Insulin therapy practice performed by people with diabetes in Primary Healthcare

Prática insulinoterápica realizada por pessoas com diabetes na Atenção Primária em Saúde

Práctica de la terapia con insulina realizada por personas con diabetes en Atención Primaria de Salud

How to cite this article: Cunha GH, Fontenele MSM, Siqueira LR, Lima MAC, Gomes MEC, Ramalho AKL. Insulin therapy practice performed by people with diabetes in Primary Healthcare. Rev Esc Enferm USP. 2020;54:e03620. doi: https://doi.org/10.1590/S1980-220X2019002903620

ABSTRACT

Objective: To analyze insulin therapy performed by people with diabetes in Primary Healthcare. Method: A cross-sectional, descriptive and quantitative study. Data collection was carried out through an interview using a form with sociodemographic, clinical and insulin therapy variables. Absolute and relative frequencies as well as prevalence ratio were calculated and the chi-squared test was used, with p<0.05 being significant. Results: The sample consisted of 150 patients. Most were female (66.7%), aged 50-85 years (79.3%) and some were illiterate (16.7%). Type 2 diabetes (62.0%) with complications (42.7%), and using oral hypoglycemic agents and insulin stood out. Syringes/needles (83.1%), lancets (85.5%), reagent strips (91.0%) and insulin vials (93.8%) were stored incorrectly by the majority. The correct form predominated in preparation, application and transport. Waste was disposed of incorrectly. In the general analysis most performed the insulin therapy stages inappropriately (93.3%). Sociodemographic and clinical variables did not influence insulin therapy, but there was a significant difference in the intra-group analysis for incorrect performance in some groups. Conclusion: Insulin therapy was inappropriately performed in most cases.

DESCRIPTORS
Diabetes Mellitus; Insulin; Primary Care Nursing; Primary Health Care; Health Education.

ORIGINAL ARTICLE

doi: https://doi.org/10.1590/S1980-220X2019002903620

Received: 02/11/2019
Approved: 09/30/2019

Corresponding author:
Gilmara Holanda da Cunha
Rua Alexandre Baraúna, 1115, Rodolfo Teófilo
CEP 60430-160 – Fortaleza, CE, Brazil
gilmaraholandaufc@yahoo.com.br

Insulin therapy practice performed by people with diabetes in Primary Healthcare

Prática insulinoterápica realizada por pessoas com diabetes na Atenção Primária em Saúde

Práctica de la terapia con insulina realizada por personas con diabetes en Atención Primaria de Salud

How to cite this article: Cunha GH, Fontenele MSM, Siqueira LR, Lima MAC, Gomes MEC, Ramalho AKL. Insulin therapy practice performed by people with diabetes in Primary Healthcare. Rev Esc Enferm USP. 2020;54:e03620. doi: https://doi.org/10.1590/S1980-220X2019002903620

ABSTRACT

Objective: To analyze insulin therapy performed by people with diabetes in Primary Healthcare. Method: A cross-sectional, descriptive and quantitative study. Data collection was carried out through an interview using a form with sociodemographic, clinical and insulin therapy variables. Absolute and relative frequencies as well as prevalence ratio were calculated and the chi-squared test was used, with p<0.05 being significant. Results: The sample consisted of 150 patients. Most were female (66.7%), aged 50-85 years (79.3%) and some were illiterate (16.7%). Type 2 diabetes (62.0%) with complications (42.7%), and using oral hypoglycemic agents and insulin stood out. Syringes/needles (83.1%), lancets (85.5%), reagent strips (91.0%) and insulin vials (93.8%) were stored incorrectly by the majority. The correct form predominated in preparation, application and transport. Waste was disposed of incorrectly. In the general analysis most performed the insulin therapy stages inappropriately (93.3%). Sociodemographic and clinical variables did not influence insulin therapy, but there was a significant difference in the intra-group analysis for incorrect performance in some groups. Conclusion: Insulin therapy was inappropriately performed in most cases.

DESCRIPTORS
Diabetes Mellitus; Insulin; Primary Care Nursing; Primary Health Care; Health Education.

ORIGINAL ARTICLE

doi: https://doi.org/10.1590/S1980-220X2019002903620

Received: 02/11/2019
Approved: 09/30/2019

Corresponding author:
Gilmara Holanda da Cunha
Rua Alexandre Baraúna, 1115, Rodolfo Teófilo
CEP 60430-160 – Fortaleza, CE, Brazil
gilmaraholandaufc@yahoo.com.br
INTRODUCTION

Diabetes mellitus (DM) is a chronic condition characterized by a metabolic disorder in which persistent hyperglycemia occurs due to defects in insulin secretion or action, with type 1 (DM1) and type 2 (DM2) being the most common. DM1 is an autoimmune disease which causes destruction of pancreatic beta cells, causing deficiency in insulin production. In DM2, insulin action is difficult and insulin resistance occurs, with a family history of DM, advanced age, obesity, physical inactivity, pre-diabetes or gestational DM being important risk factors. At the global epidemiological level, DM is representative for the increasing number of people affected and a reduction in quality of life, with an estimated 69.0% increase in the number of cases between 2010 and 2030. It is expected that there will be 350 million people with diabetes in the world in 2025, and that there will be 18.5 million for the same period in Brazil.

Treatment for DM aims to control blood sugar level, reduce complications and improve patients’ quality of life. People with DM1 need to replace insulin to reach baseline values of the physiological hormone. The treatment of DM2 involves changes in lifestyle regarding food and exercise, oral hypoglycemic drugs, and insulin for uncontrolled glycemnic levels for a prolonged period or metabolic decompensation. Insulin therapy can be performed with different types of insulin (ultrafast, fast, intermediate, prolonged, premixes), and devices with different characteristics and indications (syringe/needle, pen, insulin pump), and involves steps and care to be follow such as the storage, transportation, preparation, application and waste disposal. Insulin therapy management based on safe practices is important for quality healthcare, and users and caregivers should be guided towards safe and effective treatment. However, there are barriers to patients’ adherence to insulin, including discomfort during application, daily finger punctures, in addition to the proper management of its stages.

In this context and due to the way the public health system in Brazil is organized, primary care is responsible for monitoring people with DM in order to reduce complications, disabilities and hospitalizations resulting from the disease. This monitoring is essential, since insulin is a hormone which results in risky situations and therapeutic failure if handled improperly. Damage can occur from the preparation phase to the waste disposal, and specific guidelines must be followed to avoid errors.

Most research analyzes the adherence of people with DM to insulin therapy, but it is also relevant to study the recommended management based on safe practice of the insulin therapy stages. Thus, the aim of this study was to analyze the insulin therapy stages performed by people with DM followed up in primary healthcare.

METHOD

STUDY DESIGN

A cross-sectional, descriptive and quantitative study.
Transport (hand luggage, suitcase, styrofoam/thermal bag, exposure to sunlight/excessive heat); 2.5 Disposal of syringes/needles, lancets, reagent strips, insulin vials, cotton wool and pens (polyethylene terephthalate bottle - PET, resistant rigid container, sharps container, common waste).

**Data analysis and processing**

Patient responses regarding the insulin therapy stages were analyzed in accordance with current guidelines\(^{5,12}\). The participants answered yes or no for each preparation and application procedure described. Each response to the items for storage, transportation and disposal was categorized as correct or incorrect. The following were considered correct: storage (refrigerator shelf for new pens and insulin vials in use, and room temperature for pens in use, syringes, reagent tapes and lancets); transportation (hand luggage or thermal bag/styrofoam); disposal (sharps container or rigid puncture resistant container with wide opening and cap for syringes/needles, pens, insulin vials, lancets, reagent tapes and cotton). Lastly, there was a general classification of the insulin therapy practice for each patient, only being considered adequate for those who performed all stages of the process correctly.

The Statistical Package for Social Sciences (SPSS) version 19.0 was used in the statistical analysis. The absolute and relative frequencies were determined, and the chi-squared test was applied for intra-group and inter-group analyzes to check the association between variables. A significance level of 5% was established, with a value of \(p < 0.05\) being considered statistically significant. The strength of such an association was assessed by determining the prevalence ratio and its respective 95% confidence interval.

**Ethical aspects**

The project was approved by the Research Ethics Committee of the Universidade Federal do Ceará, on 08/14/2014, under Opinion No. 751.330. The guidelines of Resolution 466/2012 of the National Health Council on research with human beings were observed. All participants signed the Free and Informed Consent Form. The guidelines for Observational Study in Epidemiology (STROBE) were followed.

**Results**

Among the patients, the majority were female (66.7%), aged 50 to 85 years (79.3%), self-reported brown skin color (62.0%), married or in a stable relationship (52.7%), monthly family income of one to three minimum salaries (60.0%), retired (50.7%), with more than three people at home (44.7%), having less than eight years of studying (36.7%), and with a relevant number of the participants being illiterate (16.7%). The data are shown in Table 1.

Most of the sample consisted of people with DM2 (62.0%), 63 had 10-19 years of diagnosis and some complication of the disease (42.7%), especially retinopathy. The majority (75.3%) used oral hypoglycemic agents, insulin and medicines for comorbidities (82.0%) such as losartan, simvastatin and acetylsalicylic acid. A total of 49 (32.7%) patients stopped smoking after DM, and 25 (16.7%) drank alcohol three times a week (Table 2).

| Sociodemographic variables       | N   | %   |
|----------------------------------|-----|-----|
| **Gender**                       |     |     |
| Male                             | 50  | 33.3|
| Female                           | 100 | 66.7|
| **Age range (in years)**         |     |     |
| ≤ 29                             | 11  | 7.3 |
| 30 – 39                          | 06  | 4.0 |
| 40 – 49                           | 14  | 9.3 |
| ≥ 50                             | 119 | 79.3|
| **Self-reported skin color**     |     |     |
| White                            | 45  | 30.0|
| Black                            | 11  | 7.3 |
| Brown                            | 93  | 62.0|
| Indigenous                       | 01  | 0.7 |
| **Civil status**                 |     |     |
| Single                           | 33  | 22.0|
| Married/living together/consensual union | 29  | 19.3|
| Widowed                          | 18  | 12.0|
| Divorced/separated               | 20  | 13.3|
| **Monthly Family income**        |     |     |
| < 1 minimum salary\(^{*}\)       | 32  | 21.3|
| 1 - 3 salaries                   | 90  | 60.0|
| > 3 salaries                     | 28  | 18.7|
| **Employment situation**         |     |     |
| Employed                         | 30  | 20.0|
| Unemployed                       | 20  | 13.3|
| Retired                          | 76  | 50.7|
| On leave                         | 01  | 0.7 |
| Homemaker                        | 23  | 15.3|
| **Number of people living in the home** |     |     |
| Live alone                       | 09  | 6.0 |
| 2                                | 39  | 26.0|
| 3                                | 35  | 23.3|
| > 3                              | 67  | 44.7|
| **Education (in years)**         |     |     |
| Illiterate                       | 25  | 16.7|
| < 8 years                        | 55  | 36.7|
| 8 – 12                           | 52  | 34.7|
| > 12                             | 18  | 12.0|

\(^{*}\) Minimum salary in force in Brazil during the study period (in BRL reais)- 2016: R$880.00; 2017: R$937.00.

Note: N=150
Table 2 – Clinical characterization of people with diabetes mellitus – Fortaleza, CE, Brazil, 2017.

| Clinical variables                      | N  | %   |
|-----------------------------------------|----|-----|
| Type of DM*                              |    |     |
| DM*1                                    | 24 | 16.0|
| DM*2                                    | 93 | 62.0|
| Did not know                             | 33 | 22.0|
| Time of DM* diagnosis (in years)         |    |     |
| 0 – 9                                   | 54 | 36.0|
| 10 – 19                                  | 63 | 42.0|
| 20 – 29                                  | 22 | 14.7|
| More than 29 years                       | 11 | 7.3 |
| Complications related to DM*             |    |     |
| No complications                        | 86 | 57.3|
| Blindness/retnopathy                    | 19 | 12.7|
| Cardiovascular                          | 11 | 7.3 |
| Diabetic foot                           | 08 | 5.3 |
| Nephropathy                             | 02 | 1.3 |
| More than one complication              | 24 | 16.0|
| Use of oral hypoglycemic agent(s)        |    |     |
| Yes                                     | 113| 75.3|
| No                                      | 37 | 24.7|
| Use of other medications                |    |     |
| Yes                                     | 123| 82.0|
| No                                      | 27 | 18.0|
| Smoking habit                           |    |     |
| Never smoked                            | 94 | 62.7|
| Yes                                     | 07 | 4.7 |
| Quit                                    | 49 | 32.7|
| Alcohol consumption                     |    |     |
| Never consumed                          | 96 | 64.0|
| Yes                                     | 25 | 16.7|
| No                                      | 29 | 19.3|

* Diabetes mellitus.
Note: (N=150).

Table 3 shows the storage of supplies, preparation and application of insulin. Pen users performed correct storage. From the 150 patients, 113 used syringes attached to the needle, but 94 (83.1%) kept this material in the refrigerator for reuse, which is a practice that is no longer recommended since syringes and needles must be discarded after use. Regarding the storage of lancets and reagent strips, 85.5% and 91.0% of the patients, respectively, incorrectly stored these in the refrigerator. Insulin vials in use were incorrectly stored in the refrigerator door by 93.8% of participants. The majority washed their hands (95.3%) before preparing insulin. Moreover, homogenizing the insulin vial before use (79.6%) and aspirating regular insulin first when in combination with NPH (82.9%) was performed by most individuals. When insulin was applied, 86 (57.3%) did not clean the area with alcohol, and 66.0% of the sample waited five seconds to remove the needle. In items where the sample was not 150, patients used pens or did not associate regular insulin and NPH (Table 3).

Table 3 – Insulin storage and supplies, preparation and application performed by people with diabetes mellitus in primary healthcare – Fortaleza, CE, Brazil, 2017.

| Insulin therapy stages                  | N  | %   |
|-----------------------------------------|----|-----|
| Insulin storage and supplies            |    |     |
| Unused pens (N=37)                      |    |     |
| Correct                                 | 37 | 100.0|
| Incorrect                               | 0  | 0.0 |
| Pens being used (N=37)                  |    |     |
| Correct                                 | 37 | 100.0|
| Incorrect                               | 0  | 0.0 |
| Syringes and needles used (N=113)       |    |     |
| Correct                                 | 19 | 16.9 |
| Incorrect                               | 94 | 83.1 |
| Lancets used in blood glucose testing (N=145) |    |     |
| Correct                                 | 21 | 14.5 |
| Incorrect                               | 124| 85.5 |
| Reagent strips used in the blood glucose test (N = 145) |    |     |
| Correct                                 | 13 | 9.0  |
| Incorrect                               | 132| 91.0 |
| Used/open insulin vial (N=113)          |    |     |
| Correct                                 | 07 | 6.2  |
| Incorrect                               | 106| 93.8 |
| Preparation before insulin application  |    |     |
| Wash their hands with soap and water (N = 150) |    |     |
| Yes                                     | 143| 95.3 |
| No                                      | 07 | 4.7 |
| Roll the insulin vial before aspirating (N = 113) |    |     |
| Yes                                     | 90 | 79.6 |
| No                                      | 23 | 20.4 |
| Aspirate first to regulate if associated with NPH insulin* (N = 82) |    |     |
| Yes                                     | 68 | 82.9 |
| No                                      | 14 | 17.1 |
| Insulin application                     |    |     |
| Clean the application site with alcohol (N = 150) |    |     |
| Yes                                     | 64 | 42.6 |
| No                                      | 86 | 57.3 |
| Pinch the application site at a 90° angle (N = 150) |    |     |
| Yes                                     | 141| 94.0 |
| No                                      | 09 | 6.0 |
| Wait 5 seconds after application (N = 150) |    |     |
| Yes                                     | 99 | 66.0 |
| No                                      | 51 | 34.0 |
| Systematically change the application site (N = 150) |    |     |
| Yes                                     | 139| 92.7 |
| No                                      | 11 | 7.3 |

* NPH: Neutral Protamine Hagedorn.
Note: (N=150).

The majority (72.6%) carried out adequate transport of insulin in hand luggage or styrofoam/thermal bag. For the waste disposal, it was highlighted that syringes and needles (82.3%), lancets (85.5%), reagent strips (91.0%), insulin bottles (93.8%) and pens (83.8%) were incorrectly disposed of in regular trash or PET bottles. In items where the sample was not 150, patients did not use the referred input, as shown in Table 4.
In the joint analysis of the insulin therapy stages for each patient, it was found that the majority did not perform the process appropriately (140; 93.3%), as only 10 people with DM (6.7%) performed all steps correctly. In the intergroup analysis, there was no statistical significance in the association between sociodemographic and clinical variables with the adequate or inadequate management of insulin therapy. In the intragroup analysis, there was a statistically significant difference for participants aged 50 years or older, in which the majority did not perform insulin therapy properly (p<0.0001). The majority of female patients, married, in an occupational situation with no income, family income equal to or greater than one minimum monthly salary, using more than three medications and having no comorbidities did not perform insulin therapy appropriately (p<0.0001), according to Table 5.

| Variables | Insulin therapy stages | N | % | N | % |
|-----------|------------------------|---|---|---|---|
|          | Correct                | 109 | 72.6 | 41 | 27.4 |

| Disposal of insulin therapy waste | N | % | N | % |
|----------------------------------|---|---|---|---|
| Syringes and needles (N = 113)   |   |   |   |   |
| Correct                          | 20 | 17.7 | 93 | 82.3 |
| Incorrect                        | 21  | 14.5 | 124 | 85.5 |
| Lancets (N = 145)                |   |   |   |   |
| Correct                          | 13  | 9.0  | 124 | 91.0 |
| Incorrect                        | 124 | 85.5 |   |   |
| Reagent tapes (N = 145)          |   |   |   |   |
| Correct                          | 13  | 9.0  | 124 | 91.0 |
| Incorrect                        | 124 | 85.5 |   |   |
| Insulin vials (N = 113)          |   |   |   |   |
| Correct                          | 07  | 6.2  | 106 | 93.8 |
| Incorrect                        | 106 | 93.8 |   |   |
| Cotton (N = 146)                 |   |   |   |   |
| Correct                          | 137 | 93.8 | 09  | 6.2  |
| Incorrect                        | 09  | 6.2  | 137 | 93.8 |
| Pens (N = 37)                    |   |   |   |   |
| Correct                          | 06  | 16.2 | 31  | 83.8 |
| Incorrect                        | 31  | 83.8 | 06  | 16.2 |

Note: (N=150).

Table 5 – Association of sociodemographic and clinical variables with insulin therapy stages – Fortaleza, CE, Brazil, 2017.

| Variables               | Insulin therapy | Intragroup p-value<sup>a</sup> | PR<sup>b</sup> (95%CI)<sup>c</sup> | Intergroup p-value<sup>a</sup> |
|-------------------------|-----------------|-------------------------------|---------------------------------|-------------------------------|
| Age (in years)          |                 |                               |                                 | 0.102                         |
| < 50                    | 0               | 0                             | 30                              | 100.0                         |
| ≥ 50                    | 10              | 8.3                           | 110                             | 91.7                          |
| Gender                  |                 |                               |                                 | 0.817                         |
| Male                    | 3               | 6                             | 47                              | 94                            |
| Female                  | 7               | 7                             | 93                              | 93                            |
| Civil status            |                 |                               |                                 | 0.001                         |
| Single                  | 0               | 0                             | 33                              | 100.0                         |
| Married/Stable union    | 2               | 2.5                           | 77                              | 97.5                          |
| Divorced/Widowed        | 8               | 21.1                          | 30                              | 78.9                          |
| Education (in years)    |                 |                               |                                 | 0.662                         |
| < 8                     | 6               | 7.5                           | 74                              | 92.5                          |
| ≥ 8                     | 4               | 5.7                           | 66                              | 94.3                          |
| Employment situation    |                 |                               |                                 | 0.502                         |
| Making income           | 8               | 7.5                           | 98                              | 92.5                          |
| No income               | 2               | 4.5                           | 42                              | 95.5                          |
DISCUSSION

When analyzing the insulin therapy practice of people with DM, it was found that most did not perform the steps appropriately. In this regard, studies claim that sociodemographic and clinical characteristics influence this process\(^5,13-17\). There was a prevalence of female patients, corroborating with the current situation which shows the increase in DM in women, especially because they seek health services more than men, adding to the chances of diagnosis\(^13\). Most participants were over 50 years old, as DM2 is more common in those over 40 due to overweight, physical inactivity and family history of DM\(^14\). Brown colored people stood out, but there is no research which relates skin color or ethnicity with DM, especially due to the miscegenation existing in Brazil\(^15\).

Regarding the social support network, the majority did not live alone, and were married or in a stable relationship. Thus, having family members or a social network is a support which facilitates follow-up of the therapy\(^16\). However, a study showed that if the person with DM has many responsibilities at home such as taking care of children/older adults, they tend to not perform insulin therapy properly due to lack of time\(^13\).

Those who were retired and having a monthly income of one to three minimum wages prevailed in the study. Research shows that being retired facilitates insulin therapy, as those who work may have difficulties related to the hours and handling of insulin outside the home\(^17\). Studies also show that people with low-income and DM have less control of the disease and more comorbidities\(^18-20\). Regarding education, the results were similar to a study carried out in Portugal, in which most patients had less than eight years of studying, and there were also illiterate patients, claiming that having more education facilitates treatment\(^21\).

The most reported diagnosis time of DM was 10 to 19 years. This is an important factor for monitoring patients due to the association between disease duration and therapy with the development of micro and macrovascular complications of DM\(^22\), noting that the majority had at least one complication of DM, thus configuring as an important health problem. DM is often associated with other conditions such as systemic arterial hypertension and dyslipidemia, corroborating the findings of this research in which the majority used drugs for comorbidities in addition to oral hypoglycemic agents and insulin\(^23\). Some participants were smokers and consumed alcoholic beverages, which negatively interferes with insulin therapy, as it increases the risk of complications from DM, and is also a risk factor for other cardiovascular diseases\(^23\).

In the analysis of the insulin therapy stages, the storage of syringes, reagent strips, lancets and vials of insulin were performed incorrectly, especially syringes attached to the needle for the purpose of reuse. This practice is no longer recommended due to skin lesions which can cause lipodystrophy, which can interfere with the inoculation and adequate action of the hormone given the unpredictability of insulin absorption in places with lipohypertrophy\(^24\). The reuse of syringes and needles can occur due to the lack of inputs, and despite records of greater availability of these materials in the UAPS, these may not be sufficient to meet the demands of the population\(^7\). Opened insulin vials were mistakenly stored on the refrigerator door by the majority, which can negatively interfere with insulin bioavailability, changing the appropriate glycemic control\(^5\).

Most of the subjects performed the insulin preparation and application stages correctly, but some did not homogenize the insulin vial during preparation and/or did not first aspirate regular insulin in case of combination with
NPH, which may reduce the effectiveness of the insulin hormone and cause undesirable clinical responses. Regarding cleaning the application site with alcohol, a study showed that disinfection is generally not necessary when applications are carried out in non-institutional environments, such as homes. Still, most participants rotated the application site in this stage, which reduces complications such as lipodystrophy and uncontrolled glycemia. The patients performed the skin fold for applying the needle at 90° to avoid injecting the insulin into the muscle tissue, but almost half of the people with DM did not wait for five seconds to remove the needle from the site, which may cause insulin reflux with a reduction in dose and expected effect. No participants in this study exposed the hormone to sunlight and they performed correct transport, demonstrating the practice linked to the literature. In the last step which involves the disposal of inputs, a significant portion neglected to dispose of pens, syringes/needles, lancets, reagent tapes and insulin vials correctly, using ordinary garbage or PET bottles. The proper disposal would be in a sharps collector (Descartex®), or containers such as bottles of fabric softener, with a lid, wide mouth and being material which is resistant to perforation.

In a study conducted in São Paulo, nurses were primarily responsible for advising on disposal, however the guidelines were insufficient, requiring adoption of a specific protocol for waste disposal at home. Inadequate disposal poses a risk to patients’ families, especially when there are children in the household, in addition to the population and the environment, as these materials can spread Human Immunodeficiency Virus (HIV), and/or Hepatitis B and C, requiring guidance to empower patients in the therapeutic process. Moreover, family members can be guided to help in the disposal.

The performance of insulin therapy was inadequate for most people with DM because they did not correctly perform all the steps for proper therapeutic efficacy. Therefore, although this is not an interventionist study, the need for health education practices for self-care is evident, as patients can receive timely information in a consultation and are unable to incorporate everything that was instructed by health professionals. The support group strategy can continue teaching and learning, as it increases success in the insulin therapy process, contributing to self-care. Besides, there is the telephone teaching strategy, which showed an improvement in the competence of people with DM to apply insulin.

The sociodemographic and clinical variables in this study did not influence insulin therapy, however there was a significant difference in insulin therapy in the groups aged 50 years or older, female, married, in an occupational situation with no income, with family income equal to or greater than one minimum salary, using above three drugs and no comorbidities, which was done in a more inadequate way. In spite of this, greater education and the number of people in the household were associated with more correct insulin therapy in other studies. On the other hand, despite a higher level of education, some patients are unable to understand and follow the treatment measures. One justification is that understanding and following health guidelines is something complex which is beyond the education level, requiring the functional health literacy of each individual. This fact can also be related to difficulties in the therapeutic relationship, given that the professional becomes a health educator, and a resolution of biases depends on understanding the patients’ individual questions, and must adapt to each particular reality.

The external validity of the study can be considered a limitation, which can be restricted due to the participation of individuals monitored in a single health institution. However, this study contributes to the healthcare of people with DM, as it points out the need for educational activities in the context of insulin therapy aimed at both patients as well as their families and caregivers. The need for research which can assess the effectiveness of these educational strategies is also highlighted.

CONCLUSION

Most people with DM followed up in primary healthcare did not perform insulin therapy appropriately, which can interfere with the efficiency and safety of the process. The sociodemographic and clinical variables did not influence the adequacy of insulin therapy, but it was found that women over 50 years old, married, with a family income equal to or above one minimum salary, using over three medications and without comorbidities were factors which were associated to not performing insulin therapy properly.

Health education activities for people with DM should be implemented in primary care with the aim of improving self-care, as empowering the individual about the health-disease process contributes to adequate management of insulin therapy at home. It highlights the importance of health professionals creating support groups for patients, as well as conducting home visits, which is essential for monitoring, especially those individuals with physical or cognitive limitations. Family members and caregivers must also be inserted to assist in managing insulin therapy.

In addition, the multidisciplinary health team, which includes nurses, physicians and pharmacists, must be able to identify patients’ questions or needs in order to adequately guide the insulin therapy stages within their scope of action in the Primary Healthcare Units.
Insulin therapy practice performed by people with diabetes in Primary Healthcare

quadrado, siendo significante op < 0,05. Resultados: A amostra foi composta de 150 pacientes. A maioria era do sexo feminino (66,7%), faixa etária de 50-85 anos (79,3%) e havia analfabetos (16,7%). Destacou-se o diabetes tipo 2 (62,0%) com complicações (42,7%), em uso de hipoglicemiantes orais e insulina. Seríngas/agulhas (83,1%), lancetas (85,5%), fitas reagentes (91,0%) e frascos de insulina (93,8%) foram armazenados incorretamente pela maioria. No preparo, aplicação e transporte predominou a forma correta. Resíduos foram descartados incorretamente. Na análise geral das etapas da insulinoterapia, a maioria a realizava de forma inadequada (93,3%). Variáveis sociodemográficas e clínicas não influenciaram na prática insulinoterápica, mas na análise intragrupo houve diferença significante para realização incorreta em alguns grupos. Conclusões: A insulinoterapia foi realizada de forma inadequada na maioria dos casos.

DESCRITORES
Diabetes Mellitus; Insulina; Enfermagem de Atenção Primária; Atenção Primária à Saúde; Educação em Saúde.

RESUMEN
Objetivo: Analizar la insulinoterapia realizada por personas con diabetes en la Atención Primaria en Salud. Método: Estudio transversal, descriptivo y cuantitativo. La recolección de los datos fue realizada por medio de la entrevista, utilizando formulario con variables sociodemográficas, clínicas y etapas de la insulinoterapia. Fueron calculadas frecuencias absoluta y relativa, razón de prevalencia y fue utilizado la prueba de qui-cuadrado. Resultados: La muestra fue compuesta de 150 pacientes. La media era del sexo femenino (66,7%), rango de edad de 50-85 años (79,3%) y hubo analfabetos (16,7%). Destacó-se el diabetes tipo 2 (62,0%) con complicaciones (42,7%), en el uso de hipoglicemiantes orales y insulina. Seríngas/agulhas (83,1%), lancetas (85,5%), tiras reactivas (91,0%) y frascos de insulina (93,8%) fueron almacenados incorrectamente por la mayoría. En el preparo, aplicación y transporte predominó la forma correcta. Resíduos fueron descartados incorrectamente. En el análisis general de las etapas de la insulinoterapia, la mayoría realizaba de forma inadequada (93,3%). Variables sociodemográficas y clínicas no influenciaron en la práctica de la terapia de insulina, pero en el análisis intragrupo hubo diferencia significante para realización incorrecta en algunos grupos. Conclusión: La insulinoterapia fue realizada de forma inadequada en la mayoría de los casos.

REFERENCIAS
1. Skyler JS, Bakris GL, Bonifacio E, Darsow T, Eckel RH, Groop L, et al. Differentiation of diabetes by pathophysiology, natural history, and prognosis. Diabetes. 2017;66(2):241-55. DOI: https://doi.org/10.2337/db16-0806
2. Lima LR, Funghetto SS, Volpe CRG, Santos WS, Funez ML, Sítwal MM. Quality of life and time since diagnosis of diabetes mellitus among the elderly. Rev Bras Geriatr Gerontol. 2018;21(2):180-90. DOI: http://dx.doi.org/10.1590/1981-22562018021.170187
3. Thrasher J. Pharmacologic management of type 2 diabetes mellitus: available therapies. Am J Med. 2017;130(Suppl 6):S4-17. DOI: https://doi.org/10.1016/j.ajmed.2017.04.004
4. Frid AH, Kreugel G, Grassi G, Halimi S, Hicks D, Hirsch LJ et al. New insulin delivery recommendations. Mayo Clin Proc. 2016;91(9):1231-55. DOI: https://doi.org/10.1016/j.mayocp.2016.06.010
5. Sociedade Brasileira de Diabetes. Diretrizes da Sociedade Brasileira de Diabetes: 2017-2018. São Paulo: A.C. Farmacêutica; 2018.
6. Bhandari P, Kim M. Self-care behaviors of nepalese adults with type 2 diabetes: a mixed methods analysis. Nurs Res. 2016;65(3):202-14. DOI: 10.1097/NRN.000000000000153
7. Neves RG, Duro SMS, Muniz J, Castro TRP, Facchini LA, Tomasé E. Estrutura das Unidades Básicas de Saúde para atenção às pessoas com diabetes: ciclos I e II do Programa Nacional de Melhoria do Acesso e da Qualidade. Cad Saude Publica. 2018;34(4):e00072317. DOI: http://dx.doi.org/10.1590/0102-311x00072317
8. Instituto para Práticas Seguras no Uso de Medicamentos. Medicamentos potencialmente perigosos. Boletim ISMP. 2015;4(3):1-5.
9. Yavuz DG, Ozcan S, Deyneli O. Adherence to insulin treatment in insulin-naïve type 2 diabetic patients initiated on different insulin regimens. Patient Prefer Adherence. 2015;9:235-31. DOI: https://doi.org/10.2147/PPA.S87935
10. Gerada Y, Mengistu Z, Demissie A, Fantahun A, Gebrekirstos K. Adherence to insulin self administration and associated factors among diabetes mellitus patients at Tikur Anbessa specialized hospital. J Diabetes Metab Disord. 2017;16:28. DOI: https://doi.org/10.1186/s40200-017-0109-3
11. Bermeo-Cabrer I, Almeda-Valdes P, Rinfrios-Palacios J, Aguilar-Salinas CA, Mehta R. Insulin adherence in type 2 diabetes in Mexico: behaviors and barriers. J Diabetes Res. 2018;2018:3190849. DOI: https://doi.org/10.1155/2018/3190849
12. Sociedade Brasileira de Diabetes. Diretrizes da Sociedade Brasileira de Diabetes: 2015-2016. São Paulo: A.C. Farmacêutica; 2016.
13. Gusmai LF, Novato TS, Nogueira LS. The influence of quality of life in treatment adherence of diabetic patients: a systematic review. Rev Esc Enferm USP. 2015;49(5):839-46. DOI: http://dx.doi.org/10.1590/0080-623720150000500019
14. Iser BPM, Malta DC, Duçan BB, Moura L, Vigo A, Schmidt MI. Prevalence, correlates, and description of self-reported diabetes in Brazilian capitals - results from a telephone survey. PLoS One. 2014;9(9):e108044. DOI: https://doi.org/10.1371/journal.pone.0108044
15. Campos LA. Socialismo Moreno, Conservadorismo Pálido? Cor o recrutamento partidário em São Paulo e Rio de Janeiro nas Eleições de 2012. Dados. 2015;58(3):689-719. DOI: https://doi.org/10.1590/00115258201556
16. Silva EFF, Ferreira CMM, Pinho L. Risk factors and complications in type 2 diabetes outpatient. Rev Assoc Med Bras. 2017;63(7):621-7. DOI: http://dx.doi.org/10.1590/1806-9282.63.07.621
17. Cunha GH, Barbosa RVA, Fontenele MSM, Lima MAC, Franco KB, Fechine FV. Insulin therapy waste produced in the households of people with diabetes monitored in primary care. Rev Bras Enferm. 2017;70(3):646-53. DOI: http://dx.doi.org/10.1590/0034-7167-2016-0406
18. Lamy S, Ducros D, Diméglio C, Colineaux H, Fatin R, Berger E, et al. Disentangling the influence of living place and socioeconomic position on health services use among diabetes patients: a population based study. PLoS One. 2017;12(11):e0188295. DOI: https://doi.org/10.1371/journal.pone.0188295
19. Fosse-Edorh S, Fagot-Campagna A, Detournay B, Bihan H, Eschwege E, Gautier A, et al. Impact of socio-economic position on health and quality of care in adults with type 2 diabetes in France: the Entred 2007 study. Diabete Med. 2015;32(11):1438-44. DOI: https://doi.org/10.1111/dme.12783

20. Sortø C, Lauridsen J, Emneus M, Green A, Jensen PB. Social inequality in diabetes patients' morbidity patterns from diagnosis to death - a Danish register based investigation. Scand J Public Health. 2018;46(1):92-101. DOI: https://doi.org/10.1177/1403494817713648

21. Caetano IRCS, Santiago LM, Marques M. Impact of written information on control and adherence in type 2 diabetes. Rev Assoc Med Bras. 2018;64(2):140-7. DOI: http://dx.doi.org/10.1590/1806-9282.64.02.140

22. Cortez DN, Reis IA, Souza DAS, Macedo MML, Torres HC. Complications and the time of diagnosis of diabetes mellitus in primary care. Acta Paul Enferm. 2015;28(3):250-5. DOI: http://dx.doi.org/10.1590/1982-0194201500042

23. Flor LS, Campos MR, Oliveira AF, Schramm JMA. Diabetes burden in Brazil: fraction attributable to overweight, obesity, and excess weight. Rev Saúde Pública. 2015;49:29. DOI: https://doi.org/10.1590/S0034-8910.2015049005571

24. Frid AH, Kreugel G, Grassi G, Halimi S, Hicks D, Hirsch LJ, et al. New insulin delivery recommendations. Mayo Clin Proc. 2016;91(9):1231-55. DOI: https://doi.org/10.1016/j.mayocp.2016.06.010

25. Pereira FGF, Diógenes MAR, Ataíde MBC, Mendonça Júnior JO, Leal DE, Xavier ATF. Fatores relacionados à utilização de insulina em diabéticos acompanhados pela Estratégia Saúde da Família. Rev APS. 2016;19(1):58-66.

26. Gentile S, Strollo F, Ceriello A. Lipodystrophy in insulin-treated subjects and other injection-site skin reactions: are we sure everything in clear? Diabetes Ther. 2016;7(3):401-9. DOI: https://doi.org/10.1007/s13300-016-0187-6

27. Andre SCS, Takayanagui AMM. Orientações sobre o descarte de resíduos gerados em domicílios de usuários de insulina. Rev Baiana Saúde Pública. 2015;39(1):105-18. DOI: 10.5327/Z0100-0233-2015390100010

28. Mekuria AB, Gebresillassie BM, Erku DA, Haile KT, Birru EM. Knowledge and self-reported practice of insulin injection device disposal among diabetes patients in Gondar Town, Ethiopia: a cross-sectional study. J Diabetes Res. 2016;2016:1897517. DOI: http://dx.doi.org/10.1155/2016/1897517

29. Maia MA, Reis IA, Torres HC. Relationship between the users contact time in educational programs on diabetes mellitus and self-care skills and knowledge. Rev Esc Enferm USP. 2016;50(1):59-64. DOI: http://dx.doi.org/10.1590/2317-87702016500100008

30. Sampaio HAC, Carioca AAF, Sabry MOD, Santos PM, Coelho MAM, Passamai MPB. Letramento em saúde de diabéticos tipo 2: fatores associados e controle glicêmico. Ciênc Saúde Coletiva. 2015;20(3):865-74. DOI: http://dx.doi.org/10.1590/1413-88752015000200014

This is an open-access article distributed under the terms of the Creative Commons Attribution License.