Unfractionated heparin or low-molecular-weight heparin for venous thromboembolism prophylaxis after hepatic resection
A meta-analysis

Wentao Zhang, MMa, Xinchun Wei, MMb, Shiwei Yang, MDc, Changhong Du, MMd, Baoyue Hu, MBa,*

Abstract
Background: Two systematic reviews summarized the efficacy and safety of pharmacological prophylaxis for venous thromboembolism (VTE) after hepatic resection, but both lacked a discussion of the differences in the pharmacological prophylaxis of VTE in different ethnicities. Therefore, we aimed to evaluate the efficacy and safety of low-molecular-weight heparin (LMWH) or unfractionated heparin (UFH) for VTE prophylaxis in Asian and Caucasian patients who have undergone hepatic resection.

Methods: We searched PubMed, Web of Science, Embase, China National Knowledge Infrastructure, Wanfang Data, and VIP databases for studies reporting the primary outcomes of VTE incidence, bleeding events, and all-cause mortality from January 2000 to July 2022.

Results: Ten studies involving 4318 participants who had undergone hepatic resection were included: 6 in Asians and 4 in Caucasians. A significant difference in VTE incidence was observed between the experimental and control groups (odds ratio [OR] = 0.39, 95% confidence interval [CI]: 0.20, 0.74, \(P = .004 \)). No significant difference in bleeding events and all-cause mortality was observed (OR = 1.29, 95% CI: 0.80, 2.09, \(P = .30 \); OR = 0.71, 95% CI: 0.36, 1.42, \(P = .33 \), respectively). Subgroup analyses stratified by ethnicity showed a significant difference in the incidence of VTE in Asians (OR = 0.16, 95% CI: 0.06, 0.39, \(P < .0001 \)), but not in Caucasians (OR = 0.69, 95% CI: 0.39, 1.23, \(P = .21 \)). No significant differences in bleeding events were found between Asians (OR = 1.60, 95% CI: 0.48, 5.37, \(P = .45 \)) and Caucasians (OR = 1.11, 95% CI: 0.58, 2.12, \(P = .75 \)). The sensitivity analysis showed that Ejaz’s study was the main source of heterogeneity, and when Ejaz’s study was excluded, a significant difference in VTE incidence was found in Caucasians (OR = 0.58, 95% CI: 0.36, 0.93, \(P = .02 \)).

Conclusion: This study’s findings indicate that the application of UFH or LMWH for VTE prophylaxis after hepatic resection is efficacious and safe in Asians and Caucasians. It is necessary for Asians to receive drug prophylaxis for VTE after hepatic resection. This study can provide a reference for the development of guidelines in the future, especially regarding the pharmacological prevention of VTE in different ethnicities.

Abbreviations: CI = confidence interval, LMWH = low-molecular-weight heparin, NOS = Newcastle-Ottawa quality assessment scale, OR = odds ratio, UFH = unfractionated heparin, VTE = venous thromboembolism.

Keywords: all-cause mortality, bleeding, heparin, hepatic resection, VTE

1. Introduction

VTE which is characterized by deep venous thrombosis (DVT) or pulmonary thromboembolism, is a significant cause of morbidity and mortality in patients who have undergone open abdominal surgery. The incidence of VTE is associated with increased age, obesity, malignancy, and extensive and prolonged resection. Patients undergoing hepatic resection often have most of the aforementioned risk factors and, therefore, have a higher incidence of VTE. Currently, there is a lack of authoritative guidelines for VTE prophylaxis following hepatic resection. Previous studies have indicated that extended anticoagulation therapy after hepatic resection is both effective and safe. However, some studies have...
proposed different perspective.[3,6,7] Furthermore, a meta-analysis including 5 studies in which most patients were from the US and Europe, indicated that the application of perioperative chemical thromboprophylaxis reduces the incidence of VTE after hepatic resection without a significantly increased risk of bleeding, but a recent systematic review including 16 studies showed that the efficacy of VTE prophylaxis after hepatic resection has not been proven in Asian patients.[8] UFH and LMWH are recommended as VTE prophylaxis after major surgery.[9–11] Many studies have reported the efficacy and safety of UFH or LMWH for VTE prophylaxis after hepatic resection.[16,17] However, these results are controversial, particularly regarding the use of pharmacological prophylaxis for VTE after hepatic resection in Asian populations.[8,15] Additionally, 2 systematic reviews summarized the efficacy and safety of pharmacological prophylaxis for VTE after hepatic resection,[16,17] but both lacked a discussion of the(0,4),(998,993)
analysis. Among these studies, 4 were in Chinese, and 6 were in English. The flow diagram is shown in Figure 1.

All the included studies were cohort studies. A total of 4318 patients underwent liver resection, of which 2551 and 1767 patients were in the experimental and control groups, respectively. The main characteristics of the 10 studies are summarized in Table 1. The NOS was used to evaluate the quality of the eligible cohort studies, and the scoring details are shown in Table 2.

3.2. VTE events
All studies reported the incidence of VTE events in 4318 patients, including 2551 in the experimental group and 1767 in the control group. There was no significant heterogeneity between the studies ($I^2 = 44\%$, $P = .08$); however, the variation in the included studies was significant, and the random-effects model was used for this analysis. The results showed a significant difference in the overall rate of VTE between the experimental and control groups (OR = 0.39, 95% CI: 0.20, 0.74, $P = .004$) (Fig. 2).

3.3. Bleeding events
Seven studies reported the incidence of bleeding events in 3074 patients, including 1709 in the experimental group and 1365 in the control group. There was no heterogeneity between the studies ($I^2 = 0\%$, $P = .68$); however, the variation in the included studies was significant, and the random-effects model was used for this analysis. The results showed that there was no significant difference in the overall rate of bleeding events between the experimental and control groups (OR = 1.29, 95% CI: 0.80, 2.09, $P = .30$) (Fig. 3).

3.4. All-cause mortality
Five studies reported all-cause mortality, 1 of which only reported the total number of deaths in both groups, and 4 studies included a total of 1484 patients in this meta-analysis, including 874 in the experimental group and 610 in the control group. There was no heterogeneity between the studies ($I^2 = 0\%$, $P = .48$) but the variation in the included studies was significant, and the random-effects model was used for this analysis. The results showed that there was no significant difference in all-cause mortality between the experimental and control groups (OR = 0.71, 95% CI: 0.36, 1.42, $P = .33$) (Fig. 4).

3.5. Subgroup analyses and sensitivity analysis
Using a random-effects model, subgroup analyses stratified by ethnicity showed a significant difference in the overall rate of VTE between the experimental and control groups in the Asian subgroup that included 6 studies (OR = 0.16, 95% CI: 0.06,
but no significant difference was observed in the Caucasian subgroup that included 4 studies [3,6,21,22] (OR = 0.69, 95% CI: 0.39, 1.23, \(P = .21 \)) (Fig. 5). No significant difference in the incidence of bleeding events with UFH or LMWH for VTE prophylaxis after hepatic resection was found in the Asian subgroup that included 5 studies [7,12,23–25] (OR = 1.60, 95% CI: 0.48, 5.37, \(P = .45 \)) or the Caucasian subgroup that included 2 studies [6,21] (OR = 1.11, 95% CI: 0.58, 2.12, \(P = .75 \)) (Fig. 6).

Using a random-effects model, sensitivity analysis showed a significant difference in the VTE incidence between the experimental and control groups in Caucasians when Ejaz’s study [3] was excluded (OR = 0.58, 95% CI: 0.36, 0.93, \(P = .02 \)).

Table 1

Characteristics of included studies.

Study	Ethnicity	Study design	Age, year	Sample size	Intervention	Duration of intervention	Outcomes
Meng 2006[21]	Asian	Retrospective study	49.4±9.8	229	Nadroparin calcium or Enoxaparin sodium	7 days (1–7 d after surgery)	①②
Vivarelli 2010[18]	Caucasian	Retrospective study	65.0±9.8	58 (20)	UFH or Enoxaparin	>7 days (From day after surgery until normal activity)	①②
Reddy 2011[14]	Caucasian	Retrospective study	58 (20)	419	Enoxaparin	Not mentioned	①③
Ejaz 2014[3]	Caucasian	Retrospective study	58 (50–68)	57 (47–64)	LMWH or Levonox	Not mentioned	①③
Nathan 2014[4]	Caucasian	Prospective study	60 (50–70)	2147	UFH or LMWH	Median 5 or 6 days	②③
Yamasita 2014[2]	Asian	Retrospective study	69 ± 10	281	Enoxaparin	≤14 days (Within 24–36 h after surgery or 12 h after removal of epidural catheter)	(0)①②
Shan 2017[23]	Asian	Retrospective study	58.71 ± 8.60	105	LMWH	6 days (2–7 d after surgery)	①②
Wang 2018[5]	Asian	Prospective study	58.52 ± 8.71	233	LMWH	6 days (2–7 d after surgery)	①
Ma 2021[24]	Asian	Prospective study	52.7 ± 12.9	192	Enoxaparin sodium	Median 19 days	②③
Xu 2021[22]	Asian	Prospective study	50.67 ± 5.31	90	Enoxaparin or UFH	Average 10.37 ± 2.71 days	②③

Table 2

Quality assessment of included studies.

Study	Selection	Comparability	Outcome
Meng 2006[21]	* * * *	* * * *	5
Vivarelli 2010[18]	* * * *	* * * *	9
Reddy 2011[14]	* * * *	* * * *	9
Ejaz 2014[3]	* * *	* * * *	7
Nathan 2014[4]	* * *	* * *	6
Yamasita 2014[2]	* * *	* * *	8
Shan 2017[23]	* * *	* *	8
Wang 2018[5]	* * *	* *	8
Ma 2021[24]	* * *	* *	8
Xu 2021[22]	* * *	* *	7

0.39, \(P < .0001 \), but no significant difference was observed in the Caucasian subgroup that included 4 studies [3,6,21,22] (OR = 0.69, 95% CI: 0.39, 1.23, \(P = .21 \)) (Fig. 5). No significant difference in the incidence of bleeding events with UFH or LMWH for VTE prophylaxis after hepatic resection was found in the Asian subgroup that included 5 studies [7,12,23–25] (OR = 1.60, 95% CI: 0.48, 5.37, \(P = .45 \)) or the Caucasian subgroup that included 2 studies [6,21] (OR = 1.11, 95% CI: 0.58, 2.12, \(P = .75 \)) (Fig. 6). Using a random-effects model, sensitivity analysis showed a significant difference in the VTE incidence between the experimental and control groups in Caucasians when Ejaz’s study [3] was excluded (OR = 0.58, 95% CI: 0.36, 0.93, \(P = .02 \)).

Figure 2

Forest plot comparing the efficacy of the experimental group vs. the control group on VTE events. VTE = venous thromboembolism.
3.6. Publication bias

The asymmetric funnel plot for the outcome of VTE suggested publication bias in this meta-analysis (Fig. 7). No significant publication bias was found for bleeding or all-cause mortality events.

4. Discussion

Our study’s findings showed that the application of UFH and LMWH for VTE prophylaxis after hepatic resection was efficacious and safe, which is in line with findings of previous meta-analyses. Interestingly, a significant difference in the incidence of VTE was only observed in Asians in the subgroup analysis. In 4 cohort studies of Caucasians, no significant difference was found in the incidence of VTE. There was no significant difference in the incidence of bleeding events between UFH and LMWH for VTE prophylaxis after hepatic resection in Asian or Caucasian patients. Limited by the number of included studies, subgroup analyses of all-cause mortality...
with UFH or LMWH for VTE prophylaxis after hepatic resection in Asian or Caucasian patients were not performed. There could be a higher incidence of VTE after surgery in Caucasians than in Asians, and Asians with a low incidence of VTE after surgery often do not receive post-operative VTE prophylaxis.\[26,27\] Previous findings suggested that routine pharmacologic prevention of VTE may not be necessary in Asians as a result of the 3 times higher risk-benefit ratio of prophylaxis than in Caucasians.\[14\] Moreover, the safety and effectiveness of chemical thromboprophylaxis against VTE after liver resection are still controversial, especially in Asians, and it is important to build evidence to classify risks individually according to each race.\[8\] Asians have different risk factors, treatment patterns, and a higher risk of all-cause mortality than patients from other countries.\[28\] Recently, the incidence of VTE across Asia has been increasing, which may be attributable to the aging population, dietary changes, and increasing incidence of obesity and diabetes.\[15\] This fact reminds us that it is necessary to pay attention to the prevention of VTE after hepatectomy in the Asian population. However, our meta-analysis indicated that UFH and LMWH are effective and safe for VTE prophylaxis after hepatectomy in Asians. These findings may provide a reference for the development of guidelines for pharmacological prevention of VTE after hepatectomy in different ethnicities in the future.

To determine the reason for the inefficacy of UFH or LMWH for VTE prophylaxis after hepatic resection in Caucasians, we performed a sensitivity analysis on the subgroup of Caucasians.

Figure 6. Forest plot of subgroup analysis comparing the safety of the experimental group vs. the control group on bleeding events in Asians and Caucasians.

Figure 7. Funnel plot for the outcome of VTE events. VTE = venous thromboembolism.
When Ejaz’s study was excluded, a significant difference was found in the incidence of VTE. After reviewing this article, we concluded that this difference may be attributed to the selection of participants, as the history of VTE (29/454 in the experimental group vs. 1/145 in the control group) was significantly different between the experimental and control groups. A previous study indicated that the VTE incidence was significantly associated with a history of VTE in patients, and confounding factors influenced the results of the study. To our best knowledge, this study is the first meta-analysis to quantitatively assess the efficacy and safety of UFH and LMWH for VTE prophylaxis after hepatic resection. This study is also the first meta-analysis to study the efficacy and safety of UFH and LMWH in the prevention of VTE after liver resection in different ethnicities.

Nevertheless, this meta-analysis has several limitations. First, no RCTs were included, which increased the risk of bias in the meta-analysis. Second, the studies included patients with many risk factors for VTE, such as age, operative time, history of VTE, and malignancies. Due to insufficient study data, clinical conditions and various risk factors of the patients were not included, which may have influenced our results. Third, UFH and LMWH are similar but different anticoagulants in terms of the efficacy and safety in VTE. The interventions of 3 studies included 2 drugs (used single or sequential but not simultaneously), and a direct comparison of the 2 similar and different anticoagulants (UFH vs. LMWH) for VTE prophylaxis after hepatic resection is lacking. Fourth, the funnel plot indicated a possible publication bias, which may have underestimated the efficacy of the 2 anticoagulants. Hence, more large-scale, high-quality studies are still necessary to confirm the efficacy and safety of UFH or LMWH for VTE prophylaxis after hepatic resection.

In general, our meta-analysis indicated that the application of UFH or LMWH for VTE prophylaxis after hepatic resection was also efficacious and safe in Asians, as in Caucasians. In the future, it may be necessary to use UFH or LMWH to prevent VTE in Asian patients after hepatectomy. Although this meta-analysis has some limitations that cannot be resolved, the results are reliable. Larger sample sizes and high-quality RCTs are needed to confirm these results. Given the lack of guidelines for pharmacological prevention of VTE after hepatic resection, we hope this meta-analysis can provide a reference for developing guidelines, especially regarding the use of pharmacological prevention of VTE in different ethnicities.

Acknowledgments
We would like to thank Editage (www.editage.cn) for English language editing.

Author contributions
Conceptualization: Wentao Zhang, Changhong Du.
Data curation: Wentao Zhang, Baoyue Hu.
Formal analysis: Wentao Zhang, Xinchun Wei, Baoyue Hu.
Methodology: Wentao Zhang, Changhong Du, Baoyue Hu.
Software: Wentao Zhang, Shiwei Yang.
Supervision: Wentao Zhang.
Writing – original draft: Wentao Zhang.
Writing – review & editing: Wentao Zhang, Baoyue Hu.

References
[1] Leonardi MJ, McGorry ML, Ko CY. A systematic review of deep venous thrombosis prophylaxis in cancer patients: implications for improving quality. Ann Surg Oncol. 2007;14:929–36.
[2] Turley RS, Reddy SK, Shortell CK, et al. Venous thromboembolism after hepatic resection: analysis of 5,706 patients. J Gastrointest Surg. 2012;16:1705–14.
[3] Ejaz A, Spolverato G, Kim Y, et al. Defining incidence and risk factors of venous thromboembolism after hepatectomy. J Gastrointest Surg. 2014;18:1116–24.
[4] Kim B, Day R, Tzeng CW, et al. Extended pharmacologic thromboprophylaxis in liver surgery is safe and effective. HPB. 2017;19:593.
[5] Wang YH, Qiu H, He XL, et al. Prevention of venous thromboembolism after resection of primary liver cancer with low molecular weight heparin and its association with P-selectin, lysosomal granule glycoprotein, platelet activating factor and plasma D-dimer. Eur Rev Med Pharmacol Sci. 2018;22:4657–62.
[6] Nathan H, Weiss MJ, Soff GA, et al. Pharmacologic prophylaxis, postoperative INR, and risk of venous thromboembolism after hepatectomy. J Gastrointest Surg, 2014;18:295–302; discussion 302. discussion 30293.
[7] Ma ML, Ying YB, Zhang HW. Efficacy of postoperative anticoagulation therapy for venous thrombosis after hepatic resection. Lingnan Mod Clin Surg. 2021;2:1:29–35.
[8] Fujikawa T. Safety of liver resection in patients receiving antithrombotic therapy: a systematic review of the literature. World J Hepatol 2011;3:804–14.
[9] Keaton C, Akt EA, Comerota AJ, et al. Antithrombotic therapy for VTE disease: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians. Evidence-Based Clinical Practice Guidelines. Chest. 2012;141(2 Suppl):e1495S–965S.
[10] Anderson DR, Moriano GP, Bennett C, et al. American Society of Hematology 2019 guidelines for management of venous thromboembolism: prevention of venous thromboembolism in surgical hospitalized patients. Blood Adv. 2019;3:3898–944.
[11] Hayashi H, Momokawa T, Yoshida H, et al. Safety of postoperative thromboprophylaxis after major hepatopancreatic-pancreatic surgery in Japanese patients. Surg Today. 2014;44:1660–8.
[12] Yamashita Y, Bekki Y, Imai D, et al. Efficacy of postoperative anticoagulation therapy with enoxaparin for portal vein thrombosis after hepatic resection in patients with liver cancer. Thromb Res. 2014;134:826–31.
[13] Yeo DX, Junnarkar S, Balasubramaniam S, et al. Incidence of venous thromboembolism and its pharmacological prophylaxis in Asian general surgery patients: a systematic review. World J Surg. 2015;39:150–7.
[14] Chen YW, Fong ZY, Qadan M, et al. Should all patients receive the same prophylaxis? Racial variation in the risk of venous thromboembolism after major abdominal operations. Am J Surg. 2021;222:884–9.
[15] Liew NC, Almamy GV, Angchaisuksi P, et al. Asian venous thromboembolism guidelines: updated recommendations for the prevention of venous thromboembolism. Int Angiol. 2017;36:1–20.
[16] Biltzazis M, Low R, Stathakis P, et al. Efficacy and safety of pharmacological venous thromboembolism prophylaxis following liver resection: a systematic review and meta-analysis. HPB (Oxford). 2017;19:289–96.
[17] Karunakaran M, Kaur R, Ismail S, et al. Post-hepatectomy venous thromboembolism: a systematic review with meta-analysis exploring the role of pharmacological thromboprophylaxis. Langenbecks Arch Surg. 2022. https://doi.org/10.1007/s00464-022-02610-9.
[18] Page MJ, Moher D, Bossuyt PM, et al. PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. BMJ. 2021;372:n160.
[19] Sterne JAC, Savović J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 2019;366:l4898.
[20] Wells GA, Shea B, O’Connell D, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Available at: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp. [access date June 2022].
[21] Vivarelli M, Zanello M, Zanfi C, et al. Prophylaxis for venous thromboembolism after resection of hepatocellular carcinoma on cirrhosis: Is it necessary? World J Gastroenterol. 2010;16:2146–50.
[22] Reddy SK, Turley RS, Barbosa AS, et al. Post-operative pharmacologic thromboprophylaxis after major hepatectomy: does peripheral venous thromboembolism prevention outweigh bleeding risks? J Gastrointest Surg. 2011;15:1602–10.
[23] Shan WG, Rao JH, Cheng XY, et al. The clinical preventive effect of low molecular weight heparin as prophylaxis against venous thromboembolism after primary hepatic carcinoma surgery. Acta Universitatis Medicinae Nanjing (Natural Science). 2017;37:593–596 + 631.
[24] Meng ZH, Shan LC, Wang CL, et al. Clinical treatment study hypercoagulation in patients with hepatic cancer and pancreatic cancer after operation. Chin J Clin Pract Med. 2006;007:5–7.
[25] Xu FF, Zhu HF, Zhou YN, et al. The effect of anticoagulation strategy on preventing venous thromboembolism after hepatectomy. Zhejiang J Traum Surg. 2021;26:509–10.

[26] Liew NC, Chang YH, Choi G, et al. Asian Venous Thrombosis Forum. Asian venous thromboembolism guidelines: prevention of venous thromboembolism. Int Angiol. 2012;31:501–16.

[27] Beal EW, Tumin D, Chakedis J, et al. Identification of patients at high risk for post-discharge venous thromboembolism after hepatopancreato-biliary surgery: which patients benefit from extended thromboprophylaxis? HPB (Oxford). 2018;20:621–30.

[28] Angchaisuksiri P, Goto S, Farjat AE, et al. Venous thromboembolism in Asia and worldwide: emerging insights from GARFIELD-VTE. Thromb Res. 2021;201:63–72.

[29] Ay C, Pabinger I, Cohen AT. Cancer-associated venous thromboembolism: Burden, mechanisms, and management. Thromb Haemost. 2017;117:219–30.

[30] Darzi AJ, Karam SG, Charide R, et al. Prognostic factors for VTE and bleeding in hospitalized medical patients: a systematic review and meta-analysis. Blood. 2020;135:1788–810.

[31] Franchini M, Liumbruno GM, Bonfanti C, et al. The evolution of anticoagulant therapy. Blood Transfus. 2016;14:175–84.