Insights into chloroplast genome variation across Opuntioideae (Cactaceae)

Matias Köhler1,2, Marcelo Reginato1, Tatiana T. Souza-Chies1, Lucas C. Majure2,3

1 – Programa de Pós-Graduação em Botânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
2 – University of Florida Herbarium (FLAS), Florida Museum of Natural History, Gainesville, Florida, United States.
3 – Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, Arizona, United States.

Abstract

Chloroplast genomes (plastomes) are frequently treated as highly conserved among land plants. However, many lineages of vascular plants have experienced extensive structural rearrangements, including inversions and modifications to the size and content of genes. Cacti are one of these lineages, containing the smallest plastome known for an obligately photosynthetic angiosperm, including the loss of one copy of the inverted repeat (~25 kb) and the \textit{ndh} genes suite, but only a few cacti from the subfamily Cactoideae have been sufficiently characterized. Here, we investigated the variation of plastome sequences across the second-major lineage of the Cactaceae, the subfamily Opuntioideae, to address 1) how variable is the content and arrangement of chloroplast genome sequences across the subfamily, and 2) how phylogenetically informative are the plastome sequences for resolving major relationships among the clades of Opuntioideae. Our \textit{de novo} assembly of the \textit{Opuntia quimilo} plastome recovered an organelle of 150,347 bp in length with both copies of the inverted repeats and the presence of all the \textit{ndh} genes suite. An expansion of the large single copy unit and a reduction of the small single copy was observed, including translocations and inversion of genes as well as the putative pseudogenization of numerous loci. Comparative analyses among all clades within Opuntioideae suggested that plastome structure and content vary across taxa of this subfamily, with putative independent losses of the \textit{ndh} gene suite and pseudogenization of genes across disparate lineages, further demonstrating the dynamic nature of plastomes in Cactaceae. Our plastome dataset was robust in determining relationships among major clades and subclades within Opuntioideae, resolving three tribes with high support: Cylindropuntieae, Tephrocacteae and Opuntieae. A plastome-wide survey for highly informative phylogenetic markers revealed previously unused regions for future use in Sanger-based studies, presenting a valuable dataset with primers designed for continued evolutionary studies across Cactaceae. These results bring new insights into the evolution of plastomes in cacti, suggesting that further analyses should be carried out to address how ecological drivers, physiological constraints and morphological traits of cacti may be related with the common rearrangements in plastomes that have been reported across the family.
Keywords: cacti, chloroplast genome, de novo assembly, Opuntia, plastid structural rearrangements, pseudogenization, reference-guided assembly

1. Introduction

Cacti comprise one of the most charismatic plant clades of the world, exhibiting an enormous variety of growth forms, morphology and intriguing niche occupancy across the Americas (Britton & Rose 1919; Anderson 2001; Hunt et al. 2006; Hernández-Hernández et al. 2011). Members of the family are conspicuous elements of the arid and semiarid succulent biome of the New World, also inhabiting subtropical and tropical forests (Taylor and Zappi 2004; Hunt et al. 2006). This distributional pattern is accompanied by high species diversity with heterogeneous diversification rates across evolutionary lineages (Arakaki et al. 2011; Hernández-Hernández et al. 2014).

Some uncommon features in most Angiosperms, such as succulent tissues, Crassulacean acid metabolism (CAM), betalain pigments and the reduction of or absence of leaves are typical characters of cacti that have long captured the attention of plant biologists and have been suggested as adaptations to allow survival in harsh environments (Mooney et al. 1977; Mauseth 1999; Landrum 2002; Nobel 2002). Besides major morphological and physiological adaptations, genetic and genomic-level changes derived from host of selective pressures are also expected to be present. For example, whole genome duplication events have long been suggested to be associated with adaptations to extreme environments (e.g., Stebbins 1971; Soltis & Soltis 2000; Brochmann et al. 2004), and significant gene family expansion in genes related to stress adaptation, as well as more restricted events of gene duplications were reported in lineages of Caryophyllales adapted to severe environments including in cacti (Wang et al. 2019).
Although gene content, structural organization and size of the chloroplast genome (plastomes) of land plants is often considered highly conserved (Raubeson & Jansen 2005; Chumley et al. 2006; Wicke et al. 2011), deviations have been increasingly reported in some clades and have challenged the generality of this phenomenon (Daniell et al. 2016; Ruhlman and Jansen 2018; Mower and Vickrey 2018). Astonishing variety of size have been observed across land plants, from 19 kb in a non-photosynthetic Epipogium roseum (Orchidaceae) to giant plastomes with 217 kb, as in Pelargonium × hortorum (Geraniaceae) (Chumley et al. 2006; Schelkunov et al. 2015), reflected by expansions or contraction of the inverted repeat (IR), large single copy (LSC) or even small single copy (SSC) units. Also, the independent losses of one copy of the inverted repeat region (~25 kb in size) have been identified across disparate clades, such as Fabaceae, Geraniaceae, Orobanchaceae and Cactaceae (Cai et al. 2008; Ruhlman & Jansen 2014; Sanderson et al. 2015), and a variety of taxa have lost particular genes in other parts of the genome. For instance, most or all of the suite of 11 functionally related ndh genes were lost in some parasites, carnivorous plants and xerophytes (Braukmann et al., 2009; Wicke et al., 2011; Iles et al., 2013; Peredo et al., 2013; Ruhlman et al., 2015; Sanderson et al. 2015).

Members of Cactaceae also have experienced different alterations in their chloroplast genome. A conserved inversion of ~6 kb on the large single copy unit comprising the trnM-rbcL genes have long been suggested (Wallace 1995) and more recently confirmed (Sanderson et al. 2015; Solorzano et al. 2019; Majure et al. 2019). Besides that, the first cactus plastome assembled from the saguaro cactus (Carnegiea gigantea (Engelm.) Britton & Rose) exhibited an exceptional reduction in size (113 kb) and gene content, including the loss of one of the two inverted repeat regions and nine of the 11 ndh genes (Sanderson et al. 2015). More recently, newly assembled plastomes of seven species of the short-globose cacti of Mammillaria revealed
three different plastome structures across the genus, all with two copies of a divergent inverted repeat, including (i) an extreme reduction of IRs (< 1 kb); (ii) an intermediate reduction of IR with translocation of some typical LSC genes to the IR; and (iii) a structure with a divergent IR structure and a surprisingly reduced plastome (~107 kb), being now the putative smallest plastome known for an obligately photosynthetic angiosperm (Solorzano et al. 2019). Majure et al. (2019), assembling chloroplast genomes for phylogenetic studies, found that *ycf1* and *ycf2* were pseudogenized, and that *ycf1* gene had been translocated adjacent to the *rpl32* gene in *Cylindropuntia bigelovii* (Engelm.) F.M.Knuth (Opuntioideae).

The taxonomy and systematics of Cactaceae has a long history of Linnean hierarchical classification based on morphological characters (Schumann 1899; Britton and Rose 1919; Backeberg 1958; Hunt et al. 2006). However, only with the advance of modern techniques adopting molecular data to reconstruct phylogenies, have systematic biologists been able to test and build more reliable hypothesis about the relationships of this peculiar group, which is replete with homoplasy (Hernández-Hernández et al. 2011). Three major well supported clades are currently circumscribed as subfamilies: Opuntioideae, Maihuenioideae and Cactoideae; while the traditional “Pereskioideae” subfamily has been revealed as a basal grade including the two leafy lineages of the cacti, which are subsequent sisters to the rest, i.e. *Leuenbergia* and *Pereskia* (Edwards et al. 2005, reviewed in Guerrero et al. 2018).

Opuntioideae (~350 spp.) is the most widespread subfamily with members occurring from southern South America (Patagonia) to northern North America (Saskatchewan, Canada) (Britton & Rose 1919; Anderson 2001; Hunt et al. 2006; Ritz et al. 2012; Majure & Puente 2014; Majure et al. 2019). The group shows interesting morphological synapomorphies, such as the small brushlike, barbed spines (i.e., glochids) and the bony aril surrounding a campylotropous
ovule (Taylor et al. 2002; Stuppy 2002). However, members of Opuntioideae have a long blurred taxonomic history with different approaches applied to circumscribe and to delimit taxa across different taxonomic levels, from species to tribes (Schumann 1899; Britton & Rose 1919; Taylor & Stuppy 2002; Stuppy 2002; Hunt 2002). Traditional classifications based on general morphology have divided the subfamily from one genus (*Opuntia* s.l. (L.) Mill.) to up to 20 smaller genera (Britton and Rose 1919; Hunt et al. 2006). Nonetheless, molecular phylogenetic studies showed that *Opuntia* s.l was paraphyletic, which led to the recognition of numerous smaller genera corresponding to well-supported clades (Taylor and Stuppy 2002). Likewise, the tribal classification of Opuntioideae has been controversial based on different approaches, with up to six tribes proposed (Doweld, 1999; Wallace and Dickie, 2002; Hunt 2011). Although previous studies have improved our understanding of the relationships among the major clades in Opuntioideae (Griffith & Porter 2009; Ritz et al. 2012; Majure et al. 2019), support for the relationships among those clades still needs to be strengthened.

Apart from the external and internal transcribed spacer (ETS and ITS) of the nuclear ribosomal repeats (NRR) and *ppc* marker, most molecular phylogenies of cacti have been historically based on few plastid markers (*trnL-trnF, rpl16, trnK* and *matK*) (Nyffeler 2002; Edwards et al. 2005; Korotova et al. 2010; Demaio et al. 2011; Arakaki et al. 2011; Bárcenas et al. 2011; Hernández-Hernández et al. 2011; Hernández-Hernández et al. 2014; Ritz et al. 2012; Bárcenas 2016; Luna-Vargas et al. 2018). While these markers have shown to be potentially able to resolve some clades, some relationships are still lacking support (Nyffeler 2002; Griffiths & Porter 2009; Hernández-Hernández et al. 2011; Bárcenas et al. 2011). In this case, next-generation sequencing (NGS) could be a useful tool, since it has transformed the study of nonmodel plant taxa in phylogenetic inferences with high throughput data allowing deep
resolutions across major plant clades (Xi et al. 2012; Ma et al. 2014; Gardner et al. 2016; Zong et al. 2019). NGS data are also showing to be extremely useful for discovering informative regions across genomes, for marker development (Wu et al. 2010; Dong et al. 2012; Ripma et al. 2014; Reginato et al. 2016), as well as to investigate chloroplast genome evolution (Dong et al. 2013; Mower & Vickrey 2018; Yao et al. 2019). Nevertheless, this approach is still in its infancy across Cactaceae (Majure et al. 2019) and remains a path to be explored.

Here, we investigate the use of next-generation sequencing across Opuntioideae to address two major questions: (1) how homogenous is the content and arrangement of chloroplast genomes across the subfamily? and (2) how phylogenetically informative are chloroplast genome sequences for resolving major relationships among the clades of Opuntioideae? We used a combination of de novo and reference-guided assemblies to process genome skimming data: (i) assembling and characterizing the first chloroplast genome of an Opuntia species, O. quimilo, (ii) investigating overall patterns of reference-guided assemblies and comparative chloroplast genome sequence analyses across the subfamily, (iii) inferring phylogenetic relationships with assembled sequences and (iv) surveying plastomes for highly informative phylogenetic markers for Sanger-based studies for future use.

2. Material and methods

2.1. Taxon sampling, DNA extraction and sequencing

All currently recognized genera in Opuntioideae (sensu Hunt et al. 2006, plus Majure et al. 2019 for Grusonia s.l.) were sampled with one accession per genus, resulting in a dataset of 17 taxa which were sequenced via genome-skimming (Straub et al., 2012; Majure et al. 2019). Three additional samples were selected as outgroup taxa (Cactoideae: Parodia magnifica and
Coryphantha macromeris; and Pereskia: Pereskia sacharosa). Plant materials were from wild collections or from the Desert Botanical Garden's living collection (see Table S1 for details). DNA was extracted from silica-dried or fresh epidermal tissues using a standard CTAB incubation (Doyle & Doyle 1987) followed by chloroform/isoamyl alcohol precipitation and silica column-based purification steps, as described in Neubig et al. (2014) and Majure et al. (2019). Whole genomic DNAs were quantified using the Qubit dsDNA BR Assay Kit and Qubit 2.0 Fluorometer (Life Technologies, Carlsbad, California, USA); high-molecular-weight DNA (>15 kb) samples showing no degradation were considered suitable and sent to Rapid Genomics LLC (http://rapidgenomics.com/home/; Gainesville, FL) for library preparation and high-throughput sequencing using the Illumina HiSeq X platform with 150 bp paired-end reads.

2.2. De novo assembly and data processing for chloroplast genome sequences

Raw reads were imported into Geneious 11.1.5 (Biomatters, Auckland, New Zealand), and paired reads were set with an expected insert size of 300 bp calculated with BBMap (Bushnell 2016). Low quality bases (Q < 20) were trimmed and all reads shorter than 20 bp were discarded using BBDuk for quality control (Bushnell 2016). Different methods were employed to assemble the chloroplast genome of the diploid Opuntia quimilo K. Schum. First, a de novo assembly was performed with 40% of the reads using the Geneious de novo assembler (low/fast sensitivity option). A consensus sequence (with a majority threshold for sequence matching - fewest ambiguities) of each contig greater than 1,000 bp in length was saved. Considering that the Cactaceae plastomes already published have unusual rearrangements, we looked for plastid contigs searching those saved contigs against the Portulaca oleracea L. plastome (Portulacaceae, one of the closest relatives of Cactaceae; see Walker et al. 2018) (GenBank accession KY490694, Liu et al. 2017) using MegaBLAST (adapted from Ripma et al. 2014). Additional
chloroplast genome *de novo* assemblies were performed using a set of different pipelines, such as GetOrganelle (Jin et al. 2019) and NOVOPlasty (Dierckxsens et al. 2017) to cross-validate and compare the assemblies. After checking the convergence of the assemblies from the different pipelines and the plastid contig recovered from the Geneious *de novo* assembly, we used the NOVOPlasty circular contig for downstream analyses. Annotations were performed with GeSeq (Tillich et al. 2017), using default parameters to predict protein-coding genes by HMMER profile search and ARAGORN v1.2.38 (Laslett and Canback, 2004); tRNA genes were annotated with tRNAscan-SE v2.0 (Lowe and Eddy, 1997), and BLAST searches were used to annotate ribosomal RNA (rRNA), tRNA and DNA genes conserved in embryophyte plastomes (Wommack et al., 2008). All annotations were cross checked with the “Annotate from” feature in Geneious, transferring annotations with a 50% or greater similarity from the *P. oleracea* plastome, and eventual start/stop codons were manually adjusted with the “Open Read Frame (ORF)” feature from Geneious. The genes that had their structures affected by the insertion of many internal stop codons or ORF, thus did not forming their respective full coding sequence (CDS), were annotated as putative pseudogenes. The graphical representation of *O. quimilo* circular annotated plastome was created in OGDRAW (Lohse et al., 2013). To visualize changes in gene order and content, we compared the *O. quimilo* assembly with the canonical gene order of *P. oleracea* plastome via multiple whole genome alignment using MAUVE (default options, assuming colinearity; Darling et al., 2004). Boundaries between the IRa IRb, LSC, SSC and putative inversions were visually checked in Geneious using an *in silico* approach adapted from Oliver et al. 2010.

2.3. Comparative chloroplast genome sequences analyses
The newly annotated plastome of *Opuntia quimilo*, with one of the inverted repeats (IRa) manually stripped to avoid data duplication, was then used for a reference guided assembly on the trimmed reads from all other taxa using Geneious mapper with a medium-low sensitivity iterating up to 5 times (adapted from Ripma et al 2014). Each of the assembles mapped had a majority threshold consensus sequence generated and an annotation transferred from the *O. quimilo* reference, and manually adjusted. To identify highly variable regions across the subfamily, the 17 assembled Opuntioideae chloroplast genome sequences were compared using mVista (Frazer et al., 2004) in Shuffle-LAGAN alignment mode (Brudno et al. 2008) using the annotated plastome of *O. quimilo* as a reference. We also used the full chloroplast genome sequence alignment (see below) to calculate nucleotide diversity values (\(\pi\)) to detect highly variable sites among Opuntioideae chloroplast genome sequences. DNA polymorphisms analysis was performed on DnaSP v.6.10 (Rozas et al. 2017) using the sliding window analysis with step size of 200 bp and window length of 800 bp. Assembly maps of raw read coverages from Geneious mapper of each taxon to the *O. quimilo* plastome were also used to visualize and compare the gene content of the chloroplast genome sequences across the subfamily.

2.4. Phylogenetic analyses and informative regions

The assembled chloroplast genome sequences were aligned using MAFFT v. 7 with an automatic strategy search for algorithm selection (Katoh & Standley 2013), using 200PAM scoring matrix and an open gap penalty of 1.53 (offset value 0.123). The alignment was manually examined for misaligned areas following a similarity criterion (Simmons, 2004). Sequence portions that contained gaps and/or ambiguities across more than 80% of the taxa were stripped using the “Mask Alignments” feature in Geneious. Phylogenetic inference was performed using Maximum Likelihood implemented in RAxML 8.2.4 (Stamatakis, 2014) in the
CIPRES Portal (Miller et al. 2010) with GTR+G model employed for the entire sequence. Support values were estimated implementing 1,000 bootstrap replicates.

In order to identify and rank highly phylogenetically informative regions in the Opuntioideae plastomes, we split the full plastome alignment in protein coding sequences (cpCDS – pseudogenes were included here), non-coding sequences (cpNCDS) and intergenic spacers (cpIGS) using the annotated *O. quimilo* plastome. Each individual marker (cpCDS, cpNCDS, cpIGS) was extracted from the above-mentioned alignment, and a Maximum Likelihood tree was inferred with RAxML (GTR+G model, 100 bootstrap replicates). For each marker, we report the number of variable sites, number of parsimony informative sites (PIS), mean sequence distance (under K80 model), alignment length, mean sequence length, mean bootstrap support and distance to the full chloroplast genome sequence tree (RF distance; Robinson & Foulds, 1981). The metrics were retrieved using functions of the R packages *ape* and *phangorn* (Paradis, Claude & Strimmer, 2004; Schliep, 2011). Markers were ranked by phylogenetic information using a weighted mean of relative values of the following metrics: number of variable sites (weight = 1), mean bootstrap (weight = 2) and distance to the full plastid tree (weight = 3). We designed primer pairs for the top 5 markers identified in the previous step with suitable size for PCR amplification (~800–900 bp). Primers flanking the target regions were designed with Primer3, using the default settings (Rozen & Skaletsky, 2000). All metrics reported, as well as primer design, were considered only for the ingroup (the 17 Opuntioideae chloroplast genome sequences).

3. Results

3.1. DNA sequencing
Runs on Illumina HiSeq X resulted in 227,003,814 reads from 20 samples (17 Opuntioideae and 3 outgroups), between 5,624,110 and 20,219,350 reads per sample, for a mean read number of 11,350,190 sequences. Reads per sample following quality control were between 5,360,990 and 19,863,298 with a mean post-quality control read pool number of 11,084,834. The GC content of the raw reads ranged from 37.4% to 40.6% with a mean of 38.45% and following quality control were between 36.9% and 40% with a mean of 38%. Detailed results with the number of raw reads, post-quality control and %GC content per taxa are presented in Table S1.

3.2. *Opuntia quimilo* plastome

The complete chloroplast genome of *Opuntia quimilo* was sequenced, assembled, annotated and deposited in GenBank with the accession number MN114084. The length of the *Opuntia quimilo* plastome is 150,374 bp, including a 101,475 bp LSC region, a 4,115 bp SSC region and a 22,392 bp of two IR (IRa and IRb) region (Figure 1, Table 1). A total of 701,318 reads were assembled, with an average organelle depth of 844x. The GC content varies from 33% in the SSC, to 35.5% in LSC and 39.6% in the IR regions (Table 1).

The *de novo* assembly of Geneious assembler produced 1,000 contigs; of these, 988 were higher than 1,000 bp in length from a minimum length of 1,026 bp to a maximum of 283,150 bp. MegaBLAST search founds one consensus plastid contig of 128,909 bp that includes the full chloroplast sequence with two putative inverted repeats assembled as a single IR unit (~22 kb). The GetOrganele and NOVOPlasty pipelines both yielded one plastid contig of 150,374 bp with the same gene content, order and structure as the plastid contig of the Geneious assembler, except for the two inverted repeats that were interleaved by the LSC and SSC on the first ones while in the Geneious contig was merged as one IR.
The *Opuntia quimilo* plastome encodes 87 protein-coding genes (CDS), 35 transfer RNA genes (tRNA) and 8 ribosomal RNA (rRNA) genes, totaling 130 genes (Table 1 and 2). Five canonical CDS from angiosperm chloroplast genomes were annotated as putative pseudogenes (Ψ) based on their structure: *accD, rpl16, rps16, ycf1* and *ycf2*. Four of them are located in the LSC, and one (*ycf1*) in the IRs. Duplicated CDS in the IRs includes *ndhA, ndhF, ndhG, ndhH, ndhI, rpl32, ycf1*(Ψ) and *rps15*; and all four rRNA genes and five of the 35 tRNA are duplicated in the IR regions. The *O. quimilo* plastome includes 16 intron-containing genes, of which 12 contain one intron (*atpF, ndhA, ndhB, rps12, rps16, rpl16, rpoC1, petB, petD, trnAUGC, trnFCAU, trnKUUU, trnVUAC, trnLUAA, trnGUCC), while one gene contains two introns (*ycf3*); the *clpP* gene has lost its two introns, reduced to an exon of 609 bp.

The LSC of the *Opuntia quimilo* plastome appears to have experienced an expansion, with surprisingly 101 kb, while the SSC was shown to have exceptional reduction (4 kb). The LSC contains 24 tRNA genes and 67 CDS, and the SSC contains an unique tRNA gene (*trnLUAG*), and four CDS: *ccsA, ndhE, ndhD* and *psaC* (Figure 1 and 2; Table 1 and 2). A total of eight genes (*ndhB, rpl2, rpl23, rps7, rps19, trnFCAU, trnLCAA and *ycf2*) that are usually reported occurring in the IR regions of canonical angiosperm plastomes are apparently present as unique genes - not repeated - in the LSC region of the *O. quimilo* plastome (Fig. 2, region V). On the contrary, seven genes (*ndhA, ndhF, ndhG, ndhH, ndhI, rpl32 and rps15*), usually from the SSC, are duplicated into the IR regions of *O. quimilo* plastome (Fig. 2, orange genes).

When compared to the canonical angiosperm chloroplast genome of *Portulaca oleracea*, two block translocations in the LSC are present in the *O. quimilo* plastome: the first (Fig. 2, region II) is a simple colinear translocation of nine genes (Fig. 2, region II); while the second one is a big block inversion and translocation comprising 50 genes within the *trnGUCC-psbE* region (Fig. 2, region V).
region III). Inside that block (region III), the putative synapomorphic inversion of cacti encompassing the \textit{trnM-rbcL} genes is confirmed for Cactaceae, but in the \textit{O. quimilo} plastome this inversion also encompassed the \textit{trnV^{GAC}} gene (Fig. 2, green bars). Further gene order is mainly colinear (Fig 2., regions I, IV, V, VI, VII), except for the rearrangement comprising the SSC genes that were transferred to the IRs regions, including a double inversion on the \textit{ycf1-rpl32} region, placing \textit{ycf1} gene adjacent to \textit{rpl32} (Fig. 2, orange genes).

3.3. Reference-guide assemblies and comparative chloroplast sequences analyses

The reference-guided assemblies of the remaining Opuntioideae and outgroup taxa to the \textit{Opuntia quimilo} plastome (one inverted repeat stripped) mapped an average of 616,615 reads with a mean genome depth of 721x (Table S3). The consensus sequence length varied between 126,925 bp (\textit{Pereskiopsis diguettii}) to 129,181 bp (\textit{Tacinga palmadora}) and the GC content between 35.8\% (\textit{Pterocactus gonjianii}) to 36.3\% (\textit{Austrocylindropuntia cylindrica} and \textit{Cylindropuntia bigelovii}) (Table S3).

Pairwise comparison of divergent regions within the Opuntioideae chloroplast genome sequences using mVISTA with \textit{O. quimilo} as a reference revealed both striking conserved and divergent regions across the chloroplast genomes sequences (Figure 3). Overall, the alignment uncovered sequence divergence across assemblies, suggesting that chloroplast genome sequences are not conserved. Divergences were observed both in noncoding regions and coding regions. Among coding regions (cds), non-conserved regions were frequent on genes of the \textit{ndh} gene suite (i.e. \textit{ndhA, ndhD, ndhE, ndhF, ndhG, ndhH, ndhI, ndhJ}) as well \textit{clpP, ycf3} and particularly highlighted on \textit{ycf1, ycf2} and \textit{accD} genes (Fig. 3). Ten noncoding regions show substantial divergence, being all intergenic spacers: \textit{ndhE-psaC, rpl32-ndhF, trnV^{GAC}-rps12, psbB-clpP, rpoB-trnC^{GCA}, psbM-trnD^{GUC}, trnT^{GGU}-psbD, psbE-rpl20, ndhC-rbcL} (Fig. 3).
The nucleotide diversity values (π) within the 17 Opuntioideae chloroplast genome sequences ranged from 0.00191 to 0.18551, with a mean value of 0.02201, indicating the sequences as highly variable. Three major regions were identified as hypervariable ($\pi > 0.1$), which comprises $ycf1$ and $accD$ genes and an intergenic spacer $rpl32-ndhF$ (Figure 4); while six regions were observed as moderately-variable ($\pi > 0.05$), those being four genes: $ycf2$, $ccsA$, $clpP$ and $trnLUAA$; and two intergenic spacers $rps18-rpl33$ and $trnF^{GAA}-ndhJ$ (Figure 4).

Reference-guided assembled maps of Opuntioideae and outgroups to the *Opuntia quimilo* chloroplast genome as a reference revealed regions with extremely low coverage or even gaps across different taxa (Figure 5). The regions highlighted with this feature are related with genes of the ndh suite, $ycf1$, $ycf2$ and $accD$, suggesting gene loss, transfer to nuclear genomes and/or pseudogenization (Figure 5). Several members of Opuntioideae appear to have missing ndh genes in their chloroplast genome (*Micropuntia*, *Maihueniopsis*, *Pterocactus*, *Tephrocactus*), especially in the Tephrocacteae clade. However, no clear pattern of low coverage among these regions was recovered within Opuntioideae clades, indicating putative homoplasious events.

3.4. Phylogenetic analyses and informative regions

The full chloroplast genome sequences resulted in an alignment of 118,930 bp with 86,484 identical sites (72.7%), a pairwise identity of 94.5% and 8,694 distinct alignment patterns. There are 8,922 parsimony informative sites (PIS) and 11,509 sites with gaps. Maximum Likelihood analyses resolved a well-supported Opuntioideae (bs = 100), with three major subclades currently circumscribed as tribes, i.e., Opuntieae, Cylindropuntieae and Tephrocateae (Fig. 5). Opuntieae, consisting of the seven genera *Consolea*, *Brasiliopuntia*, *Tacinga*, *Opuntia*, *Miqueliopuntia*, *Salmonopuntia* and *Tunilla*, was resolved as sister to Tephrocacteae (*Thephrocatus*, *Maihueniopsis*, *Pterocactus*, *Cumulopuntia* and *Austrocylindropuntia*) and
Cylindropuntieae (*Quiabentia, Pereskiopsis, Micropuntia, Grusonia* and *Cylindropuntia*) clade. All nodes had high bootstrap support values (bs = 100), except by two nodes, which were still higher than 90 (Fig. 5).

The summary statistics for all markers (cpCDS, cpNCDS, cpIGS) are presented in Table S4. A list of the top 10 markers ranked by phylogenetic information considering topological distance to the plastome tree, mean bootstrap support and number of parsimony informative sites is given in Table 3. All single marker phylogenies presented some disagreement to the plastome tree (RF tree distance ranging from 6 to 28). Bootstrap support ranged from 0 to 89 (mean = 37), and number of PIS from 0 to 619 (mean = 25). Primer pair sequences for PCR amplification are provided for the top 5 markers with suitable Sanger sequencing size (max ~900 bp) in Table 4.

4. Discussion

4.1. Insights from chloroplast genome assemblies in Opuntioideae and Cactaceae

The first chloroplast genome of a species of *Opuntia* is here reported. Although the bulk of its gene content is not far from canonical angiosperms plastomes, it deviates in some cases from the typical chloroplast genome structure, showing: (i) an expansion of the LSC incorporating genes that are typically in the IRs; (ii) a reduction of the SSC translocating some common genes of the SSC into the IR region; and (iii) at least one massive translocation with an inversion of a block of genes in the LSC (Figure 2). Part of the content of the IRs in the *O. quimilo* plastome remained remarkably constant, including all four rRNA and five rRNA genes that are nearly universally reported in IRs of land plants (Mower & Vickrey 2018).

Successive expansion–contraction events or even multiple contractions have been recurrently reported as one of the main ways of developing structural changes across Angiosperm plastomes (Downie & Jansen 2015; Daniell et al 2016; Fonseca & Lohmann 2017; Mower & Vickrey
and may also be one way in which genes are translocated to different regions of the genome, as suggested in adzuki bean (Perry et al. 2002). The atypical reduction of the SSC (~4 kb), reported here for the *O. quimilo* plastome, has also been noticed in *Viviana marifolia* (Francoaceae, Geraniales), and a slightly similar reduced size for SSC (~6 kb) have been inferred for the ancestral chloroplast genome of Geraniaceae (Weng et al. 2013). A partial deletion of SSC region has also been reported in two hemiparasitic *Taxillus* (Loranthaceae) species resulting in a ~6 kb region with only two genes (Li et al. 2017), and the smallest SSC hitherto reported is for the hemiparasitic *Pedicularis ishidoyana* (Orobanchaceae), with only 27 bp (Cho et al. 2018). A model to explain the major rearrangements observed in the *Lamprocapnos spectabilis* (Papaveraceae) plastome, involving at least six IR boundary shifts and five inversions resulting in a SSC of just 1,645 bp with a partial ndhF gene, was recently provided by Part et al. (2018). The SSC contains most ndh genes, and previous studies have shown that boundary shifts of the IR and SSC regions are correlated with transformations of *ndhF* and *ycf1* genes (Kim et al. 2015; Logacheva et al. 2014; Li et al. 2017).

The *Opuntia quimilo* plastome reinforces some different putative structural synapomorphies that have been reported in Caryophyllales. For example, the loss of the *rpl2* intron, previously suggested to be absent throughout the Centrospermae (Palmer et al. 1988), is supported in our study and others newly assembled plastomes in Caryophyllales (Yao et al. 2019). The *trnM-rbcL* inversion is again recovered in the *O. quimilo* plastome, although also involving the *trnV^UAC* gene, as in *Cylindropuntia bigelovii* (Majure et al. 2019), providing further support for this inversion as a synapomorphy in the family. Additionally, Sanderson et al. (2015) and Solorzano et al. (2019), inspecting plastomes of Cactoideae, reported a gene orientation of *ycf2-trnL^CAAL-ycf1* in the SSC as a synapomorphy of Cactoideae. Our results corroborate this observation, since
this feature is not present in the *O. quimilo* plastome, strengthening this gene order as a putative synapomorphy for Cactoideae. On the other hand, the *ycf1-rpl32-ndhF* orientation, reported in the *Cylindropuntia bigelovii* chloroplast sequence (Majure et al. 2019), is recovered in the *O. quimilo* plastome and is here suggested as a putative synapomorphy for Opuntioideae.

Besides our *de novo* assembly and chloroplast genome conception of *Opuntia quimilo*, our reference-guide assemblies and comparative analyses revealed insights for plastome rearrangements across disparate Opuntioideae. The differences of depth and coverage among specific chloroplast genes may suggest that gene structure or presence can vary over species in Opuntioideae, as have been observed in other Cactaceae, specifically Cactoideae (Sanderson et al. 2015; Solarzano et al. 2019). The putative independent losses of several *ndh* genes in all Cactoideae plastomes assembled hitherto, such as the saguaro cactus and several *Mammillaria* species, can be also inferred for our Cactoideae outgroups sampled (*Parodia magnifica* and *Coryphantha macromeris*; Fig. 5, red stars). Likewise, some members of Cylindropuntieae and Tephroacteae (*Microptuntia, Cumulopuntia, Pterocactus, Maihueniopsis* and *Tephrocactus*) also likely experienced independent losses of several genes of the *ndh* suite in their chloroplast genomes, although this was not so for tribe Opuntieae, where those genes were found to be intact (Fig. 5, red stars).

The major plastid regions marked by pseudogenization in the *Opuntia quimilo* plastome (*ycf1, ycf2* and *accD*) are visually highlighted as non-conserved regions both in reference-guide maps (Fig. 5, green stars), as in the mVista alignment across Opuntioideae (Fig. 3). These regions are also emphasized as with hyper or moderate variability regarding the nucleotide diversity values (Fig. 4). All genes here reported as pseudogenes in the *O. quimilo* plastome (*accD, rpl16, rps16, ycf1* and *ycf2*) have also been reported as pseudogenes in the *Mammillaria*
plastomes (Solórzano et al. 2019), while the accD was described as a pseudogene in *Carnegia gigantea* (Sanderson et al. 2015). Pseudogenization of these genes has been repeatedly reported across different angiosperm lineages, such as Malpighiales, Campanulales, Ericales, Poales, Solanales, Geraniales, Santalales and Myrtales (Harris et al. 2013; Haberle et al. 2008; Fajardo et al. 2013; Weng et al. 2013; Bedoya et al. 2019; Li et al. 2017; Cui et al. 2019; Machado et al. 2017). Even though these genes have been identified with essential functions beyond photosynthesis and retained in the plastome of most embryophytes (Drescher et al., 2000; Kuroda and Maliga, 2003; Kode et al., 2005; Kikuchi et al., 2013; Parker et al., 2014; Dong et al., 2015), there are several other plants where these genes are missing from the chloroplast genome (Kim, 2004; Magee et al., 2010; Lei et al., 2016; Graham et al., 2017). The pseudogenization or loss of the accD, rpl22 and several genes of the ndh suite from the plastids has been reported to be a consequence of them being transferred to the nuclear genome (Jansen et al., 2011; Jansen and Ruhlman 2012; Sanderson et al. 2015; Cauz- Santos et al., 2017; Liu et al. 2016). Plastid gene transfer to the nucleus remains to be examined in *O. quimilo* and related Opuntioideae.

Several regions highlighted as hyper or moderately variable regarding the nucleotide diversity values across Opuntioideae chloroplast sequences (i.e., accD, ycf1, clpP, petD, rpl32 and ccsA) have been reported to be putatively under positive selection in some lineages, such as Brassicaceae, Bignoniaceae, Rutaceae, Orchidaceae, Geraniaeae and Poaceae (Hu et al. 2015; Weng et al. 2016; Dong et al. 2018; Carbonell-Caballero et al. 2015; Ruhlman and Jansen 2018; Thode & Lohmann 2019; Park et al. 2017; Piot et al. 2018). Positive selection may come into play in response to environmental changes (Piot et al. 2018). For example, the accD gene, which encodes the β-carboxyl transferase subunit of acetyl-CoA carboxylase, is an essential and
required component for plant leaf development (Kode et al. 200), and it is suggested to have played a pivotal role in the adaptive evolution of orchids (Dong et al. 2018). The signatures of positive selection under accD gene observed in Brassicaceae and Campanulaceae have also indicated that this gene may have been repeatedly involved in the adaption to specific ecological niches during the radiation of eudicotyledonous plants (Rousseau-Gueutin et al. 2013; Hu et al. 2015). Considering the harsh environment that cacti display their fitness already expressed in its peculiar morphology and physiology, further studies should be carried to investigate the putative relation of chloroplast rearrangement – such as pseudogenization, loss of genes, translocation and inversion – with ecological features.

4.2. Phylogenetic relationship of Opuntioideae tribes

The plastome phylogeny of Opuntioideae strongly resolves three major clades that are currently circumscribed as tribes Opuntieae, Tephrocacteae and Cylindropuntieae (Fig. 5 and Fig. S1). Three previously described tribes (Austrocylindropuntieae, Pterocacteae and Pereskiopsieae) (Doweld 1999; Wallace and Dickie, 2002) are nested within these more broadly circumscribed tribes and thus have no real logical or practical taxonomic use (Hunt 2011). Our results partially recovered previous topologies (Griffith & Porter 2009; Ritz et al. 2012; Walker et al. 2018) and agreed with those of Majure et al. (2019) but differed from those by the strong support for the relationships among clades, as well the expanded sampling including all accepted genera in Opuntioideae. As our study is still based on one sample per genus, future studies including more taxa per genus should be carried out across the subfamily to further test the relationships here recovered.

Tribe Opuntieae is sister to the rest of Opuntioideae, and the most diverse and widespread clade among Opuntioideae, consisting of seven accepted genera (Majure & Puente 2014,
Guerrero et al. 2018). Consolea Lem., an endemic tree-like cactus of the Caribbean Islands and neighboring areas, is sister to the rest of Opuntieae, which consists of two subclades: (i) one comprising Brasiliopuntia (K. Schum.) A. Berger + Tacinga Britton & Rose; and the other comprising (ii) Opuntia (L.) Mill. + (Miqueliopuntia Frič ex F. Ritter + (Salmonopuntia P.V. Heath + Tunilla D.R. Hunt & Iliff.)). Morphological evolution in Opuntieae are discussed in Majure and Puente (2014), although our results presented a slightly different topology for the relationships of Consolea and (Miqueliopuntia (Salmonopuntia + Tunilla)).

Cylindropuntieae and Tephrocacteae are sister tribes, each one comprised of five genera (Fig. 5). Cylindropuntieae are primarily represented by genera that occur in the western North American desert regions (Cylindropuntia (Engelm.) F.M. Knuth, Grusonia F. Rchb. & K. Schum. and Micropuntia Daston), which formed a well-supported subclade, but they also contain two genera that are found in tropical dry forest of Mexico/Northern Central America (Pereskiopsis Britton & Rose) and South America (Quiabentia Britton & Rose). Tribe Pereskiopsideae (Doweld 1999), previous described to only accommodate the leafy Pereskiopsis, is nested within Cylindropuntieae and is redundant, and thus unnecessary. Deeper relationships within Cylindropuntieae were recently untangled using a phylogenomic approach and dense sampling, revealing biogeographic patterns as well as characters evolution (Majure et al. 2019).

Tephrocacteae is a South American clade adapted to diverse climatic conditions over a wide area of the southern Andes and adjacent lowlands (Ritz et al. 2012; Guerrero et al. 2018; Las Peñas et al. 2019). The tribe includes morphologically diverse species from geophytes and cushion-plants to dwarf shrubs, shrubs or small trees (Anderson 2001); and probably geophytes and cushion-forming species evolved several times from shrubby-like precursors (Ritz et al. 2012). Tribes Austrocylindropuntieae and Pterocacteae (Wallace & Dick 2002), described to
circumscribe Autrocylindropuntia + Cumulopuntia and Pterocactus, respectively, are both nested in the Tephrocacteae, as amplified by Hunt (2011), and their use is mostly redundant.

4.3. Phylogenetically informative regions

Our plastome survey for phylogenetically informative markers revealed a list of potentially highly informative plastid markers for Sanger-based phylogenetic studies in Opuntioideae (Table S4). The top 10 markers in our cpCDS dataser are: accD, ycf1, ndhD, petD, ccsA, clpP, rpoC1, rpoC2, including just one intron (the trnK intron comprising the matK gene – trnK/matK) and one intergenic spacer (psbE-rpl20) (Table 3). However, two of the better ranked markers (accD and ycf1) are putative pseudogenes and must be treated apart from traditional protein coding genes.

From the top 10 markers ranked in our list, just one (trnK/matK) has been used in more than one phylogenetic study in cacti (Nyffeler 2002; Edwards et al. 2005; Korotova et al. 2010; Demaio et al. 2011; Arakaki et al. 2011; Bárcenas et al. 2011; Hernández-Hernández et al. 2011; Hernández-Hernández et al. 2014; Ritz et al. 2012; Bárcenas 2016; Luna-Vargas et al. 2018); while Majure et al. (2012) has used partial sequences of the ycf1 gene. The others top 10 markers have been previously used under phylogenomic approaches in cacti (Arakaki et al. 2011; Majure et al. 2019).

Although the majority of the top 10 markers here reported have not been used in phylogenetic studies of cacti, the relationship of several other groups has been inferred with some of these markers. For example, the accD gene, combined with other plastid regions including rpoC1, was employed for phylogenetic inference of Crocus (Iridaceae), Coptis (Ranunculaceae) and Orchidaceae genera (Petersen et al. 2008; Guo et al. 2012; He et al. 2014). However, accD intergenic spacers, such as rbcL-accD and accD-psaI, have been much more
widely used across disparate groups (Barfuss et al. 2005; Miikeda et al. 2006; Reginato et al. 2010; Sun et al. 2012; Michelangeli et al. 2012). The *ycf1* gene appears to be moderately used (Gernandt et al. 2009; Guo et al. 2012; Majure et al. 2012; Whitten et al. 2013; Shi et al. 2013; Dastpak et al. 2018), and increasingly reported to be a useful marker in phylogenetics inferences (Neubig et al. 2009; Neubig and Abbott 2010; Dong et al. 2012; Thomson et al. 2018), and the most promising plastid DNA barcode of land plants (Dong et al. 2015). The *petD* intron has been used (Löhne et al. 2007; Borsh et al. 2009; Worberg et al. 2007; Scataglini et al. 2013), but in our analysis the entire gene was used (exon + intron) showing phylogenetic utility. The *ccsA* gene seems to be underexplored as a phylogenetic marker (Marx et al. 2010; Peterson et al. 2012) but was already suggested as convenient for phylogenetic inferences (Logacheva et al. 2007). The *rpoC1* and *rpoC2* genes have been occasionally used together as markers (Liston and Wheeler 1994; Kulshreshtha et al. 2004) or combined with other markers (GPWS 2001; Zhang et al. 2011; Downie et al. 2000; Guo et al. 2012) yielding satisfactory results. The *rpoC2* gene was recently found as the best performing marker to recover with high levels of concordance the “accepted tree” of the angiosperm phylogeny (Walker et al. 2019). The *ndhD* gene seems to be scarcely used for phylogenetic inference (Panero and Funk 2002), while the intergenic spacer of *psbE-rpl20* genes has never been used individually to our knowledge.

Eight of the top 10 markers are more than 900 bp, indicating that longer genes are superior for phylogeny reconstruction, as previous suggested by Walker et al. (2019), although they may require internal primer designing for complete Sanger’s sequencing. A list of the top 10 markers with less than 900 bp is reported (Table S5), and primer pair design for the top five is provided in Table 4. The *clpP* gene (~359 bp) is the best ranked under this criterium (< 900 bp), and the intergenic spacer *psbB-clpP* (~547 bp) is also ranked in the top 10 list of this list, thus, the pair
primer design included them as one marker (*psbB/clpP*). Many of the top 10 markers listed with less than 900 bp have been occasionally used in phylogenetic studies across disparate plant lineages with variable resolution, but never in cacti. The *clpP* gene is usually employed with its introns (Stefanović et al. 2009; Lam et al. 2016), and the *psbB-clpP* intergenic spacer has been increasingly reported as useful marker (Loera et al. 2012; Särkinen and George 2013; Prince 2015). The intergenic spacer *ycf4-cemA* has been used for phylogenetic studies in Asteraceae and Poaceae genera (Zhang et al. 2016; Ekenas et al. 2007) and the *rps2* gene in Orobancheae and Ephedraceae (McNeal et al. 2013; Manen et al. 2004; Loera et al. 2012). The *petA* gene appears to be rarely used (Tsumura et al. 1996), while the intergenic spacer *petA-psbJ* has been employed across various groups (Jaramillo et al 2008; Guo and Wilson 2013; Wang et al. 2014), including Opuntioideae (Majure et al. 2012). The intergenic spacer *ycf3-trnS* has been used in phylogenetic inferences in Asteraceae and Euphorbiaceae (Vilatersana et al. 2010; Montes Moreno et al. 2010; Barres et al. 2011), and the *rps3* gene in Poaceae, Verbenaceae and families of Asparagales (Peterson et al. 2010; Marx et al. 2010; Kim et al. 2012). The intergenic spacer *ndhE-psaC* appears to have not yet been used as a marker for phylogenetic studies, but it was also reported as useful for phylogenetic and phylogeographic studies in Liliaceae (Lu et al. 2017). The intergenic spacer *ndhC-rbcL* is putatively exclusive of Cactaceae, resulting from the *trnV-rbcL* inversion, and its phylogenetic utility must be further investigated, at least in clades where *ndh* genes are present.

Chloroplast markers have been used for testing evolutionary relationships among plants for the past 30 years (Gitzendanner et al. 2018). While the assumption that these markers are evolving as a single unit without recombination, routine analyses have concatenated data producing highly supported phylogenies that have been underlying the current classification of
angiosperms (APG, 2016). However, as here reported, no marker as a single unit (gene tree) recovered the same topology of the plastome inference (concatenated tree), and even within the top 10 markers listed, some showed high values of discordance (Table 3 and Table S5). Such results discourage and call attention to phylogenetic approaches based on one or few markers. Recent studies have explored gene tree conflicts in plastome-inferred phylogenies and incongruence between gene trees and species trees in plastid genes (Walker et al. 2019; Gonçalves et al. 2019). Gonçalves et al (2019) emphasized the importance of considering variation in phylogenetic signal across plastid genes and the exploration of plastome data to increase accuracy of estimating relationships; they also revealed that phylogenies inferred with multispecies coalescent (MSC) methods are accurate with plastome matrices and should be considered in future phylogenomic investigations. Walker et al. (2019) highlighted that most genes are largely uninformative and are unlikely to misguide plant systematics. However, the concatenating of plastid genes without some level of scrutiny can mislead branch length estimation (Walker et al. 2019). The causes of discordant topologies across gene trees from chloroplast genome still needs to be better investigated. The main explanations include systematic errors (e.g. poor modeling, stochastic events) or more biologically meaningful processes, such as heteroplasmic recombination that have been invoked to explain discordance in disparate plant clades (Huang et al. 2001; Marshall et al. 2001; Bouillé et al. 2011; Walker et al. 2019).

5. Conclusions

Chloroplast genomes have long been considered conserved among land plants, but recent generation of thousands of plastomes through NGS has illuminated that this is not always the
case. Cactaceae are no exception to variations that have been observed. Previous plastomes of cacti have shown to have lost one copy of the inverted repeat regions and several genes of the \textit{ndh} gene suite, as well as to possess divergent inverted repeat regions and the smallest chloroplast genome known for an obligately photosynthetic angiosperm. We showed that the \textit{Opuntia quimilo} plastome also presents deviations of canonical angiosperm plastomes with an expansion of the LSC incorporating genes that are typically in the IRs, a reduction of the SSC translocating some common genes of the SSC into the IR region, and one massive translocation with an inversion of a block of genes in the LSC. Our reference-guided assemblies across Opuntioideae allowed us to infer putative independent losses of some \textit{ndh} genes across disparate taxa of the subfamily. We did not find synapomorphic plastome features within Opuntioideae clades, thus, we hypothesize that putative rearrangements across the subfamily are from homoplasious events. Further analyses should be carried out to address how ecological drivers and morphological traits of cacti may be related with positive selection of genes and the common rearrangements in chloroplast genomes that have been reported in the family. Phylogenetic analyses of chloroplast genome sequences strongly support Opuntioideae and its three tribes: Opuntieae, Cylindropuntieae and Tephrocacteae. Since computational and budget limitations are still a bottleneck to deal with high throughput data, especially in developing countries, a list of highly informative plastid markers is presented for future use, and several top ranked markers have not been used in phylogenetic studies of cacti. Nonetheless, gene trees discordances between plastome markers must be carefully considering while inferring phylogenies in this remarkable group of plants.

Acknowledgments
The authors thanks to Grant Godden (FLMNH) for provide valuable comments about chloroplast assemblers; Urs Eggli (Sukkulnten-Sammlung Zürich) for provide important bibliography; and to Ricardo Reis and Josimar Külkamp (Jardim Botânico do Rio de Janeiro, Brazil) for helping providing samples. MK is grateful to the American Society of Plant Taxonomists (ASPT), Cactus and Succulent Society of America (CSSA), International Association for Plant Taxonomy (IAPT) and IDEA WILD for supporting part of the research here reported; the Brazilian National Council for Scientific and Technological Development (Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq, process number 141523/2017-4) for his PhD scholarship, and the PDSE/CAPES for support his period as Visiting Researcher at the Florida Museum of Natural History (FLMNH, UF, USA, Process 88881.186882/2018-01). TTSC acknowledge CNPq (grant number: 304506/2016-8).

Funding

Partial funding for this project was provided by the Desert Botanical Garden (Arizona, USA), start-up funds from the University of Florida to L.C. Majure, the National Science Foundation (DEB 1735604), and the ‘Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil’ (CAPES) - Finance Code 001.

Author Contributions

MK: Conceptualization, Methodology, Validation, Formal analysis, Investigation, Data Curation, Writing - Original Draft, Writing - Review & Editing, Visualization, Project administration, Funding acquisition; MR: Methodology, Software, Validation, Formal analysis, Writing - Review & Editing; TTSC: Writing - Review & Editing; LCM: Methodology, Validation, Investigation, Resources, Data Curation, Writing - Review & Editing, Supervision, Funding acquisition.

6. References

Anderson, E.F. (2001). The cactus family. Portland: Timber Press.

APG (2016). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society 181, 1–20. doi:10.1111/boj.12385.

Arakaki, M., Christin, P.-A., Nyffeler, R., Lendel, A., Eggli, U., Ogburn, R. M., et al. (2011). Contemporaneous and recent radiations of the world’s major succulent plant lineages. PNAS 108, 8379–8384. doi:10.1073/pnas.1100628108.

Backeberg, C. (1958). Die Cactaceae. Jena: Veb Gustav Fischer Verlag.
Bárcenas, R. T. (2016). A molecular phylogenetic approach to the systematics of Cylindropuntieae (Opuntioideae, Cactaceae). *Cladistics* 32, 351–359. doi:10.1111/cla.12135.

Bárcenas, R. T., Yesson, C., and Hawkins, J. A. (2011). Molecular systematics of the Cactaceae. *Cladistics* 27, 470–489. doi:10.1111/j.1096-0031.2011.00350.x.

Barfuss, M. H. J., Samuel, R., Till, W., and Stuessy, T. F. (2005). Phylogenetic relationships in subfamily Tillandsioideae (Bromeliaceae) based on DNA sequence data from seven plastid regions. *Am. J. Bot.* 92, 337–351. doi:10.3732/ajb.92.2.337.

Barres, L., Vilatersana, R., Molero, J., Susanna, A., and Galbany-Casals, M. (2011). Molecular phylogeny of Euphorbia subg. Esula sect. Aphyllis (Euphorbiaceae) inferred from nrDNA and cpDNA markers with biogeographic insights. *Taxon* 60, 705–720.

Bedoya, A. M., Ruhfel, B. R., Philbrick, C. T., Madriñán, S., Bove, C. P., Mesterházy, A., et al. (2019). Plastid Genomes of Five Species of Riverweeds (Podostemaceae): Structural Organization and Comparative Analysis in Malpighiales. *Front. Plant Sci.* 10. doi:10.3389/fpls.2019.01035.

Borsch, T., Korotkova, N., Raus, T., Lobin, W., and Löhne, C. (2009). The petD group II intron as a species level marker: utility for tree inference and species identification in the diverse genus Campanula (Campanulaceae). *will* 39, 7–33. doi:10.3372/wi.39.39101.

Bouillé, M., Senneville, S., and Bousquet, J. (2011). Discordant mtDNA and cpDNA phylogenies indicate geographic speciation and reticulation as driving factors for the diversification of the genus Picea. *Tree Genetics & Genomes* 7, 469–484. doi:10.1007/s11295-010-0349-z.

Braukmann, T. W. A., Kuzmina, M., and Stefanović, S. (2009). Loss of all plastid ndh genes in Gnetales and conifers: extent and evolutionary significance for the seed plant phylogeny. *Curr. Genet.* 55, 323–337. doi:10.1007/s00294-009-0249-7.

Britton, N.L., and Rose, J.N. (1919). The Cactaceae, Volume I and Volume II. New York: Dover.

Brochmann, C., Brysting, A. K., Alsos, I. G., Borgen, L., Grundt, H. H., Scheen, A.-C., et al. (2004). Polyploidy in arctic plants. *Biological Journal of the Linnean Society* 82, 521–536. doi:10.1111/j.1095-8312.2004.00337.x.

Brudno, M., Malde, S., Poliakov, A., Do, C. B., Couronne, O., Dubchak, I., et al. (2003). Glocal alignment: finding rearrangements during alignment. *Bioinformatics* 19, i54–i62. doi:10.1093/bioinformatics/btg1005.

Bushnell, B. (2016). BBMap short read aligner, and other bioinformatic tools. https://sourceforge.net/projects/bbmap/

Cai, Z., Guisinger, M., Kim, H.-G., Ruck, E., Blazier, J. C., McMurtry, V., et al. (2008). Extensive reorganization of the plastid genome of Trifolium subteraneum (Fabaceae) is associated with numerous repeated sequences and novel DNA insertions. *J. Mol. Evol.* 67, 696–704. doi:10.1007/s00239-008-9180-7.

Carbonell-Caballero, J., Alonso, R., Ibañez, V., Terol, J., Talon, M., and Dopazo, J. (2015). A Phylogenetic Analysis of 34 Chloroplast Genomes Elucidates the Relationships between Wild and Domestic Species within the Genus Citrus. *Mol Biol Evol* 32, 2015–2035. doi:10.1093/molbev/msv082.

Cauz-Santos, L. A., Munhoz, C. F., Rodde, N., Cauet, S., Santos, A. A., Penha, H. A., et al. (2017). The Chloroplast Genome of Passiflora edulis (Passifloraceae) Assembled from Long Sequence Reads: Structural Organization and Phylogenomic Studies in Malpighiales. *Front. Plant Sci.* 8. doi:10.3389/fpls.2017.00334.

Cho, W.-B., Choi, B.-H., Kim, J.-H., Lee, D.-H., and Lee, J.-H. (2018). Complete Plastome Sequencing Reveals an Extremely Diminished SSC Region in Hemiparasitic Pedicularis ishidoyana (Orobanchaceae). *anbf* 55, 171–183. doi:10.5735/085.055.0122.
Chromosomal evolution in higher plants. Wellcome Library. Available at: http://wellcomelibrary.org/item/b18036594 [Accessed January 28, 2020].

Chumley, T. W., Palmer, J. D., Mower, J. P., Fourcade, H. M., Calie, P. J., Boore, J. L., et al. (2006). The complete chloroplast genome sequence of Pelargonium x hortorum: organization and evolution of the largest and most highly rearranged chloroplast genome of land plants. Mol. Biol. Evol. 23, 2175–2190. doi:10.1093/molbev/msl089.

Cui, Y., Zhou, J., Chen, X., Xu, Z., Wang, Y., Sun, W., et al. (2019). Complete chloroplast genome and comparative analysis of three Lycium (Solanaceae) species with medicinal and edible properties. Gene Reports 17, 100464. doi:10.1016/j.genrep.2019.100464.

Daniell, H., Lin, C.-S., Yu, M., and Chang, W.-J. (2016). Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biology 17, 134. doi:10.1186/s13059-016-1004-2.

Darling, A. C. E., Mau, B., Blattner, F. R., and Perna, N. T. (2004). Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 14, 1394–1403. doi:10.1101/gr.2289704.

Dastpak, A., Osaloo, S. K., Maassoumi, A. A., and Safar, K. N. (2018). Molecular Phylogeny of Astragalus sect. Ammodendron (Fabaceae) Inferred from Chloroplast ycf1 Gene. anbf 55, 75–82. doi:10.5735/085.055.0108.

Demaio, P. H., Barfuss, M. H. J., Kiesling, R., Till, W., and Chiapella, J. O. (2011). Molecular phylogeny of Gymnocalycium (Cactaceae): assessment of alternative infrageneric systems, a new subgenus, and trends in the evolution of the genus. Am. J. Bot. 98, 1841–1854. doi:10.3732/ajb.1100054.

Dierckxsens, N., Mardulyn, P., and Smits, G. (2017). NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucleic Acids Res 45, e18–e18. doi:10.1093/nar/gkw955.

Dong, W., Liu, J., Yu, J., Wang, L., and Zhou, S. (2012). Highly Variable Chloroplast Markers for Evaluating Plant Phylogeny at Low Taxonomic Levels and for DNA Barcoding. PLOS ONE 7, e35071. doi:10.1371/journal.pone.0035071.

Dong, W., Xu, C., Cheng, T., and Zhou, S. (2013). Complete Chloroplast Genome of Sedum sarmentosum and Chloroplast Genome Evolution in Saxifragales. PLOS ONE 8, e77965. doi:10.1371/journal.pone.0077965.

Dong, W., Xu, C., Li, C., Sun, J., Zuo, Y., Shi, S., et al. (2015). ycf1 , the most promising plastid DNA barcode of land plants. Sci Rep 5, 1–5. doi:10.1038/srep08348.

Dong, W.-L., Wang, R.-N., Zhang, N.-Y., Fan, W.-B., Fang, M.-F., and Li, Z.-H. (2018). Molecular Evolution of Chloroplast Genomes of Orchid Species: Insights into Phylogenetic Relationship and Adaptive Evolution. International Journal of Molecular Sciences 19, 716. doi:10.3390/ijms19030716.

Doweld, J.L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19, 11-15.

Doweld, A.B. (1999). Tribal taxonomy of Pereskioideae and Opuntioideae (Cactaceae). Succulents 1(2), 25-26.

Downie, S. R., and Jansen, R. K. (2015). A Comparative Analysis of Whole Plastid Genomes from the Apiales: Expansion and Contraction of the Inverted Repeat, Mitochondrial to Plastid Transfer of DNA, and Identification of Highly Divergent Noncoding Regions. sbot 40, 336–351. doi:10.1600/036364415X686620.

Downie, S. R., Katz, D., Downie, D. S., and Watson, M. F. (2000). A phylogeny of the flowering plant family Apiaceae based on chloroplast DNA rpl16 and rpoC1 intron sequences: towards a suprageneric classification of subfamily Apioideae. American Journal of Botany 87, 273–292. doi:10.2307/2656915.

Drescher, A., Ruf, S., Calsa, T., Carrer, H., and Bock, R. (2000). The two largest chloroplast genome-encoded open reading frames of higher plants are essential genes. Plant J. 22, 97–104. doi:10.1046/j.1365-313x.2000.00722.x.
Edwards, E. J., Nyffeler, R., and Donoghue, M. J. (2005). Basal cactus phylogeny: implications of Pereskia (Cactaceae) paraphyly for the transition to the cactus life form. Am. J. Bot. 92, 1177–1188. doi:10.3732/ajb.92.7.1177.

Ekenäs, C., Baldwin, B. G., and Andreasen, K. (2007). A Molecular Phylogenetic Study of Arnica (Asteraceae): Low Chloroplast DNA Variation and Problematic Subgeneric Classification. sbot 32, 917–928. doi:10.1600/036364407X184297.

Fajardo, D., Senalik, D., Ames, M., Zhu, H., Steffan, S. A., Harbut, R., et al. (2013). Complete plastid genome sequence of Vaccinium macrocarpon: structure, gene content, and rearrangements revealed by next generation sequencing. Tree Genetics & Genomes 9, 489–498. doi:10.1007/s11295-012-0573-9.

Fonseca, L. H. M., and Lohmann, L. G. (2017). Plastome Rearrangements in the “Adenocalyymma-Nejobertia” Clade (Bignonieae, Bignoniaceae) and Its Phylogenetic Implications. Front. Plant Sci. 8. doi:10.3389/fpls.2017.01875.

Frazer, K. A., Pachter, L., Poliakov, A., Rubin, E. M., and Dubchak, I. (2004). VISTA: computational tools for comparative genomics. Nucleic Acids Res. 32, W273-279. doi:10.1093/nar/gkh458.

Gardner, A. G., Sessa, E. B., Michener, P., Johnson, E., Shepherd, K. A., Howarth, D. G., et al. (2016). Utilizing next-generation sequencing to resolve the backbone of the Core Goodeniaceae and inform future taxonomic and floral form studies. Mol. Phylogenet. Evol. 94, 605–617. doi:10.1016/j.ympev.2015.10.003.

Germandt, D. S., Hernández-León, S., Salgado-Hernández, E., and Rosa, J. A. P. de la (2009). Phylogenetic Relationships of Pinus Subsection Ponderosa Inferred from Rapidly Evolving cpDNA Regions. sbot 34, 481–491. doi:10.1600/036364409X4721290.

Gitzendanner, M. A., Soltis, P. S., Yi, T.-S., Li, D.-Z., and Soltis, D. E. (2018). “Plastome Phylogenetics: 30 Years of Inferences Into Plant Evolution,” in Advances in Botanical Research Plastid Genome Evolution., eds. S.-M. Chaw and R. K. Jansen (Academic Press), 293–313. doi:10.1016/j.3ympve.2017.011.016.

Gonçalves, D. J. P., Simpson, B. B., Ortiz, E. M., Shimizu, G. H., and Jansen, R. K. (2019). Incongruence between gene trees and species trees and phylogenetic signal variation in plastid genes. Mol. Phylogenet. Evol. 138, 219–232. doi:10.1016/j.3ympve.2018.05.022.

GPWS (2001). Phylogeny and Subfamilial Classification of the Grasses (Poaceae). Annals of the Missouri Botanical Garden 88, 373–457. doi:10.2307/3298585.

Graham, S. W., Lam, V. K. Y., and Merckx, V. S. F. T. (2017). Plastomes on the edge: the evolutionary breakdown of mycoheterotroph plastid genomes. New Phytologist 214, 48–55. doi:10.1111/nph.14398.

Greiner, S., Lehwark, P., and Bock, R. (2019). OrganellarGenomeDRAW (OGDRAW) version 1.3.1: expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Res. 47, W59–W64. doi:10.1093/nar/gkz238.

Griffith, M. P., and Porter, J. M. (2009). Phylogeny of Opuntioideae (Cactaceae). International Journal of Plant Sciences 170, 107–116. doi:10.1086/593048.

Guerrero, P. C., Majure, L. C., Cornejo-Romero, A., and Hernández-Hernández, T. (2019). Phylogenetic Relationships and Evolutionary Trends in the Cactus Family. J Hered 110, 4–21. doi:10.1093/3hered/esy064.

Guo, J., and Wilson, C. A. (2013). Molecular Phylogeny of Crested Iris Based on Five Plastid Markers (Iridaceae). sbot 38, 987–995. doi:10.1600/036364413X674724.

Guo, Y.-Y., Luo, Y.-B., Liu, Z.-J., and Wang, X.-Q. (2012). Evolution and Biogeography of the Slipper Orchids: Eocene Vicariance of the Conduplicate Genera in the Old and New World Tropics. PLOS ONE 7, e38788. doi:10.1371/journal.pone.0038788.

Haberle, R. C., Foursade, H. M., Boore, J. L., and Jansen, R. K. (2008). Extensive Rearrangements in the Chloroplast Genome of Trachelium caeruleum Are Associated with Repeats and tRNA Genes. J Mol Evol 66, 350–361. doi:10.1007/s00239-008-9086-4.
Harris, M. E., Meyer, G., Vandergon, T., and Vandergon, V. O. (2013). Loss of the Acetyl-CoA Carboxylase (accD) Gene in Poales. *Plant Mol Biol Rep* 31, 21–31. doi:10.1007/s11105-012-0461-3.

He, Y., Hou, P., Fan, G., Arain, S., and Peng, C. (2014). Comprehensive analyses of molecular phylogeny and main alkaloids for Coptis (Ranunculaceae) species identification. *Biochemical Systematics and Ecology* 56, 88–94. doi:10.1016/j.bse.2014.05.002.

Hernández-Hernández, T., Brown, J. W., Schlumpberger, B. O., Eguiarte, L. E., and Magallón, S. (2014). Beyond aridification: multiple explanations for the elevated diversification of cacti in the New World Succulent Biome. *New Phytologist* 202, 1382–1397. doi:10.1111/nph.12752.

Hernández-Hernández, T., Hernández, H. M., De-Nova, J. A., Puente, R., Eguiarte, L. E., and Magallón, S. (2011). Phylogenetic relationships and evolution of growth form in Cactaceae (Caryophyllales, Eudicotyledoneae). *Am. J. Bot.* 98, 44–61. doi:10.3732/ajb.1000129.

Hu, S., Sablok, G., Wang, B., Qu, D., Barbaro, E., Viola, R., et al. (2015). Plastome organization and evolution of chloroplast genes in Cardamine species adapted to contrasting habitats. *BMC Genomics* 16, 306. doi:10.1186/s12864-015-1498-0.

Huang, S., Chiang, Y. C., Schaal, B. A., Chou, C. H., and Chiang, T. Y. (2001). Organelle DNA phylogeography of Cycas taitungensis, a relict species in Taiwan. *Mol. Ecol.* 10, 2669–2681. doi:10.1046/j.0962-1083.2001.01395.x.

Jansen, R. K., and Ruhlman, T. A. (2012). “Plastid Genomes of Seed Plants,” in *Genomics of Chloroplasts and Mitochondria: Advances in Photosynthesis and Respiration.*, eds. R. Bock and V. Knoop (Dordrecht: Springer Netherlands), 103–126. doi:10.1007/978-94-007-2920-9_5.

Jansen, R. K., Saski, C., Lee, S.-B., Hansen, A. K., and Daniell, H. (2011). Complete plastid genome sequences of three Rosids (Castanea, Prunus, Theobroma): evidence for at least two independent transfers of rpl22 to the nucleus. *Mol. Biol. Evol.* 28, 835–847. doi:10.1093/molbev/msq261.

Jin, D.-P., Choi, I.-S., and Choi, B.-H. (2019). Plastid genome evolution in tribe Desmodieae (Fabaceae: Papilionoideae). *PLOS ONE* 14, e0218743. doi:10.1371/journal.pone.0218743.

Katoh, K., and Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. *Mol. Biol. Evol.* 30, 772–780. doi:10.1093/molbev/mst010.

Kikuchi, S., Bédard, J., Hirano, M., Hirabayashi, Y., Oishi, M., Imai, M., et al. (2013). Uncovering the protein translocon at the chloroplast inner envelope membrane. *Science* 339, 571–574. doi:10.1126/science.1229262.

Kim, D.-K., Kim, J. S., and Kim, J.-H. (2012). The phylogenetic relationships of Asparagales in Korea based on five plastid DNA regions. *J. Plant Biol.* 55, 325–341. doi:10.1007/s12374-011-0016-4.

Jaramillo, M. A., Callejas, R., Davidson, C. S., Smith, J. F., Stevens, A. C., and Tepe, E. J. (2008). A Phylogeny of the Tropical Genus Piper Using Its and the Chloroplast Intron psbJ–petA. *sbot* 33, 647–660. doi:10.1600/036364408786500244.

Iles, W. J. D., Smith, S. Y., and Graham, S. W. (2013). A well-supported phylogenetic framework for the monocot order Alismatales reveals multiple losses of the plastid NADH dehydrogenase complex and a strong long-branch effect. *Early Events in Monocot Evolution.* Cambridge: Cambridge University Press. doi:10.1017/CBO9781139002950.002.

Hunt, D. (2002). That’s *Opuntia*, that was! *Succul. Plant Res.* 6: 245-249.

Hunt, D., Taylor, N., and Charles, G. (2006). The New Cactus Lexicon. Milborne Port: DH Books.

Hunt, D. (2011). Classification of the ‘cylindroid’ opuntias of South America. *Cactaceae Systematics Initiatives* 25, 5–29.

Kim, D.-K., Kim, J. S., and Kim, J.-H. (2012). The phylogenetic relationships of Asparagales in Korea based on five plastid DNA regions. *J. Plant Biol.* 55, 325–341. doi:10.1007/s12374-011-0016-4.
Kim, H. T., Chung, M. G., and Kim, K.-J. (2014). Chloroplast genome evolution in early diverged leptosporangiate ferns. *Mol. Cells* 37, 372–382. doi:10.14348/molcells.2014.2296.

Kim, H. T., Kim, J. S., Moore, M. J., Neubig, K. M., Williams, N. H., Whitten, W. M., et al. (2015). Seven New Complete Plastome Sequences Reveal Rampant Independent Loss of the ndh Gene Family across Orchids and Associated Instability of the Inverted Repeat/Small Single-Copy Region Boundaries. *PLOS ONE* 10, e0142215. doi:10.1371/journal.pone.0142215.

Kode, V., Mudd, E. A., Iamtham, S., and Day, A. (2005). The tobacco plastid accD gene is essential and is required for leaf development. *The Plant Journal* 44, 237–244. doi:10.1111/j.1365-313X.2005.02533.x.

Korotkova, N., Zabel, L., Quandt, D., and Barthlott, W. (2010). A phylogenetic analysis of Pfeiffera and the reinstatement of Lymanbensonia as an independently evolved lineage of epiphytic Cactaceae within a new tribe Lymanbensonieae. *Will* 40, 151–172. doi:10.3372/wi.40.40201.

Kulshreshtha, S., Creamer, R., and Sterling, T. M. (2004). Phylogenetic relationships among New Mexico Astragalus mollissimus varieties and Oxytropis species by restriction fragment analysis. *Weed Science* 52, 984–988. doi:10.1614/WS-03-143R1.

Kuroda, H., and Maliga, P. (2003). The plastid clpP1 protease gene is essential for plant development. *Nature* 425, 86–89. doi:10.1038/nature01909.

Lam, V. K. Y., Merckx, V. S. F. T., and Graham, S. W. (2016). A few-gene plastid phylogenetic framework for mycoheterotrophic monocots. *American Journal of Botany* 103, 692–708. doi:10.3732/ajb.1500412.

Landrum, J. V. (2002). Four Succulent Families and 40 Million Years of Evolution and Adaptation to Xeric Environments: What Can Stem and Leaf Anatomical Characters Tell Us about Their Phylogeny? *Taxon* 51, 463–473. doi:10.2307/1554859.

Las Peñas, M. L., Kiesling, R., and Bernardello, G. (2019). Phylogenetic reconstruction of the genus Tephrocactus (Cactaceae) based on molecular, morphological, and cytogenetical data. *TAXON* 68, 714–730. doi:10.1002/tax.12092.

Laslett, D., and Canback, B. (2004). ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. *Nucleic Acids Res.* 32, 11–16. doi:10.1093/nar/gkh152.

Li, Y., Zhou, J., Chen, X., Cui, Y., Xu, Z., Li, Y., et al. (2017). Gene losses and partial deletion of small single-copy regions of the chloroplast genomes of two hemiparasitic Tax ii lus species. *Sci Rep* 7, 1–12. doi:10.1038/s41598-017-13401-4.

Liston, A., and Wheeler, J. A. (1994). The phylogenetic position of the genus Astragalus (fabaceae): Evidence from the chloroplast genes rpoC1 and rpoC2. *Biochemical Systematics and Ecology* 22, 377–388. doi:10.1016/0305-1978(94)90028-0.

Liu, T.-J., Zhang, C.-Y., Yan, H.-F., Zhang, L., Ge, X.-J., and Hao, G. (2016). Complete plastid genome sequence of Primula sinensis (Primulaceae): structure comparison, sequence variation and evidence for accD transfer to nucleus. *PeerJ* 4, e2101. doi:10.7717/peerj.2101.

Liu, X., Yang, H., Zhao, J., Zhou, B., Li, T., and Xiang, B. (2017). The complete chloroplast genome sequence of the folk medicinal and vegetable plant purslane (Portulaca oleracea L.). *The Journal of Horticultural Science and Biotechnology* 93, 356–365. doi:10.1080/14620316.2017.1389308.

Loera, I., Sosa, V., and Ickert-Bond, S. M. (2012). Diversification in North American arid lands: Niche conservatism, divergence and expansion of habitat explain speciation in the genus Ephedra. *Molecular Phylogenetics and Evolution* 65, 437–450. doi:10.1016/j.ympev.2012.06.025.
Logacheva, M. D., Penin, A. A., Samigullin, T. H., Vallejo-Roman, C. M., and Antonov, A. S. (2007). Phylogeny of flowering plants by the chloroplast genome sequences: in search of a “lucky gene.” *Biochemistry Moscow* 72, 1324–1330. doi:10.1134/S0006297907120061.

Logacheva, M. D., Schelkunov, M. I., Nuraliev, M. S., Samigullin, T. H., and Penin, A. A. (2014). The Plastid Genome of Mycoheterotrophic Monocot Petrosavia stellaris Exhibits Both Gene Losses and Multiple Rearrangements. *Genome Biol Evol* 6, 238–246. doi:10.1093/gbe/evu001.

Löhne, C., Borsch, T., and Wiersema, J. H. (2007). Phylogenetic analysis of Nymphaeales using fast-evolving and noncoding chloroplast markers. *Bot J Linn Soc* 154, 141–163. doi:10.1111/j.1095-8339.2007.00659.x.

Lohse, M., Drechsel, O., Kahlau, S., and Bock, R. (2013). OrganellarGenomeDRAW—a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. *Nucleic Acids Res.* 41, W575–581. doi:10.1093/nar/gkt289.

Lowe, T. M., and Chan, P. P. (2016). tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. *Nucleic Acids Res.* 44, W54–57. doi:10.1093/nar/gkw413.

Lu, R.-S., Li, P., and Qiu, Y.-X. (2017). The Complete Chloroplast Genomes of Three Cardiocrinum (Liliaceae) Species: Comparative Genomic and Phylogenetic Analyses. *Front. Plant Sci.* 7. doi:10.3389/fpls.2016.02054.

Lohse, M., Drechsel, O., Kahlau, S., and Bock, R. (2013). OrganellarGenomeDRAW—a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. *Nucleic Acids Res.* 41, W575–581. doi:10.1093/nar/gkt289.

Lowe, T. M., and Chan, P. P. (2016). tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. *Nucleic Acids Res.* 44, W54-57. doi:10.1093/nar/gkw413.

Lu, R.-S., Li, P., and Qiu, Y.-X. (2017). The Complete Chloroplast Genomes of Three Cardiocrinum (Liliaceae) Species: Comparative Genomic and Phylogenetic Analyses. *Front. Plant Sci.* 7. doi:10.3389/fpls.2016.02054.

Ma, P.-F., Zhang, Y.-X., Zeng, C.-X., Guo, Z.-H., and Li, D.-Z. (2014). Chloroplast Phylogenomic Analyses Resolve Deep-Level Relationships of an Intractable Bamboo Tribe Arundinarieae (Poaceae). *Syst Biol* 63, 933–950. doi:10.1093/sysbio/syu054.

Machado, L. de O., Vieira, L. do N., Stefenon, V. M., Oliveira Pedrosa, F. de, Souza, E. M. de, Guerra, M. P., et al. (2017). Phylogenetic relationship of feijoa (Acca sellowiana (O.Berg) Burret) with other Myrtaceae based on complete chloroplast genome sequences. *Genetica* 145, 163–174. doi:10.1007/s10709-017-9954-1.

Magee, A. M., Aspinall, S., Rice, D. W., Cusack, B. P., Sémon, M., Perry, A. S., et al. (2010). Localized hypermutation and associated gene losses in legume chloroplast genomes. * Genome Res.* 20, 1700–1710. doi:10.1101/gr.110955.110.

Majure, L.C., Baker, M. A., Cloud-Hughes, M., Salywon, A., and Neubig, K. M. (2019a). Phylogenomics in Cactaceae: A case study using the chollas sensu lato (Cylindropuntieae, Opuntioideae) reveals a common pattern out of the Chihuahuan and Sonoran deserts. *Am. J. Bot.* 106, 1327–1345. doi:10.1002/ajb2.1364.

Majure, L.C., Baker, M. A., Cloud-Hughes, M., Salywon, A., and Neubig, K. M. (2019b). Phylogenomics in Cactaceae: A case study using the chollas sensu lato (Cylindropuntieae, Opuntioideae) reveals a common pattern out of the Chihuahuan and Sonoran deserts. *American Journal of Botany* 106, 1327–1345. doi:10.1002/ajb2.1364.

Majure, L.C., Puente, R., Griffith, M. P., Judd, W. S., Soltis, P. S., and Soltis, D. E. (2012). Phylogeny of Opuntia s.s. (Cactaceae): clade delineation, geographic origins, and reticulate evolution. *Am. J. Bot.* 99, 847–864. doi:10.3732/ajb.1100375.

Majure, L.C., and Puente, R. (2014). Phylogenetic relationships and morphological evolution in *Opuntia* s. str. and closely related members of tribe Opuntieae. *Succul. Plant Res.* 8: 9-30.

Manen, J.-F., Habashi, C., Jeanmonod, D., Park, J.-M., and Schneeweiss, G. M. (2004). Phylogeny and intraspecific variability of holoparasitic Orobanche (Orobanchaceae) inferred from plastid rbcL sequences. *Molecular Phylogenetics and Evolution* 33, 482–500. doi:10.1016/j.ympev.2004.06.010.

Marshall, H. D., Newton, C., and Ritland, K. (2001). Sequence-repeat polymorphisms exhibit the signature of recombination in lodgepole pine chloroplast DNA. *Mol. Biol. Evol.* 18, 2136–2138. doi:10.1093/oxfordjournals.molbev.a003757.
Marx, H. E., O’Leary, N., Yuan, Y.-W., Lu–Irving, P., Tank, D. C., Múlgura, M. E., et al. (2010). A molecular phylogeny and classification of Verbenaceae. *American Journal of Botany* 97, 1647–1663. doi:10.3732/ajb.1000144.

Mauseth, J. D. (1999). Anatomical Adaptations to Xeric Conditions in Maihuenia (Cactaceae), a Relictual, Leaf-Bearing Cactus. *J Plant Res* 112, 307–315. doi:10.1007/PL00013886.

McNeal, J. R., Bennett, J. R., Wolfe, A. D., and Mathews, S. (2013). Phylogeny and origins of holoparasitism in Orobanchaceae. *American Journal of Botany* 100, 971–983. doi:10.3732/ajb.1200448.

Michelangeli, F. A., Guimaraes, P. J. F., Penneys, D. S., Almeda, F., and Kriebel, R. (2013). Phylogenetic relationships and distribution of New World Melastomeae (Melastomataceae). *Bot J Linn Soc* 171, 38–60. doi:10.1111/j.1095-8339.2012.01295.x.

Miikeda, O., Kita, K., Handa, T., and Yukawa, T. (2006). Phylogenetic relationships of Clematis (Ranunculaceae) based on chloroplast and nuclear DNA sequences. *Bot J Linn Soc* 152, 153–168. doi:10.1111/j.1095-8339.2006.01295.x.

Miller, M. A., Pfeiffer, W., and Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees. in *2010 Gateway Computing Environments Workshop (GCE)*, 1–8. doi:10.1109/GCE.2010.5676129.

Montes Moreno, N., Sáez, L., Benedí, C., Susanna, A., and Garcia-Jacas, N. (2010). Generic delineation, phylogeny and subtribal affinities of Phagnalon and Aliella (Compositae, Gnaphalieae) based on nuclear and chloroplast sequences. *TAXON* 59, 1654–1670. doi:10.1002/tax.596002.

Mooney, H. A., Gulmon, S. L., and Weisser, P. J. (1977). Environmental Adaptations of the Atacaman Desert Cactus Copiapoa haseltoniana. *Flora* 166, 117–124. doi:10.1016/S0367-2530(17)32124-2.

Morales Briones, D. F., Arias, T., Stilio, V. S. D., and Tank, D. C. (2019). Chloroplast primers for clade-wide phylogenetic studies of Thalictrum. *Applications in Plant Sciences* 7, e11294. doi:10.1002/aps3.11294.

Mower, J. P., and Vickrey, T. L. (2018). “Structural Diversity Among Plastid Genomes of Land Plants,” in *Advances in Botanical Research* Plastid Genome Evolution., eds. S.-M. Chaw and R. K. Jansen (Academic Press), 263–292. doi:10.1016/bs.abr.2017.11.013.

Neubig, K. M., and Abbott, J. R. (2010). Primer development for the plastid region ycf1 in Annonaceae and other magnoliids. *American Journal of Botany* 97, e52–e55. doi:10.3732/ajb.1000128.

Neubig, K. M., Whitten, W. M., Carlsward, B. S., Blanco, M. A., Endara, L., Williams, N. H., et al. (2009). Phylogenetic utility of ycf1 in orchids: a plastid gene more variable than matK. *Plant Syst Evol* 277, 75–84. doi:10.1007/s00606-008-0105-0.

Neubig, K., Whitten, M., Abbott, R., Elliot, S., Soltis, D., Soltis, P., et al. (2014). Variables affecting DNA preservation in archival plant specimens. *DNA Banking for the 21st Century*.

Nobel, P.S. (2002). Cacti biology and uses. Berkley: University of California Press.

Nyffeler, R. (2002). Phylogenetic relationships in the cactus family (Cactaceae) based on evidence from trnK/ matK and trnL-trnF sequences. *Am. J. Bot.* 89, 312–326. doi:10.3732/ajb.89.2.312.

Oliver, M. J., Murdock, A. G., Mishler, B. D., Kuehl, J. V., Boore, J. L., Mandoli, D. F., et al. (2010). Chloroplast genome sequence of the moss Tortula ruralis: gene content, polymorphism, and structural arrangement relative to other green plant chloroplast genomes. *BMC Genomics* 11, 143. doi:10.1186/1471-2164-11-143.

Palmer, J. D., Jansen, R. K., Michaels, H. J., Chase, M. W., and Manhart, J. R. (1988). Chloroplast DNA Variation and Plant Phylogeny. *Annals of the Missouri Botanical Garden* 75, 1180–1206. doi:10.2307/2399279.

Panero, J. L., and Funk, V. A. (2002). Toward a phylogenetic subfamilial classification for the compositae (Asteraceae). *PROC.BIOL.SOC.WASH.* 115, 909–922.
Paradis, E., Claude, J., and Strimmer, K. (2004). APE: Analyses of Phylogenetics and Evolution in R language. *Bioinformatics* 20, 289–290. doi:10.1093/bioinformatics/btg412.

Park, I., Yang, S., Kim, W. J., Noh, P., Lee, H. O., and Moon, B. C. (2018). The Complete Chloroplast Genomes of Six Ipomoea Species and Indel Marker Development for the Discrimination of Authentic Pharbitidis Semen (Seeds of I. nil or I. purpurea). *Front. Plant Sci.* 9. doi:10.3389/fpls.2018.00965.

Park, S., Ruhrlman, T. A., Weng, M.-L., Hajrah, N. H., Sabir, J. S. M., and Jansen, R. K. (2017). Contrasting Patterns of Nucleotide Substitution Rates Provide Insight into Dynamic Evolution of Plastid and Mitochondrial Genomes of Geranium. *Genome Biol Evol* 9, 1766–1780. doi:10.1093/gbe/evx124.

Parker, N., Wang, Y., and Meinke, D. (2014). Natural variation in sensitivity to a loss of chloroplast translation in Arabidopsis. *Plant Physiol.* 166, 2013–2027. doi:10.1104/pp.114.249052.

Peredo, E. L., King, U. M., and Les, D. H. (2013). The Plastid Genome of Najas flexilis: Adaptation to Submersed Environments Is Accompanied by the Complete Loss of the NDH Complex in an Aquatic Angiosperm. *PLOS ONE* 8, e68591. doi:10.1371/journal.pone.0068591.

Perry, A. S., and Wolfe, K. H. (2002). Nucleotide substitution rates in legume chloroplast DNA depend on the presence of the inverted repeat. *J. Mol. Evol.* 55, 501–508. doi:10.1007/s00239-002-2333-y.

Petersen, G., Seberg, O., Thorøe, S., Jørgensen, T., and Mathew, B. (2008). A Phylogeny of the Genus Crocus (Iridaceae) Based on Sequence Data from Five Plastid Regions. *Taxon* 57, 487–499. doi:10.2307/25066017.

Petersen, P. M., Romaschenko, K., and Johnson, G. (2010). A classification of the Chloridoideae (Poaceae) based on multi-gene phylogenetic trees. *Molecular Phylogenetics and Evolution* 55, 580–598. doi:10.1016/j.ympev.2010.01.018.

Petersen, P. M., Romaschenko, K., Snow, N., and Johnson, G. (2012). A molecular phylogeny and classification of Leptochloa (Poaceae: Chloridoideae: Chlorideae) sensu lato and related genera. *Ann Bot* 109, 1317–1330. doi:10.1093/aob/mcs077.

Piot, A., Hackel, J., Christin, P.-A., and Besnard, G. (2018). One-third of the plastid genes evolved under positive selection in PACMAD grasses. *Planta* 247, 255–266. doi:10.1007/s00425-017-2781-x.

Prince, L. M. (2015). Plastid primers for angiosperm phylogenetics and phylogeography. *Applications in Plant Sciences* 3, 1400085. doi:10.3732/apps.1400085.

Raubeson, L. A., and Jansen, R. K. (2005). “Chloroplast genomes of plants,” in *Plant diversity and evolution: genotypic and phenotypic variation in higher plants*, ed. R. J. Henry (Cambridge: University Press), 45–68. doi:10.1079/9780851999043.0045.

Reginato, M., Michelangeli, F. A., and Goldenberg, R. (2010). Phylogeny of Pleiochiton (Melastomataceae, Miconieae): total evidence. *Botanical Journal of the Linnean Society* 162, 423–434. doi:10.1111/j.1095-8339.2009.01022.x.

Reginato, M., Neubig, K. M., Majure, L. C., and Michelangeli, F. A. (2016). The first complete plastid genomes of Melastomataceae are highly structurally conserved. *PeerJ* 4, e2715. doi:10.7717/peerj.2715.

Ripma, L. A., Simpson, M. G., and Hasenstab-Lehman, K. (2014). Geneious! Simplified genome skimming methods for phylogenetic systematic studies: A case study in Oreocarya (Boraginaceae). *Appl Plant Sci* 2. doi:10.3732/apps.1400062.

Ritz, C. M., Reiker, J., Charles, G., Hoxey, P., Hunt, D., Lowry, M., et al. (2012). Molecular phylogeny and character evolution in terete-stemmed Andean opuntias (Cactaceae-Opuntioideae). *Mol. Phylogenet. Evol.* 65, 668–681. doi:10.1016/j.ympev.2012.07.027.
Robinson, D. F., and Foulds, L. R. (1981). Comparison of phylogenetic trees. *Mathematical Biosciences* 53, 131–147. doi:10.1016/0025-5564(81)90043-2.

Rousseau-Gueutin, M., Huang, X., Higginson, E., Ayliffe, M., Day, A., and Timmis, J. N. (2013). Potential functional replacement of the plastidic acetyl-CoA carboxylase subunit (accD) gene by recent transfers to the nucleus in some angiosperm lineages. *Plant Physiol.* 161, 1918–1929. doi:10.1104/pp.113.214528.

Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J. C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S. E., et al. (2017). DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. *Mol. Biol. Evol.* 34, 3299–3302. doi:10.1093/molbev/msx248.

Rozen, S., and Skaletsky, H. (2000). Primer3 on the WWW for general users and for biologist programmers. *Methods Mol. Biol.* 132, 365–386. doi:10.1385/1-59259-192-2:365.

Ruhlman, T. A., Chang, W.-J., Chen, J. J., Huang, Y.-T., Chan, M.-T., Zhang, J., et al. (2015). NDH expression marks major transitions in plant evolution and reveals coordinate intracellular gene loss. *BMC Plant Biol.* 15, 100. doi:10.1186/s12870-015-0484-7.

Ruhlman, T. A., and Jansen, R. K. (2014). “The Plastid Genomes of Flowering Plants,” in *Chloroplast Biotechnology: Methods and Protocols* Methods in Molecular Biology., ed. P. Maliga (Totowa, NJ: Humana Press), 3–38. doi:10.1007/978-1-62703-995-6_1.

Ruhlman, T. A., and Jansen, R. K. (2018). “Aberration or Analogy? The Atypical Plastomes of Geraniaceae,” in *Advances in Botanical Research* Plastid Genome Evolution., eds. S.-M. Chaw and R. K. Jansen (Academic Press), 223–262. doi:10.1016/bs.abr.2017.11.017.

Sanderson, M. J., Copetti, D., Búrquez, A., Bustamante, E., Charboneau, J. L. M., Eguiarte, L. E., et al. (2015). Exceptional reduction of the plastid genome of saguaro cactus (Carnegiea gigantea): Loss of the ndh gene suite and inverted repeat. *Am. J. Bot.* 102, 1115–1127. doi:10.3732/qjb.1500184.

Särkinen, T., and George, M. (2013). Predicting Plastid Marker Variation: Can Complete Plastid Genomes from Closely Related Species Help? *PLOS ONE* 8, e82266. doi:10.1371/journal.pone.0082266.

Scataglini, M. A., Zuloaga, F. O., Giussani, L. M., Denham, S. S., and Morrone, O. (2014). Phylogeny of New World Paspalum (Poaceae, Panicoideae, Paspaleae) based on plastid and nuclear markers. *Plant Syst Evol* 300, 1051–1070. doi:10.1007/s00606-013-0944-1.

Schelkunov, M. I., Shtratnikova, V. Y., Nuraliev, M. S., Selosse, M.-A., Penin, A. A., and Logacheva, M. D. (2015). Exploring the limits for reduction of plastid genomes: a case study of the mycoheterotrophic orchids Epipogium aphyllum and Epipogium roseum. *Genome Biol Evol* 7, 1179–1191. doi:10.1093/gbe/evv019.

Schliep, K. P. (2011). phangorn: phylogenetic analysis in R. *Bioinformatics* 27, 592–593. doi:10.1093/bioinformatics/btq706.

Schumann, K. (1899). Gesamtbeschreibung der Kakteen. Neudamm: Verlag von J. Neumann.

Shi, S., Li, J., Sun, J., Yu, J., and Zhou, S. (2013). Phylogeny and Classification of Prunus sensu lato (Rosaceae). *Journal of Integrative Plant Biology* 55, 1069–1079. doi:10.1111/jipb.12095.

Simmons, M. P. (2004). Independence of alignment and tree search. *Molecular Phylogenetics and Evolution* 31, 874–879. doi:10.1016/j.ympev.2003.10.008.

Solórzano, S., Chincoya, D. A., Sanchez-Flores, A., Estrada, K., Díaz-Velásquez, C. E., González-Rodríguez, A., et al. (2019). De Novo Assembly Discovered Novel Structures in Genome of Plastids and Revealed Divergent Inverted Repeats in Mammillaria (Cactaceae, Caryophyllales). *Plants (Basel)* 8. doi:10.3390/plants8100392.
Soltis, P. S., and Soltis, D. E. (2000). The role of genetic and genomic attributes in the success of polyploids. *PNAS* 97, 7051–7057. doi:10.1073/pnas.97.13.7051.

Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. *Bioinformatics* 30, 1312–1313. doi:10.1093/bioinformatics/btu033.

Stefanović, S., Pfefl, B. E., Palmer, J. D., and Doyle, J. J. (2009). Relationships among Phaseoloid Legumes Based on Sequences from Eight Chloroplast Regions. *Systematic Botany* 34, 115–128.

Straub, S. C. K., Parks, M., Weitemier, K., Fishbein, M., Cronn, R. C., and Liston, A. (2012). Navigating the tip of the genomic iceberg: Next-generation sequencing for plant systematics. *Am. J. Bot.* 99, 349–364. doi:10.3732/ajb.1100335.

Stuppy, W. (2002). Seed characters and the generic classification of the Opuntioideae (Cactaceae). *Succul. Plant Research* 6, 25-58.

Sun, Y., Wang, A., Wan, D., Wang, Q., and Liu, J. (2012). Rapid radiation of Rheum (Polygonaceae) and parallel evolution of morphological traits. *Molecular Phylogenetics and Evolution* 63, 150–158. doi:10.1016/j.ympev.2012.01.002.

Taylor, N.P., Stuppy, W., and Barthlott, W. (2002). Realignment and revision of the Opuntioideae of Eastern Brazil. *Succul. Plant Research* 6, 99-132.

Thode, V. A., and Lohmann, L. G. (2019). Comparative Chloroplast Genomics at Low Taxonomic Levels: A Case Study Using Amphiphilum (Bignonieae, Bignonaceae). *Front. Plant Sci.* 10. doi:10.3389/fpls.2019.00796.

Thomson, A. M., Vargas, O. M., and Dick, C. W. (2018). Complete plastome sequences from Bertholletia excelsa and 23 related species yield informative markers for Lecythidaceae. *Applications in Plant Sciences* 6, e01151. doi:10.1002/aps.3.1151.

Tillich, M., Lehwark, P., Pellizzer, T., Ulbricht-Jones, E. S., Fischer, A., Bock, R., et al. (2017). GeSeq - versatile and accurate annotation of organelle genomes. *Nucleic Acids Res.* 45, W6–W11. doi:10.1093/nar/gkx391.

Tsumura, Y., Kawahara, T., Wickneswari, R., and Yoshimura, K. (1996). Molecular phylogeny of Dipterocarpaceae in Southeast Asia using RFLP of PCR-amplified chloroplast genes. *Theoret. Appl. Genetics* 93, 22–29. doi:10.1007/BF00225722.

Vargas-Luna, M. D., Hernández-Ledesma, P., Majure, L. C., Puente-Martínez, R., Macías, H. M. H., and Bárcenas, R. T. (2018). Splitting Echinocactus: morphological and molecular evidence support the recognition of Homalocephala as a distinct genus in the Cacteae. *PhytoKeys*, 31–59. doi:10.3897/phytokeys.111.26856.

Vilatersana, R., García-Jacas, N., Garnatje, T., Molero, J., Sonnante, G., and Susanna, A. (2010). Molecular Phylogeny of the Genus Ptilostemon (Compositae: Cardueae) and Its Relationships with Cynara and Lamyropsis. *sbot* 35, 907–917. doi:10.1600/036364410X539952.

Wallace, R.S. (1995). Molecular systematic study of the Cactaceae: using chloroplast DNA variation to elucidate cactus phylogeny. *Bradleya* 13, 1-12. doi:https://doi.org/10.25223/brad.n13.1995.a1.

Wallace, R.S., and Dickie, S.L. (2002). Systematic implication of chloroplast DNA sequence variation in subfamily Opuntioideae (Cactaceae). *Succul. Plant Research* 6, 9-24.

Walker, J. F., Jansen, R. K., Zanis, M. J., and Emery, N. C. (2015). Sources of inversion variation in the small single copy (SSC) region of chloroplast genomes. *Am. J. Bot.* 102, 1751–1752. doi:10.3732/ajb.1500299.

Walker, J. F., Walker-Hale, N., Vargas, O. M., Larson, D. A., and Stull, G. W. (2019). Characterizing gene tree conflict in plastome-inferred phylogenies. *PeerJ* 7, e7747. doi:10.7717/peerj.7747.
Walker, J. F., Yang, Y., Feng, T., Timoneda, A., Mikenas, J., Hutchison, V., et al. (2018). From cacti to carnivores: Improved phylotranscriptomic sampling and hierarchical homology inference provide further insight into the evolution of Caryophyllales. *Am. J. Bot.* 105, 446–462. doi:10.1002/ajb2.1069.

Wang, N., Yang, Y., Moore, M. J., Brockington, S. F., Walker, J. F., Brown, J. W., et al. (2019). Evolution of Portulacineae Marked by Gene Tree Conflict and Gene Family Expansion Associated with Adaptation to Harsh Environments. *Mol Biol Evol* 36, 112–126. doi: 10.1093/molbev/msy200.

Wang, W., Li, H.-L., Xiang, X.-G., and Chen, Z.-D. (2014). Revisiting the phylogeny of Ranunculeae: Implications for divergence time estimation and historical biogeography. *Journal of Systematics and Evolution* 52, 551–565. doi:10.1111/jse.12101.

Weng, M.-L., Blazier, J. C., Govindu, M., and Jansen, R. K. (2014). Reconstruction of the ancestral plastid genome in Geraniaceae reveals a correlation between genome rearrangements, repeats, and nucleotide substitution rates. *Mol. Biol. Evol.* 31, 645–659. doi:10.1093/molbev/msu257.

Weng, M.-L., Ruhlman, T. A., and Jansen, R. K. (2016). Plastid-Nuclear Interaction and Accelerated Coevolution in Plastid Ribosomal Genes in Geraniaceae. *Genome Biol Evol* 8, 1824–1838. doi:10.1093/gbe/evw115.

Weng, M.-L., Ruhlman, T. A., and Jansen, R. K. (2017). Expansion of inverted repeat does not decrease substitution rates in Pelargonium plastid genomes. *New Phytologist* 214, 842–851. doi:10.1111/nph.14375.

Whitten, W. M., Neubig, K. M., and Williams, N. H. (2013). Generic and Subtribal relationships in neotropical cymbidieae (orchidaceae) based on matK/ycf1 plastid data. *1.* doi:10.15517/lank.v13i3.14425.

Wicke, S., Schneeweiss, G. M., dePamphilis, C. W., Müller, K. F., and Quandt, D. (2011). The evolution of the plastid chromosome in land plants: gene content, gene order, gene function. *Plant Mol Biol* 76, 273–297. doi:10.1007/s11103-011-9762-4.

Xi, Z., Ruhfel, B. R., Schaefer, H., Amorim, A. M., Sugumaran, M., Wurdack, K. J., et al. (2012). Phylogenomics and a posteriori data partitioning resolve the Cretaceous angiosperm radiation Malpighiales. *PNAS* 109, 17519–17524. doi:10.1073/pnas.1205818109.

Yao, G., Jin, J.-J., Li, H.-T., Yang, J.-B., Mandala, V. S., Croley, M., et al. (2019). Plastid phylogenomic insights into the evolution of Caryophyllales. *Molecular Phylogenetics and Evolution* 134, 74–86. doi:10.1016/j.ympev.2018.12.023.

Taylor, N., and Zappi, D. (2004). Cacti of Eastern Brazil. London: Royal Botanic Gardens, Kew.

Wommack, K. E., Bhavsar, J., and Ravel, J. (2008). Metagenomics: Read Length Matters. *Appl Environ Microbiol* 74, 1453–1463. doi:10.1128/AEM.02181-07.

Worberg, A., Quandt, D., Barniske, A.-M., Löhne, C., Hilu, K. W., and Borsch, T. (2007). Phylogeny of basal eudicots: Insights from non-coding and rapidly evolving DNA. *Organisms Diversity & Evolution* 7, 55–77. doi:10.1016/j.ode.2006.08.001.
Zong, D., Gan, P., Zhou, A., Zhang, Y., Zou, X., Duan, A., et al. (2019). Plastome Sequences Help to Resolve Deep-Level Relationships of Populus in the Family Salicaceae. *Front. Plant Sci.* 10. doi:10.3389/fpls.2019.00005.
Figure captions

Figure 1. Circular map of chloroplast genome of Opuntia quimilo with annotated genes. The genes transcribed clockwise are shown inside of the circle whereas genes transcribed counter clockwise are shown outside of the circle. The borders of chloroplast genome are defined with LSC, SSC, IRa and IRb. The dashed gray color of inner circle shows the GC content.

Figure 2. Plastid genome structure and gene order in Opuntia quimilo compared with purslane (Portulaca oleracea). Purslane has the canonical order typical of most angiosperms. For simplicity, the circular map has been linearized. Green line highlights the trnMCAU-rbcL synapomorphic inversion of Cactaceae, which in O. quimilo also includes the trnVUAC gene. Regions I, IV, V, VI and VII are colinear in both plastomes. Region II is colinear but is translocated in the O. quimilo plastome, while region III is inverted and translocated. Region V comprise the genes that are typically in the IR region but are translocated to the large single copy in O. quimilo. Genes highlighted in orange are those typically found in the SSC but transferred to the IR region in O. quimilo. Orange dashed line indicate the double inversion on the ycf1-rpl32 genes, placing ycf1 gene adjacent to rpl32. Black triangles represent duplicated genes present in purslane but absent in O. quimilo; LSC = large single-copy region; SSC = small single-copy region; IR = Inverted repeat.

Figure 3. Visualized alignment of the Opuntioideae chloroplast genome sequences (one IR stripped) with annotations using mVISTA. Each horizontal lane shows the graph for the sequence pairwise identity with Opuntia quimilo as reference. The x-axis represents the base sequence of the alignment and the y-axis represents the pairwise percent identity within 50–100%. Grey arrows represent the genes and their orientations. Dark-blue boxes represent exon regions; light-blue boxes represent tRNA and rRNA regions; red boxes represent non-coding sequence (CNS) regions.

Figure 4. Nucleotide diversity graphs of the 17 Opuntioideae chloroplast genome sequences from the sliding windows analysis performed in DnaSP (windows length: 800 bp, step size: 200 bp). The x-axis re alignment the base sequence of the alignment, and the y-axis represents the nucleotide diversity (π value). Each variation hotspot for the chloroplast genome sequences of Opuntioideae alignment is annotated on the graph.

Figure 5. Maximum likelihood phylogenetic tree from RAxML analysis transformed in cladogram with the phylogram represented in small size with substitution rate scaled. All nodes have total bootstrap values (bs = 100) with exception for those that are shown above the branch. Each tip is represented with the assembly map of raw read coverages from Geneious mapper to the Opuntia quimilo chloroplast genome (one IR stripped, represented on the top with annotated genes). Red stars represent low coverage mapping and putative losses associated with the ndh gene suite; green stars represent partial low coverages associated with putative pseudogenization of ycf1, ycf2 and accD genes. Tribe Opuntieae is highlighted in orange, Tephrocacteae in green and Cylindropuntieae in yellow.
Figure 1. Circular map of chloroplast genome of *Opuntia quimilo* with annotated genes. The genes transcribed clockwise are shown inside of the circle whereas genes transcribed counter clockwise are shown outside of the circle. The borders of chloroplast genome are defined with LSC, SSC, IRa and IRb. The dashed gray color of inner circle shows the GC content.
Figure 2. Plastid genome structure and gene order in *Opuntia quimilo* compared with purslane (*Portulaca oleracea*). Purslane has the canonical order typical of most angiosperms. For simplicity, the circular map has been linearized. Green line highlights the *trnM*$_{CAU}$-*rbcL* synapomorphic inversion of Cactaceae, which in *O. quimilo* also includes the *trnV*$_{JAC}$ gene. Regions I, IV, V, VI and VII are colinear in both plastomes. Region II is colinear but is translocated in the *O. quimilo* plastome, while region III is inverted and translocated. Region V comprise the genes that are typically in the IR region but are translocated to the large single copy in *O. quimilo*. Genes highlighted in orange are those typically found in the SSC but transferred to the IR region in *O. quimilo*. Orange dashed line indicate the double inversion on the *ycf1-rpl32* genes, placing *ycf1* gene adjacent to *rpl32*. Black triangles represent duplicated genes present in purslane but absent in *O. quimilo*; LSC = large single-copy region; SSC = small single-copy region; IR = Inverted repeat.
Figure 3. Visualized alignment of the Opuntioideae chloroplast genome sequences (one IR stripped) with annotations using mVISTA. Each horizontal lane shows the graph for the sequence pairwise identity with *Opuntia quimilo* as reference. The x-axis represents the base sequence of the alignment and the y-axis represents the pairwise percent identity within 50–100%. Grey arrows represent the genes and their orientations. Dark-blue boxes represent exon regions; light-blue boxes represent tRNA and rRNA regions; red boxes represent non-coding sequence (CNS) regions.
Figure 4. Nucleotide diversity graphs of the 17 Opuntioideae chloroplast genome sequences from the sliding windows analysis performed in DnaSP (windows length: 800 bp, step size: 200 bp). The x-axis represents the base sequence of the alignment, and the y-axis represents the nucleotide diversity (π value). Each variation hotspot for the chloroplast genome sequences of Opuntioideae alignment is annotated on the graph.
Figure 5. Maximum likelihood phylogenetic tree from RAxML analysis transformed in cladogram with the phylogram represented in small size with substitution rate scaled. All nodes have total bootstrap values (bs = 100) with exception for those that are shown above the branch. Each tip is represented with the assembly map of raw read coverages from Geneious mapper to the *Opuntia quimilo* chloroplast genome (one IR stripped, represented on the top with annotated genes). Red stars represent low coverage mapping and putative losses associated with the *ndh* gene suite; green stars represent partial low coverages associated with putative pseudogenization of *ycf1*, *ycf2* and *accD* genes. Tribe Opuntieae is highlighted in orange, Tephrocacteae in green and Cylindropuntieae in yellow.
Table 1. Chloroplast genome composition of *Opuntia químilo*.

Region	Size (bp)	GC (%)	Genes	CDS	tRNA	rRNA
Genome	150.374	36.6	130 (5)	87 (5)	35	8
LSC	101.475	35.5	91 (4)	67 (4)	24	0
SSC	4.115	33	5	4	1	0
IRa	22.392	39.6	17 (1)	8 (1)	5	4
IRb	22.392	39.6	17 (1)	8 (1)	5	4

The number in parentheses indicates pseudogenes (Ψ) identified.
Table 2. Structural and functional gene composition of *Opuntia quimilo* chloroplast genome

Gene type	Region	Genes
1. Ribosomal RNA (rrn)	IRa & IRb	rrn4.5, rrn5, rrn16, rrn23
	LSC	trnC^{GCA}, trnD^{GUC}, trnE^{UCC}, trnF^{CGA}, trnM^{EUU}, trnG^{GCC}, trnG^{UCC}, trnH^{GUG}, trnI^{CAG}, trnK^{UUU}, trnL^{CAA}, trnL^{UAA}, trnM^{CAU}, trnP^{GUG}, trnQ^{UGU}, trnR^{UCU}, trnS^{GGC}, trnS^{GGG}, trnS^{UCA}, trnT^{GGT}, trnT^{GGU}, trnT^{GGC}, trnV^{UAC}, trnW^{CCA}, trnY^{GUA}
2. Transfer RNA (trn)	IRa & IRb	trnA^{GUC}, trnT^{GTA}, trnT^{GTT}, trnN^{GUU}, trnR^{ACG}, trnVGAC
	SSC	trnL^{UGG}
	LSC	trnC^{GCA}, trnD^{GUC}, trnE^{UCC}, trnF^{CGA}, trnM^{EUU}, trnG^{GCC}, trnG^{UCC}, trnH^{GUG}, trnI^{CAG}, trnK^{UUU}, trnL^{CAA}, trnL^{UAA}, trnM^{CAU}, trnP^{GUG}, trnQ^{UGU}, trnR^{UCU}, trnS^{GGC}, trnS^{GGG}, trnS^{UCA}, trnT^{GGT}, trnT^{GGU}, trnT^{GGC}, trnV^{UAC}, trnW^{CCA}, trnY^{GUA}
3. Proteins of small subunits of the ribosome (rps)	LSC	rps2, 3, 4, 7, 8, 11, 12, 14, 16^(Ψ), 18, 19
	IRa & IRb	rps15
4. Proteins of large subunits of the ribosome (rpl)	LSC	rpl2, 14, 16^(Ψ), 20, 22, 23, 33, 36
	IRa & IRb	rpl32
5. DNA dependent RNA polymerase (rpo)	LSC	rpoA, B, C1, C2
6. NADH dehydrogenase (ndh)	LSC	ndhB, C, J, K
	SSC	ndhD, E
	IRa & IRb	ndhA, F, G, H, I
7. Photosystem I (psa)	LSC	psaA, B, I, J
	SSC	psaC
8. Photosystem II (psb)	LSC	psbA, B, C, D, E, F, H, I, J, K, L, M, N, T, Z
9. Cytochrome b/f complex (pet)	LSC	petA, B, D, G, L, N
10. ATP synthase (atp)	LSC	atpA, B, E, F, H, I
11. Rubisco (rbc)	LSC	rbcL
12. Maturase K	LSC	matK
13. Protease (clp)	LSC	clpP
14. Envelope membrane protein (cem)	LSC	cemA
15. Subunit of acetil-CoA-carboxylase (acc)	LSC	accD^(Ψ)
16. C-type cytochrome synthesis (ccs)	SSC	ccsA
17. Translational initiation factor (inf)	LSC	infA
18. Hypothetical chloroplast reading frames (ycf)	IRa & IRb	ycf2^(Ψ), 3, 4

^(Ψ) Putative pseudogenes.
Table 3. Summary statistics for the top 10 markers. Markers are ranked by phylogenetic information based on a weighed mean of relative values of number of variable sites (weight = 1), mean bootstrap (weight = 2) and distance to the full plastid tree (weight = 3).

Marker	Bp Aligned (bp)	Variable Sites with gaps	PIS	Sites with Tree distance (mean)	Bootstrap		
1. accD (cpCDS)	1876 [1489-1927]	1953	966	586	616	10	88
2. ycf1 (cpCDS)	1565 [1414-1615]	1650	958	429	456	8	76
3. ndhD (cpCDS)	1421 [1410-1421]	1421	210	52	11	6	79
4. trnKUUU (cpNCDS)	2570 [2564-2572]	2573	173	45	15	8	82
5. psbE-rpl20 (cpIGS)	1731 [1714-1736]	1739	242	68	83	8	77
6. petD (cpCDS)	1265 [1257-1272]	1274	69	27	27	8	75
7. ccsA (cpCDS)	1008 [1007-1011]	1011	110	49	4	8	73
8. clpP (cpCDS)	359 [356-362]	362	112	64	6	8	70
9. rpoC2 (cpCDS)	4101 [4101-4101]	4101	165	47	0	8	69
10. rpoC1 (cpCDS)	2468 [2467-2469]	2469	86	35	4	8	69

Table 4. Primer pair sequences for the identified top five highly informative markers across the 17 chloroplast genome sequences of Opuntioideae.

Marker	Primer forward (5′–3′)	Primer reverse (5′–3′)	T_a (°C)	Expected product size (bp)
psbB/clpP	ACCAAGGCAAACCCATGGAA	TCCCCCTTCTACCAGCATCA	60	931
ycf4-cemA	GTCCCTATTTCTCGGCCGTGACCA	TGATAGAGAGATCCACCAGGTT	60	864
rps2	TTGAGATTCAGGAATAGTAACCAGA	GTGTATCAATGGCCAATCCGC	57	885
rbcL-atpB	CAAAACAACAAAGGTCTACTCGACA	GGAACCCCGAGGACCAAGG	60	830
petA	ACGATTGATGGACCATGCA	TCGGACAATTGAACCTTCTCGA	60	965
Table S1. Taxa sampled in this study, raw and post–quality control read numbers, GC content and voucher information. Vouchers contain collector name, number and herbarium repository in parentheses or the accession number from the Desert Botanical Garden Living collection (https://dbg.org/research-conservation/living-collections/).

Taxon	Raw Read Nº	Read Nº Post-QC	%GC	Voucher
Austrocylindropuntia cylindrica	7724354	7362548	37.4	Baker19306 (ASU)
Brasiliopuntia brasiliensis	5624110	5360990	39.6	Köhler 412 (ICN)
Consolea rubescens	6227612	6038548	37.4	Majure 3320 (FLAS)
Coryphantha macromeris	8294236	7997166	40.6	Majure 7128 (FLAS)
Cumulopuntia sphaerica	8245847	8106104	37.6	DBG1993-0190
Cylindropuntia bigelovii	16876574	16431880	39.2	Baker 18286 (ASU)
Grusonia aggeria	16876574	16084111	39.5	Majure 5651 (DES)
Maihueniopsis atacamensis	17489908	17322547	37.4	DBG1993-0194
Micropuntia pulchella	20219350	19863298	39	Majure 6095 (DES)
Miqueliopuntia miquelii	15182404	15065674	37.6	DBG1993-0205
Opuntia quimilo	16137088	15814820	38.5	DBG2003-0111
Parodia magnifica	5792409	5786100	38.3	DBG1993-0275
Pereskia sacharosa	8781612	8526372	38.4	DBG2014-2153
Pereskiopsis diguettii	8789752	8650470	38	DBG2018-0128
Pterocactus gonjianii	9941712	9809046	38.9	DBG1997-0260
Quiabentia verticillata	9223832	8893090	38.1	Kimnach 2803 (HNT)
Salmonopuntia salmiana	6667776	6425092	38.8	Köhler 515 (ICN)
Tacinga palmadora	18511428	18182592	39.2	DBG1997-0392
Tephrocactus weberi	13461630	13300339	37.8	DBG2012-0428
Tunilla erectoclada	6935606	6675910	37.8	DBG2018-0144
Table S2. Reference-guide assemblies of Opuntioideae taxa to the *Opuntia quimilo* plastome.

Taxon	Chloroplast					
	Reads	Mapped	Genome Coverage	Consensus Sequence Length	%GC	GenBank Submission
Austrocylindropuntia cylindrica	551,356	642	127,734	36.3		
Brasiliopuntia brasiliensis	386,272	449	128,560	36.1		
Consolea rubescens	191,291	221	128,464	36.2		
Coryphantha macromeris	817,912	982	128,341	36.2		
Cumulopuntia sphaerica	333,795	393	127,844	36		
Cymodropuntia bigelovii	1,159,529	1355	128,307	36.3		
Grusonia aggeria	1,307,477	1534	127,410	36.2		
Maihueniopsis atacamensis	661,251	775	128,476	36.2		
Micropuntia pulchella	1,189,650	1404	127,876	36.1		
Miqueliopuntia miqueli	544,818	638	128,543	36.1		
Parodia magnifica	810,368	954	127,406	36.2		
Pereskia sacharosa	919,347	1075	128,319	35.9		
Pereskiopsis diguettii	449,688	523	126,925	36		
Pterocactus gonjianii	481,070	552	127,885	35.8		
Quiabentia verticillata	170,524	197	128,319	36.3		
Salmonopuntia salmiana	392,127	453	128,810	36.1		
Tacinga palmadora	598,318	699	129,181	36.1		
Teprocactus weberi	548,088	632	128,302	36.1		
Tunilla erectoclada	202,807	236	128,352	36.1		
Table S3. Summary statistics for all chloroplast markers. Markers are ranked by phylogenetic information based on a weighed mean of relative values of number of variable sites (weight = 1), mean bootstrap (weight = 2) and distance to the full plastid tree (weight = 3).

Marker	Bp	Aligned_bp	Variable	PIS	Distance	Bootstrap..Mean.	Rank	
accD.cds	1876 [1489-1927]	1953	966	586	10	88	0.808798	
ycf1.cds	1565 [1414-1615]	1650	958	429	8	76	0.757296	
ndhD.cds	1421 [1410-1421]	1421	210	52	6	79	0.702738	
trnK-UUU.NON-CDS	2570 [2564-2572]	2573	173	45	8	82	0.676375	
psbE-rpl20.SPACER	1731 [1714-1736]	1739	242	68	8	77	0.663841	
petD.cds	1265 [1257-1272]	1274	69	27	8	75	0.645312	
ccsA.cds	1008 [1007-1011]	1011	110	49	8	73	0.643744	
clpP.cds	359 [356-362]	362	112	64	8	70	0.636547	
rpoC2.cds	4101 [4101-4101]	4101	165	47	8	69	0.628225	
rpoC1.cds	2468 [2467-2469]	2469	86	35	8	69	0.624994	
ycf4-cemA.SPACER	752 [736-755]	757	72	27	8	67	0.615349	
rps2.cds	729 [726-729]	729	77	24	10	71	0.593808	
rbcl.-atpB.SPACER	765 [746-768]	768	122	27	12	79	0.588864	
rpoB.cds	3231 [3231-3231]	3231	149	50	10	67	0.585827	
psbB-clpP.SPACER	547 [525-553]	556	100	41	10	67	0.583404	
petA.cds	963 [963-963]	963	50	18	8	59	0.582963	
psbB.cds	1527 [1527-1527]	1527	39	17	10	68	0.580687	
ycf2.cds	6065 [5933-6110]	6145	1995	619	24	89	0.571429	
ycf3-trnS.SPACER	804 [790-805]	805	67	22	14	82	0.56304	
rps3.cds	657 [657-657]	657	47	16	10	63	0.561692	
petN-psbM.SPACER	1135 [1130-1136]	1137	79	23	12	71	0.557825	
matK.cds	1530 [1524-1530]	1530	104	27	12	68	0.547666	
ycf3.cds	2306 [2288-2324]	2328	119	29	14	77	0.546198	
ndhC-rbcl.SPACER	716 [705-717]	718	103	13	8	49	0.544164	
rpoA.cds	1015 [1008-1020]	1020	103	56	12	64	0.540493	
Gene/Spacer	Start [End]	Length	Completeness	Identity				
-------------	-------------	--------	--------------	----------				
trnT-psbD.SPACER	1022 [1008-1024]	1025	57	16	10	57	0.53922	
ndhE-psaC.SPACER	318 [315-328]	328	70	26	14	75	0.537899	
ccsA-trnL.SPACER	85 [85-85]	85	20	7	10	57	0.536796	
trnV-UAC.NON-CDS	394 [325-400]	402	193	102	14	68	0.532145	
rpl32-ndhF.SPACER	813 [775-826]	832	354	154	14	63	0.52742	
rrrn23.NON-CDS	2838 [2834-2844]	2844	89	29	12	62	0.525732	
psaB.cds	2217 [2217-2217]	2217	58	19	12	61	0.519294	
rps16.cds	676 [672-683]	683	53	18	12	61	0.519025	
trnF-ndhJ.SPACER	561 [510-567]	583	247	124	16	72	0.517336	
accD-psaI.SPACER	599 [591-601]	601	83	37	12	57	0.50916	
rpoB-trnC.SPACER	1102 [1091-1108]	1109	130	51	14	65	0.507178	
trnQ-rps16.SPACER	650 [623-655]	656	118	38	14	62	0.492441	
atpA.cds	1524 [1524-1524]	1524	61	19	10	44	0.491338	
petA-psbJ.SPACER	1066 [1045-1072]	1074	146	63	14	58	0.484191	
atpF-atpH.SPACER	423 [412-425]	425	41	15	12	51	0.480764	
trnD-trnY.SPACER	363 [349-364]	364	34	11	12	50	0.475942	
rpl22.cds	543 [543-543]	543	54	20	12	48	0.470875	
ndhH.cds	1175 [1154-1175]	1175	176	22	12	45	0.460177	
ycf1-rpl32.SPACER	131 [111-137]	146	124	78	14	50	0.458268	
rps4.cds	606 [606-606]	606	57	21	14	54	0.457901	
trnS-psbZ.SPACER	365 [365-365]	365	22	10	12	44	0.453201	
trnL-UAA.NON-CDS	973 [952-986]	990	233	123	16	54	0.449651	
petL-trnS.SPACER	553 [497-556]	563	197	56	16	58	0.446592	
rps15-ycf1.SPACER	773 [766-774]	775	296	129	18	61	0.441769	
atpB.cds	1497 [1497-1497]	1497	65	18	16	57	0.432615	
trnV-rps12.SPACER	1352 [1339-1353]	1353	173	16	12	38	0.432344	
petB.cds	1370 [1368-1372]	1372	44	12	14	47	0.429261	
cemA.cds	690 [690-690]	690	36	11	14	46	0.425246	
rpl33-psaJ.SPACER	461 [450-462]	462	43	12	16	55	0.423509	
rpl16.cds	1465 [1450-1480]	1480	107	31	18	62	0.419128	
Gene	Start [End]	Length	GC content	A content	T content	C content	G content	ORF size
--------------	-------------	--------	------------	-----------	-----------	-----------	-----------	----------
infA.cds	261 [259-264]	264	57	27	16	52	0.416312	
atpF.cds	1304 [1300-1310]	1311	63	14	16	52	0.412812	
ndhF.cds	1718 [1697-1718]	1718	346	17	14	42	0.411881	
rps16-trnK.SPACER	461 [456-464]	464	36	6	14	41	0.405174	
petL.cds	114 [113-114]	114	20	9	16	47	0.392739	
rpl20-rps18.SPACER	314 [290-320]	321	94	15	16	46	0.386716	
psbD.cds	1080 [1080-1080]	1080	25	8	14	34	0.379495	
rpl2.cds	828 [828-828]	828	43	16	16	45	0.371333	
psbK-trnQ.SPACER	338 [336-340]	340	24	7	14	36	0.36716	
atpH-atpL.SPACER	695 [694-695]	695	25	8	14	34	0.37495	
psbA.cds	1062 [1062-1062]	1062	37	11	18	52	0.37629	
ndhC.cds	341 [340-341]	341	67	9	14	33	0.376019	
trnC-petN.SPACER	560 [555-561]	561	24	6	16	42	0.373205	
ndhE.cds	324 [308-324]	324	109	12	20	60	0.370807	
trnP-trnW.SPACER	177 [176-177]	177	18	8	16	41	0.369998	
rps11.cds	417 [417-417]	417	35	15	16	40	0.368137	
trnI-GAU.NON-CDS	1022 [1021-1022]	1022	23	7	18	50	0.367722	
trnE-trnT.SPACER	699 [683-710]	729	147	74	22	64	0.366768	
psaJ-trnP.SPACER	413 [400-416]	416	100	11	18	48	0.361308	
clpP-trnG.SPACER	201 [200-204]	206	63	38	18	46	0.361088	
psaI-ycf4.SPACER	304 [303-304]	304	28	9	18	47	0.357025	
trnK-psbA.SPACER	228 [228-228]	228	27	8	16	37	0.355017	
psbM-trnD.SPACER	871 [866-877]	877	43	13	18	45	0.350611	
trnG-UCC.NON-CDS	756 [752-762]	762	48	16	20	52	0.341922	
psbI-psbK.SPACER	349 [346-351]	351	54	19	20	51	0.338984	
rps2-rpoC2.SPACER	237 [234-237]	237	8	4	16	33	0.338958	
rbcL.cds	1509 [1509-1509]	1509	55	15	20	50	0.334162	
atpI.cds	744 [744-744]	744	21	6	16	31	0.332006	
psbE.cds	309 [309-309]	309	15	5	16	31	0.331737	
rrrn16-trnV.SPACER	226 [225-226]	226	34	17	18	39	0.329216	
psaA.cds	2301 [2301-2301]	2301	55	15	18	39	0.328678	
Segment	Start	End	Gene1	Gene2	Gene3	Gene4	Width	Identity
---------------	-------	-------	-------	-------	-------	-------	--------	----------
trnF-GAA.NON-CDS	240	240	23	9	18	39	0.327062	
rps18.cds	423	425	82	33	22	56	0.325766	
cemA-petaA.SPACER	265	265	20	6	18	38	0.322509	
rpl14.cds	366	366	41	10	18	37	0.319841	
rpl32.cds	199	200	61	23	18	36	0.319596	
ndhD-ccsA.SPACER	217	222	51	17	22	55	0.317713	
atpE-trnM.SPACER	423	291	39	24	18	35	0.31612	
ndhK.cds	192	192	22	5	18	36	0.314749	
rpl14-rps8.SPACER	164	170	18	9	18	33	0.30459	
psbZ-trnG.SPACER	365	370	28	7	22	51	0.300039	
trnL-trnfM.SPACER	231	232	20	5	20	41	0.297761	
atpA-atpF.SPACER	69	69	11	7	18	31	0.296561	
rpl33.cds	204	204	12	3	18	28	0.284248	
ndhA.cds	1624	1631	192	51	24	52	0.279917	
ndhJ-ndhK.SPACER	139	143	21	5	20	36	0.279035	
rpl20.cds	512	512	36	11	18	26	0.278911	
rps14.cds	303	303	16	9	24	54	0.276099	
rrn16.NON-CDS	1491	1491	45	13	20	33	0.269953	
petB-psbH.SPACER	228	228	18	5	18	24	0.269805	
trnS-psbI.SPACER	181	189	29	9	22	42	0.266869	
psbC.cds	1422	1422	36	7	20	32	0.264592	
rpl2-rps19.SPACER	181	182	25	6	20	32	0.264323	
rpl36-rps11.SPACER	128	130	8	2	18	22	0.261507	
trnA-UGC.NON-CDS	887	887	18	7	24	49	0.256834	
psbA-trnH.SPACER	332	343	98	44	24	45	0.251815	
trnL-trnF.SPACER	239	239	18	6	22	38	0.25108	
rps18	330	347	157	81	24	42	0.250541	
Gene Combination	Start Position	End Position	GC Content	GC Div	AT Content	AT Div		
------------------	----------------	--------------	------------	---------	------------	--------		
rpl33.SPACER	trnV-accD.SPACER	148 [134-150]	150	97	28	22	34	0.242023
trnS-rps4.SPACER	ycf4.cds	355 [345-355]	355	25	6	22	34	0.236099
ndhB.cds	ycf2-trnL.SPACER	2165 [2141-2165]	2165	252	72	24	37	0.229391
ycf2-trnL.SPACER	psbT-psbB.SPACER	144 [129-146]	147	58	17	22	31	0.227825
psaC-trndhD.SPACER	rps8.cds	405 [405-405]	405	23	6	22	30	0.221118
ndhB.cds	atpH.cds	265 [263-266]	266	9	3	22	29	0.216565
ycf2-trnL.SPACER	psbK.cds	189 [189-189]	189	12	4	22	28	0.213089
ndhJ.cds	ndhB-trnN.SPACER	334 [327-334]	334	65	6	22	25	0.202391
ndhF-trn16.SPACER	rps15.cds	380 [373-381]	381	24	3	24	32	0.190078
ndhF-trnN.SPACER	petG.cds	200 [198-201]	201	10	2	22	22	0.189957
ndhF-trn16.SPACER	rps7.cds	504 [503-504]	504	38	9	24	31	0.189579
ndhF-trnN.SPACER	rps15.cds	380 [373-381]	381	24	3	24	32	0.189078
ndhF-trnN.SPACER	petG.cds	200 [198-201]	201	10	2	22	22	0.189078
ndhF-trnN.SPACER	rps7.cds	504 [503-504]	504	38	9	24	31	0.189078
ndhF-trn16.SPACER	rps15.cds	380 [373-381]	381	24	3	24	32	0.189078
ndhF-trnN.SPACER	petG.cds	200 [198-201]	201	10	2	22	22	0.189078
ndhF-trn16.SPACER	rps7.cds	504 [503-504]	504	38	9	24	31	0.189078
ndhF-trnN.SPACER	rps15.cds	380 [373-381]	381	24	3	24	32	0.189078
ndhF-trnN.SPACER	petG.cds	200 [198-201]	201	10	2	22	22	0.189078
ndhF-trnN.SPACER	rps7.cds	504 [503-504]	504	38	9	24	31	0.189078
ndhF-trn16.SPACER	rps15.cds	380 [373-381]	381	24	3	24	32	0.189078
ndhF-trnN.SPACER	petG.cds	200 [198-201]	201	10	2	22	22	0.189078
ndhF-trn16.SPACER	rps7.cds	504 [503-504]	504	38	9	24	31	0.189078
Gene 1	Gene 2	Distance	Gap 1	Gap 2	Gap 3	Gap 4	Taxonomy	Score
--------	--------	----------	-------	-------	-------	-------	-----------	-------
petD-	petB.SPACER	212 [210-214]	214	8	2	24	19	0.143128
rps14-	psaB.SPACER	125 [125-125]	125	12	7	24	18	0.140729
rps8-infA.SPACER	100 [92-100]	100	34	14	26	27	0.140607	
rpoC2-	rpoC1.SPACER	144 [144-144]	144	9	4	24	18	0.139921
psaL cds	111 [111-111]	111	5	3	24	18	0.139652	
psbJ cds	123 [123-123]	123	3	2	24	17	0.135637	
trnW-	petG.SPACER	139 [139-139]	139	11	2	24	16	0.131892
psbL cds	126 [118-127]	127	10	1	24	16	0.131623	
ndhK-	ndhC.SPACER	53 [48-53]	53	9	1	26	24	0.125871
trnR-ACG.NON-CDS	74 [73-74]	74	3	1	24	12	0.116642	
atpI-rps2.SPACER	189 [189-189]	189	8	2	24	11	0.113166	
petN cds	153 [153-153]	153	4	2	24	11	0.113166	
trnN-GUU.NON-CDS	72 [72-72]	72	2	1	24	11	0.112896	
trnG-	trnR.SPACER	140 [140-140]	140	13	3	26	20	0.111428
rps3-	rpl16.SPACER	229 [226-231]	231	14	1	24	10	0.109151
rps12.cds	954 [954-955]	955	27	6	26	19	0.108491	
psbN cds	132 [132-132]	132	5	2	24	9	0.105675	
rrn5.NON-CDS	121 [120-121]	121	4	1	24	9	0.105406	
rpl23-rpl2.SPACER	144 [140-144]	144	13	2	24	8	0.10193	
ndhI-	ndhA.SPACER	31 [30-37]	37	7	1	24	8	0.10166
psbH.cds	242 [242-242]	242	11	1	24	8	0.10166	
ndhB-	trnL.SPACER	528 [512-530]	530	120	20	28	23	0.091527
ndhG.cds	380 [380-380]	380	48	6	26	13	0.086019	
psbN-psbT.SPACER	60 [60-60]	60	3	1	26	13	0.084673	
rpoC1-	rpoB.SPACER	26 [26-26]	26	9	3	28	22	0.083205
trnR-	atpA.SPACER	101 [100-101]	101	29	1	26	11	0.077182
ndhA-	ndhH.SPACER	81 [81-81]	81	4	4	26	9	0.070499
rpl23.cds	191 [189-191]	191	18	2	26	9	0.069961	
psbH-psbN.SPACER	86 [86-86]	86	10	1	26	9	0.069691	
ndhH-rps15.SPACER	102 [90-102]	102	12	1	26	8	0.065946	
psbL.cds	111 [111-111]	111	3	1	26	8	0.065946	
trnR-	rrn5.SPACER	256 [255-257]	257	16	1	28	15	0.056449
trnL-ycf2.SPACER	142 [136-142]	142	42	7	28	14	0.054319	
Accession	Start	End	Length	OLS Score				
-----------	-------	-----	--------	-----------				
rpl36.cds	123 [123-123]	123	10	1	28	12	0.045213	
trnC-GCA.NON-CDS	71 [71-71]	71	4	1	28	12	0.045213	
rpl23.spacer	106 [105-106]	106	11	2	26	2	0.043743	
trnY-GUA.NON-CDS	123 [123-123]	123	6	1	26	2	0.043474	
psbJ-psbl.spacer	103 [103-103]	103	5	0	26	1	0.03946	
rrn23-trnA.spacer	149 [146-149]	149	5	0	26	1	0.03946	
rps11-rpoA.spacer	71 [71-71]	71	9	2	28	10	0.037992	
trnT-UGU.NON-CDS	73 [73-73]	73	4	1	26	0	0.035984	
ndhI.cds	108 [108-108]	108	4	1	28	9	0.033977	
ndhB.spacer	271 [271-271]	271	24	1	28	8	0.030232	
rps7-ndhB.spacer	228 [224-228]	228	38	0	28	2	0.007491	
rrn4.5-rrn23.spacer	99 [98-99]	99	5	0	28	1	0.003745	
trnL-UAG.NON-CDS	80 [80-80]	80	1	0	28	1	0.003745	
trnM-CAU.NON-CDS	150 [150-150]	150	7	0	28	1	0.003745	
trnV-GAC.NON-CDS	72 [72-72]	72	2	0	28	1	0.003745	
trnY-trnE.spacer	52 [52-52]	52	2	0	28	1	0.003745	
psbM.cds	105 [105-105]	105	1	0	28	0	0	
rrn4.5.NON-CDS	103 [99-103]	103	4	0	28	0	0	
Table S4. Summary statistics for the top 10 markers with suitable size for PCR amplification. Markers are ranked by phylogenetic information based on a weighed mean of relative values of number of variable sites (weight = 1), mean bootstrap (weight = 2) and distance to the full plastid tree (weight = 3).

Marker	Bp	Aligned_bp	Variable	PIS	Distance	Bootstrap..Mean.
clpP.cds	359 [356-362]	362	112	64	8	70
ycf4-cemA.SPACER	752 [736-755]	757	72	27	8	67
rps2.cds	729 [726-729]	729	77	24	10	71
rbcL-atpB.SPACER	765 [746-768]	768	122	27	12	79
psbB-clpP.SPACER	547 [525-553]	556	100	41	10	67
petA.cds	963 [963-963]	963	50	18	8	59
ycf3-trnS.SPACER	804 [790-805]	805	67	22	14	82
rps3.cds	657 [657-657]	657	47	16	10	63
ndhC-rbcL.SPACER	716 [705-717]	718	103	13	8	49
ndhE-psiC.SPACER	318 [315-328]	328	70	26	14	75