Different Characteristics of Serum Alfa Fetoprotein and Serum Des-gamma-carboxy Prothrombin in Resected Hepatocellular Carcinoma

MASAMICHI HAYASHI1, SUGURU YAMADA1, NAO TAKANO1, YUKIYASU OKAMURA2, HIDEKI TAKAMI1, YOSHIKUNI INOKAWA1, FUMINORI SONOHARA1, NOBUTAKE TANAKA1, DAI SHIMIZU1, NORIFUMI HATTORI1, MITSURO KANDA1, CHIE TANAKA1, GORO NAKAYAMA1, MASAHIKO KOIKE1 and YASUHIRO KODERA1

1Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan; 2Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center, Shizuoka, Japan

Abstract. Background/Aim: Hepatocellular carcinoma (HCC) mainly develops in the damaged liver from hepatitis C virus (HCV) or hepatitis B virus (HBV) infection in Japan. On the other hand, the occurrence of HCCs derived from the liver without viral infection has recently been increasing. Our aim was to identify characteristics specific to HCCs with virus-infected liver (HCC-BC) or those with non-B- and non-C-infected liver (HCC-NBNC). Patients and Methods: We collected preoperative serum α-fetoprotein (AFP) and Des-Gamma-Carboxy Prothrombin (DCP), also known as PIVKA-II values from surgically resected HCC cases during 1994-2017 in our department. Results: Preoperative serum AFP values of HCC-BC cases (n=284) were higher compared to HCC-NBNC cases (n=88) (p=0.016), whereas serum DCP values of HCC-NBNC cases were higher compared to HCC-BC cases (p<0.001). Multivariable analyses indicated that abnormal serum AFP [hazard ratio (HR)=1.46, 95% confidence interval (CI)=1.03-2.07, p=0.035] was one of the significant recurrence-free survival predictors of HCC-BC cases, while abnormal serum DCP (HR=4.99, 95%CI=1.91-13.01, p=0.001) was one of the significant recurrence-free survival predictors of HCC-NBNC cases. Conclusion: HCC-NBNC cases have a different tumor marker profile from HCC-BC cases. Elevated DCP could be both a diagnostic and prognostic marker of HCC-NBNC patients.

Hepatocellular carcinoma (HCC) is the 6th most frequently occurring cancer globally and still has a high likelihood of recurrence and a poor prognosis (1). HCCs are mainly derived from the damaged liver caused by various etiological factors, including hepatitis C virus (HCV) or hepatitis B virus (HBV) infection, as well as chronic alcohol abuse (2, 3). Among them, HCV (65%) and HBV (15%) are the two major pathogenic factors in Japan (4). Recently, the occurrence of HCCs derived from non-B non-C livers (HCC-NBNC) have been relatively increasing because HBV or HCV treatments have dramatically improved. HCC-NBNC lesions typically arise from non-alcoholic steatohepatitis (NASH) or alcoholic liver disease.

To characterize the background liver status, whole-genome analyses have been widely performed (5, 6). Some mutational signatures and altered pathways have been associated with certain histological characteristics of background livers or tumor stages (7, 8). For instance, the mutation of catenin beta 1 (CTNNB1), one of the critical cluster of Wnt-signaling, has been related to alcohol-damaged liver. Telomerase reverse transcriptase (TERT), cyclin dependent kinase inhibitor 2A (CDKN2A), SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 2 (SMARCA2) and hepatocyte growth factor (HGF) alterations are also enriched in alcohol-related HCC patients. Tumor protein p53 (TP53) mutations are frequently associated with HBV infection. The integration of HBV into the host genome (9, 10) induces upregulation of cancer-related genes, such as TERT, lysine methyltransferase 2B (MLL4), and cyclin E1 (CCNE1) genes. This leads to alterations in the genes functioning downstream of all these genes or cause whole genome
chromosomal instability (10, 11). Concerning the HCC-NBNC and background liver, Kutlu et al. have reported several molecular characteristics (12), including a patatin-like phospholipase domain containing 3 (PNPLA3) gene mutation, epigenetic changes of phosphodiesterase 1B (PDE1B) and chromodomain helicase DNA-binding protein 1 (CHD1), micro RNA deregulation including miR-122, metabolic pathway activating insulin receptor signaling and mitochondrial dysfunction caused by reactive oxygen species and endoplasmic reticulum stress.

We hypothesized that some molecular characteristics distinguishing HCC-NBNC from HCC with virus-infected liver (HCC-BC) may affect the positivity of well-known tumor markers of HCC, such as alpha-fetoprotein (AFP) and des-gamma-carboxy prothrombin (DCP) (13). In this study, we used the HCC resection cohort in our institution and retrospectively compared HCC-NBNC cases with HCC-BC cases from the viewpoint of these well-known HCC serum tumor markers.

Patients and Methods

Patient cohort. Among surgically resected HCC cases from 1994 to 2017 in the Department of Gastroenterological Surgery, at Nagoya University (Aichi, Japan), 372 cases with available preoperative AFP and DCP markers were included (Institute Review Board approval number: 2013-0295). Of these, 284 patients were categorized as HCC-BC and 88 patients as HCC-NBNC. The average follow-up period was 51.4 months. Clinical factors including age, gender, liver damage scores, tumor size and numbers, and pathological factors of tumor differentiation, growth pattern, capsule formation, serosal and vascular invasion were categorically compared between the two groups.

Serum marker collection. Each serum marker was checked by peripheral blood examination preoperatively. The standard institutional cut-off values were 10 ng/ml for AFP and 40 mAU/ml for DCP.

Statistical analysis. Patient clinicopathological characteristics were compared using Fisher’s exact test for categorical variables and Mann-Whitney U-test for continuous variables. Overall survival (OS) was defined as the time from surgery to the date of HCC disease-related death. Recurrence-free survival (RFS) was defined as the time from surgery to the date of recurrence diagnosis. Those who remained alive were censored at the last date they were known to be alive. A log-rank test was applied to compare the survival outcomes of the two groups. The Cox proportional hazards model was used for univariate and multivariable analysis for survival outcomes. All tests were considered statistically significant and clinically promising at \(p < 0.05 \). Statistical analyses were carried out using the JMP 15 software (SAS Institute Japan, Tokyo, Japan).

Results

Patients characteristics. Clinicohistological characteristics of both HCC-BC cases (n=284) and HCC-NBNC cases (n=88) are shown in Table I. Due to the viral hepatic damage, liver damage score B/C cases were more frequently Table I. Patient characteristics.

Factors	HCC-BC (n=284)	HCC-NBNC (n=88)	\(p \)-Value	
Age			0.582	
≥60	207	67		
<60	77	21		
Gender			0.348	
Female	56	13		
Male	228	75		
Liver Damage			0.071	
A	218	76		
B/C	66	12		
Tumor number			0.121	
Single	207	72		
Multiple	77	16		
Tumor size			\(<0.001\)	
≥2.0 cm	151	70		
<2.0 cm	133	18		
Differentiation			0.753	
Well	50	17		
Moderate/Poor	230	71		
Unknown	4	0		
Growth pattern			0.197	
Expansive	236	67		
Invasive	45	19		
Unknown	3	2		
Capsule formation			0.896	
Positive	192	58		
Negative	92	29		
Unknown	0	1		
Infiltration to capsule			0.806	
Positive	155	46		
Negative	128	41		
Unknown	1	1		
Septal formation			0.294	
Positive	182	61		
Negative	97	24		
Unknown	5	3		
Serosal invasion			0.045	
Positive	48	25		
Negative	202	57		
Unknown	34	6		
Portal vein invasion			1.000	
Positive	56	17		
Negative	226	69		
Unknown	2	2		
Hepatic vein invasion			0.027	
Positive	30	18		
Negative	248	68		
Unknown	6	2		
LCSGJ stage			1.000	
I-II	178	55		
III-IV	105	33		
Unknown	1	0		
Liver cirrhosis			\(<0.001\)	
Positive	126	19		
Negative	158	69		
AFP			0.061	
≤10 ng/ml	107	43		
>10 ng/ml	171	43		
Unknown	6	2		
DCP			\(<0.001\)	
≤40 mAU/ml	139	23		
>40 mAU/ml	115	62		
Unknown	30	3		

HCC-BC: Hepatocellular carcinoma with virus-infected liver; HCC-NBNC: hepatocellular carcinoma with no virus-infected liver; LCSGJ: Liver Cancer Study Group of Japan; AFP: \(\alpha \)-fetoprotein; DCP: des-gamma-carboxy prothrombin. Significant \(p \)-Values are shown in bold.
found in HCC-BC rather than in HCC-NBNC cases ($p=0.071$). Histologically advanced cases with large diameter ($p<0.001$), serosal invasion ($p=0.045$) and hepatic vein invasion ($p=0.027$) were frequently found in HCC-NBNC cases, while the cancer stage distributions of Liver Cancer Study Group of Japan (LCSGJ) between the two groups were comparable ($p=1.000$). The distribution of actual serum values for AFP and DCP were compared between HCC-BC and HCC-NBNC cases, as depicted in Figure 1. AFP values were inclined to exceed the cut-off value in HCC-BC cases ($p=0.061$), whereas DCP values were significantly higher in HCC-NBNC cases compared to HCC-BC cases ($p<0.001$).

Serum tumor marker and survival outcomes. We compared high and low tumor marker cases based on the cut-off values in each HCC-BC and HCC-NBNC cohort to ascertain the markers’ impact on postoperative RFS and OS. With regards to RFS (Figure 2), cases with aberrantly high values of tumor markers showed significantly poor survival outcomes in both cohorts. Concerning OS (Figure 3), high AFP was associated with a significantly poor prognosis in the HCC-BC cohort. In contrast, patients with high DCP had significantly lower OS in both cohorts, with a vast difference in OS between high and low values in the HCC-HBNC cohort. Then, we compared AFP high with AFP low (Table II) as well as DCP high with DCP low (Table III) in the HCC-BC and HCC-NBNC cohorts to examine the characteristics associated with these values in detail. High AFP cases were related to aged people, with i) moderate or poor differentiation, ii) portal vein invasion, iii) advanced tumor stage and iv) positive liver cirrhosis, while high AFP cases were also specific to the HCC-NBNC cohort with both i) portal vein invasion and ii) advanced tumor stage. On the contrary, high DCP cases were significantly correlated with HCC-BC cases with i) a large tumor size, ii) moderate or poor differentiation, iii) infiltration to a capsule, iv) serosal invasion, v) vascular invasion, vi) advanced tumor stage and vii) liver cirrhosis. Also, they were associated with HCC-NBNC with i) large tumor size and ii) moderate or poor differentiation.

Univariate and multivariable analyses of survival outcomes. Univariate and multivariable analyses of survival outcomes were performed. All significant factors in the univariate analysis were put into the multivariable analysis. The backward stepwise method was performed until the p-Values of all remaining factors became significant. Tables IV and V summarize the results of RFS in the HCC-BC and HCC-NBNC cohorts. In HCC-BC cases, i) tumor size, ii) AFP elevation, iii) serosal invasion, iv) portal vein invasion and v) hepatic vein invasion were detected as significant prognostic factors of RFS in multivariable analysis. On the other hand, i) DCP elevation and ii) portal vein invasion were significant factors in HCC-NBNC cases.
Tables VI and VII demonstrate the results of OS in each cohort. In the multivariable analysis of HCC-BC cases i) tumor number, ii) serosal invasion, iii) portal vein invasion and iv) hepatic vein invasion were significant predictors. In contrast, i) DCP elevation was an extremely significant predictor of HCC-NBNC cases in addition to ii) serosal invasion and iii) portal vein invasion. None of the low DCP cases died from the disease in our cohort.

Clinical characteristics of AFP and DCP elevation. AFP values of HCC-BC cases increased depending on tumor T stage, while DCP values of HCC-NBNC cases increased depending on the T stage (Figure 4). Besides, the association of both markers with background liver are shown in Figure 5. AFP does not decrease in the cirrhotic liver, while DCP decreases in them.

Discussion

Clinically, the measurement of both AFP and DCP has been strongly recommended in the Clinical Practice Guidelines for Hepatocellular Carcinoma (14); however, the mechanism of each tumor marker elevation is unknown and may differ between tumor types. HCCs derived from NBNC are
reported to have relatively low serum AFP levels compared to hepatitis B-derived HCCs (15). Also, hepatitis C-infected livers usually have high serum AFP levels (16). These findings suggest that AFP elevation is commonly influenced by a viral infection of the background liver. AFP is a glycoprotein derived from the embryonic endoderm. It is closely related to the growth of malignant tumors (17). During embryonic development, AFP is initially produced in the fetal liver and yolk sac. The serum AFP concentration increases during the period between 12-16 weeks of gestation and then it gradually reduces to normal range till adulthood (18). AFP increases again during early stages of hepatocytes’ malignant transformation, and it is activated in the malignant cells. Zheng Y et al., have summarized the AFP production mechanism in HBV-derived hepatitis-based HCCs (17), where the HBV X protein promotes the acceleration of AFP’s accretion, which induces growth signal activation, metastases and bears an immunosuppressive role.

Instead, DCP is abnormal prothrombin and produced due to the defect of the post-translational carboxylation of prothrombin’s precursor (19); however, the detailed mechanism of its production is unclear. Taniguchi T et al. have used mass spectrometry analysis of hepatoma cell lines to reveal that PARP-1 activates prothrombin gene

Figure 3. Overall survival (OS). OS curves were compared between high AFP cases (AFP>10ng/ml) and low AFP cases, and high DCP cases (DCP>40 mAU/ml) and low DCP cases in the HCC-BC cohort and HCC-NBNC cohort, respectively. High AFP indicated significantly poor survival outcomes in the HCC-BC cohort, while high DCP displayed significantly poor survival outcomes in both cohorts. AFP: Alpha-fetoprotein; DCP: des-gamma-carboxy prothrombin; HCC-BC: hepatocellular carcinoma with virus-infected liver; HCC-NBNC: hepatocellular carcinoma with no virus-infected liver.
transcription and that this excessive transcription induces DCP production (20). PARP-1 inhibition is also reported as a candidate therapeutic strategy for hepatic triglyceride accumulation, metabolic dysregulation, inflammation and fibrosis in mouse NASH models (21). DCP elevation reflects vascular invasion and tumor recurrences following...

Table II. Clinicohistological features of AFP high cases.

Factors	HCC-BC		p-Value	HCC-NBNC		p-Value	
	AFP high	AFP low			AFP high	AFP low	
Age							
≥60	116	87	0.018	1.000	32	33	
<60	55	20	0.549		11	10	
Gender							
Female	35	20	0.773	0.351	35	38	
Male	136	87	0.351		8	5	
Liver damage							
A	132	81	0.737		39	35	
B/C	39	26	0.351		4	8	
Tumor number							
Single	121	82	0.332	1.000	35	35	
Multiple	50	25	0.351		8	8	
Tumor size							
≥2.0 cm	88	60	0.462	0.792	33	35	
<2.0 cm	83	47	0.351		10	8	
Differentiation							
Well	21	28	0.006	0.103	5	12	
Moderate/Poor	147	78	0.792		38	31	
Growth pattern							
Expansive	139	91	0.739	0.186	31	35	
Invasive	29	16	0.186		12	6	
Capsule formation							
Positive	122	66	0.114	0.818	29	28	
Negative	49	41	0.517		13	15	
Infiltration to capsule							
Positive	101	50	0.047	1.000	24	21	
Negative	69	57	0.517		18	22	
Septal formation							
Positive	110	66	0.796		30	29	
Negative	59	38	0.144		12	12	
Serosal invasion							
Positive	31	17	0.415	0.144	15	9	
Negative	113	84	0.144		24	32	
Portal vein invasion							
Positive	41	13	0.019	0.003	14	3	
Negative	129	93	0.003		27	40	
Hepatic vein invasion							
Positive	20	10	0.555	0.113	12	6	
Negative	145	97	0.113		29	37	
LCSGJ stage							
I-II	99	76	0.040	0.026	21	32	
III-IV	71	31	0.026		22	11	
Liver cirrhosis							
Positive	84	39	0.047	0.604	11	8	
Negative	87	68	0.604		32	35	
DCP							
≤40 mAU/ml	80	56	0.796	0.465	13	9	
>40 mAU/ml	68	44	0.465		30	31	

HCC-BC: Hepatocellular carcinoma with virus-infected liver; HCC-NBNC: hepatocellular carcinoma with no virus-infected liver; LCSGJ: Liver Cancer Study Group of Japan; AFP: α-fetoprotein; DCP: des-gamma-carboxy prothrombin. Significant p-Values are shown in bold.
hepatectomy (22). It has also been reported to increase during epithelial to mesenchymal transition in tumors (23). In other words, DCP goes up by tumor factors.

Interestingly, Suzuki H et al., have reported that mild hypoxia induces HCC to produce DCP, while long-lasting hypoxia impaires DCP production in HCC cells (23), which could partly explain why DCP is elevated in HCC-NBNCs rather than in HCC-BCs. In our study tumor sizes of HCC-NBNCs were significantly larger than HCC-BCs because no intensive follow-up examination was usually performed for NBNC patients. The relatively large HCC-NBNCs sometimes induce intratumoral hypoxia, which is easy to

Table III. Clinicohistological features of DCP high cases.

Factors	HCC-BC	p-Value	HCC-NBNC	p-Value
	DCP high	DCP low	DCP high	DCP low
Age	0.267	1.000		
≥60	86	94	15	6
<60	29	45	47	17
Gender	0.204	0.742		
Female	18	31	9	4
Male	97	108	53	19
Liver damage	0.174	0.727		
A	94	103	54	19
B/C	21	36	8	4
Tumor number	0.162	0.750		
Single	77	105	50	20
Multiple	38	34	12	3
Tumor size	<0.001	0.002		
≥2.0 cm	85	60	55	13
<2.0 cm	30	79	7	10
Differentiation	<0.001	0.013		
Well	9	35	8	9
Moderate/Poor	104	103	54	14
Growth pattern	0.736	0.771		
Expansive	97	112	48	17
Invasive	18	24	13	6
Capsule formation	0.285	0.439		
Positive	81	88	43	14
Negative	34	51	18	9
Infiltration to capsule	0.043	0.469		
Positive	69	66	35	11
Negative	45	73	26	12
Septal formation	0.227	0.268		
Positive	77	86	46	14
Negative	33	53	14	8
Serosal invasion	0.013	0.177		
Positive	30	16	21	4
Negative	79	102	37	18
Portal vein invasion	0.001	1.000		
Positive	33	17	12	4
Negative	81	122	48	19
Hepatic vein invasion	<0.001	0.134		
Positive	22	7	16	2
Negative	89	132	44	21
LCSGJ stage	<0.001	0.459		
I-II	55	101	37	16
III-IV	60	38	25	7
Liver cirrhosis	0.030	0.379		
Positive	40	68	12	7
Negative	75	71	50	16

HCC-BC: Hepatocellular carcinoma with virus-infected liver; HCC-NBNC: hepatocellular carcinoma with no virus-infected liver; LCSGJ: liver cancer study group of Japan; AFP: α-fetoprotein; DCP: des-gamma-carboxy prothrombin. Significant p-Values are shown in bold.
produce DCP (24). Our clinical data clearly indicate that DCP values increased depending on the T stage of HCC-NBNCs. Besides HCC-BCs are derived from the damaged background liver, which is chronically exposed to long-lasting hypoxia (25). Actually, DCP values of the cirrhotic liver tumors were significantly decreased.

Exome sequences of hepatocellular carcinomas have identified new mutational signatures and potential therapeutic targets (7). Depending on the risk factors of hepatocarcinogenesis, responsible gene signatures vary. For instance, \textit{CTNNB1}, \textit{TERT}, \textit{CDKN2A}, \textit{SMRCA2} and \textit{HGF} gene alterations can be frequently found in alcohol-based hepatitis. \textit{TP53} mutation was dominant in hepatitis B cases. In contrast, no distinct signature was identified in hepatitis C or NASH-based HCCs. Totoki \textit{et al.}, have revealed 30 candidate driver genes and 11 core pathway modules from 503 liver cancer genomes (8). \textit{TERT} or \textit{ATRX} chromatin remodeler (\textit{ATRX}) genes are widely mutated in all virus-induced HCCs. For NBNC HCCs, \textit{ARID1A} mutation is frequently found. Moore \textit{et al.}, have demonstrated that \textit{ARID1A}-deficient livers are more susceptible to high-fat diet-induced liver steatosis and fibrosis in mice models (26). As a detailed mechanism, Qu YL \textit{et al.}, have revealed that \textit{ARID1A} deficiency impairs fatty acid oxidation by epigenetically downregulating Peroxisome proliferator-activated receptor alpha (PPAR\textalpha)
and other metabolism-related genes, such as carnitine palmitoyltransferase 1A (CPT1A) and acyl-CoA oxidase 1 (ACOX1) (27).

This study has some limitations. First, this is a retrospective study from a single-institution with a modest sample size. Further confirmation with large multicenter data is required. Second, the mechanism of DCP elevation in HCC-NBNC should be explained by specific molecular characteristics, including PNPLA3 mutation, ARID1A deficiency or lipid metabolism-related genes in non-hepatitis livers in future studies.

In conclusion, AFP elevation and DCP elevation were differentially observed depending on the background liver status. Hepatocarcinogenesis in NASH liver was specific to DCP elevation, rather than AFP. DCP seems to be a significant predictive serum marker of survival outcomes, especially for HCC-NBNC cases.

Conflicts of Interest

The Authors declare no conflicts of interest.

Authors’ Contributions

MH, SY and YO designed the project. MH, NT,YO, HT, YI, FS, NT and MK collected the clinical data. MH, NT and YO analyzed the data.
Figure 4. Distribution of preoperative AFP and DCP values according to histological T grades. AFP values of HCC-BC cases are gradually increased in parallel with T grades, whereas of HCC-NBNC cases did not. On the contrary, HCC-NBNC cases showed a steady increase in DCP values with T stage, while HCC-BC cases showed no increase. AFP: Alpha-fetoprotein; DCP: des-gamma-carboxy prothrombin; HCC-BC: hepatocellular carcinoma with virus-infected liver; HCC-NBNC: hepatocellular carcinoma with no virus-infected liver.

Figure 5. Association between each tumor marker and liver cirrhosis (LC). AFP values showed no decrease in LC cases, whereas DCP values decreased in LC cases. AFP: Alpha-fetoprotein, DCP: des-gamma-carboxy prothrombin.
MH and SY checked and approved all the statistical analyses. MH prepared the manuscript and DS, NH, CT, GN, MK and YK revised it.

References

1 Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide in 185 countries. CA Cancer J Clin 68(6): 394-424, 2018. PMID: 30207593. DOI: 10.3328/caac.21492

2 Forner A, Llovet JM and Bruix J: Hepatocellular carcinoma. Lancet 379(9822): 1245-1255, 2012. PMID: 22353262. DOI: 10.1016/S0140-6736(11)61347-0

3 El-Serag HB: Hepatocellular carcinoma. N Engl J Med 365(12): 1118-1127, 2011. PMID: 21992124. DOI: 10.1056/NEJMra1001683

4 Utsunomiya T, Shimada M, Kudo M, Ichida T, Matsui O, Izumi N, Matsuyama Y, Sakamoto M, Nakashima O, Ku Y, Takayama T, Kokudo N and Liver Cancer Study Group of Japan.: A comparison of the surgical outcomes among patients with HBV-positive, HCV-positive, and non-B non-C hepatocellular carcinoma: a nationwide study of 11,950 patients. Ann Surg 261(3): 513-520, 2015. PMID: 25072437. DOI: 10.1097/SLA.0000000000000821

5 Brunner SF, Roberts ND, Wylie LA, Moore L, Aitken SJ, Davies SE, Sanders MA, Ellis P, Alder C, Hooks Y, Absal SC, Stratton MR, Martincencio I, Hoare M and Campbell PJ: Somatic mutations and clonal dynamics in healthy and cirrhotic human liver. Nature 574(7779): 538-542, 2019. PMID: 31645727. DOI: 10.1038/s41586-019-1670-9

6 Letouzé E, Shinde J, Renault V, Couchy G, Blanc JF, Mazzaferro V, Calvo F, Villanueva A, Nault JC, Rebouissou S, Couchy G, Meiller C, Shinde J, Soysouvanh F, Calatayud AL, Pinyol R, Pelletier L, Balabaud C, Laurent A, Zhang C, Hardwick J, Buser C, Xu J, Kan Z, Dai H, Mao M, Reinhard C, Wang J and Luk JM: Genome-wide survey of recurrent HBV integration in hepatocellular carcinoma. Nat Genet 44(7): 765-769, 2012. PMID: 22634754. DOI: 10.1038/ng.2295

7 Schulze K, Imbeaud S, Letouzé E, Alexandrov LB, Calderaro J, Letouzé E, Shinde J, Renault V, Couchy G, Blanc JF, Tubacher WH, Ariyaratne PN, Tennakoon C, Mulawadi FH, Wong KF, Liu AM, Poon RT, Fan ST, Chan KL, Gong Z, Hu Y, Lin Z, Wang G, Zhang Q, Barber TD, Chou WC, Aggarwal A, Hao K, Zhou W, Zhang C, Hardwick J, Buser C, Xu J, Kan Z, Dai H, Mao M, Reinhard C, Wang J and Luk JM: Genome-wide survey of recurrent HBV integration in hepatocellular carcinoma. Nat Genet 44(7): 765-769, 2012. PMID: 22634754. DOI: 10.1038/ng.2295

8 Hayashi et al: Serum AFP, DCP Elevation in Hepatoma
hepatocellular carcinoma. Digestion 95(3): 242-251, 2017. PMID: 28384634. DOI: 10.1159/000470837

21 Mukhopadhyay P, Horváth B, Rajesh M, Varga ZV, Gariani K, Ryu D, Cao Z, Holovac E, Park O, Zhou Z, Xu MJ, Wang W, Godlewski G, Paloczi J, Nemeth BT, Persidsky Y, Liaudet L, Haskó G, Bai P, Boulares AH, Auwerx J, Gao B and Pacher P: PARP inhibition protects against alcoholic and non-alcoholic steatohepatitis. J Hepatol 66(3): 589-600, 2017. PMID: 27984176. DOI: 10.1016/j.jhep.2016.10.023

22 Yamazaki S, Takayama T, Kurokawa T, Shimamoto N, Mitsuka Y, Yoshida N, Igaki T and Sugitani M: Next-generation des-r-carboxy prothrombin for immunohistochemical assessment of vascular invasion by hepatocellular carcinoma. BMC Surg 20(1): 201, 2020. PMID: 32928172. DOI: 10.1186/s12893-020-00862-0

23 Suzuki H, Murata K, Gotoh T, Kusano M, Okano H, Oyamada T, Yasuda Y, Ishimura M, Kudo M, Mizokami M and Sakamoto A: Phenotype-dependent production of des-γ-carboxy prothrombin in hepatocellular carcinoma. J Gastroenterol 46(10): 1219-1229, 2011. PMID: 21744129. DOI: 10.1007/s00535-011-0432-8

24 Höckel M and Vaupel P: Biological consequences of tumor hypoxia. Semin Oncol 28(2 Suppl 8): 36-41, 2001. PMID: 11395851.

25 Zhu C, Liu X, Wang S, Yan X, Tang Z, Wu K, Li Y and Liu F: Hepatitis C virus core protein induces hypoxia-inducible factor 1α-mediated vascular endothelial growth factor expression in Huh7.5.1 cells. Mol Med Rep 9(5): 2010-2014, 2014. PMID: 24626461. DOI: 10.3892/mmr.2014.2039

26 Moore A, Wu L, Chuang JC, Sun X, Luo X, Gopal P, Li L, Celen C, Zimmer M and Zhu H: Arid1a loss drives nonalcoholic steatohepatitis in mice through epigenetic dysregulation of hepatic lipogenesis and fatty acid oxidation. Hepatology 69(5): 1931-1945, 2019. PMID: 30584660. DOI: 10.1002/hep.30487

27 Qu YL, Deng CH, Luo Q, Shang XY, Wu JX, Shi Y, Wang L and Han ZG: Arid1a regulates insulin sensitivity and lipid metabolism. EBioMedicine 42: 481-493, 2019. PMID: 30879920. DOI: 10.1016/j.ebiom.2019.03.021

Received January 16, 2021
Revised February 6, 2021
Accepted February 10, 2021