Mixed spin $S=1$ and $S=\frac{1}{2}$ layered lattice in Cu$_2$F$_5$

Dmitry M. Korotin,1,2,∗Dmitry Y. Novoselov,1,2,3 Vladimir I. Anisimov,1,2,3 and Artem R. Oganov2

1M.N. Mikheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences, 18 S. Kovalevskaya St., Yekaterinburg, 620137, Russia.
2Skolkovo Institute of Science and Technology, 30 Bolshoy Boulevard, bld.1, Moscow, 121205, Russia
3Department of Theoretical Physics and Applied Mathematics, Ural Federal University, 19 Mira St., Yekaterinburg 620002, Russia

(Dated: July 20, 2021)

The electronic and magnetic structure, including the Heisenberg model exchange interaction parameters, was explored for the recently proposed novel cuprate Cu$_2$F$_5$. Using the DFT+U calculation, it is shown that the compound is formed by two types of copper ions with d^9 and d^8 electronic configurations. We have found a very stable antiferromagnetic ordering with strong anisotropy of exchange interaction that results in the appearance of an unusual 2D-magnetism: within the (100)-plane the exchange between the $S=1$ and $S=1/2$ Cu ions has almost the same strength as between the two $S=1$ ions. The interplane magnetic interaction is five times weaker than the in-plane one.

I. INTRODUCTION

The low-dimensional spin-lattices exist in a plethora of forms such as spin-ladders [1–3], plaquettes [4], dimers and zig-zags [5, 6]. The compounds owning these magnetic structures demonstrate unusual magnetic excitation spectra, including the appearance of the spin-gap. In the present work, we’ve found a new type of 2D spin-lattice in Cu$_2$F$_5$—the novel stable copper fluoride Cu$_2$F$_5$ predicted theoretically recently in our work [7]. Here we analyze its electronic and magnetic structure in detail, relying on the known crystal structure.

The novel copper fluorides Cu$_2$F$_5$ and CuF$_3$, proposed earlier [7] have structural and electronic similarity with high-T_c cuprates, such as La$_2$CuO$_4$ and with prototypical correlated perovskite compound KCuF$_3$. Following the analogy to the mentioned compounds, one can assume the existence in Cu$_2$F$_5$ of AFM ordered spin-lattice of the Cu ions moments. At the same time, the type of the ordering and dimensionality of the spin-lattice is unclear and should be obtained in calculations until experimental data appear.

The proposed analogy between Cu$_2$F$_5$ and La$_2$CuO$_4$ inspires us to analyze the spin state of Cu ions inside the ligand’s octahedron, magenta spheres denote Cu ions in the center of plaquettes, grey spheres – F ions.

![Crystal structure of Cu$_2$F$_5$. Blue spheres denote Cu ions inside the ligand's octahedron, magenta spheres denote Cu ions in the center of plaquettes, grey spheres – F ions.](image)

FIG. 1. Crystal structure of Cu$_2$F$_5$. Blue spheres denote Cu ions inside the ligand’s octahedron, magenta spheres denote Cu ions in the center of plaquettes, grey spheres – F ions.

The theoretically predicted [7] (using DFT) crystal structure of Cu$_2$F$_5$ has monoclinic C2/m symmetry and contains Cu ions with two types of coordination (see Fig. 1). The first type of Cu ions (Cu1) is in the center of a slightly distorted octahedron with three pairwise Cu-F distances (1.98, 1.96, 1.89 Å) and only one F-Cu-F angle equal to 91.3° (other F-Cu-F angles are 90°). Another type of Cu ions (Cu2) is in the center of a square formed by four F ions with two different Cu-F distances (1.83 and 1.86 Å). All F-Cu-F angles within such square plaquette are equal to 90°. Cu1 and Cu2 ions alternate along a and b crystal axes and form chains of the same type ions along the c axis.

If one neglects (not in calculations, but for simplicity of interpretation) the deviation of the F-Cu1-F angle from the 90° value then the Cu1 ion type has the D_{4h} point group symmetry. It means that the Cu d-level splits into the t_{2g} (d_{xz}, d_{yz}, d_{xy}) and e_g ($d_{z^2-r^2}, d_{3z^2-r^2}$) subshells. For the Cu2 type of ions the square-planar surrounding splits the d-level into (from highest to lowest): b_1g ($d_{x^2-y^2}$), b_2g (d_{xy}), e_g (d_{z^2}, d_{xy}) and a_1g ($d_{3z^2-r^2}$) subshells.

To interpret our results in terms of Cu d-orbitals, we have defined the local coordinate system (LCS) for each Cu ion as shown in Fig. 5 with the z-direction perpendicular to the plaquette plane for the Cu2 ion and the z-direction along with the crystal b-vector for the Cu1 ion.

∗dmitry@korotin.name
Below, analyzing densities of states, hopping integrals, exchange interaction, etc. we will refer to the d-orbitals defined in this LCS.

II. METHODS

All calculations were performed using QuantumESPRESSO [8] package with pseudopotentials from J.P. Perdew, K. Burke, and M. Ernzerhof [10]. The exchange-correlation functional was chosen to be in Perdew-Burke-Ernzerhof [10] form. The energy cutoff for plane wave wavefunctions and charge-density expansion has been set to 50 Ry and 400 Ry, respectively. Integration in the reciprocal space was done on a regular $8 \times 8 \times 8$ k-points mesh in the irreducible part of the Brillouin zone.

In Section III we first explore the electronic structure within DFT and then, keeping in mind the partially filled d-shell of the Cu ions, continue with the DFT+U approximation. The DFT+U method is a compromise between the ability to describe correlated d-states and computational cost of the calculations. At each value of Hubbard’s U parameter we relaxed the crystal structure. At the same time, Hund’s parameter J was kept fixed at 0.9 eV in all DFT+U calculations; the relation between crystal field splitting of the e_g level of Cu1 ion and J parameter could, in principle, affect the stability of the $S = 1$ magnetic configuration, but we do not expect such a case because the splitting of e_g levels is small. $J = 0.9$ eV is typical for cuprates [11] [12]. As soon as experimental crystal structure of Cu$_2$F$_5$ becomes available, it will be intriguing to calculate the U and J parameters with the constrained DFT [13] or linear response [14] methods and investigate the electronic structure of this compound with a more advanced approach such as DFT+DMFT [15] [16].

The convergence criteria used for the crystal cell relaxation within DFT+U are: total energy $< 10^{-6}$ Ry, total force $< 10^{-3}$ Ry/Bohr, pressure < 0.5 kbar.

III. RESULTS

Partial densities of states (pDOSes) obtained within spin-unpolarized DFT calculation are shown in Fig. 2. For the Cu1 ions, there is the filled t_{2g} energy band with the width ≈ 4.5 eV. The same three orbitals ($d_{x^2-y^2}$, d_{xz} and d_{yz}) are filled for the Cu2 ions too, and the corresponding energy bands are located in the same energy region.

The situation is different for the other two d-states. Both e_g-states of the Cu1 ions are partially filled, their energy bands cross the Fermi level, and the occupations (from DFT) are 0.8 e and 0.74 e. Contrary, the $d_{z^2-r^2}$ orbital of the Cu2 ions is almost filled, and the corresponding peak of DOS is located ≈ 1.2 eV below the Fermi level. And the $d_{x^2-y^2}$-orbital of the Cu2 ions is partially filled with the occupation 0.62 e.

Keeping in mind the existence of partially filled d-states, one should consider possible magnetic configurations. Also, the strong electronic correlations between the Cu electrons better be taken into account. We have compared the total energies of the Cu$_2$F$_5$ cell calculated for ferromagnetic (FM) and two types of antiferromagnetic (AFM) orderings (shown in Fig. 3). Since this compound has not yet been made in an experiment, and it is not known is it metallic or insulating, we used various values for the Hubbard U parameter from 2 to 8 eV. The AFM G-type of ordering is always favorable and has the total energy ≈ 300 meV lower than the other two phases.

The partial densities of states for AFM-G ordered magnetic phase of the Cu$_2$F$_5$ calculated within the DFT+U approach are shown in Fig. 3. For each value of the U parameter, the cell volume and atomic positions were relaxed to obtain the ground-state crystal structure. Starting from $U=4$ eV the Cu$_2$F$_5$ is an insulator. The band gap at $U=4$ eV is 0.48 eV and it broadens with increas-

![FIG. 2. Partial densities of states for Cu$_2$F$_5$ obtained within spin-unpolarized DFT calculation.](Image)

![FIG. 3. Two types of considered AFM orderings of Cu ions magnetic moments in Cu$_2$F$_5$. Dark blue octahedra are CuF$_6$ octahedra, light-magenta rhombuses are CuF$_4$ plaquettes.](Image)
FIG. 4. Partial densities of states for Cu\(_2\)F\(_5\) obtained within DFT+U for the AFM-G ordered phase. Positive/negative pDOSes correspond to spin-up/down states respectively.

From the left panel of Fig. 4 it is seen that the Cu ion inside the fluorine octahedron (Cu1 ion) has unusual Cu\(^{3+}\) valence with electronic configuration \(d^8\). The two peaks in spin-down DOSes for \(3z^2−r^2\) and \(x^2−y^2\) orbitals at +0.9 eV should be interpreted as an empty \(e_g\)-states of Cu and the \(t_{2g}\) states are filled. The second type of Cu ion (in the center of fluorine plaquettes) has the \(d^9\) electronic configuration with an empty spin-down \(x^2−y^2\) orbital located at 2-3 eV above the top of the valence band. Consequently, there is \(S=1/2\) spin-state for Cu1 ion and \(S=1/2\) spin-state for the plaquette-centered Cu ion. The position of the bottom of the conduction band is only slightly affected by the electron-electron interaction power due to strong hybridization between the F-p and Cu-d states in the corresponding energy interval.

Using Green’s function method based on magnetic force linear response theory \([17]\) we computed the Heisenberg exchange interaction between Cu ions up to the 9th nearest neighbor. The model Hamiltonian has the form:

\[
H = -\sum_{\langle ij \rangle} J_{ij} \mathbf{e}_i \cdot \mathbf{e}_j,
\]

where \(\mathbf{e}_i\) are the unit vectors pointing in the direction of the \(i\)th site magnetization, and the summation runs once over each ion pair.

The obtained \(J_i\) values are presented in Table I (only values larger than 1.2 meV are included). The spatial illustration of the exchange interaction directions is shown in Fig. 5.

All \(J\) values have the same sign that corresponds to the AFM exchange. Both: the Cu1-Cu2 interaction along the \(b\)-axis \((J_{2D}^b)\) together with Cu1-Cu1 interaction along the \(c\)-axis \((J_{2D}^c)\), are five times larger than the exchange interaction along the \(a\)-crystal axis \((J_a)\). The superexchange interaction along the \(b\) crystal axis \((J_{2D}^b)\) is pro-
FIG. 5. The pattern of the exchange interaction within the (100) layer of Cu ions. Open circles denote Cu1 ions with \(S=1 \) in the center of CuF\(_6\) octahedron; filled circles are Cu2 ions with \(S=1/2 \) (plaquettes centered). The strongest exchanges are: \(J_{bL}^2 \) (green lines) and \(J_{cL}^2 \) (violet lines). The interlayer exchange is \(J_{\perp} \) is five times smaller than intralayer ones. Other exchange interactions are negligible. Fluorine ions are not shown for clarity.

FIG. 6. Upper panel: The scheme of the half-filled Cu \(d_{3z^2-r^2} \) → F-p \(→ \) the half-filled Cu \(d_{2z^2-y^2} \) superexchange mechanism. Lower panel: Two half-filled \(d \)-orbitals providing the AFM superexchange interaction along the \(b \) crystal axis \((J_{bL}^2) \). The \(d \)-orbitals are defined in own local coordinate systems for the octahedron \((x'y'z') \) and plaquette \((x'y''z'') \). The fluoride \(p \)-orbital, that mediates the superexchange interaction, located between the \(d \)-orbitals isn’t drawn for picture simplicity.

\(U \) (eV)	\(J_{bL}^2 \) (meV)	\(J_{cL}^2 \) (meV)	\(J_{\perp} \) (meV)
4	-32.5	-34.2	-6.8
6	-34.5	-40.2	-6.9
8	-32.7	-42.8	-6.3

TABLE I. Calculated values of exchange interaction parameters within the (100) layer \((J_{bL}^2 \) and \(J_{cL}^2 \) \) and between these layers \((J_{\perp}) \) provided by the hopping of electrons between the half-filled Cu1 \(3z^2-r^2 \) orbital, the \(p \)-orbital of fluorine (located between the Cu ions), and the half-filled Cu2 \(x^2-y^2 \) orbital as illustrated in Fig. [6]. The second half-filled \(e_g \) orbital of the Cu1 ion \(-x^2-y^2 \) maintains Cu1-F-Cu1 superexchange interaction along the \(c \) crystal axis \((J_{cL}^2) \). In both interactions described above the Cu-F-Cu angle is 180°. Since this bond angle defines the \(p-d \) orbitals overlap it, consequently, determines the exchange strength. The Cu1-F-Cu2 along a angle is 129° only. That sets the much weaker exchange interaction in the direction of the crystal \(a \)-axis \((J_{\perp}) \). As for the Cu2-Cu2 exchange along the \(c \)-axis, it is negligible because no fluorine ions are providing the superexchange path.

Thereby a strong superexchange anisotropy in Cu\(_2\)F\(_5\) exists in a way when the in-plane magnetic interactions are significantly larger than the interplane one. The absolute values of the exchange parameters are comparable with the superexchange in 2D [18, 19], ladder cuprates [19] and 1D chain cuprates [19, 20]. The unusual thing is that the exchange energy between Cu ions with \(S=1 \) is almost the same as between the \(S=1 \) and \(S=\frac{1}{2} \) ions.

One can suggest that doping of Cu\(_2\)F\(_5\) with electrons would result in filling the Cu1 \(3z^2-r^2 \) orbital since the bottom of the conduction band is formed by these states according to Fig. [4]. That will shift the Cu1 ion from the \(d^8 \) configuration and from the half-filled \(e_g \)-subshell. According to the Goodenough-Kanamori rule [21], it will suppress the \(J_{bL}^2 \) AFM superexchange mechanism illustrated in the upper panel of Fig. [6]. As a result, 1D magnetic chains could arise along the \(c \)-crystal axis.

In conclusion, we have presented a DFT+U study of the electronic and magnetic structure of the novel copper fluoride. The Cu ions in this compound have two different valences: \(2+ \) for Cu ion in the square coordination and \(3+ \) for Cu in octahedral coordination. We have tested various Hubbard interaction parameters \(U \) for Cu\(_2\)F\(_5\) and showed that the compound becomes an insulator starting from \(U=4 \) eV. The value of the energy gap depends only slightly on the \(U \) value.

Calculated values of superexchange interaction parameters indicate that the significant magnetic interaction anisotropy exists in Cu\(_2\)F\(_5\). The new 2D spin-lattice is obtained: the exchange interactions between Cu ions in the (100) planes are five times larger than along the \(a \)-crystal axis, and within the layer, the exchange between ions with different spins \((S=1 \) and \(S=\frac{1}{2} \) has the same
ACKNOWLEDGMENTS

The presented results were obtained with support of Russian Science Foundation (Project 19-12-00012).

[1] S. Gopalan, T. M. Rice, and M. Sigrist, Spin ladders with spin gaps: A description of a class of cuprates, Physical Review B 49, 8901 (1994)
[2] S. Nothomb, P. Ribeiro, B. Lake, D. A. Tennant, K. P. Schmidt, G. S. Uhrig, C. Hess, R. Klingeler, G. Behr, B. Büchner, M. Reehuis, R. I. Bewley, C. D. Frost, P. Manuel, and R. S. Eccleston, One- and Two-Triplon Spectra of a Cuprate Ladder, Physical Review Letters 98, 027403 (2007)
[3] M. A. Korotin, I. S. Elfimov, V. I. Anisimov, and D. I. Khomskii, Exchange interactions and magnetic properties of the layered vanadates cav$_2$O$_5$, mgv$_2$O$_5$, cav$_{0.7}$, and cav$_{0.9}$, Phys. Rev. Lett. 83, 1387 (1999).
[4] M. E. Zayed, C. Ruegg, J. Larrea J., A. M. Lüchli, M. Panagopoulos, C. S. Saxena, M. Ellerby, D. F. McMorrow, T. Strässle, S. Klotz, G. Hamel, R. A. Sadykov, V. Pomjakushin, M. Boehm, M. Jiménez–Ruiz, A. Schneidewind, E. Pomjakushina, M. Stingaciu, K. Conder, and H. M. Rønnow, 4-spin plaquette singlet state in the Shastry–Sutherland compound SrCu$_2$(BO$_3$)$_2$, Nature Physics 13, 962 (2017)
[5] Y. Ueda, Vanadate Family as Spin-Gap Systems, Chemistry of Materials 10, 2653 (1998)
[6] M. Mostovoy and D. Khomskii, Charge ordering and opening of spin gap in NaV$_2$O$_5$, Solid State Communications 113, 159 (1999)
[7] N. Rybin, D. Novoselov, D. Korotin, V. I. Anisimov, and A. R. Oganov, Novel Copper Fluoride Analogs of Cuprates, Physical Chemistry Chemical Physics 10.1039/D1CP00657F (2021).
[8] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, C. Panagopoulos, S. S. Saxena, M. E. Toney, D. F. McMorrow, T. Strässle, S. Klotz, G. Hamel, R. A. Sadykov, V. Pomjakushin, M. Boehm, M. Jiménez–Ruiz, A. Schneidewind, E. Pomjakushina, M. Stingaciu, K. Conder, and H. M. Rønnow, 4-spin plaquette singlet state in the Shastry–Sutherland compound SrCu$_2$(BO$_3$)$_2$, Nature Physics 13, 962 (2017)
[9] A. Dal Corso, Pseudopotentials periodic table: From H to Pu, Computational Materials Science 95, 337 (2014)
[10] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Physical Review Letters 77, 3865 (1996)
[11] P. Blaha, K. Schwarz, and P. Novák, Electric field gradients in cuprates: Does LDA+U give the correct charge distribution?, Journal of Quantum Chemistry 101, 550 (2005)
[12] I. Leonov, N. Binggeli, D. Korotin, V. I. Anisimov, N. Stojic, and D. Vollhardt, Structural Relaxation due to Electronic Correlations in the Paramagnetic Insulator KCuF$_3$, Physical Review Letters 101, 096405 (2008)
[13] D. Korotin, A. V. Kozhevnikov, S. L. Skornyakov, I. Leonov, N. Binggeli, V. I. Anisimov, and G. Trimarchi, Construction and solution of a Wannier-functions based Hamiltonian in the pseudopotential plane-wave framework for strongly correlated materials, The European Physical Journal B 65, 91 (2008)
[14] M. Cococcioni and S. de Gironcoli, Linear response approach to the calculation of the effective interaction parameters in the LDA+U method, Physical Review B 71, 035105 (2005)
[15] V. I. Anisimov, A. I. Poteryaev, M. A. Korotin, A. O. Anokhin, G. Kotliar, U. K. Pii, and M. Physics, First-principles calculations of the electronic structure and spectra of strongly correlated systems: dynamical mean-field theory, Journal of Physics: Condensed Matter 9, 7359 (1997)
[16] K. Held, I. A. Nekrasov, G. Keller, V. Eyert, N. Blümer, A. K. McMahan, R. T. Scalettar, T. Pruschke, V. I. Anisimov, and D. Vollhardt, Realistic investigations of correlated electron systems with LDA + DMFT, Physical Status Solidi (B) 243, 2599 (2006)
[17] D. M. Korotin, V. V. Mazurenko, V. I. Anisimov, and S. V. Streblev, Calculation of exchange constants of the Heisenberg model in plane-wave-based methods using the Green’s function approach, Physical Review B 91, 224405 (2015)
[18] M. A. Kastner, R. J. Birgeneau, G. Shirane, and Y. Endoh, Magnetic, transport, and optical properties of monolayer copper oxides, Reviews of Modern Physics 70, 897 (1998)
[19] Y. Mizuno, T. Toyama, and S. Maekawa, Superexchange interaction in cuprates, Physical Review B - Condensed Matter and Materials Physics 58, R14713 (1998)
[20] T. Ami, M. K. Crawford, R. L. Harlow, Z. R. Wang, D. C. Johnston, Q. Huang, and R. W. Erwin, Magnetic susceptibility and low-temperature structure of the linear chain cuprate Sr$_2$CuO$_3$, Physical Review B 51, 5994 (1995)
[21] J. Goodenough, Goodenough-Kanamori rule, Scholarpedia 3, 7382 (2008)