Variations of Dust Extinction Coefficient Estimated by Lidar Observations over Japan, 2007–2016

Atsushi Shimizu1, Nobuo Sugimoto1, Tomoaki Nishizawa1, Yoshitaka Jin1, and Dashdondog Batdorj2
1National Institute for Environmental Studies, Tsukuba, Japan
2National Agency for Meteorology and Environmental Monitoring, Ulaanbaatar, Mongolia

Abstract

Dust extinction coefficients, a fundamental product of the Asian Dust and Aerosol Lidar Observation Network, were analyzed to evaluate climatological variations of Asian dust in Japan. Dust optical depth (vertically integrated dust extinction coefficients) from the network displayed peaks similar to those in the official Japan Meteorological Agency reports in spring, and in other seasons they were more responsive signals of moderate dust events. Between 2007 and 2016, dust optical depth decreased by 2.5% per year in Japan, and by 0.7% per year in Mongolia, a major source region of Asian dust. Relative to Mongolia, then, Japan has displayed a stronger negative trend in dust extinction coefficients, which is attributed to the meteorological field between continental Asia and Japan, including wind and rainfall during transportation. This negative trend of Asian dust in Japan was stronger in the middle troposphere (5–6 km altitude) than in the planetary boundary layer.

(Citation: Shimizu, A., N. Sugimoto, T. Nishizawa, Y. Jin, and D. Batdorj, 2017: Variations of dust extinction coefficient estimated by lidar observations over Japan, 2007–2016. SOLA, 13, 205–208, doi:10.2151/sola.2017-037.)

1. Introduction

Episodes of aeolian dust transport, or Kosa, are common atmospheric phenomena in Mongolia, China, Korea, and Japan during springtime that are referred to as Asian dust events. Strong winds in arid and semi-arid areas in the source region (mainly the Gobi Desert in Mongolia and the Inner Mongolia province in China) mobilize small soil particles, and westerly winds transports them to downwind regions including Japan and the North Pacific Ocean. The arrival of Asian dust in Japan is marked by increases in the concentration of airborne particles, such as suspended particulate matter (SPM) or PM_{10}, and decreased visibility. Given its impact on human health, Asian dust is being intensively studied, and quantitative estimation of the amount of Asian dust is of growing interest to researchers. For example, Ueda et al. (2012) detected a correlation between Asian dust measured by lidar and ambulance dispatches in Nagasaki, Japan. Kanatani et al. (2016) detected the impacts of Asian dust particles on allergy symptoms of pregnant women by using lidar observations.

The emission of Asian dust in its source region is influenced by many factors, including surface conditions and weather. For example, vegetation in semi-arid regions is related to the friction velocity, which determines the threshold wind speed for severe dust mobilization (Mao et al. 2013). Snow cover and wet ground conditions inhibit the emission of dust (Kurosaki and Mikami 2004; Ishizuka et al. 2005). Meteorological conditions including horizontal wind speed and direction affect the transportation of Asian dust to downwind regions, and rainfall controls the wet deposition process during transportation (Osada et al. 2014). Thus the amount of Asian dust in a given place is dependent on changes in both dust emission and meteorological conditions.

In this study we analyzed the dust extinction coefficient, a quantitative representation of atmospheric dust concentration measured by the Asian Dust and Aerosol Lidar Observation Network (AD-Net), to clarify the changes in the Asian dust phenomenon over Japan in the previous decade. Although Osada et al. (2017) have discussed seasonal variations in elevated Asian dust layers detected by the AD-Net station in Toyama and by optical particle counter measurements in Tateyama (2450 m a.s.l.) between 2004 and 2014, this paper presents the first comprehensive analysis of data from the whole lidar network in Japan, encompassing the decade 2007–2016.

2. Lidar observation and data analysis

The AD-Net network of elastic scattering lidar instruments is maintained by the National Institute for Environmental Studies (NIES) of Japan and collaborating organizations in East Asia. Polarization sensitive, dual-wavelength lidar instruments are operated at 14 locations in Japan, 3 in Korea, 3 in China, and 3 in Mongolia. This study mainly relied on observations from 11 stations in Japan with high-quality records, and observations from two stations in Mongolia were used to characterize the dust emission from source regions (Fig. 1).

Lidar stations employ a Nd:YAG laser firing at 10 Hz as a light source, and atmospheric observations are recorded every 15 min as the average of 3000 laser shots (5 min). Observations consist of backscatter intensities at 532 nm and 1064 nm and volume depolarization ratios at 532 nm. Dust extinction coefficients (α_{d}) and spherical particle extinction coefficients (α_{d}) are derived from these data based on the method described by Shimizu et al. (2017). A sensitivity analysis of α_{d} was presented in Shimizu et al. (2011).

The extinction coefficients have a vertical resolution of 30 m. Aerosol optical depth (τ_{a}), the vertically integrated extinction coefficient of aerosols, is a common index for columnar aerosol density. We defined dust optical depth (τ_{d}) as...
where Z_i is the cloud base height from lidar observations (or 6 km during fine conditions) and α_d is obtained from lidar polarization data. Although Hara et al. (2011) have utilized τ_d as an index of spherical (anthropogenic) aerosol loading, τ_d values derived from AD-Net have not previously been analyzed. Figure 2, displaying values of α_d and τ_d obtained at the Matsue station in May 2011, shows that τ_d is an efficient gauge of the intensity and duration of Asian dust events. A strong relationship has been confirmed between α_d near the surface in Nagasaki and the mass concentration of iron (Fe) in PM$_{2.5}$ sampled at the surface in Fukuoka, 100 km from Nagasaki, during 2009–2011 (Kaneyasu et al. 2012). Local dust events detected by AD-Net lidar in Japan were almost limited to Kanto region (e.g. Sugimoto et al. 2016). Thus, α_d and τ_d are considered to be proxies of the intensity of Asian dust.

In Japan, Asian dust is officially recognized in meteorological reports of the Japan Meteorological Agency (JMA). Trained officers at each JMA meteorological observatory determine the sky condition every 3 h based on visual observations and auxiliary information. Although historically determinations of Asian dust events required visibility less than 10 km, this condition was relaxed in 1989 and Asian dust may be reported even when visibility exceeds 10 km. JMA maintains a daily database of the number of JMA stations reporting Kosa events (hereafter NK, http://www.data.jma.go.jp/gmd/env/koasap/en/koasa_shindan_e.html). In this study we compared lidar results from AD-Net with the monthly totals of NK from JMA.

3. Comparison with JMA official record

We compared the characteristics of τ_d as determined from lidar data, to monthly NK values derived from the official JMA records of Asian dust (Fig. 3). Peaks in NK occur in spring, and year-to-year variation is great. The lidar data are presented as the records of Asian dust (Fig. 3). Peaks in NK occur in spring, and lidar data, to monthly NK values derived from the official JMA station in that month. The condition during fine conditions) and τ_d exceeds 0.1 divided by the total hours of lidar observations by the station in that month. The condition in which $\tau_d > 0.1$ corresponds to, for example, a dust layer of $\alpha_d = 0.07/km$ that is 1.4 km deep. A value of α_d of 0.07/km was used as a threshold criterion by Ueda et al. (2012) for detection of Asian dust by near-surface lidar observations.

The NK and PHT data have a strong resemblance; for example, both records show relatively weak spring peaks in 2015 and 2016 compared to the rest of the decade. However, the two records have differences. High NK values are more common in spring, and high PHT values are distributed more widely across other seasons, displaying subsidiary peaks in 2009 and 2013. In winter PHT had slightly higher values in 2008–2009 and 2013–2014. As NK and PHT have differing definitions, these discrepancies are reasonable, and the differences between them may also depend on the threshold used for PHT ($\tau_d > 0.1$ in this case). However, neither NK nor PHT is suitable for evaluating the long-term trend of Asian dust. Instead, we employed monthly mean dust optical depth τ_d as an index of dust intensity measured by lidar observations.

4. Evaluation of monthly mean dust optical depth

Values of monthly mean τ_d were determined for each lidar station in Japan and a nationwide average was then calculated. This average τ_d was fitted to the following combination of a linear trend and a sinusoidal curve with a 1-year period and a linearly changing amplitude:

$$\tau_d(t) = A + Bt + (C + Dt) \sin (2\pi t/12 + E)$$

where t is measured in months. The nonlinear least-squares Marquardt-Levenberg algorithm, implemented in the gnuplot graphing utility, was employed to fit the data.

As indicated in Fig. 4, the network lidar measurements documented a decrease in τ_d of 2.5% per year in Japan, such that it fell by one-fourth its magnitude during the study decade. This quantitative result was obtained solely on the basis of τ_d determined from AD-Net data. Linear fitting analysis on seasonal data (not shown) revealed the negative trend was stronger in spring (~4.3% per year for Mar/Apr/May) compared with other seasons (~1.1% per year for Jun/Jul/Aug, ~2.9% per year for Sep/Oct/Nov, and ~1.7% per year for Dec/Jan/Feb).

For further insight into this tendency, we repeated this analysis of τ_d on a vertically resolved basis using six layers from 0–1 km to 5–6 km altitude (Fig. 5). The results show that the magnitude of the decadal decrease was dependent on altitude, changing from ~0.8% per year near the surface to ~6.8% per year in the middle troposphere (5–6 km). It is noteworthy that the highest layer displayed the greatest decrease, but had the lowest value of τ_d. The fact that the decadal decrease in the lower atmosphere was smaller suggests that the impact of Asian dust on humans and the environment has not changed greatly. The results also suggest that estimating the time variation of radiative forcing by Asian dust on the basis of total (altitude integrated) τ_d is problematic because radiative effects depend on the vertical distribution of the dust.
extinction coefficient α_d.

As Japan is located in the downwind region of Asian dust transport, τ_d is influenced by weather conditions along the transportation path as well as changing emissions in the source region. To investigate the source region, we conducted a similar analysis of data from Mongolian lidar stations in Sainshand and Zamyn-uud in the eastern Gobi Desert. The results show relatively large fluctuations, but the negative trend in monthly mean τ_d (0.7% per year) is much smaller than the decrease in Japan (Fig. 6). This finding suggests that the negative trend in Japan cannot be entirely attributed to changing dust emission in the source region. Therefore, the explanation for the difference in trend between Japan and Mongolia must consider variations in the transportation path from the source region to Japan. Also, the discrepancy between observed τ_d and the fitted sinusoidal curve was large in autumn, a feature that was not evident in Japan (Fig. 4). This difference suggests that Asian dust is not efficiently transported from the Gobi Desert to Japan in Autumn.

Another question raised by Fig. 5 is the cause of the stronger negative trend of τ_d in the upper layers over Japan. Mineral dust in the free troposphere conveyed from the Taklimakan desert or other regions is recognized as “background dust” (Iwasaka et al. 1988; Uno et al. 2009). Figure 5 suggests a possible decadal variation in background dust over Japan, which could be analyzed with data from the GALION world-wide federation of lidar networks (Bösenberg and Hoff 2008), or satellite-borne lidar instruments.

5. Concluding remarks

AD-Net reports quantitative dust concentrations in terms of dust extinction coefficient α_d or dust optical depth τ_d. Although the periods of high τ_d (PHT) in the AD-Net data product generally agree with the official NK record from JMA, neither of these quantities is well suited for monitoring long-term variations in Asian dust. In a simpler approach, we fitted values of monthly mean τ_d to a sinusoidal curve, and we found that the decadal negative trend of τ_d in Japan (~2.5% per year) is not directly linked to the decrease in Mongolia, the source region (~0.7% per year). To better interpret the results from AD-Net, the meteorological field, including wind and precipitation, during the dust outbreak period must be analyzed. The combination of meteorological parameters and dust loading in the atmosphere can be investigated using chemical transport models, such as MASONGAR (Tanaka and Chiba 2005) or CFORS (Uno et al. 2003). Song et al. (2016) simulated spring dust emissions in northern China and found a slight negative trend from 1982 to 2011. Such an analysis covering the whole East Asian region is indispensable to account for the dif-

![Fig. 4. Time series of τ_d at each lidar station (thin lines), average τ_d for all lidar stations in Japan within 1 km thick layers from 0–1 km to 5–6 km altitude (black) and fitted sinusoidal curve based on Eq. (2) (bold purple line).](image-url)

![Fig. 5. Time series of average τ_d for all lidar stations in Japan within 1 km thick layers from 0–1 km to 5–6 km altitude (black) and fitted sinusoidal curve for each layer (purple). The amplitude of the sinusoidal curve ($C + Dt$) for January 2015 is indicated at the top of each panel.](image-url)

![Fig. 6. Time series of τ_d at two lidar stations in Mongolia (thin lines), average τ_d for both lidar stations in Mongolia (bold black line), and fitted sinusoidal curve based on Eq. (2) (bold purple line).](image-url)
ference in trends in Japan and Mongolia found in this study. Also, continued observations of dust in this region are important to confirm these trends over the long term. Recently the Himawari-8 geostationary satellite gained the ability to detect Asian dust in the day time (Bessho et al. 2016), and CALIPSO (Winker et al. 2009) has observed the globe with spaceborne polarization lidar for more than 10 years. Continuous measurements from space and the ground will help us better understand the mechanisms of the emission and transportation of Asian dust.

Acknowledgments

Lidar operations in AD-Net were supported by the Ministry of Environment Japan and the Environmental Research and Technology Development Fund 5-1502 of the Environmental Restoration and Conservation Agency. We thank Ichiro Matsui for his maintenance work at the lidar observatories. This report is part of a joint activity of the Dust and Sand Storm (DSS) Working Group I under the Tripartite Environment Ministers Meeting among Japan, Korea and China (TEMM).

Edited by: T. Yasunari

References

Bessho, K., K. Date, M. Hayashi, A. Ikeda, T. Imai, H. Inoue, Y. Kumagai, T. Miyakawa, H. Murata, T. Ohno, A. Okuyama, R. Oyama, Y. Sasaki, Y. Shimazu, K. Shimojo, Y. Sumida, M. Suzuki, H. Taniguchi, H. Tsuchiya, D. Uesawa, H. Yokota, and R. Yoshida, 2016: An introduction to Himawari-8/9—Japan’s new-generation geostationary meteorological satellites. J. Meteor. Soc. Japan, 94, 151–183, doi:10.2151/jmsj.2016-009.

Bösenberg, J., and R. Hoff, 2008: Plan for the implementation of the GAW Aerosol Lidar Observation Network GALION. GAW Report 178, GAW, WMO.

Hara, Y., I. Uno, A. Shimizu, N. Sugimoto, I. Matsui, K. Yumimoto, J. Kurokawa, T. Ohara, and Z. Liu, 2011: Seasonal characteristics of spherical aerosol distribution in eastern Asia: Integrated analysis using ground/space-based lidars and a chemical transport model. SOLA, 7, 121–124, doi:10.2151/sola.2011-031.

Ishizuka, M., M. Mikami, Y. Yamada, F. Zeng, and W. Gao, 2005: An observational study of soil moisture effects on wind erosion at a gobi site in the Taklimakan Desert. J. Geophys. Res., 110, D18S03, doi:10.1029/2004JD004709.

Iwasaka, Y., M. Yamato, R. Imao, and A. Ono, 1988: Transport of Asian dust (KOSA) particles; importance of weak KOSA events on the geochemical cycle of soil particles. Tellus, 40B, 494–503.

Kanatani, K. T., K. Hamazaki, H. Inadera, N. Sugimoto, A. Shimizu, H. Noma, K. Onishi, Y. Takahashi, T. Itazawa, M. Egawa, K. Sato, T. Go, I. Ito, Y. Kurozawa, I. Konishi, Y. Adachi, and T. Nakayama, 2016: Effect of desert dust exposure on allergic disease; a natural experiment in Japan. Ann. Allergy Asthma Immunol., 116, 425–430.e7, doi:10.1016/j.anai.2016.02.002.

Kaneyasu, N., N. Sugimoto, A. Shimizu, S. Yamamoto, and K. Kawamoto, 2012: Comparison of lidar-derived dust extinction coefficients and the mass concentrations of surface aerosol (in Japanese). J. Japan Soc. Atmos. Environ., 47, 285–291.

Kurosaki, Y., and M. Mikami, 2004: Effect of snow cover on threshold wind velocity of dust outbreak. Geophys. Res. Lett., 31, L03106, doi:10.1029/2003GL018632.

Mao, R., C.-H. Ho, S. Feng, D.-Y. Gong, and Y. Shao, 2013: The influence of vegetation variation on Northeast Asian dust activity. Asia-Pac. J. Atmos. Sci., 49, 87–94, doi:10.1007/s13143-013-0010-5.

Osada, K., S. Ura, M. Kagawa, M. Mikami, T. Y. Tanaka, S. Matoba, K. Aoki, M. Shinoda, Y. Kurosaki, M. Hayashi, A. Shimizu, and M. Uematsu, 2014: Wet and dry deposition of mineral dust particles in Japan: Factors related to temporal variation and spatial distribution. Atmos. Chem. Phys., 14, 1107–1121, doi:10.5194/acp-14-1107-2014.

Osada, K., A. Shimizu, H. Iida, and M. Kido, 2017: Seasonal variation of Asian dust transport to Mt. Tateyama based on volume concentration of coarse particles (in Japanese). Earozoru Kenkyu, 32, 44–51, doi:10.11203/jar.32.44.

Shimizu, A., N. Sugimoto, I. Matsui, I. Mori, M. Nishikawa, and M. Kido, 2011: Relationship between lidar-derived dust extinction coefficients and mass concentrations in Japan. SOLA, 7A, 1–4, doi:10.2151/sola.7A-001.

Shimizu, A., T. Nishizawa, Y. Jin, S.-W. Kim, Z. Wang, D. Batdorj, and N. Sugimoto, 2017: Evolution of a lidar network for tropospheric aerosol detection in East Asia. Optical Eng., 56, 03129, doi:10.1117/1.OE.56.3.031219.

Song, H., K. Zhang, S. Piao, and S. Wan, 2016: Spatial and temporal variations of spring dust emissions in northern China over the last 30 years. Atmos. Environ., 126, 117–127, doi:10.1016/j.atmosenv.2015.11.052.

Sugimoto, N., A. Shimizu, I. Matsui, and M. Nishikawa, 2016: A method for estimating the fraction of mineral dust in particulate matter using PM2.5-to-PM10 ratios. Particuology, 28, 114–120, doi:10.1016/j.partic.2015.09.005.

Tanaka, T. Y., and M. Chiba, 2005: Global simulation of dust aerosol with a chemical transport model, MASINGAR. J. Meteor. Soc. Japan, 83A, 255–278, doi:10.2151/jmsj.83A.255.

Ueda, K., A. Shimizu, H. Nitta, and K. Inoue, 2012: Long-range transported Asian Dust and emergency ambulance dispatches. Inhalation Toxicology, 24, 858–867, doi:10.3109/08958378.2012.724729.

Uno, I., G. R. Carmichael, D. G. Streets, Y. Tang, J. J. Yienger, S. Satake, Z. Wang, J.-H. Woo, S. Guttikunda, M. Uematsu, K. Matsumoto, H. Tanimoto, K. Yoshioka, and T. Iida, 2003: Regional chemical weather forecasting system CFORS: Model descriptions and analysis of surface observations at Japanese island stations during the ACE-Asia experiment. J. Geophys. Res., 108, 8668, doi:10.1029/2002JD002845.

Uno, I., K. Eguchi, K. Yumimoto, T. Takemura, A. Shimizu, M. Uematsu, Z. Liu, Z. Wang, Y. Hara, and N. Sugimoto, 2009: Asian dust transported one full circuit around the globe. Nature Geosci., 2, 557–560, doi:10.1038/ngeo583.

Winker, D. M., M. A. Vaughan, A. Omar, Y. Hu, K. A. Powell, Z. Liu, W. H. Hunt, and S. A. Young, 2009: Overview of the CALIPSO mission and CALIOP data processing algorithms. J. Atmos. Ocean. Tech., 26, 2310–2323, doi:10.1175/2009JTECHA1281.1.

Manuscript received 14 August 2017, accepted 2 October 2017

SOLA: https://www.jstage.jst.go.jp/browse/sola/