A Survey of Deep Learning-based Object Detection Methods and Datasets for Overhead Imagery

JUNHYUNG KANG1, SHAHROZ TARIQ2,3, HAN OH4 and SIMON S. WOO1,5

1Department of Artificial Intelligence, Sungkyunkwan University, Suwon, South Korea
2Department of Computer Science and Engineering, Sungkyunkwan University, Suwon, South Korea
3Data61, CSIRO, Australia
4Satellite Application Division, Korea Aerospace Research Institute (KARI), Daejeon, South Korea
5Department of Applied Data Science, Sungkyunkwan University, Suwon, South Korea

Corresponding author: Simon S. Woo (e-mail: swoo@g.skku.edu).

We thank Jin Yong Park for reviewing the earlier version of the draft, and providing helpful and insightful comments. This work was partly supported by Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No.2019-0-00421, AI Graduate School Support Program (Sungkyunkwan University)), (No. 2019-0-01343, Regional strategic industry convergence security core talent training business) and the Basic Science Research Program through National Research Foundation of Korea (NRF) grant funded by the Korea government MSIT (No. 2020R1C1C1006604 and No. 2020MA1A30A20204969). Also, this research was partly supported by IITP grant funded by the Korea government MSIT (No. 2021-0-02157 and No. 2021-0-00017, Original Technology Development of Artificial Intelligence Industry). Lastly, this work was supported in part by the Institute of Information and Communications Technology Planning and Evaluation (IITP) Grant funded by the Korea Government (MSIT) (Artificial Intelligence Innovation Hub) under Grant 2021-0-02068.

ABSTRACT

Significant advancements and progress made in recent computer vision research enable more effective processing of various objects in high-resolution overhead imagery obtained by various sources from drones, airplanes, and satellites. In particular, overhead images combined with computer vision allow many real-world uses for economic, commercial, and humanitarian purposes, including assessing economic impact from access crop yields, financial supply chain prediction for company’s revenue management, and rapid disaster surveillance system (wildfire alarms, rising sea levels, weather forecast). Likewise, object detection in overhead images provides insight for use in many real-world applications yet is still challenging because of substantial image volumes, inconsistent image resolution, small-sized objects, highly complex backgrounds, and nonuniform object classes. Although extensive studies in deep learning-based object detection have achieved remarkable performance and success, they are still ineffective yielding a low detection performance, due to the underlying difficulties in overhead images. Thus, high-performing object detection in overhead images is an active research field to overcome such difficulties. This survey paper provides a comprehensive overview and comparative reviews on the most up-to-date deep learning-based object detection in overhead images. Especially, our work can shed light on capturing the most recent advancements of object detection methods in overhead images and the introduction of overhead datasets that have not been comprehensively surveyed before.

INDEX TERMS

Object detection, Satellite, Synthetic aperture radar, Unmanned aerial vehicle

I. INTRODUCTION

Deep learning has advanced rapidly in recent years, achieving great success in a variety of fields. As opposed to traditional algorithms, deep learning-based approaches frequently use deep networks to extract feature representations from raw data for various tasks. Especially, the application of deep learning in remote sensing is now gaining considerable attention, motivated by numerous successful applications in the computer vision community [1]-[7]. Consequently, the expeditious advancement of deep learning applications in remote sensing boosts the volume and variety of classification methods available to identify different objects on the earth’s surface, such as cars, airplanes, and houses [8], [9]. Our work focus on reviewing the recent advancements in remote sensing for satellite and aerial-imagery-based object detection. With this work, we hope to promote further re-
search in the related fields by providing a general overview of
the object detection for overhead imagery to both the experts
and beginners.

Previously, Cheng and Han [1] surveyed object detection
methods in optical remote sensing images and discussed
the challenges with promising research directions. Although
they proposed a deep learning-based feature representation
as one of the promising research directions, they focused
on traditional methods such as template matching [10], [11]
or knowledge-based methods [12], [13], which are far from
recently developed deep learning-based methods. On the
other hand, our survey performs a comprehensive review fo-
cused on modern deep learning-based approaches for object
detection in overhead imagery.

For the performance assessment, Groener et al. [2] and
Alganci et al. [3] compared the object detection performance
of deep learning-based models on single class type satellite
datasets sampled from a publicly available database [8],
[9]. They contributed to assessing the advantages and lim-
itations of each model based on the performance. Furth-
more, Zheng et al. [6] systematically summarized the deep
learning-based object detection algorithms for remote sens-
ing images. However, these studies mainly focus on general
object detection methods, not specifically on the remote
sensing and overhead imagery domains. Moreover, they con-
ducted the experiments for the one-class object detection
task, which is not the case for the overhead imagery that usu-
ally requires detecting multi-class objects. Thus, this survey
paper aims to discuss the modern methods for object de-
ctection in satellite and aerial images with multi-class datasets.

Furthermore, Yao et al. [4] and Cazzato et al. [5] re-
viewed the object detection methods for aerial images from
unmanned aerial vehicles (UAV) and provided new insight
into future research directions. Moreover, Li et al. [7] pre-
sented a comprehensive review of the deep learning-based
object detection methods in optical remote sensing images.

Compared to their approaches, this survey aims to cover the
comprehensive methods for object detection in the broader
scope of overhead imageries, including both satellite images
(Electro-Optical (EO), Synthetic Aperture Radar (SAR)) and
aerial images.

There are other studies for reviewing the deep learning-
based application for satellite and aerial images [14]–[17].
While these studies cover general state-of-the-art object de-
tection methods, our work specifically aims to investigate
the recent advancements in object detection for overhead
imagery and examine the challenges. The contributions of
this paper are summarized as follows:

- This paper provides a comprehensive survey of deep
 learning-based object detection methods and datasets
 using satellite images (SAR and EO) and aerial images
 after thoroughly reviewing more than 90 research papers
 from the past six years.
- We define the six major areas and construct a tax-
onomy to tackle the challenges of overhead imagery,
 and extensively analyze and categorize existing studies
 accordingly.
- Based on the study, we provide a comparative study
 among the latest methods and datasets, then discuss the
 limitation of the current approach and the promising
 future research directions.

II. APPLYING DEEP LEARNING-BASED METHODS FOR
OVERHEAD IMAGERY IN CHALLENGING
ENvironments

Recently, there has been an increasing interest in deep
learning-based object detection methods along with signif-
ificant performance improvement compared to traditional
algorithms such as template matching and knowledge-based
methods [10]–[15]. In general, deep learning-based object
detection models consist of a backbone and a head network,
where the basic structures of deep learning-based object de-
tion models are described in Fig. 2. And the pseudo code of object detector is provided in Appendix. The backbone network is capable of extracting features from the input images, while the head network uses the extracted features to localize the bounding boxes of the detected objects and classify them (See Fig. 2).

In the case of backbone networks, CNN-based networks are commonly employed. Meanwhile, methods such as ViT-RCNN [18], ViT-YOLO [19], and Swin transformer [20] that incorporate transformer-based networks and self-attention mechanisms have recently demonstrated high performance. However, developing a new backbone structure capable of achieving high performance is a difficult task that requires massive computation cost and requires pre-training on large-scale image data such as ImageNet [21].

To overcome this limitation, Liang et al. [22] proposed CBNetV2, which improved object detection performance by using existing pre-trained backbones, such as ResNet50 [23], ResNet152 [24] and Res2Net50 [25]. CBNetV2 achieved this performance improvement by composing multiple pre-trained identical backbones with assisting backbones and lead backbones. CBNetV2 can apply both CNN-based and transformer-based backbones.

On the other hand, the head network is divided into one-stage or two-stage detectors. While the one-stage detector performs object localization and classification simultaneously, the two-stage detector performs classification to determine classes after proposing the regions of interests (ROIs). A typical two-stage detector is Faster-RCNN [25], and a one-stage detector is YOLOv3 [26]. In general, two-stage detectors have higher accuracy than one-stage detectors because the two-stage detector performs localization and classification on the proposed regions from the first stage. However, the inference time of two-stage detectors tends to be longer due to a large number of regions and additional stage processing.

While many methods focus on extracting more accurate features from an image, recently, Dai et al. [27] proposed a new head network structure called Dynamic head. From this approach, the Dynamic head takes the input data that is the output data of the backbone network. Then, the head network considers the input data as a 3-dimensional tensor according to the scale, location, and representation of objects. Furthermore, an attention mechanism is applied to each dimension of the feature tensor. Therefore, the proposed approach improved the detection performance more efficiently than simultaneously applying the full self-attention mechanism to the feature tensors.

However, it is challenging to apply the aforementioned state-of-the-art methods on overhead imagery because of the unique underlying characteristics of satellite and aerial images. Therefore, our survey focuses explicitly on different methods used in overhead imagery domains instead of general deep learning-based methods such as Faster-RCNN [25], YOLO [28]-[30], and SSD [31].

We define the following six major object detection categories based on the unique challenges associated with overhead imagery as shown in Fig. 1: 1) efficient detection, 2) small object detection, 3) oriented object detection, 4) augmentation and super-resolution, 5) multimodal object detection, and 6) imbalanced objects detection. We discuss the details of each area in the following section.

A. EFFICIENT DETECTION

Efficiency is one of the important performance metrics of the object detection task. As the size of deep learning-based models as well as the resolution, complexity, and size of the images increases, the importance of efficiency has become paramount recently. In particular, the Swin Transformer V2 [32] and the Focal Transformer [33] method are proposed. The Swin Transformer V2 is a method of scaling up the Swin Transformer [20], which has shown high performance in object detection tasks. For scaling up, the Swin Transformer V2 applies specific techniques such as post normalization, scaled cosine attention, and a log-spaced continuous position bias. Additionally, the Focal transformer [33] is a method to overcome the computational overhead of self-attention by applying the focal self-attention method.

In recent years, enormous quantities of high-resolution overhead photographs being created near-real-time, due to the advancements made in earth observing technologies. Therefore, the efficiency research area has also gained considerable interests in the overhead and satellite imagery domains.

The representative methods for efficient object detection in overhead imagery are proposed in two approaches, as shown in Fig. 3. One stands for the reducing computation method that reduces the computational load of the model. The other approach is the reducing search area that reduces the search area from provided input images.

![FIGURE 3](image-url) The two primary categories of the efficient object detection methods. Efficient detection methods are achieved by reducing the computation and reducing search area. The representative methods are listed on the right.

1) Reducing computation

Zhang et al. [34] proposed SlimYOLOv3 using the channel pruning method to make the object detection model lighter and more efficient. The proposed method was inspired by a network slimming approach [35], which prunes the Convolutional Neural Network (CNN) model to reduce the...
costs for the computational processes. Their approach added the Spatial Pyramid Pooling module [36] on the original YOLOv3 [26] and pruned the less informative CNN channels to improve detection accuracy and reduce floating-point operations (FLOPs) by reducing the size of the parameters. On the Visdrone dataset [37], their experimental results showed that the proposed method runs twice faster with only about 8% of the original parameter size.

Usually, training with high-resolution overhead images requires a high computational cost. To alleviate this problem, Uzkent et al. [38] applied reinforcement learning (RL) to object detection models for minimizing the usage of high-resolution overhead images. The agent from the reinforcement learning model determines whether the low-resolution image is enough to detect objects or the high-resolution image is required. This process increases runtime efficiency by reducing the number of required high-resolution images. However, the proposed method [38] requires pair of low-resolution images and high-resolution images, while SlimYOLOv3 [34] can be applied directly to high-resolution images without pairing the low and high resolution dataset.

2) Reducing search area
Unlike other methods that use the information from entire image areas for object detection, several methods [39]–[41] suggested reducing the search area of images for efficient object detection.

Han et al. [39] applied Region Locating Network (RLN) in addition to Faster R-CNN [25] to generate cropped images. The proposed architecture of RLN is the same as Region Proposal Network (RPN) in Faster R-CNN. However, unlike RPN, the RLN can predict the possible areas of the object location from the original overhead images. Also, since the cropped images of predicted areas are much smaller than the entire area of the original images, the proposed method showed a significant improvement in terms of efficiency for detecting specific objects.

In addition, Sommer et al. [40] proposed a similar approach with RLN [39] called Search Area Reduction (SAR) module. The image is divided into several image patches; then, the module predicts the scores based on the number of objects contained in each image patch. In particular, there are two distinguished characteristics of the SAR module from the previous RLN [39]. Firstly, contrary to the RLN that generates various sized images based on the clustering method, the SAR module handles divided images with the specific sized image. Secondly, while the SAR module is integrated with Faster R-CNN to share the network, RLN has a separate network for finding the regions. Such an integrated approach significantly reduces the inference time.

Also, Yang et al. [41] proposed Clustered Detection (ClusDet) network composed of a cluster proposal sub-network (CPNet), a scale estimation sub-network (ScaleNet), and a dedicated detection network (DetecNet). CPNet is attached to the feature extraction backbone network and obtains high-level feature maps. Based on the feature map information, the CPNet produces the prediction of location and scales of clusters of input images. Then, ScaleNet predicts the scale offset for objects to rescale the cluster chips. Finally, detection results from DetecNet on cluster chips and a whole image are combined together to generate the final result. This method achieves high runtime efficiency by reducing the search area.
with the clustering approach. Compared with the existing search area-based methods [39, 40], it is noteworthy that ClusDet achieves not only high efficiency, but also improved detection performance for small objects.

B. SMALL OBJECT DETECTION

Moreover, limitation in detecting small-sized objects is another challenging problem associated with overhead images. Object detection in the overhead image is not only targeting to distinguish relatively large-sized objects such as buildings, bridges, and soccer ball fields but also, in many cases, it needs to detect small-sized objects such as vehicles, people, and ships. However, if the resolution of images decreases, the capability of detecting small-sized objects decreases drastically. Therefore, performance degradation in detecting the small-sized objects in the overhead image is extremely challenging and needs to be addressed. Recently, several methods have been proposed for small object detection to achieve better performance, as shown in Fig. 4 which we will describe more in the following sections.

FIGURE 4. The two primary categories of the small object detection. Small object detection methods are achieved by fine-grained model architecture and multi-scale learning, and the corresponding methods are listed on the right.

1) Fine-grained Model Architecture

The intuitive and straightforward approach to solve small-sized objects detection problems is to extract fine-grained features from source images by adjusting model parameters.

First, Sommer et al. [42] demonstrated the effectiveness of deep learning-based detection methods for vehicle detection in aerial images. Mainly, they performed the experiments based on Fast R-CNN [43] and Faster R-CNN [25] that are widely used in the object detection domain for terrestrial applications. Specifically, they proposed a common model architecture to detect small size objects. To maintain sufficient information for feature maps, they optimized parameters, including a number of layers, kernel size, and anchor scale. This work showed the applicability of a general object detection model when applied for vehicle detection in overhead imagery. However, the proposed work could not present a novel methodology except for optimizing the network parameters of the existing models [25, 43].

While Sommer et al. [42] utilized Faster R-CNN, which is a representative two-stage object detection model, other approaches employed the one-stage object detection models such as YOLO [26, 29, 30]. Pham et al. [44] proposed YOLO-fine, which is an one-stage object detection model. The proposed model was implemented based on YOLOv3 [26] to effectively handle small objects. In detail, this model replaced feature extraction layers with finer ones by a lower sub-sampling factor. With this finer object search grid, YOLO-fine could recognize objects smaller than eight pixels that were not recognized by the original YOLOv3. Also, they reduced the number of model parameters compared to the original YOLOv3 by removing the last two convolutional blocks that were not helpful in small-sized object detection. Overall, their work improved the detection performance for small objects by improving the adjacent objects’ discrimination capabilities through a finer grid search, while reducing the number of model parameters by removing unnecessary convolution layers.

2) Multi-scale Learning

While some achieved a better performance in small object detection through parameters optimization, others suggested a multi-scale approach that obtains features of various scaled objects for small object detection.

Van Etten [28] proposed the You Only Look Twice (YOLT) model inspired by YOLO [29, 30]. They introduced a new structure that is a similar approach adopted to fine-grained model architecture. In YOLT model, fine-grained features are extracted by adjusting architecture parameters. Furthermore, YOLT applied a multi-scale training approach concurrently, because the fine-grained model could suffer from the high false-positive issue. The intuitive way to understand multi-scale training is that it is similar to building two different models. In this way, YOLT combines the detection results obtained from two different models that detect small and large objects, respectively, to determine the final object detection result.

Inspired by YOLT, Li et al. [45] proposed MOD-YOLT for a Multi-scale object detection (MOD) task. They categorized objects into three types with different size criteria empirically. Then, categorized objects were trained with Multi-YOLT Network (MYN). While YOLT used a single network structure, MOD-YOLT proposes MYN to obtain optimal feature maps using optimized network structures for each scale. With this advanced framework, MOD-YOLT achieved higher detection performance than YOLT on a dataset from the second stage of the AIIA1 Cup Competition [42].

Also, Zhou et al. [46] applied the multi-scale network in addition to the Faster R-CNN architecture. Because a depth of convolutional neural networks is related to feature level, the multi-scale network enabled the model to use multiple levels of input feature. Therefore, this multi-scale network is beneficial to detect small objects such as ships in SAR imagery, improving mAP performance, compared to the baseline models such as Single Shot Multibox Detector (SSD) [31] and RetinaNet [47].

https://www.datafountain.cn/competitions/288/datasets
Another method [48] to overcome a challenge lies in small object detection is to apply multi-scale training to cropped images from a source image. Based on a clustering method or density map, cropped images are generated, where the cropped images have various aspect ratios. In particular, Li et al. [48] proposed Density-Map guided object detection Network (DMNet) to crop the images based on a density map from the proposed density generation module. Multi-column CNN (MCNN) [49] inspired the idea of density generation module, which learned features of images and generated a density map. The cropped images were fed into the object detector, and the result was fused to increase detection performance for small objects.

C. ORIENTED OBJECT DETECTION

Also, oriented objects can cause misclassification and produce a considerable decrease in object detection models’ performance. Therefore, deep learning-based methods [50]–[54] have recently been proposed to detect oriented objects with higher accuracy, as shown in Fig. 5. Existing overhead imagery datasets can be classified according to whether the coordinate of oriented bounding boxes is provided or the coordinate is provided as horizontal boxes such as center point, width, and height of boxes. However, according to the dataset labeling configuration, different methods are employed for detecting oriented objects. Thus, we categorized oriented object detection methods based on the application of bounding box format: either horizontal or oriented.

![Oriented Object Detection](image)

FIGURE 5. The two primary categories of the oriented object detection, where they are divided into the horizontal and oriented bounding box methods at the high level. The core methods are illustrated on the right-hand side.

1) Detecting Horizontal Bounding Box

The most intuitive way to improve the detection accuracy of the oriented object is to explore data augmentation. Cheng et al. [50] applied the data augmentation strategy and proposed the new objective function to achieve rotation invariance of the feature representations. The proposed method was extended from AlexNet [55] by replacing the last classification layer with the rotation-invariant CNN (RICNN) layer and softmax layers. They applied rotation augmentation on the data so that both before and after rotation were used jointly. During the training phase, a unique loss function enabled the RICNN to obtain similar features from an image before and after rotation. The RICNN improved the detection performance for oriented objects on the NWPU VHR-10 [56] dataset; however, this method required additional fine-tuning and cannot be applied to the dataset labeled as oriented bounding box form.

2) Detecting Oriented Bounding Box

Liu et al. [51] proposed rotated region-based CNN (RR-CNN) with a rotated region of interest (RRoi) pooling layer. The proposed RRoI pooling layer pooled rotated features into 5-tuple: center position with respect to x and y-axis, width, height, and rotation angle. The pooled features obtained by RROI are more robust and accurate than the previously proposed Free-form Roi pooling layer [57]. Another advantage of this approach is the extensibility as it can be combined with any other two-stage object detection model. For example, Liu et al. [51] used Fast R-CNN with RR-CNN in the experiments.

Even though RROI can accurately extract rotated features, it suffers from expensive computational costs to generate proposal regions. To address this issue, Ding et al. [52] proposed an Roi transformer that consists of an RRoI learner and a Rotated Position Sensitive (RPS) Roi alignment module. The RRoI leaner is trained to learn transformation from HRoIs (Horizontal RoIs) to RRoIs, and the RPS Roi alignment module extracts the rotation-invariant features. Despite negligible computational cost increase, this Roi transformer-based method [52] significantly improved performance to detect oriented objects.

In addition, Yi et al. [53] introduced the box boundary aware vectors (BBAVectors) to detect and predict the oriented bounding boxes of objects. Instead of using predicted angle values from features [51], BBAVectors employed a Cartesian coordinate system. And, the model detects the center key point and then specifies the position of bounding boxes. The entire model architecture is implemented as an anchor-free one-stage detector so that the model can make inferences faster than other two-stage detectors.

On the other hand, Han et al. [54] proposed a one-stage detection method called the single-shot alignment network (S²A-Net), where the Feature Alignment Module (FAM) and Oriented Detection Module (ODM) were introduced. FAM consisted of Anchor Refinement Network (ARN) and Alignment Convolution Layer (ACL). ARN generated rotated anchors, and ACL decoded anchor prediction map to the oriented bounding box, extracting aligned features using alignment convolution (AlignConv). On the other hand, ODM applied active rotating filters (ARF) [58] to extract orientation-sensitive features and orientation-invariant features. These features were used to predict the bounding boxes and classify the categories from two sub-networks. It achieved the state-of-the-art performance on the DOTA [9] and HRSC2016 [59] datasets, where these dataset are widely utilized in the oriented object detection research area.
D. AUGMENTATION AND SUPER-RESOLUTION

In order to further improve the detection performance, image data augmentation and super-resolution can be applied at a preprocessing stage. Different preprocessing strategies are categorized and described in Fig. 6.

![Diagram of preprocessing methods](image)

FIGURE 6. The two primary categories of the preprocessing method. The most frequently used preprocessing methods for improving detection performance are super-resolution and image augmentation.

1) **Image Augmentation**

Chou et al. [60] proposed an interesting approach for detecting stingrays, employing a generative approach called Conditional GLO (C-GLO) in aerial images. Their approach was motivated by Generative Latent Optimization (GLO) proposed by Bojanowski et al. [61]. Unlike original GLO, C-GLO generates objects that are mixed with the background of the selected image region. Through training with these augmented images, the baseline model showed the significant performance improvement.

Also, Chen et al. [62] applied an adaptive augmentation method called AdaResampling to improve the model performance, where there are two significant issues with the regular augmentation methods, background and scale mismatch. To address the issues, AdaResampling applied a pretrained segmentation network during the augmentation phase to produce a segmented road map. From the segmented road map, the model used the position information to place objects. Additionally, a simple linear function was utilized to calculate the scale factor to resize objects. The augmented images were passed to the proposed hybrid detector called RRNet, which has a re-regression module. Then, the re-regression module took feature maps with coarse bounding boxes as input then predicted the final bounding boxes as an output.

2) **Super-Resolution**

Another approach that is often applied to the original image at the preprocessing stage is to generate a super-resolution image. Shermeay and Van [63] analyzed the effect of different resolutions of overhead imagery on object detection performance. Very Deep Super-Resolution (VDSR) [64] and Random-Forest Super-Resolution (RFSR), which is extended from Super-Resolution Forest (SRF) [65], were used to generate super-resolution images for their experiments. The results demonstrated that these super-resolution methods improved detection performance. When the resolution of the input images was increased from 30cm to 15cm, the mAP performance was increased by 13% to 36%. Conversely, when the resolution was degraded from 30cm to 120cm, the detection performance was decreased by 22% to 27%. The outcome of the experiments demonstrated that image resolution is highly related to detection performance; thus, generally the super-resolution methods can improve the overall object detection performance.

In a similar direction, Rabbi et al. [66] introduced Edge-Enhanced Super-Resolution GAN (EESRGAN) method, which was inspired by Edge Enhanced GAN (EEGAN) [67] and Enhanced Super-Resolution GAN (ESRGAN) [68]. The proposed method consists of EESRGAN and the end-to-end network structure such as Faster R-CNN and SSD as a base detection network. In particular, EESRGAN generated super-resolution images with rich edge information, and base detection networks (Faster R-CNN and SSD) achieved improved accuracy with the super-resolution images.

E. MULTIMODAL OBJECT DETECTION

Another challenging but promising research area is object detection with multimodal data such as different resolutions, view points, and data types. In this section, we will examine methods using multimodal data for object detection. In order to achieve more robust and accurate detection performance utilizing various types of data, multimodal object detection can be applied, as shown in Fig. 7.

![Illustration of multimodal object detection methods](image)

FIGURE 7. Illustration of multimodal object detection methods. E-SVMs and NDFT are the most frequently used methods.

First, a fundamental approach multimodal object detection is to use different resolution images from separate sensors. Cao et al. [69] introduced a detection framework that simultaneously used low-resolution satellite images and high-resolution aerial images. Coupled dictionary learning was applied to obtain augmented features for the detection framework, then E-SVM [70] was used to make them a more robust model in various image resolutions. Compared with multi-scale training and super-resolution generated images, the proposed method obtained data with separate domains, which provide different image resolutions such as satellite and aerial.

Similar to using multi-resolution information, Wegner et al. [71] used information obtained from multiple views such as street and overhead view. The Faster R-CNN model was utilized as a base detection model to detect objects from each street view image. The results with geographic coordination were combined to calculate multi-view proposal scores, and the scores generated final detection results to the input re-
Imbalanced objects are of the challenging issues in the overhead imagery research [47], [73]–[76]. After RetinaNet [47] introduced focal loss to overcome detecting the imbalanced objects, there have been more studies to extend focal loss and improve the performance, as shown in Fig. 8.

Especially, Yang et al. [73] proposed a double focal loss convolutional neural network (DFL-CNN) using focal loss to region proposal network (RPN) and classifier module of Faster R-CNN model. Using the focal loss instead of the cross-entropy loss, the RPN considers the class imbalance problem when determining the region of interest, and the classifier is enabled to handle hard negative data during training. Additionally, skip connection was proposed to pass detailed features from the shallow layer to the deeper layer. Their methods demonstrated an improvement in detection performance compared with the Faster R-CNN model on the ITCVD dataset, which was constructed in this study.

Sergievskiy and Ponamarev [72] addressed the challenging imbalance issue with a reduced focal loss, a modified version of the original focal loss function. A threshold was applied to keep minimum weights to positive samples to prevent the unintended drop of recall. The proposed method was experimented on the xView [8] dataset with a random undersampling strategy and achieved first place with DIUx xView 2018 Detection Challenge [8].

Unlike the previous studies using the focal loss function, Zhang et al. [75] proposed a Difficult Region Estimation Network (DREN). The DREN was trained to generate cropped images for the difficult-to-detect region for the testing phase, and these images were passed to the detector with original images. Their network utilized a balanced L1 loss from Libra R-CNN [77]. Then, the balanced L1 loss restrained gradients produced by outliers, which were samples with high loss values. To clip maximum gradients from outliers, it made a more balanced regression from accurate samples.

III. DATASETS

In this section, we explain the most popular and openly available satellite imagery datasets based on their image sensor sources.

A. EO SATELLITE IMAGERY DATASETS

Although EO satellite images are generally low-resolution and difficult to collect compared to other images, EO images are advantageous in capturing the large areas that are physically difficult to be collected by UAV or flight. Following datasets are constructed with EO satellites, as shown in Table I.

1) HRSC2016

Liu et al. [79] introduced the High-Resolution Ship Collection 2016 (HRSC2016) dataset to promote research on optical remote sensing ship detection and recognition. The dataset was utilized by Liu et al. [59] before publishing the dataset to demonstrate a detection performance for rotated ships. Therefore, the dataset provides labeling information of rotated and horizontal bounding boxes coordinations. It is extraordinary to provide hierarchical classes of ships compared to other ship detection datasets that usually contain a single class. Moreover, since both labeling formats are also supported, the dataset can be used in various detection models. However, most ship images are presented with harbor backgrounds, so for the better quality of the dataset, separate sea images are needed to be included as indicated in their future work. The sample image is shown in Fig. 9 (a).

2) SpaceNet Challenge 1 and 2

Van et al. [80] and SpaceNet partners (CosmiQ Works, Radiant Solutions, and NVIDIA) released a large satellite dataset called SpaceNet. The SpaceNet comprises a series of datasets, dataset 1 and 2, which aims to extract building footprints. The SpaceNet1 obtained images from Rio De Janeiro with the WorldView-2 satellite at 50 cm GSD. Furthermore, images of SpaceNet2 were captured from various areas, including Las Vegas, Paris, Shanghai, and Khartoum, with the WorldView-3 satellite at 30 cm ground sample distance (GSD). Both datasets contain 8-band multispectral images with lower resolution. Because building footprints are provided as polygon format, these datasets enable detection models to evaluate performance more accurately than datasets with bounding boxes format. The sample image is shown in Fig. 9 (b) and (c).

3) xView

Lam et al. [8] constructed the xView dataset, consisting of over 1 million objects across 60 classes with 30 cm ground sample distance from the WorldView-3 satellites. Compared
to other satellite datasets introduced before, xView provides high geographic diversity and various class categories. However, since xView collected images from only a single source, the dataset is not suitable for evaluating detection performance on images from various sources. In addition, they maintained the quality of the dataset through three stages of quality control: worker, supervisory, and expert. Labelers performed the role of reviewers to check the work of other labelers related to bounding boxes in the worker quality control stage. Afterward, in the supervisory quality control stage, quality was checked and provided feedback to labelers by hosting the training session. Lastly, in the expert quality control stage, quality was checked and provided feedback. Throughout the quality process, xView minimized human error and achieved the consistency of the dataset. The sample image is shown in Fig. 9 (d).

4) SpaceNet MVOI

Weir et al. [81] addressed limitations of the previous satellite imagery dataset, which cannot represent various viewpoint in real-world cases, and introduced SpaceNet Multi-View Overhead Imagery (MVOI) dataset. While other datasets had a fixed viewing angle viewpoint from sensing sources, SpaceNet MVOI was constructed with a broad range of off-nadir images from the WorldView-2 satellite. Therefore, SpaceNet MVOI obtained different images of the same area in various angles. This characteristic provides the dataset effectiveness in evaluating the generalization performance of detection models. Similar to SpaceNet 1 and 2 [80], the labels are provided in polygon format to represent the accurate ground truth of building footprints. The sample image is shown in Fig. 9 (e).

B. SAR SATELLITE IMAGERY DATASETS

Although imagery from SAR satellite is embedded with many speckle noises, the SAR satellite imagery is an important research area due to the unique characteristic that SAR images can be provided regardless of the obstacles, such as clouds and lights. In particular, most of the existing SAR datasets are constructed for ship detection, as shown in Table 2.

1) SSDD

SAR Ship Detection Dataset (SSDD) is the widely used dataset for the SAR ship detection research, which was first introduced by Li et al. [88] in 2017. The images were collected from RadarSat-2, TerraSAR-X, and Sentinel-1 satellites to utilize various sensor types and resolutions. The minimum size of a ship on low-resolution images is three pixels to recognize the ship. This dataset is helpful to start evaluating the performance of the ship detection model on SAR imagery. However, the number of objects is relatively small compared to other datasets, and it is considered as a less challenging dataset that has already achieved higher than 95% mAP values [82], [89].

2) OpenSARShip 2.0

Li et al. [90] presented a SAR ship detection dataset called OpenSARShip 2.0, an updated version of OpenSARShip [91]. The images were collected from Sentinel-1 satellite with two different product types: Single look complex and Ground range detected product. Compared to the previous version, OpenSARShip 2.0 provides the additional information called automatic identification system (AIS) and Marine Traffic information that contains ship type, longitude, and latitude. Although detailed position information is annotated.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3149052, IEEE Access
Kang et al.: A Survey of Deep Learning-based Object Detection Methods and Datasets for Overhead Imagery

for each ship, images are provided as cropped ship chips. Thus, the dataset is more suitable for a classification task instead of object detection. The sample image is shown in Fig. 10 (a).

3) SAR-Ship Dataset
Wang et al. [92] constructed a SAR image dataset using 102 images from the Chinese Gaofen-3 satellite and 108 images from the Sentinel-1 satellite. Compared with the previous SAR datasets, this dataset focused on containing complex background images such as a harbor or near an island. Throughout this characteristic of the dataset, it aimed to increase the performance of the ship detection model without any land-ocean segmentation image pre-processing. The sample image is provided in Fig. 10 (b).

4) HRSID
Wei et al. [93] constructed and released a High-Resolution SAR Images Dataset (HRSID) to foster research for ship detection and instance segmentation on SAR imagery. From Sentinel-1B, TerraSAR-X, and TanDEM satellites, 136 raw images were collected. Then, the images were cropped into a fixed size with a 25% overlapping area. Optical imagery from Google Earth was utilized to minimize annotation errors. While OpenSARShip [90] and SAR-Ship [92] datasets provide ship chips or small size images, HRSID provides comparatively large size images, which are beneficial for evaluating object detection methods. Furthermore, the HRSID is composed of higher resolution images than other SAR datasets so that the HRSID dataset is more effective in discriminating the adjacent ships. The sample image is shown in Fig. 10 (c).

5) LS-SSDD-v1.0
Unlike previously released datasets containing ship chips or small sized images, Zhang et al. [94] released a dataset with large-scaled 15 raw images collected from Sentinel-1. The dataset called a Large-Scale SAR Ship Detection Dataset-v1.0 (LS-SSDD-v1.0) provides raw images of the size $24,000 \times 16,000$ pixels with split sub-images of 800×800 pixels. In order to create similar conditions to the actual environment, images are provided with pure backgrounds without making separate ship chips. It means that sub-image patches are also provided regardless of whether they contained target objects or not. This characteristic is helpful for detection models to learn pure backgrounds without objects, making it more practical to real-world cases. The sample raw image is presented in Fig. 10 (d).

C. AERIAL IMAGERY DATASETS
As shown in Table 3 there are datasets constructed with images from passive optical sensors such as flights and drones. And, it is difficult to specify detailed sensor information because the sensor specifications can not be described in detail generally. Initial datasets have been more focused on primarily detecting cars. However, recent trends for object detection on aerial imagery have extended to detect various objects in backgrounds.
1) **OIRDS**

Tanner et al. [101] created Overhead Imagery Research Data Set (OIRDS) with non-copyrighted overhead imagery. They obtained images from the United States Geological Survey (USGS) and the Video Verification of Identity (VIVID) program of the Defense Advanced Research Projects Agency (DARPA). The dataset contains approximately 1,800 vehicle targets categorized as car, truck, pick-up truck, and unknown. Based on the comparative color distribution analysis of the actual vehicle statistics with the statistics of the collected images from the dataset, the OIRDS dataset showed a high quality reflection on the natural distribution of the reality. However, since the amount of data is relatively small, there is a limitation in improving the generalized performance when a deep learning-based method is applied. A sample image is shown in Fig. 11 (a).

2) **DLR MVDA dataset**

German Aerospace Center (DLR) obtained aerial images by the DLR 3K camera system and provided a dataset called DLR-MVDA. Liu and Mattyu [95] firstly utilized the DLR-MVDA dataset to evaluate the performance of the proposed method. Although they considered only two vehicle classes in the research, the dataset have seven vehicle classes. The images were captured from an airplane at the height of 1,000 meters above Munich, Germany. DLR-MVDA has an advantage as the annotations include angle information of each object. Therefore, the dataset can be utilized in oriented object detection methods. A sample image is shown in Fig. 11 (b).

3) **VEDAI**

Razakarivony and Jurie [102] introduced Vehicle Detection in Aerial Imagery (VEDAI) Dataset, where the dataset consists of subsets of two different image resolutions that support color or infrared image type. They cut large original images into small images on selected regions to maximize diversity. The total number of vehicle classes is nine, and two meta-classes are also defined. Although this dataset is composed of several image types and has an advantage in scalability to various sensor images in real-world cases, the amount of data is relatively small for to be used in the deep learning detection method as similar to OIRDS [101]. A sample image is shown in Fig. 11 (c).

4) **COWC**

Mundhenk et al. [99] created a large contextual data set called Cars Overhead with Context (COWC). Unlike the

TABLE 3. Summary of aerial imagery datasets. For DLR-MVDA, the values in parentheses are the number used for the training in the study [95]. All datasets are publicly available, where † indicates the performance achieved by the best team for the challenge evaluation metric.

Dataset	Categories	Images	Objects	Year	Sensor	GSD (m)	Image Size	Representative Performance
OIRDS	4	908	1,796	2009		Approx. 0.15	256 × 256 – 640 × 480	precision/recall: 95.09/93.72 † [96]
DLR-MVDA	7 (2)	20 (10)	5,892 (3,472)	2015	Canon Eos-1Ds Mark III	Approx. 0.13	5,616 × 3,744	mAP: 79.54 † [97]
VEDAI	9	1,210	3687	2015		0.125, 0.25	1,024 × 1,024, 512 × 512	F1-score: 0.69 † [98]
COWC	1	29,549	90,963	2016		0.15	256 × 256	F1-score: 0.9431 † [99]
CARPK	1	1,448	89,777	2017			1,280 × 720	MAE: 6.77 † [100]
VisDrone	10	10,209	54,200	2018			2,000 × 1,500	mAP: 62.05 †
UAVDT	3	40,735	763,817	2018			1080 × 540	mAP: 26.5 †

FIGURE 11. Sample images from aerial imagery datasets. Generally, aerial imagery datasets have higher resolution than satellite images.
existing dataset covering one region or the same sensor source \cite{102}. COWC covers six regions from Toronto, Canada, Selwyn New Zealand, Potsdam, Vaihingen Germany, and Utah to guarantee diversity. The images from two regions (Vaihingen and Columbus) are grayscale, and the other is color images. COWC has the advantage as the dataset contains a diverse range of objects that can be utilized in the deep learning-based method for vehicle detection than the other previous datasets \cite{101}, \cite{102}. Also, COWC includes various usable negative targets for the difficulty of the dataset. A sample image is shown in Fig. 11 (d).

5) CARPK
Hsieh et al. \cite{103} presented aerial view images dataset collected by drones that detected cars on parking lots. The dataset contains 89,777 cars with various viewpoints from four different places. Compared to previous datasets used for car detection, such as OIRDS, VEDAI, and COWC, this dataset provides higher resolution images to utilize fine-grained information. In addition, since the images were collected from one designated spot (parking lot), a large portion of the image is filled with objects compared to images with sparse objects from the previous datasets. Because CARPK is a high-resolution image dataset, the image contains distinguishable objects located in proximity. A sample image is presented in Fig. 11 (e).

6) VisDrone
There have been two object detection challenges called VisDrone Challenge in 2018 and 2019 with a drone-based benchmark dataset called VisDrone \cite{104}. Zhu et al. \cite{37} released the dataset to motivate the research in computer vision tasks on the drone platform. It contains 263 video clips (179,264 frames) and 10,209 images captured by drones in various areas of China. Besides, occlusion and truncation ratio information is provided to capture the characteristics of overhead imagery. Whereas the existing aerial image datasets usually use vehicles as target objects, Visdrone includes some other smaller objects classes such as vehicles, pedestrians, and bicycles so that the dataset can be used for various object detection purposes. A sample image is shown in Fig. 11 (f).

7) UAVDT
Du et al. \cite{105} constructed a dataset for detecting vehicles on a UAV platform. This dataset is called UAV Detection and Tracking (UAVDT), and it provides useful annotated attributes such as weather conditions, flying altitude, camera view, vehicle occlusion, and out-of-view. In particular, the out-of-view was categorized based on a ratio of objects in the frame outside. Because UAVDT represents real-world environments by focusing on various scenes, weather, and camera angles, it has the advantage of evaluating the generalization performance of detection methods. Furthermore, it also contains various backgrounds in divided subsets for training and testing, respectively. The volume of images described in Table 3 excludes images for a single object tracking task. A sample image is shown in Fig. 11 (g).

D. Satellite and Aerial Imagery Datasets
Lastly, there are datasets constructed with images from both satellite and aerial sources, as shown in Table 4 where such datasets are helpful to improve and evaluate the generalization performance of the object detection methods. Generally, EO satellite is utilized for satellite images that have lower image resolution than aerial images.

1) TAS dataset
Heitz and Koller \cite{109} constructed an overhead car detection dataset obtained from Google Earth for demonstrating the performance of the things and stuff (TAS) context model. The dataset is a set of 30 color images of the city and suburbs of Brussels, Belgium, with a size of 792×636 pixels. A total of 1,319 cars are labeled manually with an average size of a car being 45×45 pixels. The TAS dataset is meaningful in that it is one of the earliest developed overhead-viewed vehicle datasets. However, the amount of data is insufficient and lacks diversity for applying the latest deep learning-based detection methods. A sample image is shown in Fig. 11 (a).

2) SZTAKI-INRIA
Benedek et al. \cite{110} developed the SZTAKI-INRIA Building Detection Benchmark dataset for evaluating proposed detection methods. The dataset contains 665 building footprints in 9 images from several cities of Hungary, UK, Germany, and France. Among nine images, two images were obtained from an aerial source, and the rest were from satellite and Google Earth platform. The SZTAKI-INRIA dataset, similar to the TAS dataset \cite{109}, is not suitable for applying a deep learning-based object detection method due to the insufficient volume of images and objects. A sample image is shown in Fig. 11 (b).

3) NWPU VHR-10
Cheng et al. \cite{50} constructed the NWPU VHR-10 dataset, which contains 800 satellite and aerial images from Google Earth and Vaihingen data \cite{111}. The dataset consists of ten different types of objects such as airplanes, ships, storage tanks, etc. The size of each object type varies from 418×418 pixels for large objects to 33×33 pixels for small ones. Furthermore, the image resolution varies from 0.08m to 2m for a diversity of the dataset. In order to use the dataset according to the applying purpose, the NWPU VHR-10 dataset provides the independently divided four sub-groups; 1) negative image set, 2) positive image set, 3) optimizing set, and 4) testing set. A sample image is shown in Fig. 11 (c).

4) DOTA
Xia et al. \cite{9} firstly introduced a large-scale Dataset for Object deTection in Aerial images (DOTA), aiming for an international object detection challenge. After DOTA-v1.0 issued,
DOTA-v1.5 and v2.0 were subsequently issued in 2019, and 2021 [112], respectively. DOTA-v1.5 used the same image as DOTA-v1.0. However, one object class and annotations for small objects were added because DOTA-v1.0 do not contain annotations for objects less than 10 pixels. In DOTA-v2.0, images were additionally collected from various sources such as Google Earth, GF-2, and JL-1 satellite. Moreover, object categories were broadened from 15 to 18 classes. Because objects in overhead images exist with arbitrary orientations in the real world, the DOTA datasets provide oriented bounding box information to evaluate the accurate performance. A sample image is shown in Fig. 11 (d), (e), and (f).

IV. FUTURE RESEARCH DIRECTIONS

In this work, we propose two promising research directions based on the comprehensive survey of deep learning-based methods and overhead imagery datasets.

A. ACCURACY VS. EFFICIENCY

Accurate detection for small and imbalanced objects is closely related to the efficiency of detection methods because accuracy and efficiency are in a trade-off relationship in general. Although well-established object detection methods for natural images have been studied [113]–[115] to meet both accuracy and efficiency requirement, overhead imagery has to consider this problem a more critical issue because the amount of data and the size of the images to be processed are more extensive than that of the natural images. In the case of the currently proposed methods, the efficiency was improved; however, the upper bound of the detection performance of the methods was the performance of the vanilla detection model [34], [38], [40]. On the one hand, there are methods [28], [46], [63] focusing on improve accuracy; however, the efficiency was decreased due to the high computational load for modified model architecture. Therefore, research on a novel approach that improves both accuracy and efficiency is the first primary research direction.
B. FUSION OF OTHER DOMAIN DATA

Another direction is to utilize additional information from other domains for the overhead imagery. In most cases, it is practically challenging to obtain sufficiently labeled data in various computer vision tasks. Therefore, many studies such as the soft teacher method [116] have recently been conducted to overcome this problem. Xu et al. [116] proposed the soft teacher method, where the proposed framework is composed of the teacher and student networks. The teacher network in the method assigns a classification score to an unlabeled bounding box and calculates the loss. Throughout this process, the accuracy of pseudo labels is gradually improved. For object detection on the overhead imagery, this challenge with scarce data can be overcome through fusion with other domain data. Even though labeled data is not sufficient, we can leverage more data from other domain data, such as different sensing sources [71], [81] and metadata information [105]. Therefore, detection performance can be improved by using the additional information so that more meaningful results can be obtained from real-world use cases. Moreover, overhead imagery is closely related to social, and real-world applications because it is obtained over a broad area in real-time basis [117]–[119]. Given these considerations, one of the most significant research directions is to apply other domain information with overhead imagery.

V. CONCLUSION

Object detection on overhead imagery is one of the exciting research areas in the computer vision community. However, there are challenging issues due to the unique characteristics of overhead images that are different from natural images. The characteristics cause difficulty in applying the state-of-the-art methods in natural images directly. Therefore, many approaches have been introduced recently to overcome the challenging issues.

Our survey paper explores the recent approaches in satellite and aerial imagery-based object detection research and aims to stimulate further research in this area by presenting comprehensive and comparative reviews. After researching a number of papers, we categorized the most important approaches into the six different categories. Further, we compare and analyze publicly available datasets to utilize and motivate research on object detection with the overhead imagery domain. Also, based on the difference in image sources, our paper surveyed the datasets with helpful information such as image resolution and size. We hope this paper will be helpful in developing more advanced deep learning-based approaches as well as understanding and discussing future research directions.

APPENDIX A PSEUDO CODE FOR OBJECT DETECTOR

The training procedure for one and two-stage detectors is formally presented in Algorithm 1.

Algorithm 1 Training algorithm of deep learning-based object detection methods. Based on a procedure of head network, the methods can be defined into one or two-stage detectors.

1: Require: mini-batch \(x \) compose of pre-processed image patches, the total number of mini-batch \(N \), A detection model \(M \) compose of the backbone network \(B \) and the head network \(H \)

2: Set hyper-parameters such as batch size, learning rate, IOU threshold, confidence threshold, the maximum number of objects to find

3: for each epoch

4: for \(N \) steps do

5: Extract features \(x_f \) from mini-batch data \(x \) by the backbone network \(B \)

6: if The model \(M \) is one-stage then

7: Predict objects classes \(c \) and bounding boxes \(b \)

8: else if The model \(M \) is two-stage then

9: Extract Regions of Interest (ROIs) by search method such as selective search or region proposal network

10: From the ROIs, predict objects classes \(c \) and bounding boxes \(b \)

11: end if

12: Delete uncertain objects based on the confidence threshold

13: Delete overlapped objects based on the IOU threshold

14: Choose accurate objects up to the maximum number of objects

15: Calculate batch loss from the objective function

16: end for

17: Update model parameter based on calculated loss

18: end for

REFERENCES

[1] G. Cheng and J. Han, “A survey on object detection in optical remote sensing images,” *ISPRS Journal of Photogrammetry and Remote Sensing*, vol. 117, pp. 11–28, 2016.

[2] A. Groener, G. Chern, and M. Pritt, “A comparison of deep learning object detection models for satellite imagery,” in 2019 IEEE Applied Imagery Pattern Recognition Workshop (AIPR). IEEE, 2019, pp. 1–10.

[3] U. Alganci, M. Soydas, and E. Sertel, “Comparative research on deep learning approaches for airplane detection from very high-resolution satellite images,” *Remote Sensing*, vol. 12, no. 3, p. 458, 2020.

[4] H. Yao, R. Qin, and X. Chen, “Unmanned aerial vehicle for remote sensing applications—a review,” *Remote Sensing*, vol. 11, no. 12, p. 1443, 2019.

[5] D. Cazzato, C. Cimarelli, J. L. Sanchez-Lopez, H. Voos, and M. Leo, “A survey of computer vision methods for 2D object detection from unmanned aerial vehicles,” *Journal of Imaging*, vol. 6, no. 8, p. 78, 2020.

[6] Z. Zheng, L. Lei, H. Sun, and G. Kuang, “A review of remote sensing image object detection algorithms based on deep learning,” in 2020 IEEE 5th International Conference on Image, Vision and Computing (ICIVC). IEEE, 2020, pp. 34–43.

[7] K. Li, G. Wan, G. Cheng, L. Meng, and J. Han, “Object detection in optical remote sensing images: A survey and a new benchmark,” *ISPRS Journal of Photogrammetry and Remote Sensing*, vol. 159, pp. 296–307, 2020.

[8] D. Lam, R. Kuzma, K. McGee, S. Dooley, M. Laielli, M. Klaric, Y. Bu-
Kang et al.: A Survey of Deep Learning-based Object Detection Methods and Datasets for Overhead Imagery

latov, and B. McCord, “xview: Objects in context in overhead imagery,” arXiv preprint arXiv:1802.07856, 2018.
[9] G.-S. Xia, X. Bai, J. Ding, Z. Zhu, S. Belongie, J. Luo, M. Datcu, M. Poliullo, and L. Zhang, “Dota: A large-scale dataset for object detection in aerial images,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 3974–3983.
[10] M. A. Fischler and R. A. Elschlagler, “The representation and matching of pictorial structures,” IEEE Transactions on computers, vol. 100, no. 1, pp. 67–92, 1973.
[11] D. M. McKeown Jr and J. L. Denlinger, “Cooperative methods for road tracking in aerial imagery,” in Proceedings of the 1988 DARPA IJS Workshop, 1988, pp. 327–341.
[12] A. Huertas and R. Nevatia, “Detecting buildings in aerial images,” Computer vision, graphics, and image processing, vol. 41, no. 2, pp. 131–152, 1988.
[13] R. B. Irvin and D. M. McKeown, “Methods for exploiting the relationship between buildings and their shadows in aerial imagery,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 19, no. 6, pp. 1564–1575, 1989.
[14] J. E. Ball, D. T. Anderson, and C. S. Chan Sr, “Comprehensive survey of deep learning in remote sensing: theories, tools, and challenges for the community,” Journal of Applied Remote Sensing, vol. 11, no. 4, p. 042609, 2017.
[15] Y. Gu, Y. Yang, and Y. Li, “A survey on deep learning-driven remote sensing image scene understanding: Scene classification, scene retrieval and scene-guided object detection,” Applied Sciences, vol. 9, no. 10, p. 2110, 2019.
[16] L. Ma, Y. Liu, X. Zhang, Y. Ye, G. Yin, and B. A. Johnson, “Deep learning in remote sensing applications: A meta-analysis and review,” ISPRS journal of photogrammetry and remote sensing, vol. 152, pp. 166–177, 2019.
[17] Q. Yuan, H. Shen, T. Li, Z. Li, S. Li, Y. Jiang, H. Xu, W. Tan, Q. Yang, J. Wang et al., “Deep learning in environmental remote sensing: Achievements and challenges,” Remote Sensing of Environment, vol. 241, pp. 111761, 2020.
[18] I. Beal, E. Kim, E. Tzeng, D. H. Park, A. Zhai, and D. Kislyuk, “Toward transformer-based object detection,” arXiv preprint arXiv:2012.09958, 2020.
[19] Z. Zhang, X. Lu, G. Cao, Y. Yang, L. Jiao, and F. Liu, “Vit-yolo: Transformer-based yolo for object detection,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 2799–2808.
[20] Z. Liu, Y. Lin, Y. Cao, H. Yu, W. Tan, Q. Yang, J. Wang et al., “Swin transformer: Hierarchical vision transformer using shifted windows,” arXiv preprint arXiv:2103.14030, 2021.
[21] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale hierarchical image database,” in 2009 IEEE conference on computer vision and pattern recognition. Ieee, 2009, pp. 248–255.
[22] T. Liang, X. Chu, Y. Liu, Y. Wang, Z. Tang, W. Chu, J. Chen, and H. Ling, “Cnnet2: A composite backbone network architecture for object detection,” arXiv preprint arXiv:2107.00420, 2021.
[23] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.
[24] S. Gao, M.-M. Cheng, K. Zhao, X.-Y. Zhang, M.-H. Yang, and P. H. Torr, “ResNet: A new multi-scale backbone architecture,” IEEE transactions on pattern analysis and machine intelligence, 2019.
[25] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object detection with region proposal networks,” arXiv preprint arXiv:1506.01497, 2015.
[26] J. Redmon and A. Farhadi, “Yolo3: An incremental improvement,” arXiv preprint arXiv:1801.04126, 2018.
[27] X. Dai, Y. Chen, B. Xiao, D. Chen, M. Liu, L. Yuan, and L. Zhang, “Dynamic head: Unifying object detection heads with attentions,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 7373–7382.
[28] A. Van Etten, “You only look twice: Rapid multi-scale object detection in satellite imagery,” arXiv preprint arXiv:1805.09512, 2018.
[29] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time object detection,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 779–788.
A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification,” in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2021, pp. 2015–2159.

G. Cheng, J. Han, P. Zhou, and L. Guo, “Multi-class geospatial object detection and geographic image classification based on collection of part detectors,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 98, pp. 119–132, 2014.

H. Caesar, J. Uijlings, and V. Ferrari, “Region-based semantic segmentation with end-to-end training,” in European Conference on Computer Vision. Springer, 2016, pp. 381–397.

J. Zhou, X. Yin, and J. Xiao, “Orientation response networks,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 519–528.

Z. Liu, H. Wang, L. Weng, and Y. Yang, “Ship rotated bounding box space for ship extraction from high-resolution optical satellite images with complex backgrounds,” IEEE Geoscience and Remote Sensing Letters, vol. 13, no. 8, pp. 1074–1078, 2016.

Y.-M. Chou, C.-H. Chen, K.-H. Liu, and C.-S. Chen, “Stringray detection of aerial images using augmented training images generated by a conditional generative model,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2018, pp. 1403–1409.

P. Bojanowski, A. Joulin, D. Lopez-Paz, and A. Szlam, “Optimizing the latent space of generative networks,” arXiv preprint arXiv:1707.05776, 2017.

C. Chen, Y. Zhang, Q. Lv, S. Wei, X. Wang, X. Sun, and J. Dong, “Remnet: A hybrid detector for object detection in drone-captured images,” in Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, 2019, pp. 0–0.

J. Shermeyer and A. Van Etten, “The effects of super-resolution on object detection performance in satellite imagery,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2019, pp. 0–0.

J. Kim, J. K. Lee, and K. M. Lee, “Accurate image super-resolution using very deep convolutional networks,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 1646–1654.

S. Schuler, C. Leistner, and H. Bischof, “Fast and accurate image upsampling with super-resolution forests,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 3791–3799.

J. Rabbi, N. Ray, M. Schubert, S. Chowdhury, and D. Chao, “Small-object detection in remote sensing images with end-to-end edge-enhanced gan and object detector network,” Remote Sensing, vol. 12, no. 9, p. 1432, 2020.

K. Jiang, Z. Wang, P. Yi, G. Wang, T. Lu, and J. Jiang, “Edge-enhanced gan for remote sensing image superresolution,” IEEE Transactions on Geoscience and Remote Sensing, vol. 57, no. 8, pp. 5799–5812, 2019.

X. Wang, K. Yu, S. Wu, J. Gu, Y. Liu, C. Dong, Y. Qiao, and C. Change Loy, “Esgan: Enhanced super-resolution generative adversarial networks,” in Proceedings of the European Conference on Computer Vision (ECCV) Workshops, 2018, pp. 0–0.

L. Cao, R. Ji, C. Wang, and J. Li, “Towards domain adaptive vehicle detection in satellite image by supervised super-resolution transfer,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30, no. 1, 2016.

M. Pissinou, A. Gupta, and A. A. Efros, “Ensemble of exemplar-svms for object detection and beyond,” in 2011 International conference on computer vision. IEEE, 2011, pp. 89–96.

J. D. Wegner, S. Branson, D. Hall, K. Schindler, and P. Perona, “Cata-logging public objects using aerial and street-level images-urban trees,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 6014–6023.

Z. Wu, K. Suresh, P. Narayanan, H. Xu, H. Kwon, and Z. Wang, “Delving into robust object detection from unmanned aerial vehicles: A deep nuisance disentanglement approach,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 1201–1210.

M. Y. Yang, W. Liao, X. Li, and B. Rosenhahn, “Deep learning for vehicle detection in aerial images,” in 2018 25th IEEE International Conference on Image Processing (ICIP). IEEE, 2018, pp. 3079–3083.

N. Sergievskiy and A. Ponamarev, “Reduced focal loss: 1st place solution to xview object detection in satellite imagery,” arXiv preprint arXiv:1903.01347, 2019.

J. Zhang, J. Huang, X. Chen, and D. Zhang, “How to fully exploit the abilities of aerial image detectors,” in Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, 2019, pp. 0–0.

S. Hong, S. Kang, and D. Cho, “Patch-level augmentation for object detection in aerial images,” in Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, 2019, pp. 0–0.

J. Pang, K. Chen, J. Shi, H. Feng, W. Ouyang, and D. Lin, “Libra r-cnn: Towards balanced learning for object detection,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 821–830.

D. Liang, Q. Geng, Z. Wei, D. A. Vorontsov, E. L. Kim, M. Wei, and H. Zhou, “Anchor retouching via model interaction for robust object detection in aerial images,” IEEE Transactions on Geoscience and Remote Sensing, 2021.

Z. Liu, L. Yuan, L. Weng, and Y. Yang, “A high resolution optical satellite image dataset for ship recognition and some new baselines,” in International conference on pattern recognition applications and methods, vol. 2: SCITEPRESS, 2017, pp. 324–331.

R. Van Etten, D. Lindenbaum, and T. M. Bacastow, “Spacenet: A remote sensing dataset and challenge series,” arXiv preprint arXiv:1807.01232, 2018.

N. Weir, D. Lindenbaum, A. Bastidas, A. V. Etten, S. McPherson, J. Shermeyer, V. Kumar, and H. Tang, “Spacenet mvs: a multi-view overhead imagery dataset,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 992–1001.

T. Zhang, X. Zhang, and X. Ke, “Quad-ispn: A novel quad feature pyramid network for sar ship detection,” Remote Sensing, vol. 13, no. 14, p. 2771, 2021.

T. Zhang and X. Zhang, “Squeeze-and-excitation laplacian pyramid network with dual-polarization feature fusion for ship classification in sar images,” IEEE Geoscience and Remote Sensing Letters, 2021.

Y. Wu, Y. Yuan, J. Guan, L. Yin, J. Chen, G. Zhang, and P. Feng, “Joint convolutional neural network for small-scale ship classification in sar images,” in ICGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2019, pp. 2619–2622.

Z. Cui, X. Wang, N. Liu, Z. Cao, and J. Yang, “Ship detection in large-scale sar images via spatial shuffle-group enhance attention,” IEEE Transactions on Geoscience and Remote Sensing, vol. 59, no. 1, pp. 379–391, 2020.

Z. Sun, M. Dai, X. Leng, Y. Lei, B. Xiong, K. Ji, and G. Kuang, “An anchor-free detection method for ship targets in high-resolution sar images,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 14, pp. 7799–7816, 2021.

Z. Zhang, C. Huo, X. Xu, H. Jiang, Y. Cao, L. Ni, and C. Pan, “Multitask learning for ship detection from synthetic aperture radar images,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 14, pp. 8048–8062, 2021.

J. Li, C. Qu, and J. Shao, “Ship detection in sar images based on an improved faster r-cnn,” in 2017 SAR in Big Data Era: Models, Methods and Applications (BIGSARDATA). IEEE, 2017, pp. 1–6.

H. Guo, X. Yang, N. Wang, and X. Gao, “A centerless r-cnn model for ship detection in sar images,” Pattern Recognition, vol. 112, p. 107787, 2021.

B. Li, B. Liu, L. Huang, W. Guo, Z. Zhang, and W. Yu, “Openvarsip 2.0: A large-volume dataset for deeper interpretation of ship targets in sentinel-1 imagery,” in 2017 SAR in Big Data Era: Models, Methods and Applications (BIGSARDATA). IEEE, 2017, pp. 1–5.

L. Huang, B. Liu, B. Li, W. Guo, W. Yu, Z. Zhang, and W. Yu, “Openvarsip: A dataset dedicated to sentinel-1 ship interpretation,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 11, no. 1, pp. 195–208, 2017.

Y. Wang, C. Wang, H. Zhang, Y. Dong, and S. Wei, “A sar dataset of ship detection for deep learning under complex backgrounds,” remote sensing, vol. 11, no. 7, p. 765, 2019.
SI MON S. WOO received his M.S. and Ph.D. in Computer Science from Univ. of Southern California (USC), Los Angeles, M.S. in Electrical and Computer Engineering from University of California, San Diego (UCSD), and B.S. in Electrical Engineering from University of Washington (UW), Seattle. He was a member of technical staff (technologist) for 9 years at the NASA’s Jet Propulsion Lab (JPL), Pasadena, CA, conducting research in satellite communications, networking and cybersecurity areas. Also, He worked at Intel Corp. and Verisign Research Lab. Since 2017, he was a tenure-track Assistant Professor at SUNY, South Korea and a Research Assistant Professor at Stony Brook University. Now, he is a tenure-track Assistant Professor at the SKKU Institute for Convergence and Department of Applied Data Science and Software in Sungkyunkwan University, Suwon, Korea.
