Immunity and Fibrogenesis: The Role of Th17/IL-17 Axis in HBV and HCV-induced Chronic Hepatitis and Progression to Cirrhosis

Feliciano Chanana Paquissi*
Department of Medicine, Clinica Girassol, Luanda, Angola

Cirrhosis is a common final pathway for most chronic liver diseases; representing an increasing burden worldwide and is associated with increased morbidity and mortality. Current evidence has shown that, after an initial injury, the immune response has a significant participation in the ongoing damage, and progression from chronic viral hepatitis (CVH) to cirrhosis, driving the activation and maintenance of main fibrogenic pathways. Among immune deregulations, those related to the subtype 17 of T helper lymphocytes (Th17)/interleukin-17 (IL-17) axis have been recognized as key immunopathological and prognostic elements in patients with CVH. The Th17/IL-17 axis has been found involved in several points of fibrogenesis chain from the activation of stellate cells, increased expression of profibrotic factors as TGF-β, promotion of the myofibroblastic or epithelial–mesenchymal transition, stimulation of the synthesis of collagen, and induction of imbalance between matrix metalloproteinases and tissue inhibitors of metalloproteinases (TIMPs). It also promotes the recruitment of inflammatory cells and increases the expression of proinflammatory cytokines such as IL-6 and IL-23. So, the Th17/IL-17 axis is simultaneously the fuel and the flame of a sustained proinflammatory and profibrotic environment. This work aims to present the immunopathologic and prognostic role of the Th17/IL-17 axis and related pathways in fibrogenesis and progression to cirrhosis in patients with liver disease due to hepatitis B virus (HBV) and hepatitis C virus (HCV).

Keywords: Th17 Cells, interleukin-17, TGF-β, fibrogenesis, cirrhosis, chronic viral hepatitis, hepatitis C virus, hepatitis B virus

INTRODUCTION

Liver cirrhosis is a common final pathway for most chronic liver diseases; and is increasingly becoming a major cause of global health burden, being responsive for high morbidity and mortality worldwide. Chronic viral hepatitises (CVHs) are the leading cause of cirrhosis, also with increasing burden worldwide (1). According to the report of Global Burden of Disease Study 2013, between 1990 and 2013, occurred a 63% increase in the global viral hepatitis deaths, passing from the tenth (in 1990) to seventh (in 2013) leading cause of death worldwide (1). There was also an increase in attributable years of life lost, years living with a disability (34% for each), and in the absolute burden of the disease (1). In parallel, despite significant progress in the treatment...
of CVH during the last decades, the number of deaths from cirrhosis and hepatocellular carcinoma (HCC) increased in the last 20 years (2, 3).

Currently, it is known that after the initial injury, before cirrhosis is established, multiple pathways of fibrogenesis are activated as a result of continuous interaction between pathogen-related factors (4–6), the host genetic such as certain HLA haplotypes and cytokines gene polymorphisms (7–11), liver resident cells, and the immune system (9–13) (Figure 1). Indeed, cirrhosis is a reflection of sustained injuries and constant and exaggerated attempts of tissue repair, in which the immune system has crucial participation (14–16). The inappropriate immune response have an influence on the activation and maintenance of fibrogenic pathways and progression from CVH to cirrhosis (17–20). Multiple imbalances in immune response, either in cellular or soluble factors, have been associated with the evolution to cirrhosis in viral hepatitis (21, 22). In addition, the immune response influences on viral persistence and response to treatment (11, 23). Thus, efforts have been made in research and clinical practice, aiming to get a better comprehension of the immunological mechanisms underlying these pathways, their exploration as immune biomarkers to predict outcomes, response to treatment, as well as explore their potential as targets for adjuvant therapeutics (24–26).

Among the elements of the immune response, the subtype 17 of T helper lymphocytes (Th17) has gained space as a biomarker with noteworthy performance in the prediction of progression to cirrhosis in liver diseases, particularly in CVH (20, 28). Therefore, the cytokines secreted by Th17, particularly the interleukin-17 (IL-17), also have been implicated in the activation of fibrogenic pathways and progression to cirrhosis (13, 17). Th17 cells have a predominantly effector functional profile, being responsible for the immune surveillance, but are also involved in the pathogenesis of many autoimmune diseases and in the mechanisms of fibrosis in many organs, after the initial injury (29–31).

In CVH, the Th17/IL-17 axis expresses a sustained aggression, and especially a proinflammatory and profibrotic environment with recruitment and activation of other cells, promoting this way, more tissue injury and dysfunctional reparative responses (13, 17, 32, 33). This review aims to summarize the existing knowledge on the immunopathologic and prognostic role of the Th17/IL-17 axis and related pathways in fibrogenesis and progression to cirrhosis in patients with liver disease due to hepatitis B virus (HBV) and hepatitis C virus (HCV).

AN OVERVIEW OF GENERAL INFLAMMATORY BIOMARKERS AS OUTCOME PREDICTORS IN CVH

General Inflammatory biomarkers, such as C-reactive protein (CRP), and interleukin-6, have been associated with poor outcomes on viral hepatitis (11, 26, 34). High levels of interleukin-6 are related to adverse outcomes in the CVH, including greater severity (35, 36), worse response to treatment and viral persistence (11, 26), and evolution to cirrhosis, HCC, or death (35, 36). In a study including 149 patients with CHC (and 17 controls) who underwent 12 weeks’ treatment with pegylated IFN-α2b and ribavirin, serum IL-6 levels were significantly higher in CHC patients than in controls, and a high pretreatment IL-6 was associated with lower rates of sustained virologic response (SVR) (52 vs. 79%; P = 0.012) (26). In addition, SVR was accompanied by a significant decrease in IL-6 levels (from 2.7 to 1.5 pg/ml; P = 0.029) at 4 weeks of treatment, remaining significantly lower in responder than in non-responder (26). In other studies, it was observed that certain polymorphisms in IL-6 or its promoter are associated with lower rate of spontaneous clearance (11), and increased risk of HCC in patients with CVH-related cirrhosis (10, 37). Many other proinflammatory cytokines, including interleukin IL-1β, IL-18, and TNF-α have been associated with increased risk of progression to cirrhosis (38–40). Certain polymorphisms in TNF-α are also associated with higher risk of becoming chronic carriers of viral infection, progression to cirrhosis and HCC (15, 40).

In addition to the soluble factors, cells of the inflammatory response as neutrophils (19, 41) and monocytes have been found associated with worse outcomes in viral hepatitis. All these elements (cells and soluble factors) are part of a context in which the Th17/IL-17 axis imbalances work as crucial elements to feed and keep this proinflammatory and profibrotic microenvironment (20, 22, 42–44), as described in the next sections.

THE TH17/IL-17 AXIS AND OUTCOME PREDICTION IN CVH

The inappropriate immune response at the level of the Th17/IL-17 axis exerts influence in maintaining the fibrogenic pathways and progression from CVH to cirrhosis (9, 44). The fibrogenic role of IL-17, the main cytokine of Th17, has been appointed in
increasing number of publications in recent years (13, 45, 46). In addition to its direct effect on fibrogenesis, the Th17/IL-17 axis is the fuel to sustain the proinflammatory environment, with the recruitment of the other cells and stimulation of the synthesis of other soluble factors (29, 33, 47–50). At the same time, Th17/IL-17 axis expresses itself, a response to a sustained proinflammatory stimulus (51, 52). So, we can understand the broad scope of the elements of this axis on the CVH, predicting outcomes in different points of the disease, from spontaneous healing (53), response to treatment (23, 54, 55), occurrence of acute decompensations (56), progression to cirrhosis (9, 28), and HCC (53), including post-transplant recurrence (57), as detailed in this section.

The Th17/IL-17 Axis and Severity of CVH

The Th17/IL-17 axis is associated with high disease severity in CVHs, as found in a study where patients with chronic hepatitis B (CHB) had higher percentage of Th17 cells in peripheral blood than healthy controls (HCs) (1.53 vs. 0.92%); and among patients there was a positive correlation between peripheral Th17 cells and serum alanine aminotransferase (ALT) (58). In another study, including 96 patients with HBV-related conditions, the serum IL-17 concentration, intrahepatic, and peripheral Th17 cells were significantly higher in both CHB and acute-on-chronic liver failure (ACLF) patients than in asymptomatic surface antigen carriers (AsC) or HCs (59). Th17 cells increased progressively as aggravated the immune inflammation from AsC, CHB, to ACLF, with a positive correlation with severity markers (INR and MELD score) (59). Compared with HCs, patients with CHC had also higher proportions of Th17 cells either circulating (1.56 vs. 0.96%) or infiltrating the liver (16.08 vs. 0.82/hpf), associated with higher serum IL-17 levels (84.86 vs. 60.52 pg/mL) (42). In these patients, both peripheral and intrahepatic Th17 cells correlated with the severity of liver inflammation and damage (28, 42).

The Th17/IL-17 Axis and Progression to Cirrhosis in CVH

Concerning the progression to cirrhosis, in a study including 173 patients with chronic liver diseases, there was a significant increase in serum IL-17 protein and IL-17 mRNA levels in chronic HBV-related conditions than in HCs (P < 0.001); and patients with cirrhosis exhibited the highest serum IL-17 and IL-17 mRNA in peripheral blood mononuclear cells (PBMCs) (44). In another study with 101 patients with HBV-related LC or CHB; peripheral Th17 cells increased significantly in patients with cirrhosis as increased disease severity (mean: 3.51, 3.94, and 4.46; for Child–Pugh A, B, and C, respectively) (28). In intrahepatic tissue, a study conducted among 91 patients with chronic liver diseases, there was a significant increase intrahepatic expression of IL-17 in chronic HBV-related conditions than in HCs; furthermore, intrahepatic IL-17 was mainly localized in the fibrosis region, and its level correlated strongly with the degree of fibrosis (60). Other studies have also found increased intrahepatic IL-17+ cells or IL-17 levels, which correlate positively with fibrotic staging scores and clinical progression from CHB to cirrhosis, and most IL-17+ cells located in the fibrotic area (28, 44). In addition, intrahepatic IL-17 accompanied the higher serum IL-17 protein and mRNA levels in PBMCs, being higher among patients with cirrhosis than those with CHB, or HBsAg carriers (P < 0.01, for both) (44). Among HCV patients, a study evaluating the effect of HCV recurrence after orthotopic liver transplantation (OLT) showed that recipients with significant HCV-induced allograft fibrosis/cirrhosis and inflammation, presented higher frequency of HCV-specific Th17 cells, as well as proinflammatory mediators (IL-17, IL-1β, IL-6, IL-8, and MCP-1) (57).

In genetic studies, it has been noted that certain polymorphisms in IL-17 genes are more often present among those who progress to LC than in CHB patients (9, 14, 53); and are associated with a significant increase in LC risk either among monozygotic patients [OR 4.1, 95% CI: 1.4–11.84 or single allele carriers (OR 1.8, 95% CI: 1.16–2.9)] (14).

The Th17/IL-17 Axis and the Response to Treatment in CVH

In CVH, the Th17/IL-17 axis status is associated with response to available treatments (23), as found in a study with 30 CHB patients, in which treatment with entecavir was associated with a significant decrease in the Th17 and Treg cell frequencies and related cytokines, in parallel to the reduction of HBV DNA load (61, 62). In other studies in CHB, the treatment either with telbivudine or with interferon-α resulted in the normalization of serum ALT and reduction or suppression of viral replication, associated with a significant decline in circulating Th17 cells and IL-17 levels (23, 54). Studies in HCV also found the same effect, as shown in a study including 27 HCV-infected patients, in which combined treatment with pegylated IFN-α and ribavirin resulted in a significant decrease in factors related to Th17 (IL-6 and IL-17), Th1 (IFN-α and MIP-1) responses, and profibrotic factors (FGF-b, VEGF); and this impact was principally in responder patients (62). In another study, Th17-related gene polymorphisms were associated with sustained responses to PEG-IFNa-2α (55).

In line with these findings, in an interventional study involving 56 cirrhotic patients allocated to autologous bone marrow mesenchymal stem cells (ABMSCs) transplantation or control group; transplantation significantly improved the liver function, accompanied by a marked decrease in Th17 cells and serum levels of proinflammatory cytokines (IL-17, TNF-α, and IL-6) (63).

The Th17/IL-17 Axis and Mortality Prediction in CVH

Beyond its effect in predicting disease severity, the Th17/IL-17 axis elements are also predictors of mortality (56). In a study including 60 HBV-infected patients (30 with CHB and 30 with ACLF), the disproportionate increase of Th17 (compared to Treg) was associated with low survival among those with ACLF (64). These results have also been found in another study including 98 patients with HBV-related conditions (70 with CHB and 28 with LC), where the low Treg/Th17 ratio was associated with low survival among patients with cirrhosis and was associated with worse Child–Pugh and MELD scores (65). In another study, including 80 HBV-infected patients (40 with ACLF and 40 with CHB), the frequency of Th17 cells in peripheral blood, as well as IL-17 mRNA level in PBMCs, was significantly higher among...
ACLF patients who died than among survivors; and correlated positively with serum total bilirubin ($r = 0.392$, $P = 0.012$) and MELD score ($r = 0.383$, $P = 0.015$) (56). These findings suggest a significant contribution of this immune imbalance in disease severity and mortality.

The Role of Other IL-17 Sources and Related Imbalances in CVH Outcomes

Besides the Th17 cells, recent investigations have found other immune cells, such as mast cells, and neutrophils as important sources of IL-17 in CVH, especially in late fibrosis stages (66–68). These findings emerge in a context after many studies have shown the domain of neutrophils as a predictor of outcomes in viral hepatitis and related diseases (19, 41). Therefore, these research together bring to light the importance of the interleukin-17 in pathogenesis and progression of CVH and can be one of the ways by which neutrophils, and other immune cell populations, exercise their pathogenic and predictive effect in CVH. Other Th17-related cytokines, such as IL-6 and IL-23, are involved in the evolution of CVH, regardless of stimulation of Th17 (11, 37, 69). The IL-23 and its receptor, in particular, have been found higher among HCV-infected patients than in control (mean 24.6 vs. 20.2 pg/mL; $P = 0.005$), with a positive correlation with ALT in HCV patients (69). Concerning the IL-6, its role was described in previous sections.

Besides increased Th17 cells, CVH has been associated with decreased or disproportionate count of regulatory T lymphocytes (Treg), another T helper subset, which is the functional counterbalance of Th17 cells (70); configuring a Treg/Th17 imbalance (13, 42, 64, 71). The balance between these two T helper lymphocytes subpopulations is fundamental (21, 22), and influenced by various factors (72–74). There is a plasticity and reciprocity between the two cell subpopulations that depends on environmental factors (70, 75, 76), being the proinflammatory environment, like that of the CVH, favorable to the polarization to Th17 cells (77, 78). The Treg/Th17 imbalance has been associated with greater hepatocellular damage in CVHs (21, 71, 79) and is related to advanced stages of cirrhosis and HCC (22, 65, 79), correlating inversely with severity scores and mortality (22, 64, 65). The Treg/Th17 imbalance has also been observed in other fibrosing liver diseases, such as autoimmune liver diseases (ALD) (80), biliary atresia (81), primary biliary cirrhosis (PBC) (82–84), non-alcoholic steatohepatitis (85, 86), schistosoma-induced hepatitis (87–89), and drug-induced hepatitis (90, 91).

Table 1 summarizes the clinical studies that evaluated the role of the Th17/IL-17 axis and related imbalances as drivers and predictors of outcomes in CVH.

MECHANISMS AND PATHWAYS LINKING THE TH17/IL-17 AXIS TO FIBROGENESIS AND CIRRHOSIS IN CVH

The Th17 Differentiation and Th17-Secreted Cytokines

Overall, Th17 cells differentiate from naive T helper cells, in response to a variety of stimuli, in the presence of key cytokines, namely IL-1β, IL-6, IL-21, IL-23, and TGF-β (101–105). In viral hepatitis, the virus particles are recognized by toll-like receptor (TLR2 and TLR4) present on the surface of the antigen-presenting cells (dendritic cells, macrophages, and monocytes) that result in their activation (97, 106). These activated cells, using the nuclear factor kappa B (NF-kB) and/or mitogen-activated protein kinase (MAPK) signaling pathways, produce the proinflammatory cytokines IL-1, IL-6, IL-21, and IL-23 (38, 93, 107) that drives the Th17 differentiation (93, 104, 107, 108). In the particular case of HCV, there are two additional pathways: the first one consists in the production of the thymic stromal lymphopoietin (TSLP) by HCV-infected hepatocytes, in an NF-kB-dependent process, and is a hepatocyte-derived TSLP that enhances activated APCs to produce the IL-1, IL-6, IL-21, and IL-23 (109). The second consists in particular evidence that HCV core protein exerts a function of a toll-like receptor 2 ligand, promoting, by itself, the activation of the APCs, the production of inflammatory cytokines that favor Th17 differentiation, and the evasion of the immune system (4, 12, 27). After being differentiated, the Th17 cells secrete its cytokines (IL-17, IL-21, and IL-22), being the IL-17 the main driver of a chain of events that have in common the favoritism of the proinflammatory and profibrotic pathways (13, 47, 49).

The Role of IL-17 Axis, and Associated Signaling Pathways, in Liver Fibrogenesis and Cirrhosis

The subtype 17 of T helper lymphocyte cells is increased in almost all chronic and fibrosing liver diseases, including ALD, such as autoimmune hepatitis (AIH) (50, 110, 111), primary sclerosing cholangitis (PSC) (112, 113), PBC (16, 83, 114, 115); biliary atresia (29, 81, 116), non-alcoholic steatohepatitis (85, 117, 118), and viral hepatitis (42, 44, 58, 109). These findings reveal the pivotal role of the Th17/IL-17 axis in liver fibrogenesis. However, the stimuli that attract Th17 cells to the liver are not completely elucidated. What is known is that injured liver cells secrete a variety of chemokines, such as CXCL9, CXCL10, and CCL20 (119, 120), that drive the recruitment of Th17 cells to the liver, binding to their receptors (CXCR3 and CCR6) expressed in Th17 cells (16, 119–123). This aggregate of chemokines and their receptors seems to determine, the differential cellular recruitment (32, 123, 124), the disposition of the Th17 cells within fibrosis areas (16, 60, 119, 120); and CXCL10, in particular, has itself a profibrotic effect influencing in the number and activity of HSCs, and participating in the cross talk between hepatocytes, HSCs, and immune cells (124–126).

In the liver, Th17 cells produce their cytokines (93), with IL-17 being the most associated with the progression of cirrhosis (13, 28, 49). There are receptors for IL-17 expressed in hepatocytes, in the liver sinusoids endothelial cells, in hepatic stellate cells (HSCs), and Kupffer cells (KC) (13). The functional implication of IL-17 in liver tissue is well characterized in the activation and/or stimulation of HSCs and KC (13, 17, 127) and cholangiocytes (115, 116).

Hepatic Stellate Cells

As already said, stellate cells express receptors for IL-17 (IL-17RA and IL-17RC) on their surface (13). The stimulation with IL-17
Table 1 | Clinical studies on the role of the Th17/IL-17 axis and associated imbalances in predicting outcomes in chronic viral hepatitis (CVH) and cirrhosis.

Reference	Virus	Biomarker	Patients	Results
Ge et al. (58)	Hepatitis B virus (HBV)	Subtype 17 of T helper lymphocytes (Th17)	30 patients with CHB and 20 matched controls	The percentage of Th17 cells in peripheral blood of CHB patients was significantly increased than in HCs (1.53 vs. 0.92%; *P* < 0.05); and kept a positive correlation with serum ALT in CHB patients
Ye et al. (71)	HBV	Th17, Treg, interleukin-4 (IL-4), and IFN-γ	88 liver specimens from HBV-infected patients, and six samples from controls	There was an increased intrahepatic frequency of IL-17-producing cells than IFN-γ-positive, IL-4-producing, and Treg cells. These cellular imbalances were higher in patients with severe hepatocellular damage than in mild
Wang et al. (92)	HBV	IL-23/IL-17	110 HBV-infected patients (39 with ACLF and 79 with CHB) and 32 HC	The IL-23/IL-17 pathway-related proinflammatory cytokines were found significantly increased in liver tissues of patients with HBV than HC
Niu et al. (22)	HBV	IL-17+/Treg ratio	57 patients with HBV-related liver failure (26 with CLF and 31 with ACLF) and 12 controls	The frequency of liver IL-17+ T cells was significantly higher in both HBV-related liver failure (CLF and ACLF) than in HC (*P* = 0.0001). The IL-17+/Treg ratio was significantly higher in ACLF and CLF than in HC (7.00, 4.33, and 0.00, respectively). The IL17+ T cells frequency correlated positively with total bilirubin (*r* = 0.579, *P* = 0.001) and MELD score (*r* = 0.367, *P* = 0.043)
Wang et al. (93)	HBV	IL-23, Th17, and IL-17	166 HBV-infected patients (108 with CHB and 58 with ACLF) and 62 controls, who underwent liver biopsies	There was an increased intrahepatic expression of both IL-23 and IL-23R in HBV-infected livers than in controls, and the primary sources of IL-23 were liver myeloid dendritic cells and macrophages. In the presence of HBsAg or HBcAg, IL-23 efficiently stimulated the differentiation of naïve T CD4+ into Th17, that shown to be the primary source of IL-17
Zhai et al. (64)	HBV	Th17 and Treg cells	60 HBV-infected patients (30 with CHB and 30 with ACLF) and 30 controls	There was an increase of both Th17 and Treg cells in peripheral blood of ACLF patients. However, IL-17A was not regulated by Treg and the last exhibited significant inhibition of IFN-γ production. Most importantly, the low Treg/Th17 ratio was associated with low survival among ACLF patients
Chang et al. (42)	HCV	Th17	50 subjects with CHC and 23 HC	Compared to healthy individuals, patients had higher proportions of Th17 cells either circulating (1.56 vs. 0.96%, *P* < 0.001) or infiltrating the liver (16.08 vs. 8.82/HPF, *P* < 0.001); associated with higher serum IL-17 levels (84.86 vs. 60.52 pg/mL, *P* = 0.001). Both (circulating and intrahepatic) Th17 cells correlated with the severity of liver inflammation and damage
Wang et al. (56)	HBV	Th17 and IL-17 mRNA	80 HBV-infected patients (40 with ACLF and 40 with CHB) and 20 HC	The frequency of Th17 cells in peripheral blood, as well as IL-17 mRNA level in PBMCs, was higher in ACLF patients than in CHB (*P* = 0.045) or HC (*P* < 0.001). In addition, Th17 cells and IL-17 mRNA level were significantly higher among ACLF patients who died than in survivors. The frequency of Th17 cells correlated positively with serum TB (*r* = 0.392, *P* = 0.012) and MELD score (*r* = 0.383, *P* = 0.015) among ACLF patients
Foster et al. (49)	HCV	IL-17 and IL-22	157 HCV-infected patients (12 with acute infection, 134 with HCV-related fibrosis, and 11 with ESLD) and 41 HC	Chronic hepatitis C patients demonstrated an expansion of IL-17 and/or IL-22-producing T cell in hepatic compartment than in peripheral blood. Acute hepatitis C was not associated with a significant difference in IL-17 and/or IL-22-producing T cells expansion
Wu et al. (18)	HBV	Th17	133 subjects, HBV-infected (40 mild CHB, 37 severe CHB, and 20 AHB) and 36 HC	Patients with AHB and severe CHB had a higher frequency of Th17 cells in peripheral blood than those with mild CHB or HC (both *P* < 0.05). The increased peripheral Th17 correlated positively with ALT levels among severe CHB patients (*r* = 0.457, *P* = 0.004)
Wang et al. (56)	HBV	IL-17	91 patients with chronic liver conditions (55 with CHB, 42 with cirrhosis, 34 with HCC, 30 AsC) and 20 matched controls	There was a significantly increased intrahepatic expression of IL-17 in HBV-related chronic liver diseases. The intrahepatic IL-17 level correlated strongly with the degree of fibrosis, and it was mainly localized in the fibrosis region
Du et al. (44)	HBV	IL-17 and IL-17 mRNA	173 patients with CHB-related conditions (47 with CHB, 49 with cirrhosis, 44 with HCC, and 33 with CLF/* and 20 matched controls	Serum IL-17 protein and mRNA levels were significantly higher in the four CHB-related conditions than in controls (*P* < 0.001). Patients with cirrhosis exhibited the highest IL-17 concentrations in the serum and IL-17 mRNA in PBMCs. In addition, the levels of IL-17 in the liver tissues was higher in patients with cirrhosis than in those with CHB, and higher in this last than in HBsAg carriers (*P* < 0.01, for both)

(Continued)
Reference	Virus	Biomarker	Patients	Results
Hao et al. (54)	HBV	Th17, IL-17, IL-22, and IL-23	24 CHB patients, who underwent treatment with telbivudine	Antiviral therapy was associated with a significant decline in circulating Th17 cells and IL-22 production, in parallel to the reduction of HBV DNA and normalization of serum ALT
Ashrafi Hafez et al. (69)	HCV	IL-23, and IL-27	64 patients with CHC and 37 matched controls	Serum level of IL-23 was higher in HCV-infected patients than in control group (mean 24.6 vs. 20.2 pg/mL; \(P = 0.005 \)). There was a positive correlation between ALT and IL-23 in HCV-infected patients
Sun et al. (28)	HBV	Th17	78 patients with LC (Child A: 34; Child B: 22; Child C: 22), 23 with CHB, and 32 HC	Patients with cirrhosis had a significant increase in peripheral Th17 cells as increased disease severity (mean: 3.51, 3.94, and 4.46; for Child–Pugh A, B, and C, respectively). The plasma IL-17 concentration was significantly higher in LC patients than in HC \((89.76 \text{ vs. } 61.40; \ P < 0.01) \); and also, increased with disease severity. There was an increase in intrahepatic IL-17+ cells, which correlated positively with fibrotic staging scores and clinical progression from CHB to cirrhosis; and most IL-17+ cells were located in the fibrotic areas in the liver
Yang et al. (59)	HBV	Th17 and IL-17	96 patients with HBV-related conditions (20 AsC, 32 with CHB, 44 with ACLF), and 20 matched controls	Serum IL-17 concentration, intrahepatic, and peripheral Th17 cells were significantly higher in CHB and ACLF patients than in AsC and HCs; and increased as aggravated the immune inflammation from AsC, CHB, to ACLF. In addition, in ACLF patients, peripheral Th17 cells correlated positively with INR and MELD score
Yan et al. (94)	HBV	Th17 and Th1	150 patients with HCC (100 with HBV-related) who underwent blood and tissue samples	The levels of Th17 and Th1 cells were significantly higher in tumors of patients with HCC \((P < 0.001) \) compared to corresponding non-tumor regions. The intratumoral density of IL-17-producing cells correlated inversely with OS \((-0.784; \ P = 0.001) \); and predicted shorter DFS \((7.5 \text{ vs. } 24.9 \text{ months}, \ P = 0.03) \)
Yang et al. (95)	HBV	Th17, IL-17, and Treg	87 patients with HBV-associated conditions (40 with CHB, 27 with cirrhosis, and 20 with liver failure) and 20 HCs	The frequencies of Th17 in the peripheral blood were significantly higher in the patients with CHB, cirrhosis, and liver failure, compared with HC. The same trend was observed in the serum levels of IL-17. Both peripheral Th17 cells and serum IL-17 correlated positively with ALT and the prothrombin times
Feng et al. (96)	HBV	Th17 and Treg	96 HBV-infected patients, and 33 HC	Compared with controls, patients had higher Treg \((6.80 \text{ vs. } 4.42) \) and Th17 \((6.15 \text{ vs. } 2.66) \) in circulation. However, the Treg/Th17 ratio was significantly lower in patients \((1.48 \text{ vs. } 2.29, \ P = 0.0001) \); which suggests an ineffective suppression of proinflammatory response
Wang et al. (9)	HBV	IL-17A, and IL-17F gene polymorphisms	433 subjects (130 with CHB, 132 with HBV-related cirrhosis, and 71 controls)	There was a significant increase in the risk of cirrhosis among subjects carrying the IL-17A rs4711998 G allele \((OR = 1.54, \ P = 0.025) \) and those with the IL-17A rs4711998 AG genotype \((OR = 1.75, \ P = 0.025) \) compared with other polymorphisms
Ge et al. (14)	HBV	IL-17A and IL-17F gene polymorphisms	331 patients with HBV-related conditions (163 LC and 168 CHB) who underwent gene polymorphisms analysis	The frequency of IL-17A G197A genotype AA was significantly higher in LC that in CHB patients \((42.33 \text{ vs. } 27.98, \ P = 0.032) \), as well as the allele A \((56.34 \text{ vs. } 46.15, \ P = 0.011) \). There was a significant increase in LC risk either among AA genotype patients \((OR 4.186, \text{ 95\% CI: } 1.479–11.844) \) or one allele carriers \((OR 1.855, \text{ 95\% CI: } 1.161–2.967) \)
Tian et al. (61)	HBV	Th17, Treg, Th1, Th2, and related cytokines	30 CHB patients, who underwent treatment with Entecavir	Antiviral therapy was associated with a significant decrease in the Th17 and Treg cell frequencies and related cytokines, in parallel to the reduction of HBV DNA load. By contrast, the treatment was associated increase in the Th2 cell and related cytokines
The proportion of Th17 cells among PBMCs was significantly higher in CHB (1.78%) than either AHB patients (1.28%, \(P = 0.0004\)) or controls (0.78%, \(P = 0.0009\)). After stimulation with HBV envelope peptides, the expression of TLR2 and IL-17A in T lymphocytes was remarkably increased in CHB patients than in AHB. In addition, the stimulation of PBMCs with a TLR2 agonist induced a higher frequency of Th17 cells in CHB patients than AHB patients (1.39 vs. 0.68%, \(P = 0.002\)); with the increased IL-17 production.

TABLE 1 | Continued

Reference	Virus	Biomarker	Patients	Results
Xue-Song et al. (79)	HBV	Th17, Treg, and IL-17	48 patients with chronic HBV (12 AsC, 18 CHB, and 18 ACLF), 10 with AHB, and 10 HC	Compared to HC, both AHB and ACLF patients favored the Th17 cells differentiation, accompanied by a higher proportion of peripheral Th17 cells and high level of serum IL-17A (\(P < 0.01\) for both). Both Th17 frequency and plasma IL-17A levels correlated positively with ALT and TB levels among those with CHB. In asymptomatic HBV carriers, by contrast, there was a favoritism to Treg differentiation. Both CHB and ACLF had lower Treg/Th17 ratio than in HC (\(P < 0.05\)); and this correlated inversely with TB levels (\(r = -0.41, P = 0.004\)).
Yu et al. (65)	HBV	Treg/Th17 ratio and TGF-β1/IL-17 ratio	96 patients with HBV-related conditions (70 with CHB, 28 with LC) and 20 controls	Patients with LC, especially non-survival ones, presented a significant decrease in the Treg/Th17 ratio. The lower Treg/Th17 ratio was associated with worse Child–Pugh and MELD scores, which suggests that the dominance of Th17 over Treg has a significant contribution in disease severity
Shi et al. (98)	HBV	IL-17 and IL-17 mRNA	123 patients with HBV-related conditions (30 with CHB, 79 with LC, 14 with severe CHB), and 20 controls	IL-17 mRNA expression levels in PBMCs were significantly higher in patients with HBV-conditions than in the controls. PBMCs IL-17 mRNA and the serum IL-17 protein were significantly higher in patients in higher Child–Pugh (B or C) than in lower scores. Serum IL-17 levels correlated positively with TB, ALT, and Child score; and correlated inversely with albumin
Wang et al. (99)	HBV and HCV	Treg/Th17	38 patients with ESLD (33 due to viral cause) who underwent liver transplantation	The frequency of circulating Th17 cells was significantly increased in liver allograft recipients who developed acute rejection; whereas Tregs, and consequently the Tregs/Th17 ratio, was significantly decreased in these patients. The level of Th17 cells had a positive correlation with RAI (\(r = 0.890, P < 0.001\)).
Xu et al. (63)	HBV	Treg/Th17 balance	56 patients with LC who were randomly assigned to ABMSCs transplantation or control group	After 24-week follow-up, 20 cases and 19 controls completed the study. There was a significant increase in Treg and a marked decrease in Th17 cells in the transplantation group compared with control, leading to an increased Treg/Th17 ratio. In addition, ABMSCs transplantation improved patients’ liver function and significantly decreased the serum levels of proinflammatory cytokines (IL-17, TNF-α, and IL-6)
Jimenez-Sousa et al. (62)	HCV	Th17 and Th1 factors	27 HCV-infected patients who underwent 12 weeks’ treatment with pegylated IFN-α and ribavirin and 10 HC	HCV infection induced the secretion of chemokines and cytokines involved in both Th1 (like IFN-α and MIP-1) and Th17 responses (such as IL-6 and IL-17), and two profibrotic factors (FGF-b, VEGF). Compared to the control group, these increases reached significances as follow: for MIP-1 alpha (4.7-fold), TNF-α (3.0-fold), FGF-b (3.4-fold), VEGF (3.5-fold), and IL-7 (5.6-fold). The 12 weeks combined treatment resulted in a significant down-modulation of the secretion of key Th1 and Th17 proinflammatory or profibrotic factors principally in responder patients
Zhang et al. (20)	HBV	Th17	83 HBV-infected patients (66 with CHB, 23 with ACLF) and 30 HC	Patients presented higher frequency of circulating Th17 than HC; and increased with disease progression (mean, 2.42, 4.34, and 5.62% for HC, CHB, and ACLF, respectively). Both circulating and intrahepatic Th17 cells correlated positively with serum ALT, and histological activity index
Basha et al. (57)	HCV	Th17, Treg, IL-17	60 OLT recipients (51 HCV+, 9 HCV–) and, 15 HC	Recipients with recurrent HCV-induced allograft inflammation and fibrosis/cirrhosis presented a significant increase in the frequency of HCV-specific CD4+ Th17 cells; as well as proinflammatory mediators (IL-17, IL-1, IL-6, IL-5, and MCP-1). Recurrent patients despite demonstrating increased Treg frequency, this did not inhibit HCV-specific CD4+ Th17 cells
induces the rapid translocation of transcription factors NF-κB and Stat3 to the cellular nucleus (13), where activate the gene transcription of proinflammatory cytokines (IL-6 and TNF-α) and profibrotic factors (TGF-β1) (17, 50). In addition, IL-17 promotes the proliferation of HSCs, the upregulation of TGF-β receptor, IL-17RA, and IL-17RC (13, 16, 127). So, the IL-17 has the property to induce the activation of HSCs and fibrogenesis, and this effect seems to be synergistic with that of IL-6 and TNF-α (13, 128).

In the liver tissue, particularly in HSCs, the IL-17 also presents the following effects: increases the genic expression of type I collagen and induces its production through TGF-β, or Stat3/SMAD2/3 signaling pathways (13, 127). In addition, IL-17 upregulates matrix metalloproteinases (MMP2, MMP3, and MMP9) expression via NF-κB and Stat3 signaling pathways (13, 127, 129) and increases the expression of tissue inhibitor of matrix metalloproteinase 1 (TIMP1) and the production of related proteins (127). The combination of these effects results in increased production of extracellular matrix and changes in its degradation. This role of IL-17 has been reinforced in experimental model where liver fibrosis was inhibited or attenuated in IL-17RA−/− mice exposed to carbon tetrachloride (CCl4) or subjected to bile duct ligation (BDL), associated with reduced mRNA expression of fibrogenic genes (collagen-α1, MMP3, TIMP1, and TGF-β1) (13, 130). The role of IL-17 on MMPs and related signaling pathway has also been described in other organs such as the heart (131).

IL-17, TGF-β, and Induction of Cellular Transition/Transdifferentiation

In addition to the direct effects, described above, the IL-17 cooperates with TGF-β1 to induce the activation of HSCs and their transition into a proliferative, contractile, and fibrogenic phenotype—the myofibroblast (13, 132, 133). These events also lead to an excessive synthesis of ECM and the contractility of myofibroblasts resulting in changes in the hepatic microarchitecture and microcirculation (134–136). The IL-17 also has the effect of inducing epithelial–mesenchymal transition (EMT) in hepatic tissue as observed in hepatocytes of patients with HCC (137) and biliary epithelial cells as seen in PBC (115). It is important to emphasize that the exposure of the hepatic tissue to IL-17 increased the expression of TGF-β in almost all liver resident cells (13, 127). Moreover, the TGF-β is well documented that induces the EMT of the hepatocytes (138–140). Therefore, we can deduce that the IL-17, through the induction of TGF-β production, is an indirect promoter of EMT in the liver (13, 132, 137, 139). This effect of IL-17 in EMT is well described in many other organs (and clinical conditions), as in the respiratory epithelium (141, 142) and prostate (143); and has been proven to be a process dependent on TGF-β or NF-κB pathways (115, 141, 142, 144).

The activation of HSCs is associated with two other Th17/IL-17 axis-related changes. The first results from the rarefaction of retinoic acid in HSCs. Under normal conditions, the quiescent HSCs have many granules containing retinoic acid (135), which acts inhibiting the Th17 and favoring the Treg cells differentiation, with a protective effect on the liver (145, 146). However, when activated HSCs undergo changes in their metabolism and retinoic acid content, which affects the differentiation of Treg cells and, consequently, the loss of the protective effect (135, 147, 148). The second results from the evidence that activated HSCs exacerbate liver fibrosis by enhancing IL-17A production by T cells, in a TLR3-dependent manner (45), that in combination with the rarefaction of retinoic acid results promoting further Threg/Th17 imbalance and fibrogenesis (45, 149).

Kupffer Cells

In KC, as well as in HSCs, stimulation with IL-17 led to the production of proinflammatory cytokines and TGF-β1, through NF-κB and Stat3 pathways (13, 150–153). It also upregulates the receptors of TGF-β, IL-17A, and IL-17C and promotes the further production of IL-17A, IL-17F (13, 127). In addition, under stress conditions, KC are involved in increased differentiation of Th17 and decreased Treg, through an IL-6-dependent mechanism, promoting further Threg/Th17 imbalance and perpetuating...
the proinflammatory and fibrogenic consequences of this axis (43, 154).

The Role of IL-17 in the Systemic Circulation and Its Repercussions in the Liver Tissue

In the systemic circulation, the IL-17 sustains the proinflammatory environment, stimulating the granulopoiesis through the release of granulocyte-macrophage colony-stimulating factor (GM-CSF) (33, 155–158). On inflammatory cells (either in systemic circulation or infiltrating the liver), the IL-17 induces the release of the IL-6 (159). The elevation of the IL-6 contributes to further Th17 responses because it promotes its differentiation (104), as IL-6 receptors are expressed on the surface of CD4+ T cells (43, 51). This process also occurs using the STAT3, NF-κB, and MAPK signaling (43, 151).

The repercussion at the organic level is the liver infiltration by inflammatory cells that occurs because IL-17 promotes endothelial activation (32, 33, 47), and release of attracting chemokines such as CXCL5 and CXCL8/IL-8 (156, 160, 161) whose receptors (CXCR1 and CXCR2) are abundantly expressed neutrophils and monocytes (32, 125, 161–164). Once in the liver, neutrophils are involved in various points of the fibrogenesis chain, including the release MMP9 (165–167) and seem to affect the functioning of the TIMP-1 (168). Recent studies have shown that neutrophils released itself the IL-17, mainly in the advanced stages of fibrosis (66); and there is a sustained cross talk between neutrophils and Th17 cells (32, 164). Figure 2 represents the chain of events from viral injury, Th17/IL-17 axis activation, to liver fibrogenesis and cirrhosis.

The Role of IL-17 Axis in Other Liver Diseases and Other Organs Fibrosis

The role of Th17/IL-17 axis in hepatic fibrosis has been found in various liver diseases such as NASH (117, 118), obstructive cholestasis (169), PSC (112), PBC (16, 114, 115), biliary atresia (29, 116), drug-induced (91, 170), protozoa-associated cirrhosis (87, 171, 172), and viral hepatitis (20, 30, 44, 173). Moreover, the role of Th17/IL-17 axis extends to related diseases such as HCC (94, 174, 175), which suggests a continuous, or at least related parts of a whole, in the pathogenesis of these conditions (53, 94, 174, 175). Additional evidence comes from...
observed as a promising antifibrotic drug, and its impact in reducing liver fibrosis severity is associated with a significant reduction in Th17 cells and related cytokines (197). Another compound with protective effects in liver fibrosis is the polyphenolic molecule mongol that inhibits Th17 cells differentiation and suppresses HSCs activation (198).

Still, about Treg/Th17 balance restoration, adoptive transfer of Tregs ameliorated the severity of liver injury, accompanied by increased levels of hepatic Treg and IL-10 as shown in a model of Triptolide-induced liver injury (90). On the other hand, some drugs with use and efficiency established in viral hepatitidis, such as interferon, appear to have effects that involve this axis, among its various mechanisms (24, 62, 187).

Agents Targeting the Receptors and Signaling Pathways Involved in Th17/IL-17 Axis Effects

The inhibition of the activation of HSCs is, undoubtedly, one of the most attractive strategies to slow down fibrogenesis (199). Multiple receptors and signaling pathways are involved in the chain of events of Th17/IL-17 axis-mediated HSCs activation, and can also be therapeutic targets. So, agents such as rosuvastatin, curcumin, Dioscin, the flavonoid quercetin, and other agents have emerged as inhibitors of the HSCs activation targeting the TLR3, TLR2/4, STAT3, and/or MAPK/NF-κB, the main receptors and pathways in Th17/IL-17 axis-mediated HSCs activation (200–207). Agents such as rosiglitazone and rapamycin demonstrated the potential to interfere with the fibrogenic pathways by reducing the expression of TGF-β (195, 208). Others such as the ruxolitinib have also shown the potential to inhibit the hepatotoxicity and fibrogenesis, after initial injury by multiple agents, by inhibiting the JAK/STAT pathway (207, 209, 210).

CONCLUSION AND FUTURE DIRECTIONS

The imbalanced immunity at Th17/IL-17 axis level plays a significant role in liver fibrogenesis after initial HCV or HBV injury. The Th17/IL-17 axis drives of a chain of events that promote a proinflammatory and profibrotic environment by recruiting neutrophils and monocytes and by inducing the expression and production of interleukin-23 and IL-6 either in the liver or peripheral cells. All resident liver cells express receptors for IL-17, and liver cells respond to the IL-17 exposition by increasing the expression of profibrotic and proinflammatory factors such as TGF-β, MMPs, and TIMP. In addition, IL-17 induces the transformation of HSCs to myofibroblasts and the EMT of the hepatocytes, promoting the synthesis of extracellular matrix, cell contractility, and all changes in the liver microstructure and microcirculation.

AUTHOR CONTRIBUTIONS

FCP: prepared the manuscript text and figures.
REFERENCES

1. Stanaway JD, Flaxman AD, Naghavi M, Fitzmaurice C, Vos T, Abubakar I, et al. The global burden of viral hepatitis from 1990 to 2013: findings from the Global Burden of Disease Study 2013. *Lancet* (2016) 388:1081–9. doi:10.1016/S0140-6736(16)30717-4

2. Mokdad AA, Lopez AD, Shriver S, Lozano R, Mokdad AH, Stanaway J, et al. The distribution and regional mortality from 253 causes of death for 20 age groups in 1990 and 2010: a systematic analysis. *BMJ* (2014) 12:145. doi:10.1136/bmj.f1916-014-0145-y

3. Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, et al. Global and regional mortality from 253 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. *Lancet* (2012) 380:2095–128. doi:10.1016/S0140-6736(12)61728-7

4. Dolganis A, Szk C, Kolenbock D, Finberg RW, Kunt-Jones E, et al. Hepatitis C core and nonstructural 3 proteins trigger toll-like receptor 7-mediated pathways and inflammatory activation. *Gastroenterology* (2004) 127:1513–24. doi:10.1053/j.gastro.2004.08.067

5. Xiang WQ, Feng WF, Ke W, Sun Z, Chen Z, Liu W. Hepatitis B virus X protein stimulates IL-6 expression in hepatocytes via a MyD88-dependent pathway. *J Hepatol* (2011) 54:26–33. doi:10.1016/j.jhep.2010.08.006

6. Liu L, Liang H, Chen X, Zhang W, Yang X, Su T, et al. The role of NF-kappaB in hepatitis B virus X protein-mediated upregulation of VEGF and MMPs. *Cancer Invest* (2010) 28:443–51. doi:10.1080/07357900903405959

7. Ali L, Mansoor A, Ahmad N, Siddiqui S, Mazhar K, Muazzam AG, et al. Patient HLA-DRB1* and -DQB1* allele and haplotype association with hepatitis C virus persistence and clearance. *J Gen Virol* (2011) 91:1931–8. doi:10.1099/ir.0.018119-0

8. Kamatani Y, Watanapanyakat S, Oishi H, Kawaguchi T, Takahashi A, Hosono N, et al. A genome-wide association study identifies variants in the HLA-DP locus associated with chronic hepatitis B in Asians. *Nat Genet* (2009) 41:591–5. doi:10.1038/ng.348

9. Wang J, Liu Y, Xie L, Li S, Qin X. Association of IL-17A and IL-17F gene polymorphisms with chronic hepatitis B and hepatitis B virus-related liver cirrhosis in a Chinese population: a case-control study. *Clin Res Hepatol Gastroenterol* (2016) 40:288–96. doi:10.1016/j.clinre.2015.10.004

10. Falleti E, Fabris C, Tonietto P, Fontanini E, Cussigh A, Bitetto D, et al. Interleukin-17A G197A gene polymorphism in patients with end-stage liver disease. *Int J Cancer* (2009) 124:2766–70. doi:10.1002/ijc.24281

11. Barrett S, Collins M, Kenny C, Ryan E, Keane CO, Crowe J. Polymorphisms of the IL-10 and IL-6 genes poly- morphisms on the development of cirrhosis and hepatocellular carcinoma. *Oncology* (2009) 77:304–13. doi:10.1159/000260057

12. Ray S, De Salvo C, Pizarro TT. Central role of IL-17/Th17 immune responses in chronic hepatitis C infection with pegylated-interferon-α2b plus ribavirin. *Antivir Ther* (2011) 16:1081–91. doi:10.3851/IMP1864

13. Chen G, Watanabe T, Kudo M, Chiba T. Hepatitis C virus core protein induces homotolerance and cross-tolerance to toll-like receptor ligands by activation of toll-like receptor 2. *J Infect Dis* (2010) 202:853–61. doi:10.1086/655812

14. Sun HQ, Zhang JY, Zhang Z, Lin F, Zou ZS, Wang FS, et al. Increased Th17 cells contribute to disease progression in patients with HBV-associated liver cirrho- sis. *J Viral Hepat* (2012) 19:396–403. doi:10.1111/j.1365-2893.2011.01561.x

15. Klemm C, Schroder A, Dreier A, Mohm N, Dippel S, Winterberg T, et al. Interleukin 17, produced by γδ T cells, contributes to hepatic inflammation in a mouse model of biliary atresia and is increased in livers of patients. *Gastroenterology* (2016) 150:229–41.e5. doi:10.1053/j.gastro.2015.09.008

16. Barron L, Wynn TA. Fibrosis is regulated by Th2 and Th17 responses and by dynamic interactions between fibroblasts and macrophages. *Am J Physiol Gastrointest Liver Physiol* (2011) 300:G723–8. doi:10.1152/ajpgi.00414.2010

17. Ray S, De Salvo C, Pizarro TT. Central role of IL-17/Th17 immune responses and the gut microbiota in the pathogenesis of intestinal fibrosis. *Curr Opin Investig Drugs* (2014) 15:531–8. doi:10.1097/MOD.0000000000000119

18. Griffin GK, Newton G, Tarrio ML, Bu D, Maganto-Garcia E, Azcutia V, et al. IL-17 and TNF-α sustain neutrophil recruitment during inflammation synergizing effects on endothelial activation. *J Immunol* (2012) 188:6287–99. doi:10.4049/jimmunol.1200385

19. Yuan S, Zhang S, Zhuang H, Bai J, Hou Q. Interleukin-17 stimulates STAT3-mediated endothelial cell activation for neutrophil recruitment. *Cell Physiol Biochem* (2015) 36:5230–56. doi:10.1159/000430197

20. Huang C-F, Hsieh M-Y, Yang J-F, Chen W-C, Yeh M-L, Huang C-I, et al. Serum hs-CRP was correlated with treatment response to pegylated interferon and ribavirin combination therapy in chronic hepatitis C patients. *Hepatol Int* (2010) 4:621–7. doi:10.1111/j.1756-2848.2010.00190.x

21. Wong VW, Yu J, Cheng AS, Lai H-C, Tsai S-M, Lin P-C, et al. Rather than interleukin-27, interleukin-6 expresses positive correlation with liver fibrosis. *J Hepatol* (2010) 53:959–66. doi:10.1016/j.jhep.2010.03.029

22. Li J, Qiu S-J, She W-M, Wang F-P, Gao H, Li L, et al. Effect of the balance between intrahepatic IL-17+ T cells and Foxp3+ regulatory T cells on response to antiviral therapy in patients with chronic hepatitis C. *BMC Infect Dis* (2011) 11:247. doi:10.1186/1471-2415-11-247

23. Feng H, Yin J, Han Y-P, Zhou X-Y, Yang L, et al. Sustained changes of Th17 and Th2 cells during interferon-α therapy in patients with chronic hepatitis B. *Viral Immunol* (2015) 28:412–7. doi:10.1098/vim.2015.0024
carcinoma in HCV infected patients. Cytokine (2017) 89:62–7. doi:10.1016/j.cyto.2016.10.004
38. Shrivastava S, Mathewee A, Ray R, Ray RB. Hepatitis C virus induces interleukin-1β (IL-1β)-IL-18 in circulating and resident liver macrophages. J Virol (2013) 87:12284–90. doi:10.1128/JVI.01962-13
39. Negash AA, Ramos HI, Crochet N, Lau DT, Doehle B, Papic N, et al. IL-1β production through the NLRP3 inflammasome by hepatitis macrophages links hepatitis C virus infection with liver inflammation and disease. PLoS Pathog (2013) 9:e1003330. doi:10.1371/journal.ppat.1003330
40. Gusatti Cde S, Costi C, de Medeiros RM, Halon ML, Grandi T, Medeiros AF, et al. Association between cytokine gene polymorphisms and outcome of hepatitis B virus infection in southern Brazil. J Med Virol (2016) 88:1759–66. doi:10.1002/jmv.24518
41. Biyik M, Ucar R, Solak Y, Gunogor G, Polat I, Gaipov A, et al. Blood neutrophil-to-lymphocyte ratio independently predicts survival in patients with liver cirrhosis. Eur J Gastroenterol Hepatol (2013) 25:4345–41. doi:10.1097/MEG.0b013e32835ca2af
42. Chang Q, Wang Y-K, Qiao Z, Wang C-Z, Hu Y-Z, Wu B-Y. Th17 cells are increased with severity of liver inflammation in patients with chronic hepatitis C. J Gastroenterol Hepatol (2012) 27:273–8. doi:10.1111/j.1440-1744.2011.06782.x
43. Kim HY, Jhun JY, Cho M-L, Choi JY, Byun JK, Kim E-K, et al. Interleukin-6 upregulates Th17 response via miR-STARF3 pathway in acute-on-chronic hepatitis C liver failure. J Gastroenterol (2014) 49:1264–73. doi:10.1007/s00535-013-0891-1
44. Du WJ, Zhen JH, Zeng ZQ, Zheng ZM, Xu Y, Qin LY, et al. Expression of interleukin-17 associated with disease progression and liver fibrosis with hepatitis B virus infection: IL-17 in HBV infection. Diag Pathol (2013) 8:40. doi:10.1186/1746-1596-8-40
45. Seo W, Eun HS, Kim SY, Yi H-S, Lee Y-S, Park S-H, et al. Exosome-mediated activation of toll-like receptor 3 in stellate cells stimulates interleukin-17 production by y6 T cells in liver fibrosis. Hepatology (2016) 64:6616–31. doi:10.1002/hep.28644
46. Peng X, Xiao Z, Zhang J, Li Y, Dong Y, Du J. IL-17A produced by both y6 T and Th17 cells promotes renal fibrosis via RANTES-mediated leukocyte infiltration after renal obstruction. J Pathol (2015) 235:79–89. doi:10.1002/path.4430
47. Roussel I, Houle F, Chan C, Yao Y, Berube J, Olivenstein R, et al. IL-17 promotes p38 MAPK-dependent endothelial activation enhancing neutrophil recruitment to sites of inflammation. J Immunol (2010) 184:4531–7. doi:10.4049/jimmunol.0903162
48. Al-Harbi NO, Nadeem A, Al-Harbi MM, Zoheir KM, Ansari MA, El-Sherebeny AM, et al. Psoriatic inflammation causes hepatic inflammation with concomitant dysregulation in hepatic metabolism via IL-17A/IL-17 receptor signaling in a murine model. Immunobiology (2017) 222:128–36. doi:10.1016/j.imbio.2016.10.013
49. Foster RG, Golden-Mason L, Rutebemberwa A, Rosen HR. Interleukin (IL)-1α/interleukin-1β leukin-1 receptor signaling in a murine model. J Virol (2012) 57:381–9. doi:10.1128/JVI.01962-13
50. Zhao L, Qiu DK, Ma X. Th17 cells: the emerging reciprocal partner of regulatory T cells/T-helper 17 cells and transforming growth factor-β/interleukin-17 to be associated with the development of hepatitis B virus-associated liver cirrhosis. J Gastroenterol Hepatol (2014) 29:1620–8. doi:10.1111/jgh.12653
51. Zhao L, Zhang J, Zhang L, Sui Y, Zhao Z, Zhao W, et al. The ratio of Th1 to Th17 cells is associated with survival of patients with acute-on-chronic hepatitis B liver failure. Viral Immunol (2011) 24:303–10. doi:10.1089/vim.2010.0135
52. Yu X, Guo R, Ming D, Su M, Lin C, Deng Y, et al. Ratios of regulatory T cells/T-helper 1 helper cells and transforming growth factor-β/interleukin-17 to be associated with the development of hepatitis B virus-associated liver cirrhosis. J Gastroenterol Hepatol (2014) 29:1065–72. doi:10.1111/jgh.12459
53. Macek Jlikova Z, Arafal S, Marceh H, Decaens T, Sturm N, Jouvin-Marche E, et al. Progression of fibrosis in patients with chronic viral hepatitis is associated with IL-17(+) neutrophils. Liver Int (2016) 36:1116–24. doi:10.1111/liv.13060
54. Zhai S, Zhang L, Dang S, Yu X, Zhao Z, Zhao W, et al. Interleukin-17 expression on CD4+ T cells/T-helper 1 cells is associated with survival of patients with chronic hepatitis B. J Clin Immunol (2016) 5:2303–10. doi:10.1089/jcim.2015.0135
55. Yu J-F, Pan H-Y, Ying X-H, Lou J, Ji J-S, Zou H. Mast cells comprise the major of interleukin 17-producing cells and predict a poor prognosis in hepatocellular carcinoma. Medicine (Baltimore) (2016) 95:e3220. doi:10.1097/MD.0000000000003220
56. Ashraf Hafez A, Ahmad Vaseinjani A, Baharlou R, Mousavi Nasab SD, Davami MH, Najaf A, et al. Analytical assessment of interleukin-23 and -27 concentrations in healthy people and patients with hepatitis C virus infection (genotypes 1 and 3a). Hepat Mon (2014) 14:e21000. doi:10.5812/hepatmon.21000
57. Zhao L, Qiu DK, Ma X. Th17 cells: the emerging reciprocal partner of regulatory T cells in the liver. J Dig Dis (2010) 11:126–33. doi:10.1111/j.1751-2980.2010.00428.x
58. Ye Y, Xie Y, Yu J, Zhou L, Xie H, Jiang G, et al. Involvement of Th17 and Th1 effector responses in patients with hepatitis B. J Clin Immunol (2010) 30:546–55. doi:10.1007/s10875-010-9416-3
59. Noack M, Miossec P. Th17 and regulatory T cell balance in autoimmune and inflammatory diseases. Autoimmun Rev (2014) 13:668–77. doi:10.1016/j.autrev.2013.12.004
60. O'Shea JJ, Paul WE. Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science (2010) 327:1098–102. doi:10.1126/science.1178334
61. Kimura A, Kishimoto T. IL-6: regulator of Treg/Th17 balance. Eur J Immunol (2010) 40:1830–5. doi:10.1002/eji.201040391
Wang Q, Zhou J, Zhang B, Tian Z, Tang J, Zheng Y, et al. Hepatitis B virus.

Wang Q, Zheng Y, Huang Z, Tian Y, Zhou J, Mao Q, et al. Activated IL-23/IL-17 cell frequencies and the stages of progression in chronic hepatitis B. Mol Med Rep (2013) 9:853–9. doi:10.3892/mmr.2013.4618

Feng H, Yin J, Han Y-P, Zhou X-Y, Chen S, Yang L, et al. Regulatory T cells and IL-17(+)* T helper cells enhanced in patients with chronic hepatitis B virus infection. Int J Clin Exp Med (2015) 8:8674–85.

Zhao R-R, Yang X-F, Dong J, Zhao Y-Y, Wei X, Huang C-X, et al. Toll-like receptor 2 promotes Th helper 17 cell responses in hepatitis B virus infection. Int J Clin Exp Med (2015) 8:7315–23.

Shu M, Wei J, Dong J, Meng W, Ma J, Wang T, et al. Function of interleukin-17 and -35 in the blood of patients with hepatitis B-related liver cirrhosis. Mol Med Rep (2015) 11:121–6. doi:10.3892/mmr.2014.2681

Wang Y, Zhang M, Liu Z-W, Ren W-G, Shi Y-C, Sun Y-L, et al. The ratio of circulating regulatory T cells (Tregs)/Th17 cells is associated with acute allograft rejection in liver transplantation. PLoS One (2014) 9:e121135. doi:10.1371/journal.pone.0121135

Hu X, Ma S, Huang X, Jiang X, Zhu X, Gao H, et al. Interleukin-21 is upregulated in hepatitis B-related acute-on-chronic liver failure and associated with severity of liver disease. J Viral Hepat (2011) 18:458–67. doi:10.1111/j.1365-2813.2011.01475.x

Zhao Y, Anderson DE, Baecker-Allan C, Hastings WD, Bettelli E, Oukka M, et al. IL-21 and TGF-β are required for differentiation of human TH17 cells. Nature (2008) 454:350–2. doi:10.1038/nature07021

Chung Y, Chang SH, Martinez GJ, Yang XO, Nurieva R, Kang HS, et al. Critical regulation of early TH17 cell differentiation by interleukin-1 signaling. Immunity (2009) 30:576–87. doi:10.1016/j.immuni.2009.02.007

Sutton CE, Lalor SJ, Sweeney CM, Breerton CF, Lavelle EC, Mills KH, et al. Interleukin-1 and IL-23 induce innate IL-17 production from gammadelta T cells, amplifying Th17 responses and autoimmunity. Immunity (2009) 31:331–41. doi:10.1016/j.immuni.2009.08.001

Zhoul, Ivanov II, Spolski R, Min R, Shenderov K, Egea S, et al. IL-6 programs TH17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol (2007) 8:967–74. doi:10.1038/ni1488

Acosta-Rodriguez EV, Napolitani G, Lanzavecchia A, Stalluto F. Interleukins 1 and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin-17-producing human T helper cells. Nat Immunol (2007) 8:942–9. doi:10.1038/ni1496

Lu X, Xu Q, Bu X, Ma X, Zhang F, Deng Q, et al. Relationship between expression of toll-like receptors 2/4 in dendritic cells and chronic hepatitis B virus infection. Int J Clin Exp Pathol (2014) 7:6048–55.

Bennwell RK, Lee DR. Essential and synergistic roles of IL1 and IL6 in human Th17 differentiation directed by TLR ligand-activated dendritic cells. Clin Immunol (2010) 134:178–87. doi:10.1016/j.clim.2009.09.013

Korn T, Bettelli E, Gao W, Awasthi A, Jager A, Strom TB, et al. IL-21 initiates an alternative pathway to induce proinflammatory TH17 cells. Nature (2007) 448:484–7. doi:10.1038/nature05970

Lee H-C, Sung S-S, Krueger PD, Jo Y-A, Rosen HR, Ziegler SF, et al. Hepatitis C virus promotes T-helper (Th)17 responses through thymic stromal lymphopoietin production by infected hepatocytes. Hepatology (2010) 51:1314–24. doi:10.1002/hep.26128

Yu H, Huang J, Liu Y, Gao Y, Wang W, Xu X, et al. IL-17 contributes to autoimmune hepatitis. J Haizhong Univ Sci Technol Med Sci (2010) 30:443–6. doi:10.1159/061014046-0

Longhi MS, Liberal R, Holder B, Robson SC, Ma Y, Mieli-Vergani G, et al. Inhibition of interleukin-17 promotes differentiation of CD25+ cells into stable T regulatory cells in patients with autoimmune hepatitis. Gastroenterology (2012) 142:1526–35.e6. doi:10.1053/j.gastro.2012.02.041

Kell J, Schwinge D, Schoknecht T, Quaas A, Sobotka I, Burandt E, et al. Increased T helper type 17 response to pathogen stimulation in patients with primary sclerosing cholangitis. Hepatology (2013) 58:1084–93. doi:10.1002/hep.26447

Kunzmann L, Schoknecht T, Stein S, Ehlenk H, Harl J, Pannicke N, et al. Increased in vivo and vitro TH17 differentiation in patients with primary...
The Role of Th17/IL-17 Axis in Hepatic Fibrogenesis

114. Yang CY, Ma X, Tsuneyama K, Huang S, Takahashi T, Chalasani NP, et al. IL-17 and IL-23/Th17/microenvironment in primary biliary cirrhosis: implications for therapy. *Hepatology* (2014) 59:1944–53. doi:10.1002/hep.26979

115. Huang Q, Chu S, Yin X, Yu X, Kang C, Li X, et al. Interleukin-17A-induced epithelial-mesenchymal transition of human intrahepatic biliary epithelial cells: implications for primary biliary cirrhosis. *Tohoku J Exp Med* (2016) 240:269–75. doi:10.1620/jem.240269

116. Lages CS, Simmons J, Maddox A, Jones K, Karns R, Sheridan R, et al. The dendritic cell-T helper 17-macrophage axis controls cholangiocyte injury and disease progression in murine and human biliary atresia. *Hepatology* (2017) 65:174–88. doi:10.1002/hep.28851

117. Paquissi FC. Immune imbalances in non-alcoholic fatty liver disease: from general biomarkers and neutrophils to interleukin-17 axis activation and new therapeutic targets. *Front Immunol* (2016) 7:490. doi:10.3389/fimmu.2016.00490

118. Giles DA, Moreno-Fernandez ME, Cappelletti M, Hupert SS, Iwakura Y, et al. Interleukin-17A promotes hepatocellular carcinoma metastasis via NF-kB induced matrix metalloproteinases 2 and 9 expression. *PLoS One* (2011) 6:e19024. doi:10.1371/journal.pone.0019024

119. Arsent’eva NA, Semenov AV, Lyubimova NE, Ostankov YV, Elezo DS, Marra F, Tacke F. Roles for chemokines in liver disease. *J Autoimmun* (2010) 35:424–35. doi:10.1016/j.jaut.2010.09.003

120. Oo YH, Banz V, Kavanagh D, Liaskou E, Withers DR, Humphreys E, et al. Prevalence of profibrotic genes through upregulation of the TGF-β, IL-12/Th1 and IL-23/Th17 biliary microenvironment in primary biliary cirrhosis. *Hepatology* (2012) 56:1003–15. doi:10.1002/hep.26336

121. Xu Z, Zhang X, Lau J, Yu J. C-X-C motif chemokine 10 in non-alcoholic steatohepatitis: role as a pro-inflammatory factor and clinical implication. *Am J Physiol Lung Cell Mol Physiol* (2013) 304:L401–14. doi:10.1152/japplphysiol.00080.2012

122. Zhang X, Han J, Man K, Li X, Du J, Chu ES, et al. CXC chemokine receptor 3 promotes hepatic steatosis in mice through mediating inflammatory cytokines, macrophages and autophagy. *J Hepatol* (2016) 64:160–70. doi:10.1016/j.jhep.2015.09.005

123. Arsent’eva NA, Semenov AV, Lyubimova NE, Ostanok YV, Elezo DS, Kudryavtsev IV, et al. Chemokine receptors CXCR3 and CCR6 and their ligands in the liver and blood of patients with chronic hepatitis C. *Bull Exp Biol Med* (2015) 160:252–5. doi:10.1007/s10517-015-3142-z

124. Hintermann E, Bayer M, Pfilschifer JM, Luster AD, Christen U. CXCL10 promotes liver fibrosis by prevention of NK cell mediated hepatic stellate cell apoptosis. *J Autoimmun* (2010) 35:424–35. doi:10.1016/j.jaut.2010.09.003

125. Marra F, Tacke F. Histone deacetylase inhibition suppresses the transforming growth factor β1 induced epithelial-mesenchymal transition and apoptosis in mouse hepatocytes. *Hepatology* (2011) 53:1708–18. doi:10.1002/hep.24254

126. Ji X, Ji X, Wang W, Luo M, Luo S, et al. IL-17 and IL-17A provide a Th2/Th17-polarized inflammatory milieu in favor of TGF-β1 to induce bronchial epithelial-mesenchymal transition (EMT). *Int J Clin Exp Pathol* (2013) 6:1481–92.

127. Vittal R, Fan L, Greenspan DS, Mickler EA, Gopalakrishnan B, Gu H, et al. IL-17 induces type V collagen overexpression and EMT via TGF-β1-dependent pathways. *Int J Cell Mol Physiol* (2015) 30:475–94. doi:10.1080/10826084.2015.1053765

128. Zhen Y-L, Li J, Ye X-L, Sun M-Y, Xu Q, Liu C-H, et al. Soralafenib inhibits transforming growth factor β1-mediated epithelial-mesenchymal transition and apoptosis. *Cell Mol Physiol* (2016) 65:174–88. doi:10.1002/cphy.c140007

129. Li XL, Dou YC, Liu Y, Shi CW, Cao LL, Zhang XQ, et al. Atorvastatin ameliorates rat chronic hepatitis C induced hepatic fibrosis: mechanisms of action. *Zhongguo Zhong Xi Yi Jie He Za Zhi* (2015) 35:1444–51.

130. Cortez DM, Feldman MD, Mummidi S, Valente AJ, Steffensen B, Vincenti M, et al. IL-17 stimulates MMP-1 expression in primary human cardiac fibroblasts via p38 MAPK- and ERK1/2-dependent C/EBPβ, NF-kappaB, and AP-1 activation. *Am J Physiol Heart Circ Physiol* (2007) 293:H3356–65. doi:10.1152/ajpheart.00287.2007

131. Liang CY, Yang CY, Ma X, Tsuneyama K, Huang S, Takahashi T, Chalasani NP, et al. IL-17A plays a pivotal role in cholestatic liver fibrosis in mice. *J Surg Res* (2013) 183:574–82. doi:10.1016/j.jsrs.2013.03.025

132. Bi W-R, Yang C-Q, Shi Q, Transforming growth factor-β1 induced epithelial-mesenchymal transition in hepatic fibrosis. *Hepatogastroenterology* (2012) 59:1960–3. doi:10.5755/jhge.17570

133. Hara M, Kono H, Furuya S, Hirayama K, Tsuchiya M, Fujii H. Interleukin-17A plays a pivotal role in cholestatic liver fibrosis in mice. *J Surg Res* (2013) 183:574–82. doi:10.1016/j.jsrs.2013.03.025

134. Koren K, Fujii H, Ogikha M, Hosomura N, Amemiya H, Tsuchiya M, et al. Role of IL-17A in neutrophil recruitment and hepatic injury after warm ischemia-reperfusion injury. *J Immunol* (2011) 187:4818–25. doi:10.4049/jimmunol.1100490
154. Gao J, Jiang Z, Wang S, Zhou Y, Shi X, Feng M. Endoplasmic reticulum Paquissi
155. McAllister F, Henry A, Kreindler JL, Dubin PJ, Ulrich L, Steele C, et al.
159. Gu Y, Hu X, Liu C, Qv X, Xu C. Interleukin (IL)-17 promotes macro-
161. Mei J, Liu Y, Dai N, Hoffmann C, Hudock KM, Zhang P, et al. Cxcr2 and
163. Mizutani N, Nabe T, Yoshino S. IL-17A promotes the exacerbation of
165. Chakrabarti S, Patel KD. Regulation of matrix metalloproteinase-9 release
167. Ohashi N, Hori T, Chen F, Jermanus S, Nakao A, Uemoto S, et al. Matrix
168. González-Mateo GT, Fernández-Míllara V, Bellón T, Liappas G, Ruiz-Ortega M,
169. Bozinovski S, Seow HJ, Chan SP, Anthony D, McQualter J, Hansen M, et al.
170. Liao C-C, Day Y-J, Lee H-C, Liou J-T, Chou A-H, Liu F-C. Baicalin attenuates
172. Zhang Y, Chen L, Gao W, Hou X, Gu Y, Gui L, et al. IL-17 neutralization sig-
173. Xu L, Chen S, Xu K. IL-17 expression is correlated with hepatitis B-related
174. Liao R, Sun J, Wu H, Yi Y, Wang J-X, He H-W, et al. High expression of IL-17 and
175. Zhang J-P, Yan J, Xu J, Pang X-H, Chen M-S, Li L, et al. Increased intratu-
176. Xu X, Xu L, Gao Y, Ding Y. The prevalence of nonalcoholic fatty liver disease and
177. Lillehoj H, Lillienfeldt O, Jansson C, Poschmann J, Holmberg R, et al. Interferon
178. González, J, Zhang K, Chen L, Mao J, Yao M, Ben Y, et al. Enhancement of
179. Holdener M, Hintermann E, Bayer M, Rhode A, Rodrigo E, Hintereder G, et al. Breaking tolerance to the natural human liver autoantigen cytochrome
180. Kitazawa E, Igarashi T, Kawaguchi N, Matsuhashia K, Kawashima Y,
181. Hammerich L, Heymann F, Tacke F. Role of IL-17 and Th17 cells in liver
182. Grant CR, Liberal R, Holder BS, Cardone J, Ma Y, Robson SC, et al. Dysfunctional CD39(POS) regulatory T cells and aberrant control of T-helper type 17 cells in autoimmune hepatitis. Hepatology (2014) 59:1007–15.
183. Biancheri P, Pender SL, Ammoscato F, Giuffrida F, Sampietro G, Aridizzone S, et al. The role of interleukin 17 in Crohn's disease-associated intestinal fibrosis. Fibrogenesis Tissue Repair (2013) 6:13. doi:10.1186/1755-1536-6-13
184. Gong J, Zhang K, Chen L, Mao J, Yao M, Ben Y, et al. Enhancement of CD147 on M1 macrophages induces differentiation of Th17 cells in the lung intestinal fibrosis. Biochim Biophys Acta (2014) 1822:1770–80. doi:10.1016/j.bbadis.2014.06.008
185. Bozinovski S, Seow HJ, Chan SP, Anthony D, McQualter J, Hansen M, et al. Innate cellular sources of interleukin-17A regulate macrophage accumulation in cigarette-smoke-induced lung inflammation in mice. Clin Sci (Lond) (2015) 129:789–96. doi:10.1042/CS20140703
186. Gonzalez-Mateo GT, Fernández-Millara V, Liappas G, Ruiz-Ortega M, López-Cabrera M, et al. Paricalcitol reduces peritoneal fibrosis in mice infected with Schistosoma japonicum. Eur J Immunol (2012) 42:1523–35. doi:10.1002/eji.201141933
187. Lee J, Lee J, Park M-K, Lim M-A, Park E-M, Kim E-K, et al. Interferon gamma suppresses collagen-induced arthritis by regulation of Th17 through the induction of indoleamine-2,3-deoxygenase. PLoS One (2013) 8:e60900. doi:10.1371/journal.pone.0060900
188. Zhang S, Huang D, Weng J, Huang Y, Liu S, Zhang Q, et al. Neutralization of interleukin-17 attenuates cholestatic liver fibrosis in mice. Scand J Immunol (2016) 83:102–8. doi:10.1111/sij.12395
189. Mi S, Li Z, Yang H-Z, Liu H-Z, Wang J-P, Ma Y-G, et al. Blocking IL-17A promotes the resolution of pulmonary inflammation and fibrosis via TGF-beta1-dependent and -independent mechanisms. J Immunol (2011) 187:3003–14. doi:10.4049/jimmunol.1004081
190. Guillot A, Hamadou N, Biy Z, Zoltani K, Soultani R, Zafra E-S, et al. Cannabinoid receptor 2 counteracts interleukin-17-induced immune and

Shu J-C, He Y-J, Lv X, Ye G-R, Wang L-X. Curcumin prevents liver fibrosis by inducing apoptosis and suppressing activation of hepatic stellate cells. J Nat Med (2014) 68:15–20. doi:10.1007/s11418-014-0239-4

202. Liu M, Xu Y, Han X, Yin L, Xu L, Qi Y, et al. Dioscin alleviates alcoholic liver fibrosis by attenuating hepatic stellate cell activation via the TLR4/MyD88-NF-κB signaling pathway. Sci Rep (2015) 5:18038. doi:10.1038/srep18038

203. Samuhasanetos S, Thong-Ngam D, Kulaputana O, Suyasunanont D, Klaiekaw N. Curcumin decreased oxidative stress, inhibited NF-kappaB activation, and improved liver pathology in ethanol-induced liver injury in rats. J Biomed Biotechnol (2009) 2009:981963. doi:10.1155/2009/981963

204. Zhang H, Sun Q, Xu T, Hong L, Fu R, Wu J, et al. Resveratrol augments the progress of liver fibrosis via the Akt/nuclear factor-κB pathways. Mol Med Rep (2013) 13:224–30. doi:10.3892/mmr.2013.4497

205. Nunez Lopez O, Bohanon FJ, Wang X, Ye N, Corsello T, Rojas-Khalil Y, et al. STAT3 inhibition suppresses hepatic stellate cell fibrogenesis: HJC0123, a potential therapeutic agent for liver fibrosis. RSC Adv (2016) 6:100652–63. doi:10.1039/C6RA17459K

206. Gu Y-J, Sun W-Y, Zhang S, Li X-R, Wei W. Targeted blockade of JAK/STAT3 signaling inhibits proliferation, migration and collagen production as well as inducing the apoptosis of hepatic stellate cells. Int J Med (2016) 38:903–11. doi:10.3892/ijmm.2016.2692

207. Lee SJ, Yang EK, Kim SG. Peroxisome proliferator-activated receptor-gamma and retinoic acid X receptor alpha repress the TGFbeta1 gene via PTEN-mediated p70 ribosomal S6 kinase-1 inhibition: role for ZIP dephosphorylation. Mol Pharmacol (2006) 70:415–25. doi:10.1124/mol.106.029954

208. Hazem SH, Shaker ME, Ashamallah SA, Ibrahim TM. The novel Janus kinase inhibitor ruxolitinib confers protection against carbon tetrachloride-induced hepatotoxicity via multiple mechanisms. Chem Biol Interact (2014) 220:116–27. doi:10.1016/j.cbi.2014.06.017

209. Shaker ME, Hazem SH, Ashamallah SA. Inhibition of the JAK/STAT pathway by ruxolitinib ameliorates thioacetamide-induced liver fibrosis. Food Chem Toxicol (2016) 96:290–301. doi:10.1016/j.fct.2016.08.018

Conflict of Interest Statement: The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2017 Paquissi. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.