Strangeness and bulk freeze-out properties at RHIC

A Iordanova (for the STAR Collaboration)

Department of Physics (M/C 273), University of Illinois at Chicago, 845 W. Taylor Street, Chicago, IL 60607, USA

E-mail: aiorda1@uic.edu

Abstract.

Identified charged kaon, pion, and proton spectra and ratios from $\sqrt{s_{NN}} = 200$ and 62.4 GeV Cu+Cu collisions are studied with a hydro-motivated blast-wave and a statistical model framework in order to explore the strangeness production at RHIC and characterize the bulk freeze-out properties of the created system. The spectra are measured at mid-rapidity ($|y| < 0.1$) over the transverse momentum range of $0.25 < p_T < 1.2$ GeV/c with particle identification derived from the ionization energy loss in the STAR Time Projection Chamber.

The multi-dimensional systematic study of π^{\pm}, K^{\pm}, p and \bar{p} production in Cu+Cu, Au+Au, d+Au and p+p collisions is used to discuss the energy, system size and inferred energy density dependence of freeze-out parameters and strangeness production. The new data from Cu+Cu collisions bridge the gap between the smaller d+Au and larger Au+Au systems, allowing a detailed study of the onset of strangeness equilibration at RHIC.

PACS numbers: 25.75.-q,25.75.Dw

Keywords: Strangeness, Low-p_T, Heavy-ion collisions

1. Introduction

Systematic studies of the QCD phase diagram [1] have been enriched by the addition of new RHIC data from Cu+Cu collisions at $\sqrt{s_{NN}} = 200$ and 62.4 GeV. The STAR experiment has measured identified particle spectra of π^{\pm}, K^{\pm}, protons and anti-protons at mid-rapidity $|y| < 0.1$ over the transverse momentum range of $0.25 < p_T < 0.80$ GeV/c (pions and kaons) and $0.40 < p_T < 1.20$ GeV/c for (anti)protons. Comparative analysis to the previously measured spectra from Au+Au, d+Au and p+p collisions at RHIC [2][4] is used to address the energy and system size effects on freeze-out properties and, particularly, on strangeness production.

It has been shown that freeze-out parameters in Au+Au collisions at $\sqrt{s_{NN}} = 200$ and 62.4 GeV, have a similar chemical freeze-out temperature at all centralities and have a decreasing T_{kin} towards more central events [2]. At the same time the radial flow velocity, β, increases with centrality.
The centrality independence of the extracted chemical freeze-out temperature, indicated that, for different initial conditions, collisions evolve to the same chemical freeze-out. For all studied centralities the values for the chemical freeze-out temperature are close to the critical temperature, predicted by Lattice QCD calculations, while changes in T_{kin} and β are consistent with higher energy/pressure in the initial state for more central events. This suggested that chemical freeze-out coincides with hadronization and therefore provides a lower limit estimate for a temperature of the prehadronic state [3]. Most measured bulk properties in Cu+Cu show a smooth systematic change with the charged hadron multiplicity, and appear to follow the same systematic trends as the lower-energy data [2, 4], bridging the gap between the smaller d+Au and the larger Au+Au systems.

2. STAR Experiment

The results presented in these proceedings are based on the identification of charged particles traversing the Time Projection Chamber (TPC) [5] in the STAR detector. Different ionization energy loss patterns are experienced in the TPC for particles of different masses, which can be exploited for identification in the low-p_T region. The momentum measurement is given by the curvature of the particle trajectories as they pass through a 0.5 T magnetic field. To determine the centrality of the collision, the number of charged tracks at mid-rapidity is used. The data is presented in six centrality classes with each bin corresponding to 10% of the total inelastic cross-section.

The transverse momentum spectra are obtained from the mean $\langle dE/dx \rangle$ for each of $\Delta p_T = 50\text{MeV}/c$ momentum bins. For this, projections of the dE/dx for a given momentum are fit with a four-Gaussian function representing the four particle species of a given charge (π, K, p and \bar{p}). The integral of each Gaussian provides the raw yield at a given momenta. These raw yields are corrected for detector acceptance, tracking inefficiency and background contributions. The same analysis technique is used for measurements of all different collision systems and center-of-mass energies [2].

3. Preliminary Results

3.1. Particle Spectra

The π^\pm, K^\pm and p and \bar{p} transverse momentum spectra are measured for two center-of-mass energies in Cu+Cu collisions, $\sqrt{s_{\text{NN}}} = 200$ and 62.4 GeV. The particle and anti-particle spectral shapes are similar for all species at each centrality bin. At both collision energies a mass-dependence is observed in the slope of the particle spectra.

3.2. Kinetic freeze-out properties

Within a given centrality bin the particle spectra are fitted simultaneously by the Blast-wave model [6], which assumes a radially boosted thermal source. The hydro-
motivated fits provide information about the radial flow velocity (β), the kinetic freeze-out temperature (T_{kin}) and the flow profile shape (n) at final freeze-out. The effects from resonance contributions to the pion spectra shape are reduced by excluding the very low-p_T pion data points (below $< 0.5 \text{ GeV}/c$).

The particle spectra are well described by a common set of freeze-out parameters, for all colliding energies. The fit results are shown in figure 1 left panel. For an equivalent number of charged particles at mid-rapidity, $dN_{ch}/d\eta$, the T_{kin} and β show similar dependences in both Cu+Cu and Au+Au collisions, evolving smoothly from p+p to central Au+Au. T_{kin} decreases with centrality and thus implying freeze-out occurs at lower temperature in more central collisions (see the right panel on figure 3).

The particle mean-p_T results are obtained from the measured spectra, extrapolated outside the fiducial range by Blast-wave fits for the kaons and (anti)proton, and by Bose-Einstein fits for the pions. The particle mean-p_T increases with $dN_{ch}/d\eta$ (figure 1 right panel), which is consistent with an increase in radial flow with centrality.

A model dependent connection between the number of produced charged particles and the initial gluon density of the colliding system [7] can be used to interpret that the bulk properties are most probably determined at the initial stages of the collision and are driven by the initial energy density.

Figure 1. (color online) Left panel: The Kinetic freeze-out temperature, T_{kin}, versus flow velocity, β is shown for $\sqrt{s_{NN}} = 200$ and 62.4 GeV Au+Au (black) and Cu+Cu (red) collisions. For comparison, results for minimum-bias p+p collisions at 200 GeV are also shown. Right panel: Integrated $\langle p_T \rangle$ for negatively charged particles for Cu+Cu (red) and Au+Au (black) collisions as a function of $dN_{ch}/d\eta$ for 200 and 62.4 GeV. Minimum-bias p+p collisions at 200 GeV are also shown.
3.3. Particle Ratios

The ratio of particle yields for negatively charged kaons and pions is shown in figure 2 for a center-of-mass energy of 200 GeV. The K/π ratio in the Cu+Cu system follows the same trend with the charged hadron multiplicity, $dN_{ch}/d\eta$, as previously found in Au+Au data [2]. There is no strong evidence for additional strangeness enhancement in the smaller system as reported at SPS energies [8, 9], despite the observed increase in the integrated particle spectra yields with respect to p+p data for a given value of N_{part} [10]. The baryon to meson ratios, also shown on the figure 2, are found to be the same for Au+Au and Cu+Cu systems. The lack of a strong centrality dependence over the covered range points to similar freeze-out conditions for the studied collisions.

![Figure 2](image.png)

Figure 2. (color online) Particle yield ratios at 200 GeV for Cu+Cu (red) and Au+Au (black) collisions versus the number of charged hadron multiplicity density, $dN_{ch}/d\eta$, at mid-rapidity. The closed triangles show the K^-/π^- ratios, the closed circles are the ratios for \bar{p}/π^-. The open symbols are the ratios from min-bias p+p collisions.

3.4. Chemical freeze-out properties

The particle yield ratios are further analyzed within the framework of the statistical model [11]. The model describes the chemical freeze-out properties of the colliding system by the chemical freeze-out temperature (T_{ch}), the baryon and strangeness chemical potentials (μ_B, μ_S) and the strangeness suppression factor (γ_S). The parameters are obtained using only π^\pm, K^\pm, $p(\bar{p})$ measurements.

Within the systematic errors on the fit parameters the strangeness suppression factor γ_S in Cu+Cu, is consistent with the results for the Au+Au data [2]. This parameter shows a similar dependence with $dN_{ch}/d\eta$, as in the Au+Au system. The values of γ_S approaching unity for the central collisions implies that the produced strangeness is close to approximate equilibrium.
The chemical freeze-out temperature, T_{ch}, as a function of baryon-chemical potential, μ_B, for different systems is shown in the left panel of figure 3. For all systems and center-of-mass energies T_{ch} appears to be universal. The value of the baryon chemical potential reflects the decrease in baryon density from $\sqrt{s_{NN}} = 62.4$ to 200 GeV. At an equivalent center-of-mass energy μ_B is higher for the larger system. The constant value of T_{ch} implies that collisions with different net-baryon densities evolve to the same chemical freeze-out and points to a universal hadronization of the system.

Figure 3. (color online) Left panel: The Chemical freeze-out temperature, T_{ch}, versus the baryon chemical potential, μ_B, for central Au+Au (0-5% - black) and Cu+Cu collisions (0-10% - red). Minimum-bias p+p data at 200 GeV are also shown (blue). Right panel: $T_{ch}(T_{kin})$ versus charged hadron multiplicity at $\sqrt{s_{NN}} = 62.4$ (open symbols) and 200 GeV (closed symbols) for Cu+Cu (red) and Au+Au (black) collisions. For comparison, results for minimum-bias p+p collisions at 200 GeV are also shown (blue).

4. Summary

The STAR collaboration has presented measurements of identified charged hadron spectra in Cu+Cu collisions for two center-of-mass energies, 200 and 62.4 GeV. These new results of π^{\pm}, K^{\pm}, $p(\bar{p})$ have further enriched the variety of low-p_T spectra at RHIC. The data have been studied within the statistical and Blast-wave model frameworks in order to characterize the properties of the final hadronic state of the colliding system as a function of system size, collision energy, centrality and the inferred energy density.

This multi-dimensional systematic study reveals remarkable similarities between the studied systems. The obtained particle ratios, mean-p_T and the freeze-out parameters, including the strangeness saturation factor γ_s, are found to be intrinsically related for all collision systems and center-of-mass energies. A smooth evolution with N_{ch} and similar properties at the same number of produced charged hadrons are observed. A
model dependent connection between the number of produced charged particles and the initial gluon density of the colliding system \cite{7} can be used to interpret that the bulk properties are most probably determined at the initial stages of the collision and are driven by the initial energy density.

References

\begin{enumerate}
\item F.Karsch, \textit{J.Phys.Conf.Ser.} \textbf{46} (2006) 122.
\item J.Adams et al., \textit{Phys. Rev. Lett.} \textbf{92} (2004) 112301.
\item O.Barannikova et al., \textit{arXiv: nucl-ex/0403014}
\item L.Molnar et al., \textit{arXiv: nucl-ex/0507027}
\item M. Anderson et al., \textit{Nucl. Instrum. Meth.} \textbf{A499} (2003) 659.
\item E.Schnedermann, J.Sollfrank and U. Heinz, \textit{Phys. Rev.} \textbf{C48} (1993) 2462.
\item L.McLerran, \textit{Acta Phys. Polon.} \textbf{B34} (2003) 3029; D.Kharzeev and E.Levin, \textit{Phys. Lett.} \textbf{B523} (2001) 79; D.Kharzeev, E.Levin, L.McLerran \textit{Phys. Lett.} \textbf{B561} (2003) 93.
\item S.V.Afanasiev et al., \textit{Nucl. Phys.} \textbf{A715} (2003) 474, \textit{arXiv: nucl-ex/0209018v1}.
\item C. Alt et al. \textit{Phys. Rev. Lett.} \textbf{94} (2005) 052301, \textit{arXiv: nucl-ex/0406031v2}.
\item A. Timmins et al., \textit{these proceedings}.
\item P.Braun-Munzinger, I.Heppe and J.Stachel, \textit{Phys. Lett.} \textbf{B465} (1999) 15.
\end{enumerate}

Acknowledgments

We thank the RHIC Operations Group and RCF at BNL, and the NERSC Center at LBNL for their support. This work was supported in part by the Offices of NP and HEP within the U.S. DOE Office of Science; the U.S. NSF; the BMBF of Germany; CNRS/IN2P3, RA, RPL, and EMN of France; EPSRC of the United Kingdom; FAPESP of Brazil; the Russian Ministry of Sci. and Tech.; the Ministry of Education and the NNSFC of China; IRP and GA of the Czech Republic, FOM of the Netherlands, DAE, DST, and CSIR of the Government of India; Swiss NSF; the Polish State Committee for Scientific Research; Slovak Research and Development Agency, and the Korea Sci. & Eng. Foundation.