Background: Influenza vaccination has been shown to reduce influenza risk in pregnant women and their infants who are not yet age eligible for vaccine. Ascertainment of vaccination history is important for vaccine safety and effectiveness evaluations. Our goals were to (a) determine coverage, location, and timing of maternal influenza vaccination and (b) compare a subset of self-reported influenza vaccinations with documented vaccine records.

Methods: We enrolled children < 18 years with acute respiratory illness in 7 pedi atric hospitals and emergency departments in the New Vaccine Surveillance Network from December 1, 2016 to October 31, 2018. We interviewed all mothers of enrolled infants < 1 year, and obtained mother's influenza vaccine information while pregnant. As an option, sites obtained maternal influenza vaccine records from reported sources (e.g., registries, provider records, pharmacies).

Results: Among 5,458 mothers, 2,944 (54%) self-reported receiving vaccine during pregnancy (57% in 2016–2017; 51% in 2017–2018), varying from 49% to 74% by site. Among self-reported vaccinated women, 17%, 36%, and 47% received vaccine during the first, second, and third trimester, respectively. Most women (76%) were vacci nated at their OB/GYN or midwife office, 7% at their primary care provider, 7% at their workplace, and 5% at a retail pharmacy. Among 1,338 infants < 6 months. during early influenza season (i.e., born from June to August) and thus ineligible for vaccination, only 36% of mothers reported receiving vaccine during pregnancy (42% reported not receiving it, 12% were unsure). Of 2,242 women for whom vaccine verification was attempted, 1,491 (67%) self-reported receiving influenza vaccine during pregnancy; of those, documentation of vaccine receipt was found for 901 (60%).

Conclusions: Influenza vaccination coverage among pregnant women was sub-optimal, potentially increasing the risk of influenza in unvaccinated pregnant women. Infants born to unvaccinated women, particularly those born from June to August, may also be at higher risk since they are not age eligible to receive vaccine before influenza season. The optimal approach to ascertainment of maternal vaccination history with accuracy and completeness merits further investigation.

Disclosures. All authors: No reported disclosures.

2739. Comparison of Hemagglutination Antibody Inhibition (HAI) Titers Following Influenza Vaccination by Birth Cohort and Repeated Influenza Vaccination History

Amy C. Sherman, MD1; Lilin Lai, MD1; Mary B. Bower, BA, BSN2; Mukhta S. Natrajian, PhD, MPH1; Christopher M. Huerta, BS3; Yongxian Xu, MD3; Mark Mulligan, MD, FIDSA1; Nadine Roupaha, MD3; Emory University, Decatur, Georgia; Hope Clinic, Decatur, Georgia; Emory University Vaccine Center, Atlanta, Georgia; Hope Clinic VTEU Lab, Decatur, Georgia; New York University, New York, New York; Emory University School of Medicine, Atlanta, Georgia.

Session: 278. Vaccines: Influenza Saturday, October 5, 2019: 12:15 PM

Background: The host immune response to influenza vaccination can be affected by prior imprinting to a specific influenza strain based on birth cohort and prior influenza vaccination history. Understanding the underlying immune mechanisms is essential to development of an improved seasonal vaccine and an effective universal influenza vaccine.

Methods: This is a prospective pilot study, with a total of 20 subjects in either the H3N2 cohort (N = 10, born 1968–1977) or the H1N1 cohort (N = 10, born 1948–1957). Each cohort was further stratified by subjects who have received the influenza vaccine < 2 or ≥ 3 of the past 5 years. The FDA-approved quadrivalent 2018–19 influenza vaccine (containing A(H1N1), an A/Michigan/45/2015-like virus; A(H3N2), an A/Singapore/INFIMH–16–0019/2016-like virus; B/Colorado/06/2017-like virus; and B/Phuket/3073/2013-like virus) was administered on Day 1. Demographic information included age, gender, ethnicity, and BMI. HAI titers for each component of the vaccine were obtained at baseline, 29 days post-vaccination, and 180 days post-vaccination. HAI fold-change and HAI geometric mean titers (GMT) were analyzed.

Results: The most important attribute was the belief that pregnant women should get the flu shot (Gini Score: 212), followed by the belief that pregnant women are old enough to receive the vaccine (Gini Score: 275), and the third was being offered the vaccine by a healthcare provider (Gini Score: 196).

Conclusion. Analyzing data using machine learning techniques may bring new insights for vaccination campaigns. Our results suggest that a provider recommendation is important, but perhaps even without a recommendation, women who form their own beliefs about need for vaccination may also be more likely to get vaccinated. Also, pregnant women and women of childbearing age should be targeted for vaccination during each fall, and for those with due date early in the flu season, providers should stress the importance of maternal antibodies for protection of the infant since the baby will be < 6 months old during peak influenza season, when they are most vulnerable but would benefit from maternal antibodies.

2740. Using Machine Learning Methods to Identify Factors Associated with Pregnant Women Receiving the Influenza Vaccine during 2017–2018

Barbara Banerjee, PhD; MPH, MA1; Vishal Nayak, Master of Science2; Fangqin Zhou, PhD3; Carla Black, PhD3; Sarah Ball, ScD, MPH4; James A. Singleton, PhD1; Emily C. Davis, PhD2; Katherine Kelly, MS, MPH2; Celeste O'Hare, MS, RRT2; Lorna C. Roman, MS, RT(R)2; Melissa J. Goetz, MA2; Cassandra Flores, MS, RT(R)2; Erin N. Black, PhD, MD1; Paula Griffo, MD, PhD1; Haoyao Fan, MD1; Mark C. Buehler, MD1; John J. Lederman, DVM, MA1; Jennifer K. Nelson, MS, RT(R)1; Charlotte L. Reynolds, MS, RT(R)1; Ashley E. Elkins, MS, RT(R)1; Angela A. Flores, MS, RT(R)1; Erin C. Black, MD, MPH, MS, RT(R)1; Rasheda N. Sadiq, MD, MA1; Rebecca E. Simmons, MD1; Susan M. Smith, MD1; Margaret E. Darden, PhD1; Demetra Kardami, MD1; Donald N. Indelicato, MD1; Bruce T. Jacobson, MD1; Michael D. Kucharski, MD1; Kathy A. Swerdlow, MD1; Christiana A. Avgerinos, MD1; Lisa I. Addis, MD1; George J. Agostini, MD1; Sarika W. Ahire, MD1; Stacie A. Ao, MD1; Brian L. Akin, MD1; John D. Allgood, MD1; Melissa L. Anderson, MS1; Natasha R. Alpert, MD1; Jennifer M. Alten, MS1; Lauren A. Alsworth, MS1; Charles S. Anderson, MD1; Kaitlin A. Anderson, MS1; May A. Anderson, MS1; Elizabeth A. Annis, MD1; Jennifer L. Ankeny, MD1; laptop computer 9%; Embryonic stem cell line 10%; Embryonic stem cell line 11%.

1Centers for Disease Control and Prevention, Atlanta, Georgia; 2General Dynamics Information Technology, Atlanta, Georgia; 3CDC, Atlanta, Georgia; 4Abb Associates, Newton, Massachusetts

Session: 278. Vaccines: Influenza Saturday, October 5, 2019: 12:15 PM

Background. Pregnant women are recommended for influenza vaccination be cause they are at higher risk of severe illness, and to protect their babies before they are old enough to receive the vaccine. Traditional statistical methods have been used to identify factors associated with vaccination, but programmatic efforts to increase vaccine coverage may be enhanced by machine learning methods that optimize prediction.

Methods. Using data from an Internet panel survey of pregnant women (n = 1,771), we used a random forest classification model to identify the strongest predictors of receiving influenza vaccination using the Gini Mean Decrease Score. The higher the Score, the more important an attribute is in predicting the outcome. Forty-three attributes inputted into the model included demographic, economic, healthcare provider related, health related, and knowledge, attitudes and practices related to influenza and influenza vaccine. The majority (70%) of our data were used to train the model and the rest were used to validate how well it performed by using model performance measures (e.g., accuracy, sensitivity, specificity).

Results. Our model had an accuracy of 84% (95% CI: 82%, 86%), sensitivity of 89% and specificity of 79%. The most important attribute was the belief that pregnant women should get the flu shot (Gini score: 212), the second was due date (September–October 2017 and September–October 2018 had low probability of vaccination, Gini Score: 275), and the third was being offered the vaccine by a healthcare provider (Gini Score: 196).

Conclusion. Analyzing data using machine learning techniques may bring new insights for vaccination campaigns. Our results suggest that a provider recommendation is important, but perhaps even without a recommendation, women who form their own beliefs about need for vaccination may also be more likely to get vaccinated. Also, pregnant women and women of childbearing age should be targeted for vaccination during each fall, and for those with due date early in the flu season, providers should stress the importance of maternal antibodies for protection of the infant since the baby will be < 6 months old during peak influenza season, when they are most vulnerable but would benefit from maternal antibodies.

VTEU Lab, Decatur, Georgia; CDIFFENSE trial at Emory, Research Grant; Pfizer: I conduct as co-PI the RSV PFIZER study at Emory, Research Grant; Sanofi-Pasteur: I conducted as Emory PI the CDIFFENSE trial at Emory, Research Grant.

2740. Using Machine Learning Methods to Identify Factors Associated

No reported disclosures.