В связи с активным изучением ассоциаций между уровнями микроэлементов, эндокринными заболеваниями и нарушением репродуктивной функции представляется актуальным изучение элементного статуса у пациенток с бесплодием в программах вспомогательных репродуктивных технологий (ВРТ). Целью работы было проанализировать ассоциации между уровнем микроэлементов в их крови и параметрами программы ВРТ. В исследование включено 30 пациенток с бесплодием в возрасте 18–39 лет. Определены концентрации 31 химического элемента в крови пациенток методом масс-спектрометрии с индуктивно-связанной плазмой. Два элемента из 31 (сурыма и бериллий) не были обнаружены ни в одном образце крови, 10 элементов (титан, хром, кобальт, ниобий, мышь, ртуть, барий, золото, ванадий) выявлены в части образцов крови, оставшиеся 19 элементов — во всех образцах. Возраст пациенток находился в отрицательной корреляционной связи с уровнем кремния \(r = -0.384; p = 0.036 \) и в положительной — с уровнем молибдена \(r = 0.384; p = 0.036 \). Уровень антимитотерапии норма находился в значительной отрицательной корреляционной связи с уровнем натрия \(r = -0.367; p = 0.046 \). Уровень свободного тироксина находился в значительной отрицательной корреляционной связи с уровнем бора \(r = -0.402; p = 0.028 \) и положительной корреляционной связи с уровнем железа \(r = 0.410; p = 0.024 \) и серебра \(r = 0.432; p = 0.017 \). При оценке эмбриологического этапа отмечена положительная корреляционная связь между уровнем кремния и числом полученных бластоцysts \(r = 0.387; p = 0.034 \). Не выявлено статистической зависимости между элементным составом крови и частотой наступления беременности в циклах ВРТ.

Ключевые слова: вспомогательные репродуктивные технологии, эмбрионы, беременность, тяжелые металлы, масс-спектрометрия, микроэлементы, элементный состав крови, AMG

Вклад авторов: А. Г. Сыркашева — проведение клинического этапа исследования, статистическая обработка данных, написание текста статьи; В. Е. Франкевич — проведение масс-спектрометрических исследований, Н. В. Долгушина — написание текста статьи, финальное рецензирование.

Соблюдение этических стандартов: исследование одобрено этическим комитетом НМИЦ АГП им. В. И. Кулакова (протокол № 10 от 20 октября 2016 г.).

Для корреспонденции: Анастасия Григорьевна Сыркашева
ул. Академика Опарина, г. Москва, 117997; a_syrkasheva@oparin4.ru

Статья получена: 10.02.2021 Статья принята к печати: 24.02.2021 Опубликована онлайн: 28.02.2021

DOI: 10.24075/vrgmu.2021.010

ELEMENTAL COMPOSITION OF BLOOD OF INFERTILE PATIENTS PARTICIPATING IN ASSISTED REPRODUCTION PROGRAMS

Syrkasheva AG, Frankевич VE, Dolgushina NV
Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow, Russia

The association between levels of trace elements, endocrine diseases and reproductive impairments is actively investigated currently. In this connection, it seems relevant to study elemental status (elemental composition of blood and amounts of elements therein) of infertile patients enlisted in programs employing assisted reproductive technologies (ART). This study aimed to analyze trace elements in blood of infertile patients, relationship between the level of such trace elements and parameters of the ART programs they are in. The study included 30 infertile patients aged 18–39 years. Relying on inductively coupled plasma mass spectrometry, we identified concentrations of 31 chemical element in blood of the participants. Two elements out of 31 (antimony and beryllium) were not found in any blood sample; 10 elements (titanium, chromium, cobalt, nickel, arsenic, mercury, barium, gold, vanadium) were detected in some blood samples, the remaining 19 elements were found in all samples. Age of the patients correlated negatively with the level of silicon \(r = -0.384; p = 0.036 \) and positively with the level of molybdenum \(r = 0.384; p = 0.036 \). The level of anti-mullerian hormone was in a significant negative correlation with the level ofboron \(r = -0.402; p = 0.028 \) and positively correlated with the levels of iron \(r = 0.410; p = 0.024 \) and silver \(r = 0.432; p = 0.017 \). Considering the embryological cycle, we noted a positive correlation between the level of silicon and the number of blastocysts obtained \(r = 0.387; p = 0.034 \). There was no statistical relationship registered between elemental composition of blood the frequency of pregnancy in ART cycles.

Keywords: assisted reproductive technologies, embryos, pregnancy, heavy metals, mass spectrometry, trace elements, blood elemental status, AMH

Author contribution: Syrkasheva AG — conducting the clinical stage of the study, statistical processing of data, article authoring; Frankевич VE — conducting mass spectrometric studies; Dolgushina NV — article authoring, final review.

Compliance with ethical standards: the study was approved by the ethics committee of the VI. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology (Minutes #10 of October 20, 2016).

Correspondence should be addressed: Anastasia G. Syrkasheva
Akademika Oparina, 4, Moscow, 117997; a_syrkasheva@oparin4.ru

Received: 10.02.2021 Accepted: 24.02.2021 Published online: 28.02.2021

DOI: 10.24075/vrgmu.2021.010
В исследование были включены 30 пациенток, обратившихся для лечения бесплодия с помощью ВРТ в период с 2017 г. по 2018 г. Критерии включения: отсутствие противопоказаний к проведению ВРТ; нормальный кариотип обоих супругов; отсутствие выраженной патозооспермии (100% тератозооспермия, абсолютная атсенозооспермия, все виды азооспермии); возраст женщин 18–39 лет включительно, индекс массы тела (ИМТ) женщины 19–25 кг/м² включительно. Все пациентки, включенные в исследование, постоянно проживали на территории города Москвы в течение последних 5 лет. Критерии исключения: использование донорских гамет или суррогатного материнства; получение трех и менее осоитов в день трансвагинальной лупу ретунов (ИКСИ). Оплодотворение ооцитов осуществляли методом ВРТ, или интрацитоплазматической инъекции сперматозоидов. Через 14 дней после переноса в полость матки определяли концентрацию β-ХГ в сыворотке крови пациентки. При визуализации сердцебиения эмбриона через пять недель после переноса эмбриона регистрировали клиническую беременность.

Для статистического анализа использовали пакет статистических программ SPSS 22 (IBM; США). Данные с нормальным распределением представляли как среднее значение (стандартное отклонение). Статистический анализ проводили с применением χ²-теста для сравнения категориальных переменных, теста Манна–Уитни для сравнения медиан. Данные с ненормальным распределением были представлены как медиана (интерквартильный размах). При проведении корреляционного анализа учитывали критерий Пирсона. Различия между статистическими величинами считали статистически значимыми при p < 0,05. Результаты исследования:

Проанализирована концентрация 31 химического элемента в крови 30 пациенток. Два элемента (сурыма и бериллий) не были обнаружены ни в одном образце крови, 10 элементов (титан, хром, кобальт, никель, мышьяк, ртуть, барий, золото, ванадий, вольфрам) не были обнаружены ни в одном образце крови, оставшиеся 19 элементов — в всех образцах. Данные по распределению химических элементов у изученных пациенток представлены в табл. 1.

Возраст пациентки находился в отрицательной корреляционной связи с уровнем кремния (r = –0,384; p = 0,036) и в положительной связи с уровнем мolibдена (r = 0,384; p = 0,036). Масса тела и ИМТ пациентки не имели связи с элементным составом крови пациенток.

ПАЦИЕНТЫ И МЕТОДЫ

В исследование были включены 30 пациенток, обратившихся для лечения бесплодия с помощью ВРТ в период с 2017 г. по 2018 г. Критерии включения: отсутствие противопоказаний к проведению ВРТ; нормальный кариотип обоих супругов; отсутствие выраженной патозооспермии (100% тератозооспермия, абсолютная атсенозооспермия, все виды азооспермии); возраст женщин 18–39 лет включительно, индекс массы тела (ИМТ) женщины 19–25 кг/м² включительно. Все пациентки, включенные в исследование, постоянно проживали на территории города Москвы в течение последних 5 лет. Критерии исключения: использование донорских гамет или суррогатного материнства; получение трех и менее осоитов в день трансвагинальной лупу ретунов (ИКСИ). Оплодотворение ооцитов осуществляли методом ВРТ, или интрацитоплазматической инъекции сперматозоидов. Через 14 дней после переноса в полость матки определяли концентрацию β-ХГ в сыворотке крови пациентки. При визуализации сердцебиения эмбриона через пять недель после переноса эмбриона регистрировали клиническую беременность.

Для статистического анализа использовали пакет статистических программ SPSS 22 (IBM; США). Данные с нормальным распределением представляли как среднее значение (стандартное отклонение). Статистический анализ проводили с применением χ²-теста для сравнения категориальных переменных, теста Манна–Уитни для сравнения медиан. Данные с ненормальным распределением были представлены как медиана (интерквартильный размах). При проведении корреляционного анализа учитывали критерий Пирсона. Различия между статистическими величинами считали статистически значимыми при p < 0,05. РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

Проанализирована концентрация 31 химического элемента в крови 30 пациенток. Два элемента (сурыма и бериллий) не были обнаружены ни в одном образце крови, 10 элементов (титан, хром, кобальт, никель, мышьяк, ртуть, барий, золото, ванадий) не были обнаружены ни в одном образце крови, оставшиеся 19 элементов — в всех образцах. Данные по распределению химических элементов у изученных пациенток представлены в табл. 1.

Возраст пациентки находился в отрицательной корреляционной связи с уровнем кремния (r = –0,384; p = 0,036) и в положительной связи с уровнем мolibдена (r = 0,384; p = 0,036). Масса тела и ИМТ пациентки не имели связи с элементным составом крови пациенток.
У куриющих пациенток ($n = 5$) медиана уровня кальция была значимо ($p = 0,02$) ниже по сравнению с некуриющими ($r = 0,25$) 98,2 мг/л против 102,4 мг/л.

Элемент	Частота определения	Медиана	Интерквартильный размах	Минимум–максимум
Магний (Mg)	100%	2,745	1,88–3,56	0–4,95
Натрий (Na)	100%	0	0–1,41	0–0,40
Бор (B)	100%	0,076	0,63–0,93	0–1,59
Железо (Fe)	100%	1,012	0,387–3,410	152,0–210,0
Марганец (Mn)	100%	0,192	0,113–0,339	0–0,412
Бор (B)	100%	0	0–0,61	0–6,18
Медь (Cu)	100%	140,15	112,0–174,0	788,0–2427,0
Цинк (Zn)	100%	873,0	781,0–960,0	593,0–1150,0
Мышьяк (As)	100%	0,41	0,23–0,80	0–3,20
Бериллий (Be)	100%	0,075	0,640–0,860	0–0,40
Кадмий (Cd)	100%	0,275	0,20–0,38	0,1–2,42
Сурьма (Se)	100%	0	–	–
Ртуть (Hg)	100%	0,19	0,14–0,41	0–0,70
Свинец (Pb)	100%	0	–	–
Серебро (Ag)	100%	0,270	0,160–0,760	0,030–3,410
Барий (Ba)	100%	0	–	–
Сурьма (Se)	100%	0,075	0,640–0,860	0–0,40
Висмут (Bi)	100%	0,028	0,025–0,045	0,005–0,009
Алюминий (Al)	100%	0	–	–
Галлий (Ga)	100%	0,007	0,005–0,009	0,001–0,010

При оценке особенностей протокола овариальной стимуляции отмечена связь между суммарной дозой гонадотропинов, длительностью стимуляции, уровнем альпина, цинка, селена и бария (табл. 3). Уровень АМГ находился в значимой положительной корреляционной связи с уровнем бора ($r = –0,402; p = 0,028$) и положительной корреляционной связи с уровнем железа ($r = 0,410; p = 0,024$) и серебра ($r = 0,432; p = 0,017$) (табл. 2).
Таблица 2. Корреляционная связь между гормональными параметрами и элементным составом крови пациенток

	АМГ*	T4	Литий	Бор	Железо	Серебро
АМГ	r = 0,130	r = –0,367	r = –0,055	r = 0,040	r = 0,253	
T4	r = 0,130	h = 0,495	p = 0,046	p = 0,773	p = 0,835	
Литий	r = –0,367	r = 0,163	r = –0,402	r = 0,410	r = 0,432	
Бор	r = –0,055	r = –0,402	r = 0,104	r = 0,258	r = 0,281	
Железо	r = 0,040	r = 0,410	r = 0,258	r = –0,074	r = 0,329	
Серебро	r = 0,253	r = 0,432	r = –0,281	r = –0,329	r = –0,59	

к таким условиям относят экологические особенности и особенности рациона питания) могут возникать нарушения баланса микроэлементов, проявляющиеся в дефиците или, напротив, избытке определенных веществ [3]. Сложность диагностики подобных состояний обусловлена отсутствием характерной клинической картины и труднодоступностью лабораторных методов диагностики элементного состава организма человека. Продолжаются дискуссии о выборе идеальной матрицы для проведения микробиологического анализа (кровь / моча / волосы) [1, 7]. Следует также учитывать, что роль многих микроэлементов в организме человека не изучена; так же, как не изучены процессы метаболизма микроэлементов. Элементный состав организма человека может зависеть от пола, возраста пациента, от других менее явных признаков [8]. Все эти факторы делают научные исследования в данной области крайне перспективными.

В данном исследовании оценивали элементный статус крови пациенток с бесплодием, обратившихся за проведения программ ВРТ. Критерием включения пациенток в исследование было проживание в благоприятном по климату регионе России [9]. Отбор пациенток с определенными клиническими характеристиками снижает вероятность влияния известных факторов (ожирение, эндокринные заболевания, экологически неблагоприятный регион проживания) на элементный статус.

В результате проведенного исследования выявлена связь между элементным составом крови и клиническими характеристиками пациенток, но не выявлено связи между элементным составом организма пациенток и результатами ВРТ.

Возраст пациенток был негативно связан с уровнем кремния, а также с уровнем авитаминоза [10]. Роль молибдена в организме человека неоднозначна. Он является компонентом различных ферментов. Препараты молибдена традиционно используются для терапии болезни Бильвохса, кроме того, описаны случаи эффективной терапии болезни Крона [11]. Проводятся доклинические исследования препаратов молибдена в качестве противовопухолевых препаратов: показана их эффективность для подавления ангиогенеза [12]. В то же время при повышенных концентрациях этот металл обладает токсическими свойствами. Показана связь концентрации молибдена в крови с повышенным риском артериальной гипертонии и других сердечно-сосудистых заболеваний [13]. Для оценки негативного влияния молибдена на здоровье человека необходимы дальнейшие исследования.

При развитии остеопороза и остеопении изучают влияние курения на метаболизм кальция [14]. В нашем исследовании пациентки, злоупотребляющие табакокурением, имели сниженный уровень кальция по сравнению с некурящими. Кальций является важным элементом в организме человека, во время беременности и лактации потребность данного элемента значительно увеличивается. Полученные данные можно использовать при консультировании пациенток, рекомендуя отказ от курения на этапе планирования беременности.

При оценке лабораторных показателей отмечена отрицательная корреляционная связь между уровнем липидов и уровнем АМГ. АМГ — критерий овариального резерва, наиболее широко используемый в рутинной практике. Препараты липидов длительное время применяют для терапии психиатрических заболеваний (в основном маниакально-депрессивных состояний), и в ряде случаев возникает необходимость продолжить прием препаратов липидов во время беременности. Поэтому вопрос их негативного влияния на репродуктивную и эндокринную системы является объектом повышенного внимания ученых [15]. Группа исследователей из Ирана продемонстрировали снижение экспрессии генов цитохрома в яичниках крыс [16]. Связь между липидами и показателями овариального резерва у человека требует дальнейшего изучения.

Уровень свободного тироксина связан с уровнем железа, бора и серебра. При этом не было отмечено связи между уровнями тиреоидных гормонов и микроэлементов. Отрицательная связь между бором и уровнем тиреотропного гормона описана различными авторами [17, 18]. Воз действие препаратов бора связано с формированием гипертироза у лабораторных животных. Бор регулирует активность паратгормона, что может объяснить связь между бором и уровнем микроэлементов.

При анализе протокола стимуляции яичников выявлена связь между уровнями алюминия и цинка и суммарной дозой гонадотропинов, а также связь между селеном, барийем и продолжительностью стимуляции.
яичников. В литературе нами не было найдено подобных корреляций. Число дней стимуляции в целом коррелирует с длительностью фолликулярной фазы собственного цикла, которая, в свою очередь, связана с показателями овариального резерва. Длительность собственного цикла может быть связана с повышенным уровнем селена, который представляет собой кофермент антиоксидантного фермента глутатионпероксидазы. В то же время повышение уровня селена может стать компенсаторной реакцией в ответ на повышение уровня бария — тяжелого металла с известной токсичностью, а селен играет ключевую роль в детоксикации тяжелых металлов.

Была отмечена также положительная связь между суммарной дозой гонадотропинов и уровнями цинка и алюминия, при этом наблюдалась слабая положительная связь между данными элементами. Цинк — компонент как известной токсичностью, а селен играет ключевую роль в процессе синтеза стероидных гормонов и рецепторов к ним. Токсичное действие алюминия может быть связано с повышенным уровнем селена, который представляет собой кофермент антиоксидантного фермента глутатионпероксидазы. В то же время повышение уровня селена может стать компенсаторной реакцией в ответ на повышение уровня бария — тяжелого металла с известной токсичностью, а селен играет ключевую роль в детоксикации тяжелых металлов.

Таблица 3. Особенности протокола стимуляции суперовуляции и элементный состав крови пациенток

Число дней стимуляции	Суммарная доза гонадотропинов	Алюминий	Цинк	Селен	Барий
1	r = 0,318	r = 0,209	r = 0,296	r = 0,409	r = 0,562
	p = 0,087	p = 0,268	p = 0,113	p = 0,025	p = 0,001
Суммарная доза гонадотропинов	r = 0,318	1	r = 0,588	r = 0,469	r = 0,424
	p = 0,087	p = 0,001	p = 0,009	p = 0,190	p = 0,881
Алюминий	r = 0,209	r = 0,562	1	r = 0,354	r = 0,006
	p = 0,296	p = 0,001	p = 0,055	p = 0,977	p = 0,420
Цинк	r = 0,926	r = 0,469	r = 0,354	1	r = 0,351
	p = 0,113	p = 0,009	p = 0,055	p = 0,057	p = 0,355
Селен	r = 0,409	r = 0,246	r = 0,006	r = 0,351	1
	p = 0,025	p = 0,190	p = 0,977	p = 0,057	p = 0,006
Барий	r = 0,562	r = 0,029	r = 0,013	r = 0,175	r = 0,492
	p = 0,001	p = 0,881	p = 0,420	1	p = 0,355
	p = 0,006	p = 0,006	p = 0,006		

Литература
1. Скальный А. В., Рудаков И. А. Биоэлементология — новый термин или новое научное направление? Вестник ОГУ. 2005; 2: 4–8.
2. Talebi S, Ghaedi E, Sadeghi E, Mohammadi H, Hadi A, Clark CCT, et al. Trace Element Status and Hypothyroidism: A Systematic Review and Meta-analysis. Biol Trace Elem Res. 2020; 197 (1): 1–14.
3. Sanjeevi N, Freeland-Graves J, Beretvas SN, Sachdev PK. Trace element status in type 2 diabetes: A meta-analysis. J Clin Diagn Res. 2018; 12 (5): OE01–8.
4. Särkänen P, Kankaanpää H, Wallman K. Molybdenum: moonlighting or promiscuous enzyme? Biofactors. 2017; 43 (4): 1–14.
5. Mitarbeiter S, Wampfler J, Schäfer M, Adamec G, Adnan H, Adnan H. The molybdenum cofactor enzyme mARC: Moonlighting or promiscuous enzyme? Biofactors. 2017; 43 (4): 486–94.
6. Shiu I. Higher urinary heavy metal, phthalate, and arsenic but not parabens concentrations in people with high blood pressure, U.S. NHANES, 2011–2012. Int J Environ Res Public Health. 2014; 11 (6): 5089–99.
References

1. Skalný AV, Rudakov IA. Biojelementologija — nový termin lii novoe nauchnoe napravlenie? Vestnik OGU. 2005; 2: 4–8. Russian.
2. Talebi S, Ghaedi E, Sadeghi E, Mohammad H, Hadi A, Clark CCT, et al. Trace Element Status and Hypothyroidism: A Systematic Review and Meta-analysis. Biol Trace Elem Res. 2020; 197 (1): 1–14.
3. Sanjeevi N, Freeland-Graves J, Beretvas SN, Sachdev PK. Trace element status in type 2 diabetes: A meta-analysis. J Clin Diagn Res. 2015; 45 (2): 443–8.
4. Zemrani B, Bines JE. Recent insights into trace element deficiencies: causes, recognition and correction. Curr Opin Gastroenterol. 2020; 36 (2): 110–7.
5. Takeuchi H, Takii Y, Nouchi R, Yokoyama R, Kotozaki Y, Nakagawa S, et al. Association of iron levels in hair with brain structures and functions in young adults. J trace Elem Med Biol Organ Soc Miner Trace Elem. 2020; 58: 126436.
6. Laue HE, Moroishi Y, Jackson BP, Palys TJ, Madan JC, Karagas MR. Nutrient-toxic element mixtures and the early postnatal gut microbiome in a United States longitudinal birth cohort. Environ Int. 2020; 138: 105613.
7. Skalný AV, Kiselev MF, redaktory. Jelementnyj status naselenija Rossii. SPb.: Medkniga «JeLBI-SPb», 2014; 544 s. Russian.
8. Vapirov VV, Feoktistov VM, Venskovich AA, Vapirov NV. K voprosu o povedenii kremnija v prirode i ego biologicheskoj roli. Uchenye zapiski Petrovskogo gosudarstvennogo universiteta. 2017; 2 (163): 90–92. Russian.

14. Breitling LP. Smoking as an effect modifier of the association of calcium intake with bone mineral density. J Clin Endocrinol Metab. 2015; 100 (2): 626–35.
15. Neri C, De Luca C, D’orla A, Licamele A, Nucci M, Pellegrino M, et al. Managing fertile women under lithium treatment: the challenge of a Teratology Information Service. Minerva Ginecol. 2018; 70 (3): 261–7.
16. Mirakhori F, Zeynali B, Tafreshi AP, Shirmohammadian A. Lithium induces follicular atresia in rat ovary through a GSK-3β/-catenin dependent mechanism. Mol Reprod Dev. 2013; 80 (4): 286–96.
17. Luca E, Fici L, Ronchi A, Marandino F, Rossi ED, Caristo ME, et al. Intake of Boron, Cadmium, and Molybdenum enhances rat thyroid cell transformation. J Exp Clin Cancer Res. 2017; 36 (1): 73.
18. Popova EV, Tinkov AA, Ajsuvaikova OP, Skalnaya MG, Skalny AV. Boron — A potential goiterogen? Med Hypotheses. 2017; 104: 63–7.
19. da Silva Lima D, da Silva Gomes L, de Sousa Figueredo E, de Godoi MM, Silva EM, da Silva Neri HF, et al. Aluminum exposure promotes histopathological and pro-oxidant damage to the prostate and gonads of male and female adult gerbils. Exp Mol Pathol. 2020; 116: 104486.