Modulated phases of graphene quantum Hall polariton fluids

F. M. D. Pellegrino1,2

1Dipartimento di Fisica e Astronomia “Ettore Majorana”, Università di Catania, Via S. Sofia, 64, I-95123 Catania, Italy
2INFN, Sez. Catania, Catania, Italy

Summary

This work is placed in the context of solid-state systems in the regime of ultra-strong light-matter coupling. To date, the highest light-matter coupling strengths have been measured in experiments with polaritons in semiconductor systems under the conditions of the Integer Quantum Hall effect. Polaritons are excitations resulting from strong coupling of light with a dipole-carrying matter excitation. In Pellegrino et al. (2016), we studied the impact of electron-electron interaction on polaritons in cavities in the case of graphene under the conditions of the Integer Quantum Hall effect. By using a mean-field (Hartree-Fock) approach we have shown the possibility of formation of spatially modulated light-matter phases characterized by a wavelength that is dependent on the value of the applied static magnetic field and the concentration of carriers, which is tunable by varying the gate voltage.

Keywords: graphene, light-matter interaction, polaritons, quantum Hall effect.
Riassunto

Fasi modulate di fluidi di polaritoni di Hall quantistici in grafene

Il presente lavoro si inserisce nel contesto dei sistemi a stato solido in regime di accoppimento luce-materia ultra-forte. Fra i sistemi con accoppimento luce-materia record ci sono i polaritoni in sistemi a semiconduttore in condizioni di effetto Hall quantistico intero. I polaritoni sono eccitazioni risultanti dall’accoppimento della luce ed eccitazioni di materia che portano un dipolo elettrico. In Pellegrino et al. (2016) ci si è occupati di analizzare a livello teorico l’impatto dell’interazione elettrone-elettrone sui polaritoni ottenuti in cavità nel caso di grafene in condizioni di effetto Hall quantistico intero. Attraverso un approccio di campo medio (detto di Hartree-Fock) si è mostrata la possibilità di formazione di fasi luce-materia modulate spazialmente e caratterizzate da una lunghezza d’onda dipendente dal valore del campo magnetico statico applicato e dalla concentrazione di portatori, quest’ultima modificabile attraverso una variazione della tensione di gate.

Parole chiave: grafene, interazione radiazione-materia, polaritoni, effetto Hall quantistico.

Acknowledgements

The work by Pellegrino et al. (2016) was supported by Centro Siciliano di Fisica Nucleare e Struttura della Materia (CSFNSM), a 2012 Scuola Normale Superiore Internal Project, Fondazione Istituto Italiano di Tecnologia, and the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No. 696656 ‘GrapheneCore1’. Work in Austin was supported by the DOE Division of Materials Sciences and Engineering under grant DE-FG03-02ER45958, and by the Welch foundation under grant TBF1473. We acknowledge Rosario Fazio for early contributions to the work by Pellegrino et al. (2016).

References

Pellegrino, F. M. D., Giovannetti, V., MacDonald, A. H., and Polini, M. (2016). *Modulated phases of graphene quantum Hall polariton fluids*. Nature Communications 7(1), 13355. doi:10.1038/ncomms13355.