B FIELDS FROM A LUDDITE PERSPECTIVE

MARK STERN

ABSTRACT. In this talk, we discuss the geometric realization of B fields and higher p-form potentials on a manifold M as connections on affine bundles over M. We realize D branes on M as special submanifolds of these affine bundles. As an application of this geometric understanding of the B field, we give a simple geometric explanation for the Chern-Simons modification of the field strength of the heterotic B field.

1. Introduction

The mathematical description of B–fields in terms of gerbes (see for example [11]) is too abstract to be useful for many basic computations. In this talk we discuss some of our recent work [10],[9] developing a simple, geometric representation of B fields and higher p–form potentials on a manifold M as connections on various affine bundles over M.

Our geometric representation has three ingredients:

(1) the representation of the B field on a manifold M as a connection on an affine bundle E over M,

(2) a dictionary between string sigma model fields and differential operators on E, and

(3) the representation of D branes as submanifolds of E (not M).

The choice of E depends on the sector of string theory under consideration. Choosing E to be an affine bundle is probably useful only in a low energy approximation. In fact, heterotic string theory already requires more complicated (principal affine) bundles in order to see the full Green-Schwarz mechanism.

Our geometric model of B fields and D branes closely agrees with our stringy expectations. Some easy consequences of this model include

- A derivation of noncommutative Yang-Mills associated to a B field which suggests generalizations to deformations associated to higher p-form potentials.
- A geometric representation of topological B type D branes corresponding to coherent sheaves that need not be locally free and that may be "twisted ".
- A simple geometric explanation for the introduction of the Yang-Mills gauge transformations of B fields in heterotic string theory.

We will not discuss noncommutative deformations here, but give a simple example in section 3 of the geometric realization of a topological B type D
brane corresponding to a coherent sheaf which is not locally free. In section 4, we show how the geometry of affine bundles leads to the introduction of Yang-Mills gauge transformations of B fields in heterotic string theory.

2. The Model

In [9], T duality considerations suggested that B fields should be realized as connections on a space of connections. Here we consider a finite dimensional analog: B fields as connections on affine bundles locally modelled on T^*M. (See [5] for related ideas.) First we review some basic facts about connections on T^*M.

Local coordinates (x^i) on M define vector fields $\frac{\partial}{\partial x^i}$ on M. These coordinates also determine local coordinates (x^i, p^s) on T^*M which define vector fields $\frac{\partial}{\partial x^i}$ and $\frac{\partial}{\partial p^s}$ on T^*M. Here we are abusing notation in a standard way, using the same symbol, $\frac{\partial}{\partial x^i}$, to denote two different vector fields, one on M and the other on T^*M. The coordinates thus define a lifting of vector fields on M to vector fields on T^*M given in a notationally confusing manner as $\frac{\partial}{\partial x^i} \rightarrow \frac{\partial}{\partial x^i}$. This lift is obviously coordinate dependent. The coordinate dependence may be removed by introducing a connection. For example, with the Levi-Civita connection, we have the globally well defined lift given by

\begin{equation}
\frac{\partial}{\partial x^i} \rightarrow \frac{\partial}{\partial x^i} + p_n \Gamma^n_{is} \frac{\partial}{\partial p^s}.
\end{equation}

We now break the vector space structure on T^*M to an affine structure by introducing new allowed local coordinate transformations

$$(x, p) \rightarrow (x, p + \lambda(x)),$$

where λ is a locally defined 1 form on M. Then (1) is no longer coordinate independent. To fix this we introduce a 1 form μ and a 2 form b and define

\begin{equation}
\frac{\partial}{\partial x^i} \rightarrow \frac{\partial}{\partial x^i} + (\mu_i; s + b_{is} + p_n \Gamma^n_{is}) \frac{\partial}{\partial p^s}.
\end{equation}

This lift is coordinate independent if

$$\mu \rightarrow \mu + \lambda, \text{ and } b \rightarrow b + d\lambda, \text{ when } p \rightarrow p + \lambda.$$

We denote the new bundle equipped with this affine structure, $T^*_B M$. Here the b field is the component of the connection on an affine bundle corresponding to the translation subspace of the affine transformations.

Our new b field immediately runs into a problem. The cohomology class of db vanishes. To realize B fields with cohomologically nontrivial field strength, we pass to quotients of $T^*_B M$. There are two obvious ways to do this. The first is to consider discrete quotients; then our fibers become products of tori and affine spaces. This cure allows the field strength of b to lie in a discrete subgroup of $H^3(M)$ but restricts the geometry of M.

A second solution is given by quotienting by ”gauge equivalence class”. In other words, consider sections p mod exact sections df. This does not give
a finite dimensional bundle; so, to stay in the geometric regime, we consider the finite dimensional approximation to this equivalence given by 1 jets of sections quotiented by 1 jets of exact sections. The resulting quotient space is an affine space locally modelled on $\bigwedge^2 T^* M$. If we allow affine changes of coordinates $(x, p) \rightarrow (x, p + \lambda)$, where now p and λ are 2 forms, then we may define lifts of vector fields of the form

$$\frac{\partial}{\partial x^i} \rightarrow \frac{\partial}{\partial x^i} + (b_{ji;k} + b_{ik;j} + c_{ijk} + p_{nk} \Gamma^n_{ij} + p_{jn} \Gamma^n_{ik}) \frac{\partial}{\partial p_{jk}},$$

where b and c are locally defined 2 and 3 forms respectively. This is well defined if

$$b \rightarrow b - \lambda, \text{ and } c \rightarrow c + d\lambda, \text{ when } p \rightarrow p + \lambda.$$

If we restrict to closed translations, λ, then we may choose $c = 0$ and obtain b fields with arbitrary field strength without restricting the topology of M. For nonclosed λ it is necessary to include the 3 form potential c. Once again, its field strength is cohomologically trivial in this formulation, and this may be remedied by passing to quotients. Discrete quotients constrain the geometry of M and lead to field strengths of c lying in discrete subgroups of $H^4(M)$. Gauge quotients lead to higher p-form potentials. We see that there is an analog of our p-form potential construction for all $p < \text{dim} M$.

We now see how these bundles are related to string theory. Let s, t denote coordinates for a string with t a timelike parameter and s the position along the string. Let $X^\mu(s, t)$ denote coordinates for the string world sheet. We would like to study a quantum mechanical system which reflects some low energy information about the string sigma model. The simplest method to do this is to consider only the average value $x^\mu(t)$ of $X^\mu(s, t)$ and its conjugate momentum. This leads to the quantum mechanics of a point particle moving on the target space M. This system loses too much string data. Motivated by the quantum mechanics of the (affine) 1 jet approximation of the string maps, we include the average value of X^μ_s in our system. The average value of X^μ_s is just $(X^\mu(\pi, t) - X^\mu(0, t))/\pi$. Jet space constructions suggest that we represent $X^\mu(\pi, t) - X^\mu(0, t)$ as a differential operator $\frac{1}{i} \frac{\partial}{\partial p_\mu}$ tangent to the fiber of an affine bundle, whose coordinates p_μ we think of as velocities, or conjugate momenta to the $(X^\mu(\pi, t) - X^\mu(0, t))/\pi$.

Assuming the p_μ are coordinates for an affine fiber is clearly at best a low energy approximation. For example, if X^1 wraps a small circle then $X(s, t)$ will not lie in a single coordinate chart for all s and the average value of X_s will also encode winding number (and only winding number for the closed strings). This dictates that in the p_1 direction, the noncompact affine fiber be replaced by a circle fiber dual to the wrapped circle, thus leading to discrete quotients of the affine fibers as required for cohomologically nontrivial B field field strengths. Then the commutator

$$\left[\frac{1}{i} \frac{\partial}{\partial p_1}, e^{2\pi i wp_1} \right] = 2\pi w e^{2\pi i wp_1}$$
with $\frac{1}{2} \frac{\partial}{\partial p_1}$ corresponding to $X^1(\pi, t) - X^1(0, t)$ suggests we interpret p_1 as the infinitesimal generator of motion along the circle. (Further deformations of the affine geometry of the fibers which are suggested by supersymmetry are considered in [10, Section 4.5].)

These considerations lead to the rough dictionary

$$\text{average } X^\mu_s \rightarrow \frac{\partial}{\partial p_\mu}, \text{ and}$$

$$\text{average } X^j_t \text{ (or better - } \pi^j) \rightarrow g^{ij} \left(\frac{\partial}{\partial x^i} + (\mu_{i;\nu} + b_{i\nu} + p_n \Gamma^a_{i\nu}) \frac{\partial}{\partial p_\mu} \right).$$

Here π^j denotes the total momentum in the jth direction. The interpretation of p_1 as a generator of motion in the X^1 direction further suggests we associate

$$X^\mu_s(\pi, t) \rightarrow p_\mu.$$

3. D branes

We now use the dictionary of the preceding section to see what form D branes must take in our model. An n-brane (in M^n) is given by fully Neumann boundary conditions: $X^\mu_s(0) = X^\mu_s(\pi) = 0$. From our dictionary, we see that this corresponds to a zero section (in a choice of local affine coordinates) of $T^*_B M$. A change in time parameter for the string world sheet $(s, t) \rightarrow (s, \tau(s, t))$ induces an affine change

$$\frac{\partial}{\partial s} \rightarrow \frac{\partial}{\partial s} + \frac{\partial \tau}{\partial s} \frac{\partial}{\partial \tau},$$

and correspondingly an affine change of coordinates in $T^*_B M$. Thus the B field reflects the nonuniqueness of the time coordinate.

Consider next a p brane corresponding to a p dimensional submanifold S of M. Choose local coordinates so that S is given by $x^\nu = 0$ for $\nu > p$. Then the p-brane boundary conditions $X^\nu_t = 0$, X^ν_s free, for $\nu > p$ and $X^\nu_t = 0$, X^ν_s free, for $\nu \leq p$ translate under our dictionary to $x^\nu = 0$ and p_ν free for $\nu > p$ for some choice of local affine coordinates. This is an n dimensional submanifold Z of $T^*_B M$ which, in a choice of local affine coordinates, is the conormal bundle of S. In particular, a zero brane is just an affine fiber over a point.

Fixing coordinates so that Z is identified with a conormal bundle removes the gauge freedom to vary μ_ν arbitrarily for $\nu \leq p$. Hence the D brane comes equipped with a locally defined 1 form μ on S. When the B field is trivial, this defines the gauge field for a line bundle on S (equipped with a local frame). On the overlap of two coordinate neighborhoods, U_α and U_β, we have $b^\alpha - d\mu^\alpha = b^\beta - d\mu^\beta$. Thus, μ determines a connection on a line bundle only if the field strength of b vanishes in $H^3(S)$. This is, of course, to be expected. In the presence of a B field with nontrivial field strength, the gauge field of a D brane is not that of a vector bundle, but of a "twisted bundle" (see for example [11],[6],[2]) or more generally perhaps
of an infinite dimensional C^* algebra. Interpreting μ as a coordinate of the brane in a bundle is, perhaps, geometrically simpler than working with infinite dimensional C^* algebra bundles.

If we have two distinct D branes Z_1 and Z_2 which correspond after distinct affine transformations to the normal bundle of a single submanifold S of M, then we see that we have a gauge enhancement. In addition to the previously identified gauge fields, we also have the 1 form measuring the relative displacement in the fiber between the 2 branes.

In general, we would like to define a D brane to be an n dimensional submanifold of $T^*_B M$ which corresponds to a choice of boundary condition, Dirichlet or Neumann, for each coordinate. If the Neumann boundary condition were well defined, then for Z to represent a choice of boundary condition would imply that the symplectic form $\omega := dx^\mu \wedge dp_\mu$ vanishes when pulled back to Z. I.e., Z is Lagrangian. Neither the form ω nor the Neumann condition is well defined. One can define a connection dependent analog of each, but we will instead use the provisional definition:

Provisional Definition 3.1. A D brane is an n dimensional submanifold Z of $T^*_B M$ such that for every point $p \in Z$ there exists a neighborhood of p in Z which, after an affine choice of coordinates can be identified with an open set in the conormal bundle of some submanifold S of M.

BPS conditions will restrict the possible Z which occur. This definition may be too broad. In particular, the distinction between p brane and p' brane for $p \neq p'$ becomes somewhat fuzzy. Nonetheless, it does provide a geometrical framework which includes sheaves. For example, assume now that M is a complex manifold, and consider the ideal sheaf I_D of a divisor D. Let z be a local defining function for D. The connection form dz of I_D is singular along D. Hence the n brane Z_D given by the graph of dz becomes vertical as it approaches D. This singularity cannot be removed by a (finite) affine change of coordinates and reflects the fact that I_D is not the sheaf of sections of a vector bundle. Assuming in this example that $T^*_B M = T^* M$, we may try to deform Z_D to the zero section Z_O, which is the n brane corresponding to the trivial sheaf O. Allowing only bounded affine shifts, we are left in the limit with

$$Z_D \rightarrow Z_O \cup Z_{O_D},$$

where Z_{O_D} is the brane corresponding to the sheaf O_D. This gives a geometrical analog of the exact sequence of sheaves

$$0 \rightarrow I_D \rightarrow O \rightarrow O_D \rightarrow 0.$$

4. **Chern-Simons augmentation of the field strength**

In this section we show for heterotic strings how our treatment of B fields leads to the modification of the B field field strength by the addition of Chern-Simons terms. We will only treat the Yang-Mills term in detail. Some
Let g be the Lie algebra of $SO(32)$ or $E_8 \times E_8$. Let \mathfrak{h} be a Cartan subalgebra. Let $P \subset \mathfrak{h}^*$ denote the set of roots of g with respect to \mathfrak{h}, and let $\{\alpha_i\}_{1 \leq i \leq 16}$ be a basis of simple roots. Let Γ denote the lattice in \mathfrak{h}^* generated by P. With respect to an inner product $\langle \cdot, \cdot \rangle$ on \mathfrak{h} determined by the Killing form, Γ is self dual and every element of P has square length 2.

We use the bosonized description of the heterotic string. So, let X be a 26 dimensional manifold which is a torus bundle with 10 dimensional base M and fiber isometric to \mathfrak{h}/Γ. Consider an affine cotangent bundle over X.

Quotient the affine fibers by the action generated by 1 forms dual to Killing vectors generating the torus lattice to obtain an affine bundle $T^{*}_{\text{hetB}}M$.

For $\alpha \in P$, let τ_α denote the vector field on \mathfrak{h}/Γ which satisfies $\tau_\alpha \beta = \langle \alpha, \beta \rangle$, for all $\beta \in P$.

Up to the familiar cocycle difficulty [3, Section 6.4 Volume 1] (most easily corrected by adjoining gamma matrix prefactors), the vector fields $e^{2\pi i \alpha} \tau_\alpha$, $\alpha \in P$ and $\tau_{\alpha_i}, 1 \leq i \leq 16$ generate an algebra isomorphic to g, when endowed with the Lie bracket given by their commutator composed with projection onto their span.

Let B denote a B–field on X. We modify our prior assumption that B is locally a 2 form pulled back from X with the (chiral) assumption that it is allowed to vary in the \mathfrak{h}^*/Γ fiber but only (in an appropriate frame) as $B(x, t, s) = B(x, t + s)$, where x is a local coordinate on M, and t and s denote coordinates in \mathfrak{h}/Γ and $\mathfrak{h}^*/\Gamma \cong \mathfrak{h}/\Gamma$ respectively. More precisely, we assume that B has the form

$$B = b_{\nu \rho} dx^\nu \wedge dx^\rho + A_{\nu \alpha} e^{2\pi i \alpha (t + s)} dx^\nu \wedge d\alpha + A_{\nu i} dx^\nu \wedge d\alpha_i + \text{massive},$$

where other terms may occur but will be thought of as massive and ignored at this level. Only those terms in B which are invariant in the fiber and which are annihilated by interior multiplication by vectors tangent to the torus fiber descend to a 2 form on M. Thus, these lead to the "B field" b on M.

We also allow affine transformations $p \to p + \lambda$ to vary in the torus fiber; we assume that λ has the form

$$\lambda = \lambda^{-\alpha}(x) e^{2\pi i \alpha (t + s)} d\alpha + \lambda^i(x) d\alpha_i + \lambda^0(x) + \text{massive}.$$

Here $\lambda^0(x)$ is the pull back of a 1 form on M and λ^α and λ^i are the pull back of functions on M. Under this transformation

$$b \to b + d\lambda^0 - A_{\mu \alpha} dx^\mu \wedge d\lambda^{-\alpha} - A_{\mu i} dx^\mu \wedge d\alpha_i(\lambda^0)/2,$$

which under a natural identification can be written as

$$b \to b + d\lambda^0 + Tr A \wedge d\lambda.$$

Similarly we obtain a variation in A which can be written as

$$A \to A + d(\lambda - \lambda^0) + [A, \lambda].$$
The new term in the variation of the b (not B) field differs by an exact term from the usual Yang-Mills modification of the heterotic B field. This leads as usual to the Yang-Mills Chern-Simons modification of the field strength of b:

$$H = db - \omega_{YM},$$

but now H arises simply as the component of dB which descends to a form on M. Here ω_{YM} denotes the Yang-Mills Chern-Simons form.

To obtain the gravitational Chern-Simons form, ω_L, requires a bit more work, but seems likely to cast more light on the relation of heterotic string theory to M theory. The affine bundle must be replaced by a principal affine bundle. Then the modified field strength

$$H = db + \omega_L - \omega_{YM}$$

again arises by taking the component of dB which descends to M.

5. ACKNOWLEDGEMENTS

I would like to thank Ilarion Melnikov, Ronen Plesser, and Eric Sharpe for helpful discussions. This work was supported in part by NSF grant 0204188.

REFERENCES

[1] P. Bouwknegt, V. Mathai, "D-branes, B fields, and twisted K-theory" JHEP 0003 (2000) 007 hep-th/0002023.
[2] A. Caldararu, S. Katz, and E. Sharpe, "D-branes, B fields and Ext groups" hep-th/0302099.
[3] M. Green, J. Schwarz, and E. Witten, Superstring theory Volumes 1 and 2, Cambridge, Cambridge University Press (1987).
[4] N. Hitchin, Lectures on special Lagrangian submanifolds, Winter School on Mirror Symmetry, Vector Bundles, and Lagrangian Submanifolds, 151-182, AMS/IP Stud Adv. Math. 23, Amer. Math. Soc., Providence, RI, 2001 DG/9907034.
[5] N. Hitchin, Generalized Calabi-Yau manifolds, DG/0209099.
[6] A. Kapustin, D-Branes in a topologically nontrivial B-field, Adv. Theor. Math. Phys. 4 (2001) 127 hep-th/9909089.
[7] H. Ooguri, Y. Oz, and Z. Yin, D-branes on Calabi-Yau Spaces and Their Mirrors, hep-th/9606112 Nucl. Phys. B 477 (1996) pp. 407-430.
[8] E. Sharpe, D-Branes, Derived Categories, and Grothendieck Groups, hep-th/9902116 Nucl. Phys. B561 (1999) pp.433-450.
[9] M. Stern, Quantum mechanical mirror symmetry, D branes, and B fields, hep-th/0209192.
[10] M. Stern, Mechanical D branes and B fields, hep-th/0310020.
[11] E. Witten, D branes and K theory, hep-th/9810188 JHEP 9812:025 (1998) 032.