RC-positivity and scalar-flat metrics on ruled surfaces

Jun Wang and Xiaokui Yang

Abstract. Let X be a ruled surface over a curve of genus g. We prove that X has a scalar-flat Hermitian metric if and only if $g \geq 2$ and $m(X) > 2 - 2g$ where $m(X)$ is an intrinsic number depends on the complex structure of X.

Contents

1. Introduction
2. Background materials
3. Characterizations of complex manifolds with scalar-flat metrics
4. Projective bundles with scalar-flat metrics
5. Classification of ruled surfaces with scalar-flat Hermitian metrics
6. Classification of minimal surfaces with scalar-flat Hermitian metrics
7. Examples
References

1. Introduction

In his “Problem section”, S.-T. Yau proposed the following classical problem ([Yau82, Problem 41]), which is investigated intensively in the last forty years.

Problem 1.1. Classify all compact Kähler surfaces with zero scalar curvature.

By the celebrated Calabi-Yau Theorem ([Yau78]), all Kähler surfaces with vanishing first Chern class (e.g. $K3$ surfaces) admit Kähler metrics with zero scalar curvature. Such metrics are usually called scalar-flat Kähler metrics and it is a special class of constant scalar curvature Kähler (cscK) metrics or extremal metrics. Obstructions to the existence of such metrics have been known since the pioneering works of S.-T. Yau [Yau74] and E. Calabi [Cal85]. For comprehensive discussions on this rich topic, we refer to [Yau74, Yau78, Fut83, BD88, Tian90, Sim91, Fuj92, LS93, LS94, Tian97, Don01, RS05, AP06, AT06, RT06, Ross06, CT08, Sto08, AP09, ACGT11, Sze14, Sze17] and the references therein.

This work was partially supported by China’s Recruitment Program of Global Experts.
In this paper, we study the geometry of compact complex manifolds with scalar-flat Hermitian metrics (with respect to the Chern connection), which is a generalization of Problem 1.1. We begin with a characterization of compact complex manifolds with scalar-flat Hermitian metrics, which can be regarded as a Hermitian analogue of Kazdan-Warner-Bourguignon’s classical work in Riemannian geometry, and we refer to [Bes86] and [Fut93] for more details.

Theorem 1.2. A compact complex manifold X admits a scalar-flat Hermitian metric if and only if X is Chern Ricci-flat, or both K_X and K_X^{-1} are RC-positive. Recall that, a line bundle \mathcal{L} is called *RC-positive* if it has a smooth Hermitian metric h such that its curvature $-\sqrt{-1}\partial \bar{\partial} \log h$ has at least one positive eigenvalue everywhere. By using a remarkable theorem in [TW10] established by Tosatti-Weinkove (which is a Hermitian analogue of Yau’s theorem [Yau78]), the anti-canonical bundle K_X^{-1} is RC-positive if and only if X has a smooth Hermitian metric ω such that its Ricci curvature $\text{Ric}(\omega)$ has at least one positive eigenvalue everywhere. A complex manifold X is called *Chern Ricci-flat* if there exists a smooth Hermitian metric ω such that the Chern-Ricci curvature $\text{Ric}(\omega) = -\sqrt{-1}\partial \bar{\partial} \log \omega^n = 0$. On the other hand, we proved in [Yang17, Theorem 1.4] that a line bundle \mathcal{L} is RC-positive if and only if its dual line bundle \mathcal{L}^* is not pseudo-effective. By taking this advantage, we can verify the RC-positivity of K_X or K_X^{-1} by adapting methods in differential geometry as well as algebraic geometry.

As a straightforward application of Theorem 1.2, we obtain

Corollary 1.3. Let X be a compact Kähler manifold. If X has a scalar-flat Kähler metric ω, then either X is a Calabi-Yau manifold, or both K_X and K_X^{-1} are RC-positive.

For instance, if X is the blowing-up of \mathbb{P}^2 along m-points ($m \leq 9$), it is well-known that the anti-canonical bundle K_X^{-1} is effective (e.g. [Fri98, p. 125-p. 129]) and so it is pseudo-effective. In this case, K_X can not be RC-positive and X has no scalar-flat Hermitian (or Kähler) metrics.

Corollary 1.4. Let $\mathbb{P}^2 \# m \mathbb{P}^2$ be the blowing-up of \mathbb{P}^2 along m points. If X admits a scalar-flat Hermitian metric, then $m \geq 10$.

Indeed, it is proved by Rollin-Singer in [RS05, Theorem 1] (see also [Leb86, Leb91, LS93]) that: a complex surface X obtained by blowing-up \mathbb{P}^2 at 10 suitably chosen points admits a scalar-flat Kähler metric and any further blowing-up of X also admits a scalar-flat Kähler metric.
A compact complex surface X is called a \textit{ruled surface} if it is a holomorphic \mathbb{P}^1-bundle over a compact Riemann surface C. It is well known that any ruled surface X can be written as a projective bundle $\mathbb{P}(\mathcal{E})$ where \mathcal{E} is a rank two vector bundle over C. Moreover, two ruled surfaces $\mathbb{P}(\mathcal{E})$ and $\mathbb{P}(\mathcal{E}')$ are isomorphic if and only if $\mathcal{E} \cong \mathcal{E}' \otimes \mathcal{L}$ for some line bundle \mathcal{L} over C. The existence of cscK metrics on ruled surfaces are extensively studied, and we refer to [Yau74, BD88, Tian90, Sim91, Fuj92, LS93, LS94, RS05, AP06, AT06, RT06, Ross06, Sto08, ACGT11, Sze14] and the references therein. A remarkable result (e.g. [AT06, BD88, ACGT11]) asserts that: A ruled surface $\mathbb{P}(\mathcal{E})$ admits a cscK metric if and only if \mathcal{E} is poly-stable.

In the following, we aim to classify ruled surfaces with scalar-flat Hermitian metrics. Let \mathcal{E} be a rank two vector bundle over a smooth curve C. One can define a number $m(\mathcal{E})$ (e.g. [Fri98, p. 122]) which is equal to the minimal degree of $\mathcal{E} \otimes \mathcal{L}$ if there exists a sheaf extension of $\mathcal{E} \otimes \mathcal{L}$:

$$0 \to \mathcal{O}_C \to \mathcal{E} \otimes \mathcal{L} \to \mathcal{F} \to 0$$

for some line bundle \mathcal{L}. It is obvious that $m(\mathcal{E}) = m(\mathcal{E} \otimes \mathcal{L})$ for any line bundle \mathcal{L}. Hence, we can define an intrinsic number $m(X)$ for a ruled surface X: $m(X) = m(\mathcal{E})$ if X can be written as $\mathbb{P}(\mathcal{E})$. It is obvious that $m(X)$ is independent of the choices of \mathcal{E}. Let’s explain the geometric meaning of $m(X)$ by the example $X = \mathbb{P}(\mathcal{L} \oplus \mathcal{O}_C) \to C$ where \mathcal{L} is a line bundle. In this case, $m(X) = -|\deg(\mathcal{L})| \leq 0$. As another application of Theorem 1.2, we obtain

Theorem 1.5. Let X be a ruled surface over a smooth curve C of genus g. Then X has a scalar-flat Hermitian metric if and only if $g \geq 2$ and $m(X) > 2 - 2g$.

In particular, we have

Corollary 1.6. Let $\mathcal{L} \to C$ be a line bundle over a smooth curve of genus g and $X = \mathbb{P}(\mathcal{L} \oplus \mathcal{O}_C)$. Then X has a scalar-flat Hermitian metric if and only if $g \geq 2$ and $|\deg(\mathcal{L})| < 2g - 2$.

For instance, if C is a smooth curve of degree $d > 4$ in \mathbb{P}^2, then the genus of C is $g = \frac{1}{2}(d - 1)(d - 2)$ and the degree of $\mathcal{O}_C(1)$ is $d < 2g - 2$. Hence, $X = \mathbb{P}(\mathcal{O}_C(1) \oplus \mathcal{O}_C)$ has scalar-flat Hermitian metrics. Note also that, in Corollary 1.6, if $\deg(\mathcal{L}) = 0$, the vector bundle $\mathcal{L} \oplus \mathcal{O}_C$ is poly-stable and $X = \mathbb{P}(\mathcal{L} \oplus \mathcal{O}_C)$ admits scalar-flat Kähler metrics; however, when $0 < |\deg(\mathcal{L})| < 2g - 2$, it has no scalar-flat Kähler metrics. Moreover, we construct such examples in higher dimensional ruled manifolds.
Proposition 1.7. Let C be a smooth curve with genus $g \geq 2$ and \mathcal{L} be a line bundle over C. Suppose $\mathcal{E} = \mathcal{L} \oplus \mathcal{O}_C^{(n-1)}$ and $X = \mathbb{P}(\mathcal{E}^*) \to C$ is the projective bundle. If $0 < \deg(\mathcal{L}) < \frac{2g-2}{n-1}$, then $\mathbb{P}(\mathcal{E}^*)$ cannot support scalar-flat Kähler metrics, but it does admit scalar-flat Hermitian metrics.

As motivated by previous results, we propose the following question.

Question 1.8. Let X be a compact Kähler manifold. Suppose X has a scalar-flat Hermitian metric. Are there any geometric conditions on X which can guarantee the existence of scalar-flat Kähler metrics?

Finally, we classify minimal compact complex surfaces with scalar-flat Hermitian metrics.

Theorem 1.9. Let X be a minimal compact complex surface. If X admits a scalar-flat Hermitian metric, then X must be one of the following

1. an Enriques surface;
2. a bi-elliptic surface;
3. a $K3$ surface;
4. a 2-torus;
5. a Kodaira surface;
6. a ruled surface X over a curve C of genus $g \geq 2$ and $m(X) > 2 - 2g$;
7. a class VII_0 surface with $b_2 > 0$.

Remark 1.10. It is proved that surfaces in (1) to (6) all have scalar-flat Hermitian metrics. On the other hand, since class VII_0 surfaces with $b_2 > 0$ are not completely classified, we do not prove each class VII_0 surface with $b_2 > 0$ can support scalar-flat Hermitian metrics. Non-minimal surfaces with scalar-flat Hermitian metrics will also be studied in the sequel.

The rest of the paper is organized as follows. In Section 3, we give a characterization of compact complex manifolds with scalar-flat Hermitian metrics and prove Theorem 1.2. In Section 5, we classify ruled surfaces with scalar-flat Hermitian metrics and establish Theorem 1.5. In Section 6, we classify minimal complex surfaces with scalar-flat Hermitian metrics and obtain Theorem 1.9. In Section 7, we give some precise examples with scalar-flat Hermitian metrics (Proposition 1.7).

Acknowledgements. The first author would like to thank his advisor Professor Jian Zhou for his guidance. The second author is very grateful to Professor K.-F. Liu and Professor S.-T. Yau for their support, encouragement and stimulating discussions over years. We would also like to thank Professors S. Sun,
2. Background materials

2.1. Scalar curvature and total scalar curvature on complex manifolds.
Let (\mathcal{E}, h) be a Hermitian holomorphic vector bundle over a complex manifold X with Chern connection ∇. Let $\{z^i\}_{i=1}^n$ be the local holomorphic coordinates on X and $\{e_\alpha\}_{\alpha=1}^r$ be a local frame of \mathcal{E}. The curvature tensor $R^\mathcal{E} \in \Gamma(X, \Lambda^{1,1}T_X^* \otimes \text{End}(\mathcal{E}))$ has components

$$R^\mathcal{E}_{\alpha\beta} = -\frac{\partial^2 h_{\alpha\beta}}{\partial z^i \partial \overline{z}^j} + h^{\gamma\delta} \frac{\partial h_{\alpha\delta}}{\partial z^i} \frac{\partial h_{\beta\gamma}}{\partial \overline{z}^j}.$$

(Here and henceforth we sometimes adopt the Einstein convention for summation.) If (X, ω_g) is a Hermitian manifold, then (T_X, g) has Chern curvature components

$$R_{ij\ell} = -\frac{\partial^2 g_{i\ell}}{\partial z^i \partial \overline{z}^j} + g^{pq} \frac{\partial g_{i\ell}}{\partial z^p} \frac{\partial g_{qj}}{\partial \overline{z}^j}.$$

The Chern-Ricci curvature $\text{Ric}(\omega_g)$ of (X, ω_g) is represented by

$$R_{ij} = g^{k\ell} R_{ijk\ell}.$$

The (Chern) scalar curvature s of (X, ω_g) is given by

$$s = \text{tr}_{\omega_g} \text{Ric}(\omega_g) = g^{ij} R_{ij}.$$

The total (Chern) scalar curvature of ω_g is

$$\int_X s_{\omega_g^n} = n \int \text{Ric}(\omega_g) \wedge \omega_g^{n-1},$$

where n is the complex dimension of X.

1. A Hermitian metric ω_g is called a Gauduchon metric if $\partial \overline{\partial} \omega_g^{n-1} = 0$. It is proved by Gauduchon ([Gau77]) that, in the conformal class of each Hermitian metric, there exists a unique Gauduchon metric (up to constant scaling).

2. A projective manifold X is called uniruled if it is covered by rational curves.

2.2. Positivity of line bundles. Let (X, ω_g) be a compact Hermitian manifold, and $\mathcal{L} \to X$ be a holomorphic line bundle.

1. \mathcal{L} is said to be positive (resp. semi-positive) if there exists a smooth Hermitian metric h on \mathcal{L} such that the curvature form $R^\mathcal{L} = -\sqrt{-1} \partial \overline{\partial} \log h$ is a positive (resp. semi-positive) $(1, 1)$-form.
(2) \(L \) is said to be \textit{nef}, if for any \(\varepsilon > 0 \), there exists a smooth Hermitian metric \(h_\varepsilon \) on \(L \) such that
\[-\sqrt{-1} \partial \bar{\partial} \log h_\varepsilon \geq -\varepsilon \omega_g.\]

(3) \(L \) is said to be \textit{pseudo-effective}, if there exists a (possibly) singular Hermitian metric \(h \) on \(L \) such that
\[-\sqrt{-1} \partial \bar{\partial} \log h \geq 0\]
in the sense of distributions. (See [Dem] for more details.)

(4) \(L \) is said to be \textit{Q-effective}, if there exists some positive integer \(m \) such that
\[H^0(X, L^\otimes m) \neq 0.\]

(5) \(L \) is called \textit{unitary flat} if there exists a smooth Hermitian metric \(h \) on \(L \) such that
\[-\sqrt{-1} \partial \bar{\partial} \log h = 0.\]

(6) The Kodaira dimension \(\kappa(L) \) of \(L \) is defined to be
\[\kappa(L) := \limsup_{m \to +\infty} \frac{\log \dim \mathcal{O}(X, L^\otimes m)}{\log m}\]
and the \textit{Kodaira dimension} \(\kappa(X) \) of \(X \) is defined as
\[\kappa(X) := \kappa(K_X)\]
where the logarithm of zero is defined to be \(-\infty\).

2.3. Positivity of vector bundles. The points of the projective bundle \(\mathbb{P}(\mathcal{E}^*) \)
of \(\mathcal{E} \to X \) can be identified with the hyperplanes of \(\mathcal{E} \). Note that every hyperplane \(\mathcal{V} \) in \(\mathcal{E}_z \) corresponds bijectively to the line of linear forms in \(\mathcal{E}_z \) which vanish on \(\mathcal{V} \). Let \(\pi : \mathbb{P}(\mathcal{E}^*) \to X \) be the natural projection. There is a tautological hyperplane subbundle \(\mathcal{I} \) of \(\pi^*\mathcal{E} \) such that \(\mathcal{I}_\xi = \xi^{-1}(0) \subset \mathcal{E}_z \) for all \(\xi \in \mathcal{E}_z \setminus \{0\} \). The quotient line bundle \(\pi^*\mathcal{E}/\mathcal{I} \) is denoted \(\mathcal{O}(1) \) and is called the \textit{tautological line bundle} associated to \(\mathcal{E} \to X \). Hence there is an exact sequence of vector bundles over \(\mathbb{P}(\mathcal{E}^*) \),

\[0 \to \mathcal{I} \to \pi^*\mathcal{E} \to \mathcal{O}(1) \to 0.\]

A holomorphic vector bundle \(\mathcal{E} \to X \) is called \textit{ample} (resp. \textit{nef}) if the line bundle \(\mathcal{O}(1) \) is ample (resp. nef) over \(\mathbb{P}(\mathcal{E}^*) \). (\textbf{Caution:} In general, \(\mathbb{P}(\mathcal{E}) \) and \(\mathbb{P}(\mathcal{E}^*) \) are not isomorphic! \(\mathcal{E}(1) \) is the tautological line bundle of \(\mathbb{P}(\mathcal{E}^*) \), and \(\mathcal{O}(1) \) is the tautological line bundle of \(\mathbb{P}(\mathcal{E}) \).) A Hermitian holomorphic vector bundle \((\mathcal{E}, h) \) over a complex manifold \(X \) is called \textit{Griffiths positive} if at each point \(q \in X \) and for any nonzero vector \(v \in \mathcal{E}_q \), and any nonzero vector \(u \in T_qX, R^\mathcal{E}(u, \overline{u}, v, \overline{v}) > 0.\)

2.4. RC-positive line bundles. Let’s recall that

\textbf{Definition 2.1.} A line bundle \(\mathcal{L} \) is called \textit{RC-positive} if it has a smooth Hermitian metric \(h \) such that its curvature \(R^{(\mathcal{L}, h)} = -\sqrt{-1} \partial \bar{\partial} \log h \) has at least one positive eigenvalue everywhere.

In [Yang17, Theorem 1.4], we obtained an equivalent characterization for RC-positive line bundles.
Theorem 2.2. Let \(\mathcal{L} \) be a holomorphic line bundle over a compact complex manifold \(X \). The following statements are equivalent.

1. \(\mathcal{L} \) is RC-positive;
2. the dual line bundle \(\mathcal{L}^* \) is not pseudo-effective.

Hence, we obtain

Corollary 2.3. A line bundle \(\mathcal{L} \) is unitary flat if and only if neither \(\mathcal{L} \) nor \(\mathcal{L}^* \) is RC-positive.

Proof. It is easy to see that \(\mathcal{L} \) is unitary flat if and only if both \(\mathcal{L} \) and \(\mathcal{L}^* \) are pseudo-effective (e.g. [Yang17a, Theorem 3.4]). Hence, Corollary 2.3 follows from Theorem 2.2. \(\square \)

By using Theorem 2.2, the classical result of [BDPP13, Theorem] and Yau’s theorem [Yau78], we obtain in [Yang17, Corollary 1.9] that

Theorem 2.4. A projective manifold \(X \) is uniruled if and only if \(K_X^{-1} \) is RC-positive, i.e. \(X \) has a smooth Hermitian metric \(\omega \) such that the Ricci curvature \(\text{Ric}(\omega) \) has at least one positive eigenvalue everywhere.

3. Characterizations of complex manifolds with scalar-flat metrics

In this section, we shall prove Theorem 1.2. Let \(\omega \) be a smooth Hermitian metric on a compact complex manifold \(X \). For simplicity, we denote by \(\mathcal{F}(\omega) \) the total (Chern) scalar curvature of \(\omega \), i.e.

\[
\mathcal{F}(\omega) = \int_X s_\omega^n = n \int_X \text{Ric}(\omega) \wedge \omega^{n-1}.
\]

Note that, when \(X \) is not Kähler, the total scalar curvature differs from the total scalar curvature of the Levi-Civita connection of the underlying Riemannian metric (e.g. [LY17]). Let \(\mathcal{W} \) be the space of smooth Gauduchon metrics on \(X \). We obtained in [Yang17a, Theorem 1.1] a complete characterization on the image of the total scalar curvature function \(\mathcal{F} : \mathcal{W} \rightarrow \mathbb{R} \) following [Gau77, Mi82, La99] (see also some special cases in [Tel06, Gau77, HW12]). By Theorem 2.2, we obtain the following result.

Theorem 3.1. The image of the total scalar function \(\mathcal{F} : \mathcal{W} \rightarrow \mathbb{R} \) has exactly four different cases:

1. \(\mathcal{F}(\mathcal{W}) = \mathbb{R} \) if and only if both \(K_X \) and \(K_X^{-1} \) are RC-positive;
(2) \(\mathcal{F}(\mathcal{W}) = \mathbb{R}^{>0} \) if and only if \(K_X^{-1} \) is RC-positive but \(K_X \) is not RC-positive;
(3) \(\mathcal{F}(\mathcal{W}) = \mathbb{R}^{<0} \) if and only if \(K_X \) is RC-positive but \(K_X^{-1} \) is not RC-positive;
(4) \(\mathcal{F}(\mathcal{W}) = \{0\} \) if and only if \(X \) is Ricci-flat; or equivalently, neither \(K_X \) nor \(K_X^{-1} \) is RC-positive.

Proof. We obtained in [Yang17a, Theorem 1.1] that the image of the total scalar function \(\mathcal{F} : \mathcal{W} \to \mathbb{R} \) has exactly four different cases:

(1) \(\mathcal{F}(\mathcal{W}) = \mathbb{R} \), if and only if neither \(K_X \) nor \(K_X^{-1} \) is pseudo-effective;
(2) \(\mathcal{F}(\mathcal{W}) = \mathbb{R}^{>0} \), if and only if \(K_X^{-1} \) is pseudo-effective but not unitary flat;
(3) \(\mathcal{F}(\mathcal{W}) = \mathbb{R}^{<0} \), if and only if \(K_X \) is pseudo-effective but not unitary flat;
(4) \(\mathcal{F}(\mathcal{W}) = \{0\} \), if and only if \(K_X \) is unitary flat.

By [TW10, Corollary 2], \(K_X \) is unitary flat if and only if \(X \) is Ricci-flat, i.e. there exists a Hermitian metric \(\omega \) on \(X \) such that \(\text{Ric}(\omega) = 0 \). Hence Theorem 3.1 follows from Theorem 2.2 and Corollary 2.3. \(\square \)

Remark 3.2. It is easy to see that Theorem 3.1 also holds for Bott-Chern classes ([Yang17a, Theorem 3.4])

As an application of Theorem 3.1, we establish Theorem 1.2, that is,

Theorem 3.3. Let \(X \) be a compact complex manifold. Then \(X \) admits a scalar-flat Hermitian metric if and only if \(X \) is Ricci-flat, or both \(K_X \) and \(K_X^{-1} \) are RC-positive.

Proof. If \(X \) has a scalar-flat Hermitian metric \(\omega \), in the conformal class of \(\omega \), there exists a Gauduchon metric \(\omega_f = e^f \omega \). Then the total scalar curvature \(s_f \) of the Gauduchon metric \(\omega_f \) is

\[
(3.1) \quad s_f = n \int_X \text{Ric}(\omega_f) \wedge \omega_f^{n-1} = n \int_X \left(\text{Ric}(\omega) - n\sqrt{-1} \partial \bar{\partial} f \right) \wedge \omega_f^{n-1}.
\]

Since \(\omega_f \) is Gauduchon, i.e. \(\partial \bar{\partial} \omega_f^{n-1} = 0 \), an integration by part yields

\[
\begin{align*}
 s_f &= n \int_X \text{Ric}(\omega) \wedge \omega_f^{n-1} \\
 &= n \int_X \text{Ric}(\omega) \wedge e^{(n-1)f} \omega^{n-1} \\
 &= \int_X e^{(n-1)f} \cdot \text{tr}_\omega \text{Ric}(\omega) \cdot \omega^n.
\end{align*}
\]
Since ω has zero scalar curvature, i.e. $\text{tr}_\omega \text{Ric}(\omega) = 0$, we deduce that the total scalar curvature s_f of the Gauduchon metric ω_f is zero. By Theorem 3.1, we conclude that either X is Ricci-flat, or both K_X and K_X^{-1} are RC-positive.

On the other hand, suppose either X is Ricci-flat, or both K_X and K_X^{-1} are RC-positive, by Theorem 3.1 again, we know X has a Gauduchon metric ω_G with zero total scalar curvature. By a conformal perturbation method, it is easy to see that there exists a Hermitian metric ω with zero scalar curvature (e.g. [Yang17a, Lemma 3.2]). Indeed, let s_G be the scalar curvature of ω_G. It is well-known (e.g. [Gau77] or [CTW16, Theorem 2.2]) that the following equation

$$s_G - \text{tr}_{\omega_G} \sqrt{-1} \partial \bar{\partial} f = 0$$

has a solution $f \in C^\infty(X)$ since ω_G is Gauduchon and its total scalar curvature $\int_X s_G \omega^n_G$ is zero. Let $\omega = e^{f} \omega_G$. Then the scalar curvature s of ω is,

$$s = \text{tr}_\omega \text{Ric}(\omega) = -\text{tr}_\omega \sqrt{-1} \partial \bar{\partial} \log(\omega^n)$$

$$= -e^{-f} \text{tr}_{\omega_G} \sqrt{-1} \partial \bar{\partial} \log(e^f \omega^n_G)$$

$$= -e^{-f} \left(s_G - \text{tr}_{\omega_G} \sqrt{-1} \partial \bar{\partial} f\right)$$

$$= 0.$$

The proof of Theorem 1.2 is completed.

The proof of Corollary 1.3. It is a special case of Theorem 1.2 since Kähler manifolds with unitary flat K_X are Kähler Calabi-Yau.

Corollary 3.4. Let X be a compact Kähler manifold. Suppose X has a scalar-flat Hermitian metric, or a Gauduchon metric with zero total scalar curvature. If K_X or K_X^{-1} is pseudo-effective, then X is a Kähler Calabi-Yau manifold.

4. Projective bundles with scalar-flat metrics

In this section, we prove the following result.

Theorem 4.1. Let E be a nef vector bundle of rank $r \geq 2$ over a smooth curve C with genus $g \geq 2$ and $X = \mathbb{P}(E)$. If $0 \leq \text{deg}(E) < 2g - 2$, then both K_X and K_X^{-1} are RC-positive. In particular, X has scalar-flat Hermitian metrics.

Let’s recall some elementary settings. Suppose $\dim C = n$ and $r = \text{rank}(E)$. Let π be the projection $\mathbb{P}(E^*) \to Y$ and $\mathcal{L} = \mathcal{O}_E(1)$. Let (e_1, \cdots, e_r) be the local holomorphic frame on E and the dual frame on E^* is denoted by (e^1, \cdots, e^r). The corresponding holomorphic coordinates on E^* are denoted by
(W_1, \cdots, W_r). If \((h_{\alpha \beta})\) is the matrix representation of a smooth metric \(h^E\) on \(E\) with respect to the basis \(\{e_\alpha\}_{\alpha=1}^r\), then the induced Hermitian metric \(h^L\) on \(L\) can be written as \(h^L = \frac{i}{\sum h_{\alpha \beta} W_\alpha W_\beta}.\) The curvature of \((L, h^L)\) is

\[
4.1 \quad R^L = \sqrt{-1} \partial \bar{\partial} \log \left(\sum h_{\alpha \beta} W_\alpha W_\beta \right)
\]

where \(\partial\) and \(\bar{\partial}\) are operators on the total space \(\mathbb{P}(E^*)\). We fix a point \(p \in \mathbb{P}(E^*)\), then there exist local holomorphic coordinates \((z^1, \cdots, z^n)\) centered at point \(q = \pi(p) \in Y\) and local holomorphic basis \(\{e_1, \cdots, e_r\}\) of \(E\) around \(q\) such that

\[
4.2 \quad h_{\alpha \beta} = \delta_{\alpha \beta} - R^E_{ij\alpha \beta} z^i \bar{z}^j + O(|z|^3)
\]

Without loss of generality, we assume \(p\) is the point \((0, \cdots, 0, [a_1, \cdots, a_r])\) with \(a_r = 1\). On the chart \(U = \{W_r = 1\}\) of the fiber \(\mathbb{P}^{r-1}\), we set \(w^A = W_A\) for \(A = 1, \cdots, r - 1\). By formula (4.1) and (4.2)

\[
4.3 \quad R^E(p) = \sqrt{-1} \sum R^E_{ij\alpha \beta} \frac{a_\alpha a_\beta}{|a|^2} dz^i \wedge d\bar{z}^j + \omega_{FS}
\]

where \(|a|^2 = \sum_{\alpha=1}^r |a_\alpha|^2\) and \(\omega_{FS} = \sqrt{-1} \sum_{A,B=1}^{r-1} \left(\frac{\delta_{AB}}{|a|^2} - \frac{a_\beta a_\bar{\beta}}{|a|^2} \right) dw^A \wedge d\bar{w}^B\) is the Fubini-Study metric on the fiber \(\mathbb{P}^{r-1}\).

Lemma 4.2. If \(E\) is Griffiths-positive, then \(O_{E^*}(-1)\) is RC-positive.

Proof. It follows from formula (4.3). Indeed, by (4.3), the induced metric on \(O_{E^*}(-1)\) over \(\mathbb{P}(E^*)\) has curvature form

\[
R^{O_{E^*}(-1)} = - \left(\sqrt{-1} \sum R^{E^*}_{ij\alpha \beta} \frac{a_\alpha a_\bar{\beta}}{|a|^2} dz^i \wedge d\bar{z}^j + \omega_{FS} \right).
\]

On the other hand, \(R^{E^*} = (R^{E^*})^t\) and so

\[
R^{O_{E^*}(-1)} = \sqrt{-1} \sum R^{E^*}_{ij\alpha \beta} \frac{a_\alpha a_\bar{\beta}}{|a|^2} dz^i \wedge d\bar{z}^j - \omega_{FS}.
\]

Hence, \(O_{E^*}(-1)\) is RC-positive if \((E, h^E)\) is Griffiths-positive. \(\square\)

Lemma 4.3. If \(E\) is a nef vector bundle over a smooth curve \(C\). Then for any ample line bundle \(\mathcal{A}\) over \(C\) and any \(k \geq 0\), \(O_{E^*}(-k) \otimes \pi^*: \mathcal{A}\) is RC-positive.

Proof. It is easy to see that \(\text{Sym}^{\otimes k} E \otimes \mathcal{A}\) is an ample vector bundle over \(C\). By [CF90], \(\text{Sym}^{\otimes k} E \otimes \mathcal{A}\) has a smooth Griffiths-positive metric. In particular, by Lemma 4.2, the dual tautological line bundle

\[
4.4 \quad O_{\text{Sym}^{\otimes k} E^* \otimes \mathcal{A}^*}(-1)
\]
is RC-positive. More precisely, the base curve C direction is a positive direction of the curvature tensor of $O_{\text{Sym}^k E^*}(-1)$. On the other hand, we have the following commutative diagram

\[
\begin{array}{c}
\mathbb{P}(\mathcal{E}) \\
\downarrow \pi_k \\
C \\
\end{array} \quad \begin{array}{c}
\longrightarrow \\
\nu_k \\
f \\
\end{array} \quad \begin{array}{c}
\mathbb{P}(\text{Sym}^k \mathcal{E}) \\
\downarrow \pi_k \\
f \\
\end{array} \quad \begin{array}{c}
\longrightarrow \\
\longrightarrow \\
\longrightarrow \\
\end{array} \quad \begin{array}{c}
P(\text{Sym}^k \mathcal{E} \otimes \mathcal{A}) \\
\downarrow \\
C \\
\end{array}
\]

where $\nu_k : \mathcal{E} \rightarrow \text{Sym}^k \mathcal{E}$ is the k-th Veronese map, f = Identity and i is an isomorphism. It is easy to see that $O_{\mathcal{E}^*}(-k) \otimes \pi^*(\mathcal{A})$ is RC-positive, i.e., the induced curvature has a positive direction along the base C direction. □

The proof of Theorem 4.1. By using the projection formula on $X = \mathbb{P}(\mathcal{E})$,

\[K_X = O_{\mathcal{E}^*}(-n) \otimes \pi^*(K_C \otimes \mathcal{E}^*),\]

where $\pi : X \rightarrow C$ is the projection. If $\deg(\mathcal{E}) < 2g - 2 = \deg(K_C)$, then $\deg(K_C \otimes \mathcal{E}^*) > 0$ and so $K_C \otimes \mathcal{E}^*$ is ample. By Lemma 4.3, K_X is RC-positive. On the other hand, by Theorem 2.4, it is easy to see that K_X^{-1} is RC-positive. Hence, by Theorem 1.2, X has scalar-flat Hermitian metrics. □

5. Classification of ruled surfaces with scalar-flat Hermitian metrics

In this section, we classify ruled surfaces with scalar-flat Hermitian metrics and prove Theorem 1.5. It is well-known that any ruled surface X can be written as a projective bundle $\mathbb{P}(\mathcal{E})$ where \mathcal{E} is a rank two vector bundle over a smooth curve C with genus g. Moreover, two ruled surfaces $\mathbb{P}(\mathcal{E})$ and $\mathbb{P}(\mathcal{E}')$ are isomorphic if and only if $\mathcal{E} \cong \mathcal{E}' \otimes \mathcal{L}$ for some line bundle \mathcal{L} over C. Since \mathcal{E} has rank two and $X \cong \mathbb{P}(\mathcal{E}) \cong \mathbb{P}(\mathcal{E}^*)$, we shall use projection formulas

\[K_X = O_{\mathcal{E}^*}(-2) \otimes \pi^*(K_C \otimes \mathcal{E}^*), \quad \pi : \mathbb{P}(\mathcal{E}^*) \rightarrow C\]

and

\[K_X = O_{\mathcal{E}^*}(-2) \otimes \pi^*(K_C \otimes \mathcal{E}^*), \quad \pi : \mathbb{P}(\mathcal{E}) \rightarrow C\]

alternatively.

When $g = 0$, $C \cong \mathbb{P}^1$ and each rank two vector bundle can be written as $\mathcal{E} = O_{\mathbb{P}^1}(a) \oplus O_{\mathbb{P}^1}(b)$. We can write a ruled surface over \mathbb{P}^1 as $X = \mathbb{P}(O_{\mathbb{P}^1}(-k) \oplus O_{\mathbb{P}^1})$. 11
Proposition 5.1. Let $X = \mathbb{P}(\mathcal{O}_{\mathbb{P}^1}(-k) \oplus \mathcal{O}_{\mathbb{P}^1})$ be a Hirzebruch surface. Then the anti-canonical line bundle K_X^{-1} is effective and X has no scalar-flat Hermitian metrics.

Proof. Let $\mathcal{E} = \mathcal{O}_{\mathbb{P}^1}(k) \oplus \mathcal{O}_{\mathbb{P}^1}$ and $X = \mathbb{P}(\mathcal{E}^*)$. We have $K_X^{-1} = \mathcal{O}_\mathcal{E}(2) \otimes \pi^* (\mathcal{O}_{\mathbb{P}^1}(2 - k))$. By the direct image formula (e.g. [Laz04, p.90]), we have

$$H^0(X, K_X^{-1}) = H^0(X, \mathcal{O}_\mathcal{E}(2) \otimes \pi^* (\mathcal{O}_{\mathbb{P}^1}(2 - k)))$$

$$= H^0(\mathbb{P}^1, \text{Sym}^2 \mathcal{E} \otimes \mathcal{O}_{\mathbb{P}^1}(2 - k))$$

$$= H^0(\mathbb{P}^1, \mathcal{O}_{\mathbb{P}^1}(k + 2) \oplus \mathcal{O}_{\mathbb{P}^1}(2) \oplus \mathcal{O}_{\mathbb{P}^1}(2 - k))$$

for any k. Therefore, K_X^{-1} is effective and K_X is not RC-positive. By Theorem 1.2, X has no scalar-flat Hermitian metrics. □

Theorem 5.2. Let $X = \mathbb{P}(\mathcal{E}^*) \to C$ be a projective bundle over an elliptic curve C where $\mathcal{E} \to C$ is a rank two vector bundle. Then the K_X is not RC-positive and X has no scalar-flat Hermitian metrics.

Proof. We divide the proof into three different cases.

Case 1. Suppose \mathcal{E} is indecomposable and $\deg \mathcal{E} = 0$. A well-known result of Atiyah asserts that an indecomposable vector bundle over an elliptic curve is semi-stable and so \mathcal{E} is semi-stable (e.g. [Tu93, Appendix A]). On the other hand, a semi-stable vector bundle over a curve is nef if $\deg(\mathcal{E}) \geq 0$ (e.g. [Laz04, Theorem 6.4.15]). Hence \mathcal{E} is nef. By using the projection formula,

$$K_X^{-1} = \mathcal{O}_\mathcal{E}(2) \otimes \pi^* (K_C^{-1} \otimes \det \mathcal{E}^*) = \mathcal{O}_\mathcal{E}(2) \otimes \pi^* (\det \mathcal{E}^*)$$

we deduce K_X^{-1} is nef.

Case 2. Suppose \mathcal{E} is indecomposable and $\deg(\mathcal{E}) \neq 0$. There exists an étale base change $f : C' \to C$ of degree k where k is an integer such that $2|k$, and C' is also an elliptic curve. Suppose $X' = \mathbb{P}(f^* \mathcal{E}^*)$, then we have the commutative diagram

$$\begin{array}{ccc}
X' & \xrightarrow{f'} & X \\
\pi' \downarrow & & \downarrow \pi \\
C' & \xrightarrow{f} & C.
\end{array}$$

Let ℓ be an integer defined as

$$\ell = \frac{\deg(f^* \mathcal{E})}{2} = \frac{k \deg(\mathcal{E})}{2},$$

12
and \(\mathcal{F} \) be a line bundle over \(Y \) such that \(\deg(\mathcal{F}) = -\ell \). Now we set
\[
\mathcal{E} = f^* \mathcal{E} \otimes \mathcal{F},
\]
then \(\deg(\mathcal{E}) = 0 \). Since \(\mathcal{E} \) is indecomposable, it is semi-stable. Therefore \(f^* \mathcal{E} \) is semi-stable (e.g. [Laz04, Lemma 6.4.12]) and so \(\mathcal{E} \) is semi-stable. Therefore, \(\mathcal{E} \) is nef since \(\deg(\mathcal{E}) = 0 \). By projection formula again, we have
\[
K^{-1}_{X'} = \mathcal{O}_{\tilde{E}}(2) \otimes \pi^*(\det \mathcal{E}).
\]
We deduce \(K^{-1}_{X'} \) is nef. Hence \(K^{-1}_X \) is nef.

Case 3. If \(\mathcal{E} \) is decomposable, then there exits a line bundle \(\mathcal{L} \) such that
\[
\mathcal{E} = \mathcal{L} \oplus (\mathcal{L}^{-1} \otimes \det \mathcal{E}).
\]
By the projection formula (5.1) again, we have
\[
H^0(X, K_X^{-1}) = H^0(X, \mathcal{O}_\mathcal{E}(2) \otimes \pi^*(\det \mathcal{E}^*)) \cong H^0(C, \text{Sym}^2 \mathcal{E} \otimes \det \mathcal{E}^*))
\]
\[
= H^0(C, (\mathcal{L}^2 \otimes \det \mathcal{E}^*) \oplus \mathcal{O}_C \oplus (\mathcal{L}^{-2} \otimes \det \mathcal{E}))
\]
\[
\neq 0
\]
So \(K^{-1}_X \) is effective.

In summary, we conclude that the anti-canonical line bundle \(K^{-1}_X \) is pseudo-effective, i.e. \(K_X \) is not RC-positive. By Theorem 1.2, \(X \) has no scalar-flat Hermitian metrics.

Finally, we deal with ruled surfaces over curves of genus \(g \geq 2 \). For a rank two vector bundle \(\mathcal{E} \) over a curve \(C \), in general, it is not clear whether \(\mathcal{E} \) has an extension by \(\mathcal{O}_C \):
\[
0 \rightarrow \mathcal{O}_C \rightarrow \mathcal{E} \rightarrow \mathcal{F} \rightarrow 0
\]
where \(\mathcal{F} \) is a coherent sheaf over \(C \). However, one can obtain such an extension for \(\mathcal{E} \otimes \mathcal{L} \) where \(\mathcal{L} \) is some suitable line bundle. This enables us to make the following definition (see [Fri98, p.121-p.124] for more details).

Definition 5.3. Let \(\mathcal{E} \) be a rank two vector bundle over a smooth curve \(C \). The number \(m(\mathcal{E}) \) is defined to be the minimal degree of \(\mathcal{E} \otimes \mathcal{L} \) where there exists a sheaf extension of \(\mathcal{E} \otimes \mathcal{L} \):
\[
0 \rightarrow \mathcal{O}_C \rightarrow \mathcal{E} \otimes \mathcal{L} \rightarrow \mathcal{F} \rightarrow 0
\]
for some line bundle \(\mathcal{L} \) over \(C \).
It is easy to see that for a sufficiently ample line bundle L, $H^0(C, E \otimes L) \neq 0$ and a global section of $E \otimes L$ gives an extension (5.4). Hence, $m(E)$ is well-defined. It is obvious that $m(E) = m(E \otimes \widehat{L})$ for any line bundle \widehat{L}. Nagata proved in [Nag70, Theorem 1] (see also [Fri98, p. 123]) that

Theorem 5.4. $m(E) \leq g$.

(Note that, in [Fri98, p. 123], the notion $c(E)$ is exactly $-m(E)$.)

As we pointed out before, any ruled surface X can be written as a projective bundle $\mathbb{P}(E)$ and two ruled surfaces $\mathbb{P}(E)$ and $\mathbb{P}(E')$ are isomorphic if and only if $E \cong E' \otimes L$ for some line bundle L, then we can define $m(X)$ by $m(E)$ for any ruled surface $X = \mathbb{P}(E)$.

One can see that the definition of $m(E)$ is related to stability of coherent sheaves. If $m(E) > 0$, then E is stable. Indeed, for any rank one sub-sheaf L of E, we have the short exact sequence:

$$0 \to L \to E \to F \to 0.$$

Since E is torsion free, L is torsion free and we know L is a line bundle. Therefore,

$$0 \to \mathcal{O}_C \to E \otimes L^{-1} \to F \otimes L^{-1} \to 0.$$

By the definition of $m(E)$, we have $\deg(E \otimes L^{-1}) \geq m(E) > 0$ which is equivalent to $\deg L < \frac{\deg E}{2}$. This implies E is stable. Conversely, if E is stable, by a similar argument, we can conclude $m(E) > 0$. Hence, we obtain a fact pointed out in [Fri98, Proposition 12, p. 123].

Proposition 5.5. If E is a rank two vector bundle over a Riemann surface C, then E is stable if and only if $m(E) > 0$.

The proof of Theorem 1.5. Let X be a ruled surface which can support scalar-flat Hermitian metrics. We can write $X = \mathbb{P}(E_0)$ for some rank 2 vector bundle E_0 over a smooth curve C. Note that, since E_0 has rank 2, $E_0 \cong E_0^* \otimes \det E_0$ and so $X \cong \mathbb{P}(E_0) \cong \mathbb{P}(E_0^*)$. By Proposition 5.1 and Theorem 5.2, we know the genus $g(C) \geq 2$. On the other hand, by the above discussion, we can write $X = \mathbb{P}(E)$ where $\deg(E) = m(X)$ and E has an extension

(5.5)

$$0 \to \mathcal{O}_C \to E \to F \to 0.$$

Hence, $\deg(E) = \deg(F) = m(X)$.

(1). If \(m(X) = \deg(\mathcal{F}) \leq 2 - 2g \), \(X \cong \mathbb{P}(\mathcal{E}^*) \cong \mathbb{P}(\mathcal{E}) \) has no scalar-flat Hermitian metrics. Indeed, we consider \(X = \mathbb{P}(\mathcal{E}^*) \). By the exact sequence (5.5), we have

\[
0 \to H^0(C, \mathcal{O}_C) \to H^0(C, \mathcal{E}) \to \cdots
\]

Therefore, \(H^0(C, \mathcal{E}) \neq 0 \). By the Le Potier isomorphism ([LeP75]), we have

\[
H^0(\mathbb{P}(\mathcal{E}^*), \mathcal{O}_{\mathcal{E}}(1)) \cong H^0(C, \mathcal{E}) \neq 0.
\]

Hence, \(\mathcal{O}_{\mathcal{E}}(1) \) is effective and so it is pseudo-effective. On the other hand, since \(\deg(\mathcal{E}) \leq 2 - 2g = -\deg(K_C) \), we deduce \(K_C^{-1} \otimes \det \mathcal{E}^* \) is semi-positive. By the projection formula \(K^{-1}_X = \mathcal{O}_{\mathcal{E}}(2) \otimes \pi^*(K_C^{-1} \otimes \det \mathcal{E}^*) \), we know \(K^{-1}_X \) is pseudo-effective. By Theorem 2.2, \(K_X \) is not RC-positive. By Theorem 1.2, \(X \) has no scalar-flat Hermitian metrics.

(2). If \(2 - 2g < m(X) = \deg(\mathcal{E}) = \deg(\mathcal{F}) \leq 0 \), we know \(0 \leq \deg(\mathcal{E}^*) < 2g - 2 \). Since \(\mathcal{O}_C \) and \(\mathcal{F}^* \) are nef, by the dual exact sequence of (5.5),

\[
0 \to \mathcal{F}^* \to \mathcal{E}^* \to \mathcal{O}_C \to 0,
\]

we deduce \(\mathcal{E}^* \) is nef with \(0 \leq \deg(\mathcal{E}^*) < 2g - 2 \). By Theorem 4.1, \(X \cong \mathbb{P}(\mathcal{E}^*) \) can support scalar-flat Hermitian metrics.

(3). If \(0 < m(X) = \deg(\mathcal{E}) = \deg(\mathcal{F}) < 2g - 2 \), by the exact sequence (5.5), \(\mathcal{E} \) is nef with \(0 < \deg(\mathcal{E}) < 2g - 2 \). By Theorem 4.1, \(X \cong \mathbb{P}(\mathcal{E}) \) admits scalar-flat Hermitian metrics. Note that \(\mathbb{P}(\mathcal{E}) \cong \mathbb{P}(\mathcal{E}^*) \).

(4). Suppose \(m(X) \geq 2g - 2 \). By Theorem 5.4, \(m(X) \leq g \). Hence, in this case, we have \(g = 2 \) and \(m(X) = \deg(\mathcal{E}) = 2 \). We work on \(X = \mathbb{P}(\mathcal{E}) \). By Proposition 5.5, \(\mathcal{E} \) is a stable vector bundle and \(\deg(\mathcal{E}) = 2 \). By ([Laz04, Theorem 6.4.15]), we know \(\mathcal{E} \) is an ample vector bundle over a smooth curve. According to [CF90], \(\mathcal{E} \) has a smooth Griffiths-positive metric. By using Lemma 4.2, \(\mathcal{O}_{\mathcal{E}^*}(-1) \) is RC-positive. By the projection formula again, we have

\[
K_X = \mathcal{O}_{\mathcal{E}^*}(-2) \otimes \pi^*(K_C \otimes \det \mathcal{E}^*).
\]

Since \(\deg(K_C) = \deg(\mathcal{E}) = 2 \), we know \(K_C \otimes \det \mathcal{E}^* \) and \(\pi^*(K_C \otimes \det \mathcal{E}^*) \) are unitary flat. Hence, we deduce \(K_X \) is RC-positive. Since \(X \) is uniruled, by Theorem 2.4, \(K_X^{-1} \) is RC-positive. Then we can apply Theorem 1.2 and assert that \(X \) has scalar-flat Hermitian metrics.
In summary, we prove that a ruled surface X over a smooth curve C admits scalar-flat Hermitian metrics if and only if $g(C) \geq 2$ and $m(X) > 2 - 2g$. The proof of Theorem 1.5 is completed. \hfill \square

6. Classification of minimal surfaces with scalar-flat Hermitian metrics

In this section, we classify minimal surfaces with scalar-flat Hermitian metrics and prove Theorem 1.9.

Proposition 6.1. Let X be a compact complex manifold. If X admits a scalar-flat Hermitian metric, then the Kodaira dimension $\kappa(X) = 0$ or $\kappa(X) = -\infty$.

Proof. According to the proof of Theorem 1.2, if X admits a scalar-flat Hermitian metric, then X has a Gauduchon metric with zero total scalar curvature. By Theorem [Yang17a, Theorem 1.4], $\kappa(X) = 0$ or $\kappa(X) = -\infty$. \hfill \square

If X is a minimal surface with Kodaira dimension $\kappa(X) = 0$, X is exactly one of the following (e.g. [BHPV04])

1. an Enriques surface;
2. a bi-elliptic surface;
3. a K3 surface;
4. a torus;
5. a Kodaira surface.

In this case, it is well-known that X has torsion canonical line bundle, i.e. $K_X^{\otimes 6} = \mathcal{O}_X$ (e.g. [BHPV04, p. 244]). Hence, X admits scalar-flat Hermitian metrics.

If X is a minimal surface with Kodaira dimension $\kappa(X) = -\infty$, then X lies in one of the following classes:

1. minimal rational surfaces;
2. ruled surfaces of genus $g \geq 1$;
3. minimal surfaces of class VII$_0$.

Minimal rational surfaces are either \mathbb{P}^2 or Hirzebruch surfaces. Hence, by Proposition 5.1, they can not support scalar-flat Hermitian metrics.

If X is a minimal ruled surfaces of genus $g \geq 1$, by Theorem 1.9, X has a scalar-flat Hermitian metric if and only if $g \geq 2$ and $m(X) > 2 - 2g$.

If X is a minimal surface of class VII$_0$, then X is one of the following

- class VII$_0$ surfaces with $b_2 > 0$;
- Inoue surfaces: a class VII$_0$ surface has $b_2 = 0$ and contains no curves;
• Hopf surfaces: its universal covering is $\mathbb{C}^2 - \{0\}$, or equivalently a class VII$_0$ surface has $b_2 = 0$ and contains a curve.

According to the proof of [Tel06, Remark 4.2] (see also [TW13] or [HLY18, Theorem 5.1]), we know Inoue surfaces all have K_X semi-positive but not unitary flat, and so it can not support scalar-flat Hermitian metrics. Similarly, it is proved in [Tel06, Remark 4.3], all Hopf surfaces have semi-positive anticanonical bundle, and so it has no scalar-flat Hermitian metrics. For class VII$_0$ surfaces with $b_2 > 0$, they are not completely classified, and it is possible that some of them can support scalar-flat Hermitian metrics (see the discussion in [Tel06, p. 977-p. 979]). The proof of Theorem 1.9 is completed.

7. Examples

In this section, we exhibit several examples on ruled manifolds with scalar-flat Hermitian metrics. As a straightforward application of Theorem 1.5, we get the following result.

Corollary 7.1. Let $\mathcal{L} \to C$ be a line bundle over a smooth curve of genus g and $X = \mathbb{P}(\mathcal{L} \oplus \mathcal{O}_C)$. Then X has a scalar-flat Hermitian metric if and only if $g \geq 2$ and $|\deg(\mathcal{L})| < 2g - 2$.

We can also construct higher dimensional ruled manifolds with scalar-flat metrics.

Theorem 7.2. Let C be a smooth curve with genus $g \geq 2$ and \mathcal{L} be a line bundle over C. Suppose $\mathcal{E} = \mathcal{L} \oplus \mathcal{O}_C^{\oplus(n-1)}$ and $X = \mathbb{P}(\mathcal{E}^*) \to C$ is the projective bundle. If $0 \leq \deg(\mathcal{L}) < \frac{2g-2}{n-1}$, then both K_X and K_X^{-1} are RC-positive.

Proof. By using the projection formula, we know

\begin{equation}
K_X = \mathcal{O}_C(-n) \otimes \pi^*(K_C \otimes \det \mathcal{E}),
\end{equation}

where $\pi : X \to C$ is the projection. Fix an arbitrary smooth Hermitian metric $h^{\mathcal{L}}$ on \mathcal{L} and the trivial metric on \mathcal{O}_C. Let $\{z\}$ be the local holomorphic coordinate on C. The curvature form of $(\mathcal{L}, h^{\mathcal{L}})$ is

\begin{equation}
R^{\mathcal{L}} = -\sqrt{-1} \partial \bar{\partial} \log h^{\mathcal{L}} = \sqrt{-1} \kappa dz \wedge d\bar{z}.
\end{equation}

Similarly, fix a smooth metric h^{K_C} on K_C, and its curvature form is

\begin{equation}
R^{K_C} = -\sqrt{-1} \partial \bar{\partial} \log h^{K_C} = \sqrt{-1} \gamma dz \wedge d\bar{z}.
\end{equation}
Hence, E has the curvature form

$$R^E = \sqrt{-1} \kappa dz \wedge d\bar{z} \otimes e^1 \otimes e^1 + \sum_{i=2}^{\infty} \sqrt{-1} \cdot 0 \cdot dz \wedge d\bar{z} \otimes e^i \otimes e^i,$$

where $e^1 = e_L$ is the local frame of L and for $i \geq 2$, $e^i = e$ is the local holomorphic frame on O_C with the order in the direct sum $E = L \oplus O_C^{\oplus(n-1)}$. Therefore, by (4.3), $O_E(1)$ has the curvature form at some point

$$R^{O_E(1)} = \sqrt{-1} \left(-\kappa |a_1|^2 dz \wedge d\bar{z} \right) - n\omega_{FS}.$$

Hence, by formula (7.1), the curvature of K_X is given by

$$R^{K_X} = \sqrt{-1} \left(\left(\kappa + \gamma \right) - n\kappa |a_1|^2 \right) dz \wedge d\bar{z} - n\omega_{FS}.$$

Since $\deg(L) \geq 0$, we can choose the smooth metric h^L such that its curvature is semi-positive, i.e. $\kappa \geq 0$. Therefore,

$$R^{K_X} \geq \sqrt{-1} \left(\left(\gamma - (n-1)\kappa \right) dz \wedge d\bar{z} \right) - n\omega_{FS}.$$

The condition $0 \leq \deg(L) < \frac{2g-2}{n-1}$ implies $\deg(K_C \otimes L^{1-n}) > 0$. Therefore, we can choose the Hermitian metric h^{K_C} on K_C such that $h^{K_C} \otimes (h^L)^{1-n}$ has positive curvature, i.e.

$$\gamma - (n-1)\kappa > 0.$$

By (7.5), we know the curvature of K_X is positive along the base direction, i.e., K_X is RC-positive. The RC-positivity of K_X^{-1} follows from Theorem 2.4. □

Example 7.3. Let $n \geq 2$ be an integer. Let C be a smooth curve of degree $d \geq n+3$ in \mathbb{P}^2. It is easy to see that $\deg(O_C(1)) = d$ and C is a curve of genus

$$g = \frac{(d-1)(d-2)}{2}.$$

Let $L = O_C(1)$ and $E = L \oplus O_C^{\oplus(n-1)}$ and $X := \mathbb{P}(E^*) \rightarrow C$ be the projective bundle. Note that $\dim C X = n$. Then

$$\frac{2g-2}{n-1} = \frac{d(d-3)}{n-1} \geq \frac{d \cdot n}{n-1} > d = \deg(L) > 0.$$

Hence, the pair (X, C, L, E) satisfies the conditions in Theorem 7.2. In particular, both K_X and K_X^{-1} are RC-positive.

The proof of Proposition 1.7. By Theorem 7.2 and Theorem 1.2, X admits a scalar-flat Hermitian metric. On the other hand, by [ACGT11, Theorem 1], X has no scalar-flat Kähler metrics since $E = L \oplus O_C^{\oplus(n-1)}$ is not polystable. □
References

[AP06] Arezzo, C.; Pacard, F. Blowing up and desingularizing constant scalar curvature Kähler manifolds., Acta Math. 196 (2006), 179–228.

[AP09] Arezzo, C.; Pacard, F. Blowing up Kähler manifolds with constant scalar curvature II, Ann. of Math. (2) 170 (2009), 685–738.

[ACGT11] Apostolov, V.; Calderbank, D.; Gauduchon, P.; Tønnesen-Friedman, C. Extremal Kähler metrics on projective bundles over a curve. Adv. Math. 227 (2011), 2385–2424.

[AT06] Apostolov, V.; Tønnesen-Friedman, C. A remark on Kähler metrics of constant scalar curvature on ruled complex surfaces. Bull. London Math. Soc. 38 (2006), 494–500.

[Ati57] Atiyah, M. F. Vector bundles over an elliptic curve. Proc. London Math. Soc. 7 (1957), 414–452.

[BHPV04] Barth, W.; Hulek, K.; Peters, C.; Van de Ven, A. Compact complex surfaces. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics. Springer-Verlag, Berlin, 2004.

[Bes86] Besse, A. Einstein manifolds. Berline Heidelberg New York, Springer. 1986.

[BDPP13] Boucksom, S.; Demailly, J.-P.; Paun, M.; Peternell, P. The pseudoeffective cone of a compact Kähler manifold and varieties of negative Kodaira dimension. J. Algebraic Geom. 22 (2013) 201–248.

[BD88] Burns, D.; De Bartolomeis, P. Stability of vector bundles and extremal metrics. Invent. Math. 92 (1988), 403–407.

[Cal82] Calabi, E. Extremal Kähler metrics. Seminar on Differential Geometry, pp. 259–290, Ann. of Math. Stud., 102, Princeton Univ. Press, Princeton, N.J., 1982.

[Cal85] Calabi, E. Extremal Kähler metrics. II. Differential geometry and complex analysis, 95–114, Springer, Berlin, 1985.

[CF90] Campana, F.; Flennor, H. A characterization of ample vector bundles on a curve. Math. Ann. 287 (1990), no. 4, 571–575.

[CT08] Chen, X. X.; Tian, G. Geometry of Kähler metrics and foliations by holomorphic discs. Publ. Math. Inst. Hautes études Sci. No. 107 (2008), 1–107.

[CTW16] Chu, J.-C.; Tosatti, V.; Weinkove, B. The Monge-Ampère equation for non-integrable almost complex structures. arXiv:1603.00706. To appear in J. Eur. Math. Soc.

[Dem] Demailly, J.-P. Analytic Methods in Algebraic Geometry, Higher Education Press, Surveys of Modern Mathematics, Vol. 1, 2010.

[DPS94] Demailly, J.-P.; Peternell, T.; Schneider, M. Compact complex manifolds with numerically effective tangent bundles. J. Algebraic Geom. 3 (1994), no. 2, 295–345.

[Don01] Donaldson, S. Scalar curvature and projective embeddings, I, J. Differential Geom. 59 (2001), 479–522.

[Fri98] Friedman, Robert. Algebraic surfaces and holomorphic vector bundles. Springer-Verlag, New York, 1998.
Futaki, A. An obstruction to the existence of Einstein-Kähler metrics, Invent. Math. 73 (1983), 437–443.

Futaki, A. Scalar-flat closed manifolds not admitting positive scalar curvature metrics. Invent. Math. 112 (1993), 23–29.

Fujiki, A. Remarks on extremal Kähler metrics on ruled manifolds. Nagoya Math. J. 126 (1992), 89–101.

Gauduchon, P. Le théorème de l’excentricité nulle. C. R. Acad. Sci. Paris Sér. A-B 285 (1977), no. 5, A387-A390.

Gauduchon, P. Fibrés hermitiens à endomorphisme de Ricci non-négatif, Bull. Soc. Math. France 105 (1977), 113–140.

Heier, G; Wong, B. Scalar curvature and uniruledness on projective manifolds. Comm. Anal. Geom. 20 (2012), no. 4, 751–764.

He, J.; Liu, K.-F.; Yang, X.-K. Levi-Civita Ricci flat metrics on compact complex manifolds. arXiv:1806.07206

Hong, Y.-J. Constant Hermitian scalar curvature equations on ruled manifolds. J. Differential Geom. 53 (1999), 465–516.

A. Lamari, Le cône kähleriien d’une surface, J. Math. Pures Appl., 78 (1999), 249–263.

Lazarsfeld, R. Positivity in algebraic geometry. II Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics Springer-Verlag, Berlin, 2004.

Le Potier, J. Annulation de la cohomologie à valeurs dans un fibré vectoriel holomorphe positif de rang quelconque. (French) Math. Ann. 218(1975), no. 1, 35–53.

LeBrun, C. On the topology of self-dual 4-manifolds. Proc. Amer. Math. Soc. 98(1986), 637–640.

LeBrun, C. Scalar-flat Kähler metrics on blown-up ruled surfaces. J. Reine Angew. Math. 420(1991), 161–177.

LeBrun, C.; Singer, M. Existence and deformation theory for scalar-flat Kähler metrics on compact complex surfaces. Invent. Math. 112(1993), 273–313.

LeBrun, C.; Singer, M. Extremal Kähler metrics and complex deformation theory, Geom. and Func. Anal. 4 (1994), 298–336.

Liu, K.-F.; Yang, X.-K. Ricci curvatures on Hermitian manifolds. Trans. Amer. Math. Soc. 369 (2017), 5157–5196.

Matsushima, Y. Sur la structure du groupe d’homeomorphismes analytiques d’une certaine variete kahlerienne, Nagoya Math. J. 11 (1957), 145–150.

Michelsohn, M. L. On the existence of special metrics in complex geometry. Acta Math. 149 (1982), 261–295.

Nagata, M. On self-intersection number of a section on a ruled surface. Nagoya Math. J. 37(1970), 191–196.

Rollin, Y.; Singer, M. Non-minimal scalar-flat Kähler surfaces and parabolic stability. Invent. Math. 162 (2005), 235–270.

Ross, J. Unstable products of smooth curves. Invent. Math. 165 (2006), no. 1, 153–162.
RC-positivity and scalar-flat metrics on ruled surfaces

Jun Wang and Xiaokui Yang

[RT06] Ross, J.; Thomas, R. An obstruction to the existence of constant scalar curvature Kähler metrics. J. Differential Geom. 72 (2006), 429–466.

[Sim91] Simanca, S. Kähler metrics of constant scalar curvature on bundles over $\mathbb{C}P^n$–1, Math. Ann. 291 (1991), 239–246.

[Sto08] Stoppa, J. K-stability of constant scalar curvature Kähler manifolds, Adv. Math. 221 (2009), 1397–1408.

[Sze14] Szekelyhidi, G. An introduction to extremal Kähler metrics. Graduate Studies in Mathematics, 152. American Mathematical Society, Providence, RI, 2014.

[Sze17] Szekelyhidi, G. Kähler-Einstein metrics. arXiv:1710.06042.

[Tel06] Teleman, A. The pseudo-effective cone of a non-Kählerian surface and applications. Math. Ann. 335(2006), 965–989.

[Tian90] Tian, G. On Calabi’s conjecture for complex surfaces with positive first Chern class, Invent. Math. 101 (1990), 101–172.

[Tian97] Tian, G. Kähler-Einstein metrics with positive scalar curvature, Invent. Math. 137 (1997), 1–37.

[TW10] Tosatti, V.; Weinkove, B. The complex Monge-Ampère equation on compact Kähler manifolds. J. Amer. Math. Soc. 23 (2010), 1187–1195.

[TW13] Tosatti, V.; Weinkove, B. The Chern-Ricci flow on complex surfaces. Compos. Math. 149 (2013), 2101–2138.

[Tu93] Tu, L.-W. Semistable bundles over an elliptic curve. Advance Math. 98 (1993), 1–26.

[Yang17a] Yang, X.-K. Scalar curvature on compact complex manifolds. arXiv:1705.02672. To appear in Trans. Amer. Math. Soc.

[Yang17] Yang, X.-K. A partial converse to the Andreotti-Grauer theorem. arXiv:1707.08006. To appear in Compositio. Math.

[Yang18] Yang, X.-K. RC-positivity, rational connectedness and Yau’s conjecture. Camb. J. Math. 6 (2018), 183–212.

[Yang18a] Yang, X.-K. RC-positivity, vanishing theorems and rigidity of holomorphic maps. arXiv:1807.02601

[Yau74] Yau, S.-T. On the curvature of compact Hermitian manifolds. Invent. Math. 25 (1974), 213–239.

[Yau78] Yau, S.-T. On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I, Comm. Pure Appl. Math. 31 (1978), 339–411. MR 0480350

[Yau82] Yau, S.-T. Problem section. In Seminar on Differential Geometry, Ann. of Math Stud. 102, 669-706. 1982.

Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China.

Address of Xiaokui Yang: Morningside Center of Mathematics, Institute of Mathematics, Hua Loo-Keng Center of Mathematical Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China.

E-mail address: xkyang@amss.ac.cn