“Dynamic” Rotational Canal Stenosis Caused by Osteoma of the Atlas: A Case Report and Review of Literature

Kohei Kanaya, Kiyoshi Ito, Tetsuyoshi Horiuchi, and Kazuhiro Hongo

Department of Neurosurgery, Shinshu University School of Medicine, Matsumoto, Nagano

Received: June 15, 2015; Accepted: August 25, 2015

Case Report

A 43-year-old woman had a 2-year history of numbness and pain in the right hand. She had no congenital abnormalities of the upper cervical spine such as basilar invagination, os odontoideum, and Klippel–Feil syndrome, or history of trauma prior to the onset of such symptoms. Because of aggravation of the numbness, disturbance of fine movement and weakness in the right hand, she visited our outpatient clinic. Computed tomographic (CT) scan revealed an ovoid bony lesion at the right side of the C1 lamina. And magnetic resonance (MR) imaging of the cervical spine showed intramedullary high intensity signals in T2-weighted imaging at a site slightly distant from the bony lesion. Rotational dynamic myelo-CT scan was performed because aggravation of the radiating pain was observed with neck rotation to the right. Dynamic CT scan of the craniocervical junction with neck rotation to the right revealed that the bony lesion was moved to the dorsal side and posteriorly compressed the spinal cord. The symptoms were relieved following surgical removal of this bony lesion. The histopathological examination was compatible for osteoma. The dynamic rotational factor for cervical canal stenosis should be taken in consideration, especially in dealing with upper cervical lesions.

Keywords: atlas, osteoma, cervical canal stenosis, dynamic myelo-computed tomography, myelopathy

Introduction

The upper cervical spine is an uncommon site for cervical canal stenosis, because the upper cervical spinal canal is wider compared to the middle and lower parts of the cervical region.1 In this article, we report a rare case with canal stenosis caused by osteoma of the atlas. Cervical canal stenosis related to the atlas has been associated with ossification of its transverse ligament,2,3 hypoplasia of the atlas,4–13 atlantoaxial instability,10,12 and genetic disorders including Down syndrome,12,13 Klippel–Feil syndrome,14 and Williams syndrome.15 On the other hand, canal stenosis caused by neck rotation has been reported in correlation with the hypertrophic atlantal anterior arch6 and bilateral C-2 nerve root tumors.7

However, to our knowledge, there have been no previous reports of the present case in which the canal stenosis was caused by an osteoma located at the lamina of the atlas.

Fig. 1 Lateral cervical spine radiograph showing radiodense bony mass (asterisk) located at the posterior part of C1.
Rotational dynamic myelo-CT was performed after obtaining informed consent from the patient. Myelo-CT scan revealed that the ovoid bony lesion located at the right dorsal side of the spinal cord in the neutral position (Fig. 4A), which moved to the dorsal side caused compression of the spinal cord from behind when the neck was rotated to the right (Fig. 4B). Compression of the spinal cord decreased when the neck was rotated to the left (Fig. 4C). The site of the cord signal change on T2-weighted MRI was concordant with the most compressed site of the spinal cord on dynamic myelo-CT scan.

She underwent removal of this bony lesion. The histopathological study revealed the lesion was composed of mature, dense, compact, cortical-like, lamellar bone, and a diagnosis of osteoma was made (Fig. 5). The symptoms relieved postoperatively, and the severe radiating pain caused by rotation of the neck also disappeared. Postoperative CT scan (Fig. 6A, B) and MRI (Fig. 7A, B) documented total removal of the bony lesion.

Discussion

Cervical canal stenosis usually occurs below C3, and rarely occurs above C2 level.20) The spinal canal at C1 level is relatively wide compared to the middle and lower spinal canal;18,19) therefore canal stenosis at C1 level is considered to be rare.

It is important to consider not only the static compression factors such as degenerated osteophyte and intervertebral discs, but also dynamic compression factors associated with neck rotation as well as neck flexion and extension especially in dealing with canal stenosis in the upper cervical region, because the mean rotation angle at C1–2 is up to about 80º in the neutral position.21)

Rotational myelo-CT scan was performed with suspicion of the upper cervical lesion because no obvious cause was apparent in CT scan or MRI in the neutral position. Obviously, rotational MRI can be also useful in elucidating the mechanism, but we abandoned obtaining dynamic MRI because the patient could not endure in a posture of neck rotation to the right for a prolonged time because of the severe radiating pain.

In previous reports, canal stenosis at the level of the atlas was diagnosed by dynamic myelo-CT scan,16) dynamic MRI,22) or both of them17) when no cause for myelopathy was detected with CT scan or MRI in the neutral position. Recent study reported that MR myelography can achieve a reliable diagnosis of lumbar spinal stenosis compared with CT myelogram.23) However, CT myelography is a valuable investigative examination,24) and it is considered to be useful to demonstrate the cause of canal stenosis with bony lesion like the presented case.

Besides, osteomas are benign, bone-forming tumors generally arising from the craniofacial skeleton. Osteomas located in the vertebral column are rare and the tumors involved the spine can be complicated by spinal cord or nerve
Dynamic Canal Stenosis by Osteoma of the Atlas

Among 10 cases of osteomas affecting the spine which have been reported in the English literature (Table 1),

Fig. 5 Photomicrographs of hematoxylin and eosin staining showing surgical specimen composed of mature, uniform dense, compact, cortical-like, lamellar bone. Original magnification ×40.

Fig. 6 Postoperative three-dimensional cervical computed tomography scan revealing removal of the bony lesion (A) and no bony lesion protruded into the spinal canal (B).

Fig. 7 Postoperative axial (A) and sagittal (B) T2-weighted magnetic resonance image showing no cord compression.

Table 1 Reported cases of spinal osteomas

First author, year	Age/Sex	Location	Symptoms	Symptoms related to trauma	Treatment	Outcome
Laus et al. (1996) 26)	53/M	C2–3 transverse process	Dysphagia	Unknown	TR	Resolved
Peyser et al. (1996) 27)	44/F	L4 body	Low back pain	Yes	TR	Resolved
	64/F	C4–6 body	Chronic neck pain, weakness, paresthesia	No	TR	Resolved, but pain recurred
	68/F	Ala of sacrum	Chronic low back pain	No	TR	Resolved, but pain recurred
	43/F	S2 body	Low back pain	No	STR	No change
	63/F	L5 body	Chronic low back pain, sciatica	Yes	TR	Resolved
Rengachary et al. (1998) 28)	34/M	C6 pedicle	Weakness, numbness	Yes	TR	Resolved
Kobayashi et al. (2006) 29)	57/M	L5 articular process	Chronic low back pain, sciatica	No	TR	Resolved
Wang et al. (2006) 30)	56/M	C2–3 body	Weakness, hypoesthesia	Yes	STR	Improved
	49/M	C2 lamina	Weakness, hypoesthesia	Yes	TR	Improved
Present case	43/F	C1 lamina	Neck pain, weakness, numbness	No	TR	Improved

F: female, M: male, STR: subtotal resection, TR: total resection.
Acknowledgment

The authors would like to thank Dr. Alhusain Nagm, MD, Department of Neurosurgery, Shinshu University Graduate School of Medicine, Matsumoto, Nagano, Japan, for editing the manuscript.

Conflicts of Interest Disclosure

All authors have no conflicts of interest in relation to this research and its publication.

References

1) Kobayashi Y, Mochida J, Nishimura K, Nomura T, Miyazaki S: Intradural extra-arachnoid schwannoma of the upper cervical spine. Spinal Cord 36: 859–863, 1998
2) Perera S, Davis CH, Gupta RC: Spinal cord compression caused by ossification of the transverse ligament of the atlas. Br J Neurosurg 9: 787–788, 1995
3) Hayashi T, Hirose Y, Sagoh M, Murakami H: Ossification of transverse ligament of the atlas associated with atlanto-axial dislocation—case report. Neurol Med Chir (Tokyo) 38: 425–428, 1998
4) Sawada H, Akiyuki C, Fukuyama H, Kameyama M, Koyama T: Marked canal stenosis at the level of the atlas. Neuororadiology 31: 346–348, 1989
5) Devi BI, Shenoy SN, Panigrahi MK, Chandramouli BA, Das BS, Jayakumar PN: Anomaly of arch of atlas—a rare cause of symptomatic canal stenosis in children. Pediatr Neurosurg 26: 214–217; discussion 217–218, 1997
6) Noguchi A, Harada Y, Okabe S, Kohno T, Kamata K, Takahashi H: [A surgical case of cervical spinal canal stenosis caused by atlas hypoplasia in an elderly patient]. No Shinkei Geka 26: 623–626, 1998
7) Atasoy C, Fitoz S, Karan B, Erden I, Akyar S: A rare cause of cervical spinal stenosis: posterior arch hypoplasia in a bipartite atlas. Neuroradiology 44: 253–255, 2002
8) Musha Y, Mizutani K: Cervical myelopathy accompanied with hypoplasia of the posterior arch of the atlas: case report. J Spinal Disord Tech 22: 228–232, 2009
9) Chau AM, Wong JH, Mobbs RJ: Cervical myelopathy associated with congenital C2/3 canal stenosis and deficiencies of the posterior arch of the atlas and laminae of the axis: case report and review of the literature. Spine (Phila Pa 1976) 34: E886–E891, 2009
10) Chung SB, Yoon SH, Jin YJ, Kim KJ, Kim HJ: Anteroposterior spondylolisthesis of atlas with incurring of the posterior arch causing compressive myelopathy. Spine (Phila Pa 1976) 35: E67–E70, 2010
11) Nagashima C, Tsuji R, Kubota S, Tajima K: [Atlanto-axial, Atlanto-occipital dislocations, developmental cervical canal stenosis in the Ehlers-Danlos syndrome (author's transl)]. No Shinkei Geka 9: 601–608, 1981
12) Matsunaga S, Imakiire T, Koga H, Ishidou Y, Sasaki H, Taketomi E, Higo M, Tanaka H, Komiya S: Occult spinal canal stenosis due to C-1 hypoplasia in children with Down syndrome. J Neurosurg 107: 457–459, 2007
13) Martich V, Ben-Ami T, Yousefzadeh DK, Roizen NJ: Hypoplastic posterior arch of C-1 in children with Down syndrome: a double jeopardy. Radiology 183: 125–128, 1992
14) Tubbs RS, Oakes WJ, Blount JP: Isolated atlantal stenosis in a patient with idiopathic growth hormone deficiency, and Klippel-Feil and Duane's syndromes. Childs Nerv Syst 21: 421–424, 2005
15) Desai SK, Vadivelu S, Patel AJ, Brayton A, Jea A: Isolated cervical spinal canal stenosis at C-1 in the pediatric population and in Williams syndrome. J Neurosurg Spine 18: 558–563, 2013
16) Kubota M, Saeki N, Yamaura A, Yamamoto Y, Nemoto Y, Fukutake T: Congenital spondylolisthesis of the axis with associated myelopathy. Case report. J Neurosurg 98: 84–86, 2003
17) Ozawa H, Kusakabe T, Aizawa T, Nakamura T, Ishii Y, Itoi E: Tumors at the lateral portion of the C1-2 interlamellar space compressing the spinal cord by rotation of the atlantoaxial joint: new aspects of spinal cord compression. J Neurosurg Spine 17: 552–555, 2012
18) Hashimoto I, Tak YK: The true sagittal diameter of the cervical spinal canal and its diagnostic significance in cervical myelopathy. J Neurosurg 47: 912–916, 1977
19) Evangelopoulos D, Kontovazenitis P, Kouris S, Zlatidou X, Benneker L, Vlamis J, Korres D, Efstratopoulos N: Computerized tomographic morphometric analysis of the cervical spine. Open Orthop J 6: 250–254, 2012
20) Tokiyoshi K, Nakagawa H, Kadota T: Spinal canal stenosis at the level of the atlas: case report. Surg Neurol 41: 238–240, 1994
21) Takasaki H, Hall T, Oshiro S, Kaneko S, Ikemoto Y, Jull G: Normal kinematics of the upper cervical spine during the Flexion-Rotation Test—In vivo measurements using magnetic resonance imaging. Man Ther 16: 167–171, 2011
22) Takeuchi M, Wakingo N, Kamiya M, Niwa A, Otsuka K, Takayasu M: Upper cervical cord compression due to a C-1 posterior arch in a patient with ossification of the posterior longitudinal ligament and a kyphotic cervical spine in the protruded-head position: case report. J Neurosurg Spine 19: 431–435, 2013
23) Eberhardt K, Ganslandt O, Stadlbauer A: Improved magnetic resonance myelography of the lumbar spine using image fusion and volumetry. J Neurosurg Spine 20: 220–226, 2014
24) Ogusuneyinde OA, Ogbole GI, Osuagwu YU: Helical CT myelogram: the Ibadan initial experience. Afr J Med Med Sci 36: 23–29, 2007
25) Nielsen GP, Rosenberg AE: Bone-Forming Tumors, in Folpe AL, Marked canal stenosis at C-1 in the pediatric population and in Williams syndrome. J Neurosurg Spine 18: 558–563, 2013
26) Eberhardt K, Ganslandt O, Stadlbauer A: Improved magnetic resonance myelography of the lumbar spine using image fusion and volumetry. J Neurosurg Spine 20: 220–226, 2014
27) Peyser AB, Makley JT, Callewaert CC, Brackett B, Carter JR, Abdul-Karim FW: Osteoma of the long bones and the spine. A study of eleven patients and a review of the literature. J Bone Joint Surg Am 78: 1172–1180, 1996
28) Rengachary SS, Sanan A: Ivory osteoma of the cervical spine: case report. Neurosurgery 42: 182–185, 1998
29) Kobayashi H, Hara J, Kitahama Y, Hanakita J: Osteoma arising from the lumbar articular process. Neurol Med Chir (Tokyo) 46: 508–511, 2006
30) Wang W, Kong L, Dong R, Zhao H, Ma Y, Lu Y: Osteoma in the upper cervical spine with spinal cord compression. Eur Spine J 15 (Suppl 5): 616–620, 2006