Empirical bias-reducing adjustments to estimating functions

Ioannis Kosmidis*\(^1\) and Nicola Lunardon\(^2\)

\(^1\)Department of Statistics, University of Warwick
Gibbet Hill Road, Coventry, CV4 7AL, UK
\(^2\)Department of Environmental Sciences, Informatics and Statistics
Ca’ Foscari University of Venice
Via Torino 150, Venezia Mestre 30170, Italy

August 11, 2023

Abstract

We develop a novel and general framework for reduced-bias M-estimation from asymptotically unbiased estimating functions. The framework relies on an empirical approximation of the bias by a function of derivatives of estimating function contributions. Reduced-bias M-estimation operates either implicitly, by solving empirically-adjusted estimating equations, or explicitly, by subtracting the estimated bias from the original M-estimates, and applies to models that are partially- or fully-specified, with either likelihoods or other surrogate objectives. Automatic differentiation can be used to abstract away the only algebra required to implement reduced-bias M-estimation. As a result, the bias reduction methods we introduce have markedly broader applicability with more straightforward implementation and less algebraic or computational effort than other established bias-reduction methods that require resampling or evaluation of expectations of products of log-likelihood derivatives. If M-estimation is by maximizing an objective, then there always exists a bias-reducing penalized objective. That penalized objective relates closely to information criteria for model selection, and can be further enhanced with plug-in penalties to deliver reduced-bias M-estimates with extra properties, like finiteness in models for categorical data. The reduced-bias M-estimators have the same asymptotic distribution as the original M-estimators, and, hence, standard procedures for inference and model selection apply unaltered with the improved estimates. We demonstrate and assess the properties of reduced-bias M-estimation in well-used, prominent modelling settings of varying complexity.

Keywords: Asymptotic bias; Autologistic regression; Composite likelihood; Infinite estimates; Model selection; Penalized likelihood; Temporal dependence

1 Introduction

1.1 Bias reduction methods

Reduction of estimation bias in statistical modelling is a task that has attracted immense research activity since the early days of the statistical literature. This ongoing activity resulted in an abundance of general bias-reduction methods with varying levels of applicability. As is noted in Kosmidis (2014), the majority of methods start from an estimator $\hat{\theta}$ of an unknown parameter θ, and attempt to produce an estimator $\tilde{\theta}$, which approximates the solution of the equation

\[\hat{\theta} - \tilde{\theta} = B_G(\theta), \]
with respect to \(\hat{\theta} \). In the above, \(G \) is the typically unknown distribution function of the process that generated the data, \(B_G(\theta) = E_G(\hat{\theta} - \theta) \) is the bias function, and \(\hat{\theta} \) is the value that \(\theta \) is assumed to converge to in probability as information about \(\theta \) increases, typically with the volume of the data. In general, the solution of (1) requires approximation because both the value of \(\theta \) and \(G \) are unknown or the expectation with respect to \(G \) does not have a closed form.

Table 1 classifies prominent bias-reduction methods according to various criteria relating to their applicability and operation. Given the size of the literature on bias-reduction methods, we only cite key works that shaped or greatly impacted the area. Bias-reduction methods like vanilla asymptotic bias correction (Efron, 1975), the adjusted scores functions approach in Firth (1993), indirect inference in Gourieroux et al. (1993), and iterated bootstrap in Kuk (1995) and Guerrier et al. (2019), and the refinements of the indirect inference principle in MacKinnon and Smith (1998), assume that the model can be fully and correctly specified, in the sense that \(G \) results from the assumed model for specific parameter values. That assumption allows to either have access to log-likelihood derivatives and expectations of products of those or to simulate from the model. In contrast, bias-reduction methods, like jackknife (Quenouille, 1956; Efron, 1982) and bootstrap (Efron and Tibshirani, 1993; Hall and Martin, 1988) can also apply to at least partially-specified models; see, also, Newey and Smith (2004) for an asymptotic bias-correction method for partially-specified models with independent and identically distributed random variables that applies also to over-identified problems. Such bias reduction methods can improve estimation in involved modelling settings, where typically surrogate inference functions are used in an attempt to either limit the number of hard-to-justify modelling assumptions or because the full likelihood function is impractical or cumbersome to compute; see, for example, Wedderburn (1974) for quasi-likelihood methods, Liang and Zeger (1986) for generalized estimating equations, and Lindsay (1988) and Varin et al. (2011) for composite likelihood methods.

Kosmidis (2014) classifies bias-reduction methods according to whether they operate in an explicit or implicit manner when approximating the solution of (1). Explicit methods estimate \(B_G(\hat{\theta}) \) and subtract that estimate from \(\hat{\theta} \). Implicit methods replace \(B_G(\hat{\theta}) \) with \(B_G(\hat{\theta}) \) for an estimator \(\hat{B}_G \) of \(B_G \), and solve the resulting implicit equation.

Bias-reduction methods can also be classified according to whether the necessary approximation of the bias term in (1) is performed analytically or through simulation. The vanilla implementations of asymptotic bias correction and adjusted score functions approximate \(B_G(\theta) \) with a function \(b(\theta) \) such that \(B_G(\theta) = b(\theta) + O(n^{-3/2}) \), where \(n \) is a measure of how the information about \(\theta \) accumulates. On the other hand, jackknife, bootstrap, iterated bootstrap, and indirect inference, generally, approximate the bias by simulating samples from the assumed model or an estimator of \(G \), like the empirical distribution function. As a result, and depending on how demanding the computation of \(\hat{\theta} \) is, simulation-based methods are typically more computationally intensive than analytical methods. Also, implicit, simulation-based methods require special care and ad-hoc considerations when approximating the solution of (1), because the simulation-based estimator of \(B_G(\hat{\theta}) \) is not always differentiable with respect to \(\hat{\theta} \).

The requirement of differentiation of the estimating or objective functions for some of the bias-reduction methods in Table 1 has also resulted in considerable analytical effort over the years (see, for example, Kosmidis and Firth, 2009 for multivariate generalized nonlinear models, and Grin et al. 2012 for Beta regression models). Nevertheless, differentiation is nowadays a task requiring increasingly less analytical effort because of the availability of comprehensive automatic differentiation routines (Griewank and Walther, 2008) in popular computing environments. Such routines can be found, for example, in the ForwardDiff Julia package (Revels et al., 2016), and the C++ package CppAD (Bell, 2021) that enabled the development of a range of template modelling software, like the TMB R package (Kristensen et al., 2016) and R Core Team (2021). Even if the differentiation effort can be partly mitigated, the vanilla versions of asymptotic bias correction in Efron (1975) and the bias-reducing adjusted score functions in Firth (1993) require
Table 1: Classification of bias-reduction methods of general applicability (Method). The classification is based on the level of model specification (Model), the way the method approximates the bias \(B_G(\hat{\theta}) \), the type (Type) of the method according to the classification in Kosmidis (2014), and on the method’s requirements in terms of computation of expectations (\(E(\cdot) \)), differentiation (\(\partial \cdot \)), and access to the original estimator (\(\hat{\theta} \)). Key references include: Efron (1975, Section 10) and Cordeiro and McCullagh (1991) for asymptotic bias correction; Firth (1993) and Kosmidis and Firth (2009) for adjusted score functions; Firth and Tibshirani (1993) and Hall and Martin (1988) for bootstrap; Quenouille (1956) and Efron (1982) for jackknife; Gourieroux et al. (1993) for indirect inference, Kuk (1995) and Guerrier et al. (2019) for iterated bootstrap, and MacKinnon and Smith (1998) for refinements of the indirect inference principle; and this manuscript for RBM-estimation.

Method	Model	\(B_G(\hat{\theta}) \)	Type	\(E(\cdot) \)	\(\partial \cdot \)	\(\hat{\theta} \)
Asymptotic bias correction	full	analytical	explicit	yes	yes	yes
Adjusted score functions	full	analytical	implicit	yes	yes	no
Bootstrap	partial	simulation	explicit	no	no	yes
Jackknife	partial	simulation	explicit	no	no	yes
Iterated bootstrap / Indirect inference	full	simulation	implicit	no	no	yes
Explicit RBM-estimation	partial	analytical	explicit	no	yes	yes
Implicit RBM-estimation	partial	analytical	implicit	no	yes	no

the computation of expectations of products of log-likelihood derivatives under the model. Those expectations are intractable or expensive to compute for models with intractable or cumbersome likelihoods, and can be hard to derive even for relatively simple models; see, for example, Grün et al. (2012, Section 2.3) for how involved those expectations are for Beta regression models.

Finally, except of the adjusted scores approach in Firth (1993), all the bias-reduction methods reviewed in Table 1 require the original estimator \(\hat{\theta} \) and they cannot operate without it. For this reason, they directly inherit any of the instabilities that \(\hat{\theta} \) may have. For example, in multinomial logistic regression, there is always a positive probability of data separation (Albert and Anderson, 1984) that results in infinite maximum likelihood estimates. Then, asymptotic bias correction, bootstrap, iterated bootstrap, and jackknife cannot be applied. The direct dependence on \(\hat{\theta} \) may be more consequential for naive implementations of the latter three methods because they are simulation-based; even if data separation did not occur for the original sample, there is always positive probability that it occurs for at least one of the sub-samples or simulated samples. There is no easy way of knowing this before carrying out the simulation, and boundary estimates, if they can be identified reliably, can only be handled in an ad-hoc way.

1.2 Reduced-bias \(M \)-estimation

The current work develops a novel approach to the reduction of the asymptotic bias of \(M \)-estimators from approximately unbiased estimating functions. We call the new estimators reduced-bias \(M \)-estimators, or RBM-estimators in short. As noted in the last two rows of Table 1, RBM-estimation applies to models that are at least partially-specified and does not require the computation of any expectations. The analytical approximation to the bias function required by RBM-estimation relies only on derivatives of the contributions to the estimating functions. RBM-estimators with bias of lower asymptotic order than the original \(M \)-estimators
result either in an explicit or implicit manner. Explicit RBM-estimation proceeds by directly subtracting the value of the analytical approximation to the bias function at the M-estimates from the M-estimates. Implicit RBM-estimation, on the other hand, does not require the original M-estimator, and instead relies on an additive, bounded-in-probability adjustment to the estimating functions. The key difference to the established implicit (Firth, 1993; Gourieroux et al. 1993; Kuk, 1995) and explicit bias-reduction methods (bootstrap, jackknife, asymptotic bias correction), is that the empirical adjustments introduced here depend only on the first two derivatives of the contributions to the estimating functions. Hence, they require neither the computation of cumbersome expectations nor the, potentially computation-intensive and error-prone calculation of M-estimates from simulated samples.

The RBM-estimators have the same asymptotic distribution, and hence the same asymptotic efficiency properties, as the original M-estimators. The definition of asymptotically-valid inference and model selection procedures follows directly from the ones developed for the original M-estimators (e.g. generalized Wald tests and information criteria).

Implicit and explicit RBM-estimation, apart from being more general than the methods listed in Table 1, are also easier to implement for arbitrary models through automatic differentiation. The only key required input for a computer implementation is an implementation of the contributions to either the estimating or objective function. The MEstimation Julia package (Kosmidis and Lunardon, 2022) is a proof-of-concept of such a general-purpose implementation.

If the estimating functions are the components of the gradient of an objective function, as is the case in estimation based on likelihoods or composite likelihoods, then, we show that implicit RBM-estimation can always be achieved by the maximization of an appropriately penalized version of the objective. This is in contrast to the method in Firth (1993) which does not always have a penalized likelihood interpretation; see, for example, Kosmidis and Firth (2009, Theorem 1). Moreover, it is shown that the bias-reducing penalized objective closely relates to information criteria for model selection based on the Kullback-Leibler divergence. The penalties that are used for bias reduction and model selection differ only by a known scalar constant. These observations, establish, for the first time, a strong link between model selection and reduction of bias in estimation. We also show how plug-in penalties to the penalized objectives can be used to enrich RBM-estimation with extra, desirable properties, such as estimates that are always finite in categorical response models, without sacrificing reduction of bias.

Section 2 introduces notation, the general modelling setting we consider, and the assumptions underpinning the theoretical developments. In Section 3 we derive the leading term of the bias of the M-estimator, give the bias-reducing adjustments to estimating functions and their empirical versions, and describe the explicit and implicit versions of RBM-estimation. Section 4 shows that the asymptotic distribution of the RBM-estimator is the same as that of the original M-estimator, and introduces Wald-type and generalized score approximate pivots that can be used for inference. Section 5 shows that implicit RBM-estimation can always be achieved using empirical bias-reducing penalties to objective functions, draws links with model selection, and discusses the enrichment of the penalized objectives with plug-in penalties that endow RBM-estimators with extra properties. Section 6 explores the effectiveness of RBM-estimation in partially-specified, high-dimensional regression settings, and Section 7 discusses RBM-estimation in models with independent random variables to models for temporally or spatially correlated observations. We demonstrate and assess the breath and properties of the RBM-estimation framework with examples from well-used, important modelling settings of increasing complexity, including: estimation the ratio of two means with minimal distributional assumptions (Example 3.1 and Example 4.1), estimation and model selection in generalized linear models (GLMs; Examples 5.1, 5.3, and 5.5), composite likelihood methods for the estimation of Gaussian max-stable processes (Example 5.2), estimation of autoregressive models of order one (Example 7.1), and estimation and uncertainty quantification for autologistic regression.
models for the analysis of spatially clustered data (Examples 5.4 and 6.1). See, also Section S8 in the Supplementary Material document for an empirical assessment of RBM-estimators in negative binomial regression with many covariates. Section 8 concludes with discussion on the developments and possible extensions of this work.

2 Modelling setting and assumptions

2.1 Estimating functions

Suppose we observe realizations \(\mathbf{y}_1, \ldots, \mathbf{y}_k \) of a sequence of random vectors \(\mathbf{Y}_1, \ldots, \mathbf{Y}_k \) with \(\mathbf{y}_i = (y_{i1}, \ldots, y_{ic_i}) \top \in \mathcal{Y} \subset \mathbb{R}^{c_i} \), possibly with a sequence of covariate vectors \(\mathbf{x}_1, \ldots, \mathbf{x}_k \), with \(\mathbf{x}_i = (x_{i1}, \ldots, x_{ic_i}) \top \in \mathcal{X} \subset \mathbb{R}^{c_i} \), and \(c_i \geq 1 \) and \(q_i \geq 1 \). We assume that \(\mathbf{Y}_1, \ldots, \mathbf{Y}_k \) are independent conditionally on \(\mathbf{x}_1, \ldots, \mathbf{x}_k \). Let \(\mathbf{Y} = (\mathbf{Y}_1 \top, \ldots, \mathbf{Y}_k \top) \top \), and \(\mathcal{X} \) be the set of \(\mathbf{x}_1, \ldots, \mathbf{x}_k \), and denote by \(G \equiv G(\mathbf{Y} \mid \mathcal{X}) \) the typically unknown, underlying joint distribution function.

One of the typical aims in statistical modelling is to estimate at least a sub-vector of an unknown \(p \)-dimensional parameter \(\mathbf{\theta} \in \Theta \subset \mathbb{R}^p \) using data \(\mathbf{y}_1, \ldots, \mathbf{y}_k \) and \(\mathbf{x}_1, \ldots, \mathbf{x}_k \). This is most commonly achieved through an \(M \)-estimator \(\hat{\mathbf{\theta}} \) (van der Vaart, 1998, Chapter 5) that results from the solution of a system of \(p \) estimating equations

\[
\sum_{i=1}^k \psi_i(\mathbf{\theta}) = \mathbf{0}_p, \tag{2}
\]

with respect to \(\mathbf{\theta} \). In equation (2), \(\mathbf{0}_p \) is a \(p \)-vector of zeros, \(\psi_i(\mathbf{\theta}) = (\psi_{1i}(\mathbf{\theta}), \ldots, \psi_{pi}(\mathbf{\theta})) \top \), \(\psi_{ri}(\mathbf{\theta}) = \psi_r(\mathbf{\theta}, \mathbf{Y}_i, \mathbf{x}_i) \), and \(\psi_i(\mathbf{\theta}) = \psi_r(\mathbf{\theta}, \mathbf{Y}_i, \mathbf{x}_i) \), \(r \in \{1, \ldots, p\} \). Examples of estimation methods that fall within the above framework are estimation via quasi-likelihood methods (Wedderburn, 1974) and generalized estimating equations (Liang and Zeger, 1986). Stefanski and Boos (2002) provide an accessible overview of estimating functions and demonstrate their generality and the handling of challenging estimation problems with less assumptions than likelihood-based estimation.

One way to derive estimating functions is through a, typically stronger, modelling assumption that \(\mathbf{Y}_i \) has a distribution function with joint mixed density \(f_i(\mathbf{y}_i \mid \mathbf{x}_i, \mathbf{\theta}) \) or that the joint mixed densities of sub-vectors of \(\mathbf{Y}_i \) can be composed into a composite function \(f_i(\mathbf{y}_i \mid \mathbf{x}_i, \mathbf{\theta}) \). The estimator \(\hat{\mathbf{\theta}} \) can then be taken to be the maximizer of the objective function

\[
l(\mathbf{\theta}) = \sum_{i=1}^k \log f_i(\mathbf{y}_i \mid \mathbf{x}_i, \mathbf{\theta}). \tag{3}\n\]

The word “mixed” is used here to allow some of the components of \(\mathbf{y}_i \) to be continuous and some discrete. If the objective function (3) is used, then the estimating functions in (2) have \(\psi_i(\mathbf{\theta}) = \nabla \log f_i(\mathbf{y}_i \mid \mathbf{x}_i, \mathbf{\theta}) \), assuming that the gradient exists in \(\Theta \). Prominent examples of estimation methods that involve an objective function of the form (3) are maximum likelihood and maximum composite likelihood (see, for example, Lindsay, 1988; Varin et al., 2011).

2.2 Assumptions

The sufficient conditions we employ for the theoretical developments in this work are standard and cover a wealth of \(M \)-estimation problems. The assumptions are listed in detail in Section S2 of the Supplementary Material document and include: the unbiasedness of the estimating function and convergence of the \(M \)-estimator to the root of the expectation of the estimating function with respect to \(G \) (assumption A1), local smoothness of the estimating functions and existence of a sufficient number of derivatives of those around that root (assumption A2), existence of
moments of products of derivatives of estimating functions under the unknown data generating process along with conditions on their growth rate in terms of the amount of information about the parameter (assumptions A3, A5). Many of those conditions can be derived from others for particular models and estimation methods. An annotated analysis of the links among them, and their wide scope and applicability is provided in Section S2 of the Supplementary Material document. Unless otherwise stated, in what follows, we assume that these assumptions hold.

3 Adjusted estimating equations for bias reduction

3.1 Asymptotic bias

It can be shown that the bias of the M-estimator \(\hat{\theta} \) is \(E_G(\hat{\theta} - \bar{\theta}) = O(n^{-1}) \), where \(\bar{\theta} \) is such that \(E_G(\psi_i(\bar{\theta})) = 0 \), for all \(i \in \{1, \ldots, k\} \). This provides some reassurance that, as the information about the parameter \(\theta \) grows, estimation bias vanishes. Nevertheless, the finite sample bias of \(\bar{\theta} \) is typically not zero. It is also possible to write down the bias in the more specific form \(E_G(\hat{\theta} - \bar{\theta}) = b(\theta) + O(n^{-3/2}) \), where \(b(\theta) \) depends on joint moments, with respect to \(G \), of estimating functions and derivatives of those. Then, because \(b(\theta) \xrightarrow{p} b(\bar{\theta}) \) when \(\hat{\theta} \xrightarrow{p} \bar{\theta} \), we can define a reduced-bias estimator \(\hat{\theta} - b(\theta) \).

The estimator \(\hat{\theta} - b(\theta) \) has been shown to, indeed, have better bias properties when estimation is by maximum likelihood (ML) and the model is correctly specified (see Efron 1975, Section 10). When the model is correctly specified, the unknown joint distribution function \(G(Y \mid X) \) is assumed to be a particular member of the family of distributions specified fully by \(f_i(y_i \mid x_i, \theta) \) when forming \([3]\). It is, then, possible to evaluate \(b(\theta) \) and, hence, compute \(\hat{\theta} - b(\theta) \) in light of data, because the expectations involved in the joint null moments are with respect to the modelling assumption. This is the basis of more refined bias reduction methods, like the adjusted score function approach that has been derived in Firth (1993) and explored further in Kosmidis and Firth (2009).

In the more general setting of Section 2, where the model can be only partially specified, naive evaluation of \(b(\theta) \) using \(f_i(y_i \mid x_i, \theta) \) not only does not lead to reduction of bias, in general, but it can also inflate the bias; see, for example, Lunardon and Scharfstein (2017, Section 2.1), and Example 7.1 for the estimation of autoregressive processes. Even if the researcher is comfortable to assume that \(f_i(y_i \mid x_i, \theta) \) is correctly specified, the applicability of standard bias-reduction methods is hampered whenever \(f_i(y_i \mid x_i, \theta) \) is impossible or impractical to compute in closed form. Estimation and inference, in those cases, is typically based on pseudo likelihoods or estimating functions. An example of this kind is within the framework of max-stable processes along with conditions on their growth rate in terms of the amount of information about the parameter (assumptions A3-A5). Many of those conditions can be derived from others for particular models and estimation methods. An annotated analysis of the links among them, and their wide scope and applicability is provided in Section S2 of the Supplementary Material document. Unless otherwise stated, in what follows, we assume that these assumptions hold.

3.2 Family of bias-reducing adjustments to estimating functions

Consider the estimator \(\hat{\theta} \) that results from the solution of the adjusted estimating equations

\[
\sum_{i=1}^{k} \psi_i(\theta) + A(\theta) = 0_p, \tag{4}
\]

where both \(A(\theta) = A(\theta, Y, X) \) and its derivatives with respect to \(\theta \) are \(O_p(1) \) as \(n \) grows. A calculation similar to that in McCullagh (2018, Section 7.3) leads to a stochastic Taylor expansion for \(\hat{\theta} - \bar{\theta} \) (see expression (S1) in Section S3 of the Supplementary Material document), whose expectation with respect to \(G \) gives that the bias of \(\theta \) is

\[
E_G(\hat{\theta} - \bar{\theta}) = -\mu^{ra}E_G(A_a) + \frac{1}{2}\mu^{ra}\mu^{bc} \left(2\nu_{ab,c} - \mu^{de}\nu_{c,e}\mu_{abd} \right) + O(n^{-3/2}). \tag{5}
\]
In the above expression, we employ index notation. The quantities $\mu_{R_a}(\theta) = E_G(l_{R_a}(\theta))$ with $l_{R_a}(\theta) = \sum_{i=1}^{k} \psi_{r_i}^a(\theta)/\partial \theta^a \cdots \partial \theta^a$ are expectations of derivatives of the estimating function, $(R_a = \{r_1, \ldots, r_a\}; r_j \in \{1, \ldots, p\})$, $\mu_{r}(\theta)$ is the inverse of $\nu_{r}(\theta)$, and $\nu_{r_a}(\theta) = E_G(l_{r_a}(\theta) l_r(\theta))$ and $\nu_{a,b,c}(\theta) = E_G(l_{a,b}(\theta) l_{c}(\theta))$. Unless otherwise stated, the dependence on the parameter is omitted whenever quantities are evaluated at $\hat{\theta}$, as is the case in the right-hand side of (5). For example, $\mu_{r} = \mu_{r}(\theta)$. Expansion (5) implies that an estimator $\hat{\theta}$ with bias $E_G(\theta^r - \theta) = O(n^{-3/2})$ is obtained by the solution of (4) with any adjustment $A(\theta)$ satisfying

$$E_G(A_r(\theta)) = \frac{1}{2} \mu_{ab}(\theta) \left\{ 2 \nu_{ra,b}(\theta) - \mu_{cd}(\theta) \nu_{b,d}(\theta) \mu_{rac}(\theta) \right\} + O(n^{-1/2}).$$

Then $\hat{\theta}$ has, asymptotically, smaller bias than $\hat{\theta}$. In other words, expression (6) defines a family of bias-reducing adjustments to estimating functions. Expansion (5), and, hence, all results below remain valid if the estimating functions are asymptotically unbiased with $O(n^{-1/2})$ expectation.

An obvious candidate for $A(\theta)$ has rth component the first term in the right-hand side of (6). If $f_i(y_i | x_i, \theta)$ fully specifies G and the estimation method is ML, then the Bartlett relation $\mu_{cd}(\theta) + \nu_{c,d}(\theta) = 0$ holds (see, for example, Pace and Salvan, 1997, Section 9.2), and the adjustment satisfying (6) becomes $\mu_{ab}(\theta) \left\{ 2 \nu_{ra,b}(\theta) + \mu_{rac}(\theta) \right\} / 2$. The latter expression is the bias-reducing adjustment for ML derived in Firth (1993) for fully-specified models.

For the more general setting of Section 2, however, the underlying distribution G is typically only partially specified through $f_i(y_i | x_i, \theta)$ or relations of moments of the random component. Hence, the expectations involved in the right-hand side of (6) cannot be computed.

3.3 Empirical bias-reducing adjustments to estimating functions

The weak law of large numbers and a straightforward calculation can be used to produce an easy-to-implement family of empirical adjustments that delivers bias reduction of M-estimators in the general framework of Section 2. In particular, the empirical adjustment of the form

$$A_r(\theta) = \frac{1}{2} l_{ab}(\theta) \left\{ 2 l_{ra,b}(\theta) - l_{cd}(\theta) l_{b,d}(\theta) l_{rac}(\theta) \right\},$$

satisfies equation (6). In the above expression, $l_{ra}(\theta) = \sum_{i=1}^{k} \psi_{r_i}^a(\theta)\psi_{i}^a(\theta)$ and $l_{ra,s}(\theta) = \sum_{i=1}^{k} (\partial \psi_{r_i}^a(\theta)/\partial \theta^a) \psi_{i}^a(\theta)$ are estimators of $\nu_{r,s}(\theta) = E_G(\sum_{i=1}^{k} \psi_{r_i}^a(\theta) \sum_{j=1}^{k} \psi_{s}^a(\theta))$ and $\nu_{r,s,t}(\theta) = E_G(\sum_{i=1}^{k} (\partial \psi_{r_i}^a(\theta)/\partial \theta^a) \sum_{j=1}^{k} \psi_{s}^a(\theta))$, respectively, $l_{ra}(\theta)$ is the matrix inverse of $l_{ra}(\theta)$ and an estimator of $\mu_{r}^a(\theta)$, and $l_{rs}(\theta)$ is an estimator of $\mu_{rs}(\theta)$. The matrix form of expression (7) sets the rth element of the vector of empirical bias-reducing adjustments to

$$A_r(\theta) = -\text{trace} \left\{ j(\theta)^{-1} d_r(\theta) \right\} - \frac{1}{2} \text{trace} \left[j(\theta)^{-1} e(\theta) \left\{ j(\theta)^{-1} \right\}^\top u_r(\theta) \right],$$

where $u_r(\theta) = \sum_{i=1}^{k} \nabla\nabla^\top \psi_{r}^a(\theta)$, and $j(\theta)$ is the matrix with sth row $-\sum_{i=1}^{k} \nabla\psi_{s}^a(\theta)$. The matrix $j(\theta)$, assumed to be invertible but is not necessarily symmetric, coincides with the negative of the hessian matrix $\nabla\nabla^\top l(\theta)$ when estimation is through the maximization of an objective function like (3), and is the observed information in maximum likelihood estimation. The matrices $e(\theta)$ and $d_r(\theta)$ correspond to the quantities $l_{ra}(\theta)$ and $l_{rs}(\theta)$ in (7), respectively.

3.4 Explicit and implicit reduced-bias M-estimation

According to the classification of bias-reduction methods in Kosmidis (2014), the solution of the adjusted estimating equations $\sum_{i=1}^{k} \psi_{i}(\theta) + A(\theta) = 0_p$, with $A(\theta)$ as in (8), results in an implicit
bias-reduction method. Hence, the resulting estimator \(\hat{\theta} \) is called the implicit RBM-estimator. From expression (3), another estimator with \(o(n^{-1}) \) bias is

\[
\theta^\dagger = \hat{\theta} + j(\hat{\theta})^{-1} A(\hat{\theta}) .
\]

(9)

The estimator (9) defines an explicit bias-reduction method for partially-specified models, and is called the explicit RBM-estimator. Both explicit and implicit RBM-estimation are attractive compared to other bias-reduction methods whose applicability is limited to either cases where \(\sum_{i=1}^k \psi^i(\theta) \) is the gradient of the log-likelihood function of a correctly-specified model (see, e.g. Cordeiro and McCullagh [1991], Firth [1993], or samples from a correctly-specified model can be simulated (see, e.g. Gourieroux et al. [1993], Kuk [1995], Guerrier et al. [2019]). Also, this generalization comes with less implementation requirements because both explicit and implicit RBM-estimation require only the estimating functions and the first two derivatives of those.

The RBM-estimators can be computed and used in settings that involve realizations of \(k \) independent random vectors with dependent components, like the generalized estimating equations in Liang and Zeger (1986) and composite likelihood methods (Varin et al., 2011). The choice between using \(\theta^\dagger \) and \(\hat{\theta} \) is application-dependent. For example, \(\hat{\theta} \) in Example 3.1 below has certain robustness properties that \(\theta^\dagger \) lacks. Furthermore, as is shown in Section 5 in M-estimation problems that involve an objective function \(\hat{\theta} \) can be viewed as the maximizer of a bias-reducing penalized objective that has strong connections to model selection procedures. On the other hand, for general models for which \(\theta^\dagger \) and \(\hat{\theta} \) are not available in closed form, \(\theta^\dagger \) is typically faster to compute because it results from a single step of a quasi Newton-Raphson iteration with stationary point \(\hat{\theta} \) (see Section S4 in the Supplementary Material document).

The MEstimation Julia package implements explicit and implicit RBM-estimation for arbitrary models using automatic differentiation.

Example 3.1: Ratio of two means Consider a setting where independent random pairs \((X_1, Y_1), \ldots, (X_n, Y_n)\) are observed, and suppose that interest is in the ratio of the mean of \(Y_i \) to the mean of \(X_i \), that is \(\theta = \mu_Y/\mu_X \), with \(\mu_Y = E_G(Y_i) \) and \(\mu_X = E_G(X_i) \neq 0 \) (\(i = 1, \ldots, n \)).

Assuming that sampling is from an infinite population, one way of estimating \(\theta \) without any further assumptions about the joint distribution of \((X_i, Y_i)\) is to set up an unbiased estimating equation of the form (2), with \(\psi^i(\theta) = Y_i - \theta X_i \). Then, the M-estimator is

\[
\hat{\theta} = \arg \text{solve } \sum_{i=1}^n \psi^i(\theta) = 0 \}
\]

\[
s_Y/s_X ,
\]

(10)

where \(s_X = \sum_{i=1}^n X_i \) and \(s_Y = \sum_{i=1}^n Y_i \). The estimator \(\hat{\theta} \) is generally biased and efforts have been made in reducing its bias; see, for example, Durbin (1959), for an early work in that direction using the jackknife.

For the estimating function in (10), \(j(\theta) = s_X, u(\theta) = 0, e(\theta) = s_{YY} + \theta^2 s_{XX} - 2\theta s_{XY}, \) and \(d(\theta) = -s_{XY} + \theta s_{XX}, \) where \(s_{XX} = \sum_{i=1}^n X_i^2, s_{YY} = \sum_{i=1}^n Y_i^2 \) and \(s_{XY} = \sum_{i=1}^n X_i Y_i \). So, the empirical bias-reducing adjustment in (7) is \(s_{YY}/s_X - \theta s_{XX}/s_X \). The solution of the adjusted estimating equation \(\sum_{i=1}^n \psi^i(\theta) + A(\theta) = 0 \) results in the implicit RBM-estimator

\[
\hat{\theta} = \theta + j(\hat{\theta})^{-1} A(\hat{\theta}) = \theta + \frac{s_{YY}/s_X - \theta s_{XX}/s_X}{s_{XX}/s_X} \]

(7)

gives that the explicit RBM-estimator has the form \(\theta^\dagger = \theta(1 - s_{XX}/s_X^2) + s_{XY}/s_X^2 \).

Implicit RBM-estimation has the side-effect of producing an estimator that is more robust to small values of \(s_X \) than the standard M-estimator and the explicit RBM-estimator are. In particular, as \(s_X \) becomes smaller in absolute value, \(\hat{\theta} \) and \(\theta^\dagger \) diverge, while \(\hat{\theta} \) converges to \(s_{XY}/s_{XX} \), which is the slope of the regression line through the origin of \(y \) on \(x \). As a result, when \(\mu_X \) is small in absolute value, \(\hat{\theta} \) has not only smaller bias, as granted by the developments in the current paper, but also smaller variance than \(\hat{\theta} \), and, hence, smaller mean squared error.
estimator \(\hat{\theta} \) between \(M \) simulation size in this way guarantees a fixed simulation error for the simulation-based estimate \(\theta \) in the setting of Example 3.1. The estimator \(\hat{\theta} \) is either the \(M \)-estimator \(\hat{\theta} \), the Jackknife estimator \(\theta^{(J)} \), the “better” nonparametric bootstrap estimators \(\theta^{(B)} \) in [Efron and Tibshirani (1993) Section 10.4] using 500 resamples, the explicit RBM-estimator \(\theta^\dagger \), or the implicit RBM-estimator \(\hat{\theta} \). Figures are reported in 2 decimal places, and a figure of 0.00 indicates an estimated bias between \(-0.005\) and \(0.005\). The simulation error for the bias estimates is in \((0.001, 0.002)\).

\(\theta_n \)	5	10	20	40	80	160	320
\(\hat{\theta} \)	1.19	0.53	0.25	0.12	0.06	0.03	0.01
\(\theta^{(J)} \)	-0.38	-0.07	-0.01	0.00	0.00	0.00	0.00
\(\theta^{(B)} \)	-0.19	0.01	0.01	0.00	0.00	0.00	0.00
\(\theta^\dagger \)	0.62	0.17	0.05	0.01	0.00	0.00	0.00
\(\hat{\theta} \)	0.40	0.10	0.03	0.01	0.00	0.00	0.00

\(\theta_n \)	5	10	20	40	80	160	320
\(\hat{\theta} \)	12.99	3.76	1.47	0.65	0.30	0.15	0.07
\(\theta^{(J)} \)	12.69	3.04	1.29	0.61	0.29	0.15	0.07
\(\theta^{(B)} \)	59.22	3.00	1.29	0.61	0.29	0.15	0.07
\(\theta^\dagger \)	10.09	3.11	1.31	0.61	0.29	0.15	0.07
\(\hat{\theta} \)	9.37	3.04	1.30	0.61	0.29	0.15	0.07

\(\theta_n \)	5	10	20	40	80	160	320
\(\hat{\theta} \)	2.23	1.37	0.91	0.62	0.43	0.30	0.22
\(\theta^{(J)} \)	2.29	1.31	0.88	0.61	0.43	0.30	0.21
\(\theta^{(B)} \)	2.20	1.29	0.88	0.61	0.43	0.30	0.21
\(\theta^\dagger \)	2.03	1.29	0.88	0.61	0.43	0.30	0.21
\(\hat{\theta} \)	2.00	1.29	0.88	0.61	0.43	0.30	0.21

\(\theta_n \)	5	10	20	40	80	160	320
\(\hat{\theta} \)	0.44	0.46	0.47	0.48	0.48	0.49	0.49
\(\theta^{(J)} \)	0.64	0.60	0.56	0.54	0.53	0.52	0.51
\(\theta^{(B)} \)	0.62	0.58	0.56	0.54	0.53	0.52	0.51
\(\theta^\dagger \)	0.53	0.54	0.54	0.54	0.53	0.52	0.51
\(\hat{\theta} \)	0.56	0.56	0.55	0.54	0.53	0.52	0.51

To illustrate the performance of the implicit and explicit RBM-estimators of the ratio \(\theta \) we assume that \((X_1, Y_1), \ldots, (X_n, Y_n) \) are independent random vectors from a bivariate distribution constructed through a Gaussian copula with correlation 0.5, to have an exponential marginal with rate 1/2 for \(X_i \) and a normal marginal for \(Y_i \) with mean 10 and variance 1. Hence, \(\hat{\theta} = 5 \). For each \(n \in \{10, 20, 40, 80, 160, 320\} \), we simulate \(N_n = 250 \times 2^{16} / n \) samples. Calibrating the simulation size in this way guarantees a fixed simulation error for the simulation-based estimate of the bias of the \(M \)-estimator. For each sample, we estimate \(\theta \) using the \(M \)-estimator \(\hat{\theta} \), the implicit and explicit RBM-estimators \(\theta \) and \(\theta^\dagger \), respectively, the jackknife estimator \(\theta^{(J)} = n \hat{\theta} - (n - 1) \sum_{i=1}^{n} \hat{\theta}_{(i)} / n \), where \(\hat{\theta}_{(i)} = \sum_{j \neq i} Y_i / \sum_{j \neq i} X_i \), and the “better” nonparametric bootstrap ratio estimator \(\theta^{(B)} \) in [Efron and Tibshirani (1993) Section 10.4] using 500 resamples. Note here that both vanilla asymptotic bias correction [Efron (1975)] and the bias-reducing adjusted score function in [Firth (1993)] require expectations of products of log-likelihood derivatives, which require specifying the bivariate distribution for \((X_i, Y_i) \). Despite the simplicity of the current setting, even if one could confidently specify that distribution, the required expectations involve
non-trivial analytic calculations and may not even be available in closed-form.

Table 3 shows the simulation-based estimates of the bias $E_G(\hat{\theta}_n - \bar{\theta})$, mean squared error $E_G\{(\hat{\theta}_n - \bar{\theta})^2\}$, mean absolute deviation $E_G(|\hat{\theta}_n - \bar{\theta}|)$, and probability of underestimation $P_G(\hat{\theta}_n < \bar{\theta})$ for θ_n being $\hat{\theta}$, $\hat{\theta}^{(J)}$, $\hat{\theta}^{(B)}$, $\bar{\theta}^\dagger$ and $\tilde{\theta}$. As with the jackknife and bootstrap, explicit and implicit RBM-estimation result in a marked reduction of the bias. The estimated slopes of the regression lines of the logarithm of the absolute value of the estimated biases for $\hat{\theta}$, $\theta^{(J)}$, $\theta^{(B)}$, $\bar{\theta}^\dagger$, and $\tilde{\theta}$ on the values of $\log n$ are -1.039, -1.696, -1.413, -1.856, and -2.118, respectively, which are in agreement to the theoretical slopes of -1, $-3/2$, $-3/2$, $-3/2$, and $-3/2$.

Reduction of the bias in this setting leads also in marked reduction in mean squared error and mean absolute deviation, with $\hat{\theta}$, $\bar{\theta}^\dagger$, $\theta^{(J)}$ and $\theta^{(B)}$ performing similarly for $n \geq 10$, and markedly better than $\hat{\theta}$. The large mean squared errors of $\theta^{(J)}$ and $\theta^{(B)}$ for $n = 5$ are due to extreme ratio estimates appearing with positive probability under the resampling distribution. The RBM-estimators also have probability of underestimation closer to 0.5, hence they are closer to being median unbiased than $\hat{\theta}$, $\theta^{(J)}$ and $\theta^{(B)}$ are.

4 Asymptotic distribution of reduced-bias M-estimators

The stochastic Taylor expansion (S1) in the Supplementary Material document implies that $\theta - \bar{\theta}$ and the RBM-estimation counterparts $\hat{\theta} - \bar{\theta}$, $\theta^\dagger - \bar{\theta}$ have exactly the same $O_p(n^{-1/2})$ term in their expansions because $A(\theta) = O_p(1)$. Hence, the argument in [12] applied to that first term gives that the implicit RBM-estimator $\tilde{\theta}$ is such that

$$Q(\tilde{\theta})^{1/2}(\tilde{\theta} - \bar{\theta}) \xrightarrow{d} N_p(0_p, I_p),$$

and the same holds for the M-estimator and the explicit RBM-estimator θ^\dagger. In (11), I_p is the $p \times p$ identity matrix, $Q(\theta) = V(\theta)^{-1}$, where $V(\theta) = B(\theta)^{-1}M(\theta)(B(\theta)^{-1})^\top$, with $M(\theta) = E_G\{\sum_{i=1}^k V_i(\theta)(V_i(\theta))^\top\}$, and $B(\theta)$ is a $p \times p$ matrix with rth row $-\sum_{i=1}^k E_G\{\nabla V_i(\theta)^\top\}$.

An implication of (11) is that $\tilde{V}(\theta) = j(\theta)^{-1}e(\theta)\{j(\theta)^{-1}\}_\theta^\top$ evaluated at $\theta = \tilde{\theta}$ (or $\theta = \theta^\dagger$) is a consistent estimator of the variance-covariance matrix of $\tilde{\theta}$ (or θ^\dagger). This is exactly as in the case where $\tilde{V}(\theta)$ is used as an estimator of the variance-covariance matrix of θ in the framework of M-estimation (see, for example, [12], Section 2). The expression for $\tilde{V}(\theta)$ appears unaltered in the second term of the right-hand-side of expression (11) for the empirical bias-reducing adjustment. As a result, the value of $\tilde{V}(\theta)$ or $\tilde{V}(\theta^\dagger)$ and that of estimated standard errors for the estimators are available at the final quasi Newton-Raphson update for computing the RBM-estimates, as detailed in Section S4 of the Supplementary Material document.

In addition, if the model is correctly specified, and $l(\theta)$ in (3) is the log-likelihood, then the second Bartlett identity gives $M(\theta) = B(\theta)$, which implies that $Q(\theta)$ is the expected information matrix. As a result, the RBM-estimator is asymptotically efficient, exactly as the ML estimator and the reduced-bias estimator in [12] are.

Example 4.1: Ratio of two means (continued) Table 3 shows the estimates of the actual variances of $\hat{\theta}$ and $\tilde{\theta}$ for $n \in \{10, 20, 40, 80, 160, 320\}$ and the estimate of the mean of $\tilde{V}(\theta)$ and $\tilde{V}(\theta)$, respectively. As expected by the arguments above, the large sample approximations to the variance of the estimator converge to the actual variances as the sample size increases.

Another implication of (11) is that asymptotically valid inferential procedures, like hypothesis tests and confidence regions for the model parameters, can be constructed based on Wald-type
Table 3: Simulation-based estimates of the variances of the M-estimator $\hat{\theta}$ and the RBM-estimator $\tilde{\theta}$ (var$_G(\hat{\theta})$ and var$_G(\tilde{\theta})$, respectively) and of the mean of $\bar{V}(\hat{\theta})$ and $\bar{V}(\tilde{\theta})$ ($E_G(\bar{V}(\hat{\theta}))$ and $E_G(\bar{V}(\tilde{\theta}))$, respectively), from the simulation study of Example 3.1. See, also Table 2.

n	10	20	40	80	160	320
var$_G(\hat{\theta})$	3.49	1.41	0.64	0.30	0.15	0.07
$E_G\{\bar{V}(\hat{\theta})\}$	2.55	1.20	0.59	0.29	0.14	0.07
var$_G(\tilde{\theta})$	3.09	1.31	0.61	0.30	0.15	0.07
$E_G\{\bar{V}(\tilde{\theta})\}$	2.16	1.10	0.56	0.28	0.14	0.07

and generalized score approximate pivots of the form

$$W_c(\theta) = (\tilde{\theta} - \theta)\top \left\{ \bar{V}(\tilde{\theta}) \right\}^{-1} (\tilde{\theta} - \theta),$$

$$W_s(\theta) = \left\{ \sum_{i=1}^k \psi_i'(\theta) + A(\theta) \right\} \top \left\{ e(\tilde{\theta}) \right\}^{-1} \left\{ \sum_{i=1}^k \psi_i'(\theta) + A(\theta) \right\},$$

respectively, which, asymptotically, have a χ^2_p distribution. The same holds when θ^\dagger is used in place of $\tilde{\theta}$. These pivots are direct extensions of the Wald-type and generalized score pivots, respectively, that are typically used in M-estimation; see Boos (1992) for discussion about generalized score tests in M-estimation.

5 Bias-reducing penalties to objective functions

5.1 Penalized objectives

When M-estimation is through the maximization of an objective function of the form (3), implicit RBM-estimation is equivalent to the maximization of the penalized objective function

$$l(\theta) - \frac{1}{2} \text{trace} \left\{ j(\theta)^{-1} e(\theta) \right\},$$

assuming that the maximum exists. This equivalence can be proved by noting that $j(\theta)$ is a symmetric matrix, and differentiating the penalty in (13) to get adjustment (8).

Example 5.1: Generalized linear models Suppose that the distribution of $Y_i | x_i$ is fully-specified to be exponential family with mean $\mu_i = h(\eta_i)$ for a known inverse link function $h(\cdot)$, with $\eta_i = x_i\top \beta$, and variance $v(\mu_i)/m_i$. Then, the ith log-likelihood contribution is

$$\log f_i(y_i | x_i, \beta, \phi) = \frac{m_i}{\phi} \left\{ y_i \eta_i - \kappa(\eta_i) - c_1(y_i) \right\} - \frac{1}{2} a \left(-\frac{m_i}{\phi} \right),$$

for sufficiently smooth functions $\kappa(\cdot)$, $c_1(\cdot)$, and $a(\cdot)$, and known prior weights m_1, \ldots, m_n with $m_i > 0$, where $\mu_i = d\kappa(\eta_i)/d\eta_i$ and $v(\mu_i) = d^2\kappa(\eta_i)/d\eta_i^2$. Section S5 in the Supplementary Materials document gives the form of $j(\beta, \phi)$ and $e(\beta, \phi)$ for GLMs with unknown dispersion parameter ϕ. If the dispersion parameter ϕ is known, as is, for example, for the binomial and Poisson distributions, then the bias-reducing penalty in (13) involves only the (β, β) blocks.
\(j_{\beta\beta}(\beta) \) and \(e_{\beta\beta}(\beta) \) of \(j(\beta, \phi) \) and \(e(\beta, \phi) \), respectively. Simple algebra shows that the RBM-estimator of \(\beta \) results as the maximizer of the bias-reducing penalized log-likelihood

\[
\sum_{i=1}^{n} m_i \left\{ y_i \theta_i - \kappa(\theta_i) - \frac{1}{2} \frac{d_i}{v_i} (y_i - \mu_i) \right\}, \tag{15}
\]

where \(d_i = dh(\eta_i)/dn_i \), and \(v_i = v(\mu_i) \). The quantity \(s_i \) is the \(i \)th diagonal element of \(X(X^\top Q X)^{-1} X^\top W \), where \(X \) is the \(n \times p \) model matrix with rows \(x_1, \ldots, x_n \), and the diagonal matrices \(W \) and \(Q \) are as defined in Section S5 of the Supplementary Material.

Expression (15) is in contrast to the method in Firth (1993), for which a penalized log-likelihood does not always exist; see, Kosmidis and Firth (2009, Theorem 1) for the necessary and sufficient condition for the existence of a bias-reducing penalized likelihood for GLMs.

5.2 Estimation

The implicit RBM-estimates can be computed using general numerical optimization procedures for the maximization of the penalized objective function (13) that operate by numerically approximating gradients, like those provided by the optim function in R or the Optim Julia package (Mogensen and Riseth 2018). In such cases, RBM-estimation requires only routines for matrix multiplication and inversion, and the contributions to the objective function and their first two derivatives for the implementation of \(f(\theta) \) and \(e(\theta) \), which can be obtained using automatic differentiation. The MEstimation Julia package provides a proof-of-concept of an implementation relying on automatic differentiation.

The explicit RBM-estimator \(\hat{\theta} = \theta + j(\hat{\theta})^{-1} A(\hat{\theta}) \) in (9) can be obtained by computing \(j(\hat{\theta}) \), and numerically differentiating the penalty term \(-\text{trace}\{j(\hat{\theta})^{-1} e(\theta)\}/2 \) in (13) at the \(M \)-estimate \(\hat{\theta} \) to get the value of \(A(\hat{\theta}) \).

Example 5.2: Gaussian max-stable processes

Vanilla likelihood and Bayesian approaches for spatial extreme processes face challenges, because the direct generalization of the classical multivariate extreme value distributions to the spatial case is a max-stable process for which the evaluation of the likelihood becomes increasingly more intractable as the number of site locations increases (Davison and Gholamrezaei 2012). Several works have proposed the use of computationally appealing surrogates to the likelihood, like composite likelihoods, which are formed by specifying marginal or conditional densities for subsets of site locations (see Padoan et al. 2010; Genton et al. 2011; Davison and Gholamrezaei 2012; Huser and Davison 2013, among others). Nevertheless, standard bias-reduction methods, like the one in Firth (1993) and Kuk (1995) in Table 1, are either infeasible or computationally expensive because the calculation of the bias function involves either integrals with respect to the true underlying joint density or requires repeated sampling and refitting.

An example of a surrogate to the likelihood is the pairwise likelihood introduced in Padoan et al. (2010) under a block maxima approach for modelling extremes. Suppose that \(y_1(s_1), \ldots, y_k(s) \) with \(s \in \{s_1, \ldots, s_L\} \), \(s_j \in \mathbb{R}^2 \), are \(k \) independent observations at each of \(L \) site locations. The pairwise log-likelihood formed from the collection of \(L(L-1)/2 \) distinct pairs of locations is

\[
l(\theta) = \sum_{i=1}^{k} \sum_{l > m} \log f(y_i(s_l), y_i(s_m) \mid \theta), \tag{16}
\]

where \(f(y_i(s_l), y_i(s_m) \mid \theta) \) is the joint density of \(Y_i(s_l) \) and \(Y_i(s_m) \) \((l, m = 1, \ldots, L; l \neq m)\), given in expression (S3) of the Supplementary Material document. The spatial dependence between \(Y_i(s_l) \) and \(Y_i(s_m) \) is characterized by the \(2 \times 2 \) matrix \(\Sigma(\theta) \) with diagonal elements \(\sigma_1^2 \) and \(\sigma_2^2 \), and \(\sigma_{12}^2 \) in the off-diagonals. The maximizer of (16) with respect to \(\theta = (\sigma_1^2, \sigma_2^2, \sigma_{12}^2) \),
The two left-most panels refer to Σ_4 and Σ_5, respectively, and show simulation-based estimates of the logarithm of the absolute bias of $\hat{\theta}$ (black) and $\tilde{\theta}$ (grey) from the experiments in Example 5.2. The dashed line has slope −1 corresponding to the theoretical rate of the bias of $\hat{\theta}$, and the shadowed region is defined by lines with slopes −3/2 and −2, corresponding to the theoretical rate of the bias of $\tilde{\theta}$. The two right-most panels show simulation-based estimates of the root mean squared error of $\hat{\theta}$ (black) and $\tilde{\theta}$ (grey) at Σ_4 and Σ_5.

is the maximum pairwise likelihood estimator $\hat{\theta}$, and the RBM-estimator $\tilde{\theta}$ maximizes (13). Expressions for $j(\theta)$ and $e(\theta)$ are given in Section S6 of the Supplementary Material document.

Simulations are run by generating independent observations $y_1(s), \ldots, y_k(s)$ from a Gaussian max-stable process observed at $L = 50$ site locations. The locations are generated uniformly on a $[0, 40] \times [0, 40]$ region. We consider sample sizes $k \in \{10, 20, 40, 80, 160\}$ with corresponding number of simulations equal to 4000k, and true parameter settings $\theta = (2000, 3000, 1500)^\top$ and $\theta = (20, 30, 15)^\top$, imposing strong and weak spatial dependence, respectively. These parameter values correspond to Σ_4 and Σ_5 in Table 1 of Padoan et al. (2010). In Figure 1 we show the simulation-based estimates of the logarithms of the absolute biases as functions of log n, where $n = k$. These curves have roughly slopes −1, and between −3/2 and −2, respectively as expected by the asymptotic theory in Section 3, demonstrating the reduction of the bias that $\tilde{\theta}$ delivers. Furthermore, $\tilde{\theta}$ appears to have smaller finite-sample mean squared error, and hence smaller variance than the maximum pairwise likelihood estimator $\hat{\theta}$. The simulation results provide evidence for the superiority of the RBM-estimator.

We are not including simulation- or resampling-based methods for bias reduction (see Table 1 in the simulation experiments here because they require the repeated calculation of maximum pairwise likelihood estimates, and hence are expensive computationally. Furthermore, the bias reduction method in Firth (1993) does not apply here because its application requires expectations of products of derivatives of the full likelihood function for the Gaussian max-stable process, which poses more severe tractability issues than ML.

5.3 Plug-in penalties and finite estimates in binomial-response GLMs

The family of bias-reducing adjustments to the estimating functions defined by expression (6) allows for some creativity on the construction of adjustments. For example, when M-estimation is through an objective function, then maximization of (13) after adding a plug-in penalty $P(\theta)$ with $\nabla P(\theta) = O_p(n^{-1/2})$ still results in estimators with bias of order $O(n^{-3/2})$. In this way, we can construct RBM-estimators with extra properties (RBMP-estimators).

Firth (1993) showed that maximizing the logistic regression likelihood after penalizing it by the Jeffreys’ invariant prior results in reduced-bias estimates. As proved in Kosmidis and Firth (2021), such penalization has the useful side-effect that the reduced-bias estimates are always finite, even in cases where the ML estimates are infinite. The finiteness property of the reduced-bias estimator is rather attractive for applied work, because it circumvents all the numerical and inferential issues that ML encounters with separated datasets (see, Mansournia et al. 2018 for
a recent review of the practical issues associated with infinite estimates in logistic regression). In Kosmidis and Firth (2021), it is also shown that the finiteness of the maximum penalized likelihood estimates extends more generally to penalties that are any positive power of the Jeffreys’ prior penalty, and to binomial-response GLMs with links other than the logistic. The resulting estimators, though, do not necessarily have better bias properties than the ML estimator, and that bias can be considerable for large effects; for example, Cordeiro and McCullagh (1991, Section 8.1) show that, in logistic regressions, the first term in the bias expansion of the maximum likelihood estimator grows roughly linearly with the effect size.

To this end, we can appropriately select a plug-in penalty \(P(\theta) \) to (13) and construct finite RBM\(p \)-estimators for a wide range of binomial-response generalized linear models, including logistic, probit, complementary log-log, and cauchit regression. Consider a binomial-response GLM with \(\ell \)th likelihood contribution \(f_i(y_i \mid x_i, \beta) \) as in (14) and binomial totals \(m_1, \ldots, m_n \). Consider also that estimation is by maximization of the penalized log-likelihood

\[
\sum_{i=1}^{n} \log f_i(y_i \mid x_i, \beta) - \frac{1}{2} \text{trace} \left\{ J_{\beta\beta}(\beta)^{-1} e_{\beta\beta}(\beta) \right\} + \frac{1}{N} \log |X^\top W(\beta) X|,
\]

for some \(N > 0 \), where \(X \) is the \(n \times p \) matrix with rows \(x_1, \ldots, x_n \), assumed to have full rank, and \(W(\beta) \) is a diagonal matrix with \(\ell \)th diagonal element the working weight \(m_i \omega(\eta_i) \) (\(i = 1, \ldots, n \)) with \(\omega(\eta) = h'/(h[1-h]) \) and \(h'/(h)=d(h)/dh \). The first two terms in (17) form the bias-reducing penalized log-likelihood for GLMs with known dispersion derived in Example 5.1. What is important to note here is that, directly by its definition, \(e_{\beta\beta}(\beta) \) is symmetric and positive semi-definite. Furthermore, as shown in Pratt (1981), the log-likelihood for binomial generalized-linear models is concave for many of the commonly used link functions, including logit, probit, complementary log-log, and cauchit links. Hence, for those link functions \(J_{\beta\beta}(\beta) \), apart from being symmetric, is also positive semi-definite. As a result \(\text{trace} \left\{ J_{\beta\beta}(\beta)^{-1} e_{\beta\beta}(\beta) \right\} \geq 0 \), and the bias-reducing penalized log-likelihood (13) is bounded above by zero. For the aforementioned link functions, it also holds that \(\omega(\eta) \) converges to zero as \(\eta \) diverges to either \(-\infty \) or \(+\infty \). According to Kosmidis and Firth (2021, Theorem 1 and Section 3.1) the plug-in penalty \(\log |X^\top W(\beta) X|/N \) diverges to \(-\infty \) as any element of \(\beta \) diverges. Hence, the maximizer of (17) has all of its components finite for any \(N > 0 \). Choosing, for example, \(N = \sqrt{\sum_{i=1}^{n} m_i} \) or \(N = \sum_{i=1}^{n} m_i \) also guarantees that the maximizer of (17), apart from finite components, also has bias that is free from the first-order term. Example 5.3 and Example 5.4 below demonstrate the performance of implicit RBM-estimators with plug-in penalties in fully-specified probit regression, and partially-specified autologistic regression.

Example 5.3: Probit regression The performance of the explicit and implicit RBM estimators is assessed here in a fully-specified, Bernoulli-response GLM with \(\mu_i = \Phi(\beta_1 + \sum_{j=2}^{5} \beta_j x_{ij}) \) (\(i = 1, \ldots, n \)), where \(\Phi(\cdot) \) is the cumulative distribution function of a standard Normal distribution. The covariate values \(x_{i2}, x_{i3}, x_{i4}, x_{i5} \) (\(i = 1, \ldots, n \)) are generated independently and independent of each other from a standard normal distribution, Bernoulli distributions with probabilities 1/4 and 3/4, and an exponential distribution with rate 1, respectively. Note that the necessary and sufficient condition of Kosmidis and Firth (2009, Theorem 1) is not satisfied for this model, and hence, there is no bias-reducing penalized log-likelihood that corresponds to the adjusted score functions of Firth (1993). Instead, the bias-reducing penalized log-likelihood (15) and its version with a plug-in penalty in (17) are well-defined.

For \(n \in \{100, 150, 200, 250, 300\} \), we simulate \(n \) covariate values, as detailed in the previous paragraph, and conditional on those we simulate 1000 samples of \(n \) response values from Bernoulli distributions with probabilities prescribed by a probit regression model with \(\beta = (-2, 2, 2, -0.5, -0.5)^\top \). For each sample, we estimate \(\beta \) using ML, explicit and implicit RBM-estimation, implicit RBM-estimation with plug-in penalty with \(N = n \), and the adjusted score functions approach in Firth (1993), which relies on expectations of products of
log-likelihood derivatives with respect to the correct model.

Maximum likelihood estimates are computed using the \texttt{glm} function in R (R Core Team, 2021), and the Firth (1993) adjusted scores estimates are computed using the \texttt{brglm.fit} method from the \texttt{brglm2} R package (Kosmidis, 2023). The RBM-estimates with and without plug-in penalty result from the numerical maximization of (17) and (15), respectively; see the R scripts for probit regression supplied in the Supplementary Material.

Infinite ML estimates were observed for 15, and 4 samples when \(n = 100 \) and \(n = 150 \), respectively. The detection of infinite estimates was done using the linear programming algorithms in Konis (2007), as implemented in the \texttt{detectseparation} R package (Kosmidis et al., 2022). In those cases, maximizing the likelihood and the bias-reducing penalized likelihood (15) result in estimates on the boundary of the parameter space, and also explicit RBM-estimates cannot be computed. As expected by the arguments in Section 5.3, the maximization of the bias-reducing penalized likelihood with the plug-in penalty in (17) always results in finite estimates, as did the adjusted score approach of Firth (1993).

Figure 2 shows estimates of the absolute bias and root mean squared error of the five estimators. The summaries are conditional on the ML estimates not being on the boundary of the parameter space, because otherwise the bias and the root mean squared error are not formally defined for ML, explicit RBM estimation, and implicit RBM-estimation with no plug-in penalty. As is apparent, the adjusted scores approach of Firth (1993), and explicit and implicit RBM-estimation, with or without plug-in penalty, result in estimators with substantially smaller conditional bias and mean squared error than the ML estimator. The finite-sample bias and mean squared error of the RBM-estimators tends to be slightly larger than that of the adjusted scores approach of Firth (1993). The differences diminish fast as the sample size increases.

Example 5.4: Autologistic regression models

The arguments in Section 5.3 are used here to deliver finite RBM\(p \)-estimators for autologistic regression models, which are typically estimated by composite likelihoods. Autologistic regression (Besag, 1972, 1974) is an important model for analysing binary responses with spatial or network correlation, used extensively in a range of disciplines, including ecology, anthropology, and computer vision; see...
Wolters (2017) for references. Suppose that $y(s) \in \{-1, 1\}$ is an observation at location $s \in S = \{s_{11}, \ldots, s_{c1}, \ldots, s_{k1}, \ldots, s_{ck}\}$, which is assumed to be a realization of a random variable $Y(s)$ with conditional probability mass function

$$f(y \mid \{y(u) : u \in G(s)\}, \mathbf{x}(s), \theta) = \frac{e^{\gamma(s)}}{e^{-\gamma(s)} + e^{\gamma(s)}} \text{ with } \gamma(s) = \mathbf{x}(s)^\top \beta + \lambda \sum_{u \in G(s)} y(u), \quad (18)$$

where $\mathbf{x}(s)$ is a p-vector of covariate observed at location s, $\theta = (\beta_1, \ldots, \beta_p, \lambda)^\top$, and λ is the association parameter. The mapping $G(s)$ is assumed to be known and returns the set of all locations that are neighbours of s, excluding s. We allow for $k \in \{1, 2, \ldots\}$ disconnected clusters of observations, each with its own neighbourhood structure, by assuming $G(s_{ij}) \cap G(s_{ij'}) = \emptyset$, for $i \neq i'$, $j \in \{1, \ldots, c_i\}$ and $j' \in \{1, \ldots, c_{i'}\}$. Negative values of λ promote discordant responses in the neighbourhoods, while positive values promote concordant ones. Wolters (2017) shows that the $\{-1, 1\}$ coding of the binary responses in combination with the parameterization in (18) has notable advantages over alternative proposals for autologistic regression models (for example, the traditional specification with $0, 1$-coding in Besag 1974 and the, more recent, centred autologistic model with $0, 1$-coding in Caragea and Kaiser 2009), both in terms of estimation and interpretation of the model parameters. What is worth noting here is that the regression and association effects in the corresponding $\{-1, 1\}$-coding model are 2β and 4λ, respectively.

The joint probability mass function $f(y(s_{11}), \ldots, y(s_{ck}), \mathbf{x}(s_{11}), \ldots, \mathbf{x}(s_{ck}), \theta)$ with full conditionals of the form (18) involves a typically intractable normalizing constant. Nevertheless, sampling from it is possible using Gibbs sampling or perfect sampling approaches; see Hughes et al. (2011) and Wolters (2017), and references therein, and the Autologistic Julia package (Wolters 2022), which implements a range of sampling techniques. So, estimation for autologistic regression models can be performed using Monte Carlo approximations to the likelihood function. A computationally more attractive approach is to maximize the pseudolikelihood

$$\exp \{l(\theta)\} = \prod_{i=1}^k \prod_{j=1}^{c_i} f(y(s_{ij}) \mid \{y(u) : u \in G(s_{ij})\}, \mathbf{x}(s_{ij}), \theta), \quad (19)$$

with respect to θ, which, in the terminology of Varin et al. (2011), is a composite conditional likelihood. Besag (1975) establishes the consistency of the M-estimators from the maximization of $l(\theta)$. A straightforward calculation gives that

$$\nabla \log f(y(s_{ij}) \mid \{y(u) : u \in G(s_{ij})\}, \mathbf{x}(s_{ij}), \theta) = \{z(s_{ij}) - \pi(s_{ij})\} \tilde{x}(s_{ij}),$$

where $z(s) = (1 + y(s))/2$, $\pi(s) = 1/(1 + e^{-2\gamma(s)})$, and $\tilde{x}(s) = (2x(s)^\top; 2\sum_{u \in G(s)} y(u))^\top$. So, the contribution to the estimating functions from the ith cluster of observations is $\psi_i(\theta) = \sum_{j=1}^{c_i} \{z(s_{ij}) - \pi(s_{ij})\} \tilde{x}(s_{ij})$, which has expectation zero under the joint probability mass function. The bias-reducing penalized pseudolikelihood is $l^{(RBM)}(\theta) = l(\theta) - \text{trace}(j(\theta)^{-1}e(\theta))/2$ in (18), with $e(\theta) = \sum_{i=1}^k \psi_i(\theta)^\top \psi_i(\theta)$ and $j(\theta) = X^\top W(\theta) X$, where the matrix X has (i, j)th element $\tilde{x}(s_{ij})$ and $W(\theta)$ has diagonal elements $\pi(s_{11}) \{1 - \pi(s_{11})\}, \ldots, \pi(s_{ck}) \{1 - \pi(s_{ck})\}$.

As with logistic regression, the estimates from the maximization of (19) can be infinite with positive probability. This is particularly dangerous in the practice of these models, because parametric bootstrap is, currently, the most widely-used approach for uncertainty quantification and inference about the model parameters. There is positive probability that optimization algorithms will fail or return a very large, in absolute value, estimate, instead of plus or minus infinity, because their convergence criteria have been satisfied. Then, naive handling of the bootstrap estimates will return large bootstrap standard errors or nonsensical bootstrap intervals, when the latter are simply formally not well-defined. To the best of authors’ knowledge, this is something that has not been reported before in the autologistic regression literature.
Table 4: M- and RBM-p-estimates and corresponding nominally 95% normal and percentile bootstrap confidence intervals from an autologistic regression model for two subsets of the Gambia malaria survey data (Thomson et al., 1999), as detailed in Example 5.4. The numbers in [] are the number of simulated samples with at least one infinite component in the M-estimate.

	Subset 1 (intercept and coefficient for netuse in arg max l are $-\infty$ and ∞, respectively)	Subset 2 (no infinite components in arg max l)	
	Estimates	Normal	Percentile
	M RBM-p M [500] RBM-p [499] M [500] RBM-p [499]	M [1] RBM-p [0] M [1] RBM-p [0]	
intercept	-11.43 -2.60 $(-13.86,-9.58)$ $(-5.39,-0.02)$ $(-12.83,-8.78)$ $(-4.99,0.50)$	-9.27 -9.99 $(-12.20,16.98)$ $(-27.23,11.31)$ $(-30.22,26.54)$ $(-34.65,3.38)$	
age	0.16 0.16 $(0.02,0.31)$ $(0.03,0.30)$ $(0.02,0.31)$ $(0.03,0.30)$	0.16 0.16 $(0.04,0.27)$ $(0.03,0.30)$ $(0.05,0.28)$ $(0.03,0.30)$	
netuse	12.24 3.24 $(9.81,14.09)$ $(2.66,3.77)$ $(10.84,14.88)$ $(2.83,3.71)$	0.16 0.11 $(-0.75,0.94)$ $(-0.49,0.72)$ $(-0.41,0.81)$ $(-0.54,0.63)$	
treated	-0.41 -0.39 $(-1.01,0.45)$ $(-0.92,0.27)$ $(-1.31,0.09)$ $(-1.12,0.05)$	0.01 -0.05 $(-0.54,0.67)$ $(-0.62,0.53)$ $(-0.62,0.60)$ $(-0.62,0.59)$	
green	-0.04 -0.03 $(-0.13,0.10)$ $(-0.09,0.04)$ $(-0.19,0.01)$ $(-0.12,0.00)$	0.21 0.23 $(-0.43,1.00)$ $(-0.29,0.65)$ $(-0.67,0.72)$ $(-0.10,0.83)$	
phc	0.05 0.04 $(-0.86,0.76)$ $(-0.51,0.52)$ $(-0.45,1.04)$ $(-0.35,0.58)$	0.01 0.14 $(-1.10,1.50)$ $(-0.60,0.72)$ $(-1.64,0.47)$ $(-0.43,0.95)$	
λ	0.01 0.01 $(-0.05,0.13)$ $(-0.03,0.07)$ $(-0.12,0.02)$ $(-0.06,0.03)$	0.02 0.02 $(-0.02,0.08)$ $(0.01,0.04)$ $(-0.05,0.03)$ $(0.01,0.03)$	

Because $l(\theta)$ is bounded above by zero and is concave (see, Wolters, 2017, Theorem 5), the same arguments as in Section 5.3 show that the RBM-p-estimates from the maximization of $l(\text{RBM}-p) = l(\text{RBM}) + \log |X^T W(\theta) X| / \sum_{i=1}^k c_i$ have both improved bias properties and are always finite. Hence, they are safe to use for bootstrap uncertainty quantification and inferences.

For illustration purposes, we focus on two subsets of the Gambia malaria survey data (Thomson et al., 1999), which is provided in the geoR R package (Ribeiro Jr et al., 2022). The two subsets consist of villages in the central (subset 1, with 270 children in 8 villages) and south western (subset 2, with 321 children in 11 villages) region of the Gambia, respectively. The variable of interest is an indicator denoting the presence (coded as 1) or not (coded as 0) of malaria in the blood sample taken from each child. The covariate information includes: the age of the child in years (age), an indicator denoting whether (coded as 1) or not (coded as 0) the child regularly sleeps under a bed-net (netuse), an indicator denoting whether (coded as 1) or not (coded as 0) the bed-net is treated (treated), a satellite-derived measure of the greenness of vegetation in the immediate vicinity of the village in arbitrary units (green), and an indicator for the presence (coded as 1) or absence (coded as 0) of a health centre in the village (phc).

Table 4 shows the estimates from fitting an autologistic regression model by the numerical maximization of $l(\theta)$ and $l(\text{RBM}-p)$ on each of the subsets. For both subsets, the first element of $x(s_{ij})$ is set to 1, corresponding to an intercept parameter, and the remainder elements are the covariate values for child j in village i. The mapping $G(s)$ has been constructed under the assumption that any two children in the data are neighbours only if they come from the same village. All estimates from the maximization of $l(\theta)$ for subset 2 have finite components,
while, for subset 1, the estimates -11.43 and 12.24 for the intercept and the parameter for netuse, respectively, are in reality $-\infty$ and ∞ (detection of infinite estimates took place using the `detectseparation` R package for the logistic regression of $z(s)$ on $\tilde{x}(s)$). Those apparently finite values are artefacts due to the numerical optimization procedure stopping prematurely by meeting the optimizer’s convergence criteria. In contrast, all RBM\tilde{p}-estimates are finite and can be trusted at the reported accuracy.

Table 4 also reports 95% bootstrap confidence intervals using normal approximation and 95% bootstrap percentile intervals (see Davison and Hinkley [1997] expression (5.5) and expression (5.18), respectively). The intervals have been computed using parametric bootstrap of size 500 at the reported estimates, which is the current state of the art for autologistic regression, without employing any special convention for the handling of any infinite M-estimates that may arise in the bootstrap samples. The effect of infinite estimates is dramatic in subset 1, where all bootstrap samples at the M-estimates result in infinite M-estimates for the intercept and the coefficient of netuse. The impact is that the apparent evidence that bootstrap at the M-estimates provides about the respective parameters being zero are grossly exaggerated, simply reflecting the optimizer’s stopping criteria. Overall, the bootstrap intervals based on RBM\tilde{p}, apart from being always well-defined tend to be shorter in length, and in some cases result in different inferential conclusions than the corresponding ones based on the M-estimates. For example, both bootstrap intervals based on the RBM\tilde{p} estimates provide evidence of positive association in subset 2, while the ones based on M-estimates provide no evidence of association.

The bootstrap intervals based on the RBM\tilde{p} estimator are also found to perform better in terms of coverage than the typically wider intervals based on the M-estimator. We simulated 1000 samples at RBM\tilde{p} estimates from subset 2 in Table 4 and for each sample we computed the nominally 95% bootstrap percentile intervals based on the M- and the RBM\tilde{p}-estimators using a bootstrap of size 500. No infinite M-estimates were detected in the simulated samples. The estimated coverage probabilities for M-estimation in the order that the parameters appear in Table 4 are 0.84, 0.95, 0.92, 0.92, 0.82, 0.81, 0.82, respectively. The corresponding estimated coverage probabilities based on RBM\tilde{p}-estimation are found to be markedly closer to the nominal level with 0.90, 0.95, 0.94, 0.89, 0.91, 0.90, respectively, with the intervals also having shorter lengths at 75%, 99%, 72%, 17%, 75%, 18%, 77%, respectively, of the length of the M-estimation ones. Properties of the various variants of bootstrap intervals and their suitability for autologistic regression is an interesting topic that is beyond the scope of the current work.

Note here that the adjusted score equations of Firth (1993) do not apply easily because the joint probability mass function with full conditionals of the form (18) is typically intractable. Furthermore, alternative bias reduction methods such bootstrap, indirect inference, and the jackknife are not well-defined, due to the positive probability of infinite maximum pseudo-likelihood estimates. In fact, if infinite estimates go undetected, such methods can easily return nonsensical estimates.

5.4 Links to model selection using Kullback-Leibler divergence

Suppose that $l(\theta)$ is the log-likelihood function based on an assumed parametric model F. Takeuchi (1976) showed that

$$-2l(\hat{\theta}) + 2\text{trace}\left\{j(\hat{\theta})^{-1}e(\hat{\theta})\right\}$$

(20)

is an estimator of the expected Kullback-Leibler divergence of the underlying process G to the assumed model F, where $\hat{\theta}$ is the ML estimator. Expression (20) is known as the Takeuchi information criterion (TIC), and, in contrast to the Akaike Information Criterion (AIC; Akaike 1974), is robust against deviations from the assumption that the model is correct. Claeskens and Hjort (2008) Section 2.5) thoroughly discuss the relationship between TIC and AIC.
Model selection from a set of parametric models proceeds by computing $\hat{\theta}$ for each model and selecting the model with the smallest TIC value \(l(\hat{\theta})\), or equivalently, with the largest
\[
l(\hat{\theta}) - \text{trace}\left\{j(\hat{\theta})^{-1} e(\hat{\theta})\right\}. \tag{21}
\]
A direct comparison of expressions (21) and (13) reveals a previously unnoticed close connection between bias reduction in ML estimation and model selection. Specifically, both bias reduction and TIC model selection rely on exactly the same penalty \(\text{trace}\left\{j(\theta)^{-1} e(\theta)\right\}\), but differ in the strength of penalization; bias reduction is achieved by using half that penalty, while valid model selection requires stronger penalization by using one times the penalty.

As discussed in Section 4, the explicit and implicit RBM-estimators θ^\dagger and $\hat{\theta}$, respectively, have the same asymptotic distribution as θ. Then, the derivation of TIC (see, for example, Claeskens and Hjort 2008, Section 2.3) works also with the RBM-estimators in place of the ML estimator. As a result, TIC and, under extra assumptions, AIC at the RBM-estimates are asymptotically equivalent to their versions at the maximum likelihood estimates. The same holds for reduced-bias estimators of Firth (1993). In other words, TIC model selection can proceed by selecting the model with the largest value of
\[
l(\hat{\theta}) - \text{trace}\left\{j(\hat{\theta})^{-1} e(\hat{\theta})\right\}, \tag{22}
\]
and AIC model selection using the largest value of $l(\hat{\theta}) - p$, and the same holds when θ^\dagger is used in place of $\hat{\theta}$. The quantity in (22) is readily available once (13) has been maximized to obtain the implicit RBM-estimates; the only requirement for model selection is to adjust, from $1/2$ to 1, the factor of the value of trace \(\{j(\theta)^{-1} e(\theta)\}\) after maximization. The same holds when θ is obtained using plug-in penalties, as in (17).

Varin and Vidoni (2005) developed a model selection procedure when the objective $l(\theta)$ is a composite likelihood (see, Varin et al., 2011, for a review of composite likelihood methods). The composite likelihood information criterion (CLIC) derived in Varin and Vidoni (2005) has the same functional form as TIC in (20). So, the link between model selection and bias reduction exists also when $l(\theta)$ is the logarithm of a composite likelihood. From the discussion in Section 5.2 it follows that both implicit and explicit RBM-estimation are readily available when there is a ready implementation of TIC for likelihood problems, and CLIC for composite likelihood problems (see, e.g., Padoan and Bevilacqua, 2015, for estimation of random fields based on composite likelihoods).

Example 5.5: Model selection in probit regression The performance of model selection procedures is assessed here using the probit regression model in Example 5.3. There are 16 possible nested probit regression models with an intercept β_1, depending on which of β_2, \ldots, β_5 are zero or non-zero. For $n \in \{75, 150, 300, 600\}$, we simulate n covariate values, as detailed in Example 5.3 and conditional on those we simulate 10,000 samples of n response values from Bernoulli distributions with probabilities prescribed by a probit regression model with $\beta = (-0.5, 0, 0, 0.5, 0.5)^\top$. For each sample, we estimate all 16 possible models using maximum likelihood, the adjusted score functions approach in Firth (1993), and by maximizing the bias-reducing penalized likelihoods with and without plug-in penalty, in (17) and (15), respectively, where we use $N = n$ for the plug-in penalty.

There were 7 separated data sets for at least one of the 16 models, detected using the detectseparation R package. Figure 3 shows the selection proportion among the 16 models based on AIC and TIC at the ML estimates, the implicit RBM-estimates, the implicit RBM-estimates with plug-in penalty with $N = n$, and the adjusted score functions estimates in Firth (1993). As expected by the discussion in Section 5.4, the probability of selecting the model with $\beta_2 = \beta_3 = 0$ increases with the sample size for both information criteria and for all estimation methods. There are only small discrepancies on the selection proportions between estimation
Figure 3: Model selection proportions based on AIC (black) and TIC (grey) among the 16 nested models of the probit regression in the simulation setting of Example 5.5 when estimation is through ML, maximum bias-reducing penalized likelihood without (RBM) and with (RBMp) plug-in penalty, and the adjusted scores (AS) approach of Firth (1993). The y-axes give the indices of the elements of β present in the estimated model.

methods, which tend to disappear as the sample size increases. Finally, it is worth noting that AIC model selection tends to be more confident on what the true model is than TIC, illustrating less variability in the selected proportions. In the current study, for the larger samples sizes this results in selecting the correct model more often than TIC does. However, in smaller samples sizes, AIC selects the model with $\beta_2 = \beta_3 = \beta_4 = 0$ more often.

6 High-dimensional regression settings

For the estimation of logistic regression models with $p/n \to \kappa \in (0, 1)$, experiments reported in the supplementary information of Sur and Candès (2019) and the supplementary material of Kosmidis and Firth (2021) illustrate that the bias reduction method of Firth (1993) performs similarly to the methods of Sur and Candès (2019), which are based on approximate message passing algorithms, and markedly better than ML. Reduced-bias M-estimators are found here to
Table 5: Variance and the mean squared error to variance ratio (in parenthesis) for the \(M \)-estimator and the RBM\(p \)-estimator of \(\beta \) for the distinct values in the true value for \(\beta \) in the simulation setting of Example 6.1. \(M \)\(p \) is \(M \)-estimation penalized just by the plug-in penalty that ensures finiteness of the estimates.

\(\lambda \)	\(M \)-estimator	\(M p \)-estimator	RBM\(p \)-estimator
	0-20	0-5	0-10
-0.20	6.23 (1.00)	6.83 (1.15)	6.72 (1.52)
	6.23 (1.00)	6.83 (1.15)	6.71 (1.51)
	4.80 (1.00)	5.24 (1.01)	5.07 (1.03)
-0.10	5.80 (1.00)	6.35 (1.14)	6.24 (1.45)
	5.80 (1.00)	6.35 (1.14)	6.23 (1.45)
	4.51 (1.00)	4.92 (1.01)	4.75 (1.02)
0.00	5.37 (1.00)	5.84 (1.12)	5.78 (1.44)
	5.37 (1.00)	5.84 (1.12)	5.78 (1.44)
	4.36 (1.00)	4.83 (1.01)	4.87 (1.03)
0.10	6.21 (1.00)	6.41 (1.12)	6.31 (1.44)
	6.21 (1.00)	6.41 (1.12)	6.31 (1.44)
	4.79 (1.00)	4.92 (1.01)	4.80 (1.03)
0.20	19.94 (1.00)	21.04 (1.21)	24.85 (1.74)
	19.90 (1.00)	21.00 (1.21)	24.76 (1.74)
	13.27 (1.00)	13.71 (1.21)	15.61 (1.74)
	13.27 (1.00)	13.71 (1.21)	15.61 (1.74)

perform well in high-dimensional, partially-specified regression settings, where the bias-reduction methods of [Firth (1993)] and the methods of [Sur and Cand`es (2019)] do not apply directly. We note here that the sufficient conditions we used (see Section S2 of the Supplementary Material document) for developing reduced-bias \(M \)-estimation do not cover for \(p/n \to \kappa \in (0, 1) \).

Example 6.1: High-dimensional autologistic regression To illustrate, we consider the autologistic regression model in (18), with \(k = 100 \) fully-connected groups, with \(c = c_1 = \ldots = c_{100} = 10 \), where each covariate vector \(x(s_{ij}) \) has \(p = 100 \) entries simulated independently from a Normal distribution with mean 0 and variance \((2cκ)^{-1}\). We consider five high-dimensional autologistic regression models, for \(\lambda \in \{-0.2, -0.1, 0, 0.1, 0.2\} \) and where \(\beta \) has the first 20 entries having value 10, the next 20 entries having value 5, and the remaining 60 entries having value 0. For these parameter settings, the marginal probabilities within each group range from spanning \((0, 1)\) (\(\lambda = -0.2 \), which promotes discordant, high-variance neighbourhoods) to being similarly extreme in value (\(\lambda = 0.2 \), which promotes concordant, low-variance neighbourhoods).

We simulate 100 independent response samples at each \(\lambda \in \{-0.2, -0.1, 0, 0.1, 0.2\} \) and for each sample we estimate \(\beta \) and \(\lambda \). Table 5 shows the variance and the mean squared error to variance ratio for the \(M \)-estimator and the RBM\(p \)-estimator of \(\beta \) for the distinct values in the true value for \(\beta \). All estimates had finite components. A mean squared error to variance ratio close to one indicates that the bias has small contribution to the mean squared error. Both \(M \) and RBM\(p \) estimators are close to being unbiased for the zero effects in \(\beta \). Nevertheless, the contribution of the bias to the mean squared error of the \(M \)-estimator increases rapidly as the effects sizes grow; for the entries of \(\beta \) with value 10, the mean squared error of the \(M \)-estimator is as much as 74\% larger than its variance. Remarkably, the RBM\(p \)-estimator apart from smaller variance for all parameters has mean squared error to variance ratios close to one. For reference, Table 5 also reports figures for \(M \)-estimation penalized just by the plug-in penalty. The figures are almost identical to those for \(M \)-estimation indicating that the excellent bias and variance properties the RBM\(p \)-estimator has in this setting are due to bias-reducing penalty \(-\text{trace} \{ j(\theta)^{-1}e(\theta) \}/2\), with the plug-penalty having almost no impact on the \(M \)-estimates.
7 Correlated random components

In Section 3.3, we have shown that when \(y_1, \ldots, y_k \) are realizations of independent random vectors \(Y_1, \ldots, Y_k \), the implicit and explicit RBM-estimation will result in estimates with superior bias properties than the corresponding M-estimates. This is true regardless of the dependence structure imposed by the model on the components of each random vector \(Y_i \); this fact is illustrated in Example 5.2 in the context of Gaussian max-stable processes. However, it is often the case that \(k = 1 \), in the sense that the vector of observations \(y = (y_1, \ldots, y_T) \) is assumed to be a single realization of a random vector \(Y \) with correlated components, like when a single time series or spatial process is observed, and the information about \(\theta \) is assumed or expected to increase with \(T \). In such cases, \(j(\theta) \) and \(u_\ell(\theta) \) in the empirical adjustment \(\tilde{\theta} \) remain valid estimators of \(\mu_{r,s}(\theta) \) and \(\mu_{r,s,t}(\theta) \) in \(\theta \). However, \(e(\theta) \) and \(d_\ell(\theta) \) tend to be rather imprecise estimators of \(\nu_{r,s}(\theta) \) and \(\nu_{r,s,t}(\theta) \), and their use may duly result in the original estimator \(\hat{\theta} \) because \(e(\hat{\theta}) = d_\ell(\hat{\theta}) = 0_{p \times p} \) when \(k = 1 \).

In fact, estimation of \(\nu_{r,s}(\theta) \) when \(k = 1 \) is a topic that has attracted much research, which mainly focuses on estimating the covariance matrix of composite likelihood estimators (see, for example [Varin et al., 2011] Section 5), or of M-estimators in regression problems more generally (see, for example [Heagerty and Lumley, 2000]). In such cases, weak stationarity conditions (Carlstein, 1986; Heagerty and Lumley, 2000) on the model allow the use of window sub-sampling to evaluate the estimating functions (or derivatives of those) over multiple, overlapping or non-overlapping subsets of the temporal or spatial domain, and aggregate the resulting contributions. Similar procedures can be used for the estimator of \(\nu_{r,s,t}(\theta) \).

Example 7.1: Least squares for autoregressive processes Let \(\{Y_1, \ldots, Y_T\} \) be an autoregressive process of order one, in the sense that \(Y_t = \theta Y_{t-1} + \epsilon_t \) with \(\theta \in (-1, 1) \), where \(\epsilon_1, \ldots, \epsilon_T \) are independent and identically distributed random variables with zero mean and finite variance. The ordinary least squares estimator of \(\theta \) is \(\hat{\theta} = S_1(\Omega)/S_2(\Omega) \), where \(S_1(\omega) = \sum_{t \in \omega} Y_{t+1} Y_t \), \(S_2(\omega) = \sum_{t \in \omega} Y_t^2 \), \(\Omega = \{1, \ldots, T-1\} \), and \(Y_t = 0 \) if \(t \notin \Omega \cup \{T\} \). The estimator \(\hat{\theta} \) results by maximizing the likelihood \(l(\theta) = -\sum_{t \in \omega}(Y_{t+1} - \theta Y_t)^2 \) or, equivalently, by finding the root of the estimating function \(\psi(\theta) = 2S_1(\Omega) - 2\theta S_2(\Omega) \).

The implicit and explicit RBM-estimators can be computed using the bias-reducing penalized objective in (13). For this model, \(j(\theta) = 2S_2(\Omega) \), and in place of \(e(\theta) \) we use \(e(\omega)(\theta) = \kappa_T \sum_{r=1}^R \{2S_1(\omega_r) - 2\theta S_2(\omega_r)\} \). Where \(\kappa_T > 0 \) is a suitably chosen constant. The quantity \(e(\omega)(\theta) \) is a window sub-sampling estimator of \(E_G[\{2S_1(\Omega) - 2S_2(\Omega)\}] \) (Carlstein, 1986), where \(\omega_1, \ldots, \omega_R \) is a partitioning of \(\Omega \), with \(\omega_r \) having indices of observations that are consecutive in time. Then, the implicit and explicit RBM-estimators are

\[
\hat{\theta} = \frac{S_{12}(\Omega) + \kappa_T S_{12}(\omega_1, \ldots, \omega_R)}{S_{22}(\Omega) + \kappa_T S_{22}(\omega_1, \ldots, \omega_R)} \quad \text{and} \quad \hat{\theta}^\dagger = \hat{\theta} \left(1 + \frac{S_{22}(\omega_1, \ldots, \omega_R)}{S_{22}(\Omega)} \right) - \kappa_T \frac{S_{12}(\omega_1, \ldots, \omega_R)}{S_{22}(\Omega)}
\]

respectively, where \(S_{im}(\omega_1, \ldots, \omega_R) = \sum_{r=1}^R S_i(\omega_r) S_m(\omega_r) \). Note that the reduced-bias estimator \(\theta^* \) of [Firth, 1993] can only be obtained under specific assumptions about the distribution of \(\epsilon_1, \ldots, \epsilon_T \). If \(\epsilon_t \sim N(0, 1) \), then the root of the adjusted score function \(2S_1(\Omega) - 2\theta S_2(\Omega) - 4(T-1)/(1-\theta^2) \) has second-order bias. The latter expression is a polynomial of order 3 and, hence, it can have up to 3 distinct roots, with at least one of them being real. In contrast, \(\theta \) and \(\theta^\dagger \) always have a single value.

We conduct a simulation study to assess the finite-sample bias properties of \(\hat{\theta}, \hat{\theta}, \hat{\theta}^\dagger, \) and \(\theta^* \). We simulate \(N_T \) independent time series of lengths \(T \in \{50, 100, 200, 400, 800\} \), with varying strength of dependence \(\theta \in \{0.2, 0.5, 0.9\} \). The simulation size is set to \(N_T = 250 \times 2^{10}/T \) to control the simulation error, similarly to Example 3.1. The errors \(\epsilon_t \) \((t = 1, \ldots, T) \) are simulated so that the joint distribution of the random vector \((Y_1, \ldots, Y_T)\) is multivariate normal, multivariate Student-t with 5 degrees of freedom, and multivariate asymmetric Laplace, all with
Table 6: Simulation-based estimates of the bias ($\times 100$) of the various estimators for the parameter of the AR(1) process in Example 7.1. Figures are reported in 2 decimal places, and the figures -0.00 are for estimated biases in the interval $(-0.0025, -0.0025)$. The simulation error for the estimates of the bias is between 2.76×10^{-4} and 1.37×10^{-3}. The last two columns are the estimated (Est) and expected (Exp) slope of the regression line $\log|\text{bias}| \sim \log T$.

α	Errors	T	Slope								
$\hat{\theta}$	$1/3$	-1.95	-1.07	-0.67	-0.38	-0.22	-0.04	-0.02	-0.00	-1.468	< -1
$\tilde{\theta}$	$1/2$	-1.20	-0.80	-0.44	-0.22	-0.04	-0.02	-0.02	-1.49	-3/2	
θ^\dagger	$1/3$	-1.36	-0.22	-0.54	-0.14	-0.04	-0.02	-1.32	-3/2		
θ^\dagger	$1/2$	-1.07	-0.04	-0.38	-0.14	-0.03	-0.02	-1.53	-3/2		

Table 6 gives the simulation-based estimates of the bias of estimators at $\theta = 0.5$. The results for $\theta \in \{0.2, 0.9\}$ are in the Supplementary Material. The estimated biases $\hat{\theta}, \tilde{\theta}, \theta^\dagger, \theta^{(J)}, \theta^{(M)}$, and $\theta^{(S)}$ in Table 6 are identical for all three error distributions we consider. The reason is that by mere inspection of their expressions, the RBM-estimates, like the ordinary least squares estimates and, in turn, bootstrap- and jackknife-based versions, are invariant to scaling the time series by a scalar random variable C that is independent to the distribution of $\epsilon_t, \ldots, \epsilon_T$, and both the multivariate Student-t and asymmetric Laplace distributions are infinite mixtures of the multivariate Normal distribution. The estimator θ^* does not have such invariance.

Table 6 also reports the estimated and theoretical slopes from the regression of the logarithm
of the absolute bias to $\log T$. We observe a close agreement between estimated and expected slopes for $\hat{\theta}$, $\tilde{\theta}$, $\hat{\theta}^{\dagger}$, and θ^* under Normal errors. We also note that RBM-estimators deliver the bias reduction expected by the theory in Section 3 for both window sizes considered. As the error distribution departs from Normal, the use of an incorrect adjustment impacts θ^* both in terms of finite sample bias and the asymptotic rates of the bias, which drop dramatically in absolute value from what is expected under Normal errors. The jackknife estimator $\theta^{(J)}$ is as effective as $\hat{\theta}$ and $\tilde{\theta}$ in terms of reducing bias. On the other hand, use of $\theta^{(M)}$ appears to have not much effect in reducing the bias of $\hat{\theta}$ with an estimated slope close to -1, and $\theta^{(S)}$ delivers both larger finite sample bias than $\hat{\theta}$ and worse asymptotic rates for the bias.

When the ad-hoc average block length $T/2$ is used, the performance of $\theta^{(S)}$ in terms of bias improves. Hence, $\theta^{(S)}$ appears to require a different tuning of the average block length than $T^{1/3}$, which is optimal for standard error estimation.

8 Discussion and further work

We have developed a novel and general framework for the reduction of the asymptotic bias of general M-estimators from asymptotically unbiased estimating functions. The framework relies on a novel approximation of the bias function that requires only the contributions to the estimating functions and the first two derivatives of those, which we used to derive an explicit and implicit method for reduced-bias M-estimation of general applicability. Explicit RBM-estimation proceeds by subtracting the approximation of the bias function at the M-estimates from the M-estimates. Implicit RBM-estimates result as roots of additively adjusted estimating functions, with the empirical bias-reducing adjustment (8). Both explicit and implicit RBM-estimates can be computed using the quasi Newton-Raphson iteration in Section S4 of the Supplementary Material document. The RBM-estimators have the same asymptotic distribution, and, hence, they are asymptotically as efficient as the initial M-estimators. As detailed in Section 4, uncertainty quantification can be carried out using the empirical estimate $\hat{V}(\theta)$ of the variance-covariance matrix of that asymptotic distribution. The expression for $V(\theta)$ is part of expression (8) for the empirical bias-reducing adjustment, and, hence, is readily available at the last iteration of the quasi Newton-Raphson iterative procedure. Inferences can be constructed using the Wald-type and generalized score pivots in expression (12).

If M-estimation is by the maximization of an objective function, then implicit RBM-estimation can always be achieved by the maximization of the bias-reducing penalized objective (13), which closely relates to model selection procedures using the Kullback-Leibler divergence; the functions of the parameters and the data that are used for bias reduction and model selection differ only by a known scalar constant. In particular, we show that bias reduction in estimation is closely related to model selection using TIC if estimation is via ML, and CLIC if estimation is via maximum composite likelihood. Furthermore, TIC and CLIC are still consistent information criteria when evaluated at explicit or implicit RBM-estimates. The same justification we provided in Section 5.4 for the use of information criteria at the reduced-bias estimates can be used to justify the use of information criteria at estimates arising from the additive adjustment of estimating functions by alternative $O_p(1)$ quantities, like the median reduced-bias estimates discussed in Kenne Pagui et al. (2017) and Kosmidis et al. (2020), and the mean reduced-bias estimators in Firth (1993).

As shown in Section 5.3, the bias-reducing penalized objectives, can be further enriched with plug-in penalties of small asymptotic order to return RBMp-estimates with enhanced properties. In Section 5.3 we used this fact to construct reduced-bias estimates that are always finite in binomial regression models, like logistic, probit, complementary log-log, and cauchit regression, and in autologistic regression models for clustered spatial data in Example 5.4. Note that, to the authors’ knowledge, there is no proof that the reduced-bias estimator in Firth (1993) for
binomial regression models with link functions other than logit always takes finite values; see, Kosmidis and Firth (2021) for a proof of the finiteness of the reduced-bias estimator of Firth (1993) in logistic regression when the model matrix is of full rank.

As we discussed in Section 7 when there is only \(k = 1 \) observation with correlated components, application-dependent conditions need to be used for the appropriate definition of \(e(\theta) \) in the penalized objective function in (13) or of \(e(\theta) \) and \(d_r(\theta) \) in the empirical bias-reducing adjustment (5). In the context of time series and spatial data that do not seriously depart from the condition of stationarity, one can consider window sub-sampling for the definition of \(e(\theta) \) and \(d_r(\theta) \) (see, for example Carlstein 1986 and Heagerty and Lumley (2000) for definitions and guidance on the choice of the window size).

Our empirical experience with fully-specified models is that while the RBM-estimators are first-order unbiased, they may not deliver an as strong bias correction in small samples as other methods in Table 1 that require full specification of the correct model. Example 5.3 and Section S8 in the Supplementary Material document provide evidence about this effect.

From the simulation-based methods, the linear-bias-correcting (LBC) estimator of MacKinnon and Smith (1998) has interesting properties that may warrant further investigation. In particular, if the initial estimator \(\hat{\theta} \) has a linear bias function, always takes values away from the boundary of the parameter space, and samples from the correct model or an appropriate empirical distribution function can be taken, then the LBC estimator of MacKinnon and Smith (1998) can deliver estimators with virtually zero bias. If the assumption of linear bias function is not satisfied, then the LBC estimator is free from first-order bias, just like RBM-estimators are. These properties of LBC come at the expense of the need to simulation from the full model and more computation. MacKinnon and Smith (1998, Section 6) (and Section 1.1) provides a clear discussion on why estimators based on asymptotic approximation of the bias (like RBM-estimators) are typically more attractive than simulation-based estimators in applications.

The differences between RBM-estimators and other bias reduction methods that aim to remove the first term or more from the bias function in fully- or partially-specified models, are beyond the first term of the bias expansion. Hence, while a detailed theoretical assessment of those differences may be interesting for particular models, it is subtle, mathematically involved and potentially inconclusive at the level of generality RBM estimation has been developed.

Lunardon (2018) showed that bias reduction in ML estimation using the adjustments in Firth (1993) can be particularly effective for inference about a low-dimensional parameter of interest in the presence of high-dimensional nuisance parameters, while providing, at the same time, improved estimates of the nuisance parameters. Current research investigates the performance of the RBM-estimator for general M-estimation in stratified settings, extending the optimality results in Lunardon (2018) when maximum composite likelihood or other M-estimators are used.

The sufficient conditions we used for RBM-estimation do not necessarily cover for asymptotic regimes where \(p/n \to \kappa \in (0, 1) \) (see, for example Sur and Candès, 2019). RBM-estimators have been found, though, to deliver remarkable corrections in both bias and variance with high-dimensional covariate specifications in partially-specified autologistic regression (see Example 6.1), and in fully-specified negative binomial regression (see Section S8 in the Supplementary Material document). A formal assessment of the RBM-estimation framework in high-dimensional models is the subject of future work.

9 Supplementary material

The Supplementary Material include computer code to fully reproduce all numerical results and figures in the paper. The code is also available at http://www.ikosmidis.com/files/RBM_supporting_computer_code.zip. The organization of the computer code is detailed in Section S1 of the Supplementary Material document. Section S2 provides the technical conditions
we employ for the theoretical developments in this work, which are standard in the context of M-estimation, and an annotated analysis of the links between them, and their wide scope and applicability. Section S3 gives the stochastic Taylor expansion for $\theta - \bar{\theta}$, and Section S4 provides a quasi Newton-Raphson iteration for computing the RBM-estimates θ^\dagger and $\hat{\theta}$ for general models when these do not have closed forms. Section S5 gives the form of $j(\beta, \phi)$ and $e(\beta, \phi)$ for GLMs with unknown dispersion parameter ϕ. Section S6 derives the mathematical expressions that are used in Example 5.2, and Section S7 provides results for additional simulation experiments for $\theta = 0.2$ and $\theta = 0.9$ in the setting of Example 7.1. Section S8 provides results of simulation experiments that assess the performance of RBM-estimation in negative binomial regression with high-dimensional covariate specifications.

10 Acknowledgements

We thank David Firth and Elvezio Ronchetti for helpful discussions and comments on an earlier version of this work. Part of this work was completed when Nicola Lunardon was at the Department of Economics, Management and Statistics (DEMS), University of Milano-Bicocca. The authors acknowledge the DEMS Data Science Lab at University of Milano-Bicocca for supporting this work by providing computational resources. For the purpose of open access, the authors have applied a Creative Commons Attribution (CC-BY) licence to any Author Accepted Manuscript version arising from this submission.

References

Akaike, H. (1974). A new look at the statistical model identification. *IEEE Transactions on Automatic Control* 19(6), 716–723.

Albert, A. and J. Anderson (1984). On the existence of maximum likelihood estimates in logistic regression models. *Biometrika* 71(1), 1–10.

Bell, B. (2021). CppAD: a package for C++ algorithmic differentiation (20210329).

Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems. *Journal of the Royal Statistical Society. Series B (Methodological)* 36(2), 192–236.

Besag, J. (1975). Statistical Analysis of Non-Lattice Data. *Journal of the Royal Statistical Society. Series D (The Statistician)* 24(3), 179–195.

Besag, J. E. (1972). Nearest-neighbour systems and the auto-logistic model for binary data. *Journal of the Royal Statistical Society: Series B (Methodological)* 34(1), 75–83.

Boos, D. D. (1992). On Generalized Score Tests. *The American Statistician* 46(4), 8.

Canty, A. and B. D. Ripley (2022). *boot: Bootstrap R (S-Plus) Functions*. R package version 1.3-28.1.

Caragea, P. C. and M. S. Kaiser (2009). Autologistic models with interpretable parameters. *Journal of Agricultural, Biological, and Environmental Statistics* 14(3), 281–300.

Carlstein, E. (1986). The use of subseries values for estimating the variance of a general statistic from a stationary sequence. *The Annals of Statistics* 14(3), 1171–1179.

Claeskens, G. and N. L. Hjort (2008). *Model Selection and Model Averaging*. Cambridge, NY: Cambridge University Press.
Cordeiro, G. M. and P. McCullagh (1991). Bias correction in generalized linear models. *Journal of the Royal Statistical Society. Series B (Methodological)* 53(3), 629–643.

Davison, A. C. and M. M. Gholamrezaee (2012). Geostatistics of extremes. *Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences* 468(2138), 581–608.

Davison, A. C. and D. V. Hinkley (1997). *Bootstrap Methods and Their Application*. Cambridge; New York, NY: Cambridge University Press.

Durbin, J. (1959). A note on the application of Quenouille’s method of bias reduction to the estimation of ratios. *Biometrika* 46(3), 477–480.

Efron, B. (1975). Defining the curvature of a statistical problem (with applications to second order efficiency). *The Annals of Statistics* 3(6), 1189–1242.

Efron, B. (1982). *The Jackknife, the Bootstrap and Other Resampling Plans*. Society for Industrial and Applied Mathematics.

Efron, B. and R. Tibshirani (1993). *An Introduction to the Bootstrap*. New York, NY: Chapman & Hall/CRC.

Firth, D. (1993). Bias reduction of maximum likelihood estimates. *Biometrika* 80(1), 27–38.

Genton, M. G., Y. Ma, and H. Sang (2011). On the likelihood function of gaussian max-stable processes. *Biometrika* 98(2), 481–488.

Gourieroux, C., A. Monfort, and E. Renault (1993). Indirect inference. *Journal of Applied Econometrics* 8, S85–S118.

Griewank, A. and A. Walther (2008). *Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation* (2nd ed.). Philadelphia, PA: Society for Industrial and Applied Mathematics.

Grün, B., I. K., and A. Zeileis (2012). Extended beta regression in R: Shaken, stirred, mixed, and partitioned. *Journal of Statistical Software* 48(11), 1–25.

Guerrier, S., E. Dupuis-Lozeron, Y. Ma, and M.-P. Victoria-Feser (2019). Simulation-based bias correction methods for complex models. *Journal of the American Statistical Association* 114(525), 146–157.

Hall, P. and M. A. Martin (1988). On bootstrap resampling and iteration. *Biometrika* 75(4), 661–671.

Heagerty, P. J. and T. Lumley (2000). Window subsampling of estimating functions with application to regression models. *Journal of the American Statistical Association* 95(449), 197–211.

Hughes, J., M. Haran, and P. C. Caragea (2011). Autologistic models for binary data on a lattice. *Environmetrics* 22(7), 857–871.

Huser, R. and A. C. Davison (2013). Composite likelihood estimation for the Brown–Resnick process. *Biometrika* 100(2), 511–518.

Kenne Pagui, E. C., A. Salvan, and N. Sartori (2017). Median bias reduction of maximum likelihood estimates. *Biometrika* 104(4), 923–938.

Konis, K. (2007). *Linear programming algorithms for detecting separated data in binary logistic regression models*. Ph. D. thesis, University of Oxford.
Kosmidis, I. (2014). Bias in parametric estimation: reduction and useful side-effects. *Wiley Interdisciplinary Reviews: Computational Statistics* 6(3), 185–196.

Kosmidis, I. (2023). *brglm2: Bias Reduction in Generalized Linear Models*. R package version 0.9.

Kosmidis, I. and D. Firth (2009). Bias reduction in exponential family nonlinear models. *Biometrika* 96(4), 793–804.

Kosmidis, I. and D. Firth (2021). Jeffreys-prior penalty, finiteness and shrinkage in binomial-response generalized linear models. *Biometrika* 108(1), 71–82.

Kosmidis, I., E. C. Kenne Pagui, and N. Sartori (2020). Mean and median bias reduction in generalized linear models. *Statistics and Computing* 30(1), 43–59.

Kosmidis, I. and N. Lunardon (2022). *MEstimation.jl: Methods for M-estimation of statistical models*. Julia package version 0.2.0.

Kosmidis, I., D. Schumacher, and F. Schwendinger (2022). *detectseparation: Detect and Check for Separation and Infinite Maximum Likelihood Estimates*. R package version 0.3.

Kristensen, K., A. Nielsen, C. W. Berg, H. Skaug, and B. M. Bell (2016). TMB: Automatic differentiation and Laplace approximation. *Journal of Statistical Software* 70(5), 1–21.

Kuk, A. Y. C. (1995). Asymptotically unbiased estimation in generalized linear models with random effects. *Journal of the Royal Statistical Society. Series B (Methodological)* 57, 395–407.

Kunsch, H. R. (1989). The jackknife and the bootstrap for general stationary observations. *The Annals of Statistics* 17(3), 1217–1241.

Liang, K.-Y. and S. L. Zeger (1986). Longitudinal data analysis using generalized linear models. *Biometrika* 73(1), 13–22.

Lindsay, B. G. (1988). Composite likelihood methods. In N. U. Prabhu (Ed.), *Statistical Inference from Stochastic Processes*, Volume 80 of *Contemporary Mathematics*. American Mathematical Society.

Lunardon, N. (2018). On bias reduction and incidental parameters. *Biometrika* 105(1), 233–238.

Lunardon, N. and D. Scharfstein (2017). Comment on “Small sample GEE estimation of regression parameters for longitudinal data”. *Statistics in medicine* 36(22), 3596–3600.

MacKinnon, J. G. and A. A. Smith (1998). Approximate bias correction in econometrics. *Journal of Econometrics* 85(2), 205–230.

Mansournia, M. A., A. Geroldtnger, S. Greenland, and G. Heinze (2018). Separation in Logistic Regression: Causes, Consequences, and Control. *American Journal of Epidemiology* 187(4), 864–870.

McCullagh, P. (2018). *Tensor methods in statistics* (2nd ed.). Mineola, NY: Dover Publications.

Mogensen, P. K. and A. N. Riseth (2018). Optim: A mathematical optimization package for Julia. *Journal of Open Source Software* 3(24), 615.

Newey, W. K. and R. J. Smith (2004). Higher order properties of GMM and generalized empirical likelihood estimators. *Econometrica* 72(1), 219–255.
Pace, L. and A. Salvan (1997). *Principles of Statistical Inference from a Neo-Fisherian Perspective*. London, UK: World Scientific.

Padoan, S. A. and M. Bevilacqua (2015). Analysis of random fields using CompRandFld. *Journal of Statistical Software* 63(9), 1–27.

Padoan, S. A., M. Ribatet, and S. A. Sisson (2010). Likelihood-based inference for max-stable processes. *Journal of the American Statistical Association* 105(489), 263–277.

Politis, D. N. and J. P. Romano (1994). The stationary bootstrap. *Journal of the American Statistical Association* 89(428), 1303–1313.

Pratt, J. W. (1981). Concavity of the log likelihood. *Journal of the American Statistical Association* 76(373), 103–106.

Quenouille, M. H. (1949). Approximate tests of correlation in time-series 3. *Mathematical Proceedings of the Cambridge Philosophical Society* 45(3), 483–484.

Quenouille, M. H. (1956). Notes on bias in estimation. *Biometrika* 43(3), 353–360.

R Core Team (2021). *R: A Language and Environment for Statistical Computing*. Vienna, Austria: R Foundation for Statistical Computing.

Revels, J., M. Lubin, and T. Papamarkou (2016). Forward-mode automatic differentiation in julia. *arXiv e-prints*, arXiv:1607.07892.

Ribeiro Jr, P. J., P. Diggle, O. Christensen, M. Schlather, R. Bivand, and B. Ripley (2022). *geoR: Analysis of Geostatistical Data*. R package version 1.9-2.

Stefanski, L. A. and D. D. Boos (2002). The calculus of M-estimation. *The American Statistician* 56(1), 29–38.

Sur, P. and E. J. Candès (2019). A modern maximum-likelihood theory for high-dimensional logistic regression. *Proceedings of the National Academy of Sciences* 116(29), 14516–14525.

Takeuchi, K. (1976). Distribution of information statistics and validity criteria of models. *Mathematical Science* 153, 12–18.

Thomson, M. C., S. J. Connor, U. D’Alessandro, B. Rowlingson, P. Diggle, M. Cresswell, and B. Greenwood (1999). Predicting malaria infection in Gambian children from satellite data and bed net use surveys: the importance of spatial correlation in the interpretation of results. *The American Journal of Tropical Medicine and Hygiene* 61(1), 2–8.

van der Vaart, A. W. (1998). *Asymptotic Statistics*. Cambridge, UK: Cambridge University Press.

Varin, C., N. Reid, and D. Firth (2011). An overview of composite likelihood methods. *Statistica Sinica* 21(1), 5–42.

Varin, C. and P. Vidoni (2005). A note on composite likelihood inference and model selection. *Biometrika* 92(3), 519–528.

Wedderburn, R. (1974). Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method. *Biometrika* 61(3), 439–447.

Wolters, M. (2022). *Autologistic.jl*. Julia package version 0.5.1.

Wolters, M. A. (2017). Better autologistic regression. *Frontiers in Applied Mathematics and Statistics* 3, 24.
S1 Description of the supporting computer code

The computer code used to reproduce the empirical analyses in the main text is in the directory `RBM_supporting_computer_code`, which can be downloaded from http://www.ikosmidis.com/files/RBM_supporting_computer_code.zip. That directory has six sub-directories. All references in the descriptions below are to figures, tables, and sections in main text.

- The `ratio` directory contains two R scripts for reproducing the results in Example 3.1 and Example 4.1 about the ratio of two means. The file `ratio.R` provides functions to compute the ratio estimator and conduct the simulation study, whereas `ratio_summaries.R` provides the code needed to produce Table 2 and Table 3.

- The `mev` contains an R package and an R script to reproduce the simulation study in Example 5.2. The R package `PwMev` contains a C implementation of the pairwise log-likelihood function (16); the main function of the R package is `pwlik_mev`, for which documentation is provided. The file `mev_sim.R` contains the code used to run the simulations and produce Figure 1.

- The `glms` directory contains five R scripts for the probit regression simulation studies in Example 5.3 and Example 5.5. The file `probit_ms_functions.R` implements the bias-reducing penalized likelihood and provides other support functions. The code to run the simulation experiments in Example 5.3 and Example 5.5 is provided in the scripts `probit_bias_simulation.R` and `probit_ms_simulation.R`, respectively. Figure 2 and Figure 3 result from the scripts `probit_bias_summaries.R` and `probit_ms_summaries.R`, respectively.

- The `autologistic` directory provides the Gambia malaria survey data in `Gambia.csv`, which are as provided in the `geoR` R package. The `auto_symmetric_module.jl` Julia script implements M-, RBM-, and RBMp-estimation for general autologistic regression models. The `gambia_subsets_bootstrap.jl` and `gambia_simulation_subset2.jl` scripts can be used to reproduce all numerical results in Example 5.4.

*ioannis.kosmidis@warwick.ac.uk
The script `hd_simulation.jl` conducts the simulations described in Example 6.1. The R script `hd_simulation_results.R` collects the simulation results to produce Table 5.

- The AR(1) directory contains the R script `AR_simulation_and_summaries.R` and the R package `OLStsBR`. The former uses the latter to reproduce the simulation study in Example 7.1 and produce Table 6, Table S1, and Table S2.

- The negbin directory contains the R scripts that reproduce the simulation study in Section S8. The file `negbin-functions.R` implements the bias-reducing penalized likelihood and provides other support functions. The code to run the simulation experiments is in `negbin-simulation.R`, and `negbin-summaries.R` produces Figure S1. The other four R scripts with filenames starting with `arxiv` are used to define the simulation settings in Table S3.

The images/ sub-directories appearing in some of the above directories are for saving intermediate results, while the scripts are running. All scripts require their directory to be set as the working directory in R or Julia, before running them.

S2 Assumptions

The assumptions we employ for the theoretical development in this work are listed below.

A1 Consistency: The M-estimator $\hat{\theta}$ satisfies $\hat{\theta} \overset{p}{\to} \bar{\theta}$, where $\bar{\theta}$ is such that $E_G(\psi_i) = 0$, for all $i \in \{1, \ldots, k\}$, with $\psi_i = \psi_i(\hat{\theta})$ and $E_G(\cdot)$ denoting expectation with respect to the unknown joint distribution function G. In particular, we assume that $\theta - \bar{\theta} = O_p(n^{-1/2})$, where n is a measure of information about θ.

A2 Local smoothness: The derivatives of $\psi_i^p(\theta)$ ($r = 1, \ldots, p$) exist up to the 4th order in a neighbourhood \mathcal{N} of $\bar{\theta}$. In particular,

$$l_{R_n}(\theta) = \sum_{i=1}^{k} \frac{\partial^{n-1}\psi_{i}^{r}(\theta)}{\partial \theta^{r_1} \cdots \partial \theta^{r_n}} ,$$

exist for $\theta \in \mathcal{N}$ and any set $R_n = \{r_1, \ldots, r_n\}$, with $r_j \in \{1, \ldots, p\}$ and $a \in \{1, \ldots, 5\}$, under the convention that $l_{r}(\theta) = \sum_{i=1}^{k} \psi_i^b(\theta)$ and that the components of θ are identified by superscripts.

A3 Asymptotic orders of centred estimating function derivatives:

$$H_{R_n} = l_{R_n} - \mu_{R_n} = O_p(n^{1/2}) ,$$

where $\mu_{R_n} = E_G(l_{R_n})$, and $l_{R_n} = l_{R_n}(\bar{\theta})$ exist for $a \in \{1, \ldots, 5\}$. Unless otherwise stated, whenever the argument θ is omitted from quantities that depend on it, as is the case in the right-hand side of (5), those quantities are understood as being evaluated at $\bar{\theta}$.

A4 Asymptotic orders of joint central moments of estimating functions and their derivatives:

$$\nu_{R_{a_1},S_{a_2},\ldots,T_{a_b}} = \begin{cases} O(n^{(b-1)/2}) , & \text{if } b \text{ is odd} \\ O(n^{b/2}) , & \text{if } b \text{ is even} \end{cases} ,$$

where $\nu_{R_{a_1},S_{a_2},\ldots,T_{a_b}} = E_G(H_{R_{a_1}}H_{S_{a_2}} \cdots H_{T_{a_b}})$ are joint central moments of estimating functions and their derivatives, with $R_{a_1}, S_{a_2}, \ldots, T_{a_b}$ being subsets of $a_1, a_2, \ldots, a_b > 0$ integers.
A5 The matrix with elements μ_{rs} ($r, s = 1, \ldots, p$) is invertible.

Below we provide an analysis of those assumptions.

Assumption A1 is a working assumption that we make about the unbiasedness of the estimating functions and the consistency of the M-estimators. Consistency can sometimes be shown to hold under weak assumptions about G and the asymptotic unbiasedness of the estimating functions; see, for example, van der Vaart (1998, Section 5.2) and Huber and Ronchetti (2009, Section 6.2) for theorems on the consistency of M-estimators. We assume that there is an index n, which is typically, but not necessarily, the number of observations, that measures the rate the information about the parameter θ accumulates, and that the difference $\hat{\theta} - \bar{\theta}$ is $O_p(n^{-1/2})$.

Assumption A2 allows taking a sufficient number of derivatives of the estimating functions at the unknown parameter value θ when constructing the stochastic Taylor expansions required for the derivation of the empirical bias-reducing adjustments to the estimating functions in Section 3. Such an assumption covers many well-used estimating functions, like the ones arising in quasi-likelihood estimation (Wedderburn, 1974), estimation using generalized estimating equations (Liang and Zeger, 1986), and ML and maximum composite likelihood estimation (Lindsay, 1988; Varin et al., 2011) for a wide range of models. The local smoothness assumption may not directly cover, though, settings where the estimating function or one of its first few derivatives are non-differentiable at particular points in the parameter space. Examples of this kind are the estimating functions for quantile regression and robust regression with Huber loss; see Koenker (2005) and Huber and Ronchetti (2009) for textbook-length expositions of topics in quantile and robust regression, respectively. Nevertheless, as shown in Section 3.3, RBB-estimation ends up requiring only the first two derivatives of the estimating functions, hence its scope of application may be much wider than what is prescribed by assumptions we used to develop it. This is the topic of future work.

Assumptions A3 and A4 ensure the existence of the expectations, under the underlying process G, of products of estimating functions and their derivatives, and that \sqrt{n}-asymptotic arguments are valid. In the special case of ML estimation, when the model is adequate, assumptions A3 and A4 can be derived directly from Assumption A1 and A2 using the exlog relations; see, for example, Pace and Salvan (1997, Section 9.2 and Table 9.1).

Assumption A5 is a technical assumption to ensure that the expectation of the Jacobian of the estimating function is invertible, when inverting the stochastic Taylor expansion of $\theta_p = \sum_{i=1}^k \psi_i(\theta) + A(\theta)$ about θ, and is typically assumed for estimation using ML and estimating equations (see, for example, Boos and Stefanski, 2013, Section 7.7).

S3 Stochastic Taylor expansion for $\hat{\theta} - \bar{\theta}$

Using assumptions A1-A3 and index notation, with the indices taking values in the set $\{1, \ldots, p\}$, a calculation similar to that in McCullagh (2018, Section 7.3) can be used to show that the expansion of $\theta_p = \sum_{i=1}^k \psi_i(\theta) + A(\theta)$ about θ results in a stochastic Taylor expansion for $\theta - \theta$ of the form

$$
\bar{\theta} - \theta = H\theta + H^\theta H_a^\prime \mu_{ab}^\prime + \frac{1}{2} H^a H^b H_{ab} \mu_{ab} + A + \ldots
$$

(S1)

$$
+ H^a H_a^\prime H^b \mu_{ac}^\prime + \frac{1}{2} H^a H^b H^c \mu_{ab}^\prime H_{bc} + \frac{1}{2} H^a H^b H_{bc} \mu_{ac}^\prime +
$$

$$
+ \frac{1}{2} H^a H^b H_{ab} \mu_{ac}^\prime + \frac{1}{4} H^a H^b H^c \mu_{ad} \mu_{cd}^\prime + \frac{1}{4} H^a H^b H_{ab} \mu_{ad} \mu_{cd}^\prime+
$$

$$
+ \frac{1}{2} H^a H^b H_{ab} \mu_{bc}^\prime + \frac{1}{6} H^a H^b H^c \mu_{ab} \mu_{bc}^\prime +
$$

$$
+ A^a H_a + \frac{1}{2} A^a H_b \mu_{ba}^\prime + \frac{1}{2} A^a H_b \mu_{ab}^\prime + A^a H_a + O_p(n^{-2}),
$$

3
where $H_{r_1,...,r_a} = -\mu_{r_1}^s H_{sr_1,...,r_a}$, $\mu_{r_1}^s = -\mu_{rs}^s \mu_{sr_1}^s$, and $A_{r_1,...,r_a} = -\mu_{rs}^s A_{sr_1}^s$, with μ_{rs}^s denoting the matrix inverse of μ_{rs} (assumption A5) and $A_{r_1}^s = \partial^2 u_{r_1}^s / \partial \theta^2 / \partial \theta^s$.

S4 Quasi Newton-Raphson for RBM estimation

Apart from special cases, like the estimation of the ratio of two means in Example 3.1 and of the parameter of an AR(1) process in Example 7.1, and as is the case for general M-estimation, the solution of the adjusted estimating equations (4) is, typically, not available in closed form. General procedures for systems of nonlinear equations can be used to solve them.

A general iterative procedure of this kind results from a modification of the Newton-Raphson iteration that in the uth iteration updates the current estimate $\theta^{(u)}$ to a new value $\theta^{(u+1)}$ as

$$
\theta^{(u+1)} := \theta^{(u)} + a_u \left\{ j \left(\theta^{(u)} \right) \right\}^{-1} \left\{ \sum_{i=1}^k \psi_i' \left(\theta^{(u)} \right) + A \left(\theta^{(u)} \right) \right\},
$$

(S2)

where a_u is a deterministic sequence of positive constants that can be used to implement various schemes to further control the step size, like step-halving. Iteration (S2) defines a quasi Newton-Raphson procedure with the correct fixed point. The iteration is a relaxation of full Newton-Raphson iteration, which would have $a_u = 1$ and the matrix of derivatives of $\sum_{i=1}^k \psi_i' \left(\theta \right) + A \left(\theta \right)$ in the place of $j \left(\theta \right)$. The M-estimates from the solution of $\sum_{i=1}^k \psi_i' \left(\theta \right) = 0_p$ are obvious starting values for the quasi Newton-Raphson procedure, and candidate stopping criteria include $\left| \theta^{(u+1)} - \theta^{(u)} \right| / a_u < \epsilon$ and $\left| \sum_{i=1}^k \psi_i' \left(\theta^{(u)} \right) + A \left(\theta^{(u)} \right) \right|_1 < \epsilon$, for some $\epsilon > 0$, where $\| \cdot \|_1$ is the L1 norm.

Typically, quasi Newton-Raphson will have first-order convergence to the solution of the adjusted estimating equations, compared to the second-order convergence that full Newton-Raphson has. The advantage of using quasi Newton-Raphson instead of full Newton-Raphson is that all quantities required to implement (S2) are readily available once an implementation of the empirical bias-reducing adjustments is done.

The explicit RBM-estimator $\hat{\theta}$ in (9) results as a by-product of the quasi Newton-Raphson procedure (S2). A single step of (S2) with $a_1 = 1$, starting at the M-estimator $\hat{\theta}$ results in $\hat{\theta}$. In fact, the quasi Newton-Raphson iteration (S2) reveals that implicit RBM-estimation can be understood as iterative bias correction, exactly as is the case for reduced-bias estimation in fully-specified models (see, for example, Kosmidis and Firth, 2010).

The fact that the empirical bias-reducing adjustment in (7) depends only on derivatives of estimating functions, enables general implementations by deriving the derivatives $\partial \psi_i' \left(\theta \right) / \partial \theta^s$ and $\partial^2 \psi_i' \left(\theta \right) / \partial \theta^s \partial \theta^t$ $(r,s,t = 1,\ldots,p)$ either analytically or by using automatic differentiation techniques (Griewank and Walther, 2008). Those derivatives can be combined together to produce $u_r \left(\theta \right)$, $j \left(\theta \right)$, $e \left(\theta \right)$ and $d_r \left(\theta \right)$, and, then, matrix multiplication and a numerical routine for matrix inversion can be used for an easy, general implementation of (8).

For implementations using automatic differentiation, in particular, the only required input from the user is an appropriate implementation of the contributions $\psi_i' \left(\theta \right)$ to the estimating functions. The automatic differentiation routines will, then, produce implementations of the required first and second derivatives of the contributions. The MEstimation Julia package (https://github.com/ikosmidis/MEstimation.jl) provides a proof-of-concept of such an implementation.

S5 Bias-reducing penalized log-likelihoods for generalized linear models

For notational simplicity, the dependence of the various quantities on β and/or ϕ is suppressed.
In contrast to the bias-reduction methods proposed for generalized linear models in Kos-midis and Firth (2009), the empirical bias-reducing adjustment to the score function always corresponds to a penalty to the sum of the log-likelihood contributions (14) about β and ϕ. According to Section 5.1, if ϕ is unknown, the only ingredients required in the penalty are the observed information matrix about β and ϕ, $j(\hat{\beta}, \hat{\phi})$, and the sum of the outer products of the gradient of (14) across observations, $e(\beta, \phi)$. The bias-reducing penalized log-likelihood is then

$$\sum_{i=1}^{n} \log f_i(y_i \mid x_i, \beta, \phi) - \frac{1}{2} \text{trace} \left[\{ j(\hat{\beta}, \hat{\phi}) \}^{-1} e(\beta, \phi) \right].$$

The closed-form expressions for $j(\beta, \phi)$ and $e(\beta, \phi)$ are

$$j = \begin{bmatrix} j_{\beta\beta} & j_{\beta\phi} \\ j_{\phi\beta} & j_{\phi\phi} \end{bmatrix} \quad \text{and} \quad e = \begin{bmatrix} e_{\beta\beta} & e_{\beta\phi} \\ e_{\phi\beta} & e_{\phi\phi} \end{bmatrix},$$

where

$$j_{\beta\beta} = \frac{1}{\phi^2} X^T Q X, \quad j_{\phi\phi} = \frac{1}{\phi^2} 1_n (R - A') 1_n + \frac{1}{2\phi^4} 1_n A'' 1_n, \quad j_{\beta\phi} = \frac{1}{\phi^2} X^T \tilde{W} 1_n,$$

$$e_{\beta\beta} = \frac{1}{\phi^2} X^T \tilde{W}^2 X, \quad e_{\phi\phi} = \frac{1}{4\phi^4} 1_n (R - A')^2 1_n, \quad e_{\beta\phi} = \frac{1}{2\phi^2} X^T \tilde{W} (R - A') 1_n,$$

where 1_n is a vector of n ones. The $n \times n$ diagonal matrices R, A', A'' have ith diagonal element $r_i = -2m_i(y_i\hat{\theta}_i - \kappa(\hat{\theta}_i) - c_1(y_i))$ (deviance residual), $a'_i = m_i a'(-m_1/\phi)$, $a''_i = m_i^2 a''(-m_1/\phi)$, respectively, where $a'(u) = da(u)/du$, $a''(u) = d^2a(u)/du^2$. The $n \times n$ diagonal matrix Q and \tilde{W} have ith diagonal element $q_i = b_i d_i - b'_i (y_i - \mu_i)$ and $\tilde{w}_i = b_i (y_i - \mu_i)$, respectively, where $b_i = m_i d_i / v_i$, and $b'_i = m_i (d'_i / v_i - d^2_i / v'_i)$.

S6 Expressions for the bias-reducing penalty for the pairwise likelihood of Padoan et al. (2010)

The joint density of the $Y_i(s_l)$ and $Y_i(s_m)$ ($l, m = 1, \ldots, L; l \neq m$) is

$$f(y_i(s_l), y_i(s_m) \mid \beta) = \exp \left\{ -\frac{\Phi(w_{lm})}{y_i(s_l)} - \frac{\Phi(v_{lm})}{y_i(s_m)} \right\} \frac{v_{lm} \phi(v_{lm})}{a'^2_{lm} y^2_i(s_l) y_i(s_m)} + \frac{w_{lm} \phi(w_{lm})}{a'^2_{lm} y^2_i(s_l) y_i(s_m)},$$

with $\Phi(\cdot)$ and $\phi(\cdot)$ the distribution and density function of the standard normal distribution, respectively. In the above expression, $a_{lm} = a\hat{\theta}_m(\hat{\theta}) = (s_l - s_m) \times 1^2 (s_l - s_m) \times 1^2$, $w_{lm} = w\hat{\theta}_m(\hat{\theta}) = a\hat{\theta}_m(\hat{\theta}) / 2 + \log \{ y_i(s_l) / y_i(s_m) \} / a\hat{\theta}_m(\hat{\theta})$, and $v_{lm} = v\hat{\theta}_m(\hat{\theta}) = a\hat{\theta}_m(\hat{\theta}) - w\hat{\theta}_m(\hat{\theta})$.

We provide expressions for

$$l_t(\beta; y_i(s_l), y_i(s_m)) = \frac{\partial \log f(y_i(s_l), y_i(s_m) \mid \beta)}{\partial \beta_t},$$

and

$$l_{tu}(\beta; y_i(s_l), y_i(s_m)) = \frac{\partial^2 \log f(y_i(s_l), y_i(s_m) \mid \beta)}{\partial \beta_t \partial \beta_u},$$

for $t, u \in \{1, 2, 3\}$. These quantities are needed to form the entries of the matrices $e(\beta)$ and $j(\beta)$ that are required when constructing the bias-reducing penalty to the pairwise log-likelihood. Specifically, the (t, u)th elements of $j(\beta)$ and $e(\beta)$ are, respectively,

$$j_{tu}(\beta) = -\sum_{i=1}^{k} \sum_{l>m} l_{tu}(\beta; y_i(s_l), y_i(s_m)),$$
\[e_{tu}(\theta) = - \sum_{i=1}^{k} \left[\sum_{l > m} l_i(\theta; y_i(s_l), y_i(s_m)) \right] \left[\sum_{l' > m'} l_{u}(\theta; y_i(s_{l'}), y_i(s_{m'})) \right]^\top. \]

The logarithm of expression (S3) can be expressed as

\[
\log f(y_i(s_l), y_i(s_m)) = A_{lm}(\theta) + B_{lm}(\theta) + \log\{C_{lm}(\theta)D_{lm}(\theta) + E_{lm}(\theta)\}, \tag{S4}
\]

where

\[
A_{lm}(\theta) = - \Phi\{w_{lm}(\theta)\} / y_i(s_l),
\]

\[
B_{lm}(\theta) = - \Phi\{v_{lm}(\theta)\} / y_i(s_m),
\]

\[
C_{lm}(\theta) = \Phi\{w_{lm}(\theta)\} / y_i^2(s_l) + \Phi\{v_{lm}(\theta)\} / a_{lm}(\theta)y_i^2(s_l) - \Phi\{v_{lm}(\theta)\} / a_{lm}(\theta)y_i(s_l)y_i(s_m),
\]

\[
D_{lm}(\theta) = \Phi\{v_{lm}(\theta)\} / y_i^2(s_m) + \Phi\{v_{lm}(\theta)\} / a_{lm}(\theta)y_i^2(s_m) - \Phi\{v_{lm}(\theta)\} / a_{lm}(\theta)y_i(s_m)y_i(s_l),
\]

\[
E_{lm}(\theta) = v_{lm}(\theta)\phi\{w_{lm}(\theta)\} / a_{lm}^2(\theta)y_i(s_l)y_i(s_m) + w_{lm}(\theta)\phi\{v_{lm}(\theta)\} / a_{lm}^2(\theta)y_i(s_l)y_i(s_m).
\]

In what follows, the dependence of the above quantities on \(\theta, l, \) and \(m \) is omitted.

The first-order partial derivative of (S4) with respect to the component \(t \) of \(\theta \) is

\[l_t(\theta; y_i(s_l), y_i(s_m)) = A_t + B_t + (CD + E)^{-1}(C_tD + CDt + Et), \]

where

\[
A_t = \frac{\partial}{\partial \theta^t} A = - \frac{\phi(w)w_t}{y_i(s_l)},
\]

\[
B_t = \frac{\partial}{\partial \theta^t} B = - \frac{\phi(v)v_t}{y_i(s_m)},
\]

\[
C_t = \frac{\partial}{\partial \theta^t} C = \frac{\phi(w)w_t}{y_i^2(s_l)} - \frac{w\phi(w)(w_t - w_{at})}{a^2y_i^2(s_l)} - \frac{v\phi(v)(v_t - v_{at})}{a^2y_i(s_l)y_i(s_m)},
\]

\[
D_t = \frac{\partial}{\partial \theta^t} D = \frac{\phi(v)v_t}{y_i^2(s_m)} - \frac{v\phi(v)(v_t - v_{at})}{a^2y_i^2(s_m)} - \frac{w\phi(w)(w_t - w_{at})}{a^2y_i(s_m)},
\]

\[
E_t = \frac{\partial}{\partial \theta^t} E = \frac{\phi(w)\{v_t - vv_{wa}\}a - 2v_{at}}{a^3y_i^2(s_l)y_i(s_m)} + \frac{\phi(v)\{w_t - vv_{wa}\}a - 2w_{at}}{a^3y_i(s_l)y_i^2(s_m)},
\]

and

\[
a_t = \frac{\partial}{\partial \theta^t} a = - \frac{1}{2a} \left\{ (s_t - s_m)^\top \Sigma_t (s_t - s_m) \right\},
\]

\[
\Sigma_t = \frac{\partial}{\partial \theta^t} \Sigma^{-1} = - \Sigma^{-1} \left(\frac{\partial}{\partial \theta^t} \Sigma \right) \Sigma^{-1},
\]

\[
w_t = \frac{\partial}{\partial \theta^t} w = \frac{a_t}{a^2} - \frac{a_t}{a^2} \log\{y_i(s_l)/y_i(s_m)\},
\]

\[
v_t = \frac{\partial}{\partial \theta^t} v = a_t - w_t.
\]

The second-order partial derivative of (S4) with respect to the \(t \)th and \(u \)th component of \(\theta \) is

\[l_{tu}(\theta; y_i(s_l), y_i(s_m)) = A_{tu} + B_{tu} - (CD + E)^{-2}(C_uD + CD_u + E_u)(C_tD + CDt + Et) +
\]

\[+ (CD + E)^{-1}(C_{tu}D + C_tD + C_uD + CDtu + E_{tu}), \]

6
where

\[
A_{tu} = \frac{\partial^2}{\partial \theta_t \partial \theta_u} A = -\frac{w \phi(w)w_t w_u + \phi(w)w_{tu}}{y_i(s_l)} ,
\]

\[
B_{tu} = \frac{\partial^2}{\partial \theta_t \partial \theta_u} B = -\frac{-v \phi(v)v_t v_u + \phi(v)v_{tu}}{a^2 y_i(s_m)} ,
\]

\[
C_{tu} = \frac{\partial^2}{\partial \theta_t \partial \theta_u} C = -\frac{-w \phi(w)w_t a + v \phi(v)v_t v_u - w u a + w a - w a t - w a t u}{a^2 y_i(s_l)} + \frac{2 a_u w \phi(w)(w_t a - wa_t)}{a^3 y_i^2(s_l)} + \frac{-v \phi(v)(v_t a - va_t) - w^2 \phi(w)v_u (v_t a - va_t)}{a^2 y_i(s_l) y_i(s_m)} + \frac{2 a_u v \phi(v) (v_t a - va_t)}{a^3 y_i(s_l) y_i(s_m)} ,
\]

\[
D_{tu} = \frac{\partial^2}{\partial \theta_t \partial \theta_u} D = -\frac{-v \phi(v)v_t w_t - \phi(v)v_{tu}}{a^2 y_i^2(s_m)} - \frac{-w u \phi(w)(w_t a - wa_t) - w^2 \phi(w)w_u (w_t a - wa_t)}{a^2 y_i(s_l) y_i(s_m)} + \frac{2 a_u w \phi(w)(w_t a - wa_t)}{a^3 y_i(s_l) y_i(s_m)} ,
\]

\[
E_{tu} = \frac{\partial^2}{\partial \theta_t \partial \theta_u} E = \frac{-v \phi(v)w_t - w \phi(w)w_u}{a^2 y_i(s_l) y_i(s_m)} - \frac{-2 a_u v \phi(v)w_t - v \phi(v)w_u - w \phi(w)w_u - w \phi(w)w_{tu}}{a^2 y_i^2(s_l) y_i(s_m)} + \frac{2 a_u v \phi(v)w_t - v \phi(v)w_u - w \phi(w)w_u + w \phi(w)w_{tu}}{a^2 y_i(s_l) y_i^2(s_m)} ,
\]

and

\[
a_{tu} = \frac{\partial^2}{\partial \theta_t \partial \theta_u} a = -\frac{a_u}{2 a^2} \left\{ s_l - s_m \right\} (s_l - s_m) + \frac{1}{2 a} \left\{ (s_l - s_m)^T \Sigma_t (s_l - s_m) \right\} ,
\]

\[
\Sigma_{tu} = \frac{\partial^2}{\partial \theta_t \partial \theta_u} \Sigma^{-1} = -\left(\frac{\partial}{\partial \theta_t} \Sigma \right) \left(\frac{\partial}{\partial \theta_u} \Sigma \right)^T \Sigma^{-1} - \Sigma^{-1} \left(\frac{\partial}{\partial \theta_t} \Sigma \right) \left(\frac{\partial}{\partial \theta_u} \Sigma^{-1} \right) ,
\]

\[
w_{tu} = \frac{\partial^2}{\partial \theta_t \partial \theta_u} w = \frac{a_t}{2} - \frac{a_t a_u - 2 a_t a_u}{a^4} \log \left\{ y_i(s_l) / y_i(s_m) \right\} ,
\]

\[
v_{tu} = \frac{\partial^2}{\partial \theta_t \partial \theta_u} v = a_{tu} - w_{tu} .
\]

S7 Additional simulation results for Example 7.1

Tables S1 and S2 provide simulation results like those in Table 6 of the main text, for $\theta \in \{0.2, 0.9\}$. Note that in Table S2 the figures are conditional on the ordinary least square estimate, $\hat{\theta}$, begin less than 1 in absolute value, i.e., the estimated autoregressive process is stationary.
Table S1: \(\theta = 0.2 \). Figures are reported in 2 decimal places, and the figures 0.00 and −0.00 are for estimated biases less than 0.0024 and −0.0024, respectively. The simulation error for the estimates of the bias is between \(2.40 \times 10^{-4} \) and \(7.11 \times 10^{-4} \).

\(\alpha \)	Errors	\(T \)	Slope					
		50	100	200	400	800	Est	Exp
\(\hat{\theta} \)		−0.81	−0.39	−0.20	−0.08	−0.06	0.98	−1
\(\tilde{\theta} \)	1/3	−0.55	−0.20	−0.09	−0.01	−0.03	−1.27	−3/2
	1/2	−0.47	−0.16	−0.07	0.00	−0.02	−1.64	−3/2
\(\theta^l \)	1/3	−0.53	−0.19	−0.08	−0.01	−0.03	−1.25	−3/2
	1/2	−0.42	−0.13	−0.05	0.01	−0.02	−1.25	−3/2
\(\theta^{(J)} \)	1/3	−0.11	−0.07	−0.04	0.01	−0.00	1.64	−1
\(\theta^{(M)} \)	1/3	−2.18	−1.12	−0.59	−0.27	−0.16	−0.96	−1
\(\theta^{(S)} \)	\(\log(T/2)/\log(T) \)	3.97	3.65	3.20	2.84	2.20	−0.21	−1
\(\theta^* \)	Normal	0.05	0.03	−0.04	0.01	−0.00	−1.64	−2
	Student-t	0.78	0.32	0.14	0.09	0.02	−1.24	
	Laplace	−4.56	−2.81	−1.79	−1.19	−0.80	−0.63	

Table S2: \(\theta = 0.9 \). Figures are reported in 2 decimal places, and the figure 0.00 is for estimated bias of −0.0024. The simulation error for the estimates of the bias is between \(1.0 \times 10^{-4} \) and \(7.41 \times 10^{-3} \).

\(\alpha \)	Errors	\(T \)	Slope					
		50	100	200	400	800	Est	Exp
\(\hat{\theta} \)		−3.22	−1.70	−0.87	−0.44	−0.22	−0.97	−1
\(\tilde{\theta} \)	1/3	−2.94	−1.44	−0.68	−0.31	−0.13	−1.21	−3/2
	1/2	−2.66	−1.21	−0.52	−0.19	−0.07	−1.32	−3/2
\(\theta^l \)	1/3	−2.91	−1.42	−0.67	−0.31	−0.13	−1.12	−3/2
	1/2	−2.54	−1.13	−0.47	−0.17	−0.06	−1.35	−3/2
\(\theta^{(J)} \)	1/3	−0.68	−0.19	−0.06	−0.01	0.00	−2.11	−1
\(\theta^{(M)} \)	1/3	−2.14	−1.22	−0.70	−0.39	−0.21	−0.83	−1
\(\theta^{(S)} \)	\(\log(T/2)/\log(T) \)	15.14	14.71	13.56	12.26	9.79	−0.15	−1
\(\theta^* \)	Normal	1.93	1.24	0.70	0.39	0.20	−0.82	−1
	Student-t	−0.60	0.56	0.12	0.03	0.01	−1.60	−2
	Laplace	−18.34	−12.59	−8.49	−5.83	−3.82	−0.56	

Whenever the estimated process is non stationary with \(\hat{\theta} > 1 \), it is not possible to generate stationary bootstrap series for the computation of the estimator \(\theta^{(M)} \). The estimated non-
Table S3: Simulation settings for the negative binomial model in Section S8. The settings are as in Guerrier et al. (2020, Section 6) (2010.13867v2, §6) and Zhang et al. (2022, Section J.4 in Supplementary Materials) (2204.07907v1, §J.4).

2010.13867v2, §6	2204.07907v1, §J.4	2204.07907v1, §J.4	2204.07907v1, §J.4	
\(n\)	100	200	400	800
\(p\)	20	41	51	61
\(x_{i1} = 1\)	\(x_{i2} \sim N(0, 1)\)	\(x_{i3} = I(i > 50)\)	\(x_{ij} \sim N(0, 2/15)\)	\(x_{ij} \sim N(0, 2/15)\)
\(x_{i1} = 1\)	\(x_{i2} \sim N(0, 1/5)\)	\(x_{ij} \sim N(0, 4/25)\)	\(x_{ij} \sim N(0, 4/25)\)	\(x_{ij} \sim N(0, 4/25)\)
\(x_{i1} = 1\)	\(x_{i2} \sim N(0, 1)\)	\(x_{ij} \sim N(0, 4/25)\)	\(x_{ij} \sim N(0, 4/25)\)	\(x_{ij} \sim N(0, 4/25)\)
\(x_{i1} = 1\)	\(x_{i2} \sim N(0, 1/5)\)	\(x_{ij} \sim N(0, 4/25)\)	\(x_{ij} \sim N(0, 4/25)\)	\(x_{ij} \sim N(0, 4/25)\)
\(\beta_1\)	1.5	2	2	2
\(\beta_2\)	2.5	1	1	1
\(\beta_3\)	-2.5	-1	-1	-1
\(\beta_4\)	0	0	0	0
\(\beta_p\)	0	0	0	0
\(\kappa\)	0.6	0.7	0.7	0.7

Stationary processes are 497 (out of 250 \(\times 2^{16}/50\)) for \(T = 50\), 1 (out of 250 \(\times 2^{16}/100\)) for \(T = 100\), and 0 for other sample sizes.

S8 Negative binomial regression

The performance of the explicit and implicit RBM estimators is assessed here in the context of negative binomial regression with many covariates using the experiments in Guerrier et al. (2020, Section 6) and Zhang et al. (2022, Section J.4 in Supplementary Materials). Both Guerrier et al. (2020) and Zhang et al. (2022) are unpublished preprints at the time of writing the current Supplementary Material document, and, hence, they are subject to change or become unavailable. For this reason, in what follows, we fully describe the simulation settings we consider from those preprints.

Suppose that \(y_1, \ldots, y_n\) are realizations of \(Y_1, \ldots, Y_n\), which are assumed to be conditionally independent given covariates \(x_1, \ldots, x_n\). Assume that \(Y_i \mid x_i\) is distributed according to a negative binomial distribution with probability mass function

\[
f(y_i \mid x_i; \beta, \kappa) = \frac{\Gamma(y_i + \kappa^{-1})}{\Gamma(y_i + 1)\Gamma(\kappa^{-1})} \left(\frac{\kappa^{-1}}{\kappa^{-1} + \mu_i} \right)^{\kappa^{-1}} \left(\frac{\mu_i}{\kappa^{-1} + \mu_i} \right)^{y_i},
\]

where \(\mu_i = \mathbb{E}(Y_i \mid x_i; \beta) = \exp(x_i^\top \beta)\). The variance of \(Y_i \mid x_i\) is \(\text{var}(Y_i \mid x_i) = \mu_i + \kappa \mu_i^2\), and \(\kappa\) is an overdispersion parameter. When \(\kappa \to 0\), the distribution of \(Y_i \mid x_i\) converges to the Poisson distribution. So, negative binomial regression can be viewed as a fully-parametric extension to Poisson regression with log link that accounts for over-dispersion.

The simulation settings we consider are as shown in Table S3, and are exactly as in Guerrier et al. (2020, Section 6) and Zhang et al. (2022, Section J.4 in Supplementary Materials). All covariate vectors \(x_1, \ldots, x_n\) have entries that are generated independently from each other.
Figure S1: Absolute bias (|Bias|) and empirical root mean squared error (RMSE) of various estimators of β and κ for the simulation settings in Table S3 of Section S8. Results are shown, from darker to lighter grey, for the ML estimator, the implicit RBM-estimator, the explicit RBM-estimator, and the adjusted score functions estimator of Firth (1993).

according to Table S3. The covariate vectors are generated once and held fixed across the 1000 simulations of the response vector $(y_1,\ldots,y_n)^\top$ at each of the four sets of values for β and κ.

For each sample, we estimate β and κ using ML, as implemented in the \texttt{glm.nb} function from the \texttt{MASS} R package (Venables and Ripley, 2002), the adjusted score functions approach in Firth (1993), as implemented in the \texttt{brnb} function from the \texttt{brglm2} R package (Kosmidis, 2023), and explicit and implicit RBM-estimation.

To our knowledge there is no formal way to date that can detect whether the ML estimate of the negative binomial regression has elements on the boundary of the parameter space, which includes $\kappa = 0$ and/or $|\beta_j| = \infty$ for at least one $j \in \{1,\ldots,p\}$. For this reason, boundary estimates where declared in an ad-hoc way, by checking if either the estimate of κ is smaller than 10^{-3} or the estimated standard error for β_j was larger than 100 ($j = 1,\ldots,p$). In our simulation studies, this only happened for the setting 2010.13867v2, §6 in Table S3. There were 3, 7, 5, 4 samples out of a 1000, where at least one of the components of ML, the adjusted score functions approach in Firth (1993), and the explicit and implicit RBM-estimation, respectively, were declared as being on the boundary.

Figure S1 shows estimates of the absolute bias and root mean squared error of the four estimators. Similarly to Example 5.3 of the main text, the summaries are computed after removing the samples where estimates have been declared as being on the boundary. As is apparent, the adjusted scores approach of Firth (1993), and explicit and implicit RBM-estimation result in estimators with substantially smaller bias and mean squared error than the ML estimator. In all cases, the reduction in bias is substantial in the estimation of β_1 and κ. The adjusted scores approach of Firth (1993), which relies on expectations of products of log-likelihood derivatives with respect to the correct model, is able to almost completely remove finite sample bias in all four simulation settings of Table S3. As in Example 5.3 of the main text, the differences between the various reduced-bias estimators in terms of bias and root mean squared error diminish fast as the sample size increases.

The arguments in Section 5.3 can be extended to develop a composite plug-in penalty that
returns implicit RBM-estimators, which apart from components away from the boundary, also have bias that is free from the first-order term. The penalty can consist of a term that diverges to $-\infty$ as $\kappa \to 0$, and, as the results in Joshi et al. (2022) on Poisson regression suggest, a scaled-version of Jeffreys’ invariant prior.

References

Boos, D. D. and L. A. Stefanski (2013). *Essential Statistical Inference*. New York, NY: Springer.

Firth, D. (1993). Bias reduction of maximum likelihood estimates. *Biometrika* 80(1), 27–38.

Griewank, A. and A. Walther (2008). *Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation* (2nd ed.). Philadelphia, PA: Society for Industrial and Applied Mathematics.

Guerrier, S., M. Karemera, S. Orso, M.-P. Victoria-Feser, and Y. Zhang (2020). A general approach for simulation-based bias correction in high dimensional settings. *arXiv e-prints*, arXiv:2010.13687.

Huber, P. J. and E. Ronchetti (2009). *Robust Statistics* (2nd ed.). Hoboken, NJ: Wiley.

Joshi, A., A. Geroldinger, L. Jiricka, P. Senchaudhuri, C. Corcoran, and G. Heinze (2022). Solutions to problems of nonexistence of parameter estimates and sparse data bias in poisson regression. *Statistical Methods in Medical Research* 31(2), 253–266.

Koenker, R. (2005). *Quantile Regression*. Cambridge, NY: Cambridge University Press.

Kosmidis, I. (2023). *brglm2: Bias Reduction in Generalized Linear Models*. R package version 0.9.

Kosmidis, I. and D. Firth (2009). Bias reduction in exponential family nonlinear models. *Biometrika* 96(4), 793–804.

Kosmidis, I. and D. Firth (2010). A generic algorithm for reducing bias in parametric estimation. *Electronic Journal of Statistics* 4, 1097–1112.

Liang, K.-Y. and S. L. Zeger (1986). Longitudinal data analysis using generalized linear models. *Biometrika* 73(1), 13–22.

Lindsay, B. G. (1988). Composite likelihood methods. In N. U. Prabhu (Ed.), *Statistical Inference from Stochastic Processes*, Volume 80 of *Contemporary Mathematics*. American Mathematical Society.

McCullagh, P. (2018). *Tensor methods in statistics* (2nd ed.). Mineola, NY: Dover Publications.

Pace, L. and A. Salvan (1997). *Principles of Statistical Inference from a Neo-Fisherian Perspective*. London, UK: World Scientific.

Padoan, S. A., M. Ribatet, and S. A. Sisson (2010). Likelihood-based inference for max-stable processes. *Journal of the American Statistical Association* 105(489), 263–277.

van der Vaart, A. W. (1998). *Asymptotic Statistics*. Cambridge, UK: Cambridge University Press.

Varin, C., N. Reid, and D. Firth (2011). An overview of composite likelihood methods. *Statistica Sinica* 21(1), 5–42.
Venables, W. N. and B. D. Ripley (2002). *Modern Applied Statistics with S* (Fourth ed.). New York: Springer. ISBN 0-387-95457-0.

Wedderburn, R. (1974). Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method. *Biometrika* **61**(3), 439–447.

Zhang, Y., Y. Ma, S. Orso, M. Karemera, M.-P. Victoria-Feser, and S. Guerrier (2022). A flexible bias correction method based on inconsistent estimators. *arXiv e-prints*, arXiv:2204.07907.