Multi-peak Estimation for Real-time 3D Ping-Pong Ball Tracking with Double-queue Based GPU Acceleration

Research Background

- 3D ball tracking
- Data
- 3D ball position
- 3D ball velocity
- 3D ball trajectory

Target:
Real-time 3D ping-pong ball tracking with high success rate

Proposals

Multi-peak estimation

- Merit:
 - Robust for both single-peak and multi-peak situations
- Best group judgment
- \[L_{group}(C_k^g) = \sum_{i=0}^{k_g(i) < d_g(i)} k_g(i) \cdot L(X_k^i) \]
- **Best group:** The group with the largest \(L_{group} \)

Double-queue based GPU acceleration

- Host
- Queue1
- Queue2
- **K1. Prediction**
- **K4. Pixel filter**
- **K2.1. Observation**
 - Color likelihood
 - Moving likelihood
 - Ratio likelihood
- **K5. Block filter**
- **K2.2. Observation**
 - Upper semicircle likelihood
- **K3. Resampling**
- **Buffer**
- **Memory object**
- **Kernel**
- **Task on GPU**

Experiment results

Ping-pong sequence parameter	Resolution	Frame rate	Shutter speed	Round	14
Tennis ball	1920x1080	60fps	1000	Smash case	122
Ping-pong ball	3x3 ~ 11x11 pixels	High About 85 pixel/f	High About 150 pixel/f		

Conclusion

This work proposes a multi-peak estimation method, upper semicircle likelihood and smash-failure-specific system model in the algorithm design, obtaining 99.59% tracking success rate based on 14 ping-pong sequences shot in an official match. Two proposals in GPU acceleration are put forward to reduce the time cost to 8.8 ms/f, reaching the real-time requirement.

1. http://www.panasonic.com/jp/corporate/wonders/wondersolutions/kaiseki.html

Graduate School of Information, Production and Systems
Waseda University