General Rotational Surfaces with Pointwise 1-Type Gauss Map in Pseudo-Euclidean Space E_2^4

Ferdag KAHRAMAN AKSOYAK ¹, Yusuf YAYLI ²

¹Erciyes University, Department of Mathematics, Kayseri, Turkey
²Ankara University, Department of Mathematics, Ankara, Turkey

Abstract

In this paper, we study general rotational surfaces in the 4-dimensional pseudo-Euclidean space E_2^4 and obtain a characterization of flat general rotation surfaces with pointwise 1-type Gauss map in E_2^4 and give an example of such surfaces.

Key words: Rotation surface, Gauss map, Pointwise 1-type Gauss map, pseudo-Euclidean space.

2000 Mathematics Subject Classification: 53B25 ; 53C50 .

1 Introduction

A pseudo-Riemannian submanifold M of the m-dimensional pseudo-Euclidean space E^n_m is said to be of finite type if its position vector x can be expressed as a finite sum of eigenvectors of the Laplacian Δ of M, that is, $x = x_0 + x_1 + ... x_k$, where x_0 is a constant map, $x_1, ..., x_k$ are non-constant maps such that $\Delta x_i = \lambda_i x_i$, $\lambda_i \in \mathbb{R}$, $i = 1, 2, ..., k$. If $\lambda_1, \lambda_2, ..., \lambda_k$ are all different, then M is said to be of k-type. This definition was similarly extended to differentiable maps in Euclidean and pseudo-Euclidean space, in particular, to Gauss maps of submanifolds [6].

If a submanifold M of a Euclidean space or pseudo-Euclidean space has 1-type Gauss map G, then G satisfies $\Delta G = \lambda (G + C)$ for some $\lambda \in \mathbb{R}$ and some constant vector C. Chen and Piccinni made a general study on compact submanifolds of Euclidean spaces with finite type Gauss map and they proved that a compact hypersurface M of E^{n+1} has 1-type Gauss map if and only if M is a hypersphere in E^{n+1} [6].

However, the Laplacian of the Gauss map of several surfaces and hypersurfaces such as a helicoids of the 1st, 2nd and 3rddkind, conjugate Enneper’s surface of the second kind in 3-dimensional Minkowski space E_3^3, generalized catenoids,
spherical n-cones, hyperbolical n-cones and Enneper’s hypersurfaces in E^n_1 take the form namely,
\[\Delta G = f(G + C) \] for some smooth function f on M and some constant vector C. A submanifold M of a pseudo-Euclidean space E^m_s is said to have pointwise 1-type Gauss map if its Gauss map satisfies (1) for some smooth function f on M and some constant vector C. A submanifold with pointwise 1-type Gauss map is said to be of the first kind if the vector C in (1) is zero vector. Otherwise, the pointwise 1-type Gauss map is said to be of the second kind.

Surfaces in Euclidean space and in pseudo-Euclidean space with pointwise 1-type Gauss map were recently studied in [5], [7], [8], [11], [12], [13], [14], [15], [17], [18]. Also Dursun and Turgay in [10] gave all general rotational surfaces in E^4 with proper pointwise 1-type Gauss map of the first kind and classified minimal rotational surfaces with proper pointwise 1-type Gauss map of the second kind. Arslan et al. in [2] investigated rotational embedded surface with pointwise 1-type Gauss map. Arslan at el. in [3] gave necessary and sufficient conditions for Vranceanu rotation surface to have pointwise 1-type Gauss map. Yoon in [20] showed that flat Vranceanu rotation surface with pointwise 1-type Gauss map is a Clifford torus and in [19] studied rotation surfaces in the 4-dimensional Euclidean space with finite type Gauss map. Kim and Yoon in [16] obtained the complete classification theorems for the flat rotation surfaces with finite type Gauss map and pointwise 1-type Gauss map. The authors in [1] studied flat general rotational surfaces in the 4-dimensional pseudo-Euclidean space E^4_2 and obtained a characterization for flat general rotation surfaces with pointwise 1-type Gauss map and give an example of such surfaces.

2 Preliminaries

Let E^m_s be the m-dimensional pseudo-Euclidean space with signature $(s, m-s)$. Then the metric tensor g in E^m_s has the form
\[g = \sum_{i=1}^{m-s} (dx_i)^2 - \sum_{i=m-s+1}^{m} (dx_i)^2 \]
where $(x_1, ..., x_m)$ is a standard rectangular coordinate system in E^m_s.

Let M be an n-dimensional pseudo-Riemannian submanifold of a m-dimensional pseudo-Euclidean space E^m_s. We denote Levi-Civita connections of E^m_s and M by ∇ and ∇, respectively. Let $e_1, ..., e_n, e_{n+1}, ..., e_m$ be an adapted local orthonormal frame in E^m_s such that $e_1, ..., e_n$ are tangent to M and $e_{n+1}, ..., e_m$ normal to
We use the following convention on the ranges of indices: 1 ≤ i, j, k, ..., ≤ n, n + 1 ≤ r, s, t, ..., ≤ m, 1 ≤ A, B, C, ..., ≤ m.

Let \(\omega_A \) be the dual-1 form of \(e_A \) defined by \(\omega_A(X) = \langle e_A, X \rangle \) and \(\varepsilon_A = \langle e_A, e_A \rangle = \pm 1 \). Also, the connection forms \(\omega_{AB} \) are defined by

\[
d e_A = \sum_B \varepsilon_B \omega_{AB} e_B, \quad \omega_{AB} + \omega_{BA} = 0
\]

Then we have

\[
\tilde{\nabla}^e = \sum_{j=1}^n \varepsilon_j \omega_{ij}(e_k) e_j + \sum_{r=n+1}^m \varepsilon_r h^r_{ik} e_r
\]

and

\[
\tilde{\nabla}^{e_s} = -\sum_{j=1}^n \varepsilon_j h^s_{kj} e_j + \sum_{r=n+1}^m \varepsilon_r \omega_{sr}(e_k) e_r, \quad D^{e_s}_{ik} = \sum_{r=n+1}^m \omega_{sr}(e_k) e_r,
\]

where \(D \) is the normal connection, \(h^r_{ik} \) the coefficients of the second fundamental form \(h \).

If we define a covariant differentiation \(\tilde{\nabla} h \) of the second fundamental form \(h \) on the direct sum of the tangent bundle and the normal bundle \(TM \oplus T^\perp M \) of \(M \) by

\[
\left(\tilde{\nabla}_X h \right)(Y, Z) = D_X h(Y, Z) - h(\nabla_X Y, Z) - h(Y, \nabla_X Z)
\]

for any vector fields \(X, Y \) and \(Z \) tangent to \(M \). Then we have the Codazzi equation

\[
\left(\tilde{\nabla}_X h \right)(Y, Z) = \left(\tilde{\nabla}_Y h \right)(X, Z)
\]

and the Gauss equation is given by

\[
\langle R(X, Y)Z, W \rangle = \langle h(X, W) , h(Y, Z) \rangle - \langle h(X, Z) , h(Y, W) \rangle
\]

where the vectors \(X, Y, Z \) and \(W \) are tangent to \(M \) and \(R \) is the curvature tensor associated with \(\nabla \). The curvature tensor \(R \) associated with \(\nabla \) is defined by

\[
R(X, Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z.
\]

For any real function \(f \) on \(M \) the Laplacian \(\Delta f \) of \(f \) is given by

\[
\Delta f = -\sum_i \left(\tilde{\nabla}_{e_i}^e \tilde{\nabla}_{e_i} f - \tilde{\nabla}_{\nabla^{e_i}_e} f \right)
\]

Let us now define the Gauss map \(G \) of a submanifold \(M \) into \(G(n, m) \) in \(\wedge^n \mathbb{E}^m_s \), where \(G(n, m) \) is the Grassmannian manifold consisting of all oriented \(n \)-planes through the origin of \(\mathbb{E}^m_s \) and \(\wedge^n \mathbb{E}^m_s \) is the vector space obtained by the exterior product of \(n \) vectors in \(\mathbb{E}^m_s \). Let \(e_{i_1} \wedge \ldots \wedge e_{i_n} \) and \(f_{j_1} \wedge \ldots \wedge f_{j_n} \) be two vectors of
where the profile curve of M which carries a point p in M.

In this section, we study the flat rotation surfaces with pointwise 1-type Gauss map in the 4-dimensional pseudo-Euclidean space E^4. Let M_1 and M_2 be the rotation surfaces in E^4 defined by

$$\varphi(t, s) = \begin{pmatrix} \cosh t & 0 & 0 & \sinh t \\ 0 & \cosh t & \sinh t & 0 \\ 0 & \sinh t & \cosh t & 0 \\ \sinh t & 0 & 0 & \cosh t \end{pmatrix} \begin{pmatrix} 0 \\ x(s) \\ 0 \\ y(s) \end{pmatrix}.$$ (7)

and

$$\varphi(t, s) = \begin{pmatrix} \cos t & -\sin t & 0 & 0 \\ \sin t & \cos t & 0 & 0 \\ 0 & 0 & \cos t & -\sin t \\ 0 & 0 & \sin t & \cos t \end{pmatrix} \begin{pmatrix} x(s) \\ 0 \\ y(s) \\ 0 \end{pmatrix}.$$ (8)

where the profile curve of M_1 (resp. the profile curve of M_2) is unit speed curve, that is, $(x'(s))^2 - (y'(s))^2 = 1$. We choose a moving frame e_1, e_2, e_3, e_4 such that e_1, e_2 are tangent to M_1 and e_3, e_4 are normal to M_1 and choose a moving frame $\bar{e}_1, \bar{e}_2, \bar{e}_3, \bar{e}_4$ such that \bar{e}_1, \bar{e}_2 are tangent to M_2 and \bar{e}_3, \bar{e}_4 are normal to M_2 which are given by the following:

$$e_1 = \frac{1}{\sqrt{\varepsilon_1 (y^2(s) - x^2(s))}} (y(s) \cosh t, x(s) \sinh t, x(s) \cosh t, y(s) \sinh t)$$

$$e_2 = (y'(s) \sinh t, x'(s) \cosh t, x'(s) \sinh t, y'(s) \cosh t)$$

$$e_3 = (x'(s) \sinh t, y'(s) \cosh t, y'(s) \sinh t, x'(s) \cosh t)$$

$$e_4 = \frac{1}{\sqrt{\varepsilon_1 (y^2(s) - x^2(s))}} (x(s) \cosh t, y(s) \sinh t, y(s) \cosh t, x(s) \sinh t)$$

3 Flat Rotation Surfaces with Pointwise 1-Type Gauss Map in E^4_2
and
\[
\tilde{e}_1 = \frac{1}{\sqrt{\varepsilon_1 (y^2(s) - x^2(s))}} (-x(s) \sin t, x(s) \cos t, -y(s) \sin t, y(s) \cos t)
\]
\[
\tilde{e}_2 = (x'(s) \cos t, x'(s) \sin t, y'(s) \cos t, y'(s) \sin t)
\]
\[
\tilde{e}_3 = (y'(s) \cos t, y'(s) \sin t, x'(s) \cos t, x'(s) \sin t)
\]
\[
\tilde{e}_4 = \frac{1}{\sqrt{\varepsilon_1 (y^2(s) - x^2(s))}} (y(s) \sin t, -y(s) \cos t, x(s) \sin t, -x(s) \cos t)
\]
where \(\varepsilon_1 (y^2(s) - x^2(s)) > 0, \varepsilon_1 = \pm 1\). Then it is easily seen that
\[
\langle e_1, e_1 \rangle = -\langle e_4, e_4 \rangle = \varepsilon_1, \quad \langle e_2, e_2 \rangle = -\langle e_3, e_3 \rangle = 1
\]
\[
-\langle \tilde{e}_1, \tilde{e}_1 \rangle = \langle \tilde{e}_4, \tilde{e}_4 \rangle = \varepsilon_1, \quad \langle \tilde{e}_2, \tilde{e}_2 \rangle = -\langle \tilde{e}_3, \tilde{e}_3 \rangle = 1
\]
we have the dual 1-forms as:
\[
\omega_1 = \varepsilon_1 \sqrt{\varepsilon_1 (y^2(s) - x^2(s))} dt \quad \text{and} \quad \omega_2 = ds
\]
and
\[
\tilde{\omega}_1 = -\varepsilon_1 \sqrt{\varepsilon_1 (y^2(s) - x^2(s))} dt \quad \text{and} \quad \tilde{\omega}_2 = ds
\]
By a direct computation we have components of the second fundamental form and the connection forms as:
\[
h^3_{11} = b(s), \quad h^3_{12} = 0, \quad h^3_{22} = c(s)
\]
\[
h^4_{11} = 0, \quad h^4_{12} = b(s), \quad h^4_{22} = 0
\]
\[
\tilde{h}^3_{11} = -b(s), \quad \tilde{h}^3_{12} = 0, \quad \tilde{h}^3_{22} = c(s)
\]
\[
\tilde{h}^4_{11} = 0, \quad \tilde{h}^4_{12} = b(s), \quad \tilde{h}^4_{22} = 0
\]
\[
\omega_{12} = \varepsilon_1 a(s) \omega_1, \quad \omega_{13} = \varepsilon_1 b(s) \omega_1, \quad \omega_{14} = b(s) \omega_2
\]
\[
\omega_{23} = c(s) \omega_2, \quad \omega_{24} = \varepsilon_1 b(s) \omega_1, \quad \omega_{34} = \varepsilon_1 a(s) \omega_1
\]
\[
\tilde{\omega}_{12} = \varepsilon_1 a(s) \tilde{\omega}_1, \quad \tilde{\omega}_{13} = \varepsilon_1 b(s) \tilde{\omega}_1, \quad \tilde{\omega}_{14} = b(s) \tilde{\omega}_2
\]
\[
\tilde{\omega}_{23} = c(s) \tilde{\omega}_2, \quad \tilde{\omega}_{24} = -\varepsilon_1 b(s) \tilde{\omega}_1, \quad \tilde{\omega}_{34} = -\varepsilon_1 a(s) \tilde{\omega}_1
\]
By covariant differentiation with respect to \(e_1\) and \(e_2\) (resp. \(\tilde{e}_1\) and \(\tilde{e}_2\)) a straightforward calculation gives:
\[
\tilde{\nabla}_{e_1} e_1 = a(s) e_2 - b(s) e_3
\]
\[
\tilde{\nabla}_{e_2} e_1 = -\varepsilon_1 b(s) e_4
\]
\[
\tilde{\nabla}_{e_1} e_2 = -\varepsilon_1 a(s) e_1 - \varepsilon_1 b(s) e_4
\]
\[
\tilde{\nabla}_{e_2} e_2 = -c(s) e_3
\]
\[
\tilde{\nabla}_{e_1} e_3 = -\varepsilon_1 b(s) e_1 - \varepsilon_1 a(s) e_4
\]
\[
\tilde{\nabla}_{e_2} e_3 = -c(s) e_2
\]
\[
\tilde{\nabla}_{e_1} e_4 = -b(s) e_2 + a(s) e_3
\]
\[
\tilde{\nabla}_{e_2} e_4 = -\varepsilon_1 b(s) e_1
\]
and

\[\tilde{\nabla}_{\tilde{e}_1} \tilde{e}_1 = -a(s)\tilde{e}_2 + b(s)\tilde{e}_3 \]
\[\tilde{\nabla}_{\tilde{e}_2} \tilde{e}_1 = \varepsilon_1 b(s)\tilde{e}_4 \]
\[\tilde{\nabla}_{\tilde{e}_1} \tilde{e}_2 = -\varepsilon_1 a(s)\tilde{e}_1 + \varepsilon_1 b(s)\tilde{e}_4 \]
\[\tilde{\nabla}_{\tilde{e}_2} \tilde{e}_2 = -c(s)\tilde{e}_3 \]
\[\tilde{\nabla}_{\tilde{e}_1} \tilde{e}_3 = -\varepsilon_1 b(s)\tilde{e}_1 + \varepsilon_1 a(s)\tilde{e}_4 \]
\[\tilde{\nabla}_{\tilde{e}_2} \tilde{e}_3 = -c(s)\tilde{e}_2 \]
\[\tilde{\nabla}_{\tilde{e}_1} \tilde{e}_4 = -b(s)\tilde{e}_2 + a(s)\tilde{e}_3 \]
\[\tilde{\nabla}_{\tilde{e}_2} \tilde{e}_4 = \varepsilon_1 b(s)\tilde{e}_1 \]

where

\[a(s) = \frac{x(s)x'(s) - y(s)y'(s)}{\varepsilon_1 (y^2(s) - x^2(s))} \] (17)
\[b(s) = \frac{x(s)y'(s) - y(s)x'(s)}{\varepsilon_1 (y^2(s) - x^2(s))} \] (18)
\[c(s) = x''(s)y'(s) - x'(s)y''(s) \] (19)

The Gaussian curvature \(K \) of \(M_1 \) and \(\bar{K} \) that of \(M_2 \) are respectively given by

\[K = \varepsilon_1 b^2(s) - b(s)c(s) \] (20)

and

\[\bar{K} = b(s)c(s) - \varepsilon_1 b^2(s) \] (21)

If the surfaces \(M_1 \) or \(M_2 \) is flat, then (20) and (21) imply

\[b(s)c(s) - b^2(s) = 0. \] (22)

Furthermore, after some computations we obtain Gauss and Codazzi equations for both surfaces \(M_1 \) and \(M_2 \)

\[\varepsilon_1 a^2(s) - a'(s) = b(s)c(s) - \varepsilon_1 b^2(s) \] (23)

and

\[b'(s) = 2\varepsilon_1 a(s)b(s) - a(s)c(s) \] (24)

respectively.

By using (6), (15), (16) and straightforward computation, the Laplacians \(\Delta G \) and \(\bar{\Delta} G \) of the Gauss map \(G \) and \(\bar{G} \) can be expressed as

\[\Delta G = -\left(3b^2(s) + c^2(s)\right) (e_1 \wedge e_2) + (2a(s)b(s) - \varepsilon_1 a(s)c(s) + c'(s))(e_1 \wedge e_3) \]
\[+ (3a(s)b(s) - \varepsilon_1 b'(s))(e_2 \wedge e_4) + 2 \left(\varepsilon_1 b(s)c(s) - b^2(s)\right)(e_3 \wedge e_4) \] (25)
\[
\Delta \bar{G} = - (3b^2(s) + c^2(s)) (e_1 \wedge e_2) + (2a(s)b(s) - \varepsilon_1 a(s)c(s) + c'(s)) (e_1 \wedge e_3) \\
+ (-3a(s)b(s) + \varepsilon_1 b'(s)) (e_2 \wedge e_4) + 2 (b^2(s) - \varepsilon_1 b(s)c(s)) (e_3 \wedge e_4)
\] (26)

Now we investigate the flat rotation surfaces in \(E^4_2\) with the pointwise 1-type Gauss map satisfying (1).

Suppose that the rotation surface \(M_1\) given by the parametrization (7) is a flat rotation surface. From (20), we obtain that \(b(s) = 0\) or \(\varepsilon_1 b(s) - c(s) = 0\). We assume that \(\varepsilon_1 b(s) - c(s) \neq 0\). Then \(b(s)\) is equal to zero and (24) implies that \(a(s)c(s) = 0\). Since \(\varepsilon_1 b(s) - c(s) \neq 0\), it implies that \(c(s)\) is not equal to zero. Then we obtain as \(a(s) = 0\). In that case, by using (17) and (18) we obtain that \(\alpha(s) = 0, x(s), 0, y(s)\) is a constant vector. This is a contradiction. Therefore \(\varepsilon_1 b(s) = c(s)\) for all \(s\).

From (14), we get

\[
\varepsilon_1 a^2(s) - a'(s) = 0
\] (27)

whose the trivial solution and non-trivial solution

\[
a(s) = 0
\]

and

\[
a(s) = \frac{1}{-\varepsilon_1 s + c'},
\]

respectively. We assume that \(a(s) = 0\). By (24) \(b(b_0)\) is a constant and \(c = \varepsilon_1 b_0\).

In that case by using (17), (18) and (19), \(x\) and \(y\) satisfy the following differential equations

\[
x^2(s) - y^2(s) = \mu \quad \mu \text{ is a constant,}
\] (28)

\[
x(s)y'(s) - x'(s)y(s) = -\varepsilon_1 b_0 \mu,
\] (29)

\[
x''y'(s) - x'(s)y'' = \varepsilon_1 b_0.
\] (30)

From (28) we may put

\[
x(s) = \frac{1}{2} \varepsilon \left(\mu_2 e^{\theta(s)} + \mu_1 e^{-\theta(s)} \right), \quad y(s) = \frac{1}{2} \varepsilon \left(\mu_2 e^{\theta(s)} - \mu_1 e^{-\theta(s)} \right),
\] (31)

where \(\theta(s)\) is some smooth function, \(\varepsilon = \pm 1\) and \(\mu = \mu_1 \mu_2\). Differentiating (31) with respect to \(s\), we have

\[
x'(s) = \theta'(s)y(s), \quad y'(s) = \theta'(s)x(s)
\] (32)

By substituting (31) and (32) into (19), we get

\[
\theta(s) = -\varepsilon_1 b_0 s + d, \quad d = \text{const.}
\]

And since the curve \(\alpha\) is a unit speed curve, we have

\[
b_0^2 \mu = -1.
\]
Since $\mu = -\frac{1}{b_0}$, $y^2(s) - x^2(s) > 0$. In that case we obtain that $\varepsilon_1 = 1$. Then we can write components of the curve α as:

\begin{align*}
x(s) &= \frac{1}{2} \varepsilon \left(\mu_2 e^{(-b_0 s + d)} + \mu_1 e^{(-b_0 s + d)} \right), \\
y(s) &= \frac{1}{2} \varepsilon \left(\mu_2 e^{(-b_0 s + d)} - \mu_1 e^{(-b_0 s + d)} \right), \quad \mu_1 \mu_2 = -\frac{1}{b_0^2}
\end{align*}

(33)

On the other hand, by using (25) we can rewrite the Laplacian of the Gauss map G with $a(s) = 0$ and $b = c = b_0$ as follows:

$$\Delta G = -4b_0^2 (e_1 \wedge e_2)$$

that is, the flat surface M is pointwise 1-type Gauss map with the function $f = 4b_0^2$ and $C = 0$. Even if it is a pointwise 1-type Gauss map of the first kind.

Now we assume that $a(s) = \frac{1}{-\varepsilon_1 s + c}$. By using $c(s) = \varepsilon_1 b(s)$ and (24) we get

$$b'(s) = \varepsilon_1 a(s) b(s)$$

(34)

or we can write

$$\frac{b'(s)}{b(s)} = \frac{\varepsilon_1}{-\varepsilon_1 s + c},$$

whose the solution

$$b(s) = \frac{\lambda}{| -\varepsilon_1 s + c |}, \quad \lambda \text{ is a constant.}$$

(35)

By using (25) we can rewrite the Laplacian of the Gauss map G with the equations $c(s) = \varepsilon_1 b(s)$, $b'(s) = \varepsilon_1 a(s) b(s)$ and $a'(s) = \varepsilon_1 a^2(s)$

$$\Delta G = -4b_0^2 (e_1 \wedge e_2) + 2a(s)b(s) (e_1 \wedge e_3) + 2a(s)b(s) (e_2 \wedge e_4).$$

(36)

We suppose that the flat rotational surface M_1 has pointwise 1-type Gauss map. From (1) and (36), we get

\begin{align*}
-4\varepsilon_1 b^2(s) &= f \varepsilon_1 + f \langle C, e_1 \wedge e_2 \rangle \\
-2\varepsilon_1 a(s)b(s) &= f \langle C, e_1 \wedge e_3 \rangle \\
-2\varepsilon_1 a(s)b(s) &= f \langle C, e_2 \wedge e_4 \rangle
\end{align*}

(37) (38) (39)

Then, we have

$$\langle C, e_1 \wedge e_4 \rangle = 0, \quad \langle C, e_2 \wedge e_3 \rangle = 0, \quad \langle C, e_3 \wedge e_4 \rangle = 0$$

(40)

By using (38) and (39) we obtain

$$\langle C, e_1 \wedge e_3 \rangle = \langle C, e_2 \wedge e_4 \rangle$$

(41)
By differentiating the first equation in (41) with respect to \(e_1 \) and by using the third equation in (41) and (42), we get

\[
2a(s)\langle C, e_1 \wedge e_3 \rangle - b(s)\langle C, e_1 \wedge e_2 \rangle = 0
\]

(42)

Combining (38), (39) and (42) we then have

\[
f = 4 \left(a^2(s) - b^2(s) \right)
\]

that is, a smooth function \(f \) depends only on \(s \). By differentiating \(f \) with respect to \(s \) and by using (35) and (27), we get

\[
f' = 2\varepsilon_1 a(s)f
\]

(43)

By differentiating (38) with respect to \(s \) and by using (15), (27), (35), (36) and (37) we have

\[a^2b = 0\]

or from (35) we can write

\[\lambda a^3 = 0\]

Since \(a(s) \neq 0 \), it follows that \(\lambda = 0 \). Then we obtain that \(b = c = 0 \). Then the surface \(M_1 \) is a part of plane.

Thus we can give the following theorems.

Theorem 1. Let \(M_1 \) be the flat rotation surface given by the parametrization (7). Then \(M_1 \) has pointwise 1-type Gauss map if and only if \(M \) is either totally geodesic or parametrized by

\[
\varphi(t, s) = \begin{pmatrix}
\frac{1}{2}\varepsilon \left(\mu_2 e^{(-b_0s+d)} - \mu_1 e^{(-b_0s+d)} \right) \sinh t, \\
\frac{1}{2}\varepsilon \left(\mu_2 e^{(-b_0s+d)} + \mu_1 e^{(-b_0s+d)} \right) \cosh t,
\end{pmatrix}, \quad \mu_1\mu_2 = -\frac{1}{b_0^2}
\]

(44)

where \(b_0, \mu_1, \mu_2 \) and \(d \) are real constants.

Example 1. Let \(M_1 \) be the flat rotation surface with pointwise 1-type Gauss map given by the parametrization (44). If we take as \(b_0 = -1, \mu_1 = -1, \mu_2 = 1, d = 0 \) and \(\varepsilon = 1 \), then we obtain a surface as follows:

\[
\varphi(t, s) = (\cosh s \sinh t, \sinh s \cosh t, \sinh s \sinh t, \cosh s \cosh t).
\]

This surface is the product of two plane hyperbolas.

Theorem 2. Let \(M_2 \) be the flat rotation surface given by the parametrization (8). Then \(M_2 \) has pointwise 1-type Gauss map if and only if \(M_2 \) is either totally geodesic or parametrized by

\[
\varphi(t, s) = \begin{pmatrix}
\frac{1}{2}\varepsilon \left(\mu_2 e^{(-b_0s+d)} + \mu_1 e^{(-b_0s+d)} \right) \cos t, \\
\frac{1}{2}\varepsilon \left(\mu_2 e^{(-b_0s+d)} + \mu_1 e^{(-b_0s+d)} \right) \sin t,
\end{pmatrix}, \quad \mu_1\mu_2 = -\frac{1}{b_0^2}
\]

(45)
Example 2. Let M_1 be the flat rotation surface with pointwise 1-type Gauss map given by the parametrization (44). If we take as $b_0 = -1$, $\mu_1 = -1$, $\mu_2 = 1$, $d = 0$ and $\varepsilon = 1$, then we obtain a surface as follows:

$$\varphi(t, s) = \varphi(t, s) = (\cosh s \cos t, \cosh s \sin t, \cosh s \cos t, \cosh s \sin t).$$

This surface is the product of a plane circle and a plane hyperbola.

Corollary 1. Let M be flat general rotation surface given by the parametrization (7) or (8). If M has pointwise 1-type Gauss map then the Gauss map G on M is of 1-type.

References

[1] Aksoyak F. and Yaylı Y. Flat Rotational Surfaces with pointwise 1-type Gauss map in E^4, (submitted).

[2] Arslan K., Bayram, B.K., Bulca, B., Kim, Y.H., Murathan, C. and Öztürk, G. Rotational embeddings in E^4 with pointwise 1-type Gauss map, Turk. J. Math. 35, 493-499, 2011.

[3] Arslan K., Bayram B.K., Kim, Y.H., Murathan, C. and Öztürk, G. Vranceanu surface in E^4 with pointwise 1-type Gauss map, Indian J. Pure. Appl. Math. 42, 41-51, 2011.

[4] Arslan K., Bulca B., Kılıç B., Kim Y.H., Murathan C. and Öztürk G. Tensor Product Surfaces with Pointwise 1-Type Gauss Map. Bull. Korean Math. Soc. 48, 601-609, 2011.

[5] Chen, B.Y. Choi, M. and Kim, Y.H. Surfaces of revolution with pointwise 1-type Gauss map, J. Korean Math. 42, 447-455, 2005.

[6] Chen, B.Y. and Piccinni, P. Submanifolds with Finite Type-Gauss map, Bull. Austral. Math. Soc., 35, 161-186, 1987.

[7] Choi, M. and Kim, Y.H. Characterization of the helicoid as ruled surfaces with pointwise 1-type Gauss map, Bull. Korean Math. Soc. 38, 753-761, 2001.

[8] Choi, M., Kim, D.S., Kim Y.H, Helicoidal surfaces with pointwise 1-type Gauss map, J. Korean Math. Soc. 46, 215-223, 2009.

[9] Choi, M. and Kim, Y.H. and Yoon, D.W. Classification of ruled surfaces with pointwise 1-type Gauss map in Minkowski 3-space, Taiwanese J. Math. 15, 1141-1161, 2011.
[10] Dursun, U. and Turgay, N.C., General rotational surfaces in Euclidean space E^4 with pointwise 1-type Gauss map, Math. Commun. 17, 71-81, 2012.

[11] Dursun, U., Hypersurfaces with pointwise 1-type Gauss map in Lorentz-Minkowski space, Proc. Est. Acad. Sci. 58, 146-161, 2009.

[12] Dursun, U., Coşkun, E. Flat surfaces in the Minkowski space E^3_1 with pointwise 1-type Gauss map, Turk. J. Math. 35, 1-1, 2011.

[13] Dursun, U. and Arsan, G.G. Surfaces in the Euclidean space E^4 with pointwise 1-type Gauss map, Hacet. J. Math. Stat. 40, 617-625, 2011.

[14] Dursun, U. and Turgay, N.C., On spacelike surfaces in Minkowski 4-space with pointwise 1-type Gauss map of second type, Balkan J. Geom. App., 17, 34-45, 2012.

[15] Kim, Y.H. and Yoon, D.W. Ruled surfaces with pointwise 1-type Gauss map, J. Geom. Phys. 34, 191-205, 2000.

[16] Kim, Y.H. and Yoon, D.W. Classification of rotation surfaces in pseudo Euclidean space, J. Korean Math. 41, 379-396, 2004.

[17] Niang, A. Rotation surfaces with 1-type Gauss map, Bull. Korean Math. Soc. 42, 23-27, 2005.

[18] Niang, A. On rotation surfaces in the Minkowski 3-dimensional space with pointwise 1-type Gauss map, J. Korean Math. Soc. 41, 1007-1021, 2004.

[19] Yoon, D.W. Rotation surfaces with finite type Gauss map in E^4, Indian J. Pure. Appl. Math. 32, 1803-1808, 2001.

[20] Yoon, D.W. Some properties of the Clifford torus as rotation surface, Indian J. Pure. Appl. Math. 34, 907-915, 2003.