Clinical profile of lung cancer in North India: A 10-year analysis of 1862 patients from a tertiary care center

Anant Mohan¹, Auneet Garg¹, Aditi Gupta¹, Satyaranjan Sahu¹, Chandrashekhar Choudhari¹, Vishal Vashistha², Ashraf Ansari¹, Rambha Pandey³, Ashu Seith Bhalla¹, Karan Madan¹, Vijay Hadda¹, Hariraran Iyer¹, Deepali Jain⁵, Rakesh Kumar⁶, Saurabh Mittal¹, Pawan Tiwari⁵, Ravindra M Pandey³, Randeep Guleria⁴
¹Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India, ²Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA, ³Department of Radiotherapy, All India Institute of Medical Sciences, New Delhi, India, ⁴Department of Radiodiagnosis, All India Institute of Medical Sciences, New Delhi, India, ⁵Department of Pathology, All India Institute of Medical Sciences, New Delhi, India, ⁶Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India, ⁷Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, India

ABSTRACT

Introduction: Over the past few years, the demographic profile of lung cancer has changed. However, most reports are limited by small numbers, short follow-up period, and show an inconsistent pattern. A comprehensive evaluation of changing trends over a long period has not been done. Materials and Methods: Consecutive lung cancer patients were studied over a 10-year period from January 2008 to March 2018 at the All India Institute of Medical Sciences, New Delhi, and relevant clinical information, and survival outcomes were analyzed. Results: A total of 1862 patients were evaluated, with mean (SD) age of 59 (11.1) years, and comprising 82.9% males. Majority were smokers (76.2%) with median smoking index of 500 (interquartile range [IQR]: 300–800). Adenocarcinoma (ADC) was the most common type (34%), followed by squamous cell carcinoma (SCC – 28.6%) and small cell lung cancer (SCLC) (16.1%). Over the 10-year period, ADC increased from 9.5% to 35.9%, SCC from 25.4% to 30.6%, and non-small cell lung cancer -not otherwise specified (NSCLC-NOS) decreased from 49.2% to 21.4%. The proportion of females with lung cancer increased although smoking rates remained similar. Majority of NSCLC (95%) continued to be diagnosed at an advanced stage (3 or 4). Epidermal growth factor receptor (EGFR) mutations and anaplastic lymphoma kinase (ALK) rearrangements were present in 25.3% and 11.5% ADC patients, respectively. The median overall survival was 8.8 months (IQR 3.7–19) for all patients and 12.57 (IQR 6.2–28.7) months among the 1013 patients who were initiated on specific treatment (chemotherapy, targeted therapy, radiotherapy, or surgery). Never-smokers were younger, more likely to be female and educated, had a higher prevalence of ADC and EGFR/ALK mutations, and had better survival. Conclusion: Among this large cohort, our center seems to follow the global trend with increasing incidence of ADC. EGFR mutation positivity was similar to existing reports, while higher ALK positivity was detected. A characteristic phenotype of never-smokers with lung cancer was elucidated which demonstrated better survival.

KEY WORDS: India, lung cancer, smoking, trends

Address for correspondence: Prof. Anant Mohan, Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi - 110 029, India. E-mail: anantmohan88@gmail.com

Submitted: 21-Jul-2019  Revised: 24-Dec-2019  Accepted: 17-Jan-2020  Published: 04-May-2020

How to cite this article: Mohan A, Garg A, Gupta A, Sahu S, Choudhari C, Vashishtha V, et al. Clinical profile of lung cancer in North India: A 10-year analysis of 1862 patients from a tertiary care center. Lung India 2020;37:190-7.
INTRODUCTION

Lung cancer is the leading cause of cancer-related death in the world and likely to remain so in the foreseeable future. According to the GLOBCAN report 2018, lung cancer affected about 2.1 million persons (11.6% of all cancers) and caused 1.8 million deaths (which comprised 18.4% of all cancer-related deaths). The above report also estimated that in India, a total of 67,795 new lung cancer cases occurred (5.9% of all cancers) in 2018, of which 48,698 (8.5%) occurred in males. Further, lung cancer caused 63,475 deaths, comprising 8.1% of all cancer-related deaths.

Although the global mortality due to lung cancer has started to decline, probably reflecting the decrease in smoking habits, the prevalence in India appears to be increasing. According to the Indian Council of Medical Research cancer registry, there were 57,795 new cases of lung cancer in 2012, which is projected to rise to 67,000 new cases annually by the year 2020. More importantly, the high disease-attributable mortality makes this condition an important public health issue.

In recent years, there has been a great interest in the histological characterization and genomic classification of lung carcinoma due to the availability of several new targeted therapeutic modalities. The previously accepted broad classification of lung cancer into non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) is now considered inadequate. Subtype analysis for mutations such as epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK) rearrangements, ROS-1 translocation, or expression of programmed death receptor-1 (PD-1)/PD ligand-1 now forms the basis of targeted therapy/immunotherapy for lung cancer. The morphology of lung cancer also appears to be changing, with adenocarcinoma (ADC) equaling or overtaking squamous cell carcinoma (SCC) in terms of the frequency of occurrence in most Western and some Asian countries. However, the clinical and pathological profile of lung cancer in India appears to show a wide variability. Furthermore, long-term trends in lung cancer demographics have been sparsely reported, and most centers reported outcomes over relatively short periods. The present study, thus, aimed to perform a comprehensive evaluation of the clinicopathological and molecular profile of a large cohort of lung cancer patients in a tertiary care health-care center in North India and to study trends of important variables over a 10-year period.

MATERIALS AND METHODS

This was an ambispective observational study that included consecutive patients with pathologically (biopsy or cytology) proven lung cancer diagnosed between January 1, 2008, and March 31, 2018, in the Department of Pulmonary, Critical Care, and Sleep Medicine, All India Institute of Medical Sciences, New Delhi. Patients who had thoracic metastatic disease from a nonpulmonary primary cancer were excluded. Prior approval was taken from the Institutional Ethics Committee.

The clinical details were recorded in a predesigned structured proforma which comprised of demographic and socioeconomic characteristics, a detailed smoking history (reformed or current smoker, bidi, cigarette or hookah smoking, smoking index, and pack-years), previous treatment history, details of imaging findings, and diagnostic investigations [transbronchial ultrasound or computed tomography (CT)-guided fine-needle aspiration or biopsy, bronchoscopic, or endobronchial ultrasound (EBUS)-guided fine-needle aspiration, or biopsy using radial-probe EBUS, thoracoscopy (rigid or semi-rigid)-guided biopsy, pleural fluid analysis, peripheral lymph node biopsy, or biopsy from any other site for definitive diagnosis], pathological and molecular characteristics of tumor, baseline laboratory investigations, treatment details, and overall survival (OS).

Patients were classified on the basis of morphology using the WHO classification of lung tumors as (1) non-small cell lung carcinoma (SCC, adenocarcinoma, and non-small cell lung carcinoma—not otherwise specified [NSCLC-NOS]); (2) SCLC, and (3) miscellaneous tumors. Patients diagnosed at other centers were required to have their tissue specimens re-reviewed by a pathologist at our center. In case the pathology review was inconclusive, repeat tissue sampling was performed.

Immunohistochemistry (IHC) was started in 2011 in our institute as a routine for lung cancer specimens. Tissue samples in ADC were subjected to appropriate driver mutation studies. EGFR mutations in tissue were tested using Qiagen ARMS scorpion PCR assay. ALK rearrangements were determined by IHC or fluorescence in situ hybridization method. Disease staging was done using either a whole-body positron emission tomogram-computerized tomogram (PET-CT) or CT scan of chest and upper abdomen, bone scan, and magnetic resonance imaging/CT Brain. In NSCLC, the disease was staged according to the American Joint Committee on Cancer (AJCC) 7th edition tumor-node-metastasis (TNM) staging system for patients diagnosed on or before December 31, 2016, and IASLC (the International Association for the Study of Lung Cancer)-AJCC-UICC TNM staging (8th edition) if diagnosed after January 1, 2017. In SCLC, the disease was classified according to the Veterans Administration Lung Group 2-stage system, as limited disease and extensive disease.

The performance status of patients was noted using the modified Karnofsky Performance Scale (KPS) and Eastern Cooperative Oncology Group scale (ECOG). Patients were treated with a multidisciplinary approach in consultation with radiotherapist, radiologist, nuclear medicine specialist, and surgeon. Details of treatment, i.e., surgical resection, chemotherapy, radiotherapy, or targeted therapy were noted. Overall survival (OS) was calculated from the date of definitive diagnosis to the date of death or date of the last follow-up. Patients were considered on continuous follow-up if the last visit fell within 1 month of data censoring (July 31, 2018).
case where the last visit was more than 1 month ago, attempts were made to contact the patient by telephone. Patients were followed from the date of registration to the date of death and were censored at the date they were last known to alive, i.e., date of the last follow-up either in person or telephonically. In the retrospective part of the study, an attempt was made to obtain the treatment response and survival detail from the patient or relatives telephonically.

**Statistical analysis**

Data were recorded on a predesigned proforma and managed on an Excel spreadsheet. Quantitative variables were checked for approximate normality. Variables following normal distribution were expressed as mean (standard deviation), and variables that followed skewed distribution were expressed as median (interquartile range [IQR]). Categorical variables were expressed as frequency (%). Median OS was estimated using Kaplan–Meier survival curve. The association between the two categorical variables was compared by Chi-square test and Student’s t-test was used to compare the difference in the mean age of two independent data sets. Statistical analysis was performed using StataCorp. 2015. Stata Statistical Software: Release 14. College Station, TX: StataCorp LP, and a p < 0.05 was considered statistically significant.

**RESULTS**

A total of 1862 patients with lung cancer were included in the study. Table 1 shows the main demographic and baseline characteristic of the study group.

Majority of the patients were males (82.9%), in the age bracket of 46–70 years, with mean (SD) age of 58 (11.1) years. The mean age remained relatively unchanged over the study time-period (Figure 1). The proportion of females showed an increasing trend, from 7.9% in 2008 to 27.2% in 2018. Majority of patients (54.7%) were either illiterate or received primary education only. Smokers comprised 76.2% of all patients and among them, 69.2% were heavy smokers with median smoking index of 500 (IQR, 300–800). Flexible bronchoscopy was the most common diagnostic modality (50.2%), followed by CT or ultrasound-guided interventions (32.6%), pleural fluid analysis/thoracoscopic biopsy (6.5%), and peripheral lymph node fine-needle aspiration/biopsy (5.6%).

The most common symptoms were cough (81.3%), loss of appetite (65.9%), dyspnea (64.9%), fatigue (60.4%), weight loss (58.1%), chest pain (48.9%), and hemoptysis (36.1%). Significant physical findings included digital clubbing (18.7%), peripheral lymphadenopathy (13.3%), neurological manifestations (2.1%), and superior vena cava obstruction (3.4%).

The right and left upper lobes were the most commonly affected lobes (26.9% and 24.4% respectively); 8.3% of patients had predominant mediastinal involvement. Adenocarcinoma (ADC) was the most common pathological

### Table 1: Demographic and baseline characteristics of lung cancer patients

| Variable                                      | Sub-group       | n (%)  |
|-----------------------------------------------|-----------------|--------|
| Age (years) (n=1862)                         | ≤45             | 256 (13.8) |
|                                               | 46–70           | 1410 (75.7) |
|                                               | >70             | 196 (10.5)  |
| Sex (n=1862)                                  | Male            | 1544 (82.9) |
|                                               | Female          | 318 (17.1)  |
| Education level (n=1518)                      | Illiterate      | 416 (27.4)  |
|                                               | Primary level   | 415 (27.3)  |
|                                               | Secondary level | 370 (24.4)  |
|                                               | (matric)        |         |
|                                               | Higher secondary| 150 (9.9)   |
|                                               | Graduation      | 126 (8.3)   |
| Smoking status (n=1788)                       | Never smoker    | 425 (23.8)  |
|                                               | Current smokers | 697 (39)    |
|                                               | Reformed smokers| 666 (37.2)  |
| Smoking index (n=1136)                        | <100            | 95 (5.4)    |
|                                               | 100-300         | 254 (22.4)  |
|                                               | 301-600         | 385 (33.9)  |
|                                               | >600            | 402 (35.3)  |
| Diagnostic modality (n=1772)                  | Flexible bronchoscopy| 890 (50.2) |
|                                               | CT/USG-guided   | 577 (32.6)  |
|                                               | FNAC/biopsy (lung)|         |
|                                               | Thoracoctentesis| 95 (5.4)    |
|                                               | Thoracoscopic Pleural biopsy| 19 (1.1)  |
|                                               | Peripheral lymph node sampling| 100 (5.6) |
|                                               | EBUS            | 47 (2.7)    |
|                                               | Lung biopsy (surgical)| 6 (0.3)  |
| Pathological type (n=1862)                    | Others          | 38 (2.1)    |
|                                               | ADC             | 634 (34.0)  |
|                                               | SCC             | 532 (28.6)  |
|                                               | NCSLC (NOS)     | 338 (18.1)  |
|                                               | Small cell carcinoma (SCLC)| 300 (16.1) |
|                                               | Others          | 58 (3.2)    |
| Predominant lobe involved (n=1467)            | Upper lobe      | 792 (51.3)  |
|                                               | Right middle lobe/lingula| 112 (7.7)  |
|                                               | Lower lobe      | 326 (22.2)  |
|                                               | Others          | 277 (18.8)  |
| Pathological type (n=1862)                    | Stage 1         | 14 (1.2)    |
|                                               | Stage 2         | 44 (3.8)    |
|                                               | Stage 3         | 337 (29.1)  |
|                                               | Stage 4         | 766 (65.9)  |
| NSCLC stage TNM staging 7th ed.               | Stage 1         | 7 (1.6)     |
| (before 1st January, 2017)                    | Stage 2         | 8 (1.9)     |
|                                               | Stage 3         | 127 (30.2)  |
|                                               | Stage 4         | 279 (66.3)  |
| Small cell carcinoma stage (n=275)            | Limited stage   | 68 (24.8)   |
|                                               | Extensive stage | 207 (75.2)  |
| ECOG (n=1493)                                 | 0, 1            | 758 (50.8)  |
|                                               | 2               | 484 (32.4)  |
|                                               | ≥3              | 251 (16.8)  |
| KPS (n=1567)                                  | ≤60             | 388 (24.8)  |
|                                               | 70              | 344 (21.9)  |
|                                               | 80-100          | 835 (53.3)  |
| EGFR mutations (n=257)                        | Positive        | 65 (25.3)   |
|                                               | Negative        | 192 (74.7)  |
| ALK rearrangement (n=192)                     | Positive        | 22 (11.5)   |
|                                               | Negative        | 170 (88.5)  |

CT: Computed tomography, USG: Ultrasound, FNAC: Fine-needle aspiration cytology, EBUS: Endobronchial ultrasound, ECOG: Eastern cooperative oncology group, KPS: Karnofsky Performance Status Scale, EGFR: Epidermal growth factor receptor, ALK: Anaplastic lymphoma kinase, ADC: Adenocarcinoma, SCC: Squamous cell carcinoma, SCLC: Small cell lung cancer, NSCLC: Non-SCLC, TNM: Tumor node metastasis, NOS: Not otherwise specified.
Mohan, et al.: 10‑year trends in lung cancer

Figure 1: Year-wise mean age of patients over time period of study. The mean (standard deviation) age of patients over first 5‑year block (2008–2012) compared to the next 5‑year block (2013 to March 2018) was similar, (57.7 [10.3] years vs. 58.3 [11.3] years), respectively, (P = 0.42).

Figure 2: Depicts the year-wise distribution (%) of adenocarcinoma, squamous cell carcinoma and non-small cell lung cancer (not otherwise specified) over the study period from 2008 to 2018.

Table 2: Year-wise distribution of various pathologic types of lung cancer

| Years | SCC | ADC | NSCLC (NOS) | SCLC | Others |
|-------|-----|-----|-------------|------|--------|
| 2008 (n=63) | 16 (25.4) | 6 (9.5) | 31 (49.2) | 10 (15.9) | 0 (0) |
| 2009 (n=48) | 11 (22.9) | 5 (10.4) | 25 (52.1) | 7 (14.6) | 0 (0) |
| 2010 (n=67) | 13 (19.4) | 10 (14.9) | 29 (43.3) | 15 (22.4) | 0 (0) |
| 2011 (n=70) | 21 (30) | 15 (21.4) | 24 (34.3) | 10 (14.3) | 0 (0) |
| 2012 (n=103) | 26 (25.2) | 37 (35.9) | 25 (24.3) | 14 (13.6) | 1 (1.0) |
| 2013 (n=154) | 41 (26.6) | 57 (37.0) | 21 (13.6) | 33 (21.4) | 2 (1.4) |
| 2014 (n=233) | 75 (32.2) | 79 (34.0) | 33 (14.1) | 40 (17.2) | 6 (2.5) |
| 2015 (n=286) | 83 (29.0) | 89 (31.1) | 42 (14.7) | 59 (20.6) | 13 (4.6) |
| 2016 (n=359) | 101 (28.1) | 162 (45.1) | 32 (9.0) | 51 (14.2) | 13 (3.6) |
| 2017 (n=376) | 115 (30.6) | 137 (36.4) | 54 (14.4) | 54 (14.4) | 16 (4.2) |
| Upto March 2018 (n=103) | 30 (29.1) | 37 (35.9) | 22 (21.4) | 7 (6.8) | 7 (6.8) |

ADC: Adenocarcinoma, SCC: Squamous cell carcinoma, SCLC: Small-cell lung cancer, NSCLC: Non-SCLC, NOS: Not otherwise specified.

The prevalence of smoking among males ranged between 73.3% and 93.5%, and in females, between 23% and 50% over the study period [Figure 3]. Among females, the prevalence of lung cancer increased in spite of the smoking prevalence remaining relatively the same.

As shown in Table 3, smokers with lung cancer were significantly older, more likely to be male, had poor educational status, less advanced stage of disease, lower EGFR and ALK positivity, and were less likely to receive treatment compared to nonsmokers. No significant difference in performance status was noted. SCC was the most common histology in smokers (34.9%), whereas ADC was most common in nonsmokers (62.3%), NSCLC (NOS) and small cell carcinoma were less prevalent in nonsmokers compared to smokers (13% and 7.5% vs. 19.5% and 19.1%, respectively). Among the 1013 patients who received treatment, median (IQR) OS was significantly higher in never-smokers than smokers (17.6 months [7.4 – not reached] vs. 10.7 months [5.9–20.3], P < 0.001).

Table 4 depicts the histology differences based on gender and smoking status. In female smokers, the prevalence of ADC and SCC was almost identical (33.3% vs. 32.3% respectively). Among all nonsmokers, females had higher ADC and small cell carcinoma compared to males (66.5% and 14.6% vs. 58.5% and 8.1%, respectively). Adenocarcinoma morphology was commoner in male as well as female non-smokers compared to their counterparts who smoked; however, no significant difference was found in NSCLC morphology between male and female smokers (P = 0.09) or between male and female nonsmokers (P = 0.46).

Among the total 1803 patients, treatment details were available for 1013 patients, with the most common treatment modality being chemotherapy (87.5%) followed by radiotherapy (15.3%), targeted therapy (8.6%), and...
surgery (3.0%). The most common chemotherapy regimens were carboplatin-paclitaxel (53.4%), cisplatin-etoposide (18.4%), carboplatin-gemcitabine (7.4%), and carboplatin-pemetrexed (9.0%). The median OS was 8.8 months (IQR, 3.7–19) for all patients, and 12.6 (IQR, 6.2–28.7) months among the 1013 patients who underwent specific treatment (chemotherapy, targeted therapy, radiotherapy, or surgery) and had at least one additional follow-up visit.

A comparative analysis of the demographic profile of the patients in the current study with other Indian and International reports showed that our patients were younger, had higher male preponderance, lesser smoking rates, and higher prevalence of SCC compared to western studies [Table 5].

### Table 3: Comparison of characteristics between smokers and nonsmokers with lung cancer

| Characteristics                        | Smokers | Nonsmokers | P    |
|----------------------------------------|---------|------------|------|
| Age >60                                | 797/1363 (58.5) | 154/425 (36.2) | <0.001 |
| Female                                 | 96/1363 (7)       | 203/425 (47.8)    | <0.001 |
| Education (above primary level education) | 489/1120 (43.7) | 182/358 (50.8)   | 0.018  |
| Morphology                             |          |            |      |
| ADC                                    | 340/1363 (24.9)  | 265/425 (62.3)    | <0.001 |
| SCC                                    | 476/1363 (34.9)  | 42/425 (9.9)      |       |
| Small cell carcinoma                   | 261/1363 (19.1)  | 32/425 (7.5)      |       |
| NSCLC-NOS                              | 266/1363 (19.5)  | 55/425 (13)       |       |
| EGFR mutation positivity, n (%)        | 23/129 (17.8)    | 37/117 (31.6)     | 0.012  |
| ALK rearrangement positivity, n (%)    | 5/94 (5.3)       | 15/84 (17.9)      | 0.014  |
| ECOG 0, 1                              | 555/1099 (50.5)  | 191/371 (51.5)    | 0.744  |
| Stage                                  |          |            |      |
| NSCLC                                 | (before January 1, 2017) |          |      |
| Stage 1 or 2                           | 46/788 (5.8)     | 8/239 (3.4)       | <0.001 |
| Stage 3                                | 274/788 (34.8)   | 35/239 (14.6)     |       |
| Stage 4                                | 468/788 (59.4)   | 196/239 (82.0)    |       |
| 1° January, 2017 onward                |          |            |      |
| Stage 1 or 2                           | 9/263 (3.4)      | 6/122 (4.9)       | <0.001 |
| Stage 3                                | 97/263 (36.9)    | 20/122 (16.4)     |       |
| Stage 4                                | 157/263 (59.7)   | 96/122 (78.7)     |       |
| Small cell carcinoma                   |          |            |      |
| Limited stage                          | 62/244 (25.4)    | 6/26 (23.1)       | 0.794  |
| Extensive stage                        | 182/244 (74.6)   | 20/26 (76.9)      |       |
| Treatment received                     | 733/1334 (54.9)  | 249/399 (62.4)    | 0.008  |
| Median overall survival (months)       | 8.0 (3.23–16.6)  | 14.4 (4.9–NR)     | <0.001 |

All values in n (%). NR: Not reached, ECOG: Eastern cooperative oncology group, EGFR: Epidermal growth factor receptor, ALK: Anaplastic lymphoma kinase, ADC: Adenocarcinoma, SCC: Squamous cell carcinoma, SCLC: Small-cell lung cancer, NSCLC: Non-SCLC, NOS: Not otherwise specified.

### Table 4: Histology differences in male and female according to their smoking status

| Histology                  | Male smokers (n=1267) | Male nonsmokers (n=222) | Female smokers (n=96) | Female nonsmokers (n=203) |
|----------------------------|-----------------------|-------------------------|-----------------------|--------------------------|
| SCC                        | 445 (35.1)            | 23 (10.4)               | 31 (32.3)             | 19 (9.4)                 |
| ADC                        | 308 (24.3)            | 130 (58.5)              | 32 (33.3)             | 135 (66.5)               |
| NSCLC-NOS                  | 256 (20.3)            | 31 (14.0)               | 7 (10.4)              | 24 (12.0)                |
| Small cell carcinoma       | 240 (18.9)            | 18 (8.1)                | 21 (21.9)             | 14 (14.6)                |
| Others                     | 18 (1.4)              | 20 (9.0)                | 2 (2.1)               | 11 (5.5)                 |

All values given in n (%). ADC: Adenocarcinoma, SCC: Squamous cell carcinoma, SCLC: Small-cell lung cancer, NSCLC: Non-SCLC, NOS: Not otherwise specified.

### DISCUSSION

To the best of our knowledge, this 10-year analysis is the largest single-center study to evaluate the clinical spectrum of lung cancer in India and revealed some interesting trends. The average age of our patients was 58 years, which is similar to that reported in previous Indian studies,[14,20,25,28] but almost 10 years less than the mean age reported in most Western studies.[30,33,34] No changing trend in age was seen during the study period.

Similarly, the male predominance in our study was similar to other Indian reports but higher than Western studies.[15,21,23,25,26,28] This may be a reflection of higher smoking prevalence in females in the West or possibly due to the fact that males tend to seek medical attention more frequently than females in our societal setup.[29,31-34] However, we observed a definite increase in the proportion of females from 7.9% in 2008 to 20.6% in 2017. Interestingly, the smoking prevalence among females did not increase proportionally during the same period. The likely explanation may be due to increase in females seeking medical attention over the last decade, or exposure/susceptibility to other unknown risk factors.

Most patients had poor educational status, with as many as 54.7% being either illiterate or educated up to primary level only. The prevalence of smoking in our study (80%) is comparable to other Indian studies[13,17,25,28] but lower than most Western data, which have reported smoking prevalence between 87% and 93%. [30,32,34] This observation supports the possibility of other contributing factors in lung cancer etiology, such as genetic predisposition, passive smoking, air pollution,
and biomass fuel that is commonly used in rural India.\cite{36,37} However, the prevalence of smoking in our cohort remained largely unchanged over 10 years.

Although majority of patients in our study had a reasonably good performance status at the time of initial presentation (50.8% had ECOG 0 or 1; and 53.3% had KPS more than 70), but this was lower than most Western reports.\cite{19,27,32} This may be due to morbidity associated with more advanced stage of the disease at the time of diagnosis and seeking medical care.

In the initial years of this study, SCC dominated the morphological type of NSCLC but was overtaken by ADC in 2012, and this trend continued till 2018. It should be noted, however, that the distribution of SCC and SCLC remained largely unchanged, while the frequency of NSCLC - NOS declined. This occurred most likely due to the changing practices of pathological reporting keeping in tune with the advancement in immunohistochemical techniques and based on the revision of guidelines for pathological reporting for lung cancer.\cite{31} Another contributory factor may be an increase in the proportion of females over the 10-year period.

Several studies, including from our group, have previously reported that ADC has surpassed SCC as the most common histological subtype of lung cancer. This shift seems to be attributable partly to the changed smoking pattern and the increasing incidence of lung cancer in females and nonsmokers. At the same time, it is worthwhile to note that most previous Indian studies have described SCC as the most common pathological subtype.\cite{12,13,16,17,25}

Although bronchoscopy and transthoracic-guided sampling remain the most common diagnostic modalities for LC, the past decade has seen the emergence of newer techniques such as convex-probe EBUS, radial probe EBUS, and thoracoscopy with impressive diagnostic yield and sensitivity.\cite{41,42} Among our patients, EBUS provided the diagnosis in 2.7% of individuals, while thoracoscopy was the diagnostic modality in 1.1% individuals. With increasing usage, this number is likely to further increase.

Unfortunately, lung cancer continues to be diagnosed at an advanced stage in India in contrast to most Western literature, where 30%–50% of cases are diagnosed at a relatively early stage which is potentially operable.\cite{32,43} Less than 3% of our patients underwent surgery, and this probably reflects the relatively poor survival among our patients.

The tissue EGFR positivity rate among our patients was 25.3%, which is similar to that reported in Indian studies but higher than most Western reports.\cite{44,45} However, the ALK positivity rate of 11.5% observed in our study is higher than most previous reports (5% in Western and 1.45%–7.6% in Indian individuals).\cite{33,35,36} Whether this observation represents a true high prevalence of ALK rearrangements in this geographical region remains unknown yet, and more population-based data is required before we can draw definite conclusions.

Although all patients, 56.2% (1013/1803) received disease-specific treatment (chemotherapy, targeted therapy,
radiotherapy, and surgery). The remaining participants were either unwilling for chemotherapy, unsuitable due to poor performance status, opted for alternative systems of medicine, (ayurvedic or homeopathic) or were those in whom treatment details were not known. Other Indian studies have also reported a high proportion of patients unwilling or unsuitable for cancer-specific treatment for reasons similar to what we observed.[10] The median OS in our study was 8.8 months (IQR 3.7–19 months), which is similar to that reported in various other Indian studies (6.0–7.8 months), especially in advanced NSCLC.[24,27,56] However, the OS of the patients who received at least some cancer-specific treatment was higher at 12.6 (6.2–28.7) months.

Our results revealed some other important clinical observations as well. The never-smokers in our cohort were younger and were diagnosed at a more advanced disease stage than smokers. Previous reports on this aspect have shown conflicting results.[21,57-59] Differences in smoking history, family predisposition, and delay in diagnosis of lung cancer in nonsmokers may explain some of these discrepancies. Compared to smokers, a greater proportion of nonsmokers received treatment in our study, possibly due to a higher occurrence of EGFR/ALK mutations in this group, that allows prescription of oral TKI therapy even in patients with poor performance status. Never-smokers had a better survival even after adjusting for treatment received.[58,59]

CONCLUSION

Our center appears to be following the global trend with increasing incidence of ADC. The proportion of females is increasing, whereas smoking rates and mean age at diagnosis remained unchanged over time. EGFR mutation positivity and survival were at par with the most existing reports, while higher ALK positivity was shown conflicting results. Comparing the two, and m descriptors and consequent stage groupings in the forthcoming (seventh) edition of the TNM classification of malignant tumours. J Thorac Oncol 2017;2:694-705.

The IASLC lung cancer staging project: Proposals for revision of the TNM stage groupings in the forthcoming (Eighth) edition of the TNM classification for lung cancer. J Thorac Oncol 2016;11:39-51.

Gupta RC, Purohit SD, Sharma MP, Bhardwaj S. Primary bronchogenic carcinoma: Clinical profile of 279 cases from mid-west Rajasthan. Indian J Chest Dis Allied Sci 1998;40:109-16.

Prasad R, James P, Kesarwani V, Gupta R, Pant MC, Chaturvedi A, et al. Clinicopathological study of bronchogenic carcinoma. Respirology 2004;9:557-60.

Khan NA, Afroz F, Lone MM, Teli MA, Muzaffar M, Jan N. Profile of lung cancer in Kashmir, India: A five-year study. Indian J Chest Dis Allied Sci 2006;48:187-90.

Prasad R, Verma SK, Sanjay. Comparison between young and old patients with bronchogenic carcinoma. J Cancer Res Ther 2009;5:31-5.

Rawat J, Sindhwani G, Gaur D, Dua R, Saini S. Clinicopathological profile of lung cancer in Uttarakhand. Lung India 2009;26:74-6.

Sheikh S, Shah A, Arshed A, Makhdummi R, Ahram M. Histological pattern of primary malignant lung tumours diagnosed in a tertiary care hospital: A prospective, longitudinal study of 536 patients from a single institute. Eur J Cancer 1996;32A: 1135-41.

Jindal SK, Behera D. Clinical spectrum of primary lung cancer: Review of Chandigarh experience of 10 years. Lung India 1990;9:84-98.

Gupta RC, Purohit SD, Sharma MP, Bhardwaj S. Primary bronchogenic carcinoma: Clinical profile of 279 cases from mid-west Rajasthan. Indian J Chest Dis Allied Sci 1998;40:109-16.

Prasad R, James P, Kesarvani V, Gupta R, Pant MC, Chaturvedi A, et al. Clinicopathological study of bronchogenic carcinoma. Respirology 2004;9:557-60.

Khan NA, Afroz F, Lone MM, Teli MA, Muzaffar M, Jan N. Profile of lung cancer in Kashmir, India: A five-year study. Indian J Chest Dis Allied Sci 2006;48:187-90.

Prasad R, Verma SK, Sanjay. Comparison between young and old patients with bronchogenic carcinoma. J Cancer Res Ther 2009;5:31-5.

Rawat J, Sindhwani G, Gaur D, Dua R, Saini S. Clinicopathological profile of lung cancer in Uttarakhand. Lung India 2009;26:74-6.

Sheikh S, Shah A, Arshed A, Makhdummi R, Ahram M. Histological pattern of primary malignant lung tumours diagnosed in a tertiary care hospital: A prospective, longitudinal study of 536 patients from a single institute. Eur J Cancer 1996;32A:1135-41.

Singh N, Aggarwal AN, Gupta D, Behera D, Jindal SK. Quantified smoking status scoring in lung cancer: A prospective, longitudinal study of 536 patients from a single institute. Eur J Cancer 1996;32A:1135-41.

Singh N, Aggarwal AN, Gupta D, Behera D, Jindal SK. Quantified smoking status scoring in lung cancer: A prospective, longitudinal study of 536 patients from a single institute. Eur J Cancer 1996;32A:1135-41.

Dey A, Biswas D, Saha SK, Kundu S, Kundu S, Sengupta A. Comparison study of clinicoradiological profile of primary lung cancer cases: An Eastern India experience. Indian J Cancer 2012;49:89-93.

Noronha V, Dikshit R, Raut N, Joshi A, Pramesh CS, George K, et al. Epidemiology of lung cancer in India: Focus on the differences between non-smokers and smokers: A single-centre experience. Indian J Cancer 2012;49:74-81.

Krishnamurthy A, Vijayalakshm K, Radhig V, Ranganathan R, Sagar TG. The relevance of “Nonsmoking-associated lung cancer” in India: A single-centre experience. Indian J Cancer 2012;49:82-8.

Sharma PK, Bansal R. Profile of lung cancer in predominantly Bihl smoking rural population of northern Himachal Pradesh. Indian J Chest Dis Allied Sci 2013;55:75-8.

Malik PS, Sharma MC, Mohanti BK, Shukla NK, Deo S, Mohan A, et al. Clinicopathological profile of lung cancer at AIIMS: A changing paradigm in India. Asian Pac J Cancer Prev 2013;14:489-94.

Mandal SK, Singh TT, Sharma TD, Amrithalingam V. Clinicopathological profile of lung cancer in a regional cancer center in Northeastern India. Asian Pac J Cancer Prev 2013;14:277-81.

Baburao A, Narayanswamy H. Clinicopathological profile and haematological abnormalities associated with lung cancer in Bangalore, India. Asian Pac J Cancer Prev 2015;16:8235-8.

Murali AN, Radhakrishnan V, Ganesan TS, Rajendranath R, Ganesan P, Selvamugy G, et al. Outcomes in lung cancer: 9-Year experience from a tertiary cancer center in India. J Glob Oncol 2017;3:459-68.
Mohan, et al.: 10-year trends in lung cancer

28. Kaur H, Sehgal IS, Bal A, Gupta N, Behera D, Das A, et al. Evolving epidemiology of lung cancer in India: Reducing non-small cell lung cancer—not otherwise specified and quantifying tobacco smoke exposure are the key. Indian J Cancer 2017;54:285-90.

29. Peng DW, Peng RP, Kuo BJ, Chiang SC. The variation of cell type in lung cancer: A study of 10,910 cases at a medical center in Taiwan between 1970 and 1993. Jpn J Clin Oncol 1996;26:229-33.

30. Gadgeel SM, Ramalingam S, Cummings G, Kront M, Wozniak AJ, Gaspar LE, et al. Lung cancer in patients 50 years of age: The experience of an academic multidisciplinary program. Chest 1999;115:1232-6.

31. Minami H, Yoshimura M, Miyamoto Y, Matsuoka H, Tsubota N. Lung cancer in women: Sex-associated differences in survival of patients undergoing resection for lung cancer. Chest 2000;118:1603-9.

32. Radzikowska E, Glaz P, Roszkowski K. Lung cancer in women: Age, smoking, histology, performance status, stage, initial treatment and survival. Population-based study of 20,561 cases. Ann Oncol 2002;13:1087-93.

33. Fujii K, Kau TY, Severson K, Kalemkarian GP. Lung cancer in women: Analysis of the national Surveillance, Epidemiology, and End Results database. Chest 2005;127:768-77.

34. Stewart SL, Cardinez CJ, Richardson LC, Norman L, Kaufmann R, Pechacek TF, et al. Surveillance for cancers associated with tobacco use—United States, 1999-2004. MMWR Surveill Sumw 2008;57:1-33.

35. Zou XN, Lin DM, Wan X, Chao A, Feng QF, Dai Z, et al. Histological subtypes of lung cancer in Chinese males from 2000 to 2012. Biomed Environ Sci 2014;27:3-9.

36. Bruce N, Dherani M, Liu R, Hosgood HD 3rd, Sapkota A, Smith KR, et al. Does household use of biomass fuel cause lung cancer? A systematic review and evaluation of the evidence for the GBD 2010 study. Thorax 2015;70:433-41.

37. Chen G, Wan X, Yang G, Zou X. Traffic-related air pollution and lung cancer in women versus men: The experience of an academic multidisciplinary program. Chest 1999;115:1232-6.

38. Wakelee HA, Dahlberg SE, Brahmer JR, Schiller JH, Perry MC, Langer CJ, et al. The Karnofsky Performance Status Scale re-examined: A cross-validation with the EORTC-C30. Qual Life Res 2012;21:879-85.

39. Wakelee HA, Dahlberg SE, Brahmer JR, Schiller JH, Perry MC, Langer CJ, et al. The Karnofsky Performance Status Scale re-examined: A cross-validation with the EORTC-C30. Qual Life Res 2012;21:879-85.

40. Travis WD, Brambilla E, Noguchi M, Nicholson AG, Geisinger KR, et al. International association for the study of lung cancer/american thoracic society/european respiratory society international multidisciplinary classification of lung adenocarcinoma. J Thorac Oncol 2011;6:428-41.

41. Fukuoka M, Wu YL, Thongprasert S, Sunpaweravong P, Leong SS, Siu LK, et al. Biomarker analyses and final overall survival results from a phase III, randomized, open-label, first-line study of gefitinib versus carboplatin/paclitaxel in clinically selected patients with advanced non-small-cell lung cancer in Asia (IPASS). J Clin Oncol 2011;29:2866-74.

42. Veldore VH, Rao RM, Kakara S, Pattanayak S, Tejaswi S, Sahoo R, et al. Epidermal growth factor receptor mutation in non-small-cell lung cancer: A 5-year experience. J Thorac Oncol 2013;5:561-5.

43. Veldore VH, Rao RM, Kakara S, Pattanayak S, Tejaswi S, Sahoo R, et al. Epidermal growth factor receptor mutation in non-small-cell lung cancer: A 5-year experience. J Thorac Oncol 2013;5:561-5.

44. Veldore VH, Rao RM, Kakara S, Pattanayak S, Tejaswi S, Sahoo R, et al. Epidermal growth factor receptor mutation in non-small-cell lung cancer: A 5-year experience. J Thorac Oncol 2013;5:561-5.

45. Veldore VH, Rao RM, Kakara S, Pattanayak S, Tejaswi S, Sahoo R, et al. Epidermal growth factor receptor mutation in non-small-cell lung cancer: A 5-year experience. J Thorac Oncol 2013;5:561-5.

46. Veldore VH, Rao RM, Kakara S, Pattanayak S, Tejaswi S, Sahoo R, et al. Epidermal growth factor receptor mutation in non-small-cell lung cancer: A 5-year experience. J Thorac Oncol 2013;5:561-5.

47. Veldore VH, Rao RM, Kakara S, Pattanayak S, Tejaswi S, Sahoo R, et al. Epidermal growth factor receptor mutation in non-small-cell lung cancer: A 5-year experience. J Thorac Oncol 2013;5:561-5.