Antitumor and immunomodulatory activity of resveratrol on experimentally implanted tumor of H22 in Balb/c mice

Hong-Shan Liu, Cheng-En Pan, Wei Yang, Xue-Min Liu

MATERIALS AND METHODS

Materials

Resveratrol, MTT, IPS and dimethylsulfoxide (DMSO) were purchased from SGM Co. Mouse hepatocellular carcinoma cells H22, L929 and sheep red blood cell (SRBC) were kindly supplied by Cheng Wei (Center of Molecular Biology, First Affiliated Hospital, Xi’an Jiaotong University). Cells were subcultured in RPMI 1640 (Gibco) which was supplemented with 10% fetal bovine serum, penicillin (100 IU·ml⁻¹) and streptomycin (100 mg·l⁻¹). Stock solution of resveratrol was made in dimethylsulfoxide (DMSO) at a concentration of 10 g·L⁻¹. Working dilutions were directly made in the tissue culture medium. [³H]TdR was purchased from Shanghai Nuclear Research Institute. IL-2 test kit and LPS were purchased from Gibco Co. Balb/C mice, 2.5 month old, weighing 20±2 g, were purchased from the Animal Center, Xi’an Jiaotong University.

Methods

Effect of resveratrol on cytokotoxicity of peritoneal macrophages (Mₘ) against H22 cells

Mₘ was collected from the peritoneal cavity of Balb/c mice 3 days after ip 10% sheep red blood cells (SRBC, 1 ml/mouse). The cells were washed twice and resuspended in RPMI 1640 culture medium. H22 cells were cultured for 12 h, and 100 µM Mₘ suspension and different concentrations of resveratrol were added to each well of 96-well plates at a ratio of effectors: target (E:T) cell 10:1 or 25:1. After cultured for 24 h, each well was added with [³H]TdR (9.3 kBq/well), and then was incubated for another 6 h. Cells were placed onto the glass fiber filter and [³H]TdR incorporation was determined by liquid scintillation. The cytotoxicity was calculated with the following formula: the cytotoxicity = 1 - (experimental uptake/activity) / (control uptake/activity) × 100% (dpm). Antitumor activity of resveratrol and its effect on serum antibody IgG, plaque forming cells (PFC) in Balb/C mice with implanted tumor of H22 were investigated.

INTRODUCTION

Recently, considerable attention has been focused on identifying naturally occurring chemopreventive substances capable of inhibiting, retarding, or reversing the multi-stage carcinogenesis. Resveratrol (3,5,4'-trihydroxy-trans-stilbene), a phytoalexin found in grapes and other dietary and medicinal plants, has been shown to have anti-inflammatory, antioxidant and antitumor activities[1-2]. Many of these beneficial effects of resveratrol require participation of the cells of the immune system. However, the effect of resveratrol on the development of immunological responses remains unknown.

In the present study, the antitumor activity and immunomodulatory actions of resveratrol, including Mₘ against H22 cells, serum IgG and the plaque forming cells and tumor necrosis factor (TNF-α) content in Balb/C mice with experimentally implanted tumor of H22 were investigated.

REFERENCES

Antitumor and immunomodulatory activity of resveratrol on experimentally implanted tumor of H22 in Balb/c mice

Hong-Shan Liu, Cheng-En Pan, Wei Yang, Xue-Min Liu

Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China

Correspondence to: Dr. Hong-Shan Liu, Department of Hepatobiliary Surgery, First Affiliated Hospital, Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China. doctorliuqi@yahoo.com.cn

METHODS

The cytotoxicity of peritoneal macrophages (Mₘ) against H22 cells was measured by the radioactivity of [³H]TdR assay, mice with H22 tumor were injected with different concentrations of resveratrol, and the inhibitory rates were calculated and IgG contents were determined by single immunodiffusion method. The plate-forming cell (PFC) was measured by improved Cunningham method, the levels of serum tumor necrosis factor-α (TNF-α) were measured by cytotoxic assay against L929 cells.

RESULTS

Resveratrol 2.5 mg·L⁻¹, 5.0 mg·L⁻¹, 10.0 mg·L⁻¹, 20.0 mg·L⁻¹ (E:T=10:1, 20:1) promoted the cytotoxicity of Mₘ against H22 cells. Resveratrol ip 500 mg·kg⁻¹, 1 000 mg·kg⁻¹ and 1 500 mg·kg⁻¹ could curb the growth of the implanted tumor of H22 in mice. The inhibitory rates were 31.5%, 45.6% and 48.7%, respectively (P<0.05), which could raise the level of serum IgG and PFC response to sheep red blood cell. Resveratrol 1 000 mg·kg⁻¹ and 1 500 mg·kg⁻¹ and BCG 200 mg·kg⁻¹ ip could increase the production of serum TNF-α in mice H22. However, the effect of resveratrol was insignificant (P >0.05).

CONCLUSION

Resveratrol could inhibit the growth of H22 tumor in Balb/c mice. The antitumor effect of resveratrol might be related to directly inhibiting the growth of H22 cells and indirectly inhibiting its potential effect on nonspecific host immunomodulatory activity.

Liu HS, Pan CE, Yang W, Liu XM. Antitumor and immunomodulatory activity of resveratrol on experimentally implanted tumor of H22 in Balb/c mice. World J Gastroenterol 2003; 9(7): 1474-1476

http://www.wjgnet.com/1007-9327/9/1474.asp

Abstract

AIM: To study the antitumor and immunomodulatory activity of resveratrol on experimentally implanted tumor of H22 in Balb/c mice

MATERIALS AND METHODS

Materials

Resveratrol, MTT, IPS and dimethylsulfoxide (DMSO) were purchased from SGM Co. Mouse hepatocellular carcinoma cells H22, L929 and sheep red blood cell (SRBC) were kindly supplied by Cheng Wei (Center of Molecular Biology, First Affiliated Hospital, Xi’an Jiaotong University). Cells were subcultured in RPMI 1640 (Gibco) which was supplemented with 10 % fetal bovine serum, penicillin (100 IU·ml⁻¹) and streptomycin (100 mg·l⁻¹). Stock solution of resveratrol was made in dimethylsulfoxide (DMSO) at a concentration of 10 g·L⁻¹. Working dilutions were directly made in the tissue culture medium. [³H]TdR was purchased from Shanghai Nuclear Research Institute. IL-2 test kit and LPS were purchased from Gibco Co. Balb/C mice, 2.5 month old, weighing 20±2 g, were purchased from the Animal Center, Xi’an Jiaotong University.

Methods

Effect of resveratrol on cytotoxicity of peritoneal macrophages (Mₘ) against H22 cells

Mₘ was collected from the peritoneal cavity of Balb/c mice 3 days after ip 10% sheep red blood cells (SRBC, 1 ml/mouse). The cells were washed twice and resuspended in RPMI 1640 culture medium. H22 cells were cultured for 12 h, and 100 µM Mₘ suspension and different concentrations of resveratrol were added to each well of 96-well plates at a ratio of effectors: target (E:T) cell 10:1 or 25:1. After cultured for 24 h, each well was added with [³H]TdR (9.3 kBq/well), and then was incubated for another 6 h. Cells were placed onto the glass fiber filter and [³H]TdR incorporation was determined by liquid scintillation. The cytotoxicity was calculated with the following formula: the cytotoxicity = 1 - (experimental uptake/activity) / (control uptake/activity) × 100% (dpm). Antitumor activity of resveratrol and its effect on serum antibody IgG, plaque forming cells (PFC) in Balb/C mice with implanted tumor of H22 were investigated.

Liu HS, Pan CE, Yang W, Liu XM. Antitumor and immunomodulatory activity of resveratrol on experimentally implanted tumor of H22 in Balb/c mice. World J Gastroenterol 2003; 9(7): 1474-1476

http://www.wjgnet.com/1007-9327/9/1474.asp
(TNF-α) production induced by LPS in Balb/c mice: Ascites cells of 2×10⁵ were injected into the Balb/c mice. Resveratrol at a dose of 500 mg·kg⁻¹, 1 000 mg·kg⁻¹ and 1 500 mg·kg⁻¹ was injected for 10 d, and BCG of 200 mg·kg⁻¹ as a positive control agent was injected ip on d 1. On d 11, 90 minutes after ip LPS of 0.1 mg·kg⁻¹, the mice were exsanguinated. Blood was centrifuged (400xg, 10 min). The levels of serum TNF-α were measured by cytotoxic assay against L929 cells as described previously. The TNF-α activity was calculated with the following formula: cytotoxicity=(Acontrol−Aresv)/Acontrol×100 %.

RESULTS

Effect of resveratrol on cytotoxicity of peritoneal macrophages (Mφ) against H22 cells

Resveratrol at 2.5 mg·l⁻¹ could decrease the cytotoxicity of Mφ against H22 cells (P<0.05). Resveratrol at 12.5 mg·l⁻¹, 5.0 mg·l⁻¹, 10.0 mg·l⁻¹ could enhance insignificantly the cytotoxicity of Mφ against H22 cells (P>0.05) concentration-dependently. However, resveratrol at 20.0 mg·l⁻¹ could raise significantly the cytotoxicity of Mφ against H22 cells (P<0.05) (Table 1).

Table 1: Effect of resveratrol on cytotoxicity of peritoneal macrophages (Mφ) against H22 cells in vitro (n=3)

Resveratrol (mg·l⁻¹)	Cytotoxicity of Mφ against H22 (10:1)	(%) Mφ against H22 (25:1)
Control	12.6±7.9	15.6±6.0
1.25	10.9±2.9	10.6±5.4
2.50	12.5±3.2	16.4±1.8
5.0	13.4±2.8	27.6±2.6
10.0	14.6±3.7	18.3±4.2
20.0	16.7±4.7	20.2±3.1

Table 2: Inhibitory rates of resveratrol on H22 in mice in vivo

Group	Dose (mg·kg⁻¹)	Route	Mice begin/end	Tumor weight (g)	Inhibitory rate (%)	P value
Control	ip	10/9	1.81±0.62			
Resveratrol 1	500	ip	10/8	1.24±0.40	31.5	<0.05
Resveratrol 2	1000	ip	10/9	0.99±0.35	45.6	<0.05
Resveratrol 3	1500	ip	10/10	0.93±0.25	48.7	<0.05

The result also showed that the immunity of mice with tumor could be more significantly inhibited than that of normal mice, and resveratrol ip could raise the level of serum IgG and number of PFC in Balb/c mice with implanted tumor of H22 in vivo. Resveratrol, however, could insignificantly increase the immunity of mice with tumor (P>0.05, Table 3).

Effect of resveratrol on serum tumor necrosis factor alpha (TNF-α) production induced by LPS in Balb/c mice

The ability of TNF-α production of mice with H22 tumor was significantly stronger than that of normal mice. Furthermore, the group of control and BCG at 200 mg·kg⁻¹ ip had an increase in the at production of serum TNF-α in mice with H22 tumor (P=0.05), but resveratrol at a dose of 500 mg·kg⁻¹, 1 000 mg·kg⁻¹ and 1 500 mg·kg⁻¹ had less effect on mice with H22 tumor (P>0.05, Table 4).

Table 3: Effects of resveratrol on serum antibody IgG, plaque forming cells (PFC) in Balb/c mice with implanted tumor of H22 in vivo

Group	Dose (mg·kg⁻¹)	Route	IgG (µg·l⁻¹)	PFC/10⁶ cells
Normal mouse	NS	ip	27±8	44±32
Control	NS	ip	19±6	29±5±7
Resveratrol 1	500	ip	20±8	30±5±3
Resveratrol 2	1000	ip	23±6	32±5±4
Resveratrol 3	1500	ip	24±5	34±5±6

Table 4: Effect of resveratrol on TNF-α production induced by LPS in Balb/c mice

Group	Dose (mg·kg⁻¹)	Route	TNF-α activity specific lysis
Normal mouse	NS	ip	7±1±3
Control	NS	ip	16±3±2
Resveratrol 1	500	ip	15±8±2.6
Resveratrol 2	1000	ip	17±7±2.9
Resveratrol 3	1500	ip	19±5±3.1
Control+BCG	200	ip	29±8±3.7

DISCUSSION

Resveratrol is a phytopolyphenol isolated from the seeds and skin of grapes. Recent studies have indicated that resveratrol can block the process of multistage carcinogenesis, namely, tumor initiation, promotion and progression. Resveratrol can also reduce the risk of cardiovascular diseases in man. These activities have been identified by some authors[8-13]. Roberto et al[10] have shown that PBMC exposure to resveratrol produced a biphasic effect on the anti-CD3/anti-CD28-induced development of both IFN-γ-IL-2 and IL-4-producing CD8+ and CD4+ T cells, with stimulation at low resveratrol concentrations and suppression at high concentrations. Similarly, the compound was found to induce a significant enhancement at low concentrations and suppression at high concentrations of both CTL and NK cell cytotoxic activity. Gao et al[11] found that mitogen-, IL-2- or alloantigen-induced proliferation of splenic lymphocytes, induction of cytotoxic T lymphocytes (CTLs) and lymphokine activated killer (LAK) cells, and production of the cytokine interferon (IFN)-γ, interleukin (IL)-2, tumor necrosis factor(TNF)-α were significantly suppressed at 25-50 µM resveratrol, but in some cases mitogen/IL-2-, induced production and CTL generation were enhanced following pretreatment of cells with resveratrol. The effects of resveratrol on immune function of mice in vivo have not been reported yet.

Our results indicate that resveratrol of 2.5 mg·l⁻¹ could decrease the cytotoxicity of Mφ against H22 cells (P>0.05). Resveratrol of 2.5 mg·l⁻¹, 5.0 mg·l⁻¹ and 10.0 mg·l⁻¹ could insignificantly enhance the cytotoxicity of Mφ against H22 cells concentration-dependently (P>0.05). However, resveratrol of 20.0 mg·l⁻¹ could raise significantly the cytotoxicity of Mφ against H22 cells (P<0.05). So, resveratrol could alone affect the [³H]TDR uptake by H22 cells in vitro,
suggesting that the antitumor action of resveratrol had a direct cytotoxic effect. This result is coincident with the previous studies\cite{16-18}. Resveratrol ip could insignificantly increase the host nonspecific immunological defense of mice with H22 tumor, by raising the level of serum IgG and TNF-\alpha and the number of PFC (P \textless 0.05). \textit{In vivo} resveratrol could also augment the cytotoxicity of peritoneal macrophages against H22 cells, and there was an insignificant difference compared with the control group (P \textgreater 0.05). Therefore, resveratrol could inhibit the growth of H22 cells \textit{in vivo}, but it could not significantly enhance the host immune defense against tumor. Based on the results of the present study, it can be suggested that the antitumor activity of resveratrol might be due to direct cytotoxic/antiproliferative activity against tumor cells, but not to the augmentation of immune response against tumors. It has demonstrated that resveratrol inhibits cell proliferation, cell-mediated cytotoxicity, and cytokine production, at least in part through the inhibition of NF-kappa B activation. But the molecular mechanism by which resveratrol imparts cancer chemopreventive effects has not been clearly defined and further studies are needed.

REFERENCES

1. Kris-Etherton PM, Hecker KD, Bonanome A, Coval SM, Binkoski AE, Hilpert KF, Griel AE, Etherton TD. Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. Am J Med 2002; 10: 715-885
2. Park EJ, Pezzuto JM. Botanicals in cancer chemoprevention. Cancer Metastasis Rev 2002; 21: 231-255
3. Olias B, Wachowicz B, Saluk-Juszczak J, Zielinski T. Effect of resveratrol, a natural polyphenolic compound, on platelet activation induced by endotoxin or thrombin. Thromb Res 2002; 107: 141-145
4. Martinez J, Moreno JJ. Effect of resveratrol, a natural polyphenolic compound, on reactive oxygen species and prostaglandin production. Biochem Pharmacol 2000; 59: 865-870
5. Latruffe N, Delmas D, Jannin B, Maki MC, Passilly-Degrace P, Berlot JP. Molecular analysis on the chemopreventive properties of resveratrol, a plant polyphenol microcomponent. Int J Mol Med 2002; 10: 755-760
6. Ding ZX, Adrian TE. Resveratrol inhibits proliferation and induces apoptosis in human pancreatic cancer cells. Pancreas 2002; 25: 71-76
7. Cal C, Garban H, Jazirehi A, Ye H, Mizutani Y, Bonavida B. Resveratrol and Cancer: Chemoprevention, Apoptosis, and Chemo-immunomodulating Activities. Curr Med Chem Anti-Canc Agents 2003; 3: 77-93
8. Asensi M, Medina I, Ortega A, Carretero J, Bano MC, Obreja E, Estrela JM. Inhibition of cancer growth by resveratrol is related to its low bioavailability. Free Radic Biol Med 2002; 33: 387-398
9. De-Ledinghen V, Monvoisin A, Naeud V, Krissa S, Payrastre B, Bedin C, Desmouliere A, Blouac-Sage P, Rosenbaum J, Trans-resveratrol, a grapevine-derived polyphenol, blocks hepatocyte growth factor-induced invasion of hepatocellular carcinoma cells. Int J Oncol 2003; 23: 131-136
10. Tian XM, Zhang ZK. The antitumor activity of resveratrol on implanted tumor of HepG2 in nude mice. Shijie Huaren Xiaohua Zazi 2001; 9: 161-164
11. Liu HS, Pan CE, Qi Y, Liu QG, Liu XM. Effect of resveratrol with 5-FU on growth of implanted H22 tumor in mice. Shijie Huaren Xiaohua Zazi 2002; 10: 32-35
12. Sun ZJ, Pan CE, Liu HS, Wang GJ. Anti-hepatoma activity of resveratrol in vitro. World Gastroenterol 2002; 8: 79-81
13. Zhou HB, Yan Y, Sun YN, Zhu JR. Resveratrol induces apoptosis in human esophageal carcinoma cells. World J Gastroenterol 2003; 9: 408-411
14. Falchetti R, Fuggetta MP, Lanzilli G, Tricarico M, Ravagnan G. Effects of resveratrol on human immune cell function. Effect of resveratrol on human immune cell function. Life Sciences 2001; 70: 81-96
15. Gao X, Xu YX, Janakiraman N, Chapman RA, Gautam SC. Immunomodulatory activity of resveratrol: suppression of lymphocyte proliferation, development of cell-mediated cytotoxicity, and cytokine production. Biochemical Pharmacol 2001; 62: 1399-1408
16. Delmas D, Jannin B, Maki MC, Latruffe N. Inhibitory effect of resveratrol on the proliferation of human and rat hepatic-derived cell lines. Oncol Rep 2000; 7: 847-352
17. Brakenhielm E, Cao R, Cao Y. Suppression of angiogenesis, tumor growth, and wound healing by resveratrol, a natural compound in red wine and grapes. FASEB J 2001; 15: 1798-1800
18. Dong Z. Molecular mechanism of the chemopreventive effect of resveratrol. Mutat Res 2003; 523-524: 145-150

Edited by Maj Y