Neutrino Oscillations Induced by Two-loop Radiative Effects

Teruyuki Kitabayashia and Masaki Yasub

a Accelerator Engineering Center, Mitsubishi Electric System & Service Engineering Co.Ltd., 2-8-8 Umezono, Tsukuba, Ibaraki 305-0045, Japan.

b Department of Natural Science, School of Marine Science and Technology, Tokai University, 3-20-1 Orido, Shimizu, Shizuoka 424-8610, Japan

Abstract

Phenomena of neutrino oscillations are discussed on the basis of two-loop radiative neutrino mechanism. Neutrino mixings are experimentally suggested to be maximal in both atmospheric and solar neutrino oscillations. By using $L_{e} - L_{\mu} - L_{\tau}$ ($\equiv L'$)-conservation, which, however, only ensures the maximal solar neutrino mixing, we find that two-loop radiative mechanism dynamically generates the maximal atmospheric neutrino mixing and that the estimate of $\Delta m^2_{\odot}/\Delta m^2_{\text{atm}} \sim \epsilon m_e/m_{\tau}$ explains $\Delta m^2_{\odot}/\Delta m^2_{\text{atm}} \ll 1$ because of $m_e/m_{\tau} \ll 1$, where ϵ measures the breaking of the L'-conservation. Together with $\Delta m^2_{\text{atm}} \approx 3 \times 10^{-3}$ eV2, this estimate yields $\Delta m^2_{\odot} \sim 10^{-7}$ eV2 for $\epsilon \sim 0.1$, which corresponds to the LOW solution to the solar neutrino problem. Neutrino mass scale is given by $(16\pi^2)^{-2} m_e m_{\tau}/M$ ($M \sim 1$ TeV), which is of order 0.01 eV.

1 Introduction

Neutrino oscillations have been long recognized if neutrinos are massive particles [1]. Such oscillations in fact have been recently confirmed by the Super-Kamiokande collaboration [2] and have also been observed for solar neutrinos produced inside the Sun [3]. The recent report from the K2K collaboration [4] has further shown that the atmospheric neutrino oscillations are characterized by $\Delta m^2_{\text{atm}} \approx 3 \times 10^{-3}$ eV2, which implies $\sim 5.5 \times 10^{-2}$ eV as neutrino masses. This tiny mass scale for neutrinos can be generated by radiative mechanisms, where the smallness originates from the smallness of radiative effects [7, 8]. Radiative mechanisms use $L=2$ interactions given by $\nu_{L}^{(i)}\nu_{L}^{(j)}$ for one-loop radiative effects [7, 8, 9, 10, 11] and by additional $\nu_{R}^{(i)}\nu_{R}^{(j)}$ for two-loop radiative effects [8, 12], where i and j denote three families ($i,j = 1,2,3$).

At the one-loop level, Zee [8] has presented the mechanism that utilizes a new standard Higgs scalar called ϕ' in addition to the standard Higgs scalar, ϕ, both of which are $SU(2)_{L}$-doublets, and another
singly charged scalar called h^+, which is an $SU(2)_L$-singlet, with the coupling of $f_{[ij]}\nu^c_{L}^i\nu^c_{L}^j h^+$. The Fermi statistics forces $\nu^c_{L}^i\nu^c_{L}^j$ to be antisymmetrized with respect to the family indices. After the spontaneous breakdown of $SU(2)_L \times U(1)_Y$, an interaction of $\phi\phi' h^+$ yields the possible mixing of h^+ with ϕ^+ characterized by the scale of μ, which finally induces Majorana neutrino masses. Again, the Fermi statistics forces $\phi\phi'$ to be antisymmetrized with respect to the $SU(2)_L$-indices. Depicted in Figure 1(a) is the diagram for generating Majorana neutrino masses. The order-of-magnitude estimate gives the one-loop neutrino mass, $m_{1}^{1-\text{loop}}$, for $\nu_i-\nu_j$ to be:

$$m_{1}^{1-\text{loop}} \sim f_{[ij]} \frac{m_{\tau}^2}{16\pi^2 M^2 \mu},$$

for $\langle 0|\phi^0|0 \rangle \sim \langle 0|\phi'^0|0 \rangle$, where M stands for the scale of the model, presumably of order 1 TeV. The factor of $16\pi^2$ in the denominator is specific to one-loop radiative corrections. This estimate turns out to be

$$m_{1}^{1-\text{loop}} \sim 2 \times 10^3 f_{[i\tau]} \left(\frac{\mu}{100 \text{ GeV}} \right) \text{ eV},$$

for $m_{\ell_i} = m_{\tau}$ ($j=\tau$). To obtain $m_{\nu} \sim 0.1$ eV, we require that

$$f_{[i\tau]} \sim 5 \times 10^{-5},$$

for $\mu \sim 100$ GeV. Therefore, to get tiny neutrino masses of order 0.1 eV, one has to give excessive suppression to the lepton-number violating $\nu\ell$-coupling.

At the two-loop level, additional suppression arises. In addition to h^+, a doubly charged k^{++}-scalar is required to realize the mechanism of the Zee-Babu type \cite{Zee:1980ai} and k^{++} couples to a right-handed charged lepton pair via $\ell_R^i \ell_R^j k^{++}$ with coupling strength of $f_{[ij]}$. Using a possible coupling of this new k^{++} with h^+ via $h^+ h^+ k^{++}$, we can find interactions corresponding to Figure 1(b). The order-of-magnitude estimate gives the two-loop neutrino mass, $m_{2}^{2-\text{loop}}$, for $\nu_i-\nu_k$ to be:

$$m_{2}^{2-\text{loop}} \sim f_{[ij]} f_{[j'j]} f_{[k'k]} \frac{m_{\ell_i} m_{\ell_j'}}{(16\pi^2)^2 M^2 \mu}.$$

The factor of $(16\pi^2)^2$ in the denominator is specific to two-loop radiative corrections. This estimate turns out to yield

$$m_{2}^{2-\text{loop}} \sim 10 f_{[i\tau]} f_{[\tau\tau]} f_{[j\tau]} \left(\frac{\mu}{100 \text{ GeV}} \right) \text{ eV},$$
for $m_{ij,ij'} = m_\tau$ ($j,j'=\tau$). To obtain $m_\nu \sim 0.1$ eV, thanks to the extra loop-factor of $16\pi^2$, we only require that

$$f_{[\nu]} \sim 0.1,$$

for $f_{[\tau\tau]} \sim 1$ and $\mu \sim 100$ GeV. Therefore, the two-loop radiative neutrino masses can be of order of 0.1 eV without excessive suppression for relevant couplings [13].

2 Bimaximal Mixing

The observed pattern of neutrino oscillations is consistent with the pattern arising from the requirement of the conservation of the new quantum number $L'_e - L'_\mu - L'_\tau$ ($\equiv L'$) [14]. The $U(1)_{L'}$ symmetry based on the L'-conservation can be used to describe the bimaximal mixing scheme for neutrino oscillations [15, 16]. However, the L'-conservation itself only ensures the maximal solar neutrino mixing but does not determine the atmospheric neutrino mixing angle. In fact, in the one-loop radiative mechanism, fine-tuning of lepton-number violating couplings is necessary to yield bimaximal mixing for atmospheric neutrino oscillations.

In the one-loop radiative mechanism, we have known the form of the neutrino mass matrix, which is given by

$$M_\nu \propto \begin{pmatrix} 0 & f_{[\nu]\nu} m_\nu^2 & f_{[\tau\nu]} m_\tau^2 \\ 0 & f_{[\nu]\tau} m_\nu^2 & f_{[\tau\tau]} m_\tau^2 \\ 0 & 0 & 0 \end{pmatrix} \bigg|_{sym} \Rightarrow \begin{pmatrix} 0 & \sim 1 & \sim 1 \\ \varv & \epsilon (\ll 1) & 0 \end{pmatrix} m,$$

where m stands for the neutrino mass scale. The bimaximal mixing is realized if the couplings satisfy

$$f_{[\nu]\nu} m_\nu^2 = f_{[\tau\nu]} m_\tau^2 \Rightarrow f_{[\nu]\nu} \gg f_{[\nu]\tau} \gg f_{[\nu\tau]} \approx 0,$$

indicating the fine-tuning of the couplings f’s. This fine-tuning is referred to as “inverse hierarchy in the couplings”, namely, $f_{[\nu]\nu} \gg f_{[\nu]\tau} \gg f_{[\nu\tau]}$. The L'-conservation gives $f_{[\nu\tau]}=0$. Its tiny breaking effect characterized by the parameter, ϵ, produces tiny solar neutrino oscillations.

On the other hand, in the two-loop radiative mechanism, we will find the mass matrix [12] given by

$$M_\nu \propto \begin{pmatrix} 0 & f_{[\tau\tau]\nu} m_\nu m_\tau & f_{[\tau\nu]} f_{[\nu\tau]} m_\tau^2 \\ f_{[\nu\nu]} f_{[\nu\tau]} m_\nu m_\tau & f_{[\nu\nu]} f_{[\nu\tau]} m_\nu^2 & f_{[\nu\nu]} f_{[\nu\tau]} m_\nu^2 \\ f_{[\tau\tau]} f_{[\nu\tau]} m_\tau^2 & f_{[\nu\nu]} f_{[\nu\tau]} m_\nu^2 & f_{[\nu\nu]} f_{[\nu\tau]} m_\nu^2 \end{pmatrix} \bigg|_{sym} \Rightarrow \begin{pmatrix} 0 & \sim 1 & \sim 1 \\ \varv & \epsilon (\ll 1) & \epsilon' \end{pmatrix} m.$$

The bimaximal structure is reproduced if

$$f_{[\tau\tau]} f_{[\nu\tau]} m_\nu m_\tau = f_{[\tau\tau]} f_{[\nu\tau]} m_\nu m_\tau \Rightarrow f_{[\nu\nu]} = f_{[\nu\tau]}.$$

Therefore, no hierarchy in the couplings is necessary. The breaking of the L'-conservation gives the suppressed entries, $\epsilon, \epsilon', \epsilon''$, proportional to m_ν^2. Therefore, we observe that

$$\Delta m^2_{3\nu}/\Delta m^2_{atm} \propto m_\nu/m_\tau,$$

which dynamically guarantees $\Delta m^2_{atm} \gg \Delta m^2_{3\nu}$ because of $m_\tau \gg m_\nu$.

In radiative mechanisms, the hierarchy of $\Delta m^2_{atm} \gg \Delta m^2_{3\nu}$ can also be ascribed to the generic smallness of two-loop radiative effects over one-loop radiative effects [18]. Therefore, we have in hands two dynamical reasons for $\Delta m^2_{atm} \gg \Delta m^2_{3\nu}$:

$$\frac{\Delta m_{3\nu}^2}{\Delta m_{atm}^2} \ll 1 \text{ because } \begin{cases} 2 \text{- loop/1 - loop} & \ll 1 \\ m_\nu/m_\tau & \ll 1 \end{cases}.$$
Table 1: L and L' quantum numbers.

Fields	(ν_{eL}, e_L^c), e_R^c	(ν_{iL}, ℓ_{iL}^c), ℓ_{iR}^c	ϕ	h^+	k^{++}	k'^{++}
L	1	1	0	-2	-2	-2
L'	1	-1	0	0	0	-2

3 Two-loop Radiative Neutrino Masses

Interactions that we introduce can be classified by the ordinary lepton number (L) and L'-number of particles, which are listed in the Table 1. The new ingredients that are not contained in the standard model are the $SU(2)_L$-singlet scalars, h^+ and k^{++}. We have further employed an additional k'^{++} to be denoted by k'^{++} in order to import the L'-breaking. The L- and L'-quantum number of k'^{++} is also listed in Table 1. Extra L- and L'-conserving Yukawa interactions are given by

\[
\begin{align*}
&f_{(e)} \left(\nu_{eL} \ell_{L}^c - \nu_{e}^c e_L^c \right) h^+, \\
&f_{(e)} e_R^c e_R k^{++}, \\
&\frac{1}{2} f_{(e)} e_R^c e_R k'^{++}.
\end{align*}
\]

(13)

An L-breaking but L'-conserving interaction is specified by

\[
\mu_0 h^+ h'^{++},
\]

(14)

where μ_0 represents a mass scale. An L'-breaking interaction is activated by k'^{++} via

\[
\mu_b h^+ h'^{++},
\]

(15)

where μ_b represents a breaking scale of the L'-conservation.

Yukawa interactions, then, take the form of

\[
-L_Y = \sum_{i=e, \mu, \tau} \int f_{(e)} \bar{\psi}_{L}^\dagger \phi \psi_R^c + \sum_{i=\mu, \tau} \left(f_{(e)} \bar{\psi}_{L}^\dagger \psi_R^c \phi h^+ + f_{(e)} \bar{\psi}_{L}^\dagger \psi_R^c \phi k'^{++} \right) \\
+ \frac{1}{2} f_{(e)} \bar{\psi}_{R}^\dagger \psi_R^c e_R k'^{++} + (\text{h.c.}),
\]

(16)

and Higgs interactions are described by self-Hermitian terms composed of $\varphi \varphi^\dagger$ ($\varphi = \phi, h^+, k^{++}, k'^{++}$) and by the non-self-Hermitian terms in

\[
V_0 = \mu_0 h^+ h'^{++} + (\text{h.c.}).
\]

(17)

This coupling softly breaks the L-conservation but preserves the L'-conservation. To account for solar neutrino oscillations, the breaking of the L'-conservation should be included and is assumed to be furnished by

\[
V_b = \mu_b h^+ h'^{++} + (\text{h.c.}).
\]

(18)

Neutrino masses are generated by interactions corresponding to the diagrams depicted in Figure 2(a,b). The resulting Majorana neutrino mass matrix is given by

\[
M_\nu = \begin{pmatrix} 0 & m_{e\mu} & m_{e\tau} \\ m_{e\mu} & \delta_{\mu\mu} & \delta_{\mu\tau} \\ m_{e\tau} & \delta_{\mu\tau} & \delta_{\tau\tau} \end{pmatrix}.
\]

(19)
Here, the bimaximal structure is controlled by
\[m_{ei} \approx -2f_{[er]}f_{[ee]}f_{[\tau\tau]} m_{ee} m_{\mu} \mu_0 \left[\frac{1}{16\pi^2} \ln \left(\frac{m_{k}^2}{m_{h}^2} \right) \right]^2 (i = \mu, \tau), \tag{20} \]
where the product of \(m_e \) and \(m_\tau \) appears. This is because the exchanged leptons are \(e \) and \(\tau \) as can be seen from Figure 2(a). Tiny splitting is induced by
\[\delta_{ij} \approx -f_{[ei]}f_{[e\tau]}f_{[ee]} m_{ee} m_{\mu} \mu_0 \left[\frac{1}{16\pi^2} \ln \left(\frac{m_{k}^2}{m_{h}^2} \right) \right]^2, \tag{21} \]
where \(m_e^2 \) appears because the exchanged leptons are both \(e \) and \(e \) as can be seen from Figure 2(b). These expressions, Eqs. (20) and (21), are subject to the approximation of \(m_{k,k'} \gg (\text{other mass squared}) \).

These expressions are described by these mass parameters:
\[\Delta m_{atm}^2 = m_{e\mu}^2 + m_{e\tau}^2 (\equiv m_{\nu}^2), \quad \Delta m_\odot^2 = 4m_\nu\delta m, \tag{22} \]
where
\[\delta m = \frac{1}{2} \left| \delta_{\mu \mu} \cos^2 \theta_\nu + 2\delta_{\mu \tau} \cos \theta_\nu \sin \theta_\nu + \delta_{\tau \tau} \sin^2 \theta_\nu \right| \tag{23} \]
with
\[\cos \theta_\nu = m_{ee}/m_{\nu}, \quad \sin \theta_\nu = m_{e\tau}/m_{\nu}. \tag{24} \]

It is thus found that (nearly) bimaximal mixing is reproduced by requiring
\[f_{[ei]} \approx f_{[e\tau]}, \tag{25} \]
yielding \(\sin 2\theta_\nu \approx 1 \). Tiny mass-splitting \(\Delta m_{atm}^2 \gg \Delta m_\odot^2 \) is ensured by the mass-hierarchy:
\[m_\tau \gg m_e. \tag{26} \]

As a result, we obtain an estimate of the ratio:
\[\frac{\Delta m_\odot^2}{\Delta m_{atm}^2} \approx \frac{\mu_0}{\mu_{h} m_{e} m_{\mu}^2 m_{\tau}^2}. \tag{27} \]
From this estimate, we find that
\[
\Delta m_{\odot}^2 \sim 3 \times 10^{-4} \frac{H_0}{\mu_0} \Delta m_{\text{atm}}^2 \left(m_k^2 \sim m_{k'}^2 \right)
\]
\[
\Rightarrow \Delta m_{\odot}^2 \sim 3 \times 10^{-5} \Delta m_{\text{atm}}^2 \left(\mu_b \sim \mu_0/10 \right)
\]
\[
\Rightarrow \Delta m_{\odot}^2 \sim 10^{-7} \text{eV}^2 \left(\Delta m_{\text{atm}}^2 \sim 3 \times 10^{-3} \text{eV}^2 \right). \tag{28}
\]

The resulting \(\Delta m_{\odot}^2 \) corresponds to the allowed region for the LOW solution to the solar neutrino problem. Since \(k^{++} \) and \(k'^{++} \) couple to the charged lepton pairs, these scalars produce extra contributions on the well-established low-energy phenomenology. In particular, we should consider effects from \(\mu^- \rightarrow e^- \gamma \), \(e^- e^- e^+ \), \(e^- e^- \rightarrow e^- e^- \) and \(\nu_\mu e^- \rightarrow \nu_\mu e^- \). The relevant constraints on the parameters associated with the scalars of \(h^+, k^{++} \) and \(k'^{++} \) are, thus, given by

1. \(\mu^- \rightarrow e^- e^- e^+ \) in Figure 3(a) and \(\mu^- \rightarrow e^- \gamma \) in Figure 3(b) \[20\] (forbidden by the \(L' \)-conservation), yielding

\[
\frac{\xi_{\{\nu_\mu\}} f_{\{\nu_\mu\}}}{m_{b}^2} < \left\{ \begin{array}{ll} 1.2 \times 10^{-10} \text{GeV}^{-2} \text{ from } B(\mu^- \rightarrow e^- e^- e^+) < 10^{-12} \text{[21]} \\
2.4 \times 10^{-8} \text{GeV}^{-2} \text{ from } B(\mu^- \rightarrow e^- \gamma) < 1.2 \times 10^{-11} \text{[22]} \end{array} \right.. \tag{29}
\]

\[2\] The constraints of Eqs.(12) and (13) in Ref.[19] should, respectively, be replaced by the corresponding bounds in the items 1, 3 and 4. Namely, \(f_{\{11,12\}} \) should read \(f_{\{11,12\}}/2 \) in Ref.[18].
where \(\bar{m}_k \sim m_k \sim m_{k'} \) and \(\xi \) estimated to be
\[
\xi \sim \frac{1}{16\pi^2} \frac{\mu_b\mu_0}{\bar{m}_k^2} (\ll 1)
\] (30)
reads the suppression due to the approximate \(L' \)-conservation,

2. \(\tau^- \to \mu^- e^- e^+ \) in Figure 4(a) and \(\tau^- \to \mu^- \gamma \) in Figure 4(b) (allowed by the \(L' \)-conservation), yielding
\[
\left| \frac{f_{(\tau\tau)} f_{(\tau\mu)}}{\bar{m}_k^2} \right| < \left\{ \begin{array}{l}
2.1 \times 10^{-7} \text{ GeV}^{-2} \text{ from } B(\tau^- \to \mu^- e^- e^+) < 1.7 \times 10^{-6} [21] \\
4.2 \times 10^{-6} \text{ GeV}^{-2} \text{ from } B(\tau^- \to \mu^- \gamma) < 1.1 \times 10^{-6} [21],
\end{array} \right.
\]
(31)

3. \(e^- e^- \to e^- e^- \) in Figure 5(a), yielding
\[
\left| \frac{f_{(ee)}}{m_{k'}} \right|^2 < 4.8 \times 10^{-5} \text{ GeV}^{-2},
\] (32)

4. \(\nu_\mu e^- \to \nu_\mu e^- \) in Figure 5(b), yielding
\[
\left| \frac{f_{(\nu\mu)}}{m_h} \right|^2 < 1.7 \times 10^{-6} \text{ GeV}^{-2}.
\] (33)

It should be noted that the leading contribution of \(h^+ \) to \(\mu^- \to e^- \gamma \), which gives the most stringent constraint on \(h^+ \), is forbidden by the \(U(1)_L \)-invariant coupling structure.

Typical parameter values are so chosen to satisfy these constraints:
\[
\begin{align*}
\begin{array}{l}
f_{(ee)} = f_{(\tau\tau)} \approx 2e \\
f_{(ee)} = f_{(\tau\tau)} \approx e \\
m_h \approx 350 \text{ GeV} \\
m_k = m_{k'} \approx 2 \text{ TeV} \\
\mu_0 \approx 1.5 \text{ TeV} \\
\mu_b \approx \mu_0/10
\end{array}
\end{align*}
\]
(34)

Figure 5: (a) \(e^- e^- \to e^- e^- \), (b) \(\nu_\mu e^- \to \nu_\mu e^- \).
We obtain the following numerical values:
\[
\begin{align*}
\Delta m^2_{\text{atm}} &\approx 2.4 \times 10^{-3} \text{ eV}^2, \\
\Delta m^2_{\odot} &\approx 10^{-7} \text{ eV}^2.
\end{align*}
\] (35)

Therefore, we in fact successfully explain phenomena of atmospheric and solar neutrino oscillations characterized by \(\Delta m^2_{\text{atm}} \approx 2.4 \times 10^{-3} \text{eV}^2\) and \(\Delta m^2_{\odot} \approx 10^{-7} \text{eV}^2\).

4 Summary

We have discussed how neutrino oscillations arise from two loop-radiative mechanism, which exhibits

1. bimaximal mixing due to the \(L_e - L_\mu - L_\tau\) conservation via the coupling of \(e^-\tau^-k^{++}\),

2. dynamically induced tiny mass-splitting for solar neutrino oscillations due to the smallness of \(m_e^2\) via \(e^-e^-k^{++}\).

The interactions required to generate two-loop Majorana neutrino masses are specified by
\[
\begin{align*}
&\{ f_{\{ee\}} (\nu_{eL}^cL_e^i - \nu_{\tau L}^cL_\tau^i) h^+ \\
&\quad - \frac{1}{2} f_{\{ee\}} e_R^c \tilde{R}^c k^{++} \},
&\{ \mu_{0h^+} h^+ k^{++} \}
&\quad \cup \{ \mu_{h^+} h^+ k^{++} \}.
\end{align*}
\] (36)

The resulting mass scale for neutrino masses is determined by
\[
\frac{m_e m_e}{(16\pi^2)^2 m_k^2} \mu_0 \sim \frac{m_e m_e}{(16\pi^2)^2 m_k} \sim 10^{-2} \text{ eV}.
\] (37)

Thus, to obtain the neutrino mass of order of 0.01 eV is a natural consequence without fine-tuning of coupling parameters. And the hierarchy of \(\Delta m^2_{\text{atm}} \gg \Delta m^2_{\odot}\) is expressed by the estimate
\[
\Delta m^2_{\odot} \sim \frac{\mu_k}{\mu_0} \frac{m_e}{m_\tau} \frac{m_e^2}{m_{\mu}} \Delta m^2_{\text{atm}},
\] (38)

which ensures \(\Delta m^2_{\text{atm}} \gg \Delta m^2_{\odot}\) because of \(m_\tau \gg m_e\). This estimation yields the LOW solution to the solar neutrino problem.

It should be finally noted that

- since the \(L’\)-conservation forbids primary flavor-changing processes involving \(e^-\), the coupling strengths of \(h^+\) and \(k^{++}\) to leptons are not severely constrained and can be as large as \(\mathcal{O}(e)\),

- characteristic signatures of \(h^+\) include
\[
B(h^+ \to e^+ \mathcal{E}_R) \approx 2B(h^+ \to \mu^+ \mathcal{E}_R) \approx 2B(h^+ \to \tau^+ \mathcal{E}_R)
\]
(39)
since \(f_{[\mu]} \approx f_{[\tau]}\), which should be compared with \([12]\)
\[
B(h^+ \to e^+ \mathcal{E}_R) \approx B(h^+ \to \mu^+ \mathcal{E}_R) \gg B(h^+ \to \tau^+ \mathcal{E}_R)
\]
(40)
in the one-loop radiative mechanism with \(f_{[\mu]} \gg f_{[\tau]} \gg f_{[\nu]}\) \([17]\).

Acknowledgments

We are grateful to M. Matsuda for his suggestion on possible constraints from \(\tau\)-decays. The work of M.Y. is supported by the Grant-in-Aid for Scientific Research No 12047223 from the Ministry of Education, Science, Sports and Culture, Japan.

\(^3\) One should be aware of higher-order contributions found by Lavoura in Ref.\(^{[12]}\). The (1,1)-entry of \(M_\nu\), which vanishes up to the two-loop level, is induced by the four-loop diagram shown in Figure\(^{[16]}\). The contributions are at most characterized by \(\delta \sim (16\pi^2)^{-1} \xi m^2_e/m_k^2\), which should be compared with \(m^2_e/m_k^2\). Our parameter-setting in Eq.\(^{[13]}\) gives \(\delta \sim 2m^2_e/m_k^2\), which turns out to be \(\mathcal{O}(m^2_e/m_k^2\)). Therefore, our estimate of Eq.\(^{[13]}\) remains valid to predict \(\Delta m^2_{\odot}\) from \(\Delta m^2_{\text{atm}}\).
Figure 6: Four loop-diagram for $\nu_e - \nu_e$.

References

[1] Z. Maki, M. Nakagawa and S. Sakata, Prog. Theor. Phys. 28 (1962) 870. See also B. Pontecorvo, JETP (USSR) 34 (1958) 247; Zh. Eksp. Teor. Piz. 53 (1967) 1717; V. Gribov and B. Pontecorvo, Phys. Lett. 28B (1969) 493.

[2] SuperKamiokande Collaboration, Y. Fukuda et al., Phys. Rev. Lett. 81 (1998) 1562; Phys. Lett. B 433 (1998) 9 and 436 (1998) 33. See also K. Scholberg, hep-ex/9905016 (May, 1999). For recent analysis, see N. Forego, M.C. Gonzalez-Garcia and J.W.F. Valle, JHEP 7 (2000) 006; Nucl. Phys. B 580 (2000) 58.

[3] J. N. Bahcall, P. I. Krastev and A.Yu.Smirnov, Phys. Rev. D 58 (1998) 096016; ibid. 60 (1999) 093001; J. N. Bahcall, hep-ph/0002018 (Feb, 2000); M. C. Gonzalez-Garcia, P. C. de Holanda, C. Pena-Garay and J. C. W. Valle, Nucl. Phys. B 573 (2000) 3; G.L. Fogli, E. Lisi, D. Montanino and A. Palazzo, Phys. Rev. D 62 (2000) 013002,

[4] M. Sakuda, Talk given at the 30th Int. Conf. on High Energy Physics (ICHEP2000), 27 Jul. - 2 Aug., Osaka, Japan. See also, K2K Collaboration, T.Ishida, hep-ex/0008047 (Aug 2000).

[5] Y. Takeuchi, Talk given at the 30th Int. Conf. on High Energy Physics (ICHEP2000), 27 Jul. - 2 Aug., Osaka, Japan. See also, J. Ellis, hep-ph/0008334 (Aug, 2000).

[6] T. Yanagida, in Proceedings of the Workshop on Unified Theories and Baryon Number in the Universe edited by A. Sawada and A. Sugamoto (KEK Report No.79-18, Tsukuba, 1979), p.95; Prog. Theor. Phys. 64 (1980) 1103; M. Gell-Mann, P. Ramond and R. Slansky, in Supergravity edited by P. van Nieuwenhuizen and D.Z. Freedmann (North-Holland, Amsterdam 1979), p.315; R.N. Mohapatra and G. Senjanovic, Phys. Rev. Lett. 44 (1980) 912.

[7] A. Zee, Phys. Lett. 93B (1980) 389; 161B (1985) 141; L. Wolfenstein, Nucl. Phys. B175 (1980) 93.

[8] A. Zee, Nucl. Phys. B264 (1986) 99; K. S. Babu, Phys. Lett. B 203 (1988) 132; D. Chang, W.-Y.Keung and P.B. Pal, Phys. Rev. Lett. 61 (1988) 2420. See also, J. Schechter and J.W.F. Valle, Phys. Rev. D 25 (1982) 2951.

[9] S. P. Petcov, Phys. Lett. 115B (1982) 401; K. S. Babu and V. S. Mathur, Phys. Lett. B 196 (1987) 218; J. Liu, Phys. Lett. B 216 (1989) 367; D. Chang and W.-Y. Keung, Phys. Rev. D 39 (1989) 1386; W. Grimus and H. Neufeld, Phys. Lett. B 237 (1990) 521; B.K. Pal, Phys. Rev. D 44 (1991) 2261; W. Grimus and G. Nardulli, Phys. Lett. B 271 (1991) 161; J.T. Polonium, A. Yu. Smirnov and J.W.F. Valle, Phys. Lett. B 286 (1992) 321; A. Yu. Smirnov and Z. Tao, Nucl. Phys. B 426 (1994) 415.
[10] A.Yu. Smirnov and M. Tanimoto, Phys. Rev. D 55 (1997) 1665; N. Gaur, A. Ghosal, E. Ma and P. Roy, Phys. Rev D 58 (1998) 071301; Y. Okamoto and M. Yasue, Prog. Theor. Phys. 101 (1999) 1119; Phys. Lett. B 466 (1999) 207; G.C. McLaughlin and J.N. Ng, Phys. Lett. B 455 (1999) 224; J.E. Kim and J.S. Lee, hep-ph/9907452 (July, 1999); N. Haba, M. Matsuda and M. Tanimoto, Phys. Lett. B 478 (2000) 351; C.-K. Chula, X.-G. He and W.-Y. Hwang, Phys. Lett. B 479 (2000) 224; K. Cheung and O.C.W. Kong, Phys. Rev. D 61 (2000) 113012.

[11] C. Jarlskog, M. Matsuda, S. Skadhauge and M. Tanimoto, Phys. Lett. B 449 (1999) 240; P.H. Frampton and S.L. Glashow, Phys. Lett. B 461 (1999) 95; A.S. Joshipura and S.D. Rindani, Phys. Lett. B 464 (1999) 239; D. Chang and A. Zee, Phys. Rev. D 61 (2000) 071303.

[12] L. Lavoura, Phys. Rev. D 62 (2000) 093011; T. Kitabayashi and M. Yasuè, Phys. Lett. B 490 (2000) 236.

[13] See for example, R.N. Mohapatra, hep-ph/9910365 (Oct., 1999).

[14] R. Barbieri, L. J. Hall, D. Smith, N. J. Weiner and A. Strumia, JHEP 12 (1998) 017. For earlier attempts of using such modified lepton numbers, see for example, S. T. Petcov, Phys. Lett. 110B (1982) 245; C.N. Leung and S. T. Petcov, Phys. Lett. 125B (1983) 461; A. Zee, in Ref. [3].

[15] D.V. Ahluwalia, Mod. Phys. Lett. A 13 (1998) 2249; V. Barger, P. Pakvasa, T.J. Weiler and K. Whisnant, Phys. Lett. B 437 (1998) 107; A. Baltz, A.S. Goldhaber and M. Goldhaber, Phys. Rev. Lett. 81 (1998) 5730; Y. Nomura and T. Yanagida, Phys. Rev. D 59 (1999) 017303; M. Jezabek and Y. Sumino, Phys. Lett. B 440 (1998) 327; R.N. Mohapatra and S. Nussinov, Phys. Lett. B 441 (1998) 299; Q. Shafi and Z. Tavartkiladze, Phys. Lett. B 451 (1999) 129; Phys. Lett. B 482 (2000) 145; I. Stancu and D.V. Ahluwalia, Phys. Lett. B 460 (1999) 431; H. Georgi and S.L. Glashow, Phys. Rev. D 61 (2000) 097301; R. N. Mohapatra, A. Pérez-Lorenzana and C.A. de S. Pires, Phys. Lett. B 474 (2000) 355.

[16] H. Fritzsch and Z.Z. Xing, Phys. Lett. B 372 (1996) 265; ibid. 440 (1998) 313; M. Fukugida, M. Tanimoto and T. Yanagida, Phys. Rev. D 57 (1998) 4429; M. Tanimoto, Phys. Rev. D. 59 (1999) 017304.

[17] C. Jarlskog, M. Matsuda, S. Skadhauge and M. Tanimoto, in Ref. [3].

[18] A.S. Joshipura and S.D. Rindani, Phys. Lett. B 464 (1999) 239; D. Chang and A. Zee, Phys. Rev. D 61 (2000) 071303; T. Kitabayashi and M. Yasuè, hep-ph/0006040 (June, 2000); hep-ph/0010087 (Oct., 2000).

[19] T. Kitabayashi and M. Yasuè, in Ref. [12].

[20] K. S. Babu, in Ref. [3].

[21] Particle Data Group, D.E. Groom et al. Euro. Phys. J. C 15 (2000) 1.

[22] A.S. Joshipura and S.D. Rindani, in Ref. [11].

[23] A.Yu. Smirnov and M. Tanimoto, in Ref. [10].

[24] In the Zee model, where $f_{[e\mu]}$ is as small as $O(10^{-4})$, the h^+-phenomenology in LEP has been lately focused in the literature. See S. Kanemura, T. Kaai, G.-L. Lin, Y. Okada, J.-J. Tseng and C.-P. Yuan, hep-ph/0010233 (Oct., 2000).