Pseudopolyps in inflammatory bowel diseases: Have we learned enough?

Dimitrios S Politis, Konstantinos H Katsanos, Epameinondas V Tsianos, Dimitrios K Christodoulou

Abstract

Pseudopolyps are a well described entity in the literature and even though the exact pathogenesis of their formation is not completely understood, they are considered non-neoplastic lesions originating from the mucosa after repeated periods of inflammation and ulceration associated with excessive healing processes. Their occurrence is less common in Crohn’s disease than in ulcerative colitis, and their overall prevalence ranges from 4% to 74%; moreover, they are found more often in colon but have been detected in other parts of the gastrointestinal tract as well. When their size exceeds the arbitrary point of 1.5 cm, they are classified as giant pseudopolyps. Clinical evaluation should differentiate the pseudopolyps from other polypoid lesions, such as the dysplasia-associated mass or lesion, but this situation represents an ongoing clinical challenge. Pseudopolyps can provoke complications such as bleeding or obstruction, and their management includes medical therapy, endoscopy and surgery; however, no consensus exists about the optimal treatment approach. Patients with pseudopolyps are considered at intermediate risk for colorectal cancer and regular endoscopic monitoring is recommended. Through a review of the literature, we provide here a proposed classification of the characteristics of pseudopolyps.

Key words: Pseudopolyps; Inflammatory polyps; Post-inflammatory polyps; Giant pseudopolyps; Ulcerative colitis; Inflammatory bowel disease; Crohn’s disease; Classification; Dysplasia-associated mass or lesion

Core tip: In inflammatory bowel disease patients, pseudopolyps are formed at the bowel wall during the...
DEFINITIONS AND MECHANISMS OF FORMATION

PPs are formed as a consequence of alternating cycles of inflammation and regeneration of the ulcerated epithelium[4]. The terms pseudopolyps[5], inflammatory polyps[6], post-inflammatory polyps[7] or inflammatory pseudopolyps[8] are often applied interchangeably in the literature, creating confusion. The term pseudopolyps, however, has been applied to the characterization of surviving islets of mucosa between ulcers during a severe attack, which create the impression of a polyp[9], and of loose mucosal tags, which are formed because of severe ulceration undermining the integrity of the muscularis mucosa. In conjunction with the inflammation process and cellular infiltration of the submucosa, granulation tissue is formed, which is more intense in some focal areas, thereby producing inflammatory polyps[10]. During the healing process, which features re-epithelization and excessive regeneration, post-inflammatory polyps are formed[11], taking their shape from the elongation of mucosal tags related to the bowel’s peristaltic contractions and the stream of feces[12]. From this perspective, the post-inflammatory polyps can be separated into the following categories: (1) pseudopolyps; (2) inflammatory polyps; and (3) post-inflammatory polyps.

HISTOLOGY

Histology reveals the various aspects of inflammation—acute and chronic—that occur in bowel wall, often simultaneously and parallel in neighboring areas of the colon. The first type is composed only from mucosa, which can be relatively intact or edematous, representing mucosal remnants between zones of ulceration and which, for most authors, are considered the “true” PPs[10] (Figure 1A).

Inflammatory polyps consist of compact, non-epithelialized granulation tissue, representing a dense mixture of lymphocytes, plasma cells and mast cells predominantly but also includes neutrophils and eosinophils, all of which are detected as infiltrating the proper lamina of ulcerated epithelium. Post-inflammatory pseudopolyps are composed of a layer of normal or slightly-hyperplastic glandular epithelium, mucosa muscularis and a submucosa core of fibrovascular tissue. However, at the bowel wall, mixed forms of these types are frequently found; for example, remnant mucosa infiltrating granulation tissue or granulation tissue at the free ends of post-inflammatory polyps have been detected. The latter is due to secondary ulceration or inflammatory infiltration at the base of PPs[13].

Kelly et al[③] divided PP types into polypoid mucosal tags and mature inflammatory polyps, encompassing essentially all the previous forms, and proposed the
Politis DS et al. Pseudopolyps in IBD
PPs are more commonly encountered in large intestine, likely due to this tissue being affected in both UC and Crohn's disease (CD). The most common site is transverse colon and, thereafter, descending and sigmoid colon, with rectum being the least common site; moreover, PP in the rectum are usually found at the upper third region\(^1\). The GPPs show similar topographic occurrence\(^7\). However, as CD can involve the entire gastrointestinal tract, the PPs can be present throughout but have been detected less often in extracolonic regions. There is an exception to this distribution pattern for UC patients with backwash ileitis, wherein PPs have also been found at the terminal ileum\(^18\). There are also reports of PPs located at the esophagus\(^19\), stomach\(^20\), and different parts of the small bowel\(^21\), with ileum presentation predominating in the latter\(^22\). There is one case report of a CD patient with pansinusitis location of PP, which regressed with medical therapy\(^23\), and another case report of a patient with refractory pouchitis who presented with a large PP located in an affected pouch\(^24\).

PREVALENCE OF PP IN IBD

PPs are a common finding in IBD\(^13\). They are found more often in UC than in CD, and some authors have reported a double prevalence in UC as compared with colonic CD\(^25\). The reported prevalence rates vary from 4% to 74%\(^26,27\), but most of the data supporting these findings was obtained from older studies that considered only UC. The most commonly reported incidence rates in UC fall within the range of 10%-20\(^\circ\)\(^28\). This variation in reported prevalence can
be ascribed to miscellaneous diagnostic criteria and different populations studied\(^6\,9\,11\,17\,19\,21\,26\,29\,30\). (Table 1). For the prevalence of GPP, in particular, a review of 53 colectomised patients with GPPs found that 66.6% had CD and 33.7% had UC\(^{[2]}\); however, a more recent review of 78 patients with IBDs and GPPs found a prevalence of 53.8% in UC patients, which was slightly higher than that found in CD patients (46.2%)\(^{[7]}\).

There is similar prevalence of PPs in both sexes, and the peak overall incidence is at the ages between 20–40 years. There is no trend in increasing prevalence with extended period of history of the IBD. Specifically, Jalan et al\(^{[10]}\) reported that 33% of patients with PP had a < 5-mo history of UC and De Dombal et al\(^{[17]}\) reported that among 204 patients with UC, 8.8% had PP on the first flare. For cases of GPPs, Ooi et al\(^{[51]}\) reported appearance with a median disease history of 5 years after diagnosis for UC and 6 years after diagnosis for CD; however, there was a broad variation in the times of appearance, ranging from 1 mo to 20 years for UC and from 3 mo to 37 years for CD.

Table 1 Prevalence of pseudopolyps in inflammatory bowel disease

Ref.	Year of publication	IBD diagnosis	Prevalence of pseudopolyps	Special characteristics
6	1929	UC (n = 693)	10.0%	
9	2012	UC (n = 171)	30.0%	44% of UC patients and 30% of CD patients with unknown status for PP
11	2012	CD (n = 77)	38.0%	
11	2012	UC, CD (n = 152)	20.0%	
17	1956	UC (n = 84)	57.1%	Colectomy specimens
19	1956	UC (n = 125)	74.0%	Hospitalized patients
21	2007	CD (n = 23)	22.0%	Examined only small intestine
22	1990	UC (n = 50)	4.0%	
22	1967	UC (n = 46)	15.0%	
23	1966	UC (n = 465)	12.5%	
23	2015	CD (n = 24)	4.0%	
24	1954	UC (n = 120)	10.0%	
24	1964	UC (n = 624)	14.9%	Colectomy specimens
24	1975	CD (n = 43)	16.0%	
25	1969	UC (n = 399)	18.7%	
25	1987	UC, CD (n = 86)	36%	Colectomy specimens
26	1993	CD (n = 20)	10.0%	GPP: 4.6%
27	2009	UC, CD (n = 34)	29.0%	Only small intestine examined as location
28	1974	UC (n = 122)	8.0%	Pediatric population
29	1990	CD (n = 142)	41.0%	Active colonic or ileocolonic CD
30	2011	UC (n = 40)	27.0%	Control population without CRC
31	2004	UC (n = 136)	39.0%	Population with CRC
32	1965	UC (n = 69)	17.6%	Control population without CRC
33	1975	UC (n = 150)	17.0%	Population with CRC
34	1987	UC (n = 61)	21.3%	Active UC
35	2006	UC (n = 188)	42.0%	Surgical specimens
36	2007	UC (n = 188)	56.0%	Surgical specimens
37	2007	UC (n = 2726)	22.0%	
38	1966	UC (n = 169)	47.0%	
39	1964	UC (n = 205)	5.9%	
40	1965	UC (n = 269)	10.0%	
41	2007	CD (n = 27)	48.0%	

CD: Crohn’s disease; CRC: Colorectal cancer; IBD: Inflammatory bowel disease; UC: Ulcerative colitis.

CLINICAL SIGNIFICANCE

The presence of PPs in a patient with IBD can be an indirect marker of previous episodes of severe inflammation, and their incidence rises with more extensive colitis. Although there are not any clear prognostic criteria predicting their formation, it is a common belief that intense flares and hyperplastic healing predispose to PP formation. A cornerstone study by De Dombal et al\(^{[17]}\), involving 465 patients with UC, has shown that 19.5% of patients with total colitis had PPs and 38% of the patients with PPs had suffered at least one episode of severe flare; in addition, 57.1% of the patients who underwent colectomy to address fulminant UC in 1956 had PP. This high prevalence can be attributable to severe active disease\(^{[32]}\). Teague et al\(^{[41]}\) expressed a similar opinion, citing a PP prevalence of 41% in 48 patients with total colitis, and Jalan et al\(^{[10]}\) reported that 31% of patients with severe UC had PP.

In regards to predicting PP formation, Babic et al\(^{[52]}\) proposed that elevation in two of the three following
Table 2 Pseudopolyps and increased incidence of colorectal cancer

Ref.	Year of publication	IBD diagnosis	Format of study	Cancer risk
Rutter et al\[46\]	2004	UC with CRC (n = 68)	Case-control study 1:2, documentation of PP	OR = 2.29; 95%CI: 1.28-4.11
Velayos et al\[44\]	2006	UC with CRC (n = 188)	Case-control study 1:1, history of PP	OR = 2.5; 95%CI: 1.4-4.6
Baars et al\[43\]	2011	UC (n = 113) CD (n = 58) IC (n = 2)	Case-control study 1:2	RR = 1.92; 95%CI: 1.28-2.88

CD: Crohn’s disease; CRC: Colorectal cancer; IBD: Inflammatory bowel disease; IC: Intermediate colitis; OR: Odds ratio; PP: Pseudopolyp; RR: Relative risk; UC: Ulcerative colitis.

Table 3 Characteristics for differential diagnosis between pseudopolyps, adenoma-like DALM and non-adenoma-like DALM

Parameters	Pseudopolyps	Adenoma-like DALM	Non-adenoma-like DALM
Location	Located in area inside colitis	Located in area inside and outside colitis	Located in area inside colitis
Endoscopic appearance	Smooth surface, can have exudate, definite borders, pale surface	Well circumscribed, definite borders, smooth surface sessile or pedunculated	Not amenable to endoscopic removal, irregular borders, often ulcerated or necrotic material
Management	No necessity for removal or biopsies except doubt	Endoscopic removal and endoscopic surveillance if dysplasia not recognized in adjacent mucosa or in other area of colitis	Proctocolectomy when HDG in lesion or multifocal LGD in area of colitis

DALM: Dysplasia-associated lesion or mass; HDG: High-grade dysplasia; LGD: Low-grade dysplasia.

parameters—C-reactive protein, C4 and procollagen III peptide—accompany formation of PP in UC, calculating the positive predictive value and accuracy to be as high as 90% and 93%, respectively. The existence of PP has also been linked with the occurrence of extraintestinal symptoms, specifically arthropathy\[15\]. Their presence in general, however, does not characterize any specific phase of IBD, as they can be found in both active and quiescent disease states, with the exception of the first form (i.e., the mucosal remnants) which are only found in active IBD\[53\].

PP AND RISK FOR COLORECTAL CANCER

Patients with PP are considered to be at intermediate risk for colorectal cancer (CRC). United Kingdom guidelines suggest surveillance colonoscopy be performed at a 3-year interval\[54\], European Crohn’s and Colitis Organization guidelines suggest colonoscopy at 2- or 3-year intervals\[55\] and the American Society for Gastrointestinal Endoscopy suggests between 1- and 3-year intervals\[56\]. Three studies, performed by Rutter et al\[44\], Velayos et al\[43\] and Baars et al\[47\], have shown a near 2-fold increased risk of CRC in patients with previous or present PP in endoscopy (Table 2). In much older reports, there was a debate about the possibility of PP malignant transformation, with advocates representing both sides. Among these, Goldgraber et al\[41\] reported a case series of several forms of PP with some showing premalignant changes, but later analysis proved these were benign lesions, regardless of size\[18,34\].

Nowadays, malignant transformation of PP is considered an extremely rare event, with only two reports of GPP harboring carcinoma or dysplasia features\[11,58\]. Another case report from Klarskov et al\[59\] presented a carcinoma in rectum stump that had arose from serrated adenoma with a filiform form. The authors speculated that the serrated adenoma had derived from transformation of preexisting PP. A possible mechanism has been implicated by Jawad et al\[60\], who reported that PP can be the source of premalignant mutations, following their analysis of DNA taken from 30 PP samples and which showed four identifiable mutations. However, more studies are needed to confirm the doubt in their benign nature.

A possible explanation about the relationship between PP and increased risk of CRC lies in the facts that they are considered markers of episodes of previous severe inflammation and that their incidence of appearance rises with the increased extent of colitis\[17\], which is in turn linked to CRC. Another possible explanation is that their presence, especially if they are numerous, can obscure the capability of finding dysplastic lesions in endoscopic surveillance\[43\] (Figure 1G).

LONG-TERM MANAGEMENT

Questions remain about the optimal management or follow-up strategies for PP, especially for cases with multiple PP, because no large trials have been published regarding these issues. A great matter of concern involves distinguishing them from adenoma-like DALM and non-adenoma-like DALM (Figure 1H). The main characteristics and differences between these entities are summarized in Table 3, and include fea-
tresses such as location and endoscopic appearance[61-64].

Even though some diagnostic endoscopic criteria may be used for recognizing PP, they are not completely reliable[65]. There can be good inter-observer agreement for identifying PP during endoscopy in general[66], but when it comes to distinguishing PP from other dysplastic lesions, the efficiency falls. Farraye et al[63] performed an internet-based study and found that gastroenterologists with non-IBD-specialized expertise had lower capability of distinguishing different forms of lesions in IBD patients.

There is a general acceptance that if PP are adequately recognized using endoscopic criteria and do not provoke any complications, no removal is considered obligatory[63] (Figure 1I and J). However, it is considered mandatory that the surface of any PP be surveyed adequately during endoscopy. In older reports, especially of cases with large PP, surgical intervention was frequently performed for the removal, due to confusion with CRC or villous adenoma and related to the more common use of radiological approaches, such as barium enema, for diagnosis and monitoring[67]. Nowadays, however, endoscopic surveillance is more effective than surgical intervention[61].

Chromo-endoscopy might aid in differential diagnosis, since PPs (as non-neoplastic polyps) show Kudo’s pattern classification of type II[68]. In another study by Koinuma et al[69], magnifying endoscopy was demonstrated as a useful tool for distinguishing neoplastic from non-neoplastic lesions, reducing the amount of biopsies needed; however, the efficacy of this technique for studying the underlying inflammatory process was shown to be limited by the presence of multiple PPs[68]. In another study, 165 patients with long-standing UC were divided and randomized for endoscopic surveillance by means of either conventional endoscopy (with biopsies every 10 cm) or chromo-endoscopy (with 0.1% methylene blue); there were two false-negative results that were not identified by the chromo-endoscopy procedure, for which non-targeted biopsies from colons with multiple PP proved to contain dysplasia[70].

Nevertheless, in cases where there is either doubt about the diagnosis of PP, suspicion of DALM or large-size PP, or presence of multiple PP wherein endoscopic surveillance is compromised, multiple biopsies should be obtained in repeated examinations[56,71] or proceeding the endoscopic or surgical removal, with surrounding tissue examination by biopsy as well[72].

In the same context, the discovery of PP in a patient with IBD, without evidence of suspicious lesions in endoscopy and in which the presence of PP does not obstruct adequate endoscopic surveillance of the mucosa, should not urge gastroenterologists towards more intense endoscopic follow-up. Neither should it discourage them from the use of chromo-endoscopy for surveillance in any manner other than those proposed in the various guidelines (with an approximate 3-year interval), and certainly not in a different way than would be performed in patients without PPs[54-56]. As mentioned before, CRC derived from PP is a rare event and occurrence of PP has not been linked with early CRC[60]. Therefore, screening for CRC in all patients with PP is not recommended before 8-10 years after onset of symptoms[54-56].

COMPLICATIONS

In rare instances, PP can provoke serious complications, and physicians should be aware of these. Many reports have appeared regarding this issue for cases of GPP. Maggs et al[71] reviewed 78 patients with GPP, among which 15% were complicated with obstruction and sub-obstruction and 3% with intussusception of mechanical etiology due to the large size. In patients with CD, obstruction can occur in the small intestine with PP. In addition, GPPs can produce symptoms similar to IBD, such as bloating, diarrhea and abdominal pain. In that same review, from among the total of 25 patients with inactive disease, 11 had symptoms that regressed after removal of the GPP. Yet, it is important to emphasize that, even in cases of PP, the onset or persistence of symptoms cannot always be attributed to flare or activity of IBD.

There are reports of patients with generalized PP suffering from protein-losing enteropathy and pulmonary embolism, with the possible mechanism being extreme gastrointestinal losses due to the extensive inflamed surface area[73]; other complications include bleeding[74], iron deficiency anemia[75] and dysphagia[76].

TREATMENT

Treatment can be categorized as medical, endoscopic and surgical. Most reports dealing with complications have presented the use of interventional methods, but the majority of these are case reports. Medical treatment has been used for PP and shown to induce regression. Choi et al[71] reported regression of GPP in patients with IBD upon administration of mesalazine and azathioprine. Infliximab has also been shown to induce regression of PP in CD[77]. Topical enema with budesonide use was also reported to induce remission and control of minor bleeding of PP in sigmoid colon[78].

Endoscopic procedures such as argon plasma coagulation[79], endoscopic loop polypectomy[80], and ablation with yttrium aluminium garnet (commonly referred to as YAG) laser have been reported for control of bleeding provoked by ulcerated PP[81]. Endoscopic resection with electrocautery is another effective means reported for removing either symptomatic PPs or PPs of which their benign nature was not able to be established only with endoscopic criteria and which need further histological evaluation[82].

Surgical methods are used when endoscopic therapy fails to manage complicated PP, for example...
Table 4 Summary of characteristics of pseudopolyps and other polyoid lesions in inflammatory bowel disease

Pseudopolyps and polyoid manifestation	Characterization
Location	
Upper gastrointestinal tract	
Small bowel	
Large bowel	
Both small and large intestine	
Special location (pouch)	
Size	
< 1.5 cm	
> 1.5 (giant)	
Number	
< 10	
> 10 multiple	
Pattern of distribution	
Congested	
Scarce	
Years since disease onset	
< 1 yr	
1-5 yr	
> 5 yr	
Bowel background mucosa	
Relapsed	
Remission	
Endoscopic appearance	
Obstructing	
Bridging (mural bridging lesions)	
Penduculated	
Filiform (digitiform or fingerlike)	
Flat	
Mixed type (> 2 types of previous categories)	
Long, glistening, with or without exude	
Resectable or not	
Definite borders, not structuring	
Histology	
Inflammatory	
Adenomatous	
Dysplastic low-grade (DALM)	
Dysplastic high-grade (DALM)	
Serrated	
IBD type	
Ulcerative colitis	
Crohn’s disease	
Indeterminate colitis	
Reduction in number	
Increase in number	
Increase in size	

DALM: Dysplasia-associated lesion or mass; IBD: Inflammatory bowel disease.

in lower gastrointestinal bleeding or when obstructing phenomena, such as luminal obliteration or intussusception, occur[67]. The various surgical procedures range from segmental dissection to hemicolectomy[83], depending on the cause. However, with the recent advances in endoscopic treatment, the need for a surgical approach has lessened over time.

CONCLUSION

We have reviewed the main aspects regarding PPs and their pathogenesis, management and differentiation from DALM in IBD. Further research can focus on prognostic factors related to their formation. Another interesting subject for clarification is the relationship and comparison between different medical treatments and the possibility of reducing PP prevalence with the additional aim of changing the natural history of IBD.

A key question that remains is: Is the presence of PP a marker of more aggressive IBD with more flares? Theoretically, the answer is positive, accepting the fact that PPs are a result of severe attack. However, that answer leaves open the next question as to whether these patients are indeed suffering from more flares. In addition, it remains unknown whether the newer biological agents and intensified medical therapy, which potentially reduce PP formation, correspond to a decline in CRC risk. We believe that in order to facilitate the management of patients with PP and promote future research on this clinical topic, better documentation of characteristics of pseudopolyps in patients with PP is needed. To this end, Table 4 summarizes the information on descriptions of the characteristics of PPs, which we recommend should be documented when a patient with PPs is encountered.

REFERENCES

1 Lawrence JC: Gastrointestinal polyps: Statistical study of malignancy incidence. Am J Surg 1936; 31: 499-536 [DOI: 10.1016/S0002-9610(36)80014-2]
2 De WI, Wheeler C: Multiple polypli of the colon. Br J Surg 1926; 14: 58-66 [DOI: 10.1002/bjs.1800145303]
3 Kovalek PJ, Szydlowski TR. Localized giant pseudopolypsis of the colon in ulcerative colitis. Dis Colon Rectum 1980; 23: 268-270 [PMID: 7389523 DOI: 10.1007/BF02587098]
4 Lumb G. Pathology of ulcerative colitis. Gastroenterology 1961; 40: 290-298 [PMID: 13764247]
5 Hinrichs HR, Goldman H. Localized giant pseudopolyps of the colon. JAMA 1968; 205: 248-249 [PMID: 5694927 DOI: 10.1001/jama.1968.0314030066022]
6 Kelly JK, Gabos S. The pathogenesis of inflammatory polyps. Dis Colon Rectum 1987; 30: 251-254 [PMID: 3829873 DOI: 10.1007/BF02556166]
7 Maggs JR, Browning LC, Warren BF, Travis SP. Obstructing giant post-inflammatory polyposis in ulcerative colitis: Case report and review of the literature. J Crohns Colitis 2008; 2: 170-180 [PMID: 21172208 DOI: 10.1016/j.crohns.2007.10.007]
8 Riddell RH, Goldman H, Ransohoff DF, Appelman HD, Fenoglio CM, Haggitt RC, Ahren C, Correa P, Hamilton SR, Morson BC. Dysplasia in inflammatory bowel disease: standardized classification with provisional clinical applications. Hum Pathol 1983; 14: 931-968 [PMID: 6629368 DOI: 10.1016/S0046-8177(83)80194-0]
9 Goldgraber MB. Pseudopolyps in ulcerative colitis. Dis Colon Rectum 1965; 8: 355-363 [PMID: 5830658 DOI: 10.1007/BF02627260]
10 Jalan KN, Walker RJ, Sircus W, McManus JP, Prescott RJ, Card WI. Pseudopolypsis in ulcerative colitis. Lancet 1969; 2: 555-559 [PMID: 418531 DOI: 10.1016/S0140-6736(69)90260-8]
11 Dukes CE. The surgical pathology of ulcerative colitis. Ann R Coll Surg Engl 1954; 14: 389-400 [PMID: 13159102]
12 Kelly JK, Langevin JM, Price LM, Hershfield NB, Share S, Bluestein P. Giant and symptomatic inflammatory polyps of the colon in idiopathic inflammatory bowel disease. Am J Surg Pathol 1986; 10: 420-428 [PMID: 3717497 DOI: 10.1097/00000478-198606000-00007]
13 Buck JL, Duchman AH, Sobin LH. Polypoid and pseudopulpoid manifestations of inflammatory bowel disease. Radiographics 1991; 11: 293-304 [PMID: 2028064 DOI: 10.1148/radiographics.11.2.2028064]
Filiform polyposis. Complications and Sequelae of Chronic Ulcerative Colitis. Nag NK, Sortur SV, Patil RS. Ulcerative colitis in C. Kim JJ, Choi H, Eun CS, Han DS, Byeon JS, 2011; 1974; 1990; 1987; 2004; 1969; 18-23 [PMID: 220596 DOI: 10.1136/s0002-9610(56)10014-2] 32 Chuttani HK, Nigam SP, Sama SK, Dhanda PC, Gupta PS. Ulcerative colitis in the tropics. Br Med J 1967; 4: 204-207 [PMID: 6053989 DOI: 10.1136/bmj.4.5573.204] 33 Edwards FC, Truelove SC. Course and prognosis of ulcerative colitis: Part IV Carcinoma of the colon. Gut 1964; 5: 15-22 [PMID: 18668763 DOI: 10.1136/gut.5.1.15] 34 Lescut D, Vanco D, Bonnier P, Lecomte-Houcke M, Quandalle P, Wurtz A, Colombel JF, Delmotte JS, Paris JC, Cortot A. Perioperative endoscopy of the whole small bowel in Crohn’s disease. Gut 1993; 34: 647-649 [PMID: 8504965 DOI: 10.1136/gut.34.5.647] 35 Luo YY, Chen J. Clinical and colonicoscopic characteristics of pediatric inflammatory bowel disease. Zhonghua Er Ke Za Zhi 2009; 47: 129-133 [PMID: 19573460] 36 Maroo MK, Nag NK, Sortur SV, Patil RS. Ulcerative colitis in Southern Maharasthra. J Indian Med Assoc 1974; 63: 350-354 [PMID: 4477574] 37 Ray G. Inflammatory bowel disease in India—changing paradigms. Int J Colorectal Dis 2011; 26: 635-644 [PMID: 21063715 DOI: 10.1007/s00384-010-1084-5] 38 Geboes K, Vantrappen G. The value of colonscopy in the diagnosis of Crohn’s disease. Gastrointest Endosc 1975; 22: 18-23 [PMID: 21063715 DOI: 10.1136/gut.6.5.647] 39 Tandon BN, Mathur AK, Mohapatra LN, Tandon HD, Wig KL. A study of the prevalence and clinical pattern of non-specific ulcerative colitis in northern India. Gut 1965; 6: 448-453 [PMID: 5294834 DOI: 10.1136/gut.6.5.648] 40 Teague RH, Read AE. Polyposis in ulcerative colitis. Gut 1975; 16: 792-795 [PMID: 1205273 DOI: 10.1136/gut.16.10.792] 41 Teh LB, Koh D, Ng HS, Kwok KC, Lim TC, Ho MS, Sears CS. Ulcerative colitis in Singapore: a clinical study of sixty-one patients. Ann Acad Med Singapore 1987; 16: 474-479 [PMID: 2893576] 42 Velayos FS, Loftus EV, Jess T, Harnsen WS, Bida J, Zinsmeister AR, Tremaine WJ, Sandborn WJ. Predictive and protective factors associated with colorectal cancer in ulcerative colitis: A case-control study. Gastroenterology 2006; 130: 1941-1949 [PMID: 16762617 DOI: 10.1053/j.gastro.2006.03.028] 43 Rutter MD, Saunders BP, Wilkinson KH, Rambles S, Schofield G, Kamm MA, Williams CB, Price AB, Talbot JC, Forbes A. Cancer surveillance in longstanding ulcerative colitis: endoscopic appearances help predict cancer risk. Gut 2004; 53: 1813-1816 [PMID: 15542520 DOI: 10.1136/gut.2003.038505] 44 Wang Y, Ouyang Q. Ulcerative colitis in China: retrospective analysis of 3100 hospitalized patients. J Gastroenterol Hepatol 2007; 22: 1450-1455 [PMID: 17716349 DOI: 10.1111/j.1440-1746.2007.04873.x] 45 Watts JM, De Dombal FT, Goligher JC. Early results of surgery for ulcerative colitis. Br J Surg 1966; 53: 1005-1014 [PMID: 5927651 DOI: 10.1002/bjs.1800531202] 46 Waugh JM, Peck DA, Beards OH, Sauer WG. Surgical Management of Chronic Ulcerative Colitis. Arch Surg 1964; 88: 556-569 [PMID: 14107005 DOI: 10.1001/archsurg.1964.0130.220046009] 47 Wright V, Watkinson G. The Arthritis of Ulcerative Colitis. Br Med J 1965; 2: 670-675 [PMID: 14337733 DOI: 10.1136/bmj.2.5463.670] 48 Zheng JJ, Cu XQ, Shi XH, Wang YM, Jia LM, Zhou XL, Wang FM. Colonicoscopic and histologic features of colonic Crohn’s disease in Chinese patients. J Dig Dis 2007; 8: 35-41 [PMID: 17261133 DOI: 10.1111/j.1443-9573.2007.00281.x] 49 Modigliani R, Mary JY, Simon JF, Cortot A, Soulé JC, Gendre JP, Rene E. Clinical, biological, and endoscopic picture of attacks of Crohn’s disease. Evolution on prednisolone. Groupe d’
Mindell HJ. Localized giant pseudopolyposis in inflammatory bowel disease. *Aust N Z J Surg* 2000; 70: 389–393 [PMID: 10830609 DOI: 10.1046/j.1440-1622.2000.01826.x]

Babich J, Jagić V, Petrović Z, Bilic A, Dinko K, Kubat G, Trokot R, Vukelić M. Elevated serum values of procollagen III peptide (PIIIp) in patients with ulcerative colitis who will develop pseudopolyps. *World J Gastroenterol* 2003; 9: 619–621 [PMID: 12632532 DOI: 10.3748/wjv.v9.i3.619]

Keating JW, Mindell HJ. Localized giant pseudopolyposis in ulcerative colitis. *AJR Am Roentgenol* 1976; 126: 1178–1180 [PMID: 179377 DOI: 10.2214/ajr.126.6.1178]

Cairns SR, Scholefield JH, Steele RJ, Dunlop MG, Thomas HJ, Evans GD, Eaden JA, Rutter MD, Atkin WP, Saunders BP, Lucassen A, Jenkins P, Fairclough PD, Woodhouse CR; British Society of Gastroenterology; Association of Coloproctology for Great Britain and Ireland. Guidelines for colorectal cancer screening and surveillance in moderate and high risk groups (update from 2002). *Gut* 2010; 59: 669–686 [PMID: 20427401 DOI: 10.1136/gut.2009.179804]

Anness V, Daperno M, Rutter MD, Amiot A, Bossuyt P, East J, Ferrante M, Gótz K, Matsanos KH, Kießlich R, Ordás I, Repici A, Rosa B, Sebastian S, Kucharzik T, Elfiky R; European Crohn’s and Colitis Organisation. European evidence based consensus for endoscopy in inflammatory bowel disease. *J Crohns Colitis* 2015; 7: 1057–9970 DOI: 10.1016/j.crohns.2013.09.016

American Society for Gastrointestinal Endoscopy Standards of Practice Committee: Shergill AK, Lightdale JR, Bruining DH, Acosta RD, Chandrasekhar V, Chathadi KV, Deckner GA, Early DS, Evans JA, Fanelli RD, Fisher DA, Fonksalsrud L, Foley K, Hwang JW, Hue TL, Khaskah MA, Muthusamy VR, Pasha SF, Saltzman JR, Sharaf R, Cash BD, DeWitt JM. The role of endoscopy in inflammatory bowel disease. *Gastroint Endosc* 2015; 81: 1101–1121.e1 [PMID: 25800660 DOI: 10.1016/j.gie.2014.10.030]

Baars JE, Looman CW, Steyerberg EW, Beukers R, Tan AC, Weusten BL, Kuipers EJ, van der Woude CJ. The risk of inflammatory bowel disease-related colorectal carcinoma is limited: results from a nationwide nested case-control study. *Am J Gastroenterol* 2011; 106: 319–328 [PMID: 21045815 DOI: 10.1038/ajg.2010.428]

Kusunoki N, Nishigami T, Yanagi H, Okamoto T, Shoji Y, Sakanoue Y, Yamamura T, Utsunomiya J. Occult cancer in localized giant pseudopolyposis. *Am J Gastroenterol* 1992; 87: 379–381 [PMID: 1539578]

Klarskov L, Mogensen AM, Jespersen N, Inghelm H, Polack S. Filiform serrated adenomatous polyposis arising in a diverted rectum of an inflammatory bowel disease patient. *APMS* 2011; 119: 393–398 [PMID: 21569098 DOI: 10.1111/j.1600-0463.2011.02717.x]

Jawad N, Graham T, Novelli M, Rodriguez-Justo M, Feakins R, Silver A, Wright N, McDonald S. PTU-124 Are pseudopolyps the hallmark of an inflammatory bowel disease patient. *Hepatogastroenterology* 2011; 58: 66 [PMID: 22325179 DOI: 10.1016/j.hepat.2011.08.007]

Itzkowitz SH, Harpaz N. Diagnosis and management of dysplasia in patients with inflammatory bowel diseases. *Gastroenterology* 2004; 126: 1634–1648 [PMID: 15168373 DOI: 10.1053/gast.2004.03.025]

Anderson R, Kaariainen JT, Hanauer SB. Protein-losing enteropathy and massive pulmonary embolism in a patient with giant inflammatory polyposis and quiescent ulcerative colitis. *J Crohns Colitis* 2010; 4: 880–883 [PMID: 14564633 DOI: 10.1016/j.crohns.2013.09.016]

Marks RD, Roberts-Thomson IC. Gastrointestinal: colonic pseudopolyposis. *J Hepatol Hepatol* 2000; 15: 213 [PMID: 10735547 DOI: 10.1046/j.1440-1746.2000.2085x]

Manning RJ, Lewis C. Inflammatory ileal polyps in Crohn’s disease presenting as refractory iron deficiency anaemia. *Gastroint Endosc* 2003; 62: 122 [PMID: 12486795 DOI: 10.1016/S0016-5107(06)71780-X]

Georghe C, Aposteanu G, Popescu C, Georghe L, Oproiu A, Popescu I. Long exophagial structure in Crohn’s disease: a case report. *Humapogastroint Endosc* 1998; 45: 738–741 [PMID: 9684125]

Liatos C, Kyriakos N, Panagou E, Karagiannis S, Salimis N, Mavrogiani C. Inflammatory polypoid mass treated with Infliximab in a Crohn’s disease patient. *J Crohns Colitis* 2010; 4: 707–708 [PMID: 21122387 DOI: 10.1016/j.crohns.2010.09.006]

Pilichos C, Preza A, Demonakou M, Kaptodoris D, Bouras C. Topical budesonide for treating giant rectal pseudopolyps. *Anticancer Res* 2005; 25: 2961–2964 [PMID: 16080551]

Attar A, Bon C, Sebbagh V, Béjou B, Bénamouzig R. Endoscopic argon plasma coagulation for the treatment of hemorrhagic pseudopolyposis in colonic Crohn’s disease. *Endoscopy* 2007; 39 Suppl 1: E249 [PMID: 17957649 DOI: 10.1055/s-2007-967011]

Rutter M, Sanders B, Emmanuel A, Price A. Endoscopic snare polypectomy for bleeding postinflammatory polyps. *Endoscopy* 2003; 35: 788–790 [PMID: 12929033 DOI: 10.1055/s-2003-41582]
Forde KA, Green PH. Laser ablation of symptomatic rectal pseudopolyps. Gastrointest Endosc 1989; 35: 135 [PMID: 2714602 DOI: 10.1016/S0016-5107(89)72737-1]

Corless JK, Tedesco FJ, Griffin JW, Panish JK. Giant ileal inflammatory polyps in Crohn’s disease. Gastrointest Endosc 1984; 30: 352-354 [PMID: 6510644 DOI: 10.1016/S0016-5107(84)72453-9]

Atten MJ, Attar BM, Makkri MA, Del Pino A, Orsay CP. Giant pseudopolyps presenting as colocolic intussusception in Crohn’s colitis. Am J Gastroenterol 1998; 93: 1591-1592 [PMID: 9732958 DOI: 10.1111/j.1572-0241.1998.00491.x]

P-Reviewer: Owczarek d, Sperti C S-Editor: Ma YJ L-Editor: A E-Editor: Liu WX
