Tricyclic graphs with maximal revised Szeged index

Lily Chen, Xueliang Li, Mengmeng Liu
Center for Combinatorics, LPMC
Nankai University, Tianjin 300071, China
Email: lily60612@126.com, lxl@nankai.edu.cn, liumm05@163.com

Abstract

The revised Szeged index of a graph G is defined as $Sz^*(G) = \sum_{e=uv \in E} (n_u(e) + n_0(e)/2)(n_v(e) + n_0(e)/2)$, where $n_u(e)$ and $n_v(e)$ are, respectively, the number of vertices of G lying closer to vertex u than to vertex v and the number of vertices of G lying closer to vertex v than to vertex u, and $n_0(e)$ is the number of vertices equidistant to u and v. In this paper, we give an upper bound of the revised Szeged index for a connected tricyclic graph, and also characterize those graphs that achieve the upper bound.

Keywords: Wiener index, Szeged index, Revised Szeged index, tricyclic graph.

AMS subject classification 2010: 05C12, 05C35, 05C90, 92E10.

1 Introduction

All graphs considered in this paper are finite, undirected and simple. We refer the reader to [2] for terminology and notation not given here. Let G be a connected graph with vertex set $V(G)$ and edge set $E(G)$. For $u, v \in V(G)$, $d_G(u, v)$ denotes the distance between u and v in G, we use $d(u, v)$ for short, if there is no ambiguity. The Wiener index of G is defined as

$$W(G) = \sum_{\{u,v\} \subseteq V(G)} d_G(u, v).$$

This topological index has been extensively studied in the mathematical literature; see, e.g., [6, 8]. Let $e = uv$ be an edge of G, and define three sets as follows:

$$N_u(e) = \{w \in V(G) : d_G(u, w) < d_G(v, w)\},$$

$$N_v(e) = \{w \in V(G) : d_G(v, w) < d_G(u, w)\},$$

$$N_0(e) = \{w \in V(G) : d_G(u, w) = d_G(v, w)\}.$$

Thus, $\{N_u(e), N_v(e), N_0(e)\}$ is a partition of the vertices of G respect to e. The number of vertices of $N_u(e)$, $N_v(e)$ and $N_0(e)$ are denoted by $n_u(e)$, $n_v(e)$ and $n_0(e)$, respectively.
long time known property of the Wiener index is the formula \[W(G) = \sum_{e=uv \in E(G)} n_u(e)n_v(e),\]
which is applicable for trees. Motivated by the above formula, Gutman \[5\] introduced a graph invariant, named as the *Szeged index*, as an extension of the Wiener index and defined by
\[Sz(G) = \sum_{e=uv \in E(G)} n_u(e)n_v(e).\]

Randić \[14\] observed that the Szeged index does not take into account the contributions of the vertices at equal distances from the endpoints of an edge, and so he conceived a modified version of the Szeged index which is named as the *revised Szeged index*. The revised Szeged index of a connected graph \(G\) is defined as
\[Sz^*(G) = \sum_{e=uv \in E(G)} \left(n_u(e) + \frac{n_0(e)}{2} \right) \left(n_v(e) + \frac{n_0(e)}{2} \right).\]

Some properties and applications of these two topological indices have been reported in \[3,4,9–13,15\]. In \[1\], Aouchiche and Hansen showed that for a connected graph \(G\) of order \(n\) and size \(m\), an upper bound of the revised Szeged index of \(G\) is \(\frac{n^2m}{4}\). In \[17\], Xing and Zhou determined the unicyclic graphs of order \(n\geq 5\), and they also determined the unicyclic graphs of order \(n\) with the unique cycle of length \(r\) (\(3 \leq r \leq n\)), with the smallest and the largest revised Szeged indices. In \[11\], we identified those graphs whose revised Szeged index is maximal among bicyclic graphs. In this paper, we give an upper bound of the revised Szeged index for a connected tricyclic graph, and also characterize those graphs that achieve the upper bound.

Theorem 1.1 Let \(G\) be a connected tricyclic graph \(G\) of order \(n \geq 29\). Then
\[Sz^*(G) \leq \begin{cases} (n^3 + 2n^2 - 16)/4, & \text{if } n \text{ is even} \\ (n^3 + 2n^2 - 18)/4, & \text{if } n \text{ is odd} \end{cases}\]
with equality if and only if \(G \cong F_n\) (see Figure [17]).

2 Main result

It is easy to check that
\[Sz^*(F_n) = \begin{cases} (n^3 + 2n^2 - 16)/4, & \text{if } n \text{ is even} \\ (n^3 + 2n^2 - 18)/4, & \text{if } n \text{ is odd} \end{cases}\]
i.e., \(F_n\) satisfies the equality of Theorem [11].

So, we are left to show that for any connected tricyclic graph \(G_n\) of order \(n \geq 29\), other than \(F_n\), \(Sz^*(G_n) < Sz^*(F_n)\). Using the fact that \(n_u(e) + n_v(e) + n_0(e) = n\) and \(m = n + 2\),
we have

\[Sz^*(G) = \sum_{e=uv \in E(G)} \left(n_u(e) + \frac{n_0(e)}{2} \right) \left(n_v(e) + \frac{n_0(e)}{2} \right) \]

\[= \sum_{e=uv \in E(G)} \left(\frac{n + n_u(e) - n_v(e)}{2} \right) \left(\frac{n - n_u(e) + n_v(e)}{2} \right) \]

\[= \sum_{e=uv \in E(G)} \frac{n^2 - (n_u(e) - n_v(e))^2}{4} \]

\[= \frac{mn^2}{4} - \frac{1}{4} \sum_{e=uv \in E(G)} (n_u(e) - n_v(e))^2. \]

\[= \frac{n^3 + 2n^2}{4} - \frac{1}{4} \sum_{e=uv \in E(G)} (n_u(e) - n_v(e))^2 \]

For convenience, let \(\delta(e) = |n_u(e) - n_v(e)| \), where \(e = uv \). We have

\[Sz^*(G) = \frac{n^3 + 2n^2}{4} - \frac{1}{4} \sum_{e=uv \in E(G)} \delta^2(e) \] \hspace{1cm} (1)

2.1 Proof for tricyclic graphs with connectivity 1

Lemma 2.1 Let \(G \) be a connected tricyclic graph of order \(n \geq 12 \) with at least one pendant edge. Then

\[Sz^*(G_n) < Sz^*(F_n) \]
Proof. Let $e' = xy$ be a pendant edge and $d(y) = 1$. Then, for $n \geq 12$, we have

\[
\sum_{e=uv \in E} (n_u(e) - n_v(e))^2 \geq (n_x(e') - n_y(e'))^2 = (n - 1 - 1)^2 > 18.
\]

Combining with equality (1), the result follows. \qed

Lemma 2.2 Let G be a connected tricyclic graph of order $n \geq 12$ without pendant edges but with a cut vertex. Then, we have

\[
Sz^*(G) < Sz^*(F_n).
\]

Proof. Suppose that u is a cut vertex. Since G is a tricyclic graph without pendant edge, G is composed of a bicyclic graph B and a cycle C and $V(B) \cap V(C) = \{u\}$. It is obvious that $|V(B)| \geq 4$. If C is even, for every edge e in C, we have $\delta(e) = |V(B)| - 1 = n - |V(C)|$. So

\[
\sum_{e \in E(G)} \delta^2(e) \geq \sum_{e \in E(C)} \delta^2(e) = |E(C)|(|V(B)| - 1)^2 \geq 4 \times 3^2 > 18.
\]

If C is odd, for all edges in C but the edge xy such that $d(u, x) = d(u, y)$, we have $\delta(e) = |V(B)| - 1 = n - |V(C)|$. So

\[
\sum_{e \in E(G)} \delta^2(e) \geq \sum_{e \in E(C)} \delta^2(e) = (|E(C)| - 1)(|V(B)| - 1)^2.
\]

If $|E(C)| \geq 5$, then $\sum_{e \in E(G)} \delta^2(e) > 18$. If $|E(C)| = 3$, then $|V(B)| - 1 = n - |V(C)| \geq 9$, so

\[
\sum_{e \in E(G)} \delta^2(e) > 18.
\]

Combining with equality (1), this completes the proof. \qed

2.2 Proof for 2-connected tricyclic graphs

In this section, $\kappa(G) \geq 2$, then it must be one of the graphs depicted in Figure 2.2. The letters a, b, \ldots, f stand for the lengths of the corresponding paths between vertices of degree greater than 2. For the sake of brevity, we refer to these paths as $P(a), P(b), \ldots, P(f)$, respectively. In the statement of the following lemmas, we call these four graphs in Figure 2.2 as $\Theta_1, \Theta_2, \Theta_3$ and Θ_4, respectively.

Lemma 2.3 Let G be a Θ_1-graph composed of four paths P_1, P_2, P_3 and P_4, and $e = uv \in E(G)$. Then $|n_u(e) - n_v(e)| \leq 1$ if and only if e is in the middle of an odd path of the four paths P_1, P_2, P_3 and P_4.

Proof. Assume that $e = uv$ belongs to P_i (1 ≤ i ≤ 4), the ith path connecting x and y. Then, with respect to $N_u(e)$ and $N_v(e)$, there are three cases to discuss.
Case 1. \(x, y\) are in different sets. We claim that

\[|n_u(e) - n_v(e)| = 2|b_i - a_i|, \]

where \(a_i\) (resp. \(b_i\)) is the distance between \(x\) (resp. \(y\)) and the edge \(e\).

To see this, assume that \(x \in N_u(e),\ y \in N_v(e)\). Then we have \(a_i - b_i\) vertices more in \(N_u(e)\) than in \(N_v(e)\) on the path \(P_i\), but on each path \(P_j\) \((j \neq i)\), we have \(b_i - a_i\) vertices more in \(N_u(e)\) than in \(N_v(e)\). Hence \(|n_u(e) - n_v(e)| = |3(b_i - a_i) + (a_i - b_i)| = 2|b_i - a_i|\).

Case 2. \(x, y\) are in the same set. We claim that

\[|n_u(e) - n_v(e)| = |V(G)| - g, \]

where \(g\) is the length of the shortest cycle of \(G\) that contains \(e\).

To see this, assume that \(x, y \in N_u(e)\). Thus all vertices from the paths \(P_j\) \((j \neq i)\) are in \(N_u(e)\). Therefore, \(n_v(e) = \lceil \frac{a}{2} \rceil\), while \(n_u(e) = \lceil \frac{a}{2} \rceil + |V(G)| - g\). So \(|n_u(e) - n_v(e)| = |V(G)| - g\).

Case 3. One of \(x, y\) is in \(N_0(e)\). We claim that

\[|n_u(e) - n_v(e)| \geq 2(a - 1), \]

with equality if and only if two paths of \(P_i\) \((i = 1, 2, 3, 4)\) have length \(a\), where \(a\) is the length of a shortest path of the four paths \(P_i\) \((i = 1, 2, 3, 4)\).
To see this, assume that $x \in N_u(e)$, $y \in N_0(e)$. Then the shortest cycle C of G that contains e is odd. Let $z_j \in P_j(P_j \notin C)$ be the furthest vertex from e such that $z_j \in N_0(e)$. Then $|n_u(e) - n_v(e)| = \sum_j (d(x, z_j) - 1) \geq \sum_j (a + d(y, z_j) - 1) \geq 2(a - 1).

From the above, we know that $|n_u(e) - n_v(e)| \geq 2$ in Case 2. In Case 3, $|n_u(e) - n_v(e)| \leq 1$ if two paths of P_i $(i = 1, 2, 3, 4)$ have length 1, which is impossible since G is simple. So, $|n_u(e) - n_v(e)| \leq 1$ if and only if x, y are in different sets and $|b_i - a_i| = 0$, that is, e is in the middle position of an odd path of P_i $(i = 1, 2, 3, 4)$.

Lemma 2.4 If G is a Θ_1-graph of order $n \geq 12$. Then, we have

$$Sz^*(G) < Sz^*(F_n)$$

Proof. Without loss of generality, assume that $a \leq b \leq c \leq d$, then $b \geq 2$. Now consider the six edges which are incident with x and y but do not belong to $P(a)$. Let $e_1 = xz$ be one of them, by Lemma 2.5 $\delta(e_1) \geq 2$. Similar thing is true for the other five edges. Hence

$$\sum_{e \in E(G)} \delta^2(e) \geq 6 \times 2^2 = 24 > 18.$$

Combining with equality (1), this completes the proof.

Lemma 2.5 If G is a Θ_2-graph of order $n \geq 12$. Then, we have

$$Sz^*(G) < Sz^*(F_n)$$

Proof. Without loss of generality, let $d \geq b, e \geq c$. In order to complete the proof, we consider the following four cases.

Case 1. $d \geq b + 2$.

Consider the two edges xx_1, yy_1 which belong to $P(d)$, then

$$\delta(xx_1) = \delta(yy_1) = \begin{cases} a + c + e - 2, & b \leq a + c, \\ b + e - 2, & b \geq a + c. \end{cases}$$

Therefrom, we get

$$\delta(xx_1) = \delta(yy_1) \geq a + c + e - 2.$$

Since $c + e \geq 3, a + c + e \geq 4$. If $a + c + e \geq 6$, then $\delta(xx_1) = \delta(yy_1) \geq 4$, so $\sum_{e \in E(G)} \delta^2(e) \geq 2 \times 4^2 > 18$.

If $a = 2, c = 1, e = 2$, then $\delta(xx_1) = \delta(yy_1) \geq 3$. Now consider the edge $xx' \in P(e), \delta(xx') \geq 2$. So $\sum_{e \in E(G)} \delta^2(e) \geq 2 \times 3^2 + 2^2 > 18$.

If $a = 1, c = 1, e = 3$, since $n \geq 12, b + d - 1 \geq 8$. Now consider the edge $xx' \in P(e), \delta(xx') \geq b + d - 1 \geq 8$. So $\sum_{e \in E(G)} \delta^2(e) \geq 8^2 > 18$.

If $a = 1, c = 2, e = 2$, then $\delta(xx_1) = \delta(yy_1) \geq 3$. Now consider the edge $xx' \in P(e), \delta(xx') \geq 2$. So $\sum_{e \in E(G)} \delta^2(e) \geq 2 \times 3^2 + 2^2 > 18$.
If $a = 1, c = 1, e = 2$, if $b \geq 4 > 2 = a + c$, then $\delta(xx_1) = \delta(yy_1) \geq 4$, so $\sum_{e \in E(G)} \delta^2(e) \geq 2 \times 4^2 > 18$. If $b = 3$ or $2, \delta(xx_1) = \delta(yy_1) \geq 2, d \geq 7$. Now consider the edge $zz' \in P(c), \delta(zz') \geq 4$. So $\sum_{e \in E(G)} \delta^2(e) \geq 2 \times 2^2 + 4^2 > 18$. If $b = 1$, then $d \geq 9$. Now consider the edge $xx' \in P(e), \delta(xx') \geq d \geq 9$. So $\sum_{e \in E(G)} \delta^2(e) \geq 9^2 > 18$.

Case 2. $d = b + 1, e = c + 1$.

Subcase 2.1. $a + c - 1 \geq b$.

Consider two edges $xx_1 \in P(c)$ and $xx_2 \in P(e)$, $\delta(xx_1) \geq d - 1 + e - 2 = b + e - 2$,

$$\delta(xx_2) = \begin{cases} d + b - 1, & c \leq a + b, \\ d - 1 + c - 1, & c \geq a + b. \end{cases}$$

Therefrom, we get $\delta(xx_2) \geq d + b - 1 = 2b$. So, $\delta^2(xx_1) + \delta^2(xx_2) = (b + e - 2)^2 + 4b^2 = 5b^2 + 2(e - 1)b + (e - 1)^2 + 3$.

If $b \geq 2$ or $e \geq 4$, $\sum_{e \in E(G)} \delta^2(e) \geq \delta^2(xx_1) + \delta^2(xx_2) > 18$.

If $b = 1$, and $e \leq 3$, Now consider the edge $xx' \in P(d), \delta(xx') \geq 4$. So $\sum_{e \in E(G)} \delta^2(e) \geq 1^2 + 2^2 + 4^2 > 18$.

Subcase 2.2. $b \geq a + c + 1$.

Consider the edge $xx_1 \in P(c)$, since $b \geq a + c + 1, y \in N_{xx_1}$. Let u be the furthest vertex in $P(d)$ such that $u \in N_{xx_1}$, u' be the vertex incident with u but not in N_{xx_1}. If the cycle $P(d) \cup P(c) \cup P(a)$ is even, then $d(u, x) = d(u', y) + a + c - 1$, that is $d(u, x) = d(u', y) = a + c - 1$. If the cycle $P(d) \cup P(c) \cup P(a)$ is odd, then $d(u, x) + 1 = d(u', y) + a + c - 1$, that is $d(u, x) = d(u', y) + 1 = a + c - 1$. So we have $\delta(xx_1) = e - 2 + a + c - 1 = a + 2c - 2$.

Then consider the edge $xx_2 \in P(e)$, since $b \geq a + c + 1, y \in N_{xx_2}$. Let $u_i (i = 1, 2)$ be the furthest vertex in $P(b)$ and $P(d)$ such that $u_i \in N_{xx_2}, u_i' (i = 1, 2)$ be the vertex incident with u_i but not in N_{xx_2}. If the cycle $P(b) \cup P(c) \cup P(a)$ is even, then $d(u_1, x) = d(u_1', y) + a + c, d(u_2, x) + 1 = d(u_2', y) + a + c$. If the cycle $P(b) \cup P(c) \cup P(a)$ is odd, then $d(u_1, x) + 1 = d(u_1', y) + a + c, d(u_2, x) = d(u_2', y) + a + c$. So we have $\delta(xx_2) = d(u_1, x) + d(u_2, x) \geq 2a + 2c - 1$.

From above, we have

$$\sum_{e \in E(G)} \delta^2(e) \geq (a + 2c - 2)^2 + (2a + 2c - 1)^2 > 18.$$

unless $a = c = 1$. If $a = c = 1$, now consider the edge zz' belonging to $P(e), \delta(zz') \geq 3$, so $\sum_{e \in E(G)} \delta^2(e) \geq 1^2 + 3^2 + 3^2 > 18$.

Subcase 2.3. $b = a + c$.

Consider the edge $xx_1 \in P(e)$, then $\delta(xx_1) = d - 1 + b - 1 = 2b - 1$.

If $b \geq 3$, then $\sum_{e \in E(G)} \delta^2(e) \geq 5^2 > 18$.

If $b = 2$, then $a = c = 1, e = 2, d = 3$, which is impossible since $n \geq 12$.

Case 3. $d = b + 1, e = c = 1$. 7
First, we know that $e = c \geq 2$.

Subcase 3.1. $a + c - 1 \geq b$.

Consider the edges $xx_1 \in P(c)$ and $xx_2 \in P(e)$, then

$$\delta(xx_1) = \delta(xx_2) \geq d - 1 + e - 1 = d + e - 2.$$

Since $d \geq 2$ and $e \geq 2$, $d + e \geq 4$.

If $d + e \geq 6$, then $\sum_{e \in E(G)} \delta^2(e) \geq 2 \times 4^2 > 18$.

If $4 \leq d + e \leq 5$, now consider the edge $xx' \in P(d)$. If $d = 3, e = 2$, then $b = c = 2, a \geq 5, \delta(xx') \geq 3$. If $d = 2, e = 3$, then $b = 1, c = 3, a \geq 5, \delta(xx') \geq 5$. If $d = 2, e = 2$, then $b = 1, c = 2, a \geq 7, \delta(xx') \geq 4$. So $\sum_{e \in E(G)} \delta^2(e) > 18$.

Subcase 3.2. $b > a + c - 1$.

Consider the edge $xx_1 \in P(c)$, since $b > a + c - 1$, then $y \in N_{x_1}(xx_1)$. Let u be the furthest vertex in $P(d)$ such that $z \in N_x(xx_1)$, u' be the vertex incident with u but not in $N_x(xx_1)$. If the cycle $P(d) \cup P(c) \cup P(a)$ is even, then $d(u, x) = d(u', y) + a + c - 1, d(u, x) - d(u', y) = a + c - 1$. If the cycle $P(b) \cup P(c) \cup P(a)$ is odd, then $d(u, x) + 1 = d(u, y) + a + c - 1, d(u, x) - (d(u', y) - 1) = a + c - 1$. So we have $\delta(xx_1) = (e - 1) + (a + c - 1) = a + 2c - 2$.

Similarly

$$\delta(xx_2) = a + 2c - 2.$$

where xx_2 is the edge belonging to $P(e)$.

Since $c \geq 2, a + 2c \geq 5$.

If $a + 2c \geq 6$, then $\sum_{e \in E(G)} \delta^2(e) \geq 2 \times 4^2 > 18$.

If $a + 2c = 5$, that is $a = 1, c = e = 2$, then $b \geq 4$. Now consider $yy' \in P(d)$, then $\delta(yy') \geq 3$. So $\sum_{e \in E(G)} \delta^2(e) > 18$.

Case 4. $d = b, e = c$.

Subcase 4.1. $b = d = c = e \geq 2$.

Consider the edge $xx_1 \in P(b)$, then $\delta(xx_1) = 2(e - 1)$. Similarly for the other three edges incident with x.

If $e \geq 3$, then $\sum_{e \in E(G)} \delta^2(e) \geq 4 \times 4^2 > 18$.

If $e = 2$, since $n \geq 12, a \geq 6$. Now consider the edges yy', zz' belonging to $P(a)$, $\delta(yy') = \delta(zz') \geq 2$, so $\sum_{e \in E(G)} \delta^2(e) \geq 4 \times 2^2 + 2^2 > 18$.

Subcase 4.2. $b = d > c = e \geq 2$.

Consider the edge $xx_1 \in P(b)$, $\delta(xx_1) = d - 1 + e - 1 = d + e - 2$. For $xx_2 \in P(d)$, we also have $\delta(xx_2) = d + e - 2$.

If $d + e \geq 6$, then $\sum_{e \in E(G)} \delta^2(e) \geq 2 \times 4^2 > 18$.

If $d + e = 5$, that is $d = 3, e = 2$, then $a \geq 4$. Now consider $xx' \in P(c)$, then $\delta(xx') \geq 4$. So $\sum_{e \in E(G)} \delta^2(e) > 18$.

8
Combining with equality (1), this completes the proof. □

Lemma 2.6 If G is a Θ_3-graph of order $n \geq 12$. Then, we have

$$Sz^*(G) < Sz^*(F_n)$$

Proof. Without loss of generality, let $f \geq d, e \geq c$. In order to complete the proof, we consider the following four cases.

Case 1. $e \geq c + 2$.

Consider the edge $ww_1, yy_1 \in P(e)$,

$$\delta(yy_1) = \delta ww_1 = \begin{cases} a + b + d + f - 2, & c \leq a + b + d, \\ c + f - 2, & c \geq a + b + d. \end{cases}$$

Therefrom we get

$$\delta(yy_1) = \delta ww_1 \geq a + b + d + f - 2.$$

Since $d + f \geq 3, a + b + d + f \geq 5$.

If $a + b + d + f \geq 6$, then $\sum_{e \in E(G)} \delta^2(e) \geq 2 \times 4^2 > 18$.

If $a + b + d + f = 5$, that is $a = b = d = 1, f = 2$. Now consider the edge $zz' \in P(f)$ then $\delta(zz') \geq 2$, so $\sum_{e \in E(G)} \delta^2(e) \geq 2 \times 3^2 + 2^2 > 18$.

Case 2. $e = c + 1, f = d + 1$.

Subcase 2.1. $a + c - 1 \geq b + d$.

Consider the edge $yy_1 \in P(c), yy_2 \in P(e)$, then $\delta(yy_1) = e - 2 + f - 1 = c + d - 1$,

$$\delta(yy_2) = \begin{cases} b + d + f - 1, & c \leq a + b + d, \\ c + f - 2, & c \geq a + b + d. \end{cases}$$

Therefrom, we get $\delta(yy_2) \geq b + d + f - 1 = b + 2d$.

If $d \geq 2$ or $b \geq 3$ or $c \geq 4$, then $\sum_{e \in E(G)} \delta^2(e) > 18$.

If $d = 1, b \leq 3, c \leq 3$, then consider the edge $xx' \in P(f)$, we have $\delta(xx') \geq 3$, so $\sum_{e \in E(G)} \delta^2(e) \geq 1^2 + 3^2 + 3^2 > 18$.

Subcase 2.2. $a + c \leq b + d - 1$.

It’s similar to the Subcase 2.1.

Subcase 2.3. $a + c = b + d$.

Consider the edge $yy_1 \in P(e), xx_1 \in P(f)$, then $\delta(yy_1) = b + d + f - 2 = b + 2d - 1, \delta(xx_1) = a + c + e - 2 = a + 2c - 1$. Since $n = a + b + c + d + e + f - 2 \geq 12$, then $(a + 2c - 1) + (b + 2d - 1) \geq 10$, so $\sum_{e \in E(G)} \delta^2(e) \geq (a + 2c - 1)^2 + (b + 2d - 1)^2 > 18$.

Case 3. $e = c + 1, f = d$.

Subcase 3.1. $a + d - 1 \geq b + c$.

9
Consider the edge \(zz_1 \in P(d) \), \(\delta(zz_1) \geq e - 1 + f - 1 = c + d - 1 \). Similarly \(\delta(zz_2) \geq c + d - 1 \), where \(zz_2 \) is the edge belonging to \(P(f) \).

Since \(d \geq 2 \), otherwise \(G \) is not simple, then \(c + d \geq 3 \).

If \(c + d \geq 5 \), then \(\sum_{e \in E(G)} \delta^2(e) \geq 2 \times 4^2 > 18 \).

If \(c = 1, d = 3 \), then \(\delta(zz_1), \delta(zz_2) \geq 3 \). Now consider the edge \(yy' \in P(e) \), \(\delta(yy') \geq 3 \), so \(\sum_{e \in E(G)} \delta^2(e) \geq 2 \times 3^2 + 3^2 > 18 \).

If \(c = 2, d = 2 \), then \(\delta(zz_1), \delta(zz_2) \geq 3 \). Now consider the edge \(yy' \in P(e) \), \(\delta(yy') \geq 3 \), so \(\sum_{e \in E(G)} \delta^2(e) \geq 2 \times 3^2 + 3^2 > 18 \).

If \(c = 1, d = 2 \), then \(\delta(zz_1), \delta(zz_2) \geq 2 \) and \(e = f = 2 \). Now consider the edge \(yy' \in P(e) \), no matter \(b \geq 2 \) or \(b = 1 \), we both have \(\delta(yy') \geq 4 \), so \(\sum_{e \in E(G)} \delta^2(e) \geq 2 \times 2^2 + 4^2 > 18 \).

Subcase 3.2. \(a + d \leq b + c \).

Now consider the edge \(ww_1 \in P(e) \), then

\[
\delta(ww_1) = \begin{cases}
 a + d + f - 2, & c \leq a + b + d, \\
 c + f - 2, & c \geq a + b + d.
\end{cases}
\]

Therefrom, we get \(\delta(ww_1) = a + d - 1 + f - 1 = a + 2d - 2 \).

Since \(d \geq 2 \), \(a + 2d \geq 5 \).

If \(a + 2d \geq 7 \), then \(\delta(ww_1) \geq 5 \). So \(\sum_{e \in E(G)} \delta^2(e) \geq 5^2 > 18 \).

If \(a + 2d = 6 \), that is \(a = 2, d = 2 \), then \(\delta(ww_1) \geq 4 \). Now consider the edge \(yy' \in P(e) \), \(\delta(yy') \geq 2 \). So \(\sum_{e \in E(G)} \delta^2(e) \geq 4^2 + 2^2 > 18 \).

If \(a + 2d = 5 \), that is \(a = 1, d = 2 \), then \(\delta(ww_1) \geq 3 \). Now consider the edge \(yy' \in P(e) \), then we have \(\delta(yy') \geq \lceil \frac{b + c + 2}{2} \rceil - 1 \). Since \(n \geq 12 \), \(b + 2c \geq 8 \). Then we have \(b + c \geq 6 \) unless \(b = 1, c = 4 \). When \(b = 1, c = 4 \), we can draw the graph exactly, we also have \(\delta(yy') \geq 4 \). So \(\sum_{e \in E(G)} \delta^2(e) \geq 3^2 + 4^2 > 18 \).

Case 4. \(d = f, e = c \).

We may assume that \(a \leq b \).

Subcase 4.1. \(c = e > d = f \geq 2 \).

Consider the edge \(ww_1 \in P(e) \), \(\delta(ww_1) = f - 1 + c - 1 = c + f - 2 \). For \(ww_2 \in P(c) \), we also have \(\delta(ww_2) = c + f - 2 \).

Since \(c \geq 3 \) and \(f \geq 2 \), \(c + f \geq 5 \).

If \(c + f \geq 6 \), then \(\delta(ww_1) = \delta(ww_2) \geq 4 \), so \(\sum_{e \in E(G)} \delta^2(e) \geq 2 \times 4^2 > 18 \).

If \(c + f = 5 \), that is \(c = 3, f = 2 \), then \(\delta(ww_1) = \delta(ww_2) \geq 3 \). Now consider the edge \(yy' \in P(e) \), then we have \(\delta(yy') \geq 1 \). So \(\sum_{e \in E(G)} \delta^2(e) \geq 2 \times 3^2 + 1^2 > 18 \).

Subcase 4.2. \(c = e = d = f \geq 3 \).

Consider the edge \(ww_1 \in P(e), ww_2 \in P(c), \delta(ww_1) = \delta(ww_2) = f - 1 + c - 1 = 2(c - 1) \geq 4 \).

So \(\sum_{e \in E(G)} \delta^2(e) \geq 2 \times 4^2 > 18 \).
Subcase 4.3. $c = e = d = f = 2$.

If $b \geq a + 4$, then we consider the edge $ww_1 \in P(e)$, $\delta(ww_1) = 2$. Similar for $ww_2 \in P(c), xx_1 \in P(d), xx_2 \in P(f)$. Then consider the edge $yy' \in P(b)$, $\delta(yy') \geq 2$, so $\sum_{e \in E(G)} \delta^2(e) \geq 5 \times 2^2 > 18$.

If $a \leq b \leq a + 1$, then we consider the edge $ww_1 \in P(e)$, $\delta(ww_1) = 2$. Similar for $ww_2 \in P(c), xx_1 \in P(d), xx_2 \in P(f)$. Then consider the edge $yw_i, zz_i, (i = 1, 2)$, $\delta(yw_i) \geq 1, \delta(zz_i) \geq 1$, so $\sum_{e \in E(G)} \delta^2(e) \geq 4 \times 2^2 + 4 \times 1^2 > 18$.

If $b = a + 3$, then we get T_n with n being odd. If $b = a + 2$, then we get T_n with n being even.

Combining with equality (1), this completes the proof.

Lemma 2.7 If G is a Θ_4-graph of order $n \geq 29$. Then, we have

$$Sz^*(G) < Sz^*(F_n)$$

Proof. Without loss of generality, assume that $a = \max\{a, b, c, d, e, f\}$. Since $n \geq 29$, then $a \geq 6$. Now consider the edge $ww_1 \in P(a)$. Then $z \in N_w(ww_1)$ or $z \in N_0(ww_1)$, since $d(z, w) \leq d(z, w_1)$ by the choice of a. And $z \in N_0(ww_1)$ if and only if $a = c = b + d$ and $e = 1$. We can obtain the similar result for y. Next, let C be the shortest cycle containing ww_1. Then $x \in N_w(ww_1)$, if $a > \frac{|C| + 1}{2}$; $x \in N_0(ww_1)$, if $a = \frac{|C| + 1}{2}$; $x \in N_w(ww_1)$, if $a < \frac{|C| + 1}{2}$.

Case 1. $a > \frac{|C| + 1}{2}$.

Since $x \in N_w(ww_1)$, we can easily get $y, z \in N_w(ww_1)$. So we have $\delta(ww_1) = n - |C|$. Similarly, $\delta(xx_1) = n - |C|$, where $xx_1 \in P(a)$.

If $n - |C| \geq 4$, then $\sum_{e \in E(G)} \delta^2(e) \geq 2 \times 4^2 > 18$.

If $n - |C| = 1$ and C is composed of paths $P(a), P(f)$ and $P(b)$, then $V(G) - V(C) = \{z\}$, and $e = c = d = 1$. Since $P(a) \cup P(f) \cup P(b)$ is the shortest cycle, then $f = b = 1$ and $a \geq 26$, by $n \geq 29$. Now consider every edge e in $P(a)$ except the middle one in $P(a)$ when a is odd, we have $\delta(e) = 1$. So $\sum_{e \in E(G)} \delta^2(e) \geq a - 1 > 18$.

If $n - |C| = 1$ and C is composed of paths $P(a), P(f), P(d)$ and $P(c)$, which is impossible.

If $n - |C| = 2$ and C is composed of paths $P(a), P(f)$ and $P(b)$, then $e + c + d \leq 4, f + b \leq 4$. Since $n \geq 29, a \geq 24$. Now consider the six edges $e_i (1 \leq i \leq 6)$ in $P(a)$ such that the distance between e_i and x or w no more than 2, then we have $\delta(e_i) = 2$. So $\sum_{e \in E(G)} \delta^2(e) \geq 6 \times 2^2 > 18$.

If $n - |C| = 2$ and C is composed of paths $P(a), P(f), P(d)$ and $P(c)$, then one of the two vertices is in $P(b)$, another vertex is in $P(e)$. It is the case when C is composed of paths $P(a), P(f)$ and $P(b)$.

If $n - |C| = 3$ and C is composed of paths $P(a), P(f)$ and $P(b)$, then $e + c + d \leq 5, f + b \leq 4$. Since $n \geq 29, a \geq 22$. Now consider the four edges $e_i (1 \leq i \leq 4)$ in $P(a)$ such that the distance between e_i and x or w no more than 1, then we have $\delta(e_i) = 3$. So $\sum_{e \in E(G)} \delta^2(e) \geq 4 \times 3^2 > 18$.

If $n - |C| = 3$ and C is composed of paths $P(a), P(f), P(d)$ and $P(c)$, then either one of the two vertices in $P(b)$, another two vertices are in $P(e)$, or one of the two vertices in $P(e)$,
another two vertices are in $P(b)$. It is the case when C is composed of paths $P(a), P(f)$ and $P(b)$.

Case 2. $a = \frac{|C|+1}{2}$.

Subcase 2.1. C is composed of paths $P(a), P(f), P(d)$ and $P(c)$.

In this case, $y, z \in N_w(ww_1)$ and $b > d + c$. Let u be the furthest vertex in $P(e)$ such that $u \in N_w(ww_1)$, u' be the vertex incident with u but not in $N_w(ww_1)$. If the cycle $P(a) \cup P(e) \cup P(d)$ is even, then $d(a, u') + a - 1 = d(u, z) + c$, that is $d(u, z) = a - c - 1 + d(x, x')$. If the cycle $P(a) \cup P(e) \cup P(d)$ is odd, then $d(x, x') + a - 1 = d(u, z) + 1 + c$, that is $d(u, z) = a - c - 2 + d(x, x')$. Then $\delta(ww_1) = b - 1 + d(u, z) \geq a + b - c - 3 \geq a - 1 \geq 5$, since $b > d + c$. So $\sum_{e \in E(G)} \delta^2(e) \geq 5^2 > 18$.

Subcase 2.2. C is composed of paths $P(a), P(f)$ and $P(b)$.

In this case, $y \in N_w(ww_1)$ and $b \leq d + c$.

If $z \in N_0(ww_1)$, then $a = c \leq b + d$ and $e = 1$. So $\delta(ww_1) \geq c - 1 = a - 1 \geq 5$. Hence $\sum_{e \in E(G)} \delta^2(e) \geq 5^2 > 18$.

If $z \in N_w(ww_1)$, similar to Subcase 2.1, we have

$$d(u, z) \geq \begin{cases} a - c - 2, & c \leq b + d, \\ a - (b + d) - 2, & c \geq b + d. \end{cases}$$

Then $\delta(ww_1) = d - 1 + c + d(u, z) \geq a + d - 3 \geq a - 2 \geq 4$. Now consider the edge $xx_1 \in P(a)$. In this case, $w \in N_0(xx_1), y \in N_x(xx_1)$. By the above analysis, if $z \in N_0(xx_1)$, then $\delta(xx_1) \geq 5$. Hence $\sum_{e \in E(G)} \delta^2(e) \geq 5^2 > 18$. If $z \in N_x(xx_1)$, then $\delta(xx_1) \geq 4$. Hence $\sum_{e \in E(G)} \delta^2(e) \geq 2 \times 4^2 > 18$.

Case 3. $a < \frac{|C|+1}{2}$.

Subcase 3.1. Both of y and z are in $N_0(ww_1)$.

In this case, $a = b = c, e = f = 1$. Then $\delta(ww_1) = c - 1 = a - 1 \geq 5$. Hence $\sum_{e \in E(G)} \delta^2(e) \geq 5^2 > 18$.

Subcase 3.2. Both of y and z are in $N_w(ww_1)$.

In this case, we get

$$\delta(ww_1) \geq \begin{cases} a + d - 2, & d \geq |b - c|, \\ a + |b - c| - 2, & d \leq |b - c|. \end{cases}$$

Then $\delta(ww_1) \geq a + d - 2 \geq a - 1 \geq 5$. Hence $\sum_{e \in E(G)} \delta^2(e) \geq 5^2 > 18$.

Subcase 3.3. One of y, z is in $N_0(ww_1)$.

We may assume that $z \in N_0(ww_1)$, then $a = c \leq b + d, e = 1$.

If $z \notin V(C)$, then $C = P(a) \cup P(f) \cup P(b)$. So $\delta(ww_1) \geq c - 1 = a - 1 \geq 5$. Hence $\sum_{e \in E(G)} \delta^2(e) \geq 5^2 > 18$.

12
If \(z \in V(C) \), for \(y \in N_w(ww_1) \), then \(C = P(a) \cup P(e) \cup P(c) \). Otherwise \(C = P(a) \cup P(f) \cup P(d) \cup P(c) \), since \(z \in N_0(ww_1) \), then \(y \in N_{w_1}(ww_1) \), a contradiction. Let \(u_1 \) be the furthest vertex in \(P(f) \) such that \(u_1 \in N_w(ww_1) \), \(u'_1 \) be the vertex incident with \(u_1 \) but not in \(N_w(ww_1) \). If the cycle \(P(a) \cup P(f) \cup P(b) \) is even, then \(d(u_1, y) + b = d(u'_1, x) + a - 1 \), that is \(d(u_1, y) - d(u'_1, x) = a - b - 1 \). If the cycle \(P(a) \cup P(f) \cup P(b) \) is odd, then \(d(u_1, y) + b + 1 = d(u'_1, x) + a - 1 \), that is \(d(u_1, y) - d(u'_1, x) - 1 = a - b - 1 \). Let \(u_2 \) be the furthest vertex in \(P(d) \) such that \(u_2 \notin N_w(ww_1) \), \(u'_2 \) be the vertex incident with \(u_2 \) but not in \(N_w(ww_1) \). If the cycle \(P(c) \cup P(e) \cup P(b) \) is even, then \(d(u_2, y) + b = d(u'_2, z) + c = d(u'_2, y) + a \), that is \(d(u_2, y) = a - b + d(u'_2, z) \). If the cycle \(P(c) \cup P(e) \cup P(b) \) is odd, then \(d(u_2, y) + b + 1 = d(u'_2, z) + a \), that is \(d(u_2, y) + b - 1 = d(u'_2, z) \). Then \(\delta(ww_1) = b + 2(a - b - 1) \geq 2a - b - 2 \geq a - 2 \geq 4 \). Then consider the edge \(xx_1 \) in \(P(a) \), in this case, we have \(w \in N_{x_1}(xx_1), z \in N_2(xx_1) \). If \(y \in N_0(xx_1) \), by the above analysis, we have \(\delta(xx_1) \geq 4 \). So \(\sum_{e \in E(G)} \delta^2(e) \geq a \times 4^2 > 18 \). If \(y \in N_2(xx_1) \), this is the Subcase 3.2.

Combining with equality (1), this completes the proof.

From Lemma 2.4, 2.5, 2.6 and 2.7, we have proved Theorem 1.1.

Remark: In fact, Theorem 1.1 can be improved to \(n \geq 23 \), which needs more details of the proof. But \(n \) can not be decrease, because the revised Szeged index of the graph \(\Theta_4 \) with \(b = e = d = e = f = 1 \) is less than \(F_n \).

References

[1] M. Aouchiche, P. Hansen, On a conjecture about the Szeged index, European J. Combin. 31(2010), 1662-1666.

[2] J.A. Bondy, U.S.R. Murty, Graph Theory, GTM 244, Springer, 2008.

[3] L. Chen, X. Li, M. Liu, On a relation between the Szeged and the Wiener indices of bipartite graphs, Trans. Comb. Vol. 1 No. 4 (2012), 43-49.

[4] L. Chen, X. Li, M. Liu, The (revised) Szeged index and the Wiener index of a nonbipartite graph, arXiv:1210.6460 [math.CO].

[5] I. Gutman, A formula for the Wiener number of trees and its extension to graphs containing cycles, Graph Theory Notes of New York 27(1994), 9-15.

[6] I. Gutman, S. Klavžar, B. Mohar(Eds), Fifty years of the Wiener index, MATCH Commun. Math. Comput. Chem. 35(1997), 1-259.

[7] I. Gutman, O.E. Polansky, Mathematical Concepts in Organic Chemistry, Springer, Berlin, 1986.

[8] I. Gutman, Y.N. Yeh, S.L. Lee, Y.L. Luo, Some recent results in the theory of the Wiener number, Indian J. Chem. 32A(1993), 651-661.

[9] P. Hansen, Computers and conjectures in chemical graph theory: Some AutoGraphiX open conjectures, Plenary talk at the International Conference on Mathematical Chemistry, August 4-7, 2010, Xiamen, China.
[10] A. Ilic, Note on PI and Szeged indices, Math. Comput. Model. 52(2010), 1570-1576.

[11] X. Li, M. Liu, Bicyclic graphs with maximal revised Szeged index, Discrete Appl. Math., doi: 10.1016/j.dam.2013.04.002, in press.

[12] T. Pisanski, M. Randić, Use of the Szeged index and the revised Szeged index for measuring network bipartivity, Discrete Appl. Math. 158(2010), 1936-1944.

[13] T. Pisanski, J. Žerovnik, Edge-contributions of some topological indices and arboreality of molecular graphs, Ars Math. Contemp. 2(2009), 49-58.

[14] M. Randić, On generalization of Wiener index for cyclic structures, Acta Chim. Slov. 49(2002), 483-496.

[15] S. Simić, I. Gutman, V. Baltić, Some graphs with extremal Szeged index, Math. Slovaca 50(2000), 1-15.

[16] H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc. 69(1947), 17-20.

[17] R. Xing, B. Zhou, On the revised Szeged index, Discrete Appl. Math. 159(2011), 69-78.