Fate of the false vacuum: Towards realization with ultra-cold atoms

O. Fialko, B. Opanchuk, A. I. Sidorov, P. D. Drummond and J. Brand

1 Institute of Natural and Mathematical Sciences and Centre for Theoretical Chemistry and Physics, Massey University - Auckland, New Zealand
2 Centre for Quantum and Optical Science, Swinburne University of Technology - Melbourne 3122, Australia
3 Dodd-Walls Centre for Photonic and Quantum Technologies, New Zealand Institute for Advanced Study, and Centre for Theoretical Chemistry and Physics, Massey University - Auckland, New Zealand

received 27 January 2015; accepted in final form 1 June 2015
published online 22 June 2015

PACS 67.85.De – Dynamic properties of condensates; excitations, and superfluid flow
PACS 03.75.Mn – Multicomponent condensates; spinor condensates
PACS 98.80.Cq – Particle-theory and field-theory models of the early Universe (including cosmic pancakes, cosmic strings, chaotic phenomena, inflationary universe, etc.)

Abstract – Quantum decay of a relativistic scalar field from a false vacuum is a fundamental idea in quantum field theory. It is relevant to models of the early Universe, where the nucleation of bubbles gives rise to an inflationary universe and the creation of matter. Here we propose a laboratory test using an experimental model of an ultra-cold spinor Bose gas. A false vacuum for the relative phase of two spin components, serving as the unstable scalar field, is generated by means of a modulated radio-frequency coupling of the spin components. Numerical simulations demonstrate the spontaneous formation of true vacuum bubbles with realistic parameters and time-scales.

Copyright © EPLA, 2015

As proposed by Coleman in a seminal paper [1], the false vacuum is a metastable state of the relativistic scalar field that can decay by quantum tunneling, locally forming bubbles of true vacuum that expand at the speed of light. It has a close analogy with the ubiquitous phenomenon of bubble nucleation during a first-order phase transition in condensed matter [2], e.g. the spontaneous creation of vapor bubbles in superheated water [3]. Applied to a quantum field such as the inflaton or Higgs field, bubble nucleation is an event of cosmological significance in some early universe models. Indeed, the Coleman decay scenario of the inflaton field features prominently in the theory of eternal inflation [4,5], where bubbles continuously nucleating from a false vacuum grow into separate universes, each subsequently undergoing exponential growth of space [6]. This scenario, which could potentially explain the value of the cosmological constant by the anthropic principle, is currently being tested against observational evidence in astrophysical experiments [7,8]. For an observer inside the bubble, the tunneling event —occurring in the observer’s past— appears like a cosmological “big-bang”, prior to inflation.

From a theoretical point of view, quantum tunneling from a false vacuum is a problem that can only be solved approximately [1,9] (except for simplified models [10]) due to the exponential complexity of quantum field dynamics. This motivates the search for an analog quantum system that is accessible to experimental scrutiny, to test these models. The utility of such experiments, which complement astrophysical investigations, is that they would provide data that allow verification of widely used approximations inherent in current theories [11]. For example, the collision of two bubbles could provide an observational signature in the temperature anisotropy on the microwave background radiation map [12].

Here we demonstrate how to use an ultra-cold atomic two-component Bose-Einstein condensate (BEC) as a quantum simulator that generates a decaying, relativistic false vacuum. Quantum field dynamics occurs for the relative phase of two spin components that are linearly coupled by a radio-frequency field. In this proposal the speed of sound in the condensate models the speed of light, and the “universe” is less than a millimeter across. Domains of true vacuum are observable using interferometric techniques [13] over millisecond time-scales with realistic parameters.

Modulating the radio-frequency coupling in time allows one to create a metastable vacuum from an otherwise
unstable one [14] following Kapitza’s idea for stabilizing
the unstable point of a pendulum by rocking the
pivot point [15]. Our proposal requires repulsive intra-
component interactions to dominate over inter-component
interactions. To achieve this, we have identified a Fesh-
bach resonance of 40K with a zero crossing for the inter-
component s-wave scattering. Similar couplings in lower
dimensions can also be achieved with a transverse double-
well potential [16–18].

Previous work on ultra-cold atom analog models of the
early universe has focused on the expansion of spacetime [19,20] and the formation of oscillons [21,22]. While interesting cosmological analogs have been explored in liq-
id He [23,24], its use as a quantum simulator is hampered
by the limited tuneability of physical parameters and the
phenomenological nature of available theoretical models.
False vacuum decay models have been successfully applied to the quantum nucleation of phase transitions of liquid He [25,26] in a non-relativistic context, but the nucleation
and decay from a relativistic false vacuum have not yet
been realized in a laboratory experiment. In this letter we
propose an implementation of Coleman’s model of quant-
um decay from a relativistic false vacuum with tuneable
microscopic parameters. We simulate the quantum dy-
namics of the coupled Bose fields in the truncated Wigner
approximation (TWA) [27,28] and demonstrate how the
resulting evolution can be imaged in one, two or three
space dimensions using optical trapping. This shows the
feasibility of a tabletop experiment, and illustrates how
the expected bubble nucleation dynamics depends on the
dimensionality of space.

The dynamics of the scalar field ϕ in Coleman’s
model [1] is given by the equation

$$\partial_t^2 \phi - c^2 \nabla^2 \phi = -\partial_\phi V(\phi),$$

(1)

where c is the speed of light, and the potential $V(\phi)$ has a
metastable local minimum separated from a true vacuum
by a barrier. We emulate this equation with a pseudo
spin-(1/2) BEC, where the speed of light is replaced by the
speed of sound in the BEC, the relative phase between
two spin components assumes the role of the scalar field ϕ,
and the shape of the potential $V(\phi)$ is tunable. In addition
there is an adjustable coupling to phonon degrees of free-
dom in our system, which serves to damp the dynamics.
Our numerical simulations confirm the expected features
of quantum tunneling dynamics with dissipation [29]. By
addressing a radio-frequency transition between the spin
components, the initial state can be prepared and the final
state read out by interferometry.

We consider a two-component BEC of atoms with mass
m and a linear coupling ν realized by a radio-frequency
field. Atoms with the same spin interact via a point-like
potential with strength g. The Hamiltonian reads

$$\hat{H} = \int \text{d}\hat{r} \hat{\psi}_a^+ (\hat{r}) \left[-\frac{\hbar^2 \nabla^2}{2m} - \mu \right] \hat{\psi}_a (\hat{r}) - \nu \int \text{d}\hat{r} \hat{\psi}_b^+ (\hat{r}) \hat{\psi}_b (\hat{r}),$$

(2)

where summation over spin indices $\sigma \in \{-, +\}$ is implied.
The Bose fields satisfy the usual commutation relations
$[\hat{\psi}_a (\hat{r}), \hat{\psi}_b (\hat{r}')] = i \delta_{a\sigma} \delta (\hat{r} - \hat{r}')$. We introduce the quantu m partition function $Z = \int D(\psi^*, \psi) e^{-S[\psi^*, \psi]}$ [30], where

$S[\psi^*, \psi] = \int \text{d}\hat{r} \left[\hat{\psi}_a^+ (\hat{r}) \hat{\psi}_a (\hat{r}) + \hat{\psi}_b^+ (\hat{r}) \hat{\psi}_b (\hat{r}) + \mathcal{H} (\hat{\psi}_a (\hat{r}), \hat{\psi}_b (\hat{r})) \right].$

Here, $\mathcal{H} = (\hat{r} \hat{r})$ is a $(d + 1)$-dimensional vector, $\tau = it/\hbar \in [0, \beta]$ is the imaginary time, $\psi_\sigma (\tau, \hat{r})$ is a complex field subject to the periodic boundary condition $\psi_\sigma (\tau, \hat{r}) = \psi_\sigma (0, \hat{r})$. We look first for a static solution to identify vacua. This amounts to replacing $\psi_\sigma (\tau, \hat{r}) = \psi_\sigma = \text{const}$ in the saddle-point approximation $\delta S/\delta \psi_\sigma = 0$. For $\nu > 0$ we obtain the stable $|\psi_\sigma |^2 = (\mu + \nu)/g$ and unstable $|\psi_0 |^2 = (\mu - \nu)/g$ vacua with the two Bose gases being in phase and out-of-
phase, respectively. Let us introduce new field variables
$\psi_\sigma (\hat{r}) = \rho_\sigma (\hat{r}) e^{i \phi_\sigma (\hat{r})}$, where $\rho_\sigma = \rho_0 + \delta \rho_\sigma (\hat{r})$ and $\rho_0 = |\psi_0 |^2$. The variables $\delta \rho_\sigma$ and ϕ_σ parametrize the deviation of the Bose fields from a vacuum. Substituting this parametrization into the action, we obtain

$$S(\rho, \phi) \approx \int \text{d}\hat{r} \left[\int \frac{i \delta \rho_\sigma \partial_\sigma \phi_\sigma + \hbar^2 \rho_0 \left(\nabla \phi_\sigma \right)^2}{2m} + \frac{2 \mu \rho_0 + \nu \phi_\sigma}{4 \rho_0} \right] + \frac{\hbar^2 \left(\nabla \rho_\sigma \right)^2}{8 \rho_0} - \frac{\nu}{\rho_0} \delta \rho_1 \delta \rho_2 - 2 \nu \rho_0 \cos (\phi_0) - \nu \cos (\phi_0) \delta \rho_0. $$

(3)

where

$$S(\phi_0) = \int \text{d}s \cos (\phi_0(s)) \cos (\phi_0(s')) \mathcal{G}(s - s')$$

(4)

where the field potential $V(\phi_0) = -4 \nu g \rho_0 \cos (\phi_0(1 + \nu \cos (\phi_0)/4 \rho_0))/h^2$ and $c = \sqrt{g \rho_0/m}$ is the speed of sound. The non-local kernel $\mathcal{G}(\hat{r}, \hat{r}') = (\beta V)^{-1} \sum_{\omega_n > 0} \sum_{k>0} e^{-i(\omega_n \tau + k \hat{r})} \omega_n^2/\left[\omega_n^2 + (\hat{c} h)^2 k^2 \right]$ is expressed through summation over Fourier momentum k and Matsubara frequencies $\omega_n = 2 \pi n/\beta$. The second line of the above equation is the result of integration over the density fluctuations. The new action is similar to the one studied in ref. [29], where the effect of dissipation on quantum dynamics was explored. Following ref. [29] we obtain the following equation of motion for the relative phase:

$$\partial_t^2 \phi_0 - c^2 \nabla^2 \phi_0 + \frac{4 \nu^2 \xi}{h^2 c} \partial_t \phi_0 = -\partial_\phi \mathcal{V}(\phi_0).$$

(5)

It is similar to eq. (1) with a new friction-like third term, due to coupling with density fluctuations. We note that in cosmological models such friction-like behavior may occur due to a homogeneous expansion of space, as commonly described by the Hubble constant [31].
Fate of the false vacuum: Towards realization with ultra-cold atoms

A single-trajectory simulation of the false vacuum decay in 1D with \(N_{\text{grid}} = 256 \) and dimensionless parameters \(\lambda = 1.2, \tilde{\omega} = 50, \tilde{\nu} = 0.01, \tilde{L} = 100, \tilde{\rho}_0 = 200, a_{11} = 59.5a_0, a_{22} = 60.5a_0, a_{21} = 0 \) (corresponding to a two-component \(^{41}\)K condensate in a ring trap with frequency \(\omega = 2\times10^4 \), trap circumference \(L = 254 \mu m \), transverse frequency \(\omega_x = 2\pi \times 1913 Hz \), observation time \(T = 24.9 ms \), oscillator amplitude \(\Omega = 2\pi \times 9.56 Hz \), frequency \(\omega = 2\pi \times 9.56 kHz \) and modulation \(\delta = 0.085 \)).

(a) Example of bubble formation: the spinor Bose field is initially in a false vacuum (\(\tilde{t} = 0.9 \), blue solid line); quantum fluctuations cause the field to tunnel out (\(\tilde{t} = 4.5 \), green dashed-dotted line); three bubbles are formed in true vacua (\(\tilde{t} = 9 \), yellow dashed line); they grow until one bubble meets another bubble in the second minimum, creating a domain wall (\(\tilde{t} = 15 \), pink dotted line). (b) Effective field potential (dotted lines mark the maxima). (c) Evolution of the number density difference \(p_x \) after a \(\pi/2 \) rotation, which changes the relative phase into a population difference.

By varying the tunnel coupling \(\nu \) periodically in time, it is possible to alter the effective potential so that \(\phi_0 = \pi \) becomes a local minimum, which corresponds to a false vacuum in the sense of Coleman. We consider rapid oscillations of the tunnel coupling \(\nu_t = \nu + \delta \hbar \omega \cos(\omega t) \), where the frequency of oscillations is \(\omega \gg \omega_0 \equiv 2\sqrt{\tilde{m}g\rho_{\nu}}/\hbar \). Following Kapitza [15] the field \(\phi_0 \) may be viewed now as a superposition of a slow component \(\phi_0 \) and rapid oscillations. Averaging rapid oscillations in time yields an equation of the form (5) with \(\phi_0 \rightarrow \phi_0 \) and \(V(\phi_0) \rightarrow V_{\text{eff}}(\phi_0) = -\omega_0^2 [\cos \phi_0 - 0.5 \lambda^2 \sin^2 \phi_0] \). This potential, shown in fig. 1(b), develops a local minimum at \(\phi_0 = \pi \) if \(\lambda = \delta h\omega_0/\sqrt{2\nu} > 1 \), which corresponds to a false vacuum. Multiple equivalent true vacua occur at the global minima with \(\phi_0 = 0, 2\pi, 4\pi, \ldots \).

We perform stochastic numerical simulations on the full BEC model (2) to investigate the bubble nucleation numerically and compare the results with the predictions of the effective theory developed above. The TWA, where a quantum state is represented by a stochastic phase-space distribution of trajectories following the Gross-Pitaevskii equation [27,28], enables one to simulate the entire experimental model of a three-dimensional coupled spinor BEC, in the limit of large occupation numbers per mode. This method is already known to accurately simulate BEC interferometric experiments down to the quantum noise level [13].

Our initial state construction then proceeds by assuming each mode is initially in a coherent state. The corresponding Wigner distribution is a Gaussian in phase space. The primary physical effect of the noise is to allow spontaneous tunneling and scattering processes that are disallowed in pure Gross-Pitaevskii theory. Quantum noise is added to the classical false vacuum state as \(\psi(r) = \psi_0(r) + \sum_{j=1}^M \alpha_j \exp(ik_j r)/\sqrt{V} \). Here \(\alpha_j \) are complex Gaussian variables with \(\alpha_j^* \alpha_i = \delta_{ij}/2 \), thus sampling fluctuations of the false vacuum. The TWA can give errors in rate predictions for tunneling in deep potential wells [32]. Therefore, we study the tunneling of the field through a relatively shallow potential barrier where the process is fast, and where the method is most reliable. This is both an experimentally viable regime, and also appropriate for modern cosmological models. Quantum tunneling for a shallow potential well is equivalent to an activation process caused by the vacuum fluctuations of the quantum field, represented by the initial fluctuations of the Wigner phase-space representation.

The TWA is a truncation of the expansion in the powers of \(M/N \) up to and including the terms of order 1 [28]. Therefore, the number of modes \(M \) is chosen to represent the physical system, while being much smaller than the number of atoms \(N \). For the 1D and the 3D simulations, \(M/N \equiv N_{\text{grid}}^d/(L^d \rho_0) \approx 10^{-2} \), and for the 2D simulation \(M/N \approx 3 \times 10^{-2} \), where \(N_{\text{grid}} \) and \(L \) are the number of grid points and the length of simulation volume in one dimension, respectively.

In terms of dimensionless units \(\tilde{t} = t\omega_0, \tilde{x} = x/x_0 \), where \(x_0 = c/\omega_0 \), the time-dependent coupled equations that propagate the state are written as

\[
\frac{d\tilde{\psi}_j}{dt} = -\left(-\sqrt{\nu}\tilde{\omega}^2 + \frac{1}{2\sqrt{\nu}} \left(\frac{|\tilde{\psi}_j|^2 - \delta}{\tilde{\rho}_0} - \tilde{\nu} + \frac{1}{2\sqrt{\nu}} \right) \tilde{\psi}_j \right) - \frac{\sqrt{\nu}}{2} \left(1 + 2\sqrt{2\nu} \tilde{\omega} \cos(\tilde{\nu} \tilde{t}) \right) \tilde{\psi}_{j-1},
\]

where \(j = 1, 2, \tilde{\psi}_j = \psi_j/x_0^{d/2}, \tilde{\omega} = \omega/\omega_0, \tilde{\nu} = \nu/g\rho_0, \tilde{\rho}_0 = \rho_0 x_0^{d/2}, \tilde{\delta} = (N_{\text{grid}}/L)^4 \) and \(\tilde{L} = L/x_0 \).

The results of the simulations are shown in fig. 1. The single-trajectory dynamics show the creation of three bubbles. Collisions of bubbles result either in the creation of localized long-lived oscillating structures known as oscillons [22,33,34], or domain walls if the colliding bubbles belong to topologically distinct vacua.

To quantify the tunneling process, we calculate the probability that the system has not yet decayed at time \(\tilde{t} \). At long time-scales it should behave as \(\mathcal{F} = \exp(-\Gamma \tilde{t}) \) [35], where \(\Gamma \) is the decay rate from the false vacuum. From the probability of bubble creation over time \(\mathcal{P}(\tilde{t}) \), the “survival” probability can be calculated as
For implementing an analog quantum simulation of the false vacuum we propose to use a spinor condensate with suppressed inter-state scattering length a_{12}. As an example, a two-component condensate [13] of 41K atoms prepared in two Zeeman states $|1\rangle = |F = 1, m_F = 1\rangle$ and $|2\rangle = |F = 1, m_F = 0\rangle$ is predicted to have an inter-state Feshbach resonance with $a_{12}\approx 0$ at 675.3 G [36]. States $|1\rangle$ and $|2\rangle$ are separated by 61.93 MHz at this magnetic field and are coupled via a magnetic dipole transition. The two intra-state scattering lengths are $a_{11} = 59.5 a_0$ and $a_{22} = 60.5 a_0$, where a_0 is the Bohr radius. The stretched state $|1\rangle$ will be condensed in the optical dipole trap. The s-wave scattering length a_{11} has a favourable value for the fast thermalization process and is not too large to introduce inelastic losses. A pulsed radiofrequency field of 61.93 MHz will generate a 50 : 50 superposition of two states $|1\rangle$ and $|2\rangle$.

A toroidal or flat linear atom trap with tight transverse confinement (~ 10 kHz) will provide the 1D system with the desired initial uniform distribution of the atom density along the axial coordinate. Simulation data shown in fig. 1 and fig. 2 corresponds to a 1D toroidal trap. A similar experiment is also feasible in 2D or 3D, using experimentally realized 2D [37] and uniform 3D [38] trapping potentials. The results of the corresponding simulations with realistic experimental parameters are shown in figs. 3 and 4. The 2D simulations of fig. 3 show the nucleation of near spherical bubbles and demonstrate both the formation of domain walls and 2D oscillons, i.e., long-lived localized non-topological structures. The 3D simulations reveal even...
more complex dynamics with multiple nested bubbles having a novel topological structure seen in fig. 4(a). More detailed simulations and results from prospective experiments may further elucidate the nature of complex bubble structures and questions like the prevalence of asymmetry in bubble creation.

Demonstrating the false vacuum decay by quantum tunneling will pave the way to analog quantum simulations of a cosmological process that is currently not accessible to exact computer simulation. Combined with accurate observational data of the correlations in the cosmic microwave background, this may eventually lead to refined cosmological models of the birth of the Universe.

We thank Jeremy Mould and Richard Easther for their comments, and Grigory Volovik for pointing out ref. [26]. This work has been supported by the Marsden Fund of New Zealand (contract Nos. MAU1205 and UOO1320), the Australian Research Council, the National Science Foundation under Grant No. PHYS-1066293 and the Aspen Center for Physics.

REFERENCES

[1] Coleman S., Phys. Rev. D, 15 (1977) 2929.
[2] Langer J., Ann. Phys., 41 (1967) 108.
[3] Schmelzer J. W. P. (Editor), Nucleation Theory and Applications (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany) 2005.
[4] Vilenkin A., Phys. Rev. D, 27 (1983) 2848.
[5] Guth A. H., J. Phys. A: Math. Theor., 40 (2007) 6811.
[6] Coleman S. and De Luccia F., Phys. Rev. D, 21 (1980) 3305.
[7] Fenney S. M., Johnson M. C., Mortlock D. J. and Peiris H. V., Phys. Rev. Lett., 107 (2011) 071301.
[8] Bousso R., Harlow D. and Senatore L., Phys. Rev. D, 91 (2015) 083527.
[9] Callan C. G. and Coleman S., Phys. Rev. D, 16 (1977) 1762.
[10] Drummond P. D. and Kinsler P., Phys. Rev. A, 40 (1989) 4813.
[11] Georgescu I. M., Ashhab S. and Nori F., Rev. Mod. Phys., 86 (2014) 153.
[12] Wainwright C. L. et al., J. Cosmol. Astropart. Phys., 2014 (2014) 030.
[13] Egorov M. et al., Phys. Rev. A, 84 (2011) 021605(R).
[14] Opanchuk B., Polkinghorne R., Fialko O., Brand J. and Drummond P. D., Ann. Phys., 525 (2013) 866.
[15] Kapitza P. L., Sov. Phys. JETP, 21 (1951) 588.
[16] Kaurov V. M. and Kuklov A. B., Phys. Rev. A, 71 (2005) 011601.
[17] Gritsev V., Polkovnikov A. and Demler E., Phys. Rev. B, 75 (2007) 174511.
[18] Brand J., Haigh T. J. and Zülicke U., Phys. Rev. A, 80 (2009) 011602.
[19] Fischer U. R. and Schützhold R., Phys. Rev. A, 70 (2004) 063615.
[20] Menicucci N. C., Olson S. J. and Milburn G. J., New J. Phys., 12 (2010) 095019.
[21] Neuenhahn C., Polkovnikov A. and Marquardt F., Phys. Rev. Lett., 109 (2012) 085304.
[22] Amin M. A., Easther R., Finkel H., Flauger R. and Hertzberg M. P., Phys. Rev. Lett., 108 (2012) 241302.
[23] Bauerle C., Bunkov Y. M., Fisher S. N., Godfrin H. and Pickett G. R., Nature, 382 (1996) 332.
[24] Volovik G. E., The Universe in a Helium Droplet (Oxford University Press, Oxford) 2009.
[25] Sato H., Morishita M., Ogata M. and Kato H., Phys. Rev. Lett., 69 (1992) 335.
[26] Tye S.-H. H. and Wohls D., Phys. Rev. B, 84 (2011) 184518.
[27] Steel M. et al., Phys. Rev. A, 58 (1998) 4824.
[28] Sinatra A., Lobo C. and Castin Y., J. Phys. B, 35 (2002) 3599.
[29] Caldeira A. O. and Leggett A. J., Phys. Rev. Lett., 46 (1981) 211.
[30] Atland A. and Simons B., Condensed Matter Field Theory (Cambridge University Press) 2010.
[31] Liddle A. R. and Lyth D. H., Cosmological Inflation and Large-Scale Structure (Cambridge University Press) 2000.
[32] Fialko O., Bradley A. S. and Brand J., Phys. Rev. Lett., 108 (2012) 015301.

[33] Vachaspati T., Kinks and Domain Walls: An Introduction to Classical and Quantum Solitons (Cambridge University Press) 2006.

[34] Su S.-W. et al., Phys. Rev. A, 91 (2015) 023631.

[35] Takagi S., Macroscopic Quantum Tunneling (Cambridge University Press) 2006.

[36] Lysebo M. and Veseth L., Phys. Rev. A, 81 (2010) 032702.

[37] Hadzibabic Z., Krüger P., Cheneau M., Rath S. P. and Dalibard J., New J. Phys., 10 (2008) 045006.

[38] Gaunt A. L., Schmidutz T. F., Gotlibovych I., Smith R. P. and Hadzibabic Z., Phys. Rev. Lett., 110 (2013) 200406.