Diversification, Not Use, of the Immunoglobulin V_H Gene Repertoire Is Restricted in DiGeorge Syndrome

By R. N. Haire, R. D. Buell, R. T. Litman, Y. Ohta, S. M. Fu,* T. Honjo,† F. Matsuda,§ M. de la Morena, J. Carro, R. A. Good, and G. W. Litman

From the Department of Pediatrics, University of South Florida, All Children's Hospital, St. Petersburg, Florida 33701; the *University of Virginia, School of Medicine, Charlottesville, Virginia 22908; the †Department of Medical Chemistry, and the §Center for Molecular Biology and Genetics, Kyoto University, Kyoto 606, Japan

Summary

Immunoglobulin (Ig) genes were isolated from unamplified conventional as well as polymerase chain reaction-generated cDNA libraries constructed from the peripheral blood cells of a patient with complete DiGeorge syndrome. Comparison of the sequences of 36 heavy chain clones to the recently expanded database of human V_H genes permitted identification of the germline V_H genes that are expressed in this patient as well as placement of 19 of these genes in a partially resolved 0.8-mb region of the human V_H locus. The pattern of V_H gene use does not resemble the fetal (early) repertoire. However, as in the fetal repertoire, there are a number of cDNAs derived from germline genes that previously have been identified as autoantibodies. Two D_μ sequences also were identified, as was another sequence resulting from a unique recombination event linking J_μ to an unidentified sequence containing a recombination signal sequence-like heptamer. All of the DiGeorge cDNAs are closely related to germline V_H genes, showing little or no evidence of somatic mutation. In contrast, comparably selected IgM V_H sequences derived from normal adult and age-matched human libraries, and from a second DiGeorge syndrome patient in whom the degree of thymic dysfunction is much less severe, exhibit considerable evidence of somatic mutation. The absence of somatic mutation is consistent with the atypical development of functional antibody responses associated with complete DiGeorge syndrome and implicates a role for T cells in the generation of diversity within the B cell repertoire.

Analyses of the Ig repertoire, as represented in peripheral blood, have been the focus of recent investigations. Owing to the relative ease of PCR amplification, most of the efforts have been directed at the CDR3 junction and the generation of diversity through D_H element (as well as J_H) usage and modification (1–3). Studies of the human fetal and cord blood repertoires have been carried out using conventional cDNA libraries (4–7), and while the normal human V_H repertoire has not been studied extensively in terms of expression of specific V_H genes, recent advances in the enumeration and mapping of germline V_H genes (8–10) now allow such investigations. These findings have had considerable impact in terms of our understanding of the developmental expression of Ig genes as well as the relationship of autoimmunity to specific genes. The nature of Ig gene usage in human primary immunodeficiency diseases, including X-linked agammaglobulinemia (11–13) common variable immunodeficiency (14) and severe combined immunodeficiency (15), has been examined. The present report addresses the Ig gene repertoire of patients with DiGeorge syndrome, a developmental field defect that involves dysmorphogenesis of the third and fourth pharyngeal pouches and is associated with varying degrees of facial dysmorphia, hypoparathyroidism, anomalies of the great cardiac vessels, and partial development of the thymus. Abnormal B cell function in these patients is associated with the thymic abnormality and results in susceptibility to microbial pathogens, despite the maintenance of low to near normal levels of circulating Ig. The nature of the Ig genes that are transcribed in these patients is significant in terms of their impaired antibody function. In this regard, we have produced cDNA libraries from the PBMC of a DiGeorge patient with near complete failure of development of the thymus as well as the T cell compartment of immunity. Gene transcripts in this patient are compared with those expressed by normal neonates, a normal adult, and a second patient with a much less complete form of the disease, so-called partial DiGeorge syndrome.

Materials and Methods

Patients. At the time of study, the patient was an 8-mo-old fe-

male born full term after an uneventful pregnancy to unrelated
The patient presented with hypocalcemia and hypophosphatemia in the neonatal period and had undetectable levels of parathyroid hormone (PTH = <1 pmol/liter). Since the age of 3 mo, the patient suffered from recurrent respiratory tract infections, pneumonia, persistent oral candidiasis, and failure to thrive. A vascular ring (right aortic arch and aberrant left subclavian artery) was evident on cardiac work-up. At 2 mo, the patient received oral polio vaccine and diphtheria, pertussis, tetanus vaccine and at 6 mo, the child developed diarrhea, and polio virus was isolated from the stool. At 8.5 mo, immunological parameters were: T3, <1% (normal range [N] = 63-85%); T4, <1% (N = 37-57%); T8, 2% (N = 18-36%); T11, 10% (N = 71-89%); NK, 8% (N = 2-14%); B1, 86% (N = 7-19%); B4, 86% (N = 8%); B6, 10% (N = 2%); TCR γδ, <1% (N = 4-10%); TCR αβ, <1% (N = 64-68%); and CD5, 54% (N = 80%). The T cell numbers and proportions were exceedingly low and the B cell numbers and proportions were markedly elevated. Since the patient had very few CD3+ T cells, the CD5+ cells were likely to be B cells. Thus, ~70% of the patient’s B cells were CD5+ and this percentage is similar to that of normal infants of a comparable age (16). The total lymphocyte count was 2,128/mm³ (10 wk earlier, 4,088/mm³). Thymulin level was not detectable, at <1:4 dilution (N = 1:16-128), mitogen-induced lymphocyte transformations and mitogen-induced production of Ig-secreting cells were decreased. At 3 mo, IgG = 187 mg/dl, IgA = <6 mg/dl, IgM = 30 mg/dl, and anti-B isohemagglutinin titer = 1:2.

Table 1. DiGeorge cDNAs Are Grouped by Their Library Source, Conventional Library vs. RACE Library

Clone	Vh family	Length (codon)	Germline parent	Substitutions
22	1	CDR1 (34)	71-5 (1-58P)	
27	1	5' leader	1-18	
37	1	FR3 (75)	DP10* or HV1263(?)	
3	3	5' leader	DP77 (3-21)	
4	3	CDR2 (60)	DP42 (3-53)*	
13	3	5' leader	3-7	
15	3	5' leader	GLSJ2*	
17	3	5' leader	3-9	
21	3	5' leader	9-111 (3-30)*	
31	3	5' leader	DP51 (3-48)	
34	3	5' leader	DP58	
36	3	5' FR2 (36)	9-1 (3-15)*	
38	3	5' leader	DP50	
10	4	FR2 (41)	4-4	
20	4	3' leader	DP65 (4-31)	
28	4	3' leader	4.11 (4-59)*	

Conventional library

826 Immunoglobulin Vh Repertoire in DiGeorge Syndrome
type of the sequences from the conventional library, another PCR reaction was carried out using Cα-specific primers.

Homology searches to Vα sequences containing open reading frames, extracted from GenBank (8-10), used I/FIND (Intelli-2 genetics, Mountain View, CA).

Results

Vα Family Representation in the Patient with Complete DiGeorge Syndrome. Owing to the potential of PCR-RACE methods (19) for biasing the representative frequency of different Vα genes and gene subsets (see below), a conventional cDNA library was prepared from 70 μg of patient whole RNA in parallel with the equivalent amount of RNA from a normal adult control. 2 × 10⁶ recombinants were generated in the DiGeorge library and 16 Ig Jα clones were recovered. Parallel screenings of the (normal) control library yielded ~1,000 Jα cDNAs and ~10⁵ recombinant plaques. All of the cDNAs recovered from the DiGeorge syndrome patient conventional library were sequenced. 11 sequences extend from the leader to Jα and 5 are truncated within Vα (Table 1); all represent a correct open reading frame. Each of the 16 cDNAs recovered from the conventional library is derived from a different germline gene (see below).

The Jα-selected clones (nos. 203 and 205–211) from the PCR-RACE library are all VαI, suggesting a possible VαI amplification bias (see below). Therefore, an additional nine clones were selected from this library using Vα family-speci-
fic probes and these represent V_{\alpha}, V_{\alpha}^{III}, and V_{\alpha}^{IV} families. Overall the RACE-generated clones are longer than those produced by conventional cDNA synthesis, with all but one having a complete leader sequence. While there are differences between the two groups of sequences, there are some germline elements common to both libraries, specifically V_{\alpha}^{I} 1-18, V_{\alpha}^{III} GLSJ2, and V_{\alpha}^{IV} DP10. Detailed inspection of the noncoding regions and the 5' terminus of the most commonly amplified RACE clones in this study indicates that the V_{\alpha} genes DP10 and 1-18 are not homologous (data not shown). Thus, the basis for a TGT preference is not evident from comparisons of these sequences. These observations emphasize the difficulty in using PCR libraries to quantify the relative frequency of different transcript classes (i.e., V_{\alpha} families or subfamilies) or even to determine their presence or absence (R. N. Haire and G. W. Litman, unpublished observations). However, in some cases, for example the partial DiGeorge syndrome patient described in Table 2, V_{\alpha} family representation in the PCR-RACE cDNA library appears to be proportional to germline representation and is similar to the results from the conventional library of the DiGeorge syndrome patient and from the normal controls (data not shown). Notwithstanding, these complications, PCR-amplified clones can yield very useful information regarding junctional diversity and somatic mutation.

Specific V_{\alpha} Gene Use. 30 cDNAs, including no. 28, the single IgA clone (all others are IgM), exactly match germline database sequences (Table 1). Two clones with incomplete CDR2 sequence can be identified from the available sequence, and the unique matching germline parent is indicated. Clone 37, truncated in FR3, is homologous to two known germline genes. Only clone 209, with a replacement substitution in CDR2 and a silent mutation in FR1, is consistent with a somatically modified sequence but could also reflect a polymorphism and/or represent the product of closely related genes, PCR-introduced cloning errors, or sequence determination errors. The substituted nucleotides in clones 205 and 209 were confirmed by recloning and resequencing. The predominance of mismatches in FRs in not usually considered characteristic of somatic mutation, and the mutations are at different positions, suggesting that the FR3 substitutions in clones 205 and 206 are not due to a polymorphic variant of 1-18. Finally, it is noteworthy that the incidence of mismatched nucleotides, while low, is higher in the RACE library than in the conventional library. Taq polymerase error arising during the preliminary RACE amplification cycles may be an explanation for these substitutions.

Eight V_{\alpha} III cDNAs from the conventional library extend from the 5' leader through J_{\beta} and are matches with germline sequences: DP77, DP50, DP51, DP58 (10), 3-7, 3-9 (9), GLSJ2 (8), and 9-III (20). Clone 13 has a 9-bp V_{\alpha} truncation relative to germline 3-7 at the V_{\alpha}-D_{\alpha} junction. Clone 36 extends from FR2 and corresponds to germline V_{\alpha} III 9-1 (20). Truncated clone 4 exactly matches and probably is derived from germline gene DP42 (10). Transcripts using V_{\alpha} IV germline genes 4-4 (9), DP65 (10), and 4.11 (21) also were recovered in screening the conventional library. Clone 10 represents the first cDNA described that derives from the newly defined germline gene 4-4. Four additional V_{\alpha} IV cDNAs derived from the RACE library correspond to germline genes DP65, 4.21 (21), and V2-1 (22).

V_{\alpha} I cDNAs identified in the conventional library are derived from at least three germline genes. 71-5 originally was considered a pseudogene (23) on the basis of an atypical intron splice sequence as well as an atypical RSS nonamer, but clone 22, while truncated, is homologous with 71-5 throughout its observed length and appears to be a functional transcript. On the basis of FR3 identity, cDNA clone 37 is assigned tentatively to germline gene DP10 or HV1263 (10). In the RACE library, V_{\alpha} I cDNAs are derived from germline genes 1-3b (24) and DP10. The remaining V_{\alpha} I genes correspond as perfect matches or with limited FR3 substitu-

![Table 2. A Comparison of Gene Usage in Partial and Full DiGeorge Syndrome](image)

	DiGeorge (n = 33)	Partial DiGeorge (n = 25)
Germline parents identified	19	11(-14)
Nonmatching sequences	3	7(-11)
Substitutions/V_{\alpha}	0.2	0.31
Sequences greater than two substitutions	0	7
Expressed germline genes shared with DiGeorge patient	Not applicable	7
Expressed germline genes shared with fetal repertoire	6	2
CDR3 length (bp)	23(±10)	25(±8)

Germline parents identified indicates the minimum and probable maximum number of different genes expressed in the cDNA repertoires. The smaller number reflects only the positively identified germline genes while the larger number represents additional substituted sequences that are similar to and probably derived from other known germline V_{\alpha}. The overall range of substitutions per V_{\alpha} gene is given in the third line of the table. n, number of clones studied. CDR3 length is defined as the total number of nucleotides found between identifiable V_{\alpha} and J_{\alpha}-encoded sequences.

828 Immunoglobulin V_{\alpha} Repertoire in DiGeorge Syndrome
tions relative to germline gene 1-18 (9), except for no. 209, which has single changes in FR1 and CDR2, and therefore may represent a somatically mutated gene (1-18), as discussed above.

With the recently expanded data bases of human V_n sequences (9, 10), the incidence of somatic mutation in the IgM cDNAs of normal individuals can be estimated. Our analysis of the cDNAs from the human cord blood library (6) reveals that 7 of 11 sequences do not match database sequences and only 4 are exact matches. The nonmatching sequences differ by an average of 10 bp each with 50% of those in CDR2, indicating either somatic mutation or expression of other unknown germline genes. In the normal adult library, which we constructed in the course of this study, ~45% of the 23 fully analyzed sequences correspond to germline V_n gene transcripts, similar to the ratio observed for cord blood. In a second control library, derived from the peripheral blood of a 9-mo-old nonimmunodeficient infant, 7 of 11 sequences do not match database germline genes with at least five substitutions per cDNA.

Matching cDNAs to germline sequences is more difficult in the RACE cDNA library prepared from the partial DiGeorge syndrome patient, summarized in Table 2, due to the presence of some sequences that are either highly mutated or derived from unidentified germline genes. The unidentifiable sequences comprise a minimum of seven cDNAs: two V_11 and five V_111111, with an average of 16 (±10) “randomly” distributed substitutions compared with the nearest germline V_n; i.e., similar cDNAs are substituted at different sites. These appear to be highly somatically mutated transcripts. Unlike the situation in the DiGeorge syndrome patient, the partial DiGeorge syndrome patient cDNAs are IgM, as well as IgA and IgG, but there are both unmutated and highly mutated cDNAs of each isotype.

The availability of a partial physical map of the human V_n locus (9) permits mapping of the corresponding germline genes expressed in the complete DiGeorge syndrome patient (shown in Fig. 1) along with the relative map positions of genes identified in fetal libraries (4, 5, 7). Both groups of genes are widely dispersed over the locus and are largely nonoverlapping, with the exception of mapped genes 4-59/58P2, 3-53/63P1, 3-30/1-9 111, and 3-15/20P1. However, two unmapped genes also are shared between the fetal libraries and the DiGeorge syndrome patient, GLSJ2[56P1] and DP10/51P1. Therefore, only 32% of the genes from the DiGeorge syndrome patient are also associated with a “fetal” repertoire, i.e., approximately two-thirds of the expressed genes are not fetal. The partial DiGeorge syndrome patient shares seven germline genes (65%) with the repertoire from the patient with complete DiGeorge syndrome, but only shares two (18%) with the fetal repertoire (data not shown). The sequences obtained from the human cord blood cells are not homologous to any of those from the DiGeorge syndrome patient; however, this comparison is complicated by a high frequency of apparent somatic mutation present in the cord blood sequences.

Germline genes that are associated with autoantibodies also are shown (Fig. 1). Clone 1.1 is derived from germline 1-3b. This gene differs by only a single nucleotide from an anti-DNA autoantibody (24). Note that the germline gene 1-3b was identified as haplotype B in that investigation, while clone 10 from our patient with partial DiGeorge syndrome is derived from gene 4-4, haplotype A. Other specific genes expressed in this patient with the partial DiGeorge syndrome that may be associated with autoantibody include: germline 4.21 (mapped as 4-34), a polyreactive rheumatoid factor, and germine 9-1 (3-15), an anti-DNA antibody (8). Germline 1-18 differs from a reported autoantibody V_n1GR by a single nucleotide and germline 1.9111 (3-30), which also differs by a single nucleotide from the autoantibody Kim 4.6. Finally, germline gene 4.11 is mapped as gene 4-59 and is related to autoantibody Pag-1 (9), although four nucleotide substitutions have occurred. Of the seven germline genes expressed in the complete DiGeorge syndrome patient that are homologous to reported autoantibody sequences, all but one, GLSJ2, are located within the mapped region. Detection of specific

Figure 1. The relative physical position of the mapped germline parents for cDNAs derived from the complete DiGeorge syndrome patient compared with those assigned to the “fetal repertoire” (4, 5, 7). Fetal genes are mapped if they occur at least twice in the references cited, with the exception of 2-5, which was encountered only once. Note that not all germline parents identified in the DiGeorge and fetal repertoires could be assigned to the physical map and that the sequences shown are limited to those identified and mapped in a 0.8-mb J_n-CH proximal region (9). Numerous other V_n genes have not been mapped as of yet (10) and must lie further upstream from J_n, lie outside of the contiguous portion of the V_n locus, or represent polymorphisms. The relationships between alternative names for the germline gene and designation of the mapped gene are evident in Table 1. The notation AAB indicates a gene coding for a cDNA identified as an autoantibody (9). In most cases, the sequences of the autoantibodies are identical to or differ by a single nucleotide from the mapped germline genes, except in the case of 4-59, which differs by 4 bp. The relative position shown is approximately proportional to the distance between genes on the 0.8-mb map.
autoantibody genes in the normal adult and in age-matched libraries is more difficult because of the large number of somatically modified sequences; however, to date only autoantibody-related genes have been observed.

CDR3 Region. Sequences of all cDNAs derived from the complete D41-18 have been included. The consensus (codon 92 FR3) at the 3' terminus of V, through the conserved Trp (codon 103 FR4) of J, are shown in Fig. 2. A high proportion of the cDNAs have a recognizable (germline) D, element that has been joined in the conventional V-D-J manner; seven different D, families are represented.

The most common D, family is DLR (33% of the sequences), followed by DXP (23%), DN (20%), D,fl (10%), DK (7%), and DM (3%). We did not identify any DA or D,052 members, and only one probable D, sequence (clone no. 206) is noted. While the DLR family may be proportionally increased, the relative occurrence of most other D families is in good agreement with those reported by others investigating Ig expression in the peripheral blood of normal individuals [1, 2]. The most commonly used specific D, genes are D4, DN1-TG, and DXP4-D23/7 (n = 4). We did not observe inverted D, sequences of significant length that were not accountable for by other, noninverted Ds. One case of joining of two D, elements was observed in clone 3.1, in which D2 and D21/9 are joined in a particularly long CDR3.

Figure 2. CDR3 sequences are shown under the corresponding complete germline D core sequences (bold). At the left are nucleotides attributable to the 3' end of V, determined from homology with germline genes indicated in Table 1, to codon 95. At the right are nucleotides attributable to J, indicated to the conserved TGG (codon 102). Nucleotides underlined at the end of V, and the beginning of J, are common to both the germ-line V or J and the germline D, segment involved. Dashes indicate nucleotide identity with the germline D, and substitutions are indicated within nucleotides attributable to both the germline V and J, are common.

Table 1: CDR3 Sequences

3' V,	GLDN1	CDR3	5' J,
27	TGTCGGAGAGA	GGTGTAATACGACCTGCTCGTGAGC	ACTAAGTTACGATATGACTTGCTCGTGAGC
40	TGTCGGAGAGA	GGTGTAATACGACCTGCTCGTGAGC	ACTAAGTTACGATATGACTTGCTCGTGAGC
206	TGTCGGAGAGA	GGTGTAATACGACCTGCTCGTGAGC	ACTAAGTTACGATATGACTTGCTCGTGAGC
21	TGTCGGAGAGA	GGTGTAATACGACCTGCTCGTGAGC	ACTAAGTTACGATATGACTTGCTCGTGAGC
210	TGTCGGAGAGA	GGTGTAATACGACCTGCTCGTGAGC	ACTAAGTTACGATATGACTTGCTCGTGAGC
1.8	TGTCGGAGAGA	GGTGTAATACGACCTGCTCGTGAGC	ACTAAGTTACGATATGACTTGCTCGTGAGC
31	TGTCGGAGAGA	GGTGTAATACGACCTGCTCGTGAGC	ACTAAGTTACGATATGACTTGCTCGTGAGC
207	TGTCGGAGAGA	GGTGTAATACGACCTGCTCGTGAGC	ACTAAGTTACGATATGACTTGCTCGTGAGC
38	TGTCGGAGAGA	GGTGTAATACGACCTGCTCGTGAGC	ACTAAGTTACGATATGACTTGCTCGTGAGC

Figure 2. CDR3 sequences are shown under the corresponding complete germline D core sequences (bold). At the left are nucleotides attributable to the 3' end of V, determined from homology with germline genes indicated in Table 1, to codon 95. At the right are nucleotides attributable to J, indicated to the conserved TGG (codon 102). Nucleotides underlined at the end of V, and the beginning of J, are common to both the germ-line V or J and the germline D, segment involved. Dashes indicate nucleotide identity with the germline D, and substitutions are indicated within nucleotides attributable to both the germline V and J, are common.
The putative Dα element DN1-TG identified recently by Yamada et al. (1) and encountered in three of the cDNAs from this patient also is found in the control and probably represents an undescribed germline element. Similarly a D2 variant, D2-AG, was encountered in the DiGeorge syndrome patient and controls (R. N. Haire and Y. Ohta, unpublished observations). The core sequences for the putative Dα elements are shown in Fig. 2.

In general the CDR3 sequences in the patient with complete DiGeorge syndrome have rather high homology vs. normals to the germline core sequences. Somatic mutation rates within Dα elements are difficult to estimate due to N region additions, but are present at ~3% in the sequences from the DiGeorge syndrome patient vs. ~6–7% in controls (Fig. 2; 1, 3). Dα reading frame use in this study appears to be unrestricted in the normal sequences, in contrast to murine Ig genes. For example, DN1 is used differently in all three reading frames in clones 27, 04, and 28. Similarly, clones 210, 1.2, and 4.2 use D4 in different reading frames.

Overall CDR3 length, defined here as the sum of D, P, and N region (7) contributions, appears to be reduced somewhat in the patients with partial or complete DiGeorge syndrome compared with that of normal individual adults, with a mean of 23 (±10) bp in the DiGeorge syndrome patient, and 25 (±8) in the partial DiGeorge syndrome patient vs. ~33 in the normal adults (2). This latter finding was also confirmed by observations with normal sequences examined in the course of the present study (data not shown). However, mean CDR3 lengths of 24 and 14 have been observed in neonates (2) and in B cells from fetuses (7), respectively, and the CDR3 length seen in the patients’ sequences may be normal for individuals at that age. The patient with DiGeorge syndrome exhibits N region nucleotide additions of 8.1 (±4) similar to the size distribution observed by Sanz (2); approximately one-third of the sequences in this study have an addition of >10 bp. With the possible exception of clone 17, none of the CDR3 regions that have identifiable Dα segments appear to lack N region additions. About one-third of the sequences from the DiGeorge syndrome patient have 5’ P nucleotides at the V-D junction, compared with ~50% in cDNAs derived from normal adults (1) and ~78% in those derived from fetal cDNAs (7); 5’ exonuclease activity is evident, especially at the D-J junction, in many of the sequences. J element usage in this complete DiGeorge syndrome patient is: J4 (~50%), J3 (18%), J6 (18%), J2 (6%), J5 (6%), and J1 (not seen). These frequencies correspond well with those from our normal databases and from available sequence data (1, 2).

Atypical Transcripts. In the course of screening the RACE cDNA library from the patient with complete DiGeorge syndrome using the Jα probe, we isolated and sequenced three short Jα+ transcripts that lack Vα regions. Two transcripts are typical of the Dμ type (25): DiG3 consists of D4 joined to Jα6, with evidence of exonuclease activity at the D/J junction, and DiG4 consists of D4 joined to Jα4. Both transcripts begin at the 5’ noncoding (D intron), ~135 bp from D4, but differ in the degree of exonuclease catalyzed elimination of D4 sequence. In both cases, Cμ (IgM) sequences are contiguous with Jα.

A third transcript obtained from the patient with complete DiGeorge syndrome (DiG 5) is unique. Jα6, with 19 bp eliminated 5’, is joined to 209 bp of a sequence that is undetectable in searches of the mammalian database. However, 37 bp upstream from the Jα6 sequence is a perfect RSS heptamer, CACTGTG. This sequence also contains IgM joined to Jα6, with evidence of exonuclease activity at the D/J junction, and DiG4 consists of D4 joined to Jα4. Both transcripts begin at the 5’ noncoding (D intron), ~135 bp from D4, but differ in the degree of exonuclease catalyzed elimination of D4 sequence. In both cases, Cμ (IgM) sequences are contiguous with Jα.

Figure 3. Dμ transcripts (DIG3 and DIG4) and one aberrant transcript (DIG5) are shown from the beginning of recognizable germline Dα sequence up to the Jα oligonucleotide sequence used for subcloning, m = c or a, and w = t or a. The presence of Cμ was confirmed by PCR with isotype-specific oligonucleotide primers. Recombination signal sequence heptamer and nonamer (RSS) are shown in bold, Jα sequence (J) is in italics, followed by the J family designates, with the remaining J sequence, that of the PCR primer, omitted. Dα (D) coding sequence is underlined.
lar repertoire (14). Furthermore, the RACE clones derived from the patient with the complete transcript, DiG 5, from the patient with the complete DiGeorge syndrome. Previously, separation of cDNAs derived from the various base and the physical map of the V~V locus has greatly facilitated the precise identification of germline genes for our analysis. Previously, separation of cDNAs derived from the various genes of the GLS12/3005/9-III complex was not possible and all of these highly related germline genes were termed "fetal." However, it recently has been determined that in the 56P1(−) haplotype, the predominant fetal gene is V26 (7), not the more closely related (to 56P1) genes 9-III or 3005. Furthermore, it has been suggested that the recurrence of certain sequences in different studies is consistent with the normal human V~V repertoire being limited to the expression of ~25 germine genes (14). However, that estimate may be somewhat low due to failure to resolve recently defined, unique germine genes.

It appears that in the DiGeorge syndrome patient a large number of genes associated with autoimmune reactivity may be expressed; such a circumstance may be avoided (or minimized) by normal T cell regulation. The significant expression of such genes (associated with autoimmune reactivity) may be a factor in the secondary pathogenesis of this disorder in which autoreactivity is a frequent, significant clinical feature.

In terms of V~V family representation, the composition of the conventional library is similar to that accepted for normal peripheral blood, i.e., V~VIII > V~I, IV, and in this sense too, a restriction is not apparent in this patient. V~V and V~VI genes, which are prominent in the fetal repertoire, were not observed in this patient. Although V~VII, V~V, and V~VI genes were not detected in the conventional or RACE libraries, these families typically would be expected to account for only 10–15% of total Ig clones in a normal individual and seem to be reduced to undetectable levels in this patient. Screening of a large number of recombinants in the RACE library failed to reveal members of these families, although they have been detected both in RACE libraries of the age-matched control and in those of other immunodeficiency patients (unpublished results) as well as in the conventional library from the normal adult. D~ segment usage in this DiGeorge syndrome patient primarily involves DXP and DLR segments and normal J~ element usage, whereas the fetal repertoire frequently uses DQS2 and J~ 1, 2, and 3 (5).

The CDR3 region length in this DiGeorge syndrome patient is typical for age-matched normal controls. The relatively limited occurrence of P nucleotides also argues against the use of a fetal repertoire in the complete DiGeorge patient. However, the presence of a high proportion of sequences identified with autoantibody activity, the D~ transcripts, and the absence of somatic mutation in the cDNAs are consistent with a fetal or antigenetically primitive repertoire.

The repertoire observed in the patient with partial DiGeorge syndrome, a condition intermediate between normal and complete DiGeorge syndrome, shares a significant fraction (50–64%) of expressed germine genes with that seen in the blood of the patient with the complete DiGeorge syndrome. There appear to be two classes of sequences in the patient with partial DiGeorge syndrome, those that are unmutated and a few highly mutated transcripts. Perhaps this phenomenon reflects a T cell defect that results in both a reduced incidence of somatic mutation and subsequent deficient regulation in selection of B cell clones.

Although the majority of the patient's B cells were CD5−, we do not consider it to be atypical, as similar percentages of CD5− B cells are found in normal infants. The
question as to whether B cells are derived from distinct lineages remains controversial (27, 28). It is apparent that CD5− B cells can be induced in both human and mouse to express CD5. In the mouse, there is a preferential usage of proximal V₅ segments in CD5− B cells (29, 30). Our data show no preferential usage of V₅ segments and thus are inconsistent with preferential usage in human CD5+ cells.

The unique repertoire observed in the patient with complete DiGeorge syndrome reflects the influence of abnormal thymic differentiation and development of the T cell system on B cell ontogenetic development (31). However, the T cell effect does not result in a fetal repertoire, but rather is reflected in a general failure of B cell diversification as reflected in the level of somatic mutation. In the 9,000 informative nucleotides identified in the present study, only five differ from data on existing germline sequences derived from unrelated individuals, suggesting not only a marked reduction in somatic mutation but a very low level of V₅ polymorphism in humans. The number of differences encountered from germline sequences is equivalent to the rate of error in PCR amplification, which we estimate as $1:1,700$ nucleotides. Evidence for limited occurrence of somatic mutation in this patient is based on comparison both to adult and age-matched controls, as well as to analysis of cord blood data (6).

Somatic mutation is already well established by the time of birth in humans and continues to represent a source of Ig diversification within the peripheral B cells throughout adult life (3). Absence of somatic mutation in the complete DiGeorge syndrome patient accounts for the inability of such patients to mount an effective immune response to microbial pathogens. Thus, despite low to near normal levels of Ig, the quality of antibody produced as judged by both specificity and affinity must be markedly reduced. Infusion of normal Ig (intravenous gamma globulin) is a standard course of therapy in patients with DiGeorge syndrome.

The absence of somatic mutaion may relate to T cell dependence of the ontogeny of normal B cell functional maturation. Mouse B lymphocytes acquire the capacity to give a normal adult-like heterologous response between 7 and 10 d of age (32, 33), and this functional maturation is independent of antigenic drive since it is observed in germ-free mice (34). In a model using irradiated mice, reconstituted with adult thymocytes and B cells from fetal liver and adult spleen, the maturation of B cells to produce antibodies with heterogeneous affinities is shown to depend on cells derived from thymus. Based on the findings reported here, diverse usage of V₅ genes in B cells is independent of T-B interaction(s). However, somatic maturation is dependent on T cells that are absent (or greatly reduced) in complete DiGeorge syndrome patients and in neonatal mice, but present to some degree in patients with partial DiGeorge syndrome, developed in human neonates, and developed to some degree in human fetuses, which have normal thymus functions. Thus, the generation of a B cell repertoire can be considered a two-step process, i.e., diversification of a V repertoire and somatic mutation. In patients with complete DiGeorge syndrome who have profound failure of thymus development, the V repertoire diversified but somatic mutation is compromised. This two-stage hypothesis may explain the functional antibody deficiency noted in patients with other immunodeficiency syndromes and significant levels of circulating Ig.

We thank Barbara Pryor for editorial assistance and J. D. Capra for providing human V₅ sequence data.

G. W. Litman is the Hines Professor at the University of South Florida College of Medicine/All Children's Hospital and is supported by a grant from the National Institutes of Health (ROI GM-38656). S. M. Fu is supported by a grant from the National Institutes of Health (ROI CA-34546).

Address correspondence to G. W. Litman, Department of Pediatrics, University of South Florida, All Children's Hospital, 801 Sixth Street South, St. Petersburg, FL 33701.

Received for publication 16 March 1993 and in revised form 19 May 1993.

References

1. Yamada, M., R. Wasserman, B.A. Reichard, S. Shane, A.J. Caton, and G. Rovera. 1991. Preferential utilization of specific immunoglobulin heavy chain diversity and joining segments in adult human peripheral blood B lymphocytes. J. Exp. Med. 173:395.

2. Sanz, I. 1991. Multiple mechanisms participate in the generation of diversity of human H chain CDR3 regions. J. Immunol. 147:1720.

3. Huang, C., A.K. Stewart, R.S. Schwartz, and B.D. Stollar. 1992. Immunoglobulin heavy chain gene expression in peripheral blood B lymphocytes. J. Clin. Invest. 89:1331.

4. Schroeder, H.W., J.L. Hillson, and R.M. Perlmutter. 1987. Early restriction of the human antibody repertoire. Science (Wash. DC). 238:791.

5. Schroeder, H.W., and J.Y. Wang. 1990. Preferential utilization of conserved immunoglobulin heavy chain variable gene segments during human fetal life. Proc. Natl. Acad. Sci. USA. 87:6346.

6. Mortari, F., J.A. Newton, J.Y. Wang, and H.W. Schroeder. 1992. The human cord blood antibody repertoire. Frequent usage of the VH7 gene family. Eur. J. Immunol. 22:241.

7. Hillson, J.L., I.R. Öppliger, E.H. Sasso, E.C.B. Milner, and
M.H. Wener. 1992. Emerging human B cell repertoire: influence of developmental stage and interindividual variation. *J. Immunol.* 149:3741.

8. Pascaul, V., and J.D. Capra. 1991. Human immunoglobulin heavy-chain variable region genes: organization, polymorphism, and expression. *Adv Immunol.* 49:1.

9. Matsuda, F., E.K. Shin, H. Nagoaka, R. Matsumura, M. Haino, Y. Fukita, S. Taka-ishi, T. Imai, J.H. Riley, R. Anand, E. Soeda, and T. Honjo. 1993. Structure and physical mapping of 64 variable segments in the 3' 0.8-megabase region of the human immunoglobulin heavy-chain locus. *Nature Genetics.* 3:88.

10. Tomlinson, I.M., G. Walter, J.D. Marks, M.B. Llewelyn, and G. Winter. 1992. The repertoire of human germline V\(\alpha\) sequences reveals about fifty groups of V\(\alpha\) segments with different hypervariable loops. *J. Mol. Biol.* 227:776.

11. Anker, R., M.E. Conley, and B.A. Pollok. 1989. Clonal diversity in the B cell repertoire of patients with X-linked agammaglobulinemia. *J. Exp. Med.* 169:2109.

12. Timmers, E., M. Renter, A. Thompson, M.E.M. Kraakman, J.E. Berman, F.W. Alt, and P.K.B. Schuurman. 1991. Diversity of immunoglobulin heavy chain gene segment rearrangement in B lymphoblastoid cell lines from X-linked agammaglobulinemia patients. *Eur. J. Immunol.* 21:2355.

13. Mortari, F., H.D. Ochs, R.J.P. Wedgwood, and H.W. Schroeder. 1991. Immunoglobulin variable heavy chain cDNA sequence from a patient with X-linked agammaglobulinemia. *Nucleic Acids Res.* 19:673.

14. Braun, J., L. Berberian, L. King, I. Sanz, and H.L. Govan III. 1992. Restricted use of fetal VH3 immunoglobulin genes by unselected B cells in the adult. *J. Clin. Invest.* 89:1295.

15. Schwarz, K., T.E. Hansen-Hagge, C. Knobloch, W. Friedrich, E. Kleihauer, and C.R. Bartram. 1991. Severe combined immunodeficiency (SCID) in man: B cell-negative (B-) SCID patients exhibit an irregular recombination pattern at the J\(\alpha\) locus. *J. Exp. Med.* 174:1039.

16. Ibegbu, C.C., A.J. Nahmias, T.J. Spira, D.J. Stoll, B. Jones, N. Symbas, S. Nesheim, H. Keyserling, and F.K. Lee. 1992. CD5 + B cells in normal newborns and infants, and in those with HIV and intrauterine infections. *Ann. NY Acad. Sci.* 651:572.

17. Innis, M.A., D.H. Gefland, J.J. Snisky, and T.J. White. 1990. PCR Protocols. Academic Press, Inc., San Diego. 482 pp.

18. Schroeder, H.W., J.L. Hillson, and R.M. Perlmutt. 1990. Structure and evolution of mammalian V\(\alpha\) families. *Int. Immunol.* 20:41.

19. Loh, E.Y., J.F. Elliott, S. Cwirla, L.L. Lanier, and M.M. Davis. 1989. Polymerase chain reaction with single-sided specificity: analysis of T cell receptor \(\delta\) chain. *Science (Wash. DC).* 243:217.

20. Berman, J.E., S.J. Mellis, R. Pollock, C.L. Smith, H. Suh, B. Heinke, C. Kowal, U. Surti, L. Chess, C.R. Cantor, and F.W. Alt. 1988. Content and organization of the human Ig V\(\alpha\) locus: definition of three new V\(\alpha\) families and linkage to the Ig C\(\alpha\) locus. *EMBO (Eur. Mol. Biol. Organ.)* J. 7:727.

21. Sanz, I., P. Kelly, C. Williams, S. Scholl, P. Tucker, and J.D. Capra. 1989. The smaller human V\(\alpha\) gene families display remarkably little polymorphism. *EMBO (Eur. Mol. Biol. Organ.)* J. 8:3741.

22. van Es, J.H., M. Heutink, H. Aanstoot, and T. Logtenberg. 1992. Sequence analysis of members of the human Ig VH4 gene family derived from a single V\(\alpha\) locus. *J. Immunol.* 149:492.

23. Kodaira, M., T. Kinashi, I. Umemura, F. Matsuda, T. Noma, Y. Ono, and T. Honjo. 1986. Organization and evolution of variable region genes of the human immunoglobulin heavy chain. *J. Mol. Biol.* 190:529.

24. Shin, E.K., F. Matsuda, H. Nagoaka, Y. Fukita, T. Imai, K. Yokoyama, E. Soeda, and T. Honjo. 1991. Physical map of the 3' region of the human immunoglobulin heavy chain locus: clustering of autoantibody-related variable segments in one haplotype. *EMBO (Eur. Mol. Biol. Organ.)* J. 10:3641.

25. Reth, M.G., and F.W. Alt. 1984. Novel immunoglobulin heavy chains are produced from D\(\alpha\) gene segment rearrangements in lymphoid cells. *Nature (Lond.)*. 312:418.

26. Gu, H., D. Kitamura, and K. Rajewsky. 1991. B cell development regulated by gene rearrangement: arrest of maturation by membrane-bound D\(\mu\) protein and selection of D\(\delta\) element reading frames. *Cell.* 65:47.

27. Herzenberg, L.A., and A.B. Kantor. 1993. B-cell lineages exist in the mouse. *Immunol. Today.* 79:79.

28. Haughton, G., L.W. Arnold, A.C. Whitmore, and S.H. Clarke. 1993. B-1 cells are made, not born. *Immunol. Today.* 79:84.

29. H.H. Wortis. 1992. Surface markers, heavy chain sequences and B cell lineages. *Int. Rev. Immunol.* 8:235.

30. T.J. Kipps. 1989. The CD5 B cell. *Adv. Immunol.* 47:117.

31. Blackwell, T.K., and F.W. Alt. 1989. Mechanism and developmental program of immunoglobulin gene rearrangement in mammals. *Ann. Rev. Genet.* 23:605.

32. Sherr, D.H., M.R. Szewczuk, and G.W. Siskind. 1978. Ontogeny of B-lymphocyte function. V. Thymus cell involvement in the functional maturation of B-lymphocytes from fetal mice transferred into adult irradiated hosts. *J. Exp. Med.* 151:196.

33. Szewczuk, M.R., D.H. Sherr, and G.W. Siskind. 1978. Ontogeny of B-lymphocyte function. VI. Ontogeny of thymus cell capacity to facilitate the functional maturation of B lymphocytes. *Eur. J. Immunol.* 8:370.

34. Goidl, E.A., and G.W. Siskind. 1974. Ontogeny of B-lymphocyte function. I. Restricted heterogeneity of the antibody response of B lymphocytes from neonatal and fetal mice. *J. Exp. Med.* 140:1285.

35. Olee, T., P.-M. Yang, K.A. Siminovitch, N.J. Olsen, J. Hillson, J. Wu, F. Kozin, D.A. Carson, and P.P. Chen. 1991. Molecular basis of an autoantibody-associated restriction fragment length polymorphism that confers susceptibility to autoimmune diseases. *J. Clin. Invest.* 88:193.

36. Kabat, E.A., T.T. Wu, C. Foeller, H.M. Perry, and K. Gottesman. 1991. Sequences of Proteins of Immunological Interest. U.S. Dept. Health and Human Services, Washington, D.C.