An Experimental Study on the Technique Optimization in Localization Process of 4J36 Invar Alloy-A Micro-Electrochemical Machining Perspective

Jianxiao Bian¹,², Baoji Ma², Yanwei Hu², Zhichen Jing¹, Xin Liu¹

¹School of Mechanical Engineering, Longdong University, Qingyang 745000, China
²School of Mechanical Engineering, Xi'an Technological University, Xi'an 710021, China
E-mail: Jxbian@ldxy.edu.cn

Abstract. This study introduces electrochemical processing into the processing of 4J36 Invar alloy to obtain higher processing accuracy. An experimental study based on central composite design (CCD) was carried out to analyze the effects of voltage, duty cycle, feed rate, and inter-electrode gap on the localization of Invar processing. The response surface method is used to establish a mathematical model between process parameters and processing locality. The model shows that the minimum Side Gap is 158.7 μm, and the prediction results are verified by experiments. The prediction error of the mathematical model is 1.44%, which means that the proposed optimal mathematical model can solve the optimal processing parameters of 4J36 Invar alloy. It has a positive significance for the wide application of Invar.

1. Introduction

Electrochemical processing, also known as Electrochemical Machining (ECM), is a process in which an anodic dissolution of a metal workpiece occurs in an electrolyte[1,2]. The whole process is completed by the synergistic action of electrochemical, flow field and electric field. It has the advantages of high productivity, no tool loss, no cutting stress, and the principle of ion erosion makes it have the potential of fine and precise processing. Electrochemical machining is suitable for the processing of difficult-to-machine materials and complex shapes. It has been widely used in the manufacturing industries of aviation, aerospace and molds[3]. Invar is an alloy containing 64% iron and 36% nickel. Its coefficient of expansion is very low, with a value of 1.8×10⁻⁶ cm/℃ and a temperature ranging from a low temperature of -196℃ to a temperature of 260℃. This value is twice as low as stainless steel and 100 times lower than iron, which makes Invar alloy widely used in various fields[4,5]. The process parameters in electrochemical machining have an important influence on the processing precision of Invar. S.H.Kim et al.[6] The surface quality of Invar were investigated under different voltage and electrode shapes. Choi S-G et al.[7] The current density in electrochemical machining was studied by finite element analysis. K.H.Chun et al.[8] The processing properties of different electrolyte compositions for electrochemical processing of Invar alloys were investigated. The electrolyte components under the optimum process conditions were determined. However, the influence of different process parameters on the accuracy of electrochemical processing of Invar alloy has paid little attention.

In this paper, the influence of electrochemical processing parameters on the localization of 4J36 Invar alloy is studied. The experimental study based on the central composite design (CCD) is carried out to analyze the effects of voltage, duty cycle, feed speed and gap between electrodes on the localization of 4J36 Invar alloy processing. In the experiment, the localization is represented by the processing Side
Gap, and the mathematical model between the processing parameters and the localization is established by the response surface method\cite{9}. To solve the problem of optimum processing conditions.

2. Experiment

2.1. Experimental Set-Up

The structure of the ECM experimental system is shown in Fig. 1 and 2. The experimental system consists of four subsystems: the power supply system, the machine tool system, the microelectrode system, and the processing control and monitoring system. The power supply system can provide variable pulse voltage, duty cycle, pulse frequency. The machine tool system ensures high precision in micro electrochemical machining. The microelectrode system consists of a tool electrode, an electrolytic cell, an Invar alloy. The 4J36 Invar workpiece is fixed on the electrolyzer and placed on the lifting platform. The machining control and monitoring system has a motion control card and Supereyes. supereyes monitors the machining process and captures images. The material used in the experiment was 4J36 Invar. table 1 lists the chemical composition of 4J36 Invar.

Table 1. Chemical compositions of magnesium 4J36 invar alloy.

Components	Fe	Ni	Cr	C	Mn	Si	Co	P	S
Percents	62.64	36	0.2	0.03	0.4	0.2	0.5	0.02	0.01

2.2. Experimental Arrangement

Voltage (6, 8, 10V), duty cycle (40, 60, 80%), feed rate (0.5, 1.5, 2.5μm/s) and inter-electrode gap (100, 150, 200μm) are used in electrochemical machining. As the main processing technology parameters, the test is designed based on the central composite design, considering three factors and three levels. Therefore, 30 sets of tests (including 6 sets of repeated tests) were carried out, and the microelectrode system is shown in Table 2. The specific experimental steps are:

a) The anode workpiece is placed in an ultrasonic cleaner for ultrasonic cleaning to remove surface impurities to prevent interference with the experiment.

b) Place the workpiece on the electrolyzer fixture and install the tool cathode to adjust the inter-electrode gap.

c) Pour the configured 1mol/L NaNO3 + 0.1mol/L C6H8O7 electrolyte into the electrolytic cell to soak the workpiece for 5-10 minutes. The workpiece and the electrolytic cell are cleaned after processing.

d) The Side Gap of the machined hole was observed using a scanning electron microscope and the results were recorded (Side Gap equals hole radius minus cathode radius).
2.3. Result and Discussion
The design of the test and the test results obtained are shown in Table 3. The experimental results show the influence of process parameters on the Side Gap, as shown in Fig 3. It can be seen that the Side Gap increases as the pulse voltage and duty cycle increase. It decreases as the feed rate increases. The inter-electrode gap has less influence on the Side Gap. The value of the Side Gap varies within a small range.

Table 2. Experiment parameters.

parameter	values
Size of cathode	![cathode image]
Size of anode	25mm×25mm×0.3mm
Cathode material	H62 brass
Anode material	4J36 invar alloy
Electrolyte	1mol/L NaNO₃+0.1mol/L C₆H₈O₇
Spindle speed	4000 rpm

3. Optimization

3.1. Development RSM models
The response surface method is used to establish a mathematical model of the actual factors between the process parameters and the machining Side Gap. The model includes linear correlations and interactions. As shown below:

\[
\text{Side\,Gap} = 182.63 + 9.56 \times A + 4.22 \times B - 11.44 \times C + 1.5 \times D + 3.44 \times AB + 2.31 \times AD - 2.94 \times BC
\]

(1)

Among them, A, B, C, and D are voltage, duty ratio, feed speed, and inter-electrode gap, respectively. In order to determine the reliability of the model and compare the influence of process parameters on the Side Gap, a second-order model analysis of variance was performed. Table 4 shows the ANOVA results for the Side Gap. Among them, the R² term is 0.9213, which proves the reliability of the model.

3.2. Parametric influence
As shown in Fig 4, the effect of process parameters synergistically on the Side Gap can be seen.

3.3. Verification
According to the mathematical model, the processing parameters and predicted values of the minimum Side Gap can be obtained, and the results of experimental verification are shown in Table 5. It can be seen that the error is 1.44%. The fig 5. shows the processing results of the optimized parameters.
Table 3. Experiment result.

No	Voltage	Duty Cycle	Feed Speed	Interpolar Gap	Side Gap
1	10	80	2.5	200	194
2	8	40	1.5	150	178
3	8	60	0.5	150	193
4	8	60	1.5	150	183
5	10	80	0.5	100	209
6	6	40	0.5	200	182
7	10	40	2.5	200	175
8	8	60	1.5	150	180
9	6	40	0.5	100	181
10	8	60	1.5	100	175
11	10	60	1.5	150	192
12	10	80	2.5	100	181
13	8	60	1.5	150	186
14	6	80	0.5	200	189
15	8	60	2.5	150	174
16	10	80	0.5	200	218
17	8	60	1.5	150	185
18	8	60	1.5	200	175
19	6	80	2.5	200	152
20	8	60	1.5	150	179
21	6	80	2.5	100	164
22	6	40	2.5	100	160
23	10	40	0.5	200	201
24	8	80	1.5	150	189
25	6	40	2.5	200	169
26	10	40	2.5	100	178
27	8	60	1.5	150	182
28	6	60	1.5	150	175
29	10	40	0.5	100	188
30	6	80	0.5	100	192
Figure 3. Effect of process parameters on Side Gap.

Table 4. ANOVA results of Side Gap.

Source	Sum of Squares	df	Mean Square	F-value	p-value	
Model	4775.19	7	682.17	36.80	< 0.0001	significant
A	1643.56	1	1643.56	88.67	< 0.0001	
B	320.89	1	320.89	17.31	0.0004	
C	2357.56	1	2357.56	127.19	< 0.0001	
D	40.50	1	40.50	2.19	0.1535	
AB	189.06	1	189.06	10.20	0.0042	
AD	85.56	1	85.56	4.62	0.0429	
BC	138.06	1	138.06	7.45	0.0122	
Residual	407.78	22	18.54			
Lack of Fit	370.28	17	21.78	2.90	0.1212	not significant
Pure Error	37.50	5	7.50			
Cor Total	5182.97	29	R^2 = 0.9213			

Table 5. Results of confirmatory experiment.

Exp No	Parameters settings	Side Gap					
A	B	C	D	Exp	Pred	Error%	
1	6	80	2.5	200	161	158.7	1.44%
4. Conclusions

- The factor that has the greatest influence on the Side Gap of the hole is the feed speed, followed by the pulse voltage. The inter-electrode gap has less effect on the Side Gap.
- A response diagram of the synergistic effect of the process parameters on the Side Gap of the hole is obtained.
- Establish a mathematical model of process parameters and pore Side Gap in the process of micro-electrochemical machining of 4J36 Invar alloy. The optimum process parameters were determined and verified by experiments with an error value below 5%.

Acknowledgments
This study was supported by Doctoral Foundation Project of Longdong University(Grant No. XYBY1905).
Reference

[1] Unune D R, Mali H S. Current status and applications of hybrid micro-machining processes: A review[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2014, 229(10): 1681-1693.

[2] Rahman Z, Das A K, Chattopadhyaya S. Microhole drilling through electrochemical processes: A review[J]. Materials and Manufacturing Processes, 2017, 33(13): 1379-1405.

[3] Davydov A D, Kabanova T B, Volgin V M. Electrochemical machining of titanium. Review[J]. Russian Journal of Electrochemistry, 2017, 53(9): 941-965.

[4] Choi W-K, Kim S-H, Lee E-S. Electrochemical micro machining characteristics of Fe64Ni36 invar film using micro WC rod electrode[J]. Microsystem Technologies, 2016, 23(2): 405-410.

[5] Kim S H, Choi S G, Choi W K, et al. Surface characteristics of Invar alloy according to micro-pulse electrochemical machining[J]. Materiali in tehnologije, 2017, 51(5): 745-749.

[6] Kim S H, Choi S G, Choi W K, et al. Pulse electrochemical machining on Invar alloy: Optical microscopic/SEM and non-contact 3D measurement study of surface analyses[J]. Applied Surface Science, 2014, 314: 822-831.

[7] Choi S-G, Kim S-H, Choi W-K, et al. A study of the current density analysis for two type method on the invar alloy in electrochemical machining[J]. Journal of Mechanical Science and Technology, 2017, 31(9): 4345-4351.

[8] Chun K H, Kim S H, Lee E S. Analysis of the relationship between electrolyte characteristics and electrochemical machinability in PECM on invar (Fe-Ni) fine sheet[J]. The International Journal of Advanced Manufacturing Technology, 2016, 87(9-12): 3009-3017.

[9] Mehrvar A, Basti A, Jamali A. Optimization of electrochemical machining process parameters: Combining response surface methodology and differential evolution algorithm[J]. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2016, 231(6): 1114-1126.