On finitely Lipschitz space mappings.

R. Salimov

January 14, 2013 (SALIMOV.tex)

Abstract

It is established that a ring Q-homeomorphism with respect to p-modulus in \mathbb{R}^n, $n \geq 2$, is finitely Lipschitz if $n-1 < p < n$ and if the mean integral value of $Q(x)$ over infinitesimal balls $B(x_0, \varepsilon)$ is finite everywhere.

2000 Mathematics Subject Classification: Primary 30C65; Secondary 30C75

Key words: Q–homeomorphisms, p-modulus, p-capacity, finite Lipschitz

1 Introduction

Recall that, given a family of paths Γ in \mathbb{R}^n, a Borel function $\varrho : \mathbb{R}^n \to [0, \infty]$ is called admissible for Γ, abbr. $\varrho \in \text{adm}_\Gamma$, if

$$\int_{\gamma} \varrho \, ds \geq 1 \quad \text{for all } \gamma \in \Gamma.$$

The p-modulus of Γ is the quantity

$$M_p(\Gamma) = \inf_{\varrho \in \text{adm}_\Gamma} \int_{\mathbb{R}^n} \varrho^p(x) \, dm(x).$$

Here the notation m refers to the Lebesgue measure in \mathbb{R}^n.

Let G and G' be domains in \mathbb{R}^n, $n \geq 2$, and let $Q : G \to [0, \infty]$ be a measurable function. A homeomorphism $f : G \to G'$ is called a Q–homeomorphism with respect to the p-modulus if

$$M_p(f\Gamma) \leq \int_{G} Q(x) \cdot \varrho^p(x) \, dm(x)$$

for every family Γ of paths in G and every admissible function ϱ for Γ.

This conception is a natural generalization of the geometric definition of a quasiconformal mapping: if $Q(x) \leq K < \infty$ a.e., then f is quasiconformal under $p = n$, see 13.1 and 34.6 in [Va], and quasisiometric under $1 < p \neq n$, see [Ge].

This class of Q-homeomorphisms with respect to the n-modulus was first considered in the papers [MRSY1]-[MRSY3], see also the monograph [MRSY]. The...
main goal of the theory of Q-homeomorphisms is to clear up various interconnections between properties of the majorant $Q(x)$ and the corresponding properties of the mappings themselves. In particular, the problem of the local and boundary behavior of Q-homeomorphisms has been studied in \mathbb{R}^n first in the case $Q \in BMO$ (bounded mean oscillation) in the papers [MRSY_1]-[MRSY_3] and then in the case of $Q \in FMO$ (finite mean oscillation) and other cases in the papers [IR_1], [IR_2], [RS_1].

Note that the estimate of the type (1.3) was first established in the classical quasiconformal theory. Namely, it was obtained in [LV], p. 221, for quasiconformal mappings in the complex plane that

\begin{equation}
M(f) \leq \int_{\Gamma} K(z) \cdot \rho^2(z) \, dx dy
\end{equation}

where

\begin{equation}
K(z) = \frac{|f_z| + |f_z^*|}{|f_z| - |f_z^*|}
\end{equation}

is a (local) maximal dilatation of the mapping f at a point z. Next, it was obtained in [BGMV], Lemma 2.1, for quasiconformal mappings in space, $n \geq 2$, that

\begin{equation}
M(f) \leq \int_{D} K_I(x,f) \rho^n(x) \, dm(x)
\end{equation}

where $K_I(x,f)$ stands for the inner dilatation of f at x, see (1.8) below.

Given a mapping $f : G \to \mathbb{R}^n$ with partial derivatives a.e., $f'(x)$ denotes the Jacobian matrix of f at $x \in D$ if it exists, $J(x) = J(x,f) = \det f'(x)$ the Jacobian of f at x, and $|f'(x)|$ the operator norm of $f'(x)$, i.e., $|f'(x)| = \max\{|f'(x)h| : h \in \mathbb{R}^n, |h| = 1\}$. We also let $l(f'(x)) = \min\{|f'(x)h| : h \in \mathbb{R}^n, |h| = 1\}$. The outer dilatation of f at x is defined by

\begin{equation}
K_O(x,f) = \begin{cases}
\frac{|f'(x)|^n}{|J(x,f)|}, & \text{if } J(x,f) \neq 0 \\
1, & \text{if } f'(x) = 0 \\
\infty, & \text{otherwise},
\end{cases}
\end{equation}

the inner dilatation of f at x by

\begin{equation}
K_I(x,f) = \begin{cases}
\frac{|J(x,f)|}{|f'(x)|^n}, & \text{if } J(x,f) \neq 0 \\
1, & \text{if } f'(x) = 0 \\
\infty, & \text{otherwise},
\end{cases}
\end{equation}

The following notion generalizes and localizes the above notion of Q-homeomorphism. It is motivated by the ring definition of Gehring for quasiconformal mappings, see, e.g., [Ge_2], introduced first by V. Ryazanov, U. Srebro, and E. Yakubov in the plane and later on extended by V. Ryazanov and E. Sevostyanov to the space case, see, e.g., [RS_2], [RSY] and Chapters 7 and 11 in [MRSY].

Let $E, F \subset \mathbb{R}^n$ be arbitrary sets. Denote by $\Delta(E, F, G)$ a family of all curves $\gamma : [a, b] \to \mathbb{R}^n$ joining E and F in G, i.e., $\gamma(a) \in E, \gamma(b) \in F$ and $\gamma(t) \in G$.
for $t \in (a, b)$. Given a domain G in \mathbb{R}^n, $n \geq 2$, a (Lebesgue) measurable function $Q : G \to [0, \infty]$, $x_0 \in G$, a homeomorphism $f : G \to \mathbb{R}^n$ is said to be a ring Q–homeomorphism at the point x_0 if

\begin{equation}
M_p(f(\Delta(S_1, S_2, A))) \leq \int_A Q(x) \cdot \eta^p(|x - x_0|) \, dm(x)
\end{equation}

for every ring $A = A(r_1, r_2, x_0) = \{x \in \mathbb{R}^n : r_1 < |x - x_0| < r_2\}$ and the spheres $S_i = S(x_0, r_i) = \{x \in \mathbb{R}^n : |x - x_0| = r_i\}$, where $0 < r_1 < r_2 < r_0 := \text{dist}(x_0, \partial D)$, and every measurable function $\eta : (r_1, r_2) \to [0, \infty]$ such that

\begin{equation}
\int_{r_1}^{r_2} \eta(r) \, dr \geq 1.
\end{equation}

f is called a ring Q–homeomorphisms with respect to the p-modulus in the domain G if f is a ring Q–homeomorphism at every point $x_0 \in G$.

Let $f : G \to \mathbb{R}^n$, $n \geq 2$ be a quasiconformal mapping. The angular dilatation of the mapping $f : G \to \mathbb{R}^n$ at the point $x \in G$ with respect to $x_0 \in G, x_0 \neq x$ is defined by

\begin{equation}
D_f(x, x_0) = \frac{J(x, f)}{l_f(x, x_0)},
\end{equation}

where

\begin{equation}
l_f(x, x_0) = \min_{|h| = 1} \frac{|\partial_h f(x)|}{|\langle h, \frac{x - x_0}{|x - x_0|}\rangle|}.
\end{equation}

Here $\partial_h f(x)$ denotes the derivative of f at x in the direction h and the minimum is taken over all unit vectors $h \in \mathbb{R}^n$, see [GG].

We recall that the estimate of the type (1.9) was first established in the classical quasiconformal theory in complex plane, see [GS]. Next, it was obtained in [GG], for quasiconformal mappings in space, $n \geq 2$, that

\begin{equation}
M(f(\Delta(S_1, S_2, A))) \leq \int_A D_f(x, x_0) \cdot \eta^p(|x - x_0|) \, dm(x)
\end{equation}

for every ring $A = A(x_0, r_1, r_2) = \{x \in \mathbb{R}^n : r_1 < |x - x_0| < r_2\}$ and the spheres $S_i = S(x_0, r_i) = \{x \in \mathbb{R}^n : |x - x_0| = r_i\}$, where $0 < r_1 < r_2 < r_0 := \text{dist}(x_0, \partial G)$, and every measurable function $\eta : (r_1, r_2) \to [0, \infty]$ such that (1.10) holds.

Note that, in particular, homeomorphisms $f : G \to \mathbb{R}^n$ in the class $W^{1,n}_{\text{loc}}$ with $K_f(x, f) \in L^1_{\text{loc}}$ are ring Q–homeomorphisms as well as Q–homeomorphisms with $Q(x) = K_f(x, f)$, see, e.g., Theorem 6.10 and Corollary 4.9 in [MRSY], or Theorem 4.1 in [MRSY].

\section{Preliminaries}

Here a condenser is a pair $E = (A, C)$ where $A \subset \mathbb{R}^n$ is open and C is a non–empty compact set contained in A. E is a ringlike condenser if $B = A \setminus C$ is a
ring, i.e., if B is a domain whose complement $\mathbb{R}^n \setminus B$ has exactly two components where $\mathbb{R}^n = \mathbb{R}^n \cup \{\infty\}$ is the one point compactification of \mathbb{R}^n. E is a bounded condenser if A is bounded. A condenser $E = (A, C)$ is said to be in a domain G if $A \subset G$.

The following proposition is immediate.

2.1. Proposition. If $f : G \to \mathbb{R}^n$ is open and $E = (A, C)$ is a condenser in G, then (fA, fC) is a condenser in fG.

In the above situation we denote $fE = (fA, fC)$.

Let $E = (A, C)$ be a condenser. Then $W_0(E) = W_0(A, C)$ denotes the family of non-negative functions $u : A \to R^1$ such that (1) $u \in C_0(A)$, (2) $u(x) \geq 1$ for $x \in C$, and (3) u is ACL. We set

\begin{equation}
\begin{aligned}
cap_p E &= \inf_{u \in W_0(E)} \int_A |\nabla u|^p \, dm \\
&= \inf_{u \in W_0(E)} \int_A |\nabla u|^p \, dm
\end{aligned}
\end{equation}

where

$$|\nabla u| = \left(\sum_{i=1}^n (\partial_i u)^2 \right)^{1/2}$$

and call the quantity (2.2) the p-capacity of the condenser E.

For the next statement, see, e.g., [Ge], [He] and [Sh].

2.3. Proposition. Suppose $E = (A, C)$ is a condenser such that C is connected. Then

$$\cap_p E = M_p(\Delta(\partial A, \partial C; A \setminus C)).$$

We give here also the following two useful statements, see Proposition 5 and 6 in [Kr].

2.4. Proposition. Let $E = (A, C)$ be a condenser such that C is connected. Then

$$\cap_p E \geq \left(\inf m_{n-1} \sigma \right)^p \frac{m(A \setminus C)}{[m(A \setminus C)]^{p-1}}$$

where $m_{n-1} \sigma$ denotes the $(n-1)$-dimensional area of the C^∞-manifold σ that is the boundary $\sigma = \partial U$ of open set U containing C and contained along with its closure \overline{U} in A and the infimum is taken over all such σ.

2.5. Proposition. Let $E = (A, C)$ be a condenser such that C is connected. Then for $n-1 < p \leq n$

$$\left(\cap_p E \right)^{n-1} \geq \gamma \frac{d(C)^p}{m(A)^{1-n+p}}$$

where γ is a positive constant that depends only on n and p, $d(A)$ is a diameter and $m(A)$ is the Lebesgue measure of A in \mathbb{R}^n.
3 Characterization of ring \(Q \)-homeomorphisms with respect to the \(p \)-modulus

The theorems of this section extend the corresponding results in [RS₂], see also Section 7.3 in the monograph [MRSY], from the case of \(p = n \) to the case of \(p \in (1, n] \). Below we use the standard conventions: \(a/\infty = 0 \) for \(a \neq \infty \) and \(a/0 = \infty \) if \(a > 0 \) and \(0 \cdot \infty = 0 \), see e.g. [Sa], p. 6.

3.1. Lemma. Let \(G \) be a domain in \(\mathbb{R}^n, n \geq 2, 1 < p \leq n \), \(Q : G \to [0, \infty] \) a measurable function and \(q_{x_0}(r) \) the mean of \(Q(x) \) over the sphere \(|x - x_0| = r \).

Set

\[
I = I(x_0, r_1, r_2) = \int_{r_1}^{r_2} \frac{dr}{r^{n-1} q_{x_0}^{1/p} (r)}
\]

and \(S_j = \{ x \in \mathbb{R}^n : |x - x_0| = r_j \}, j = 1, 2 \), where \(x_0 \in G \) and \(0 < r_1 < r_2 < r_0 = \text{dist} \, (x_0, \partial G) \). Then whenever \(f : G \to \mathbb{R}^n \) is a ring \(Q \)-homeomorphism with respect to the \(p \)-modulus at a point \(x_0 \)

\[
M_p \left(\Delta (f S_1, f S_2, f G) \right) \leq \frac{\omega_{n-1}}{I^p}
\]

where \(\omega_{n-1} \) is the area of the unit sphere in \(\mathbb{R}^n \).

Proof. With no loss of generality, we may assume that \(I \neq 0 \) because otherwise (3.3) is trivial, and that \(I \neq \infty \) because otherwise we can replace \(Q(x) \) by \(Q(x) + \delta \) with arbitrarily small \(\delta > 0 \) and then take the limit as \(\delta \to 0 \) in (3.3). The condition \(I \neq \infty \) implies, in particular, that \(q_{x_0}(r) \neq 0 \) a.e. in \((r_1, r_2)\).

Set

\[
\psi(t) = \begin{cases}
1/\left[t^{n-1} q_{x_0}^{1/p} (t)\right] , & t \in (r_1, r_2) , \\
0 , & t \notin (r_1, r_2).
\end{cases}
\]

Then

\[
\int_A Q(x) \cdot \psi^p (|x - x_0|) \, dm(x) = \omega_{n-1} I
\]

where \(A = A(x_0, r_1, r_2) \).

Let \(\Gamma \) be a family of all paths joining the spheres \(S_1 \) and \(S_2 \) in \(A \). Let also \(\psi^* \) be a Borel function such that \(\psi^*(t) = \psi(t) \) for a.e. \(t \in [0, \infty] \). Such a function \(\psi^* \) exists by the Lusin theorem, see, e.g., 2.3.5 in [Fu] and [Sa], p. 69. Then the function

\[
\rho(x) = \psi^* (|x - x_0|)/I
\]

is admissible for \(\Gamma \) and since \(f \) is a ring \(Q \)-homeomorphisms with respect to the \(p \)-modulus we get by (3.5) that

\[
M_p(f \Gamma) \leq \int_A Q(x) \cdot \rho^p (x) \, dm(x) = \frac{\omega_{n-1}}{I^p}.
\]

and the proof is complete.
The following lemma shows that the estimate (3.3) cannot be improved for ring Q–homeomorphisms with respect to the p-modulus.

3.7. Lemma. Let G be a domain in \mathbb{R}^n, $n \geq 2$, $1 < p \leq n$, $x_0 \in G$, $0 < r_1 < r_2 < r_0 = \text{dist}(x_0, \partial G)$, $A = A(x_0, r_1, r_2) = \{ x \in \mathbb{R}^n : r_1 < |x - x_0| < r_2 \}$, $Q : \rightarrow [0, \infty]$ be a measurable function. Set

\[\eta_0(r) = \frac{1}{Ir^{p-1} q_{x_0}^0(r)} \]

(3.8)

where $q_{x_0}(r)$ is the mean of $Q(x)$ over the sphere $|x - x_0| = r$ and I is given by (3.2). Then

\[\frac{\omega_{n-1}^p}{I^{p-1}} = \int_A Q(x) \cdot \eta_0^p(|x - x_0|) \, dm(x) \leq \int_A Q(x) \cdot \eta_0^p(|x - x_0|) \, dm(x) \]

(3.9)

whenever $\eta : (r_1, r_2) \rightarrow [0, \infty]$ is measurable and

\[\int_{r_1}^{r_2} \eta(r) \, dr = 1. \]

(3.10)

Proof. If $I = \infty$, then the left hand side in (3.9) is equal to zero and the inequality is obvious. If $I = 0$, then $q_{x_0}(r) = \infty$ for a.e. $r \in (r_1, r_2)$ and the both sides in (3.9) are equal to ∞. Hence we may assume below that $0 < I < \infty$. Now, by (3.8) and (3.10) $q_{x_0}(r) \neq 0$ and $\eta(r) \neq \infty$ a.e. in (r_1, r_2). Set $\lambda(r) = r^{p-1} q_{x_0}^0(r) \eta(r)$ and $w(r) = 1/r^{p-1} q_{x_0}^{-1}(r)$. Then by the standard conventions $\eta(r) = \lambda(r)w(r)$ a.e. in (r_1, r_2) and

\[C := \int_A Q(x) \cdot \eta^p(|x - x_0|) \, dm(x) = \omega_{n-1} \int_{r_1}^{r_2} \lambda^p(r) \cdot w(r) \, dr. \]

(3.11)

By Jensen’s inequality with weights, see, e.g., Theorem 2.6.2 in [Ra], applied to the convex function $\varphi(t) = t^p$ in the interval $\Omega = (r_1, r_2)$ with the probability measure

\[\nu(E) = \frac{1}{I} \int_E w(r) \, dr \]

(3.12)

we obtain that

\[\left(\int \lambda^p(r)w(r) \, dr \right)^{1/p} \geq \int \lambda(r)w(r) \, dr = \frac{1}{I} \]

(3.13)

where we also applied that $\eta(r) = \lambda(r)w(r)$ satisfies (3.10).

Thus

\[C \geq \frac{\omega_{n-1}}{I^{p-1}} \]

(3.14)

and the proof of (3.9) is complete.
Finally, combining Lemmas 3.1 and 3.7, we obtain the following statement.

3.15. Theorem. Let G be a domain in \mathbb{R}^n, $n \geq 2$, and $Q : G \to [0, \infty]$ a measurable function. A homeomorphism $f : G \to \mathbb{R}^n$ is ring Q–homeomorphism with respect to the p-modulus at a point $x_0 \in G$ if and only if for every $0 < r_1 < r_2 < d_0 = \operatorname{dist}(x_0, \partial G)$

\[
M_p(\Delta (fS_1, fS_2 fG)) \leq \frac{\omega_{n-1}}{I^{p-1}}
\]

where S_1 and $S_2, S_1 = \{ x \in \mathbb{R}^n : |x-x_0| = r_1 \}$ and $S_2 = \{ x \in \mathbb{R}^n : |x-x_0| = r_2 \}$. $
\omega_{n-1}$ is the area of the unit sphere in \mathbb{R}^n, $I = I(x_0, r_1, r_2) = \frac{r_2}{r_1} \int \frac{dr}{r^{n-1} q_{x_0}(r)^{p-1}}$, $q_{x_0}(r)$ is the mean value of Q over the sphere $|x-x_0| = r$.

Note that the infimum from the right hand side in (1.9) holds for the function

\[
\eta_0(r) = \frac{1}{Ir^{n-1} q_{x_0}(r)}.
\]

Theorem 3.15 will have many applications in the theory of ring Q–homeomorphisms with respect to the p-modulus, see, e.g., the next section.

4 On finite by Lipschitz mappings

Given a mapping $\varphi : E \to \mathbb{R}^n$ and a point $x \in E \subseteq \mathbb{R}^n$, set

\[
L(x, \varphi) = \limsup_{y \to x \ y \in E} \frac{|\varphi(y) - \varphi(x)|}{|y-x|}
\]

and

\[
l(x, \varphi) = \liminf_{y \to x \ y \in E} \frac{|\varphi(y) - \varphi(x)|}{|y-x|}
\]

Given a set $A \subseteq \mathbb{R}^n$, $n \geq 1$, we say that a mapping $f : A \to \mathbb{R}^n$ is called Lipschitz if there is number $L > 0$ such that the inequality

\[
|f(x) - f(y)| \leq L |x-y|
\]

holds for all x and y in A. Given an open set $\Omega \subseteq \mathbb{R}^n$, we say that a mapping $f : \Omega \to \mathbb{R}^n$ is finitely Lipschitz if $L(x, f) < \infty$ for all $x \in \Omega$.

4.4. Lemma. Let G and G' be bounded domains in \mathbb{R}^n, $n \geq 2$, $Q : G \to [0, \infty]$ be a measurable function and let $f : G \to G'$ be a ring Q–homeomorphism with respect to p-modulus at a point $x_0 \in G$, $1 < p < n$. Then

\[
m(fB(x_0, r_1)) \leq \frac{c_{n,p}}{I^{n(p-1)}(x_0, r_1, r_2)}
\]
for every $0 < r_1 < r_2 < d_0 = \text{dist} (x_0, \partial G)$ where $I(x_0, r_1, r_2)$ is defined by (3.2) and $c_{n,p}$ is a positive constant that depends only on n and p.

Proof. Let us consider the condenser $(A_{t+\Delta t}, C_t)$, where $C_t = \overline{B(x_0, t)}$, $A_{t+\Delta t} = B(x_0, t+\Delta t)$. Note that $(A_{t+\Delta t}, fC_t)$ is a ringlike condenser in \mathbb{R}^n and according to Proposition 2.3, we have

$$\text{cap}_p (fA_{t+\Delta t}, fC_t) = M_p (\triangle (\partial fA_{t+\Delta t}, \partial fC_t; fR_t)).$$

(4.6)

In view of Proposition 2.4, we obtain

$$\text{cap}_p (fA_{t+\Delta t}, fC_t) \geq (\inf m_{n-1} \sigma)^p / m (fA_{t+\Delta t} \setminus fC_t)^{p-1};$$

(4.7)

where $m_{n-1} \sigma$ denotes the $(n-1)$-dimensional area of a C^∞-manifold σ that is the boundary of an open set U containing fC_t with its closure \overline{U} in $fA_{t+\Delta t}$ and the infimum is taken over all such σ.

On the other hand, by Lemma 3.1, we have

$$M_p (\triangle (\partial fA_{t+\Delta t}, \partial fC_t; fR_t)) \leq \omega_{n-1} / \left(\frac{t+\Delta t}{t} \frac{ds}{s^{n-1} q_{t_0}^{p-1} (s)} \right)^{p-1}.$$

(4.8)

Combining (4.6)-(4.8), we obtain

$$\frac{(\inf m_{n-1} \sigma)^p}{m (fA_{t+\Delta t} \setminus fC_t)^{p-1}} \leq \frac{\omega_{n-1}}{\left(\frac{t+\Delta t}{t} \frac{ds}{s^{n-1} q_{t_0}^{p-1} (s)} \right)^{p-1}}.$$

Applying the isoperimetric inequality to the numerator of the fraction on the left-hand side we came to the inequality

$$n \cdot \Omega_n^{1/p} (m(fC_t))^{\frac{n-1}{p}} \leq \frac{1}{\omega_{n-1} p} \left(\frac{m(fA_{t+\Delta t} \setminus fC_t)}{\left(\frac{t+\Delta t}{t} \frac{ds}{s^{n-1} q_{t_0}^{p-1} (s)} \right)} \right)^{\frac{n-1}{p}}$$

(4.9)

where Ω_n is the volume of the unit ball in \mathbb{R}^n.

Now, setting $\Phi(t) := m(fB_t)$, we see from (4.9) that

$$n \cdot \Omega_n^{1/p} (\Phi(t))^{\frac{n-1}{p}} \leq \frac{1}{\omega_{n-1} p} \left(\frac{\Phi(t+\Delta t) - \Phi(t)}{\Delta t} \frac{1}{\left(\frac{t+\Delta t}{t} \frac{ds}{s^{n-1} q_{t_0}^{p-1} (s)} \right)} \right)^{\frac{n-1}{p}}.$$

(4.10)
Since the function \(\Phi(t) \) is nondecreasing, has finite derivative \(\Phi'(t) \) for a.e. \(t \).
Letting \(\Delta t \to 0 \) in (4.10) and taking into account that \(\omega_{n-1} = n\Omega_n \), we obtain

\[
\frac{n\Omega_n^{\frac{p-n}{p-1}}}{t^{\frac{n-p}{p-1} q_{x_0}^{-1}}(t)} \leq \frac{\Phi'(t)}{\Phi_n^{\frac{p-n}{p-1}}(t)}.
\]

Integrating (4.11) under \(1 < p < n \) with respect to \(t \in [r_1, r_2] \), since

\[
\int_{r_1}^{r_2} \frac{\Phi'(t)}{\Phi_n^{\frac{p-n}{p-1}}(t)} \, dt \leq \frac{n(p-1)}{p-n} \left(\Phi_n^{\frac{p-n}{p-1}}(r_2) - \Phi_n^{\frac{p-n}{p-1}}(r_1) \right),
\]

see, e.g., Theorem IV. 7.4 in [Sa], we observe that

\[
\Omega_n^{\frac{p-n}{p-1}} \int_{r_1}^{r_2} \frac{dt}{t^{\frac{n-p}{p-1} q_{x_0}^{-1}}(t)} \leq \frac{p-1}{p-n} \left(\Phi_n^{\frac{p-n}{p-1}}(r_2) - \Phi_n^{\frac{p-n}{p-1}}(r_1) \right).
\]

From (4.12) we conclude that

\[
\Phi(r_1) \leq \left(\Phi_n^{\frac{p-n}{p-1}}(r_2) + \Omega_n^{\frac{p-n}{p-1}} \frac{n-p}{p-1} \int_{r_1}^{r_2} \frac{dt}{t^{\frac{n-1}{p-1} q_{x_0}^{-1}}(t)} \right)^{\frac{n(p-1)}{p-n}}
\]

and hence

\[
\Phi(r_1) \leq \Omega_n \left(\frac{p-1}{n-p} \right)^{\frac{n(p-1)}{n-p}} \left(\int_{r_1}^{r_2} \frac{dt}{t^{\frac{n-1}{p-1} q_{x_0}^{-1}}(t)} \right)^{-\frac{n(p-1)}{n-p}}.
\]

Combining Lemmas 3.7 and 4.4, we have the following statement.

4.13. Lemma. Let \(G \) and \(G' \) be bounded domains in \(\mathbb{R}^n, n \geq 2 \), \(Q : G \to [0, \infty) \) be a measurable function and let \(f : G \to G' \) be a ring \(Q \)-homeomorphism with respect to the \(p \)-modulus. Then for \(1 < p < n \)

\[
m(fB(x_0, r_1)) \leq c'_{n,p} \left[\int_{A(x_0, r_1, r_2)} Q(x) \eta^p(|x - x_0|) \, dm(x) \right]^{\frac{n}{n-p}}.
\]

for every ring \(A = A(x_0, r_1, r_2), \ 0 < r_1 < r_2 < d_0 = \text{dist} (x_0, \partial G) \) and for every measurable function \(\eta : (r_1, r_2) \to [0, \infty] \), such that

\[
\int_{r_1}^{r_2} \eta(r) \, dr \geq 1.
\]

where \(c'_{n,p} \) is a positive constant that depends only on \(n \) and \(p \).

4.16. Theorem. Let \(G \) and \(G' \) be domains in \(\mathbb{R}^n, n \geq 2 \), and \(Q : G \to [0, \infty) \) be a measurable function such that
\[Q_0 = \lim_{r \to 0} \frac{1}{\Omega_n r^n} \int_{B(x_0, \varepsilon)} Q(x) \, dm(x) < \infty. \]

Then for every ring \(Q \)-homeomorphism \(f : G \to G' \) with respect to the \(p \)-modulus, \(n - 1 < p < n \),

\[L(x_0, f) = \limsup_{x \to x_0} \frac{|f(x) - f(x_0)|}{|x - x_0|} \leq \lambda_{n,p} Q_0^{\frac{1}{n-p}} \]

where \(\lambda_{n,p} \) is a positive constant that depends only on \(n \) and \(p \).

Proof. Let us consider the spherical ring \(A(x_0, \varepsilon, 2\varepsilon) = \{ x : \varepsilon < |x - x_0| < 2\varepsilon \} \), \(x \in G, \varepsilon > 0 \) such that \(A(x_0, \varepsilon, 2\varepsilon) \subset G \). Since \((fB(x_0, 2\varepsilon), fB(x_0, \varepsilon)) = (fB(x_0, 2\varepsilon), fB(x_0, \varepsilon))\) are ringlike condensers in \(G' \) and, according to Proposition 2.3, we obtain

\[\text{cap}_p (fB(x_0, 2\varepsilon), fB(x_0, \varepsilon)) = M_p(\Delta(\partial fB(x_0, 2\varepsilon), \partial fB(x_0, \varepsilon); fA(x_0, \varepsilon, 2\varepsilon))). \]

Note that, in view of the homeomorphism of \(f \),

\[\Delta(\partial fB(x_0, 2\varepsilon), \partial fB(x_0, \varepsilon); fA(x_0, \varepsilon, 2\varepsilon)) = f(\Delta(\partial B(x_0, 2\varepsilon), \partial B(x_0, \varepsilon); A(x_0, \varepsilon, 2\varepsilon))). \]

By Proposition 2.5

\[\text{cap}_p (fB(x_0, 2\varepsilon), fB(x_0, \varepsilon)) \geq \left(\frac{\gamma d^p(fB(x_0, \varepsilon))}{m^{1-n+p}(fB(x_0, 2\varepsilon))} \right)^{\frac{1}{n-1}} \]

where \(\gamma \) is a positive constant that depends only on \(n \) and \(p \), \(d(A) \) is the diameter and \(m(A) \) is the Lebesgue measure of \(A \) in \(\mathbb{R}^n \).

By the definition of ring \(Q \)-homeomorphisms with respect to the \(p \)-modulus

\[\text{cap}_p (fB(x_0, 2\varepsilon), fB(x_0, \varepsilon)) \leq \frac{1}{\varepsilon^p} \int_{A(x_0, \varepsilon, 2\varepsilon)} Q(x) \, dm(x) \]

because the function

\[\eta(t) = \begin{cases} \frac{1}{\varepsilon}, & \text{if } t \in (\varepsilon, 2\varepsilon), \\ 0, & \text{if } t \in \mathbb{R} \setminus (\varepsilon, 2\varepsilon) \end{cases} \]

satisfies (1.10) for \(r_1 = \varepsilon \) and \(r_2 = 2\varepsilon \).

Next, the function

\[\tilde{\eta}(t) = \begin{cases} \frac{1}{2\varepsilon}, & \text{if } t \in (2\varepsilon, 4\varepsilon) \\ 0, & \text{if } t \in \mathbb{R} \setminus (2\varepsilon, 4\varepsilon) \end{cases} \]

satisfies (1.10) for \(r_1 = 2\varepsilon \) and \(r_2 = 4\varepsilon \) and hence by Lemma 4.13 we have the following estimates:
ON FINITELY LIPSCHITZ SPACE MAPPINGS.

(4.21) \[m(fB(x_0,2\varepsilon)) \leq c''_{n,p} \varepsilon^n \left[\frac{1}{m(B(x,4\varepsilon))} \int_{B(x_0,4\varepsilon)} Q(x) \, dm(x) \right]^{\frac{n}{n-p}}, \]

where \(c''_{n,p} \) is a positive constant that depends only on \(n \) and \(p \).

Combining (4.21), (4.20) and (4.19), we obtain

\[d(fB(x_0,\varepsilon)) \leq \lambda_{n,p} \left(\frac{1}{m(B(x_0,4\varepsilon))} \int_{B(x_0,4\varepsilon)} Q(y) \, dy \right)^{\frac{n(1-n+p)}{p(n-p)}} \left[\frac{1}{m(B(x,2\varepsilon))} \int_{B(x_0,2\varepsilon)} Q(x) \, dm(x) \right]^{\frac{n-1}{p}}, \]

and hence

\[L(x_0,f) = \limsup_{x \to x_0} \frac{|f(x) - f(x_0)|}{|x - x_0|} \leq \limsup_{\varepsilon \to 0} \frac{d(fB(x_0,\varepsilon))}{\varepsilon} \leq \lambda_{n,p} Q_0^{\frac{1}{n-p}}, \]

where \(\lambda_{n,p} \) is a positive constant that depends only on \(n \) and \(p \).

4.22. Corollary. Let \(G \) and \(G' \) be domains in \(\mathbb{R}^n \), \(n \geq 2 \), \(f : G \to G' \) be a ring \(Q \)-homeomorphism with respect to the \(p \)-modulus, \(n-1 < p < n \), such that

(4.23) \[\lim_{r \to 0} \frac{1}{\Omega_n \varepsilon^n} \int_{B(x_0,\varepsilon)} Q(x) \, dm(x) < \infty \quad \forall \ x_0 \in G. \]

Then \(f \) is finitely Lipschitz.

Note that the theory of ring \(Q \)-homeomorphisms with respect to \(p \)-modulus can be applied to mappings in the Orlich-Sobolev classes \(W^{1,p}_{loc} \) with a Calderon type condition on \(\varphi \) and, in particular, to the Sobolev classes \(W^{1,p}_{loc} \) for \(p > n-1 \), cf. [KRSS].

ACKNOWLEDGMENT: I thank Professor Vladimir Ryazanov for interesting discussions and valuable comments.

References

[BGMV] Bishop C.J., Gulyanski V.Ya., Martio O., Vuorinen M.: On conformal dilatation in space. - Intern. Journ. Math. and Math. Scie. 22 (2003), 1397–1420.

[Fu] Fuglede B.: Extremal length and functional completion. - Acta Math. 98, 1957, 171–219.

[Ge] Gehring F.W.: Quasiconformal mappings in Complex Analysis and its Applications, Vol. 2. - International Atomic Energy Agency, Vienna, 1976.

[Ge1] Gehring F.W.: Lipschitz mappings and the \(p \)-capacity of ring in \(n \)-space. - Advances in the theory of Riemann surfaces (Proc. Conf. Stonybrook, N.Y., 1969), Ann. of Math. Studies, 66, 1971, 175-193.
[Ge2] GEHRING F.W.: Rings and quasiconformal mappings in space. - Trans. Amer. Math. Soc., 103, 1962, 353–393.

[Go] GOLBERG A.: Differential properties of α,Q-homeomorphisms. - Further Progress in Analysis, World Scientific Publ, 2009, 218-228.

[Go1] GOLBERG A.: Integrally quasiconformal mappings in space. - Intern. Conf. "Analytic methods of mechanics and complex analysis" dedicated to N.A. Kil-chevskii and V.A. Zmorovich on the occasion of their birthday centenary, Kiev, June 29 - July 5, 2009, 19.

[GG] GOLBERG A., GUTLYANSKII V. Ya.: On lipschitz continuity of quasiconformal mappings in space. - Journal d’Analyse Mathematique, Volume 109, Number 1 / October, 2009, 233-251.

[GS] GUTLYANSKII V. AND SUGAWA T.: On Lipschitz Continuity of Quasiconformal Mappings. - Rep. Univ. Juvaslyla 83, 2001, 91–108.

[He] HESSE J.: A p–extremal length and p–capacity equality. - Ark. Mat. 13, 1975, 131–144.

[IR1] IGNAT’EV A. AND RYAZANOV V.: Finite mean oscillation in the mapping theory. - Ukrainian Math. Bull. 2, no. 3, 2005, 403–424.

[IR2] IGNAT’EV A. AND RYAZANOV V.: To the theory of the boundary behavior of space mappings. - Ukrainian Math. Bull. 3, no. 2, 2006, 189–201.

[KRSS] KOVTONYUK D., RYAZANOV V., SALIMOV R., SEVOST’YANOV E.: On mappings in the Orlicz-Sobolev classes. - ArXiv: 1012.5010 [math.CV], 2011, 69 p.

[Kr] KRUGLIKOV V.I.: Capacities of condensors and quasiconformal in the mean mappings in space. - Mat. Sb., 130 no. 2, 1986, 185-206.

[LV] LEHTO O., VIRTANEN K.: Quasiconformal mappings in the Plane. - Springer-Verlag, Berlin-Heidelberg-New York, 1973.

[MRSY1] MARTIO O., RYAZANOV V., SREBRO U. AND YAKUBOV E.: Mappings with finite length distortion. - J. Anal. Math. 93, 2004, 215–236.

[MRSY2] MARTIO O., RYAZANOV V., SREBRO U. AND YAKUBOV E.: Q–homeomorphisms. - Contemporary Math. 364, 2004, 193–203.

[MRSY3] MARTIO O., RYAZANOV V., SREBRO U. AND YAKUBOV E.: On Q–homeomorphisms. - Ann. Acad. Sci. Fenn. 30, 2005, 49–69.

[MRSY] MARTIO O., RYAZANOV V., SREBRO U. AND YAKUBOV E.: Moduli in Modern Mapping Theory. - Springer Monographs in Mathematics, Springer, New York, 2009.

[Ra] RANSFORD T.: Potential Theory in the Complex Plane. - Cambridge University Press, 1995

[RS1] RYAZANOV V. AND SEVOST’YANOV E.: Normal families of space mappings. - Sib. El. Math. Rep. 3, 2006, 216–231.

[RS2] RYAZANOV V. AND SEVOST’YANOV E.: Equicontinuous classes of ring Q–homeomorphisms. - Sibirsk. Mat. Zh., 48:6, 2007, 13611376.

[RSY] RYAZANOV V., SREBRO U. AND YAKUBOV E.: On ring solutions of Beltrami equation. - J. d’Analyse Math. 96, 2005, 117–150.

[Sa] SAKS S.: Theory of the Integral, Dover Publ. Inc., New York, 1964.

[Sh] SHLYK V.A.: On the equality between p–capacity and p–modulus. - Sibirsk. Mat. Zh. 34, no. 6, 1993, 216–221; transl. in Siberian Math. J. 34, no. 6, 1993), 1196–1200.

[Va] VÄISÄLÄ J.: Lectures on n–Dimensional Quasiconformal Mappings. - Lecture Notes in Math. 229, Springer–Verlag, Berlin etc., 1971.
Ruslan Salimov,
Institute of Applied Mathematics and Mechanics,
National Academy of Sciences of Ukraine,
74 Roze Luxemburg str., 83114 Donetsk, UKRAINE
Phone: +38 – (062) – 3110145 Fax: +38 – (062) – 3110285
salimov07@rambler.ru, ruslan623@yandex.ru