ABSTRACT

One of the major unsolved problems in solar physics is that of coronal mass ejection (CME) initiation. In this paper, we have studied the initiation of a flare-associated CME that occurred on 2010 November 3 using multi-wavelength observations recorded by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory and the Reuven Ramaty High Energy Solar Spectroscopic Imager. We report an observation of an inflow structure initially in the 304 Å and the 1600 Å images a few seconds later. This inflow structure was detected as one of the legs of the CME. We also observed a non-thermal compact source concurrent and near co-spatial with the brightening and movement of the inflow structure. The appearance of this compact non-thermal source, brightening, and movement of the inflow structure and the subsequent outward movement of the CME structure in the corona led us to conclude that the CME initiation was caused by magnetic reconnection.

Key words: Sun: atmosphere – Sun: corona – Sun: coronal mass ejections (CMEs) – Sun: filaments, prominences – Sun: transition region – Sun: UV radiation

Online-only material: animation, color figures
In Section 2, we report the observations. In Section 3, we describe our data analysis and results, and follow with a discussion and conclusions in Section 4.

2. OBSERVATIONS

In the current analysis, we have focused on AIA and RHESSI data obtained during the early rise phase of the CME initiation. The AIA (Lemen et al. 2012) on board SDO provides continuous full disk observations of the solar atmosphere in 10 different UV/EUV passbands with a high spatial resolution (pixel size of 0.6), a temporal resolution of 12 s, and a field of view covering up to 1.3 solar radii. We have concentrated only on three AIA channels, namely 1600 Å, dominated by C iv emission (transition region temperature and the continuum emission from the photosphere), 304 Å, dominated by chromospheric He ii at quiet conditions, and 131 Å, dominated by coronal Fe viii, Fe xxi, and Fe xxiii. We refer to O'Dwyer et al. (2010) and Del Zanna et al. (2011) for a detailed description of the EUV filters in AIA and their temperature response. The observations recorded using other wavelength channels have been extensively analyzed by previous authors. The features studied in the current paper have not been observed in other wavelength channels. All the data are reduced and prepared using the standard procedures available in the solarsoft libraries.

The RHESSI mission (Lin et al. 2002) provides high-resolution spectra and images in HXRs, from 3 keV to 17 MeV. It has nine sub-collimators, all with different spatial resolutions and each sub-collimator does not modulate flux from sources larger than its resolution (Hurford et al. 2002). In this work, we have used only sub-collimators 3–5 which have resolutions from 7 to 20 arcsec.

On 2010 November 3, AIA observed an event originating from the east limb at around 12:13 UT. The source region was located 5°–7° behind the optical limb (Glesener et al. 2013). The source region appeared on the visible disk on 2010 November 5 and was called AR 11121. The left panel of Figure 1 displays the full disk image of the Sun taken using the 304 Å filter. The small box overplotted on the east limb represents the 100° × 100° area of interest. The right panel shows the close up view of the region shown via box in the left panel. Figure 2 shows 3 s averaged soft X-ray flux of the associated C4.9 class flare between 1 and 8 Å obtained using the GOES 14 satellite. The profile suggest that the flare started at around 12:07 UT with a peak at around 12:21 UT. A pre-flare bump is also noticeable before the main phase of the flare.

Figure 3 displays the complete evolution of the flare-CME event. A bright loop-like structure emanates from the source region at 12:13:09 UT, which later became a CME. With passing time, the structure evolves into a flux rope with a current sheet underneath. The box overplotted shows the region that we analyze in detail.

3. DATA ANALYSIS AND RESULTS

Figure 4 shows observations of the source region taken with the 304 Å (top row) and 1600 Å (bottom row) filters between 12:13 and 12:17 UT, which corresponds to the rise phase during the CME initiation and the impulsive phase of the associated flare (see Figure 2). The field of view of these images corresponds to the boxes shown in Figures 1 and 3. The images in both wavelengths show loop-like structures and other filamentary structures. A close analysis of images taken in 304 Å (top row) reveals a pre-existing vertical structure (with respect to the limb; marked with arrows in the first and second panels of Figure 4), that moves southward, as seen in the
Figure 3. Sequence of images taken using the 131 Å filter showing the complete evolution of the CME event. The box in the top left panel shows the field of view which is analyzed in detail.

(A color version of this figure is available in the online journal.)

Figure 4. Sequence of images during the impulsive acceleration phase of the CME, at 304 Å (first row) and 1600 Å (second row). The FOV of these images corresponds to the box shown in Figure 3.

(A color version of this figure is available in the online journal.)

subsequent images. We refer to this structure as the “inflow structure” hereafter. The vertical inflow structure first brightens in the 304 Å image at 12:12:56 UT. With passing time, as it moves southward, it becomes brighter and finally disappears at 12:15:20 UT. By tracking a point on the inflow structure at different instances of time until it disappears, we determined a speed of 105 km s\(^{-1}\).

This inflow structure remains invisible in the 1600 Å images until the structure starts moving in the 304 Å images. Once the inflow structure starts to move south and brightens in 304 Å, it becomes visible in the 1600 Å images at about 12:13:28 UT (the structure is shown by an arrow in the second panel of the bottom row in Figure 4). This structure is, however, seen until 12:14:17 UT in 1600 Å images and disappears completely, which coincides with the fading of this structure in the 304 Å images. A jet-like outward moving structure, similar to that is seen in the 304 Å images, is also observed. The absence of this structure in the 1700 Å images confirms that the 1600 Å emission mainly comes from the \(\text{C}^{4+}\), i.e., the emitted plasma is at the transition region temperature.

Figure 5 shows three snapshots of composite images simultaneously recorded using 304 Å (green) and 131 Å (red). The arrow in the left panel indicates the inflow structure seen in the 304 Å images (discussed earlier). The middle panel shows the inflow structure seen in 304 Å connected to the northern leg of the blob seen in 131 Å, as marked by an arrow. The arrow in
the right panel shows the fully formed flux-rope-like structure. The associated animation (composite SUBSCRIPTTNBmovie SUBSCRIPTNB131 SUBSCRIPTNB304.mpg) reveals the evolution of the CME seen in 131 Å and the inflow structure seen in 304 Å. The composite animation shows a large-scale faint disturbance which occurs in close association with the first brightening of the inflow structure in the 304 Å images. A diffuse blob-like structure appears and starts to move outward in concurrence with the inflow structure sweeping in toward the south. The composite images taken at 12:14:20 UT show a blob-like structure with two legs emanating from the location where the inflow structure merges with another pre-existing structure. By 12:14:44 UT, the blob-like structure takes the shape of a fully formed flux-rope with an overlying loop. We interpret this inflow structure to be reconnection inflow, which moves south to the reconnection location at which it merges with other magnetic structures and disappears.

Distinct HXR emission regions were observed by RHESSI (see Figure 3 in Glesener et al. 2013). Using 18–40 keV RHESSI observations with the two-step CLEAN method (Krucker et al. 2011), they observed two distinct HXR sources: a compact source near the limb and a coronal extended diffuse source. The later was co-spatial and co-temporal to the main phase of the flares and the associated erupting CME as observed in the AIA 131 Å images. However, the compact source appeared about 30 s prior to the coronal extended diffuse source. The delay could not be explained by the difference in electron densities due to the much shorter time for thermalization of the accelerated electrons. An explanation could be that there were two different reconnection events, one occurring closer to the limb and another at higher altitude in the corona. The start time and location of the compact source near the limb matches the brightening and movement of the inflow structure observed in the 304 Å images shown in Figure 4. In this paper, we have therefore focused on this particular source.

Figure 6 shows the GOES soft X-ray flux profile integrated between 1 and 8 Å (top panel) and the HXR light curve integrated between 18 and 40 keV (bottom panel). At the beginning of the impulsive phase of the flare, an enhancement in HXR source is seen. The first appearance of this HXR emission is at 12:12:56 UT. This also marks the onset of the rise phase of CME initiation and the brightening and movement of the 304 Å inflow structure. Moreover, the HXR light curve shows two peaks (bottom panel of Figure 6). The first peak corresponds to the very early times of the impulsive phase of the flare and the intensity is about 20% larger than the second peak. The two vertical lines mark the time interval that corresponds to the brightening, movement, and disappearance of the inflow structure seen in 304 Å. In order to probe the spatial relation between the location of the near limb compact HXR source and the inflow structure observed in the 304 Å images, we have created HXR images with the CLEAN algorithm (Hurford et al. 2002). Figure 7 shows the sequence of the (reverse colored) images observed during the course of this event in 304 Å with RHESSI contours overlapped. The contours in each frame correspond to the ratios of the HXR fluxes observed in that particular frame with respect to the peak flux. The top middle panel corresponds to the peak timing of the HXR light curve. Hence, it shows a range of contours corresponding to 30%, 50%, 70%, and 90% of the peak flux, respectively. The box overlapped in the top-left panel shows the field of view that is used to generate the light curve of the near limb compact HXR source shown in Figure 6. As can be seen from Figures 6 and 7, the HXR emission in 18–40 keV is co-temporal with the inflow motion and co-spatial with the base of the inflow structure, suggesting that this inflow is indeed the reconnection inflow that energizes the flare. One puzzling point in this interpretation is the brightening of the inflow seen in 304 Å (Figure 7), because the inflow should be pre-heated plasma. One possibility is that the inflow is heated by the leakage of the heat from the reconnection region by thermal conduction, as suggested by Yokoyama & Shibata (1997) and Chen et al. (1999).

We have also performed the spectral analysis of the near-limb HXR source during the time interval 12:12:56–12:13:50 UT. The images were individually checked to ensure that the Clean components were not found high in the corona to verify that the images are not contaminated by flux from the high coronal source. A photon spectrum was fit to the fluxes of these Clean images for this time interval and is shown in Figure 8; fit components included a thermal distribution ($T = 21.7$ MK) and a broken power law with a spectral index of 4.2. The existence of a power-law component above 20 keV confirms a population of flare-accelerated electrons in the near-limb source. This analysis suggests the non-thermal nature of the source, demonstrating magnetic reconnection processes in action, which in turn leads to the movement of the inflow structure seen in the 304 Å observations and in the initiation of the CME event.

Figure 9 depicts the complete evolution of the initiation phase of the event. The top left panel shows the structures in the source region (shown in red), including the inflow structure (marked with a blue arrow) seen in the 304 Å image before the CME eruption. The structure depicted by blue line indicates the flux...
Figure 6. Top panel: GOES soft X-ray profile integrated between 1 and 8 Å. Bottom panel: RHESSI light curve between 18 and 40 keV. The two vertical lines mark the time interval that corresponds to the brightening, movement, and disappearance of the inflow structure seen in 304 Å.

Figure 7. Sequence of images observed during the rise phase of CME initiation at 304 Å (color inverted), with RHESSI contours overplotted in the 18–40 keV energy band. The contours in each frame correspond to the ratio of the hard X-ray (HXR) flux observed in that particular frame with respect to the peak flux observed in the whole event (Figure 6: bottom panel). The top middle panel corresponds to the peak of the HXR light curve. The contours are 30%, 50%, 70%, and 90% of the maximum flux in the top middle image. The respective RHESSI images are created by combining the fine subcollimators (3, 4, and 5) with the CLEAN algorithm over the time given in the bracket. The box overplotted in the top left panel shows the field of view that is used to generate the time profile of the near limb compact HXR source. (A color version of this figure is available in the online journal.)

rope structure as observed in 131 Å. The inflow structure in the top left panel brightens with the occurrence of a non-thermal bright compact HXR source (18–40 keV) shown in green and marked with a black arrow, observed at 12:12:56 UT. Top right panel shows the inflow structure as it appears in 304 Å and is connected to the northern leg of the blob seen in 131 Å, as marked by an arrow. The fully formed flux rope structure shown in bottom left panel and marked with an arrow later
Figure 8. Hard X-ray spectrum averaged over 12:12:56–12:13:50 UT shown in black. The observations are fitted with a thermal distribution in red ($T = 21.7$ MK, $EM = 6.5 \times 10^{46}$ cm$^{-3}$) and a broken power law in blue (power-law index is 4.2).

(A color version of this figure is available in the online journal.)

erupts as a CME. The bottom right panel shows the evolution of jet material (shown in green) that appears concurrent with the pinching of the inflow structure. The appearance of this compact non-thermal source, brightening, and movement of the inflow structure and the subsequent outward movement of the CME structure in the corona led us to conclude that magnetic reconnection is the cause for the CME initiation. Based on the location of the HXR source followed by the moving inflow structure and subsequent UV brightening associated with the jet, we infer that the reconnection region is located at an even lower altitude than that reported by Savage et al. (2012).

4. SUMMARY AND CONCLUSIONS

The problem of CME initiation is one of the major unsolved problems in Solar physics. This has a profound impact on space weather forecasting. In this paper, we have probed the initiation phase of a well observed flare-associated CME event that occurred on 2010 November 3 using multi-wavelength observations recorded using AIA on board SDO and RHESSI. The later evolution phase of the CME and its associated flare event has been studied in detail by various authors (e.g., Reeves & Golub 2011; Savage et al. 2012; Kumar, Innes 2013; Foullon

Figure 9. Schematic depiction of the complete evolution of the flare-CME event observed over the east limb. Top left panel: scenario before the event and the onset of HXR source (green and marked by an arrow) over the limb. The structure marked with the blue arrow is the inflow structure. Top right panel: inflow structure connected to the northern leg of the blob during the rise phase of CME initiation. Bottom left panel: fully formed flux rope structure with a current sheet underneath and an overlying loop structure. Bottom right panel: a jet-like (green) outward moving structure similar to that seen in the 304 Å images.

(A color version of this figure is available in the online journal.)
We thank the referee for the comments. S.M. and D.T. acknowledge support from DST under the Fast Track Scheme (SERB/F/3369/2012/2013). The AIA data are courtesy of SDO (NASA) and the AIA consortium. H.I. is supported by the Grant-in-Aid for Young Scientists (B 22740121). RHESSI work is supported by NASA contract NAS 5-98033.

REFERENCES

Bain, H. M., Krucker, S., Glesener, L., & Lin, R. P. 2012, ApJ, 750, 44B
Benz, A. O. 2008, LRPSP, 5, 1
Chen, P. F., Chen, Z., Tang, Y. H., & Ding, M. D. 1999, ApJ, 513, 516
Chen, P. F., & Shibata, K. 2000, ApJ, 545, 524
Cheng, X., Zhang, J., Liu, Y., & Ding, M. D. 2011, ApJL, 732, L25
Cheng, X., Zhang, J., Saar, S. H., & Ding, M. D. 2012, ApJ, 761, 62C
Chifor, C., Mason, H. E., Tripathi, D., Isobe, H., & Asai, A. 2006, A&A, 458, 965
Chifor, C., Tripathi, D., Mason, H. E., & Dennis, B. R. 2007, A&A, 472, 967
Chifor, C., Mason, H. E., & Dennis, B. R. 2012, ApJL, 742, 82
Cheng, X., Zhang, J., Liu, Y., & Ding, M. D. 2011, ApJL, 732, L25
McKenzie, D. E., & Hudson, H. S. 2001, EP&S, 53, 577M
Schwenn, R., Raymond, J. C., Alexander, D., et al. 2006, SSRv, 123, 103
Savage, S. L., Holman, G., Reeves, K. K., et al. 2012, ApJ, 754, 138
Tripathi, D., Isobe, H., & Mason, H. E. 2006a, A&A, 453, 1111
Tripathi, D., Reeves, K., Gibson, S. E., Srivastava, A. K., & Joshi, N. C. 2013, ApJ, 778, 142
Tripathi, D., & Shibata, K. 2006, ApJ, 637, 1122N
Tripathi, D., Reeves, K., Gibson, S. E., & Fan, Y. 2006, ApJL, 637, L65
We thank the referee for the comments. S.M. and D.T. acknowledge support from DST under the Fast Track Scheme (SERB/F/3369/2012/2013). The AIA data are courtesy of SDO (NASA) and the AIA consortium. H.I. is supported by the Grant-in-Aid for Young Scientists (B 22740121). RHESSI work is supported by NASA contract NAS 5-98033.

REFERENCES

Bain, H. M., Krucker, S., Glesener, L., & Lin, R. P. 2012, ApJ, 750, 44B
Benz, A. O. 2008, LRPSP, 5, 1
Chen, P. F., Chen, Z., Tang, Y. H., & Ding, M. D. 1999, ApJ, 513, 516
Chen, P. F., & Shibata, K. 2000, ApJ, 545, 524
Cheng, X., Zhang, J., Liu, Y., & Ding, M. D. 2011, ApJL, 732, L25
Cheng, X., Zhang, J., Saar, S. H., & Ding, M. D. 2012, ApJ, 761, 62C
Chifor, C., Mason, H. E., Tripathi, D., Isobe, H., & Asai, A. 2006, A&A, 458, 965
Chifor, C., Tripathi, D., Mason, H. E., & Dennis, B. R. 2007, A&A, 472, 967
Chifor, C., Young, P. R., Isobe, H., et al. 2008, A&A, 481, 57
Del Zanna, G., O’Dwyer, B., & Mason, H. E. 2011, A&A, 535, 46
Feynman, J., & Martin, S. F. 1995, JGR, 100, 3355
Foullon, C., Verwichte, E., Nakariakov, V. M., Nykuki, K., & Farrugia, C. J. 2011, ApJL, 729, L8
Foullon, C., Verwichte, E., Nykuki, K., Aschwanden, M., & Hannah, I. 2011, ApJ, 767, 170
Hannah, I. G., & Kontar, E. P. 2013, A&A, 553A, 10H
Hurford, G. J., Schmahl, E. J., Schwartz, R. A., et al. 2002, SoPh, 210, 61
Kumar, P., & Innes, D. E. 2013, SoPh, 288, 255
Krucker, S., Kontar, E. P., Christe, S., Glesener, L., & Lin, R. P. 2011, ApJ, 742, 82
Lemen, J. R., Title, A. M., Akin, D. J., et al. 2012, SoPh, 275, 17L
Lin, R. P., Dennis, B. R., Hurford, G. J., et al. 2002, SoPh, 210, 3
McKenzie, D. E., & Hudson, H. S. 1999, ApJ, 519, 93M
McKenzie, D. E., & Hudson, H. S. 2001, EP&S, 53, 577M
Narukage, N., & Shibata, K. 2006, ApJ, 637, 1122N
O’Dwyer, B., Del Zanna, G., Mason, H. E., Weber, M. A., & Tripathi, D. 2010, A&A, 521, 21
Parker, E. N. 1963, ApJS, 8, 177P
Petschek, H. E. 1964, BAAS, 50, 425
Priest, E. R., & Forbes, T. G. 2002, AARv, 10, 313P
Reeves, K. K., & Golub, L. 2011, ApJL, 727, L52
Savage, S. L., Holman, G., Reeves, K. K., et al. 2012, ApJ, 754, 138
Savage, S. L., McKenzie, D. E., Reeves, K. K., Forbes, T. G., & Longcope, D. W. 2010, ApJ, 722, 329S
Schwenn, R., Raymond, J. C., Alexander, D., et al. 2006, SSRv, 123, 127
Shibata, K. 1996, AdSpR, 17, 9S
Shibata, K. 2008, in 37th COSPAR Scientific Assembly, 285SS
Shibata, K., Ishido, Y., Acton, L. W., et al. 1992, PASJ, 44L, 173S
Shibata, K., Nitta, N., Strong, K. T., et al. 1994, ApJL, 431, L51
Sterling, A. C., & Moore, R. L. 2005, ApJ, 613, 1221
Su, Y., Veronig, A. M., Holman, B. R., et al. 2013, NatPh, 9, 489
Sweet, P. A. 1958, in IAU Symp. 6, Electromagnetic Phenomena in Cosmical Physics, ed. Bo Lehnert (Cambridge: Cambridge Univ. Press), 123
Takasao, S., Asai, A., Isobe, H., & Shibata, K. 2012, ApJL, 745, L6
Tripathi, D., Bothmer, V., & Cremades, H. 2004, A&A, 422, 337
Tripathi, D., Gibson, S. E., Ji, Q., et al. 2009, A&A, 498, 295
Tripathi, D., Isobe, H., & Mason, H. E. 2006a, A&A, 453, 1111
Tripathi, D., Reeves, K., Gibson, S. E., Srivastava, A. K., & Joshi, N. C. 2013, ApJL, 778, 142
Tripathi, D., Solanki, S. K., Mason, H. E., & Webb, D. F. 2007, A&A, 472, 633T
Tripathi, D., Solanki, S. K., Schwenn, R., et al. 2006b, A&A, 449, 369
Wedd, D. F., & Howard, T. A. 2012, LRPSP, 9, 3
White, R. S., & Verwichte, E. 2012, A&A, 537, A49
White, R. S., Verwichte, E., & Foullon, C. 2012, A&A, 545, A129
Yokoyama, T., Akita, K., Morimoto, T., Inoue, K., & Newmark, J. 2001, ApJL, 546, L69
Yokoyama, T., & Shibata, K. 1997, ApJL, 474, L67
Zhang, J., & Dere, K. P. 2006, ApJ, 649, 1100
Zimovets, I., Vilmer, N., Chian, A. C.-L., Sharykin, I., & Struminsky, A. 2012, A&A, 547, A6