INTRODUCTION

Urinary tract infection (UTI) is one of the commonest infectious disease presentations in medical practice. The most common cause of UTI in both community and health care settings is *Escherichia coli*. The choice of antibiotic for the treatment of UTI is limited by the rising rates of antibiotic resistance. The production of β-lactamases is the foremost mechanism of antibiotic resistance leading to treatment failure. The β-lactamases which confer resistance to extended-spectrum cephalosporins are extended-spectrum β-lactamases (ESBLs) and AmpC. ESBLs are Ambler class A or D β-lactamases which confer resistance to 3rd and 4th generation cephalosporins and monobactams but are inhibited by cephamycins and β-lactamase inhibitors like clavulanic acid (CA), sulbactam, and tazobactam. AmpC are class C β-lactamases which confer resistance to a variety of β-lactams, including oximino-cephalosporins and some cephamycins as well as penicillins and monobactam, when they are produced in large amounts but they are poorly inhibited by β-lactamase inhibitors such as CA and sulbactam. Sometimes, because of the production of both plasmid mediated AmpC and ESBL, we get false negative results in phenotypic confirmatory methods (using CA) for detection of ESBLs. Boronic acid (BA) has been reported to be the inhibitor of AmpC. So, it can be used for the detection of ESBL in isolates harboring both AmpC and ESBL.
These days, increase in ESBL producing isolates has been observed in outpatient settings especially related to UTI.[1] The production of ESBLs by the isolates narrow down the options for treatment as production of ESBLs is associated with co-resistance to other classes of antimicrobial agents like fluoroquinolones, cotrimoxazole, tetracyclines, and aminoglycosides.[3] Co-resistance between nitrofurantoin and fluoroquinolones in urinary isolates of *E. coli* has also been noted.[4] The alternative treatment for severe ESBLs producing *E. coli* include carbapenems, tigecycline, β-lactam/β-lactamase inhibitor combinations (BL/BLI) and fosfomycin. But, all these drugs are to be administered parenterally except fosfomycin. Moreover, tigecycline is not a very good option to be used for UTI because of its poor excretion in urine. Fosfomycin is a phosphonic acid bactericidal agent which is known for nearly four decades and is particularly useful for urinary tract pathogens. This is an oral drug and has been found to be effective against ESBLs producing *Enterobacteriaceae* isolates.

So considering in view of all these facts, study was planned with the following objectives:

1. To evaluate ESBLs production amongst *E. coli* isolates from urine samples of patients attending outpatient department and admitted in wards (non-critical care areas).
2. To evaluate AmpC production among these isolates.
3. To determine antimicrobial susceptibility pattern of these isolates.
4. To determine fosfomycin susceptibility for the isolates by disc diffusion and E-test methods.

MATERIALS AND METHODS

This study was conducted on 150 nonduplicate strains of *E. coli* isolated from urine samples of patients with urinary tract infections between July 2009 and December 2009.

Detection of ESBLs

ESBL production was detected by Clinical Laboratory Standard Institute (CLSI) method (using CAZ and CAZ-CA combination discs) and by double disc synergy (DDS) method using ceftazidime (CAZ), cefpodoxime, ceftroxone, and cefepime discs along with CAZ-CA combination disc (method already used by the authors and work published) [Figure 1].[7] Those strains which were found to be negative for ESBLs were further confirmed to be ESBLs nonproducers by modifying phenotypic confirmatory test for ESBLs detection using BA.[8] For preparation of BA solution, 120 mg of 3-aminophenyl BA (Sigma) was dissolved in 3 mL of dimethylsulfoxide and 3 mL of distilled water was added to it. Then, 20 µL of this solution was dispensed onto each disk containing CAZ (30 µg) and CAZ/CA (30/10 µg) combination discs. The final amount of BA on the discs was 400 µg.[4] The discs were allowed to dry for 60 minutes and used immediately. A lawn culture of the test strain was made on Mueller-Hinton agar (MHA) and these disks, that is, CAZ/BA and CAZ/CA/BA were placed on it like CLSI phenotypic confirmatory method for ESBL detection. The plate was incubated at 37°C overnight. A ≥3 mm increase in the zone diameter of CAZ/CA/BA disk versus CAZ/BA alone was considered positive for ESBL.

Detection of AmpC

AmpC screening was done using cefoxitin disc. The strains which were found to be cefoxitin-resistant were confirmed by combination disk test using BA (cefoxitin and cefoxitin/BA disk).[9] A total of 20 µL of BA solution (prepared as above) was dispensed onto cefoxitin disks. A lawn culture of the test strain was made on MHA plate according to the Clinical Laboratory Standard Institute (CLSI) guideline. Disks containing cefoxitin (FOX) and cefoxitin plus BA (FOX/BA) were placed on the MHA plate and incubated at 37°C overnight. An increase in the zone size of ≥5 mm for cefoxitin in the presence of BA compared with that of cefoxitin alone was considered as positive result.

Antimicrobial susceptibility

The antimicrobial susceptibility of the following drugs was determined by Kirby-Bauer method following CLSI guidelines: Nitrofurantoin (300 µg), norfloxacin (10 µg), nitrofurantoin (300,000 µg).
lomefloxacin (10 µg), gentamicin (10 µg), tetracycline (30 µg), amoxicillin + clavulanic acid (20/10 µg), piperacillin + tazobactam (100/10 µg), ticarcillin + clavulanic acid (75/10 µg), cefoperazone + sulbactam, imipenem (10 µg), meropenem (10 µg), ertapenem (10 µg), fosfomycin (200 µg) containing 50 µg glucose-6-phosphate, amikacin (30 µg). For confirming the results of AmpC production, E-test strips were used.

Fosfomycin minimum inhibitory concentration

Minimum inhibitory concentration (MIC) of fosfomycin was tested by E-test (Biomereix, India) with fosfomycin gradient concentrations ranging from 0.04 µg/ml to 1,024 µg/mL added along with 50 µg/mL glucose-6-phosphate.

RESULTS

Out of 150 isolates, 98 were derived from female patients and 52 were from male patients. Amongst 150 strains of E. coli, the number of ESBLs positive strains was 79 (52.6%) and ESBLs negative strains was 71 (47.3%) by double-disk synergy and/or CLSI modified method as CAZ/BA and CAZ/CA/BA method. The number of strains which was AmpC screening positive (cefoxitin-resistant) were 15 (10%). Out of these 15 strains, 12 were ESBL positive by DDS and/or CLSI methods, while all these 15 strains were found to be ESBL positive by CAZ/BA and CAZ/CA/BA method. Out of the 15 AmpC screening positive E. coli isolates, 12 were confirmed as AmpC positive by FOX/BA combination disc method. So overall by confirmatory methods, 8% (12/150) of the strains were coproducers of ESBL and AmpC enzymes using BA method; these isolates are still difficult to treat because of very limited treatment options left as has been reported earlier also.

Regarding the antibiotic susceptibility E. coli was found to be susceptible to BL/BLI combinations like piperacillin-tazobactam, cefoperazone-sulbactam, aminoglycosides, and also carbapenems more so the ESBL negative strains; but all these are parenteral antibiotics. As reported earlier, BA is a reversible inhibitor of AmpC.[8] Out of 15 cefoxitin-resistant E. coli, only 12 were AmpC producer by using BA method and this was confirmed by using E-test method also. So in three of these, E. coli mechanism of cefoxitin resistance could be other than AmpC production. A total of 8% (12/150) of the isolates were ESBLs-producing E. coli are the significant cause of increased morbidity in patients with UTI. In our study, more than half (52.6%) of E. coli isolates were ESBL producing and this was detected better with BA methodology as the 15 cefoxitin-resistant strains, 15 were also ESBL producers by BA method, but only 12 were positive by CLSI method. As reported earlier, BA is a reversible inhibitor of AmpC.[8]

DISCUSSION

ESBLs-producing E. coli are the significant cause of increased morbidity in patients with UTI. In our study, more than half (52.6%) of E. coli isolates were ESBL producing and this was detected better with BA methodology as the 15 cefoxitin-resistant strains, 15 were also ESBL producers by BA method, but only 12 were positive by CLSI method. As reported earlier, BA is a reversible inhibitor of AmpC.[8] Out of 15 cefoxitin-resistant E. coli, only 12 were AmpC producer by using BA method and this was confirmed by using E-test method also. So in three of these, E. coli mechanism of cefoxitin resistance could be other than AmpC production. A total of 8% (12/150) of the isolates were ESBLs positive strains was 79 (52.6%) of which 15 (10%) were ESBL producers by DDS and/or CLSI methods, while all these 15 strains were found to be ESBL positive by CAZ/BA and CAZ/CA/BA method. Out of the 15 AmpC screening positive E. coli isolates, 12 were confirmed as AmpC positive by FOX/BA combination disc method. So overall by confirmatory methods, 8% (12/150) of the strains were ESBL positive strains also (70%). The combination oral antibiotic amoxicillin-clavulanic acid showed high percentage of resistance in both ESBL positive and negative strains. Quinolones like norfloxacin can be used in ESBL-negative isolates though in ESBL-positive isolates, it showed high percentage of resistance. We at
our centre do not suggest using ciprofloxacin as first-line drug for uncomplicated UTI due to reasons like overuse and misuse of this drug and emergence of other resistance pathogens due to its overuse. Usually, it is kept as a reserve drug for more complicated infections. Our study also corroborates the finding that ESBL producing isolates are much more multidrug-resistant than ESBL-negative isolates thereby, narrowing down the choice of antibiotics for treatment.[14] Considering above findings, there is a dire need of introducing some new antimicrobial drug for UTIs. Although, fosfomycin is an oral antibiotic with low-resistance rates and is commonly used for treatment of community-acquired UTI in Europe, but not yet marketed in India.[12] In our study, the resistance rate of fosfomycin for both ESBL-positive and -negative isolates was found to be nil by both disk diffusion and E-test methods. Maraki et al., in their study on susceptibility of various urinary tract bacteria to fosfomycin have also found no resistance to fosfomycin in E. coli.[13] The other benefits of use of fosfomycin are its less cost, dosage friendly, nontoxic, nonallergic, and tendency to display little cross-resistance to other antibiotics.[14,15] Fosfomycin is an age-old drug and the reason for the emergence of use of this drug is the lack of newer drugs for the treatment of multidrug-resistant organisms. There are no Indian studies as yet available on this antibiotic so that we know the baseline levels of sensitivity before this drug is put to use in the country.

REFERENCES

1. Auer S, Wojna A, Hell M. Oral treatment options for ambulatory patients with urinary tract infections caused by extended-spectrum-beta-lactamase-producing Escherichia coli. Antimicrob Agents Chemother 2010;54:4006-8.

2. Payne DJ, Czemp R, Winstanley DJ, Knowles DJ. Comparative activities of clavulanic acid, sulbactam, and tazobactam against clinically important beta-lactamases. Antimicrob Agents Chemother 1994;38:767-72.

3. Yagi T, Wachino J, Kurokawa H, Suzuki S, Yamane K, Doi Y, et al. Practical methods using boronic acid compounds for identification of class C beta-lactamase producing Klebsiella pneumoniae and Escherichia coli. J Clin Microbiol 2005;43:2551-8.

4. Coudron PE. Inhibitor-based methods for detection of plasmid-mediated AmpC beta-lactamases in Klebsiella spp., Escherichia coli, and Proteus mirabilis. J Clin Microbiol 2005;43:4163-7.

5. Paterson DL, Bonomo RA. Extended-spectrum beta-lactamases: A clinical update. Clin Microbiol Rev 2005;18:657-86.

6. Karlowsky JA, Thornsberry C, Jones ME, Sahm DF. Susceptibility of antimicrobial-resistant urinary Escherichia coli isolates to fluoroquinolones and nitrofurantoin. Clin Infect Dis 2003;36:183-7.

7. Gupta V, Singla N, Chander J. Detection of ESBLs using third and fourth generation cephalosporins in double disc synergy test. Indian J Med Res 2007;126:486-7.

8. Song W, Bae IK, Lee YN, Lee CH, Lee SH, Jeong SH. Detection of extended-spectrum beta-lactamases by using boronic acid as an AmpC beta-lactamase inhibitor in clinical isolates of Klebsiella spp. and Escherichia coli. J Clin Microbiol 2007;45:1180-4.

9. Lee W, Jung B, Hong SG, Song W, Jeong SH, Lee K, et al. Comparison of 3 phenotypic-detection methods for identifying plasmid-mediated AmpC beta-lactamase-producing Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis strains. Korean J Lab Med 2009;29:448-54.

10. Taneka N, Rao P, Arora J, Dogra A. Occurrence of ESBL and Amp-C beta-lactamases and susceptibility to newer antimicrobial agents in complicated UTI. Indian J Med Res 2008;127:85-8.

11. Kothari A, Sagar V. Antibiotic resistance in pathogens causing community-acquired urinary tract infections in India: A multicenter study. J Infect Dev Ctries 2008;2:354-8.

12. Gislerot RJ, White G, Hills T, Turner DP. Fosfomycin susceptibility among extended-spectrum beta-lactamase producing Escherichia coli in Nottingham, UK. J Antimicrob Chemother 2010;65:1076-7.

13. Maraki S, Samonis G, Rafailidis PI, Vouloumanos EK, Markoulanakis E, Falagas ME. Susceptibility of urinary tract bacteria to fosfomycin. Antimicrob Agents Chemother 2009;53:4508-10.

14. Falagas ME, Giannopoulou KP, Kokolakis GN, Rafailidis PI. Fosfomycin: Use beyond urinary tract and gastrointestinal infections. Clin Infect Dis 2008;46:1069-77.

15. Suárez JE, Mendoza MC. Plasmid-encoded fosfomycin resistance. Antimicrob Agents Chemother 1991;35:791-5.

How to cite this article: Gupta V, Rani H, Singla N, Kaistha N, Chander J. Determination of extended-spectrum β-lactamases and AmpC production in uropathogenic isolates of Escherichia coli and susceptibility to fosfomycin. J Lab Physicians 2013;5:50-3.

Source of Support: Nil. Conflict of Interest: None declared.