Morphological Changes of Leaves of Birch (*Betula pendula* Roth) During the Growing Season in the Conditions of Petrochemical Pollution of the Environment

O V Tagirova* and A Yu Kulagin

1 Bashkir State Pedagogical University named after M. Akmulla, 3-a Oktyabrskoj revoljucii str., Ufa 450008, Russia
2 Ufa Institute of Biology of the Ufa Federal Research Center of the Russian Academy of Sciences, 69 Oktyabrya pr., Ufa 450054 Russia

E-mail: oleciyi@mail.ru

Abstract. The authors analyze their data on birch leaves (*Betula pendula* Roth) during the growing season of 2019. Studies were conducted on the territory of the Ufa industrial center near oil refineries. Model birch trees grow on permanent plots. Ten leaves are numbered on the trees. Photographs of each plate were taken during the growing season (June-July-August-September). The integral indicator of the stability of leaf development was calculated according to five criteria: (1) the wide of the left and right halves of the leaf; (2) the length of the second vein from the base of the plate; (3) the distance between the grounds of the bottom of the first and second veins of the second-order of the leaf; (4) the distance between the ends of the first and second veins of the second-order of the plate; (5) the angle between the central vein and the second vein of the second order from the base of the leaf. The research shows that under conditions of the hydrocarbon type of environmental pollution, there are deviations in the morphological development of birch leaves. The authors show that an individual trajectory of morphological development is characteristic of leaves. The phenomenon of adaptive polymorphism of birch leaves is noted. Moreover, the morphological and functional features of the plate are inextricably linked. Leaf asymmetry indicators can be used to characterize the state of birch trees in urban conditions.

Keywords: Birch (*Betula pendula* Roth) · Integral indicator · Leaf polymorphism · Industrial center

1. Introduction

One approach to assessing plants' resistance to their growth under extreme conditions is to determine developmental stability and asymmetry [1-2, 4, 7-8, 10, 13].

The formed leaf passes through four phases: 1) the formation of primordia; 2) the leaf; 3) laying of the plate of the leaf due to the lateral meristem; 4) leaf plate growth by stretching. Peculiarities of leaf growth during the growing season are not well understood [6]. The study of the morphological changes in leaves during the growing season should be considered when organizing monitoring studies [9, 11-12].

The investigation aimed to study the morphological changes of birch leaves (*Betula pendula* Roth) under environmental pollution during the growing season.

The subject of the research is birch plantations in the industrial zone of Ufa.
2. Materials and Methods
The research was conducted in the industrial zone on the territory of the Ufa Industrial Center. Plantings grow near oil refineries. The general characteristics of the stands have been presented previously [9].

Objects of studies – model trees of birch (*Betula pendula* Roth). The first tree is large-leaved; the second tree is small-leaved. In the crown of each tree, ten leaves are numbered. Each plate was photographed during the growing season (June-July-August-September). Used a Nikon D40 digital camera. Photographs of the leaves were computer-processed using standard programs.

A method was used to study the leaves' morphological characters [3, 14, 17]. The stability of the development of leaves of tree stands is estimated. The studies were carried out in 2019, characterized by average values of weather and climatic conditions.

The actual material for assessing the stability of development of birch leaves is the morphological characteristics of the right and left halves of the plate according to 5 signs [18]:

1st sign – the width of the left and right halves of the leaf;
2nd sign – the length of the vein of the second order from the base of the plate;
3rd sign – the distance between the grounds of the bottom of the first and second veins of the second-order of the leaf;
4th sign – the distance between the ends of the first and second veins of the second-order of the plate;
5th sign – the central vein's angle and the second vein of the second order from the leaf base.

Statistical processing of the research results was carried out in the programs: STATISTICA, GraphPad Prism, Microsoft Excel.

3. Results
Shown are changes in birch leaves during the growing season [15]. The integral indicator of the stability of leaf development (small-leaved tree and large-leaved tree) was calculated according to five criteria [16] (Fig. 1, Fig. 2, Fig. 3, Fig. 4, Fig. 5). The obtained data were statistically processed, 1-way ANOVA, ANOVA (table 1, table 2, table 3, table 4, table 5, table 6, table 7, table 8, table 9, table 10, table 11, table 12, table 13, table 14, table 15).

![Figure 1](image-url)

Figure 1. Integral index of stability of leaf development (the 1st sign). A – Large-leaved tree, B – Small-leaved tree.
Table 1. Column statistics (the 1st sign).

Month	June	July	August	September				
Tree	Large-leaved	Small-leaved	Large-leaved	Small-leaved	Large-leaved	Small-leaved		
Number of values	8	8	8	8	8	8		
Minimum	0.023	0.007	0.012	0.007	0.015	0.021	0.006	0.005
Maximum	0.133	0.093	0.202	0.13	0.117	0.14	0.116	0.109
Mean	0.054	0.039	0.059	0.049	0.054	0.063	0.056	0.055
Std. Deviation	0.038	0.028	0.063	0.040	0.034	0.043	0.043	0.042
Std. Error	0.013	0.010	0.022	0.014	0.012	0.015	0.015	0.015
Lower 95% CI of mean	0.022	0.015	0.007	0.016	0.025	0.026	0.020	0.020
Upper 95% CI of mean	0.085	0.062	0.112	0.083	0.082	0.099	0.092	0.091
Coefficient of variation	70.04%	72.08%	106.43%	63.32%	69.35%	77.57%	75.99%	
Sum	0.430	0.310	0.476	0.394	0.430	0.501	0.448	0.443

Table 2. 1-way ANOVA (the 1st sign).

Parameter	Value	Large-leaved tree	Small-leaved tree
P value		0.994	0.658
P-value summary	ns	ns	
Are means signific. different? (P < 0.05)	No	No	
Number of groups	4	4	
F	0.027	0.541	
R squared	0.003	0.055	

Bartlett’s test for equal variances. Large-leaved tree: Bartlett’s statistic (corrected) 3.186; P value 0.364; P value summary ns; Do the variances differ signif. (P < 0.05) – No. Small-leaved tree: Bartlett’s statistic (corrected) 1.447; P value 0.695; P value summary ns; Do the variances differ signif. (P < 0.05) – No.

Table 3. ANOVA (the 1st sign).

ANOVA Table	SS	df	MS
Large-leaved tree			
Treatment (between columns)	0.0001742	3	0.00005806
Residual (within columns)	0.05926	28	0.002116
Total	0.05944	31	
Small-leaved tree			
Treatment (between columns)	0.002451	3	0.000817
Residual (within columns)	0.04232	28	0.001511
Total	0.04477	31	
2nd sign – the length of the vein of the second order from the base of the leaf

Figure 2. Integral index of stability of leaf development (the 2nd sign). A – Large-leaved tree, B – Small-leaved tree

Table 4. Column statistics (the 2nd sign).

Month	June	July	August	September
Tree				
Number of values	8	8	8	8
Minimum	0.002	0.008	0.001	0.012
Maximum	0.125	0.04	0.109	0.104
Mean	0.035	0.023	0.031	0.023
Std. Deviation	0.040	0.013	0.033	0.022
Std. Error	0.014	0.005	0.012	0.008
Lower 95% CI of mean	0.002	0.012	0.006	0.012
Upper 95% CI of mean	0.069	0.033	0.059	0.042
Coefficient of variation	114.32%	57.80%	107.49%	95.18%
Sum	0.281	0.180	0.248	0.185

Table 5. 1-way ANOVA (the 2nd sign).

Parameter	Value	
	Large-leaved tree	Small-leaved tree
P value	0.996	0.928
P-value summary	ns	ns
Are means signifi. different? (P < 0.05)	No	No
Number of groups	4	4
F	0.022	0.151
R squared	0.002	0.016
Bartlett’s test for equal variances. Large-leaved tree: Bartlett’s statistic (corrected) 0.488; P value 0.922; P value summary ns; Do the variances differ signif. (P < 0.05) – No. Small-leaved tree: Bartlett’s statistic (corrected) 2.285; P value 0.515; P value summary ns; Do the variances differ signif. (P < 0.05) – No.

Table 6. ANOVA (the 2nd sign).

ANOVA Table	SS	df	MS
	Large-leaved tree		
Treatment (between columns)	0.00008159	3	0.0000272
Residual (within columns)	0.0353	28	0.001261
Total	0.03538	31	
	Small-leaved tree		
Treatment (between columns)	0.00013	3	0.00004321
Residual (within columns)	0.00802	28	0.000286
Total	0.00815	31	

3rd sign – the distance between the bases of the first and second veins of the second-order of the leaf

Figure 3. Integral index of stability of leaf development (the 3rd sign). A – Large-leaved tree, B – Small-leaved tree

Table 7. Column statistics (the 3rd sign).

Month	June	July	August	September				
Number of values	Large-leaved	Small-leaved	Large-leaved	Small-leaved	Large-leaved	Small-leaved	Large-leaved	Small-leaved
	8	8	8	8	8	8	8	8
Minimum	0.045	0.028	0.037	0.005	0.032	0.005	0.049	0
Maximum	0.223	0.264	0.261	0.143	0.256	0.1	0.235	0.143
Mean	0.155	0.093	0.165	0.058	0.137	0.051	0.136	0.057
Std. Deviation	0.057	0.075	0.074	0.049	0.076	0.033	0.061	0.047
Std. Error	0.020	0.027	0.026	0.017	0.027	0.011	0.021	0.017
Lower 95% CI of mean: 0.107, 0.030, 0.102, 0.017, 0.073, 0.024, 0.085, 0.017
Upper 95% CI of mean: 0.203, 0.156, 0.227, 0.099, 0.200, 0.079, 0.187, 0.096
Coefficient of variation: 36.98%, 80.65%, 45.21%, 84.45%, 55.59%, 63.25%, 44.64%, 82.87%
Sum: 1.243, 0.747, 1.316, 0.466, 1.093, 0.411, 1.088, 0.452

Table 8. 1-way ANOVA (the 3rd sign).

Parameter	Value Large-leaved tree	Value Small-leaved tree
P value	0.790	0.389
P-value summary	ns	ns
Are means signif. different? (P < 0.05)	No	No
Number of groups	4	4
F	0.35	1.043
R squared	0.036	0.101

Bartlett’s test for equal variances. Large-leaved tree: Bartlett’s statistic (corrected) 0.779; P value 0.855; P value summary ns; Do the variances differ signif. (P < 0.05) – No. Small-leaved tree: Bartlett's statistic (corrected) 4.687; P value 0.196; P value summary ns; Do the variances differ signif. (P < 0.05) – No.

Table 9. ANOVA (the 3rd sign).

ANOVA Table	SS	df	MS
Large-leaved tree			
Treatment (between columns)	0.0048	3	0.0016
Residual (within columns)	0.128	28	0.004572
Total	0.1328	31	
Small-leaved tree			
Treatment (between columns)	0.008868	3	0.002956
Residual (within columns)	0.07938	28	0.002835
Total	0.08824	31	
4th sign – the distance between the ends of the first and second veins of the second-order of the leaf

![Graph showing Integral indicator for plant leaf number across different months and tree types.]

Figure 4. Integral index of stability of leaf development (the 4th sign) A – Large-leaved tree, B – Small-leaved tree.

Table 10. Column statistics (the 4th sign).

Month	June	July	August	September				
Tree								
Number of values	8	8	8	8				
Minimum	0.004	0.003	0.006	0.006	0.027	0.019	0.023	0.005
Maximum	0.224	0.136	0.184	0.168	0.207	0.189	0.232	0.153
Mean	0.079	0.068	0.066	0.072	0.094	0.071	0.091	0.064
Std. Deviation	0.070	0.056	0.058	0.062	0.062	0.064	0.072	0.059
Std. Error	0.025	0.020	0.021	0.022	0.022	0.023	0.025	0.021
Lower 95% CI of mean	0.021	0.021	0.017	0.020	0.042	0.017	0.031	0.015
Upper 95% CI of mean	0.138	0.115	0.115	0.125	0.146	0.125	0.151	0.113
Coefficient of variation	88.62%	82.50%	88.26%	86.42%	65.97%	90.45%	79.09%	91.27%
Sum	0.634	0.544	0.528	0.578	0.754	0.568	0.725	0.514

Table 11. 1-way ANOVA (the 4th sign).

Parameter	Value	
	Large-leaved tree	Small-leaved tree
P value	0.825	0.994
P-value summary	ns	ns
Are means signif. different?	No	No
Number of groups	4	4
F	0.300	0.028
R squared	0.031	0.003
Bartlett’s test for equal variances. Large-leaved tree: Bartlett’s statistic (corrected) 0.383; P value 0.944; P value summary ns; Do the variances differ signif. (P < 0.05) – No. Small-leaved tree: Bartlett’s statistic (corrected) 0.147; P value 0.986; P value summary ns; Do the variances differ signif. (P < 0.05) – No.

Table 12. ANOVA (the 4th sign).

ANOVA Table	SS	df	MS
Large-leaved tree			
Treatment (between columns)	0.003895	3	0.001298
Residual (within columns)	0.1213	28	0.004332
Total	0.1252	31	
Small-leaved tree			
Treatment (between columns)	0.000305	3	0.000102
Residual (within columns)	0.1023	28	0.003652
Total	0.1026	31	

5th sign – the angle between the central vein and the second vein of the second order from the base of the leaf

Figure 5. Integral index of stability of leaf development (the 5th sign) A – Large-leaved tree, B – Small-leaved tree.

Table 13. Column statistics (the 5th sign).

Month	June	July	August	September				
Tree								
Large-leaved	0.005	0.006	0.009	0.004	0.001	0.002		
Small-leaved	0.124	0.062	0.092	0.055	0.12	0.056	0.132	0.075
Number of values	8	8	8	8	8	8	8	8
Minimum	0.005	0.006	0.009	0.004	0.001	0.002		
Maximum	0.124	0.062	0.092	0.055	0.12	0.056	0.132	0.075
Mean	0.048	0.027	0.041	0.019	0.054	0.030	0.065	0.030
Std. Deviation	0.039	0.018	0.031	0.018	0.047	0.019	0.046	0.025
Std. Error	0.014	0.006	0.011	0.007	0.017	0.007	0.016	0.009
Lower 95% CI of mean

Value	Large-leaved tree	Small-leaved tree
0.015	0.004	0.015
0.012	0.014	0.027
0.015	0.004	0.009

Upper 95% CI of mean

Value	Large-leaved tree	Small-leaved tree
0.081	0.066	0.093
0.042	0.034	0.046
0.066	0.034	0.104
0.066	0.046	0.050

Coefficient of variation

Value	Large-leaved tree	Small-leaved tree
81.38%	66.86%	82.84%
76.46%	97.21%	70.54%
88.45%	62.29%	70.54%
76.46%	97.21%	70.54%
62.29%	70.54%	82.84%

Sum

Value	Large-leaved tree	Small-leaved tree
0.384	0.218	0.297
0.218	0.324	0.428
0.324	0.152	0.242
0.152	0.428	0.521
0.428	0.242	0.237

Table 14. 1-way ANOVA (the 5th sign).

Parameter	Value	
	Large-leaved tree	Small-leaved tree
P value	0.683	0.667
P-value summary	ns	ns
Are means signif. different? (P < 0.05)	No	No
Number of groups	4	4
F	0.504	0.528
R squared	0.051	0.054

Bartlett’s test for equal variances. Large-leaved tree: Bartlett's statistic (corrected) 1.382; P value 0.710; P value summary ns; Do the variances differ signif. (P < 0.05) – No. Small-leaved tree: Bartlett's statistic (corrected) 0.865; P value 0.834; P value summary ns; Do the variances differ signif. (P < 0.05) – No.

Table 15. ANOVA (the 5th sign).

ANOVA Table	SS	df	MS
	Large-leaved tree		
Treatment (between columns)	0.002581	3	0.00086
Residual (within columns)	0.04784	28	0.001709
Total	0.05042	31	
	Small-leaved tree		
Treatment (between columns)	0.000645	3	0.000215
Residual (within columns)	0.01141	28	0.000408
Total	0.01206	31	

4. Discussion

Using the Bartlett test, an approximate criterion is determined for assessing the dispersion homogeneity for equal deviations according to measured the leaves’ five criteria standards. Whether these deviations differ significantly leaf development, the answer is received – there are no differences.

Using ANOVA analysis of variance, it was shown that there are no differences between the average values of the compared groups on five signs of leaf development.

However, the figures show that unique individual marked by a particular development pathan individual development path represents each leaf. The leaves' adaptive response to extreme growing conditions (environmental pollution) is manifested in this case. The phenomenon of adaptive polymorphism of birch leaves is noted. Moreover, the morphological and functional features of the plate are inextricably linked.
5. Conclusion
In the Ufa industrial center, with a predominance of the hydrocarbon type of environmental pollution, mixed reactions of woody plants are noted. This is manifested in a deviation of leaf development during the growing season. It is shown that leaf asymmetry indicators can characterize the state of birch trees (*Betula pendula* Roth) in urban conditions. The need to monitor the state of the stands and the timely detection of violations and changes in individual trees' shape is associated with the development of measures for the shelves' care and the reconstruction of the frames.

6. Acknowledgments
The studies were carried out as part of the program of the Scientific and Educational Center Dendroecology and Environmental Management and using the equipment of the Center for Collective Use Agidel of the Ufa Federal Research Center of the Russian Academy of Sciences.

References
[1] Chippindale A, and Palmer R 1993 Persistance of subtle departures from symmetry over multiple molts in individual brachyuran crabs: Relevance to developmental stability *Genetica* **89**(1-3)
[2] Cowart N M, and Graham J H 1999 Within- and among-individual variation in Leaves’ fluctuating asymmetry in the Fig (ficus carica l.) *Int. J. Plant Sci.* **160**(1) pp 116-121
[3] Graham J H, Raz S, Hel-Or H, and Nevo E 2010 Fluctuating asymmetry: Methods, theory, and applications *Symmetry* **2** Available at https://www.mdpi.com/2073-8994/2/2/466
[4] Graham J H, Shimizu K, Emlen J M, Freeman D C, and Merkel J 2003 Growth models and the expected distribution of fluctuating asymmetry *Biol. J. Lin. Soc.* **80**(1) pp 57-65
[5] Graham, J H, Whitesell M J, Fleming M, Hel-Or H agit, Nevo E, and Raz S 2015 Fluctuating asymmetry of plant leaves: Batch Processing with LAMINA and Continuous Symmetry Measures *Symmetry* **7** doi:10.3390/sym7010255
[6] Konstantinov E L 1997 Analysis of the stability of warty birch (*Betula pendula* Roth.) As a bioindication method of environmental quality / Problems of General Biology and Applied Ecology: Sat. tr. Young scientists (Issue 1). (Saratov, Russia: Izd Sarat. University Press)
[7] Kozlov M, Zverev V, and Sandner T M 2019 Photosynthetic Efficiency is higher in asymmetric leaves than in symmetric leaves of the same plant *Symmetry* **11**(6) Available at https://www.mdpi.com/2073-8994/11/6/834
[8] Kulagin A A Ed 2014 *Monitor the state of the environment and health of city district city of Ufa Bashkortostan* (Ufa, Russia: Izd BSPU)
[9] Kulagin A Yu, and Tagirova O V 2015 *Forest stands of the Ufa industrial center: current state in the conditions of anthropogenic influences* (Ufa, Russia: Gilem, Bashkir encyclopedia)
[10] Musketeers A B, Shestakov G A, Shpynov A V, Garkunov M I, and Konstantinov E L 1996 Bioindicating assessment of the landfill site 3. Proceedings from All-Russian Scientific-Practical Conference: *Anthropogenic impacts and human health* (Kaluga, Russia)
[11] Nicholas V 1998 *Environmental assessment of environmental pollution and the state of terrestrial ecosystems phytoindication methods* (Moscow, Russia: MSFU)
[12] Nicholas V S 2002 *Environmental assessment and pollution of terrestrial ecosystems phytoindication methods* (Pushkin, Russia: VNIILM)
[13] Palmer A R, and Strobeck C 1992 Fluctuating asymmetry as a measure of developmental stability: Implications of nonnormal distributions and power of statistical tests *Acta Zool.* **191** Fenn.
[14] Shestakov G A, Sagittarius A B, and Konstantinov E L 2004 Methodology for collecting and processing the material to assess the stability of Betula pendula. In Materials for additional environmental education students (collection of articles) (Vol. 1) (Kaluga, Russia: KSPU them. KE Tsiolkovsky)
[15] Tagirova O V, and Kulagin A Yu 2017 Seasonal variability of hanging birch leaves (*Betula pendula* Roth) in extreme forest-growing conditions *Bulletin of the Orenburg State University* **11**(211) Available at https://www.elibrary.ru/item.asp?id=32274058
[16] Tagirova O V, Kulagin A Yu, and Zaitsev G A 2019 Seasonal dynamics of changes in some parameters of birch leaves hanging (*Betula pendula* Roth) in the conditions of industrial impact (Ufa, Republic of Bashkortostan) *Scientific electronic journal Principles of Ecology* **8**(2) pp 110-118 Available at https://cyberleninka.ru/article/n/sezonnaya-dinamika-izmeneniya-morfologicheskikh-parametrov-listiev-berezy- povisloy-betula-pendula-roth-v-usloviyah-promyshlennogo/viewer
[17] Zakharov V M 1987 *The asymmetry of animals (population-phylogenetically approach)* (Moscow, USSR: Nauka)

[18] Zakharov V M, Baranov A S, Borisov V I, Valetsky A V, Kryazheva N G, Chistyakova E K, … Chubinishvili A T 2000 *Environmental health: Methods of evaluation* (Moscow, Russia: Center for Russian Environmental Policy.)