Supersaturation for hereditary properties

David Saxton *

January 20, 2013

Abstract

Let F be a collection of r-uniform hypergraphs, and let $0 < p < 1$. It is known that there exists $c = c(p, F)$ such that the probability of a random r-graph in $G(n, p)$ not containing an induced subgraph from F is $2^{c+o(1)/n}$. Let each graph in F have at least t vertices. We show that in fact for every $\epsilon > 0$, there exists $\delta = \delta(\epsilon, p, F) > 0$ such that the probability of a random r-graph in $G(n, p)$ containing less than δnt induced subgraphs each lying in F is at most $2^{c+\epsilon/\epsilon(n)}$. This statement is an analogue for hereditary properties of the supersaturation theorem of Erdős and Simonovits. In our applications we answer a question of Bollobás and Nikiforov.

1 Hereditary properties

Let F be a collection of r-uniform hypergraphs (which we abbreviate to r-graphs). Let $P = \text{Forb}(F)$ be the collection of all r-graphs not containing an induced subgraph from F. P is a hereditary property: it is a collection of graphs closed under graph isomorphism and under taking induced subgraphs. Let $P^n \subset P$ be the set of these graphs on n vertices. Let $G(n, p)$ be a random r-graph on n vertices where each edge is included uniformly and independently with probability p.

Proposition 1 (Alekseev [1], Bollobás and Thomason [4]). Let P be a hereditary property for r-graphs. Define c_n via

$$Pr[G(n, p) \in P^n] = 2^{-c_n}.$$

Then the limit $\lim_{n \to \infty} c_n$ exists.

(Strictly speaking, Alekseev only proved the case $r = 2$ and $p = 1/2$, but his argument shows that Proposition 1 follows from the Erdős-Hanani conjecture as proved by Rödl [10]. Bollobás and Thomason [4] show that in fact c_n is increasing in n.)

For the property $P = \text{Forb}(F)$, let $c(p, F)$ be the limit in Proposition 1. For $p = 1/2$, the above probability is exactly proportional to the number of graphs without an induced subgraph from F.

The case $r = 2$ has been studied extensively. Prömel and Steger [9] showed that $c(1/2, \{F\}) = 1/t$, where t is the maximum integer for which there exists

*Supported by the Engineering and Physical Sciences Research Council.
than Theorem 2.

a more direct analogue of the supersaturation theorem of Erdős and Simonovits have the following immediate corollary of Theorem 2, which can be considered ∗

Write \(\text{ex}(\text{G}(n, p)) \in P \) such that the number of generated graphs is 2

\(G \) there exist graphs determined by the number of subgraphs of a single graph. More specifically, and Nikiforov \([3]\), using results relying on Szemerédi’s Regularity Lemma. They be done by Theorem 2 together with the proof of c

\(\text{ex}(\text{G}(n, p)) \in P \) such that any \(r \)

Then for every \(\epsilon > 0 \) there exist \(n_0 \) and \(\delta > 0 \) (depending only on \(\epsilon, p, \mathcal{F} \)) such that if \(\mathcal{A} \) is a collection of \(r \)-graphs on \(n > n_0 \) vertices with \(\text{Pr}[\text{G}(n, p) \in \mathcal{A}] > 2^{(-c+\epsilon)(r)} \),

then some graph in \(\mathcal{A} \) contains at least \(\delta n^r \) induced subgraphs each lying in \(\mathcal{F} \).

2 Supersaturation

Our main theorem is that, loosely speaking, the probability of containing a positive density of induced subgraphs each lying in \(\mathcal{F} \) is not that much less than the probability of containing a single induced subgraph lying in \(\mathcal{F} \).

Theorem 2. Let \(\mathcal{F} \) be a collection of \(r \)-graphs each with at least \(t \) vertices, let \(0 < p < 1 \) and let \(c = c(p, \mathcal{F}) \) be as above, i.e., letting \(\mathcal{P} \) be the set of \(r \)-graphs not containing an induced subgraph lying in \(\mathcal{F} \),

\[
\text{Pr}[\text{G}(n, p) \in \mathcal{P}] = 2^{(-c+\epsilon)(1)}(r).
\]

Then for every \(\epsilon > 0 \) there exist \(n_0 \) and \(\delta > 0 \) (depending only on \(\epsilon, p, \mathcal{F} \)) such that if \(\mathcal{A} \) is a collection of \(r \)-graphs on \(n > n_0 \) vertices with \(\text{Pr}[\text{G}(n, p) \in \mathcal{A}] > 2^{(-c+\epsilon)(r)} \),

we wish to draw a parallel with the supersaturation theorem of Erdős and Simonovits \([7]\) which says the following. For a collection of forbidden \(r \)-graphs \(\mathcal{F} \) each on at least \(t \) vertices, let \(\text{ex}(n, \mathcal{F}) \) be the maximum number of edges of an \(r \)-graph on \(n \) vertices containing no copy of any graph in \(\mathcal{F} \) (not necessarily induced), and let \(\gamma = \lim_{n \to \infty} \text{ex}(n, \mathcal{F})(r)^{-1} \) be the extremal density limit. Then for every \(\epsilon > 0 \) there exists \(\delta > 0 \) and \(n_0 \) (depending only on \(\epsilon \) and \(\mathcal{F} \)) such that any \(r \)-graph with more than \((\gamma + \epsilon)(r) \) edges on \(n > n_0 \) vertices contains at least \(\delta n^r \) subgraphs each lying in \(\mathcal{F} \).

The case \(p = 1/2, r = 2, \mathcal{F} = \{F\} \) of Theorem 2 was proved by Bollobás and Nikiforov \([3]\), using results relying on Szemerédi’s Regularity Lemma. They ask whether a proof could be given avoiding the regularity lemma. We show that this is indeed possible. (More specifically, for the result they state this can be done by Theorem 2 together with the proof of \(c = 1/t \) by Alekseev \([2]\).)

Theorem 2 also generalizes a theorem of Erdős, Rothschild and Kleitman \([6]\), where they prove the case \(p = 1/2 \) and \(\mathcal{F} = \{K_1\} \), a complete graph on \(t \) vertices.

In \([9]\) Prömel and Steger prove that in fact the number of graphs on a vertex set \(V \) of size \(|V| = n \) not containing an induced \(F \) subgraph is essentially determined by the number of subgraphs of a single graph. More specifically, there exist graphs \(G = (V, E) \) and \(G_0 = (V, E_0) \) with \(E \cap E_0 = \emptyset \) such that every graph \((V, E_0 \cup X) \) with \(X \subset E \) does not contain an induced \(F \) subgraph, and the number of generated graphs is \(2^{\left| E \right|} = 2^{(1-c)(r)+o(n^2)} \) with \(c = c(1/2, \{F\}) \). Write \(\text{ex}^*(n, F) \) for the maximum number of edges \(|E| \) of such a graph \(G \). We have the following immediate corollary of Theorem 2 which can be considered a more direct analogue of the supersaturation theorem of Erdős and Simonovits than Theorem 2.
Corollary 3. Let F be a 2-graph and let $\epsilon > 0$. Then there exist n_0 and $\delta > 0$ (depending only on ϵ, F) such that for a vertex set V of size $n = |V| > n_0$, if $G = (V, E)$ is a graph on $ex'(n, F) + \epsilon \binom{n}{2}$ edges then for every set of edges $E_0 \subset V^{(2)} \setminus E$ there exists a subset $X \subset E$ such that the graph $(V, E_0 \cup X)$ contains at least $\delta n|F|$ induced copies of F.

3 Proof of Theorem 2

A partial Steiner system with parameters (r, m, n) for a vertex set V of size n is a collection of sets $D \subset V^{(m)}$ such that every r-element subset of V appears at most once as a subset of a set in D. Observe that

$$|D| \leq \binom{n}{r} \binom{m}{r}^{-1}.$$

As proved by Rödl [10], there exist partial Steiner systems which cover almost all r-element subsets.

Proposition 4 (Rödl). For $r < m$, $\lambda > 0$, there exists n_0 such that for every $n > n_0$, there exists a partial Steiner system D with parameters (r, m, n) such that

$$|D| \geq (1 - \lambda) \binom{n}{r} \binom{m}{r}^{-1}.$$

Let F, p, ϵ, c, A, t be as in Theorem 2, and let the common vertex set of the graphs in A be V. For a graph G and a subset D of the vertices of G, write $G[D]$ for the induced subgraph on the vertex set D. Write also $F < G$ to denote that G contains an induced subgraph lying in F. For a collection of graphs C on a common vertex set of size k, write

$$\mu_n(C) = \Pr[G(k, p) \in C]$$

for the measure of the set C in the space $G(k, p)$. Thus $\mu_n(A) > 2^{(-c+\epsilon)(\cdot)}$.

Lemma 5. There exist $\eta, \gamma, \lambda > 0$ and an integer m (depending only on F, p, ϵ) such that the following is true. Let $D = \{D_1, \ldots, D_d\}$ be a partial Steiner system with parameters (r, m, n) on vertex set V with $d \geq (1 - \lambda) \binom{n}{r} \binom{m}{r}^{-1}$. Let $I = \{i \in [d] : \mu_n(\{G \in A : F < G[D_i]\}) \geq \gamma \mu_n(A)\}$. Then $|I| \geq \eta d$.

Proof. For $m \geq 1$, let B be the set of graphs on vertex set $[m]$ that do not contain an induced subgraph lying in F. Then $\mu_m(B) = 2^{(-c+\epsilon')(\cdot)}$ for some $\epsilon' \to 0$ as $m \to \infty$. Fix m sufficiently large such that ϵ' is sufficiently small (to be determined later).

We will choose $\lambda > 0$ later. Partition A as $A = \cup_{S \subset [d]} A_S$, where

$A_S = \{G \in A : \{i : F < G[D_i]\} = S\}$.

Let θ_i be the measure of the set of graphs $G \in A$ such that $F < G[D_i]$, so

$$\theta_i = \sum_{S \supseteq i} \mu_n(A_S).$$
In this notation, \(I = \{ i \in [d] : \theta_i \geq \gamma \mu_n(A) \} \). Let \(\eta = |I|/d \). We aim to show that we can take \(\eta > 0 \) (independent of \(n \)). Observe that
\[
\sum_{S \subseteq [d]} \Delta_{\mu_n(A_S)} = \sum_{i \in [d]} \theta_i \leq (\eta d) \mu_n(A) + (1 - \eta) \gamma d \mu_n(A).
\] (1)

Observe also that \(\mu_n(A_S) \leq \mu_n(B)^{d - |S|} \) (since the projection of \(A_S \) onto any \(D_i, i \in S \) is contained inside a copy of \(B \) on \(D_i \)). Hence
\[
\sum_{S: |S| < \nu d} \mu_n(A_S) \leq \sum_{i=0}^{\nu d} \binom{d}{i} \mu_n(B)^{d-i}
\leq \nu d \binom{d}{\nu d} \mu_n(B)^{(1-\nu)d}
\leq 2^{O(\nu d + (c + \epsilon')(1-\nu)(1-\lambda)(\nu)}
\] (2)

where \(O(\nu) \to 0 \) as \(\nu \to 0 \). Since \(\mu_n(A) = 2^{(-c + \epsilon')(\nu)} \), we may pick \(\epsilon', \nu, \lambda > 0 \) sufficiently small such that the quantity in (2) is at most \(\mu_n(A)/2 \). Thus by (1),
\[
(\eta d) \mu_n(A) + ((1 - \eta) \gamma d) \mu_n(A) \geq \sum_{S: |S| \geq \nu d} |S| \mu_n(A_S) \geq (\nu d) \mu_n(A)/2,
\]
i.e., \(\nu/2 \leq \eta + (1 - \eta) \gamma \). Set \(\gamma = \nu/4 \); this gives \(\eta \geq (\nu/4)/(1 - \nu/4) > 0 \) as required. \(\square \)

We are now ready to prove Theorem 2.

Proof. Let \(\eta, \gamma, \lambda, m \) be as in Lemma 5. Let \(n \) be sufficiently large for the existence of an \((r, m, n) \) partial Steiner system \(\mathcal{D} \) covering a proportion of at least \(1 - \lambda \) of the \(r \)-subsets of \(V \). Let
\[
X = \{ D \in V^{(m)} : \mu_n(\{ G \in \mathcal{A} : F < G[D]\}) \geq \gamma \mu_n(A) \}.
\]

Let \(\sigma \) be a randomly and uniformly chosen permutation of \(V \), and let \(\mathcal{D}_\sigma \) be the partial Steiner system generated from \(\mathcal{D} \) by permuting the vertex set \(V \) by \(\sigma \). Applying Lemma 5 with \(\mathcal{D}_\sigma \) and taking expectations shows that \(|X| \geq \eta \gamma \binom{n}{m} \).

In particular some graph \(G \in \mathcal{A} \) contains at least \(\eta \gamma \binom{n}{m} \) \(m \)-sets containing an induced subgraph lying in \(F \). Each fixed copy of an \(F \in \mathcal{F} \) is included in at most \(\binom{n-t}{m-t} \) \(m \)-sets. Hence \(G \) contains at least
\[
\gamma \eta \binom{n}{m} \binom{n-t}{m-t}^{-1} \geq \gamma \eta (2m)^{-t} n^t
\]
distinct induced subgraphs each lying in \(F \) (provided \(n \geq 2t \)). We can therefore take \(\delta = \gamma \eta (2m)^{-t} \), independent of \(n \), as required. \(\square \)

Acknowledgements The author would like to thank Andrew Thomason for his many helpful suggestions.
References

[1] V.E. Alekseev, Hereditary classes and coding of graphs (in Russian), *Probl. Cybern.* 39 (1982), 151–164.

[2] V.E. Alekseev, On the entropy values of hereditary classes of graphs, *Discrete Math. Appl.* 3 (1993), 191–199.

[3] B. Bollobás and V. Nikiforov, The number of graphs with large forbidden subgraphs, *European J. Combin.* 31 (2010), 1964–1968.

[4] B. Bollobás and A. Thomason, Projections of bodies and hereditary classes of hypergraphs, *Bull. London Math. Soc.* 27 (1995), 416–424.

[5] B. Bollobás and A. Thomason, The structure of hereditary properties and colourings of random graphs, *Combinatorica* 20 (2000), 173–202.

[6] P. Erdős, D.J. Kleitman, and B.L. Rothschild, Asymptotic enumeration of K_n-free graphs, in *Colloquio Internazionale sulle Teorie Combinatorie*. Accad, Naz. Lincei, Rome (1976) 19–27.

[7] P. Erdős and M. Simonovits, Supersaturated graphs and hypergraphs, *Combinatorica* 3 (1983), 181–192.

[8] E. Marchant and A. Thomason, The structure of hereditary properties and 2-coloured multigraphs, *Combinatorica*.

[9] H.J. Prömel and A. Steger, Excluding induced subgraphs III: a general asymptotic, *Rand. Struct. Alg.* 3 (1992), 19–31.

[10] V. Rödl, On a packing and covering problem, *European J. Combin.* 6 (1985), 69–78.