Decision Support System in Determining Scholarship Recipient Lecturers Using the Simple Additive Weighting (SAW) Method

Nissi Pangaribuan
Program Studi Teknik Informatika, STMIK Pelita Nusantara, Indonesia

ABSTRACT
The role of lecturers in higher education is one of the most influential parts of the quality of students produced. The educational qualification of lecturers is an important aspect of academic and institutional quality. So that many universities or educational institutions provide doctoral scholarship programs for potential lecturers. One of them is the Catholic University of Santo Thomas, Medan, which provides scholarships, namely doctoral scholarships for 5 outstanding lecturers. This research is a decision support system for doctoral scholarship recipients at the Catholic University of Santo Thomas Medan using the Simple Additive Weigting (SAW) method. The SAW method is used to determine the recipient of the S3 scholarship which is determined based on the criteria. This decision support system is built with a web-based application system as a tool in determining the decisions of lecturers who receive doctoral scholarships at the Catholic University of Santo Thomas Medan and uses MYSQL as a database.

1. INTRODUCTION

The development of information technology is currently growing rapidly so that the need for information is becoming increasingly important and increasingly needed in connection with the purpose of information, namely to produce something more meaningful and useful in order to make a quick and accurate decision (Beniger, 2009). With the rapid development of technology, it has an impact on all sectors of life (Cervellati & Sunde, 2005).

In the education sector, especially higher education, computerization is very important in the decision-making system. Because universities are obliged to provide education, research and community service (Directorate General of Higher Education, 2014). One of the elements in the implementation of higher education is the lecturer. Because lecturers are very important teaching staff in every university (Williams, 2002). And lecturers with higher degrees can automatically encourage the advancement of a campus in particular for the nation in general (Wright et al., 2003)(Sandler & Hall, 1986). In the Law of the Republic of Indonesia Number 14 of 2005 concerning teachers and lecturers, article 51 paragraph (1) point b, that lecturers are entitled to promotions and awards in accordance with their academic performance (Directorate General of Higher Education, 2004).

Corresponding Author:
Nissi Pangaribuan,
Program Studi Teknik Informatika,
STMIK Pelita Nusantara, Indonesia
Jl. Iskandar Muda No. 1 Medan, Sumatera Utara, 20154, Indonesia
Email: nissipangaribuan19@gmail.com
The award system given by the government or every university is in the form of scholarships for educational foundations for doctoral programs (Glassick, 2000) (Sandmann et al., 2016). Scholarships are financial assistance provided by the government, universities and educational institutions (Nora et al., 2006).

One of them is the Catholic University of Santo Thomas, Medan, which is one of the universities that provides scholarship assistance for lecturers, namely doctoral scholarships as a form of appreciation for the performance of their lecturers. Every year the Santo Thomas Catholic University Foundation provides a quota of 5 lecturers for S3 scholarships. Scholarships are given to improve the quality of lecturers in expanding their knowledge according to the lecturer’s field of study and trying to improve the quality of education (Chanock, 2007) (Fabrice, 2010). In order to gain knowledge, it is necessary to study further to a higher level (Erickson et al., 2008). Based on the results of observations that have been made at the Catholic University of Santo Thomas, Medan, that in the awarding of S3 scholarships, the criteria assessed include age, years of service, rank, research, dedication, DP3 and Supporters. And scholarships are given to lecturers who are permanent lecturers. The scholarships granted are limited by the amount of funds provided by the foundation, whereas every year the number of lecturers who apply for doctoral scholarships increases (Calleson et al., 2005) (Austin, 2002) (Smesny et al., 2007). So to make it easier for the foundation to determine the lecturers who deserve to receive the doctoral scholarship, a decision support system is needed with a method that can manage and select the lecturers who are entitled to receive the doctoral scholarship in order to get accurate, fast and precise decisions.

2. RESEARCH METHOD

The Simple Additive Weighting (SAW) method is a weighted addition method (Afshari et al., 2010) (Irawan, 2020). The basic concept of the SAW method is to find the weighted sum of the performance ratings on each alternative on all criteria (Irawan, 2020) (Hadi et al., 2019). This method requires the process of normalizing the decision matrix (X) to a scale that can be compared with all existing alternative ratings. The SAW method recognizes 2 (two) attributes, namely the benefit criteria and the cost criteria (Purba & Sihotang, 2019). The difference between these two criteria is in the selection of criteria when making decisions. This method requires the decision maker to determine the weight for each attribute. The total score for the alternatives is obtained by adding up all the assessment results between the rating and the weight of each attribute. The attribute rating must be dimension-free in the sense that it has passed the previous matrix normalization process.

The concept of calculating the simple additive weighting (SAW) method is as follows:

a) Determining the Alternative that is Ai

b) Determine the criteria that will be used as a reference in making decisions, namely Cj

c) Determine the weight of preference or level of importance (W) on each criterion.

\[W = [W_1, W_2, W_3, ..., W_j] \]

d) Create a match rating table for each alternative across all criteria.

e) Make a decision matrix (X) which is formed from the results of the suitability rating table for each alternative on each criterion. The X value of each alternative (Ai) on each predetermined criterion (Cj) where, \(i = 1,2, ..., m \) and \(j = 1,2, ..., n \).

f) Normalize the decision matrix by calculating the normalized performance rating value (rij) and alternative Ai with Cj criteria.

\[r_{ij} = \frac{x_{ij} - \min x_{ij}}{\max x_{ij} - \min x_{ij}} \]

g) The results of the normalized performance rating (rij) form a normalized matrix (R)

h) The final result of preference (Vi) is obtained from the addition and multiplication of the row elements of the normalized matrix (R) with the preference weights (W) corresponding to the column elements of the matrix.
3. RESULTS AND DISCUSSIONS

The results of the research are in the form of the 5 best alternatives that will get the doctoral scholarship. And the following is the calculation process using the Simple Additive Weighting (SAW) method.

a) Determining Alternative Ai

No	Lecturer Name	NIDN	Age	Working Period (Years)	Functional
1	Rebekah Kariani Sembiring	0105128302	38	5	Lecturer
2	Novalina Sembiring	010118507	36	7	Expert Assistant
3	Asnita Hasibuan	0101018405	37	6	Lecturer
4	Patri Janson Silaban	0128038802	33	6	Lecturer
5	DR Naibaho Polin	01021077401	47	5	Expert Assistant
6	Jontra Justus Pangaribuan	0128088901	32	5	Expert Assistant
7	Arisan Candra	0007018403	32	7	Expert Assistant
8	Emy Ria Aritonang	0120087101	50	6	Lecturer
9	Eddy R. Sembiring	0113067101	50	8	Head Lecturer
10	Happy Marbun	018087302	48	8	Expert Assistant
11	Joana L. Saragih	013087201	49	7	Lecturer
12	A Pakpahan	0122107901	42	7	Lecturer
13	Frida Marta Argareta	019028601	35	7	Expert Assistant
14	Sinta Dameria	01828505	36	6	Lecturer
15	Rumiris Lumbangaol	0120028001	41	6	Lecturer
16	Norbeth Sinaga	006087502	46	8	Expert Assistant
17	Ancient Desire	011087801	43	7	Lecturer

Table 2. Lecturer Research Assessment Data

No	Lecturer Name	C1	C2	C3	C4	C5	Average
1	Rebekah Kariani Sembiring	60	120	75	120	50	85
2	Novalina Sembiring	60	150	75	120	50	91
3	Asnita Hasibuan	60	120	60	120	40	80
4	Patri Janson Silaban	60	120	60	120	40	80
5	DR Naibaho Polin	60	120	75	120	50	85
6	Jontra Justus Pangaribuan	75	150	75	120	50	94
7	Arisan Candra	60	120	60	120	40	80
8	Emy Ria Aritonang	60	150	60	90	50	82
9	Eddy R. Sembiring	60	150	60	120	50	88
10	Happy Marbun	75	120	60	90	40	77
11	Joana L. Saragih	75	120	60	90	40	77
12	Sorang Pakpahan	60	150	60	120	40	86
13	Frida Marta Argareta	60	90	60	120	50	76
14	Sinta Dameria Simanjuntak	60	90	75	120	50	79
15	Rumiris Lumbangaol	75	150	75	90	50	88
16	Norbeth Sinaga	60	120	75	120	40	83
17	Ancient Desire	60	120	60	90	50	76
Table 3. Lecturer Service Assessment Data

No	Lecturer Name	Assessment criteria	Amount	Average
1	Rebekah Kariani Sembiring	C1: 60 C2: 75 C3: 100 C4: 80 C5: 150	465	93
2	Novalina Sembiring	C1: 60 C2: 75 C3: 80 C4: 80 C5: 120	435	83
3	Asnita Hasibuan	C1: 60 C2: 75 C3: 80 C4: 60 C5: 150	425	85
4	Patri Janson Silaban	C1: 60 C2: 60 C3: 80 C4: 80 C5: 150	430	86
5	DR Naibaho Polin	C1: 60 C2: 60 C3: 80 C4: 60 C5: 120	380	76
6	Jontra Jusat Pangaribuan	C1: 60 C2: 75 C3: 80 C4: 80 C5: 120	415	83
7	Arisan Candra Nainggolan	C1: 60 C2: 60 C3: 80 C4: 80 C5: 120	400	80
8	Eddy R. Sembiring	C1: 60 C2: 75 C3: 100 C4: 60 C5: 150	445	89
9	Happy Marbun	C1: 75 C2: 75 C3: 100 C4: 80 C5: 120	450	90
10	Joana L. Saragih	C1: 75 C2: 75 C3: 100 C4: 60 C5: 120	430	86
11	Sorang Pakpahan	C1: 60 C2: 60 C3: 80 C4: 80 C5: 120	400	80
12	Frida Marta Argareta	C1: 75 C2: 75 C3: 100 C4: 80 C5: 150	480	96
13	Sinta Dameria Simanjuntak	C1: 60 C2: 75 C3: 100 C4: 60 C5: 120	415	83
14	Rumiris Lumbangaol	C1: 75 C2: 75 C3: 80 C4: 60 C5: 120	410	82
15	Norbeth Sinaga	C1: 75 C2: 60 C3: 80 C4: 60 C5: 120	395	79
16	Ancient Desire	C1: 75 C2: 60 C3: 80 C4: 80 C5: 150	445	89

Table 4. DP3 Lecturer

No	Lecturer Name	Assessment criteria	Amount	Ket
1	Rebekah Kariani Sembiring	C1: 95.50 C2: 90.00	465	B
2	Novalina Sembiring	C1: 93.00 C2: 94.20	435	SB
3	Asnita Hasibuan	C1: 93.80 C2: 87.00	425	SB
4	Patri Janson Silaban	C1: 95.00 C2: 85.50	430	B
5	DR Naibaho Polin	C1: 95.50 C2: 88.00	380	SB
6	Jontra Jusat Pangaribuan	C1: 93.50 C2: 86.50	415	B
7	Arisan Candra Nainggolan	C1: 96.50 C2: 85.10	400	B
8	Emy Ria Aritonang	C1: 95.80 C2: 92.50	445	B
9	Eddy R. Sembiring	C1: 96.50 C2: 90.00	430	B
10	Happy Marbun	C1: 89.90 C2: 88.20	450	B
11	Joana L. Saragih	C1: 90.00 C2: 91.20	430	B
12	A Pakpahan	C1: 93.60 C2: 89.80	410	B
13	Frida Marta Argareta	C1: 92.90 C2: 90.30	480	B
14	Sinta Dameria Simanjuntak	C1: 89.70 C2: 89.80	445	B
15	Rumiris Lumbangaol	C1: 86.99 C2: 89.70	410	B
16	Norbeth Sinaga	C1: 85.70 C2: 87.60	395	B
17	Ancient Desire	C1: 86.89 C2: 89.00	445	B
Table 5. Supporting Data

No	Name	Activity			
		Teaching	Academic	RPS	Thesis
		Attendance	Advisor	Creation	guidance
1	Rebekah Kariani Sembiring	√	√	√	√
2	Novalina Sembiring	√	√	√	√
3	Asnita Hasibuan	√	√	√	√
4	Patri Janson Silaban	√	√	√	√
5	DR Naibaho Polin	√	√	√	√
6	Jontra Just Pangaribuan	√	√	√	√
7	Arisan Candra Nainggolan	√	√	√	√
8	Emy Ria Aritonang	√	√	√	√
9	Eddy R. Sembiring	√	√	√	√
10	Happy Marbun	√	√	√	√
11	Joana L. Saragih	√	√	√	√
12	Sorang Pakpahan	√	√	√	√
13	Frida Marta Argareta	√	√	√	√
14	Sinta Dameria Simanjuntak	√	√	√	√
15	Rumiris Lumbangaol	√	√	√	√
16	Norbeth Sinaga	√	√	√	√
17	Ancient Desire	√	√	√	√

b) Determine the weight of the criteria and the weight of preference on each criterion.

Table 6. Criteria and Criteria Weight

Criteria Code	Criteria Terms	Criteria Type	Weight
C1	Age	Cost	10%
C2	Years of service	Benefits	10%
C3	Rank	Benefits	25%
C4	Study	Benefits	20%
C5	Devotion	Benefits	20%
C6	DP3	Benefits	10%
C7	Support	Benefits	5%

Table 7. Age Weighting

Criteria	Score
38 Years	1
39 Years - 43 Years	2
44 Years - 47 Years	3
48 Years - 50 Years	4

Table 8. Weighting Working Period

Criteria	Variable	Score
0 – 3	less worthy	1
4 – 5	Decent enough	2
6 – 7	Worthy	3
> 7	Very Worthy	4

Table 9. Weighting of Ranks

Criteria	Variable	Score
There is not any	less worthy	1
Expert assistant	Decent enough	2
Lecturer	Worthy	3

Table 10. Research Weighting

Criteria	Variable	Score
75	less worthy	1
76 – 79	Decent enough	2
80 – 89	Worthy	3
90 – 100	Very Worthy	4

Table 11. Weighting of Service

Criteria	Variable	Score
75	less worthy	1
76 – 79	Decent enough	2
80 – 89	Worthy	3
90 – 100	Very Worthy	4

Table 12. DP3 Weighting

Criteria	Variable	Score
Not enough	less worthy	1
Enough	Decent enough	2
Well	Worthy	3
Very good	Very Worthy	4

Table 13. Supporting Weighting

Criteria	Variable	Score
0 - 2	less worthy	1
3 - 4	Very Worthy	2

c) Provide the value of the suitability rating of each alternative on all criteria.

Table 14. Match Rating

No	Kode Dosen	C1	C2	C3	C4	C5	C6	C7
1	D1	1	2	3	3	4	3	2
2	D2	1	3	2	4	3	4	2
3	D3	1	3	3	3	3	3	2
4	D4	1	3	3	3	3	3	2
5	D5	1	3	2	3	2	4	2
6	D6	1	2	2	4	3	3	2
7	D7	1	2	2	3	3	3	2
8	D8	4	3	3	3	3	3	2
9	D9	4	4	4	3	3	4	2
10	D10	4	4	2	4	3	3	2
11	D11	4	3	3	3	3	3	2
12	D12	2	3	3	3	3	3	2
13	D13	2	3	3	3	3	3	2
14	D14	1	3	3	2	3	3	2
15	D15	2	3	3	3	3	3	2
16	D16	3	4	2	3	2	3	2
17	D17	2	3	3	2	3	3	2

d) Make a decision matrix X from each criterion. The decision matrix X is formed from the results of the match rating table.
e) Normalize the decision matrix by calculating the value of the normalized performance rating (r_{ij}) from the alternative (A_i) with criteria (C_j).

a. Age Criteria
- $C_1A_1 = 1/1 = 1$
- $C_1A_2 = 1/1 = 1$
- $C_1A_3 = 1/1 = 1$
- $C_1A_4 = 1/1 = 1$
- $C_1A_5 = 1/3 = 0.333333333$

b. Working Period Criteria
- $C_2A_1 = 2/4 = 0.5$
- $C_2A_2 = 3/4 = 0.75$
- $C_2A_3 = 3/4 = 0.75$
- $C_2A_4 = 3/4 = 0.75$
- $C_2A_5 = 2/4 = 0.5$

c. Ranking Criteria
- $C_3A_1 = 3/4 = 0.75$
- $C_3A_2 = 2/4 = 0.5$
- $C_3A_3 = 3/4 = 0.75$
- $C_3A_4 = 3/4 = 0.75$
- $C_3A_5 = 2/4 = 0.5$

d. Research Criteria
- $C_4A_1 = 3/4 = 0.75$
- $C_4A_2 = 4/4 = 1$
- $C_4A_3 = 3/4 = 0.75$
- $C_4A_4 = 3/4 = 0.75$
- $C_4A_5 = 3/4 = 0.75$

e. Service Criteria
- $C_5A_1 = 4/4 = 1$
- $C_5A_2 = 3/4 = 0.75$
- $C_5A_3 = 3/4 = 0.75$
- $C_5A_4 = 3/4 = 0.75$
- $C_5A_5 = 2/4 = 0.5$

f. DP3 Criteria
- $C_6A_1 = 3/4 = 0.75$
- $C_6A_2 = 4/4 = 1$

Figure 1. Alternative Match Rating
g. Supporting Criteria
C7A1 = 2/2 = 1
C7A2 = 2/2 = 1
C7A3 = 2/2 = 1
C7A4 = 2/2 = 1
C7A5 = 2/2 = 1

f) The results of the normalized performance value (rij) form a normalized matrix R.

\[R = \begin{bmatrix}
1 & 0.5 & 0.75 & 0.75 & 1 & 0.75 & 1 \\
1 & 0.75 & 0.5 & 1 & 0.75 & 1 & 1 \\
1 & 0.75 & 0.75 & 0.75 & 0.75 & 1 & 1 \\
1 & 0.75 & 0.75 & 0.75 & 0.75 & 0.75 & 1 \\
0.3333333333 & 0.5 & 0.5 & 0.75 & 0.5 & 1 & 1 \\
1 & 0.5 & 0.5 & 1 & 0.75 & 0.75 & 1 \\
0.25 & 0.75 & 0.75 & 0.75 & 0.75 & 1 & 1 \\
0.25 & 1 & 1 & 0.75 & 0.75 & 1 & 1 \\
0.25 & 1 & 0.5 & 0.5 & 1 & 0.75 & 1 \\
0.25 & 0.75 & 0.75 & 0.75 & 0.75 & 1 & 1 \\
0.5 & 0.75 & 0.75 & 0.75 & 0.75 & 1 & 1 \\
0.5 & 0.75 & 0.75 & 0.75 & 0.75 & 0.75 & 1 \\
0.3333333333 & 0.5 & 0.5 & 0.75 & 0.5 & 1 & 1 \\
0.5 & 0.75 & 0.75 & 0.75 & 0.75 & 1 & 1 \\
0.5 & 0.75 & 0.75 & 0.75 & 0.75 & 0.75 & 1
\end{bmatrix} \]

\[\text{Figure 2. Normalized Matrix R} \]

g) Finding the final result of the ranking of each alternative. The final alternative result is obtained from the sum of the normalized matrix row elements (R) with preference weights (W) corresponding to the matrix column elements.

With the formula:

\[V_i = \sum_{j=1}^{n} W_j r_{ij} \]

\[V_1 = (0.10)(1) + (0.10)(0.5) + (0.25)(0.75) + (0.20)(0.75) + (0.20)(1) + (0.10)(0.75) + (0.05)(1) = \mathbf{0.8125} \]
\[V_2 = (0.10)(1) + (0.10)(0.75) + (0.25)(0.5) + (0.20)(0.5) + (0.20)(0.75) + (0.10)(1) + (0.05)(1) = \mathbf{0.8} \]
\[V_3 = (0.10)(1) + (0.10)(0.75) + (0.25)(0.5) + (0.20)(0.75) + (0.20)(0.75) + (0.10)(1) + (0.05)(1) = \mathbf{0.8125} \]
\[V_4 = (0.10)(1) + (0.10)(0.75) + (0.25)(0.75) + (0.20)(0.75) + (0.20)(0.75) + (0.10)(0.75) + (0.05)(1) = \mathbf{0.7875} \]
\[V_5 = (0.10)(0.3333333333) + (0.10)(0.5) + (0.25)(0.5) + (0.20)(0.75) + (0.20)(0.75) + (0.10)(1) + (0.05)(1) = \mathbf{0.6083} \]
\[V_6 = (0.10)(1) + (0.10)(0.5) + (0.25)(0.5) + (0.20)(1) + (0.20)(0.75) + (0.10)(0.75) + (0.05)(1) = \mathbf{0.75} \]
\[V_7 = (0.10)(1) + (0.10)(0.5) + (0.25)(0.5) + (0.20)(0.75) + (0.20)(0.75) + (0.10)(0.75) + (0.05)(1) = \mathbf{0.7} \]
\[V_8 = (0.10)(0.25) + (0.10)(0.75) + (0.25)(0.75) + (0.20)(0.75) + (0.20)(0.75) + (0.10)(0.75) + (0.05)(1) = \mathbf{0.7125} \]
\[V_9 = (0.10)(0.25) + (0.10)(1) + (0.25)(0.5) + (0.20)(0.5) + (0.20)(0.75) + (0.10)(0.75) + (0.05)(1) = \mathbf{0.825} \]
\[V_{10} = (0.10)(0.25) + (0.10)(1) + (0.25)(0.5) + (0.20)(0.5) + (0.20)(1) + (0.10)(0.75) + (0.05)(1) = \mathbf{0.675} \]
\[V_{11} = (0.10)(0.25) + (0.10)(0.75) + (0.25)(0.75) + (0.20)(0.5) + (0.20)(0.75) + (0.10)(0.75) + (0.05)(1) = \mathbf{0.6625} \]
\[V_{12} = (0.10)(0.5) + (0.10)(0.75) + (0.25)(0.5) + (0.20)(0.75) + (0.20)(0.75) + (0.10)(0.75) + (0.05)(1) = \mathbf{0.7625} \]
\[V_{13} = (0.10)(1) + (0.10)(0.75) + (0.25)(0.5) + (0.20)(0.5) + (0.20)(1) + (0.10)(0.75) + (0.05)(1) = \mathbf{0.75} \]
\[V_{14} = (0.10)(1) + (0.10)(0.75) + (0.25)(0.75) + (0.20)(0.5) + (0.20)(0.75) + (0.10)(0.75) + (0.05)(1) = \mathbf{0.7375} \]
\[V_{15} = (0.10)(0.5) + (0.10)(0.75) + (0.25)(0.75) + (0.20)(0.75) + (0.20)(0.75) + (0.10)(0.75) + (0.05)(1) = \mathbf{0.7375} \]
\[V_{16} = (0.10)(0.3333333333) + (0.10)(0.5) + (0.25)(0.5) + (0.20)(0.75) + (0.20)(0.5) + (0.10)(0.75) + (0.05)(1) = \mathbf{0.633333} \]
4. CONCLUSION

With this decision support system, it can make it easier for the foundation of the Santo Thomas Catholic University Medan in making decisions to determine lecturers who are entitled to receive doctoral scholarships. With this system, lecturers who apply for the doctoral scholarship must first log in to register for the doctoral scholarship through the system. And the admin then only checks the file and then the system will do the calculation process. The application of this method produces the 5 best alternatives from a number of existing alternatives. Where the best alternative is obtained from the calculation of predetermined criteria so that from the 17 alternatives it is found that Eddy R Sembiring, Asnita Hasibuan, Ribka Kariani Sembiring, Novalina Sembiring and Patri Janson Silaban who are entitled to the S3 scholarship provided by the foundation. The design of the SAW method for determining lecturers who are entitled to receive doctoral scholarships is able to make decisions quickly, precisely and accurately.

Acknowledgement
The author would like to thank the Catholic University of Santo Thomas Medan for granting permission and supporting the implementation of this research.

REFERENCES

Afshari, A., Mojahed, M., & Yusuff, R. M. (2010). Simple additive weighting approach to personnel selection problem. *International Journal of Innovation, Management and Technology*, 1(5), 511.

Austin, A. E. (2002). Preparing the next generation of faculty: Graduate school as socialization to the academic career. *The Journal of Higher Education*, 73(1), 94-122.

Beniger, J. (2009). *The control revolution: Technological and economic origins of the information society*. Harvard university press.

Calleson, D. C., Jordan, C., & Seifer, S. D. (2005). Community-engaged scholarship: Is faculty work in communities a true academic enterprise? *Academic Medicine*, 80(4), 317-321.

Cervellati, M., & Sunde, U. (2005). Human capital formation, life expectancy, and the process of development. *American Economic Review*, 95(5), 1653-1672.

Chanock, K. (2007). What academic language and learning advisers bring to the scholarship of teaching and learning: Problems and possibilities for dialogue with the disciplines. *Higher Education Research & Development*, 26(3), 269–280.

Erickson, K., Bruner, M. W., MacDonald, D. J., & Côté, J. (2008). Gaining insight into actual and preferred sources of coaching knowledge. *International Journal of Sports Science & Coaching*, 3(4), 527–538.

Fabrice, H. (2010). Learning our lesson review of quality teaching in higher education: Review of quality teaching in higher education.

Glassick, C. E. (2000). Boyer’s expanded definitions of scholarship, the standards for assessing scholarship, and the elusiveness of the scholarship of teaching. *Academic Medicine*, 75(9), 877–880.

Hadi, A. F., Permana, R., & Syafwan, H. (2019). Decision Support System in Determining Structural Position Mutations Using Simple Additive Weighting (SAW) Method. *Journal of Physics: Conference Series*, 1339(1), 12015.

Irawan, Y. (2020). Decision Support System For Employee Bonus Determination With Web-Based Simple Additive Weighting (SAW) Method In PT. Mayatama Solusindo. *Journal of Applied Engineering and Technological Science (JAETS)*, 2(1), 7–13.

Nora, A., Barlow, L., & Crisp, G. (2006). Examining the tangible and psychosocial benefits of financial aid with student access, engagement, and degree attainment. *American Behavioral Scientist*, 49(12), 1636–1651.

Purba, R., & Sihotang, H. T. (2019). Decision Support Systems Recipient Program Keluarga Harapan (PKH) In Durian Kec. Pantai Labu Kab. Deli Serdang with the Simple Additive Weighting (SAW) Method: Decision Support Systems Recipient Program Keluarga Harapan (PKH) In Durian Kec. Pantai Labu Kab. Deli Serdang with the Simple Additive Weighting (SAW) Method. *Jurnal Mantik*, 3(3), 91–98.

Sandler, B. R., & Hall, R. M. (1986). *The campus climate revisited: Chilly for women faculty, administrators, and graduate students*.

Sandmann, L. R., Saltmarsh, J., & O'Meara, K. (2016). An integrated model for advancing the scholarship of engagement: Creating academic homes for the engaged scholar. *Journal of Higher Education Outreach and
Engagement, 20(1), 157–174.
Smesny, A. L., Williams, J. S., Brazeau, G. A., Weber, R. J., Matthews, H. W., & Das, S. K. (2007). Barriers to scholarship in dentistry, medicine, nursing, and pharmacy practice faculty. American Journal of Pharmaceutical Education, 71(5).
Williams, P. (2002). The learning web: the development, implementation and evaluation of internet-based undergraduate materials for the teaching of key skills. Active Learning in Higher Education, 3(1), 40–53.
Wright, A. L., Schwindt, L. A., Bassford, T. L., Reyna, V. F., Shisslak, C. M., Germain, P. A. S., & Reed, K. L. (2003). Gender differences in academic advancement: patterns, causes, and potential solutions in one US College of Medicine. Academic Medicine, 78(5), 500–508.