Dynamic method of control of weight of cargo transported by a belt conveyor

A V Egorov¹, S V Dorohin², A V Lysyannikov³, R B Zelykevich³, Yu F Kaizer³, A V Kuznetsov⁴, N N Lysyannikova³ and A S Lunev³

¹Volga State University of Technology, 424000, Yoshkar–Ola, 3, Lenin Square, Russia
²Voronezh State University of Forestry and Technologies Named after G.F. Morozov, 394087, Voronezh, 8, Timiryazeva str., Russia
³Siberian Federal University, 660041, Krasnoyarsk, 82/6, Svobodny Avenu, Russia
⁴Krasnoyarsk State Agrarian University, Krasnoyarsk, 2 Kirenskogo, Russia

E–mail: kaiser171074@mail.ru

Abstract. The intensification of the transportation processes of mined minerals is one of the key factors in solving the problems of increasing the productivity and competitiveness of the extractive industries. The processes of transportation of mining minerals are associated with their spatial movement by means of belt conveyors. Existing tools for assessing the weight of mining minerals transported by conveyors are based on the use of strain gauge methods and means of control, which allow weighing of mining rocks with acceptable accuracy at a conveyor belt speed of up to 5 m/sec. For conveyors with a high length (more than 10 km), such speed and weighing speed is unacceptable. Therefore, the development of methods and means of controlling the weight of rock transported by a conveyor at high speed is an urgent task. This paper is devoted to the substantiation of the dynamic method of controlling the weight of cargo transported by a belt conveyor based on an assessment of the dynamics of acceleration and deceleration of the rotor of a driving electric motor in steady–state operating conditions.

1. Introduction
Improving the efficiency of mining enterprises is associated, including with an increase in the rate of transportation of rocks by belt conveyors. In accordance with [1], the maximum transport speed can reach 11 m/sec. However, most of the belt scales on the world market can produce a result with an acceptable error at a maximum conveyor speed of 5 m/sec. Thus, today there is a contradiction: on the one hand it can be transported at a speed of up to 11 m/sec, on the other hand we can measure the weight of the transported rock at speeds of up to 5 m/sec. This contradiction can be resolved only by applying new physical principles when creating measuring devices.

As the results of studies [2–11] show, when different types of electric motors are operating under load, torque oscillations occur at the nominal speed. The use of this pattern allows the weighing of the cargo on the belt conveyor by the dynamic method.

2. The study of the dynamic method of controlling the weight of cargo transported by a belt conveyor
Figure 1 shows the implementation of the proposed dynamic method for controlling the weight of cargo
transported by the conveyor.

Implemented the proposed method of controlling the weight of cargo transported by the conveyor, as follows.

Assuming that the electric motor of the conveyor 1 through the reducer 3 and the driving drum 4 must communicate the conveyor belt 5 with the mechanical energy necessary for its movement, the movement of the tension drum 6, the roller bearings 7 and the movement of the cargo 9, it is necessary to determine the moment of inertia of the rotating and moving weights, reduced to the axis of rotation of the motor shaft of the conveyor 1.

Figure 1. Dynamic method of controlling the weight of cargo transported by the conveyor: 1 – Conveyor electric motor; 2 – Position sensor, 3 – Reducer; 4 – Drive drum; 5 – Conveyor belt; 6 – Tension drum; 7 – Tensioning device; 8 – Roller bearings; 9 – Transported cargo.

According to [12], the reduced moment of inertia of the system of rotating weights is the moment of inertia of the system consisting only of elements rotating with the angular velocity of the conveyor motor shaft \(\omega_{motor} \), but having a kinetic energy reserve equal to the kinetic energy reserve of a real system. From the condition that the kinetic energy remains unchanged, it follows that for a system consisting of a drive drum 4 and a tension drum 6 connected with a reducer and rotating with angular speed \(\omega_{drum} \), having a total moment of inertia \(J_{\Sigma drum} \), the speed of movement of the conveyor belt 5, disregarding the slip, slack and thickness of the conveyor belt 5 \(V_{belt} = \omega_{drum} r_{drum} \) a little moment of inertia roller bearings.

\[
J(\omega) \frac{\omega_{motor}^2}{2} = J_{e.motor} k_{los.m.}(\omega) \frac{\omega_{motor}^2}{2} + J_{red} k_{los.red}(\omega) \frac{\omega_{motor}^2}{2} + J_{\Sigma drum} k_{los.drum}(\omega) \frac{\omega_{drum}^2}{2} +
\]

\[+(m_{belt} + m_{cargo}) \frac{V_{belt}^2}{2},
\]

where \(J(\omega) \) – reduced to the axis of rotation of the motor shaft of the conveyor 1 the moment of inertia of the reducer at the angular velocity of the shaft of the motor of the conveyor \(\omega \); \(J_{e.motor} \) – reduced to
The moment of inertia of the part of the conveyor belt rotating around the drum sectors is not taken into account in the first approximation.

From here the required reduced moment of inertia of the system is

\[
J(\omega) = J_{\text{motor}}k_{\text{los.m.}}(\omega) + J_{\text{red}}k_{\text{los.red.}}(\omega) + J_{\Sigma\text{loss}}k_{\text{los.drum}}(\omega) \left(\frac{\omega_{\text{drum}}}{\omega_{\text{motor}}} \right)^2 + \frac{(m_{\text{belt}} + m_{\text{cargo}})V_{\text{belt}}^2}{\omega_{\text{motor}}^2}.
\]

(2)

The gear ratio between the electric motor of the conveyor 1 and the drive drum 4 is equal to the gear ratio of the reducer \(k_{\text{red.}}\).

Then (2) can be represented as

\[
J(\omega) = J_{\text{motor}}k_{\text{los.m.}}(\omega) + J_{\text{red}}k_{\text{los.red.}}(\omega) + J_{\Sigma\text{loss}}k_{\text{los.drum}}(\omega) \frac{1}{k_{\text{red.}}^2} + \frac{(m_{\text{belt}} + m_{\text{cargo}})V_{\text{belt}}^2}{\omega_{\text{motor}}^2} = \frac{J_{\text{motor}}k_{\text{los.m.}}(\omega) + J_{\text{red}}k_{\text{los.red.}}(\omega) + \left(J_{\Sigma\text{loss}}k_{\text{los.drum}}(\omega) + (m_{\text{belt}} + m_{\text{cargo}})r_{\text{drum}}^2 \right)}{k_{\text{red.}}^2},
\]

(3)

where \(r_{\text{drum}}\) – the radius of the drive drum 4 and the radius of the tension drum 6.

Torque developed by the shaft of the electric motor of the conveyor 1 when starting the conveyor without cargo \(g\) at the angular velocity of the shaft of the electric motor of the conveyor 1 \(\omega\):

\[
M(\omega) = \left[J_{\text{motor}}k_{\text{los.m.}}(\omega) + J_{\text{red}}k_{\text{los.red.}}(\omega) + \left(J_{\Sigma\text{loss}}k_{\text{los.drum}}(\omega) + (m_{\text{belt}} + m_{\text{cargo}})r_{\text{drum}}^2 \right) \right] \varepsilon(\omega),
\]

(4)

\[
M(\omega) = \left[J_{\text{motor}}k_{\text{los.m.}}(\omega) + J_{\text{red}}k_{\text{los.red.}}(\omega) + \left(J_{\Sigma\text{loss}}k_{\text{los.drum}}(\omega) + \frac{(m_{\text{belt}} + m_{\text{cargo}})r_{\text{drum}}^2}{k_{\text{red.}}^2} \right) \right] \varepsilon(\omega),
\]

(5)
where $\varepsilon_1(\omega)$ – angular acceleration of the motor shaft of the conveyor 1 when starting the conveyor without cargo 9.

The calculated torque equation during acceleration of the conveyor with a cargo of 9 with the angular velocity of the shaft of the conveyor motor ω:

$$M(\omega) = \left[J_{e.moto} k_{los.m}(\omega) + J_{red} k_{los_red}(\omega) + \left(\frac{J_{e.dum} k_{los.dum}(\omega) + (m_{belt} + m_{cargo}) r_{dum}^2}{k_{red}^2} \right) \right] \varepsilon_1(\omega),$$ \hspace{1cm}(6)

where $\varepsilon_2(\omega)$ – angular acceleration of the motor shaft of the conveyor 1 when starting the conveyor with a cargo of 9.

Equating (5) and (6), we determine the weight of the cargo m_{cargo} transported by the conveyor:

$$m_{cargo} = \frac{k_{red}^2}{r_{dum}^2} \left(J_{e.moto} k_{los.m}(\omega) + J_{red} k_{los_red}(\omega) + \left(\frac{J_{e.dum} k_{los.dum}(\omega) + (m_{belt} + m_{cargo}) r_{dum}^2}{k_{red}^2} \right) \right) \left(\frac{\varepsilon_1(\omega) - \varepsilon_2(\omega)}{\varepsilon_2(\omega)} \right) \hspace{1cm}(7)$$

The proposed dynamic method of controlling the weight of the cargo transported by the conveyor filed an application for the invention.

The dynamic method of controlling the weight of the cargo transported by the conveyor can also be carried out on the basis of an analysis of the dynamics of the moving weight of the conveyor (belt and cargo) when the frequency of the voltage supplying the driving motor is changed for cases of movement of an empty conveyor and movement of a conveyor with some cargo (figure 2).

Figure 2. Dynamic method of controlling the cargo transported by the conveyor: 1 – Conveyor electric motor; 2 – Conveyor belt; 3 – Transported cargo; 4 – Sensor linear acceleration of the conveyor belt.

Implemented the proposed dynamic method of controlling the weight of the cargo transported by the conveyor as follows.

At the initial stage, there is no cargo on the conveyor belt. The conveyor belt with a specific law of change in the frequency of the supply voltage of the driving motor of the voltage conveyor with a certain
initial frequency in a given interval of angular velocities of the rotor of the driving motor reports acceleration a.

Then the frequency of the supply voltage is returned to the initial one, the cargo is placed on the conveyor belt and the frequency of the supply voltage is changed according to the same specific law of change in the frequency of the supply voltage of the driving motor, while the acceleration a_1 is reported to the conveyor belt with cargo.

Let's write the projections of the acting forces on the axis Ox for the first and second changes of the voltage supplying the driving motor:

$$ F = ma, $$

$$ F = (m_{belt} + m_{cargo})a_1, $$

where $m_{belt} -$ weight of conveyor belt; $m_{cargo} -$ weight of cargo.

Since the law of changing the frequency of the supply network during the first and second changes was identical, the force applied by the side of the drive motor developed with the first and second changes in the frequency of the supply network is the same.

Equating (8) to (9), we determine the unknown weight m_{cargo}:

$$ m_{cargo} = m_{belt} \frac{(a - a_1)}{a_1} $$

An application for the invention of the Russian Federation has been submitted for the presented dynamic method of control of the weight cargo of the transported by the conveyor based on the analysis of linear accelerations of the conveyor belt [13].

3. Conclusion
From a scientific point of view, of interest is the study of the dependence of the influence of individual internal and external factors on the accuracy of control of the weight cargo of a transported by the conveyor, the development of a control method using a dynamic method, the development of a dynamic control tool, and proposals for integrating algorithms for implementing a dynamic method into standard conveyor control systems.

References
[1] GOST 22644-77 1977 Belt conveyors Basic parameters and dimensions
[2] Zhongbin W, Bin X, Zhen L, Ruijuan C, Zhiyong R, Yuefeng D, Eiji I, Muneshi M, Takashi O and Yasumaru H 2019 Modelling and verification of driving torque management for electric tractor: Dual-mode driving intention interpretation with torque demand restriction Biosystems Engineering 182 65–83
[3] Bowen N, Shanmei C, Baokang Y and Fengxing Z 2018 Examination and implementation for direct torque controlled permanent magnet synchronous motor with space vector modulation First Published 233 153–63
[4] Ortega R, Barabanov N and Valderrama G 2001 Direct torque control of induction motors: Stability analysis and performance improvement IEEE Transactions on Automatic Control 46 1209–22
[5] Buja, Giuseppe, Casadei, Domenico, Serra and Giovanni 1998 Direct stator flux and torque control of an induction motor: Theoretical analysis and experimental results IECON Proceedings (Industrial Electronics Conference) 1 pp 50–64
[6] Cecati C and Rotondale N 1999 Torque and speed regulation of induction motors using the passivity theory approach IEEE Transactions on Industrial Electronics 46 119–27
[7] Galvan E, Carrasco J M, Ortega R, Escobar G and Stanković A M 2001 A family of switching control strategies for the reduction of torque ripple on the direct torque and flux control for
induction motors *IECON Proceedings (Industrial Electronics Conference)* 2 pp 1274–9

[8] Elloumi, Mobsen, Ben-Brahim, Lazhar, Al-Hamadi and Mohamed A 1998 Survey of speed sensorless controls for IM drives *IECON Proceedings (Industrial Electronics Conference)* 2 1018–23

[9] Lorenz R D, Lipo T A and Novotny D W 1994 Motion Control with Induction Motors *Proceedings of the IEEE* 82 1215–40

[10] Lascu C, Boldea I and Blaabjerg F 2004 Direct torque control of sensorless induction motor drives: A sliding-mode approach *IEEE Transactions on Industry Applications* 40 582–90

[11] Lixin Tang and Rahman M F 2001 A new direct torque control strategy for flux and torque ripple reduction for induction motors drive by using space vector modulation *IEEE 32nd Annual Power Electronics Specialists Conference* (IEEE Cat. No. 01CH37230)

[12] Kasatkin A S 1983 *Electrical Engineering*

[13] Egorov A V 2018 Method of determining the weight of cargo transported by conveyor *Application patent RF 2018119802*