Role of Cadmium and Lead in Nephrotoxicity

Hafiza Samar Fatima

Affiliation: College of Earth and Environmental Science, Punjab University, Lahore, Pakistan

Corresponding author: Hafiza Samar Fatima, College of Earth and Environmental Science, Punjab University, Lahore, Pakistan Email: hafizasamar6@gmail.com

Citation: Fatima HS. Role of Cadmium and Lead in Nephrotoxicity (2018) Edelweiss Appli Sci Tech 2: 74-78

Abstract

Nephrotoxicity stands amongst the most widely recognized kidney issues and happens when human body is presented to a medication or toxins that give harm to kidneys. At the point when kidney harm happens, patient cannot free his assortment of abundance urine, and squanders. It can be acute and chronic. Lead and cadmium are the two most commonly known nephrotoxic metals. People who work or live in such environmental settings which made them exposed to these toxins are at risk. Prolonged exposure to these metals leads to their accumulation in tissues especially kidneys. Proximal tubular dysfunction, hypertension, hyperuricemia and decreased glomerular filtration rate are the common effects of cadmium and lead nephrotoxicity respectively. Proper medication can reduce these dysfunctional ties but best treatment is to reduce exposure so one can avoid the accumulation of these toxins in kidneys and other tissues.

Keywords: Nephrotoxicity, kidneys, cadmium, lead.

Introduction

The kidney is a fundamental organ required by the body to play out a few imperative capacities including the support of homeostasis, direction of the extracellular environment, for example, detoxification, and discharge of dangerous metabolites and medications [1]. The kidneys are a couple of bean molded organs situated in the back of the abdomen area. Every kidney is around 4 or 5 inches long - about the extent of a clenched hand [2]. The bean-molded kidneys have an external arched side and an internal curved side called the renal hilus. A thin connective tissue called the renal capsule encompasses and keeps up the kidneys shape and ensures the inward tissues. Inside the renal capsule is the external layer called the renal cortex, deep to this layer is the renal medulla. Each pinnacle of the renal pyramid is associated with a minor calyx, an empty gathering tube for urine [3].

In people, the kidneys are found high in the stomach pit, one on every side of the spine, and lie in a retroperitoneal position at a marginally diagonal point [4]. An ordinary human kidney contains 800,000 to 1.5 million nephrons [5]. The kidney is habitually an objective organ for metal harmfulness since it concentrates huge numbers of these components amid discharge and has countless procedures which are exceedingly touchy to metal-actuated irritation [6].

Nephron is the essential auxiliary and utilitarian unit of the kidney. Its central capacity is to manage the centralization of water and solvent substances like sodium salts by sifting the blood, reabsorbing what is required and discharging the rest as urine. A nephron takes out squanders from the body, directs blood volume and pulse, controls levels of electrolytes and metabolites, and manages blood pH [7].

Nephrotoxicity is a kidney-particular toxicity in which discharge does not go easily inferable from dangerous chemicals or medications [8]. Chemotherapy or anticancer drug has been of constrained use because of these toxins in kidneys and other tissues like sodium salts by sifting the blood, reabsorbing what is required and discharging the rest as urine. A nephron takes out squanders from the body, directs blood volume and pulse, controls levels of electrolytes and metabolites, and manages blood pH [7].

Nephrotoxicity is a kidney-particular toxicity in which discharge does not go easily inferable from dangerous chemicals or medications [8]. Chemotherapy or anticancer drug has been of constrained use because of these toxins in kidneys and other tissues like sodium salts by sifting the blood, reabsorbing what is required and discharging the rest as urine. A nephron takes out squanders from the body, directs blood volume and pulse, controls levels of electrolytes and metabolites, and manages blood pH [7].

Diagnosis

Nephrotoxicity can be analyzed through a straightforward blood test. Assessment of nephrotoxicity through blood tests incorporates the estimations of Blood Urea Nitrogen (BUN), grouping of serum creatinine, glomerular filtration rate and creatinine freedom. In any case, these appraisals of nephrotoxicity are just conceivable when a case, these appraisals of nephrotoxicity are just conceivable when a.
understanding into the component of the onset of these toxicants to antagonistically influence certain gatherings or people [8]. The ID of biomarkers that can be resolved from blood or urine came about because of introduction to a nephrotoxicant is a promising methodology [13]. Particularly, urine is viewed as appealing and proficient example since it is non-intrusive and simple to be gotten in impressive sums [14].

Factors
Various components, for example, dietary status, associative introduction to a few follow components, nearness of high-fondness metal-restricting proteins, or other intracellular terminals for metal sequestration and cell sort are altogether known to assume real parts in deciding both the nature and degree of metal-or metalloid-instigated nephrotoxicity [15].

Metals
Cadmium and lead are two of the most common and two of the most nephrotoxic metals known to man [16]. These are known to be thought by the kidney and to deliver a range of organelle/biochemical wounds to the nephron by various components.

Cadmium

Exposure Sources and Absorption: Nephrotoxicity brought about by cadmium has been depicted in settings of modern presentation and ecological contamination. Cadmium, a metal customarily got as a by-result of zinc refining, is utilized modernly in plating of steel, colors, plastics, compounds, and nickel-cadmium batteries, and in atomic and electronic building [17]. Since the biologic half-existence of cadmium is long (more than 30 year), delayed low-level introduction prompts to extreme collection in specific tissues, particularly the kidney [18]. Absorption of lead relies upon the physical and substance condition of the metal, and is impacted by age, physiological status, healthful status and hereditary elements [19]. Natural cadmium introduction happens in occupants living in vicinity to modern contamination [20]. Furthermore in overwhelming smokers [21], as tobacco smoke yields high cadmium focuses [22].

Cadmium Induced Nephrotoxicity Mechanism
In circulating blood, it binds to albumin and is transported to the liver, where it binds to glutathione (GSH) and Metallothionein-1 (MT-1). The Cd-MT-1 complex is secreted in bile and subsequently reabsorbed into the blood by means of enterohelial circulation. Cd-MT-1 is a low molecular weight complex (≤7kDa) which is easily filtered by the glomerulus and is entirely reabsorbed in the S1 segment of the PCT (Proximal Convulated Tubule) by endocytosis in a process mediated by the proteins megalin and cubilin [23]. The ZIP-8 transporter is also located in PCT cells, and it is able to transport Cd and other divalent metals through the apical membrane of these cells; however, the role it plays in Cd toxicity is unknown [24].

Inside the intracellular medium of PCT cells, the Cd-MT-1 complex is put away and separated by lysosomes. Free Cd is then transported to the cytoplasm by lysosomal DMT-1(Divalent Metal Transporter) [25]. Activation of protein kinase C builds articulation of DMT-1, in this manner expanding tubular danger by Cd [26]. Free Cd amasses in mitochondria, obstructing the respiratory chain at complex III. These outcomes in mitochondrial brokenness and the development of free radicals, which initiates caspase proteins and the apoptosis procedure. Free Cd likewise ties to protein sulhydryl gatherings and influences the structure and capacity of the proteins. It has been shown that Cd meddles with enzymatic exercises of the calcium-calmodulin complex, hinders Na+K+-ATPase action, and animates movement by MAP (Mitogen Activated Protein) kinases. In paracellular tight intersections, it influences the dispersion of paracellular tight intersection proteins and abatements transepithelial resistance [27].

Just 10% of sifted Cd is reabsorbed into distal finishes of the nephron, and it is conceivable that the Cd's hypercalciuric impact is the aftereffect of hindrance of calcium direct action in the distal tubule [28]. Another nephrotoxicity instrument is the one interceded by the development of against MT antibodies; introduction to Cd builds MT generation in the liver and kidneys, which constitutes a defensive reaction to farthest point its lethality. In any case, once the MT's ability for Cd stockpiling has been surpassed, free Cd can initiate the arrangement of antibodies against MT, which are likewise lethal to PCT cells [29].

Figure 1: Physiopathological mechanisms of cadmium-induced kidney injury DM T-1: divalent metal transporter 1; M T: metallothionein.

Individuals with beginning renal harm are more helpless to the nephrotoxic impacts of Cd [30]. In patients with diabetic nephropathy, urinary discharge of Cd is straightforwardly identified with expanded urinary discharge of beta-2-microglobulin and albuminuria [31]. Determining Cd levels in the bloodstream is used to diagnose acute exposure, whilst urinary excretion of Cd is used to assess Cd body burden and is useful for evaluating chronic exposure [32]. Cadmium because of its long half-life, initiates the amalgamation of a protein called metallothionein by the liver, which goes about as cadmium scavenger. Low metallothionein levels, press lack, more established age, female sexual orientation, smoking history, and place of living arrangement (vicinity to mechanical cadmium sources) are hazard components for creep mium toxicity [23].

Clinically, cadmium nephro-poisonous quality presents with elements of proximal tubular brokenness, for example, glucosuria, ami-noaciduria, and low atomic weight professional proteinuria. These indications of poisonous quality may happen at much lower levels of urinary cadmium focuses than those recog-nized as poisonous by the World Health Organization. Other renal signs incorporate hypercalciuria and renal stones [26].

Citation: Fatima HS. Role of Cadmium and Lead in Nephrotoxicity (2018) Edelweiss Appli Sci Tech 2: 74-78
Lead Induced Nephrotoxicity Mechanism

Pb attached low atomic weight proteins (<1% of the aggregate) is sifted unreservedly at the glomerulus and is reabsorbed by PCT cells by endocytosis. Inside the cell, Pb causes mitochondrial-harm, development of free radicals, intracellular consumption of GSH and apoptosis [38]. Pb likewise influences enzymatic responses in which calcium assumes a part, and the calcium-detecting receptor can likewise be initiated by Pb, which proposes that there might be different instruments for lead nephrotoxicity [39].

Pb prompts initiation of translation atomic element kappa B, enactment of the intrarenal renin-angiotensin framework and fascination of macrophages, which creates a fiery procedure in the renal interstitium that might be included in the improvement of tubulointerstitial harm and high blood pressure [40]. In endothelial cells, it has been demonstrated that expanded development of free radicals instigated by Pb diminishes nitric oxide generation and the declaration of the protein guanylate cyclase. These impacts clarify how hypertension can create accordingly movement of NADPH oxidase by expanding generation of hydrogen superoxide and hydrogen peroxide, in this way influencing oxidative anxiety and the intracellular redox potential [41]. Nephrotoxicity connected with lead may have acute and chronic indications. Intense lethality causes coordinate proximal tubular damage, likely coming about because of intranuclear, cytoplasmic, and mitochondrial consideration bodies made out of a lead–protein complex. Intense poisonous quality most normally shows with a Fanconi sort syndrome, including glucosuria, aminoaciduria, and phosphate squandering, conceivably created by mitochondrial brokenness. Incessant lead introduction may bring about hypertension, gout, and interstitial nephritis and fibrosis. The incessant nephrotoxicity of lead traditionally shows as diminished assessed glomerular filtration rate (eGFR), with insignificant proteinuria and insipid urine residue. Drawn out exposures, regardless of the possibility that low level, may bring about CKD (chronic cadmium disease) by creating interstitial nephritis, hypertension and hyperuricemia [42].

Treatment

Intense lead inebriation without renal inclusion or lead nephropathy customarily is treated with EDTA chelation. Inspite of the fact that sodium EDTA has been demonstrated to have dangerous inclinations as a result of its calcium chelation properties; calcium EDTA in suitable measurements is helpful and generally innocuous. Progressed renal ailment identified with lead inebriation (GFR under half of ordinary) must be dealt with warily, on the grounds that EDTA is sifted unreservedly at the glomerulus and is reabsorbed by PCT cells as a result of its calcium chelation [36].

Conclusion

Kidneys are the consequential organs present in our body whose basic function is to filter waste from blood. Nephrotoxicity by various exogenous substances specially metals like cadmium and lead are well known because of their common prevalence in surrounding environment. Both cadmium and lead are the most common nephrotoxic metals...
which alter the normal kidney functions and make kidney susceptible to various abnormalities which can be chronic and acute. Common outcomes of nephrotoxicity are hypertension, hyperuricemia and decreased glomerular filtration rate. Their abundant availability in the surrounding environment enhances the chance of exposure to these metals and accumulation in body tissues. Chelation therapy is playing role in its treatment but most effective of all the treatments to avoid or limit exposure to lead and cadmium.

References

1. Ferguson MA, Vaidya VS and Bonventre JV. Biomarkers of nephrotoxic acute kidney injury (2008) Toxicology 245: 182-193. https://doi.org/10.1016/j.tox.2007.12.024
2. WebMD (2014) The kidneys: structure and function and dysfunction.
3. New Health Adviser (2014) kidney structure and function.
4. Boron WF. Medical Physiology: A Cellular and Molecular Approach (2004) Elsevier 122-121.
5. Guyton AC and Hall JE. Textbook of Medical Physiology (2006) Elsevier Saunders, USA 240-310.
6. Springer Link (2002) Mechanism of Metal induced nephrotoxicity.
7. Maton A, Hopkins J, McLaughlin WC, Johnson S, Warner QM, et al. Human Biology and Health (1993) Englewood Cliffs 345-347.
8. Finn W and Porter G. Urinary biomarkers and nephrotoxicity Clinical Nephrotoxins (2003) Kluwer Academic Publishers 621-655. https://doi.org/10.1007/1-4020-2586-6_33
9. Kohli HS, Bhaskaran MC, Muthukumar T, Thennarasu K, Sud KJ, et al. Treatment-related acute renal failure in the elderly: A hospital-based prospective study (2002) Nephrol Dialysis Transplant 15: 212-217. https://doi.org/10.1093/ndt/15.5.212
10. Madden EF, Fowler BA. Mechanism of nephrotoxicity from metal combinations: A review (2000) Drug Chemical Toxicol 23: 1-2. https://doi.org/10.1081/DCT-100100998
11. Bergeron M, Goodyear PR, Gougoux A and Lapointe JY. Pathophysiology of renal hyperaminocaudrias and glucosuria (2000) The Kidney, Physiology and Pathophysiology 2: 2211-2233.
12. Kirtane AJ, Leder DM, Waikar SS, Chertow GM, Ray KK, et al. Serum blood urea nitrogen as an independent marker of interaction among cadmium, calcium, and zinc transport along the rat nephron in vivo (2004) Am J Physiol Renal Physiol 287: 1067-1075. https://doi.org/10.1152/ajprenal.00120.2004
13. Madden EF, Fowler BA. Mechanism of nephrotoxicity from metal combinations: A review (2000) Drug Chemical Toxicol 23: 1-2. https://doi.org/10.1081/DCT-100100998
14. Bergeron M, Goodyear PR, Gougoux A and Lapointe JY. Pathophysiology of renal hyperaminocaudrias and glucosuria (2000) The Kidney, Physiology and Pathophysiology 2: 2211-2233.
15. Shao C, Li M, Li X, Wei L, Zhu L, et al. A tool for biomarker discovery in the urinary proteome: A manually curated human and animal urine protein biomarker database (2011) Molecular Cell Proteomics 10: 75-79. https://doi.org/10.1074/mcp.M110.010975
16. Wu Y, Yang L, Su T, Wang C, Liu G, et al. Pathological significance of a panel of urinary biomarkers in patients with drug-induced tubulointerstitial nephritis (2010) Clinical J Am Society Nephrol 5: 1781-1786. https://doi.org/10.1067/j.cjas.2005.02.068
17. Shao C, Li M, Li X, Wei L, Zhu L, et al. A tool for biomarker discovery in the urinary proteome: A manually curated human and animal urine protein biomarker database (2011) Molecular Cell Proteomics 10: 75-79. https://doi.org/10.1074/mcp.M110.010975
18. Gonick HC. Trace metals and the kidney (1978) Miner Electrolyte Metabolism 1: 107-120.
19. International Programme on Chemical Safety (IPCS), Inorganic lead.Environmental Health Criteria. World Health Organisation, Geneva, 1995.
20. EFSA (European Food Safety Authority) Panel on Contaminants in the Food Chain (CONTAM), Scientific Opinion on Lead in Food (2010) EFSA J 8: 1570-2010.
21. Joint FAO/WHO Expert Committee on Food Additives (JECFA), WHO Food Additives Series: 64. Safety Evaluation of Certain Food Additives and Contaminants. Prepared by the Seventy-third meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA) 2010.
22. International Programme on Chemical Safety (IPCS). Evaluation-Monograph on Lead (2007) Inorganic.
23. Klassen RB, Crenshaw K, Kozyraki R, Verroust PJ, Tio L, et al. Megalin mediates renal uptake of heavy metal metallothionein complexes (2004) Am J Physiol-Renal Physiol 347-403. https://doi.org/10.1152/ajprenal.00233.2003
24. Edwards JR, Prozialeck, Cadmium diabetes and chronic kidney disease (2009) Toxicol Appl Pharmacol 238: 289-293. https://doi.org/10.1016/j.taap.2009.03.007
25. Liu Y., Liu J and Klaassen CD. Metallothionein-null and wild type mice show similar cadmium absorption and tissue distribution following oral cadmium administration (2001) Toxicol Appl Pharmacol 175: 253-259. https://doi.org/10.1006/taap.2000.9244
26. Olivi L, Sisk J and Bressler J. Involvement of DM T1 in uptake of Cd in MDCK cells: role of protein kinase C (2001) Am J Physiol-Renal Physiol 288. 1133-1143. https://doi.org/10.1152/ajprenal.00210.2004
27. Barbier O, Jacquillet M, Tauc M, Poujol P and Cougon M. Acute study of interaction among cadmium, calcium, and zinc transport along the rat nephron in vivo (2004) Am J Physiol Renal Physiol 287: 1067-1075. https://doi.org/10.1152/ajprenal.00120.2004
28. Klaassen CD, Liu J and Diwan BA. Metallothionein protection of cadmium toxicity (2009) Toxicol Appl Pharmacol 238: 215-220. https://doi.org/10.1016/j.taap.2009.03.026
29. Hotz P, Buchet JP, Bernard A, Lison D and Lauwerys R. Renal effects of low -level environment al cadmium exposure: 5-year follow -up of a subcohort from the Cadmibel study (1999) The Lancet 354: 1508-1513.
30. Nordberg G, Chen L, Lei L, Jin T and Nordberg M. Plasma metallothionein antibody, urinary cadmium, and renal dysfunction in a Chinese type 2 diabetic population (2016) Diabetes Care 29: 2682-2687. https://doi.org/10.2337/dc16-1003
31. Bernard A. Cadmium and its adverse effects on human health (2008) Ind J Medical Res 128: 557-564.
32. Blanusa M, Kostial K, Restek SN, Piasek M, Jones, MM, et al. Mobilization of cadmium by meso and racemic-2,3-dimercaptopropanionic acid (DMPS) in rats (2000) Pharmacol Toxicol 87: 179-181. http://dx.doi.org/10.1034/j.1600-0773.2000.001.70.x
33. Waters RS, Bryden NA, Patterson KY, Veclion C and Anderson RA. EDTA chelation effects on urinary losses of cadmium, calcium, chromium, cobalt, copper, lead, magnesium, and zinc (2001) Biological Trace Element R 63: 207-221. https://doi.org/10.1385/BTER:83-3:207

Citation: Fatima HS. Role of Cadmium and Lead in Nephrotoxicity (2018) Edelweiss Appl Sci Tech 2: 74-78
35. World Health Organization (WHO), Lead in Drinking-water (2011) Background document for development of WHO Guidelines for Drinking-water Quality.
36. Agency for Toxic Substances and Disease Registry (ATSDR), Toxicological Profile for Lead 2007, US Department of Health and Human Services, Atlanta, US.
37. Abu'dhaise BA, Alzoubi MA, Rabi AZ and Alwash RM. Lead exposure in indoor firing ranges: environmental impact and health risk to the range users (1996) Int J Occupational Med Environmental Health 9: 323-329.
38. Wang L, Wang H, Hu M, Cao J and Chen D. Oxidative stress and apoptotic changes in primary cultures of rat proximal tubular cells exposed to lead (2009) Archive Toxicol 83: 417-427. https://doi.org/10.1007/s00204-009-0425-z
39. Handlogten M, Shiraishi N, Awata H, Huang C and Tyler MR. Extracellular Ca2-sensing receptor is a promiscuous divalent cation sensor that responds to lead (2000) Am J Physiology Renal Physiology 279: 1083-1091. https://doi.org/10.1152/ajprenal.2000.279.6.F1083
40. Bravo Y, Quiroz Y, Ferrebuz A and Vaziri N. Mycophenolate mofetil administration reduces renal inflammation, oxidative stress and arterial pressure in rats with lead-induced hypertension (2007) Ame J Physiology Renal Physiology 293: 616-623. https://doi.org/10.1152/ajprenal.00507.2006
41. Bannon DI, Abounader R, Lees PS and Bressler JP. Effect of DMT1 knockdown on iron, cadmium, and lead uptake in Caco-2 cells (2003) Am J Physiol- Cell Physiol 284: 44-50. https://doi.org/10.1152/ajpcell.00184.2002
42. Lai LH, Chou SY and Wu FY. Renal dysfunction and hyperuricemia with low blood lead levels and ethnicity in community-based study (2008) Sci Total Environment 401: 39-43. https://doi.org/10.1016/j.scitotenv.2008.04.004

Citation: Fatima HS. Role of Cadmium and Lead in Nephrotoxicity (2018) Edelweiss Appl Sci Tech 2: 74-78