Experimental joint weak measurement on a photon pair as a probe of Hardy’s Paradox

J. S. Lundeen and A. M. Steinberg

Department of Physics, University of Toronto,
60 St. George Street, Toronto ON, M5S 1A7, Canada
(Date textdate; Received textdate; Revised textdate; Accepted textdate; Published textdate)

Abstract

It has been proposed that the ability to perform joint weak measurements on post-selected systems would allow us to study quantum paradoxes. These measurements can investigate the history of those particles that contribute to the paradoxical outcome. Here, we experimentally perform weak measurements of joint (i.e. nonlocal) observables. In an implementation of Hardy’s Paradox, we weakly measure the locations of two photons, the subject of the conflicting statements behind the Paradox. Remarkably, the resulting weak probabilities verify all these statements but, at the same time, resolve the Paradox.

Retrodiction is a controversial topic in quantum mechanics [1]. How much is one allowed to say about the history (e.g. particle trajectories) of a post-selected ensemble? Historically this has been deemed a question more suitable for philosophy (e.g. counterfactual logic) than physics; since the early days of quantum mechanics, the standard approach has been to restrict the basis of our physical interpretations to direct experimental observations. On the practical side of the question, post-selection has recently grown in importance as a tool in fields such as quantum information: e.g. in linear optics quantum computation (LOQC) [2], where it drives the logic of quantum gates; and in continuous variable systems, for entanglement distillation [3]. Weak measurement is a relatively new experimental technique for tackling just this question. It is of particular interest to carry out weak measurements of multi-particle observables, such as those used in quantum information. Here, we present an experiment that uses weak measurement to examine the two-particle retrodiction paradox of Hardy [4, 5], confirming the validity of certain retrodictions and identifying the source of the apparent contradiction.

Hardy’s Paradox is a contradiction between classical reasoning and the outcome of standard measurements on an electron E and positron P in a pair of Mach-Zehnder interferometers (see Fig. 1). Each interferometer is first aligned so that the incoming particle always leaves through the same exit port, termed the “bright” port B (the other is the “dark” port D). The interferometers are then arranged so that one arm (the "Inner" arm I) from each interferometer overlaps at Y. It is assumed that if the electron and positron simultaneously enter this arm they will collide and annihilate with 100% probability. This makes the interferometers “Interaction-Free Measurements” (IFM) [6]: that is, a click at the dark port indicates the interference was disturbed by an object located in one of the interferometer arms, without the interfering particle itself having traversed that arm. Therefore, in Hardy’s Paradox a click at the dark port of the electron (positron) indicates that the positron (electron) was in the Inner arm. Consider if one were to detect both particles at the dark ports. As IFMs, these results would indicate the particles were simultaneously in the Inner arms and, therefore should have annihilated. But this is in contradiction to the fact that they were actually detected at the dark ports. Paradoxically, one does indeed observe simultaneous clicks at the dark ports [7], just as quantum mechanics predicts.

Weak measurements have been performed in classical optical experiments [8], as well as on the polarization of single photons [9]. Weak measurements of joint observables are particularly important, as this class of observables includes nonlocal observables, which can be used to create and identify multiparticle entanglement (e.g. in cluster state computing [10]). Joint observables also include sequential measurements on a single particle, allowing them to characterize time-evolution in a system [11]. In this experiment, we demonstrate a new technique that for the first time enables us to perform joint weak measurements. With this technique, we implement a proposal by Aharonov et al. [5] to weakly measure the simultaneous location of the two path-entangled photons in Hardy’s Paradox [4]. This technique opens up the possibility of in situ interrogation and characterization of complex multiparticle quantum systems such as those used in quantum information.

A standard measurement collapses the measured system, irreversibly destroying the original quantum state of the system. Post-selected subensembles are particularly difficult to investigate since measurements on the ensemble before the post-selection will collapse the system and, thus, alter the action of the post-selection itself. Weak measurement was devised by Aharonov, Albert, and Vaidman as a way of circumventing these problems [12]. It is an extension of the standard von Neumann measurement model [13] in which the coupling g between the measured system and the measurement device is made asymptotically small. This has the drawback of reducing the amount of information one retrieves in a single measurement. The reward is that the consequent disturbance of the measured system is correspondingly small. To extract useful information, one must repeat the
measurement on a large ensemble of identical quantum systems. The average result is called the “weak value”, denoted $\langle \hat{C} \rangle_w$, where \hat{C} is the measured operator.

To set up Hardy’s Paradox we use two photons instead of the electron and positron. The experimental setup is shown in Fig. 2. A diode laser produces a 30 mW 405 nm beam (blue dashed line) which is filtered by a blue glass filter (BF) and sent through a dichroic mirror (DM). This beam produces 810 nm photon pairs (red solid line) in a 4 mm long BBO crystal through the process of Type II spontaneous parametric downconversion. These pairs, consisting of a horizontal (E) photon and a vertical (P) photon, take the place of the electron and positron. The pump passes through a second DM, to ensure whether a photon travelled through this arm. To understand how this functions consider a half-waveplate placed in the E arm. The pump then perfectly indicates if it was in the E or P arm. This is a measurement of the “occupation” $\hat{N}(M)$ of the $M = I$ or O (Inner or Outer) interferometer arm by photon $K = E$ or P (e.g. $\hat{N}(O_E) = |O_E\rangle \langle O_E|$). Unfortunately this procedure is a standard projective measurement and, hence strongly disturbs the system. In particular, the interference will be destroyed as the two paths are now completely distinguishable and, thus, the interferometer will not function as an IFM. The strength of the measurement interaction ($\hat{U} = \exp\left(-ig\hat{N}\sigma_y\right)$) is parameterized by $g \approx \theta$, the polarization rotation. In this experiment, we reduce this disturbance by rotating the photon’s polarization by only 20°, reducing g four-fold, and thereby performing a weak measurement. The
trade-off is that it is now impossible to know which arm a particular detected photon went through. Instead, we measure the average polarization rotation at the detector over many trials to find what fraction of photons passed through that particular arm. If no rotation is observed then the classical inference would be that the photon was never in the arm with the waveplate. Conversely, if we measure an average rotation of 20° one might infer that every photon passed through the waveplate. Quantum mechanically, this rotation constitutes a weak measurement of the occupation N of a particular interferometer arm.

The crux of the paradox is that the detected photons cannot have simultaneously been in the Inner arms. To test this we require a weak-measurement of the joint occupation of two arms. It was previously thought that a physical interaction between the particles was necessary to make weak-measurements of joint observables (e.g. the electrostatic interaction of ions, as in Ref. [15]). In Refs. [16], we theoretically showed that one only needs to perform single-particle weak measurements on each particle. The joint weak values then appear in polarization correlations between the two particles as follows:

$$
\left\langle \tilde{N}(M_K) \right\rangle_W = g^{-1} \text{Re} \left\langle \tilde{\sigma}_z K \right\rangle
$$

$$
\left\langle N(M_E) \tilde{N}(M_P) \right\rangle_W = g^{-2} \text{Re} \left\langle \tilde{\sigma}_z E \tilde{\sigma}_z P \right\rangle,
$$

where $\tilde{\sigma}_z K = (\sigma_x K - i \sigma_y K)$ is the z-basis lowering operator for the polarization of photon $K = E$ or P. In practice, we independently measure g for each arm to account for polarization-dependent losses. We weakly measure all four combinations of $\tilde{N}(M_E) \tilde{N}(M_P)$ by placing half-waveplates ($\lambda/2$) in all four arms just before the final beamsplitters. We measure the occupation of a particular pair of arms by rotating only those two waveplates. After the final beamsplitters we measure average polarization rotations as well as the correlations specified in Eq. 2 with polarization analyzers (PA) consisting of a quarter-waveplate and polarizer followed by a single-photon detector (PerkinElmer SPCM-AQR). Once the Pauli operators are substituted in Eq. 2 and the real part is found, four Pauli operators remain in the final expectation value. For each of these Pauli operators, the analyzer must be set to two positions (e.g. for $\tilde{\sigma}_x$, 45° and $-45°$ ($\left\langle$ and \rangle and for $\tilde{\sigma}_y$, right-hand circular and left-hand circular (\bigcirc and \circlearrowleft)). Thus, each joint weak value requires eight measurements of coincidence rates at the two dark ports:

$$
\text{Re} \left\langle \tilde{\sigma}_z E \tilde{\sigma}_z P \right\rangle = \frac{R_{11} + R_{22} - R_{33} - R_{44}}{R_{11} + R_{22} + R_{33} + R_{44}} - \frac{R_{33} + R_{44} - R_{22} - R_{11}}{R_{11} + R_{22} + R_{33} + R_{44}},
$$

where R_{sq} is the coincidence rate when the $P(E)$ analyzer is set to $s(q)$. Single weak values for the occupation of photon E (P) are found from these rates by summing over analyzer settings for photon P (E). As an example, we give the measurements contributing to $\left\langle \tilde{N}(O_E) \tilde{N}(O_P) \right\rangle_W : R_{1 \bigcirc} = 556, R_{2 \bigcirc} = 583, R_{3 \bigcirc} = 834, R_{4 \bigcirc} = 730, R_{1 \bigcirc} = 571, R_{2 \bigcirc} = 543, R_{3 \bigcirc} = 666, R_{4 \bigcirc} = 750$ (all in counts per 420s) and $g^2 = 0.365$.

In Table 1 we present the weak values for the various arm occupations. The bottom cells and rightmost cells give the weak value for the occupation of a single arm and the inner cells give the joint occupation of a pair of arms. Error bars are derived from uncertainties in g and statistical variations in the rates.

	$N(I_F)$	$N(O_P)$	$N(I_E)$	$N(O_E)$
$N(I_F)$	0.245 ± 0.068	0.641 ± 0.083	0.926 ± 0.015	0.719 ± 0.074
$N(O_P)$	0.924 ± 0.024	0.087 ± 0.023	0.024 ± 0.012	0.075 ± 0.008

Table 1. The weak values for the arm occupations in Hardy’s Paradox.

Examining the table reveals that the single-particle weak measurements are consistent with the clicks at each dark port; as the IFM results imply, the weakly measured occupations of each of the Inner arms are close to one and those of each of the Outer arms are close to zero. The weak measurements indicate that, at least when considered individually, the photons were in the Inner arms. However, if we instead examine the joint occupation of the two Inner arms, it appears that the two photons are only simultaneously present roughly one quarter of the time. This demonstrates that, as we expect, the particles are not in the inner arms together.

So far, we seem to have confirmed both of the premises of Hardy’s Paradox: to wit, that when D_F and D_E fire, $N(I_F)$ and $N(I_E)$ are close to one (since the IFMs indicate the presence of the particles in Y) – but that $N(I_F & I_E)$ is close to zero (since when both particles are in Y, they annihilate and should not be detected). This is odd because in classical logic, $N(I_F & I_E)$ must be $\geq N(I_F) + N(I_E) - 1$: this inequality is violated by our results. Although $N(I_E)$ is 93% and $N(I_F)$ is 92%, the data in Table 1 suggest that when E is in the Inner path, P is not, and vice versa; hence the large values for $N(I_E & O_P) = 64\%$ and $N(O_E & I_P) = 72\%$. The fact that the sum of these two seemingly disjoint joint-occupation probabilities exceeds 1 is the contradiction with classical logic. In the context of weak measurements, the resolution of this problem lies in the fact that weak valued probabilities are not required to be positive definite [2], and so a negative occupation $N(O_E & O_P) = -76\%$ is possible, preserving the probability sum rules. In an ideal implementation of Hardy’s Paradox, the joint probabilities are strictly 0 for both
particles to be in Inner arms, −1 for both to be in the Outer, and 1 for either to be in the Inner while the other is in the Outer arm. These are indicated in brackets in Table 1, for comparison with our experimental data. Discrepancies are because of the imperfect switch efficiency (85 ± 3%) and IFM probabilities (95 ± 3% for the E IFM and 94 ± 4% for P).

What is the meaning of the negative joint occupation? Recall that the joint values are extracted by studying the polarization rotation of both photons in coincidence. Consider a situation in which both photons always simultaneously passed through two particular arms. When a polarization rotator is placed in each of these arms it would tend to cause their polarizations to rotate in a correlated fashion; when P was found to have 45° polarization, E would also be more likely to be found at 45° than −45°. Experimentally, we find the reverse – when P is found to have 45° polarization, E is preferentially found at −45° (and vice versa), as though it had rotated in the direction opposite to the one induced by the physical waveplate. As in all weak measurement experiments, a negative weak value implies that the shift of a physical "pointer" (in this case, photon polarization) has the opposite sign from the one expected from the measurement interaction itself.

In summary, Hardy’s Paradox is a set of conflicting classical logic statements about the location of the particles in each of two Mach-Zehnder interferometers. It is impossible to simultaneously verify these statements with standard measurements since testing one statement disturbs the system and consequently nullifies the other statements. We attempt to minimize this disturbance by reducing the strength of the interaction used to perform the measurement. The results of these weak measurements indicate that all the logical statements are correct and also provide a self-consistent, if strange, resolution to the paradox. Since they do not disturb subsequent post-selection of the systems under study, weak measurements are ideal for the interrogation and characterization of post-selected multiparticle states such as GHZ or Cluster states, and processes such as Linear Optics Quantum Computation. This experiment demonstrates a new technique that, for the first time, allows for the weak measurement of general multiparticle observables in these systems.

This work was supported by NSERC, QuantumWorks, CIPI, and the Canadian Institute for Advanced Research. We thank Kevin Resch and Morgan Mitchell for helpful discussions.

[1] O. Hosten et al. Nature 439, 949 (2006).
[2] E. Knill, R. Laflamme, and G. J. Milburn, Nature 409, 46 (2001).
[3] D. E. Browne et al. Phys. Rev. A 67, 062320 (2003).
[4] L. Hardy, Phys. Rev. Lett. 68, 2981 (1992).
[5] Y. Aharonov et al. Phys. Lett. A 301, 130 (2002).
[6] A. C. Elitzur and L. Vaidman, Found. Phys. 23, 987 (1993); P. Kwiat et al. Phys. Rev. Lett. 74, 4763 (1995).
[7] W. T. M. Irvine et al. Phys. Rev. Lett. 95, 030401 (2005).
[8] N. W. M. Ritchie, J. G. Story, and R. G. Hulet, Phys. Rev. Lett. 66, 1107 (1991); K. J. Resch, J. S. Lundeen, and A. M. Steinberg, Phys. Lett. A 324, 125 (2004); R. Mir et al. New Journal of Physics 9, 287 (2007); O. Hosten and P. Kwiat, Science, 319, 787 (2008).
[9] G. J. Pryde et al. Phys. Rev. Lett. 94, 220405 (2005).
[10] R. Raussendorf and H. J. Briegel, Phys. Rev. Lett. 86, 5188 (2001).
[11] Y. Aharonov et al. arXiv quant-ph/0712.0320v1 (2007); G. Mitchison, R. Jozsa, and S. Popescu, Phys. Rev. A 76, 062105 (2007).
[12] Y. Aharonov, D. Z. Albert, and L. Vaidman, Phys. Rev. Lett. 60, 1351 (1988).
[13] J. von Neumann, Mathematical Foundations of Quantum Mechanics (Princeton Univ. Press, 1955).
[14] K. J. Resch, J. S. Lundeen, and A. M. Steinberg, Phys. Rev. Lett. 87, 123603 (2001); K. J. Resch, J. S. Lundeen, and A. M. Steinberg, Phys. Rev. Lett. 89, 037904 (2002); T. J. Herzog et al. Phys. Rev. Lett. 72, 629 (1994).
[15] K. Mølmer, Phys. Lett. A 292, 151 (2001).
[16] K. J. Resch and A. M. Steinberg, Phys. Rev. Lett. 92, 130402 (2004); K. J. Resch, Journal of Optics B 6, 482 (2004); J. S. Lundeen and K. J. Resch, Phys. Lett. A 334, 337 (2005).