Forecasting the Number of Outpatient Patient Visits Using the ARIMA, SES And Holt-Winters Methods at XYZ Community Health Center

I D Sumitra1*, I Basri2
1,2Departemen Magister Sistem Informasi, Universitas Komputer Indonesia, Indonesia

Email: *irfan_dwiguna@unikom.ac.id

Abstract. The purpose of the research is to find out the visiting patient at the community health center. This research is Forecasting used the ARIMA method, Single Exponential Smoothing, and Holt-Winters, which are very suitable for processing data that is time series as in outpatient visits. The data from outpatients is patient visits for five years from January 2014 to December 2018 where outpatient data were taken from the total number of outpatient visits from visit data categories: General, Clinic, BPJS, Non-BPJS (SKM), Non-BPJS (Gakinda) List of new patients and the list of patients who were then predicted the level of patient visits during the next two years, namely from January 2019 to December 2020. This study compared the best method among the three-time series methods. The forecast compared with actual data to see accuracy and find out which Forecast is best. The final results show that the MAPE value of the ARIMA method for patient visit data is worth 22.55%, the Single Exponential Smoothing method is worth 9.74%, and the Holt-Winters method is worth 7.90%. It can be said that the smallest error value is Holt-Winters from patient visit data with MAPE 7.90%, which is said to be an excellent Forecasting category by producing a total value of Forecast = 53894.2 with an average monthly = 2245.59 for Forecasting for the next two years. This monthly average result is used as a reference for the number of visitors who come for each month around 2245 people after that the last step taken is to make a strategic design using the SWOT analysis technique combined with prediction results using the Holt-Winters method in getting a conclusion that can make documents which is only around 2245 documents/person, especially outpatient data for problem solutions that occur at public health centers.

1. Introduction

As the number of human population increases as well as the state of the economy is getting more advanced, the people's awareness of health is increasing. This can increase the number of patient visits that if the community will visit for treatment. Therefore, there is a need for special attention from the health center to prepare for the fulfillment of facilities and supporting services, such as services in the outpatient registration area where registration documents must be adjusted with the number of patients available. If the documents are lacking or have not been made, there can be a long queue or a buildup of patients that causes inadequate service. For this reason, the public health center must carry out careful planning activities, one of which is by doing forecasting activities in order to overcome the problem. Public Health Center is a health unit that deals with health problems that exist in the local community environment [1].

Forecasting is the science used to predict something or value that has not yet happened and has the aim to predict something that will happen in the future [2].

Published under licence by IOP Publishing Ltd

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Forecasting is done using three methods with five years data and forecasted the next two years; the methods are Autoregressive Moving Average (ARIMA), Single Exponential Smoothing (SES), and Holt-Winters then forecasting results with selected methods combined with SWOT Analysis. The Analysis SWOT is an analysis of internal and external conditions of an organization, which will be used as a basis for designing strategies and work programs so that they can make decisions well [3]. The purpose of the research is to compare whether those methods are better to determine the number patient visited at community health center.

2. Methods

2.1 Time Series Method

The method of time series is the method that is used to predict the future using the data historically. In other words, the method of time series is trying to see what happened in a period specified and used the data period to predict it [4]. The followings are the time series methods:

2.1.1 Autoregressive Integrated Moving Average Method (ARIMA)

Autoregressive Integrated Moving Average (ARIMA) is often also called the method of cascading time BoxJenkins that use the data series time for forecasting that have validity and accuracy, which is very good [5].

The general model for the AR I MA process is a mixture of the order p (AR (p)), and the pure moving average order q (MA (q)) expressed in mathematical equations.

\[
X_t = \phi_1X_{t-1} + \phi_2X_{t-2} + \ldots + \phi_pX_{t-p} + \epsilon_t - \Theta_1\epsilon_{t-1} - \Theta_2\epsilon_{t-2} - \ldots - \Theta_q\epsilon_{t-q} \tag{1}
\]

Where:
- \(X_t\): data in the t-period
- \(\phi_p\): p-autoregressive parameter
- \(\Theta_q\): the moving average parameter
- \(\epsilon_t\): error value at time t

2.1.2 Single Exponential Smoothing Method

The Single Exponential Smoothing Method is a model of assuming data to fluctuate around a fixed mean value, without a trend or consistent growth pattern [6]. The formula for Simple exponential smoothing is as follows:

\[
F_{t+1} = \alpha \cdot X_t + (1 - \alpha) \cdot F_t \tag{2}
\]

Where:
- \(F_{t+1}\): forecasting at time \(t+1\)
- \(F_t\): forecasting for period t.
- \(X_t\): actual time series value
- \(\alpha\): leveling constant between 0 and 1

2.1.3 Holt-Winters Method

This method is used to overcome the problem of trends and seasonal indications from one time-series data, which is a combination of the \textit{Holt} method and the \textit{Winters} method [7].
\[L_t = \alpha (Y_t - St - s) + (1 - \alpha) (L_t - 1 + bt - 1) \](3)
\[bt = \beta (L_t - L_t - 1) + (1 - \beta) bt - 1 \](4)
\[St = \gamma (Y_t - L_t) + (1 - \gamma) St - s \](5)
\[Ft + m = Lt + bt m + St - s + m \](6)

Where:
\(s \) = seasonal length.
\(Ft + m \) = Forecasting for the next period \(m \).
\(Lt \) = Overall smoothing value.
\(bt \) = Trend component.
\(St \) = Seasonal component

2.2 Evaluation of forecasting results

Evaluation of forecasting results is used to determine the accuracy of forecasting results that have been made against the actual data.

2.2.1 Mean Square Error (MSE)

The method that is quite often used in evaluating forecasting results is to use the Mean Squared Error (MSE) method. By using the MSE, an error that there is showing how significant differences in the results of estimates with actual data [8]. MSE is the average difference squared between the value of the predicted and the observed.

\[\text{MSE} = \frac{\sum \text{(Error forecasts)}^2}{n} \](7)

where :
\(n \) = number of data periods

2.2.2 Root Mean Square Error (RMSE)

Root Mean Square Error (RMSE) is used to find the accuracy of forecasting results with historical data using the formula [8]. The smaller the value produced, the better forecast results are done.

\[\text{MSE} = \sqrt{\frac{\sum (y_t - \hat{y}_t)^n}{n}} \](8)

2.2.3 Mean Absolute Deviation (MAD)

Mean Absolute Deviation is a measure of the overall forecasting error for a model. MAD value is calculated by taking the number of absolute values of forecasting error divided by the number of data periods (n) [8].

\[\text{MAD} = \frac{\sum |\text{Actual Data} - \text{Forecasts}|}{n} \](9)

where :
\(n \) = number of data periods

2.2.4 Mean Absolute Percentage Error (MAPE)

This method calculates the difference between the original data and forecasting data. The difference is absolute, then counted as a percentage of the original data. The percentage results are then obtained by the mean value [8].

\[\text{PE} = \left(\frac{x_t - \hat{x}_t}{x_t} \right) \times 100 \](10)

Middle Percentage Error (Mean Percentage Error)

\[\text{MPE} = \frac{\sum |\text{PE}|}{n} \](11)

Where:
3. Results and Discussion

3.1. Research data

This stage is the identification of the data obtained, in the data visit, the patient describes the number of patients visit that occurred in the time of 60 months or five years ranging from January 2014 to December 2018 as shown in Table 1. The data record of January 2014 until December 2018 amounted to as much as 60 data with details totaling 157,405 people. Furthermore, the data analyzed by using three methods, namely Methods ARIMA, exponential smoothing, and Holt-Winters.

NO	MONTH	2014	2015	2016	2017	2018
1	JANUARY	2236	2196	2457	3064	2932
2	FEBRUARY	2285	2365	2690	2710	2540
3	MARCH	2399	2502	2857	3097	2677
4	APRIL	2734	2556	2849	2903	2896
5	MAY	2576	2237	2789	3170	2748
6	JUNE	2609	2190	2688	2233	1846
7	JULY	2091	2120	2161	3257	2744
8	AUGUST	2358	2157	3025	3281	2617
9	SEPTEMBER	2513	2217	2730	3056	2264
10	OCTOBER	2441	2538	2846	3474	2877
11	NOVEMBER	2190	2424	2953	3445	2550
12	DECEMBER	2207	2565	2858	2793	2622

3.2. Research Stages

This study was conducted to determine the grooves or processes that occur in the processing of the data. For more details, it can be seen on the chart flowchart below (Figure 1):
As shown in Figure 1 above, the process that occurs is as follows:
1. Historical data collection for visitors from January 2014 to December 2018.
2. Identify data patterns shown by visitor data.
3. The forecasting the number of visits using the ARIMA, Single Exponential Smoothing, and Holt-Winters methods.
4. Calculate forecast results with actual data in 2018.
5. Comparing the smallest average value of visit data to the ARIMA, Single Exponential Smoothing, and Holt-Winters methods.
6. The results of the selected method used.

3.3. Forecasting Using the ARIMA Method

Table 2 shown the forecasting visit patients in January 2014 up to December 2018 in the can value Forecast ARIMA 0,1,1 during the year (2018) and then do test the data with the actual data.

Table 2. ARIMA Forecast Results (0,1,1) Patient Visits

Period	Actual	Forecast	Error	Absolute Value of Error	Square of Error	Absolute Values of Errors Divided by Actual Values	
T	At	Ft	At -Ft				
49	2932	3126.22	-194.22	194.22	37721.4084	0.066241473	
50	2540	3130.49	-590.49	590.49	348678.4401	0.232476378	
51	2677	3134.75	-457.75	457.75	209535.0625	0.17099365	
52	2896	3139.02	-243.02	243.02	59058.7204	0.083915746	
53	2748	3143.28	-395.28	395.28	156246.2784	0.143842795	
54	1846	3147.54	-1301.54	1301.54	1694006.372	0.705059588	
55	2744	3151.81	-407.81	407.81	166308.9961	0.148618805	
56	2617	3156.07	-539.07	539.07	290596.4649	0.205987772	
57	2264	3160.34	-896.34	896.34	803425.3956	0.395909894	
58	2877	3164.6	-287.6	287.6	82713.76	0.099965242	
59	2550	3168.86	-618.86	618.86	382987.6996	0.242690196	
60	2622	3173.13	-551.13	551.13	303744.2769	0.210194508	
Totals	31313	37796.11	-6483.11	6483.11	4535022.875	2.705896046	
Forecast ARIMA 0,1,1	RMSE	MAD	MSE	MAPE			
	614.751	540.259	377918.573	22.55%			

3.4. Forecasting Using the Single Exponential Smoothing Method

The forecasting visit patients in January 2014 up to December 2018 in the can value Forecast Single Exponential Smoothing Alpha (α: 0.2) during the year (2018) and then the early test of data with the actual data as shown in Table 3.

Table 3. Results of Single Exponential Smoothing Forecast (0.2) Patient Visits

Period	Actual	Forecast	Error	Absolute Value of Error	Square of Error	Absolute Values of Errors Divided by Actual Values	
T	At	Ft	At -Ft				
49	2932	3126.22	-194.22	194.22	37721.4084	0.066241473	
50	2540	3130.49	-590.49	590.49	348678.4401	0.232476378	
51	2677	3134.75	-457.75	457.75	209535.0625	0.17099365	
52	2896	3139.02	-243.02	243.02	59058.7204	0.083915746	
53	2748	3143.28	-395.28	395.28	156246.2784	0.143842795	
54	1846	3147.54	-1301.54	1301.54	1694006.372	0.705059588	
55	2744	3151.81	-407.81	407.81	166308.9961	0.148618805	
56	2617	3156.07	-539.07	539.07	290596.4649	0.205987772	
57	2264	3160.34	-896.34	896.34	803425.3956	0.395909894	
58	2877	3164.6	-287.6	287.6	82713.76	0.099965242	
59	2550	3168.86	-618.86	618.86	382987.6996	0.242690196	
60	2622	3173.13	-551.13	551.13	303744.2769	0.210194508	
Totals	31313	37796.11	-6483.11	6483.11	4535022.875	2.705896046	
Forecast ARIMA 0,1,1	RMSE	MAD	MSE	MAPE			
	614.751	540.259	377918.573	22.55%			
Period	Actual	Forecast	Error	Absolute Value of Error	Square of Error	Absolute Values of Errors Divided by Actual Values.	
--------	--------	----------	-------	-------------------------	----------------	---	
T	At	Ft	At-Ft	[At-Ft]	(At-Ft)^2	(At-Ft)/At	
49	2932	2932	0	0	0	0	
50	2540	2932	-392	392	153664	0.154330709	
51	2677	2853.6	-176.6	176.6	31187.56	0.065969369	
52	2896	2818.28	77.72	77.72	6040.3984	0.026837017	
53	2748	2833.824	-85.824	85.824	7365.758976	0.031231441	
54	1846	2816.659	-970.659	970.659	942179.2825	0.525817551	
55	2744	2622.527	121.472	121.472	14755.60227	0.044268455	
56	2617	2646.821	-29.821	29.821	889.345039	0.011395448	
57	2264	2640.857	-376.857	376.857	142021.5841	0.166456498	
58	2877	2565.486	311.513	311.513	97040.96701	0.108277369	
59	2550	2672.778	-77.7888	77.7888	6051.098441	0.030505414	
60	2622	2612.231	9.76895	9.76895	95.43247545	0.003725765	
Totals	31313	32902.07	-1589.07	1589.07	1401291.028	1.168815035	

Forecasting Using the Holt-Winters Method

The process of working on methods of Holt-Winters is almost equal to the ARIMA and SES, forecasting visit patients in January 2014 to December 2018. In the value Forecast Holt-Winters Alpha ($\alpha = 0.3$, $\beta = 0.1$, $\gamma = 0.1$) during the year (2018) and then do test the data with the actual data as shown in the Table 4.

Table 4. Holt-Winters Results $\alpha = 0.3$ $\beta = 0.1$ $\gamma = 0.1$ Patient Visits

Period	Actual	Forecast	Error	Absolute Value of Error	Square of Error	Absolute Values of Errors Divided by Actual Values.
T	At	Ft	At-Ft	[At-Ft]	(At-Ft)^2	(At-Ft)/At
49	2932	3067.49	-135.49	135.49	18357.5401	0.046210778
50	2540	3108.33	-568.33	568.33	322998.9889	0.223751969
51	2677	3364.49	-687.49	687.49	472642.5001	0.256813597
52	2896	3437.08	-541.08	541.08	292767.5664	0.186837017
53	2748	3361.72	-613.72	613.72	376652.2384	0.223333333
54	1846	3049.85	-1203.85	1203.85	1449254.823	0.652139762
55	2744	3027.73	-283.73	283.73	80502.7129	0.103400146
56	2617	3413.89	-796.89	796.89	635033.6721	0.304505159
57	2264	3373.31	-1073.31	1073.31	1151994.356	0.474076855
58	2877	3601.58	-724.58	724.58	525016.1764	0.251852624
59	2550	3521.26	-971.26	971.26	943345.9876	0.380886275
60	2622	3356.88	-734.88	734.88	540048.6144	0.2802746
3.6. Model Analysis

Based on the three models, namely ARIMA, Single Exponential Smoothing, and Holt-Winters from Patient Visit data, by comparing the average error values of each model is shown in Table 5.

Table 5. Results of Calculation of Patient Visit Error values

Method	MAPE Value	Information
ARIMA	22.55%	Fair/decent
Single Exponential Smoothing	9.74%	Very Good
Holt-Winters	7.90%	Very Good

In Table 5 above, it can be said to value error smallest is Holt-Winters of the MAPE 7.90%, which is said to be a category of forecasting were very good.

3.7. Forecast Analysis

On this stage, while (Forecast, Lower, Upper) during the 24 periods from January 2019 to December 2020 of all three methods respectively: ARIMA, Single Exponential Smoothing, and Holt-Winters, as well as calculated the amount of the total overall and the value of the average monthly of forecasting in the Table 6.

Table 6. Results Forecasting Patient Visits in the next 24 periods

Period (p)	Forecast	Lower	Upper							
A	S	H	A	S	H	A	S	H		
61	2616.74	2624.46	2495.53	2036.87	2062.17	1967.51	3196.61	3186.74	3186.74	2951.55
62	2620.00	2624.46	2382.94	2015.86	2062.17	1873.28	3226.15	3186.74	3186.74	2892.60
63	2625.27	2624.46	2536.77	1995.86	2062.17	2006.72	3254.68	3186.74	3186.74	3066.82
64	2629.53	2624.46	2589.96	1976.76	2062.17	2037.07	3282.30	3186.74	3186.74	3142.85
65	2633.80	2624.46	2486.91	1958.47	2062.17	1909.03	3309.12	3186.74	3186.74	3064.80
66	2638.06	2624.46	2101.57	1940.91	2062.17	1496.79	3335.21	3186.74	3186.74	2706.34
67	2642.32	2624.46	2237.39	1924.01	2062.17	1604.08	3360.64	3186.74	3186.74	2870.70
68	2646.59	2624.46	2397.34	1907.72	2062.17	1734.05	3385.46	3186.74	3186.74	3060.62
69	2650.85	2624.46	2256.37	1891.98	2062.17	1561.86	3409.72	3186.74	3186.74	2950.88
70	2655.12	2624.46	2484.18	1876.76	2062.17	1757.56	3433.47	3186.74	3186.74	3211.01
71	2659.38	2624.46	2346.43	1862.01	2062.17	1586.34	3456.75	3186.74	3186.74	3106.52
72	2663.64	2624.46	2239.02	1847.71	2062.17	1444.83	3479.58	3186.74	3186.74	3033.21
73	2667.91	2624.46	2201.59	1833.82	2062.17	1372.57	3502.00	3186.74	3186.74	3030.60
74	2672.17	2624.46	2130.83	1820.32	2062.17	1266.35	3524.03	3186.74	3186.74	2995.31
75	2676.44	2624.46	2266.00	1807.18	2062.17	1365.48	3545.69	3186.74	3186.74	3166.51
76	2680.70	2624.46	2311.03	1794.38	2062.17	1373.98	3567.02	3186.74	3186.74	3248.07
77	2684.96	2624.46	2216.65	1781.90	2062.17	1242.63	3588.03	3186.74	3186.74	3190.68
78	2689.23	2624.46	1871.10	1769.73	2062.17	859.70	3608.72	3186.74	3186.74	2882.49
79	2693.49	2624.46	1989.76	1757.85	2062.17	940.64	3629.14	3186.74	3186.74	3038.88
80	2697.76	2624.46	2129.54	1746.24	2062.17	1042.38	3649.27	3186.74	3186.74	3216.69
81	2702.02	2624.46	2001.95	1734.89	2062.17	876.47	3669.15	3186.74	3186.74	3127.43
The results of forecasting get the value of Forecast, Lower, Upper from the three methods: ARIMA, Single Exponential Smoothing, and Holt-Winters. Nevertheless. The data to be used is Holt-Winters data because the data has been selected. Table 4.11, from the results of the patient visits, the Holt-Winters method has a total number (t) Forecast = 53894.2, Lower = 33967.7, Upper = 73820.8, and for the average monthly value with the formula (t / p), namely Forecast = 2245.59 , Lower = 1415.32 , Upper = 3075.86.

Figure 2. Results Forecasting For 2 Years Next

Figure 2 shows the graph forecast for 24 periods or 24 months for two years starting from January 2019 until December 2020 data pattern of methods ARIMA and Single Exponential Smoothing have a pattern of the same data that the pattern of the trend, while for the method of Holt-Winters has a pattern seasonal.

3.8. Interpretation of SWOT Analysis for development

In determining the policy of the development strategy of marketing that can be made of a matrix SWOT, here to the aggregate of four types of strategies are strategy SO (Strength Opportunities), the strategy WO (Weaknesses Opportunities), the strategy ST (Strength Threat), and the strategy WT (Weakness Threat) as shown in Table 7.

Table 7. SWOT Matrix
INTERNAL FACTORS
1. Government support
2. Health facilities
3. Health office branch
EXTERNAL FACTORS
1. Cooperation with BPJS
2. Interwoven collaboration
3. Number of health facilities
4. Forecast (Holt-Winters) Research Results Data

Treats
1. Exploiting opportunities
2. Competition between hospitals

ST Strategy
1. Dare to compete with the strength of your health facility (S2, T2)
2. Establish cooperation with other hospitals (S3, T2)

WT Strategy
1. Increase promotion of health facilities owned (W2, T1)
2. More prepared needs for supporting services in order to compete (W1, T2)

After having performed the analysis using the method of analysis of SWOT, the health center has been excellent in giving service. However, such strategies need to notices for patient’s data in the future. In order to create a new document, especially the patient’s data hospitalized.

4. Conclusion
The ARIMA, Single Exponential Smoothing, and Holt-Winters method can be said to be the smallest error value are Holt-Winters with a MAPE of 7.90%, which results in a total value of Forecast = 53894.2 with an average monthly = 2245.59 for forecasting for the next two years. This monthly average result is used as a reference for the number of visitors who come for each month around 2245 people. Subsequently, the results of the application using the Holt-Winters method are combined again with strategic design using business techniques SWOT analysis so that a conclusion can be obtained that can create a new document in the range of 2245 documents/person mainly outpatient data for problem solutions that occur at public health centers.

Acknowledgment
We would like to send our gratitude for Univeritas Komputer Indonesia and those who helped in the process of making this research.

References
[1] Ling Ling Agustina, “Pengaruh motivasi kerja terhadap kinerja perawat balai kesehatan Pt. Bentoel Malang,” pp. 1–13, 2014.
[2] I. Basri and I. D. Sumitra, “Comparison of Forecasting the Number of Outpatients Visitors Based on Naïve Method & Exponential Smoothing Comparison of Forecasting the Number of Outpatients Visitors Based on Naïve Method & Exponential Smoothing,” Incitest 2nd Int. Conf. informatics Eng. Sci. Technol., 2019.
[3] R. dan Ahsanul, “Perencanaan Strategis Dalam Perspektif Organisasi,” INTEKNA, no. 2, pp. 77–78, 2014.
[4] J. F. Siahaan, “Analisa Kecenderungan Kunjungan Pasien Rawat Jalan Tahun 2004-2008 Untuk
Meramalkan Kunjungan Pasien Rawat Jalan Tahun 2009-2013 Di Rumah Sakit Haji,” 2013.

[5] R. H. B. Bangun, “Penerapan Autoregressive Integrated Moving Average (ARIMA) Pada Peramalan Produksi Kedelai di Sumatera Utara,” 9(2), 2019.

[6] A. Raharja, W. Angraeni, and R. A. Vinarti, “Penerapan metode exponential smoothing untuk peramalan penggunaan waktu telepon di pt.telkomsel divre3 surabaya.”

[7] W. Widi, “Aplikasi Metode Peramalan Holth Winters Exponential Smoothing Pada Data Jumlah Kejadian Hipertensi,” 4(1), pp. 11–23.

[8] P. W. M. Azman Maricar, “Analysis of Data Mining for Forecasting Total Goods Delivery with Moving Average Method,” no. June 2017, pp. 1–5, 2018.