Large 21-cm signals from AGN-dominated reionization

Girish Kulkarni,1,† Tirthankar Roy Choudhury,2 Ewald Puchwein1 and Martin G. Haehnelt1

1Institute of Astronomy and Kavli Institute of Cosmology, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK
2National Centre for Radio Astrophysics, Tata Institute of Fundamental Research, Post Bag 3, Ganeshkhind, Pune 411007, India

Accepted 2017 May 10. Received 2017 May 9; in original form 2017 January 16

ABSTRACT

We present predictions for the spatial distribution of 21-cm brightness temperature fluctuations from high-dynamic-range simulations for active galactic nucleus (AGN)-dominated reionization histories that have been tested against available Lyα and cosmic microwave background (CMB) data. We model AGNs by extrapolating the observed $M_{\text{bh}} - \sigma$ relation to high redshifts and assign them ionizing emissivities consistent with recent UV luminosity function measurements. We assess the observability of the predicted spatial 21-cm fluctuations in the late stages of reionization in the limit in which the hydrogen 21-cm spin temperature is significantly larger than the CMB temperature. Our AGN-dominated reionization histories increase the variance of the 21-cm emission by a factor of up to 10 compared to similar reionization histories dominated by faint galaxies, to values close to 100 mK2 at scales accessible to experiments ($k \lesssim 1$ c Mpc$^{-1}$. This is lower than the sensitivity reached by ongoing experiments only by a factor of about 2 or less. When reionization is dominated by AGNs, the 21-cm power spectrum is enhanced on all scales due to the enhanced bias of the clustering of the more massive haloes and the peak in the large scale 21-cm power is strongly enhanced and moved to larger scales due to bigger characteristic bubble sizes. AGN-dominated reionization should be easily detectable by Low Frequency Array (and later Hydrogen Epoch of Reionization Array and Phase 1 of the Square Kilometre Array) at their design sensitivity, assuming successful foreground subtraction and instrument calibration. Conversely, these could become the first non-trivial reionization scenarios to be ruled out by 21-cm experiments, thereby constraining the contribution of AGNs to reionization.

Key words: galaxies: active – galaxies: high-redshift – intergalactic medium – quasars: general – dark ages, reionization, first stars.

1 INTRODUCTION

Hydrogen reionization is generally thought to occur at redshifts $z \sim 6$–15 by Lyman continuum photons that are widely believed to be produced by young stars in low-mass galaxies (Mitra, Choudhury & Ferrara 2015). However, the idea that active galactic nuclei (AGNs) could have been the dominant source of ionizing radiation during the epoch of reionization has recently gained traction again (Chardin et al. 2015; Giallongo et al. 2015; Madau & Haardt 2015; D’Aloisio et al. 2016; Khair et al. 2016; Mitra, Choudhury & Ferrara 2016; Chardin, Puchwein & Haehnelt 2017). The resurgence of AGNs as a credible source of ionizing photons at high redshift is due to a number of recent developments. First, the claimed discovery of 19 low-luminosity ($M_{1450} > -22.6$) AGNs between redshifts $z = 4.1$ and 6.3 by Giallongo et al. (2015) using a novel X-ray/NIR selection criterion may suggest that the faint end of the quasar UV luminosity function is steeper at these redshifts than previously thought (Hopkins, Richards & Hernquist 2007; Haardt & Madau 2012). Using far-UV spectral slopes from composite spectra of low-redshift quasars and assuming a Lyman continuum escape fraction of 100 per cent, Giallongo et al. (2015) argued that AGNs brighter than $M_{1450} = -18$ can potentially produce all of the metagalactic hydrogen photoionization rate inferred from the Lyα forest at $4 < z < 6$. Secondly, Becker et al. (2015) reported a large scatter in the Lyα opacity between different sightlines close to redshift $z = 6$. Chardin et al. (2015) showed that these opacity fluctuations extend to substantially larger scales ($\gtrsim 50$ h$^{-1}$cMpc) than expected in reionization histories dominated by low-luminosity galaxies (see also Davies & Furlanetto 2016). Chardin et al. (2017) further demonstrated that opacity fluctuations on such large scales arise naturally if there is a significant...
contribution (\(\geq 50\%)\) of AGNs to the ionizing emissivity at the redshift of the observed opacity fluctuations (\(z \approx 5.5-6\)) as would be expected for an AGN luminosity that is consistent with the measurements of Giallongo et al. (2015). Thirdly, measurements of the Lyman continuum escape fraction from high-redshift galaxies are still elusive. Although high-redshift galaxies as faint as rest-frame UV magnitude \(M_{\text{UV}} = -12.5 (L < 10^{-13}L^*)\) at \(z = 6\) (Livermore, Finkelstein & Lotz 2017) and redshifts as high as \(z = 11.1\) (Oesch et al. 2016) have now been reported, the escape of Lyman continuum photons has been detected in only a small number of comparatively bright \((L > 0.5L^*)\) low-redshift \((z < 4)\) galaxies. In these galaxies, the escape fraction is typically found to be 2–20 per cent (Vanzella et al. 2015).

Kulkarni et al. (2016) provide more details of our implementation of the excursion set method of deriving the large-scale ionization field and its subsequent calibration to Ly\(\alpha\) and CMB data. We recapitulate an outline of the method here to mention important parameter values and set up notation. We obtain the gas density field from the underlying cosmological simulation by projecting the relevant particles on to a grid using the cloud-in-cell scheme. From the gas density field, we derive the ionization field corresponding to a distribution of sources with specific ionizing emissivities. Denoting the total number of ionizing photons produced by a halo of mass \(M\) as \(N_\alpha(M)\), a grid cell at position \(x\) is ionized if the condition

\[
\xi_\text{eff}(x, R) \geq 1
\]

is satisfied in a spherical region centred on the cell for some radius \(R\) (Furlanetto, Zaldarriaga & Hernquist 2004; Choudhury, Haehnelt & Regan 2009; Mesinger, Furlanetto & Cen 2011). Here,

\[
f \propto \rho_{\text{g}}(R)^{-1} \int_{M_{\text{min}}}^{\infty} \frac{dM}{dM_{\text{max}}} \frac{dN}{dM_{\text{max}}} N_\alpha(M),
\]

where \(\rho_{\text{g}}(R)\) is the average matter density and \(dN/dM_{\text{max}}\) is the halo mass function in the sphere of radius \(R\) and \(M_{\text{min}}\) is the minimum mass of haloes that emit Lyman continuum photons. The quantity \(f\) is proportional to the collapsed fraction \(f_{\text{coll}}\) into haloes of mass \(M > M_{\text{min}}\) if \(N_\alpha(M) \propto M\). The parameter \(\xi_\text{eff}\) here is the effective ionizing efficiency, which corresponds to the number of photons in the intergalactic medium (IGM) per hydrogen atom in stars, compensated for the number of hydrogen recombinations in the IGM. It is the only parameter that determines the large scale ionization field in this approach. Cells that do not satisfy the criterion in equation (1) are neutral. We denote the ionized volume fraction in a cell \(i\) as \(Q_i\). The total volume-weighted ionized fraction is then \(Q = \sum Q_i/n_{\text{cell}}\), where \(n_{\text{cell}}\) is the total number of grid cells.

We calibrate the large-scale ionization field obtained by the above procedure to a chosen reionization history, incorporating inhomogeneities within ionized regions, using the method developed by Choudhury et al. (2015). We begin by fixing a reionization model, which is specified by the redshift evolution of the volume-weighted ionization fraction \(Q_\text{V}\). Our simulated ionization field is calibrated to the given reionization model in two steps. In the first step, the effective ionization parameter \(\xi_\text{eff}\) is tuned to get the volume-weighted ionization fraction predicted by the reionization history at the corresponding redshift. In the second step, we obtain the photoionization rate distribution within the ionized regions by solving the globally averaged radiative transfer equation

\[
\frac{dQ_\text{V}}{dr} = \frac{n_{\text{ion}}}{n_H} - Q_\text{V}/t_\text{rec}
\]

for the photoionization rate \(\Gamma_\text{rec}\). Here, \(n_{\text{ion}}\) is the average comoving photon emissivity, \(n_H\) is the average hydrogen density and \(t_\text{rec}\) is the recombination time-scale. We implement self-shielding in ionized regions using the fitting function obtained by Rahmati et al. (2013) from radiative transfer simulations.\(^1\) This creates cells with excess neutral hydrogen fraction, thereby reducing the mean free path of Lyman continuum photons. The mean free path \(\lambda_{\text{mfp}}\) enters

\(^1\)This self-shielding is insensitive to the presence of hard ionizing photons, such as those from AGNs, due to diminished ionization cross-section (Rahmati et al. 2013).
The Sherwood simulation suite has been run using the energy- and entropy-conserving TreePM smoothed particle hydrodynamical code p-GADGET-3, which is an updated version of the GADGET-2 code (Springel, Yoshida & White 2001; Springel 2005). Our base simulation was performed in a periodic cube of length 160 h$^{-1}$cMpc on a side. The number of gas and dark matter particles were both initially 20483. This corresponds to a dark matter particle mass of $M_{\text{dm}} = 3.44 \times 10^7 h^{-1} M_\odot$ and gas particle mass of $M_{\text{gas}} = 6.38 \times 10^6 h^{-1} M_\odot$. In the redshift range relevant to this paper, we use snapshots of the particle positions at $z = 10$, 8 and 7. Haloes are identified using the friends-of-friends algorithm. At $z = 7$, the minimum halo mass in our simulation is 2.3 $\times 10^8 h^{-1} M_\odot$; the maximum halo mass is $3.1 \times 10^{12} h^{-1} M_\odot$.

To model ionizing emission by AGNs, we assume that in high-mass haloes that host luminous AGNs, the total number of photons N_γ is proportional to the black hole mass M_{bh}. In order to estimate the mass of black holes in these haloes, we follow the approach of Kulkarni & Loeb (2012) and employ the mass of supermassive black holes can decrease rapidly due to an increasing effect of supernova feedback (e.g., Kauffmann & Haehnelt 2000; Haehnelt & Kauffmann 2002; Brook et al. 2012). This is reflected in a drop in the black hole mass function for black hole masses smaller than $M_{\text{bh}} \sim 10^9 M_\odot$, particularly for $z > 1$ (Merloni & Heinz 2008; Kelly & Merloni 2012). With M_{bh} fixed, a desired total AGN emissivity is achieved in the model by setting the value of the parameter r. We calibrate the AGN-emissivity evolution to values close to the fit by Madau & Haardt (2015) to the integrated 1 Ry emissivity from AGNs down to UV luminosities of 0.01L_\odot. This emissivity evolution is shown by the red curve in the right-hand panel of Fig. 1. In this panel, red filled circles denote ionizing emissivity from AGNs in our model; red open circles refer to the total ionizing emissivity, which also includes contribution from star-forming galaxies. The ionizing emissivity of AGNs in our model closely matches that from the model of Madau & Haardt (2015). We also have some contribution to \dot{n}_ion from star-forming galaxies in our model, particularly at $z = 10$, as seen from the red open circles in Fig. 1. For comparison, the grey points in Fig. 1 show the photon emissivity in the galaxy-dominated ‘Late/Default’ model of Kulkarni et al. (2016).

Having chosen a source model, we now need to choose a suitable reionization history to calibrate our simulation. As discussed above in relation to equation (3), this calibration will provide us with the photoionization rate and ionized hydrogen fraction throughout our simulation box. The AGN-dominated ionizing emissivity evolution considered by Madau & Haardt (2015) gives rise to a reionization history that is very close to the ‘Very Late’ reionization history as described by Kulkarni et al. (2016). For ease of comparison, we thus choose this reionization history to calibrate our simulation. The red curve in the left-hand panel of Fig. 1 shows the evolution of the volume-weighted ionized fraction Q_γ in this Very Late model. For comparison, the grey curve in this panel shows the evolution of Q_γ in the ‘Late/Default’ model of Kulkarni et al. (2016). In the Very Late model, ionized regions overlap and the Universe is completely reionized at $z = 6$, similar to the Late/Default model, but Q_γ evolves more rapidly at $z > 6$ (Kulkarni et al. 2016). This model agrees reasonably well with the background photoionization rate determined from the Lyα forest at $z < 6$ (Faucher-Giguère et al.)

2 While AGNs have harder spectra than star-forming galaxies, the effect of harder photons on the structure of the hydrogen ionization fronts is small (Thomas & Zaroubi 2008; Ghara, Choudhury & Datta 2015; Kakiichi et al. 2016). The excursion set method therefore remains applicable.
The above relation neglects the im-
Approximated as

3 RESULTS: 21-CM SIGNAL

The top panel of Fig. 2 shows the evolution of the 21-cm brightness temperature from redshift $z = 10$–6 in our fiducial $v_i > 175$ km s$^{-1}$ AGN-dominated model. The 21-cm brightness temperature is approximated as

\[T_b(x) = \tilde{T}_{b,\text{HI}}(x) \Delta(x). \]

where the mean temperature $T_b \approx 22$ mK$[(1 + z)/7]^{1/2}$ (Choudhury et al. 2009). The above relation neglects the impact of redshift space distortions due to peculiar velocities and possible fluctuations in the spin temperature, i.e. it implicitly assumes that the spin temperature is much greater than the CMB temperature and that the Lyα coupling is sufficiently complete throughout the IGM. This is a good approximation in the redshift range considered here, when the global ionized fraction is greater than a few per cent (Pritchard & Loeb 2012; Majumdar et al. 2014; Ghara et al. 2015). For comparison, the middle panel of Fig. 2 shows the evolution of the 21-cm brightness in the galaxy-dominated Very Late model considered by Kulkarni et al. (2016). The reionization history of this model is identical to that in the galaxy-dominated Very Late model in Fig. 3, in which the galaxy-dominated model is shown by the dashed grey curves. The reionization history of the AGN-dominated model is higher than the large-scale power in our AGN-dominated model, in which AGNs are hosted by haloes with $v_i > 175$ km s$^{-1}$. The power spectrum is characterized by a bump at large scales and an increase towards the smallest scales. At redshifts $z = 7$–10, the bump occurs at $k \approx 0.2$ cMpc$^{-1}$ and has an amplitude of approximately $\Delta_{21}^2 \sim 40$–70 nK2. This is significantly higher than in the galaxy-dominated models. (Note that $k = 0.2$ cMpc$^{-1}$ corresponds to a length scale of 30 h$^{-1}$ cm, which is well-sampled in our simulation cube, which is 160 cMpc on each side.) We can compare the large-scale power in our AGN-dominated model with that in the galaxy-dominated Very Late model in Fig. 3, in which the galaxy-dominated model is shown by the dashed grey curves. The large-scale power in the AGN-dominated model is larger than that in the galaxy-dominated model by factor of 2 at $z = 7$ and a factor of 10 at $z = 10$. As we will see below, this enhancement is due to the enhanced size and clustering of ionized regions, which is also visually apparent in Fig. 2. The large-scale 21-cm power in our fiducial AGN-dominated model is also higher than the large-scale power in the Late/Default model of Kulkarni et al. (2016). Power spectra from the latter model are shown by the solid grey curves in Fig. 3. The enhancement factor here is about 3 at $z = 7$ and 2 at

![Figure 1](https://academic.oup.com/mnras/article/469/4/4283/3828082)
z = 10. At redshifts z = 8 and 10, the Late/Default model has higher power than the galaxy-dominated Very Late model at large scales, because of the higher Q_v, which translates to larger bubble size, as is evident from Fig. 2.

In Fig. 3, we also show the effect of changing the circular velocity threshold for AGN-hosting haloes. The thin diagonal lines in each panel of Fig. 3 show sensitivities set by thermal noise for five ongoing and upcoming 21-cm experiments: the Precision Array for Probing the Epoch of Reionization (PAPER; Parsons et al. 2014), Murchison Widefield Array (MWA; Bowman et al. 2013; Tingay et al. 2013), Low-Frequency Array (LOFAR; van Haarlem et al. 2013; Pober et al. 2014), Hydrogen Epoch of Reionization Array (HERA; Pober et al. 2014) and the low-frequency instrument from Phase 1 of the Square Kilometre Array (SKA1-LOW). We consider 1000 h of observations and use experimental parameters identical to those considered by Kulkarni et al. (2016). Note that the sample variance from the limited number of k modes measured in the survey volume also limits the sensitivity of the experiment. The sample variance scales as $\Delta^2(k)/\sqrt{N}$ and, due to the small amplitude of the power spectrum, is smaller (<1 mK2) than the thermal noise at all redshifts for all experiments considered here. Also note that we assume perfect foreground subtraction in this discussion. Foreground subtraction and calibration residuals will reduce the experimental sensitivity (Bernardi et al. 2009; Pober et al. 2013; Dillon et al. 2014). Due to the relatively smooth dependence of astrophysical foregrounds on frequency, this reduction in sensitivity particularly affects small k values.

Due to limited baselines, current and upcoming 21-cm experiments are only sensitive to large scales. None of the experiments are sensitive to 21-cm power at $k \gtrsim 1$ cMpc$^{-1}$ h. SKA1-LOW and HERA have the highest sensitivities primarily due to a large number of antenna elements. In the galaxy-dominated Late/Default model, at $z = 10$ (129 MHz), the signal-to-noise ratio (SNR) is ~ 100 for these two experiments at $k \sim 0.1$ cMpc$^{-1}$ h. This is enhanced by a further factor of ~ 2 in the AGN-dominated model. At $z = 7$ (178 MHz), the enhancement is by a factor of ~ 3. LOFAR is sensitive at scales corresponding to $k \lesssim 0.2$ cMpc$^{-1}$ h at $z = 10$ (129 MHz) and $k \lesssim 0.5$ cMpc$^{-1}$ h at $z = 7$ (178 MHz). At $k \sim 0.1$ cMpc$^{-1}$ h, the expected SNR for LOFAR is ~ 10 at $z = 10$ and ~ 50 at $z = 7$, for the galaxy-dominated Late/Default model. These SNRs are also enhanced by similar factors as for SKA1-LOW and HERA in AGN-dominated models. PAPER and MWA are the least sensitive of the five experiments due to their relatively small number of antenna elements. Fig. 3 shows that while galaxy-dominated models predict small SNRs for PAPER and MWA, the AGN-dominated models do predict SNRs of ~ 2 at $k \sim 0.1$ cMpc$^{-1}$ h at redshifts $z = 7$ (178 MHz) and $z = 8$ (158 MHz). Also shown in Fig. 3
Figure 3. Red curves show the 21-cm power spectra from our fiducial AGN-dominated model, which assumes that AGNs are hosted by haloes with circular velocities greater than $v_c = 175$ km s$^{-1}$. Green and blue curves show the power spectra in models where this threshold is changed to 150 and 200 km s$^{-1}$, respectively. All three of these models are calibrated to the Very Late reionization history. Power spectra from the galaxy-dominated Late/Default model of Kulkarni et al. (2016) are shown by the solid grey curves. Dashed grey curves show power spectra from a galaxy-dominated Very Late model, also from Kulkarni et al. (2016). Thin coloured diagonal lines indicate experimental sensitivities. Data points are the measurements from the 64-element deployment of PAPER at $z = 8.4$ (Ali et al. 2015). The average ionization fraction in the Very Late model is $Q_V = 0.16$ at $z = 10$, 0.41 at $z = 8$ and 0.58 at $z = 7$. At these redshifts, the average ionization fraction in the Late/Default model is, respectively, $Q_V = 0.37$, 0.65 and 0.82.

are published measurements from the 64-element deployment of PAPER at $z = 8.4$ (Ali et al. 2015). These are within a factor of <2 of the predicted power in our AGN-dominated model. Very clearly, the 21-cm signal will be significantly easier to detect if reionization is AGN dominated. Conversely, these could become the first non-trivial models of reionization to be ruled out by 21-cm experiments, thereby constraining the contribution of AGNs to reionization and thus complementing infrared surveys.

The enhancement in the large-scale 21-cm power in AGN-dominated reionization models can be better understood by decomposing the 21-cm power spectrum into contributions from the ionization field and the underlying matter density using equation (12). This yields (Furlanetto, Zaldarriaga & Hernquist 2004; McQuinn et al. 2005; Furlanetto, Oh & Briggs 2006)

$$\Delta^2_{21}(k) = b_\delta \Delta^2_{\delta}(k) + b_x \Delta^2_{x_{\text{HI}}}(k) + \text{cross-correlations},$$

where the first and second terms on the right-hand side are the power spectra of the matter density and the ionization field, respectively, and the last term denotes the cross-power spectrum between the ionization and matter density fields. The proportionality factors b_δ and b_x are independent of k. This decomposition is shown in Fig. 4 for our fiducial AGN-dominated model and the galaxy-dominated Very Late model at $z = 8$. At small scales, the 21-cm power spectrum is proportional to the matter power spectrum. At large scales, the cross-terms in equation (14) are negative, with a magnitude of about 10 per cent of the total power. The ionization field starts contributing power at large scales, creating a bump (Furlanetto et al. 2006). This can be understood by writing the power spectrum of the ionization field in terms of the size distribution of ionized regions in a halo model approach (Furlanetto et al. 2004; McQuinn et al. 2005). The

Figure 4. A decomposition of the 21-cm power spectrum (blue curve), predicted in our model, into contributions from the gas density (brown curve) and the ionization field (orange curve) at $z = 8$. Solid curves show the AGN-dominated model; dashed curves show the galaxy-dominated model. The gas density power spectrum is identical in the two models. In AGN-dominated models, the ionization field is highly clustered. This explains the enhancement in 21-cm power at large scales.
scale at which the bump appears depends on the characteristic size of ionized regions and grows with decreasing redshift. When the ionization fraction is small even the large-scale power is determined by the matter power spectrum. This is the case, for instance, in the galaxy-dominated Late/Default model at $z = 10$ in Fig. 3. However, as ionized regions grow, the bump moves to successively smaller k values. This happens with decreasing redshifts, but in our case it also happens when we put AGNs in successively higher mass haloes, that is, when we increase the threshold circular velocity of AGN-hosting haloes, because all of our AGN-dominated models are calibrated to the same Very Late reionization history. When we increase the circular velocity cut-off, the number of AGN-hosting haloes is reduced and the size of ionized regions around each AGN-hosting halo increases in order to keep Q_ν fixed. This increases the spatial scale at which the power enhancement occurs. The amplitude of the peak in the power spectrum at large scales, however, does not increase arbitrarily with the circular velocity threshold. At some point, Poisson fluctuations dominate and the power approaches that corresponding to white noise. This is clearly seen in Fig. 3 in all models: the peak in large-scale power is enhanced in the AGN-dominated models relative to the galaxy-dominated models with the same (Very Late) reionization history, but when v_c is increased beyond 150 km s$^{-1}$, the peak simply moves to larger scales without increasing in amplitude. Thus, enhanced contribution from high-mass haloes with constant total ionization fraction increases the large scale 21-cm power up to a limit and then moves the location of the peak to larger and larger scales. This large-scale peak in the 21-cm power is perhaps the most important ionization signature for 21-cm experiments (Furlanetto et al. 2006).

4 THE CASE FOR AND AGAINST REIONIZATION BY AGNs

While interest in early reionization by X-rays from faint AGN (Meiksin & White 2004; Meiksin 2005; Srbinovsky & Wyithe 2007) was motivated by the large value of Thomson scattering optical depth measured from the first-year WMAP data ($\tau = 0.166^{+0.007}_{-0.007}$; Spergel et al. 2003), there are now a number of arguments favouring a significant role of normal QSOs in reionization, as discussed in Section 1: the suggestion of a rather steep faint end of the QSO luminosity function at high redshift by Giallongo et al. (2015), large Lyα opacity fluctuations at very large scales in QSO absorption spectra (Becker et al. 2015; Chardin et al. 2015; Davies & Furlanetto 2016), a lack of convincing detections of the escape of Lyman continuum photons from faint high-redshift galaxies (Vanzella et al. 2010; Boutsia et al. 2011; Mostardi et al. 2015; Robertson et al. 2015; Siana et al. 2015; Finkelstein 2016; Grazian et al. 2016; Khare et al. 2016), and finally, the emergence of a shallow bright end of the high-redshift ($z \gtrsim 7$) galaxy luminosity function (Bowler et al. 2012, 2014, 2015; Bradley et al. 2014) with many bright galaxies showing possible AGN-like spectral signatures (Stark et al. 2015a,b, 2017). These observations all point towards a significant presence of luminous AGNs at $z > 6$, suggesting that AGNs play a major role in reionization (Chardin et al. 2015; Giallongo et al. 2015; Madau & Haardt 2015; D’Aloisio et al. 2016; Khare et al. 2016; Mitra et al. 2016; Chardin et al. 2017).

On the other hand, however, it has also been argued that AGN-dominated reionization is in tension with several observations. D’Aloisio et al. (2016) considered the effect of AGN-dominated reionization on the Lyα opacity at $z > 5$, He II Lyα opacity at $z \sim 3.1–3.3$, and the thermal history of the IGM. In agreement with Chardin et al. (2015), these authors found that AGNs did provide a plausible explanation for the large fluctuations in the Lyα opacity at $z > 5$. However, they found that reionization of He II occurs much earlier in these AGN-dominated models (see also Mitra et al. 2016). For instance, in the model of Madau & Haardt (2015), He II reionization is complete at $z = 4.5$, compared to $z = 3$ in the standard scenario (Haardt & Madau 2012). This early Helium reionization could result in higher IGM temperatures due to the associated photoheating. The temperature of the IGM at mean density is increased in AGN-dominated models by factors of ~ 2 relative to the standard models for $z = 3.5–5$, in conflict with measurements. This inconsistency could be avoided by reducing the escape fraction of 4 Ry photons in AGNs, but it is not clear if this can be achieved while requiring a 100 per cent escape fraction of 1 Ry photons in order to explain the Lyα opacity fluctuations. Further evidence against AGN-dominated reionization models has emerged from metal-line absorbers at $z \sim 6$. In their cosmological radiation hydrodynamical simulations, Finlator et al. (2016) find that the hard spectral slopes of UV backgrounds in AGN-only reionization models produce too many C IV absorption systems related to Si IV and C II at $z \sim 6$. However, these simulations assume an $L_C \propto \nu^{1.57}$ AGN spectral energy distribution (SED) at extreme UV (Vanden Berk et al. 2001; Telfer et al. 2002; Haardt & Madau 2012). This slope is marginally harder than recent measurements ($L_C \propto \nu^{-1.7}$) from a sample of $z \sim 2.4$ quasars (Lusso et al. 2015). Finlator et al. (2016) also find that the N(Si IV)/N(C IV) column density ratio measurements predict a somewhat harder and more intense $\gtrsim 4$ Ry background than the standard model of Haardt & Madau (2012). Using a large sample of X-ray-selected quasars in the redshift range $z = 0–6$, Ricci et al. (2017) find that the faint end of the AGN UV luminosity function at $z \sim 6$ is likely to be much shallower than that reported by Giallongo et al. (2015). In their analysis, Ricci et al. (2017) use an AGN obscuration optical depth ($\log N_H$) cut-off that reproduces low-redshift AGN UV luminosity functions and an X-ray-to-optical/UV luminosity ratio calibrated at redshifts $z = 0.05–4$ (Lusso et al. 2010). These authors argue that the apparent contradiction with the results of Giallongo et al. (2015) could be explained by contamination from the AGN host galaxies. It has also been recently argued that the Lyman continuum escape fraction of AGNs might not be 100 per cent as is usually assumed (Micheva, Iwata & Inoue 2017a). This may further reduce the contribution of AGNs to reionization.

A definitive understanding of the AGN contribution to reionization will perhaps only emerge with deep large-area surveys to detect faint and intermediate brightness quasars at high redshifts, such as the Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQs) project (Matsuoka et al. 2016) and the VISTA Extragalactic Infrared Legacy Survey (VEILS; Hönig et al. 2017), and later with the Wide Field Infrared Survey Telescope (WFIRST; Spiegel et al. 2013) and Euclid (Laureijs et al. 2011).

5 CONCLUSIONS

We have presented predictions of the spatial distribution of the 21-cm brightness temperature fluctuations from AGN-dominated models of reionization using high-dynamic-range cosmological hydrodynamical simulations from the Sherwood simulation suite (Bolton et al. 2017) for reionization histories motivated by constraints from Lyα absorption and emission data as well as CMB data and based on a physically motivated AGN model.

Our main conclusion is that AGN-dominated reionization histories increase the large-scale 21-cm power by factors of up to 10. Conventional models typically predict values of 10–20 mK2 for the variance of the 21-cm brightness temperature at redshifts $z = 7–10$
at scales accessible to ongoing and upcoming experiments ($k \lesssim 1$ cMpc$^{-1}$ h), but AGN-dominated models can increase this variance to values close to 100 mK2. This is because AGNs reside in few highly clustered haloes, which increases the peak of the 21-cm power spectrum and moves the peak to larger scales. This bodes well for experiments that seek to detect this feature, and the predicted signal is lower than the sensitivity claimed to have been already reached by ongoing experiments by only a factor of about 2 or less.

Our models for the reionization history and Lyman continuum emissivity of AGNs suggest that detection by LOFAR (and later HERA and SKA1) should be in easy reach of their design sensitivity, albeit assuming optimistic foreground subtraction and calibration residuals. Conversely, these models could become the first non-trivial hydrogen reionization scenarios to be ruled out by experiments, thereby complementing infrared searches for high-z AGNs, and constraining the contribution of AGNs to reionization.

ACKNOWLEDGEMENTS

We thank the anonymous referee for a thoughtful referee report and acknowledge helpful discussions with Jonathan Chardin, Colin DeGraf, Kristian Finlator, Laura Keating and Dylan Nelson. Support by ERC Advanced grant 320596 ‘The Emergence of Structure During the Epoch of Reionization’ is gratefully acknowledged. We gratefully acknowledge support by the Kavli Foundation. We thank the anonymous referee for a thoughtful referee report.

REFERENCES

Ali Z. S. et al., 2015, ApJ, 809, 61
Barkana R., Loeb A., 2001, Phys. Rep., 349, 125
Becker G. D., Bolton J. S., 2013, MNRAS, 436, 1023
Becker G. D., Bolton J. S., Madau P., Pettini M., Ryan-Weber E. V., Venemans B. P., 2015, MNRAS, 447, 3402
Bernardi G. et al., 2009, A&A, 500, 965
Bolton J. S., Puchwein E., Sijacki D., Haehnelt M. G., Kim T.-S., Meiksin A., 2014, ApJ, 782, 176
Boutsia K. et al., 2011, ApJ, 736, 41
Bowler R. A. A. et al., 2014, MNRAS, 440, 2810
Bowler R. A. A. et al., 2015, MNRAS, 452, 1817
Bowman J. D. et al., 2013, PASA, 30, e031
Bradley L. D. et al., 2014, ApJ, 792, 76
Brook C. B., Stinson G., Gibson B. K., Roskar R., Wadsley J., Quinn T., 2014, ApJ, 792, 76
Chardin J., Haehnelt M. G., Aubert D., Puchwein E., 2015, MNRAS, 453, 2943
Chardin J., Puchwein E., Haehnelt M. G., 2015, MNRAS, 465, 3429
Choudhury T. R., Haehnelt M. G., Regan J., 2009, MNRAS, 394, 960
Choudhury T. R., Puchwein E., Haehnelt M. G., Bolton J. S., 2015, MNRAS, 452, 261
D’Aloisio A., Upton Sanderbeck P. R., McQuinn M., Trac H., Shapiro P. R., 2016, preprint (arXiv:1607.06467v1)
Davies F. B., Furlanetto S. R., 2016, MNRAS, 460, 1328
Dillon J. S. et al., 2014, Phys. Rev. D, 89, 023002
Faucher-Giguère C.-A., Lidz A., Zaldarriaga M., Hernquist L., 2009, ApJ, 703, 1416
Ferrarese L., 2002, ApJ, 578, 90
Finkelstein S. L., 2016, PASA, 33, e037
Finlator K., Oppenheimer B. D., Davé R., Zackrisson E., Thompson R., 2017, MNRAS, 459, 2299
Furlanetto S. R., Zaldarriaga M., Hernquist L., 2004, ApJ, 613, 1
Furlanetto S. R., Oh S. P., Briggs F. H., 2006, Phys. Rep., 433, 181
Ghara R., Choudhury T. R., Datta K. K., 2015, MNRAS, 447, 1806
Giallongo E. et al., 2015, A&A, 578, A83
Grazian A. et al., 2016, A&A, 585, A48
Haardt F., Madau P., 2012, ApJ, 746, 125
Haehnelt M. G., Kauffmann G., 2002, MNRAS, 336, L61
Hönig S. F. et al., 2017, MNRAS, 464, 1693
Hopkins P. F., Richards G. T., Hernquist L., 2007, ApJ, 654, 731
Iliev I. T., Melgella, Shapiro P. R., Pen U.-L., Mo Y., Koda J., Ahn K., 2012, MNRAS, 423, 2222
Japelj J. et al., 2017, MNRAS, 468, 389
Kachikci K., Graziani L., Ciardi B., Meiksins A., Compostella M., Eide M. B., Zaroubi S., 2016, MNRAS, 468, 3718
Kauffmann G., Haehnelt M., 2000, MNRAS, 311, 576
Kelly B. C., Merloni A., 2012, Adv. Astron., 2012, 970858
Khaire V., Srianand R., Choudhury T. R., Gaikwad P., 2016, MNRAS, 457, 4051
Kuhlen M., Faucher-Giguère C.-A., 2012, MNRAS, 423, 862
Kulkarni G., Loeb A., 2012, MNRAS, 422, 1306
Kulkarni G., Choudhury T. R., Puchwein E., Haehnelt M. G., 2016, MNRAS, 452, 3011
Laureijs R. et al., 2011, preprint (arXiv:1110.3193)
Livermore R. C., Finkelstein S. L., Lotz J. M., 2017, ApJ, 835, 113
Lusso E. et al., 2010, A&A, 512, A34
Lusso E., Worseck G., Hennawi J. F., Prochaska J. X., Vignali C., Stern J., O’Meara J. M., 2015, MNRAS, 449, 4204
Madon P., Haardt F., 2015, ApJ, 813, L8
Majumdar S., Melgella G., Datta K. K., Jensen H., Choudhury T. R., Bharadwaj S., Friedrich M. M., 2014, MNRAS, 443, 2843
Mao J., Kim M., 2016, ApJ, 828, 96
Matsukawa Y. et al., 2016, ApJ, 828, 26
McQuinn M., Furlanetto S. R., Hernquist L., Zahn O., Zaldarriaga M., 2005, ApJ, 630, 643
McQuinn M., Lidz A., Zahn O., Dutta S., Hernquist L., Zaldarriaga M., 2007, MNRAS, 377, 1043
Meiksin A., 2005, MNRAS, 356, 596
Meiksin A., White M., 2004, MNRAS, 350, 1107
Meiksin A., Heinz S., 2008, MNRAS, 388, 1011
Mesinger A., Furlanetto S., Cen R., 2011, MNRAS, 411, 955
Micheva G., Iwata I., Inoue A. K., 2017a, MNRAS, 465, 302
Micheva G., Iwata I., Inoue A. K., Matsuda Y., Yamada T., Hayashino T., 2017b, MNRAS, 465, 316
Mitra S., Choudhury T. R., Ferrara A., 2015, MNRAS, 454, L76
Mitra S., Choudhury T. R., Ferrara A., 2016, preprint (arXiv:1606.02719v2)
Mostardi R. E., Shapley A. E., Steidel C. C., Trainor R. F., Reddy N. A., Siana B., 2015, ApJ, 810, 107
Oesch P. A. et al., 2016, ApJ, 819, 129
Parsons A. R. et al., 2014, ApJ, 788, 106
Planck Collaboration XVI, 2014, A&A, 571, A16
Planck Collaboration XLVII, 2016, A&A, 596, A108
Pober J. C. et al., 2013, ApJ, 768, L36
Pober J. C. et al., 2014, ApJ, 782, 66
Pritchard J. R., Loeb A., 2012, Rep. Prog. Phys., 75, 086901
Puchwein E., Bolton J. S., Haehnelt M. G., Madau P., Becker G. D., Haardt F., 2015, MNRAS, 450, 4081
Rahmati A., Pawlik A. H., Raicicu M., Schaye J., 2013, MNRAS, 430, 2427

MNRA 469, 4283–4291 (2017)
APPENDIX: AGN-IONIZING EMISSIVITY

In our simulations, AGNs are implemented according to the procedure described in Section 2. In this work, we assume that haloes with mass below a threshold mass M_q have $N_{\gamma}(M) = N_{\gamma}^{\text{halo}}(M) \propto M_{\text{halo}}$. Ionizing photons from these low-mass haloes are sourced by star formation. On the other hand, high-mass haloes with mass greater than the threshold M_q have $N_{\gamma}(M) = N_{\gamma}^{\text{AGN}}(M) \propto M_{\text{bh}}$, where M_{bh} is given by equation (10). These high-mass haloes produce ionizing photons due to AGNs. The ratio r, defined in equation (11), quantifies the relative photon contribution of AGNs and galaxies. Our AGN models are thus described by two parameters r and M_q.

We fix the value of the threshold mass M_q to that corresponding to a circular velocity of $v_c = 175$ km s$^{-1}$ in our fiducial model, but also consider the effect of varying this threshold to $v_c = 150$ km s$^{-1}$ and $v_c = 200$ km s$^{-1}$ in Fig. 3. The left-hand panel of Fig. A1 shows the N_{γ} assignment for AGNs in our fiducial model ($v_c = 175$ km s$^{-1}$) at redshifts $z = 7, 8$ and 10. Below the threshold mass, $N_{\gamma} \propto M_{\text{halo}}$ and above it $N_{\gamma} \propto M_{\text{bh}} \propto M_{\odot}^{1.6}$, following equation (10). The middle panel of Fig. A1 shows N_{γ} as a function of the halo circular velocity. We see that N_{γ} sharply increases at $v_c = 175$ km s$^{-1}$. This velocity corresponds to a different halo mass at each of the three redshifts considered here, as seen in the right-hand panel of Fig. A1. The magnitude of N_{γ} increases with redshift to compensate for the decreasing number density of haloes above the velocity threshold. As described in Section 2, where we discuss our calibration procedure, the required total ionizing emissivity is dictated by our chosen reionization model.

Figure A1. Our model for the photon contribution N_{γ} for AGNs at various redshifts as a function of halo mass (left-hand panel) and circular velocity (middle panel). The right-hand panel shows the evolution of halo mass corresponding to the three circular velocity thresholds considered in this paper. Our chosen reionization model dictates the amplitude of the N_{γ}–M_{halo} relation, while its slope is governed by the black hole mass model of equation (10).

This paper has been typeset from a TeX/LaTeX file prepared by the author.