On the quantum cohomology of the plane, old and new

Z. Ran

Abstract

We describe a method for counting maps of curves of given genus (and variable moduli) to \(\mathbb{P}^2 \), essentially by splitting the \(\mathbb{P}^2 \) in two; then specialising to the case of genus 0 we show that the method of quantum cohomology may be viewed as the 'mirror' of the former method where one splits the \(\mathbb{P}^1 \) rather than the \(\mathbb{P}^2 \), and we indicate a proof of the associativity of quantum multiplication based on this idea.

Recent work on Mirror Symmetry and Quantum Cohomology has contributed to a revival of interest in problems of a classical nature in Enumerative Geometry (cf. [F] and references therein). These problems involve (holomorphic) maps

\[f : C \rightarrow X \]

where \(X \) is a fixed variety and \(C \) is a compact Riemann surface whose moduli are sometimes fixed (‘Gromov-Witten’) but here will not be, unless otherwise stated. While the case \(\text{dim } X = 1 \) is not entirely without interest (cf. [D]), the problem begins in earnest with \(\text{dim } X = 2 \) and naturally the simplest such \(X \) is \(\mathbb{P}^2 \). Here the problem specifically is to count the images \(f(C) \) of maps (1) where \(C \) has genus \(g \), \(f(C) \) has degree \(d \) and passes through \(3d + g - 1 \) fixed points in \(\mathbb{P}^2 \). This problem has already, in essence, been solved in the author’s earlier paper [R] by means of a recursive method (we note however that the formula in [R], (3c.1), (3c.3) is trivially misstated and the factor \(c(\tilde{K}_1, \tilde{K}_2) \) should not be present).

Our purpose here is twofold. In Sect.1 we give a partial exposition of the method of [R] and illustrate it on a couple of new examples, namely the curves of degree \(d \) and genus \(g = \frac{(d-1)(d-2)}{2} - 2 \) (i.e. with 2 nodes); and the rational quartics. We recover classical formulae due, respectively, to Roberts [Ro] and Zeuthen [Z]. Hopefully, this will help make the method of [R] more accessible. In Sect.2 we show that the method of Kontsevich et al., at least as exposed in [F], may be viewed as none other than the 'dual' of that of [R] for the case of rational curves, 'dual' meaning 'interchanging source and target'; in particular, we sketch a proof from...
this viewpoint of the associativity of quantum multiplication.

This paper owes its existence to the unfailing encouragement of Bill Fulton, who believed all along in [R]; it is indeed a pleasure to thank him here.

1.Old.

We find it technically convenient here to work with possibly reducible curves; the modifications or 'correction terms' needed to treat the irreducible case are a routine matter.

Consider the locus $V_{d,\delta}$ of (not necessarily irreducible) curves of degree d in \mathbb{P}^2 having δ ordinary nodes. This is well known to be a smooth locally closed subvariety of pure codimension δ in $\mathbb{P}^{(d+2)-1}$ and we are interested in its degree as such, which may be interpreted as the number of curves of $V_{d,\delta}$ passing through $\binom{d+2}{2} - \delta - 1$ general points in \mathbb{P}^2, a number which we denote by $N_{d,\delta}$. The idea is to get at $N_{d,\delta}$ by a recursive procedure, based on specializing \mathbb{P}^2 to a surface (called a 'fan')

$$S_0 = S_1 \cup S_2$$

where $S_1 = Bl_0(\mathbb{P}^2)$ (the 'bottom' component), $S_2 = \mathbb{P}^2$ (the 'top' component) and $E = S_1 \cap S_2$ (the 'axis') embedded in S_i with self-intersection $2i - 3$, $i = 1, 2$. Corresponding to this is a specialization

$$V_{d,\delta} \to \sum m(\pi) V_{(d,e),(\delta_1,\delta_2),\pi},$$

where $V_{(d,e),(\delta_1,\delta_2),\pi}$ is a family of Cartier divisors on S_0 whose general member C_0 may be described as follows:

- $C_0 = C_1 \cup C_2$,
- $C_1 \in |dH - eE|_{S_1}, C_2 \in |eE|_{S_2}$ nodal curves with δ_1 (resp. δ_2) nodes, smooth near E;
- the divisor $D = C_1.E = C_2.E$ has shape π, i.e. π is a partition having ℓ_i blocks of size i (to be written as $\pi = [\ell_i]$) and $D = \sum_{i=1}^r \sum_{j=1}^{\ell_i} iQ_{ij}, Q_{ij} \in E$ distinct.

Moreover $m(\pi) = \prod_{i=1}^r i^{\ell_i}$ and the sum is extended over all data $((d,e),(\delta_1,\delta_2),\pi)$ satisfying

$$\delta_1 + \delta_2 + \sum_{i=1}^r (i - 1)\ell_i = \delta$$
(i.e. each i-tacnode iQ_{ij} ‘counts as $i - 1$ nodes’).

Now to apply the specialization (2) to the degree question, we specialize our point set on \mathbb{P}^2 to a collection of points on S_0, which a priori we may distribute at will among S_1 and S_2, with each distribution giving rise to some formula which, however, may or may not be usable. For the purpose of the present discussion we will make the important simplifying assumption

$$\delta < d,$$

and put $d + 1$ points on S_1 and the remaining $\left(\frac{d+1}{2}\right) - 1 - \delta$ on S_2. It is then easy to see that the only limit components V that will contribute to the resulting formula will be ones with $e = d - 1$.

For those, we can write

$$C_1 = C_{1,0} + \sum_{i=1}^{\delta_1} R_i$$

with $C_{1,0}$ a smooth (rational) curve of ‘type’ $(d - \delta_1, d - \delta_1 - 1)$ (i.e. $C_{1,0} \in \left|(d - \delta_1)H - (d - \delta_1 - 1)E\right|$) and R_i distinct rulings.

Now let us say that a partition $\pi' = [\ell_i'] \leq \pi = [\ell_i]$ if $\ell_i' \leq \ell_i \forall i$, in which case we may define the complementary partition $\pi - \pi' = [\ell_i - \ell_i']$; also put $|\pi| = \sum i\ell_i, s(\pi) = \sum \ell_i, n(\pi) = \frac{s(\pi)!}{\ell_1! \cdots \ell_r!}$. Counting the degree of a limit component $V_1 = \{C_1 \cup C_2\}$ in terms of those of $\{C_1\}$ and $\{C_2\}$ is basically a matter of decomposing the ‘diagonal’ condition $C_1.E = C_2.E$ correspondingly to the standard Kunneth decomposition of the diagonal class on the product of $\Pi\mathbb{P}^{\ell_i}$ with itself; this leads to a sum of conditions corresponding to partitions $\pi' \leq \pi$, each amounting to fixing the location on E of a portion D' of $C_1.E$ corresponding to π' and the complementary portion D'' of $C_2.E$ corresponding to $\pi - \pi'$. The resulting formula is as follows.

$$N_{d,\delta} = \sum_{|\pi|=d-1} m(\pi) \sum_{\pi'=[\ell_i']} m(\pi - \pi')n(\pi - \pi')N_{d-1,\delta-s(\pi-\pi') \pm s(\pi) - d + 1, \pi - \pi', \pi'}$$

$$\times \sum_{j=0}^{\ell_i'} \left(\frac{\ell_i'}{j}\right)\left(\frac{d + 1}{s(\pi - \pi') - j}\right).$$

Here $N_{e,\delta,\pi',\pi''}$ denotes the degree of the locus of nodal curves of degree e with δ_2 nodes meeting a fixed line E in a fixed divisor of shape π'' plus a divisor of shape π'.

We have used the fact that \(\delta_1 = s(\pi - \pi') \), which comes from the observation that the number of ‘axis’ conditions on the bottom curve \(C_1 \), i.e. \(|\pi| - s(\pi - \pi') = d - 1 - s(\pi - \pi') \), plus the number of ‘interior’ points imposed, i.e. \(d + 1 \), must equal the dimension of the family (4), i.e. \(2d - \delta_1 \). Also, the factor \(m(\pi - \pi')n(\pi - \pi') \) is simply the degree of the ‘discriminant’ variety of divisors of shape \(\pi - \pi' \) on \(E = \mathbb{P}^1 \), while the binomial factors correspond to letting \(j \) of the rulings go through some of the multiplicity -1 part of \(D' \) with the remaining \(\delta_1 - j \) going through some of the \(d + 1 \) interior points.

Now of course in general the formula (5) is not by itself sufficient as one needs a recursive formula starting and ending with the \(N_{e,\delta_2,\pi',\pi} \) or something similar. Such a formula is indeed given in [R], and it is not our purpose to reproduce it here. In the examples worked out below the necessary further recursion is relatively straightforward, and will be indicated.

Example 1. \(N_{d,2} \)

There are seven relevant limit components and we proceed to list them and their contributions.

A. \(V(d,d-1),(0,2),(d-1) \); multiplicity \(m = 1 \); contribution \(N_{d-1,2} \)

B. \(V(d,d-1),(1,1),(d-1) \); \(m = 1 \). As \(\delta_1 = 1 \) we must take \(\pi' = [d - 2], \pi - \pi' = [1] \) so \(j = 0 \) or \(1 \) and the contribution is \((d + 1 + d - 2).N_{d-1,1,[1],[d-2]} = 3(2d-1)(d-2)^2 \).

C. \(V(d,d-1),(2,0),(d-1) \); \(m = 1 \); \(\pi' = [d - 3], j = 0, 1, 2 \), contribution = \((\binom{d-3}{2} + (d - 3)(d + 1) + \binom{d+1}{2})N_{d-1,0,[2],[d-3]} = 2d^2 - 5d + 3 \).

D. \(V(d,d-1),(0,1),(d-3,1) \); \(m = 2, \delta_1 = 0 \Rightarrow \pi' = \pi, \) so contribution is \(2N_{d-1,1,0,[d-3,1]} \).

By an easier but simpler recursion (involving 1 node and 1 tangency), the latter evaluates to \(12(d - 1)(d - 2)(d - 3) \).

E. \(V(d,d-1),(1,0),(d-3,1) \); \(m = 2, \pi' = [d - 3] \) or \([d - 4, 1] \), contribution = \(8(d - 1)(d - 3) \).

F. \(V(d,d-1),(0,0),(d-4,0,1) \); \(m = 3, \pi' = \pi \), contribution \(9d - 27 \).

G. \(V(d,d-1),(0,0),(d-5,2) \); \(m = 4, \pi' = \pi \), contribution \(4.4 \cdot \binom{d-3}{2} = 9d^2 - 56d + 96 \).

Summing up, we get

\[
N_{d,2} = N_{d-1,1,0} = 18d^3 - 81d^2 + 84d + 12
\]
Moreover it is easy to see that \(N_{3,2} = \binom{7}{2} = 21 \) so by integrating we get
\[
N_{d,2} = \frac{9}{2}d^4 - 18d^3 + 6d^2 + \frac{81}{2}d - 33.
\]
This is a classical formula due to S. Roberts [Ro], which has been given modern treatment by I. Vainsencher [V]. Note that the curves are automatically irreducible if \(d \geq 4 \).

Example 2. \(N_{4,3} \)

Here we have seven limit components.

A. \(V_{(4,3),(0,3),[3]} m = 1 \), contribution 15.

B. \(V_{(4,3),(1,2),[3]} m = 1 \) contribution 21.7 = 147.

C. \(V_{(4,3),(2,1),[3]} m = 1 \), contribution 15 \(N_{3,1,[2],[1]} = 180 \).

D. \(V_{(4,3),(3,0),[3]} m = 1 \), contribution \(\binom{5}{2} = 10 \).

E. \(V_{(4,3),(1,1),[1,1]} m = 2, \pi' = [1] \) or \([0, 1] \). Contribution 2.2 \(N_{3,1,[0,1],[1]} + 2.5 \cdot N_{3,1,[1],[0,1]} \).

By a similar but simpler recursion the latter \(N \)'s evaluate respectively to 10, 16, so the total contribution is 200.

F. \(V_{(4,3),(0,2),[1,1]} m = 2, \pi = \pi' = [1, 1] \), contribution 2.15.2 = 60.

G. \(V_{(4,3),(0,1),[0,0,1]} m = 3, \pi = \pi' = [0, 0, 1] \), contribution 3 \(N_{3,1,[0],[0,0,1]} \). By a similar but simpler recursion, the latter \(N \) is 21, so the contribution is 63.

Summing up, we get
\[
N_{4,3} = 675 = 5^2 \cdot 3^3.
\]

As the \{cubic + line\} locus clearly has degree \(\binom{11}{2} = 55 \), we obtain 620 as the number of irreducible rational quartics through 11 points. (cf. [Z]).

2. New.

The new approach works for maps from a fixed curve \(C \), say to \(\mathbb{P}^2 \). For simplicity we will assume \(C = \mathbb{P}^1 \). Considering rational curves of degree \(d \) in \(\mathbb{P}^2 \) amounts to considering curves of bidegree \((1, d)\) in \(\mathbb{P}^1 \times \mathbb{P}^2 \), and the old method to count them is by specialising the \(\mathbb{P}^2 \) factor to a fan; the new approach on the other hand is to specialise the \(\mathbb{P}^1 \) factor to a '1-dimensional fan', i.e. to
\[
C_1 = C + C_0. C_1 = \mathbb{P}^1, C_0 \cap C_1 = \{ c \}.
\]
Because \mathbb{P}^1 is simpler than \mathbb{P}^2 this approach works better in this case; on the other hand it is apparently unknown how to make it work when the source curve is allowed to vary with moduli.

To be precise, fix a pair of points y_1, y_2 and a pair of lines L_3, L_4 in \mathbb{P}^2 and 4 points $x_1, ..., x_4 \in \mathbb{P}^1 = C$ and consider curves of bidegree $(1, d)$ in $C \times \mathbb{P}^2$ containing $(x_1, y_1), (x_2, y_2)$ and meeting $x_3 \times L_3, x_4 \times L_4$, as well as a further collection of $3d - 4$ 'horizontal' lines $C \times z_j$. We then specialise this to $C_0 \times \mathbb{P}^2$ in two ways: (A) $x_1, ..., x_4$ specialise to $x_1, 1, x_2, 1 \in C_1, x_3, 2, x_4, 2 \in C_2$; (B) x_1, x_3, x_2, x_4 specialise to $x_1, 1, x_3, 1 \in C_1, x_2, 1, x_4, 2 \in C_2$. In the (A) limit it is possible to have a component of bidegree $(1, 0)$ in $C_2 \times (L_3 \cap L_4)$, while in the (B) limit all curves have bidegrees $(1, d_1) \cup (1, d_2), d_1 + d_2 = d, d_i > 0$. Thus letting n_d denote the number of rational curves in \mathbb{P}^2 through $3d - 1$ points, writing $(A) = (B)$ we get an equation of the form

$$n_d + f(n_1, ..., n_{d-1}) = g(n_1, ..., n_{d-1})$$

for suitable quadratic expressions f, g, which may be solved for n_d.

Example: $d = 4$.

$$f = \binom{8}{2}.12.1.1.1.3 + \binom{8}{3}.1.1.2.2.4 + 1.1.12.3.3.3 = 2228$$

with the summands corresponding to $d_1 = 3, 2, 1$ and, e.g. in the first product the factors corresponding to: choosing 2 of the 8 points z_j for the image of C_2 to go through; the number of possible images of C_1, C_2, x_3, x_4, x;

$$g = 8.12.1.3.1.3 + \binom{8}{4}.1.1.2.2.4 + 8.1.12.1.3.3 = 2848$$

$$n_4 = 620.$$
\(\bar{M}_{0,n+1}(X, \beta_1) \times \bar{M}_{0,n+1}(X, \beta_2) \) given by the pullback of the diagonal \(\Delta \subset X \times X \) via a suitable projection. Now fixing any decomposition of \(n \) as \(n_1 + n_2 \), a divisor \(D \) in the space \(\bar{M}_{0,n+4}(X, \beta) \), defined by fixing the position of the first four points, say, may be specialised to the union (with multiplicity 1) of the various \(\bar{M}_{0,0;n_1+2,n_2+2}(X, \beta_1, \beta_2) \) with \(\beta_1 + \beta_2 = \beta \) (because fixing the position of three points on each component of \(C_0 \) is vacuous); using the formula

\[
[\Delta] = \sum g^{e,f} T_e \otimes T_f,
\]

we conclude:

\[
I'_\beta(\gamma^n T_i T_j T_k T_l) = \sum I_{\beta_1}(\gamma^{n_1} T_i T_j T_e) I_{\beta_2}(\gamma^{n_2} T_k T_l T_f) g^{e,f}
\]

where the LHS is the appropriate Gromov-Witten integral over \(D \) and the sum is over all \(\beta_1 + \beta_2 = \beta \) and all \(e, f \). As the LHS is symmetric in \(i, j, k, l \), this is certainly stronger than the relation (2.9) on p.16 of [F], which is equivalent to associativity.

References

[D] Dijkgraaf, R: ‘Mirror symmetry and elliptic curves’ (preprint).

[F] Fulton, W: ‘Enumerative geometry via quantum cohomology’ preprint.

[R] Ran, Z.: ‘Enumerative geometry of singular plane curves’ Invent. Math. 97 (1989), 447-465.

[Ro] Roberts, S.: ‘Sur l’ordre des conditions . . . ’ Crelle’s J. 67 (1867), 266-278.

[V] Vainsencher, I.: ‘Counting divisors with prescribed singularities’ Trans. AMS 267(1981), 399-422.

[Z] Zeuthen, H.G., Pieri, M.: ‘Géométrie Enumerative.’ Encyc. Sci. Math. III 2, 260-331. Leipzig: Teubner 1915.