A class formula for L-series in positive characteristic

Florent Demeslay
January, 2015

Abstract

We prove a formula for special L-values of Anderson modules, analogue in positive characteristic of the class number formula. We apply this result to two kinds of L-series.

1 Introduction

Let \mathbb{F}_q be a finite field with q elements and θ an indeterminate over \mathbb{F}_q. We denote by A the polynomial ring $\mathbb{F}_q[\theta]$ and by K the fraction field of A. For a finite A-module M, we denote by $[M]_A$ the monic generator of the Fitting ideal of M. The Carlitz zeta value at a positive integer n is defined as

$$\zeta_A(n) := \sum_{a \in A_+} \frac{1}{\theta^a} \in K_\infty := \mathbb{F}_q((\theta^{-1})),$$

where A_+ is the set of monic polynomials of A.

The Carlitz module C is the functor that associates to an A-algebra B the A-module $C(B)$ whose underlying \mathbb{F}_q-vector space is B and whose A-module structure is given by the homomorphism of \mathbb{F}_q-algebras

$$\varphi_C: \quad A \to \text{End}_{\mathbb{F}_q}(B) \quad \theta \mapsto \theta + \tau,$$

where τ is the Frobenius endomorphism $b \mapsto b^q$. For P a prime of A (i.e. a monic irreducible polynomial), one can show (see [8, theorem 3.6.3]) that $[C(A/PA)]_A = P - 1$. Thus

$$\zeta_A(1) = \prod_{P \text{ prime}} \left(1 - \frac{1}{P}\right)^{-1} = \prod_{P \text{ prime}} \frac{[\text{Lie}(C)(A/PA)]_A}{[C(A/PA)]_A}.$$ \hfill (1.1)

Recently, Taelman [10] associates, to a Drinfeld module ϕ over the ring of integers R of a finite extension of K, a finite A-module called the class module $H(\phi/R)$ and an L-series value $L(\phi/R)$. In particular, if ϕ is the Carlitz module and R is A, thanks to (1.1), we have

$$L(C/A) = \zeta_A(1).$$

These objects are related by a class formula: $L(\phi/R)$ is equal to the product of $[H(\phi/R)]_A$ times a regulator (see theorem 1 of loc. cit.).

This class formula was generalized by Fang [7], using the theory of shtukas and ideas of Vincent Lafforgue, to abelian t-modules over A, which are n-dimensional analogues of Drinfeld modules. In particular, for $C^\otimes n$, the n^{th} tensor power of the Carlitz module, introduced by Anderson and Thakur [2], we have

$$L(C^\otimes n/A) = \zeta_A(n)$$
and this is related to a class module and a regulator as in the work of Taelman.

On the other hand, Pellarin [9] introduced a new class of \(L \)-series. Let \(t_1, \ldots, t_s \) be indeterminates over \(\mathbb{C}_\infty \), the completion of a fixed algebraic closure of \(K_\infty \). For each \(1 \leq i \leq s \), let \(\chi_{t_i} : A \to \mathbb{F}_q[t_1, \ldots, t_s] \) be the \(\mathbb{F}_q \)-linear ring homomorphism defined by \(\chi_{t_i}(\theta) = t_i \). Then, the Pellarin’s \(L \)-value at a positive integer \(n \) is defined as

\[
L(\chi_{t_1} \cdots \chi_{t_s}, n) := \sum_{a \in A_+} \frac{\chi_{t_1}(a) \cdots \chi_{t_s}(a)}{a^n} \in \mathbb{F}_q[t_1, \ldots, t_s] \otimes_{\mathbb{F}_q} K_\infty.
\]

In this paper, inspired by ideas developed by Taelman in [10], we prove a class formula for abelian \(t \)-modules over \(\mathbb{F}_q(t_1, \ldots, t_s)[\theta] \). In particular, for \(s = 0 \), we recover theorem 1.10 of [7]. Then, we express Pellarin’s \(L \)-values as a product of quotients of Fitting ideals in the manner of (1.1). Thus, we obtain a class formula for these \(L \)-values (see section 4.2.3). This result was already used by Anglès, Pellarin and Tavares Ribeiro [4] in the 1-dimensional case, i.e. for Drinfeld modules.

Finally, let \(a \in A_+ \) be squarefree and \(L \) be the cyclotomic field associated with \(a \), i.e. the finite extension of \(K \) generated by the \(a \)-torsion of the Carlitz module. It is a Galois extension of group \(\Delta_a \simeq \langle a/A \rangle^\times \). Let \(\chi : (A/aA)^\times \to F^\times \) be a homomorphism where \(F \) is a finite extension of \(\mathbb{F}_q \). The special value at a positive integer \(n \) of Goss \(L \)-series associated to \(\chi \) is defined as

\[
L(n, \chi) := \sum_{b \in A_+} \frac{\chi(b)}{b^n} \in F \otimes_{\mathbb{F}_q} K_\infty,
\]

where \(\overline{b} \) is the image of \(b \) in \((A/aA)^\times \). We can group all the \(L(n, \chi) \) together in one equivariant \(L \)-value \(L(n, \Delta_a) \). Then, we prove an equivariant class formula for these \(L \)-values (see theorem 4.15), generalizing that of Anglès and Taelman [5] in the case \(n = 1 \).

Acknowledgements

The author sincerely thanks Bruno Anglès, Lenny Taelman and Floric Tavares Ribeiro for fruitful discussions and useful remarks.

2 Anderson modules and class formula

2.1 Lattices

Let \(\mathbb{F}_q \) be the finite field with \(q \) elements and \(\theta \) an indeterminate over \(\mathbb{F}_q \). We denote by \(A \) the polynomial ring \(\mathbb{F}_q[\theta] \) and by \(K \) the fraction field of \(A \). Let \(\infty \) be the unique place of \(K \) which is a pole of \(\theta \) and \(v_\infty \) the discrete valuation of \(K \) corresponding to this place with the normalization \(v_\infty(\theta) = -1 \). The completion of \(K \) at \(\infty \) is denoted by \(K_\infty \). We have \(K_\infty = \mathbb{F}_q((\theta^{-1})) \). We denote by \(\mathcal{C}_\infty \) a fixed completion of an algebraic closure of \(K_\infty \). The valuation on \(\mathcal{C}_\infty \) that extends \(v_\infty \) is still denoted by \(v_\infty \).

Let \(s \geq 0 \) be an integer and \(t_1, \ldots, t_s \) indeterminates over \(\mathbb{C}_\infty \). We set \(k_s := \mathbb{F}_q(t_1, \ldots, t_s) \), \(R_s := k_s[\theta] \), \(K_s := k_s(\theta) \) and \(K_{s, \infty} := k_s((\theta^{-1})) \). For \(f \in \mathbb{C}_\infty[t_1, \ldots, t_s] \) a polynomial expanded as a finite sum

\[
f = \sum_{i_1, \ldots, i_s \in \mathbb{N}} \alpha_{i_1, \ldots, i_s} t_1^{i_1} \cdots t_s^{i_s},
\]

with \(\alpha_{i_1, \ldots, i_s} \in \mathbb{C}_\infty \), we set

\[
v_\infty(f) := \inf \{ v_\infty(\alpha_{i_1, \ldots, i_s}) \mid i_1, \ldots, i_s \in \mathbb{N} \}.
\]
For $f \in \mathbb{C}_\infty(t_1, \ldots, t_s)$, there exists g and h in $\mathbb{C}_\infty[t_1, \ldots, t_s]$ such that $f = g/h$, then we define $v_\infty(f) := v_\infty(g) - v_\infty(h)$. We easily check that v_∞ is a valuation, trivial on k_s, called the Gauss valuation. For $f \in \mathbb{C}_\infty[t_1, \ldots, t_s]$, we set $\|f\|_\infty := q^{-v_\infty(f)}$ if $f \neq 0$ and $\|0\|_\infty = 0$. The function $\|\cdot\|_\infty$ is called the Gauss norm. We denote by $\mathbb{C}_{s,\infty}$ the completion of $\mathbb{C}_\infty(t_1, \ldots, t_s)$ with respect to v_∞.

Let V be a finite dimensional $K_{s,\infty}$-vector space and $\| \cdot \|$ be a norm on V compatible with $\| \cdot \|_\infty$ on $K_{s,\infty}$. For $r > 0$, we denote by $B(0, r) := \{ v \in V \mid \|v\| < r \}$ the open ball of radius r, which is a K_s-subspace of V.

Definition. A sub-R_s-module M of V is an R_s-lattice of V if it is free of rank one and the $K_{s,\infty}$-vector space spanned by M is V.

We can characterize these lattices.

Lemma 2.1. Let V be a $K_{s,\infty}$-vector space of dimension $n \geq 1$ and M be a sub-R_s-module of V. The following assertions are equivalent:

1. M is an R_s-lattice of V;
2. M is discrete in V and every open subspace of the k_s-vector space V/M is of finite co-dimension.

Proof. Let us suppose that M is an R_s-lattice of V, i.e. there exists a family (e_1, \ldots, e_n) of elements of M such that

$$M = \bigoplus_{i=1}^n R_s e_i \quad \text{and} \quad V = \bigoplus_{i=1}^n K_{s,\infty} e_i.$$

Any element v of V can be uniquely written as $v = \sum_{i=1}^n v_i e_i$ with $v_i \in K_{s,\infty}$. Then, we set $\|v\| := \max \{ \|v_i\|_\infty \mid i = 1, \ldots, n \}$. Since R_s is discrete in $K_{s,\infty}$, this implies that M is discrete in V. Now, let $m \geq 0$ be an integer. We have

$$B(0, q^{-m}) = \bigoplus_{i=1}^n \theta^{-m-1} k_s[[\theta^{-1}]] e_i.$$

In particular, we have $V = M \oplus B(0, 1)$ and

$$\dim_{K_s} \frac{B(0, q^{-m})}{B(0, q^{-m-1})} = n.$$

This implies that every open k_s-subspace of V/M is of finite co-dimension.

Reciprocally, let us suppose that M is discrete in V and every open subspace of the k_s-vector space V/M is of finite co-dimension. Let W be the $K_{s,\infty}$-subspace of V generated by M and m be its dimension. There exist e_1, \ldots, e_m in M such that

$$W = \bigoplus_{i=1}^m K_{s,\infty} e_i.$$

Set

$$N = \bigoplus_{i=1}^m R_s e_i.$$

This is a sub-R_s-module of M and an R_s-lattice of W. In particular, M/N is discrete in W/N. Since any open k_s-subspace of W/N is of finite co-dimension, we deduce that M/N is a finite dimensional k_s-vector space. This implies that M is a free R_s-module of rank m. Finally, observe that, if $m < n$, V/M can not verify the co-dimensional property, thus $W = V$. \qed
2.2 Anderson modules and exponential map

Let L be a finite extension of K, $L \subseteq C_\infty$. We define $R_{L,s}$ to be the subring of $L_s := L(t_1, \ldots, t_s)$ generated by k_s and O_L, where O_L is the integral closure of A in L. We set $L_{s,\infty} := L \otimes_K K_{s,\infty}$. This is a finite dimensional $K_{s,\infty}$-vector space. We denote by $S_\infty(L)$ the set of places of L above ∞. For a place $\nu \in S_\infty(L)$, we denote by L_ν the completion of L with respect to ν. Let π_ν be a uniformizer of L_ν and F_ν be the residue field of L_ν. Then, we define $L_{s,\nu} := F_\nu(t_1, \ldots, t_s)((\pi_\nu))$ viewed as a subfield of $C_{s,\infty}$. We have an isomorphism of $K_{s,\infty}$-algebras

$$L_{s,\infty} \simeq \prod_{\nu \in S_\infty(L)} L_{s,\nu}.$$

Observe that $R_{L,s}$ is an R_s-lattice in the $K_{s,\infty}$-vector space $L_{s,\infty}$.

Let $\tau: C_{s,\infty} \to C_{s,\infty}$ be the morphism of k_s-algebras given by the q-power map on $C_{s,\infty}$.

Lemma 2.2. The elements of $C_{s,\infty}$ fixed by τ are those of k_s.

Proof. Obviously, $k_s \subseteq C_{s,\infty}^\tau$. Reciprocally, observe that $\mathbb{C}_{s,\infty}^\tau = \{f \in \mathbb{C}_{s,\infty} \mid v_\infty(f) = 0\}$. But we have the direct sum of $\mathbb{F}_q(\tau)$-modules

$$\{f \in \mathbb{C}_{s,\infty} \mid v_\infty(f) \geq 0\} = \mathbb{F}_q(t_1, \ldots, t_s) \oplus \{f \in \mathbb{C}_{s,\infty} \mid v_\infty(f) > 0\}.$$

Since $\mathbb{F}_q(t_1, \ldots, t_s)^{\tau = 1} = k_s$, we get the result. \qed

The action of τ on $L_{s,\infty} = L \otimes_K K_{s,\infty}$ is the diagonal one $\tau \otimes \tau$.

Definition. Let r be a positive integer. An Anderson module E over $R_{L,s}$ is a morphism of k_s-algebras

$$\phi_E: R_s \to M_n(R_{L,s})(\tau)$$

$$\theta \mapsto \sum_{j=0}^{r-1} A_j \theta^j$$

for some $A_0, \ldots, A_r \in M_n(R_{L,s})$ such that $(A_0 - \theta I_n)^n = 0$.

These objects are usually called abelian t-motives as in the terminology of [1] but, to avoid confusion between t and the indeterminates t_1, \ldots, t_s, we prefer called them Anderson modules. Note also that Drinfeld modules are one-dimensional Anderson modules.

For a matrix $A = (a_{ij}) \in M_n(\mathbb{C}_{s,\infty})$, we set $v_\infty(A) \equiv \min_{1 \leq i \leq n} \{v_\infty(a_{ij})\}$ and $\tau(A) := (\tau(a_{ij})) \in M_n(\mathbb{C}_{s,\infty})$.

Proposition 2.3. There exists a unique skew power series $\exp_E := \sum_{j \geq 0} e_j \tau^j$ with coefficients in $M_n(L_s)$ such that

1. $e_0 = I_n$;
2. $\exp_E A_0 = \phi_E(\theta) \exp_E$ in $M_n(L_s)(\{\tau\})$;
3. $\lim_{j \to \infty} \frac{v_\infty(e_j)}{q^j} = +\infty$.

Proof. See proposition 2.1.4 of [1]. \qed
Observe that \exp_E is locally isometric. Indeed, by the third point,

$$c := \sup_{j \geq 1} \left(-v_\infty(e_j) \right)$$

is finite. Then, for any $x \in L^n_{s,\infty}$ such that $v_\infty(x) > c$, we have

$$v_\infty \left(\sum_{j \geq 0} e_j \tau^j(x) - x \right) \geq \min_{j \geq 1} \left(v_\infty(e_j) + q^j v_\infty(x) \right) > v_\infty(x).$$

If B is an $R_{L,s}$-algebra, we denote by $E(B)$ the k_s-vector space B^n equipped with the structure of R_s-module induced by ϕ_E. We can also consider the tangent space $\text{Lie}(E)(B)$ which is the k_s-vector space B^n whose R_s-module structure is given by the morphism of k_s-algebras

$$\partial: R_s \rightarrow M_n(R_{L,s}) \quad \theta \mapsto A_0.$$

In particular, by the previous proposition, we get a continuous R_s-linear map

$$\exp_E: \text{Lie}(E)(L_{s,\infty}) \rightarrow E(L_{s,\infty}).$$

2.3 The class formula

In this section, we define a class module and two lattices in order to state the main result.

Lemma 2.4.

1. $A^n_0 = \theta^n I_n$;
2. $\inf_{j \in \mathbb{Z}} \left(v_\infty(A^n_j) + j \right)$ is finite.

Proof. See lemma 1.4 of [7].

By the second point, for any $a_j \in k_s$ and $m \in \mathbb{Z}$, the series $\sum_{j \geq m} a_j A_0^{-j}$ converges in $M_n(L_{s,\infty})$. Thus, ∂ can be uniquely extended to a morphism of k_s-algebras by

$$\partial: K_{s,\infty} \rightarrow M_n(L_{s,\infty}) \quad \sum_{j \geq m} a_j \frac{1}{\theta^j} \mapsto \sum_{j \geq m} a_j A_0^{-j},$$

where $a_j \in k_s$ and $m \in \mathbb{Z}$. Then, $\text{Lie}(E)(L_{s,\infty})$ inherits a $K_{s,\infty}$-vector space structure. Observe, by the first point of the lemma, that, for any $f \in k_s((\theta^{-q^n}))$, we have $\partial(f) = f I_n$, i.e. the action is the scalar multiplication for these elements. In particular, we get an isomorphism $\text{Lie}(E)(L_{s,\infty}) \cong L^n_{s,\infty}$ as $k_s((\theta^{-q^n}))$-modules. We deduce that $\text{Lie}(E)(L_{s,\infty})$ is a $k_s((\theta^{-q^n}))$-vector space of dimension $n q^n$, so of dimension n over $K_{s,\infty}$.

Proposition 2.5. The R_s-module $\text{Lie}(E)(R_{L,s})$ is an R_s-lattice of $\text{Lie}(E)(L_{s,\infty})$. Furthermore, if $L = K$, the canonical basis is an R_s-base of $\text{Lie}(E)(R_s)$.
Proof. By the first point of the previous lemma, Lie(E)($R_{L,s}$) and $R^m_{L,s}$ are isomorphic as $k_s[\theta^n]$-modules. Thus, Lie(E)($R_{L,s}$) is a finitely generated $k_s[\theta^n]$-module. On the other hand, the action of an element $a \in R_s$ is the left multiplication by $a I_n + N$ where N is a nilpotent matrix. Since $a I_n + N$ is an invertible matrix, Lie(E)($R_{L,s}$) is a torsion-free R_s-module. Moreover, the $k_s((\theta^{-q^n}))$-vector space generated by Lie(E)($R_{L,s}$) and $K_{s,\infty}$ is $L^n_{s,\infty} \cong$ Lie(E)($L_{s,\infty}$). Therefore, Lie(E)($R_{L,s}$) is a free R_s-module of finite rank. Looking at the dimension as k_s-vector space, the rank is necessarily n.

For the second assertion, denote by e_i the i^{th} vector of the canonical basis. Firstly, we show that this family spans Lie(E)(R_s). We proceed by induction on $\max_{1 \leq i \leq n} \deg_{\theta} x_i$ where (x_1, \ldots, x_n) is in R^n_s. The case of degree 0 is trivial because the action of an element of k_s is the scalar multiplication. Now let m be a positive integer and (x_1, \ldots, x_n) be a vector of R^n_s such that $\max_{1 \leq i \leq n} \deg_{\theta} x_i = m$. We can write

$$
\begin{pmatrix}
 x_1 \\
 \vdots \\
 x_n
\end{pmatrix} = \theta^m \begin{pmatrix}
 \zeta_1 \\
 \vdots \\
 \zeta_n
\end{pmatrix},
$$

where ζ_1, \ldots, ζ_n are elements of k_s. Since we have $\partial_{\theta^m} = \theta^m I_n \mod \theta^{m-1}$, we get

$$
\begin{pmatrix}
 x_1 \\
 \vdots \\
 x_n
\end{pmatrix} = \partial_{\zeta_1 \theta^m e_1} + \cdots + \partial_{\zeta_n \theta^m e_n} \mod \theta^{m-1}.
$$

Thus we obtain the spanning property by induction.

Finally, suppose that there exists $(a_1, \ldots, a_n) \neq (0, \ldots, 0)$ in R^n_s such that

$$
\sum_{i=1}^{n} \partial_{a_i} e_i = 0.
$$

Let $d := \max_{1 \leq i \leq n} \deg_{\theta} a_i$. Looking at the above equality modulo θ^d, since $\partial_{\theta^d} = \theta^d I_n \mod \theta^{d-1}$, we obtain that $a_i = 0$ if $\deg_{\theta} a_i = d$, thus necessarily all the a_i are zero, i.e. e_1, \ldots, e_n are linearly independent in Lie(E)(R_s).

\begin{proposition}

1. Set

$$
H(E/R_{L_s}) := \frac{E(L_{s,\infty})}{\exp(E(L_{s,\infty})) + E(R_{L_s})}.
$$

This is a finite dimensional k_s-vector space, thus a finitely generated R_s-module and a torsion R_s-module, called the class module.

2. The R_s-module $\exp^1_E(E(R_{L,s}))$ is an R_s-lattice in Lie(E)($R_{L,s}$).

\end{proposition}

\begin{proof}
Let V be an open neighbourhood of 0 in $L^n_{s,\infty}$ on which \exp_E acts as an isometry and such that $\exp_E(V) = V$. We have a natural surjection of k_s-vector spaces

$$
\frac{L^n_{s,\infty}}{R^n_{L,s} + V} \twoheadrightarrow H(E/R_{L,s}).
$$

By proposition 2.5, the left hand side is a finite dimensional k_s-vector space, hence a fortiori $H(E/R_{L,s})$ too.

6
Now, let us prove that $\exp_E^1(E(R_{L,s}))$ is an R_s-lattice in $\Lie(E)(R_{L,s})$. Since the kernel of \exp_E and $\Lie(E)(R_{L,s})$ are discrete in $\Lie(E)(R_{L,s})$, so is $\exp_E^1(E(R_{L,s}))$. Let V be an open neighbourhood of 0 on which \exp_E is isometric and such that $\exp_E(V) = V$. The exponential map induces a short exact sequence of k_s-vector spaces

$$0 \to \frac{\Lie(E)(R_{L,s})}{\exp_E^1(E(R_{L,s})) + V} \to \frac{E(L_{s,\infty})}{E(R_{L,s}) + V} \to H(E/R_{L,s}) \to 0.$$

Since the last two k_s-vector spaces are of finite dimension, the first one is of finite dimension too; thus $\exp_E^1(E(R_{L,s}))$ satisfies the co-dimensional property.

An element $f \in K_{s,\infty}$ is monic if

$$f = \frac{1}{\theta^n} + \sum_{i > m} x_i \frac{1}{\theta^n},$$

where $m \in \mathbb{Z}$ and $x_i \in k_s$. For an R_s-module M which is a finite dimensional k_s-vector space, we denote by $[M]_{R_s}$ the monic generator of the Fitting ideal of M.

Let V be a finite dimensional $K_{s,\infty}$-vector space. Let M_1 and M_2 be two R_s-lattices in V. There exists $\sigma \in \GL(V)$ such that $\sigma(M_1) = M_2$. Then, we define $[M_1 : M_2]_{R_s}$ to be the unique monic representative of $k_s^\times \det \sigma$.

The aim of the next section is to prove a class formula à la Taelman for Anderson modules:

Theorem 2.7. Let E be an Anderson module over $R_{L,s}$. The infinite product

$$L(E/R_{L,s}) := \prod_{m \text{ maximal ideal of } \mathcal{O}_L} \frac{[\Lie(E)(R_{L,s}/mR_{L,s})]_{R_s}}{[E(R_{L,s}/mR_{L,s})]_{R_s}}$$

converges in $K_{s,\infty}$. Furthermore, we have

$$L(E/R_{L,s}) = [\Lie(E)(R_{L,s}) : \exp_E^1(E(R_{L,s}))]_{R_s} [H(E/R_{L,s})]_{R_s}.$$

3 Proof of the class formula

The proof is very close to ideas developed by Taelman in [10] so we will only recall some statements and point out differences.

3.1 Nuclear operators and determinants

Let k be a field and V a k-vector space equipped with a non-archimedean norm $\| \cdot \|$. Let φ be a continuous endomorphism of V. We say that φ is locally contracting if there exist an non empty open subspace $U \subseteq V$ and a real number $0 < c < 1$ such that $\|\varphi(u)\| \leq c\|u\|$ for all $u \in U$. Any such open subspace U which moreover satisfies $\varphi(U) \subseteq U$ is called a nucleus for φ. Observe that any finite collection of locally contracting endomorphisms of V has a common nucleus. Furthermore if φ and ϕ are locally contracting, then so are the sum $\varphi + \psi$ and the composition $\varphi \psi$.

For every positive integer N, we denote by $V[[Z]]/Z^N$ the $k[[Z]]/Z^N$-module $V \otimes_k k[[Z]]/Z^N$ and by $V[[Z]]$ the $k[[Z]]$-module $V[[Z]] := \lim V[[Z]]/Z^N$ equipped with the limit topology. Observe that any continuous $k[[Z]]$-linear endomorphism $\Phi: V[[Z]] \to V[[Z]]$ is of the form

$$\Phi = \sum_{n \geq 0} \varphi_n Z^n,$$
where the φ_n are continuous endomorphisms of V. Similarly, any continuous $k[[Z]]/Z^N$-linear endomorphism of $V[[Z]]/Z^N$ is of the form

$$\sum_{n=0}^{N-1} \varphi_n Z^n.$$

We say that the continuous $k[[Z]]$-linear endomorphism Φ of $V[[Z]]$ (resp. of $V[[Z]]/Z^N$) is nuclear if for all n (resp. for all $n < N$), the endomorphism φ_n of V is locally contracting.

From now on, we assume that for any open subspace U of V, the k-vector space V/U is of finite dimension.

Let Φ be a nuclear endomorphism of $V[[Z]]/Z^N$. Let U_1 and U_2 be common nuclei for the φ_n, $n < N$. Since Proposition 8 in [10] is valid in our context,

$$\det_{k[[Z]]/Z^N}(1 + \Phi | V) \in k[[Z]]/Z^N$$

is independent of $i \in \{1, 2\}$. We denote this determinant by

$$\det_{k[[Z]]/Z^N}(1 + \Phi | V).$$

If Φ is a nuclear endomorphism of $V[[Z]]$, then we denote by $\det_{k[[Z]]}(1 + \Phi | V)$ the unique power series that reduces to $\det_{k[[Z]]/Z^N}(1 + \Phi | V)$ modulo Z^N for every N.

Note that Proposition 9, Proposition 10, Theorem 2 and Corollary 1 of [10] are also valid in our context. We recall the statements for the convenience of the reader.

Proposition 3.1.

1. Let Φ be a nuclear endomorphism of $V[[Z]]$. Let $W \subseteq V$ be a closed subspace such that $\Phi(W[[Z]]) \subseteq W[[Z]]$. Then Φ is nuclear on $W[[Z]]$ and $(V/W)[[Z]]$, and

$$\det_{k[[Z]]}(1 + \Phi | V/W) = \det_{k[[Z]]}(1 + \Phi | V) \det_{k[[Z]]}(1 + \Phi | V/W).$$

2. Let Φ and Ψ be nuclear endomorphisms of $V[[Z]]$. Then $(1 + \Phi)(1 + \Psi) - 1$ is nuclear, and

$$\det_{k[[Z]]}(1 + \Phi)(1 + \Psi) | V) = \det_{k[[Z]]}(1 + \Phi | V) \det_{k[[Z]]}(1 + \Psi | V).$$

Theorem 3.2.

1. Let φ and ψ be continuous k-linear endomorphisms of V such that φ, $\varphi \psi$ and $\psi \varphi$ are locally contracting. Then

$$\det_{k[[Z]]}(1 + \varphi \psi | V) = \det_{k[[Z]]}(1 + \psi \varphi | V).$$

2. Let $N \geq 1$ be an integer. Let φ and ψ be continuous k-linear endomorphisms of V such that all compositions φ, $\varphi \psi$, $\psi \varphi$, φ^2, etc. in φ and ψ containing at least one endomorphism φ and at most $N - 1$ endomorphisms ψ are locally contracting. Let $\Delta = \sum_{n=1}^{N-1} \gamma_n Z^n$ such that

$$1 + \Delta = \frac{1 - (1 + \varphi) \psi Z}{1 - \psi (1 + \varphi) Z} \mod Z^N.$$

Then Δ is a nuclear endomorphism of $V[[Z]]$ and

$$\det_{k[[Z]]}(1 + \Delta | V) = 1 \mod Z^N.$$
3.2 Taelman’s trace formula

Let L be a finite extension of K and E be the Anderson module given by

$$\phi: R_s \rightarrow M_n(\mathcal{R}_{L,s})\{\tau\}$$

$$\theta \mapsto \sum_{j=0}^{r} A_j \tau^j$$

for some $A_0, \ldots, A_r \in M_n(\mathcal{R}_{L,s})$ such that $(A_0 - \theta I_n)^n = 0$. Let $M_n(\mathcal{R}_{L,s})\{\tau\}[Z]$ be the ring of formal power series in Z with coefficients in $M_n(\mathcal{R}_{L,s})\{\tau\}$, the variable Z being central.

We set

$$\Theta := \sum_{n \geq 1} (\theta - \Phi \theta) \theta_0^{n-1} Z^n \in M_n(\mathcal{R}_{L,s})[Z].$$

Lemma 3.3. Let \mathfrak{m} be a maximal ideal of \mathcal{O}_L. In $K_{s,\infty}$, the following equality holds:

$$\frac{[\text{Lie}(E)](\mathcal{R}_{L,s}/\mathfrak{m}\mathcal{R}_{L,s})_{R_s}}{[E(\mathcal{R}_{L,s}/\mathfrak{m}\mathcal{R}_{L,s})]_{R_s}} = \det_{k_s(\mathcal{O}_L)}(1 + \Theta | (\mathcal{R}_{L,s}/\mathfrak{m}\mathcal{R}_{L,s})^n)^{1-n}|_{Z=\theta^{-1}}.$$

Proof. It is an easy computation using the definition of Fitting ideal and of Θ. \blacksquare

Let S be a finite set of places of L containing $S_{\infty}(L)$. Denote by \mathcal{O}_S the ring of regular functions outside S. In particular $\mathcal{O}_L \subseteq \mathcal{O}_S$. Let $R_{S,s}$ be the subring of L_s generated by \mathcal{O}_S and k_s. For example, if $S = S_{\infty}(L)$, we have $R_{S,s} = \mathcal{R}_{L,s}$.

Let \mathfrak{p} be a maximal ideal of \mathcal{O}_L which is not in S. The natural inclusion $\mathcal{O}_L \hookrightarrow \mathcal{O}_S$ induces an isomorphism $\mathcal{R}_{L,s}/\mathfrak{p}\mathcal{R}_{L,s} \cong R_{S,s}/\mathfrak{p}R_{S,s}$. By the previous lemma, we obtain

$$\frac{[\text{Lie}(E)](\mathcal{R}_{L,s}/\mathfrak{p}\mathcal{R}_{L,s}))_{R_s}}{[E(\mathcal{R}_{L,s}/\mathfrak{p}\mathcal{R}_{L,s})]_{R_s}} = \det_{k_s(\mathcal{O}_L)}(1 + \Theta | (\mathcal{R}_{L,s}/\mathfrak{p}\mathcal{R}_{L,s})^n)^{1-n}|_{Z=\theta^{-1}}. \quad (3.1)$$

Denote by $\mathcal{L}_{s,\mathfrak{p}}$ the \mathfrak{p}-adic completion of L_s, i.e. the completion of L_s with respect to the valuation $v_\mathfrak{p}$ defined on $L[t_1, \ldots, t_s]$ by

$$v_\mathfrak{p}\left(\sum_{i_1, \ldots, i_s \in \mathbb{N}} \alpha_{i_1, \ldots, i_s} t_1^{i_1} \cdots t_s^{i_s}\right) := \inf_{i_1, \ldots, i_s \in \mathbb{N}} v_\mathfrak{p}(\alpha_{i_1, \ldots, i_s}),$$

where $v_\mathfrak{p}$ is the normalized \mathfrak{p}-adic valuation on L. Denote by $\mathcal{O}_{s,\mathfrak{p}}$ the valuation ring of $\mathcal{L}_{s,\mathfrak{p}}$. By the strong approximation theorem, for any $n > 0$, there exists $\pi_n \in L$ such that $v_\mathfrak{p}(\pi_n) = -n$ and $v(\pi_n) \geq 0$ for all $v \not\in S \cup \mathfrak{p}$. Thus, we have

$$\mathcal{L}_{s,\mathfrak{p}} = \mathcal{O}_{s,\mathfrak{p}} + R_{\mathcal{O}_{s,\mathfrak{p}},s} \quad \text{and} \quad R_{s,s} = \mathcal{O}_{s,\mathfrak{p}} + R_{\mathcal{O}_{s,\mathfrak{p}},s}. \quad (3.2)$$

Finally, denote by $\mathcal{L}_{s,S}$ the product of the completions of L_s with respect to places of S. For example, if $S = S_{\infty}(L)$, we have $\mathcal{L}_{s,S} = \mathcal{L}_{s,\infty}$.

Recall that $R_{S,s}$ is a Dedekind domain, discrete in $\mathcal{L}_{s,S}$ and such that every open subspace of $L_{s,S}/R_{S,s}$ is of finite co-dimension. Observe also that any element of $M_n(\mathcal{R}_{S,s})\{\tau\}$ induces a continuous k_s-linear endomorphism of $(L_{s,S}/R_{S,s})^n$ which is locally contracting. In particular, the endomorphism Θ is a nuclear operator of $(L_{s,S}/R_{S,s})^n[[Z]].$

Lemma 3.4. Let \mathfrak{p} be a maximal ideal of \mathcal{O}_L which is not in S. Then

$$\det_{k_s(\mathcal{O}_L)}(1 + \Theta | (\mathcal{R}_{L,s}/\mathfrak{p}\mathcal{R}_{L,s})^n) = \frac{\det_{k_s(\mathcal{O}_L)}(1 + \Theta | (\mathcal{R}_{L,s} \times L_{s,\mathfrak{p}})^n)}{\det_{k_s(\mathcal{O}_L)}(1 + \Theta | (L_{s,\mathfrak{p}})^n)}.$$

9
Proof. The proof is the same as that of lemma 1 of [10], using equalities (3.2).

Proposition 3.5. The following equality holds in $K_{s,\infty}$:

$$L(E/R_{L,s}) = \prod_m \det_{k_i[[z]]}(1 + \Theta \mid (R_{L,s}/mR_{L,s})^n)^{-1}|_{Z=\theta^{-1}}.$$

In particular, $L(E/R_{L,s})$ converges in $K_{s,\infty}$.

Proof. By lemma 3.3, we have

$$L(E/R_{L,s}) = \prod_m \det_{k_i[[z]]}(1 + \Theta \mid (R_{L,s}/mR_{L,s})^n)^{-1}|_{Z=\theta^{-1}},$$

where the product runs through maximal ideals of O_L. Fix $S \supseteq S_{\infty}(L)$ above (the case $S = S_{\infty}(L)$ suffices). By equality (3.1), we have

$$\prod_m \det_{k_i[[z]]}(1 + \Theta \mid (R_{L,s}/mR_{L,s})^n)^{-1} = \prod_m \det_{k_i[[z]]}(1 + \Theta \mid (R_{S,s}/mR_{S,s})^n)^{-1},$$

where the products run through maximal ideals of O_L which are not in S.

Define $S_{D,N}$ as in [10]. It suffices to prove that for any $1 + F \in S_{D,N}$, the infinite product

$$\prod_{m \notin S \setminus S_{\infty}(L)} \det_{k_i[[z]]/Z^N}(1 + F \mid \left(\frac{R_{S,s}}{mR_{S,s}}\right)^n)$$

converges to

$$\det_{k_i[[z]]/Z^N}(1 + F \mid \left(\frac{L_{s,s}}{R_{S,s}}\right)^n)^{-1}.$$

Let m_1, \ldots, m_r be the maximal ideals of O_L which are not in S and such that $m_i R_{S,s}$ is a maximal ideal of $R_{S,s}$ verifying $\dim_{k_i} R_{S,s}/m_i R_{S,s} < D$. Applying successively lemma 3.4 to $R_{S,s}$, $R_{S\cup\{m_1\},s}$, $R_{S\cup\{m_1,m_2\},s}$, etc., we obtain the following equality:

$$\frac{\det_{k_i[[z]]}(1 + F \mid \left(\frac{L_{s,s}}{R_{S,s}}\right)^n) \prod_m \det_{k_i[[z]]}(1 + F \mid \left(\frac{R_{S,s}}{mR_{S,s}}\right)^n)}{\prod_{m \notin \{m_1, \ldots, m_r\}} \det_{k_i[[z]]}(1 + F \mid \left(\frac{R_{S,s}}{mR_{S,s}}\right)^n)}.$$

This allows us, replacing $R_{S,s}$ by $R_{S\cup\{m_1, \ldots, m_r\},s}$, to suppose that $R_{S,s}$ has not maximal ideal of the form $mR_{S,s}$ with m maximal ideal of O_L which is not in S such that $\dim_{k_i} R_{S,s}/mR_{S,s} < D$. Then, we can finish the proof as in [10].

3.3 Ratio of co-volumes

Let V be a finite dimensional $K_{s,\infty}$-vector space and $\| \cdot \|$ be a norm on V compatible with $\| \cdot \|_\infty$ on $K_{s,\infty}$. Let M_1 and M_2 be two R-lattices in V and $N \in \mathbb{N}$. A continuous k_i-linear map $\gamma: V/M_1 \to V/M_2$ is N-tangent to the identity on V if there exists an open k_i-subspace U of V such that

1. $U \cap M_1 = U \cap M_2 = \{0\}$;

2. γ restricts to an isometry between the images of U;
3. for any \(u \in U \), we have \(\| \gamma(u) - u \| \leq q^{-N} \| u \| \).

The map \(\gamma \) is infinitely tangent to the identity on \(V \) if it is \(N \)-tangent for every positive integer \(N \).

Proposition 3.6. Let \(\gamma \in M_n(L_s) \{ \{ \tau \} \} \) be a power series convergent on \(L_s^{n,\infty} \) with constant term equal to 1 and such that \(\gamma(M_1) \subseteq M_2 \). Then \(\gamma \) is infinitely tangent to the identity on \(L_s^{n,\infty} \).

Proof. See proposition 12 of [10].

For example, by proposition 2.3, the map

\[
\exp_E : \frac{\operatorname{Lie}(E)(L_s,\infty)}{\exp_E^1(E(R_{L,s}))} \longrightarrow \frac{E(L_s,\infty)}{E(R_{L,s})}
\]

is infinitely tangent to the identity on \(L_{s,\infty} \).

Now, let \(H_1 \) and \(H_2 \) two finite dimensional \(k_s \)-vector spaces which are also \(R_s \)-modules and set \(N_i := \frac{1}{2^i} \times H_i \) for \(i = 1, 2 \). A \(k_s \)-linear map \(\gamma : N_1 \rightarrow N_2 \) is \(N \)-tangent (resp. infinitely tangent) to the identity on \(V \) if the composition

\[
\frac{V}{M_1} \rightarrow N_1 \xrightarrow{\gamma} N_2 \rightarrow \frac{V}{M_2}
\]

is so. For a \(k_s \)-linear isomorphism \(\gamma : N_1 \rightarrow N_2 \), we define an endomorphism

\[
\Delta_\gamma := \frac{1 - \gamma^{-1} \partial_0 \gamma Z}{1 - \partial_0 Z} - 1 = \sum_{i \geq 1} (\partial_0 - \gamma^{-1} \partial_0 \gamma) \partial_0^{-1} Z^n
\]

of \(N_1[[Z]] \).

Proposition 3.7. If \(\gamma \) is infinitely tangent to the identity on \(V \), then \(\Delta_\gamma \) is nuclear and

\[
\det_{k_s[[Z]]}(1 + \Delta_\gamma \mid N_1) \mid Z=\theta^{-1} = [M_1 : M_2] R_s \frac{[H_2]_{R_s}}{[H_1]_{R_s}}
\]

Proof. See theorem 4 of [10].

3.4 Proof of theorem 2.7

By theorem 3.5, \(L(E/R_{L,s}) \) converges in \(K_{s,\infty} \) and

\[
L(E/R_{L,s}) = \det_{k_s[[Z]]}(1 + \Theta \mid (L_{s,\infty}/R_{L,s})^n) \mid Z=\theta^{-1}.
\]

The exponential map \(\exp_E \) induces a short exact sequence of \(R_s \)-modules

\[
0 \longrightarrow \frac{\operatorname{Lie}(E)(L_s,\infty)}{\exp_E^1(E(R_{L,s}))} \longrightarrow \frac{E(L_s,\infty)}{E(R_{L,s})} \longrightarrow H(E/R_{L,s}) \longrightarrow 0.
\]

By proposition 2.6, the \(k_s \)-vector space \(H(E/R_{L,s}) \) is of finite dimension. Moreover, since the \(R_s \)-module on the left is divisible and \(R_s \) is principal, the sequence splits. The choice of a section gives rise to an isomorphism of \(R_s \)-modules

\[
\frac{\operatorname{Lie}(E)(L_s,\infty)}{\exp_E^1(E(R_{L,s}))} \times H(E/R_{L,s}) \simeq \frac{E(L_s,\infty)}{E(R_{L,s})}.
\]
This isomorphism can be restricted to an isomorphism of k_s-vector space

$$
\gamma: \text{Lie}(E)(L_{s,\infty}) \times H(E/R_{L,s}) \xrightarrow{\sim} \left(\frac{L_{s,\infty}}{R_{L,s}}\right)^n.
$$

Observe that γ corresponds with the map induced by \exp_E. By proposition 3.6, γ is infinitely tangent to the identity on $L_{s,\infty}$. By second point of proposition 2.3, we have $\exp_E \partial_\theta \exp_E^{-1} = \phi_\theta$, hence the equality of $k_s[[Z]]$-linear endomorphisms of $\left(\frac{L_{s,\infty}}{R_{L,s}}\right)^n$:

$$
1 + \Theta = \frac{1 - \gamma \partial_\theta \gamma^{-1} Z}{1 - \partial_\theta Z}.
$$

Thus, by theorem 3.7, we obtain

$$
\det_{k_s[[Z]]}(1 + \Theta | (L_{s,\infty}/R_{L,s})^n) |_{Z=\theta^{-1}} = [\text{Lie}(E)(R_{L,s}) : \exp_E^1(E(R_{L,s}))]_{R_s}[H(E/R_{L,s})]_{R_s}.
$$

This concludes the proof.

4 Applications

4.1 The nth tensor power of the Carlitz module

Let α be a non-zero element of R_s. Let E_α be the Anderson module defined by the morphism of k_s-algebras $\phi: R_s \to M_n(R_s)\{\tau\}$ given by

$$
\phi_\theta = \partial_\theta + N_\alpha \tau,
$$

where

$$
\partial_\theta = \begin{pmatrix}
\theta & 1 & \cdots & 0 \\
0 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 1 \\
0 & \cdots & 0 & \theta
\end{pmatrix}
$$

and

$$
N_\alpha = \begin{pmatrix}
0 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 0 \\
\alpha & 0 & \cdots & 0
\end{pmatrix}.
$$

In other words, if $\tau(x_1, \ldots, x_n) \in C^n_{s,\infty}$, we have

$$
\phi_\theta \left(\begin{array}{c}
x_1 \\
\vdots \\
x_n
\end{array} \right) = \left(\begin{array}{c}
\theta x_1 + x_2 \\
\vdots \\
\theta x_{n-1} + x_n \\
\theta x_n + \alpha \tau(x_1)
\end{array} \right).
$$

The case $\alpha = 1$ is denoted by $C^n\otimes$, the nth tensor power of Carlitz module, introduced in [2]. In this section, we show that the exponential map associated to $C^n\otimes$ is surjective on $C^n_{s,\infty}$ and we recall its kernel.

4.1.1 Surjectivity and kernel of $\exp_{C^n\otimes}$

By proposition 2.3, there exists a unique exponential map $\exp_{C^n\otimes}$ associated with $C^n\otimes$ and by [2, section 2], there exists a unique formal power series

$$
\log_{C^n\otimes} = \sum_{i \geq 0} P_i \tau^i \in M_n(C_{s,\infty})\{\{\}\}.
$$
Thus τ
y

The following assertions are equivalent:

\begin{enumerate}
\item \(\exists x\) such that \(\exp_C(x) = y\).
\item \(\exists x\) such that \(\log_C(x) = y\).
\end{enumerate}

Proposition 4.1. The exponential map \(\exp_{\mathbb{C}^n}\) is surjective on \(\mathbb{C}^n_r\).

To prove this, we reduce to the one dimensional case.

Lemma 4.2. The following assertions are equivalent:

\begin{enumerate}
\item \(\exp_{\mathbb{C}^n}\) is surjective on \(\mathbb{C}^n_r\);
\item \(C^\otimes_n\) is surjective on \(\mathbb{C}^n_r\);
\item \(\tau - 1\) is surjective on \(\mathbb{C}^n_r\).
\end{enumerate}

Proof. It is easy to show that that (1) implies (2). Indeed, let \(y \in \mathbb{C}^n_r\). By hypothesis, there exists \(x \in \mathbb{C}^n_r\) such that \(\exp_{\mathbb{C}^n}(x) = y\). Hence we have

\[
C^\otimes_n \exp_{\mathbb{C}^n}(\theta_n^{-1} x) = \exp_{\mathbb{C}^n}(x) = y.
\]

Next we prove that (2) implies (3). Since \(C^\otimes_n\) is supposed to be surjective on \(\mathbb{C}^n_r\), for any \(y = (y_1, \ldots, y_n) \in \mathbb{C}^n_r\), there exists \(x = (x_1, \ldots, x_n) \in \mathbb{C}^n_r\) such that

\[
\begin{align*}
\theta x_1 + x_2 &= y_1 \\
\vdots \quad & \\
\theta x_{n-1} + x_n &= y_{n-1} \\
\theta x_n + \tau(x_1) &= y_n
\end{align*}
\]

In particular, we get

\[
\tau(x_1) - (-\theta)^n x_1 = \sum_{i=1}^n (-\theta)^{n-i} y_i.
\]

Thus \(\tau - (-\theta)^n\) is surjective on \(\mathbb{C}^n_r\). But we have

\[
\tau \left((-\theta) \frac{-\theta}{\tau - \theta} \right) = (-\theta)^n (-\theta) \frac{-\theta}{\tau - \theta},
\]

hence \(\tau - 1\) is also surjective on \(\mathbb{C}^n_r\).

In fact, it is also easy to check that (3) implies (2). As in the previous case, the surjectivity of \(\tau - (-\theta)^n\) is deduced from the surjectivity of \(\tau - 1\). Hence, for a fixed \(y = (y_1, \ldots, y_n) \in \mathbb{C}^n_r\), there exists \(x_1 \in \mathbb{C}^n_r\) verifying equation (4.1). Then, by back-substitution, we find successively \(x_2, \ldots, x_n \in \mathbb{C}^n_r\) such that \(x = (x_1, \ldots, x_n)\) satisfies \(C^\otimes_n(x) = y\).

We finally prove that (2) implies (1). Since \(\log_{\mathbb{C}^n}\) converges on the polydisc \(D_n(n-i - \frac{m}{\tau - n}, i = 1, \ldots, n)\) and \(\exp_{\mathbb{C}^n} \log_{\mathbb{C}^n}\) is the identity map on it, this polydisc is included in the image of
the exponential. We will "grow" this polydisc to show that \(\exp_{C^n} \) is surjective. For \(i = 1, \ldots, n \), we define

\[
r_{0,i} := n - i - \frac{nq}{q-1} = -i - \frac{n}{q-1},
\]

and for \(k \geq 1 \),

\[
r_{k+1,i} = \begin{cases} r_{k,i+1} & \text{if } 1 \leq i \leq n-1, \\ qr_{k,1} & \text{if } i = n. \\ \end{cases}
\]

By induction, we prove that for any integer \(k \geq 0 \) and any \(1 \leq i \leq n-1 \),

\[
r_{k,i+1} \leq r_{k,i} - 1.
\]

We also prove that for any integer \(k \geq 0 \) and \(i \in \{1, \ldots, n\} \), we have \(r_{k,i} \leq r_{0,i} - k \). In particular, for any \(1 \leq i \leq n \), the sequence \((r_{k,i}) \) tends to \(-\infty\), i.e. the polydiscs \(D_n(r_{k,i}, i = 1, \ldots, n) \) cover \(\mathbb{C}_s^{n,\infty} \). Thus, it suffices to show that \(D_n(r_{k,i}, i = 1, \ldots, n) \subseteq \Im \exp_{C^n} \) for any integer \(k \geq 0 \).

The case \(k = 0 \), corresponding to the convergence domain of \(\log_{C^n} \), is already known. Let us suppose that \(D_n(r_{k,i}, i = 1, \ldots, n) \) is included in the image of \(\exp_{C^n} \) for an integer \(k \geq 0 \). Let \(y \) be an element of \(D_n(r_{k+1,i}, i = 1, \ldots, n) \setminus D_n(r_{k,i}, i = 1, \ldots, n) \).

We claim that there exists \(x \in D_n(r_{k,i}, i = 1, \ldots, n) \) such that \(C^n_\theta(x) = y \).

Assume temporarily this. Since \(D_n(r_{k,i}, i = 1, \ldots, n) \subseteq \Im \exp_{C^n} \), there exists \(z \in \mathbb{C}_s^{n,\infty} \) such that \(\exp_{C^n}(z) = x \). Thus

\[
\exp_{C^n}(\partial z) = C^n_\theta \exp_{C^n}(z) = C^n_\theta(x) = y.
\]

In particular \(y \) is in the image of the exponential as expected.

It only remains to prove the claim. By hypothesis, there exists \(x = (x_1, \ldots, x_n) \in \mathbb{C}_s^{n,\infty} \) such that

\[
\left\{ \begin{array}{l} x_2 = y_1 - \theta x_1 \\ \vdots \\ x_n = y_{n-1} - \theta x_n \\
\tau(x_1) - (-\theta)^n x_1 = \sum_{i=1}^{n} (-\theta)^{n-i} y_i
\end{array} \right.
\]

We need to show that \(x \) is in \(D_n(r_{k,i}, i = 1, \ldots, n) \). Let begin by showing \(v_\infty(x_1) > r_{k,1} \). If \(v_\infty(x_1) = \frac{n\theta}{q-1} \), then \(v_\infty(x_1) > r_{0,1} > r_{k,1} \). So we may suppose that \(v_\infty(x_1) \neq \frac{n\theta}{q-1} \). Then

\[
v_\infty(\tau(x_1) - (-\theta)^n x_1) = \min(qv_\infty(x_1) ; v_\infty(x_1) - n) = \min(qv_\infty(x_1) ; v_\infty(x_1) - n).
\]

In particular,

\[
qv_\infty(x_1) \geq v_\infty \left(\sum_{i=1}^{n} (-\theta)^{n-i} y_i \right) \geq \min_{1 \leq i \leq n} (v_\infty(y_i) - n + i) > \min_{1 \leq i \leq n} (r_{k+1,i} - n + i),
\]

where the last inequality comes from the fact that \(y \) is in \(D_n(r_{k+1,i}, i = 1, \ldots, n) \). But, by the inequality (4.2), we have

\[
r_{k+1,n} \leq r_{k+1,n-1} - 1 \leq \cdots \leq r_{k+1,1} - n + 1.
\]

Hence we get

\[
qv_\infty(x_1) > r_{k+1,n} = qr_{k,1},
\]

as desired.
Finally, we show that $v_\infty(x_i) > r_{k,i}$ for all $2 \leq i \leq n$. Since $y \in D_n(r_{k+1,i}, i = 1, \ldots, n)$, we have

$$v_\infty(x_2) \geq \min(v_\infty(y_1) ; v_\infty(x_1) - 1) > \min(r_{k+1,1} ; r_{k,1} - 1) = r_{k,2},$$

where the last equality comes from the definition of r_{k+1} and from inequality (4.2). On the same way, we obtain the others needed inequalities.

Lemma 4.3. The application $\tau - 1 : C_{s,\infty} \to C_{s,\infty}$ is surjective.

Proof. Since $\sum_{i \geq 0} \tau^i(x)$ converges for $x \in C_{s,\infty}$ such that $v_\infty(x) > 0$, we have

$$\{x \in C_{s,\infty} | v_\infty(x) > 0\} \subseteq \operatorname{Im}(\tau - 1).$$

Thus, since $C_{s,\infty}(t_1, \ldots, t_s)$ is dense in $C_{s,\infty}$, it suffices to show that $C_{s,\infty}(t_1, \ldots, t_s) \subseteq (\tau - 1)(C_{s,\infty})$. Observe that $(\tau - 1)(C_{s,\infty}[t_1, \ldots, t_s]) = C_{s,\infty}[t_1, \ldots, t_s]$. Now let $f \in C_{s,\infty}(t_1, t_2)$. We can write

$$f = \frac{g}{h} \quad \text{with} \quad g, h \in C_{s,\infty}[t_1, \ldots, t_s] \quad \text{and} \quad v_\infty(h) = 0.$$

Now write $h = \delta - z$ with $\delta \in \mathbb{F}_q[t_1, \ldots, t_s] \setminus \{0\}$ and $z \in C_{s,\infty}[t_1, \ldots, t_s]$ such that $v_\infty(z) > 0$. Then, in $C_{s,\infty}$, we have

$$f = \frac{g}{h} = \sum_{k \geq 0} \frac{g^k}{\delta^{k+1}}.$$

On the one hand, since the series converges, there exists $k_0 \in \mathbb{N}$ such that

$$v_\infty\left(\sum_{k \geq k_0} \frac{g^k}{\delta^{k+1}}\right) > 0.$$

In particular, this sum is in the image of $\tau - 1$. On the other hand, we have

$$\sum_{k = 0}^{k_0 - 1} \frac{g^k}{\delta^{k+1}} \in \frac{1}{\delta^{k_0}}C_{s,\infty}[t_1, \ldots, t_s].$$

But we can write $\frac{1}{\delta} = \frac{\beta}{\gamma}$ with $\beta \in \mathbb{F}_q[t_1, \ldots, t_s]$ and $\gamma \in \mathbb{F}_q[t_1, \ldots, t_s] \setminus \{0\}$. Hence

$$\sum_{k = 0}^{k_0 - 1} \frac{g^k}{\delta^{k+1}} \in \frac{1}{\gamma}C_{s,\infty}[t_1, \ldots, t_s] \subseteq (\tau - 1)\left(\frac{1}{\gamma}C_{s,\infty}[t_1, \ldots, t_s]\right).$$

Thus, by linearity of $\tau - 1$, we get $f \in (\tau - 1)(C_{s,\infty})$.

Denote by Λ_n the kernel of the morphism of R_s-modules

$$\exp_{C_{s,\infty}} : \operatorname{Lie}(C_{s,\infty}) \to C_{s,\infty}.$$

Proposition 4.4. The R_s-module Λ_n is free of rank 1 and is generated by a vector with $\tilde{\pi}^n$ as last coordinate.

Proof. See [2, section 2.5].
4.1.2 Characterization of Anderson modules isomorphic to $C^\otimes n$

We characterize Anderson modules which are isomorphic, in a sense described below, to the n^{th} tensor power of the Carlitz module. We obtain an n-dimensional analogue of proposition 6.2 of [4].

Definition. Two Anderson modules E and E' are isomorphic if there exists a matrix $P \in \text{GL}_n(C_{s,\infty})$ such that $E \theta \overset{P}{=} P E' \theta$ in $M_n(C_{s,\infty})\{\tau\}$.

Let $\alpha \in R_s$. Denote by E_α the Anderson module defined at the beginning of section 4.1. Note that E_α and $C^\otimes n$ are isomorphic if and only if there exists a matrix $P \in \text{GL}_n(C_{s,\infty})$ such that
\[
\partial_\theta P = P \partial_\theta \quad \text{and} \quad N_1(\tau(P)) = P N_\alpha.
\]

(4.3)

Let us set $U_s := \{ \alpha \in C_{s,\infty}^* | \exists \beta \in C_{\infty}^*, \gamma \in \mathbb{F}_q(t_1, \ldots, t_s), v_\infty \left(\alpha - \beta \frac{\tau(\gamma)}{\gamma} \right) > v_\infty(\alpha) \}$.

Lemma 4.5. The map which associates to any element x of $C_{s,\infty}^*$ the element $\frac{\tau(x)}{x}$ of $C_{s,\infty}^*$ induces a short exact sequence of multiplicative groups
\[
1 \rightarrow k_s^* \rightarrow C_{s,\infty}^* \rightarrow U_s \rightarrow 1.
\]

Proof. The kernel comes from lemma 2.2.

Let $\alpha \in C_{s,\infty}^*$ such that there exists $x \in C_{s,\infty}^*$ verifying $\tau(x) = \alpha x$. Since C_{∞} is an algebraically closed field, one can suppose that $v_\infty(\alpha) = 0$. We write $x = \gamma + m$ with $\gamma \in \mathbb{F}_q(t_1, \ldots, t_s)$ and $m \in C_{s,\infty}^*$ such that $v_\infty(m) > 0$. Then, we have $v_\infty(\tau(\gamma) - \alpha \gamma) > 0$, i.e. $\alpha \in U_s$.

Reciprocally, let $\alpha \in U_s$ and $\beta \in C_{\infty}^*, \gamma \in \mathbb{F}_q(t_1, \ldots, t_s)$ such that
\[
v_\infty \left(\alpha - \beta \frac{\tau(\gamma)}{\gamma} \right) > v_\infty(\alpha).
\]

We set $\delta := \beta \frac{\tau(\gamma)}{\gamma}$. Observe that $\prod_{i \geq 0} \frac{\tau^i(\delta)}{\tau^i(\alpha)}$ converges in $C_{s,\infty}^*$. Now, since τ is k_s-linear, there exists $\varepsilon \in C_{\infty}^* \mathbb{F}_q(t_1, \ldots, t_s)$ such that $\tau(\varepsilon) = \delta$. Then, we set
\[
\omega_\alpha := \varepsilon \prod_{i \geq 0} \frac{\tau^i(\delta)}{\tau^i(\alpha)} \in C_{s,\infty}^*.
\]

(4.4)

Thus, we have $\tau(\omega_\alpha) = \alpha \omega_\alpha$. Observe that ω_α is defined up to a scalar factor in \mathbb{F}_q^* whereas it depends a priori on the choices of β, γ and ε.

We are now able to characterize Anderson modules which are isomorphic to $C^\otimes n$.

Proposition 4.6. The following assertion are equivalent:

1. E_α is isomorphic to $C^\otimes n$,
2. $\alpha \in U_s$,
3. \exp_α is surjective,
4. $\ker \exp_\alpha$ is a free R_s-module of rank 1,
where \exp_α is the exponential map associated with E_α by proposition 2.3.

Proof. Setting $P = \omega_n I_n$ where ω_n is defined by (4.4), we see that (2) implies (1).

We prove that (1) implies (3). Let $P \in \text{GL}_n(C_{s,\infty})$ such that $C_{\theta}^{\otimes n}P = PE_\theta$. Using equalities (4.3), we check that

$$P^{-1}\exp_{C_{\theta}^{\otimes n}} P \partial_\theta = E_\theta P^{-1}\exp_{C_{\theta}^{\otimes n}} P.$$

Thus, by unicity in proposition 2.3, we get $P^{-1}\exp_{C_{\theta}^{\otimes n}} P = \exp_\alpha$. In particular, by proposition 4.1, we deduce that \exp_α is surjective.

Next, we prove that (3) implies (2). We can assume that $v_\infty(\alpha) = 0$. By lemma 4.5, it suffices to show that $\ker(\alpha \tau - 1)$ is not trivial. Let us suppose the converse. As at the beginning of the proof of lemma 4.2, we easily show that the surjectivity of \exp_α on $C_{s,\infty}$ implies that of $\alpha \tau - 1$ on $C_{s,\infty}$. Thus, $\alpha \tau - 1$ is an automorphism of the k_s-vector space $C_{s,\infty}$. We verify that $v_\infty(f) = 0$ if and only if $v_\infty(\alpha \tau(f) - f) = 0$. Let $\overline{\eta} \in \mathbb{F}_q(t_1, \ldots, t_s)$ such that $v_\infty(\alpha - \overline{\eta}) > 0$. Then, $\overline{\eta} \tau - 1$ is an automorphism of the k_s-vector space $\mathbb{F}_q(t_1, \ldots, t_s)$, which is obviously false.

It is easy to show that (1) implies (4). Indeed, since E_α is isomorphic to $C_{\otimes n}$, we have

$$\ker \exp_\alpha = \frac{1}{\omega_n} \ker \exp_{C_{\otimes n}}.$$

Thus, by proposition 4.4, $\ker \exp_\alpha$ is a free R_s-module of rank 1 generated by a vector with $\frac{\overline{\eta}^n}{\omega_n}$ as last coordinate.

Finally, we prove that (4) implies (2). Let f be a non zero element of $\ker \exp_\alpha$ such that $\partial_\theta^n f \notin \ker \exp_\alpha$. Thus, the vector $g := \exp_\alpha(\partial_\theta^n f) \in C_{s,\infty}^{\otimes n}$ is non zero and $E_\theta(g) = 0$. Denote by g_1, \ldots, g_n its coordinates. We have

$$\begin{cases}
\theta g_1 + g_2 = 0 \\
\vdots \\
\theta g_{n-1} + g_n = 0 \\
\theta g_n + \alpha \tau(g_1) = 0
\end{cases}$$

As $g \neq 0$, we deduce that $g_i \neq 0$ for all $1 \leq i \leq n$. Summing, we obtain $\alpha \tau(g_1) - (-\theta)^n g_1 = 0$. Thus

$$\alpha \tau(-\theta)^n g_1 = (-\theta)^n g_1.$$

We conclude, by lemma 4.5, that $\alpha \in \mathcal{U}_s$. \hfill \Box

Example. Looking at the degree in t_1, we easily show that $t_1 \notin \mathcal{U}_s$. So E_{t_1} is not isomorphic to $C_{\otimes n}$ and \exp_{t_1} is not surjective.

4.2 Pellarin’s L-functions

Let $\alpha \in R_s \setminus \{0\}$ and E_α be the Anderson module defined at the beginning of section 4.1. By theorem 2.7, we have a class formula for

$$L(E_\alpha/R_s) := \prod_{P \in \text{prime}} \frac{[\text{Lie}(E_\alpha)(R_s/PR_s)]_{R_s}}{[E_\alpha(R_s/PR_s)]_{R_s}}.$$

We compute the R_s-module structure of $\text{Lie}(E_\alpha)(R_s/PR_s)$ and $E_\alpha(R_s/PR_s)$. Then, we show that we recover special values of Pellarin’s L-functions if we take $\alpha = (t_1 - \theta) \cdots (t_s - \theta)$.
4.2.1 Fitting ideal of \(\text{Lie}(E_\alpha)(R_\alpha/PR_\alpha) \)

Let us recall some facts about hyperdifferential operators. For more details, we refer the reader to [6].

Let \(j \geq 0 \) be an integer. The \(j^{\text{th}} \) hyperdifferential operator \(D_j \) is the \(k_\alpha \)-linear endomorphism of \(R_\alpha \) given by \(D_j(\partial^k) = \binom{j}{k} \theta^{k-j} \) for \(k \geq 0 \). For any \(f, g \in R_\alpha \), we have the Leibnitz rule

\[
D_j(fg) = \sum_{k=0}^j D_k(f)D_{j-k}(g).
\]

Lemma 4.7. For any \(a \in R_\alpha \), we have

\[
\theta(a) \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} D_{n-1}(a) \\ \vdots \\ D_1(a) \\ a \end{pmatrix}.
\]

Proof. By linearity, it suffices to prove the equality for \(a = \theta^k \), \(k \in \mathbb{N} \). The action of \(\partial(\theta^k) \) is the left multiplication by

\[
\begin{pmatrix} \theta & 1 & \cdots & \cdots \\ \vdots & \ddots & \ddots & \vdots \\ \cdots & \cdots & 1 & \theta \\ 0 & \cdots & \cdots & 0 \end{pmatrix}^k = \theta I_n + \sum_{i=0}^k \binom{k}{i} \theta^{k-i} \begin{pmatrix} 0 & 1 & \cdots & \cdots \\ \vdots & \ddots & \ddots & \vdots \\ \cdots & \cdots & 1 & 0 \end{pmatrix}^i,
\]

hence the result comes from the definition of hyperdifferential operators.

Lemma 4.8. Let \(P \) be a prime of \(A \) and \(m \) a positive integer. Then \(\partial(P^m) \) is zero modulo \(P \) if and only if \(m \) is greater than or equal to \(n \).

Proof. By the previous lemma, it suffices to show that for any \(k \geq 0 \), the congruence \(D_k(P^m) = 0 \) mod \(P \) holds if and only if \(m \geq k + 1 \). The case \(k = 0 \) being obvious, let us suppose the result for an integer \(k \). By the Leibnitz rule, we have

\[
D_{k+1}(P^m) = \sum_{i+j=k+1} D_i(P^{m-1})D_j(P).
\]

which is zero modulo \(P \) if \(m \geq k + 2 \). Reciprocally, observe that

\[
D_{k+1}(P^{k+1}) = P D_{k+1}(P^k) + D_1(P)D_k(P^k) + D_2(P)D_{k-1}(P^k) + \cdots + D_{k+1}(P)P^k
\]

which is non zero modulo \(P \) by hypothesis.

Thanks to this lemma, we can compute the first Fitting ideal.

Proposition 4.9. Let \(P \) be a prime of \(A \). The \(R_\alpha \)-module \(\text{Lie}(E_\alpha)(R_\alpha/PR_\alpha) \) is isomorphic to \(R_\alpha/P\alpha R_\alpha \) and is generated by the residue class of \(\binom{1}{0}, \ldots, \binom{1}{0} \).

18
Proof. By definition, \(\text{Lie}(E_\alpha)(R_s/PR_s) \) is the \(k_s \)-vector space \((R_s/PR_s)^n \) equipped with the \(R_s \)-module structure given by \(\partial \). This \(R_s \)-module is finitely generated and, since \(\partial(P^n) = P^n I_n \) by lemma 2.4, the polynomial \(P^n \) annihilates it. Since \(R_s \) is principal, by the structure theorem, there exists integers \(e_1 \leq \cdots \leq e_m \) such that

\[
\text{Lie}(E_\alpha)(R_s/PR_s) \cong \frac{R_s}{P^{e_1}R_s} \times \cdots \times \frac{R_s}{P^{e_m}R_s}.
\]

Since \(\text{Lie}(E_\alpha)(R_s/PR_s) \) is a \(k_s \)-vector space of dimension \(n \deg P \), we have \(e_1 + \cdots + e_m = n \).

But, by the previous lemma, the residue class of \(f(0, \ldots, 0, 1) \) is not annihilated by \(P^{n-1} \), hence \(e_m \geq n \). Thus, \(\text{Lie}(E_\alpha)(R_s/PR_s) \) is cyclic and generated by the residue class of this vector. \(\square \)

4.2.2 Fitting ideal of \(E_\alpha(R_s/PR_s) \)

Let \(P \) be a prime of \(A \) and denote its degree by \(d \). We consider \(R := R_s/PR_s \) and \(E_\alpha(R) \) the \(R_s \)-module \(R^n \) where the action of \(R_s \) is given by \(\phi \), as defined at the beginning of section 4.1.

For \(i = 1, \ldots, n \), we denote by \(e_i : \mathbb{C}_s, \infty \to \mathbb{C}_s, \infty \) the projection on the \(i \)-th coordinate. By analogy with [2], we define the \(R_s \)-module

\[
W_n(R) := \{ w \in R((t^{-1}))/R[t] \mid \alpha \tau(w) = (t-\theta)^n w \mod R[t] \},
\]

where \(\tau(w) = \sum \tau(r_i)t^i \) if \(w = \sum r_it^i \in R((t^{-1})) \).

Proposition 4.10. The map

\[
\psi : \quad E_\alpha(R) \longrightarrow \frac{R((t^{-1}))/R[t]}{\theta} \quad c \quad \mapsto \quad -\sum_{i=1}^\infty e_i \phi_{\theta^{i-1}}(c) t^{-i}
\]

induces an isomorphism of \(R_s \)-modules between \(E_\alpha(R) \) and \(W_n(R) \).

Proof. See proposition 1.5.1 of [2]. \(\square \)

Observe that for any \(c \in E_\alpha(R) \), we have \(\psi(\phi_\theta(c)) = t\phi_\theta(c) \mod R[t] \). Moreover, since it is a \(k_s \)-vector space of dimension \(nd \), \(W_n(R) \) is a finitely generated and torsion \(k_s [t] \)-module.

For \(w \in W_n(R) \), applying \(d-1 \) times \(\alpha \tau \) to the relation \(\alpha \tau(w) = (t-\theta)^n w \), we get

\[
\alpha \tau(\alpha) \cdots \alpha \tau^{d-1}(\alpha) \tau^d(w) = \prod_{i=0}^{d-1} \left(t - \theta^i \right)^n w.
\]

But \(\tau^d(w) = w \in W_n(R) \) and \(\prod_{i=0}^{d-1} (t-\theta^i) = P(t) \mod R[t] \) where \(P(t) \) denotes the polynomial in \(t \) obtained substituting \(t \) form \(\theta \) in \(P \). Thus we obtain

\[
P^n(t) - \alpha \tau(\alpha) \cdots \alpha \tau^{d-1}(\alpha) = 0 \text{ in } W_n(R).
\]

Since we have the isomorphism

\[
\frac{R_s}{PR_s} \cong \frac{A}{PA} \otimes_{k_s} k_s,
\]

for any \(x \in R_s \), there exists a unique \(y \in k_s \) such that \(x \tau(x) \cdots \tau^{d-1}(x) = y \mod PR_s \). We denote by \(\rho_\alpha(P) \) the element of \(k_s \) such that \(\rho_\alpha(P) = \alpha \tau(\alpha) \cdots \alpha \tau^{d-1}(\alpha) \mod PR_s \). Note that, since \(P \) is prime, \(\rho_\alpha(P) = 0 \mod P \) if and only if \(P \) divides \(\alpha \) in \(R_s \). Then, by (4.5), we deduce that \(W_n(R) \) is annihilated by \(P^n(t) - \rho_\alpha(P) \), or equivalently

\[
E_\alpha(R) \subseteq \ker \phi_{P^n - \rho_\alpha(P)} = \{ x \in R^n \mid \phi_{P^n - \rho_\alpha(P)}(x) = 0 \}.
\]
Lemma 4.11. For any \(a \in k_s[t]\) prime to \(P(t) := P|_{t=1}\), the \(k_s\)-vector space \(W_n(R)[a]\) of \(a\)-torsion points of \(W_n(R)\) is of dimension at most \(\deg a\).

Proof. By definition, we have

\[
W_n(R)[a] = \left\{ w \in \frac{1}{a} R[t]/R[t] \mid \alpha \tau(w) = (t - \theta)^n w \mod R[t] \right\} \subseteq R((t^{-1}))/R[t].
\]

Let \(w \in W_n(R)[a]\). Since the \(t^i/a\) for \(i \in \{0, \ldots, \deg a - 1\}\) form an \(R\)-basis of \(\frac{1}{a} R[t]/R[t]\), we can write

\[
w = \sum_{i=0}^{\deg a - 1} \lambda_i \frac{t^i}{a},
\]

where the \(\lambda_i\) are in \(R\). Using the binomial formula and writing \(t^j/a\) for \(j \geq \deg a\) in the above basis, the functional equation verified by \(w\) becomes

\[
\sum_{i=0}^{\deg a - 1} \alpha \tau(\lambda_i) \frac{t^i}{a} = \sum_{i=0}^{\deg a - 1} \sum_{j=0}^{\deg a - 1} b_{i,j} \lambda_j \frac{t^i}{a},
\]

where the \(b_{i,j}\) are in \(R\). Identifying the two sides, we obtain \(\tau(\Lambda) = BA\) where \(\Lambda\) is the vector \(t(\lambda_0, \ldots, \lambda_{\deg a - 1})\) and \(B\) is the matrix of \(M_{\deg a}(R)\) with coefficients \(b_{i,j}/a\).

But the \(k_s\)-vector space \(V := \{ X \in R^{|\deg a|} \mid \tau(X) = BX \}\) is of dimension at most \(\deg a\). Indeed, observe that, if \(v_1, \ldots, v_m\) are vectors of \(R^{|\deg a|}\) such that \(\tau(v_i) = Bv_i\) for all \(i \in \{1, \ldots, m\}\), linearly independent over \(R\), there are also linearly independent over \(R^t = k_s\) (by induction on \(m\), see [12, lemma 1.7]). \(\square\)

Proposition 4.12. Let \(P\) be a prime of \(A\). We have the isomorphism of \(R_s\)-modules

\[
E_\alpha(R) \simeq \frac{R_s}{(P^n - \rho_\alpha(P))R_s}.
\]

Proof. Observe that if \(P\) divides \(\alpha\), we have \(\rho_\alpha(P) = 0\) and the isomorphism of \(R_s\)-modules \(\text{Lie}(E_\alpha)(R) \simeq E_\alpha(R)\). Then, the result is the same as in proposition 4.9.

Hence, let us suppose that \(\alpha\) and \(P\) are coprime. The \(k_s\)-vector space \(E_\alpha(R)\) is of dimension \(nd\). We deduce from lemma 4.11 that \(E_\alpha(R)\) is a cyclic \(R_s\)-module, i.e.

\[
E_\alpha(R) \simeq \frac{R_s}{fR_s},
\]

for some monic element \(f\) of \(R_s\) of degree \(nd\). On the other hand, by the inclusion (4.6), \(E_\alpha(R)\) is annihilated by \(P^n - \rho_\alpha(P)\) thus \(f\) divides \(P^n - \rho_\alpha(P)\). Since these two polynomials are monic and have the same degree, they are equal. \(\square\)

4.2.3 \(L\)-values

Let \(a\) be a monic polynomial of \(A\) and \(a = P_1^{e_1} \cdots P_r^{e_r}\) be its decomposition into a product of primes. Then, we define

\[
\rho_\alpha(a) := \prod_{i=1}^{r} \rho_\alpha(P_i)^{e_i}.
\]
By propositions 4.9 and 4.12, we get

\[
L(E_\alpha/R_s) = \prod_{P \in A \text{ prime}} \frac{[\text{Lie}(E_\alpha)(R_s/PR_s)]_{R_s}}{[E_\alpha(R_s/PR_s)]_{R_s}} = \prod_{P \in A \text{ prime}} \frac{P^n}{P^n - \rho_\alpha(P)} = \sum_{a \in A_+} \frac{\rho_\alpha(a)}{a^n} \in K_{s,\infty}.
\]

As in [4, section 4.1], observe that for any prime \(P\) of \(A\), \(\rho_\alpha(P)\) is the resultant of \(P\) and \(\alpha\) seen as polynomials in \(\theta\). In particular, if \(\alpha = (t_1 - \theta) \cdots (t_s - \theta)\), we obtain \(\rho_\alpha(P) = P(t_1) \cdots P(t_s)\).

Thus, by theorem 2.7, we get a class formula for \(L\)-values introduced in [9]:

\[
L(\chi_1, \cdots \chi_t, n) = \sum_{a \in A_+} \frac{\chi_t(a) \cdots \chi_t(a)}{a^n} = [\text{Lie}(E_\alpha)(R_s) : \exp_\theta^1(E_\alpha(R_s))]_{R_s} [H(E_\alpha/R_s)]_{R_s},
\]

where \(\chi_t : A \rightarrow F_q[t_1, \ldots, t_s]\) are the ring homomorphisms defined respectively by \(\chi_t(\theta) = t_i\).

4.3 Goss abelian \(L\)-series

This section is inspired by [5].

Let \(a \in A_+\) be squarefree and \(L\) be the cyclotomic field associated with \(a\), i.e. the finite extension of \(K\) generated by the \(a\)-torsion of the Carlitz module. We denote by \(\Delta_a\) the Galois group of this extension, it is isomorphic to \((A/aA)^\times\).

Note that \(A[\Delta_a] = \prod F_i[\theta]\) for some finite extensions \(F_i\) of \(F_q\). In particular, \(A[\Delta_a]\) is a principal ideal domain and Fitting ideals are defined as usual. If \(M\) is a finite \(A[\Delta_a]\)-module, we denote by \([M]_{A[\Delta_a]}\) the unique generator \(f\) of \(\text{Fitt}_{A[\Delta_a]} M\) such that each component \(f_i \in F_i[\theta]\) of \(f\) is monic.

We denote by \(\hat{\Delta}_a\) the group of characters of \(\Delta_a\), i.e. \(\hat{\Delta}_a = \text{Hom}(\Delta_a, \mathbb{F}_q^\times)\). For \(\chi \in \hat{\Delta}_a\), we denote by \(F_q(\chi)\) the finite extension of \(F_q\) generated by the values of \(\chi\) and we set \(e_\chi := \frac{1}{\# \Delta_a} \sum_{\sigma \in \Delta_a} \chi^{-1}(\sigma) \sigma \in F_q(\chi)[\Delta_a]\).

Then \(e_\chi\) is idempotent and \(\sigma e_\chi = \chi(\sigma) e_\chi\) for every \(\sigma \in \Delta_a\).

Let \(F\) be the finite extension of \(F_q\) generated by the values of all characters, i.e. \(F\) is the compositum of all \(F_q(\chi)\) for \(\chi \in \hat{\Delta}_a\). If \(M\) is an \(A[\Delta_a]\)-module, we have the decomposition into \(\chi\)-components

\[
F \otimes_{\mathbb{F}_q} M = \bigoplus_{\chi \in \hat{\Delta}_a} e_\chi \left(F \otimes_{\mathbb{F}_q} M \right).
\]

Let \(V\) be a free \(K_\infty[\Delta_a]\)-module of rank \(n\). A sub-\(A[\Delta_a]\)-module \(M\) of \(V\) is a lattice of \(V\) if \(M\) is free of rank one and \(K_\infty[\Delta_a] \cdot M = V\). Let \(M\) be a lattice of \(V\) and \(\chi \in \hat{\Delta}_a\). Then \(M(\chi) := e_\chi \left(F_q(\chi) \otimes_{\mathbb{F}_q} M \right)\) is a free \(A(\chi)\)-module of rank \(n\), discrete in \(V(\chi) := e_\chi \left(F_q(\chi) \otimes_{\mathbb{F}_q} V \right)\), where \(A(\chi) := F_q(\chi) \otimes_{\mathbb{F}_q} A\). Now let \(M_1\) and \(M_2\) be two lattices of \(V\). For each \(\chi \in \hat{\Delta}_a\), there exists \(\sigma_\chi \in \text{GL}(V(\chi))\) such that \(\sigma_\chi(M_1(\chi)) = M_2(\chi)\). Then, we define \([M_1(\chi) : M_2(\chi)]_{A(\chi)}\) to be the unique monic representative of \(\det \sigma_\chi\) in \(K_\infty(\chi) := F_q(\chi) \otimes_{\mathbb{F}_q} K_\infty\). Finally, we set

\[
[M_1 : M_2]_{A[\Delta_a]} := \sum_{\chi \in \hat{\Delta}_a} [M_1(\chi) : M_2(\chi)]_{A(\chi)} e_\chi \in K_\infty[\Delta_a]^\times.
\]
4.3.1 Gauss-Thakur sums

We review some basic facts on Gauss-Thakur sums, introduced in [11] and generalized in [3].
We begin with the case of only one prime. Let \(P \) be a prime of \(A \) of degree \(d \) and \(\zeta \in \mathbb{F}_q \) such that \(P(\zeta) = 0 \). We denote by \(\lambda_P \) the \(P \)-torsion of the Carlitz module and let \(\lambda_P \) be a non zero element of \(\Lambda_P \). We consider the cyclotomic extension \(K_P := K(\Lambda_P) = K(\lambda_P) \) and we denote its Galois group by \(\Delta_P \). We have \(\Delta_P \cong (A/PA)^\times \). More precisely, if \(b \in (A/PA)^\times \), the corresponding element \(\sigma_b \in \Delta_P \) is uniquely determined by \(\sigma_b(\lambda_P) = C_b(\lambda_P) \). We denote by \(\mathcal{O}_{K_P} \) the integral closure of \(A \) in \(K_P \). We have \(\mathcal{O}_{K_P} = A[\lambda_P] \).

We define the Teichmüller character

\[
\omega_P: \Delta_P \to \mathbb{F}_q^\times, \quad \sigma_b \mapsto b(\zeta_P),
\]

where \(\sigma_b \) is the unique element of \(\Delta_P \) such that \(\sigma_b(\lambda_P) = C_b(\lambda_P) \). Let \(\chi \in \hat{\Delta}_P \). Since the Teichmüller character generates \(\hat{\Delta}_P \), there exists \(j \in \{0, \ldots, q^d - 2\} \) such that \(\chi = \omega_P^j \). We expand \(j = j_0 + j_1 q + \cdots + j_{d-1} q^{d-1} \) in base \(q \) \((j_0, \ldots, j_{d-1} \in \{0, \ldots, q - 1\})\). Then, the Gauss-Thakur sum (see [11]) associated with \(\chi \) is defined as

\[
g(\chi) := \prod_{i=0}^{d-1} \left(-\sum_{\delta \in \Delta_P} \omega_P^{-\delta}(\delta(\lambda_P))^{j_i} \right) \in \mathbb{F}_q(\chi) \otimes_{\mathbb{F}_q} \mathcal{O}_{K_P}.
\]

We compute the action of \(\tau = 1 \otimes \tau \) on these Gauss-Thakur sums (see [11, proof of Theorem II]). Let \(1 \leq j \leq d - 1 \). Since by the Carlitz action \(\sigma_b \sigma_\delta(\lambda_P) = \theta \sigma_b(\lambda_P) + \tau(\sigma_b(\lambda_P)) \), we have

\[
\tau \left(g(\omega_P^{j_i}) \right) = -\sum_{\sigma_b \in \Delta_P} \omega_P^{-\delta}(\sigma_b)(\sigma_b \sigma_\delta(\lambda_P) - \theta \sigma_b(\lambda_P))
\]

Then, by substitution, we get

\[
\tau \left(g(\omega_P^{j_i}) \right) = \left(\zeta_P^{-q^j} - \theta \right) g(\omega_P^{j_i}). \tag{4.7}
\]

Now, we return to the general case. Since \(a \) is squarefree, we can write \(a = P_1 \cdots P_r \) with \(P_1, \ldots, P_r \) distinct primes of respective degrees \(d_1, \ldots, d_r \). Since \(\Delta_a \cong \hat{\Delta}_{P_1} \times \cdots \times \hat{\Delta}_{P_r} \), for every character \(\chi \in \hat{\Delta}_a \), we have

\[
\chi = \omega_{P_1}^{N_{P_1}} \cdots \omega_{P_r}^{N_{P_r}}, \tag{4.8}
\]

for some integers \(0 \leq N_i \leq q^{d_i} - 2 \) and where \(\omega_{P_i} \) is the Teichmüller character associated with \(P_i \). The product \(f_\chi := \prod_{N_i \neq 0} P_i \) is the conductor of \(\chi \). Then, the Gauss-Thakur sum (see [3, section 2.3]) associated with \(\chi \) is defined as

\[
g(\chi) := \prod_{i=1}^{r} \prod_{j=0}^{d_i-1} g(\omega_{P_i}^{j})^{N_{P_i}},
\]

or equivalently

\[
g(\chi) = \prod_{i=1}^{r} \prod_{j=0}^{d_i-1} g(\omega_{P_i}^{j})^{N_{P_i}},
\]

22
where the $N_{i,j}$ are the q-adic digits of N_i. By equality (4.7), we obtain

$$
\tau(g(\chi)) = \prod_{i=1}^{r} \prod_{j=0}^{d_i-1} (\zeta_{\mathcal{P}_i}^{N_{i,j}} - \theta)^{N_{i,j}} g(\chi).
$$

(4.9)

Lemma 4.13. The ring \mathcal{O}_L is a free $A[\Delta_a]$-module of rank one generated by $\eta_0 := \sum_{\chi \in \Delta_a} g(\chi)$.

Proof. See lemma 16 of [3].

4.3.2 The Frobenius action on the χ-components

Recall that L is the extension of K generated by the a-torsion of the Carlitz module. Let $L_\infty := L \otimes_K K_\infty$ on which τ acts diagonally and Δ_a acts on L. As in section 2.2, we have a morphism of $A[\Delta_a]$-modules

$$
\exp_{C^{\otimes n}} : \text{Lie}(C^{\otimes n})(L_\infty) \longrightarrow C^{\otimes n}(L_\infty).
$$

Let $\chi \in \widehat{\Delta}_a$. We get an induced map

$$
\exp_{C^{\otimes n}} : \epsilon(\text{Lie}(C^{\otimes n})(\mathbb{F}_q(\chi) \otimes_{\mathbb{F}_q} L_\infty)) \longrightarrow C^{\otimes n}(\epsilon(\mathbb{F}_q(\chi) \otimes_{\mathbb{F}_q} L_\infty)),
$$

where the action of τ on $\mathbb{F}_q(\chi) \otimes_{\mathbb{F}_q} L_\infty$ is on the second component. But, by lemma 4.13, we have

$$
\epsilon(\mathbb{F}_q(\chi) \otimes_{\mathbb{F}_q} L_\infty) = g(\chi)K_\infty(\chi),
$$

where $K_\infty(\chi) := \mathbb{F}_q(\chi) \otimes_{\mathbb{F}_q} K_\infty$.

We have the obvious isomorphism of modules over $A(\chi) := \mathbb{F}_q(\chi) \otimes_{\mathbb{F}_q} A$

$$
g(\chi)K_\infty(\chi) \sim \sim K_\infty(\chi),
$$

where the action on the right hand side is denoted by $\tilde{\tau}$ and given by $\tilde{\tau}(f) = \alpha(\chi)(1 \otimes \tau)(f)$ for any $f \in K_\infty(\chi)$, where $\alpha(\chi)$ is defined by equality 4.9. In particular, this isomorphism maps $C^{\otimes n}_q$ into $\partial \theta + N_i \tilde{\tau} = \partial \theta + N_i(\alpha(\chi))\tau$ with notation of section 4.1 and $\exp_{C^{\otimes n}}$ into $\exp_{\alpha(\chi)}$. Thus, by lemma 4.13, we have the isomorphism of $A(\chi)$-modules

$$
\epsilon(\mathbb{F}_q(\chi) \otimes_{\mathbb{F}_q} H(C^{\otimes n}/\mathcal{O}_L)) \cong \frac{E_{\alpha(\chi)}(K_\infty(\chi))}{\exp_{\alpha(\chi)}(\text{Lie}(E_{\alpha(\chi)}(K_\infty(\chi)))) + E_{\alpha(\chi)}(A(\chi))}.
$$

We denote the right hand side by $H(E_{\alpha(\chi)}/A(\chi))$. Note that we have also

$$
\epsilon(\mathbb{F}_q(\chi) \otimes_{\mathbb{F}_q} \exp_{C^{\otimes n}}(C^{\otimes n}(\mathcal{O}_L)))) = \exp_{\alpha(\chi)}(E_{\alpha(\chi)}(A(\chi))).
$$

4.3.3 L-values

Let $\chi \in \widehat{\Delta}_a$ and denote its conductor by f_χ. Recall that the special value at $n \geq 1$ of Goss L-series (see [8, chapter 8]) associated with χ is defined by

$$
L(n, \chi) := \sum_{b \in A_+} \frac{\chi(b^n)}{b^n} \in K_\infty(\chi),
$$

23
where the sum runs over the elements \(b \in A_+ \) relatively prime to \(f_\chi \). If \(b \in A_+ \) and \(f_\chi \) are not coprime, we set \(\chi(\sigma_b) = 0 \). Then, define the Goss abelian \(L \)-series

\[
L(n, \Delta_a) := \sum_{\chi \in \hat{\Delta}_a} L(n, \chi) e_\chi \in K_\infty[\Delta_a]^\times.
\]

Lemma 4.14. The infinite product

\[
\prod_{P \in A \text{ prime}} \frac{[\text{Lie}(C^{\otimes n})(\mathcal{O}_L/P\mathcal{O}_L)]_{A[\Delta_a]}}{[C^{\otimes n}(\mathcal{O}_L/P\mathcal{O}_L)]_{A[\Delta_a]}}
\]

converges in \(K_\infty[\Delta_a] \) to \(L(n, \Delta_a) \).

Proof. On the one hand, for all \(\chi \in \hat{\Delta}_a \), we have

\[
L(n, \chi) = \prod_{P \in A \text{ prime}} \left(1 - \frac{\chi(\sigma_P)}{P^n}\right)^{-1},
\]

where \(\chi(\sigma_P) = 0 \) if \(P \) divides \(f_\chi \). On the other hand, let \(\chi \in \hat{\Delta}_a \). We write \(\chi = \omega_1^{N_1} \cdots \omega_r^{N_r} \) as in equality (4.8) and denote by \(N_{i,j} \) the \(q \)-adic digits of \(N_i \). Then, as in section 4.2.2, we can prove that

\[
[E_\alpha(\chi)(A(\chi)/PA(\chi))]_{A(\chi)} = P^n - \prod_{i=1}^r \prod_{j=0}^{d_i-1} P \left(\zeta_{P_i}^{N_{i,j}} \right) = P^n - \prod_{i=1}^r P(\zeta_{P_i})^{N_i} = P^n - \chi(\sigma_P).
\]

Thus, we obtain

\[
L(n, \chi) = \prod_{P \in A \text{ prime}} \frac{[\text{Lie}(E_\alpha(\chi)(A(\chi)/PA(\chi))]_{A(\chi)}}{[E_\alpha(\chi)(A(\chi)/PA(\chi))]_{A(\chi)}}
\]

Hence, we get the result by the discussion of section 4.3.2 and definition of \(L(n, \Delta_a) \).

Finally, we obtain a generalization of theorem A of [5]:

Theorem 4.15. Let \(a \in A_+ \) be squarefree and denote by \(L \) the extension of \(K \) generated by the \(a \)-torsion of the Carlitz module. In \(K_\infty[\Delta_a] \), we have

\[
L(n, \Delta_a) = \left[\text{Lie}(C^{\otimes n})(\mathcal{O}_L) : \exp_{C^{\otimes n}}(C^{\otimes n}(\mathcal{O}_L))\right]_{A[\Delta_a]} \left[H(C^{\otimes n}/\mathcal{O}_L)\right]_{A[\Delta_a]}.
\]

Proof. By the previous lemma, \(L(n, \Delta_a) \) is expressed in terms of Anderson module and Fitting. Then, as in proposition 3.5, we express \(L(n, \Delta_a) \) as a determinant. The proof is similar but we deal with the \(\chi \)-components \(e_\chi(\mathcal{P}_q(\chi) \otimes \mathcal{O}_L) \) for all \(\chi \in \hat{\Delta}_a \). Then, since \(A[\Delta_a] \) is principal, we conclude as in section 3.4. We refer to [5, paragraph 6.4] for more details.
References

[1] Greg W. Anderson, *t-motives*, Duke Math. J. **53** (1986), no. 2, 457–502.

[2] Greg W. Anderson and Dinesh S. Thakur, *Tensor powers of the Carlitz module and zeta values*, Ann. of Math. (2) **132** (1990), no. 1, 159–191.

[3] Bruno Anglès and Federico Pellarin, *Functional identities for L-series values in positive characteristic*, J. Number Theory **142** (2014), 223–251.

[4] Bruno Anglès, Federico Pellarin, and Floric Tavares Ribeiro, *Arithmetic of positive characteristic L-series values in Tate algebras*, Preprint (2014), arXiv:1402.0120.

[5] Bruno Anglès and Lenny Taelman, *Arithmetic of characteristic p special L-values*, Preprint (2012), arXiv:1205.2794.

[6] Keith Conrad, *The digit principle*, J. Number Theory **84** (2000), no. 2, 230–257.

[7] Jiangxue Fang, *Special L-values of abelian t-modules*, To appear in J. Number Theory (2015), arXiv:1401.1293.

[8] David Goss, *Basic structures of function field arithmetic*, Springer-Verlag, Berlin, 1996.

[9] Federico Pellarin, *Values of certain L-series in positive characteristic*, Ann. of Math. (2) **176** (2012), no. 3, 2055–2093.

[10] Lenny Taelman, *Special L-values of Drinfeld modules*, Ann. of Math. (2) **175** (2012), no. 1, 369–391.

[11] Dinesh S. Thakur, *Gauss sums for \(F_q[T] \)*, Invent. Math. **94** (1988), no. 1, 105–112.

[12] Marius van der Put and Michael F. Singer, *Galois theory of linear differential equations*, Springer-Verlag, Berlin, 2003.

LMNO, CNRS UMR 6139, Université de Caen, 14032 Caen cedex, France
E-mail address: florent.demeslay@unicaen.fr