Design and Optimization of 22 nm Gate Length High-k/Metal gate NMOS Transistor

Afifah Maheran A H1, Menon P S1, I Ahmad, S Shaari1, H A Elgomati1, F Salehuddin2

1 Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), 43600 UKM Bangi, Selangor, Malaysia
2 Centre for Micro and Nano Engineering (CeMNE), College of Engineering, Universiti Tenaga Nasional (UNITEN), 43009 Kajang, Selangor, MALAYSIA

e-mail: susi@eng.ukm.my

Abstract. In this paper, we invented the optimization experiment design of a 22 nm gate length NMOS device which uses a combination of high-k material and metal as the gate which was numerically developed using an industrial-based simulator. The high-k material is Titanium dioxide (TiO2), while the metal gate is Tungsten Silicide (WSi). The design is optimized using the L9 Taguchi method to get the optimum parameter design. There are four process parameters and two noise parameters which were varied for analyzing the effect on the threshold voltage (Vth). The objective of this experiment is to minimize the variance of Vth where Taguchi’s nominal-the-best signal-to-noise ratio (S/N Ratio) was used. The best settings of the process parameters were determined using Analysis of Mean (ANOM) and analysis of variance (ANOVA) to reduce the variability of Vth. The results show that the Vth values have least variance and the mean value can be adjusted to 0.306V ±0.027 for the NMOS device which is in line with projections by the ITRS specifications.

1. Introduction

The replacement of Silicon Dioxide (SiO2) as the gate dielectric with a high dielectric (high-k) material in future complementary metal-oxide-semiconductor (CMOS) technology is being widely studied nowadays. A number of different high-k materials have been proposed and analyzed to achieve the future trends in semiconductor where the decrease in the size of devices causes the decrease in the size and the thickness of the dielectric gate. As the physical thickness of SiO2 - based gate oxides approaches 2 nm, a number of fundamental problems occur such as the increment of gate leakage current, oxide breakdown, boron penetration from the polysilicon (poly-Si) gate electrode and channel mobility problem [1, 2]. Each one of these phenomenon is important for device operation. In other words, the conventional device-scaling scenario involving scaling down of SiO2 - based dielectrics up to below 1 nm becomes impractical now[1].

During early high-k dielectric development, material incompatibility between high-k and the poly gate electrode was discovered [3, 4]. One of the issues was the high defect rates at the interface of high-k and poly-Si causing the device’s lower electrical mobility. The latter was attributed to charge scattering, which is intrinsic to the physics of an integrated poly and high-k device [5]. Therefore, self-aligned silicide (SALICIDE) technology has been widely used to reduce the sheet resistance (Rsh) of poly-Si gates [6].
Then there is another solution by replacing poly-Si with a metal gate electrode. Replacing poly-Si gate materials with metal is the answer to the compatibility issues between the high-k dielectric and poly electrode. Significant effort and research was focused on finding metal electrodes with the correct work function [7]. However, the metal work functions are needed to adjust the NMOS and PMOS devices' threshold voltage (V\text{th}).

Current research efforts are focused on metal oxide materials with high-k values (e.g., ZrO\text{2}, HfO\text{2}, Al\text{2}O\text{3}, Y\text{2}O\text{3}, La\text{2}O\text{3}, and TiO\text{2}) since their introduction produce a physical thicker oxide, causes reduction in gate leakage current and in the same time maintaining a large gate capacitance [8]. From previous research, the scaled down design of 22 nm gate length NMOS device from 32 nm gate length was a success [9]. This paper is the continuation from the previous work where the device design is optimized using Taguchi’s L9 orthogonal array. The results show that a 22 nm gate length NMOS transistor with V\text{th} value of 0.306V that is well within ITRS 2011 prediction can be produced numerically [10].

2. Materials & methods

The fabrication process steps are as follows. The substrate used for the experiment was a p-type silicon with a <100> orientation. It is then followed by growing an oxide layer, at the top of the bulk silicon using dry oxygen. P-well implantation process was done, using this oxide layer as a mask. This was done using Boron as dopant with a dose of 3.75x10\text{12} ions/cm\text{2}. The silicon wafer then underwent the annealing process at 900 °C in a Nitrogen environment, and followed by dry oxygen in order to ensure that boron atoms are being spread properly in the wafer. The next step was to produce a Shallow Trench Isolator (STI) of 130 Å thickness [11]. In order to form the STI layer, the wafer was oxidized in dry oxygen for 25 minutes. Then, a 1000 Å nitride layer was deposited on top of the oxide layer by applying low pressure chemical vapour deposition process (LPCVD), followed by a photo resist deposition with a thickness of 1.0µm. The trench depth of 3200 Å was achieved. Thereafter, a sacrificial oxide layer was grown and then etched followed by a sacrificial nitride layer whereby the trench is then completed.

Then the high-k material, TiO\text{2} was deposited for thickness of 2 nm [12] followed by etching to get the desired thickness and was adjusted to produce a 22 nm gate length. The next step was to implant the N well active area, in order to adjust the threshold voltage, V\text{th} value. The dosage for boron was 6.98x10\text{12} atom/cm\text{2}. Tungsten silicide (WSi\text{x}) will then be deposited on the top of the bulk device with thickness of 8nm and etched accordingly to produce the gate contact point as desired [13]. Later on, Halo implantation was performed in order to get an optimum performance for the NMOS device where Indium was implanted with the dose of 12.76x10\text{12} ions/cm\text{2}. The dosage was varied in order to get the optimum value [6, 14]. Then spacers were formed at each of the polysilicon sides, namely the source and drain regions respectively. Side wall spacers were used as a mask for source and drain implantation [15]. Then, there are source-drain implantations where Arsenic was firstly implanted with a dose of 5.1x10\text{13} ions/cm\text{2} followed by phosphorous with a dose of 1.5x10\text{12} ions/cm\text{2}, to ensure the smooth current flow in the device. The next process was the development of 0.5 µm Borophosphosilicate Glass (BPSG) layer [16]. This layer acts as a pre metal dielectric (PMD). After Borophosphosilicate Glass (BPSG) deposition, the wafer undergoes annealing process at a temperature of 950 °C [16].

The next process was compensation implantation using phosphorous, with a dose of 3.71x10\text{13} ions/cm\text{2} [17]. Then, aluminium layer was deposited on top of the structure and then it was etched accordingly to form the metal contact for the source and drain. At this stage the transistor design is completed. Figure 1(a) and Figure 1(b) shows the overall device structure and the enlarged figure of the 22 nm gate length of the high k/metal gate NMOS transistor respectively. Figure 2 shows the net doping profile of the device that was successfully designed. Then, the transistor undergoes electrical characteristic measurement in order to find the threshold voltage (V\text{th}) in reference to ITRS 2011 [10].
The Taguchi orthogonal L9 array method requires 4 process parameters and two noise factors were also chosen to complete the design of four sets of experiments consisting of 36 runs. The noise factors are included in order to get a more accurate design and to make the process parameters insensitive to variation. All these values of the process parameters of each levels and noise factors are listed in Table 1 and Table 2 respectively.
Table 1. Process parameters and their levels

Symbol	Process Parameter	Unit	Level 1	Level 2	Level 3
A	Halo Implant	atom/cm³	1.270e¹³ (A1)	1.275e¹³ (A2)	1.280e¹³ (A3)
B	S/D Implant	atom/cm³	5.100e¹³ (B1)	5.150e¹³ (B2)	5.200e¹³ (B3)
C	Compensation Implant	atom/cm³	3.650e¹³ (C1)	3.700e¹³ (C2)	3.750e¹³ (C3)
D	V_{th} Adjust Implant	atom/cm³	6.940e¹² (D1)	6.960e¹² (D2)	6.980e¹² (D3)

Table 2. Noise factors and their levels

Symbol	Noise Factor	Unit	Level 1	Level 2
X	Sacrificial Oxide layer	°C	900	902
Y	P-well Implantation Temperature	°C	850	852

3. Result and discussion

The optimized results from Taguchi Method were used to verify the predicted optimal design. The results of V_{th} were analyzed and processed in order to get the optimal design of the device.

3.1. Analysis for 22nm NMOS Device

The L9 Taguchi method analysis which consists of nine experiments is specified in the orthogonal array table. Four specimens were simulated for each of the parameter combinations. The completed response for V_{th} data is shown in Table 3

Table 3. V_{th} values for NMOS device

Exp. No	Threshold Voltage (Volts)			
	X1Y1	X1Y2	X2Y1	X2Y2
1	0.319202	0.317181	0.319114	0.317094
2	0.295836	0.295111	0.295804	0.295079
3	0.283015	0.282119	0.282976	0.282079
4	0.309481	0.307376	0.309391	0.307286
5	0.288823	0.287997	0.288787	0.287961
6	0.30077	0.300098	0.300741	0.300069
7	0.31957	0.317453	0.319484	0.317367
8	0.349681	0.347745	0.349603	0.347667
9	0.31119	0.308995	0.311102	0.308907
Based on the experiment results, the control factor that has the most effect on the device characteristics can be determined. The Signal-to-noise (S/N) ratio is used to discover the optimal process parameters when analyzing the experimental data. The V_{th} analysis in this experiment uses S/N ratio of nominal-the-best [18, 19].

The utilization of S/N Ratio for each level of process parameters is to make the design more accurate. Regardless of the category of the performance characteristic, the larger the S/N Ratio resulted the better the performance characteristic. Therefore, the optimal level of the process parameters is the level with the highest S/N Ratio [20, 21].

The S/N Ratio is selected in order to obtain a threshold voltage value which is close or equal to the given target value (0.306V), which is also known as nominal value according to ITRS specification [22]. The S/N Ratio (Nominal-the-best), η can be expressed as [19]:

$$\eta = 10 \log_{10} \frac{\mu^2}{\sigma^2}$$ \hspace{1cm} (1)

Where:

$$\mu = \frac{Y_1 + \ldots + Y_n}{n}$$ \hspace{1cm} (2)

$$\sigma^2 = \frac{\sum_{i=1}^{n} (Y_i - \mu)^2}{n-1}$$ \hspace{1cm} (3)

Where n is number of tests, Y_i is the experimental value of the threshold voltage, μ is mean and σ is variance. For nominal-the-best analysis, there are two types of factor of interest which are the dominant and the adjustment factors. By applying (2)-(4), the η for each device were calculated and given in Table 4 [19].

Exp No.	Mean	Variance	S/N Ratio (Mean)	S/N Ratio (Nominal-the-Best)
1	3.18E-01	1.36E-06	-9.95E+00	48.71
2	2.95E-01	1.76E-07	-1.06E+01	56.97
3	2.83E-01	2.68E-07	-1.10E+01	54.73
4	3.08E-01	1.48E-06	-1.02E+01	48.08
5	2.88E-01	2.28E-07	-1.08E+01	55.62
6	3.00E-01	1.51E-07	-1.04E+01	57.77
7	3.18E-01	1.50E-06	-9.94E+00	48.31
8	3.49E-01	1.25E-06	-9.15E+00	49.87
9	3.10E-01	1.61E-06	-1.02E+01	47.76

Referring to Table 4, rows 2, 3, 5 and 6 gives a S/N Ratio value of 56.97 dB, 54.73 dB, 55.62 dB and 57.77 dB respectively. This indicates that the process parameter combinations in these rows give the best insensitivity for the response characteristics. Since the experimental design is orthogonal, the effect of each process parameter on the S/N Ratio at different levels can be separated out.

The S/N Ratio for each level of the process parameters are summarized in Table 5. In addition, the total mean of the S/N Ratio for the experiments are also calculated and listed in Table 5.
Table 5. S/N ratio for the threshold voltage

Symbol	Process Parameter	S/N Ratio (Mean)	Total Mean S/N	Max - Min
A	Halo Implantation	53.47 53.82 48.65	51.98	5.17
B	S/D Implantation	48.37 54.15 53.42	5.78	
C	Compensation Implantation	52.12 50.94 52.89	51.98	1.95
D	V_{th} Adjust Implantation	50.70 54.35 50.90	3.65	

The factor effect graph for the S/N Ratio of the experiments is shown in Figure 3. The dashed line in the graph represents the values of the overall-mean of the S/N Ratio. While the line of the graphs at the top and bottom represents the S/N Ratio (Nominal-the-best) and the S/N Ratio (Mean) respectively. In the S/N Ratio analysis, the larger the S/N Ratio resulted the better the quality characteristic for the threshold voltage. Referring to the graph, from the left, the slopes correspond to the Halo Implantation (Factor A), followed by S/D implantation (Factor B), Compensation Implantation (Factor C) and lastly V_{th} Adjust Implantation (factor D) respectively. The slopes show that the Halo implantation (Factor A) dose has found to be dominant factor because it has the maximum S/N ratio since the slope is the sharpest and highest compared to the others. While the Compensation Implantation (Factor C) was found to be the adjustment factor because it has small effect on the S/N Ratio (Nominal-the-best) and in the same time has large effect on S/N Ratio (Mean).

![Figure 3. S/N graph for threshold voltage](image)

3.2 Analysis of Variance (ANOVA)

The priority of the process parameters with respect to the V_{th} was investigated to determine the accuracy of the optimum combinations. The result of ANOVA for the NMOS device is presented in Table 6. The percent factor effect on S/N Ratio indicates the priority of a factor (process parameter) to reduce variation. The high percentage of a factor effect on mean contributes to the greatest influence on the stability of V_{th} with respect to the noise parameters.
Table 6. Result of ANOVA

Symbol	Process Parameter	Degree of Freedom	Sum of Square	Mean square	Factor Effect on S/N Ratio (%)	Factor Effect on Mean (%)
A	Halo Implantation	2	50	25	36	46.20
B	S/D Implantation	2	60	30	42	16.38
C	Compensation Implantation	2	6	3	4	34.06
D	V_{th} Adjust Implantation	2	25	13	18	3.36

Obviously the results show that the Halo implantation with a percentage of 46.20% has the most dominant impact to the threshold voltage of the device, followed by compensation implantation at 34.06% while 16.38% and 3.36% is owned by S/D implantation and V_{th} adjust implant respectively.

3.3 Confirmation of Optimum Run

Based on all the analyzed data, it can be deduced that, the compensation implantation is said to be as an adjustment factor because it has a small effect on the S/N Ratio (Nominal-the-best) and has a large effect on the mean. As a result the value of this factor can be adjusted. The adjustments are done to get the threshold voltage as close as possible to the nominal value or the target value. The values of the control factors are varied in compliance to Taguchi method until the best result is achieved. The best predicted setting by Taguchi method for the process parameters for the device is shown in Table 7.

Table 7. Best setting of the process parameters

Symbol	Process Parameter	Unit	Level	Best Value
A	Halo Implantation	atom/cm3	2	1.275e13
B	S/D Implantation	atom/cm3	1	5.1e13
C	Compensation implantation	atom/cm3	-	Sweep (3.65 e13 to 3.75e13)
D	V_{th} Adjust Implantation	atom/cm3	3	6.98e12

Using the above parameters, the final simulation was performed to verify the accuracy of the prediction. By setting the Halo Implantation to Level 2, S/D Implantation to Level 2, V_{th} Adjust Implantation to Level 2, the value of compensation implantation was adjusted to fall within the range of 3.65x1013 to 3.75x1013 in order to obtain a V_{th} value that is closer to 0.306 V. The sweep that was done with the Compensation Implantation resulted in the best parameter setting of 3.67x1013 atom/cm3. These final parameters were then simulated with the noise factors to get the optimal result as noted in Table 8.

Table 8. Results of Confirmation Experiment with Added Noises

V_{th1} (n1,n1)	V_{th2} (n1,n2)	V_{th3} (n2,n1)	V_{th4} (n2,n2)	SNR (Mean)	SNR (Nominal-the-best)
0.305901	0.303762	0.305811	0.303672	0.304787	47.8

Finally, the experiment has resulted in the achievement of mean V_{th} value of 0.304787 V with the S/N Ratio of 47.8 dB. The values are in line with projections by ITRS 2011.
4. Conclusion
As a conclusion, the Taguchi method is a reliable method in achieving the optimum solution in fabricating nanoscale CMOS devices. The V_{th} is the main response in determining the functionality of the device. The numerical fabrication of a 22 nm gate length high-k/metal gate NMOS transistor was achieved successfully. In this experiment, the Halo implantation dose was the strongest effect and identified as the dominant factor while the Compensation Implantation as an adjustment factor where the threshold voltage is the main response studied in this experiment. By adding noise factors to the design, a more robust device design can be attained.

Acknowledgment
The authors would like to thank the Institute of Microengineering and Nanoelectronic (IMEN), Universiti Kebangsaan Malaysia (UKM), the Centre for Micro and Nano Engineering (CeMNE), the College of Engineering Universiti Tenaga Nasional (UNITEN), the University Teknikal Malaysia Melaka (UTeM) and the Ministry of Higher Education for moral, operational and financial support throughout the project. We would also like to thank P.R. Apte from Indian Institute of Technology Bombay (IITB) for knowledge on Taguchi method. Authors would also like to acknowledge Universiti Kebangsaan Malaysia for supporting this project using grant no GUP-2012-012.

References
[1] Evgeni P Gusev, Vijay Narayanan and Martin M Frank 2006 Advanced high-k dielectric stacks with polySi and metal gates: Recent progress and current challenges. *IBM Journal of Research & Development (IBMRD)* vol.50 (4-5) pp 387-410.
[2] H.Iwai 2009 Roadmap for 22 nm and beyond *Microelectronic Engineering* 86; pp 1520 -1528.
[3] M V Fischetti, D A Neumayer, E A Cartier 2001 Effective Electron Mobility in Si Inversion Layers in Metal-Oxide-Semiconductor Systems with a High-k Insulator: The Role of Remote Phonon Scattering *Journal of Applied Physics* (Vol. 90, No. 9) pp 4587-4608.
[4] S Datta, G Dewey, M Doczy, B S Doyle, B Jin, J Kavalieros, R Kotlyar, M Metz, N Zelick and R Chau 2003 High Mobility Si/SiGe Strained Channel MOS Transistors with HfO$_2$/TiN Gate Stack *IEDM Technical Digest*.
[5] D J Frank, W Haensch, G Shahidi, and O H Dokumaci 2006 Optimizing CMOS Technology for Maximum Performance *IBM J. Res. & Dev.* 50 No. 4.5 pp 419-431.
[6] F Salehuddin, I Ahmad, F A Hamid and A Zaharim 2010 Characterization and Optimizations of Silicide Thickness in 45nm pMOS Device *International Conference on Electronic Devices, Systems and Applications (ICEDSA)* pp 287-291
[7] R. Chau, S Datta, M Doczy, B Doyle, J Kavalieros, and M Metz 2004 High-k/Metal-Gate Stack and Its MOSFET Characteristics *IEEE Electron Device Letter* (Vol. 25, No. 6) pp 408-410.
[8] Giulio Ferrari, J R Watling, S Roy, J R Barker and A Asenov 2007 Beyond SiO$_2$ technology: Simulation of the Impact of High-k Dielectrics on Mobility *Journal of Non-crystalline Solids* 353 pp 630-634.
[9] Afifah Maheran A H, Menon P S, I Ahmad, H A Elgomati, B Y Majlis and F Salehuddin 2012 Scaling Down the 32 nm Gate Length NMOS Transistor to 22 nm *Proceedings of the 2012 IEEE International Conference on Semiconductor Electronics (IEEE-ICSE2012)*, pp 191-194.
[10] ITRS 2011. www.ITRS2011.net
[11] J W Sleight, I Lauer, O Dokumaci, D M Fried, D Guo, B Haran, S Narasimha, C Sheraw, D Singh, M Steigerwalt, X Wang, P Oldiges, D Sadana, C Y Sung, W Haensch, M Khare 2006 Challenges and Opportunities for High Performance 32nm CMOS Technology *IEDM Tech Digital*.
[12] M K Bera and C K Maiti 2006 Electrical Properties of SiO$_2$/TiO$_2$ High-K Gate Dielectric Stack *Materials Science in Semiconductor Processing* pp 909–917.
[13] L Pereira, P Barquinha, E Fortunato and R Martins 2008 Low Temperature High K Dielectric on Poly-Si TFTs *Journal of Non-Crystalline Solids* 354 pp 2534–2537.
[14] H A Elgomati, B Y Majlis, I Ahmad, F Salehuddin, F A Hamid, A Zaharim, T Ziad Mohamad and P R Apte 2011 Investigation Of The Effect for 32nm PMOS Transistor and Optimizing Using Taguchi Method Asian Journal of Applied Sciences.

[15] J Laeng, Zahid A Khan and S Y Khu 2006 Optimizing Flexible Behaviour of Bow Prototype Using Taguchi Approach Journal of Applied Sciences 6 (3) pp 622-630.

[16] Sarcona G T, M Stewart, and M K Hatalis 1999 Polysilicon Thin Film Transistor using Self_Aligned Cobalt and Nickel Silicide Source and Drain Contacts IEEE Electron Device Letter (vol.20).

[17] Hashim U 2009 Statistical Design of Ultra-Thin SiO2 for Nanodevices Sains Malaysiana 38(4) pp 553-557.

[18] H A Elgomati, B Y Majlis, I Ahmad, A M Abdul Hamid, P M Susthitha 2012 Modelling of Process Parameters for 32nm PMOS Transistor Using Taguchi Method Asian Modelling Symposium (AMS) pp 40-45

[19] Madhav S Phadke, 2008 Quality Engineering Using Robust Design Pearson Education Inc. And Dorling Kindersley Publishing Inc. India.

[20] Abdullah H, Jurait J, Lennie A, Nopiah Z M, Ahmad I 2009 Simulation of Fabrication Process VDMOSFET Transistor Using Silvaco Software European Journal of Scientific Research; ISSN 1450-216X vol 29 no 4 pp 461-470.

[21] Naidu N V R 2008 Mathematical Model for Quality Cost Optimization. Robotics and Computer-integrated Manufacturing

[22] G P Syros 2003 Die casting process optimization using Taguchi methods. Journal of Materials Processing Technology 135 pp 68-74.