Malpractice claims and unintentional outcome of tonsil surgery and other standard procedures in otorhinolaryngology

Abstract

Background: Septoplasty, tonsillectomy (with and without adenoidectomy) and cervical lymph node excision are amongst the most common 50 inpatient operations in Germany. Intracapsular tonsillectomies (i.e. tonsillotomies) are increasingly performed. The aim of this study was to evaluate technical traps and pitfalls as well as alleged medical malpractice associated with tonsillectomy (TE), adenoidectomy (AE), tonsillotomy (TT), septoplasty (SP) and cervical lymph node excision (LN).

Methods: A questionnaire was sent to the Regional Medical Conciliation Boards, Medical Services of the Health Insurance Companies (MDK) and Regional Institutes of Forensic Medicine in Germany to collect anonymized cases of complications following TE, TT, AE, LN and SP. The results were discussed in the light of the contemporary medical literature and published trials and verdicts in Germany.

Results: The response rate of our survey was 55.9%. The Institutes of Forensic Medicine contributed nine cases, 49 cases were submitted by the Regional Conciliation Boards and none by MDK. All forensic cases were associated with exsanguinations following tonsillectomy including two children (5 and 8 years of age) and seven adults (aged 20 to 69 years). The fatal post-tonsillectomy hemorrhage (PTH) had occurred 8.7 days on average; four patients experienced the bleeding episode at home (day 5, 8, 9 and 17, respectively). Repeated episodes of bleeding requiring surgical intervention had occurred in 6 patients. Three Conciliation Boards submitted decisions associated with TT (1), AE (4), LN (3), SP (16) and TE (25). Cases with lethal outcome were not registered. Only three of the 49 cases were assessed as surgical malpractice (6.1%) including lesion of the spinal accessory nerve, wrong indication for TE and dental lesion after insertion of the mouth gag. The review of the medico legal literature yielded 71 published verdicts after AE and TE (29), LN (28) and SP (14) of which 37 resulted in compensation of malpractice after LN (16; 57%), TE (10; 37%), SP (8; 57%) and AE (2; 100%). There were 16 cases of PTH amongst 27 trials after TE resulting either in death (5) or apallic syndrome (5). Bleeding complications had occurred on the day of surgery in only 2 patients. 16 trials were based on malpractice claims following SP encompassing lack of informed consent (6), anosmia (4), septal perforation (2), frontobasal injury (2) and dry nose (2). Trials after LN procedures were associated exclusively with a lesion of the spinal accessory nerve (28), including lack of informed consent in 19 cases. 49 cases (69%) were decided for the defendant, 22 (31%) were decided for the plaintiff with monetary compensation in 7 of 29 AE/TE-trials, 9 of 28 LN-trials and 6 of 14 SP-trials. Lack of informed consent was not registered for AE/TE but LN (11) and SP (2).

Conclusion: Complicated cases following TE, TT, ATE, SP and LN are not systematically collected in Germany. It can be assumed, that not every complicated case is published in the medical literature or law journals and therefore not obtainable for scientific research. Alleged medical malpractice is proven for less than 6% before trial stage. Approximately half of all cases result in a plaintiff verdict or settlement at court. Proper documentation of a thorough counselling, examination, indication,
informed consent and follow-up assists the surgeon in litigation. An adequate complication management of PTH is essential, including instructions for the patients/parents, instructions for the medical staff and readily available surgical instruments. Successful outcome of life-threatening PTH is widely based on a proper airway management in an interdisciplinary approach. Electrosurgical tonsillectomy techniques were repeatedly labeled as a risk factor for bleeding complications following TE. Institutions should analyse the individual PTH rate on a yearly basis. Contradictory expert opinions and verdicts of the courts concerning spinal accessory nerve lesions following LN are due to a lack of a surgical standard.

Keywords: tonsillectomy, tonsillotomy, adenoidectomy, septroplasty, cervical lymph node, malpractice, litigation, complication, negligence, death, fatality

1 Introduction

Septoplasty (SP), tonsillectomy (TE) and cervical lymph node excision (LN) are amongst the most common 50 inpatient surgical procedures in Germany [1] (Table 1). The number of tonsillectomies (TT) has nearly doubled between 2007 (4,659) and 2010 (8,799). In the pediatric population, TE with adenoidectomy (AE) is one of the most common five surgical procedures in girls (12,094) [2] and boys aged 14 years or younger (13,724) [3]. This study analyzes clinical negligence claims following TE, AE, TT, SP and LN and analyzes traps and pitfalls associated with these procedures with a review of the medical literature. Current efforts of the German government to strengthen the patient’s legal rights are heterogeneous and mirrored by an update of laws associated with medical malpractice [4]. Regional Conciliation Boards answered to 11,107 patient pleas in the year 2011 of which 7,452 were associated with 14,095 medical failures of the physicians. Amongst the most common were surgical techniques, postoperative care, radiologic diagnostic procedures, history/examination, informed consent, drug therapy, conservative therapy, indication, analyses of blood values and postoperative antibiotics. In 5,165 cases (69.3%) the accusations were settled but admitted in 2,241 cases (30.1%). A lack of informed consent was identified in 46 pleas (6.2%). Hospitals (72.2%) as well as doctors in private institutions were accused (27.8%). Otorhinolaryngology is amongst the most common 10 disciplines affected either in private practices (3.9%) or within a hospital (2.9%) [5] which is comparable with the rate of 2.5%, indicated by the Regional Medical Services of the different health insurance companies (MDK) [6]. According to the Federal Supreme Court, medical malpractice is defined by the negligence of adequate medical care which is not restricted to the individual capabilities of the physician. Physicians are also charged for complications later resulting from secondary medical procedures even if the secondary procedure was incorrectly undertaken. Adequate medical care includes diagnosis, therapy and informed consent based on the contemporary medical knowledge [7]. Patients or their heirs have to prove that health defects resulted from a medical error (burden of proof). If, by law, the error of the treating physician is to be considered a “gross” medical error, the burden of proof is reversed. In such a case, the treating physician has to prove that his medical treatment was correct. “Gross” is clearly related to the quality of the medical error [8]. A “gross” medical error has not been given at unequivocal finding of a violation of the relevant medical standards, it rather requires next to a clear violation of established rules of medical treatment or medical evidence backed the findings that the doctor made a mistake, which is objectively no longer seems understandable [9]. These include diagnostic and control failures [10], finding survey errors [11] or lack of informed consent before therapeutic measures [12]. Lastly, this is also the responsibility in determining the indication of an operation, which is almost the surgeon [13].

2 Material and methods

A questionnaire was sent in December, 2011, to the Regional Conciliation Boards, MDK and Institutes of Forensic Medicine in Germany to collect anonymized complicated cases following TE, TT, AE, LN and SP. The intent was to detect unusual complications of standard procedure in the field of otorhinolaryngology and to discuss the cases with knowledge obtainable from contemporary medical literature and published trials using search engines like “Medline Research [14] was used with search terms “Tonsillektomie”, “Mandeldopoperation”, “Mandelentfernung”, “Tonsillotomie”, “Adenotomie” “Septumplastik”, “Nasenscheidewand”, “Nasenscheidewandoperation”, “Halslymphknoten”, “Nervus accessorius”, “Chylusfistel” or “Recurrensparese”. Verdicts, dealing with billing questions, deportation procedures, accidents, paranasal sinus surgery or cosmetic surgery were excluded. A Medline Research [14] was used with search terms “septoplasty complications review”, “tonsillectomy sequelae review”, “tonsillotomy sequelae”, “cervical lymph node dissection complications review”, “spinal nerve injury lymph node”, “iatrogenic injury neck lymph node excision”, “internal jugular vein injury neck lymph node ex-
Table 1: Inpatient procedures in German hospitals (2010)

Operation	OPS Code	Total	Male	Female
TE included TT	5-281	92,594	41,986	50,602
	5-281.5	8,798	5,146	3,652
ATE	5-282	35,539	17,062	18,476
AE	5-285	37,687	21,830	15,853
SP	5-214	102,916	66,038	36,871
TU	5-215	147,179	90,476	56,695
ID	5-280	4,340	2,580	1,760
LN	5-401	97,988	18,251	79,734
LNE	5-402	12,291	4,079	8,211

TE = Tonsillectomy; AE = Adenoectomy; ATE = Tonsillectomy /w Adenoectomy; SP = Septoplasty; TU = Turbinoplasty; ID = incision drainage of a (para)pharyngeal abscess; LN = excision of a single cervical lymph node; LNE = excision of multiple cervical lymph nodes

3 Results

The response rate to the questionnaire was 55.9% including 6 of 16 MDK (37.5%), 20 of 33 Forensic Institutes (61%) and 12 of 19 Conciliation Boards (63.2%). One regional Conciliation Board refused to submit anonymized cases and one regional MDK set unacceptable conditions for the release of anonymized patient data. A total of nine cases from the Forensic Institutes (autopsy reports) and 49 cases were submitted by the Conciliation Boards. No cases were submitted by the MDK, either for lack of knowledge, lack of digital archiving or inadequate time-consuming research. The lack of digital archiving and accessibility was also the reason why data on at least six Institutes of Forensic Medicine could not be provided. In all nine cases submitted by Forensic Medical Institutes fatal hemorrhagic complications after TE had occurred. Amongst those were two children aged five and eight years and seven adults aged between 20 and 69 years. The lethal bleeding events were experienced between the 4th and 18th postoperative day (mean: 8.7 days, median: 6 days, STD: 5.2 days). In four cases, the bleeding had occurred at home (5°, 8°, 9°, 17° postoperative day). In six cases, the bleeding was preceded by at least one bleeding complication requiring revision. A total of 49 cases of the Conciliation Boards were submitted by only three institutions (1; 18; 30 cases, respectively). Accusation of medical malpractice had been raised after TT (1), AE (4), LN (3), SP (16) and TE (25). Cases with lethal outcome were not registered. Errors in medical treatment were not identified in 46 cases, but in one case after LN and twice affirmed after TE. In one LN case (33%) a spinal accessory nerve lesion resulted. Since no abnormal intraoperative characteristics were described, the expert went out of negligence. In one of the two cases after TE (8%) an indication error was identified and in the second case, the tooth decay explained by lack of care when inserting the mouth gag. Miscellaneous allegations were rejected after AE (laryngospasm in the recovery room, postoperative bleeding (2), injury to the Eustachian tube cartilage); LN (spinal nerve injury (2)); SP (saddle nose deformity (2), postoperative bleeding (3), re-deviation (2), septal perforation (5), anosmia, synechia, retracted columella, wrong indication, thrombosis of the cavernous sinus); TE (postoperative Bleeding (14), dysgeusia, dysphagia/dysphonia resulting from soft palate injury, remnants, painful dysphagia (2), convulsion, postmetic soft palate perforation, cracking noise in the temporomandibular joint, facial hypesthesia); and TT (injured tongue).

The review in the search engines yielded 71 published verdicts. Among these there were 29 after AE and TE, 28 after LN and 14 after SP. The verdicts came from the Federal Constitutional Court (1), Federal Courts (3), District Courts (13) and Appellate Courts (54) from the period 1954 to 2011. 27 of the 71 procedures resulted in convictions for medical malpractice by LN (16, 57%), TE (10, 37%), SP (8, 57%) and AE (2, 100%). In one AE-case the surgeon was convicted, in the second case the anesthesiologist. Among the 27 TE cases, 16 were due to bleeding complications, only 2 of which had occurred on the day of surgery. Because of the bleeding complications 5 patients died, 5 kept back a vegetative state. Taste Disorders (3 cases) and miscellaneous (7 cases) were the subject of further legal argument. Details of a single case with a remaining vegetative state were not available. The three plaintiff verdicts were based on neglected postoper-
ative medical care with lack of clear instructions; inadequate management of septic fever; inadequate management of PTH with lack of clear instructions (3); failure in diagnosing septic fever; inadequate surgical trauma requiring reconstructive surgery; PTH resulting in apallic syndrome; inadequate information transfer by the nursing staff; inadequate PTH management; and hyperhydration to compensate blood loss. Defendant verdicts included unstable iv-line, PTH (3), dysgeusia (2), dysgeusia with dysosmia, inadequate hospitalization (2), indication (3), lateralized soft palate, and antibiotic therapy. In one case the verdict was returned to the anesthetist for delayed bronchoscopy/tracheotomy to resolve ventilation problems caused by PTH.

The pleas after SP were highly heterogeneous; most were related to a lack of informed consent (6), olfactory dysfunction (4), septal defects (2), skull base injury (2) and dry nose (2). All other process objects were isolated cases. Plaintiff verdicts were based on forgotten gauze; anosmia with inadequate documentation of the surgical procedure resulting in anosmia (2); lack of informed consent in a case with unilateral blindness that resulted in complete blindness after SP; lack of informed consent (3); skull base injury with destruction of the pituitary gland. Defendant verdicts included lack of surgical experience, lack of informed consent for an additional cartilage graft, indication, antibiotic therapy, meningitis, and saddle nose deformity.

All 28 cases related to LN dealt with injury of the spinal accessory nerve. In most cases (19) a lack of informed consent was accused and in all trials a wrong surgical technique was alleged. Neurosurgical re-operations were performed in 6 patients; tuberculosis was detected in 5, toxoplasmosis in one single case. Plaintiff verdicts were based on inadequate surgical experience (2), lack of informed consent (10), inadequate surgical technique (6), and wrong indication including several cases with multiple issues of medical malpractice. Defendant verdicts included indication (6), inadequate surgical technique (6), lack of informed consent (8), including several cases with multiple allegations.

Compensation was in 7 of 29 AE/TE trials awarded (24.1%), the amounts ranged between 500 € and 346,612 € and 12,000 DM and 150,000 DM (7 cases). In two cases, the verdict included pension payments, the monthly amount was 60 € and 500 €. In 9 of 28 LN-trials were the defendants sentenced to compensation payments (32.1%), in only one case was the amount stated in €, the currency in 8 other cases was DM with amounts ranging between 5,000 DM and 12,300 DM. Compensation by the defendant resulted from 6 of 14 SP-trials (42.9%), with a monthly pension payment of 200 € in one case and 500 € in a second one. The amounts ranged from 2,500 € (one case) and 20,000 € (second) and, earlier, from 7,000 DM (two cases) to 100,000 € (one case). Note: compensation in DM currency dated before January 1, 2002, the date when the EURO (€) was introduced as the new currency in several European States, including Germany.

Lack of informed consent was explicitly denied in trials after five TE cases, six LN cases and two SP. A lack of informed consent did not lead to condemnation in AE/TE-trials, but in 11 LN-trials and 2 SP-trials.

4 Discussion

4.1 Tonsillectomy

Bleeding is basically the most important complication of this procedure and therefore deserves an intensive discussion. What a bleeding episode is, must – by law – be evaluated by a doctor. Reliance on assessments of the nursing staff only to give commands such as monitoring, ice packing and re-call in conspicuous courses has therefore led to final conviction with pain and compensation: “The duty to visit his patients of duty cannot escape the doctor, only when serious reasons prevent him and he cares for other equivalent means.” “…it is a safe principle medical profession and thus medical standard that a doctor is in breach of duty if he is satisfied with a remote diagnosis” [15]. To evaluate a bleeding complication may not be delegated to the nursing staff, not even with specialized knowledge. This provides in-itself a technical-medical situation overtaxing [16]. Even the hospital authority is responsible for an adequate medical care of TE patients which excludes employment of inexperienced nurses on night duty. The hospital authority is also made in the duty when it comes to the attending physician to require clear instructions to the nurses in the event of bleeding complications [15]. This illustrates the importance of complication management. If a nurse is unable to carry explicitly granted (documented) doctor’s orders, she is required to report it. If not, this will be seen as culpable misconduct [17]. It is also a gross error of the nurse, if she does not inform the doctor about a bleeding event [18].

Most authors distinguish between primary (<24 h) and secondary (>24 h) bleeding [19]. In contrast, the intensity of a bleeding episode is not uniformly defined. Some authors count even blood-tinged sputum as post-tonsillectomy hemorrhage while others count only episodes that required surgical intervention [20]. What makes things complicated is the fact, that bleeding episodes with spontaneous cessation can precede in unpredictable massive bleeding with a life-threatening character [21], [22], [23]. This may happen at any time, in any patient and, rarely, with a devastating outcome [21], [24]. It has been suggested to analyze the PTH regularly, preferably on a yearly basis [25]. This suggestion is emphasized by the concluding remarks of the prospective Tonsillectomy Study in England in order to find out avoidable causes of the bleeding event [26]. In Germany, only the University Hospitals (33) currently publish the PTH rates ranging between 1.0% to 6.4% [27]. A special analysis of the Federal Statistical Office for the year 2010 identified 7,808 TE and 943 AE procedures requiring surgical intervention under general anesthesia. Based on the total
number of AE/TE procedures, the complication rate is 6.5% for ATE/TE procedures and 2.5% for AE procedures (data for TT not provided). In the English literature, PTH rates up to 22.7% has been reported [28], but the studies are hardly comparable due to different study designs, population sizes, terms, definitions and differences in the follow-up (Table 2). Only few clinics analyze possible causes and rates of PTH, effects of newer surgical instruments or make suggestions for an adequate complication management protocol [29], [30], [31], [32], [33], [34], [35], [36], [37], [38], [39], [40], [41]. For the first time, the Prospective Multicenter Tonsillectomy Study in Austria stratified bleeding events by a sophisticated classification system [42], [43], [44]. It is noteworthy, that bleeding complications are not always treated at the same department were the TE was performed [45]. This has been confirmed by the Sarny for 20% of the patients with PTH [46]. In no case the sole occurrence of PTH was acknowledged as medical malpractice, even in cases with fatal outcome [47]. For this reason, an investigation was discontinued or dismissed complaints [48], [49]. It can be concluded from the literature, that the more severe the consequences associated with a bleeding complication, the greater the risk of a legal dispute [50], [51].

Critical to the discussion of medical malpractice allegation is proof of adequate complication management, which however in itself cannot provide absolute certainty. Guidelines on the management and prevention of PTH do not exist. Therefore individuals depend on collection of their own experiences or others to release a concept for the prevention and management of this complication. Medical and legal aspects must be considered equally when considering the preoperative, intraoperative and postoperative period.

Table 2: Post-tonsillectomy hemorrhage in the English literature

Author	Year	Rate
Alexander	2004	9.2% SB
Alexiou	2011	0.13–0.61
Amir	2012	1.70%
Arnolder	2008	1.78%
Attner	2009	7.50%
Brigger	2006	9.80%
Burton	2007	0.0–28% PB; 0.0–50% SB
Cardwell	2005	0.39–2.53%
Chiang	1968	0.006%
Dhiwakar	2010	2.50%
Diakos	2011	0.25–0.80%
Evans	2003	3% SB
Guida	1990	1.7% PB
Handler	1986	2.62%
Heidemann	2009	22.7%
Hessén Söderman	2011	1.3% PB
Kristensen	1984	2.80%
Laureyns	2006	2.2%
Marret	2003	2.6–7.3%
Moiniche	2003	0.0–30%
Moralee	1995	0.8% PB
Mösges	2011	4.1%
Mowatt	2006	2.0–18.3%
Ovesen	2012	4.00%
Salonen	2002	8.80%
Sarry	2011	15.0%; RTT 4.6%
Tomkinson	2005	0.60%
Tomkinson	2011	1.5–29.1%
Wagner	1991	7.05%
Windfuhr	2005	1.5%

PB = primary bleeding (< 24 h); SB = secondary bleeding (> 24 h); RTT = return to theatre
Table 3: Indication for pediatric tonsillectomy [58]

Criterion	Definition
Frequency of sore throat episodes	7 or more episodes in the preceding year, or 5 or more episodes in each of the preceding 2 y, or 3 or more episodes in each of the preceding 3 y
Clinical features (sore throat plus the presence of one or more qualifies as a counting episode)	temperature >38.3°C, or cervical lymphadenopathy (tender lymph nodes or >2 cm), or tonsillar exudate, or positive culture for group A β-hemolytic streptococcus
Treatment	Antibiotics had been administered in conventional dosage for proved or suspected streptococcal episodes
Documentation	Each episode and its qualifying features had been substantiated by contemporaneous notation in a clinical record, or If not fully documented, subsequent observance by the clinician of 2 episodes of throat infection with patterns of frequency and clinical features consistent with the initial history*

*This statement allows children who meet all other criteria for tonsillectomy except documentation to nonetheless qualify for surgery if the same pattern of reported illness is observed and documented by the clinician in 2 subsequent episodes. Because of this tendency to improve with time, a 12-month period of observation is usually recommended prior to consideration of tonsillectomy as an intervention [25].

4.1.1 Preoperative period

4.1.1.1 Indication

Because of the possibility of a potentially life-threatening bleeding complication the question comes after a treatment alternative to a special significance [52], [53], [54], [55], [56] (cited [57]). Therefore, the indication has to be individualized. The clear indication criteria in children up to 15 years of age have been established in 1984 by Paradise [58] and remain unchallenged to date (Table 3). Under these circumstances, the benefit of surgery is clearly superior and significantly compared to a conservative treatment of recurrent tonsillitis. In softer criteria the benefits of surgery compared to conservative treatment in children are less significant [59] and even comparable to a wait-and-see-policy [60]. However, this finding emphasizes the need for an individualized indication rather than to state, that there is no more sense to perform TE [61]. This is supported by the benefit of surgery with various indications as explained by Luckhaupt [62] and Deitmer [61]. It is noteworthy to mention, that patients are often not treated exclusively by ENT specialists but also, or instead, by family physicians or pediatricians. These specialties may have different definition of an episode of tonsillitis and therefore may have different indication criteria for TE. The Problem is aggravated by unreliable information of the patients who are treated or should be. Therefore, the current guideline of the ENT specialists of the USA still rely upon the criteria set by Paradise in 1984. This guideline, however, mentions also individual criteria that might justify surgery, such as allergic reactions to multiple antibiotics, PFAPA syndrome (periodic fever, aphthosis, pharyngitis, cervical lymphoma) or previous peritonsillar abscess. TE to resolve sleep-related disorders are a different indication based on very strict criteria after detailed counseling [25]. The current guideline of the Scottish ENT-Society also relies upon the strict Paradise indications for TE [63]. According to the guideline of the Italian ENT-Society, TE is indicated after a waiting period of 6 months that followed treatment of at least 5 episodes of tonsillitis within one year [64]. This statement is supported by the American ENT Society: “because of this tendency to improve with time, a 12-month period of observation is usually recommended prior to consideration of tonsillectomy as an intervention” [25].

Unlike in children comparable studies with adult patients in terms of follow-up, population size do not exist. Alho, however, recruited 70 adults with documented recurrent episodes of pharyngitis due to group A streptococcus, having had three three or more episodes of pharyngitis in six months or four in 12 months. Participants were allocated by replacement allocation to either TE or waiting list (control) and followed for 90 days. Superior results were obtained after TE [65], [66]. This conclusion is supported by the findings in retrospective [67], [68], [69], [70], [71], [72], [73], [74], [75], [76], [77], [78], [79], [80] and prospective [81], [82], [83], [84] studies proving the positive effect on the quality of life after TE which was questioned by Stafford [85]. However, the quality of the studies is not comparable to the aforementioned studies of Paradise. Stafford, for instance, concluded that the effect of TE is not superior to conservative treatment but he followed only 40 patients in total [85]. In contrast to this statement a more recent study concluded, that the quality of life significantly improved after TE [86]. Comparable studies are currently undertaken in the UK as an
answer to the restrictions of the National Health System (NHS) [87]. The NHS has stated for TE cases, that a reimbursement can be expected only for malignancy, a second event of a peritonsillar abscess or acute upper airway obstruction. Indications such as recurrent tonsillitis and upper airway obstruction require approval and are based on the certificates of the family physicians, records of the height development, findings in sonography and even certificates of employers/schools. Payments to resolve snoring, either by TE or tongue base resection, SP are rejected unchecked, because they are classified as “procedures of limited clinical value” [88].

It is noteworthy, that TE is not mentioned as a routine measure of treatment to resolve infectious mononucleosis [89]. Hitherto, no evidence of a positive impact was proven by studies published in journals with a peer-review. Likewise, a surgical procedure to cure a systematic disease initiated by a virus appears questionable from a scientific point of view. This statement was supported by representatives of the American and German Society of Virology. Anecdotal reports in the past could only demonstrate, that the incidence of infectious mononucleosis was related to the presence of tonsils [90], [91].

It can be concluded, that TE in patients with infectious mononucleosis is only indicated to resolve upper airway obstruction or severe dysphagia [92], [93], [94], [95], which is mirrored by statements in trials [96]. Most commonly, the disease heals spontaneously with cortisone having a positive effect on the upper airway obstruction [97]. Sonography is mandatory to assess the risk of splenic rupture. A different approach is indicated in patients presenting with peritonsillar abscess and is indicated in cases not responding to previous incision drainage or needle aspiration, a history of recurrent episodes of tonsillitis, an age less than 40 years or complications related to the abscess [98], [99]. Rosenfeld and Green reported a changing trend concerning the indication for TE with hyperplasia prevailing tonsillitis [100].

This finding supported the idea of TT replacing TE, occasionally with a certain age limit [101], [102], [103], [104], [105], [106], [107], [108]. Evidence has been given that TT is capable to resolve tonsillitis in children and adolescents by Hultcrantz and Ericsson [84], [109], [110], [111]. Age restrictions as well as assumed advantages of certain surgical instrument as demanded in various contracts are not scientifically supported [112]. Despite the increasing acceptance of TT to resolve upper airway obstruction (with or without sleep-related breathing disorder) [29], [101], [102], [103], [104], [107], [108], [113], differences in postoperative morbidity in contrast to TE were not evident in other studies. Moreover, patients run at risk to experience tonsillar regrowth after TT [114].

AE is most commonly indicated to resolve upper airway obstruction and/or infections as well as chronic serious otitis media [62]. AE is capable to resolve hearing impairment resulting from the effusion but not the number of acute otitis episodes [115]. A contemporary study questions the benefit of AE on upper airway infection based on results obtained in a prospective study on 111 children aged 6 years and younger [116].

In cases with unintentional outcome, indication for surgery is doubted. If this is indeed the case, it is clear the errors in treatment, which corresponds to a gross medical error. Individual indication of adequate documentation is the only way to avoid this error.

4.1.1.2 Informed consent

As early as 1974, Becker has been with the meaning and practice of an adequate informed consent [117]. The Federal Supreme Court differentiated as to the extent of the informed consent, which the doctors have to give without the demand of the patient, and the attention to the demand of the patient. Limitations to essentials are accepted, if the patient has no further demands, but should explain all complications and questions, that may arise in every patient. Further explanations are required on demand. The Federal Supreme Court explicitly denied, that the extent of the informed consent is related to a certain complication rate. Furthermore, the complication rate has not to be quoted in numbers, percentages, not even in more difficult anatomical circumstances [118].

The complication rate is much more a hint to explain a certain complication related to the surgical procedure. The less likely a complication occurs, the more decisive is the presumable impact on life of it [119], [120]. Therefore, under certain conditions, the informed consent has to include complications occurring with a rate of 0.1% which was verified for a case of blindness following ethmoidectomy. The trivialization of serious risks in a written protocol of the informed consent would not be offset by the fact that the patients are given the opportunity to ask the doctor if something was not understood, or he wants to know the details. Accordingly, the medical intervention is only legal if it is covered by the consent of the patient.

But in order to comply effectively, the patient must know exactly what he is giving his consent, so they have knowledge of all the relevant circumstances of the engagement. This includes the true rare but serious complications. The judgment can be transferred also to other surgical procedures and complications, like exsanguinations following TE. Therefore commercial informed consent sheets are inadequate, if they do not list this particular complication [121]. The importance of the written protocol of the informed consent becomes clear when plaintiffs claim not to have been informed about the possible complications, which then proves by presenting the document to be untrue [15], [118], [122], [123], [124], [125], [126], [127], [128], [129].

In interdisciplinary surgical indication (here: LN with subsequent lesion of the spinal accessory nerve), the surgeon should never trust that the other discipline does it for him. It is his duty to inform the patient properly and to take care for an adequate documentation [130].

Bleeding patients (especially children) should not be transported on privately organized car to the hospital, but by ambulance [131]. This might have been rescued one
Table 4: Checklist tonsillectomy, tonsillotomy, adenoidectomy

1. bleeding (even after weeks), exsanguination, death
2. revision surgery, ligation of the branches of the external carotid artery/blood transfusion (transmission of viral diseases)
3. aspiration of blood
4. injury of the temporomandibular joint, lips, tongue, teeth, uvula
5. revision surgery due to tonsil remnants
6. dysphonia
7. injury of the soft palate (rhinolalia, nasal regurgitation)
8. injury of the hypoglossal, glossopharyngeal, vagal nerve resulting in transient or permanent dysphagia, dysgeusia
9. purulent neck infection
10. internal jugular vein thrombosis
11. prolonged wound healing
12. emphysema, mediastinitis
13. Grisel’s syndrome
14. adenoidectomy: injury of the cartilage of the Eustachian tube

published case with lethal outcome [22]. This statement is in line with findings of Deitmer [30] who registered more critical situations in patients that were privately transported to the hospital instead of calling for professional medical help. This finding is emphasized by the fact, that secondary bleeding might occur as late as two weeks after TE [30], [132], which has to be explained to the patients or parents in full detail prior to surgery. The patients or parents must receive clear instructions for behavioral measures in case of a bleeding event along the postoperative course. This aspect was addressed in detail by the Joint Recommendation of the Austrian Societies of Oto-Rhino-Laryngology, Head and Neck Surgery and Child and Adolescent Medicine with a proposal to “Response to hemorrhage after tonsillectomy”: maintain adequate airway, nothing to eat and drink, transport to hospital for emergency rescue call, avoid own transport whenever possible. On a separate document to be signed, it must be discussed in the informed consent discussion and documented what ENT Department is closest to the place the patient/child lives [131]. This suggestion is supported by the finding, that 19 of 31 cases with fatal outcome following TE had occurred at home, despite inpatient observation for several days [133]. If the interventions are completed in the morning, PTH is therefore likely to occur at a time with full staff available during regular hours. Moreover, the decreased incidence of secondary PTH supports standards for dismission policy of hospital care. Since secondary PTH peaks at a time five to six days after surgery it is advisable not to perform tonsillectomy on Mondays or Tuesdays since the complication is likely to occur during the weekend with a reduced medical care in the hospitals or private practices. It is a duty of larger departments to treat serious episodes of PTH by rare means like ligature of branches of the external carotid artery, blood transfusions, administration of coagulation factors or tracheotomy. The length of inpatient observation is still a matter of debate [132]. Surgical techniques and the quality of medical care at home are factors to be considered. An inpatient observation for five days appears wise, when secondary PTH had required surgical revision under general anesthesia. However, inpatient observation is not capable to prevent lethal outcome [133], [140], which is supported by the answers of the Forensic Institutes to our questionnaire. It is noteworthy to emphasize, that repeated episodes of PTH (with or without spontaneous cessation) are a warning sign for an excessive bleeding event [23], [24], [141]. The time of dismission from inpatient observation does not correlate with the
onset of bleeding [142]. The court proceedings and cases reported by the Medical Conciliation Boards to make clear that the professionalism of complication management is crucial for the legal review. This statement is valid for public departments as well as private institutions. Medical standard procedures may help to treat serious PTH with success. Unfortunately, this is not guaranteed for any patient and therefore fateful. Blood loss and particularly aspiration requires an immediate and adequate airway management. Medical assessment and determination of at least two of the four parameters (clotting time, bleeding time, platelet count or prothrombin time) in case of a conspicuous history is mandatory. Measurement of body temperature and heart rate to exclude sepsis is also indispensable. Oozing requires an hourly wound inspection and blood values should be monitored when vomiting of blood occurs. Blood count, INR and PTT, as well as installation of an iv-line are indispensable and fundamental measures of complication management.

4.1.1.4 Coagulation disorders

Unidentified coagulation disorders are an uncommon reason for PTH [33], [143], and therefore evaluation of a bleeding history is nowadays recommended instead of determination of coagulation values [144], [145], [146], [147], [148], [149], [150], [151], [152], [153], [154], [155]. However, if the clinical findings are suspicious for a coagulation disorder or anemia, exclusion is only possible by taking blood samples.

4.1.2 Intraoperative period

There are several surgical techniques currently in use, but the superiority of one over another has not been clearly demonstrated, including powered instruments (not subject of this review). It appears wise to use the microscope instead of a head lamp, since visualization of the delicate structures is improved, particularly for surgeons in training [156], [157]. Injury to the cartilage of the Eustachian tube or aberrant arteries can be avoided by curettage of the adenoid tissue along the median line and not lateral to the pharynx. Fatal injuries of the internal carotid artery resulted from using a sharp forceps to remove adenoid remnants [133], [136] and are therefore not recommended.

In most cases, a temporary packing of the nasopharynx is sufficient enough to treat intraoperative oozing. Serious bleeding may require a tight packing of the pharynx and cervical revision of the greater arteries or bronchoscopy if the situation is suspicious for blood aspiration. In most cases, adenoid remnants are the source of bleeding [158]. The surgical instruments for tonsil dissection and intraoperative hemostasis vary according to the surgeon’s preference. In addition to cold steel instruments (scissors, snare, raspatory) there exists a great number of electrosurgical techniques. Each method is associated with advantages and disadvantages. Serious episodes of PTH seem to be related to suture ligation techniques according to some studies [31], [35] or case reports [159]. However, this statement is not supported by a separate study of 6,400 patients [132] and the findings of Günzel in his study [29]. It can be concluded, that there exists no compelling relationship between suture ligation techniques and serious PTH complications. However, it appears noteworthy to emphasize, that careful medialization of the soft tissues with a forceps prior to insertion of the needle is mandatory to avoid injury to greater vessels running close to the tonsil fossa [94]. This statement is particularly supported by reports of aberrant courses of the internal carotid artery [160], [161], [162], [163], [164], [165], [166], [167], [168], [169], since injuries are followed by devastating outcomes [121], [170]. It should be noted that these anomalies do occur in the oropharynx and the nasopharynx [158], a finding that has been described in detail by Stupka [171]. Only few cases have been described [172], [173], [174], and contemporary studies are rare (Figure 1), although Demme’s description dates back to 1901 [175]. It remains unclear, whether or not this vascular anomaly existed in one trial [176] or published case [133]. An aberrant course of the ascending pharyngeal artery resulted in a delayed bleeding complication following AE [137].

Figure 1: Kinking of the internal carotid artery at the level of the nasopharynx. Right internal carotid artery with ventral protrusion (arrow).

Courtesy of Professor Andreas Prescher; RWTH Aachen, Germany.

Electrosurgical means for tonsil dissection and/or hemostasis is obviously associated with a greater risk of PTH in general [177], [178], [179], a higher rate of secondary bleeding and greater chronological variety [29], [30], [31]. Bleeding complications are therefore likely to occur outside the hospital, which is considered not to be life-threatening [31], but may be so [21]. It appears likely, that the risk of a serious bleeding event is related to the necrotic zone of the wounds resulting from the applied electric energy. It is assumed that enzymes of the saliva and bacterial superinfection are contributing factors for
digestion of the soft tissues and capable to expose greater arteries [180], the hyoid bone or larynx [47]. This hypothesis is supported by findings of a significant relationship between postoperative pain and bipolar electric energy [181], [182]. Comparable findings have been reported for Grisel’s syndrome, which is more likely to occur, when monopolar instead of bipolar means are used to achieve hemostasis during AE procedures [183].

Pinder stated in his meta-analysis that “there are insufficient data to show that one method of tonsillectomy is superior. There is evidence that pain may be greater after monopolar dissection. Large, well designed randomized controlled trials are necessary to determine the optimum method for tonsillectomy” [184]. However, it should be noted, that current guideline mention electrosurgical means as a significant risk factor for PTH [185], [186], [187], [188], although this is denied by some authors [189], [190], [191], [192]. However, a survey in Germany [179] and Austria [44] confirmed the conclusions of the National Prospective Tonsillectomy Audit: electrosurgery is a risk factor for PTH. Interestingly, the National Prospective Tonsillectomy Audit recommended that “all trainee surgeons should become competent in cold steel dissection and hemostasis using ties before learning other techniques in tonsillectomy”.

4.1.2.1 Local infiltration

While some authors recommend intraoperative infiltration of local anesthetics to relieve postoperative pain [193], [194], [195], others could not identify any benefit for the patient [196], [197], [198]. The rate of PTH significantly increases when TE is performed under local instead of general anesthesia [39]. However, bleeding complication may not compellingly occur, but other rare complications have to be considered whenever local anesthetics are infiltrated. These complications encompass deep cervical abscess [199], myocard ischemia [200], circulatory failure [201], lung edema/bulbar paralysis [202], upper airway obstruction [203], temporal glossopharyngeal lesion [204], temporal bilateral vocal cord paralysis [205], temporal facial nerve paralysis [206], brain stem stroke [207], congestive heart failure with lung edema [208], local wound infection und death [209]. Cranial nerve dysfunction resulted in transient or permanent blindness [210], [211], [212], [213], facial nerve paralysis [214], [215], [216], [217], [218], [219], [220], vocal cord dysfunction [205], [221], [222], [223], [224], [225] or lesion of the sympathetic chain [222], [226], [227], [228], [229], [230], [231], [232], [233]. While infections may result from bacterial spreading from insertion of the needle, cranial nerve dysfunction may result from a spasm of the vasa vasorum induced by a high content of adrenalin, which is supported by data from Bolliger [234].

4.1.2.2 Histology

Williams concluded that “microscopic examination of all routine tonsils and adenoids for individuals 21 years or younger is not indicated”. This statement is supported by an analysis of 4,070 specimen, of whom only three identified a malignant disease that was already apparent by the clinical findings [235]. His findings are comparable to the analysis in a pediatric population of Dohar [236]. To date, a national guideline for histological examination of adenoids and tonsils does not exist [237], although the cost-benefit ratio of routine histology appears questionable [238], [239], [240], [241], [242].

4.1.2.3 Dexamethasone

Czarnetzki concluded after his study in a pediatric patient population that “dexamethasone decreased the risk of PONV dose dependently but was associated with an increased risk of postoperative bleeding”. Unfortunately, the surgical technique for dissection and hemostasis were not standardized which is a confounding factor of the study. Despite his report, the current guidelines in the USA, Scotland and Italy still recommend the administration of dexamethasone to prevent postoperative nausea and vomiting (PONV) [25], [63], [64].

4.1.2.4 Forgotten gauze, broken needle

Broken surgical needles may be a challenge for the surgeon and sometimes require radiological diagnostic procedures [243], [244]. Therefore, the surgical needles should be of adequate size and always guided with needle holders or forceps. A thread sutured to the packing will prevent to forget the packing in the nasopharynx. Counting of a standardized number of swabs is recommended to be included in surgical safety checklists as suggested by the WHO [245].

4.1.3 Postoperative period

4.1.3.1 General remarks

Medical care in the postoperative period is focused on wound inspection but should also include the evaluation of the patient’s general conditions in terms of body temperature and heart rate. These simple measures help to diagnose septicemia early which requires an adequate management protocol. When septic fever has been confirmed by blood cultures, increased blood sedimentation rate, suspicious blood cell count and increased urinary waste products an antibiotic therapy is immediately indicated. According to current verdicts, only the surgeon is responsible for the diagnosis and management of septicemia, whether working in a general or private institution [13]. The hospital authority is authorized to demand the surgeon for clear instructions and the nursing staff is committed to follow these instructions [246].

4.1.3.2 PTH

Bleeding following TE is acknowledged as a typical complication of this procedure and therefore not a failure of the surgeon by itself [247]. The length of inpatient obser-
viation has no impact on its occurrence [142]. Repeated episodes of PTH with spontaneous cessation can erroneously be assessed as harmless. This may be applicable to an unknown amount of patients. However, several reports in the literature indicate, that repeated episodes of PTH with spontaneous cessation can be a warning sign for an imminent excessive bleeding event [21], [23]. The risk to experience a serious bleeding episode doubles when the patient had experienced a bleeding event before [43], [44].

It appears wise to use metal blades for the wound inspection, since they do not bend. This helps to expose the lower poles of the wounds where coagula or fresh blood may come into view. An adequate documentation including the side of the abnormality is highly recommended to facilitate the assessment of eventful courses. Oozing may erroneously be assessed as harmless but should indicate at least a red blood cell count. This statement is particularly applicable for patients with blood vomiting.

Blood loss and aspiration of blood jeopardizes patients in the early postoperative period in the recovery room [17], [248]. The assessment of postoperative bleeding complications has to be done by the surgeon or an associated physician to indicate adequate measure like hourly wound inspection, installation of an iv-line, blood cell count, determination of coagulation values and blood group on an individual basis [94]. The individual evaluation by the surgeon or an associated physician is not transferrable to the nursing staff or inexperienced physicians [249]. Installation of an adequate iv-line can be life-saving in case of a massive bleeding episode to facilitate immediate volume substitution and blood transfusion, if required. It appears wise to determine the patient’s blood group and to prepare erythrocyte concentrates, when hemoglobin values are less than 10 g/100 ml. Coagula should be removed with great care, since an excessive bleeding with cardiovascular failure may follow [141]. Successful management of life-threatening PTH is widely based on an interdisciplinary approach including an adequate airway management to prevent hypoxemia [250]. Technical helps, like an alarm button on the wards, the ambulances and a clear management protocol are prerequisite for an immediate intervention.

Since transoral intubation is complicated by the bleeding [251] a simple rigid suction instrument is lifesaving in such situations. If transoral intubation fails repeatedly, immediate tracheotomy should be performed to establish safe airways. Therefore, a rigid suction and instruments for tracheotomy should be readily available. Transoral compression of the bleeding vessel with the index finger or a clamped swab is the method of choice to control the situation outside the OR or the ward. A rigid bronchoscopy is mandatory since it facilitates removal of aspirated blood or coagula which has been emphasized by several authors [117], [140], [252]. A quick patient transportation is essential for a successful outcome and should be supported by privileged elevator systems. Measures to achieve hemostasis are determined by the history, site and intensity of bleeding. If transoral methods fail to control excessive bleeding, a ligation of all branches of the external carotid artery remains the method of choice [141]. Suction of gastric contents helps to assess the amount of blood, swallowed by the patient. According to expert opinion oozing mandates an hourly wound inspection with a spatula and examination light (case 27). Bilateral oozing not responding to transoral measures is suspicious for a coagulation disorder and may require a packing of the pharynx and detailed blood analysis. It appears wise, not to dismiss patients with visible coagula. Hemorrhage following AE is uncommon, and most likely derives from remnants of adenoid tissue. Therefore, inspection of the nasopharynx and curettage under visual control is indicated. Local infections are treated with antibiotics, but suppuration is highly suspicious for a forgotten packing. Injury of the Eustachian tube may respond to nose drops, Valsalva-maneuver and cortisone. Nasopharyngeal stenosis indicates administration of cortisone and in some cases reconstructive surgery. Grisel’s-syndrome mandates antibiotic therapy [158].

4.1.3.3 Pseudoaneurysm

Pseudoaneurysms should be considered if repeated episodes of copious bleeding with spontaneous cessation are reported. If the situation is not life-threatening, immediate arteriography is the method of choice to identify the bleeding source with simultaneous embolization. Life-threatening situation mandate an immediate surgical treatment [253], [254], [255], [256], [257], [258], [259], [260], [261], [262], [263], [264], [265], [266], [267], [268], [269], [270].

4.1.3.4 Blood transfusion

It has been stated in the “Querschnitts-Leitlinien zur Therapie mit BlutkompONENTEN und Plasmaderivaten” of the German Medical Association that hemoglobin concentration of about 6 g/100 ml or a hematocrit of 18% is sufficient to maintain adequate oxygenation [271]. However, volume substitution has to be considered when hemoglobin values are evaluated [272].

4.1.3.5 Neural lesions

Taste disorders following TE were reported as case reports [273], [274], [275], [276], [277], [278], [279], [280], [281], [282], [283], [284], [285], [286], [287], [288], [289], [290], [291], [292] or subject of studies [234], [293], [294], [295], [296], [297], [298], [299], [300], [301], [302], [303], [304], [305], [306]. Depending on the population size studied and follow-up the rate varies between 0% [293] and 25.7% [234]. Three years after surgery, dysgeusia was identified in 1% of the patients [307]. In most patients, the phenomenon is transient [304]. Taste disorders may be accompanied by dysphagia [275], [280], [281], [282], [285], [287], hypesthesia [234], [273], [276], [278], [285], [289] or pain [234],
Table 5: Unusual complications following tonsillectomy, tonsillotomy and adenoidectomy

| 1. death [24, 35, 51, 134, 140, 179, 209, 525–533] |
| 2. emphysema [216, 534–558] |
| 3. hematoma of the mouth floor [559] |
| 4. Lemière’s syndrome [320, 560] |
| 5. Grisel’s syndrome [183, 322–329, 552,561–563] |
| 6. burns [322,350,351,564–566] |
| 7. stenosis of the nasopharynx [567–571] |
| 8. necrotizing fasciitis [552, 572, 573] |
| 9. mediastinitis [333] |
| 10. soft palate perforation [574] |
| 11. meningitis [575, 576] |
| 12. bacteremia [575, 577–584] |
| 13. hyponatremia [526, 527, 585, 586] |
| 14. temporomandibular joint dysfunction [587, 588] |
| 15. tooth aspiration [589] |
| 16. forgotten swab [590] |

[286], [289], [295]. Bicknell [277], Tomita [300] and Tomofuji [294] used oral zinc therapy to treat dysgeusia which has been successful in another patient even several years after surgery [308]. Several etiological factors have been considered such as an ossification of the stylohyoid ligament [280], iatrogenic nerve lesion [274], [276], [284], [288], [294], [295], [296], local infection [281], [287], [297], content of adrenaline in local anesthetics [234], psychological disorders [281], [286] or idiopathic [273], [275], [278], [279], [285], [287], [298], [299], [301]. Permanent dysgeusia may become clinically apparent and may result in litigations. Trials in Germany resulted in dismissal of surgeons as defendants in all cases [309], the plaintiffs were not successful (Table 2). It is res judicata, that lesion of the lingual and glossopharyngeal nerve is not part of the informed consent, even in cases of revision surgery [121].

4.1.3.6 Fatalities

Hermann stated that bleeding episodes following TT occur predominantly 12–48 hours postoperatively, resulting in death due to exsanguinations and/or aspiration of blood [252]. His admonition, that fatalities are rarely reported in the literature is worth to be repeated. Two cases with lethal bleeding following Coblation-TE occurred in Sweden. One child was scheduled for TT, but autopsy identified the wound outside the capsule. All fatalities occurred 3 and 5 days after surgery, respectively. Repeated episodes of bleeding with spontaneous cessation had occurred in the children [310]. Three cases with lethal outcome following TT had occurred in Germany, typically as secondary hemorrhage. Coblation technique was involved in two cases [311] and CO₂-Laser in one case. In this child, autopsy identified a lesion of the lingual artery, indicating a wrong surgical technique [133]. In the USA, facts about one case with lethal outcome are available one from the mass media [312]. National collections of fatalities following TE, TT or AE do not exist. Population size and time interval of the individual study are confounding factors and explain a varying incidence ranging between one fatality after 7,132 [35], 12,000 [313], 15,996 [314], 16,381 [315] and 170,000 [134] tonsillectomies. Two fatalities were registered in Germany in a survey, including one TT case [179] after 130,000 surgical procedures (Table 1). Becker reported 32 cases with lethal outcome, of whom 20 had occurred in children under 10 years of age [316]. Fatalities may result from primary or secondary embolism, even if performed under local anesthesia [317].

4.1.3.7 Unusual complications

See Table 5. One case with hemiplegic following TE remained unclear [318]. It is assumed, that emphysema formation results from air that is pressed through the mucosa during coughing or vomiting. Emphysema may be associated with spreading of bacteria which becomes life-threatening when the mediastinum is involved [319]. A thrombosis of the internal jugular vein is extremely rare and may result from dehydration, intravascular turbulences and/or simultaneous infection, altered endothelium and coagulation disorders. The disease is always life-threatening and mandates an interdisciplinary approach [320], [321]. Only one case with a thrombosis of the sagittal sinus has been reported to date [322]. According to Feldmann and Brusis suspension of the inserted mouth gag may damage the cervical spine resulting in a torticollis [121]. This phenomenon has been observed after AE [323], [324], [325], [326], [327] but also after middle ear surgery [328], [329]. In contrast to the finding immediately after surgery, Tschopp reported a delayed Grisel’s syndrome resulting from a discitis when monopolar instead of bipolar coagulation was used to achieve hemostasis after AE [330]. Successful treatment consists of immediate administration of antibiotics [323].
Nasopharyngeal stenosis occurs more often after AE than TE. A necrotizing fasciitis following TE is extremely rare and successful treatment supported by broad-spectrum antibiotics [331], comparable to cases with [332] and mediastinitis [333].

4.1.3.8 Tonsillar remnants

Kaiser found in 1930 tonsil remnants in 381 of 1,000 children who had undergone TE [334]. This high rate may be explained by the surgical technique at that time. In 1973, Bonding reported a rate of 2.97% [335] and Nielsen in 1981 a rate of 5.4% [336], [337]. According to a specified analysis of the German Statistical Federal Bureau 861 operations to remove tonsil remnants were performed in 2010. The term “tonsillar remnant” suggests a surgical misadventure. However, suturing of the tongue muscosa to the caudal wound edge transposes parts of the lingual tonsil to the former caudal part of the tonsil [338] (cited: [121]). In another trial at court, the case of a 7-year-old was compensated with payment of 4,500 DM since secondary surgery was required to remove a single-sided “tonsil remnant” [339].

4.1.3.9 Analgesics

A regular intake is much more effective than on-demand therapy. It should be considered, that the analgesic effect is limited to four hours. Paracetamol is most commonly given to children [63], [64], other surgeons prefer ibuprofen [25]. Since pain sensation varies individually, an individualized analgesic regime is mandatory [340]. Administration of NSAIDs is not associated with an increased hemorrhage rate according to Cardwell [341] and Moiniche [342]. Acetylsalicylic acid, however, is a risk factor for PTH [343]. Antibiotics have no impact on bleeding complications [344]. Negligent postoperative care including problems associated with analgesics were addressed by Stevenson [51] and are discussed later.

4.1.3.10 Medical malpractice in the literature

It can be stated that malpractice claims are very likely in the light of thousands of operations performed yearly. These cases are labeled as “Malpractice Claims”, “Malpractice Cases” or “Clinical Negligence Claims” in the medical literature. Concerning tonsillectomy, we identified four scientific papers that were published most recently. Mathew reported of malpractice claims relating to tonsillectomy between 1995 and 2010 as obtainable from the National Health Service Litigation Authority database. There were 34 closed claims, of which 32 (94%) resulted in payment of damages. Postoperative bleeding was the most common injury (10 cases, including 2 fatalities), with delayed recognition and treatment of bleeding alleged in most cases. Nasopharyngeal regurgitation (5) as a result of soft palate fistulas (2) or excessive tissue resection (1) and inadequate informed consent (5) were the next-commonest cause of a claim. The other injuries claimed included dentalveolar injury (4), burns (3), tonsillar remnants (3), and temporomandibular joint dysfunction, wrong indication (2), forgotten swab (2), infection (2), and miscellaneous (11) [345]. Burns related to TE are acknowledged as malpractice [346]. According to final judgment of German courts, a lesion of the hypoglossal nerve is not a result of medical malpractice [347] which was differently judged in the USA [345].

Stevenson analyzed data of 178 cases from 1984 through 2010 in a retrospective study at a tertiary medical center of jury verdict reports within the LexisNexis (Dayton, OH) database submitted after tonsillectomy malpractice cases. Postoperative bleeding was the most common complication (60), followed by anoxic events (30) and impaired nerve function resulting in dysgeusia or dysphagia (28), miscellaneous (19), burns (13), medication issues (12) and thermal airway injury (5). 72 Patient died as a result from bleeding (39), anoxia (13), postoperative medication issues (12), intraoperative events (5) and infections (3). Monetary awards were available in 24.7% of reports. Anoxic event was noted to have the highest median award at $ 3,051,296, followed by postoperative medication at $ 950,000. The paper emphasizes the value of a proper complication management protocol and adequate documentation, particularly of the individualized informed consent [51]. Surgeons have to be prepared to treat either PTH 2 weeks after surgery [348] or in the early postoperative period in the recovery room [248].

Simonsen obtained data from 154 cases concerning TE, AE and ATE from 16 members of the Physician Insurers Association of America. All claims were either filed or closed between 1985 and 2006 and included burns (28), bleeding (27; in 10 cases resulting in death), informed consent (9), medication issues (9), tonsillar remnants (9) and miscellaneous (70). The group of miscellaneous issues included uvular injuries (6), velopharyngeal insufficiency (2), nasopharyngeal stenosis (1), dysgeusia (4), retained foreign bodies (3; in one patient found four months after AE when the patient presented with sinusitis), broken suture needle left in the tonsillar fossa (1). Complications related to post-operative infection led to six claims including pneumonia, abscess with osteomyelitis of C2, and bacteremia. Three of the six infections resulted in death. Two cases involved aspiration of adenoid tissue. There was one wrong site surgery in which a tonsillectomy, adenoidectomy and bilateral tympanostomy tubes was performed on a seven-year-old female who was scheduled for eye surgery. One miscellaneous case claimed that the fellow or resident was intoxicated [349]. The paper mentioned 4 cases of burns related to a hot mouth gag and emphasizes the need of safety instructions [350], [351], [352]. The authors also emphasize the need of an adequate documentation, particularly of the informed consent as recommended by Mistry and Kelly [353]. Nine errors in medication resulted in death (4) or neurologic sequelae (3). Six of nine patients with
remnants underwent revision surgery. Monroy reported a rate of 0.55% after 13,005 AE procedures [354]. Morris reviewed 69 New York State insurance claims (1985–2007) and 87 national court trials (1979–2007) alleging injury after tonsillectomy. The New York State insurance cases were most commonly discontinued (30) or settled before (29) or at (10) trial. Cases with a settlement or verdict were made in 48 percent of cases. The severity of injury was discernible in 48 cases. Of these, 25 involved death or major injury; 13 of these 25 cases were compensated. Minor or moderate injury was claimed in 23 cases, 15 of these 23 cases were compensated. The specific types of negligence alleged in the cases that proceeded to national court trials included surgical misadventure (37), negligent postoperative care (28), negligent anesthesia care (15), informed consent (4) and failure to diagnose (3; all of which involved a delayed diagnosis of cancer in adults). The patient’s location at the time of the bleeding, respiratory, or medical complication was discernible in 46 cases: 28 (61%) occurred intraoperatively, 5 (13%) occurred in the hospital, and 13 (28%) occurred at home. Of bleeding complications, only one was intraoperative, with the remaining cases occurring at home between postoperative days 0 to 14 (median, postoperative day 5). Focusing on the 38 cases of death/major injury, the cause was identifiable in 36 cases: 25/45 pediatric cases and 11/42 adult cases. The causes were postoperative respiratory complications (13), bleeding (12), intraoperative anesthesia-airway complications (6), intraoperative anesthesia-medication complications (3), intraoperative vasogenic toxicity (1), and postoperative sepsis in an adult who developed septic shock after Quinsy tonsillectomy [355]. Nikoghosyan-Bossen reviewed 480 decisions of the National Board of Patients’ Complaints from 1998 through 2008, including 50 tonsillectomy cases. Complaints were filed for velopharyngeal insufficiency (13), pain and pain management (11), bleeding (10), residual or re-occurred tonsillar tissue (6), perforation of the palatal arch (6), dysgeusia (3), hoarseness (3) and a left retained packing in the nasopharynx (2). 10/50 complaints resulted in criticism for either medical error (4), deficient medical recording (5), deficient information (1) or lack of adequate informed consent (1). Seventeen malpractice complaints were filed due to a lethal outcome of a treatment, seven of them after various surgical procedures including one single case of delayed PTH. The authors emphasize the need to mention velopharyngeal insufficiency in the informed consent [356].

4.2 Septoplasty

Several seminar papers concerning SP are obtainable in the archives of the German Society of Oto-Rhino-Laryngology, Head and Neck Surgery [357], [358], [359], [360]. The satisfaction rate following SP varies between 51% and 86% [358], [360], [361], [362], [363], [364]. Nowadays, Cottle’s techniques is acknowledged as the surgical standard and basis for newer developments [365].

4.2.1 Preoperative period

4.2.1.1 Indication

The indication for surgery is widely based on the complaints of the patient in terms of impaired nasal breathing, preferably supported by pathologic findings in rhinomanometry. Other complaints, like nasal hypersecretion question the value of surgical therapy and mandate an individualized informed consent [366]. According to expert opinion, rhinosurgeons are not committed to recommend SP, when cosmetic corrections like hump removal are the indication for surgery and the patient do not complain impaired breathing [367]. Endoscopy, rhinomanometry before and after decongestion and smell tests are recommended before surgery [358]. Acoustic rhinometry, rhinosinostoscopy and rhinoflowmetry may help to localize the site of deviation, but these procedures are performed in only few institutions [357]. Septal deviations are currently classified with some modifications [368], [369], [370] based on suggestions of Masing [371]. A simultaneous perforation of the tympanic membrane is accepted as indication for SP to resolve the problems associated with the septal deviation [372]. Rettiger suggests fractures of the septum, reconstructive surgery to correct a saddle nose and an impaired approach to the nasal sinuses as a clear indication for SP [373].

4.2.1.2 Informed consent

Infection, abscess, septal defect (resulting in bleeding, pain, audible breathing, crusting, impaired breathing), deformities, dysosmia, failure and rare complications like meningitis, skull base injuries, rhinoliquorrhea, injury to the orbital contents, impaired vision and blindness have to be mentioned in the informed consent [374]. The general remark of a possible functional deficit is not sufficient in the informed consent [375]. However, the unlikely risk of a lethal outcome is not an issue to be discussed with the patient before SP [122]. A checklist supports the safety of the preoperative comprehensive informed consent (Table 6). Care has to be taken, that patients understand the explanations otherwise the physicians may be charged for medical malpractice. The informed consent has to explain the entire surgical concept, including cartilage grafting which was neglected in one case of our study.

4.2.2 Intraoperative period

Hemitransfixion is the standard approach to expose the septum. While it is important to incise the skin rather than the mucosa, the side of the incision not important [357]. Schultz-Coulon recommends a speculum to expose the caudal end of the septum for the skin incision which should be done in a cranial to caudal fashion. Care has
Table 6: Checklist septoplasty

1. vascular injury, postoperative bleeding
2. re-operation due to surgical failure
3. lesion of the orbita and orbital contents (blindness, double vision)
4. injury of the dura, meningitis, liquorhea
5. neural lesion resulting in dizziness of the incisor teeth
6. necrotic dental root, dental discoloration
7. synchia requiring revision surgery
8. olfactory dysfunction (permanent)
9. crusting, smelling superinfected nasal contents, nasal dryness
10. septal perforation resulting in impaired nasal breathing, audible noise during breathing, bleeding, requiring revision surgery or button
11. septumhematoma/abscess requiring revision surgery
12. external nose deformation requiring revision surgery

to be taken not to incise the cartilage to prevent postoperative scarring and secondary deviation. Leaving periosteum on the anterior nasal spine facilitates to re-fixate the corrected septum. To reduce tension on the mucosa, a floor tunnel is recommended. In case of a vertical deviation, chondrotyomy anterior to the deviation prevents tearing of the mucosa and reduces the risk of a septal defect [361]. Aerated middle turbinates as well as hypertrophic turbinates have to be considered in the surgical concept [358], [368]. Submucosal resection of the septum is limited to the central and dorsal part of it, leaving an L-shaped frame intact otherwise a reconstruction of this particular frame is mandatory to prevent visible deformities. Schultz-Coulon recommended to use a microscope for optimal visualization of the delicate structures [361], other authors suggested endoscopes for the same reason [376], [377]. The surgical steps consist of injection of adrenalincontaining local anesthetics, hemitransfixion, incision of the mucoperichondrium 1 to 2 mm dorsal to the caudal end of the septum, undermining of the mucoperichondrium, exposure of the cartilage/bone by tunneling, vertical chondrotyomy leaving at least 1 cm of cartilage to the nasal dorsum/caudal end of septum intact, separation of the cartilage from the premaxilla, osteotomie or fracture of the bony septum, resection of the deviated cartilage/bone, re-insertion of the corrected septum material, stability check, fixation of septum splints or transseptal suture fixation, wound closure, packing [373]. Re-insertion of the septum material impedes flaring of the septum [361]. Severe septal deformities can not be corrected properly with this standard septoplasty techniques and require extracorporeal correction after the entire septum was taken out to reconstruct a new septal plate that is re-fixated [378], [379], [380]. If there is a lack of material, fixation of septal remnants to a PDS-foil has been suggested [381], [382], [383], [384]. Less invasive surgical techniques may be useful for limited pathologies [385]. Application of the CO₂-Laser has been suggested [386] but the benefit appears questionable [358], [387]. Vertical septal deviations may require different measures, including excision and re-fixation of a septal plate from backwards to the caudal end of the septum, anterior nasal spine and columella pocket [388]. Lack of septum structures may require cartilage grafts from the ear [358] or rib [389]. A height of at least 3 cm has to be considered for this procedure [357]. Deviations at the caudal end of the septum may respond to incisions/sections of the cartilage [388] or suturing after horizontal cartilage transection [390]. SP in childhood is justified in case of seriously impaired breathing, hematoma or abscess formation after trauma. Huizing recommends reposition of dislocated structures within 5 days and immediate drainage of the hematoma/abscess. If indicated, cartilage grafts are necessary for septum reconstruction [388]. Growth of nasal cartilage and bone mandates a thorough consideration of the surgical risk and benefit especially at the age between 3 to 5 years and during puberty [358]. Growth zones at various sites have to be spared by the surgeon [388], [391], [392], [393], [394]. Schultz-Coulon recommended sparing of the junction area between the lamina quadrangularis and perpendicularis [361].

4.2.2.1 Complications

Blindness is an extremely rare complication [374], [395], [396] and most likely caused by unintentional intravascular injection of adrenalin-containing local anesthetics [397]. An injection of at most 5 to 10 ml into the area of the hemitransfixion area has been suggested by Rettinger. In case of an existing single-sided blindness, the possibility of a total blindness resulting from the injection has to be discussed thoroughly with the patient, particularly in case of a questionable indication [398], [399]. It is advisable to refrain from local infiltration of adrenalin-contain- ing anesthetics. In any case of postoperative blindness a thorough clinical and ophthalmological examination and a CT-scan has to be done within 2 hours [400]. Cardiovascular collapse has also been attributed to the injection of adrenalin-containing local anesthetics [401]. Single-sided perforations of the mucosa have to be su- tured, if re-inserted septum material may penetrate the perforation as suggested by Baumann [358], Matthias [357] and Schultz-Coulon [361]. Double-sided perfora-
tions should be sutured immediately after interposition of septum material [361], [402]. Rhinoliquorrhea may result after fracturing of the perpendicular plate due to the close connection to the lamina cribrosa [357], [403], [404], which was also reported after reposition of a fractured nasal bone [361]. After removal of the nasal packing a thorough examination of the inner nose and the packing is mandatory to exclude that parts of the packing remain in the nose. This gross negligence may result in a long-term period of headaches, as reported for a patient who finally, after three years, was freed from the packing. The event was assessed as medical malpractice and the responsible surgeon fully charged [405].

4.2.3 Postoperative period

The infections rate hardly reaches 3%, and antibiotics as a routine procedure are not indicated in primary SP [357], [374]. However, cases with septum abscess, perichondritis, septic fever, endocarditis, meningitis, brain abscess, thrombosis of the cavernous sinus [406] and toxic-shock-syndrome were reported [121], [374], [406], [407], [408].

According to expert opinion, toxic-shock-syndrome is such a rare complication, that it can be neglected in the preoperative consent [122].

Bleeding complications may occur in 2 to 7% [357], [402], [409] but are mainly associated to simultaneous surgery of the turbinates [374]. Kocak reported one single case with lethal outcome resulting from an injured internal carotid artery after resection of the vomer [410]. There is only one single case obtainable from the literature with a fistula between the internal carotid artery and the cavernous sinus presumably as a result from a via falsa dissection [411].

A hematoma of the septum mandates immediate surgical drainage to prevent abscess formation [357], [412], [413]. It has been suggested to use fibrin glue and transeptal suture after incision drainage [361]. Abscess formation is also an indication for an immediate incision drainage supported by intravenous administration of antibiotics. In some cases, reconstructive procedures are required [374], [413], the earlier, the better [361].

Synechia may occur in 1 to 7% of cases [374], [414], particularly, if the turbinates were treated simultaneously. Splints, sutured to the septum, prevent synechiae formation [404], [415]. Crusting and atrophy of the mucosa is extremely rare [361], [412]. It has been suggested to clean the nose twice a week for 2 to 4 weeks after surgery to prevent synechia formation [372].

Nasal deformities are observed in 5 to 60% after SP. They typically encounter the lower third of the nose, but are not a result of medical malpractice [416]. If they develop early, re-fixation of the dislocated septum cartilage to the anterior nasal spine is indicated within the first 2 to 4 postoperative weeks. If the deformity becomes visible with a delay, cartilage grafts are useful to resolve the problem [358], [361], [406], [414]. Various deformities of the external nose result from either inadequate fixation of the mobilized septum cartilage or an over-resection of the cartilaginous frame. To prevent deformities, Schultz-Coulon recommended starting with bone resection followed by resection of the septal cartilage, especially in cases with septal luxation. Cross-hatching of the septal cartilage is not recommended, since the functional results are unpredictable and the stability jeopardized [361]. Vuyk and Langenhuijsen analyzed pre-and postoperative images of 100 patients. They identified 21 cases with minor changes and one case with a major postoperative deformity. There was no relationship between surgical technique and result [417].

Septal perforations may occur at rate ranging between 1 to 25% [374], [406], [414] and should be treated surgically as early as possible [361]. If they are associated with bleeding, crusting, audible breathing, impaired breathing, headache or enlarge, closure within 6 months is advisable. The distance between the cranial border of the perforation to the nasal dorsum should be greater than the vertical length of the perforation itself. The mucosa should be free of infection when patients are scheduled for revision surgery [374]. It has been stated, that the rate of perforations decrease with surgical experience [413] and its occurrence is not a result of medical malpractice [372]. There is no evidence for the best postoperative care, advantages of nasal splints and packing [357].

Permanent dysosmia is reported for less than 1% [418], [419] but may be transient in 2.9% [406] of all procedures. It appears wise to perform smell tests as a routine to be prepared for medical practice claims [374]. Dysosmia has been evaluated as a result from synechia formation and the surgeon not charged for medical malpractice [372]. However, any smell dysfunction has to be included in the informed consent prior to any SP.

Re-dislocation of the septum may result from an untreated cooked nose, overresection of cartilage or inadequate suturing of the septal cartilage to the anterior nasal spine and occur after 1 to 8% of all cases. Constant pressure of the soft tissue envelope impedes nasal form and function with time resulting in a “tension released nose”. The basic principle to prevent such results consists of leaving the junction between the lamina perpendicularis and lamina quadrangularis as well as the connection of the septal cartilage with the anterior nasal spine untouched. Finally, a single-sided dissection of the tunnels jeopardizes less the stability of the nose. If the septal cartilage has been severed from its framework, meticulous re-fixation is strongly advised [374].

A lesion of the incisive nerve is rare [420], occurs more often in combination with sinus surgery [420] and in most cases is obviously transient [421]. Langgraf-Favre, Sykes and Issing reported a combination of devitalized incisor teeth with discoloration after septrhinoplasty (cited [422]).

Foreign body aspiration can be avoided when the nose is packed with a small gauze prior to reinsertion of septum material [361]. It is crucial to knot both safety threads of the packing outside the nose to prevent aspiration of the packing material which resulted in death in two [423].
and four patients [424]. The safety thread is acknowledged as medical standard. According to expert opinion, it is medical malpractice not to use it which is also valid if packing is used to control nasal bleeding [425].

4.3 Cervical lymph node excision

The current Robbins-Classification defines six different regions in the neck [426]. Typical complications associated with neck dissection surgery are obtainable from the survey of Werner [427]. Not all complications may result from LN since neck dissection procedures expose larger areas, frequently on both sides of the neck. Moreover, since lymph node metastases are removed, postoperative sequelae due to oncologic safety reasons are accepted for neck dissection. The more aggressive the plan for surgery is, the more serious are postoperative complications like increased intracranial pressure, impaired vision or vision loss, fracture/osteomyelitis of the clavicle, chylothorax and lymph edema. However, hypertrophic scars may occur after every surgical procedure in the neck resulting in contraction and impaired mobility of the neck [428], [429]. Permanent hyposthesia, impaired healing or hematoma are other issues to be mentioned in the informed consent [430]. Injury to the greater vessels in the neck may require blood transfusions and result in hemiplegic, exsanguination, brain edema, blindness or thrombosis. Parts of the sympathetic chain, the phrenic nerve as well as the lower cranial nerves are jeopardized by surgical procedures in the neck. A lesion of the Ductus thoracicus may be followed by chylothorax formation and death. Conservative or surgical measures of treatment have to be considered, when vascular, neural or lymphatic sequelae occur [427], [431], [432].

4.3.1 Preoperative period

LN is indicated to clarify the dignity of the suspicious lymph node [432], [433], [434], [435]. Mycobacteria other than the tuberculosis bacillus sometimes infect humans, especially children. The lungs are the most common site but occasionally, the lymph nodes, bones and joints, skin and wounds are involved. Clinical, radiographic, and microbiologic criteria are equally important and all must be met to make a diagnosis. If the lesion in the neck is suspicious for atypical tuberculosis, swabs from the excised lymph node for microbiological analysis are mandatory. The preferred staining procedure is the fluorochrome method. Specimens should be cultured on both liquid and solid media. Methods of rapid species identification include commercial DNA probes, high-performance liquid chromatography, antibiotic in vitro susceptibility testing, DNA sequencing or polymerase chain reaction [436]. Solid lymph nodes with a diameter of more than 15 mm are an accepted indication for LN after thorough blood analyses, ultrasound and clinical examination [435]. The indication to perform CT scans of the neck has to be individualized [432]. LN may be indicated by the ENT-surgeon, family physician or pediatrician [130], to exclude a malignant disease, sarcoidosis or tuberculosis. According to the current German jurisdiction it is not the duty of the surgeon to prove the indication of other disciplines [437].

4.3.1.1 Informed consent

The extent of the informed consent is related to the extent of the surgical approach and the site of the lesion (Table 7). In the submental region, the skin incision is made along the relaxed skin tension lines (level I A), in the submandibular area more bow-shaped (level I B), straight along the anterior border of the sternocleidomastoid muscle or along the relaxed skin tension lines (level II-V) [432]. It has been suggested to explain neural lesions in the informed consent [95]. Neural lesions after neck dissection procedures may occur with varying rates and involved the spinal accessory nerve (1.68%), ramus marginalis of the facial nerve (1.26%), sympathetic chain (0.56%) and hypoglossal nerve (0.42%) after 442 procedures [438]. Ferencsik identified a lesion of the spinal accessory nerve in 1.55% after 263 operations [439]. Until 1954 no case of spinal accessory nerve injury reached court trial in Germany, but from that day on, surgeons have to include the issue in the informed consent [440]. It is the most common and typical complication associated with LN in the neck [441], [442]. It has been decided by German courts that for the patient’s self-determination the clinical consequences of the nerve lesion have to be explained by the surgeon. Characterizing the risk as very low without explanations is not sufficient for the informed consent [443]. The consent is ineffective, if the patient is not informed about the fact, that the surgeon is not experienced with this particular operation. It is allowed that residents in training perform the operation after adequate and repeated procedures with supervision. If this not the case, uninterrupted surveillance by an experienced surgeon is mandatory [444]. If the informed consent is delegated to residents in training, a comprehensive checklist appears useful (Table 8).

4.3.2 Intraoperative period

To prevent postoperative fistula formation, a complete excision of the affected lymph nodes is required if the finding is suspicious for an infection of atypical mycobacteria. It may be difficult for the inexperienced surgeon to distinguish between a lymph node and a Glomus caroticum tumor. Supraclavicular LN may be complicated by injury of greater vessels or pleura and mandate immediate suturing of the injured structure [432]. Dissection of lymph nodes along the greater vessels in the neck is sometimes complicated by the variable relation of the spinal accessory nerve to the internal jugular vein [445]. A comparable variety has been identified for the Ductus lymphaticus dexter and Ductus thoracicus [446]. It has been postulated, that the marginal branch of the facial nerve has to be exposed to prevent its lesion, usually accompanied with ligature of the facial vein [447]. Sparing
Table 7: Cervical lymph node excision – complications

Level [426]	cranial border	caudal border	anterior border	posterior border	Complication
IA	Mandible	Hyoid post.digastric m.	contralateral anterior digastric m.	ipsilateral anterior digastric m.	N2,3,6
IB	skull base	Hyoid	stylohyoid m. N XI, medial	SCM	N1,2,5,8,9, V1,2,4
IIIB	Hyoid	Cricoid	sternohyoid m., lateral	SCM / cervical plexus	N1,4,5,7,8,9, V1,2,4
IV	Cricoid	Clavicle	sternohyoid m., lateral	SCM / cervical plexus	L1; N4,5,8; V1–4
VA	apex SCM / trapezius m. Cricoid	Clavicle	SCM, dorsal/cervical plexus	trapezius m., anterior	N1,7, V3 N1, V3
VB	Hyoid	Sternum	common carotid artery	common carotid artery	L1; N5,8; V1–4

Legend:

Lesion	Effect	how to avoid; therapy	
L1	Ductus thoracicus / lymphatic	cardiorespiratory / metabolic deficiencies	pressure packing; MCT; suture ligation, muscle flap
N1	spinal accessory nerve	shoulder syndrome	visual identification; neural suture
N2	hypoglossal nerve	tongue hypomobility	visual identification; neural suture
N3	lingual nerve	tongue dysesthesia	visual identification; neural suture
N4	phrenic nerve	dyspnea	visual identification; neural suture
N5	vagal nerve	dysphonia, dyspnea	visual identification; neural suture
N6	marginal branch of facial nerve	hanging lower lip	visual identification; neural suture; intraoperative monitoring
N7	Truncus brachialis	arm plegia	spare deep cervical fascia
N8	Truncus sympathicus	Horner’s syndrome	dissection not medial to the carotid artery
N9	Glomus caroticum	vasovagal reflex	immediate information of the anesthetist, heart massage
V1	internal jugular vein	bleeding, air embolism	immediate: compression, Trendelenburg position, information of the anesthetist; vascular suture or ligation; eventually air embolism resolved via central venous line in left-sided position
V2	carotid artery	bleeding, hemiplegia, death	vascular suture or ligation
V3	subclavial vein	bleeding, air embolism	immediate: compression, Trendelenburg position, information of the anesthetist; vascular suture or ligation; eventually air embolism resolved via central venous line in left-sided position; eventually removal of the median third of the clavicle
V4	internal jugular vein	thrombosis	do not let dry out the vascular wall; meticulous dissection of the vascular wall

of the phrenic nerve and Ductus thoracicus is accomplished by meticulous dissection of the deep fascia without penetrating it and clamping of the soft tissue prior to transection [448].

4.3.3 Postoperative period

The incidence of a chylovus fistula following neck dissection ranges between 1 to 5% (not specified for LN). Surgical radicality, left side and previous irradiation therapy are acknowledged as risk factors [449]. After diagnosis is established, the amount of fluid production has to be measured on a daily basis accompanied by blood cell count, determination of electrolytes, serum albumin, kidney and liver function and pressure dressing. A chest X-ray is helpful to exclude a chylothorax [427], [432]. A lethal has been reported for few cases [449], [450]. Some authors suggest parenteral feeding, especially when other measures of treatment failed [451], [452], [453], [454], [455], [456], [457]. Most authors suggest conser-
Table 8: Checklist cervical lymph node excision

1. bleeding, pain, swelling, infection
2. dyspnea, tracheotomy
3. neural lesion resulting in transient or permanent impaired and painful shoulder elevation, facial paralysis, tongue dysmobility, dysarthria, hoarseness, dyspnea, disturbances of the intestines, impaired speech
4. brachial plexus lesion (arm / hand plegia)
5. Truncus sympathicus lesion (Horner’s syndrome)
6. permanent dysesthesia or pain in the neck/ear
7. pneumothorax (dyspnea) requiring surgical intervention
8. cosmetic disfigurement of the neck
9. keloids requiring secondary therapy; scar contraction
10. dyspnea, tracheotomy
11. lymphedema
12. chylosis fistula requiring targeted therapy, eventually revision surgery

vative treatment and a lowfat diet supplemented with medium-chain triglycerides [427], [449], [452], [453], [454], [455], [456], [457], [458], [459], [460], [461]. Only few authors suggest surgical revision generally [462] or in case of hypoalbuminemia, duration more than 30 days or a daily amount of more than 600 ml [427], [432], [453], [454], [456], [463], [464], [465]. Nussenbaum suggests surgical revision if more than 1000 ml are drained within the first 24 hours [466]. Chylothorax is a life-threatening situation that may require repeated incision drainages of the thorax, low-fat diet, parenteral nutrition and sometimes suture ligation if not responding to the previously mentioned measures of treatment [427], [432], [467], [468]. Since dyspnea may also result from a lesion of the phrenic nerve [469] diagnosis of a chylothorax is based on an X-ray of the thorax [470]. A single-sided lesion of the phrenic nerve usually is not clinically apparent and only sometimes complicated by pulmonary atelectasis and subsequent infection [471]. Injection of tetracyclines to induce sclerosis [472] jeopardizes at least the phrenic nerve [473].

4.3.3.1 Spinal accessory nerve lesion

A lesion of the spinal accessory nerve occurs in 3 to 8% of cases, particularly if the lateral triangle of the neck was involved [474]. Painful and restricted mobility of the shoulder may lead to inability to work [427], [432], [475] which explains the great number of negligence claims that reached German courts [476], [477]. The impairment may reduce general ability to work by 30% according to expert opinion [478], and the ability to work in qualified job by 15% [479]. Delay to diagnose the lesion has been punished in court trials [480]. Ultrasound is capable to identify the continuity of the nerve [481]. Immediate surgical repair appears to be most successful [482] but successful outcome was reported even if revision surgery was performed with a delay of 3 [483] or 6 months [484]. One court trial followed the expert opinion to refrain from revision surgery although the diagnosis was clear immediately after LN [437]. To date, no consensus has emerged on how to prevent spinal accessory nerve injuries, assess surgical experience [476], confirmed by Hopf [485]. Alleged medical malpractice is widely based on an assumed, but not written-down medical standard. Surgical improvements have been suggested in surgical textbooks and encompass electrosurgical means to achieve hemostasis, avoidance of hooks, magnification with loupes, nerve monitoring, general anesthesia, at least one assisting surgeon, adequate surgical experience, pre- and postoperative diagnostic, adequate documentation, minimum time for the operation, leaving the “back-side” of the lymph node in the surgical field and complete exposure of the nerve [442]. However, it has been doubted, that exposure of the nerve is capable to prevent its lesion [476], [477]. Although no evidence for the best method to spare the nerve is supported by scientific papers, expert statements occasionally can read differently. Since court trials usually follow expert opinions, this may result in verdicts in favor of the plaintiff [486] or defendant [487]. While one expert stated, that identification and prevention of the nerve is always possible, even in cases with severe inflammation [488] a contradictory statement is supported by the finding of an intact nerve in revision surgery in a case with serious inflammation [489]. Some experts conclude, that lesion of the spinal accessory nerve is a typical and fateful complication [490], that occurs even after accurate operations [437], [491] which may explain, that one trial was stopped at court [492]. Operation time, adequate documentation of the procedure and histological confirmation of the inflammation is helpful for the surgeon [128] and a meticulous description of the dealing with the advisable [130]. This statement is confirmed by the legal adviser of the German Society of Oto-Rhino-Laryngology, Head and Neck Surgery [490] and helpful at a time of confusing and contradictory verdicts [493]. It is noteworthy to repeat, that an adequate documentation is of paramount importance. A lack of informed consent was identified in 12 of 15 cases of medical malpractice. Current surgical handbooks emphasize the need of a meticulous and careful dissection of the nerve after...
visual identification [494]. Unintentional stretching of the nerve may occur even with soft retractors [494]. Good experiences with nerve monitoring in 10 patients were reported by Midwinter [495], who confirmed earlier findings of Harpf [482]. To date, nerve monitoring of the spinal accessory nerve is not widely accepted as it is for cranial base surgery, parotid gland surgery or thyroid surgery [427]. Visual identification of the nerve and wound retraction with blunt hooks were highly recommended by Thumfart [431]. Indeed, in only 55 medical malpractice cases, the nerve had been identified by the surgeon [476]. To facilitate identification of the nerve Tatla uses the tendon of the sternocleidomastoid muscle as surgical landmark [496]. His finding of a great variability of the nerve’s course and its relation to the internal jugular vein is confirmed by other authors [497], [498]. Testing of the nerve function before and after LN in level V is essential to prevent claims before trial [127]. However, a normal finding immediately after surgery does not exclude a permanent dysfunction that develops with a delay [478] and is noticed by painful impaired mobility of the shoulder [499].

4.3.4 Medical malpractice in the literature

Morris reviewed 39 indemnity insurance cases and 55 court trials between 1985 and 2007 involving injury of the spinal accessory nerve. Defendants were mainly general surgeons and otolaryngologists. The indemnity insurance cases involved a posterior triangle lymph node biopsy, 10 were discontinued, 22 settled before and 8 at trial. Two of the 8 cases returned in defendant verdict, 28 ultimately compensated the plaintiff. All court trials dealt with alleged surgical injury to the spinal accessory nerve. In essentially all verdict reports, the defendant surgeon argued that either nerve injury was a recognized complication of surgery or the shoulder weakness was caused by a separate process, such as trauma, infection, or cancer. Most defendants argued that it was not necessary to identify the nerve in the posterior triangle, the nerve was only identified in 1 case. In 9 cases, the nerve injury found on re-exploration was reported: there were 7 nerve transections, 1 neurona, and 1 case of intraneural fibrosis. Of the 55 cervical lymph node cases, 7 were settled, 25 were defendant verdicts, and 23 were plaintiff verdicts. Therefore, 30 of 55 plaintiffs in lymph node court cases received monetary awards at trial [476].

5 Conclusion

Complicated cases following TE, TT, ATE, SP and LN are not systematically collected in Germany. It can be assumed, that not every complicated case is published in the medical literature or law journals and therefore not obtainable for scientific research. Alleged medical malpractice is proven for less than 6% before trial stage. Approximately half of all cases result in a plaintiff verdict or settlement at court. Proper documentation of a thorough counselling, examination, indication, informed consent and follow-up assists the surgeon in litigation. An adequate complication management of PTH is essential, including instructions for the patients/parents, instructions for the medical staff and readily available surgical instruments. Successful outcome of life-threatening PTH is widely based on a proper airway management in an interdisciplinary approach. Electrosurgical tonsillectomy techniques were repeatedly labeled as a risk factor for bleeding complications following TE. Institutions should analyse the individual PTH rate on a yearly basis. Contra- dictory expert opinions and verdicts of the courts concerning spinal accessory nerve lesions following LN are due to a lack of a surgical standard.

Notes

Competing interests

The author declares that he has no competing interests.

References

1. Die 50 häufigsten Operationen der vollstationären Patientinnen und Patienten in Krankenhäusern (Rang, Anzahl, Anteil in Prozent). Gliederungsmerkmale: Jahre, Deutschland, Geschlecht, Art der Operation. Available from: http://www.gbe-bund.de/oowa/921-install/servlet/oowa/av92/dbooways921.xdevkit/xwd_init?gbe.isgbetol/xs_start_neu/amp_id=36&_id=8630964&nummer=666&sprache=D&indsp=&_id=74758474

2. Statistisches Bundesamt. Die fünf häufigsten Operationen (OPS-Schlüssel 5) der vollstationär behandelten Patienten (weiblich) nach ausgewählten Altersgruppen. Available from: https://www.destatis.de/DE/ZahlenFakten/GesellschaftStaat/HaehufigstenOPSMaenner.html;jsessionid=4EA0B913B00D415A6B0EE0824BC63910.cae4#Start

3. Statistisches Bundesamt. Die fünf häufigsten Operationen (OPS-Schlüssel 5) der vollstationär behandelten Patienten (männlich) nach ausgewählten Altersgruppen. Available from: https://www.destatis.de/DE/ZahlenFakten/GesellschaftStaat/HaehufigstenOPSFrauen.html

4. Referentenentwurf des Bundesministeriums der Justiz und des Bundesministeriums für Gesundheit Entwurf eines Gesetzes zur Verbesserung der Rechte von PatientInnen und PatientInnen. Available from: http://www.bmg.bund.de/fileadmin/dateien/Downloads/Gesetze_und_Verordnungen/Laufende_Verfahren/P/Patientenrechte/Referentenentwurf_Patientenrechte_BMG_Bmg_Endfassung_120116.pdf

5. Gerst T. Gutachterkommissionen und Schlichtungsstellen: Hohe Akzeptanz des Verfahrens. Dtsch Arztebl. 2012;109:A-1299/B-1123/C-1107.

6. Fragen und Antworten zur Begutachtung von Behandlungsfehlern durch den MDK. Available from: http://www.mdk.de/media/pdf/78-12-03-26_Faktenblatt_Behandlungsfehler_FAQ_final.pdf

7. BGH 06.05.2003 VI ZR 259/02.

8. Deutsch E. Der grobe Behandlungsfehler: Dogmatik und Rechtsfolgen. VersR. 1988:1.

9. BGH 10.05.1983 VI ZR 270/81.
31. Schmidt H, Schmitz A, Stasche N, Hörmann K. Operative versorgte Nachblutungen nach Tonsillektomie [Surgically managed postoperative hemorrhage after tonsillectomy]. Laryngorhinootologie. 1996;75(8):447-54. DOI: 10.1055/s-2007-997613

32. Papaspyrou K, von Creydt H, Kolonko K, Mewes T, Mann W, Scharrer I. Nachblutungen und Gerinnungsstörungen bei Tonsillektomien [Bleeding and coagulation disorders in tonsillectomies]. HNO. 2012;60(6):511-7. DOI: 10.1007/s00106-011-2454-1

33. Scheckenbach K, Bier H, Hoffmann TK, Windfuhr JP, Bas M, Laws HJ, Plettenberg C, Wagenmann M. Risiko von Blutungen nach Adenotomie und Tonsillektomie. Aussagekraft der präoperativen Bestimmung von PTT, Quick und Thrombozytenzahl [Risk of hemorrhage after adenoidectomy and tonsillectomy. Value of the preoperative determination of partial thromboplastin time, prothrombin time and platelet count]. HNO. 2008;56(3):312-20. DOI: 10.1007/s00106-007-1585-x

34. Heyden Hv, Schäfer E, Jecker P, Gosepath J, Mann WJ. Tonsillektomie mit Koagulationsschere oder Raspatorium: Ergebnisse einer Fallkontrollstudie bei 138 Patienten [Tonsillektomy technique: bipolar scissors vs raspatory: results of a case control study in 138 patients]. HNO. 2007;55(9):684-9. DOI: 10.1007/s00106-006-1502-8

35. Windfuhr JP, Chen YS, Remmert S. Hemorrhage following tonsillectomy and adenoidectomy in 15,218 patients. Otolaryngol Head Neck Surg. 2005;132(2):281-6. DOI: 10.1016/j.otohns.2004.09.007

36. Lorenz KJ, Krenz A, Maier H. Tonsillektomie in Hydrodissektionstechnik. Ergebnisse einer Pilotstudie–intraoperativer Blutverlust, postoperative Schmerznachweis und Nachblutungsrisiko [Hydrodissection for tonsillectomy. Results of a pilot study–intraoperative blood loss, postoperative pain symptoms and risk of secondary hemorrhage]. HNO. 2005;53(5):423-7. DOI: 10.1007/s00106-004-1129-6

37. Jäckel MC, Petzold S, Dimmer V, Mall G, Reck R. Die mikrochirurgische Tonsillektomie mit dem CO2-Laser. Eine Analyse klinischer und morphologischer Daten [Tonsillectomy by CO2 laser microsurgery – an analysis of clinical and morphological data]. HNO. 2003 Aug;51(8):634-9. DOI: 10.1007/s00106-002-0789-3

38. Haegner U, Handrock M, Schade H. Die "Ultraskalpelltonsillektomie" im Vergleich zur konventionellen Tonsillektomie ["Ultrasonic tonsillectomy" in comparison with conventional tonsillectomy]. HNO. 2002 Sep;50(9):836-43. DOI: 10.1007/s00106-001-0607-3

39. Tisch M, Bruder M, Maier H. Nachblutungsrisiko bei Tonsillektomie. Ein Vergleich zwischen Vollnarkose und lokaler Betäubung [Risk of postoperative hemorrhage in tonsillectomy. A comparison between general anesthesia and local anesthesia]. HNO. 2002 Mar;50(3):230-2. DOI: 10.1007/s00106-00100538

40. Bergler W, Huber K, Hammerschmitt N, Hölzli M, Hörmann K. Tonsillektomie mit dem Argon-Plasma-Koagulations-Raspatorium.Eine klinisch prospektive randomisierte Blindstudie [Tonsillectomy with the argon-plasma-coagulation-raspatorium - a prospective randomized single-blinded study]. HNO. 2000 Feb;48(2):135-41. DOI: 10.1007/s00106-000-050021

41. Metternich FU, Sagowski C, Wenzel S, Jäckel K. Tonsillektomie mit dem ultrasschalaktivierten Skalpell. Erste Ergebnisse zur Technik mit dem Ultraschalltanzschneiden-Technik [Tonsillectomy with the ultrasound activated scalpel. Initial results of technique with Ultraschalltanzschnitzgeltechnik]. HNO. 2001 Jun;49(6):465-70. DOI: 10.1007/s00106-00170098

42. Sarny S, Ossimitz G, Habermann W, Stammberger H. "Die Österreichische Tonsillenstudie 2010" – Teil 1: Statistischer Überblick [The Austrian tonsil study 2010 – part 1: statistical overview]. Laryngorhinootologie. 2012;91(1):16-21. DOI: 10.1055/s-0031-1291310
113. Ilgen F. Die Lasertonsillotomie bei der obstruktiven Schlafapnoe aufgrund adenotonsillärer Hyperplasie im Kindesalter – Ergebnisse aus der Praxis [Laser-assisted tonsillotomy in children with obstructive sleep apnea and adenotonsillar hyperplasia – experiences as an outpatient procedure]. Laryngorhinootologie. 2005;84(9):865-70. DOI: 10.1055/s-2004-826197

114. Acvedo JL, Shah RK, Brietzke SE. Systematic review of complications of tonsillotomy versus tonsillecmy. Otolaryngol Head Neck Surg. 2012;146(6):871-9. DOI: 10.1177/0145599121439017

115. van den Aardweg MT, Schilder AG, Herkert E, Boonacker CW, Rovers MM. Adenoidectomy for otitis media in children. Cochrane Database Syst Rev. 2010;(1):CD007810. DOI: 10.1002/14651858.CD007810.pub2

116. van den Aardweg MT, Boonacker CW, Hoes AW, Schilder AG. Effectiveness of adenoidectomy in children with recurrent upper respiratory tract infections: open randomised controlled trial. BMJ. 2011;343:d5154. DOI: 10.1136/bmj.d5154

117. Becker W. Erfahrungen als Gutachter bei Vorwürfen wegen mangelnder Aufklärung und Fahrlässigkeit. Laryng Rhinol. 1974;53:75-89.

118. OLG Oldenburg 15.06.1993 5 U 10/93.

119. Beppel A. Ärztliche Aufklärung in der Rechtsprechung. Die Entwicklung der ärztlichen Rechtsprechung zur ärztlichen Aufklärung in Deutschland, Österreich und der Schweiz. Göttingen: Universitätsverlag; 2007.

120. BGH 2 11.1993 VI R 245/92.

121. Feldmann H, Albert J, Brusi T, et al. Das Gutachten des Hals-Nasen-Ohrenarztes. 7. Auflage. Stuttgart, New York: Georg Thieme Verlag; 2012.

122. OLG Hamm 07.03.2005 3 U 204/04.

123. OLG Saarbrücken 14.07.1993 1 U 52/93.

124. OLG Hamm 14.01.1998 3 U 23/97.

125. OLG Köln 21.04.1993 27 U 145/92.

126. OLG Zweibrücken 11.10.2005 5 U 10/05.

127. OLG München 21.03.2002 1 U 5064/01.

128. OLG Hamm 05.12.1994 3 U 8/94.

129. OLG Hamm 05.05.1999 3 U 194/98.

130. OLG Hamm 16.12.1992 3 U 241/91.

131. Tonsillektomie Konsensuspapier. Gemeinsame Empfehlungen der österreichischen Gesellschaften für Hals-, Nasen-, Ohren-Heilkunde, Kopf- und Halschirurgie und Kinder- und Jugendheilkunde zur Entfernung der Gaumenmandeln (Tonsillektomie). 2007. Available from: http://www.hno.at/fileadmin/hno/pdfs/Konsensuspapier_Tonsillektomie_HNO_OEGKJ_9Nov2007.pdf

132. Arnoldner C, Grasl MCh, Thumbner D, Hamzavi JS, Kaidaer A, Brunner M, Erovic BM. Surgical revision of hemorrhage in 8388 patients after cold-steel adenotonsillecymies. Wien Klin Wochenschr. 2008;120(11-12):336-42. DOI: 10.1007/s00508-008-0982-9

133. Windfuhr JP, Schloendoff G, Sesterhenn AM, Prescher A, Kremer B. A devastating outcome after adenotonsillotomy and tonsillectomy: ideas for improved prevention and management. Otolaryngol Head Neck Surg. 2009 Feb;140(2):191-6. DOI: 10.1016/j.otohns.2008.11.012

134. Rasmussen N. Complications of tonsillectomy and adenotonsillectomy. Otolaryngol Clin North Am. 1987 May;20(2):383-90.

135. Schmiegelow E. A case of primary death after removal of adenoid tissue. Mschr Ohrenheilk. 1897;31:115

136. McKenzie W, Woolf CL. Carotid abnormalities and adenoid surgery. J Laryngol Otol. 1959;73:596-602. DOI: 10.1017/S0022215100005576

137. Windfuhr JP. An aberrant artery as a cause of massive bleeding following adenotonsillectomy. J Laryngol Otol. 2002 Apr;116(4):299-300. DOI: 10.1258/0022215021910591

138. Helmus C, Grin M, Westfall R. Same-day-stay adenotonsillectomy. Laryngoscope. 1990;100(6):593-6. DOI: 10.1288/00005537-19900600-00008

139. Windfuhr JP, Chen YS, Remmert S. Hemorrhage following tonsillectomy and adenotonsillectomy in 15,218 patients. Otolaryngol Head Neck Surg. 2005;132(2):281-6. DOI: 10.1016/j.otohns.2004.09.007

140. Windfuhr JP, Schloendoff G, Baburi D, Kremer B. Serious posttonsillectomy hemorrhage with and without lethal outcome in children and adolescents. Int J Pediatr Otorhinolaryngol. 2008;72(7):1029-40. DOI: 10.1016/j.ijporl.2008.03.009

141. Windfuhr JP. Indications for interventional arteriography in post-tonsillectomy hemorrhage. J Otolaryngol. 2002 Feb;31(1):18-22. DOI: 10.2310/7070.2002.19160

142. OLG Düsseldorf 16.09.1993 8 U 60/92.

143. Windfuhr JP, Chen YS, Remmert S. Unidentified coagulation disorders in post-tonsillectomy hemorrhage. Ear Nose Throat J. 2004 Jan;83(1):28, 30, 32 passim.

144. Gumprecht TF, Cichon JV. Otolaryngology and von Willebrand’s disease. Arch Otolaryngol. 1981;107(8):491-3. DOI: 10.1001/archotol.1981.007904400301008

145. Lekas MD, DiBenedetto J Jr, Smith PS, Kantesaria KP. Surgery on patients with hematosis disorders. Laryngoscope. 1982 Aug;92(8 Pt 1):873-7.

146. Asaf T, Reveunhi Y, Yermiahu T, Leiberman A, Gurman G, Porat A, Schlaefeer P, Shifa S, Kapelushnik J. The need for routine preoperative coagulation screening tests (prothrombin time PT/partial thromboplastin time PTT) for healthy children undergoing elective tonsillectomy and/or adenoidectomy. Int J Pediatr Otorhinolaryngol. 2001;61(3):217-22. DOI: 10.1016/S0165-5876(01)00574-2

147. Close HL, Kryzer TC, Nowlin JH, Alving BM. Hemostatic assessment of patients before tonsillectomy: a prospective study. Otolaryngol Head Neck Surg. 1994;111(6):733-8. DOI: 10.1016/S0194-5998(94)70560-7

148. Burk CD, Miller L, Handler SD, Cohen AR. Preoperative history and coagulation screening in children undergoing tonsillectomy. Pediatrics. 1992 Apr;90(4 Pt 2):691-5.

149. Manning SC, Beste D, McBride T, Goldberg A. An assessment of preoperative coagulation screening for tonsillectomy and adenoidectomy. Int J Pediatr Otorhinolaryngol. 1987;13(3):237-44. DOI: 10.1016/0165-5876(87)90104-2

150. Zwack GC, Derkay CS. The utility of preoperative hemostatic assessment in adenotonsillectomy. Int J Pediatr Otorhinolaryngol. 1987;19(1):67-76. DOI: 10.1016/0165-5876(96)01465-6

151. Howells RC, Wax MK, Ramadan HH. Value of preoperative prothrombin time/partial thromboplastin time as a predictor of postoperative hemorrhage in pediatric patients undergoing tonsillectomy. Otolaryngol Head Neck Surg. 1997;117(6):828-32. DOI: 10.1016/S0194-5998(97)70044-5

152. Kaplan EB, Sheiner LB, Boeckmann AJ, Roizen MF, Beal SL, Cohen SN, Nicoll CD. The usefulness of preoperative laboratory screening. JAMA. 1985 Jun;253(24):3576-81. DOI: 10.1001/jama.1985.03350480084025
153. Stuck BA. Gemeinsame Stellungnahme zur Notwendigkeit präoperativer Gerinnungstestung vor Tonsillektomie und Adenotomie bei Kindern. 2005. Available from: http://hno.org/ kollegen/StellungnahmeGerinnungsdiagnostikvorAT-TE.pdf

154. Sarny S, Ossimitz G, Habermann W, Stammberger H. Preoperative coagulation screening prior to tonsillectomy in adults: current practice and recommendations. Eur Arch Otorhinolaryngol. 2013;270(3):1099-104. DOI: 10.1007/s00405-012-2099-z

155. Suchman AL, Mushlin AI. How well does the activated partial thromboplastin time predict postoperative hemorrhage? JAMA. 1986;256(6):750-3. DOI: 10.1001/jama.1986.03380060076029

156. De Carpentier J, Timms M. Preliminary experiences with microscopic tonsillectomy. Clin Otolaryngol Allied Sci. 1994 Aug;19(4):352-4. DOI: 10.1111/j.1365-2733.1994.tb01246.x

157. Kujawski O, Dulguerov P, Gysin C, Lehmann W. Microscopic tonsillectomy: a double-blind randomized trial. Otolaryngol Head Neck Surg. 1997;117(6):641-7. DOI: 10.1016/S0194-5998(97)70046-9

158. Theissing J. Eingriffe am Epipharynx. In: Theissing J, Rettinger G, eds. HNO-Operationslehre. Mit allen wichtigen Eingriffen. Stuttgart, New York: Thieme; 2006. p. 151

159. Kojima O, Sugita H, Chida Y, Sato K. Abnormal tortuosity of the internal carotid artery and its clinical significance in surgery of the neck area. Z Laryngol Rhiinol Otol. 1989;68(5):445-50. DOI: 10.1055/s-2000-53234

160. Jackson JL. Tortuosity of the carotid artery and its relation to tonsil and pharynx. Lancet. 1915;2:128-130. DOI: 10.1016/S0140-6736(01)66181-5

161. Cairney J. Tortuosity of the Cervical Segment of the Internal Carotid Artery. J Anat. 1924 Oct;59(Pt 1):87-96.

162. Weibel J, Fields WS. Tortuosity, Coiling, and Kinking Of The Internal Carotid Artery. I. Etiology And Radiographic Anatomy. Neurology. 1965;15(7):7-18.

163. Jackson JL. Tortuosity of the internal carotid artery and its relation to tonsillectomy. Can Med Assoc J. 1933 Nov;29(5):475-9.

164. Bergquist B. Anomalies in the course of the internal carotid artery in the upper region of the pharynx. Acta otolaryngol. 1946;34:246-255. DOI: 10.3109/0016484609128379

165. Herrschaft H. Abnorme Schlingengebnisse der Arteria carotis interna und ihre klinische Bedeutung bei Operationen im Halsbereich [Abnormal tortuosity of the internal carotid artery and its clinical significance in surgery of the neck area]. Z Laryngol Rhinol Otol. 1969 Feb;48(2):85-98.

166. Schumacher WA, Schaffer A, Kehrl W, Pau HW. Verlaufsvarianten der Arteria carotis interna: Mögliche Risiken bei sogenannten Standardoperationen im Pharynxbereich [Variations in the course of the internal carotid artery: possible risks in so-called standard operations in the area of the pharynx]. Laryngorhinootologie. 1998 Sep;77(9):S17-S20. DOI: 10.1055/s-2000-997016

167. Windfuhr JP, Stowe NW, Landis BN. Beware of kissing carotids. ANZ J Surg. 2010;80(9):668-9. DOI: 10.1111/j.1445-2197.2010.05421.x

168. Carseck J, Abraren internal carotids and their relation to surgery of the pharynx. Laryngoscope. 1929;39:707-20. DOI: 10.1288/00005537-192911000-00001

169. Stupka W. Die Missbildungen u. Anomalien d. Nase und d. Nasenrachenaumes. Wien: Springer; 1938. DOI: 10.1007/978-3-7099-9958-9

170. Ricciardelli E, Hiller AD, Schwartz AN. Aberrant carotid artery. Presentation in the near midline pharynx. Arch Otolaryngol Head Neck Surg. 1989 Apr;115(4):519-22. DOI: 10.1001/archotol.1989.01806280117029

171. Prescher A. Personal communication.

172. Demme K. Über Gefässanomalien im Pharynx. Wien Med Wochenschr. 1901;51:2245

173. LG Hagen 29.05.2009 42 Th 600 Js 392/04 - 71/08.

174. Lowe D, van der Meulen J. National Prospective Tonsillectomy Audit. Tonsillectomy technique as a risk factor for postoperative haemorrhage. Lancet. 2004;364(9435):697-702. DOI: 10.1016/S0140-6736(04)6896-7

175. Suchman AL, Mushlin AI. How well does the activated partial thromboplastin time predict postoperative hemorrhage? JAMA. 1986;256(6):750-3. DOI: 10.1001/jama.1986.03380060076029

176. Windfuhr JP. Wienke A, Chen YS. Electrosurgery as a risk factor for secondary post-tonsillectomy hemorrhage. Eur Arch Otorhinolaryngol. 2009;266(1):111-6. DOI: 10.1007/s00405-008-0720-y

177. O’Leary S, Vorrath J. Postoperative bleeding after diathermy and cold dissection tonsillectomy. Laryngoscope. 2005;115(4):591-4. DOI: 10.1097/01.mlg.0000161361.66191.60

178. Osguthorpe JD, Adkins WV Jr, Putney J, Hungerford GD. Internal carotid artery as source of tonsillectomy and adenoidectomy hemorrhage. Otolaryngol Head Neck Surg. 1981 Sep-Oct;89(5):758-62.

179. Fisher AGT. Sigmoid tortuosity of the internal carotid artery and its relation to tonsil and pharynx. Lancet. 1915;2:128-130. DOI: 10.1016/S0140-6736(01)66181-5

180. Amador AA, Hallikeri C, Lawrence H, Sankar V, Hargreaves S. Teenage and adult tonsillectomy: dose-response relationship between diathery energy used and morbidity. Clin Otolaryngol. 2007;32(5):366-71. DOI: 10.1111/j.1479-4486.2007.01529.x

181. Thomsen EG, Tschopp K. Der Einfluss des bipolaren Koagulationsstromes bei der Tonsillektomie auf den postoperativen Heilungsverlauf [Influence of intraoperatively applied current of coagulation on the postoperative course in tonsillectomy]. Laryngorhinootologie. 2004;83(8):501-6. DOI: 10.1055/s-2004-814467

182. Tschopp K. Monopolar electrocoagulation in adenoidectomy as a possible risk factor for Grisel's syndrome. Laryngoscope. 2002;112(6 Pt 1):1445-9. DOI: 10.1097/00005537-200208000-00022

183. Pinder D, Hilton M. Dissection versus diathermy for tonsillectomy. Cochrane Database Syst Rev. 2001(4):CD002211. DOI: 10.1002/14651858.CD002211

184. Haddow K, Montague ML, Hussain SS. Post-tonsillectomy haemorrhage: a prospective, randomized, controlled clinical trial of cold dissection versus bipolar diathermy dissection. J Laryngol Otol. 2006;120(6):450-4. DOI: 10.1017/S0022215106000120

185. Lee MS, Montague ML, Hussain SS. Post-tonsillectomy hemorrhage: cold versus hot dissection. Otolaryngol Head Neck Surg. 2004;131(6):833-6. DOI: 10.1016/j.otohns.2004.08.008

186. Gendy S, O'Leary M, Colreavy M, Rowley H, O'Dwyer T, Blayney A. Tonsillectomy—cold dissection vs. hot dissection: a prospective study. Ir Med J. 2005 Nov-Dec;98(10):243-4.

187. O'Leary S, Vorrath J. Postoperative bleeding after diathermy and dissection tonsillectomy. Laryngoscope. 2005;115(4):591-4. DOI: 10.1097/01.mlg.0000161361.66191.60
260. Mitchell RB, Pereira KD, Lazar RH, Long TE, Fournier NF. Pseudoaneurysm of the right lingual artery: an unusual cause of severe hemorrhage during tonsillectomy. Ear Nose Throat J. 1997 Aug;76(8):575-6.

261. Simoni P, Bello JA, Kent B. Pseudoaneurysm of the lingual artery secondary to tonsillectomy treated with selective embolization. Int J Pediatr Otorhinolaryngol. 2001;59(2):125-8. DOI: 10.1016/S0165-8761(01)00478-5

262. Tovi F, Leiberman A, Hertzaun Y, Golcman L. Pseudoaneurysm of the internal carotid artery secondary to tonsillectomy. Int J Pediatr Otorhinolaryngol. 1987;13(1):69-75. DOI: 10.1016/0165-8761(87)90009-7

263. Pourhassan S, Groteneher D, Fokou M, Heinen W, Balzer K, Ramp U, Sandmann W. Extracranial carotid arteries aneurysms in children: single-center experiences in 4 patients and review of the literature. J Pediatr Surg. 2007;42(11):1961-8. DOI: 10.1016/j.jpedsurg.2007.07.052

264. van Crijssen N, Gravendeel J, Dikkers FG. Severe delayed posttonsillectomy haemorrhage due to a pseudoaneurysm of the lingual artery. Eur Arch Otorhinolaryngol. 2008;265(1):115-7. DOI: 10.1007/s00405-007-0391-0

265. Veyssier P, Biou C, Langman JC, Vilain G. Complication inhabituelle d’une amygdalectomie [An unusual complication after tonsillectomy]. Rev Stomatol Chir Maxillofac. 1976 Sep;77(6):861-4.

266. Waispe P, Ramos E, Low C, et al. An unusual complication of tonsillectomy. Surgeon. 2005;3:296-298. DOI: 10.1016/S1479-666X(05)80094-6

267. Weber R, Keerl R, Hendus J, Kahle G. Der Notfall: Das traumatische Aneurysma im Kopf-Hals-Bereich [The emergency: traumatic aneurysm in the area of the head-neck]. Laryngorhino-Otolologie. 1993;72(2):86-90. DOI: 10.1055/s-2007-997881

268. Windfuhr JP, Sesterhenn AM, Schoendoeffl G, Kremer B. Post-tonsillectomy pseudoaneurysm: an underestimated entity? J Laryngol Otol. 2010;124(1):59-66. DOI: 10.1017/S0022215109990922

269. Juszkat R, Korytowska A, Lukomska Z, Zarzecka A. Dysgeusia associated with tonsillectomy. Otolaryngol. 1991 Sep;77(6):861-4.

270. Vories AA. Dysgeusia associated with tonsillectomy. Otolaryngol Head Neck Surg. 1999;121(3):303-4. DOI: 10.1016/S0194-5998(99)70200-7

271. Vories AA. Dysgeusia associated with tonsillectomy. Otolaryngol. 2004;114(7):314-7. DOI: 10.1097/00005537-200407000-00015

272. Vories AA. Dysgeusia associated with tonsillectomy. Otolaryngol. 2007;42(11):1961-8. DOI: 10.1016/j.jpedsurg.2007.07.052

273. Goins MR, Pitovski DZ. Posttonsillectomy taste distortion: a significant complication. Laryngoscope. 2004;114(7):2196-9. DOI: 10.1097/01.mlg.0000149457.13877.d5

274. Goins MR, Pitovski DZ. Posttonsillectomy taste distortion: a significant complication. Laryngoscope. 2004;114(7):2196-9. DOI: 10.1097/01.mlg.0000149457.13877.d5

275. Goins MR, Pitovski DZ. Posttonsillectomy taste distortion: a significant complication. Laryngoscope. 2004;114(7):2196-9. DOI: 10.1097/01.mlg.0000149457.13877.d5

276. Vories AA. Dysgeusia associated with tonsillectomy. Otolaryngol Head Neck Surg. 1999;121(3):303-4. DOI: 10.1016/S0194-5998(99)70200-7

277. Bicknell JM, Wiggins RV. Taste disorder from zinc deficiency after tonsillectomy. West J Med. 1988 Oct;149(4):457-60.

278. Collet S, Eloy P, Rombaux P, Bertrand B. Taste disorders after tonsillectomy: case report and literature review. Ann Otol Rhinol Laryngol. 2005 Mar;114(3):233-6.

279. Fleischer K. Geschmacksverlust nach Tonsillektomie. Dtsch Med Wochenschr. 1981;106:1274-5.

280. Fowler R. Stylohyoid osseification, bilateral, and injury of ninth nerve after tonsillectomy. Laryngoscope. 1933;43:287-90. DOI: 10.1289/00005537-193304000-00008

281. Berendes J, Theising G. Geschmacksstörungen nach Tonsillektomie (Ageusia after tonsillectomy). HNO. 1953 Aug;4(1):15-8.

282. Ford LC, Cruz RM. Bilateral glossopharyngeal nerve paralysis after tonsillectomy: case report and anatomic study. Laryngoscope. 2004;114(12):2196-9. DOI: 10.1007/00005537-200407000-00015

283. Rieder C. Eine seltene Komplikation: Geschmacksstörung nach Tonsillektomie. Laryng Rhinol Otol. 1981;60:342. DOI: 10.1055/s-2007-1008734

284. Gessini L, Valenta V. Neuralgia del lingua ed ageusia permanente dopo tonsillectomia. Caso clinico [Lingual neuralgia and permanent ageusia after tonsillectomy, Clinical case]. Ann Laringol Otol Rino Faringol. 1966 Sep-Oct;65(5):650-3.

285. Holzhöner. Geschmacksstörungen nach Operationen im Mund- und Rachenbereich. HNO. 1956;6:91-2.

286. Beck C. N. glossopharyngeus und Tonsillektomie. Laryng Rhinol Otol. 1979;58:463-5.

287. Haas E. Kasuistischer Beitrag zum Thema: Geschmacksstörungen nach Tonsillektomie [Casuistic contribution to the topic of parosmia after tonsillectomy]. J Laryngol Rhinol. 1953 Jul-Aug;32(7-8):413-4.

288. Dehnen T. Geschmacksstörungen nach Tonsillektomie [Gustatory disorders following tonsillectomy]. J Laryngol Rhinol. 1950 Nov;29(11):548-51.

289. Uzun C, Adali MK, Karasalihoglu AR. Unusual complication of tonsillectomy: taste disturbance and the lingual branch of the glossopharyngeal nerve. J Laryngol Otol. 2003;117(4):314-7. DOI: 10.1258/00222150360000968

290. Vories AA. Dysgeusia associated with tonsillectomy. Otolaryngol Head Neck Surg. 1999;121(3):303-4. DOI: 10.1016/S0194-5998(99)70200-7

291. Vories AA. Dysgeusia associated with tonsillectomy. Otolaryngol Head Neck Surg. 1999;121(3):303-4. DOI: 10.1016/S0194-5998(99)70200-7
409. Fjermeland O, Saucete C, Pedersen S. Septoplasty and/or submucous resection? 5 years nasal septum operations. J Laryngol Otol. 1988 Sep;102(9):796-8. DOI: 10.1017/S0022215100106486

410. Koçak A, Gürelk A, Kutlu R, Celbiş O, Aydn NE. An unusual complication of septohinoplasty: massive subarachnoid hemorrhage. Ann Plast Surg. 2004 Nov;53(5):492-5. DOI: 10.1097/01.sap.0000120290.25592.2f

411. Riederer A, Wilmes E. Eine seltene Komplikation der Septumpoperation; Arteria interna-Sinus cavernosus-Fistel. Laryng Rhino Otol. 1978;66:583-5. DOI: 10.1055/s-2007-998740

412. Miller T. Immediate postoperative complications of septorhinoplasties. Trans Pac Coast Otoophthalmol Soc Annu Meet. 1976;57:201-5.

413. Tzadik A, Gilbert SE, Sade J. Complications of submucous resections of the nasal septum. Arch Otorhinolaryngol. 1988;245(2):74-8. DOI: 10.1007/BF00481439

414. Muhammad IA, Nabil-ur Rahman , Complications of the surgery for deviated nasal septum. J Coll Physicians Surg Pak. 2003 Oct;13(10):565-8. DOI: 10.2003/JCPSP.565568

415. White A, Murray JA. Intranasal adhesion formation following nasal packing aspiration in a patient with Alzheimer's disease: a rare complication. Int J Gen Med. 2012;5:643-5. DOI: 10.2147/IJGM.S34676

420. MacDougall G, Sanderson RJ. Altered dental sensation following nasal surgery. J Laryngol Otol. 1988;102(9):796-8. DOI: 10.1017/S0022215100106486

421. Rettinger G, Engelbrecht-Schnür S. Palatinae Gefühlsstörungen nach Septumkorrektur [Palatal sensory impairment after septoplasty]. Laryngorhinootologie. 1995 May;74(5):282-5. DOI: 10.1016/S0196-0795(85)80053-3

422. Issing PR, Ernst A, Heermann R, Lenarz T. Zahnverfärbung als seltene Komplikation einer Septorhinoplastik [Tooth discoloration as a rare complication of septorhinoplasty]. Laryngorhinootologie. 1996 Jan;75(1):59-62. DOI: 10.1055/s-2007-997534

423. Griffith DE, Aksamit T, Brown-Elliott BA, Catanzaro A, Daley C, Gordin F, Holland SM, Horsburgh R, Huitt G, Iademarco MF, Gordin F, Holland SM, Horsburgh R, Iademarco MF, Iseman M, Olivier K, Ruoss S, von Reyn CF, Wallace RJ Jr, Winthrop K; ATS/Mycobacterial Diseases Subcommittee; American Thoracic Society; Infectious Disease Society of America. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med. 2007 Feb;175(4):367-416. DOI: 10.1164/rccm.200604-571ST

424. Robbins KT, Clayman G, Levine PA, Medina J, Sessions R, Shaha A, Som P, Wolf GT; American Head and Neck Society; American Academy of Otolaryngology–Head and Neck Surgery. Neck dissection classification update: revisions proposed by the American Head and Neck Society and the American Academy of Otolaryngology-Head and Neck Surgery. Arch Otolaryngol Head Neck Surg. 2002 Jul;128(7):751-8. DOI: 10.1001/archotol.128.7.751

425. Kimmelman CP. The risk to olfaction from nasal obstruction. Clin Otolaryngol Allied Sci. 1988;13:139-143. DOI: 10.1017/S0022215100125125

426. Robbins KT, Clayman G, Levine PA, Medina J, Sessions R, Shaha A, Som P, Wolf GT; American Head and Neck Society; American Academy of Otolaryngology–Head and Neck Surgery. Neck dissection classification update: revisions proposed by the American Head and Neck Society and the American Academy of Otolaryngology-Head and Neck Surgery. Arch Otolaryngol Head Neck Surg. 2002 Jul;128(7):751-8. DOI: 10.1001/archotol.128.7.751

427. Werner J. Lymphknotenerkrankungen im Kopf-Hals-Bereich. Onkologie und Differenzialdiagnostik. Berlin, Heidelberg, New York: Springer; 2002. DOI: 10.1007/978-3-642-55923-5

428. Hao SP, Chang PT. Stress fracture of the clavicle after selective neck dissection. Otolaryng Head Neck Surg. 1998 May;118(5):732-3.

429. Ord RA, Langdon JD. Stress fracture of the clavicle. A rare late complication of radical neck dissection. J Maxillofac Surg. 1986;14(5):281-4. DOI: 10.1016/S0301-0503(86)80305-8

430. Denecke H. Die oto-rhino-laryngologischen Operationen im Mund- und Halbebene. Operationslehre V. Berlin, Heidelberg, New York: Springer; 1980.

431. Thumbart W, Platzter W, Gunkel A, et al. Operative Zugangswege in der HNO-Heilkunde. Stuttgart, New York: Thieme. 1998.

432. Werner J. HNO-Operationslehre. Mit allen wichtigen Eingriffen. Stuttgart, New York: Thieme. 2006.

433. AWMF. Hodgkin-Lymphom. Interdisziplinäre Leitlinie der Deutschen Krebsgesellschaft und der Gesellschaft für Pädiatrische Onkologie und Hämatologie. Available from: http://www.awmf.org/uploads/tx_szleitlinien/007-087_S2_Hodgkin-Lymphom_abgelaufen.pdf

434. AWMF. Non-Hodgkin-Lymphom. Interdisziplinäre Leitlinie der Deutschen Krebsgesellschaft und der Gesellschaft für Pädiatrische Onkologie und Hämatologie. Available from: http://www.awmf.org/uploads/tx_szleitlinien/025-013_S1_Non-Hodgkin-Lymphome_abgelaufen.pdf

435. AWMF. Lymphadenitis. Leitlinie der Deutschen Gesellschaft für Mund-Kiefer-Gesichtschirurgie. Available from: http://www.awmf.org/uploads/tx_szleitlinien/007-087_S2_Lymphadenitis_abgelaufen.pdf

436. Robbins KT, Clayman G, Levine PA, Medina J, Sessions R, Shaha A, Som P, Wolf GT; American Head and Neck Society; American Academy of Otolaryngology–Head and Neck Surgery. Neck dissection classification update: revisions proposed by the American Head and Neck Society and the American Academy of Otolaryngology-Head and Neck Surgery. Arch Otolaryngol Head Neck Surg. 2002 Jul;128(7):751-8. DOI: 10.1001/archotol.128.7.751

437. Windfuhr: Malpractice claims and unintentional outcome of tonsil ...
461. Mallen RW, Kudryk WH. Case report: Chylous fistula following right radical neck dissection. Can J Otolaryngol. 1975;4(1):177-9.

462. Myers EN, Dimerman WS. Management of chylous fistulas. Laryngoscope. 1975 May;85(5):835-40. DOI: 10.1288/00005537-197505000-00008

463. Yoshimura Y, Kondoh T. Treatment of chylous fistula with fibrin glue and clavicular periosteal flap. Br J Oral Maxillofac Surg. 2002;40(2):138-9. DOI: 10.1054/bjom.2001.0653

464. Velegkas GA, Prokopakis EP, Papadakis CE, Bizakis JG, Kyrmizakis DE, Heldionis ES. Management of chylous fistula using the fibrin adhesive set. ORL J Otorhinolaryngol Relat Spec. 1998 Jul-Aug;60(4):230-2. DOI: 10.1159/000027600

465. Rollon A, Salazar C, Mayorga F, Marin R, Infante P. Severe cervical chyle fistula after radical neck dissection. Int J Oral Maxillofac Surg. 1996;25(5):363-5. DOI: 10.1016/S0901-5207(06)80031-7

466. Nussenbaum B, Liu JH, Sinard RJ. Systematic management of chyle fistula: the Southwestern experience and review of the literature. Otolaryngol Head Neck Surg. 2000;122(1):31-8. DOI: 10.1016/S0194-5998(00)70140-9

467. Jortay A, Bisschop P. Bilateral chylothorax after left radical neck dissection. Acta Otorhinolaryngol Belg. 2001;55(4):285-9.

468. Har-EI G, Segal K, Sidi J. Bilateral chylothorax complicating radical neck dissection: report of a case with no concurrent external chyle leakage. Head Neck Surg. 1985 Jan-Feb;7(3):225-30. DOI: 10.1002/hed.2890070307

469. Yaddanapadu S, Shah SC. Bilateral phrenic nerve injury after neck dissection: an uncommon cause of respiratory failure. J Laryngol Otol. 1996 Mar;110(3):281-3.

470. Jabbar AS, al-Abdulkareem A. Bilateral chylothorax following neck dissection. Head Neck. 1995 Jan-Feb;17(1):69-72. DOI: 10.1002/hed.2800170115

471. de Jong AA, Manni JJ. Phrenic nerve paralysis following neck dissection. Eur Arch Otorhinolaryngol. 1991;248(3):132-4.

472. Metson R, Alessi D, Calcaterra TC. Tetracyclines sclerotherapy for chylous fistula. Otolaryngol Head Neck Surg. 1997;116(6Pt1):680-3. DOI: 10.1016/S0194-5998(00)70140-9

473. Kirse DJ, Suen JY, Stern SJ. Phrenic nerve paralysis following doxycycline sclerotherapy for chylous fistula. Otolaryngol Head Neck Surg. 1997;116(6 Pt 1):680-3. DOI: 10.1016/S0194-5998(97)70249-3

474. Valtonen EJ, Lilius HG. Late sequelae of iatrogenic spinal accessory nerve injury. Acta Chir Scand. 1974;140(6):453-5.

475. Umeda M, Shigeta T, Takahashi H, Oguni A, Kataoka T, Minamikawa T, Shibuya Y, Komori T. Shoulder mobility after accessory nerve injury. Acta Oto-Rhino-Laryngol Belg. 2001;55(4):285-9. DOI: 10.1016/S0194-5998(00)70140-9

476. Metson R, Alessi D, Calcaterra TC. Tetracyclines sclerotherapy for chylous fistula. Otolaryngol Head Neck Surg. 1997;116(6Pt1):680-3. DOI: 10.1016/S0194-5998(97)70249-3

477. Hansis M, Kienzle H. Wer definiert den Medizinischen Standard? [Cervical lymphorrea after nodal dissection: role of fasting based on clinical evidence]. Minerva Chir. 2006 Feb;61(1):57-62.

478. OLG Köln 12.01.1994 27 U 104/92.

479. LG Duisburg 15.12.1983 9 O 239/81.

480. Bird S. Accessory nerve injury. Aust Fam Physician. 2006 Jul;35(7):535-6.
481. Bodner G, Harpf C, Gardetto A, Kovacs P, Gruber H, Peer S, Mailhoui A. Ultrasonography of the accessory nerve: normal and pathologic findings in cadavers and patients with iatrogenic accessory nerve palsy. J Ultrasound Med. 2002 Oct;21(10):1159-63.

482. Harpf C, Rhomberg M, Rumer A, Rainer C, Hussl H. Iatrogenic Läsion des Nervus accessorius bei der cervicalen Lymphknotenbiopsie [Iatrogenic lesion of the accessory nerve in cervical lymph node biopsy]. Chirurg. 1999 Jun;70(6):690-3. DOI: 10.1007/s001040050706

483. Nason RW, Abdurahim MF, Stranc MF. The anatomy of the accessory nerve and cervical lymph node biopsy. Am J Surg. 2000;180(3):241-3. DOI: 10.1016/S0002-9610(00)00449-9

484. Bäzner UM, Braun V, Richter HP, Antoniadis G. Management iatrogener N.-accessorius-Läsionen [Management of iatrogenic lesions of the spinal accessory nerve]. Nervenarzt. 2005 Apr;76(4):462-6. DOI: 10.1007/s00115-004-1796-2

485. Hopf H, Guerra W. Widersprüchliche Gutachteraussagen und Rechtsprechung. Entscheidungen zu iatrogenen Schäden des Nervus accessorius. MedSach. 2010:240-4.

486. OLG Düsseldorf 26.01.1984 8 U 161/81.

487. OLG Düsseldorf 26.11.1994 8 U 89/92.

488. OLG Celle 20.03.1989 3 U 51/88.

489. OLG Hamm 28.09.1994 3 U 292/93.

490. OLG Stuttgart 30.05.2000 14 U 71/99.

491. BGH 07.05.1985 VI ZR 224/83

492. Werner J. Eingriffe am äußeren Hals. In: Theissing J, Rettinger G, Werner J. HNO-Operationslehre Mit allen wichtigen Eingriffen. Stuttgart, New York, Tokyo: Thieme; 2006. p. 267-75.

493. Midwinter K, Willatt D. Accessory nerve monitoring and stimulation during neck surgery. J Laryngol Otol. 2002 Apr;116(4):272-4. DOI: 10.1258/0022215021520219735

494. Tatia T, Kanagalagiam J, Majthia A, Clarke PM. Upper neck spinal accessory nerve activation during neck dissection. J Laryngol Otol. 2005;119(11):906-8. DOI: 10.1258/00222150577483511

495. Symes A, Willis H. Variations in the surface anatomy of the spinal accessory nerve in the posterior triangle. Surg Radiol Anat. 2005 Dec;27(5):404-8. DOI: 10.1007/s00276-004-0004-9

496. Hinsley ML, Hartig GK. Anatomic relationship between the spinal accessory nerve and internal jugular vein in the upper neck. Otolaryngol Head Neck Surg. 2010;143(2):239-41. DOI: 10.1016/j.otohns.2010.03.033

497. LG Bremen 0.

498. Alexander RJ, Kukreja R, Ford GR. Secondary post-tonsillectomy haemorrhage and informed consent. J Laryngol Otol. 2004 Dec;118(12):937-40. DOI: 10.1258/0022215042790619

499. Alexiou VG, Salazar-Salvia MS, Jervis PN, Falagas ME. Modern technology-assisted vs conventional tonsillectomy: a meta-analysis of randomized controlled trials. Arch Otolaryngol Head Neck Surg. 2011 Jun;137(6):558-70. DOI: 10.1001/archoto.2011.93

500. Amir I, Belloso A, Broomfield SJ, Morar P. Return to theatre in secondary post-tonsillectomy haemorrhage: a comparison of coblation and dissection techniques. Eur Arch Otorhinolaryngol. 2012 Feb;269(2):667-71. DOI: 10.1007/s00405-011-1678-8
Erratum

In the initial publication the article was erroneously designated as "Review Article".

Corresponding author:
Jochen P. Windfuhr, MD, PhD
Department of Otorhinolaryngology, Plastic Head and Neck Surgery, Kliniken Maria Hilf, Sandradstr. 43, 41061 Mönchengladbach, Germany, Phone: +49-(0)2161-358-1601, Fax: +49-(0)2161-358-1603
jochen.windfuhr@mariahilf.de