaelli, Phys. Rev. D 84, 084035 (2011); S. Hod, Phys. Lett. B 710, 349 (2012) [arXiv:1205.5087]; S. Hod, Phys. Lett. B 715, 348 (2012) [arXiv:1207.5282].
12. R. H. Price, Phys. Rev. D 5, 2419 (1972); C. Gundlach, R. H. Price, and J. Pullin, Phys. Rev. D 49, 883 (1994); J. Bicák, Gen. Relativ. Gravitation 3, 331 (1972).
13. E. S. C. Ching, P. T. Leung, W. M. Suen, and K. Young, Phys. Rev. Lett. 74, 2419 (1995); E. S. C. Ching, P. T. Leung, W. M. Suen, and K. Young, Phys. Rev. D 52, 2118 (1995); S. Hod and T. Piran, Phys. Rev. D 58, 024017 (1998) [arXiv:gr-qc/9712041]; S. Hod and T. Piran, Phys. Rev. D 58, 024018 (1998) [arXiv:gr-qc/9801001]; S. Hod and T. Piran, Phys. Rev. D 58, 044018 (1998) [arXiv:gr-qc/9801059]; S. Hod and T. Piran, Phys. Rev. D 58, 024019 (1998) [arXiv:gr-qc/9801060]; S. Hod, Phys. Rev. D 58, 104022 (1998) [arXiv:gr-qc/9811032]; S. Hod, Phys. Rev. D 61, 024033 (2000) [arXiv:gr-qc/9902072]; S. Hod, Phys. Rev. D 61, 064018 (2000) [arXiv:gr-qc/9902073]; L. Barack, Phys. Rev. D 61, 024026 (2000); S. Hod, Phys. Rev. Lett. 84, 10 (2000) [arXiv:gr-qc/9907096]; S. Hod, Phys. Rev. D 60, 104053 (1999) [arXiv:gr-qc/9907044]; S. Hod, Class. Quant. Grav. 26, 028001 (2009) [arXiv:0902.0237]; S. Hod, Class. Quant. Grav. 18, 1311 (2001) [arXiv:gr-qc/0008001]; S. Hod, Phys. Rev. D 66, 024001 (2002) [arXiv:gr-qc/0201017]; R. J. Gleiser, R.
This statement seems to hold true for all bosonic fields.