Supplementary Information

Generation of novel patient-derived CIC-DUX4 sarcoma xenografts and cell lines

Rieko Oyama¹, Mami Takahashi², Akihiko Yoshida³, Marimu Sakamoto¹, Yoko Takai¹, Fusako Kito¹, Kumiko Shiozawa⁴, Zhiwei Qiao⁴, Yasuhiro Arai⁵, Tatsuhiro Shibata⁵, Yoshihiro Araki⁶, Makoto Endo⁶, Akira Kawai⁶, and Tadashi Kondo¹.⁴*

¹Department of Innovative Seeds Evaluation, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
²Central Animal Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan–
³Pathology and Clinical Laboratory Division, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
⁴Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
⁵Division of Cancer Genomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
⁶Division of Musculoskeletal Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
Table S1. STR analysis

Microsatellite (Chromosome)	NCC-CDS1-X1-C1 (P14)	NCC-CDS1-X2-C1 (P35)	NCC-CDS1-X1 (PDX)	NCC-CDS1-X2 (PDX)	Tumor Tissue
Amelogenin (X Y)	X,X	X,X	X,X	X,X	X,X
TH01 (3)	7,9	7,9	7,9	7,9	7,9
D21S11 (21)	30,30	30,30	30,30	30,30	30,30
D5S818 (5)	10,12	10,12	10,12	10,12	10,12
D13S317 (13)	11,12	11,12	11,12	11,12	11,12
D7S820 (7)	12,13	12,13	12,13	12,13	12,13
D16S539 (16)	9,13	9,13	9,13	9,13	9,13
CSF1PO (5)	11,13	11,13	11,13	11,13	11,13
vWA (12)	14,16	14,16	14,16	14,16	14,16
TPOX (2)	8,8	8,8	5,8	8,8	8,8

Cells were compared to a normal and tumor tissue from the patient.

P indicates a passage number of a cell line.
Table S2. KEGG pathways enriched in the proteome of different samples.

KEGG Enrichment Rank	Pathway	Primary tumour	NCC-CDS1-X1	NCC-CDS1-X3	XI-C1	X3-C1	Observations
1	Proteasome	1	2	2	3	3	Consistently enriched in all samples
2	Spliceosome	2	3	3	2	2	
3	Ribosome	3	1	1	1		
4	Pathogenic Escherichia coli infection	4	4	5	5	7	
5	Glycolysis / Gluconeogenesis	5	6	4	8	8	
8	Pyrimidine metabolism	8	8	9	9	9	
9	Huntington's disease	9	15	13	6	6	
12	Fatty acid elongation in mitochondria	12	7	6	15	21	Consistently enriched in all but NCC-CDS1-X1 samples
14	Fatty acid metabolism	14	5	7	4	4	
19	Glyoxylate and dicarboxylate metabolism	19	9	11	22	12	
17	Aminoacyl-tRNA biosynthesis	17	16	7	5		
18	Parkinson's disease	18	15	10	10		Consistently enriched in all but xenograft tissues and cell lines
24	Alzheimer's disease	24	20	11	13		
6	Focal adhesion	6	10	21			Enriched only in xenograft tissues
25	Regulation of actin cytoskeleton	25	12				
23	Tight junction	23			14		Enriched in xenograft tissues and cell lines
15	Fatty acid elongation in mitochondria	15	16	16			
16	Fatty acid metabolism	16		20	11		
20	Methane metabolism	20		20			
29	Propanoate metabolism	29	11	17			
35	DNA replication	35	17	18			Enriched only in primary tumour
33	Cysteine and methionine metabolism	33	8		19		
7	Complement and coagulation cascades	7			7		
10	Systemic lupus erythematosus	10					
11	Prion diseases	11					
13	Antigen processing and presentation	13					
21	Valine, leucine and isoleucine degradation	21					
22	Viral myocarditis	22					
27	Clap junction	27	14	12			Enriched only in xenograft tissues
30	Fructose and mannose metabolism	30	13	10			
31	Cell cycle	31	16	18			
32	Leukocyte transeendothelial migration	32	17	25			
36	One carbon pool by folate	36			19		
45	Lysine degradation	45	13		14		
46	Valine, leucine and isoleucine biosynthesis	46		14	24		
48	Arginine and proline metabolism	48			21	22	
28	Fructose and mannose metabolism	28			19		
41	Oocyte meiosis	41			23		
44	Oxidative phosphorylation	44			12		
47	Butanoate metabolism	47			18		
38	Cardiac muscle contraction	38				23	
39	Protein export	39				17	
51	Oxidative phosphorylation	51				15	
52	Selenoamino acid metabolism	52				25	
Figure S1. Sanger sequencing showed that the nucleotide sequence 5’-CGCCTC-3’ was detected within DUX4 exon 1, but not DUX4L, indicating that CIC was fused to DUX4 (4q35). The sample names are shown on the left side of the panels.
Figure S2. Immunofluorescence study for CD99, vimentin, myogenin, and S100. (A) NCC-CDS1-X1-C1, (B) NCC-CDS1-X3-C1.
Figure S3. Phosphorylated Src expressions were analysed by Western blotting. Arrowheads indicate the SuppleTable S2, position of Src with a molecular weight of 60 kDa. Lanes 1: tumour tissue, 2: NCC-CDS1-X1 tumour tissue, 3: NCC-CDS1-X3 tumour tissue, 4: NCC-CDS1-X1-C1 cells, 5: NCC-CDS1-X3-C1 cells.