Anharmonic oscillator potentials in the prolate γ-rigid regime of the collective geometrical model

R Budaca
Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Măgurele RO-077125, Romania
E-mail: rbudaca@theory.nipne.ro

Abstract. Based on higher order JWKB approximation, an analytical formula is derived for the energy spectrum of the prolate γ-rigid Bohr-Mottelson Hamiltonian with an oscillator potential and a quartic or sextic anharmonicity in β shape variable. The model is found to provide good description for near vibrational nuclei situated in vicinity of a closed neutron shell.

1. Introduction
An analytical expression for the energy spectrum of the ground and β bands was obtained in the axially symmetric γ-rigid regime of the Bohr Hamiltonian with a harmonic oscillator potential in the β shape variable amended with a higher order anharmonicity term. The anharmonic terms are considered of quartic [1] and sextic [2] types. The particular structure of the model space facilitates the exact separation of angular variables from the β variable, leading to a differential Schrödinger equation with an anharmonic potential and a centrifugal-like barrier. The Schrödinger equation for such potentials is not exactly solvable. Thus, the corresponding eigenvalues are approximated by an analytical formula derived on the basis of the JWKB approximation [3, 4], which depends on a single parameter except the scale. The experimental realization of the model is found in a variety of vibrational-like nuclei exhibiting some regularity regarding the order of the considered anharmonicity.

2. Prolate γ-rigid collective Hamiltonian
The Hamiltonian associated to a prolate γ-rigid nucleus is [1, 2, 5, 6, 7]:

\[H = -\frac{\hbar^2}{2B} \left[\frac{1}{\beta^2} \frac{\partial}{\partial \beta} \beta^2 \frac{\partial}{\partial \beta} - \frac{\hat{I}^2}{3\hbar^2\beta^2} \right] + U(\beta), \]

where \(\hat{I} \) is the angular momentum operator from the intrinsic frame of reference, while \(B \) is the mass parameter. The Schrödinger equation associated to such a Hamiltonian is solved by separating the β variable from the angular ones which is achieved through the factorization \(\Psi(\beta, \theta_1, \theta_2) = F(\beta)Y_{JM}(\theta_1, \theta_2) \), where the angular factor state is a spherical harmonic function. With this, the Schrödinger equation is reduced to a second order differential equation in variable...
β, which is brought to a canonical form through the change of function $F(β) = \frac{I(β)}{β}$:

$$\left[\frac{d^2}{dβ^2} - \frac{I(I+1)}{3β^2} + 2(ε - u(β))\right] f(β) = 0,$$

(2)

where $ε = BE/h^2$, $u(β) = BU(β)/h^2$ denote the reduced energy and potential.

3. Quartic and sextic anharmonicities

The eigenvalue problem for potentials:

$$u(β) = \frac{1}{2} \alpha_1 β^2 + \alpha_2 β^{2m}, \quad \alpha_1 ≥ 0, \alpha_2 > 0 \quad \text{and} \quad m = 2, 3,$$

has the following scaling property:

$$ε(α_1, α_2) = α_2^{\frac{1}{2m+1}} ε(λ_m, 1) = α_2^{\frac{1}{2m+1}} W^m(λ_m),$$

(4)

where $λ_m = α_1α_2^{\frac{m}{2m+1}} ≥ 0$. This follows from the change of variable $β’ = α_2^{\frac{1}{2m+1}}β$ in the differential equation (2). Similar scaling was used in Refs.[7, 8] in the case of a quasi exactly solvable sextic potential. The problem is then reduced to a radial Schrödinger equation with a modified centrifugal term for the scaled potential $\hat{u}(β’) = \frac{1}{2}λ_m β’^2 + β’^{2m}$. Adapting the procedure of Refs.[3, 4] one can write the eigenvalue W^m as function of $λ_m$, n - the β vibration quantum number and the intrinsic angular momentum I, as follows:

$$W^2_{nI}(λ_2) = (C_2N_{nI})^{\frac{1}{2}} \sum_{k=0}^{8} G_k^2(λ_2, I) (C_2N_{nI})^{-\frac{2k}{2}},$$

(5)

$$W^3_{nI}(λ_3) = (C_3N_{nI})^{\frac{1}{2}} \sum_{k=0}^{5} G_k^3(λ_3, I) (C_3N_{nI})^{-k},$$

(6)

where $N_{nI} = 2n + 1 + (\sqrt{1 + 4I(I+1)/3})/2$. The functions $G_k^m(λ_m, I)$ represent polynomials in $λ_m$ of order k with angular momentum dependent coefficients and are given explicitly in [1, 2] together with the constants C_m.

The energy spectrum of a nucleus described by the Hamiltonian (1) with an oscillator potential with quartic or sextic anharmonicities is then given by:

$$E^m_{nI} = \frac{h^2}{B} α_2^{\frac{1}{2m+1}} [W^m_{nI}(λ_m) - W^m_{00}(λ_m)].$$

(7)

4. Numerical results

The energy formula depends up to an overall factor on a single free parameter which is bounded by the convergence radius $λ^*_m$ of the considered approximation. The acting space of the model is then restricted to the interval $[0, λ^*_m]$ which put in terms of the ratios $R_{4/2}$ and $R_{0/2}$ lies between $[2.29, 2.00]$ and $[2.37, 1.81]$ for quartic and respectively $[2.34, 2.15]$ and $[2.56, 2.11]$ for sextic anharmonicities (See Figure 1). The upper limit corresponds to $λ_m = 0$ which is associated to the free parameter models $X(3)-β^{2m}$, while the lower limit is close to the $X(3)-β^2$ predictions [1].

As can be seen from Figure 2, the quartic model is experimentally realized for 100Pd, 148Sm, and 222Th nuclei, while the sextic one describes their next heavier neighbours. The three isotopic pairs also have the same number of neutrons above the corresponding shell closure at magic numbers $N = 50, 82 \text{ and } 126$.

2
Figure 1. Theoretical low lying energy spectrum for ground and two β excited bands.

Figure 2. Quartic model description of the lighter isotopes of Pd, Gd and Th [9] in comparison to the heavier ones treated by means of a sextic term.

5. Outlook
The present approximate formulas can be easily translated to the case of four and five dimensional Bohr-Mottelson Hamiltonians with a similar separated potential for the β shape variable.

References
[1] Budaca R 2014 *Eur. Phys. J. A* 50 87
[2] Budaca R 2014 *Phys. Lett. B* 739 56
[3] Seetharaman M and Vasan S S 1986 *J. Mat. Phys.* 27 1031
[4] Vasan S S, Seetharaman M and Sushama L 1993 *Pramana J. Phys.* 40 177
[5] Bonatsos D, Lenis D, Petrellis D, Terziev P A and Yigitoglu I 2006 *Phys. Lett. B* 632 238
[6] Budaca R and Budaca A I 2015 *J. Phys. G: Nucl. Part. Phys.* 42 085103
[7] Buganu P and Budaca R 2015 *J. Phys. G: Nucl. Part. Phys.* 42 105106
[8] Buganu P and Budaca R 2015 *Phys. Rev. C* 91 014306
[9] http://www.nndc.bnl.gov/ensdf/