Every finitely generated two-sided ideal of a Leavitt path algebra is a principal ideal

Kulumani M. Rangaswamy
Department of Mathematics, University of Colorado
Colorado Springs, Colorado 80918, USA
E-mail: krangasw@uccs.edu

May 2, 2014

Abstract
Let E be an arbitrary graph and K be any field. For every non-graded ideal I of the Leavitt path algebra $L_K(E)$, we give an explicit description of the generators of I. Using this, we show that every finitely generated ideal of $L_K(E)$ must be principal. In particular, if E is a finite graph, then every ideal of $L_K(E)$ must be principal ideal.

1 Introduction
The notion of Leavitt path algebras of a graph E was introduced and initially studied in [1], [3] as algebraic analogues of C^*-algebras and the analysis of the structure of their two-sided ideals has received much attention in recent years. For instance, Tomforde [8] described all the graded ideals in a Leavitt path algebra in terms of their generators. In [6] and [2] generating sets for arbitrary ideals of a Leavitt path algebra were established while in [5] and [7] the prime ideal structure of a Leavitt path algebra was described. In this note, complementing Tomforde’s theorem on graded ideals, we first give an explicit description of a set of generators for non-graded ideals in the Leavitt path algebra $L_K(E)$ of an arbitrary graph E over a field K. Using this we prove that every finitely generated ideal in $L_K(E)$ must be a principal ideal. As a corollary, we show that if E is a finite graph, then every ideal of $L_K(E)$ must be a principal ideal. The method involves a judicious selection of finitely many mutually orthogonal generators to replace a given finite set of generators of the ideal I. The sum of these orthogonal generators will then be the desired single generator for I.

1
2 Preliminaries

All the graphs E that we consider here are arbitrary in the sense that no restriction is placed either on the number of vertices in E (such as being a countable graph) or on the number of edges emitted by any vertex (such as being a row-finite graph). We shall follow \[2, 7\] for the general notation, terminology and results. For the sake of completeness, we shall outline some of the concepts and results that we will be using.

A (directed) graph $E = (E^0, E^1, r, s)$ consists of two sets E^0 and E^1 together with maps $r, s : E^1 \rightarrow E^0$. The elements of E^0 are called vertices and the elements of E^1 edges. If $s^{-1}(v)$ is a finite set for every $v \in E^0$, then the graph is called row-finite.

If a vertex v emits no edges, that is, if $s^{-1}(v)$ is empty, then v is called a sink. A vertex v is called an infinite emitter if $s^{-1}(v)$ is an infinite set, and v is called a regular vertex if $s^{-1}(v)$ is a finite non-empty set. A path μ in a graph E is a finite sequence of edges $\mu = e_1 \ldots e_n$ such that $r(e_i) = s(e_{i+1})$ for $i = 1, \ldots, n - 1$. In this case, n is the length of μ; we view the elements of E^0 as paths of length 0. We denote by μ^0 the set of vertices of the path μ, i.e., the set $\{s(e_1), r(e_1), \ldots, r(e_n)\}$.

A path $\mu = e_1 \ldots e_n$ is closed if $r(e_n) = s(e_1)$, in which case μ is said to be based at the vertex $s(e_1)$. A closed path μ as above is called simple provided it does not pass through its base more than once, i.e., $s(e_i) \neq s(e_1)$ for all $i = 2, \ldots, n$. The closed path μ is called a cycle if it does not pass through any of its vertices twice, that is, if $s(e_i) \neq s(e_j)$ for every $i \neq j$. An exit for a path $\mu = e_1 \ldots e_n$ is an edge e such that $s(e) = s(e_i)$ for some i and $e \neq e_i$. We say that E satisfies Condition (L) if every simple closed path in E has an exit, or, equivalently, every cycle in E has an exit. A graph E is said to satisfy Condition (K) provided no vertex $v \in E^0$ is the base of precisely one simple closed path, i.e., either no simple closed path is based at v, or at least two are based at v.

We define a relation \geq on E^0 by setting $v \geq w$ if there exists a path in E from v to w. A subset H of E^0 is called hereditary if $v \geq w$ and $v \in H$ imply $w \in H$. A hereditary set is saturated if, for any regular vertex v, $r(s^{-1}(v)) \subseteq H$ implies $v \in H$.

For each $e \in E^1$, we call e^* a ghost edge. We let $r(e^*)$ denote $s(e)$, and we let $s(e^*)$ denote $r(e)$.

Given an arbitrary graph E and a field K, the Leavitt path K-algebra $L_K(E)$ is defined to be the K-algebra generated by a set $\{v : v \in E^0\}$ of pairwise orthogonal idempotents together with a set of variables $\{e, e^* : e \in E^1\}$ which satisfy the following conditions:

1. $s(e)e = e = er(e)$ for all $e \in E^1$.
2. $r(e)e^* = e^* = e^*s(e)$ for all $e \in E^1$.
3. (The "CK-1 relations") For all $e, f \in E^1$, $e^*e = r(e)$ and $e^*f = 0$ if $e \neq f$.

2
(4) (The "CK-2 relations") For every regular vertex \(v \in E^0 \),

\[
v = \sum_{e \in E^1, s(e) = v} ee^*.
\]

If \(\mu = e_1 \ldots e_n \) is a path in \(E \), we denote by \(\mu^* \) the element \(e_1^* \ldots e_n^* \) of \(L_K(E) \).

A useful observation is that every element \(a \) of \(L_K(E) \) can be written as \(a = \sum_{i=1}^{n} k_i \alpha_i \beta_i^* \), where \(k_i \in K \), \(\alpha_i, \beta_i \) are paths in \(E \) and \(n \) is a suitable integer (see \([8]\)).

The following concepts and results from \([8]\) will be used in the sequel. A vertex \(w \) is called a breaking vertex of a hereditary saturated subset \(H \) if \(w \in E^0 \setminus H \) is an infinite emitter with the property that \(1 \leq |s^{-1}(v) \cap r^{-1}(E^0 \setminus H)| < \infty \). The set of all breaking vertices of \(H \) is denoted by \(B_H \). For any \(v \in B_H \), \(v^H \) denotes the element \(v - \sum_{s(e) = v, r(e) \notin H} ee^* \). Given a hereditary saturated subset \(H \) and a subset \(S \subseteq B_H \), \((H, S)\) is called an admissible pair and \(I_{(H, S)} \) denotes the ideal generated by \(H \cup \{v^H : v \in S\} \). It was shown in \([8]\) that the graded ideals of \(L_K(E) \) are precisely the ideals of the form \(I_{(H, S)} \) for some admissible pair \((H, S)\). Moreover, it was shown that \(I_{(H, S)} \cap E^0 = H \) and \(\{v \in B_H : v^H \in I_{(H, S)}\} = S \).

Given an admissible pair \((H, S)\), the corresponding quotient graph \(E \setminus (H, S) \) is defined as follows:

\[
(E \setminus (H, S))^0 = (E^0 \setminus H) \cup \{v' : v \in B_H \setminus S\};
\]

\[
(E \setminus (H, S))^1 = \{e \in E^1 : r(e) \notin H\} \cup \{e' : e \in E^1, r(e) \in B_H \setminus S\}.
\]

Further, \(r \) and \(s \) are extended to \((E \setminus (H, S))^0 \) by setting \(s(e') = s(e) \) and \(r(e') = r(e') \). Note that, in the graph \(E \setminus (H, S) \), the vertices \(e' \) are all sinks.

Theorem 5.7 of \([8]\) states that there is an epimorphism \(\phi : L_K(E) \to L_K(E \setminus (H, S)) \) with \(\ker \phi = I_{(H, S)} \) and that \(\phi(v^H) = v' \) for \(v \in B_H \setminus S \). Thus \(L_K(E) / I_{(H, S)} \cong L_K(E \setminus (H, S)) \). This theorem has been established in \([8]\) under the hypothesis that \(E \) is a graph with at most countably many vertices and edges; however, an examination of the proof reveals that the countability condition on \(E \) is not utilized. So the Theorem 5.7 of \([8]\) holds for arbitrary graphs \(E \).

3 Generators of non-graded ideals of \(L_K(E) \)

As noted earlier, Tomforde \([8]\) described a generating set for the graded ideals of a Leavitt path algebra \(L_K(E) \). In this section, as a complement to Tomforde’s theorem, we give an explicit description of a set of generators for the non-graded ideals in \(L_K(E) \). These generators are then used in proving the main theorem of the next section.

We begin with the following useful result from \([2]\).
Theorem 1. Let E be an arbitrary graph and K be any field. Then any non-zero ideal of the $L_K(E)$ is generated by elements of the form

$$(u + \sum_{i=1}^{k} k_i g^r_i)(u - \sum_{e \in X} ee^*)$$

where $u \in E^0$, $k_i \in K$, r_i are positive integers, X is a finite (possibly empty) proper subset of $s^{-1}(u)$ and, whenever $k_i \neq 0$ for some i, then g is a unique cycle based at u.

The next Lemma is an extension of Lemma 3.3 in [7] showing that ideals of $L_K(E)$ containing no vertices are generated by a set of mutually orthogonal polynomials over cycles.

Lemma 2. Suppose E is an arbitrary graph and K is any field. If N is a non-zero ideal of $L_K(E)$ which does not contain any vertices of E, then N is a non-graded ideal and possesses a generating set of mutually orthogonal generators of the form $y_j = (v_j + \sum_{i=1}^{n_j} k_{ji} g_j^r)$ where (i) g_j is a (unique) cycle without exits based at the vertex v_j, (ii) $k_{ji} \in K$ with at least one $k_{ji} \neq 0$ and $v_r \neq v_s$ (so $y_r y_s = 0$) if $r \neq s$.

Proof. Since N is non-zero and since $H = N \cap E^0$ is the empty set, N must be a non-graded ideal, because if N was a graded ideal, then N must be $\{0\}$ since, by Tomforde [S], N is generated by $H \cup \{v^H \in B_H \cap N\}$ and H, B_H are both empty sets. From Theorem [H] we know that N is generated by elements of the form $y = (u + \sum_{i=1}^{n_j} k_{ji} g_j^r)(u - \sum_{e \in X} ee^*) \neq 0$ where g is a unique cycle in E based at the vertex u and where X is a finite proper subset of $s^{-1}(u)$.

We wish to show that, for each such generator $y = (u + \sum_{i=1}^{n_j} k_{ji} g_j^r)(u - \sum_{e \in X} ee^*)$, the corresponding cycle g has no exits in E and that X must be an empty set, so that $y = (u + \sum_{i=1}^{n_j} k_{ji} g_j^r)$. By hypothesis, there is an $f \in s^{-1}(u) \backslash X$. Let $r(f) = w$. This must be the initial edge of g. Because otherwise $f^* g = 0$ and $(\sum_{e \in X} ee^*) f = 0$, and we obtain $f^* y f = f^* (u + \sum_{i=1}^{n_j} k_{ji} g_j^r) f = f^* u f = r(f) = w \in N$, a contradiction since N contains no vertices. So we can write $g = f \alpha$ and let h denote the cycle αf (based at w). Note that, in this case, $f^* y f = f^* (u + \sum_{i=1}^{n_j} k_{ji} g_j^r)(u - \sum_{e \in X} ee^*) f = f f^* + f^* \sum_{i=1}^{n_j} k_{ji} g_j^r f = w + \sum_{i=1}^{n_j} k_{ji} h_j^r \in N$.

Then $\alpha^* (w + \sum_{i=1}^{n_j} k_{ji} h_j^r) \alpha = u + \sum_{i=1}^{n_j} k_{ji} g_j^r \in N$. Suppose, by way of contradiction, there is an exit e at a vertex u' on g. Let β be the part of g connecting u to u' (where we take $\beta = u$ if $u' = u$) and γ be the part of g from u' to u (so that $g = \beta \gamma$). Then, denoting the cycle $\gamma \beta$ (based at u') by d, we get $e^* \beta^* (u + \sum_{i=1}^{n_j} k_{ji} g_j^r) \beta e = e^* (u' + \sum_{i=1}^{n_j} k_{ji} d_j^r) e = e^* e = r(e) \in N$, a contradiction.
Thus the cycle g has no exits. In particular, $|s^{-1}(u)| = 1$ and this implies that X must be an empty set, as X is a proper subset of $s^{-1}(u)$.

Thus the generators of N are of the form $y = (u + \sum_{i=1}^{n} k_i g^{r_i})$. If there is another generator of N of the form $y' = u + \sum_{i=1}^{n'} k'_i (g')^{r_i}$ with the same vertex u, then, by the uniqueness of g, $g' = g$. Using the convention that $g^0 = u$, we can write $y = p(g)$ and $y' = q(g)$ where $p(x) = 1 + \sum_{i=1}^{n} k_i x^{r_i}$ and $p'(x) = 1 + \sum_{i=1}^{n'} k'_i x^{r_i}$ both belonging to $K[x]$. If $d(x)$ is the gcd of $p(x)$ and $q(x)$ in $K[x]$, then we can assume, without loss of generality, that $d(0) = 1$. Moreover, we can write $d(x) = a(x)p(x) + b(x)q(x)$ for suitable $a(x), b(x) \in K[x]$. Clearly $d(g) = a(g)p(g) + b(g)q(g) \in I$ and we can then replace both $y = p(g)$ and $y' = q(g)$ by $d(g)$. Iteration of this process guarantees that different generators y_j and y_k involve different vertices v_j and v_k and so $y_jy_k = 0 = y_ky_j$ for $j \neq k$, resulting in a mutually orthogonal set of generators for the ideal I. ■

Since Condition (L) on a graph demands that cycles have exits, an immediate consequence of Lemma 2 is the following well-known result.

Corollary 3 [4] Let E be an arbitrary graph. If E satisfies Condition (L), then every non-zero two-sided ideal of $L_K(E)$ contains a vertex.

The next theorem gives an explicit description of the generators of the non-graded ideals of a Leavitt path algebra.

Theorem 4 Let I be a non-zero ideal of $L_K(E)$ with $I \cap E^0 = H$ and $S = \{v \in B_H : v^H \in I\}$. Then I is generated by $H \cup \{v^H : v \in S\} \cup Y$, where Y is a set of mutually orthogonal elements of the form $(u + \sum_{i=1}^{n} k_i g^{r_i})$ in which (i) g is a (unique) cycle without exits in $E^0 \setminus H$ based at a vertex u in $E^0 \setminus H$ and (ii) $k_i \in K$ with at least one $k_i \neq 0$. Moreover, I is non-graded if and only if Y is non-empty.

Proof. Let $J = I_{(H,S)}$ be the ideal of $L_K(E)$ generated by $H \cup \{v^H : v \in S\}$. We may assume that $J \subseteq I$ since there is nothing to prove if $I = J$. By Tomforde [8], $L_K(E)/J \cong L_K(E \setminus (H,S))$. Identifying $L_K(E)/J$ with $L_K(E \setminus (H,S))$ via this isomorphism, we note that the non-zero ideal I/J contains no vertices of $E \setminus (H,S)$ and so by Lemma 2 I/J is generated by elements of the form $(u + \sum_{i=1}^{n} k_i g^{r_i})$ where g is a (unique) cycle without exits in $E \setminus (H,S)$ based at a vertex $u \in (E \setminus (H,S))^0 = E^0 \setminus H \cup \{v' : v \in B_H \setminus S\}$ and $k_i \in K$ with at least one $k_i \neq 0$. It is then clear that the ideal I is generated by $H \cup \{v^H : v \in S\} \cup Y$, where Y is the set of mutually orthogonal elements of the form $y = (u + \sum_{i=1}^{n} k_i g^{r_i})$ where g is a (unique) cycle without exits in $E \setminus (H,S)$ based
at a vertex \(u \in (E \setminus (H, S))^0 \) and \(k_i \in K \) with at least one \(k_i \neq 0 \). Observe that since the \(v' \in (E \setminus (H, S))^0 \) are all sinks, both \(u \) and the vertices on \(g \) all belong to \(E^0 \setminus H \). ■

Since Condition (K) on the graph \(E \) implies that the set \(Y \) in above theorem must be empty, the following well-known result (see, for eg. [8]) can be derived immediately from Theorem 4.

Corollary 5 Let \(E \) be an arbitrary graph. Then \(E \) satisfies Condition (K) if and only if every ideal of \(L_K(E) \) is graded.

4 Finitely generated ideals of \(L_K(E) \)

Here we show that any finitely generated two-sided ideal \(I \) in a Leavitt path algebra must be a principal ideal. The main idea of the proof is to start with a generating set of the ideal \(I \) as given Theorem 4 and to replace any finite subset of these generators by an appropriate finite set of mutually orthogonal generators. The sum of these orthogonal generators will be a desired single generator. As a consequence, we derive that if \(E \) is a finite graph, then the Leavitt path algebra \(L_K(E) \) will be a two-sided principal ideal ring, that is, every ideal of \(L_K(E) \) will be a principal ideal.

Theorem 6 Let \(E \) be an arbitrary graph. Then every finitely generated ideal of \(L_K(E) \) is a principal ideal.

Proof. Suppose \(E \) is an arbitrary graph and \(I \) is an ideal of \(L_K(E) \) generated by a finite set of elements \(a_1, \ldots, a_m \) in \(L_K(E) \). By Theorem 4 \(I \) also has a generating set \(H \cup \{ v^H : v \in S \} \cup Y \) where \(H = I \cap E^0, S = \{ v \in B_H : v^H \in I \} \) and \(Y \) is a set of elements of the form \(y = (u + \sum_{i=1}^{n} k_ig^r_i) \) where \(g \) is a (unique) cycle without exits in \(E \setminus (H, S) \) based at a vertex \(u \) in \((E \setminus (H, S))^0 = E^0 \setminus H \) and \(k_i \in K \) with at least one \(k_i \neq 0 \). Since each \(a_i \) can be written as a finite sum of elements of the form \(\sum_{i=1}^{n} \beta^r_i x^r_i y^r_i z^r_i \) where \(x \in H \cup \{ v^H : v \in S \} \cup Y \), we may assume without loss of generality that the ideal \(I \) is generated by a finite set of elements \(x_1, \ldots, x_n \) where \(x_i \in H \cup \{ v^H : v \in S \} \cup Y \). We wish to re-choose the generators \(x_i \) such that for \(i \neq j \), \(x_ix_j = 0 \). This property clearly holds if \(x_i, x_j \) are different elements in either \(H \cup \{ v^H : v \in S \} \) or \(H \cup Y \).

So we need only to consider the case when \(x_i \in \{ v^H : v \in S \} \) and \(x_j \in Y \) with \(x_ix_j \neq 0 \) so that \(x_i = v - \sum_{e \in s^{-1}(v), r(e) \notin H} ee^* \) and \(x_j = v + \sum_{i=1}^{n} k_ig^r_i \) where \(v \in B_H \) and \(g \) is a cycle without exits based at \(v \) in \(E^0 \setminus H \). Since \(g \) has no exits in \(E \setminus (H, S) \), \(x_i = v - ee^* \) with \(e \) the initial edge of \(g \). Then \(x_ix_j = (v - ee^*)(v + \sum_{i=1}^{n} k_ig^r_i) = v - ee^* + \sum_{i=1}^{n} k_ig^r_i - \sum_{i=1}^{n} k_ig^{r_i} = v - ee^* = x_i \) and so we remove \(x_i \) from the list of generators of \(I \). Repeating this process a finite number of times, we obtain a finite set of generators \(y_1, \ldots, y_t \) of the ideal \(I \).
where \(y_i = v_i y_i v_i \) for all \(i \) and \(v_1, ..., v_t \) are distinct vertices in \(E \). An arbitrary element \(z \) of \(I \) will then be of the form

\[
z = \sum_{i=1}^{r_1} k_{1i} \alpha_{1i} \beta_{1i}^* y_1 \gamma_{1i} \delta_{1i}^* + \cdots + \sum_{i=1}^{r_t} k_{ti} \alpha_{ti} \beta_{ti}^* y_t \gamma_{ti} \delta_{ti}^*
\]

where, for \(s = 1, ..., t \), \(k_{si} \in K \), \(\alpha_{si}, \beta_{si}, \gamma_{si}, \delta_{si} \) are all paths in \(E \) for various \(i \).

Then

\[
z = \sum_{i=1}^{r_1} k_{1i} \alpha_{1i} \beta_{1i}^* a \gamma_{1i} \delta_{1i}^* + \cdots + \sum_{i=1}^{r_t} k_{ti} \alpha_{ti} \beta_{ti}^* a \gamma_{ti} \delta_{ti}^*
\]

where \(a = y_1 + \cdots + y_t \in I \). This shows that \(I \) is the principal ideal generated by the element \(a \). \(\blacksquare \)

It was shown in [6] that if \(E \) is a finite graph, then every ideal of \(L_K(E) \) is finitely generated. From Theorem 6 we then obtain the following stronger conclusion.

Corollary 7 Let \(E \) be a finite graph. Then every ideal of \(L_K(E) \) is a principal ideal.

References

[1] G. Abrams and G. Aranda Pino, The Leavitt path algebra of a graph, J Algebra, 293 (2005), 319 - 334.

[2] G. Abrams, J. P. Bell, P. Colak, and K. M. Rangaswamy, Two-sided chain conditions on Leavitt path algebras over arbitrary graphs, J. Alg. App., 11 (2012),

[3] P. Ara, M.A. Moreno and E. Pardo, Non-stable K-theory for graph algebras, Algebra and Representation Theory, 10 (2007), 157 -178.

[4] G. Aranda Pino, D. Martín Barquero, C. Martín Gonzalez, and M. Siles Molina, Socle theory for Leavitt path algebras of arbitrary graphs, Rev. Mat. Iberoamericana 26(2) (2010) 611-638.

[5] G. Aranda Pino, E. Pardo and M. Siles Molina, Prime spectrum and primitive Leavitt path algebras, Indiana Univ. Math. journal, 58 (2009), 869 - 890.

[6] P. Colak, Two-sided ideals in Leavitt path algebras, J. Alg. App., 10 (2011), 801 -

[7] K.M. Rangaswamy, The theory of prime ideals of Leavitt path algebras over arbitrary graphs, arXiv: 1106.4766v1 [Math.RA] 23 June 2011.

[8] M. Tomforde, Uniqueness theorems and Ideal structure of Leavitt path algebras, J. Algebra 318 (2007) 270 -299.