Materials Research Express

PAPER

Enhanced photoelectric performance of GQDs anchored \(\text{WO}_3 \) with a ‘dot-on-nanoparticle’ structure

Jiaxin Hu, Yun Lei, Mei Yuan, Yuanyuan Lin, Zicong Jiang, Zhong Ouyang, Peng Du and Yuncui Wu

School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, People’s Republic of China

E-mail: leiyun@whut.edu.cn

Keywords: \(\text{WO}_3/\text{GQDs} \), hydrothermal method, ‘dot-on-nanoparticle’ structure, photoelectric performance

Abstract

\(\text{WO}_3/\text{GQDs}-\text{H} \) composites were synthesized by a hydrothermal method using \(\text{WCl}_6 \) as the tungsten source. Various analyses were conducted to investigate the composition, structure, morphology and performance of the composites. \(\text{WO}_3/\text{GQDs}-\text{H} \) composites formed a special ‘dot-on-nanoparticle’ structure by anchoring GQDs on the surface of \(\text{WO}_3 \). The lattice spacings of 0.34 and 0.386 nm were attributed to the (002) facets of GQDs and \(\text{WO}_3 \), respectively. Compared to blank \(\text{WO}_3 \), an obvious shift to higher value in the binding energy of \(\text{W}^{6+} \) and \(\text{W}^{5+} \) and a decreased \(I_{13}/I_{11} \) value in the Raman spectra could be observed for \(\text{WO}_3/\text{GQDs}-\text{H} \) composites. The photocurrent value of hydrothermal synthesized \(\text{WO}_3/\text{GQDs}-\text{H} \) composites achieved \(1.56 \times 10^{-5} \) A cm\(^{-2} \), which was obviously prior to that of blank \(\text{WO}_3 \) and mechanically mixed \(\text{WO}_3/\text{GQDs} \). The result indicated that the hydrothermal process promoted GQDs as a conductive route to transfer photoexcited electrons and improve the photoelectric performance of \(\text{WO}_3/\text{GQDs} \) in comparison to the mechanical mixture process.

1. Introduction

As an n-type semiconductor with a tunable bandgap (2.4–2.8eV), tungsten oxide (\(\text{WO}_3 \)) possessed rapid response to visible light, excellent gas sensitivity, and favorable electron transport ability. Therefore, it is widely used in the fields of photocatalysis, gas sensors, and photoelectronics [1–5]. For instance, Yang et al fabricated light-emitting devices based on n-typed \(\text{WO}_3 \) nanorod arrays [6]. Wang et al investigated the effects of crystallinity on the electron-transfer of sol-gel \(\text{WO}_3 \) films [7]. It is crucial for electron-transporting materials to retard the carrier recombination at transfer interfaces, but the photoelectric performance of pristine \(\text{WO}_3 \) was still limited by its low separation efficiency and high recombination rate of photogenerated electron–hole pairs. To solve these obstacles, various efforts have been made to improve the photoelectron transfer of \(\text{WO}_3 \) by introducing conductive materials. For example, Ibrahim et al employed a method of pulsed laser ablation in liquids to anchor \(\text{WO}_3 \) nanoparticles on reduced graphene oxide sheets [8]. Jun et al constructed reduced graphene oxide/tungsten trioxide heterojunction by coupling \(\text{WO}_3 \) preferential planes with graphene sheets [9]. The charge-transfer ability of \(\text{WO}_3 \)-graphene was promoted by the incorporation of \(\text{WO}_3 \) and graphene sheets, but the sheets at micrometer scale tend to aggregate in a stacking structure and precipitate in solvents, which significantly limits their photoelectric performances in nanometer-scale.

Nowadays, there are more and more in-depth studies on the development and structural-properties of carbon nanostructures [10–14]. As 2D graphene sheets were cut down to \(\text{0D} \) pieces, nano-sized graphene quantum dots (GQDs) have captured considerable attention due to the quantum confinement effect, small size effect, and superior electron-transfer ability [15–20]. Several reports on GQDs based composites are available in the literature. Li et al provided an approach in designing modified \(\text{MoS}_2 \)/graphene quantum dots heterostructures [21]. Fei et al prepared graphene quantum dots modified \(\text{Bi}_2\text{WO}_6 \) composites with a low recombination rate of photo-induced electrons [22]. Yuan et al employed a hydrothermal treatment to fabricate GQDs decorated graphitic carbon nitride nanorods [23]. GQDs can accelerate the photo-induced charge separation, shorten the charge-transfer path, and improve the conductivity and mobility of GQDs based
composites. However, literatures on the construction of ‘dot-on-nanoparticle’ structure with GQDs and WO$_3$ were rarely discussed, and reports integrating interfacial charge-transfer and photocurrent responses were scarcely investigated.

Based on the above analysis and our previous work [24–26], a continuing effort was proposed to construct GQDs anchored WO$_3$ nanoflakes, which was aimed to obtain a special structure to break the shackles of WO$_3$ widely used in sensors and supply the foundation in the field of photoelectronics. A simple hydrothermal process was employed to prepare WO$_3$/GQDs composites, and various analyses are conducted to determine the structure, morphology, and materials performance of the synthesized composite.

2. Experimental details

2.1. Materials

Tungsten hexachloride (WCl$_6$) was produced by Shanghai Macklin Biochemical Co., Ltd Natural flake graphite, sodium nitrate (NaNO$_3$), sulfuric acid (H$_2$SO$_4$), hydrogen peroxide (H$_2$O$_2$), absolute ethanol (CH$_3$CH$_2$OH), nitric acid (HNO$_3$) were purchased from Sinopharm Chemical Reagent Co., Ltd. Potassium permanganate (KMnO$_4$) was obtained from Tianjin Hengfa Chemical Reagent Co., Ltd. Nafion solution were provided by DuPont China Group Co., Ltd.

2.2. Preparation of graphene quantum dots

GQDs were prepared by an uncomplicated and simplified process where the nitric acid was considered as a shearing agent [27]. In brief, 50 mg of graphite oxide prepared by the modified Hummers’ method was dispersed in 50 ml of concentrated nitric acid solution, and the mixture was ultrasonicated for 4 h. Subsequently, the brownish-yellow solution was poured into an autoclave and heat-treated at 180 °C for 24 h. After the resulting product was washed several times with ethanol and deionized water, it was transferred into a tube furnace and annealed at 400 °C for 2 h under the protection of nitrogen. The resulting black powders were GQDs.

2.3. Preparation of WO$_3$/GQDs composites

WO$_3$/GQDs composites were synthesized by a hydrothermal method (WO$_3$/GQDs-H). Briefly, 1.0 g of WCl$_6$ was dispersed in 60 ml of deionized water, and then a certain amount of GQDs powders were added to the mixed solution. The solution was mixed for 1 h and autoclaved at 180 °C for 24 h. After the resulting product was washed several times with ethanol and deionized water, it was transferred into a tube furnace and annealed at 400 °C for 2 h under N$_2$ atmosphere. For contrast, blank WO$_3$ was prepared by the same way in the absence of GQDs. The prepared WO$_3$ and GQDs were mechanically mixed, and the mixture was denoted as WO$_3$/GQDs-M.

2.4. Characterization

The structure and morphology were characterized via a D8/Advance x-ray diffractometer (XRD), a Zeiss Ultra Plus Fließ emission scanning electron microscope (FESEM) and a JEM-2100F transmission emission microscopy (TEM), respectively. The thickness of GQDs was characterized via a Multimode 8 atomic force microscopy (AFM). The Raman spectra of samples were measured on a RENISHAW Raman microscope. The detailed chemical components of samples were characterized by an ESCALAB 250XI XPS. UV–vis absorption spectra were recorded on a UV5500 spectrophotometer. Photocurrent-time, linear sweep voltammetry and interfacial impedance curves were recorded using a standard three-electrode electrochemical workstation (CHI650E) with a saturated calomel reference electrode, a Pt counter electrode, and a working electrode coated with WO$_3$ or WO$_3$/GQDs.

3. Results and discussion

AFM image of GQDs was shown in figure 1(a). GQDs prepared by nitric acid shearing presented a thickness of 1.8 – 3 nm corresponding to 3 – 6 graphene layers. The statistical distribution of thickness was demonstrated in figure 1(b). In order to obtain further morphology of WO$_3$/GQDs-H composites, the SEM, EDS with elemental mapping images of WO$_3$/GQDs-H composites were shown in figures 2(a)–(e). As shown in figure 2(a), WO$_3$/GQDs-H composites exhibited the nanolamellae-like structure. GQDs weren’t observed in this image due to the possible reason that the size of GQDs was too small to be observed. Only W, O and C were observed in EDS image (figure 2(b)) for WO$_3$/GQDs-H composites, and no other hetero elements existed. It could be seen in element mapping images of W, O, and C (figures 2(c)–(e)) that GQDs were evenly distributed in WO$_3$. TEM images of WO$_3$/GQDs-H composites prepared via a one-step hydrothermal method were shown in
It could be seen from the figures that WO$_3$/GQDs-H composites were constructed by the nanolamellae-like structure as shown in SEM results. In the enlarged HRTEM images of WO$_3$/GQDs-H composites, three interplanar spacings of 0.386, 0.377 and 0.365 nm were indexed to the (002), (020) and (200) planes of WO$_3$, respectively. Moreover, the interplanar distance of 0.34 nm was ascribed to the (002) plane of GQDs which were anchored on the surface of WO$_3$ nanoplates to form ‘dot-on-nanoparticle’ structure. The SAED pattern of WO$_3$/GQDs-H composites was shown in figure 3(e). The (200) and (1120) facets were attributed to WO$_3$ and GQDs, respectively. The highly crystalline monoclinic phase of WO$_3$ can still be maintained with adding GQDs.

The XRD patterns of pure WO$_3$ and hydrothermally synthesized WO$_3$/GQDs-H composites were shown in figure 4(a). Three strong diffraction peaks of WO$_3$/GQDs-H appeared at 23.00°, 23.48° and 24.26°, matching (002), (020), and (200) crystal planes of WO$_3$, respectively [9]. Other diffraction peaks were also assigned to JCPDS 72-0677, and no impurities were observed in the patterns of WO$_3$/GQDs. According to the Bragg’s Law: $2d\sin \theta = n\lambda$, where d, θ, λ and n represented interplanar spacing, glancing angle, wavelength of x-rays, and diffraction order, respectively. Three kinds of interplanar spacings corresponding to three strong diffraction peaks could be calculated as 0.38636 nm, 0.37860 nm, and 0.36657 nm, respectively. The theoretical calculation results were also roughly consistent with the interplanar spacing observed by figures 3(c) and (d). The diffraction peaks of WO$_3$ were similar to those of WO$_3$/GQDs-H, indicating that GQDs anchored on WO$_3$ nanolamellae-like structure could not change the crystalline phase of WO$_3$. Moreover, the XRD pattern of GQDs was provided in figure 4(b). A broad diffraction peak attributed to GQDs appeared at around 2θ of 25.6°, and the corresponding lattice spacing calculated according to Bragg’s Law is 0.34768 nm. The broad peak of GQDs was not observed from WO$_3$/GQDs-H, which was ascribed to the possible reason that the amount of GQDs was too low to be detected.

Furthermore, the structure of the samples was characterized by Raman spectroscopy. As shown in figure 5, the Raman spectrum of GQDs (curve a) exhibited the D and G peaks at 1351 and 1600 cm$^{-1}$, respectively. The intensity ratio of D and G peaks (I_D/I_G) achieved 0.95, which was used to demonstrate the structural disorder of graphite materials. Meanwhile, the Raman spectrum of hydrothermally synthesized WO$_3$/GQDs-H (curve b) presented the D and G peaks at 1351 and 1591 cm$^{-1}$, respectively, and the value of I_D/I_G decreased to 0.90. The results demonstrated that the hydrothermal process lowered the structural disorder and promoted to form a
stable ‘dot-on-nanoparticle’ structure. The characteristic peaks of WO₃ (inset) at 721 and 810 cm⁻¹ were attributed to the stretching vibration of O-W-O, and those at 274 and 331 cm⁻¹ were indexed to the bending vibration of O-W-O [28].

To explore the elemental composition and binding states of WO₃ and WO₃/GQDs-H, XPS was employed and displayed in figure 6. The XPS survey spectra of WO₃ (figure 6(a)) and hydrothermal synthesized WO₃/GQDs-H (figure 6(d)) demonstrated the existence of W&O and W&O&C atoms, respectively. The
element C was associated with GQDs in the composites, which was consistent with the results of Raman analysis.

The high-resolution spectrum of W 4f for WO$_3$ (Figure 6(b)) was deconvoluted into four peaks at the binding energy of 33.59, 34.94, 35.87, and 37.08 eV. Therein, two strong peaks of 34.94 and 37.08 eV corresponded to the binding energy of W 4f$_{7/2}$ and W 4f$_{5/2}$ of W$_6$ state, while two weak peaks located at 33.59 and 35.87 eV were

Figure 3. TEM images of WO$_3$/GQDs-H (a)–(b), HRTEM images of WO$_3$/GQDs-H (c)–(d) and the SAED pattern of WO$_3$/GQDs-H composites.
Figure 4. The XRD patterns of the prepared WO₃, WO₃/GQDs-H (a) and GQDs (b).

Figure 5. Raman spectra of GQDs (a) and WO₃/GQDs-H (b), inset: WO₃.
Figure 6. Survey (a) and high-resolution XPS spectra of W 4f (b) and O 1s (c) for blank WO$_3$; survey (d) and high-resolution XPS spectra of W 4f (e), O 1s (f) and C 1s (g) for WO$_3$/GQDs-H.
assigned to W5+ state \cite{29}. After GQDs were anchored on WO\textsubscript{3}, that of W 4f for WO\textsubscript{3}/GQDs-H (figure 6(e)) was split into two pairs of peaks including 35.24 & 37.39 eV and 34.08 & 36.11 eV, which were indexed to W6+ and W5+ states, respectively. Part of the reduced WO\textsubscript{3} might originate from the formation of surface defects, which was reported in other literatures \cite{30,31}. By comparing the high-resolution W 4f spectra of WO\textsubscript{3} and WO\textsubscript{3}/GQDs, the binding energy of W6+ and W5+ for WO\textsubscript{3}/GQDs-H shifted to higher values, probably owing to the interaction between WO\textsubscript{3} and WO\textsubscript{3}/GQDs during the hydrothermal synthesis of the composites. Two peaks at 529.8 and 530.3 eV appeared in the high-resolution O 1s spectrum of pure WO\textsubscript{3} (figure 6(c)), corresponding to the binding energy of lattice oxygen and the oxygen in WO\textsubscript{3}, respectively \cite{28}. While three peaks at 530.0, 530.5, and 531.2 eV in the high-resolution O 1s spectrum of WO\textsubscript{3}/GQDs-H, matching with the lattice oxygen, the lattice oxygen or O=C attributed to GQDs and chemisorbed oxygen species, respectively. Figure 6(g) exhibited three peaks at 284.2, 285.8, and 288.14 eV, which corresponded to the binding energy of C–C, C–O or C–OH, and C=O \cite{32}.

To characterize the photo-response performances of WO\textsubscript{3} and WO\textsubscript{3}/GQDs-H, the UV–vis spectra, photocurrent-time curves and linear sweep voltammetry were performed and displayed in figures 7–9, respectively. GQDs (figure 7(a)) exhibited a shoulder peak in the range of 260–290 nm corresponding to the $\pi \rightarrow \pi^*$ transition of C=C \cite{33}. The characteristic absorption peak of WO\textsubscript{3} (figure 7(b)) appeared at 346 nm, while that of WO\textsubscript{3}/GQDs-H (figure 7(c)) presented a red-shift from 346 nm to 381 nm. Photocurrent responses curves of WO\textsubscript{3}, WO\textsubscript{3}/GQDs-H, and WO\textsubscript{3}/GQDs-M were collected in a standard three-electrode system with a continuous 60s ‘on/off’ procedure as illustrated in figure 8. The photocurrent value of WO\textsubscript{3}/GQDs-H was
boosted at 1.56×10^{-5} A cm$^{-2}$, which is about 1.6 times as high as that of pure WO$_3$ (0.98×10^{-5} A cm$^{-2}$), while the value of WO$_3$/GQDs-M merely reached 1.05×10^{-5} A cm$^{-2}$, which presented almost no significant improvement compared to that of pure WO$_3$. The results indicated that the hydrothermal synthesis played a vital role in improving the photoelectric properties of WO$_3$/GQDs in comparison to the mechanical mixture. Figure 9 showed the LSV curves of WO$_3$ and WO$_3$/GQDs-H composites under optical radiation. When the positive potential continues to increase, WO$_3$/GQDs-H composites had a more obvious advantage in generating a larger photocurrent density under the optical radiation. This result was also consistent with that of photocurrent responses. The possible reason for this result was that the introduction of GQDs promoted the
separation of electron-hole pairs in WO₃, in the meantime, GQDs could also generate photo-generated electrons. On the basis of photocurrent-time analyses, a possible mechanism was presented in figure 10 [34–38]. When the light source was irradiated on the surface of FTO glass coated with WO₃/GQDs, photo-generated electrons were transported from valence band (VB) to the conduction band (CB) and subsequently conducted to the FTO substrate. As shown in figure 10(a), GQDs served as a conductive route for photoexcited electrons, promoting the charge transfer rate of WO₃ and weakening the combination of electron-hole pairs in the hydrothermally synthesized composites. While nano-sized GQDs tended to aggregate instead of anchoring on the surface of WO₃ in the mechanical mixture system, as illustrated in figure 10(b), only a small part of electrons transported from WO₃ to GQDs since aggregated GQDs were not beneficial to anchor on the surface of WO₃, leading to a blocked route transported to the FTO substrate.

Electrochemical impedance spectra measurements of WO₃ (a), WO₃/GQDs-H (b), and WO₃/GQDs-M (c) were shown in figure 11 used a Nyquist diagram. The charge-transfer resistance of blank WO₃ was significantly larger than that of WO₃/GQDs composites synthesized by the hydrothermal method and mechanical mixture. The result showed that GQDs promoted a valid path to transport charges in the electrode-electrolyte interface [39]. The interfacial conductivity of WO₃/GQDs-H was prior to that of WO₃/GQDs-M since the smaller charge-transfer impedance and the faster charge-transfer rate occurred on the composites by hydrothermal decorating with GQDs.

4. Conclusion

In summary, a simple hydrothermal method was employed to combine WO₃ with GQDs and form a special ‘dot-on-nanoparticle’ structure. Compared to blank WO₃, the Raman spectrum of WO₃/GQDs-H presented a decreased I_D/I_G value corresponding to the higher order degree constructed by the hydrothermal process. Meanwhile, the binding energy of W⁶⁺ and W⁵⁺ for WO₃/GQDs shifted to higher values, probably owing to the interaction between WO₃ and WO₃/GQDs-H during the hydrothermal synthesis of the composites. The photocurrent value and charge-transfer resistance of hydrothermal synthesized WO₃/GQDs-H were prior to those of WO₃/GQDs-M and blank WO₃. The result showed that GQDs promoted a valid path to transport charges in hydrothermally synthesized WO₃/GQDs as compared to mechanically mixed composites. According to the existing results in this work, it is hoped that the WO₃/GQDs composites can be helpful in the field of photoelectronics, photocatalysis, etc.

Acknowledgments

The work was supported by National Natural Science Foundation of China No. 51204129.
References

[1] Dong P, Hou G, Xi X, Shao R and Dong F 2017 WO3-based photocatalysts: morphology control, activity enhancement and multifunctional applications Environ. Sci. -Nano. 4 539–57
[2] Li H, Zhao Y, Yin C, Jiao L and Ding L Q 2019 WO3 nanocrystal prepared by self-assembly of phosphotungstic acid and dopamine for photocatalytic degradation of Congo red Colloids and Surface. A 572 147–52
[3] Shinde P A and Jun S C 2020 Review on recent progress in the development of Tungsten oxide based electrodes for electrochemical energy storage Chem. Sus. Chem. 13 11–38
[4] Zhou P F, Shen Y B, Zhao S K, Li G D, Yin Y Y, Lu R, Gao S L, Han C and Wei D Z 2019 NO2 sensing properties of WO3 porous films with honeycomb structure J. Alloy. Compd. 789 129–38.
[5] Yang A J, Wang D W, Lan T S, Chu J F, Li W J, Pan J B, Liu Z, Wang X H and Rong M Z 2020 Single ultrathin WO3 nanowire as a superior gas sensor for SO2, and H2S: selective adsorption and distinct I-V response Mater. Chem. Phys. 240 122163
[6] Zhang C K, Wang S P, Yang S H, Puuad A and Nguyen T P 2018 Hybrid light-emitting devices by incorporating WO3 nanorod arrays as the Electron Transport layer and PEIE as the buffer layer Superlattice Microst. 113 667–77.
[7] Ge C X, Wang M S, Hussain S, Xu Z W, Liu G W and Qiao G J 2018 Electron transport and electrochromic properties of sol-gel WO3 thin films: effect of crystallinity Thin Solid Films 653 119–25
[8] Ibrahim Y O, Gondal M A, Alaswad A, Moqbel R A, Hassan M, Cevik E, Vahtan T F, Dastager M A and Boscourt A 2020 Laser-induced anchoring of WO3 nanoparticles on reduced graphene oxide sheets for photocatalytic water decontamination and energy storage Ceramic. Int. 46 444–51
[9] Ke J, Zhou H R, Liu J, Zhang Z G, Duan X G and Wang S B 2019 Enhanced light-driven water splitting by fast electron transfer in 2D/2D reduced graphene oxide/tungsten trioxide heterojunction with preferential facets J. Colloid Interf. Sci. 535 413–22
[10] Koutavarapu R, Reddy C V, Babu B, Reddy K R, Cho M and Shim J 2020 Carbon cloth/transition metals-based hybrids with controllable architectures for electrocatalytic hydrogen evolution - A review Int. J. Hydrogen Energy 45 7716–40
[11] Mishra A, Mehta A, Basu S, Shetti N P, Reddy K R and Aminabhavi T M 2019 Graphitic carbon nitride (g-C3N4)-based metal-free photocatalysts for water splitting: a review Carbon 149 693–721
[12] Haque E, Kim J, Malgras V, Reddy K R, Ward A C, You J, Bando Y, Bossain M S A and Yamauchi Y 2018 Recent advances in graphene quantum dots: synthesis, properties, and applications Small methods. 2 1800050
[13] Reddy K R, Reddy C V, Nadagouda M N, Shetti N P, Jaesool S and Aminabhavi T M 2019 Polymeric graphitic carbon nitride (g-C3N4)-based semiconducting nanostructured materials: synthesis methods, properties and photocatalytic applications J. Environ. Manage. 238 25–40
[14] Kumar S, Bultkigtar S D, Pratibha S S, Singh V, Reddy K R, Shetti N P, Reddy C V, Sadhu V and Naveen S 2019 Electrochemical sensors and biosensors based on graphene functionalized with metal oxide nanoparticles for healthcare applications Chemistry Select 4 5322–37
[15] Kang G S, Lee C, Yeo J S, Choi E S, Lee D C, Na S I and Joh H I 2019 Graphene quantum dots with nitrogen and oxygen derived from simultaneous reaction of solvent as exfoliant and dopant Chem. Eng. J. 372 624–30
[16] Fardindoost S, Zad A I, Hosseini Z S and Hatamie S 2016 Detecting hydrogen using graphene quantum dots/WO3 thin films Mater. Res. Express 3 116407
[17] Ji Z Q, Dervishi E, Doorn M K and Sykora M 2019 Size-dependent electronic properties of uniform ensembles of strongly confined graphene quantum dots J. Phys. Chem. Lett. 10 953–9
[18] Calabro R L, Yang D S and Kim D Y 2018 Liquid-phase laser ablation synthesis of graphene quantum dots from carbon nano-onions: comparison with chemical oxidation J. Colloid Interf. Sci. 527 132–40
[19] Ramachandran A, Nair J S A and Yesodha S K 2020 Polyamide–derived nitrogen–doped graphene quantum dots for the ultratrace level electrochemical detection of trinitrophenol and the effective differentiation of nitroaromatics: structure matters ACS Sustain. Chem. Eng. 76752–351
[20] Fantuzzi P, Gandini A, Chen Q, Yao X L, Dumslab T, Mishra N, Coletti C, Mullen K, Narita A and Affronte M 2019 Color sensitive response of graphene/graphite quantum dot phototransistors J. Phys. Chem. C 123 26495–7
[21] Li N, Liu Z T, Hu S L, Chang Q, Xue C R and Wang H Q 2019 Electronic and photocatalytic properties of modified MoS2/graphene quantum dots heterostructures: a computational study Appl. Surf. Sci. 473 70–6
[22] Fei T, Yu L M, Liu Z Y, Song Y H, Xu F, Mo Z, Liu C B, Deng J J, Ji H Y and Cheng M 2019 Graphene quantum dots modified flower like Bi2WO6 for enhanced photocatalytic nitrogen fixation J. Colloid Interf. Sci. 537 498–505
[23] Yuan A L, Lei H, Xin F N, Liu Y J, Qin L S, Chen Z and Dong X P 2019 Graphene quantum dots decorated graphitic carbon nitride nanorods for photocatalytic antibacterial activity J. Colloid Interf. Sci. 548 56–65
[24] Jiang Z C, Lei Y, Zhang Z, Hu J X, Lin Y Y and Ouyang Z 2020 Nitrogen-doped graphene quantum dots decorated ZnCdSe nanocomposites with tunable photocatalytic properties J. Alloy. Compd. 812 132096
[25] Ouyang Z, Lei Y, Luo L Q, Jiang Z C, Hu J X and Lin Y Y 2019 N co-doped graphene quantum dots decorated CdSe for enhanced photocatalytic properties Nanotechnology 31 095710
[26] Lei Y, Hu J X, Zhang Z, Ouyang Z, Jiang Z C and Lin Y Y 2019 Photoelectric properties of SnO2 decorated by graphene quantum dots Mat. Sci. Semicon. Proc. 102 104582
[27] Zhang S, Sui L N, Dong H Z, He W B, Dong L F and Yu L Y 2018 High-performance supercapacitor of graphene quantum dots with uniform sizes ACS Appl. Mater. Inter. 10 12983–91
[28] Kaur J, Anand K, Anand K and Singh R C 2018 WO3 nanolamellae/reduced graphene oxide nanocomposites for highly sensitive and selective acetone sensing J. Mater. Sci. 53 12894–907.
[29] Xiao C Y, Liu B and He X 2019 Photolytic deposition of tungsten hexacarbonyl: CVD of W-based films with the assistance of UV beam in ultra-high vacuum condition Mater. Res. Express 6 086453
[30] Liang Z Y, Wei J X, Wang X, Yu Y and Xiao F X 2017 Elegant Z-scheme–dictated g-C3N4, enwrapped WO3 superstructures: a multifarious platform for versatile photoredox catalysis J. Mater. Chem. A 5 15601–12
[31] Li W J, Da P M, Zhang Y Y, Wang Y C, Lin X, Gong X G and Zheng G F 2014 WO3 nanoflakes for enhanced photoelectrochemical conversion ACS Nano. 8 11770–7
[32] Chen C S, Liu X Y, Long H, Ding F, Liu Q C and Chen X A 2019 Preparation and photocatalytic performance of graphene Oxide/WO3 quantum Dots/TiO2@SiO2 microspheres Vacuum 164 66–71

[33] Masteri-Farahani M and Askari F 2019 Design and photophysical insights on graphene quantum dots for use as nanosensor in differentiating methamphetamine and morphine in solution Spectrochim. Acta A 206 448–53

[34] Reddy C V, Reddy I N, Ravindranadh K, Reddy K R, Shetti N P, Kim D, Shim J and Aminabhavi T M 2020 Copper-doped ZrO2 nanoparticles as high-performance catalysts for efficient removal of toxic organic pollutants and stable solar water oxidation J. Environ. Manage. 260 110088

[35] Reddy C V, Reddy I N, Akkinepally B, Reddy K R and Shim J 2020 Synthesis and photoelectrochemical water oxidation of (Y, Cu) codoped α-Fe2O3 nanosctructure photoanode J. Alloys and Compounds. 814 152349

[36] Reddy C V, Reddy I N, Reddy K R, Shim J and Yoo K 2019 Template-free synthesis of tetragonal Co-doped ZrO2 nanoparticles for applications in electrochemical energy storage and water treatment Electrochim. Acta 317 416–26

[37] Patil S B, Basavarajappa P S, Ganganagappa N, Jyothi M S, Raghu A V and Reddy K R 2019 Recent advances in non-metals-doped TiO2 nanostructured photocatalysts for visible-light driven hydrogen production, CO2 reduction and air purification Int. J. Hydrogen Energy 44 13022–39

[38] Reddy C V, Reddy I N, Akkinepally B, Harish V V N, Reddy K R and Shim J 2019 Mn-doped ZrO2 nanoparticles prepared by a template-free method for electrochemical energy storage and abatement of dye degradation Ceram. Int. 45 15298–306.

[39] Shen D L, Zhang W F, Xie F Y, Li Y F, Abate A and Wei M D 2018 Graphene quantum dots decorated TiO2 mesoporous film as an efficient electron transport layer for high-performance perovskite solar cells J. Power Sources 402 520–6