Design and Implementation of Multi Knowledge Base Expert System Using the SQL Inference Mechanism for Herbal Medicine

Melina¹, Eddie Krishna Putra¹, Wina Witanti¹, Sukrido², Valentina Adimurti Kusumaningtyas³

¹Departement of Informatics, Universitas Jenderal Achmad Yani, Cimahi, Indonesia.
²Departement of Chemistry, Universitas Jenderal Achmad Yani, Cimahi, Indonesia.

1. Introduction

Artificial Intelligence (AI) nowadays generally describes the implementation of several aspects of human ability. The most important applied area of AI is the field of expert systems. An expert system (ES) is a system that uses human knowledge captured in a computer to solve problems that ordinarily require human expertise [1]. In order for computers to use heuristic knowledge effectively, it must be arranged in an easily accessible format distinguishing between data, knowledge, and control structures. The strength of an ES derives from its knowledge based an organized collection of facts and heuristics about the system's domain. An ES is built in a process known as knowledge engineering, during which knowledge about the domain is acquired from human experts and other sources by knowledge engineers.

The database and AI communities need to come to terms with each other and learn to work together without imposing unrealistic, requirements on each other [2] to improve their performance. The use of the SQL technology in the ES as AI tool is an actual and powerful possibility of elaborating inference mechanisms due to specific advantages [3]. In this study, the design of rule based ES using the Structured Query Language (SQL) database technology. This SQL technology is well known for database environments and was recently integrated in new powerful object oriented. Therefore, in our opinion this technology comes of interest for ES shells, becoming very attractive for ES developers [3]. The paper shows a solution that implementing rule engine using SQL has provided major...
benefits. One of several strategies can be employed by an inference engine to reach a conclusion. Inferencing engines for rule-based systems generally work by either forward or backward chaining of rules.

The multi knowledge concept is made with database design, so that the expert system in this study can accommodate multi knowledge bases about disease and has more solutions in health problems with solutions that affect consultative. To minimize the effects of synthetic drugs and poisoning of synthetic drugs, the drugs used are natural antibiotics and herbal medicines [4], as an alternative treatment that is safe, healthy and natural. The advantages of using herbal medicines are the preferred side effects such as modern medicines which are completely synthetic and chemical. Another plus is, herbal medicines can still be consumed by taking modern medicines, but must go through the approval and supervision of a doctor needed for a disease suffered by someone. To keep systems secure from irresponsible people, hence the expert consultation system has been designed with system security techniques with a password as the system's control and accountability [5]. Password generator is created automatically by a system that rainbow connected coloring theorems so as to minimize the amount of memory [6].

2. Method

2.1. Inference mechanism

Inferencing engines for rule-based systems generally work by either forward or backward chaining of rules. Forward chaining is a data-driven strategy. The inferencing process moves from the facts of the case to a goal (conclusion). The strategy is thus driven by the facts available in the working memory and by the premises that can be satisfied. The inference engine attempts to match the condition (IF) part of each rule in the knowledge base with the facts currently available in the working memory. If several rules match, a conflict resolution procedure is invoked.

SQL, structured query language, is a programming language designed to manage data stored in relational databases. To retrieve data from a database, to create temporary tables and how to manipulate them effectively need query statements for better and faster performance. Example, running the above script in SQL workbench produces.

```
SQL statement = "SELECT field A1, field B1, Field C1, ([fact1 C2]/[fact1 B2])*100 as Percentage FROM ((table A INNER JOIN Tabel B) INNER JOIN Tabel C) WHERE field A1 = 'value' ORDER BY 'Field A1'";
```

The following result set is shown below.

![Figure 1. How SQL statements work](image)

If tables contain knowledge, by using several query constructions (SQL statements), every knowledge piece (fact, rule) can be easily found and extracted, especially if knowledge pieces are
unique (making them suitable for table index fields). Therefore, the contents searching process, one of the key problems to set up an ES inference mechanism can be solved [3]. The inference mechanism shown in figure 2 can be designed according to the above considerations.

The designed SQL based inference mechanism for forward chaining inference strategy

2.2. Database design
Database design is a collection of processes that facilitate the designing, development, implementation and maintenance of enterprise data management systems. In this paper, we will explain the main phases that create database design.

2.2.1. Collecting and analyzing data
The first step is collecting data with uses interview, literature and questioning method by asking directly to the source of data, experts and the person in charge. After these steps, the data is ready for analysis. We used data analysis methods are Data Flow Diagram (DFD). 0-DFD level for the multi-knowledge base expert system is shown below.

0-DFD level It is also known as context diagram. It’s designed to be an abstraction view, showing the expert consultation system as a single process with its relationship to two external entities, the expert as source of knowledge base and user to query (question) and to receive advice from expert. Process in a level 0 context diagram can be decomposed (exploded) into a level 1 to represent details of the processing activities. A possible level 1 DFD for the expert consultation system is as follows.
The figure below shows the level 1 DFD contains four processes, two external entities and eleven data stores. Based on the diagram, for the first time, an expert must register on the system to get validation as an expert then transferring expertise from an expert to the system. Users that need to register and create their account to log into the system for consultations and get medical advice. Process in a level 1 DFD can be decomposed (exploded) into a level 2 to represent details of the processing activities. A possible level 2 DFD for the expert consultation system is as follows.

Figure 4. 1-DFD level the multi knowledge base expert system

Figure 5. 2-DFD level the multi knowledge base expert system
A level 2 data flow diagram (DFD) offers a more detailed look at the consultation processes that make up an information system than a level 1 DFD does. The level 2 DFD contains two processes, one external entities and seven data stores. First, a patient chooses the clinic and the symptoms they have, the symptoms chosen by the patient will be processed in the diagnosis process. The output of this level is information about the patient's disease.

2.2.2. Conceptual design
When every data requirement is stored and analyzed, then is creating a conceptual database plan. The result of this phase is an Entity-Relationship (ER) diagram, as shown in the figure below.

![Figure 6. Entity-relationship the multi knowledge base expert system](image)

2.2.3. Logical design
This phase provides the results of the relationship scheme. The basis of this scheme is the ER Diagram. In this study, the rules for transferring the ER model to the relationship scheme are as follows.

- Expert (Expert_id, F_Name, L_Name, Address, Date_birth, Education, Specialist, HP, E_mail, Pwd)
- Patient (Patient_id, F_name, L_name, date_b, Address, hp, E_mail, Pwd)
- Disease (disease_id, Disease_name, medical_name, descripsi. Notes)
- Disease_Details ((Disease_Id, Symptoms_Id)
- Symptoms (Symptoms_Id, Symptoms_Name, Clinic_id)
- Clinic (Clinic_id, Clinic_name, Notes)
- Consultation (Consultation_Id, Consultation_Date, Patient_Id, Clinic_id, Disease_Id)
- Consultation_Details (Consultation_Id, Symptoms_Id)
- Recipe (Recipe_id, recipe_n, Instructions, Disease_id, expert_id)
- Recipe_details (Recipe_id, Herbal_Id, dose, Unit_id)
- Herbal (Herbal_Id, herbal_n, latin_n, foreign_n, area_n, habitat, content, efficacy)
- Unit (Unit_id, Unit, Notes)
2.2.4. Physical Design

Physical database design translates the logical data model into a set of SQL statements that define the database. For relational database systems, it is relatively easy to translate from a logical data model into a physical database. Rules for translation: entities become tables in the physical database. DDL statements for creating a database and structure in language of the chosen DBMS, that is MySQL, as follows.

- `CREATE DATABASE MultyExpertS;`
- `CREATE TABLE Expert (Expert_id varchar(10) NOT NULL, f_name varchar(30), l_name varchar(30) NOT NULL, address text, date_birth date NOT NULL, Education varchar(30) NOT NULL, Specialist varchar(30) NOT NULL, hp varchar(20) NOT NULL, email varchar(50) NOT NULL, PRIMARY KEY(Expert_id));`
- `CREATE TABLE patient (patient_id varchar(10) NOT NULL, f_name varchar(30), l_name varchar(30) NOT NULL, date_b date NOT NULL, address text, hp varchar(20), email varchar(50) NOT NULL, PRIMARY KEY(patient_id));`
- `CREATE TABLE disease (disease_id varchar(10) NOT NULL, disease_name varchar(30) NOT NULL, medical_name varchar(30) NOT NULL, description text, notes text, PRIMARY KEY(disease_id)) ENGINE=InnoDB;`
- `CREATE TABLE clinic (clinic_id varchar(10) NOT NULL, clinic_name varchar(50) NOT NULL, notes varchar(200), PRIMARY KEY(clinic_id)) ENGINE=InnoDB;`
- `CREATE TABLE symptoms (symptoms_id varchar(10) NOT NULL, symptoms_name varchar(50) NOT NULL, clinic_id varchar(10) NOT NULL, PRIMARY KEY(symptoms_id), FOREIGN KEY(clinic_id) REFERENCES clinic(clinic_id)) ENGINE=InnoDB;`
- `CREATE TABLE herbal (herbal_id varchar(10) NOT NULL, herbal_name varchar(30) NOT NULL, latin_name varchar(30) NOT NULL, foreign_name varchar(30), area_name varchar(30), habitat varchar(30), content varchar(200) NOT NULL, efficacy varchar(250) NOT NULL, PRIMARY KEY(herbal_id)) ENGINE=InnoDB;`
- `CREATE TABLE Disease_Details (disease_id varchar(10) NOT NULL, symptoms_id varchar(10) NOT NULL, PRIMARY KEY(disease_id, symptoms_id));`
- `CREATE TABLE consultation (Consultation_id varchar(10) NOT NULL, consultation_date date NOT NULL, patient_Id varchar(10) NOT NULL, clinic_id varchar(10) NOT NULL, disease_id varchar(10) NOT NULL, PRIMARY KEY(Consultation_id), FOREIGN KEY(patient_Id) REFERENCES patient(patient_Id), FOREIGN KEY(clinic_id) REFERENCES clinic(clinic_id), FOREIGN KEY(disease_id) REFERENCES disease(disease_id));`
- `CREATE TABLE consultation_details (consultation_id varchar(10) NOT NULL, symptoms_id varchar(10) NOT NULL, PRIMARY KEY(consultation_id, symptoms_id));`
- `CREATE TABLE recipe (Recipe_id varchar(10) NOT NULL, recipe_name varchar(30) NOT NULL, Instructions text NOT NULL, disease_id varchar(10) NOT NULL, expert_id varchar(10) NOT NULL, PRIMARY KEY(recipe_id), FOREIGN KEY(disease_id) REFERENCES disease(disease_id), FOREIGN KEY(expert_id) REFERENCES expert(expert_id));`
- `CREATE TABLE recipe_details(recipe_id varchar(10) NOT NULL, herbal_id varchar(10) NOT NULL, dose varchar(30) NOT NULL, unit_id varchar(10), PRIMARY KEY(recipe_id));`
This phase shown figure 7 relationship between tables that have been normalized as belows.

2.2.5. Knowledge base design using the SQL inference mechanism for forward chaining

In this study, we designing a knowledge base using the SQL inference mechanism for forward chaining. Forward chaining inference mechanisms start deriving knowledge from some initial premises (true facts). The inference process stops either when all possible applies rules are fired or a certain goal was reached. One example of the results of the representation of knowledge about diagnosing one disease based on symptoms, as follow.

If : Cough And : Chronic cough
And : Bloody sputum And : Blood in stool
And : Shortness of breath And : Night sweats
And : Weight loss And : Fatigue
And : Chest pain or : Pain while breathing
Then : Tuberculosis 100 % recipe tuberculosis remedies by expert Popong Malia,
Asthma 60 % recipe Asthma remides by expert Abdul Mukthy,
Chronic bronchitis 40 % recipe chronic bronchitis remides by expert Tina Alfitria,
Flu 28,60 % recipe flu remides by expert Toto Sukarno.

We will show how to create a new table by using SQL statement to get the results of the diagnostic process, and new table shown in table 1, table 2 and table 3, respectively.

- Query table of disease with total symptoms.
 SELECT Disease_Details.Disease_Id, Count(Disease_Details.Disease_Id) AS TotalSymptoms FROM Disease_Details GROUP BY Disease_Details.Disease_Id;

- Query table of diseases with selected symptoms.
 SELECT DiseaseSelected.Disease_Id, Count(DiseaseSelected.Disease_Id) AS Selected FROM DiseaseSelected GROUP BY DiseaseSelected.Disease_Id;

- Query table of result.
 SELECT Disease.Disease_id, Disease.Disease_name, DiseaseSymptoms.TotalSymptoms, SymptomsSelected.Selected, ([Selected]/[TotalSymptoms])*100 AS Percentage FROM (Disease INNER JOIN DiseaseSymptoms ON Disease.disease_id = DiseaseSymptoms.Disease_Id) INNER JOIN SymptomsSelected ON Disease.Disease_id = SymptomsSelected.Disease_Id ORDER BY ([Selected]/[TotalSymptoms])*100 DESC";
Table 1. Disease with total symptoms

Disease_Id	Total symptoms
D-0001	10
D-0002	5
D-0003	5
D-0005	7
D-0013	10

Table 2. Symptoms selected

Disease_Id	Selected
D-0001	2
D-0002	3
D-0003	2
D-0005	2
D-0013	10

Table 3. Diagnosis result

Disease_id	Disease_name	TotalSymptoms	Selected	Percentage
D-0013	Tuberculosis	10	10	100,00
D-0002	Asthma	5	3	60,00
D-0003	Chronic bronchitis	5	2	40,00
D-0005	Flu	7	2	28,60
D-0001	Allergy	10	2	20,00

2.2.6. Implementation
This phase is input data into the new database, it concerned with the identification of errors in the newly implemented system and also checks the database against requirement specifications. Consultation process and input data using forms consultation disease and form recipe, see figure 8-9, respectively.

Figure 8. Consultation disease form
3. Results
The nouvel of expert system from multi knowledge base for many experts using SQL inference mechanism has been successfully implemented in this study so that the expert system is integrated, fast and accurate.

4. Conclusion
From the results of this study, some conclusions which are as follows.
1. The expert system in this study was designed by using the basic concept of multi knowledge in order to be able to store a lot of knowledge base about diseases from many experts.
2. In this study, the expert system uses the SQL inference mechanism, so that the expert system is dynamic, updated, accurately and accessed more quickly.

References
[1] Turban, Effraim 1995 Decision support and expert system (London: Prentice-Hall Inc)
[2] O. Friesen and F. Golshani 1989 Database in large AI, AI Magazine Volume 10 Number 4
[3] George Dobre, Cosmin Grigorescu, Dorin Carstoiu and Simona Grigoresu, 1998 Applying SQL techniques on inference mechanism of expert system, transaction on information and communication technologies vol 20 ISSN 1743-3517
[4] VA Kusumaningtyas, YM Syah dan DM Agustini 2008 Proc. Int. Conf. on chemistry (Bandung) p 229-230
[5] Melina, EK Putra, VA Kusumanintyas and W Witanti 2018 Proc. seminar nasional sistem informasi Indonesia (Surabaya) p 231-236
[6] Melina, A.N.M. Salman 2018 Proc. Int. Conf. on basic science (Malang) p 273-276
[7] Gavin Powel 2006 Beginning database design (Indiana: Wiley Publishing Inc)
[8] Beynon, P and Davies 1991 Expert database system a gentle introduction (England: McGraw Hill Inc)
[9] Barber, Richard 1992 Bones an experts system for diagnosis with fault models (England: Ellis Horwood)