Supplementary Figures and Legends

Supplementary Figure 1. Cardiac-specific Bmi1 expression in cardiogenesis and adulthood

(a) qRT-PCR analysis of wild-type mice for total cardiac expression of Ezh2 and Bmi1 mRNA in embryos (E) at 10.5 and 18.5 dpc, newborns at postnatal day 2 (P2), 10-week-old adults, and aged adults (83-week-old). Results are standardized to β-actin and are expressed as the fold-change of the indicated subpopulations compared with the E10.5 population. Data are means ±SD (n=12, * p<0.05; Student’s t-test).

(b) Representative western blots (WB) showing the expression of Bmi1, Ezh2, p16INK4a (p16), αMHC, and β-actin in heart cells from wild-type newborns at postnatal day 2 (P2) and aged adults (43-week-old).

(c) Representative western blots showing Bmi1 and p16INK4a (p16) expression in heart samples from wild-type mice subjected to TAC or chronic infusion with ISO (n = 4
mice per group), and from representative human patients with healthy hearts (NF; n = 8) and with heart failure (HF; n = 8).

d qRT-PCR detection of Bmi1 mRNA expression in in non-failing and failing human hearts.

e Representative western blots showing the protein levels of Bmi1, H3K9me3, and β-actin in total heart cells from 22-week-old Bmi1^{fl};NkxCre and Bmi1^{f/+} mice.

f qRT-PCR detection of mRNA expression of the indicated genes in heart samples from Bmi1^{fl};NkxCre and Bmi1^{f/+} control mice (means ±SD; n=10, * p<0.05; Student’s t-test).

g Myocyte cross-sectorial area in Bmi1^{fl};NkxCre and Bmi1^{f/+} hearts (means ±SD; n=9, * p<0.05; Student’s t-test).

h Lung weight in 27-week-old Bmi1^{fl};NkxCre and Bmi1^{f/+} control mice (means ±SD; n=10, * p<0.05; Student’s t-test).
Supplementary Figure 2. Adult Bmi1 deficiency causes dilated cardiomyopathy

(a) qRT-PCR analysis of Bmi1, p16INK4a, ARF, Ezh2, p21, and p53 mRNA expression in total heart cells from Bmi1\(^{-/-}\);αMHC Cre (Bmi1-KO) mice. Data are standardized to β-actin levels, and are expressed relative to Bmi1\(^{+/+}\) (Control) mice (means ±SD; n=12, ** p<0.001, * p<0.05; Student’s t-test).

(b) Heart-to-body-weight (HW/BW) ratio in 12-week-old Bmi1\(^{+/+}\);αMHC Cre mice and Bmi1\(^{+/+}\) controls (means ±SD; n=12, * p<0.05; Student’s t-test).

(c) Echocardiographic measurements and physiological parameters in 7-week- and 6-month-old Bmi1\(^{+/+}\);αMHC Cre heterozygotes and Bmi1\(^{+/+}\) controls mice. IVSd, diastolic interventricle septal wall thickness; LVDd, diastolic left ventricle internal dimension; LVDs, systolic left ventricle internal dimension; LVPWd, diastolic left ventricle posterior wall thickness; FS, fractional shortening of left ventricle dimension; EF, ejection fraction; LVmass, left ventricle mass. Data are means ±SD; n=12, ** p<0.001, * p<0.05; Student’s t-test).

(d) Heart-to-body-weight (HW/BW) ratio in 6-month-old Bmi1\(^{+/+}\);αMHC Cre heterozygotes and Bmi1\(^{+/+}\) control mice (means ±SD; n=10, * p<0.05; Student’s t-test).
(e) Representative Masson's trichrome staining to detect fibrosis (bars, 40 μm) and WGA staining of left ventricle to outline cardiomyocytes (bars, 10 μm) in 6-month-old Bmi1^{f+};αMHCCre heterozygotes and Bmi1^{f+} control mice.

(f) Kaplan-Meier survival curve for Bmi1^{f+};αMHCCre heterozygotes and Bmi1^{f+} littermate mice (means ±SD; ** p<0.001; Student’s t-test).
Supplementary Figure 3. Effect of Tgf-β inhibition in DCM mice

(a) Representative western blots (WB) showing the protein levels of Bmi1, H3K9me3, and β-actin in total heart cells from doxycycline-induced 12-week-old iBmi1^{fl/fl};MLC2^{+/+} (iBmi1^{fl};MLC2) mice and iBmi1^{fl/fl};MLC2^{+/+} (iBmi1^{fl}) control littermates.

(b) Quantification of myocyte cross-sectional area in nontransgenic and Bmi1 transgenic mice subjected to TAC surgery or sham (mean ± s.d. n = 5 mice per group).

(c-e) Left ventricular wall thickness (c), fractional shortening (d), and of myocyte cross-sectional area (e) in 12-week-old Bmi1^{fl/fl},p16^{INK4a-/-}, Bmi1^{fl/fl};αMHC-Cre and Bmi1^{fl};αMHC-Cre;p16^{-/-} mice (means ± s.d. n = 8 mice per group; * p<0.05).

(f) Blood chimerism was analyzed in parabiotic pairs as indicated by measuring the frequency of donor-derived blood cells from one partner (CD45.1+) to the other (means ± SD; n=6; * p<0.05).
Supplementary Table 1

Primer sequences used for genotyping

	Fw LOXP1 Bmi1	Rv LOXP1 Bmi1
cko-Bmi^{fl/fl} mice	AGAGAATCCAGCTGTCCAGTG	CCTGGACATCACAATAGGACA

	Fw Tg alfa Mhc Cre Ert 2	Rv Tg alfa Mhc Cre Ert 2
α-MHC^{TM}-Cre^{tg/+} mice	AGGTGGACCTGATCATGGAG	ATACCGGAGATCATGCAAGC
Fw Int Pos Control	GTAGGTGGAAATCTAGCATCATCC	

	Fw 5 Arm 170pb	
MLC2-rRTA^{tg/+} mice	5'-GGAGGGGAGTGGTCAATACC	
Fw Int Pos Control	GTAGGTGGAAATCTAGCATCATCC	

	Fw MHC	
p16^{INK4a/-} mice	GCGGTCTGGCAGTAAAAACTATC	
Fw Int Pos Control	GTAGGTGGAAATCTAGCATCATCC	

	Fw MHC	
α-MHC-Cre^{tg/+} mice	GCGGTCTGGCAGTAAAAACTATC	
Fw Int Pos Control	GTAGGTGGAAATCTAGCATCATCC	

| | | |
| *Nkx2.5-Cre mice* | | |

	NKX 2,5 ANTISENSE	
	GCGCACTCACTTTAATGGAAGAG	
	GCCCTGTCCCTCAGATTTCACACC	
	GATGACTCTGGTCAGAGATACCTG	
Primer and probe sequences used in qRT-PCR		
--		
Fw Bmi1	ACCTGCTGCTGGCCCCTTC	
Rv Bmi1	GACTCCTTGATGAAGGTGCCC	
Fw Ezh2	GCCACACCTCGGAATTTTCTTC	
Rv Ezh2	CAGAGCACCCTGGGAGCTGCTG	
Fw mBMI1 int	CAGCAATGACTGTGATGC	
Rv mBMI1 int	CTCCAGCATTCTGCTAGTC	
Fw p16 E1	CGAAGCTTCTTCTGGTGATCC	
Rv p16 E2	TTTGACAGAAGAGCCTGCTAC	
Fw1 mp15 qPCR	AGATCCCACGCCCTGAACCG	
Rv1 mp15 qPCR	TGTCTTTCAGCCAAGTGCTACC	
Fw ARF	TTGGAGGTTCTGGTTTGTC	
Rv ARF	TTCTTTGCGGCGGAGAG	
Fw Myh7	CAACACCAGCCACCCTCTAT	
Rv Myh7	GAGAAGGTGTTGGTCTCGTG	
Fw Tgfb	TACCCCTGGAAGTCTGCTTG	
Rv Tgfb	AACTGCCAGGGATGGAAAAAT	
FW E1 p53	CCGCACACTTCTCAGCAGCGG	
RV E2 p53	GCTTTCAGTACATTTTGGCCC	
FW p21	CCACATCAAACGCTTGGGG	
RV p21	GGAGGACAGAGACAAGGGGC	
FW ANP	CAGGCGTCCAGGCTCCCTGC	
RV ANP	CATCAATTACCTGCCCTACC	
FW BNP	CAAGGCTTGGAGGTACATTGGG	
RV BNP	TCCCTCGGGAAACGGGAGCCC	
FW bMHC	CCTGCCCACGGGTGAGTCG	
RV bMHC	CGCGCTTCTGCATCAGTGACG	
FW aMHC	GCCCTTGCACTTCCACCGG	
RV aMHC	GCCCTTGCACTTCCACCGG	
qPCR primers used for ChIP analysis

Tgfb3
FW1 PROM TTTAATTTCCCTTGTAGACAGCC
RV1 PROM TGTGCTAGCTTTTCAGTGCCGG
FW2 PROM TTCCCTTGTAGACAGCCTTCC
RV2 PROM ACCTAAATCGGATAGCAACC
FW3 PROM GAGACCTTCTGAACCTTGCCGG
RV3 PROM GGAAGAGAGGTGATCGGGG
FW4 PROM CGAAGAAAGCAACAGAAGCCC
RV4 PROM CTTAGGAGACCGCAGTCCG

CyclinA2
FW1 PROM AACCTTCACAGAGTGACCAC
RV1 PROM CAGAAAATCTAAACTCTTGACTACC
FW2 PROM CCTGACCTGCTGCAAAATGGC
RV2 PROM CATCTAGCTACACATCATAGGG
FW3 PROM AATCAAGGCTTTTGGGAGGTCC
RV3 PROM AGAATCTTCAACAGCTCTGCC
FW4 PROM AACACAGAACTGCTCTCTCC
RV4 PROM GGAATGATTTTGGATAGACTTCCG

IL1
FW1 PROM TGCAGAAAGCCTGTGGTTTGC
RV1 PROM TTTGGACCTCATAAACAACC
FW2 PROM TTTCCCTACAGCGCTGCGGG
RV2 PROM TTTCCTTACACAGCCTGGGG
FW3 PROM AGAGATTCAGTGGCTGCCAGC
RV3 PROM AGAATCTTCAACAGCTCTGCC
FW4 PROM CAGGTGTCTTTTGATACGGCC
RV4 PROM CCATAACAATGAAAAACCTTGACC

Gbe1
FW1 PROM ATCCGCGCTGCTCTGCTGCC
RV1 PROM CCTGCTAATCCAAACTCTTGAGCC
FW2 PROM CCAATGTCTCTAAGAATCTCC
RV2 PROM TCAGTGCTGCTGCAGACCAT
FW3 PROM TTTTGTGCTGAAATTTGCTG
RV3 PROM TGGTACTGCTTGTGCTGCC
FW4 PROM ATCATGAAATCTTGACACC
RV4 PROM AAATAATCATTTGGGTGGAGGG

Gmnn
FW1 PROM GCTCGCACCTACAAAGCCCG
RV1 PROM TGTCAAACAAAGTGAGGGCCAGG
FW2 PROM ACTTGGCTCCTTGCTCCCC
RV2 PROM GGCTGACTCAGATGACTGGG
FW3 PROM GCAGGTGAGTCACAGCACCG
RV3 PROM TTGACTAGGATCCGCCTGCC
FW4 PROM	TCTTTCTTCCCTGAAATCTGGC
RV4 PROM	TCTTCACCTTCTCTGCTCTCC
P16INK4a	FW1 PROM TGATAAAAACGTAGTTAGAAAGGC
RV1 PROM	GAAATTTATGACAGCTTTATTC
FW2 PROM	AACCATTTCAGCTTGTAGAGG
RV2 PROM	CAGAGAGATGTGGTGTGATAGC
FW3 PROM	AGCTACTGACCTAGAATG
RV3 PROM	CTAAGAAATGTAGATTTTGGGC
FW4 PROM	CATACAAAGGATCCCTGCC
RV4 PROM	TCACAGAATGCCTAGAAGGCC