FELL BUNDLES OVER A COUNTABLE DISCRETE GROUP
AND STRONG MORITA EQUIVALENCE FOR INCLUSIONS OF
C*-ALGEBRAS

KAZUNORI KODAKA

ABSTRACT. We consider two saturated Fell bundles over a countable discrete
group, whose unit fibers are σ-unital C*-algebras. Then by taking the reduced
cross-sectional C*-algebras, we get two inclusions of C*-algebras. We suppose
that they are strongly Morita equivalent as inclusions of C*-algebras. Also,
we suppose that one of the inclusions of C*-algebras is irreducible, that is, the
relative commutant of one of the unit fiber algebras, which is a σ-unital C*-
algebra, in the multiplier C*-algebra of the reduced cross-sectional C*-algebra
is trivial. We show that the two saturated Fell bundles are then equivalent up
to some automorphism of the group.

1. INTRODUCTION

Let G be a countable discrete group and let \(A = \{A_t\}_{t \in G} \) be a Fell bundle
over G. Let \(C^*_e(A) \) be the reduced cross-sectional C*-algebra of \(A \) and \(A_e = A \),
a C*-algebra, where \(e \) is the unit element in G. Then we obtain an inclusion of
C*-algebras \(A \subseteq C^*_e(A) \) and we call it the inclusion of C*-algebras induced by \(A \).
By Abadie and Ferraro [1, Sections 3, 4], it is easy to show that if Fell bundles
\(A = \{A_t\}_{t \in G} \) and \(B = \{B_t\}_{t \in G} \) over G are equivalent with respect to an equivalence
bundle \(X = \{X_t\}_{t \in G} \) over G such that

\[
\overline{A(x_t, x_s)} = A_{ts}^{-1}, \quad \overline{B(x_t, x_s)} = B_{ts}^{-1}
\]

for any \(t, s \in G \), then the inclusions of C*-algebras induced by \(A \) and \(B \) are strongly
Morita equivalent, where \(\overline{A(x_t, x_s)} \) means the closure of linear span of the set
\(\{A(x, y) | x \in X_t, y \in X_s\} \) and \(\overline{B(x_t, x_s)} \) means the closure of the same set as above.

In this paper, we shall show the inverse direction as follows: Let \(A = \{A_t\}_{t \in G} \)
and \(B = \{B_t\}_{t \in G} \) be saturated Fell bundles over G. We suppose that \(A_e = A \) and
\(B_e = B \) are σ-unital C*-algebras and that \(A' \cap C^*_e(A) = \mathcal{C}1 \). If the inclusions
of C*-algebras induced by \(A \) and \(B \) are strongly Morita equivalent, then there is
an automorphism \(f \) of G such that \(A \) and \(B^f \) are equivalent with respect to an equivalence
bundle \(X = \{X_t\}_{t \in G} \) such that

\[
\overline{A(x_t, x_s)} = A_{ts}^{-1}, \quad \overline{B(x_t, x_s)} = B_{ts}^{-1}
\]

for any \(t, s \in G \), where \(B^f \) is a Fell bundle over G induced by \(B = \{B_t\}_{t \in G} \) and \(f \),
that is, \(B^f = \{B_{f(t)}\}_{t \in G} \).

We prove this result in the following way: Let \(K \) be the C*-algebra of all compact
operators on a countably infinite dimensional Hilbert space. Let \(A^S \) and \(B^S \) be the
Fell bundles over G induced by \(A, K \) and \(B, K \), respectively. Then since \(A \) and \(B \)
are σ-unital, \(A^S \) and \(B^S \) satisfy the assumptions of Exel [3, Theorem 7.3]. Since

2010 Mathematics Subject Classification. Primary 46L05.
Key words and phrases. cross-sectional C*-algebras, equivalence bundles, Fell bundles, inclusions
of C*-algebras, strong Morita equivalence.

1
\(\mathcal{A}^S \) and \(\mathcal{B}^S \) are saturated, by \cite[Theorem 7.3]{3} there are twisted actions \((\alpha, w_{\alpha})\) and \((\beta, w_{\beta})\) of \(G \) on the \(C^* \)-algebras \(A \otimes K \) and \(B \otimes K \), which are the unit fibre algebras of \(\mathcal{A}^S \) and \(\mathcal{B}^S \), such that \(\mathcal{A}^S \) and \(\mathcal{B}^S \) are isomorphic to the semidirect product bundles of \(A \otimes K, G \) and \(B \otimes K, G \) constructed by \((\alpha, w_{\alpha})\) and \((\beta, w_{\beta})\) as Fell bundles over \(G \), respectively. Since the inclusions of \(C^* \)-algebras induced by \(A \) and \(B \) are strongly Morita equivalent, so are the inclusions of \(C^* \)-algebras induced by \(\mathcal{A}^S \) and \(\mathcal{B}^S \). Hence the inclusions of \(C^* \)-algebras induced by \((\alpha, w_{\alpha})\) and \((\beta, w_{\beta})\) are strongly Morita equivalent. Then since the inclusions are irreducible, by \cite[Theorem 5.5]{4} there is an automorphism \(f \) of \(G \) such that \((\alpha, w_{\alpha})\) and \((\beta^f, w_{\beta}^f)\) are strongly Morita equivalent, where \((\beta^f, w_{\beta}^f)\) is the twisted action of \(G \) on \(B \otimes K \) induced by \((\beta, w_{\beta})\) and \(f \), that is,
\[
\beta^f_t = \beta_{f(t)} \quad \text{and} \quad w_{\beta}^f(t, s) = w_{\beta}(f(t), f(s))
\]
for any \(t, s \in G \). Using this, we can prove the result.

2. Preliminaries

Let \(A \) be a \(C^* \)-algebra and we denote by \(M(A) \) the multiplier \(C^* \)-algebra of \(A \). Let \(\alpha \) be an automorphism of \(A \). Then there is a unique strictly continuous automorphism of \(M(A) \) extending \(\alpha \) by Jensen and Thomsen \cite[Corollary 1.1.15]{1}. We denote it by \(\alpha/e \).

Let \(G \) be a countable discrete group and \(e \) the unit element in \(G \). Let \(A = \{ A_t \}_{t \in G} \) be a Fell bundle over \(G \) and let \(A_e = A \), a \(C^* \)-algebra. Also, let \(B = \{ B_t \}_{t \in G} \) be a Fell bundle over \(G \) and let \(B_e = B \), a \(C^* \)-algebra. Following Abadie and Ferraro \cite[Definitions 2.1 and 2.2]{2}, we give the definition of an equivalence bundle:

Definition 2.1. (1) A right Hilbert \(B \)-bundle is a complex Banach bundle over \(G \), \(\mathcal{X} = \{ X_t \}_{t \in G} \) with continuous maps
\[
\mathcal{X} \times B \to X, \quad (x, b) \mapsto xb \quad \text{and} \quad \langle -, - \rangle_B : \mathcal{X} \times \mathcal{X} \to B, \quad (x, y) \mapsto \langle x, y \rangle_B
\]
such that:

1. \((\text{R})\) \(X_r B_s \subset X_{r+s} \) and \(\{ X_r, X_s \}_B \subset B_{r-s} \) for all \(r, s \in G \).
2. \((\text{R})\) \(X_r B_s \subset X_{r+s} \) and \(\langle x, y \rangle_B \) is bilinear for all \(r, s \in G \).
3. \((\text{R})\) \(X_r B_s \subset X_{r+s} \) and \(\langle x, y \rangle_B \) is linear for all \(x, y \in X_r \) and \(s \in G \).
4. \((\text{R})\) \(\langle x, y \rangle_B \geq 0 \) for all \(x \in X \) and \(\langle x, x \rangle_B = 0 \) implies \(x = 0 \). Beside, each fiber \(X_t \) is complete with respect to the norm \(x \mapsto \| (\langle x, x \rangle_B) \|^{1/2} \).
5. \((\text{R})\) \(\| (\langle x, x \rangle_B) \| \leq 2 \) for all \(x \in X \).
6. \((\text{R})\) \(\{ \langle X_t, X_s \rangle_B \mid s \in G \} = B_e \).

(2) A left Hilbert \(A \)-bundle is a complex Banach bundle over \(G \), \(\mathcal{X} = \{ X_t \}_{t \in G} \) with continuous maps
\[
A \times \mathcal{X} \to \mathcal{X}, \quad (a, x) \mapsto ax \quad \text{and} \quad A(-, -) : \mathcal{X} \times \mathcal{X} \to A, \quad (x, y) \mapsto A\langle x, y \rangle
\]
such that:

1. \((\text{L})\) \(A_r X_s \subset X_{s+r} \) and \(A\langle x, y \rangle \) is bilinear for all \(r, s \in G \).
2. \((\text{L})\) \(A_r X_s \subset X_{s+r} \) and \(A\langle x, y \rangle \) is linear for all \(x, y \in A_r \) and \(s \in G \).
3. \((\text{L})\) \(A\langle x, y \rangle = a A\langle x, y \rangle \) for all \(a \in A \) and \(x, y \in X \) and \(\langle x, x \rangle = 0 \) implies \(x = 0 \). Beside, each fiber \(X_t \) is complete with respect to the norm \(x \mapsto \| A\langle x, x \rangle \|^{1/2} \).
4. \((\text{L})\) \(\| A\langle x, x \rangle \| \leq 2 \) for all \(x \in X \).
5. \((\text{L})\) \(\{ A\langle X_t, X_s \rangle \mid s \in G \} = A_e \).
(3) We say that \mathcal{X} is an $\mathcal{A} - \mathcal{B}$-equivalence bundle if \mathcal{X} is both a left Hilbert \mathcal{A}-bundle, a right Hilbert \mathcal{B}-bundle and $\mathcal{A}(x,y)z = x(y,z)\mathcal{B}$ for all $x,y,z \in \mathcal{X}$. Besides, we say \mathcal{A} is equivalent to \mathcal{B} if there exists an $\mathcal{A} - \mathcal{B}$-equivalence bundle.

Definition 2.2. Let $\mathcal{A} = \{A_t\}_{t \in \mathcal{G}}$ be a Fell bundle over \mathcal{G}. We say that $\mathcal{A} = \{A_t\}_{t \in \mathcal{G}}$ is saturated if $A_tA_t^{-1} = A_e$ for any $t \in \mathcal{G}$.

Let $\mathcal{A} = \{A_t\}_{t \in \mathcal{G}}$ be a saturated Fell bundle over \mathcal{G} and let $A_e = A$, a C^*-algebra. We suppose that \mathcal{A} is a σ-unital C^*-algebra.

Let $C^*_r(\mathcal{A})$ be the reduced cross-sectional C^*-algebra of \mathcal{A}. Then for any $t \in \mathcal{G}$, A_t is regarded as a closed subspace of $C^*_r(\mathcal{A})$ since \mathcal{G} is discrete.

Let K be the C^*-algebra of all compact operators on a countably infinite dimensional Hilbert space. Let $\{e_{ij}\}_{i,j \in \mathbb{N}}$ be a system of matrix units of K.

Let $A_t \otimes K$ be the closure of linear span of the subset

$$\{x \otimes k \in C^*_r(\mathcal{A}) \otimes K \mid x \in A_t, k \in K\}.$$

Let $\mathcal{A}^S = \{A_t \otimes K\}_{t \in \mathcal{G}}$. Then \mathcal{A}^S is a saturated Fell bundle over \mathcal{G} and $A \otimes K$ is its unit fibre algebra. Clearly $C^*_r(\mathcal{A}^S) = C^*_r(\mathcal{A}) \otimes K$. Since \mathcal{A} is saturated, we can regard A_t as an $\mathcal{A} - \mathcal{A}$-equivalence bimodule for any $t \in \mathcal{G}$ and by the definition of the product in $C^*_r(\mathcal{A}^S)$ we can regard $A_t \otimes K$ as the tensor product of the $\mathcal{A} - \mathcal{A}$-equivalence bimodule A_t and the trivial $K - K$-equivalence bimodule K, which is $A \otimes K - A \otimes K$-equivalence bimodule for any $t \in \mathcal{G}$. Thus \mathcal{A}^S is a saturated Fell bundle over \mathcal{G}. Since $A \otimes K$ is σ-unital, by [3] Theorem 7.3, there is a twisted action (α, w_α) of G on $A \otimes K$ such that \mathcal{A}^S is isomorphic to the semidirect product bundle over G induced by (α, w_α) as Fell bundles over G.

Lemma 2.1. With the above notation, if $A' \cap M(C^*_r(\mathcal{A})) = C1$, then $(A \otimes K)' \cap M(\mathcal{A} \rtimes_{\alpha, w_\alpha}, r, G) = C1$.

Proof. Since $A' \cap M(C^*_r(\mathcal{A})) = C1$, by [3] Lemma 3.1] $(A \otimes K)' \cap M(C^*_r(\mathcal{A}) \otimes K) = C1$. Since \mathcal{A}^S is isomorphic to the semidirect product bundle over G of $A \otimes K$ induced by (α, w_α) as Fell bundles over G, the inclusions $A \otimes K \subset C^*_r(\mathcal{A}) \otimes K$ and $A \otimes K \subset (A \otimes K) \rtimes_{\alpha, w_\alpha, r} G$ are isomorphic as inclusions of C^*-algebras. Thus $(A \otimes K)' \cap M((A \otimes K) \rtimes_{\alpha, w_\alpha, r} G) = C1$. }

Let (α, w_α) and (β, w_β) be twisted actions of a countable discrete group G on C^*-algebras \mathcal{A} and \mathcal{B}, respectively. We suppose that (α, w_α) and (β, w_β) are strongly Morita equivalent with respect to a twisted action λ of G on an $\mathcal{A} - \mathcal{B}$-equivalence bimodule X, that is, λ is a map from G to $\text{Aut}(X)$ satisfying the following:

1. $\alpha_t(\lambda_t(x)y) = \lambda_t(x)y_t$,
2. $\beta_t((x,y)_B) = (\lambda_t(x), \lambda_t(y))_B$,
3. $(\lambda_t \circ \lambda_s)(x) = w_\alpha(t,s) \lambda_t(x)w_\beta(t,s)^*$

for any $t, s \in G$, $x, y \in X$, where we regard X as a Hilbert $M(\mathcal{A}) - M(\mathcal{B})$-bimodule as in [3] Preliminaries.

Let u and v be unitary representations of G to $M(\mathcal{A} \rtimes_{\alpha, w_\alpha, r} G)$ and $M(\mathcal{B} \rtimes_{\beta, w_\beta, r} G)$ implementing α and β, respectively, that is, $\alpha_t = \text{Ad}(u_t)$ and $\beta_t = \text{Ad}(v_t)$ for any $t \in G$. Let $\mathcal{A} = \{Au_t\}_{t \in \mathcal{G}}$ and $\mathcal{B} = \{Bu_t\}_{t \in \mathcal{G}}$ be the semidirect product Fell bundles over G induced by (α, w_α) and (β, w_β), respectively.

For any $t \in G$, let $X_t = Xv_t$ as Banach spaces. We regard $X' = \{X_t\}_{t \in \mathcal{G}}$ as an $\mathcal{A} - \mathcal{B}$-equivalence bundle in the following (See [3] and [5]): For any $au_t \in Au_t,$
bundle Y. Hence by [6, Theorem 5.5] we obtain the conclusion.

Proof. Since

$$\langle xv_t, yv_t \rangle = \langle x, (\lambda_s \circ \lambda_t^{-1})(y) \rangle w_{\alpha}(t, s^{-1}) \alpha_{t^{-1}-1}(w_{\alpha}(s, s^{-1}))^* u_{t^{-1}-1},$$

$$\langle xv_t, yv_t \rangle_B = \beta^{-1}_s((\langle x, y \rangle_B) w_{\beta}(s^{-1}, s)^* w_{\beta}(s^{-1}, t) v_{s^{-1}}).$$

Lemma 2.2. With the above notation, $X = \{X_t\}_{t \in G}$ is an $A - B$-equivalence bundle over G such that

$$A(\langle x_t, x_s \rangle) = A_{t^{-1}-1}, \langle x_t, x_s \rangle_B = B_{t^{-1}s}$$

for any $t, s \in G$.

Proof. By the definition of $X = \{X_t\}_{t \in G}$, it is clear that X has Conditions (1R)-(4R) and (1L)-(4L) in Definition 2.1. For any $xv_t \in Xv_t$,

$$||\langle xv_t, xv_t \rangle_B|| = ||\beta^{-1}_t((x, x)_B)|| = ||(x, x)_B|| = ||x||^2 = ||xv_t||^2,$$

$$||A(\langle xv_t, xv_t \rangle)|| = ||A(x, x)|| = ||xv_t||^2.$$

Hence we see that $X_{t^2} \otimes_{\alpha, w_{\alpha}} B_{t^2}$ for any $t, s \in G$.

3. Strong Morita equivalence

Let $A = \{A_t\}_{t \in G}$ and $B = \{B_t\}_{t \in G}$ be saturated Fell bundles over G. Let $A_e = A$ and $B_e = B$ be C^*-algebras. Let A^S and B^S be the saturated Fell bundles over G induced by A, K and B, respectively. Let (α, w_{α}) and (β, w_{β}) be the twisted actions of A on $A \otimes K$ and $B \otimes K$ such that A^S and B^S are isomorphic to the semidirect product bundles of $A \otimes K$ and $B \otimes K$ induced by (α, w_{α}) and (β, w_{β}), which are defined in Section 2.1. We suppose that $A \subset C^*_r(A)$ and $B \subset C^*_r(B)$ are strongly Morita equivalent and that $A' \cap M(C^*_r(A)) = C_1$.

Lemma 3.1. With the above notation and assumptions, there is an automorphism f of G such that (α, w_{α}) is strongly Morita equivalent to (β, w_{β}), (β, w_{β}) is the twisted action of G on $B \otimes K$ induced by (β, w_{β}) and f, which is defined by

$$\beta^f_t = \beta_{f(t)}(t, s) = w_{\beta}(f(t), f(s))$$

for any $t, s \in G$.

Proof. Since $A' \cap M(C^*_r(A)) = C_1$, by Lemma 2.1,

$$(A \otimes K)' \cap M((A \otimes K) \rtimes_{\alpha, w_{\alpha}} G) = C_1.$$

Hence by [6, Theorem 5.5] we obtain the conclusion.

Let $B^S \otimes f = \{B_{f(t)} \otimes K\}_{t \in G}$ be the semidirect product bundle of $B \otimes K$ induced by (β^f, w_{β}^f). Then by Lemma 2.2 and Lemma 3.1, there is an $A^S - B^S \otimes f$-equivalence bundle $Y = \{Y_t\}_{t \in G}$ such that

$$A^S(\langle Y_t, Y_s \rangle) = A_{t^{-1}} \otimes K, \quad \langle Y_t, Y_s \rangle_B^{S, f} = B_{f(t^{-1}s)} \otimes K$$

for any $t, s \in G$.

Let $B^f = \{B_{f(t)}\}_{t \in G}$ be the Fell bundle over G induced by $B = \{B_t\}_{t \in G}$ and the automorphism f of G.

4
Lemma 3.2. With the above notation, A and B^f are equivalent with respect to an $A - B^f$-equivalence bundle $\mathcal{X} = \{X_t\}_{t \in G}$ such that

$$\mathcal{A}(X_t, X_s) = A_{ts^{-1}}, \quad \langle X_t, X_s \rangle_{B^f} = B_{f(t^{-1}s)}$$

Proof. Let $X_t = (1 \otimes e_{11})Y_t(1 \otimes e_{11})$ for any $t \in G$. Let $t, s \in G$ and let $a_t \in A_t, b_t \in B_t, x_s \in Y_s$ and $x_t, y_t \in Y_t$. Then

$$a_t(1 \otimes e_{11})x_s(1 \otimes e_{11}) = (1 \otimes e_{11})(a_t \otimes e_{11})x_s(1 \otimes e_{11}) \in X_{ts},$$

$$(1 \otimes e_{11})x_s(1 \otimes e_{11})b_t = (1 \otimes e_{11})x_s(b_t \otimes e_{11})(1 \otimes e_{11}) \in X_{st},$$

where we identify $(1 \otimes e_{11})(A_{st^{-1}} \otimes K)(1 \otimes e_{11})$ with $A_{st^{-1}}$. Also,

$$\mathcal{A}^s((1 \otimes e_{11})x_s(1 \otimes e_{11}), (1 \otimes e_{11})y_t(1 \otimes e_{11}))$$

$$= (1 \otimes e_{11})\mathcal{A}^s(x_s(1 \otimes e_{11}), y_t(1 \otimes e_{11}))(1 \otimes e_{11}),$$

where we identify $(1 \otimes e_{11})(A_{st^{-1}} \otimes K)(1 \otimes e_{11})$ with $A_{st^{-1}}$. Hence \mathcal{X} has Conditions (1R)-(4R) and (1L)-(4L) in Definition 2.1. Furthermore,

$$\mathcal{A}^s((1 \otimes e_{11})x_t(1 \otimes e_{11}), (1 \otimes e_{11})x_t(1 \otimes e_{11}))$$

$$= (1 \otimes e_{11})\mathcal{A}^s(x_t(1 \otimes e_{11}), x_t(1 \otimes e_{11}))(1 \otimes e_{11}),$$

$$(1 \otimes e_{11})x_t(1 \otimes e_{11}), (1 \otimes e_{11})x_t(1 \otimes e_{11}))_{B^{s,t}}$$

$$= (1 \otimes e_{11})(1 \otimes e_{11})x_t(1 \otimes e_{11}), (1 \otimes e_{11})x_t(1 \otimes e_{11})).$$

These equations implies that \mathcal{X} has Conditions (5R) and (5L) in Definition 2.1. It is clear that \mathcal{X} has Conditions (6R) and (6L) in Definition 2.1. Moreover, let $c, d \in B \otimes K$. Then

$$\mathcal{A}^s((1 \otimes e_{11})x_c(1 \otimes e_{11}), (1 \otimes e_{11})y_t(1 \otimes e_{11}))$$

$$= (1 \otimes e_{11})\mathcal{A}^s(x_c(1 \otimes e_{11}), y_t(1 \otimes e_{11}))(1 \otimes e_{11}).$$

Since $1 \otimes e_{11}$ is full in $B \otimes K$, that is, $(B \otimes K)(1 \otimes e_{11})(B \otimes K) = B \otimes K$ and $Y_t(B \otimes K) = Y_t$ by [2, Proposition 1.7(i)],

$$\mathcal{A}^s((1 \otimes e_{11})x_s(1 \otimes e_{11}), (1 \otimes e_{11})y_t(1 \otimes e_{11})) = A_{st^{-1}} \otimes e_{11}.$$

In the same way, we can see that

$$\mathcal{A}(X_t, X_s) = A_{ts^{-1}}, \quad \langle X_t, X_s \rangle_{B^f} = B_{f(t^{-1}s)}$$

for any $t, s \in G$. Since for any $x, y, z \in \mathcal{Y}$, $\mathcal{A}^s(x, y)z = x(y, z)_{B^{s,t}}$, we can see that

$$\mathcal{A}((1 \otimes e_{11})x(1 \otimes e_{11}), (1 \otimes e_{11})y(1 \otimes e_{11}))(1 \otimes e_{11})$$

$$= (1 \otimes e_{11})x(1 \otimes e_{11})(1 \otimes e_{11}), (1 \otimes e_{11})z(1 \otimes e_{11})).$$

for any $x, y, z \in \mathcal{Y}$. It follows that \mathcal{X} is an $A - B^f$-equivalence bundle. Therefore, we obtain the conclusion. □

Theorem 3.3. Let G be a countable discrete group and let $A = \{A_t\}_{t \in G}$ and $B = \{B_t\}_{t \in G}$ be saturated Fell bundles over G. We suppose that $A_e = A$ and $B_e = B$ are σ-unital C^*-algebras and that $A' \cap C^*_r(A) = C_1$, where e is the unit element in G and $C^*_r(A)$ is the reduced cross-sectional C^*-algebra of A. If the inclusions of C^*-algebras induced by A and B are strongly Morita equivalent, then
there is an automorphism f of G such that \mathcal{A} and \mathcal{B}^f are equivalent with respect to an $\mathcal{A} - \mathcal{B}^f$-equivalence bundle $\mathcal{X} = \{X_t\}_{t \in G}$ over G such that

$$\mathcal{A}(X_t, X_s) = A_{ts^{-1}}, \quad (X_t, X_s)_{\mathcal{B}^f} = B_{f(t^{-1}s)}$$

for any $t, s \in G$, where \mathcal{B}^f is a Fell bundle over G induced by $\mathcal{B} = \{B_t\}_{t \in G}$ and f, that is, $\mathcal{B}^f = \{B_{f(t)}\}_{t \in G}$.

Proof. This is immediate by Lemmas 3.1, 3.2 and the discussions before Lemma 3.2.

References

[1] F. Abadie and D. Ferraro, *Equivalence of Fell bundles over groups*, J. Operator Theory **81** (2019), 273–319.
[2] L. G. Brown, J. Mingo and N-T. Shen, *Quasi-multipliers and embeddings of Hilbert C^*-bimodules*, Can. J. Math., **46** (1994), 1150–1174.
[3] R. Exel, *Twisted partial actions: A classification of regular C^*-algebraic bundles*, Proc. London. Math. Soc., **74** (1997), 417–443.
[4] K. K. Jensen and K. Thomsen, *Elements of KK-theory*, Birkhäuser, 1991.
[5] T. Kajiwara and Y. Watatani, *Crossed products of Hilbert C^*-bimodules by countable discrete groups*, Proc. Amer. Math. Soc., **126** (1998), 841–851.
[6] K. Kodaka, *Strong Morita equivalence for inclusions of C^*-algebras induced by twisted actions of countable discrete group*, preprint, [arXiv:1910.06774](https://arxiv.org/abs/1910.06774), Math. Scand. to appear.
[7] K. Kodaka and T. Teruya, *The strong Morita equivalence for inclusions of C^*-algebras and conditional expectations for equivalence bimodules*, J. Aust. Math. Soc., **105** (2018), 103–144.

Department of Mathematical Sciences, Faculty of Science, Ryukyu University, Nishihara-cho, Okinawa, 903-0213, Japan

E-mail address: kodaka@math.u-ryukyu.ac.jp