Virtual reality for freely moving animals

John R Stowers1,2, Maximilian Hofbauer1–4, Renaud Bastien5,6, Johannes Griessner1, Peter Higgins1, Sarfarazhussain Farooqui3,4,7, Ruth M Fischer3, Karin Nowikovsky7, Wulf Haubensak1, Iain D Couzin5,6, Kristin Tessmar-Raible3,4,8 & Andrew D Straw1,8

Standard animal behavior paradigms incompletely mimic nature and thus limit our understanding of behavior and brain function. Virtual reality (VR) can help, but it poses challenges. Typical VR systems require movement restrictions but disrupt sensorimotor experience, causing neuronal and behavioral alterations. We report the development of FreemoVR, a VR system for freely moving animals. We validate immersive VR for mice, flies, and zebrafish. FreemoVR allows instant, disruption-free environmental reconfigurations and interactions between real organisms and computer-controlled agents. Using the FreemoVR platform, we established a height-aversion assay in mice and studied visuomotor effects in Drosophila and zebrafish. Furthermore, by photorealistically mimicking zebrafish we discovered that effective social influence depends on a prospective leader balancing its internally preferred directional choice with social interaction. FreemoVR technology facilitates detailed investigations into neural function and behavior through the precise manipulation of sensorimotor feedback loops in unrestrained animals.

VR, defined as experimenter-controlled sensory–motor coupling, allows researchers to study behaviors and physiology for which feedback is important for the process under study. VR systems employed for animal research usually operate on restrained animals and provide a single modality of feedback such as visual or tactile cues. By restraining animals through such devices as a treadmill, VR allows precisely controlled stimulation and brain activity imaging or electrophysiological recording. Thus, VR enables the study of brain responses connected to self-motion and to important aspects of natural conditions, such as photorealistic and perspective-correct visual scenarios. However, because systems for restrained animals usually restore feedback for a single modality, animals still lack normal coupling of the other senses. Even when VR has been used to test navigation in restrained animals by providing visual and auditory cues, coupling between visual and vestibular feedback remained unnatural.

Here we present a system that overcomes most of these limitations by immersing an unrestrained animal in a reactive, 3D world that is under computer control. We demonstrate the use of free-moving VR to unravel previously unnoticed behavioral differences, to perform experiments involving simulated teleportation and swarms to establish new decision-making paradigms, and to decipher rules that govern social interactions.

RESULTS

Implementation of FreemoVR

We built a VR system that simultaneously allows an animal to move freely and provides artificial visual feedback using the system’s capability of simulating any desired visual scenery. This system, FreemoVR, maintains natural sensory–motor feedback for the mechanical senses while providing experimental control over the animal’s visual experience. It uses animal tracking, precise spatial calibration of computer displays, and computer games technology to draw photorealistic and perspective-correct images from the animal’s perspective as it walks, flies, or swims. We made use of computer vision to track animal position with low latency. We built behavioral arenas whose walls or floors are computer

1Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria. 2loopbio gmbh, Kritzendorf, Austria. 3Max F. Perutz Laboratories, University of Vienna, Vienna, Austria. 4Research Platform “Rhythms of Life,” University of Vienna, Vienna, Austria. 5Department of Collective Behaviour, Max Planck Institute for Ornithology, Konstanz, Germany. 6Chair of Biodiversity and Collective Behaviour, Department of Biology, University of Konstanz, Konstanz, Germany. 7Medizinische Universität Wien, Dept. for Internal Medicine 1, Wien, Austria. 8Institute of Biology I and Bernstein Center Freiburg, Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany. Correspondence should be addressed to K.T.-R. (Kristin.tessmar@mfpl.ac.at) or A.D.S. (straw@bio.uni-freiburg.de).

RECEIVED 8 AUGUST 2016; ACCEPTED 6 JULY 2017; PUBLISHED ONLINE 21 AUGUST 2017; DOI:10.1038/NMETH.4399

© 2017 Nature America, Inc., part of Springer Nature. All rights reserved.
Validating behavioral responses to virtual objects and virtual environments

An ideal VR system would be able to mimic the sensory experience of real-world (RW) stimulation. If the VR system works reliably, animal behavior in response to a RW stimulus and the comparable VR stimulus should be similar. We therefore characterized flight trajectories of Drosophila in the presence of an upright gray post, placed at the center of an arena onto which a high-contrast checkerboard was projected (Fig. 1c). In response to both the RW object and the VR object, flies typically circled the post (Fig. 1f; Supplementary Figs. 3 and 4; and Supplementary Videos 5 and 6). In the no-post (NP) condition, identical to the RW and VR conditions except for the absence of the post, flies flew through the entire arena, including the center. Thus, flies behave as if they perceive the virtual and real objects similarly, which attests to the principle functionality of our system.

We performed similar experiments with juvenile zebrafish (46–56 d postfertilization (dpf)) in the presence of an upright black post at the center of a checkerboard-texture arena (Fig. 1g). To track the fish, we extended existing multicamera tracking software with the new capability of correcting refraction from the air–water interface. Again, trajectories were consistent with animals perceiving the virtual object similarly to perceiving a real object (Fig. 1h, Supplementary Video 7).

These data indicate that our system generates naturalistic visual percepts of objects for freely moving animals.

Free-moving VR in a rodent innate aversion assay

Visual motion parallax from self-motion is important for rodents to estimate horizontal distance, and we wondered whether rodents estimate height similarly. We simultaneously asked this question and validated FreemoVR’s effectiveness in mice with an assay measuring height aversion. The RW configuration (Fig. 2a) used a circular track placed above a shallow (20 cm) and a deep (40 cm) checkerboard surface. The VR configuration simulated these surfaces, and we also used a static (ST) configuration (Fig. 2b,c and Supplementary Videos 8 and 9). In RW and VR conditions, check size was 4 cm. Because of perspective, the shallow checks subtend larger visual angles than deep checks, and the ST condition showed checks of similar angular size but without correct motion parallax.
We found that mice spend more time above RW shallow surfaces but show no preference in ST conditions (Fig. 2d,e). In VR, mice spend more time above the simulated shallow surface (Fig. 2f), similar to their behavior in RW conditions. Statistically, the distribution of time spent per mouse on the shallow side was significantly different from that of a null hypothesis of 50% in both the RW and VR conditions, but not in the ST condition (Fig. 2g) (one sample t-test versus 50%, \(P = 0.0072, N = 16 \) mice (VR); \(P = 0.0071, N = 15 \) (RW); \(P = 0.7152, N = 16 \) (ST)). This shallow preference was overruled by static environmental cues, namely the preference for the side of the arena near a wall in the ST condition (Fig. 2h and Supplementary Fig. 5a) (one-way ANOVA \(F(2,44) = 16, P < 0.0001 \); Tukey’s posthoc test; ST versus VR, \(P = 0.0017, N = 16 \) versus 16 mice; ST versus RW, \(P < 0.0001, N = 16 \) versus 15; VR versus RW, \(P = 0.1456, N = 16 \) versus 15; equal group variance, Bartlett test \(P = 0.94 \)). Neither total locomotion nor head dipping was affected by these conditions (Fig. 2i; Supplementary Figs. 5 and 6) (one-way ANOVA \(P = 0.18 \); VR \(N = 16 \) mice, RW \(N = 15 \), ST \(N = 16 \), equal group variance, Bartlett test \(P = 0.41 \)). Thus, FreemoVR can elicit height aversion in mice and, considering no such preference exists in static conditions, mouse aversion to height depends on parallax, not texture.

Altered action–perception in rigidly tethered Drosophila

We sought to determine the effect of a common experimental manipulation—head immobilization—in fly visuomotor control. In tethered flies, this manipulation maximizes precision of visual stimulation, enables electrophysiology, and has been important for studies of fly vision\(^5,25\). The few studies that investigated head
immobilization in tethered flight found confusing or minimal effects, whereas head movements are suggested to be important in free flight. To date, no study has directly compared the effect of head immobilization in free versus tethered flight. Enabled by FreemoVR, we showed similar stimuli to tethered and freely flying flies and recorded behavioral performance.

For the free-flight experiments, we used the animals’ own optomotor response to gather long behavioral trajectories in a limited spatial volume by coupling wide-field optic flow to the animals’ position such that we could ‘steer’ the flies on an infinity-symbol (∞) shaped trajectory via visual rotation (Fig. 3a, Supplementary Fig. 7, and Supplementary Video 10). In the head-fixed group, the head was glued to the thorax, which prevented relative movement. In a control group, the head was glued to the thorax, which prevented relative movement. The ‘head-free glue’ flies could still move while head-fixed flies were unable to perform optomotor following in contrast to head-free glued and no-glue flies (Fig. 3a–e). Quantitatively, we found the correlation between visual stimulus and behavioral response significantly decreased in the head-fixed flies, while we measured no such difference in the head-free and wild-type flies with no glue (Fig. 3d and Supplementary Fig. 8) (Pearson correlation at lags 180 ms, Mann–Whitney test; no glue versus head fixed, *P*= 1.8 × 10−5, *n*= 132 versus 34; no glue versus head free, *P*= 0.20, *n*= 55 versus 34; head free versus head fixed, *P*= 0.20, *n*= 55 versus 132; head free versus head fixed, *P*= 1.8 × 10−5, *n*= 132 versus 34).

We performed corresponding experiments in rigidly tethered flies (Fig. 3f–h). Both head-fixed and head-free glued flies followed the optomotor stimulus, and we found no significant difference between groups (Fig. 3f and Supplementary Fig. 8) (Mann–Whitney test, head fixed versus head free, *P*= 0.20, *n*= 11 versus 6). Overall, the effect of head immobilization in free flight is unlikely caused by impaired mechanical maneuverability, because gluing caused little change in free-flight angular velocity statistics (Fig. 3i), and flight speed increased with glue application (Fig. 3j).
head-fixed and head-free gluing resulted in little difference in the flies' angular velocity statistics (Fig. 3k). Our results indicate that tethered experiments, even without head fixation, cannot be used to study head movements for naturalistic flight control, because flight control is fundamentally altered by tethering.

A subtle visuomotor deficit in mitf-a mutant zebrafish

The zebrafish strain nacre, a mitf-a gene loss of function, has reduced pigmentation and is frequently used for whole-brain-activity imaging in combination with sensory–motor behavior. Two previous investigations reported no behavioral differences between nacre and wild-type fish. Given that behavioral differences exist even between wild-type strains, we wondered whether such differences might have gone unnoticed on account of the level of analysis or particular assays used. Automated VR system gives us the ability to test multiple visuomotor assay conditions by automatically and instantly reconfiguring the visual environment and experimental conditions with no physical disturbance.

We compared visuomotor behaviors of nacre mutant and wild-type AB larvae (Fig. 4a,b) using a modified infinity-symbol assay. We used a panoramic cloud of many circles, like a random-dot display, (Supplementary Fig. 9 and Supplementary Video 11) to elicit compensatory movements by automatically adjusting dot 3D linear velocity. When tested with 3.1° dots, both nacre and wild-type fish robustly followed the target trajectory equally well (Fig. 4c), and the time-varying correlation between the lateral component of the input visual stimulus velocity and the output swim velocity showed no difference (Fig. 4d,e) (Pearson correlation at lags 20–30 ms Mann–Whitney test, \(P = 0.52 \), \(n = 112 \) trials for AB genotype; \(n = 124 \) trials for mitf-a genotype). With 1.3° dots, however, wild-type fish reversed the direction of their swim response, perhaps because of dot-size dependency or spatial aliasing. Mutant mitf-a fish showed near zero correlation (Fig. 4f–h), which was significantly different from that of wild-type fish (Mann–Whitney test, \(P = 0.014 \), \(n = 112 \) trials for AB genotype; \(n = 124 \) trials for mitf-a genotype). Control experiments with zero-contrast gray showed,
as expected, no correlation between stimulus and response and no significant difference (Mann–Whitney test, P = 0.82, n = 112 versus 124) between strains (Fig. 4i,j,k), and we found no obvious motor difference between strains (Supplementary Fig. 10). The behavioral alteration associated with the mitf-a strain is specific to the small point condition. This finding demonstrates the sensitivity and suitability of our VR system for discovering even relatively small derivations from wild-type behavior in freely moving animals.

Virtual teleportation to assess decision making in fish

To further demonstrate the novelty of experimental designs enabled by FreemoVR, we implemented a decision-making assay using virtual teleportation; when a fish entered a ‘portal’—a special region with distinct visual appearance—an instantaneous simulated teleportation to a new environment occurred. We designed experiments in which a particular portal appearance was coupled with teleportation to a specific simulated environment (Fig. 5a–c and
Supplementary Fig. 11). We measured fish 'decisions’, which are operationally defined as entering one of the two available portals. Two types of environmental settings were tested. In one of these the fish could choose between a checkerboard and a plant world (Supplementary Fig. 11 and Supplementary Video 12), and in one scenario the fish could choose between the absence or presence of a virtual swarm (Fig. 5a–h and Supplementary Video 13). The swarm consisted of video game space invaders, each independently controlled but exhibiting flocking behavior, as the invaders were controlled by the boids algorithm. Each simulated creature was programmed to respond to the real fish exactly as it responded to the other creatures. We found that fish were influenced by the swarm, as seen in the spatial occupancy distribution (Fig. 5d).

We tested if fish could associate a 'decision’ (Fig. 5b–h) with the teleportation outcome. We kept the coupling constant in individual fish, but we tested the two possible couplings in different fish (Fig. 5b). We analyzed the results as a series of two alternative forced choice decisions and, in 1-h trials, found that fish decisions were not significantly biased for swarms or their absence (Fig. 5e, one-sample t-test difference from 0.5, \(P = 0.34\)). Fish preferred magenta portals (Fig. 5f, \(P = 0.0025\)) and spent more time in the swarm condition (Fig. 5g, \(P = 0.014\)), likely because they swarm more slowly there (Fig. 5h, two-related-sample t-test, \(P = 0.00029\)). These teleportation experiments revealed scene-specific swimming speeds, occupancy differences, and preference for portal appearance; but they showed no learning.

Balancing internal preferred direction with social responsiveness is required for effective leadership in zebrafish

We addressed the question of how individuals reconcile personal and social information when making movement decisions, and we explored how the strength of feedback between a real and a virtual fish under computer control impacts leadership. Theoretical work suggests that an individual can exert influence while minimizing group splitting by balancing internal preferred travel direction with travel toward others.

We created a photorealistic virtual fish (Fig. 5i; Supplementary Figs. 12 and 13; and Supplementary Video 14) and adjusted its interactivity toward real fish. Zebrafish of this age (23 dpf), without social influence, predominantly swim around the arena periphery (Fig. 5k, control). We programmed our virtual fish to differ by preferring a trajectory around the arena center (0.07 m from the periphery; Fig. 5k, white dotted line). Thus, we created a conflict that allowed us to explore how social feedback—under computer control in the virtual fish—impacts movement.

We changed, via weighting factor \(\omega\), how strongly the virtual fish is influenced by its preferred central trajectory relative to swimming toward the real fish (see Online Methods). If \(\omega = 0\), the virtual fish is exclusively influenced by the real fish. As \(\omega\) increases, movement becomes more influenced by preferred direction, such that for \(\omega = 1\), social and goal oriented are equal, and with \(\omega > 1\), the virtual fish increasingly biases its motion toward its preferred direction.

When the virtual fish is influenced relatively weakly by its preferred trajectory (\(\omega = 0\)–0.2), the real fish dominates the direction of travel, and the virtual fish spends most time following it (Fig. 5k). In these conditions, both fish spend most time circling the perimeter of the arena (the real fish’s preferred trajectory), and the real fish’s distance from arena edge is near 0 m. This perimeter-circling behavior is similar to control conditions with no virtual fish (Fig. 5k and Supplementary Fig. 14).

In this low-\(\omega\) regime, probability histograms in body-centric coordinates for the real fish confirm that the virtual fish is most frequently immediately behind the real fish (Fig. 5i). As the virtual fish more equally weights the direction of the real fish into its own direction of travel (\(\omega = 0.4\)–4), the real fish is influenced by this social feedback, and thus its own position in the arena shifts away from edge following (Fig. 5k, \(P < 10^{-5}\), Mann–Whitney U test comparing distance from edge for \(\omega = 0\) to \(\omega = 1\)). This is associated with a change in the relative position; real fish now more frequently follow virtual fish (Fig. 5i and Supplementary Fig. 15).

For still higher values of \(\omega\), when the virtual fish movement is dominated by its own preferred route (\(\omega = 100\), the real and virtual fish often separate, with the real fish reverting back to edge following (Fig. 5k, \(P < 10^{-5}\), Mann–Whitney U test comparing distance from edge for \(\omega = 1\) to \(\omega = 100\)), and the relative positions are more variable, resulting in more uniform, and therefore less distinctly peaked, relative positions in the probability histograms of fish position (Fig. 5l).

Thus, while reducing social feedback allows the virtual fish to exert a greater influence on the real fish, it also increases the risk of losing, and thus completely failing to lead, the real fish.

DISCUSSION

We demonstrate our FreemoVR system’s ability to elicit naturalistic object responses in freely flying *Drosophila* and freely swimming zebrafish and anxiety-related behaviors in freely walking mice. Immersive, reactive VR has the potential to become an invaluable tool in the study of multimodal sensory integration, spatial cognition, social interactions, and collective behavior.

Despite its advantages, our system also has limitations. Because it renders visual stimuli in a perspective-correct manner for a single viewpoint, it is not directly suitable for the investigation of behaviors for which stereopsis is important or for simulating virtual worlds for multiple animals simultaneously. Here we have not tracked eye position or angular orientation, but these would be useful future additions. By using computer graphics cards and displays designed for humans, we enable the use of inexpensive and flexible hardware; but certain experiments, especially those on animals with visual requirements far different than our own, such as high temporal resolution or broad spectral and polarization sensitivity, will present further challenges.

When used together with technologies to measure neural activity in freely moving animals, VR for freely moving animals will advance investigation of brain function of high-level behaviors such as navigation. Additionally, the ability to programmatically control virtual agents will facilitate careful study of causality in collective behavior. Ultimately, this is important because it will allow researchers to study the mechanistic basis of behavior under conditions in which the brain evolved to operate.

METHODS

Methods, including statements of data availability and any associated accession codes and references, are available in the online version of the paper.

Note: Any Supplementary Information and Source Data files are available in the online version of the paper.

ACKNOWLEDGMENTS

We thank M. Colombini, A. Fuhrmann, L. Fenk, E. Campione, S. Villalba, and the IMP/IMBA Workshop for help constructing FreemoVR hardware and software.
The authors declare competing financial interests: details are available in the work. J.G., P.H., and S.F. contributed equally to this work. K.T.-R., I.D.C., J.R.S., M.H. and J.G. wrote the manuscript. A.D.S., K.T.-R., W.H., M.H., R.B., J.G., P.H., S.F., and A.D.S. performed experiments. J.R.S., M.H., A.D.S., K.T.-R., W.H., and I.D.C. conceived the projects. J.R.S., M.H., R.M.F., R.B., J.G., P.H., S.F., and A.D.S. contributed to the project. IDC acknowledges further support from the Promotion Agency (FFG). K.T.-R. is supported by grants from the University of Vienna (research platform “Rhythms of Life”).
ONLINE METHODS

Implementation of the FreemoVR engine. The FreemoVR Engine is software written in C++ and uses the OpenSceneGraph library for rendering. Different virtual worlds or other experimental paradigms can be programmed as plugins, and a general purpose plugin for rendering complete 3D scenes (OSG format files) is included. Other plugins for custom rendering can be developed while using the FreemoVR projector calibrations and rendering infrastructure. Provided plugins include those for drawing 3D random dot patterns. OSG format 3D scenes can be designed using modeling software such as Blender. The FreemoVR Engine runs as part of a larger FreemoVR System built on the robot operating system (ROS). Experiments and experimental logic are written in Python and communicate with other parts of the system using the ROS interprocess communication and multiprocess launching and parameter setting framework. The FreemoVR Engine itself does not depend on specific tracking software; it works with any tracking implementation that provides 3D position. The tracking implementations used within the FreemoVR System for the experiments presented are discussed below.

High-level control of VR experiments is implemented in a separate process (the ‘experimental node’) from the FreemoVR Engine and the tracking program. This experimental node enforces the starting and stopping criteria for every trial over the duration of the experiment, changes between different stimulus conditions, and alters the real world in real time if required (such as in the case of path-following trials).

All experiments presented in the manuscript make use of stimuli whose precise nature depends on the translational \((x,y,z)\) position of the animal’s eyes but does not attempt to alter closed loop visual feedback in the rotational axes (yaw, pitch, roll) other than to add constant rotational bias. (In Fig. 3, rotational bias was added by rotating the stimulus in world coordinates without attempting to compensate for the animal’s orientation.) In other words, we did not attempt to alter the visuomotor feedback loop with respect to rotation, but only with translation.

The FreemoVR software is available from https://strawlab.org/freemovr and is included in Supplementary Software, as is the tracking software.

Measuring latency and its behavioral effects. Given the physical coupling between animal motion and sensory feedback under natural conditions, we wondered how the latency of our system—the total duration between movement of the subject and a compensatory reaction by the display—might affect these results. For the different VR systems we implemented, we made latency measurements and found values between 60 and 75 ms (Supplementary Fig. 3c), with more than half the total latency caused by rendering on the graphics card and display on the monitor or projector. To address the question of how latency affects our results, we measured behavioral performance, the turning rate of a fly turning away from a rapidly nearing object, as we artificially varied latency. As we approached the smallest possible latencies of our system (0 ms added latency, 60 ms total latency), turn rate asymptotically approached ~50°/s, and turns in response to the VR object were not measurably different than turns in response to the RW object (Supplementary Figs. 3 and 4), (Mann–Whitney test, \(P = 0.82\), difference between mean of all turns toward post, \(n = 109\) versus 99 trials, group variance not different, Barett’s test \(P = 0.66\)), while longer artificial latencies reduced post-avoidance turning.

Animal handling. All animal work was conducted according to Austrian, German and European laws and guidelines for animal research.

Zebrafish. All fish used in Figures 1, 4, and 5a–h were bred and raised by the fish facility of the Max F. Perutz Laboratories Vienna (BMWFU-66.006/0012-WF/II/3b/2014 and BMWFU-66.006/0003-WF/V/3b/2016). Zebrafish (Danio rerio) strains AB and mitf-a were kept in a constant recirculating system at 28 °C on a 16 h light/8 h dark cycle. Collected embryos were kept at 28 °C until hatched. Water was stored in the experimental room to have the same temperature as the experimental apparatus. All fish were moved to the experimental room at least 12 h before testing. Powdered food was available constantly in the holding containers for this period. The water in the experimental apparatus was changed each day before the first experiment except if protocol demanded differently. All fish were tested individually; they were naive and picked at random from the tanks they were raised in. We did not perform size selection for the experiments in Figures 1 and 4. For experiments in Figure 5a–h, relatively large fish were selected.

All fish used in Figure 5i–l were bred and raised by the animal care staff of the Department of Collective Behavior (University of Konstanz/Max Planck Institute). 16 h before conducting experiments, water from the fish facility was taken to the experimental room in order to ensure that water conditions in the VR arenas was the same as in the holding facility. The experimental room was kept at 28 °C. All fish were moved to the experimental room at least 12 h before testing and kept on a 16:8 day:night light regime, as in the fish facility. The water in the experimental apparatus was changed each day before the first experiment. All fish were tested individually; they were naive and picked at random from the tanks they were raised in (according to the animal ethics permit approved by Regierungspäsidium Freiburg, G-16/158).

Drosophila. All experiments were performed on wild-type CS strain Drosophila melanogaster. Flies were raised at 22 °C on a 12-h light, 12-h dark cycle.

Mice. Mice were C57BL/6j males purchased from Charles River Laboratories (Sulzfeld, Germany) and 5–6 months old at time of testing. Animals were group housed at 21 °C, and food and water were provided ad libitum in a 14 h light and 10 h dark cycle (day starting at 6:00 a.m.), not adjusted for daylight savings time during the summer. All tests were performed during the light period. All mouse experiments were performed in accordance with institutional guidelines and were approved by the respective Austrian (BGBI nr. 501/1988, idF BGBI 1 no. 162/2005) and European (Directive 86/609/EEC of 24 November 1986, European Community) authorities and covered by the license MAS5/002220/2011/9.

Behavioral setups. A parts list for all setups can be found in Supplementary Tables 2–4.

FishVR (zebrafish). The bowl was constructed from acrylic by Immersive Display Group, London, UK and is a subsection of a sphere with a diameter of 40.6 cm. The bowl is filled with 4.5 l of water resulting in a depth of 9.1 cm and a diameter of 33.8 cm. Infrared light for tracking of a wavelength of 850 nm is provided.
from underneath the bowl. The projection illuminates the entire surface of the bowl under water level. We used an LED DLP projector (Optoma ML500) with vsync enabled on the graphics card. The water surface is protected against dust and airflow with a hood that also covers the cameras.

A computer (Intel, Core i7, nVidia GeForce GTX 960) does all tracking and VR computation. Four cameras (Basler acA640) mounted outside the water acquire images at 100 fps. Fish position is tracked at 100 fps. A correction for the refraction of light through the water surface is made in real time (see “Animal tracking”).

FlyCave (Drosophila). The flight arena is a 1 m diameter, 1 m high translucent cylinder constructed from projection material (Gerriets International Opera Creamy White Front/Back) bonded to lampshade backing PVC (generic brand, translucent, 0.3 mm thick) for structural support. The cylinder is freestanding and is capped on the top and bottom by sheets of transparent Perspex. There are two mesh-covered openings in the top cover of the arena to allow cool air to circulate. The room in which the arena stands is temperature controlled at 20.5 °C. Ten cameras (Basler acA640) are distributed around the top of the cylinder, and their field of view and focus depth are adjusted to cover the whole arena.

The VR is projected onto the outside of the cylinder using three projectors (Mitsubishi WD-385U-EST) projectors operating at 1,024 × 768 pixel resolution and 120 Hz refresh rate. One computer (Intel, Core i5, nVidia GeForce GTX 670 rev a1) does 3D computations and VR projection; and two further computers (Intel, Core i5) track 2D fly positions at 100 fps. Flies were tracked with 850 nm IR light.

MouseVR (mousetrack). A 1.9 m (75”, Sony KDL-75W855CBAEP) was used to display the VR. A single camera (Basler acA640) was mounted centrally above the television. Mouse head position was tracked in 2D under 850 nm IR light using custom software (Supplementary Software). 3D position was estimated by assuming the mouse had remained at a fixed altitude. A single computer (Intel, Core i7, nVidia GTX 670) did all tracking and VR computation in real time.

The elevated circular platform measures 0.5 m (external diameter), and 0.0396 m (internal diameter), giving the ring platform a width of 52 mm. The ring was constructed from light-gray PVC. The ring is 10 mm thick and has a 2 mm high ridge on the inner and outer sides to make it harder for mice to slip off. In VR trials which tries to bring the active fish position to a target point on the path. More exactly,

\[
V_x = (X_{\text{target}} - X_{\text{fly}})K_{\text{horizontal}}
\]

\[
V_y = (Y_{\text{target}} - Y_{\text{fly}})K_{\text{horizontal}}
\]

\[
V_z = 0
\]

Experimental methods. Statistical reporting. Number of animals is reported with N, number of trials with n.

Zebrafish post experiments. Zebrafish of the AB strain with an age between 46 and 56 dpf were used (Fig. 1). They were picked at random from two breeding tanks. Zebrafish varied in size from 7–15 mm. Testing blind to the condition was not possible, but all evaluation was done by automated computer programs, and thus any efficiency was not necessary for analysis. In total we tested 24 fish; 13 for VR post and control condition and 11 for the real post condition. One fish was in the assay at each time. A new fish was used for each experiment. NP condition was followed by VR condition; RW experiments were performed separately. Conditions were presented for 30 min. NP/VR experiments took 1 h; RW experiments took 30 min. When changing experiments from NP/VR to RW, or from RW to NP/VR, the water was changed. Experiments were performed at room temperature, 22–25 °C.

The RW post was 15 cm high and 4 cm in diameter and milled from black Delrin. The VR post was modeled to the same size, and it was placed inside a checkerboard-textured sphere of the same size as the physical bowl. The VR model was generated with blender (2.74), exported to OpenSceneGraph formal (osg), and loaded directly by FreemoVR. Experimental data files are included in Supplementary Software. In VR trials, the VR post and bowl were present. In RW and NP trials, the VR post was made invisible, but the textured bowl remained.

Sample size was not predetermined. Experiments were run until top views of the trajectories covered the arena densely.

Starting and stopping criteria. Trials were started when a fish was detected in the bowl and underwater. Trials were stopped when the fish was not detected for 0.5 s, when any position estimate for the fish was outside of the bowl or 2 cm above the water level, or when the stimulus condition changed.

Zebrafish path-following experiments. Zebrafish larvae of the wild type AB strain and nacre mutant were tested 6–9 dpf (Fig. 4). We chose AB because the nacW2 mutation was generated in this wild-type background31. Larvae were tested for 45 min each between 10:00 and 19:00. Sample size was determined by the number of fish resulting from a laboratory-typical breeding cycle. In total 62 fish from the mitf-a- strain were tested, as were 56 age-matched larvae from wild-type AB strain reared under identical conditions. This sample size resulted after excluding experiments with technical (projector malfunction) or environmental disturbances (construction-related vibration and noise). Blind testing with regard to strain or experimental condition was not possible, but all evaluation was done by automated computer programs, and thus any efficiency was not necessary. If possible, tests were shuffled between the two genotypes. Experiments were performed at room temperature, 22–25 °C.

A cloud of 3D dots was designed to elicit the optomotor response and thus path following. The stimulus was generated by the agglomeration of identical white dots randomly positioned in a 3D volume of 1 × 1 × 1 m volume. All dots moved with identical velocity. The origin of the dot cloud was fixed to the position of the fish. The velocity of the dots, \(V = (V_x, V_y, V_z)^T \), was calculated by a closed loop position proportional control law which tries to bring the active fish position to a target point on the path.
a static texture less gray color was shown. Conditions were randomly ordered and then alternated sequentially every 5 min.

Sample size was determined by the number of fish we could test in a single week of the correct genotypes for a single replicate. Three replicates were performed using three separate egg batches.

Starting and stopping criteria. Trials were started when a fish was in a cubic volume $-0.15 m < x < 0.15 m$, $-0.15 m < y < 0.15 m$, $-0.10 m < z < 0.01 m$. Trials ended when the active fish average speed over 1 s was less than 1 mm/s, when the active fish performing the trial had not been detected for 0.5 s, or when the stimulus condition changed.

Zebrafish virtual teleportation and swarm experiments. Zebrafish of the AB strain with an age between 24 and 30 dpf were used (Fig. 5a–h). Testing blind to experiment condition was not possible, but all evaluation was done by automated computer programs, and thus blinding was not necessary. In total we tested 24 fish; 12 for virtual teleportation and 12 for swarm experiments. One fish was in the assay at each time. A new fish was used for each experiment. Virtual teleportation experiments lasted 30 min, and the swarm experiment trials were 1 h. Experiments were performed at 28 °C.

Sample size was determined by the time available to perform experiments combined with fish availability.

Zebrafish social feedback experiments. We used 31 juvenile wild-type zebrafish (23 dpf, body length 9.5 mm ± 0.5 mm) picked at random from one breeding tank (Fig. 5i–l). Each individual was tested once for 90 min between 10:00 and 19:00. 16 fish were tested with VR stimuli and 15 with no VR stimuli (control condition). Sample size was determined by the time available to perform experiments combined with fish availability.

A virtual fish (VF), 3D mesh and texture mapping was generated by ENGELS Visualisierungen from multiple images of a zebrafish larvae (9.5 mm). The tailbeat movement of the VF was animated with blender based on median-line-tracking data from video extracted using the software KymoRod. A linear straight chain of 32 bones was applied to the mesh, and this was animated, based on the extracted tracking data, with an oscillating wave propagating from the head to the tail (Supplementary Fig. 12).

The movement of the zebrafish larvae is described as burst and glide motion. A first phase of propulsion is followed by a glide movement that is damped by the friction with water. A new burst and glide movement was generated each $t_{bd} = 0.5$ s. During this movement, the linear velocity was described by an exponential function

$$V_t = V_0e^{-t/t_c}$$

with $t_c = 0.25$ s and $V_0 = 0.14$ ms$^{-1}$. The direction of the VF, d_{VF}, was updated at the beginning of each burst and glide event and determined in accordance with the model previously described. Following this model, avoidance of collisions is the highest priority of the VF. We define a repulsion zone of size $l_r = 2$ cm. When the distance between the real fish (RF) and the VF, $l_{RF} = \sqrt{(x_{RF} - x_{VF})^2 + (y_{RF} - y_{VF})^2}$, is smaller than the distance of repulsion, l_r, the VF turns away from the RF. The direction of the VF is then given by

$$d_{VF} = -\frac{(x_{RF} - x_{VF})e_x + (y_{RF} - y_{VF})e_y}{l_{RF}}$$

If the RF is outside of the repulsion zone, the VF balance the influence of its preferred direction, g, and their attraction to the RF

$$d_{VF} = -\frac{(x_{RF} - x_{VF})e_x + (y_{RF} - y_{VF})e_y}{l_{RF}} + ag$$

Because of the finite size, and the symmetry, of the system, the preferred direction g cannot be constant. A preferred circular direction is defined by a point c on a circle of radius 7 cm at depth 3 mm from the surface. The position c is updated continuously around the circle with a speed v_c that matches the average speed of the VF.

$$v_c = \frac{V_0}{t_{tb}'c} \left(1 - e^{-t/t_c} \right) = 0.1 m \times s^{-1}$$

For each RF, nine different values of omega for the VF were tested

$$\omega = 0, 0.2, 0.4, 0.6, 0.8, 1, 2, 4 \text{ and } 100$$

Every 10 min, a new value of omega was picked once, in random order, so that the same fish can experience the range of ω (social feedback). The direction of rotation clockwise (CW) or counterclockwise (CCW) was picked at random for each stimulus.

Drosophila post experiments. Multiple mixed male and female flies of 4 d of age were used for each experiment. 20–25 flies were introduced into the arena in the evening. Experiments ran from 18:00–10:30. Each condition was tested for 5 min and then changed sequentially. Experiments were performed at room temperature, 22–25 °C.

The physical post was 1 m high and 10 cm diameter and made from gray PVC pipe. The virtual post was generated using blender and styled to have the same color as the real post. In the virtual-post condition, the gray virtual post was placed inside a virtual cylinder with a checkerboard texture and with the same diameter as the FlyCave arena. This textured cylinder prevented the flies from flying into the walls. In real-post experiments, the real post was placed into the arena, and the gray virtual post was not shown. In the no-post condition, the checkerboard texture was replaced with a gray texture the same color as the post. In validation experiments with no added latency (Fig. 2b), the texture of the cylinder was controlled vertically (see following section) to elicit longer flight trials. In experiments to compare turning response of the flies in VR and RW, the texture of the cylinder was static.

Sample size was not predetermined. As each experiment contained multiple flies (20–30), we performed experiments until top views of the trajectories covered the arena densely.

Starting and stopping criteria. When one or many Drosophila were in flight, the experimental node chose the first one whose altitude met the geometric criteria 0.1 m < z (altitude) < 0.9 m and whose distance from the center of the arena was < 0.35 m.

Trials were stopped when the active fly average speed over 5 s was less than 4 cm/s, when the active fly performing the trial had not been detected for 0.5 s, or when the stimulus condition changed.

Drosophila path-following experiments. Female flies of 4 d of age were used for each experiment. Experiments ran overnight, and multiple conditions were alternated as per Drosophila post trials.
To elicit the optomotor response, and thus path following, a stimulus was designed that placed the fly at the center of a virtual textured cylinder. The cylinder was textured with a black and white checkered pattern to give a strong behavioral response. The origin of the cylinder was fixed at the position of the active fly so as to eliminate translational optical flow. The angular velocity, ϕ, of the textured cylinder surrounding the active fly was calculated by a closed-loop angular proportional control law which tries to align the velocity vector of the fly with vector connecting the current fly position with a target point on the path. A second closed-loop attitude control law also biases the vertical motion of the cylinder to keep the flies at the same altitude in the arena. More exactly,

$$\phi = V_k \cdot \theta_{\text{err}} \cdot k$$

$$V_z = (0.8 - Z_{\text{fly}}) \cdot K_{\text{vertical}}$$

Where $V_k = \max(1.0, V \cdot 20)$ increases the gain for slowly flying flies, $\theta_{\text{err}} = \theta_{\text{fly}} - \arctan(\frac{\text{x}_{\text{target}} - \text{x}_{\text{fly}}}{\text{y}_{\text{target}} - \text{y}_{\text{fly}}})$ is the angular error between the fly velocity vector and the current position minus the target position vector, K is the feedback gain for path following, and K_{vertical} is the feedback gain for altitude control. See Supplementary Figure 7 for the influence of different gain values on path following behavior in Drosophila. When the active fly position was within 0.1 m of the target position, the target position was advanced to the next point along the path.

Sample size was not predetermined. Because the flight activity of the nonglued flies was higher than that of the head-fixed flies, we ran double the number of head-fixed fly experiments to increase number of trajectories analyzed.

Starting and stopping criteria. As per Drosophila trials.

Drosophila tethered experiments. Female flies of 4 d of age were used for each experiment. Flies were anesthetized by cooling to 3.2 °C on a custom-built thermoelectric cold plate (IMP Mechanical Workshop, Vienna) and fixed to a tungsten tether rod with a small drop of blue-light solidifying glue (Bondic). Depending on the preparation, the head was additionally bonded to the thorax. Flies were allowed at least 20 min recovery time before the experiments.

Rigidly tethered flies are placed in the center of a ping-pong ball used as a spherical projection screen for visual stimuli as described in ref. 48. Flies were filmed from above using a single camera. Estimation of right and left wing beat amplitudes happened at 100 Hz. The difference between the right and the left wing beat amplitudes was converted to a turning torque and forward force. Applying these forces to a virtual agent gave the tethered fly the ability to control its virtual position in a planar 2D space.

An identical virtual world as per free-flight experiments was used (a textured cylinder of the same dimensions as the FlyCave).

Sample size was not predetermined. After pilot experiments indicated that head-fixed and head-free flies both performed path following, experiments were performed until an N comparable with prior free-flight experiments was obtained.

Starting and stopping criteria. Once the tethered fly had started flying (beating its wings), trials were started by warping the virtual fly somewhere inside the virtual cylinder volume. Trials ended when the tethered subject stopped beating its wings or exited the virtual cylinder volume.

Mice. Experiments were performed in which mouse position was measured to determine locations avoided or preferred by mice (Fig. 2). The locations of shallow and deep relative to the experimental room were switched between trials, thus allowing us to check for effects from the checkerboards and the distal environment.

Experiments were performed at room temperature, 22–25 °C, from 11:30–18:00. Sample size was chosen based on effect strength of similar elevated plus-maze experiments. We elected to test 15 mice per condition or until our stock of suitable mice were exhausted.

Starting and stopping criteria. Mice were placed at the border between the shallow and deep sides and left for 15 min or until they jumped from the platform. Mice which jumped before 10 min were excluded from further analysis ($N = 1$ mouse jumped before completion of 10 min). Only naive mice were used. Mice were used for only one experiment.

Animal tracking. Fish and fly tracking. Multicamera tracking software called Flydra was used. This software operates by updating a six-dimensional estimate (3D position and velocity) of animal state based on observations from each camera on every frame. The state update operation is done using an extended Kalman filter in which the motion model of the animal is a linear constant velocity model, and the nonlinear observation model is derived from the camera calibration and is linearized about the a priori predicted animal position on each frame. Camera calibrations are done using MultiCamSelfCal.

To track fish underwater in 3D with cameras out of water, we developed a new capability of correcting for refraction at the air–water interface. The nonlinear observation model described above was augmented with a model of the water surface and the refractive indices of water and air. Fermat’s principle of least time and the camera calibration were used to calculate forward and reverse models of a 3D point underwater leading to a pixel on the image sensor.

Mouse tracking. Mouse tracking software is implemented using Python and OpenCV. Detection and tracking of head position is implemented using the following sequence of image processing operations operating at 120 fps (Supplementary Video 1).

1. The incoming image is Gaussian blurred ($\sigma = 0.7$)
2. The foreground/background model (OpenCV MOG2, var-Threshold = 0.8) is updated
3. The largest contour from the foreground is extracted and simplified (cvApproxPolyDP, $\sigma = 1$)
4. The contour is filled and rotated into a landscape orientation
5. The ‘heavy’ end of the contour is extracted (representing the head of the mouse)
6. The extremity of the heavy end of the contour in the x-axis, and the mean (weighted center-of-mass) of the contour in the y-axis is taken to be the head of the mouse
7. If the x- or y-position of the head has moved more than 30 pixels since the last frame, ignore the measurement
8. Otherwise, use the mouse head position is used to update a Kalman Filter (constant motion model, process_noise = 3, measurement_noise = 300). Measurement update covariance (R) was chosen dynamically based on the elongation of the mouse contour—with head position estimates from elongated mice trusted more. If no head could be detected then the mouse head position is predicted based on the last position.
(9) The head x-, y-position in pixels is converted to the position in world coordinates by a scale factor. The head z-position is fixed at 0.14 m (the height of the platform).

Data preparation and data handling. Lagged correlation measure. The Pearson correlation was used to measure the relationship between visual system input and behavioral output. The correlation was computed at different time lags (by shifting the system output with respect to the system input) in order to account for the closed loop latency of the system, and to characterize how the organism response to stimulus changes over time. Lagged Pearson correlation was used rather than cross-correlation to deal with time series of different lengths and with missing data.

Zebrafish. Trials shorter than 1 s were discarded. In path-following experiments, all remaining data were then split into 1 s segments for further analysis. Lagged correlations were computed for each 1 s segment; these lagged correlations were then averaged to give one lagged-correlation series per fish and again one per condition.

In post experiment trials associated with Figure 1, observations where the 3D position estimate had been obtained from only one camera were removed.

For comparisons of lagged correlations between groups, variances were checked to not differ. Under large dots, where no difference between genotypes was found: Mann–Whitney test $P = 0.52$, Bartlett’s test of equality of variance $P = 0.42$. For small dots, where a difference between genotypes was observed: $P = 0.014$, equality of variance $P = 0.15$. For gray condition where no difference between genotypes was observed: $P = 0.82$, equality of variance $P = 3 \times 10^{-8}$; however, the equality of variance P value is on account of no overall responses.

Drosophila post trials. For all experimental groups, trials shorter than 2 s were discarded. Trials were truncated when z-position was outside the range $0.1 \text{ m} < z < 0.9 \text{ m}$ (flies sitting on the floor or ceiling of the arena). Trials were truncated when the lateral (x,y) distance from the center of the cylinder to the fly exceeded 0.42 m (flies sitting on the walls of the cylinder). Trials were truncated when the fly forward velocity was $\leq 0.05 \text{ m/s}$ (experimentally determined to represent when flies landed on the post or walls). In trials associated with Figure 1, observations where the 3D position estimate had been obtained from only one camera were removed.

Drosophila path-following trials. For all experimental groups, trials shorter than 1 s were discarded. Trials were truncated when z-position was outside the range $0.1 \text{ m} < z < 0.9 \text{ m}$ (flies sitting on the floor or ceiling of the arena). Trials were truncated when the lateral (x,y) distance from the center of the cylinder to the fly exceeded 0.42 m (flies sitting on the walls of the cylinder). Trials were discarded when $>50\%$ of the trial had a mean forward velocity of $\leq 0.05 \text{ m/s}$ (experimentally determined to represent walking trajectories). Observations where the 3D position estimate had been obtained from only one camera were removed.

Code availability. The most recent version of the software is made available at https://strawlab.org/freemovr. A snapshot is included as Supplementary Software.

Data availability statement. Metadata for all figures are listed in Supplementary Data 1, and original data will be made available on request. A *Life Sciences Reporting Summary* is available.

46. Bastien, R. *et al.* KymoRod: a method for automated kinematic analysis of rod-shaped plant organs. *Plant J.* **88**, 468–475 (2016).
47. D’Azzo, J.J. *Linear Control System Analysis and Design: Conventional and Modern* (McGraw-Hill, 1995).
48. Fenk, L.M., Poehlmann, A. & Straw, A.D. Asymmetric processing of visual motion for simultaneous object and background responses. *Curr. Biol.* **24**, 2913–2919 (2014).
49. Svoboda, T., Martinec, D. & Pajdla, T. A convenient multicamera self-calibration for virtual environments. *PRESENCE Teleoperators Virtual Environ.* **14**, 407–422 (2005).