THE BAIRE CLASSIFICATION OF STRONGLY SEPARATELY CONTINUOUS FUNCTIONS ON ℓ_∞

OLENA KARLOVA* AND TOMÁŠ VISNYAI**

Abstract. We prove that for any $\alpha \in [0, \omega_1)$ there exists a strongly separately continuous function $f : \ell_\infty \to [0, 1]$ such that f belongs to the $(\alpha + 1)’$th /$(\alpha + 2)’$th/ Baire class and does not belong to the α'th Baire class if α is finite /infinite/.

1. Introduction

The notion of real-valued strongly separately continuous function defined on \mathbb{R}^n was introduced and studied by Dzagnidze in his paper [2]. He proved that the class of all strongly separately continuous real-valued functions on \mathbb{R}^n coincides with the class of all continuous functions. Later, Cincura, Salat and Visnyai [1] considered strongly separately continuous functions defined on the Hilbert space ℓ_2 of sequences $x = (x_n)_{n=1}^{\infty}$ of real numbers such that $\sum_{n=1}^{\infty} x_n^2 < +\infty$ and showed that there are essential differences between some properties of strongly separately continuous functions defined on ℓ_2 and the corresponding properties of functions on \mathbb{R}^n. In particular, they noticed that there exists a strongly separately continuous function $f : \ell_2 \to \mathbb{R}$ which does not belong to the first Baire class. Extending these results, Visnya [8] constructed a strongly separately continuous function $f : \ell_2 \to \mathbb{R}$ of the third Baire class which is not quasi-continuous at every point of ℓ_2. It was shown recently in [6] that for every $2 \leq \alpha < \omega$ there exists a strongly separately continuous function $f : \ell_p \to \mathbb{R}$ which belongs to the α'th Baire class and does not belong to the β'th Baire class on ℓ_p for $\beta < \alpha$, where $p \in [1, +\infty)$.

The aim of this paper is to generalize results from [6] to the case of $p = +\infty$. We develop arguments from [3] and prove that for any $\alpha \in [0, \omega_1)$ there exists a strongly separately continuous function $f : \ell_\infty \to [0, 1]$ such that f belongs to the $(\alpha + 1)’$th /$(\alpha + 2)’$th/ Baire class and does not belong to the α'th Baire class if α is finite /infinite/.

2. Definitions and notations

Let ℓ_∞ be the Banach space of all bounded sequences of reals with the norm

$$\|x\|_\infty = \sup_{k \in \omega} |x_k|$$

for all $x = (x_k)_{k \in \omega} \in \ell_\infty$. For $x, y \in \ell_\infty$ we denote $d_\infty(x, y) = \|x - y\|_\infty$. If $x \in \ell_\infty$ and $\delta > 0$, then

$$B_\infty(x, \delta) = \{y \in \ell_\infty : \|x - y\|_\infty < \delta\}.$$

Definition 2.1. Let $x^0 = (x^0_k)_{k \in \omega} \in \ell_\infty$ and $(Y, | \cdot |)$ be a metric space. A function $f : \ell_\infty \to Y$ is said to be strongly separately continuous at x^0 with respect to

2010 Mathematics Subject Classification. Primary 54C08, 54C30; Secondary 26B05.

Key words and phrases. strongly separately continuous function; Baire classification.
to the k-th variable if
\[\forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall x = (x_k)_{k \in \omega} \in B_\infty(x^0, \delta) \]
\[|f(x_1, \ldots, x_k, \ldots) - f(x_1, \ldots, x_{k-1}, x^0_k, x_{k+1}, \ldots)| < \varepsilon. \] (1)

If f is strongly separately continuous at x^0 with respect to each variable, then f is said to be strongly separately continuous at x^0. Moreover, f is strongly separately continuous on ℓ_∞ if it is strongly separately continuous at each point of ℓ_∞.

Strongly separately continuous functions we will also call ssc functions for short.

Definition 2.2. A subset $A \subseteq X$ of a Cartesian product $X = \prod_{k=1}^{\infty} X_k$ of sets X_1, X_2, \ldots is called S-open [4], if
\[\sigma_1(a) = \{(x_k)_{k=1}^{\infty} \in X : \{|k : x_k \neq a_k| \leq 1\} \subseteq A \]
for all $a = (a_k)_{k=1}^{\infty} \in A$.

If $x \in \ell_\infty$ and $N \subseteq \omega$, then we put
\[\pi_N(x) = (x_k)_{k \in N}. \]

In the case $N = \{n\}$, we write $\pi_n(x)$ instead of $\pi_{\{n\}}(x)$.

3. **Main result**

Define a function $(\alpha)^*$ as the following
\[(\alpha)^* = \begin{cases} \alpha, & \alpha \in [0, \omega), \\ \alpha + 1, & \alpha \in [\omega, \omega_1). \end{cases} \] (2)

Theorem 3.1. For any $\alpha \in [0, \omega_1]$ there exists a strongly separately continuous function $f : \ell_\infty \to [0, 1]$ which belongs to the $(\alpha + 1)^*$ th Baire class and does not belong to the α th Baire class on ℓ_∞.

Proof. We define inductively transfinite sequences $(A_\alpha)_{1 \leq \alpha < \omega_1}$ and $(B_\alpha)_{1 \leq \alpha < \omega_1}$ of subsets of ℓ_∞ in the following way. Put
\[A_1 = \{(x_n)_{n=1}^{\infty} \in \ell_\infty : \exists m \forall n \geq m \ x_n = 0\} \quad \text{and} \quad B_1 = \ell_\infty \setminus A_1. \]

Let $(T_n : n \in \omega)$ be a partition of ω onto infinite sets $T_n = \{t_{n0}, t_{n1}, \ldots\}$, where $(t_{nm})_{m \in \omega}$ is a strictly increasing sequence of numbers $t_{nm} \in \omega$. We put
\[\ell_{\infty}^n = \{(x_{t_{nm}}) \in \ell_\infty : t_{nm} \in T_n \ \forall m \in \omega\}. \]

For every $n \in \omega$ we denote by A_n^1 / B_n^1 the copy of the set A_1 / B_1, which is contained in the space ℓ_{∞}^n. Assume that for some $\alpha > 1$ we have already defined sequences $(A_\beta)_{1 \leq \beta < \alpha}$ and $(B_\beta)_{1 \leq \beta < \alpha}$ (and their copies $(A^a_n)_{1 \leq \beta < \alpha}$ and $(B^a_n)_{1 \leq \beta < \alpha}$ in ℓ_{∞}^n) of subsets of ℓ_∞. Now we put
\[A_\alpha = \begin{cases} \bigcup_{m=1}^{\infty} \bigcap_{n=m}^{\infty} \pi_{T_n}^{-1}(B_{\beta_n}^a), & \alpha = \beta + 1, \\ \bigcup_{n=1}^{\infty} \pi_{T_n}^{-1}(A_{\beta_n}^a), & \alpha = \sup \beta_n, \end{cases} \]
and
\[B_\alpha = \ell_\infty \setminus A_\alpha. \]

Claim 1. For every $\alpha \in [1, \omega_1]$ the following statements are true:

1. the sets A_α and B_α are S-open in ℓ_∞;
2. for any $y = (y_n)_{n=1}^{\infty} \in \ell_\infty$ with $y_n \neq 0$ for all $n \in \omega$ we have
\[x = (x_n)_{n \in \omega} \in A_\alpha \iff z = (x_n \cdot y_n)_{n \in \omega} \in A_\alpha. \]
Moreover, \(C \) of sets \(\subseteq C \) for all \(n \geq m \). Since \(\pi_{\tau_\beta}(y) \in \sigma_1(\pi_{\tau_\beta}(x)) \) and \(B_\beta \) is \(S \)-open, \(\pi_{\tau_\beta}(y) \in B_\beta \). Therefore, \(y \in A_\beta \). We argue similarly in the case where \(\alpha \) is a limit ordinal.

We fix \(y = (y_n)_{n=1}^\infty \in \ell_\infty \) such that \(y_n \neq 0 \) for all \(n \in \mathbb{N} \). The statement is true for \(\alpha = 1 \), since \(A_1 = \sigma(0) \). Assume that for some \(\alpha < \omega_1 \) the property is valid for all \(\beta < \alpha \). Let \(\alpha = \beta + 1 \) for some \(\beta \). The inductive assumption implies that

\[
x \in A_\alpha \iff \exists m \in \mathbb{N} \ \forall n \geq m \ \pi_{\tau_\alpha}(x) \in B_\beta^n
\]

\[
z \in A_\alpha \iff \exists m \in \mathbb{N} \ \forall n \geq m \ \pi_{\tau_\alpha}(z) \in B_\beta^n
\]

We argue similarly in the case of limit \(\alpha \).

Consider the equivalent metric

\[
d(x, y) = \min\{d_\infty(x, y), 1\}
\]

on the space \(\ell_\infty \).

Claim 2. For every \(\alpha \in [1, \omega_1) \) the following condition holds:

\((*) \) for every set \(C \subseteq (\ell_\infty, d) \) of the additive/multiplicative class \(\alpha \) there exists a contracting mapping \(f : (\ell_\infty, d) \to (\ell_\infty, d) \) with the Lipschitz constant \(L = \frac{1}{2} \) such that

\[
C = f^{-1}(A_\alpha) \quad / C = f^{-1}(B_\alpha)/,
\]

\[
|\pi_n(f(x))| < 1 \quad \forall x \in \ell_\infty \ \forall n \in \omega.
\]

Proof of Claim 2. We will argue by the induction on \(\alpha \). Let \(C \) be an arbitrary \(F_\gamma \)-subset of \((\ell_\infty, d) \). Then there exists an increasing sequence \((C_n)_{n \in \omega} \) of closed subsets of \((\ell_\infty, d) \) such that \(C = \bigcup_{n \in \omega} C_n \). Consider a map \(f : \ell_\infty \to \ell_\infty \), defined by the rule

\[
f(x) = (\frac{1}{2}d(x, C_1), \ldots, \frac{1}{2}d(x, C_n), \ldots)
\]

for all \(x \in \ell_\infty \).

We show that \(C = f^{-1}(A_1) \). Take \(x \in C \) and choose \(m \in \omega \) such that \(x \in C_n \) for all \(n \geq m \). Then \(d(x, C_n) = 0 \) and \(\pi_n(f(x)) = 0 \) for all \(n \geq m \). Hence, \(x \) belongs to the right-hand side of the equality. Now we prove the inverse inclusion. Let \(x \in f^{-1}(A_1) \). Then there exists \(m \in \omega \) such that \(\pi_n(f(x)) = 0 \) for all \(n \geq m \). Consequently, \(d(x, C_n) = 0 \) for all \(n \geq m \). Since \(C_n \) is closed, \(x \in C_n \) for all \(n \geq m \). Therefore, \(x \in \bigcup_{n \in \omega} C_n = C \).

Since

\[
d(f(x), f(y)) \leq d_\infty(f(x), f(y)) = \sup_{n \in \omega} \frac{1}{2}d(x, C_n) - \frac{1}{2}d(y, C_n) \leq \frac{1}{2}d(x, y)
\]

for all \(x, y \in \ell_\infty \), the mapping \(f \) is contracting with the Lipschitz constant \(L = \frac{1}{2} \).

Moreover,

\[
|\pi_n(f(x))| = \frac{1}{2}d(x, C_n) < 1
\]

for every \(n \in \omega \).

Assume that for some \(\alpha < \omega_1 \) the condition \((*) \) is valid for all \(\beta < \alpha \). Let \(C \subseteq (\ell_\infty, d) \) be any set of the \(\alpha \)th additive class. Take an increasing sequence of sets \(C_n \) such that \(C = \bigcup_{n \in \omega} C_n \), where every \(C_n \) belongs to the multiplicative class \(\beta \) if \(\alpha = \beta + 1 \), and in the case \(\alpha = \sup \beta_n \), we can assume that \(C_n \) belongs to the additive class \(\beta_n \) for every \(n \in \omega \). By the inductive assumption there exists a sequence \((f_n)_{n \in \omega} \) of contracting maps \(f_n : (\ell_\infty, d) \to (\ell_\infty, d) \) with the Lipschitz
constant $L = \frac{1}{2}$ such that
\begin{align}
C_n &= \begin{cases}
 f_n^{-1}(B_\beta), & \alpha = \beta + 1, \\
 f_n^{-1}(A_{\beta_n}), & \alpha = \sup \beta_n,
\end{cases} \\
|\pi_m(f_n(x))| < 1 & \forall x \in \ell_\infty \forall n, m \in \omega.
\end{align}

(5) (6)

For every $k \in \omega$ we choose a unique pair $(n(k), m(k)) \in \omega^2$ such that
\begin{align}
k = t_{n(k)m(k)} \in T_{n(k)}.
\end{align}

(3)

For all $x \in \ell_\infty$ and $n, m \in \omega$ we put $f_{nm}(x) = \pi_m(f_n(x))$ and consider a map $f : \ell_\infty \to \ell_\infty$, defined by the rule
\begin{align}
f(x) = (\frac{1}{2} f_{n(1)m(1)}(x), \ldots, \frac{1}{2} f_{n(k)m(k)}(x), \ldots)
\end{align}

(4) for all $x \in \ell_\infty$. The inequalities
\begin{align}
|f_{nm}(x) - f_{nm}(y)| &= |\pi_m(f_n(x)) - \pi_m(f_n(y))| \\
&\leq \sup_{m \in \omega} |\pi_m(f_n(x)) - \pi_m(f_n(y))| = d_\infty(f_n(x), f_n(y))
\end{align}

(5)

and
\begin{align}
|f_{nm}(x) - f_{nm}(y)| \leq 2
\end{align}

(6)

imply that
\begin{align}
\frac{1}{2} |f_{nm}(x) - f_{nm}(y)| \leq d(f_n(x), f_n(y)) \leq \frac{1}{2} d(x, y)
\end{align}

(7)

for all $x, y \in \ell_\infty$ and $n, m \in \omega$. Then
\begin{align}
d(f(x), f(y)) \leq d_\infty(f(x), f(y)) = \\
= \sup_{k \in \omega} |\frac{1}{2} (f_{n(k)m(k)}(x) - f_{n(k)m(k)}(y))| \leq \frac{1}{2} d(x, y)
\end{align}

(8)

for all $x, y \in \ell_\infty$. Therefore, $f : (\ell_\infty, d) \to (\ell_\infty, d)$ is a Lipschitz map with the constant $L = \frac{1}{2}$.

It remains to show that $C = f^{-1}(A_\alpha)$. Assume that $\alpha = \beta + 1$ (we argue similarly if α is limit). Let us observe that $x \in C$ if and only if there exists $m \in \omega$ such that $f_n(x) \in B_\beta$ for all $n \geq m$. Since
\begin{align}
\pi_{T_n}(f(x)) = \left(\frac{1}{2} \pi_k(f_n(x)) \right)_{k \in T_n},
\end{align}

we have
\begin{align}
f_n(x) \in B_\beta \iff \pi_{T_n}(f(x)) \in B_\beta^\omega.
\end{align}

(9)

by statement (2) of Claim 1. Therefore, $C = f^{-1}(A_\alpha)$. \hfill \Box

CLAIM 3. For every $\alpha \in [1, \omega_1)$ the set A_α belongs to the additive class α and does not belong to the multiplicative class α in ℓ_∞.

Proof of Claim 3. If $\alpha = 1$, then
\begin{align}
A_1 = \bigcup_{n \in \omega} \{x \in \ell_\infty : |\{k \in \omega : x_k \neq 0\}| \leq n\}
\end{align}

(10)

is an F_σ-subset of ℓ_∞, since every set $\{x \in \ell_\infty : |\{k \in \omega : x_k \neq 0\}| \leq n\}$ is closed. Consequently, B_1 is G_δ-subset of ℓ_∞. Suppose that for some $\alpha \geq 1$ the set A_β / B_β belongs to the additive / multiplicative / class β in ℓ_∞ for every $\beta < \alpha$. Since every projection $\pi_{T_n} : \ell_\infty \to \ell_\infty$ is continuous, the set A_α belongs to the additive class α in ℓ_∞ and the set B_α belongs to the multiplicative class α in ℓ_∞.

Fix $\alpha \in [1, \omega_1)$. In order to show that A_α does not belong to the α'th multiplicative class we assume the contrary. Claim 2 implies that there exists a contraction
$f: (\ell_\infty,d) \to (\ell_\infty,d)$ such that $A_n = f^{-1}(B_n)$. By the Contraction Map Principle, there would be a fixed point for f, which implies a contradiction. \hfill \Box

Now we are ready to construct a function f from the statement of the theorem. Let $\alpha \in [0,\omega_1)$ be fixed. If $\alpha = 0$, then we put $A = c$, where c is the subspace of ℓ_∞ consisting of all convergent sequences of real numbers. If $\alpha > 0$, then previous steps imply the existence of an \mathcal{S}-open set $A \subseteq \ell_\infty$ such that A belongs to the (α)’th additive class and does not belong to the (α)’th multiplicative class. In any case for every $x \in \ell_\infty$ we put

$$f(x) = \begin{cases} 1, & x \in A, \\ 0, & x \notin A. \end{cases}$$

We prove that $f: \ell_\infty \to [0,1]$ is strongly separately continuous. Fix $\varepsilon > 0$, $k \in \omega$ and $x = (x_n)_{n \in \omega} \in \ell_\infty$. We put $\delta = 1$ and notice that for all $y \in B_\infty(x,\delta)$ we have

$$y = (y_1,\ldots,y_k,\ldots) \in A \iff z = (y_1,\ldots,y_{k-1},x_k,y_{k+1},\ldots) \in A,$$

since A is \mathcal{S}-open. Therefore,

$$|f(y) - f(z)| = 0$$

for all $y \in B_\infty(x,\delta)$ and $z = (y_1,\ldots,y_{k-1},x_k,y_{k+1},\ldots)$. Hence, f is strongly separately continuous at x with respect to the k’th variable.

Notice that both A and $X \setminus A$ are of the $(\alpha + 1)$’th additive class, that is, A is ambiguous set of the $(\alpha+1)$’th class in ℓ_∞. It is well-known that the characteristic function of any ambiguous set of the class ξ in any metric space belongs to the ξ’th Baire class [17,31] for any $\xi \in [1,\omega_1)$. Therefore, $f \in B_{(\alpha+1)}(\ell_\infty,[0,1])$.

If $\alpha = 0$, then f is discontinuous exactly on A and hence $f \notin B_0(\ell_\infty,[0,1])$.

In case $\alpha > 0$ we assume that $f \in B_\alpha(\ell_\infty,[0,1])$. Then f belongs to the (α)’th Borel class. Therefore, $A = f^{-1}(1)$ is the set of the (α)’th multiplicative class in ℓ_∞, which contradicts to the choice of A. \hfill \Box

Remark 3.2. The existence of an ssc function $f: \ell_\infty \to [0,1]$ which is not Baire measurable was proved in [18]. The Baire classification of ssc functions defined on \mathbb{R}^ω was studied in [1].

Theorem 3.1 suggests the following question.

Question 3.3. Does there exist a strongly separately continuous function $f: \ell_\infty \to [0,1]$ such that $f \in B_{\omega+1} \setminus B_\omega$?

References

[1] J. Cincu, T. Salát and T. Visnyai, *On separately continuous functions $f: \ell^2 \to \mathbb{R}$*, Acta Acad. Paedagog. Agriensis, XXXI (2004), 11–18.

[2] O. Dzagnidze, *Separately continuous function in a new sense are continuous*, Real Anal. Exchange, 24 (1998-99), 695–702.

[3] R. Engelking, W. Holsztyński, R. Sikorski, *Some examples of Borel sets*, Colloq. Math., 15 (1966), 271–274.

[4] O. Karlova, *On Baire classification of strongly separately continuous functions*, Real Anal. Exch., 40 (1) (2014/2015), 1–11.

[5] O. Karlova, T. Visnyai, *Some remarks concerning strongly separately continuous functions on spaces ℓ_p with $p \in [1,\infty]$, Proc. Int. Geom. Center, to appear.*

[6] O. Karlova, T. Visnyai, *On strongly separately continuous functions on sequence spaces*, J. Math. Analysis and Appl., 439 (1) (2016), 296–306.

[7] K. Kuratowski, *Topology I*, Academic Press, 1966.

[8] T. Visnyai, *Strongly separately continuous and separately quasicontinuous functions $f: \ell^2 \to \mathbb{R}$*, Real Anal. Exchange, 38 (2) (2013), 499–510.
* Chernivtsi National University,
 Faculty of Mathematics and Informatics,
 Department of Mathematical Analysis,
 Kotsyubyns’ko ho 2, 58 012 Chernivtsi,
 Ukraine
 E-mail address: masleniza.ua@gmail.com

** Institute of Information Engineering, Automation and Mathematics,
 Faculty of Chemical and Food Technology,
 Slovak University of Technology in Bratislava,
 Radlinskeho 9, 812 37 Bratislava,
 Slovak Republic
 E-mail address: tomas.visnyai@stuba.sk