Emerging Insights Into Recurrent and Metastatic Human Papillomavirus-Related Oropharyngeal Squamous Cell Carcinoma

Farhoud Faraji, PhD; David W. Eisele, MD; Carole Fakhry, MD, MPH

INTRODUCTION

Oropharyngeal squamous cell carcinoma (OPC) constitutes a subset of head and neck cancers (HNC) arising from the squamous epithelium of the oropharynx. Anatomic subsites of the oropharynx include the base of tongue, pharyngeal tonsils, tonsillar pillars, glossectonsilar sulci, soft palate, uvula, and the pharyngeal wall.1 In 2012, OPC accounted for nearly one quarter of incident cases of HNC and resulted in an estimated 97,000 deaths worldwide.2

Human papillomavirus (HPV) is the most common sexually transmitted infection in the United States3 and oral HPV infection is strongly associated with OPC.4 Indeed, HPV is a well-established cause of OPC.5 Of the approximately 200 HPV types described,6 HPV16 is detectable in 87-96% of HPV-positive OPCs in the US.7-9

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

From the Department of Otolaryngology-Head and Neck Surgery (F.F., D.E., C.F.), Johns Hopkins University School of Medicine, Baltimore, Maryland; and the Department of Epidemiology (C.F.), Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland

Editor’s Note: This Manuscript was accepted for publication 6 October 2016.

Financial Disclosures: The authors have no financial disclosures.

Conflicts of Interest: The authors have no conflicts of interest to declare.

Send correspondence to Carole Fakhry, MD, MPH, Johns Hopkins University School of Medicine, Otolaryngology-Head and Neck Surgery, 601 N. Caroline Street, Sixth Floor, Baltimore, MD 21287. Fax: (410) 955-6526. E-mail: cfakhry@jhmi.edu

DOI: 10.1002/lio2.37

Laryngoscope Investigative Otolaryngology 2: February 2017 Faraji et al.: Recurrent and Metastatic HPV-Related OPC

Objective: To review recent literature on human papillomavirus-related (HPV-positive) oropharyngeal squamous cell carcinoma (OPC) and focus on implications of recurrent and metastatic disease.

Methods: Primary articles from 1990 to 2016 indexed in MEDLINE (1) pertaining to the epidemiology of HPV-positive OPC and (2) providing clinical insight into recurrent and metastatic OPC.

Results: The incidence of HPV-positive OPC is increasing globally. HPV-positive OPC is a subtype with distinct molecular and clinical features including enhanced treatment response and improved overall survival. While disease recurrence is less common in patients with HPV-positive OPC, up to 36% of patients experience treatment failure within eight years. Recurrent and metastatic OPC has historically signified poor prognosis, however recent data are challenging this dogma. Here, we discuss recurrent and metastatic OPC in the context of HPV tumor status.

Conclusion: HPV-positive OPC exhibits distinct genetic, cellular, epidemiological, and clinical features from HPV-negative OPC. HPV tumor status is emerging as a marker indicative of improved prognosis after disease progression in both locoregionally recurrent and distant metastatic OPC.

Key Words: Head and neck, squamous cell carcinoma, HNSCC, human papillomavirus, HPV, oropharyngeal, OPSCC, recurrent, metastatic, prognosis, survival.

Level of Evidence: N/A.

Other high-risk HPV types—including 18, 31, 33, 45, 52 and 58—account for the remainder of HPV-positive OPCs.10–13

Despite marked geographic heterogeneity, the global incidence and prevalence of HPV-positive OPC have risen significantly over the past three decades.7–9,14 While the incidence of overall HNC and HPV-negative HNC have declined substantially in industrialized countries, the incidence of HPV-positive OPC has risen significantly and is projected to surpass HPV-related cervical cancer by the year 2020 in the United States.15

Accumulating epidemiological, clinical, histopathological, and molecular evidence indicate that HPV status defines a distinct subtype of OPC.16–19 HPV-positive OPC is associated with increasing number of lifetime sex partners, younger age, male sex, and white race.4,20 Alcohol or tobacco use, and poor oral hygiene do not appear to be independent risk factors for HPV-positive OPC.16,21 Conversely, non-oropharyngeal HNC, malignancies arising in the oral cavity, hypopharynx, and larynx, are typically HPV-negative and associated with heavy smoking, alcohol use, and poor oral hygiene but not with sexual behavior.10,16,22–27 Recent evidence does, however, support complex interactions between the effects of HPV, alcohol, and tobacco exposure in modifying the risk of OPC.28,29

HPV-positive tumor status at diagnosis is an independent prognostic indicator of favorable outcome, conferring increased sensitivity to treatment and improved survival.30–34 Although disease recurrence is less common in patients with HPV-positive OPC, up to 36% of patients experience treatment failure within eight years.35
Reccurrent and metastatic OPC has historically signified poor prognosis.36-39 However, the growing proportion of OPCs that are HPV-positive and the improved survival of HPV-positive OPC are challenging this paradigm.50,51 Here, insights into the epidemiology, clinical features, and molecular biology of recurrent and metastatic oropharyngeal squamous cell carcinoma are reviewed in the context of HPV tumor status.

MATERIALS AND METHODS

Review of primary literature from 1990 to 2016 indexed in MEDLINE. Search terms: 1) “epidemiology” AND “human papillomavirus” AND oropharynx* and 501 results; 2) oropharynx* AND (metastas* OR recur*) AND “human papillomavirus” yielded 395 results. Additional articles were selected through the review of references in articles selected by the above search method.

RESULTS AND DISCUSSION

Mechanisms of HPV-mediated oncogenesis and implications for the accurate detection of HPV-positive OPC

HPV is a DNA virus with a circular genome that exists in the nucleus separate from the host genome.42 Integration of HPV DNA into the host genome is associated with stabilization of viral oncogenes and is observed in the majority of HPV-positive OPCs.44 The role of HPV in carcinogenesis relies primarily on the expression of two oncogenic proteins, E6 and E7. Oncoprotein E6 binds the gene product of TP53 (p53), the most mutated tumor suppressor gene in cancer and “guardian of the genome” targeting it for degradation.46 Similarly, oncoprotein E7 binds and targets the Retinoblastoma tumor suppressor protein (Rb) for degradation.47 Rb protein degradation triggers a regulatory cascade resulting in the compensatory upregulation of another tumor suppressor, p16INK4A (p16).48

The mechanisms of HPV-mediated oncogenesis guide the strategies contemporary diagnostic laboratories employ to detect HPV in tumor samples. A critical feature of a diagnostic test for HPV-related cancer is its ability to determine if a detected virus is an oncogenic driver of that tumor.49 Highly sensitive assays such as polymerase chain reaction (PCR) based methods can detect well below one viral copy per cell. This level of sensitivity increases the possibility of detecting cross-contaminants in clinical samples, which is an unfortunately common occurrence in the conventional diagnostic laboratory. For this reason, if a sensitive assay such as PCR is employed, it is typically performed in combination with a more specific test such as in-situ hybridization (ISH) or immunohistochemistry (IHC).

Despite the necessity of a reliable method to detect HPV-driven OPC, variability in HPV tumor detection remains both in research and clinical practice. Available assays detect HPV DNA, HPV RNA, HPV oncoproteins, host cellular proteins dysregulated by viral infection (such as p16), and HPV-specific serum antibodies. These strategies were comprehensively detailed in two recent reviews.50,51 It is worth emphasizing that differences in methodology of HPV detection may contribute to the observed heterogeneity in reported epidemiological data and that potential misclassification of HPV-related tumors limits understanding of the impact of HPV-positive OPC in clinical studies.52

Epidemiology of Oropharyngeal Carcinoma

Trends in incidence. Over the past three decades the relative proportion that each anatomic subsite contributed to the overall incidence of HNC has changed. Analysis of the Surveillance, Epidemiology, and End Results (SEER) data from 1973-1999 across 9 state registries found that while the incidence of some non-opharyngeal HNC declined in the United States (U.S.), the contribution of OPC to total incidence of HNC increased from 17.6% in 1974 to 22.6% in 1999.37

Indeed, a SEER analysis segregated oral tumors into HPV-related (base of tongue, lingual tonsil, oropharynx, and Waldeyer’s ring) and HPV-unrelated (tongue, gum, floor of mouth, palate, and unspecified parts of the mouth) based on prior associations between anatomic subsite and tumor HPV-status.54 Consistent with the possibility that HPV was driving trends in HNC, from 1973 to 2004 an increase in the proportion of tumors arising from HPV-related subsites and a reduction in the proportion of tumors arising from HPV-unrelated subsites was shown. This was confirmed with contemporary gold standard tumor HPV detection in 271 OPCs, demonstrating that from 1984 to 2004 the incidence of HPV-positive OPC increased by 225%, while the incidence of HPV-negative OPC declined by 50%.15

A more recent SEER analysis suggested that increases in the incidence of OPC are accelerating. The overall incidence of OPC has increased by 63% from 1975-2012. However, the most dramatic rise in OPC incidence occurred from 1998-2012. Specific subsets of the U.S. population have experienced the greatest increases in incidence. Incidence for men and white individuals were observed to increase at annual percent changes (APC) of 0.94%/year (yr) and 0.66%/yr, respectively, from 1975-1998. From 1998-2012, the APC rose more than three-fold to 3%/yr for men and 3.29%/yr for whites.

Other studies have made similar observations, demonstrating rises in the incidence of OPC in the U.S. and abroad.56-61 Analysis of the Cancer Incidence in Five Continents (CI5) database performed in 23 countries across 4 continents from 1983-2002 found that 8 of 9 “more developed” countries (Denmark, Estonia, France, the Netherlands, Poland, Slovakia, Switzerland, and the United Kingdom) experienced median annual increases in the incidence of OPC of 2.5%/yr in men and 3.4%/yr in women.14

The available data suggests that countries defined by the United Nations as “less developed” may not have similarly rising trends in HPV-positive OPC.23,24,62 This was explored in a recent analysis of HNC incidence rates in four independent databases: GLOBOCAN 2012, CI5, World Health Organization Mortality Database, and SEER. In this study, Gupta et al found that Western Europe, South-Central Asia, Central and Eastern Europe, and North America represented regions with the highest incidence rates of HPV-related HNC.
subsites: the tonsils and oropharynx. Regions with the highest incidence rates of HPV-unrelated HNC subtypes, the lip and oral cavity, included the Caribbean, Central and Eastern Europe, Southern Europe, and Western Asia. The analysis did not, however, directly account for regional differences in the percentage of HNC resulting from HPV-infection (termed the HPV-attributable fraction: HPV-AF) which are known to vary significantly by region. Approximately 40-70% of OPCs are HPV-positive in more developed countries, while fewer than 26% of OPCs are HPV-positive in less developed regions. Combining the analysis by Gupta et al with recent regional estimates of the HPV-AF of OPC is likely to show more profound regional differences in incidence of HPV-positive OPC.

Collectively, the observations made over the past two decades support the conclusion that increases in HPV-positive OPC incidence are disproportionately affecting men and individuals in countries designated as “more developed”. These findings suggest an underlying divergence in risk factor exposure among populations that are experiencing rises in OPC relative to those that are not.

Risk factors. Trends in the incidence of oropharyngeal and non-oropharyngeal HNC can be at least partially attributed to changing exposures to HNC risk factors. Historically, the primary risk factors for HNC have been smoking and alcohol consumption. Since the mid-1970s smoking and alcohol consumption have declined by 42% and 20%, respectively, in the U.S. Although the global prevalence of smoking has also declined significantly between 1980 and 2012, significant variability existed with regard to sex and region. Smoking prevalence was significantly higher in men, with more men smoking in less developed countries. Consistent with the notion that smoking played a role in HPV-unrelated HNC, partial overlap existed between countries (e.g. Eastern and Southern Europe and East and Central Asia) with higher incidence of HPV-unrelated HNC and high smoking prevalence and consumption of cigarettes. Declining rates of smoking were observed in parallel with declining rates of HPV-unrelated HNC in Western Europe and Southeastern Asia, regions with rising rates of HPV-positive OPC.

In populations with declining alcohol and tobacco consumption yet increasing incidence of OPC, HPV has emerged as a dominant risk factor. In an international study, incidence trends for oral cavity cancer (OCC, an HPV-unrelated HNC) and OPC (an HPV-related HNC) were evaluated to determine the relative effects of HPV and smoking on the incidence trends of these tumor types. Two patterns were suggestive of HPV as a primary cause of OPC: an increasing incidence of OPC accompanied by an unchanged or declining incidence of OCC and statistically stronger increases in the incidence of OCC relative to OCC. Interestingly, all countries exhibiting either of these patterns also displayed significant declines in squamous cell carcinoma of the lung, a strongly tobacco-related tumor; further supporting a divergent etiology between oropharyngeal and non-oropharyngeal HNC. Consistent with these findings, other studies have reported decreasing incidence of tumors in patients with a history of heavy smoking (>20 pack-years) and an increasing incidence of OPC arising in never smokers and those smoking fewer than 20 pack-years.

In the United States, the prevalence of oral HPV infection among men and women age 14-69 in 2009-2010 was approximately 7%. One percent of Americans in this age group had a detectable oral HPV16 infection, the most prevalent high-risk HPV infection detected in oral samples, and the predominant type responsible for HPV-positive OPCs in the US. As would be expected in sexually transmitted infection, the prevalence of oral HPV infection increases with increasing exposure, whether measured by number of sexual partners, oral sex partners, or younger age of sexual debut. For example, prevalence of oral HPV was 21% among individuals who reported 21 or more sexual partners. Interest-ingly, oral infection with high-risk HPV types showed strong bimodal age distribution with peak prevalence at ages 25-30 and 55-64. In addition, male sex and current smoking intensity are independently associated with an increasing prevalence of oral HPV infection.

Prognosis of human papillomavirus-related oropharyngeal carcinoma. Initial evidence that HPV-positivity in HNC was associated with improved prognosis came from an early study which foreshadowed that HPV-positive OPC was a distinct disease entity. In this retrospective study, Gillison and colleagues found that patients with HPV-positive HNC had a 59% reduction in risk of death from cancer after adjustment for age, alcohol consumption, and lymph node status. Consistent with this finding, a meta-analysis investigating the role of HPV status on prognosis of HNC found HPV-positive OPC showed a 28% reduced risk of death relative to HPV-negative OPC. No HPV-related survival benefit was observed in non-oropharyngeal HNC.

The first prospective trial demonstrating the impact of HPV-status on prognosis in HNC was nested in an Eastern Cooperative Oncology Group (ECOG) chemoradiation trial which investigated the role of tumor HPV-status on therapeutic response and survival in patients with stage III/IV disease. Compared to HPV-negative tumors, HPV-positive OPCs were found to have improved response rates to induction chemotherapy (82% vs. 55%) and chemoradiation (84% vs. 57%). At 2 years, patients with HPV-positive tumors showed significantly improved progression-free (86% vs. 53%) and overall survival (95% vs. 62%).

These findings have been corroborated by numerous studies in a variety of settings. A meta-analysis of 42 studies investigating the impact of HPV on HNC survival reported improvements of 53% and 72% in overall and disease-specific survival, respectively, in HPV-positive OPC compared to HPV-negative HNC. The preponderance of data thus indicates that HPV tumor status in OPC is a favorable prognostic indicator associated with longer overall and disease-specific survival.

Similarly, a recent population-based study of 529 oropharyngeal tumors from 1994-2005 across 6 cancer
registries in the United States found that patients with HPV16-positive OPC showed improved 5-year overall survival (OS) relative to HPV-negative tumors (65% vs. 28%). The authors found that OPC unstratified for HPV-status exhibited subsite specific differences in prognosis. OPC arising from the palatine tonsils was associated with the most favorable 5-year OS followed by the base of tongue, then by other sites of the oropharynx (62% vs. 50% vs. 31%, respectively). Interestingly, this study suggested the benefits in survival observed in HPV16 tumors may be attenuated by non-HPV16 oncogenic types (5-yr OS – HPV16-positive: 65%, non-HPV16-positive: 46%, HPV: 28%).

Additionally, recent The Cancer Genome Atlas (TCGA) data support the possibility that the improved survival observed in HPV-positive OPC might be confined to HPV16-driven tumors. Bratman et al interrogated TCGA transcriptome data for viral gene expression in 515 HNCs. Seventy-three (14%) of these tumors expressed viral transcripts, of which 61 were HPV16-positive and 12 were positive for other oncogenic subtypes: HPV 33, 35, and 56. Overall survival of patients with HPV16-positive HNC was significantly better than non-HPV16 oncogenic type tumors (3-yr: 88% vs. 49%). These studies suggest the possibility that the underlying tumor biology of HPV16 may differ from that of non-HPV16 types. Arguing against their findings, a single institution analysis of survival associated with HPV16-positive OPC versus non-HPV16 oncogenic HPV-positive OPC found no difference in survival. Given that non-HPV16 types comprise a small proportion (~8%) of HPV-positive OPC, the surprising observation that HPV16-positive OPC may display a distinct prognosis from other high-risk HPV-positive OPC warrants further investigation.

Trends in prevalence. Epidemiologic phenomena associated with HPV-positive OPC—including rising incidence rates, significantly prolonged survival, and significant increases in tumors attributable to HPV—are driving an increase in the prevalence of individuals with HPV-positive OPC (Figure 1).

The survival advantage associated with HPV-positive OPC has resulted in significant improvements in OPC survival rates. From 1975 to 2007, the average annual percent change in cause-specific survival for OPC rose by 1%/yr in the United States. Additionally, during 1985-2012, the average rate of increase in the prevalence of 5- to 10-year survivors reached 18 individuals per 100,000 per year. As a result, the total prevalence of OPC survivors has increased by 115 individuals per 100,000 per year. In comparison, the prevalence of survivors of oral cavity cancer—a primarily HPV-negative HNC—decreased by 16 individuals per 100,000 per year during the same period.

Increases in the proportion of OPC attributable to HPV also help explain the rising prevalence of HPV-positive OPC. A systematic review of 5,046 HNC from 60 studies reported through the year 2004 calculated the worldwide HPV-attributable fraction (HPV-AF) of OPC and non-OPC to be 35.6% and 24%, respectively. Tumor site misclassification in advanced tumors, inclusion of a large portion of small case series, heterogeneity in specimen quality in individual studies, and HPV detection methods limit this analysis and may have resulted in underestimation of HPV-AF of OPC and overestimation of HPV-AF of non-OPC. A more recent meta-analysis found that, while the reported HPV-AF was 40.5% before 2000, it rose to 64.3% between 2000-2004, and further increased to 72.2% between 2005-2009. Meanwhile, the prevalence of HPV in non-oropharyngeal HNC declined from 22.2% to 17.2% to 6.1%, respectively, partially addressing the possibility that these findings may be a result of improvements in HPV detection. Consistent with this conclusion, a series of 520 consecutive OPC patients presenting to 10 Australian hospitals from 1985-2010 also showed an increase in the HPV-positive rate of OPC from 20.2% in 1987-1995 to 63.5% in 2006-2010. Uniform testing for HPV-status in this study supports the notion that observed increases in HPV-AF are not a result of improvements in viral detection.

The collective effects of epidemiologic trends and improved survival rates has led to an accelerating prevalence of HPV-positive OPC survivors in the United States and Europe. This increase in OPC survivors represents a growing population of patients susceptible to disease recurrence and highlights the importance of better understanding the influence of HPV-status in recurrent and metastatic OPC.

The Impact of Human Papillomavirus on Recurrent and Metastatic Oropharyngeal Carcinoma

HPV-positive tumor status is well established as a significant determinant of favorable outcome.
Yet 13-25% of HPV-positive OPC recur within 2 years\(^{31,34,74,79,84,85}\) and up to 36% within 8 years.\(^{35}\) Although less evidence is available to evaluate the role of HPV in the survival of recurrent and metastatic OPC, emerging data suggest that tumor HPV-status also influences prognosis after disease recurrence.

A secondary analysis of Radiation Therapy Oncology Group (RTOG) trials 0129 and 0522 provided evidence that p16-status, a reliable surrogate for tumor HPV-status in OPC, showed prognostic relevance after disease progression.\(^{40}\) Patients with OPC who experienced local, regional, or distant progression were eligible for analysis (n = 181, p16-positive = 105, p16-negative = 76).\(^{40}\) Consistent with demographic differences observed between HPV-positive and HPV-negative OPC patients at primary diagnosis, a greater proportion of p16-positive patients were younger, white, and had lower tobacco exposure at the time of disease progression. Median time to progression was similar for p16-positive and p16-negative OPC (8.2 vs. 7.3 months), with the majority experiencing disease progression in the first year after completion of therapy. Fifty-five percent of study patients displayed isolated locoregional progression. Despite similar rates of local, regional, and distant progression, patients with p16-positive OPC survived significantly longer than their p16-negative counterparts (2.6 vs. 0.8 years). After adjustment for other factors independently associated with overall survival, p16-positive status was associated with a 52% reduction in risk of death.\(^{40}\)

Another analysis of prospective clinical trials evaluating the influence of HPV-status on HNC (rather than OPC) provided further support for the influence of HPV-status in recurrent and metastatic (R/M) OPC.\(^{30}\) Analysis of ECOG trials 1395 and 3301 found improved PFS (5.9 vs. 3.2 months) and OS (12.9 vs. 6.7 months) in R/M HNC survival.\(^{37,91–93}\) Although less evidence is available to evaluate the role of HPV-status in recurrent and metastatic OPC, this analysis suggests that HPV-positive OPC displays an atypical pattern of distant metastatic recurrence.\(^{94–97}\)

Distant metastatic disease. The influence of HPV-status on metastatic disease has been a point of recent controversy. A series of retrospective analyses suggested that HPV-positive OPC displays an atypical pattern of distant metastatic recurrence.\(^{94–97}\)

A single institution retrospective series in which patients were heterogeneously treated generally without systemic therapy, suggested that HPV tumor status influenced the time course, distribution, and propensity of distant recurrence.\(^{85}\) This analysis evaluated any
oral cavity and hypopharynx—predominantly HPV-negative subsites—have also been reported to metastasize to uncommon distant sites including the brain, skin, muscle, and abdominal organs. In addition, prospective and retrospective studies alike have consistently demonstrated that the great majority of distant metastases occur within 3 years of primary presentation in both HPV-positive and HPV-negative OPC.

Secondary analysis of RTOG0129 and RTOG0522 found that 41% of HPV-positive and 38% of HPV-negative OPC displayed isolated distant metastatic disease at first progression. Median time to distant metastasis did not differ based on p16-status (11.9 vs. 12.4 months). Further contrasting with the study by Huang et al., p16-positive and p16-negative OPC were found to have similar anatomic distribution of distant metastasis (lung: 73% vs. 70%; bone: 14.6% vs. 15.2%; liver: 8.3% vs. 15.2%; other: 16.7% vs. 12.1%). Despite these similarities, patients with HPV-positive disease showed significantly improved OS relative to those with HPV-negative disease (2.6 vs. 0.8 years, respectively).

The discrepancies in findings reported by Huang et al. and the RTOG reanalysis may be a result of differences in study design. Huang et al derive observations from retrospective review of patients who received curative intent radiotherapy or chemoradiation from 2000-2010. Although also retrospective in nature, the RTOG reanalysis comprised of two randomized, controlled, prospectively collected, and uniformly treated cohorts with a median of 4 years follow-up after disease progression. Whereas the RTOG reanalysis reported survival after the first event of tumor progression, Huang reported survival after distant metastasis. Since PFS and OS are significantly diminished in HPV-negative OPC, it is likely that some HPV-negative OPC patients with occult distant metastases succumb to other sequelae of disease. As such, the prolonged survival associated with HPV-positive OPC may allow patients to survive long enough to develop metastases at sites infrequently reported for HPV-negative OPC (Figure 3). Although median follow-up of 4 years in the combined secondary analysis of RTOG 0129 and 0522 may have been insufficient to monitor for late metastatic events, reanalysis of RTOG 0129 at 8 years also failed to observe a distinct metastatic pattern or significant differences in distant metastatic disease for HPV-positive OPC.

Reports suggesting an atypical natural history of metastatic HPV-positive OPC contrast with findings of the RTOG reanalysis on two inter-related points:

Fig. 3. Schematic representation of time- and survival-dependent differences observed in distant metastatic recurrence of HPV-positive and HPV-negative oropharyngeal squamous cell carcinoma (OPC). The two rows below correspond in time course to the survival curve and represent the typical disease course of HPV-positive and HPV-negative OPC. Patients with HPV-positive and HPV-negative OPC display approximately cotemporaneous distant recurrence at common sites (e.g., lung, bone, liver) with the potential presence of additional occult or subclinical distant disease at rare sites (e.g., brain, abdominal lymph nodes, skin). While patients with HPV-positive OPC show survival durations adequate to display clinically detectable metastasis at rare distant sites, those with HPV-negative OPC do not.
that HPV-positive OPC has a distinct anatomic distribution of distant metastasis and a delayed time to distant metastasis. Patients who survive beyond three years, including the minority of HPV-negative HNC, continue to be susceptible to distant metastatic disease. Observations of the basic biology of metastatic colonization suggest that although specific tumor types display distinct patterns of organotropism, single tumor cells disperse widely and may remain dormant for many years. In this setting, long-term survival may serve as the rate-limiting step to metastasis of atypical or rare organs by providing time for disseminated tumor cells to convert from dormant to actively proliferating (Figure 3). As such, retrospective analyses of patients with long follow-up periods may inadvertently select for long-surviving patients who have acquired apparently unique disease features. Consequently, a rise in the prevalence of HPV-positive OPC-associated distant metastases is likely to follow the increase in long-term survival associated with HPV-positive OPC, and this may be mistaken as a difference in the metastatic behavior of HPV-positive OPC.

A recent reanalysis of a retrospective OPC cohort demonstrated how such survival bias might occur. Guo et al stratified patients into “early” and “late” survivor groups based on survival less than or greater than 24 months, respectively. While late survivors were significantly more likely to be HPV-positive, 20% of late survivors were HPV-negative. Additionally, late recurrences were significantly more common among late survivors for both HPV-positive and HPV-negative patients. Indeed, recurrence occurred significantly later in late survivors regardless of HPV-status. With this survival-based stratification strategy Guo et al explained the notion that late recurrence is dependent on late survivorship.

CONCLUSION

Epidemiologic trends indicate a global upsurge in the incidence of HPV-positive oropharyngeal cancer, with the strongest effects observed in white men residing in North America and Western Europe. The rise of HPV-positive OPC combined with its improved outcomes has resulted in an increased prevalence of OPC survivors. Long-term follow up of patients with HPV-positive OPC indicates that greater than one third of survivors will experience locoregional or distant recurrence in the first decade after treatment. Current data suggests HPV-positive tumor status also confers a survival advantage in recurrent and distant metastatic disease. However, further long-term prospective studies are required to understand the mechanism of HPV in OPC survival after progression. The success of such studies relies on the standardization of HPV detection strategies and consistent reporting of clinical data, especially patterns of distant metastatic disease and measurements of survival metrics after the first event of tumor progression. Longer-term observation of HPV-positive OPC survivor cohorts will clarify the role of HPV-status in late recurrence and distant metastatic disease and better inform current efforts focused on tailoring therapeutic strategies to HPV-status.

Acknowledgments
Oral Cancer Foundation

BIBLIOGRAPHY

1. American Joint Committee on Cancer (AJCC). AJCC Cancer Staging Manual. 7th Ed. Chicago, IL: Springer, 2010.
2. Perel J, Soerjomataram SM, Eholi R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. International journal of cancer 2015; 136:E359–386.
3. Sitterwhite CL, Torrence E, Metes E, et al. Sexually transmitted infections among US women and men: prevalence and incidence estimates, 2008. Sex Transm Dis 2013;40:187–193.
4. D’Souza G, Kremer AR, Viscidi R, et al. Case-control study of human papillomavirus and oropharyngeal cancer. N Engl J Med 2007;356:1944–1956.
5. Gillison ML, Koch WM, Capone RB, et al. Evidence for a causal association between human papillomavirus and a subset of head and neck cancers. J Natl Cancer Inst 2000;92:709–720.
6. de Villiers EM. Cross-roads in the classification of papillomaviruses. Viral 2013;4:465–2–10.
7. Kreimer AR, Clifford GM, Boyle P, Franceschi S. Human papillomavirus types in head and neck squamous cell carcinomas worldwide: a systematic review. Cancer Epidemiol Biomarkers Prev 2005;14:467–475.
8. Nakayama M, Mena M, Alemany L, et al. High-risk HPV types and head and neck cancer. Int J Cancer 2017;140:1319–1331.
9. Mehanna H, Beeth T, Nicholson T, et al. Prevalence of human papillomavirus in oropharyngeal and non-oropharyngeal head and neck cancer—systematic review and meta-analysis. Lancet Oncol 2014;15:1319–1331.
10. Applebaum KM, Furniss CS, Zeka A, et al. Lack of association of alcohol and tobacco with HPV16-associated head and neck cancer—systematic review and meta-analysis of trends by time and region. Head Neck 2013;35:747–755.
11. Anantharaman M, Gheit T, Waterboer T, et al. Human papillomavirus infections and upper aero-digestive tract cancers: the ARCAGE study. J Natl Cancer Inst 2013;105:536–545.
12. Michel DS, Langervin A, Alemany L, et al. High-Risk HPV Types and Head and Neck Cancer. Int J Cancer 2014;135:1653–1661.
13. Viens LJ, Henley SJ, Watson M, et al. Human Papillomavirus-Associated Cancers - United States, 2008-2012. MMWR Morb Mortal Wkly Rep 2016;65:661–666.
14. Steinau M, Saraiya M, Goodman MT, et al. Human papillomavirus prevalence in oropharyngeal cancer before vaccine introduction, United States. Emerg Infect Dis 2014;20:822–828.
15. Chaturvedi AK, Anderson WF, Lortet-Tieulent J, et al. Worldwide trends in incidence rates for oral cavity and oropharyngeal cancers. J Clin Oncol 2013;31:4550–4559.
16. Chaturvedi AK, Engels EA, Pfeiffer RM, et al. Human papillomavirus and rising oropharyngeal cancer incidence in the United States. J Clin Oncol 2011;29:4294–4301.
17. Begum S, Westra WH. Basaloid squamous cell carcinoma of the head and neck is a mixed variant that can be further resolved by HPV status. J Surg Pathol 2008;32:1044–1050.
18. Sewert TY, Zuo Z, Keck MK, et al. Integrative and comparative genomic analysis of HPV-positive and HPV-negative head and neck squamous cell carcinomas. Clin Cancer Res 2015;21:632–641.
19. Cancer Genome Atlas N. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature 2015;517:576–592.
20. Chaturvedi AK, Engels EA, Anderson WF, Gillison ML. Incidence trends for human papillomavirus-related and unrelated oral squamous cell carcinomas in the United States. J Clin Oncol 2008;26:612–619.
21. Applebaum KM, Furniss CS, Zeka A, et al. Lack of association of alcohol and tobacco with HPV16-associated head and neck cancer. J Natl Cancer Inst 2007;99:1801–1810.
22. Blot WJ, McLaughlin JK, Winn DM, et al. Smoking and drinking in relation to oral and pharyngeal cancer. Cancer Res 1988;48:3282–3287.
23. Herrero R, Castellsague X, Pawlita M, et al. Human papillomavirus and oral cancer: the International Agency for Research on Cancer multicenter study. J Natl Cancer Inst 2003;95:1772–1783.
24. Ribeiro KB, Levi JE, Pawlita M, et al. Low human papillomavirus type 16-negative head and neck cancers. Clin Cancer Res 2013;19:6282–6287.
25. Brieger KD, Franceschi S. Role of human papillomavirus in non-oropharyngeal head and neck cancers. Oral Oncol 2014;50:377–379.
26. Hashibe M, Brennan P, Benhamou S, et al. Alcohol drinking in never users of tobacco, cigarette smoking in never drinkers, and the risk of head and neck cancer: pooled analysis in the International Head and Neck Cancer Epidemiology and End Results Study. J Natl Cancer Inst 2016;108(13):1090–1101.
83. Fakhry C, Andersen KK, Essele DW, Gillison ML. Oropharyngeal cancer survivorship in Denmark, 1977-2012. *Oncol* 2015;51:982–984.

84. Weinberger PM, Yu Z, Haffty BG, et al. Molecular classification identifies a subset of human papillomavirus–associated oropharyngeal cancers with favorable prognosis. *J Clin Oncol* 2006;24:736–747.

85. Huang SH, Perez-Ordonez B, Weinreb I et al. Natural course of distant metastases following radiotherapy or chemoradiotherapy in HPV-related oropharyngeal cancer. *Oncol* 2015;84:78–85.

86. El-Naggar AK, Westra WH. p16 expression as a surrogate marker for HPV-related oropharyngeal carcinoma: a guide for interpretative relevance and consistency. *Head Neck* 2012;34:459–461.

87. Mooren JJ, Gultekin SE, Straetmans JM, et al. P16(INK4A) immunostaining is a strong indicator for high-risk HPV-associated oropharyngeal carcinomas and dysplasias, but is unreliable to predict low-risk HPV-infection in head and neck papillomas and laryngeal dysplasias. *Int J Cancer* 2014;134:2108–2117.

88. Shi W, Kato H, Perez-Ordonez B, et al. Comparative prognostic value of HPV16 E6 mRNA compared with in situ hybridization for human oropharyngeal squamous carcinoma. *J Clin Oncol* 2009;27:6213–6221.

89. Vormoor JK, Stohlmacher-Williams J, Davidsenko I, et al. Cisplatin and fluorouracil with or without panitumumab in patients with recurrent or metastatic squamous-cell carcinoma of the head and neck (SPECTRUM): an open-label phase 3 randomised trial. *Lancet Oncol* 2013;14:697–710.

90. Missiukiewicz K, Bonomi M, Demicco E, Posner M. Controversies and role of HPV16 in recurrent/metastatic squamous cell cancers of the head and neck. *Ann Oncol* 2014;25:1667–1668.

91. Jordan RC, Lingen MW, Perez-Ordonez B, et al. Validation of methods for oropharyngeal cancer HPV status determination in US cooperative group trials. *Am J Surg Pathol* 2012;36:945–954.

92. Schache AG, Liloglou T, Risk JM, et al. Evaluation of human papilloma virus diagnostic testing in oropharyngeal squamous cell carcinoma: sensitivity, specificity, and prognostic discrimination. *Clin Cancer Res* 2011;17:6262–6271.

93. Chung CH, Zhang Q, Kong CS, et al. p16 protein expression and human papillomavirus status as prognostic biomarkers of nonoropharyngeal head and neck squamous cell carcinoma. *J Clin Oncol* 2014;32:3930–3938.

94. Daly ME, Le QT, Maxim PG, et al. Intensity-modulated radiotherapy in the treatment of oropharyngeal cancer: clinical outcomes and patterns of failure. *Int J Radiat Oncol Biol Phys* 2010;76:1359–1366.

95. Ruzevick J, Olivi A, Westra WH. Metastatic squamous cell carcinoma to the brain: an unrecognized pattern of distant spread in patients with HPV-related head and neck cancer. *J Neurooncol* 2013;112:449–454.

96. Muller S, Khuri FR, Kono SA, Beitler JJ, Shin DM, Saha NF. HPV positive squamous cell carcinoma of the oropharynx. Are we observing an unusual pattern of metastases? *Head Neck Pathol* 2012;6:336–344.

97. Huang SH, Perez-Ordonez B, Liu FF, et al. Atypical clinical behavior of p16-confirmed HPV-related oropharyngeal squamous cell carcinoma treated with radical radiotherapy. *Int J Radiat Oncol Biol Phys* 2012;82:276–283.

98. Sinha P, Thorstad WT, Nussenbaum B, et al. Distant metastasis in p16-positive oropharyngeal squamous cell carcinoma: a critical analysis of patterns and outcomes. *Oncol* 2014;50:45–51.

99. Guo T, Quilliotine JR, Ha PK, et al. Surgical salvage improves overall survival for patients with HPV-positive and HPV-negative recurrent locoregional and distant metastatic oropharyngeal cancer. *Cancer* 2015;121:1977–1984.

100. Trosman SJ, Koyfman SA, Ward MC, et al. Effect of human papillomavirus on patterns of distant metastatic failure in oropharyngeal squamous cell carcinoma treated with chemoradiotherapy. *JAMA Otolaryngol Head Neck Surg* 2015;141:407–462.

101. Vainshtein J, McHugh JB, Specter ME, et al. Human papillomavirus-related oropharyngeal cancer: HPV and p16 status in the recurrent versus parent tumor. *Head Neck* 2015;37:9–11.

102. Bulut OC, Lindel K, Hauswald H, et al. Clinical and molecular characteristics of HNSCC patients with brain metastases: a retrospective study. *Ear Arch Otorhinolaryngol* 2014;21:1715–1722.

103. Pitman KT, Johnson JT. Skin metastases from head and neck squamous cell carcinoma: incidence and impact. *Head Neck* 1999;21:560–565.

104. Smeets R, Grojean MB, Heiland M, Riederer D, Maciejewski O. Distant metastases of a squamous cell carcinoma of the tongue in peripheral skeletal muscles and adjacent soft tissues. *Head Face Med* 2008;4:7.

105. Cruz I, Mamel JJ, Brady PG, Cass-Garcia M. Incidence of abdominal wall metastasis complicating EGFR tube placement in untreated head and neck cancer. *Gastric Endosc* 2005;62:708–711; quiz 752, 753.

106. Fakhry C, Zhang Q, Nguyen-Tan PF, et al. Reply to B. O'Sullivan et Al. *J Clin Oncol* 2013;31:1708–1709.

107. Pfister DG, Baxi SS, Dunn LA, Fury MG. Reply to B. O'Sullivan et al. *J Clin Oncol* 2013;31:1710.

108. O'Sullivan B, Adelstein DL, Huang SH, et al. First Site of Failure Analysis Incompletely Addresses Issues of Late and Unexpected Metastases in p16-Positive Oropharyngeal Cancer. *J Clin Oncol* 2015;33:1707–1708.

109. Wan L, Pantel K, Kang Y. Tumor dormancy: moving new biological insights into the clinic. *Nat Med* 2013;19:1450–1464.

110. Aguirre-Ghiso JA. Models, mechanisms and clinical evidence for cancer dormancy. *Nat Rev Cancer* 2007;7:834–846.

111. Paez D, Labonte MJ, Bohanes P et al. Cancer dormancy: a model of early dissemination and late cancer recurrence. *Clin Cancer Res* 2012;18:645–653.

112. Goss PE, Chambers AF. Does tumour dormancy offer a therapeutic target? *Nat Rev Cancer* 2010;10:871–877.