Review Article

Evaluating the Efficacy and Adverse Effects of Clearing Heat and Removing Dampness Method of Traditional Chinese Medicine by Comparison with Western Medicine in Patients with Gout

Nan Xiao,1,2 Hao Chen,2 Shi-Yong He,2 Chong-Xiang Xue,2 Hua Sui,2 Jing Chen,2 Jia-Lin Qu,1 Li-Na Liang,2 and Lin Zhang2

1The First Affiliated Hospital of Dalian Medical University, Clinical Laboratory of Integrative Medicine, No. 222, Zhongshan Rd, Dalian 116011, China
2Institute of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian 116044, China

Correspondence should be addressed to Jia-Lin Qu; jialin_qu@126.com, Li-Na Liang; lianglina304@163.com, and Lin Zhang; zhbl8247@163.com

Received 19 June 2018; Accepted 4 October 2018; Published 13 November 2018

Academic Editor: Francisco Solano

Copyright © 2018 Nan Xiao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Objective. In China, the method of clearing heat and removing dampness medicine of Chinese traditional medicine has been widely used on gout. However, the clinical effects are various and not summarized systematically. Methods. In this study, a large number of randomized controlled clinical trials were reviewed and analyzed and the clinical efficacy and adverse reactions of traditional Chinese medicine with clearing heat and removing dampness effects for the treatment of gout were systematically evaluated. A comprehensive search of databases including PubMed, China National Knowledge Infrastructure (CNKI), China Science and Technology Journal Database, Wanfang Data, and SinoMed was performed. Results. There are 69 randomized controlled trials with 5915 sample sizes meeting the criteria in the study. The results of the meta-analysis indicate that the effects of clearing heat and removing dampness medicine were slightly better than western medicine in the treatment of gout based on the following parameters: serum uric acid (standardized mean difference (SMD): -62.14, 95% confidence interval (CI): -78.12 to -46.15), C reactive protein (SMD: -4.21, 95% CI: -6.19 to -2.23), erythrocyte sedimentation rate (SMD: -6.23, 95% CI: -8.39 to -4.06), and overall clinical response (relative risk (RR): 1.11, 95% CI: 1.08 to 1.15) and, in the profile of adverse drug reactions, the clearing heat and removing dampness medicine showed less adverse reactions than traditional Western medicine (RR: 0.18, 95% CI: 0.10 to 0.32). Conclusions. Through a systemic evaluation of the clinical efficacy of the clearing heat and removing dampness medicine of traditional Chinese medicine and western medicine on gout, the clearing heat and removing dampness medicine and western medicine possessed similar clinical efficacy, but traditional Chinese medicine treatments are superior to western medicine in controlling adverse reactions.

1. Introduction

With the change of lifestyle and dietary factor, gout has been the global burden [1], mainly because of its high incidence in not only elderly people but also younger people [2]. Gout is a crystal deposition disease which results from local uric acid supersaturation as a consequence of systemic uric acid overload, leading to the formation of monosodium urate (MSU) crystals in the around joints, which caused severe pain and had a strong impact on quality of life. The most common clinical manifestation of gout is recurrent attacks of acute arthritis involving one joint at a time [3]; in some cases, joint injury and renal insufficiency will even occur in patient with gout.

In clinical, western medicines including corticosteroids, allopurinol, and NSAIDs are widely used in treating acute attack of gout [4]. But they all possessed various degrees of side-effect such as gastrointestinal tract reaction, tissue and organ damage, and other adverse reactions. In recent years, IL-1R antagonists appeared and was used for the patients who have contraindications to colchicine and nonsteroidal anti-inflammatory drugs and hormones (oral or injection)
[5]. However, the mechanism was unclear and the side effect was also not mentioned. Traditional Chinese medicine (TCM) has been used for preventing and treating gout with unique clinical effects since 200AD in China [6]. Clearing heat and removing dampness is a special medical method for treating patients with gout based on the theory of Chinese traditional medicine, which indicated that the pathogenesis of gout disease is closely related to the heat evil and wetness evil attacking [7]. Many randomized controlled trials (RCTs) in clinical published have selected heat and removing dampness method of Traditional Chinese Medicine to treat gout, and most have clearly shown that Traditional Chinese Medicine have achieved positive results in treating gout.

Meta-analysis, which is the statistical synthesis of relative literature to develop evidence-based conclusions, is able to systematically evaluate and summarize the consistency of multiple studies on the same topic [8]. To the best of our knowledge, there is no meta-analysis of the treatment of gout with heat and removing dampness method of Traditional Chinese Medicine. We need to have a clearer understanding of the application of heat and removing dampness method of Traditional Chinese Medicine in the treatment of gout and to evaluate its effectiveness of in the treatment of gout. The efficacy and side effect of clearing heat and removing dampness medicine and western medicine in the treatment of gout were compared using meta-analysis method in this study. The results will lay a foundation for the treatment of gout with clearing heat and removing dampness methods.

2. Methods

2.1. Experimental Design. The clinical designs in all reports selected in this study were clinical randomized controlled trials (RCTs). Based on the intervention method, the trials were divided into experimental and control groups, oral administration of Chinese herbal decoction and disposition with other methods of traditional Chinese medicine were included in the experimental group, while oral administration of western medicine was regarded as the control group. The publication time was restricted to the period from January 2000 to May 2017, and the journals’ languages were restricted in Chinese and English.

2.2. Subjects. According to the diagnostic criteria created by the 1977 American College of Rheumatology classification criteria and Guidelines for the diagnosis and treatment of primary gout established by the Chinese Rheumatology Association, etc., all subjects selected in the study were diagnosed with primary gout in the phase of acute arthritis. Subjects with other comorbidities were excluded.

2.3. Database Search Strategy. The titles of “Clearing heat and removing dampness” and “hyperuricemia” or “Clearing heat and removing dampness” and “gout” were searched from the databases including PubMed, China National Knowledge Infrastructure (CNKI), China Science and Technology Journal Database, Wanfang Data, and China Biology Medicine disc during the period from January 2000 to May 2017.

2.4. Data Analysis. Three investigators who participated in the study extracted data from all publications selected in this study. The information of the first author, the year of publication, the number of cases in the experimental group and the control group, the intervention method, the end point evaluation index, and the Jadad score were included. One investigator did the first data extraction, the second investigator reviewed the literatures and confirmed the results afterwards, and the third investigator participated in the discussion when the disagreement occurred and reached a consensus with the other two finally.

2.5. Endpoint Indicators. The evaluations of effective and ineffective were reached artificially based on the indicators of measurement data, such as Serum uric acid (SUA), C-reactive protein (CRP), and erythrocyte sedimentation rate (ESR). And the evaluations of SUA, CRP, and ESR were collected after the period of gout attack. The reducing of blood uric acid, ESR, and CRP and the relieving of the clinical symptoms were regarded as effective. On the contrary, it was ineffective. The respective measurement data of blood uric acid, ESR, and CRP were also regarded as the primary indicators.

2.6. Assessment of Methodological Quality. Assessment of methodological quality is based on the validated Jadad scale by two reviewers (XN and CH) and the Jadad scale has three scoring points. The first is if the study was described as randomized, and with detailed descriptions. The second is if the blind method was adopted in the study and with detailed descriptions. And the third is if there was a description of withdrawals and dropouts. A paper reporting could therefore receive a Jadad score from 0 to 7, in which the scores with 1-3 and 4-7 were considered as low and high quality, respectively.

2.7. Statistical Methods. The measurement data were evaluated using the mean difference (MD) and 95% confidence interval (CI), or the relative risk (RR) and 95% confidence interval. If the heterogeneity of the study was within the acceptable range (I² ≤ 50%), the fixed effect model was used. Otherwise, the random effects model was used. The collected data in clinical research were analyzed by RevMan 5.0 software.

3. Results

3.1. Selection of Studies. 971 articles about the treatment of gout using clearing heat and removing dampness medicine of Chinese traditional medicine were retrieved from five electronic databases, in which 442 duplicated publications articles were excluded. Then two reviewers independently screen the full texts of the remaining 529 articles. 109 non-RCT articles, 8 articles based on animal experiments, 88 articles had inconformity to inclusion standard but included the experimental group or the control group, 19 articles without diagnostic criteria, 143 articles about review and experience summary, and 93 articles about other directions. Finally, 69 articles were included in this study [9–77] (Figure 1). The characteristics of these studies were shown in Tables 1 and 2.
Author, year	Sample size	Age	Intervention methods	Duration treatment	Effective number	Jadad scale						
Yan Zhang, 2016	27	25	47.04±12.92	47.72±8.69	Qingrelishi side	Low purine diet + meloxicam	14	14	25	23	3	
Fang Zuo, 2001	36	30	N/A	N/A	BaiHuGuiZhi Decoction+ Simiaoa Powder	allopurinol	14	14	52	22	1	
Yihui Yan, 2006	46	46	N/A	N/A	BiNing Decoction	allopurinol	28	28	33	28	1	
Xubin Zhao, 2014	25	25	N/A	N/A	Blood-letting puncture and cupping+ Microwave therapy	Colchicine + Diclofenac Sodium Sustained Release Capsules	3–7	1–7	25	23	1	
Li Cheng, 2009	32	30	N/A	N/A	Danghuiniantong Decoction	Meloxicam	7	7	31	29	1	
Guicai Sun, 2007	65	65	N/A	N/A	Compound xiqiancao capsule	Voltaren+ allopurinol	21	21	58	54	1	
Yuhong Zhang, 2003	45	43	N/A	N/A	Modified Sanmiao Powder Simiaoa Powder+ Xinhuang Tablet(external)	Colchicine	14	14	33	18	1	
Shengyun Wu, 2017	34	34	35.9±6.1	35.9±6.1	Modified Simiaoa Powder+ Xinhuang Tablet (external)	Colchicine	7	7	49	44	3	
Qingsheng He, 2016	50	50	34.5±4.7	32.7±3.2	Modified Simiaoa pill	Colchicine	N/A	N/A	67	33	1	
Lixin Wang, 2001	69	35	N/A	N/A	Modified Simiaoa pill	Colchicine	N/A	N/A	15	55	27	1
Zhonghua Yang, 2007	60	30	N/A	N/A	Jianpi qingrelishi Tongluo Decoction JunHu analgesic powder(external)+ acupuncture treatment	colchicine	3	3	44	38	1	
Wenping Cao, 2008	44	43	N/A	N/A	Lizhuodingtong decoction	Nimesulide	30	10	34	32	1	
Yanhong Zou, 2010	40	40	N/A	N/A	Niantongxiaofeng prescription	colchicine	15	15	52	43	1	
Jincheng Cai, 2006	54	46	N/A	N/A	Qingrechushi prescription	Etoricoxib Tablets Didlofenac Sodium Sustained Release Tablets+ Benzbromarone Tablets	14	14	N/A	N/A	1	
Wei Li, 2016	58	58	N/A	N/A	Discriminate treatment of Chinese medicine by clearing away heat and resolving turbid	Didlofenac Sodium Sustained Release Tablets	31	31	31	27	1	
Yingxu Wang, 2014	33	31	46.97±9.65	41.16±9.72	Compound Chinese medicine decoction of Clearing heat-toxin and eliminating dampness method	Etoricoxib Tablets Didlofenac Sodium Sustained Release Tablets	14	14	30	29	3	
Author, year	Sample size	Age	Intervention methods	Duration treatment	Effective number	Jadad scale						
--------------	-------------	-----	----------------------	--------------------	----------------	-------------						
Feng Yue, 2005	30 30	N/A	Clearing heat-toxin and eliminating dampness method+ Gold paste(external)	colchicine	7 7	30 30	1					
Yanming Ren, 2007	60 30	N/A	Acid fat clear capsule	colchicine	7 7	52 27	1					
Huilian Wang, 2012	40 40	48.4±12.8 49.1±13.1	Gouty granule Nimesulide	10 10	34 33	1						
Wei Jin, 2013	32 32	C	Self-prepared gout recipe+ Jiawei Jinhuang powder colchicine	7 7	30 24	1						
Hong Tu, 2015	30 30	44.9±9.1 45.1±8.1	Gout clear granules Didofenac Sodium Sustained Release Tablets Ibuprofen+ Probencid52	10 10	49 33	1						
Binchu Wang, 2000	52 38	N/A	Gout decoction	allopurinol	30 30	67 69	1					
Haileng Li, 2012	73 80	45.6±10.1 47.2±12.4	Xuanbide decoction	Indomethacin	7 7	18 16	3					
Hongtao Yan, 2006	20 20	N/A	Xuanbide decoction	allopurinol	7 7	54 32	1					
Weigang Zeng, 2010	55 50	N/A	Yushantongfeng decoction 2	allopurinol	7 7	118 108	1					
Weigang Zeng, 2007	120 116	N/A	Yushantongfeng decoction	colchicine	N/A N/A	118 108	1					
Jiang Wu, 2015	36 36	51.34±6.28 52.46±7.4	Acupuncture+Sanyen decoction and Sijunzi decoction	Didofenac Sodium Sustained Release Tablets Colchicine+ allopurinol Ibuprofen Sustained-release Capsules	7 7	33 30	1					
Jing Chen, 2017	61 55	52.1±1.2 51.5±1.4	Chinese medicine and acupuncture	Colchicine+ allopurinol Ibuprofen Sustained-release Capsules	7 7	58 47	1					
Minghai Zhou, 2014	20 20	N/A N/A	Simiao powder and acupuncture	Meloxicam	7 7	55 56	1					
Guangheng Cui, 2011	60 60	N/A N/A	Hovenia acer balindl Tongfeng Decoction Compound decoction of Chinese herbal medicine	Colchicine+ allopurinol Allopurinol+ Sodium Bicarbonate Tablets(oral)+ Qingpeng Paste(external)	7 7	N/A N/A	1					
Yangang Wang, 2005	35 35	45.0±6.5 46.0±5.7	Oral administration of Chinese medicine decoction+Rebiqing granules(oral)+Chinese medicine(external)	Colchicine Tablets	7 7	29 25	2					
Hai Lu, 2013	30 30	N/A N/A	Simiao pill and Gouty ointment	Allopurinol+Celecoxib	31 31	39 29	1					
Bo Duan, 2016	54 54	40.26±10.98 42.31±11.77			7 7	47 46	2					
Author, year	Sample size	Age	Intervention methods	Duration treatment	Effective number	Jadad scale						
-------------	-------------	-----	----------------------	--------------------	-----------------	-------------						
Min Dai, 2015	39 39	35±2.5 35±2.5	Atractylodes rhizome, Achyranthes bidentata, Smilax glabra, Cortex Phellodendri, honeysuckle vine, liquorice, 2 Corydalis tuber, astragalus root and coix seed	Didofenac Sodium Sustained Release Tablets	14 14	36 29	1					
Xiaohong He, 2008	28 26	42.5±7.7 46±11.8	Simiao powder+Shuang powder Self-made prescription: Mountain arrowhead, clematis, peach, Atractylodes, Poria, Alisma, Adenophora, Polygonum cuspidatum, rice, Bixie	Colchicine	3 3	27 20	1					
Xiaoxia Wang, 2010	30 30	48.5±15.5 49.1±13.7	Self-made prescription: Mountain arrowhead, clematis, peach, Atractylodes, Poria, Alisma, Adenophora, Polygonum cuspidatum, rice, Bixie	Colchicine	10 10	28 29	1					
Hujuan Yao, 2010	56 54	N/A N/A	Modified Guizhi Shao Yao Zhi Hu decoction	Colchicine	10 10	51 52	1					
Lei Zhang, 2016	37 37	44.43±11.29 45.02±12.1	Oral administration of Bixie decoction Clearing heat and damp elimination tongluo + Relieving stasis and pain Clearing heat and damp elimination prescription	Didofenac Sodium Sustained Release Tablets	7 7	33 31	1					
Bo Shi, 2010	45 40	49±16 48±14	Oral administration of Bixie decoction Clearing heat and damp elimination tongluo + Relieving stasis and pain Clearing heat and damp elimination prescription	Colchicine	10 10	38 25	1					
Liping Yan, 2012	38 31	N/A N/A	Self-made prescription: Mountain arrowhead, clematis, peach, Atractylodes, Poria, Alisma, Adenophora, Polygonum cuspidatum, rice, Bixie	Colchicine	7 7	35 23	1					
Yueqi Wang, 2013	32 32	N/A N/A	Clearing heat and removing dampness and activating blood circulation method	Dicofenac acid enteric coated tablets	7 7	30 29	1					
Rong Li, 2014	75 75	50.24±12.37 49.15±13.06	Bixi shen shi decoction and Taohongsiwu decoction	Celecoxib+ Sodium Bicarbonate Tablets	10 10	69 62	1					
Shanshan Yu, 2008	40 40	48.2±8.6 46±9.7	Dampness detoxification method	Nimesulide tablets	N/A N/A	38 34	1					
Weidong Qian, 2007	60 40	N/A N/A	Xitong Granule Qingrelishi Tongluo Decoction Stiffness and pain relieving prescription	Colchicine	7 7	53 34	1					
Zheng Huang, 2013	32 30	N/A N/A	Self-made Clearing heat and damp elimination tongluo prescription	Nimesulide tablets	10 10	28 27	1					
Chongyu Tan, 2013	52 46	N/A N/A	Self-made Clearing heat and damp elimination tongluo prescription	Colchicine+ Fenbid	7 7	48 34	2					
Chun Kang, 2012	30 30	70.2±5.3 69.9±6.1	Clearing heat and damp elimination tongluo decoction	Ibuprofen Sustained-release Capsules+ Sodium Bicarbonate Tablets	7 7	28 24	2					
Xiaowu Fan, 2013	50 48	N/A N/A	Clearing heat and damp elimination tongluo decoction	Fenbid	7 7	48 38	2					
Table 1: Continued.

Author, year	Sample size	Age	Intervention methods	Duration treatment	Effective number	Jadad scale
Jianchong Shen, 2014	61 EG 61 CG	45.78±7.45 46.47±8.35	Laoshitongfeng prescription + acupuncture	775 7 4 9 1	57 49	1
Guiqiong Huang, 2016	60 EG 60 CG	53.82±10.95 54.05±12.31	Clearing heat and damp elimination tongluo prescription	55 38	1	
Xin Ouyang, 2004	30 EG 30 CG	57.77±6.62 56.37±6.74	Bixiehuadu decoction	28 25	1	
Zhimin Qi, 2016	105 EG 105 CG	45.3±9.2 44.1±9.6	Qingrelishi Zhuyu Decoction	101 93	2	
Yaping Chen, 2014	45 43 N/A	N/A	Clearing heat and dredging collaterals to clear turbid decoction	14	30 28 22	2
Delei Li, 2007	40 40 N/A	N/A	Clearing heat and dampness, blood stasis, relieving pain Tongluo Decoction; Qingrelishi Tongluo releasing pain prescription	38	34	1
Jun Hao, 2014	30 30	46±8.03 45.16±7.97	Gout mixture	29	23	1
Chongqing Yang, 2006	30 30 N/A	N/A	Gout prescription	27	28	3
Lin Wang, 2011	29 29 N/A	N/A	Tongbi prescription	26	27	4
Ayijiaman, 2012	56 44	44.3±4.3 44.9±3.9	Tanreb decoction	54	37	1
Chileng Wang, 2014	36 36	51.7±3.2 52.1±2.9	Simiao pill	33	30	1
Jianping Luo, 2010	30 30 N/A	N/A	Modified Simiao Powder	3	3	1
Xianzhang Zeng, 2013	60 58 N/A	N/A	Modified Simiao Powder	58	51	1
Jinfeng Li, 2013	28 26	43±10.8 44±11.3	Modified Simiao Powder	26	23	1
Xiaozhong Yu, 2013	32 30 N/A	N/A	Simiao powder	31	28	1
Xianzhang Zeng, 2013	35 35 N/A	N/A	Simiaomaqian powder	34	33	1
Table 2: Outcome of the meta-analyses for the comparison between clearing heat and removing dampness method of Chinese traditional medicine and western medicine, according to study design.

Author, year	Effective number	SUA	CRP	ESR	Adverse reactions												
Yan Zhang, 2016	25	23	N/A	N/A	N/A												
Fang, 2001	33	28	487.27±98.88/374.88±95.48	469.26±114.81/441.52±102.13	N/A												
Yuhu Yan, 2006	25	23	N/A	N/A	N/A												
Xuhua Zhao, 2014	31	29	N/A	N/A	N/A												
Guice Sun, 2017	58	54	568.61±21.2/397.2±36.7	572.5±27.6/385.8±30.2	N/A												
Xubin Zhao, 2014	25	23	N/A	N/A	N/A												
Li Cheng, 2009	31	29	N/A	N/A	N/A												
Guicai Sun, 2007	58	54	568.61±21.2/397.2±36.7	572.5±27.6/385.8±30.2	N/A												
Yuhong Zhang, 2003	39	42	N/A	N/A	N/A												
Shengyu Wu, 2007	33	18	N/A	N/A	N/A												
Qingsheng He, 2006	49	44	511±477.7/370±21.56	497±50.12/476±19.57	N/A												
Lixiu Wang, 2001	67	33	N/A	N/A	N/A												
Zhonghua Yang, 2007	55	27	N/A	N/A	N/A												
Wenping Cao, 2008	44	38	N/A	N/A	N/A												
Yanhong Zou, 2001	34	32	442.15±60.12/399.78±38.27	438.58±67.45/417.12±41.45	N/A												
Jincheng Cai, 2006	52	43	585±555/458±162	592±425/387±148	N/A												
Wei Li, 2016	N/A	536.2±514.6±38.49	529.7±522.67±35.39	32.9±5.86/12.26±8.49	N/A												
Yingui Wang, 2014	31	27	605.2±132/474.6±85.4	601.16±114.2/454.3±92.2	N/A												
Wei Liu, 2016	30	29	548.25±90.31/394.3±32.69	544.45±8.31/46	N/A												
Feng Yue, 2005	30	29	N/A	N/A	N/A												
Yiming Ren, 2007	52	27	544.36±86.27/341.25±79.34	567.74±91.13/387.32±64.64	N/A												
Huilai Wang, 2012	34	33	N/A	N/A	N/A												
Wei Jin, 2013	30	24	N/A	N/A	N/A												
Hong Tu, 2015	29	24	N/A	N/A	N/A												
Binchu Wang, 2000	49	33	489±23.1/345±20.1	486±21.35/371±19.1	N/A												
Hafeng Li, 2012	67	69	287±55.64	426.1±89.2	N/A												
Author, year	Effective number	SUA	CRP	ESR	Adverse reactions												
-------------------	------------------	-----------	-----------	-----------	------------------												
	EG	CG	EG	CG	EG	CG	EG	CG	EG								
Hongtao Yan, 2006	18	16	537.85±39.72/425.3±16.24	558.5±31.27/550.8±25.09	N/A	N/A	45.30±7.97/40±5.95	44.55±8.11/43.95±5.85	1	8							
Weigang Zeng, 2010	54	32	N/A														
Weigang Zeng, 2007	118	108	N/A														
Jiang Wu, 2015	33	30	528.46±178.42/436.14±8.327	521.47±80.12/446.72±67.46	26.24±12.08/10.37±2.58	271.8±11.83/12.43±3.19	40.72±13.06/16.87±2.26	39.24±13.27/24.35±4.03	2	6							
Jing Chen, 2007	58	47	542.15±3.679/3.840±47.28	538.76±42.34/437.21±42.13	N/A	0	3										
Minghai Zhou, 2014	19	15	N/A														
Guangheng Cui, 2011	55	56	N/A														
Yangang Wang, 2015	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Hai Lu, 2013	29	25	564.4±80.5/326±20.3	518±75.4/349.3±34.7	36.1±4.3/14.6±5.6	34.2±6.8/18.4±3.9	65.7±18.5/22.6±7.3	19.93±10.08/8.99±6.37	19	24							
Bo Duan, 2016	47	46	673.3±125.26/421.43±58.9	666.62±31.54/432.27±70.11	3.6±8.6/9.62/15.42±6.94	34.56±10.11/17.02±7.78	20.52±9.98/8.3±5.83	15.5±11.72/9.6±6.9	2	1							
Guoying Han, 2010	39	29	568.6±92.5/412.5±94.7	581.7±10.24/483.27±107.6	N/A												
Min Dai, 2015	36	29	N/A														
Xiaobing He, 2018	27	20	508.0±63.6/276.1±23.2v	512.2±576.4/403.3±30.9	N/A												
Xiaoxia Wang, 2010	28	29	N/A														
Huijuan Yao, 2010	51	52	N/A														
Leizheng, 2016	33	31	546.0±93.4/239.0±62.69	542.4±4.3/479.81±71.81	N/A	N/A	28.59±6.69/17.54±4.74	29.59±5.59/23.2±6.08	0	0							
Bo Shu, 2010	38	25	N/A														
Liping Yan, 2012	35	23	573.4±113.6/369.1±117.2	587.8±109.7/427.6±121.3	N/A												
Yueli Wu, 2015	38	32	573.7±102.4/286.3±122.5	582.7±112.5/356.8±117.8	N/A												
Yueqi Wang, 2013	30	29	542.36±54.55/351.12±43.92	534.99±58.81/424.73±56.79	30.90±10.15/6.70±5.11	31.45±10.75/12.65±3.26	28.90±6.53/7.64±3.14	29.45±11.58/7.67±4.11	0	7							
Meng Zhang, 2010	65	62	525.68±11.4/350.8±30.50	530.01±12.6/475.60±61.17	N/A	1	11										
Xiaoming, 2008	53	44	N/A														
Zheng Huang, 2013	28	27	477.16±97.33/430.65±88.97	465.32±90.13/451.91±89.48	N/A												
Author, year	Effective number	SUA	CRP	ESR	Adverse reactions												
-------------	-----------------	-----	-----	-----	------------------												
Chongyu Tan, 2013	48 34	56.87±38.29/32.68±38.14	573.77±39.87/371.90±38.39	N/A	N/A	4	16										
Chun Kang, 2012	28 24	485.65±53.11/3.03.22±46.35	489.18±52.61/396.43±41.91	N/A	N/A	N/A	N/A										
Xiaowu Fan, 2013	48 38	N/A	N/A	N/A	N/A	N/A	N/A										
Jianchong Shen, 2014	57 49	495.99±50.73/312.78±54.03	485.50±47.58/378.07±50.89	N/A	N/A	1	5										
Guiqiong Huang, 2016	55 38	547.48±50.93/318.04±54.35	546.37±47.58/352.41±51.89	26.17±10.28/5.98±1.45	25.94±19.65/16.05±1.76	35.18±8.82/15.79±4.21	3.495±7.88/23.57±4.32	N/A	17								
Jianping Luo, 2010	N/A																
Ying-Cheng Chien, 2014	40 37	N/A	N/A	N/A	N/A	N/A	N/A										
Demi Li, 2012	38 34	496±66.9/266±48.6	498.0±68.4/367.5±93.81	N/A	N/A	54.6±11.78/23.5±16.71	53.10±10.82/32.03±17.42	0	18								
Yanhui Lin, 2013	28 22	506.57±19.90/352.41±79.93	518.70±83.98/402.42±85.53	8.15±1.52/4.6±1.07	8.52±1.23/6.3±1.09	32.6±13.82/17.9±5.2	32.40±13.93/26.4±10.87	N/A	17								
Dehe Li, 2007	36 26	N/A	N/A	N/A	N/A	N/A	N/A										
Jun Hao, 2014	29 23	N/A	N/A	N/A	N/A	N/A	N/A										
Chongqing Yang, 2006	27 28	845.27±98.87/40.4±95.48	N/A	N/A	N/A	N/A	N/A										
Lin Wang, 2011	26 27	498.33±87.25/61.1±86.89	498.28±28.18/482.23±116.31	29.9±2.06/9.24±1.07	52.46±56.82/18.6±28.10	N/A	0	1									
Ayijiaman, 2012	54 37	591.16±34.9/37.3±52.85	552.29±46.15/425.79±48.69	N/A	N/A	N/A	N/A										
Chifeng Wang, 2014	33 30	482.5±51.3/38.3±50.4	481.5±50.9/420.2±55.9	24.4±3.6/15±2.6	24.3±3.7/16±2.9	26.3±4.3/3.6±7.2	26.2±4.5/15.8±6.8	N/A	18								
Jianping Luo, 2010	N/A																
Xin Ouyang, 2004	28 25	492.54±76.03/287.53±93.04	498.0±83.46/367.53±93.81	N/A	N/A	54.6±11.78/23.5±16.71	53.10±10.82/32.03±17.42	0	18								
Guoqiong Huang, 2016	55 38	547.48±50.93/318.04±54.35	546.37±47.58/352.41±51.89	26.17±10.28/5.98±1.45	25.94±19.65/16.05±1.76	35.18±8.82/15.79±4.21	3.495±7.88/23.57±4.32	N/A	17								
Jianping Luo, 2010	N/A																
Jinjin Jia, 2010	26 23	488.31±78.4/285.75±75.6	490.2±72.5/433.5±77.5	N/A	N/A	N/A	N/A	0	5								
Xiaozhong Yu, 2013	31 28	556±21.3/216±12.6	552±21.8/221±15.2	N/A	N/A	N/A	N/A	1	15								
Jianping Luo, 2010	N/A																

EG: experimental group, CG: control group; SUA: serum uric acid; CRP: C-reactive protein; ESR: Erythrocyte Sedimentation Rate; N/A: not applicable.
971 of records identified through database searching

0 of records identified through other sources

442 of records after duplicates removed

109 non-RCT articles, 8 articles based on animal experiments, 88 articles which the experimental group and the control group do not meet the standard, 19 articles do not have diagnostic criteria, 143 articles which is review and experience summary, 93 articles studies other directions.

529 of records screened

442 of records a/f_ter and duplicates removed

69 of full-text articles assessed for eligibility

Figure 1: Flow diagram of study selection.

Random sequence generation (selection bias)
Allocation concealment (selection bias)
Blinding of participants and personnel (performance bias)
Blinding of outcome assessment (detection bias)
Incomplete outcome data (attrition bias)
Selective reporting (reporting bias)
Other bias

Low risk of bias
Unclear risk of bias
High risk of bias

Figure 2: Risk of bias summary.

3.2. Risk of Bias. All of the selected trials adopted the method of randomization [9–77], which involved sealed envelopes11, randomized block [9, 10, 12, 13, 15, 17–33, 36–38, 40–51, 53–77], and random number table [14, 16, 34, 35, 39, 52]. Therefore, those trials were considered low risks in terms of selection bias. Only one trial involved the method of blinding [36]. These parameters were considered low risk in terms of incomplete outcome data. Detection bias, reporting bias, and other potential biases were unclear in all studies (Figures 2 and 3).

3.3. Adverse Reactions. Adverse reactions data were provided from twenty-five RCTs, including 2217 patients (1147 cases in the experimental group and 1070 cases in the control group) [11, 20, 23, 24, 27, 30, 32, 34–36, 38–40, 42, 47, 48, 53–59]. The random model was applied finally because of its heterogeneity with \(I^2 = 68\% \) (Figure 4). The results indicated that the adverse reactions rate of patients taking Chinese herb and (or) receiving other traditional Chinese medicine treatment was lower than that of patients who take western medicine (0.18 times), and the difference was statistically significant (\(P < 0.00001 \)).

3.4. Efficacy. The effective rate data were provided from sixty-six RCTs, including 5669 patients (2952 cases in the experimental group and 2717 cases in the control group) [9–13, 15–44, 46–69, 71–77]. The random model was used because of its heterogeneity with \(I^2 = 75\% \) (Figure 5). The results indicated that the effective rate of patients who took Chinese herb and (or) treated with other traditional Chinese medicine methods were higher than that of those who used Western Medicine (1.11 times). The difference was statistically significant (\(P < 0.00001 \)).

3.5. Serum Uric Acid Concentration (\(\mu \)mol/L). The serum uric acid concentration data were provided from forty-one RCTs, including 3549 patients (1834 cases in the experimental group and 1715 cases in the control group) [9–49]. The random model was adopted according to \(I^2 = 98\% \) (Figure 6). Compared with the patients in the control group who only took western medicine, the level of serum uric acid concentration was reduced by 62.14% in patients who took traditional Chinese herb and (or) treated with other traditional Chinese medicine methods. The results were statistically significant (\(P < 0.00001 \)).
Figure 3: Risk of bias graph.
Evidence-Based Complementary and Alternative Medicine

Figure 4: An analysis of the adverse reactions caused by clearing heat and removing dampness method and western medicine in the treatment of gout.

3.6. C-Reactive Protein (mg/L)
The C-reactive protein data was provided from sixteen RCTs, including 1408 patients (704 cases in the experimental group and 704 cases in the control group) [12, 14, 21, 23, 24, 30, 37–42, 44, 50–52]. A random model was adopted according to $I^2 = 98\%$ (Figure 7).

Compared with the patients in the control group who only took western medicine, the level of C-reactive protein was reduced by 4.21% in patients who took traditional Chinese herb and (or) treated with other traditional Chinese medicine methods. They were statistically significant on the difference of two intervention methods to reduce C-reactive protein levels ($P < 0.0001$).

3.7. Erythrocyte Sedimentation Rate (ESR) (mm/h)
The Erythrocyte sedimentation rate data was provided from twenty-two RCTs, including 1951 patients (988 cases in the experimental group and 963 cases in the control group) [10–12, 14, 17, 19, 20, 23, 24, 26, 27, 30, 37–41, 44, 50–52]. A random model was adopted according to $I^2 = 95\%$ (Figure 8). Compared with the patients in the control group who only took western medicine, the level of Erythrocyte sedimentation rate was reduced by 6.23% in patients who took traditional Chinese herb and (or) treated with other traditional Chinese medicine methods. There was significant difference between the experimental group and the control group on ESR ($P < 0.0001$).

4. Discussion
With the continuous improvement of people’s living standard, the change of dietary structure and the influence of environmental factors, the incidence of gout has been gradually increased every year all over the world. Nowadays, the patient with gout could only be alleviated but not cured with existing clinical treatments; thus searching for a better therapeutic method has been appeared to be very important. Our current study analyzed data from 69 RCTs that aimed to assess the therapeutic effect and safety of heat and removing dampness method of Traditional Chinese Medicine for gouty arthritis.

In respect of adverse reaction rate, clearing heat and removing dampness method with or without other traditional Chinese medicine therapy are better than western medicine treatment ($RR = 0.18$). The adverse reactions often occurred during the process of using drugs, such as abdominal pain, diarrhea, vomiting, and inappetence, and even causing damage of liver and kidney in severe cases. Compared with western medicine, clearing heat and removing dampness method was shown to be more effective to the patients with gout, with less adverse reactions mentioned above at the same time, probably due to the synergistic action of multicomponents and multitargets in the traditional Chinese medicine and the integrity of human body. The clearing heat and removing dampness method which is the unique medical method based on Chinese traditional medicine has
Figure 5: An analysis of the effective of clearing heat and removing dampness method and western medicine in the treatment of gout.
Figure 6: Effects of clearing heat and removing dampness method and western medicine on serum uric acid in the treatment of gout.

Figure 7: Effects of clearing heat and removing dampness method and western medicine on C-reactive protein in the treatment of gout.
Evidence-Based Complementary and Alternative Medicine

Figure 8: Effects of clearing heat and removing dampness method and western medicine on ESR in the treatment of gout.

![Table]

Study or Subgroup	Experimental Mean	SD	Total	Control Mean	SD	Total	Weight	Mean Difference IV, Random, 95% CI	Mean Difference IV, Random, 95% CI
Bo Duan 2016	8.23	5.38	54	8.99	6.37	54	4.8%	-0.76 [-1.06, 0.54]	-
Chifeng Wang 2014	13.6	7.23	16	8.15	6.88	36	4.6%	-2.20 [-5.44, 0.04]	-
Demei Li 2012	21.5	12.5	40	30.02	7.90	40	4.2%	-8.70 [-13.28, -4.12]	-
GÜlcay Sun 2007	17.1	4.6	65	15.43	4.35	65	5.0%	2.10 [0.57, 3.63]	-
Guipeng Huong 2016	15.79	4.21	60	23.57	4.52	60	5.0%	-7.78 [-9.34, -6.22]	-
Hai Lu 2013	22.6	7.3	30	29.6	6.9	30	4.5%	-7.00 [-10.59, -3.41]	-
Halfeng Li 2012	21.1	5.4	73	38.3	10	80	4.8%	-17.20 [-19.72, -14.68]	-
Hong Tu 2013	14.71	8.97	30	24.07	12.61	30	3.8%	-9.56 [-14.90, -3.22]	-
Hongtao Yan 2006	40	5.39	20	49.95	5.85	20	4.5%	-3.95 [-7.44, -0.46]	-
Huilian Wang 2012	3.9	1.2	40	4	2	40	5.1%	-0.10 [-0.82, 0.62]	-
Jiang Wu 2015	16.87	2.26	36	24.35	4.03	36	5.0%	-7.48 [-8.99, -5.97]	-
Lei Zhang 2016	17.54	4.74	37	23.22	6.08	37	4.8%	-5.68 [-8.16, -3.20]	-
Qingsheng He 2016	17	6.78	50	21	5.91	50	4.8%	-4.00 [-6.49, -1.51]	-
Shengyu Wu 2017	14.6	9.4	34	21.8	9.2	34	4.2%	-7.20 [-11.62, -2.78]	-
Wei Li 2016	10.26	5.35	58	14.86	5.47	58	4.9%	-4.60 [-6.57, -2.63]	-
Xiaohong He 2008	17.4	5.7	28	30.6	8.3	26	4.4%	-13.20 [-17.03, -9.37]	-
Xin Ouyang	23.43	16.71	30	32.03	17.42	30	4.8%	-8.60 [-12.74, 0.04]	-
Yanhua Zou 2010	34.28	12.21	40	40.79	13.08	40	3.8%	-6.51 [-10.15, -2.86]	-
Yanmin Ren 2007	28.37	9.36	60	42.72	0.24	30	4.8%	-14.35 [-16.72, -11.98]	-
Yanzhi Lin 2016	17.9	5.2	30	26.4	10.87	30	4.3%	-8.50 [-12.81, -4.19]	-
Youqil Wang 2013	6.74	3.14	32	7.67	4.11	32	4.9%	-0.93 [-2.72, 0.86]	-
Zhimin Qi 2016	17.58	5.22	105	22.64	6.17	105	5.0%	-4.56 [-6.10, -3.02]	-
Total (95% CI)	988	963	100.0%	-6.23 [-8.39, -4.06]	-	-	-	-	-

Heterogeneity: $I^2 = 23.82; Chi^2 = 454.15; df = 21 (P < 0.00001); I^2 = 95%$

Text for overall effect: Z = 5.04 (P < 0.00001)

a good effect to treat patients with gout, mainly because of the pathogenesis of gout disease which is that the meridian is blocked by a pathogenic factor formed by blending of heat and wetness evils [7].

According to our results, the clearing heat and removing dampness method of Chinese traditional medicine adjuvant treatment of Chinese medicine such as acupuncture and cupping could effectively reduce uric acid, C-reactive protein, and ESR in patients with gout. Different researchers have chosen different modalities of the clearing heat and removing dampness method of Chinese traditional medicine, such as Si Miao San [29–31], Xuan Bi Fang [38, 39], acupuncture and Chinese medicine combination [41, 59, 76], etc. Among them, the types of Chinese medicine, the dose, and the acupoint selection of acupuncture and acupuncture techniques are inconsistent. Therefore, our results cannot get a clear conclusion, we do not know which treatment method has the best effect on gout and the least adverse reactions.

In this study, there are many shortcomings: a lot of randomized controlled trials are not amply described in grouping; it is not sufficient to prove that the randomization program is executed correctly. The overall methodological quality is poor, which limits the value of the effect of the clearing heat and removing dampness method of Chinese traditional medicine in the treatment of gout. Therefore, an indepth investigation and further extensive study were need in the future.

Disclosure

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors’ Contributions

Nan Xiao and Hao Chen contributed equally to this work.

Acknowledgments

This work was supported by National Natural Science Foundation of China (No. 81873195), the China Postdoctoral Science Foundation [2017M611241], Liaoning Undergraduate Program for Innovation and Entrepreneurship [2017101610100051], the project of Dalian Young Star on science and Technology in 2016 (2017RQ122), and Dalian Medical University Undergraduate Program for Innovation and Entrepreneurship.

References

[1] S. Stewart, N. Dalbeth, A. C. Vandal, and K. Rome, “The first metatarsophalangeal joint in gout: A systematic review and meta-analysis,” BMC Musculoskeletal Disorders, vol. 17, no. 1, 2016.

[2] L. Zhou, L. Liu, X. Liu et al., “Systematic review and meta-analysis of the clinical efficacy and adverse effects of Chinese herbal decoction for the treatment of gout,” PLoS ONE, vol. 9, no. 1, Article ID e85008, 2014.

[3] D. Iyase, S. Stefanie, and A. Hans-Joachim, “Molecular pathophysiology of gout,” Trends in Molecular Medicine, vol. 23, no. 8, pp. 756–768, 2017.
[4] L. H. Barry, M. Eric, and R. Travis Wilkes, “Diagnosis, treatment, and prevention of gout,” American Family Physician, vol. 90, no. 12, pp. 831–836, 2014.

[5] G. L. Chen, Y. F. Zhou, and Y. Zhang, “Research progress in medicine for treating gout and hyperuricemia,” Chinese Journal of Clinical Pharmacology and Therapeutics, vol. 22, no. 1, pp. 104–109, 2017.

[6] S.-H. Liu, W.-C. Chuang, W. Lam, Z. Jiang, and Y.-C. Cheng, “Safety surveillance of Traditional Chinese Medicine: current and future,” HIS Public Access, vol. 38, no. 2, pp. 117–128, 2015.

[7] J. Y. Huang and Y. Zhang, “FAN Yong-sheng’s experience in treating acute gout by using Qingre Lishi Formula,” China Journal of Traditional Chinese Medicine and Pharmacy, vol. 31, no. 1, pp. 135–137, 2016.

[8] A. Althea, B. Eric, K. Rebecca et al., “Formalizing the definition of meta-analysis in Molecular Ecology,” Molecular Ecology, vol. 24, pp. 4042–4051, 2015.

[9] X. B. Zhao, “Clinical observation on the treatment of gout with prickling blood cupping combined with microwave,” World Latest Medicine Information, no. 29, pp. 353–355, 2014.

[10] G. C. Sun, X. F. Yu, D. G. Li et al., “Clinical observation of the effect of Compound Herba Siegesbeckiae Capsules treating recurrent gouty arthritis,” Chinese Journal of Information on Traditional Chinese Medicine, no. 2, pp. 34–35+64, 2007.

[11] Q. S. He, “50 cases of Modified Simiao Decoction with Xin-HuangPian external treating acute gouty arthritis,” Guangxi Journal of Traditional Chinese Medicine, vol. 39, no. 2, pp. 37–38, 2016.

[12] Y. H. Zou, Z. G. Li, and S. J. Zhang, “Clinical observation of LihuoDingtong Yin treating damp heat stasis type gout,” Acta Chinese Medicine and Pharmacology, vol. 38, no. 3, pp. 113–114, 2010.

[13] J. C. Cai and R. J. Zheng, “Observation of curative effect of gouty arthritis treated by NiantongXiaofeng prescription,” Jiangxi Journal of Traditional Chinese Medicine, no. 3, pp. 28–29, 2006.

[14] W. Li, Y. W. Yin, and Z. G. Li, “Clinical study on the treatment of acute gouty arthritis by QingreChushi prescription,” Acta Chinese Medicine and Pharmacology, vol. 44, no. 5, pp. 117–119, 2016.

[15] Y. X. Wang, D. B. Liu, X. L. Zhou et al., “Clinical study on the treatment of gouty arthritis by QingreHuzhuanSanjie Method,” Guangming Journal of Chinese Medicine, vol. 29, no. 4, pp. 724–727, 2014.

[16] W. Liu, Y. H. Wu, L. Zhang et al., “Clinical RCTs of QingreJieduLishiHuazhuo method for treating gout,” China Journal of Traditional Chinese Medicine and Pharmacy, vol. 31, no. 3, pp. 1113–1116, 2016.

[17] Y. M. Ren, S. D. Wen, Y. P. Sa et al., “Clinical observation of treatment of acute gouty arthritis by Clearing heat and removing dampness, Huayu Quzhuo Method,” Journal of Sichuan of Traditional Chinese Medicine, no. 9, pp. 45–46, 2007.

[18] L. P. Yan and Z. Q. Zhou, “Clinical observation of 38 cases of Clearing heat and removing dampness Decoction in the treatment of acute gouty arthritis,” Jilin Journal of Traditional Chinese Medicine, vol. 32, no. 6, pp. 600–601, 2012.

[19] Y. L. Wu, Y. Ly, and Z. H. Xu, “Clinical study of Qingrelishihuoxue method in the treatment of acute gouty arthritis,” Medical Information, vol. 29, pp. 98–99, 2015.

[20] Y. Q. Wang, Clinical Study on Treatment of Acute Gouty Arthritis of Qingrelishihuoxue Method, Beijing University of Chinese Medicine, 2013.

[21] W. D. Qian and X. Q. Qian, “60 cases of QingrelishiTonghuan therapy in the treatment of gouty arthritis of damp heat,” Jiangxi Journal of Traditional Chinese Medicine, no. 1, p. 34, 2008.

[22] Z. Huang, Y. F. Wang, and M. Zhang, “Clinical observation on 32 cases of QingrelishiTonghuo Decoction in treating acute gouty arthritis,” Journal of New Chinese Medicine, vol. 45, no. 12, pp. 85–87, 2013 (Chinese).

[23] J. C. Shen, J. X. Mo, and S. Q. Cai, “Clinical observation of 60 cases of QingrelishiTongluozhitong treatment of acute gouty arthritis with damp heat blockage syndrome,” Zhejiang Journal of Traditional Chinese Medicine, vol. 49, no. 11, pp. 797–798, 2014.

[24] G. Q. Huang, H. Chen, Q. R. Liu et al., “Observation of curative effect of QingrelishiTongluozhitong treatment for acute gouty arthritis,” Shannxi Journal of Traditional Chinese Medicine, vol. 37, no. 11, pp. 1483–1485, 2016.

[25] X. Ouyang, “Clinical observation of QingrelishiXieduhuayu method in the treatment of acute persisting gout,” Journal of Emergency in Traditional Chinese Medicine, vol. 13, no. 4, pp. 211–212, 2004.

[26] Y. P. Chen, “45 cases of the treatment of acute gouty arthritis by QingreLishiXuehuzhuo decoction,” Zhejiang Journal of Integrated Traditional Chinese and Western Medicine, vol. 24, no. 3, pp. 259–260, 2014.

[27] D. H. Li and T. Yu, “40 cases of Sanjinsanmiao decoction combined with western medicine treating gout,” Shannxi Journal of Traditional Chinese Medicine, no. 4, pp. 428–429, 2007.

[28] J. F. Li and T. B. Song, “The effects of Simiao Maqian decoction in the treatment of gouty arthritis,” Guangming Journal of Chinese Medicine, vol. 28, no. 6, pp. 1161–1162, 2013.

[29] X. Z. Yu, D. G. Hong, and X. Z. Wang, “Curative effect observation of 32 cases of Simiao powder and Auricular point sticking treating acute gouty arthritis,” Journal of Liaoning University of Traditional Chinese Medicine, vol. 30, no. 3, pp. 69–71, 2013.

[30] J. J. Jia, “Compared modified Simiao decoction with colchicine in the treatment of gout,” Journal of Emergency in Traditional Chinese Medicine, vol. 19, no. 1, pp. 47–48, 2010.

[31] X. Z. Zeng and Y. M. Song, “60 cases of acute gouty arthritis treated with Modified Simiao pills,” Hunan Journal of Traditional Chinese Medicine, vol. 29, no. 2, pp. 68–69, 2013.

[32] J. P. Luo and C. Q. Tang, “Observation of the curative effect of Modified Simiao pills treating gout,” Journal of Liaoning University of Traditional Chinese Medicine, vol. 12, no. 11, pp. 156–157, 2010.

[33] A. Aigaman and C. G. Hu, “Clinical observation of 100 cases of Tongbi Decoction in the treatment of gout,” Xinjiang Journal of Traditional Chinese Medicine, no. 1, pp. 27–28, 2012.

[34] L. Wang, Clinical observation of gout decoction in the treatment of acute gouty arthritis, Beijing University of Chinese Medicine, 2011.

[35] C. Q. Yang and K. G. Cao, “Clinical observation of 30 cases of acute gouty arthritis treated with gout mixture,” China Journal of Traditional Chinese Medicine and Pharmacy, no. 8, pp. 474–475, 2006.

[36] H. Tu, J. W. Bao, R. F. Tu et al., “30 cases of gouty arthritis treated with gout clear granule,” Chinese Medicine Modern Distance Education of China, vol. 13, no. 24, pp. 35–37, 2015.

[37] B. C. Wang, “Treatment of 52 cases of gouty arthritis with gout Decoction,” Hunan Guiding Journal of TCMP, no. 3, pp. 28–29, 2000.

[38] H. F. Li, “Clinical observation of 73 cases of Xuanbitang Decoction for the treatment of gouty arthritis,” Guiding Journal
of Traditional Chinese Medicine and Pharmacology, vol. 18, no. 3, pp. 83-84, 2012.

[39] H. T. Yan, Clinical observation of curative effect of Xuanbi Decoction in the treatment of acute gouty arthritis, Heilongjiang University of Chinese Medicine, 2006.

[40] W. G. Zeng, “Yushan gout Decoction in the treatment of gouty arthritis in 120 cases,” Journal of Traditional Chinese Medicine, no. 1, pp. 58-59, 2007.

[41] J. Wu and Y. Xu, “Clinical observation of acupuncture combined with Qingrelishi decoction in the treatment of acute gouty arthritis,” Journal of Emergency in Traditional Chinese Medicine, vol. 24, no. 4, pp. 717-719, 2015.

[42] Y. G. Wang, Z. M. Miao, S. L. Yan et al., A Randomized Parallel Clinical Study on the Treatment of Gout with Chinese Herbal Medicine, vol. 4, Acta Academiae Medicinae Qingdao Universitatis, 2005.

[43] H. Lu, L. F. Wei, and G. P. Xie, “Clinical study on the treatment of gouty arthritis with Chinese herbal medicine and Western medicine,” Clinical Journal of Chinese Medicine, vol. 5, no. 1, pp. 16-17, 2013.

[44] B. Duan and X. Lv, “Evaluation of clinical efficacy of triple therapy for acute gout,” Clinical Journal of Chinese Medicine, vol. 8, no. 27, pp. 73-74, 2016.

[45] G. Y. Han, “Observation of 42 cases of the treatment of gouty arthritis by traditional Chinese medicine,” Journal of Practical Traditional Chinese Medicine, vol. 26, no. 7, pp. 467-468, 2010.

[46] M. Dai and Y. Zhang, “Clinical observation of 39 cases of gouty arthritis treated with Chinese medicine,” Chinese Journal of Ethnopharmacy, vol. 24, no. 7, pp. 49-50, 2015.

[47] X. H. He and H. Y. Huang, “Observation of curative effect of Chinese medicine combined therapy on acute gouty arthritis,” in Proceedings of the Twelfth National Symposium on rheumatic diseases of Chinese Medicine, vol. II, pp. 176-177, 2008.

[48] X. X. Wang, “30 cases of acute gouty arthritis treated with self-made Shancigu decoction,” Zhejiang Journal of Traditional Chinese Medicine, vol. 45, no. 6, p. 430, 2010.

[49] H. J. Yao, J. M. Luo, and H. T. Fang, “56 cases of comprehensive therapy for acute gouty arthritis,” Journal of Emergency in Traditional Chinese Medicine, vol. 20, no. 9, pp. 1504, 2011.

[50] S. Y. Wu, “Clinical observation of 34 cases of Modified Simiao Decoction with XinHuangPian external treating acute gouty arthritis,” Chinese Journal of Ethnopharmacy and Ethnomedicine, vol. 26, no. 4, pp. 127-128, 2017.

[51] L. Zhang, Z. X. Wang, and J. Y. Gao, “Clinical observation of 74 cases on the treatment of acute gout by QingrelishiHuoxue-tongluo method,” Chinese Medicine in Tianjin, vol. 33, no. 7, pp. 394-397, 2016.

[52] Y. Zhang and J. Y. Huang, “The observation of the curative effect of Qingrelishi prescription in treatment of acute gout,” Chinese Journal of General Practice, vol. 14, no. 6, pp. 1030–1033, 2016.

[53] Y. J. Yuan, “Fu Huang cream applied in combination with Modified Simiao Decoction for treating acute gouty arthritis,” Journal of Practical Traditional Chinese Internal Medicine, vol. 24, no. 12, pp. 82-83, 2010.

[54] L. X. Wang, “RCTs of Modified Simiao pills and colchicine in the treatment of acute attack of gouty arthritis,” Modern Rehabilitation, no. 17, p. 125, 2001.

[55] R. Li, “Clinical observation of QingrelishiHuoxuehuayu therapy treating gouty arthritis in high altitude area,” Journal of New Chinese Medicine, vol. 46, no. 9, pp. 84–86, 2014 (Chinese).

[56] S. S. Yu and Y. R. Huang, “Clinical observation of curative effect of treatment on acute gouty arthritis by Qingrelishijiehu method,” Hebei Journal of Traditional Chinese Medicine, vol. 30, no. 9, p. 32, 2008.

[57] C. F. Wang, R. Liu, and X. Y. Wang, “Analysis of therapeutic effect of Tanrebi decoction for treating acute gouty arthritis,” Journal of Practical Traditional Chinese Medicine, vol. 30, no. 7, pp. 595-596, 2014.

[58] W. G. Zeng, L. Zhou, and Y. H. Xiao, “YushanTongfengyin No. 2 in the treatment of hyperuricemia in 55 cases,” Shandong Journal of Traditional Chinese Medicine, vol. 29, no. 9, p. 607, 2010.

[59] M. H. Zhou, “Clinical observation of 20 cases of combined treatment of gouty arthritis with acupuncture and medicine,” Nei Mongol Journal of Traditional Chinese Medicine, vol. 33, no. 14, p. 44, 2014.

[60] F. Zuo, W. Liu, and H. Wang, “Decoction Combined with Simiaozuo powder for treating 58 cases of gouty arthritis,” Tianjin Journal of Traditional Chinese Medicine, no. 1, p. 13, 2001.

[61] Y. H. Yan, L. Y. Wang, and Y. Li, “Clinical observation of Bi Ning decoction in the treatment of 36 cases of acute gouty arthritis,” Chinese Journal of Information on Traditional Chinese Medicine, no. 6, pp. 20-21, 2006.

[62] L. Cheng, L. J. Lu, and X. F. Jiang, “Clinical experience of treatment of acute gouty arthritis with Chinese Angelica Decoction for treating pain,” Journal of Emergency in Traditional Chinese Medicine, vol. 18, no. 11, pp. 1892-1893, 2009.

[63] Y. H. Zhang, Y. J. Song, Y. Jia et al., “Observation of 45 cases of acute gouty arthritis treated with modified Sanmiao powder,” Yunnan Journal of Traditional Chinese Medicine and Materia Medica, no. 4, pp. 5-6, 2003.

[64] Z. H. Yang, H. M. Wang, Q. Cui et al., “Clinical analysis of Jianqiingrelishitongluo Method in treating 60 cases of acute gouty arthritis,” Modern Medicine Journal of China, no. 11, pp. 82-83, 2007.

[65] W. P. Cao, X. W. Luo, and L. Y. Duan, “Observation of curative effect of 44 cases of acute gouty arthritis treated with JunhuZhitong powder and acupuncture,” Yunnan Journal of Traditional Chinese Medicine and Materia Medica, no. 7, p. 25, 2008.

[66] Y. Feng, Y. Qian, and X. G. Zhang, “Clinical study on the treatment of acute attack of primary gout by Qingrelishijiehu method,” Hebei Journal of Traditional Chinese Medicine, no. 7, pp. 501-502, 2005.

[67] B. Shi and F. M. An, “Clinical observation of 45 cases of qingrelishi Decoction treating acute gout,” Chinese Journal of Modern Drug Application, vol. 4, no. 20, pp. 127-128, 2010.

[68] C. N. Qin, J. He, and W. B. Wei, “RCTs of Heat and dampness Tongluo Decoction in treating acute gouty arthritis,” Journal of Practical Traditional Chinese Internal Medicine, vol. 27, no. 11, pp. 37-39, 2013.

[69] C. Kang, “RCTs of Qingrelishitongluo Decoction in the treatment of acute gouty arthritis,” Journal of Practical Traditional Chinese Internal Medicine, vol. 26, no. 16, pp. 35–37, 2012.

[70] X. W. Fan, “RCTs of Qingrelishitongluo Decoction in the treatment of gouty arthritis,” Journal of Practical Traditional Chinese Internal Medicine, vol. 27, no. 12, pp. 22-23, 2013.

[71] Z. M. Qi, C. L. Mou, and H. Wang, “Clinical observation of QingrelishiZhuuyu Decoction in the treatment of gouty arthritis,” Chinese Journal of Experimental Traditional Medical Formulae, vol. 22, no. 21, pp. 147–151, 2016.
[72] D. M. Li, J. H. Li, L. L. Cai et al., “Clinical observation on the treatment of acute gouty arthritis in the elderly with oral and external application of QingreZhitong Fang,” Chinese Journal of Information on Traditional Chinese Medicine, vol. 19, no. 7, pp. 77-78, 2012.

[73] Y. Z. Lin, Clinical Study of Qingxiaoyitong Decoction in the Treatment of Gouty Arthritis with Kidney Deficiency and Damp Heat, Nanjing University of Chinese Medicine, 2009.

[74] J. He, L. H. Li, B. He et al., “Observation of curative effect of ShandayanheSimiao Decoction in the treatment of acute gouty arthritis,” Chinese Journal of Traditional Medical Science and Technology, vol. 21, no. 1, p. 30, 2014.

[75] H. L. Wang, J. H. Wang, Q. Zhou et al., “Clinical observation of 40 cases of acute gouty arthritis treated with Gouty granule,” World Journal of Integrated Traditional and Western Medicine, vol. 7, no. 7, pp. 599–600+603, 2012.

[76] J. Chen, X. H. Deng, and L. S. Liu, “Clinical observation of combined treatment of gouty arthritis with acupuncture and medicine,” Journal of Emergency in Traditional Chinese Medicine, vol. 26, no. 2, pp. 317–319, 2017.

[77] G. H. Cui, Z. R. Li, and X. J. Tan, “Clinical observation of Zhiju gouty Decoction in the treatment of Shireyunjexing acute gouty arthritis,” Guide of China Medicine, vol. 9, no. 3, p. 123, 2011.