Biosynthesis of Branched Polylactosaminoglycans

EMBRYONAL CARCINOMA CELLS EXPRESS MIDCHAIN \(\beta1,6\)-N-ACETYLGLUCOSAMINYLTRANSFERASE ACTIVITY THAT GENERATES BRANCHES TO PREFORMED LINEAR BACKBONES* (Received for publication, January 5, 1998, and in revised form, April 6, 1998)

Anne Leppänen‡, Ying Zhu‡, Hannu Maahemo‡, Jari Helin‡, Eero Lehtonen‡, and Ossi Renkonen‡‡

From the ‡Institute of Biotechnology and Department of Biosciences, University of Helsinki, P. O. Box 56, FIN-00014 Helsinki and §Division of Pathology, Haartman Institute, University of Helsinki, P. O. Box 21, FIN-00014 Helsinki, Finland

Two types of \(\beta1,6\)-GlcNAc transferases (IGnT6) are involved in \textit{in vitro} branching of polylactosamines: dIGnT6 (distally acting), transferring to the penultimate galactose residue in acceptors like GlcNAc\(\beta1-3\)Gal\(\beta1-4\)GlcNAc\(\beta1-R\), and cIGnT6 (centrally acting), transferring to the midchain galactoses in acceptors of the type (GlcNAc\(\beta1-3\)Gal\(\beta1-4\)GlcNAc\(\beta1-3\)Gal\(\beta1-4\)GlcNAc\(\beta1-R\). The roles of the two transferases in the biosynthesis of branched polylactosamine backbones have not been clearly elucidated. We report here that cIGnT6 activity is expressed in human (PA1) and murine (PC13) embryonal carcinoma (EC) cells, both of which contain branched polylactosamine in large amounts. In the presence of exogenous UDP-GlcNAc, lysates from both EC cells catalyzed the formation of the branched pentasaccharide Gal\(\beta1-4\)GlcNAc\(\beta1-3\)GlcNAc\(\beta1-6\)(Gal\(\beta1-4\)GlcNAc\(\beta1-4\)GlcNAc\(\beta1-3\)Gal\(\beta1-4\)GlcNAc). The PA1 cell lysates were shown to also catalyze the formation of the branched heptasaccharides Gal\(\beta1-4\)GlcNAc\(\beta1-3\)GlcNAc\(\beta1-6\)(Gal\(\beta1-4\)GlcNAc and Gal\(\beta1-4\)GlcNAc\(\beta1-3\)GlcNAc\(\beta1-6\)Gal\(\beta1-4\)GlcNAc\(\beta1-3\)GlcNAc\(\beta1-4\)GlcNAc from the linear heptasaccharide Gal\(\beta1-4\)GlcNAc\(\beta1-3\)Gal\(\beta1-4\)GlcNAc\(\beta1-3\)Gal\(\beta1-4\)GlcNAc\(\beta1-4\)GlcNAc in reactions characteristic to cIGnT6. By contrast, dIGnT6 activity was not detected in the lysates of the two EC cells that were incubated with UDP-GlcNAc and the acceptor trisaccharide GlcNAc\(\beta1-3\)Gal\(\beta1-4\)GlcNAc. Hence, it appears likely that cIGnT6, rather than dIGnT6 is responsible for the synthesis of the branched polylactosamine chains in these cells.

Biosynthesis of branched backbones of type 2 polylactosamines involves reactions catalyzed by \(\beta1,3\)-N-acetylglucosaminyltransferase (GnT3), \(\beta1,4\)-galactosyltransferase (GalT4), and \(\beta1,6\)-N-acetylglucosaminyltransferases (GnT6).

However, the actual pathways leading to \textit{in vitro} biosynthesis of branched polylactosamine backbones have not been clearly identified. The branch-forming reactions, in particular, are poorly understood. Two candidate branching reactions involving distinct \(\beta1,6\)-N-acetylglucosaminyltransferases (IGnT6) have been described in \textit{in vitro} (1). The “centrally acting” dIGnT6 transfers a GlcNAc unit in the \(\beta1,6\) linkage to the penultimate galactose residue at the growing end of the linear polylactosamine chain (Scheme 1) (2–8). By contrast, the “centrally acting” cIGnT6 transfers a GlcNAc residue in the \(\beta1,6\) linkage to midchain galactose units of preformed as well as growing linear chains (3, 9, 10). The dIGnT6 reactions proceed only with acceptor chains bearing distal GlcNAc residues, whereas the cIGnT6 works with polylactosamine backbones carrying either a galactose or a GlcNAc residue at the distal position. There is very little overlapping in the acceptor specificities of the two types of enzymes in \textit{in vitro}.

In naturally occurring branched backbones, uniformly short LacNAc\(\beta1-6\) branches are linked to linear primary chains; this is the case e.g. in human embryonal carcinoma (EC) cells (11) and adult erythrocyte band 3 (12). It has been suggested that the dIGnT6 is responsible for the biosynthesis of polylactosamines in these cells (5, 11, 12). However, the suggested role of dIGnT6 in the biosynthesis of molecules containing exclusively short branches is doubtful because the extension enzyme, e.g. the GnT3 of human serum elongates both branches of the hexasaccharide LacNAc\(\beta1-3\)’(LacNAc\(\beta1-6\)’LacNAc (where LacNAc is Gal\(\beta1-4\)GlcNAc) (13), paving routes to the formation of complex as well as short branches (14).

We have recently suggested that midchain branching enzymes similar to the cIGnT6 activity present in blood serum of mammals may be responsible for the conversion of linear polylactosamine chains into branched backbone arrays in \textit{in vivo} (10). The reasoning was based on data showing that the cIGnT6 activity of rat serum catalyzed the transformation of the linear hexasaccharide LacNAc\(\beta1-3\)LacNAc\(\beta1-3\)LacNAc in two steps into the doubly branched octasaccharide LacNAc\(\beta1-3\)’(GlcNAc\(\beta1-6\)’LacNAc\(\beta1-3\)’(GlcNAc\(\beta1-6\)’LacNAc. The latter was \(\beta1,4\)-galactosylated enzymatically into the mature decasaccharide backbone LacNAc\(\beta1-3\)’(LacNAc\(\beta1-6\)’LacNAc\(\beta1-3\)’(LacNAc\(\beta1-6\)’LacNAc (10), which strikingly resembles the polylactosamine backbones of human EC cells of line PA1 (11).

Here, we report experiments involving lysates of human PA1 cells, exogenous UDP-GlcNAc, and either the tetrasaccharide tetrose, matrix-assisted laser desorption-ionization mass spectrometry with time-of-flight detection; MH, maltoheptaose \([\text{Glc}1\text{–4}\text{Glc}1\text{–4}\text{Glc}1\text{–4}]\); MP, maltopentaose \([\text{Glc}1\text{–4}\text{Glc}1\text{–4}\text{Glc}1\text{–4}]\); MT, maltotriose \([\text{Glc}1\text{–4}\text{Glc}1\text{–4}\text{Glc}1\text{–4}]\); MTet, maltotetraose \([\text{Glc}1\text{–4}\text{Glc}1\text{–4}\text{Glc}1\text{–4}]\).
Biosynthesis of Branched Polylactosaminoglycans

Scheme 1. Formation of GlcNAc branches at different positions of a linear polylactosaminoglycan by the two types of IGnTs (2–10).

Glycosyltransferase Reactions—The cIGnT6 reactions were performed by incubating the acceptors (3 pmol–100 nmol) and 3.7 µmol of UDP-GlcNAc with 25 µl of the EC cell lysate for 4 h and in some cases for 21–23 h in a total volume of 25 µl of 50 mM Tris-HCl buffer, pH 7.5, 8 mM NaCl, 20 mM EDTA, 0.5 mM ATP, 20 mM galactose, 60 mM γ-galactosidase, and 100 mM GlcNAc. EDTA inhibited the secreted enzyme GnT3 activity (20), γ-galactosyl and γ-galactoconlactone were added to inhibit β-galactosidase activity, and GlcNAc was used to inhibit β-N-acetylgalosaminidase activity. The dIGnT6 reactions with the teratocarcinoma cell lysates were carried out essentially as described for hog gastric mucosal microsomes (7), but incubation times of 4 h were used, and the total volume of the reaction mixture was 25 µl. All IGnT6 reaction mixtures were passed through a mixed bed of Dowex AG1 (AcO−) and Dowex AG 50 (H+), and the eluates were lyophilized.

Galactosylation with bovine milk β1,4-galactosyltransferase (EC 2.4.1.90) (Sigma) was performed essentially as described in Brew et al. (21).

Chromatographic Methods—Paper chromatographic runs of desalted radiolabeled saccharides were performed on Whatman III Chr paper with the upper phase of 1-butanol/acidic acid/water (4:1:5 v/v; solvent A) or with 1-butanol/ethanol/water (10:1:2 v/v, solvent B). Radioactivity on the chromatograms was monitored as in Leppänen et al. (10) using Optiscint (Wallac, Turku, Finland) as scintillant. Marker lanes of malto-oligosaccharides on both sides of the sample lanes were stained with silver nitrate.

Gel permeation chromatography on a column of Superdex 75 HR 10/30 or Superdex Peptide HR 10/30 (Amersham Pharmacia Biotech) was performed as in Niemelä et al. (19).

Degradative Experiments—Digestions with endo-β-galactosidase from Bacteroides fragilis (EC 3.2.1.103) (Boehringer Mannheim) were performed according to Leppänen et al. (9); parallel control reactions cleaved over 90% of radiolabeled GlcNAcβ1–3Galβ1–3GlcNAc. Digestions with jack bean β-galactosidase (EC 3.2.1.23) were carried out as described in Renkonen et al. (22). Partial digestions with jack bean β-N-acetylgalosaminidase (EC 3.2.1.30) were performed as in Leppänen et al. (10).

Partial acid hydrolysis was carried out using 0.1 M trifluoroacetic acid at 100 °C essentially as in Seppe et al. (7).

1H NMR Experiments—The 1H NMR experiments were carried out as in Niemelä et al. (19).

Matrix-assisted Laser Desorption/Ionization Mass Spectrometry—Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry was performed in the positive-ion delayed-extraction mode with a BIFLEXTM mass spectrometer (Bruker-Franzen Analytik, Bremen, Germany) using a 337-nm nitrogen laser. 1 µl of sample (10 pmol) and 1.5 µl of 2.5-dihydroxybenzoic acid matrix (10 mg/ml in water) were mixed on the target plate and dried with a gentle stream of air. Dextran standard 5000 from Leuconostoc mesenteroides (Fluka Chemica-Biochemica) was used for external calibration.

RESULTS

The structures of key oligosaccharides of the present experiments are shown in Table I and are identified in the text by using appropriate bold face digits.

Branching Reactions of Tetrasaccharide, Catalyzed by Lysates of PA1 and PC13 Cells, Gave Pentasaccharide—Incubation of tetrasaccharide Galβ1–4GlcNAcβ1–3[14C]Galβ1–4GlcNAc (1) and UDP-GlcNAc with lysates of human embryonal carcinoma cells (line PA1) gave an oligosaccharide product that chromatographed on paper like authentic pentasaccharide 2 (peak 1 in Fig. 1A). Yields of 3–7% were obtained. The identity of the product as glycan 2 was established by enzymatic degradation. First, a treatment of the pentasaccharide with β-galactosidase gave a product co-chromatographing with authentic GlcNAcβ1–3GlcNAcβ1–6Galβ1–4GlcNAc (8). Next, the putative glycan 8 was identified by a partial treatment with β-N-acetylgalosaminidase that gave a disaccharide GlcNAcβ1–6[14C]Galβ1–4GlcNAc, GlcNAcβ1–3[14C]Galβ1–4GlcNAc as well as the disaccharide [14C]Galβ1–4GlcNAc (Fig. 1C). In addition to degradation, the original pentasaccharide product was subjected to MALDI-TOF mass spectrometry that gave a major signal at m/z 974.8 (Fig. 1D), assigned to the sodiated molecular ion of Galβ2GlcNAcβ5 (calculated m/z = 974.9). Finally, the identity of the pentasaccharide...
product generated by PA1 cell lysates was confirmed by the 1H NMR spectrum (Fig. 1E, Table II); the resonances of the structural reporter groups were practically identical with those of authentic glycan 2 (23). Some of these resonances probably would have been different if the GlcNAc branch had been transferred to C-2 or C-4 of the central galactose unit of glycan 1 (24).

The pentasaccharide 2 was formed from tetrasaccharide 1 in yields of 6–10%, also in reactions catalyzed by lysates of murine EC cells of line PC13 (Fig. 2A). The endo-β-galactosidase-resistant product was identified as glycan 2 by enzymatic degradation as above. First, β-galactosidase converted the putative pentasaccharide 2 into a tetrasaccharide that chromatographed like glycan 8 (Fig. 2B). Then the putative glycan 8, upon a partial treatment with β-N-acetyhexosaminidase gave a mixture of the trisaccharides GlcNAcb1–6[14C]Galβ1–4GlcNAc and GlcNAcb1–3[14C]Galβ1–4GlcNAc as well as the disaccharide [14C]Galβ1–4GlcNAc (Fig. 2C). Finally, enzymatic β,1,4-galactosylation of the putative pentasaccharide 2 gave the hexasaccharide LacNAcb1–3(LacNAcb1–6)LacNAc (Fig. 2D), establishing the presence of a distal GlcNAc in the acceptor.

Branching Reactions of Hexasaccharide 3, Catalyzed by PA1 Cell Lysates Give Heptasaccharide Isomers 4 and 5—Two isotopomers of glycan 3 (LacNAcb1–3)LacNAcb1–3[14C]Galβ1–4GlcNAc and LacNAcb1–3[3H]Galβ1–4GlcNAcβ1–3)LacNAc were synthesized and were separately incubated with PA1 cell lysates and UDP-GlcNAc to establish whether both the galactose 2 (labeled in the [14C]-acceptor) and the galactose 4 (labeled in the [3H]-acceptor) of glycan 3 serve as independent acceptor sites. A heptasaccharide-like product was formed from both acceptors. The product chromatographed as a single peak (peak f in Fig. 3A, RMP = 0.49, RMA = 1.04, solvent A), showing the same migration rate as an unresolved mixture of authentic heptasaccharides 4 and 5 (10). The net yield of the heptasaccharide-like fraction varied from 3 to 7% in 4-h incubations in several separate experiments; it was not improved in 22-h incubations. To ensure that peak 1/ Fig. 3A represented an authentic product resulting from the transfer of GlcNAc to radiolabeled acceptor 3, an aliquot of the material was treated with UDP-Gal and GalT4. This treatment gave 62% [3H]glycans chromatographing like authentic octasaccharide 6 (Fig. 3B, RMP = 0.52, RMA = 0.68, solvent A), establishing the presence of a distal GlcNAc residue in most of the glycans of peak 1/ Fig. 3A. In addition, the data of Fig. 3B suggest that the glycans of peak 1/ Fig. 3A also included the [3H]hexasaccharide 3 acceptor itself, which contaminated the heptasaccharide products because of obvious chromatographic “tailing.” Other experiments that are described below show that the distal GlcNAc units of the heptasaccharide products of the branching reaction of glycan 3 were β1,6-bonded in some molecules to the galactose 2 and in others to the galactose 4 of the acceptor.

The presence of glycan 4 in the heptasaccharide fraction of the branching reaction was established by using endo-β-galactosidase, which cleaves internal β-galactosidic linkages of polylactosamincines but does not attack these linkages at branch-bearina N-acetylatedasamine units (25). Treatment of the crude [14C]heptasaccharide fraction with this enzyme gave two labeled oligosaccharide products, shown in Fig. 3C. Peak 2, chromatographing like the branched tetrasaccharide 8, was derived from the putative glycan 4. It was isolated and cleaved by partial β-N-acetylatedasaminidase treatment into GlcNAcb1–6[14C]Galβ1–4GlcNAc (peak 2) and GlcNAcb1–3[14C]Galβ1–4GlcNAc (peak 3) as shown in Fig. 3D. These data established that during the incubation with UDP-GlcNAc and PA1 cell lysate, a β1,6-bonded GlcNAc branch had been transferred to galactose 2 of the [14C]-labeled glycan 3. Peak 1 of Fig. 3C represented the hexasaccharide LacNAcb1–3′(GlcNAcb1–6′LacNAcb1–3′[14C]Gal, a cleavage product of glycan 5; it was not studied further because it contained no easily accessible structural information about the branch structure.

The presence of glycan 5 in the crude [3H]heptasaccharide fraction of the branching reaction was also established by using endo-β-galactosidase, which gave two radiolabeled oligosaccharides, LacNAcb1–3[3H]Gal (from glycan 4) and LacNAcb1–3′(GlcNAcb1–6′[3H]Galβ1–4GlcNAcβ1–3′Gal, that were separated by paper chromatography (not shown). The hexasaccharide product, which was derived from the putative glycan 5 of the [3H]heptasaccharide fraction, was then subjected to partial acid hydrolysis. This resulted in formation of several [3H]oligosaccharides shown in Fig. 3E. The important products were GlcNAcb1–6[3H]Galβ1–4GlcNAc (peak 2) and GlcNAcb1–6′[3H]Gal (peak 4), which proved that the galactose 4 of the [3H]-labeled glycan 3 had accepted a β1,6-bonded GlcNAc branch during the incubation with UDP-GlcNAc and a PA1 cell lysate.

The Branching Reaction of the Mixed Heptasaccharides 4 and 5, Catalyzed by PA1 Cell Lysates, Gave an Octasaccharide—Incubation of an authentic 1:1 mixture of [3H]-labeled heptasaccharides 4 and 5 with UDP-GlcNAc and PA1 cell lysates gave small amounts (2.4–4.4%) of a product that chromatographied on paper like the doubly branched octasaccharide LacNAcb1–3′(GlcNAcb1–6′LacNAcb1–3′(GlcNAcb1–6′)LacNAc (not shown; RMP = 0.74, RMA = 1.10). In MALDI-TOF mass spectrum the product gave a sodium-containing molecular ion at m/z 1543.4 (calculated m/z for GalαHexNACγ, 1543.4). Together with the (M + K)+ signal, this ion represented 70% of the total polylactosamines in the molecular ion range (26). A treatment of the octasaccharide concentrate with GalT4 and UDP-Gal gave a crude decasaccharide. In MALDI-TOF mass spectrum of this product, a major signal at m/z...
1867.8 was observed that was assigned to (M + Na)$^+$ of GlcNAc$_5$HexNAc$_5$ (calculated m/z 1867.7). These data suggest that the octasaccharide formed from the mixture of the heptasaccharides 4 and 5 by the PA1 cell lysate was $[^3]$H LacNAc$_{b}$1$–$3(GlcNAc$_{b}$1$–$6$)9LacNAc$_{b}1–$3(GlcNAc$_{b}1–6)9LacNAc.

Human (PA1) and Mouse (PC13) Embryonal Carcinoma Cells Did Not Reveal the Presence of the dIGnT6 Activity—When the trisaccharide $[^{14}$C]GlcNAc$_{b}$1$–$3Gal$_{b}$1$–$4GlcNAc (7) (21 pmol) was incubated with UDP-GlcNAc and human or mouse EC cell lysates, chromatographically detectable tetrasaccharide-like products were formed in less than 0.3% yield (not shown), implying that human and mouse EC cells did not express significant dIGnT6 activities.

DISCUSSION

The present data show that lysates from human embryonal carcinoma cells of line PA1 contained centrally acting $\beta_1,6$-N-acetylglucosaminyltransferase activity, which catalyzed the formation of the branched tetrasaccharide 2 from the linear tetrasaccharide 1 in the presence of exogenous UDP-GlcNAc (For the structures of the saccharides, see Table I). In addition, heptasaccharides 4 and 5 were formed from the linear hexasaccharide 3. Evidence was also provided supporting the notion that a second $\beta_1,6$-GlcNAc branch was transferred during incubation of a mixture of the heptasaccharides 4 and 5 with PA1 cell lysates and UDP-GlcNAc. We call the activity responsible for these reactions as cIGnT6 to emphasize the site-specificity of the reaction in the central area of the acceptor and the formation of precursors of the blood group I antigen.

Because PA1 cells are known to express branched polylactosamine backbones (11, 27), it is reasonable to assume that the in vitro reactions described in the present experiments are similar to those responsible for the synthesis of the multiply branched polylactosamines in vivo.

Also lysates from murine embryonal carcinoma cells of line PC13 contained cIGnT6 activity. The PC13 cells are also known to express large amounts of branched polylactosamines (15). Hence, the cIGnT6 reactions observed in vitro in the present experiments are likely to occur also in vivo during the synthesis of PC13 glycans.

The action of dIGnT6, too, leads in vitro to the formation of...
branched polylactosamines (14), and this enzyme has been suggested to be responsible for the in vivo biosynthesis of branched polylactosamine backbones (5, 11, 12). However, in the present experiments we were unable to observe any dIGnT6 activity in lysates of PA1 cells or PC13 cells that would have converted the linear trisaccharide GlcNAcβ1-4GlcNAc into the branched tetrasaccharide GlcNAcβ1-4(GlcNAcβ1-3(GlcNAcβ1-6)Galβ1-4GlcNAc. Taken together, our present data imply that the clGNt6 activity rather than the dIGnT6 activity may be responsible for the in vivo synthesis of branched polylactosamine backbones in embryonal carcinoma cells.

The dominant role of clGNt6 in the branch generation, combined with the data showing that the branches of glycans in PA1 cells are short along the entire backbone chain (11), suggests that the biosynthesis of branched polylactosamine backbones in PA1 cells occurs in rather distinct stages as shown in Scheme 2: First, alternating action of GnT3 and GalT4 elongates the linear backbone chains to their final size. Second, the GlcNAc branches are finally galactosylated by GalT4. A process of this kind is likely to produce rather similar branches along the entire primary backbone chain. By contrast, participation of dIGnT6 in the branching process would generate branches in association with chain elongation, probably leading to more complex branches in the proximal than the distal parts of the mature backbones.

The concept that linear polylactosamine chains are precursors of the branched backbones is not new. The relationship was proposed already in 1979 when the developmentally regulated expression of small i (linear chains) and big I (branched backbones) as blood group antigens in human and bovine red blood cells was described (28, 29). The present data merely provide the underlying mechanism of the interconversion in EC cells. Scheme 2 suggests also that clGNt6 is localized in the Golgi compartment of PA1 cells in a more restricted manner than Gal T4 and more distally than GnT3.

The presence of the clGNt6 activity in the murine EC cell lysates suggests that the polylactosamine backbones of these cells may also consist of primary linear chains that carry short
branches. Such arrays may be important scaffolds for “presenting” the binding epitopes of cell adhesion saccharides in multivalent, high affinity modes. This notion is supported by the finding that functionally active sperm receptor saccharides are successfully assembled to ZP3 protein of murine zona pellucida in “appropriately” transfected murine embryonal carcinoma cells but not in a number of other cells similarly transfected (30); the failing cells probably did not express sufficient amounts of enzymes required for synthesis of branched polylactosamines. Recently, a polylactosamine backbone decorated by several sialyl Lewis X-bearing branches has actually proven to be a highly potent antagonist of lymphocyte L-selectin (31).

We note that the cDNA directing the expression of branched polylactosamines has already been isolated from the cDNA expression library from PA1 cells (32). This cDNA probably codes the cIGnT6 observed in the present experiments.

REFERENCES
1. Bierhuizen, M. F. A., and Fukuda, M. (1994) Trends Glycosci. Glycotechnol. 6, 17–28
2. Broekhuizen, I., Matta, K. L., Orr, J., Schachter, H., Koenderman, A. H. L., and van den Eijnden, D. H. (1986) Eur. J. Biochem. 157, 463–474
3. Gu, J., Nishikawa, A., Fujii, S., Gasa, S., and Taniguchi, N. (1992) J. Biol. Chem. 267, 2994–2999
4. Koenderman, A. H. L., Koppen, P. L., and van den Eijnden, D. H. (1987) Eur. J. Biochem. 166, 199–208
5. Piller, F., Cartron, J.-P., Maranduba, A., Veyrieres, A., Leroy, Y., and Fournet, B. (1984) J. Biol. Chem. 259, 13385–13390
6. Ropp, P., Little, M. R., and Cheng, P.-W. (1991) J. Biol. Chem. 266,
Biosynthesis of Branched Polylactosaminoglycans

7. Seppo, A., Penttilä, L., Makkonen, A., Leppänen, A., Niemelä, R., Jantti, J., Helin, J., and Renkonen, O. (1990) Biochem. Cell Biol. 68, 44–53
8. Helin, J., Penttilä, L., Leppänen, A., Maaheimo, H., Lauri, S., Costello, C. E., and Renkonen, O. (1997) FEBS Lett. 412, 637–642
9. Leppänen, A., Penttilä, L., Niemelä, R., Helin, J., Seppo, A., Lusa, S., and Renkonen, O. (1991) Biochemistry 30, 9287–9296
10. Leppänen, A., Salminen, H., Zhu, Y., Maaheimo, H., Helin, J., Costello, C. E., and Renkonen, O. (1997) Biochemistry 36, 7026–7036
11. Fukuda, M. N., Dell, A., Oates, J. E., and Fukuda, M. (1985) J. Biol. Chem. 260, 6623–6631
12. Fukuda, M., Dell, A., Oates, J. E., and Fukuda, M. N. (1984) J. Biol. Chem. 259, 8260–8273
13. Vilkman, A., Niemelä, R., Penttilä, L., Helin, J., Leppänen, A., Seppo, A., Maaheimo, H., Lusa, S., and Renkonen, O. (1992) Carbohydr. Res. 226, 155–174
14. Seppo, A., Penttilä, L., Niemelä, R., Maaheimo, H., Renkonen, O., and Keane, A. (1995) Biochemistry 34, 4655–4661
15. Renkonen, O. (1983) Biochem. Soc. Trans. 11, 265–267
16. Bernstein, E. G., Hooper, M. L., Grandchamp, S., and Ephrussi, B. (1973) Proc. Natl. Acad. Sci. U. S. A. 70, 3893–3903
17. Zeuthen, J., Norgaard, J. O. R., Avner, P., Fellows, M., Wartiovaara, J., Vaheri, A., Rosen, A., and Giovannella, B. C. (1980) Int. J. Cancer 25, 19–32
18. Lehtonen, E., Lehto, V. P., Badley, R. A., and Virtanen, I. (1985) Exp. Cell Res. 144, 191–197
19. Niemelä, R., Rabín, J., Leppänen, A., Maaheimo, H., Costello, C. E., and Renkonen, O. (1995) Carbohydr. Res. 279, 331–338
20. Yates, A. D., and Watkins, W. M. (1983) Carbohydr. Res. 120, 251–268
21. Brew, K., Vanaman, T. C., and Hill, R. L. (1968) Proc. Natl. Acad. Sci. U. S. A. 59, 491–497
22. Renkonen, O., Helin, J., Penttilä, L., Maaheimo, H., Niemelä, R., Leppänen, A., Seppo, A., and Hård, K. (1991) Glycoconjug. J. 8, 361–367
23. Maaheimo, H., Rabín, J., and Renkonen, O. (1997) Carbohydr. Res. 297, 145–151
24. Sabesan, S., Duus, J., Neira, S., Domsaille, P., Kelm, S., Paulson, J. C., and Bock, K. (1992) J. Am. Chem. Soc. 114, 8363–8375
25. Scudder, P., Hanfland, P., Uemura, K., and Feizi, T. (1984) J. Biol. Chem. 259, 6586–6592
26. Naven, T. J. P., and Harvey, D. J. (1996) Rapid Commun. Mass. Spectrom. 10, 1361–1366
27. Rasilo, M.-L., and Renkonen, O. (1982) Eur. J. Biochem. 123, 397–405
28. Watanabe, K., Hakomori, S., Childs, R. A., and Feizi, T. (1979) J. Biol. Chem. 254, 3223–3228
29. Fukuda, M., Fukuda, M. N., and Hakomori, S. (1979) J. Biol. Chem. 254, 3700–3703
30. Kinloch, R. A., Mortillo, S., Stewart, C. L., and Wassarman, P. M. (1991) J. Cell Biol. 115, 655–664
31. Renkonen, O., Toppila, S., Penttilä, L., Salminen, H., Helin, J., Maaheimo, H., Costello, C. E., Turunen, J. P., and Renkonen, R. (1997) Glycobiology 7, 453–461
32. Bierhuizen, M. F. A., Mattei, M.-G., and Fukuda, M. (1993) Genes Dev. 7, 468–478