ON COMMUTING MATRICES AND EXPONENTIALS

CLÉMENT DE SEGUINS PAZZIS

(Communicated by Gail R. Letzter)

Abstract. Let A and B be matrices of $M_n(\mathbb{C})$. We show that if $\exp(A)^k \exp(B)^l = \exp(kA + lB)$ for all integers k and l, then $AB = BA$. We also show that if $\exp(A)^k \exp(B) = \exp(B)\exp(A)^k = \exp(kA + B)$ for every positive integer k, then the pair (A, B) has property L of Motzkin and Taussky.

As a consequence, if G is a subgroup of $(M_n(\mathbb{C}), +)$ and $M \mapsto \exp(M)$ is a homomorphism from G to $(GL_n(\mathbb{C}), \times)$, then G consists of commuting matrices. If S is a subsemigroup of $(M_n(\mathbb{C}), +)$ and $M \mapsto \exp(M)$ is a homomorphism from S to $(GL_n(\mathbb{C}), \times)$, then the linear subspace $\text{Span}(S)$ of $M_n(\mathbb{C})$ has property L of Motzkin and Taussky.

1. Introduction

1.1. Notation and definition.

i) We denote by \mathbb{N} the set of non-negative integers.

ii) If $M \in M_n(\mathbb{C})$, we denote by e^M or $\exp(M)$ its exponential, by $\text{Sp}(M)$ its set of eigenvalues.

iii) The $n \times n$ complex matrices A, B are said to be simultaneously triangularizable if there exists an invertible matrix P such that $P^{-1}AP$ and $P^{-1}BP$ are upper triangular.

iv) A pair (A, B) of complex $n \times n$ matrices is said to have property L if for a special ordering $(\lambda_i)_{1 \leq i \leq n}, (\mu_i)_{1 \leq i \leq n}$ of the eigenvalues of A, B, the eigenvalues of $xA + yB$ are $(x\lambda_i + y\mu_i)_{1 \leq i \leq n}$ for all values of the complex numbers x, y.

1.2. The problem. It is well-known that the exponential is not a group homomorphism from $(M_n(\mathbb{C}), +)$ to $(GL_n(\mathbb{C}), \times)$ if $n \geq 2$. Nevertheless, when A and B are commuting matrices of $M_n(\mathbb{C})$, one has

$$e^{A+B} = e^A e^B = e^B e^A.$$

However (1) is not a sufficient condition for the commutativity of A with B, nor even for A and B to be simultaneously triangularizable. Still, if

$$\forall t \in \mathbb{R}, \ e^{tA} e^{tB} = e^{tB} e^{tA},$$

or

$$\forall t \in \mathbb{R}, \ e^{t(A+B)} = e^{tA} e^{tB},$$

Received by the editors December 30, 2010 and, in revised form, May 24, 2011 and July 16, 2011.

2010 Mathematics Subject Classification. Primary 15A16; Secondary 15A22.
Key words and phrases. Matrix pencils, commuting exponentials, property L.
then a power series expansion at \(t = 0 \) shows that \(AB = BA \). In the 1950’s, pairs of matrices \((A, B)\) of small size such that \(e^{A+B} = e^A e^B \) have been under extensive scrutiny \[3 \, 4 \, 6 \, 7 \, 9 \, 10\]. More recently, Wermuth \[16, 17\] and Schmoeger \[14, 15\] studied the problem of adding extra conditions on the matrices \(A \) and \(B \) for the commutativity of \(e^A \) with \(e^B \) to imply the commutativity of \(A \) with \(B \). A few years ago, Bourgeois (see \[1\]) investigated, for small \(n \), the pairs \((A, B) \in M_n(\mathbb{C})^2\) that satisfy
\[
\forall k \in \mathbb{N}, \quad e^{kA+B} = e^{kA} e^B = e^B e^{kA}.
\]

The main interest in this condition lies in the fact that, contrary to Conditions \((2)\) and \((3)\), it is not possible to use it to obtain information on \(A \) and \(B \) based only on the local behavior of the exponential around 0. Bourgeois showed that Condition \((4)\) implies that \(A \) and \(B \) are simultaneously triangularizable if \(n = 2 \), and produced a proof that this also holds when \(n = 3 \). This last result is however false, as the following counterexample, communicated to us by Jean-Louis Tu, shows: consider the matrices
\[
A_1 := 2i\pi \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad \text{and} \quad B_1 := 2i\pi \begin{bmatrix} 2 & 1 & 1 \\ 1 & 3 & -2 \\ 1 & 1 & 0 \end{bmatrix}.
\]

Notice that \(A_1 \) and \(B_1 \) are not simultaneously triangularizable since they share no eigenvector (indeed, the eigenspaces of \(A_1 \) are the lines spanned by the three vectors of the canonical basis, and none of them is stabilized by \(B_1 \)). However, for every \(t \in \mathbb{C} \), a straightforward computation shows that the characteristic polynomial of \(tA_1 + B_1 \) is
\[
X \left(X - 2i\pi(t + 2) \right) \left(X - 2i\pi(2t + 3) \right).
\]

Then for every \(t \in \mathbb{N} \), the matrix \(tA_1 + B_1 \) has three distinct eigenvalues in \(2i\pi \mathbb{Z} \), hence is diagonalizable with \(e^{tA_1+B_1} = I_3 \). In particular \(e^{B_1} = I_3 \), and on the other hand, \(e^{A_1} = I_3 \). This shows that Condition \((4)\) holds.

It then appears that one should strengthen Bourgeois’ condition as follows in order to obtain at least the simultaneous triangularizability of \(A \) and \(B \):
\[
\forall (k, l) \in \mathbb{Z}^2, \quad e^{kA+lB} = e^{kA} e^{lB}.
\]

Notice immediately that this condition implies that \(e^A \) and \(e^B \) commute. Indeed, if Condition \((5)\) holds, then
\[
e^B e^A = (e^{-A} e^{-B})^{-1} = (e^{-A-B})^{-1} = e^{A+B} = e^A e^B.
\]

Therefore Condition \((5)\) is equivalent to
\[
\forall (k, l) \in \mathbb{Z}^2, \quad e^{kA+lB} = e^{kA} e^{lB} = e^{lB} e^{kA}.
\]

Here is our main result.

Theorem 1. Let \((A, B) \in M_n(\mathbb{C})^2\) be such that for all \((k, l) \in \mathbb{Z}^2\), \(e^{kA+lB} = e^{kA} e^{lB} \). Then \(AB = BA \).

The following corollary is straightforward.

Theorem 2. Let \(G \) be a subgroup of \((M_n(\mathbb{C}), +)\) and assume that \(M \mapsto \exp(M) \) is a homomorphism from \((G, +)\) to \((\text{GL}_n(\mathbb{C}), \times)\). Then, for all \((A, B) \in G^2\), \(AB = BA \).
The key to the proof of Theorem 1 is Proposition 3.

Proposition 3. Let \((A, B) \in M_n(\mathbb{C})^2\). Assume that, for every \((k, l) \in \mathbb{Z}^2\), the matrix \(kA + lB\) is diagonalizable and \(\text{Sp}(kA + lB) \subset \mathbb{Z}\). Then \(AB = BA\).

For subsemigroups of \((M_n(\mathbb{C}), +)\), Theorem 2 surely fails. A very simple counterexample is indeed given by the semigroup generated by

\[A := \begin{bmatrix} 0 & 0 \\ 0 & 2i\pi \end{bmatrix} \quad \text{and} \quad B := \begin{bmatrix} 0 & 1 \\ 0 & 2i\pi \end{bmatrix}. \]

One may however wonder whether a subsemigroup \(S\) on which the exponential is a homomorphism must be simultaneously triangularizable. Obviously the additive semigroup generated by the matrices \(A_1\) and \(B_1\) above is a counterexample. Nevertheless, we will prove a weaker result, which rectifies and generalizes Bourgeois’ results [1].

Proposition 4. Let \((A, B) \in M_n(\mathbb{C})^2\) be such that \(\forall k \in \mathbb{N}, e^{kA+B} = e^{kA}e^B = e^Be^{kA}\). Then \((A, B)\) has property L.

Note that the converse is obviously false.

The proofs of Theorem 1 and of Proposition 4 have largely similar parts, so they will be tackled simultaneously. There are three main steps.

- We will prove Proposition 4 in the special case where \(\text{Sp}(A) \subset 2i\pi\mathbb{Z}\) and \(\text{Sp}(B) \subset 2i\pi\mathbb{Z}\). This will involve a study of the matrix pencil \(z \mapsto A + zB\). We will then easily derive Proposition 3 using a refinement of the Motzkin-Taussky theorem.
- We will handle the more general case \(\text{Sp}(A) \subset 2i\pi\mathbb{Z}\) and \(\text{Sp}(B) \subset 2i\pi\mathbb{Z}\) in Theorem 1 by using the Jordan-Chevalley decompositions of \(A\) and \(B\) together with Proposition 3.
- In the general case, we will use an induction to reduce the situation to the previous one, both for Theorem 1 and Proposition 4.

In the last section, we will prove a sort a generalized version of Proposition 4 for additive semigroups of matrices (see Theorem 11).

2. Additive Groups and Semigroups of Matrices with an Integral Spectrum

2.1. Notation.

i) We denote by \(\Sigma_n\) the group of permutations of \(\{1, \ldots, n\}\), make it act on \(\mathbb{C}^n\) by \(\sigma.(z_1, \ldots, z_n) := (z_{\sigma(1)}, \ldots, z_{\sigma(n)})\), and consider the quotient set \(\mathbb{C}^n/\Sigma_n\). The class of a list \((z_1, \ldots, z_n) \in \mathbb{C}^n\) in \(\mathbb{C}^n/\Sigma_n\) will be denoted by \([z_1, \ldots, z_n]\).

ii) For \(M \in M_n(\mathbb{C})\), we denote by \(\chi_M(X) \in \mathbb{C}[X]\) its characteristic polynomial, and we set \(\text{OSp}(M) := [z_1, \ldots, z_n], \quad \text{where } \chi_M(X) = \prod_{k=1}^n (X - z_k)\).

iii) Given an integer \(N \geq 1\), we set \(U_N(z) := \{\zeta \in \mathbb{C} : \zeta^N = z\}\).
Therefore one has: for every integer $A, B \in M_n(\mathbb{C})^2$ has property L when there are n linear forms f_1, \ldots, f_n on \mathbb{C}^2 such that

$$\forall (x, y) \in \mathbb{C}^2, \quad \text{OSp}(xA + yB) = [f_k(x, y)]_{1 \leq k \leq n}.$$

Using the fact that the eigenvalues are continuous functions of the coefficients, it is obvious that a pair $(A, B) \in M_n(\mathbb{C})^2$ has property L if and only if there are affine maps f_1, \ldots, f_n from \mathbb{C} to \mathbb{C} such that

$$\forall z \in \mathbb{C}, \quad \text{OSp}(A + zB) = [f_k(z)]_{1 \leq k \leq n}.$$

2.3. Property L for pairs of matrices with an integral spectrum. We denote by $\mathcal{K}(\mathbb{C})$ the quotient field of the integral domain $H(\mathbb{C})$ of entire functions (i.e. analytic functions from \mathbb{C} to \mathbb{C}). Considering id$_\mathbb{C}$ as an element of $\mathcal{K}(\mathbb{C})$, we may view $A + \text{id}_\mathbb{C} B$ as a matrix of $M_n(\mathbb{K}(\mathbb{C}))$. We define the generic number p of eigenvalues of the pencil $z \mapsto A + zB$ as the number of the distinct eigenvalues of $A + \text{id}_\mathbb{C} B$ in an algebraic closure of $\mathcal{K}(\mathbb{C})$. A complex number z is called regular when $A + zB$ has exactly p distinct eigenvalues, and exceptional otherwise. In a neighborhood of 0, the spectrum of $A + zB$ may be classically described with Puiseux series as follows (see [2, chapter 7]): there exists a radius $r > 0$, an integer $q \in \{1, \ldots, n\}$, positive integers d_1, \ldots, d_q such that $n = d_1 + \cdots + d_q$, and analytic functions f_1, \ldots, f_q defined on a neighborhood of 0 such that

$$\forall z \in \mathbb{C} \setminus \{0\}, \quad |z| < r \Rightarrow \chi_{A+zB}(X) = \prod_{k=1}^{q} \prod_{\zeta \in \mathbb{U}_{d_k}(z)} (X - f_k(\zeta)).$$

We may now prove the following result.

Proposition 5. Let $(A, B) \in M_n(\mathbb{C})^2$. Assume that $\text{Sp}(kA + B) \subset \mathbb{Z}$ for every $k \in \mathbb{N}$. Then (A, B) has property L.

Proof. With the above notation, we prove that f_1, \ldots, f_q are polynomial functions. For instance, consider f_1 and its power series expansion

$$f_1(z) = \sum_{j=0}^{+\infty} a_j z^j.$$

Set $N := d_1$ for convenience. Let k_0 be a positive integer such that $\frac{1}{k_0} < r$. For every integer $k \geq k_0$, $k f_1(k^{-\frac{1}{k}})$ is an eigenvalue of $kA + B$; hence it is an integer. Therefore one has: for every integer $k \geq k_0$,

$$\begin{aligned}
(k + 1) f_1 \left(\left(k + 1 \right)^{-\frac{1}{k}} \right) - k f_1 \left(k^{-\frac{1}{k}} \right) &\in \mathbb{Z}.
\end{aligned}$$

For every integer $k \geq k_0$, the following equality holds:

$$\begin{aligned}
(k + 1) f_1 \left(\left(k + 1 \right)^{-\frac{1}{k}} \right) - k f_1 \left(k^{-\frac{1}{k}} \right) &= a_0 + \sum_{j \in \mathbb{N} \setminus \{0, N\}} a_j \left(\left(k + 1 \right)^{-\frac{1}{k}} - k^{-\frac{1}{k}} \right).
\end{aligned}$$

Assume that $a_j \neq 0$ for some $j \geq 1$ with $j \neq N$, and define s as the smallest such j. On the one hand, one has for every integer $j \in \mathbb{N}$,

$$\begin{aligned}
(k + 1)^{-\frac{1}{k}} - k^{-\frac{1}{k}} &= k^{1 - \frac{1}{k}} \left(\left(1 + \frac{1}{k} \right)^{1 - \frac{1}{k}} - 1 \right) \sim_{k \to +\infty} k^{1 - \frac{1}{k}} \frac{1 - \frac{j}{N}}{k} = \frac{1 - \frac{j}{N}}{N} k^{-\frac{1}{k}}.
\end{aligned}$$
On the other hand, when $k \to +\infty$, one has

$$
\sum_{j=s+N+1}^{+\infty} a_j k^{1-\frac{j}{N}} = o(k^{-\frac{s}{N}})
$$

and

$$
\sum_{j=s+N+1}^{+\infty} a_j (k+1)^{1-\frac{j}{N}} = o(k^{-\frac{s}{N}}).
$$

It follows that

$$
\sum_{j \in \mathbb{N} \setminus \{0, N\}} a_j ((k+1)^{1-\frac{j}{N}} - k^{1-\frac{j}{N}}) \sim a_s \left(1 - \frac{s}{N}\right) k^{-\frac{s}{N}}.
$$

The sequence $\left((k+1)f_1((k+1)^{-\frac{j}{N}}) - kf_1(k^{-\frac{j}{N}}) - a_0\right)_{k \geq k_0}$ is discrete, converges to 0 and is not ultimately zero. This is a contradiction. Therefore $\forall j \in \mathbb{N} \setminus \{0, N\}$, $a_j = 0$. In the same way, one shows that, for every $k \in \{1, \ldots, q\}$, there exists a $b_k \in \mathbb{C}$ such that $f_k(z) = f_k(0) + b_k z^{d_k}$ in a neighborhood of 0. It follows that, in a neighborhood of 0,

$$
\chi_{A + zB}(X) = \prod_{k=1}^{q} (X - f_k(0) - b_k z)^{d_k}.
$$

Therefore we found affine maps g_1, \ldots, g_n from \mathbb{C} to \mathbb{C} such that, in a neighborhood of 0,

$$
\chi_{A + zB}(X) = \prod_{k=1}^{n} (X - g_k(z)).
$$

The coefficients of these polynomials are polynomial functions of z that coincide on a neighborhood of 0; therefore

$$
\forall z \in \mathbb{C}, \chi_{A + zB}(X) = \prod_{k=1}^{n} (X - g_k(z)).
$$

The pair (A, B) has property L, and Proposition 5 is proven. \qed

2.4. **Commutativity for subgroups of diagonalizable matrices with an integral spectrum.** Given a matrix $M \in \mathfrak{M}_n(\mathbb{C})$ and an eigenvalue λ of it, recall that the **eigenprojection** of M associated to λ is the projection onto $\text{Ker}(M - \lambda I_n)^n$ alongside $\text{im}(M - \lambda I_n)^n = \sum_{\mu \in \text{Sp}(M), \mu \neq \lambda} \text{Ker}(M - \mu I_n)^n$.

Here, we derive Proposition 5 from Proposition 5. We start by explaining how Kato’s proof [8, p. 85, Theorem 2.6] of the Motzkin-Taussky theorem [12] leads to the following refinement.

Theorem 6 (Refined Motzkin-Taussky theorem). Let $(A, B) \in \mathfrak{M}_n(\mathbb{C})^2$ be a pair of matrices which satisfies property L. Assume that B is diagonalizable and that $A + z_0B$ is diagonalizable for every exceptional point z_0 of the matrix pencil $z \mapsto A + zB$. Then $AB = BA$.

Proof. We refer to the line of reasoning of [8, p. 85, Theorem 2.6] and explain how it may be adapted to prove Theorem 6. Denote by p the generic number of eigenvalues of $z \mapsto A + zB$, and by f_1, \ldots, f_p the p distinct affine maps such that
∀z ∈ C, Sp(A + zB) = \{f_1(z), \ldots, f_p(z)\}. Denote by Ω the (open) set of regular points of z → A + zB, i.e.

Ω = C \ − \ \{z ∈ C : \exists(i,j) ∈ \{1, \ldots, p\}^2 : i ≠ j and f_i(z) = f_j(z)\}.

For z ∈ Ω and i ∈ \{1, \ldots, p\}, denote by Π_i(z) the eigenprojection of A + zB associated to the eigenvalue f_i(z). Then z → Π_i(z) is holomorphic on Ω for any i ∈ \{1, \ldots, p\} (see [S II.1.4]). Let z_0 ∈ C \ − \ Ω. Then A + z_0B is diagonalizable and hence [S p. 82, Theorem 2.3] shows that z_0 is a regular point for each map z → Π_i(z). We deduce that the functions (Π_i)_i≤p are restrictions of entire functions. Since B is diagonalizable, these functions are bounded at infinity (see the last paragraph of [S p. 85]) and Liouville’s theorem yields that they are constant. By a classical continuity argument (see [8, II.1.4, formula (1.16)]), we deduce that each eigenprojection of B is a sum of some projections chosen among the (Π_i(0))_i≤p. As B is diagonalizable, it is a linear combination of the (Π_i(0))_i≤p, which all commute with A + zB for any regular z. Therefore AB = BA. □

We now turn to the proof of Proposition 3.

Proof of Proposition 3. Let (A, B) ∈ M_n(C)^2. Assume that, for every (k, l) ∈ \mathbb{Z}^2, the matrix kA + lB is diagonalizable and Sp(kA + lB) ⊂ Z. Proposition 3 then shows that (A, B) has property L. For k ∈ \{1, \ldots, n\}, choose f_k : (y, z) → α_ky + β_kz such that

∀(y, z) ∈ C^2, OSp(yA + zB) = \{f_k(y, z)\}_1≤k≤n.

Since Sp(A) = \{α_1, \ldots, α_n\} and Sp(B) = \{β_1, \ldots, β_n\}, the families (α_k)_k≤n and (β_k)_k≤n are made of integers. It follows that the exceptional points of the matrix pencil z → A + zB are rational numbers. As the matrix A + \frac{k}{l}B = \frac{k}{l}(kA + lB) is diagonalizable for every (k, l) ∈ (\mathbb{Z} \ − \ \{0\}) \ × \ \mathbb{Z}, the refined Motzkin-Taussky theorem implies that AB = BA. □

We now deduce the following special case of Theorem 1.

Lemma 7. Let (A, B) ∈ M_n(C)^2 be such that for all (k, l) ∈ \mathbb{Z}^2, e^{kA+lB} = I_n. Then AB = BA.

Proof. Recall that the solutions of the equation e^M = I_n are the diagonalizable matrices M such that Sp(M) ⊂ 2iπZ (see [S Theorem 1.27]). In particular, for every (k, l) ∈ \mathbb{Z}^2, the matrix kA + lB is diagonalizable and Sp(kA + lB) ⊂ 2iπZ. Setting A′ := \frac{1}{2iπ} A and B′ := \frac{1}{2iπ} B, we deduce that (A′, B′) satisfies the assumptions of Proposition 3. It follows that A′B′ = B′A′, and hence AB = BA. □

3. The case Sp(A) ⊂ 2iπZ and Sp(B) ⊂ 2iπZ in Theorem 1

Proposition 8. Let (A, B) ∈ M_n(C)^2 be such that ∀(k, l) ∈ \mathbb{Z}^2, e^{kA+lB} = e^{kA}e^{lB}, Sp(A) ⊂ 2iπZ and Sp(B) ⊂ 2iπZ. Then AB = BA.

Proof. We consider the Jordan-Chevalley decompositions A = D + N and B = D′ + N′, where D and D′ are diagonalizable, N and N′ are nilpotent and DN = ND and D′N′ = N′D′. Clearly, for every integer k, kA = kD + kN (resp. kB = kD′ + kN′) is the Jordan-Chevalley decomposition of kA (resp. of kB), and Sp(kD) = Sp(kA) = k Sp(A) ⊂ 2iπZ (resp. Sp(kD′) = Sp(kB) = k Sp(B) ⊂ 2iπZ). This shows that

e^{kA} = e^{kN} and e^{kB} = e^{kN′}.

Condition (6) may be written as

\[\forall (k, l) \in \mathbb{Z}^2, \quad e^{kA+lB} = e^{kN}e^{lN'} = e^{lN'}e^{kN}. \]

Note in particular that \(e^N \) and \(e^{N'} \) commute. Since \(N \) is nilpotent, we have

\[N = \sum_{k=1}^{n-1} \frac{(-1)^{k+1}}{k} (e^N - I_n)^k. \]

That shows that \(N \) is a polynomial in \(e^N \). Similarly \(N' \) is a polynomial in \(e^{N'} \). Therefore,

\[NN' = N'N. \]

The above condition yields

\[\forall (k, l) \in \mathbb{Z}^2, \quad e^{kA+lB} = e^{kN+lN'}. \]

For any \((k, l) \in \mathbb{Z}^2, kN + lN' \) is nilpotent since \(N \) and \(N' \) commute. Hence \(kN + lN' \) is a polynomial in \(e^{kN+lN'} \). Since \(kA + lB \) commute with \(e^{kA+lB} \), it commutes with \(kN + lN' \). Therefore

\[e^{kD+lD'} = e^{kA+lB}e^{-kN-lN'} = I_n. \]

In particular, this yields that \(kD + lD' \) is diagonalizable with \(\text{Sp}(kD + lD') \subset 2i\pi \mathbb{Z} \), and the Jordan-Chevalley decomposition of \(kA + lB \) is \(kA + lB = (kD + lD') + (kN + lN') \) as \(kN + lN' \) commute with \(kA + lB \).

By Lemma \[\text{7} \] the matrices \(D \) and \(D' \) commute. In particular \((D, D')\) has properties \(L \), which yields affine maps \(f_1, \ldots, f_n \) from \(\mathbb{C} \) to \(\mathbb{C} \) such that

\[\forall z \in \mathbb{C}, \quad \text{OSp}(D + zD') = \left[f_k(z) \right]_{1 \leq k \leq n}. \]

The set

\[E := \{ k \in \mathbb{Z} : \exists (i, j) \in \{1, \ldots, n\}^2 : f_i \neq f_j \text{ and } f_i(k) = f_j(k) \} \]

is clearly finite. We may choose two distinct elements \(a \) and \(b \) in \(\mathbb{Z} \setminus E \). The following equivalence holds:

\[\forall (i, j) \in \{1, \ldots, n\}^2, \quad f_i(a) = f_j(a) \iff f_i = f_j \iff f_i(b) = f_j(b). \]

Since \(D \) and \(D' \) are simultaneously diagonalizable, it easily follows that \(D + aD' \) is a polynomial in \(D + bD' \) and conversely \(D + bD' \) is a polynomial in \(D + aD' \). Hence \(N + aN' \) and \(N + bN' \) both commute with \(D + aD' \) and \(D + bD' \). Since \(N + aN' \) and \(N + bN' \) commute with one another, we deduce that \(A + aB = (D + aD') + (N + aN') \) commutes with \(A + bB = (D + bD') + (N + bN') \). Since \(a \neq b \), we conclude that \(AB = BA \). \(\square \)

4. Proofs of Theorem \[\text{1} \] and Proposition \[\text{2} \]

Definition 2. Let \((A, B) \in M_n(\mathbb{C})^2 \).

i) \((A, B)\) is said to be decomposable if there exists a non-trivial decomposition \(\mathbb{C}^n = F \oplus G \) in which \(F \) and \(G \) are invariant linear subspaces for both \(A \) and \(B \).

ii) In the sequel, we consider, for \(k \in \mathbb{N} \setminus \{0\} \), the function

\[\gamma_k : (\lambda, \mu) \in \text{Sp}(e^A) \times \text{Sp}(e^B) \mapsto \lambda^k \mu \in \mathbb{C}. \]

iii) For \(\lambda \in \mathbb{C} \), we denote by \(C_\lambda(M) \) the characteristic subspace of \(M \) with respect to \(\lambda \), i.e. \(C_\lambda(M) = \text{Ker}(M - \lambda I_n)^n \).
Lemma 9. Assume that A satisfies Condition
\[\forall (\lambda, \mu) \in \text{Sp}(A)^2, \lambda - \mu \in 2i\pi \mathbb{Q} \Rightarrow \lambda - \mu \in 2i\pi \mathbb{Z}. \]
Then there exists \(k \in \mathbb{N} \setminus \{0\} \) such that \(\gamma_k \) is one-to-one.

Proof. Assume that for every \(k \in \mathbb{N} \setminus \{0\} \), there are distinct pairs \((\lambda, \mu)\) and \((\lambda', \mu')\) in \(\text{Sp}(e^A) \times \text{Sp}(e^B) \) such that \(\lambda^k \mu = (\lambda')^k \mu' \). Since \(\text{Sp}(e^A) \times \text{Sp}(e^B) \) is finite and \(\mathbb{N} \setminus \{0\} \) is infinite, we may then find distinct pairs \((\lambda, \mu)\) and \((\lambda', \mu')\) in \(\text{Sp}(e^A) \times \text{Sp}(e^B) \) and distinct non-zero integers \(a \) and \(b \) such that
\[\lambda^a \mu = (\lambda')^a \mu' \quad \text{and} \quad \lambda^b \mu = (\lambda')^b \mu'. \]

All those eigenvalues are non-zero and \(\left(\frac{\lambda}{\lambda'} \right)^{a-b} = 1 \) with \(a \neq b \). It follows that \(\frac{\lambda}{\lambda'} \) is a root of unity. However \(\lambda = e^\alpha \) and \(\lambda' = e^\beta \) for some \((\alpha, \beta) \in \text{Sp}(A)^2\), which shows that \((a-b)(\alpha - \beta) \in 2i\pi \mathbb{Z} \); hence \(\lambda = \lambda' \). It follows that \(\mu = \mu' \), in contradiction with \((\lambda, \mu) \neq (\lambda', \mu')\). \(\square \)

Lemma 10. Assume that \(\gamma_1 \) is one-to-one and that \((A, B)\) satisfies Equality \((5) \) (resp. Equality \((4) \)). Then the characteristic subspaces of \(e^A \) and \(e^B \) are stabilized by A and B.

Proof. Notice that \(A + B \) commutes with \(e^{A+B} \), hence commutes with \(e^A e^B \). It thus stabilizes the characteristic subspaces of \(e^A e^B \). Let us show that
\[\forall \mu \in \text{Sp}(e^B), \ C_\mu(e^B) = \bigoplus_{\lambda \in \text{Sp}(e^A)} C_{\lambda \mu}(e^A e^B). \]

- Since \(e^B \) and \(e^A \) commute, \(e^A \) stabilizes the characteristic subspaces of \(e^B \). Considering the characteristic subspaces of the endomorphism of \(C_\mu(e^B) \) induced by \(e^A \), we find
\[\forall \mu \in \text{Sp}(e^B), \ C_\mu(e^B) = \bigoplus_{\lambda \in \text{Sp}(e^A)} \left[C_\lambda(e^A) \cap C_\mu(e^B) \right]. \]

- Let \((\lambda, \mu) \in \text{Sp}(e^A) \times \text{Sp}(e^B)\). Since \(e^A \) and \(e^B \) commute, they both stabilize \(C_\lambda(e^A) \cap C_\mu(e^B) \) and induce simultaneously triangularizable endomorphisms of \(C_\lambda(e^A) \cap C_\mu(e^B) \) each with a sole eigenvalue, respectively \(\lambda \) and \(\mu \): it follows that
\[C_\lambda(e^A) \cap C_\mu(e^B) \subset C_{\lambda \mu}(e^A e^B). \]

- Finally, the application \((\lambda, \mu) \mapsto \lambda \mu \) is one-to-one on \(\text{Sp}(e^A) \times \text{Sp}(e^B) \). Therefore
\[C_{\lambda \mu}(e^A e^B) \cap C_{\lambda' \mu'}(e^A e^B) = \{0\} \]
for all distinct pairs \((\lambda, \mu)\) and \((\lambda', \mu')\) in \(\text{Sp}(e^A) \times \text{Sp}(e^B) \).

One has
\[\mathbb{C}^n = \bigoplus_{\mu \in \text{Sp}(e^B)} C_\mu(e^B) = \bigoplus_{\mu \in \text{Sp}(e^B)} \bigoplus_{\lambda \in \text{Sp}(e^A)} \left[C_\lambda(e^A) \cap C_\mu(e^B) \right] \]
and \(\mathbb{C}^n \) is the sum of all the characteristic subspaces of \(e^A e^B \). We deduce that
\[\forall (\lambda, \mu) \in \text{Sp}(e^A) \times \text{Sp}(e^B), \ C_{\lambda \mu}(e^A e^B) = C_\lambda(e^A) \cap C_\mu(e^B). \]

This gives Equality \((3) \).

We deduce that \(A + B \) stabilizes every characteristic subspace of \(e^B \). However this is also true of \(B \) since it commutes with \(e^B \). Hence both \(A \) and \(B \) stabilize the characteristic subspaces of \(e^B \). Symmetrically, every characteristic subspace of \(e^A \) is stabilized by both \(A \) and \(B \). \(\square \)
Proof of Theorem 1 and Proposition 4. We use an induction on \(n \). Both Theorem 1 and Proposition 4 obviously hold for \(n = 1 \), so we fix \(n \geq 2 \) and assume that they hold for any pair \((A, B) \in M_k(\mathbb{C})^2\) with \(k \in \{1, \ldots, n - 1\} \). Let \((A, B) \in M_n(\mathbb{C})^2\) satisfy Equality (5) (resp. Equality (4)). Assume first that \((A, B)\) is decomposable. Then there exists \(p \in \{1, \ldots, n - 1\} \), a non-singular matrix \(P \in \text{GL}_n(\mathbb{C}) \) and square matrices \(A_1, B_1, A_2, B_2 \) respectively in \(M_p(\mathbb{C}) \), in \(M_p(\mathbb{C}) \), in \(M_{n-p}(\mathbb{C}) \) and in \(M_{n-p}(\mathbb{C}) \) such that

\[
A = P \begin{bmatrix} A_1 & 0 \\ 0 & A_2 \end{bmatrix} P^{-1} \quad \text{and} \quad B = P \begin{bmatrix} B_1 & 0 \\ 0 & B_2 \end{bmatrix} P^{-1}.
\]

Since the pair \((A, B)\) satisfies Equality (5) (resp. Equality (4)), it easily follows that this is also the case of \((A_1, B_1)\) and \((A_2, B_2)\); hence the induction hypothesis yields that \((A_1, B_1)\) and \((A_2, B_2)\) are commuting pairs (resp. have property L). Therefore \((A, B)\) is also a commuting pair (resp. has property L).

From that point on, we assume that \((A, B)\) is indecomposable. We may also assume that \(A \) satisfies Condition (7). Indeed, consider in general the finite set

\[
\mathcal{E} := \mathbb{Q} \cap \frac{1}{2i\pi} \{ \lambda - \mu \mid (\lambda, \mu) \in \text{Sp}(A)^2 \}.
\]

Since its elements are rational numbers, we may find some integer \(p > 0 \) such that \(p\mathcal{E} \subset \mathbb{Z} \). Replacing \(A \) with \(pA \), we notice that \((pA, B)\) still satisfies Equality (5) (resp. Equality (4)) and that it is a commuting pair (resp. satisfies property L) if and only if \((A, B)\) is a commuting pair (resp. satisfies property L).

Assume now that \(A \) satisfies Condition (7) as well as all the previous assumptions; i.e. \((A, B)\) is indecomposable and satisfies Equality (5) (resp. Equality (4)). By Lemma 9 we may choose \(k \in \mathbb{N} \setminus \{0\} \) such that \(\gamma_k \) is one-to-one. Replacing \(A \) with \(kA \), we lose no generality in assuming that \(\gamma_1 \) is one-to-one.

We can conclude: if \(e^B \) has several eigenvalues, Lemma 10 contradicts the assumption that \((A, B)\) is indecomposable. It follows that \(e^B \) has a sole eigenvalue, and for the same reason this is also true of \(e^A \). Choosing \((\alpha, \beta) \in \mathbb{C}^2 \) such that \(\text{Sp}(e^A) = \{e^\alpha\} \) and \(\text{Sp}(e^B) = \{e^\beta\} \), we find that \(\exp(A - \alpha I_n) \) and \(\exp(B - \beta I_n) \) both have 1 as their sole eigenvalue. We deduce that \(\text{Sp}(A - \alpha I_n) \subset 2i\pi\mathbb{Z} \) and \(\text{Sp}(B - \beta I_n) \subset 2i\pi\mathbb{Z} \). Set \(A' := A - \alpha I_n \) and \(B' := B - \beta I_n \). We now conclude the proofs of Theorem 1 and Proposition 4 by considering the two cases separately.

• Case 1. \((A, B)\) satisfies Equality (5). The pair \((A', B')\) clearly satisfies Equality (5). Proposition 3 yields that \(A' \) commutes with \(B' \); hence \(AB = BA \).

• Case 2. \((A, B)\) satisfies Equality (4). The pair \((A', B')\) obviously satisfies Equality (4). The matrices \(e^{A'} \) and \(e^{B'} \) commute and are therefore simultaneously triangularizable (see Theorem 1.1.5)). Moreover, they have 1 as their sole eigenvalue. Therefore \(e^{kA' + B'} = (e^{A'})^k e^{B'} \) has 1 as sole eigenvalue for every \(k \in \mathbb{N} \). Proposition 3 shows that \(\left(\frac{1}{2i\pi} A', \frac{1}{2i\pi} B' \right) \) has property L, which clearly entails that \((A, B)\) has property L.

Thus Theorem 1 and Proposition 4 are proven. \(\square \)
5. ADDITIVE SEMIGROUPS ON WHICH THE EXPONENTIAL IS A HOMOMORPHISM

Notation 3. We denote by \mathbb{Q}_+ the set of non-negative rational numbers.

Definition 4. A linear subspace V of $M_n(\mathbb{C})$ has property L when there are n linear forms f_1, \ldots, f_n on V such that

$$\forall M \in V, \text{OSp}(M) = [f_k(M)]_{1 \leq k \leq n}.$$

In this short section, we prove the following result.

Theorem 11. Let S be a subsemigroup of $(M_n(\mathbb{C}), +)$ and assume that $M \mapsto \exp(M)$ is a homomorphism from $(S, +)$ to $(\text{GL}_n(\mathbb{C}), \times)$. Then span$(S)$ has property L.

By Proposition 4, it suffices to establish the following lemma.

Lemma 12. Let S be a subsemigroup of $(M_n(\mathbb{C}), +)$. Assume that every pair $(A, B) \in S^2$ has property L. Then the linear subspace span(S) has property L.

Proof. Let (A_1, \ldots, A_r) be a basis of span(S) formed of elements of S. For every $j \in \{1, \ldots, r\}$, we choose a list $(a_1^{(j)}, \ldots, a_n^{(j)}) \in \mathbb{C}^n$ such that

$$\text{OSp}(A_j) = [a_k^{(j)}]_{1 \leq k \leq n}.$$

Since, for every $(p_1, \ldots, p_r) \in \mathbb{N}^r$, the pair $\left(\sum_{k=1}^{j-1} p_k A_k, A_j \right)$ has property L for every $j \in \{2, \ldots, r\}$, by induction we obtain a list $((\sigma_1, \ldots, \sigma_r) \in (\Sigma_n)^r$ such that

$$\text{OSp}\left(\sum_{j=1}^r p_j A_j \right) = \left[\sum_{j=1}^r p_j a_{\sigma_j(k)}^{(j)} \right]_{1 \leq k \leq n}.$$

Multiplying by inverses of positive integers, we readily generalize this as follows: for every $(z_1, \ldots, z_r) \in (\mathbb{Q}_+)^r$, there exists a list $((\sigma_1, \ldots, \sigma_r) \in (\Sigma_n)^r$ such that

$$\text{OSp}\left(\sum_{j=1}^r z_j A_j \right) = \left[\sum_{j=1}^r z_j a_{\sigma_j(k)}^{(j)} \right]_{1 \leq k \leq n}.$$

Now, we prove the following property, depending on $l \in \{0, \ldots, r\}$, by downward induction:

$$\mathcal{P}(l) : \text{For every } (z_1, \ldots, z_l) \in (\mathbb{Q}_+)^l, \text{ there exists a list } ((\sigma_1, \ldots, \sigma_r) \in (\Sigma_n)^r \text{ satisfying}$$

$$\forall (z_{l+1}, \ldots, z_r) \in \mathbb{C}^{r-l}, \text{OSp}\left(\sum_{j=1}^r z_j A_j \right) = \left[\sum_{j=1}^r z_j a_{\sigma_j(k)}^{(j)} \right]_{1 \leq k \leq n}.$$

In particular, $\mathcal{P}(r)$ is precisely what we have just proven, whilst $\mathcal{P}(0)$ means that there exists a list $((\sigma_1, \ldots, \sigma_r) \in (\Sigma_n)^r \text{ such that, for every } (z_1, \ldots, z_r) \in \mathbb{C}^r,$

$$\text{OSp}\left(\sum_{j=1}^r z_j A_j \right) = \left[\sum_{j=1}^r z_j a_{\sigma_j(k)}^{(j)} \right]_{1 \leq k \leq n}.$$

Therefore $\mathcal{P}(0)$ implies that span(S) has property L.
Let \(l \in \{1, \ldots, r\} \) be such that \(\mathcal{P}(l) \) holds, and fix \((z_1, \ldots, z_{l-1}) \in (\mathbb{Q}_+)^{l-1}\). By \(\mathcal{P}(l) \), for every \(z_l \in \mathbb{Q}_+ \), we may choose a list \((\sigma_1^{z_l}, \ldots, \sigma_r^{z_l}) \in (\Sigma_n)^r \) such that
\[
\forall (z_{l+1}, \ldots, z_r) \in \mathbb{C}^{r-l}, \quad \text{OSp} \left(\sum_{j=1}^{r} z_j A_j \right) = \left[\sum_{j=1}^{r} z_j a_{\sigma_j^{z_l}(k)}^{(j)} \right]_{1 \leq k \leq n}.
\]
Since \((\Sigma_n)^r\) is finite and \(\mathbb{Q}_+ \cap (0, 1)\) is infinite, some list \((\sigma_1, \ldots, \sigma_r) \in (\Sigma_n)^r\) equals \((\sigma_1^{z_1}, \ldots, \sigma_r^{z_1})\) for infinitely many values of \(z_l \) in \(\mathbb{Q}_+ \cap (0, 1)\). Fixing \((z_{l+1}, \ldots, z_r) \in \mathbb{C}^{r-l}\), we deduce the identity
\[
\forall z_l \in \mathbb{C}, \quad X \sum_{j=1}^{r} z_j A_j(X) = \prod_{k=1}^{n} \left(X - \sum_{j=1}^{r} z_j a_{\sigma_j^{z_l}(k)}^{(j)} \right)
\]
by remarking that, on both sides, the coefficients of the polynomials are polynomials in \(z_l \). Hence
\[
\forall (z_1, \ldots, z_r) \in \mathbb{C}^{r-l+1}, \quad \text{OSp} \left(\sum_{j=1}^{r} z_j A_j \right) = \left[\sum_{j=1}^{r} z_j a_{\sigma_j^{z_l}(k)}^{(j)} \right]_{1 \leq k \leq n}.
\]
This proves that \(\mathcal{P}(l-1) \) holds.

\[\square \]

Acknowledgement

The author would like to thank the referee for helping enhance the quality of this article in a very significant way.

References

[1] G. Bourgeois, On commuting exponentials in low dimensions, Linear Algebra Appl. 423 (2007) 277-286. MR2312407 (2008d:39030)
[2] G. Fischer. Plane Algebraic Curves, Student Mathematical Library, Volume 15, AMS, 2001. MR1836037 (2002g:14042)
[3] M. Fréchet, Les solutions non-commutables de l’équation matricielle \(e^{x+y} = e^x e^y \), Rend. Circ. Math. Palermo 2 (1952) 11-27. MR0049857 (14:237a)
[4] M. Fréchet, Les solutions non-commutables de l’équation matricielle \(e^{x+y} = e^x e^y \), Rectification, Rend. Circ. Math. Palermo 2 (1953) 71-72. MR0057836 (15:279h)
[5] N.J. Higham. Functions of Matrices. Theory and Computation, SIAM, 2008. MR2396439 (2009b:15001)
[6] C.W. Huff, On pairs of matrices (of order two) \(A, B \) satisfying the condition \(e^{A+B} = e^A e^B \neq e^B e^A \), Rend. Circ. Math. Palermo 2 (1953) 326-330. MR0062706 (16:4c)
[7] A.G. Kakar, Non-commuting solutions of the matrix equation \(\exp(X+Y) = \exp(X) \exp(Y) \), Rend. Circ. Math. Palermo 2 (1953) 331-345. MR0062708 (16:4e)
[8] T. Kato. Perturbation Theory for Linear Operators, Grundlehren der Mathematischen Wissenschaften, Second edition, Springer-Verlag, 1976. MR0407617 (53:11389)
[9] K. Morinaga, T. Nono, On the non-commutative solutions of the exponential equation \(e^{x+y} = e^{x+y} \), J. Sci. Hiroshima Univ. (A)17 (1954) 345-358. MR0066337 (16:558f)
[10] K. Morinaga, T. Nono, On the non-commutative solutions of the exponential equation \(e^{x+y} = e^{x+y} \), J. Sci. Hiroshima Univ. (A)18 (1954) 137-178. MR0072104 (17:228h)
[11] T.S. Motzkin, O. Taussky, Pairs of matrices with property L, Trans. Amer. Math. Soc. 73 (1952) 108-114. MR0049855 (14:236c)
[12] T.S. Motzkin, O. Taussky, Pairs of matrices with property L (II), Trans. Amer. Math. Soc. 80 (1955) 387-401. MR0067871 (19:242c)
[13] H. Radjavi, P. Rosenthal, Simultaneous Triangularization, Universitext, Springer-Verlag (2000). MR1736065 (2001e:47001)
[14] C. Schmoeger, Remarks on commuting exponentials in Banach algebras, Proc. Amer. Math. Soc. 127 (5) (1999) 1337-1338. MR1763911 (99h:46090)
[15] C. Schmoeger, Remarks on commuting exponentials in Banach algebras II, *Proc. Amer. Math. Soc.* 128 (11) (2000) 3405-3409. MR1691002 (2001b:46077)

[16] E.M.E. Wermuth, Two remarks on matrix exponentials, *Linear Algebra Appl.* 117 (1989) 127-132. MR993038 (90e:15019)

[17] E.M.E. Wermuth, A remark on commuting operator exponentials, *Proc. Amer. Math. Soc.* 125 (6) (1997) 1685-1688. MR1353407 (97g:39011)

Lycée Privé Sainte-Geneviève, 2, rue de l’École des Postes, 78029 Versailles Cedex, France
E-mail address: dsp.prof@gmail.com