Normal numbers with given limits of multiple ergodic averages

Lingmin Liao
LAMA UMR 8050, CNRS, Université Paris-Est Créteil,
61 Avenue du Général de Gaulle, 94010 Créteil Cedex, France
e-mail: lingmin.liao@u-pec.fr

Michał Rams
Institute of Mathematics, Polish Academy of Sciences
ul. Śniadeckich 8, 00-656 Warszawa, Poland
e-mail: rams@impan.pl

Abstract
We are interested in the set of normal sequences in the space \(\{0, 1\}^\mathbb{N} \) with a given frequency of the pattern 11 in the positions \(k, 2k \). The topological entropy of such sets is determined.

1 Introduction and statement of results

Let \(\Sigma = \{0, 1\}^\mathbb{N} \). In [K12, FLM12], the authors proposed to calculate the topological entropy spectrum of level sets of multiple ergodic averages. Here, the topological entropy means Bowen’s topological entropy (in the sense of [B73]) which can be defined for any subset, not necessarily invariant. Among other questions, they asked for the topological entropy of

\[A_\alpha := \left\{ \omega_{k}^\mathbb{N} \in \Sigma : \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \omega_{k} \omega_{2k} = \alpha \right\} \quad (\alpha \in [0, 1]). \]

As a first step to solve the question, they also suggested to study a subset of \(A_0 \):

\[A := \left\{ \omega_{k}^\mathbb{N} \in \Sigma : \omega_{k} \omega_{2k} = 0 \quad \text{for all } k \geq 1 \right\}. \]

The topological entropy of \(A \) was later given by Kenyon, Peres and Solomyak [KPS12].

2010 Mathematics Subject Classification: Primary 28A80, Secondary 11K16, 37B40
Theorem 1.1 (Kenyon-Peres-Solomyak). We have
\[h_{\text{top}}(A) = -\log(1 - p) = 0.562399..., \]
where \(p \in [0, 1] \) is the unique solution of
\[p^2 = (1 - p)^3. \]

Enlightened by the idea of [KPS12], the question about \(A_\alpha \) was finally answered by Peres and Solomyak [PS12], and then in higher generality by Fan, Schmeling and Wu [FSW16].

Theorem 1.2 (Peres-Solomyak, Fan-Schmeling-Wu). For any \(\alpha \in [0, 1] \), we have
\[h_{\text{top}}(A_\alpha) = -\log(1 - p) - \frac{\alpha}{2} \log \frac{q(1 - p)}{p(1 - q)}, \]
where \((p, q) \in [0, 1]^2 \) is the unique solution of the system
\[
\begin{align*}
 p^2(1 - q) &= (1 - p)^3, \\
 2pq &= \alpha(2 + p - q).
\end{align*}
\]
In particular, \(h_{\text{top}}(A_0) = h_{\text{top}}(A) \).

Another, interesting, related set is
\[B := \left\{ (\omega_k)_{k=1}^\infty \in \Sigma : \omega_k = \omega_{2k} \quad \text{for all } k \geq 1 \right\}. \]

The sequence \(x \in \{0, 1\}^\mathbb{N} \) is said to be simple normal if the frequency of the digit 0 in the sequence is 1/2. It is said to be normal if for all \(n \in \mathbb{N} \), each word in \(\{0, 1\}^n \) of length \(n \) has frequency \(1/2^n \). We denote the set of normal sequences by \(\mathcal{N} \).

We are interested in the intersection of \(\mathcal{N} \) with the set \(A_\alpha \) of given frequency of the pattern 11 in \(w_kw_{2k} \). For the usual ergodic (Birkhoff) averages the normal numbers all belong to one set in the multifractal decomposition – the situation for multiple ergodic averages turns out to be very different.

Our results are as follows:

Theorem 1.3. For \(\alpha \leq 1/2 \) we have
\[h_{\text{top}}(\mathcal{N} \cap A_\alpha) = \frac{1}{2} \log 2 + \frac{1}{2} H(2\alpha), \]
where \(H(x) = -x \log x - (1 - x) \log(1 - x) \). For \(\alpha > 1/2 \) the set \(\mathcal{N} \cap A_\alpha \) is empty.

Further,
\[h_{\text{top}}(\mathcal{N} \cap A) = h_{\text{top}}(\mathcal{N} \cap A_0) = \frac{1}{2} \log 2. \]
Moreover, \(\mathcal{N} \cap B \subset A_{1/2} \) and
\[h_{\text{top}}(\mathcal{N} \cap B) = h_{\text{top}}(\mathcal{N} \cap A_{1/2}) = h_{\text{top}}(B) = \frac{1}{2} \log 2. \]
The last statement of Theorem 1.3 was recently proved, in higher generality, in [ABC].

Let us now define the set of sequences with prescribed frequency of 0's and 1's:

\[E_\theta := \{ x \in [0,1] : \lim_{n \to \infty} \frac{\omega_1(x) + \cdots + \omega_n(x)}{n} = \theta \}. \]

In particular, \(E_{1/2} \) is the set of simple normal sequences.

Theorem 1.4. We have

\[
h_{\text{top}}(E_\theta \cap A_\alpha) = (1 - \frac{\theta}{2})H\left(\frac{2\theta - \alpha}{2 - \theta}\right) + \frac{\theta}{2}H\left(\frac{\theta - \alpha}{\theta}\right)
\]

for \(\alpha \leq \theta \leq \frac{(2 + \alpha)}{3} \), otherwise \(E_\theta \cap A_\alpha = \emptyset \). Further,

\[
h_{\text{top}}(E_\theta \cap A) = h_{\text{top}}(E_\theta \cap A_0) = \frac{2 - \theta}{2}H\left(\frac{2\theta}{2 - \theta}\right).
\]

Note that

\[
h_{\text{top}}(E_{1/2} \cap A) = \frac{3}{4}H\left(\frac{2}{3}\right) > h_{\text{top}}(N \cap A).
\]

Remark. Applying the results of [PS12] one can show that

\[
h_{\text{top}}(E_\theta \cap A_\alpha) = h_{\text{top}}(A_\alpha)
\]

if and only if \(\alpha, \theta \) satisfy the relation

\[
(2\theta - \alpha)^2(\theta - \alpha)(2 - \theta) = \theta(2 - 3\theta + \alpha)^3.
\]

In particular, when

\[
\theta = \frac{2}{3} \left(1 + \left(\frac{2}{23}\right)^{2/3} \sqrt[3]{3\sqrt{69} - 23} - \left(\frac{2}{23}\right)^{2/3} \sqrt[3]{3\sqrt{69} + 23}\right) = 0.354...,\]

i.e., the unique real solution of the equation \(4\theta^3(2 - \theta) = (2 - 3\theta)^3 \), we have

\[
\dim_H E_\theta \cap A = \dim_H A.
\]

We omit the details.
2 Proof of Theorem 1.3

Given \(\alpha \in [0, 1] \), let \(\mu_\alpha \) be a probability measure on \(\Sigma \) given by

- if \(k \) is odd then \(\omega_k = 1 \) with probability \(1/2 \),
- if \(k \) is even and \(\omega_{k/2} = 1 \) then \(\omega_k = 1 \) with probability \(2\alpha \),
- if \(k \) is even and \(\omega_{k/2} = 0 \) then \(\omega_k = 1 \) with probability \(1 - 2\alpha \),

with the events \(\{ \omega_k = 1 \} \) and \(\{ \omega_\ell = 1 \} \) independent except when \(k/\ell \) is a power of 2. Precisely, let \((p_0, p_1) := (1/2, 1/2)\) and let

\[
\begin{pmatrix}
p_{00} & p_{01} \\
p_{10} & p_{11}
\end{pmatrix} := \begin{pmatrix} 2\alpha & 1 - 2\alpha \\ 1 - 2\alpha & 2\alpha \end{pmatrix}.
\]

Let \(C_n(\omega_1, \ldots, \omega_n) \) be the set of sequences beginning with the word \(\omega_1 \cdots \omega_n \in \{0, 1\}^n \). Such sets are called cylinders of order \(n \). The measure \(\mu_\alpha \) of a cylinder is given by

\[
\mu_\alpha(\omega_1 \cdots \omega_n) = \prod_{k=1}^{\lfloor n/2 \rfloor} p_{\omega_{2k-1}} \cdot \prod_{k=1}^{\lfloor n/2 \rfloor} p_{\omega_{2k}} = \frac{1}{2^{\lfloor n/2 \rfloor}} \cdot \prod_{k=1}^{\lfloor n/2 \rfloor} p_{\omega_k \omega_{2k}},
\]

where \(\lceil \cdot \rceil, \lfloor \cdot \rfloor \) denote the ceiling function and the integer part function correspondingly.

We will prove that the measure \(\mu_\alpha \) is supported on the set \(\mathcal{N} \cap A_\alpha \).

Lemma 2.1. We have \(\mu_\alpha(\mathcal{N} \cap A_\alpha) = 1 \).

Proof. Denote

\[
x_n(\omega) = \frac{2}{n} \sum_{k=n/2+1}^{n} \omega_k.
\]

For a \(\mu_\alpha \)-typical \(\omega \), the Law of Large Numbers implies

\[
x_{2n}(\omega) = \frac{1}{4} + \frac{x_n(\omega)}{2} 2\alpha + \frac{1 - x_n(\omega)}{2} (1 - 2\alpha) + o(1).
\]

Noting that \(|\frac{4n-1}{2}| < 1 \), we have as \(k \to \infty \),

\[
x_{2k}(\omega) \to \frac{1}{2}.
\]

By [PS12, Lemma 5], this implies that \(\mu_\alpha \)-almost surely

\[
\lim_{n \to \infty} x_n(\omega) = \frac{1}{2}.
\]

(2.1)
Then, for \(\mu_\alpha\)-a.e. \(\omega\),
\[
\frac{2}{n} \sum_{k=n/2+1}^{n} \omega_k \omega_{2k} = x_n(\omega)(2\alpha + o(1)) \to \alpha.
\]
Thus \(\mu_\alpha(A_\alpha) = 1\).

Now, we show \(\mu(N) = 1\). We can divide the set of natural numbers into infinitely many subsets of the form \(A_k = \{2k - 1, 4k - 2, \ldots, 2^\ell(2k - 1), \ldots\}\) \((k \geq 1)\). Let \(B_k\) be the \(\sigma\)-field generated by events \(\{\omega_{2^\ell(2k-1)} = 1\}\), \(\ell \in \mathbb{N}\).

Observe that for the measure \(\mu\) the \(\sigma\)-fields \(B_k\) are independent.

Observe further that \(\mu(\omega_{2^\ell(2k-1)} = 1) = 1/2\) for every \(k, \ell\). Indeed, for \(\ell = 0\) it follows from the definition of \(\mu\), and then it is proved by induction:
\[
\begin{align*}
\mu(\omega_{2^\ell(2k-1)} = 1) &= \mu(\omega_{2^\ell(2k-1)} = 1) + \mu(\omega_{2^{\ell+1}(2k-1)} = 0) \\
&= 2\alpha \cdot 1/2 + (1 - 2\alpha) \cdot 1/2 = 1/2.
\end{align*}
\]

Consider now, for any \(n\), the sequence \(\omega_{m+1}, \ldots, \omega_{m+n}\). If \(m \geq n\) then positions \(m+1, \ldots, m+n\) come all from different \(A_k\)’s, thus \(\omega_{m+1}, \ldots, \omega_{m+n}\) are independent and each of them takes values 0, 1 with probability 1/2 respectively. That is, the measure \(\mu\) restricted to such subset of positions is \((1/2, 1/2)\)-Bernoulli, and for any word \(\eta \in \{0, 1\}^n\) with \(n \leq m\), the probability that we have \(\omega_{m+i} = \eta_i\) for \(i = 1, \ldots, n\) equals \(2^{-n}\). Thus, for a given word \(\eta \in \{0, 1\}^n\) we can divide \(\mathbb{N}\) into intervals \([2^j + 1, 2^{j+1}]\), inside all except initial finitely many of them (with \(j < \log_2 n\)) for any \(\mu\)-generic sequence \(\omega\) the frequency of appearance of \(\eta\) equals \(2^{-n} + O(2^{-j/2}j \log j)\), and this means that the \(\mu\)-generic sequence \(\omega\) is normal.

Next, we will calculate the local dimension of the measure \(\mu_\alpha\) with the help of Mass Distribution Principle, [2, 7]. We denote for \(x \in [0, 1]\)
\[
H(x) = -x \log x - (1 - x) \log(1 - x)
\]
with convention \(H(0) = H(1) = 0\).

Lemma 2.2. We have
\[
h_{\mu_\alpha} = \frac{1}{2} \log 2 + H(2\alpha).
\]

Proof. For \(\omega \in \Sigma\) denote
\[
C_n(\omega) = \{\tau \in \Sigma; \tau_k = \omega_k \forall k \leq n\}.
\]
Let
\[
h_n(\omega) := \log \mu_\alpha(C_{2n}(\omega)) - \log \mu_\alpha(C_n(\omega)).
\]
By the Law of Large Numbers, for μ_α-typical ω and for big enough n we have
\[
\frac{2}{n} h_n(\omega) = -\log 2 + (1 - x_n(\omega))((2\alpha \log(2\alpha) + (1 - 2\alpha) \log(2\alpha)) \\
+ x_n(\omega)((1 - 2\alpha) \log(1 - 2\alpha)) + (2\alpha) \log(2\alpha)) + o(1).
\]
Thus,
\[
\lim_{n \to \infty} -\frac{1}{n} h_n(\omega) = \frac{1}{2} \log 2 + \frac{1}{2} H(2\alpha) \quad \mu_\alpha - \text{a.e.}
\]
Note that for all $k, n \in \mathbb{N}$
\[
\frac{1}{k2^n} \log \mu_\alpha(C_{k2^n}(\omega)) = \frac{1}{k2^n} \sum_{i=1}^{n-1} h_{2i}.
\]
Then for all $k \in \mathbb{N}$
\[
\lim_{n \to \infty} -\frac{1}{k2^n} \log \mu_\alpha(C_{k2^n}(\omega)) = \frac{1}{2} \log 2 + \frac{1}{2} H(2\alpha) \quad \mu_\alpha - \text{a.e.}
\]
Hence, by [PS12, Lemma 5],
\[
h_{\mu_\alpha} = \liminf_{n \to \infty} -\frac{1}{n} \mu_\alpha(C_n(\omega)) = \frac{1}{2} \log 2 + \frac{1}{2} H(2\alpha) \quad \mu_\alpha - \text{a.e.}
\]
Applying the Mass Distribution Principle ends the proof.

To finish the proof of the lower bound we note that $A \subset A_0$ but the measure μ_0 is actually supported on A, that the measure $\mu_{1/2}$ is supported on B, and that the relation $\mathcal{N} \cap B \subset A_{1/2}$ follows from
\[
\frac{1}{n} \{ n + 1 \leq j \leq 2n : \omega_j = \omega_{2j} = 1 \} = \frac{1}{n} \{ n + 1 \leq j \leq 2n : \omega_j = 1 \} \to \frac{1}{2}
\]
being satisfied for every $\omega \in \mathcal{N} \cap B$.

For the upper bound, let us first observe that
\[
\frac{1}{n} \sum_{k=1}^{n} \omega_k \omega_{2k} \leq \frac{1}{n} \sum_{k=1}^{n} \omega_k
\]
and the right hand side converges to $1/2$ for every normal sequence ω. Thus, the set $\mathcal{N} \cap A_\alpha$ is empty for all $\alpha > 1/2$.

We will now need the following lemma

Lemma 2.3. Let ω be a normal sequence and let $(n_k = k \ell_2)$ be an arithmetic subsequence of \mathbb{N}. Then ω restricted to the positions (n_k) is normal.

Proof. This is a well-known result of Kamae [K73].
Let us fix some \(m > 0 \). For \(N > m \) and \(i = 0, 1, \ldots, m \) denote by \(R(N, i) \) the set \(\{ 2^i(2k - 1), k \leq 2^{N-i-1} \} \) (for example, \(R(N, 0) \) is the set of odd numbers smaller than \(2^N \)). Further, let \(R(N, i, I) = R(N - 2, i) \), \(R(N, i, II) = R(N - 1, i) \setminus R(N - 2, i) \), and \(R(N, i, III) = R(N, i) \setminus R(N - 1, i) \). Note here obvious relations

\[
2R(N, i, I) = R(N, i + 1, I) \cup R(N, i + 1, II),
\]

\[
2R(N, i, II) = R(N, i + 1, III),
\]

\[
2R(N, i, III) \cap R(N, i + 1) = \emptyset.
\]

We denote by \(\mathcal{N}(N, m, \varepsilon) \) the set of sequences \(\omega \) such that for all \(n \geq N \) in each \(R(n, i, *) \), \(i = 0, \ldots, m \), \(* \in \{ I, II, III \} \) the frequency of 1’s is between \(1/2 - \varepsilon \) and \(1/2 + \varepsilon \). By Lemma 2.3,

\[
\mathcal{N} \subset \bigcap_{\varepsilon > 0} \bigcap_{m = 1}^{\infty} \bigcup_{N = m+1} \mathcal{N}(N, m, \varepsilon).
\]

Similarly, let us denote by \(A(\alpha, N, \varepsilon) \) the set of sequences \(\omega \) such that for all \(n \geq N \) we have

\[
\alpha - \varepsilon < 2^{-n+1} \sum_{j=1}^{2^{n-1}} \omega_j \omega_{2j} < \alpha + \varepsilon.
\]

We have

\[
A_{\alpha} = \bigcap_{\varepsilon > 0} \bigcup_{N = 1}^{\infty} A(\alpha, N, \varepsilon).
\]

To obtain the upper bound, we will estimate from above the number of cylinders \([\omega_1, \ldots, \omega_{2^N}] \) needed to cover the set \(\mathcal{N}(N, m, \varepsilon) \cap A(\alpha, N, \varepsilon) \). Let us fix \(N, m, \varepsilon \). For \(i = 1, \ldots, m \), \(k_1, k_2 \in \{ 0, 1 \} \), and \(* \in \{ I, II \} \) we denote

\[
X_{k_1, k_2, *}^{i}(\omega) = \#\{ n \in R(N, i - 1, *); \omega_n = k_1, \omega_{2n} = k_2 \}.
\]

For example, \(X_{01, I}^i(\omega) \) denotes the number of odd positions smaller than \(2^{N-2} \) such that \(\omega_n = 0, \omega_{2n} = 1 \). Similarly, let

\[
X_{k_1, *}^{i}(\omega) = \#\{ n \in R(N, i, *); \omega_n = k_1 \}.
\]

We have obvious relations: for any \(i \)

\[
X_{10, I}^i + X_{11, I}^i = X_{1, I}^{i-1}
\]

\[
X_{00, I}^i + X_{01, I}^i = X_{0, I}^{i-1}
\]

\[
X_{10, II}^i + X_{11, II}^i = X_{1, II}^{i-1}
\]
\[X_{00,III} + X_{01,III} = X_{0,III} \]
\[X_{01,I} + X_{11,I} = X_{1,I} + X_{1,II} \]
\[X_{00,I} + X_{10,I} = X_{0,I} + X_{0,II} \]
\[X_{01,II} + X_{11,II} = X_{1,II} \]
\[X_{00,II} + X_{10,II} = X_{1,III} \]

Note that for a sequence \(\omega \in N(N, m, \varepsilon) \) the right hand sides in all those relations is in range \(2^{N-3-i} \cdot (1 - \varepsilon, 1 + \varepsilon) \). In particular,

\[|X_{11,I} - X_{00,I}| \leq \varepsilon \cdot 2^{N-2-i}. \]

We can now start the counting. The values of \(\{\omega_i; n \in R(N, 0)\} \) can be chosen in no more than \(2^{2N-1} \) ways. After we have chosen \(\{\omega_i; n \in R(N, i - 1)\} \), we can choose \(\{\omega_i; n \in R(N, i)\} \) in no more than

\[\left(\frac{X_{i-1}}{X_i} \right)_{I} \cdot \left(\frac{X_{i-1}}{X_0} \right)_{II} \cdot \left(\frac{X_{i-1}}{X_1} \right)_{III} \cdot \left(\frac{X_{i-1}}{X_0} \right)_{III} \]

ways. Finally, after we have chosen \(\{\omega_i; n \in R(N, i)\} \) for all \(i \leq m \), we will still have \(2^{N-m-1} \) positions left, which we can cover in no more than \(2^{2N-m-1} \) ways. Thus, for any choice of \((X_{00,II}, X_{11,I}, X_{00,II}, X_{11,I}) \), the logarithm of total number of cylinders needed \(Z \) is not larger than

\[
\log Z((X_{00,II}, X_{11,I}, X_{00,II}, X_{11,I})) \leq (2^{N-1} + 2^{N-m-1}) \log 2 \\
+ \sum_{i=1}^{m} \left(2 \log \left(\frac{2^{N-3-i}}{X_{11,I}} \right) + 2 \log \left(\frac{2^{N-3-i}}{X_{11,I}} \right) + 2^{N-3-i} O(\varepsilon) \right)
\]

and there are no more than \(\prod_{i=1}^{m} 2^{4(N-i-3)} < 2^{4mN} \ll 2^{2N} \) such choices.

We estimate

\[\log \left(\frac{n}{k} \right) \approx n \left(-\frac{k}{n} \log \frac{k}{n} - \frac{n-k}{n} \log \frac{n-k}{n} \right) = nH\left(\frac{k}{n} \right) \]

and observe that \(H \) is a concave function, thus we can apply Jensen inequality. We get

\[
\log Z((X_{00,II}, X_{11,I}, X_{00,II}, X_{11,I})) \leq (2^{N-1} + 2^{N-m-1}) \log 2 \\
+ \sum_{i=1}^{m} 2^{N-i-1} \cdot H\left(\frac{m}{2^{N-i-1}} \right) \left(\sum_{i=1}^{m} \frac{1}{2^{N-i-1}} \cdot \sum_{i=1}^{m} 2^{N-i-2} \frac{X_{11,I} + X_{11,I}}{2^{N-i-3}} \right) \\
+ \sum_{i=1}^{m} 2^{N-i-3} \cdot O(\varepsilon).
\]
Hence,
\[
\log Z((X_{00,I}^i, X_{11,I}^i, X_{00,II}^i, X_{11,II}^i)) \leq 2^{N-1} \log 2 + 2^{N-1} H\left(\sum_{i=1}^{m} (X_{11,I}^i + X_{11,II}^i)\right) + 2^N \cdot (O(\varepsilon + 2^{-m})).
\]

On the other hand, for all \(\omega \in A(\alpha, N, \varepsilon)\),
\[
\left|2^{-N+1} \sum_{i=1}^{m} (X_{11,I}^i + X_{11,II}^i) - 2\alpha\right| < \varepsilon.
\]

Passing with \(m, N\) to infinity and with \(\varepsilon\) to 0, we finish the proof of the upper bound.

\[\square\]

3 Proof of Theorem 1.4

Given \(p, q \in [0, 1]\), let \(\mu_{p,q}\) be a probability measure on \(S\) given by
- if \(k\) is odd then \(\omega_k = 1\) with probability \(p\),
- if \(k\) is even and \(\omega_{k/2} = 0\) then \(\omega_k = 1\) with probability \(p\),
- if \(k\) is even and \(\omega_{k/2} = 1\) then \(\omega_k = 1\) with probability \(q\),

with events \((\omega_k = 1)\) and \((\omega_k = 1)\) independent except when \(k/\ell\) is a power of 2. Precisely, let \((p_0, p_1) := (1-p, p)\) and let
\[
\begin{pmatrix}
 p_{00} & p_{01} \\
 p_{10} & p_{11}
\end{pmatrix} := \begin{pmatrix}
 1-p & p \\
 1-q & q
\end{pmatrix}.
\]

Then the measure \(\mu_{p,q}\) of a cylinder is given by
\[
\mu_{p,q}([\omega_1 \cdots \omega_n]) = \prod_{k=1}^{[n/2]} p_{\omega_{2k-1}} \cdot \prod_{k=1}^{[n/2]} p_{\omega_k \omega_{2k}}.
\]

where \([\cdot], [\cdot]\) denote the ceiling function and the integer part function correspondingly.

For positive integers \(m < n\), write \(\omega_m^n\) for the word \(\omega_m \omega_{m+1} \cdots \omega_n\). For \(i, j \in \{0, 1\}\) and \(\omega \in \Sigma\), denote
\[
N_i(\omega_m^n) = \#\{m \leq k \leq n : \omega_k = i\},
\]
and
\[
N_{ij}(\omega_m^n) = \#\{m \leq k \leq n : \omega_k \omega_{2k} = ij\}.
\]

We also denote
\[
N_{i,\text{odd}}(\omega_m^n) = \#\{m \leq k \leq n : k \text{ odd}, \omega_k = i\}.
\]
Then we have
\[\mu_{p,q}(C_n(\omega)) = (1-p)^{N_{0,\text{odd}}(\omega)}p^{N_{1,\text{odd}}(\omega)}(1-p)^{N_{00}}p^{N_{01}}(1-q)^{N_{10}}q^{N_{11}}, \]
with \(N_{i,\text{odd}} = N_{i,\text{odd}}(\omega_n) \), and \(N_{ij} = N_{ij}(\omega_n) \). Thus
\[-\log \mu_{p,q}(C_n(\omega)) = -\frac{1}{2} \left(N_{0,\text{odd}}(\omega_n) \log(1-p) + N_{1,\text{odd}}(\omega_n) \log p \right) \]
\[+ \frac{N_{00}}{n/2} \log(1-p) + \frac{N_{01}}{n/2} \log p \]
\[+ \frac{N_{10}}{n/2} \log(1-q) + \frac{N_{11}}{n/2} \log q. \] (3.1)

Lemma 3.1. If \(p = (2\theta - \alpha)/(2 - \theta) \) and \(q = \alpha/\theta \), then
\[\mu_{p,q}(E_{\theta} \cap A_{\alpha}) = 1. \]

Proof. Denote
\[x_n(\omega) = N_1(\omega_{n/2+1}) = \frac{2}{n} \sum_{k=n/2+1}^{n} \omega_k. \]
By the Law of Large Numbers, for \(\mu_{p,q} \)-almost all \(\omega \)
\[x_{2n}(\omega) = \frac{p}{2} + \frac{x_n(\omega)}{2}q + \frac{1-x_n(\omega)}{2}p + o(1) = \frac{x_n(\omega)}{2} \cdot \frac{q - p}{2} + o(1). \]
Note that \(\frac{q - p}{2} \) < 1. Then, as \(k \to \infty \),
\[x_{2n}(\omega) \to \frac{2p}{2 + p - q}. \]
By [PS12, Lemma 5], it implies that \(\mu_{p,q} \)-almost surely
\[\lim_{n \to \infty} x_n(\omega) = \frac{2p}{2 + p - q} = \theta, \] (3.2)
where the last equality comes from the choices of \(p \) and \(q \). Thus \(\mu_{p,q}(E_{\theta}) = 1. \)
On the other hand, by applying the Law of Large Numbers again, for \(\mu_{p,q} \)-a.e. \(\omega \),
\[\frac{2}{n} \sum_{k=n/2+1}^{n} \omega_k \omega_{k} = x_n(\omega)(q + o(1)) \to q\theta = \alpha. \]
By [PS12, Lemma 5], we conclude \(\mu_{p,q}(A_{\alpha}) = 1. \)

Lemma 3.2. For \(p = (2\theta - \alpha)/(2 - \theta) \) and \(q = \alpha/\theta \), we have
\[h_{\mu_{p,q}} = (1 - \frac{\theta}{2})H(\frac{2\theta - \alpha}{2 - \theta}) + \frac{\theta}{2}H(\theta - \frac{\alpha}{\theta}). \]
Proof. By (3.1), we have for \(\mu_{p,q} \) almost all \(w \in \Sigma \),

\[
h_{\mu_{p,q}} = \lim_{n \to \infty} -\frac{\log \mu_{p,q}(C_n(w))}{n} = -\frac{1}{2} \left((1 - p) \log(1 - p) + p \log p + (1 - \theta)(1 - p) \log(1 - p) + (1 - \theta)p \log p + \theta(1 - q) \log(1 - q) + \theta q \log q \right)
\]

\[= \frac{1}{2} \left((2 - \theta)H(p) + \theta H(q) \right) = (1 - \frac{\theta}{2})H \left(\frac{2\theta - \alpha}{2 - \theta} \right) + \frac{\theta}{2} H \left(\frac{\theta - \alpha}{\theta} \right).
\]

\(\Box \)

Lemma 3.3. If \(\theta \notin [\alpha, (2 + \alpha)/3] \) we have \(E_\theta \cap A_\alpha = \emptyset \), otherwise for \(p = (2\theta - \alpha)/(2 - \theta) \) and \(q = \alpha/\theta \), we have for all \(x \in E_\theta \cap A_\alpha \),

\[
\lim_{n \to \infty} -\frac{\log \mu_{p,q}(C_n(w))}{n} = (1 - \frac{\theta}{2})H \left(\frac{2\theta - \alpha}{2 - \theta} \right) + \frac{\theta}{2} H \left(\frac{\theta - \alpha}{\theta} \right).
\]

Proof. Observe that for any \(x \in E_\theta \cap A_\alpha \), for any small \(\varepsilon > 0 \), for \(n \) large enough, we have

\[
N_1(\omega_{n/2}^n) \in \left[\frac{\theta n}{2}(1 - \varepsilon), \frac{\theta n}{2}(1 + \varepsilon) \right]
\]

\[
N_1(\omega_{n}^n) \in \left[\theta n(1 - \varepsilon), \theta n(1 + \varepsilon) \right]
\]

\[
N_{11}(\omega_{n/2}^n) \in \left[\frac{\alpha n}{2}(1 - \varepsilon), \frac{\alpha n}{2}(1 + \varepsilon) \right].
\]

The obvious inequalities \(N_{11}(\omega_{n/2}^{2n}) \leq N_1(\omega_{n/2}^n) \) and \(N_1(\omega_{n}^{2n}) - N_{11}(\omega_{n/2}^{2n}) \leq n/2 + N_0(\omega_{n/2}^n) = n - N_1(\omega_{n/2}^n) \) imply \(\theta \in [\alpha, (2 + \alpha)/3] \). Furthermore, we have

\[
\log \mu_{p,q}(C_{2n}(\omega)) - \log \mu_{p,q}(C_n(\omega)) = N_{11}(\omega_{n}^{2n}) \log q + (N_1(\omega_{n}^n) - N_{11}(\omega_{n/2}^{2n})) \log(1 - q)
\]

\[+ (N_1(\omega_{n/2}^n) - N_{11}(\omega_{n/2}^{2n})) \log p \]

\[+ (n - N_1(\omega_{n/2}^n) - N_1(\omega_{n}^{2n}) + N_{11}(\omega_{n/2}^{2n})) \log(1 - p)
\]

\[= n \left((1 - \frac{\theta}{2})H \left(\frac{2\theta - \alpha}{2 - \theta} \right) + \frac{\theta}{2} H \left(\frac{\theta - \alpha}{\theta} \right) + \varepsilon \cdot O(1) \right).
\]

Hence by the same argument of the proof of Lemma 2.2, we have for all \(x \in E_\theta \cap A_\alpha \),

\[
\lim_{n \to \infty} -\frac{\log \mu_{p,q}(C_n(w))}{n} = (1 - \frac{\theta}{2})H \left(\frac{2\theta - \alpha}{2 - \theta} \right) + \frac{\theta}{2} H \left(\frac{\theta - \alpha}{\theta} \right).
\]

\(\Box \)
References

[ABC] C. Aistleitner, V. Becher and O. Carton, Normal numbers with digit dependencies, Trans. Amer. Math. Soc., to appear.

[B73] R. Bowen. Topological entropy for noncompact sets, Trans. Amer. Math. Soc., 184:125–136, 1973.

[FLM12] A.H. Fan, L.M. Liao and J.H. Ma, Level sets of multiple ergodic averages, Monatsh. Math. 168 (2012), 17–26.

[FSW16] A.H. Fan, J. Schmeling and M. Wu, Multifractal analysis of some multiple ergodic averages, Adv. Math. 295 (2016), 271–333.

[K73] T. Kamae, Subsequences of normal sequences, Israel J. Math. 16 (1973), 121-149.

[KPS12] R. Kenyon, Y. Peres and B. Solomyak, Hausdorff dimension for fractals invariant under the multiplicative integers, Ergodic Theory and Dynamical Systems, 32 (2012), no. 5, 1567–1584.

[K12] Y. Kifer, A nonconventional strong law of large numbers and fractal dimensions of some multiple recurrence sets, Stoch. Dyn., 12(3) (2012), 21p.

[PS12] Y. Peres and B. Solomyak, Dimension spectrum for a nonconventional ergodic average, Real Analysis Exchange, 37 (2011), no. 2, 375-388.