Comparison between protein and amino acids of mushroom *Agaricus bispours* with some kinds of meat and meat’s products

K S J AL-Hussainy and N K Z AL-Fadhly

Food Science, College of Agriculture, University of Basrah, Basrah, Iraq

E-mail: khadeefa_jaffer@yahoo.com nawal.zben@gmail.com

Abstract. Results indicated that the percentage of protein in mushroom was approached with it in sheep’s meat, but it was higher than the others. Also, the protein was higher than eggs, cow's milk, sheep’s milk and cheese of cow's milk, while it was lower than it in cheese of sheep’s milk which contained the higher one among these samples. Results show that sheep’s meat contained highest percentage of Valine and Lysine while it contained lowest percentage of Isoleucine. Fish contained highest of Threonine and Isoleucine, but shrimp surpassed in Leucine. However, eggs contained highest of Phenylalanine and cow's milk was rich in Methionine. Threonine, Methionine and Lysine were found in lowest percentage in eggs, while cow's milk contained lowest of Leucine and Phenylalanine, also Valine was low in cheese of sheep’s milk. Cow's milk contained highest of Glutamic acid, Proline and Tyrosine, while it contained lowest of Alanine. Shrimp contained highest of Aspartic acid and Glycine, but fish surpassed in Alanine, but sheep’s meat contained the highest of Arginine. Glycine, Arginine, Proline and Tyrosine were found in lowest percentage in eggs, while cow's milk has the lowest portion of Glutamic acid. Also, chicken contained lowest percentage of Aspartic acid. Fish contained highest percentage of Serine, while cow's milk contained highest of Histadine. But cow's meat contained low amounts of Serine and Histadine. Methionine, Leucine, Phenylalanine, Glutamic acid, Arginine, Alanine, Tyrosine and Histadine in mushroom was close to sheep’s meat as well as close to shrimp in the percentage of Methionine, Valine, Glycine and Proline. Also, the percentage of Lysine was close with it in cow's milk, Aspartic acid in mushroom was close to the percentage of it in cheese of sheep’s milk, while Serine was close with it in chicken and cheese of cow's milk.

1. Introduction

Amino acid is the basic unit of composition of proteins and peptides in the bodies of living organisms, eight of them essential and that are not created by the human body, so they can be obtained from animals, and plants source. The rest of amino acids are non-essential that (can be manufactured within the human body, provided to healthy nutrition) despite the body's ability to manufacture of unessential amino acids, in some cases have to take supplements of the essential amino acids to ensure that the optimal quantity in the body, more resintly a third section is a semi-essential amino acids, which the body manufactures these acids, but in limited quantities [1].

Amino acid components of the proteins belong to category α-Amino Acids because the hydroxyl radical and the Secretary are linked to the first carbon atom in the chain. Although there were a large number of alpha-amino acids in nature the protein chains do not contain only 20 types [2].
In addition to building cells and repairing tissue, amino acids are the main construction material for antibodies to combat invading bacteria and viruses, which are an essential part of enzymes and hormones system; as the amino acids play a major role to carry oxygen to different parts of the body, an essential component of muscle activity, and the amino acid play role of neurotransmitters and raw materials to certain hormones or as an energy source [1].

At the present time, the world is suffering at the present time a large food crisis, especially in developing countries, since the food protein occupies a privileged position it is natural diversity of ways to search and deal with its production agriculturally, industrially and work to save and spread it[3]. The most important sources of protein is meat, which is defined as a structures complex containing high vital interest food stuffs as they are considered a rich source of protein with full nutritional value. They are digested easily and includes commercial source of this meat both beef and buffalo, sheep, birds and fish which are the main source of meat [4].

The researchers of food take an interested to found new sources of non-classical for the production of food especially production of protein, Mushroom was fleshy growth of some types of fungi might be to grow above the ground, as the most types of mushrooms or might be growing under the surface of the earth as truffle[3].

Good species fungus which suitable to eat called mushrooms, and these types of mushroom produced in east Asia, China and Japan. Also, it was occupied first place in Egypt in the consumption of mushrooms, mushroom shiitake which was called the golden type was likable in most countries in Southeast Asian [5].

Chemical analyses of the mushrooms which have a high nutritional value exceeding the nutritional value of most types of fruit that vegetables and is approach a lot of nutritional value of the meat, therefore it considers as a food substitute for meat [6].

The nutritional value of mushroom was primarily in the content of the proteins that make up 5% of the weight of fresh mushroom, which is equivalent to 40-35% of the weight of dry matter and characterized by a high quality of these proteins, because the amino acids that made proteins very similar to those that made the animal proteins of meat, milk, eggs, and these proteins found in mushrooms can compensate animal proteins by 100% while other vegetable proteins of cereals, pulses and vegetables do not compensate for animal proteins, but up to 40-50%, and this makes mushroom competitor real and strong meat animal and the other products [6], mushroom was poor in its content of fatty substances ranging between 0.01 - 0.2%, which makes it suitable for diabetics and people with high cholesterol in the blood. The mushroom was appropriated for individuals who suffer from obesity and all those who they wish to maintain their health and their activity [3].

The aim of study was conducted to determmint protein and amino acids for mushroom
Agarieus bispours and compared it’s with the percentage of protein and amino acids for red and white meat samples such as (cow's meat , sheep’s meat, chicken, carb fish and shrimp) and meat products such as (eggs, cow's milk , sheep’s milk, white, soft cheese made from cow's milk and from sheep’s milk).

2. Materials and Methods

2.1. Materials
Fresh samples were purchased from the local markets of Basra city during the period 1- 4- 2018, 50 grams of beef, lamb, chicken, carp fish Cyprinus carpio, shrimp Metapenaeus affinis, eggs, cow's milk, sheep's milk, white, soft cheese made of cow's milk and sheep's milk and canned mushroom (Agarieus bispours) of Chinese origin were taken, these samples were dried in oven in 40 C° for three hours.

2.2. Working methods:
2.2.1. Protein:
The percentage of protein was estimated by Semi-microKjeldahl method that described by Pearson [7] for samples of meat, eggs and cheese, while the percentage of protein in the milk were estimated using the method of (Biuret) as stated in Wooton [8].
2.2.2 Pre-column Derivatization Method of amino acid analysis
Pre-column derivatization, the amino acids are derivatized before injection, then the reaction products are separated and detected. This concept is illustrated on the right. The "labels" shown indicate the derivatizing reagent. Using ion-exchange column and derive Almnhedrin, a dimension of the column in auto- analysis system was Shimadzu Spd-6 Av UV - Visible detector device ,using High Performance Liquid Chromatography (HPLC) in the Ministry of Science and Technology, Baghdad – Iraq, was used to determined the amino acids in the samples.

2.2.3 Material
Methanol HPLC grade (Fluka). Solutions of amino acid standards 25µg/ml, phenyl isothocyanate reagent 50 mM, were obtained from (Aldrich Chem. Co. Ltd).

2.2.4 Chromatographic System:
The HPLC Chromatography system consists of two Shimadzu model LC-6A pumps (Koyoto Japan), SIL-6A automated system controller for generation of elution a gradients and a Shimadzu Spd-6AV UV-visible detector equipped with 8µ flow cell. The sample injected into the column through Rheodye 7125-sample injector with 20µl injection loop. The data were processing and analyzed by RC-6A data processors.

The column used was Shimpack XR-ODS (50× 4.6 mm 1.d), 3um particle size. Gradient was formed between two degassed solvents. Solvent A: 5% methanol in 0.1 N sodium acetate buffer pH (7.0), Solvent B: methanol.
linear gradients in from 0 -20 minutes
Detection: UV set at 254nm
Flow rate: 1 ml/min
Injection: 20 ml.

2.2.5 Extraction:
1.0 gram dry sample was blended with 50 ml of ethanol absolut:water 60:40 (V / V) the extracted sample were dissolved in 30 ml 6N of HCl and hydrolysed in vacuum-sealed glass tube at 110 °C for 6 hours using Dry bath incubator. Hydrolyzed sample were filtered through glass filter and the filtrate was concentrated by rotary evaporator to reach 5 ml then mixed 5 ml of 0.1M citric acid buffer (pH 2.2) and 10 µl was derivatized with phenyl isothiocyanate (PITC) reagent and 20 µl were injected on HPLC column under the optimum condition.

2.2.6 Derivatization Procedure:
The general procedure for derivatization was as follow, 10 µL of aliquots of the standard or unknown sample was mixed with 10 µL of PTIC reagent after 1 minute, 50 µL of 0.1 M sodium acetate pH (7.0) was added. the sample was shaked and agitated in Ultrasonic bath for 10 minutes , The extract were filtered on disposable filters 0.2 um (supelco company cat No 16534K), then 20 ul were injected on HPLC column. The concentration for each compound was quantitatively determined by comparison the peak area of the standard with that of the samples[9; 10].

2.2.7 Statistical Analysis and Design
Complete Randomized Design (CRD) analysis was used for global trials and analyzed according to the Special Program For Statistical System (SPSS) (11). At a significant level (P≤ 0.05).

3. Results and discussions
3.1 Protein
It found that the percentage of protein in the mushroom higher than all kinds of meat except sheep's meat and also higher than other products such as eggs, cow's milk and white, soft cheese made from
cow's milk and sheep's milk, but it was less than the percentage of protein in the cheese made from sheep's milk, which contained the highest percentage of protein (30.03 %) (Table 1).

When comparing these results with other studies, it can be observed that the protein content of the mushroom was higher than those obtained from the types of mushrooms S. Crassa, P. salcinus and T. fracticum which were (19.46, 10.72 and 13.85) % respectively, and lower than those obtained in the two types of mushrooms, A. aegerita and H. leucopus which were (34.1 and 31.41) % respectively [3], as well as it was higher than the percentage of protein of mushrooms A. mellea who was (21.12%), but It's less than the percentage of protein in S. imbricatus and C. cibarius which were (27.45 and 34.17) % respectively [6], [12] reported that the percentage of protein in the mushroom P. citrinopileatus was (22.10%), this ratio was lower than obtained the percentage of protein in this study.

The percentage of protein in the cow's milk was (22.1 %). These results are not consistent with the results obtained from [13] which indicated that the percentage of protein in the thigh of fresh veal and cows were (19.80 and 18.76) % respectively. It is higher than the results explained by [14],[15],[16],[17] and [18] when they studied the chemical composition of the thigh muscle of cows and they reported that the percentage of protein was (18.80) %, (21.8) % (19.0.67) %, (18) % and (18.7) % respectively, [19] stated that the percentage of protein in beef taken from the markets (Alddrah,Kasra and Karrada) in Baghdad city were (20.58, 20.97 and 21.18) % respectively, and this ratio is less than the ratio in the current study.

[20] explained that the percentage of protein in meat products between 15-29 % and in cows and veal were 21.3 % and 22 % respectively. Lamb's meat contains protein ratio about 26.37 %, which was higher than the percentage (17 %) cited by [21] when studied in the same type of meat. [20] reported that the percentage of protein in lamb's meat and small lamb's meat (20.4 and 15.7) % respectively. [22] noted that the percentage of protein in the lamb's meat was 21.12 %, and [23] reported that the percentage of crude protein in the lamb's meat was 16.30%.

[24] found that the percentage of protein in the Najdy and Oraby lamb's meat aged two weeks were (22.8 and 18.7) % respectively. The results showed that the protein content in chicken meat under study was 19.50 %, which is less than what reported by [25] who stated that the percentage of protein in chicken meat amounted to 24%, and less than what [26] found, who stated that the protein of chicken meat was increased to 21.4%, [27] reported that the percentage of protein in the thigh and breast) chicken meat were (23.32 and 24.9) % respectively, which is less than what [28](20.50 %) found when determined percentage of protein in the imported chicken meat with the results 20 % indicated in chicken meat [29].

[20] found that the percentage of protein in poultry meat between (15-24) %. The results showed that the percentage of protein in the carp fish was 19.49 %, The results of this study were higher than [30] results who stated that the percentage of protein in the carp fish was 17.5 %, while [31] pointed that the percentage was 17.52 %, [32] reported that the percentage of protein in fresh carp fish was 17.2 % and in the imported carp fish was 14.98 %. Also, [33] noted that the percentage of protein in the carp fish was 18.68 %. In addition, [34] indicated in her study that the percentage of protein in the carp fish was 18.42 %, which is less than the results of the current study.

[35] reported that the percentage of protein in the grass carp fish and silver carp fish and common carp fish were (20.77, 16.82 and 17.43) % respectively, which were not consistent with the values of the current study.

[20] found that the percentage of protein in the river fish was between 15-20 % and in marine fish was between 15-19 %.

The percentage of protein in shrimp meat was about 20.11 %, which is higher compared with the [36], which was (18.45 %). [37] mentioned that the percentage of protein in the marine shrimp Penaeus semisulcatus and river shrimp Macrobrochium rosenbergii were (52.46 and 48.79) % respectively, which was higher than that reported in this study. While [38] reported that the percentage of protein in the marine shrimp (shrimp Arabian Gulf) and river shrimp (marshes shrimp) Metapenaeus affinis were(19.11 and 12.97) % respectively, which is lower than the proportion of protein in shrimp under study. [19] found that the percentage of protein in crustaceans was between 15-19 %.
In egg percentage of protein was 21.4 %, this results was approached the percentage (21 %) that reported by [22]. While Organization FAO / WHO [39] reported that the percentage of protein in eggs was (3.8 %). While [20] found that the percentage of protein in chicken eggs was (12.5 %) which was less than the percentage reported in this present study.

The percentage of protein in the cow's milk was (4.2 %) which was higher than the percentage of protein in the cow's milk (3.03 %) studied by [40] or the percentage of protein in the cow's milk (3.1 %) reported by FAO / WHO [39]. And this percentage was higher compared with the results of [41], [42] and [43] who pointed out that the percentage of protein in the cow's milk was (3.2 %), (3.1 % to 3.9 %) and (2.88 %) respectively. While it was lower than what recorded by [44] who reported about 13.9 %.

The percentage of protein in the sheep's milk was (5.49 %), and it was approached to percentage which were estimated in the milk of six domestic breeds of sheep (Suffolk, Targhee, Finn, Dorset, Lincoln and Rambouillet) (6.1, 5.7, 6.5, 6.1 and 6.2 %) reported by [45], [46] pointed out that the percentage of protein in milk of seven Asian breeds of sheep (Lacaune, Boutsico, Vlahico, Karagouniko, Nadjii and Friesland) were (5.63, 6.52, 5.97, 4.75, 5.82 and 5.29) %, [47] ingested that the percentage of protein in lamb's milk was (6 %). Or [43] who showed that the percentage of protein in the sheep's milk was (5.88 %). These results were lower than the percentage which were estimated in the present study. It was also closed within the range of protein in sheep's milk (4.5-7.0 %) mentioned by [42]. But [41] reported less protein (6.2 %) in sheep's milk.

When comparing the protein content in the white cheese made from cow's milk reported in this study with other studies, it turned out to be less than the percentage obtained by [48] which was (19.76 %), but higher than the percentage found by [49] in the five types of white soft cheese made from cow's milk (Almekaafi cheese, Abu Shebik cheese, Galajacheese, Zriga cheese and Gozelahmeer cheese) were (15.73, 14.67, 14.73, 13.57 and 14.17) % respectively, [44] mentioned that the percentage of protein in cheese was (8.5 %).

Table 1. percentage of protein (%) in mushrooms and types of meat and meat products

Sample	percentage of protein (%)
Meat	Cows: 22.18 a
	Sheep: 24.51 a
	Chicken: 19.50 c
	Carp: 19.49 c
	Shrimps: 20.11 c
	Eggs: 21.40 ab
Milk	Cows: 4.20 d
	Sheep: 5.49 d
White, soft cheese made from	Cows: 18.66 e
milk	Sheep: 30.03 e
Mushroom	24.37 a

All results in the table are the rate of repeating.

Similar letters mean there are no significant differences and different letters mean there are no significant differences.

The percentage of protein in cheese made from sheep's milk was (30.03 %) which was higher than the percentage of protein (28.45 %) in white, soft cheese reported by [50], and higher than that found in the studied by [51] in a cheese made from sheep's milk which was (22.27 %).
It should be noted that this percentage was not fixed, but it was variable depending on several factors, including the (environment, nutrition, season, gender, sex, and other)[52]. The differences in the percentages of protein in both cow's and sheep's meat and chicken and eggs, may be due to backward proportionality between the chemical components, particularly moisture and protein. However, when the percentage of moisture increases the percentage of protein was decreases. The differences between the results of the current study and other studies may be regarding the types of animals, breeds, nutrition, the part taken from the carcasses of animals and other [53].

The mushroom sample in current the study has the highest percentage of protein compared with other samples used in this study. so we can conclude that it was approaching the protein content of the sources of meat (cows, sheep, chicken, shrimp, fish, eggs and other animal products) protein so it was one of the healthy foods that are recommended taking it to maintain the overall health of the body.

Statistical results on the level (P \leq 0.05) showed that there was no significant differences in percentage of protein between beef and sheep meat as well as between chicken meat, fish meat and shrimp meat. While there were significant differences in the percentage of protein between beef and chicken meat and fish meat and shrimp meat and between sheep meat and these types of white meat. There were no significant differences in protein ratio between eggs, beef and sheep meat, but there were significant differences between eggs and between chicken meat, fish and shrimp. There were significant differences in protein ratio between cows milk, sheep milk and red and white meat species, while there were no significant differences in protein ratio between cheese made from cow milk and cheese made from sheep milk and between them and between meat types and milk and egg types. The percentage of protein in mushroom mushrooms did not differ significantly with that of beef and sheep, but they differed significantly with other meat and animal products.

3.2. The percentage of amino acids in meat and meat products

Table (2, 3 and 4) showed the essential, non-essential and semi-essential amino acids analysis by HPLC technique for samples of various meat and meat products, the results showed that the sample contained 18 amino acid, these acids varied depending on the types of meat and meat products proteins.

3.3. The percentage of essential amino acids in meat and meat products:

Table (2) showed that the meat and meat products contained seven essential amino acids and all lacked the tryptophan. Mushroom contained (9.14 %) of Threonine, it was observed that this percentage was less than the percentage found in the fish which was the highest, than the percentage in cow's meat, cow's milk and shrimp, but it was higher than sheep's meat, chickens, sheep's milk, both types of cheese and eggs. It was also noted that the percentage of Valinein mushroom was (3.70 %), and found to be less than the percentage in the sheep's meat which was the highest, then cow's meat and milk, followed by fish, eggs and shrimp. However, it was higher than cow's milk, cheese made from cow's milk, cheese made from sheep milk, cheese and chickens.

The study showed that the percentageof Methionine in mushroom was (3.26 %), which was less than the percentage in the types of meat and meat products, except eggs, which contained (2.36 %) of this acid. Also, it found that the percentage of Isoleucine in mushroom was (3.31 %), which was low compared to the percentage estimated in meat and meat products except sheep's meat, which contained (0.88 %) of this acid.

Results reported that Leucine content in mushroom was (3.54 %), it was noted that the percentage of this acid in mushroom was less than it in the types of meat and meat products except cow's and sheep's meat. Also, the percentage of Phenylalaninein mushrooms was (5.14 %), and it's low compared with those of the egg, which contained the highest percentage among the types of red and white meat, cow's and sheep's meat and milk, but it higher than the cheese made from sheep's milk and fish who contained an approximate values, then sheep's milk, chicken, cow's milk and meat.

Mushroom contained (4.48 %) of Lysine , it was observed that this percentage was less than a percentage in the lamb which was the highest, then the percentage in fish, chicken, sheep's cow's milk and cheese made of them, but it was higher than cow's meat, shrimp and eggs.
It found that the types of mushrooms (B. aestivalis, B. aereus, B. appendiculatus, B. badius and B. crocipodius, B. edulis, B. granulatus, B. impolitis, B. luridus and B. lutes) contained percentage of Threonine but (0.8, 1.2, 7.3, 2.3, 3.1, 0.9, 1.1, 1.4, 2.6 and 3.2) %, Valine were (3.0, 2.2, 0.9, 0.6, 0.6, 2.2, 1.6, 1.1, 2.7 and 0.8) %, Leucine were (0.8, 1.2, 0.9, 2.1, 0.9, 0.6, 0.8, 0.9, 1.3 and 1.1) %, Isoleucine were (0.8, 5.4, 3.8, 2.2, 1.7, 3.3, 8.1, 5.4, 3.2 and 6.1) %, Phenylalanine were (2.2, 1.9, 3.4, 5.2, 1.1, 0.9, 6.2, 0.8, 0.7 and 3.6) % and Lysine were (0.8, 0.5, 1.9, 2.4, 0.5, 2.1, 0.5, 0.7, 2.3 and 0.6) % respectively (54). Also, the percentage of these acids in mushrooms (P. citrinopileatus) were (0.83, 0.85, 0.30, 0.61, 1.07 and 0.81) % (11), which was low values and sometimes fluctuate compared to the current result.

The organization FAO / WHO [39],[55],[56] and [57] reported that the percentage of Threonine in the cow's milk was (4.0, 4.0, 3.03, and 4.5) % respectively, and the percentage of Valine was (10, 3.4, 3.05 and 3.2) % respectively, while the percentage of Methionine was (10, 0.75, 2.03 and 0.8) % respectively, and the percentage of Isoleucine was (3.0, 3.9, 0.47 and 2.9) % respectively, whereas, cow's meat contain (4.7, 3.9, 7.08 and 5.2) % respectively of Leucine and (7.72, 1.7, 7.30 and 3.05) % respectively, of Phenylalanine and Lysine about (28.4, 3.4, 2.5 and 5.4) % respectively. The USDA [17] and [56] reported that the percentage of Threonine estimated in sheep's meat was (3.2 and 2.88) %, Valine (1.3 and 3.02) %, Methionine (8.4 and 2.13) %, Isoleucine (2.4 and 3.10) %, Leucine (5.4 and 5.82) %, Phenylalanine (5.4 and 3.02 %) and Lysine (1.6 and 8.35) % respectively, and these results don't agree with the current results.

[35] reported that the percentage of Threonine in the grass carp fish, silver carp fish and common carp fish was (8.82, 9.17, 9.37) % respectively, Valine was (6.95, 6.77, 6.6) % respectively. Methionine was (5.57, 5.6, 6.47)% respectively, Isoleucine was (5.57, 5.6, 6.47) % respectively, Leucine was (8.82, 9.1, 9.37) % respectively, Phenyl Alanine was (3.57, 3.27, 3.9) % respectively, and Lysine was (8.02, 7.82, 8.07) % respectively. Whereas, USDA [17] indicated that the percentage of these acids in the fishes of the two cables was (6.10, 9.0, 3.50, 5.7, 13.0, 5.6 and 10.9), respectively, and in herring (9.0 and 10), 0, 4.10, 9.0, 16.0, 7.0 and 18.0 %, respectively. While [57] reported that the percentage of these seven amino acids in fish were (5.3, 3.0, 1.8, 3.1, 6.6, 5.3, 3.4) % respectively.

[36] showed that the percentage of Threonine, Valine, Methionine, Isoleucine, Leucine, and Phenyl Alanine in marine shrimp Macrobrochiumro senbergii and river shrimp Penaeus semisulcatus were (2.53, 2.90)%,(4.65, 5.46) %,(3.41,3.08) %,3.01.3.12) %, (2.69,3.18) %, and (2.79,1.92) % respectively. All these results were lower from the current study.

USDA [17] reported that the percentage of Threonine was (7.26) % in chicken, Valine was (9.13) %, Methionine was (4.13) %, Isoleucine was (7.75) %, Leucine was (14.45) %, Phenyl Alanine was (7.21) % and Lysine (14.36) %.

FAO/WHO [39] showed that the percentage of Threonine, Valine, Methionine, Isoleucine, Leucine, Phenyl Alanine and Lysine in egg were (7.72,7.72, 4.70 ,1.7,10,7.3,11.7) % respectively. This results wasn't agree with the current study.

[58] mentionned that the percentage of Threonine, Valine, Isoleucine and Lysine in cow's milk were (14.9, .22,0, 19.9 and 26.1) % respectively, while [59] noted that the percentages of these amino acids in cow's milk were (0.46, 2.20, 0.83, 1.99, 3.22, 1.59 and 2.61) %. [60] found that the percentage of these acids in cow's milk were (2.31, 1.75, 3.10, 0.49, 1.65,0.78 and 3.42) % respectively, and [61] explained that the percentage were (8.1, 1.03, 9.6, 10.4, 14.6, 7.19 and 2.08) % respectively.
Table 2. The percentage of essential amino acids in samples of meat and meat products (%)

Number	Essential amino acids	1	2	3	4	5	6	7
	Cows	11.31	10.23	6.00	4.55	2.03	1.44	0.86
	Sheep	9.07	19.11	3.85	0.88	3.16	5.90	11.67
	Chicken	5.64	3.31	5.01	9.73	26.55	3.32	5.69
	Fish	50.76	5.20	9.47	27.02	5.57	3.86	7.53
	Shrimp	9.60	3.79	25.4	6.37	65.21	6.67	3.93
	Eggs	4.31	2.69	3.32	2.36	5.17	21.52	3.59
	Cows	9.80	18.1	26.21	6.26	6.54	6.55	4.44
	Sheep	4.87	3.35	6.00	9.67	5.44	3.40	6.00
	Cows	5.56	2.87	5.12	8.99	4.56	2.93	5.59
	Sheep	4.87	2.76	6.30	9.80	4.99	3.87	5.65
	Mushroom	9.14	3.70	3.26	3.31	3.54	5.14	4.48

All results in the table are the rate of repeating.

[59] reported that the percentage of amino acids under study in sheep's milk were (1.62, 2.40, 0.80, 2.07, 3.14, 1.55 and 2.90) % respectively, and [62] found that It's equal to 2.18 %, 3.22 %, 1.38 %, 2.38 %, 5.01 %, 2.23 % and 4.01 % respectively. While it became clear from the results of [61] that those amino acids in sheep's milk were (5.99, 1.15, 9.25, 9.9, 15.4, 6.72 and 1.87) % respectively, and these values are different from the results of the current study.

[49] noted that the five types of soft, white cheese made from cow's milk (Almekaafi cheese, Abu shebik cheese, Galaja cheese, Zriga cheese and Gozelahmeer cheese) contained Threonine rates about (3.35, 3.26, 3.34, 3.69 and 3.41) % and Methionine (2.12, 2.38, 2.39, 2.40 and 2.49) %, while the percentageof Valine was (6.48, 6.77, 6.24, 5.78 and 6.61) % and Leucine was (8.6, 8.49, 9.02, 9.33 and 8.12 %) and Lysine was increased to (7.95, 8.18, 7.68, 5.87 and 7.69) % respectively. This results was higher than the percentage obtained from the present study, while the percentage of Isoleucine was (4.26, 4.40, 40.92, 4.78 and 4.00) %, and Phenylalanine was (5.09, 5.22, 4.94, 4.85 and 4.83) %, which is less than the percentage of current result.
found that the Threonine, Methionine, Valine, Leucine, Isoleucine, Phenylalanine and Lysine in the cheese made from sheep's milk were (0.27, 5.01, 0.90, 0.43, 6.64, 3.23 and 0.74) % respectively, which is incompatible with the current results. The essential amino percentages in meat and meat products of the current study varied with the percentages mentioned in other studies and researches depending on the types of meat and meat products proteins. And the differences in the results may be regarding to the types of animals, breeds, nutrition, part taken from the carcasses of animals and other [53].

3.4. The percentage of non-essential amino acids in meat and meat products:
Table (3) showed that there was seven non-essential amino acid (%) in samples of meat and meat products.

The percentage of Aspartic acid in mushrooms was (2.52) %, it was noted that the percentage was less than a percentage that estimated in the shrimp meat, which was the highest value and followed by cow's milk, eggs, fish and cheese made from sheep's milk, but it was higher than the percentage on each of the cow's meat, sheep's meat, chickens, sheep's milk and both types of cheese. The results showed that the percentage of Glutamine acid in mushrooms was (14.53) %, this percentage was lower than in cow's milk, which contained the highest percentage, but it was higher than in the content on cow's meat, sheep's meat, chicken, fish, shrimp, eggs, sheep's milk and both types of cheese. It found from the results that the percentage of Glycine in mushroom was (24.13) %, it was noted that this percentage higher than the percentage estimated in the red and white meat and it's products except shrimp. Also, it was found that the percentage of Arginine in mushroom was (12.01) %, which is less than the percentage estimated in lamb, but it was on the highest percentage in the other types of meat and it's products. The study found that the percentage of Alanine in mushroom was (4.44) %, it was noted that this percentage was less than the percentage that were estimated in the types of meat, while the presence of this acid in mushrooms by more than the level in chicken and other meat products. The results showed that Proline in mushrooms was (3.45) %, which was low compared with the percentage that was estimated in the cow's milk, the highest percentage was reported in lamb, fish, shrimp and sheep's milk, but it was surpassed in of cow's meat, chicken, shrimp, eggs, cheese made from both types of milk. The content of Tyrosine was (5.80) %, it was observed that this percentage less than the percentage estimated in the cow's milk, which was the highest value, followed by shrimp and lamb meat, but it surpassed in both types of meat, chickens, fish, eggs, sheep's milk and cheese made from both types of milk.

explained that the types of mushrooms (B. aestivalis, B. aereus, B. appendiculatus, B. badius and B. crociopodius) were contained the following amino acids Aspartic acid (13.90, 11.2, 9.6, 9.2 and 20.2) %, Glutamine (1.8, 3.2, 4.2, 1.6, and 2.2) %, Glycine (0.6, 1.1, 1.6, 0.8 and 0.6) %, Arginine (2.1, 0.9, 0.8, 1.2 and 0.8) %, Alanine (3.6, 0.9, 1.5, 2.2 and 1.4) %, Proline (3.4, 2.7, 3.8, 5.1 and 1.4) %, Tyrosine (0.7, 0.9, 0.8, 0.6 and 0.8) % respectively. These percentages to increase or decrease on it's values when compared with there percentages in mushroom under study.

reported that the percentage of these acids in the mushroom (P. citrinopileatus) was (1.82, 3.07, 0.84, 1.01, 0.86, 0.33 and 0.58) % respectively. found that the species of mushroom (Lentinus sajor-caju, Lentinus conatus, Lentinus torulosus, Lentinus cladopus and Lentinus squarrosulus) contained five essential amino acids (Glutamine, Arginine, Alanine, Proline and Tyrosine) the percentages of these amino acids were as followed (0.33, 0.28, 0.25, 0.31 and 0.37) %, (0.25, 0.27, 0.29, 0.24 and 0.21) %, (0.12, 0.13, 0.15, 0.11 and 0.09) %, (0.03, 0.01, 0.04, 0.04 and 0.06) %, (0.16, 0.19, 0.21, 0.24 and 0.19) % respectively. These percentages were less than what was reported in this study.

FAO / WHO organization [39] and [55] reported that the percentages of Aspartic, Glutamine, Glycine, Arginine, Alanine, Proline and Tyrosine in the cow's meat were (3.2, 11.7, 3.3, 3.2, 4.6, 28.4 and 10) %, (7.9, 10.2, 4.3, 3.6, 4.6, 6.0 and 1.9) % respectively, while the USDA [17] reported that the percentages we (14.5, 6.5, 1.4, 1.25 and 5.3) % respectively, [56] found that the percentages in the cow's meat were (2.82, 7.81, 20.18, 8.66, 6.93, 2.13 and 8.7) % respectively, while [57] pointed out that the percentages were (5.4, 8.6, 5.0, 0.2, 1.7, 1.7 and 0.2) % respectively.
USDA [17] showed that the percentages of (Aspartic, Glutamine, Glycine, Arginine, Alanine, Proline and Tyrosine) estimated in sheep’s meat were (4.8, 11.9, 6.2, 6.2, 11.9, 8.66 and 2.36) % respectively. [56] found that the percentages of these acids were (2.92, 7.65, 18.00, 9.95 and 6.50) % respectively. The percentages of (Aspartic, Glutamine, Glycine, Arginine, Alanine, Proline and Tyrosine) estimated in chicken meat were (14.6, 27.2, 11.4, 11.5, 11.0, 7.8 and 5.82) % respectively.[16]. While [63] reported that the percentages of these acids were (8.72, 13.98, 6, 6.8, 5.87, 4.13 and 3.50) % respectively. But [56] said that the percentage of these amino acids in chicken meat was (2.70, 7.11, 19.20, 9.27, 6.11, 7.43 and 2.40) % respectively. [57] showed that the percentages were (4.2, 6.8, 2.5, 2.7, 3.2, 1.8 and 1.8) % respectively.

The percentage of (Aspartic, Glutamine, Glycine, Arginine, Alanine, Proline and Tyrosine) estimated in Kabline fish were (12.0, 13.6, 7.1, 8.3, 7.9, 4.5 and 5.0)% respectively. And in the Herring fish were (20.0, 30.0, 11.0, 12.0, 10.0 and 3.0) % respectively [17]. [57] said that percentage of in fish were (5.9, 9.0, 3.4, 3.9, 3.7, 2.3 and 2.1) % respectively.

[37] explained that the percentage of Aspartic acid, Glutamine acid, Glycine, Arginine, Alanine, Proline and Tyrosine were (8.9 and 7.92) %, (11.45 and 8.66) %,(3.42 and 4.03) %, (5.63 and 5.82) %, (4.14 and 3.19) %, (2.63 and 1.63) % and (2.89 and 2.70) % respectively, in the marine shrimp Penaeus semisulcatus and river shrimp Macrobrachium rosenbergii.

FAO / WHO organizations [39] and USDA organizations [17] explained that that the percentage of (Aspartic, Glutamine, Glycine, Arginine, Alanine, Proline and Tyrosine) egg were (11.7 and 6.4) %, (3.2 and 8) %, (2.2 and 3.9) %, (4.9 and 36.4) %, (2.4 and 7.10) %, (10 and 7.2) % and (7.3 and 4.76)% respectively.

[59] showed that the percentage of (Aspartic, Glutamine, Glycine, Arginine, Proline and Alanine) in cow’s milk were (2.50, 6.89, 0.70, 1.19, 1.13 and 1.39) % respectively. But it was found that the percentage of these acids in cow’s milk was (3.80, 3.67, 6.34, 19.21, 0.43 and 2.97) % respectively [59]. While [61] explained that the percentage of these acids in cow’s milk was (7.92, 1.39, 3.38, 7.22, 3.82 and 17.9) % respectively.
Table 3. The percentage of non-essential amino acids in samples of meat and meat products (%)

Number	1	2	3	4	5	6	7
	Aspartic acid Asp	Glutamic acid Glu	Glycine Gly	Arginine Arg	Alanine Ala	Proline Pro	Tyrosine Tyr
Cows	0.76	0.59	3.00	5.98	7.02	3.13	2.78
Sheep	0.65	14.17	4.47	12.96	4.81	5.93	5.84
Chicken	0.30	4.6	12.16	6.8	4.27	3.37	4.39
Fish	2.86	2.0	5.80	3.5	37.43	5.54	3.81
Shrimp	26.61	3.4	24.48	6.5	28.28	3.48	7.40
Eggs	6.20	8.74	2.06	3.24	3.59	2.16	2.40
Milk							
Cows	22.96	35.8	4.95	6.1	3.44	7.01	31.33
Sheep	1.54	3.99	12.09	5.86	4.27	3.62	4.47
White, soft cheese made from milk							
Cows	0.45	3.87	11.13	5.98	4.18	3.34	3.95
Sheep	2.65	4.87	12.08	6.79	3.62	2.74	4.44
Mushroom	2.52	14.53	24.13	12.01	4.44	3.45	5.80

All results in the table are the rate of repeating.

The percentage of Aspartic and Glutamine in sheep's milk were (5.92 and 2.62) % [65], Also, [59] said that the percentage of (Aspartic, Glutamine, Glycine, Arginine, Alanine and Proline) in sheep's milk were (2.10, 6.26, 0.50, 10.19, 1.18 and 3.68) %, [66] found that the percentages of in sheep's milk were (4.31, 11.26, 0.94, 1.45, 1.91 and 5.32) % respectively. [61] showed that the sheep's milk contained Aspartic, Glutamine, Arginine, Alanine and Tyrosine about (9.41, 1.17, 4.96, 9.77 and 4.26) % respectively. [49] found that the five types of white, soft cheese made of cow's milk (Almekaafi cheese, Abu shebik cheese, Galaja cheese, Zriga cheese and Gozelahmeer cheese) contained Aspartic, Glutamine, Glycine, Arginine, Alanine, Proline and Tyrosine in percentages as followed:(5.9, 6.31, 5.82, 4.73 and 5.6) %, (3.43, 3.36, 3.15, 4.78 and 3.76) %, (2.91, 2.89, 2.96, 2.89 and 2.85) %, (10.76, 9.75, 9.92, 13.51 and 9.94) %, (4.49, 5.22, 4.94, 4.52 and 4.83) % respectively. [62] found that the Aspartic, Glutamine, Glycine, Alanine, Proline and Tyrosine in the cheese made from sheep's milk were (2.84, 1.01, 0.19, 0.86, 3.39 and 1.03) % respectively. While the percentages of Aspartic and Glutamine raised to (16.8 - 39.5) % and (13.3- 27.0) % respectively in the cheese made from sheep's milk [65].
The non-essential amino percentages in meat and meat products of the current study varied with the percentages mentioned in other studies and researches depending on the types of meat and meat products proteins. And the differences in the results may be regarding the types of animals, breeds, nutrition, the part taken from the carcasses of animals and other [53].

3.5. The percentages of semi-essential amino acids in meat and meat products:
Table (4) represented the semi-essential amino acid percentages in samples of meat and meat products (%). There were two amino acids only.

Mushroom contained a percentages of Serine (7.91) %, it was noted that this percentages less than a percentage estimated in the fish, which was the highest value and followed by cow's milk, shrimp and cheese made from cow's milk, but it was higher than the percentages of Serine in cow's meat, sheep's meat, chicken, eggs, sheep's milk and cheese made from it.

The percentage of Histidine mushroom was (11.22) %, this percentage was less than the percentage that estimated in the cow's milk, which was the highest value, then followed by shrimp and fish, but it surpassed incow's meat, sheep's meat, chicken, eggs, sheep's milk and cheese made from it and from cow's milk.

Various types of mushroom such as (B. aureus, B. crocipodius, B. edulis, B. granulatus, B. impolitus, Boletu ssp, B. scaber and B. versippellis) contained Serine and Histidine as followed: (2.3, 3.1, 0.8, 0.7, 1.2, 1.1, 2.3 and 0.9) % respectively for Serine and (0.8, 0.6, 1.3, 1.7, 0.8, 1.4, 0.6, 0.7, 1.8 and 0.9) % respectively for Histidine [54]. [12] reported that the percentage of Serine and Histidine in mushroom P. citrinopileatus were (1.03 %) and (0.51 %) respectively.

Indicated in the report of [39], [17], [55], [56] and [57] reported that the percentage of Serine in the cow's meat was (36.4, 7.6, 4.2, 4.06 and 2.6) % respectively, and the percentage of Histidine was (7.2, 1.4, 1.1, 5.89 and 3.9) % respectively. Also, USDA organization [17] found that the percentage of Serine and Histidine in sheep's meat was (6.2, 6.2) % respectively. [55] showed that the percentage in the sheep's meat was (4.16 and 6.24) % respectively. It was noted that the percentage of Serine and Histidine in chicken was (6.72 %) and (3.5 %) respectively [17]. While [64] mentioned that the percentage was (4.01 %) and (4.21 %) respectively, in the chicken. [56] pointed out that the percentage of Serine and Histidine was (3.81 % and 7.29 %) respectively, for chicken. While [57] reported that the percentage of Serine and Histidine in chicken was (1.7 % and 1.1 %) respectively.

In the eggs, FAO / WHO [39] and USDA [17] reported that the percentage of Serine was (33 % and 9.28 %) respectively, and Histidine (36.4 % and 2.1 %) respectively.

USDA Organization [17] indicated that the percentage of Serine in Kabline fish and Herring fish were 5.7 % and 8.0 %, and the percentage of Histidine were (3.3 % and 5.0 %) respectively. But [57] found that the percentage of serine and histidine in fish were (2.7 % and 1.9 %) respectively.

[37] reported that the percentage of Serine and Histidine in the marine shrimp Penaeus semisulcatus and river shrimp Macrobrochium rosenbergii were (3.11 and 2.45) % and (1.65 and 3.92) % respectively. [59] and [60] showed that the cow's milk contained the percentage of Serine and Histidine about (1.79 and 5.87 %) respectively, and (0.89 and 3.80) % respectively.

[61] found that the percentage of Serine and Histidine in the cow's milk were (5.06 % and 3.88 %) respectively, and in the sheep's milk were (4.33 % and 4.16 %) respectively.

Also, the percentage of Serine and Histidine in sheep's milk reported by [59] who found that the percentage of serine and histidine were (1.81 % and 0.89 %) respectively, and [65] who showed that the percentage of Serine and Histidine were (2.25 % and 1.61 %) respectively.

[49] noted that the percentage of Serine and Histidine in five types of white, soft cheese made from cow's milk (Almekaafi cheese, Abu shebik cheese, Galajacheese, Zriga cheese and Gozelahmeer cheese) were (4.78, 4.69, 4.56, 4.71 and 4.49) % and (2.54, 2.70, 2.58, 2.69 and 2.72) % respectively. While [62] found that the percentage of Serine and Histidine in white, soft cheese made from sheep's milk was (0.6 % and 0.66 %) respectively.

The semi-essential amino percentages in meat and meat products of the current study varied with the percentages mentioned in other studies and researches depending on the types of meat and meat products.
proteins. And the differences in the results may be regarding the types of animals, breeds, nutrition, the part taken from the carcasses of animals and other [53].

Table 4. The percentages of semi-essential amino acids in samples of meat and meat products (%)

semi-essential amino acids	Seine Ser	Histadine His
Cows	2.09	0.78
Sheep	3.88	10.87
Chicken	7.30	1.15
Carp	47.74	48.67
Shrimps	33.95	52.97
Milk		
Cows	37.87	54.98
Sheep	6.87	0.99
White, soft cheese made from milk		
Cows	8.00	1.14
Sheep	7.14	0.96
Mushroom	7.91	11.22

All results in the table are the rate of repeating.

References

[1] Al-Janabi A. S 2000 introductions in the chemistry of life .440 p.
[2] Abu Samra R et al 2000 "Biochemistry" book translator.321p.
[3] Konuk M et al 2006 Chemical composition of some naturally growing and edible mushrooms, Dak. J. Bot., 38 (3): 799 – 804.
[4] Al-Aswad M. B and Al-Dulaimi, H. H. A. 1987 A study of some chemical changes for sheep meat stored freeze. Iraqi J. Agricultural Sci. Zanko, 5 (1): 153-166.
[5] Wasser S.P 2002 Medicinal mushroom as a source of antitumor and immunomodulating polysaccharides .Applied Microbiol. Biotechnolo., 6:258-274
[6] Colak A et al 2009 Nutritional composition of some wild edible mushrooms. Turk BiyokimyaDergist. Turkish J. Bio. 34 (1) : 25-31.
[7] Pearson, D. 1976 The chemical analysis of foods 7th ed.; Churchill livingstone, Edinburgh, London and Newyork.
[8] Wooton I D P 1977 Microanalysis in medical biochemistry 5th ed. Churchil Livingstone Edinburgh:150-159.
[9] Furst P et al 1990 Appraisal of four pre-column derivatization methods for the high – performance liguid chromatographic determination of free amino acids in biological materials. J. Chromatogr. 499:557-569.
[10] Fierabracci V et al 1991 Application of amino acids analysis by high–performance liquid chromatography with phenyl isothiocyanate derivatization to the rapid determination of free amino acids in biological samples. J. Chromatogr. 570:285-291.
[11] SPSS (Special Program for Statistical System) 2006 Statistical Packages of Social Sciences. Version 15, Ins. Chicgo, U. S. A.
[12] Musieba F et al 2013 Proximate composition, amino acids and vitamins profile of Pleurotus citrinopileatus singer: An indigenous mushroom in Kenya. Am. J. Food Tech.:1–7.
[13] Aegina S M J 2001 The impact of the freezing of meat on their suitability for consumption, Master Thesis, College of Agriculture, University of Baghdad. 94 p.
[14] Rahim, A R M D 2003 Study the effect of plant Protista brocade leaves Calotropis procera in beef proteins elderly, Master Thesis, College of Agriculture, University of Baghdad. 83 p.
[15] Moreria, F B 2003 Evaluation of carcass characteristics and meat chemical composition of Bosindicus X Bostaurus crossbred steers finished in pastura systems. Brazilian archives of Bio. and Tech. 46 (4): 609 – 616.
[16] Al-ANI N N T 2004 The effect of curing processes and freezing in the chemical composition and sensory Calendar of fresh and frozen meat of cattle, Master Thesis, College of Agriculture, University of Baghdad.
[17] USDA United States Department of Agriculture. 2004 Nutrition facts and food composition analysis for corned beef, brisket, (raw-cooked). (http://www.nutritiondata.com), 1-4.
[18] Mousaly H A 2004, Red meat preservation, processing, Dar Aladdin publications.
[19] Tamimy S S and Abu Maaly R A 2011 The effect of ginger in the physical and sensory qualities of bovine Hamburkr, Center for Market Research and Protection Consumer Home Economics Department - Girls College of Education, University of Baghdad, the Iraqi J. Market Research and Consumer Protection folder (3) (6).
[20] Hoffman J R and Falvo M J 2004 Protein – which is best? Review article, J. Sports Sci. and Medicine. 3: 118-130.
[21] Nema F 2004 The meat of animals components, lectures College of Veterinary Medicine, the fourth year. Magazine Bovine cattle, sheep, 108: 11-15.
[22] Williams P G 2007 Nutritional composition of red meat. Nutrition and Dietetics is the official J. of the Dietitians Association of Australia. 64(Suppl 4), S113-S119, 35:50-51.
[23] [Al-Marazany N and Abdul K M 2007 Effect of Using Additives on Some Chemical, Bacteriological And Sensory Properties of Local Basturma. Master Thesis, College of Agriculture and Forestry, University of Mosul. 109 p.
[24] Al-Asadi FA A 2009 Standards and biochemical components and certain hormones Doll in Orabi local ewes and goats black females pregnant. Master Thesis, College of Agriculture, University of Basrah. 152 p.
[25] Sahasrabudhe M.R and 1985 Neutral and polar lipid in chicken parts and their fatty acid composition. Poultry Sci., 64:910-916.
[26] Azizia A H 1996 Manufacturing of poultry products, College of Agriculture, Damascus University Press.
[27] Al-ANI W A J 1999 Sausage manufacturing of chicken meat elderly adding different ratios of fillers. Master Thesis, College of Agriculture, University of Baghdad. 52 p.
[28] Van Laack R.LJ.M et al 2000 Characteristics of Pale, Soft, Exudative Broiler Breast Meat. Poultry Science,79:1057–1061.
[29] Hashem A Z and AL—Musawy Um. H J 2008 The study of the chemical composition and chemical characteristics of frozen chicken meat supply in the city of Basrah and markets frozen chicken laboratory, Basrah J. Agricultural Sci., 21 Special Issue: 419-432
[30] Al-Shatty S H M 1994 The study of the chemical composition and content of bacterial and reactivity Alsabor fish Hilsa lisha patient and carp Cyprinus carpio in Basrah. Master Thesis, College of Agriculture, University of Basrah. 109 p.
[31] Azazi AMS 2002 Study the effect of storage and freeze icing on the chemical composition and quality characteristics of brown fish and grass carp. Master Thesis, College of Agriculture, University of Baghdad. 93 p.
[32] Salloum F K 2011 Health status and nutritional value of the fish carp importer and the impact of the freeze them compared with fresh ones. College of Veterinary Medicine, University of Baghdad, Anbar J. Veterinary Sci., 4 (ISSN: 1999-6527) (2).
[33] Al-Abdul Nabi Sh A A. S 2003 Separation and diagnosis of some fish proteins using gel filtration chromatography and deportation electrical and study their functional characteristics, Master Thesis, College of Agriculture, University of Basrah. 70 p.

[34] Al-Husseiny Kh S J 2007 .Extraction of oil from fish and their by-products and studying their chemical, physical properties and their uses in food, drag and industrial systems. PhD Thesis, College of Agriculture, University of Basrah. 226 p.

[35] Khidhir Z Kh 2003 Comparative quality assessments of five local fresh fish in sulaimani city markets .PhD in Veterinary Public Health, College of Veterinary Medicine, University of Solaimana in Partial Fulfillment of the Requirements for the Degree of In quality control and food hygiene. P171.

[36] Al-Musawy U H J 2006 Chemical and physical properties of fat shrimp, Basrah J. Agricultural Sci., 19 (1): 123-117.

[37] Tog El-Din H A et al 2009.Residues of some heavy metals and hormones in fresh prawn (Macrobrachiumrosenbegii) and marine shrimp (Penaeussemisulcatus) with reference to the nutritive value.World J. Zool.,4(3):205 -215.

[38] Jafeer Kh S 2003 Organoleptic properties and quality of marine and river shrimp Metapenaeusausaffinis during freezing storage. Mesopotamia of Oceanography. 18 (2): 165-178.

[39] FAO/WHO 1997 Expert consultation 1990, European dairy association and Renner 1983.

[40] Oconnor C1991 Traditional cheesemaking manual. International live stock center for Africa Addis Ababa ,Ethiopia,pp:24.

[41] Park Y et al 2007). Physico- chemical characteristics of goat and sheep milk. Small Ruminant Research. 68: 88--117.

[42] Potočnik K et al 2011 Mare’s milk: composition and protein fraction in comparison with different milk species. Review - Pregledni rad Mljekarstvo 61 (2): 107-113.

[43] Zeljko S et al 2014 Quality of milk and whey obtained during the production of jenisca cheese and a type of sjenica cheese. Fifth International Scientific Agricultural Symposium Agrosym, p:879-883.

[44] El-Hag F M et al 2013 Assessment of rural and experimental dairy products under dry land farming in Sudan. African J. Agricultural Research. 8(47): 5967-5977.

[45] Jordan RM and Boylan W J 1995 The potential for a dairy sheep industry in the Midwest. P:21-24 in Proc. of the 1st Great Lakes Dairy Sheep Symposium, Madison, WI, University of Wisconsin-Madiso.

[46] Alichanidis E and Polychroniadou A 1999 Special features of dairy products from ewe and goat milk from the physicochemical and organoleptic. point of view. P: 21-43 in Proc. Of IDF/CIVRAL Seminar on Production and Utilization of ewe and goat Milk, Crete,Greece, Inter. Dairy Federation, Brussels, Belgium.

[47] Al-Mahana S A H 2010 Milk Technology, College of Agriculture, University of Damascus.190 p.

[48] Nour El Diam MSA and El Zubeir E.M 2010 Chemical composition of processed cheese using Sudanese white cheese. J. of Anim. Vet. Sci.,5:31-37.

[49] Mustafa WA et al 2013 Chemical Composition of the White Cheese Produced at Household Level in Dueim Area, White Nile State, Sudan. J. Food Nutr. Disor. 2:2.

[50] Zeppa G et al 2003 Fatty acid composition of piedmont "Ossolano". In raed p Sciences, Lait.83:167-173.

[51] Derar F and El Zubeir D 2014 Nutritional disorders compositional content of white cheese manufactured from mixtures of camel and sheep milk during storage. J. Food Nutr. Disor., 3:3 p.

[52] Rew Y et al 2000 Changes of fatty acid composition by various developments stage and fruit body section in Pleurotusostreatus .Koren J. Mycology . 28(2):109 -111.

[53] Lawrence M N and Fowler D G 2010 Eachindivudual myofibril is composed of repeating units of sarcomeres which give the appearance of striated muscle under the microscope .
Dembitsky, V. M.; Alexander, O. T. and Dmitri, O. L. (2010). Amino and fatty acids of wild edible mushrooms of the genus boletus. Rec. Nat. Prod. 4(4): 218-223.

Anthony M et al 1997 Amino acid levels following beef protein and amino acid supplement in male subjects. Asia Pacific J. Clin. Nutr.6(3):219-223.

Jorfi R et al 2012 Differentiation of pork from beef, chicken, mutton and chevon according to their primary amino acids content for halal authentication. African J. of Biotechnology. 11(32): 8160-8166.

Uhe A M et al 2015 Human and Clinical Nutrition A Comparison of the Effects of Beef, Chicken and Fish Protein on Satiety and Amino Acid Profiles in Lean Male Subjects. J. Nut. p:467-472.

Bakk.techn A 2012 Effects of two different forage to concentrate rations On the milk performance of dairy goats and thequality of goat milk and cheese. Master Thesis, degree of DiplomIngenieurin (DI),University of Natural Resources and Life Sciences, Vienna. 49 p.

Haenlein G 2004 Goat milk in human nutrition. Small Ruminant Research.; 51:155-163.

Wang Yet al 2011 Comparison of the biochemical components and characteristic of milk between Tibetan sheep and goat in neighboring area. African J.of Biotechnology, Vol. 10(11), pp. 2092-2100.

Sabahelkheir MK et al 2012 Amino acid composition of human and animal’s milk (camel, cow, sheep and goat). J. Sci. and Tech. 2 (2):32-34.

Gerchev G et al 2005 Amino acid composition of milk from tsvigal and karkachanska sheep breeds reared in the central Balkan mountains region. Bio. in animal husbandry., 21(5-6):111-115

Freitas A C et al 1995 Influence of milk source and ripening time on free amino acid profile of Picmte cheese. American J. of Bioscience., 2(2): 70-78.

Sharma S K et al 2007 Evaluation of wild edible mushrooms for amino acid composition, academic J. of Plant Sci., 5 (2): 56-59.

Hesham M.B 2005 Chemical properties of chicken muscles and skin as affected by gamma irradiation and refrigerated storge. Master Thesis, College of Agriculture, University of Baghdad. 93 p.

Csanádi J et al 1999 The free D-aspartic acid and D-glutamic acid content of sheep milk and sheep products. Analecta 8(2): 101-105.