Comparative study of seismic and non-seismic analysis of a soil slope to develop correlations for factor of safety considering horizontal and vertical seismic coefficients

Muhammad Israr Khan1*, Shuhong Wang2
1,2School of Resources and Civil Engineering, Northeastern University, China

*Corresponding Author Email; 1727011@stu.neu.edu.cn

Abstract: Seismic and non-seismic analysis of any engineering project always gives different results. A soil slope is analysed in this research and both seismic and non-seismic analysis is performed to know about the difference in the factor of safety values. Correlations are developed between both these cases. These correlations are applicable for homogenous slopes only.

1. Introduction
Stability of any structure depends mainly on the structure internal strength and loads applied on it. If the applied loads exceed the strength of the structure, it may fail and damaged. This statement is applied for any structure whether concrete or made of soil. In this paper, the concern is about soil slopes. Whenever a highway is constructed in hilly areas or an earth fill dam is constructed, the slope stability analysis is performed and the factor of safety is calculated. The factor of safety mainly depends on soil properties and the slope layout etc. If the factor of safety is less, then it is stabilized by different ways such as changing the slope layout or inserting nails to increase the stability [1-3].

2. Literature Survey
Some of the researchers claim that the vertical seismic effect is very less and therefore can be neglected while other researchers claim that the vertical effect must also be considered to know about the actual response [4-8]. In this paper both the horizontal and vertical seismic coefficients are considered and correlations are developed between both the cases. There are many other researchers who provided very useful results in this area [9-14]. The plus point of this paper is that a comparison is done between seismic and non-seismic analysis and researchers can get a clear idea for any slope stability project to know about the seismic and non-seismic factor of safety in homogenous slopes.

There are many ways to check the stability of any slope. Such as it can be analysed using limit equilibrium methods or finite element methods. Also the analysis may be 2 dimensional or 3 dimensional. The simplest way is 2 dimensional limit equilibrium method. This limit equilibrium 2 dimensional method is used in the paper to calculate the seismic and non-seismic factor of safety for a predefined soil slope.

3. Methodology
Keeping the past research in consideration, this work is done in four stages:

- Non-Seismic analysis and calculated the factor of safety
• Analysis with considering Horizontal Seismic Coefficient (HSC) and ignoring vertical effect
• Analyse with considering Vertical Seismic Coefficient (VSC) and ignoring horizontal effect
• Analyse with considering both horizontal and vertical seismic effects

Thirty six number of analysis was performed on a predefined slope. The angle of repose was varied from 30 to 45 degrees during this analysis. The horizontal seismic coefficient was 0.05 minimum and 0.15 maximum as recommended in the paper [15]. While the vertical seismic coefficients are in range of 0.0125 to 0.05.

A limit equilibrium software is used in this analysis namely slide. The variation of factor of safety is provided in graphical form for all the cases.

Figure 1 shows the slope model used in this analysis:

Figure 1. Slope model

Cohesion range is 11 kN/m2 to 13 kN/m2.
Angle of repose range is 30 to 45 with five degrees interval.
Unit weight is 14 kN/m3.
Angle of internal friction range is 31 to 33 degrees.
Horizontal seismic coefficient is 0.05, 0.10, and 0.20
Vertical seismic coefficient is 0.012, 0.25 and 0.05.
Table 1 shows the summary of material properties and the factor of safety achieved in all the cases.
Table 1. Material properties and analysis details

Case Number	Cohesion (kN/m²)	Angle of Repose (AOR)	Unit Weight (kN/m³)	Friction angle (ϕ)	Horizontal Coefficient	Vertical Coefficient	Non-Seismic Factor of Safety (FS)	Seismic Factor of Safety (FS)
1	11	30	14	31	0.05	0	1.631	1.451
1	12	30	15	32	0.10	0	1.690	1.348
1	13	30	16	33	0.20	0	1.750	1.145
2	11	35	14	31	0.05	0	1.539	1.397
2	12	35	15	32	0.10	0	1.590	1.317
2	13	35	16	33	0.20	0	1.641	1.144
3	11	40	14	31	0.05	0	1.431	1.315
3	12	40	15	32	0.10	0	1.477	1.252
3	13	40	16	33	0.20	0	1.522	1.101
4	11	45	14	31	0.05	0	1.295	1.195
4	12	45	15	32	0.10	0	1.336	1.140
4	13	45	16	33	0.20	0	1.377	1.010
5	11	30	14	31	0.0125	0.0125	1.631	1.628
5	12	30	15	32	0.025	0.025	1.690	1.683
5	13	30	16	33	0.05	0.05	1.750	1.735
6	11	35	14	31	0.0125	0.0125	1.539	1.533
6	12	35	15	32	0.025	0.025	1.590	1.578
6	13	35	16	33	0.05	0.05	1.641	1.616
7	11	40	14	31	0.0125	0.0125	1.431	1.425
7	12	40	15	32	0.025	0.025	1.477	1.463
7	13	40	16	33	0.05	0.05	1.522	1.495
8	11	45	14	31	0.025	0.025	1.295	1.289
8	12	45	15	32	0.025	0.025	1.336	1.324
8	13	45	16	33	0.05	0.05	1.377	1.353
9	11	30	14	31	0.05	0.0125	1.631	1.450
9	12	30	15	32	0.10	0.025	1.690	1.349
9	13	30	16	33	0.20	0.05	1.750	1.156
10	11	35	14	31	0.05	0.0125	1.539	1.393
10	12	35	15	32	0.10	0.025	1.590	1.312
10	13	35	16	33	0.20	0.05	1.641	1.143
11	11	40	14	31	0.05	0.0125	1.431	1.311
11	12	40	15	32	0.10	0.025	1.477	1.245
11	13	40	16	33	0.20	0.05	1.522	1.098
12	11	45	14	31	0.05	0.0125	1.295	1.191
12	12	45	15	32	0.10	0.025	1.336	1.134
12	13	45	16	33	0.20	0.05	1.377	1.004
4. Results and Discussions
Figure 2 shows the factor of safety graph in case when only horizontal seismic coefficient are considered and the vertical seismic coefficient is kept zero.
Figure 3 shows the factor of safety graph in case when only vertical seismic coefficient are considered and the horizontal seismic coefficient is kept zero.
Figure 4 shows the factor of safety graphs in case both horizontal seismic coefficient as well as vertical seismic coefficient are considered.

![Factor of Safety graph in case HSC is considered and VSC is kept zero](image1)

![Factor of Safety graph in case VSC is considered and HSC is kept zero](image2)

![Factor of Safety graph in case both HSC and VSC are considered](image3)

Figure 2. Factor of Safety graph in case HSC is considered and VSC is kept zero
Figure 3. Factor of Safety graph in case VSC is considered and HSC is kept zero

Figure 4. Factor of Safety graph in case both HSC and VSC is considered
Case 1: Considering HSC and keeping VSC as zero
From figure 2, the final mean equation for the factor of safety came out to be:

\[SFS = -2.4145 \times NSFS + 4.9285 \] (1)

Applicability of this equation is 95.40%.

Case 2: Considering VSC and keeping HSC as zero
From figure 3, the final mean equation for factor of safety came out to be:

\[SFS = 0.8157 \times NSFS + 0.2620 \] (2)

Applicability of this equation is 99.81%.

Case 3: Considering both HSC and VSC
From figure 4, the final mean equation in case of HSC came out to be:

\[SFS = -2.3854 \times NSFS + 4.8759 \] (3)

Applicability of this equation is 95.84%.

5. Conclusions
Equation 1, 2 and 3 can be used to find out the factor of safety in different cases, such as to consider seismic coefficients or ignoring it. These equations are applicable for homogenous soil. A 3D analysis with non-homogenous type of soil is recommended for future work to get more clear understanding of the factor of safety in both the cases. Moreover finite element analysis is also recommended for future work to cross check the results and develop correlations.

References
[1] A. K. G. S. Rawat, “Analysis of a Nailed Soil Slope Using Limit Equilibrium and Finite Element Methods,” International Journal of Geosynthetics and Ground Engineering, vol. 2, no. 4, pp. 1-23, October 28, 2016.
[2] G. Yang, Z. Zhong, Y. Zhang, and X. Fu, “Optimal design of anchor cables for slope reinforcement based on stress and displacement fields,” Journal of Rock Mechanics and Geotechnical Engineering, vol. 7, no. 4, pp. 411-420, 2015/08/01., 2015.
[3] J. H. L. B. G. Chae, H. J. Park, J. Choi, “A method for predicting the factor of safety of an infinite slope based on the depth ratio of the wetting front induced by rainfall infiltration,” Nat. Hazards Earth Syst. Sci., vol. 15, pp. 1835-1849, 2015.
[4] G. G. Gazetas, E. Anastasopoulos, I. Georgarakos, T., “Effects of Near-Fault Ground Shaking on Sliding Systems,” J. Geotech. Geoenviron. Eng., vol. 135, pp. 1906-1921, 2009.
[5] S. S. Sarma, M., “The effect of vertical acceleration on seismic slope stability,” In Proceedings of the International Conference on Performance Based Design in Earthquake Geotechnical Engineering, Tokyo, Japan, 15–18 June, 2009.
[6] L.-H. C. Zhao, X. Zhang, Y. Li, L. Li, D.-J., “Stability analysis of seismic slopes with cracks,” Comput. Geotech., vol. 77, pp. 77-90, 2016.
[7] H. I. L. Ling, D. Mohri, Y., “Soil slopes under combined horizontal and vertical seismic accelerations,” Earthq. Eng. Struct. Dyn., vol. 26, pp. 1231-1241, 1997.
[8] Y. C. Zhang, G. Zheng, L. Li, Y. Wu, J. , “Effects of near-fault seismic loadings on run-out of large-scale landslide: A case study,” Eng. Geol., vol. 166, pp. 216-236, 2013.
[9] L. D. Baker R, “Spatial distribution of safety factors,” Journal of Geotechnical and Geoenvironmental Engineering, vol. 127, no. 2, pp. 135-145, 2001.
[10] L. D. Baker R, “Spatial distribution of safety factors: Cohesive vertical cut,” International Journal for Numerical and Analytical Methods in Geomechanics, vol. 27, no. 12, pp. 1057-1078, 2003.
11] S. K. Leshchinsky D, “Pseudostatic seismic stability of slopes: Design charts,” Journal of Geotechnical Engineering, vol. 120, no. 9, pp. 1514-1532, 1994.

12] M. Y. Ling H I, Kawabata T, “Seismic analysis of sliding wedge: Extended Francais-Culmann’s analysis. Soil Dynamics and Earthquake Engineering,” vol. 18, no. 5, pp. 387-393, 1999.

13] N. N. M., “Effects of earthquakes on dams and embankments,” Geotechnique, vol. 15, no. 2, pp. 139-160, 1965.

14] Y. He, Liu, Y., Hazarika, H., & Yuan, R., “Stability analysis of seismic slopes with tensile strength cut-off,” Computers and Geotechnics, vol. 112, pp. 245-256, 2019.

15] S. S. Cristiano M., “Seismic Coefficients For Pseudostatic Slope Analysis,” 13th World Conference on Earthquake Engineering Vancouver, B.C., Canada August, vol. 369, 2004.

Acknowledgments
This work was conducted with supports from the National Natural Science Foundation of China (Grant Nos. U1602232 and 51474050), Doctoral Scientific Research Foundation of Liaoning Province (Grant No. 20170540304 and 20170520341), China Scholarship Council (Grant No. 201806080103), Key Research and Development Program of Science and Technology in Liaoning Province, China (Grant No. 2019JH2/10100035), the Fundamental Research Funds for the Central Universities (Grant No. N170108029).

Appendices
HSC = Horizontal Seismic Coefficient
VSC = Vertical Seismic Coefficient
SFS = Seismic Factor of Safety
NSFS = Non-Seismic Factor of Safety
FS = Factor of Safety