COMBINATORIAL INTERPRETATIONS OF THE q-FAULHABER AND q-SALIÉ COEFFICIENTS

VICTOR J. W. GUO, MARTIN RUBEY, AND JIANG ZENG

Dedicated to Xavier Viennot on the occasion of his sixtieth birthday

Abstract. Recently, Guo and Zeng discovered two families of polynomials featuring in a q-analogue of Faulhaber’s formula for the sums of powers and a q-analogue of Gessel-Viennot’s formula involving Salié’s coefficients for the alternating sums of powers. In this paper, we show that these are polynomials with symmetric, nonnegative integral coefficients by refining Gessel-Viennot’s combinatorial interpretations.

1. Introduction

In the early seventeenth century, Johann Faulhaber [1] (see also [5]) considered the sums of powers $S_{m,n} = \sum_{k=1}^{n} k^m$ and provided formulas for the coefficients $f_{m,k}$ ($0 \leq m \leq 8$) in

$$S_{2m+1,n} = \frac{1}{2} \sum_{k=1}^{m} f_{m,k} (n(n+1))^{k+1},$$

(1)

In 1989, Ira Gessel and Xavier Viennot [3] studied the alternating sum $T_{2m,n} = \sum_{k=1}^{n} (-1)^{n-k} k^{2m}$ and showed that there exist integers $s_{m,k}$ such that

$$T_{2m,n} = \frac{1}{2} \sum_{k=1}^{m} s_{m,k} (n(n+1))^{k}.$$

(2)

In particular, they proved that the Faulhaber coefficients $f_{m,k}$ and the Salié coefficients $s_{m,k}$ count certain families of non-intersecting lattice paths.

Recently, two of the authors [4], continuing work of Michael Schlosser [7], Sven Ole Warnaar [8] and Kristina Garrett and Kristen Hummel [2], have found q-analogues of (1) and (2). More precisely, setting $[k] = \frac{1-q^k}{1-q}$, $[k]! = \prod_{i=1}^{k} [i]$, and

$$S_{m,n}(q) = \sum_{k=1}^{n} \frac{[2k]}{[2]} [k]^{m-1} q^{\frac{m+1}{2}(n-k)},$$

(3)

$$T_{m,n}(q) = \sum_{k=1}^{n} (-1)^{n-k} [k]^{m} q^{\frac{m}{2}(n-k)},$$

(4)

for $m, n \in \mathbb{N}$, they proved the following results:
Theorem 1.1. There exist polynomials $P_{m,k}, Q_{m,k}, G_{m,k}$ and $H_{m,k}$ in $\mathbb{Z}[q]$ such that

\[S_{2m+1,n}(q) = \sum_{k=0}^{m} (-q^n)^{m-k} \frac{[k]!}{[m+1]!} P_{m,m-k}(q) \frac{([n][n+1])^{k+1}}{[2]}, \]

(5)

\[S_{2m,n}(q) = (1 - q^{n+\frac{1}{2}}) \sum_{k=0}^{m} (-q^n)^{m-k} (1 - q^{\frac{3}{2}})^{m-k} Q_{m,m-k}(q^{\frac{3}{2}}) \frac{([n][n+1])^k}{[2]}, \]

(6)

\[T_{2m,n}(q) = \sum_{k=1}^{m} (-q^n)^{m-k} \frac{G_{m,m-k}(q)}{\prod_{i=0}^{m-k} (1 + q^{m-i})} ([n][n+1])^k, \]

(7)

and

\[T_{2m-1,n}(q) = (-1)^{m+n} H_{m,m-1}(q^{\frac{3}{2}}) \frac{q^{m-\frac{3}{2}}n}{(1 + q^{\frac{3}{2}})m \prod_{i=0}^{m-1} (1 + q^{m-i-\frac{3}{2}})} \]

\[+ \frac{1 - q^{n+\frac{3}{2}}}{1 - q^{n+\frac{3}{2}}} \sum_{k=1}^{m} (-q^n)^{m-k} \frac{H_{m,m-k}(q^{\frac{3}{2}})([n][n+1])^{k-1}}{(1 + q^{\frac{3}{2}})^{m-k+1} \prod_{i=0}^{m-k} (1 + q^{m-i-\frac{3}{2}})}, \]

(8)

Comparing with (3) and (4), we have

\[f_{m,k} = (-1)^{m-k} \frac{k!}{(m+1)!} P_{m,m-k}(1) \]

and

\[s_{m,k} = (-1)^{m-k} 2^{k-m} G_{m,m-k}(1), \]

but the numbers corresponding to $Q_{m,k}(1)$ and $H_{m,k}(1)$ do not seem to be studied in the literature. The first values of $P_{m,k}, Q_{m,k}, G_{m,k}$ and $H_{m,k}$ are given in Tables 1–4, respectively.

Table 1. Values of $P_{m,k}(q)$ for $0 \leq k < m \leq 5$.

$k \setminus m$	0	1	2	3	4	5
0	0	1	1	1	1	1
1	2(q+1)	3q^2 + 4q + 3	2(q+1)	2q^2 + q + 2		
2	(q+1)(5q^2 + 8q + 5)	(q+1)(9q^4 + 19q^2 + 20q^2 + 3q + 9)	(q+1)(9q^4 + 19q^2 + 20q^2 + 3q + 9)			
3	(q+1)(5q^2 + 8q + 5)	(q+1)(9q^4 + 19q^2 + 20q^2 + 3q + 9)				
4	2(q+1)(q^2 + q + 1)(7q^4 + 11q^2 + 7)					

Table 2. Values of $Q_{m,k}(q)$ for $0 \leq k < m \leq 4$.

$k \setminus m$	0	1	2	3	4
0	0	1	1	1	1
1	2q^2 + q + 2	3q^4 + 2q^4 + 4q^2 + 2q + 3			
2	2q^2 + q + 2	(q^2 + q + 1)(5q^2 + q^2 + 9q^2 + q + 9)			
3	(q^2 + q + 1)(5q^2 + q^2 + 9q^2 + q + 9)				

$k \setminus m$	0	1	2	3	4
0	0	1	1	1	1
1	2q^2 + q + 2	3q^4 + 2q^4 + 4q^2 + 2q + 3			
2	2q^2 + q + 2	(q^2 + q + 1)(5q^2 + q^2 + 9q^2 + q + 9)			
3	(q^2 + q + 1)(5q^2 + q^2 + 9q^2 + q + 9)				
Lemma 2.1. By convention, a and b are ≥ 0. The tables above suggest that the coefficients of the polynomials $P_{m,k}$, $Q_{m,k}$, $G_{m,k}$ and $H_{m,k}$ are nonnegative and symmetric. The aim of this paper is to prove this fact by showing that the coefficients count certain families of non-intersecting lattice paths.

2. Inverses of Matrices

Recall that the n-th complete homogeneous functions in r variables x_1, x_2, \ldots, x_r has the following generating function:

$$
\sum_{n \geq 0} h_n(x_1, \ldots, x_r) t^n = \frac{1}{(1 - x_1 t)(1 - x_2 t) \ldots (1 - x_r t)}.
$$

For $r, s \geq 0$, let $h_n(\{1\}^r, \{q\}^s)$ denote the n-th complete homogeneous functions in $r+s$ variables, of which r are specialized to 1 and the others to q, i.e.,

$$
\sum_{n \geq 0} h_n(\{1\}^r, \{q\}^s) z^n = \frac{1}{(1 - z)^r (1 - qz)^s}.
$$

By convention, $h_n(\{1\}^r, \{q\}^s) = 0$ if $r < 0$ or $s < 0$. For convenience, we also write $h_n(\{1, q\}^r)$ instead of $h_n(\{1\}^r, \{q\}^r)$.

We first prove the following result.

Lemma 2.1. Let a and b be non-negative integers, then

$$
\sum_{m \geq 0} \sum_{k \geq 0} h_{m-2k}(\{1\}^{k+a}, \{q\}^{k+b}) \left(\frac{q^k}{[l]^z} \right)^k z^m = \frac{[l]^2}{[l]z} \left\{ \begin{array}{ll}
\frac{[l+1]}{[l]-[l+1]z} - \frac{q[l-1]}{[l]-q[l-1]z} & \text{for } a = 1, b = 1, \\
\frac{1}{[l]-[l+1]z} - \frac{q[l-1]}{[l]-q[l-1]z} & \text{for } a = 1, b = 0, \\
\frac{q^k}{[l]-[l+1]z} + \frac{1}{[l]-q[l-1]z} & \text{for } a = 0, b = 1.
\end{array} \right.
$$

Recall that a polynomial $f(x) = a_0 + a_1 x + \cdots + a_n x^n$ of degree n has symmetric coefficients if $a_i = a_{n-i}$ for $0 \leq i \leq n$. The tables above suggest that the coefficients of the polynomials $P_{m,k}$, $Q_{m,k}$, $G_{m,k}$ and $H_{m,k}$ are nonnegative and symmetric. The aim of this paper is to prove this fact by showing that the coefficients count certain families of non-intersecting lattice paths.

Table 3. Values of $G_{m,k}(q)$ for $0 \leq k < m \leq 5$.

$k \setminus m$	1	2	3	4	5
0	1	1	4	1	1
1	2	3(q+1)	4(q^2 + q + 1)	5(q+1)(q^2 + 1)	
2	6(q+1)	2(q+1)(5q^2 + 7q + 5)	5(q+1)(3q^4 + 4q^3 + 8q^2 + 4q + 3)		
3	4(q+1)(5q^2 + 7q + 5)	5(q+1)(7q^4 + 14q^3 + 20q^2 + 14q + 7)			
4			10(q+1)(7q^4 + 14q^3 + 20q^2 + 14q + 7)		

Table 4. Values of $H_{m,k}(q)$ for $0 \leq k < m \leq 4$.

$k \setminus m$	1	2	3	4
0	1	1	1	1
1	2	3q^2 + 2q + 3	4q^4 + 3q^3 + 4q^2 + 3q + 4	
2	2(3q^3 + 2q + 3)	10q^6 + 15q^5 + 30q^4 + 26q^3 + 30q^2 + 15q + 10		
3	2(10q^6 + 15q^5 + 30q^4 + 26q^3 + 30q^2 + 15q + 10)			
Proof. Using the definition (21) of the complete homogeneous functions we have
\[
\sum_{m \geq 0} \sum_{k \geq 0} h_{m-2k}(\{1\}^{k+a}, \{q\}^{k+b}) x^k z^m
= \sum_{k \geq 0} \frac{x^k z^{2k}}{(1-z)^{k+a}(1-qz)^{k+b}}
= \frac{1}{(1-z)^{a-1}(1-qz)^{b-1}(1-z)(1-qz) - xz^2}.
\]
Setting \(x = \frac{q^j}{[j]^2}\), a little calculation shows that the denominator of the second fraction factorizes:
\[
\frac{1}{(1-z)(1-qz) - xz^2} = \frac{1}{(\lfloor l \rfloor - qz[l-1])(\lfloor l \rfloor - z[l+1])}.
\]
The result then follows from the standard partial fraction decomposition. \(\square\)

Let \(X_n = \frac{[n][n+1]}{q^{\binom{n}{2}}}.\) The following lemma might be interesting per se. When \(q = 1\) it reduces to simple applications of the binomial theorem.

Lemma 2.2. For \(k, m \geq 1\), set
\[
c_{k,m}(q) := h_{2m-k}(\{1\}^{2}k^{m+1}) + q h_{2m-k-1}(\{1\}^{2}k^{m+1},)
\]
\[
g_{k,m}(q) := h_{2m-k}(\{1\}^{k-m+1}, \{q\}^{k-m}) + h_{2m-k}(\{1\}^{k-m}, \{q\}^{k-m+1}),
\]
\[
d_{k,m}(q) := g_{k,m}(q^2) + qg_{k-1,m-1}(q^2).
\]
For \(m, l \geq 1\), we have
\[
X_{l}^{m+1} - X_{l-1}^{m+1} = \sum_{k} h_{m-2k}(\{1\}^{k+1}, [2l])[l]^{2(m-k)} q^{-l(m-k+1)}, \tag{10}
\]
\[
\frac{1-q_{l+\frac{1}{2}}}{(1-q^2)q_{l+\frac{1}{2}}} X_{l}^{m} - \frac{1-q_{l-\frac{1}{2}}}{(1-q^2)q_{l-\frac{1}{2}}} X_{l-1}^{m} = \sum_{k} c_{m,m-k}(q^{\frac{1}{2}})[2l][l]^{2(m-k-\frac{1}{2})} q^{-l(m-k+\frac{1}{2})}, \tag{11}
\]
\[
X_{l}^{m} + X_{l-1}^{m} = \sum_{k} g_{m,m-k}(q)[l]^{2(m-k)} q^{-l(m-k)}, \tag{12}
\]
\[
\frac{1-q_{l+\frac{1}{2}}}{(1-q^2)q_{l+\frac{1}{2}}} X_{l}^{m-1} + \frac{1-q_{l-\frac{1}{2}}}{(1-q^2)q_{l-\frac{1}{2}}} X_{l-1}^{m-1} = \sum_{k} d_{m,m-k}(q^{\frac{1}{2}})[l]^{2(m-k-\frac{1}{2})} q^{-l(m-k+\frac{1}{2})}. \tag{13}
\]

Proof. The proof rests on the previous lemma.

- Applying Lemma 2.1 with \(a = 1\) and \(b = 1\) yields that the coefficient of \(z^m\) in \(\sum_k h_{m-2k}(\{1\}^{k+1}, q^k[l]^{-2k}\) is

\[
\frac{[l]}{[2l]} \left(\binom{l+1}{[l+1]} \right)^m - q[l-1] \left(\frac{q[l-1]}{[l]} \right)^m.
\]

Multiplying this expression with \([2l][l]^{2m} q^{\binom{m}{2}}\), we obtain (10).

- Since \(c_{m,m-k}(q^{\frac{1}{2}}) = h_{m-2k}(\{1\}^{k+1}, q^{\frac{1}{2}}) + q^{\frac{1}{2}} h_{m-2k}(\{1\}^{k+1})\), Equation 11 follows directly from the previous calculation.
• As \(g_{m,m-k}(q) = h_{m-2k}([1]^{k+1}, \{q\}^k) + h_{m-2k}([1]^k, \{q\}^{k+1}) \), applying Lemma \(2.4\) with \(a = 1, b = 0 \) and \(a = 0, b = 1,\)

\[
\sum_k \left(h_{m-2k}([1]^{k+1}, \{q\}^k) + h_{m-2k}([1]^k, \{q\}^{k+1}) \right) q^{lk} [l]^{-2k}
\]

\[
= \frac{[l]!^2}{[2l]!} \left(\frac{1 + q^l}{[l] - [l + 1]z} + \frac{1 + q^l}{[l] - q[l - 1]z} \right)
\]

Multiplying the coefficient of \(z^m \) of this expression with \([l]!^2 q^{-lm}\) we obtain \(12\).

• Since \(d_{m,m-k}(q) = g_{m,m-k}(q) + \frac{1}{q} g_{m-1,m-k-1}(q) \), Equation \(13\) follows directly from the previous calculation.

\[\square\]

The following is the main result of this section. Note that together with Theorems \(3.2\) and \(3.6\) it also provides an alternative proof of Theorem \(1.1\).

Theorem 2.3. The inverses of the lower triangular matrices

\((h_{2m-k}([1,q]^{k-m+1}))_{0 \leq k,m \leq n}, (c_{k,m}(q))_{1 \leq k,m \leq n}, (g_{k,m}(q))_{1 \leq k,m \leq n}, (d_{k,m}(q))_{1 \leq k,m \leq n}\)

are respectively the lower triangular matrices

\[
(-1)^{k-m} \frac{[m]!}{[k + 1]!} P_{k,m}(q),
\]

\[
(-1)^{k-m} \frac{(1 - q)^{k-m+1} Q_{k,k-m}(q)}{\prod_{i=0}^{k-m} (1 - q^{2k-2i+1})},
\]

\[
(-1)^{k-m} \frac{G_{k,k-m}(q)}{\prod_{i=0}^{k-m} (1 + q^{k-i})},
\]

\[
(-1)^{k-m} \frac{H_{k,k-m}(q)}{(1 + q)^{k-m+1} \prod_{i=0}^{k-m} (1 + q^{2k-2i-1})}.
\]

Proof.

• Summing Equation \(10\) over \(l \) from 1 to \(n \) and applying Equation \(8\), we obtain

\[
X_n^{m+1} = [2] \sum_{k=0}^{\lfloor m/2 \rfloor} h_{m-2k}([1,q]^{k+1}) S_{2m-2k+1,n}(q) q^{-n(m-k+1)}.
\]

Plugging \(5\) in Equation \(15\), the right-hand side becomes

\[
\sum_{k=0}^{\lfloor m/2 \rfloor} \sum_{l=0}^{m-k} h_{m-2k}([1,q]^{k+1}) (-1)^{m-k-l} \frac{[l]!}{[m-k-l]!} P_{m-k,m-k-l}(q) X_n^{l+1}.
\]

Comparing the coefficients of \(X_n^{l+1} \) we see that \((h_{2m-k}([1,q]^{k-m+1}))_{0 \leq k,m \leq n}\) and \(14\) are indeed inverses.
• Summing Equation (11) over \(l \) from 1 to \(n \) and applying Equation (3), we obtain

\[
\frac{1 - q^{n+\frac{1}{2}}}{(1 - q^2)q^\frac{3}{2}} X_n^m = \sum_{k=0}^{[m/2]} \sum_{l=1}^{m-k} c_{m,m-k}(q^\frac{1}{2}) S_{2m-2k,n}(q) q^{-n(m-k+\frac{1}{2})}. \tag{19}
\]

Substituting (3) into (19) and dividing both sides by \(\frac{1 - q^{n+\frac{1}{2}}}{(1 - q^2)q^\frac{3}{2}} \), we get

\[
X_n^m = \sum_{k=0}^{[m/2]} \sum_{l=1}^{m-k} c_{m,m-k}(q^\frac{1}{2})(-1)^{m-k-l} \frac{(1 - q^2)^{m-k-l} Q_{m-k,m-k-l}(q^\frac{1}{2})}{\prod_{i=0}^{m-k-l}(1 - q^{m-k+i+\frac{1}{2}})} X_n^l. \tag{20}
\]

Comparing the coefficients of \(X_n^l \), we see that \((c_{k,m}(q))_{1 \leq k,m \leq n} \) and (15) are indeed inverses.

• Equation (12) may be written as

\[
(-1)^{n-l} X_l^m - (-1)^{n-l+1} X_{l-1}^m = (-1)^{n-l} \sum_{k=0}^{[m/2]} g_{m,m-k}(q) \frac{(1 - q^l)^2 m-k}{(1 - q)^{2m-k-2k}} q^{-l(m-k)}. \tag{20}
\]

Summing Equation (20) over \(l \) from 1 to \(n \) and applying Equation (4), we obtain

\[
X_n^m = \sum_{k=0}^{[m/2]} g_{m,m-k}(q) T_{2m-2k,n}(q) q^{-n(m-k)}. \tag{21}
\]

Substituting (7) into (21), the right-hand side becomes

\[
\sum_{k=0}^{[m/2]} \sum_{l=1}^{m-k} g_{m,m-k}(q)(-1)^{m-k-l} \frac{G_{m-k,m-k-l}(q)}{\prod_{i=0}^{m-k-l}(1 + q^{m-k+i})} X_n^l. \tag{22}
\]

Comparing the coefficients of \(X_n^l \), we see that \((g_{k,m}(q))_{1 \leq k,m \leq n} \) and (16) are inverse to each other.

• Equation (13) may be written as

\[
(-1)^{n-l} \frac{1 - q^{l+\frac{1}{2}}}{(1 - q^2)q^\frac{3}{2}} X_l^{m-1} - (-1)^{n-l+1} \frac{1 - q^{l-\frac{1}{2}}}{(1 - q^2)q^\frac{3}{2}} X_{l-1}^{m-1} = (-1)^{n-l} \sum_k d_{m,m-k}(q^\frac{1}{2})[q^{2(m-k-\frac{1}{2})}] q^{-l(m-k-\frac{1}{2})}. \tag{23}
\]

Summing Equation (23) over \(l \) from 1 to \(n \) and applying Equation (4), we obtain

\[
\frac{1 - q^{n+\frac{1}{2}}}{(1 - q^2)q^\frac{3}{2}} X_n^{m-1} = \sum_k d_{m,m-k}(q^\frac{1}{2}) T_{2m-2k-1,1}(q) q^{-n(m-k-\frac{1}{2})}, \quad m \geq 2. \tag{24}
\]
Substituting (26) into (24) yields
\[
\frac{1 - q^{n+\frac{1}{q}}}{(1 - q^2)q^{\frac{n}{q}}}
\left(X_{n}^{m-1} - \sum_{k=1}^{m-k} \sum_{l=1}^{m-k-l} (-1)^{m-k-l} d_{m,m-k}(q^{\frac{l}{2}}) H_{m-k,m-k-l}(q^{\frac{l}{2}}) X_{n}^{l-1}\right)
\]
\[
= (-1)^{n} \sum_{k} \frac{(-1)^{m-k} d_{m,m-k}(q^{\frac{k}{2}}) H_{m-k,m-k-1}(q^{\frac{k}{2}})}{(1 + q^{\frac{k}{2}}) H_{m-k,m-k-1}(1 + q^{m-k-1})}.
\] (25)

We now show that the right-hand side of (25) must vanish. Suppose $0 < q < 1$. Denote the left-hand side of (25) by L_n. If there exists an $n \in \mathbb{N}$ such that $L_n = 0$ we are done. Suppose $L_n \neq 0$ for all $n \geq 1$, then L_n is a rational function in $t = q^{\frac{n}{2}}$ and can be written as
\[
L_n = t^s f(t) \quad \text{with} \quad t = q^{\frac{n}{2}},
\]
where s is an integer and $f(t)$ a rational function with $f(0) \neq 0$. Since $f(q^{\frac{n}{2}}) \neq 0$, the right-hand side of (25) implies that
\[
f(q^{\frac{n}{2}}) f(q^{\frac{n-s}{2}}) < 0 \quad \forall n \geq 1.
\]
Taking the limit as $n \to \infty$ we get $(f(0))^2 \leq 0$, which is impossible. Hence $L_n = 0$ and (25) reduces to
\[
X_{n}^{m-1} = \sum_{k} d_{m,m-k}(q^{\frac{k}{2}}) \sum_{l=1}^{m-k-l} \frac{(-1)^{m-k-l} H_{m-k,m-k-l}(q^{\frac{l}{2}}) X_{n}^{l-1}}{(1 + q^{\frac{l}{2}}) H_{m-k,m-k-l}(1 + q^{m-k-1})}.
\] (26)

Comparing the coefficients of X_{n}^{l-1} on both sides of (25), we see that $(d_{k,m}(q))_{1 \leq k,m \leq n}$ and (17) are indeed inverses.

The following easily verified result has been given by Gessel and Viennot [8].

Lemma 2.4. Let $(A_{ij})_{0 \leq i,j \leq m}$ be an invertible lower triangular matrix, and let $(B_{ij}) = (A_{ij})^{-1}$. Then for $0 \leq k \leq n \leq m$, we have
\[
B_{n,k} = \frac{(-1)^{n-k}}{A_{k,k} A_{k+1,k+1} \cdots A_{n,n}} |A_{k+i+1,k+j} |_{0 \leq i,j \leq n-k-1}.
\]

Using the above lemma we derive immediately from Theorem 2.3 the following determinant formulas:
\[
P_{m,k}(q) = \det_{0 \leq i,j \leq k-1} (h_{m-k-i+2j-1}(\{1, q\}^{i-j+2})),
\] (27)
\[
Q_{m,k}(q) = \det_{0 \leq i,j \leq k-1} (c_{m-k+i+1,m-k+j}(q)),
\] (28)
\[
G_{m,k}(q) = \det_{0 \leq i,j \leq k-1} (g_{m-k+i+1,m-k+j}(q)),
\] (29)
\[
H_{m,k}(q) = \det_{0 \leq i,j \leq k-1} (d_{m-k+i+1,m-k+j}(q)).
\] (30)
3. Combinatorial interpretations

A lattice path or path $s_0 \to s_n$ is a sequence of points $(s_0, s_1, ..., s_n)$ in the plane \mathbb{Z}^2 such that $s_i - s_{i-1} = (1, 0)$, $(0, 1)$ for all $i = 1, ..., n$. Let us assign a weight to each step (s_i, s_{i+1}) of $s_0 \to s_n$. We define the weight $N(s_0 \to s_n)$ of the path $s_0 \to s_n$ to be the product of the weights of its steps. Let $s_0 = (a, b)$ and $s_n = (c, d)$, if we weight each vertical step with x-coordinate i by x_i and all horizontal steps by 1 then

$$N(s_0 \to s_n) = h_{d-b}(x_a, x_{a+1}, ..., x_c).$$

Now consider two sequences of lattice points $u := (u_1, u_2, ..., u_n)$ and $v := (v_1, v_2, ..., v_n)$ such that for $i < j$ and $k < l$ any lattice path between u_i and v_j has a common point with any lattice path between u_j and v_k. Set

$$N(u, v) := \sum N(u_1 \to v_1) \cdots N(u_n \to v_n),$$

where the sum is over all families of non-intersecting paths $(u_1 \to v_1, ..., u_n \to v_n)$.

The following remarkable result can be found in Gessel and Viennot [3]. For historical remarks see also Krattenthaler [6].

Theorem 3.1. [Lindström-Gessel-Viennot] We have

$$N(u, v) = \det_{1 \leq i,j \leq n} (N(u_j \to v_i)).$$

We are now ready to exhibit the combinatorial interpretation of the q-Faulhaber numbers.

Theorem 3.2. Let $u = (u_0, ..., u_{k-1})$ and $v = (v_0, ..., v_{k-1})$, where $u_i = (2i, -2i)$ and $v_i = (2i + 3, m - k - i - 1)$ for $0 \leq i \leq k - 1$.

(i) The polynomial $P_{m,k}(q)$ is the sum of the weights of k-non-intersecting paths from u to v, where a vertical step with an even x-coordinate has weight q, and all the other steps have weight 1.

(ii) The polynomial $Q_{m,k}(q)$ is the sum of the weights of k-non-intersecting paths from u to v, where the weight of the individual steps is the same as before with the exception that q is replaced with q^2 and the vertical step starting from any u_j has weight $q^2 + q$ instead of q^2.

Proof. For (i), by means of (31) we have

$$N(u_j \to v_i) = h_{m-k-i+2j-1}(\{1, q\}^{i-j+2}).$$

The result then follows from (31) and Theorem 3.1.

For (ii), assume that $u_j' = (2j+1, -2j)$ and $u_j'' = (2j, 1 - 2j)$. The first step of a lattice path from u_j to v_i is either $u_j \to u_j'$ or $u_j \to u_j''$. As $N(u_j \to u_j') = 1$, $N(u_j \to u_j'') = q^2 + q$ and $h_n(x_1, ..., x_{r-1}) + x_r h_{n-1}(x_1, ..., x_r) = h_n(x_1, ..., x_r)$, we have

$$N(u_j \to v_i) = N(u_j \to u_j') N(u_j' \to v_i) + N(u_j \to u_j'') N(u_j'' \to v_i)$$

$$= N(u_j' \to v_i) + (q^2 + q) N(u_j'' \to v_i)$$

$$= h_{m-k-i+2j-1}(\{1\}^{i-j+2}, \{q^2\}^{i-j+1})$$

$$+ (q^2 + q) h_{m-k-i+2j-2}(\{1, q^2\}^{i-j+2})$$

$$= h_{m-k-i+2j-1}(\{1, q^2\}^{i-j+2}) + q h_{m-k-i+2j-2}(\{1, q^2\}^{i-j+2})$$.
The result then follows from \(28\) and Theorem 3.1.

\[\square\]

Corollary 3.3. The polynomials \(P_{m,k}(q)\) and \(Q_{m,k}(q)\) have symmetric coefficients.

Proof. A combinatorial way to see the symmetry of the coefficients of \(P_{m,k}(q)\) is as follows: Modifying the weights such that vertical steps with an odd \(x\)-coordinate have weight \(q\) and all the others weight 1 does not change the entries of the determinant.

However, consider any given family of paths with weight \(q^w\), when vertical steps with even \(x\)-coordinate have weight \(q^w\). After the modification of the weights it will have weight \(q^{\text{max} - w}\), where max is the total number of vertical steps in such a family of paths, which implies the claim.

For the polynomials \(Q_{m,k}\), we use the following alternative weight: vertical steps with odd \(x\)-coordinate have weight \(q^2\), vertical steps with starting point \(u_i\) have weight \(1 + q\) and all others have weight 1. \[\square\]

When \(k = m - 1\), there is only one lattice path from \(u_0 = (0, 0)\) to \(v_0 = (3, 0)\), which has weight 1. This establishes the following result:

Corollary 3.4. For \(m \geq 2\), we have \(P_{m,m-1}(q) = P_{m,m-2}(q)\) and \(Q_{m,m-1}(q) = Q_{m,m-2}(q)\).

For the combinatorial interpretation of the \(q\)-Salié numbers, we need an auxiliary lemma:

Lemma 3.5. Let \((A_{ij})_{1 \leq i,j \leq n}\) and \((B_{ij})_{1 \leq i,j \leq n}\) be two matrices. Then

\[
\det_{1 \leq i,j \leq n} (A_{ij} + B_{ij}) = \sum_{I \subseteq \{1, \ldots, n\}} \det_{1 \leq i,j \leq n} (D_{ij}^{(I)}),
\]

where

\[
D_{ij}^{(I)} = \begin{cases}
A_{ij}, & \text{if } j \in I, \\
B_{ij}, & \text{otherwise}.
\end{cases}
\]

Theorem 3.6. Let \(u = (u_0, \ldots, u_{k-1})\) and \(v = (v_0, \ldots, v_{k-1})\), where \(u_i = (2i, -2i)\) and \(v_i = (2i + 2, m - k - 1 - i)\) for \(0 \leq i \leq k - 1\).

(i) The polynomial \(G_{m,k}(q)\) is the sum of the weights of \(k\)-non-intersecting lattice paths \(L\) from \(u\) to \(v\) with the weight of \(L\) being

\[
\sum_{I \subseteq \{0, 1, \ldots, k-1\}} w_I(L),
\]

where \(w_I\) is defined as follows: for each \(i \in I\), vertical steps with \(x\)-coordinate \(2i - 1\) have weight \(q\), and for any integer \(i \notin I\), vertical steps with \(x\)-coordinate \(2i\) have weight \(q\). All other steps have weight 1.

(ii) The polynomial \(H_{m,k}(q)\) is the sum of the weights of \(k\)-non-intersecting lattice paths \(L\) from \(u\) to \(v\), with the weight of \(L\) being

\[
\sum_{I \subseteq \{0, 1, \ldots, k-1\}} \overline{w}_I(L),
\]

where \(\overline{w}_I\) is the same as \(w_I\) – replacing \(q\) with \(q^2\) – with the exception of vertical steps starting from one of the points \(u_i\), which have an additional weight of \(q\). More precisely,
Suppose that j is the weighted sum of lattice paths from u to v. Meanwhile, for j, the sum of weights of lattice paths from u to v is the sum of weights of lattice paths from u to v, where the vertical steps have the weight given in the claim. To end note, that $h_{m-k+i+2j-1}(1)^{i-j+2}, q^{i-j+1})$ counts lattice paths from u_j to v_i, when steps on $i-j+1$ given vertical lines have weight q, those steps on the remaining $i-j+2$ vertical lines have weight 1.

By the construction in the claim, steps on exactly one of the vertical lines with x-coordinates $2r - 1$ and $2r$ have weight q. Since $j \in I$, steps on the vertical line with x-coordinate $2j$, i.e., with the x-coordinate of u_j, have weight 1.

Similarly, if $j \notin I$ we can verify that there are exactly $i-j+2$ vertical lines between u_j and v_i with steps thereon having weight q.

(ii) In the same way, we can show that for $j \in I$ and $0 \leq i \leq k-1$.

$$h_{m-k+i+2j-1}(1)^{i-j+2}, q^{i-j+1}) + q\cdot h_{m-k+i+2j-2}(1)^{i-j+2}, q^{i-j+1})$$

is the sum of weights of lattice paths from u_j to v_i, where the vertical steps have the weight given in the claim. Meanwhile, for $j \notin I$ and $0 \leq i \leq k-1$,

$$h_{m-k+i+2j-1}(1)^{i-j+1}, q^{i-j+2}) + q\cdot h_{m-k+i+2j-2}(1)^{i-j+1}, q^{i-j+2})$$

is the sum of weights of lattice paths from u_j to v_i. □

As an illustration of the underlying configurations in Theorem 3.6, we give an example in Figure 1 for $m = 7$ and $k = 4$.

Corollary 3.7. The polynomials $G_{m,k}(q)$ and $H_{m,k}(q)$ have symmetric coefficients.

Proof. A combinatorial way to see the symmetry of the coefficients of $G_{m,k}(q)$ is as follows: Modifying w_i such that for each $i \in I$, vertical steps with x-coordinate $2i$ have weight q, and for any integer $i \notin I$, vertical steps with x-coordinate $2i - 1$ have weight 1 does not change the entries of the determinant.

However, consider any given family of paths with weight q^w with weight by Theorem 3.6(i). After the modification of the weights it will have weight $q^{\max-u}$, where max is the total number of vertical steps in such a family of paths, which implies the claim.

We omit the proof of the symmetry of the coefficients of $H_{m,k}(q)$. □

Corollary 3.8. Let $u = (u_0, \ldots, u_{k-1})$ and $v = (v_0, \ldots, v_{k-1})$, where $u_i = (2i, -2i)$ and $v_i = (2i + 2, m - k - 1 - i)$ for $0 \leq i \leq k-1$.

(i) The polynomial $G_{m,k}(q)$ is the sum of the weights of k-non-intersecting lattice paths L from u to v with the weight of L being

$$q^{\sigma_k(L)} \prod_{i=0}^{k-1} \left(q^{\sigma_{2i-1}(L)} + q^{\sigma_{2i}(L)}\right),$$

where σ_j denotes the number of vertical steps with x-coordinate j.
Figure 1. Example for w_I in Theorem 3.6.

\[I = \{1, 2\}, \quad w_I(L) = q^8 \text{ and } \bar{w}_I(L) = q^{14}(q + q^2)(q + 1)^2 \]

(ii) The polynomial $H_{m,k}(q)$ is the sum of the weights of k-non-intersecting lattice paths L from u to v with the weight of L being

\[
(1 + q)^{f(L)} q^{2\sigma_{2k}(L)} \prod_{i=0}^{k-1} \left(q^{2\sigma_{2i-1}(L)} + q^{2\sigma_{2i}(L) - f_i(L)} \right),
\]

where σ_j is as in (i) and f (resp. f_i) denotes the number of vertical steps starting from u (resp. u_i).

Proof. (i) By the definition of w_I, for $0 \leq i \leq k - 1$, if $i \in I$, then vertical steps on the line with x-coordinates $2i - 1$ have weight q and vertical steps on the line with x-coordinates $2i$ have weight 1; and if $i \notin I$, the case is just contrary. Note that steps on the vertical line with x-coordinates $2k$ always have weight q and steps on the vertical line with x-coordinates $2k - 1$ always have weight 1. This implies that

\[
\sum_{I \subseteq \{0, 1, \ldots, k-1\}} w_I(L) = q^{\sigma_{2k}(L)} \prod_{i=0}^{k-1} \left(q^{\sigma_{2i-1}(L)} + q^{\sigma_{2i}(L)} \right).
\]
(ii) Notice that for \(0 \leq i \leq k - 1\), we have \(f_i(L) = 1\) if \(L\) contains a vertical step starting from the point \(u_i\), and \(f_i(L) = 0\) otherwise. Similarly, we have

\[
\sum_{I \subseteq \{0,1,\ldots,k-1\}} \overline{w}_I(L) = q^{2\sigma_{2k}(L)} \prod_{i=0}^{k-1} \left(q^{2\sigma_{2i-1}(L)} (1 + q) f_i(L) + q^{2\sigma_{2i}(L)-2f_i(L)} (q^2 + q) f_i(L) \right),
\]

\[
= (1 + q) f(L) q^{2\sigma_{2k}(L)} \prod_{i=0}^{k-1} \left(q^{2\sigma_{2i-1}(L)} + q^{2\sigma_{2i}(L)-f_i(L)} \right).
\]

This completes the proof.

The computation of \(G_{4,2}(q)\) is illustrated in Figure 2 while the value of \(H_{4,2}(q)\) as given in Table 4 is computed in Table 5.

Table 5. Values of \(\sum_{I \subseteq \{0,1,\ldots,k-1\}} \overline{w}_I(L)\) corresponding to Figure 2

\(1 + q)q(1 + q^2)\)	\(2q^2(1 + q^2)\)	\(1 + q^2\)	\(2q(1 + q^2)\)
\(2(1 + q)(1 + q^2)\)	\(q^2(1 + q)^2\)	\(2q^2(1 + q^2)\)	\(2q^2(1 + q)(1 + q^2)\)
\(2(1 + q)^2\)	\(2(1 + q^2)^2\)	\(2(1 + q^2)^2\)	\(2q^2(1 + q)^2\)
\(2q^2(1 + q^2)\)	\(2q^2(1 + q^2)\)	\(2q^2(1 + q)^2\)	\(2q^2(1 + q^2)\)
\(2q^2(1 + q^2)\)	\(2q^2(1 + q^2)\)	\(2q^2(1 + q)^2\)	\(2q^2(1 + q^2)\)

Remark. Since

\[
\det (A_{ij} + B_{ij}) = \sum_{I \subseteq \{1,\ldots,n\}} \det (C_{ij}^{(I)}),
\]

where

\[
C_{ij}^{(I)} = \begin{cases} A_{ij}, & \text{if } i \in I, \\ B_{ij}, & \text{otherwise}, \end{cases}
\]

we may also define \(w_I\) in Theorem 3.6(i) as follows: for each \(i \in I\), vertical steps with \(x\)-coordinate \(2i + 3\) have weight \(q\), and for any integer \(i \notin I\), vertical steps with \(x\)-coordinate \(2i + 2\) have weight \(q\). All other steps have weight 1. In this case, for each \(i \in I\) and \(0 \leq j \leq k - 1\), we can show that \(h_{m-k-i+2j-1}(\{1\}^{i-j+2}, \{q\}^{i-j+1})\) is the weighted sum of lattice paths from \(u_j\) to \(v_i\). Moreover,

\[
\sum_{I \subseteq \{0,1,\ldots,k-1\}} w_I(L) = q^{\sigma_0(L)} \prod_{i=1}^{k} \left(q^{\sigma_{2i}(L)} + q^{\sigma_{2i+1}(L)} \right).
\]

Similarly, we may define \(\overline{w}_I\) in Theorem 3.6(ii) as follows: for each \(i \in I\), a vertical step toward the point \(v_i\) has weight \(q + 1\), vertical steps with \(x\)-coordinate \(2i + 3\) have weight \(q^2\). For any integer \(i \notin I\), a vertical step toward the point \(v_i\) has weight \(q^2 + q\), and vertical steps with \(x\)-coordinate \(2i + 2\) not toward \(v_i\) have weight \(q^2\). All other steps have weight 1. In this case, we have

\[
\sum_{I \subseteq \{0,1,\ldots,k-1\}} \overline{w}_I(L) = (1 + q)^{\overline{f}(L)} q^{2\sigma_0(L)} \prod_{i=1}^{k} \left(q^{2\sigma_{2i}(L)-\overline{f}_i(L)} + q^{2\sigma_{2i+1}(L)} \right),
\]

where \(\overline{f}\) (resp. \(\overline{f}_i\)) denotes the number of vertical steps ending in \(v\) (resp. \(v_i\)).
Figure 2. An illustration for \(G_{4,2}(q) = 10q^3 + 24q^2 + 24q + 10 \).

When \(k = m - 1 \), there is only one lattice path from \(u_0 = (0,0) \) to \(v_0 = (2,0) \), which has weight 1. This establishes the following result:

Corollary 3.9. \(G_{m,m-1}(q) = 2G_{m,m-2}(q) \) and \(H_{m,m-1}(q) = 2H_{m,m-2}(q) \).
4. Open problems

We would like to point out three directions of possible further research: It appears that the polynomials $P_{m,k}$ and $G_{m,k}$ are log-concave, however, we did not pursue this question further. Note that the polynomials $Q_{m,k}$ and $H_{m,k}$ are not even unimodal.

Victor Guo and Jiang Zeng gave in [4] even finer q-analogues of the polynomials considered here, replacing (3) and (4) by

$$S_{m,n,r}(q) = \sum_{k=1}^{n} \left[\frac{2rk}{2r} \right] m_{k-1} q^{m+2r-1} \left(n-k \right),$$

$$T_{m,n,r}(q) = \sum_{k=1}^{n} (-1)^{n-k} \left[\frac{(2r-1)k}{2r-1} \right] m_{k-1} q^{m+2r-1} \left(n-k \right),$$

where $r \geq 1$.

Although the coefficients of the corresponding polynomials $P_{m,k,r}$, $Q_{m,k,r}$, $G_{m,k,r}$ and $H_{m,k,r}$ are not positive anymore, one might hope for a refinement of Theorem 2.3.

Finally, we should point out that Ira Gessel and Xavier Viennot [3] also presented nice generating functions for their coefficients $f_{m,k}$ and $s_{m,k}$, namely

$$\sum_{m,k} s_{m,k} x^{2n} \left(\frac{k}{2n} \right) \frac{t^{k}}{(2n)!} = \frac{\cosh \sqrt{1 + 4t} - \cosh \frac{\sqrt{1 + 4t}}{2}}{t \sinh \frac{\sqrt{1 + 4t}}{2}}.$$

It would be interesting to find the corresponding refinements.

5. Epilogue

One may wonder how these results were discovered. The truth is, that at first “only” formula [3] was known. Using this formula, Table 1 was computed. Then, in analogy to [3], the matrix

$$\left((-1)^{k-m} \left[\frac{m}{k+1} \right] P_{k,k-m}(q) \right)_{0 \leq k,m \leq n}$$

was inverted and, since we were looking for a lattice path interpretation, the entry in row i and column j of the inverse matrix had to be the weighted number of lattice paths from u_j to v_i. This given, it was easy to find the correct weights. Finally, we read the proof given in [3] backwards, its first line corresponding to our Lemma 2.2.

Acknowledgment. The third author was supported by EC’s IHRP Programme, within Research Training Network “Algebraic Combinatorics in Europe,” grant HPRN-CT-2001-00272.

References

1. Johann Faulhaber, *Darinnen die miraculosische Inventiones zu den höchsten Cossen weiters continuirt und profitiert werden*, Academia Algebræ (1631).
2. Kristina C. Garrett and Kristen Hummel, *A combinatorial proof of the sum of q-cubes*, Electronic Journal of Combinatorics 11 (2004), no. 1, Research Paper 9, 6 pp. (electronic).
3. Ira Martin Gessel and Xavier Gérard Viennot, *Determinants, paths, and plane partitions*, http://www.cs.brandeis.edu/~ira/papers/pp.pdf (1989), 36 pages.
4. Victor J. W. Guo and Jiang Zeng, *A q-analogue of Faulhaber’s formula for sums of powers*, Preprint (2005), 19 pages.
5. Donald E. Knuth, *Johann Faulhaber and sums of powers*, Mathematics of Computation 61 (1993), no. 203, 277–294.
6. Christian Krattenthaler, *Advanced determinant calculus: a complement*, Preprint (2005).
7. Michael Schlosser, *q-analogues of the sums of consecutive integers, squares, cubes, quarts and quints*, Electronic Journal of Combinatorics 11 (2004), no. 1, Research Paper 71, 11 pp. (electronic).
8. Sven Ole Warnaar, *On the q-analogue of the sum of cubes*, Electronic Journal of Combinatorics 11 (2004), no. 1, Research Paper 13, 2 pp. (electronic).

Institut Camille Jordan, Université Claude Bernard (Lyon I), F-69622, Villeurbanne Cedex, France
E-mail address: jwguo@eyou.com

Institut für Statistik und Decision Support, Universität Wien, A-1010 Wien, Austria
E-mail address: martin.rubey@univie.ac.at
URL: http://www.mat.univie.ac.at/~rubey

Institut Camille Jordan, Université Claude Bernard (Lyon I), F-69622, Villeurbanne Cedex, France
E-mail address: zeng@math.univ-lyon1.fr