Myxobacteria as a Source of New Bioactive Compounds: A Perspective Study

Mudasir Ahmad Bhat 1,2,†, Awdhesh Kumar Mishra 2,†, Mujtaba Aamir Bhat 3,†, Mohammad Iqbal Banday 4, Ommer Bashir 5, Irfan A. Rather 6, Safikur Rahman 7, Ali Asghar Shah 1,⁎ and Arif Tasleem Jan 3,⁎

1 Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India; mudasirbiotech@bgsbu.ac.in
2 Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; awdhesh@ynu.ac.kr
3 Department of Botany, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India; mujtabai@bgsbu.ac.in
4 Department of Microbiology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India; bandayiqbal.1000@gmail.com
5 Department of School Education, Jammu 181205, Jammu and Kashmir, India; ommerbashir@gmail.com
6 Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia; ammn@kau.edu.sa
7 Department of Botany, MS College, BR Ambedkar Bihar University, Muzaffarpur 845401, Bihar, India; shafique2@gmail.com
* Correspondence: aashah@bgsbu.ac.in (A.A.S.); atasleem@bgsbu.ac.in (A.T.J.)
† These authors contributed equally to this work.

Abstract: Myxobacteria are unicellular, Gram-negative, soil-dwelling, gliding bacteria that belong to class δ-proteobacteria and order Myxococcales. They grow and proliferate by transverse fission under normal conditions, but form fruiting bodies which contain myxospores during unfavorable conditions. In view of the escalating problem of antibiotic resistance among disease-causing pathogens, it becomes mandatory to search for new antibiotics effective against such pathogens from natural sources. Among the different approaches, Myxobacteria, having a rich armor of secondary metabolites, preferably derivatives of polyketide synthases (PKSs) along with non-ribosomal peptide synthases (NRPSs) and their hybrids, are currently being explored as producers of new antibiotics. The Myxobacterial species are functionally characterized to assess their ability to produce antibacterial, antifungal, anticancer, antimalarial, immunosuppressive, cytotoxic and antioxidative bioactive compounds. In our study, we have found their compounds to be effective against a wide range of pathogens associated with the concurrence of different infectious diseases.

Keywords: antibiotics; bioactive compounds; medication; Myxobacteria; human diseases

1. Introduction

Myxobacteria, bacteria belonging to family δ-proteobacteria and order Myxococcales, are unicellular, soil-dwelling, rod-shaped bacteria that display gliding motility on attachment to solid surfaces. They are omnipresent, with habitats ranging from tundra to hot deserts and from acidic soils to alkaline conditions [1–3]. The source for their isolation ranges from soil to decaying wood and leaves of trees up to excreta of herbivorous creatures [4,5]. Under nutrient-deficient conditions, they produce species-explicit structures (fruiting bodies) that exhibit myxospores (arisen from vegetative cells) within themselves to pass decades of unfavorable environmental conditions [6]. Withstanding regular confinement endeavors, myxospores sprout with the onset of favorable conditions into full-fledged structures, with the exception of depicted facultative anaerobic species, Anaeromyxobacter dehalogenans [7]. Recently, a large number of studies have been performed to
gain a detailed account of the *Myxobacterial* properties along with types, dynamics and biogenesis of Myxobacteria-derived secondary metabolites [8–12].

The rise in resistance to armor of available antibiotic regimes represents a problem of global magnitude [13–16]. With increases in mortality and morbidity rates, it becomes imperative to have a strategic management plan to monitor the impact of resistance development and means for exploration of new molecules that can combat the emergence of different diseases among humans [12,17]. *Myxobacterial* species, despite exhibiting sensitiveness to tetracycline, kanamycin, erythromycin, streptomycin, neomycin and actinomycin, produce a variety of chemically different structures that in due course were found effective in combatting the growing problem of drug resistance. The present study highlights the potential of Myxobacteria as a source of new bioactive molecules, with strong emphasis on the production and screening of secondary metabolites, their effect observed in overcoming the odyssey associated with different diseases, as well as having updated information of the current development of their exploitation as a source of effective molecules with potential to compliment available drugs in the control of different diseases.

2. Distribution

Myxobacteria are largely cosmopolitan. Besides inhabiting terrestrial conditions, they mark their presence in extreme habitats, such as anaerobic/microaerophilic, freshwater, acidic soils, saline waters and others [12]. Since maximum populations of Myxobacteria predominantly inhabit terrestrial ecosystems, a large proportion of their secretions (secondary metabolites) are derived from terrestrial *Myxobacterial* species. On the basis of habitats, their distribution is studied under the following.

2.1. Terrestrial Habitats

Adaptation of Myxobacteria to terrestrial habitats manifests their existence in wide phenotypic characteristics, such as social swarming and gliding, resting myxospores, etc., capable of producing secondary metabolites with a wide range of antibiotic or antifungal activity as well as predation or cellulose decomposition [18]. With the help of different probes and primers, Wu et al. explored a wide range of Myxobacteria, mostly Myxococcales, from the soil samples [19]. Mohr revealed greater presentation of *Myxococcus* and *Corallococcus* genera by standardized cultivation techniques as compared to cultivation-independent clone libraries [12].

2.2. Acidic and Alkaline Habitats

Generally, Myxobacteria inhabit the soils which are neutral or slightly alkaline and show a narrow range in their pH, i.e., approximately 6.5–8.5 [12]. Myxobacteria species isolated from the alkaline bogs include *Miyococcus*, *Archangium* and *Sorangium*, along with others such as *Melittangium* [20]. *Corallococcus coralloides* (formerly *Miyococcus coralloides*) dominated in slightly acidic soils, while *M. fulvus* dominated in soils with a pH range in between 3.0 and 3.5 [21]. Ruckert reported that *Myxobacterial* diversity decreases with the decrease in the pH of the soil at alpine regions [21].

2.3. Freshwater Habitats

Freshwater-dwelling Myxobacteria share some characteristic features with soil inhabitants, which justifies that these Myxobacteria have been blown away or washed from soil into the freshwater bodies [22]. Research related to freshwater habitats of Myxobacteria reveal that in lake mud, Myxobacteria were the dominant bacterial groups [23].

2.4. Marine/Saline Environments

Though Myxobacteria are less adapted to saline environments, their existence in salty conditions was reported by Brockman in 1963, who observed *Myxobacterial* fruiting bodies
in sand dunes from an ocean beach of South Carolina [24]. Marine Myxobacteria are represented by four different genera: Salimbromide [25], Enhygrolides [26], Haliangicin [27] and Haliamide [28]. Haliangium tepidum and H. ochraceum are the representative members of Myxobacteria from coastal salt marshes. They differ from members of the terrestrial genus with respect to the presence of anteiso-branched fatty acids, that help them to survive in greater salt concentrations (2–3% NaCl) [29]. Some genera of Myxobacteria, including Enhygromyx [30], Plesiociystis [31] and Pseudenygromyx [32], are entirely detected in the saline environments. Brinkhoff et al. reported a cluster of marine Myxobacteria (MMB) from sediments of the North Sea [33,34]. Zhang et al. studied 58 species of Myxobacteria from the saline soils of Xinjiang, China [35], and Li et al. observed that species such as Sorangium, Cystobacter, Myxococcus, Polyanium, Corallococcus and Nannocystis show better survival in elevated salt conditions [36].

2.5. Facultative Anaerobic Myxobacteria

Myxobacteria are strictly aerobes, with the exception of Anaeromyxobacter dehalogenans, which is a facultative anaerobe. This strain of Myxobacteria was studied from sediments of the stream and grows with 2-chlorophenol (2-CPh) as an electron acceptor and acetate as an electron donor [7]. Later, different strains of this Myxobacteria were isolated from uranium-contaminated soils [37], flooded paddy fields [38], corrosive material of water pipelines [39] and arsenic-polluted environments [40].

2.6. Myxobacteria Inhabiting Moderate to Extreme Environments

Most of the Myxobacterial species are mesophilic, i.e., they survive in the range of 4–44 °C. However, they are also reported to survive in the extreme temperature range. Myxospores liberated by bacteria inhabiting extreme environments act as a means of sexual reproduction and can survive with temperature extremes of 58–60 °C. Production of myxospores differentiates these organisms from the rest of the faunal diversity [22]. Brockman analyzed greater diversity among Myxobacteria from regions that received greater annual rainfall (400–800 mm) as compared to the normal range of 200–400 mm [41]. Gerth and Müller [42] reported that Cystobacterineae and Sorangineae-Myxobacterial suborders show greater morphogenesis at temperatures of 42–48 °C. Mohr et al. reported that N. konarekensis, which was studied from an Iranian desert, exhibits the best growth at 37 °C, compared with N. pusilla and N. exedens, which show optimal growth at 30 °C [43]. Though hot springs are not considered suitable for the growth of mesophilic Myxobacteria, Iizuka et al. reported four different strains of Myxobacteria that grow in geothermal conditions (optimum 45–49 °C) from Japan [44].

3. Myxobacterial Secondary Metabolites

Secondary metabolites represent incredible gathering of characteristically differing molecules blended among different creatures, such as microorganisms, plants, etc. Though they are not actively involved in development or any type of advancement, their absence prompts a long-haul disability in the survivability of living beings [45]. Production of secondary metabolites has been reported from a large number of Myxobacterial species, but a major proportion of them are reported among Myxococcus xanthus, Sorangium cellulosum and Chondromyces species [46]. In addition to ribosomally produced secondary metabolites, a major proportion of Myxobacterial metabolites were found to be derivatives of polyketide synthases (PKSs), non-ribosomal peptide synthetases (NRPSs) or hybrids of PK-NRPS systems [3,6,47]. The synthesis module in both cases proceeds through buildup of monomeric blocks: acyl CoA thioester (in case of PK metabolites) and amino acids (both proteinogenic and non-proteinogenic in case of NRPs), in a stepwise manner, followed by modification either during assembly of reaction intermediates or at the end after release from the multienzyme complex [3]. Over the past 3 decades, more than 100 secondary
metabolites with over 600 analogs were reportedly isolated from more than 9000 Myxobacterial strains [48]. The production of unique metabolites among Myxobacterial strains reflects a strong correlation between genome size and the biosynthetic pathway [49,50].

Considered as a rich source of secondary metabolites, the production of a large number (>80 distinctive and 350 structural variants) of bioactive compounds by Myxobacteria puts it on par with Pseudomonas for being a rich source of antibiotics [51]. A large number of Myxobacterial secondary metabolites show similarity to those produced by Pseudomonas and Bacillus spp. Antibiotics produced as bioactive secondary metabolites have been observed for about 55% and 95% of Myxobacterial spp. that exhibit bacteriolytic and cellulytic properties [52]. With greater potential for use in clinical settings, compounds isolated from Myxobacteria are found either as macrocyclic lactones or linear cyclic peptides [51,52]. Information on different aspects of secondary metabolites produced by different strains of Myxobacteria along with their uses is summarized in Table 1.

Table 1. Categorization of Myxobacterial-derived secondary metabolites based on their function.

Bioactive Compound	Chemical Structure	Classification	Myxobacterial sp.	Uses	References
Ajudazol	![Ajudazol structure](image)	Depsipeptides	Chondromyces croatus	Acts as inhibitor of mitochondrial electron transport. More effective against yeast and fungi.	[3,47,53]
Althiomycin	![Althiomycin structure](image)	Polyketide, peptide	Myxococcus xanthus	Disrupts translocation of tRNA for peptide bond formation by peptidyltransferase. It is effective in treatment of injury and sepsis associated with Yersinia pestis infection.	[54]
Angiolactone	![Angiolactone structure](image)	Furanone	Angiococcus sp.	Exhibits siderophore production which enables its antibacterial and antiproliferative activity.	[55]
Antalid	![Antalid structure](image)	Depsipeptide	Polyangium sp.	NA	[56]
Aurachins E	![Aurachins E structure](image)	Quinoline alkaloids	Stigmatella aurantiaca	Exhibits antimalarial activity (effective against Plasmodium falciparum).	[57]
Carolacton	![Carolacton structure](image)	Macrolactone	Sorangium cellulosum	Effective in regulating the growth of biofilm-producing microbes such as Streptococcus mutans and pneumococci.	[58]
Compound	Class	Source	Activity/Effect	Reference	
------------------	------------------	-----------------------------	---	-----------	
Chlorotonil	Macrolactone	Sorangium cellulosum	Antibacterial and antimalarial activity.	[59]	
Coralopyronin A	α-Pyone	Coralloccocus (Myxococcus) coralloides	Exhibits antibacterial action, effective in treating filariasis.	[60]	
Corallorazine	Piperazine	Coralloccocus coralloides	Exhibits antibacterial activity.	[61]	
Crocacin	Depsipeptides	Chondromyces crocatus	Antibacterial. Inhibits electron transport system.	[62]	
Cystobactamid	Peptide	Cystobacter sp.	Broad-spectrum antibacterial; topoisomerase (gyrase) inhibition.	[63]	
Cytochromone	Polyketide, chromone	Proteus mirabilis	Essential in mitochondrial electron transport and intrinsic type II apoptosis.	[64]	
Cystomanamide	Lipopeptide	Cystobacter fuscus	Exhibits strong antifungal and antibacterial activity.	[65]	
Cystothiazol	Heterocyclic alkaloid	Cystobacter fuscus	Antifungal/cytostatic. Inhibits sub-mitochondrial NADH oxidation.	[66]	
Disciformycin	Macrolide	Pyxidicoccus fallax	Exhibits antibacterial activity.	[67]	
Enhygrolide A: Furanone from Enhygromyxa salina effective in inhibiting the growth of Arthrobacter crystallopoietes. [68]

Etnangien: Polyketides from Sorangium cellulosum work as an inhibitor of eubacterial DNA polymerase. [3,47,53]

Gulmirecin: Macrolide from Pyxidicoccus fallax exhibits antibacterial activity. [69]

Haliangicin: Polyketide from Haliangium luteum effective against fungi Aspergillus niger and Fusarium sp. at very low concentrations of 6–12 µg/mL. [70]

Hyalachelin: Catechol from Hyalangium minutum shows sidrophore, i.e., iron-chelating activity, and cytotoxic activity is minor. [71]

Hyaladione: Quinone from Hyalangium minutum exhibits antimicrobial and cytotoxic activity. [72]

Hyapyrroline: Polyketide, pyrrole from Hyalangium minutum NA. [73]

Hyapyrone: Polyketide, pyrone from Hyalangium minutum exhibits weak antibacterial and antifungal activity. [73]
Compound	Type	Organism	Activity	Reference
p-Hydroxyacetophenone amide	Amide	Cystobacter ferrugineus	Shows marginal activity against microalgae (P. simplex).	[74]
1-Hydroxyphenazin-6-yl-a-Darabinofuranoside	Glycoside	Nannocystis pusilla	Exhibits weak antimicrobial activity.	[75]
Icumazol	Polyketide	Sorangium cellulosum	Effective antifungal. Inhibition of NADH oxidation.	[76]
Indiacen	Indole	Sandaracinus amylolyticus	Exhibits antibacterial and antifungal activity.	[77,78]
Indothiazinone	Indole	Oltaekwangia kribbensis	Weak antimicrobial and cytotoxic activity.	[75]
Kulkenon	Macrolactone	Sorangium cellulosum	Exhibits antibacterial activity.	[79]
Leupyrrins: Macrolides from *Sorangium cellulosum* exhibit antibacterial activity. [80]

Macyranone: Peptide from *Cystobacter fuscus* shows moderate cytotoxic activity; antiparasitic (L. donovani); proteasome inhibitor (CT-L activity). [81]

Maltepolid: Macrolactone exhibits moderate cytotoxic activity. [82]

Methyl indole-3-carboxylate: Indole from *Sorangium cellulosum* exhibits moderate cytotoxic activity. [75]

Melithiazols: Heterocyclic alkaloid from *Archangium gephyra* acts as an antibacterial. Inhibits NADH oxidation. [83]

Microsclerodermin: Cyclic peptide from *Microscleroderma, theonella* exhibits antifungal activity, NF-kB inhibition and induction of apoptosis. [84,85]

Myxalamids: Amide from *Myxococcus xanthus* exhibits antibacterial and antifungal activity; inhibits electron transport system. [3,47,53]
Name	Type	Source	Activity Description
Myxochelin	Peptide	Angiooccus disciformis	Shows siderophore production. Exhibits antibacterial, antitumor and antiproliferative activities: inhibits 5-lipoxygenase. [86,87]
Myxocoumarin	Coumarin	Stigmatella aurantiaca	Exhibits antifungal activity. [88]
Myxoprincomide	Peptide	Myxococcus xanthus	NA [89–91]
Myxopyronin B	Peptide	Myxococcus fulvus	Effective in combating diseases caused by *Staphylococcus aureus* [92]
Myxothiazol	Macrocyclic	Myxococcus fulvus	Inhibits mitochondrial cytochrome c reductase. [3,47,53]
Myxovalargin	Lipopeptide	Myxococcus fulvus	Exhibits antibacterial activity against *Micrococcus luteus* and *Corynebacterium Mediolanum*. Disrupts membrane integrity and aminoacyl-tRNA binding to site A during translation. [93]
Myxovirescin	Macrocyclic	Myxococcus xanthus	Exhibits antibacterial activity. Blocks bacterial cell wall synthesis via interference in lipid-disaccharide pentapeptide polymerization, as well as targeting type II signal peptidase LspA. [94,95]
Nannozinone	Pyrrolopyrazine	Nannocystis pusilla	Exhibits weak antimicrobial and cytotoxic activity. [75]
Noricumazol
Polyketide
Sorangium cellulosum
Inhibits conductance of potassium channel KscA. Exhibits antiviral (EBOV, HCV) activity.

[76,96,97]

Phenoxan
Lipopeptide
Polyganium sp.
Effective as an inhibitor of eukaryotic respiratory chain (blocks Complex I). Exhibits antifungal activity.

[3,47,53]

Phoxalone
Macrolides
Sorangium cellulosum
Exhibits antimicrobial activity.

[98]

Pyrronazol
Pyrrole
Nannocystis pusilla
Shows weak antifungal activity.

[75]

Ripostatin B
Polyketide
Sorangium cellulosum
Effective in treating tuberculosis.

[99]

Roimatacene
Cyclic peptide
Cystobacter ferrugineus
Exhibits antibacterial activity.

[74]

Saframycin MxI
α-cyanoamine
Myxococcus xanthus
Acts as a broad-spectrum inhibitor for a wide range of Gram-positive and halobacteria. Shows weak activity against Gram-negative bacteria.

[3,47,53]
Salimyxin A and Salimabromide

Effective against Arthrobacter cristallopoietes. [100]

Sesqiterpene

Terpenes Sorangium cellulosum Exhibits antimicrobial activity. [101,102]

Sorangicin

Macrolides Sorangium cellulosum Exhibits antimicrobial activity. [82]

Sorangiadenosine

Macrolides Sorangium cellulosum Exhibits antimicrobial activity. [101]

Soraphinol

Macrolides Sorangium cellulosum Exhibits antimicrobial activity. [103]

Sorazinnone

Pyrazinone Pyxidicoccus fallax Siderophore production. Exhibits antibacterial activity. [75]
Sorazolon

Indole

Sorangium cellulosum

Weak activity against Gram-positive bacteria. [104]

Stigmatellin

Macrolactone

Stigmatella aurantiaca

Exhibits strong antifungal activity. Inhibits quinol oxidation of mitochondrial cytochrome bc1 complex. [3,47,53]

Sulfangolid

Macrolactone

Sorangium cellulosum

Exhibits antiviral (HIV-1) activity. [105,106]

Thuggacin

Macrolactone

Sorangium cellulosum

Effective against Mycobacterium tuberculosis. [107,108]

Bioactive compounds exerting cytotoxic effects

Aetheramide

Cyclic peptide

Atherobacter rufus

Shows cytotoxic and moderate antifungal activity. [109–111]

Archazolid

Macrolactone

Archangium gephyra, Cystobacter violaceus

Exhibits cytotoxic and antitumor activity. Inhibits V-ATPase. [112]
Arghyrin Peptolide *Archangium gephya* Acts as a potential inhibitor of antibody formation by murine B-cells. Exhibits antibacterial and cytotoxic activity. [113]

Bengamide Caprolactam *Myxococcus virescens* Shows cytotoxic, antitumor, antibacterial and anthelmintic activity. Inhibits MetAP. Acts as an anti-inflammatory. [114]

Chivosazol Peptide *Sorangium cellulosum* Effective antifungal activity at higher concentration. Exhibits strong cytotoxic activity. Destroys cytoskeleton. [3,47,53]

Chondramide Depsipeptide *Chondromyces croatus* Exhibits strong cytotoxic activity; effective against breast cancer metastasis. [3,47,53]

Cystodienoic acid Terpene *Cystobacter ferrugineus* Exhibits cytotoxic activity. [115]

Disorazol Peptide *Sorangium cellulosum* Exhibits strong antifungal activity; inhibits proliferation of different cancer cell lines. [116]
Compound	Class	Source	Activity	References
Eliamid	Polyketide	Sorangium cellulosum	Exhibits cytotoxic activity; shows moderate anthelmintic and antifungal activity; acts as a respiratory chain inhibitor.	[117]
Epothilone	Peptide	Sorangium cellulosum	Acts as an inhibitor of microtubule function concerning cell division.	[118]
Haliamide	Polyene	Halangiun ochraceum	Exhibits moderate cytotoxic activity.	[28]
Hyafurone	Polyketide, furanone	Hylangiun minutum	Exhibits moderate cytotoxic activity, as well as showing marginal antiparasitic activity.	[73]
Miuraenamide	Cyclic depsipeptides	Paraliomyxa miuraensis	Exhibits antibacterial and cytotoxic activity.	[119]
Nannocystin	Macrocyclic epoxyamide	Nannocystis sp.	Exhibits strong antifungal and cytotoxic activity; inhibits eukaryotic translation elongation factor 1α.	[120,121]
Pellasoren	Polyketide	Sorangium cellulosum	Exhibits cytotoxic activity.	[51,122]
Ratjadone A	α-pyrone	Sorangium cellulosum	Acts as an antiviral drug. Inhibits HIV infection by ceasing the Rev/CRM1-mediated nuclear export.	[106]
Rhizopodin Amide *Myxococcus stipitatus* Effective against cancer cell lines. Interferes with cytoskeleton assembly. Acts as a strong antiviral. [3,123]

Spirangien Polyketide *Sorangium cellulosum* Exhibits antifungal, cytotoxic, antiviral (HIV) and anti-inflammatory activity. [124]

Tubulysin Peptide *Archangium gephyra and Angiococcus disciformis* It has been found to be effective in treating the cancer associated with Luteinizing Hormone-releasing hormone receptor. Effective in cell cycle arrest at G2/M phase. [125]

Bioactive compounds exerting beneficial effects in agriculture

Ambruticin Polyketide *Sorangium cellulosum* Acts as a fungicide, effective against *Hansenula anomala* and other plant pathogens such as *Botrytis cinerea*, via interference in osmoregulation system. [126]

Pyrrolnitrin Pyrrole *Myxococcus faleus, Caralliococcus exigus, Cystobacter ferrugineus* Exhibits strong antifungal activity. [3,47,53]

Tartrolon Pilyketide *Sorangium cellulosum* Effective against Gram-positive bacteria and mammalian cells. [127]
4. Pharmacological Effects of Myxobacteria-Derived Bioactive Compounds

Myxobacteria, an adaptable cosmopolitan, produces a wide range of bioactive molecules. About 40% of Myxobacteria-derived compounds represent novel (mostly non-glycosylated) chemical structures that act against targets often not covered by compounds derived from Actinomycetes, Bacillus and Pseudomonas. A variety of bioactive compounds produced by Myxobacterial spp. play a vital role in biological activities, and mostly, their activities are antifungal, antibacterial, anti-cancerous, antiparasitic and immunomodulatory.

4.1. Myxobacteria and Infectious Diseases

Before the advent of an era of widely accessible anti-infectious agents, mankind was considered vulnerable to infections such as cholera, which reached the extent of epidemics that caused a huge loss of human lives [131]. With the passage of time, the period of antinfectious agents moved along from quinine (utilized against fever), to Salvarsan (arsenic compound used against syphilis) and Sulpha drugs such as Protonsil (utilized against diseases caused by Gram-positive cocci). The circumstances profoundly improved with the discovery of the β-lactam drug Penicillin, from Penicillium spp. [132]. The era of antibiotics moved on to aminoglycosides [133], macrolides [134] and so on to treat ailments that were considered untreatable. Inaccurate recommendation and wrong use of antibiotics in human medication, veterinary and horticulture expanded portability, and as such, quick spread of microbes, that raised alarm regarding the use of multi-tranquilize safe microbes. Many pharmaceutical companies withdrew from manufacturing new drugs due to high-cost screening systems developed for nosocomial infections caused by ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp.) pathogens [135]. With less new medications, the dying antimicrobial pipeline caused by an absence in development and inefficient ways of screening bioactive substances presented a dreadful situation that led to obstruction in the production of drugs [136,137]. The bottlenecks that choked the production of anti-infective agents prompted qualified countermeasures to be implemented regarding improvements in the production of engineered medications, proper screening of the metabolite markers, followed by assessment of the rediscovered drugs. At this instance, exploration of new genera and species are of extraordinary intrigue [138] as it may involve the creation of auxiliary metabolites in scaleup forms or fitting hardware for maturation and release of substances from fermenter stock for resolving biotic and abiotic conditions of the maker strain.

Myxobacteria, together with actinomycetes [139] and Bacillus spp., are considered as the best producers of bioactive compounds [140]. A large proportion of Myxobacteria-derived bioactive compounds (29%) displaying antibacterial properties reflect their competitiveness for existence in their natural habitats. These characteristic products demon-
strate a more extensive scope of biological activities which are regularly less direct to rationalize, as the production of regular objects from different *Myxobacterial* spp. requires regular screening and enormous scaleup development [6].

4.2. *Myxobacteria* and Viral Diseases

4.2.1. Human Immunodeficiency Virus (HIV)

Human Immunodeficiency Virus is a single-strand RNA (ssRNA) lentivirus which targets human immune cells, and integrates into host DNA by reverse transcription. Secondary metabolites extracted from different *Myxobacterial* strains are reported to play crucial roles against HIV. The Sulfangolids are an important class of antiviral secondary metabolites secreted by different strains of *Sorangium cellulosum* [105]. *Myxobacterial* extracts such as spirangien B, sulfangolid C, soraphen F and epothilon D at different concentrations showed impressive activity against HIV [124]. Soraphens exert antiviral activity by inhibiting acetyl-CoA carboxylate transferase [141], while epothilones stabilize the activity of macrophage microtubuli in a parallel way to Taxol® [142,143]. Ixabepilone®, an FDA-registered anticancer drug, is derived from epothilone B [144]. Epothilone D and spirangien B are believed to decrease the phosphorylation, and as such degradation of inhibitor of kappa B (IκB) [143,145]. Rhizopodin, a well-known actin inhibitor, extracted from *Myxococcus stipitatus* [124], interferes in virus synapses and hence blocks the virological synapse arrangement. Stigmatellin extracted from *Stigmatella aurantiaca* Sga15, disorazol extracted from *Sorangium cellulosum* Soce 56 and tubulysin extracted from *Archangium gephyrs* strain Ar315 shows mild anti-HIV activity [124], while Phenalamide A1, phenoxyan and thiazangole separated from *Polyangium* sp. and *Myxococcus stipitatus* strain Mxs40 suppress HIV-1-mediated cell death in the MT-4 cell assay, thereby exhibiting high anti-HIV activity [146]. Aetheramide A and B isolated from the genus Aetherobacter, that inhibits HIV-1 infection, show IC\textsubscript{50} values of 0.015 and 0.018 M, respectively [109,147,148]. Similarly, Ratjadon A (a compound isolated from *Sorangium cellulosum* Soce 360), capable of blocking the Rev/CRM1-mediated nuclear export, inhibits HIV infectivity; however, its toxicity and low SI value becomes a limiting factor for its exploitation as a potential therapeutic molecule [106,149].

4.2.2. Human Cytomegalovirus (HCMV)

Infections of Human Cytomegalovirus are associated with diseases such as glandular fever and pneumonia. Myxochelin, a secondary metabolite obtained from different *Myxobacterial* strains, responsible for iron uptake during iron-limiting circumstances, was found to be a potent antitumor agent [87,150,151]. The ability of nannochelins and hy-lachelins (siderophores of *Myxobacterial* source) in inhibiting the human 5-lipoxygenase (5-LO, a gene associated with the proliferation of cancerous cells) were found exerting antitumor activity [87,142–154]. It is believed that a similar pathway of inhibiting 5-LO is associated with the antitumour activity [153,155]. Of the different Myxochelins, which are either isolated from *Angiococcus disciformis* (strain And30) or synthesized [155,156], Myxochelin C is capable of inhibiting HCMV (IC\textsubscript{50} value of 0.7 g/mL) [150,157]. It opens avenues for testing other known siderophores, such as nannochelins, hy-lachelins and myxochelin analogues, in the future for their possible role in inhibiting HCMV [158]. Additionally, structure–activity relationships of the siderophores need to be studied for possible discovery of more potent antivirals [123].

4.2.3. Ebola Virus Disease (EVD)

Ebola virus (EBOV) is a single-stranded RNA virus which causes hemorrhagic fever. Different metabolites extracted from Myxobacteria were analyzed for their possible activity in inhibiting the Ebola virus using GP-pseudo-typed lentiviral vectors expressing Ebola envelope glycoprotein [97]. Chondramides extracted from the genus Chondromy-
ces [159] of Myxobacteria were found capable of inhibiting the EBOV-GP-mediated transduction [123]. Noricumazole, a polyketide extracted from Sorangium cellulosum, exerts an EBOV-GP inhibitory effect with an IC₅₀ value of 0.33 M. [97]. The secondary metabolite is believed to lower the virulence of EBOV via blocking of the potassium channels [76,97].

4.2.4. Hepatitis C Virus (HCV)

Hepatitis C virus, a single-stranded RNA virus, undergoes transmission through blood transfusions. Heterocyclic metabolites such as labdiones A and B [160], 3-chloro-9H-carbazole and 4-hydroxymethyl-quinoline extracted from Myxobacterial strain Labilithrix luteola, exert potent antiviral activity, and thereby help to overcome the effects of HCV [160]. Of the different macrolactones, Soraphens A obtained from Myxobacterial species was found to inhibit HCV replication in in vitro HCV culture models (cells in sub-genomic and full-length replicons) and in cell culture-adapted virus with an IC₅₀ value of 5 nM [96,161–163]. Lanyamycin, a macrolide obtained from Sorangium cellulosum (strain Soce 481) that exhibits similarity to bafilomycins of actinobacteria effective against influenza A virus (IC₅₀ value of 0.1 nM), was found to moderately inhibit HCV [96,160,164].

4.3. Myxobacterial Metabolites as Anti-Neurodegenerative Diseases

Inside the cell, the endoplasmic reticulum (ER) helps in the processing of proteins before their transport to the target sites. However, any kind of ER dysfunction due to protein misfolding may lead to neurodegenerative disorder or cell death [165–167]. Myxobacterial secondary metabolites act on protein GRP78/Bip, which helps to release any kind of stress created in the ER [168]. It also decreases the release of apoptosis-inducing factor (AIF) and cytochrome C (an apoptosis-related marker proteins). Therefore, Myxobacterial secondary metabolites help in combating the Parkinson’s disease (PD) pathology via decreasing the ER stress, which contributes to inhibition of cell apoptosis [169]. Microtubules play a major role in the axoplasmic transport of different constituents of the cell (mitochondria, synaptic vesicles, lipids, proteins) [170]. Neurodegenerative diseases such as Alzheimer’s disease (AD), Amyotrophic lateral Sclerosis (ALS) and PD arise by distraction in the axoplasmic transport due to microtubules linked to tau proteins—the phenomenon known as tauopathy [171–175]. Epothilones (A–F) are a particular class of secondary metabolites produced by Sorangium cellulosum strain So ce90 that exhibit antifungal and anticancerous potential [176]. These compounds bind to microtubules and help them in stabilization, hence resulting in the elevation of axoplasmic transport in neurodegenerative disorders [177]. Of the different Epothilones, Epothilone D plays an important role in improving the axonal transport, as well as protecting cognitive deficits in a mouse tauopathy model having overexpression of P301S (a mutant tau), thereby contributing to inhibition of tau pathology [178]. Epothilone D also plays an active role in alleviating the microtubule defects in a C57Bl model of PD [179].

Neurodegenerative diseases such as PD, AD and Huntington’s Disease (HD) are the outcomes of different mitochondrial dysfunctions [180]. Earlier studies predicted that certain prokaryotes have the ability to synthesize PUFAs, however, these predictions failed as some extremophilic bacteria which inhabit extreme environments of seas and oceans invalidated this hypothesis [181,182]. Among different terrestrial prokaryotes, Myxobacteria are considered as a major contributor of PUFAs [183]. In the studies employing the genome mining approach, two Myxobacterial species, Sorangium and Aetherobacter, were found, having different organization of gene clusters associated with biosynthetic PUFA compared with their marine counterparts [184]. Myxobacterial omega 3 PUFAs play an antagonistic role against prenatal stress, which arises from mitochondrial abnormalities such as changes in mitochondrial complexes, DNA damage and memory deficiency [185,186]. Having a remarkable effect regarding the phospholipid profile, and as such fluidity of the mitochondrial membrane, DHA was observed to play a critical role in maintaining stability of the structure, and as such functions of the mitochondrial membrane, and thereby in non-amyloidogenic processing of APP in the HEK-APP cell line [187].
Immune Modulating *Myxobacterial* Compounds

Employment of *Myxobacterial* secondary metabolites such as Soraphen A, bengamide A and B and Spirangien A as immune-enhancing compounds has attracted the attention of different researchers throughout the world [188]. Castro et al. worked out the immune-enhancing responses of Soraphen A [189]. Acting on the biotin carboxylase (BC) domain, Soraphen A extracted from *Sorangium cellulosum* So ce26 was found to exert an inhibitory effect on acetyl-CoA carboxylase (ACC) [141]. Bengamides, an important class of secondary metabolites produced by *Myxococcus virescens*, exert both anti-inflammatory as well as immune-boosting effects via regulation of the nuclear factor-KB (NF-KB) and pro-inflammatory cytokines (IL-6, TNFα and MCP-1) [190]. Spirangien A produced by *Sorangium cellulosum* strain So ce90 shows antifungal activity, as well as suppressing transcription of IL-8 in response to IL-1 (cytotoxic activity). The compound along with its derivative, spirangien M522, were found effective in inhibiting IL-8 gene expression in the HeLa cell line [145].

4.4. *Myxobacterial* Compounds Attributing Cytotoxic Effects

Myxobacterial secondary metabolites display unique structural properties and exhibit novel modes of action. These metabolites mainly target the cellular structures that are rarely hit by metabolites from other sources.

4.4.1. Compounds Targeting Electron Transport

Myxobacterial compounds such as crocacin [191] and auracherin C [192,193], along with a group of closely related thiazole derivatives, particularly myxothiazol, cystothiazol and melithiazole [66,194–196], were found effective in inhibiting mitochondrial respiration through interference in the functioning of complex-I (NADH-Ubiquinone oxidoreductase) and complex-III (Cyt b–C1 complex). Stigmatellin was found to exert its inhibitory effect at complex III of the mitochondria [6] and Cyt b6/f of the photosynthetic apparatus in plants [197–199].

4.4.2. Compounds Targeting RNA and Protein Synthesis

With enormous potential to lead as building blocks for drug development, compounds of Myxobacteria origin such as saframycin tie to DNA [200], ambruticin helps in osmoregulation of fungi [126] and gephyronic acid [201] and myxovalargin [93,202] repress eukaryotic and prokaryotic protein synthesis, respectively [83]. Etnangien is a metabolite that targets protein synthetic machinery via inhibition of the eubacterial RNA polymerases. In addition to rifampicins utilized maximally in clinics, other inhibitors of RNA polymerase of *Myxobacterial* origin include thiolutin [203,204], streptolydigin [205] and holomycin [206]. These molecules (ripostatin and corallopyronin) show no cross-resistance with rifamycin, and likewise concentrate on the commencement of RNA synthesis [207]. Acting in an alternate way to rifamycin, it is believed that these metabolites can potentially be used to overcome rifamycin resistance in bacteria [208,209]. Inhibition of the protein synthetic machinery is mediated by both naturally occurring compounds such as sorangicins and ripostatins that exert their effect during initiation (sorangicins) [210,211] and chain elongation (ripostatins) [212,213], as well as by chemically related myxopyronins [93] and corallopyronins [214].

Compounds of *Myxobacterial* origin (10% of *Myxobacterial* compounds), that interfere with the microtubule assembly (cytoskeleton) and thereby hinder cell proliferation and promote apoptosis, are currently being used in cancer chemotherapies. Similar to notorious fungal toxins obtained from mushrooms (preferably green and white cap mushrooms), *Myxobacterial* compounds such as rhizopodin [215,216] and chondramides [159,217,218] are reported to work explicitly on the actin [214]. Though all chondramide variants exert similar effects, chondramide C was found to be most effective in its action on actin [217]. Of the different compounds, a few compounds, such as epothilones
[219,220], play important roles in retaining tubular polymerization under in vitro conditions, while others, such as tubulysins [221,222], favor depolymerization events of the tubulin. Epothilones and their analogs have shown antitumor activity towards multidrug-resistant and paclitaxel-safe tumor cell lines [223]. In 2007, the FDA recommended Ixabepilone (IxempraTM)—a derivative of epothilone—for the treatment of metastatic breast cancer, while epothilones B and D are currently undergoing clinical trials [224]. From the tubulysins class, tubulysin D displays action that surpasses other tubulin modifiers, such as taxol, epothilones and vinblastine, by 20–100-fold [225,226]. Additionally, tubulysin A is currently explored for its pharmacological properties related to its use as an antiangiogenic and antiproliferative agent [227].

4.4.3. Other Activities

Soraphen A from Sorangium cellulosum was found to hinder normal functioning of acetyl-CoA carboxylase through interference with its biotin carboxylase (BC) domain. With its novel modus operandi, Soraphen A has explicit utility as a promising therapeutic (novel inhibitor of ACCs) in the treatment of cancers [3,228]. Its utility as a potent inhibitor in cancers hindered by its poor water solubility and less bioavailability is overruled through generation of either structural variants of this metabolite or through the genetic engineering approach, upholding its bioactivity.

4.5. Myxobacteria and Plant Diseases of Bacterial and Fungal Origin

Although the contribution of Myxobacteria to plant health remains largely unexplored, studies have assessed the role of Myxobacterial secondary metabolites in the predation of microorganisms and other plant pathogens. Based on their ability to degrade biomolecules, two groups of Myxobacterial spp., i.e., bacteriolytic and cellulolytic, have been formed [229]. The Myxobacteria of the bacteriolytic category produce a large number of agriculturally important compounds such as pyrrolnitrin, a thiangozolet that acts as an antagonistic in the control of phytopathogens that destroy crops [230]. Pyrrolnitrin produced by Myxobacterial spp. (Myxococcus fulvus, Cystobacter ferrugineus and Corallococcus exiguus) was found effective in controlling the damping-off of diseases of cotton caused by Rhizoctonia solani [229,230]. The ability of Myxobacteria to utilize cellulose categorizes them into two groups: Group I, capable of utilizing inorganic nitrogen compounds during their growth on cellulose and glucose sources (members of the Sorangineae suborder), and Group II, unable to make direct use of cellulose (majority of Myxobacterial spp.) and as such, dependent on enzymatic degradative products of proteins (peptides and amino acids) as their source of nitrogen [230]. Under natural conditions, Group II Myxobacterial spp. causes lysis of other organisms, such as eubacteria, via secretion of exoenzymes (proteases, lipases, xylanases, etc.). The lysate generated thereof is used as a nutrient by these Myxobacterial spp., and tags them with the name “micro-predators” [231]. Myxobacterial proteolytic enzymes exhibiting both cellulolytic (genus Sorangium) and predatory roles (genus Myxococcus). These proteases are believed to perform lysis of prey, cellular membrane disruption for cytoplasmic content release and protein hydrolysis for supplying amino acids to the Myxobacteria-like functions [232]. Lipids containing fatty acids c16:1ω5c, utilized along with proteins as an energy and carbon source during the growth of myxobacteria, play pivotal roles in the predation by acting as chemo-attractants for the prey. In Myxococcus xanthus, lipolytic enzymes belonging to three families—α/β hydrolases, patatin and GDSL lipases—disintegrate the membrane barrier, thereby releasing fatty acids and cytoplasmic contents of the prey. Genus Polyangium was found perforating, and as such lysing, the conidia of Cochliobolus miyabeanus and hyphae of R. solani. Genus Sorangium reduces damping-off of conifers in addition to lysis of microorganisms under culture conditions [231,232]. Additionally, the production of unsaturated fats by Myxococcus xanthus was found to exert an inhibitory effect on the growth of Fusarium roseum [233]. Taken together, the production of agriculturally important compounds
along with a series of lytic enzymes show that Myxobacteria have potential for use as biocontrol agents.

5. Techniques for Exploring Myxobacterial Metabolites

As emerging endeavors of whole-genome sequencing together with metabolic profiling of Myxobacterial species revealed high profundity of secondary metabolites, it becomes necessary to have information on mining genomes of both terrestrial and marine Myxobacteria for novel metabolites [234]. It becomes obligatory to have a strategic plan regarding the methodology (in terms of media composition, temperature, pH, along with others) adopted for identification of secondary metabolites from cultivated strains under standard research laboratory conditions. One such strategy is OSMAC (one strain many compounds), initially introduced in Actinomycetes and fungi during isolation of new secondary metabolites [235]. Traditional but untested strategies for isolation of secondary metabolites include inoculation of microorganisms into the culture, much like induction of cytotoxic compounds [236].

Optimization of the growth conditions along with addition of the explicit precursors would be a way to support generation and expansion of the metabolite yield [234]. The adoption of the genetic engineering techniques for producing a strain with desired characters can be achieved. For instance, overexpression of a particular gene activator regulating biosynthesis of a cryptic gene cluster might be activated, as recently illustrated for the fungus Aspergillus nidulans [237]. The irregular transposon mutagenesis approach was adopted to obtain genetic information regarding gene clusters of metabolites produced from a prepared cosmid library of the strain [238]. The methodology helped in obtaining information of the gene clusters for ambruticin/jerangolid [239,240], aurachin [240,241], disorazol [242] and tubulysin [243] metabolites. In Cystobacter fuscus Cb f17, irregular transposon mutation helped in the recognition of a particular regulatory element for a metabolite [244]. The adopted methodology helped in unravelling information of the biosynthetic gene cluster with two components (StiR) associated with the synthesis of the polyketide stigmatellin. Recognition of ChiR protein following detachment of the promoter binding protein by the biomagnetic bead assay revealed its role in the biosynthesis of the metabolite chivosazol in Sorangium cellulosum So ce56, as its overexpression led to a 5-fold increase in the production of chivosazol [245]. Alternatively, intentional inactivation of the gene cluster followed by screening of mutants for non-production of the explicit metabolite compared with the wild phenotypes helped in the recognition of myxochelins, myxochromides and aurafurones [246,247]. Additionally, shot-gun genome sequencing can be adopted to obtain information of the gene clusters for the identification of different metabolites, as observed for phosphoglycolipid moenomycin A [248,249].

To overcome the problem of recalcitrance of a strain for manipulation, heterologous expression of gene clusters (both orphan and known) in a suitable host that offers advantages for genetic manipulation seems a suitable alternative for exploring the function of genes [247]. Using specific hosts such as Myxococcus xanthus and a few other bacterial strains such as Pseudomonas, it is possible to arrange different gene sets in a codon-optimized manner for heterologous expression that abolishes the requirement for genetic engineering of the host [250]. Though Myxococcus xanthus shares codon usage and other physiological parameters with a majority of the Myxobacterial species, Pseudomonads offers the advantage of a growth rate on par with E. coli, with plasmids harboring inducible promoters. Examples of heterologous expression of gene clusters for metabolites, such as epothione in M. Xanthus [251], Streptomyces coelicolor [252] and E. coli [253], myxochromide S in Pseudomonas putida [247,254], soraphen in Streptomyces lividans [255], myxothiazol in both M. Xanthus [256] and P. putida [257] and flavolin in three Pseudomonas strains [257], are available. Employment of Red/ET recombination technology has overcome the limitation of cluster reconstruction associated with the heterologous gene expression by enabling reconstruction of gene clusters onto a suitable vector [258]. Recently,
an approach of combining Myxobacterial biosynthetic machineries has been explored for production of novel metabolites in a so-called combinatorial biosynthesis approach [259].

6. Conclusions and Future Perspectives

The escalating problem of resistance against the current regime of antibiotics has increased concern, particularly related to treatment of human diseases. It has resulted in a community crisis, necessitating the requirement to undertake studies towards development of effective alternatives that could replace or supplement the antibiotics in counteracting occurrence at a global scale. Based on this scenario, studies were undertaken to explore natural resources towards the development of potent products that offer promise for treatment of different diseases. Exhibiting potent antimicrobial activity, secondary metabolites of microbial origin (in particular Myxobacteria) were investigated for possible use in the prevention and treatment of diseases. Myxobacteria, a highly adaptable and cosmopolitan group of microorganisms, were screened at genome and metabolome levels for identification and characterization of metabolites that can serve as potent lead structures for drug development. Evaluation of the rich repertoire of Myxobacterial metabolites for safety, specificity, distribution, immune modulation and anti-infectivity potential revealed information of novel antimicrobials that offer great potential to be utilized in the manufacturing of drugs. Despite the fact that Myxobacterials exhibit survival under different habitats and extreme climatic conditions, secondary metabolites of Myxobacterial origin were found effective in the treatment of a wide range of diseases. Studies need to be undertaken to gain insight into the production mechanism that holds promise in elucidating the regulatory circuit of different secondary metabolites towards optimal design of a strategic plan for enhancing their production. Alongside strategic approaches for elucidating the potency of the secondary metabolites using recently developed techniques that offer flexibility to approval strategies, consistency in safety, efficacy and delivery methods need to be adapted to broaden exploration, and as such adoption of the secondary metabolites of Myxobacterial origin.

Author Contributions: Conceptualization, A.A.S. and A.T.J.; writing—original draft preparation, M.A.B. (Mudasir Ahmad Bhat), M.A.B. (Mujtaba Aamir Bhat) and A.K.M.; writing—editing, M.I.B., S.R., I.A.R. and A.T.J.; structures, O.B.; supervision, A.A.S. and A.T.J.; funding acquisition, A.K.M., I.A.R. and A.T.J. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Department of Science and Technology, India, under the Science and Engineering Research Board (DST-SERB), grant no. CRG/2019/004106.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors extend their appreciation to their fellow colleagues, whose helped in improving the contents of the manuscript.

Conflicts of Interest: The authors declare that they have no conflicts of interest.

References

1. Gerth, K.; Pradella, S.; Perlova, O.; Beyer, S.; Müller, R. Myxobacteria: Proficient producers of novel natural products with various biological activities—Past and future biotechnological aspects with the focus on the genus Sorangium. J. Biotechnol. 2003, 106, 233–253.
2. Kim, Y.S.; Bae, W.C.; Back, S.J. Bioactive substances from myxobacteria. Korean J. Microbiol. Biotechnol. 2003, 31, 1–12.
3. Weissman, K.J.; Muller, R. Myxobacterial secondary metabolites: Bioactivities and modes-of-action. Nat. Prod. Rep. 2010, 27, 1276–1295.
4. Dawid, W. Biology and global distribution of myxobacteria in soils. FEMS Microbiol. Rev. 2000, 24, 403–427.
5. Shimkets, L.J.; Dworkin, M.; Reichenbach, H. The myxobacteria. In The Prokaryotes; Springer: New York, NY, USA, 2006; pp. 31–115.
6. Reichenbach, H. Myxobacteria, producers of novel bioactive substances. J. Ind. Microbiol. Biotech. 2001, 27, 149–156.
7. Sanford, R.A.; Cole, J.R.; Tiedje, J.M. Characterization and Description of *Anaeromyxobacter dehalogenans* gen. nov., sp. nov., an Aryl-Halorespiring Facultative Anaerobic Myxobacterium. *Appl. Environ. Microbiol.* 2002, 68, 893–900.

8. Sharma, G.; Yao, A.I.; Smaldone, G.T.; Liang, J.; Long, M.; Facciotti, M.T.; Singer, M. Global gene expression analysis of the *Myxococcus xanthus* developmental time course. *Genomics* 2021, 113, 120–134.

9. Wrótniak-Drzewiecka, W.; Brzezińska, A.J.; Dahm, H.; Ingle, A.P.; Rai, M. Current trends in myxobacteria research. *Ann. Microbiol.* 2016, 66, 17–33.

10. Livingstone, P.G.; Morphew, R.M.; Whitworth, D.E. Genome Sequencing and Pan-Genome Analysis of 23 Corallillococcus ssp. Strains: Reveal Unexpected Diversity. With Particular Plasticity of Predatory Gene Sets. *Front. Microbiol.* 2018, 9, 3187.

11. Sajedi, H.; Mohammadipanah, F.; Pashaei, A. Automated identification of Myxobacterial genera using Convolutional Neural Network. *Sci. Rep.* 2019, 9, 18238.

12. Mohr, K.I. Diversity of Myxobacteria—We Only See the Tip of the Iceberg. *Microorganisms* 2018, 6, 84.

13. Azam, M.; Jan, A.T.; Haq, Q.M.R. blaCTX-M-152, a Novel Variant ofCTX-M-group-25, Identified in a Study Performed on the Prevalence of Multidrug Resistance among Natural Inhabitants of River Yamuna, India. *Front. Microbiol.* 2016, 7, 176.

14. Hemlata; Jan, A.T.; Tiwari, A. The Ever-Changing Face of Antibiotic Resistance: Prevaling Problems and Preventive Measures. *Curr. Drug Metab.* 2017, 18, 69–77.

15. Hemlata; Bhat, M.A.; Kumar, V.; Ahmed, M.Z.; Alqahtani, A.S.; Alqahtani, M.S.; Jan, A.T.; Rahman, S.; Tiwari, A. Screening of natural compounds for identification of novel inhibitors against β-lactamase CTX-M-152 reported among *Klyvera georgiana* isolates: An in vitro and in silico study. *Microb. Pathog.* 2021, 150, 106488.

16. Sultan, I.; Rahman, S.; Jan, A.T.; Siddiqui, M.T.; Mondal, A.H.; Haq, Q.M.R. Antibiotics, Resistome and Resistance Mechanisms: A Bacterial Perspective. *Front. Microbiol.* 2018, 9, 2066.

17. AlSheikh, H.M.A.; Sultan, I.; Kumar, V.; Rather, L.A.; AlSheikh, H.; Tasleem Jan, A.; Haq, Q.M.R. Plant-Based Phytochemicals as Possible Alternative to Antibiotics in Combating Bacterial Drug Resistance. *Antibiotics* 2020, 9, 480.

18. Ringel, S.M.; Greenough, R.C.; Roemer, S.; Connor, D.; Gutt, A.L.; Blair, B.; Kanter, G.; von Strandtmann, M. Ambruticin (W7783), a new antifungal antibiotic. *J. Antibiot.* 1977, 30, 371–375.

19. Wu, Z.H.; Jiang, D.M.; Li, P.; Li, Y.Z. Exploring the diversity of myxobacteria in a soil niche by myxobacteria-specific primers and probes. *Environ. Microbiol.* 2005, 7, 1602–1610.

20. Hook, L.A. Distribution of Myxobacteria in Aquatic Habitats of an Alkaline Bog. *Appl. Environ. Microbiol.* 1977, 34, 333–335.

21. Rückert, G. Myxobakterien-Artenanspekten von Boden in Abhängigkeit von bodenbildenden Faktoren unterbesonderer Berücksichtigung der Bodenreaktion. *Z. Pflanzenenernähr. Bodenkdl.* 1979, 142, 330–343.

22. Reichenbach, H. The ecology of the myxobacteria. *Environ. Microbiol.* 1999, 1, 15–21.

23. Li, S.G.; Zhou, X.W.; Li, P.F.; Han, K.; Li, W.; Li, Z.F.; Wu, Z.H.; Li, Y.Z. The existence and diversity of myxobacteria in lake mud-A previously unexplored myxobacteria habitat. *Environ. Microbiol. Rep.* 2012, 4, 587–595.

24. Brockman, E.R. Fruiting myxobacteria from the South Carolina coast. *J. Bacteriol.* 1963, 94, 1253–1254.

25. Felder, S.; Dreisigacker, S.; Kehraus, S.; Neu, E.; Bierbaum, G.; Wright, P.R.; Menche, D.; Schäberle, T.F.; König, G.M. Salinabromide: Unexpected chemistry from the obligate marine myxobacterium *Enhygromyxa salina*. *Chemistry* 2013, 19, 9319–9324.

26. Felder, S.; Kehraus, S.; Neu, E.; Bierbaum, G.; Schäberle, T.F.; König, G.M. Salinymxin and enhygrolydes: Antibiotic, sponge-related metabolites from the obligate marine myxobacterium *Enhygromyxa salina*. *Chem. Bio. Chem.* 2013, 14, 1363–1371.

27. Fudou, R.; Iizuka, T.; Sato, S.; Ando, T.; Shimba, N.; Yamanaka, S. Haliangicin, a novel antifungal metabolite produced by a marine myxobacterium. 2. Structure and biological elucidation. *J. Antibiot.* 2001, 54, 153–156.

28. Sun, Y.; Tomura, T.; Sato, J.; Iizuka, T.; Fudou, R.; Ojika, M. Isolation and Biosynthetic Analysis of Hallamide, a New PKS-NRPS Hybrid Metabolite from the Marine Myxobacterium *Haliangium ochraceum*. *Molecules* 2016, 21, 59.

29. Fudou, R.; Jojima, Y.; Iizuka, T.; Yamanaka, S. *Haliangium ochraceum* gen. nov., sp. nov. and *Haliangium tepidum* sp. nov.: Novel moderately halophilic myxobacterium isolated from coastal saline environments. *J. Gen. Appl. Microbiol.* 2002, 48, 109–116.

30. Iizuka, T.; Jojima, Y.; Fudou, R.; Tokura, M.; Hiraishi, A.; Yamanaka, S. *Enhygromyxa salina* gen. nov., sp. nov., a slightly halophilic myxobacterium isolated from the coastal areas of Japan. *J. Appl. Microbiol.* 2003, 26, 189–196.

31. Iizuka, T.; Jojima, Y.; Fudou, R.; Hiraishi, A.; Ahn, J.W.; Yamanaka, S. *Plesiocystis pacifica* gen. nov., sp. nov.; a marine myxobacterium that contains dihydrogenated menaquinone, isolated from the Pacific coasts of Japan. *Int. J. Syst. Evol. Microbiol.* 2003, 53, 189–195.

32. Iizuka, T.; Jojima, Y.; Hayakawa, A.; Fujii, T.; Yamanaka, S.; Fudou, R. *Pseudenhygromyxa salsuginis* gen. nov., sp. nov., a myxobacterium isolated from an estuarine marsh. *Int. J. Syst. Evol. Microbiol.* 2013, 63, 1360–1369.

33. Brinkhoff, T.; Fischer, D.; Vollmers, J.; Vogel, S.; Beardsley, C.; Thole, S.; Mussmann, M.; Kunze, B.; Wagner-Döbler, I.; Daniel, R.; et al. Biogeography and phylogenetic diversity of a cluster of exclusively marine myxobacteria. *Int. J. Syst. Evol. Microbiol.* 2012, 6, 1260–1272.

34. Tian, F.; Yang, Y.; Chen, B.; Li, H.; Yao, Y.F.; Guo, X.K. Bacterial, archaeal and eukaryotic diversity in Arctic sediment as revealed by 16S rRNA and 18S rRNA gene clone libraries analysis. *Polar Biol.* 2009, 32, 93–103.

35. Zhang, X.; Yao, Q.; Cai, Z.; Xie, X.; Zhu, H. Isolation and Identification of Myxobacteria from Saline-Alkaline Soils in Xinjiang, China. *PLoS ONE* 2013, 8, e70466.

36. Li, B.; Yao, Q.; Zhu, H. Approach to analyze the diversity of myxobacteria in soil by semi-nested PCR-denaturing gradient gel electrophoresis (DGGE) based on taxon-specific gene. *PLoS ONE* 2014, 9, e108677.
37. Thomas, S.H.; Padilla-Crespo, E.; Jardine, P.M.; Sanford, R.A.; Löffler, F.E. Diversity and distribution of anaeromyxobacter strains in a uranium-contaminated subsurface environment with a nonuniform groundwater flow. *Appl. Environ. Microbiol.* 2009, 75, 3679–3687.

38. Treude, N.; Rosencrantz, D.; Liesack, W.; Schnell, S. Strain FAc12, a dissimilatory iron-reducing member of the Anaeromyxobacter subgroup of Myxococcales. *FEMS Microbiol. Ecol.* 2003, 44, 261–269.

39. Lin, J.; Ratering, S.; Schnell, S. Microbial iron cycle in corrosion material of drinking water pipelines. *Ann. Agrar. Sci.* 2011, 9, 18–25.

40. Kudo, K.; Yamaguchi, N.; Makino, T.; Ohitsuka, T.; Kimura, K.; Dong, D.T.; Amachi, S. Release of arsenic from soil by a novel dissimilatory arsenate reducing bacterium, *Anaeromyxobacter* sp. strain PSR-1. *Appl. Environ. Microbiol.* 2013, 79, 4635–4642.

41. Brockman, E.R. Myxobacters from Arid Mexican Soil. *Appl. Environ. Microbiol.* 1976, 32, 642–644.

42. Gerth, K.; Müller, R. Moderately thermophilic Myxobacteria: Novel potential for the production of natural products isolation and characterization. *Environ. Microbiol.* 2005, 7, 874–880.

43. Mohr, K.I.; Moradi, A.; Glaeser, S.P.; Kämpfer, P.; Gumperlein, K.; Nübel, U.; Schumann, P.; Müller, R.; Wink, J. *Nannocystis konarekensis* sp. nov.; a novel myxobacterium from an Iranian desert. *Int. J. Syst. Evol. Microbiol.* 2018, 68, 721–729.

44. Reichenbach, H. The Myxococcales. *In Bergey’s Manual of Systematic Bacteriology*, 2nd ed.; Garrity, G.M., Ed.; Springer: New York, NY, USA, 2005.

45. Mohiuddin, A.K. Chemistry of Secondary Metabolites. *Ann. Clin. Toxicol.* 2019, 2, 1014.

46. Xiao, Y.; Wei, X.; Ebright, R.; Wall, D. Antibiotic production by myxobacteria plays a role in predation. *J. Bacteriol.* 2011, 193, 4626–4633.

47. Wenzel, S.C.; Müller, R. Myxobacteria-Microbial factories for the production of bioactive secondary metabolites. *Mol. BioSyst.* 2009, 5, 567–574.

48. Herrmann, J.; Fayad, A.A.; Müller, R. Natural products from myxobacteria: Novel metabolites and bioactivities. *Nat. Prod. Rep.* 2014, 31, 135–160.

49. Korpj, J.; Gurovic, M.S.V.; Nett, M. Antibiotics from predatory bacteria. *Beilstein J. Org. Chem.* 2016, 12, 594–607.

50. Allbataineh, H.; Stevens, D.C. Marine Myxobacteria: A Few Good Halophiles. *Mar. Drugs* 2018, 16, 209.

51. Reichenbach, H.; Höfle, G. Myxobacteria as Producers of Secondary Metabolites. In *Drug Discovery from Nature*; Grabley, S., Thiericke, R., Eds.; Springer: Berlin, Germany, 1999; pp. 149–179.

52. Reichenbach, H.; Höfle, G. Biologically active secondary metabolites from myxobacteria. *Biotechnol. Adv.* 1993, 11, 219–277.

53. Kaur, R.; Singh, S.K.; Kaur, R.; Kumari, A.; Kaur, R. *Myxococcus xanthus*: A source of antimicrobials and natural bio-control agent. *Pharm. Innov.* 2017, 6, 260–262.

54. Wilson, C.N. Endacea Inc. Methods for Preventing and Treating Tissue Injury and Sepsis Associated with *Yersinia pestis* Infection. U.S. Patent 12/220,377, 19 February 2009.

55. Ragu, R.; Garcia, R.; Müller, R. Angioliactone, a new Butyrolactone isolated from the terrestrial myxobacterium, *Angiococcus* sp. *J. Antibiot.* 2014, 67, 725–726.

56. Tautz, T.; Hofmann, J.; Hofmann, T.; Steinmetz, H.; Washausen, P.; Kunze, B.; Huch, V.; Kitsche, A.; Reichenbach, H.; Muller, R.; et al. Isolation, structure elucidation, biosynthesis, and synthesis of Antalid, a secondary metabolite from *Polyangium species*. *Org. Lett.* 2016, 18, 2560–2563.

57. Höfle, G.; Böhlerdorf, B.; Fecker, T.; Sasse, F.; Kunze, B. Semisynthesis and antiplasmodial activity of the quinoline alkaloid aurachin E. *J. Nat. Prod.* 2008, 71, 1967–1969.

58. Kunze, B.; Reck, M.; Dötsch, A.; Lemme, A.; Schummer, D.; Irschik, H.; Steinmetz, H.; Wagner-Döbler, I. Damage of *Streptococcus mutans* biofilms by carolacton, a secondary metabolite from the myxobacterium *Sinorhizobium cellulosum*. *MBMC Microbiol.* 2010, 10, 199.

59. Jungmann, K.; Jansen, R.; Gerth, K.; Huch, V.; Krug, D.; Fenical, W.; Müller, R. Two of a Kind-The Biosynthetic Pathways of Chlororubin and Anthracycinin. *ACS Chem. Biol.* 2015, 10, 2480–2490.

60. Schiefer, A.; Schmitz, A.; Schäberle, T.F.; Specht, S.; Lämmer, C.; Johnston, K.L.; Vassylyev, D.G.; Köninger, G.; Hörnau, A.; Pfarr, K. Corallopyronin A specifically targets and depletes essential obligate Wolbachia endobacteria from filarial nematodes in vivo. *J. Infect.* 2012, 206, 249–257.

61. Schmitz, A.; Kehraus, S.; Schäberle, T.F.; Neu, E.; Almeida, C.; Roth, M.; König, G.M. Corallorazines from the Myxobacterium *Coralloccocus coralloides*. *J. Nat. Prod.* 2014, 77, 159–163.

62. Kunze, B.; Jansen, R.; Höfle, G.; Reichenbach, H. Croacin, a new electron transport inhibitor from *Chondromyces croatus* (myxobacteria). Production, isolation, physico-chemical and biological properties. *J. Antibiot.* 1994, 47, 881–886.

63. Baumann, S.; Herrmann, J.; Ragu, R.; Steinmetz, S.; Mohr, K.I.; huttel, S.; Harmolfs, K.; stadler, M.; Müller, R. Cystobactamids: Myxobacterial topoisomerase inhibitors exhibiting potent antibacterial activity. *Angew. Chem. Int. Ed.* 2014, 53, 14605–14609.

64. Nadmid, S.; Plaza, A.; Garcia, R.; Müller, R. Cystochromones, Unusual Chromone-Containing Polyketides from the Myxobacterium *Cystobacter* sp. *MCy9104* J. Nat. Prod. 2015, 78, 2023–2028.

65. Etzlich, L.; Plaza, A.; Garcia, R.; Baumann, S.; Müller, R. Cystomanamides: Structure and biosynthetic pathway of a family of glycosylated lipopeptides from myxobacteria. *Org. Lett.* 2014, 16, 2414–2417.

66. Ojika, M.; Suzuki, Y.; Tsukamoto, A.; Sakagami, Y.; Fudou, R.; Yoshimura, T.; Yamanaka, S. Cystothiazoles A and B, new bithi-azoled-type antibiotics from the myxobacterium *Cystobacter fuscus*. *J. Antibiot.* 1998, 51, 275–281.
67. Surup, F.; Viehrig, K.; Mohr, K.I.; Herrmann, J.; Jansen, R.; Müller, R. Disciformycins A and B: 12-membered macrolide glycoside antibiotics from the myxobacterium *Pseudoxoimonas falax* active against multiresistant *staphylococi*. *Angewandte Chemie* (International ed. in English). Angew. Chem. Int. Ed. Engl. 2014, 53, 13588–13591.

68. Muddala, R.; Acosta, J.A.; Barbosa, L.C.; Boukouvalas, J. Synthesis of the Marine Myxobacterial Antibiotic Enhyglyrolide A. *J. Nat. Prod.* 2017, 80, 2166–2169.

69. Schieferdecker, S.; König, S.; Weigel, C.; Dahse, H.M.; Werz, O.; Nett, M. Structure and biosynthetic assembly of gulmirecins, macrolide antibiotics from the predatory bacterium *Pseudoxoimonas falax*. *Chemistry* 2014, 20, 15933–15940.

70. Dávila-Céspedes, A.; Hufendiek, P.; Crüsemann, M.; Schäberle, T.F.; König, G.M. Marine-derived myxobacteria of the suborder Nannocystineae: An underexplored source of structurally intriguing and biologically active metabolites. *Beilstein J. Org. Chem.* 2016, 12, 969.

71. Nadmid, S.; Plaza, A.; Lauro, G.; Garcia, R.; Bifulco, G.; Müller, R. Hyalachelins A-C, unusual siderophores isolated from the terrestrial myxobacterium *Hyalangium minutum*. *Org. Lett.* 2014, 16, 4130–4133.

72. Okanya, P.W.; Mohr, K.I.; Gerth, K.; Steinmetz, H.; Huch, V.; Jansen, R.; Müller, R. Hyaladione, an S-methyl cyclohexadienone from *Hyalangium minutum*. *J. Nat. Prod.* 2012, 75, 768–770.

73. Okanya, P.; Mohr, K.I.; Gerth, K.; Kessler, W.; Jansen, R.; Stadler, M.; Müller, R. Hyafuromes, hyapyrrolines and hyapyrones: Polyketides from *Hyalangium minutum*. *J. Nat. Prod.* 2014, 77, 1420–1429.

74. Zander, W.; Mohr, K.I.; Gerth, K.; Jansen, R.; Müller, R. P-hydroxyacetophenone amides from *cystobacter ferrugineus*, strain CB G35. *J. Nat. Prod.* 2011, 74, 1358–1363.

75. Jansen, R.; Sood, S.; Huch, V.; Kunze, B.; Stadler, M.; Müller, R. Pyrromazols, metabolites from the myxobacteria *Nannocystis pusilla* and *N. excedens* are unusual chlorinated pyrone-oxazole-pyrrroles. *J. Nat. Prod.* 2014, 77, 320–326.

76. Barbier, J.; Jansen, R.; Isschik, H.; Benson, S.; Gerth, K.; Böhlendorf, B.; Höfle, G.; Reichenbach, H.; Wegner, J.; Zeilinger, C.; et al. Isolation and total synthesis of icumacines and noricomicazes-Antifungal antibiotics and cation-channel blockers from *Sorangium cellulosum*. *Angew. Chem. Int. Ed.* 2012, 51, 1256–1260.

77. Steinmetz, H.; Mohr, K.; Zander, W.; Jansen, R.; Müller, R. Indiacens A and B: Prenyl indoles from the myxobacterium *S. angulobacteria*. *J. Nat. Prod.* 2012, 75, 1803–1805.

78. Marsch, N.; Jones, P.G.; Lindel, T. Sml2-mediated dimerization of indolybutenones and synthesis of the myxobacterial natural product indiacen B. *Beilstein J. Org. Chem.* 2015, 11, 1700–1706.

79. Symkenberg, G.; Kalesse, M. Structure elucidation and total synthesis of kulkenon. *Angew. Chem. Int. Ed.* 2014, 53, 1795–1798.

80. Kopp, M.; Isschik, H.; Gempelrein, K.; Buntin, K.; Meiser, P.; Weissman, K.J.; Bode, H.B.; Müller, R. Insights into the complex biosynthesis of the leupyrins in *Sorangium cellulosum* So ce690. *Mol. Biosyst.* 2011, 7, 1549–1563.

81. Keller, L.; Plaza, A.; Dubiella, C.; Groll, M.; Kaiser, M.; Müller, R. Macyranones: Structure, Biosynthesis, and Binding Mode of an Unprecedented Epoxyketone that Targets the 20S Proteasome. *J. Am. Chem. Soc.* 2015, 137, 8121–8130.

82. Isschik, H.; Washausen, P.; Sasse, F.; Fohrer, J.; Huch, V.; Müller, R.; Prusov, E.V. Isolation, structure elucidation, and biological activity of maltepilides: Remarkable macrolides from myxobacteria. *Angew. Chem. Int. Ed.* 2013, 52, 5402–5405.

83. Isschik, H.; Schummer, D.; Höfle, G.; Reichenbach, H.; Steinmetz, H.; Jansen, R. Etnangien, a macroline-polyene antibiotic from *Sorangium cellulosum* that inhibits nicotinic acid polymerases. *J. Nat. Prod.* 2007, 70, 1060–1063.

84. Hoffmann, T.; Müller, S.; Nadmid, S.; Garcia, R.; Müller, R. Microsclerodermins from terrestrial myxobacteria: An intriguing biosynthesis likely connected to a sponge symbiont. *J. Am. Chem. Soc.* 2013, 135, 16904–16911.

85. Guzman, E.A.; Maers, K.; Roberts, J.; Kemami-Wangun, H.V.; Harmody, D.; Wright, A.E. The marine natural product microscleroderm A is a novel inhibitor of the nuclear factor kappa B and induces apoptosis in pancreatic cancer cells. *Insect. New Drugs* 2015, 33, 86–94.

86. Kunze, B.; Bedorf, N.; Kohl, W.; Höfle, G.; Reichenbach, H. Myxochelin A, a new iron-chelating compound from *Angiococcus disciformis* (Myxobacteria). Production, isolation, physico-chemical and biological properties. *J. Antibiot.* 1989, 42, 14–17.

87. Schieferdecker, S.; König, S.; Koeberle, A.; Dahse, H.M.; Werz, O.; Nett, M. Myxochelins target human 5-lipoxigenase. *J. Nat. Prod.* 2015, 78, 335–338.

88. Gulder, T.A.; Neff, S.; Schütz, T.; Winkelk, T.; Gees, R.; Böhldorff, B. The myxococunarins A and B from *Stigmatella aurantiaca* strain MYX-030. *Beilstein J. Org. Chem.* 2013, 9, 2579–2585.

89. Cortina, N.S.; Krug, D.; Plaza, A.; Reervermann, O.; Müller, R. Myxoprincomide: A natural product from *Myxococcus xanthus* discovered by comprehensive secondary metabolism. *Angew. Chem. Int. Ed.* 2012, 51, 811–816.

90. Goldman, B.S.; Nierman, W.C.; Kaiser, D.; Slater, S.C.; Durkin, A.S.; Eisen, J.A.; Ronning, C.M.; Barbazuk, W.B.; Blanchard, M.; Field, C.; et al. Evolution of sensory complexity recorded in a myxobacterial genome. *Proc. Natl. Acad. Sci. USA* 2006, 103, 15200–15205.

91. Schley, C.; Altmeyer, M.O.; Swart, R.; Müller, R.; Huber, C.G. Proteome analysis of Myxococcus xanthus by off-line two-dimensional chromatographic separation using monolithic poly-(styrene-divinylbenzene) columns combined with ion-trap tandem mass spectrometry. *J. Proteome Res.* 2006, 5, 2760–2768.

92. Moy, T.I.; Daniel, A.; Hardy, C.; Jackson, A.; Rehrer, O.; Hwang, Y.S.; Zou, D.; Nguyen, K.; Silverman, J.A.; Li, Q.; et al. Evaluating the activity of the RNA polymerase inhibitor myxopyrion B against Staphylococcus aureus. *FEMS Microbiol. Lett.* 2011, 319, 176–179.

93. Isschik, H.; Gerth, K.; Kemmer, T.; Steinmetz, H.; Reichenbach, H. The myxovalargins, new peptide antibiotics from *Myxococcus fulus* (myxobacteria). I. cultivation, isolation, and some chemical and biological properties. *J. Antibiot.* 1983, 36, 6–12.
121. Krastel, P.; Roggo, S.; Schirle, M.; Ross, N.; Perruccio, F.; Aspesi, P.; Aust, T.; Buntin, K.; Estoppey, D.; Liechty, B.; et al. Nanno-
cystin A: An Elongation Factor 1 Inhibitor from Myxobacteria with Differential Anti-Cancer Properties. Angew. Chem. Int. Ed.
Engl. 2015, 54, 10149–10154.

122. Jahns, C.; Hoffmann, T.; Müller, S.; Gerth, K.; Washausen, P.; Höfle, G.; Reichenbach, H.; Kalesse, M.; Müller, R. Pellacoren:
Structure elucidation, biosynthesis, and total synthesis of a cytotoxic secondary metabolite from Sorangium cellulosum. Angew.
Chem. Int. Ed. Engl. 2012, 51, 5239–5243.

123. Mulwa, L.S.; Stadler, M. Antiviral compounds from Myxobacteria. Microorganisms 2018, 6, 73.

124. Martínez, J.; Hinkelmann, B.; Flota-Soriano, E.; Steinmetz, H.; Hansen, J.; Diez, J.; Frank, R.; Sasse, F.; Meyerhans, A. Identifi-
cation of myxobacteria-derived HIV inhibitors by a high-throughput two-step infectivity assay. Microb. Cell Factories 2013, 12, 85.

125. Roy, J.; Kaake, M.; Srinivasarao, M.; Low, P.S. Targeted Tubulysin B Hydrazide Conjugate for the Treatment of Luteinizing
Hormone-Releasing Hormone-Receptor-Positive Cancers. Bioconjug. Chem. 2018, 29, 2208–2214.

126. Knauth, P.; Reichenbach, H. On the mechanism of action of the myxobacterial fungicide ambruticin. J. Antimicrob. Chemother. 2000,
53, 1182–1190.

127. Irischik, H.; Schummer, D.; Gerth, K.; Höfle, G.; Reichenbach, H. ChemInform Abstract: The Tartrolons, New Boron-Containing
Antibiotics from a Myxobacterium, Sorangium cellulosum. J. Antibiot. 2010, 48, 26–30.

128. Kunze, B.; Jansen, R.; Pridzun, L.; Jurkiewicz, E.; Hunsmann, G.; Höfle, G.; Reichenbach, H. Thiagozole, a new thiazoline
antibiotic from Polyangium sp. (myxobacteria): Production, antimicrobial activity and mechanism of action. J. Antibiot. 1993,
46, 1752–1755.

129. Gerth, K.; Bedorf, N.; Irischik, H.; Höfle, G.; Reichenbach, H. The soraphens: A family of novel antifungal compounds from Sorangium
cellulosum (Myxobacteria). J. Antibiot. 1994, 47, 23–31.

130. Flota-Soriano, E.; Smutná, K.; Martínez, J.P.; Oró, C.L.; Sadiq, S.K.; Mirambeau, G.; Lopez-Iglesias, C.; Bosch, M.; Pol, A.; Brö-
strup, M.; et al. The myxobacterial metabolite soraphen A inhibits HIV-1 by reducing virus production and altering virion
composition. Antimicrob. Agents Chemother. 2017, 61, e00739-17.

131. Mohr, K.I.; Zindler, T.; Wink, J.; Wilharm, E.; Stadler, M. Myxobacteria in high moor and fen: An astonishing diversity in a
neglected extreme habitat. MicrobiologyOpen 2017, 6, e00464.

132. Houbraken, J.; Frisvad, J.C.; Samson, R.A. Fleming’s penicillin producing strain is not Penicillium chrysogenum but P. rubens.
IMA Fungus 2011, 1, 87–95.

133. Schatz, A.; Bugie, E.; Waksman, S. Streptomycin: A substance exhibiting antibiotic activity against gram positive and gram-
ategative bacteria. Proc. Exp. Biol. Med. 1944, 55, 66–69.

134. McGuire, J.M.; Bunch, R.L.; Anderson, R.C.; Boaz, H.E.; Flynn, E.H.; Powell, H.M.; Smith, J.W. Ilytycin a new antibiotic. Antibiot.
Chemother. 1952, 2, 281–283.

135. Bartlett, J.G.; Gilbert, D.N.; Spellberg, B. Seven ways to preserve the miracle of antibiotics. Clin. Infect. Dis. 2013, 56, 1445–1450.

136. Ventola, C.L. The Antibiotic Resistance Crisis: Part I: Causes and Threats. Pharmn. Ther. 2015, 40, 277–283.

137. Hesterkamp, T. Antibiotics Clinical Development and Pipeline. In How to Overcome the Antibiotic Crisis-Facts, Challenges, Tech-
ologies and Future Perspective; Stadler, M., Dersch, P., Eds.; Springer: Berlin, Germany, 2016; pp. 447–474.

138. Hoffmann, T.; Krug, D.; Bozkurt, N.; Duddela, S.; Jansen, R.; Garcia, R.; Gerth, K.; Steinmetz, H.; Müller, R. Correlating chemical
diversity with taxonomic distance for discovery of natural products in myxobacteria. Nat. Commun. 2018, 9, 803.

139. Landwehr, W.; Wolf, C.; Wink, J. Actinobacteria and Myxobacteria—Two of the Most Important Bacterial Resources for Novel
Antibiotics. In How to Overcome the Antibiotic Crisis-Facts, Challenges, Technologies & Future Perspective; Stadler, M., Dersch, P.,
Eds.; Springer: Berlin, Germany, 2016.

140. Sansinenea, E.; Ortiz, A. Secondary metabolites of soil Bacillus spp. Biotechnol. Lett. 2011, 33, 1523–1538.

141. Shen, Y.; Volrath, S.L.; Weatherly, S.C.; Elch, T.D.; Tong, L. A mechanism for the potent inhibition of eukaryotic acetyl-coen-
yzme A carbamoylase by soraphen A, a macrocyclic polyleptide natural product. Mol. Cell 2004, 16, 881–891.

142. Mühlradt, P.F.; Sasse, F. Epothilone B stabilizes microtubuli of macrophages like taxol without showing taxol-like endothotox
activity. Cancer Res. 1997, 57, 3344–3346.

143. Goodin, S.; Kane, M.P.; Rubin, E.H. Epothilones: Mechanism of action and biologic activity. J. Clin. Oncol. 2004, 22, 2015–2025.

144. Peterson, J.K.; Tucker, C.; Favours, E.; Cheshire, P.J.; Creech, J.; Billups, C.A.; Smykla, R.; Lee, F.Y.P.; Houghton, P.J. In vivo
evaluation of Ixabepilone (BMS247550), a novel epothilone B derivative, against pediatric cancer models. Clin. Cancer Res. 2005,
11, 6950–6958.

145. Reboll, M.R.; Ritter, B.; Sasse, F.; Niggemann, J.; Frank, R.; Nourbakhsh, M. The myxobacterial compounds sprirangien A and
spirangien M522 are potent inhibitors of IL-8 expression. Chem. Bio. Chem. 2012, 13, 409–415.

146. Jurkiewicz, E.; Jansen, R.; Kunze, B.; Trowitzsch-Klenast, W.; Porche, E.; Reichenbach, H.; Höfle, G.; Hunsmann, G. Three new
potent HIV-1 inhibitors from myxobacteria. Antivir. Chem. Chemother. 1992, 3, 189–193.

147. Trowitzsch-Klenast, W.; Porche, E.; Wray, V.; Reichenbach, H.; Jurkiewicz, E.; Hunsmann, G.; Höfle, G. Phenalamide, new HIV-
1-Inhibitors aus Myxococcus stipitatus Mx 840. Liebig's Ann. Chem. 1992, 1992, 659–664.

148. Garcia, R.; Stadler, M.; Gemperlein, K.; Müller, R. Aetherobacter fasciculatus gen. nov.; sp. nov. and Aetherobacter rufus sp. nov.;
novel myxobacteria with promising biotechnological applications. Int. J. Syst. Evol. Microbiol. 2016, 66, 928–938.

149. Gerth, K.; Schummer, D.; Höfle, G.; Irischik, H.; Reichenbach, H. Ratjadon: A new antifungal compound from Sorangium cellul-
ulosum (Myxobacteria) Production, physico-chemical and biological properties. J. Antibiot. 1995, 48, 787–792.
178. Zhang, B.; Carroll, J.; Trojanowski, J.Q.; Yao, Y.; Iba, M.; Potuzak, J.S.; Hogan, A.-M.L.; Xie, S.X.; Ballatore, C.; Smith, A.B.; et al. The microtubule-stabilizing agent, epothilone D, reduces axonal dysfunction, neurotoxicity, cognitive deficits, and Alzheimer-like pathology in an interventional study with aged tau transgenic mice. J. Neurosci. 2012, 32, 3601–3611.

179. Cartelli, D.; Casagrande, F.; Busceti, C.L.; Buccig, D.; Molinaro, G.; Traficante, A.; Passarella, D.; Giavini, E.; Pezzoli, G.; Battaglia, G.; et al. Microtubule alterations occur early in experimental parkinsonism and the microtubule stabilizer epothilone D is neuroprotective. Sci. Rep. 2013, 3, 1837.

180. Eckert, G.P.; Lipka, U.; Muller, W.E. Omega-3 fatty acids in neurodegenerative diseases: Focus on mitochondria. Prostaglandins and Leukotrienes Essent. Fat. Acids (PLEFA) 2013, 88, 105–114.

181. Nichols, D.S.; McMeekin, T.A. Biomarker techniques to screen for bacteria that produce polyunsaturated fatty acids. J. Microbiol. Methods 2002, 48, 161–170.

182. Yano, Y.; Nakayama, A.; Yoshida, K. Distribution of polyunsaturated fatty acids in bacteria present in intestines of deep-sea fish and shallow-sea poikilothermic animals. Appl. Environ. Microbiol. 1997, 63, 2577–2577.

183. Hayashi, S.; Satoh, Y.; Ujihara, T.; Takata, Y.; Dairi, T. Enhanced production of polyunsaturated fatty acids by enzyme engineering of tandem acyl carrier proteins. Sci. Rep. 2016, 6, 35441.

184. Gremperlein, K.; Rachid, S.; Garcia, R.O.; Wenzel, S.C.; Müller, R. Polyunsaturated fatty acid biosynthesis in myxobacteria: Different PUFA synthases and their product diversity. Chem. Sci. 2014, 5, 1733–1741.

185. Feng, Z.; Zou, X.; Jia, H.; Li, X.; Zhu, Z.; Liu, X.; Bucheli, P.; Ballevre, O.; Hou, Y.; Zhang, W.; et al. Maternal docosahexaenoic acid feeding protects against impairment of learning and memory and oxidative stress in prenatally stressed rats: Possible role of neuronal mitochondria metabolism. Antioxid. Redox. Signal. 2012, 16, 275–289.

186. Song, L.; Zheng, J.; Li, H.; Jia, N.; Suo, Z.; Cai, Q.; Bai, Z.; Cheng, D.; Zhu, Z. Prenatal stress causes oxidative damage to mitochondrial DNA in hippocampus of offspring rats. Neurochem. Res. 2009, 34, 739–745.

187. Eckert, G.P.; Zheng, J.; Li, H.; Jia, N.; Suo, Z.; Cai, Q.; Bai, Z.; Cheng, D.; Zhu, Z. Liposome-incorporated DHA increases neuronal survival by enhancing non-amyloidogenic APP processing. Biochim. Biophys. Acta BBA Biomembr. 2011, 1808, 236–243.

188. White, K.N.; Tenney, K.; Crews, P. The Bengamides: A Mini-Review of Natural Sources, Analogues, Biological Properties, Bio-synthetic Origins, and Future Prospects. J. Nat. Prod. 2017, 80, 740–755.

189. Castro, C.; Freitag, J.; Berod, L.; Lochner, M.; Sparwasser, T. Microbe-associated immunomodulatory metabolites: Influence on T cell fate and function. Mol. Immunol. 2015, 68, 575–584.

190. Johnson, T.A.; Sohn, J.; Vaske, Y.M.; White, K.N.; Cohen, T.L.; Vervoort, H.C.; Tenney, K.; Valeriote, F.A.; Bjeldanes, L.F.; Crews, P. Myxobacteria versus sponge-derived alkaloids: The bengamide family identified as potent immune modulating agents by scrutiny of LC–MS/ELSD libraries. Bioorg. Med. Chem. 2012, 20, 4348–4355.

191. Jansen, R.; Washausen, P.; Kunze, B.; Reichenbach, H.; Höfe, G. ChemInform Abstract: Antibiotics from Gliding Bacteria. Part 83. The Crocacin, Novel Antifungal and Cytotoxic Antibiotics from Chondromyces crocatus and Chondromyces pediculatus (Myxobacteria): Isolation and Structure Elucidation. Cheminform 2010, 30, doi:10.1002/chin.201030200.

192. Kunze, B.; Höfe, G.; Reichenbach, H. The aurachins, new quinoline antibiotics from myxobacteria: Production, physico-chemical and biological properties. J. Antibiot. 1997, 40, 258–265.

193. Miyoshi, H.; Takegami, K.; Sakamoto, K.; Mogi, T.; Iwamura, H. Characterization of the ubiquinol oxidation sites in cytochromes bo and bd from Escherichia coli using aurachin C analogues. J. Biochem. 1999, 125, 138–142.

194. Gerth, K.; Issrich, H.; Reichenbach, H.; Trowitzsch, W. Myxothiazol, an antibiotic from Myxococcus fulus (Myxobacterales). J. Antibiot. 1980, 33, 1474–1479.

195. Thierbach, G.; Reichenbach, H. Myxothiazol, a new antibiotic interfering with respiration. Antimicrob. Agents Chemother. 1981, 19, 504–507.

196. Sasse, F.; Bühndorf, B.; Herrmann, M.; Kunze, B.; Forche, E.; Steinmetz, H.; Höfe, G.; Reichenbach, H. Melithiazols, new betamethoxyacylrate inhibitors of the respiratory chain isolated from myxobacteria. Production, isolation, physico-chemical and biological properties. J. Antibiot. 1999, 52, 721–729.

197. Oettmeier, W.; Godde, D.; Höfe, G. Stigmatellin. A dual type inhibitor of photosynthetic electron transport. Biochim. Biophys. Acta. 1985, 807, 216–219.

198. Yamashita, E.; Zhang, H.; Kramer, W.A. Structure of the cytochrome b6f complex: Quinone analogue inhibitors as ligands of heme c. J. Mol. Biol. 2007, 370, 39–52.

199. Dejon, L.; Speicher, A. Synthesis of aurachin D and isoprenoid analogues from the myxobacterium Stigmatella aurantiaca. Tetrahedron Lett. 2013, 54, 6700–6702.

200. Issrich, H.; Trowitzsch-Kienast, W.; Gerth, K.; Höfe, G.; Reichenbach, H. Saframycin Mx1, a new natural saframycin isolated from a myxobacterium. J. Antibiot. 1988, 41, 993–998.

201. Sasse, F.; Steinmetz, H.; Höfe, G.; Reichenbach, H. Gephyronic acid, a novel inhibitor of eukaryotic protein synthesis from Archangium gephyra (myxobacteria). Production, isolation, physico-chemical and biological properties, and mechanism of action. J. Antibiot. 1995, 48, 21–25.

202. Issrich, H.; Reichenbach, H. The mechanism of action of myxovalargin A, a peptide antibiotic from Myxococcus fulus. J. Antibiot. 1985, 38, 1237–1245.

203. Jimenez, A.; Tipper, D.J.; Davies, J. Mode of action of thiolutin, an inhibitor of macromolecular synthesis in Saccharomyces cerevisiae. Antimicrob. Agents Chemother. 1973, 3, 729–738.

204. Tipper, D.J. Inhibition of yeast ribonucleic acid polymerases by thiolutin. J. Bacteriol. 1973, 116, 245–256.
205. Tuske, S.; Sarafianos, S.G.; Wang, X.; Hudson, B.; Sineva, E.; Mukhopadhyay, J.; Birktoft, J.J.; Leroy, O.; Ismail, S.; Clark, A.D., Jr.; et al. Inhibition of bacterial RNA polymerase by streptolydigin: Stabilization of a straight-bridge-helix active-center conformation. *Cell* **2005**, *122*, 541–552.

206. Oliva, B.; O’Neill, A.; Wilson, J.M.; O’Hanlon, P.J.; Chopra, I. Antimicrobial properties and mode of action of the pyrrothine holomycin. *Antimicrob. Agents Chemother.* **2001**, *45*, 532–539.

207. Artsimovitch, I.; Vassylyeva, M.N.; Svetlov, D.; Svetlov, V.; Perederina, A.; Igarashi, N.; Matsugaki, N.; Wakatsuki, S.; Tahirou, T.H.; Vassylyev, D.G. Allosteric modulation of the RNA polymerase catalytic reaction is an essential component of transcription control by rifamycins. *Cell* **2005**, *122*, 351–363.

208. O’Neill, A.J.; Huovinen, T.; Fishwick, C.W.; Chopra, I. Molecular genetics and structural modeling studies of *Staphylococcus aureus* RNA polymerase and the fitness of rifampin resistance genotypes in relation to clinical prevalence. *Antimicrob. Agents Chemother.* **2006**, *50*, 298–309.

209. O’Neill, A.; Oliva, B.; Storey, C.; Hoyle, A.; Fishwick, C.; Chopra, I. RNA polymerase inhibitors with activity against rifampin-resistant mutants of *Staphylococcus aureus*. *Antimicrob. Agents Chemother.* **2000**, *44*, 3163–3166.

210. Campbell, E.A.; Pavlova, O.; Zenkin, N.; Leon, F.; Irschik, H.; Jansen, R.; Severinov, K.; Darst, S.A. Structural, functional, and genetic analysis of sorangicin inhibition of bacterial RNA polymerase. *EMBO J.* **2005**, *24*, 674–682.

211. Irschik, H.; Jansen, R.; Gerth, K.; Höfle, G.; Reichenbach, H. The sorangicins, novel and powerful inhibitors of eubacterial RNA polymerase isolated from myxobacteria. *J. Antibiot.* **1987**, *40*, 7–13.

212. Augustiniak, H.; Höfle, G.; Irschik, H.; Reichenbach, H. Antibiotics from gliding bacteria, LXXVIII. Ripostatin A, B, and C: Isolation and structure and structure elucidation of novel metabolites from *Sorangium cellulosum*. *Liebigs Ann.* **1996**, *1996*, 1657–1663.

213. Irschik, H.; Augustiniak, H.; Gerth, K.; Höfle, G.; Reichenbach, H. Antibiotics from gliding bacteria. No. 68. The Ripostatins, Novel Inhibitors of Eubacterial RNA Polymerase Isolated from myxobacteria. *J. Antibiot.* **1995**, *48*, 787–792.

214. Irschik, H.; Jansen, R.; Höfle, G.; Gerth, K.; Reichenbach, H. The corallopyronins, new inhibitors of bacterial RNA synthesis from Myxobacteria. *J. Antibiot.* **1985**, *38*, 145–152.

215. Gronewold, T.; Sasse, F.; Lünsdorf, H.; Reichenbach, H. Effects of rhizopodin and latrunculin B on the morphology and on the actin cytoskeleton of mammalian cells. *Cell Tissue Res.* **1999**, *295*, 121–129.

216. Sasse, F.; Steinmetz, H.; Höfle, G.; Reichenbach, H. Rhizopodin, a new compound from *Myxococcus stipitatus* (Myxobacteria) causes formation of rhizopodin-like structures in animal cell cultures. Production, isolation, physico-chemical and biological properties. *J. Antibiot.* **1993**, *46*, 741–748.

217. Holzinger, A.; Lütz-Meindl, U. Chondramides, novel cyclodepsipeptides from myxobacteria, influence cell development and induce actin filament polymerization in the green alga *Micrasterias*. *Cell Motil. Cytoskelet.* **2001**, *48*, 87–95.

218. Sasse, F.; Kunze, B.; Gronewold, T.; Reichenbach, H. The chondramides: Cytostatic agents from myxobacteria acting on the actin cytoskeleton. *J. Natl Cancer Inst.* **1998**, *90*, 48–52.

219. Bollag, D.M.; McQueney, P.A.; Zhu, J.; Hensens, O.; Koupal, L.; Liesch, J.; Goetz, M.; Lazarides, E.; Woods, C.M. Epitholones, a new class of microtubule-stabilizing agents with a taxol-like mechanism of action. *Cancer Res.* **1995**, *55*, 2325–2333.

220. Höfle, G.; Bedorf, N.; Steinmetz, H.; Schomburg, D.; Gerth, K.; Reichenbach, H. Epitholine A and B-Novel 16-membered macrolides with cytotoxic activity: Isolation, crystal structure, and conformation in solution. *Angew. Chem. Int. Ed. Engl.* **1996**, *35*, 1567–1569.

221. Khalil, M.W.; Sasse, F.; Lünsdorf, H.; Elnakady, Y.A.; Reichenbach, H. Mechanism of action of tubulysin, an antimitotic peptide from myxobacteria. *ChemBioChem* **2006**, *7*, 678–683.

222. Sasse, F.; Steinmetz, H.; Heil, J.; Höfle, G.; Reichenbach, H. Tubulysins, New Cytostatic Peptides from Myxobacteria Acting on Microtubuli. Production, Isolation, Physico-chemical and Biological Properties. *J. Antibiot.* **2000**, *53*, 879–885.

223. Cheng, K.L.; Bradley, T.; Budman, D.R. Novel microtubule-targeting agents—The epothilones. *Biol. Targets Ther.* **2008**, *2*, 789–811.

224. Fumoleau, P.; Coudert, B.; Isambert, N.; Ferrant, E. Novel tubulin-targeting agents:anticancer activity and pharmacologic profile of epothilones and related analogues. *Ann. Oncol.* **2007**, *18*, 9–15.

225. Steinmetz, H.; Glaser, N.; Herdtweck, E.; Sasse, F.; Reichenbach, H.; Höfle, G. Isolation, crystal and solution structure determination, and biosynthesis of tubulysins-powerful inhibitors of tubulin polymerization from myxobacteria. *Angew. Chem. Int. Ed. Engl.* **2004**, *43*, 4888–4892.

226. Patterson, A.W.; Peltier, H.M.; Sasse, F.; Ellman, J.A. Design, synthesis, and biological properties of highly potent tubulysin D analogues. *Chemistry* **2007**, *13*, 9534–9541.

227. Kaur, G.; Hollingshead, M.; Holbeck, S.; Schauer-Vukasovic, V.; Camalier, R.F.; Domling, A.; Agarwal, S. Biological evaluation of tubulysin A: A potential anticancer and antiangiogenic natural product. *Biochem. J.* **2006**, *396*, 235–242.

228. Beckers, A.; Organe, S.; Timmermans, L.; Scheys, K.; Peeters, A.; Brusselmans, K.; Verhoeven, G.; Swinnen, J.V. Chemical inhibition of acetyl-CoA carboxylase induces growth arrest and cytotoxicity selectively in cancer cells. *Cancer Res.* **2007**, *67*, 8180–8187.

229. Rosenberg, E.; Varon, M. Antibiotics and Lytic Enzymes. In *Myxobacteria*; Rosenberg, E., Ed.; Springer Series in Molecular Biology: Springer: New York, NY, USA, 1984.
230. Hill, D.S.; Stein, J.I.; Torzewitz, N.R.; Morse, A.M.; Howell, C.R.; Pachlatko, J.P.; Becker, J.O.; Ligon, J.M. Cloning of genes involved in the synthesis of pyrrolnitrin from *Pseudomonas fluorescens* and role of pyrrolnitrin synthesis in biological control of plant disease *Appl. Environ. Microb.* 1994, 60, 78–85.

231. Hocking, D.; Cook, F.D. Myxobacteria exert partial control of damping-off and root disease in container-grown tree seedlings. *Can. J. Microbiol.* 1972, 18, 1557–1560.

232. Homma, Y. Perforation and lysis of hyphae of *Rhizoctonia solani* and conidia of *Cochliobolus miyabeanus* by soil myxobacteria. *Agris.* 1984, 74, 1234–1239.

233. Norén, B.; Odham, G. Antagonistic effects of *Myxococcus xanthus* on fungi: II. Isolation and characterization of inhibitory lipid factors. *Lipids* 1973, 8, 573–583.

234. Lautru, S.; Deeth, R.J.; Bailey, L.M.; Challis, G.L. Discovery of a new peptide natural product by *Streptomyces coelicolor* genome mining. *Nature Chem. Biol.* 2005, 1, 265–269.

235. Bode, H.B.; Bethe, B.; Höfs, R.; Zeeck, A. Big effects from small changes: Possible ways to explore nature’s chemical diversity. *ChemBioChem* 2002, 3, 619–627.

236. Christian, O.E.; Compton, J.; Christian, K.R.; Moolberry, S.L.; Valeriote, F.A.; Crews, P. Using jasplakinolide to turn on pathways that enable the isolation of new chaetoglobosins from *Phomopsis asparagi*. *J. Nat. Prod.* 2005, 68, 1592–1597.

237. Bergmann, S.; Schumann, J.; Scherlach, K.; Lange, C.; Brakhage, A.; Hertweck, C. Genomics-driven discovery of PKS-NRPS hybrid metabolites from *Aspergillus nidulans*. *Nat. Chem. Biol.* 2007, 3, 213–217.

238. Sandmann, A.; Frank, B.; Müller, R. A transposon-based strategy to scale up myxothiazol production in mycobacterial cell factories. *J. Biotechnol.* 2008, 135, 255–261.

239. Julien, B.; Tian, Z.Q.; Reid, R.; Reeves, C.D. Analysis of the ambrutacin and jerangolid gene clusters of *Sorangium cellulosum* reveals unusual mechanisms of polyketide biosynthesis. *Chem. Biol.* 2006, 13, 1277–1286.

240. Weissman, K.J.; Müller, R. A brief tour of myxobacterial secondary metabolism. *Biores. Med. Chem.* 2009, 17, 2121–2136.

241. Sandmann, A.; Dickschat, J.; Jenke-Kodama, H.; Kunze, B.; Dittmann, E.; Müller, R. A Type II Polycetide Synthase from the Gram-Negative Bacterium *Stigmatella aurantiaca* Is Involved in Aurachin Alkaloid Biosynthesis. *Angew. Chem. Int. Ed.* 2007, 46, 2712–2716.

242. Carvalho, R.; Reid, R.; Viswanathan, N.; Gramajo, H.; Julien, B. The biosynthetic genes for disorazoles, potent cytotoxic compounds that disrupt microtubule formation. *Gene* 2005, 359, 91–98.

243. Sandmann, A.; Sasse, F.; Müller, R. Identification and analysis of the core biosynthetic machinery of tubulysin, a potent cytotoxin with potential anticancer activity. *Chem. Biol.* 2004, 11, 1071–1079.

244. Rachid, S.; Sasse, F.; Beyer, S.; Müller, R. Identification of StR, the first regulator of secondary metabolite formation in the myxobacterium *Cystobacter fuscus* Cb171.1. *J. Biotechnol.* 2006, 121, 429–441.

245. Rachid, S.; Gerth, K.; Kochems, I.; Müller, R. Deciphering regulatory mechanisms for secondary metabolite production in the myxobacterium *Sorangium cellulosum* So ce56. *Mol. Microbiol.* 2007, 63, 1783–1796.

246. Silakowski, B.; Kunze, B.; Nordsieck, G.; Blöcker, H.; Höfle, G.; Müller, R. The myxochelin iron transport regulon of the myxobacterium *Stigmatella aurantiaca* Sg a15. *Eur. J. Biochem.* 2000, 267, 6476–6485.

247. Wenzel, S.; Kunze, B.; Höfle, G.; Silakowski, B.; Scharfe, M.; Blöcker, H.; Müller, R. Structure and Biosynthesis of Myxochromides S1-3 in *Stigmatella aurantiaca* for an Iterative Bacterial Type I Polyketide Synthase and for Module Skipping in Nonribosomal Peptide Biosynthesis. *ChemBioChem* 2005, 6, 375–385.

248. Ostash, B.; Saghatelian, A.; Walker, S. A streamlined metabolic pathway for the biosynthesis of the moenomycin A. *Chem. Biol.* 2007, 14, 257–267.

249. Ostash, B.; Campbell, J.; Luzhetskyy, A.; Walker, S. MoeHS: A natural glycanorandomizer from the moenomycin biosynthetic pathway. *Mol. Microbiol.* 2013, 90, 1324–1338.

250. Kodumal, S.; Patel, K.; Reid, R.; Menzella, H.; Welch, M.; Santi, D. Total synthesis of long DNA sequences: Synthesis of a contiguous 32-kb polyketide synthase gene cluster. *Proc. Nat. Acad. Sci. USA* 2004, 101, 15573–15578.

251. Julien, B.; Shah, S. Heterologous expression of epothilone biosynthetic genes in *Myxococcus xanthus*. *Antimicrob. Agents Chemother.* 2002, 46, 2772–2778.

252. Tang, L.; Shah, S.; Chung, L.; Carney, J.; Katz, L.; Khosla, C.; Julien, B. Cloning and heterologous expression of the epothilone gene cluster. *Science* 2000, 287, 640–642.

253. Mutka, S.C.; Carney, J.R.; Liu, Y.; Kennedy, J. Heterologous production of epothilone C and D in *Escherichia coli*. *Biochemistry* 2006, 45, 1321–1330.

254. Fu, J.; Wenzel, S.C.; Perlova, O.; Wang, J.; Gross, F.; Tang, Z.; Yin, Y.; Stewart, A.F.; Müller, R.; Zhang, Y. Efficient transfer of two large secondary metabolite pathway gene clusters into heterologous hosts by transposition. *Nucleic Acids Res.* 2008, 36, e113.

255. Zirkle, R.; Ligon, J.M.; Molnár, I. Heterologous production of the antifungal polyketide antibiotic soraphen A of *Sorangium cellulosum* So ce26 in *Streptomyces lividans*. *Microbiology* 2004, 150, 2761–2774.

256. Perlova, O.; Fu, J.; Kuhlmann, S.; Krug, D.; Stewart, A.; Zhang, Y.; Müller, R. Reconstitution of the Myxothiazol Biosynthetic Gene Cluster by Red/ET Recombination and Heterologous Expression in *Myxococcus xanthus*. *Appl. Environ. Microbiol.* 2007, 72, 7485–7494.

257. Gross, F.; Lunjak, N.; Perlova, O.; Gaitatzis, N.; Jenke-Kodama, H.; Gerth, K.; Gottschalk, D.; Dittmann, E.; Müller, R. Bacterial type III polyketide synthases: Phylogenetic analysis and potential for the production of novel secondary metabolites by heterologous expression in pseudomonads. *Arch. Microbiol.* 2006, 185, 28–38.
258. Zhang, Y.; Buchholz, F.; Muyrers, J.P.; Stewart, A.F. A new logic for DNA engineering using recombination in *Escherichia coli*. *Nat. Genet.* 1998, 20, 123–128.

259. Weissman, K.J.; Leadlay, P.F. Combinatorial biosynthesis of reduced polyketides. *Nat. Rev. Microbiol.* 2005, 3, 925–936.