Initial bounds for analytic and bi-univalent functions by means of \((p, q)\)–Chebyshev polynomials defined by differential operator

Ala Amourah

*Department of Mathematics, Faculty of Science and Technology, Irbid National University, Irbid, Jordan.

Abstract

In this paper, a subclass \(T^p_\lambda (m, \gamma, \lambda, p, q)\) of analytic and bi-univalent functions by means of \((p, q)\)–Chebyshev polynomials is introduced. Certain coefficient bounds for functions belong to this subclass are obtained. In addition, the Fekete-Szegő problem is solved in this subclass.

Keywords: coefficient inequalities, bi-univalent functions, Fekete-Szegő problems.

2010 MSC: 30C45

1. Introduction and preliminaries

Let \(A\) denote the class of functions of the form:

\[
f(z) = z + \sum_{n=2}^{\infty} a_n z^n,
\]

which are analytic in the open unit disk \(\mathbb{U} = \{z : |z| < 1\}\). Further, by \(S\) we shall denote the class of all functions in \(A\) which are univalent in \(\mathbb{U}\). It is well known that every function \(f \in S\) has an inverse \(f^{-1}\), defined by

\[
f^{-1}(f(z)) = z \quad (z \in \mathbb{U})
\]

and

\[
f(f^{-1}(w)) = w \quad (|w| < r_0(f); \ r_0(f) \geq \frac{1}{4})
\]

where

\[
f^{-1}(w) = w - a_2 w^2 + (2a_2^2 - a_3)w^3 - (5a_2^3 - 5a_2a_3 + a_4)w^4 + \cdots.
\]

A function \(f \in A\) is said to be in \(\Sigma\) the class of bi-univalent in \(\mathbb{U}\) if both \(f(z)\) and \(f^{-1}(z)\) are univalent in \(\mathbb{U}\). Lewin [9] showed that \(|a_2| < 1.51\) for every function \(f \in \Sigma\) given by (1.1). Posteriorly, Brannan...
and Clunie [3] improved Lewin’s result and conjectured that $|a_2| \leq \sqrt{2}$ for every function $f \in \Sigma$ given by (1.1). The coefficient estimate problem for each of the following Taylor Maclaurin coefficients:

$$|a_n| \quad (n \in \mathbb{N}; n \geq 4)$$

It’s still an open problem. Since then, there have been many researchers (see [2, 5, 6, 7, 11, 12, 14, 15, 13]) investigated several interesting subclasses of the class Σ and found non-sharp estimates on the first two Taylor-Maclaurin coefficients $|a_2|$ and $|a_3|$. In fact, its worth to mention that by making use of the Faber polynomial coefficient expansions Jahangiri, Jay M., and Samaneh G. Hamidi [8] have obtained estimates for the general coefficients $|a_n|$ for bi-univalent functions subject to certain gap series.

For any integer $n \geq 2$ and $0 < q < p \leq 1$, (p, q)–Chebyshev polynomials of the second kind is defined by the following recurrence relations:

$$R_n(x, s, p, q) = (p^n + q^n) x R_{n-1}(x, s, p, q) + (pq)^{n-1} s R_{n-2}(x, s, p, q),$$

(1.2)

with the initial values $R_0(x, s, p, q) = 1$ and $R_1(x, s, p, q) = (p + q) x$ and s is a variable.

Recently, Kızılates¸ Naim and Bayram [16] defined (p, q)–Chebyshev polynomials of the first and second kinds and derived explicit formulas, generating functions and some interesting properties of these polynomials.

The generating function of the (p, q)–Chebyshev polynomials of the second kind is as follows:

$$H_{p,q}(z) = \frac{1}{1 - x p z \tau_p - x q z \tau_q - s p q z^2 \tau_{p,q}} = \sum_{n=0}^{\infty} R_n(x, s, p, q) z^n \quad (z \in \mathbb{U}).$$

where the Fibonacci operator τ_q Mason and Handscomb was introduced [17], by $\tau_q f(z) = f(qz)$, similarly, $\tau_{p,q} f(z) = f(pqz)$.

First off, we present some special cases of the polynomials $H_{p,q}(z)$:

1. For $p = q = 1$ and $s = -1$, we get the Chebyshev polynomials $R_n(x)$ of the second kind.
2. For $p = q = s = 1$ and $x = \frac{1}{2}$, we get the Fibonacci polynomials $F_n(x)$.
3. For $p = q = 1$, $s = 2 y$ and $x = \frac{1}{2}$, we get the Jacobsthal polynomials $J_{n+1}(y)$.
4. If $p = q = s = 1$, then we get the Pell polynomials $P_{n+1}(x)$.

Let $w(z)$ and $v(w)$ be two analytic functions in the unit disk \mathbb{U} with $w(0) = v(0) = 0$, $|w(z)| < 1$, $|v(z)| < 1$, and suppose that

$$w(z) = c_1 z + c_2 z^2 + c_3 z^3 + \cdots, \quad \text{and} \quad v(w) = d_1 w + d_2 w^2 + d_3 w^3 + \cdots \quad (z, w \in \mathbb{U}).$$

(1.3)

Making use of the binomial series

$$(1 - \gamma)^m = \sum_{j=0}^{m} \binom{m}{j} (-1)^j \gamma^j \quad (m \in \mathbb{N}, \ j \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}),$$

recently for $f \in A$, Frasin [4] defined the differential operator $A^\gamma_{m,\lambda} f(z)$ as follows:

$$A^0 f(z) = f(z),$$

$$A^\gamma_{m,\lambda} f(z) = (1 - \gamma)^m f(z) + (1 - (1 - \gamma)^m) z f'(z) = A_{m,\lambda} f(z), \ \gamma > 0; m \in \mathbb{N},$$

$$A^\gamma_{m,\lambda} f(z) = A_{m,\lambda} \left(A^{\gamma - 1} f(z)\right)$$

$$= z + \sum_{n=2}^{\infty} \left[1 + (n - 1) C_f^n \gamma \right] \zetaut_n \zeta ^n; \zeta \in \mathbb{N},$$

(1.4)
where

\[C_j^m(\gamma) = \sum_{j=1}^{m} \binom{m}{j} (-1)^{j+1} \gamma^j. \]

Using the relation (1.4), it is easily verified that

\[C_j^m(\gamma)z(A_{m,\gamma}^f(z))' = A_{m,\gamma}^{\xi+1}f(z) - (1 - C_j^m(\gamma))A_{m,\gamma}^\xi f(z). \] \hfill (1.5)

By specializing the parameters we observe that, for \(m = 1, A_{1,\lambda}^\xi \) defined by Al-Oboudi [1] and for \(m = \gamma = 1, A_{1,1}^\xi \) defined by Salagean [10].

2. The function class \(T_\xi^\gamma (m, \gamma, \lambda, p, q) \)

Definition 2.1. A function \(f(z) \in \Sigma \) is said to be in the class \(T_\xi^\gamma (m, \gamma, \lambda, p, q) \) if and only if

\[
(1 - \lambda) \frac{A_{m,\gamma}^\xi f(z)}{z} + \lambda (A_{m,\gamma}^\xi f(z))' < H_{p,q}(z) = \frac{1}{1 - xp\tau_p - xq\tau_q - spqz^2\tau_{p,q}}
\]

and

\[
(1 - \lambda) \frac{A_{m,\gamma}^\xi g(w)}{w} + \lambda (A_{m,\gamma}^\xi g(w))' < H_{p,q}(w) = \frac{1}{1 - xp\omega\tau_p - xq\omega\tau_q - spqw^2\tau_{p,q}}
\]

where \(0 \leq \lambda \leq 1 \), \(z, w \) in \(\mathbb{U} \) and \(g(w) = f^{-1}(w) \).

3. Coefficient bounds for the function class \(T_\xi^\gamma (m, \gamma, \lambda, p, q) \)

We begin with the following result involving initial coefficient bounds for the function class \(T_\xi^\gamma (m, \gamma, \lambda, p, q) \).

Theorem 3.1. If \(f(z) \) given by (1.1) is in the class \(T_\xi^\gamma (m, \gamma, \lambda, p, q) \). Then

\[
|a_2| \leq \frac{(p + q)x\sqrt{(p + q)x}}{\chi} \] \hfill (3.1)

and

\[
|a_3| \leq \frac{(p + q)^2x^2}{\chi} + \frac{(p + q)x}{(1 + 2\lambda)(1 + 2C_j^m(\gamma))^\xi}. \] \hfill (3.2)

where

\[
\chi = \left| (1 + 2C_j^m(\gamma))^\xi (1 + 2\lambda)(p + q)^2x^2 - [(p^2 + q^2)(p + q)x^2 + pqs] (1 + C_j^m(\gamma))^\xi (1 + \lambda) \right|^2.
\]

Proof. Let \(f(z) \in T_\xi^\gamma (m, \gamma, \lambda, p, q) \). Then there are analytic functions \(u \) and \(v \), with \(u(0) = v(0) = 0 \), \(|u(z)| < 1 \), \(|v(z)| < 1 \), given by (1.3) and satisfying the following conditions:

\[
(1 - \lambda) \frac{A_{m,\gamma}^\xi f(z)}{z} + \lambda (A_{m,\gamma}^\xi f(z))' = H_{p,q}(w(z)) \] \hfill (3.3)

and

\[
(1 - \lambda) \frac{A_{m,\gamma}^\xi g(w)}{w} + \lambda (A_{m,\gamma}^\xi g(w))' = H_{p,q}(v(w)). \] \hfill (3.4)

where \(g(w) = f^{-1}(w) \).
A short calculation shows that

\[w(z) = c_1 z + c_2 z^2 + c_3 z^3 + \cdots \quad (z \in \mathbb{U}), \]

and

\[v(w) = d_1 w + d_2 w^2 + d_3 w^3 + \cdots \quad (w \in \mathbb{U}), \]

such that \(w(0) = v(0) = 0, \) \(|w(z)| < 1 \) \((z \in \mathbb{U}) \) and \(|v(w)| < 1 \) \((w \in \mathbb{U}). \)

It follows from (3.3) and (3.4) that

\[
(1 - \lambda) \frac{\mathcal{A}_{m, \gamma} f(z) - \mathcal{A}_{m, \gamma} f(z)'}{z} + \lambda (\mathcal{A}_{m, \gamma} f(z))' = 1 + R_1(x, s, p, q) c_1 z + [R_1(x, s, p, q) c_2 + R_2(x, s, p, q) c_1^2] z^2 + \cdots
\]

(3.5)

and

\[
(1 - \lambda) \frac{\mathcal{A}_{m, \gamma} g(w) - \mathcal{A}_{m, \gamma} g(w)'}{w} + \lambda (\mathcal{A}_{m, \gamma} g(w))' = 1 + R_1(x, s, p, q) d_1 w + [R_1(x, s, p, q) d_2 + R_2(x, s, p, q) d_1^2] w^2 + \cdots.
\]

(3.6)

A short calculation shows that

\[
(1 + \lambda)(1 + C_{j}^{m}(\gamma)) \xi a_2 = R_1(x, s, p, q) c_1,
\]

(3.7)

\[
(1 + 2\lambda)(1 + 2C_{j}^{m}(\gamma)) \xi a_3 = R_1(x, s, p, q) c_2 + R_2(x, s, p, q) c_1^2,
\]

(3.8)

\[-(1 + \lambda)(1 + C_{j}^{m}(\gamma)) \xi a_2 = R_1(x, s, p, q) d_1,
\]

(3.9)

and

\[
(1 + 2\lambda)(1 + 2C_{j}^{m}(\gamma)) \xi (2a_2^2 - a_3) = R_1(x, s, p, q) d_2 + R_2(x, s, p, q) d_1^2.
\]

(3.10)

From (3.7) and (3.9), we get

\[
c_1 = -d_1,
\]

(3.11)

and

\[
2[(1 + C_{j}^{m}(\gamma)) \xi (1 + \lambda)]^2 a_2^2 = R_1^2(x, s, p, q) (c_1^2 + d_1^2).
\]

(3.12)

By adding (3.8) to (3.10), we have

\[
2(1 + 2C_{j}^{m}(\gamma)) \xi (1 + 2\lambda) a_2^2 = R_1(x, s, p, q) (c_2 + d_2) + R_2(x, s, p, q) (c_1^2 + d_1^2).
\]

(3.13)

Therefore, from equalities (3.12) and (3.13) we find that

\[
[2(1 + 2C_{j}^{m}(\gamma)) \xi (1 + 2\lambda) R_1^2(x, s, p, q) - 2R_2(x, s, p, q) \left((1 + C_{j}^{m}(\gamma)) \xi (1 + \lambda) \right) ^2] a_2^2
\]

\[= R_1^3(x, s, p, q) (c_2 + d_2). \]

(3.14)

Then

\[
|a_2| \leq \frac{(p + q)x \sqrt{(p + q)x}}{\sqrt{\chi}},
\]

where

\[
\chi = \left| (1 + 2C_{j}^{m}(\gamma)) \xi (1 + 2\lambda)(p + q)^2 x^2 - [(p^2 + q^2)(p + q)x^2 + pq] \left((1 + C_{j}^{m}(\gamma)) \xi (1 + \lambda) \right) ^2 \right|.
\]

Next, in order to find the bound on \(|a_3|, \) subtracting (3.10) from (3.8) and using (3.11), we get

\[
2(1 + 2\lambda)(1 + 2C_{j}^{m}(\gamma)) \xi a_3 = 2(1 + 2\lambda)(1 + 2C_{j}^{m}(\gamma)) \xi a_2^2 + R_1(x, s, p, q)(c_2 - d_2).
\]

(3.15)
Then in view of (3.15) and (3.11), we have
\[2(1 + 2\lambda)(1 + 2C_j^m(\gamma))\zeta |a_3| \leq 2(1 + 2\lambda)(1 + 2C_j^m(\gamma))\zeta |a_2|^2 + 2R_1(x, s, p, q) \]

From (3.7), we immediately have
\[|a_3| \leq |a_2|^2 + \frac{(p + q)x}{(1 + 2\lambda)(1 + 2C_j^m(\gamma))\zeta}. \]

Now the assertion (3.2) follows from (3.1). This evidently completes the proof of Theorem 4.1. \(\square \)

Corollary 3.2. If \(f(z) \) given by (1.1) is in the class \(T_2^\zeta(m, \gamma, p, q) \). Then
\[
|a_2| \leq \frac{(p + q)x\sqrt{(p + q)x}}{\sqrt{3(1 + 2C_j^m(\gamma))\zeta(p + q)^2x^2 - 4[(p^2 + q^2)(p + q)x^2 + pqs]\left(1 + C_j^m(\gamma)\zeta\right)^2}} \tag{3.16}
\]
and
\[
|a_3| \leq \frac{(p + q)^2x^2}{\tau} + \frac{(p + q)x}{3(1 + 2C_j^m(\gamma))\zeta}, \tag{3.17}
\]
where
\[
\tau = \left|3(1 + 2C_j^m(\gamma))\zeta(p + q)^2x^2 - 4[(p^2 + q^2)(p + q)x^2 + pqs]\left(1 + C_j^m(\gamma)\zeta\right)^2\right|.
\]

4. Fekete-Szegő inequalities for the function class \(T_2^\zeta(m, \gamma, \lambda, p, q) \)

Now, we are ready to find the sharp bounds of Fekete-Szegő functional \(a_3 - \delta a_2^2 \) defined for \(f \in T_2^\zeta(m, \gamma, \lambda, p, q) \) given by (1.1).

Theorem 4.1. Let \(f(z) \) given by (1.1), be in the class \(T_2^\zeta(m, \gamma, \lambda, p, q) \). Then
\[
|a_3 - \delta a_2^2| \leq \left\{ \begin{array}{ll}
\frac{(p + q)x}{2(p + q)|h(\delta)|x} & \text{for } 0 \leq |h(\delta)| < \frac{1}{2(1 + 2\lambda)(1 + 2C_j^m(\gamma))\zeta}, \\
\frac{(p + q)^2x^2(1 - \delta)}{2[(1 + 2C_j^m(\gamma))\zeta(1 + 2\lambda)(p + q)]x^2 - [(p^2 + q^2)(p + q)x^2 + pqs]\left(1 + C_j^m(\gamma)\zeta(1 + \lambda)\right)^2} & \text{for } |h(\delta)| \geq \frac{1}{2(1 + 2\lambda)(1 + 2C_j^m(\gamma))\zeta},
\end{array} \right. \tag{4.1}
\]
where
\[
h(\delta) = \frac{(p + q)^2x^2(1 - \delta)}{2[(1 + 2C_j^m(\gamma))\zeta(1 + 2\lambda)(p + q)]x^2 - [(p^2 + q^2)(p + q)x^2 + pqs]\left(1 + C_j^m(\gamma)\zeta(1 + \lambda)\right)^2}.
\]

Proof. From (3.14) and (3.15), we get
\[
a_2^2 = \frac{R_3^2(x, s, p, q)(c_2 + d_2)}{2[(1 + 2C_j^m(\gamma))\zeta(1 + 2\lambda)R_2^2(x, s, p, q) - R_2(x, s, p, q)\left(1 + C_j^m(\gamma)\zeta(1 + \lambda)\right)^2]} \tag{4.2}
\]
and
Then, we easily conclude that

\[a_3 = \frac{2(1 + 2\lambda)(1 + 2C_j^m(\gamma))^\delta a_2^2 + R_1(x, s, p, q)(c_2 - d_2)}{2(1 + 2\lambda)(1 + 2C_j^m(\gamma))^\xi}. \]

(4.3)

From the equations (4.2) and (4.3), it follows that

\[a_3 - \delta a_2^2 = R_1(x, s, p, q)\left[\left(h(\delta) + \frac{1}{2(1 + 2\lambda)(1 + 2C_j^m(\gamma))^\xi} \right) c_2 + \left(h(\delta) - \frac{1}{2(1 + 2\lambda)(1 + 2C_j^m(\gamma))^\xi} \right) d_2 \right], \]

where

\[h(\delta) = \frac{R_1^2(x, s, p, q)(1 - \delta)}{2[(1 + 2C_j^m(\gamma))^\xi(1 + 2\lambda)R_1^2(x, s, p, q) - R_2(x, s, p, q) (1 + C_j^m(\gamma))^\xi(1 + \lambda)]}. \]

Then, we easily conclude that

\[
|a_3 - \delta a_2^2| \leq \begin{cases}
\frac{(p + q)x}{(1 + 2\lambda)(1 + 2C_j^m(\gamma))^\delta}, & |h(\delta)| \leq \frac{1}{2(1 + 2\lambda + 6\mu)} \\
2(p + q)|h(\delta)|x, & |h(\delta)| \geq \frac{1}{2(1 + 2\lambda + 6\mu)}
\end{cases}
\]

This proves Theorem 4.1. \qed

By taking \(\lambda = 1 \) in Theorem 4.1, we have

Corollary 4.2. Let \(f(z) \) given by (1.1), be in the class \(T^\xi_2(m, \gamma, p, q) \). Then

\[
|a_3 - \delta a_2^2| \leq \begin{cases}
\frac{(p + q)x}{3(1 + 2C_j^m(\gamma))^\delta}, & \text{for } 0 \leq |h(\delta)| < \frac{1}{6(1 + 2C_j^m(\gamma))^\xi} \\
2(p + q)|h(\delta)|x, & \text{for } |h(\delta)| \geq \frac{1}{6(1 + 2C_j^m(\gamma))^\xi}
\end{cases}
\]

(4.4)

where

\[h(\delta) = \frac{(p + q)^2 x^2(1 - \delta)}{2[3(1 + 2C_j^m(\gamma))^\xi(p + q)^2x^2 - 4((p^2 + q^2)(p + q)x^2 + pqs)^2(1 + C_j^m(\gamma))^\xi]}. \]

References

[1] T. Al-Hawary, A. A. Amourah, M. Darus, Differential sandwich theorems for \(\nu \)-valent functions associated with two generalized differential operator and integral operator, International Information Institute (Tokyo). Information 17 (8) (2014), 3559. 1

[2] A. A. Amourah and F. Yousef, Some properties of a class of analytic functions involving a new generalized differential operator, Boletim da Sociedade Paranaense de Matemática 38(6) (2018), 33–42. https://doi.org/10.5269/bspm.v38i6.40530 1

[3] A. Amourah, Faber polynomial coefficient estimates for a class of analytic bi-univalent functions, AIP Conference Proceedings. 2096(1)(2019). 1

[4] A. Amourah and M. Darus, Some properties of a new class of univalent functions involving a new generalized differential operator with negative coefficients, Indian Journal of Science and Technology, 9 (2016), 1–7. https://doi.org/10.17485/ijst/2016/v9i36/97738 1

[5] S. Altınkaya, and S. Yalçın, The \((p,q)\)–Chebyshev polynomial bounds of a general bi-univalent function class, Boletin de la Sociedad Matemática Mexicana (2019), 1-8. https://doi.org/10.1007/s40590-019-00246-2 1

[6] F. M. Al-Oboudi, On univalent functions defined by generalized Salagean operator, Int. J. Math. Sci., (2004), 1429-1436. https://doi.org/10.1155/s0161171204108090 1

[7] D. A. Brannan, J.G. Clunie (Eds.), Aspects of Contemporary Complex Analysis (Proceedings of the NATO Advanced Study Institute held at the University of Durham, Durham; July 1 20, 1979), Academic Press, New York and London, (1980). 1
[8] S. Bulut, Coefficient estimates for a class of analytic and bi-univalent functions, Novi Sad J. Math., 43(2) (2013), 59–65.

[9] B. A. Frasin, A new differential operator of analytic functions involving binomial series, Boletim da Sociedade Paranaense de Matemática 38.5 (2020), 205–213. https://doi.org/10.5269/bspm.v38i5.40188

[10] C. Kızılate, N. Tuğlu, B. Çekim, On the \((p,q)\)-Chebyshev polynomials and related polynomials, Mathematics, 7 (2019), 1–12. https://doi.org/10.3390/math7020136

[11] J. C. Mason, D. C. Handscomb, Chebyshev Polynomials, Chapman & Hall, Boca Raton (2003).

[12] J. M. Jahangiri and S. G. Hamidi, Coefficient estimates for certain classes of bi-univalent functions, Int. J. Math and Math. Sci. (2013), Article ID 190560. https://doi.org/10.1155/2013/190560

[13] G. S. Sălăgean, Subclasses of univalent functions, Lecture Notes in Math., 1013 (1983), 362-372, Springer-Verlag, Heidelberg.

[14] H. M. Srivatava and D. Bansal, Coefficient estimates for a subclass of analytic and bi-univalent functions, J. Egyptian Math. Soc. 23 (2015), 242–246.

[15] F. Yousef, T. Al-Hawary and G. Murugusundaramoorthy, Fekete–Szegő functional problems for some subclasses of bi-univalent functions defined by Frasin differential operator. Afrika Matematika 30.3-4 (2019), 495-503. https://doi.org/10.1007/s13370-019-00662-7

[16] F. Yousef, B. A. Frasin and T. Al-Hawary, Fekete-Szegő Inequality for Analytic and Bi-univalent Functions Subordinate to Chebyshev Polynomials, arXiv preprint arXiv:1801.09531 (2018).