Review

Underreported Human Exposure to Mycotoxins: The Case of South Africa

Queenta Ngum Nji 1, Olubukola Oluranti Babalola 1, Nancy Nleya 1,2 and Mulunda Mwanza 1,2, *

1 Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
2 Department of Animal Health, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
* Correspondence: mulunda.mwanza@nwu.ac.za

Abstract: South Africa (SA) is a leading exporter of maize in Africa. The commercial maize farming sector contributes to about 85% of the overall maize produced. More than 33% of South Africa’s population live in rural settlements, and their livelihoods depend entirely on subsistence farming. The subsistence farming system promotes fungal growth and mycotoxin production. This review aims to investigate the exposure levels of the rural population of South Africa to dietary mycotoxins contrary to several reports issued concerning the safety of South African maize. A systematic search was conducted using Google Scholar. Maize is a staple food in South Africa and consumption rates in rural and urban communities are different, for instance, intake may be 1–2 kg/person/day and 400 g/person/day, respectively. Commercial and subsistence maize farming techniques are different. There exist differences influencing the composition of mycotoxins in food commodities from both sectors. Depending on the levels of contamination, dietary exposure of South Africans to mycotoxins is evident in the high levels of fumonisins (FBs) that have been detected in SA home-grown maize. Other potential sources of exposure to mycotoxins, such as carryover effects from animal products and processed foods, were reviewed. The combined effects between FBs and aflatoxins (AFs) have been reported in humans/animals and should not be ignored, as sporadic breakouts of aflatoxicosis have been reported in South Africa. These reports are not a true representation of the entire country as reports from the subsistence-farming rural communities show high incidence of maize contaminated with both AFs and FBs. While commercial farmers and exporters have all the resources needed to perform laboratory analyses of maize products, the greater challenge in combatting mycotoxin exposure is encountered in rural communities with predominantly subsistence farming systems, where conventional food surveillance is lacking.

Keywords: aflatoxins; fumonisins; maize; carryover; mycotoxins; rural community; South Africa

1. Introduction

Agriculture is one of the most important contributors to the livelihoods of rural populations in developing countries. In sub-Saharan Africa for example, maize is the staple food and is cultivated by both commercial and subsistence farmers. South Africa has a dual agricultural system, comprising of an advanced commercial farming sector alongside a small-scale subsistence farming sector. Small-scale farmers are mostly present in rural settlements. According to developmental data from the World Bank, South Africa’s rural population accounts for about 33% of the total population [1]. Small-scale farming has long been recognised by South African policymakers and stakeholders as the means through which poverty alleviation and rural development can be achieved [2,3]. In South Africa, about 85% of maize is cultivated in the commercial sector [4], whereas roughly 15% comes from the subsistence farming sector. Average yields of 1.3 and 4.6 tons per hectare for subsistence farmers and commercial farmers, respectively, were recorded.
between 2008 and 2012 [4]. Commercial farmers implement strategies to reduce losses such as the proper application of insecticides and fungicides, establishment of irrigation schemes, proper harvesting, transport practices and use of suitable storage facilities, among others. On the contrary, subsistence farmers do not have the required resources and skills to ensure the production of quality grains from planting in the field through consumption. Therefore, maize produced by subsistence farmers is often affected by pre- and post-harvest damage, such as fungal infection.

Food security is a serious global issue and continues to top development agendas of most countries, especially in Africa. Food security in SA is still a national crisis due to the high rates of unemployment, poverty, HIV/AIDS, rising food and fuel prices, the recent COVID-19 pandemic, and the recent occurrence of floods in KZN [5]. The COVID-19 pandemic collapsed food production and distribution systems and led to severe food insecurity. Food aids or donations from different organisations were given to South Africans during the pandemic. Sources of the food items and their levels of mycotoxin contamination were unknown. This situation could predispose the population to mycotoxin contamination if the food items came from a mycotoxin endemic region or country.

Fungi are natural contaminants of cultivated products such as cereals and produce secondary metabolites known as mycotoxins [6]. Mycotoxin toxicity occurs at very low concentrations; hence, sensitive and reliable methods are needed for their detection. Once the mycotoxin concentrations are known, chances of the population consuming highly contaminated food can be reduced. There are several methods used to detect mycotoxins in food samples. Therefore, choosing an analytical technique is key in obtaining accurate data, hence, the correct or actual incidence of occurrence of mycotoxins in a sample is a function of the sensitivity of the analytical method used. For instance, previously, 25% of the world’s crop was reported to be contaminated by mycotoxins [7]; recently, improvements in analytical techniques have painted a different picture altogether, with higher contamination values (60–80%) [8]. The cost of analytical services to monitor levels of mycotoxins in food is a substantial part of the total cost of mycotoxin management process. The high costs associated with mycotoxin management may hinder the adoption of interventions by subsistence farmers [9]. This makes it difficult for small-scale farmers to afford these services, even the basic screening techniques.

Fungal development and mycotoxin production are climate-sensitive and SA’s climate is rapidly changing, in step with overall global patterns. Frequent droughts and low rain-fall are common traits of South Africa’s climate, which enable favourable conditions for the production of mycotoxins, especially aflatoxins (AFs), produced by members of the genus Aspergillus. Common mycotoxin-producing fungal genera Aspergillus, Fusarium, and Penicillium have been isolated in South African maize in varying amounts [10–12]. Most studies on mycotoxins, especially on maize in SA, have been conducted in the commercial sector, which is not representative of the entire maize production of the country. More than 95% of the research conducted on South African maize has focused on mycotoxins produced by the genus Fusarium, namely fumonisins (FB) and zearalenone (ZEA), despite the reported presence of Aspergillus species, especially among small-scale crop producers [13–16]. Cases of human oesophageal cancer were reported in the Eastern Cape in 1991 [17]. Before then, fumonisin B1 (FB1) had been reported in home-grown maize in January 1990 [18]. These results prompted researchers in SA to focus on Fusarium mycotoxins. From review, major mycotoxin reports from both the subsistence and commercial farming systems show no significant different except for AFs, where a high incidence of AFs were discovered in maize and other foodstuff from small-scale compared to commercial farms [19]. This indicates that millions of South Africans from rural settlements are exposed to the effects of mycotoxins on a regular basis. Hence, there is a need to assess South Africans’ exposure to mycotoxins, paying particular attention to AFs within the rural population. Furthermore, the possibility of the co-occurrence of Aspergillus, and Fusarium species with their mycotoxins, alongside other fungi such as Alternaria species and their mycotoxins, exists [15,20,21]. These mycotoxins may act synergistically and are hazards that should not be ignored. Most studies
on maize are conducted as multi-mycotoxins research. Some of these have revealed the absence of contamination with aflatoxins (AFs) in SA commercial maize [3,22,23], while others have reported their presence [12,13,16,19,24–28]. Subsistence farmers in SA and their immediate communities are exposed to dietary AFs in maize, milk, carry-over in animal products, and other processed foods daily. This review seeks to highlight the fact that South Africans’ exposure to the effects of mycotoxins is under-reported from the perspective of AFs in foods from subsistence farming.

2. Materials and Methods

Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were used in conducting this literature review [29] to gather information on maize contamination, foods, and feeds with mycotoxins in SA. Google Scholar was used to perform a literature search and keywords and phrases used to extract peer-reviewed studies on mycotoxins conducted in SA. Key words and phrases used to access information were: mycotoxin; aflatoxin; maize; milk; food; feed; SA; cereals; grains; subsistence farming; rural population; Gauteng Province (GP); Eastern Cape (EC); Northern Cape (NC); Kwazulu-Natal (KZN); Mpumalanga (MP); Limpopo (LP); North West (NW); Western Cape (WC); and Free State (FS). One hundred and thirty-nine articles with information related to this review were analysed.

3. Possible Sources of Mycotoxin Exposure to Humans and Animals

Over five billion people in sub-Saharan Africa and certain parts of Asia face regular exposure to mycotoxins through contaminated agricultural commodities and air, some as early as during gestation, and could last a lifetime [30]. Currently, between 300 to 400 mycotoxins have been recognised, some of which have been identified as major public health and agro-economic concerns. Mycotoxins identified include citrinin, ochratoxin, patulin, trichothecenes, aflatoxins, zearalenone, nivalenol/deoxynivalenol, fumonisins and ergotamine [17,31,32]. Humans are exposed to these mycotoxins directly through the consumption of contaminated crops or processed food products, or indirectly through foods from animal origin such as tissues, eggs, milk, and other dairy products of animals fed with mycotoxin-contaminated feeds [33]. Mycotoxin carryover from foods of animal origin pose numerous challenges due to the food constituents that regularly contain unquantified amounts of mycotoxins. There is a dearth in information on mycotoxin contamination carryover studies in SA. Moreover, challenges in estimating the consumption patterns of individuals vary from one household to another within a given community [30,34]. Continuous consumption of undiversified diets commonly contaminated with mycotoxins such as maize, peanuts and dairy products, which is the case in SA [35], might cause chronic or acute mycotoxicosis.

3.1. Exposure to Mycotoxins through Maize

Maize is one of the major produced world cereal grains after wheat and rice. South Africa is the ninth largest exporter of maize in the world, and is therefore a leading exporter in Africa. In 2018, SA exported maize to 75 countries around the world [36]. Mycotoxins are common contaminants of cereal grains, maize being no exception. In SA, maize is grown in two production systems, commercial and subsistence. South Africa, unlike many other sub-Saharan countries, has an advanced commercial agricultural industry and supplies a sophisticated food market. Contamination of maize with mycotoxins (especially AFs) is generally assumed to not be an issue in SA, as farming is mostly commercial and several studies on mycotoxins substantiate this assumption [22,25]. Strategies to reduce losses due to mycotoxin contamination are usually implemented by commercial farmers. Small-scale farmers rely on natural resources such as rainfall and soil fertility, and lack the required resources to ensure quality maize production. This implies that maize produced by subsistence farmers is at a higher risk of mycotoxin contamination due to poor food production systems and drying and storage methods, which encourage fungal growth and
occurrence of mycotoxins [37]. Home-grown maize from parts of northern SA has shown
signs of contamination with fumonisins and aflatoxins [15,16]. Generally, the presence
of mycotoxins in maize, maize products, and other food products have been confirmed from
both farming sectors in South Africa (Tables 1–3).

There is a growing concern of rural communities’ exposure to mycotoxins in SA
through unreported dietary intake, as most households rely on subsistence farming. For
example, in KZN, EC, and LP, 23%, 21% and 17% of households, respectively, rely on
subsistence farming for their livelihoods [38] (Figure 1). With maize as a staple food,
Shephard et al. [39], estimate that SA’s average maize intake is as high as 400 g/person/day.
However, this value is different within rural communities, as some household consumption
may reach 1–2 kg/person/day [35]. The quality of maize consumed goes a long way to
determine the quality of life. Thus, consumers’ exposure to mycotoxins is potentially higher
in rural communities when compared to those in cities and towns due to higher levels of
maize intake, and higher levels of dietary mycotoxin loads. In addition, subsistence farming
practices and pre-harvest (improper management of residue or debris from previous
harvests, which contain fungal spores and can increase systemic infection, inappropriate
cultivar and use of fertiliser) and post-harvest (unconventional and unhygienic drying
techniques as well as traditional or crude storage techniques) handling of crops provide
conducive environments for fungal development and mycotoxin production [40].

Figure 1. Small-scale farming at provincial levels in SA. Key: NW = North West,
LP = Limpopo Province, EC = Eastern Cape, GP = Guateng Province, KZN = KwaZulu-Natal,
MP = Mpumalanga Province, FS = Free State, WC = Western Cape, Northern Cape.

Type of Mycotoxins	Analytical Methods	Number of Samples (n)	Contamination Rate (%)	Contamination Range (µg/kg)	Median (µg/kg)	References
AF_{Tot}	HPLC	50	27	0.080–9.34	4.63	[19]
FB_{Tot}	HPLC	166	N/A	≥1000	N/A	[42]
OTA		56	0.2–51.3	39.2		
ZEA		98	3.6–19.44	8.6		
AFM_1	HPLC, TLC, ELISA	50	68	5–120	39	[41]
Table 1. Cont.

Type of Mycotoxins	Analytical Methods	Number of Samples (n)	Contamination Rate (%)	Contamination Range (µg/kg)	Median (µg/kg)	References
AFB₁	LC-MS/MS	114	47	1–149	N/A	[16]
FB₁			92	11–18,924	N/A	
FB_{Tot}	ELISA	261	88	LOD-21.8	N/A	[43]
FB_{Tot}	ELISA	325	89	LOD-21800	1400	[13]
AF_{Tot}	ELISA	20	81	N/A	N/A	[44]
FB_{Tot}	HPLC	211	32	1.8–142,800	N/A	[45]
FB_{Tot}	HPLC-MS	45	67	LOD-16717	2542	
DON	HPLC-MS	45	71	LOD-4731	1031	
ZEA		33	33	LOD-67	34	

Table 2. Mycotoxin contamination of maize from commercial sector.

Type of Mycotoxins	Analytical Methods	Number of Samples (n)	Contamination Rate (%)	Contamination Range (µg/kg)	Median (µg/kg)	References
AF_{Tot}	Maize	282	9.6	LOD-14	N/A	[25]
	Other cereals	63	6.4	LOD-26	N/A	
	Maize silage	109	0	0	0	
	Finished feed	310	5.8	LOD-232	N/A	
FB_{Tot}	Maize	281	80.1	LOD-16932	177	[25]
	Other cereals	62	19.4	LOD-1119	N/A	
	Maize silage	109	39.8	LOD-1402	N/A	
	Finished feed	310	83.3	LOD-7578	N/A	
DON	Maize	314	80.6	LOD-9176	290	[25]
	Other cereals	63	73	LOD-11022	284	
	Maize silage	109	68.8	LOD-2943	122	
	Finished feed	311	67.2	LOD-9805	170	
ZEA	Maize	308	47.1	LOD-6276	N/A	
	Other cereals	62	35.5	LOD-195	N/A	
	Maize silage	102	56.9	LOD-3975	2.0	
	Finished feed	301	57.5	LOD-386	5.5	
OTA	Maize	269	7.4	LOD-95	N/A	
	Other cereals	51	43.1	LOD-27	N/A	
	Maize silage	101	1	LOD-1.3	N/A	
	Finished feed	259	3.1	LOD-6	N/A	
DON	Wheat	40	12	LOD-593	279.3	
FB_{Tot}	Commercial	50	50	LOD-3913	577	
DON	Commercial	45	45	LOD-9736	575	
ZEA	Maize	350	7	LOD-354	N/A	
AF_{Tot}	Maize	N/D	N/D	N/D	N/D	
Table 3. Mycotoxin contamination of other foods/feeds from subsistence sector.

Type of Mycotoxins	Commodity	Analytical Methods	Number of Samples (n)	Contamination Rate (%)	Contamination Range	Median	References
AFB1	Barley and malt	VICAM	48	91	LOD-4.4		[47]
DON				91	446–1218		
Ochratoxin				80	LOD-1.8		
ZEA				33	132–157		
AFTot	Dog feed	HPLC, ELISA	124	100	LOQ-4946	N/A	[48]
FBTot	Dog food	HPLC	60	87	1.2–352.7	248.3	[49]
OTA				98	5.2–4653.8	51,556	
ZEA				68	0.5–53.6	13.7	
ZEA				96	2.5–2351.4	354.1	
AFTot	Cotton seed for feed	HPLC, VICAM	400	100	24–164	N/A	[50]
AFTot	Ginger from small scale farms	HPLC/ELISA	100	100	3.63–411.1	N/A	[51]
AFTot	Groundnut from small scale farms	ELISA	46	≥70	LOD-160	N/A	[52]
FB1	Muthi (herbal medicines)	HPLC	16	81	14–139	N/A	[53]
AFB1	Locally processed maize product	LC-MS/MS	176	50	N/A	N/A	[23]
FB1	(Ogiri and mhuzu)		37	42–326	N/A	N/A	
DON			73	18–32	N/A	N/A	
FB1	Home-brewed beer from maize (Umushobothi)	LC-MS/MS	N/A	53	LOD-162	N/A	[54]
DON			84	16–32	N/A	N/A	
AFTot	Home-brewed beer	HPLC/TLC	29	28	200–400	N/A	[55]
ZEA			45	3–2340	N/A	N/A	

Key: AFTot = Total aflatoxins, AFB1 = aflatoxin B1, AFM1 = aflatoxin M1, DON = deoxynivalenol, FBTot = Total fumonisins, FB1 = Fumonisin B1, ZEA = zearalenone, OTA = ochratoxin A, LOD = Limit of detection, ELISA = enzyme linked immunosorbent assay, TLC = thin layer chromatography, HPLC = high performance liquid chromatography, LC-MS/MS = liquid chromatography tandem mass spectrometry.

Mycotoxins commonly found and reported in foods and feeds across SA were FBs, AFs, ZEA, DON and OTA, among others (Tables 1–3). South Africa mycotoxin data currently available are not sufficient to draw absolute conclusion that SA maize is safe from AF, in particular [22,25]. The high prevalence of mycotoxins in SA can be attributed to climatic-related stresses, such as drought, flooding, elevated CO2, and extreme temperatures, predispose maize plants to fungal infection [56]. Rheeder et al. [14] reported that drought conditions specifically increase levels of FB in maize in SA. Studies elsewhere have revealed the predominant role of drought and high temperatures in elevated AF production in maize [57,58]. The occurrence of drought is common in the NW and the FS provinces, which are main maize-producing provinces in SA, stresses the crop thus increasing the risk of higher levels of FBs and AFs in maize. Flooding before the maize harvest in Argentina resulted in more than 65% of samples tested being above the mycotoxin risk threshold [59]. Jakšič et al. [60] exclusively reported the presence of aflatoxigenic species *A. flavus* at post-flood locations. Since water is a major promoter of fungal proliferation [61], the expected aftermath of flooding is even higher, as the occurrence of flood creates a moist environment conducive for fungal growth and mycotoxin production. In SA, flooding is a common phenomenon in KZN, explaining the high prevalence of mycotoxins from the subsistence sector in this province [13]. In all, favourable climatic conditions for the production of mycotoxins in food have been reported in most SA provinces, of which five have been declared drought disaster provinces [56]. This implies that these populations are at a risk of exposure to dietary mycotoxins, which is proportional to the percentage of maize consumed from the subsistence sector. While maize produced in the commercial sector is mainly for export, produce from small-scale farmers is mainly for household consumption and the excess is sold to the immediate community. With the high consumption rates in rural communities and poor storage facilities, there is a higher probability of contamination with mycotoxins, which are often underreported. Most subsistence farmers
in SA cultivate their fields with seeds from a preceding harvest [13], increasing the danger of systemic infection with plant pathogens. It has been reported that monoculture and late planting increase fungal inoculum and pest damage, leading to increased fungal infection in crops [62]. The quantity of maize produced determines the specific storage practices to be employed. Storage units used by farmers in SA rural communities do not promote proper drying of maize, increasing interaction with insects and promote fungal infection and production of mycotoxins [63,64]. Commercially produced South African maize has been reported to be AF free [22] and or AF levels are well within regulatory levels [25]; however, improper harvest and storage practices by subsistence farmers can favour the growth of fungi, resulting in high levels of AF contamination in maize from this sector.

3.2. Exposure to Mycotoxins from Other Food Sources

Processed foods, such as traditional fermented beverages produced from cereals, are widely consumed in Africa. Cereals grown in Africa are often contaminated with multiple mycotoxins, and knowledge about the carryover of various mycotoxins from cereals to beverages is scarce. Medina and co-workers reported on food processing techniques being inadequate to completely eliminate some mycotoxins from food and feed as a result of their heat and chemical stability, which permit them to withstand the rigours of processing [65,66]. For instance, Oshikundu, a popular non-alcoholic sorghum fermented beverage in Namibia, was analysed for fungal metabolites and their fate during processing, revealing that the transfer rates of mycotoxins from cereals to oshikundu exceeded 50% [67]. Aspergillus metabolites were the most common and included aflatoxins, cyclopiazonic acid, and 3-Nitropropionic acid. Fusarium, Penicillium, Alternaria and Claviceps mycotoxins were also detected. There are different types of beers brewed from cereals in South Africa, and for socio-cultural reasons, mouldy maize is used intentionally in the Eastern Cape and Limpopo to brew beer as it is believed to improve flavour [68,69]. The cereals used are mostly from subsistence farming, which are most often highly contaminated with mycotoxins as a result of poor pre- and post-harvest handling [40]. The fates of most locally brewed beers with regard to mycotoxin content in SA are yet to be determined. However, it is possible to assume that the transfer rate of mycotoxins might be similar to the 50% contamination rate of the oshikundu beer in Namibia, due to the mouldy raw materials derived from the subsistence farming sector.

Most mycotoxins (example AFM1, AFB1) can withstand the rigours of food processing due to their heat and chemical stability. Aflatoxin M1 is not affected by regular processing, as is evidenced by AFM1 which was reported to be higher in cheese than in raw milk [70]. These results are similar to those reported by [71], where the occurrence and concentration of AFM1 was almost six times higher in cheese compared to raw milk. This is substantiated by reports of high incidences of AFM1 in processed cheese in Egypt [72]. Anelli et al. [73] reported similar results for Cave cheese. At the time of this review, data on mycotoxin contamination of cheese produced in SA were unavailable.

3.3. Exposure to Mycotoxins through Carryover-Effects of Farm Animals

Animals are exposed to various mycotoxins that may be present in feed, such as aflatoxins, fumonisins, zearalenone, deoxynivalenol and ochratoxins, among others. Mycotoxins occur in protein-rich concentrates, cereal grains, corn gluten, soybean products, and pressed cakes from oil plants, such as peanuts, sunflower seeds, cotton seeds, palm kernels and copra; which are feed constituents. When a high percentage of contaminated protein-rich concentrates are incorporated into the diet, it is the main source of mycotoxins in the animal [74]. The possibility exists that mould contamination might alter the composition and activity of rumen microorganisms. Aflatoxin B1 consumption in feed by lactating animals result in its metabolism either into aflatoxicol, a metabolite 18 times less toxic than AFB1 [20,75], or is absorbed in the digestive tract and hydroxylated in the liver forming AFM1 that appears in blood, urine, and is also excreted in milk [76]. Unlike monogastric species, ruminants are less susceptible to the effects of mycotoxins, as the ruminal fluid
microbiota in the digestive system helps to degrade the mycotoxins. However, the capacity of the rumen to detoxify mycotoxins can be limited, resulting in the accumulation of AFM₁ in milk [77]. This explains why ruminants seldomly develop mycotoxicoses, as the rumen microbiota usually act as the first line of defence against the mycotoxins. In healthy cattle, up to 12 mg/kg of OTA can be inactivated when ingested alongside the feed. OTA is readily converted into a less toxic OTα by the rumen microbiota, and minute amounts of OTA are absorbed [74]. On the contrary, non-ruminants, such as pigs, are the most sensitive to OTA (Table 4).

Zebib, Abate [78] revealed that all milk samples collected among value chain actors were contaminated with AFM₁. Aflatoxin M₁ is detectable within 12 h in milk after an animal consumes feed contaminated with AFB₁ [79]. Conversion of AFB₁ to AFM₁ is through hydroxylation of the ring of the difuranocoumarin tertiary carbon. The -OH group increases its solubility in water, and allows for rapid excretion in faeces, urine, and milk. However, the extent of carryover is also influenced by nutritional and physiological factors, including feeding regimens, rate of ingestion, rate of digestion, the health of the animal, capacity of hepatic biotransformation, farming systems, seasons, geographic location and environmental conditions. For example, studies have reported that milk and dairy products produced in warm seasons are less contaminated than those produced in cold seasons [80–82]. However, transformation rates vary depending on the species of animal and their health status. Data on meat and meat product contamination by mycotoxins also differ depending on the animal species involved. The content of mycotoxins in edible tissues from bovine species is relatively low, since mycotoxins are partly degraded in the rumen, rapidly metabolised in the liver, and consequently do not contribute significantly to human exposure [77]. Fish from aquaculture are fed with different feed and raw materials, which have been reported to be contaminated with mycotoxins. However, fish represent the least studied animal concerning mycotoxin occurrence when compared to other animal-derived products [83].

Apart from AFs, OTA is a mycotoxin that has been investigated concerning carryover, which often co-occurs with its analogue toxin OTB, which is a non-chlorinated minor toxic metabolite. Contamination with ochratoxin-producing fungi has been observed globally and involves foodstuffs such as grapes, wine, fruits, cereals, coffee, cocoa, edible nuts, pulses, beer, and spices. The level of OTA in milk not converted to OTα is small compared to the levels of OTA contamination of grains observed during daily feeding practices [84]. This is enough to cause significant danger to consumers.

Deoxynivalenol (DON) is a naturally occurring mycotoxin with strong emetic effects after consumption, and is therefore also known as vomitoxin. The susceptibility of ruminants to DON is low, as DON is completely converted into the less toxic DOM (the de-epoxidised metabolite of DON) in the rumen. DON is of economic concern mainly due to its neurotoxic effects, resulting in severe depression and low animal productivity. However, no human diseases as a result of carryover have been recorded. Monogastric animals, such as pigs, are the most affected by DON exposure (See Table 4).

Zearalenone is converted by rumen microbiota to hydroxy-metabolite α–zearalenol at a rate of 90%, with higher oestrogenic effects compared to its parent ZEA. It has a lower rate of absorption in the liver, accounting for the low susceptibility of dairy cattle [85–87]. Zearalenone and its metabolites can be excreted with milk in minute amounts, usually below significantly quantifiable levels [87].

Fumonisin is a common contaminant of maize and maize products. There exists limited information on its biotransformation and carryover. Even at high concentrations of FBs in feed, low carryover from feed into milk has been reported for bovine species [77]. Patulin mainly occurs in damaged fruit, fruit juice and vegetables, and is periodically considered as a co-contaminant in by-products intended for animal feed [88]. Patulin is metabolised in the liver and its elimination pathways include faeces and urine, with the majority of the toxin being excreted within 24 h. A carryover of 2–3% is possible in soft tissue and blood [84].
The T-2 toxins (trichothecene) carryover in milk is possible, with levels ranging between 0.5–2.0% [74].

Table 4. Animal exposure to mycotoxins and rate of mycotoxin carryover in animal products.

Mycotoxin	Main Product of Rumen Metabolism	Carry-Over Product	Carryover (µg/kg)	References
Aflatoxin B₁	AFB₁	Meat products, such as liver sausages	0.89–1.69	[84,89–94]
		Meat	0.30–52.93	
		Dried meat	105.4	
		Eggs	0.10	
		Yolk	0.22	
		Albumen	0.27	
		Quail liver	0.19	
		Sea bass fish	0.02	
	Aflatoxicol	Milk	0–12.4	
	AFM₁	Milk	3–9	
Cyclopiazonic acid	Unchanged	Milk	0.4–0.7	[95]
Fumonisin B₁	Unchanged	Chicken liver and muscle	0.79–44.7	
		Turkey liver and muscle	1.41–41.47	
		Milk	0.16	
		Porcine liver and kidney	2	
Ochratoxin A	Ochratoxin-α	Fermented sausages and hams	6.87–7.83	[20,84,97–100]
		Beef kidney	2.73–4.43	
		Beef liver	1.71–2.13	
		Chicken muscle	4.7	
T-2 toxin	Unchanged	Milk	0.06	[74,84,101]
		Chicken tissue	3.71–3.93	
DON	De-epoxy-DON (DOM)	Milk	0.13 (cows)	
		Milk	0.01 (dairy ewes)	
		Porcine bile	668	
		Porcine kidney	100.2	
		Porcine liver	33.4	
		Porcine serum	15.36	[84,102,103]
		Porcine muscle	10.69	
		Porcine fat	1.34	
		Turkey bile	0.01	
		Salmon fish fillet	18.6	
Zearalenone	α-zearalenol	Milk	12.91	[104–106]
		Porcine liver	1.60–17.77	
		Porcine spleen	6.46–47.81	
		Chicken liver	5.10	
Patulin	Unchanged	Milk	0.8	[84]
Rye ergot	Unchanged	Poultry	0.01	[74]

Several studies have been conducted on the effects of carryover, but such studies are limited in SA, and the unavailability of data does not necessarily imply mycotoxin exposure through carryover does not exist. Phokane et al. [64] reported that most subsistence farmers used mouldy and damaged maize as animal feed. The increasing consumption of animal products such as dairy, from different animal species, emphasises the need for carryover effect data from these animals as well, to ensure food safety. In Ethiopia, for example, all milk samples were reportedly contaminated with AFM₁ in varying concentrations [78].
There is a need to extend AF carryover surveillance to other mycotoxins and precursor compounds such as sterigmatocystein and minor metabolites such as aflatoxicol.

4. Co-Occurrence of Mycotoxins

Different fungal species can grow in the same plant causing the co-occurrence of multiple mycotoxins [107]. Moreover, composite feed is made up of a mixture of several raw ingredients, exposing it to contamination with multiple mycotoxins [108,109]. The frequent co-occurrence of mycotoxins amplifies the health risk they pose and varies with the health status of individuals. With regard to co-occurrence, Tolosa et al. [20] reported that nearly 65% of analysed samples contained at least two mycotoxins, with AFB1 and FBs being the most observed in the finished feed and maize from sub-Saharan Africa, South and Southeast Asia and Oceania. Kamala et al. [110] reported similar results, with a 69% co-occurrence of AFs and FBs in maize samples. Elsewhere, Stanciu et al. [111] investigated 66 samples of wheat grains and flour, for the occurrence and co-occurrence of different mycotoxins, and found co-occurrence of between two and five mycotoxins in more than 40% of the samples. Based on the observations from these studies, the recurrent co-occurrence of mycotoxins in food and feed implies that a generally applicable exposure assessment is not feasible, and that there is paucity of data on exposure to multiple mycotoxins to quantifiable markers. This is due to the following reasons: firstly, the complexity in determining the consumption patterns of different foods known to be susceptible to mycotoxins including cereal, cheese, milk, juice and homebrewed beer in SA. Secondly, the scarcity of data on contamination with mycotoxins of foods that is commonly consumed in SA. Food items, such as milk and cheese, which are highly consumed in SA, are known to have high rates of contamination with AFM1 elsewhere [78]. Unfortunately, SA might have few data on mycotoxin contamination in these products, as their rates of consumption data are unavailable. Furthermore, pig breeds that are susceptible to OTA, which are highly consumed in South Africa, lack mycotoxin carryover data as well as with other species, such as fish. Thirdly, the frequent co-occurrence of these mycotoxins makes it difficult to attribute some of the health effects to one mycotoxin. The possible development of novel diseases with unknown symptoms also exists. Most health effects of mycotoxins reported are often limited to single mycotoxins, but data on the combined effects of these mycotoxins are scarce [112] and warrant more attention.

5. Health Effects of Mycotoxins Recorded in South Africa

The World Health Organisation has identified mycotoxin contamination of food as a global food safety issue [113] with subsistence farming communities being the most at risk of exposure. Eliminating mycotoxins from the food supply chain appears impossible due to their thermal and chemical stability [66]. The severity of individual’s ill-health due to mycotoxin exposure depends on the toxicological properties of the particular toxin (acute, long-term toxicity, mutagenicity, teratogenicity and carcinogenicity), age and the extent of the exposure [112]. Low levels of chronic exposure to mycotoxins pose different health risks. Exposure to multiple mycotoxins may result in different signs and symptoms than if exposure was to a single mycotoxin, as earlier mentioned. Mycotoxins are therefore considered important food/feed contaminants, which carry a high health risk in SA [47,114,115]. Health risks associated with consumption of mycotoxin contaminated food/feed are given in Table 5.

Exposure to AFs has resulted in different kinds of aflatoxicosis in humans. Acute aflatoxicosis, often caused by multiple exposures, could result in death in severe cases, while chronic aflatoxicosis may lead to hepatocellular carcinoma, suppression of the immune system and in some cases, stunted growth. The International Agency for Research on Cancer classified AFB1 as a Group 1 carcinogen [116]. Reports on outbreaks of massive aflatoxicosis with high rates of mortality have been made globally [34,110,117,118].
Table 5. Health effects of common mycotoxins on humans and animals.

Mycotoxins	Health Effects	References	
Aflatoxins (B1, B2, G1, G2, M1, M2)	Liver cancer, hepatocellular carcinoma, stunted growth, jaundice, immunosuppressive	[77,112,119]	
Deoxynivalenol	Vomiting, nausea, diarrhea, anorexia, severe gastro-intestinal (GI) toxicity	Cytotoxicity, diarrhea and anorexia	[119–122]
Fumonisins (B1, B2)	Esophageal and liver cancer, neural tube defects	Atherosclerosis in monkeys, leukoencephalomalacia in horses, equines and rabbits, porcine pulmonary edema and pulmonary artery hypertrophy in swine, kidney and liver cancer in rodents, cancer of the esophagus in rats	[112,119,121,123–131]
Ochratoxin A	Urothelial tumors, chronic interstitial nephropathy, renal failure, it can cause an adverse effect on the foetus in the womb due to its ability to cross the placenta and cause the malformation of the central nervous system and damage the brain	Mycotoxic Porcine Nephropathy (MPE)	[34,119,132–135]
Patulin	Hemorrhages, ulcerations, vomiting and nausea, gastrointestinal, (GI) disturbances	Include liver, kidney toxicity, spleen damage and toxicity and immune toxicity	[17,119,120]
Rye ergot	Causes ergotism, a human disease known as St. Anthony’s fire; delirious seizures, gangrenous and convulsion	No known health effects	[119,136,137]
T-2 toxin	Alimentary toxic aleukia (ATA) in humans	T-2 toxin induced apoptosis and developmental toxicity in zebrafish embryos	[119,138–140]
Zearalenone	Uterine fibroids, pituitary adenomas, Hepatocellular carcinoma, abortion, ZEA is associated with early puberty in girls, infertility in men, can stimulate breast cancer	Liver damage in mice, nephropathy in rats, hyperestrogenic syndrome in pigs, abortion, causes an increase in the incidence of pituitary tumors and liver cell in mice, causes hyperkeratotic papilloma in rats, involved in the development of tumour in the GI tract, causes hepatocellular adenomas in mice	[112,119,121,125,127,141–144]

With the increasing consumption of maize, particularly in rural subsistence farming communities in SA where storage infrastructure is poor, an increased risk of mycotoxigenic exposure exists. There are few reports on the health effects of mycotoxins on humans and animals in SA, attributable to low levels of research into understanding the impact of mycotoxins on food safety and their associated health consequences [145]. A few cases have, however, been reported, for example, the South African Medical Research Council has reported aflatoxicoses due to the consumption of large amounts of AFs in peanut butter (272 µg/kg total AF and 165 µg/kg AFB1) among primary school children in the Eastern Cape as part of the Primary School Nutrition Programme [146]. Cases of kwashiorkor, marasmus and underweight children had long been reported in Durban in 1992. These findings correlated with impaired liver function. In 2012, a relationship between AFB1 and cases of kwashiorkor, marasmus and underweight were reported in SA [67]. Evidence of a link between undernourishment and consumption of mycotoxin contaminated food has been found, and has shown that fungi and mycotoxins have the ability to reduce the nutritive value of food [53,147]. Although the cause of stunted growth cannot be assigned to mycotoxin contamination alone, increased consumption of mycotoxin contaminated food is one of the underlying causes of this health problem [148,149].
Consumption of FB contaminated foods has long been associated with oesophageal cancer, abdominal pain, diarrhoea, stunted growth, hepatotoxicity and nephrotoxicity in rodents, equine leukoencephalomalacia in horses, serious pulmonary oedema and left ventricular dysfunction and hepatotoxicity in pigs [4,116]. The IARC classified FB as Group 2B carcinogens (possibly carcinogenic to humans). Fumonisins have been linked to a high incidence of oesophageal cancer in rural communities in SA, such as in the Eastern Cape and Limpopo provinces, due to the preference of using mouldy kernels to produce traditional umqombothi beer, and thereby posing a risk of mycotoxin exposure [68,69]. A correlation was reported between levels of FBI exposure and patients’ blood and brain lesions at Wentworth Hospital’s Neurosurgical Unit in KZN [150]. FBs have also been implicated in the high incidence of neural tube defects in rural populations known to consume mould-contaminated maize in SA [151–153]. South African maize is highly contaminated with mycotoxins, especially home-grown maize including FB (see Table 1). There are high levels of household consumption of maize in rural communities in SA, with intake levels of 1–2 kg/person/day [35,154]. It is safe to say rural communities in SA, whose livelihoods depends on home-grown crops, such as maize and groundnut (crops that are highly susceptible to mycotoxin contamination), are highly exposed to the deleterious effects of mycotoxins.

Occurrence of ZEA in foods is generally low, but its importance rests in its oestrogenic effect in mammals. Zearalenone has been associated with hyperoestrogenic syndromes and is known to be an eliciting factor of early puberty in girls [155]. Even though the ability of ZEA to stimulate the growth of human breast cancer cells has been reported [156], the IARC classified ZEA as Group 3 (not classifiable in terms of carcinogenicity in humans). ZEA is structurally identical to the hormone estradiol and has an affinity for oestrogen receptors, thereby affecting fertility in livestock and humans. Various in vivo oestrogenic potential effects have been reported for zearalenol and its metabolites. In Africa, ZEA have been viewed as a contributory factor in increasing infertility in males [157]. Levels of ZEA up to 426 µg/kg were quantified in cereal-based products in SA [55]. These levels are far above the maximum level of 100 µg/kg stipulated by the European Commission’s [158] regulation of unprocessed cereals.

Occurrence of OTA in cultivated crops is a health concern, as toxicological reports show it is nephrotoxic, carcinogenic, teratogenic, hepatotoxic and immunotoxic. The IARC classified OTA as Group 2B carcinogens (possibly carcinogenic to humans). OTA has been reported in traditional home-brewed beer in KZN in large amounts varying between 876 to 2340 µg/kg [52]. This is a product consumed on a daily basis by the local population, and exposure to such high amounts over prolonged periods of time, could result to chronic health complications.

Contaminated maize grains, which are not fit for human consumption, are usually channelled into feed formulations, where they are widely reported to pose health risks to pets and farm animals [44,67]. All mycotoxins in feed, even at low levels, have a broad spectrum of effects on animal health that include immune dysfunction, digestive disorders, carcinogenicity, neurotoxicity, hepatotoxicity, impaired reproduction and even death [4,59]. For example, during an outbreak of animal aflatoxicosis in Gauteng in 2011, more than 220 dogs died due to the consumption of pet food highly contaminated with AFB1 (up to 4946 µg/kg) [48]. Similarly, nephropathy in pigs was reported in South Africa, with a combination of OTA and FB1 at concentrations varying between 67–251 µg/kg and 5021–5289 µg/kg, respectively, as well as penicillic acid at 149–251 µg/kg [47]. Studies on animals have reported that ZEA, DON, OTA and AFB1 seriously affect fertility by damaging the sex organs, gametes and the disruption of steroidogenesis. Ingestion of FB, AFB1 and DON in pigs disrupt the intestinal barrier, leading to suppressed immune response, reduced feed intake and poor weight gain [159]. DON consumption has been reported to cause low efficiency of feed conversion in livestock and anorexia in pigs and other monogastric animals [4], while ruminants and poultry seem to be resistant to DON [160]. However, diets containing low levels of DON have been reported to result in lower productivity,
impaired immunity, and higher susceptibility to infectious diseases in poultry [160]. ZEA contaminated feeds have been reported to significantly affect metabolic rates of nutrients, activities of serum enzymes, and genital organs in growing-laying hens [161]. Continuous exposure of farm animals to mycotoxin-contaminated feeds can induce clinical signs of depression, anorexia, weakness, weight loss and sudden death [44].

6. Conclusions

On a global scale, AFs are the most studied mycotoxins due to their deleterious health effects, with studies dedicated to *Aspergillus* species’ mycotoxins. On the contrary, in SA, most research on mycotoxins has been conducted on *Fusarium* species’ mycotoxins. Reports on FB1 in home-grown maize in the early 1990s were found to correlate with incidences of oesophageal cancer in the Eastern Cape. This explains why the primary reason for most mycotoxins’ research in SA has focused on FBs. Most results on AF contamination of maize in SA come from multi-mycotoxin analyses [22,25]. AFs contamination is similarly very high in rural communities in SA, as it is in other African countries, where farming is mainly subsistence-based. Literature shows that some mycotoxin-producing fungi and their secondary metabolites co-exist under favourable conditions and that there is evidence that AFs act synergistically with FBs in grains [110,162]. Maize samples from LP, KZN and MP were heavily contaminated with both AF and FB [13,16]. Zearalenone and DON regularly co-occur, an observation which may be important to feed safety in view of reported combined effects [25]. The co-occurrence of multiple mycotoxins in maize increases the probability of interactions, resulting in additive or antagonistic effects, which may increase its risks to human health [163]. Thus, an absolute conclusion should not be made with regard to maize safety with respect to mycotoxins, as the contaminated maize produced in the subsistence farming sector is hardly reported. This goes a long way in emphasising the importance of farming methods and practices in mycotoxin mitigation in sub-Saharan Africa. South Africa’s climatic condition, during the pre-harvest production period, and socio-economic factors may favour the growth of mycotoxin-producing fungi, which is a serious issue in most rural districts of SA. Since drought is a common phenomenon in most provinces of South Africa and varies yearly, this situation will increase the risk of contamination of crops with mycotoxins. While commercial farmers and exporters have all the resources needed during pre- and post-harvest, storage facilities and access to laboratory analyses to combat mycotoxins, the greater challenge is in rural, predominantly subsistence-farming communities, where conventional food surveillance is lacking.

South Africa has a dual maize farming system, comprising of an advanced commercial farming sector (85%), alongside the subsistence farming sector (15%). Maize from the commercial sector might have been declared aflatoxin-free [22,25], and the risk of co-occurrence contamination with major mycotoxins (AFs and FBs) could be a possibility. Claims of South African maize being mycotoxin-free are not entirely true due to subsistence-farming exclusion. If policy makers and shareholders in SA recognise small-scale farming as a means to alleviate poverty, there will be a need for government and shareholders to put in place efforts to educate farmers in rural communities on better pre- and post-harvesting practices. Fifteen percent of maize produced by small-scale farmers are consumed by them, with the rest being sold to immediate rural populations, which represent 33% of the country’s population. Thus, millions of South Africans are exposed to the effects of mycotoxins, which goes unreported. There is a need to involve the overall agricultural system in mycotoxin research studies. Lastly, there is a need to avoid socio-cultural practices that will jeopardise the health of people, such as the production of traditional or home-brewed beer from mouldy cereal contaminated with mycotoxins.

Author Contributions: Conceptualisation, Q.N.N.; methodology, Q.N.N.; formal analysis, Q.N.N.; investigation, Q.N.N.; data curation, Q.N.N.; writing—original draft preparation, Q.N.N.; writing—review and editing, Q.N.N., N.N., O.O.B. and M.M.; supervision, O.O.B., N.N. and M.M.; project administration, O.O.B. and M.M. All authors have read and agreed to the published version of the manuscript.
Funding: This review was funded by the North-West University.

Institutional Review Board Statement: This is a review paper without animal use and thus institutional review is not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. World Bank. Global Economic Prospects; The World Bank: Washington, DC, USA, 2020.
2. Pienaar, L.; Traub, L. Understanding the Smallholder Farmer in South Africa: Towards a Sustainable Livelihoods Classification; International Association of Agricultural Economics: Milan, Italy, 2015.
3. Changwa, R.; De Boevre, M.; De Saeger, S.; Njobeh, P.B. Feed-based multi-mycotoxin occurrence in smallholder dairy farming systems of South Africa: The case of Limpopo and Free State. Toxins 2021, 13, 166. [CrossRef] [PubMed]
4. Eskola, M.; Kos, G.; Elliott, C.T.; Hajišlová, J.; Mayar, S.; Krksa, R. Worldwide contamination of food-crops with mycotoxins: Validity of the widely cited ‘FAO estimate’ of 25%. Crit. Rev. Food Sci. Nutr. 2020, 60, 2773–2789. [CrossRef] [PubMed]
5. Kachapulula, P.W.; Akello, J.; Mayar, S.; Ngobeni, S.; De Rijk, T.; Katerere, D.R. Mycotoxin contamination of home-grown maize in rural northern South Africa (Limpopo and Free State). Mycotoxin Res. 2022, 89. [CrossRef]
6. Njobeh, P.B. Feed-based multi-mycotoxin occurrence in smallholder dairy farming systems of South Africa: The case of Limpopo and Free State. Toxins 2021, 13, 166. [CrossRef] [PubMed]
7. FAO. Human Energy Requirements, Report of a Joint FAO/WHO/UNO Expert Consultation. In Proceedings of the FAO Food and Nutrition Technical Report, Rome, Italy, 17–24 October 2001.
8. Eskola, M.; Kos, G.; Elliott, C.T.; Hajišlová, J.; Mayar, S.; Krksa, R. Worldwide contamination of food-crops with mycotoxins: Validity of the widely cited ‘FAO estimate’ of 25%. Crit. Rev. Food Sci. Nutr. 2020, 60, 2773–2789. [CrossRef] [PubMed]
9. Kachapulula, P.W.; Akello, J.; Mayar, S.; Ngobeni, S.; De Rijk, T.; Katerere, D.R. Mycotoxin contamination of home-grown maize in rural northern South Africa (Limpopo and Free State). Mycotoxin Res. 2022, 89. [CrossRef]
10. Njobeh, P.B. Feed-based multi-mycotoxin occurrence in smallholder dairy farming systems of South Africa: The case of Limpopo and Free State. Toxins 2021, 13, 166. [CrossRef] [PubMed]
11. Nji, N.Q.; Christianah, A.M.; Njie, A.C.; Mulunda, M. Biodiversity and Distribution of Aspergillus and Their Toxins in Maize from Western and Eastern Regions of South Africa. Adv. Microbiol. 2022, 12, 121–149. [CrossRef]
12. Mngqawa, P.; Shephard, G.S.; Green, I.R.; Ngobeni, S.; De Rijk, T.; Katerere, D.R. Mycotoxin contamination of home-grown maize in rural northern South Africa (Limpopo and Mpumalanga Provinces). Food Addit. Contam. Part B 2016, 9, 176–184. [CrossRef] [PubMed]
13. Kimanya, M.; De Meulenaer, B.; Tiisekwa, B.; Ndomondo-Sigonda, M.; Kolsteren, P. Human exposure to fumonisins from dried insects and fish in Zambia. J. Food Prot. 2018, 81, 1508–1518. [CrossRef] [PubMed]
14. Rheeder, J.; Van der Westhuizen, L.; Imrie, G.; Shephard, G.S. Fusarium species and fumonisins in subsistence maize in the former Transkei region, South Africa: A multi-year study in rural villages. Food Addit. Contam. Part B 2016, 9, 176–184. [CrossRef] [PubMed]
15. Chilaka, C.A.; De Kock, S.; Phoku, J.Z.; Mwanza, M.; Egbuta, M.A.; Dutton, M.F. Fungal and mycotoxin contamination of South African commercial maize. J. Food Agric. Environ. 2012, 10, 296–303.
16. Ekwomadu, T.I.; Gopane, R.E.; Mwanza, M. Occurrence of filamentous fungi in maize destined for human consumption in South Africa. Food Sci. Nutr. 2018, 6, 884–890. [CrossRef] [PubMed]
17. Nji, N.Q.; Christianah, A.M.; Njie, A.C.; Mulunda, M. Biodiversity and Distribution of Aspergillus and Their Toxins in Maize from Western and Eastern Regions of South Africa. Adv. Microbiol. 2022, 12, 121–149. [CrossRef]
18. Eskola, M.; Kos, G.; Elliott, C.T.; Hajišlová, J.; Mayar, S.; Krksa, R. Worldwide contamination of food-crops with mycotoxins: Validity of the widely cited ‘FAO estimate’ of 25%. Crit. Rev. Food Sci. Nutr. 2020, 60, 2773–2789. [CrossRef] [PubMed]
19. Kachapulula, P.W.; Akello, J.; Bandypadhyay, R.; Cotty, P.J. Aflatoxin contamination of dried insects and fish in Zambia. J. Food Prot. 2018, 81, 1508–1518. [CrossRef] [PubMed]
20. Chilaka, C.A.; De Kock, S.; Phoku, J.Z.; Mwanza, M.; Egbuta, M.A.; Dutton, M.F. Fungal and mycotoxin contamination of South African commercial maize. J. Food Agric. Environ. 2012, 10, 296–303.
21. Ekwomadu, T.I.; Gopane, R.E.; Mwanza, M. Occurrence of filamentous fungi in maize destined for human consumption in South Africa. Food Sci. Nutr. 2018, 6, 884–890. [CrossRef] [PubMed]
22. Nji, N.Q.; Christianah, A.M.; Njie, A.C.; Mulunda, M. Biodiversity and Distribution of Aspergillus and Their Toxins in Maize from Western and Eastern Regions of South Africa. Adv. Microbiol. 2022, 12, 121–149. [CrossRef]
23. Mngqawa, P.; Shephard, G.S.; Green, I.R.; Ngobeni, S.; De Rijk, T.; Katerere, D.R. Mycotoxin contamination of home-grown maize in rural northern South Africa (Limpopo and Mpumalanga Provinces). Food Addit. Contam. Part B 2016, 9, 38–45. [CrossRef] [PubMed]
24. Awuchi, C.G.; Owuamanam, C.I.; Ogweke, C.C.; Igwe, V.S. Evaluation of Patulin Levels and impacts on the Physical Characteristics of Grains. Evaluation 2019, 5, 10–25.
25. Sydenham, E.W.; Shephard, G.S.; Thiel, P.G.; Marasas, W.F.; Stockenstrom, S. Fumonisin contamination of commercial corn-based human foodstuffs. J. Agric. Food Chem. 1991, 39, 2014–2018. [CrossRef]
26. Ekwomadu, T.I.; Dada, T.A.; Akinola, S.A.; Nleya, N.; Mwanza, M. Analysis of selected mycotoxins in maize from north-west South Africa using high performance liquid chromatography (HPLC) and other analytical techniques. Separations 2021, 8, 143. [CrossRef]
27. Tolosa, J.; Rodriguez-Carrasco, Y.; Graziani, G.; Gaspari, A.; Ferrer, E.; Mañes, J.; Ritiene, A. Mycotoxin occurrence and risk assessment in gluten-free pasta through UHPLC-Q-exactive orbitrap MS. Toxins 2021, 13, 305. [CrossRef]
28. Cruzo, F.; Vargas, E.; Aichinger, G.; Galaverna, G.; Marko, D.; Dall’Astà, C.; Dellaflora, L. Co-occurrence and combinatorial effects of Alternaria mycotoxins and other xenobiotics of food origin: Current scenario and future perspectives. Toxins 2019, 11, 640. [CrossRef]
29. Meyer, H.; Skhosana, Z.D.; Motlanthe, M.; Louw, W.; Rohwer, E. Long term monitoring (2014–2018) of multi-mycotoxins in South African commercial maize and wheat with a locally developed and validated LC-MS/MS method. Toxins 2019, 11, 271. [CrossRef]
30. Adekoya, I.; Obadina, A.; Adaku, C.C.; De Boevre, M.; Okoth, S.; De Saeger, S.; Njobeh, P. Mycobiota and co-occurrence of mycotoxins in South African maize-based opaque beer. Int. J. Food Microbiol. 2018, 270, 22–30. [CrossRef]
31. Dutton, M.F.; Mwanza, M.; De Kock, S.; Khlosia, L.D. Mycotoxins in South African foods: A case study on aflatoxin M1 in milk. Mycotoxin Res. 2012, 28, 17–23. [CrossRef]
53. Katerere, D.; Stockenström, S.; Thembo, K.; Rheeder, J.; Shephard, G.; Vismer, H. A preliminary survey of mycological and fumonisin and aflatoxin contamination of African traditional herbal medicines sold in South Africa. *Hum. Exp. Toxicol.* **2008**, *27*, 793–798. [CrossRef] [PubMed]

54. Adékoya, I.; Obadina, A.; Phoku, J.; De Boever, M.; De Saeger, S.; Njoebel, P. Fungal and mycotoxin contamination of fermented foods from selected south african markets. *Food Control* **2018**, *90*, 295–303. [CrossRef]

55. Odhav, B.; Naicker, V. Mycotoxins in South African traditionally brewed beers. *Food Addit. Contam. Part B Bioactivity* **2022**, *14*, 55–61. [CrossRef]

56. Botai, C.M.; Botai, J.O.; Adeola, A.M. Spatial distribution of temporal precipitation contrasts in South Africa. *S. Afr. J. Sci.* **2018**, *114*, 70–78. [CrossRef]

57. Janić Hajnal, E.; Kos, J.; Krulj, J.; Krstović, S.; Jajić, I.; Pezo, L.; Šarić, B.; Nedeljković, N. Aflatoxins contamination of maize in Serbia: The impact of weather conditions in 2015. *Food Addit. Contam. Part A* **2017**, *34*, 1999–2010. [CrossRef]

58. Kachapulula, P.; Akelio, J.; Bandyopadhyay, R.; Cotty, P. Aflatoxin contamination of groundnut and maize in Zambia: Observed and potential concentrations. *J. Appl. Microbiol.* **2017**, *122*, 1471–1482. [CrossRef] [PubMed]

59. Human, U. Biomin survey reveals global rise of mycotoxins. *AFMA Matrix* **2018**, *27*, 49–53.

60. Jakšić, D.; Sertić, M.; Kocsobó, S.; Kovačević, I.; Kifer, D.; Mornar, A.; Nigović, B.; Šegvić Klarić, M. Post-flood impacts on occurrence and distribution of mycotoxin-producing Aspergillus from the sections Circumdati, Flavi, and Nigri in indoor environment. *J. Fungi* **2020**, *6*, 282. [CrossRef] [PubMed]

61. Adan, O.C.; Samson, R.A. (Eds.) *Fundamentals of Mold Growth in Indoor Environments and Strategies for Healthy Living*; Springer: Berlin/Heidelberg, Germany, 2011; pp. 41–65.

62. Meissle, M.; Mounou, P.; Musa, T.; Bigler, F.; Pons, X.; Vasileiadis, VP; Otto, S.; Antichi, D.; Kiss, J.; Pálnkás, Z. Pests, pesticide use and alternative options in European maize production: Current status and future prospects. *J. Appl. Entomol.* **2010**, *134*, 357–375. [CrossRef]

63. Seetha, A.; Munthali, W.; Msere, H.W.; Swai, E.; Muzanila, Y.; Sichone, E.; Tsusaka, T.W.; Rathore, A.; Okori, P. Occurrence of aflatoxins and its management in diverse cropping systems of central Tanzania. *Mycotaxon* **2017**, *133*, 323–331. [CrossRef]

64. Phokane, S.; Flett, B.C.; Ncube, E.; Rheeder, J.P.; Rose, L.J. Agricultural practices and their potential role in mycotoxin contamination of maize and groundnut subsistence farming. *S. Afr. J. Sci.* **2019**, *115*, 1–6. [CrossRef]

65. European Food Safety Authority (EFSA); Maggiore, A.; Afonso, A.; Barrucci, F.; Sanctis, G.D. Climate change as a driver of emerging risks for food and feed safety, plant, animal health and nutritional quality. *EFSA Supporting Publ.* **2020**, *17*, 1881E.

66. Medina, A.; Asya, A.; Baazeem, A.; Rodriguez, A.; Magan, N. Climate change, food security and mycotoxins: Do we know enough? *Fungal Biol. Rev.* **2017**, *31*, 143–154. [CrossRef]

67. Misihairabgwi, J.; Ezekiel, C.; Sulyok, M.; Shephard, G.; Krska, R. Mycotoxin contamination of foods in Southern Africa: A 10-year review (2007–2016). *Crit. Rev. Food Sci. Nutr.* **2019**, *59*, 43–58. [CrossRef]

68. Shephard, G.S.; Gelderblom, W.C. Rapid testing and regulating for mycotoxin concerns: A perspective from developing countries. *World Mycotoxin J.* **2014**, *7*, 431–437. [CrossRef]

69. Phoku, J.; Dutton, M.; Njoebel, P.; Mwanza, M.; Egbuta, M.; Chilaka, C. Fusarium infection of maize and maize-based products and exposure of a rural population to fumonisin B1 in Limpopo Province, South Africa. *Food Addit. Contam. Part A* **2012**, *29*, 1743–1751. [CrossRef] [PubMed]

70. Alshannaq, A.; Yu, J.-H. Occurrence, toxicity, and analysis of major mycotoxins in food. *Int. J. Environ. Res. Public Health* **2017**, *14*, 632. [CrossRef]

71. Guo, L.; Shao, Y.; Duan, H.; Ma, W.; Leng, Y.; Huang, X.; Xiong, Y. Magnetic quantum dot nanobead-based fluorescent immunochromatographic assay for the highly sensitive detection of aflatoxin B1 in dark soy sauce. *Anal. Chem.* **2019**, *91*, 4727–4734. [CrossRef] [PubMed]

72. Younis, G.; Ibrahim, D.; Awad, A.; El Bardisy, M. Determination of aflatoxin M1 and ochratoxin A in milk and dairy products in supermarkets located in Mansoura City, Egypt. *Adv. Anim. Vet. Sci* **2016**, *4*, 114–121. [CrossRef]

73. Anelli, P.; Haidukowski, M.; Epifani, F.; Cimiranetti, M.T.; Moretti, A.; Logrieco, A.; Susca, A. Fungal mycobiota and mycotoxin risk for traditional artisan Italian cave cheese. *Food Microbiol.* **2019**, *78*, 62–72. [CrossRef]

74. Fink-Gremmels, J. Mycotoxins in cattle feeds and carry-over to dairy milk: A review. *Food Addit. Contam. Part B Bioactivity* **2008**, *25*, 172–180. [CrossRef]

75. Flores-Flores, M.E.; Gonzalez-Peñas, E. Analysis of mycotoxins in Spanish milk. *J. Dairy Sci.* **2018**, *101*, 113–117. [CrossRef]

76. Martinez, M.P.; Magnoli, A.P.; Pererya, M.G.; Cavagliera, L. Probiotic bacteria and yeasts adsorb aflatoxin M1 in milk and degrade it to less toxic AFM1-metabolites. *Toxicon* **2019**, *172*, 1–7. [CrossRef]

77. Fink-Gremmels, J.; van der Merwe, D. Mycotoxins in the food chain: Contamination of foods of animal origin. In *Chemical Hazards in Foods of Animal Origin, ECVPH Food Safety Assurance and Veterinary Public Health*; Wageningen Academic Publishers: Wageningen, The Netherlands, 2019; pp. 1190–1198.

78. Zebib, H.; Abate, D.; Woldeggiorgis, A.Z. Aflatoxin M1 in Raw Milk, Pasteurized Milk and Cottage Cheese Collected Along value Chain Actors from Three Regions of Ethiopia. *Toxins* **2022**, *14*, 276. [CrossRef]

79. Giovati, L.; Magliani, W.; Ciociola, T.; Santinoli, C.; Conti, S.; Polonelli, L. AFM1 in milk: Physical, biological, and prophylactic methods to mitigate contamination. *Toxins* **2015**, *7*, 4330–4349. [CrossRef]

80. Daou, R.; Afif, C.; Joubrane, K.; Khabbaz, L.R.; Maroun, R.; Ismail, A.; El Khoury, A. Occurrence of aflatoxin M1 in raw, pasteurized, UHT cows’ milk, and dairy products in Lebanon. *Food Control* **2020**, *111*, 107055. [CrossRef]
81. Ismaiel, A.A.; Tharwat, N.A.; Sayed, M.A.; Gameh, S.A. Two-year survey on the seasonal incidence of aflatoxin M1 in traditional dairy products in Egypt. J. Food Sci. Technol. 2020, 57, 2182–2189. [CrossRef]
82. Iqbal, S.Z.; Asi, M.R.; Malik, N. The seasonal variation of aflatoxin M1 in milk and dairy products and assessment of dietary intake in Punjab, Pakistan. Food Control 2017, 79, 292–296. [CrossRef]
83. Matejova, I.; Svobodova, Z.; Vakula, J.; Mares, J.; Modra, H. Impact of mycotoxins on aquaculture fish species: A review. J. World Aquac. Soc. 2017, 48, 186–200. [CrossRef]
84. Inger, V. The carry-over of mycotoxins in products of animal origin with special regard to its implications for the European food safety legislation. Food Nutr. Sci. 2011, 2, 7888.
85. Diekmann, M.A.; Green, M.L. Mycotoxins and reproduction in domestic livestock. J. Anim. Sci. 1992, 70, 1615–1627. [CrossRef][PubMed]
86. Sabater-Vilar, M.; Maas, R.F.; De Bosschere, H.; Ducatelle, R.; Fink-Gremmels, J. Patulin produced by an Aspergillus clavatus isolated from feed containing residues of a aflatoxin with a lethal neurotoxicosis in cattle. Mycopathologia 2004, 158, 419–426. [CrossRef]
87. Pleadin, J.; Staver, M.M.; Vahčić, N.; Kovačević, D.; Milone, S.; Saftić, L.; Scortichini, G. Survey of aflatoxin B1 and ochratoxin A in traditional meat products from Croatian households and markets. Food Control 2015, 52, 71–77. [CrossRef]
88. Elzupir, A.O.; Abdulkhair, B.Y. Health risk from aflatoxins in processed meat products in Riyadh, KSA. Food Addit. Contam. 2005, 22, 847–855. [CrossRef]
89. Pleadin, J.; Staver, M.M.; Vahčić, N.; Kovačević, D.; Milone, S.; Saftić, L.; Scortichini, G. Survey of aflatoxin B1 and ochratoxin A in traditional meat products from Croatian households and markets. Food Control 2015, 52, 71–77. [CrossRef]
90. Salvador, L.; Rodríguez-Carrasco, Y.; Moltó, J.C.; Berrada, H. Determination of trichothecenes in chicken liver using gas chromatography coupled with triple-quadrupole mass spectrometry. Food Addit. Contam. 2019, 36, 1811–1821. [CrossRef][PubMed]
91. Bintvihok, A.; Thiengnin, S.; Doi, K.; Kumagai, S. Residues of aflatoxins in the liver, muscle and eggs of domestic fowls. Food Addit. Contam. 2009, 26, 196–201. [CrossRef][PubMed]
92. Bintvihok, A.; Thiengnin, S.; Doi, K.; Kumagai, S. Residues of aflatoxins in the liver, muscle and eggs of domestic fowls. Food Addit. Contam. 2009, 26, 196–201. [CrossRef][PubMed]
93. Vidal, A.; Marin, S.; Sanchis, V.; De Saeger, S.; De Boe, M. Hydrolysers of modified mycotoxins in maize: α-Amylase and cellulase induce an underestimation of the total aflatoxin content. Food Chem. 2018, 248, 86–92. [CrossRef][PubMed]
94. El-Sayed, Y.S.; Khalil, R.H. Toxicity, biochemical effects and residue of aflatoxin B1 in marine water-reared sea bass (Dicentrarchus labrax L.). Food Chem. Toxicol. 2009, 47, 1606–1609. [CrossRef]
95. Oliveira, C.; Rossmannioho, J.; Rosim, R. Aflatoxin M1 and cyclopiazonic acid in fluid milk traded in São Paulo, Brazil. Food Addit. Contam. 2006, 23, 196–201. [CrossRef][PubMed]
96. Tardieu, D.; Travel, A.; Metayer, J.-P.; Le Bourhis, C.; Guerre, P. Fumonisin B1, B2 and B3 in muscle and liver of broiler chickens. J. Anim. Physiol. Anim. Nutr. 2010, 104, 23–31. [CrossRef][PubMed]
97. Tan, Z.; Wang, L.; Wang, J.; Tan, Y.; Yu, D.; Chang, X.; Fan, Y.; Zhao, D.; Wang, C.; De Boe, M. A QuEChERS-based liquid chromatography-tandem mass spectrometry for the simultaneous determination of nine zearalenone-like mycotoxins in pigs. Toxins 2018, 10, 129. [CrossRef]
98. Mahmoud, A.F.; Escrivá, L.; Rodríguez-Carrasco, Y.; Moltó, J.C.; Berrada, H. Determination of trichothecenes in chicken liver using gas chromatography coupled with triple-quadrupole mass spectrometry. J. Chromatogr. B 2018, 1037, 1037–1039. [CrossRef][PubMed]
107. Corrêa, J.A.F.; Orso, P.B.; Bordin, K.; Hara, R.V.; Luciano, F.B. Toxicological effects of fumonisin B1 in combination with other Fusarium toxins. Food Chem. Toxicol. 2018, 121, 483–494. [CrossRef]

108. Smith, L.; Stasiewicz, M.; Hestrin, R.; Morales, L.; Mutiga, S.; Nelson, R. Examining environmental drivers of spatial variability in aflatoxin accumulation in Kenyan maize: Potential utility in risk prediction models. Afr. J. Food Agric. Nutr. Dev. 2016, 16, 11086–11105. [CrossRef]

109. Santos Pereira, C.; Cunha, S.; Fernandes, J.O. Prevalent mycotoxins in animal feed: Occurrence and analytical methods. Toxins 2019, 11, 290. [CrossRef]

110. Awuchi, C.G.; Ondari, E.N.; Nwozo, S.; Odongo, G.A.; Eseoghene, I.J.; Twinomuhwezi, H.; Ogbonna, C.U.; Upadhyay, A.K.; Shephard, G.S. Mycotoxins worldwide: Current issues in Africa. In Meeting the Mycotoxin Menace; Wageningen Academic Publishers: Wageningen, The Netherlands, 2004.

111. Stanciu, O.; Juan, C.; Miere, D.; Loghin, F.; Mañes, J. Occurrence and co-occurrence of Fusarium mycotoxins in wheat grains and wheat flour from Romania. Food Control 2017, 73, 147–155. [CrossRef]

112. Mutiga, S.K.; Hoffmann, V.; Harvey, J.W.; Milgroom, M.G.; Nelson, R.J. Assessment of aflatoxin and fumonisin contamination of maize in Western Kenya. Food Control 2017, 73, 102–109. [CrossRef]

113. Assunção, R.; Martins, C.; Viegas, S.; Viegas, C.; Jakobsen, L.S.; Pires, S.; Alvito, P. Climate change and the health impact of aflatoxins exposure in Portugal—an overview. Food Addit. Contam. Part A 2018, 35, 1610–1621. [CrossRef]

114. Shephard, G.S. Mycotoxins worldwide: Current issues in Africa. In Meeting the Mycotoxin Menace; Wageningen Academic Publishers: Wageningen, The Netherlands, 2004.

115. Van Rensburg, B.J.; McLaren, N.; Flett, B. Grain colonization by fumonisin-producing Fusarium spp. and fumonisin synthesis in South African wheat in relation to prevailing weather conditions. Crop Prot. 2017, 102, 129–136. [CrossRef]

116. IARC. International Agency for Research on Cancer. In Review of Human Carcinogens: Chemical Agents and Related Occupations; World Health Organization: Geneva, Switzerland, 2021.

117. Krishnamachari, K.A.; Bhat, R.V.; Nagarajan, V.; Tilak, T.B. Hepatitis due to aflatoxicosis. An outbreak in Western India. Lancet 1975, 1, 1061–1063. [CrossRef]

118. Muñoz, K.; Wagner, M.; Pauli, F.; Christ, J.; Reese, G. Knowledge and Behavioral Habits to Reduce Mycotoxin Dietary Exposure at Household Level in a Cohort of German University Students. Toxins 2021, 13, 760. [CrossRef]

119. Awuchi, C.G.; Oncdzi, E.N.; Nwozo, S.; Odongo, G.A.; Eseoghene, I.J.; Twinomuhwezi, H.; Ogbonna, C.U.; Upadhyay, A.K.; Adeleye, A.O.; Okpala, C.O.R. Mycotoxins’ toxicological mechanisms involving humans, livestock and their associated health concerns: A review. Toxins 2022, 14, 167. [CrossRef]

120. Ahmed Adam, M.A.; Tabana, Y.M.; Musa, K.B.; Sandai, D.A. Effects of different mycotoxins on humans, cell genome and their involvement in cancer. Oncol. Rep. 2017, 37, 1321–1336. [CrossRef]

121. Vanhoucke, I.; Audenaert, K.; De Gelder, L. Biodegradation of mycotoxins: Tales from known and unexplored worlds. Front. Microbiol. 2016, 7, 561. [CrossRef]

122. Egbuta, M.A.; Mwanza, M.; Babalola, O.O. Health risks associated with exposure to filamentous fungi. Int. J. Environ. Res. Public Health 2017, 14, 719. [CrossRef] [PubMed]

123. Udomkun, P.; Wiredu, A.N.; Nagle, M.; Bandyopadhyay, R.; Muller, J.; Vanlauwe, B. Mycotoxins in Sub-Saharan Africa: Present situation, socio-economic impact, awareness, and outlook. Food Control 2017, 72, 110. [CrossRef]

124. Mutiga, S.K.; Hoffmann, V.; Harvey, J.W.; Milgroom, M.G.; Nelson, R.J. Assessment of aflatoxin and fumonisin contamination of maize in western Kenya. Phytopathology 2015, 105, 1250–1261. [CrossRef]

125. Suleiman, R.A.; Kurt, R.A. Current maize production postharvest losses and the risk of mycotoxin contamination in Tanzania. In Proceedings of the 2015 ASABE Annual International Meeting, New Orleans, LA, USA, 26–29 July 2015.

126. Renaud, J.B.; Kelman, M.J.; Qi, T.F.; Seifert, K.A.; Sumarah, M.W. Product ion filtering with rapid polarity switching for the detection of all fumonisins and AAL-toxins. Rapid Commun. Mass Spectrom. 2015, 29, 2131–2139. [CrossRef] [PubMed]

127. Darwish, W.S.; Ikenaka, Y.; Nakayama, S.M.M.; Ishizuka, M. An Overview on Mycotoxin Contamination of Foods in Africa. J. Vet. Med. Sci. 2014, 76, 789–797. [CrossRef] [PubMed]

128. Bryla, M.; Roszko, M.; Szymczyk, K.; Jedrzejczak, R.; Obiedziński, M.W.; Sękul, J. Fumonisins in plant-origin food and fodder—A review. Food Addit. Contam. Part A 2013, 30, 1626–1640. [CrossRef]

129. Scott, P. Recent research on fumonisins: A review. Food Addit. Contam. Part A 2012, 29, 242–248. [CrossRef]

130. Domijan, A.-M. Fumonisin B1: A neurotoxic mycotoxin. Arh. ZA Hig. Rada I Toksikol. 2012, 63, 531–543. [CrossRef]

131. Atukwase, A.; Kaaya, A.N.; Muyanja, C. Factors associated with fumonisin contamination of maize in Uganda. J. Sci. Food Agric. 2009, 89, 2393–2398. [CrossRef]

132. Heussner, A.H.; Bingle, L.E. Comparative ochratoxin toxicity: A review of the available data. Toxins 2015, 7, 4253–4282. [CrossRef]

133. Bayman, P.; Baker, J.L. Ochratoxins: A global perspective. Mycopathologia 2006, 162, 215–223. [CrossRef] [PubMed]

134. Mateo, R.; Medina, A.; Mateo, E.M.; Mateo, F.; Jiménez, M. An overview of ochratoxin A in beer and wine. Int. J. Food Microbiol. 2007, 119, 79–83. [CrossRef] [PubMed]

135. Omotayo, O.P.; Omotayo, A.O.; Babalola, O.O.; Mwanza, M. Dataset on the toxic effects of aflatoxin and ochratoxin a on the human gastric smooth muscle cells. Data Brief 2019, 25, 104089. [CrossRef] [PubMed]

136. Bennett, J.W.; Klich, M. Mycotoxins. Clin. Microbiol. Rev. 2003, 16, 497–516. [CrossRef] [PubMed]

137. Robinson, S.L.; Panaccione, D.G. Diversification of ergot alkaloids in natural and modified fungi. Toxins 2015, 7, 201–218. [CrossRef] [PubMed]
138. Yuan, G.; Wang, Y.; Yuan, X.; Zhang, T.; Zhao, J.; Huang, L.; Peng, S. T-2 toxin induces developmental toxicity and apoptosis in zebrafish embryos. *J. Environ. Sci.* **2014**, *26*, 917–925. [CrossRef]

139. Adhikari, M.; Negi, B.; Kaushik, N.; Adhikari, A.; Al-Khedhairy, A.A.; Kaushik, N.K.; Choi, E.H. T-2 mycotoxin: Toxicological effects and decontamination strategies. *Oncotarget* **2017**, *8*, 33933. [CrossRef]

140. Winkler, J.; Kersten, S.; Meyer, U.; Stinshoff, H.; Locher, L.; Rehage, J.; Wrenzycki, C.; Engelhardt, U.; Dänicke, S. Diagnostic opportunities for evaluation of the exposure of dairy cows to the mycotoxins deoxynivalenol (DON) and zearalenone (ZEN): Reliability of blood plasma, bile and follicular fluid as indicators. *J. Anim. Physiol. Anim. Nutr.* **2015**, *99*, 847–855. [CrossRef]

141. Bulgaru, C.V.; Marin, D.E.; Pistol, G.C.; Taranu, I. Zearalenone and the immune response. *Toxins* **2021**, *13*, 248. [CrossRef]

142. Shephard, G.S. Impact of mycotoxins on human health in developing countries. *Toxicol. Sci.* **2007**, *45*, 1–18. [CrossRef] [PubMed]

143. Rogowska, A.; Pomastowski, P.; Sagandykova, G.; Buszewski, B. Zearalenone and its metabolites: Effect on human health, metabolism and neutralisation methods. *Toxicon* **2019**, *162*, 46–56. [CrossRef] [PubMed]

144. Fru, F.; Yah, C.; Motaung, L.C.; Sekhejane, P.; Njobeh, P. A Scoping Review of Mycotoxin Contamination of Maize and Other Grains in South Africa. *Shiraz E-Med. J.* **2021**, *22*. [CrossRef]

145. Marasas, W.F.; Riley, R.T.; Hendricks, K.A.; Stevens, V.L.; Sadler, T.W.; Gelineau-van Waes, J.; Missmer, S.A.; Cabrera, J.; Torres, O.; Pierron, A.; Alassane-Kpembi, I.; Oswald, I.P. Impact of mycotoxin on immune response and consequences for pig health. *Food Addit. Contam.* **2013**, *13*, 251. [CrossRef]

146. Mboya, R.M.; Kolanisi, U. Subsistence farmers’ mycotoxin contamination awareness in the SADC region: Implications on Millennium Development Goal 1, 4 and 6. *J. Hum. Ecol.* **2014**, *46*, 21–31. [CrossRef]

147. Palanee, T. The Possible Implication of Selected Fusarium Mycotoxins in the Aetiology of Brain Cancer. Ph.D. Thesis, University of Natal, Berea, South Africa, 2004.

148. Adhikari, M.; Negi, B.; Kaushik, N.; Adhikari, A.; Al-Khedhairy, A.A.; Kaushik, N.K.; Choi, E.H. T-2 mycotoxin: Toxicological effects and decontamination strategies. *Oncotarget* **2017**, *8*, 33933. [CrossRef]

149. Yuan, G.; Wang, Y.; Yuan, X.; Zhang, T.; Zhao, J.; Huang, L.; Peng, S. T-2 toxin induces developmental toxicity and apoptosis in zebrafish embryos. *J. Environ. Sci.* **2014**, *26*, 917–925. [CrossRef]

150. Palanee, T. The Possible Implication of Selected Fusarium Mycotoxins in the Aetiology of Brain Cancer. Ph.D. Thesis, University of Natal, Berea, South Africa, 2004.

151. Ahmad, S.A.; Liu, W.; Jung, Y.D.; Fan, F.; Wilson, M.; Reinmuth, N.; Shaheen, R.M.; Bucana, C.D.; Ellis, L.M. The effects of angiopoietin-1 and-2 on tumor growth and angiogenesis in human colon cancer. *J. Pediatrics* **2008**, *163*, 63–68. [CrossRef] [PubMed]

152. Fru, F.; Yah, C.; Motaung, L.C.; Sekhejane, P.; Njobeh, P. A Scoping Review of Mycotoxin Contamination of Maize and Other Grains in South Africa. *Shiraz E-Med. J.* **2021**, *22*. [CrossRef]

153. Marasas, W.F.; Riley, R.T.; Hendricks, K.A.; Stevens, V.L.; Sadler, T.W.; Gelineau-van Waes, J.; Missmer, S.A.; Cabrera, J.; Torres, O.; Pierron, A.; Alassane-Kpembi, I.; Oswald, I.P. Impact of mycotoxin on immune response and consequences for pig health. *Food Addit. Contam.* **2013**, *13*, 251. [CrossRef]

154. Mboya, R.M.; Kolanisi, U. Subsistence farmers’ mycotoxin contamination awareness in the SADC region: Implications on Millennium Development Goal 1, 4 and 6. *J. Hum. Ecol.* **2014**, *46*, 21–31. [CrossRef]

155. Palanee, T. The Possible Implication of Selected Fusarium Mycotoxins in the Aetiology of Brain Cancer. Ph.D. Thesis, University of Natal, Berea, South Africa, 2004.

156. Ahmad, S.A.; Liu, W.; Jung, Y.D.; Fan, F.; Wilson, M.; Reinmuth, N.; Shaheen, R.M.; Bucana, C.D.; Ellis, L.M. The effects of angiopoietin-1 and-2 on tumor growth and angiogenesis in human colon cancer. *J. Pediatrics* **2008**, *163*, 63–68. [CrossRef] [PubMed]

157. Eze, U.A.; Okonofua, F.E. High prevalence of male infertility in Africa: Are Mycotoxins to blame? *Afr. J. Reprod. Health* **2021**, *15*, 84, 169–180. [CrossRef]

158. Shephard, G.S. Impact of mycotoxins on human health in developing countries. *Food Addit. Contam.* **2008**, *25*, 146–151. [CrossRef]

159. Marasas, W.F.; Riley, R.T.; Hendricks, K.A.; Stevens, V.L.; Sadler, T.W.; Gelineau-van Waes, J.; Missmer, S.A.; Cabrera, J.; Torres, O.; Gelderblom, W.C. Fumonisins disrupt sphingolipid metabolism, folate transport, and neural tube development in embryo culture and in vivo: A potential risk factor for human neural tube defects among populations consuming fumonisin-contaminated maize. *J. Nutr.* **2004**, *134*, 711–716. [CrossRef]

160. IARC. *International Agency for Research on Cancer; IARC Working Group Report; IARC: Lyon, France, 2015.

161. Burger, H.; Shephard, G.; Louw, W.; Reeder, J.; Gelderblom, W. The mycotoxin distribution in maize milling fractions under experimental conditions. *Int. J. Food Microbiol.* **2013**, *165*, 57–64. [CrossRef]

162. Ahmad, S.A.; Liu, W.; Jung, Y.D.; Fan, F.; Wilson, M.; Reinmuth, N.; Shaheen, R.M.; Bucana, C.D.; Ellis, L.M. The effects of angiopoietin-1 and-2 on tumor growth and angiogenesis in human colon cancer. *Cancer Res.* **2001**, *61*, 1255–1259. [PubMed]

163. Eze, U.A.; Okonofua, F.E. High prevalence of male infertility in Africa: Are Mycotoxins to blame? *Afr. J. Reprod. Health* **2015**, *19*, 9–17.

164. EC. *European Commission Regulation (EC) N0 1881/2006 of 19 December 2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs*; EC: Brussels, Belgium, 2006.

165. Eze, U.A.; Okonofua, F.E. High prevalence of male infertility in Africa: Are Mycotoxins to blame? *Afr. J. Reprod. Health* **2015**, *19*, 9–17.

166. Pikke, A.; Alasasane-Kpembi, I.; Oswald, I.P. Impact of mycotoxin on immune response and consequences for pig health. *Anim. Nutr.* **2016**, *2*, 63–68. [CrossRef] [PubMed]

167. Awad, W.; Ghareeb, K.; Böhm, J.; Zentek, J. The toxicological impacts of the Fusarium mycotoxin, deoxynivalenol, in poultry flocks with special reference to immunotoxicity. *Toxins* **2013**, *5*, 912–925. [CrossRef]

168. Yang, C.-K.; Cheng, Y.-H.; Tsai, W.-T.; Liao, R.-W.; Chang, C.-S.; Chien, W.-C.; Jhang, J.-C.; Yu, Y.-H. Prevalence of mycotoxins in feed and feed ingredients between 2015 and 2017 in Taiwan. *Environ. Sci. Pollut. Res.* **2019**, *26*, 23798–23806. [CrossRef]

169. Orsi, R.B.; Oliveira, C.A.; Dilkin, P.; Xavier, J.G.; Direito, G.M.; Corrêa, B. Effects of oral administration of aflatoxin B1 and fumonisin B1 in rabbits (*Oryctolagus cuniculus*). *Chem. Biol. Interact.* **2007**, *170*, 201–208. [CrossRef]

170. Alborch, L.; Bragulat, M.; Castellá, G.; Abarca, M.; Cabañes, F. Mycobiota and mycotoxin contamination of maize flours and popcorn kernels for human consumption commercialized in Spain. *Food Microbiol.* **2012**, *32*, 97–103. [CrossRef]