Coupling of Human DNA Excision Repair and the DNA Damage Checkpoint in a Defined in Vitro System*

Received for publication, December 12, 2013, and in revised form, January 7, 2014. Published, JBC Papers in Press, January 8, 2014, DOI 10.1074/jbc.M113.542787

Laura A. Lindsey-Boltz‡, Michael G. Kemp‡, Joyce T. Reardon‡, Vanessa DeRocco‡, Ravi R. Iyer§¹, Paul Modrich‡¶, and Aziz Sancar‡

From the ‡Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7260 and the ‡Department of Biochemistry and ¶Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710

Background: Nucleotide excision repair and the ATR-mediated DNA damage checkpoint responses are genetically coupled.

Results: We have analyzed the basic steps of ATR activation in a biochemically defined system.

Conclusion: ATR signaling requires enlargement of the DNA excision gap by EXO1.

Significance: The six excision repair factors, ATR-ATRIP, TopBP1, and EXO1 constitute the minimum essential set of proteins for ATR-activation upon UV-induced DNA damage.

DNA repair and DNA damage checkpoints work in concert to help maintain genomic integrity. In vivo data suggest that these two global responses to DNA damage are coupled. It has been proposed that the canonical 30 nucleotide single-stranded DNA gap generated by nucleotide excision repair is the signal that activates the ATR-mediated DNA damage checkpoint response and that the signal is enhanced by gap enlargement by EXO1 (exonuclease 1) 5′ to 3′ exonuclease activity. Here we have used purified core nucleotide excision repair factors (RPA, XPA, XPC, TFIIH, XPG, and XPF-ERCC1), core DNA damage checkpoint proteins (ATR-ATRIP, TopBP1, RPA), and DNA damaged by a UV-mimetic agent to analyze the basic steps of DNA damage checkpoint response in a biochemically defined system. We find that checkpoint signaling as measured by phosphorylation of target proteins by the ATR kinase requires enlargement of the excision gap generated by the excision repair system by the 5′ to 3′ exonuclease activity of EXO1. We conclude that, in addition to damaged DNA, RPA, XPA, XPC, TFIIH, XPG, XPF-ERCC1, ATR-ATRIP, TopBP1, and EXO1 constitute the minimum essential set of factors for ATR-mediated DNA damage checkpoint response.

DNA damage activates three major biochemical pathways in eukaryotic cells: DNA repair, DNA damage checkpoints, and apoptosis (1). The DNA damage checkpoint response delays or arrests cell cycle progression that helps prevent the mutagenic or lethal consequences of damage to the cell. In mammalian organisms two main DNA damage checkpoint pathways/networks have been defined based on the damage-sensing kinases that initiate the signal: the ataxia telangiectasia mutated (ATM)⁴ pathway and the ATM and Rad3-related (ATR) pathway (2). Although there is some overlap and crosstalk between the two signaling pathways, in general, most studies support the view that ionizing radiation and other agents that produce double-strand breaks in DNA activate the ATM pathway, while ultraviolet (UV) light and other genotoxic agents that generate bulky base adducts activate the ATR-mediated checkpoint signaling pathway (3). The ATM kinase is activated by recruitment by the MRN complex to duplex termini generated by double-strand breaks and dimer to monomer transition or during oxidative stress by formation of disulfide crosslinks between the two subunits of the ATM homodimer (4). In the case of ATR, the signal could be the bulky adduct itself (5, 6), the stalled replication fork (7, 8), the transcription elongation complex stalled at the site of damage (9), the repair complex assembled at the site of damage (10), or the canonical 30 nucleotide gap generated by nucleotide excision repair (11–13). Although overwhelming evidence indicates that in S phase the stalled replication fork and the long stretches of ssDNA that result from replication fork stalling are the primary signals for the ATR-mediated checkpoint (14), the contributions of other factors to checkpoint activation in G₁ and G₂/M are not as well-defined (3). However, several studies have strongly supported a model whereby the canonical 30-nucleotide gap generated by nucleotide excision repair is enlarged by EXO1, and the enlarged single-stranded gap (presumably occupied by RPA protein) constitutes the major signal for the ATR-mediated checkpoint response outside of S phase (15–17).

While the in vivo data is compelling in support of the model, there are alternative explanations for some key observations upon which the model is based because transient knockdown of many gene products outside the core constituents of nucleotide excision repair have been reported to interfere with ATR-me-

*This work was supported by National Institutes of Health Grant GM32833 (to A. S.) and GM45190 (to P. M.).

‡ Present address: Teva Pharmaceuticals, Inc, 145 Brandywine Parkway, West Chester, PA 19380.

‡ An Investigator of the Howard Hughes Medical Institute.

§ To whom correspondence should be addressed: Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, CB#7260, Chapel Hill, NC 27599-7260. Tel.: 919-962-0115; E-mail: Aziz_Sancar@med.unc.edu.

4 The abbreviations used are: ATM, ataxia telangiectasia-mutated; UV, ultraviolet; RPA, replication protein A; ssDNA, single-stranded DNA; AAF, N-acetoxy-2-acetylaminofluorene; ATR, ataxia-telangiectasia-mutated and Rad3-related; AAD, ATR-activating domain.
Coupling DNA Excision Repair and the ATR-mediated Checkpoint

EXPERIMENTAL PROCEDURES

Protein Purification—The excision repair proteins His-XPA, XPC-HR23B, XPG, and XPF-ERCC1 were purified as recombinant proteins using the Sf21/baculovirus insect cell/vector system as previously described (18). The multi-subunit TFIIH complex was purified from HeLa Flp-In T-Rex cells (19, 20) expressing tetracycline-inducible FLAG-p62 as described in the manufacturer’s directions (Invitrogen), and purified with P11 chromatography and affinity chromatography with anti-FLAG-M2 agarose (Sigma) as previously described (21). The ATR-ATRIP complex was similarly purified from HeLa Flp-In T-Rex cells containing a tetracycline-inducible Flag epitope-tagged ATRIP subunit by anti-FLAG-M2 affinity chromatography as previously described (22). The following proteins were purified as recombinant proteins expressed in Escherichia coli as previously described: GST-TopBP1-His (23), EXO1 (amino acids 1–450) (24), GST-p53 (Addgene plasmid 10852) (25), and RPA (26). The purified proteins were separated on 4–15% TGX-PAGE and analyzed by silver staining.

Cell Lines and Antibodies—Immortalized wild-type (WT) and Exo1−/− mouse embryonic fibroblasts (MEFs) were cultured in DMEM containing 10% fetal bovine serum (FBS) and penicillin/streptomycin. The MEFs were grown in DMEM containing 0.5% FBS for 3–4 days. Irradiation of cells with UV light involved the removal of the medium from the cells, exposure to a UV-C light source (254 nm), and replacement of the medium. Following a 1-h incubation, cells were washed with cold PBS, scraped from the plate into cold PBS, and then lysed in a buffer containing 25 mM HEPES-KOH pH 7.9, 100 mM KCl, 12 mM MgCl₂, 0.5 mM EDTA, 12.5% glycerol, 1 mM DTT, and 0.5% Nonidet P-40. Cell lysates were fractionated by SDS-PAGE, transferred to nitrocellulose, and analyzed by immunoblotting.

The following primary antibodies were obtained from the indicated companies and used at the indicated dilution: from Cell Signaling Technology, phospho-Chk1-Ser345 (catalogue no. 2348, 1:10,000), phospho-p53-Ser15 (catalogue no. 9284, 1:10,000); from Bethyl Laboratories, RPA1 (catalogue no. A300–241A, 1:2,000) and phospho-RPA2-Ser33 (catalogue no. A300–246A, 1:10,000); from Santa Cruz Biotechnology, Inc., Chk1 (catalogue no. sc-8408, 1:2,000), GST (catalogue no. sc-138, 1:1,000), and from Leica Biosystems, p53 (NCL-p53–505, 1:1,000).

Preparation of DNA Substrates—Gapped plasmid was generated by treating pBC-KS.nick (28) with Nt.BbvCI endonuclease which cuts only one strand of the plasmid 43 nucleotides apart. The excised oligomer was released by heat denaturation in the presence of excess complementary oligo. The dsX174 ssDNA was purchased from New England Biolabs (N3023). N-Acetoxy-2-acetylaminofluorene (AAF) was obtained from the NCI Chemical Carcinogen Repository (Midwest Research Institute, Kansas City, MO). AAF-damaged plasmid DNA (pBC-KS.nick) was prepared as described previously (23). The concentration of AAF was empirically determined to generate ~3 adducts per plasmid.

Excision Repair Assay—The repair assay was performed as previously described (18). Unmodified or AAF-damaged plasmid DNA (100 ng) was incubated in a 12.5-μl reaction containing the core excision repair factors (XPA (86 ng), XPC-hR23B (17.5 ng), XPF-ERCC1 (7.5 ng), XPG (4 ng), TFIIH (100 ng), and 170 ng of RPA). The final reactions contained 23 mM Hepes-KOH (pH 7.9), 44 mM KCl, 2.5 mM MgCl₂, 2 mM ATP, 2.5% glycerol, 0.04 mM EDTA, and 0.2 mM DTT. After 90 min at 30 °C, 2.5 μl of the reaction was diluted 1:4 with TE buffer and reserved for kinase assays. To the remaining 10 μl, 2 μl of phenol and 12 μl of agarose gel-loading buffer containing TBE (0.1 M Tris, 0.1 M boric acid, 0.002 M EDTA), 1% SDS, 0.05% bromphenol blue, and 10% glycerol was added and then separated on an ethidium bromide-containing 1% agarose gel, which was then analyzed using a Bio-Rad Molecular Imager ChemiDoc XRS+ system.

Checkpoint Assay—The procedure was essentially as previously described (29). Briefly, kinase assay reactions contained 14 μM Hesperidin, pH 7.9, 30 mM KCl, 1 mM MgCl₂, 1 mM ATP, 0.5 mM DTT, 2% glycerol, and 1 μM microcin in a 12-μl final volume. Purified ATR-ATRIP (0.2 nM), TopBP1 (2.5 nM), RPA (100 nM), p53 (50 nM), and EXO1 (8 nM), where indicated, were incubated in reaction buffer for 20 min at 30 °C with DNA (2 ng) as indicated. The reactions were terminated by the addition of 3 μl of 5× SDS-PAGE loading buffer (100 mM Tris, pH 6.8, 10% (v/v) glycerol, 200 mM DTT, 2% (w/v) SDS, 0.01% (w/v) bromphenol blue) and then boiled and separated by 15% SDS-PAGE. Phosphorylation of p53 and RPA2 were detected by immunoblotting using the indicated phospho-specific antibodies, and the level of total protein was subsequently detected by immunoblotting the same membrane with the indicated antibodies. Chemiluminescent signals were visualized with Clarity Western blotting detection reagent (Bio-Rad) and analyzed with the Molecular Imager ChemiDoc XRS+ system (Bio-Rad). The highest phosphorylation signal on each blot was set to 100%, and the levels of phosphorylation of other samples were expressed relative to this value. Graphed values are the average and S.D. from at least two independent experiments.

RESULTS

Purification of Nucleotide Excision Repair and ATR Checkpoint Signaling Proteins—In vitro assays with cell-free extract to test various models for ATR-mediated checkpoint signaling are hampered by the fact that, in humans, DNA-PK is the most...
Two general models have been proposed for coupling of repair
and DNA damage checkpoint proteins. The excision repair
proteins XPA, XPC-HR23B, XPG, and XPF-ERCC1 were puri-
fied as recombinant proteins using the Sf21/baculovirus insect
cell/vector system. The multisubunit TFIIH was purified from
HeLa cells containing an inducible FLAG epitope-tagged p62
subunit through conventional chromatography steps and con-
tained some minor high molecular weight contaminants. The
identities of the main bands seen by silver staining as those
corresponding to the known TFIIH subunits were confirmed by
immunoblotting. The ATR-ATRIP complex was similarly puri-
fied from HeLa cells containing an inducible FLAG epitope-
tagged ATRIP subunit by affinity chromatography, yielding a
preparation in which the major protein bands on SDS-PAGE
are ATR and ATRIP as confirmed by immunoblotting. The
ATR co-activator, TopBP1, was purified as a recombinant pro-
tein expressed in E. coli, as were EXO1 nuclease, p53, and RPA.

A Model System for Excision Repair-Checkpoint Coupling—
Two general models have been proposed for coupling of repair
to the DNA damage checkpoint. In one, it is suggested that
either the mismatch repair protein MutSα (36) or the nucleo-
tide excision repair protein XPA (10) binds to a mismatch or to
a bulky base adduct, respectively, and by some ill-defined
mechanism recruits ATR to damage sites and stimulates its
kinase activity. While these mechanisms may play some minor
roles in ATR activation, attempts to demonstrate such effects in
defined systems have not been successful. In the alternative
mechanism, it is proposed that the canonical 30-nt-long exci-
sion gap generated by nucleotide excision repair either as such
or after enlargement by exonucleases constitutes the structure/
signal that couples nucleotide excision repair to ATR-initiated
DNA damage checkpoint (11–13).

To test the model that the 30-nt-long nucleotide excision
repair-gap either as is, or after processing by EXO1 exonu-
clease, constitutes the signal for ATR checkpoint, we first used
a model DNA substrate. A plasmid DNA containing a 43-
nucleotide gap was generated by treating the plasmid with
Nt.BbvCI endonuclease, which cuts at two sites 43 nucleotides
apart in only one strand of the plasmid. The gap generated by
nicking with this enzyme followed by release of the excised
oligomer by heat denaturation was used in our reconstituted
ATR-ATRIP + TopBP1 kinase system with RPA2 (RPA32 sub-
unit of RPA) as a substrate for ATR kinase, and the results are
shown in Fig. 2A. The unprocessed gap was insufficient to acti-
vate ATR (lane 5). However, upon addition of human EXO1,
which enlarges the gap by digesting DNA in the 5’ to 3’ direc-
tion, resulted in ATR activation as efficiently as ssDNA (com-
pare lanes 6 and 4). Addition of EXO1 to reactions containing
circular dsDNA had no significant effect (lane 8). Thus, we
conclude that the canonical 30-nt excision gap would constitu-
te a signal for ATR kinase after enlargement with EXO1.

We and others have previously reported that Ser\(^{33}\) of RPA2 is
phosphorylated by ATR in a manner dependent on ssDNA in in
vitro kinase assays (37, 38). This residue of RPA2 is known to be
phosphorylated by ATR in cells treated with UV light (39). How-
ever, it has not been reported whether RPA phosphoryla-
tion at this site occurs in a manner dependent on excision repair
and EXO1. Therefore, we examined phosphorylation of RPA2
after UV in WT and Exol\(^{-/-}\) mouse embryonic fibroblast
(MEF) cells, and the results are shown in Fig. 2B. We find that in
quiescent cells, where UV-induced ATR activation is known to
be dependent on nucleotide excision repair (11–13, 40), that
indeed, RPA2 is phosphorylated on Ser\(^{33}\), and the phos-
phorylation is dependent on the presence of EXO1 (compare lanes 2
and 4). As was previously shown (15), p53 phosphorylation on
Ser\(^{8}\) (equivalent to Ser\(^{15}\) in human p53) is also dependent on
EXO1 under these conditions. Also as previously reported (13),
in quiescent cells Chk1 protein levels are low and there is no detectable phosphorylation at Ser345. In contrast, as expected, in asynchronous cells where ATR activation after UV is largely the result of replication fork stalling, phosphorylation of RPA2, p53, and Chk1 is not dependent on EXO1 (lane 8). Thus, we conclude that RPA2 phosphorylation on Ser33 and p53 phosphorylation on Ser15 are the physiologically relevant readouts for ATR activation dependent on excision gap enlargement by EXO1 after UV-induced DNA damage in quiescent cells, and we set out to test this model in our defined system in vitro.

Human Nucleotide Excision Repair in Vitro and Excision Gap Enlargement with EXO1—*N*-Acetoxy-2-acetylaminofluorene (*N*-Aco-AAF)-damaged DNA is one of the best substrates for nucleotide excision repair (41), and is considered to be a UV-mimetic (42). Therefore, for our checkpoint assay we used AAF-damaged plasmid as a substrate for the reconstituted human excision nuclease system to generate the excision gaps that have been proposed to initiate checkpoint signaling. First, we tested the specificity of our reconstituted excision nuclease system by using undamaged and AAF-modified plasmids with the 6 core repair factors in a nicking assay for excision repair. As seen in Fig. 3A, the purified repair factors are virtually free of nonspecific endonucleases as evidenced by the lack of nicking activity on undamaged DNA under conditions where on average one gap per plasmid is produced in damaged DNA (Fig. 3A, lane 2 versus lane 4). Because it has been proposed that the enlargement of the excision gap significantly amplifies the checkpoint signal we tested the effect of EXO1 on the gapped plasmid. As seen in Fig. 3B, with increasing concentration of EXO1, the gapped plasmid band becomes more diffuse in the agarose gel, while the band corresponding to covalently closed DNA remains unchanged, consistent with the prediction that EXO1 enlarges the excision repair gap. Because the excision gap is enlarged in individual gapped molecules to varying degrees, the “open circular” plasmid band on the agarose gel has a diffuse appearance.

Coupling DNA Excision Repair and the ATR-mediated Checkpoint

FIGURE 2. EXO1-dependent ATR Activation. A, a model system for excision repair-checkpoint coupling. ATR kinase reactions were carried out with ATR-ATRIP, TopBP1, RPA, and EXO1 as indicated. 0.6 ng (27 pm) single-stranded dX174 DNA (ssDNA), plasmid DNA (dsDNA), or gapped DNA was added to the reaction as indicated and incubated 20 min at 30 °C. Reactions were analyzed by immunoblotting for phospho-RPA2 (Ser33) and RPA1.

FIGURE 3. Repair factor- and damage-dependent gap generation and resection by EXO1. A, repair factor (RF)-dependent generation of gapped-DNA. Excision reactions were performed with unmodified DNA (lanes 1 and 2) or AAF-damaged DNA (lanes 3 and 4) in the presence (lanes 2 and 4) or absence (lanes 1 and 3) of the 6 core excision repair factors (RF). The percentage of gapped DNA was quantified from identical repeats of the experiment and presented as mean ± S.D. (n = 3). B, EXO1 specifically digests the gapped DNA generated by repair factors. After 90 min, excision reactions with AAF-damaged DNA without lanes 1–3) or with repair factors (lanes 4–6), EXO1 was added at the indicated concentrations for an additional 10 min before analysis by agarose gel electrophoresis (0: lanes 1 and 4, 4 nM: lanes 2 and 5, 8 nM: lanes 3 and 6).
tors in the absence and presence of EXO1 and tested for ATR signaling using RPA2 phosphorylation as a readout. The results are shown in Fig. 4. As is clear from the figure, even though a low level signal is seen with undamaged DNA, in agreement with earlier data (23), only the combination of AAF-DNA + Repair Factors + ATR-ATRIP + TopBP1 resulted in strong checkpoint signaling well above all other combinations including signal with undamaged DNA (lane 7 versus lane 1, p < 0.01), with damaged DNA in the absence of repair factors (lane 7 versus lane 9, p < 0.01), or with both damaged DNA and repair factors but in the absence of EXO1 (lane 7 versus lane 12, p < 0.01). The low level of ATR kinase activity observed in the presence of TopBP1 and undamaged DNA (lanes 1 and 3) and with damaged DNA in the absence of repair factors (lane 9) is consistent with previous observations that under certain experimental conditions DNA + TopBP1 are sufficient to cause moderate checkpoint activation both in vitro (23) and in vivo (43).

FIGURE 4. Repair-checkpoint coupling as measured by RPA phosphorylation by ATR. Kinase reactions containing 100 nM RPA as a substrate were incubated 20 min at 30 °C. 0.2 nM ATR-ATRIP, 2.5 nM TopBP1, and 8 nM EXO1 were added, as indicated, to kinase reactions containing 4 ng unmodified (UM) or AAF DNA from excision reactions with or without repair factors (RF) as indicated. All six repair factors were required, as determined by omission studies (data not shown). Reactions were analyzed by immunoblotting for phospho-RPA2 (Ser33). The blots were also analyzed for RPA1 to control for loading. The relative levels of phosphorylated RPA2 from identical repeats of the experiment were quantified and presented as mean ± S.D. (n ≥ 3).

FIGURE 5. DNA concentration effect and kinetics of ATR checkpoint signaling. A, titration of unmodified (UM) or AAF DNA (2, 4, or 8 ng) from excision reactions with or without repair factors (RF) into kinase reactions containing ATR-ATRIP, TopBP1, RPA, and EXO1 as in Fig. 4. B, time course analysis of RPA2 phosphorylation in kinase reactions with 4 ng of DNA as in panel A. The graphs below show the relative levels of phosphorylated RPA2 from identical repeats of the experiments quantified and presented as mean ± S.D. (n ≥ 3).

DISCUSSION

ATM and ATR Checkpoints—In humans, the two main DNA damage checkpoint pathways are the ATM- and ATR-mediated...
Coupling DNA Excision Repair and the ATR-mediated Checkpoint

FIGURE 6. Repair-checkpoint coupling as measured by p53 phosphorylation. Kinase reactions containing p53, ATR-ATRIP, TopBP1, RPA, EXO1, and the indicated DNA were performed as in Fig. 4. Reactions were analyzed by immunoblotting for phospho-p53 (Ser15). The blots were also analyzed for GST-p53 to control for loading. The relative levels of phosphorylated p53 from identical repeats of the experiment were quantified and presented as mean ± S.D. (n = 2).

ated checkpoints (2). To a first approximation, the ATM checkpoint response is activated by DNA double strand breaks and the ATR checkpoint response is activated by inhibition of replication in S-phase and by UV and UV-mimetic agents that introduce bulky base adducts in G1 and G2/M phases (1). Substantial progress has been made in mechanistic understanding of the ATM signaling pathway. It appears that ATM is activated by two mechanisms (4). In one, activation is initiated by double strand breaks: The MRN complex (Mre11/Rad50/Nbs1) binds to duplex DNA ends and unwinds the duplex by the Rad50 helicase activity to generate long stretches of single-stranded DNA (~2,000 nucleotides is optimal for activity) to which ATM binds and undergoes dimer-to-monomer transition concomitant with unmasking of the ATM kinase activity on MRN and signal transducing- and effector proteins such as the Chk2 kinase and the p53 transcription factor. In the second mode of activation, it was reported that oxidative stress, independent of its genotoxic effect, causes disulfide bond formation between the ATM monomers, producing a stable dimer and in the process induces a conformational change that activates the ATM kinase (4).

In the case of ATR, early on it was realized that inhibition of replication by genotoxic agents or by depletion of the dNTP pools, both of which uncouple the activities of the replication helicases and polymerases and result in the formation of long stretches of ssDNA, is a potent signal for ATR activation and therefore it was concluded that ssDNA-RPA filaments constituted the primary structure for ATR signaling (45, 46). However, other studies indicated that the ATR-mediated checkpoint can be activated in G1 and G2/M phases in cells by UV damage or by base pair mismatches, and models were proposed for mechanisms of ATR activation in the absence of DNA replication (12, 13, 36).

Experiments in yeast, *Xenopus* egg extracts, and human cell lines and cell-free systems have led to three general models for checkpoint activation by ATR outside of S-phase: 1) Direct Recruitment by DNA Damage. Evidence has been presented that ATR and the 9-1-1 checkpoint clamp assemble at the site of bulky base damage or DNA mismatches and that this assembly of ATR-ATRIP/Rad17-RFC/9-1-1 complex on DNA activate the ATR kinase (6). 2) Recruitment by Repair Proteins. It has been reported that the nucleotide excision repair protein XPA and the mismatch repair protein MSH2 bind to the respective damage/mismatch sites and recruit ATR (Mec1 in budding yeast) to chromatin, leading to its activation (36, 47, 48). 3) Recruitment by the Repair Gap. Nucleotide excision repair generates a canonical 30 nucleotide gap which acts as a signal for ATR checkpoint. There are several variants of this model. In one, the 9-1-1 (Ddc1-Rad17-Mec3 in budding yeast) checkpoint clamp is loaded onto the 5’ terminus of the gap occupied by RPA, and ATR-ATRIP (Mec1-Ddc2) is recruited to the gap occupied by RPA through RPA-ATRIP interaction, placing ATR in proximity of 9-1-1 and RPA-coated DNA, resulting in ATR kinase activation (49). Presumably, TopBP1 is not required for this mode of activation. In the second model, the MRN complex binds to the 5’ terminus of the RPA-coated excision gap; and, independent of MRN, the 9-1-1 complex is also loaded at the 5’ end of the gap; ATR-ATRIP is recruited to the gap through ATRIP-RPA interaction (50). MRN recruits TopBP1 to the 5’ end through direct protein-protein interaction. Then, TopBP1 binds to the tail of Rad9 in the 9-1-1 complex causing a conformational change in TopBP1, exposing its AAD (ATR-activating domain) which then interacts with ATR and activates its kinase function (51, 52). In a third model, it is proposed that enlargement of the canonical 30-nt gap by the 5’ to 3’ exonuclease, EXO1, both in yeast and in humans, is necessary for optimal activation of ATR/Mec1 checkpoint (15–17). In support of this model it was reported that the ATR/Mec1 checkpoint signaling was severely attenuated in EXO1 mutant yeast or EXO1 knockout in human cell lines. In further support of this model, it was found that in *Xenopus* egg extract, a 35-nt gap was only marginally capable of activating the ATR checkpoint and that larger gaps in the range of 2000–5000 nt were optimal for activation (53). In support of the notion that gaps of relatively large size are required for ATR/Mec1 checkpoint activation, it has been reported that DNA damage by agents that produce non-bulky base lesions that are mainly repaired by base excision repair do not activate ATR/Mec1 checkpoint in G1 phase; but, when cells are defective in base excision repair the damage is primarily repaired by nucleotide excision repair which generates larger gaps (possibly after processing by EXO1) activate Mec1/ATR checkpoint (54).

Minimal Essential Set of Factors for ATR Activation in the Absence of DNA Replication—In addition to the DNA and protein components discussed here, numerous other genes have been implicated in the ATR checkpoint response. It is beyond the scope of this discussion to critique the data on which these conclusions were based and what might be direct and indirect effects of mutations affecting DNA dynamics and metabolism on ATR activation. *In vitro* reconstitution experiments are necessary to differentiate direct from indirect effects and to define the ATR checkpoint at a mechanistic level.

In yeast, experiments with purified proteins led to reconstitution of an *in vitro* system consisting of primed-DNA + RPA + Mec1/Ddc2 + Rad24-RFC/Ddc1-Rad17-Mec3 combination with RPA and Rad53 (Chk1/Chk2 ortholog) as substrates (49). This system closely recapitulated the Mec1 signaling pathway,
Coupling DNA Excision Repair and the ATR-mediated Checkpoint

but was independent of Dpb11 (TopBP1 ortholog). Dpb11 does activate Mec1/Ddc2 in yeast (55, 56), but does not appear to play the essential role that human TopBP1 has in ATR activation (43, 57) as it is functionally redundant with Ddc1 and Dna2 (58 – 60).

In humans, partial reconstitution reactions have been reported with ATR-ATRIP + DNA (5); ATR-ATRIP + ssDNA + RPA (22); and ATR-ATRIP + TopBP1 + ssDNA + RPA ± Claspin with substrates that included RPA, Chk1, and p53 (23, 29, 37, 61–64). In addition to these systems with purified proteins, a number of other in vitro systems with cell-free extracts have been reported (28, 34–36, 65). However, because of the limitations of cell-free extracts to unambiguously assign functions to specific proteins, their utility in defining the ATR checkpoint is also limited and therefore those systems will not be taken into consideration in formulating a mechanistic model for ATR checkpoint. In this report we have described a system encompassing purified nucleotide excision repair factors, purified checkpoint proteins, an exonuclease (EXO1) that couples the two pathways along with DNA damaged by a UV-mimetic agent and appropriate substrates for checkpoint signaling.

We have demonstrated that the activation of the signaling pathway is dependent on all of these components. Note, that while other nucleases, such as _E. coli_ EXOIII, can substitute for EXO1 (data not shown) to generate the ssDNA to activate ATR in vitro as in Fig. 2A, the in vivo data in Fig. 2B indicate that EXO1 is the most physiologically relevant nuclease for gap enlargement in the cell. Therefore, we propose that the following constitutes the minimal essential set of factors for ATR checkpoint signaling (Fig. 7): Signal: DNA damaged by UV or a UV-mimetic agent; Core Excision Repair Factors: RPA, XPA, XPC, TFIIH, XPG, XPF-ERCC1; Core ATR Checkpoint Factors: ATR-ATRIP, TopBP1, RPA; Excision Repair-Checkpoint Coupling Factor: EXO1. This minimal set of factors is sufficient to enable ATR to phosphorylate RPA and p53 without the need for additional proteins.

REFERENCES

1. Sancar, A., Lindsey-Boltz, L. A., Unsal-Kaçmaz, K., and Linn, S. (2004) Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. *Annu. Rev. Biochem.* **73**, 39–85
2. Abraham, R. T. (2001) Cell cycle checkpoint signaling through the ATM and ATR kinases. *Genes Dev.* **15**, 2177–2196
3. Nam, E. A., and Cortez, D. (2011) ATR signalling: more than meeting at the fork. *The Biochemical J.* **436**, 527–536
4. Ditch, S., and Paull, T. T. (2012) The ATM protein kinase and cellular redox signaling: beyond the DNA damage response. *Trends Biochem. Sci.* **37**, 15–22
5. Unsal-Kaçmaz, K., Makhov, A. M., Griffith, J. D., and Sancar, A. (2002) Preferential binding of ATR protein to UV-damaged DNA. *Proc. Natl. Acad. Sci. U.S.A.* **99**, 6673–6678
6. Jiang, G., and Sancar, A. (2006) Recruitment of DNA damage checkpoint proteins to damage in transcribed and nontranscribed sequences. *Mol. Cell. Biol.* **26**, 39–49
7. Lupardus, P. J., Byun, T., Yee, M. C., Hekmat-Nejad, M., and Cimprich, K. A. (2002) A requirement for replication in activation of the ATR-dependent DNA damage checkpoint. *Genes Dev.* **16**, 2327–2332
8. Ward, J. M., Minn, K., and Chen, J. (2004) UV-induced ataxia-telangiectasia-mutated and Rad3-related (ATR) activation requires replication stress. *J. Biol. Chem.* **279**, 9677–9680
9. Derheimer, F. A., O’Hagan, H. M., Krueger, H. M., Hansogoe, S., Paulsen, M. T., and Ljungman, M. (2007) RPA and ATR link transcriptional stress to p53. *Proc. Natl. Acad. Sci. U.S.A.* **104**, 12778–12783
10. Bomgardner, R. D., Lupardus, P. J., Soni, D. V., Yee, M. C., Ford, J. M., and Cimprich, K. A. (2006) Opposing effects of the UV lesion repair protein XPA and UV bypass polymerase eta on ATR checkpoint signaling. *EMBO J.* **25**, 2605–2614
11. Hansogoe, S., and Ljungman, M. (2007) H2AX phosphorylation after UV irradiation is triggered by DNA repair intermediates and is mediated by the ATR kinase. *Carcinogenesis* **28**, 2298–2304
12. Marini, F., Nardo, T., Giannattasio, M., Minuzzo, M., Stefanini, M., Plevani, P., and Muzi-Falconi, M. (2006) DNA nucleotide excision repair-deficient checkpoint activation. *Genes Dev.* **20**, 2527–2536
13. Matsumoto, M., Yaginuma, K., Igarashi, A., Imura, M., Hasegawa, M., Matsunaga, T. (2007) Perturbed gap-filling synthesis in nucleotide excision repair causes histone H2AX phosphorylation in human quiescent cells. *J. Cell. Sci.* **120**, 1104–1112
14. Cimprich, K. A., and Cortez, D. (2008) ATR: an essential regulator of genome integrity. *Nat. Rev. Mol. Cell Biol.* **9**, 616–627
15. Sertic, S., Pizzi, S., Cloney, R., Lehmann, A. R., Marini, F., Plevani, P., and Muzi-Falconi, M. (2011) Human exonuclease I connects nucleotide excision repair (NER) processing with checkpoint activation in response to UV irradiation. *Proc. Natl. Acad. Sci. U.S.A.* **108**, 13647–13652
16. Novarina, D., Amara, F., Lazzaro, F., Plevani, P., and Muzi-Falconi, M. (2011) Human exonuclease 1 connects nucleotide excision repair (NER) processing with checkpoint activation in response to UV irradiation. *Proc. Natl. Acad. Sci. U.S.A.* **108**, 13647–13652
null
Coupling DNA Excision Repair and the ATR-mediated Checkpoint

59. Navadgi-Patil, V. M., and Burgers, P. M. (2011) Cell-cycle-specific activators of the Mec1/ATR checkpoint kinase. *Biochem. Soc. Trans.* **39**, 600–605

60. Navadgi-Patil, V. M., and Burgers, P. M. (2009) The unstructured C-terminal tail of the 9-1-1 clamp subunit Ddc1 activates Mec1/ATR via two distinct mechanisms. *Mol. Cell* **36**, 743–753

61. Choi, J. H., Lindsey-Boltz, L. A., and Sancar, A. (2009) Cooperative activation of the ATR checkpoint kinase by TopBP1 and damaged DNA. *Nucleic Acids Res.* **37**, 1501–1509

62. Choi, J. H., Sancar, A., and Lindsey-Boltz, L. A. (2009) The human ATR-mediated DNA damage checkpoint in a reconstituted system. *Methods* **48**, 3–7

63. Lindsey-Boltz, L. A., Serçin, O., Choi, J. H., and Sancar, A. (2009) Reconstitution of human claspin-mediated phosphorylation of Chk1 by the ATR (ataxia telangiectasia-mutated and rad3-related) checkpoint kinase. *J. Biol. Chem.* **284**, 33107–33114

64. Hassan, B. H., Lindsey-Boltz, L. A., Kemp, M. G., and Sancar, A. (2013) Direct role for the replication protein treslin (Ticrr) in the ATR kinase-mediated checkpoint response. *J. Biol. Chem.* **288**, 18903–18910

65. Clarke, C. A., and Clarke, P. R. (2005) DNA-dependent phosphorylation of Chk1 and Claspin in a human cell-free system. *Biochem. J.* **388**, 705–712