General Model Based on Artificial Neural Networks for Estimating the Viscosities of Oxygenated Fuels

Xiangyang Liu,* Feng Yang, Jianchun Chu, Chenyang Zhu, Maogang He, and Ying Zhang

Key Laboratory of Thermal Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China

Supporting Information

ABSTRACT: Oxygenated fuel is a promising alternative fuel for engines because of the advantage of low emission. In this work, a general model based on back-propagation neural networks was developed for estimating the viscosities of different kinds of oxygenated fuels including esters, alcohols, and ethers, whose input variables are pressure, temperature, critical pressure, critical temperature, molar mass, and acentric factor. The viscosity data of 31 oxygenated fuels (1574 points) at temperatures ranging from 243.15 to 413.15 K and at pressures ranging from 0.1 to 200 MPa were collected to train and test the back-propagation neural network model. The comparison result shows that the predictions of the proposed back-propagation neural network model agree well with the experimental viscosity data of all studied oxygenated fuels using the general parameters (weight and bias). The average absolute relative deviations for training data, validation data, and testing data are 1.19%, 1.27%, and 1.30%, respectively.

1. INTRODUCTION

Reducing global greenhouse gas emissions is an issue concerned to the world, and a number of research studies have been performed on this issue.1−7 Oxygenated fuels including biodiesels, alcohols, ethers, etc., which have the advantages of lower soot and particle emissions compared with fossil fuels, are considered as environment-friendly fuels for engine.8−12 The viscosity data of oxygenated fuels are extremely important in the process of transportation, storage, and usage.13 There are plenty of experimental viscosity data for oxygenated fuels from atmospheric pressure to hundreds of megapascals reported in the literature.14−20 However, experimental data are always discrete points and cannot really meet the actual demand. The accurate viscosity model established on the basis of experimental data is more meaningful to provide sufficient viscosity data of oxygenated fuels. Many viscosity models have been developed for oxygenated fuels such as esters, alcohols, and ethers, but only few examples are given here. Allal et al.21 proposed a viscosity model-based free volume (FV) theory for alcohols. Assael et al.22 proposed a hard-sphere model for estimation of the viscosities of n-alcohols. Yuan et al.23 used the Vogel equation to correlate the viscosities of fatty acid methyl esters at atmospheric pressure. Ceriani et al.24 proposed a viscosity model based on the group contribution method for the viscosities of methyl and ethyl esters and alcohols. Habibi et al.25 developed a viscosity model for alcohols combining CPA equation and friction theory. Ivanciuc et al.26 proposed a quantitative structure−property relationship model for the liquid viscosities of esters, alcohols, ethers, etc. Our group proposed a viscosity model based on Eyring’s absolute rate theory (EART) named HLZ model in previous work27 and applied it to estimate the viscosities of esters, alcohols, and ethers.28 Although these models have high accuracy, they need one set of parameters obtained by fitting to the experimental data for each oxygenated fuel.

In recent years, artificial neural network (ANN) which is a popular way to solve the nonlinear mapping problem has been used to predict various physical properties of a fluid, such as density, surface tension, and viscosity, and achieved a great success.29−31 Compared with traditional models, the parameters of the ANN model are universal for different substances, so the ANN model has much better predictive ability. Some ANN models have been developed for predicting the viscosities of esters in the literature. For example, Hosseini et al.32 proposed an ANN model to predict the viscosities of eight fatty acid esters and two biodiesels at a pressure up to 140 MPa using four input variables (pressure, pseudo-critical density, temperature, and molecular weight). However, for other kinds of oxygenated fuels such as alcohols and ethers, there are few ANN models applicable to predict their viscosities.

Therefore, in this work, we aim to develop a general model based on ANN for estimating the viscosities of different kinds of oxygenated fuels including esters, alcohols, and ethers at a pressure up to 200 MPa. Back-propagation neural network

*Corresponding author.

Received: July 25, 2019
Accepted: September 3, 2019
Published: September 25, 2019

DOI: 10.1021/acsomega.9b02337
ACS Omega 2019, 4, 16564−16571

© 2019 American Chemical Society
(BPNN) was chosen because it is the most widely used ANN because of its stability and reliability.33

2. COMPUTATIONAL METHOD

2.1. Model Description. BPNN, which is a kind of feed forward neural network,34 has three parts (input layer, hidden layer, and output layer) and five elements (input variable, weight, summation function, activation function, and output variable). Each layer has several neurons, and the values of neurons will be calculated using the values of neurons in the previous layer via summation function and activation function. BPNN usually has one or two hidden layers for data fitting. BPNN with two hidden layers has better accuracy and better capacity to solve the nonlinear problem compared with BPNN with one hidden layer.35 Therefore, our work chose the BPNN with two hidden layers. Figure 1 is the schematic diagram of

![Figure 1. Schematic diagram of BPNN.](image)

BPNN with two hidden layers. Pressure and temperature are the parameters deciding the viscosity of the compound, while critical pressure, critical temperature, molar mass, and acentric factor are characterization parameters of the compound. Therefore, six factors such as pressure (p, Pa), temperature (T, K), critical pressure (p_c, Pa), critical temperature (T_c, K), mole mass (M_w,g mol^{-1}), and acentric factor (ω) were chosen as the input variables. Critical pressure (p_c, Pa), critical temperature (T_c, K), mole mass (M_w,g mol^{-1}), and acentric factor (ω) were chosen because these parameters are constant for one compound, which are usually used to characterize the compound and as the input parameters for predicting the viscosity.36 The output variable is viscosity (η, μPa·s). The number of neurons in the input layer depends on the input variables and that in the output layer depends on the output variables. Therefore, the hidden layer is the only adjustable part.

The procedure for finding the best BPNN structure is as follows: first, collecting data and dividing them into training data, verification data, and testing data; second, training the BPNN model using training data and verification data to determine the BPNN structure, the summation function, and the activation function; and third, testing the predictive ability of the BPNN model using testing data.

Considering the difference of input data and output data in dimension, these data were dealt with eq 1.

\[
x = \frac{0.8(X - X_{\min})}{X_{\max} - X_{\min}} + 0.1
\]

where X is the original value of the variable, x is the normalized value, and X_{\min} and X_{\max} are the minimum value and maximum value of the variable, respectively.

In BPNN, the summation function is used to connect neurons of two adjacent layers. The value of i-th neuron in the (k+1)th layer z_{ik+1} can be calculated by a summation function as follows

\[
z_{ik+1} = \sum w_{i}^{k+1} a_{i}^{k} + b_{j}^{k+1}
\]

where w_{i}^{k+1} is the weight of the j-th neuron in the (k+1)th layer, b_{j}^{k+1} is the bias of the j-th neuron in the (k+1)th layer, and a_{j}^{k+1} is the output of the j-th neuron in the k-th layer, which is calculated by the activation function of z_{j}^{k}. In this work, three commonly used activation functions which are purelin function, log sigmoid function, and tan-sigmoid function were tested. Comparison result shows that the log sigmoid function has better performance than the activation function. The log sigmoid function is expressed as

\[
a_{j}^{k+1} = \frac{1}{1 + e^{-z_{j}^{k+1}}}
\]

where a_{j}^{k+1} is the output of the j-th neuron in the (k+1)th layer.

2.2. Data Collection. The viscosity data of 31 oxygenated fuels (1574 points) at temperatures ranging from 243.15 to 413.15 K and at pressures ranging from 0.1 to 200 MPa are collected from the literature14−19,37–39 and listed in Table 1. The information of the chemicals provided in the literature is shown in Table S1 (Supporting Information). The physical properties of the 31 oxygenated fuels are listed in Table 2.36 Seventy percent of the total data (1102 points) were used for training the BPNN model, 15% of the total data (236 points) were used for validation, and 15% of the total data (236 points) were used for testing data. All of the data were divided randomly.

3. RESULTS AND DISCUSSION

Less neurons in the hidden layer will lead to underfitting and large error, while more neurons in the hidden layer will result in overfitting and time-consuming error. After investigation of the previous work,32 the mean-square error (MSE) was chosen as the optimization objective during the training to get the best BPNN structure. The MSE is expressed as

\[
MSE = \frac{1}{N} \sum_{i=1}^{N} \left(y_{i}^{\text{exp}} - y_{i}^{\text{cal}} \right)^{2}
\]

where y_{i}^{\text{exp}} and y_{i}^{\text{cal}} are the experimental value and calculated values of the output variable, respectively.

The training result shows that the BPNN should have two hidden layers and the neuron numbers in them are 6 and 12, respectively. Tables 3−5 report the weight and bias of the input layer, the first hidden layer, and the second layer, respectively. To explain the optimization procedure, an example is given in Figure 2, which shows the MSE of the viscosity data of 31 oxygenated fuels with the neuron number of the second hidden layer changing from 4 to 19 while 6 neurons in the first hidden layer. The result shows that when there are 12 neurons in the second hidden layer (MSE = 0.01454), the BPNN model has the best performance for estimating the viscosities of oxygenated fuels. Therefore, we chose 12 as the neuron number in the second hidden layer.
The performance of the obtained BPNN model was also evaluated by several other factors which are average absolute relative deviation (AARD) and maximum absolute relative deviation (MARD) defined by eqs 5 and 6, respectively.

\[
\text{AARD} = \frac{1}{n} \sum_{i=1}^{n} \left| \frac{\eta_{i}^{\text{cal}} - \eta_{i}^{\text{exp}}}{\eta_{i}^{\text{exp}}} \right| \times 100\%
\]

(5)

\[
\text{MARD} = \max \left\{ \left| \frac{\eta_{i}^{\text{cal}} - \eta_{i}^{\text{exp}}}{\eta_{i}^{\text{exp}}} \right| \times 100\% \right\}
\]

(6)

where \(\eta^{\text{exp}}\) and \(\eta^{\text{cal}}\) are the experimental and calculated values from the BPNN model for viscosity.

The calculated results from the present BPNN model for the viscosities of oxygenated fuels were first compared with the training and validation data. Comparison results show that the AARDs of the present BPNN model from training data and validation data are 1.19 and 1.27%, respectively, which implies that the present BPNN model correlates the viscosity data very well. Then, the calculated results from the present BPNN model were compared with the testing data in order to verify the predictive ability. A satisfactory performance was found, indicating that the AARD of the present BPNN model from testing data is 1.30%, which implied the excellent predictability of this model.

Table 6 lists the AARDs and MARDs of the present BPNN model from the experimental viscosity data of each oxygenated fuel. It can be observed that the AARDs for all oxygenated fuels are less than 3%. In order to compare the performance of the present BPNN model for different kinds of oxygenated fuels, the AARDs of the present BPNN model for alcohols, esters, and ethers are also calculated, which are 1.02, 0.99, and 1.61%, respectively.

Name	T/K	\(p/\text{MPa}\)	\(U^*/\%\)	points	ref
methanol	298.15–323.15	0.1–27.05	0.5	19	18
303.15–323.15	0.1–30	2	22	37	
283.15–348.15	0.1–68.8	2	31	19	
ethanol	298.15–323.15	0.1–27.56	0.5	20	18
293.15–353.15	0.1–100	2	23	38	
283.15–323.15	0.1–78.6	2	16	19	
1-propanol	298.15–323.15	0.1–27.86	0.5	20	18
2-propanol	283.15–323.15	0.1–117.8	2	39	19
3-propanol	298.15–373.15	0.1–117.8	2	15	40
1-pentanol	303.15–343.15	0.1–100	2	39	19
3-pentanol	298.15–373.15	0.5–195	2	15	40
1-nonanol	283.15–413.15	0.1–22.5	2	19	40
2-methyl-2-propanol	303.15–323.15	0.1–68.8	2	13	19
vinyl acetate	298.15–373.15	0.1–19.91	2	40	41
diethyl adipate	303.15–373.15	0.1–19.52	2	38	42
dimethyl carbonate	283.15–353.15	0.1–100	2	40	43
diethyl carbonate	263.15–363.15	0.1–19.49	2	55	44
ethyl heptanoate	312.72–353.04	0.1–15.17	<2.7	30	14
ethyl octanoate	312.87–353.38	0.1–15.24	<2.7	30	14
methyl caprate	293.15–353.15	0.1–200	<4	42	16
ethyl caprate	293.15–353.15	0.1–200	<4	44	16
methyl laurate	302.98–353.40	0.1–15.07	1.5	36	45
ethyl laurate	293.15–353.15	0.1–20.0	<4	54	45
methyl myristate	303.15–353.15	0.1–100	2	38	17
ethyl myristate	293.15–353.15	0.1–100	2	38	17
diethyl ether	243.15–373.15	0.1–19.61	2	70	46
diisopropyl ether	243.15–373.15	0.1–21.68	2	70	47
dibutyl ether	243.15–373.15	0.1–21.12	2	70	47
dimethoxymethane	243.15–373.15	0.1–19.55	2	70	48
ethylene glycol dimethyl ether	243.15–373.15	0.1–19.48	2	70	48
diethylene glycol dimethyl ether	243.15–323.15	0.15–21.49	2	45	49
triethylene glycol dimethyl ether	283.15–353.15	0.1–100	2	48	43
tetraethylene glycol dimethyl ether	283.15–353.15	0.1–100	2	48	43
monoethyglycol methyl ether	293.15–353.15	0.1–100	2	42	50
monoethylglycol ethyl ether	293.15–353.15	0.1–100	2	42	50
monoethyglycol iso-propyl ether	293.15–353.15	0.1–100	2	42	50

Table 1. Summary of Selected Viscosity Data in the Literature

The uncertainty of the experimental viscosity data is less than 0.5%.
respectively. It means that the present BPNN model can give good prediction for the viscosities of different kinds of oxygenated fuels. Figure 3 plots AARDs of the present BPNN model against critical pressure, critical temperature, mole mass, and acentric factor and shows that there is no apparent connection between AARDs and the four parameters.

Table 3. Physical Properties of Oxygenated Fuels

Name	CAS no.	MW	Tc/K	pc/MPa	ω
Methanol	67-56-1	32.042	512.64	8.10	0.565
Ethanol	64-17-5	46.068	513.92	6.15	0.649
1-propanol	71-23-8	60.095	536.78	5.18	0.629
2-propanol	67-63-0	60.095	508.30	4.76	0.665
1-pentanol	71-41-0	88.148	588.15	3.91	0.579
3-pentanol	584-02-1	88.148	559.60	3.88	0.538
1-nonanol	143-08-8	144.255	668.90	2.63	0.633
2-methyl-2-propanol	75-65-0	74.122	712.64	8.10	0.565
vinyl acetate	108-05-4	86.089	519.13	3.97	0.631
diethyl adipate	141-28-6	202.248	685.00	2.13	0.326
dimethyl carbonate	616-38-6	90.078	557.00	4.80	0.336
diethyl carbonate	105-58-8	118.131	669.00	3.47	0.545
ethyl heptanoate	106-30-9	158.238	629.00	2.33	0.596
ethyl octanoate	106-32-1	172.265	637.00	2.20	0.579
methyl caprate	110-42-9	186.291	671.00	3.64	0.699
ethyl caprate	110-38-3	200.318	667.00	1.89	0.699
methyl laureate	111-82-0	214.344	712.00	1.74	0.692
ethyl laureate	106-33-2	228.371	695.00	1.66	0.771
methyl myristate	124-10-7	242.398	708.00	1.58	0.950
ethyl myristate	124-06-1	256.428	721.00	1.50	0.852
diethyl ether	60-29-7	74.122	466.70	3.64	0.281
diisopropyl ether	108-20-3	102.175	599.56	2.83	0.332
dibutyl ether	142-96-1	130.228	708.00	2.50	0.559
dimethoxymethane	109-87-5	76.094	564.00	3.96	0.220
ethylene glycol dimethyl ether	110-71-4	90.121	536.15	3.87	0.346
diethylene glycol dimethyl ether	111-96-6	118.131	669.00	2.94	0.575
triethylene glycol dimethyl ether	112-49-2	178.226	651.00	2.31	0.792
tetraethylene glycol dimethyl ether	143-24-8	222.279	705.00	1.94	0.965
monoethylene glycol methyl ether	109-86-6	90.121	569.00	4.24	0.758
monooctene glycol ethyl ether	110-80-5	144.255	669.00	2.50	0.539
monooctene glycol iso-propyl ether	109-59-1	104.148	582.00	3.67	0.783

Table 4. Weight and Bias of the First Hidden Layer

Wij	1	2	3	4	5	6	b1
1	−0.013	0.157	−1.102	0.998	0.236	0.279	0.236
2	0.666	0.216	0.316	0.326	0.525	0.407	0.407
3	−0.470	0.162	0.181	0.191	0.235	0.407	0.407
4	0.114	0.012	−0.092	0.649	0.912	0.114	0.114
5	0.591	−0.032	−0.749	1.296	0.213	0.591	0.591
6	−0.441	0.648	0.899	1.289	0.316	−0.441	0.441

Table 4. Weight and Bias of the Second Hidden Layer

Wij	1	2	3	4	5	6	b2
1	0.838	−0.980	8.598	−1.746	−1.674	3.112	2.534
2	−1.627	1.173	−8.243	1.327	1.850	−2.720	−1.753
3	−0.569	0.328	−3.031	−0.745	−0.021	−2.527	0.874
4	−2.552	0.614	−8.198	−3.172	−1.617	0.802	−4.013
5	1.204	−0.874	4.942	−0.009	1.162	2.046	0.632
6	0.791	−0.199	3.179	1.138	0.306	2.046	−1.226
7	−2.466	0.767	−7.590	−2.863	−1.499	0.804	−3.917
8	2.917	1.069	10.345	−3.863	3.351	1.537	2.226
9	0.659	−0.218	3.037	0.939	0.129	2.384	−1.171
10	−3.232	−0.882	−10.959	3.879	−3.189	−1.428	−4.082
11	−0.594	1.080	−9.633	1.844	1.671	−3.029	−3.441
12	−6.155	3.715	16.079	−4.590	−0.519	2.613	1.083
To further investigate the overall accuracy of the present BPNN model, Figure 4 compares the experimental and calculated values of the viscosities of all oxygenated fuels. A very good agreement can be observed, which is also supported by Table 7. As shown in Table 7, the absolute relative deviations of the present BPNN model for 54.89% of total data (864 points) are below 1%; the absolute relative deviations for 27.89% of total data (439 points) are between 1 and 2%; 9.85% of total data (155 points) are between 2 and 3%; 6.16% of total data (97 points) are between 3 and 5%; only the absolute relative deviations for 1.21% of total data (16 points) are greater than 5%. The AARD and MARD of total data are calculated to be 1.24 and 10.70%, respectively. The AARD of the FV model and the model based on EART proposed by our group are also provided in Table 6 for comparison. It can be found that the present BPNN model has a similar total AARD to the FV model and EART model but a lower total MARD. Moreover, the present BPNN model has stronger prediction ability than the FV model and EART model because it can calculate the viscosity of a new oxygenated fuel just using temperature, pressure, critical pressure, critical temperature, mole mass, and acentric factor with no experimental viscosity data available.

4. CONCLUSIONS

In this work, a general BPNN viscosity model was proposed for oxygenated fuels based on the viscosity data of 31 oxygenated

Table 5. Weight and Bias of the Output Layer

Wij	1	2	3	4	5	6	7
1	15.342	7.347	−5.730	−6.624	−0.838	6.723	4.767
Wij	8	9	10	11	12	b1	
1	−8.880	−11.347	−2.135	7.191	1.948	−4.861	

Figure 2. MSE of the BPNN model at different neuron numbers in the second hidden layer.

To further investigate the overall accuracy of the present BPNN model, Figure 4 compares the experimental and calculated values of the viscosities of all oxygenated fuels. A very good agreement can be observed, which is also supported by Table 7. As shown in Table 7, the absolute relative deviations of the present BPNN model for 54.89% of total data (864 points) are below 1%; the absolute relative deviations for 27.89% of total data (439 points) are between 1 and 2%; 9.85% of total data (155 points) are between 2 and 3%; 6.16% of total data (97 points) are between 3 and 5%; only the absolute relative deviations for 1.21% of total data (16 points) are greater than 5%. The AARD and MARD of total data are calculated to be 1.24 and 10.70%, respectively. The AARD of the FV model and the model based on EART proposed by our group are also provided in Table 6 for comparison. It can be found that the present BPNN model has a similar total AARD to the FV model and EART model but a lower total MARD. Moreover, the present BPNN model has stronger prediction ability than the FV model and EART model because it can calculate the viscosity of a new oxygenated fuel just using temperature, pressure, critical pressure, critical temperature, mole mass, and acentric factor with no experimental viscosity data available.

Table 6. Deviations of the BPNN Model for Each Substance

Name	BPNN	FV	EART			
	AARD/%	MARD/%	AARD/%	MARD/%	AARD/%	MARD/%
Methanol	0.99	3.28	1.13	3.95	0.76	2.66
Ethanol	1.19	3.78	0.88	3.92	1.22	5.57
1-propanol	0.73	1.91	0.36	1.86	1.14	4.40
2-propanol	1.06	3.04	1.79	12.04	1.64	4.30
1-pentanol	0.75	2.62	1.79	4.93	1.32	4.56
3-pentanol	1.53	7.23	13.07	44.78	1.19	5.14
1-nonanol	1.05	6.14	7.99	20.88	2.95	12.81
2-methyl-2-propanol	1.11	5.75	2.57	15.62	0.81	5.14
vinyl acetate	2.92	7.66	1.46	3.92	0.85	3.18
diethyl adipate	1.10	2.52	1.55	4.95	0.32	0.84
dimethyl carbonate	1.19	4.27	1.09	4.96	1.17	3.41
diethyl carbonate	1.10	3.79	1.13	4.00	1.23	3.81
ethyl heptanoate	1.97	8.22	0.42	1.24	0.25	0.65
ethyl octanoate	1.10	3.52	0.60	1.85	0.54	1.62
methyl caprate	1.00	2.72	1.85	8.68	2.54	13.58
ethyl caprate	1.13	2.98	2.91	11.74	2.56	13.62
methyl laurate	0.64	2.73	2.01	7.34	2.41	7.56
ethyl laurate	0.72	2.70	2.87	9.93	2.50	8.73
methyl myristate	0.36	1.23	1.38	4.72	0.86	4.93
ethyl myristate	0.52	2.02	1.22	5.44	1.07	5.14
diethyl ether	1.24	4.40	0.84	5.80	0.50	2.47
diisopropyl ether	2.92	10.70	0.84	5.19	0.47	2.55
dibutyl ether	1.81	7.19	3.18	9.84	0.69	4.04
dimethoxymethane	2.72	6.80	0.95	5.72	0.62	2.15
ethylene glycol dimethyl ether	1.30	3.66	1.33	5.43	0.46	2.30
diethyle glycol dimethyl ether	0.74	1.95	3.57	10.91	0.50	1.86
triethyle glycol dimethyl ether	0.92	2.36	1.88	5.88	1.12	5.12
tetrathyle glycol dimethyl ether	1.24	6.25	2.44	6.39	1.60	7.02
monoethyle glycol methyl ether	1.44	7.56	0.88	2.19	1.25	3.45
monoethyle glycol ethyl ether	1.20	4.00	1.05	3.53	1.55	3.71
monoethyle glycol iso-propyl ether	1.10	5.45	1.88	5.89	2.10	6.40
Total	1.24	10.70	1.77	44.78	1.24	13.62
fuels including esters, alcohols, and ethers in the temperature range from 243.15 to 413.15 K and in the pressure range from 0.1 to 200 MPa. The training result shows that the BPNN model has the best accuracy when it has two hidden layers with the neuron numbers of 6 and 12, respectively. The AARDs of the present BNPP model from training data, validation data, and testing data are 1.19%, 1.27%, and 1.30%, respectively, which indicates a good performance in prediction. Comparison result shows that the BPNN model has better accuracy than the FV model and EART model and has much stronger prediction ability because it can predict the viscosity of a new oxygenated fuel at variational temperature and pressure just using four physical properties (critical temperature, critical pressure, mole mass, and acentric factor) with no experimental viscosity data available.

ASSOCIATED CONTENT
Supporting Information
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsomega.9b02337.

AUTHOR INFORMATION
Corresponding Author
*E-mail: lxyyang@mail.xjtu.edu.cn. Phone: +86-29-8266-3863. Fax: +86-29-8266-3863.

ORCID
Xiangyang Liu: 0000-0002-8636-1610

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS
The supports for the present work provided by the National Natural Science Foundation of China (nos 51525604 and 51721004), China Postdoctoral Science Foundation (nos 2018M640984 and 2019T120906), and the Overseas Expertise Introduction Project for Discipline Innovation (no. B16038) are gratefully acknowledged.

REFERENCES
(1) Zhang, Z.-H.; Balasubramanian, R. Effects of oxygenated fuel blends on the composition of size-segregated engine-out diesel particulate emissions and on the toxicity of quasi-ultrafine particles. Fuel 2018, 215, 161–170.
(2) Liu, X.; Wang, T.; He, M. Investigation on the condensation process of HFO refrigerants by molecular dynamics simulation. *J. Mol. Liq.* 2019, 288, 111034.

(3) Okoye, P. U.; Abdullah, A. Z.; Hameed, B. H. Synthesis of oxygenated fuel additives via glycerol esterification with acetic acid over bio-derived carbon catalyst. *Fuel* 2017, 209, 538–544.

(4) Zhu, C.; Yang, F.; Liu, X.; He, M. Isobaric molar heat capacities measurement of binary mixtures containing ethyl laurate and ethanol at high pressures. *J. Mol. Liq.* 2019, 283, 301–306.

(5) Leach, F. C. P.; Stone, R.; Richardson, D.; Turner, J. W. G.; Lewis, A.; Akehurst, S.; Remmert, S.; Campbell, S.; Cracknell, R. The effect of oxygenate fuels on PN emissions from a highly boosted GDI engine. *Fuel* 2018, 225, 277–286.

(6) Liu, X.; Nguyen, M. Q.; Xue, S.; Song, C.; He, M. Vapor–liquid equilibria and inter-diffusion coefficients for working pairs for absorption refrigeration systems composed of [HMIM][BF₄] and fluorinated propanes. *Int. J. Refrig.* 2019, 104, 34–41.

(7) Liu, X.; Ye, Z.; Bai, L.; He, M. Performance comparison of two absorption-compression hybrid refrigeration systems using R1234yf/ionic liquid as working pair. *Energy Convers. Manage.* 2019, 181, 319–330.

(8) Žarska, M.; Bartoszek, K.; Dzida, M. High pressure physicochemical properties of biodiesel components derived from coconut oil or babassu oil. *Fuel* 2014, 125, 144–151.

(9) Dzida, M.; Jeżak, S.; Sumara, J.; Žarska, M.; Górański, P. High pressure physicochemical properties of biodiesel components used for spray characteristics in diesel injection systems. *Fuel* 2013, 111, 165–171.

(10) Pratas, M. J.; Freitas, S.; Oliveira, M. B.; Monteiro, S. C.; Lima, A. S.; Coutinho, J. A. P. Densities and viscosities of minority fatty acid methyl and ethyl esters present in biodiesel. *J. Chem. Eng. Data* 2011, 56, 2175–2180.

(11) Jamrozik, A.; Tutak, W.; Pyrc, M.; Gruca, M.; Kočiško, M. Study on co-combustion of diesel fuel with oxygenated alcohols in a compression ignition dual-fuel engine. *Fuel* 2018, 221, 329–345.

(12) Massimo, G. J.; Magalhães, A. M. S.; Gonçalves, M. M.; Esperança, E. S.; Costa, M. C.; Meirelles, A. J. A.; Coutinho, J. A. P. Improving the cold flow behavior of methyl biodiesel by blending it with ethyl esters. *Fuel* 2018, 226, 87–92.

(13) Singh, D.; Subramanian, K. A.; Juneja, M.; Singh, K.; Singh, S.; Badola, R.; Singh, N. Investigating the effect of fuel cetane number, oxygen content, fuel density, and engine operating variables on NOx emissions of a heavy duty diesel engine. *Environ. Prog. Sustainable Energy* 2017, 36, 214–221.

(14) Liu, X.; Lai, T.; Guo, X.; He, M.; Dong, W.; Shang, T.; Yang, W. Densities and viscosities of ethyl heptanoate and ethyl octanoate at temperatures from 303 to 353 K and at pressures up to 15 MPa. *J. Chem. Eng. Data* 2017, 62, 2454–2460.

(15) He, M.; Lai, T.; Liu, X. Measurement and correlation of viscosities and densities of methyl dodecanoate and ethyl dodecanoate at elevated pressures. *Thermochim. Acta* 2018, 66, 385–392.

(16) Habrioux, M.; Bazile, J.-P.; Galliero, G.; Daridon, J. L. Viscosities of fatty acid methyl and ethyl esters under high pressure: methyl caprate and ethyl caprate. *J. Chem. Eng. Data* 2015, 60, 902–908.

(17) Habrioux, M.; Bazile, J.-P.; Galliero, G.; Daridon, J. L. Viscosities of fatty acid methyl and ethyl esters under high pressure: methyl myristate and ethyl myristate. *J. Chem. Eng. Data* 2016, 61, 398–403.

(18) Assael, M. J.; Polimatidou, S. K. Measurements of the viscosity of alcohols in the temperature range 290–340 K at pressures up to 30 MPa. *Int. J. Thermophys.* 1994, 15, 95–107.

(19) Tanaka, Y.; Matsuda, Y.; Fujisawa, H.; Kubota, H.; Makita, T. Viscosity of (water + alcohol) mixtures under high pressure. *Int. J. Thermophys.* 1987, 8, 147–163.

(20) Liu, X.; Yang, F.; Lai, T.; Zhu, C.; He, M. Densities and Viscosities of Mixtures of Methyl Dodecanoate + Ethyl Octanoate at Pressures up to 15 MPa. *J. Chem. Eng. Data* 2018, 63, 4085–4094.
High-pressure measurements of the viscosity and density of two polyethers and two dialkyl carbonates. *Int. J. Thermophys.* **2001**, **22**, 749–768.

(44) Meng, X.; Zheng, P.; Wu, J. Measurements of viscosity and density of diethyl carbonate. *J. Ind. Eng. Chem.* **2008**, **59**, 2695–2700.

(45) Habrioux, M.; Nasri, D.; Daridon, J. L. Measurement of speed of sound, density compressibility and viscosity in liquid methyl laurate and ethyl laurate up to 200 MPa by using acoustic wave sensors. *J. Chem. Thermodyn.* **2018**, **120**, 1–12.

(46) Meng, X.; Zheng, P.; Wu, J.; Liu, Z. Density and viscosity measurements of diethyl ether from 243 to 373 K and up to 20 MPa. *Fluid Phase Equilib.* **2008**, **271**, 1–5.

(47) Meng, X.; Wu, J.; Liu, Z. Viscosity and density measurements of diisopropyl ether and dibutyl ether at different temperatures and pressures. *J. Chem. Eng. Data* **2009**, **54**, 2353–2358.

(48) Zheng, P.; Meng, X.; Wu, J.; Liu, Z. Density and Viscosity Measurements of Dimethoxymethane and 1,2-Dimethoxyethane from 243 K to 373 K up to 20 MPa. *Int. J. Thermophys.* **2008**, **29**, 1244–1256.

(49) Meng, X. Density and viscosity measurements of diethylene glycol dimethyl ether. *J. Eng. Thermophys.* **2010**, **31**, 1465–1469.

(50) Reghem, P.; Baylaucq, A.; Comunías, M. J. P.; Fernández, J.; Boned, C. Influence of the molecular structure on the viscosity of some alkoxyethanols. *Fluid Phase Equilib.* **2005**, **236**, 229–236.