Magnetic order, disorder, and excitations under pressure in the Mott insulator Sr$_2$IrO$_4$: Supplementary Information

Xiang Li,1,2 S.E. Cooper,2 A. Krishnadas,2 A. de la Torre,1,3 R.S. Perry,4,5 F. Baumberger,3 D.M. Silevitch,1 D. Hsieh,1 T.F. Rosenbaum,1,* and Yejun Feng1,2,*

1Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena California 91125, USA
2Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
3Department of Quantum Matter Physics, University of Geneva, 1211 Geneva 4, Switzerland
4London Centre for Nanotechnology and Department of Physics and Astronomy, University College London, London WC1E 6BT, UK
5ISIS Facility, Rutherford Appleton Laboratory, Didcot OX11 0QX, UK

* Correspondence and requests for materials should be addressed to T.F.R. and Y.F. tfr@caltech.edu and yejun@oist.jp
Supplementary Fig. 1. Spatial correlation between structure and magnetic orders on the sample surface. (a) At 4.8 K and the fixed pressure of 16.1 GPa, Raman spectra were measured at several different spots on the sample surface and demonstrate a first-order phase coexistence between AFM-mix and AFM-c states. (b) Correspondingly, the lattice B_{2g} mode (~ 395 cm$^{-1}$ at ambient pressure) also demonstrates the phase coexistence.