Automatic Climate Classification of Environmental Science Literature

Jared Willett, Timothy Baldwin, David Martinez and J. Angus Webb

♠♥ Department of Computing and Information Systems
◇ NICTA Victoria Research Laboratory
♦ Department of Resource Management and Geography
The University of Melbourne, VIC 3010, Australia
jwillett@student.unimelb.edu.au, tb@ldwin.net,
davidm@csse.unimelb.edu.au, angus.webb@unimelb.edu.au

Abstract

Climate type is one of the potentially most relevant pieces of metadata for identifying studies in evidence-based environmental management. In this paper, we propose a method for automatically predicting the climate type in environmental science literature using NLP techniques, relative to a pre-existing set of climate type categories. Our main approaches combine toponym detection and resolution using two different resources with support vector machines. The results show great promise, but also further challenges, for using NLP to extract information from the vast and rapidly growing collection of environmental sciences literature.

1 Introduction

In this paper, we investigate the task of automatic prediction of climate type (e.g. temperate or arid) in environmental science abstracts. The climate type of an environmental science study is crucial information, which gives context to the research and insight into its wider implications and applicability. Availability of climate information as metadata has clear value to researchers performing a systematic review of the literature or comprehensive analysis of the evidence. However, the manual annotation of climate type over a large volume of literature is a time-consuming task. In this paper, we seek to automate the climate annotation process with natural language processing (NLP) techniques. The task of climate type classification is complex as although the label set is relatively small, the geographic granularity is fine and toponym ambiguity becomes a significant problem — toponyms commonly mentioned in the environmental sciences (e.g. Murray River) are often large and cover multiple climates, which presents difficulties for a point-based representation of toponyms. Initially, experiments are run to examine the effectiveness of the direct application of the classifiers developed by Willett et al. (2012) for study region classification. We then investigate methods for adapting these techniques to the climate task through the modification of the toponym resolution component of our classifiers. These approaches include utilizing a Köppen-Geiger climate classification world map to resolve toponyms to climate instead of region, in addition to experiments with targeting types of toponyms reliable for identifying climate.

2 Related Work

The methodology used to extract and disambiguate toponyms is based on a standard approach to geographic information retrieval, which was presented, e.g., by Stokes et al. (2008) in their study on the performance of individual components of a geographic IR system. In particular, the named entity recognition and classification (NERC) and toponym resolution (TR) components are the basis for the main classifiers in this study.

Toponym resolution is the process of taking each identified named entity from the NERC, and attempting to determine the specific location to which it is referring. This involves strategies such as shared relationships between potential identi-
fications of locations, prominence in Wikipedia, and population statistics.

As a specific instance of toponym resolution over environmental sciences data, Willett et al. (2012) proposed a method for predicting the “study region” of a published abstract, based on text categorisation techniques using features including frequency distributions of resolved toponyms and a bag of word unigrams. Their best method was able to determine the study region with an accuracy of 0.892, combining toponym resolution from DBpedia and GeoNames with the bag-of-toponyms features. We adapt this method to climate type classification, and present details of the method in Section 5.

This work is inspired in part by work on evidence based medicine (EBM). As Sackett et al. (1996) define it: “Evidence based medicine is the conscientious, explicit, and judicious use of current best evidence in making decisions about the care of individual patients.” The reasons for moving towards an evidence-based model of environmental management have obvious parallels to the motivation for the practice of EBM. Although the structure of evidence will differ between the domains, many of the techniques applied in research for EBM are likely to have application for our current task. Successful applications of NLP to EBM include sentence categorization for information on randomized controlled trials (Chung, 2009; Kim et al., 2011), the labelling of sentences with “PICO” (Patient/Problem, Intervention, Comparison and Outcome) labels to aid clinical information retrieval (Boudin et al., 2010), and the automatic assignment of Medical Subject Headings (MeSH) terms to PubMed abstracts (Gaudinat and Boyer, 2002).

3 Resources

In this section, we provide details of key resources used in this paper, namely:

- Eco Evidence, a manually-curated database of metadata for environmental science literature, which provides the basis of the data used in our experiments
- DBpedia and GeoNames, as resources for toponym resolution
- the Köppen-Geiger Climate Map of Peel et al. (2007)

3.1 Eco Evidence

Eco Evidence (Webb et al., 2011) is a tool for literature review and evidence synthesis, consisting of two parts. The first is the underlying Eco Evidence Database (EED) (Webb et al., 2012a), in which the evidence items are stored. The citations for environmental studies are catalogued in the database as separate entities, and evidence items may be stored by means of linking them to the citation for the study from which the information came. Additional details about the study’s location, scale and ecosystem can also be stored with each citation to aid the process of filtering relevant evidence. An example of a record in the EED is given in Figure 1. The database is in active use in a number of research projects currently, and evidence therein has also formed the basis of several published systematic reviews (Webb et al., 2012b).

The Eco Evidence Analyser (EEA) retrieves the potentially relevant evidence from the EED for a hypothesised cause and effect, then weights and analyses the selected evidence to determine whether there is adequate evidence to support or reject the hypothesis. For the Eco Evidence Analyser to be effective, the underlying EED must contain as much evidence as possible. However, the database has to date been populated through manual annotation of citations with their evidence items, which is a time-consuming process (Webb et al., 2012b). Our work is motivated by the possibility of streamlining the population of the EED, by automatically extracting climate information, but potentially in the future extending NLP-based extraction to other evidence items.

3.2 Toponym Resolution

Toponym resolution is a key component of our experiments, and we worked with two different resources in disambiguating toponyms: DBpedia and GeoNames.

DBpedia (http://www.dbpedia.org) is a database of structured content extracted from Wikipedia. We utilize DBpedia as a source of information for resolving ambiguous toponyms by finding the DBpedia pages for likely candidates based on the toponym name, and extracting geographic coordinates to identify their location. For terms with multiple meanings, DBpedia will contain a disambiguation page. We use the disambiguation page in one of two ways:

1. the top-result TR approach: the top-ranked
Citation details
Title: Survival of migrating sea trout (Salmo trutta) and Atlantic salmon (Salmo salar) smolts negotiating weirs in small Danish rivers
Author(s): Aarestrup K. and Koed Å.
Year: 2003
Reference type: Journal article (refereed)
Source title: Ecology of Freshwater Fish
Volume: 12
Edition/Issue: 3
Pages: 169-176
ISI code: ISI:000184743400003

Content summary
Abstract: The survival of brown trout and Atlantic salmon smolts during passage over small weirs was estimated in two small Danish rivers during the spring of 1998. Parallel groups of smolts were released upstream and downstream of the weirs and recaptured in traps further downstream. The results showed a smolt loss varying from 18 to 71% for trout and 33% for salmon. Furthermore, the surviving smolts from the upstream groups were delayed for up to 9 days compared to downstream groups. The study demonstrated that an increased proportion of triial river discharge allocated to fish passage increased the smolt survival. Losses may be because of fish penetrating grids erected at fish farm intakes, predation and delays, which may lead to desmoltification. The low survival may seriously threaten both the long-term viability of wild populations of anadromous salmonids and the outcome of the intensive stocking programme in Denmark.

Keywords: Salmo trutta; Salmo salar; smolt; downstream migration; survival; flow;

Classifications
Study classification: Analysis of field data
Study region: Europe
Spatial extent: Region
Temporal extent: Months
Climate type: Temperate
Ecosystem type: Lowland

Evidence items
Tools	Details
Select	Linkage: Δ flow regulation Δ biota

Figure 1: Screen capture of an example citation in the Eco Evidence Database, with associated classifications and an evidence item.
result is returned; in the event that coordinates are unavailable for the first possibility on the disambiguation page, no resolution is recorded for the term.

2. the top-5 approach: up to the top-5 results are used to represent a given toponym

Another tool we use for toponym resolution is GeoNames (http://www.geonames.org), a gazetteer which is based on data from a wide variety of sources. A toponym query via the GeoNames search API provides a ranked list of geospatial results, each of which is linked to information such as geo-coordinates, and the population of towns/cities.

3.3 Köppen-Geiger Climate Map

We map geographic coordinates from DBpedia to a world map of Köppen-Geiger climate classification (Peel et al., 2007). The Köppen-Geiger climate classification system divides climates into five main groups, as detailed in Figure 2 (with each climate type represented by subclasses of the prefix indicated in parentheses): Tropical (“A*”), Arid (“B*”), Temperate (“C*”), Cold (“D*”) and Polar (“E*”).

4 Dataset

The dataset used in our experiments was sourced from the collection of 3977 titles and abstracts from the Eco Evidence database, each of which has been manually annotated with a climate type. The climate types are made up of 5 basic types — Temperate, Tropical, Dry, Polar and Alpine — in addition to Multiple (i.e. multiple basic climate types, without specification of which specific types) and Other. Eco Evidence does not capture information on which basic classes make up a Multiple label, so we are not able to treat the problem as a multi-label classification task. Instead, Multiple is represented in the same way as the basic classes. Note the slight mismatch with the climate types used in the Köppen-Geiger climate classification.

The Eco Evidence dataset is quite unbalanced, as detailed in Table 1: Temperate is the majority class by a very large margin, and Polar and Other are very small minority classes.

5 Methodology

We build classifiers using the continent-level study region classification method of Willett et al.
Climate EU AU AF AN AS NA SA OC MU OT TOTAL
Temperate 768 390 46 0 98 1055 9 98 13 1 2478
Tropical 1 102 45 0 65 51 98 10 7 1 380
Dry 9 89 67 0 21 162 7 0 1 0 356
Polar 2 0 0 1 0 5 1 1 2 0 12
Alpine 139 1 0 0 39 278 3 0 1 2 463
Multiple 22 24 9 0 13 102 1 1 113 1 286
Other 0 1 0 0 0 1 0 0 0 0 2
TOTAL 941 607 167 1 236 1654 119 110 137 5 3977

Table 1: Distribution for the gold standard climate classifications across the gold standard study region classifications (EU = Europe, AU = Australia, AF = Africa, AN = Antarctica, AS = Asia, NA = North America, SA = South America, OC = Oceania [other than Australia], MU = Multiple, OT = Other; the boldfaced number indicates the majority-class for a given continent)

(2012). First, the Stanford Named Entity Recogniser (Finkel et al., 2005) is used to identify location-type NEs in each abstract. Each NE is then mapped to a set of toponyms, based on DBpedia or GeoNames, and the counts of toponyms are aggregated into bag-of-toponyms (BoT) features. Finally, a linear-kernel support vector machine (SVM) is used to train a supervised classifier.

We experiment with both: (1) study region classification (at the continent level), and a majority-class classification for that continent; and (2) replacement of continent-level classes from the original paper with climate-based classes. In the latter case, the toponyms are resolved to climates using the Köppen-Geiger climate classification system. One issue that arises with the use of the climate map is that the classifications of the climate map do not all directly correspond to labels used in the dataset. Temperate, Tropical and Polar have direct matches, but the climate map classes Cold and Arid do not. These two labels were mapped to the Alpine and Dry labels respectively for the benchmark system. Note that this is only relevant for the majority-class classification; in the case of the toponym resolution, the supervised classifier is able to learn its own mapping between the Köppen-Geiger climate classification system and the 5+2-class climate system used by Eco Evidence.

We also include structured features. That is, separate frequency distributions of the number of tags resolving to each climate type are used for each zone of the abstract, based on partitioning the abstract into 4 equal-sized zones (based on word count). Each of these frequency distributions are treated as separate vectors of unique features. The title of the paper is treated as an additional fifth zone and feature vector.

We also present a majority class baseline, that selects the majority climate type from the training data (Temperate). In addition, we experiment with taking a majority vote across the climate type(s) that each toponym in the abstract resolves to.

Subsequent experiments attempt to target only toponyms more likely to reliably identify climate. This was done by excluding toponyms of the GeoNames feature code “A”, which identifies countries, states, regions, and similar entities. These experiments are only completed with the GeoNames multiple result classifiers, as no reliable method of identifying the form of toponym is available in DBpedia. These experiments are performed based on the hypothesis that the point-based representation of coordinates extracted from GeoNames for these coarse-grained toponyms may prove problematic, as larger areas are more likely to contain more than one climate type. Precision may therefore be enhanced by filtering these toponyms out.

For all classifiers, we evaluate our model with classification accuracy, measured using 10-fold stratified cross-validation over the full dataset. As our learner, we use LIBSVM with a linear kernel (Chang and Lin, 2011).

6 Results

We first present results based on the methodology of Willett et al. (2012) for classifying study region, simply mapping toponyms onto continental study

1See http://www.geonames.org/export/codes.html for a comprehensive list.
regions, and replacing the class set with climate types. The results are presented in Table 2. The best results are achieved by using the DBpedia and GeoNames top results (“TR”) together with both bag-of-toponyms and bag-of-words features, although this performs only marginally better than the bag-of-toponyms by itself. The results in this table suggest the continent resolution features add no relevant information for climate classification over bag-of-words/toponyms features. However, location-based features do appear to have added relevance, as the bag-of-toponyms outperforms the bag-of-words.

We next experiment with resolving toponyms to climate types, as detailed in Table 3. As we can see, our classifiers struggle to outperform our baseline classifiers. The majority vote classifiers (“MV”) — where the majority climate type for the different toponyms is returned — performs very poorly on this dataset, achieving an accuracy below the Zero-R classifier which simply labels every instance with the majority class. The SVM-based supervised approach (“SVM”) is more successful, with the top accuracy of 0.695 achieved by the DBpedia (“dbp”) and GeoNames (“Geo”) top-result (“TR”) classifier in combination with a bag-of-toponyms (“T”). Bag-of-toponyms is clearly the most effective set of the standalone features, with classifiers of any toponym resolution method consistently achieving the greatest accuracy when used in combination with bag-of-toponyms features. However, even the highest-performing classifiers achieve only a minor improvement over the best baseline scores, and the overall accuracy is well below that achieved in the study region task.

The difference between DBpedia and GeoNames is negligible on all supervised classifiers. Features which provide structural data (“S”) have no substantial effect on the performance of the classifiers, consistent with the findings of Willett et al. (2012). The granularity filter, although providing a slight boost to the majority vote classifier, is similarly ineffective: a total of 2991 possible resolutions were filtered out across 1280 unique
Label	Tropical	Arid	Temperate	Cold	Polar
Tropical	**0.445**	0.143	0.384	0.027	0.000
Dry	0.032	**0.446**	0.353	0.166	0.003
Temperate	0.009	0.186	**0.541**	0.260	0.004
Alpine	0.002	0.141	0.184	**0.658**	0.015
Polar	0.000	0.000	0.278	0.611	**0.111**
Multiple	0.023	0.202	0.427	0.344	0.004
Other	0.000	0.333	0.667	0.000	0.000

Table 4: Toponym mapping of resolved climate from the Köppen-Geiger climate map to the corresponding abstract’s gold standard climate label.

toponyms, but due to the sparsity of toponyms in the text, the loss of information from filtering out these resolutions outweighs any gain in precision from avoiding ambiguity in climate resolution.

In order to investigate how much of the problem could be attributed to incorrect disambiguation, a classifier with “oracle” toponym disambiguation is also tested. This oracle determined the proportion of instances in the dataset that had at least one climate resolution of a toponym that matches the gold standard label out of all the possible disambiguations from the top 5 results of both DBpedia and GeoNames. The number of matches was only 2552 out of 3977 (64.2%) abstracts. This low percentage suggests that the source of error cannot be primarily explained by toponym disambiguation. Another possible source of error for correctly disambiguated toponyms is that the toponym is resolved to the incorrect climate.

Based on the chosen set of label mappings, the distribution of resolved toponyms using the top result in DBpedia across the set of abstracts for each gold standard label was collected (Table 4). For each map label, the highest proportion of toponyms resolves to the expected dataset label. However, significant proportions are mismatched in all cases. One cause of the poor accuracy in climate resolution is that identifying climate generally requires a greater degree of geographic accuracy than resolving toponyms to a continent. Regions of continental scale generally contain more than one climatic zone (as seen in Figure 2). Therefore, coarse-grained toponyms representing countries or continents that provided valuable information in classification of study region are no longer of use. The granularity filter classifiers were developed with the intention of filtering these out of the dataset. However, there was too much loss of information from the already small number of available toponyms.

7 Conclusion

In this paper, we have explored NLP approaches to classifying climate type in environmental science abstracts based on resolving toponyms detected within the abstract to their climate type. This was done by first disambiguating the toponym with DBpedia and/or GeoNames to a set of geographic coordinates, then referencing the coordinates on a world map of climate classification. Supervised approaches with support vector machines also included features based on bag-of-words, bag-of-toponyms, and structural information. The classifiers developed in these experiments had limited success in outperforming baseline approaches. Bag-of-toponyms were demonstrated to be the most useful feature set, and the highest-performing classifier was DBpedia and GeoNames top-result toponym resolution in combination with bag-of-toponyms, achieving 0.695 classification accuracy.

Acknowledgments

NICTA is funded by the Australian Government as represented by the Department of Broadband, Communications and the Digital Economy and the Australian Research Council through the ICT Centre of Excellence program.

References

F. Boudin, J.Y. Nie, and M. Dawes. 2010. Clinical information retrieval using document and PICO structure. In Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics, pages 822–830, Los Angeles, USA.
C.-C. Chang and C.-J. Lin. 2011. LIBSVM: A library for support vector machines. *ACM Transactions on Intelligent Systems and Technology*, 2:27:1–27:27. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

G. Chung. 2009. Sentence retrieval for abstracts of randomized controlled trials. *BMC Medical Informatics and Decision Making*, 9(1):10.

J.R. Finkel, T. Grenager, and C. Manning. 2005. Incorporating non-local information into information extraction systems by Gibbs sampling. In *Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics*, pages 363–370, Ann Arbor, USA.

A. Gaudinat and C. Boyer. 2002. Automatic extraction of MeSH terms from Medline abstracts. In *Workshop on Natural Language Processing in Biomedical Applications*, pages 53–57, Nicosia, Cyprus.

S. Kim, D. Martinez, L. Cavedon, and L. Yencken. 2011. Automatic classification of sentences to support evidence based medicine. *BMC Bioinformatics*, 12(Suppl 2):S5.

S.E. Overell and S. Rüger. 2006. Identifying and grounding descriptions of places. In *3rd Workshop on Geographic Information Retrieval*, Seattle, USA.

M.C. Peel, B.L. Finlayson, and T.A. McMahon. 2007. Updated world map of the Köppen-Geiger climate classification. *Hydrology and Earth System Sciences*, 11:1633–1644.

D.L. Sackett, W. Rosenberg, JA Gray, R.B. Haynes, and W.S. Richardson. 1996. Evidence based medicine: what it is and what it isn’t. *British Medical Journal*, 312(7023):71–72.

D. Santos and M.S. Chaves. 2006. The place of place in geographical IR. In *3rd Workshop on Geographic Information Retrieval*, Seattle, USA.

N. Stokes, Y. Li, A. Moffat, and J. Rong. 2008. An empirical study of the effects of NLP components on geographic IR performance. *International Journal of Geographical Information Science*, 22(3):247–264.

J.A. Webb, S.R. Wealands, P. Lea, S.J. Nichols, S.C. de Little, M.J. Stewardson, R.H. Norris, F. Chan, D. Marinova, and R.S. Anderssen. 2011. Eco Evidence: using the scientific literature to inform evidence-based decision making in environmental management. In *MODSIM2011 International Congress on Modelling and Simulation*, pages 2472–2478, Perth, Australia.

J.A. Webb, S.C. de Little, K.A. Miller, and M.J. Stewardson. 2012a. Eco Evidence Database: a distributed modelling resource for systematic literature analysis in environmental science and management. In *2012 International Congress on Environmental Modelling and Software*, pages 1135–1142, Leipzig, Germany.

J.A. Webb, E.M. Wallis, and M.J. Stewardson. 2012b. A systematic review of published evidence linking wetland plants to water regime components. *Aquatic Botany*, 103:1–14.

J. Willett, T. Baldwin, D. Martinez, and A. Webb. 2012. Classification of study region in environmental science abstracts. In *Proceedings of the Australasian Language Technology Association Workshop 2012*, pages 118–122, Dunedin, New Zealand.