Recently, real topological phases protected by $PT$ symmetry have been actively investigated. In two dimensions, the corresponding topological invariant is the Stiefel-Whitney number. A recent theoretical advance is that in the presence of the sublattice symmetry, the Stiefel-Whitney number can be equivalently formulated in terms of Takagi's factorization. The topological invariant gives rise to a novel second-order topological insulator with odd $PT$-related pairs of corner zero modes. In this article, we review the elements of this novel second-order topological insulator, and demonstrate the essential physics by a simple model on the honeycomb lattice. Novelly, the higher-order topological boundary modes can not only be tuned by the parameters but also the geometric shape of the sample.

Keywords: real topology, pt symmetry, higher-order topological insulators, topological insulator (TI), chiral symmetry

INTRODUCTION

The symmetry-protected topological phases, such as topological (crystalline) insulators (TIs) and superconductors (TSCs), have been one of the most active fields of physics during the last 15 years [1–9]. Based on the topological $K$ theory, the topological band theory has been established to classify and characterize various topological states [10–12]. Symmetry plays an fundamental role in the classification of topological phases. Considering three discrete symmetries, namely time reversal $T$, charge conjugation $C$ and chiral symmetry $S$, physical systems can be classified into ten symmetry classes, termed Altland-Zirnbauer (AZ) classes [10–15], among which the eight ones with at least $T$ or $C$ are called real AZ classes. The topological classifications in the framework of the eight real AZ classes correspond to the real $K$ theory. Using the real $K$ theory, gapped systems including topological insulators and topological superconductors were first classified [11, 12, 16], and then gapless systems were classified as well [17–20]. All the classification tables exhibit an elegant eightfold periodicity along the dimensions for the eight real AZ classes. After internal symmetries like $T$ and $C$, more and more spatial symmetries were involved to enrich symmetry-protected topological matter. It was noticed that combined symmetries $PT$ and $CP$ correspond to the orthogonal $K$ theory with $P$ the spatial inversion, since they leave every $k$ point fixed in the reciprocal space. Hence, the topological classification table was worked out [21]. A remarkable feature is that groups $\mathbb{Z}$, $\mathbb{Z}_2$ and 0 in the table appear in the reversed order in dimensionality, compared with previous tables for the real AZ classes. $PT$ and $CP$ are fundamental in nature, and therefore the classification table has been applied to explore topological phases in various physical systems, such as quantum materials [6, 22, 23], topological superconductors [24–27], and photonic/phononic crystals and electric-circuit arrays [27–35], and can generate unique topological structures with many novel consequences, such as non-Abelian topological charges, cross-order boundary transitions, and nodal-loop linking structures [22, 23, 36–40].
Remarkably, from the classification table, the symmetry class with \((\mathcal{PT})^2 = 1\) corresponds to the \(\mathbb{Z}_2\) classification for \(d = 1\) and \(d = 2\). As revealed in Ref. [22], \((\mathcal{PT})^2 = 1\) leads to real band structures in contrast to conventional complex band structures. Then, the \(\mathbb{Z}_2\) topological invariant \(w_1\) for \(d = 1\) can be formulated as the quantized Berry phase in units of \(\pi\) modulo \(2\pi\). The case of \(d = 2\) is much fascinating. The topological invariant is the Euler number, a real version of the Chern number, for two valence bands. The Euler number is valued in \(\mathbb{Z}\), but only its parity is stable if more trivial valence bands are added into consideration. The parity, namely the Euler number modulo 2, is just the Stiefel-Whitney number \(w_2\) in two dimensions, which determines whether the real vector bundle can be lifted into a spinor bundle.

The topological invariant \(w_2\) gives rise to novel topological phases with extraordinary properties. In 3D, it characterizes a real Dirac semimetal, which can be transformed into a nodal ring with symmetry-preserving perturbations. Then, the nodal ring is characterized by two topological charges \((w_1, w_2)\). In 2D, it describes a topological insulator. The common topological wisdom is that the bulk topological invariant \(w_2\) determines a unique form of the boundary modes, namely the well-known one-to-one bulk-boundary correspondence. Similarly, the 3D semimetal can host second-order hinge Fermi arcs and first-order surface Dirac states as well. Recently, graphynes have been proposed as the material candidates which can realize both the 2D topological insulator and the 3D topological semimetal [37, 42, 43].

As aforementioned, the second-order phases of the 2D topological insulator feature odd \(\mathcal{PT}\)-related pairs of corner zero modes. It is interesting to look for its 3D analog, which has been presented in Ref. [44]. Referring to the topological classification table for \(\mathcal{PT}\) and \(CP\) symmetries, we notice that although the classification for \((\mathcal{PT})^2 = 1\) is trivial, with an additional chiral symmetry \(S\) with \(\{\mathcal{PT}, S\} = 0\) the classification is preserved as \(\mathbb{Z}_2\) in 2D and, more importantly, becomes non-trivial as \(\mathbb{Z}_2\) in 3D. It is found that the corresponding topological invariants can be formulated in terms of Takagi’s factorization. The topological invariant in 2D is equivalent to \(w_2\), while that in 3D is a new topological invariant. Either in 2D or in 3D the bulk topological invariant can be manifested as odd \(\mathcal{PT}\)-related pairs of corner zero-modes. Now, with the chiral symmetry, the two zero-modes in each pair are eigenstates with opposite eigenvalues of the chiral symmetry.

In this article, we review the elements of 2D \(\mathcal{PT}\)-protected topological insulators with or without chiral symmetry. The essential physics is demonstrated by the Honeycomb-lattice model, with only the nearest-neighbor hopping amplitudes. We show that under certain dimerization patterns the model is a topological insulator with non-trivial Stiefel-Whitney number or the Takagi topological invariant, and therefore presents all the non-trivial topological phenomena. Particularly, under various \(\mathcal{PT}\)-invariant geometries, there are always odd \(\mathcal{PT}\)-related pairs of corner zero-modes for the second-order topological phase. Before diving into the details, it is noteworthy that the dimerized honeycomb model can be regarded as an abstraction from the graphynes [37, 42, 43].

### THE HONEYCOMB-LATTICE MODEL

Let us start with presenting the honeycomb-lattice model, the lattice structure is shown in Figure 1A. The Hamiltonian in momentum space is given by

\[
\mathcal{H}(k) = \begin{pmatrix}
0 & t_3 & \chi^{(2)}_k & t_1 \\
t_3 & 0 & t_2 & \chi^{(1)}_k \\
\chi^{(2)}_k & t_1 & 0 & t_3 \\
t_1 & \chi^{(1)}_k & t_3 & 0
\end{pmatrix},
\]

where \(\chi^{(i)}_k\) are eigenstates with opposite eigenvalues of the chiral symmetry. The 2D topological insulator can host various second-order phases with helical edge states. Before diving into the details, it is noteworthy that the dimerized honeycomb model can be regarded as an abstraction from the graphynes [37, 42, 43].

To obtain the non-trivial topological phases, we calculate the determinant of the Hamiltonian (Eq. 1) at \(\Gamma\) point\(^1\) in the Brillouin zone as

\[
\det[\mathcal{H}(\Gamma)] = -(t_1^1 t_1^3 + t_2^1 t_2^3 + t_3^1 t_3^3 - 2t_1 t_2 t_3 - t_1 t_2 t_3)^2.
\]

Since the bulk topological criticality generally corresponds gap-closing point, we can obtain the topological phase-transition points by letting \(\det[\mathcal{H}(\Gamma)] = 0\), which gives

\[
t_1^1 t_1^3 + t_2^1 t_2^3 + t_3^1 t_3^3 = 2t_1 t_2 t_3 + t_1 t_2 t_3^2.
\]

Interestingly, if (Eq. 3) holds, the system is generally reduced to a topologically equivalent graphene model with two Dirac points in the first Brillouin zone [45]. When \(t_1^1 t_1^3 + t_2^1 t_2^3 + t_3^1 t_3^3 < 2t_1 t_2 t_3 + t_1 t_2 t_3^2\), the system steps into a topological phase, while conversely the system becomes a trivial phase, which can be checked by computing Stiefel-Whitney number or Takagi’s factorization.

\(^1\)By the numerical calculation of Wilson loop, one can easily check that only the algebra of parameters obtained at \(\Gamma\) point is the real bulk criticality, while the others are not.
given in Ref. [22], the topological invariant can be determined.

The topology can be determined by various formulas of the topological invariant. We now briefly review them. First, as given in Ref. [22], the topological invariant can be determined by the Wilson loop

\[ \mathcal{W}(k_y) = P \exp \left( -i \int_{c_{k_y}} dk_x A(k_x, k_y) \right) \]  

(with \( P \) indicating the path order) along large circles parametrized by \( k_y \). \( C_{k_y} \) is the contour at a fixed \( k_y \) and \( A(k_x, k_y) \) is the non-Abelian Berry connection for the valence bands. The topological information is encoded in the phase factors \( \theta(k_y) \in (-\pi, \pi] \) of the \( N \) eigenvalues \( \lambda_m(k_y) \) of \( \mathcal{W}(k_y) \) for valence bands:

\[ \theta_m(k_y) = \text{Im} \left[ \log \lambda_m(k_y) \right]. \]  

Different from the conventional TIs and Chern insulators, the Wilson loop spectral flow for real phases are mirror symmetric with respect to the \( \theta = 0 \) axis see Figure 1B. This is because \( \mathcal{W}(k_y) \) is equivalent to a mapping from \( k_y \in S^1 \) to \( O(N) \) up to a unitary transformation [22]. The topological information can be pictorially derived from counting how many times \( \zeta \) the trajectories cross \( \theta = \pi \) as

\[ w_2 = \zeta \mod 2. \]  

For honeycomb lattice with \( t_1^2 + t_2^2 + t_3^2 < 2t_1 t_2 t_3 + t_1^2 t_2^2 \), a single crossing exit as shown in Figure 1B, namely, \( w_2 = 1 \), which indicates the model is in a topological non-trivial phase.

As aforementioned, our system is protected by spacetime inversion symmetry \( \mathcal{P} \mathcal{T} \) and sublattice (chiral) symmetry \( \mathcal{S} \). These symmetries constraint the classifying space of \( \mathcal{H}(k) \) to be symmetric unitary matrices. Thus the \( \mathbb{Z}_2 \) invariant from the Takagi’s factorization can be defined [44], which leads to an alternative formulation for \( w_2 \). We now prove the equivalence of the two formulas. For technical simplicity, we assume the momentum space as a sphere \( S^2 \), which is sufficient to present the essential ideas.

In general, \( \mathcal{S} \) requires the Hamiltonian \( \mathcal{H}(k) \) to be block anti-diagonal and \( \mathcal{P} \mathcal{T} \) requires the upper-right block to be symmetric. Thus the flattened Hamiltonian \( \tilde{\mathcal{H}}(k) \) is given by

\[ \tilde{\mathcal{H}}(k) = \begin{bmatrix} 0 & \mathcal{Q}(k) \\ \mathcal{Q}^T(k) & 0 \end{bmatrix}, \quad \mathcal{Q} = \mathcal{Q}^T, \quad \mathcal{Q}^{T} \mathcal{Q} = I_M, \]  

where \( \mathcal{Q} \) is a matrix with column vectors \( \mathcal{Q}_i(k) \) which form a basis for the space of \( \mathcal{H}(k) \).
where \( Q(k) = U(k)U^T(k) \) is a unitary symmetric matrix for each \( k \) and \( M \) denotes the number of valence (conduction) bands. \( U(k) \in U(M) \) is the Takagi factor. The classifying space for this symmetric class is \( US(M) = U(M)/O(M) \) [44]. Here, \( \pi_2[US(M)] = \mathbb{Z}_2 \) corresponds to the topological invariant of our system. Consider a 2D sphere \( S^2 \), which is divided into north and south hemispheres \( D_{NS}^2 \), overlapping along the equator \( S' \). The Takagi factors \( U_{NS} \) over \( D_{NS}^2 \), respectively, can be transformed to each other by a gauge transformation \( O_{S'} \) over the equator \( S' \), as shown in Figure 2. \( O_{S'} \) is given by

\[
O_{S'} = U_{S'}|_{S'} U_{S'}|_{S'}^{-1}, \quad O_{S'} \in O(M).
\]

\( \pi_1[O(M)] = \mathbb{Z}_2 \) for \( M > 2 \) leads to obstructions for a global Takagi’s factorization over \( S' \).

The conduction and valence wavefunctions of \( \hat{H}(k) \) can be given by

\[
|+, n\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} U\phi_n \\ U^{\dagger}\phi_n \end{bmatrix}, \quad |-, n\rangle = \frac{i}{\sqrt{2}} \begin{bmatrix} U\phi_n \\ -U^{\dagger}\phi_n \end{bmatrix},
\]

where \( n \in \{1, 2, \ldots, M\} \), \( \phi_n = (0 0 \cdots 0 1 0 \cdots 0)^T \) is a unit vector with “1” locating at the \( n \)-th position.

Performing a unitary transformation \( U_R = e^{-i\pi/4}e^{i\pi n/4} \) on this system, the Hamiltonian and valence wavefunctions both become real. Meanwhile, \( \mathcal{P} \mathcal{T} \) and \( S \) are transformed to \( \mathcal{K} \) and \( \sigma_2 \), respectively. Over the intersection \( S' \), transition function \( t_{S'} \) of real valence wavefunctions can be given by

\[
[t_{S'}]_{mn} = (-m|\sigma_2 U_{S'}^d U_{S'} |n\rangle_{S'\beta} = [O_{S'}]_{mn}.
\]

Thus, we know the transition function \( t_{S'} \) of real valence wavefunctions is equal to the gauge transformation \( O_{S'} \). As noted in Ref. [22], \( w_3 \) is just the parity of the winding number of the transition function for valence bands. Thus, we see the equivalence of two 2D topological invariants.
PHYSICAL CONSEQUENCE

The high-order topological phase in the honeycomb model features novel bulk-boundary correspondence that is different from the traditional one, namely, it has one-to-many bulk-boundary correspondence. Furthermore, the boundary modes can be tuned by the boundary selection. According to analytical and numerical methods, we reveal that three pairs of hopping parameters \( t_i \) and \( t'_i \) (with \( i = 1, 2, 3 \)) jointly determine the configuration of topological boundary modes. To facilitate understanding the relation between distinct boundary modes and parameters, we define a boundary effective mass term \( m_i \) for each edge:

\[
m_i = t_i t'_j - t_i t'_k \quad \text{with} \quad i \neq j \neq k, \tag{10}
\]

where the subscript \( i \) denotes the hopping along the primitive vector \( a_i \) direction \( (a_3 = -a_1 - a_2) \). The above Eq. 10 can be derived from the boundary effective Hamiltonian\(^2\). Hence, if \( m_i = 0 \), the corresponding edges are gapless, which is also the boundary critical condition to separate two second-order topological phases.

To demonstrate the boundary modes, we consider a rhombic-shaped 2D sample with armchair termination, i.e., by opening boundary along \( a_i \) and \( a_j \) direction, as shown in Figure 3. If \( m_1 = 0 \) and \( m_2 \neq 0 \), the helical edge modes along periodic \( a_1 \) can be obtained, as shown in Figure 3B. However, once \( m_{1,2} \neq 0 \), the helical edge modes will be gapped and the localized corner modes will emerge. More specifically, for the case with \( \text{sgn}(m_1) = \text{sgn}(m_2) \) (\( \text{sgn}(m_1) = -\text{sgn}(m_2) \)), the corner modes will locate at 120° (60°) corners, as shown in Figures 3A,C respectively. The \( PT \) symmetry requires that the corner zero-modes always come in pairs and the chiral symmetry sets the midgap modes exactly at zero energy\(^3\).

To keep the completeness of honeycomb unit cell in a rhomboid sample, one only has three kinds of armchair edges, namely the edge parallel to \( a_i \) direction with \( i = 1, 2, 3 \). If the edge connected by the same corner has the same mass term \( m_i \) sign, the corner zero-modes will be localized at the obtuse angle of the rhomboid, otherwise at acute corners. We shall theoretically explain these numerical results in the next section. It is emphasized that in the whole process of the edge-phase transitions, the bulk gap is always open and the symmetries are preserved, therefore, the bulk invariant \( \nu \) is unchanged. Thus the conventional bulk-boundary correspondence is not applicable for TTI, namely, the bulk invariant can not uniquely determine the

\(^{2}\text{Finite-size effects can split the degenerate zero modes and deviate them from zero to form a gap corner modes, but the deviation is exponentially suppressed with the sample size.}\)
boundary modes, but dictates an edge criticality, as the concept mentioned in previous work [41].

As promised in introduction, we now proceed to tune the boundary modes with fixed parameters. In the rhombic case, all samples terminate with armchair edges and exhibit parameter-dependent boundary modes. As long as $\mathcal{PT}$ and $\mathcal{S}$ are not violated, the finite samples can be cut with not only rhomb but also hexagon (see Figure 5). Beside armchair edges, zigzag edges can serve as termination too. Creatively, with fixed parameters but different boundary selections, one can also find various distinguishable boundary modes. For instance, helical edge states emerge on the zigzag edges in a rectangle sample as shown in Figure 4A, with the same hopping parameters as Figure 4B. This result further proves that the bulk topological invariant can not uniquely determine the topological boundary modes. We also study lots of other patterns with the same parameters, and abundant topological boundary modes consisting of corner zero modes and gapless edge modes can be obtained (see Supplementary Appendix SAD). They are all boundary-selection-dependent. Hence, we propose that one can obtain needed topological boundary modes by choosing particular boundary geometry, without tuning parameters, which is usually difficult to perform in real systems.

Novely, in both situations discussed above, for second-order topological phases, the number of the zero-energy corners must be odd pairs. For example, for a hexagonal sample, we can only find one or three pairs of zero-mode corners, as shown in Figures 5A, B. Similarly, the Octagonal sample also has one or three pairs of zero-mode corners as shown in Figures 5C, D.

We find that the peculiarity of odd-pair-zero-modes is universal and it can be generalized to a higher-dimensional situation, such as 3D [44]. The 3D model is constructed by stacking the 2D honeycomb TTI discussed above in a staggered manner to preserve the sublattice symmetry $\mathcal{S}$. The details of the construction of the model can be found in Supplementary Appendix SAC. The inversion center is chosen as the center of hexagonal in one layer. Thus the anti-commuting relation of $\mathcal{PT}$ and $\mathcal{S}$ are preserved. We cut a finite hexagonal prisms sample that keeps the symmetries. One can find only odd pairs (one or three) of corner states related by $\mathcal{PT}$ appear. Note that the corner zero-modes can be driven to other corners by tuning the hopping parameters like in a 2D situation.

**ANALYTIC METHOD**

We first proceed to solve the boundary criticality along the periodic $a_1$ direction and opening boundary with $a_2$. Replace $e^{-i k \cdot a_2}$ by $S$ in Hamiltonian Eq. 1, with $S|i\rangle = |i + 1\rangle$, $S|j\rangle = |-j - 1\rangle$. Then $e^{-i k \cdot a_2}$ can be represented by $e^{i k \cdot a_1} S'$ since $a_3 = -(a_1 + a_2)$. After a series of tedious derivation (see Supplementary Appendix SAA), we obtain the effective Hamiltonian of the bottom boundary:

$$H_B(k \cdot a_1) = \begin{bmatrix} 0 & t_3 & 0 & t_1 \\ t_3 & 0 & t_1 e^{i k a_1} & 0 \\ 0 & t_1 e^{-i k a_1} & 0 & t_2 \\ t_1 & 0 & t_2 & 0 \end{bmatrix} \quad (11)$$

Following the same argument with aforementioned bulk criticality, we can obtain the boundary criticality by letting $\det[H_B(k \cdot a_1)] = 0$, which leads to

$$t_1 t_1' - t_2 t_3 = 0. \quad (12)$$

The above Eq. 12 holds only at $k \cdot a_1 = 0$. Thus, when the system is in a topological non-trivial case, Eq. 12 related edge criticality separates two different second-order topological phases with corner zero modes. Likely, we can obtain similar results for periodic $a_3$ and $a_1$ directions. For convenience, we can define boundary effective mass by the left of Eq. 12 for edges parallel to $a_1$. Or, generally Eq. 10 for edges parallel to $a_i$. Different from the armchair edges, the zigzag terminations has an additional boundary criticality, namely, the effective masses can be defined by

$$M_i = \frac{1}{2} \sum_{jk} \epsilon_{ij} (t_j t_j' - t_k t_k'). \quad (13)$$

The derived details can be found in the Supplementary Appendix SAB.

With the effective mass orderly distributing on each edge ($i$), the existence of corner zero-modes is reduced to a Jackiw-Rebbi problem [46]. The corners with opposite effective masses on both sides can have zero-modes.

**DISCUSSION**

In this article, we present a simple 2D realizable honeycomb-lattice model to demonstrate the essential physics of the Takagi topological insulator. It is found that with unchanged topological invariant, one can tune topological boundary modes by not only parameters, but also boundary selections. It goes beyond the common wisdom about bulk-boundary correspondence, and gives rise to much richer boundary physics. Our model with novel physics is closely related to real systems. It is easier to realize our model by photonic/phononic crystals, electric-circuit arrays and mechanics systems, since only have nearest-neighbor hopping amplitudes are included into the model. Several special cases of our model have been recently realized in photonic/phononic crystals [47, 48], where hopefully the general form of our model can be further experimentally examined.

**AUTHOR CONTRIBUTIONS**

All authors listed have made a substantial, direct, and intellectual contribution to the work and approved it for publication.
FUNDING
The authors acknowledge the support from the National Natural Science Foundation of China under Grants (Nos 11874201, 12174181, and 12161160315).

REFERENCES
1. Volovik GE. Universe in a Helium Droplet. Oxford UK: Oxford University Press (2003).
2. Hasan MZ, Kane CL. Colloquium: Topological Insulators. Rev. Mod. Phys. (2010) 82:3045–67. doi:10.1103/revmodphys.82.3045
3. Qi X-L, Zhang S-C. Topological Insulators and Superconductors. Rev. Mod. Phys. (2011) 83:1057–110. doi:10.1103/revmodphys.83.1057
4. Fu L. Topological Crystalline Insulators. Phys. Rev. Lett. (2011) 106:106802. doi:10.1103/physrevlett.106.106802
5. Chiu C-K, Ascnyder AP, Ryu S. Rev. Mod. Phys. (2016) 88:035005. doi:10.1103/revmodphys.88.035005
6. Kitaev A. Periodic Table for Topological Insulators and Superconductors. Rev. Mod. Phys. (2009) 82:109–131. doi:10.1103/revmodphys.82.109
7. Altland A, Zirnbauer MR. Nonstandard Symmetry Classes in Mesoscopic Systems. Rev. Mod. Phys. (2010) 82:27–75. doi:10.1103/revmodphys.82.27
8. Niu J, Kong J. Topological and Topometrical Properties of Noninteracting Fermi Surfaces and Topological Insulators. J. Phys. Soc. Jpn. (2016) 85:082002. doi:10.7566/jpsj.85.082002
9. Sato M, Shiozaki K. Topology of Crystalline Insulators and Superconductors. Phys. Rev. Lett. (2016) 116:156402. doi:10.1103/physrevlett.116.156402
10. Liu J, Park S, Yang B-J. Failure of Nielsen-Ninomiya Theorem and Fragile Topology in Two-Dimensional Systems with Space-Time Inversion Symmetry: Application to Twisted Bilayer Graphene at Magic Angle. Phys. Rev. X (2019) 9. doi:10.1103/PhysRevX.9.021013

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fphy.2022.915764/full#supplementary-material
Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Liu, Wang, Dai and Zhao. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.