Defending Against Multiple and Unforeseen Adversarial Videos

Shao-Yuan Lo, Vishal M. Patel
Johns Hopkins University

IEEE Transactions on Image Processing (TIP), 2021
What’s Adversarial Example?

$$x_{adv} = x + \delta$$

$$f(x_{adv}) \neq y$$
What’s Adversarial Example?

- Adversarial examples are visually similar to human but can fool well-trained deep networks.
- Deep networks are vulnerable to adversarial examples.

[Goodfellow et al. ICLR’15]
Generate Adversarial Examples

• Train a model
 • $\min \text{Loss}(f(x), y; \theta)$
 • Minimize the loss function w.r.t. model parameters θ

• Generate adversarial examples
 • Most common method: Gradient-based method, e.g., FGSM.
 • $\max \text{Loss}(f(x+\delta), y; \theta)$
 • Maximize the loss function w.r.t. adversarial perturbation δ
Generate Adversarial Examples

• Generate adversarial examples
 • Most common method: Gradient-based method, e.g., FGSM.
 • \(\text{max Loss}(f(x+\delta), y; \theta) \)
 • **Maximize** the loss function w.r.t. adversarial perturbation \(\delta \)

• Perturbation budget \(\|\delta\| \)
 • Constrain the **magnitude** of perturbation, e.g., \(L_p\)-norm.
 • Constrain the **region** of perturbation, e.g., **patch attack**.
Adversary’s Knowledge

- White-box attack
- Black-box attack
- Gray-box attack

https://slidetodoc.com/unclassified-if-you-know-the-enemy-and-know
Untargeted/Targeted Attacks

• Untargeted attack

\[f(x_{adv}) \neq y \]
\[L_{adv}(x) = -L(x, y) \]

• Targeted attack

\[f(x_{adv}) = y_{adv}, \quad y_{adv} \neq y \]
\[L_{adv}(x) = L(x, y_{adv}) \]
Adversarial Examples in Different Types

[Wu et al. ICLR’20]
Adversarial Examples in Physical World

[Hu et al. ICCV’21]

[Ranjan et al. ICCV’19]
Adversarial Examples in Different Tasks

Semantic segmentation

Object detection

Optical flow

[Xie et al. ICCV’17]

[Ranjan et al. ICCV’19]
Adversarial Defenses

• **Image transformation**: Remove perturbations from input images.

\[
f(x_{adv}) \neq y
\]

\[
f(T(x_{adv})) = y
\]

• **Adversarial training**: Enhance the robustness of networks itself.

\[
\theta^* = \arg \min_{\theta} \mathbb{E}_{(x,y) \sim \mathcal{D}} \left[\max_{\delta \in \mathcal{S}} L(x + \delta, y; \theta) \right]
\]
Image Transformation-based Defenses

• Image preprocessing methods:
 • **Color precision reduction** (pixel value quantization)
 • **JPEG compression** (frequency domain quantization)
 • **Denoising** (Gaussian blur, median, mean, bilateral, non-local means, etc.)
 • **Color space** (RGB, HSV, YUV, LAB, etc.)
 • **Contrast** (histogram equalization)
 • **Noise injection** (add noise on adversarial examples)
 • **FFT perturbation** (similar to JPEG)
 • **Swirl** (rotation)
 • **Resizing**
 • **Gray scale**

• Generative model methods:
 • **Defense-GAN**
 [Samangouei et al. ICLR’18]
 • **PixelDefend**
 [Song et al. ICLR’18]
Image Transformation-based Defenses

• [Athalye et al. ICML’19] proposed **adaptive attacks**, which defeat most image transformation-based defenses.

• Strong white-box attacks are generated through **gradients**, e.g., FGSM and PGD attacks.

• Image transformation-based defenses mostly rely on **gradient masking**, which can be defeated by adaptive attacks.

• Three types of masked gradients:
 • Shattered gradients ⟷ BPDA
 • Stochastic gradients ⟷ EOT
 • Exploding & vanishing gradients ⟷ BPDA or EOT or Both

Defense	Dataset	Distance	Accuracy
Buckman et al. (2018)	CIFAR	0.031 (ℓ_∞)	0%*
Ma et al. (2018)	CIFAR	0.031 (ℓ_∞)	5%
Guo et al. (2018)	ImageNet	0.005 (ℓ_2)	0%*
Dhillon et al. (2018)	CIFAR	0.031 (ℓ_∞)	0%
Xie et al. (2018)	ImageNet	0.031 (ℓ_∞)	0%
Song et al. (2018)	CIFAR	0.031 (ℓ_∞)	9%*
Samangouei et al. (2018)	MNIST	0.005 (ℓ_2)	55%**
Madry et al. (2018)	CIFAR	0.031 (ℓ_∞)	47%
Na et al. (2018)	CIFAR	0.015 (ℓ_∞)	15%
Adversarial Training

- Adversarial training is a strong defense against white-box attacks.
- **Core idea:** Train with adversarial examples.
- Adversarial training does not cause masked gradients.
- It has been widely used as a standard baseline defense.

\[
\theta^* = \arg \min_{\theta} \mathbb{E}_{(x,y) \sim D} \left[\max_{\delta \in \mathcal{S}} L(x + \delta, y; \theta) \right]
\]

[Madry et al. ICLR’18]
Why Study Adversarial Examples?

- Deep learning models are being widely used in real-world applications, such as autonomous driving. Their safety is critical.

- We aim to build robust DL models that we can trust.

https://nicholas.carlini.com/writing/2019/all-adversarial-example-papers.html
Why Videos?

• Most research in adversarial examples focuses on static images.
• Adversarial attacks and defenses for videos are less explored.

• To the best of our knowledge, this work is the first defense against white-box attacks in the video domain.
• We provide comprehensive baseline results for adversarial robustness in the video domain.
Adversarial Videos

• Video is a stack of consecutive images.
• A naïve way to generate adversarial videos:
 Use image-based method directly.

\[x^{adv} = x + \epsilon \cdot \text{sign}(\nabla_x L(x, y; \theta)) \]

Image: \(x \in \mathbb{R}^{C \times H \times W} \)

Video: \(x \in \mathbb{R}^{F \times C \times H \times W} \)
Adversarial Framing (AF)

Task: Action recognition
Dataset: UCF-101

Attack	$W = 1$	$W = 2$	$W = 3$	$W = 4$
None	85.95%	85.95%	85.95%	85.95%
RF	82.57%	80.53%	81.11%	79.74%
BF	84.94%	84.73%	84.75%	84.59%
AF	65.77%	22.12%	9.45%	2.05%

[Zajac et al. AAAI’19]
Salt-and-Pepper Attack (SPA)

- Add unbounded perturbations on a number of randomly selected pixels.
- The perturbation looks like salt-and-pepper noise.
- A kind of L0-norm attack.

- Decrease action recognition accuracy from 89.0% to 8.4% on UCF-101.
Adversarial Video Types

• PGD: Projective gradient descent [Madry et al. ICLR’18]

• ROA: Rectangular occlusion [Wu et al. ICLR’20]

• AF: Adversarial Framing [Zajac et al. AAAI’19]

• SPA: Salt-and-Pepper noise
Adversarial Video Types

- **PGD:** Projective gradient descent
 [Madry et al. ICLR’18]

- **ROA:** Rectangular occlusion
 [Wu et al. ICLR’20]

- **AF:** Adversarial Framing
 [Zajac et al. AAAI’19]

- **SPA:** Salt-and-Pepper noise

How to simultaneously defend against multiple types of attacks?
Problem: Multi-perturbation Robustness

• Standard adversarial training has poor *multi-perturbation robustness*.
• Training: δ_{PGD}
• Test: Clean, δ_{PGD}, δ_{ROA}, δ_{AF}, δ_{SPA}

$$
\theta^* = \arg \min_{\theta} \mathbb{E}_{(x,y) \sim D} \left[\max_{\delta \in S} L(x + \delta, y; \theta) \right]
$$

Generate one type of adversarial examples
Train model parameters

[Madry et al. ICLR’18]
Problem: Multi-perturbation Robustness

- Dataset: UCF-101 (action recognition)
- Model: 3D ResNeXt-101
- Attack setting:
 - PGD Linf: $\epsilon=4/255$, $T=5$
 - ROA: patch size=30x30
 - AF: width=10
 - SPA: #pixels=100, $T=5$

Model	Clean	PGD	ROA	AF	SPA	Mean	Union
No Defense	89.0	3.3	0.5	1.6	8.4	20.6	0.0
AT-PGD	78.6	49.0	5.0	0.6	67.1	40.1	0.3
AT-ROA	82.6	12.5	69.0	54.0	17.6	47.1	7.9
AT-AF	84.6	7.1	3.9	80.5	12.2	37.7	2.1
AT-SPA	83.5	36.9	2.6	0.7	69.5	38.6	0.2
Problem: Multi-perturbation Robustness

- **Average** adversarial training is better, but not enough.
- Training: Clean, $\delta_{\text{PGD}}, \delta_{\text{ROA}}, \delta_{\text{AF}}, \delta_{\text{SPA}}$
- Test: Clean, $\delta_{\text{PGD}}, \delta_{\text{ROA}}, \delta_{\text{AF}}, \delta_{\text{SPA}}$

$$\theta^* = \arg \min_{\theta} \mathbb{E}_{(x,y) \sim \mathcal{D}} \left[\sum_{i=1}^{N} \max_{\delta_i \in \mathcal{S}_i} L(x + \delta_i, y; \theta) \right]$$

Generate **multiple types** of adversarial examples

Train model parameters

[Tramèr & Boneh NeurIPS’19]
Problem: Multi-perturbation Robustness

Model	Clean	PGD	ROA	AF	SPA	Mean	Union
No Defense	89.0	3.3	0.5	1.6	8.4	20.6	0.0
AT-PGD	78.6	49.0	5.0	0.6	67.1	40.1	0.3
AT-ROA	82.6	12.5	69.0	54.0	17.6	47.1	7.9
AT-AF	84.6	7.1	3.9	80.5	12.2	37.7	2.1
AT-SPA	83.5	36.9	2.6	0.7	69.5	38.6	0.2
AVG [30] (NeurIPS’19)	74.5	43.1	55.6	3.5	57.2	46.8	3.5
Observation: Distinct Data Distributions

• Why average adversarial training is not an ideal strategy?
• Example: Clean vs. PGD.
• Clean and PGD have distinct data distributions.
• The statistics estimation at BN may be confused when facing a mixture distribution.

[Xie et al. CVPR’20]
Observation: Distinct Data Distributions

• Example: **Clean** vs. **PGD**.

• An **auxiliary BN** guarantees that data from different distributions are normalized separately.

[Image of diagrams showing traditional and proposed auxiliary BN designs]

[Xie et al. CVPR’20]
Extension for Multi-perturbation Robustness

• What about **multiple** attack types?
• Example: Clean, PGD, ROA, AF, SPA
• Our assumption: Different attack types have **distinct** data distributions.
Extension for Multi-perturbation Robustness

• What about **unforeseen** attack types?
• Example:
 • **Known**: Clean, PGD, ROA
 • **Unforeseen**: AF, SPA
• **Lp-norm attacks**: PGD, SPA
• **Physically realizable attacks**: ROA, AF
• Our assumption: Similar attack types have **similar** data distributions.
Our Solution: Multi-BN Structure

- Example:
 - **Known**: Clean, PGD, ROA
 - **Unforeseen**: AF, SPA
- **Lp-norm attacks**: PGD, SPA
- **Physically realizable attacks**: ROA, AF
Our Solution: Multi-BN Structure

- **Training:** Clean, δ_{PGD}, δ_{ROA}
- **Test:** Clean, δ_{PGD}, δ_{ROA}, δ_{AF}, δ_{SPA}

\[
\theta = \theta^c + \sum_{i=0}^{N} \theta^b_i
\]

\[
\theta^* = \arg \min_{\theta} \mathbb{E}_{(x,y) \sim D} \left[L(x, y; \theta^c, \theta^b_0) + \sum_{i=1}^{N} \max_{\delta_i \in S_i} L(x + \delta_i, y; \theta^c, \theta^b_i) \right]
\]

- **Clean data**
- **Generate multiple types of adversarial examples**
- **Train model parameters**
Our Solution: Multi-BN Structure

Model	Clean	PGD	ROA	AF	SPA	Mean	Union
No Defense	89.0	3.3	0.5	1.6	8.4	20.6	0.0
AT-PGD	78.6	49.0	5.0	0.6	67.1	40.1	0.3
AT-ROA	82.6	12.5	69.0	54.0	17.6	47.1	7.9
AT-AF	84.6	7.1	3.9	80.5	12.2	37.7	2.1
AT-SPA	83.5	36.9	2.6	0.7	69.5	38.6	0.2
MultiBN-manual	83.7	46.4	65.6	57.0	60.4	62.6	40.7
Our Solution: Multi-BN Structure

• Performance (%) of each BN branch on the five input types.

BN Branch	Clean	PGD	ROA	AF	SPA
BN-Clean	83.7	21.3	13.5	5.9	23.8
BN-Lp	79.0	**46.4**	7.7	1.9	**60.4**
BN-Physical	83.0	23.5	**65.6**	**57.0**	26.6

• Our assumptions are valid:
 • Different attack types have distinct data distributions.
 • Similar attack types have similar data distributions.
BN Selection Module

• At inference time, the input data have to pass through the corresponding BN branch automatically.

• The adversarial video detector is achieved by a video classifier.

• Gumbel-Softmax function [Jang et al. ICLR'17] is a differentiable approximation of the argmax operation (vanilla Softmax also works).
BN Selection Module

• Use Gumbel-Softmax scores as ratio factors to weight each BN branch’s output features.

\[\hat{z} = \sum_{k=1}^{K} \rho_k z_k \]

- \(K \): # BN branches
- \(\rho_1, \ldots, \rho_K \): ratio factors
- \(z_1, \ldots, z_K \): each BN branch's output features
- \(\hat{z} \): weighted features
Entire Framework

• End-to-end pipeline:

\[
\hat{y} = f(x + \delta_i; \theta^c, \theta^b, \theta^{det}) \\
= g(x + \delta_i, h(x + \delta_i; \theta^{det}; \theta^c, \theta^b)).
\]
Entire Framework

• End-to-end training:

\[
\theta^* = \arg \min_\theta \mathbb{E}_{(x,y) \sim \mathcal{D}} \left[L(x, y; \theta) + \lambda \cdot L(x, y_{\text{det}}; \theta_{\text{det}}) \right] + \sum_{i=1}^{N} \left(\max_{\delta_i \in S_i} L(x + \delta_i, y; \theta) + \lambda \cdot L(x + \delta_i, y_{\text{det}}; \theta_{\text{det}}) \right)
\]
Experimental Setup

• Dataset: UCF-101 (action recognition)
• Model: 3D ResNeXt-101
• Attack setting:
 PGD Linf: $\epsilon=4/255$, $T=5$
 ROA: patch size=30x30
 AF: width=10
 SPA: #pixels=100, $T=5$
• White-box attacks
• Untargeted attacks
Results

Dataset: UCF-101

Model	Clean	PGD	ROA	AF	SPA	Mean	Union
No Defense	89.0	3.3	0.5	1.6	8.4	20.6	0.0
TRADE [19] (ICML’19)	82.3	29.0	5.7	3.3	42.2	32.5	1.9
AVG [26] (NeurIPS’19)	68.9	38.1	51.4	18.5	49.6	45.3	17.3
MAX [26] (NeurIPS’19)	72.8	32.5	31.0	5.8	49.4	38.3	5.5
MSD [27] (ICML’20)	70.2	43.2	1.7	1.6	56.0	34.6	0.7
MultiBN (ours)	74.2	44.6	58.6	44.3	53.7	55.1	34.8

Dataset: HMDB-51

Model	Clean	PGD	ROA	AF	SPA	Mean	Union
No Defense	65.1	0.0	0.0	0.0	0.3	13.1	0.0
TRADE [19] (ICML’19)	54.8	6.8	0.3	0.0	20.5	16.5	0.0
AVG [26] (NeurIPS’19)	39.0	14.3	17.1	2.8	26.2	19.9	1.4
MAX [26] (NeurIPS’19)	48.6	13.9	16.0	0.1	30.3	21.8	0.0
MSD [27] (ICML’20)	41.4	18.2	0.1	0.0	31.2	18.2	0.0
MultiBN (ours)	51.1	22.0	23.7	7.8	29.9	26.9	5.0
Results: Robustness Against Adaptive Attacks

• Construct an adaptive attack, which **jointly** attacks the **target model part** and the **BN selection module part**.

• The intuition is to generate adversarial examples which can also fool the BN selection module to let it select the incorrect BN branch, and thus become easier to fool the target model.

\[
\delta = \arg \max_{\delta \in \mathcal{S}} \left[L(x + \delta, y; \theta) + \lambda \cdot L(x + \delta, y^{\text{det}}; \theta^{\text{det}}) \right]
\]
Results: Robustness Against Adaptive Attacks

• The canonical attack has the greatest attacking strength.
• The proposed MultiBN is robust against adaptive attacks.
Results: Different Attack Budget

Fig. 3: Results (%) under the four attack types with varied numbers of attack iterations t_{max}.

Fig. 4: Results (%) under the four attack types with varied perturbation bounds.
Results: Robustness Against Black-box Attacks

• Generate adversarial videos on a surrogate model: 3D Wide ResNet-50
• Test on the target model: 3D ResNeXt-101

Model	Clean	PGD	ROA	AF	SPA	Union
TRADE [23] (ICML’19)	82.3	81.0	60.8	65.0	78.0	49.3
AVG [30] (NeurIPS’19)	68.9	68.4	68.0	62.0	68.4	56.2
MAX [30] (NeurIPS’19)	72.8	72.4	71.4	63.5	71.9	57.9
MSD [31] (ICML’20)	70.2	69.8	40.1	52.2	69.1	31.3
MultiBN (ours)	74.2	73.6	74.0	72.4	71.5	63.5
Results on Images

- **Dataset:** CIFAR-10
- **Model:** ResNet-18

Model	Clean	PGD	ROA	AF	SPA	Mean	Union
No Defense	94.3	0.0	4.7	0.1	16.3	23.1	0.0
TRADE [23] (ICML’19)	71.4	14.7	34.7	30.4	52.8	40.8	10.1
AVG [30] (NeurIPS’19)	86.4	47.2	53.6	60.5	67.8	63.1	28.1
MAX [30] (NeurIPS’19)	87.7	46.3	60.0	54.6	73.6	64.4	33.7
MSD [31] (ICML’20)	93.0	52.7	6.7	7.1	59.6	43.8	2.2
MultiBN (ours)	94.2	49.7	74.9	66.7	60.9	**69.3**	**36.9**
Thanks for your attention