Structure of upper $g_9/2$-shell nuclei and shape effect in the ^{94}Ag isomeric states

K. Kaneko,† Y. Sun,‡,§ M. Hasegawa,∥ and T. Mizusaki∥∥

†Department of Physics, Kyushu Sangyo University, Fukuoka 813-8503, Japan
‡Department of Physics, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
§Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, Indiana 46556, USA
∥Institute of Modern Physics, Chinese Academy of Science, Lanzhou 730000, P. R. China
∥∥Institute of Natural Sciences, Senshu University, Tokyo 101-8425, Japan
∥∥∥Institut de Physique Nucléaire, Université Paris-Sud F-91406 Orsay CEDEX, France

Using a shell model which is capable of describing the spectra of upper $g_9/2$-shell nuclei close to the $N=Z$ line, we study the structure of two isomeric states 7^+ and 21^+ in the odd-odd $N=Z$ nucleus ^{94}Ag. It is found that both isomeric states exhibit a large collectivity. The 7^+ state is oblately deformed, and is suggested to be a shape isomer in nature. The 21^+ state becomes isomeric because of level inversion of the 19^+ and 21^+ states due to core excitations across the $N=Z=50$ shell gap. Calculation of spectroscopic quadrupole moment indicates clearly an enhancement in these core excitations. However, the present shell model calculation that produces the 19^+-21^+ level inversion cannot accept the large-deformation picture of Mukha et al. in Nature 439, 298 (2006).

PACS numbers: 21.10.Dr, 21.60.Cs, 21.60.Jz, 21.10.Re

I. INTRODUCTION

The structure study of $N\approx Z$ nuclei is one of the current topics in nuclear physics. For the upper $g_9/2$-shell $N\approx Z$ nuclei, perhaps the most interesting aspect is the occurrence of high-spin isomers. For decades, spin-gap isomers have been predicted by shell model calculations for nuclei close to the double-magic ^{100}Sn [1]. Spin-gap isomers have recently been observed in some heavy $N\approx Z$ nuclei, for example, in ^{95}Ag, ^{95}Pd, and ^{94}Pd [2]. From the shell model point of view, it is understood that these isomers are formed by an extra binding energy due to large attractive proton-neutron (pn) interaction in the maximally aligned particle-particle or hole-hole configurations. Thus, one sensitive test for effective interactions in the shell model is a quantitative description of these high-spin states and their decay path.

The study of $N\approx Z$ nuclei has important implications in nuclear astrophysics. It has been suggested that in x-ray binaries, nuclei are synthesized via the rapid proton capture on long-lived isomers may increase the reaction flow, thus reducing the timescale for the rp process nucleosynthesis during the cooling phase.

Because of the recent experimental successes, the high-spin $J^\pi=21^+$ and low-spin 7^+ isomers in the odd-odd $N=Z$ nucleus ^{94}Ag have become a discussion focus [8, 3, 10, 11]. In this nucleus, the high-spin 21^+ isomer has a high excitation energy of $6.7(5)$ MeV with a notably long half-life of $0.39(4)$ s, and is open to β, one-proton, and two-proton decays [12, 13]. Although the shell model calculations with the empirical effective interaction in the restricted $(1p_{1/2}, 0g_{9/2})$ model space could reproduce the energy levels and high-spin isomers in ^{95}Ag, ^{95}Pd, and ^{94}Pd, it failed to predict the isomerism of 21^+ state in ^{94}Ag [9, 10]. On the other hand, it has been shown that the large-scale shell model calculations with the extended model space $(0g_{9/2}, 1d_{5/2}, 0g_{7/2}, 1d_{3/2}, 2s_{1/2})$ can obtain a 21^+-19^+ level inversion, which suggests that the core excitations across the ^{100}Sn shell-closure play a crucial role in generating the 21^+ isomer with such a long half-life [9].

The analysis on one-proton decay [12] and two-proton decay [13] data of the 21^+ isomer in ^{94}Ag has suggested a strong deformation picture for this state. The authors of Ref. [13] claimed that the unexpectedly large probability for the proton radioactivity could be attributed to a large deformation of the parent nucleus with a prolate shape. However, it is questionable that the 21^+ isomer in ^{94}Ag is strongly deformed because the ground states of nuclei in this region are very weakly deformed. It has recently been pointed out [14] that the large-deformation claim remains a puzzle. On the other hand, the half-life of the low-spin 7^+ isomer has been measured to be $0.59(2)$ s [9], while the excitation energy is yet to be determined.

However, the question why these states become iso-
meric and what the nature of the isomerism is, has not been thoroughly addressed. Recently, we have investigated the structure of low-spin isomeric states in the odd-odd $N = Z$ nucleus 66As. Our analysis showed that there are essentially two different types of isomer entering into the discussion. One of them is shape isomer that occurs because prolate and oblate shapes can coexist at low excitations along the $N = Z$ line. In fact, the prolate-oblate shape coexistence is a well known phenomenon in the neighboring even-even $N = Z$ nucleus 68Se. As documented in the literature, it is dominated by pairing and multipole interactions with the empirical fit to experimental data.

The first excited 0$^+$ state, which typically lies about several hundred keV above the ground state, can decay to the ground state via an electric monopole (E0) transition. The E0 transition is a very slow process, and therefore, the first excited state is a shape isomer.

Thus, we may expect that the low-spin 7$^+$ state in 94Ag is a shape isomer in nature.

The $g_9/2$-shell nuclei were extensively studied in the early years by the empirical shell model calculations. The very restricted model space $(1p_{1/2}, 0g_{9/2})$ was used as it allowed an empirical fit for both residual interaction and single-particle energies. Herndl and Brown performed a detailed study of the β-decay properties using the same model space. The interaction generally yielded a good agreement with experimental data of the high-spin spectroscopy. Later, the shell-model calculations with the fp-model space comprising the $(1p_{1/2}, 0f_{5/2}, 1p_{1/2}, 0g_{9/2})$ shells together with a realistic interaction were performed. The realistic effective interaction can in principle be derived from the free nucleon-nucleon interaction, and in fact, such microscopic interactions have been proposed for the beginning of the shell. However, these interactions failed to reproduce excitation spectra, binding energies, and transitions if many valence nucleons are considered. To overcome this defect, considerable effort has been put forward with an empirical fit to experimental data.

On the other hand, realistic effective interactions are dominated by pairing and multipole interactions with the monopole term. As documented in the literature, it has been shown that the extended $P + QQ$ model works well for a wide range of $N \approx Z$ nuclei. This model has demonstrated its capability of describing the microscopic structure in different nuclei, as for instance, in the fp-shell region and the fp-shell region. In this paper, we perform the spherical large-scale shell model calculations in the fgp model space for the upper $g_9/2$-shell nuclei close to $N = Z$ line. The structure of the isomeric states in the odd-odd $N = Z$ nucleus 94Ag is investigated in detail. In particular, it is very interesting to study the deformation property of the high-spin 21$^+$ isomer. Our analysis shows that there are essentially two different types of isomer entering into the discussion. Due to the fact that prolate and oblate shapes can coexist at the low excitation region, a shape isomer is suggested for the low-spin 7$^+$ state in 94Ag. In an agreement with the previous conclusion, the high-spin 21$^+$ isomer is interpreted as a spin-gap isomer. The spherical large-scale shell model calculations in the gds model space comprising the $(0g_{9/2}, 1d_{5/2}, 0g_{7/2}, 2s_{1/2})$ shells are carried out to study the role of core excitations in the shell-model structure associated with a 21$^+$-19$^+$ level inversion in 94Ag.

The paper is arranged as follows. In Sec. II, we outline our model. In Section III, the shell model results are presented for several upper $g_9/2$-shell nuclei. In Section IV, we perform the numerical calculations and discuss the results for 94Ag. Finally, conclusions are drawn in Section V.

II. THE MODEL

We start with the following form of Hamiltonian, which consists of pairing and multipole terms with the monopole interaction

$$H = H_{sp} + H_P + H_{PQ} + H_{QQ} + H_{OO} + H_{T\pi=0} + H_{mc}$$

$$= \sum_a \varepsilon_{a\sigma} c_{a\sigma}^\dagger c_{a\sigma} - \frac{1}{2} \sum_{J=0,2} \sum_{\alpha,\beta} P_{\alpha\beta} J_{\alpha\beta} P_{\alpha\beta} + \frac{1}{2} \sum_{\alpha,\beta} O^{\dagger}_{\alpha\beta} O_{\alpha\beta} :$$

$$+ \sum_{a \leq b} \sum_{J M \kappa} A_{J M 00}^\dagger (ab) A_{J M 00} (ab)$$

$$+ \sum_{a \leq b} \sum_{T M K} A_{J M T K}^\dagger (ab) A_{J M T K} (ab),$$

where b in the third and fourth terms is the length parameter of harmonic oscillator. We take $J = 0$ and $J = 2$ forces in the pairing channel, and the quadrupole-quadrupole (QQ) and octupole-octupole (OO) forces in the particle-hole channel. The monopole interaction is divided into two parts, namely the average $T = 0$ monopole field $H_{T\pi=0}$ and the monopole correction term H_{mc}. The Hamiltonian is isospin invariant, and is diagonalized in a chosen model space based on a spherical basis. In the present work, we first employ the fgp model space. This shell model has proven to be rather successful in describing energy levels and electromagnetic transitions. For the upper $g_9/2$-shell nuclei, we employ the single-particle energies $\varepsilon_{p_{3/2}} = 0.00$, $\varepsilon_{f_{5/2}} = 0.77$, $\varepsilon_{p_{1/2}} = 1.11$, and $\varepsilon_{g_{9/2}} = 3.70$ (all in MeV). We adopt the following interaction strengths for the pairing and multipole forces

$$g_0 = 24.0/A, \quad g_2 = 225.3/A^{5/3},$$

$$\chi_2 = 480.0/A^{5/3}, \chi_3 = 368.6/A^2 \text{ (in MeV)}.$$
and for the monopole terms

\begin{align*}
 k_{mc}^{T=0}(a, g_{9/2}) &= -0.20 \text{ MeV}, \quad a = p_3/2, f_5/2, p_{1/2}, \\
 k_{mc}^{T=1}(p_3/2, f_5/2) &= 0.3, \quad k_{mc}^{T=1}(p_3/2, p_{1/2}) = 0.3, \\
 k_{mc}^{T=1}(f_5/2, p_{1/2}) &= -0.4, \quad k_{mc}^{T=1}(g_{9/2}, g_{9/2}) = -0.1, \\
 k_{mc}^{T=0}(g_{9/2}, g_{9/2}) &= -0.75 \quad (\text{in MeV}).
\end{align*}

We employ all the monopole terms used in our previous paper \[33\], with additional terms $k_{mc}^{T=0}(a, g_{9/2})$ and $k_{mc}^{T=0}(g_{9/2}, g_{9/2})$. \[15\]. These terms were found necessary for obtaining correct positions of the 9^+_1 and higher spin states relative to the 7^+_1 state in 66As. We have increased the strength of the monopole term $k_{mc}^{T=0}(g_{9/2}, g_{9/2})$, which gives effects of lowering the $g_{9/2}$ orbital and the negative parity states. The $T = 0$ monopole field $H^{T=0}_{m\nu}$ affects significantly the relative energy between the $T = 1$ and $T = 0$ states in odd-odd $N = Z$ nuclei \[34\]. We have determined the strength k^0 to be $64/A$ so as to reproduce the 7^+ state at the excitation energy 0.66 MeV in 94Ag. For calculations of spectroscopic Q-moments and B(E2) values, we use the standard effective charge $e_\pi = 1.5e$ for protons and $e_\nu = 0.5e$ for neutrons.

III. Calculation of Upper $g_{9/2}$-Shell Nuclei in the f_{pg} Model Space

Before studying the odd-odd $N = Z$ nucleus 94Ag, we first perform large-scale shell model calculations for several neighboring $g_{9/2}$-shell nuclei to validate our model. The calculations are carried out in the f_{pg} model space. The nuclei studied in this section are the heaviest $N \approx Z$ nuclei for which energy levels could be obtained experimentally. The structure information of these nuclei is useful for the reaction network calculations of the rp process.

Figure 1 shows the energy levels for the Tc isotopes. As one can see, the calculated results reproduce satisfactorily the experimental levels for both even and odd parity observed in the odd-even nuclei 91Tc, and in the odd-odd nucleus 93Tc.

Comparison of the calculated energy levels with experimental data for the Ru isotopes are shown in Fig. 2 for even-even nuclei, and in Fig. 3 for odd-mass nuclei. As we shall see in the next section, contribution from the $1d_{5/2}$ orbital plays an important role also in 94Ag.

As one can see from Figs. 6 and 7, all the known energy levels for both even-even and even-odd isotopes are well reproduced. It has been confirmed experimen-
Fig. 2: Experimental and calculated energy levels of the even-even nuclei 90Ru, 92Ru, and 94Ru.

tantly that the 14^+ state in 94Pd is an isomer. Using the standard effective charges $1.5e$ for protons and $0.5e$ for neutrons, we have obtained $B(E2; 14^+ \rightarrow 12^+) = 39.6 \ e^2 fm^4$ for the isomeric 14^+ state. This value is very close to the experimental estimate $B(E2) = 44(6) \ e^2 fm^4$ or $B(E2) = 39(9) \ e^2 fm^4$. In Fig. 7, our calculation predicts a low-lying $11/2^+$ level in 95Pd which has not been seen experimentally. The theoretical level scheme for 95Pd correctly gives a $21/2^+$ isomeric state that is de-excited by an $E4$ decay. No experimental information is currently available for the even-even $N = Z$ nucleus 92Pd. The level scheme for 92Pd is thus our prediction, where the calculated ground-state band and the side band are suggested to have isospin $T = 1$ and $T = 0$, respectively.

Fig. 3: Experimental and calculated energy levels of the even-odd nuclei 91Ru, and 93Ru.

Calculated energy levels for the odd-mass nucleus 95Ag are shown in Fig. 8. The calculation has well reproduced the known experimental levels in the low-spin part while the theoretical levels of the high spin states are too high as compared to data. The calculation produces a level inversion in which the $23/2^+$ state lies below the $21/2^+$ state. Thus, decay of the $23/2^+$ level has to go with an $E4/M3$ transition. This may suggest a possible isomerism of the $23/2^+$ state. However, our calculation cannot explain the experimental finding that the $23/2^+$ state decays to the $17/2^-$ one through an $E3$ transition.

Finally, theoretical energy levels of the Cd isotopes are shown in Fig. 9. The experimentally known energy levels for 98Cd are well reproduced. In recent experiment 36, the 12^+ isomer was identified at 6.635 MeV in 98Cd. In the present calculations, however, the 12^+ state is out of the fp shell configurations and the upper shells such as $1d_{5/2}$ orbital are needed. For the even-even $N = Z$
nucleus 96Cd, which has not been investigated experimentally, our model yields the ground and side bands as shown in Fig. 10. It is worthwhile to mention that the present calculation predicts a spin-gap isomer with spin-parity 16^+ at about 5.2 MeV, in consistent with the shell model result obtained in the restricted $(1p_{1/2}, 0g_{9/2})$ model space. 96Cd is known as a waiting point nucleus.

TABLE I: Expectation values of proton or neutron numbers occupied in the four orbitals, calculated for the low-lying $T = 0$ states of I^n in the fpg-shell model space. Calculated spectroscopic Q-moments (in e fm2) are also tabulated.

94Ag	$p_{3/2}$	$f_{5/2}$	$p_{1/2}$	$g_{9/2}$	Q
1^+	3.93	5.97	1.99	7.11	-16.6
3^+	3.93	5.97	2.00	7.10	-29.6
5^+	3.95	5.97	1.99	7.09	-26.7
7^+	3.95	5.96	2.00	7.08	61.2
9^+	3.98	5.95	1.99	7.08	23.8
11^+	3.56	5.92	1.98	7.66	44.5
13^+	3.75	5.77	1.91	7.57	55.0
15^+	3.98	5.44	1.98	7.60	55.2
17^+	3.83	5.68	1.96	7.52	43.6
19^+	3.82	5.72	1.95	7.51	48.3
21^+	4.00	5.50	2.00	7.50	57.7

FIG. 4: Experimental and calculated energy levels of the odd-odd nuclei 90Rh, 92Rh, and 94Rh.

FIG. 5: Experimental and calculated energy levels of the odd-even nuclei 93Rh and 95Rh.

IV. CALCULATION WITH THE gds MODEL SPACE FOR 94Ag

We have demonstrated the power of our fpg shell model in a systematical description of proton-rich upper $g_{9/2}$-shell nuclei. For 94Ag, the model has explained the structure of the low-lying isomer 7^+. The calculation with this $(1p_{3/2}, 0f_{5/2}, 1p_{1/2}, 0g_{9/2})$ model space, however, could not reproduce the high-spin isomer 21^+ in 94Ag. It gives a quite large electric quadrupole transition value, $B(E2; 21^+ \rightarrow 19^+)$ = 58.9 e2 fm4, which corresponds to a fast decay to the lower state 19^+. This result is similar to that obtained in the shell model calculation with the restricted $(1p_{1/2}, 0g_{9/2})$ model space [22]. On the other hand, it has recently been reported by Plettner et al. [9] that the shell model calculation in the $g_{9/2}$, $1d_{3/2}$, $0g_{7/2}$, $1d_{3/2}$, $2s_{1/2}$ model space can predict the isomerism of the 21^+ state due to a 21^+-19^+ level inversion. The work of Plettner et al. thus suggests an important contribution from the upper orbitals above $0g_{9/2}$.

In a previous paper [34] that discusses the structure of the even-even $N = Z$ nucleus 88Ru, some of us suggested that the $1d_{5/2}$ orbit above the fpg-shell plays a significant role in the collectivity of that nucleus. The $1d_{5/2}$ orbit is expected to contribute to the quadrupole correlation because it couples strongly with the $0g_{9/2}$ orbit through the Q matrix element $\langle 0g_{9/2}|Q||1d_{5/2} \rangle$ with $\Delta l = \Delta j = 2$. Simply adding the $1d_{5/2}$ orbit to the current model space $(1p_{3/2}, 0f_{5/2}, 1p_{1/2}, 0g_{9/2})$, unfortunately, makes the con-
configuration space too large. In order to include the $1d_{5/2}$ orbit, we have to truncate out some lower orbits that may not be very important for the present discussion. Table I has shown that for the upper $g_{9/2}$-shell nuclei, the contribution from the $(1p_{3/2},0f_{5/2},1p_{1/2})$ shells is not so large as compared to the $0g_{9/2}$ orbit. Accordingly, we shall examine the contribution of the $1d_{5/2}$ orbit within the truncated space ($0g_{9/2},1d_{5/2},0g_{7/2},2s_{1/2}$), hereafter called the gds model space. This model space, without $(1p_{3/2},0f_{5/2},1p_{1/2})$, is expected to work properly as it can explain the main features of the upper $g_{9/2}$-shell nuclei [30, 37].

Let us now perform large-scale shell model calculations within the gds model space, which allows excitations across the $N = Z = 50$ shell gap. For the single-particle energies, we employ the predicted ones from the global fit of all available single-particle and single-hole energies [38, 39] of Duflo and Zuker [10], i.e., $\varepsilon_{g9/2} = 0.0$, $\varepsilon_{d5/2} = 2.54$, $\varepsilon_{g7/2} = 4.95$, and $\varepsilon_{s1/2} = 3.34$ in MeV. For the interaction strengths in the Hamiltonian, the following constants are adopted as

$$g_0 = 24.0/A, \quad g_2 = 225.3/A^{5/3},$$
$$\chi_2 = 240.0/A^{5/3} \text{ in MeV}. \quad (4)$$

The octupole-octupole force and the monopole correction terms are neglected because without these terms, the essential feature of level sequencies does not change. The inclusion of $1d_{5/2}$ orbit allows us to use a weaker quadrupole force, and therefore, χ_2 in (4) is smaller than that in Eq. (2). It is interesting to note that these force strengths are close to those employed in our previous paper [15]. The $T = 0$ monopole field $H_0^{T=0}$ influences strongly the relative energy between the $T = 1$ and $T = 0$ states in odd-odd $N = Z$ nuclei [34]. The strength $k^0 = 64/A$ is chosen so as to reproduce the excitation energy 0.66 MeV of the low-lying 7^+ state. Again, we take the standard effective charges $e_x = 1.5e$ for protons and $e_y = 0.5e$ for neutrons.

Calculations are performed by allowing up to 3p-3h excitations across the $N = Z = 50$ shell gap, which are sufficient for the present discussion. Energy levels of 94Ag obtained from this calculation are shown in Fig. 7.]

Results from different model spaces are also given for comparison. As one can see, the three results are quite similar, and they all reproduce well the few known experimental energy levels. The closely-lying 12^+ and 14^+ states with $T = 1$ may well correspond to those discussed in 94Pd (see Fig. 6). However, one clear difference among the three results is that the gds-shell model calculation yields a 21^+-19^+ level inversion, with the 19^+ level lying 25.7 keV above the 21^+ level. The calculated E4 transition probability $B(E4; 21^+ \rightarrow 17^+)$ is very small. We can thus explain the isomeric nature of the 21^+ state within the gds shell model, in accordance with the result of Plettn er et al. [4] in the ($0g_{9/2},1d_{5/2},0g_{7/2},2s_{1/2},1d_{3/2}$) model space. We mention that there is an interesting precedent, the 12^+ isomer in 52Fe. As already noted in Ref. [27], this phenomenon is due to jumps from the $f_{7/2}$ orbital to the above fp-shell. Similarly, we can consider that the

![Figure 6](image-url)
FIG. 6: (Color online) Experimental and calculated energy levels with $T = 1$ of the even-even nuclei 92Pd, 94Pd, and 96Pd.

![Figure 7](image-url)
FIG. 7: (Color online) Experimental and calculated energy levels of the even-odd nuclei 93Pd and 95Pd.
21\(^+\) isomerism is due to jumps from the \(g_{9/2}\) orbital to the above \(sdg\)-shell.

Excitation energies of the \(T = 0\) states are plotted as functions of total spin \(I\) in Fig. 12. The figure displays an approximate linear dependence of excitation energy on the total spin \(I\), with a clear deviation of the 21\(^+\) state from the straight line. Thus, our shell model calculations demonstrate the importance of excitations across the \(^{100}\)Sn closed shell, which causes a 21\(^+\)-19\(^+\) level inversion, and hence the 21\(^+\) isomerism.

With our shell model results, we now further examine the microscopic structure of the isomeric 7\(^+\) and 21\(^+\) states in \(^{94}\)Ag. In Table II, we present the expectation values of particle numbers in four orbitals, calculated for the low-lying \(T = 0\) states in \(^{94}\)Ag. Theoretical spectroscopic \(Q\)-moments (in \(e\) fm\(^2\)) are also included in the table. To be better visualized, these occupation numbers are plotted as functions of total spin \(I\) in Fig. 13, where for the \(0g_{9/2}\) orbital, the plotted numbers are 0.1 times of their actual values. The results show that the most occupied orbit is \(0g_{9/2}\). The occupation number of the 1\(d_{5/2}\) orbit is 0.43 for the 7\(^+\) state. With increasing \(I\), it decreases linearly, but begins to rise at 21\(^+\). For the high-spin states 23\(^+\) and 25\(^+\), a drastic increase of 1\(d_{5/2}\) occupation is observed. The 21\(^+\) state has the maximum aligned hole configurations in the \(fpg\) shell for neutrons and protons, which coupled strongly with the 1\(d_{5/2}\) configurations. The extra binding energy due to the large attractive \(pn\) interaction in the \(0g_{9/2}\) orbit lowers the 21\(^+\) state primarily. However, this is not sufficient to make the 21\(^+\) state isomeric. It is the mixing with the 1\(d_{5/2}\) configurations that eventually causes the 21\(^+\)-19\(^+\) level inversion so that the 21\(^+\) state becomes an isomer.

In Fig. 14 we plot the two calculations of spectroscopic \(Q\)-moments for the \(T = 0\) excited states as a function of total spin \(I\), using the numbers listed in Tables

\(^{94}\)Ag	\(g_{9/2}\)	\(d_{5/2}\)	\(g_{7/2}\)	\(s_{1/2}\)	\(Q\)
1\(^+\)	6.50	0.43	0.04	0.03	-30.7
3\(^+\)	6.51	0.43	0.04	0.03	-52.0
5\(^+\)	6.52	0.41	0.04	0.03	-53.2
7\(^+\)	6.51	0.43	0.04	0.03	109.6
9\(^+\)	6.55	0.38	0.04	0.03	43.0
11\(^+\)	6.56	0.37	0.04	0.03	11.1
13\(^+\)	6.62	0.32	0.04	0.02	9.2
15\(^+\)	6.65	0.29	0.04	0.02	70.5
17\(^+\)	6.70	0.26	0.03	0.02	39.3
19\(^+\)	6.72	0.23	0.03	0.02	53.3
21\(^+\)	6.70	0.26	0.03	0.02	84.1
I and II. Comparing the fpg-shell and gds-shell model calculations, one sees a clear enhancement in Q-moment at the 7+, 15+, and 21+ states due to the excitations across the 100Sn shell closure. We thus conclude that the inclusion of the 1d5/2 orbit enhances significantly the collectivity of the isomeric 7+ and 21+ states. In the gds-shell calculation, the spectroscopic Q-moments for 7+ and 21+ states are predicted to be 109.6 e fm² and 84.1 e fm², respectively.

The above conclusion is further supported by B(E2) calculations shown in Table III. There, the B(E2) values are presented along the two decay sequences with T = 0 and T = 1. What we can learn from the table is the fact that the numbers in the column of the gds-shell calculation are always larger than those of the fpg-shell results. This indicates that the core excitations across the N = Z = 50 shell gap increase the B(E2) values, which is consistent with the observation in Fig. 14. Moreover, the transition B(E2, 7+ → 5+) is very small also in the gds-shell calculation, implying that the core excitation does not wash out the isomeric nature of the 7+ state as discussed in the fpg-shell calculation.

The analysis on one- and two-proton decay of the 21+ isomer has suggested a large deformation for this state. Mukha et al. [13] argued that the unexpectedly large probability for the proton decay is attributed to a large prolate shape of the parent nucleus. We note that shape is a widely-used concept but not a direct shell model consequence. In order to discuss shapes using the present shell model results, assumptions are needed. By assuming an axial symmetric rotor for 94Ag, deformations for the isomeric 7+ and 21+ states can be estimated to be β = −0.5 and β = −0.2 from the spectroscopic Q-moments 109.6 e fm² and 84.1 e fm², respectively, if a K = 0 is further assumed for both states. While the assumption of K = 0 may be reasonable for the 7+ state, it leads to a conclusion that the 21+ state corresponds to an oblate shape, in contradiction to the conclusion of Ref. [13]. However, a prolate shape of β = +0.2 can be obtained if, for example, a K = 21 is assumed for the

![FIG. 10: (Color online) Experimental and calculated energy levels of the even-even nuclei 96Cd and 98Cd.](image-url)

![FIG. 11: (Color online) Calculated energy levels with T = 0 of the odd-odd N = Z nucleus 94Ag with the gds-shell, g9/2-shell, and fpg-shell model spaces.](image-url)

![FIG. 12: (Color online) Excitation energies of the T = 0 states in 94Ag from the gds-shell, g9/2-shell, and fpg-shell model calculations. The diagonal line is a linear fit.](image-url)
FIG. 13: (Color online) Calculated occupation number as a function of total spin in 94Ag for the gds-shell model calculations. The occupation numbers of $0g_{9/2}$ orbital are plotted as 0.1 times of their actual values.

FIG. 14: (Color online) Spectroscopic quadrupole moments as a function of total spin.

21^+ state. The present calculations in the gds-shell do not show strong deformation. As suggested by I. Mukha et al. [12], the $1h_{11/2}$ single-proton orbital may be important for a strongly deformed shape of the 21^+ isomer in 94Ag. Independent of these assumptions, a measurement of the laboratory quadrupole moments for the isomeric states, which may be compared directly to our theoretical results listed in Tables I and II, is desired.

V. CONCLUSIONS

In this paper, we have investigated the microscopic structure of isomers in 94Ag within a large-scale shell model framework. To demonstrate that our model is reliable with predictive power, we have systematically calculated other nuclei in the same mass region, for all even-even, even-odd, odd-even, and odd-odd types of nuclei, and compared the results with available data. Overall, a good agreement has been obtained. For those $N=Z$ nuclei (in addition to 94Ag, also 90Rh, 92Pd, and 96Cd) for which no experimental information is available, the calculations may serve as predictions for future experiment. In particular, the discussed structure for those waiting point nuclei may be useful for the reaction network calculations of the rp process nucleosynthesis.

We have shown that the isomerism of the 7^+ and 21^+ states in 94Ag is attributed to an enhancement of collectivity that causes large deformation. The isomeric 7^+ state has been suggested as a shape isomer because this isomerism is due to shape difference between this and the lower-lying states. The 21^+ isomer is produced by a different mechanism, namely, a level inversion of the 19^+ and 21^+ states from their normal order. We have found that this unusual level inversion is caused by excitations across the 100Sn shell closure to the upper shells including the $1d_{5/2}$ orbital. This conclusion is in agreement with the previous finding by Plettner et al. [9].

It was discussed by Mukha et al. [13] that the fine structure of the observed proton decay would require a large deformation for the 21^+ isomer, and the unexpectedly large probability for the observed two-proton decay could be attributed to a strongly deformed prolate shape in 94Ag. The present shell model calculation does not yield a large deformation for the 21^+ isomer, and it cannot provide a conclusive support for the claim about a definite shape because in order to link the shell model results to a geometric shape, one has to introduce

J_i \rightarrow J_f	$B(E2 : J_i \rightarrow J_f)$ in e2fm4	
$T = 0$		
3 \rightarrow 1	474	669
5 \rightarrow 3	364	757
7 \rightarrow 5	0.0	0.26
9 \rightarrow 7	41	78
11 \rightarrow 9	139	298
13 \rightarrow 11	93	361
15 \rightarrow 13	63	88
17 \rightarrow 15	43	103
19 \rightarrow 17	103	130
21 \rightarrow 19	59	109
$T = 1$		
2 \rightarrow 0	193	497
4 \rightarrow 2	250	719
6 \rightarrow 4	247	718
8 \rightarrow 6	32	17
assumptions similar as those utilized in Ref. [13]. The present result indicating no huge deformation of 94Ag isomer could be reasonable because the ground states of nuclei in this region are very weakly deformed. It remains an open question of whether a more extended shell model space can obtain a large deformation. Our calculations predict that the $^{21}_+^+$ isomer has large positive value of the spectroscopic Q-moment. To confirm this, the nuclear Q-moment should be measured directly.

Y.S. is supported by the Chinese Major State Basic Research Development Program through grant 2007CB815005, and by the the U. S. National Science Foundation through grant PHY-0216783.

[1] K. Ogawa, Phys. Rev. C 28, 958 (1983).
[2] N. Marginean et al., Phys. Rev. C 67, 061301(R) (2003).
[3] L. Van Wormer et al., Astrophys. J. 432, 326 (1994).
[4] H. Schatz et al., Phys. Rep. 294, 167 (1998).
[5] H. Schatz et al., Phys. Rev. Lett. 86, 3471 (2001).
[6] A. Aprahamian and Y. Sun, Nature Phys. 1, 81 (2005).
[7] Y. Sun, M. Wiescher, A. Aprahamian, and J. Fisker, Nucl. Phys. A 758, 765 (2005).
[8] M. La Commarra et al., Nucl. Phys. A 708, 167 (2002).
[9] C. Plettner et al., Nucl. Phys. A 733, 20 (2004).
[10] I. Mukha et al., Phys. Rev. C 70, 044311 (2004).
[11] I. Mukha et al., Nucl. Phys. A 746, 66c (2004).
[12] I. Mukha et al., Phys. Rev. Lett. 95, 022501 (2005).
[13] I. Mukha et al., Nature 439, 298 (2006).
[14] E. Roeckl et al., ACTA PHYSICA POLONICA B 38, 1121 (2007).
[15] M. Hasegawa, Y. Sun, K. Kaneko, and T. Mizusaki, Phys. Lett. B 617, 150 (2005).
[16] S. M. Fischer et al., Phys. Rev. Lett. 87, 132501 (2001).
[17] K. Kaneko, M. Hasegawa, and T. Mizusaki, Phys. Rev. C 70 051301(R) (2004).
[18] Y. Sun, Eur. Phys. J. A 20, 133 (2004).
[19] E. Bouchez et al., Phys. Rev. Lett. 90, 082502 (2003).
[20] P. Walker and G. Dracoulis, Nature 399, 35 (1999).
[21] R. Gross and A. Frenkel, Nucl. Phys. A 267, 85 (1976).
[22] F. J. D. Serduke, R. D. Lawson, and D. H. Gloecker, Nucl. Phys. A 256, 45 (1976).
[23] P. Herndel and B. A. Brown, Nucl. Phys. A 627, 35 (1997).
[24] K. Schmidt et al., Z. Phys. A 350, 99 (1994).
[25] T. T. S. Kuo and G. E. Brown, Nucl. Phys. A 114, 241 (1968).
[26] M. Hjorth-Jensen, T. T. S. Kuo, and E. Osnes, Phys. Repts. 261, 125 (1995).
[27] A. Poves and A. P. Zuker, Phys. Rep. 70, 235 (1981).
[28] M. Honma, T. Otsuka, B. A. Brown, and T. Mizusaki, Phys. Rev. C 69, 034335 (2004).
[29] M. Dufour and A. P. Zuker, Phys. Rev. C 54, 1641 (1996).
[30] M. Hasegawa, K. Kaneko, and S. Tazaki, Nucl. Phys. A 688 (2001) 765.
[31] K. Kaneko, M. Hasegawa, and T. Mizusaki, Phys. Rev. C 66 051306(R) (2002).
[32] T. Mizusaki, RIKEN Accel. Prog. Rep. 33, 14 (2000).
[33] M. Hasegawa, K. Kaneko, and T. Mizusaki, Phys. Rev. C 71, 044301 (2005).
[34] M. Hasegawa, K. Kaneko, T. Mizusaki, and S. Tazaki, Phys. Rev. C 69, 034324 (2004).
[35] A. Blazhev et al., Phys. Rev. C 69, 064304 (2004).
[36] A. P. Zuker, J. Retamosa, A. Poves, and E. Caurier, Phys. Rev. C 52, R1741 (1995).
[37] E. Caurier et al., in ENAM2001, Eur. Phys. J. A. 15, 145 (2002).
[38] F. Nowacki et al., Nucl. Phys. A 704, 223c (2002).
[39] H. Grawe et al., Nucl. Phys. A 704, 211c (2002).
[40] J. Dufo and A. P. Zuker, Phys. Rev. C 59, R2347 (1999).
[41] C. Rusu et al., Phys. Rev. C 69, 024307 (2004).