ABSTRACT
OAuth protocols have been widely adopted to simplify user authentication and service authorization for third-party applications. However, little effort has been devoted to automatically checking the security of the libraries that service providers widely use. In this paper, we formalize the OAuth specifications and security best practices, and design Cerberus, an automated static analyzer, to find logical flaws and identify vulnerabilities in the implementation of OAuth service provider libraries. To efficiently detect security violations in a large codebase of service provider implementation, Cerberus employs a query-driven algorithm for answering queries about OAuth specifications. We demonstrate the effectiveness of Cerberus by evaluating it on datasets of popular OAuth libraries with millions of downloads. Among these high-profile libraries, Cerberus has identified 47 vulnerabilities from ten classes of logical flaws, 24 of which were previously unknown. We got acknowledged by the developers of eight libraries and had three accepted CVEs.

CCS CONCEPTS
• Security and privacy → Vulnerability scanners; Web application security; Software security engineering; Security requirements; Authorization; Authentication; • Theory of computation → Formal languages and automata theory.

KEYWORDS
vulnerability detection; static analysis, automata theory; automated analysis; authorization attacks; OAuth security

1 INTRODUCTION
OAuth is widely used for authorizations across different software services. It defines a process for end-users (resource owners) to grant a third-party website/application (also noted as relying party or client applications [20]) access to their private resources stored on a service provider, without sharing their passwords for the service providers with the client applications. As a multi-party protocol, the security of OAuth depends on the service providers (also noted as authorization server or OAuth server [20]), the client applications, and the resource owners. In particular, vulnerabilities in OAuth server implementations could lead to severe consequences because that would impact all the client applications (along with all the resource owners of the applications) that work with the service provider. For example, a vulnerability discovered in 2019 in the Microsoft OAuth server’s redirect URI validation mechanism allowed the attackers to take over Microsoft Azure Accounts [4]. Also, in 2018, a vulnerability in Facebook OAuth server allowed the attackers to steal access tokens (issued by authorization server) of almost 50 million users [2].

Even well-known service providers such as Microsoft and Facebook still make severe mistakes in their authorization server implementation – which leads to a pressing question, how to vet OAuth service provider implementation for security? Since OAuth is very high-profile and critical for user security and privacy, many previous works have been on OAuth security. However, as far as we know, there is no automatic tool to identify the security-sensitive logical flaws in the service provider implementation.

Researchers have devoted significant effort to investigating OAuth security by analyzing the protocol [78] and proposing formal verification tools [50, 59]. However, these tools analyze the security at the protocol level and do not consider the diversified implementation details of OAuth server. Chen et al. [40] perform the first in-depth study on the security issues of OAuth by running a manual analysis of mobile apps and monitoring the network traffic. Later on, researchers develop semi-automated tools [35, 84] to report various security issues with OAuth client applications. However, these analyses often need an extensive manual setup and do not scale for large programs. Most recently, S3kvetter [80] performs symbolic execution, and OAuthlint [63] leverages whole-program data-flow analysis to check client-side properties. As we show later in the evaluation, these approaches are not applicable for checking OAuth server properties for the following reasons: first, symbolic execution suffers from path explosion [74] and whole-program analysis also does not scale well, especially for large codebases like OAuth server programs. Second, data-flow predicates alone are not expressive enough to describe crucial properties that require control-flow predicates.

In addition, most existing works assume that the OAuth servers are securely implemented, which clearly is not the case according to our study in this paper. As a result, it is urgent to help developers check the security of the OAuth server implementations. Unfortunately, as far as we know, there is no systematic security study of OAuth server implementations. Most previous works in OAuth

ABSTRACT
OAuth protocols have been widely adopted to simplify user authentication and service authorization for third-party applications. However, little effort has been devoted to automatically checking the security of the libraries that service providers widely use. In this paper, we formalize the OAuth specifications and security best practices, and design Cerberus, an automated static analyzer, to find logical flaws and identify vulnerabilities in the implementation of OAuth service provider libraries. To efficiently detect security violations in a large codebase of service provider implementation, Cerberus employs a query-driven algorithm for answering queries about OAuth specifications. We demonstrate the effectiveness of Cerberus by evaluating it on datasets of popular OAuth libraries with millions of downloads. Among these high-profile libraries, Cerberus has identified 47 vulnerabilities from ten classes of logical flaws, 24 of which were previously unknown. We got acknowledged by the developers of eight libraries and had three accepted CVEs.

CCS CONCEPTS
• Security and privacy → Vulnerability scanners; Web application security; Software security engineering; Security requirements; Authorization; Authentication; • Theory of computation → Formal languages and automata theory.

KEYWORDS
vulnerability detection; static analysis, automata theory; automated analysis; authorization attacks; OAuth security

1 INTRODUCTION
OAuth is widely used for authorizations across different software services. It defines a process for end-users (resource owners) to grant a third-party website/application (also noted as relying party or client applications [20]) access to their private resources stored on a service provider, without sharing their passwords for the service providers with the client applications. As a multi-party protocol, the security of OAuth depends on the service providers (also noted as authorization server or OAuth server [20]), the client applications, and the resource owners. In particular, vulnerabilities in OAuth server implementations could lead to severe consequences because that would impact all the client applications (along with all the resource owners of the applications) that work with the service provider. For example, a vulnerability discovered in 2019 in the Microsoft OAuth server’s redirect URI validation mechanism allowed the attackers to take over Microsoft Azure Accounts [4]. Also, in 2018, a vulnerability in Facebook OAuth server allowed the attackers to steal access tokens (issued by authorization server) of almost 50 million users [2].

Even well-known service providers such as Microsoft and Facebook still make severe mistakes in their authorization server implementation – which leads to a pressing question, how to vet OAuth service provider implementation for security? Since OAuth is very high-profile and critical for user security and privacy, many previous works have been on OAuth security. However, as far as we know, there is no automatic tool to identify the security-sensitive logical flaws in the service provider implementation.

Researchers have devoted significant effort to investigating OAuth security by analyzing the protocol [78] and proposing formal verification tools [50, 59]. However, these tools analyze the security at the protocol level and do not consider the diversified implementation details of OAuth server. Chen et al. [40] perform the first in-depth study on the security issues of OAuth by running a manual analysis of mobile apps and monitoring the network traffic. Later on, researchers develop semi-automated tools [35, 84] to report various security issues with OAuth client applications. However, these analyses often need an extensive manual setup and do not scale for large programs. Most recently, S3kvetter [80] performs symbolic execution, and OAuthlint [63] leverages whole-program data-flow analysis to check client-side properties. As we show later in the evaluation, these approaches are not applicable for checking OAuth server properties for the following reasons: first, symbolic execution suffers from path explosion [74] and whole-program analysis also does not scale well, especially for large codebases like OAuth server programs. Second, data-flow predicates alone are not expressive enough to describe crucial properties that require control-flow predicates.

In addition, most existing works assume that the OAuth servers are securely implemented, which clearly is not the case according to our study in this paper. As a result, it is urgent to help developers check the security of the OAuth server implementations. Unfortunately, as far as we know, there is no systematic security study of OAuth server implementations. Most previous works in OAuth

This work is licensed under a Creative Commons Attribution International 4.0 License.

CC '22, November 7–11, 2022, Los Angeles, CA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9450-5/22/11.
https://doi.org/10.1145/3548606.3559381
security either focus on client applications or report security issues on an ad hoc basis.

We compare the representative OAuth tools from previous work using five relevant criteria: (1) **Automated**: ability to identify vulnerabilities automatically, (2) **Coverage**: the ability to cover and reason about the behavior of OAuth implementation, (3) **Server-side flaws**: the ability to analyze logical flaws of service provider implementations, (4) **Extensibility**: the ability to provide an interface to define and check new security properties, (5) **Scalability**: scalable for extensive programs. We summarize the comparison in Table 1, which clearly shows the gap.

To bridge the gap, we propose systematically checking the security of OAuth server implementations of authorization flows. We start by investigating popular open-source OAuth server libraries. We find many developers use these libraries to implement their service provider applications instead of starting from scratch due to their complexity. For example, Node OAuth2 Server [8] library is used by more than 2,400 repositories on Github. Since developers widely use these open-source libraries to integrate OAuth in their implementations, checking the security of OAuth server implementations in these libraries also provides us insights about many implementations built on top of these libraries.

**Challenges**: However, developing an automatic tool for finding logical flaws of OAuth server implementations is quite challenging due to the following reasons:

- **Expressiveness**: The original specifications for OAuth protocols are written in plain English, which are difficult to be turned into checkable invariants consumed by the analyzers. Consequently, properties for implementing a secure and effective server-side implementation for authorization using OAuth are not well-defined.
- **Scalability**: Implementing the protocols on OAuth server is typically complex and large and often relies on many third-party libraries. Therefore, as shown in Sec. 6, a naive whole-program analysis will not scale well.
- **Generality**: Checking security properties in OAuth server implementations is not straightforward as they depend on various factors such as the client’s platform and types of grants (i.e., authorization flows) used by the client during the authorization process. Thus, it is non-trivial to devise a framework that unifies all properties enforced by the OAuth specifications.

---

**Table 1: Comparison with existing OAuth analysis tools.**

| Tool               | Auto. | Covg. | Serv. | Ext. | Scal. |
|--------------------|-------|-------|-------|------|-------|
| AuthSca [95]       |   ●   |   ●   |      |      |      |
| SSOScan [84]       |   ●   |   ●   |      |      |      |
| OAuthTester [81]   |   ●   |   ●   |      |      |      |
| S3kVetter [80]     |   ●   |   ●   |      |      |      |
| OAuthLint [63]     |   ●   |   ●   |      |      |      |
| Cerberus           |   ●   |   ●   |      |      |   ●   |

- Full support ● Partial support ○ No support.

**Auto.**: Automated, **Covg.**: Coverage, **Serv.**: Server-side flaws, **Ext.**: Extensibility, **Scal.**: Scalability

**Our solution**: To address the challenges mentioned above, we design and implement Cerberus, a scalable and automated static analysis tool for detecting logical flaws in large-scale OAuth server programs written in server-side languages like Java and Javascript. In particular, we first design a domain-specific language (DSL) to enable security analysts to express the security properties of OAuth server that are recommended by OAuth specification [20] and OAuth current security best practices [11].

Second, given an OAuth property $Q$ encoded in our query language, we represent both the desired property $Q$ and the OAuth server programs as System Dependence Graphs (SDGs). Therefore, Cerberus converts the problem of checking OAuth properties into a graph query problem, which an off-the-shelf Datalog engine [67] can answer. Note that our graph representation aims to strike a good balance between expressiveness and scalability by capturing temporal sequencing of API calls, data flows between arguments and returns of a procedure, data flows between various program objects, etc.

However, there is a steep trade-off between the precision of an SDG and the cost of constructing it. For example, SDGs constructed using a context-insensitive pointer analysis tend to grossly overapproximate the targets of virtual method calls, which leads to unacceptable false alarms. On the other hand, more precise SDGs obtained using context-sensitive pointer analysis can take hours to construct. Currently, analyses that rely on system dependence graph information must implement their own ad hoc analysis [44, 54] to answer application-specific queries. To mitigate this challenge and only reason about program fragments relevant to the query, we introduce a query-driven approach based on automata theory. Since the original system dependence graph is obtained by stitching all control flow graphs from the methods, our key intuition is to keep track of the methods relevant to the OAuth property. In particular, we define the OAuth request endpoint, which is the precondition of the OAuth property, specifying the entry and exit points of the relevant code snippet. After that, we leverage the request endpoints to pinpoint a sub-call graph between the request endpoints. Since the sub-call graph is typically small, its corresponding system dependence graph will also be small.

**Findings**: We evaluate our tool with the ten most popular libraries that use the standard OAuth protocol for implementing OAuth server and find pervasive vulnerabilities in these popular libraries. All the ten popular libraries we studied have at least one security-critical property violation (i.e., vulnerability). In total, we identified 47 vulnerabilities, 24 of which were previously unknown. We study ten security-critical logical flaws in OAuth server, five of which (P4, P5, P6, P7, and P9 in Table 2) are studied by us for the first time. Violation of these properties may lead to severe attacks that are commonly observed on OAuth servers. We got acknowledged by the developers of eight libraries, among which five libraries, including Spring Auth Server [19] and Node OAuth2 Server [8]), immediately took actions to fix the vulnerabilities. Three classes of new vulnerabilities in these libraries also lead us to have new CVE entries (CVE-2020-26877, CVE-2020-26937, and CVE-2020-26938). These vulnerabilities can lead to account breaches and confidential information leakage for both clients and resource owners. Eight libraries immediately acknowledged our findings; five have fixed the issues after we reported them, and the rest of the libraries...
2 BACKGROUND

This section describes the widely-used authorization protocol OAuth and the communication between different entities during the authorization process. In this paper, we focus on OAuth 2.0, which is the current industry-standard protocol for authorization, and throughout the paper, we refer to OAuth 2.0 when we say OAuth. OAuth 2.0 is an open standard authorization protocol where users delegate client applications (relying parties) to access their information hosted on the service providers without giving away their passwords. OAuth specification defines four types of grants—(1) authorization code grant, (2) implicit grant, (3) resource owner password credentials grant, (4) client credentials grant. Two grants are most widely used in practice – authorization code grant and implicit grant. In the following, we explain the details of these two grants.

Implicit Grant. Implicit grant is the simplest grant type. It has two steps. First, the user is redirected to the OAuth server to grant the relying party (client) access to their protected resources. After the user grants permission, the server redirects the user back to the relying party along with an access token. The relying party can then use this access token to request the user’s protected resource from the OAuth server.

Authorization Code Grant. Authorization code grant can be used by both web apps and native apps to obtain the access token. The flow of authorization code grant is illustrated in Fig. 1. The authorization code grant augments the implicit grant by adding a step for authenticating the relying party (client). After user grants permission to the relying party, OAuth server redirects the user back to the relying party. Instead of providing the access token directly to the relying party, the server sends an authorization code this time. Then the relying party can use the authorization code to exchange for the access token by making a new request at the token endpoint. To get the access token, the relying party needs to include its identity in this request so that the server can verify if the authorization code is granted to the same party.

Although the authorization code grant provides better security benefits than the other grants, it is still vulnerable to code interception attacks, especially for public clients (e.g., native desktop apps), where the attackers intercept the authorization code returned from the authorization endpoint (step C in Fig. 1) and obtain the access token by exchanging the code at the token endpoint (step D). To mitigate the risk of code interception attack, OAuth specification introduces an extension of the authorization code grant called Proof Key for Code Exchange (PKCE) [18] and requires all OAuth servers to support PKCE for public clients. It is worth mentioning that, although PKCE was originally designed to protect public clients, it is recommended [11] to use PKCE for all kinds of clients, including web applications.

PKCE. Since public clients cannot maintain confidentiality and cannot securely store the client’s secret, using PKCE allows OAuth server to authenticate clients without the secret key. PKCE utilizes a dynamically created cryptographic random key called code verifier. A unique code verifier is generated by the client for every authorization request. The transformed value of the code verifier, called code challenge, is sent to the OAuth server to obtain the authorization code. When a client makes a new request at the token endpoint to obtain the access token, it also sends the code verifier along with the authorization code it received from the previous request. To validate the proof of possession of the code verifier by the client, OAuth server transforms the code verifier and validates it with the previously received code challenge. This approach helps to mitigate the authorization code injection attack as an intercepted authorization code from the authorization endpoint cannot be exchanged for an access token without the one-time key of code verifier.

3 OVERVIEW

This section briefly explains how our tool detects vulnerabilities in OAuth server implementations using a motivating example. In what follows, we first describe the threat model our system, and then with a real-world example, we explain how insufficient security checks in the OAuth server allow malicious clients to steal sensitive OAuth credentials and how our tool is designed to detect such logical flaws.

Threat Model: We aim to detect vulnerabilities in the OAuth server at the implementation level. We assume attackers can be a malicious relying party or a malicious user (resource owner) who interacts with the victim OAuth server, also known as service provider. We assume the attackers cannot directly modify the source code or logic of the service provider but can initiate attacks by sending requests to their server. The relying party attackers control their own malicious
relying party apps. For example, the relying party attackers might send malicious requests to the victim service provider to access the user’s information without the user’s approval. The resource owner attackers use their own devices to communicate with the benign service provider to log in on behalf of the victim user.  

**Vulnerable implementation.** The industry-standard authorization protocol of OAuth is well designed for access delegation, but a wrong implementation or incorrect usage can have a colossal impact. During the authorization process, client gets an access token with specific permissions to take actions on behalf of the user which can even be used to control user’s account. When responding to an authorization request, the OAuth server passes the authorization code or tokens to the client application using a redirect URI, which describes the destination where the code or tokens are passed. The client application sets an allowed list of trusted URIs to receive the OAuth tokens during the registration process. However, many OAuth servers do not appropriately validate redirect URI, leading to the possibility of passing the tokens to a malicious URI under the attackers’ control. In recent years, many attacks exploiting the redirect URI have been observed in the OAuth servers, including the popular ones like Microsoft [4] and Twitter [22]. Similar attacks have been observed in the open-source OAuth servers, as they also utilize the same OAuth protocol.

For example, ApiFest [5] is a popular open-source OAuth server implementation that uses OAuth protocol to provide a secure API management service. We identify a new vulnerability of incorrect redirect URI validation in this library (CVE-2020-26877). Fig. 2 demonstrates a simplified implementation of their authorization request endpoint. ApiFest server makes mistakes in the critical step of checking the redirect URI submitted by the client, which allows an attacker to obtain the authorization code by using a maliciously crafted redirect URI during an authorization request. In particular, this implementation makes two severe security mistakes at this step (line 6-9 in Fig. 2): (1) it does not check whether the redirect URI is registered to the corresponding client, (2) it omits the required format checking for the redirect URI. Since the server does not match the submitted redirect URI with the client’s registered URI, it allows the attacker to craft the redirect URI parameter with attacker’s own redirect URI and thereby, steal the authorization code of a legitimate client through the redirected URI. Additionally, attackers can also leverage open redirects of the user agent to steal the authorization code. These mistakes also violate the standard OAuth specification as described in RFC-6749 [20].

To detect such security vulnerabilities caused by incorrect implementation of logical properties for OAuth, in this paper, we design and implement an automated and scalable tool, called *Cerberus*, to analyze the large codebase that implements OAuth server. We first identify the security-sensitive properties based on the standard OAuth specification [20] and security best practices [11, 12]. Then, we meticulously design a query language to formally express the properties so that developers can easily define them and they are understandable by the analysis tool as well. *Cerberus* then represents OAuth server programs at the statement level using system dependence graphs (SDGs), while maintaining the control and data flow relationship between the statements. However, as OAuth server programs can be huge, running analyses on the statement-level representation for the whole program do not scale well. To overcome the scalability challenge, *Cerberus* automatically identifies the program component corresponding to OAuth query. Finally, after *Cerberus* pin-points its scope in the OAuth relevant implementation in the program, it executes the query to identify the violation of properties that might expose the server to security attacks.

### 4 SYSTEM DESIGN

In this section, we discuss the design and implementation of *Cerberus*, our end-to-end static analysis tool for systematically checking the security issues of OAuth server implementation.

Fig. 3 shows an overview of the *Cerberus* approach for checking OAuth properties for Java or Javascript programs. *Cerberus* takes two inputs: (1) the source or byte code of an application, and (2) a user-provided OAuth property \( Q \) specifying the correct behavior using our query language. Given these two inputs, *Cerberus* performs signature matching by checking whether there exists an *embedding* of the application with respect to property \( Q \)
4.1 Code Representation

Given a program, Cerberus first generates its abstract representation using static analysis. In particular, we leverage System Dependence Graph (SDG), which summarizes both data- and control-dependencies among all the statements and predicates in the program.

More formally, SDG for an application A is a graph \((V, X, Y)\) where:

- \(V\) is a set of vertices, where each \(v \in V\) is a program statement of A.
- \(X\) encodes control-dependency edges. Specifically, \((v, v') \in X\) indicates that during execution, \(v\) can directly affect whether \(v'\) is executed. Precisely, SDG creates three additional edges to handle function calls: (1) call edge, (2) parameter-in edge, and (3) parameter-out edge. Call edge connects the node at callsite (in caller) to the entry node of the called procedure (i.e., callee). Parameter-in edges connect the actual-in (caller) parameter nodes to the formal-in (callee) parameter nodes of the called procedure, and parameter-out edges connect the formal-out (callee) nodes to the actual-out (caller) nodes.
- \(Y\) is a set of data-dependency edges. In particular, \((v, v', d) \in Y\) indicates that statement \(v\) and \(v'\) are related by metadata \(d\). Here, we use metadata \(d\) to denote *taint sources* that will be propagated by the data-flow analysis. Also, \(X\) is data dependent on \(Y\) if \(Y\) is an assignment and the value assigned in \(Y\) can be referenced from \(X\).

**Example 1.** Fig. 4(A) shows a simplified SDG constructed from the code example in Fig. 2. In the SDG, the nodes represent statements of the program such as function calls, field access, etc. The edges represent the control- and data-dependencies between the statements. For example, since the if condition (line 7) depends on the value of redirect_uri field (line 4), the conditional node (= Null?) has a data-dependency edge from the field access node (request.redirect_uri). On the other hand, control-dependency between the function call nodes, getClient() and AuthRequest(), implies the getClient() is invoked after the AuthRequest() is invoked.

4.2 Facts and Inference Rules for SDG

Inspired by OAuthlint’s formalization [63], Cerberus converts the application’s SDG into its corresponding facts and rules using Datalog. We first give some preliminaries on Datalog program, and then describe the syntax and semantics of Cerberus’s built-in predicates.

A Datalog [25] program is a set of facts and rules written in a declarative logic language. Facts correspond to predicates that evaluate to true. For example, in SDG’s context, edge(Stmt1, Stmt2) implies that statement node Stmt1 and Stmt2 are connected by an edge. Each rule is a Horn clause [71] defining a predicate as a conjunction of predicates. For example, the following program:

\[
\begin{align*}
\text{path}(x, y) & : = \text{edge}(x, y). \\
\text{path}(x, y) & : = \text{path}(x, z), \text{edge}(z, y).
\end{align*}
\]

tsays that \(\text{path}(x, y)\) is true if \(\text{edge}(x, y)\) is true, or both \(\text{path}(x, z)\) and \(\text{edge}(z, y)\) are true. In addition to variables, predicates can also contain constants (surrounded by double quotes), or “don’t cares”, denoted by “.”.

4.2.1 Base Facts in Cerberus

Unlike OAuthlint whose analysis is flow-insensitive, many crucial properties in OAuth server require a flow-sensitive analysis. Therefore, Cerberus’s facts take the form of \(A(L, y, x_1, ..., x_n)\), where \(A\) is the instruction name, \(L\) is the instruction’s label, \(y\) is the variable storing the instruction result (if any), and \(x_1, ..., x_n\) are variables given to the instruction as arguments (if any). For example, the instruction \(l_1 : r_1 = 0\) is encoded as assign\((l_1, r_1, 0)\). Additionally, alloc\((l_1, y, x)\) means that variable \(x\) may point to abstract location \(y\) and alias\((x, y)\) denotes that variable \(x\) and \(y\) may point to the same abstract location. Furthermore, the branch instruction branch\((l_1, X, L_2, L_3)\) denotes that if \(X\) is evaluated to true, then the next instruction will be \(L_2\), otherwise \(L_3\). Using the base facts described above, Cerberus computes the semantic facts of (i) control-dependency predicates, which capture instruction dependencies according to the application’s CFG, and (ii) data-dependency predicates.

4.2.2 SDG Predicates

Cerberus provides built-in predicates to encode SDG generated from Sec. 4.1. In particular, the depOn\((y, x)\) predicate indicates that the value of variable \(x\) has data-dependence
on y. Similarly, the followBy predicate is inferred from the application’s CFG. Intuitively, followBy(L₁, L₂) holds for L₁ and L₂ if both are in the same basic block and L₂ follows L₁, or there is a path from the basic block of L₁ to the basic block of L₂. The SDG predicates are computed using the following datalog rules:

\[
\begin{align*}
\text{depOn}(x, y) & : = \text{alloc}(\_, y, x) \\
\text{depOn}(x, y) & : = \text{assign}(\_, y, x) \\
\text{depOn}(x, z) & : = \text{assign}(\_, y, x), \text{depOn}(y, z) \\
\text{depOn}(x, z) & : = \text{alias}(y, z), \text{depOn}(x, y) \\
\text{followBy}(x, y) & : = \text{follow}(x, y) \\
\text{followBy}(x, z) & : = \text{followBy}(y, z), \text{follow}(x, y)
\end{align*}
\]

Here, we use the follow(L₁, L₂) as the base case which holds if L₂ immediately follows L₁ in the CFG.

4.2.3 OAuth Predicates. In addition to basic facts from the SDG, Cerberus’s query language also defines a list of predicates specific to the OAuth domain. The predicate OAuthTag(L, T) defines that, the value at label L is assigned tag T. Here, tag T is associated with program statements that hold OAuth-specific resources such as redirect_uri, access_token, etc. For instance, the field access at line 8 in Fig. 2 is denoted as OAuthTag(8, client_redirect_uri). Similar to [63], the OAuthTag predicate is computed through a standard data flow analysis in WALA. Specifically, our analysis first marks a set of APIs that could return OAuth resources as the sources. All variables assigned (either direct or transitive) by the sources will also point to the corresponding sources. In particular, since it is difficult to precisely pinpoint strings that correspond to redirected URLs, we use both pattern matching (i.e., regular expressions) and domain-specific knowledge (i.e., API that may return a redirected URI or object values accessed by the keys defined in the specification) to over-approximate the domain of URI. Furthermore, invoke(L, m) predicate implies that method m is invoked at a location with label L. Here, m can be both OAuth-specific methods (e.g., gen_token) and programming language-specific methods (e.g., matches). sload(L, q) predicate defines the load data operation for server’s storage model q (e.g., database). Similarly, sstore/sdelete defines the store/delete operations. Finally, error(L, e) implies that an OAuth exception is thrown with an error message e.

4.3 Query Language

In this section, we show how to express OAuth properties over semantics facts of an application. We begin by defining the query language for expressing security patterns. This construction enables us to determine whether an application complies with a given security property. Specifically, for each OAuth property, the user defines a unique predicate that serves as the signature for the property. The user may also define additional helper predicates used by the signature.

**Syntax.** The syntax of the query language is given by the following Backus–Naur form (BNF):

\[
\phi ::= \text{depOn}(v₁, v₂) \mid \text{followBy}(v₁, v₂) \mid \text{branch}(\ldots) \\
\mid \text{OAuthTag}(x, y) \mid \text{invoke}(l, m) \mid \text{sload}(l, q) \mid \ldots \\
\mid \neg\phi \mid \phi \land \phi \mid \phi \lor \phi
\]

We now formally define our property signatures and state what it means for an app to match a property. Intuitively, a signature for a property \(\cal F\) is an SDG \((V₀, X₀, Y₀)\) that captures semantic properties. Ideally, \(G₀ = (V₀, X₀, Y₀)\) would satisfy the following: \(G₀\) occurs as a subgraph (defined below) of the SDG \(G_S = (V_S, X_S, Y_S)\) of an OAuth application.

By “occurs as a subgraph”, we mean there exists an embedding \(F_S : V₀ → V_S\) such that the following properties hold:

- **One-to-one.** For every \(v, v' \in V₀\) where \(v \neq v'\), \(F_S(v) \neq F_S(v')\).
- **Type preserving.** For every \(v \in V₀\), \(F_S(v)\) must map \(v\) to a vertex of the same type, i.e., \(T(F_S(v)) = T(F_S(v'))\).
- **Edge preserving.** For every \(v, v' \in V₀\), \(F_S(v)\) must map an edge \((v, v') \in X₀\) to an edge in \(X_S\):

\[
(v, v') ∈ X₀ ⇒ (F_S(v), F_S(v')) ∈ X_S.
\]

Given property \(G₀ = (V₀, X₀, Y₀)\) and app \(S\) with SDG \(G_S = (V_S, X_S, Y_S)\), we say that \(G₀\) exactly matches (or simply matches) \(S\) if \(G₀\) occurs as a subgraph of \(G_S\). In other words, given a signature \((V₀, X₀, Y₀)\) and a sample \(S\) with SDG \((V_S, X_S, Y_S)\), we can check whether \((V₀, X₀, Y₀)\) matches \(S\). If so, we have determined that \(S = F\); otherwise, \(S \not= F\).

4.3.1 Expressing OAuth properties. Table 2 shows the list of properties that we express using our query language. We obtain these properties from the documentation of standard OAuth specifications [12, 18, 20] and security best practices [11]. In what follows, we briefly discuss the properties and their formal representation.

OAuth requires that the redirect URI submitted during the authorization request match the client’s registered URI (P1). Specifically, we tag these OAuth parameters by OAuthTag(L, T) and OAuthTag(\_<client_cert>), respectively. In addition, since this URI is used to transfer sensitive information like authorization code, the specification also requires the URI to be an absolute URI (P2), preventing attackers from utilizing the open redirector of the user agent to intercept the sensitive information. Server programs commonly use pattern matching APIs (e.g., ‘matches’) to match the redirect URI value.

To prevent code replay attacks during token request, OAuth also requires the authorization code to be single-use (P3), meaning the code can be used only once (to generate token) by the client. Therefore, once the code is used, OAuth server removes it from the storage (e.g., database) and rejects requests (with error message) when the code is not found in storage. We use OAuthTag(\_<code> to tag authorization code and invoke(\_<gen_token> to track the OAuth-specific API call for generating token.

OAuth security best practices require OAuth server supporting PKCE [18] to protect public clients (e.g., native desktop apps). To securely implement PKCE, servers first receive and store the PKCE parameters (e.g., code_challenge) at authorization endpoint (P6), and transforms (by ‘sha256’) the code_verifier parameter to match with the code_challenge at the token endpoint.

OAuth also requires access token to be constrained to a certain client to prevent token injection attacks (P9). Mutual-TLS [10] (also noted as m-TLS) is a standardized and widely used client-constrained mechanism that allows the clients to demonstrate the proof of possession when using the access token. In m-TLS, the server first obtains the client’s certificate from TLS stack and associates it with the token before sending to the clients. The certificate is decoded and encoded using standard Base64 decode-encode APIs. In our formalization, we use OAuthTag(\_<client_cert> to tag
Table 2: We define ten security properties to detect the most commonly observed logical flaws on OAuth servers based on the standard OAuth specifications (RFC-6749 [20], RFC-6819 [12], RFC-7636 [18]) and OAuth security current best practices [11]. We express the Cerberus queries using the predicates defined in Sec. 4.2.

| Prop. | Grants | Description | Cerberus query |
|-------|--------|-------------|----------------|
| P1    | AuthCode, Implicit | OAuth server must validate the redirect URI parameter in the authorization request exactly matches with the client’s registered URI before sending the redirected response to the URI (RFC-6749) | invoke(L1, auth_req), OAuthTag(L2, req_URI), OAuthTag(L3, client_URI), invoke(L4, redirect), error(L5, _), branch(L6,X,L4,L5), followBy(L1,L2), followBy(L1,L3), depOn(L2,X), depOn(L3,L4). |
| P2    | AuthCode, Implicit | Redirect URI parameter in authorization request must be an absolute URL. OAuth server implementations utilize pattern matching APIs to perform this validation. (RFC-6749, RFC-6819) | OAuthTag(L1, auth_req), OAuthTag(L2, req_URI), OAuthTag(L3, abs_URI), invoke(L4, matches), invoke(L5, redirect), error(L6, _), branch(L7,X,L5,L6), followBy(L1,L2), depOn(L2,L4), depOn(L3,L4), depOn(L4,X). |
| P3    | AuthCode | Authorization code must be single-use, meaning the code must be revoked once it is exchanged for token. If a revoked code is used again, OAuth server must deny the request with an error message. (RFC-6749) | invoke(L1, token_req), OAuthTag(L2, code), sload(L3, db), invoke(L4, gen_token), sdelete(L5, db), error(L6, _), branch(L7,X,L4,L6), followBy(L1,L2), depOn(L2,L3), depOn(L3,X), followBy(L4,L5), depOn(L2,L5). |
| P4    | AuthCode | Authorization code must be bound to a certain client. Before issuing the token from the token request endpoint, OAuth server must check the code is the same as the one issued to the client. (RFC-6749, OAuth Security Best Practices) | invoke(L1, token_req), OAuthTag(L2, code), OAuthTag(L3, client_code), invoke(L4, gen_token), error(L5, _), branch(L6,X,L4,L5), followBy(L1,L2), depOn(L2,L3), depOn(L3,X). |
| P5    | AuthCode | Authorization code must be bound to the client’s redirect URI to where it was issued. Before issuing the token, the server must check that the code is associated with the client’s redirect URI. (RFC-6749) | invoke(L1, token_req), OAuthTag(L2, code), OAuthTag(L3, client_URI), invoke(L4, gen_token), error(L5, _), branch(L6,X,L4,L5), followBy(L1,L2), followBy(L1,L3), depOn(L2,X), depOn(L3,X). |
| P6    | AuthCode | OAuth server must store the PKCE parameters (i.e., code challenge and code challenge method) at the authorization endpoint to be validated at token endpoint (RFC-7636, OAuth Security Best Practices). | invoke(L1, auth_req), OAuthTag(L2, code_challenge), OAuthTag(L3, code_challenge_method), sstore(L4,db), invoke(L4,L2), followBy(L1,L2), followBy(L1,L3), depOn(L2,L4), depOn(L3,L4). |
| P7    | AuthCode | OAuth server must verify the authenticity of PKCE parameters at token endpoint. The transformed (i.e., sha256) value of code_verifier parameter must be same as the code_challenge value (RFC-7636, OAuth Security Best Practices). | invoke(L1, token_req), OAuthTag(L2, code_challenge), OAuthTag(L3, code_verifier), invoke(L4, sha256), invoke(L5, gen_token), error(L6, _), branch(L7,X,L5,L6), followBy(L1,L2), followBy(L1,L3), depOn(L3,L4), depOn(L4,X), depOn(L2,L2). |
| P8    | AuthCode, Implicit | OAuth server must provide CSRF protection by handling the state parameter in authorization request. Value of the state parameter must be added to the redirected response of authorization request. (RFC-6749, OAuth Security Best Practices) | invoke(L1, auth_req), OAuthTag(L2, state), invoke(L3, redirect), error(L4, _), branch(L5,X,L3,L4), followBy(L1,L2), depOn(L2,L3), depOn(L2,L3). |
| P9    | AuthCode, Implicit | Access tokens issued by the OAuth server should be constrained to a certain client. m-TLS is a standardized and widely used client-constrained mechanism, in which the server first obtains the client’s certificate from TLS stack, decodes and hashes the certificate and finally, associates it with the access token. (RFC-8705, OAuth Security Best Practices) | OAuthTag(L1, access_token), OAuthTag(L2, client_cert), invoke(L3, b64_decode), invoke(L4, b64_encode), invoke(L5, sha256), invoke(L6, add_cert), depOn(L2,L3), depOn(L3,L5), depOn(L5,L4), depOn(L1,L6), depOn(L4,L6). |
| P10   | AuthCode, Implicit | OAuth server must not store access tokens as clear-text and should store access token hashes only (RFC-6819). | OAuthTag(L1, access_token), invoke(L2, sha256), sstore(L3, db), invoke(L4,L2), depOn(L2,L3). |

states holding client’s certificate, and invoke(L4, b64_encode), invoke(L4, b64_decode), etc. to track the corresponding domain-specific APIs.

Once a query expressing a property from the OAuth specification is submitted, Cerberus checks the it against the SDG representation of the input program.

Example 2. Fig. 4(B) shows a graphical representation of the query that over-approximates the redirect URI property (P1) in Table 2. It represents a signature where a redirect URI received during an authorization request (request.redirect_uri) is matched with the redirect URI field of a client instance (client.redirect_uri) before making a redirect function call, which must be used for a successful response to the authorization request. Therefore, this signature can be used to check that a successful redirection occurs only after the check for redirect URLs is performed. Otherwise, an error response is generated. On the other hand, the SDG (Fig. 4(A)) of the program for processing authorization request retrieves the 'redirect_uri' from the 'request' instance, but the 'redirect_uri' is matched only against the NULL value before sending the redirection using 'sendRedirect' function call. However, OAuth specification requires that the server must check whether the 'redirect_uri' of the authorization request is the same as the 'redirect_uri' registered to the client, which is not done in this program. Therefore, Cerberus reports a violation.

5 IMPLEMENTATION

This section discusses the design and implementation of Cerberus, as well as a few key optimizations.
5.1 Query-driven Exploration

*Cerberus* leverages System Dependence Graph (SDG) that captures program’s control- and data-flow dependencies. However, there is a steep trade-off between the precision of an SDG and the cost of constructing it. For example, SDGs constructed using a context-insensitive pointer analysis tend to grossly overapproximate the targets of virtual method calls, leading to unacceptable false alarms. On the other hand, more precise SDGs obtained using context-sensitive pointer analysis can take hours to construct. Currently, analyses that rely on system dependence graph information must implement their own ad hoc analysis [44, 54] to answer application-specific queries. To mitigate this challenge, we introduce a query-driven approach whose key insight is to only reason about small program fragments relevant to the OAuth property.

Since the original system dependence graph is obtained by stitching all control flow graphs from the methods, our key intuition is to keep track of the methods relevant to the OAuth property. In particular, we define OAuth request endpoint \( Q \), which is the precondition of the actual OAuth property specifying the entry and exit points of the relevant code snippet. After that, we leverage the request endpoints to pinpoint a sub-callgraph between the request endpoints. Since the sub-callgraph is typically small, its corresponding system dependence graph will also be small.

Given an endpoint regex as input, we implement a lightweight program slicing using automata theory [33]. Specifically, *Cerberus* first constructs the so-called query automaton (QA) [48] for the request endpoints and the callgraph automaton (CGA). Here, the query automaton is simply an NFA-representation of the regular expression specified by the user. Since the problem of converting regular expressions to finite state machines is well-studied [36], we do not explain the QA construction in detail here.

We now explain the syntax and semantics of its query language for specifying request endpoints. For a given program \( P \), *Cerberus* accepts specifications written in the following query language:

\[
\text{Query } Q = f \in \text{methods}(P) \mid . \mid Q_1 \rightarrow Q_2 \mid Q_1 + Q_2 \mid Q^* \mid (Q)
\]

The building blocks of queries are method names in program \( P \), denoted by methods(\( P \)). The dot character ("." ) matches any method name, and the \( \rightarrow \) operator indicates a call from one method to another. The "*" operator is used for taking the disjunction of two queries. As usual, the "*" operator stands for Kleene closure, and \( Q^* \) is syntactic sugar for \( Q \rightarrow Q^* \).

The callgraph automaton CGA for a given application \( P \) with respect to a callgraph \( C \) is a finite state machine where states include all methods of \( P \) and transition functions correspond to call edges (i.e., function calls). After constructing the query and callgraph automata, the next step is to compute the intersection of those two using the JSA [42] tool. The output is a product automata that encode a relevant program slice with respect to the query.

**Example 3.** Fig. 5 (A) shows a partial call graph Automaton (CGA) constructed from the OAuth program in Fig. 2. Since the original program may lead to a large call graph that is difficult for a whole-program analysis, the user can optionally obtain a relevant program slice by specifying a query "." \( \rightarrow \) authRequest \( \rightarrow ." \rightarrow \) sendRedirect\), which is a regular expression representing the entry and exit point of OAuth endpoints. Here, our goal is to extract the intersection between the callgraph and the user-specified query. Fig. 5 (B) shows a query automaton (QA) that we use to represent OAuth endpoint’s signature, and (C) is the partial product automaton constructed by *Cerberus*.

We note that, compared to a naive whole-program analysis, our query-driven exploration does not miss a property violation as long as all the necessary endpoints are provided. Since the endpoints’ signature defining the entry and exit node is the precondition for the each property, *Cerberus* will not prune any paths that might violate the corresponding property.

5.2 Hybrid Analysis for Dynamic Features

The system dependence graph may not capture the full semantics of some OAuth properties. For instance, one CVE entry (CVE-2020-26938), identified by *Cerberus*, is caused by checking if the redirect URI contains an absolute URI using an incorrect URI pattern "[a-zA-Z][a-zA-Z0-9+-.]*". This may lead to incorrect results since our current abstraction does not reason about the semantics of regular expressions. Also, since our tool is based on static analysis, it may not determine whether a branch condition evaluates to true or not.
However, a fully dynamic analysis will be prohibitive since we have to deal with libraries with a large codebase.

To mitigate the above-mentioned challenge, Cerberus incorporates a hybrid approach: in particular, given an application that may potentially contain dynamic features or regular expressions that go beyond the scope of our current static analysis, we first make the most conservative assumption by assigning relevant predicates to false. For instance, the branch predicate will evaluate to false if its condition contains regular expressions, which will fail the signature matching procedure and raise a potential false alarm. After that, we perform a light-weight delta testing as follows: for each predicate that is assigned to false due to our conservative assumption, we dynamically exercise the relevant code to recover the missing facts. For example, for the case with regular expressions, given a set of input strings, we will test whether the actual regular expression’s output is the same as the ones generated by the correct regular expression. If so, we turn its corresponding predicate to true and rerun Cerberus. We iterate this process until Cerberus confirms a violation or all false alarms are eliminated. Our current implementation can handle cases of dynamic features (e.g., reflective calls in Java) where it takes arguments with string constants. In such cases, we leverage the current data-flow analysis to keep track of the strings that may be used as class or function names.

5.3 The Cerberus Tool

We implemented our core static analysis on top of the WALA framework [21], which provides compilation and analysis infrastructure for both Java and Javascript. Cerberus’s implementation consists of approximately 9,860 lines of Java code. We use an Andersen-style pointer analysis [34] and the CHA (Class Hierarchy Analysis) call-graph algorithm provided by WALA. An OAuth-endpoint expressed in regular expression, is converted into its query automata using the JSA library [42].

From source code to Datalog programs. Given a service provider program P written in Java or Javascript, Cerberus first leverages the WALA framework to generate its corresponding system dependence graph (SDG) from bytecode (for Java) or scripts (for Javascript). As shown in Figure 4, each node of the SDG corresponds to a state-ment using WALA’s intermediate representation in Static Single Assignment (SSA) form. Each statement will be translated into its Datalog fact for allocation, assignment, function call, etc. Second, each edge is translated into its corresponding predicate in Datalog. For instance, the control- and data-dependence edges are translated into their corresponding followby and depont predicates discussed in Section 4.2, respectively. Finally, Cerberus leverages the Soufflé [67] Datalog solver for checking conformance between the SDG and the OAuth properties.

Resolving Node.js modules. For Javascript, the callgraph is constructed directly from the source code (i.e., scripts). Therefore, function calls from an included module from Node.js framework is not automatically resolved as the required source files are not known to the analysis. For example, to implement a HTTP server in Node.js framework, developers may call http.createServer() from the HTTP module by using require(‘http’). Therefore, to resolve the call createServer(), we first need to identify the required source file to be included in the analysis. We use the pointer analysis to identify the strings that can flow to a require call. Then the corresponding file is loaded in the analysis, and the target method is included in the callgraph.

6 EVALUATION

To determine the effectiveness of Cerberus, we evaluate it on popular OAuth-server libraries to answer the following research questions:

- **RQ1**: Can Cerberus identify real-world vulnerabilities?
- **RQ2**: Is our query-driven approach efficient and effective?

6.1 Experimental Setup

We conduct all experiments on a Quad-Core Intel Core i5 computer and 16GB of memory running on the macOS 12.1 operating system. In what follows, we elaborate on the details of the setup.

6.1.1 Dataset. We consider high-profile OAuth-server libraries written in Java or Javascript. With extra engineering effort, our techniques can technically be applied to applications in other languages as well. To answer the research questions, we consolidate two datasets of open-source OAuth server libraries that implement the standard OAuth specification [20].

- **DataSetU**: This dataset contains 10 popular open-source libraries of OAuth server (i.e., service provider) where it is unknown whether the libraries satisfy the security properties. Table 3 shows the key statistics for the selected libraries. To select the libraries, we first consider their popularity among the web developers. For example, Node Oauth2 Server [8] library has more than 200k downloads each month. Similarly, Oauth2orize [16] and Node oidc provider [9] have approximately 179k and 65k downloads each month. Additionally, we also consider the number of dependant repositories (i.e., repositories that use the APIs of the library) as an indicator of the popularity of our selected libraries. All of the libraries support the widely used authorization code grant [20], and three also support the implicit grant. Four of these libraries are implemented in Javascript, and six are implemented in Java. Some libraries (e.g., OxAuth) are considerably larger than others as they also support additional endpoints (e.g., token introspection) and platform-specific custom grants for their authorization server.

- **DataSetK**: This dataset contains 12 OAuth libraries with 49 OAuth-specific logical flaws that are confirmed by Github issues or online forums. Among the 49 logical flaws, 13 were caused for improper handling of authorization code, 12 for mishandling access token, 7 for redirect URI validation, 8 for missing or incorrect PKCE validation, 3 for state parameter, and 6 for other issues such as incorrect client validation. While the selection criteria for these libraries are similar to DataSetU, we exclude libraries whose ground truths are unknown. Six of these libraries are implemented in Javascript, and six are implemented in Java. All libraries follow the standard OAuth specifications and support all the commonly used grants.

6.1.2 State-of-the-arts. Existing tools focus on OAuth properties by analyzing the flows observed from client-side applications while treating the server-side as blackbox. Therefore, there is no prior work that directly performs whitebox analysis on OAuth server programs. OAuthlint [63] is the closest to our work as they also statically analyze source code of client applications to check
OAuth properties. Unlike Cerberus, OAuthlint only supports OAuth properties expressed via data-flow predicates. Furthermore, OAuthlint performs whole-program analysis over the client application. S3kvetter [80] leverages symbolic execution to check security properties in OAuth SDKs, which provides APIs for implementing client applications. Similar to OAuthlint, S3kvetter also considers server-side implementation as blackbox. In fact, S3kvetter implements its own model of the server to analyze the client-side flows for all of the SDKs. Its properties are defined in terms of the request-response behavior observed from client apps. Therefore, we cannot compare against S3kvetter because of unsupported properties (e.g., checking expressions, API calls, etc.) and unsupported languages (e.g., S3kvetter only supports Python).

6.1.3 User inputs. Cerberus takes as inputs a target program $P$ and a property $Q$. For each benchmark, we check it against all properties defined in Table 2. To quantify the manual effort of writing the queries before running the evaluation, we recruited 18 independent students from a graduate-level security class—who were provided with the OAuth properties (i.e., from specification reading the specification). From reading the specification.

Table 3: Statistics for the open-source OAuth server libraries in $\text{DataSet}_U$. Here, AC and I indicate the OAuth’s authorization code grant and implicit grant, respectively.

| OAuth-server libraries             | Ver. | Language | Grants | #LOC |
|-----------------------------------|------|----------|--------|------|
| 1) Node oauth2 server [8]         | 3.1.1| JS       | AC     | 3,936|
| 2) OAuth2ize [16]                 | 1.1.0| JS       | AC, I  | 3,483|
| 3) Node oauth2 provider [9]       | 6.29.5| JS     | AC, I  | 15,493|
| 4) OAuth2 server [15]             | 1.0  | JS       | AC     | 2,946|
| 5) Spring auth server [19]        | 1.0  | Java     | AC     | 28,374|
| 6) OAuth2 server [8]              | 1.3.0| Java     | AC     | 8,462 |
| 7) Jenkins OAuth server [13]      | 1.0  | Java     | AC     | 6,480 |
| 8) Apist [3]                      | 0.3.1| Java     | AC     | 14,371|
| 9) Youcho server [14]             | 1.0  | Java     | AC     | 6,764 |
| 10) OxAuth [3]                    | 3.0.2| Java     | AC, I  | 62,857|

Table 4: Evaluation results of Cerberus on $\text{DataSet}_U$.

| OAuth-server libraries             | #Known logical flaws | #Flaws identified by Cerberus | eFN |
|-----------------------------------|----------------------|-------------------------------|-----|
| 1) OxAuth [7]                     | 9                    | 4                             | 1   |
| 2) Maitre Server[27]              | 7                    | 6                             | 1   |
| 3) Spring Auth Server [19]        | 6                    | 6                             | 0   |
| 4) Node OAuth2 Server [8]         | 6                    | 4                             | 2   |
| 5) Loopback OAuth [28]            | 4                    | 4                             | 0   |
| 6) OAuth Provider [29]            | 4                    | 3                             | 1   |
| 7) Egg OAuth2 Server [26]         | 4                    | 4                             | 0   |
| 8) Apifest OAuth [3]              | 1                    | 1                             | 0   |
| 9) Closeway Server [6]            | 3                    | 3                             | 0   |
| 10) OAuth2orize [16]              | 3                    | 2                             | 1   |
| 11) Java OAuth Server [23]        | 1                    | 1                             | 0   |
| 12) Connect OAuth2 [24]           | 1                    | 1                             | 0   |
| Total                             | 49                   | 43                            | 6   |

Ground truth determination. To determine the ground truth for $\text{DataSet}_U$, we perform both dynamic analysis and source code inspection with the OAuth flows simulated for each library. We deploy each library on a local server and implement client-side programs to simulate the OAuth flows according to the specification. In particular, for each property, we manually construct the parameters to initiate the corresponding OAuth requests and analyze the responses from the server. For example, to verify the result reported by Cerberus for redirect URI property (P1), we first deploy the library on a local server and create an authorization server instance. We create two client instances—one with a benign redirect URI and another with a malicious one. We initiate an authorization request from the benign client, but replace the 'redirect_uri' parameter with the redirect URI from the malicious client. We observe the traces generated by the server. If the server redirects the authorization response (with authorization code) to the malicious URI, we mark a violation to the redirect URI property. Even if Cerberus reports no property violation, we still investigate the library, in the same way to find if the library actually violates the property.

As presented in Table 5, we discover 47 confirmed vulnerabilities in the ten popular libraries of the authorization server, 24 of which were previously unknown. Security impacts of these vulnerabilities can cause severe attacks on the authorization server. We discuss these vulnerabilities and their implications below:

Redirect URI manipulation. Cerberus successfully identifies two libraries violating the property that the redirect URI from authorization request must match the URI registered by the client (P1). In addition, Cerberus finds nine libraries violating the property that the redirect URI must be an absolute URI (P2). For example, to check if the redirect URI parameter contains an absolute URI, the Node oauth2 server library matches it with an incorrect URI pattern "[a-zA-Z][a-zA-Z0-9_.-]*". Violation of these properties allows the attackers to manipulate the redirect URI while initiating the authorization request and obtain a legitimate client’s authorization code or access token directly from the authorization server. Our finding indicates that developers often do not follow the requirement for redirect URI, possibly because it may not seem security-critical from reading the specification.

Authorization code injection. Cerberus successfully identifies six libraries violating at least one property required to protect the

6.2 Evaluation Results

6.2.1 Discovered Vulnerabilities. To answer RQ1, we use Cerberus to identify logical flaws from both known and unknown datasets.

Detection of known vulnerabilities. We first evaluate Cerberus using $\text{DataSet}_k$ which consists of 12 popular OAuth libraries with 49 known flaws. As shown in Table 4, using the properties from Table 2, Cerberus identifies 43 out of 49 logical flaws.

6.2.2 Unknown vulnerabilities. We next evaluate Cerberus using $\text{DataSet}_U$ with ten popular open-source libraries of OAuth service providers.
Table 5: Evaluation results of Cerberus on \( \text{DataSet}_U \) whose vulnerabilities are unknown. (✓/ library satisfies the property, \( \times \): library violates the property). Here, \( \times^{*} \) indicates a false positive (FP), where library satisfies the desired property, but Cerberus marks it as a violation due to the limitation of the underlying static analysis. On the other hand, \( ✓^{-} \) indicates false negative (FN), which could occur due to imprecisely resolved call-sites.

| OAuth-server libraries | P1  | P2  | P3  | P4  | P5  | P6  | P7  | P8  | P9  | P10 | #Violation | #FP | #FN |
|------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----------|-----|-----|
| 1) Node oauth2 server  | ✓   | ✓   | ✓   | ✓   | ✓   | ✓   | ✓   | ✓   | ✓   | ✓   | 6          | 1   | 0   |
| 2) Oauth2orize         | ✓   | ✓   | ✓   | ✓   | ✓   | ✓   | ✓   | ✓   | ✓   | ✓   | 5          | 0   | 1   |
| 3) Node oauth provider | ✓   | ✓   | ✓   | ✓   | ✓   | ✓   | ✓   | ✓   | ✓   | ✓   | 1          | 0   | 2   |
| 4) Oauth2 server       | ✓   | ✓   | ✓   | ✓   | ✓   | ✓   | ✓   | ✓   | ✓   | ✓   | 5          | 1   | 0   |
| 5) Spring auth server  | ✓   | ✓   | ✓   | ✓   | ✓   | ✓   | ✓   | ✓   | ✓   | ✓   | 4          | 0   | 0   |
| 6) Clouway server      | ✓   | ✓   | ✓   | ✓   | ✓   | ✓   | ✓   | ✓   | ✓   | ✓   | 4          | 1   | 0   |
| 7) Jolmission server   | ✓   | ✓   | ✓   | ✓   | ✓   | ✓   | ✓   | ✓   | ✓   | ✓   | 7          | 2   | 0   |
| 8) Aspnet              | ✓   | ✓   | ✓   | ✓   | ✓   | ✓   | ✓   | ✓   | ✓   | ✓   | 5          | 1   | 0   |
| 9) Yoichiro server     | ✓   | ✓   | ✓   | ✓   | ✓   | ✓   | ✓   | ✓   | ✓   | ✓   | 8          | 1   | 0   |
| 10) OAuth2orize        | ✓   | ✓   | ✓   | ✓   | ✓   | ✓   | ✓   | ✓   | ✓   | ✓   | 7          | 0   | 0   |
| Total vulnerabilities: | 2   | 9   | 6   | 2   | 3   | 7   | 7   | 2   | 5   | 4   | 47         | 7   | 3   |

Table 6: Comparing Cerberus against OAuthlint in terms of average running time using the \( \text{DataSet}_U \) and \( \text{DataSet}_K \).

| Property | OAuthlint (\% slicing) | Cerberus (\% slicing) |
|----------|-------------------------|------------------------|
|          | Exec. time (min)        | Exec. time (min)       |
|          | \( \text{DataSet}_U \) | \( \text{DataSet}_K \) | \( \text{DataSet}_U \) | \( \text{DataSet}_K \) |
| P6       | 48.3                    | 64.8                   | 2.1                      | 3                       |
| P9       | 55.8                    | 71.6                   | 2.3                      | 3.3                     |
| P10      | 34                      | 52.9                   | 1.7                      | 2.2                     |

6.2.3 Analysis Accuracy. Cerberus successfully identifies 47 property violations (Table 5) and reports 7 false-positive (FP) cases and 3 false-negative (FN) cases in \( \text{DataSet}_U \), and 6 FN cases (Table 4) in \( \text{DataSet}_K \). Our assessment finds the primary reason for the FP and FN cases is the spurious points-to targets from the WALA framework. Additionally, unsoundness can also occur for a few cases during Javascript library analysis. We summarize the reasons for the FP and FN cases in the following:

- Semantics of complex string operations (e.g., Javascript's eval) cannot be precisely modeled by WALA—which leads our analysis to be unable to keep track of the precise values held by some string variables.
- Semantics of functions for executing dynamically generated code (e.g., Javascript's eval) are not currently modeled as we do not reason dynamic code in this work.
- For reflected calls where a reference to a target method is computed at runtime (e.g., Java's invoke), our static analysis may not accurately resolve the target method, which can result in FNs.
- Javascript libraries with dynamic features (e.g., dynamic module loading) may cause WALA to generate a broken and imprecise calligraph that leads to FPs and FNs.

6.2.4 Acknowledgments from Developers. We reported all the unknown vulnerabilities to the developers of the libraries. So far, we have received confirmation from the developers of eight libraries, who have acknowledged our findings. By the time of writing this paper, five libraries had fixed the redirect URI, PKCE, and authorization code issues as we reported; the other remaining issues are undergoing a review process. Developers of the two libraries responded that they are taking action on our reports, and the issues will be addressed in their next release. Developer of one library confirmed the issues we reported, but declined to take action as they no longer work for the corresponding vendor. Three classes of unknown vulnerabilities in these libraries led us to have three new CVE entries (CVE-2020-26877, CVE-2020-26937, and CVE-2020-26938). However, we have not yet received feedback from two libraries. We are making our best effort to reach the developers through different channels and help them fix the vulnerabilities.

Result for RQ1: We identified 47 vulnerabilities in ten popular OAuth libraries, including developers’ acknowledgment from eight libraries and three accepted CVE entries.

6.2.5 Performance Evaluation. To answer RQ2 and evaluate the effectiveness of our query-driven algorithm discussed in Sec. 4.1, we compare Cerberus with its variant, which constructs the calligraph for the entire program.
We execute our queries with both Cerberus and compare their performances. It takes 178 seconds to answer the same queries using Cerberus after running for more than 2 hours using one of the large libraries, terminates if it cannot find any result by 3 hours. We find that the queries. In other words, the query execution automatically therefore requires significantly less time to answer a given query.

program components relevant to the submitted OAuth query and elders and operations). On the other hand, are not directly relevant to the OAuth protocol (e.g., database models and operations). On the other hand, Cerberus only visits the program components relevant to the submitted OAuth query and therefore requires significantly less time to answer a given query.

However, we limit the execution time to 3 hours for executing OAuth-server libraries. However, we limit the execution time to 3 hours for executing OAuth-server libraries. Veronese et al. [72] propose a network-traffic-based security monitoring system for different entities of OAuth. However, these studies are focused on the security implications of OAuth.

which shows the effectiveness of our tool for analyzing large-scale implementations.

**Comparison with existing tools.** We further extend our effort to compare Cerberus against OAuthlint, which only supports OAuth properties with data-flow predicates. We managed to encode only three of our properties (out of ten) using their predicates with our best effort. As shown in Table 6, for the three properties supported by both tools, Cerberus is 22x and 21x faster than OAuthlint on DataSet\textsubscript{K} and DataSet\textsubscript{U}, respectively.

**Result for RQ2:** Our query-driven analysis is 25x faster in checking OAuth security properties than the eager analysis.

**Figure 6:** Performance comparison for libraries in DataSet\textsubscript{U} (Table 3) based on average query execution time (in log scale) between Cerberus, which constructs the on-demand callgraph, and Cerberus\textsubscript{eager}, which constructs the callgraph eagerly for the whole program. Bar(s) touching the maximum time (\(10^5\)) indicate the library not terminating or causing memory explosion within the maximum time limit (3 hours).

**Extensibility.** To show the extensibility of Cerberus, we use a recent property from DPop (Demonstrating Proof-of-Possession) [30], which is a new draft describing a mechanism for sender-constrained OAuth token. When sending a token request, the client sends an additional DPop token in JWT format [1] that allows the server to verify the proof of possession of the token. The server first verifies the token using the key embedded within the token. If verified, it adds the thumbprint of the key with the access token. Otherwise, the token request is rejected with an error response. One can use Cerberus’s predicates to express this query as follows:

1. P :- invoke(L1, token_req), OAuthTag(L2, dpop),
2. OAuthTag(L3, key), invoke(L4, jwt_verify),
3. OAuthTag(L5, access_token), invoke(L6, add_thumbprint),
4. error(L7, _), branch(L8,X,L6,L7), followBy(L1,L2),
5. followBy(L1,L5), depOn(L2,L4), depOn(L3,L4),
6. depOn(L4,X), depOn(L5,L6), depOn(L6,L3).

As shown from the above query, it is straightforward for a domain expert to use Cerberus’s built-in predicates to define new properties. Specifically, given a new property, a domain expert only needs to encode the new domain-specific information using predicates OAuthTag and invoke. E.g., for the DPop property, the extra taint sources will be dpop, key and jwt_verify.

7 RELATED WORK

Since OAuth is a widely used and security-critical multi-party protocol, many researchers have studied OAuth at the protocol and implementation level for various platforms such as mobile [73], web [39, 69], and IoT [43, 65]. Yang et al. [79] study the attacker management system to provide a secure authentication scheme for IoT devices. Calzavara et al. [37] study the browser-side (i.e., client-side) security for using OAuth while considering the OAuth server as black-box. Veronese et al. [72] propose a network-traffic-based security monitoring system for different entities of OAuth.
Cerberus: Query-driven Scalable Vulnerability Detection in OAuth Service Provider Implementations

with respect to the client-side flow and depend on manual analysis by security experts such as monitoring the network traffic or inferring the protocol flows and cannot be applied or extended to detect missing or incorrect security checks on the OAuth server implementation.

Researchers also study automated analysis to find security issues in client-side OAuth flow. Yang et al. [80] develop a symbolic execution-based testing tool to check the correctness of OAuth SDKs that provides APIs for client applications. Rahat et al. [63] build a static taint analysis tool to detect five categories of OAuth-specific data flow in Android applications. While these tools are effective for checking flaws on client applications, as we show in our evaluation, they are not designed to analyze the large scale codebase on OAuth server. Instead of analyzing the entire application, our tool is designed to automatically extract and reason about the OAuth-specific partial programs to identify security critical logical mistakes.

Graph-based query approaches [53, 58, 62] have been applied to solve a wide variety of security issues such as API misuse detection [31, 57, 61, 68, 70, 83], tainted data-flow analysis [41, 47, 55, 77, 82] and threat detection [51, 60]. He et al. implemented SSLint [54] that uses static analysis and graph signature matching to identify incorrect API usage for SSL. Egele et al. [44] studied cryptographic API misuse and used static program slicing to detect incorrect cryptographic operations in Android applications. These works focus on high-level API usage patterns, whereas Cerberus is designed to identify fine-grained properties (e.g., expressions). Graph traversal using different graph representations [32, 49, 76] of source code has also been used for checking code properties in various applications [38, 46, 66]. In addition to these classic representations, combined graphs [56] have also been used for vulnerability detection. For example, Yamaguchi et al. [75] use a combined graph representation called Code Property Graph to discover vulnerabilities. However, though these implementations are effective for checking common vulnerabilities (e.g., buffer overflows) in specific languages (e.g., C/C++), we cannot evaluate or compare against them as they do not support the languages (Java and Javascript) we target in this paper. In addition, these works eagerly construct the graphs for the entire program, which, as our evaluation demonstrates (Fig. 6), does not scale for large-scale programs such as OAuth server implementation.

8 DISCUSSION

While designing Cerberus, we strived to achieve a good trade-off between expressiveness and scalability. For complex semantics (e.g., secure computation, storage modeling, etc.) that are difficult to model precisely, our current static analysis leverages data- and control-dependencies to over-approximate the actual semantics, which, in theory, can lead to spurious execution paths. However, as discussed in Sec. 6, our tool achieves a low false positive rate despite our modeling. Secondly, dynamic features of Java and Javascript, such as reflective calls, dynamic class loading, and exceptional handling can result in false negatives. Our current implementation of hybrid analysis currently provides limited support to handle dynamic features (e.g., reflective calls with string constants).

Our study in this paper focuses on OAuth 2.0, a prevalent multi-party protocol for authorization. Cerberus is designed based on the standard OAuth specification [20]. Therefore, any implementation that follows the standard specification can be analyzed using our proposed approach, which exhibits the generality of our work. Additionally, Cerberus can be extended to other relevant protocols like OpenID Connect [17]. Since OpenID Connect uses similar grants and flows as OAuth 2.0, the vulnerabilities we address in this paper are also applicable for OpenID Connect supported servers. In particular, Cerberus’s predicates can be extended to check OpenID properties using our query-based method. However, as our current analysis does not model the cryptographic APIs (e.g., RSA verification), some OpenID Connect flows (e.g., hybrid flow) that involve cryptographic operations cannot be checked by our tool. Additionally, it would be an interesting future work to apply Cerberus on a large scale of OAuth service provider implementations to check the prevalence of the issues we identified. The results might be similar because we study very popular libraries for OAuth service provider implementations, and developers usually just call these libraries’ APIs instead of building their own implementations. Even worse, if developers start from scratch to build their service providers, they might make more security mistakes. In addition to OAuth, our proposed method can also be applied to cross-check applications against policy regulations such as GDPR [64] and CCPA [52].

Finally, our analysis in this paper is focused on the attacks that utilize incorrect or logical implementation mistakes made during the OAuth flow. Our tool is designed to find violations in the implementation with respect to the queries representing the violation pattern. While our properties cover the OAuth-specific attacks commonly observed on the OAuth servers, attackers might exploit other vulnerabilities to attack the server. For example, Attackers might leverage generic web/mobile vulnerabilities and perform web-based/mobile attacks (e.g., SQL-injection) to steal OAuth credentials or protected resources of the resource owner. Detecting those generic vulnerabilities is beyond the scope of this paper.

9 CONCLUSION

In this paper, we have presented Cerberus, an automated analyzer that can discover logic vulnerabilities in OAuth server libraries that service providers widely use. To efficiently detect OAuth violations in large codebases, Cerberus employs a query-driven algorithm for answering queries about security-critical OAuth properties. To demonstrate the effectiveness of Cerberus, we evaluate it on datasets of popular OAuth server libraries with millions of downloads. Among these high-profile libraries, Cerberus has discovered 47 vulnerabilities from ten classes of logic flaws, 24 of which were previously unknown and led to new CVEs.

10 ACKNOWLEDGEMENTS

We are grateful to the anonymous reviewers for their insightful and constructive feedback and suggestions. This work is supported in part by National Science Foundation under the award numbers 1943100, 1920462, 2114074, and 1908494, by DARPA under the agreement number N66001-22-2-4037, by Google Faculty Research, and Facebook Faculty Fellowship awards. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the funding agencies.
[63] Tamjid Al Rahat, Yu Feng, and Yuan Tian. 2019. OAUTHLINT: An Empirical Study on OAuth Bugs in Android Applications. In 34th IEEE/ACM International Conference on Automated Software Engineering, ASE 2019, San Diego, CA, USA, November 11-15, 2019: 295–304.

[64] Tamjid Al Rahat, Tu Le, and Yuan Tian. 2021. Automated Detection of GDPR Disclosure Requirements in Privacy Policies using Deep Active Learning. arXiv preprint arXiv:2111.04224 (2021).

[65] Savio Sciancalepore, Giuseppe Piro, Daniele Caldarola, Gennaro Boggia, and Giuseppe Bianchi. 2017. OAuth-IoT: An access control framework for the Internet of Things based on open standards. In 2017 IEEE Symposium on Computers and Communications (ISCC). IEEE, 676–681.

[66] Yan Sheshitaishvili, Ruoyu Wang, Christophe Hauser, Christopher Kruegel, and Giovanni Vigna. 2015. Firma-luce: Automatic Detection of Authentication Bypass Vulnerabilities in Binary Firmware. In NDSS. Vol. 1. 1–1.

[67] Soufflé Developers. 2020. Soufflé - Datalog. https://souffle-lang.github.io/index.html.

[68] Cristian-Alexandru Staicu, Michael Pradel, and Benjamin Livshits. 2018. SYNODE: Understanding and Automatically Preventing Injection Attacks on NODE API. In NDSS.

[69] San-Tsai Sun and Konstantin Beznosov. 2012. The devil is in the (implementation) details: an empirical analysis of OAuth SSO systems. In Proceedings of the 2012 ACM conference on Computer and communications security. 378–390.

[70] Aman Sven, Hoan Anh Nguyen, Sarah Nadi, Tien N Nguyen, and Mira Mezini. 2019. Investigating next steps in static API-misuse detection. In 2019 IEEE/ACM 16th International Conference on Mining Software Repositories (MSR). IEEE, 265–274.

[71] Maarten H Van Emden and Robert A Kowalski. 1976. The semantics of predicate logic as a programming language. Journal of the ACM (JACM) 23, 4, 733–742.

[72] Lorenzo Veronese, Stefano Calzavara, and Luca Compagna. 2020. Bulwark: Holistic and Verified Security Monitoring of Web Protocols. In European Symposium on Research in Computer Security. Springer, 23–41.

[73] Hui Wang, Yuanxuan Zhang, Juanru Li, Hui Liu, Wenbo Yang, Bodong Li, and Dawu Gu. 2015. Vulnerability assessment of oauth implementations in android applications. In Proceedings of the 31st Annual Computer Security Applications Conference. 61–70.

[74] Tao Xie, Nikolai Tillmann, Jonathan De Halleux, and Wolfram Schulte. 2009. Fitness-guided path exploration in dynamic symbolic execution. In 2009 IEEE/IFIP International Conference on Dependable Systems & Networks. IEEE, 359–368.

[75] Fabian Yamaguchi, Nico Golde, Daniel Arp, and Konrad Rieck. 2014. Modeling and discovering vulnerabilities with code property graphs. In 2014 IEEE Symposium on Security and Privacy. IEEE, 590–604.

[76] Fabian Yamaguchi, Markus Lottmann, and Konrad Rieck. 2012. Generalized vulnerability extrapolation using abstract syntax trees. In Proceedings of the 28th Annual Computer Security Applications Conference. 359–368.

[77] Fabian Yamaguchi, Alwin Maier, Hugo Gascón, and Konrad Rieck. 2015. Automatic inference of search patterns for taint-style vulnerabilities. In 2015 IEEE Symposium on Security and Privacy. IEEE, 797–812.

[78] Feng Yang and Sathiamoorthy Manoharan. 2013. A security analysis of the OAuth protocol. In 2013 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM). IEEE, 271–276.

[79] F Yang and S. Manoharan. 2013. A security analysis of the OAuth protocol. In 2013 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM). 271–276.

[80] Ronghai Yang, Wing Cheong Lau, Kehuan Zhang, and Pili Hu. 2016. Model-based security testing: An empirical study on oauth 2.0 implementations. In Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security. 651–662.

[81] Zhemin Yang and Min Yang. 2012. Leakminer: Detect information leakage on android with static taint analysis. In 2012 Third World Congress on Software Engineering. IEEE, 101–104.

[82] Mu Zhang, Yue Duan, Heng Yin, and Zhiruo Zhao. 2014. Semantics-aware android malware classification using weighted contextual api dependency graphs. In Proceedings of the 2014 ACM SIGSAC conference on computer and communications security. 1105–1116.

[83] Yuchen Zhou and David Evans. 2014. SSO Scan: automated testing of web applications for single sign-on vulnerabilities. In 23rd USENIX Security Symposium. 495–510.