積み荷タンパク質レセプター Emp46p および Emp47p の糖鎖認識ドメインの結晶構造

佐藤恵史 1, 佐藤 健 1,2, 山下克子 1,2, 山田悠介 1, 五十嵐啓之 1, 加藤龍一 1, 中野明彦 1,2, 若槻社儀 1

1 高エネルギー研究機関材料科学研究部門, 2 東京工業大学大学院理学系研究科

Crystal Structures of the Carbohydrate Recognition Domain of Ca2+-independent Cargo Receptors Emp46p and Emp47p

Tadashi Satoh 1, Ken Sato 2, Katsuko Yamashita 2, Yusuke Yamada 1, Noriyuki Igarashi 1, Ryuichi Kato 1, Akihiro Nakano 2 and Soichi Wakatsuki 1

1 Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 2 Molecular Membrane Biology Laboratory, RIKEN Discovery Research Institute, 3 PRESTO, Japan Science and Technology Agency, 4 Innovative Research Initiatives, Tokyo Institute of Technology, 5 CREST, Japan Science and Technology Agency, 6 Department of Biological Sciences, Graduate School of Science, University of Tokyo

1. はじめに
細胞の膜には膜によって仕切られた細胞内小器官（オルガネラ）があり、それぞれのオルガネラは専門の機能を担っている。これらオルガネラは「輸送小胞」を介して、相互に蓄積（タンパク質輸送）のやりとりをしている。この輸送小胞による蓄積をタンパク質の輸送は、厳密にコントロールされていて、送り手側のオルガネラに留まるべきタンパク質を受け手側のオルガネラへと送り出されるタンパク質の選別が行われている。オルガネラの膜を貫通している膜タンパク質は、膜の細胞質側に局在している輸送小胞と直接結合できる。選別・輸送される [1]。一方、細胞質側の領域を持たない可溶性のタンパク質の選別・蓄積は、蓄積荷タンパク質と輸送小胞を同時に結合して緊密に膜貫通型の蓄積荷タンパク質レセプターが担っている [2]。

小胞体内で生合成されているタンパク質の多くは N 糖鎖修飾を受けるが、最近、N 糖鎖と輸送小胞への選別には密接な関係があることがわかってきた。すなわち、蓄積荷タンパク質の糖鎖を含む、選別・蓄積を介する多糖体の内腔に糖鎖認識ドメイン（Carbohydrate Recognition Domain: CRD）の役割を果たす [3]。また酵母 Saccharomyces cerevisiae も、蓄積荷タンパク質の糖鎖修飾を受けることが明らかにされた [4,5]。近年、CRD の遺伝子変異により、糖タンパク質である血液凝固因子（第Ⅴ因子および第Ⅷ因子）の小胞体からゴルジ体への輸送に機能的障害を生じ、血友病と同様の出血性症状を呈する疾病を引き起こすことが明らかにされた [6]。従って、積み荷タンパク質レセプターの立体構造研究、糖タンパク質輸送に関わる疾患についての理解を深め、最終的にはその治療の道へと繋げるための重要な課題の一つである。これまでにラット由来 ERGIC-53 の Ca2+ 結合型および非結合型の構造が明らかにされてい

が [7,8]。これら積み荷タンパク質レセプターと積み荷糖タンパク質および糖鎖との複合体構造は解析されていない。高エネルギー加速器研究機構・物質構造科学研究所の若槻社儀教授を中心とする構造生物学研究センターのグループは、理化学研究所・東京大学の中野明彦教授、東京工業大学の山下克子教授のグループとの共同研究で、積み荷タンパク質レセプター Emp46p および Emp47p のそれそれぞれの CRD の高分解能構造解析に成功した [9]。本稿では、引用文献 [9] では述べなかった高分解能を持つ結晶が得られるまでの経緯なども併せて、ユニークな Ca2+ 依存性の積み荷タンパク質レセプター Emp46p および Emp47p について紹介する。

2. Emp46p および Emp47p の CRD の結晶化、回折データ収集および構造決定
Emp46p および Emp47p の CRD は、ガルタチオン-S-トランスフェラーゼ (GST) との融合タンパク質として大腸菌で増殖させ、各種フラクタファーにより精製を行った。結晶化はハングングドロップ蒸気拡散法で行った。発現領域は、Emp46p は 1-251 残基、Emp47p は 1-254 残基である。結晶はほぼ同時期に得られ、Emp46p は薄い板状の結晶で、Fig. (1a)、Emp47p はバイピラミッド型の結晶であった (Fig. 1b)。Emp47p の変形は、SPRing-8 BL41XU を用いて、2.00Å 分解能で SeMet 置換結晶を用いた MAD 法により決定した。また、最終的に PF-AR NW12A を用いて 1.42Å の高分解能の Native 結晶の回折データを収集することに成功した。Emp47p CRD は、7-227 および 244-249 残基をモデルトレースすることができた。興味深いことに、Emp47p は Ca2+ 依存性 ERGIC-53 のホモドロログとして考えられていたが、得られた構造中には Ca2+ は存在していないかった。結晶化条件は、リン酸 Na および K を沈殿剤としたものであったことから、Ca2+ を用いたソーキングおよび共結晶化を行うことが出来なかった。また、Ca2+ 存在下で精製したサンプルを結晶化したが、同様に

34
Ca\(^{2+}\) は構造中に確認されなかった。そこで、新しい結晶化条件を探索するために、Emp47 の C 端末領域を除くモデルトレス出来た領域に対応する 7-227 残基から成る新しいコンストラクトを作成し、精製・結晶化を行った。その結果、新たに PEG3350 および 4000 を沈殿剤とした 3 条件で結晶を得た（Fig. 1c-e）。得られた 2 つの結晶系は C2 および P2\(_1\) で、PF-BL6A を用いてそれぞれ 1.00Å および 1.05Å の高分解能の四角データを収集することに成功した。一方、P2\(_1\).2\(_1\).2\(_1\)の結晶系では、2.70Å の分解能であった。Orthorhombic の結晶化条件では 10mM の Ca\(^{2+}\) が存在しており、Monoclinic form の条件ではそれぞれ 10mM の Ca\(^{2+}\) のソレシングを行った。しかしながら、得られた構造中に Ca\(^{2+}\) は存在していなかった。一連の結晶化実験の結果から、Emp47p は Ca\(^{2+}\) が結合しない新規の荷タンパク質レセプターであることが示唆された。

一方、Emp46p は Emp47p を初期モデルとした分子置換法では位相決定できなかったため、SeMet 置換結晶の作成を試みた。しかしながら、Native の結晶化条件では SeMet 置換結晶は得られず、精製収率も低かったことから、結晶化条件のスクリーニングを行った。しかしながら、得られた構造中に Ca\(^{2+}\) は存在していなかった。一連の結晶化実験の結果から、Emp46p は Ca\(^{2+}\) が結合しない新規の荷タンパク質レセプターであることが示唆された。

3. カリウムが結合する変異体、Emp46p

Emp46p と Emp47p の CRD の全体構造は、四型および凸型 β シートからなる β サンドイッチ構造から構成されており（Fig. 2）。ERGIC-53 の CRD と比較してみると、全体構造はよく似ていた（Emp46p: 1.24Å, Emp47p: 1.27Å）。金属結合部位は異なっていた。これまで、哺乳動物のホモログである ERGIC-53 および VIP36 は、Ca\(^{2+}\) 依存性の積み荷タンパク質レセプターであることが知られていた [10,11]。しかしながら、我々は結晶学的手法により、Emp47p が Ca\(^{2+}\) と結合せず、一方 Emp46p は Ca\(^{2+}\) と結合せず、その代わりに K\(^+\) と結合することを明らかにした [9]。Emp46p CRD の構造が得られた当初、金属イオンの場所は ERGIC-53 の二つの Ca\(^{2+}\) サイドに若干異っていたが（Fig. 3a），糖鎖結合サイト（四型 β-sheet 上）の近くに位置していたことから、その金属イオンは Ca\(^{2+}\) だと考えていた。
Figure 2
Overall structures of the CRD of Emp46p and Emp47p. Ribbon models of the CRD of Emp46p monomer are shown in (a) and (b) which is rotated by 90˚ around a vertical axis. Ribbon models of the CRD of Emp47p monomer are shown in (c) and (d) as in Emp46p. Positions of the N- and C-termini are indicated by red letters. The secondary structures are highlighted (β-strands belonging to the concave β-sheets, red; β-strands belonging to convex β-sheets, blue; β-strands belonging to β-hairpin, cyan; helices, yellow) and the loops are colored green. The bound potassium ion is shown as a magenta sphere.

(a) (b)
(c) (d)

Figure 3
K⁺ ion binding site of Emp46p. (a) K⁺ binding site of Emp46p. Residues coordinating K⁺ are shown in ball-and-stick models. Magenta sphere indicates K⁺. Water molecules are shown as W1 and W2. Pink spheres indicate Ca²⁺ ions at the sites Ca1 and Ca2 in p58/ERGIC-53 [8]. (b) Comparison between the metal-free and Y131F Emp46p structures. The metal-free and Y131F Emp46p structures are colored in yellow and cyan, respectively.
4. 変異体を用いた温度感受性実験および結合実験

次に、Emp46p に結合した K⁺が糖鎖結合に関わるかどうかを調べるために、変異体 Y131F を作製し、X線結晶構造解析、表面プラズモン共鳴を利用したバイオセンサー（Biacore2000, Biacore 社）を用いた結合実験、および酵母を用いた温度感受性実験を行った。まず、変異体 Y131F の構造解析を行い、K⁺が結合できないことを確認した（Fig. 3b）。

K⁺存在下での構造解析を行ったところ、Ca²⁺およびK⁺は Emp46p とチログロブリンとの結合に影響を及ぼさないことが判った（data not shown）。一方、酵母を用いた温度感受性実験では、Y131F が WT と比較して温度感受性が低下し、生体内で K⁺が Emp46p の機能（糖タンパク質の輸送）に関与していることが示唆された（Fig. 4）。

本研究において、我々は Emp46p と Emp47p が新奇の Ca²⁺非依存性の新規の糖タンパク質レセプターであることを明らかにした。今後、糖鎖認識のために必要だと考えられるヘテロオリゴマー化した Emp46p/47p および糖タンパク質の糖鎖との複合体構造の解析により、Ca²⁺非依存性（もしかしたら K⁺依存性）の新しい糖鎖認識機構が明らかにされることは期待される。

謝辞

本研究を始めた当初、タンパク質結晶構造解析については素人同然であった私を指導して頂いた構造生物学研究センターの博士研究員であった（現）東京大学大学院・総合研究科・助手の志波根博士にこの場を借りて御礼を申し上げます。また、原子吸光分析を行うにあたって、本機器放射線科学センター、別所光太郎助手に御礼を申し上げます。本研究の一部はタンパク3000プロジェクトの研究助成により進められた。

引用文献

1. M. J. Kuehn, J. M. Herrmann, and R. Schekman, Nature 391, 187 (1998).
2. W. J. Belden, and C. Barlowe, Science 294, 1528 (2001).
3. K. Fiedler, and K. Simons, Cell 77, 625 (1994).
4. K. Sato, and A. Nakano, Mol. Biol. Cell 13, 2518 (2002).
5. K. Sato, and A. Nakano, Mol. Biol. Cell 14, 3055 (2003).
6. W. C. Nichols, U. Seligsohn, A. Zivelin, V. H. Terry, C. E. Hertel, M. A. Wheatley, M. J. Moussalli, H. P. Hauri, N. Ciavarella, R. J. Kaufman, and D. Ginsburg, Cell 93, 61 (1998).
7. L. M. Velloso, K. Svensson, G. Schneider, R. F. Pettersson, and Y. Lindqvist, J. Biol. Chem. 277, 15979 (2002).
8. L. M. Velloso, K. Svensson, R. F. Pettersson, and Y. Lindqvist, J. Mol. Biol. 334, 845 (2003).
9. T. Tatoh, K. Sato, A. Kanoh, K. Yamashita, Y. Yamada, N. Igarashi, R. Kato, A. Nakano, and S. Wakatsuki, J. Biol. Chem. 281, 10410 (2006).
10. C. Appenzeller, H. Andersson, F. Kappeler, and H. P. Hauri, Nat. Cell. Biol. 1, 330 (1999).
11. K. Fiedler, and K. Simons, J. Cell Sci. 109, 271 (1995).
12. M. M. Harding, Acta Cryst. D57, 401 (2001).
13. M. M. Harding, Acta Cryst. D58, 872 (2002).

（原稿受付：2006年7月5日）
Figure 5
Repeating sequence of Hrs-UIM. Middle line shows the sequence of Hrs-UIM; top and bottom lines show motifs binding ubiquitin molecule A (green) and molecule B (sky blue). Shaded letters indicate important residues for each binding site in particular. Italic letters indicate residues not observed in the electron density map. The two motifs are shifted by two residues relative to each other.
Table 1. Data collection and refinement statistics of Emp46p CRD

Crystallographic data

Data set	K⁺-bound Emp46p	metal-free Emp46p	Y131F-Emp46p
Space group	P2₁	P2₁	P2₁
Unit cell	54.3 / 55.9 / 77.5	54.9 / 55.8 / 77.7	54.2 / 56.0 / 77.7
a / b / c (Å)	90.0 / 108.3 / 90.0	90.0 / 108.0 / 90.0	90.0 / 108.6 / 90.0

Data processing statistics

Beam line	PF-BL18B	PF-BL6A	PF-BLSA
Wavelength (Å)	1.0000	1.0000	1.0000
Resolution (Å)	50 - 1.52 (1.57-1.52)	50 – 1.75 (1.81-1.75)	50 – 1.55 (1.61-1.55)
Total reflections	251 587	170 170	224 664
Unique reflections	68 062	45 402	64 255
Completeness (%)	99.6 (99.9)	99.8 (100.0)	98.1 (97.3)
Rmerge (%)	3.9 (36.7)	4.5 (35.5)	5.3 (38.1)
I / σ(I)	13.3 (3.6)	17.0 (4.0)	15.6 (2.8)

Refinement statistics

Resolution (Å)	20 – 1.52	20 - 1.75	20 - 1.55
Rwork (%)	18.9	21.0	20.2
Rfree (%)	21.8	23.7	23.5
R.m.s.d. from ideal values			
Bond length (Å)	0.011	0.013	0.013
Bond angle (˚)	1.40	1.41	1.40
Ramachandran plot (%)			
Most favored	83.4	83.3	85.6
Additionally allowed	15.6	15.9	13.9
Generously allowed	1.1	0.8	0.5

Number of atoms

Protein atoms	3485	3488	3495
Water molecules	424	300	423
Potassium ions	2	-	1

Average Biso (Å²)

Protein (A / B chain)	19.2 / 21.4	30.0 / 32.2	26.7 / 26.8
Water molecules	37.9	37.4	37.4
Potassium ions	21.7	-	32.5

Table 2. Data collection and refinement statistics of Emp47p CRD

Crystallographic data

Data set	Form 1 Emp47p	Form 2 Emp47p	Form 3 Emp47p	Form 4 Emp47p
Space group	P4₂,2	C2	P2₁	P2₁,2,2
Unit cell	70.31 / 70.31 / 100.14	72.5 / 65.0 / 41.5	41.6 / 65.2 / 72.5	39.5 / 129.7 / 170.1
a / b / c (Å)	90.0 / 90.0 / 90.0	90.0 / 96.7 / 90.0	90.0 / 96.7 / 90.0	90.0 / 90.0 / 90.0

Data processing statistics

Beam line	PF-AR NW12	PF-BL6A	PF-BL6A	PF-BL6A
Wavelength (Å)	1.0000	0.9779	0.9779	0.9779
Resolution (Å)	50 - 1.42 (1.47-1.42)	50 – 1.00 (1.04-1.00)	50 – 1.05 (1.09-1.05)	50 – 2.70 (2.80-2.70)
Total reflections	652 089	360 696	626 427	171 279
Unique reflections	48 179	103 133	178 928	24 787
Completeness (%)	99.6 (99.9)	96.3 (88.7)	98.5 (85.6)	99.8 (99.5)
Rmerge (%)	5.8 (38.4)	4.6 (24.9)	6.5 (38.0)	11.3 (48.6)
I / σ(I)	14.0 (6.0)	17.8 (4.9)	8.9 (2.3)	8.7 (4.8)

Refinement statistics

Resolution (Å)	10 – 1.42	10 - 1.00	10 - 1.10	20 - 2.70
Rwork (%)	13.4	13.0	13.5	19.8
Rfree (%)	19.2	16.3	17.3	25.8
R.m.s.d. from ideal values				
Bond length (Å)	0.012	0.016	0.014	0.013
Angle distance (Å)	0.030	0.032	0.031	1.33
Ramachandran plot (%)				
Most favored	84.9	85.9	85.4	77.6
Additionally allowed	13.6	13.5	13.8	21.2
Generously allowed	1.5	0.5	0.8	1.2
Number of molecules and atoms				
Protein atoms	1844	1773	3554	6881
Water molecules	424	300	643	204
Average Biso (Å²) (A / B / C / D chain)				
Protein	20.7	11.4	10.4 / 9.2	29.0 / 34.7 / 44.3 / 30.1
Water molecules	23.3	22.3	22.7	