Salmon Aquaculture and Antimicrobial Resistance in the Marine Environment

Alejandro H. Buschmann
Alexandra Tomova
Alejandra Lopez
Miguel A. Maldonado
Luis A. Henriquez

See next page for additional authors

Follow this and additional works at: https://touroscholar.touro.edu/nymc_fac_pubs

Part of the Medicine and Health Sciences Commons

Recommended Citation
Buschmann, A., Tomova, A., Lopez, A., Maldonado, M., Henriquez, L., Ivanova, L., Moy, F., Godfrey, H., & Cabello, F. (2012). Salmon Aquaculture and Antimicrobial Resistance in the Marine Environment. PLoS One, 7(8), e42724. https://doi.org/10.1371/journal.pone.0042724

This Article is brought to you for free and open access by the Faculty at Touro Scholar. It has been accepted for inclusion in NYMC Faculty Publications by an authorized administrator of Touro Scholar. For more information, please contact touro.scholar@touro.edu.
Authors
Alejandro H. Buschmann, Alexandra Tomova, Alejandra Lopez, Miguel A. Maldonado, Luis A. Henriquez, Larisa Ivanova, Fred Moy, Henry P. Godfrey, and Felipe C. Cabello

This article is available at Touro Scholar: https://touroscholar.touro.edu/nymc_fac_pubs/1681
Salmon Aquaculture and Antimicrobial Resistance in the Marine Environment

Alejandro H. Buschmann¹, Alexandra Tomova², Alejandra López¹, Miguel A. Maldonado¹, Luis A. Henrı´quez¹, Larisa Ivanova², Fred Moy³, Henry P. Godfrey³, Felipe C. Cabello²*

¹Centro i–mar, Universidad de Los Lagos, Puerto Montt, Chile, ²Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, United States of America, ³Department of Pathology, New York Medical College, Valhalla, New York, United States of America

Abstract

Antimicrobials used in salmon aquaculture pass into the marine environment. This could have negative impacts on marine environmental biodiversity, and on terrestrial animal and human health as a result of selection for bacteria containing antimicrobial resistance genes. We therefore measured the numbers of culturable bacteria and antimicrobial-resistant bacteria in marine sediments in the Calbuco Archipelago, Chile, over 12-month period at a salmon aquaculture site approximately 20 m from a salmon farm and at a control site 8 km distant without observable aquaculture activities. Three antimicrobials extensively used in Chilean salmon aquaculture (oxytetracycline, oxolinic acid, and florfenicol) were studied. Although none of these antimicrobials was detected in sediments from either site, traces of flumequine, a fluoroquinolone antimicrobial also widely used in Chile, were present in sediments from both sites during this period. There were significant increases in bacterial numbers and antimicrobial-resistant fractions to oxytetracycline, oxolinic acid, and florfenicol in sediments from the aquaculture site compared to those from the control site. Interestingly, there were similar numbers of presumably plasmid-mediated resistance genes for oxytetracycline, oxolinic acid and florfenicol in unselected marine bacteria isolated from both aquaculture and control sites. These preliminary findings in one location may suggest that the current use of large amounts of antimicrobials in Chilean aquaculture has the potential to select for antimicrobial-resistant bacteria in marine sediments.

Introduction

It is believed that aquaculture will constitute the source of over more than half of the seafood consumed in the world in coming years because of the collapse of natural fisheries [1]. However, this optimistic view needs to be tempered by increasing information suggesting such expansion may be unsustainable as aquaculture generates untoward effects such as habitat destruction, eutrophication and environmental contamination with chemicals and antimicrobials [2]. The therapeutic, growth-promoting and prophylactic use of antimicrobials was introduced into agricultural practice in the 1940s and became widespread in Europe and the United States [3–6]. Antimicrobial resistance in antimicrobial-fed animals was soon noted [7], concerns about the possibilities of transmission of this resistance to human pathogens followed shortly thereafter [6,8,9], and indeed, has been demonstrated to occur [10,11]. Voluntary and legislated bans on the use of antimicrobials as growth promoters in the member states of the European Union since the 1990s have been associated with a marked decrease in antimicrobial usage without negative impacts on productivity in fowl and swine [8,12,13].

Salmon aquaculture is an exponentially growing industry worldwide, particularly in two countries – Norway and Chile [14,15]. In Chile, this growth has been accompanied by major mortalities of salmon reared in net pens. These can reach 50% of production under some conditions with ensuing large economic losses [16,17]. This growth has triggered concerns regarding many environmental issues, particularly because large amounts of chemotherapeutics and antimicrobials in the feed readily pass into the marine environment and potentially alter bacterial biodiversity [2,18–22]. Because the use of vaccines to prevent bacterial diseases in fish is limited [16], this in turn has led to increased use of therapeutic and prophylactic antimicrobials [23–25]. Conservative estimates suggest that approximately 950 metric tons of quinolones were used in salmon aquaculture in Chile between 2000 and 2008, and approximately 1500 metric tons of tetracycline and 478 metric tons of florfenicol were used for this purpose between 2000 and 2007 [23–25].

Antimicrobial agents are usually administered to salmon mixed with food [19,22]. Uningested food and fish feces containing unabsorbed antimicrobials and secreted antimicrobial metabolites in the water and sediment in the environment of salmon farming sites often retain their antimicrobial activity and can remain in the aquatic environment for variable periods of time depending on their initial concentrations, biodegradability, and physical and chemical characteristics [19,26–28]. Such materials can select for antimicrobial resistant bacteria in the sediment and water column and can often influence microbial diversity not only by eliminating
susceptible bacteria but also by acting on other susceptible microorganisms such as microalgae [22,26,29,30].

Selection of antimicrobial-resistant bacteria in the marine environment could have detrimental impacts on piscine and human health by facilitating transfer of antimicrobial resistance genetic determinants from environmental marine microbes to fish pathogens and terrestrial bacteria including human and animal pathogens [19,22,23,31]. It is clearly evident that bacteria from marine and terrestrial ecosystems can share antimicrobial resistance genes and that some emerging antimicrobial resistance genes in human pathogens may have an aquatic bacterial origin [32–35]. For example, the fish pathogen Yersinia ruckeri, the cause of enteric redmouth disease, shares an antimicrobial resistance plasmid and antimicrobial resistance genes with the plague bacillus, Yersinia pestis [36]. This sharing of movable genetic elements and antimicrobial resistance genes between bacteria of different ecological niches potentially endangers treatment of human patients [22,32–34,36]. Such genetic and epidemiological findings strongly suggest that the aquatic and terrestrial ecosystems are not isolated regarding the dissemination of antimicrobial resistance genes among their bacterial populations, probably as the result of horizontal gene transfer [22,37].

The high-level of antimicrobial use in salmon aquaculture in Chile could have negative impacts on environmental biodiversity and terrestrial animal and human health by selecting for bacteria in the marine environment containing antimicrobial resistance genes. We therefore compared numbers of culturable bacteria and antimicrobial resistant bacteria for three antimicrobials used extensively in Chilean salmon aquaculture (oxytetracycline, oxolinic acid, and florfenicol) in the marine sediment adjacent to salmon aquaculture pens and at a control site 8 km distant with no observed aquaculture or other human activities.

Results

Antimicrobials in sediment samples from aquaculture and control sites

Traces of flumequine, a fluoroquinolone antimicrobial, were present in four sediment samples at the aquaculture site (Fig. 1): two in December, 2008, and two in January, 2009. Flumequine was also present in four sediment samples from the control site, 8 km from the aquaculture site (Fig. 1): one in December, 2008, two in January, 2009 and one in April, 2009. Oxytetracycline, oxolinic acid, and florfenicol were not detected in any of the 36 total samples examined (data not shown).

Culturable bacteria in sediment samples from aquaculture and control sites

The total numbers of culturable bacteria in sediments from aquaculture and control sites varied significantly over the course of a year (P<0.001, two-way ANOVA, rank transformed data), fluctuating between approximately 1 × 10^5 and 1 × 10^7 colony forming units (cfu) g⁻¹ (Fig. 2A). There were highly significant differences in culturable bacterial numbers between aquaculture and control sites over the entire study period (P<0.001, rank transformation test), with bacterial numbers significantly higher in late spring (November, 2008) and high summer through winter (January through July, 2009) than at other times (P<0.05, Student-Newman-Keuls post-test). Sensitivity analyses using only data consistent with a dilution series or using all 258 data points produced similar results. Results obtained using ANOVA of log-transformed data were also consistent with this non-parametric analysis.

Sampling of sediments at intermediate distances between aquaculture (0.0 km) and control (8.0 km) sites in November, 2008 (Fig. 2B), revealed significant differences in numbers of culturable bacteria (P<0.001, two-way ANOVA, rank transformed data) which did not decrease until 1 km from the aquaculture site (P<0.05, Student-Newman-Keuls post-test). Sensitivity analyses using only data consistent with a dilution series or using all 258 data points produced similar results. Results obtained using ANOVA of log-transformed data were also consistent with non-parametric analysis.

Antimicrobial-resistant bacteria in sediment samples from aquaculture and control sites

Measurements of the antimicrobial resistant fraction (ARF) of bacteria cultured from aquatic sediments are useful for comparing changes in antimicrobial resistance in this environment [38]. ARF to oxytetracycline (Fig. 3A) and oxolinic acid (Fig. 3B) were significantly different between aquaculture and control sites over the entire period of study (P<0.001, two-way ANOVA, rank transformed data). For both these antimicrobials, there was no significant interaction between time of year and nature of the study site (aquaculture or control). ARF to oxytetracycline was significantly lower during spring, 2008 (September-November, 2008) than during the following summer (December, 2008–January, 2009), before rising significantly the following spring (September, 2009) (P<0.05, Student-Newman-Keuls post-test). ARF to oxolinic acid (Fig. 3B) also was significantly higher in early spring both years (September, 2008; September, 2009) than in late spring, fall and winter (November, 2008; April, 2009; July, 2009), before rising to intermediate levels in high summer (December, 2008; January, 2009) (P<0.05, Student-Newman-Keuls post-test). Although ARF to florfenicol also varied significantly throughout the year (Fig. 3C), the interaction of time and study site was significant (P<0.002, two-way ANOVA, rank transformed data), and significant differences between aquaculture and control sites were only seen in late spring and high summer (November, 2008, through January, 2009) (P<0.05, Student-Newman-Keuls post-test). Sensitivity analyses using only data consistent with a dilution series or using all 258 data points produced similar results. Results obtained with parametric analysis of log-transformed data were again consistent with this non-parametric analysis.

Sampling in November, 2008, at intermediate distances between aquaculture and control sites revealed that ARF to oxytetracycline (Fig. 4A), oxolinic acid (Fig. 4B), and florfenicol (Fig. 4C) showed significant decreases from aquaculture to control sites for all three antimicrobials (oxytetracycline, P=0.008; oxolinic acid, P=0.002; florfenicol, P=0.015, two-way ANOVA, rank transformed data). In the case of oxytetracyline and oxolinic acid (Figs. 4A, 4B), ARF was only significantly lower 8 km from the aquaculture site (P<0.05, Student-Newman-Keuls post-test). Significant elevations of ARF to florfenicol were maintained 0.5 km from the aquaculture site, but were significantly lower by 1 km (Fig. 4C). Sensitivity analyses using only data consistent with a dilution series or using all 258 data points yielded similar results. Results from parametric analysis of log-transformed data were again consistent with this non-parametric analysis.

Detection of antimicrobial resistance genes in bacteria from aquaculture and control sites

The presence of culturable antimicrobial-resistant bacteria in sediments from aquaculture and control sites suggested the presence of antimicrobial resistance determinants in these bacteria. PCR confirmed the presence of genes mediating
resistance to oxytetracycline, oxolinic acid, and florfenicol in bacteria from sediment samples that had not been selected for antimicrobials. Plasmid-mediated quinolone resistance (PMQR) genes were studied because these plasmid-mediated resistances are potentially transmissible and some of them appear to originate from aquatic bacteria [32,33,39,40]. Moreover, they have recently begun to disseminate among terrestrial animal and human pathogens and are readily detected by PCR [40]. Unselected isolates of bacteria from aquaculture and control sites (24 from each site) contained plasmid-encoded genes for resistance to quinolones, including qnrA, qnrB, qnrS, oqxA and aac(6’)-Ib-cr (Fig. 5, Table 1). Several of these bacteria also harbored tetA, tetB, tetK, tetM, and floR genes (Fig. 5, Table 1). Some bacteria harbored multiple antimicrobial resistant determinants (Table 2). The combination of PMQR and tetracycline resistance genes was the most frequent (8), followed by PMQR and florfenicol resistance genes (3) and finally PMQR, tetracycline and florfenicol resistance genes (3). Several isolates also generated a positive signal (confirmed by DNA sequencing) for the int1 gene encoding integrase 1 (Table 1), suggesting the presence of type 1 integrons in these bacteria [41–45].

Species identification of bacteria harboring antimicrobial resistance genes from aquaculture and control sites

PCR amplification of 16S rRNA genes in eight bacterial isolates from the aquaculture site identified two isolates of Sporosarcina sp., two isolates of Arthrobacter sp. and one isolate Vibrio sp. Bacterial isolates from the control site included one Pseudalteromonas sp. isolate and two isolates of Vibrio sp. (Table 2). The 16S rDNA sequences of these amplicons were >99% identical to those in GenBank (E value of 0.0) (Table 2). These observations are not consistent with the possibility that the bacteria in which antimicrobial resistance genes were present were human and terrestrial animal pathogens contaminating Chilean coastal waters [46,47].

Discussion

We studied marine sediments from two sites in the Calbuco Archipelago in southern Chile to determine numbers of culturable and antimicrobial-resistant bacteria they contained. One was a site 20 m from a salmon aquaculture facility (Fig. 1), the other, off the coast of an island 8 km distant from the aquaculture site, the only local island with no aquaculture activities, few human dwellings, and no water sources or discharges of solids into the sea (Fig. 1). This latter site was thus expected to be pristine and a suitable control site. Surprisingly, residues of flumequine, a quinolone with potential cross resistance with oxolinic acid, were present in sediments at both sites, most likely carried there by marine currents from the many other aquaculture sites in the area that use this antimicrobial and that have been in operation over the past 10 years (Fig. 1) [23–25]. Flumequine has been used as widely as oxolinic acid in aquaculture in Chile; approximately 548 metric tons were used between 2000 and 2007 [23–25]. Although the control site was not as pristine as it was originally thought to be, sediments from the aquaculture site still contained significantly larger numbers of culturable bacteria than sediments from the control site (Fig. 2A), with increased bacterial numbers being present up to 1 km from the aquaculture site (Fig. 2B). These findings essentially confirm previous reports on the ability of aquaculture activities to increase culturable bacterial numbers [48,49]. Sediments from the aquaculture site also contained increased numbers of culturable bacteria resistant to tetracycline, oxolinic acid and florfenicol; this effect persisted for distances up to 1 km from the aquaculture site (Fig. 4). The presence of flumequine residues in the sediment from the apparently pristine control site (Fig. 1) and significant antimicrobial resistance at distances up to 1 km from the aquaculture site (Fig. 4) suggest that
excessive use of antimicrobials in salmon aquaculture sites may not only have an effect on marine sediments directly under and close to aquaculture pens but also at some distance from where these activities take place as a result of transport by water currents of both unchanged antimicrobials and their antimicrobially active metabolites. Previous work has not detected antimicrobials beyond 30 to 50 m from the aquaculture site but the amounts of antimicrobials used in those situations were a fraction of those used in Chile [26,29,50–52]. This suggests that the size of the area impacted by aquacultural activities with regard to antimicrobial resistance is related to the amounts of antimicrobials used in these activities.

Obtaining accurate counts of culturable bacteria in marine sediments is complicated by incomplete dispersal of particulates and their attached bacteria. This incomplete dispersal leads to erratic values in dilution series. Although clinical studies frequently employ various criteria to ensure the quality of data to be analyzed [53,54], our study is one of the first if not the first in this area to use explicit criteria to assure the quality of the data to be analyzed. The fact that similar conclusions were obtained in multiple sensitivity analyses confirms the validity of this approach.

It has been suggested that the significantly larger numbers of culturable antimicrobial-resistant bacteria demonstrable in sediment of aquaculture sites relative to control sites may be the result of changes produced by excess organic matter passing into the environment from uningested fish food and feces rather than from antimicrobial use per se [55–57]. Unfortunately, there is no experimental evidence to support this hypothesis. It is difficult to develop a scenario based on current concepts of microbial genetics and physiology that could explain preferential stimulation of growth of antimicrobial-resistant bacteria by organic matter alone unless this matter also contained other chemical entities such as...
metal ions, disinfectants or metabolites that could co-select for metabolite utilization and ubiquitous antimicrobial resistance genes linearly integrated in mobile genetic units such as plasmids, transposons and integrons throughout Bacteria and Archea [38,59].

An important limitation of this research is the lack of information concerning the use and frequency of application of antimicrobials during aquaculture activities before and during this study. This stems from the proprietary nature of this information and from the general lack of publicly available and well-organized data on antimicrobial use in the Chilean aquaculture industry. This dual lack critically limits our ability to relate antimicrobial use to the observed relative increase in antimicrobial-resistant bacteria and might also be responsible for our failure to detect antimicrobials other than flumequine in the sediments. The marked increase in antimicrobial-resistant bacteria in the spring and summer when activity at aquaculture sites customarily increases, the presence of flumequine residues and the increased ARF to antimicrobials known to be heavily used in this industry [23] does however suggest a possible relationship between them. It has been postulated that antimicrobials administered to fish by food do not remain in the sediment, thus decreasing their ability to exert selective pressure upon antimicrobial-resistant bacteria [51]. However, the present and previous work indicate that antimicrobials remain in the sediment at concentrations able to exert selective pressure there [52,60,61].

Approximately half of unselected culturable marine bacterial species from both aquaculture and control sites harbored antimicrobial resistance genes (Table 1); the antimicrobial resistances detected in these bacteria are probably mediated by these genes. Because tetM tetracycline resistance gene and other antimicrobial resistance genes have been demonstrated in ancient (30,000 years before the present) bacterial DNA extracted from terrestrial permafrost in Alaska [62], the effect of antimicrobial use in salmon aquaculture on marine sediments is most likely restricted to selecting those bacteria able to survive in their presence. However, the numerically similar frequencies of antimicrobial resistance genes at both sites is certainly consistent with the presence of antimicrobial residues at both sites, and again suggests that the control site was not as pristine as it was originally thought to be.

There are several caveats regarding the observed bacterial resistance phenotypes and genotypes. Because we only sequenced three amplicons for the \textit{aac(6_9_Ib-cr)} gene, we cannot be certain that the five amplicons detected have the mutation which mediates quinolone acetylation [63]. Furthermore, oxytetracycline, oxolinic acid, and florfenicol resistance phenotypes can be encoded by a multiplicity of chromosomal and plasmid genes and not only by the ones studied in the present work [40,64–66]. Because we did not perform an exhaustive investigation of alternative antimicrobial resistance genes for quinolone, tetracyclines and chloramphenicol, did not search for the presence of genes mediating resistance to other antimicrobials, and studied only culturable bacteria, we are probably underestimating the resistome present in marine bacteria at the aquaculture and control sites. This underestimation could lower the chance of detecting any differences regarding these genes between these sites. Interestingly, a few of the strains studied also harbored an integron type 1, a genetic element usually associated with multiple antimicrobial resistance cassettes and known to be present in bacteria from aquatic sediments impacted by human activity [41–44].

Bacteria from the marine environment where salmon aquaculture takes place contain antimicrobial resistance genes towards antimicrobials used extensively in this activity. This confirms previous work indicating that plasmid-mediated quinolone resistance genes are present in aquatic bacteria [32,33,39] and that these aquatic bacteria could well be the original source for...
dissemination of these determinants in human pathogens [22,32,33,39]. Such bacteria will have a selective advantage after introduction of antimicrobials into their environment [22,31,37,41]. The relevance of increased antimicrobial-resistant bacteria in sediments of salmon aquaculture sites for the emergence of antimicrobial resistance in fish and human pathogens is unknown [22,23,56,57]. The significant increase in antimicrobial-resistant bacterial populations to oxytetracycline, oxolinic acid, and florfenicol in aquaculture sediments suggests they could be a potential source for antimicrobial resistance genes in fish and human pathogens as a result of horizontal gene transfer [18,22,23,36,67,68]. This problem could be exacerbated in Chile because of major contamination of seawater with antimicrobial-resistant animal and human pathogens [46,47]. Horizontal gene transfer of antimicrobial resistance genetic elements and mutagenesis may also be stimulated by microbial stress triggered by the presence of sub-inhibitory concentrations of antimicrobials such as flumequine in the sediment [68–70].

The present preliminary study in a single salmon aquaculture and a single control site suggests, as has been previously demonstrated, that salmon aquaculture activities in Chile have the potential to alter concentrations of culturable bacteria in marine sediments and increase the proportion of antimicrobial-resistant bacteria to three major classes of antimicrobials used in clinical medicine [29,49,61]. The spatial limitation of the present study hampers an immediate generalization of its conclusions to other aquacultural and control sites in Chilean coastal waters. Additional studies are thus necessary to confirm these results and to identify the dynamics of these processes more carefully. The presence of resistance genes to these antimicrobials in marine bacteria and residual antimicrobials in the sediment suggests that the increase in antimicrobial resistance results from selection of bacteria in this environment. The cautionary principle also suggests that use of antimicrobials in salmon aquaculture in Chile needs to be controlled and reduced because this increase has the potential to generate other problems of food safety and industrial health [20,22,23,72]. We expect that the new sanitary scenario instituted in response to the epidemic of infectious salmon anemia will result in a significant reduction in antimicrobial use and particularly in avoidance of quinolone antimicrobials because of their relevance to human health [18,23,73].

Materials and Methods

Location of aquaculture and control sampling sites

The two sites studied were located in the Calbuco archipelago in southern Chile, Region X, near the town of Calbuco (41°48’S, 73°11’W) (Fig. 1). At least 11 salmon farming sites have been in operation in this area over the past 10 years with an estimated annual production of approximately 15,000 metric tons. One of these farms consists of two salmon culture units with 22 and 24 pens located approximately 300 m from the coastline at a water depth of 45 m (arrow, Fig. 1). It can produce approximately 1,200 metric tons of salmon annually. Because of a confidentiality agreement, neither the exact identity of the farm, the biomass of fish cultured, nor the identity and amounts of antimicrobials used before and during the period of study can be revealed. Areas directly under the salmon pens are protected by anti-predator nets and are inaccessible to divers. For this reason, sediment samples from this site (“aquaculture site”) were obtained from an area approximately 20 m from the outer southeastern corner of the pens next to a buoy (arrowhead, lower inset of Fig. 1). This

Table 1. Antimicrobial resistance genes present in marine sediment bacteria from aquaculture and control sites in Chile.

Site	No. of Strains	tetA	tetB	tetK	tetM	qnrA	qnrB	qnrC	qnrD	qnrS	qepA	aac(6’)-Ib-cr	floR	int1
Aquaculture	24	4	5	5	2	2	1	0	0	4	3	4	3	
Control	24	3	7	4	0	2	1	0	5	0	3	1	2	1

doi:10.1371/journal.pone.0042724.t001

Figure 5. Antimicrobial resistance genes in unselected marine bacterial isolates and controls. Detection of antimicrobial resistance genes in bacteria cultured from marine sediments obtained from December, 2008, to January, 2009. qnr, tet and floR genes were detected by PCR as described in Material and Methods with primers in Table 3. D15, J12, DC5, J19, DC12, D14 and D17 are bacterial isolates from sediment. −, negative control (E. coli DH5α); +, positive controls (Table 3). M, molecular weight markers.

doi:10.1371/journal.pone.0042724.g005
Aquaculture and Antimicrobial Resistance

Table 2. Bacterial isolates identified by 16S rRNA gene sequence analysis.

Species	Genes	Compared to GenBank No.	% of identity	Site of isolation
Sporosarcina sp.	tetK, floR, qnrA, qnrS	FJ425906.1	>99	Aquaculture
Arthrobacter sp.	qnrA, tetB	EF550164.1	>99	Aquaculture
Sporosarcina sp.	oqxA, aac(6’)–Ib-cr	EU204977.1	>99	Aquaculture
Arthrobacter sp.	qnrS, tetA	JF799958.1	>99	Aquaculture
Vibrio sp.	qnrB, tetK	DQ146994.1	>99	Aquaculture
Pseudoalteromonas sp.	qnrA, tetB	FJ497709.1	>99	Control
Vibrio sp.	qnrS	EU195936.1	>99	Control
Vibrio sp.		JN128258.1	>99	Control

Bacterial cultures

Culturable antimicrobial-susceptible and -resistant bacteria were determined by suspending 0.1 g of the top 2-cm of each sediment sample in 0.9 ml phosphate buffered saline, pH 7.4, within 2–3 hours after collection; this suspension was then sonicated (Elma Transsonic 310, Singen, Germany) for 5 minutes to ensure detachment of bacteria from sediment particles. A 10-fold dilution series (undiluted to 10^{-5}) of this suspension was plated on Marine agar plates (Difco) containing no antimicrobials or oxytetracycline, 150 μg ml^{-1} (AppliChem GmbH, Darmstadt, Germany), or oxolinic acid, 10 μg ml^{-1} (Sigma-Aldrich GmbH, Steinheim, Germany), or florfenicol, 30 μg ml^{-1} (Sigma-Aldrich GmbH). Stock solutions of antimicrobials were kept frozen at −20°C and thawed immediately before use. Plates were incubated for 7 days at 20°C and the number of visible colonies were counted. These data were used to calculate cfu g^{-1} sediment = (total plate counts × dilution factor), and ARF (in percent) for each antimicrobial = (total plate counts with antimicrobial × dilution factor/total plate counts without antimicrobial × dilution factor) × 100 [38]. Isolated colonies of bacteria growing on Marine agar plates with and without antimicrobials were selected and stored frozen at −80°C in 96-well microtiter plates in 36% glycerol for later study of antimicrobial resistance genes.

Detection of plasmid-mediated antimicrobial resistance genes

Cultures of marine sediment samples obtained from December, 2008, and January, 2009, were transported in Marine soft agar in 1.5 ml Eppendorf microtubes and restreaked on Marine agar (9.0 cm diameter Petri dishes) containing antimicrobials to ascertain clonality. One isolated colony of each was grown for further studies and stored in 30% glycerol at −80°C. Bacterial cultures were kept at 4°C on marine agar plates with antimicrobials for daily manipulations while experiments were in progress. The following antimicrobial resistance genes were studied by PCR using primers shown in Table 3. Quinolone resistance genes: topoisomerase protection qnrA, qnrB, qnrC, qnrD and qnrS genes [40,78–80]; the putative enzymatic inactivation gene aac(6’)-Ib-cr [40,63]; and efflux pump genes qepA and oqxA [81,82]. Tetracycline resistance genes: efflux pump genes tetA, tetB and tetK [64,65,83]; and the ribosome protection gene, tetM [64,65]. Florfenicol resistance gene, floR, encoding an efflux pump [66,84]. The intI gene encoding integrase 1 [41,43] was also examined.

Table 3 also contains information regarding strains used as positive and negative controls in these PCR reactions. Single colonies of oxytetracycline, oxolinic acid, and florfenicol resistant strains were picked from plates kept at 4°C and inoculated into...
10 ml Marine Broth (Difco, BD, Franklin Lakes, NJ, USA) with ciprofloxacin HCl (ICN, Aurora, Ohio, USA), 0.05 \(\mu \)g ml\(^{-1}\), oxytetracycline hydrochloride (Sigma-Aldrich, St. Louis, MO, USA), 150 \(\mu \)g ml\(^{-1}\), or florfenicol (Sigma-Aldrich, St. Louis, MO, USA), 30 \(\mu \)g ml\(^{-1}\), and cultured at 20°C until late log phase. Cultures were centrifuged at 20,000 \(g \) for 15 min to remove suspended matter. The supernatant was centrifuged at 7,000 \(g \) for 10 min to pellet the bacteria, pellets were washed once with phosphate buffered saline, pH 7.4, and resuspended in 400 \(\mu \)l of 10 mM TrisCl-10 mM EDTA for storage at -80°C until DNA was extracted [85]. Total DNA was extracted from 200 \(\mu \)l of bacteria by adding 10% SDS in sodium phosphate buffer, pH 8.0, to 1.25% SDS (wt/vol), incubating at 70°C for 30 min, and then disrupting bacteria with three freeze-thaw cycles: two minutes liquid N\(_2\)-10 min 70°C (once), two minutes liquid nitrogen-10 min 100°C (twice). After centrifugation of the viscous solutions at 4,000 \(g \) for 10 min, the supernatant was transferred to a clean tube used for PCR screening of antimicrobial resistance genes [86]. All PCR assays were done using MasterCycler Gradient, Eppendorf, Germany. Multiplex PCR for \(qnrA/B/S \) was conducted in 25 \(\mu \)l reaction volumes with GoTaq Flexi DNA polymerase, 0.8 units (Promega, Madison, WI, USA); 1 × Green GoTaq Flexi Buffer; MgCl\(_2\), 2 mM; dNTP, 0.15 mM each; primers, 0.5 \(\mu \)M each. Initial denaturation at 95°C for 3 min was followed by 35 cycles of 95°C, 20 sec-54°C, 30 sec-72°C, 40 sec; final extension of 72°C-7 min. For detection of the other PMQR, \textit{tet} and \textit{floR} genes, reaction volumes were 12.5 \(\mu \)l, and PCR was performed with Choice TaqBlue DNA polymerase 0.5 units (Denville Scientific Inc., Metuchen, NJ); 1× reaction buffer with MgSO\(_4\), 15 mM; dNTP, 0.25 mM each; primers 0.5 \(\mu \)M each. Initial denaturation at 95°C for 3 min at 72°C was followed by 35 cycles of denaturation at 95°C-20 sec; annealing for 30 sec at various temperatures for each group of primers; extension time at 72°C was dependent on fragment length, being 30 sec for a 500 bp fragment (see Table 3); final extension, 7 min-72°C. Amplicons were detected in 1% agarose gel with ethidium bromide, viewed and recorded in an Alpha Imager AIC, Alpha Innotech, Japan. Identity of amplicons was ascertained by comparison with positive controls and by DNA sequencing (GENEWIZ, Inc, South Plainfield, NJ, USA) of at least one amplicon of each gene (data not shown). DNA sequences were identified by BLAST analysis.

Table 3. Primers used in this study.

Gene	Primer	Sequence (5′→3′)	Amplicon (bp)	Positive control	References
\textit{qnrA}	\textit{qnrA1ROB}	ATTTCTCAGCGCAGGATTGG	516	pMG252	[79]
	\textit{qnrA2ROB}	GATCGCGCAAAAGGTAGTCTC			
\textit{qnrB}	\textit{qnrB1ROB}	GATCGTGAAAGCAGAAGAAGG	469	pMG298	[79]
	\textit{qnrB2ROB}	ACGATGCTGTAGTGTGCTC			
\textit{qnrC}	\textit{qnrC-F}	GGTTTGTACATTATTAAGA	447	pDNA \textit{qnrC}	[80]
	\textit{qnrC-R}	TCCACCTTACGAGGTTCT			
\textit{qnrD}	\textit{qnrD-fw}	CGAGATCATTACCGGGAAAATA	592	pDNA \textit{qnrD}	[78]
	\textit{qnrD-rv}	GAAAGCTGAAGCGCCTG			
\textit{qnrS}	\textit{qnrS1ROB}	ACGACATTCCGTAACCTGCA	417	pMG306	[79]
	\textit{qnrS2ROB}	TAAATGGCCACCTTGAGGC			
\textit{qepA}	\textit{qepA-F}	CGTGTGTGCTGAGTCTTCTC	403	pATB51	[82]
	\textit{qepA-R}	CTGCAAGTACTGCGTATG			
\textit{qoxA}	\textit{qoxA-F}	CTCGGCGGGCATGATGCT	392	DNA	[81]
	\textit{qoxA-R}	CCATCTTCACGGGAGACCA			
\textit{aac(6′)-Ib-cr}	\textit{Aac(6′)-Ib-xbal}	CAGCTCTCAGAATTTTATAAGGTCGATC	620	pMG298	[63]
\textit{tetA}	\textit{tetAf_A3}	GGCCTCTCGGCGATCTGG	848	pEDtetA2	[65]
	\textit{tetAr_A2}	CGAAACGACAGACCACATG			
\textit{tetB}	\textit{tetBf_BR}	CGATGCTGTTGTTGCTTATAA	571	pEDtetB1	[65]
	\textit{tetB_BR}	GCTGGAATACGTAGTGAA			
\textit{tetK}	\textit{tetKf}	TCGATAGGAACAGCAGTA	169	pT181	[83]
	\textit{tetKr}	CAACAGATCCTACCTCC			
\textit{tetM}	\textit{tetMf_M6}	GTTATACCGGAAGYGC	687	pJP76	[65]
	\textit{tetMf_M4}	GAAAGCGCAAGATTGGGT			
\textit{floR}	\textit{flo_f}	AATACGGGCGCCACGCTGATC	215	pABSS9	[66]
	\textit{flo_r}	CGCCTGACTTCCTACCCCTC			
\textit{intI}	\textit{intIf}	GTTCGCGGTAAGGTCTGAG	890	[45]	
	\textit{intIr}	CGTAGAGACGTCGAGAAGT			
\textit{16S rDNA}	\textit{16sRNAf}	AGATTTTGTGACCTGCGTCAGT	variable	DNA	[88]
	\textit{16sRNAr1}	ACGGCTACCTTGTACCGACTT			

doi:10.1371/journal.pone.0042724.t003
against the non-redundant nucleotide sequence database at GenBank.

Species identification of marine bacteria containing antimicrobial resistance genes
 Identification of marine bacteria containing antimicrobial resistance genes was done by PCR amplification of 16S ribosomal genes [87,88] using primers 16S rRNAf and 16S rRNAr (Table 5). The amplicons obtained were approximately 1500 bp and spanned 99% of 16S rRNA genes. Amplicons were sequenced and were identified by BLAST analysis against the non-redundant nucleotide sequence database at GenBank.

Statistical analysis
To insure data quality and to exclude erratic values in quantitation of colonies the following three criteria were used. 1. If colony counts were consistent with a dilution series (roughly monotonic and decreasing with increasing dilutions), cfu g⁻¹ were calculated using the plate with the lowest dilution with <160 colonies. 2. If colony counts were consistent with a dilution series but no plate had <160 colonies, cfu g⁻¹ were calculated using the plate with the lowest dilution with >160 colonies. 3. If colony counts were not consistent with a dilution series (suggesting incomplete dispersal in the undiluted material), cfu g⁻¹ were calculated using the plate with the lowest dilution with consistent with a dilution series with <160 colonies. Data not meeting these criteria (5 of 258 points) were excluded from analysis. For computational purposes, plates with no colonies were imputed a value of 1, a value at the non-detect level. Data were analyzed by two-way ANOVA using rank transformed data [89] and a Student—value at the non-detect level. Data were analyzed by two-way ANOVA using rank transformed data [89] and a Student—value at the non-detect level. Data were analyzed by two-way ANOVA using rank transformed data [89] and a Student—value at the non-detect level. Data were analyzed by two-way ANOVA using rank transformed data [89] and a Student—value at the non-detect level. Data were analyzed by two-way ANOVA using rank transformed data [89] and a Student—value at the non-detect level. Data were analyzed by two-way ANOVA using rank transformed data [89] and a Student—value at the non-detect level. Data were analyzed by two-way ANOVA using rank transformed data [89] and a Student—value at the non-detect level.
Capone DG, Weston DP, Miller V, Shoemaker C (1996) Antibacterial residues in marine sediments and invertebrates following chemotherapy in aquaculture. Aquaculture 145: 55–75.

Heksen H, Berge JA, Hormazabal V, Vindstad M (1995) Persistence of antimicrobial agents in marine sediments. Aquaculture 133: 173–184.

Herwig RP, Gray JP, Weston DP (1997) Antibacterial resistant bacteria in superficial sediments near salmon net-cage farms in Puget Sound, Washington. Aquaculture 149: 163–203.

Coyne R, Smith P, Moriarty C (2001) The fate of oxytetracycline in the marine environment of a salmon cage farm. Mar Environ Health 1: 5–24.

Holten Lützhøft H-C, Halling-Sørensen B, Jørgensen SE (1999) Algal toxicity of oxytetracycline and elevated frequencies of oxytetracycline resistant bacteria in the pelagic environment of temperate coastal waters: seasonal changes in fish farm sediment. FEMS Microbiol Ecol 55: 48–56.

Cattoir V, Poirel L, Aubert C, Soussy CJ, Nordmann P (2008) Unexpected occurrence of plasmid-mediated quinolone resistance determinants in environmental Aeromonas spp. Emerg Infect Dis 14: 231–237.

Cattoir V, Poirel L, Mazel D, Soussy CJ, Nordmann P (2007) Vibrio splendidus as the source of plasmid-mediated Qnr-like quinolone resistance determinants. Antimicrob Agents Chemother 51: 2650–2651.

Pan JC, Yer C, Wang HQ, Xiang HQ, Zhang W, et al. (2008) Vibrio cholerae O139 multiple-drug resistance mediated by Ternina peli plIP1202-like conjugative plasmid. Antimicrob Agents Chemother 52: 3829–3835.

Rhodes G, Huys G, Swings J, McGann P, Hiney M, et al. (2005) Distribution of oxytetracycline resistance plasmids between aeromonads in hospital and aquaculture environments: implication of Tn1722 in dissemination of the tetracycline resistance determinant Tet A. Appl Environ Microbiol 66: 3883–3890.

Welch TJ, Fricke WF, McDermott PF, White DG, Rosso ML, et al. (2007) Multiple antimicrobial resistance in plague: an emerging public health risk. PLoS ONE 2: e309.

Baquero F, Martinez JL, Canton R (2008) Antibiotics and antibiotic resistance in water environments. Curr Opin Biotechnol 19: 260–265.

Schmidt AS, Bruun MS, Dalsgaard I, Pedersen K, Larsen JL (2000) Occurrence of antimicrobial resistance in fish-pathogenic and environmental bacteria associated with four Danish rainbow trout farms. Appl Environ Microbiol 66: 4900–4913.

Saga T, Kaku M, Ohdera Y, Yamazaki S, Sato K, et al. (2005) Vibrio parahaemolyticus chromosomal qnr homologue: Vpaqnr0595: demonstration by transformation with a mutated gene of its potential to reduce quinolone susceptibility in Escherichia coli. Antonie van Leeuwenhoek 49: 2114–2145.

Strahlé P, Jacoby GA, Hooper DC, Robbecke A (2009) Plasmid-mediated quinolone resistance: a multifaceted threat. Clin Microbiol Rev 22: 664–689.

Jacobs L, Chenia HY (2007) Characterization of integrons and tetracycline resistance determinants in Aeromonas spp. isolated from South African aquaculture systems. Int J Food Microbiol 114: 295–306.

Rosewarne CP, Pettigrove V, Stokes HW, Parsons YM (2010) Class I integrons in benthic bacterial communities: abundance, association with Tn4202-like transposition modules and evidence for coselection with heavy-metal resistance. FEMS Microbiol Ecol 72: 35–46.

Schmid AM, Bruun MS, Dalsgaard I, Larsen JL (2000) Incidence, distribution, and spread of tetracycline resistance determinants and integron-associated antibiotic resistance genes among motile aeromonads from a fish farming environment. Appl Environ Microbiol 67: 3567–3572.

Turró B, Llabrés P, Solberg TM, Solberg AV, A M (2003) Integron-containing Inc U R plasmids pRSA1 and pAR-32 from the fish pathogen Aeromonas salmonicida. Antonie van Leeuwenhoek 49: 1283–1290.

Xu H, Davies J, Mao V (2007) Molecular characterization of class 3 integrons from Delfini sp. J Bacteriol 189: 6276–6280.

Miranda CD, Zemelman R (2001) Antibiotic resistant bacteria in fish from the Concepcion Bay, Chile. Mar Pollut Bull 42: 1096–1102.

Silva J, Zemelman R, Mendoza MA, Henriquez M, Merino G, et al. (1987) Antibiotic-resistant gram negative bacilli isolated from sea water and shellfish. Possible epidemiological implications. Rev Latinoam Microbiol 29: 165–169.

Bissett A, Bowman J, Burke C (2006) Bacterial diversity in organically-enriched superficial sediments near salmon net-cage farms in Puget Sound, Washington. Aquaculture 149: 163–203.

Kapetanaki M, Kerry J, Hiney M, O’Brien C, Coyne R, et al. (1995) Emergence, in oxytetracycline-free marine mesocosms, of microorganisms capable of colony formation on oxytetracycline-containing media. Aquaculture 139: 227–236.

Björklund H, Bondestam J, Bylund G (1990) Residues of oxytetracycline in wild fish and sediments from fish farms. Aquaculture 86: 359–367.

Samuelsen OB, Torvkv V, Ervik A (1992) Long-range changes in oxytetracycline concentration and bacterial resistance towards oxytetracycline in a fish farm sediment after medication. Sci Total Environ 114: 25–36.

D’COSTA VM, King CE, Kalan L, Morar M, Sung WW, et al. (2011) Antibiotic resistance is ancient. Nature 477: 456–461.

Robbecke A, Strahlé P, Jacoby GA, Macielag M, Alaban D, et al. (2006) Fluorquinolone-modifying enzyme: a new adaptation of a common aminocycl- acide acetyltransferase. Nat Med 12: 83–88.

Chopra I, Roberts M (2001) Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 65: 329–360.

Miranda CD, Kehrenberg C, Ulep C, Schwarz S, Roberts MC (2003) Diversity of tetracycline resistance genes in bacteria from Chilean salmon farms. Antimicrob Agents Chemother 47: 833–838.

Singer RS, Patterson SK, Meier AE, Gibson JK, Lee HL, et al. (2004) Relationship between phenotypic and genotypic florfenicol resistance in Escherichia coli. Antonie van Leeuwenhoek 48: 4047–4049.

Canton R (2009) Antibiotic resistance genes from the environment: a perspective through a newly identified antibiotic resistance mechanism in the clinical setting. Clin Microbiol Infect 15 Suppl 1: 20–25.

Hastings PJ, Rosenberg SM, Slack A (2004) Antibiotic-induced lateral transfer of antibiotic resistance. Trends Microbiol 12: 404–406.

Tsai J, Chang SH, Chen J, Lu S, Chou T (2003) Fluorquinolones in wild fish and wild living around a salmon aquaculture center in Chile. Rev Chilena Infect 24: 14–18.

Samuelsen OB, Lunestad BT, Hølleland T, Ervik A (1992) Residues of oxolinic acid in wild fauna following medication in fish farms. Dis Aq Org 12: 111–119.

Cabello FC (2006) Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environ Microbiol 8: 1137–1141.

Carlson MJ, Coffino M, Milward A (2007) Salmonella enterica serovar Philadelphia: an emerging public health risk. PLoS ONE 2: e403.

Baquero F (2009) Environmental stress and evolvability in microbial systems. Clin Microbiol Infect 15 Suppl 1: 1–10.

Dott T, Lewis K, Vullie M (2009) SOS response induces persistence to fluoroquinolones in Escherichia coli. PLoS Genet 5: e1000760.

Vosz A, Cabello CF, Boothman RA (2007) Residues of tetracyclines and quinolones in wild fish living around a salmon aquaculture center in Chile. Rev Chilena Infect 24: 14–18.

Samuelsen OB, Lunestad BT, Hølleland T, Ervik A (1992) Residues of oxolinic acid in wild fauna following medication in fish farms. Dis Aq Org 12: 111–119.

Cabello FC (2006) Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environ Microbiol 8: 1137–1141.

Carlson MJ, Coffino M, Milward A (2007) Salmonella enterica serovar Philadelphia: an emerging public health risk. PLoS ONE 2: e403.

Robbecke A, Strahlé P, Jacoby GA, Hooper DC, Alaban D, et al. (2006) Fluorquinolone-modifying enzyme: a new adaptation of a common aminocycl- acide acetyltransferase. Nat Med 12: 83–88.

Hastings PJ, Rosenberg SM, Slack A (2004) Antibiotic-induced lateral transfer of antibiotic resistance. Trends Microbiol 12: 404–406.

Tsai J, Chang SH, Chen J, Lu S, Chou T (2003) Fluorquinolones in wild fish and wild living around a salmon aquaculture center in Chile. Rev Chilena Infect 24: 14–18.

Samuelsen OB, Lunestad BT, Hølleland T, Ervik A (1992) Residues of oxolinic acid in wild fauna following medication in fish farms. Dis Aq Org 12: 111–119.

Cabello FC (2006) Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environ Microbiol 8: 1137–1141.
81. Kim HR, Wang M, Park CH, Kim EC, Jacoby GA, et al. (2009) \textit{oqxAB} encoding a multidrug efflux pump in human clinical isolates of \textit{Enterobacteriaceae}. Antimicrob Agents Chemother 53: 3582–3584.
82. Minarini LA, Poirol L, Gantois V, Darini AL, Nordmann P (2008) Plasmid-mediated quinolone resistance determinants among enterobacterial isolates from outpatients in Brazil. J Antimicrob Chemother 62: 474–478.
83. Ng IJ, Martin I, Alla M, Mulvey M (2001) Multiplex PCR for the detection of tetracycline resistant genes. Mol Cell Probes 15: 209–215.
84. Bolton LF, Kelley LC, Lee MD, Fedorka-Cray PJ, Maurer JJ (1999) Detection of multidrug-resistant \textit{Salmonella enterica} serotype Typhimurium DT104 based on a gene which confers cross-resistance to florfenicol and chloramphenicol. J Clin Microbiol 37: 1348–1351.
85. Bey BS, Fichot EB, Dayama G, Decho AW, Norman RS (2010) Extraction of high molecular weight DNA from microbial mats. Biotechniques 49: 631–640.
86. Miller DN, Bryant JE, Madsen EL, Ghiorse WC (1999) Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples. Appl Environ Microbiol 65: 4715–4724.
87. Griffen AL, Beall CJ, Firestone ND, Gross EL, DiFrancesco JM, et al. (2011) CORE: a phylogenetically-curated 16S rDNA database of the core oral microbiome. PLoS One 6: e19051.
88. Weinburg WG, Barnes SM, Pelletier DA, Lane DJ (1991) 16S rRNA amplification for phylogenetic study. J Bacteriol 173: 697–703.
89. Conover WJ, Iman RL (1981) Rank transformations as a bridge between parametric and nonparametric statistics. Am Stat 35: 124–133.