Adjunctive Manual Thrombus Aspiration during ST-Segment Elevation Myocardial Infarction: A Meta-Analysis of Randomized Controlled Trials

Song-Bai Deng¹, Jing Wang¹, Jun Xiao², Ling Wu¹, Xiao-Dong Jing¹, Yu-Ling Yan¹, Jian-Lin Du¹, Ya-Jie Liu¹, Qiang She¹*

¹Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China, ²Department of Cardiology, The Medical Emergency Center of Chongqing, Chongqing, China

Abstract

Objective: The aim of this study was to synthesize evidence by examining the effects of manual thrombus aspiration on clinical outcomes in patients with ST-segment elevation myocardial infarction (STEMI).

Methods and Results: A total of 26 randomized controlled trials (RCTs), enrolling 11,780 patients, with 5,869 patients randomized to manual thrombus aspiration and 5,911 patients randomized to conventional percutaneous coronary intervention (PCI), were included in the meta-analysis. Separate clinical outcome analyses were based on different follow-up periods. There were no statistically significant reductions in the incidences of mortality (risk ratio [RR], 0.86 [95% confidence interval [CI]: 0.73 to 1.02]), reinfarction (RR, 0.62 [CI, 0.31 to 1.32]) or target vessel revascularization (RR, 0.89 [CI, 0.75 to 1.05]) in the manual thrombus aspiration arm at 12 to 24 months of follow-up. The composite major adverse cardiac events (MACEs) outcomes were significantly lower in the manual thrombus aspiration arm over the long-term follow-up (RR, 0.76 [CI, 0.63 to 0.91]). A lower incidence of reinfarction was observed in the hospital to 30 days (RR, 0.59 [CI, 0.37 to 0.92]).

Conclusion: The present meta-analysis suggested that there was no evidence that using manual thrombus aspiration in patients with STEMI could provide distinct benefits in long-term clinical outcomes.

Introduction

Thrombus aspiration for ST-segment elevation myocardial infarction (STEMI) has been utilized for a long time and has received a level IIa endorsement according to the U.S. guidelines [1]. In the recent years, there has been increasing interest in manual thrombectomy devices, and the evidence to date has suggested that manual thrombus aspiration, but not mechanical aspiration, is beneficial in reducing major adverse cardiac events (MACEs), including mortality, compared with conventional percutaneous coronary intervention (PCI) alone [2–6]. In the largest randomized trial to date, the TASTE (Thrombus Aspiration in ST-Elevation myocardial infarction in Scandinavia) study suggested that routine manual thrombus aspiration before PCI provided no significant benefit to mortality over PCI alone in patients with STEMI at 30 days and 1 year of follow-up, settling the debate over the benefits of using manual thrombus aspiration in this setting [7,8]. Recently, thrombectomy was downgraded in the ESC/EACTS revascularization guidelines from a class IIa level of evidence B recommendation to a class IIb level of evidence A recommendation [9]. Despite two well-done updated meta-analyses recently performed on this topic by Kumbhani DJ et al [5,6], controversy exists regarding the combination of outcome effects over different follow-up durations. Because additional studies and prolonged follow-ups of earlier trials have now been reported, we performed an updated meta-analysis of the reperfusion markers of STEMI patients undergoing PCI with manual thrombus aspiration devices, and we performed separate analyses of clinical outcomes based on different follow-up periods. Because the Rescue (Boston Scientific) and TVAC (Thrombus Vacuum Aspiration Catheter, Nipro) catheters, attached to aspiration pumps for vacuum creation, were defined inconsistently as manual or mechanical thrombectomy in previous published meta-analyses [2–6], these two catheters were classified as special thrombectomy devices in the present meta-analysis.

Methods

This study was performed in compliance with the quality of reporting for meta-analyses (PRISMA [Preferred Reporting Items for Systematic reviews and Meta-Analyses] statement) [10].
Data Sources and Searches
We performed a computerized literature search of the PubMed, Web of Science, and Central databases for relevant articles published until September 2014, using the Medical Subject Heading and keyword search terms myocardial infarction, ST-segment elevation myocardial infarction, STEMI, thrombus aspiration, thrombectomy, Diver, Pronto, Export, Thrombuster, Eliminate, Rescue, TVAC, revascularization, percutaneous coronary intervention, angioplasty and PCI. No restrictions were applied to the publication period of the articles. This search was supplemented with citation tracking of relevant review articles and prior meta-analyses. Furthermore, conference proceedings from the American College of Cardiology, American Heart Association, European Society of Cardiology, EuroPCR scientific sessions and Transcatheter Cardiovascular Therapeutics were scanned. Only English-language studies were included.

Study Selection
We selected studies in which patients with STEMI undergoing primary PCI or rescue PCI were randomly assigned either to manual thrombus aspiration followed by PCI or to PCI only. We only included studies that reported clinical outcome data and/or markers of post-procedure myocardial reperfusion. We excluded studies that performed thrombectomy only on saphenous vein grafts, studies that performed mechanical thrombectomy, studies of elective PCI and studies that compared one thrombectomy device to another.

Data Extraction and Quality Assessment
The data were independently abstracted by two reviewers (Song-Bai Deng, Ling Wu). Agreement between the reviewers was evaluated by Kappa statistics. Disagreements were resolved through discussion, and a third reviewer (Qiang She) was involved to achieve a consensus when necessary. The bias of the included studies was assessed by the Cochrane group’s Cochrane Handbook for Systematic Reviews of Interventions [11].

Data Synthesis and Analysis
The primary clinical endpoint was all-cause mortality. The secondary endpoints were MACEs (composite of death, reinfarction, and target vessel revascularization), reinfarction, target vessel revascularization (TVR) and stent thrombosis. Angiographic and electrocardiographic outcomes that reflected post-procedure myocardial reperfusion included post-procedure myocardial blush grade (MBG) 3, thrombolysis and thrombin inhibition in myocardial infarction (TIMI) 3, and resolution of ST segment elevation (STR) >70%. We performed separate analyses of clinical outcomes based on different follow-up periods. The time frames were defined to reflect short-term (in hospital to 30 days), medium-term (6 to 9 months) and long-term (longer than or equal to 1 year) follow-ups, according to the different follow-up durations of the included studies. If manual and mechanical devices were both used in the same study, only data pertaining to manual aspiration thrombectomy were extracted. A subanalysis of the special thrombectomy devices (Rescue and TVAC) was performed. For all of the clinical outcomes, intention-to-treat analysis was utilized. The meta-analysis was performed using RevMan software, version 5.3 (Cochrane Collaboration). Summary risk ratios (RRs) and their corresponding 95% confidence intervals (CIs) were computed for each dichotomous outcome, using fixed or random effects models. For outcomes with significant heterogeneity (Chi^2 p<0.05 or I^2>50%), the random effects model is reported in the text and figures; for all of the other

Outcome Quality Assessment
We evaluated the level of evidence using the GRADE (Grades of Recommendation, Assessment, Development and Evaluation) approach [12]. The GRADEpro software version 3.6 was used. We obtained our assessment by judging the designs of the studies, the risk of bias, inconsistency, and imprecision.

Results
Eligible studies
The initial search obtained 641 potentially relevant publications. After reading the abstracts and the full texts, 26 RCTs were finally included, enrolling 11,780 patients, with 5,869 patients randomized to manual thrombus aspiration and 5,911 patients randomized to conventional PCI (Figure 1). The follow-up periods varied between in-hospital and 5 years. Twelve trials presented short-term follow-up results (in-hospital to 30 days) [9,13–22], 8 trials presented medium-term follow-up results (6 to 8 months) [23,29], and 2 trials presented long-term follow-up results (12 months) [30,31]. In addition, 5 trials presented different follow-up periods: the TAPAS (The Thrombus Aspiration during Percutaneous Coronary Intervention in Acute Myocardial Infarction Study) [32,33] and INFUSE-AMI (Infus-Acute Myocardial Infarction; An Optical Frequency Domain Imaging Study) [34,35] studies followed up from 30 days and then to up to 12 months, TASTE followed up from 30 days to 1 year [7,8], EXPIRA (The Thrombectomy With Export Catheter in Infarct-Related Artery During Primary Percutaneous Coronary Intervention Prospective, Randomized Trial) from 9 months and up to 24 months [36,37] and VAMPIRE (VAcuum asPIration thrombus Removal trial) from 1 month to 5 years [38–41]. Kappa statistics showed good agreement between the reviewers in the selection and data extraction (Kappa = 0.83). Among 24 included studies, most of them did not explicitly describe random sequence generation or allocation, and few present attrition or reporting bias. Because the participants and personnel could not be blinded to the trials, the vast majority of studies were only blinded to outcome assessment. The reviewers’ judgments about each risk of bias item are presented in Figure S1. The baseline characteristics of the included patients are listed in Table 1.

Mortality
There was no significant mortality benefit from in hospital to 30 days (2.53% thrombus aspiration vs. 2.94% conventional PCI; RR = 0.87, 95% CI 0.69 to 1.09, p = 0.22; p for heterogeneity [phet] = 0.95, I^2 = 0%) or from 6 to 9 months of follow-up (1.43% vs. 1.78%; RR: 0.84, 95% CI: 0.39 to 1.80, p = 0.65; phet = 0.58, I^2 = 0%). We observed a decreased trend toward mortality in manual thrombus aspiration with long-term follow-up (longer than or equal to 1 year), but this trend was not statistically significant (5.04% vs. 5.83%; RR: 0.86, 95% CI: 0.73 to 1.02, p = 0.09; phet = 0.27, I^2 = 22%). A random-effects model yielded a similar result with long-term follow-up (RR: 0.80, 95% CI: 0.59 to 1.08, p = 0.14). Subgroup analysis of the different aspiration thrombectomy devices also showed similar results (Figure 2).

MACEs
Because the MACEs was not pre-defined, the TASTE trail could not be included in the meta-analysis in terms of MACE outcomes. The composite MACE outcomes were significantly
lower in the manual thrombus aspiration arm at 6 to 9 months (10.94% thrombus aspiration vs. 16.89% conventional PCI; RR: 0.65, 95% CI: 0.48 to 0.88, p = 0.005; phet = 0.94, I² = 0%) and with long-term (14.49% vs. 18.66%; RR: 0.76, 95% CI: 0.63 to 0.91, p = 0.003; phet = 0.73, I² = 0%) follow-up. A random-effects model yielded similar results (RR: 0.65, 95% CI: 0.48 to 0.88; RR: 0.76, 95% CI: 0.64 to 0.91, respectively). However, the composite MACEs were similar between the two arms from in hospital to 30 days of follow-up (4.34% vs. 6.75%; RR: 0.77, 95% CI: 0.56 to 1.07, p = 0.12; phet = 0.98, I² = 0%) (Figure 3).

Reinfarction

The incidence of reinfarction was lower in the manual thrombus aspiration arm from in hospital to 30 days (0.56% thrombus aspiration vs. 0.98% conventional PCI; RR: 0.59, 95% CI: 0.37 to 0.92, p = 0.02; phet = 0.95, I² = 0%) but not at 6 to 9 months (3.38% vs. 5.35%; RR: 0.62, 95% CI: 0.31 to 1.25, p = 0.18; phet = 0.81, I² = 0%) or with long-term (2.45% vs. 2.80%; RR: 0.88, 95% CI: 0.68 to 1.13, p = 0.31; phet = 0.34, I² = 12%) follow-up (Figure 4). A random-effects model yielded similar results from in hospital to 30 days of follow-up (RR: 0.59, 95% CI: 0.37 to 0.92, p = 0.02; phet = 0.95, I² = 0%).
Table 1. Baseline characteristics of trials included in the meta-analysis.

Study/Ref	Design	Device	n	Mean Age, Yrs	Male, %	Baseline TIMI 0/1, %	Ischaemia time, h	GP IIb/IIIa inhibitor, %	Follow-Up time, months
TASTE [7,8]	multicenter	Eliminate/Pronto/Export	3621/3623	66.5/65.9	75.1/74.6	77.9/77.6	3.1/3.0	15.4/17.4	1 m
REMEDIA [13]	single-center	Diver CE	50/49	61/60	90.0/77.6	86.0/89.8	4.6/5.0	68.0/63.3	1 m
Noel B et al [14]	single-center	Export	24/26	58/62	NA	NA	5.2/4.2	NA	H
DEAR-Mi [15]	single-center	Pronto	74/74	57.3/58.9	84/76	81/73	3.4/3.3	100/100	H
EXPORT [16]	multicenter	Export	120/129	59.2/61.2	80.8/81.4	99.2/100	6.0/5.1	57.1/73.7	1 m
Lipiecki et al [17]	single-center	Export	20/24	59/59	60/75	100/96	7.1/7.4	5/12	H
Ciszewski et al [18]	single-center	Rescue/Diver CE	67/70	64.2/64.1	72/71	90/91	5.6/5.6	84/80	H
TROFI [19]	multicenter	Eliminate	71/70	61.1/60.9	75.7/69.1	48/46.4	NA	47.8/62.8	H
Dudek et al [20]	single-center	Rescue	40/32	57/59	NA	79/66	4.3/3.9	0/0	H
Kaltoft et al [21]	single-center	Rescue	108/107	65/11	76/80	68/69	4.0/3.5	96/93	1 m
NONSOP [22]	multicenter	Rescue	129/129	64/65.9	79.8/79.8	NA	NA	NA	H
De Luca et al [23]	single-center	Diver CE	38/38	66.7/64.6	71.0/55.3	100/100	7.2/7.6	100/100	6 m
Chao et al [24]	single-center	Export	37/37	60/62	83.8/81.1	NA	5.6/5.9	19/32	6 m
Liistro et al [25]	single-center	Export	55/56	64/65	78/77	69/76	3.2/3.5	100/100	6 m
PIHRATE [26]	multicenter	Diver CE	100/96	60.8/58.8	80/81.7	96.7/97.9	NA	8/10.5	6 m
Bulum et al [27]	single-center	Export	30/30	54.3/58.5	83.3/73.3	NA	3.9/4.9	96.7/83.3	6 m
ITTI [28]	multicenter	Thrombuster II	52/48	60.5/56.5	90/81	83/92	2.8	54/52	6 m
Woo SI et al [29]	single-center	Export	33/30	55/53	84/8/100	78.8/83.3	4.4/4.7	0/0	6 m
MUSTELA [30]	multicenter	Export	50/104	62/63	84.4/76	91.3/77.9	3.8/3.5	100/100	12 m
Sim et al [31]	single-center	Thrombuster II	43/43	63/60	67.4/69.8	76.8/76.8	4.1/3.1	30/46.5	12 m
TAPAS [32,33]	single-center	Export	535/536	63/63	67.9/73.1	54.8/59.5	3.2/3.1	93/48.9	1 m,12 m
INFUSE-AMI [34,35]	multicenter	Export	229/223	61/59	73.8/74	73.4/70	2.4/2.7	50/75	1 m,12 m
EXPIRA [36,37]	single-center	Export	88/87	67/66.4	57/48	100/100	6.2/6.1	100/100	9 m,24 m
VAMPIRE [38–41]	multicenter	TAVC	180/175	63.2/63.5	80.6/77.7	74.6/75.3	6.3/7.1	0/0	1 m,8 m,5 years
Hamza et al [42]	single-center	Rescue	25/25	53.7/56.2	88/96	NA	5.9	100/100	H
Shehata et al [43]	single-center	Diver CE	50/50	60.3/59.4	62/66	NA	NA	100/100	8 m

REMEDIA = The Randomized Evaluation of the Effect of Mechanical Reduction of Distal Embolization by Thrombus-Aspiration in Primary and Rescue Angioplasty Trial; TASTE = Thrombus Aspiration in ST-Elevation myocardial infarction in Scandinavia; DEAR-Mi = The Dethrombosis to Enhance Acute Reperfusion in Myocardial Infarction Study; EXPORT = A Multicentre Randomized Controlled Trial of The EXPORT Aspiration Catheter; TROFI = Randomized Study to Assess the Effect of Thrombus Aspiration on Flow Area in Patients with ST-Elevation Myocardial Infarction; NONSOP = Intracoronary Aspiration before coronary Stenting in Patients with Acute Myocardial Infarction; PIHRATE = the Polish-Italian-Hungarian RAndomized ThrombEctomy Trial; ITTI = The Initial Thrombosuction and Tirofiban Infusion trial; MUSTELA = MUltidevice Thrombectomy in Acute ST-Segment Elevation Acute Myocardial Infarction Trial; TAPAS = The Thrombus Aspiration during Percutaneous Coronary Intervention in Acute Myocardial Infarction Study; INFUSE-AMI = Infuse–Acute Myocardial Infarction: An Optical Frequency Domain Imaging Study; EXPIRA = The Thrombectomy With Export Catheter in Infarct-Related Artery During Primary Percutaneous Coronary Intervention Prospective, Randomized Trial; VAMPIRE = VAcuuM asPIration thrombus Removal trial; *Values for all thrombectomy (manual and mechanical) vs. conventional PCI alone; 1Median; 2mean ischaemia time of all patients; NA: not available; H: In-hospital clinical outcomes.
Figure 2. Forest plots for mortality in different follow-up periods. Footnote: A: short-term follow-up; B: medium-term follow-up; C: long-term follow-up; TAPAS a: 30-day of follow-up; TAPAS b: 12 months of follow-up; INFUSE-AMI a: 30-day of follow-up; INFUSE-AMI b: 12 months of follow-up; EXPIRA a: 6 months of follow-up; EXPIRA b: 24 months of follow-up; VAMPIRE a: 30-day of follow-up; VAMPIRE b: 8 months of follow-up; TASTE b: 1 year of follow-up.
doi:10.1371/journal.pone.0113481.g002
Figure 3. Forest plots for MACE in different follow-up periods

Footnote: A: short-term follow-up; B: medium-term follow-up; C: long-term follow-up; VAMPIRE c: 5 years of follow-up.

doi:10.1371/journal.pone.0113481.g003

A. Manual Thrombectomy devices

Study or Subgroup	Manual Thrombectomy	Conventional PCI	Risk Ratio		
	Total Events	Events	Weight	M-H Fixed, 95% CI Year	
Noel et al	1	24	26	2.5%	0.54 [0.05, 6.60] 2005
REMEDIA	5	50	49	6.5%	0.98 [0.30, 3.17] 2005
TAPAS a	36	530	536	64.7%	0.72 [0.44, 1.19] 2009
INFUSE-AMI a	15	229	223	21.0%	0.91 [0.46, 1.80] 2012
Hamzi et al	0	25	25	Not estimable	2014
Subtotal (95% CI)	883	859	94.8%	0.79 [0.56, 1.08]	
Total events	57	73		Heterogeneity: Chi² = 0.58, df = 3 (P = 0.90); I² = 0%	
				Test for overall effect: Z = 1.49 (P = 0.14)	

B. Adjunctive Manual Thrombus Aspiration during STEMI

Study or Subgroup	Manual Thrombectomy	Conventional PCI	Risk Ratio		
	Total Events	Events	Weight	M-H Fixed, 95% CI Year	
Kallith et al	2	108	107	2.6%	0.99 [0.14, 6.91] 2006
VAMPIRE a	1	180	175	2.6%	0.48 [0.04, 5.31] 2008
Subtotal (95% CI)	288	282	5.2%	0.74 [0.17, 3.26]	
Total events	50	77		Heterogeneity: Chi² = 0.21, df = 1 (P = 0.65); I² = 0%	
				Test for overall effect: Z = 0.40 (P = 0.69)	
				Test for subgroups: Chi² = 0.60, df = 1 (P = 0.46); I² = 0%	

C. Adjunctive Manual Thrombus Aspiration during STEMI

Study or Subgroup	Manual Thrombectomy	Conventional PCI	Risk Ratio		
	Total Events	Events	Weight	M-H Fixed, 95% CI Year	
De Luca et al	3	38	38	4.5%	0.75 [0.18, 3.13] 2006
Chao et al	4	88	87	10.2%	0.44 [0.14, 1.39] 2009
Lister et al	8	55	56	7.8%	1.16 [0.45, 2.99] 2000
ITTI	7	52	48	11.7%	0.65 [0.27, 1.58] 2012
Bulum et al	5	30	30	9.9%	0.53 [0.23, 1.09] 2012
Shehata et al	4	50	50	7.9%	0.57 [0.18, 1.93] 2013
Subtotal (95% CI)	350	348	62.3%	0.65 [0.44, 0.95]	
Total events	56	55		Heterogeneity: Chi² = 2.29, df = 6 (P = 0.69); I² = 0%	
				Test for overall effect: Z = 2.20 (P = 0.03)	

Reference:

PLOS ONE | www.plosone.org 6 November 2014 | Volume 9 | Issue 11 | e113481
Adjunctive Manual Thrombus Aspiration during STEMI

There were some differences from the well-done updated meta-analysis on this topic performed recently by Kumbhani DJ et al [5,6]. First, we performed separate analyses of clinical outcomes based on different follow-up periods, and a subanalysis of the special thrombectomy devices (Rescue and TVAC) to avoid clinical heterogeneity as much as possible. Second, we included 6 additional studies and the results of the recent TASTE trial at the 1-year follow-up in this meta-analysis. Third, this meta-analysis presented fewer long-term clinical benefits of routine use of manual thrombus aspiration in patients with STEMI. Finally, we also assessed the level of evidence using the GRADE approach. The present meta-analysis showed that the composite MACE outcomes were significantly lower in the manual thrombus aspiration arm with long-term follow-up (RR: 0.76, 95% CI: 0.63 to 0.91). However, the number of included patients for this clinical outcome was far less than for the others because the TASTE trial could not be included due to MACEs not being pre-defined in this trial. In the TASTE trial, the composite incidence of death, rehospitalization for myocardial infarction, or stent thrombosis was 8.0% in the thrombus-aspiration group and 8.5% in the PCI-only group (hazard ratio, 0.94; 95% CI, 0.80 to 1.11; p = 0.48) [8]. Adding these factors together, we could not conclude that the use of manual thrombus aspiration devices could reduce the composite MACE outcomes.

In our meta-analysis, one trial warrants particular attention [7,8]. The TASTE trial, a registry-based RCT, was a prospective, multicenter, controlled trial that randomly allocated 7,244 patients to undergo manual thrombus aspiration followed by PCI or PCI alone. The sample size was larger than those of all previous studies combined, and the power to detect differences at well-defined end points was much higher. The TASTE study did not show any significant differences in the primary outcome of all-cause mortality, and it showed non-significant trends toward less myocardial infarction and stent thrombosis at 30 days and 1 year of follow-up. Additionally, the outcome of thrombus aspiration in candidate subjects not enrolled in TASTE failed to show an advantage of this adjunct, although this meta-analysis found that adjunctive manual thrombosis aspiration significantly reduced the incidence of reinfarction at 30 days of follow-up. Based on the rate of reinfarction with short-term follow-up (0.56% vs 0.98%, separately), 238 patients needed to be treated to prevent 1 reinfarction event. Given that the price of an average aspiration catheter is approximately €250, the potential clinicoeconomic effectiveness of the use of routine manual thrombus aspiration is low.

Different inclusion criteria and different manual aspiration thrombectomy devices were used in the various trials, and it is not surprising that there was significant statistical heterogeneity in the results of post-procedure myocardial reperfusion. For example, myocardial reperfusion was not improved and infarct size was not reduced by manual aspiration thrombectomy in the INFUSE-AMI trial of patients with large anterior STEMI [34]. Post-procedure myocardial reperfusion improvements were observed despite the inclusion of the recent INFUSE-AMI trial. A random effects model was employed in the meta-analysis, and there were still significant advantages of angiographic and electrocardiographic outcomes in the manual thrombus aspiration arm when individually excluding the included trials.

In the real world, the benefits of using manual thrombus aspiration in patients with STEMI are also controversial. One study found that the routine use of thrombus aspiration was associated with reduced 12-month mortality in a large real-world patient cohort [42]. These data supported the observed survival benefit in the TAPAS trial. However, another study showed that...
one-year mortality was similar in both groups in a real-world STEMI population [43]. Recently, thrombectomy was downgraded in the ESC/EACTS revascularization guidelines from a class IIa level of evidence B recommendation to a class IIb level of evidence A recommendation. What will change in the U.S. STEMI guidelines is unknown. These results might have caused uncertainty in the minds of some cardiologists regarding the utility of adjunctive thrombus aspiration for primary PCI patients. Thus, a subsequent analysis of the ongoing large-scale randomized trial (ClinicalTrials.gov number, NCT01149044) is imperative [44].

The TOTAL trial (A Randomized Trial of Routine Aspiration Thrombectomy With PCI Versus PCI Alone in Patients With STEMI Undergoing Primary PCI) is an international, randomized, controlled, parallel-group study in which an estimated enrollment sample of 10,700 patients with STEMI will be allocated to manual aspiration thrombectomy with PCI or PCI alone.

Figure 4. Forest plots for reinfarction in different follow-up periods. Footnote: A: short-term follow-up; B: medium-term follow-up; C: long-term follow-up.
doi:10.1371/journal.pone.0113481.g004
Figure 5. Forest plots for target vessel revascularization in different follow-up periods. Footnote: A: short-term follow-up; B: medium-term follow-up; C: long-term follow-up. doi:10.1371/journal.pone.0113481.g005

Figure 6. Forest plots for stent thrombosis. doi:10.1371/journal.pone.0113481.g006
alone, with follow-up of up to 180 days, and the primary end points are the first occurrence of cardiovascular death, recurrent myocardial infarction, cardiogenic shock, or new or worsening NYHA Class IV heart failure. In 2015 the results from the TOTAL trial are expected, and an updated meta-analysis including these data should be conducted. In clinical practice, thrombectomy catheters could be used to reduce thrombus burden by aspirating thrombi prior to stenting or balloon angiography; better reperfusion is predicted, and technically and procedurally using aspiration is also important. However, the use of thrombus aspiration during PCI in STEMI remains controversial.

Our review had some limitations. First, this meta-analysis was not performed on individual patient data because complete data sets were not available. Second, only the TASTE trial was expected to be powered for mortality and the other clinical events reported, and an updated meta-analysis including these data should be conducted. In clinical practice, thrombectomy catheters could be used to reduce thrombus burden by aspirating thrombi prior to stenting or balloon angiography; better reperfusion is predicted, and technically and procedurally using aspiration is also important. However, the use of thrombus aspiration during PCI in STEMI remains controversial.

Our review had some limitations. First, this meta-analysis was not performed on individual patient data because complete data sets were not available. Second, only the TASTE trial was expected to be powered for mortality and the other clinical events reported, and an updated meta-analysis including these data should be conducted. In clinical practice, thrombectomy catheters could be used to reduce thrombus burden by aspirating thrombi prior to stenting or balloon angiography; better reperfusion is predicted, and technically and procedurally using aspiration is also important. However, the use of thrombus aspiration during PCI in STEMI remains controversial.

Our review had some limitations. First, this meta-analysis was not performed on individual patient data because complete data sets were not available. Second, only the TASTE trial was expected to be powered for mortality and the other clinical events reported, and an updated meta-analysis including these data should be conducted. In clinical practice, thrombectomy catheters could be used to reduce thrombus burden by aspirating thrombi prior to stenting or balloon angiography; better reperfusion is predicted, and technically and procedurally using aspiration is also important. However, the use of thrombus aspiration during PCI in STEMI remains controversial.

Our review had some limitations. First, this meta-analysis was not performed on individual patient data because complete data sets were not available. Second, only the TASTE trial was expected to be powered for mortality and the other clinical events reported, and an updated meta-analysis including these data should be conducted. In clinical practice, thrombectomy catheters could be used to reduce thrombus burden by aspirating thrombi prior to stenting or balloon angiography; better reperfusion is predicted, and technically and procedurally using aspiration is also important. However, the use of thrombus aspiration during PCI in STEMI remains controversial.

Our review had some limitations. First, this meta-analysis was not performed on individual patient data because complete data sets were not available. Second, only the TASTE trial was expected to be powered for mortality and the other clinical events reported, and an updated meta-analysis including these data should be conducted. In clinical practice, thrombectomy catheters could be used to reduce thrombus burden by aspirating thrombi prior to stenting or balloon angiography; better reperfusion is predicted, and technically and procedurally using aspiration is also important. However, the use of thrombus aspiration during PCI in STEMI remains controversial.

Our review had some limitations. First, this meta-analysis was not performed on individual patient data because complete data sets were not available. Second, only the TASTE trial was expected to be powered for mortality and the other clinical events reported, and an updated meta-analysis including these data should be conducted. In clinical practice, thrombectomy catheters could be used to reduce thrombus burden by aspirating thrombi prior to stenting or balloon angiography; better reperfusion is predicted, and technically and procedurally using aspiration is also important. However, the use of thrombus aspiration during PCI in STEMI remains controversial.

Our review had some limitations. First, this meta-analysis was not performed on individual patient data because complete data sets were not available. Second, only the TASTE trial was expected to be powered for mortality and the other clinical events reported, and an updated meta-analysis including these data should be conducted. In clinical practice, thrombectomy catheters could be used to reduce thrombus burden by aspirating thrombi prior to stenting or balloon angiography; better reperfusion is predicted, and technically and procedurally using aspiration is also important. However, the use of thrombus aspiration during PCI in STEMI remains controversial.

Our review had some limitations. First, this meta-analysis was not performed on individual patient data because complete data sets were not available. Second, only the TASTE trial was expected to be powered for mortality and the other clinical events reported, and an updated meta-analysis including these data should be conducted. In clinical practice, thrombectomy catheters could be used to reduce thrombus burden by aspirating thrombi prior to stenting or balloon angiography; better reperfusion is predicted, and technically and procedurally using aspiration is also important. However, the use of thrombus aspiration during PCI in STEMI remains controversial.

Our review had some limitations. First, this meta-analysis was not performed on individual patient data because complete data sets were not available. Second, only the TASTE trial was expected to be powered for mortality and the other clinical events reported, and an updated meta-analysis including these data should be conducted. In clinical practice, thrombectomy catheters could be used to reduce thrombus burden by aspirating thrombi prior to stenting or balloon angiography; better reperfusion is predicted, and technically and procedurally using aspiration is also important. However, the use of thrombus aspiration during PCI in STEMI remains controversial.

Our review had some limitations. First, this meta-analysis was not performed on individual patient data because complete data sets were not available. Second, only the TASTE trial was expected to be powered for mortality and the other clinical events reported, and an updated meta-analysis including these data should be conducted. In clinical practice, thrombectomy catheters could be used to reduce thrombus burden by aspirating thrombi prior to stenting or balloon angiography; better reperfusion is predicted, and technically and procedurally using aspiration is also important. However, the use of thrombus aspiration during PCI in STEMI remains controversial.

Our review had some limitations. First, this meta-analysis was not performed on individual patient data because complete data sets were not available. Second, only the TASTE trial was expected to be powered for mortality and the other clinical events reported, and an updated meta-analysis including these data should be conducted. In clinical practice, thrombectomy catheters could be used to reduce thrombus burden by aspirating thrombi prior to stenting or balloon angiography; better reperfusion is predicted, and technically and procedurally using aspiration is also important. However, the use of thrombus aspiration during PCI in STEMI remains controversial.

Our review had some limitations. First, this meta-analysis was not performed on individual patient data because complete data sets were not available. Second, only the TASTE trial was expected to be powered for mortality and the other clinical events reported, and an updated meta-analysis including these data should be conducted. In clinical practice, thrombectomy catheters could be used to reduce thrombus burden by aspirating thrombi prior to stenting or balloon angiography; better reperfusion is predicted, and technically and procedurally using aspiration is also important. However, the use of thrombus aspiration during PCI in STEMI remains controversial.

Our review had some limitations. First, this meta-analysis was not performed on individual patient data because complete data sets were not available. Second, only the TASTE trial was expected to be powered for mortality and the other clinical events reported, and an updated meta-analysis including these data should be conducted. In clinical practice, thrombectomy catheters could be used to reduce thrombus burden by aspirating thrombi prior to stenting or balloon angiography; better reperfusion is predicted, and technically and procedurally using aspiration is also important. However, the use of thrombus aspiration during PCI in STEMI remains controversial.

Our review had some limitations. First, this meta-analysis was not performed on individual patient data because complete data sets were not available. Second, only the TASTE trial was expected to be powered for mortality and the other clinical events reported, and an updated meta-analysis including these data should be conducted. In clinical practice, thrombectomy catheters could be used to reduce thrombus burden by aspirating thrombi prior to stenting or balloon angiography; better reperfusion is predicted, and technically and procedurally using aspiration is also important. However, the use of thrombus aspiration during PCI in STEMI remains controversial.

Our review had some limitations. First, this meta-analysis was not performed on individual patient data because complete data sets were not available. Second, only the TASTE trial was expected to be powered for mortality and the other clinical events reported, and an updated meta-analysis including these data should be conducted. In clinical practice, thrombectomy catheters could be used to reduce thrombus burden by aspirating thrombi prior to stenting or balloon angiography; better reperfusion is predicted, and technically and procedurally using aspiration is also important. However, the use of thrombus aspiration during PCI in STEMI remains controversial.

Our review had some limitations. First, this meta-analysis was not performed on individual patient data because complete data sets were not available. Second, only the TASTE trial was expected to be powered for mortality and the other clinical events reported, and an updated meta-analysis including these data should be conducted. In clinical practice, thrombectomy catheters could be used to reduce thrombus burden by aspirating thrombi prior to stenting or balloon angiography; better reperfusion is predicted, and technically and procedurally using aspiration is also important. However, the use of thrombus aspiration during PCI in STEMI remains controversial.

Our review had some limitations. First, this meta-analysis was not performed on individual patient data because complete data sets were not available. Second, only the TASTE trial was expected to be powered for mortality and the other clinical events reported, and an updated meta-analysis including these data should be conducted. In clinical practice, thrombectomy catheters could be used to reduce thrombus burden by aspirating thrombi prior to stenting or balloon angiography; better reperfusion is predicted, and technically and procedurally using aspiration is also important. However, the use of thrombus aspiration during PCI in STEMI remains controversial.

Our review had some limitations. First, this meta-analysis was not performed on individual patient data because complete data sets were not available. Second, only the TASTE trial was expected to be powered for mortality and the other clinical events reported, and an updated meta-analysis including these data should be conducted. In clinical practice, thrombectomy catheters could be used to reduce thrombus burden by aspirating thrombi prior to stenting or balloon angiography; better reperfusion is predicted, and technically and procedurally using aspiration is also important. However, the use of thrombus aspiration during PCI in STEMI remains controversial.

Our review had some limitations. First, this meta-analysis was not performed on individual patient data because complete data sets were not available. Second, only the TASTE trial was expected to be powered for mortality and the other clinical events reported, and an updated meta-analysis including these data should be conducted. In clinical practice, thrombectomy catheters could be used to reduce thrombus burden by aspirating thrombi prior to stenting or balloon angiography; better reperfusion is predicted, and technically and procedurally using aspiration is also important. However, the use of thrombus aspiration during PCI in STEMI remains controversial.

Our review had some limitations. First, this meta-analysis was not performed on individual patient data because complete data sets were not available. Second, only the TASTE trial was expected to be powered for mortality and the other clinical events reported, and an updated meta-analysis including these data should be conducted. In clinical practice, thrombectomy catheters could be used to reduce thrombus burden by aspirating thrombi prior to stenting or balloon angiography; better reperfusion is predicted, and technically and procedurally using aspiration is also important. However, the use of thrombus aspiration during PCI in STEMI remains controversial.

Supporting Information

Figure S1 Review authors’ judgements about each risk of bias item presented as percentages across all included studies.

Figure S2 Forest plots for post-procedure MBG 3. Footnote: TAPAS a: 30-day of follow-up; VAMPIRE a: 30-day of follow-up.

Figure S3 Forest plots for post-procedure TIMI 3. Footnote: TAPAS a: 30-day of follow-up; INFUSE-AMI a: 30-day of follow-up; VAMPIRE a: 30-day of follow-up.

Figure S4 Forest plots for post-procedure STR. Footnote: TAPAS a: 30-day of follow-up; INFUSE-AMI a: 30-day of follow-up; EXPIRA a: 6 months of follow-up; VAMPIRE a: 30-day of follow-up.

Figure S5 Funnel plot of the included studies in meta-analysis of post-procedure TIMI 3 flow. Footnote: The inverted and symmetrical funnel aspect can be observed for the assessed end points, with 95% of the studies lying within the confidence limit lines. This suggests that publication bias is not present among the included studies for the meta-analysis.

Checklist S1 PRISMA checklist.
Author Contributions
Conceived and designed the experiments: QS SBD. Performed the experiments: SBD JW JX LW XDJ YLY JLD YJL. Analyzed the data: SBD QJ JW JX LW.

References
1. American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines (2013) 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 127: 922–953.
2. De Luca G, Dudek D, Sardella G, Marino P, Chevalier B, et al. (2008) Adjunctive manual thrombectomy improves myocardial perfusion and mortality in patients undergoing primary percutaneous coronary intervention for ST-elevation myocardial infarction: a meta-analysis of randomized trials. Eur Heart J 29: 3002–3010.
3. Bavry AA, Kumbhari DJ, Bhatt DL (2008) Role of adjunctive thrombectomy and embolic protection devices in acute myocardial infarction: A comprehensive meta-analysis of randomized trials. Eur Heart J 29: 2989–3001.
4. Costopoulos G, Giorg DA, Di Mario C, Kukreja N (2013) Use of thrombectomy devices in primary percutaneous coronary intervention: a systematic review and meta-analysis. Int J Cardiol 163: 229–241.
5. Kumbhari DJ, Bavry AA, DeSai MY, Bangalore S, Bhatt DL (2013) Role of aspiration and mechanical thrombectomy in patients with acute myocardial infarction undergoing primary angioplasty: an updated meta-analysis of randomized trials. J Am Coll Cardiol 62: 1409–1419.
6. Lagerqvist B, Frobert O, Olivecrona GK, Gudnason T, Maeng M, et al. (2014) Thrombus aspiration during ST-segment elevation myocardial infarction: N Engl J Med 369: 1587–1597.
7. Lagerqvist B, Frobert O, Olivecrona GK, Gudnason T, Maeng M, et al. (2014) Outcomes 1 Year After Thrombus Aspiration for Myocardial Infarction: N Engl J Med. doi: 10.1056/NEJMoa1405707. [Epub ahead of print]
8. Authors/Task Force members, Windecker S, Kolh P, Alfonso F, Collet JP, et al. (2013) 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 127: 922–953.
9. Authors/Task Force members, Windecker S, Kolh P, Alfonso F, Collet JP, et al. (2013) Thrombus aspiration during primary percutaneous coronary intervention for ST-segment elevation myocardial infarction. Results of the Initial Thrombosuction and Tirolian Infusion (ITTI) trial. Int J Cardiol 156: 174–179.
10. Brown J, Ernst A, Strozzi M (2012) The impact of successful manual thrombus aspiration on in-stent restenosis after primary PCI: angiographic and clinical follow-up. Coron Artery Dis 23: 487–491.
11. Manicardi G, Giffoni A, Angioli P, Falsini G, Ducci K, et al. (2009) Impact of intracoronary aspiration thrombectomy during primary angioplasty on left ventricular remodeling in patients with anterior ST elevation myocardial infarction. Circulation 114: 40–47.
38. Ikari Y, Sakurada M, Kozuma K, Kawano S, Katsuki T, et al. (2008) Upfront thrombus aspiration in primary coronary intervention for patients with ST-segment elevation acute myocardial infarction: report of the VAMPIRE (VAcuum asPIration thrombus REmoval) trial. JACC Cardiovascular interventions 1: 424–431.

39. Ken Kozuma, Yuji Ikari, Masami Sakurada, Shigeo Kawano, Takaaki Katsuki, et al. (2007) Long-term clinical follow-up in ST elevation acute myocardial infarction (STEMI) patients with thrombus aspiration prior to coronary intervention, 2-year results of the Vampire study. Circulation 116(16 Suppl): 378.

40. Ken Kozuma, Yuji Ikari, Kenshi Fujii, Masami Sakurada, Hideki Hashimoto, et al. (2009) Three-year Clinical Follow-up of the Vampire Study in St Elevation Acute Myocardial Infarction (STEMI) Patients With Thrombus Aspiration Prior to Coronary Intervention. Circulation 120(18 Suppl): S985.

41. Kengo Tanabe, Ken Kozuma, Yuji Ikari, Kenshi Fujii, Masami Sakurada, et al. (2011) Five-Year Clinical Follow-Up of the Vampire Study in St Elevation Acute Myocardial Infarction (STEMI) Patients With Thrombus Aspiration Prior to Coronary Intervention. Circulation 124(21 Suppl): A12838.

42. Kikkert WJ, Claessen BE, van Geloven N, Baan J Jr, Vis MM, et al. (2013) Adjunctive thrombus aspiration versus conventional percutaneous coronary intervention in ST-elevation myocardial infarction. Catheter Cardiovasc Interv 8: 922–929.

43. Kilic S, Ottervanger JP, Dambrink JH, Hoornije JC, Koopmans PC, et al. (2013) The effect of thrombus aspiration during primary percutaneous coronary intervention on clinical outcome in daily clinical practice. Thromb Haemost 111: 165–171.

44. Jolly SS, Cairns J, Yusuf S, Meeks B, Shrestakova O, et al. (2014) Design and rationale of the TOTAL trial: a randomized trial of routine aspiration Thrombectomy with percutaneous coronary intervention (PCI) versus PCI Alone in patients with ST-elevation myocardial infarction undergoing primary PCI. Am Heart J 167: 315–321.