Is There Still a $B \to \pi K$ Puzzle?

Seungwon Baek1 and David London2

1Institute of Physics and Applied Physics, Yonsei University, Seoul 120-479, Korea
2Physique des Particules, Université de Montréal, C.P. 6128, succ. centre-ville, Montréal, QC, Canada H3C 3J7

(Dated: March 26, 2007)

We perform a fit to the 2006 $B \to \pi K$ data and show that there is a disagreement with the standard model. That is, the $B \to \pi K$ puzzle is still present. In fact, it has gotten worse than in earlier years. Assuming that one new-physics (NP) operator dominates, we show that a good fit is obtained only when the electroweak penguin amplitude is modified. The NP amplitude must be sizeable, with a large weak phase.

PACS numbers: 13.25.Hw, 11.30.Er, 12.15Ff, 14.40.Nd

There are four $B \to \pi K$ decays – $B^+ \to \pi^- K^0$ (designated as $+0$ below), $B^+ \to \pi^0 K^+$ ($(0+)$), $B^0 \to \pi^- K^+$ ($(-+)$) and $B^0 \to \pi^0 K^0$ ((00)) – whose amplitudes are related by an isospin quadrilateral relation. There are nine measurements of these processes that can be made: the four branching ratios, the four direct CP asymmetries A_{CP}, and the mixing-induced CP asymmetry S_{CP} in $B^0_d \to \pi^0 K^0$. Several years ago, these measurements were in disagreement with the standard model (SM), leading some authors to posit the existence of a “$B \to \pi K$ puzzle” [1]. Subsequently, there was an enormous amount of work looking at $B \to \pi K$ decays, both within the SM and with new physics (NP).

One simple way to see this discrepancy is to define the ratios of branching ratios

$$R_n = \frac{1}{2} \frac{BR(B^0_d \to \pi^- K^+) + BR(B^0_d \to \pi^+ K^-)}{BR(B^0_d \to \pi^0 K^0) + BR(B^0_d \to \pi^0 K^0)},$$

$$R_c = \frac{BR(B^+ \to \pi^- K^+) + BR(B^- \to \pi^+ K^-)}{BR(B^+ \to \pi^0 K^+) + BR(B^+ \to \pi^- K^0)}.$$ (1)

Within the SM, it is predicted that R_n is approximately equal to R_n [2]. QCD-factorization techniques [3] can be used to take corrections into account. These yield [4]

$$R_n = 1.16^{+0.22}_{-0.19}, \quad R_c = 1.15^{+0.19}_{-0.17}.$$ (2)

However, the pre-ICHEP04 data was [5]

$$R_n = 0.76^{+0.10}_{-0.10}, \quad R_c = 1.17^{+0.12}_{-0.12}.$$ (3)

The values of R_n and R_c revealed a clear discrepancy with the SM. Even the pre-ICHEP06 data was in disagreement with the SM.

However, the ICHEP06 data is

$$R_n = 1.00^{+0.07}_{-0.07}, \quad R_c = 1.10^{+0.07}_{-0.07},$$ (4)

which is now in agreement with the SM. This has led some authors to claim that there is no longer a $B \to \pi K$ puzzle [2, 6].

In the present paper, we revisit the question of whether or not there is a $B \to \pi K$ puzzle. As we will see, the $B \to \pi K$ puzzle is still present, and is in fact more severe than before. However, it now is present only in CP-violating asymmetries. If one looks at only the measurements of the branching ratios, as above, one will not see it. We also examine the question of which NP scenarios can account for the current $B \to \pi K$ data. As such, this paper can be considered an update of Ref. [7], in which the present authors were involved.

We begin by writing the four $B \to \pi K$ amplitudes using the diagrammatic approach. Within this approach [8], the amplitudes can be written in terms of six diagrams: the color-favored and color-suppressed tree amplitudes T' and C', the gluonic penguin amplitudes P'_c and P'_u, and the color-favored and color-suppressed electroweak penguin amplitudes P'_{EW} and P'_{EC}. (The primes on the amplitudes indicate $\bar{b} \to \bar{s}$ transitions.) The amplitudes are given by

$$A^{+0} = -P'_c + P'_{uc} e^{i\gamma} - \frac{1}{3} P'_{EW},$$

$$\sqrt{2} A^{0+} = -T' e^{i\gamma} - C' e^{i\gamma} + P'_c,
- P'_{uc} e^{i\gamma} - P'_{EW} \frac{2}{3} P'_{EW},$$

$$A^{-+} = -T' e^{i\gamma} + P'_c - P'_{uc} e^{i\gamma} - \frac{2}{3} P'_{EW},$$

$$\sqrt{2} A^{00} = -C' e^{i\gamma} - P'_c + P'_{uc} e^{i\gamma} - P'_{EW} - \frac{1}{3} P'_{EW},$$ (5)

where we have explicitly written the weak-phase dependence, (including the minus sign from $V_{us}V_{ts}$), while the diagrams contain strong phases. (The phase information in the Cabibbo-Kobayashi-Maskawa quark mixing matrix is conventionally parametrized in terms of the unitarity triangle, in which the interior (CP-violating) angles are known as α, β and γ. The amplitudes for the CP-conjugate processes can be obtained from the above by changing the sign of the weak phase (γ).

Within the SM, to a good approximation, the diagrams P'_{EW} and P'_{EC} can be related to T' and C' using flavor SU(3) symmetry [10];

$$P'_{EW} = \frac{3}{4} c_1 + \frac{10}{4} c_1 + c_2 R(T' + C') + \frac{3}{4} c_1 + \frac{10}{4} c_1 - c_2 R(T' - C'),$$
The only way to account for the data within the SM is to include C', since it appears in only one of the two amplitudes $\sqrt{2}A(B^+ \to \pi^0K^+)$ and $A(B_d^0 \to \pi^-K^+)$. Thus, as a first step to remedy the problem, we follow Refs. [13] and add only C' [from Eq. (3)] to the amplitudes of Eq. (5). From the approximate formulae

$$A_{CP}(0+) \approx -2 \frac{T'}{P_{tc}'} \sin \delta_{T'} \sin \gamma$$

$$A_{CP}(-+) \approx -2 \frac{T'}{P_{tc}'} \sin \delta_{T'} \sin \gamma - 2 \frac{C'}{P_{tc}'} \sin \delta_{C'} \sin \gamma,$$

where $\delta_{C'}$ is the strong-phase difference between C' and P_{tc}', we see that a large value of $|C'|$ can give the correct sign for $A_{CP}(-+)$ when $\sin \delta_{C'}$ has a different sign from $\sin \delta_{T'}$. This is confirmed numerically. A good fit is obtained: $\chi^2_{min/d.o.f.} = 1.0/3$ (80%). We find $|P'| = 47 \pm 1$ eV, $|T'| = 8.1 \pm 3.5$ eV, $|C'| = 13.0 \pm 3.2$ eV, $\delta_{T'} = (154 \pm 10)^\circ$, $\delta_{C'} = (-154 \pm 7)^\circ$. However, note that $|C'/T'| = 1.6 \pm 0.3$ is required (we stress that correlations have been taken into account in obtaining this ratio).

Since this value is much larger than the naive estimates of Eq. (7), this shows explicitly that the B → πK puzzle is still present. In Ref. [3] (2004), $|C'/T'| = 1.8 \pm 1$ was found. We thus see that the puzzle has gotten much worse in 2006. (See Ref. [10] for another approach.)

We note in passing that the two fits give $\gamma = (62.5 \pm 11.1)^\circ$ and $\gamma = (50.0 \pm 5.6)^\circ$, respectively. Thus, both fits give values for γ which are consistent with the value obtained via a fit to independent measurements: $\gamma = 59.0^{+6.4}_{-4.9}^\circ$ [12].

We can also perform a fit which incorporates all the $O(\bar{\lambda}^2)$ terms in Eq. (5) (i.e. P_{tc}' is included). Once again, we find a good fit: $\chi^2_{min/d.o.f.} = 0.7/1$ (79%) (the values of $A_{CP}(0+)$ and $A_{CP}(-+)$ are reproduced due to $C'P_{tc}'$ interference). However, a smaller value of $|C'|$ is found, compensated by a large value of $|P_{tc}'|$: $|C'/T'| = 0.8 \pm 0.1$, $|P_{tc}'/T'| = 1.7 \pm 0.6$. We also find that $\gamma = (30 \pm 7)^\circ$. Thus, the problem in $|C'/T'|$ has been alleviated, but we encounter new difficulties in $|P_{tc}'/T'|$ and γ.

Having established that there still is a $B \to \pi K$ puzzle, we now turn to the question of the type of new physics which can be responsible. There are a great many NP operators which can contribute to $B \to \pi K$ decays. However, this number can be reduced considerably. All NP operators in $\bar{b} \to \bar{s}q\bar{q}$ transitions take the form $O_{ij,\bar{s}}^{ij,\bar{q}} \sim \bar{s}T_{ij}bq\bar{q}$ (where T_{ij} represent Lorentz structures, and color indices are suppressed). These operators contribute to the decay $B \to \pi K$ through the matrix elements $\langle \pi K | O_{ij,\bar{s}}^{ij,\bar{q}} | B \rangle$, whose magnitude is taken to be roughly the same size as the SM $b \to s$ penguin operators. Each matrix element has its own NP weak and strong phase.

We begin with the model-independent analysis described in Ref. [17] and used in Ref. [3]. Here it is argued that all NP strong phases are negligible. This allows for a
great simplification. If one neglects all NP strong phases, one can now combine all NP matrix elements into a single NP amplitude, with a single weak phase:

$$\sum (\pi K | O_{CP}^{q} | B) = A_i e^{i\phi_i}.$$ \hspace{1cm} (11)

Now, $B \rightarrow \pi K$ decays involve only NP parameters related to the quarks u and d. These operators come in two classes, differing in their color structure: $\bar{s}_u \Gamma b_u \bar{q}_d \Gamma \bar{q}_d$ and $\bar{s}_u \Gamma b_d \bar{q}_d \Gamma \bar{q}_d$ ($q = u, d$). The matrix elements of these operators can be combined into single NP amplitudes, denoted $A_i^{q} e^{i\phi_i}$ and $A_i^{c,d} e^{i\phi_i}$, respectively [12]. Here, Φ_q and Φ_K are the NP weak phases; the strong phases are zero. Each of these contributes differently to the various $B \rightarrow \pi K$ decays. In general, $A_i^{q} \neq A_i^{c,d}$ and $\Phi_q \neq \Phi_K$. Note that, despite the “color-suppressed” index C, the matrix elements $A_i^{c,d} e^{i\phi_i}$ are not necessarily smaller than the $A_i^{q} e^{i\phi_i}$.

The $B \rightarrow \pi K$ amplitudes can now be written in terms of the SM amplitudes to $O(\lambda)$ (P_i^{Ew} and T' are related as in Eq. (9)], along with the NP matrix elements [18]:

$$A^{+} = P^{tc}_{te} + A^{tc,d} e^{i\phi_c} + A^{q} e^{i\phi_q}, \hspace{1cm} (12)$$

$$\sqrt{2} A^{0+} = P^{tc}_{te} - T' e^{-i\gamma} - P^{Ew}_{te} + A^{comb} e^{i\Phi'} - A^{tc,u} e^{i\phi_U} - A^{tc,d} e^{i\phi_D},$$

$$A^{--} = P^{tc}_{te} - T' e^{-i\gamma} - A^{tc,u} e^{i\phi_U},$$

$$\sqrt{2} A^{00} = P^{tc}_{te} - P^{Ew}_{te} + A^{comb} e^{i\Phi'} + A^{tc,d} e^{i\phi_D},$$

where $A^{comb} e^{i\Phi'} \equiv -A^{tc,u} e^{i\phi_U} + A^{tc,d} e^{i\phi_D}$.

Note that the above form of NP amplitudes still satisfies the isospin quadrilateral relation. If P^{tc}_{te} is dominant, one will also find that $R_u \approx R_d$ and the sum rules for CP asymmetries given in Ref. [19] are satisfied. Therefore the fact that the SM satisfies those sum rules does not necessarily rule out this kind of NP. (Of course, if the NP is about the same size as P^{tc}_{te}, one can find that $R_u \neq R_d$ and the sum rules are violated.)

The value of γ is taken from independent measurements ($\gamma = 59.6^{+6.4}_{-1.9}$ [12]), leaving a total of 10 theoretical parameters: $|P^{tc}_{te}|$, $|T'|$, $|A^{comb}|$, $|A_{C,U}|$, $|A_{C,D}|$, 3 NP weak phases and two relative strong phases. With only 9 experimental measurements, it is not possible to perform a fit. It is necessary to make some theoretical assumptions.

As in Ref. [7], we assume that a single NP amplitude dominates. We consider the following four possibilities: (i) only $A_i^{comb} \neq 0$, (ii) only $A_i^{C,U} \neq 0$, (iii) only $A_i^{C,D} \neq 0$, (iv) $A_i^{C,U} e^{i\phi_U} = A_i^{C,D} e^{i\phi_D}$, $A_i^{comb} = 0$ (isospin-conserving NP).

However, before presenting the results of the fits, we can deduce what the results should yield. Earlier, we saw that the SM can reproduce the ICHEP06 $B \rightarrow \pi K$ data, but only if C' is anomalously large. Of the three NP matrix elements, only $A_i^{comb} e^{i\Phi'}$ appears only in amplitudes of decays which receive contributions from C' (A^{+0} and A^{00}); $A_i^{C,U} e^{i\phi_U}$ and $A_i^{C,D} e^{i\phi_D}$ appear also in amplitudes with no C' (A^{+0} and A^{0+}). Thus, if one wishes to reproduce a large C' (or P^{Ew}_{te}) in Eq. (10), it is necessary to add $A_i^{comb} e^{i\Phi'}$, $A_i^{C,U} e^{i\phi_U}$ and $A_i^{C,D} e^{i\phi_D}$ are not necessary. In light of this, we expect a good fit only for possibility (i) above; (ii), (iii) and (iv) should have poor fits. (Note that fit (ii) might be marginally acceptable due to the interference of P^{Ew}_{te} and $A_i^{C,U} e^{i\phi_U}$.)

This is borne out numerically. We find $\lambda_{min}/d.o.f. = 0.6/3$ (90%), $\lambda_{2}/d.o.f. = 4.9/3$ (26%), $\lambda_{3}/d.o.f. = 21.1/3$ (0.01%), $\lambda_{4}/d.o.f. = 12.8/4$ (1.2%). (Regarding the d.o.f’s: in fits (i)-(iii), we fit to the three magnitudes $|P^{tc}_{te}|$, $|T'|$ and $|A|$ (NP), two relative strong phases, and the NP weak phase Φ, so the d.o.f. for these three fits is $9 - 6 = 3$. In fit (iv), one of the NP parameters can be absorbed into $|P^{tc}_{te}|$, so the number of d.o.f.’s is increased by one.) Thus, as expected, a good fit is found only if the NP is in the form of $A_i^{comb} e^{i\Phi'}$.

This is the same conclusion as that found in Ref. [7]. Thus, not only is the $B \rightarrow \pi K$ puzzle still present, but it is still pointing towards the same type of NP, $A_i^{comb} e^{i\Phi'} \neq 0$ (this corresponds to NP in the electroweak penguin amplitude). For this (good) fit, we find $|T'/P'| = 0.09$, $|A_i^{comb}/P'| = 0.24$, $\Phi' = 85^\circ$. We therefore find that the NP amplitude must be sizeable, with a large weak phase.

If one does not wish to neglect the NP strong phases, one can still reduce the number of NP operators. It can be shown that an arbitrary amplitude can be written in terms of two others with known weak phases. This is known as reparametrization invariance (RI) [21]. Applying this to the NP amplitudes, and taking the two weak phases to be 0 and γ, we can write

$$\sum (\pi K | O_{CP}^{q} | B) = A_i^{0} + A_i^{0} e^{i\gamma},$$ \hspace{1cm} (13)

where the A_i^{0} contain only strong phases.

The $B \rightarrow \pi K$ amplitudes can now be written as in Eq. (13), where each of the NP amplitudes is expressed as in Eq. (13) above. Taking $\gamma = 59.0^{+9.3}_{-3.7}$ [12], there are a total of 15 theoretical parameters: the eight magnitudes $|P^{tc}_{te}|$, $|T'|$, $|A^{comb}|$, $|A_{C,U}|$, $|A_{C,D}|$, and seven relative strong phases. With only 9 measurements, we must again make theoretical assumptions, and we consider the four possibilities (i)-(iv) described above.

As before, we expect a good fit only for possibility (i). For the d.o.f.’s, in the fits there are seven theoretical parameters: the four magnitudes $|P^{tc}_{te}|$, $|T'|$, $|A_{0}|$ and $|A_{0}|$, and three relative strong phases. In fit (ii), $A_{C,U}(+0)$ and $A_{C,D}(+0)$ are identically zero, and $S_{CP}(00) = \sin 2\beta$. Thus, these measurements do not constrain the parameters; there are only six constraining measurements. This is fewer than the number of parameters, so a fit cannot be done in this case. The fit can be done in cases (i), (iii), and the d.o.f. is $9 - 7 = 2$. In fit (iv), A_i^{0} can be absorbed
into $P_{\tau}\nu$, so the d.o.f. is $9 - 5 = 4$. The results of the fits are: (i) $\chi^2_{\text{min}}/\text{d.o.f.} = 0.5/2$ (79\%), (iii) $\chi^2_{\text{min}}/\text{d.o.f.} = 18.5/2$ (0.01\%), (iv) $\chi^2_{\text{min}}/\text{d.o.f.} = 12.8/4$ (1.2\%). As expected, only fit (i) ($\mathcal{A} = \mathcal{A}_{\text{comb}}$) gives a good fit. We find $|T'/P'| = 0.09$, $|A^{0/}/P'| = 0.15$, $|A^{0}/P'| = 0.28$. We therefore find that the NP amplitude must be sizeable.

We have considered two different parametrizations of the NP effects: negligible NP strong phases, and the general case. Although the results of the fits are not numerically identical, the conclusions are similar.

Of the four new-physics models examined in this paper, only one produces a good fit to the 2006 $B \rightarrow \pi K$ data: case (i), $\mathcal{A}_{\text{comb}} \neq 0$. The quality of fit is extremely good here. The NP amplitude must be sizeable, with a large weak phase. Fit (ii) ($\mathcal{A}^{C,u} \neq 0$) is marginal if the NP strong phases are negligible (the fit cannot be done in the general case). Here $A_{\epsilon} \approx A_{\epsilon'}$ is found due to the interference of $P_{\tau}\nu$ and $A^{C,u} e^{i\phi_C}$. Fits (iii) ($\mathcal{A}^{C,d} \neq 0$) and (iv) (isospin-conserving NP) yield very poor fits, and are ruled out.

As mentioned in Ref. [7], we note that we have assumed that one NP operator dominates. However, any specific NP model will generally have more than one effective NP operator, and so the more general case might be used to explain the $B \rightarrow \pi K$ data.

In conclusion, in this paper we have done a fit to the 2006 $B \rightarrow \pi K$ data to see if new physics (NP) was still indicated. Note that a fit to the full data is necessary; if a subset of the measurements is used, erroneous conclusions can be reached. If only the “large” diagrams of the SM are included in the amplitudes, a very poor fit is obtained. If the “small” diagram C' is added, a good fit is obtained, however, $|C'/T'| = 1.6 \pm 0.3$ is required. The fit that this ratio is large indicates that the $B \rightarrow \pi K$ puzzle is still present. The fact that the error is so small shows that the puzzle has gotten much worse in 2006.

We have also examined which type of NP can be responsible for the $B \rightarrow \pi K$ puzzle. We assume that one NP operator dominates, and consider (i) only $\mathcal{A}_{\text{comb}} \neq 0$, (ii) only $\mathcal{A}^{C,u} \neq 0$, (iii) only $\mathcal{A}^{C,d} \neq 0$, (iv) isospin-conserving NP: $\mathcal{A}^{C,u} e^{i\phi_C} = \mathcal{A}^{C,d} e^{i\phi_C}$, $\mathcal{A}_{\text{comb}} = 0$. Of these, the only (very) good fit is found for model (i). It corresponds to a modification of the electroweak penguin amplitude. Note that these results are the same as those found in Ref. [1]. This shows that, although the puzzle is worse than in 2004, its resolution is the same.

Acknowledgments: This work was financially supported by Brain Korea 21 (BK21) project (SB) and by NSERC of Canada (DL).

[1] A. J. Buras, R. Fleischer, S. Recksiegel and F. Schwab, Phys. Rev. Lett. 92, 101804 (2004), Nucl. Phys. B 697, 133 (2004), PoS HEP2005, 193 (2006).
[2] H. J. Lipkin, Phys. Lett. B 445 (1999) 403; M. Gronau and J. L. Rosner, Phys. Rev. D 59 (1999) 113002; J. Matias, Phys. Lett. B 520 (2001) 131.
[3] M. Beneke, G. Buchalla, M. Neubert and C. T. Sachrajda, Phys. Rev. Lett. 83, 1914 (1999), Nucl. Phys. B 591, 313 (2000), Nucl. Phys. B 606, 245 (2001).
[4] M. Beneke and M. Neubert, Nucl. Phys. B 675 (2003) 333.
[5] T. Hurth, arXiv:hep-ph/0612234.
[6] For example, see F. Schwab, talk given in http://euroflavour06.ifae.es.
[7] S. Baek, P. Hamel, D. London, A. Datta and D. A. Suprun, Phys. Rev. D 71, 057502 (2005).
[8] M. Gronau, O. F. Hernandez, D. London and J. L. Rosner, Phys. Rev. D 50, 4529 (1994), Phys. Rev. D 52, 6374 (1995).
[9] W. M. Yao et al. [Particle Data Group], J. Phys. G 33 (2006) 1.
[10] M. Neubert and J. L. Rosner, Phys. Lett. B 441, 403 (1998), Phys. Rev. Lett. 81, 5076 (1998); M. Gronau, D. Pirjol and T. M. Yan, Phys. Rev. D 60, 034021 (1999) [Erratum-ibid. D 69, 119901 (2004)]; M. Imbuel, A. L. Lemerle, V. Page and D. London, Phys. Rev. Lett. 92, 081801 (2004).
[11] See, for example, G. Buchalla, A. J. Buras and M. E. Lautenbacher, Rev. Mod. Phys. 68, 1125 (1996).
[12] CKMfitter Group, J. Charles et al., Eur. Phys. J. C 41, 1 (2005).
[13] Heavy Flavor Averaging Group (HFAG), arXiv:hep-ex/0609003.
[14] W. M. Yao et al. [Particle Data Group], Ref. [3]; B. Aubert et al. [BABAR Collaboration], Phys. Rev. Lett. 97, 171805 (2006); K. Abe et al. [BELLE Collaboration], arXiv:hep-ex/0608049, CLEO Collaboration, A. Bornheim et al., Phys. Rev. D 68, 052002 (2003); B. Aubert et al. [BABAR Collaboration], arXiv:hep-ex/0607106; B. Aubert et al. [BABAR Collaboration], arXiv:hep-ex/0608003; B. Aubert et al. [BABAR Collaboration], arXiv:hep-ex/0607096, S. Chen et al. [CLEO Collaboration], Phys. Rev. Lett. 85, 525 (2000); K. Abe et al. [BELLE Collaboration], arXiv:hep-ex/0609006.
[15] C. W. Chiang, M. Gronau, J. L. Rosner and D. A. Suprun, Phys. Rev. D 70, 034020 (2004); S. Baek, JHEP 0607, 025 (2006).
[16] Y. L. Wu and Y. F. Zhou, Phys. Rev. D 72 (2005) 034037; C. W. Chiang and Y. F. Zhou, JHEP 0612, 027 (2006); Y. L. Wu, Y. F. Zhou and C. Zhuang, Phys. Rev. D 74, 094007 (2006).
[17] A. Datta and D. London, Phys. Lett. B 595, 453 (2004).
[18] A. Datta, M. Imbuel, D. London, V. Page, N. Sinha and R. Sinha, hep-ph/0406192.
[19] M. Gronau and J. L. Rosner, Phys. Rev. D 74, 057503 (2006).
[20] M. Imbuel, D. London, C. Sharma, N. Sinha and R. Sinha, arXiv:hep-ph/0608169.
[21] F. J. Botella and J. P. Silva, Phys. Rev. D 71, 094008 (2005); S. Baek, F. J. Botella, D. London and J. P. Silva, Phys. Rev. D 72, 036004 (2005), Phys. Rev. D 72, 114007 (2005).