SIRT2 deacetylase represses NFAT transcription factor to maintain cardiac homeostasis

Mohsen Sarikhani §, Sangeeta Maity §, Sneha Mishra, Aditi Jain, Ankit K. Tamta, Venkatraman Ravi, Kondapalli M. Spurthi, Perumal A. Desingu, Danish Khan, Shweta Kumar, Swathi Rao, Meena Inbaraj, Pandit A. Shrinivas and Nagalingam Ravi Sundaresan *

From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India

Running title: SIRT2 represses NFAT transcription factor

§ These two authors contributed equally to this work

To whom correspondence should be addressed: Nagalingam R. Sundaresan, Lab # SB-02, Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bengaluru – 560012, Karnataka, India. Telephone: +91 80 2293 2068; Fax: +91 80 2360 2697; Email: rsundaresan@iisc.ac.in

Key words: Lysine acetylation, cardiac hypertrophy, SIRT2, NFAT

ABSTRACT

Heart failure is an aging-associated disease, which is the leading cause of death worldwide. Sirtuin family members have been largely studied in the context of aging and aging-associated diseases. Sirtuin 2 (SIRT2) is a cytoplasmic protein in the family of sirtuins that are NAD+ dependent class III histone deacetylases. In this work, we studied the role of SIRT2 in regulating NFAT transcription factor and the development of cardiac hypertrophy. Confocal microscopy analysis indicated that SIRT2 is localized in the cytoplasm of cardiomyocytes and SIRT2 levels are reduced during pathological hypertrophy of the heart. SIRT2 deficient mice develop spontaneous pathological cardiac hypertrophy, remodelling, fibrosis and dysfunction in an age-dependent manner. Moreover, young SIRT2 deficient mice develop exacerbated agonist-induced hypertrophy. On contrast, SIRT2 overexpression attenuates agonist-induced cardiac hypertrophy in cardiomyocytes in a cell autonomous manner. Mechanistically, SIRT2 binds to and deacetylates NFATc2 transcription factor. SIRT2 deficiency stabilizes NFATc2 and enhances nuclear localization of NFATc2, resulting in increased transcription activity. Our results suggest that inhibition of NFAT rescues the cardiac dysfunction in SIRT2 deficient mice. Thus, our study establishes SIRT2 as a novel endogenous negative regulator of NFAT transcription factor.

INTRODUCTION

The term heart failure denotes loss of function of myocardium, which is the culmination of complex remodelling that occurs in the heart, initiated as an adaptive response to pressure overload or cardiac stressors in humans. In the failing myocardium, several functional abnormalities, including disruption of calcium homeostasis, metabolic malfunction, energy deficits and contractile dysfunction have been recognized (1,2). Notably, pathological cardiac remodelling involves activation of cell surface receptors, signalling mediators, cellular protein synthesis and transcriptional machinery (3,4). Although there has been an advancement in the understanding of risk factors for heart failure, the basic molecular events responsible for initiation of heart failure are poorly recognized.

Heart failure is reversible by calorie-restriction (CR), a feeding regimen that limits calorie intake, or by physical exercise in animal
models (5-7). Evidence suggests that health benefits of CR and exercise are mediated through the activation of NAD+ dependent class-III histone deacetylases, called sirtuins. So far, seven different sirtuin isoforms (SIRT1 to 7), have been identified in mammals (8). Sirtuin 2 (SIRT2) is highly expressed in the brain and the heart of humans (9). SIRT2 regulates nuclear envelope dynamics, cell metabolism and autophagy (10). SIRT2 levels increase during calorie restriction and nutrient deprivation (11). On the other hand, SIRT2 levels are reduced in the visceral adipose tissue of human obese subjects, human liver tissues of iron overload, hepatocellular carcinoma (HCC) samples and cardiomyocytes from an animal model of type 1 diabetic mellitus (12-15). SIRT2 deficient mice show an increased incidence of mammary tumours and HCC (14). Similarly, SIRT2 deficiency increases susceptibility to colitis and iron deficiency-induced hepatocytes death (13,16). Recently it has been demonstrated that SIRT2 deficiency promotes cardiac hypertrophy through impaired activation of AMPK signalling in the heart (17). AMPK is the key regulator of cardiac energy homeostasis, and it regulates protein synthesis in heart during hypertrophy (18,19). However, it is not clear how AMPK regulates the other events, such as cardiac fetal gene expression, involved in the hypertrophy of the heart.

In the hypertrophic myocardium, activation of NFAT is a transcription factor plays a key role in the expression of cardiac fetal genes. Roughly 13% of the genes expressed in the human heart have the binding site for NFAT in their promoter region, while in advanced stages of heart failure, approximately 20-40% of these genes have modified expression (20). NFAT have five different isoforms, NFATc1-4, and NFAT5. NFATc1 - 4 are regulated by calcium signalling, while NFAT5 is regulated by the hyperosmotic environment of the cell (21). The protein levels and activity of NFAT is upregulated in age-related diseases and heart failure (22). Of note, NFAT transcription factors are involved in pathological, but not physiological forms of cardiac hypertrophy (23).

In the present work, we studied the role of SIRT2 in the development of heart failure. Our results suggest that SIRT2 deficiency induces spontaneous heart failure in mice. SIRT2 deficiency also exacerbates agonist-induced cardiac hypertrophy. On the other hand, overexpression of SIRT2 in cardiomyocytes antagonizes the agonist-induced cardiac hypertrophy through repression of NFAT.

RESULTS

SIRT2 is a cytoplasmic protein in cardiomyocytes

In dividing cells, SIRT2 is predominantly a cytoplasmic protein, but shuttles between the nucleus and cytoplasm during G2/M transition (24). Since cardiomyocytes are post-mitotic, we tested the localization of SIRT2 in cardiomyocytes by confocal microscopy. Our results suggest that SIRT2 is mostly cytoplasmic under basal conditions (Fig. 1A). Next, we tested whether SIRT2 localization is influenced by cardiac stressors, as previous reports suggested SIRT1, another sirtuin isoforms localisation to be regulated by stress (25). Cardiomyocytes were treated with phenylephrine (PE), a1-adrenergic receptor agonist, and its localization was tested. We did not see any major changes in the localization of SIRT2 when cells were treated with PE (Fig. 1A). These findings indicate that SIRT2 is majorly a cytoplasmic protein in cardiomyocytes under basal as well as stressed conditions.

SIRT2 levels are reduced during pathological hypertrophy of the heart

To understand the role of SIRT2 in the development of cardiac hypertrophy, we first tested the levels of SIRT2 in cardiomyocytes treated with PE or Isoproterenol (ISO). We found reduced levels of SIRT2 in PE treated cells by confocal microscopy (Fig 1A). Similarly, we found markedly low levels of SIRT2 in PE or ISO-treated cells by western blotting (Fig 1B-C). In the next set of experiments, we tested whether the cardiac hypertrophy is associated with reduced levels of SIRT2. We induced cardiac hypertrophy by chronically infusing the hypertrophic agonist,
isoproterenol (ISO) by implanting osmotic minipumps into the peritoneal cavity of mice (26). Our results suggest that chronic ISO infusion significantly increased HW/TL ratio, and contractile dysfunction (Fig 1D-E). Further qPCR analysis suggested that levels of fetal genes, ANP and BNP were significantly increased in ISO-infused mice indicating the development of cardiac hypertrophy (Fig 1F). Next, we analysed the mRNA and protein levels of SIRT2 in the hypertrophied hearts. We found significantly lower levels of SIRT2 mRNA in ISO-infused heart tissues by real-time qPCR analysis (Fig 1F). Similarly, we found markedly low levels of SIRT2 protein in ISO infused heart samples by western blotting (Fig 1G-H). In order to measure the SIRT2 levels during the initial stages of the development of cardiac hypertrophy, we analysed the SIRT2 levels at different time points post ISO infusion by western blotting. Western blotting analysis suggested that SIRT2 levels reduced significantly post-2 days ISO infusion and decreased further until the day tested (Fig 1I-J). These data indicate that SIRT2 levels decrease during cardiac hypertrophy and its deficiency might be associated with the development of cardiac hypertrophy.

SIRT2 deficiency induces spontaneous cardiac hypertrophy and failure

To test whether SIRT2 deficiency causes heart failure, we analysed the cardiac structure and function of C57BL/6 SIRT2 deficient (SIRT2-KO) mice at 2 and 9 months of age. Western blotting analysis confirmed deficiency of SIRT2 in SIRT2-KO mice heart (Fig 2A). At 2 months of age, SIRT2 deficient mice showed no obvious cardiac phenotype (Fig 2B-E). Interestingly, SIRT2 deficient mice developed cardiac hypertrophy with significantly increased heart weight to tibia length (HW/TL) ratio, wall thickness and left ventricular internal diameter at 9 months of age (Fig 2B-D). Further, echocardiographic analysis of 9 months old SIRT2 deficient mice indicated significantly reduced fractional shortening, an indicator of cardiac contractile dysfunction (Fig 2E). SIRT2 deficient mice hearts exhibited significant downregulation in the expression of α-MHC and upregulation of BNP, as measured by real time qPCR in 9 months old SIRT2 deficient mice heart (Fig 2F). Histological analysis indicated a significant increase in cardiomyocyte cross-sectional area in SIRT2 deficient mice hearts at 9 months of age (Fig. 2G-H). In addition, we found prominent interstitial and replacement fibrosis in the heart tissues of SIRT2 deficient mice (Fig 2G-I). The expression of fibrosis-associated genes, α-SMA, fibronectin-1 and collagen-1, were also upregulated in SIRT2 deficient mice heart samples at 9 months of age (Fig 2J). Collectively, these findings suggest that SIRT2 deficiency leads to spontaneous pathological cardiac hypertrophy, remodelling, fibrosis and subsequent heart failure.

SIRT2 deficiency exacerbates Isoproterenol-induced hypertrophy

Since SIRT2 deficient mice do not show any obvious cardiac phenotype at 2 months of age, we intended to test whether SIRT2 deficiency exacerbates agonist-induced cardiac hypertrophy. Chronic ISO infusion by implanting osmotic minipumps into the peritoneal cavity of mice resulted in nearly 40% cardiac hypertrophy in SIRT2-KO mice, whereas wild-type mice produced almost 20% cardiac hypertrophy, as assessed by HW/TL ratio and wall thickness (Fig 3A-B). In SIRT2-KO mice, fractional shortening was significantly low after treatment with ISO, when compared to controls, suggesting that SIRT2 deficiency markedly impairs cardiac functions following chronic hypertrophic agonist infusion (Fig 3C). Similarly, fibrosis was found to be significantly high in SIRT2-KO mice hearts as compared to control mice after ISO treatment (Fig 3D-E). These results suggest that SIRT2 deficiency exacerbates agonist-induced cardiac hypertrophic response in mice. These findings were consistent with the previous work, where SIRT2 deficiency exacerbated Ang II-induced cardiac hypertrophy (17).

SIRT2 depletion causes hypertrophy of cardiomyocytes in a cell autonomous manner

Since SIRT2-deficient mice lacks SIRT2 in all the tissues, the role of SIRT2 on cardiac functions may or may not be directly related to its role in cardiomyocytes. To test whether SIRT2 is
involved in cardiomyocyte hypertrophy, we performed experiments in cultured murine cardiomyocytes. SIRT2 levels were reduced in cardiomyocytes by transfecting specific siRNA pool and their susceptibility to cardiac hypertrophy was tested. SIRT2 depletion in cardiomyocytes was confirmed by western blotting analysis (Fig 4A). Interestingly, depletion of SIRT2 in cardiomyocytes significantly increased protein synthesis as measured by [3H]-leucine incorporation (Fig 4B). Similarly, western blotting analysis suggested that SIRT2 depleted cardiomyocytes exhibited increased expression of ANP at basal as well as PE or ISO-treated conditions (Fig 4C). Moreover, SIRT2 depleted cardiomyocytes showed perinuclear localization of ANP and sarcomere reorganization, which are hallmarks of cardiomyocyte hypertrophy (26,27) (Fig 4D). These findings indicate that SIRT2 depletion causes cardiomyocyte hypertrophy in a cell-autonomous manner.

SIRT2 overexpression blocks agonist-induced cardiomyocyte hypertrophy

To test whether SIRT2 activation blocks the cardiac hypertrophy, we analysed the effect of SIRT2 overexpression in PE-induced cardiomyocyte hypertrophy. We infected cardiomyocytes with adenovirus expressing SIRT2 and studied the hypertrophic response to PE or ISO treatment. SIRT2 overexpression in cardiomyocytes was confirmed by western blotting (Fig 4E). Cardiomyocytes were treated with PE or ISO for 48 hours, and their hypertrophic response was assessed. We found that SIRT2 overexpression attenuates PE as well as ISO-stimulated protein synthesis in cardiomyocytes as measured by [3H]-leucine incorporation assay (Fig 4F). To further validate the results of leucine incorporation assay, we used an alternative non-radioactive technique, which measures global protein synthesis by monitoring the labelling of nascent peptide to puromycin (28). Primary cardiomyocytes were infected with adenovirus-expressing SIRT2 and the basal and PE or ISO-induced puromycin incorporation was measured by western blotting using specific antibody against puromycin. Western blot analysis suggested that SIRT2 overexpression attenuates PE as well as ISO-stimulated protein synthesis in cardiomyocytes (Fig 4G-H). Further, we noted a marked reduction in PE or ISO-induced expression and perinuclear localization of ANP, cardiomyocyte size and sarcomere reorganization in SIRT2 overexpressing cardiomyocytes (Fig. 4G, 4I, 4J). Collectively, these results indicate that SIRT2 overexpression is sufficient to block agonist-induced cardiomyocyte hypertrophy.

SIRT2 deficiency hyperactivates NFAT signalling in heart

Previous studies indicate that Calcineurin-NFAT signalling regulates the cardiac hypertrophic response (29). NFAT transcriptionally regulates the expression of fetal genes such as ANP, Myh7 and CARP in cardiomyocytes (30). Since, our findings suggest that SIRT2 deficiency spontaneously activates fetal gene program in the heart, we hypothesized that SIRT2 might directly control NFAT signalling in heart. We performed western blotting analysis to detect the expression of NFATc2, a major NFAT isoform in heart tissue of 2 months and 9 months old SIRT2 deficient mice. Results suggested that SIRT2-deficient hearts exhibit increased levels of NFATc2 at both the age groups (Fig 5A). To test the endogenous NFAT activity, we quantified the expression of IFN-γ and ADSSL1, which are well-characterized targets of NFAT in the heart (31,32). Our qPCR results suggested that SIRT2 deficient hearts express significantly higher levels of NFAT target genes, suggesting that SIRT2 deficiency hyperactivated NFAT in the heart (Fig 5B).

In hypertrophic hearts, dephosphorylation of NFAT transcription factor by calcineurin, a Ca2+-dependent phosphatase, enhances nuclear localization and transcriptional activity of NFAT (30,33). Since our results show increased nuclear localization of NFAT in SIRT2 deficient cardiomyocytes, we expected that SIRT2 might modulate the levels and the activity of calcineurin. Interestingly, we do not find marked changes in the protein levels of calcineurin in SIRT2 deficient mice hearts at 2 months and 9 months of age (Fig 5A). Further, confocal microscopy analysis
suggested similar results (Fig. 5C-D). Moreover, we do not see any marked changes in the activity of calcineurin in SIRT2 deficient mice hearts (Fig 5E). These findings suggest that the increased activity of NFATc2 observed in SIRT2 deficient conditions is not associated with hyperactive calcineurin.

It is well accepted that increased calcium concentration activates calcineurin signalling in the heart (34). Therefore, we measured the calcium transients in control and SIRT2-depleted cardiomyocytes by live confocal microscopy. Under basal conditions, we do not find marked differences in calcium transients in wild-type and SIRT2-depleted cardiomyocytes. Similarly, treatment of PE in SIRT2-depleted cardiomyocytes does not change calcium transients (Fig 5F). Furthermore, cardiomyocytes overexpressing SIRT2 do not show any change in calcium transients at basal and PE-induced conditions (Fig 5G). These findings suggest that increased nuclear localization of NFAT is not related to calcium transients in SIRT2 deficient cardiomyocytes.

SIRT2 regulates the transcriptional activity of NFAT transcription factor

NFAT is known to be an acetylated protein and acetylation of NFATc1 by acetyl transferases p300 and PCAF promotes its stability, and thereby enhances the transcriptional activity of NFATc1 during osteoclast differentiation (35). Since SIRT2 is a cytoplasmic deacetylase, and our results suggest increased levels of NFATc2 in SIRT2 deficient mice, we suspected that SIRT2 might regulate the acetylation of NFATc2. To test whether SIRT2 interacts with NFATc2, we immunoprecipitated NFATc2 from heart samples and tested its binding with SIRT2 by western blotting. Our results suggest that SIRT2 interacts with NFATc2 (Fig 6A). To test whether SIRT2 deacetylates NFATc2, we performed an *in vitro* deacetylation assay, where NFATc2 was first acetylated by p300 acetyltransferase. Subsequently, acetylated NFATc2 was incubated with either WT or SIRT2-H187Y, a catalytic mutant of SIRT2. Western blotting analysis indicated WT, but not catalytic mutant-SIRT2 markedly reduced the acetylation status of NFATc2 (Fig 6B). These findings indicate that SIRT2 is a NFATc2 deacetylase.

Since, the nuclear localization of NFAT is required for its transcriptional activation, we tested the endogenous localization of NFATc2 in SIRT2 depleted murine cardiomyocytes by confocal microscopy. We found increased nuclear localisation of NFATc2 in SIRT2 depleted cardiomyocytes (Fig 6C-D). We further validated the effect of SIRT2 on the transcription activity of NFAT by an NFAT-responsive promoter/reporter (NFAT-Luc) assay. Our result suggested that SIRT2 inhibition by AGK2, a pharmacological inhibitor of SIRT2 significantly increased NFAT-Luc activity (Fig 6E). Moreover, SIRT2 depletion significantly increased the basal and PE-induced transcription activity of NFAT (Fig 6F). On the other hand, adenovirus-mediated overexpression of SIRT2 attenuated the activity of NFAT-Luc, suggesting that SIRT2 blocks the transcription activity of NFAT transcription factor in cardiomyocytes (Fig 6G). To further validate, whether SIRT2-mediated repression of NFAT requires its deacetylase activity, we performed reporter assay with wild-type and catalytically-inactive mutant of SIRT2. Cells were transiently overexpressed with either SIRT2-WT or SIRT2-H187Y mutant, and NFAT transcriptional activity was measured. Our result suggested that wild-type, but not SIRT2-H187Y attenuated PE-induced increased transcriptional activity of NFAT (Fig 6H). Collectively, our findings indicate that SIRT2 binds to and deacetylates NFATc2 transcription factor, and its deficiency might increase protein levels and nuclear translocation of NFATc2, resulting in an augmented transcriptional activity of NFATc2.

Inhibition of NFAT signalling rescues hypertrophy in SIRT2 deficient cardiomyocytes

To confirm the role of NFAT in the induction of hypertrophy in SIRT2 deficient cardiomyocytes, we tested the effects of VIVIT, a cell-permeable peptide inhibitor of NFAT (36). SIRT2-depleted cardiomyocytes were treated with
VIVIT and tested for the markers of cardiac hypertrophy. Our results suggest that treatment of VIVIT markedly reduce the endogenous transcriptional activity of NFAT, as measured by luciferase reporter assay (Fig 7A). Interestingly, treatment of VIVIT significantly attenuated the protein synthesis in SIRT2-depleted cardiomyocytes (Fig 7B), suggesting that inhibition of NFAT reduces cardiac hypertrophy in SIRT2-depleted cardiomyocytes. Similarly, treatment of VIVIT markedly reduced the perinuclear localization of ANP in SIRT2-depleted cardiomyocytes (Fig 7C), suggesting that inhibition of NFAT rescues the expression of fetal genes in SIRT2-depleted cardiomyocytes. To validate our findings in vivo, we performed rescue experiments with VIVIT in SIRT2-KO mice (36). Treatment with VIVIT significantly reduced HW/TL ratio and wall thickness, while increasing fractional shortening in SIRT2 deficient mice (Fig 7D-F), indicating that NFAT inhibition rescue the cardiac hypertrophy and contractile dysfunction resulting from SIRT2 deficiency.

DISCUSSION

We found that SIRT2 deacetylates and regulates the activity of NFATc2, a key effector of pathological cardiac remodelling. In previous reports, it has been shown that NFAT activity is upregulated in age-related diseases and heart failure (22). Moreover, the protein level of NFATc2 was increased in failing and aging hearts (37). Increased calcineurin/NFAT signalling in the diseased human and mouse myocardium reactsivate the transcription factor Hand2 and fetal gene program, intricately linked to pathological heart disease (38). Previous reports have shown that SIRT1, a founding member of Sirtuins, suppresses NFAT activity during inflammation in atherosclerosis (39,40). Similarly, SIRT3, a mitochondrial deacetylase deficiency in cardiomyocytes is known to upregulate the activity of NFAT (41). In our study, we found that SIRT2 is required to repress NFAT activity in the heart. Our finding is unique among Sirtuins, as our report suggests that SIRT2 binds to and deacetylates NFAT to regulate its transcription activity, which has not been demonstrated previously.

In our current work, we have shown that SIRT2 deficiency promotes cardiac hypertrophy through activation of NFAT transcription factors. Binding of PE and ISO to α-adrenergic receptor (AR) and β-adrenergic receptor respectively results in activation of G-protein coupled receptor via specific Gq subunit and downstream signalling. Second messengers such as cyclic AMP are produced by α-AR, whereas inositol-1,4,5-trisphosphate (InsP3) and diacylglycerol (DAG) are produced by stimulated β-AR (42). Both PE and ISO increase calcium concentration and hence hypertrophic response. Stimulation of both α-AR and β-AR results in an increase in the organisation of individual contractile myosin light chain into sarcomere and activate the immediate early gene program (43). Interestingly, NFAT transcription factor activation plays a key role in the cardiac hypertrophy induced by PE and ISO. PE induces NFAT translocation to the nucleus, leading to hypertrophy (44,45). Similarly, ISO activates NFAT and induces myocardial hypertrophy by increasing the expression of NFAT target fetal genes (46). Our data suggest that SIRT2 activation might antagonize NFAT-dependent cardiac hypertrophy independent of upstream cardiac stress stimuli.

Sirtuins have been known to play diverse roles in heart failure. SIRT3 and SIRT6 are known to be protective against hypertrophy and heart failure (26,27). SIRT7 is protective against inflammatory cardiomyopathy (47). A recent report shows the protective nature of SIRT5 in the heart (48). On contrast, SIRT1 and SIRT4 are known to induce hypertrophy (49,50). On similar lines, previous studies have shown that SIRT1 is involved in the progression of cardiac hypertrophy through the suppression of ERR transcriptional pathway by SIRT1, thus inducing mitochondrial dysfunction and heart failure (49). Our previous work has also shown that SIRT1 induces cardiac hypertrophy (50). Therefore, SIRT1 and SIRT2, though both are localized in cardiomyocyte cytoplasm, may have a contrasting role in the regulation of cardiac hypertrophy. Since cardiomyocytes are post-mitotic cells, SIRT2 is localized in the cytoplasm, even upon induction.
with hypertrophic agonists. This is in concurrence with the previous reports that SIRT2 is a cytoplasmic protein and shuttles to the nucleus during G2/M transition (29). In the current work, we used whole-body SIRT2 deficient mice, which lacks SIRT2 in all the cell types in heart, including cardiac fibroblasts. Since SIRT2 is expressed in fibroblasts as well, the phenotype found in SIRT2-KO mice might be due to the cumulative role of SIRT2 in cardiomyocytes and fibroblasts.

SIRT2 levels have been seen to be downregulated in aging-related disorders like diabetes, metabolic regulation and age-related immune and inflammatory responses (51,52). SIRT2 has also been shown to act as a tumor suppressor (53). Ectopic expression of SIRT2 led to a reduction in the colony formation ability in glioma cell lines (54). SIRT2 deficiency is known to promote genomic instability which is an early event in carcinogenesis (55-58). Consistently, genomic data analysis has shown SIRT2 expression to be downregulated in human hepatocellular carcinoma and breast cancer (59). Similarly, microarray analysis has shown reduced SIRT2 expression at the mRNA level in glioblastoma, prostate cancer, oligodendroglioma and clear cell renal carcinoma (60). In our study too, we found SIRT2 to be downregulated in the later stages of hypertrophic heart samples. These findings suggest that SIRT2 can be used as a biomarker to hint at the onset of hypertrophy and heart failure.

Recently, SIRT2 has been shown to protect heart from Ang II-induced hypertrophic stimuli by promoting the activity of AMPK by deacetylating its upstream kinase LKB1 (17). Similarly, our work demonstrates that SIRT2 activation protects the heart from aging-associated and isoproterenol-induced pathological cardiac hypertrophy by repressing NFAT transcription factors. It is well documented that induction of cardiac hypertrophy involves activation of two key events, (1) fetal gene transcription and (2) cellular protein synthesis. Inhibiting either of these events blunts the pathological cardiac growth. Though, AMPK is defined as a key regulator of cardiac energy homeostasis, it regulates cardiac protein synthesis associated with cardiomyocyte hypertrophy (18,19). On the other hand, NFAT transcription factors are master regulators of cardiac fetal gene expression (61). Our findings indicate that SIRT2 regulates the cardiac hypertrophy by inhibiting both fetal gene transcription and cellular protein synthesis. It is possible that SIRT2 might regulate these processes through two different arms, i.e. AMPK and NFAT transcription factors. Since, NFAT inhibition rescues the cardiac hypertrophy in SIRT2-deficient mice, we cannot rule out this possibility. Overall, our work identified SIRT2 as a novel regulator of NFAT transcription factors and the development of pathological cardiac hypertrophy. We believe that SIRT2 activators may protect the heart against adverse remodelling and failure.

EXPERIMENTAL PROCEDURES

Animals, cell culture, reagents and methods

All animal experiments carried out were with the approval of the Institutional animal ethics committee of Indian institute of science, Bengaluru, India constituted as per the article number 13 of the Committee for the Purpose of Control and Supervision of Experiments on Animals (CPCSEA), Government of India. SIRT2 knockout mice were purchased from the Jackson Laboratories, USA. All animals were housed in the clean air facility in Indian Institute of Science in individually ventilated cages (IVC). Mice were sacrificed using CO₂ and heart tissues were harvested. Primary cardiomyocytes were isolated from neonatal rat and mice using our previous publication (62). Adenovirus for SIRT2 overexpression was purchased from Vector Biolabs, USA. Phenylephrine was used at a concentration of 20 µM. [³H]-leucine incorporation assay was described in our earlier work (63). Plasmids used in the study were procured from Addgene. WGA was purchased from Molecular probes. NFAT inhibitor (VIVIT-N7032) were purchased from Sigma. Puromycin was purchased from Amresco. All chemicals were purchased from sigma unless specified.
Western blot analysis

Protocol for western blotting has been previously reported (27,50). Protein concentration was determined by Bradford assay. Following antibodies were used: α-Actinin (Sigma Aldrich), SIRT2 (Millipore, Sigma Aldrich, Cell Signaling®), ANP (Abcam, Sunny Corp®), NFATc2 (Thermo scientific), Calcineurin (Thermo Scientific), NFAT (Thermo Scientific), Acetyl Lysine (Millipore, Cell signaling), Puromycin (DSHB), α-SMA (Millipore), Fn1 (Santa Cruz), Col1a (Sigma Aldrich), Col3a (Santa Cruz). GAPDH (Santa Cruz) and Actin (Thermo Scientific, Sunny Corp). # marked antibody gives single band for SIRT2 as shown in Fig.s. * marked antibody give double bands for ANP as shown in Fig.s. ECL reagents were used to develop the blots in a Chemidoc Touch, Biorad chemiluminescence detection system.

Confocal microscopy and live imaging

We have described the protocol for immunofluorescence in our previous publication (26,64). Cells were fixed with formaldehyde (4%) and were permeabilized using 0.2% Triton X-100. Cells were incubated with the primary antibodies, followed by incubation with secondary antibodies conjugated with Alexa fluor 488 and/or 546. Hoechst was used to stain the nuclei. Carl-Zeiss LSM 710 confocal microscope was used to acquire images. The detailed protocol for measurement of cytosolic Ca\(^{2+}\) transients has been described in our previous work (62). Imaging was done in cell culture dishes placed at 37°C and 5% CO\(_2\) in a special chamber incubator mounted on the Zeiss LSM 880 microscope. The fluorescence emission was measured with 488 nm excitation laser for Fluo-4 for control or PE-treated cells with high speed imaging.

Luciferase reporter assay

The protocol for NFAT luciferase reporter assay was described in our previous publication(65). We used Renilla luciferase for normalizing the luciferase signal. Luciferase activity was measured using a luminometer (Pharmingen Moonlight 3010; BD Biosciences, San Jose, CA, USA).

SUnSET Assay

Surface sensing of translation (SUnSET) a non-radioactive method was performed to measure in-vitro protein synthesis (28). For puromycin incorporation into nascent peptides, cardiomyocytes were treated with 1 μM puromycin for 30 min. Cells were harvested in lysis buffer. Total protein in the lysate were quantified by Bradford assay, and samples were boiled in Laemmli Sample Buffer (Bio-Rad) supplemented with 5% β-mercaptoethanol for 5 min at 96°C. Puromycin signal was captured after western blotting using anti-puromycin antibody (DSHB, University of Iowa) using a Chemidoc Touch, Biorad, US.

Histology

Age matched wild type and SIRT2-KO mice hearts were collected and fixed in 10% neutral buffered formalin. An automated tissue processor (Leica, Germany) was used for tissue processing. Fibrosis was observed and measured by staining paraffin embedded 4μm thick sections with Masson’s trichrome stain (Sigma). Fibrosis was scored in a blinded fashion as described in our previous publications (27,50). Myocyte cell size was measured in sections stained with wheat germ agglutinin (WGA, 5μg/ml).

Echocardiography of mice

Isoflurane (~1%) inhalation was used for anaesthetizing the mice. A topical depilatory agent was used for removing chest hair of the mice. Limb leads were attached for electronic grating and VisualSonics Vevo 1100 was used for the imaging of the animals in the left lateral decubitus position. Warming lamps along with a heated imaging platform was used for maintaining the body temperature of the mice. Wall thickness, left ventricular chamber size and fractional shortening were measured (27,50).

Real-time qPCR analysis

Our previous publication describes the detailed protocol for real-time qPCR (26,64). The primer sequences used are: SIRT2 For.: GCAGTGTCAAGAGCGTGTA, SIRT2 Rev.:
SIRT2 represses NFAT transcription factor

CTAGTGGTGCCCTTGCTGATG; ANP For.: CCTGTGTACAGTGCGGTGTC, ANP Rev.: CCTCATCTTACCAGCCATC; BNP For.: AAGGGAGAATACGGCATCATTG, BNP Rev.: ACAGCACCTTCAGGAGATCCA; α-MHC For.: TAAATTTGAGCAGGGACAGGCC, α-MHC Rev.: TCCAGCTCCTCGATGCGT; α-SMA For.: CTGACAGGGCCACACTGAA, α-SMA Rev.: CATCTCCAGAGTCCAGCACA; Fibronectin-1 For.: GCGGTGTCTGACGCTGGCT, Fibronectin-1 Rev.: TGGGTTCAGCAGCCCCAGGT; Collagen-1 For.: TGCTGCTTGCAGTAACGTCG, Collagen-1 Rev.: TCAACACCATCTCTGCCTCG; IFN-γ For.: AACTGGCAAAAGGATGGTGAC, IFN-γ Rev.: TTGCTGATGGCCTTGATTGTC; ADSSL1 For.: GGCTCACCTTGTGTTCGACT, ADSSL1 Rev.: TTCCCCTTCTTGGCTTGACG; Actin For.: TTCTACAATGAGCTCGTGTTG, Actin Rev.: GGGTTGGAGGTCTCTCAA; GAPDH For.: TATGTCGTGGAGTCTACTGGT, GAPDH Rev.: GAGTTGTCATATTTCTCGTGG.

Quantification and statistical analysis

Graph-pad prism version 6.04 software was used for data analysis and for graph preparation. Data analysis was performed by t-test, one-way ANOVA, and two-way ANOVA. ZEN and ImageJ software were used for analysing confocal images. Densitometric analysis was performed by ImageJ.

Conflicts of interests: None

Author contributions: N.R.S. conceived and designed the study. M.S., and S.M. performed echocardiography, Leucine incorporation assay, reporter assay, immunoprecipitation assay, activity assays and animal experiments. S.M. A.K.T and S.K. performed western blotting. P.A.D. did histology. A.J. performed live confocal microscopy. K.M.S. performed confocal microscopy. V.R., D.K. and P.A.S. performed qPCR. S.R., and M.I. performed site directed mutagenesis. S.M., S.K. and S.M. analysed the data and wrote first draft of the manuscript. N.R.S. coordinated the study and prepared the final draft of the manuscript.

REFERENCES

1. Liew, C. C., and Dzau, V. J. (2004) Molecular genetics and genomics of heart failure. *Nat Rev Genet* **5**, 811-825
2. Heineke, J., and Molkentin, J. D. (2006) Regulation of cardiac hypertrophy by intracellular signalling pathways. *Nature reviews. Molecular cell biology* **7**, 589-600
3. Harvey, P. A., and Leinwand, L. A. (2011) Cellular mechanisms of cardiomyopathy. *J Cell Biol* **194**, 355-365
4. Mittmann, C., Eschenhagen, T., and Scholz, H. (1998) Cellular and molecular aspects of contractile dysfunction in heart failure. *Cardiovasc Res* **39**, 267-275
5. Han, X. F., and Ren, J. (2010) Caloric restriction and heart function: is there a sensible link? *Acta Pharmacol Sin* **31**, 1111-1117
6. Dolinsky, V. W., and Dyck, J. R. B. (2011) Calorie restriction and resveratrol in cardiovascular health and disease. *Bba-Mol Basis Dis* **1812**, 1477-1489
7. Pina, I. L., and Fitzpatrick, J. T. (1996) Exercise and heart failure - A review. *Chest* **110**, 1317-1327
8. Guarente, L. (2007) Sirtuins in aging and disease. *Cold Spring Harb Sym* **72**, 483-488
9. Outeiro, T. F., Kontopoulos, E., Altmann, S. M., Kufareva, I., Strathearn, K. E., Amore, A. M., Volk, C. B., Maxwell, M. M., Rochet, J. C., McLean, P. J., Young, A. B., Abagyan, R., Feany, M.
B., Hyman, B. T., and Kazantsev, A. G. (2007) Sirtuin 2 inhibitors rescue alpha-synuclein-mediated toxicity in models of Parkinson’s disease. *Science* **317**, 516-519

10. de Oliveira, R. M., Sarkander, J., Kazantsev, A. G., and Outeiro, T. F. (2012) SIRT2 as a therapeutic target for age-related disorders. *Front Pharmacol* **3**

11. Yu, W., Zhou, H. F., Lin, R. B., Fu, Y. C., and Wang, W. (2014) Short-term calorie restriction activates SIRT1 and 7 in cardiomyocytes in vivo and in vitro. *Molecular medicine reports* **9**, 1218-1224

12. Krishnan, J., Danzer, C., Simka, T., U Kropec, J., Walter, K. M., Kumpf, S., Mirtschink, P., U Kropecova, B., Gasperikova, D., Pedrazzini, T., and Krek, W. (2012) Dietary obesity-associated Hif1alpha activation in adipocytes restricts fatty acid oxidation and energy expenditure via suppression of the Sirt2-NAD+ system. *Genes & development* **26**, 259-270

13. Yang, X., Park, S. H., Chang, H. C., Shapiro, J. S., Vassilopoulos, A., Sawicki, K. T., Chen, C., Shang, M., Burridge, P. W., Epting, C. L., Wilsbacher, L. D., Jenkitkasemwong, S., Knutson, M., Gius, D., and Ardehali, H. (2017) Sirtuin 2 regulates cellular iron homeostasis via deacetylation of transcription factor NFR2. *The Journal of clinical investigation* **127**, 1505-1516

14. Kim, H. S., Vassilopoulos, A., Wang, R. H., Lahusen, T., Xiao, Z., Xu, X., Li, C., Veenstra, T. D., Li, B., Yu, H., Ji, J., Wang, X. W., Park, S. H., Cha, Y. I., Gius, D., and Deng, C. X. (2011) SIRT2 maintains genome integrity and suppresses tumorigenesis through regulating APC/C activity. *Cancer cell* **20**, 487-499

15. Yuan, Q., Zhan, L., Zhou, Q. Y., Zhang, L. L., Chen, X. M., Hu, X. M., and Yuan, X. C. (2015) SIRT2 regulates microtubule stabilization in diabetic cardiomyopathy. *European journal of pharmacology* **764**, 554-561

16. Dieleman, L. A., Ridwan, B. U., Tennyson, G. S., Beagley, K. W., Bucy, R. P., and Elson, C. O. (1994) Dextran sulfate sodium-induced colitis occurs in severe combined immunodeficient mice. *Gastroenterology* **107**, 1643-1652

17. Tang, X., Chen, X. F., Wang, N. Y., Wang, X. M., Liang, S. T., Zheng, W., Lu, Y. B., Zhao, X., Hao, D. L., Zhang, Z. Q., Zou, M. H., Liu, D. P., and Chen, H. Z. (2017) SIRT2 Acts as a Cardioprotective Deacetylase in Pathological Cardiac Hypertrophy. *Circulation* **292**, H1460-1469

18. Chan, A. Y., Soltys, C. L., Young, M. E., Proud, C. G., and Dyck, J. R. (2004) Activation of AMP-activated protein kinase inhibits protein synthesis associated with hypertrophy in the cardiac myocyte. *J Biol Chem* **279**, 32771-32779

19. Putt, M. E., Hannenhalli, S., Lu, Y., Haines, P., Chandrupatla, H. R., Morrisey, E. E., Margulies, K. B., and Cappola, T. P. (2009) Evidence for coregulation of myocardial gene expression by MEF2 and NFAT in human heart failure. *Circulation : Cardiovascular genetics* **2**, 212-219

20. Woo, S. K., Lee, S. D., and Kwon, H. M. (2002) TonEBP transcriptional activator in the cellular response to increased osmolality. *Pflugers Archiv : European journal of physiology* **444**, 579-585

21. Molkentin, J. D. (2004) Calcineurin-NFAT signaling regulates the cardiac hypertrophic response in coordination with the MAPks. *Cardiovasc Res* **63**, 467-475

22. Wilkins, B. J., Dai, Y. S., Bueno, O. F., Parsons, S. A., Xu, J., Plank, D. M., Jones, F., Kimball, T. R., and Molkentin, J. D. (2004) Calcineurin/NFAT coupling participates in pathological, but not physiological, cardiac hypertrophy. *Circ Res* **94**, 110-118

23. North, B. J., and Verdin, E. (2007) Interphase nucleo-cytoplasmic shuttling and localization of SIRT2 during mitosis. *PloS one* **2**, e784

24. Tanno, M., Sakamoto, J., Miura, T., Shimamoto, K., and Horio, Y. (2007) Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1. *J Biol Chem* **282**, 6823-6832
SIRT2 represses NFAT transcription factor

26. Sundaresan, N. R., Gupta, M., Kim, G., Rajamohan, S. B., Isbatan, A., and Gupta, M. P. (2009) SIRT3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. *J Clin Invest* **119**, 2758-2771

27. Sundaresan, N. R., Vasudevan, P., Zhong, L., Kim, G., Samant, S., Parekh, V., Pillai, V. B., Ravindra, P. V., Gupta, M., Jeevanandam, V., Cunningham, J. M., Deng, C. X., Lombard, D. B., Mostoslavsky, R., and Gupta, M. P. (2012) The sirtuin SIRT6 blocks IGF-Akt signaling and development of cardiac hypertrophy by targeting c-Jun. *Nat Med* **18**, 1643-1650

28. Schmidt, E. K., Clavario, G., Ceppi, M., and Pierre, P. (2009) SUnSET, a nonradioactive method to monitor protein synthesis. *Nature methods* **6**, 275-277

29. North, B. J., and Verdin, E. (2007) Interphase Nucleo-Cytoplasmic Shuttling and Localization of SIRT2 during Mitosis. *PloS one* **2**

30. Schulz, R. A., and Yutzey, K. E. (2004) Calcineurin signaling and NFAT activation in cardiovascular and skeletal muscle development. *Developmental biology* **266**, 1-16

31. Wen, H. Y., Xia, Y., Young, M. E., Taegtmeyer, H., and Kellems, R. E. (2002) The adenylosuccinate synthetase-1 gene is activated in the hypertrophied heart. *J Cell Mol Med* **6**, 235-243

32. Sica, A., Dorman, L., Viggiano, V., Cippitelli, M., Ghosh, P., Rice, N., and Young, H. A. (1997) Interaction of NF-kappaB and NFAT with the interferon-gamma promoter. *J Biol Chem* **272**, 30412-30420

33. Wilkins, B. J., Dai, Y. S., Bueno, O. F., Parsons, S. A., Xu, J., Plank, D. M., Jones, F., Kimball, T. R., and Molkentin, J. D. (2004) Calcineurin/NFAT coupling participates in pathological, but not physiologial, cardiac hypertrophy. *Circulation research* **94**, 110-118

34. Perrino, B. A., Ng, L. Y., and Soderling, T. R. (1995) Calcium regulation of calcineurin phosphatase activity by its B subunit and calmodulin. Role of the autoinhibitory domain. *J Biol Chem* **270**, 340-346

35. Kim, J. H., Kim, K., Youn, B. U., Jin, H. M., Kim, J. Y., Moon, J. B., Ko, A., Seo, S. B., Lee, K. Y., and Kim, N. (2011) RANKL induces NFATc1 acetylation and stability via histone acetyltransferases during osteoclast differentiation. *Biochemical Journal* **436**, 253-262

36. Fang, J., Li, T. Y., Zhu, X. H., Deng, K. Q., Ji, Y. X., Fang, C., Zhang, X. J., Guo, J. H., Zhang, P. P., Li, H. L., and Wei, X. (2017) Control of Pathological Cardiac Hypertrophy by Transcriptional Corepressor IRF2BP2 (Interferon Regulatory Factor-2 Binding Protein 2). *Hypertension* **70**, 515-+

37. Bourajjaj, M., Armand, A. S., Martins, P. A. D. C., Weijts, B., van der Nagel, R., Heeneman, S., Wehrens, X. H., and De Windt, L. J. (2008) NFATc2 is a necessary mediator of calcineurin-dependent cardiac hypertrophy and heart failure. *Journal of Biological Chemistry* **283**, 22295-22303

38. Dirkk, E., Gladka, M. M., Philippen, L. E., Armand, A. S., Kinet, V., Leptidis, S., el Azzouni, H., Salic, K., Bourajjaj, M., da Silva, G. J. J., Olieslagers, S., van der Nagel, R., de Weger, R., Bitsch, N., Kisters, N., Seyen, S., Morikawa, Y., Chanoine, C., Heymans, S., Volders, P. G. A., Thum, T., Dimmel, S., Cserjesi, P., Eschenhagen, T., Martins, P. A. D., and De Windt, L. J. (2013) Nfat and miR-25 cooperate to reactivate the transcription factor Hand2 in heart failure. *Nature cell biology* **15**, 1282-U1262

39. Kitada, M., Ogura, Y., and Koya, D. (2016) The protective role of Sirt1 in vascular tissue: its relationship to vascular aging and atherosclerosis. *Aging-Us* **8**, 2290-2307

40. Stein, S., and Matter, C. M. (2011) Protective roles of SIRT1 in atherosclerosis. *Cell Cycle* **10**, 640-647

41. Sundaresan, N. R., Gupta, M., Kim, G., Rajamohan, S. B., Isbatan, A., and Gupta, M. P. (2009) Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. *J Clin Invest* **119**, 2758-2771

42. Rockman, H. A., Koch, W. J., and Lefkowitz, R. J. (2002) Seven-transmembrane-spanning receptors and heart function. *Nature* **415**, 206-212
Iwaki, K., Sukhatme, V. P., Shubeita, H. E., and Chien, K. R. (1990) Alpha- and beta-adrenergic stimulation induces distinct patterns of immediate early gene expression in neonatal rat myocardial cells. fos/jun expression is associated with sarcomere assembly; Egr-1 induction is primarily an alpha 1-mediated response. J Biol Chem 265, 13809-13817

Pu, W. T., Ma, Q., and Izumo, S. (2003) NFAT transcription factors are critical survival factors that inhibit cardiomyocyte apoptosis during phenylephrine stimulation in vitro. Circ Res 92, 725-731

van Rooij, E., Doevendans, P. A., de Theije, C. C., Babiker, F. A., Molkentin, J. D., and de Windt, L. J. (2002) Requirement of nuclear factor of activated T-cells in calcineurin-mediated cardiomyocyte hypertrophy. J Biol Chem 277, 48617-48626

Hojayev, B., Rothermel, B. A., Gillette, T. G., and Hill, J. A. (2012) FHL2 binds calcineurin and represses pathological cardiac growth. Mol Cell Biol 32, 4025-4034

Vakhrusheva, O., Smolka, C., Gajawada, P., Kostin, S., Boettger, T., Kubin, T., Braun, T., and Bober, E. (2008) Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice. Circulation research 102, 703-710

Sadhuksan, S., Liu, X., Ryu, D., Nelson, O. D., Stupinski, J. A., Li, Z., Chen, W., Zhang, S., Weiss, R. S., Locasale, J. W., Auwerx, J., and Lin, H. (2016) Metabolomics-assisted proteomics identifies succinylation and SIRT5 as important regulators of cardiac function. Proc Natl Acad Sci U S A 113, 4320-4325

Oka, S., Alcendor, R., Zhai, P., Park, J. Y., Shao, D., Cho, J., Yamamoto, T., Tian, B., and Sadoshima, J. (2011) PPARalpha-Sirt1 complex mediates cardiac hypertrophy and failure through suppression of the ERR transcriptional pathway. Cell metabolism 14, 598-611

Sundaresan, N. R., Pillai, V. B., Wolfgeher, D., Samant, S., Vasudev, P., Parekh, V., Raghuraman, H., Cunningham, J. M., Gupta, M., and Gupta, M. P. (2011) The Deacetylase SIR1 Promotes Membrane Localization and Activation of Akt and PDK1 During Tumorigenesis and Cardiac Hypertrophy. Sci Signal 4

Jiang, W., Wang, S., Xiao, M., Lin, Y., Zhou, L., Lei, Q., Xiong, Y., Guan, K. L., and Zhao, S. (2011) Acetylation regulates gluconeogenesis by promoting PEPCK1 degradation via recruiting the UBR5 ubiquitin ligase. Molecular cell 43, 33-44

Rothgiesser, K. M., Erener, S., Waibel, S., Luscher, B., and Hottiger, M. O. (2010) SIRT2 regulates NF-kappa B-dependent gene expression through deacetylation of p65 Lys310. Journal of cell science 123, 4251-4258

Park, S. H., Zhu, Y. M., Ozden, O., Kim, H. S., Jiang, H. Y., Deng, C. X., Gius, D., and Vassilopoulos, A. (2012) SIRT2 is a tumor suppressor that connects aging, acetylome, cell cycle signaling, and carcinogenesis. Transl Cancer Res 1, 15-21

Hiratsuka, M., Inoue, T., Toda, T., Kimura, N., Shirayoshi, Y., Kamitani, H., Watanabe, T., Ohama, E., Tahimic, C. G. T., Kurimasa, A., and Oshimura, M. (2003) Proteomics-based identification of differentially expressed genes in human gliomas: down-regulation of SIRT2 gene. Biochemical and biophysical research communications 309, 558-566

Guarente, L. (2000) Sir2 links chromatin silencing, metabolism, and aging. Gene Dev 14, 1021-1026

Krylyenko, S., Krylyenko, O., Suuronen, T., and Salminen, A. (2003) Differential regulation of the Sir2 histone deacetylase gene family by inhibitors of class I and II histone deacetylases. Cell Mol Life Sci 60, 1990-1997

Lombard, D. B., Chua, K. F., Mostoslavsky, R., Franco, S., Gostissa, M., and Alt, F. W. (2005) DNA repair, genome stability, and aging. Cell 120, 497-512

Mostoslavsky, R., Chua, K. F., Lombard, D. B., Pang, W. W., Fischer, M. R., Gellon, L., Liu, P. F., Mostoslavsky, G., Franco, S., Murphy, M. M., Mills, K. D., Patel, P., Hsu, J. T., Hong, A. L., Ford, E., Cheng, H. L., Kennedy, C., Nunez, N., Bronson, R., Frendewey, D., Auerbach, W., Valenzuela, D., Karow, M., Hottiger, M. O., Hursting, S., Barrett, J. C., Guarente, L., Mulligan, R., Demple,
SIRT2 represses NFAT transcription factor...
and Atrial natriuretic peptide (ANP). n=4 mice. H, Quantification of SIRT2 from Fig. 1(G). I, Western blot analysis of vehicle or isoproterenol (ISO) treated mice for SIRT2, n=4 mice. J, Quantification of SIRT2 from Fig. 1(I).

FIGURE 2. SIRT2 deficiency induces cardiac hypertrophy. A, Western blot analysis of wild type (WT) and SIRT2 knockout (SIRT2-KO) mice hearts for SIRT2. B, Scatter plot representing HW/TL ratio of WT and SIRT2-KO mice at 2 months and 9 months of age. Mean ± SD, n=5 mice, *p<0.05. C-E, Scatter plots depicting left ventricular wall thickness (C), left ventricular internal diameter (D) and fractional shortening (E) of WT and SIRT2-KO mice at 2 months and 9 months of age. n=3-5 mice, Mean ± SD, *p<0.05. F, qPCR analysis of α-MHC and BNP in WT and SIRT2-KO mice hearts at 9 months of age. n=4 mice, Mean ± SD, *p<0.05. G-i, Representative confocal images showing WGA staining in sections of WT and SIRT2-KO mice hearts at 9 months of age. (Scale bar= 50µm). G-ii, Heart sections of 9 months old WT and SIRT2-KO mice stained with Masson’s trichrome stain showing cardiac fibrosis. n= 3-5 mice. H, Graph showing relative cardiomyocyte cross sectional area measured from Fig. 2 (G-i). I, Scatter plot showing fibrosis scored in a blinded fashion from Fig. 2(G-ii), n= 5 mice, Mean ± SD, *p<0.05. J, qPCR analysis of alpha smooth muscle Actin (α-SMA), fibronectin 1 (fn1) and Collagen I (Col1) in WT and SIRT2-KO mice hearts at 9 months of age. n=3-4 mice, Mean ± SD, *p<0.05.

FIGURE 3. SIRT2 deficiency augments agonist-induced cardiac hypertrophy. A, Scatter plot showing HW/TL ratio of 2 months old wild type (WT) and SIRT2 knockout (SIRT2-KO) mice treated with vehicle or isoproterenol (5 mg/kg/day) for 7 days. n=5 mice, mean ± SD, *p<0.05.B, Scatter plot depicting left ventricular wall thickness of 2 months old WT and SIRT2-KO mice treated with vehicle or ISO. n=5 mice, Mean ± SD, *p<0.05. C, Scatter plot depicting fractional shortening of 2 months old WT and SIRT2-KO mice treated with vehicle or ISO. n=5 mice, mean ± SD, *p<0.05.D, Heart sections of 2 months old WT and SIRT2-KO mice treated with vehicle or ISO stained with Masson’s trichrome stain to detect fibrosis. n=5 mice. E, Graph showing relative fibrosis scored in a blinded fashion from Fig. 3(D). n=5 mice, Mean ± SD, *p<0.05.

FIGURE 4. SIRT2 depletion induces hypertrophy in cardiomyocytes. A, Western blot analysis confirming depletion of SIRT2 in cardiomyocytes transfection with SIRT2 specific siRNA. B, [3H]-leucine incorporation into cellular proteins of neonatal rat cardiomyocytes transfected with control or SIRT2 siRNA. n = 5 mice, Mean ± SD, *p<0.05. c.p.m. counts per minute. C, Western blot analysis of control and SIRT2-knockdown (SIRT2-KD) cardiomyocytes treated with vehicle or PE (20µM) or ISO (20µM) for 48 hr and probed for ANP and SIRT2. D, Representative confocal images of control and SIRT2-KD cardiomyocytes treated with vehicle or PE (20µM) or ISO (20µM) for 48 hr and further stained with ANP and α-Actinin or myomesin. Scale bar= 20µm. E, Western blot analysis showing overexpression of SIRT2 in cardiomyocytes. F, [3H]-leucine incorporation into total cellular protein of neonatal rat cardiomyocytes infected with SIRT2 (Ad-SIRT2) or control adenovirus (Ad-GFP) and then treated with vehicle or PE (20µM) or ISO (20µM) for 48 hr. n = 5, Mean ± SD, *p<0.05. c.p.m. counts per minute. G, Western blot analysis of Ad-null or Ad-SIRT2 expressing cardiomyocytes treated with vehicle or PE (20µM) or ISO (20µM) for 48 hr and harvested after puromycin treatment (1µM), and probed for puromycin, ANP, and SIRT2. H, Quantification of Puromycin incorporation from Fig. 4(G). I, Representative confocal images of control and SIRT2 overexpressing cardiomyocytes treated with vehicle or PE (20µM) or ISO (20µM) for 48 hr and stained with ANP and α-Actinin or myomesin. Scale bar= 20µm. J, Graph showing quantification of relative cardiomyocyte size measured from Fig. 4(I).

FIGURE 5: SIRT2 deficiency increases NFATc2 levels in mice hearts. A, Western blot analysis of 2 months and 9 months old WT and SIRT2-KO mice hearts samples for Nuclear factor of activated T-cells (NFATc2), calcineurin and SIRT2. B, qPCR analysis of IFN-γ and ADSSL1 in 9 months old WT and
SIRT2 represses NFAT transcription factor in SIRT2-KO mice hearts. n=3-4 mice, Mean ± SD, *p<0.05. C, Representative confocal images showing control and SIRT2-KD cardiomyocytes stained for calcineurin and SIRT2. Scale bar= 20µm for upper panel, 10µm for lower panel. D, Graph showing quantification of calcineurin from Fig. 5 (C), Mean ± SD, *p<0.05. E, Scatter plot showing calcineurin activity assay in 9 months old WT and SIRT2-KO mice hearts. n=5 mice, Mean ± SD, *p<0.05. F, Graph showing the calcium transients in control and SIRT2-KD cardiomyocytes treated with either vehicle or PE. G, Graph showing the calcium transients in Ad-null and Ad-SIRT2 overexpressing cardiomyocytes treated with either vehicle or PE.

FIGURE 6. SIRT2 deacetylates NFATc2 and inhibits its activity. A, Western blot analysis of SIRT2 interaction with NFATc2. SIRT2 was immunoprecipitated from heart lysates and probed for its integration with NFATc2. B, In vitro deacetylation assay where recombinant acetylated-NFATc2 was incubated with wild type or SIRT2-H187Y in the presence of NAD+. NFATc2 acetylation was analysed by western blotting. C, Representative confocal images showing control and SIRT2-KD cardiomyocytes stained for NFATc2. Scale bar = 5µm. D, Graph showing quantification of NFATc2 from Fig. 4 (C), Mean ± SD, *p<0.05. E, Luciferase activity in vehicle or AGK2 treated cells transfected with NFAT-Luc plasmid, n=3-5, Mean ± SD, *p<0.05. F, Luciferase activity in control and SIRT2 knock-down (SIRT2-KD) cells treated with vehicle or PE (20µM) for 48 hr, n=3, Mean ± SD, *p<0.05. G, Luciferase activity in control and SIRT2 overexpressing cardiomyocytes transfected with NFAT-Luc plasmid, Mean ± SD, n=4, *p<0.05. H, Luciferase activity in wild type SIRT2 and SIRT2-H187Y overexpressing cells treated with vehicle or PE (20µM) for 48 hr, n=3, Mean ± SD, *p<0.05.

FIGURE 7. NFAT inhibition rescues hypertrophy in SIRT2 depleted cardiomyocytes. A, Luciferase reporter assay for cells treated with vehicle or NFAT inhibitor (VIVIT, 1µM). B, [3H]-leucine incorporation into total cellular protein of control and SIRT2-KD cardiomyocytes treated with vehicle or NFAT inhibitor (VIVIT, 1µM), n = 5, Mean ± SD, *p<0.05. c.p.m. counts per minute. C, Representative confocal images showing ANP expression in vehicle or NFAT inhibitor (VIVIT, 1µM) treated control and SIRT2-KD cardiomyocytes. D, Scatter plot representing HW/TL ratio of 9 months old WT and SIRT2-KO mice treated with either vehicle or NFAT inhibitor VIVIT for 14 days. n=5 mice, Mean ± SD, *p<0.05. E, Scatter plot depicting left ventricular wall thickness of 9 months old WT and SIRT2-KO mice treated with either vehicle or NFAT inhibitor VIVIT for 14 days. n=5 mice, Mean ± SD, *p<0.05. F, Scatter plot depicting fractional shortening of 9 months old WT and SIRT2-KO mice treated with either vehicle or NFAT inhibitor VIVIT (10mg/kg) for 14 days. n=5 mice, Mean ± SD, *p<0.05. G, Schematic representation of the proposed mechanism. Under physiological conditions, SIRT2 deacetylates NFATc2, and excludes it from the nucleus, leading to its degradation and represses its transcriptional activity. During cardiac stress SIRT2 levels decreases in heart. resulting in enhanced acetylation of NFATc2 and transcriptional hyperactivation. Therefore, NFAT remains active inside the nucleus and induces cardiac hypertrophy program.
SIRT2 represses NFAT transcription factor

FIGURE 1
SIRT2 represses NFAT transcription factor

FIGURE 2

A

B

C

D

E

F

G

H

I

J

WT

SIRT2-KO

WT

SIRT2-KO

WT

SIRT2-KO

WT

SIRT2-KO

FIGURE 2
SIRT2 represses NFAT transcription factor

FIGURE 3

- **A**
 - HWTL (mg/mm)
 - WT vs. SIRT2-KO
 - * indicates significance

- **B**
 - Wall thickness (mm)
 - WT vs. SIRT2-KO
 - * indicates significance

- **C**
 - Fractional shortening (%)
 - WT vs. SIRT2-KO
 - * indicates significance

- **D**
 - Images of tissues labeled with Vehicle or ISO

- **E**
 - Relative Interstitial Fibrosis
 - WT vs. SIRT2-KO
 - * indicates significance
SIRT2 represses NFAT transcription factor

FIGURE 4

A. Western blot analysis of SIRT2 and actin expression in control and SIRT2-KD cells.

B. Graph showing the incorporation of [H]-luciferine per µg of DNA in control and SIRT2-KD cells.

C. Western blot analysis of ANP and actin expression in control and SIRT2-KD cells.

D. Immunofluorescence images of vehicle, PE, ANP, α-Actinin, and Hoechst staining in control and SIRT2-KD cells.

E. Western blot analysis of SIRT2 and actin expression in cells treated with Ad-null and Ad-SIRT2.

F. Graph showing the incorporation of [H]-luciferine per µg of DNA in cells treated with PE, ISO, and Ad-GFP.

G. Western blot analysis of ANP expression in cells treated with ISO, PE, Vehicle, and Ad-SIRT2.

H. Graph showing the relative Purinomycin/Actin ratio in cells treated with PE, ISO, Ad-null, and Ad-SIRT2.

I. Immunofluorescence images of ANP, α-Actinin, and Hoechst staining in Ad-null and Ad-SIRT2 cells.

J. Graph showing the relative Cardiomyocyte area in cells treated with PE, ISO, Ad-null, and Ad-SIRT2.
SIRT2 represses NFAT transcription factor

FIGURE 5
SIRT2 represses NFAT transcription factor

FIGURE 6
SIRT2 represses NFAT transcription factor

A

![Graph showing relative luciferase activity](image)

B

![Bar graph showing [H]-Leucine incorporation](image)

C

![Images showing control and SIRT2-KD conditions](image)

D

![Graph showing HW/TL](image)

E

![Graph showing wall thickness](image)

F

![Graph showing fractional shortening](image)

G

![Diagram illustrating normal and hypertrophic hearts](image)

FIGURE 7
SIRT2 deacetylase represses NFAT transcription factor to maintain cardiac homeostasis

Mohsen Sarikhani, Sangeeta Maity, Sneha Mishra, Aditi Jain, Ankit K. Tamta, Venkatraman Ravi, Kondapalli M. Spurthi, Perumal A. Desingu, Danish Khan, Shweta Kumar, Swathi Rao, Meena Inbaraj, Pandit A. Shriniwas and Nagalingam Ravi Sundaresan

J. Biol. Chem. published online February 13, 2018

Access the most updated version of this article at doi: 10.1074/jbc.RA117.000915

Alerts:
 • When this article is cited
 • When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts