Heavy metals in sediment, microplastic and sea cucumber *Apostichopus japonicus* from farms in China

Mohamed Mohsen\(^{a,b,d,e,f}\), Qing Wang\(^{c}\), Libin Zhang\(^{a,b,d,e,*}\), Lina Sun\(^{a,b,e}\), Chenggang Lin\(^{a,b,e}\), Hongsheng Yang\(^{a,b,d,e,*}\)

\(^{a}\) CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
\(^{b}\) Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
\(^{c}\) Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
\(^{d}\) University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
\(^{e}\) Center for Ocean Mega-Sciences, Chinese Academy of Sciences, Qingdao 266071, China
\(^{f}\) Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo, Egypt

ARTICLE INFO

Keywords:
- Sea cucumber
- Heavy metals
- Microplastics
- Biota-sediment accumulation factor

ABSTRACT

The concentrations of eight heavy metals (As, Cd, Cr, Cu, Mn, Ni, Pb and Zn) were measured in the sediment, the isolated microplastics from the sediment and the body wall of sea cucumbers from farms in China. Accordingly, the heavy metal concentrations in the sediment were below the class I upper limit of Chinese sediment quality guidelines. Among heavy metals, the median concentrations of Cd and As were higher in the body wall than in the corresponding sediment. Additionally, the median concentrations of Cd, Pb, and Zn were higher on the microplastics than in the corresponding sediment. Furthermore, there was no significant correlation among heavy metals in sediment, sea cucumber and microplastics. This study contributes to the understanding of the heavy metal accumulation in the sediment, the microplastics and the body wall of the sea cucumber.

1. Introduction

Heavy metals are natural components that exist in the ecosystem. Some of these components are essential nutrients, such as iron, zinc, copper and manganese, while others are non-essential and highly toxic at high quantities, such as cadmium, mercury, and lead (reviewed by Tchounwou et al., 2012). In the marine environment, sources of heavy metals often include contributions from human activities such as industrial and municipal wastes, agricultural discharge, sediment release, atmospheric sedimentation (Gao et al., 2014) and microplastics as carriage (Brennecke et al., 2016).

Heavy metals are reportedly associated with microplastics (MPs), which are small plastic particles that measure < 5 mm in diameter (Arthur et al., 2009); heavy metals were reported from the isolated MPs from water such as copper (Cu) and zinc (Zn) (Brennecke et al., 2016) or from the isolated MPs from sediment such as cadmium (Cd), lead (Pb) and bromine (Br) (Massos and Turner, 2017). In addition, aquatic sediment has been known as a sink for heavy metals (de Groot, 1995). Both MPs and sediment could be vectors that transport heavy metals when ingested by bottom feeders (Fan et al., 2014; Hodson et al., 2017).

In laboratory experiments, the release of Zn in synthetic earthworm gut was higher in association with MPs (40–60%) compared with sediment (2–15%); hence, MPs might increase the bioavailability of metals to the bottom feeders (Hodson et al., 2017).

Sea cucumber *Apostichopus japonicus*, the most valuable species among sea foods in China (Yang et al., 2015), is a deposit feeder that ingests the sedimentary detritus as its main food source (Gao and Yang, 2015). Moreover, our previous work has shown that sea cucumber (*A. japonicus*) ingests MPs in addition to sediment (Mohsen et al., 2019). Therefore, the quantification of heavy metals in association with both MPs and sediment is key to assessing the hazardous effects of heavy metals on the sea cucumber. Although the heavy metal adsorption to the sediment is well documented in China (reviewed by Fan and Wang, 2012; Wang et al., 2013; Gao et al., 2014), few studies have examined the concentration of heavy metals in the adults of sea cucumber (Wen and Hu, 2016; Wang et al., 2012) or in the MPs (Wang et al., 2017) in China.

The aims of the current study were as follows: 1) assess the...
concentrations of heavy metals in the sediment and on the MPs in the field; 2) determine the heavy metals content in the body wall of farmed sea cucumbers; 3) examine the sediment quality of sea cucumber farms, and 4) investigate the correlation between the concentrations of heavy metals in the body wall of sea cucumber, the sediment, and the MPs.

2. Materials and methods

2.1. Samples collection and preparation

Samples of sea cucumber and sediment were collected during the year 2017–2018 from eight farming sites of the sea cucumber *A. japonicus* in China (Fig. 1) (Table S1). Six of these sites were culture ponds, and two sites were open areas for culturing the sea cucumber. In each site, the sea cucumbers (n = 3) were collected by divers, while the sediment samples (n = 5) were collected via Van Veen grab. The sea cucumbers from each site were dissected, and the internal viscera was removed. The wet weight of the average body wall ranged from 27 to 51.5 g (Table S2).

The body wall and the sediment were transferred in foil bags to the laboratory and kept frozen until analysis. The sediment and the body wall were dried at 60 °C for 72 h to obtain a dry weight. The dried sea cucumbers were ground in a Tissue Lyser-24 (Shanghai Jingxin Industrial Development Co., Ltd., China) at 70 Hz for 30 s. To achieve a reasonable weight of the MPs for heavy metal analysis, 50 g of dried sediment was exposed to the glass beaker to degrade the organic matter and calcium compounds. A total of 5 mL H2O2 (30%) was added in the 250 mL glass beaker. The homogenized powder and were then sieved and stored until heavy metals analysis.

2.2. Microplastics isolation

To achieve a reasonable weight of the MPs for heavy metal analysis, 50 g of dried sediment was exposed to the flotation test, with minor modifications (Thompson et al., 2004). The sediments were mixed with 200 mL of Na-Cl solution (ρ = 1.20 g/mL) for one minute and then held to settle for 5 min. Most of the supernatant was carefully transferred to a 250 mL glass beaker. The flotation test was repeated three times to increase recovery. A total of 5 mL H2O2 (30%) was added in the 250 mL glass beaker to degrade the organic matter and calcium floats and then held to settle for 24 h. The supernatant was filtered through an 8-μm glass microfiber filter paper (Shanghai Xingya Purification Material Factory, China) with vacuum filtration, and then, it was transferred to a new petri dish for later inspection by a dissecting microscope (SMZ-161-BLED, Motic, China). The MPs were identified depending on colour homogeneity, resistance to the stress of tweezers, and clearance of any tissue structure (Hidalgo-Ruz et al., 2012). MPs were isolated under a dissecting microscope without adhesion of the sediment and then transferred to a clean filter paper. The structure of the MPs was confirmed by Fourier transform infrared micro spectroscopy (FT-IR) (Nicolet™ iN10, Thermo Fisher Scientific, USA) (Directive, 2013). The FT-IR was supplied with an ultra-fast motorized phase and mercury cadmium telluride (MCT) sensor. During the process of MP identification, the MCT sensor was cooled using liquid nitrogen. The spectrum of the particle was within a range of 650–4000 cm⁻¹ by co-adding 128 scans at a resolution of 8 cm⁻¹. The aperture was adjusted to 150 × 150 μm, using knife-edges. Afterward, the obtained spectra were compared with OMNIC polymer spectra library; only matches above 70% were accepted.

To prevent contamination, the procedures were performed under a clean hood with air flow. Polymer free gloves and coats made of cotton were worn during all the experimental procedures. Every glass beaker was washed three times, including two times by filtered water and the last time by ultrapure water. Additionally, three blanket replicates were set up, with the floatation test for background correction.

2.3. Metals analysis

2.3.1. Sediment

The digestion of the dry sediment (0.1 g) was performed (AOAC, 1995) by using a mix of 5 mL hydrofluoric acid (HF), 5 mL nitric acid (HNO₃) and 1 mL perchloric acid (HClO₄) at a temperature of 140–220 °C. The residual was mixed with 1 mL HNO₃ (1:1, V/V) and diluted to 15 mL with Millipore water. The solution was examined for the occurrence of Cd by inductively coupled plasma mass spectrophotometer (ICP-MS, Thermo Fisher Icap-Qc) and for the occurrence of Cu, Zn, Cr and Pb by inductively coupled plasma-optical emission spectrometry (ICP-OES; Perkin-Elmer 7300 DV).

For As examination, the dried sediment (0.1 g) was digested at 100 °C for 1 h using 10 mL aqua regia (HNO₃:HCl:water = 1:3:4, V/V/V). Millipore water was used to dilute the residual to 25 mL and held overnight. Then, the supernatant (2 mL) was mixed with 10 mL diluted HCl (HCl:water = 1:1, V/V) and thiourea-ascorbic acid reducing agent (5 g thiourea and 5 g ascorbic acid dissolved in 100 mL water). The residual was then diluted to 100 mL with Millipore water and held overnight. Then, atomic fluorescence spectroscopy (Jitian AFS-8w) was performed to detect As. All the detection limits were based on a 98% confidence level with three standard deviations.
Table 1
Comparison of the average heavy metals content from the current study and nearby regions in China or other regions (mg/kg).

	As	Cd	Cr	Cu	Mn	Ni	Pb	Zn	Sampling date	Reference
Bohai Sea										
Panshan (S1)	6.37 ± 0.31	0.17 ± 0.02	47.75 ± 2.18	27.09 ± 1.92	18.23 ± 6.02	20.78 ± 1.38	11.86 ± 0.83	34.01 ± 0.37	2018	Current study
Lvshunkou (S2)	9.03 ± 0.17	0.15 ± 0.01	53.01 ± 2.63	30.85 ± 0.76	40.17 ± 8.10	32.49 ± 0.66	11.81 ± 0.99	44.44 ± 0.61	2018	Current study
Tangshan (S7)	5.31 ± 0.18	0.09 ± 0.001	35.61 ± 0.99	20.67 ± 0.31	24.26 ± 7.37	22.48 ± 0.13	10.17 ± 0.79	27.45 ± 0.41	2018	Current study
Laizhou (S8)	3.01 ± 0.14	0.04 ± 0.0002	11.14 ± 0.37	4.75 ± 0.37	4.25 ± 0.47	6.46 ± 0.15	10.62 ± 1.19	12.16 ± 0.04	2018	Current study
Liaodong Bay, China	8.30	NA	46.40	19.40	NA	22.50	31.80	71.70	2009	(Hu et al., 2013)
Central Bohai Sea (Summer-winter)	NA	1.65–0.199	16.8–18.2	503–535	18.5–17.4	11.4–12.0	41.9–39.7	2011	(Liu et al., 2016)	
Shuangtai Estuary, China	3.53	0.15	26.80	9.77	NA	NA	11.90	16.90	2011	(Li et al., 2018)
Jinzhou Bay, China	19.90	2.48	NA	32.70	NA	NA	32.50	257.70	2015	(Li et al., 2018)
Laizhou Bay, China	3.07	0.16	40.40	19.20	NA	NA	17.35	45.20	2015	(Li et al., 2018)
Laizhou Bay, China	NA	0.22	56.70	12.00	NA	25.90	19.40	41.5	2011	(Zhang and Gao, 2014)
Yellow Sea										
Rongcheng, Weihai (3)	3.71 ± 0.28	0.06 ± 0.01	19.98 ± 0.42	10.29 ± 0.47	257.75 ± 5.76	8.70 ± 0.24	10.62 ± 1.40	10.33 ± 0.19	2018	Current study
Haiyang, Yantai (4)	7.23 ± 0.15	0.16 ± 0.004	41.70 ± 0.66	28.60 ± 0.52	479.53 ± 2.76	23.86 ± 0.59	15.88 ± 0.47	58.80 ± 0.78	2015	Current study
Chengyang, Qingdao (5)	12.42 ± 0.32	0.13 ± 0.001	76.51 ± 1.27	52.66 ± 1.16	1854.67 ± 24.17	44.71 ± 0.95	25.72 ± 0.46	82.72 ± 1.31	2013	Current study
Pingdao Island, Rizhao (6)	5.02 ± 0.17	0.13 ± 0.001	37.65 ± 1.48	26.65 ± 0.55	981.23 ± 53.64	26.60 ± 0.20	15.35 ± 0.62	50.13 ± 1.08	2018	Current study
Jiaozhou Bay, China	NA	0.30	86.17	27.31	NA	32.35	38.54	76.00	2015	(Li et al., 2018)
Jiaozhou Bay, China	9.10–20.77	0.07–0.37	83.3–140.6	12.8–124.5	42.0–93.1	66.8–243.4				
Yellow Sea (summer-winter)	NA	0.51–0.115	15.1–15.9	410–373	18.6–18.8	12.3–11.3	47.3–46.2	2011	(Jiang et al., 2014)	
Weihai coast, China	9.0	0.14	23.9	11.6	NA	NA	20.0	40.0	2009–2013	(Li et al., 2017)
Swan Lake, Rongcheng, China	5.95	0.35	72.35	24.98	NA	NA	46.82	68.86	2015	(Wang et al., 2016a)
Mariculture zone, Hailing Bay, China	16.43	0.187	50.8	34.54	NA	25.2	46.6	137	2010	Zhang et al., 2012
Sea cucumber habitat, Malaysia	NA	1.01	7.75	0.62	0.52	0.21	2.73	3.38	NA	(Husimi et al., 2002)
Sea cucumber habitat, Pakistan	NA	1.88–2.42	4.92–5.52	132–137	NA	33–37	14–39	2014	(Ahmed et al., 2017)	
Sea cucumber habitat, Iran	NA	1.18–3.07	5.99–9.04	134–143	NA	47–56	15–22	2014	(Ahmed et al., 2017)	
Sea cucumber habitat, Iran	NA	0.6–1.15	118.31–51.89	11.18–28.79	28.26–55.78	2014	(Mohammadzadeh et al., 2015)			
Class 1 upper limit	20.00	0.50	80.00	35.00	NA	NA	60.00	150.00	SEPA (2002)	
Class 2 upper limit	56.00	1.50	150.00	100.00	NA	NA	130.00	350.00	SEPA (2002)	
Class 3 upper limit	93.00	5.00	270.00	200.00	NA	NA	250.00	600.00	SEPA (2002)	
TEL	7.30	0.68	52.30	18.70	NA	15.90	30.20	124.00	TEL	
PEL	41.60	4.20	160.00	108.00	NA	42.80	112.00	271.00	PEL	

NA = Not available.
2.3.2. Sea cucumber and microplastics

Dry samples of the body wall of sea cucumber (0.1 g) or MPs (1 mg) were exposed to the aqua regia digestion (Holmes et al., 2012), and then, inductively coupled plasma mass spectrometry (ICP-MS) was used to analyse the chosen heavy metals.

2.4. Quality assessment guides

2.4.1. Sediment quality assessment

The concentrations of the heavy metals in the sediment were compared to the Chinese Sediment Quality Guidelines (SEPA, 2002) as follows: Class I criteria (suitable for nature reserves, mariculture, endangered species reserves, seawater bathing, etc.), Class II criteria (suitable for general industrial use and coastal tourism) and Class III criteria (suitable for harbour activities). Additionally, the heavy metal concentrations of the sediments were compared with the guidelines for the threshold effects level (TEL) and probable effects level (PEL) (MacDonald et al., 1996; Long et al., 1998). The TEL and PEL are sediment quality evaluation guidelines that were developed based on toxicity tests of benthic community animals. The TEL has been used to identify uncontaminated sediment with a limited effect range, while the PEL has been used to identify sediment with elevated chemical concentrations which warrant further assessment. Generally, a value below the TEL indicates that heavy metals abundance is not associated with adverse biological effects, while a value between the TEL and PEL (≥TEL and < PEL) indicates that heavy metal concentration may occasionally cause adverse biological effects. A value above the PEL indicates that heavy metals concentrations are frequently associated with adverse biological effects.

2.4.2. Biota-sediment accumulation factor (BSAF)

BSAF is a parameter that has been used to evaluate the bioaccumulation of sediment-associated metals or organic contaminants in the tissues of an organism (Burkhard, 2009). Biota-sediment accumulation factor (BSAF) was calculated using the formula: (BSAF) = CA/CS, where CA is the concentration of heavy metals in the animals (dry weight), and CS is the concentration of heavy metals in the sediment (dry weight). According to this factor, a value above 2 indicates the organism is a macro-concentrator, a value between 1 and 2 indicates the organism is a micro-concentrator, and a value below 1 indicates the organism is a de-concentrator.

2.5. Statistical analysis

SPSS Statistics 20.0 statistical software (SPSS Inc., Chicago, IL) was used to conduct all statistical analyses. The Shapiro–Wilk normality test with 95% confidence level was used to examine the normality of the data. The data were not normally distributed and included outliers. Outliers were identified by box plot for the values > 1.5 times the interquartile range. Since the data were not normally distributed, non-parametric statistical analyses were used subsequently. Spearman’s rank correlation was used because it is more appropriate for outliers than Pearson’s correlation coefficient (Chok, 2010). Additionally, Kruskal-Wallis H followed by Mann-Whitney test were used to detect the significant differences in the heavy metal concentrations among sites (SI).

3. Results and discussion

3.1. Heavy metals in the sediment

In the current study, heavy metal concentrations in the sediments at all the sites were less than the upper limits of Chinese sediment quality Class I guidelines. The range of the average concentrations of As, Cd, Cr, Cu, Mn, Ni, Pb and Zn were 3.01–12.42 mg/kg, 0.04–0.17 mg/kg, 11.14–76.51 mg/kg, 4.75–52.66 mg/kg, 24.25–1854.76 mg/kg, 6.48–44.71 mg/kg, 10.17–25.72 mg/kg, 10.33–82.72 mg/kg, respectively. These concentrations significantly differed among sites (Table S3).

In the Bohai Sea, the values of As, Cr at S2 and Cu at S1, S2 and S7 were ≥TEL and < PEL, which indicate that adverse biological effects may occasionally occur at these sites. The heavy metal concentrations were the lowest in the sediment of sea cucumber pond at Laizhou Bay (S8), although several studies highlighted the pollution of the heavy metals in the Laizhou Bay (Table 1). Hence, this site might be considered as a typical farming site. The main source of heavy metals pollution in the Bohai Sea includes industrial waste, river discharge, sediment release and atmospheric sedimentation, which cause higher concentrations of the heavy metals, especially in the coastal water of the Bohai Sea (Gao et al., 2014). Furthermore, the excess concentration of Cu in the Bohai Sea may be due to the use of copper sulfate in aquaculture, or because of other anthropogenic activities (Zhang et al., 2017). Moreover, the high Mn abundance in the sediment may be due to the deposition in coarse sediments with high oxygen content or may be linked to the abundance of the biogenic CaCO3 (Yuan et al., 2012).

In the Yellow sea, the concentrations of As, Cr, Cu at S5, Jiaozhou Bay, Qingdao indicate that adverse biological effects may rarely occur (≥TEL and < PEL). Also, Ni was higher than PEL guidelines, indicating frequent adverse biological effects at site S5. In addition, Cu and Ni were ≥TEL and < PEL at S4 and S6, indicating that adverse biological effects may rarely occur. The heavy metals pollution in the Jiaozhou Bay is mainly from rivers discharges (Xu et al., 2017), municipal and harbour activities (Lin et al., 2016), industrial and agricultural development (Liang et al., 2018). Moreover, Cu, Cr, Ni pollution is mostly from industrial resources in the Jiaozhou Bay (Liang et al., 2018).

In the current study, the sediment of the A. japonicus habitats had lower concentrations of Zn and Pb than those detected in the mariculture zone (Hailing Bay, south China). In addition, the farms of A. japonicus had higher concentrations of Mn when compared with the sea cucumber habitats at different countries (Table 1). This might be attributed to different geological backgrounds or different pollution sources.

The correlation of heavy metal concentrations in the sediment at different sites mostly showed a significant high value except for Cd (Table S4), indicating similar adhesion process or similar sediment characteristics. The sediment characteristics such as organic matter content and grain size. The organic matter content could increase the heavy metals adsorption on the sediment (Liang et al., 2018). Additionally, smaller grain sizes indicate higher metal concentrations of Cu, Cd, Cr, Ni, Pb and Zn (Zhao et al., 2010). Furthermore, concentrations of heavy metals on the sediment showed no significant correlation with the concentration of the heavy metals on MPs (Table 2).

Table 2

Heavy metal	As	Cd	Cr	Cu	Mn	Ni	Pb	Zn
Sediment & MP	−0.381	0.429	0.31	0.524	0.452	0.548	0.405	0.405
Sediment & animal	0.095	0.5	−0.33	−0.69	0.214	−0.143	−0.024	−0.024
MP & animal	0.405	−0.167	−0.357	0.119	−0.048	−0.0476	−0.119	−0.119
Table 3
Comparison of the average heavy metals content between the sea cucumber *Apostichopus japonicus* and some commercial species of sea cucumber (mg/kg).

Study place	Scientific name	As	Cd	Cr	Cu	Mn	Ni	Pb	Zn	References
S1	*A. japonicus*	10.47 ± 0.28	0.85 ± 0.02	3.64 ± 0.27	2.78 ± 0.49	39.24 ± 1.02	1.77 ± 0.10	2.18 ± 0.36	20.30 ± 1.02	Current study
S2	*A. japonicus*	10.88 ± 0.29	0.38 ± 0.03	2.43 ± 0.17	3.20 ± 0.12	28.34 ± 0.70	1.55 ± 0.10	2.59 ± 0.21	24.24 ± 0.94	
S3	*A. japonicus*	5.99 ± 0.11	0.36 ± 0.04	4.61 ± 0.18	4.00 ± 0.13	30.43 ± 2.30	1.65 ± 0.05	3.05 ± 0.13	26.17 ± 0.41	
S4	*A. japonicus*	5.38 ± 0.83	0.82 ± 0.03	2.88 ± 0.55	2.99 ± 0.08	29.82 ± 2.25	1.21 ± 0.04	1.76 ± 0.07	23.72 ± 0.75	
S5	*A. japonicus*	5.25 ± 0.42	0.57 ± 0.05	2.29 ± 0.23	1.55 ± 0.16	58.91 ± 2.83	1.29 ± 0.07	2.72 ± 0.08	24.35 ± 0.53	
S6	*A. japonicus*	12.39 ± 0.25	0.31 ± 0.03	2.77 ± 0.17	7.79 ± 0.26	17.25 ± 0.45	1.18 ± 0.11	1.56 ± 0.25	29.98 ± 0.52	
S7	*A. japonicus*	9.86 ± 0.11	0.54 ± 0.02	3.55 ± 0.33	8.21 ± 0.19	52.67 ± 1.10	1.61 ± 0.08	1.94 ± 0.15	36.21 ± 0.15	
S8	*A. japonicus*	4.26 ± 0.87	0.50 ± 0.01	2.37 ± 0.15	3.55 ± 0.55	16.37 ± 0.42	1.36 ± 0.18	4.25 ± 0.23	23.10 ± 0.63	

Italy, Marseille and France.

Scientific name	As	Cd	Cr	Cu	Mn	Ni	Pb	Zn	References
Holothuria tubulosa	NA	0.38–2.84	NA	0.76–5.78	NA	NA	1.23–18	8.87–26	Warnau et al., 2006
Holothuria scabra	NA	0.15	NA	57.85	NA	NA	1.92	23.29	Mohammadizadeh et al., 2015
Holothuria aranciaca	NA	0.12–1.42	NA	0.43–2.23	2.45–5.32	NA	0.92–2.33	11–28	(Ahmed et al., 2017)
Holothuria pardeis	NA	0.21–0.99	NA	1.13–3.34	1.23–3.91	NA	0.76–1.56	17–25	
Holothuria verrucosa	NA	0.76–1.76	NA	1.98–3.76	0.76–2.47	NA	0.54–1.03	12–30	
Holothuria atrata	NA	0.52–1.11	NA	2.03–3.89	1.09–2.49	NA	0.69–1.23	18–24	
Holothuria cineraescens	NA	2.67	NA	8.93	4.64	NA	2.12	37	
Holothuria leucospilota	NA	1.02	NA	8.64	7.12	NA	2.19	46	
SriLanka	Holothuria edulis	NA	0.114	0.003	1.84	NA	0.0337	20.95	
	Thelenota anax	NA	0.08415	0.0002	2.92	NA	0.29757	22.81	
	Bohadschia marmorata	NA	0.137	0.00046	2.81	NA	0.22702	16.06	
	Stichopus chloronotus	NA	0.0851	0.00099	7.25	NA	0.68336	16.20	
	Bohadschia sp.	NA	0.12893	0.00117	4.30	NA	0.49164	12.68	
	Holothuria spinosa	NA	0.04823	0.00131	4.42	NA	0.20456	8.77	
	Actinopyga miliaris	NA	0.05266	0.00385	9.18	NA	2.28705	12.11	(Jinadasa et al., 2014)
	Bohadschia similis	NA	0.05497	0.0047	5.70	NA	0.45053	16.22	

Supermarket in Guangzhou, China.

Scientific name	As	Cd	Cr	Cu	Mn	Ni	Pb	Zn	References
Stichopus hermanni	NA	1.6	3.0	9.1	0.3	NA	33	(Wen and Hu, 2010)	
Stichopus chloronotus	NA	1.5	3.0	2.2	0.3	NA	16		
Thelenota ananas	NA	2.7	4.4	16	2.5	NA	46		
Holothuria furcogilva	NA	1.3	57	9.4	1.5	NA	11		
Holothuria furcunculata	NA	5.5	74	12	3.0	NA	25		
Holothuria mexicana	NA	2.2	30	1.6	1.1	NA	16		
Actinopyga mauritiana	NA	9.6	14	9.2	4.2	NA	57		
Actinopyga caerulea	NA	1.3	4.0	1.1	0.5	NA	20		
Bohadschia argus	NA	4.9	18	3.7	5.1	NA	100		

NA = not available.
The biota-sediment accumulation factor showed that macro-concentrator for Cd (BSAF > 2) at all the sites (Table 4). Cd accumulation was observed in the worms A. japonicus (Table 4). This finding might be due to the tendency of sea cucumber to accumulate Zn in the body wall. Zn concentration in the body wall of the sea cucumber was at higher rate than of Cu in sea cucumber to accumulate Zn in the body wall. Zn concentration in the body wall at di-47
day of skin epithelium cells (Warnau et al., 2006). Furthermore, the correlation between Cu and Zn in the body wall at different sites was high (Table S6), which might indicate a similar biochemical pathway in the body wall of A. japonicus. The biochemical pathway is the chemical reactions that take place in the normal operation of living systems. Furthermore, there was no significant correlation between heavy metals concentrations in the sea cucumber body wall and in the sediment or in the MPs (Table 2).

3.2. Heavy metals concentration in the body wall of sea cucumber

The range of the average concentrations of As, Cd, Cr, Cu, Mn, Ni, Pb and Zn in the body wall of the sea cucumbers were 4.26–12.39 mg/kg, 0.31–0.85 mg/kg, 2.29–4.61 mg/kg, 1.55–8.21 mg/kg, 16.37–58.91 mg/kg, 1.18–1.77 mg/kg, 1.05–4.25 mg/kg, 20.30–36.21 mg/kg, respectively (Table 3) (Table S5). The analysis of the biota-sediment accumulation factor showed that A. japonicus was a macro-concentrator for Cd (BSAF > 2) at all the sites (Table 4). Cd accumulation was observed in the worms Neanthes japonica (BSAF > 1) at a higher rate than the other metals at Jinzhou Bay, China (Fan et al., 2014). In the sea cucumber A. japonicus, Cd accumulation was observed in laboratory experiments in the body wall from a dietary intake of 500 mg/kg (Wang et al., 2016b). Furthermore, cadmium accumulation is reported for many sea cucumber species such as Thelenota ananas, Holothuria tubulosa, Holothuria arenicola, Holothuria verrucosa, Holothuria atra, and Holothuria cinerascens. Additionally, some holothurians are suggested to be micro-concentrators for Cd in Pakistan (Ahmed et al., 2017) (Table 3). Hence, our study suggests that A. japonicus could be considered as a bio-monitor for Cd. Similarly, Ziyaadini et al. (2017) reported the possibility of using the mollusc Chiton lamyi as a bio-indicator for Cd, depending on whether they are macro-concentrators. Additionally, some sea cucumber species, such as H. tubulosa, are useful bioindicators for heavy metal concentrations in sediment (Warnau et al., 2006). Furthermore, the biota-sediment accumulation factor showed that A. japonicus is a macro-concentrator for Zn at S3 (Table 4). This finding might be due to the tendency of sea cucumber to accumulate Zn in the body wall. Zn concentration in the body wall of the sea cucumber was at higher rate than of Cu in sea cucumber H. leucospliota (Xing and Chia, 1997). Moreover, A. japonicus was mostly a micro-concentrator for As and a de-concentrator for Cr, Cu, Mn, Ni, Pb. This finding might indicate that sea cucumber might has a strategy for accumulating some heavy metals in the body wall. For instance, Pb accumulation in the body wall of sea cucumber might be due to its high affinity to the calcium-rich skeleton (Warnau et al., 2006). Also, Zn concentrations in the body wall of the sea cucumber H. leucospliota decreased when the sea cucumber left without sediment for forty days (Xing and Chia, 1997).

The correlation between Cu and Zn in the body wall at different sites was high (Table S6), which might indicate a similar biochemical pathway in the body wall of A. japonicus. The biochemical pathway is the chemical reactions that take place in the normal operation of living systems. Furthermore, there was no significant correlation between heavy metals concentrations in the sea cucumber body wall and in the sediment or in the MPs (Table 2).

3.3. Heavy metals association with MPs

The composition of the MPs isolated was mainly fibres and was reported in our previous study from the same sites (Mohsen et al., 2019). In addition, no MPs were detected in the blank replicates. FT-IR analysis indicated that the polymer types were mainly cellophane and polyester with smaller amounts of polypropylene and polyethylene terephthalate (Table S7) (Fig. S1).

The eight heavy metals examined in this study were detected in association with isolated MPs from all the sites, with variation among sites (Fig. 2). The range of the average concentrations of As, Cd, Cr, Cu, Mn, Ni, Pb and Zn in association with the MPs were as follows: 0.35–2.89 mg/kg, 0.058–0.99 mg/kg, 4.43–37.47 mg/kg, 1.37–21.67 mg/kg, 7.57–98.35 mg/kg, 1.31–43.2 mg/kg, 2.56–40.8 mg/kg, 16.44–1190 mg/kg, respectively (Table S8). These concentrations are lower than the heavy metals concentrations of Cu, Zn, Pb, Cd, Mn, Ni, Pb and Zn in association with the MPs were higher than those associated with the corresponding sediment at all the sites. Additionally, Pb accumulated in higher concentrations than the corresponding sediment at some sites (Fig. 2). This is likely due to an increase over time of heavy metals adsorption on the plastics particles (Rochman et al., 2014). Accumulation of Cd and Pb was reported with MPs in beach sediments that exceeded 10^3 mg/kg (Massos and Turner, 2017). Additionally, Zn accumulation was observed on the suspended sediments or incubation times.

![Fig. 2. Average heavy metal concentrations in the sediment, MP, the body wall of sea cucumber at different sites (mg/kg).](image-url)
MPs in the sea water from antifouling paint (Brennecke et al., 2016). The affinity of the MPs to a certain metal might be affected by the polymer type. For instance, polystyrene polymer adsorbs lower amounts of Cu and higher amount of Zn than polyvinylchloride (Brennecke et al., 2016). Additionally, high-density polyethylene polymer adsorbs lower amounts of Cd, Ni, Pb and Zn than of polyethylene terephthalate, polypropylene, and low-density polyethylene (Rochman et al., 2014). Other heavy metals showed lower concentrations in association with the MPs than those of the corresponding sediments at all the sites. The MPs isolated from site S6 showed the highest accumulation of heavy metals, while the lowest accumulation was observed at the MPs isolated from site S1. Total heavy metal concentrations on the MPs were sequenced as follows: Zn > Mn > Pb > Cr > Ni > Cu > As > Cd.

The correlation between heavy metal concentrations associated with the MPs were mostly significant except for As (Table S9), suggesting similar adhesion process or similar pollution sources. In addition, there was no significant correlation between the heavy metal concentration associated with the MPs and in the sediment, or between the heavy metal concentrations associated with the MPs and in the body wall of sea cucumber. These findings might indicate that heavy metal concentration associated with the MPs is not an indicator for the heavy metal concentrations in the sea cucumber or in the sediment. This is likely due to the following reasons: 1) concentrations of the heavy metal that associated with the MPs may vary among sites (Ashton et al., 2010; Vedolin et al., 2018), which is similar with the current study; 2) heavy metal accumulate on the MPs over time (Rochman et al., 2014); 3) metal adsorption is higher on the aged MPs than of the more recent one (Holmes et al., 2014).

CRediT authorship contribution statement

Mohamed Mohsen: Conceptualization, Investigation, Formal analysis, Writing - original draft. Qing Wang: Data curation, Writing - review & editing. Linbin Zhang: Funding acquisition, Visualization, Writing - review & editing. Lina Sun: Resources, Writing - review & editing. Chengang Lin: Investigation, Writing - review & editing. Hongsheng Yang: Funding acquisition, Project administration, Supervision, Validation.

Acknowledgments

We would like to thank the anonymous reviewers and the editor for their helpful comments on the manuscript. This study was supported by National Natural Science Foundation of China (41876157, 41776161, 41576122), Youth Innovation Promotion Association CAS (2016196-2015163), Taishan Scholars Program, Creative Team Project of the Laboratory for Marine Ecology and Environmental Science, and Qindao National Laboratory for Marine Science and Technology (LMEES-CTSP-2018-1).

Appendix A. Supplementary data

Supplementary data associated with this article can be found in the online version, atdoi https://doi.org/10.1016/j.marplanbul.2019.04.025. These data include the Google map of the most important areas described in this article.

References

Ahmed, Q., Ali, Q.M., Bat, L., 2017. Assessment of heavy metals concentration in Holothurians, sediments and water samples from coastal areas of Pakistan (northern Arabian Sea). Journal of Coastal Life Medicine 5 (5), 191–201.
AOAC, 1995. In: Cunin, P. (Ed.), Official Methods of Analysis of AOAC International, 16th ed. vol. 1 AOAC Int., Arlington, Virginia, USA.
Arthur, C., Baker, J., Bamford, H., 2009. Proceedings of the international research workshop on the occurrence. In: Effects and Fate of Microplastic Marine Debris. Sept 9–11, 2008. NOAA Technical Memorandum Nos ORAS-38. https://marinedebris.noaa.gov/sites/default/files/publications-files/TM-NOS-ORR-30.pdf.
Ashton, K., Holmes, L., Turner, A., 2010. Association of metals with plastic production pellets in the marine environment. Mar. Pollut. Bull. 60 (11), 2050-2055.
Brennecke, S., Daure, B., Pauw, F., Caciodo, I., Canning-Clode, J., 2016. Microplastics as vector for heavy metal contamination from the marine environment. Estuarine Coastal & Shelf Science 178, 189–195.
Burkhard, L., 2009. Estimation of Biota Sediment Accumulation Factor (BSAF) from Paired Observations of Chemical Concentrations in Biota and Sediment. U.S. Environmental Protection Agency, Ecological Risk Assessment Support Center. Cincinnati, OH (EPA/600/R-06/047).
Choe, N.S., 2010. Pearson’s Versus Spearman’s and Kendall’s Correlation Coefficients for Continuous Data. Doctoral dissertation. University of Pittsburgh. http://www.ramage.org/documents/MSRF%20Guidance%20on%20Monitoring%20Marine%20Litter%202013_online.pdf, doi:https://doi.org/10.2788/99475.
Fan, W., Xu, Z., Wang, W.X., 2014. Metal pollution in a contaminated bay: relationship between metal geochemical fraction in sediments and accumulation in a poly- chaeta. Environ. Pollut. 191, 50-57.
Gao, F., Yang, H., 2015. Chapter 4. Anatomy. In: Yang, H., Hamel, J.F., Mercier, A. (Eds.), The Sea Cucumber Apostichopus japonicus. History, Biology and Aquaculture. Academic Press, pp. 53-76. https://doi.org/10.1016/S0978-0-12-99553-1.00004-0.
Gao, X., Zhou, F., Chen, C.T., 2014. Pollution status of the Bohai Sea: an overview of the environmental quality assessment related trace metals. Environ. Int. 62 (4-12), 30-30.
Hashmi, M.I., Mustafa, S., Niteswejo, P., Tariq, S.A., 2002. Distribution of heavy metals in intertidal sediments of Arabian sea (Holoturidae, sea cucumber) and its implications for sea ranching in sahah, malaysian bороnes. Science international-Lahore 14 (1), 29–32.
Hidalgo-Ruz, V., Gutow, L., Thompson, R.C., Thiel, M., 2012. Microplastics in the marine environment: a review of the methods used for identification and quantification. Environmental Science & Technology 46 (6), 3060-3075.
Hodson, M.E., Duffus-Hodson, C.A., Clark, A., Prendergast-Miller, M.T., Thorpe, K.L., 2017. Plastic bag derived-microplastics as a vector for metal exposure in terrestrial invertebrates. Environmental Science & Technology 51 (8), 4714–4721.
Humes, L.A., Turner, A., Thompson, R.C., 2012. Adsorption of trace metals to plastic resin pellets in the marine environment. Environ. Pollut. 160 (1), 42–48.
Humes, L.A., Turner, A., Thompson, R.C., 2014. Interactions between trace metals and plastic production pellets under estuarine conditions. Mar. Chem. 167, 25–32.
Hu, B., Li, J., Zhao, J., Yang, J., Bái, F., Dou, Y., 2013. Heavy metal in surface sediments of the Liaodong bay, Bohai Sea: distribution, contamination, and sources. Environmental Monitoring & Assessment 185 (6), 5071-5083.
Jiang, X., Teng, A., Xu, X., Liu, X., 2014. Distribution and pollution assessment of heavy metals in sediments of the yellow sea. Mar. Pollut. Bull. 83 (1), 366-375.
Jinadasa, B.K.K.K., Samanthi, R.I., Wicramasinghe, I., 2014. Trace Metal Accumulation in Tissue of Sea Cucumber Species; North-Western Sea of Sri Lanka. American Journal of Public Health Research 2 (1-5).
Li, H., Kang, X., Li, X., Li, Q., Song, J., Jiao, N., et al., 2017. Heavy metals in surface sediments along the Weihai coast, China: distribution, sources and contamination assessment. Mar. Pollut. Bull. 115 (1–2), 551-558.
Li, H., Gao, X., Gu, Y., Wang, R., Xie, P., Liang, M., et al., 2018. Comprehensive large-scale investigation and assessment of trace metal in coastal sediments of Bohai Sea. Mar. Pollut. Bull. 129 (1), 126–134.
Liang, X., Song, J., Duan, L., Yuan, H., Li, X., et al., 2018. Source identification and risk assessment based on fractionation of heavy metals in surface sediments of Jiaozouh bay, China. Human & Ecological Risk Assessment an International Journal 22 (5), 1253–1267.
Liu, X., Jiang, X., Liu, Q., Teng, A., Xu, X., 2016. Distribution and pollution assessment of heavy metals in surface sediments in the central Bohai Sea, China: a case study. Environ. Earth Sci. 75 (5), 364.
Long, E.R., Field, L.J., MacDonald, D.D., 1998. Predicting toxicity in marine sediments with numerical sediment quality guidelines. Environ. Toxicol. Chem. 17 (4), 714-727.
MacDonald, D.D., Scottarr, R., Calder, F.D., Long, E.R., Ingersoll, C.G., 1996. Development and evaluation of sediment quality guidelines for Florida coastal waters. Eutrophocology 5, 253–278.
Massos, A., Turner, A., 2017. Cadium, lead and bromine in beached microplastics. Environ. Pollut. 227, 140–146.
Mamoomzadehaz, M., Bastami, K.D.K.D., Eshanpour, M., Afkhami, M., Mohammadi, H., Esmailizadeh, M., 2015. Heavy metal accumulation in tissues of two sea cucumbers, Holothuria leucosceps and Holothuria scabra in the northern part of Qeshm island, Persian gulf. BulletinMar. Pollut. Bull. 103 (1–2), 364–369.
Mohsen, M., Wang, Q., Zhang, L., Sun, L., Lin, C., Yang, H., 2019. Microplastic ingestion by the farmed sea cucumber Apostichopus japonicus in China. Environ. Pollut. 245, 1071–1078.
Pan, K., Wang, W.X., 2012. Trace metal contamination in estuarine and coastal environments in China. Sci. Total Environ. 421, 3–16.
Rochman, C.M., Hentschel, B.T., Teh, S.J., 2014. Long-term sorption of metals is similar among plastic types: implications for plastic debris in aquatic environments. PLoS One 9 (11), e85433.
SEPA (State Environmental Protection Administration of China), 2002. Marine Sediment Quality GB18668–2002. Standards Press of China, Beijing.
Tchounouw, P.B., Yedjou, C.G., Patiolla, A.K., Sutton, D.J., 2012. Heavy metals toxicity
and the environment. EXS 101 (101), 133.
Thompson, R.C., Olsen, Y., Mitchell, R.P., Davis, A., Rowland, S.J., John, A.W., et al., 2004. Lost at sea: where is all the plastic? Science 304 (5672), 838.
Vedolin, M.C., Teophilo, C.Y.S., Turra, A., Figueira, R.C.L., 2018. Spatial variability in the concentrations of metals in beached microplastics. Mar. Pollut. Bull. 129 (2), 487–493.
Wang, Z., Liu, Q., Cao, R., Yin, B., 2012. Comparative analysis of nutritive composition between wild and cultured sea cucumber Apostichopus japonicus. South China Fisheries Science 8 (2), 64–70.
Wang, S.L., Xu, X.R., Sun, Y.X., Liu, J.L., Li, H.B., 2013. Heavy metal pollution in coastal areas of South China: a review. Mar. Pollut. Bull. 76 (1–2), 7–15.
Wang, F., et al., 2016a. Trace element exposure of whooper swans (Cygnus cygnus) wintering in a marine lagoon (swan Lake), northern China. Mar. Pollut. Bull. https://doi.org/10.1016/j.marpolbul.2017.03.063.
Wang, J., Ren, T., Wang, F., Han, Y., Liao, M., Jiang, Z., et al., 2016b. Effects of dietary cadmium on growth, antioxidants and bioaccumulation of sea cucumber (Apostichopus japonicus) and influence of dietary vitamin c supplementation. Ecotoxicology & Environmental Safety 129, 145–153.
Wang, J., Peng, J., Gao, Y., Zhan, Z., Chen, Q., et al., 2017. Microplastics in the surface sediments from the Beijiang river littoral zone: composition, abundance, surface textures and interaction with heavy metals. Chemosphere 171, 248–258.
Warnau, M., Dutrieux, S., Ledent, G., Rodriguez y Baena, A.M., Dubois, P., 2006. Heavy metals in the sea cucumber Holothuria tubulosa (Echinodermata) from the Mediterranean Posidonia oceanica ecosystem: body compartment, seasonal, geographical and bathymetric variations. Environ. Bioindic. 1 (4), 268–285.
Wen, J., Hu, C., 2010. Elemental composition of commercial sea cucumbers (holothurians). Food Additives and Contaminants: Part B 3 (4), 246–252.
Xing, J., Chia, F.S., 1997. Heavy metal accumulation in tissue/organs of a sea cucumber, Holothuria leucospilota. Hydrobiologia 352 (1–3), 17–23.
Xu, F., Liu, Z., Cao, Y., Qiu, L., Feng, J., Xu, F., et al., 2017. Assessment of heavy metal contamination in urban river sediments in the Jiaozhou bay catchment, Qingdao, China. Catena 150, 9–16.
Yang, H., Hamel, J.F., Mercier, A., 2015. The Sea Cucumber Apostichopus japonicus: History, Biology and Aquaculture. vol. 39 Academic Press.
Yuan, H., Song, J., Li, X., Li, N., Duan, L., 2012. Distribution and contamination of heavy metals in surface sediments of the south yellow sea. Mar. Pollut. Bull. 64 (10), 2151–2159.
Zhang, W., Liu, X., Cheng, H., Zeng, E.Y., Hu, Y., 2012. Heavy metal pollution in sediments of a typical mariculture zone in South China. Mar. Pollut. Bull. 64 (4), 712–725.
Zhang, A., Wang, L., Zhao, S., Yang, X., Zhao, Q., Zhang, X., et al., 2017. Heavy metals in seawater and sediments from the northern Liaodong bay of China: levels, distribution and potential risks. Reg. Stud. Mar. Sci. 11, 32–42.
Zhao, H., Li, X., Wang, X., Tian, D., 2010. Grain size distribution of road deposited sediment and its contribution to heavy metal pollution in urban runoff in Beijing, China. J. Hazard. Mater. 183 (1), 203–210.
Zhuang, W., Gao, X., 2014. Integrated assessment of heavy metal pollution in the surface sediments of the Laizhou bay and the coastal waters of the Zhangzi island, China: comparison among typical marine sediment quality indices. PLoS One 9 (4), e94145.
Ziyaadini, M., Yousefyanpour, Z., Ghasemzadeh, J., Zahedi, M.M., 2017. Biota-sediment accumulation factor and concentration of heavy metals (Hg, Cd, As, Ni, Pb and Cu) in sediments and tissues of Chiton lamyi (Mollusca: Polyplacophora: Chitonidae) in Chabahar Bay, Iran. Iran. J. Fish. Sci. 16 (4), 1123–1134.