Introduction

Gastric cancer is the third most common cause of cancer-related deaths worldwide [1]. Despite recent advances in recent treatment, the median overall survival (OS) of patients with advanced gastric cancer (AGC) rarely exceeds 1 year, and the 5-year survival rate is less than 10% [2]. Unfortunately, approximately 70% of patients diagnosed with gastric carcinoma are not candidates for surgery [1]. Compared with best supportive care alone, chemotherapy has resulted in better survival outcomes, fewer symptoms, and improved quality of life in patients with inoperable gastric cancer [3].

Patients may experience varying types and levels of toxicity during chemotherapy, with chemotherapy-induced neutropenia (CIN) being one of the most important dose-limiting toxicities of cytotoxic drugs. However, CIN may predict a better prognosis. For example, an analysis of 1265 patients with non-small-cell-lung-cancer (NSCLC) who received chemotherapy found that neutropenia during chemotherapy was associated with longer survival and lack of neutropenia may indicate underdosing [4]. Both mild
(grade 1-2) and severe (grade 3-4) CIN were found to be favorable prognostic factors to almost the same degree [5]. Similarly, a study in 1055 AGC patients treated with S-1 (oral fluoropyrimidine) found that prognosis was similar in patients with mild (grade 1), moderate (grade 2), and severe (grade 3-4) neutropenia [6]. In patients with small-cell-lung-cancer (SCLC), however, grade 3 or 4 CIN was prognostic of improved OS [7]. Despite these findings, these studies were not consistent in determining the relationship between the degree of CIN and clinical outcomes. Other novel molecular biomarkers are associated with high costs, time-consuming laboratory experiments. Therefore, another easily measurable chemotherapy prognostic marker that can be used for predicting prognosis is desirable.

More recently, the timing (onset) of CIN was found to be predictive of survival in patients with metastatic NSCLC who were treated with first-line gemcitabine-platinum doublet chemotherapy [8]. However, the prognostic role of timing of CIN has not been assessed in patients with AGC. This study therefore investigated the association between timing of CIN and prognosis in patients with AGC.

Patients and Methods

Patients

Between January 1, 2009 and December 31, 2014, 596 patients admitted to Chinese People’s Liberation Army (PLA) General Hospital were diagnosed with AGC. Of these, 321 patients who completed at least one cycle of first-line XELOX chemotherapy were eligible. Patients were included if they (1) were diagnosed with AGC, as confirmed histologically and radiographically; (2) were ineligible for surgery; (3) were <75 years of age; (4) had an Eastern Cooperative Oncology Group (ECOG) performance status (PS) of 0 or 1; (5) had sufficient

Figure 1. Study flowchart.

- Cytological or histologic confirmation of advanced gastric cancer without any chance of operation (Between January 1, 2009 and December 31, 2014)
 - Sufficient bone marrow function
 - Normal liver and renal functions
 - No bone marrow metastasis
 - No radiotherapy
 - N = 596

Exclusions

- Best supportive treatment: N = 12
- Lost follow-up: N = 8
- Incomplete record for toxic effects: N = 9

- Eligible patients for chemotherapy: N = 567
 - accepted at least one cycle of first-line XELOX chemotherapy: N = 321
 - Other regimens: N = 246

Landmark group patients

- Completed four cycles of XELOX chemotherapy
 - lived for more than four months
 - N = 274
bone marrow function (neutrophils ≥ 2.0 × 10^9/L, platelets ≥ 100 × 10^9/L, hemoglobin ≥ 9.0 g/dL); (6) had normal liver and renal function; (7) had no history of chemotherapy before the commencement of XELOX treatment; (8) did not have bone marrow metastasis; and (9) had no history of radiotherapy. Patients were excluded if (1) they were lost to follow-up; or (2) had incomplete records of adverse effects of chemotherapy.

Written informed consent was obtained from the patients or their legal guardians before chemotherapy. The study protocol was approved by the Ethics Committee of Chinese People’s Liberation Army (PLA) General Hospital, with all aspects of the study complying with the Declaration of Helsinki.

Medical information was retrospectively collected from the medical records of PLA General Hospital Registry. The patients were followed up until September 1, 2017 to obtain survival information. Specific details of enrollment and exclusion are shown in Figure 1.

Table 1. Patient characteristics by timing of CIN during first-line chemotherapy in all patients and landmark group patients.

	All patients	Landmark patients
	Early-onset	Non-early-onset
	Early-onset	Non-early-onset
Gender	N = 191 (60%)	N = 130 (40%)
Male	150 (79)	99 (76)
Female	41 (21)	31 (24)
Age, year	N = 191 (60%)	N = 130 (40%)
≤57	98 (51)	65 (50)
>57	93 (49)	65 (50)
ECOG PS	N = 191 (60%)	N = 130 (40%)
0	162 (85)	105 (81)
2	29 (15)	25 (19)
Baseline hemoglobin, g/dL	120.24 ± 20.297	118.77 ± 23.516
Baseline neutrophils, × 10^9/L	4.10 ± 1.624	4.64 ± 2.060
Baseline lymphocytes, × 10^9/L	1.56 ± 0.525	1.58 ± 0.716
Baseline platelets, × 10^9/L	246.68 ± 84.602	256.78 ± 89.474
Differentiation	N = 191 (60%)	N = 130 (40%)
Well-moderate	54 (28)	38 (29)
Poor	137 (72)	92 (71)
Liver metastasis	N = 191 (60%)	N = 130 (40%)
Absent	85 (45)	51 (39)
Present	106 (55)	79 (61)
Peritoneal metastasis	N = 191 (60%)	N = 130 (40%)
Absent	141 (74)	85 (65)
Present	50 (26)	45 (35)
Number of metastatic sites	N = 191 (60%)	N = 130 (40%)
≤2	159 (83)	90 (69)
>2	32 (17)	40 (31)
Degree of CIN	N = 191 (60%)	N = 130 (40%)
0	55 (29)	40 (31)
1–2	93 (49)	64 (49)
3–4	43 (22)	26 (20)

ECOG PS, Eastern Cooperative Oncology Group Performance Status; RDI, relative dose intensity; CIN, chemotherapy-induced neutropenia.

Treatment

All patients received at least one cycle of XELOX chemotherapy, consisting of an intravenous 2 h infusion of oxaliplatin (130 mg/m²) on day 1, and oral capecitabine of (1000 mg/m² twice daily) on days 1–14, every 21 days. Patients were administered granulocyte colony-stimulating factor (G-CSF) for grade 4 neutropenia or febrile neutropenia, but prophylactic G-CSF was not allowed. The dose of oxaliplatin or capecitabine was reduced by 20% in patients with grade 3 neutropenia. Chemotherapy was delayed in all patients with grade 4 or febrile neutropenia until neutrophil count exceeded 1.5 × 10^9/L.

Relative dose intensity of chemotherapy

Relative dose intensity (RDI) of every drug was defined as the ratio between the delivered dose intensity and the planned dose intensity per unit of time, as indicated by the protocol. The RDI mentioned in this study was the
mean RDI of oxaliplatin and capecitabine. A dose reduction was defined <90% of the initial planned dose [9].

Assessment of neutropenia

Routine blood samples were taken before treatment and at the end of every 21-day chemotherapy cycle (i.e., 1 week after the last dose of oral capecitabine). The worst grade of neutropenia was defined as the lowest neutrophil count recorded between day 1 of the first chemotherapy cycle and 3 weeks after the last cycle. Absolute neutrophil counts (ANCs) were computed by multiplying the white blood cell count by the total percentage of neutrophils. ANC grades were determined by National Cancer Institute (NCI) Common Terminology Criteria for Adverse Events (CTCAE, version 3.0), with Grades 1–4 defined as 1.5–2.0 × 10⁹/L, 1.0–1.5 × 10⁹/L, 0.5–1.0 × 10⁹/L, and <0.5 × 10⁹/L, respectively [10]. Timing of CIN was categorized as early-onset if the lowest grade of neutropenia (ANC <2.0 × 10⁹/L) occurred during cycle 1 or 2 and as non-early-onset neutropenia if patients did not experience ANC< 2.0 × 10⁹/L or if it occurred after cycle 2 [8, 11].

Statistical analysis

Landmark analysis [12] has been used extensively to compare time-to-event outcomes during study follow-up [13]. In this study, 321 AGC patients finished at least one cycle of XELOX chemotherapy, with only 274 completing four cycles and living for more than 4 months. The cutoff time was defined as 120 days after the commencement of chemotherapy to avoid selection bias resulting from an inherently better prognosis due to a higher probability of neutropenia with increasing cycles of chemotherapy. Baseline demographic and clinical characteristics were well balanced in all patients and landmark group patients with early-onset and non-early-onset CIN (Table 1).

Results

Baseline characteristics

Between January 1, 2009 and December 31, 2014, 321 patients with histologically confirmed AGC received at least one cycle of XELOX chemotherapy, with 274 completing four cycles and living for more than 4 months (Fig. 1). This study used a cutoff time of 120 days after the commencement of chemotherapy to avoid selection bias resulting from an inherently better prognosis due to a higher probability of neutropenia with increasing cycles of chemotherapy.

Survival analysis in all patients and landmark group patients

The median follow-up time for all patients was 32 months (range, 4–78 months). These patients had a median PFS of 6.9 months (95% confidence interval [CI] 6.3–7.4 months) and a median OS of 14.2 months (95% CI: 13.0–15.1 months). In the landmark group, the median PFS was 7.5 months (95% CI: 7.0–7.9 months) and the median OS was 15.0 months (95% CI: 14.3–16.2 months). The correlation between timing of CIN and survival was analyzed by the Kaplan–Meier method and a Cox proportional hazards model. Kaplan–Meier survival curves for all patients and for landmark group patients stratified according to timing of CIN are shown in Figures 2 and 3, respectively.

Univariate analysis analyzed the correlation with survival of several variables, including gender; age; ECOG PS; baseline hemoglobin concentration; baseline neutrophil, lymphocyte, and platelet counts; differentiation; liver and peritoneal metastases; number of metastatic sites; and timing of CIN.
analysis in landmark group patients analysis showed that median OS (16.7 vs. 12.8 months, \(P < 0.001 \)) and PFS (8.3 vs. 6.3 months, \(P < 0.001 \)) were significantly longer in patients with early-onset than with non-early-onset neutropenia. However, the degree of CIN was not significantly associated with survival outcomes, both in all patients and in the landmark group.

The results of multivariate analysis, using the same parameters as covariates (excluding grade of neutropenia), are shown in Table 3. Differentiation, number of metastatic sites, and timing of CIN were independent predictors of PFS, whereas ECOG PS, differentiation, number of metastatic sites, and timing of CIN were independently predictive of OS. Assessment of all patients showed that, relative to those with non-early-onset CIN, those with early-onset CIN had significantly longer times to disease progression (hazard ratio [HR]: 0.574; 95% CI: 0.453–0.729, \(P < 0.001 \)) and death (HR 0.607; 95% CI: 0.478–0.770, \(P < 0.001 \)). Similar results were observed in the landmark group.

Discussion

To our knowledge, this study is the first to investigate the association between timing of CIN and prognosis in patients with AGC. Consistent with previous results, we found that the timing of CIN was predictive of survival, with significantly better survival outcomes observed in patients with early-onset than with non-early-onset CIN [5, 8, 11, 14]. For example, PFS and OS were found to be significantly better in patients with early-than late-onset neutropenia, although survival times did not differ in patients with late-onset and absence of neutropenia [8]. In addition, early-onset CIN during perioperative chemotherapy was found to be predictive of better OS and disease-free survival DFS in patients with completely resected NSCLC [11]. Similarly, OS was found to be significantly better in patients with advanced pancreatic cancer receiving gemcitabine/gemcitabine based chemotherapy who experienced early-onset CIN than those with non-early-onset CIN [14].

It was not fully understood why early-onset neutropenia can predict better clinical outcomes. Although neutropenia is not directly related to better prognosis, many studies, including ours, have suggested that CIN reflects the pharmacokinetics of cytotoxic drugs, the chemosensitivity of anti-tumor drugs, inflammation in the tumor microenvironment, and/or interactions among some or all of these variables.

Although dose calculations for cytotoxic drugs have been based on body-surface area (BSA), several reports have suggested that a BSA-based dosing system may be appropriate or even insufficient or suboptimal in some patients [6, 15]. The poor correlation between BSA and the pharmacokinetics of many chemotherapeutic drugs may be caused by variations in patient metabolism [16–20]. Our findings suggest that the early-onset of CIN may be a surrogate marker for drug metabolism or elimination, which can be used to adjust drug dose appropriately.
Table 2. Univariate analysis of the association between clinical characteristics and survival in all patients and landmark group patients diagnosed with advanced gastric cancer.

Clinical Characteristics	All patients	Landmark patients		
	PFS	OS	PFS	OS
	HR 95% CI	P value	HR 95% CI	P value
			HR 95% CI	P value
			HR 95% CI	P value
Gender			HR 95% CI	P value
Male	1		1	
Female	1.105 0.847–1.440	0.462	1.137 0.870–1.485	0.347
Age, year			HR 95% CI	P value
≤57	1		1	
>57	1.140 0.913–1.425	0.247	1.109 0.887–1.386	0.364
ECOG PS			HR 95% CI	P value
0–1	1		1	
2	1.181 0.877–1.590	0.274	1.436 1.064–1.936	0.018
Baseline hemoglobin, g/dL	0.998 0.992–1.003	0.356	0.996 0.991–1.001	0.150
Baseline neutrophils, × 10^9/L	1.014 0.951–1.081	0.677	1.038 0.972–1.108	0.264
Baseline lymphocytes, × 10^9/L	0.943 0.771–1.153	0.565	0.864 0.704–1.062	0.164
Baseline platelets, × 10^9/L	1.002 1.000–1.003	0.009	1.001 1.000–1.003	0.028
Differentiation			HR 95% CI	P value
Well-moderate	1		1	
Poor	1.433 1.120–1.834	0.004	1.713 1.333–2.202	<0.001
Liver metastasis			HR 95% CI	P value
Absent	1		1	
Present	1.032 0.825–1.292	0.781	0.873 0.696–1.096	0.243
Peritoneal metastasis			HR 95% CI	P value
Absent	1		1	
Present	1.194 0.936–1.524	0.153	1.136 1.083–1.774	0.01
Number of metastatic sites			HR 95% CI	P value
≤2	1		1	
>2	1.254 1.098–1.433	0.001	1.309 1.003–1.708	0.047
Degree of CIN			HR 95% CI	P value
1–2 versus 0	0.512 0.394–0.665	<0.001	0.476 0.366–0.620	<0.001
3–4 versus 0	0.382 0.276–0.528	<0.001	0.368 0.266–0.511	<0.001
1–2 versus 3–4	1.341 1.003–1.792	0.048	1.293 0.965–1.733	0.085
Timing of CIN			HR 95% CI	P value
Early-onset	1		1	
Non-early-onset	1.822 1.449–2.290	<0.001	1.766 1.403–2.223	<0.001

ECOG, Eastern Cooperative Oncology Group; CIN, chemotherapy-induced neutropenia; PFS, progression-free survival; OS, overall survival.

Statistical significance was defined as a two-sided P < 0.05.

Hazard ratios and 95% CI for OS and PFS were estimated with Cox’s proportional hazards model.
Table 3. Multivariate analysis of the association between clinical characteristics and survival in all patients and landmark group patients diagnosed with advanced gastric cancer.

	All patients	Landmark patients										
	PFS	OS	PFS	OS								
	HR	95% CI	P value									
ECOG PS												
0–1	1			1		0.019	1			1		0.038
2	1.178	0.854–1.624	0.317	1.474	1.067–2.036	0.019	1.167	0.813–1.674	0.402	1.470	1.022–2.113	0.038
Baseline platelet counts, × 10^9/L	1.002	1.000–1.003	0.021									
Differentiation												
Well-moderate	1			1		<0.001	1			1		<0.001
Poor	1.418	1.091–1.842	0.009	1.700	1.307–2.213	<0.001	1.332	1.066–1.764	0.045	1.675	1.264–2.221	<0.001
Number of metastatic sites ≤2	1			1			1			1		
>2	1.648	1.243–2.185	0.001	1.392	1.053–1.841	0.020	1.762	1.281–2.422	<0.001	1.478	1.081–2.022	0.014
Timing of CIN												
Non-early-onset	1			1			1			1		
Early-onset	0.574	0.453–0.729	<0.001	0.607	0.478–0.770	<0.001	0.584	0.450–0.758	<0.001	0.619	0.477–0.803	<0.001

CI, confidence interval; HR, hazard ratio; PFS, progression-free survival; OS, overall survival.

Statistical significance was defined as a two-sided \(P < 0.05 \).

Hazard ratios and 95% CIs for OS and PFS were estimated with Cox’s proportional hazards models.

Adjusted for gender; age; ECOG PS; baseline hemoglobin concentration; baseline neutrophil, lymphocyte, and platelet counts; differentiation; liver and peritoneal metastases; number of metastatic sites; and timing of CIN.
The response of cancer cells to chemotherapeutic drugs depends on a sufficient amount of active drug reaching the target and on the sensitivity of the target to the effect of the drug. The availability of an active antitumor drug is affected by pharmacokinetic factors, including the metabolism, distribution, and catabolism of a drug. The chemosensitivity of both tumor cells and healthy cells is affected, in part, by genetic predisposition and interindividual variations in systemic exposure, but is also modified by tumor-specific acquired resistance [4, 21, 22]. Thus, neutrophil counts may act as a surrogate marker of tumor chemosensitivity. The early-onset of neutropenia indicate neutrophil susceptibility to antitumor drugs and the non-emergence of tumor resistance to that drug [8].

Inflammation in the tumor microenvironment has been found to affect tumor development, invasion, and metastasis [23–25]. Elevated blood neutrophil counts in an inflammatory microenvironment have been shown to contribute to tumor angiogenesis and to induce resistance to antiangiogenic endothelial growth factor therapy, resulting in poor prognosis and response [26–30]. Therefore, a high peripheral neutrophil level may indicate drug resistance and tumor progression, and predict poor prognosis. Therefore, early-onset CIN may predict better survival because decreased neutrophil counts may slow tumor progression.

Because neutropenia did not occur before the initiation of chemotherapy, the association between neutropenia and prognosis may have been falsely attributed to an association between neutropenia and number of cycles of chemotherapy. The duration of chemotherapy was less likely to affect treatment results, as most patients discontinue following disease progression resulting from tumors being highly malignant and showing invasive biological behavior. Thus, the association between CIN and better outcomes was considered a consequence of selection bias. To avoid this bias, we performed landmark analysis, including patients who had received at least four cycles of XELOX chemotherapy and lived for more than 120 days. Because of the inappropriateness of BSA-based dosing systems, genetic predisposition may explain the large interindividual variation in systemic exposure.

This study had several limitations. First, it was retrospective in design, with a moderate sample size. Moreover, all patients were Chinese population and received a single chemotherapy regimen, XELOX. Our present findings may therefore be inapplicable to patients treated with other chemotherapeutic regimens. Second, OS as the primary endpoint may have been confounded by different subsequent chemotherapy regimens or radiotherapy. Despite these methodological issues, there is a need for an accurate, easily measurable surrogate marker of patient prognosis and chemosensitivity to antitumor drugs.

In conclusion, this study showed that the timing of CIN may be a potential prognostic biomarker in patients with AGC receiving first-line XELOX chemotherapy. Early-onset of CIN may be a surrogate marker for tumor chemosensitivity and optimum dosing of drugs, which could improve clinical outcomes. Well-designed prospective trials are needed to evaluate the association between CIN and survival in patients with AGC.

Acknowledgments
We thank the entire staff of the Department of Oncology 2 at Chinese People’s Liberation Army General Hospital.

Conflict of Interest
The authors declare no conflict of interests.

Informed consent
Informed consent was obtained from all individual participants included in the study.

References
1. Ferlay, J., I. Soerjomataram, R. Dikshit, S. Eser, C. Mathers, M. Rebelo, et al. 2015. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 136:E359–E386.
2. Qi, X., Y. Liu, W. Wang, D. Cai, W. Li, J. Hui, et al. 2016. Management of advanced gastric cancer: an overview of major findings from meta-analysis. Oncotarget 7:78180–78205.
3. Zou, K., S. Yang, L. Zheng, C. Yang, and B. Xiong. 2016. Efficacy and safety of target combined chemotherapy in advanced gastric cancer: a meta-analysis and system review. BMC Cancer 16:737.
4. Di Maio, M., C. Gridelli, C. Gallo, F. Shepherd, F. V. Piantedosi, S. Cigolari, et al. 2005. Chemotherapy-induced neutropenia and treatment efficacy in advanced non-small-cell lung cancer: a pooled analysis of three randomised trials. Lancet Oncol. 6:669–677.
5. Shitara, K., K. Matsuo, D. Takahari, T. Yokota, T. Shibata, T. Ura, et al. 2010. Neutropenia as a prognostic factor in advanced gastric cancer patients undergoing second-line chemotherapy with weekly paclitaxel. Ann. Oncol. 21:2403–2409.
6. Yamanaka, T., S. Matsumoto, S. Teramukai, R. Ishiwata, Y. Nagai, and M. Fukushima. 2007. Predictive value of chemotherapy-induced neutropenia for the efficacy of oral fluoropyrimidine S-1 in advanced gastric carcinoma. Br. J. Cancer 97:37–42.
7. Banerji, U., S. Ashley, J. Coward, S. Hughes, Y. Zee, T. Benepal, et al. 2006. The association of chemotherapy...
induced neutropenia on treatment outcomes in small cell lung cancer. Lung Cancer 54:371–377.
8. Jang, S. H., S. Y. Kim, J. H. Kim, S. Park, Y. I. Hwang, D. G. Kim, et al. 2013. Timing of chemotherapy-induced neutropenia is a prognostic factor in patients with metastatic non-small-cell lung cancer: a retrospective analysis in gemcitabine-plus-platinum-treated patients. J. Cancer Res. Clin. Oncol. 139:409–417.
9. Huang, C. S., L. Liu, J. Liu, Z. Chen, J. Guo, C. Z. Li, et al. 2012. Association of chemotherapy-induced leucopenia with treatment outcomes in advanced non-small-cell lung cancer cases receiving the NP regimen. Asian Pac. J. Cancer Prev. 13:4481–4485.
10. Pallis, A. G., S. Agelaki, S. Kakolyris, A. Kotsakis, A. Kalykaki, N. Vardakis, et al. 2008. Chemotherapy-induced neutropenia as a prognostic factor in patients with advanced non-small cell lung cancer treated with front-line docetaxel-gemcitabine chemotherapy. Lung Cancer (Amsterdam, Netherlands) 62:356–363.
11. Lee, C. Y., S. Y. Park, T. R. Shin, Y. B. Park, C. H. Kim, S. H. Jang, et al. 2013. Early-onset neutropenia during perioperative chemotherapy is predictive of increased survival in patients with completely resected non-small cell lung cancer: a retrospective analysis. Anticancer Res. 33:2755–2761.
12. Anderson, J. R., K. C. Cain, and R. D. Gelber. 2008. Analysis of survival by tumor response and other comparisons of time-to-event by outcome variables. J. Clin. Oncol. 26:3913–3915.
13. Dafni, U. 2011. Landmark analysis at the 25-year landmark point. Circ. Cardiovasc. Qual. Outcomes 4:363–371.
14. Chen, Y., Y. Shi, H. Yan, Y. R. Wang, and G. H. Dai. 2017. Timing of chemotherapy-induced neutropenia: the prognostic factor in advanced pancreatic cancer patients treated with gemcitabine/gemcitabine-based chemotherapy. Oncotarget 8:66593–66600.
15. Wood, W. C., D. R. Budman, A. H. Korzun, M. R. Cooper, J. Younger, R. D. Hart, et al. 1994. Dose and dose intensity of adjuvant chemotherapy for stage II, node-positive breast carcinoma. N. Engl. J. Med. 330:1253–1259.
16. Gurney, H. 1996. Dose calculation of anticancer drugs: a review of the current practice and introduction of an alternative. J. Clin. Oncol. 14:2590–2611.
17. Gurney, H. 2002. How to calculate the dose of chemotherapy. Br. J. Cancer 86:1297–1302.
18. Ratain, M. J. 1998. Body-surface area as a basis for dosing of anticancer agents: science, myth, or habit? J. Clin. Oncol. 16:2297–2298.
19. Newell, D. R. 2002. Getting the right dose in cancer chemotherapy—time to stop using surface area? Br. J. Cancer 86:1207–1208.
20. de Jongh, F. E., J. Verweij, W. J. Loos, R. de Wit, M. J. de Jonge, A. S. Planting, et al. 2001. Body-surface area-based dosing does not increase accuracy of predicting cisplatin exposure. J. Clin. Oncol. 19:3733–3739.
21. Gurney, H. P., S. Ackland, V. Gekbi, and G. Farrell. 1998. Factors affecting epirubicin pharmacokinetics and toxicity: evidence against using body-surface area for dose calculation. J. Clin. Oncol. 16:2299–2304.
22. Sandstrom, M., H. Lindman, P. Nygren, M. Johansson, J. Bergh, and M. O. Karlsson. 2006. Population analysis of the pharmacokinetics and the haematological toxicity of the fluorouracil-epirubicin-cyclophosphamide regimen in breast cancer patients. Cancer Chemother. Pharmacol. 58:143–156.
23. Pikarsky, E., R. M. Porat, I. Stein, R. Abramovitch, S. Amit, S. Kasem, et al. 2004. NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature 431:461–466.
24. He, J. R., G. P. Shen, Z. F. Ren, H. Qin, C. Cui, Y. Zhang, et al. 2012. Pretreatment levels of peripheral neutrophils and lymphocytes as independent prognostic factors in patients with nasopharyngeal carcinoma. Head Neck 34:1769–1776.
25. Jensen, H. K., F. Donskov, N. Marcussen, M. Nordsmark, F. Lundbeck, and H. von der Maase. 2009. Presence of intratumoral neutrophils is an independent prognostic factor in localized renal cell carcinoma. J. Clin. Oncol. 27:4709–4717.
26. Fondevila, C., J. P. Metges, J. Fuster, J. J. Grau, A. Palacin, A. Castells, et al. 2004. p53 and VEGF expression are independent predictors of tumour recurrence and survival following curative resection of gastric cancer. Br. J. Cancer 90:206–215.
27. Kusumanto, Y. H., W. A. Dam, G. A. Hospers, C. Meijer, and N. H. Mulder. 2003. Platelets and granulocytes, in particular the neutrophils, form important compartments for circulating vascular endothelial growth factor. Angiogenesis 6:283–287.
28. Paesmans, M., J. P. Sclurier, J. Lecomte, J. Thiriaux, P. Libert, R. Serfysels, et al. 2000. Prognostic factors for patients with small cell lung carcinoma: analysis of a series of 763 patients included in 4 consecutive prospective trials with a minimum follow-up of 5 years. Cancer 89:523–533.
29. Schmidt, H., L. Bastholt, P. Geertsen, I. J. Christensen, S. Larsen, J. Gehl, et al. 2005. Elevated neutrophil and lymphocyte counts in peripheral blood are associated with poor survival in patients with metastatic melanoma: a prognostic model. Br. J. Cancer 93:273–278.
30. Michael, M., D. Goldstein, S. J. Clarke, A. D. Milner, P. Beale, M. Friedlander, et al. 2006. Prognostic factors predictive of response and survival to a modified FOLFOX regimen: importance of an increased neutrophil count. Clin. Colorectal Cancer 6:297–304.