Learning to Price Vehicle Service with Unknown Demand

Haoran Yu1, Ermin Wei2, and Randall A. Berry2

1School of Computer Science, Beijing Institute of Technology
2Department of Electrical and Computer Engineering, Northwestern University

Oct. 2020 @ACM MobiHoc
Problem
Location-Based Vehicle Service Pricing

- People use vehicle service offered by ride-sharing platforms.

- **Location-based pricing:** It depends on origin-destination pairs.
 - **Purpose:** Balance demand and supply.

Example of origin-based charge:
price = standard price \(\times \) multiplier
We introduce a traffic graph to illustrate location-based pricing.

- **Node:** location, **link:** traffic demand.

Provider sets different vehicle service prices for different links. Let p_{ij} be the price for link (i, j) (i: origin; j: destination).

- e.g., $p_{13} = \$1/minute$.
- Can be converted to $\$/mile based on vehicle velocity.

For each link (i, j), actual demand changes with p_{ij}.
We introduce a traffic graph to illustrate location-based pricing.

- **Node**: location, **link**: traffic demand.

Provider sets different vehicle service prices for different links. Let \(p_{ij} \) be the price for link \((i, j)\) (\(i\): origin; \(j\): destination).

- e.g., \(p_{13} = \$1/\text{minute} \).
- Can be converted to \$/\text{mile} based on vehicle velocity.

For each link \((i, j)\), actual demand changes with \(p_{ij} \).
Optimal pricings for links are coupled due to vehicle flow balance.

Example: Suppose p_{14} increases. How should provider change other prices?

- Increase p_{46}: to save supply at node 4.
- Decrease p_{54}: to increase supply at node 4.

Provider needs to jointly optimize p_{ij} for different links.
Challenge of Unknown Demand

- If mapping from price to demand is known:
 - Example: If $p_{12} = 2$, demand = 100; If $p_{12} = 4$, demand = 50.
 - Given all parameters and topology, can calculate p_{ij}^* for all (i,j).
If mapping from price to demand is unknown:

- **Example:** If $p_{12} = 2$, demand = ? If $p_{12} = 4$, demand = ?
- **Intuitive solution:** (i) test many prices $p^1_{ij}, p^2_{ij}, \ldots$ to learn mapping; (ii) derive optimal prices based on learned mapping.
- **Challenge:** If do not choose $p^1_{ij}, p^2_{ij}, \ldots$ carefully, the provider’s payoff at initial stage is low.
Challenge of Unknown Demand

- If mapping from price to demand is unknown:
 - **Example:** If $p_{12} = 2$, demand =? If $p_{12} = 4$, demand =?
 - **Intuitive solution:** (i) test many prices $p_{ij}^1, p_{ij}^2, \ldots$ to learn mapping; (ii) derive optimal prices based on learned mapping.
 - **Challenge:** If do not choose $p_{ij}^1, p_{ij}^2, \ldots$ carefully, the provider’s payoff at initial stage is low.
Consider a simplified model with a monopolistic provider.

Design an online pricing policy:
- (i) Can learn accurate user demand for each \((i, j)\);
- (ii) Achieve asymptotically-optimal provider long-term payoff.
Related Work

- Prior work on **vehicle service pricing**: [Banerjee et al. 2015], [Banerjee et al. 2016], [Ma et al. 2018], [Bimpikis et al. 2019], [Yu et al. 2019] etc.
 - **Our work**: Consider unknown user demand.

- Prior work on **pricing with unknown demand**: [Besbes and Zeevi 2009], [Broder and Rusmevichientong 2012], [Den Boer and Zwart 2013] [Keskin and Zeevi 2014] [Khezeli and Bitar 2017] etc.
 - **Our work**: Consider vehicle service, where prices for links are coupled due to vehicle flow balance.

- Prior work on **multi-armed bandit problem**: [Berry and Fristedt 1985], [Kleinberg 2005], [Vermorel and Mohri 2005], [Wang and Huang 2018] etc.
 - **Our work**: Consider an infinite decision space.
Related Work

- Prior work on vehicle service pricing: [Banerjee et al. 2015], [Banerjee et al. 2016], [Ma et al. 2018], [Bimpikis et al. 2019], [Yu et al. 2019] etc.
 - Our work: Consider unknown user demand.

- Prior work on pricing with unknown demand: [Besbes and Zeevi 2009], [Broder and Rusmevichientong 2012], [Den Boer and Zwart 2013] [Keskin and Zeevi 2014] [Khezeli and Bitar 2017] etc.
 - Our work: Consider vehicle service, where prices for links are coupled due to vehicle flow balance.

- Prior work on multi-armed bandit problem: [Berry and Fristedt 1985], [Kleinberg 2005], [Vermorel and Mohri 2005], [Wang and Huang 2018] etc.
 - Our work: Consider an infinite decision space.
Related Work

- Prior work on **vehicle service pricing**: [Banerjee et al. 2015], [Banerjee et al. 2016], [Ma et al. 2018], [Bimpikis et al. 2019], [Yu et al. 2019] etc.
 - **Our work**: Consider *unknown* user demand.

- Prior work on **pricing with unknown demand**: [Besbes and Zeevi 2009], [Broder and Rusmevichientong 2012], [Den Boer and Zwart 2013] [Keskin and Zeevi 2014] [Khezeli and Bitar 2017] etc.
 - **Our work**: Consider **vehicle service**, where prices for links are coupled due to vehicle flow balance.

- Prior work on **multi-armed bandit problem**: [Berry and Fristedt 1985], [Kleinberg 2005], [Vermorel and Mohri 2005], [Wang and Huang 2018] etc.
 - **Our work**: Consider an **infinite decision space**.
Model
A monopolistic provider offers service on day $d = 1, 2, \ldots$

Let p_{ij}^d be service price for (i, j) on d-th day ($\$ \text{ per time slot}$).

Realized user demand on (i, j) is

$$\Psi_{ij}^d (p_{ij}^d, \epsilon_{ij}^d) = \alpha_{ij} - \beta_{ij} p_{ij}^d + \epsilon_{ij}^d.$$

- α_{ij} and β_{ij} are positive parameters that are unknown to provider and need to be learned.
- ϵ_{ij}^d is a zero-mean i.i.d. random variable, capturing demand shock. Provider only knows its distribution.
- On each day, provider can only observe $\Psi_{ij}^d (p_{ij}^d, \epsilon_{ij}^d)$.

Assumptions: linear and time-invariant demand.
User Demand

- A monopolistic provider offers service on day $d = 1, 2, \ldots$
- Let p_{ij}^d be service price for (i, j) on d-th day ($\$ per time slot$).
- Realized user demand on (i, j) is
 \[\Psi_{ij}^d \left(p_{ij}^d, \epsilon_{ij}^d \right) = \alpha_{ij} - \beta_{ij} p_{ij}^d + \epsilon_{ij}^d. \]

 - α_{ij} and β_{ij} are positive parameters that are unknown to provider and need to be learned.
 - ϵ_{ij}^d is a zero-mean i.i.d. random variable, capturing demand shock. Provider only knows its distribution.
 - On each day, provider can only observe $\Psi_{ij}^d \left(p_{ij}^d, \epsilon_{ij}^d \right)$.

 Assumptions: linear and time-invariant demand.
Provider Decisions and Constraints

- \(p_{ij}^d \): service price for \((i, j)\) ($ per time slot).
 - Should satisfy \(p_{ij}^d \leq p_{\text{max}} \), e.g., due to government regulation.

- \(w_{ij}^d \): vehicle supply for \((i, j)\), i.e., mass of vehicles departing from \(i\) to \(j\) per time slot.
 - Should satisfy \(w_{ij}^d \geq 0 \) and vehicle flow balance:
 \[
 \sum_j w_{ij}^d = \sum_j w_{ji}^d , \forall i.
 \]
 departure rate
 arrival rate
 - This couples the provider’s decisions for different links.

- **Assumptions:** full control over vehicles and consideration of system’s steady state.
Provider Payoff

- Provider’s time-average payoff on day d in the steady state
 $= \text{user payment per slot - operation cost per slot}$

\[
\Pi\left(p^d, w^d, \epsilon^d\right) \triangleq \sum_{(i,j)} \xi_{ij} \min \left\{ \Psi_{ij}^d(p_{ij}^d, \epsilon_{ij}^d), w_{ij}^d \right\} p_{ij}^d - \sum_{(i,j)} \xi_{ij} w_{ij}^d c.
\]

- ξ_{ij}: travel time from i to j (measured by number of slots).
- c: one vehicle’s operation cost per slot.
- $\Psi_{ij}^d(p_{ij}^d, \epsilon_{ij}^d)$: realized demand given price and demand shock.
Provider Target

Provider should choose p^d and w^d in real time to maximize
\[\lim_{D \to \infty} \mathbb{E} \left\{ \frac{1}{D} \sum_{d=1}^{D} \prod (p^d, w^d, \epsilon^d) \right\}. \]

- **Expectation** is taken with respect to $\epsilon^1, \ldots, \epsilon^D$ and the possible randomness in the provider policy.
We design a policy under which provider’s time-average payoff converges to the optimal objective value of following problem:

\[
\max \mathbb{E}_{\epsilon^d} \left\{ \prod \left(p^d, w^d, \epsilon^d \right) \right\}
\]

s.t. \[
\sum_{j} w^d_{ij} = \sum_{j} w^d_{ji}, \forall i,
\]

\[
w^d_{ij} = \mathbb{E}_{\epsilon^d} \left\{ \Psi^d_{ij} \left(p^d_{ij}, \epsilon^d_{ij} \right) \right\}, \forall i, j
\]

\[
\text{var. } p^d_{ij} \leq p_{\text{max}}, w^d_{ij} \geq 0, \forall i, j.
\]

- **Intuition:** Optimal payoff when provider knows all \(\alpha_{ij}\) and \(\beta_{ij}\).
- **Assumption:** local supply-demand balance.
Our Policy
Our Online Policy

On Odd Day

1. Based on historical observations, estimate all α_{ij} and β_{ij}

2. Decide pricing and supply based on estimated α_{ij} and β_{ij}

After pricing, observe realized demand

On Even Day

3. Modify last pricing & supply decisions and implement

After pricing, observe realized demand

Intuition: balance exploitation and exploration.
Odd Day: Demand Parameter Estimation

- Given historical observations on demand and pricing, estimate \(\alpha_{ij} \) and \(\beta_{ij} \) for each \((i, j)\) by least squares estimation:

\[
\left(\hat{\alpha}^{d-1}_{ij}, \hat{\beta}^{d-1}_{ij} \right) = \text{arg min}_{(\bar{\alpha}_{ij}, \bar{\beta}_{ij})} \sum_{\tau=1}^{d-1} \left(\Psi^T_{ij} (p_{ij}^\tau, \epsilon_{ij}^\tau) - \left(\bar{\alpha}_{ij} - \bar{\beta}_{ij} p_{ij}^\tau \right) \right)^2.
\]

- Observed demand - demand under estimation
Odd Day: Pricing Under Estimated Parameters

(1) Based on historical observations, estimate all α_{ij} and β_{ij}

(2) Decide pricing and supply based on estimated α_{ij} and β_{ij}

After pricing, observe realized demand

(3) Modify last pricing & supply decisions and implement

After pricing, observe realized demand
Provider makes decisions based on estimated parameters $\hat{\alpha}_{ij}^{d-1}, \hat{\beta}_{ij}^{d-1}$:

$$\max \sum_{(i,j)} \xi_{ij} \mathbb{E}_{\epsilon_{ij}} \left\{ \min \left\{ \hat{\alpha}_{ij}^{d-1} - \hat{\beta}_{ij}^{d-1} p_{ij}^d + \epsilon_{ij}^d, w_{ij}^d \right\} \right\} p_{ij}^d - \sum_{(i,j)} \xi_{ij} w_{ij}^d c$$

s.t. $\sum_j w_{ij}^d = \sum_j w_{ji}^d, \forall i$, (vehicle flow balance)

$$w_{ij}^d = \hat{\alpha}_{ij}^{d-1} - \hat{\beta}_{ij}^{d-1} p_{ij}^d, \forall i, j$$, (local supply demand balance)

var. $p_{ij}^d \leq p_{\text{max}}, w_{ij}^d \geq 0, \forall i, j$.

After rearrangement, can show problem is convex.
Even Day: Pricing Under Estimated Parameters

(1) Based on historical observations, estimate all α_{ij} and β_{ij}

(2) Decide pricing and supply based on estimated α_{ij} and β_{ij}

After pricing, observe realized demand

(3) Modify last pricing & supply decisions and implement

After pricing, observe realized demand
Even Day: Modify Odd Day’s Decisions

- Let $p_{ij}^* \left(\hat{\alpha}^{d-2}, \hat{\beta}^{d-2} \right)$ and $w_{ij}^* \left(\hat{\alpha}^{d-2}, \hat{\beta}^{d-2} \right)$ be the decisions on odd day $d - 1$.

- On each even day d, for each (i, j):
 - Implement $p_{ij}^* \left(\hat{\alpha}^{d-2}, \hat{\beta}^{d-2} \right) - \frac{\rho}{\hat{\beta}_{ij}^{d-2}} d^{-\eta}$ as the pricing decision.
 - Implement $w_{ij}^* \left(\hat{\alpha}^{d-2}, \hat{\beta}^{d-2} \right) + \rho d^{-\eta}$ as the supply decision.

- $\rho > 0$ and $0 < \eta < \frac{1}{2}$ are controllable parameters.

- **Intuition**: Adding offset terms facilitates exploring different prices and learning demand parameters.

- The offset terms decay to zero as d increases.
| Performance |
|-------------|
| Performance |
Theoretical Performance: Squared Estimation Error

Theorem

For all $d \geq 5$ and (i, j):

$$
\mathbb{E} \left\{ \left\| \left(\hat{\alpha}_{ij}^{d-1}, \hat{\beta}_{ij}^{d-1} \right) - (\alpha_{ij}, \beta_{ij}) \right\|_2^2 \right\} < \Phi_1 (\rho, \eta) \frac{\ln (d - 1)}{(d - 1)^{1-2\eta}}.
$$

The upper bound approaches zero as d goes to infinity.
Theoretical Performance: Time-Average Payoff

Theorem

For all $D > 4 + e^{1-2\eta}$:

$$E\left\{ \frac{1}{D} \sum_{d=1}^{D} \left(\prod \left(p^*, w^*, \epsilon^d \right) - \prod \left(p^d, w^d, \epsilon^d \right) \right) \right\} < \Phi_2 (\rho, \eta) D^{-1} + \Phi_3 (\rho, \eta) (\ln D)^{\frac{1}{2}} D^{\eta-\frac{1}{2}} + \Phi_4 (\rho, \eta) D^{-\eta}.$$

The upper bound approaches zero as D goes to infinity.
Numerical Performance

- Real-world dataset (DiDi Chuxing GAIA Open Data Initiative).
- Compare our policy with:
 - Clairvoyant policy: make decisions with complete information;
 - Myopic policy: choose decisions without adding offset terms;
 - Random policy: choose decisions based on randomly guessed parameters.
- Can see our paper for comparison with more policies (e.g., perturbed myopic policy).
Numerical Performance

Controllable parameters in our policy: $\rho = 2$ and $\eta = 0.45$.
Conclusion

- Propose an effective online pricing and supply policy that balances exploitation and exploration.

Future directions

- Consider driver side compensation design and learn drivers’ willingness to work.
- Use closed-queueing network to model users’ stochastic demand.
THANK YOU