Mode-coupling theory for heteropolymers

E. Pitard, E.I. Shakhnovich
Harvard University
Dpt of Chemistry and Chemical Biology
12 Oxford Street, MA02138 Cambridge USA
March 24, 2022

Abstract

We study the Langevin dynamics of a heteropolymer by means of a mode-coupling approximation scheme, giving rise to a set of coupled integro-differential equations relating the response and correlation functions. The analysis shows that there is a regime at low temperature characterized by out-of-equilibrium dynamics, with violation of time-translational invariance and of the fluctuation-dissipation theorem. The onset of ageing dynamics at low temperatures gives new insight into the nature of the slow dynamics of a disordered polymer. We also introduce a renormalization-group treatment of our mode-coupling equations, which supports our analysis, and might be applicable to other systems.

Submitted for publication to:
“Physical Review E”

PACS: 83.10.Nn Polymer dynamics; 83.70.Hq Heterogeneous liquids; 64.70.Pf Glass transition
1 Introduction

The dynamics of a heteropolymer chain is relevant for the problem of protein folding, and also from a fundamental point of view. Since a protein is composed of monomers of different chemical natures, it is important to understand the effect of heterogeneity on the kinetics of a polymer chain. Such results might give insight into the possible folding pathways of proteins or longer chains. Although the influence of quenched or annealed disorder on the thermodynamics of polymers is a largely investigated area of study, together with the effect of random fields, random charges along the chain (polyelectrolytes and polyampholytes), in solution or at the interface between two fluids, little is known about dynamics.

Previous studies concerning the statics of heteropolymers show that there exists a frozen phase at low temperature, very similar to a spin-glass phase, which is a non-ergodic state characterized by a very slow relaxation. Recent phenomenological and analytical developments have reproduced the experimental evidence of aging in spin-glasses. Below a certain temperature, the system relaxes in a slower and slower way as the waiting time—which is the time elapsed between the beginning of the experiment and the observation time—is increased; the dependance on the waiting time is clearly proved experimentally in spin-glasses and in other glasses. The relaxation follows a power law and both time-translational invariance and the fluctuation dissipation theorem are violated. Similar properties have been found theoretically for the study of large-time out of equilibrium dynamics of a manifold in a random potential. These results are of great interest for systems where disorder or frustration are present, and similar ideas start to be applied, for instance for the rheology of soft glassy materials, or for the dynamics of structural glasses, where experimental evidence of the violation of the fluctuation-dissipation theorem has recently been reported.

Concerning the dynamics of heteropolymers, few studies exist at present and some of them show that there may be some glassy behaviour as the temperature is lowered, or that the relaxation should follow a stretched exponential law. There is indeed numerical evidence of stretched exponential relaxation for randomly branched polymers, or for the reptation of polymers in disordered media, as well as experimental evidence of the same phenomenon for glasses and proteins. Moreover, there is a growing
literature about the dynamics of homogeneous but strongly frustrated polymer systems, such as polymer melts where stretched-exponential laws are observed through computer simulations [18], and with dynamics very similar to the one observed in structural glasses or supercooled liquids [19]. Other approaches to the problem of dynamics of heteropolymers in melts use the concept of reptation to compute in a phenomenological way the relaxation time of a disordered chain [20].

Our work concerns the study of the Langevin dynamics of a heteropolymer, treated in the Mode-Coupling Approximation scheme (MCA). Our motivation for using this approximation is based on several previous studies that led to significant results. This procedure goes beyond perturbation theory (though not in a very controlled way) and is therefore useful when one wants to study strong-coupling effects. The scheme is to expand the microscopic quantities involved in the Langevin equation to lowest non-trivial order in the potential -as if it was a perturbation procedure-, and then to replace in the correction terms the bare correlation functions (those corresponding to the problem without potential) by the full correlation functions one wants to compute. This amounts to resumming a certain class of diagrams and hence to go further than the weak-coupling regime. This type of procedure has been used by Kraichnan in the context of turbulence as a way to find the Kolmogorov laws starting from the Navier-Stokes equation [21]; it has also been used for the KPZ equation where exponents close to those found by dynamic renormalization group were computed [22]. Interestingly, it has also been found that the MCA is exact for some special models with quenched disorder which dynamics can be studied exactly in a mean-field approach, using functional methods; this is true in particular for the p-spin spherical spin-glass model [24]. So one can hope that the MCA approach is able to capture dynamic effects such as aging that arise from the presence of disorder in a non-perturbative way. Finally it has been pointed out that the general coupled set of equations obtained through MCA looks very much like those found in the context of the mode-coupling theory introduced by Gotze [19], which gives a reliable description of the slow dynamics of supercooled liquids, reinforcing the link between glassy systems which are frustrated but contain no disorder, and disordered systems such as spin-glasses.

In the following, we show that the same approximation (MCA) can be used for the dynamics of a disordered polymer and that out-of-equilibrium features can be found as well. These results may be of relevance for het-
eropolymer melts, or for very long chains of heteropolymers. From a protein-oriented point of view, such results may not be directly applicable, since they are derived for an infinite and purely random system. However, for large proteins, one may observe some intermediate slow regime of folding in the globular state, between the fast initial hydrophobic collapse, and the final relaxation towards the native state once a nucleus \[25\] has been formed.

2 The mode-coupling approach

2.1 Formal developments

We introduce here a model of heteropolymer dynamics and explain how to derive a set of coupled integro-differential equations using the Mode Coupling Approximation. We use a standard Hamiltonian for a disordered polymer, where a quenched potential \(V(s, \bar{\phi}(s, t)) \) is applied and comes from the random nature of the interactions between monomers. In our notations, \(\bar{\phi}(s, t) \) is the position of monomer \(s \) at time \(t \), \(s \) being the coordinate of the monomer along the chain, \(s = 1, \ldots, N \). \(d \) is the dimensionality of the space and \(a_0 \) is the Kuhn length.

\[
\mathcal{H} = \frac{1}{2a_0^2} \int ds \sum_{\alpha=1}^{d} \left(\frac{\partial \phi_{\alpha}}{\partial s} \right)^2 + \int dsV(s, \bar{\phi}(s, t))
\]

(1)

More explicitly, the random potential is:

\[
V(s, \bar{\phi}(s, t)) = \int ds'B(s, s')\delta(\bar{\phi}(s, t) - \bar{\phi}(s', t))
\]

\[
= \int ds'B(s, s') \int \frac{d\vec{q}}{(2\pi)^d} e^{i\sum_{\alpha} q_{\alpha}[\phi_{\alpha}(s, t) - \phi_{\alpha}(s', t)]}
\]

(2)

We use a bar to perform the average over the disorder, and we assume that the value of the interaction between two different monomers is distributed in a gaussian way.

\[
\langle B(s, s') \rangle = 0
\]

\[
\langle B(s_1, s'_1)B(s_2, s'_2) \rangle = B_0^2 \delta(s_1 - s_2)\delta(s'_1 - s'_2)
\]
We consider the Langevin equation for such a polymer:

\[
\left[\frac{\partial}{\partial t} - \frac{1}{a_0^2} \frac{\partial^2}{\partial s^2} \right] \phi_\alpha(s, t) = -\frac{\partial}{\partial \phi_\alpha(s, t)} \int ds V(s, \phi(s, t)) + \eta_\alpha(s, t) \tag{3}\n\]

with a gaussian thermal noise $\vec{\eta}(s, t)$,

\[
< \eta_\alpha(s, t) > = 0 \quad \text{and} \quad < \eta_\alpha(s, t) \eta_\beta(s', t') > = 2T \delta(s - s') \delta(t - t') \delta_{\alpha \beta}
\]

Our aim is to compute correlation and response functions, or at least know their qualitative behaviour with time. Following earlier studies, we don’t assume a priori time-translational invariance and we define respectively the correlation function and the response function as quantities depending on two distinct times, t and t'.

\[
C(s, t; s', t') = \frac{1}{d} \sum_{\alpha = 1}^{d} < \phi_\alpha(s, t) \phi_\alpha(s', t') > \tag{4}
\]

\[
G(s, t; s', t') = \frac{1}{d} \sum_{\alpha = 1}^{d} \frac{\partial < \phi_\alpha(s, t) >}{\partial \eta_\alpha(s', t')} = \frac{1}{d} \frac{1}{2T} \sum_{\alpha = 1}^{d} < \phi_\alpha(s, t) \eta_\alpha(s', t') > \tag{5}
\]

The last identity holds as long as the random noise $\vec{\eta}(s, t)$ is gaussian.

During all this study, we shall use Fourier transforms, which we define, both for the position $\phi(s, t)$ and for the correlation functions, with $\omega_n = \frac{2\pi n}{N}$.

\[
\tilde{\phi}_\alpha^n(t) = \frac{1}{N} \int_0^N e^{i\omega_n s} \phi_\alpha(s, t) ds
\]

\[
\tilde{G}^n(t, t') = \frac{1}{N} \int_0^N e^{i\omega_n (s' - s)} G(s, t; s', t') ds ds'
\]

The standard procedure in the MCA is to find the solution $\tilde{\phi}_\alpha^n(t)$ of the Langevin equation, up to the first non-zero order in perturbation. The dynamic equation can be rewritten in Fourier space:

\[
\frac{\partial \tilde{\phi}_\alpha^n(t)}{\partial t} = -\omega_n^2 \tilde{\phi}_\alpha^n(t) - \lambda \tilde{W}^n_\alpha(t) + \tilde{\eta}_\alpha^n(t) \tag{6}
\]
where we have added for convenience the coefficient λ as the perturbative parameter; λ is eventually set back to 1 at the end of the expansion. And the quantity $\tilde{W}_\alpha^n(t)$ is defined as:

$$
\tilde{W}_\alpha^n(t) = \frac{2}{N} \int_0^N e^{i\omega_n s} ds \int_0^N ds' B(s, s') \int \frac{d\vec{q}}{(2\pi)^d} i q_\alpha e^{i \sum_\alpha q_\alpha (\phi_\alpha(s, t) - \phi_\alpha(s', t))}
$$

(7)

If λ is equal to 0 we are reduced to the 'bare' problem of an elastic chain in a harmonic potential. Then the Langevin equation is exactly solvable and the solution is

$$
\tilde{\phi}_{\alpha,0}^n(t) = \int_0^t dt' \tilde{G}_0^n(t, t') \tilde{\eta}_\alpha^n(t)
$$

(8)

where $\tilde{G}_0^n(t, t')$ is the bare response function, and:

$$
\tilde{G}_0^n(t, t') = e^{-\omega_n^2 (t-t')}
$$

(9)

When one now adds the disorder-dependant term $\tilde{W}_\alpha^n(t)$ in the Langevin equation, then

$$
\tilde{\phi}_\alpha^n(t) = \int_0^t dt' \tilde{G}_\alpha^n(t, t') \left[\tilde{\eta}_\alpha^n(t') - \lambda \tilde{W}_\alpha^n(t') \right]
$$

(10)

is the exact solution, which actually gives an implicit equation for the quantity $\tilde{\phi}_\alpha^n(t)$ that cannot be solved in a straightforward way. One then performs in this expression an expansion up to second order in λ, we refer the reader to Appendix A for more details.

It is then rather straightforward, though computationally lengthy, to compute $\tilde{G}_0^n(t, t')$ and $\tilde{G}_\alpha^n(t, t')$ as functions of the bare quantities, which are at the end replaced by the full or 'renormalized' quantities. One finally ends up with a set of coupled equations which solutions will in principle fully describe the dynamics of the original system. We can write these equations in a compact way:

$$
\begin{align*}
\left[\frac{\partial}{\partial t} + \frac{\omega_n^2}{a_0^2} \right] \tilde{G}_\alpha^n(t, t') &= \delta(t - t') + \int_0^t dt_1 R_\alpha^n(t, t_1) \tilde{G}_\alpha^n(t, t') \\
+ &\int_t^{t'} \Sigma_\alpha(t, t_1) \tilde{G}_\alpha^n(t_1, t')
\end{align*}
$$

(11)
\[
\left[\frac{\partial}{\partial t} + \frac{\omega_n^2}{a_0^2} \right] \tilde{C}^m(t, t') = \int_0^t dt_1 R_n(t, t_1) \tilde{C}^m(t, t') + \int_0^{t'} dt_1 D_n(t, t_1) \tilde{G}^m(t', t_1) \\
+ \int_0^t dt_1 \Sigma_n(t, t_1) \tilde{C}^m(t_1, t')
\] (12)

All quantities \(R_n(t_1, t_2), \Sigma_n(t_1, t_2), D_n(t_1, t_2) \) involved in the coupled set of equations are defined in Appendix A, and depend only on \(\tilde{G}^p(t, t') \) and \(\tilde{C}^p(t, t') \), with \(p \neq 0 \). Similar sets of coupled equations have been already encountered for example in [26], [22], [9] and can either be solved numerically or require additional assumptions to get more information on the solutions.

2.2 Analysis of the equations

A very difficult task is to solve the set of integro-differential equations described above. One major difficulty relies in the fact that all modes are coupled, and as it has already been observed for example for the mode-coupling equations of the KPZ model [23] [22], the numerical treatment for these equations presents numerous problems. We have not been able to make significant progress in that direction; not only should it require a recursive algorithm with careful check for the convergence of all functions, but we also expect some divergences in the long time regime, which would require the introduction of unknown cut-offs.

In our analysis, we took into account all terms found in the former section, without truncating them with too crude approximations. However it would be interesting in the future to find a way to simplify these equations (even if the connection with the initial model becomes then less obvious), that would reproduce the results that we find here.

The first step in the analysis can be done by focusing on the large time limit and proposing an ansatz for the correlation functions in that time domain. Let’s assume that one can write, in the limit where \(t \to \infty \) and \(t' \to \infty \), with \(t' \ll t \),

\[
\tilde{C}^n(t, t') = q f_n \left(\frac{t'}{t} \right)^\gamma
\] (13)

\[
\tilde{G}^m(t, t') = \frac{q'}{t} f_n \left(\frac{t'}{t} \right)^{\gamma - 1}
\] (14)

Such an ansatz also contains a generalized version of the fluctuation-dissipation theorem (this has already been introduced in earlier studies \[26\]), which can be written:

\[
\tilde{G}_n(t, t') = x \frac{\partial}{\partial t'} \tilde{C}_n(t, t')
\]

(15)

where x is the coefficient $x = \frac{q'}{\gamma q}$.

Then by replacing into the mode-coupling equations, one is left with implicit equations for q, f_n, x and γ, but the dependance on time cancels out in the limit of large times. This is what makes the ansatz consistent, at least as far as the dependance on time is concerned. We give computational details in Appendix B. In particular, in the equation for $\tilde{C}_n(t, t')$, $D_n(t_1, t_2)$ can be written as a sum of four contributions $D_n^{(i)}(t_1, t_2)$, $i = 0, 1, 2, 3$ as shown in Appendix A, and the terms involving $D_n^{(2)}(t_1, t_2)$ and $D_n^{(3)}(t_1, t_2)$ are shown to be negligible in the limit of large times; this makes the time cancellation possible. All parameters q, f_n, x and γ have a dependance on temperature.

Then the remaining equations on q, f_n, x and γ are again too difficult to solve numerically, since they require the introduction of cut-offs - see Appendix B - to stop the divergences in the integrals when the two time arguments become too close to each other (in particular, both $\tilde{G}_n(t, t')$ and $\tilde{C}_n(t, t')$ have different analytical forms when $t' \to t$, which we don’t know).

The two extreme cases $T = 0$ and $T = \infty$ are of interest in this problem. In the case where the temperature is zero, the equations can be simplified, the terms involving $D_n^{(2)}(t_1, t_2)$ and $D_n^{(3)}(t_1, t_2)$ are equal to zero and one sees easily that the above ansatz still remains valid, for the same reasons as the ones explained above (see Appendix B).

If we study the limit $T \to \infty$, one is left with a single term in the equation for $\tilde{C}_n(t, t')$:

\[
\int_0^{t'} dt_1 D_n^{(3)}(t, t_1) \tilde{G}_n(t', t_1) = 0
\]

(16)

The power-law ansatz used above can no longer satisfy this condition. However, if one assumes time-translational invariance and the usual fluctuation-dissipation theorem ($G(\tau) = -\frac{\theta(\tau)}{T} \partial_\tau C(\tau)$) the mode-coupling equations are simply satisfied. In the limit of infinite temperature, one is actually left with the simple Rouse model for a homopolymer chain, and an exponential time relaxation.
Such information about a glassy behaviour at low temperatures with power-law behaviour lead naturally to think of the existence of a critical temperature T_c that may separate the glassy, non-FDT, non-TTI regime from a high temperature regime where the relaxation would be typically exponential. Although it is not possible to determine this temperature from our equations, it should be easier to observe such a phenomenon in simpler models of polymers, or by studying numerical models of polymers.

3 An alternative treatment of the mode-coupling equations: Functional renormalization group approach

In view of the difficulties raised by the mode-coupling equations, one has to search for new analytical methods to try and solve them. One of them is to apply a functional renormalization group analysis to the mode-coupling equations themselves. To our knowledge, such a method has never been used in this context. For the present problem, this procedure enables us to have more information about the analytical form of the correlation functions. In particular it can justify some scaling form for their analytical expressions, as soon as one finds a fixed point in the RG procedure that is believed to represent the small frequency, small wavevector regime. This is motivated by the fact that we are mostly interested in the long times limit, and in the long-distance regime ($s - s' \to \infty$, along the chain).

In the case of the disordered polymer, our dynamic RG calculation gives rise to a fixed point. However, the fixed points equations are themselves hard to solve. We also believe that such a method could be of interest for simpler and largely studied systems, such as the KPZ equation.

In this calculation [27], we want to integrate out the fast wavevector modes and keep only the slow modes, the ones with small wavevectors. One also has to do the same for high frequencies, to keep track only of the low frequency part; this can be done by expressing all the quantities in frequency space, but we didn’t describe it here for simplicity. For that purpose, we first switch from discrete to continuous Fourier variables, by replacing \sum_n by $\int \frac{d^d k}{(2\pi)^d}$ with an upper cut-off Λ. The wave vectors such that $\frac{\Lambda}{b} < ||\vec{k}|| < \Lambda$ can be integrated out, with $b = e^{\delta t}$ being close to 1; then the only perturbative
parameter here is δl. After integration, we denote the quantities Q for which the $||\vec{k}||$ integration is only $\int_0^{N/b} d^2k/2\pi$ by $Q^<.$

In a more convenient way than the ones used in the previous section, the starting mode-coupling equations we used can be rewritten in the form (see also Appendix A):

$$C_k(t, t') = C_k^0(t, t') + \int_0^t dt_1 \int_0^{t'} dt_2 G_k(t, t_1) D_k(t_1, t_2) G_k(t', t_2)$$ \hspace{1cm} (17)

$$G_k(t, t') = G_k^0(t, t') + \int_0^t dt_1 G_k^0(t, t_1) \left[\int_0^{t_1} dt_2 R_k(t_1, t_2) G_k(t_1, t') + \int_0^{t_1} dt_2 \Sigma_k(t_1, t_2) G_k(t_2, t') \right]$$ \hspace{1cm} (18)

In such a way, we can write for a quantity $Q_k(t_1, t_2)$, the following one-order expansion ($Q = G, C, R, \Sigma, D$):

$$Q_k(t_1, t_2) = Q_k^<(t_1, t_2) - \delta l Q_k(t_1, t_2)$$ \hspace{1cm} (19)

The corrections $Q_k(t_1, t_2)$ can be computed and only involve the different quantities G_0 and $Q^<$. In particular, for $G_k(t, t')$ and $C_k(t, t')$, we have:

$$G_k(t, t') = \int_0^t dt_1 G_k^0(t, t_1) \left[\int_0^{t_1} dt_2 R_k(t_1, t_2) G_k(t_1, t') + \int_0^{t_1} dt_2 \Sigma_k(t_1, t_2) G_k(t_2, t') \right]$$ \hspace{1cm} (20)

$$C_k(t, t') = \int_0^t dt_1 \int_0^{t'} dt_2 G_k(t, t_1) D_k(t_1, t_2) G_k(t', t_2) + G_k(t, t_1) D_k(t_1, t_2) G_k(t', t_2) + G_k(t, t_1) D_k(t_1, t_2) G_k(t', t_2) \right]$$ \hspace{1cm} (21)

The next step is to do a rescaling of all quantities and write a differential equation for the renormalization flow where the increment is δl. One has then to make scaling assumptions, which are expected, at least at the fixed points, if any. Then, if one assumes

$$Q_k(t, t') = \frac{1}{k^x} q(tk^z, t'k^z)$$ \hspace{1cm} (22)
where z is the dynamic exponent, the renormalized quantity is

$$Q^R_k(t, t') = b^z Q_{bk}^<(b^{-z} t, b^{-z} t')$$ \hspace{1cm} (23)

By expanding this last expression to first order in δl one finally ends up with:

$$\frac{\partial Q_k}{\partial l} = \chi Q_k(t, t') + k \frac{\partial Q_k}{\partial k} - zt \frac{\partial Q_k}{\partial t} - zt' \frac{\partial Q_k}{\partial t'} + Q_k(t, t')$$ \hspace{1cm} (24)

More specifically we used for the q functions the scaling forms that correspond to the ansatz of the preceding section (see equations (13) and (14)), written in such a way that the values of χ can be simply identified,

$$C_k(t, t') = \frac{1}{k^{2\alpha + d - z}} c \left(\frac{t'}{t} \right)$$ \hspace{1cm} (25)

$$G_k(t, t') = \frac{1}{k^{-z}} \frac{1}{tk^z} g \left(\frac{t'}{t} \right)$$ \hspace{1cm} (26)

$$D_k(t, t') = \frac{1}{k^{2\alpha + d - 3z}} d \left(\frac{t'}{t} \right)$$ \hspace{1cm} (27)

$$R_k(t, t') = \frac{1}{k^{-z}} \frac{1}{tk^z} r \left(\frac{t'}{t} \right)$$ \hspace{1cm} (28)

$$\Sigma_k(t, t') = \frac{1}{k^{-z}} \frac{1}{tk^z} s \left(\frac{t'}{t} \right)$$ \hspace{1cm} (29)

Due to the scaling nature of all quantities, the derivative terms $\frac{\partial Q_k}{\partial k}$ and $\frac{\partial Q_k}{\partial l}$ in the flow equations can be simplified and expressed in terms of $Q_k(t, t')$, and we end up with the following set:

$$\frac{\partial G_k}{\partial l} = zG_k(t, t') + G_k(t, t')$$ \hspace{1cm} (30)

$$\frac{\partial C_k}{\partial l} = -2(d + 2\alpha - z)C_k(t, t') + C_k(t, t')$$ \hspace{1cm} (31)

$$\frac{\partial D_k}{\partial l} = -2(d + 2\alpha - 3z)D_k(t, t') + D_k(t, t')$$ \hspace{1cm} (32)
\[
\frac{\partial R_k}{\partial l} = z R_k(t, t') + R_k(t, t')
\]
\[(33) \]

\[
\frac{\partial \Sigma_k}{\partial l} = z \Sigma_k(t, t') + S_k(t, t')
\]
\[(34) \]

The fixed points are obtained by setting the \(l \) derivative to 0, and denoting by \(Q^* \) the fixed-point quantities, and replacing in the expressions for \(G_k(t, t') \) and \(C_k(t, t') \), we obtain the self-consistent equations at the fixed point.

\[
G_k^*(t, t') = \int_0^t dt_1 G_k^0(t, t_1) \left[\int_0^{t_1} dt_2 R_k^*(t_1, t_2) G_k^*(t_1, t') + \int_0^{t_1} dt_2 \Sigma_k^*(t_1, t_2) G_k^*(t_2, t') \right]
\]
\[(35) \]

\[
(d + 2\alpha - z) C_k^*(t, t') = (d + 2\alpha - 4z) \int_0^t dt_1 \int_0^{t'} dt_2 G_k^*(t, t_1) D_k^*(t_1, t_2) G_k^*(t', t_2)
\]
\[(36) \]

We checked that the power-law ansatz used in the first section is still a solution for these equations of fixed point; the procedure of replacing the ansatz in the expressions is exactly the same as the one described in Appendix B. This can then justify its use in the mode-coupling equations (11) and (12) from which we started our analysis, and which represent the real-space quantities of interest; the scaling form of the ansatz is also justified. If we then plug at the fixed point the generalized fluctuation-dissipation theorem \(\tilde{G}^n(t, t') = x \frac{\partial}{\partial t'} \tilde{C}^n(t, t') \), we obtain the following relation between exponents: \(2\alpha + d = 2z \). Further information on the exponents \(\alpha \) and \(z \) could be obtained by solving numerically coupled equations like (35) and (36); this will be done elsewhere.

4 Discussion and Conclusion

The analysis of the mode-coupling equations using renormalization group ideas enabled us to write the dynamic correlation functions of a disordered polymer in terms of scaling functions. Unfortunately, at this point, it does not give much insight into the exact asymptotic time and wavevector dependence, at large times and large wavelengths. We believe however that this new
method could be very convenient for more simple examples of stochastic equations, that are treated using mode-coupling techniques.

The main result of the mode-coupling approach is the evidence of the out-of-equilibrium character of the dynamics of heteropolymers, in the thermodynamic limit. The dependence of the dynamic correlation functions on two times - the smaller one being the waiting time -, implying no time-translational invariance and a generalized fluctuation-dissipation theorem, is required at low temperatures; more precisely, a power-law dependence on two times is a solution of our set of equations. This contains the aging phenomenon, similar to the one observed in spin-glasses and other types of disordered systems.

Similar calculations as the one described above can be made, by slightly changing the starting Langevin equation. We replaced the disordered interaction $B(s, s')$ between monomers by a constant attractive interaction coefficient v, therefore restricting our study to homopolymers. Remarkably enough, we found that the power-law ansatz still holds at low temperature. Even in the absence of disorder, the mode-coupling equations seem to induce some apparent disorder in frustrated systems (such as polymer chains in the collapsed phase in this case), and lead to non-trivial glassy behaviour. In the MCA approach, it appears that one can capture the frustration character of a collapsed polymeric chain that stems from the competition between the attractive interaction between monomers and the harmonic potential due to the elasticity of the chain (the classical Mode Coupling Theory [19] for glasses also captures frustration in such simple realizations as binary mixtures of Lennard-Jones -LJ- particles).

This similarity of behaviour between disordered and non-disordered polymers is not very surprising when one remembers that mode-coupling equations have very similar structures in the disordered and non-disordered version of a given model [24]. More precisely, it has been previously shown that given a non-disordered but frustrated or chaotic model, one can find a disordered model of the same class whose mode-coupling equations are actually exact, and coincide with the approximate mode-coupling equations of the non-disordered model. (This is however not exactly the situation that occurs here, since the mode-coupling closure is only an approximation scheme for our heteropolymer model.) This emphasizes the importance of such studies for real glasses, which are not characterized by the presence of disorder. In particular, our analysis may be helpful to understand the dynamics of polymeric glasses, or melts, that also exhibit aging [8] and vitreous dynamics.
qualitatively very similar to the physics of binary Lennard-Jones fluid mixtures [28].

It is interesting to note that a great similarity has been observed in the dynamics of supercooled liquids (modelled by binary mixtures LJ particles) and of polymer melts, whereas a few differences are noticeable due to the connectivity effect of the polymeric system [18]. It has been shown that the correlation functions and in particular the dynamic structure factor for polymer melts can be well described by the MCT for liquids. However, the mean-square displacement shows a subdiffusive behaviour compared to the case of non-connected LJ particles, due to the connectivity of the chains. This difference occurs in the α regime, at large times, that reflects the rearrangements of the chain at scales larger than the size of a particle’s cage, whereas the β regime, at small times, corresponds to local movements inside a cage, which are the same in the presence or not of connectivity. On the ground of these microscopic mechanisms, it does not seem surprising either, that a disordered polymer melt or a homogeneous melt may have the same kind of dynamics.

To summarize, our model provides a tentative theoretical framework which allows to exhibit slow dynamics and aging in dense phases of homogeneous or disordered polymers. A further step in this study would be to find an efficient numerical algorithm for the resolution of the mode-coupling equations or of some simplified form of these mode-coupling equations. This would provide the full solutions for the correlation functions, as well as for the mean-square displacement, as functions of time, and allow for a direct comparison with the numerical results of Baschnagel and al. [18].

An important issue that also needs to be clarified is in which way the fluctuation-dissipation theorem is violated at long times. It has been shown very recently [29] that in the case of systems with short range interactions, the measurement of the violation of the dissipation-fluctuation ratio is directly related to the pattern of the replica symmetry breaking (‘one-step rsb’ or ‘full rsb’). The statics of the heteropolymer model studied here were reported in [3] and showed a one-step replica symmetry breaking, so the fluctuation-dissipation should, according to [29], be of the form given by equation (15).

In addition, concerning the case of homopolymers, it would be of great interest to use the first principle computations described in [30] and be able to draw a link between the equilibrium and the dynamical properties in the glass phase.
E.P. wishes to thank J-P Bouchaud, L. Cugliandolo and J. Kurchan for interesting and stimulating discussions. E.P. was supported during this work by NIH grant GM 52126.
Appendix A

In this appendix, we give the full expressions for the mode-coupling equations obtained in section 2, as well as some intermediate results.

Starting from equation (10), one performs an expansion to second order in λ, which leads to an approximate expression for $\tilde{\phi}_{n,0}^{\alpha}(t)$. This expression is the following:

$$
\tilde{\phi}_{n,0}^{\alpha}(t) = \tilde{\phi}_{n,0}^{\alpha}(t) - \frac{2\lambda}{N} \int_{0}^{t} dt' \tilde{G}_{0}^{n}(t, t') W_{\alpha,0}^{n}(t')
$$

$$
+ \frac{2\lambda^{2}}{N} \int_{0}^{t} dt' \tilde{G}_{0}^{n}(t, t') \int_{0}^{N} ds \int_{0}^{N} ds' e^{i \omega_{n} s} B(s, s') \int \frac{d^{d}q}{(2\pi)^{d}} i q_{\alpha} e^{i \sum_{a} q_{a} \sum_{m \neq 0} (e^{-i \omega_{m} s} - e^{-i \omega_{m} s'})} \tilde{\phi}_{m,0}^{\alpha}(t')
$$

$$
\sum_{p \neq 0} i q_{\beta} \sum_{m} (e^{-i \omega_{p} s} - e^{-i \omega_{p} s'}) \int_{0}^{t'} dt'' \tilde{G}_{0}^{p}(t', t'') W_{\beta,0}^{p}(t'')
$$

where

$$
W_{\alpha,0}^{n}(t') = \int_{0}^{N} ds \int_{0}^{N} ds' e^{i \omega_{n} s} B(s, s') \int \frac{d^{d}q}{(2\pi)^{d}} i q_{\alpha} e^{i \sum_{a} q_{a} \sum_{m \neq 0} (e^{-i \omega_{m} s} - e^{-i \omega_{m} s'})} \tilde{\phi}_{m,0}^{\alpha}(t')
$$

Starting from this expression we calculated $\tilde{G}_{n}(t, t')$ and $\tilde{C}_{n}(t, t')$, performing both averages on the random noise and on the disorder. The result can be written in terms of $\tilde{G}_{0}^{p}(t, t')$ and $\tilde{C}_{0}^{p}(t, t')$ only; but the MCA approximation consists in replacing these quantities by the full unknown quantities $\tilde{G}_{n}(t, t')$ and $\tilde{C}_{n}(t, t')$, resulting in a set of coupled Dyson equations:

$$
\tilde{C}_{n}(t, t') = \tilde{C}_{n}^{0}(t, t') + \int_{0}^{t} dt_{1} \int_{0}^{t'} dt_{2} \tilde{G}_{n}(t, t_{1}) D_{n}(t_{1}, t_{2}) \tilde{G}_{n}(t_{2}, t')
$$

$$
\tilde{G}_{n}(t, t') = \tilde{G}_{n}^{0}(t, t') + \int_{0}^{t} dt_{1} \tilde{G}_{n}^{0}(t, t_{1}) \left[\int_{0}^{t_{1}} dt_{2} R_{n}(t_{1}, t_{2}) \tilde{G}_{n}(t_{2}, t') + \int_{0}^{t_{1}} dt_{2} \Sigma_{n}(t_{1}, t_{2}) \tilde{G}_{n}(t_{2}, t') \right]
$$

The mode-coupling equations can be rewritten as integro-differential equations, performing on the left and right-hand sides of the previous equations a
convolution with \tilde{G}_0^{-1}. The resulting set of equations is the one introduced in section 2:

$$
\frac{\partial}{\partial t} + \frac{\omega^2}{a_0^2} \tilde{G}^n(t, t') = \delta(t - t') + \int_0^t dt_1 R_n(t, t_1) \tilde{G}^n(t, t') + \int_t^t dt_1 \Sigma_n(t, t_1) \tilde{G}^n(t_1, t')
$$

$$
\frac{\partial}{\partial t} + \frac{\omega^2}{a_0^2} \tilde{C}^n(t, t') = \int_0^t dt_1 R_n(t, t_1) \tilde{C}^n(t, t') + \int_0^t dt_1 D_n(t, t_1) \tilde{C}^n(t', t_1) + \int_0^t dt_1 \Sigma_n(t, t_1) \tilde{C}^n(t_1, t')
$$

The term $\int_0^t dt_1 R_n(t, t_1)$ plays the role of a mass and is given by the following expression:

$$
R_n(t_1, t_2) = -\frac{2B_0^2}{N_3} \frac{1}{(2\pi)^d} \int_0^N \int_0^N ds_1 \int_0^N \int_0^N ds_1' (1 - e^{i\omega_n(s_1' - s_1)}) \sum_{p \neq 0} (1 - e^{i\omega_p(s_1 - s_1')}) \tilde{G}^p(t_1, t_2)
$$

$$
\Delta(s_1, s_1'; t_1, t_2) \rightleftharpoons D_n(0)(t_1, t_2)
$$

The quantity $\Sigma_n(t_1, t_2)$ can be seen as the self-energy associated with the corresponding Dyson equations:

$$
\Sigma_n(t_1, t_2) = \frac{2B_0^2}{N_3} \frac{1}{(2\pi)^d} \int_0^N \int_0^N ds_1 \int_0^N \int_0^N ds_1' (1 - e^{i\omega_n(s_1' - s_1)}) \sum_{p \neq 0} (1 - e^{i\omega_p(s_1 - s_1')}) \tilde{G}^p(t_1, t_2)
$$

$$
\Delta(s_1, s_1'; t_1, t_2) \rightleftharpoons D_n(1)(t_1, t_2)
$$

Finally, $D_n(t_1, t_2)$ can be seen as a 'renormalized' noise correlator, which expression is reported here:

$$
D_n(t_1, t_2) = D_n^{(0)}(t_1, t_2) + D_n^{(1)}(t_1, t_2) + D_n^{(2)}(t_1, t_2) + D_n^{(3)}(t_1, t_2)
$$

Each term can be computed separately:
\[D^{(0)}_n(t_1, t_2) = \frac{2T}{N} \delta(t_1 - t_2) \]

\[D^{(1)}_n(t_1, t_2) = \frac{4B^2}{N^2} \frac{1}{(2\pi)^d} \int_0^N ds_1 \int_0^N ds'_1 Y(s_1, s'_1; t_1, t_2) \]
\[[\Delta(s_1, s'_1; t_1, t_2)]^{-\frac{d}{2}} \]

\[D^{(2)}_n(t_1, t_2) = \frac{2B^2}{N^2} \frac{2T}{N} \frac{1}{(2\pi)^d} \int_0^N ds_1 \int_0^N ds'_1 (1 - e^{i\omega_n(s'_1 - s_1)}) \]
\[\sum_{p \neq 0} \int_0^{t_2} dt_3 \tilde{G}^p(t_2, t_3)(1 - e^{i\omega_n(s_1 - s'_1)}) [\Delta(s_1, s'_1; t_1, t_2)]^{-2-\frac{d}{2}} \]
\[(-3X(s_1, s'_1; t_3)Y(s_1, s'_1; t_2, t_3) \int_0^{t_2} dt_4 \delta(t_1 - t_4) \tilde{G}^n(t_2, t_4) \]
\[+ \left[X(s_1, s'_1; t_2)X(s_1, s'_1; t_3) + 2Y^2(s_1, s'_1; t_2, t_3) \right] \int_0^{t_3} dt_4 \delta(t_1 - t_4) \tilde{G}^n(t_3, t_4) \]

\[D^{(3)}_n(t_1, t_2) = D^{(2)*}_n(t_2, t_1) \]

Finally we used the following notations:
\[X(s_1, s'_1; t_1) = \sum_{m \neq 0} |e^{-i\omega_n s_1} - e^{-i\omega_n s'_1}|^2 \tilde{C}^m(t_1, t_1) \]
\[Y(s_1, s'_1; t_1, t_2) = \sum_{m \neq 0} |e^{-i\omega_n s_1} - e^{-i\omega_n s'_1}|^2 \tilde{C}^m(t_1, t_2) \]
\[\Delta(s_1, s'_1; t_1, t_2) = X(s_1, s'_1; t_1)X(s_1, s'_1; t_2) - Y^2(s_1, s'_1; t_1, t_2) \]
Appendix B

In this appendix, we show how the ansatz proposed by equations (13) and (14) can be a suitable solution for the mode-coupling equations obtained in section 2.

We give the expressions of the different terms introduced in Appendix A, after performing adequate change of variables, after the power-law ansatz has been plugged into these terms. Whenever required, we introduced lower and upper cut-offs, assuming that in the extreme regimes of times (short times or $t' \to t$, for which we don’t have explicit analytical forms) the integrals are actually convergent, and that the time scaling we find is not modified by these contributions. In all equations we neglect the derivative terms, which is justified in the limit $t' \ll t$.

1. Equation for $\tilde{G}_n(t,t')$

- (i) The first term in front of the propagator in the right-hand side of the equation is comparable to a mass:

$$\int_0^t dt_1 R_n(t,t_1) = -\frac{2B_0^2}{N^2} \frac{1}{(2\pi)^d} \int_0^N ds (1 - e^{-i\omega_n s}) \frac{3q'}{2q} [X(s)]^{-1-d}$$

$$\int_0^{1-\epsilon} du u^{-1+2\gamma}(1 - u^{2\gamma})^{-2-\frac{d}{2}}$$

This factor is independant of time, up to the cut-off $1 - \epsilon$.

- (ii) Concerning the second term, it is in fact proportional to $\tilde{G}_n^m(t,t')$:

$$\int_{t'}^t \Sigma_n(t_1,t,t') \tilde{G}_n^m(t_1,t') = \frac{2B_0^2}{N^2} \frac{1}{(2\pi)^d} \int_0^N ds (1 - e^{-i\omega_n s}) \frac{3q'}{2q} [X(s)]^{-1-d}$$

$$\int_{t' > w}^{1-\epsilon} du u^{-1}(1 - u^{2\gamma})^{-2-\frac{d}{2}} [1 + u^{2\gamma}] \frac{1}{t} \left(\frac{t'}{t} \right)^{\gamma-1}$$

Finally, given the cut-offs w and $1 - \epsilon$, all terms in the equation for $\tilde{G}_n^m(t,t')$ are proportional to each other, and hence the dependance on time cancels out.

2. Equation for $\tilde{C}_n(t,t')$
• (i) The first new term that has to be computed is in fact proportional to \(\tilde{C}^n(t, t') \):

\[
\int_{t'}^t \Sigma_n(t, t_1) \tilde{C}^n(t_1, t') = \frac{2B^2}{N^2} \frac{1}{(2\pi)^d} \int_0^N ds (1 - e^{-i\omega_n s}) \frac{q' f_n}{2} [X(s)]^{-1-d} \\
\int_0^{1-\epsilon} du u^{-1} (1 - u^{2\gamma})^{-2 - \frac{d}{2}} [1 + 2u^{2\gamma}] \left(\frac{t'}{t} \right)^\gamma
\]

• (ii) The remaining terms coming from the \(D_n(t, t_1) \) contribution can be simplified. First, when \(t' < t \), it is easy to see that the ones involving \(D^{(0)}_n(t, t_1) \) and \(D^{(2)}_n(t, t_1) \) are equally zero.

• (iii) The \(D^{(1)}_n(t, t_1) \) contribution is again proportional to \(\tilde{C}^n(t, t') \),

\[
\int_0^{t'} dt_1 D^{(1)}_n(t, t_1) \tilde{C}^n(t', t_1) = \frac{4B^2}{N} \frac{1}{(2\pi)^d} \int_0^N ds q' f_n [X(s)]^{-1-d} \frac{1}{2\gamma} \left(\frac{t'}{t} \right)^\gamma
\]

• (iv) Finally, the last term has a different time dependance.

\[
\int_0^{t'} dt_1 D^{(3)}_n(t, t_1) \tilde{G}^n(t', t_1) = \frac{2B^2 T}{N^2} \frac{1}{(2\pi)^d} \int_0^N ds (1 - e^{-i\omega_n s}) \frac{q'}{q} (q' f_n)^2 [X(s)]^{-1-d} \\
\left(-3 \int_w^{1-\epsilon} du u^{2\gamma-2} \int_0^{1-\epsilon} dv v^{2\gamma-1} [1 - v^{2\gamma}]^{-2 - \frac{d}{2}} + \int_w^{1} du u^{2\gamma-2} \int_w^{1-\epsilon} dv v^{-1} [1 - v^{2\gamma}]^{-2 - \frac{d}{2}} \right) \\
\frac{1}{t} \left(\frac{t'}{t} \right)^{\gamma-1}
\]

Because of its scaling behaviour in \(t \) and \(t' \), this term is in fact a subdominant term compared to \(\tilde{C}^n(t, t') \) in the limit \(t \to \infty \) and \(t' \to \infty \), \(t' \ll t \), and we can neglect it.
References

[1] T. Garel, H. Orland and E. Pitard, “Protein folding and heteropolymers”, in Spin Glasses and Random Fields, A.P. Young (ed.), World Scientific, Singapore (1997).

[2] S.F. Edwards, M. Muthukumar, J. Chem. Phys., 89, 2435 (1988).

[3] M. Kardar, Y. Kantov, “Randomly charged polymers” in Complex Behaviour of Glassy Systems, M. Rubi, C. Perez-Vicente (eds.), Lecture Notes in Physics 492, Springer-Verlag (1997).

[4] T. Garel, D.A. Huse, L. Leibler, H. Orland, Europhys. Lett., 8, 9 (1989). C. Monthus, preprint cond-mat/9902336.

[5] T. Garel, H. Orland, Europhys. Lett., 6, 307 (1988). E.I. Shakhnovich, A.M. Gutin, J. Phys. A, 22, 1647 (1989), Europhys. Lett., 8, 327 (1989).

[6] J-Ph. Bouchaud, L.F. Cugliandolo, J. Kurchan, M. Mézard, Out of equilibrium dynamics in Spin Glasses and other Glassy Systems in Spin Glasses and Random Fields, A.P. Young (ed.), World Scientific, Singapore (1997).

[7] M. Alba, M. Ocio, M. Hammann, Europhys. Lett., 2, 45 (1986).

[8] L.C.E Struik, Physical Aging in Amorphous Polymers and Other Materials, (Elsevier, Houston, 1978).

[9] L.F. Cugliandolo, P. Le Doussal, Phys. Rev. E, 53, 1525 (1996), and references therein. L.F. Cugliandolo, J. Kurchan, P. Le Doussal, Phys. Rev. Lett., 76, 2390 (1996).

[10] P. Sollich, F. Lequeux, P. Hébraud, M.E. Cates, Phys. Rev. Lett., 78, 2020 (1997). P. Sollich, preprint cond-mat/9712001. P. Hébraud, F. Lequeux, preprint cond-mat/9805373.

[11] T.S. Grigera, N.E. Israeloff, preprint cond-mat/9904351

[12] J-R. Roan, E. Shakhnovich, Phys. Rev. E, 54, 5340 (1996).
[13] D. Thirumalai, V. Ashwin, J.K. Bhattacharjee, *Phys. Rev. Lett.*, **77**, 5385 (1996).

[14] M. Rehkopf, V.G. Rostiashvili, T.A. Vilgis, *J. Phys. II France*, **7**, 1469 (1997). V.G. Rostiashvili, M. Rehkopf, T.A. Vilgis, *Eur. Phys. J. B*, **6**, 233, 497 (1998).

[15] J.P. Kemp, Z.Y. Chen, *Phys. Rev. E*, **56**, 7017 (1997), *Phys. Rev. E*, **60**, 2994 (1999).

[16] D. Cule, T. Hwa, *Phys. Rev. Lett.*, **80**, 3145 (1998).

[17] S.J. Hagen, W.A. Eaton, *J. Chem. Phys.*, **104**, 3395 (1996). J.L. Green, J. Fan, C.A. Angell, *J. Phys. Chem*, **98**, 13780 (1994). I.E.T. Iben and al., *Phys. Rev. Lett.*, **62**, 1916 (1989).

[18] K. Binder, J. Baschnagel, C. Bennemann, W. Paul, *J. Phys: Cond. Matter*, **11**, A47 (1999). J. Baschnagel, C. Bennemann, W. Paul, K. Binder, *Dynamics of a supercooled polymer melt above the mode-coupling critical temperature: cage versus polymer-specific effects*, and references therein, contribution to the workshop *Unifying Concepts in Glass Physics*, Trieste, Sept 15-18, 1999, see http://www.ictp.trieste.it/~franz/workshop.html, to be published in J. Phys: Cond. Matter.

[19] W. Gotze, *Les Houches 1990: Liquids, Freezing and the Glass Transition* part 1, ed J-P. Hansen, D. Levesque, J. Zinn-Justin (North Holland), 287-503. W. Gotze, L. Sjogren, *Rep. Prog. Phys.*, **55**, 241 (1992). For a recent review, W. Gotze, *J. Phys: Cond. Matter*, **11**, A1 (1999).

[20] J-P. Bouchaud, M.E. Cates, *J. Phys. II*, **3**, 1171 (1993). A.N. Semenov, *Phys. Rev. E*, **60**, 3076 (1999).

[21] R. Kraichnan, *J. Fluid. Mech.*, **5**, 497 (1959).

[22] T. Hwa, E. Frey *Phys. Rev. A*, **44**, R7873 (1991). E. Frey, U.C. Tauber, T. Hwa *Phys. Rev. E*, **53**, 4424 (1996). J.P Bouchaud, M. Cates, *Phys. Rev. E*, **47**, R1455 (1993), Erratum **48**, 635 (1993). M. Moore and al. *Phys. Rev. Lett.*, **74**, 4257 (1995).
[23] Y. Tu, *Phys. Rev. Lett.* **73**, 3109 (1994).

[24] J.P Bouchaud, L. Cugliandolo, J. Kurchan, M. Mézard, *Physica A*, **226**, 243 (1996).

[25] V.I. Abkevich, A.M. Gutin, E.I. Shakhnovich, *Biochemistry*, **33**, 10026 (1994).

[26] L.F. Cugliandolo, J. Kurchan, *Phys. Rev. Lett.*, **71**, 173 (1993).

[27] P.C. Hohenberg, B.I. Halperin, *Rev. Mod. Phys.*, **49**, 435 (1977).

[28] W. Kob, J-L. Barrat, *Physica A* **263**, 234 (1999) and references therein.

[29] S. Franz, M. Mézard, G. Parisi, L. Peliti, *Phys. Rev. Lett.*, **81**, 1758 (1998); preprint [cond-mat/9903370](http://arxiv.org/abs/cond-mat/9903370).

[30] M. Mézard, G. Parisi, *A first principle computation of the thermodynamics of glasses*, and references therein, contribution to the workshop *Unifying Concepts in Glass Physics*, Trieste, Sept 15-18, 1999, see http://www.ictp.trieste.it/~franz/workshop.html, to be published in *J. Phys: Cond. Matter.*