Hybrid Image Classification using ACO with Fuzzy Logic for Textured and Non-Textured Images

K. Subba Rao¹, P. Sammulal² and N. Sambasivarao³

¹Center for Innovative Research, Institute of Science and Technology (Autonomous), Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad – 500085, Telangana, India; subbukatte@gmail.com
²Department of Computer Science and Engineering, Jawaharlal Nehru Technological University Hyderabad College of Engineering Jagtial, Hyderabad – 505501, Telangana, India; sammulalporika@gmail.com
³Department of Computer Science and Engineering, Sumathi Reddy Institute of Technology for Woman, Ananthesagar, Hasanparthy, Warangal – 506371, Telangana, India; snandam@gmail.com

Keywords: ACO, Classification, Fuzzy Logic, Textured Images and Non-Textured Images

Abstract

Background/Objectives: Classification is the most important tasks of decision making problems. It is used to group pixels into different groups in the image processing. It is frequently used to extract the land cover information, and to give a label to the area of interest in the image. Methods/Statistical analysis: In this paper, a Hybrid classification approach, by combing the Ant Colony Optimization (ACO) and Fuzzy logic features is proposed. This approach is used to generate classification rules from the training set of the image. A measure of similarity for each pixel is calculated, which is almost same for the same class of the pixels with help of the proposed approach. Findings: It became a challenging task to classify textured and non-textured images in the presence of the coarse pixels values. The existing classification approaches such as statistical, knowledge-based and neural networks have many limitations in this context. In the training process the classification rules are generated. These rules are then given as input to the rule pruning process to further optimize the rules set. The generated classification rules are applied on the test set. It has been observed that the findings are providing better results even in the presence of mixed pixels. Application/Improvements: In this pixels of same image are being grouped into different groups. It can be extended further to apply this approach on the same category of the images for classification and Analysis.

1. Introduction

Classification is the important activities frequently used in the decision making problems¹. The process of classification includes giving some label to the objects of interest using predefined classes based on their characteristics. The classification in the image processing is frequently carried out to obtain the land cover information, and to label different regions in the image of interest². Many advanced image classification approaches, such as neural networks, fuzzy sets, expert systems have been used in recent years. These approaches are used for classifying both textured and non-textured image³. The textured images are characterized by the repeated patterns or elements, which do not contain any shape. The non-textured images are another kind of images where the images contain some shape, but do not contain repeated patterns. The following are the examples for texture and non-textured images shown in Figure 1, Figure 2, Figure 3 and Figure 4.

The supervised classification methods have sufficient referential data that is used as training sample. Maximum likelihood, minimum distance, artificial neural network, decision tree are the example for the supervised approaches⁴. In the case of unsupervised approaches, no predefined classes are used to classify the images shown in Figure 5. The classes are obtained through analysis, by
labeling and merging the spectral classes into meaningful classes. ISODATA, K-means clustering are the examples for the unsupervised approaches.

In the parametric approaches the parameters are obtained from the training samples. Maximum likelihood and linear discriminate analysis are the examples this kind. In non-parametric approaches no assumptions and statics are made about the data. Artificial Neural networks, decision tree, expert systems are the examples for the non-parametric approaches.

In hard classification approaches, each pixel is allocated to single class, causing large errors, when estimating with coarse spectral data. Maximum likelihood, decision tree, and Artificial Neural networks are the examples of this kind. In soft classification approaches, a measure of similarity for every pixel is computed with some heuristic function, which will be almost same for the same class of pixels. It provides more information and accurate result, even in the presence of coarse spectral data. The fuzzy sets and fuzzy logic are the examples of this kind. The soft classification minimizes errors due to the mixed or coarse pixels problems using the fuzzy logic. In per-pixel classification, the signature is computed from training samples for given feature. This signature contains all the information of the training samples, but ignores the effect of the mixed pixels. MLH, minimum distance, ANNDT are the examples of this kind. To address the problem of the per-pixels approaches, sub-pixel approaches have been developed, that provide better classification and accurate estimation even in the presence of the mixed or coarse data in the image. The fuzzy expert system is an example for this kind. In this paper a hybrid classification method which is derived from both fuzzy logic and a nature inspired optimization technique called Ant Colony Optimization (ACO) expert system is proposed to improve the performance of the classification for both textured and non-textured images.
2. Ant Colony Optimization

The advancement in the swarm intelligence methods and techniques has created lot of scope for solving complex classification problems. One of the swarm intelligence techniques called, Ant Intelligence has solved many complex classification problems efficiently ranging from traveling salesman, data clustering, networking, data mining and image classification. The ACO is derived from the natural behavior of the biological systems of the ants. This is an unsupervised technique, and does not use any parameters during the classification. A powerful and efficient classification technique is designed by combining sub-pixel approach with the soft classification approach, which is also called as hybrid classification technique. The natural ant’s behavior is just simulated in the form of an algorithm to find the optimal solution by considering the local heuristic, distributed computing and knowledge from the past experience. There are two main characteristics of the ACO. First, Indirect communication by the ants laying down a chemical substance called pheromone in their paths. This pheromone attracts other ants to follow their path. Second is the positive feedback that enables fast discovery of the optimal solution.

Ants follow the path that has higher density of pheromone. One unique characteristic of the pheromone is that it evaporates over a period of time. The paths that have higher density of the pheromone attract more number of ants causing a shortest path are being created. The paths that have less amount of pheromone tend to evaporate over time and thus considered to be the longest paths. This method has proven to be efficient and produced satisfactory result in solving complex problem proposed ACO for generating the rules using the system called Ant-Miner. Ant-Miner produces better accuracy and simple rules than that of decision tree methods. The simple rules can be generated. The ACO has number of advantages. First, it is a distribution free. Second, it is rule generation algorithm, and uses simple equations than complex equations. Finally, it needs minimum knowledge of the problem domain.

3. Working of ACO

A classification rules generation algorithm based on ACO, called Ant-Miner is used. This section is organized into five subsections, namely Discretization of continuous gray values, Ant-Miner Description, rules construction, rule pruning, and using the rules for classification. The nature inspired optimization techniques have their source of inspiration in nature. The algorithms are developed from the behavior of the biological components of nature.

3.1 Discretization of Continuous Gray Values

It is a preprocessing step for converting the RGB images into gray scale images which contain the continuous values ranging from 0 to 255. Discretization is one of the effective techniques in dealing with continuous values in the process of rule generation. The fuzzy set theory is used to discretized continues values into discrete values like (0-14), (15-21),(22-37) and so on. This process reduces the number of rules and improves the efficiency of the ACO classification.

3.2 Rule Mining Description

The process of rules generation is analogous to the collective process of the ants seeking for the food. Ant-Miner uses the step-by-step procedure to generate rules that classify all training set of pixels or almost all training set. Each classification rule has the form: If rule_antecedent then rule_consequent, where rule_antecedent is the conjunction of the terms. The rule_consequent is the prediction of the class. A term is triple that contains <attribute, operator, and value>. An attribute is corresponding to the brightness value. The operator element is always is “=” . The value element is a value in the domain of the attribute. For example, gray=12. The rule may contain one or more terms along with consequent to which these rules are mapped. The rules are will be in the following form:

IF<term1 AND term2 AND term3> THEN -------- →c1
ELSE IF<term4 AND term5> THEN ------------------ →c2
ELSE IF<term6 AND term7 AND term8> THEN ---- →c3
ELSE <term 9 AND term 10} THEN ------------ →c4

Where c1, c2, c3 and c4 are called classes.

3.3 Rules Construction Process

Rule construction, is an iterative process through which rules are extracted. The rules set initially set to empty, a set of ordered rules are generated through the iterative process. The entire data belonging to the pixels is divided into two sets: Training Set and Test Set as shown in the Figure 6. The rules are extracted from the Training Set using the ACO algorithm with fuzzy logic.
The best rule that covers a subset of the training set is found and is added to the Rule Set the training samples are covered by best rule removed from the training set. And remaining pixels in the training set are classified with next ordered rule, if and only if previous rules not able to classify.

The feature set is \(\mathbf{f} = \{1, 2, 3, \ldots, n\} \). The pheromone at every node must be updated. The Pheromone matrix is represented as follows. \(\pi^j_i = 1 \quad \ldots \quad \text{for all } i=1 \text{ to } n \text{ and } j=1 \text{ to } 8 \) where each cell contains the pheromone value, which is updated every time a new ant calculates the pheromone. It is also called Confusion Matrix. The heuristic Information can be calculated using the following equation. Where \(F \) is for Feature and \(N \) is for neighbor.

\[
\eta^j_i = \frac{1}{\sum_{k=1}^{m} \left(\frac{1}{\sum_{j=1}^{N} (x_{ij}^k - \bar{x}_{j})^2} \right)}
\]

Where \(m \) is the number of classes, \(x_i \) – is the feature subset of the feature set \(f_i \), \(x_{ij} \) - is the feature subset in \(f_i \) in the class \(k \), \(x_{ij} \) - \(j \)th element in the \(x_i \) of \(f_i \) in the class \(k \). The probability can be calculated from the equations (1) and (2) of the conditional term, to include it to the current rule or not. It is clear from the above equation that the heuristic information is obtained from the ratio of the discrimination between classes and discrimination with in the class. The probability that an ant \((t) \) can select the current term to include it in the rule is determined by:

\[
P^j_i(t) = \frac{\tau^j_i(t) \eta^j_i}{\sum_{i'} \tau^j_i'(t) \eta^j_i'}
\]

The correctness of the rule can be validated using the equation as bellow:

\[
Quality = \left(\frac{TP}{TP + FN} \right) \left(\frac{TN}{FP + TN} \right)
\]

Where \(TP \) = True Positives, correctly predicted by the rule
\(TN \) = True Negatives, total number of negatives cases wrongly predicted
\(FP \) = False Positives, total number of positive cases wrongly predicted
\(FN \) = False Negatives, total number of negatives wrongly predicted by the rule. If the value of the
Quality is large, and then it indicates the rule is higher quality.

3.4 Rule Pruning

The objective of the rule pruning is to remove unnecessary terms and rules that contribute less in classification. This has three advantages: First, a shorter rule can be easily understood by the user than long rule. Second, it improves the predictive accuracy of the rules. Third, it also prevents the data from over fitting the training data. The process is repeated until a single term or the rule quality is no longer improved.

3.5 Using the Rules for Classification

The entire data related to the pixels is split into two parts called Training Set and Test Set as shown in Table 1. The Training Set is used to generate the classification rules. These classification rules are then applied on the Test Set. If the Test Set contains \(N \) number of instances in which \(C \) instances are correctly classified, then the predictive accuracy of the classifier is calculated using equation as bellow:

\[
\text{accuracy} = \frac{C(\text{correctly predicted})}{N(\text{Total number of instances})}
\]

3.6 Updating the Pheromone

Initially pheromone of all the terms is set according to the equation (3). Once if the rule is accepted, the pheromone levels of all the terms that involve in the rule are

Table 1. Pheromone matrix
F/N

1
1
n
increased, otherwise decreased. The rate of decrement is determined by the evaporation factor γ. At each term the amount of pheromone is computed as:

$$\tau'_j(t+1) = \tau'_j(t) + \Delta \tau'_j(t) (6)$$

$$\Delta \tau'_j(t) = \frac{1}{|S'_j|} \sum_{s \in S'_j} f(s) (7)$$

$$f(s) = (recalls + precisions) / N_{feat} (8)$$

Where $|S'_j|$ – is the number of solutions generated at ‘t’ iteration, s – solutions feature set.

$f(s)$ – is called fitness function, N_{feat} - is the number of features in the solution set s

4. Conclusion

The hybrid classification methods can improve the performance of the overall classification system. Some of the images from the Caltech 101 image Dataset are used to apply the proposed approach. The textured and non-textured images can be classified using the Hybrid method which will minimize the errors due to the mixed or coarse pixels problems and coarse spectral data. This can be further extends to non-textured image classification and analysis.

5. References

1. Martens D, Backer MD, Haesen R, Vanthienen J, Snoeck M, Baesens B. Classification with ant colony optimization. Institute of Electrical and Electronics Engineers (IEEE) Transactions on Evolutionary Computation. 2007 Oct 1; 11(5):651–65. Crossref
2. Liu X, Li X. An innovative method to classify remote sensing images using ant colony optimization. Institute of Electrical and Electronics Engineers (IEEE) Transaction on Geosciences. 2008 Dec; 46(12):4198–208. Crossref
3. Lu D, Weng Q. A survey of image classification methods and techniques for improving classification performance. International Journal of Remote Sensing. 2007 Mar 17; 28(5):823–70.
4. Li J, Wang JZ, Wiederhold G. Classification of textured and non-textured images using region segmentation. In the Proceedings of the Institute of Electrical and Electronics Engineers (IEEE) International Conference on Image Processing. 2000 Sep 10–13; 3:754–7.
5. Chattoopadhyay T, Bhowmic B, Sinha A. Application of image processing in industries. CSI Communication; 2012 Jul. p. 8–11.
6. Colorni A, Dorigol M. Distributed optimization by ant colonies. In the Proceedings of the 1st European Conference Artificial life; 1991. p. 134–42.
7. Sim KM, Sun WS. Multiple ant colony optimizations for network routing. In the Proceedings of the Institute of Electrical and Electronics Engineers (IEEE) 1st International Symposium Cyber Worlds; 2002 Nov 6–8. p. 277–81.
8. Liu B, Abbass HA, McKay B. Classification rule discovery with ant colony optimization. Institute of Electrical and Electronics Engineers (IEEE)/WIC International Conference on Intelligent Agent Technology; 2003 Oct 13–16. p. 83–8.
9. Parpinelli RS, Lopes HS, Freitas AA. Data mining with ant colony optimization. Institute of Electrical and Electronics Engineers (IEEE) Transactions on Evolutionary Computation. 2002 Aug; 6(4):321–32.
10. Duan HB. Ant colony algorithms: theory and applications. Science Press, Beijing, China; 2005.
11. Dixit M. An exhaustive survey on nature inspired optimization algorithms. International Journal of Software Engineering and Its Applications. 2015; 9(4):91–104.
12. Image Dataset [Internet]. 2017 [cited 2017 Mar 24]. Available from: Crossref