Recent Findings Unravel Genes and Genetic Factors Underlying *Leptosphaeria maculans* Resistance in *Brassica napus* and Its Relatives

Aldrin Y. Cantila, Nur Shuhadah Mohd Saad, Junrey C. Amas, David Edwards and Jacqueline Batley*

School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia; aldrin.cantila@research.uwa.edu.au (A.Y.C.); nur.mohdsaad@research.uwa.edu.au (N.S.M.S.); junrey.amas@research.uwa.edu.au (J.C.A.); dave.edwards@uwa.edu.au (D.E.)

* Correspondence: jacqueline.batley@uwa.edu.au; Tel.: +61-(0)8-6488-5929

Abstract: Among the *Brassica* oilseeds, canola (*Brassica napus*) is the most economically significant globally. However, its production can be limited by blackleg disease, caused by the fungal pathogen *Leptosphaeria maculans*. The deployment of resistance genes has been implemented as one of the key strategies to manage the disease. Genetic resistance against blackleg comes in two forms: qualitative resistance, controlled by a single, major resistance gene (*R* gene), and quantitative resistance (QR), controlled by numerous, small effect loci. *R*-gene-mediated blackleg resistance has been extensively studied, wherein several genomic regions harbouring *R* genes against *L. maculans* have been identified and three of these genes were cloned. These studies advance our understanding of the mechanism of *R* gene and pathogen avirulence (*Avr*) gene interaction. Notably, these studies revealed a more complex interaction than originally thought. Advances in genomics help unravel these complexities, providing insights into the genes and genetic factors towards improving blackleg resistance. Here, we aim to discuss the existing *R*-gene-mediated resistance, make a summary of candidate *R* genes against the disease, and emphasise the role of players involved in the pathogenicity and resistance. The comprehensive result will allow breeders to improve resistance to *L. maculans*, thereby increasing yield.

Keywords: *Brassica napus*; blackleg; resistance genes

1. **Introduction**

The Brassicaceae family consists of diverse members, comprised of 372 genera and 4060 species [1]. The members include, but are not limited to, domesticated and wild root vegetables like turnip (*Brassica rapa* ssp. *rapa*, ssp. *oleifera*), swede (*Brassica napus* var. *napobrassica*), kohlrabi (*Brassica oleracea* var. *gongylodes*), radish (*Raphanus sativus*), and leafy vegetables (*B. rapa* ssp. *chinensis*, *B. oleracea* var. *viridis*, var. *acephala*, *Eruca sativa*, *Diplotaxis tenuifolia*) like cabbages (*B. oleracea* var. *capitata*, *Brassica fruticulosa*, *C. monensis*), broccoli (*B. oleracea* var. *italica*), cauliflower (*B. oleracea* var. *botrytis*), Brussel sprouts (*B. oleracea* var. *gemmifera*), mustards (*Brassica juncea*, *Brassica nigra*, *Brassica carinata*, *Brassica elongata*, *Hirschfeldia incana*, *Sinapis arvensis*, *Sinapis alba*), oilseed crops (*B. napus*, *B. rapa*, *B. juncea*, *Camelina sativa*), and a model plant (*Arabidopsis thaliana*). Interspecific hybridisations between diploid *B. rapa* (AA, 2n = 20), *B. nigra* (BB, 2n = 16), and *B. oleracea* (CC, 2n = 18) resulted in allotetraploid *B. juncea* (AABB, 2n = 4x = 36), *B. napus* (AACC, 2n = 4x = 38), and *B. carinata* (BBCC, 2n = 4x = 34), as shown in the triangle of U [2]. These Brassicaceae plant species have gained economic importance as condiments, dyes, medicinal uses, scientific models, ornamentals, vegetables, and the profitable canola oilseed [3–8]. The International Food Standards identified canola oil as those with low-erucic acid varieties from polyploid *B. napus* and *B. juncea* or diploid *B. rapa* [9].

Oilseed *Brasses* are ranked second behind soybean in terms of worldwide production, with 75 million tonnes with an estimated value of 62.23 billion USD, cultivated over...
38 million hectares in 63 countries in 2018 [10]. The top five producing countries, Canada, China, India, France and Australia, share 68% and 72% of the total production and cultivation, respectively (Table 1) [10]. Canola oil is recommended by health experts due to the low levels of saturated fat and high levels of omega-3 and -6 [11,12]. The oil can also be used for the production of margarine and as an additive for biodiesel, feedstock, fertilizer, adhesives, plastics and lubricants. The world export rate for canola oil and derived products is expected to rise from 20% to 40% in the coming years [13].

Table 1. The top 10 producing countries for canola with corresponding area harvested and yield in 2018 [10].

Country	Production (Tonnes, 10^6)	Area Harvested (Ha, 10^6)	Yield (Tonnes Per Ha)
1. Canada	20.34	9.12	2.23
2. China	13.28	6.55	2.03
3. India	8.43	6.70	1.26
4. France	4.95	1.62	3.06
5. Australia	3.89	3.17	1.23
6. Germany	3.67	1.22	3.00
7. Ukraine	2.75	1.04	2.65
8. Poland	2.20	0.84	2.64
9. USA	2.01	0.79	2.55
10. Russia	1.99	1.50	1.33

Blackleg disease, caused by the fungal pathogen *Leptosphaeria maculans*, is considered as one the main constraints to *B. napus* production [14–16]. The pathogen inoculum is disseminated through air and rain splashes [17], and may remain in infected crop residues for many years through the production of fruiting bodies (pycnidia and pseudothecia) [18,19]. *L. maculans* is a highly adapted fungal pathogen, capable of infecting all parts of the canola plant. Initially, spores enter into leaf openings or wounds, where they initiate a biotrophic mode of infection and eventually transition to a necrotrophic lifestyle as they find their way into the stem, leading to stem canker development. This stem colonization disrupts the nutrient flow and affects metabolic processes, ultimately killing the plant [20–27].

The first reported blackleg outbreak in *Brassica* was documented in *B. oleracea* [28]. Significant losses in *B. napus* were later reported in 1961 and 1972 in Canada and Australia, respectively [29–31]. An average of 10 to 20% annual yield losses is associated with this disease across canola-growing regions [19,32–35]. In uncontrolled conditions, losses range between 30% and 50% [36], with severe loss correlated to early seedling stage infection, particularly in the four- to five-leaf stage [36,37]. One of the most damaging incidences was documented in the Eyre Peninsula of South Australia following the breakdown of resistance of the cultivar Surpass 400 in 2003. This outbreak resulted in 90% production loss, equating to approximately 7.3 million USD [38,39].

Plants protect themselves by providing non-specific barriers in physical forms, such as a rigid cell wall [40,41], and chemical systems, such as producing proteins, sugars, lipoglycans and endotoxins [42,43]. When these barriers are overcome by pathogens, plants initiate a two-layered immunity response. The first layer involves detection of the pathogen-associated molecular patterns (PAMP) by the surface-localized receptors; this phase is termed PAMP-triggered immunity or PTI. However, PTI usually only leads to a mild defense response [44,45], which can be overridden by some pathogen races. As a counter response, the second layer of inducible response, called effector-triggered immunity (ETI), is initiated. This response relies on the interaction of a plant resistance gene (*R* gene), encoding recognition receptors, with race-specific pathogen effectors, encoded by avirulence (*Avr*) genes. This interaction usually leads to a hypersensitive defense response, which is usually manifested in rapid cell death, thereby limiting further pathogen growth, and phenotypically observed as complete resistance [45–47].
Based on conserved motifs, domains and features, *R* genes may be grouped into different classes collectively known as resistance gene analogs (RGAs). Three broad classes of RGAs are known: nucleotide-binding site-leucine rich repeats (NLRs), receptor-like protein kinases (RLKs), and receptor-like proteins (RLPs) [44,48,49]. Among them, NLRs are the largest class of RGAs predominately involved in plant disease resistance [50–52], whilst surface-localised RLKs and membrane-associated RLPs are pattern recognition receptors and integral components of the first line of defense [49,53,54], and have also been known to be involved in growth and development processes in plants [55].

There are two mechanisms controlling blackleg resistance. Qualitative resistance is generally controlled by a single major gene and is race-specific seedling resistance, active from the cotyledon through to the adult plant [56–59], while quantitative resistance is governed by multiple minor genes and is a partial resistance that is expressed in the later stages at leaf petioles and stem tissues [32,60]. To date, at least 16 *R* genes against blackleg have been genetically mapped in *B. napus* and other *Brassica* species (Figures 1 and 2, Table 2). Of these, three have been cloned, and some of the 13 other genes are suspected to be identical or allelic forms due the different populations and markers used in their mapping (Figure 2). While *R* genes have been known to effect complete resistance, some *R* genes (*Rlm1, Rlm3, Rlm6, Rlm7, LepR1, and LepR3*) have been reported to break down and lose effectiveness in the field [38,61–66]. Currently, the deployment of *R* genes by crop rotation in canola cultivars is an integral approach to sustainably manage canola cultivation against blackleg infection and resistance breakdown [35,67,68].

![Figure 1](image-url)

Figure 1. The complex interaction between resistance (*R*) genes and counterpart avirulence (*Avr*) genes mediating blackleg resistance in canola. *R* genes located in the same block (green) are allelic or suspected to be allelic forms. *Avr* genes that mask other interactions are indicated by an “x” sign. Genes (*R* and *Avr*) with an asterisk represent cloned genes. *Avr* genes with a question mark (?) are hypothetical genes that have not been isolated/discovered to date.
Figure 2. Current physical location of the known blackleg R genes based on quantitative trail loci (QTL) and candidate gene positions. Mb = million base pairs; B. napus pangenome [69–71], B. oleracea pangenome [72,73], B. juncea genome v. 1.5 [74] and B. rapa genome v. 3.0 [75].

Table 2. List of candidate genes harbouring resistance to *Leptosphaeria maculans* with their reported resistance gene analog (RGA) function along with their closest gene ortholog having disease resistance/other function.

Gene (Position)	Candidate Genes	RGA Type	Gene Ortholog (TAIR10)	Molecular Function	References
Rlm1 (A07 in Bna)	BnaA07g28760D	RLP	AT1G56140	LRR TM prot_k	[76]
	BnaA07g29310D	RLK	AT1G71390	RLP 11	[76]
	BnaA07g27720D	NLR	AT1G69160	BIG GRAIN LIKE 1 supressor	[76]
	BnaA07g28550D	-	AT1G33612	Receptor for the Plant Natriuretic Peptide	[76]
	BnaA07g28840D	RLK	AT1G70740	Prot_k superfam_prot	[77]
	BnaA07g27460D	RLK	AT1G68830	STN7 prot_k	[78]
Table 2. Cont.

Gene (Position)	Candidate Genes	RGA Type	Gene Ortholog (TAIR10)	Molecular Function	References
Rlm3, Rlm4 & Rlm7 (A07 in Bna)	**BnaA07g20490D**	RLK	AT1G79909	Protein PAT1 homolog	[76]
	BnaA07g20910D	NLR	AT1G77610	UDP-galactose transporter 1	[76]
	BnaA07g17000D	NLR	AT1G12220	DRP RPS5/nucleotide binding	[79]
	BnaA07g17760D	RLK	AT1G56145	LRR TM prot_k	[79]
	BnaA07g18000D	RLK	AT3G58690	Prot_k superfam_prot	[79]
	BnaA07g18480D	RLK	AT3G59700	L-type lectin-domain containing receptor kinase V.5	[79]
	BnaA07g20630D	RLK	AT1G78290	SRK2C/ST_k	[79]
	BnaA07g18680D	TM-CC	AT3G60470	LRR TM prot_k	[79]
	BnaA07g18770D	TM-CC	AT3G60600	VAP 1-1/protein binding	[79]
	BnaA07g18880D	TM-CC	AT3G61050	NTMC2T4/lipid binding	[79]
	BnaA07g19680D	TM-CC	AT1G79830	GC5 (golgin candidate 5)/protein binding	[79]
	BnaA07g20240D	RLK	AT1G79640	Prot_k superfam_prot/ST_k tyrosine	[80]
Rlm12 (A01 in Bna)	**BnaA01g12900D**	RLP	AT4G23100	Glutamate-cysteine ligase, chloroplastic	[81]
	BnaA01g12800D	RLP	AT4G22990	Major Facilitator Superfamily with SPX	[81]
	BnaA01g12940D	RLP	AT4G23240	Putative cysteine-rich RLP kinase 16	[81]
	BnaA02g15610D	RLK	AT1G71870	Protein DETOXIFICATION 54/MATE efflux fam_prot	[70,76]
	BnaA02g15810D	RLK	AT1G72140	Protein NRT1/PTR FAMILY 5.12/proton-dependent oligopeptide transport (POT) fam_prot	[70,76]
	BnaA02g15820D	RLK	AT1G72150	Patellin-1/transporter	[70,76]
	BnaA02g15890D	RLK	AT1G72290.1 (CDS)	Cysteine protease inhibitor WSCP	[70,76]
	BnaA02g16700D	RLK	AT2G18910	Expressed protein/hydroxyproline-rich glycoprotein fam_prot	[70,76]
	BnaA02g16770D	RLK	AT1G74190	RLP 15	[70,76]
	BnaA02g16960D	NLR	AT1G30490.1 (CDS)	Homeobox-leucine zipper protein ATHB-9	[70,76]
	BnaA02g18160D	TM-CC	AT1G76570	Chlorophyll a-b binding protein 7, chloroplastic	[70,76]
	BnaA02g20380D	RLK	AT4G01440	WAT1-related protein	[70,76]
	BnaA02g20440D	RLK	AT4G01590	DNA-directed RNA polymerase III subunit	[70,76]
	BnaA02g20610D	RLK	AT4G02510	Translocase of chloroplast 159, chloroplastic/TM receptor	[70,76]
	BnaA02g21110D	RLK	AT5G19010	MAP kinase 16	[70,76]
Table 2. Cont.

Gene (Position)	Candidate Genes	RGA Type	Gene Ortholog (TAIR10)	Molecular Function	References
BnaA02g21890D	RLK	AT4G11010	Nucleoside diphosphate kinase/ATP binding	[70,76]	
BnaA02g22210D	RLK	AT5G43370	Probable inorganic phosphate transporter 1-2	[70,76]	
BnaA02g22280D	RLK	AT5G43710	Alpha-mannosidase/glycoside hydrolase family 47 protein	[70,76]	
BnaA02g22610D	NLR	AT5G40910	DRP (TNL class)	[70,76]	
BnaA02g23050D	TM-CC	AT5G42570	Intracellular protein transport	[82,83]	
BnaA02g24000D	NLR	AT5G45490	Probable DRP	[82,83]	
BnaA02g24440D	RLP	AT5G46330	LRR RLP kinase/TM ST_k	[82,83]	
BnaA02g24500D	NLR	AT5G46510	DRP (TNL class)	[82,83]	
BnaA02g24510D	NLR	AT5G46450	DRP (TNL class)	[82,83]	
BnaA02g24530D	NLR	AT5G46450	DRP (TNL class)	[82,83]	
BnaA02g24540D	NLR	AT5G46450	DRP (TNL class)	[82,83]	
BnaA02g24560D	NLR	AT5G46451	DRP (TNL class)	[82,83]	
BnaA02g25110D	NLR	AT5G47220	Ethylene responsive element binding factor 2	[84]	
BnaA10g03460D	RLK	AT1G05300	Zinc transporter 5	[70,76]	
BnaA10g06440D	RLK	AT5G30370	Ribosomal protein L9/RNase H1	[70,76]	
BnaA10g07140D	RLK	AT3G15240	ST_k WNK (With No Lysine)-like protein	[70,76]	
BnaA10g09460D	NLR	AT5G55220	Trigger factor-like protein TIG, chloroplastic	[70,76]	
BnaA10g09870D	RLK	AT5G55670	RNA-binding (RRM/RBD/RNP motifs) fam_prot	[70,76]	
BnaA10g10000D	NLR	AT5G55910	ST_k D6PK	[70,76]	
BnaA10g12510D	RLK	AT5G59200	Putative pentatricopeptide repeat-containing protein, chloroplastic	[70,76]	
BnaA10g13610D	NLR	AT5G60000	TM protein	[70,76]	
BnaA10g14660D	RLK	AT5G20900	TIFY 3B/JAZ12 (JASMONATE-ZIM-DOMAIN PROTEIN 12)	[70,76]	
BnaA10g14840D	RLK	AT5G20670	Unknown protein	[70,76]	
BnaA10g06390D	RLK	AT5G30300	PP2A regulatory subunit TAP46	[70,76]	
BnaA10g07390D	RLK	AT5G52520	Proline-tRNA ligase, chloroplastic/mitochondrial	[70,76]	
BnaA10g07400D	RLK	AT5G52510	SCL8	[70,76]	
BnaA10g07410D	RLK	AT5G52510	SCL8	[70,76]	
BnaA10g07650D	RLK	AT5G51970	Sorbitol dehydrogenase	[70,76]	
BnaA10g09120D	RLK	AT5G54850	Unknown protein	[70,76]	
BnaA10g09500D	RLK	AT5G55280	Cell division protein FtsZ homolog 1, chloroplastic	[70,76]	
Table 2. Cont.

Gene (Position)	Candidate Genes	RGA Type	Gene Ortholog (TAIR10)	Molecular Function	References
BnaA10g10380D	RLK	AT5G56220	P-loop containing nucleoside triphosphate hydrolases superfam_prot/nucleotide binding	[70,76]	
BnaA10g10430D	RLK	AT5G56210	WPP domain-interacting protein 2	[70,76]	
BnaA10g11120D	RLK	AT5G57110	Calcium-transporting ATPase	[70,76]	
BnaA10g11930D	RLK	AT5G58410	E3 ubiquitin-protein ligase listerin/zinc ion binding	[70,76]	
BnaA10g12560D	RLK	AT5G59610	Chaperone DnaJ-domain superfam_prot/DNAJ heat shock N-terminal domain-containing protein	[70,76]	
BnaA10g12830D	RLK	AT4G34110	Polyadenylate-binding/RNA binding/translation initiation factor	[70,76]	
BnaA10g12860D	RLK	AT5G59900	Putative pentatricopeptide repeat-containing protein	[70,76]	
BnaA10g12870D	RLK	AT5G22880	Histone H2B/DNA binding	[70,76]	
BnaA10g12880D	RLK	AT5G59950	RNA-binding fam_prot/RNA and export factor-binding protein	[70,76]	
BnaA10g12890D	RLK	AT5G59990	CCT motif fam_prot	[70,76]	
BnaA10g12900D	RLK	AT5G60020	Laccase-17	[70,76]	
BnaA10g12950D	RLK	AT5G60120	Target of early activation tagged (EAT) 2/TF	[70,76]	
BnaA10g14170D	RLK	AT5G22170	TM protein	[70,76]	
BnaA10g14640D	RLK	AT2G24080	F-box protein (DUF295)	[70,76]	
BnaA10g15480D	RLK	AT5G19690	Dolichyl-diphosphooligosaccharide-protein glycosyltransferase subunit STT3A	[70,76]	
BnaA10g18330D	RLK	AT5G16000	Protein NSP-INTERACTING KINASE 1	[70,76]	
BnaA10g19700D	RLK	AT5G13870	Xyloglucan endotransglucosylase/hydrolase	[70,76]	
BnaA10g20110D	RLK	AT5G13180	NAC domain-containing protein 83/TF	[70,76]	
BnaA10g23030D	RLK	AT5G08450	Zinc finger CCCH domain protein	[70,76]	
BnaA10g23040D	RLK	AT5G08440	Unknown protein	[70,76]	
BnaA10g26650D	RLK	AT5G03290	Isocitrate dehydrogenase (NAD) catalytic subunit 5, mitochondrial	[70,76]	
BLMR1 (A10 in Bna)					
BnaA10g21910D	-	AT5G10360	4OS ribosomal protein S6 (RPS6B)	[85]	
BnaA10g19660D	-	AT3G17620	Putative F-box domain protein	[85]	
BLMR2 (A10 in Bna)					
BnaA10g11390D	-	AT5G57340	Ras guanine nucleotide exchange factor Q-like protein	[85]	
BnaA10g11500D	TM	AT5G57560	Xyloglucan endotransglucosylase/hydrolase	[85]	
Gene (Position)	Candidate Genes	RGA Type	Gene Ortholog (TAIR10)	Molecular Function	References
----------------	----------------	----------	------------------------	--------------------	-----------
LepR4 (A06 in Bra)	Bra018037	NLR	AT5G17680	DRP (TNL class)	[86]
	Bra018057	NLR	AT5G66900	DRP (CNL class)	[86]
	Bra018198	NLR	AT3G46710	DRP (CNL class)	[86]
	Bra019483	NLR	AT2G15530	RING/U-box superfamily_prot	[86]
Rlm1 (C06 in Bol)	Bo6g077080	NLR	AT3G60490	Ethylene-responsive TF ERF035 APETALA2	[87]
	Bo6g088090	RLK	AT1G73080	RLP kinase LRR-RLK, STKc	[87]
	Bo6g080150	RLK	AT1G80080	Protein TOO MANY MOUTHS_TMM LRR	[87]
	Bo6g093010	RLK	AT1G71830	Somatic embryogenesis receptor kinase 1 LRR-RLK, STKc	[87]
	Bo6g089160	NLR	AT1G72890	DRP (TIR-NBS class)	[87]
	Bo6g089290	NLR	AT1G72850	DRP (TIR-NBS class)	[88]
LepR1 (C02 in Bol)	Bo2g093170	NLR	AT1G57850	TIR domain protein family	[88]
	Bo2g095430	LRR	AT1G22000	Putative F-box/LRR protein	[88]
	Bo2g095460	RLK	AT1G79620	LRR RLP kinase	[88]
	Bo2g103360	NLR	AT5G36930	DRP (TNL class)	[88]
	Bo2g103380	LRR	AT4G03220	Putative F-box/LRR protein	[88]
	Bo2g104830	LRR	AT3G47580	LRR RLP kinase	[88]
	Bo2g118150	RLK	AT1G56120	LRR TM prot_k	[88]
	Bo2g118200	RLK	AT1G56130	Probable LRR RLK ST_k	[88]
	Bo2g124490	NLR	AT1G63730	DRP (TNL class)	[88]
	Bo2g124590	RLK	AT3G44700	LRR RLK ST_k GSO2	[88]
	Bo2g125680	RLK	AT3G47570	Probable LRR RLK ST_k	[88]
	Bo2g125700	RLK	AT3G20480	LRR RLK ST_k	[88]
	Bo2g126850	NLR	AT5G45220	DRP (TNL class)	[88]
	Bo2g126860	NLR	AT2G17050	DRP (TNL class)	[88]
	Bo2g126870	NLR	AT3G45210	DRP (TNL class)	[88]
	Bo2g126880	NLR	AT5G17880	Disease resistance-like protein CSA1	[88]
	Bo2g126900	NLR	AT5G45220	DRP (TNL class)	[88]
	Bo2g126920	NLR	AT5G45230	DRP (TNL class)	[88]
	Bo2g126980	NLR	AT5G45240	DRP (TNL class)	[88]
	Bo2g127270	NLR	AT5G45490	Probable DRP	[88]
	Bo2g127290	NLR	AT5G45490	Probable DRP	[88]
	Bo2g127320	NLR	AT5G45510	Probable DRP	[88]
	Bo2g129990	RLK	AT3G46330	LRR RLP kinase	[88]
	Bo2g130040	NLR	AT5G46470	DRP RPS6	[88]
	Bo2g130050	LRR	AT3G40060	DRP (NLR class)	[88]
	Bo2g130080	NLR	AT5G46270	DRP (TNL class)	[88]
	Bo2g130090	NLR	AT5G46450	DRP (TNL class)	[88]
Table 2. Cont.

Gene (Position)	Candidate Genes	RGA Type	Gene Ortholog (TAIR10)	Molecular Function	References
Bo2g130100	NLR	AT5G46450	DRP (TNL class)	[88]	
Bo2g130110	NLR	AT4G08450	DRP (TNL class)	[88]	
Bo2g130150	NLR	AT4G08450	DRP (TNL class)	[88]	
Bo2g130180	NLR	AT5G46450	DRP (TNL class)	[88]	
Bo2g131530	NLR	AT4G16920	DRP (TNL class)	[88]	
Bo2g131540	NLR	AT5G46270	DRP (TNL class)	[88]	
Bo2g131590	NLR	AT5G46450	DRP (TNL class)	[88]	
Bo2g131610	NLR	AT5G46260	DRP (TNL class)	[88]	
Bo2g131620	NLR	AT5G40060	DRP (NLR class)	[88]	
LepR2 (C09 in Bol)	Bo9g111490	LRR	AT1G51370	F-box domain/LRR protein	[89]
			AT5G25850	Putative F-box domain/LRR protein	[89]
			AT3G53840	F-box domain/LRR protein	[89]
			AT5G53890	LRR RLP kinase	[89]
			AT3G54380	RLP kinase THESEUS 1	[89]
			AT5G55090	MAP kinase 15	[89]
			AT5G66330	LRR fam_prot	[89]
			AT5G65640	LRR RLP kinase	[89]
			AT3G56780	F-box domain/LRR protein	[89]
			AT5G56560	F-box domain/LRR protein	[89]
			AT5G65650	F-box domain/LRR protein	[89]
		RLK	AT3G47580	MAP kinase 6	[89]
			AT2G42480	MATH & CC domain-containing protein	[89]
LepR4 (C03 in Bol)	Bo3g099380	RLK	AT5G65240	LRR prot_k	[90]
			AT4G36150	DRP (TNL class)	[90]
			AT3G63710	LRR prot_k	[90]
			AT3G62710	LRR prot_k	[90]
			AT1G53510	MAP Pkinase 18	[90]
			AT3G47090	LRR prot_k	[90]
			AT3G47090	MAP Pkinase_Tyr, ST_k	[90]
			AT3G45640	MAP Pkinase	[90]
			AT3G47580	LRR protein Pkinase	[90]
LepR4 (C08 in Bol)	Bo8g077170	RLK	AT1G53510	MAP Pkinase 18	[90]
			AT5G17680	DRP (TNL class)	[90]
			AT3G48860	CC domain containing protein SCD2	[90]
Rlm6 (A07 in Bju)	BjuA027357	RLK	AT1G66830	Probable inactive LRR RLP kinase	[91]
			AT1G67510	LRR prot_k fam_prot	[91]
			AT1G10850	LRR prot_k fam_prot/ST_k	[91]
			AT1G11130	LRR prot_k fam_prot/receptor signalling protein ST_k	[91]
This review focuses on the gene for gene mechanism of blackleg resistance, *R* gene content in canola and its relatives, candidate blackleg *R* genes, genetic factors in *L. maculans* pathogenicity and resistance, and future work that can advance knowledge towards a more resistant canola crop.

2. The Current Resistance Genes Go Beyond Simple Allelism

The flax–rust interaction provided some of the first evidence of a gene for gene interaction between plants and pathogens, whereby resistance is conferred by the highly specific recognition between the plant *R* genes and the pathogen’s *Avr* genes [93]. This molecular interaction initiates a cascade of signalling pathways, resulting in a hypersensitive response in the plant, which restricts further pathogen growth [94] and in some cases leads to systemic acquired resistance (SAR) [95]. Whilst the flax–rust interaction laid the foundation for understanding the basic mechanisms of *R*-gene-mediated resistance in plants, recent advances indicate a rather complex interaction in several crop-pathosystems, which goes beyond the simple gene-for-gene recognition. Such a case has been documented in the *Brassica–L. maculans* interaction, where several *R* genes have been found to interact with the same *Avr* genes in the pathogen, and in some instances, some *R* gene–*Avr* pairs mask the resistance response in other interactions. On the side of the host, several genes are suspected to be allelic forms of other genes, adding another layer of complexity for understanding the *Brassica–L. maculans* interaction.

Rlm2 is a natural allele for resistance in *B. napus*, while *LepR3* is an introgressed gene from *B. rapa* subsp. *sylvestris*; however, subsequent investigations proved they are variants of the same gene [96,97]. *Rlm2* and *LepR3* are located on chromosome A10 (14,404,296 to 14,408,251 bp of *B. napus* Darmor-bzh genome v4.1) [98] and encode an extracellular leucine-rich receptor (RLP), whose structure was found to be similar to the widely known *Cf*-a protein in tomato [99,100]. Further functional analysis of both of these genes found...
that their resistance expression is mediated by associating with the helper proteins SOBIR1 (Suppressor of BIR1) and BAK1 (BRI1-Associated Kinase-1) proteins [97,100,101].

Whilst Rlm2 and LepR3 are allelic, they each recognise different L. maculans Avr genes; Rlm2 interacts with AvrLm2 while LepR3 interacts with AvrLm1. The interaction of LepR3 and Rlm1 with the same Avr gene (AvrLm1) originating from different Brassica species [96,97] provides evidence of a two-for-one gene interaction for blackleg resistance (Rlm1 and LepR3-AvrLm1), deviating from the earliest classical gene-for-gene interaction [93]. Recently, LepR2 and Rlm5, reported as independent genes, were found to interact with the same Avr gene, AvrLm5-Lep2 [102]. However, since LepR2 and Rlm5 are from B. rapa subsp. sylvestris, they could be the same gene or allelic variants. Cloning of LepR2, Rlm5, and Rlm1 will help explain why two genes recognise the same Avr gene.

Rlm5 and Rlm9 also recognise the same Avr gene (AvrLm5-9) [103]. Rlm5 is a B. juncea R gene that resides in a region homologous to chromosome A10 of B. napus [104,105]. Rlm9 is on chromosome A07 (15.9 Mb in B. napus Darmor-bzh genome v4.1) and encodes a wall-associated kinase-like protein RLK [106]. However, as with the case of LepR3 and Rlm1, it is unclear if Rlm9 and Rlm5 are allelic variants or independent genes [103]. Only when Rlm5 is cloned can the relationship of these two genes be further dissected, which will explain why they share the same Avr gene.

In another interaction, genes Rlm4 and Rlm7 both recognise the same effector [107]. Rlm4 and Rlm7, along with Rlm3 and Rlm9, form a tightly linked cluster on chromosome A07 of B. napus, and may be alleles of the same R locus [108]. This hypothesis has a valid precedence as shown in the case of Rlm2 and LepR3, which were found to be allelic [109].

A further gene, a B. rapa subsp. sylvestris R gene, LepR4 is mapped on chromosome A06 (9,873,739 to 10,977,390 bp) in B. rapa v1.2 [110] but a recent finding in B. oleracea showed that LepR4 candidate genes were detected on two different chromosomes, C03 and C08 [90,111]. Earlier, this gene was reported to have two alleles, LepR4a and LepR4b, each having different levels of resistance [86]. In B. juncea, another gene Rlm6 has also been genetically mapped onto two different chromosomes, A07 and B04 [91]. Both LepR4 and Rlm6 are yet to be cloned. In B. nigra, the R gene Rlm10 mapped on chromosome B04 interacts with two Avr genes, AvrLm10a and AvrLm10b [112,113], indicating a gene-for-two-gene interaction.

Other interactions seemed to follow the gene-for-gene, R-gene-to-Avr-gene interaction, and are relatively more straightforward to analyse compared with the previous examples. These include the interaction of Rlm3 to AvrLm3, Rlm8 to AvrLm8, Rlm11 to AvrLm11, and LepR1 to AorLepR1 [104,108,114,115]. However, as with most R genes, the specific genes controlling such resistance have yet to be closed. Hence, the identification of their sequences will likely contribute to how they should be effectively deployed for blackleg management.

Due to differences in the mapping population and the pathogen race compositions used, some blackleg R genes identified are thought to be redundant with other previously known R genes. Furthermore, their corresponding effectors remain to be verified. For example, BLMR1 was thought to be redundant to LepR3 [97] but an RNA sequencing analysis revealed a difference in the N-terminal leucine-rich repeat motifs [116] (Figure 1). BLMR2, Rpg3Dun, RlmSkipton, and QRlm.awai-A10 are other genes that need confirmatory analysis [117–119] (Figure 1).

The simple gene-for-gene allelism provides a basic understanding in the Brassica-L. maculans interaction, however, complications exist for some of these genes, as some of them interact with the same Avr gene while several others are suspected to be allelic forms of the others. Furthermore, some of the interactions display an epistatic effect over the other interactions (Figure 1). These anomalies represent some of the challenges in studying the Brassica-L. maculans interaction, which need to be resolved to enhance current strategies for resistance deployment as a major component of blackleg management.

3. Exploring Resistance Genes in Brassica napus and Its Relatives

Despite natural resistance to L. maculans in the B. napus A-genome, there is a requirement to find novel sources of resistance for continuous improvement of the crop. One
method for this is to utilise exotic germplasm via intergeneric/interspecific hybridisation breeding [120]. Several Brassicaceae species have been successfully hybridised/crossed with *B. napus* to improve resistance to blackleg, but information on the derived progenies is limited (Table 3). Only a few of these lines, containing *B. rapa* and *B. juncea* genes, have been successfully converted into commercial cultivars [104,121]. Other species including *A. thaliana*, *Brassica insularis*, *Brassica atlantica*, *Brassica macrocarpa*, *C. sativa*, *Diplotaxis muralis*, *Eruca pinnatifida*, *Erucastrum gallicum*, *Raphanus raphanistrum*, *S. alba*, *Sisymbrium loeselii*, and *Thlaspi arvense* have been found with proteins/compounds that may benefit *B. napus* against *L. maculans* [122–134]. Only 13 of these species have published information on their *R* gene content (Table 4). There are between 87–641 NLRs, 300–1,556 RLKs, and 56–272 RLPs in the genome assemblies [135–143] (Table 3).

Table 3. Successful *Brassica napus* progenies hybridized/developed with selected Brassicaceae species having blackleg resistance in cotyledon stage.

Species Types of Progenies References
Brassica carinata and *Brassica rapa* Double haploid (DH) lines [86,115,144–147]
Brassica juncea Recombinant and backcrossed (BC) lines [148–150]
Brassica nigra Hybrid and recombinant lines [149,151,152]
Brassica elongata, *Brassica fruticulosa*, *Brassica souliei* and *Diplotaxis tenuifolia* Hybrid [130]
Cinque monensis and *Hirschfeldia incana* Hybrid and BC lines [130,132]
Sinapsis arvensis Somatic hybrids and BC lines [130,132,153,154]
Brassica tournefortii Somatic hybrids [155]

It can be noted that RLKs are more abundant than other *R* genes. In the *B. napus* pangenome, across the 52 lines, there were 35,181 more RLK genes than NLRs and 46,382 more RLK genes than RLPs, and in the 10 individuals in the *B. oleracea* pangenome, there were 316 more RLKs than NLRs and 709 more RLKs than RLPs [70,72]. The abundance of RLKs, over other *R*-genes type, could be due to their versatile roles in plants, as they are not only involved in defence but in other processes [156]. For example, RLKs are involved in growth and development such as cell proliferation and homeostasis, vascular differentiation, and steroid hormone perception [157–159]. RLKs interact with NLR/RLPs to initiate resistance [160–167] and their extracellular component suggests an ability to cope with the population of ligands from pathogens [168].

Most of the NLRs in the genome are involved in defence mechanisms [51] and some of the plant–pathogen interaction with effectors is indirect [169]. For example, a resistant tobacco with an NLR-N gene requires an *NRIP1* (NLR, specifically with TIR domain) before interacting with effector p50 of *Tobacco mosaic virus* [170]. A resistant *Arabidopsis* with *ZAR1* (NLR) requires *ZED1* pseudokinase (NLR) as a decoy, and thus *ZAR1*-mediated immunity is induced by interacting with type III *Aov HopZ1a* for resistance against *Pseudomonas syringae* [171]. NLRs perceive pathogen effector proteins in the cytoplasm, after which the plant initiates immunity through a hypersensitive response [172]. Of the 313 cloned *R* genes in plants, 191 are NLRs [169], with two NLRs in *Brassica*, *CrA* and *Crr1a*. *CrA* and *Crr1a* are resistant to isolates M85 and Ano-01 of *Plasmodiophora brassicae*, respectively, which causes clubroot disease in *B. rapa* [173,174].

RLPs are RLKs but without kinase domain, and usually an RLP gene would need other triggering genes to initiate resistance [54,175]. Aside from cloned RLP genes for resistance to *L. maculans*, other examples are *Cf-4* and *RLP23*. *Cf-4* perceives *Aov4* with the help of kinase-active *BAK1* to trigger an immunity response to *Cladosporium fulvum* in tomato [167]. *RLP23* requires NEP-like protein 20 and kinases (SOBIR1 and BAK1) with the effector to signal an immune response to potato late blight and rot caused by *Phytophthora infestans* and *Sclerotinia sclerotiorum* [161,162].
Table 4. List of Brassicaceae species containing resistance gene analogs like nucleotide-binding site leucine-rich repeat (NLR), receptor-like protein kinase (RLK), and receptor-like protein (RLP).

Species (Common Name)	NLR	RLK	RLP	Software Used	References
Arabidopsis lyrata (Lyre-leaved rock-cress)				RGAugury	[140]
	243	514	73	RGAugury	[138]
	506	495	56	RGAugury	[143]
	198	-	-	HMM/MEME	[137]
	200	-	-	HMM/LRRfinder	[137]
Arabidopsis thaliana (Mouse-ear cress)				RGAugury	[140]
	205	516	73	RGAugury	[138]
	410	517	75	RGAugury	[141]
	152	-	-	NLGenome Sweeper	
	213	-	-	HMMER	[142]
	165	-	-	HMM/MEME	[143]
	167	-	-	HMM/LRRfinder	[137]
Brassica juncea (Indian mustard)				RGAugury	[140]
	315	1085	191	RGAugury	[138]
	-	493	228	RGAugury	[139]
Brassica napus (Oilseed rape)				RGAugury	[140]
	286	989	77	RGAugury	[140]
	208	680	122	RGAugury	[140]
	621	1497	273	RGAugury	[140]
	566	1517	260	RGAugury	[140]
	464	-	-	HMMER	[140]
B. napus pangenome	641	-	-	MEME/MAST	[145]
B. nigra (Black mustard)				RGAugury	[140]
	372	776	176	RGAugury	[138]
	-	317	176	RGAugury	[139]
Brassica oleracea (Cabbage)				RGAugury	[72]
	493	822	159	RGAugury	[140]
	438	796	155	RGAugury	[140]
	146	-	-	HMMER	[140]
	443	-	-	MEME/MAST	[140]
	157	-	-	HMMER	[142]
	408	-	-	HMMER	[143]
B. oleracea pangenome	616	932	223	RGAugury	[72]
Brassica rapa (Field mustard)				RGAugury	[140]
	263	670	106	RGAugury	[138]
	488	747	118	RGAugury	[138]
	-	300	65	RGAugury	[139]
	202	-	-	HMMER	[140]
	249	-	-	MEME/MAST	[140]
	206	-	-	HMMER	[141]
	204	-	-	HMM/MEME	[143]
	201	-	-	HMM/LRRfinder	[137]
Brassica macrocarpa('Egadi' cabbage)	447	862	186	RGAugury	[72]
Camelina sativa (False flax)				RGAugury	[140]
	504	1469	280	RGAugury	[140]
Capsella rubella (pink shepherd’s-purse)				RGAugury	[140]
	180	539	87	RGAugury	[138]
	200	536	97	RGAugury	[138]
	127	-	-	HMM/MEME	[143]
Eutrema salsugineum (Saltwater cress)				RGAugury	[140]
	165	509	77	RGAugury	[138]
	348	483	83	RGAugury	[143]
	88	-	-	HMM/MEME	[143]
	87	-	-	HMM/LRRfinder	[137]
Raphanus raphanistrum (Wild radish)				RGAugury	[140]
	206	585	142	RGAugury	[140]
Thlaspi arvense (Field penny-cress)				RGAugury	[140]
	183	474	120	RGAugury	[140]

1 Brassica napus cv. Darmor v.8, 2 Brassica napus cv. Tapidor, 3 Brassica napus cv. Darmor v.4, 4 Brassica napus cv. ZS11.
Among the relatives of canola, B-genome-containing species (B. nigra, B. carinata, and B. juncea) are excellent sources of resistance to L. maculans [148,176,177]. Five R genes (Rlm6, Rlm10, LMJR1, LMJR2, and rjlm2) have been identified in the B-genome but only Rlm6 is utilised in canola cultivars. Of the B genome species, B. nigra [178] and B. juncea [74] reference genomes have been published, while B. carinata genome assembly has yet to become available. Microsatellite markers indicated that resistance in B. carinata resides on chromosomes B01, B03, B06, and B07 in B. napus-B. carinata doubled haploid populations [145–147]. Nonetheless, studies can now rely on a pseudo-reference for B. carinata using its diploid ancestors: B. nigra and B. oleracea [179].

In other species, A. thaliana has been found to confer resistance to L. maculans; RESISTANCE TO LEPTOSPHAERIA MACULANS (RLM) 1 or AtRLM1A, a 4.93 Kb gene on chromosome 1 (23,779,223 to 23,784,155 bp of A. thaliana Araport11), AtRLM2 or AtRLM1B, a 5.59 Kb gene on chromosome 1 (23,711,420 to 23,717,006 bp of A. thaliana Araport11), and AtRLM1A [180–182]. AtRLM1 and AtRLM2 require camalexin production for resistance that causes lignification and the formation of vascular plugs as physical barriers [183,184]. AtRLM3, a 9.71 Kb gene on chromosome 4 9,557,175 to 9,566,887 bp of A. thaliana Araport11 [180], confers resistance not only to L. maculans but also to other diseases including Botrytis cinerea, Alternaria brassicicola and Alternaria brassicae [185]. AtRLM3 has three BREVIS RADIX domains instead of leucine-rich repeats (LRR) that possibly regulate downstream defence signalling responses [186]. AtRLM gene homologs have been found in Arabidopsis lyrata, B. rapa, C. sativa, Capsella rubella, and Eutrema salsugineum based on annotation studies [181,186]. An AtRLM1A-like gene was identified in C. rubella, AtRLM1B and other AtRLM1-like genes in A. lyrata, B. rapa and E. salsugineum; and the AtRLM3 gene is conserved in A. lyrata and C. sativa [181,186]. These species are potential sources to search for new resistance against L. maculans.

Other Brassicaceae relatives such as C. monensis, S. arvensis, S. alba, D. muralis and Diplotaxis tenuifolia have been found to have a resistance response against L. maculans in cotyledons and adult stages [122,123,132,133,154]. These species may contain vast numbers of disease resistance genes based on transcriptomic analysis [187–189]. The Brassicaceae, especially the wild relatives of B. napus, are indeed a potential source of novel R genes and alleles in improving resistance to L. maculans and for other diseases in the family. Their genome sequences provide an opportunity to search for orthologous allelic variants to the existing R genes for L. maculans, and a vast genetic resource that could considerably enrich B. napus in many years to come.

4. Genome Sequencing in Brassica Species Hastened the Identification of Resistance Genes

The availability of genome sequences marked a milestone in the identification of R genes and their cloning. B. rapa was the first Brassica species to have a genome sequence available [110]. Subsequently, the genome sequences of B. napus, B. oleracea, B. juncea, and B. nigra have become available [69,74,75,98,180,190,191], some of which have multiple genome assemblies. Recent genomic analysis has highlighted a significant gene presence/absence variation in plant species, with disease resistance genes tending to demonstrate significant presence/absence variation [70,73,192–194]. This has led to the construction of pangenomes along with corresponding structural variation data including copy number variation and presence/absence variations for a wide range of crop species [195,196] including Brassica species [70–73,197].

The first two cloned genes for L. maculans resistance, LepR3 and Rlm2, correspond to BnaA10g20720D and Rlm9 to BnaA07g20220D in B. napus cv. Darmor bzh genome v4.1 [97,100,106], and the physical location has been updated in the B. napus pangenome (Figure 2). Most of the candidate genes for blackleg resistance encode RLKs followed by NLRs and RLPs, and a few encode TM-CCs, secreted peptides (SP) and enzymatic R genes (Table 2). These candidate genes can be useful a reference for researchers moving towards gene cloning and functional analyses. It is expected that the number of cloned R genes for blackleg resistance will increase in the near future.
5. Genetic Factors Involving the Pathogenicity and Resistance in *Leptosphaeria maculans*

Unlocking the genome of pathogens gives a better understanding of their pathogenicity, life-cycle, and evolution [198]. To date, 10 *L. maculans* *Avr* genes have been cloned (Figure 1). *AvrLm2*, *AvrLm3*, *AvrLm4-7*, *AvrLm5-9*, *AvrLm10a* and *AvrLm10b*, *AvrLm11*, and *AvrLmS-Lep2* encode cysteine-rich proteins [102,103,107,113,199–203], while *AvrLm1* contains only one cysteine residue [204].

All cloned and current candidate *Avr* genes reside in AT-rich sequences with degenerated transposable elements, where repeat-induced point mutation (RIP) often occurs [102,103,113,114,200–203,205]. As such, it was initially thought that RIP accounts for most of the virulence in *L. maculans* [109]. However, amino acid substitutions are the major cause of virulence, as occurs in *AvrLm2*, *AvrLm3*, *AvrLm4*, *AvrLm5-9* and gene deletions to *AvrLm1*, *AvrLm6*, *AvrLm10a* and *AvrLm10b*, and *AvrLm11* [103,109,113,114,200,201,206–208]. In *AvrLm7*, it is either RIP mutation or gene deletion causes virulence [109].

AvrLm4-7 promotes *L. maculans* pathogenicity to susceptible *B. napus* and suppresses SA and ET signalling pathways, including abscisic acid (ABA) and hydrogen peroxide (H₂O₂) [209]. Similarly, *AvrLm1* suppresses SA and JA signalling pathways in transient gene expression of *A. thaliana* (Columbia-0 line) and targets phosphorylation of *B. napus* mitogen-activated protein kinase (MAP_k) 9 (*BnMAP_k9*) gene, which leads to an increase in cell death in *A. thaliana* [210]. As *AvrLm2* suppressed JA signalling, an MAP_k signal was induced; the mechanism could be similar to *AvrLm1* to *BnMAP_k9* gene but needs to further verification [211]. In a different study in *A. thaliana*–pathogen interaction, as the AP2C1 gene (protein phosphatase gene) influenced MAP_k4 and MAP_k6 genes, the levels of JA and ET signalling genes were lowered, which subsequently compromised the plant immunity [212]. When MAP_k signalling genes were suppressed by *Xanthomonas* type III *Avr* genes (*XopE1, XopM, XopQ, AvrBs1* and *AvrXv4*), cell death occurs in *Nicotiana benthamiana* [213]. Another adenosine kinase has been found to be significant for proper fungal growth, hyphae development and virulence of *L. maculans* in *B. napus* [214]. *LmSNF1* (sucrose non-fermenting protein kinase 1 gene), *LmStuA* (TF gene), NEP1-like proteins, immunophilin gene family, isocitrate lyase, candidate secreted effector proteins, CAZymes, glycosyl hydrolase, cytokinin profiles, and carbohydrate with esterase domain containing genes play roles in *L. maculans* pathogenicity [215–222].

Generally, when *L. maculans* enters the plant, SA and JA-related genes are affected and act as initial defence compounds [84,209,216–218,223–225]. There are also genes that may contribute or act as basal defence, such as pattern recognition receptor CERK1 (e.g., chitin elicitor receptor kinase 1), WRKY transcription factors (TF) (e.g., WRKYs 33, 40 and 51), glucosinolate-related genes (e.g., *cytochrome P450, SUPERROOT1*, and *nitrile-specifier protein 5*), and calcium-related biological functions (e.g., homologs of *CAM1, CAM5* and *CAM7*, *CYCLIC NUCLEOTIDE-GATED CALCIUM CHANNEL 3, 12* and *19; CALMODULIN-DOMAIN PROTEIN KINASE 5, 9; CALCIUM-DEPENDENT PROTEIN KINASE 6 and 28; and CALCINEURIN B-LIKE GENE 1*) [211,216].

When there is resistance, ABA is induced in plants harbouring *Rlm4*, *LepR3*, and *Rlm2* [116,209]. On the other hand, high expression of calcium-related signalling genes and TFs (basic leucine zipper (bZIP) and basic helix–loop–helix (bHLH)) aside from JA and ABA were found in plants containing *Rlm2* [211]. Calcium-dependent protein kinases have been reported to trigger signalling pathways for an immediate plant defence [226,227], while for TFs, bZIP acts as a precursor in plant immunity [228] and bHLH interacts with signalling plant defence receptors [229,230]. bHLH might have an important role in *Rlm2*-mediated defence, as it activates SOBIR1 gene in *Gossypium barbadense* against Verticillium wilt [211,230]. Lastly, *LepR1*-mediated resistance was correlated with indole-derived phytoalexins [84], which may be *Brassica*’s counterpart to camalexin that has been found to be effective against *L. maculans* [183,231].
6. Conclusions

L. maculans can adapt to the host over time in the field. Thus, canola breeders and scientists should use genomics and bioinformatics tools and platforms in *Brassica* research [232] to hasten the search for novel *R* genes for identification, cloning and deployment. The extensive applications of genomics, pangenomics, and superpangenomics to canola and its relatives [233] will result in genomic-driven breeding strategies. Additionally, applying these methodologies to the host will result in an *L. maculans*-informed canola breeding. We see transcriptomics uncover the *Brassica-L. maculans* interaction and reveal role players in the pathogenicity and resistance, which opens an opportunity for gene editing such as CRISPR technology by gene activation or inactivation [234–237]. Transcriptomics is also used to study the relatives of canola, which present a novel variation that may have natural and better resistance to the pathogen. Furthermore, physiological and other molecular mechanisms acting not only in the genes of canola but to other Brassicaceae species could also be explored for information which can be translated and useful in improving the crop [238]. The comprehensive information in this review allow breeders to integrate *Brassica* and *L. maculans*-sequencing-based information for developing a better and resistant *B. napus*.

Author Contributions: A.Y.C. and J.B. conceived the outline of the review. A.Y.C. prepared the original draft and wrote the main text, while N.S.M.S. and J.C.A. edited the manuscript. A.Y.C. produced the figures and tables. J.B. and D.E. reviewed and suggested revisions to the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This work is funded by the Australian Research Council (Projects LP110100200, FT130100604, LP130100925, LP140100537 and DP160104497).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is not applicable to this article.

Acknowledgments: All authors acknowledge the University of Western Australia Research Training Program economic support during A.Y.C., N.S.M.S. and J.C.A respective doctoral studies.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Tamokou, J.D.D.; Mbaveng, A.T.; Kuete, V. Chapter 8—Antimicrobial Activities of African Medicinal Spices and Vegetables. In *Medicinal Spices and Vegetables from Africa*; Kuete, V., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 207–237. [CrossRef]

2. Nagaharu, U. Genome analysis in *Brassica* with special reference to the experimental formation of *B. napus* and peculiar mode of fertilization. *Jpn. J. Bot.* 1935, 7, 389–452.

3. Avato, P.; Argentiere, M.P. Brassicaceae: A rich source of health improving phytochemicals. *Phytochem. Rev.* 2015, 14, 1019–1033. [CrossRef]

4. Koornneef, M.; Meinke, D. The development of Arabidopsis as a model plant. *Plant J.* 2010, 61, 909–921. [CrossRef] [PubMed]

5. Rahman, M.; Khatun, A.; Liu, L.; Barkla, B.J. Brassicaceae Mustards: Traditional and Agronomic Uses in Australia and New Zealand. *Molecules* 2018, 23, 231. [CrossRef]

6. Schmidt, R.; Bancroft, I. *Genetics and Genomics of the Brassicaceae*, 1st ed.; Springer Science & Business Media: New York, NY, USA, 2010; p. 680. [CrossRef]

7. Simpson, M.G. 8—Diversity and Classification of Flowering Plants: Eudicots. In *Plant Systematics*, 2nd ed.; Simpson, M.G., Ed.; Academic Press: San Diego, CA, USA, 2010; pp. 275–448. [CrossRef]

8. Weeks, D.P. Chapter Four—Gene Editing in Polyploid Crops: Wheat, Camelina, Canola, Potato, Cotton, Peanut, Sugar Cane, and Citrus. In *Progress in Molecular Biology and Translational Science*; Weeks, D.P., Yang, B., Eds.; Academic Press: Cambridge, MA, USA, 2017; Volume 149, pp. 65–80.

9. CODEX ALIMENTARIUS. *International Food Standards: Standard for the Named Vegetable Oils CX-S 210—1999*; Food and Agriculture Organization of the United Nations: Rome, Italy, 2019.

10. FAO. FAOSTAT. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 20 February 2020).

11. AOF. *Canola Oil and Cancer the Facts*; Australian Oilseeds Federation: Australia Square, NSW, Australia, 2012.

12. Lin, L.; Allemekinders, H.; Dansby, A.; Campbell, L.; Durance-Tod, S.; Berger, A.; Jones, P.J.H. Evidence of health benefits of canola oil. *Nutr. Rev.* 2013, 71, 370–385. [CrossRef]
13. Gaber, M.; Tujillo, F.; Mansour, M.; Juliano, P. Improving Oil Extraction from Canola Seeds by Conventional and Advanced Methods. *Food Eng. Res.* 2018, 10, 198–210.
14. Chambers, K. Pathogenicity Genes of *Leptosphaeria maculans*, the Fungus That Causes Blackleg Disease of Canola (*Brassica napus*). Ph.D. Thesis, University of Melbourne, Melbourne, Australia, 2017.
15. Howlett, B.J. Current knowledge of the interaction between *Brassica napus* and *Leptosphaeria maculans*. *Can. J. Plant Pathol.* 2004, 26, 245–252. [CrossRef]
16. McVetty, P.B.E.; Duncan, R.W. *Canola/Rapeseed: Genetics and Breeding*. In *Reference Module in Food Science*; Elsevier: Amsterdam, The Netherlands, 2016. [CrossRef]
17. CCC. Canola Council of Canada “Canola Encyclopedia: About Blackleg”. Available online: https://www.canolacouncil.org/canola-encyclopedia/diseases/blackleg/about-blackleg/ (accessed on 10 April 2020).
18. Li, H.; Sivasithamparam, K.; Barbetti, M.J. Soilborne ascospores and pycnidiospores of *Leptosphaeria maculans* can contribute significantly to blackleg disease epidemiology in oilseed rape (*Brassica napus*) in Western Australia. *Australas Plant Pathol.* 2007, 36, 439–444. [CrossRef]
19. West, J.S.; Kharbanda, P.D.; Barbetti, M.J.; Fitt, B.D.L. Epidemiology and management of *Leptosphaeria maculans* (phoma stem canker) on oilseed rape in Australia, Canada and Europe. *Plant Pathol.* 2001, 50, 10–27. [CrossRef]
20. Bokor, A.; Barbetti, M.J.; Brown, A.G.P.; Mac Nish, G.C.A.; Wood, P.M. Blackleg of rapeseed. *J. Dep. Agric. West. Aust. Ser.* 4 1975, 16, 7–10.
21. Chen, C.Y.; Howlett, B.J. Rapid necrosis of guard cells is associated with the arrest of fungal growth in leaves of Indian mustard (*Brassica juncea*) inoculated with avirulent isolates of *Leptosphaeria maculans*. *Physiol. Mol. Plant Pathol.* 1996, 48, 73–81. [CrossRef]
22. Guo, M.; Chen, Y.; Du, Y.; Dong, Y.; Guo, W.; Zhai, S.; Zhang, H.; Dong, S.; Zhang, Z.; Wang, Y.; et al. The bZIP transcription factor MoAPI mediates the oxidative stress response and is critical for pathogenicity of the rice blast fungus *Magnaporthe oryzae*. *PLoS Pathog.* 2011, 7, e1001302. [CrossRef]
23. Hammond, K.E.; Lewis, B.G.; Musa, T.M. A systemic pathway in the infection of oilseed rape plants by *Leptosphaeria maculans*. *Plant Pathol.* 1985, 34, 557–565. [CrossRef]
24. Howlett, B.J.; Idrumr, A.; Pedras, M.S.C. *Leptosphaeria maculans*, the Causal Agent of Blackleg Disease of Brassicas. *Fungal Genet. Biol.* 2001, 33, 1–14. [CrossRef][PubMed]
25. Rimmer, S.R.; Buchwaldt, L. Diseases. In *Canola-encyclopedia/diseases/blackleg/about-blackleg/* (accessed on 10 April 2020).
26. Wang, D. Transferring Blackleg Resistance from *Brassica napus* to *Brassica carinata* and Synthetic Hexaploid *Brassica accessions* into *Brassica napus*. Master’s Thesis, The University of Manitoba, Winnipeg, MB, Canada, 2016.
27. Williams, P.H. Biology of *Leptosphaeria maculans*. *Can. J. Plant Pathol.* 1992, 14, 30–35. [CrossRef]
28. Henderson, M.P. The Black-leg Disease of Cabbage Caused by Phoma lingam (Tode) Desmaz. *Can. J. Plant Pathol.* 1985, 7, 276–283. [CrossRef]
29. Gugel, R.K.; Petrie, G.A. History, occurrence, impact, and control of blackleg of rapeseed. *Can. J. Plant Pathol.* 1992, 14, 36–45. [CrossRef]
30. McGee, D.; Emmett, R. Blackleg (*Leptosphaeria maculans*) (Desm.) Ces. et de Not.) of rapeseed in Victoria: Crop losses and factors which affect disease severity. *Aust. J. Agric. Res.* 1977, 28, 47–51. [CrossRef]
31. Vanterpool, T.C. Rape diseases in Saskatchewan in 1961. *Can. Plant Dis. Surv.* 1961, 41, 372–373.
32. Fitt, B.; Brun, H.; Barbetti, M.J.; Rimmer, S.R. World-Wide Importance of Phoma Stem Canker (*Leptosphaeria maculans* and L. biglobosa) on Oilseed Rape (*Brassica*). *Eur. J. Plant Pathol.* 2006, 114, 3–15. [CrossRef]
33. Toscano-Underwood, C.; Huang, Y.; Fitt, B.; Hall, A. Effects of temperature on maturation of pseudothecia of *Leptosphaeria maculans* and L. biglobosa on oilseed rape stem debris. *Plant Pathol.* 2003, 52, 726–736. [CrossRef]
34. Van de Wouw, A.P.; Macrfort, S.J.; Howlett, B.J. Blackleg disease of canola in Australia. *Crop Pasture Sci.* 2016, 67, 273–283. [CrossRef]
35. Zhang, X.; Fernando, W.G.D. Insights into fighting against blackleg disease of *Brassica napus* in Canada. *Crop Pasture Sci.* 2018, 69, 40–47. [CrossRef]
36. GRDC. Grains Research & Development Corporation “Plan Ahead to Fight Blackleg in Canola This Season”. Available online: https://grdc.com.au/news-and-media/news-and-media-releases/west/2019/4/plan-ahead-to-fight-blackleg-in-canola-this-season (accessed on 10 April 2020).
37. Sprague, S.; Macrfort, S.; van De Wouw, A.P.; Lindbeck, K.; Brill, R.; McMaster, C. Blackleg in Canola—Outcomes from 2016 and Update for 2017. Available online: https://grdc.com.au/resources-and-publications/grdc-update-papers/tab-content/grdc-update-papers/2017/08/blackleg-in-canola-outcomes-from-2016-and-update-for-2017 (accessed on 10 April 2020).
38. Sprague, S.J.; Balesdent, M.-H.; Brun, H.; Hayden, H.L.; Macrfort, S.J.; Pinochet, X.; Rouxel, T.; Howlett, B.J. Major gene resistance in *Brassica napus* (oilseed rape) is overcome by changes in virulence of populations of *Leptosphaeria maculans* in France and Australia. *Eur. J. Plant Pathol.* 2006, 114, 33–40. [CrossRef]
39. Van de Wouw, A.P.; Cozijnsen, A.J.; Hane, J.K.; Brunner, P.C.; McDonald, B.A.; Oliver, R.P.; Howlett, B.J. Evolution of Linked Avirulence Effectors in *Leptosphaeria maculans* Is Affected by Genomic Environment and Exposure to Resistance Genes in Host Plants. *PLoS Pathog.* 2010, 6, e1001180. [CrossRef][PubMed]
40. Fu, Z.Q.; Dong, X. Systemic acquired resistance: Turning local infection into global defense. *Annu. Rev. Plant Biol.* 2013, 64, 839–863. [CrossRef][PubMed]
41. Malinovsky, F.G.; Batoux, M.; Schwessinger, B.; Youn, J.H.; Stransfeld, L.; Win, J.; Kim, S.K.; Zipfél, C. Antagonistic regulation of growth and immunity by the Arabidopsis basic helix-loop-helix transcription factor homolog of brassinosteroid enhanced expression2 interacting with increased leaf inclination1 binding BHLH1. Plant Physiol. 2014, 164, 1443–1455. [CrossRef]

42. Boyd, L.A.; Ridout, C.; O’Sullivan, D.M.; Leach, J.E.; Leung, H. Plant-pathogen interactions: Disease resistance in modern agriculture. Trends Genet. TIG 2013, 29, 233–240. [CrossRef]

43. Freeman, B.C.; Beattie, G.A. An Overview of Plant Defenses against Pathogens and Herbivores. Plant Health Instr. 2008. [CrossRef]

44. Jones, J.D.; Dangl, J.L. The plant immune system. Nature 2006, 444, 323–329. [CrossRef]

45. Zhang, J.; Zhou, J.-M. Plant Immunity Triggered by Microbial Molecular Signatures. Mol. Plant 2010, 3, 783–793. [CrossRef] [PubMed]

46. Cui, H.; Tsuda, K.; Parker, J.E. Effector-triggered immunity: From pathogen perception to robust defense. Annu. Rev. Plant Biol. 2015, 66, 487–511. [CrossRef] [PubMed]

47. Yu, X.; Feng, B.; He, P.; Shan, L. From Chaos to Harmony: Responses and Signaling upon Microbial Pattern Recognition. Annu. Rev. Phytopathol. 2017, 55, 109–137. [CrossRef] [PubMed]

48. Dangl, J.L.; Jones, J.D.G. Plant pathogens and integrated defence responses to infection. Nature 2001, 411, 826–833. [CrossRef]

49. Sekhwal, M.K.; Li, P.; Lam, I.; Wang, X.; Cloutier, S.; You, F.M. Disease Resistance Gene Analogs (RGAs) in Plants. Trends Genet. TIG 2014, 30, 487–511. [PubMed]

50. Gururani, M.A.; Venkatesh, J.; Upadhyaya, C.P.; Nookaraju, A.; Pandey, S.K.; Park, S.W. Plant disease resistance genes: Current status and future directions. Physiol. Mol. Plant Pathol. 2012, 78, 51–65. [CrossRef]

51. McHale, L.; Tan, X.; Koehl, P.; Michelmore, R.W. Plant NBS-LRR proteins: Adaptable guards. Front. Plant Biol. 2017, 8, 109–137. [CrossRef] [PubMed]

52. Meyers, B.C.; Dickerman, A.W.; Michelmore, R.W.; Sivaramakrishnan, S.; Sobral, B.W.; Young, N.D. Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant J. 1999, 20, 317–332. [CrossRef]

53. Oh, J.; Albert, I.; Fan, L.; Reinhard, A.; Nurnberger, T. Immune receptor complexes at the plant cell surface. Curr. Opin. Plant Biol. 2014, 20, 47–54. [CrossRef]

54. Zipfél, C. Plant pattern-recognition receptors. Trends Immunol. 2014, 35, 345–351. [CrossRef]

55. Yang, X.; Deng, F.; Ramonell, K. Receptor-like kinases and receptor-like proteins: Keys to pathogen recognition and defense signaling in plant innate immunity. Front. Biol. 2012, 7, 155–166. [CrossRef]

56. Balesdent, M.H.; Barbetti, M.J.; Li, H.; Sivasithamparam, K.; Gout, L.; Rouxel, T. Analysis of Race Structure of Leptosphaeria maculans (phoma stem canker) in Brassica napus (oilseed rape). Crop Pasture Sci. 2009, 60, 265–272. [CrossRef]

57. Sprague, S.J.; Marcroft, S.J.; Howlett, B.J.; Van de Wouw, A.P. Gene-for-gene resistance is expressed in cotyledons, leaves and pods, but not during late stages of stem colonization in the Leptosphaeria maculans–Brassica napus pathosystem. Plant Breed 2016, 135, 200–207. [CrossRef]

58. Winter, M.; Koopmann, B. Race spectra of Leptosphaeria maculans, the causal agent of blackleg disease of oilseed rape, in different geographic regions in northern Germany. Eur. J. Plant Pathol. 2016, 145, 629–641. [CrossRef]

59. Zhang, X.; Peng, G.; Kucher, H.; Balesdent, M.-H.; Delourme, R.; Fernando, W. Breakdown of Rlm3 resistance in the Brassica napus—Leptosphaeria maculans pathosystem in western Canada. Eur. J. Plant Pathol. 2016, 145, 659–674. [CrossRef]

60. Bayer, P.E.; Hurgobin, B.; Golicz, A.A.; Chan, C.K.; Yuan, Y.; Lee, H.; Renton, M.; Meng, J.; Li, R.; Long, Y.; et al. Assembly and comparison of two closely related Brassica napus genomes. Plant Biotechnol. J. 2017, 15, 1602–1610. [CrossRef] [PubMed]
76. Larkan, N.J.; Yu, F.; Lydiate, D.J.; Rimmer, S.R.; Borhan, M.H. Single R Gene Introgression Lines for Accurate Dissection of the Brassica—Leptosphaeria Pathosystem. Front. Plant Sci. 2016, 7, 1771. [CrossRef] [PubMed]

77. Peng, G.; Yu, F. Understanding the Mechanisms for Race-Specific and Non-Specific Resistance for Effective Use of Cultivar Resistance against Blackleg of Canola in Western Canada; Agriculture and Agri-Food Canada: Saskatoon, SK, Canada, 2018; p. 15.

78. Fu, F.; Liu, X.; Wang, R.; Zhai, C.; Peng, G.; Yu, F.; Fernando, W.G.D. Fine mapping of Brassica napus blackleg resistance gene Rlm1 through bulked segregant RNA sequencing. Sci. Rep. 2019, 9, 14600. [CrossRef] [PubMed]

79. Neik, T.X. Identification of a Candidate Blackleg Resistance Gene in Brassica napus and a Candidate Avirulence Gene in Leptosphaeria maculans in the B. napus—L. maculans Pathosystem. Front. Plant Sci. 2016, 7, 1513. [CrossRef]

80. Stotz, H.U.; Harvey, P.J.; Haddadi, P.; Mashanova, A.; Kukol, A.; Larkan, N.J.; Borhan, M.H.; Fitt, B.D.L. Genomic evidence for genes encoding leucine-rich repeat receptors linked to resistance against the eukaryotic extra- and intracellular Brassica napus pathogens Leptosphaeria maculans and Plasmodiophora brassicae. PLoS ONE 2018, 13, e0198201. [CrossRef] [PubMed]

81. Yang, H. Identification of Candidate Genes for Blackleg Resistance in the New Canola cultivar ‘Surpass 400’. Theor. Appl. Genet. 2017, 130, 1265–1274. [CrossRef] [PubMed]

82. Dolatabadian, A.; Bayer, P.E.; Tirnaz, S.; Hurgobin, B.; Edwards, D.; Batley, J. Characterization of disease resistance genes in the Brassica napus pangenome reveals significant structural variation. Plant Biotechnol. J. 2019, 18, 969–982. [CrossRef] [PubMed]

83. Flor, H.H. Current Status of the Gene-For-Gene Concept. Annu. Rev. Phytopathol. 1971, 9, 275–296. [CrossRef]

84. Becker, M.G.; Zhang, X.; Walker, P.L.; Wan, J.C.; Millar, J.L.; Khan, D.; Granger, M.J.; Cavers, J.D.; Chan, A.C.; Fernando, D.W.G.; et al. Transcriptome analysis of the Brassica napus–Leptosphaeria maculans pathosystem identifies receptor, signaling and structural genes underlying plant resistance. Plant J. 2017, 90, 573–586. [CrossRef]

85. Dolatabadian, A.; Bayer, P.E.; Tirnaz, S.; Hurgobin, B.; Edwards, D.; Batley, J. Variation in abundance of predicted resistance genes in the Brassica oleracea pangenome. Plant Biotechnol. J. 2019, 17. [CrossRef]

86. Raman, H.; Raman, R.; Coombes, N.; Luckett, D.; Salisbury, P.; Cowley, R.; Marcroft, S.; Raman, H. Genetic and physical mapping of loci for resistance to blackleg disease in canola (Brassica napus L.). Sci. Rep. 2020, 10, 4416. [CrossRef] [PubMed]

87. Peng, G.; Yu, F. Understanding the Mechanisms for Race-Specific and Non-Specific Resistance for Effective Use of Cultivar Resistance against Blackleg of Canola in Western Canada; Agriculture and Agri-Food Canada: Saskatoon, SK, Canada, 2018; p. 15.

88. Dolatabadian, A.; Bayer, P.E.; Tiranaz, S.; Chan, C.K.K.; Edwards, D.; Batley, J. Inheritance Pattern and Long, Y.; Wang, Z.; Sun, Z.; Fernando, D.; McVetty, P.; Li, G. Identification of two blackleg resistance genes and fine mapping of physical markers underlying plant resistance. Plant J. 2018, 16, 1265–1274. [CrossRef]

89. Becker, M.G.; Zhang, X.; Walker, P.L.; Wan, J.C.; Millar, J.L.; Khan, D.; Granger, M.J.; Cavers, J.D.; Chan, A.C.; Fernando, D.W.G.; et al. Transcriptome analysis of the Brassica napus–Leptosphaeria maculans pathosystem identifies receptor, signaling and structural genes underlying plant resistance. Plant J. 2017, 90, 573–586. [CrossRef]

90. Ferdous, M.J.; Hossain, M.R.; Park, J-I.; Robin, A.H.K.; Jesse, D.M.I.; Jung, H.-J.; Kim, H.-T.; Nou, I.-S. In-silico identification and differential expression of putative disease resistance-related genes within the collinear region of Brassica napus blackleg resistant locus LepR2 in Brassica oleracea. Hortic. Environ. Biotechnol. 2020, 61, 879–890. [CrossRef]

91. Yang, H. Identification of Candidate Genes for Blackleg Resistance in the New Brassica juncea Canola. Ph.D. Thesis, The University of Queensland, Brisbane, Australia, 2018.

92. Stotz, H.U.; Harvey, P.J.; Haddadi, P.; Mashanova, A.; Kukol, A.; Larkan, N.J.; Borhan, M.H.; Fitt, B.D.L. Genomic evidence for genes encoding leucine-rich repeat receptors linked to resistance against the eukaryotic extra- and intracellular Brassica napus pathogens Leptosphaeria maculans and Plasmodiophora brassicae. PLoS ONE 2018, 13, e0198201. [CrossRef] [PubMed]

93. Flor, H.H. Current Status of the Gene-For-Gene Concept. Annu. Rev. Phytopathol. 1971, 9, 275–296. [CrossRef]

94. Stotz, H.U.; Harvey, P.J.; Haddadi, P.; Mashanova, A.; Kukol, A.; Larkan, N.J.; Borhan, M.H.; Fitt, B.D.L. Genomic evidence for genes encoding leucine-rich repeat receptors linked to resistance against the eukaryotic extra- and intracellular Brassica napus pathogens Leptosphaeria maculans and Plasmodiophora brassicae. PLoS ONE 2018, 13, e0198201. [CrossRef] [PubMed]

95. Yang, H. Identification of Candidate Genes for Blackleg Resistance in the New Brassica juncea Canola. Ph.D. Thesis, The University of Queensland, Brisbane, Australia, 2018.

96. Inturrisi, F.C. Genome-Wide Analysis of NBS-LRR Genes in Indian Mustard (Brassica juncea) and Prediction of Candidate Disease Resistance Genes. Ph.D. Thesis, The University of Western Australia, Perth, Australia, 2018.

97. Flor, H.H. Current Status of the Gene-For-Gene Concept. Annu. Rev. Phytopathol. 1971, 9, 275–296. [CrossRef]

98. Stotz, H.U.; Harvey, P.J.; Haddadi, P.; Mashanova, A.; Kukol, A.; Larkan, N.J.; Borhan, M.H.; Fitt, B.D.L. Genomic evidence for genes encoding leucine-rich repeat receptors linked to resistance against the eukaryotic extra- and intracellular Brassica napus pathogens Leptosphaeria maculans and Plasmodiophora brassicae. PLoS ONE 2018, 13, e0198201. [CrossRef] [PubMed]

99. Yang, H. Identification of Candidate Genes for Blackleg Resistance in the New Brassica juncea Canola. Ph.D. Thesis, The University of Queensland, Brisbane, Australia, 2018.
96. Ansan-Mehayah, D.; Balesdent, M.; Rouxel, T.; Delourme, R.; Pilet, M.; Tanguy, X.; Renard, M. Genes for race-specific resistance against blackleg disease in *Brassica napus*. *Plant Breed.* 1998, 117, 373–378. [CrossRef]

97. Larkan, N.J.; Lydiate, D.J.; Parkin, I.A.; Nelson, M.N.; Epp, D.J.; Cowling, W.A.; Rimmer, S.R.; Borhan, M.H. The *Brassica napus* blackleg resistance gene LepR3 encodes a receptor-like protein triggered by the *Leptosphaeria maculans* effector AVR.Lm1. *New Phytol.* 2013, 197, 595–605. [CrossRef]

98. Chalhoub, B.; Denoeud, F.; Liu, S.; Parkin, I.A.; Tang, H.; Chiquet, J.; Belcram, H.; Tong, C.; Samans, B.; et al. Plant genetics. Early allopolyploid evolution in the post-Neolithic *Brassica napus* oilseed genome. *Science* 2014, 345, 950–953. [CrossRef]

99. Johnson, R.D.; Lewis, B.G. Variation in host range, systemic infection and epidemiology of *Leptosphaeria maculans*. *Plant Pathol.* 1994, 43, 269–277. [CrossRef]

100. Larkan, N.J.; Ma, L.; Borhan, M.H. The *Brassica napus* receptor-like protein RLM2 is encoded by a second allele of the LepR3/Rlm2 blackleg resistance locus. *Plant Biotechnol.* J. 2015, 13, 983–992. [CrossRef] [PubMed]

101. Ma, L.; Borhan, M.H. The receptor-like kinase SOBIR1 interacts with *Brassica napus* LepR3 and is required for *Leptosphaeria maculans* AvrLm1-triggered immunity. *Front. Plant Sci.* 2015, 6, 933. [CrossRef] [PubMed]

102. Neik, T.X.; Ghanbarnia, K.; Ollivier, B.; Scheben, A.; Severn-Ellis, A.; Larkan, N.J.; Haddadi, P.; Fernando, W.G.D.; Rouxel, T.; Batley, J.; et al. Two independent approaches converge to the cloning of a new *Leptosphaeria maculans* avirulence effector gene AvrLmS-Lep2. *bioRxiv* 2020. [CrossRef]

103. Ghanbarnia, K.; Ma, L.; Larkan, N.J.; Haddadi, P.; Fernando, W.G.D.; Borhan, M.H. *Leptosphaeria maculans* AvrLm9: A new player in the game of hide and seek with AvrLm4-7. *Mol. Plant Pathol.* 2018, 19, 1754–1764. [CrossRef] [PubMed]

104. Balesdent, M.H.; Attard, A.; Kuhn, M.L.; Rouxel, T. New Avirulence Genes in the Phytopathogenic Fungus *Leptosphaeria maculans*. *Phytopathology* 2002, 92, 1122–1133. [CrossRef] [PubMed]

105. Rimmer, S. Resistance genes to *Leptosphaeria maculans* in *Brassica napus*. *Can. J. Plant Pathol.* 2006, 28, S288–S297. [CrossRef]

106. Larkan, N.J.; Ma, L.; Haddadi, P.; Buchwaldt, M.; Parkin, I.A.P.; Djavaheri, M.; Borhan, M.H. The *Brassica napus* Wall-Associated Kinase-Like (WAKL) gene Rlm9 provides race-specific blackleg resistance. *Plant J.* 2020, n/a. [CrossRef]

107. Parlangue, F.; Daverdin, G.; Fudal, I.; Kuhn, M.L.; Balesdent, M.H.; Blaise, F.; Grezes-Besset, B.; Rouxel, T. *Leptosphaeria maculans* avirulence gene AvrLm4-7 confers a dual recognition specificity by the Rlm4 and Rlm7 resistance genes of oilseed rape, and circumvents Rlm4-mediated recognition through a single amino acid change. *Mol. Microbiol.* 2009, 71, 851–863. [CrossRef]

108. Delourme, R.; Pilet-Nayel, M.L.; Archipiano, M.; Horvais, R.; Tanguy, X.; Rouxel, T.; Brun, H.; Renard, M.; Balesdent, M.H. A Cluster of Major Specific Resistance Genes to *Leptosphaeria maculans* in *Brassica napus*. *Phytopathology* 2004, 94, 578–583. [CrossRef]

109. Van de Wouw, A.P.; Howlett, B.J. Advances in understanding the *Leptosphaeria maculans—Brassica pathosystem* and their impact on disease management. *Can. J. Plant Pathol.* 2019, 1–15. [CrossRef]

110. Wang, X.; Wang, H.; Wang, J.; Sun, R.; Wu, J.; Liu, S.; Bai, Y.; Mun, J.H.; Bancroft, I.; Cheng, F.; et al. The genome of the mesopolyploid crop species *Brassica rapa*. *Nat. Genet.* 2011, 43, 1035–1039. [CrossRef]

111. Robin, A.; Larkan, N.; Laila, R.; Park, J.-I.; Ahmed, N.; Borhan, H.; Parkin, I.; Nou, I.-S. Korean *Brassica* oliacea germplasm offers a novel source of qualitative resistance to blackleg disease. *Eur. J. Plant Pathol.* 2017, 149, 611–623. [CrossRef]

112. Eber, F.; Lourangi, K.; Brun, H.; Lode, M.; Huteau, V.; Corotin, O.; Alix, K.; Balesdent, M.; Chevre, A.M. Analysis of *Brassica nigra* Chromosomes Allows Identification of a New Effective *Leptosphaeria maculans* resistance Gene Inintrogressed in *Brassica napus*. In Proceedings of the 13th International Rapeseed Congress, Prague, Czech Republic, 5–9 June 2011.

113. Petit-Houdenot, Y.; Degrave, A.; Meyer, M.; Blaise, F.; Ollivier, B.; Marais, C.-L.; Jaunee, A.; Audran, C.; Rivas, S.; Veneault-Fourrey, C.; et al. A two genes—for—one gene interaction between *Leptosphaeria maculans* and *Brassica napus*. *New Phytol.* 2019, 223, 397–411. [CrossRef] [PubMed]

114. Balesdent, M.H.; Fudal, I.; Ollivier, B.; Bally, P.; Grandaubert, J.; Eber, F.; Chevre, A.M.; Leflon, M.; Rouxel, T. The dispensable chromosome of *Leptosphaeria maculans* shelters an effector gene conferring avirulence towards *Brassica* rapa. *New Phytol.* 2013, 198, 887–898. [CrossRef] [PubMed]

115. Yu, F.; Lydiate, D.J.; Rimmer, S.R. Identification of two novel genes for blackleg resistance in *Brassica napus*. *Theor. Appl. Genet.* 2005, 110, 969–979. [CrossRef] [PubMed]

116. Zhou, T.; Xu, W.; Hirani, A.H.; Liu, Z.; Tuan, P.A.; Ayele, B.T.; Daayf, F.; McVetty, P.B.E.; Duncan, R.W.; Li, G. Transcriptional Insight Into *Brassica napus* Resistance Genes LepR3 and Rlm2-Mediated Defense Response Against the *Leptosphaeria maculans* Infection. *Front. Plant Sci.* 2019, 10, 823. [CrossRef]

117. Dusabenyagashani, M.; Fernando, D. Development of a SCAR Marker to Track Canola Resistance against Blackleg Caused by *Leptosphaeria maculans* Pathogenicity Group 3. *Plant Dis.* 2008, 92, 903–908. [CrossRef]

118. Larkan, N.; Lydiate, D.; Yu, F.; Rimmer, S.; Borhan, H. Co-localisation of the blackleg resistance genes Rlm2 and LepR3 on *Brassica napus* chromosome A10. *BMC Plant Biol.* 2014, 14, 1595. [CrossRef]

119. Rahman, R.; Taylor, B.; Marcroft, S.; Stiller, J.; Eckermann, P.; Coombes, N.; Rehan, A.; Lindbeck, K.; Luckett, D.; Watten, N.; et al. Molecular mapping of qualitative and quantitative loci for resistance to *Leptosphaeria maculans* causing blackleg disease in canola (*Brassica napus* L.). *Theor. Appl. Genet.* 2012, 125, 405–418. [CrossRef]

120. Rahman, H. Review: Breeding spring canola (*Brassica napus* L.) by the use of exotic germplasm. *Can. J. Plant Sci.* 2013, 93, 363–373. [CrossRef]
121. Li, C.X.; Cowling, W.A. Identification of a single dominant allele for resistance to blackleg in *Brassica napus* ‘Surpass 400’. *Plant Breed* 2003, 122, 485–488. [CrossRef]

122. Chen, C.Y.; Seguin-Swartz, G. A comparative study of the response of wild crucifers to the blackleg fungus, *Phoma lingam*. *Can. J. Plant Pathol.* 1997, 19, 107. [CrossRef]

123. Chen, C.Y.; Seguin-Swartz, G. Reaction of wild crucifers to *Leptosphaeria maculans*, the causal agent of blackleg of crucifers. *Can. J. Plant Pathol.* 1999, 21, 361–367. [CrossRef]

124. Gugel, R.; Seguin-Swartz, G.; Warwick, S.I. Transfer of blackleg resistance from *Erucastrum gallicum* to *Brassica rapa*. In Proceedings of the 67th Annual Meetings of Canadian Phytopathological Society, Saskatoon, SK, Canada, 23–26 June 1996.

125. Gugel, R.K.; Seguin-Swartz, G. Introggression of blackleg resistance from *Sinapis alba* into *Brassica napus*. In Proceedings of the Brassica 97, Int Soc Hort Sci Symp Brassicas/10th Crucifer Genetics Workshop, Rennes, France, 23–27 September 1997; p. 222.

126. Li, H.; Barbetti, M.J.; Sivasithamparam, K. Hazard from reliance on cruciferous hosts as sources of major gene-based resistance for managing blackleg (*Leptosphaeria maculans*) disease. *Field Crops Res.* 2005, 91, 185–198. [CrossRef]

127. Mithen, R.F.; Lewis, B.G.; Heaney, R.K.; Fenwick, G.R. Resistance of leaves of *Brassica* species to *Leptosphaeria maculans*. *Trans. Br. Mycol. Soc.* 1987, 88, 525–531. [CrossRef]

128. Mithen, R.F.; Magrath, R. Glucosinolates and Resistance to *Leptosphaeria maculans* in Wild and Cultivated *Brassica* Species. *Plant Breed* 1992, 108, 60–68. [CrossRef]

129. Pedras, M.S.; Chumala, P.B.; Suchy, M. Phytoalexins from *Thlaspi arvense*, a wild crucifer resistant to virulent *Leptosphaeria maculans*: Structures, syntheses and antifungal activity. *Phytochemistry* 2003, 64, 949–956. [CrossRef]

130. Plümper, B. Somatische und sexuelle Hybridisierung für den Transfer von Krankheitsresistenzen auf *Brassica napus*–L. *Ph.D. Thesis*, Free University of Berlin, Berlin, Germany, 1995.

131. Tewari, J.P.; Bansal, V.K.; Tewari, I.; Gogoi, S. Examinations on the Introgression of Resistances to Blackleg [*Leptosphaeria maculans* (Desm.) Ces. et De Not.] from *Brassica rapa* L. to *Brassica napus* L. Int. Rapeseed Congress, Copenhagen, Denmark, 6–10 July 2003; pp. 32–35.

132. Winter, H. Untersuchungen zur Introggression von Resistenzen gegen die Wurzelhals- und Stengelfäule [*Leptosphaeria maculans* (Descr.) Ces. et De Not.] aus Verwandten Arten in den Raps (*Brassica napus* L.): Examinations on the Introggression of Resistances to Blackleg [*Leptosphaeria maculans* (Descr.) Ces. et De Not.] into oilseed rape (*Brassica napus* L.) from Related Species. Ph.D. Thesis, Freie Universität Berlin, Universitätsbibliothek, Berlin, Germany, 2004.

133. Winter, H.; Diestel, A.; Gärtig, S.; Krone, N.; Sterenberg, K.; Sasrastì, M.D. Transfer of new blackleg resistances into oilseed rape. In Proceedings of the GCIRC 11th Int. Rapeseed Congress, Copenhagen, Denmark, 6–10 July 2003; pp. 19–21.

134. Winter, H.; Gaertig, S.; Diestel, A.; Sasrastì, M.D. Blackleg resistance of different origin transferred into *Brassica napus*. In Proceedings of the GCIRC 10th Int Rapeseed Congress, Canberra, Australia, 26–29 September 1999.

135. Alamery, S.; Tirnaz, S.; Bayer, P.; Tollenaere, R.; Chaloub, B.; Edwards, D.; Batley, J. Genome-wide identification and comparative analysis of NBS-LRR resistance genes in *Brassica napus*. *Crop Pasture Sci.* 2017, 69, 79–93. [CrossRef]

136. Fu, Y.; Zhang, Y.; Mason, A.S.; Lin, B.; Zhang, D.; Yu, H.; Fu, D. NBS-Encoding Genes in *Brassica napus* Evolved Rapidly After Allopolyploidization and Co-localize With Known Disease Resistance Loci. *Front. Plant Sci.* 2019, 10, 26. [CrossRef]

137. Hofberger, J.A.; Zhou, B.; Tang, H.; Jones, J.D.G.; Schranz, M.E. A novel approach for multi-domain and multi-gene family identification provides insights into evolutionary dynamics of disease resistance genes in core eudicot plants. *BMC Genom.* 2014, 15, 966. [CrossRef]

138. Li, P.; Quan, X.; Jia, G.; Xiao, J.; Cloutier, S.; You, F.M. RGAugury: A pipeline for genome-wide prediction of resistance gene analogs (RGAs) in plants. *BMC Genom.* 2016, 17, 852. [CrossRef]

139. Liu, Z.; Xie, J.; Wang, H.; Zhong, X.; Li, H.; Yu, J.; Kang, J. Identification and expression profiling analysis of NBS-LRR resistance genes in *Brassica napus* × *B. carinata*. In Proceedings of the 11th International Rapeseed Congress, Copenhagen, Denmark, 6–10 July 2003; pp. 32–35.

140. Tirnaz, S.; Bayer, P.; Inturrisi, F.; Neik, T.; Yang, H.; Dolatabadian, A.; Zhang, F.; Severn-Ellis, A.; Patel, D.; Pradhan, A.; et al. Resistance gene analogs in the Brassicaceae: Identification, characterization, distribution and evolution. *Plant Physiol.* 2020, 184, 909–922. [CrossRef]

141. Toda, N.; Rustenholz, C.; Bau, D.; Le Paslier, M.-C.; Amselem, J.; Merdinger, D.; Fairev-Vampaet, P. NLSweeper: A Tool for Genome-Wide NBS-LRR Resistance Gene Identification. *Genes* 2020, 11, 333. [CrossRef]

142. Yu, J.; Tehrim, S.; Zhang, F.; Tong, C.; Huang, J.; Cheng, X.; Dong, C.; Zhou, Y.; Qin, R.; Hua, W.; et al. Genome-wide comparative analysis of NBS-encoding genes between *Brassica* species and *Arabidopsis thaliana*. *BMC Genom.* 2014, 15, 3. [CrossRef]

143. Zhang, Y.-M.; Shao, Z.-Q.; Wang, Q.; Hang, Y.-Y.; Xue, J.-Y.; Wang, B.; Chen, J.-Q. Uncovering the dynamic evolution of nucleotide-binding site-leucine-rich repeat (NBS-LRR) genes in *Brassicaceae*. *J. Integr. Plant Biol.* 2015. [CrossRef]

144. Chëvre, A.M.; dePonce Leon, A.; Jenczewski, E.; Eber, F.; Delourme, R.; Renard, M.; Brun, H. Introduction of blackleg resistance from *Brassica rapa* into *Brassica napus*. *Theor. Appl. Genet.* 2014, 127, 1305–1318. [CrossRef]

145. Navabi, Z.K.; Parkin, I.A.; Pires, J.C.; Xiong, Z.; Thiagarajah, M.R.; Good, A.G.; Rahman, M.H. Introggression of B-genome chromosomes in a doubled haploid population of *Brassica napus × B. carinata*. *Genome* 2010, 53, 619–629. [CrossRef]
147. Navabi, Z.K.; Stead, K.E.; Pires, J.C.; Xiong, Z.; Sharpe, A.G.; Parkin, I.A.P.; Rahman, M.H.; Good, A.G. Analysis of B-genome chromosome introgression in interspecific hybrids of Brassica napus × B. carinata. Genetics 2011, 187, 659–673. [CrossRef]
148. Chevre, A.M.; Brun, H.; Eber, F.; Letanneur, J.C.; Vallee, P.; Ermel, M.; Glais, I.; Hua, L.; Sivasthamparam, K.; Barbetti, M.J. Stabilization of Resistance to Leptosphaeria maculans in Brassica napus—B. juncea Recombinant Lines and Its Intronsection into Spring-Type Brassica napus. Plant Dis. 2008, 92, 1208–1214. [CrossRef]
149. Eber, F.; Delourme, R.; Barret, P.; Lourgant, K.; Brun, H.; Renard, M.; Chevre, A.M. Characterisation and efficiency of mustard blackleg resistance genes introgressed into oilseed rape. In Proceedings of the 10th International Rapeseed Congress, Canberra, Australia, 26–29 September 1999.
150. Saal, B.; Brun, H.; Glais, I.; Struss, D. Identification of a Brassica juncea-derived recessive gene conferring resistance to Leptosphaeria maculans in oilseed rape. Plant Breed 2004, 123, 505–511. [CrossRef]
151. Gaeblein, R.; Alnajar, D.; Mason, A.S. Hybrids between Brassica napus and B. nigra show frequent pairing between the B and A/C genomes and resistance to blackleg. Chromosome Res. 2019, 27, 221–236. [CrossRef] [PubMed]
152. Gaeblein, R.; Alnajar, D.; Mason, A. Brassica napus × Brassica nigra hybrids for blackleg resistance introgression in rapeseed breeding. In Proceedings of the German Plant Breeding Conference, Wernigerode, Deutschland, 28 February–2 March 2018.
153. Hu, Q.; Andersen, S.; Dixelius, C.; Hansen, L. Production of fertile intergeneric somatic hybrids between Brassica napus and Sinapis arvensis for the enrichment of the rapeseed gene pool. Plant Cell Rep. 2002, 21, 147–152. [CrossRef]
154. Snowdon, R.; Winter, H.; Diestel, A.; Sacristán, M. Development and characterisation of Brassica napus–Sinapis arvensis addition lines exhibiting resistance to Leptosphaeria maculans. Theor. Appl. Genet. 2000, 101, 1008–1014. [CrossRef]
155. Liu, J.-H.; Landgren, M.; Glimelius, K. Transfer of the Brassica tournefortii cytoplasm to Sinapis arvensis. [CrossRef]
156. Goff, K.E.; Ramonell, K.M. The role and regulation of receptor-like kinases in plant defense. Gene Regul. Syst. Biol. 2007, 1, 167–175. [CrossRef]
157. Belkhadir, Y.; Chory, J. Brassinosteroid Signaling: A Paradigm for Steroid Hormone Signaling from the Cell Surface. Science 2006, 314, 1410. [CrossRef]
158. Ogawa, M.; Shinohara, H.; Sakagami, Y.; Matsubayashi, Y. Arabidopsis CLV3 peptide directly binds CLV1 ectodomain. Science 2008, 319, 294. [CrossRef]
159. Torii, K.U. Mix-and-match: Ligand–receptor pairs in stomatal development and beyond. Trends Plant Sci. 2012, 17, 711–719. [CrossRef]
160. Ade, J.; DeYoung, B.J.; Golstein, C.; Innes, R.W. Indirect activation of a plant nucleotide binding site–leucine-rich repeat protein by a bacterial protease. Proc. Natl. Acad. Sci. USA 2004, 101, 2531. [CrossRef]
161. Albert, I.; Böhm, H.; Albert, M.; Feiler, C.E.; Imkamp, J.; Wallmeroth, N.; Brancato, C.; Raaymakers, T.M.; Oome, S.; Zhang, H.; et al. An RLP23–SOBIR1–BAK1 complex mediates NLP-triggered immunity. Nat. Plants 2015, 1, 15140. [CrossRef]
162. Albert, I.; Zhang, L.; Bemm, H.; Nürnberger, T. Structure-Function Analysis of Immune Receptor AtRLP23 with Its Ligand nlp20 and Coreceptors AtSOBIR1 and AtBAK1. Mol. Plant Microbe Interact. 2019, 32, 1038–1046. [CrossRef]
163. Liu, J.; Elmore, J.M.; Lin, Z.-J.D.; Coaker, G. A Receptor-like Cytoplasmic Kinase Phosphorylates the Host Target RIN4, Leading to the Activation of a Plant Innate Immune Receptor. Cell Host Microbe 2011, 9, 137–146. [CrossRef]
164. Mackey, D.; Holt, B.F.; Wiig, A.; Danl, J.L. RIN4 Interacts with Pseudomonas syringae Type III Effector Molecules and Is Required for RPM1-Mediated Resistance in Arabidopsis. Cell 2002, 108, 743–754. [CrossRef]
165. Shao, F.; Golstein, C.; Ade, J.; Stoutemyer, M.; Dixon, J.E.; Innes, R.W. Cleavage of Arabidopsis PBS1 by a Bacterial Type III Effector. Science 2003, 301, 1230. [CrossRef]
166. Swiderski, M.R.; Innes, R.W. The Arabidopsis PBS1 resistance gene encodes a member of a novel protein kinase subfamily. Plant J. 2001, 26, 101–112. [CrossRef]
167. van der Burgh, A.M.; Postma, J.; Robatzek, S.; Joosten, M.H.A.J. Kinase activity of SOBIR1 and BAK1 is required for immune signalling. Mol. Plant Pathol. 2019, 20, 410–422. [CrossRef]
168. Shiu, S.-H.; Bleecker, A.B. Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc. Natl. Acad. Sci. USA 2001, 98, 10763. [CrossRef]
169. Kourulis, J.; van der Hoorn, R.A.L. Defended to the Nines: 25 Years of Resistance Gene Cloning Identifies Nine Mechanisms for R Protein Function. Plant Cell 2018, 30, 285. [CrossRef]
170. Caplan, J.L.; Mamillapalli, P.; Burch-Smith, T.M.; Czymmek, K.; Dinesh-Kumar, S.P. Chloroplastic protein NRIP1 mediates innate immune receptor recognition of a viral effector. Cell 2008, 132, 449–462. [CrossRef]
171. Lewis, J.D.; Lee, A.H.; Hassan, J.A.; Wan, J.; Hurley, B.; Jingree, J.R.; Wang, P.W.; Lo, T.; Youn, J.Y.; Guttmann, D.S.; et al. The Arabidopsis ZED1 pseudokinase is required for ZAR1-mediated immunity induced by the Pseudomonas syringae type III effector HopZ1a. Proc. Natl. Acad. Sci. USA 2013, 110, 18722–18727. [CrossRef]
172. Bernoux, M.; Ellis, J.G.; Dodds, P.N. New insights in plant immunity signaling activation. Curr. Opin. Plant Biol. 2011, 14, 512–518. [CrossRef] [PubMed]
173. Hatakeyama, K.; Suwabe, K.; Tomita, R.N.; Kato, T.; Nunome, T.; Fukuoka, H.; Matsumoto, S. Identification and Characterization of Crr1a, a Gene for Resistance to Clubroot Disease (Plasmodiophora brassicae Woronin) in Brassica rapa L. PLoS ONE 2013, 8, e54745. [CrossRef] [PubMed]
174. Ueno, H.; Matsumoto, E.; Aruga, D.; Kitagawa, S.; Matsumura, H.; Hayashida, N. Molecular characterization of the CRa gene conferring clubroot resistance in Brassica rapa. *Plant Mol. Biol.* 2012, 80, 621–629. [CrossRef] [PubMed]

175. Zipfel, C.; Oldroyd, G.E. Plant signalling in symbiosis and immunity. *Nature* 2017, 543, 328–336. [CrossRef]

176. Roy, N.N. Interspecific transfer of Brassica juncea type high blackleg resistance to Brassica napus. *Exsyytica* 1984, 33, 295–303. [CrossRef]

177. Schellhout, C.J.; Snowdon, R.; Cowling, W.A.; Wroth, J.M. Tracing B-genome chromatin in *Brassica napus × B. juncea* interspecific progeny. *Genome* 2006, 49, 1490–1497. [CrossRef]

178. Perumal, S.; Koh, C.S.; Jin, L.; Buchwaldt, M.; Higgins, E.E.; Zheng, C.; Sankoff, D.; Robinson, S.J.; Kagale, S.; Navabi, Z.-K.; et al. A high-contigiosity Brassica nigra genome localizes active centromeres and defines the ancestral Brassica genome. *Nat. Plants* 2020, 6, 929–941. [CrossRef]

179. Khedikar, Y.; Clarke, W.E.; Chen, L.; Higgins, E.E.; Kagale, S.; Koh, C.S.; Bennett, R.; Parkin, I.A.P. Narrow genetic base shapes population structure and linkage disequilibrium in an industrial oilseed crop, *Brassica carinata* A. Braun. *Sci. Rep.* 2020, 10, 12629. [CrossRef]

180. Cheng, C.Y.; Krishnakumar, V.; Chan, A.P.; Thibaud-Nissen, F.; Schobel, S.; Town, C.D. Araport11: A complete reannotation of the *Arabidopsis thaliana* reference genome. *Plant J.* 2014, 14, 298. [CrossRef] [PubMed]

181. Peele, H.M.; Guan, N.; Fogelqvist, J.; Dixelius, C. Loss and retention of resistance genes in five species of the Brassicaceae family. *BMC Plant Biol.* 2014, 14, 2. [CrossRef] [PubMed]

182. Staal, J.; Kaliff, M.; Bohman, S.; Dixelius, C. Transgressive segregation reveals two Arabidopsis TIR-NB-LRR resistance genes effective against *Leptosphaeria maculans*, causal agent of blackleg disease. *Plant J.* 2006, 46, 218–230. [CrossRef] [PubMed]

183. Bohman, S.; Staal, J.; Thomma, B.P.; Wang, M.; Dixelius, C. Characterisation of an Arabidopsis-*Leptosphaeria maculans* pathosystem: Resistance partially requires camalexin biosynthesis and is independent of salicylic acid, ethylene and jasmonic acid signalling. *Plant J.* 2004, 37, 9–20. [CrossRef] [PubMed]

184. Persson, M.; Staal, J.; Oide, S.; Dixelius, C. Layers of Defense Responses to *Leptosphaeria maculans* below the RLM1- and Camalexin-Dependent Resistances. *New Phytol.* 2009, 182, 470–482. [CrossRef]

185. Staal, J.; Kaliff, M.; Dewaele, E.; Persson, M.; Dixelius, C. RLM3, a TIR domain encoding gene involved in broad-range immunity of Arabidopsis to necrotrophic fungal pathogens. *Plant J.* 2008, 55, 188–200. [CrossRef]

186. Peele, H.M. *Defense Gene Responses toward Necrotrophic Fungi in Arabidopsis Thaliana*; Swedish University of Agricultural Sciences: Uppsala, Sweden, 2015.

187. Cavaïuolo, M.; Cocetta, G.; Spadafora, N.D.; Müller, C.T.; Rogers, H.J.; Ferrante, A. Gene expression analysis of root salad under pre-harvest and postharvest stresses: A transcriptomic resource for *Diplotaxis tenuifolia*. *PLoS ONE* 2017, 12, e0178119. [CrossRef]

188. Kumari, P.; Singh, K.P.; Rai, P.K. Draft genome of multiple resistance donor plant Sinapis alba: An insight into SSRs, annotations and phylogenetics. *PLoS ONE* 2020, 15, e0231002. [CrossRef]

189. Liu, J.; Mei, D.; Li, Y.; Huang, S.; Hu, Q. Deep RNA-Seq to unlock the gene bank of floral development in *Sinapis arvensis*. *PLoS ONE* 2014, 9, e105775. [CrossRef]

190. Cai, C.; Wang, X.; Aruga, D.; Kitagawa, S.; Matsumura, H.; Hayashida, N. Molecular characterization of the CRa gene conferring clubroot resistance in Brassica rapa. *Plant Mol. Biol.* 2012, 80, 621–629. [CrossRef] [PubMed]

191. Parkin, I.A.P.; Koh, C.; Tang, H.; Robinson, S.J.; Kagale, S.; Clarke, W.E.; Town, C.D.; Nixon, J.; Krishnakumar, V.; Bidwell, S.L.; et al. Transcriptome and methylome profiling reveals relics of genome dominance in the mesopolyploid Brassica oleracea. *Genome Biol.* 2014, 15, R77. [CrossRef]

192. Bayer, P.E.; Golicz, A.A.; Scheben, A.; Batley, J.; Edwards, D. Plant pan-genomes are the new reference. *Nat. Plants* 2020, 6, 914–920. [CrossRef] [PubMed]

193. Danilevitz, M.F.; Tay Fernandez, C.G.; Marsh, J.I.; Bayer, P.E.; Edwards, D. Plant pangenomics: Approaches, applications and advancements. *Curr. Opin. Plant Biol.* 2020, 54, 18–25. [CrossRef]

194. Golicz, A.A.; Bayer, P.E.; Bhalla, P.L.; Batley, J.; Edwards, D. Pangenomics Comes of Age: From Bacteria to Plant and Animal Applications. *Trends Genet.* 2020, 36, 132–145. [CrossRef]

195. Montenegro, J.D.; Golicz, A.A.; Bayer, P.E.; Hurgobin, B.; Lee, H.; Chan, C.-K.K.; Visendi, P.; Lai, K.; Doležel, J.; Batley, J.; et al. The pangenome of hexaploid bread wheat. *Plant Mol. Biol.* 2017, 90, 1007–1013. [CrossRef] [PubMed]

196. Yu, J.; Golicz, A.A.; Lu, K.; Dossa, K.; Zhang, Y.; Chen, J.; Wang, L.; You, J.; Fan, D.; Edwards, D.; et al. Insight into the evolution and functional characteristics of the pan-genome assembly from sesame landraces and modern cultivars. *Plant Biotechnol. J.* 2019, 17, 881–892. [CrossRef] [PubMed]

197. Song, J.-M.; Guan, Z.; Hu, J.; Guo, C.; Yang, Z.; Wang, S.; Liu, D.; Wang, B.; Lu, S.; Zhou, R.; et al. Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of *Brassica napus*. *Nat. Plants* 2020, 6, 34–45. [CrossRef] [PubMed]

198. Aylward, J.; Steenkamp, E.T.; Dreyer, L.L.; Roets, F.; Wingfield, B.D.; Wingfield, M.J. A plant pathology perspective of fungal genome sequencing. *IMA Fungus* 2017, 8, 1–15. [CrossRef]

199. Fudal, I.; Ross, S.; Gout, L.; Blaise, F.; Kuhn, M.L.; Eckert, M.R.; Cattolico, L.; Bernard-Samain, S.; Balesdent, M.H.; Rouxel, T. Heterochromatin-like regions as ecological niches for avirulence genes in the *Leptosphaeria maculans* genome: Map-based cloning of AvrLm6. *Mol. Plant Microbe Interact.* 2007, 20, 459–470. [CrossRef]
200. Ghanbarnia, K.; Fudal, I.; Larkan, N.J.; Links, M.G.; Balesdent, M.H.; Profotova, B.; Fernando, W.G.; Rouxel, T.; Borhan, M.H. Rapid identification of the *Leptosphaeria maculans* avirulence gene AvrLm2 using an intraspecific comparative genomics approach. *Mol. Plant Pathol.* 2015, 16, 699–709. [CrossRef]

201. Plissonneau, C.; Daverdin, G.; Ollivier, B.; Blaise, F.; Degrange, A.; Fudal, I.; Rouxel, T.; Balesdent, M.H. A game of hide and seek between avirulence genes AvrLm4-7 and AvrLm3 in *Leptosphaeria maculans*. *New Phytol.* 2016, 209, 1613–1624. [CrossRef]

202. Van de Wouw, A.P.; Lowe, R.G.; Elliott, C.E.; Dubois, D.J.; Howlett, B.J. An avirulence gene, AvrLm1, from the blackleg fungus, *Leptosphaeria maculans*, confers avirulence to Brassica juncea cultivars. *Mol. Plant Pathol.* 2014, 15, 523–530. [CrossRef] [PubMed]

203. Plissonneau, C.; Rouxel, T.; Chevre, A.M.; Van De Wouw, A.P.; Balesdent, M.H.; Rouxel, T. Lost in the middle of nowhere: The AvrLm1 avirulence gene of *Leptosphaeria maculans* is lost in *Plants*. *Plant Physiol.* 2018, 19, 1012–1016. [CrossRef] [PubMed]

204. Gout, L.; Fudal, I.; Kuhn, M.L.; Blaise, F.; Eckert, M.; Catistolico, L.; Balesdent, M.H.; Rouxel, T. Lost in the middle of nowhere: The AvrLm1 avirulence gene of *Leptosphaeria maculans* is lost in *Plants*. *Plant Physiol.* 2018, 19, 1012–1016. [CrossRef] [PubMed]

205. Gout, L.; Fudal, I.; Aubertot, J.-N.; Fudal, I.; Kuhn, M.L.; Blaise, F.; Eckert, M.; Cattolico, L.; Balesdent, M.H.; Rouxel, T. Lost in the middle of nowhere: The AvrLm1 avirulence gene of *Leptosphaeria maculans* is lost in *Plants*. *Plant Physiol.* 2018, 19, 1012–1016. [CrossRef] [PubMed]

206. Daverdin, G.; Rouxel, T.; Gout, L.; Fudal, I.; Kuhn, M.L.; Blaise, F.; Eckert, M.; Cattolico, L.; Balesdent, M.H.; Rouxel, T. Lost in the middle of nowhere: The AvrLm1 avirulence gene of *Leptosphaeria maculans* is lost in *Plants*. *Plant Physiol.* 2018, 19, 1012–1016. [CrossRef] [PubMed]

207. Schweighofer, A.; Kazanaviciute, V.; Scheikl, E.; Teige, M.; Doczi, R.; Hirt, H.; Schwanninger, M.; Kant, M.; Schuurink, R.; Mauch, L. B.; et al. Effector diversification within compartments of the *Leptosphaeria maculans* genome affected by Repeat-Induced Point mutations. *Nat. Commun.* 2011, 2, 202. [CrossRef] [PubMed]

208. Daverdin, G.; Rouxel, T.; Gout, L.; Aubertot, J.-N.; Fudal, I.; Meyer, M.; Parlangé, F.; Carpezat, J.; Balesdent, M.-H. Genome Structure and Reproductive Behaviour Influence the Evolutionary Potential of a Fungal Phytopathogen. *PLoS Pathog.* 2012, 8, e1003020. [CrossRef]

209. Fudal, I.; Ross, S.; Brun, H.; Besnard, A.L.; Ermel, M.; Kuhn, M.L.; Balesdent, M.H.; Rouxel, T. Repeat-induced point mutation (RIP) as an alternative mechanism of evolution toward virulence in *Leptosphaeria maculans*. *Mol. Plant Microbe Interact.* 2009, 22, 932–941. [CrossRef]

210. Gout, L.; Kuhn, M.L.; Vencenot, L.; Bernard-Samain, S.; Catistolico, L.; Barbetti, M.; Moreno-Rico, O.; Balesdent, M.-H.; Rouxel, T. Genome structure impacts molecular evolution at the AvrLm1 avirulence locus of the plant pathogen *Leptosphaeria maculans*. *Environ. Microbiol.* 2007, 9, 2978–2992. [CrossRef]

211. Novakova, M.; Sasek, V.; Trda, L.; Krutinova, H.; Mongin, T.; Valentova, O.; Balesdent, M.H.; Rouxel, T.; Burketova, L. *Leptosphaeria maculans* effector AvrLm4-7 affects salicylic acid (SA) and ethylene (ET) signalling and hydrogen peroxide (H2O2) accumulation in *Brassica* napa. *Mol. Plant Pathol.* 2016, 17, 818–831. [CrossRef]

212. Ma, L.; Djavaheri, M.; Wang, H.; Larkan, N.J.; Haddadi, P.; Beynon, E.; Gropp, G.; Borhan, M.H. *Leptosphaeria maculans* Effector Protein AvrLm1 Modulates Plant Immunity by Enhancing MAP Kinase 9 Phosphorylation. *iScience* 2018, 3, 177–191. [CrossRef]

213. Becker, M.G.; Haddadi, P.; Wan, J.; Adam, L.; Walker, P.; Larkan, N.J.; Daayf, F.; Borhan, M.H.; Belmonte, M.F. Transcriptome Analysis of Rlm2-Mediated Host Immunity in the *Brassica napus- Leptosphaeria maculans* Pathosystem. *Mol. Plant Microbe Interact.* 2019, 32, 1001–1012. [CrossRef]

214. Schweighofer, A.; Kazanaviciute, V.; Scheikl, E.; Teige, M.; Dočzi, R.; Hirt, H.; Schwanninger, M.; Kant, M.; Schuurink, R.; Mauch, F.; et al. The PP2C-type phosphatase AP2C1, which negatively regulates MPK4 and MPK6, modulates innate immunity, jasmonic acid, and ethylene levels in Arabidopsis. *Plant Cell* 2007, 19, 2213–2222. [CrossRef] [PubMed]

215. Teper, D.; Sunitha, S.; Martin, G.B.; Sessa, G. Five *Xanthomonas* type III effectors suppress cell death induced by components of immunity-associated MAP kinase cascades. *Plant Signal. Behav.* 2015, 10, e1064573. [CrossRef] [PubMed]

216. Trďá, L.; Barešová, M.; Šašek, V.; Nováková, M.; Zahajská, L.; Dobrev, P.I.; Motyka, V.; Burketová, L. Cytokinin Metabolism of Pathogenic Fungus *Leptosphaeria maculans* Involves Isopentenyltransferase, Adenosine Kinase and Cytokinin Oxidase/Dehydrogenase. *Front. Microbiol.* 2018, 9, 137. [CrossRef] [PubMed]

217. Feng, J.; Zhang, H.; Strelkov, S.E.; Hwang, S.-F. The LmSNF1 Gene Is Required for Pathogenicity in the *Canola Blackleg Pathogen Leptosphaeria maculans*. *PLoS ONE* 2019, 4, e92503. [CrossRef] [PubMed]

218. Haddadi, P.; Ma, L.; Wang, H.; Borhan, M.H. Genome-wide transcriptomic analyses provide insights into the lifestyle transition of *Leptosphaeria maculans* during the colonization of *Brassica* seedlings. *Mol. Plant Pathol.* 2016, 17, 1196–1210. [CrossRef] [PubMed]

219. Lowe, R.G.; Cassin, A.; Grandaubert, J.; Clark, B.L.; Van de Wouw, A.P.; Rouxel, T.; Howlett, B.J. Genomes and transcriptomes of partners in plant-fungal-interactions between canola (*Brassica napus*) and two *Leptosphaeria* species. *PLoS ONE* 2014, 9, e103098. [CrossRef]

220. Sonah, H.; Zhang, X.; Deshmukh, R.K.; Borhan, M.H.; Fernando, W.G.D.; Belanger, R.R. Comparative Transcriptomic Analysis of Virulence Factors in *Leptosphaeria maculans* during Compatible and Incompatible Interactions with Canola. *Front. Plant Sci.* 2016, 7. [CrossRef]

221. Soyer, J.L.; Hamiot, A.; Ollivier, B.; Balesdent, M.H.; Rouxel, T.; Fudal, I. The APSES transcription factor LmStuA is required for sporulation, pathogenic development and effector gene expression in *Leptosphaeria maculans*. *Mol. Plant Pathol.* 2015, 16, 1000–1005. [CrossRef]

222. Idnurm, A.; Howlett, B.J. Isocitrate lyase is essential for pathogenicity of the fungus *Leptosphaeria maculans* to canola (*Brassica napus*). *Eukaryot. Cell* 2002, 1, 719–724. [CrossRef]

223. Kaczmarek, J.; Latunde-Dada, A.O.; Izykowski, W.; Cools, H.J.; Stonard, J.F.; Brachaczek, A.; Jedrzymka, M. Molecular screening for avirulence alleles AvrLm1 and AvrLm6 in airborne inoculum of *Leptosphaeria maculans* and winter oilseed rape (*Brassica napus*) plants from Poland and the UK. *J. Appl. Genet.* 2014, 55, 529–539. [CrossRef]
222. Singh, K.; Zouhar, M.; Mazakova, J.; Rysanek, P. Genome wide identification of the immunophilin gene family in *Leptosphaeria maculans*: A causal agent of Blackleg disease in Oilseed Rape (*Brassica napus*). OMICS 2014, 18, 645–657. [CrossRef] [PubMed]

223. Gervais, J.; Plissonneau, C.; Linglin, J.; Meyer, M.; Labadie, K.; Cruaud, C.; Fudal, I.; Rouxel, T.; Balesdent, M.H. Different waves of effector genes with contrasted genomic location are expressed by *Leptosphaeria maculans* during cotyledon and stem colonization of oilseed rape. Mol. Plant Pathol. 2017, 18, 1113–1126. [CrossRef] [PubMed]

224. Glazebrook, J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 2005, 43, 205–227. [CrossRef] [PubMed]

225. Sasek, V.; Novakova, M.; Jindrichova, B.; Boka, K.; Valentova, O.; Burketova, L. Recognition of avirulence gene AvrLm1 from hemibiotrophic ascomycete *Leptosphaeria maculans* triggers salicylic acid and ethylene signaling in *Brassica napus*. Mol. Plant Microbe Interact. 2012, 25, 1238–1250. [CrossRef]

226. Dubiella, U.; Seybold, H.; Durian, G.; Komander, E.; Lassig, R.; Witte, C.P.; Schulze, W.X.; Romeis, T. Calcium-dependent protein kinase/NADPH oxidase activation circuit is required for rapid defense signal propagation. Proc. Natl. Acad. Sci. USA 2013, 110, 8744–8749. [CrossRef]

227. Gravino, M.; Savatin, D.V.; Macone, A.; De Lorenzo, G. Ethylene production in Botrytis cinerea- and oligogalacturonide-induced immunity requires calcium-dependent protein kinases. Plant J. 2015, 84, 1073–1086. [CrossRef]

228. Noman, A.; Liu, Z.; Aqeel, M.; Khan, M.I.; Hussain, A.; Ashraf, M.F.; Li, X.; Weng, Y.; He, S. Basic leucine zipper domain transcription factors: The vanguards in plant immunity. Biotechnol. Lett. 2017, 39, 1779–1791. [CrossRef]

229. Xu, F.; Kapos, P.; Cheng, Y.T.; Li, M.; Zhang, Y.; Li, X. NLR-associating transcription factor bHLH84 and its paralogs function redundantly in plant immunity. PloS Pathog. 2014, 10, e1004312. [CrossRef]

230. Zhou, Y.; Sun, L.; Wassan, G.M.; He, X.; Shaban, M.; Zhang, L.; Zhu, L.; Zhang, X. GbSOBIR1 confers *Verticillium* wilt resistance by phosphorylating the transcriptional factor GbbHLH171 in *Gossypium barbadense*. Plant Biotechnol. J. 2019, 17, 152–163. [CrossRef]

231. Pedras, M.S.; Yaya, E.E.; Glawischnig, E. The phytoalexins from cultivated and wild crucifers: Chemistry and biology. Nat. Prod. Rep. 2011, 28, 1381–1405. [CrossRef]

232. Ebeed, H.T. Bioinformatics Studies on the Identification of New Players and Candidate Genes to Improve Brassica Response to Abiotic Stress. In *The Plant Family Brassicaceae: Biology and Physiological Responses to Environmental Stresses*; Hasanuzzaman, M., Ed.; Springer: Singapore, 2020; pp. 483–496. [CrossRef]

233. Khan, A.W.; Garg, V.; Roorkiwal, M.; Golicz, A.A.; Edwards, D.; Varshney, R.K. Super-Pangenome by Integrating the Wild Side of a Species for Accelerated Crop Improvement. Trends Plant Sci. 2020, 25, 148–158. [CrossRef]

234. Scheben, A.; Edwards, D. Genome editors take on crops. Science 2017, 355, 1122–1123. [CrossRef]

235. Scheben, A.; Edwards, D. Bottlenecks for genome-edited crops on the road from lab to farm. Genome Biol. 2018, 19, 178. [CrossRef]

236. Scheben, A.; Edwards, D. Towards a more predictable plant breeding pipeline with CRISPR/Cas-induced allelic series to optimize quantitative and qualitative traits. Curr. Opin. Plant Biol. 2018, 45, 218–225. [CrossRef]

237. Scheben, A.; Wolter, F.; Batley, J.; Puchta, H.; Edwards, D. Towards CRISPR/Cas crops—bringing together genomics and genome editing. New Phytol. 2017, 216, 682–698. [CrossRef] [PubMed]

238. Hasanuzzaman, M. *The Plant Family Brassicaceae*, 1st ed.; Springer: Singapore, 2020. [CrossRef]