Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Original Article

Association of Vitamin D Status With Hospital Morbidity and Mortality in Adult Hospitalized Patients With COVID-19

Nipith Charoenngam, MD1, 2, Arash Shirvani, MD, PhD1, Niyoti Reddy, MBBS 1, Danica M. Vodopivec, MD 1, Caroline M. Apovian, MD3, Michael F. Holick, PhD, MD 1,*

1 Section Endocrinology, Diabetes, Nutrition and Weight Management, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
2 Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand
3 Section of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts

A R T I C L E I N F O

Article history:
Available online 9 March 2021

Key words:
vitamin D
25-hydroxyvitamin D
COVID-19
morbidity
mortality
acute respiratory distress syndrome

A B S T R A C T

Objective: To determine the association between vitamin D status and morbidity and mortality in adult hospitalized coronavirus disease 2019 (COVID-19) patients

Methods: We performed a retrospective chart review study in COVID-19 patients aged ≥18 year hospitalized at Boston University Medical Center between March 1 and August 4, 2020. All studied patients tested positive for COVID-19 and had serum levels of 25-hydroxyvitamin D (25[OH]D) results measured within 1 year prior to the date of positive tests. Medical information was retrieved from the electronic medical record and was analyzed to determine the association between vitamin D status and hospital morbidity and mortality.

Results: Among the 287 patients, 100 (36%) were vitamin D sufficient (25[OH]D > 30 ng/mL) and 41 (14%) died during hospitalization. Multivariate analysis in patients aged ≥65 years revealed that vitamin D deficiency (25[OH]D < 30 ng/mL) was statistically significantly associated with decreased odds of death (adjusted OR 0.33, 95% CI, 0.12-0.94), acute respiratory distress syndrome (adjusted OR 0.22, 95% CI, 0.05-0.96), and severe sepsis/septic shock (adjusted OR 0.26, 95% CI, 0.08-0.88), after adjustment for potential confounders. Among patients with body mass index < 30 kg/m2, vitamin D deficiency was statistically significantly associated with a decreased odds of death (adjusted OR 0.18, 95% CI, 0.04-0.84). No significant association was found in the subgroups of patients aged <65 years or with body mass index ≥30 kg/m2.

Conclusion: We revealed an independent association between vitamin D sufficiency defined by serum 25(OH)D ≥ 30 ng/mL and decreased risk of mortality from COVID-19 in elderly patients and patients without obesity.

Introduction

Vitamin D is recognized not only for its important functions in calcium and phosphate metabolism but also for its biologic actions on immune modulation. This is due to the presence of the vitamin D receptor in most types of cells including the immune cells and endothelial cells.1-3 Once synthesized by the skin or ingested, circulating vitamin D is metabolized into 25-hydroxyvitamin D (25 [OH]D) by the liver, which is the major circulating metabolite of vitamin D that is clinically measured for determining vitamin D status.2,4 Circulating 25(OH)D is then further metabolized by the enzyme 1α-hydroxylase (CYP27B1) at the kidneys into the active form 1,25-dihydroxyvitamin D (1,25(OH)2D). In addition, CYP27B1 is expressed by many other tissues, including activated macrophages, parathyroid glands, microglia, breast, colon, and keratinocytes, where 1,25(OH)2D is produced and exerts its tissue-specific autocrine and paracrine functions.1,2

Abbreviations: ARDS, acute respiratory distress syndrome; BMI, body mass index; CKD, chronic kidney disease; COPD, chronic obstructive pulmonary disease; COVID-19, coronavirus disease 2019; ESRD, end-stage renal disease; HIV, human immunodeficiency virus; HR, hazard ratio; ICU, intensive care unit; OR, odds ratio; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.

* Address correspondence and reprint requests to Michael F. Holick, PhD, MD, 85 E Newton Street, M-1013, Boston, MA 02118.
E-mail address: mfholick@bu.edu (M.F. Holick).

https://doi.org/10.1016/j.eprac.2021.02.013
1530-891X/© 2021 AACE. Published by Elsevier Inc. All rights reserved.
Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), disproportionately affects the elderly, African Americans, those who are obese, and institutionalized individuals (nursing home residents), all of whom are also identified as a high-risk population for vitamin D deficiency. This association could potentially contribute to higher COVID-19 morbidity and mortality rates appreciated in this population.

Several mechanisms have been proposed to support the potential protective role of vitamin D against morbidity and mortality of COVID-19. First, 1,25(OH)2D induces the macrophage production of the endogenous antimicrobial peptide cathelicidin LL-37, which acts against invading respiratory viruses by disrupting viral envelopes and altering viability of host target cells. Second, 1,25(OH)2D alters the expression of angiotensin converting enzyme-2, which serves as the host cell receptor that mediates infection by SARS-CoV-2. Third, 1,25(OH)2D alters the activity of different types of lymphocytes. It promotes a shift from T helper 1 and T helper 2 immune profiles to T helper 2 immune profile and promotes differentiation of regulatory T cells. It promotes a shift from T helper 1 and T helper 2 immune profile and promotes differentiation of regulatory T cells. It promotes a shift from T helper 1 and T helper 2 immune profiles to T helper 2 immune profile and promotes differentiation of regulatory T cells. It promotes a shift from T helper 1 and T helper 2 immune profiles to T helper 2 immune profile and promotes differentiation of regulatory T cells.

Although there is evidence for the protective role of vitamin D for other respiratory viral infections or critical illness, given the newness of COVID-19, little is known about the direct association between vitamin D status and the severity of COVID-19. Using information from the electronic medical record at the Boston University Medical Center, we aimed to investigate the association between vitamin D status and hospital morbidity and mortality in adult hospitalized patients with COVID-19.

Methods

Study Population

This study was a retrospective chart review cross-sectional study in adult patients with COVID-19 aged ≥18 years who were hospitalized at Boston University Medical Center (latitude 42° 21′ N) between March 1 and August 4, 2020. All patients included in this study tested positive for SARS-CoV-2 nucleic acid testing and had serum levels of 25-hydroxyvitamin D results measured within 1 year prior to the date of positive COVID-19 tests. The study protocol was approved by the Boston University Medical Campus institutional review board (H-40341).

Study Measurements

Characteristics of patients were extracted from the Boston University Medical Center hospital database. The following patient baseline characteristics were extracted: age, sex, race, insurance type, latest body mass index (BMI), smoking history, alcohol use, homelessness, receipt of prescription for vitamin D2 and vitamin D3 supplementation, in-hospital treatment for COVID-19 (ie, azithromycin, hydroxychloroquine, colchicine, corticosteroids, interleukin-6 antibodies, and interleukin-1 receptor antagonists), and presence of underlying comorbidities, including type 2 diabetes mellitus, hypertension, dyslipidemia, coronary heart disease, heart failure, cerebrovascular disease, asthma, chronic obstructive pulmonary disease (COPD), chronic kidney disease (CKD), end-stage renal disease (ESRD), malignancy, and human immunodeficiency virus (HIV) infection.

Total serum 25(OH)D (25[OH]D2 and 25[OH]D3) levels were measured by in-house chemiluminescent immunoassay (Abbott Architect). The cutoff level of serum total 25(OH)D of 30 ng/mL was used for the definition of vitamin D sufficiency based on the Endocrine Society Clinical Practice Guidelines on Vitamin D that defined vitamin D insufficiency and vitamin D deficiency as a circulating level of 25(OH)D of 20 to 29 ng/mL and less than 20 ng/mL, respectively. Laboratory results measured at the time of hospitalization or as soon thereafter as possible (within 48 hours after admission) were extracted from the hospital database. These included complete blood count, complete metabolic profile, creatinine, blood glucose, C-reactive protein, D-dimer, erythrocyte sedimentation rate, ferritin, and lactate dehydrogenase.

The primary outcome of this study was in-hospital death. Secondary outcomes included intensive care unit (ICU) admission, need for intubation, hospital length of stay, hypoxemia (O2 saturation <90%) and diagnosis of acute respiratory distress syndrome (ARDS), myocardial infarction, acute kidney injury, severe sepsis/septic shock, deep venous thrombosis, and pulmonary embolism. All outcomes were extracted from the hospital database and validated by manual chart review.

Statistical Analysis

Continuous variables were reported as arithmetic means with standard deviation. Categorical variables were reported as number of patients with percentage. Comparison of baseline characteristics and laboratory measurements among patients with vitamin D sufficiency (25[OH]D ≥30 ng/mL), patients with vitamin D insufficiency (25[OH]D 20–<30 ng/mL), and patients with vitamin D deficiency (25[OH]D <30 ng/mL) was performed using the analysis of variance, independent sample t test, or Mann-Whitney U test for continuous data and X2 or Fischer exact test for categorical data. Multivariate logistic regression was used to determine odds ratios (OR) and 95% CI to compare mortality and morbidities between patients with vitamin D sufficiency (25[OH]D ≥30 ng/mL) and patients with vitamin D insufficiency/deficiency (25[OH]D <30 ng/mL). This model was adjusted for potential confounding variables, including age, sex, BMI, insurance, race, smoking, alcohol drinking, type 2 diabetes, hypertension, dyslipidemia, coronary heart disease, cerebrovascular disease, COPD, asthma, CKD, ESRD, malignancy, HIV infection, and heart failure.

Because COVID-19 specifically affects older individuals and those who are obese and vitamin D is expected to distribute and modulate immune function differently among those who are obese and those who are lean, we expected that age and BMI may be effect modifiers of the association between vitamin D status and hospital outcomes. Therefore, subgroup analyses in patients aged <65 and ≥65 years and patients with BMI <30 and ≥30 kg/m2 were conducted. The cutoff value for age was based on the World Health Organization’s definition of the elderly. The cutoff value for BMI was based on the Centers for Disease Control and Prevention’s definition of obesity. Statistical significance was defined as P value of <.05. SPSS version 23 (SPSS Inc) was used to perform all statistical analyses.

Results

We identified 1478 patients with COVID-19 who were hospitalized at the Boston University Medical Center between March 1 and August 4, 2020. A total of 287 (19%) patients had available serum 25(OH)D level within 1 year prior to hospitalization and were included in this study, with 100 (35%), 91 (32%), and 96 (33%) patients being vitamin D sufficient (25[OH]D >30 ng/mL), vitamin D insufficient (25[OH]D 20–<30 ng/mL), or vitamin D deficient.
older than vitamin D insufficient, and had lower rates of hypertension, dyslipidemia, heart failure, and cerebrovascular disease (all P < .05). Among patients aged >65 years old, vitamin D deficient patients were statistically significantly younger and had lower rates of hypertension (both P < .05).

Comparison of laboratory results among vitamin D sufficient, vitamin D insufficient, and vitamin D deficient patients is demonstrated in Table 2. Serum albumin was statistically significantly higher in vitamin D sufficient patients (both P < .05) than the rest of the patients in both age groups of <65 years old and ≥65 years old. Among patients aged ≥65 years old, in addition, vitamin D sufficient patients had statistically significantly lower plasma ferritin and higher oxygen saturation than vitamin D deficient/insufficient patients.

Hospital outcomes stratified by age and vitamin D status are shown in Table 3. Among patients aged >65 years old, vitamin D sufficient patients had statistically significantly lower rates of death (12% vs 32%), ICU admission (21% vs 38%), intubation (11% vs 28%), ARDS (5% vs 19%), and severe sepsis/septic shock (9% vs 30%) compared with vitamin D deficient/insufficient patients (all P < .05). No statistically significant difference among the groups was found among patients aged <65 years old.

Adjusted associations between vitamin D sufficiency and hospital outcomes in all patients, patients aged >65 years old, and patients with BMI <30 kg/m² are shown in Figures 1, 2, and 3, respectively. Among all patients (Fig. 1), vitamin D sufficiency was statistically significantly associated with decreased odds of severe
Abbreviation: FEU – Fibrinogen equivalent unit.

Data were expressed as mean ± SD. Deceased patients were excluded in the analysis for hospital length of stay. * P value was determined by the analysis of comparison between patients with 25-hydroxyvitamin D levels of <20 ng/mL and any hospital outcomes was significantly lower rate of death compared with vitamin D insufficient or <20 ng/mL. ** P value was determined by the analysis variance of overall between-group difference.

Abbreviations: 25(OH)D – 25-hydroxyvitamin D; ARDS – acute respiratory distress syndrome; ICU – intensive care unit. Data were expressed as mean ± SD. Deceased patients were excluded in the analysis for hospital length of stay.

In the subgroup of patients aged ≥65 years old (Fig. 2), vitamin D sufficiency was statistically significantly associated with decreased odds of death (adjusted OR, 0.33; 95% CI, 0.12-0.94), ARDS (adjusted OR, 0.22; 95% CI, 0.05-0.96), and severe sepsis/septic shock (adjusted OR, 0.26; 95% CI, 0.08-0.88). In the subgroup of patients with BMI <30 kg/m², vitamin D sufficiency was statistically significantly associated with a decreased odds of death (adjusted OR, 0.18; 95% CI, 0.04-0.84). No statistically significant association between vitamin D sufficiency and any hospital outcomes was found among patients aged <65 years old and among patients with BMI ≥30 kg/m². All effect estimates were adjusted for age, sex, BMI, insurance, race, smoking, alcohol drinking, type 2 diabetes, hypertension, dyslipidemia, coronary heart disease, cerebrovascular disease, COPD, asthma, CKD, ESRD, malignancy, HIV infection, and heart failure.

Given the significant results in patients age ≥65 years old, we performed additional univariate subgroup analyses in patients aged ≥65 years old with BMI <30 kg/m² and ≥30 kg/m², which are shown in Table 4. Among the patients aged ≥65 years old with BMI <30 kg/m², vitamin D sufficient patients had a statistically significantly lower rate of death compared with vitamin D insufficient or
deficient patients (8% vs 29%, \(P = .011 \)). Among patients aged \(\geq 65 \) years old with BMI \(\geq 30 \) kg/m\(^2\), although with limited sample size, vitamin D sufficient patients had a statistically significantly lower rate of severe sepsis/septic shock compared with vitamin D insufficient or deficient patients (0% vs 29%, \(P = .029 \)).

Discussion

The present cross-sectional study in 287 patients with COVID-19 hospitalized at the Boston University Medical Center found that, among 136 patients aged \(\geq 65 \) years old, vitamin D sufficiency (25 [OH]D \(\geq 30 \) ng/mL) was associated with statistically significantly decreased rates of death, ICU admission, intubation, ARDS, and severe sepsis/septic shock. After adjustment for potential confounders, the association between vitamin D sufficiency and death, ARDS, and severe sepsis/septic shock remained statistically significant, while none of the associations were observed among the younger patients. This is likely because of the higher inflammatory burden of COVID-19 in older patients, thereby amplifying the immunological effects of vitamin D observed in the study. This observation is supported by the observed significantly lower levels of the inflammatory marker ferritin and higher oxygen saturation on admission in vitamin D sufficient patients among older patients but not younger patients. Moreover, the absolute rates of morbidity and mortality in the younger patients were relatively low, which most likely compromised the statistical power to determine the association. Interestingly, there was a statistically significantly decreased odds of death in vitamin D sufficient patients among those with BMI \(< 30 \) kg/m\(^2\), but not those with BMI \(\geq 30 \) kg/m\(^2\). This reinforces that vitamin D is distributed differently and may influence immune function differently among those who are and those who are not obese.

In fact, there is promising evidence of the connection between vitamin D status and risk of incident COVID-19 infection. For
example, Kaufman et al.25 investigated the likelihood of a positive test for COVID-19 in a national clinical laboratory database of 191,779 patients and found that SARS-CoV-2 positivity is strongly and inversely associated with circulating 25(OH)D levels, a relationship that persists across latitudes, races/ethnicities, both sexes, and age ranges. The result was in line with that of a single-center, retrospective cohort study by Meltzer et al.26 showing that deficiency (25(OH)D <20 ng/mL) was associated with higher risk of invasive mechanical ventilation (adjusted hazard ratio [HR], 6.12; 95% CI, 2.79-13.42) and death (adjusted HR, 14.73; 95% CI, 4.16-52.19), after adjusting for age, sex, and comorbidities. Hars et al.27 used data of 160 elderly inpatients from the COVID Age study and showed that vitamin D was independently associated with in-hospital mortality risk in men (adjusted HR, 2.47; 95% CI, 1.02-5.97) but not in women after adjustment for age, comorbidities, C-reactive protein level, and frailty status. On the other hand, Hernández et al.28 reported in a case-control study of 216 patients with COVID-19 and 197 controls that although serum 25(OH)D levels were significantly lower in patients with COVID-19 versus controls, the authors suggested that there was a causal relationship between vitamin D deficiency and COVID-19 severity.

Table 4

Hospital outcomes of patients aged ≥65 years with serum 25-hydroxyvitamin D <20, 20 to <30, and ≥30 ng/mL stratified by body mass index

Hospital outcomes	Age ≥65 years old, BMI <30 kg/m² (N = 90)	Age ≥65 years old, BMI ≥30 kg/m² (N = 41)								
	25(OH)D <20 ng/mL (N = 23)	25(OH)D 20–<30 ng/mL (N = 28)	25(OH)D ≥30 ng/mL (N = 39)	25(OH)D <20 ng/mL (N = 9)	25(OH)D 20–<30 ng/mL (N = 15)	25(OH)D ≥30 ng/mL (N = 17)				
Death	7 (30.4%)	8 (28.6%)	3 (7.7%)	0.038	0.011	4 (44.4%)	6 (40.0%)	4 (23.5%)	0.471	0.321
ICU admission	9 (39.1%)	12 (42.9%)	9 (23.1%)	0.189	0.071	3 (33.3%)	5 (33.3%)	3 (17.6%)	0.536	0.309
Intubation	8 (34.8%)	6 (21.4%)	5 (12.8%)	0.123	0.120	3 (33.3%)	5 (33.3%)	1 (5.9%)	0.112	0.056
Hospital length of stay (days)	11 (41.1%)	12 (42.9%)	10 (26.3%)	0.005	0.006	8 (88.9%)	7 (46.7%)	6 (35.3%)	0.473	0.337
Hypoxemia (O₂ saturation <90%)	1 (4.3%)	4 (14.3%)	4 (10.3%)	0.499	1.000	0 (0.0%)	5 (33.3%)	1 (5.9%)	0.104	0.207
ARDS	5 (21.7%)	4 (14.3%)	2 (5.1%)	0.144	0.105	2 (22.2%)	4 (26.7%)	1 (5.9%)	0.266	0.207
Myocardial infarction	2 (8.7%)	4 (14.3%)	3 (7.7%)	0.655	0.726	1 (11.1%)	4 (26.7%)	1 (5.9%)	0.238	0.373
Acute kidney injury	12 (52.2%)	19 (67.9%)	21 (53.8%)	0.425	0.527	6 (66.7%)	9 (60.0%)	10 (58.8%)	0.922	1.000
Severe sepsis/Septic shock	3 (13.0%)	7 (25.0%)	3 (7.7%)	0.135	0.138	3 (33.3%)	4 (26.7%)	0 (0.0%)	0.046	0.029
Deep venous thrombosis	2 (8.7%)	1 (3.6%)	3 (7.7%)	0.723	1.000	1 (11.1%)	1 (6.7%)	0 (0.0%)	0.421	0.502
Pulmonary embolism	1 (4.3%)	2 (7.1%)	2 (5.1%)	0.899	1.000	1 (11.1%)	0 (0.0%)	0 (0.0%)	0.162	1.000

Abbreviations: 25(OH)D = 25-hydroxyvitamin D; ARDS = acute respiratory distress syndrome; BMI = body mass index; ICU = intensive care unit. Data were expressed as mean ± SD. Deceased patients were excluded in the analysis for hospital length of stay.

* P < .05.

P value was determined by the analysis of overall between-group difference.

b P value was determined by the analysis of comparison between patients with 25-hydroxyvitamin D levels of ≥30 versus patients with 25-hydroxyvitamin D levels <30 ng/mL.
Given the potential benefit of vitamin D in prevention of COVID-19 and reduction of its severity, multiple ongoing clinical trials are being conducted with the aim of identifying the impact of different forms of vitamin D supplements on risk and severity of COVID-19. A pilot randomized clinical trial that gave vitamin D supplements in the form of 25-hydroxyvitamin D₃ (calcifediol) or placebo to 76 patients with COVID-19 showed that the treatment group had a reduced rate of ICU admission.

Despite the limited evidence on the potential benefit of vitamin D supplementation for this specific disease, it is reasonable to believe that vitamin D could lessen the risk of acquiring respiratory viral infection and alleviate systemic inflammation according to the evidence from previous clinical trials conducted in other diseases with similar pathogenesis. For instance, a meta-analysis of 25 randomized controlled trials showed that supplementation of vitamin D₂ or D₃ protects against the development of acute respiratory tract infection compared with placebo (OR, 0.88; 95% CI, 0.81–0.96). In addition, a randomized controlled trial giving enteral 540 000 IU of vitamin D₂ followed by monthly 90 000 IU for 5 months or placebo to 475 vitamin D deficient (25(OH)D <20 ng/mL) critically ill patients observed a significant decrease in-hospital mortality in a subgroup of 200 patients with severe vitamin D deficiency defined by serum 25(OH)D <12 ng/mL (HR, 0.56; 95% CI, 0.35–0.90). Based on the results of this study along with others, it is therefore advisable to have sensible sunlight exposure and/or increase vitamin D intake to maintain serum 25(OH)D at least 30 ng/mL and preferably to 40 to 60 ng/mL to achieve the optimal overall health benefits of vitamin D and to reduce the risk of developing severe COVID-19.

It is of particular interest that vitamin D sufficient patients had statistically significantly higher levels of serum albumin on admission than vitamin D insufficient and vitamin D deficient patients. The association between vitamin D status and serum albumin is likely bidirectional. On one hand, low serum 25(OH)D levels may be causative for more severe systemic inflammation and therefore albumin, as a negative acute phase reactant and an indicator for vascular leakage, is expected to be lower in patients with a low level of serum 25(OH)D. On the other hand, 15% of 25(OH)D is bound to albumin; therefore, a low level of albumin at baseline may contribute to a low level of total serum 25(OH)D.

The present study carries a number of strengths, including (1) inclusion of multiple hospital morbidities, (2) extensive adjustment for possible confounders in multivariate analysis, and (3) subgroup analysis by age and BMI, which helps to gain more insight into the influence of these factors on the effect estimation. Nevertheless, there are certain limitations that should be acknowledged. First, this study is cross-sectional by design; therefore, causal relationship could not be determined with certainty. Second, patients who had serum 25(OH)D levels measured were selectively included into this study. Serum 25(OH)D measurement is not routine and is primarily indicated for patients with susceptibility to low level of serum 25-hydroxyvitamin D. These patients might have had different characteristics from the rest of the population, and therefore the results may have limited generalizability. Third, we used data of serum 25(OH)D level measured up to 1 year prior to hospitalization. Because there is seasonal variation of serum 25(OH)D levels, discrepancies between the month of the year for each 25(OH)D measurement in patients may compromise the accuracy of ascertainment of vitamin D status in our study. Furthermore, it is probable that patients who were found to have vitamin D deficiency prior to the infection would have been treated for vitamin D deficiency and became vitamin D repleted by the time they were infected. This may indicate that there might be the legacy effect of being vitamin D sufficient and that raising serum 25(OH)D concentrations over a short period of time might not be as beneficial as maintaining serum 25(OH)D concentrations in a preferred range over the long term. Further studies are required to investigate the short-term and long-term effects of raising serum 25(OH)D level. It should also be noted that we used data of patients who were hospitalized between March and August 2020. Therefore, as shown in Table 1, the treatment strategy in our study may not be representative of the most updated standard treatment for COVID-19. Finally, the number of patients in this study is relatively low. Further studies with a larger sample size should be conducted to confirm our findings.

Conclusion

We demonstrated an independent association between vitamin D sufficiency defined by serum 25(OH)D ≥ 30 ng/mL and risk of morbidity and mortality from COVID-19 stratified by age group and BMI status. Among aged ≥65 years old, vitamin D sufficiency was associated with statistically significantly decreased rates of death, ICU admission, intubation, ARDS, and severe sepsis/septic shock. After adjustment for potential confounders, the association between vitamin D sufficiency and death, ARDS, and severe sepsis/septic shock remained statistically significant. We also found among patients aged ≥65 years old significantly lower levels of the inflammatory marker ferritin and higher oxygen saturation on admission in vitamin D sufficient patients compared with vitamin D insufficient or deficient patients. In addition, we found a statistically significantly decreased odds of death in vitamin D sufficient patients among those with BMI <30 kg/m². The results support the potential benefit of raising serum level of serum 25(OH)D to at least 30 ng/mL to reduce the risk of morbidity and mortality of COVID-19. Further clinical trials are required to determine the benefit of vitamin D supplementation for this purpose.

Acknowledgment

N.C. receives the institutional research training grant from the Ruth L. Kirchstein National Research Service Award program from the National Institutes of Health (T2 T32 DK 7201-42). C.M.A. is supported by P30 DK046200.

Disclosure

M.F.H. is a consultant for Quest Diagnostics, Inc, Biogena, Inc, and Ontometrics, Inc, and on the speaker’s bureau for Abbott, Inc. C.M.A. reports receiving personal fees from Nutrisystem, Zafgen, Sanofi-Aventis, Orexigen, EnteroMedics, GI Dynamics, Scientific Intake, Gelesis, Novo Nordisk, SetPoint Health, Xeno Biosciences, Rhythm Pharmaceuticals, Eisai, and Takeda outside of the funded work, reports receiving grant funding from Aspire Bariatrics, GI Dynamics, Orexigen, Takeda, the Vela Foundation, Gelesis, Energess, Coherence Lab, and Novo Nordisk outside of the funded work, and reports past equity interest in ScienceSmart, LLC. The remaining authors have no conflicts of interest.

References

1. Charoenngam N, Holick MF. Immunologic effects of vitamin D on human health and disease. *Nutrients*. 2020;12(7):2897.
2. Holick MF. Vitamin D deficiency. *N Engl J Med*. 2007;357(3):266–281.
3. Charoenngam N, Shirvani A, Holick MF. Vitamin D for skeletal and non-skeletal health: what we should know. *J Clin Orthop Trauma*. 2019;10(6):1082–1093.
4. Holick MF, Binkley NC, Bischoff-Ferrari HA, et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. *J Clin Endocrinol Metab*. 2011;96(7):1911–1930.
5. Snowden LR, Graaf G. COVID-19, social determinants past, present, and future, and African Americans’ health. *J Racial Ethn Health Disparities*. 2021;8(1):12–20.
6. Khunti K, Singh AK, Pareek M, Hanif W. Is ethnicity linked to incidence or outcomes of covid-19? BMJ. 2020;369:m1548.

7. Wacker M, Holick MF. Sunlight and vitamin D: a global perspective for health. Dermatol Endocrinol. 2013;5(1):51–108.

8. Shahmiri M, Enciso M, Adda CG, Smith BJ, Perugini MA, Mechler A. Membrane core-specific antimicrobial action of cathelicidin IL-37 peptide switches between pore and nanofibre formation. Sci Rep. 2016;6:38184.

9. Liu PT, Stenger S, Li H, et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science. 2006;311(5768):1770–1773.

10. Aygun H. Vitamin D can prevent COVID-19 infection-induced multiple organ damage. Naunyn Schmiedebergs Arch Pharmacol. 2020;391(7):1157–1160.

11. Ortega JT, Serrano ML, Pujol FH, Rangel HR. Role of changes in SARS-CoV-2 spike protein in the interaction with the human ACE2 receptor: an in silico analysis. EXCLI J. 2020;19:410–417.

12. Lemire JM, Archer DC, Beck L, Spiegelberg HL. Immunosuppressive actions of 1,25-dihydroxyvitamin D3: preferential inhibition of Th1 functions. J Nutr. 1995;125(6 Suppl):1704S–1708S.

13. Tang J, Zhou R, Luger D, et al. Calcitriol suppresses antiretinal autoimmunity through inhibitory effects on the Th17 effector response. J Immunol. 2009;182(8):4624–4632.

14. Boonstra A, Barrat FJ, Crain C, Heath VL, Savelkoul HFJ, O’Garra A. 1alpha,25-Dihydroxyvitamin D3 has a direct effect on naive CD4(+) T cells to enhance the development of Th2 cells. J Immunol. 2001;167(9):4474.

15. Gibson CC, Davis CT, Zhu W, et al. Dietary vitamin D and its metabolites non-genomically stabilize the endothelium. PLoS One. 2015;10(10):e0140370.

16. Kim DH, Meza CA, Clarke H, Kim JS, Hickner RC. Vitamin D and endothelial function. Nutrients. 2020;12(1):575.

17. Martineau AR, Jolliffe DA, Hooper RL, et al. Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis. Nutrients. 2015;10(10):e0140370.

18. Jaffe HA, Mehta P, Krupski M, et al. Vitamin D3 treatment of critically ill COVID-19 patients. JAMA Intern Med. 2020;180(10):1343–1353.

19. Entrenas Castillo M, Entrenas Costa LM, Vaquero Barrios JM, et al. Effect of calcifediol treatment and best available therapy versus best available therapy on intensive care unit admission and mortality among patients hospitalized for COVID-19: a pilot randomized clinical study. J Steroid Biochem Mol Biol. 2020;203:105751.

20. De Figueiredo FP, de Souza PR, Moreira JR, et al. Effect of high-dose vitamin D3 on hospital length of stay in critically ill patients with vitamin D deficiency: the VITdAL-ICU randomized clinical trial. JAMA. 2014;312(15):1520–1530.

21. Jain S, Gautam V, Naseem S. Acute-phase proteins: as diagnostic tool. J Pharm Bioallied Sci. 2011;3(1):118–127.

22. Bikle DD, Schwartz J. Vitamin D binding protein, total and free vitamin D levels in different physiological and pathophysiologic conditions. Front Endocrinol. 2019;10:317.

23. Villanueva E, Najarro P, Garcia-Mas E, et al. Temporal relationship between vitamin D status and parathyroid hormone in the United States. PLoS ONE. 2015;10(3):e0118108.