Long-Term Antiplatelet Mono- and Dual Therapies After Ischemic Stroke or Transient Ischemic Attack: Network Meta-Analysis

Wuxiang Xie, MD, PhD*; Fanfan Zheng, MD, PhD*; Baoliang Zhong, MD, PhD; Xiaoyu Song, MD, MPH

Background—The latest guidelines do not make clear recommendations on the selection of antiplatelet therapies for long-term secondary prevention of stroke. We aimed to integrate the available evidence to create hierarchies of the comparative efficacy and safety of long-term antiplatelet therapies after ischemic stroke or transient ischemic attack.

Methods and Results—We performed a network meta-analysis of randomized controlled trials to compare 11 antiplatelet therapies in patients with ischemic stroke or transient ischemic attack. In December 2014, we searched Medline, Embase, and the Cochrane Library database for trials. The search identified 24 randomized controlled trials including a total of 85,667 patients with antiplatelet treatments for at least 1 year. Cilostazol significantly reduced stroke recurrence in comparison with aspirin (odds ratio 0.66, 95% credible interval 0.44 to 0.92) and dipyridamole (odds ratio 0.57, 95% credible interval 0.34 to 0.95), respectively. Cilostazol also significantly reduced intracranial hemorrhage compared with aspirin, clopidogrel, terutroban, ticlopidine, aspirin plus clopidogrel, and aspirin plus dipyridamole. Aspirin plus clopidogrel could not significantly reduce stroke recurrence compared with monotherapies but caused significantly more major bleeding than all monotherapies except terutroban. The pooled estimates did not change materially in the sensitivity analyses of the primary efficacy outcome.

Conclusions—Long-term monotherapy was a better choice than long-term dual therapy, and cilostazol had the best risk–benefit profile for long-term secondary prevention after stroke or transient ischemic attack. More randomized controlled trials in non–East Asian patients are needed to determine whether long-term use of cilostazol is the best option for the prevention of recurrent stroke. (J Am Heart Assoc. 2015;4:e002259 doi: 10.1161/JAHA.115.002259)

Key Words: antiplatelet • network meta-analysis • stroke • transient ischemic attack

Stoke is the second most common cause of death and the third most common cause of disability worldwide.1,2 As stroke mortality has decreased over the past 2 decades, the absolute number of stroke survivors has increased and is huge.3 Given the high recurrence rate, secondary prevention of future stroke among these survivors plays a pivotal role in reducing disease burden.4 The use of antiplatelet agents is the standard treatment for patients with noncardioembolic ischemic stroke or transient ischemic attack (TIA).4 A number of randomized controlled trials (RCTs) have tested different antiplatelet mono- and dual therapies in secondary prevention after ischemic stroke or TIA5–28; however, comparisons of some antiplatelet therapies are currently lacking.

Several pairwise meta-analyses were performed previously to compare the efficacy of antiplatelet agents for the secondary prevention of stroke.29–31 These studies, however, could not generate clear hierarchies for the efficacy and safety of all available antiplatelet therapies because many antiplatelet treatments have not been compared head to head and because such analyses could not integrate all of the evidence from several comparators. Using a statistical technique called network meta-analysis, we were able to take advantage of both direct (head-to-head) and indirect evidence and formally compare all existing therapies.32,33

Two previous network meta-analyses were conducted to compare the efficacy of antiplatelet therapies among stroke or TIA patients34,35; however, neither provided hierarchies for the efficacy and safety of antiplatelet therapies. The earlier study compared only a small number of antiplatelet therapies.34 The
later study identified 24 trials published before March 201235 but failed to incorporate a few major large-scale trials, such as the SPSP3 trial,24 the JASAP study,17 and the study published by Fukuuchi et al.14 In addition, the second network meta-analysis did not restrict the duration of antiplatelet therapy.35 Because the American Heart Association/American Stroke Association (AHA/ASA) guidelines recommend that patients with ischemic stroke or TIA continuously receive antiplatelet treatment,4 we believe it is more important to evaluate overall recurrent stroke reduction and bleeding risk of long-term antiplatelet therapies in these patients. To achieve this goal, we performed the network meta-analysis of RCTs to compare the effectiveness and safety of long-term antiplatelet treatments among patients with ischemic stroke or TIA.

Methods
This study was performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement.36 Ethics approval was not necessary for this study because only deidentified pooled data from individual studies were analyzed.

Data Sources and Search Strategy
A systematic literature search was conducted December 26, 2014, by searching Medline via Web of Science, Embase and Journals@Ovid Full Text via OvidSP, and the Cochrane Library database for trials. We limited our search to RCTs conducted in humans. Details of our search strategy are provided in Table S1. The search strategy in the current study was similar to those used in previous studies.37,38

Study Selection
RCTs were eligible for inclusion if they met the following criteria: Antiplatelet monotherapy versus monotherapy or dual versus monotherapy was tested in adult patients (aged ≥18 years) with ischemic stroke or TIA and had a treatment duration of at least 1 year. Because network meta-analysis requires a reasonably homogeneous sample,39,40 we did not include those RCTs assessing antiplatelet therapy (mostly aspirin) versus placebo because such studies had a wide range of daily doses (aspirin, from 75 to 1500 mg).41,42 Another reason is that the evaluation of antiplatelet therapy versus placebo becomes less important.

Initially, titles alone were reviewed for suitability. The abstracts of suitable titles were obtained and reviewed for suitability for full-text retrieval. Data were then extracted from suitable full-text reports. Additional appropriate reports were added when discovered by citation tracking.

Data Extraction and Quality Assessment
Data were independently extracted and assessed by 2 authors (F.Z. and B.Z.) using a predetermined data collection template. To resolve discrepancies about inclusion of studies and interpretation of data, a third investigator (W.X.) was consulted, and consensus was reached by discussion.

The primary efficacy outcome was stroke recurrence, including ischemic, hemorrhagic, and unknown stroke, and fatal and nonfatal stroke. The secondary efficacy outcome was the composite outcome of vascular events and all-cause or vascular mortality. The safety outcomes were intracranial hemorrhage and major bleeding. The definitions of the 4 outcomes in included trials are summarized in Table S2.

Study quality was independently assessed by 3 reviewers (F.Z., B.Z., and X.S.) who used the Cochrane Collaboration’s risk-of-bias method.43 Figure S1 shows the risk of bias of the included trials.

Data Synthesis and Analysis
Network meta-analysis combines direct and indirect evidence for all relative treatment effects and provides estimates with maximum statistical power.44–47 We fit the models within a Bayesian framework using WinBUGS software (version 1.4.3).48 The models, the WinBUGS codes, and R routines used in this study were open and could be found online.49 Convergence was assessed by running 3 Markov chains, and all results pertain to 100 000 Markov chain Monte Carlo cycles after a 10 000-simulation burn-in phase. Relative effect sizes were calculated as odds ratios (ORs) with corresponding 95% credible intervals. We assessed the fitness of our model using the deviance information criterion, a measure of model fitness that penalizes model complexity. If the tradeoff between model fitness and complexity favored the model with assumed consistency, this model was preferred (smaller deviance information criterion values correspond to more preferable values).50 As shown in Table S3, the assumption of consistency was supported for each outcome by a better tradeoff between model fitness and complexity (a smaller deviance information criterion value) when consistency was assumed rather than when it was not. We used the surface under the cumulative ranking curve, or SUCRA, probabilities to rank the antiplatelet therapies.47,51 SUCRA is a proportion expressed as the percentage of efficacy of an intervention on the outcome that would be ranked first without uncertainty, which equals 100% when the treatment is certain to be the best and 0% when it is certain to be the worst.47 The network results were assessed for consistency by comparing them with the results of pairwise meta-analyses. Furthermore, we estimated inconsistency as
the difference between direct and indirect estimates (called the *inconsistency factor*) and the corresponding 95% confidence interval (CI) for inconsistency factor in each closed loop by using the R code `ifplot.fun`, which could be found online. Inconsistent loops are those that present inconsistency factors with 95% CIs incompatible with zero. Pairwise meta-analyses were performed by using STATA (version 11; Stata Corp) within a random-effects framework that takes study heterogeneity into account to generate the pooled OR and 95% CI. The percentage of variability across studies attributable to heterogeneity beyond chance was estimated using the I^2 statistic.

We did sensitivity analyses on the primary efficacy outcome to explore whether the results of the present network meta-analysis were sensitive to certain restrictions on the data included. Those planned in advance were restricted to double-blind trials ($n=18$) and true randomization and allocation-concealed trials ($n=16$).

Results

Study Selection and Characteristics

Figure 1 shows the study selection process according to the PRISMA statement. The initial search and citation tracking identified 2678 publications. Fifty-five articles were reviewed by full text for details, and 31 of those were excluded. Finally, a total of 24 RCTs with 85,667 patients were included in the present network meta-analysis.5–28 Tables 1 and 2 summarize the characteristics of the 24 included trials. The following antiplatelet therapies were tested in the trials: cilostazol versus aspirin (3 trials with 3459 patients),9,11,15 clopidogrel versus...
Table 1. Baseline Characteristics of Included Trials

Trial	Country	Centers	Patients	Sample Size	Treatment Onset, Month	Treatment Duration, Month	Male, %	Mean Age, Y	Follow-Up, Mo	Lost to Follow-Up, %	Blinding
AAASPS 2003	US	62	IS	1809	0.25 to 3	19 (mean)	47	61	19 (mean)	3.8	Double-blind
ACCSG 1985	US and Canada	15	TIA	890	<3	18 (median)	67	63	25 (median)	4.2	Double-blind
AICLA 1987	France	4	IS, TIA	400	<12	36	69	63	36	3.8	Double-blind
CAPRE 1996	Worldwide	384	IS	6431	0.25 to 6	20 (mean)	64	65	23 (mean)	0.7	Double-blind
CASISP 2008	China	13	IS	719	1 to 6	12 to 18	69	60	12	1.3	Double-blind
CHARISMA 2011	Worldwide	768	IS, TIA	4320	<60	25 (median)	63	65	25 (median)	0.5	Double-blind
CSPS2 2010	Japan	278	IS	2672	<7	12 to 60	72	64	29 (mean)	0.2	Double-blind
ESPRIT 2006	Worldwide	79	Minor IS, TIA	2739	<6	42 (mean)	66	63	42 (mean)	3.8	Open
ESPS2 1996	Europe	59	IS, TIA	4953	<3	24	58	67	24	0.6	Double-blind
Fukuuchi 2007	Japan	129	IS	1151	>0.25	52	73	65	52	NS	Double-blind
Guo 2000	China	1	IS	68	1 to 6	12	35	61	12	NS	NS
Hass 1989	US and Canada	56	IS, TIA, RI	3069	<3	27 (mean)	65	63	24 to 72	2.7	Double-blind
JASAP 2011	Japan	157	IS	1294	0.25 to 6	15 (mean)	72	66	24	0.2	Double-blind
Li 2000	China	9	IS, TIA	329	NS	12 (mean)	71	64	12 (mean)	2.4	NS
MATCH 2004	Worldwide	507	IS, TIA	7599	<3	18	63	66	18	4.3	Double-blind
Matias-Guiu 1987	Spain	1	TIA	186	<12	21 (mean)	77	55	21 (mean)	4.5	Open
PERFORM 2011	Worldwide	802	IS, TIA	19 100	<3	28 (mean)	63	67	28 (mean)	0.3	Double-blind
PROFESS 2008	Worldwide	695	IS	20 332	<3	30 (mean)	64	66	30 (mean)	0.6	Double-blind
S-ACCESS 2006	Japan	14	IS	1499	0.25 to 6	19 (mean)	72	65	19 (mean)	NS	Double-blind
SPS3 2012	Worldwide	82	IS	3020	<6	41 (mean)	63	63	41 (mean)	2.0	Double-blind
TAIPI 2003	Portugal and Spain	43	IS	2107	<6	12 to 36	66	65	30 (mean)	2.1	Double-blind
TAPS 2004	Argentina	19	IS, TIA	429	<6	19 (mean)	68	65	19 (mean)	NS	Double-blind
Toghi 1987	Japan	101	TIA	281	<3	36	NS	NS	36	NS	12-mo double-blind, ≥24-mo open
TOPALS 2003	Japan	25	IS, TIA	270	<6	19 (mean)	65	67	19 (mean)	NS	NS

IS indicates ischemic stroke; NS, not specified; RI, retinal ischemia; TIA, transient ischemic attack.
Trial	Treatment Groups and Dosages	Stroke Recurrence	Composite Outcome	Intracranial Hemorrhage	Major Bleeding									
	Arm 1	Arm 2	Arm 3	Arm 1	Arm 2	Arm 3	Arm 1	Arm 2	Arm 3	Arm 1	Arm 2	Arm 3		
AAASPS 2003	Tic (250 mg BID)	Asp (250 mg BID)	—	107/1902	86/907	—	NS	NS	—	4/902	8/907	—		
ACCS 1985	Asp (250 mg QID)+Dip (75 mg QID)	—	—	53/448	60/442	—	2/448	4/442	—	15/448	21/442	—		
ACILA 1987	Asp (300 mg TID)+Dip (75 mg TID)	—	—	18/202	17/198	—	1/202	2/198	—	3/202	3/198	—		
CAPRIE 1996	Clor (75 mg OD)	Asp (250 mg OD)	—	315/333	338/3198	—	NS	NS	—	NS	NS	—		
CASISP 2008	Clor (100 mg BID)	Asp (100 mg OD)	—	12/060	20/359	—	1/360	5/59	—	1/360	6/359	—		
CHARISMA 2011	Asp (75 to 162 mg OD)+Clor (75 mg OD)	—	—	105/2157	131/2163	—	13/2157	11/2163	—	92/2157	61/2163	—		
CFS2 2010	Clor (100 mg BID)	Asp (81 mg OD)	—	82/1337	119/1335	—	8/1337	27/1335	—	23/1337	57/1335	—		
ESPIRIT 2006	Asp (30 to 325 mg OD)+Dip (200 mg BID)	—	—	108/1363	137/1376	—	12/1363	21/1376	—	35/1363	53/1376	—		
ESPS2 1996	Asp (25 mg BID)+Dip (200 mg BID)	Asp (25 mg bid)	157/1650	211/1654	206/1649	266/1649	NS	NS	NS	60/1650	24/1654	53/1649		
Fukuuchi 2001	Clor (75 mg OD)	Tic (200 mg OD)	—	17/573	15/578	—	5/573	1/578	—	5/573	1/578	—		
GU 2009	Clor (100 mg BID)	Asp (100 mg OD)	—	2/34	2/34	—	0/34	0/34	—	0/34	0/34	—		
Hass 1989	Tic (250 mg BID)	Asp (650 mg BID)	—	172/1529	212/1540	—	7/1529	7/1540	—	14/1529	28/1540	—		
JASAP 2011	Asp (25 mg BID)+Dip (200 mg BID)	Asp (81 mg OD)	—	57/655	39/639	—	13/655	13/639	—	26/655	23/639	—		
Li 2000	Tic (250 mg OD)	Asp (50 mg OD)	—	11/165	21/164	—	6/165	4/164	—	7/165	7/164	—		
MATCH 2004	Asp (75 mg OD)+Clop (75 mg OD)	—	—	339/3797	347/3802	—	40/3759	25/3781	—	7393759	223781	—		
Matias-Guiu 1982	Asp (50 mg OD)+Dip (100 mg TID)	—	—	9/115	7/71	—	NS	NS	—	NS	NS	—		
PERFORMANCE 2011	Asp (100 mg OD)	Asp (100 mg OD)	—	842/9556	828/9544	—	146/9479	121/9466	—	211/9479	219/9466	—		
PROFESSION 2008	Asp (25 mg BID)+Dip (200 mg BID)	—	—	916/10181	888/10151	—	1367/10181	1360/10151	—	147/10181	103/10151	419/10181	365/10151	—
S-ACCESS 2008	Asp (100 mg TID)	Asp (81 mg OD)	—	979/147	70/752	—	9/750	12/757	—	NS	NS	—		
SPS3 2012	Asp (325 mg OD)+Clop (75 mg OD)	—	—	125/138	1503	—	22/1517	15/1503	—	105/1517	56/1503	—		

Table 2. Antiplatelet Treatments and Outcomes of Included Trials
aspirin (1 trial with 6431 patients), dipyridamole versus aspirin (1 trial with 3303 patients), sarpogrelate versus aspirin (1 trial with 1499 patients), terutroban versus aspirin (1 trial with 19 100 patients), ticlopidine versus aspirin (4 trials with 5488 patients), ticlopidine versus clopidogrel (1 trial with 1151 patients), triflusal versus aspirin (2 trials with 2536 patients), aspirin plus clopidogrel versus aspirin (2 trials with 7340 patients), aspirin plus clopidogrel versus clopidogrel (1 trial with 7599 patients), aspirin plus dipyridamole versus aspirin (5 trials with 8622 patients), aspirin plus dipyridamole versus clopidogrel (1 trial with 20 332 patients), aspirin plus dipyridamole versus dipyridamole (2 trials with 3490 patients), and aspirin plus ticlopidine versus ticlopidine (1 trial with 270 patients).

Network Meta-Analysis

The network of antiplatelet treatment comparisons for stroke recurrence is shown in Figure 2. The network meta-analysis results for stroke recurrence and intracranial hemorrhage are reported in Table 3. Cilostazol significantly reduced stroke recurrence compared with aspirin (OR 0.66, 95% credible interval 0.44 to 0.92) and dipyridamole (OR 0.57, 95% credible interval 0.34 to 0.95), respectively. Intracranial hemorrhage was also significantly reduced by cilostazol compared with aspirin, clopidogrel, terutroban, ticlopidine, aspirin plus clopidogrel, and aspirin plus dipyridamole.

Similarly, cilostazol significantly reduced the composite outcome compared with aspirin (OR 0.68, 95% credible interval 0.48 to 0.93) and dipyridamole (OR 0.59, 95% credible interval 0.39 to 0.87), respectively.
Table 3. Results for Stroke Recurrence (Upper Diagonal Part) and Intracranial Hemorrhage (Lower Diagonal Part) From Network Meta-Analyses

Treatment	Asp	Cilo	Clop	Dip	Sarp	Teru	Tic	Trif	Asp+Clop	Asp+Dip	Asp+Tic
Asp	1.00	0.66 (0.44 to 0.92)*	0.89 (0.72 to 1.14)	1.13 (0.80 to 1.54)	1.19 (0.69 to 1.87)	1.04 (0.72 to 1.44)	0.87 (0.65 to 1.10)	0.98 (0.68 to 1.37)	0.85 (0.68 to 1.09)	0.89 (0.74 to 1.06)	1.45 (0.40 to 3.78)
Cilo	0.27 (0.08 to 0.58)*	1.00	1.39 (0.91 to 2.16)	1.77 (1.06 to 2.94)*	1.85 (0.97 to 3.12)	1.62 (0.98 to 2.64)	1.36 (0.85 to 2.15)	1.53 (0.90 to 2.47)	1.33 (0.86 to 2.05)	1.38 (0.91 to 2.13)	2.27 (0.59 to 6.48)
Clop	0.74 (0.37 to 1.49)	3.62 (1.07 to 10.60)*	1.00	1.28 (0.85 to 1.79)	1.35 (0.75 to 2.15)	1.18 (0.75 to 1.73)	0.99 (0.70 to 1.32)	1.12 (0.70 to 1.65)	0.97 (0.74 to 1.23)	1.01 (0.77 to 1.27)	1.65 (0.43 to 4.39)
Dip	—	—	—	—	1.00	1.07 (0.59 to 1.80)	0.94 (0.58 to 1.50)	0.79 (0.50 to 1.28)	0.89 (0.52 to 1.41)	0.77 (0.52 to 1.12)	0.80 (0.58 to 1.22)
Sarp	0.88 (0.23 to 2.32)	4.44 (0.78 to 14.55)	1.32 (0.27 to 3.90)	—	1.00	0.93 (0.49 to 1.64)	0.78 (0.43 to 1.28)	0.88 (0.46 to 1.50)	0.76 (0.42 to 1.29)	0.79 (0.44 to 1.27)	1.30 (0.31 to 3.68)
Teru	1.27 (0.53 to 2.45)	6.15 (1.55 to 16.65)*	1.94 (0.56 to 4.37)	—	2.06 (0.41 to 6.21)	1.00	0.87 (0.53 to 1.28)	0.98 (0.57 to 1.57)	0.85 (0.56 to 1.24)	0.88 (0.59 to 1.31)	1.44 (0.35 to 3.83)
Tic	0.96 (0.39 to 2.02)	4.71 (1.09 to 14.72)*	1.43 (0.46 to 3.34)	—	1.60 (0.31 to 5.17)	0.87 (0.28 to 2.19)	1.00	1.14 (0.75 to 1.75)	0.99 (0.71 to 1.37)	1.03 (0.75 to 1.43)	1.67 (0.47 to 4.38)
Trif	0.68 (0.18 to 1.72)	3.23 (0.59 to 10.75)	1.02 (0.20 to 2.89)	—	1.09 (0.15 to 3.94)	0.65 (0.13 to 1.67)	0.83 (0.16 to 2.62)	1.00	0.90 (0.56 to 1.35)	0.93 (0.63 to 1.34)	1.53 (0.37 to 3.93)
Asp+Clop	1.31 (0.67 to 2.46)	6.45 (1.72 to 19.79)*	1.91 (0.94 to 3.50)	—	2.11 (0.48 to 6.08)	1.18 (0.42 to 2.87)	1.63 (0.52 to 5.60)	2.72 (0.66 to 7.90)	1.00	1.05 (0.78 to 1.40)	1.73 (0.45 to 4.73)
Asp+Dip	0.85 (0.46 to 1.37)	4.17 (1.20 to 11.06)*	1.25 (0.55 to 2.03)	—	1.38 (0.32 to 3.81)	0.77 (0.26 to 1.78)	1.05 (0.34 to 2.30)	1.74 (0.42 to 5.12)	0.70 (0.29 to 1.32)	1.00	1.65 (0.45 to 4.21)
Asp+Tic	—	—	—	—	—	—	—	—	—	—	1.00

Each cell gives an odds ratio (OR) and 95% credible interval. In the upper diagonal part, the OR compares the column condition with the row condition, and in the lower diagonal part, this OR compares the row condition with the column condition. Asp indicates aspirin; Cilo, cilostazol; Clop, clopidogrel; Dip, dipyridamole; NS, not specified; Sarp, sarpogrelate; Teru, terutroban; Tic, ticlopidine; Trif, triflusal.

*Significant results.
Table 4. Results for Composite Outcome (Upper Diagonal Part) and Major Bleeding (Lower Diagonal Part), From Network Meta-Analyses

Treatment	Asp	Cilb	Clop	Dip	Sarp	Teru	Tic	Trif	Asp+Cilb	Asp+Clop	Asp+Dip	Asp+Tic
Asp	1.00	0.68 (0.48 to 0.93)*	0.93 (0.77 to 1.16)	1.11 (0.78 to 1.51)	1.17 (0.72 to 1.77)	1.04 (0.73 to 1.43)	0.86 (0.67 to 1.06)	0.96 (0.64 to 1.33)	0.92 (0.73 to 1.18)	0.88 (0.74 to 1.10)	0.93 (0.33 to 2.15)	
Cilb	0.35 (0.15 to 0.62)*	1.00	1.42 (0.95 to 2.10)	1.68 (1.06 to 2.54)*	1.79 (0.98 to 2.95)	1.59 (0.95 to 2.48)	1.32 (0.85 to 1.92)	1.47 (0.86 to 2.33)	1.40 (0.91 to 2.06)	1.41 (0.97 to 2.04)	1.43 (0.48 to 3.49)	
Clop	0.74 (0.43 to 1.15)	2.50 (1.02 to 5.85)*	1.00	1.20 (0.79 to 1.72)	1.27 (0.75 to 2.05)	1.13 (0.75 to 1.56)	0.93 (0.67 to 1.20)	1.04 (0.65 to 1.57)	0.99 (0.75 to 1.30)	1.00 (0.78 to 1.28)	1.01 (0.35 to 2.34)	
Dip	0.40 (0.19 to 0.74)*	1.30 (0.46 to 3.10)	0.57 (0.24 to 1.12)	1.00	1.09 (0.56 to 1.79)	0.97 (0.57 to 1.56)	0.80 (0.52 to 1.37)	0.89 (0.53 to 1.37)	0.86 (0.57 to 1.29)	0.86 (0.62 to 1.17)	0.87 (0.28 to 2.02)	
Sarp	—	—	—	—	—	—	—	—	1.00	0.94 (0.50 to 1.57)	0.78 (0.44 to 1.22)	0.87 (0.46 to 1.54)
Teru	1.04 (0.56 to 1.76)	3.35 (1.35 to 7.55)*	1.48 (0.66 to 2.90)	2.89 (1.12 to 6.04)*	—	1.00	0.85 (0.56 to 1.27)	0.95 (0.56 to 1.49)	0.91 (0.61 to 1.37)	0.91 (0.63 to 1.36)	0.92 (0.31 to 2.30)	
Tic	0.53 (0.29 to 0.89)*	1.75 (0.61 to 3.69)	0.76 (0.33 to 1.37)	1.49 (0.56 to 2.92)	—	0.56 (0.24 to 1.00)	1.00	1.13 (0.72 to 1.67)	1.08 (0.80 to 1.51)	1.09 (0.83 to 1.49)	1.08 (0.41 to 2.46)	
Trif	0.41 (0.18 to 0.74)*	1.31 (0.45 to 2.92)	0.59 (0.20 to 1.22)	1.13 (0.37 to 2.53)	—	0.42 (0.15 to 0.87)*	0.83 (0.30 to 1.85)	1.00	0.99 (0.63 to 1.56)	0.99 (0.64 to 1.49)	1.00 (0.35 to 2.39)	
Asp+Cilb	1.93 (1.30 to 3.05)*	6.32 (2.86 to 14.22)*	2.71 (1.58 to 4.43)*	5.37 (2.39 to 11.10)*	—	2.02 (0.94 to 3.91)	3.94 (1.83 to 7.81)*	5.41 (2.33 to 11.28)*	1.00	1.02 (0.75 to 1.37)	1.03 (0.35 to 2.36)	
Asp+Clop	0.87 (0.62 to 1.19)	2.86 (1.26 to 6.18)*	1.23 (0.79 to 1.87)	2.39 (1.21 to 4.44)*	—	0.91 (0.47 to 1.65)	1.78 (0.87 to 3.22)	2.46 (1.09 to 5.34)*	0.47 (0.27 to 0.76)*	1.00	1.01 (0.37 to 2.25)	
Asp+Tic	—	—	—	—	—	—	—	—	—	1.00	—	—

Each cell gives an odds ratio (OR) and 95% credible interval. In the upper diagonal part, the OR compares the column condition with the row condition, and in the lower diagonal part, this OR compares the row condition with the column condition. Asp indicates aspirin; Cilb, cilostazol; Clop, clopidogrel; Dip, dipyridamole; NS, not specified; Sarp, sarpogrelate; Teru, terutroban; Tic, ticlopidine; Trif, triflusal.

*Significant results.

DOI: 10.1161/JAHA.115.002259
credible interval 0.39 to 0.95) and reduced major bleeding compared with aspirin, clopidogrel, terutroban, aspirin plus clopidogrel, and aspirin plus dipyridamole (Table 4). In addition, dipyridamole, ticlopidine, and triflusal caused significantly less major bleeding than aspirin; terutroban caused significantly more major bleeding than dipyridamole and triflusal; aspirin plus clopidogrel caused significantly more major bleeding than aspirin, clopidogrel, dipyridamole, ticlopidine, triflusal, and aspirin plus dipyridamole; and aspirin plus dipyridamole caused significantly more major bleeding than dipyridamole and triflusal.

Table 5 shows the mean values of SUCRA probabilities that provided the hierarchies for the efficacy and safety of the 11 antiplatelet therapies. In particular, cilostazol displayed the best risk–benefit profile, with SUCRA probabilities of 0.9343, 0.9252, 0.9718, and 0.8850 for reducing stroke recurrence, composite outcome, intracranial hemorrhage, and major bleeding, respectively. Figures S2 through S5 show the ranking probability of each treatment for outcomes. No inconsistent loop was identified in the analyses of inconsistency factor (Figure S6).

Pairwise Meta-Analysis

We examined pairwise comparisons of all interventions with available head-to-head data. The results are presented in Figures 3 through 6. In general, the results obtained from pairwise meta-analysis closely matched those of the network meta-analysis. Stroke recurrence, composite efficacy outcome, intracranial hemorrhage, and major bleeding were all significantly reduced by cilostazol versus aspirin. Among the 22 pairwise meta-analyses, each of which included at least 2 trials (Figures 3 through 6), significant heterogeneity was identified in 2 pairwise meta-analyses. One of the 2 pairwise meta-analyses compared ticlopidine with aspirin for preventing stroke recurrence (including 4 trials, I²=69.9, P=0.019) (Figure 3), and the other compared ticlopidine with aspirin for composite outcome (including 4 trials, I²=73.1, P=0.011) (Figure 4). There was no evidence of heterogeneity across trials in the remaining 20 pairwise meta-analyses.

Sensitivity Analysis

The pooled risk estimates did not change substantially in the sensitivity analyses on the primary efficacy outcome from both network meta-analyses and pairwise meta-analyses. Tables S4 and S5 and Figures S7 and S8 show the full results of the sensitivity analysis.

Discussion

Our network meta-analysis provided evidence-based hierarchies for the efficacy and safety of long-term antiplatelet mono- and dual therapies among patients with ischemic stroke or TIA. It overcame the major limitation of conventional pairwise meta-analyses by combining direct and indirect evidence of relative treatments in the analysis. Results from this study indicated that when compared with antiplatelet monotherapy, dual therapy was not associated with a reduction in stroke recurrence and composite outcome but rather with a significant increase in the risk of major bleeding, especially aspirin plus clopidogrel. In addition, our results showed that cilostazol displayed the

Table 5. The SUCRA Probabilities of Antiplatelet Therapies on Efficacy and Safety Outcomes

Treatment	Stroke Recurrence SUCRA	Rank	Composite Outcome SUCRA	Rank	Intracranial Hemorrhage SUCRA	Rank	Major Bleeding SUCRA	Rank
Aspirin	0.3551	7	0.3465	8	0.3361	7	0.2136	8
Cilostazol	0.9343	1	0.9252	1	0.9718	1	0.8850	1
Clopidogrel	0.6252	5	0.5380	6	0.6487	3	0.4950	5
Dipyridamole	0.2250	11	0.2446	10	—	—	0.8221	2
Sarpogrelate	0.2433	10	0.2223	11	0.5538	4	—	—
Terutroban	0.3547	8	0.3234	9	0.2025	8	0.2451	7
Ticlopidine	0.6510	3	0.6854	2	0.4496	6	0.6740	4
Triflusal	0.4551	6	0.4811	7	0.6794	2	0.8096	3
Aspirin + clopidogrel	0.7033	2	0.5741	4	0.1650	9	0.0064	9
Aspirin + dipyridamole	0.6321	4	0.5657	5	0.4931	5	0.3492	6
Aspirin + ticlopidine	0.3208	9	0.5937	3	—	—	—	—

SUCRA indicates surface under the cumulative ranking curve.

*Ranking SUCRA probabilities in order as the best treatment, the second best, the third best, and so on, among the antiplatelet therapies.
The effects of dual therapy in short- and long-term prevention of recurrent stroke might be different. A recent meta-analysis that combined the results from 14 RCTs reported that dual therapy was more effective than monotherapy in reducing the risk of early recurrent stroke in patients with an index stroke in the previous 3 days.37 The latest AHA/ASA guidelines also recommend that the combination of aspirin and clopidogrel might be considered for initiation within 24 hours of a minor ischemic stroke or TIA.4 For long-term secondary prevention, however, the combination of aspirin and clopidogrel is not recommended by the AHA/ASA guidelines for routine long-term secondary prevention of stroke due to high risk of bleeding,4 which is consistent with our results. Moreover, a recent pairwise meta-analysis based on 7 RCTs that involved 39,574 patients with ischemic stroke or TIA reported that antiplatelet dual therapy lasting >1 year is not associated with a greater reduction in overall recurrent stroke risk than monotherapy, and that finding also supported our results.29 As far as we know, this network meta-analysis is the first to evaluate the efficacy and safety of long-term antiplatelet therapies after ischemic stroke or TIA and provides the most robust evidence in support of long-term monotherapy as a better choice than long-term dual therapy.

The present study indicated that cilostazol had the best risk–benefit profile among the 11 antiplatelet treatments.

Figure 3. Pairwise meta-analyses comparing antiplatelet therapies on stroke recurrence. Squares represent point estimates for effect size expressed as an odds ratio, with the size proportional to the inverse variance of the estimate. Diamonds represent pooled estimates. Lines represent 95% CIs. Asp indicates aspirin; CI, confidence interval; Cilo, cilostazol; Clop, clopidogrel; Dip, dipyridamole; OR, odds ratio; Sarp, sarpogrelate; Teru, terutroban; Tic, ticlopidine; Trif, triflusal.
stroke within the previous 1 to 6 months, cilostazol reduced the rate of recurrent stroke compared with aspirin (hazard ratio 0.62, 95% CI 0.30 to 1.26), although the benefit was not significant.9 The rate of any hemorrhagic event was also lower in the cilostazol group than in the aspirin group.9 The CSPS 2 study in 2757 Japanese patients is another trial conducted in an East Asian population to compare the efficacy and safety of cilostazol and aspirin in patients with ischemic stroke.11 This trial found that cilostazol significantly reduced the recurrence rate of stroke compared with aspirin (hazard ratio 0.74, 95% CI 0.56 to 0.98) and that major bleeding events occurred in fewer patients on cilostazol than on aspirin (hazard ratio 0.46, 95% CI 0.30 to 0.71).11 On the basis of this evidence, cilostazol has been approved by the China Food and Drug Administration for treatment of noncardioembolic ischemic stroke (license number H10960014), and the latest Chinese guidelines for secondary prevention of stroke recommends cilostazol (100 mg BID) as an alternative to aspirin.53 Similarly, cilostazol is used in Japan for secondary prevention of stroke and is included in the Japanese guidelines for the treatment of ischemic stroke.54 Cilostazol is not licensed in the United States for ischemic stroke or TIA treatment because the efficacy and safety of cilostazol have not been tested in non–East Asian patients. Generalizing the effect of cilostazol to other groups can be challenging because the risk of both ischemic and hemorrhagic stroke is higher in the East Asian population compared with other populations. Further trials in non–East Asian patients are needed to confirm whether cilostazol is effective and safe as a monotherapy for long-term secondary prevention after ischemic stroke or TIA. In addition,
cost-effectiveness studies are also required to explore whether long-term use of cilostazol is cost-effective compared with other monotherapies.

Two previous network meta-analyses have been conducted to compare the effect of antiplatelet therapies after ischemic stroke or TIA; however, neither provided hierarchies for the efficacy and safety of antiplatelet therapies. In one of the studies, Thijs et al found that the combination of aspirin and dipyridamole was more effective than aspirin, ticlopidine, and clopidogrel in the prevention of serious vascular events; this finding was not consistent with our analysis. We consider the main reason to be that 13 of the 24 trials identified by Thijs et al did not meet the inclusion criteria for our study because of placebo control or treatment duration <1 year. In addition, the network meta-analysis by Thijs et al excluded trials assessing triflusal, cilostazol, and sarpogrelate and did not report safety data. In the other study, Malloy et al reported that more overall hemorrhagic events seemed to occur with the combination of aspirin and clopidogrel than with other treatments, and that finding supported our results. Nevertheless, they found that aspirin plus dipyridamole was more protective than aspirin alone, which was not consistent with our results. Similarly, we consider the main reason to be that 9 of the 24 trials identified by Malloy et al did not meet the inclusion criteria for our study.

The main strength of our study is the inclusion of 24 RCTs with 85,667 patients, thus it is the largest evaluation of long-term antiplatelet therapies for stroke recurrence to date. Furthermore, the network meta-analysis based on a Bayesian model makes indirect comparison among multiple

Figure 5. Pairwise meta-analyses comparing antiplatelet therapies on intracranial hemorrhage. Squares represent point estimates for effect size expressed as an odds ratio, with the size proportional to the inverse variance of the estimate. Diamonds represent pooled estimates. Lines represent 95% CIs. Asp indicates aspirin; CI, confidence interval; Cilo, cilostazol; Clop, clopidogrel; Dip, dipyridamole; OR, odds ratio; Sarp, sarpogrelate; Teru, terutroban; Tic, ticlopidine; Trif, triflusal.
treatments available, especially when there are few trials for direct comparison between different antiplatelet therapies. Consequently, this study can provide evidence-based hierarchies for the long-term efficacy and safety of all available antiplatelet therapies among patients with ischemic stroke or TIA.

This study also has some limitations. First, the full-text articles reviewed were limited to English- and Chinese-language studies, and that can introduce selection bias. A relevant article in French identified from the literature was not included in this study. Nonetheless, we believe that the possibility of selection bias is reduced by the relatively large number of studies available in English and Chinese. In addition, previous studies demonstrated that excluding studies published in languages other than English generally has little effect on summary effect estimates. Second, not all included trials reported the results of intracranial hemorrhage or major bleeding, thus some comparisons between antiplatelet therapies for safety outcomes were not available. Third, all comparisons involving aspirin plus ticlopidine are tenuous, given that only 1 small trial was included in this study, and that may affect the stability of relevant results. Finally, most pairs for comparison included only 1 trial, and cilostazol versus aspirin has not been tested in non–East Asian patients, which might undermine the strength of our results to affect clinical practice.

In conclusion, based on this network meta-analysis, we suggested that long-term monotherapy was a better choice than long-term dual therapy and that cilostazol had the best risk–benefit profile for long-term secondary prevention after stroke or TIA. More high-quality trials in non–East Asian patients are needed to determine whether long-term use of

Figure 6. Pairwise meta-analyses comparing antiplatelet therapies on major bleeding. Squares represent point estimates for effect size expressed as an odds ratio, with the size proportional to the inverse variance of the estimate. Diamonds represent pooled estimates. Lines represent 95% CIs. Asp indicates aspirin; CI, confidence interval; Cilo, cilostazol; Clop, clopidogrel; Dip, dipyridamole; OR, odds ratio; Sarp, sarpogrelate; Teru, terutroban; Tic, ticlopidine; Trif, triflusal.
cilostazol is the best option for the prevention of recurrent stroke.

Sources of Funding

This study was funded by the National Natural Science Foundation of China (contract no. 81302503). The funder provider had no role in study design, data collection, and analysis, decision to publish, or preparation of the manuscript. No additional funding was received for this study.

Disclosures

None.

References

1. Global Burden of Diseases, Injuries, and Risk Factors Study 2010 Experts Group. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2095–2128.

2. Global Burden of Diseases, Injuries, and Risk Factors Study 2010 Experts Group. Disability-adjusted life years (DALYS) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2197–2223.

3. Feigin VL, Forouzanfar MH, Mensah GA, Connor M, Bennett DS, Beral VM, Forouzanfar MH, Mensah GA, Connor M, Bennett DS, Beral VM. The global burden of ischemic stroke. J Neurol Sci. 2014;345:10–14.

4. Mori WM, Neves TB, da Silva AC, de Vasconcelos RO, Teixeira L, de Jesus TF, Canto JG, Peres PM, de Souza NF, da Silva MA, de Souza AT, da Rocha AJ. Cilostazol as an alternative to aspirin for the prevention of recurrent stroke. Front Pharmacol. 2013;4:151.

5. Nishimaru K, Tsushima M, Kurosawa T, Kato K. Cilostazol for the prevention of recurrent stroke. Neurology. 2006;67:1192–1196.

6. Diener HC, Bogousslavsky J, Brass LM, Cimmino E, Cuzzocrea S, Zorzi M, Parenti A, Cervellin G, Di Toma G, Facchini L, Fattorossi A, Franceschi C, Formisano E, Cangemi N, Ghezzi G, Mazzanti A, Chiolero A, Gambardella M, Thalhammer K, Hiltl E, Kaste M, Fieschi C, Brott T, Albers GW, Bath P, Bornstein N, Chan BP, Chen ST, Cunha L, Dahlof B, De Keyser J, Donnan GA, Estol C, Grollnik P, Guo V, Hermansson K, Hilibrand K, Kaste M, Le, Moch M, Machig N, Paas P, Roberts R, Skovortsova V, Teal P, Ton D, Vandermaelen C, Voigt T, Weber M, Yoon BW. Aspirin and extended-release cilostazol versus placebo in the prevention of recurrent ischemic stroke. N Engl J Med. 2009;360:1314–1325.

7. Tohgi H, Tsuzuki M, Uchiyama S, Hirano M, Okudera T, Miyanaga Y, Uchiyama S, Yamaguchi T, Kobayashi S, Kondo K, Otomo K, Goto F, Satoke M, Kusama H, Matsumoto M, Yamaguchi T. A randomized, double-blind, placebo-controlled study of cilostazol for the secondary prevention of ischemic stroke. Acta Neurol Scand. 1989;321:478–481.

8. Sacco RL, Diener HC, Yusuf S, Cotton D, Dronawat S, Lawton WA, Palesch Y, Martin RH, Albers GW, Bath P, Bornstein N, Chan BP, Chen ST, Cunha L, Dahlof B, De Keyser J, Donnan GA, Estol C, Grollnik P, Guo V, Hermansson K, Hilibrand K, Kaste M, Le, Moch M, Machig N, Paas P, Roberts R, Skovortsova V, Teal P, Ton D, Vandermaelen C, Voigt T, Weber M, Yoon BW. Aspirin and extended-release cilostazol versus placebo for the prevention of recurrent ischemic stroke. N Engl J Med. 2009;360:1314–1325.

9. Shinohara Y, Nishimaru K, Sawada T, Terashi A, Handa S, Hirai S, Hayashi K, Tohgi H, Fukushima Y, Uchiyama S, Yamaguchi T, Kobayashi S, Kondo K, Otomo E, Gotoh F. Sarpogrelate-aspirin comparative clinical study for efficacy and safety in secondary prevention of cerebral ischemia (S-ACCESS): a randomized, double-blind, parallel-group trial. Stroke. 2009;39:1827–1833.

10. Benavente OR, Hart RG, McClure LA, Szczywko MJ, Coffey CS, Pearce LA. Effect of cilostazol added to aspirin in patients with recent lacunar stroke. N Engl J Med. 2012;367:817–825.

11. Nishimaru K, Tsushima M, Kurosawa T, Kato K. Cilostazol for the prevention of recurrent stroke. Neurology. 2006;67:1192–1196.

12. Sacco RL, Diener HC, Yusuf S, Cotton D, Dronawat S, Lawton WA, Palesch Y, Martin RH, Albers GW, Bath P, Bornstein N, Chan BP, Chen ST, Cunha L, Dahlof B, De Keyser J, Donnan GA, Estol C, Grollnik P, Guo V, Hermansson K, Hilibrand K, Kaste M, Le, Moch M, Machig N, Paas P, Roberts R, Skovortsova V, Teal P, Ton D, Vandermaelen C, Voigt T, Weber M, Yoon BW. Aspirin and extended-release cilostazol versus placebo in the prevention of recurrent ischemic stroke. N Engl J Med. 2009;360:1314–1325.

13. Fukuuchi Y, Tohgi H, Okudera T, Ikeda Y, Miyanaga Y, Uchiyama S, Hirano M, Okudera T, Ikeda Y, Miyanaga Y, Uchiyama S, Yamaguchi T, Kobayashi S, Kondo K, Otomo K, Goto F, Satoke M, Kusama H, Matsumoto M, Yamaguchi T. A randomized, double-blind, placebo-controlled study of cilostazol for the secondary prevention of ischemic stroke. Acta Neurol Scand. 1989;321:478–481.

14. Tohgi H, Murakami M. The effect of cilostazol on TIA compared with aspirin-a double-blind, twelve-month and open 24-month follow-up study. Jpn J Med. 2002;11:67–75.
34. Thijss V, Lemmens R, Fieuws S. Network meta-analysis: simultaneous meta-analysis of common antiplatelet regimens after transient ischaemic attack or stroke. Eur Heart J. 2008;29:1086–1092.

35. Malloy RJ, Kanaan AO, Silva MA, Donovan JL. Evaluation of antiplatelet agents for secondary prevention of stroke using mixed treatment comparison meta-analysis. Clin Ther. 2013;35:1490–1500.e1497.

36. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6:e1000097.

37. Wong KS, Wang Y, Lin X, Mao C, Tang J, Bath PM, Markus HS, Gorelick PB, Liu L, Lin W. Early dual versus mono antiplatelet therapy for acute non-cardioembolic ischemic stroke or transient ischemic attack: an updated systematic review and meta-analysis. Circulation. 2013;128:1656–1666.

38. Geeganage CM, Diener HC, Algra A, Chen C, Topol Ej, Dengler R, Markus HS, Bath MW, Bath PM. Dual or mono antiplatelet therapy for patients with acute ischemic stroke or transient ischemic attack: systematic review and meta-analysis of randomized controlled trials. Stroke. 2012;43:1058–1066.

39. Caldwell DM, Gibb DM, Ades AE. Validity of indirect comparisons in meta-analysis. Lancet. 2007;369:270; author reply 271.

40. Song F, Xiong T, Parekh-Bhurke S, Loke YK, Sutton AJ, Eastwood AJ, Holland R, Chen YF, Glenny AM, Deeks JJ, Altman DG. Inconsistency between direct and indirect comparisons of competing interventions: meta-epidemiological study. BMJ. 2011;343:d4909.

41. The Salt Collaborative Group. Swedish aspirin low-dose trial (SALT) of 75 mg aspirin as secondary prophylaxis after cerebrovascular ischaemic events. Lancet. 1991;338:1345–1349.

42. Reuther R, Domdorff W, Loew D. The treatment of transitory ischemic attacks with acetylsalicylic acid: results of a double-blind-study (author’s transl). MMW Munch Med Wochenschr. 1980;122:795–798.

43. Higgins JP, Green S. Chapter 8: assessing risk of bias in included studies. In: Higgins JP, Altman DG, Sterne JA, eds. Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0. The Atrium, Southern Gate, Chichester, England: John Wiley & Sons; 2011:8.1.