Determination of the globular cluster and halo stellar mass functions and stellar and brown dwarf densities

Gilles Chabrier and Dominique Méra

C.R.A.L. (UMR 7455 CNRS),
Ecole Normale Supérieure, 69364 Lyon Cedex 07, France
(chabrier, dmera @ens-lyon.fr)

Received date : 10 January, 1997 ; accepted date : 28 April, 1997

Abstract. We use recent low-mass star models, which reproduce accurately the observed sequences of various globular clusters, to convert the observed luminosity functions into bolometric luminosity functions. These latter are shown to exhibit a similar behaviour with a rising slope up to $M_{bol} \sim 9$, i.e. $m \sim 0.2 - 0.3 M_\odot$, and a decreasing behaviour beyond this limit. We then derive mass functions for globular star clusters down to the bottom of the main sequence. These mass functions are well described by a slowly rising power-law $dN/dm \propto m^{-\alpha}$, with $0.5 \leq \alpha \leq 1.5$, down to $\sim 0.1 M_\odot$, independently of the metallicity, suggesting a rather universal behaviour of the cluster initial mass functions. The effects of tidal stripping and mass segregation are illustrated by the overabundance of very low-mass stars in the outer parts of NGC6397 and their depletion in the central parts. This analysis confirms that the mass function determined near the half-mass radius has been weakly affected by external and internal dynamical effects and reflects relatively closely the initial mass function. We predict luminosity functions in the NICMOS filters in the stellar and in the brown dwarf domains for different mass functions and metallicities.

We apply these calculations to the determination of the mass function in the Galactic halo, including the DeVaucouleurs spheroid and the $1/r^2$ dark halo. We derive the slope and the normalization of the spheroid mass function which is well described by the afore-mentioned power-law function with $\alpha \sim 1.7 \pm 0.2$ down to $0.1 M_\odot$, although a slowly decreasing mass function below $\sim 0.15 M_\odot$ can not be excluded with the data presently available. Comparison with the Hubble Deep Field star counts is consistent with such a mass function and excludes a significant stellar population in the dark halo. This shows that essentially all the high-velocity subdwarfs observed in the solar neighborhood belong to the Galactic spheroid.

Consistent analysis with recent microlensing experiments towards the LMC shows that the spheroid and the dark-halo stellar+brown dwarf populations represent at most $\sim 1\%$ of the Galactic dark matter density. This clearly excludes brown dwarfs and low-mass stars as significant dark matter candidates.

Key words : stars: Low-mass, brown dwarfs — stars: luminosity function, mass function — stars: Population II — Galaxy : globular clusters — Galaxy : stellar content — Cosmology : dark matter

1. Introduction

The derivation of reliable stellar mass-functions (MF) down to the hydrogen burning limit is an essential task for the understanding of a wide variety of major astrophysical problems including star formation theory, stellar evolution, dynamical evolution of globular clusters, galactic formation and evolution. Not mentioning the long-standing problem of the galactic missing mass. From the stellar point of view, the knowledge of the low-mass end of the MF provides essential information about the processus of star formation and the physics of the interiors and atmospheres of cool and dense objects. From the galactic point of view, the determination of the stellar MF down to the hydrogen burning limit is a key issue to derive the total amount of matter under the form of visible, stellar objects, which determines the mass-to-light (m/L) ratio, and to infer the contribution of substellar objects, essentially brown dwarfs, to the galactic mass budget. The intrinsic faintness of very-low-mass stars (VLMS), and the small density of halo objects w.r.t. the disk population ($\sim 1/500$, see e.g. Bahcall, 1986; Tyson, 1988) renders the determination of the luminosity function (LF) of halo stars down to the hydrogen burning limit a tremendously difficult task. The determination of globular cluster (GC) luminosity functions and mass functions is a first, easier step towards the determination of the Population II star initial mass function. Moreover, the determination of the present day MF (PDMF) in GCs contains potential information about...
the dynamical history, evaporation and tidal stripping of the clusters, and thus about the Galactic halo history. At last, given the large range of metallicities covered by all observed GCs, it is possible to examine the dependence of the MF on metallicity, and to determine whether it is a universal property or if it is strongly affected by the metal content of the initial cloud.

Recent deep photometry observations of several GCs with the Hubble Space Telescope (HST) yield an accurate determination of the bottom of the MS of the observed objects. These results extend previous ground-based observations to about 4 magnitudes fainter limits and allow an accurate determination of the cluster LFs down to the bottom of the MS, providing stringent constraints for theoretical models of metal-poor VLMS. The derivation of accurate MFs from these observed LFs is a more delicate task. The MF is very sensitive to the mass-luminosity relation and thus the derivation of reliable MFs requires the calculations of accurate mass-luminosity relations. Direct, observational mass determinations of VLMS are available for solar metallicity objects only (Popper 1980; Henry & McCarthy 1993). No direct mass-determination has been obtained so far for metal-depleted low-mass stars. However the accuracy of the stellar models can be examined by confronting the theoretical color-magnitude diagrams (CMD) to the observed ones. Such an extensive study has been conducted in a previous paper (Baraffe, Chabrier, Allard & Hauschildt 1997; BCAH) where these authors have derived an extended set of low-mass star evolutionary models (0.07 ≤ m ≤ 0.8 M⊙) over a large range of metal-depleted abundances characteristic of old disk, globular cluster and halo populations, namely −2.0 ≤ [M/H] ≤ −0.5. The accuracy of these models has been demonstrated by the remarkable agreement (< 0.1 mag) between the theoretical and the observed CMDs over the entire sequences, for all GCs, over the entire afore-mentioned metallicity range. The well known wavy behaviour of the stellar main sequence, which reflects genuine intrinsic properties of stellar matter, is reproduced qualitatively and quantitatively, for the correct magnitudes and colors (see BCAH). As stressed by these authors, these models are not hampered by any adjustable parameter (e.g. the mixing length) and thus the agreement between theory and observation reflects the accuracy of the physics entering the models (equation of state and non-grey atmosphere models). This assesses the reliability of these models to describe the mechanical and thermal properties of metal-poor low-mass stars down to the brown dwarf limit, and provides for the first time accurate relations between the mass, the age and observable quantities, magnitudes and colors, for different metallicities. For solar-like metallicity, the accuracy of the mass-magnitude relation has been assessed by the agreement with the observed mass-spectral class (Kirkpatrick & Mc Carthy, 1994; Kirkpatrick et al., 1995) and mass-MV and mass-MK (Henry & McCarthy, 1993) relationships (Baraffe & Chabrier, 1996; Chabrier, Baraffe & Plez, 1996; Chabrier & Baraffe, 1997b).

In this paper, we use the mass-luminosity relationships obtained with the afore-mentioned metal-depleted models to derive the mass-functions characteristic of several GCs observed with the HST and of halo field stars. The observations are summarized in §2 and converted into bolometric LFs. In §3, we derive the MFs for the different clusters and we examine the dependence of these MFs upon metallicity, location in the cluster and Galactic position of the cluster. Section 4 is devoted to the derivation of the halo MF and §5 to the conclusion.

2. Luminosity Functions

Until recently, derivations of stellar LFs in GCs down to faint absolute magnitudes have been based on observations made from the ground, thus suffering from crowding effects and uncertain completeness corrections (see e.g. Richer et al. 1991). Data from the HST have now become available for several GCs down to ~ 4 magnitudes fainter limits (MV ∼ 14) without the need for large completeness corrections, spanning a large range of metallicity from solar to 1% solar. The MS is sharp and well defined down to almost the limit of the observations, which corresponds to m ∼ 0.1 M⊙ (BCAH), and the LFs are essentially complete (within ~ 80%) down to this limit. These observations are presented and discussed in §2 of BCAH, with the different parameters, distance moduli and reddening corrections, used for these clusters.

Although there is a general agreement between the ground-based and the HST LFs at bright and intermediate magnitudes, they differ substantially at and beyond the magnitude limit of ground-based observations. Although the ground-based LFs were generally rising down to the limit of the observations (MV ∼ 9), most of the LFs derived with the HST show a clear decline beyond this limit.

A comparison between the LFs of some of the afore-mentioned clusters, namely 47Tuc, NGC6397 and ωCen, has been done by Cool et al. (1996) and Santiago et al. (1996). In spite of the differences between these clusters arising from their age, metallicity, galactic position, and thus dynamical evolution, the LFs are found to be very similar, down to the limit of the observations, except for the faint end of ωCen.

The clusters have been observed in different passbands characteristic of the HST, namely F814 ∼ IC, F555 ∼ Vj and F606 where IC and Vj denote the standard Johnson-Cousins (JC) system. HST colors were transformed into the JC system, using the Holtzman et al. (1995) synthetic transformations. As shown in BCAH, agreement between the theoretical and the observed CMDs is remarkable in all filters, HST and JC, assessing both the accuracy of the models and of the Holtzman photometric transformations (see BCAH for details). In Fig. 1, we show the bolometric LFs, corrected for incompleteness, for the afore-mentioned
clusters, using the published LFs and the bolometric corrections of Chabrier & Baraffe (1997a) and BCAH. We have used cubic spline interpolations to interpolate the relations $M_\lambda(M_{bol})$ and their derivatives dM_λ/dM_{bol} (global polynomial fits are not reliable). We verified that LFs of the same cluster observed in different passbands yield the same bolometric LF. This adds credibility to the present bolometric corrections and stellar models.

We believe these results to illustrate consistent comparisons between the LFs of various clusters, over a large range of metallicities, from near solar to $[M/H] = -2.0$. The LFs have been normalized arbitrarily to $M_{bol} = 8$, i.e. $m \sim 0.4 - 0.5 M_\odot$ over the present range of metallicity. For all the considered GCs, both the degree of completeness and of photometric accuracy are maximum in this region and stellar evolution effects do not affect this mass range, even for the older clusters. In Table I, we give the galactocentric position R_{GC}, the height above or below the Galactic plane Z_{GP} and the metallicity for the various clusters. These values have been averaged over the slightly different values found in the literature. We also give the location of the observations w.r.t. the half-mass radius r_h. Some indetermination (≈ 0.2 mag) remains for the distance modulus of various clusters, as quoted by the different observers. We have carried out calculations with the different values and found that the resulting uncertainty in the MFs remains within the observational error bars. The extinction corrections are the ones quoted in Table I of BCAH and in the different references corresponding to the observations.

As seen in Fig. 1, all LFs exhibit a similar qualitative behaviour in the region $M_{bol} \lesssim 9$, i.e. $M_{814} \approx M_I \lesssim 8.5$, $M_{555} \approx M_V \lesssim 10$, with a rising slope $\Delta \log(dN/dM_{bol})/\Delta M_{bol} \sim 0.25$, i.e. $dN/d\log(L/L_\odot) \propto -(L/L_\odot)^{-0.6}$. Below this limit, some differences appear between the various clusters. Whereas some LFs, e.g. for ω Cen, exhibit a flattish behaviour, most of them drop more or less rapidly at the faint end. As will be shown in the next section, these different behaviours, and the respective magnitudes corresponding to the peak in the LFs of the clusters, reflect the dependence of the mass-magnitude relationship on metallicity, from a rather universal mass-function. The effect of metallicity in the mass-magnitude relationship translates into a slightly different location for the peak of the luminosity function, corresponding to $m \sim 0.2 M_\odot$, lower metallicities yielding brighter magnitudes for the same mass, an intrinsic property of stellar matter (see BCAH). The case of NGC6397 deserves particular attention, for there is a substantial qualitative difference in the faint end of the LF for this cluster between the observations of Paresce et al. (1995b) and Cool et al. (1996). Whereas Paresce et al. get a strongly decreasing LF, Cool et al. argue for a milder decrease, or even for a flattish behaviour at the faint end of the LF. Since both observations were completed in a similar region of the cluster ($r/r_h \sim 3$), the difference can not stem from different mass segregation effects. A natural explanation would be incompleteness at faint magnitudes in the Paresce et al. sample but this hypothesis seems to be excluded by these authors. A third explanation would be the bias in the observed LF due to binning at faint mag-

Table I. Metallicity, distance moduli (corrected from extinctions; see caption of Fig. 1) and Galactic location of the globular clusters. $[Fe/H]$ is the observed metallicity, $[M/H]$ is the metallicity used in the models, which takes into account the enrichment in α-elements (see BCAH for details). Z_{GP}, R_{GC} and r/r_h denote the height above or below the Galactic disk, the distance from the Galactic center and the location of the observations w.r.t. the half-mass radius, respectively.

cluster	$[Fe/H]$	$[M/H]$	$(m - M)_I$	$(m - M)_V$	Z_{GP} (kpc)	R_{GC} (kpc)	r/r_h
47Tuc1,2 (NGC104)	-0.7	-0.5	13.35/13.46	3.3	8.0	0.8	
NGC67523	-1.5	-1.0	13.11	1.8	5.9	1.3	
M35 (NGC5272)	-1.3	-1.0	15.07	10.8	12.5	3.7	
ω Cen4 (NGC5139)	-1.6	-1.3	13.92	1.3	7.0	3.2-4.6	
NGC63975,6	-1.9	-1.5	12.05/12.20	12.47	0.5	6.0	3
NGC66568	-1.75	-1.5		0.5	6.0	3	
M307 (NGC7099)	-2.1	-1.8	14.48	14.65	5.25	7.0	3
M155,7 (NGC7078)	-2.2	-2.0	15.25	15.45	4.5	10.5	3
M925 (NGC6341)	-2.2	-2.0	14.58	14.66	4.4	9.8	3

1. De Marchi & Paresce 1995a
2. Santiago et al., 1996
3. Fusi Pecci et al., 1996
4. Elson et al., 1995
5. Cool et al. 1996
6. Paresce et al. 1995
7. De Marchi & Paresce 1995b
8. De Marchi & Paresce 1997
have been determined is well inside the tidal radius. As discussed below, this is the best location to obtain a PDMF as similar as possible to the initial MF (IMF), although dynamical evolution may have shaped it to some extent.

In any case the region where the LFs is close to the half-mass radius, a reasonable assumption for the clusters, between \(\sim 1 \) and \(3 \) times the half-mass radius (see Table I), assuming that the present half-light radius is close to the half-mass radius, a reasonable assumption (Djorgovski, 1993). In any case the region where the LFs have been determined is well inside the tidal radius. As discussed below, this is the best location to obtain a PDMF as similar as possible to the initial MF (IMF), although dynamical evolution may have shaped it to some extent.

In summary, the different LFs seem to be marginally similar down to \(M_{bol} \sim 10 \), in spite of the very different metallicities. Whether this apparent non-dependence of the LF upon metallicity will translate into a similar uncorrelation in the mass-function depends on the degree of correlation of the mass-luminosity relationship with metallicity, as examined below.

3. Globular cluster mass-functions

As already mentioned, the agreement between the observed GC main sequences and the theoretical BCAH ones over the entire sequences is excellent, less than 0.1 mag, for all clusters. In particular the models reproduce accurately the two changes in the slope of the color-magnitude relation, near \(\sim 0.4 - 0.5 M_\odot \) and below \(\sim 0.2 M_\odot \), which reflect intrinsic physical properties of the atmosphere and is the interior of VLMS (see Chabrier & Baraffe, 1997a). These comparisons assess the validity of the calibration of low-mass stars from the observed colors and magnitudes, as given in BCAH and in Chabrier & Baraffe (1997a).

As demonstrated in the afore-mentioned papers, relationships based on grey atmosphere models and \(T_{eff}(\tau) \) relationships yield inaccurate, or at best unreliable, \(m - L \) and \(m - T_{eff} \) relationships over the entire low-mass star domain, and most importantly near the hydrogen burning limit. This translates directly into unreliable MFs, thus biasing any attempt to derive robust conclusions. We stress also the importance of using an accurate representation of the \(m - L \) relation when deriving mass functions. Given the severe variations of the slope of this relation along the LMS range, a global polynomial fit, in particular, is a very poor and misleading representation. A polynomial fit does not reproduce all the points of the \(m - L \) relation and can lead to severely erroneous MFs, in particular near the bottom of the MS.

The LFs discussed in §2 have been converted into MFs, for the appropriate metallicities, and are displayed on Fig. 2. As shown in Fig. 2, all MFs are rising monotonically down to the limit of the observations, i.e. \(\sim 0.1 - 0.15 M_\odot \), close to the hydrogen burning limit, except possibly for 47 Tuc where the MF flattens below \(\sim 0.2 M_\odot \). This shows convincingly that the decrease of the luminosity function near the faint end does not reflect a lack of stars but instead the severe drop in the mass-luminosity relationship near the bottom of the MS and thus the scarcity of stars over large magnitude intervals for \(m \lesssim 2 M_\odot \) (see e.g. D’Antona & Mazzitelli, 1996; Chabrier & Baraffe, 1997a).

We stress again that LFs observed in different filters, for a same cluster, yield similar MFs. The MFs shown in Fig. 2 for the different clusters are displayed by increasing metallicity from top to bottom, from \([Fe/H]\) \(\sim -2.2 \) to \([Fe/H]\) \(\sim -0.7 \). We recall that, given the enrichment of
halo and globular star clusters in α-elements, an observed [Fe/H] for metal-poor stars corresponds to a solar-mix scaled metallicity [M/H] ∼ [Fe/H] + 0.35 (Ryan & Norris, 1991; see BCAH for details). A first interesting result is that, except for the MF of NGC6397 derived from the Paresce et al. (1995b) LF, all MFs are fairly well represented by simple power laws dN/dm ∝ m^−α with α > 0. The second striking result is the weak variation of the slope of the MF with metallicity, with α ∼ 0.5 to 1.5. This dependence on metallicity is pondered to some extent by the location of the clusters in the Galaxy. This influence, however, remains weak as long as the clusters are located far enough (> 1 kpc) from both the disk and the Galactic center, as shown for example for NGC6752 or wCen, located about 1 kpc above the Galactic plane, which have a slope similar to or steeper than M3, of comparable metallicity, located ∼ 10 kpc above the plane. In the same vein, M30 is found to have a slightly steeper MF than NGC6341, for the same metallicity, although it lies closer to the Galactic center. This shows that there is no direct link between the MF near r_h and the location in the Galaxy and that some internal dynamical process, namely mass segregation, may have slightly modified the IMF of the clusters near the half-mass radius. Although the last bin of NGC6656 seems to indicate a decrease at the faint end of the MF, this feature is likely to stem from incompleteness due to crowding near the bottom of the MS (DeMarchi & Paresce, 1997). Interestingly enough, however, both the MF of NGC6656 and NGC6397, as observed by DeMarchi & Paresce, seem to indicate a flattening below ∼ 0.2 – 0.3 M_⊙ (although the error bars in NGC6656 are consistent with a slowly rising MF), as suggested by these authors. Even though both clusters have similar Galactic positions (see Table I), they have quite different orbits and thus have experienced different dynamical histories (DeMarchi & Paresce, 1997). This prompted these authors to suggest that this behaviour is an intrinsic properties of GC’s. We note, however, that this result differs from the ones obtained for all the other clusters and more importantly from observations of the same cluster (NGC6397) by Cool et al. (1996) (see below), as mentioned previously. Solving this issue requires further observations of these clusters near the bottom of the MS. The case of 47Tuc is also of particular interest, for the MF of this relatively metal-rich cluster seems to flatten off below ∼ 0.2 M_⊙, although the lack of observations beyond this limit prevents robust conclusions. The detailed study of the MF of metal-rich clusters and field stars is presently under work (Chabrier, Méra & Baraffe, 1997).

The similitude between the MFs of the different clusters, all determined at radial distances near the half mass radius, seems to confirm that the stellar population in this region is not very sensitive at least to external dynamical processes. In particular, given its large distance from the Galactic plane and from the Galactic center, M15 is believed to have an almost uncontaminated MF, and is thus of particular importance for the understanding of the dynamical evolution of GCs. It is instructive to note that the MF of M15 (and M3) is very similar to the one of clusters located closer to the Galactic plane, although these clusters are expected to have experienced quite different dynamical histories, in particular very different tidal stripping and disk/bulge shocking, resulting in a substantially different fraction of VLMS at the periphery.

As mentioned in the previous section, the indetermination near the faint end of the LF for NGC6397 translates into a difference in the MF below ∼ 0.3 M_⊙. This is illustrated in Figure 3. The two LFs of Cool et al. (1996) (in the F555 and F814 filters) yield a monotonic, rising MF, whereas the LF of Paresce et al. (1995) yields a flat-tish MF below 0.3 M_⊙, although with large error bars near the faint end. The difference remains when using any of the two distance moduli quoted for this cluster.

Fig. 2. Mass-functions (in solar mass) for the different clusters with increasing metallicity from top to bottom. α indicates the slope of the power-law dN/dm ∝ m^−α, as given below in brackets and shown by the dotted line for each cluster. Top to bottom : NGC6341, NGC7079 and NGC7099 ([M/H] ∼ −2.0; α ∼ 1.5); NGC6656 (dash-dot) and NGC6397 (solid) ([M/H] = −1.5; α ∼ 0.5); wCen ([M/H] ∼ −1.3; α ∼ 1.0); NGC6752 and M3 ([M/H] ∼ −1.0; α ∼ 0.5); 47Tuc ([M/H] ∼ −0.5; α ∼ 0.7). Several lines for a same cluster indicate different observations (see Fig. 1).
and stems from the very difference at the faint end of the two LFs. For this reason, we will leave this cluster aside for the rest of the discussion until more observations can nail down this issue. Note that the low galactic position of NGC6397, Z \approx 0.5 \text{kpc}, its proximity to the Galactic center, and its likely collapsed state suggest that this cluster has experienced severe disk and bulge shocking, resulting in an accumulation of low-mass stars at the periphery and a substantial depletion even near \(r_h \). Note also that the relatively short half-mass relaxation time of NGC6397 \((t_h \approx 3 \times 10^8 \text{~yr}; \text{Djorgovski et al., 1993})\) may have led already to substantial evaporation in this region. This might provide a simple explanation for the MF inferred from Paresce et al. data and to explain the fact that NGC6397 has a shallower MF, and thus a smaller amount of LMS than clusters of similar metallicity, e.g. M30. On the opposite, if the MF keeps rising near the bottom of the MS, as inferred from the Cool et al. LF, the similarity of the MF with the ones of clusters located far from the Galactic plane shows that even strong tidal stripping and disk shocking does not strongly affect the inner regions of the cluster, near \(r_h \).

An interesting information about tidal stripping and mass segregation in NGC6397 arises from the observations of Mould et al. (1996) who obtained the LF of the cluster with the HST at a larger radial distance than the aforementioned observations, namely at 10 arcmin from the center, i.e. \(r/r_h \approx 6 \). The MF obtained from Mould et al. LF is shown in Fig. 3 (dotted line). The steeper slope \((\alpha \approx 1.3 \text{ instead of } \alpha \approx 0.5)\) and thus the larger number of very low-mass stars \((\lesssim 0.5 M_\odot)\) w.r.t. to the previous determinations closer to \(r_h \) illustrates the onset of tidal stripping and mass segregation, yielding an excess of very-low-mass stars in the outer parts of the cluster. Therefore it is not excluded that VLMS near \(r_h \) may already have been stripped in this cluster. In any case, it shows that no robust conclusion about the IMF of GCs can be inferred at present from the observations of NGC6397, and probably not from any cluster located at low Galactic latitude.

The core relaxation times of the present clusters are \(\sim 10^8 - 10^9 \text{~yr} \), at least one order of magnitude less that the ages of the clusters, so that we expect the stars near the central core of the clusters to be close to thermal equilibrium. Therefore low-mass stars in the core should be substantially depleted as a result of mass segregation. The half-mass radius is in general about 50 times larger than the core radius, so that we expect mass segregation to be mild in this region. The effect of mass segregation in GCs has been demonstrated by various investigations of the core \((r_c \approx 0.01 r_h)\) of different clusters (DeMarchi & Paresce, 1996; Paresce et al., 1995a; King et al., 1995). The severe deficiency of faint stars in the center of the clusters translates into a strongly decreasing MF below \(\sim 0.6 M_\odot \).

This reflects the effect of mass segregation in the central core, due to two-body relaxation, as expected from nearly thermodynamic equilibrium, providing the time for core collapse is much larger than the half-mass relaxation time, which is the case in general. This result is confirmed by the analysis of King, Sosin & Cool (1995) who examined the relation between the local MF of the cluster, as determined presently, and the global MF, using a dynamical model for the evolution of the cluster. As shown by these authors, whereas the MF determined in the central core is severely affected by mass segregation, the MF determined near the half-mass radius is quite similar to the global MF.

3.1. Predictions in the NICMOS filters

The observations of GCs in near infrared colors will soon be possible with the HST NICMOS camera, in the F110W (\(~ J\)), F160W (\(~ H\)) and F187W filters, where \(J \) and \(H \) are defined in the CIT system. Mass-magnitude relationships and CMDs have been derived by BCAH in these filters. In Figures 4a-c, we show the predicted luminosity functions in these filters for \([M/H]=-2\), as obtained with three different rising MFs \((\alpha > 0)\) and a flat MF \((\alpha = 0)\) beyond 0.2 \(M_\odot \). The LFs are normalized to \(N_{\text{tot}} = \int_{M_{\text{min}}}^{M_{\text{max}}} (dN/dm) \, dm = 1 \), where \(N_{\text{tot}} \) is the total number of stars between 0.8 \(M_\odot \), about the turn-off mass, and the hydrogen burning limit, which corresponds to magnitudes \(M_{\text{min}} \) and \(M_{\text{max}} \), respectively, for the appropriate metallicity, as given in BCAH. The slope of the MF, at least for \(\alpha > 0.5 \), could be determined by future observations from differential comparisons of the star counts on each side of the peak of the LF, provid-
Fig. 4. Predicted LFs for clusters with $[M/H] = -2$ for different mass functions: dotted line: $\alpha = 0$ below $0.2 \, M_\odot$; dashed line: $\alpha = 0.5$; solid line: $\alpha = 1.0$; dot-dash line: $\alpha = 1.5$ in the NICMOS filters F160W (Fig. 4a), F187W (Fig. 4b) and F110W (Fig. 4c). The effect of metallicity is illustrated on Fig. 4d for $\alpha = 1.5$: $[M/H] = -0.5$ (dotted line), $[M/H] = -1.0$ (dot-dash line), $[M/H] = -1.5$ (solid line) and $[M/H] = -2.0$ (dashed line).

ing accurate completeness corrections. Steeper MFs yield more (resp. less) VLMS below (resp. above) $\sim 0.2 \, M_\odot$, which corresponds to the bright peak in the LFs. A flat MF yield a larger number of stars and a small plateau between $\sim 0.1 - 0.2 \, M_\odot$, followed by an abrupt drop. The effect of metallicity on the LF is illustrated in Figure 4d for $\alpha = 1.5$. Although the qualitative behaviour of the LF remains the same, the effect of metallicity is a global shift of the LF toward slightly brighter magnitudes with decreasing metallicity, a direct consequence of the metallicity dependence of the mass-magnitude relationship (see BCAH, Chabrier & Baraffe, 1997a). The effect, however, remains small and shows the weak dependence of the LF upon metallicity, at least for metal-depleted objects.

An other interesting feature about these LFs is the expected brown dwarf signature, as illustrated by the peak at faint magnitudes in Figs. 4a-c. The gap in the LF stems from the large luminosity drop in the mass-luminosity relationship in the stellar to substellar transition domain, which corresponds to several magnitudes over a few hundredths of a solar mass, whereas the sharp increase reflects the flatter slope of this relation in the brown dwarf regime. We stopped our calculations at $m = 0.055 \, M_\odot$, which corresponds to the coolest non-grey model atmospheres.
presently available. This is enough to illustrate the un-
missing signature of even a moderate BD population in
GCs, as obtained with the mentioned MFs. Interestingly
enough, we note that the gap in the LF varies signifi-
cantly with the filters, which reflects the strong variation of
the BD energy distribution in the near infrared frequency
domain. Even in the most favorable case, i.e. F110, the
genuine brown dwarf domain lies ∼4 mag below the bottom
of the main sequence. This sets the scale for BD search in
GCs.

3.2. Brown dwarf mass fraction

The mass under the form of brown dwarfs in GCs is de-
termined by:

\[M_{\text{BD}} = A \int_{m_{\text{low}}}^{m_{\text{up}}} \frac{dN}{dm} dm = \frac{A}{2 - \alpha} (m_{\text{up}}^{2-\alpha} - m_{\text{low}}^{2-\alpha}) \]

(1)

where A is the normalization of the MF \(dN/dm = A m^{-\alpha} \).
We have normalized all the MFs at ∼0.4 – 0.5 \(M_\odot \), as
mentioned previously (see §2). The value \(m_{\text{up}} = 0.083 M_\odot \)
is the hydrogen burning minimum mass for \([M/H] = -2\)
and about it for metal-poor stars in general (Chabrier &
Baraffe, 1997a) whereas \(m_{\text{low}} \) is the minimum mass of
the brown dwarf IMF. Since this quantity is presently
unknown, the maximum brown dwarf contribution cor-
responds to \(m_{\text{low}} = 0 \), since the integral is convergent
(\(\alpha < 2 \)). A more realistic value \(m_{\text{low}} = 0.01 M_\odot \), which
corresponds to the deuterium burning minimum mass
(Saumon et al., 1996) and to the minimum Jeans mass at
zero-metallicity (Silk, 1977) does not change the results
significantly, given the small contribution of the lowest
masses for weakly rising MFs.

Even the steepest MF \(\alpha = 1.5 \) yields a brown dwarf
contribution ∼30% of the stellar mass fraction below 0.8
\(M_\odot \), about the cluster turn-off mass. A flat MF or a larger
minimum mass \(m_{\text{low}} \) yield essentially no mass (< 1%) in
the brown dwarf domain. These calculations show that,
even though there might be a substantial number of BDs
in GCs (rising MF), their mass fraction is fairly small.
This confirms that there is essentially no dark matter in
GCs.

4. Halo mass function

If the PDMF slope is not strongly correlated with the
metallicity, we expect the IMF for GCs to be rather similar
to that of the disk and the halo. This issue is addressed
below.

As shown in §4.3 of BCAH, there is no apparent dif-
cference in the sequences of globular star clusters and halo
field stars. This corroborates the traditional view that

note stellar halo or spheroid the stellar population determined
by the Hubble \((1/r^3)\) or the DeVaucouleurs \(e^{-r^2/\alpha}\) density
profile, whereas we call dark halo the outer \(1/r^2\) density distri-
bution. We will use the generic term halo to denote the overall
population belonging to the afore-mentioned spheroid and dark
halo, in opposition to the disk population.
The MF determined from the Dahn et al. LF for this metallicity is shown in Fig. 5 (solid line). Also shown is the MF derived from the photometric spheroid LF determined by Richer & Fahlman (1992, RF) (dashed line). As shown in Fig. 5 (see also Méra, Chabrier & Schaeffer, 1996), both MFs are fairly consistent for $m \gtrsim 0.15 M_\odot$ but differ significantly below this limit. The RF’s MF rises abruptly whereas the Dahn et al. MF drops below $m \sim 0.10 M_\odot$.

Such a qualitative difference is surprising, for both LFs are supposed to probe the same stellar population, essentially the spheroid one. As mentioned above (see also Reid et al., 1996), the last bin in the RF LF is likely to be contaminated by old disk stars and can not be used to derive a halo MF. The difference between the two MFs shown in Figure 5 becomes significant below $m \sim 0.15 M_\odot$, i.e. $M_V \gtrsim 12$, $M_I \gtrsim 10$, $M_{bol} \gtrsim 11$ for $[M/H] = -1.5$ (BCAH; Chabrier & Baraffe, 1997a). At 15 kpc this corresponds to $V \sim 28$, $I \sim 26$. At faint magnitudes, e.g. $V \sim 25$, an old-disk 0.4 M_\odot star ($[M/H] \geq -1.0$; $M_V \sim 10$) at 10 kpc can be misidentified as a metal-poor $\sim 0.1 M_\odot$ halo star ($[M/H] \leq -1.5$; $M_V \sim 15$) at 1 kpc with similar $V - I$.

This will yield a severely overestimated halo number density near the bottom of the MS. Note also that there are only 3 stars in the two last bins of RF’s LF.

On the other hand, the last 3 bins in the Dahn et al. LF rely on a fairly small number of stars (7, 5 and 1, respectively), and have a low statistical significance. At last we want to emphasize the bias introduced by bining the data at faint magnitudes. The number of stars per unit magnitude is about 5 times smaller below $\sim 0.1 M_\odot$ than above this value (see e.g. BCAH), because of the abrupt drop in the mass-luminosity relationship. A good statistics thus implies a large magnitude interval but this in turn yields a large indetermination in the exact magnitude of the stars belonging to the interval. The faint end of the Dahn et al. LF is likely to be hampered by these limitations, due mainly to incompleteness and to the scarcity of objects in a large magnitude range at the very bottom of the main sequence. Note that the same observational bias could apply to the uncertain determination of the faint end of NGC6397 LF, as discussed in the previous section.

As shown in Fig. 5, the Dahn et al. MF is consistent with a rising MF $dN/dm \propto m^{-\alpha}$ with $\alpha \sim 2$ down to 0.12 M_\odot at the 1-σ (99%) confidence level, and with $\alpha \sim 1.6$ down to the very last bin, i.e. 0.09 M_\odot at the 2-σ (90%) C.L., for $[M/H] = -1.5$. This C.L. increases if we use a slightly lower metallicity. A χ^2-test applied to the MF determined in Figure 5 yields a most-likely slope $\alpha \sim 1.64$, assuming a power-law MF, although we cannot exclude a non power-law behaviour at the very end of the MF. Interestingly enough, similar conclusions have been reached recently by Richer & Fahlman (1996) who reanalyzed their photometric LF and derived a MF with a slope $\alpha \sim 1.7$. A more precise determination of the shape of the MF near the hydrogen-burning limit, which bears essential consequences for star formation theory, requires larger statistics in this region. However the present determination is sufficient to determine with reasonable accuracy the halo stellar and substellar mass fractions, as examined in the next section.

5. Halo stellar and substellar mass fractions

The spheroid extends between ~ 10 and 20 kpc from the Galactic center (see e.g. Reid et al., 1996 and below), i.e. $V \sim 25-30$, $I \sim 23-28$ for the bottom of the MS of metal-poor stars (BCAH). This is out of reach with ground-based observations but can be probed partially with the HDF, which reaches $V \sim 30$, $I \sim 28$ (Flynn, Gould & Bahcall, 1996). As shown in the previous section, a power-law MF $dN/dm \propto m^{-\alpha}$ with a slope $\alpha \sim 1.6 - 2.0$ is fairly consistent with all halo MFs (excluding the last bin of RF) down to at least $\sim 0.12 M_\odot$, at the 99% C.L., and down to the limit of the observations at the 90% C.L. This yields the following halo MF:

$$\mu_h(m) \approx 4.0 \pm 2 \times 10^{-3} \left(\frac{m}{0.1 M_\odot}\right)^{-1.7 \pm 0.2} M_\odot^{-1} pc^{-3} \quad (2)$$

Integration of this MF gives the halo stellar ($m \leq 0.8 M_\odot$ for $t \geq 10$ Gyr) density in the solar neighborhood:

$$\rho_h \approx 1.0 \times 10^{-4} M_\odot pc^{-3} \quad (3)$$

Comparison of this value with the disk low-mass star density (Méra, Chabrier & Baraffe, 1996), and assuming
that the MF (2) is valid for masses up to \(m = 0.8 M_\odot \) \((M_V \sim 4)\) gives the mass-normalization of the halo/disk total stellar population (including the contribution of more massive stars for the disk population) down to the bottom of the MS, \(\rho_{bh} / \rho_{bd} \sim 1/400 \).

5.1. Star count analysis

Although the small field of the Hubble Deep Field prevents the determination of an accurate halo LF, as mentioned previously, it provides a stringent constraint on the halo mass function and mass model.

The number of stars per arcmin\(^2\) between apparent magnitudes e.g. \(I_{\text{min}} \) and \(I_{\text{max}} \) toward Galactic coordinates \((b, l)\) reads:

\[
\frac{dN}{d\Omega} = \frac{1}{3600} \left(\frac{\pi}{180} \right)^2 \times \int_{M_{\text{min}}}^{M_{\text{max}}} dM_I \int_{d_{\text{min}}}^{d_{\text{max}}} dr \rho(r, l, b) \frac{dN}{dm} \frac{dm}{dM_I} \tag{4}
\]

where \(d_{\text{max}}/10 \text{ pc} = 10^{\frac{I_{\text{max}} - M_I}{5}} \) (resp. \(d_{\text{min}} \)) denotes the maximum (resp. minimum) distance to which a star of magnitude \(M_I \) will be visible, \(M_{\text{min}} - M_{\text{max}} \) the magnitudes corresponding to the mass range of interest \((\leq 0.8 M_\odot)\) and \(\rho(r) \) is the mass density profile characteristic of the Galactic region considered. The mass-magnitude relation \(dm/dM_I \) is taken from BCAH. Table II gives the predicted star counts (between 0.8 \(M_\odot \) and the hydrogen burning limit) at faint magnitudes in the Hubble Deep field, \(l = 126^\circ, b = 55^\circ \), for the observed field of view, 0.00157 sq. degrees. The Galactic model consists of a thick disk with an exponential \(\propto e^{-|z|/z_0} \) or a sech\(^2 \) profile with different scale heights, \(z_0 = 1000 \) and 1500 pc, a spheroid with a DeVaucouleurs \(e^{-10(R/R_\odot)^{1/4}} \) profile and a flattened \((q = 0.6)\) dark halo with an isothermal distribution \(\rho(r) \propto 1/r^2 \). The mass functions are the ones determined in Méra et al. (1996b) for the disk and in Eq. (2) for the halo. The average metallicity is \([M/H] = -0.5\) for the disk and \([M/H] = -1.5\) for the halo, respectively. As shown in Table 2, the results obtained with spherically symmetric distributions are in severe conflict with the observations, whereas the observed star counts are consistent with an oblated \(q = c/a \sim 0.6 \) spheroid plus a sech\(^2 \) thick disk with a scale height \(z_0 \leq 1 \text{ kpc} \). The observations of the HDF exclude completely the presence of a significant dark halo stellar population. Therefore, almost all the stars in the Dahn et al. sample belong to the spheroid.

An event more stringent comparison is given in Table III which compares the predicted star counts with the HDF observations in two different passbands, namely the V-band (Mendez et al., 1996) and the I-band (Reid et al., 1996). The Galactic model consists of the aforementioned thick disk characterized by a density profile \(\rho(r) = 0.05 \rho_\odot e^{-(R-R_\odot)/l_{\text{bd}} \sech^2 z_0} \) with a local density \(\rho_\odot \approx 0.1 M_\odot \text{ pc}^{-3} \), a solar galactocentric distance \(R_\odot = 8.5 \text{ kpc} \), a scale length \(l_{\text{bd}} = 2.8 \text{ kpc} \) and a scale height \(z_0 = 1 \text{ kpc} \), and a flattened \((q = 0.6)\) DeVaucouleurs spheroid. The spheroid and disk populations are determined from their location in the CMD (see e.g. Reid et al., 1996 Fig. 13; Baraffe et al., 1995). We note the excellent agreement (within \(\sim 1\sigma \)) between theory and observations in the two passbands, for every color and magnitude interval. The spheroid VLMS population extends up to \(I \sim 27 \), \(V \sim 29 \) and vanishes beyond this limit. Most of the spheroid stars in the range \(25 < I < 27 \), \(1.5 \lesssim V - I \lesssim 2.5 \) have masses between 0.1 and 0.2 \(M_\odot \), as determined from the present stellar models and mass-color relations for different metallicities (BCAH). The scarcity of stars at fainter magnitudes thus reflects the bottom of the spheroid MS. The absolute magnitude of a 0.1 \(M_\odot \) star with \([M/H] \sim -1.5, -2.0\) is \(M_V \sim 13.5, M_I \sim 11.3 \) (BCAH) so that these stars are located at \(\sim 10 - 15 \text{ kpc} \) from the Sun. The present analysis provides a relatively precise determination of the size of the Galactic spheroid. It also shows the consistency of the present disk and halo mass-functions and Galactic model with HDF faint magnitude observations in different colors. It also confirms the negligible stellar population in the dark halo, at most \(\sim 1\% \) of the spheroid population, as inferred from Table II.

The present analysis shows that we have seen essentially all main sequence stars in the Galaxy.

The spheroid stellar density (3) is thus about 1\% of the dynamically-determined dark matter density and 0.1\% of the disk total density, whereas the dark halo stellar density is about two orders of magnitude smaller, as implied by the present star-count analysis. This yields a contribution of the spheroid to the optical depth towards the LMC \(\tau_{\text{sp}} \sim 5 \times 10^{-9} \), the eventual dark-halo contribution being negligible.

The extrapolation in the BD domain, as done in the previous section, yields a negligible amount of substellar objects in the Galactic halo. A minimum mass \(m_{\text{low}} = 0.01 M_\odot \) for the BDs and the extrapolation of the MF (2) yields a BD number-density in the spheroid:

\[
n_{\text{BD}} \sim 2 \pm 1 \times 10^{-3} \text{ pc}^{-3},
\]

and a BD mass-density:

\[
\rho_{\text{BD}} \sim 0.5 \pm 0.5 \times 10^{-4} M_\odot \text{ pc}^{-3},
\]

i.e. \(\lesssim 1\% \) of the dark matter density. This is consistent with a detailed analysis of the MACHO+EROS microlensing observations toward the LMC (Alcock et al. 1996; Aubourg et al., 1993; Méra, Chabrier & Schaeffer, 1997). A substantial fraction of halo brown dwarfs not only would imply a MF below the hydrogen burning limit radically
Table II. Different contributions to the star counts in the 5.6 Arcmin2 Hubble Deep Field (b, l) = ($55^\circ, 126^\circ$) (Reid et al., 1996) with the mass function determined in Mérá et al. (1996 a) for the disk and in Eq. (2) for the halo. We considered different density-profiles (see text). The repartition between disk and halo in the observations is just indicative and has been obtained from color criteria (see e.g. Reid et al., 1996 Fig. 13).

	$I = 20 - 26$	$I = 24 - 26$		
old disk				
$e^{-	z	/z_0}$; $z_0 = 1.0$ kpc	9	2.6
$e^{-	z	/z_0}$; $z_0 = 1.5$ kpc	23	8.7
sech$^2(\frac{z}{z_0})$; $z = 1.0$ kpc	3.9	0.7		
sech$^2(\frac{z}{z_0})$; $z = 1.5$ kpc	12.2	3.2		
Observations	4-6	1-2		
spheroid				
$q = 1$	12.3	5.4		
$q = 0.6$	5.8	1.8		
dark halo				
$q = 0.6$	244	176		
Observations	5-7	3-4		

Table III. Star counts in the Hubble Deep Field in the V-band (Mendez et al., 1996; 4.69 arcmin2) and in the I-band (Reid et al., 1996; 5.6 arcmin2) (tabulated CMDs). See text for the Galactic model. The average metallicity is $[M/H] = -0.5$ for the disk and $[M/H] = -1.5$ for the spheroid, respectively. The numbers in brackets for the spheroid correspond to $[M/H] = -2$.

At fainter magnitudes, the predicted star counts are consistent with zero in the color-range of interest.

	V / (V-I)	0.5-1.5	1.5-2.5	2.5-3.5		
18-20						
Thick disk	0.1	0.8	0.2	0	1.2	0.1
Spheroid	0.4 (0.5)	0.1 (0)	0 (0)	0.5 (1)	0.5 (0.3)	0 (0)
Obs.	1	2	0	2	0	0
20-22						
Thick disk	0	1.4	0.3	0	0.9	0.6
Spheroid	0.6 (1)	0.6 (0.3)	0 (0)	0.3 (0.8)	1.5 (1.1)	0 (0)
Obs.	2	1	1	1	2	1
22-24						
Thick disk	0	0.6	0.9	0	0.1	0.7
Spheroid	0.3 (0.8)	1.7 (1.3)	0.1 (0)	0 (0.2)	1.6 (1.4)	0.1 (0.1)
Obs.	2	2	1	1	1	0
24-26						
Thick disk	0	0	0.3	0	1	0.7
Spheroid	0 (0.2)	1.6 (1.5)	0.3 (0.2)	0	1	0.7
Obs.	0	2	1	1	1	0

...
observations (Han & Gould, 1996; Méra et al., 1997). If confirmed by future observations, this strongly suggests that the stellar MF is a rather universal property, almost independent on the metallicity, and reflects the nature of a dominant physical process in star formation. It would also show that a Salpeter-like MF extends to about three orders of magnitude in mass, then justifying the extrapolation into the brown dwarf domain. Note that the metallicity might be determinant for the minimum mass of the MF.

6. Conclusion

In this paper, we have first transformed the LFs of several globular clusters observed with the HST in various passbands down to almost the bottom of the main sequence into bolometric LFs. All these LFs exhibit a similar behaviour with a peak around $M_{bol} \sim 9-10$ and a drop beyond. This reflects the sharp drop in the mass-luminosity relationship below $\sim 0.2 M_\odot$. We have converted these LFs into mass functions. We emphasize that these mass functions rely on mass-luminosity relationships obtained with stellar models whose accuracy has been demonstrated unambiguously (BCAH). Since the luminosity functions for these clusters have been determined near the half-mass radius, the present-day local mass functions are likely to reflect reasonably well the initial global mass functions. All the MFs are rising down to $\sim 0.1 M_\odot$, with the exception of the one based on the observations of NGC6397 by Paresce et al. (1995) and possibly the one for 47 Tuc which seem to flatten off below $\sim 0.2 M_\odot$. This stresses the need for further observations of these clusters to determine whether the effect is real or whether it stems from various observational bias at faint magnitudes, as suggested, for NGC6397, by comparison with the observations of the same cluster by Cool et al. (1996). All these MFs are well described by a power-law $dM/dm \propto m^{-\alpha}$, with essentially no dependence of α on metallicity or the Galactic location, with α varying between $\alpha \sim 0.5$ and $\alpha \sim 1.5$. The clusters thus seem to exhibit the same universal initial mass function, shaped to some extent (within about one unit for the slope α) by further dynamical evolution. The effect of metallicity appears in the mass-magnitude relationship and translates into a gogal shift of the LF, and thus of the location of the peak, which corresponds to $m \sim 0.2 M_\odot$, to slightly brighter magnitudes for lower metallicity. Given the completely different dynamical history of these clusters, this confirms that the stellar population near the half-mass radius is weakly affected by either external or internal dynamical effects. Such a conclusion would have to be reconsidered if the observations of Paresce et al. (1995) for NGC6397 are confirmed. In that case, the Galactic latitude and the Galactocentric distance of GCs might play a determinant role below ~ 1 kpc. These weakly rising MFs suggest that the globular clusters contain a substantial number of brown dwarfs but a negligible amount of mass, and thus of dark matter, under the form of these objects.

The mass segregation effect is illustrated by the severe depletion of very low-mass stars in the central core of these clusters, as reflected by the dropping MF below $\sim 0.6 M_\odot$, and by the excess of these objects, as shown by the substantially steeper MF, in the outer field of NGC6397. We have derived predicting LFs in the NICMOS filters, corresponding to either slightly rising or flat MFs for the different clusters, down to the brown dwarf domain. Comparison between these predictions and near-future observations should determine accurately the MF of globular clusters all the way down to the hydrogen burning limit and the brown dwarf population.

We have applied these calculations to the determination of the halo mass function, from the observed luminosity functions of high-velocity low-mass stars in the stellar neighborhood and from the direct photometric determination of faint magnitudes. Both MFs agree fairly well down to $\sim 0.15 M_\odot$. Such a consistency adds support to the fact that they probe the same stellar population. Both type of observations lead to the same rising MF down to $\sim 0.15 M_\odot$, but to two different behaviours below this limit. However, both LFs at the faint end are hampered by different observational bias and most likely are consistent with the same, slowly rising MF all the way down to the hydrogen-burning limit with a slope $\alpha \sim 1.7 \pm 0.2$, although a decreasing MF below $\sim 0.15 M_\odot$ cannot be excluded with presently available observations. The drop in the LF reflects the scarcity of objects over large magnitude intervals near the very bottom of the main sequence.

Comparison with star counts at faint magnitudes obtained with the Hubble Deep Field are consistent with the afore-mentioned halo MF and with a sech2 old disk with a scale height $z_0 \lesssim 1$ kpc, which contributes at least $\sim 50\%$ of the LF down to $I \sim 25$, $V \sim 27$. These comparisons yield an independent determination of the size $\sim 10 - 15$ kpc and the oblateness $q \sim 0.6$ of the spheroid. These calculations show that the observed high-velocity subdwarfs belong to the Galactic spheroid, which dominates the LF up to $V \sim 29$, $I \sim 27$, and that there is essentially no main sequence star in the dark halo. Comparison between future deep field ($I > 28$) observations and these calculations should determine unambiguously the dark halo stellar and substellar mass content.

These calculations yield a consistent determination of the spheroid MF down to $\sim 0.1 M_\odot$, and its normalization w.r.t. the disk one. They also give an upper bound for the dark-halo normalization ($\lesssim 1\% \rho_{sph}$). They yield the contribution of the spheroid and the dark-halo contribution to the dark matter density in the solar neighborhood, less than $\sim 1\%$ and 0.01%, respectively. Extrapolating these mass functions into the brown dwarf domain reveals the negligible contribution of substellar objects to halo dark matter, which is consistent with the lack of short time events in the microlensing observations towards the LMC.
The mass functions determined for globular star clusters and for halo field stars have the same qualitative and semi-quantitative behaviour, which seems to confirm the common origin of these stellar populations. More strikingly, these MFs are similar to the one determined for the disk stellar population down to the bottom of the MS. This general behaviour of the mass function for different populations down to the hydrogen burning limit, in particular the weak correlation with the metal content, seems to reflect a universal feature of all stellar systems and thus is likely to stem from a fundamental mechanism in the star formation process. Although the precise determination of the shape of the MF requires more statistics, the present determination represents already a solid ground to infer the halo stellar and substellar mass content, as done in the present study. Note that the effect of metallicity might come into play in the determination of the minimum mass for the formation process. Although this minimum mass seems to be close to $\sim M_\odot$ for dark halo objects, as inferred from the microlensing observations (Chabrier, Segretain & Méra, 1996; Adams & Laughlin, 1996), which is consistent with the present calculations which exclude a significant low-mass star population in the dark halo, it lies well below this limit for spheroid and disk objects (Méra et al., 1997).

The bolometric LF’s displayed in Fig. 1 are available at CDS via anonymous ftp:

ftp cdsarc.u-strasbourg.fr (130.79.128.5)

or via http://cdsweb.u-strasbourg.fr/Abstract.html

Acknowledgements. The authors are very grateful to A. Cool, R. Elson, G. DeMarchi, G. Gilmore and C. Dahn for kindly providing their data under electronic form and to M. Crézé for helpful conversations.

References
Adams, F. & Laughlin, 1996, ApJ, 468, 586
Alcock et al., 1996, ApJ, submitted
Aubourg, E. et al., 1993 Nature, 365, 623
Bahcall, J., 1986, ApJS, 55, 67
Baraffe, I., Chabrier, G., Allard, F. and Hauschildt P., 1997, A&A, in press, astro/9704144 (BCAH)
Baraffe, I., Chabrier, G., Allard, F. and Hauschildt P., 1995, ApJ, L446, 35
Baraffe, I. and Chabrier, G., 1996, ApJ, L461, 51
Bienaymé, O., Robin, A.C. & Crézé, M., 1987, A&A, 180, 94
Chabrier, G. and Baraffe, I., 1997a, A&A, in press, astro/9704118
Chabrier, G. and Baraffe, I., 1997b, Proc. IAU Symposium #189, Fundamenta1 Stellar Properties: the interaction between observation and theory, eds. T.R. Bedding, A.J. Booth and J. Davis (Kluwer; Dordrecht).
Chabrier, G., Baraffe, I. and Plez, B., 1996, ApJ, 459, L91
Chabrier, G., Méra, D. & Baraffe, I., 1997, in preparation
Chabrier, G., Segretain, L., & Méra, D., 1996, ApJ, 468, L21
Cool. A. Piotto, G. & King, I. R., 1996, ApJ, 468, 655
Dahn, C.C., 1995, in The bottom of the main sequence and beyond, p. 239, C.G. Tinney ed., Springer
DeMarchi, G. & Paresce, F., 1996, ApJ, 467, 658
DeMarchi, G. & Paresce, F., 1995a, A&A, 304, 211
DeMarchi, G. & Paresce, F., 1995b, A&A, 304, 202
DeMarchi, G. & Paresce, F., 1997, ApJ, 476, L19
D’Antona, F. & Mazzitelli, I., 1996, ApJ, 456, 329
Djorgovski, S.J., 1993, in Structure and Dynamics of Star Clusters, S.G. Djorgovski and G. Meylan, A.S.P. Conf. Ser., 50, 373
Elson, R.A.W., Gilmore, G.F., Santiago, B. & Casertano, S., 1995, AJ, 110, 682
Fall & Rees, 1985, ApJ, 298, 18
Flynn, Gould & Bahcall, 1996, ApJ, 466, L55
Fusi Pecci, F. et al., 1996, preprint
Han & Gould, 1996, ApJ, 467, 540
Henry , T.D., and McCarthy, D.W.Jr, 1993, AJ, 106, 773
Holtzman, J.A., Burrows, C.J., Casertano, S., Hester, J.J., Trauger, J.T., Watson, A.M., & Worthey, G., 1995, PASP, 107, 1065
King, I., Sossin, C., and Cool, A., 1995, ApJ, 452, L33
Kirkpatrick, J. D. and McCarthy, D. W., 1994, AJ, 107, 333
Kirkpatrick, J. D., Henry , T.D. and Simons, D.A., 1995, AJ, 109, 797
Kuijken & Gilmore, 1991, ApJ, 367, L9
Leggett, S., 1992, ApJS, 82, 351
Méra, D., Chabrier, G. and Schaeffer, R., 1996a, Europhysics Letters, 33, 327
Méra, D., Chabrier, G. and Baraffe, I, 1996b, ApJ, 459, L87
Méra, D., Chabrier, G. and Schaeffer, R., 1997, A&A, submitted
Monet, D. G., Dahn, C. C., Vrba, F. J., Harris, H. C., Pier, J. R., Luginbuhl, C. B., Ables, H., D., 1992, AJ, 103, 638
Mould, J.R. et al., 1996, PASP, 108, 682
Paresce, F., DeMarchi, G. & Jedrzejewski, R., 1995a, ApJ, 442, L57
Paresce, F., DeMarchi, G. & Romaniello, M, 1995b, ApJS, 440, 216
Popper, 1980, ARA&A, 18, 115
Reid, I.N., Yan, L., Majewski, S., Thomson, I. & Smail, I., 1996, AJ, 112, 1472
Richer, H., et al., 1991, ApJ, 373, 109
Richer, H. and Fahlman, G., 1992, in Galaxy Structure and Dynamics of Star Clusters, eds. T.R. Bedding, A.J. Booth and J. Davis (Kluwer; Dordrecht).
Richer, H., et al., 1991, ApJ, 381, 147
Richer, H. and Fahlman, G., 1992, Nature, 358, 383
Richer, H. and Fahlman, G., 1996, in Star Formation : Near and Far, Maryland October Conference #7
Ryan and Norris, 1991, AJ, 101, 1865
Santiago, B., Elson, R.A.W. & Gilmore, G., 1996, MNRAS, 281, 1363
Saumon, D. et al., 1996, ApJ, 460, 993
Silk, J., 1977, ApJ, 214, 718
Tyson, 1988, AJ, 96, 1
