INTRODUCTION

Breast cancer is the most common female cancer and a leading cause of female deaths worldwide. Of the five major breast cancer subtypes, the triple-negative breast cancers (TNBCs) have the worst prognosis because of their limited treatment options and highly metastatic nature. Several studies suggest a role for the epithelial-to-mesenchymal transition (EMT) program in the metastatic propensity of TNBCs. Indeed, increased expression of various EMT proteins (for example, Vimentin, Slug and ZEB1) has been reported in many TNBC cases, where they appear to correlate with increased invasiveness and poor disease-free survival.

EMT is a complex and tightly regulated process that confers mesenchymal properties (for example, increased motility and invasiveness) to epithelial cells (reviewed in Kalluri and Weinberg). The switch in cellular behavior and characteristics during EMT is accomplished mostly by EMT-associated transcription factors (for example, Snail/Slug, ZEB1/2) that function to promote the loss of epithelial components (for example, E-cadherin) and gain of mesenchymal proteins (for example, Vimentin). These EMT transcription factors are activated by many cytokines or growth factors including the transforming growth factor-β (TGFβ) pathway (reviewed in Puiseux et al.).

The TGFβ pathway controls many normal and pathological processes in addition to EMT. Either via the canonical cascade involving Smad proteins (for example, Smad2/3) or the noncanonical cascade involving non-Smad proteins (for example, phosphatidylinositol 3 kinase/AKT, extracellular signal-regulated protein kinase-1/2; reviewed in Zhang and Heldin), TGFβ suppresses or promotes tumor progression in breast cancers (BCa). In early-stage BCa, TGFβ is a potent inhibitor of uncontrolled cell proliferation; however, in advanced BCa, TGFβ promotes metastasis as the cells become refractory to TGFβ growth inhibition. The mechanism underlying the switch in TGFβ function from a tumor suppressor to tumor promoter is not well understood but studies implicate the TGFβ receptors (TGFβR1 and 2) as critical determinants of the functional specificity of the TGFβ signaling cascade. A metastasis-associated TGFβ response signature that includes expression of several EMT-associated genes was recently identified in breast tumors, further highlighting the importance of TGFβ signaling in EMT induction and malignant progression of BCa.

Recently, the transcription factor Kaiso was identified as a regulator of E-cadherin expression and EMT in prostate and breast tumors. Kaiso is a unique dual-specificity transcription factor that recognizes and binds a consensus Kaiso-binding sequence (KBS), TCCTGCNA, or methylated CpG-dinucleotides. Most Kaiso target genes (for example, CCND1, S100A4, MMP7, CDH1) identified...
to date are linked to tumor onset, progression and metastasis.22–25 Thus, not surprisingly, Kaiso is implicated in various human cancers (breast, colon, lung, prostate), and appears to have both tumor suppressive and promoting roles.19,20,26–30 Indeed, high Kaiso expression correlates significantly with estrogen receptor-α negativity, basal/TNBCs and poor prognosis in patients with infiltrating BCA.20,29 More recently, Kaiso was implicated as a potential drug target in glucocorticoid-combined chemotherapy in breast cancer.30 However, the precise roles and mechanism of action of Kaiso in tumorigenesis remain poorly understood. Here, we report that high Kaiso expression in BCA patients correlates with high expression of the TGFβ signalsome and shorter metastasis-free survival. Silencing Kaiso expression in TNBC cells attenuates TGFβ signaling and TGFβR1 expression, and induces an EMT reversal concomitant with decreased EMT protein expression. More importantly, silencing Kaiso strongly inhibited TNBC cell metastasis in two mouse metastasis models. However, although expression of a constitutively active TGFβR1 in Kaiso-depleted TNBC cells rescued TGFβ signaling, this was insufficient to restore the metastatic abilities of these cells. Our results present the first evidence linking Kaiso to TGFβ signaling and BCA metastasis \textit{in vivo}, and highlight a clinically relevant role for Kaiso in the metastasis of aggressive breast tumors.

\section*{RESULTS}
High Kaiso expression correlates with poor prognosis in breast cancer patients

Kaiso is highly expressed in several TNBC cell lines (our unpublished data) and nuclear Kaiso expression has been linked with EMT and TNBC aggressiveness.20,29 To determine the clinical relevance of Kaiso (ZBTB33) expression in aggressive BCa, we analyzed The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) (GSE20685) breast cancer data sets. Consistent with an earlier study29 most high Kaiso-expressing tumors lacked the estrogen receptor. However, the highest and most statistically significant Kaiso expression correlated with TNBC cases (Figure 1a). Importantly, Kaplan–Meier survival curves revealed that patients with high Kaiso-expressing tumors (ZBTB33 high) had a poorer overall survival (log-rank test, \(P = 0.0052\)) and

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{High Kaiso expression correlates with shorter metastasis-free survival and EMT. (a) Analysis of the publicly available TCGA breast cancer (BCa) data set revealed that high Kaiso expression correlates with ER (−) negativity and TNBC. **\(P < 0.001\). (b) Patients from the TCGA (\(n = 977\)) and the GEO (GSE20685) (\(n = 327\)) data sets were segregated into Kaiso (ZBTB33)-high, Kaiso-intermediate and Kaiso-low groups based on transcript levels. Kaplan–Meier survival curves revealed a significant negative correlation between high Kaiso expression, overall survival and distant metastasis-free survival in all BCa cases. Statistical significance was determined by log-rank test and \(P\)-values are indicated. (c) RT–PCR and immunoblot analysis of control and Kaiso-depleted MDA-231 and Hs578T cells. (d) Phase-contrast images of control and Kaiso-depleted MDA-231 and Hs578T cells. (e) Phase-contrast images of Kaiso-depleted MDA-231 cells transfected with either an empty or mKaiso vector. Scale bar, 100 \(\mu\)M.}
\end{figure}

Oncogenesis (2016), 1 – 10
shorter distant metastasis-free survival (log-rank test, \(P = 0.02 \)) compared with patients with intermediate or low Kaiso-expressing tumors (Figure 1B) in all BCA cases. These findings suggested a clinically relevant role for Kaiso in TNBC.

Kaiso-depleted TNBC cell lines undergo mesenchymal-to-epithelial transition
As a first step to unraveling the function of Kaiso in TNBC, we generated stable Kaiso depletion in two highly invasive TNBC cell lines (MDA-231 and Hs578T) using two independent Kaiso-specific short hairpin (sh)-RNAs. As Kaiso was linked to EMT,\(^{20}\) we first confirmed that Kaiso depletion (sh-K1, sh-K2) altered the expression of the EMT proteins E-cadherin and Vimentin (Figure 1C and Supplementary Figure 1). Increased E-cadherin expression was observed in Kaiso-depleted (sh-K) MDA-231 cells but not in Hs578T counterparts (Figure 1C and Supplementary Figure 1). In contrast, Kaiso-depleted MDA-231 and Hs578T cells both exhibited decreased expression of the EMT-inducing transcription factors Slug and ZEB1 but increased expression of the epithelial protein ZO-1 (Figure 1C). These gene expression changes resulted in a concomitant induction of a mesenchymal-to-epithelial transition phenotype in Kaiso-depleted MDA-231 and Hs578T cells (despite Hs578T-sh-K cells lacking any obvious E-cadherin expression) (Figure 1D). Re-expression of a sh-resistant Kaiso complementary DNA (cDNA; mKaiso) in MDA-231-sh-K cells restored the mesenchymal phenotype (Figure 1E). Thus, in addition to directly regulating E-cadherin expression,\(^{19,20}\) Kaiso may indirectly regulate E-cadherin and EMT via modulation of transcription factors that repress E-cadherin.

Kaiso depletion attenuates the metastasis of TNBC cells
The link of Kaiso to distant metastasis-free survival in BCA patients and EMT (Figure 1)\(^ {19,20}\) led us to question whether Kaiso was essential for TNBC dissemination. Thus, we investigated the effect of Kaiso depletion on TNBC cell metastasis in a mouse model where Kaiso-depleted MDA-231 and Hs578T cells were injected subcutaneously into the mammary fat pads of immunocompromised mice and allowed to form tumors. In support of our hypothesis, we found that Kaiso-depleted MDA-231 cells exhibited only a few small metastatic foci in the lungs (Figure 2Ai and iii), whereas control MDA-231 control-injected mice exhibited extensive metastases in lungs (Figure 2Ai and iv) and liver (Figure 2Ai and -iii) as previously shown.\(^ {32,33}\) Similarly, control Hs578T cells exhibited modest metastases that were limited to the lungs of all xenografted mice (\(n = 7; \) Figure 2Av) compared with Kaiso-depleted Hs578T injected mice that displayed very few metastatic foci in the lungs (\(n = 7; \) Figure 2Av) compared with Kaiso-depleted Hs578T injected mice that displayed very few metastatic foci in the lungs (\(n = 7; \) Figure 2Av). Collectively, these findings highlight for the first time the importance of Kaiso expression on the metastasis of TNBC cells.

Kaiso expression positively correlates with TGFβ signaling protein expression
To successfully undergo metastasis, tumor cells must activate various cellular processes in addition to EMT, to enable their extravasation, survival in the circulatory system and establishment at secondary sites.\(^ {34}\) To elucidate how Kaiso might potentiate the complete metastatic cascade, we analyzed the TCGA BCA dataset to correlate Kaiso expression with other genes implicated in tumor progression and metastasis. We found that high Kaiso expression positively correlates with several TGFβ signaling genes including Smad2, Smad4 and TGFBR1 (Figure 3A). Examination of the expression levels of various TGFβ signaling components in Kaiso-depleted TNBC cells revealed that silencing Kaiso attenuated the expression of TGFBR1 and TGFBR2 at both the transcript and protein levels in both cell lines (Figures 3B and C). However, there were no significant changes in Smad2 or Smad4 expression in either cell line (data not shown). Notably, TGFBR1 and TGFBR2 expression was upregulated following expression of a sh-resistant Kaiso form in Kaiso-depleted MDA-231 cells (Figure 3D).
Kaiso depletion attenuates TGFβ signaling and transcriptional responses

The TGFβR1 and TGFβR2 serine/threonine kinases are essential for activation of the TGFβ signaling cascade. Hence, loss of either the expression or function of TGFβR1 or TGFβR2 perturbs TGFβ signaling. As our Kaiso-depleted cells displayed decreased TGFβR1 and TGFβR2 expression, we hypothesized that suppressing Kaiso would attenuate TGFβ signaling. Indeed, Kaiso-depleted MDA-231 and Hs578T cells treated with recombinant human Kaiso had negligible levels of phosphorylated Smad2 (p-Smad2) that is indicative of active TGFβ signaling.37

Figure 3. Kaiso expression positively correlates with TGFβ signaling components in triple-negative tumors. (a) Heat map showing the positive correlation between Kaiso expression and TGFβ signaling proteins. (b, c) Kaiso depletion attenuates TGFβR1 and TGFβR2 transcript and protein levels, as assessed by quantitative RT-PCR and immunoblot analysis, that is rescued upon re-expression of a sh-resistant Kaiso cDNA (d). β-Actin serves as a loading control. *P < 0.05, **P < 0.005.

Kaiso binds the TGFβR1 and TGFβR2 promoter endogenously

As Kaiso depletion attenuated TGFβR1 and TGFβR2 expression, we next assessed whether Kaiso promotes TGFβ signaling through regulation of TGFβR1 and TGFβR2. We performed electrophoretic mobility shift assay analyses using purified GST-Kaiso-DPOZ fusion proteins as previously described, and oligonucleotides derived from the TGFβR1 (KBS 1–4) and TGFβR2 (KBS 1–2, 3, 4) promoters that each contains several KBS and/or CpGs (Tables 1 and 2).

High Kaiso and TGFβR1 expression correlates with poor survival in BCa patients

As the TGFβ pathway is highly implicated in BCa metastasis, we utilized the TCGA BCa dataset and correlated the expression levels of Kaiso, TGFβR1 or TGFβR2 with BCa survival. Consistent with Chen et al., high TGFβR1 (Supplementary Figure 6) but not high...
TGFβR2 expression (data not shown) correlated with poor prognosis in BCa patients, although not significantly. Remarkably, increased Kaiso and TGFβR1 expression, but not increased Kaiso and TGFβR2 expression, correlated significantly with poor overall survival in BCa patients (Figures 6a and b). Kaiso may thus drive metastasis through TGFβR1 but not TGFβR2.

Kinase-active TGFβR1 rescues TGFβ signaling but not the metastatic abilities of Kaiso-depleted MDA-231 cells. Based on the above findings, we questioned whether restoration of TGFβ signaling in Kaiso-depleted cells would restore their metastatic abilities. To address this, we overexpressed a constitutively kinase-active TGFβRI (TRI204D) in Kaiso-depleted MDA-231 and Hs578T cells. TRI204D overexpression in Kaiso-depleted cells restored TGFβ signaling as evidenced by increased p-Smad2 and other non-Smad proteins (pAkt) compared with MDA-231-sh-K cells (Figure 7a). Remarkably, although TRI204D overexpression restored TGFβ signaling, it was insufficient to restore the metastatic potential of the Kaiso-depleted cells (compare with metastatic foci generated by MDA-231-Sh cells in the lungs of injected mice) (Figure 7b). This suggested that Kaiso expression is important for TGFβ-mediated breast tumor metastasis.

DISCUSSION

Most cancer-related deaths are because of tumor metastasis to vital organs. The recent association of Kaiso with EMT coupled with its misexpression in several aggressive cancers (prostate, breast) implicates Kaiso in metastasis. In this study we report for the first time that Kaiso depletion attenuated the metastatic ability of highly invasive TNBC cells (MDA-231 and Hs578T) in mouse models of metastasis. As our in vitro studies showed that Kaiso-depleted cells underwent mesenchymal-to-epithelial transition and exhibited a more epithelial phenotype (that is, increased E-cadherin and ZO-1 but decreased Slug, ZEB1 and Vimentin expression), the effect of Kaiso depletion on the metastatic potential of breast tumor cells may be partially attributed to the attenuated EMT phenotype observed in these cells.

EMT is itself regulated by several distinct signaling pathways. Thus, it was intriguing to find that Kaiso expression positively correlates with the expression of several members of the TGFβ signalosome. Importantly, Kaiso associates with proximal TGFβRI and TGFβR2 promoter regions, and Kaiso depletion results in reduced TGFβRI and TGFβR2 expression, and attenuated TGFβ signaling. Consequently, TGFβR-dependent activation of target genes like ANGPTL4 and ZEB1 that are known to promote tumor dissemination and invasiveness, was impaired by Kaiso silencing. As the TGFβ pathway is highly implicated in BCa metastasis, the effect of Kaiso depletion on the metastasis of MDA-231 and Hs578T cells may be due to attenuation of TGFβ signaling in these cells, that is, loss of Kaiso-dependent regulation of TGFβR1/2 expression.

Several studies suggest that expression levels of the TGFβ receptors (high vs low) may determine the biological specificity of the TGFβ signaling cascade and the differential activation of Smad vs non-Smad signaling pathways. Our finding that Kaiso regulates expression of both TGFβRI and TGFβR2 raises the possibility that Kaiso plays a central role in TGFβ-mediated tumorigenic effects. Consistent with this theory, our studies revealed that high Kaiso and TGFβRI but not TGFβR2 expression is associated with poor overall survival in BCa patients. As metastasis accounts for poor overall survival in cancer patients, we surmise that Kaiso-dependent regulation of TGFβRI but not TGFβR2 promotes TNBC metastasis.

Our unexpected finding that TGFβ treatment increased Kaiso expression in breast tumor cells suggests that TGFβ signaling may positively regulate Kaiso expression, and thus form a positive feedback loop that enhances TGFβ-mediated signaling and metastasis (Figure 8a). Intriguingly, Kaiso may itself be required for TGFβ signaling or participate in other pathways implicated in BCa metastasis as overexpression of a kinase-active TGFβRI in Kaiso-depleted MDA-231 cells was insufficient to rescue their metastatic abilities. Such findings are consistent with our model (Figure 8b), and other studies that have implicated increased Kaiso...
expression in the aggressiveness and overall survival of BCA patients.20,29 However, it remains to be determined whether increased TGFβ signaling first induces high Kaiso expression or vice versa.

Collectively, these data implicate Kaiso as an important factor in TNBC aggressiveness and metastasis and suggest that it may be a relevant target for the development of therapies that will restrain the metastasis of aggressive breast cancers such as those of the TNBC subtype. Our finding that Kaiso can modulate TGFβ signaling further suggests that targeting Kaiso will alter the pro-metastatic phenotype associated with TGFβ signaling in advanced breast cancers.

Table 1. Oligonucleotides representing different potential Kaiso-binding sites in the TGFβR1 promoter

TGFβR1 probe name	Oligonucleotide sequence (5′–3′)	Location
KBS-1 WT	CTGATCTCTGCTATCTAAGGGTTTA	−1212 to −1208
KBS-1 MUT	CTGATCTCTGCTATCTAAGGGTTTA	−1212 to −1208
KBS-2 WT	ATTTTGCGCTGCCAGGGAAAGGTGGGGCCTGCTCTCAGTAATTAG	−1035 to −1002
KBS-2 MUT	ATTTTGCGCTGCCAGGGAAAGGTGGGGCCTGCTCTCAGTAATTAG	−1035 to −1002
KBS-3 WT	GGTGCTGCGCTGCCAGGCCGCCACCAGGCC	−289 to −283
KBS-3 MUT	GGTGCTGCGCTGCCAGGCCGCCACCAGGCC	−289 to −283
KBS-4 WT	GCTGCGGCTGCTTGCGACCTGCG	−117 to −111
KBS-4 MUT	GCTGCGGCTGCTTGCGACCTGCG	−117 to −111

Abbreviations: KBS, Kaiso-binding sequence; MUT, mutated; TGFβR1, transforming growth factor β receptor 1; WT, wild type. KBS—emboldened; CpG dinucleotides—underline; mutated nucleotides—italic.

Table 2. Oligonucleotides representing different potential Kaiso-binding sites in the TGFβR2 promoter

TGFβR2 probe name	Oligonucleotide sequence (5′–3′)	Location
KBS-1 WT	ATGGGCTGGTGGCAGAAGAGGGA	−1401 to −1395
KBS-1 MUT	ATGGGCTGGTGGCAGAAGAGGGA	−1401 to −1395
KBS-2 WT	CCGCCTCCTCGTCGCTCTCCTCTGCTC	−1081 to −1075
KBS-2 MUT	CCGCCTCCTCGTCGCTCTCCTCTGCTC	−1081 to −1075
KBS-3 WT	TTAGTTTTCTGCTACTTACTTATA	−707 to −701
KBS-3 MUT	TTAGTTTTCTGCTACTTACTTATA	−707 to −701
KBS-4 WT	AAACATGATGTCGCTAGAAGATTAG	−35 to −29
KBS-4 MUT	AAACATGATGTCGCTAGAAGATTAG	−35 to −29

Abbreviations: KBS, Kaiso-binding sequence; MUT, mutated; TGFβR2, transforming growth factor β receptor 2; WT, wild type. KBS—emboldened; mutated nucleotides—italic.

Figure 5. Kaiso associates with the endogenous TGFβR1 and TGFβR2 promoter in breast cancer cell lines. (a) Schematic illustration of the TGFβR2 promoter highlighting multiple KBS. Four double-stranded oligonucleotides were designed to contain core KBS from different regions of the promoter and utilized in electrophoretic mobility shift assay (EMSA) to determine Kaiso binding. (b) EMSA shows that Kaiso binds the proximal TGFβR2 promoter in a KBS-dependent manner (lanes 6, 10 and 14). This interaction was abolished (lanes 8, 12 and 16) upon introduction of a point mutation in the core KBS sequence of these probes or competition with the cold unlabeled wild-type probe. (c) ChIP of MDA-231 and Hs578T chromatin revealed that Kaiso binds the TGFβR2 promoter endogenously. (d) ChIP experiments of MDA-231 and Hs578T chromatin shows that Kaiso also interacts with the TGFβR1 promoter endogenously after 5′-aza-cytidine treatment. Representative images are shown. All experiments were conducted in triplicate. H3, Histone 3 positive control; Input, 10% input. MUT, mutated; NTC, no template control; WT, wild type.
Figure 6. High Kaiso and TGFβR1 expression correlates with poor prognosis in breast cancer patients. (a) Kaplan–Meier survival curves show that high Kaiso and TGFβR1 expression correlates negatively with overall survival in the TCGA breast cancer data set. (b) High Kaiso and TGFβR2 expression does not correlate with overall survival in the TCGA breast cancer data set. Statistical significance was determined by log-rank test and \(P \)-values are indicated.

Figure 7. Re-expression of a constitutively active TGFβR1 in Kaiso-depleted cells is insufficient to restore breast cancer metastasis. (a) Overexpression of a constitutively active TGFβR1 (TR1\(^{204D}\)) in Kaiso-depleted cells restores TGFβ signaling as evidenced by increased levels of p-Smad2 and p-Akt. (b) Hematoxylin and eosin (H&E) staining shows that overexpression of kinase-active TGFβR1 in Kaiso-depleted cells did not restore the metastatic capabilities of the cells. Representative images are shown. β-Actin serves as a loading control.

MATERIALS AND METHODS

Cell culture

The human breast cancer cell lines MDA-231 and MCF-7 were obtained from ATCC (Manassas, VA, USA), and Hs578T were a generous gift from Dr John Hassell (McMaster University, Hamilton, Canada). All cell lines were cultured as previously described.\(^{47}\) For all TGFβ treatments, 10 ng/ml of TGFβ1 (R&D Systems, Minneapolis, MN, USA) was used.

Generation of stable Kaiso-depleted cell lines

Kaiso depletion was achieved using a pRetroSuper (pRS) vector containing Kaiso-specific shRNAs (sh-Kaiso) that targeted the mRNAs sequences, S′-AAAAGATCATTGTTACCGATT-3′ referred to as sh-K1, or S′-TTTTAACAT TCATTCTTGGAGAAG-3′ referred to as sh-K2. Then, 6 μg of pRS-sh-Kaiso plasmid or control vector (pRS-Kaiso scrambled) were transfected into MDA-231 or Hs578T using the Turbofect transfection reagent (Thermo Scientific, Waltham, MA, USA) according to the manufacturer’s instructions. At 48 h post transfection, cells were treated with Puromycin (Invitrogen, Carlsbad, CA, USA) at 0.8 μg/ml (MDA-231) or 1.5 μg/ml (Hs578T) to select for stable Kaiso knockdown. Optimal Kaiso depletion was confirmed using immunoblot analysis of whole-cell lysates of individual clones, and clones exhibiting efficient Kaiso knockdown were selected for further studies.
Figure 8. Potential model of the role of Kaiso in tumor progression and metastasis. (a) TGFβ signaling increases Kaiso expression that in turn promotes TGFβ signaling through increased expression of TGFβR1 and/or TGFβR2. TGFβ and Kaiso then promote EMT through increased expression of Slug, ZEB1 and/or Vimentin. (b) Less aggressive breast cancers exhibit low Kaiso expression, whereas highly metastatic breast tumors display high Kaiso expression, correlating with shorter metastasis-free survival. However, it remains to be determined whether high Kaiso expression occurs before tumor cells become highly aggressive or vice versa.

Table 3. List of primer sequences used for RT–PCR analysis with their annealing temperatures

Target	Sequence (5’–3’)	Annealing temperature
Kaiso	Forward TGCCCTTATAACAGATCTTT	55 °C
E-cadherin	Reverse AGTAGGTGTGATATTGTGTTAAAG	
ZO-1	Reverse CACCCTGCTTTGACGGCAAG	63 °C
Vimentin	Reverse AAACGAGGCCCCGATGGGCGG	
Slug	Reverse AGAGGAAAGGGCATGGAGAGT	63 °C
ZEB-1	Reverse AGAATTCACAGTGGAGAGCC	60 °C
β-Actin	Reverse CTTCTCCCCGCTTGAGTTC	60 °C

Abbreviation: RT–PCR, reverse transcription–PCR.

Table 4. List of primer sequences used for qRT–PCR analysis with their annealing temperatures

Target	Sequence (5’–3’)	Annealing temperature
Kaiso	Forward TGGCAAGAACGAGGAGAGCT	60.8 °C
TGFβR1	Reverse CGTTTTGTATGTGCACCCTC	60 °C
TGFβR2	Reverse GCCAGGTGATGACTTTACAGTAGT	60 °C
ZEB-1	Reverse CGTTTCTTGCAGTTTGGGCATT	53 °C
ANGPTL4	Reverse CTTCTCCCCGCTTGAGTTC	55 °C

Abbreviation: qRT–PCR, quantitative reverse transcription–PCR.

Quantitative RT–PCR

RNA (1 μg) isolated using the GeneJet RNA-plus isolation kit (Macherey-Ngelfel) from control and TGFβ1-treated Kaiso-depleted cells was converted to cDNA using the qScript cDNA SuperMix (Quanta BioSciences, Gaithersburg, MD, USA) according to the manufacturer’s protocols. For quantitative RT–PCR reactions, cDNA was amplified using the PerfeCta SYBR Green SuperMix ROX (Quanta BioSciences) as described in Pierre et al., with the primers indicated in Table 4. The expression of each target was determined using a standard curve and normalized to the expression levels of β-actin. Statistical significance (using t-test and one-way analysis of variance with Tukey’s test where appropriate) was determined using data obtained from at least three trials.

Electrophoretic mobility shift assay

Double-stranded oligonucleotides corresponding to the specified KBS in the TGFβR1 and TGFβR2 promoters (see Table 1) were biotin-labeled using a Biotin 3′ End DNA Labeling kit (Pierce Biotechnology, Rockford, IL, USA) as per the manufacturer’s protocol. TGFβ1 probes containing a CpG dinucleotide (KBS2–4) were also methylated with the CpG methyltransferase (M.SssI; New England Biolabs, Ipswich, MA, USA) as described in Pierre et al. Following biotinylation, complementary oligonucleotides were annealed by heating to 90 °C for 1 min and then allowed to cool slowly to room temperature. The reaction was then frozen and stored at −20 °C until use. Binding reactions were performed using 100 fmol of biotinylated double-stranded DNA probe and 200 ng of purified protein in 20 μl of binding buffer (10 mM Tris pH 7.5, 100 mM NaCl, 1 mM EDTA, 25% Glycerol, 1 mM dithiothreitol and Halt protease phosphatase inhibitor cocktail). To eliminate nonspecific binding, reaction mixtures were first incubated with 2 μg poly (deoxyinosinic-deoxycytidylic acid) (poly dI-dC) on ice for 1 h. Reaction mixtures containing biotinylated double-stranded DNA probe were incubated at room temperature for 30 min. For competition assays, a 100-fold excess (10 pmol) of unlabeled (cold) DNA was added. Reaction mixtures were loaded onto a 4.8% non-denaturing polyacrylamide gel and electrophoresed in 0.5× TBE at 100 V at 4 °C. Nucleic acids were

Oncogenesis (2016), 1 – 10
transferred onto a nylon membrane in 0.5 x TBE and the membrane crosslinked using a 312 nm UV lamp for 10 min. Visualization was performed utilizing a horseradish peroxidase-conjugated streptavidin Chemiluminescent Nucleic Acid Detection Module kit (Pierce) and hyperfilm (GE Healthcare, Mississauga, ON, Canada, 28906839) according to the manufacturer’s protocol. Where applicable, experiments were performed in triplicate.

ChIP and ChIP–PCR
MDA-231 and Hs578T cells were cultured to achieve ~80% confluency before chromatin isolation. Treatment with the demethylating agent, 5-azacytidine, ChIP and ChIP–PCR experiments were performed as previously described.42,43 The following primers (~1035/−1008) KBS forward: 5′-AGGGCAAAATTGGAGCTGAG-3′ and (~1035/−1008) KBS reverse: 5′-GAGGCGTCCGAATTGCCTCTA-3′ at 65 °C, (~35/−29) KBS forward: 5′-CAGCTGAAAAGGCTGCCAAAG-3′ and (~35/−29) KBS reverse: 5′-AGCCTTAGCCTCTTCTGATG-3′ were used to amplify minimal TGFβR1 and TGFβR2 promoter regions respectively containing one or more core KBS (CTGCA)n and/or CpGs. The following primers were used as negative controls to confirm Kaiso binding specificity: (~2960/−2725) TGFβR1 negative-forward: 5′-GGAGCGTGGAGGAATTTGCAT-3′ and (~2960/−2725) TGFβR1 negative-reverse: 5′-CTCCAGTGGCTTGTACCCTG-3′ and (~2642/−2274) TGFβR2 negative-forward: 5′-TTGCCAAAGTCTCTCCAGAT-3′ and (~2642/−2274) TGFβR2 negative-reverse: 5′-TGGCCCAAAGTCTCTCCAGAT-3′.

Ethics statement and metastasis studies
All experiments with NOD.Cg-Pkd1<+/−>/2Rig<+/−>Sn2j or NOD SCID Gamma (NSG) mice were approved by the Animal Research Ethics Board at McMaster University (AUP Number 14-05-14) and performed in accordance with the guidelines of the Animal Research Ethics Board. Female and male NSG mice were purchased from Charles River (Wilmington, MA, USA). To his provision of the pCMV5-HA-TGFβR1, Dr Gerard Blobe (Duke University Medical Center, USA) for polyclonal antibody and Dr Albert Reynolds (Vanderbilt University) for the rabbit anti-Kaiso polyclonal antibody and Dr Gerard Blobe (Duke University Medical Center, USA) for his provision of the pCMV5-HA-TGFβR1 vector. This work was funded in part by the Canadian Institutes of Health Research MOP-84320, Canadian Breast Cancer Foundation, the Jaravinski Hospital and Cancer Center Foundation and the Natural Sciences and Engineering Research Council RGPIN-238700. BIB-A was supported in part by a Schlumberger Faculty for the Future Fellowship.

Experimental metastasis studies
For experimental metastasis, 5 x 10⁵ MDA-231 and 1 x 10⁶ Hs578T control (Ctrl) and sh-Kaiso (sh-K) cells resuspended in 200 μl 1 x phosphate-buffered saline (PBS) were injected into the tail veins of ~6-week-old female NSG mice, whereas 1 x 10⁵ MDA-231 Ctrl, sh-Kaiso empty (sh-K-E) and TGFβR12942 (sh-KTR12942) cells were injected into ~6-week-old female NSG mice (n = 5/cell line). Mice were killed 5–6 weeks post injection and harvested tissues embedded in paraffin before the preparation of 5 μm thick tissue sections on slides that were subsequently H&E stained.

Immunohistochemical staining of xenograft tissues
Harvested xenografts were embedded in paraffin before the preparation of 5 μm thick tissue sections on slides that were either stained with H&E, mouse anti-Kaiso 12H1 monoclonal (1:800)32 and s-Pmd2 (CST-1383D; 1:200 for MDA-231 xenografts and 1:50 for Hs578T xenografts) primary antibodies overnight at 4 °C. Briefly, xenograft tissues were dewaxed by warming on a slide warmer at 60 °C for 20 min followed by immersion in xylene 3 x 5 min. All other steps were performed as previously described,32 but we utilized PBS in place of TBS. Images were obtained using the Aperio Slide scanner (Leica Biosystems, Concord, ON, Canada).

Gene expression analysis of TCGA and GEO data sets
Level 3 IlluminaHiSeq_RNASeqv2 expression (Illumina, iNC., San Diego, CA, USA) and associated clinical data were downloaded for all available patients from the TCGA data portal (19 March 2014; n = 977). We used RSEM-quantified gene expression values to represent gene expression.52 For consistency, we used transcript levels of the genes ESR1 and ERBB2 to assign estrogen receptor and HER2 status to each patient. Transcript profiling data from the GEO dataset, GSE20685 (n = 327), was performed on Affymetrix U133 Plus 2.0 gene chips (Affymetrix, Santa Clara, CA, USA) and downloaded from the GEO website.53 Robust Multi-Array was used to pre-process the dataset and gene expression values were calculated based on median expression of all probe sets mapping to a given gene based on Unigene ID. All genomic data processing was completed using R software.

Statistical analysis
All statistical tests were completed using GraphPad Prism statistical software (GraphPad Software, Inc., La Jolla, CA, USA), and P < 0.05 indicated significance. Data are presented as means ± s.e.m. Unpaired Student’s t-test was used for statistical analysis of two data sets, whereas one-way analysis of variance with Tukey/Newman–Keuls test was used for analysis of more than two data sets.

CONFLICT OF INTEREST
The authors declare no conflict of interest.

ACKNOWLEDGEMENTS
We thank Dr Albert Reynolds (Vanderbilt University) for the rabbit anti-Kaiso polyclonal antibody and Dr Gerard Blobe (Duke University Medical Center, USA) for his provision of the pCMV5-HA-TGFβR1 vector. This work was funded in part by the Canadian Institutes of Health Research MOP-84320, Canadian Breast Cancer Foundation, the Jaravinski Hospital and Cancer Center Foundation and the Natural Sciences and Engineering Research Council RGPIN-238700. BIB-A was supported in part by a Schlumberger Faculty for the Future Fellowship.

REFERENCES
1. Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C et al. GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11 [Internet]. International Agency for Research on Cancer: Lyon, France, 2013.
2. Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA et al. Molecular portraits of human breast tumours. Nature 2000; 406: 747–752.
3. Prat A, Parker JS, Karginova O, Fan C, Livasy C, Herschkowitz JI et al. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res 2010; 12: R68.
4. Foulkes WD, Smith IE, Reis-Filho JS. Triple-negative breast cancer. N Engl J Med 2010; 363: 1938–1948.
5. Cleare DW. Triple-negative breast cancer: a clinical update. Commun Oncol 2010; 7: 203–211.
6. Sarrio D, Rodriguez-Pinilla SM, Hardisson D, Cano A, Moreno-Bueno G, Palacios J. Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res 2008; 68: 899–997.
7. Karihtala P, Auvinen P, Kaapula S, Haapasaaari KM, Jukkola-Vuorinen A, Soini Y, Vimentin, zeb1 and Sip1 are up-regulated in triple-negative and basal-like breast cancers: association with an aggressive tumour phenotype. Breast Cancer Res Treat 2013; 138: 81–90.
8. Yamashita N, Tokunaga E, Kitao H, Hisamatsu Y, Taketani K, Akiyoshi S et al. Vimentin as a poor prognostic factor for triple-negative breast cancer. J Cancer Res Clin Oncol 2013; 139: 739–746.
9. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest 2009; 119: 1420–1428.
10. Puisieux A, Brabletz T, Caramel J. Oncogenic roles of EMT-inducing transcription factors. Nat Cell Biol 2014; 16: 488–494.
11. Akhurst RJ, Hata A. Targeting the TGFBeta signalling pathway in disease. Nat Rev Drug Discov 2012; 11: 790–811.
12. Zhao YE. Non-Smad pathways in TGF-beta signaling. Cell Res 2009; 19: 128–139.
13. Helden CH, Miyazono K, ten Dijke P. TGFBeta-signalling from cell membrane to nucleus through SMAD proteins. Nature 1997; 390: 465–471.
14. Serra R, Crowley MR. TGFBeta in mammary gland development and breast cancer. Breast Dis 2003; 18: 61–73.
15 Rojas A, Padidam M, Cress D, Grady WM. TGF-beta receptor levels regulate the specificity of signaling pathway activation and biological effects of TGF-beta. Biochim Biophys Acta 2009; 1793: 1165–1173.

16 Panu N, Gore-Hyer E, Yamanaka M, Smith EA, Rubinchik S, Dong JY et al. An increased transforming growth factor beta receptor type II ratio contributes to elevated collagen protein synthesis that is resistant to inhibition via a kinase-deficient transforming growth factor beta receptor type II in sclerodermia. Arthritis Rheum 2004; 50: 1566–1577.

17 Wakefield LM, Roberts AB. TGF-beta signaling: positive and negative effects on tumorigenesis. Curr Opin Genet Dev 2002; 12: 22–29.

18 Padua D, Zhang XH, Wang Q, Nadal C, Gerald WL, Gomis RR et al. TGFbeta primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell 2008; 133: 66–77.

19 Jones J, Wang H, Zhou I, Hardy S, Turner T, Austin D et al. Nuclear kaiso indicates aggressive prostate cancers and promotes migration and invasiveness of prostate cancer cells. Am J Pathol 2012; 181: 1836–1846.

20 Jones J, Wang H, Karanam B, Theodore S, Dean-Colomb W, Welch DR et al. Nuclear localization of Kaiso promotes the poorly differentiated phenotype and EMT in infiltrating ductal carcinomas. Clin Exp Metastasis 2014; 31: 497–510.

21 Daniel JM, Spring CM, Crawford HC, Reynolds AB, Baig A. The p120(cri)-binding partner Kaiso is a bi-modal DNA-binding protein that recognizes both a sequence-specific consensus and methylated CpG dinucleotides. Nucleic Acids Res 2002; 30: 2911–2919.

22 Musgrove EA, Caldon CE, Barrclough J, Stone A, Sutherland RL. Cyclin D as a therapeutic target in cancer. Nat Rev Cancer 2011; 11: 558–572.

23 Lloyd BH, Platt-Higgins A, Rudland PS, Barrclough R. Human S100A4 (p92a) induces the metastatic phenotype upon benign tumour cells. Oncogene 1998; 17: 465–473.

24 Adachi Y, Yamamoto H, Itoh F, Hinoda Y, Okada Y, Imai K. Contribution of Kaiso to regulation of cell cycle progression. Gut 1999; 45: 252–258.

25 Onder TT, Gupta PB, Mani SA, Yang J, Lander ES, Weinberg RA. Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res 2008; 68: 3645–3654.

26 Dai SD, Wang Y, Miao Y, Zhao Y, Zhang Y, Jiang GY et al. Cytoplastic Kaiso is associated with poor prognosis in non-small cell lung cancer. BMC Cancer 2009; 9: 178.

27 Lopes EC, Valls E, Figueroa ME, Mazur A, Meng FG, Choisy G et al. Kaiso contributes to DNA methylation-dependent silencing of tumor suppressor genes in colon cancer cell lines. Cancer Res 2008; 68: 7258–7263.

28 Prokhortchouk A, Sansom O, Selfridge J, Caballero IM, Salozhin S, Aithozhina D et al. Kaiso-deficient mice show resistance to intestinal tumor formation. Mol Cell Biol 2006; 26: 199–208.

29 Vermeulen JP, van de Ven RA, Erkan C, van der Groep P, van der Wall E, Bult P et al. Nuclear Kaiso expression is associated with high grade and triple-negative invasive breast cancer. PLoS ONE 2012; 7: e37864.

30 Zhou L, Zhong Y, Yang FH, Li ZB, Zhou J, Liu XH et al. Kaiso represses the expression of glucocorticoid receptor via a methylation-dependent mechanism and attenuates anti-apoptotic activity of glucocorticoids in breast cancer cells. MBM Rep (e-pub ahead of print 1 October 2015).

31 Chaudhry R, Pierre CC, Nanan K, Wojtaj D, Morone S, Pinelli C et al. The POZ-ZF transcription factor Kaiso (ZBTB33) induces inflammation and progenitor cell differentiation in the murine intestine. PLoS ONE 2013; 8: e74160.

32 Iorns E, Drews-Elder K, Ward TM, Dean S, Clarke J, Berry D et al. A new mouse model for the study of human breast cancer metastasis. PLoS ONE 2012; 7: e47995.

33 Thompson EW, Paik S, Brunner N, Sommers CL, Zugmaier G, Clarke R et al. Association of increased basement membrane invasion with absence of estrogen receptor and expression of vimentin in human breast cancer cell lines. J Cell Physiol 1992; 150: 534–544.

34 Steeg PS. Tumor metastasis: mechanistic insights and clinical challenges. Nat Med 2006; 12: 895–904.

35 Xu J, Lamouille S, Derynck R. TGF-beta-induced epithelial to mesenchymal transition. Cell Res 2009; 19: 156–172.

36 Ammanamanchi S, Brattain MG. Restoration of transforming growth factor-beta signaling through receptor RII induction by histone deacetylase activity inhibition in breast cancer cells. J Biol Chem 2004; 279: 32620–32625.

37 Portella G, Cumming SA, Liddell J, Cui W, Ireland H, Akhurst RJ et al. Transforming growth factor beta is essential for spindle cell conversion of mouse skin carcinoma in vivo: implications for tumor invasion. Cell Growth Diff 1998; 9: 393–404.

38 Valcourt U, Kowanez M, Niimi H, Heldin CH, Moustakas A. TGF-beta and the Smad signaling pathway support transcriptomic reprogramming during epithelial-mesenchymal cell transition. Mol Biol Cell 2005; 16: 1987–2002.

39 Yim JJ, Selander K, Chingwin JM, Dallas M, Grubbs BG, Wieser R et al. TGF-beta signaling blockade inhibits PTHP secretion by breast cancer cells and bone metastases development. J Clin Invest 1999; 103: 197–206.

40 Ganapathy V, Ge R, Grazioli A, Xie W, Banach-Petrosky W, Kang Y et al. Targeting the Transforming Growth Factor-beta pathway inhibits human basal-like breast cancer metastasis. Mol Cancer 2010; 9: 122.

41 Joseph JV, Conroy S, Tomar T, Eggens-Meijer E, Bhat K, Copray S et al. TGF-beta is an inducer of ZEB1-dependent mesenchymal transdifferentiation in glioblastoma that is associated with tumor invasion. Cell Death Dis 2014; 5: e1443.

42 Donaldson NS, Pierre CC, Anstey MI, Robinson SC, Weerawardane SM, Daniel JM. Kaiso represses the cell cycle gene cyclin D1 via sequence-specific and methyl-CpG-dependent mechanisms. PLoS ONE 2012; 7: e50398.

43 Pierre CC, Longo J, Bassey-Achibong BI, Hallett RM, Milosavljevic S, Beatty L et al. Methylation-dependent regulation of hypoxia inducible factor-1 alpha gene expression by the transcription factor Kaiso. Biochim Biophys Acta 2015; 1849: 1432–1441.

44 Chen C, Zhao K-N, Masri PP, Lakhani SR, Antonsson A, Simpson PT et al. TGFbeta isoforms and receptors mRNA expression in breast tumours: prognostic value and clinical implications. BMC Cancer 2015; 15: 1010.

45 Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

46 Drake JM, Stroehben H, Bair TB, Moreland JG, Henry MD. ZEB1 enhances transendothelial migration and represses the epithelial phenotype of prostate cancer cells. Mol Cell Biol 2009; 29: 2207–2217.

47 Neve RM, Chin K, Fridyand J, Yeh J, Baehner FL, Fevr T et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 2006; 10: 515–527.

48 Donaldson NS, Nordgaard CL, Pierre CC, Kelly KY, Robinson SC, Swystun L et al. Kaiso regulates Znf131-mediated transcriptional activation. Exp Cell Res 2010; 316: 1692–1705.

49 Pierre CC, Longo J, Bassey-Achibong BI, Hallett RM, Milosavljevic S, Beatty L et al. Methylation-dependent regulation of hypoxia inducible factor-1 alpha gene expression by the transcription factor Kaiso. Biochim Biophys Acta 2015; 1849: 1432–1441.

50 Daniel JM, Irenton RC, Reynolds AB. Monoclonal antibodies to Kaiso: a novel transcription factor and p120ctn-binding protein. Hybridoma 2001; 20: 159–166.

51 The Cancer Genome Atlas. Database: https://tcga-data.nci.nih.gov/tcga/, Retrieved 19 March 2014 (Internet).

52 Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 2011; 12: 323.

Supplementary Information accompanies this paper on the Oncogenesis website (http://www.nature.com/oncsis)