A highly immunogenic live-attenuated vaccine candidate prevents SARS-CoV-2 infection and transmission in hamsters

Xiao-Feng Li,1,5 Zhen Cui,2,5 Hang Fan,1,5 Qi Chen,1,5 Lei Cao,2,5 Hong-Ying Qiu,1 Na-Na Zhang,1,5 Yan-Peng Xu,1 Rong-Rong Zhang,1 Chao Zhou,1 Qing Ye,1 Yong-Qiang Deng,1 Yan Guo,1 Si Qin,1 Kaiyue Fan,2 Lei Wang,2 Zijing Jia,2 Yujun Cui,1,5 Xiangxi Wang,2,* and Cheng-Feng Qin1,4,*

*Correspondence: cuiyujun.new@gmail.com (Y.C.); xiangxi@ibp.ac.cn (X.W.); qincf@bmi.ac.cn (C.-F.Q.)

Received: November 11, 2021; Accepted: February 28, 2022; Published Online: March 2, 2022; https://doi.org/10.1016/j.xinn.2022.100221
© 2022 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

GRAPHICAL ABSTRACT

PUBLIC SUMMARY
- Passaging of a prototype SARS-CoV-2 in Vero cells generates a live-attenuated VAS5
- A 7 amino acids deletion of the S protein contributes to the attenuated phenotype
- VAS5 immunization prevents SARS-CoV-2 infection and transmission in Syrian hamsters
- The VASS S protein forms a locked prefusion conformation with enhanced immunogenicity
A highly immunogenic live-attenuated vaccine candidate prevents SARS-CoV-2 infection and transmission in hamsters

Xiao-Feng Li,1,4 Zheng Cui,2,4 Hang Fan,1,2 Qi Chen,1,5 Lei Cao,2,6 Hong-Ying Qiu,1 Na-Na Zhang,1,2 Yan-Peng Xu,1 Rong-Rong Zhang,1 Chao Zhou,1 Qing Ye,1 Yong-Qiang Deng,1 Yan Guo,1 Si Qin,1 Kaiyue Fan,2 Lei Wang,2 Zijing Jia,2 Yujun Cui,1,*, Xiangzi Wang,2,** and Cheng-Feng Qin1,4,***

1Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
2CAS Key Laboratory of Infection and Immunity, National Laboratory of Macromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
3School of Medicine, Tsinghua University, Beijing 100084, China
4Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing 100071, China
5These authors contributed equally
*Correspondence: cuiyujun.new@gmail.com (Y.C.); xiangzi@ibp.ac.cn (X.W.); qincf@bmi.ac.cn (C.-F.Q.)
Received: November 11, 2021; Accepted: February 28, 2022; Published Online: March 2, 2022; https://doi.org/10.1016/j.xinn.2022.100221 © 2022 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Citation: Li X-F., Cui Z., Fan H., et al. (2022). A highly immunogenic live-attenuated vaccine candidate prevents SARS-CoV-2 infection and transmission in hamsters. The Innovation 3(2), 100221.

The highly pathogenic and readily transmissible SARS-CoV-2 has caused a global coronavirus pandemic, urgently requiring effective countermeasures against its rapid expansion. All available vaccine platforms are being used to generate safe and effective COVID-19 vaccines. Here, we generated a live-attenuated vaccine candidate strain by serial passage of a SARS-CoV-2 clinical isolate in Vero cells. Deep sequencing revealed the dynamic adaptation of SARS-CoV-2 in Vero cells, resulting in a stable clone with a deletion of seven amino acids (N679SPRRAR685) at the S1/S2 junction of the S protein (named VASS). VASS showed significant attenuation of replication in multiple human cell lines, human airway epithelium organoids, and hACE2 mice. Viral fitness competition assays demonstrated that VASS showed specific tropism to Vero cells but decreased fitness in human cells compared with the parental virus. More importantly, a single intranasal injection of VASS elicited a high level of neutralizing antibodies and prevented SARS-CoV-2 infection in mice as well as close-contact transmission in golden Syrian hamsters. Structural and biochemical analysis revealed a stable and locked prefusion conformation of the S trimer of VASS, which most resembles SARS-CoV-2-3Q-2P, an advanced vaccine immunogen (NVAX-CoV2373). Further systematic antigenic profiling and immunogenicity validation confirmed that the VASS S trimer presents an enhanced antigenic mimic of the wild-type S trimer. Our results not only provide a potent live-attenuated vaccine candidate against COVID-19 but also clarify the molecular and structural basis for the highly attenuated and super immunogenic phenotype of VASS.

INTRODUCTION

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a new betacoronavirus that includes two highly pathogenic coronaviruses, SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV).1–3 SARS-CoV-2 infection leads to coronavirus disease 2019 (COVID-19), characterized by a spectrum of etiological findings ranging from asymptomatic disease to mild upper respiratory tract infection symptoms.4 More severe COVID-19 cases develop acute respiratory distress syndrome and acute lung injury, leading to morbidity and mortality caused by damage to the alveolar lumen.5,6 SARS-CoV-2 can be transmitted by direct human-to-human respiratory droplet contact and aerosols, and has high human-to-human transmissibility, with an estimated basic reproduction number (R0) ranging from 1.4 to 3.9.7–9 Due to being highly pathogenic and readily transmissible, SARS-CoV-2 has caused a global COVID-19 pandemic with more than 400 million confirmed cases and more than 5.7 million deaths worldwide as of January 2022.

The spike (S) protein of SARS-CoV-2 is a homotrimeric membrane protein responsible for virus entry into host cells. The S protein is composed of two functional subunits, S1 and S2, which are involved in binding to human angiotensin-converting enzyme 2 (hACE2) at the cell membrane and the fusion between virus and cellular membranes, respectively.10,11 Upon virus attachment to host receptors, the S protein undergoes a large conformational rearrangement to allow host proteases to cleave at one or more positions (termed the S1/S2 and S2′ sites). Priming of the S protein by host proteases is a crucial factor modulating the tropism and pathogenicity of coronaviruses.12 The SARS-CoV-2 S protein harbors a unique insertion of a polybasic furin-like cleavage site (RRAR) positioned upstream of the S1/S2 junction, which is absent in SARS-CoV and the highly related bat coronavirus RaTG13.13–15 Similar cleavage sites have been associated with increased pathogenicity in other viruses.16–18 Due to the near-ubiquitous distribution of furin-like proteases, the acquisition of this cleavage site is supposed to provide a gain-of-function to SARS-CoV-2 for efficient infection and spreading in the human population.19

The function of this notable cleavage site in SARS-CoV-2 remains largely unknown. In fact, insertion of a furin-like cleavage site at the S1/S2 site enhanced cell-cell fusion of SARS-CoV.20 Hoffmann et al. reported that a highly cleavable S1/S2 site is essential for S protein-mediated cell-cell fusion and entry into human lung cells.21 Recently, SARS-CoV-2 variants with deletions at the S1/S2 site have been detected in clinical samples.22–25 A set of previous findings also suggests that these variants can be selected following passaging in Vero cells.26–28 However, the biological function and the structural basis for these specific deletions remain unknown. In addition, a panel of vaccines, including mRNA, viral vector-based, inactivated vaccines, and protein subunit vaccines, have been approved for clinical usage.29–32 However, no live-attenuated vaccines against SARS-CoV-2 have been approved for human use.

Herein, we report the generation of a live-attenuated strain of SARS-CoV-2 (termed VASS) bearing a seven-amino-acid (aa) deletion upstream of the S1/S2 junction in the S protein by serial passages of a prototype strain of SARS-CoV-2 in Vero cells. The promising profiles of VASS, including ideal safety, genetic stability, immunogenicity, and protection efficacy in hamsters, support its further development in human trials. More importantly, combining deep sequencing and cryoelectron microscopy (cryo-EM) analysis, we reveal the molecular and structural basis for the highly attenuated and super immunogenic phenotype of VASS.

RESULTS

Serial passaging of SARS-CoV-2 in Vero cells leads to a specific deletion in the S protein

During the preparation of working stocks of the inactivated SARS-CoV-2 vaccine in Vero cells,33 we detected a seven-aa deletion (N679SPRRAR685, Δ679-685) upstream of the S1/S2 junction in the S protein by Sanger sequencing (Figure 1A). To further profile the dynamic process of viral adaptation in Vero cells, full-length genomes of viruses from passage 1 (P1) to P5 were determined by deep sequencing. Large panels of variants with deletions of different lengths and positions were detected among the different SARS-CoV-2 passages (Figure 1B). The Δ679-685 variant was first detected at P3 and rapidly increased at P4, finally becoming the predominant variant at P5 (99.110%). Notably, the P1 and P2 viruses contained few variants, and only a two-aa deletion (QRAR) accounted for 0.020% and 0.129%, respectively. Two variants with a six-aa deletion (QRARRSΔ675-681) and another seven-aa deletion (QRARRSΔ680-686) emerged in the P3 virus and were maintained in the P4 virus but disappeared in the P5 virus. Other variants carrying different deletions or substitutions were also detected during passaging (Figures 1B and S1A). Sanger sequencing of P5 further passaged in Vero cells confirmed its good genetic...
stability (Figure S1B). The P5 virus bearing the seven-aa deletion (Δ679-685) was named VAS5 and subjected to further testing. VAS5 shows reduced infectivity and fitness in human airway epithelium organoids.

To characterize the in vitro phenotypes of VAS5, a set of cells, including Vero, Huh7, and Caco-2 cells, were infected with VAS5 or its parental virus (wild type [WT]) and subjected to RT-qPCR and immunofluorescence staining. VAS5 showed replication capability similar to WT in Vero cells, while no increase in viral RNAs or viral protein expression of VAS5 was detected in either Huh7 or Caco-2 cells (Figures 2A and 2B). In contrast, the WT virus replicated well in all three types of cells. These results suggest that VAS5 lost its ability to infect human cells.

We then determined the infectivity of VAS5 in human trachea and lung epithelium organoids cultured at the air-liquid interface in comparison with WT. A large number of SARS-CoV-2 S protein-positive cells in both tracheal and lung organoids were detected at 48 h following WT infection, while only a few positive cells were detected in VAS5-infected organoids (Figures 2C and 2D). Similarly, the viral RNA loads in the VAS5-infected organoids were much lower than those in the WT-infected organoids (Figures 2Ca and 2D).

Furthermore, to explore the potential mechanism of restricted replication in the human airway epithelium, we performed a standard viral fitness competition assay in both Vero cells and the human bronchus epithelium (Figure 2E). VAS5 increased to 80% of the total reads following 3 days of competition culture in Vero cells (Figure 2F). In contrast, VAS5 decreased significantly to 5% of the total reads following 3 days of competition in human tracheal epithelium organoids (Figure 2G). These results demonstrate that, compared with WT, VAS5 acquired a fitness advantage in Vero cells but had comparatively less replicative fitness in the human airway epithelium.

VAS5 is highly attenuated and immunogenic in mice

We further characterized the infection and pathogenic features of VAS5 in hACE2 mice. Groups of hACE2 mice were intranasally (i.n.) inoculated with equal doses of VAS5 and WT. As expected, WT inoculation resulted in robust viral RNA replication in mouse lungs, as evidenced by RT-qPCR and in situ hybridization (ISH) (Figures S2A and S2B), with notable lung damage characterized by a mildly thickened septa (Figure S2B). While the viral RNA loads in the lungs from VAS5-infected mice were significantly lower (up to 10-fold reduction) than those from the WT-infected mice (Figure S2A), only marginal RNAs were detected in lung sections from VAS5-infected mice (Figure S2B). No lung pathological changes were induced by the VAS5 challenge (Figure S2B). These results clearly demonstrate that the in vivo replication and pathological outcome of VAS5 are highly attenuated in hACE2 mice.

As VAS5 contained a seven-aa deletion in the S protein, we further sought to determine whether VAS5 immunization conferred protection against SARS-CoV-2. Inactivated VAS5 was prepared as previously described.33 Groups of female BALB/c mice were intramuscularly (i.m.) immunized at days 0 and 14 with two doses of 1.25 μg or 2.5 μg of inactivated VAS5 or PBS. Forty days after the initial immunization, mice were inoculated i.n. with a mouse-adapted SARS-CoV-2 strain, MASCp6, as previously described.34 Viral RNA loads in the lungs and tracheas were determined by RT-qPCR. As expected, significantly decreased viral RNA was detected in the indicated tissues of inactivated VAS5-immunized mice compared with that of the PBS group (Figure S2C). The immunostaining assay showed an abundance of cells positive for SARS-CoV-2 S protein expression in lung sections of mice in the PBS group, whereas significantly fewer positive cells were detected in the lungs of VAS5-immunized mice (Figure S2D). These data indicate good immune protection provided by inactivated VAS5 against SARS-CoV-2 challenge in mice. Finally, we further

Figure 1. Profile of nucleotide and amino acid sequences located at the S1/S2 cleavage site of the S protein of variants during passaging of SARS-CoV-2 in Vero cells (A) Schematic diagram of the passage history of Vero-adapted SARS-CoV-2. SARS-CoV-2 isolated from a COVID-19 patient was passaged in Vero cells five times. The virus at passage 1 was named WT, and the virus at passage 5 with a deletion of seven-aa in the S protein was named VAS5. (B) Profiles of the nucleotide sequence and amino acid sequence located at the S1/S2 cleavage site in the S protein of variants during passaging and adaptation in Vero cells.
investigated the immunogenicity of VAS5 and WT S trimers in rats. Wistar rats were immunized twice via the intramuscular route with VAS5 or WT S trimers (5 μg per dose) mixed with alum adjuvant or placebo (PBS + alum) at days 0 and 14 (n = 10) (Figure S2E). SARS-CoV-2-specific immunoglobulin (Ig)G antibody emerged at week 2 and rose up to an half maximal effective concentration (EC50) of ~8,600,000 by week 3 in the VAS5 S trimer-vaccinated group, whose titer was ~2-fold higher than that of serum from the WT S trimer-immunized group at week 2 (Figure S2E). These results, coupled with the structural and immunogenic analysis, clearly support the further development of VAS5 as a potent vaccine candidate.

Figure 2. VASS virus exhibits less replicative fitness in human cell lines and human respiratory epithelial ALI culture (A) Growth curves of WT and VASS in Vero, Huh7, and Caco-2 cells. Viruses were inoculated into cells at an MOI of 0.01. Viral RNA was detected at the indicated times using RT-qPCR. (B) Immunofluorescence assay (IFA) of viral proteins expressed in the indicated cells following virus infection. Cells were infected with WT or VASS at an MOI of 0.01. Viral S proteins were detected at 48 hours post infection (h.p.i.) by IFA using an S protein-specific antibody. Scale bar, 100 μm. (C) Human respiratory epithelial ALI cultures, including the bronchus and lung, were infected with WT or VASS, and viral RNA in the topical secretions was detected at 48 h.p.i. using RT-qPCR. Data are shown as the mean ± SEM (*p < 0.05). Scale bar, 200 μm. (D) High-content imaging of the bronchus and lung infected with WT or VASS at 48 h.p.i. Data are shown as the mean ± SEM (*p < 0.05). Scale bar, 200 μm. (E) Schematic diagram of the fitness assay. (F and G) Fitness of WT and VASS in Vero cells (F) and the human respiratory epithelial ALI bronchus (G). Equal amounts of WT and VASS were pooled and inoculated into Vero cells or the bronchus. The viral genome was determined at 3 days p.i. by deep sequencing. Data are shown as the mean ± SEM (**p < 0.01).
A single immunization with VAS5 prevents SARS-CoV-2 infection and transmission in hamsters

The immunogenicity and protection of VAS5 were further determined in the well-established golden Syrian model (Figure 3A).35,36 A single immunization with either low or high doses of VAS5 induced high levels of neutralizing antibody (geometric mean titer [GMT] = 776 and 927, respectively) against SARS-CoV-2 (Figure 3B). Then, three animals from the low-dose group were i.n. challenged with MASCp6 on day 48 post-immunization. At day 3 post-challenge, viral RNA loads were significantly reduced in the throat swabs of VAS5-immunized animals compared with those of PBS-immunized animals (Figure 3C). Strikingly, viral RNAs were not detected in the throat swabs of all VAS5-immunized animals at day 5 post-challenge, while two of three animals immunized with PBS maintained high levels of viral RNA (Figure 3C). At day 5 post-challenge, high levels of viral RNA were detected in the nasal turbinate, trachea, and lung of all PBS-immunized animals (Figures 3D–3F), while only one of three VAS5-immunized animals sustained low levels of viral RNA in the nasal turbinate and trachea (Figures 3D and 3E). Notably, viral RNA was completely cleared in the lungs of all VAS5-immunized animals (Figure 3F).

Further we examined whether VAS5 immunization prevented close-contact transmission of SARS-CoV-2 in the established hamster model.35–37 A single immunization with either low or high doses of VAS5 induced high levels of neutralizing antibody (Figure 3A). Then, three animals from the low-dose group were i.n. challenged with MASCp6. Viral RNA in throat swabs was detected using RT-qPCR at Days 3 and 5 post challenge. (D–F) The indicated tissues were also collected 5 days after challenge for detection of viral loads using RT-qPCR: (D) nasal turbinate; (E) trachea; (F) lung. Data are shown as the mean ± SEM. Statistics were determined by multiple t tests. d.p.c., days post contact; d.p.i., days post infection; n.s., not significant; **p < 0.01; ****p < 0.0001.

Cryo-EM structure of the VAS5 S trimer glycoprotein

To understand the structural impact of the seven-aa deletion on the SARS-CoV-2 spike architecture, we produced VAS5 S protein as a secreted trimer in a mammalian expression system (Figure S3). Highly purified protein with excellent homogenicity was used for cryo-EM data collection. Three-dimensional classiﬁcation revealed that the VAS5 S trimer adopts two distinct conformational states, corresponding to a closed form with all three receptor binding domains (RBDs) down and an open form with one RBD up for ACE2 binding (Figures S4A). We determined cryo-EM reconstructions of the two states at 3.6 Å and 4.2 Å, respectively (Figure S5). The structure of VAS5 S displays the characteristic overall architecture observed for WT SARS-CoV-2 in the closed and open conformations (Figure S5A). Comparison of the VAS5 S protein structure with that of the D614G mutant indicated that the D614G mutation sampled the RBD-open conformation more frequently (nearly 95%) and enhances protease cleavage at the furin recognition site.37–39 In contrast, a seven-aa deletion encompassing the furin cleavage site rendered approximately 90% of VAS5 S in the RBD-closed configuration, similar to structural
observations of SARS-CoV-2-3Q-2P, an advanced vaccine candidate (NVAX-CoV2373).40 Consistent with this more closed conformation, VAS5 showed remarkably decreased infectivity and fitness in human respiratory epithelial cells and was significantly attenuated in hACE2 mice.

Given that deletions at the S1/S2 junction and distal regions of the S protein can lead to allosteric effects on RBD-open/down disposition, we scrutinized the VAS5 S trimer structure. Deletion of seven-aa shortens the loop that is highly disordered in the WT/variant structures; however, this did not appear to disrupt the S conformation appreciably or perturb the key epitopes on the RBD/N-terminal domain (NTD) (Figure 5B). Perhaps correlated with the expression system used, the VAS5 S trimer did not harbor the hydrophobic pocket or linoleic acid (LA). Previously, LA, a polyunsaturated fatty acid found in the RBD (Figure 6B). In line with this, a markedly reduced resonance unit signal formation by the three RBDs, representing a completely locked conformation (Figure 6C). A panel of 43 RBD- and 27 NTD-targeting NAbs that recognize all six antigens with mutations/deletions at the S1/S2 cleavage site was largely prevented, despite slightly decreased binding affinity to hACE2, VAS5 possesses more prefusion S trimers per virion for receptor binding, subsequently entering cells via the cathepsin-dependent endosomal pathway. S protein cleavage in the variants with mutations/deletions at the S1/S2 cleavage site was largely prevented, leading to a higher percentage of prefusion S trimers in VAS5. Despite slightly decreased binding affinity to hACE2, VAS5 possesses more prefusion S trimers per virion for receptor binding, subsequently entering cells via the cathepsin-dependent endosomal pathway, which might provide possible explanations for the selection mechanisms of these deletions at the S1/S2 cleavage site.

Following structural characterization, the antigenicity of the VAS5 S trimer was assessed and compared with the WT S trimer. Highly purified VAS5 and WT S trimers were tested for neutralizing antibody (NAb) binding by ELISA (Figure 6D). A panel of 43 RBD- and 27 NTD-targeting NAbs that recognize all six and four currently identified groups of epitopes on the RBD and NTD, respectively, were used in the ELISA. The results showed significantly decreased binding affinity of the VAS5 S trimer to hACE2 compared with the WT S trimer, indicating a more stable pre fusion conformation leading to a higher percentage of prefusion S trimers in VAS5. Biochemical and immunogenic analysis of the VAS5 S glycoprotein

Despite the locked conformation assumed by the vast majority of particles, binding analysis of the VAS5 S trimer to hACE2 by both biolayer interferometry (BLI) and ELISAs clearly showed binding of the protein to hACE2, indicative of the fact that RBD is dynamic and accessible for receptor binding (Figures 6A and 6B). Compared with the WT, the VAS5 S trimer exhibited slightly decreased binding compared to the WT S trimer was observed when compared with the WT S trimer under the same concentrations, which is consistent with the previous inference that the WT S trimer possesses a higher percentage of open RBDs. There are two pathways proposed for SARS-CoV-2 entry into cells: 1) direct viral fusion at the plasma membrane that is mediated by the host type II transmembrane serine protease TMPRSS2 (called the "early" entry pathway); and 2) HACE2-dependent endocytic entry, which relies on the actions of the lysosomal protease cathepsin-S2 (called the "late" entry pathway).27,42–44 Although Vero cells express very little TMPRSS2, they permit SARS-CoV-2 entry exclusively via the cathepsin-dependent endosomal pathway. S protein cleavage in the variants with mutations/deletions at the S1/S2 cleavage site was largely prevented, leading to a higher percentage of prefusion S trimers in VAS5. Despite slightly decreased binding affinity to hACE2, VAS5 possesses more prefusion S trimers per virion for receptor binding, subsequently entering cells via the cathepsin-dependent endosomal pathway, which might provide possible explanations for the selection mechanisms of these deletions at the S1/S2 cleavage site.
respectively, including several clinically applied therapeutic NAb
types or well-studied NAb. Among these RBD-targeting NAb
types, two types of NAb can be classified: 1) only binding to the “up” RBD, and 2) binding to RBDs regardless of their “up” and “down” conformations. The area under the curve (AUC) and the EC50 values for each antibody were summarized in two heatmaps corresponding to the VASS and WT S trimmers, providing the complete antigenic profiles for SARS-CoV-2 (Figures 6C and 6D). Overall, both S trimers exhibited almost identical antigenic (largely similar) properties with group-specific patterns. The antigenic characteristics of the VASS S trimer, to some extent, mirror its immunogenicity with NVAX-CoV2373. This
is not surprising, given that both of these S trimers share almost identical structures.51

DISCUSSION

Effective vaccines for preventing SARS-CoV-2 infection and transmission are urgently needed. Here, we generated and characterized in vitro and in vivo attenuation profiles of a Vero-adapted SARS-CoV-2, VAS5 with a seven-aa deletion spanning the PRRA polybasic cleavage motif of the S protein after passaging in Vero cells. Similar observations have been reported where multiple variants bearing furin site deletions emerged in SARS-CoV-2 preparations using Vero E6 cells and in clinical samples.22,24,25 The frequent detection of these variants suggests that this region is likely to be tolerant of deletions in vitro. Interestingly, the seven-aa deletion conferred replication fitness to VAS5 in Vero cells compared with the parental virus. Consistent with the findings from our study, a previous report showed that a SARS-CoV-2 mutant with deletion of PRRA had augmented replication and improved fitness in Vero E6 cells.52 Our observation, together with previous studies, suggests that there are probably other alternative proteolytic processing pathways in Vero cells that assist SARS-CoV-2 in continuing its life cycle even in the absence of the S1/S2 cleavage site. Furthermore, our cryo-EM data showed that VAS5 possesses more prefusion S trimers per virion for receptor binding,53 subsequently entering cells via the cathepsin-dependent endosomal pathway, which might provide possible explanations for the selection mechanisms of these deletions at the S1/S2 cleavage site. These observations also underscore the importance of monitoring the genome sequence during the preparation of viral stocks. Notably, our deep sequencing data revealed dynamic population changes during passaging in Vero cells. The variants D681-686 and D680-686, both of which contained the deletion of the key cleavage motif PRRA, did not become the predominant viral population. Further studies on the functional roles of these deletions in host adaptation are required.

Our data showed that replication of VAS5 was significantly attenuated in human cell lines, human respiratory epithelial air-liquid interface (ALI) culture, and hACE2 mice. Consistent with this finding, a panel of variants containing deletions spanning the PRRA motif or a recombinant ΔPRRA mutant virus were shown to be attenuated in small animal infection models.54–56 Together, these studies suggest that the polybasic cleavage motif is a virulence determinant in SARS-CoV-2. The underlying mechanism of attenuation is probably that the efficient fusion

Figure 6. Functional and immunogenic analysis of VAS5 glycoprotein (A) ELISA showing binding to ACE2 by the SARS-CoV-2 spike (red line) and VAS5 spike (blue line). (B) Affinity detection of ACE2 with SARS-CoV-2 spike (red line) and VAS5 spike (blue line) by BLI sensorgram. (C) Heatmap representation of AUC values of the six classes of RBD-targeting mAbs and NTD-targeting mAbs by ELISAs against the SARS-CoV-2 S trimer and VAS5 S trimer, respectively, is shown with a color bar indicated on the right. The color gradient for the upper panel indicates AUC values ranging from 10 (green) through 20 (yellow) to 30 (red). (D) Heatmap representation of EC50 of the six classes of RBD-targeting mAbs and NTD-targeting mAbs by ELISAs against the SARS-CoV-2 S trimer and VAS5 S trimer, respectively, is shown with a color bar indicated on the right. The color gradient for the upper panel indicates EC50 values ranging from 0 (green) to 0.1 (yellow) to 0.22 μg/mL (red).
process of SARS-CoV-2 is interrupted in the absence of the fusion-like cleavage site, resulting in the production of a large amount of noninfectious viral particles. This speculation is supported by previous studies showing that the polybasic furin-like cleavage site at the S1/S2 junction conferred efficient S-protein-mediated cell-cell fusion and entry into human lung cells.1,44 Wrobel et al. also found that cleavage at the furin cleavage site decreases the overall stability of the SARS-CoV-2 S protein and facilitates the adoption of the open conformation required for the S protein to bind to HACE2.54 In previous WT/stably modified S cryo-EM structures, approximately 50% of the S trimers were in the open conformation,1,15 in contrast to our observation of ~90% in the closed conformation. This result might be caused by the deletion at the S1/S2 cleavage site, leading to allosteric effects on RBD-open/down disposition. The more closed conformation of the VASS S trimer may contribute to its markedly decreased infectivity and fitness in vitro and in vivo. Notably, all the attenuated variants or the recombinant mutant virus carry motif deletions of different lengths but exhibit different replication capacities in human cell lines. Further studies are needed to clarify the biological significance of amino acids around the cleavage motif in COVID-19.

Deletions in the S protein are supposed to alter the conformation of the spike on the virion particle surface, resulting in a reduction in neutralizing antibodies against circulating strains. A previous study reported that the loss of the furin cleavage site resulted in a reduction in the capacity of COVID-19 serum neutralization.1 S2 cleavage at the furin-like cleavage site at the S1/S2 junction conferred efficiency of binding to hACE2.57 In previous WT/stably modiﬁed S cryo-EM structures, approximately 50% of the S trimers were in the open conformation,1,15 in contrast to our observation of ~90% in the closed conformation. This result might be caused by the deletion at the S1/S2 cleavage site, leading to allosteric effects on RBD-open/down disposition. The more closed conformation of the VASS S trimer may contribute to its markedly decreased infectivity and fitness in vitro and in vivo. Notably, all the attenuated variants or the recombinant mutant virus carry motif deletions of different lengths but exhibit different replication capacities in human cell lines. Further studies are needed to clarify the biological significance of amino acids around the cleavage motif in COVID-19.

In vivo, the S protein can be further developed as an inactivated vaccine to replace the original SARS-CoV-2 vaccine candidate.33 The use of VAS5 will not only reduce the risk of infection during the manufacturing process before inactivation but also increase the protection efficacy.12,30 The seven-aa deletion encompassing the furin cleavage site, which displays replicative fitness in Vero cells but attenuation phenomena in human cells, organs, and mice. More importantly, VASS exhibits increased immunogenicity, and a single immunization confers protection against SARS-CoV-2 infection and transmission in mice and hamsters. Further clinical development as an alternative COVID-19 vaccine candidate is warranted in the future.

REFERENCES
1. Wu, F., Zhao, S., Yu, R., et al. (2020). A new coronavirus associated with human respiratory disease in China. Nature 579, 265–269.
2. Zhou, P., Yang, X.L., Wang, X.G., et al. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273.
3. Zhu, N., Zhang, D., Wang, W., et al. (2020). A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 382, 727–733.
4. Huang, C., Wang, Y., Li, X., et al. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395, 580–588.
5. Guan, W.J., Ni, Z.Y., Hu, Y., et al. (2020). Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 382, 1708–1720.
6. Zhou, F., Yu, T., Du, R., et al. (2020). Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 395, 1054–1062.
7. Hao, X., Cheng, S., Wu, D., et al. (2020). Reconstruction of the full transmission dynamics of COVID-19 in Wuhan. Nature 584, 420–424.
8. Li, Q., Guan, X., Wu, P., et al. (2020). Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N. Engl. J. Med. 382, 1199–1207.
9. Liu, Y., and Rocklov, J. (2021). The reproductive number of the Delta variant of SARS-CoV-2 is far higher compared to the ancestral SARS-CoV-2 virus. J. Trav. Med. 28, 1–3.
10. Letko, M., Stefert, S.N., Olival, K.J., et al. (2020). Bat-borne virus diversity, spillover and emergence. Nat. Rev. Microbiol. 18, 461–471.
11. Walls, A.C., Park, Y.J., Tortorici, M.A., et al. (2020). Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 181, 281–292.e6.
12. Millet, J.K., and Whittaker, G.R. (2015). Host cell proteases: critical determinants of coronaviruses and cancer. Clin. Transl. Immunol. 350, 2196–2203.e2193.
13. Childs, S., and Arina, A. (2015). The role of the haemagglutinin cleavage site motif. Rev. Med. Virol. 25, 408–416.
14. Luongo, M., Galvani, A.P., and Silvestri, G. (2020). Systematic analysis of common deletions in the spike protein of SARS-CoV-2. Emerg. Microbes Infect. 9, 471–476.
15. Wrapp, D., Wang, N., Corbett, K.S., et al. (2020). Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367, 1260–1263.
16. Braun, E., and Sauer, D. (2019). Furin-mediated protein processing in infectious diseases and cancer. Clin. Transl. Immunol. 8, e1073.
17. Chen, J., Homer, L., and Steinhauser, D.A., et al. (1998). Structure of the hemagglutinin precursor cleavage site, a determinant of influenza pathogenicity and the origin of the labile conformation. Cell 95, 409–417.
18. Ilott, D., and Stembalski, J., et al. (2015). Molecular pathogenesis of H5 highly pathogenic avian influenza: the role of the haemagglutinin cleavage site motif. Rev. Med. Virol. 25, 424–430.
19. Zhou, H., Chen, X., Hu, T., et al. (2020). A novel bat coronavirus closely related to SARS-CoV-2 contains natural insertions at the S1/S2 cleavage site of the spike protein. Curr. Biol. 30, 2196–2203.e2193.
20. Follis, K.E., York, J., and Nunberg, J.H. (2006). Furin cleavage of the SARS coronavirus spike glycoprotein enhances cell-cell fusion but does not affect virion entry. Virology 358–369.
21. Hoffmann, M., Kleine-Weber, H., and Pohlmann, S. (2020). A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Mol. Cell. 78, 779–784.e775.
22. Davidson, A.D., Williamson, M.K., Lewis, S., et al. (2020). Characterisation of the transcriptome and proteome of SARS-CoV-2 reveals a cell passage induced frame deletion of the furin-like cleavage site from the spike glycoprotein. Genome Med. 12, 68.
23. Lau, S.Y., Wang, P., Mok, B.W., et al. (2020). Attenuated SARS-CoV-2 variants with deletions at the S1/S2 junction. Emerg. Microbes Infect. 9, 837–842.
24. Liu, Z., Zheng, H., Lin, H., et al. (2020). Identification of common deletions in the spike protein of severe acute respiratory syndrome coronavirus 2. J. Virol. 94, e00790-20.
25. Wong, Y.C., Lau, S.Y., Wang To, K.K., et al. (2021). Natural transmission of bat-like severe acute respiratory syndrome coronavirus 2 without proline-arginine-arginine-alanine variants in coronavirus disease 2019 patients. Clin. Infect. Dis. 73, e437–e444.
26. Pohl, M.D., Busnaisdejo, I., Kufner, V., et al. (2021). SARS-CoV-2 variants reveal features critical for replication in primary human cells. PLoS. Biol. 19, e1001006.
27. Sasaki, M., Lemura, K., Sato, A., et al. (2021). SARS-CoV-2 variants with mutations at the S1/S2 cleavage site are generated in vitro during propagation in TNP/RRSS2-deficient cells. PLoS. Pathog. 17, e1009233.
28. Polack, F.P., Thomas, S.J., Kitchin, N., et al. (2020). Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N. Engl. J. Med. 383, 2003–2015.

Together, our study identified a Vero-adapted SARS-CoV-2 strain VASS carrying a specific deletion in the furin-like cleavage site, which displays replicative fitness in Vero cells but attenuation phenomena in human cells, organs, and mice. More importantly, VASS exhibits increased immunogenicity, and a single immunization confers protection against SARS-CoV-2 infection and transmission in mice and hamsters. Further clinical development as an alternative COVID-19 vaccine candidate is warranted in the future.

The Innovation 3(2): 100221, March 29, 2022
29. Voysey, M., Clemens, S.A.C., Madhi, S.A., et al. (2021). Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet 397, 99–111.

30. Wu, Z., Hu, Y., Xu, M., et al. (2021). Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine (CoronaVac) in healthy adults aged 60 years and older: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet Infect. Dis. 21, 803–812.

31. Xia, S., Zhang, Y., Wang, Y., et al. (2021). Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CoV-19, in an elderly Chinese population: a double-blind, placebo-controlled, phase 2/3 trial. Lancet Infect. Dis. 21, 39–51.

32. Zhu, F.C., Li, Y.H., Guan, X.H., et al. (2020). Safety, tolerability, and immunogenicity of a recombinant adeno virus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, randomised, first-in-human trial. Lancet 395, 1845–1854.

33. Gao, Q., Bao, L., Miao, H., et al. (2020). Development of an inactivated vaccine candidate for SARS-CoV-2. Science 369, 77–81.

34. Zhang, N.N., Li, X.F., Deng, Y.Q., et al. (2020). A thermostable mRNA vaccine against COVID-19. Cell 182, 1271–1283.e1216.

35. Chian, J.F., Zhang, A.J., Yuan, S., et al. (2020). Simulation of the clinical and pathological manifestations of coronavirus disease 2019 (COVID-19) in a golden Syrian hamster model: implications for disease pathogenesis and transmissibility. Clin. Infect. Dis. 71, 2428–2446.

36. Sia, S.F., Yan, L.M., Chen, A.W.H., et al. (2020). Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. Nature 583, 834–838.

37. Gobeil, S.M., Janowska, K., McDowell, S., et al. (2021). D614G mutation alters SARS-CoV-2 spike conformation and enhances protease cleavage at the S1/S2 junction. Cell. Rep. 34, 108630.

38. Yurkovetskiy, L., Wang, X., Pascal, K.E., et al. (2020). Structural and functional analysis of the D614G substitution. Science 11727–11734.

39. Zhang, J., Gao, Q., Li, X.F., et al. (2020). The efficacy of inactivated SARS-CoV-2 vaccine in preventing COVID-19 disease: interim findings from a randomised controlled trial in China. Lancet 396, 977–986.

40. Ou, X., Lei, X., Lei, Y., et al. (2020). Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Natl. Sci. Rev. 7, 2629–2632.

41. Wang, J., Wang, Z., Zhang, J., et al. (2020). Development of a coronavirus Spike S protein nanoparticle vaccine. N. Engl. J. Med. 383, 2322–2332.

42. Johnson, B.A., Xie, X., Kalveram, B., et al. (2020). Furin cleavage site is key to SARS-CoV-2 pathogenesis. Preprint at bioRxiv. https://doi.org/10.1101/2020.08.26.268854.

43. Tai, L., Zhu, G., Yang, M., et al. (2021). Nanometer resolution in situ structure of SARS-CoV-2 post-fusion spike. Proc. Natl. Acad. Sci. U S A 118, e2112703118.

44. Johnson, B.A., Xie, X., Bailey, A.L., et al. (2021). Loss of furin cleavage site attenuates SARS-CoV-2 pathogenesis. Nature 591, 293–299.

45. Sasaki, M., Toba, S., Itakura, Y., et al. (2021). SARS-CoV-2 bearing a mutation at the S1/S2 cleavage site exhibits attenuated virulence and confers protective immunity. mBio 12 e0145221.

46. Wang, P., Lau, S.Y., Deng, S., et al. (2021). Characterization of an attenuated SARS-CoV-2 variant with a deletion at the S1/S2 junction of the spike protein. Nat. Commun. 12, 2790.

47. Wobele, A.G., Benton, D.J., Xu, P., et al. (2020). SARS-CoV-2 and bat RaTG13 spike glycoprotein structures inform on virus evolution and furin-cleavage effects. Nat. Struct. Mol. Biol. 27, 763–767.

48. Gupta, K., Toelzer, C., Williamson, M.K., et al. (2021). Structural basis for cell-type specific evolution of viral fitness by SARS-CoV-2. Preprint at bioRxiv. https://doi.org/10.1101/2021.05.11.443384.

49. Girioni, A., Sidney, J., Zhang, Y., et al. (2020). A sequence homology and bioinformatic approach can predict candidate targets for immune responses to SARS-CoV-2. Cell. Host. Microbe 27, 671–680.e672.

50. Mateus, J., Girioni, A., Tarke, A., et al. (2020). Selective and cross-reactive SARS-CoV-2 T cell epitopes in unexposed humans. Science 370, 89–94.

51. Wang, Z., Lorenzi, J.C.C., Muecklich, F., et al. (2021). Enhanced SARS-CoV-2 neutralization by dimeric IgA. Sci. Transl. Med. 13, eabf1555.

52. Hassan, A.O., Kafai, N.M., Dmitriev, I.P., et al. (2020). A single-dose intranasal ChAd vaccine protects upper and lower respiratory tracts against SARS-CoV-2. Cell 183, 169–184.e1113.

53. Hassan, A.O., Shrihar, S., Gorman, M.J., et al. (2021). An intranasal vaccine durably protects against SARS-CoV-2 variants in mice. Cell. Rep. 36, 109452.

54. Iannou, P., Karonistantis, S., Astrinaki, E., et al. (2021). Transmission of SARS-CoV-2 variant B.1.1.7 among vaccinated health care workers. Infect. Dis. (Lond) 53, 876–879.

ACKNOWLEDGMENTS

We thank Drs. Changfa Fan, Liang Li, and Guan Yang for critical material and helpful discussion. This work was supported by the National Key Research and Development Program of China (No. 2020YFC0804900, 2018YFA0900801 and 2020YFA070500), the Strategic Priority Research Program (XDB29010000, XBDB3000000), CAS (YSR2-S01), the Emergency Key Program of Guangzhou Laboratory (No. EKP21-09), the Beijing Municipal Science and Technology Project (No. Z20110000120004, Z201100005420017), and the National Natural Science Foundation of China (No. 82171820, No. 12034006, and No. 81921005). C.F.Q. was supported by the National Science Fund for Distinguished Young Scholars (81925025), the Innovative Research Group (81621005) from the NSFC, and the Innovation Fund for Medical Sciences (2019-Z2-M-049) from the Chinese Academy of Medical Sciences.

AUTHOR CONTRIBUTIONS

C.F.Q. and X.W. conceived and supervised the study. X.F.L., Q.C., Y.Q., and Y.Q.D were responsible for conducting experiments in Biosafety Level 3 facilities. Z.C., Z.J., and K.F. executed the sequencing experiments. H.F. and S.Q. performed sequencing data analysis. H.Y.Q. led a patent relevant to the use of VAS5 as vaccine candidates.

DECLARATION OF INTERESTS

C.F.Q. and X.F.L. have filed a patent relevant to the use of VAS5 as vaccine candidates.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.xinn.2022.100221.

LEAD CONTACT WEBSITE

https://publons.com/researcher/1354271/cheng-feng-qin.