REVIEW

Oral budesonide in gastrointestinal and liver disease: A practical guide for the clinician

Stephan Miehlke,† Manuel Barreiro-de Acosta,‡ Gerd Bouma,§ Daniel Carpio,¶ Fernando Magro,†,‡‡ Tom Moreels†† and Chris Probert‡‡

*Center for Digestive Diseases, Internal Medicine Center Eppendorf, Hamburg, Germany; and †Intestinal Inflammatory Disease Unit, Department of Gastroenterology, University Clinical Hospital of Santiago de Compostela, Santiago de Compostela, Digestive System Service, University Hospital of Pontevedra Complex, Pontevedra, Spain; and ‡Department of Gastroenterology, Vrije University Medical Center, Amsterdam, The Netherlands; and §Department of Pharmacology and Therapeutics, Faculty of Medicine, **MedInUP, Centre for Drug Discovery and Innovative Medicines, University of Porto, Porto, Portugal; and ††Hepato-Gastroenterology, Cliniques Universitaires Saint-Luc, Brussels, Belgium; and ‡‡Department of Gastroenterology, Institute of Translational Medicine, Liverpool, UK

Key words
autoimmune liver disease, Budenofalk, budesonide, Cortiment, Crohn’s disease, Entocort, inflammatory bowel disease, microscopic colitis, tapering, ulcerative colitis.

Accepted for publication 17 March 2018.

Correspondence
Professor Stephan Miehlke, Center for Digestive Diseases, Internal Medicine Center Eppendorf, Eppendorfer Landstraße 42, 20249 Hamburg, Germany.
Email: prof.miehlke@mdz-hamburg.de

Declaration of conflicts of interest: Stephan Miehlke, Manuel Barreiro-de Acosta, Daniel Carpio, Fernando Magro, and Chris Probert have received speaker’s fees from Dr. Falk Pharma GmbH. Tom Moreels has received speaker’s fees from Lamepro. Manuel Barreiro-de Acosta, Gerd Bouma, Tom Moreels, and Chris Probert have received honoraria for membership of a Dr. Falk Pharma GmbH advisory Board.

Author contributions: All authors attended a meeting in October 2016 to agree the structure and content of this article. Subsequently, all authors critically reviewed a draft manuscript at a meeting in February 2017 and thereafter approved the final version for publication.

Financial support: The authors’ attendance at meetings in Vienna, Austria, (October 2016) and Barcelona, Spain, (February 2017) in order to discuss this article was remunerated by Dr. Falk Pharma GmbH, Freiburg, Germany, and local affiliates. Editorial support from a freelance medical writer was funded by Dr. Falk Pharma GmbH.

Abstract

Oral budesonide is a second-generation steroid that allows local, selective treatment of the gastrointestinal tract and the liver, minimizing systemic exposure. The results of randomized trials comparing budesonide versus placebo or active comparators have led to expert recommendations that budesonide be used to treat mild or moderate active ileocecal Crohn’s disease, microscopic colitis (including both collagenous and lymphocytic colitis), ulcerative colitis, and non-cirrhotic autoimmune hepatitis. The mechanism of budesonide action obviates the need for dose tapering due to safety reasons after induction therapy. Where low-dose budesonide is used to maintain remission, usually in microscopic colitis, it does not appear to have adverse safety implications other than slight reductions in cortisol levels on rare occasions. As a gut-selective and liver-selective corticosteroid, budesonide offers an appealing alternative to conventional systemic glucocorticoids in diseases of these organs.

Budesonide: A second generation steroid

Conventional systemic glucocorticoids remain the cornerstone of management for inflammatory bowel conditions and certain autoimmune liver diseases, but up to 90% of patients can experience adverse events including weight gain, gastrointestinal ulceration, suppression of the pituitary–adrenal axis, cataracts, and infections. In response, an intensive research effort has led to the development of new corticosteroid compounds with less systemic toxicity than classic therapy with prednisolone, prednisone, or cortisone.

Budesonide is a second generation corticosteroid that allows local, selective treatment of the gastrointestinal tract and the liver, exerting potent anti-inflammatory effects at the site of inflammation by high-affinity binding to the intracellular glucocorticoid receptor. Extensive (90%) pre-systemic metabolism within the mucosa of the small intestine and the liver results in low systemic availability. By acting locally and minimizing systemic exposure, oral budesonide preparations offer a broadly similar efficacy to systemic glucocorticoids but with an improved safety profile.

Dose tapering: Budesonide versus systemic glucocorticoids

The low systemic exposure of oral budesonide obviates the need for dose tapering after induction therapy. Sudden withdrawal of
conventional systemic glucocorticoids after achieving induction can lead to adrenal insufficiency, and stepwise dose tapering is required before discontinuation to allow gradual restoration of cortisol production by the adrenal cortex. Compared with systemic glucocorticoids, oral budesonide has a markedly reduced effect on endogenous cortisol production, and expert recommendations do not consider dose tapering before discontinuation to be necessary. The safety of this approach has been confirmed by randomized trials in which patients who achieved remission with budesonide in Crohn’s disease or collagenous colitis were then randomized to either abruptly discontinue budesonide and switch to placebo therapy or to continue low-dose budesonide, with 6–12 months follow-up. Results showed no evidence for “rebound” adverse events related to suppression of adrenal function or other complications in the placebo arms after abrupt budesonide discontinuation, confirming that budesonide does not need to be tapered. Although dose tapering is not required on the grounds of safety, stepwise dose reductions may be advantageous on pharmacodynamic grounds when withdrawal of maintenance therapy is planned, that is, for steroid-dependent patients who have been receiving budesonide for prevention of relapse in microscopic colitis.

Oral budesonide preparations

Because oral budesonide is absorbed rapidly from the gastrointestinal tract and partially metabolized in the gut wall, controlled-release oral formulations have been developed that target the release of active drug to the required gastrointestinal segments. Three different oral preparations of budesonide are available: (i) a gastro-resistant, pH-modified formulation (brand names Budenofalk, Budo-San, Intestifalk, Mikicort, Budeson, Intestico); (ii) a gastro-resistant controlled-ileal-release formulation (brand names Entocort, Entocord); and (iii) a relatively new multi-matrix (MMX) formulation (brand names Cortiment MMX, Uceris). As a result of these different drug delivery systems, the pharmacokinetics of the three preparations vary (Table 1). The time to first detection of budesonide in plasma (tlag) is delayed by approximately 2 h with pH-modified budesonide and approximately 10 h with MMX budesonide (Fig. 1). There is no delay in drug release using controlled ileal-release budesonide, but the peak plasma concentration is lower (Fig. 1).

pH-modified and controlled ileal-release budesonide are licensed for mild to moderate active Crohn’s disease affecting the ileum and proximal colon, but not for the treatment of isolated, more distal colonic inflammation. pH-modified budesonide is also licensed for the induction of remission in active collagenous colitis and for the induction and maintenance of remission in autoimmune hepatitis (AIH). Controlled ileal-release budesonide has a license for the treatment of active collagenous colitis in some European markets. MMX budesonide is licensed for the induction of remission in mild to moderate active ulcerative colitis (UC) for patients in whom mesalazine (5-ASA) treatment is not sufficient, reflecting its colonic release of budesonide.

The characteristics and indications for each oral preparation are summarized in Table 2.

Oral budesonide in Crohn’s disease

Induction of remission

Numerous randomized trials have compared budesonide versus placebo or comparator therapies, and assessed different dosing regimens for the induction of remission in Crohn’s disease. Meta-analyses based on these trials have shown that oral budesonide is more efficacious than mesalazine or placebo when used for the induction of remission in mild to moderate active Crohn’s disease, with no difference in side effects. Randomized trials have shown statistically similar rates of remission with budesonide or prednisolone, albeit with varying trends in favor of one treatment or another, and comparable success in achieving remission has been confirmed in a meta-analysis by Coward et al. Expert guidelines recommend budesonide as the preferred treatment for mild or moderate active ileoccecal Crohn’s disease (Table 3). In prospective trials of patients with steroid-dependent Crohn’s disease, switching from systemic glucocorticoid therapy to oral budesonide was associated with a reduction in glucocorticoid side effects, while remission was maintained in the majority of recipients.

Table 1 Pharmacokinetic characteristics of budesonide following a single oral dose of Budenofalk (1× 3 mg capsules or 3× 3 mg capsules), Entocort (1× 3 mg capsules or 3× 3 mg capsules), or Cortiment (1× 9 mg tablet) in fed healthy volunteers

	Budenofalk	Entocort	Cortiment			
	3 mg budesonide	9 mg budesonide				
	1×3 mg	1×3 mg	3×3 mg	3×3 mg	1×9 mg	
AUC 0–24 h (ng × h/L)	2.0 (1.0)	0.0	2.1 (1.0)	0.0	9.8 (3.6)	
AUC 0–48 h (ng × h/L)	4.8 (1.3)	2.3 (1.1)	5.4 (1.4)	2.7 (1.7)	20.7 (8.7)	
Cmax (ng/mL)	1.8 (1.2)	0.8	3.6 (1.3)	2.3	1.0 (0.6)	
Cmax/mg dose (ng/mL × mg)	0.6 (0.4)	0.3 (0.1)	0.4 (0.1)	0.3 (0.1)	0.1 (0.1)	
AUC (ng × h/L)	9.4 (3.9)	5.0	17.9 (5.8)	15.9	13.5 (9.4)	
AUC/mg dose (ng × h/L × mg)	3.1 (1.3)	1.6 (0.5)	2.0 (0.6)	1.8 (0.7)	1.5 (1.0)	

AUC0–24 h, AUC0–48 h. Values are shown as mean (SD).
Optimising therapy with budesonide

Both pH-modified and controlled ileal-release budesonide are licensed for the induction of remission in Crohn’s disease. The choice of preparation could be based on the location of disease and approved indication: Controlled ileal-release budesonide may be effective in proximal ileal disease, with either preparation being effective for ileocecal disease, while pH-modified budesonide may be appropriate in cases with proximal colonic involvement.22,30 For induction of remission, an oral dose of 9 mg/day is recommended, given as 9 mg once-daily or 3 mg t.i.d., to be continued for up to 8 weeks. Once-daily dosing appears to be as effective as 3 mg t.i.d.29 and may support improved adherence.

Maintenance therapy. Randomized trials of oral budesonide maintenance therapy after remission has been achieved by induction therapy have shown only a modest benefit in terms of Crohn’s Disease Activity Index scores and time to relapse,8,9,15,18–20 as confirmed in a recent Cochrane analysis.41 Budesonide is not recommended in European Crohn’s and Colitis Organization guidelines for maintenance therapy in Crohn’s disease.11 Although budesonide-related adverse events are rare using a low-dose and its safety profile is similar to that of placebo,41,42 non-steroid options such as thiopurines are preferred.11 Use of low-dose budesonide to maintain remission is generally restricted to patients in whom Crohn’s disease is steroid-dependent and in whom immunomodulation should be avoided, or where the patient refuses alternative treatments.37 In such cases, randomized trials of 6–12 months duration have shown low clinical relapse rates at a dose of 6 mg/day, at least in the short-term,15,38,40 whereas 3 mg/day appears inadequate.15,39

Oral budesonide in microscopic colitis

Induction of remission. Randomized trials have also assessed the effectiveness of oral budesonide for inducing remission in collagenous colitis43–46 and lymphocytic colitis.47,48 Meta-analyses have confirmed the effectiveness of budesonide in active microscopic colitis generally,40 and in collagenous colitis specifically.40 A rapid (<2 weeks) improvement in watery diarrhea is observed in response to oral budesonide.33–47 Other drugs, such as prednisolone, mesalazine, and bismuth subsalicylate, are considered second-line agents12: prednisolone50 and mesalazine46 have proven ineffective, and bismuth is unavailable in many countries. Accordingly, budesonide therapy is recommended in expert guidelines for the treatment of microscopic colitis (including both collagenous and lymphocytic colitis; Table 3).12,13,34 pH-modified budesonide is licensed for the induction of remission in active collagenous colitis, and recently, controlled ileal-release budesonide has also received a license in certain countries. The license recommends that the full dose of 9 mg/day should be used for a maximum of 8 weeks for treatment of active collagenous colitis. In practice, most patients achieve remission by week 2.10 Budesonide is effective in lymphocytic colitis: Two large, randomized, double-blind, placebo-controlled trials in this indication have demonstrated good efficacy and safety.47,48

Maintenance therapy. Recurrence of collagenous colitis is common after withdrawal of budesonide.12,13,34 Three randomized trials of 6–12 months duration have investigated budesonide for maintenance therapy after remission has been achieved.10,16,17 Each of these found budesonide to be effective in sustaining remission and to be well-tolerated without safety concerns.10,16,17 For maintenance therapy in collagenous colitis, a dose of 3–6 mg daily should be used.12,13 In a recently published placebo-controlled trial of gastro-resistant pH-modified budesonide in 100 patients, the dosing schedule was 9 mg/day for 4 weeks during active collagenous colitis, reducing to 6 mg/day for 2 weeks and then 4.5 mg/day (i.e., 6 mg/day and 3 mg/day on alternate days).10 The 4.5 mg/day regimen was then continued during a 12-month treatment period for maintenance of remission.10 At the end of 12 months, the dose was reduced over a period of 2 weeks to 3 mg/day for 1 week and finally 3 mg/day every other day for the last week before discontinuation. The majority of patients (82%) still relapsed after budesonide withdrawal,10 highlighting the chronic nature of the disease and the need of continuous treatment in many patients.

Oral budesonide in ulcerative colitis

Induction therapy. Randomized controlled studies51–53 and a recent meta-analysis54 have demonstrated a treatment effect for MMX budesonide in achieving remission in mild to moderate active UC. However, the benefit is modest: The remission rate was 17.9% with MMX budesonide 9 mg, 13.2% with MMX budesonide 6 mg, 12.1% with mesalazine, and 7.4% with placebo in one study,52 and 17.4% with MMX budesonide 9 mg, 8.3% with MMX budesonide 6 mg, and 4.5% with placebo in a second study.51 Therefore, mesalazine remains the gold standard and budesonide MMX is licensed only in patients for whom combined oral or combined oral and rectal 5-ASA is insufficient.14 Mesalazine has the advantage of being suitable for maintenance of remission. In mesalazine-refractory mild to moderate UC, MMX budesonide has a limited effect on combined clinical and

Figure 1 Plasma concentration profiles of budesonide following a single dose of Budenofalk (1× 3 mg capsules or 3× 3 mg capsules),19 Entocort (1× 3 mg capsules or 3× 3 mg capsules),19 or Cortiment (1× 9 mg tablet)29 in healthy volunteers. — Budesonide 3 mg; — Budenofalk 3 mg; — Entocort 3 mg; — Entocort 9 mg; — Cortiment MMX.

© 2018 The Authors Journal of Gastroenterology and Hepatology published by Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd

1576 Journal of Gastroenterology and Hepatology 33 (2018) 1574–1581
© 2018 The Authors Journal of Gastroenterology and Hepatology published by Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd

1576
Table 2 Indications, characteristics, and dosing of oral budesonide preparations

Preparation	Indications	Design of preparation	Time/site of release†	Recommended dose†,‡	Recommended duration†	Recommended discontinuation†
Budenofalk						
3 mg capsule	Crohn’s disease	Gastro-resistant coating	2-3 h (4-6 h with food) Max. release in ileocecal region	3 capsules/day	≤8 weeks	Tapered (2 capsules/day for 1 week, 1 capsule/day for 1 week then stopped)
	Collagenous colitis					
	Autoimmune hepatitis					
3 mg sachet	Crohn’s disease	Gastro-resistant coating	4.5 h (6.8 h with food)	3 capsules/day	≤8 weeks	Tapered (every other day for ≤2 weeks then stopped)
	Collagenous colitis					
Entocort						
3 mg capsule	Crohn’s disease	Gastro-resistant, prolonged release	6.8 h (~11 h with food)	3 capsules/day	“Full effect is usually achieved in 2–4 weeks”	Dose should normally be reduced for the last 2–4 weeks of therapy
	Ulcerative colitis					
Cortiment						
9 mg tablet	Ulcerative colitis	Multi-matrix structure	6.8 h (~11 h with food)	1 tablet/day	≤8 weeks	It may be useful to gradually reduce the dose

†As per product prescribing information.
‡For adults <18 years.
5-ASA, 5-aminosalicylic acid.
endoscopic remission versus placebo, but no effect on clinical remission alone.55

Maintenance therapy. Budesonide is not recommended or licensed for use as maintenance therapy to prevent relapse in UC. The available data relating to use of MMX budesonide for the maintenance of remission have indicated that it is not efficacious.56

Oral budesonide in autoimmune hepatitis

Data are less extensive concerning the use of budesonide to treat AIH,57–59 but meta-analyses have supported its use in AIH44 as well as primary biliary cirrhosis-AIH overlap syndrome.60 The only randomized study to be undertaken in AIH demonstrated improved induction and maintenance of remission for budesonide with azathioprine versus prednisone with azathioprine over a
6-month study period with a further 6 months of follow-up. pH-modified budesonide is licensed for both the induction and maintenance of remission in non-cirrhotic AIH, and European Association Study of the Liver guidelines advise that it can be used as combination therapy with azathioprine in non-cirrhotic AIH or in non-cirrhotic patients with severe steroid-related side effects who are inadequately managed with azathioprine.

When used to manage AIH, the recommended dose of gastro-resistant budesonide is 3 mg given three times daily for induction (until biochemical remission is achieved), then 3 mg twice daily for at least 24 months to maintain remission. European Association Study of the Liver guidelines advise that budesonide treatment should continue for at least 3 years and, more specifically, recommend that treatment should continue for at least 24 months after normalization of disease markers.

Safety of oral budesonide

Adverse events and tolerability. Pooled analyses of trials in Crohn’s disease and microscopic colitis have found a comparable rate of clinically important side effects to placebo. Recent Cochrane and network analyses have confirmed that there is no difference in the rate of adverse events or withdrawal due to adverse events between patients given low-dose (up to 6 mg/day) budesonide or placebo as maintenance therapy for Crohn’s disease. Trials in collagenous colitis have shown low-dose budesonide to be well-tolerated when given for up to 12 months. One trial of 34 patients with collagenous colitis observed a similar rate of adverse events with budesonide 6 mg/day or placebo over 6 months and no relevant differences in laboratory values, while another study with a similar design documented higher patient-reported tolerability with budesonide versus placebo.

Risk of infection. Studies in which budesonide has been used to maintain remission in collagenous colitis at a dose of up to 6 mg/day for up to 12 months have reported similar infection rates to placebo. Active monitoring for opportunistic infection is not required in patients given oral budesonide therapy.

Bone density. Randomized, double-blind trials have found addition of budesonide to UDCA therapy for up to 3 years to have no effect on bone resorption or bone mineral density in patients with primary biliary cirrhosis. In a recent retrospective analysis of patients with AIH who switched from systemic steroids to pH-modified budesonide, 14 out of 15 patients with osteopenia at baseline and 11 out of 15 at follow-up had a normal or near-normal bone mineral density after a median of 24 months follow-up. At the clinical level, a large case-control study found no increase in the overall rate of fractures with long-term low-dose maintenance oral budesonide therapy versus untreated controls. Nevertheless, in patients with microscopic colitis, a population dominated by older female patients at high risk for osteoporosis, it is advisable to use the lowest effective dose. Prophylactic use of calcium and vitamin D supplements during maintenance budesonide therapy for microscopic colitis appears advisable and is recommended in European guidelines, especially if other risk factors for osteoporosis such as smoking or proton pump inhibitor therapy are present. Calcium and vitamin D intake is not required during short-term induction therapy with budesonide.

Adrenal suppression. Short-term administration of budesonide can induce a transient, mild reduction in plasma cortisol, which at doses of 9 mg/day is not considered to be of clinical concern. Placebo-controlled randomized trials of long-term low-dose budesonide therapy for maintenance of remission in Crohn’s disease, or collagenous colitis, given at a dose of 3–6 mg/day for 6–12 months, have shown either no effect or limited effect on adrenal function, with normal cortisol levels. Oral budesonide can be used for an extended treatment period without the historical fear of steroid-related adrenal effects.

Safety versus classic steroid therapy. Randomized trials of budesonide 9 mg/day versus prednisolone for the induction of remission in active Crohn’s disease or UC reported a lower rate of short-term mild adverse events with either therapy. Moon face was less frequent under budesonide. There was significantly less suppression of pituitary–adrenal function under budesonide than prednisolone, with significantly fewer—or no—budesonide-treated patients having a plasma cortisol value below 150 nmol/L (the lower reference limit for normal). Long-term evidence has confirmed that there is less suppression of pituitary–adrenal function under budesonide. Additionally, one randomized trial observed a significant increase in mean fasting plasma glucose in patients given 10 weeks treatment with prednisolone for active Crohn’s disease while no change was seen in the budesonide-treated cohort.

Long-term randomized trials of budesonide versus prednisolone are scarce, but one 2-year trial of 272 patients with Crohn’s disease reported significantly fewer steroid-related adverse events under budesonide (51% vs 71%, P = 0.001), with the difference largely arising from lower rates of insomnia, acne, bruising easily and, strikingly, moon face (9% vs 33% with prednisolone, P < 0.001). This trial was performed primarily to compare the incidence and extent of osteoporosis under budesonide or prednisolone and concluded that budesonide is associated with improved preservation of bone mass in steroid-naïve patients with active ileoceleal Crohn’s disease. A large case–control study has reported a dose-dependent increase in fracture risk with long-term oral prednisolone across various indications that was not seen with low-dose oral budesonide maintenance therapy.

Conclusions

There is now a substantial body of high-quality evidence demonstrating the efficacy and safety of oral preparations of budesonide in gastrointestinal and hepatic diseases. Numerous randomized trials have compared budesonide therapy versus placebo or active comparators, complemented by dose-finding trials, which validate decision-making regarding the use and optimal regimen of budesonide. The maximum duration of full-dose (9 mg/day) budesonide to induce remission in active gastrointestinal disease
has been established as 8 weeks. When used in AIH, gastroresistant budesonide should be given for at least 24 months. The practice of dose tapering—long-familiar to many physicians when giving systemic glucocorticoids and often undertaken through habit—is not required with budesonide on the grounds of safety. In microscopic colitis, the dose should be reduced after achieving remission to determine the lowest effective dose for maintenance therapy, and reducing the dose before withdrawal after maintenance therapy in microscopic colitis and AIH is advisable to help minimize the risk of relapse. Unlike systemic glucocorticoids, budesonide can be used in certain conditions for long-term maintenance therapy without significant safety concerns.

As a topical glucocorticoid that can be used in a gut-selective manner, budesonide offers an appealing alternative to conventional systemic glucocorticoids. While its efficacy can vary between conditions, likely due to differences in the underlying inflammatory processes, it is a useful component of the treatment paradigm in gastrointestinal and liver disease. Future trials are awaited that will extend the evidence base, for example, comparing budesonide preparations or assessing different treatment durations for inactive disease.

References

1 Curtis JR, Westfall AO, Allison J et al. Population-based assessment of adverse events associated with long-term glucocorticoid use. *Arthritis Rheum.* 2006; 55: 420–6.

2 Edsäter S, Andersson T. Pharmacokinetics of budesonide (Entocort EC) capsules for Crohn’s disease. *Clin. Pharmacokinet.* 2004; 43: 803–21.

3 Seidegård J, Nyberg L, Borgå O. Presystemic elimination of budesonide in man when administered locally at different levels in the gut, with and without local inhibition by ketoconazole. *Eur. J. Pharm. Sci.* 2008; 35: 264–70.

4 Rutgeerts P, Lofberg R, Malchow H et al. A comparison of budesonide with prednisolone for active Crohn’s disease. *N. Engl. J. Med.* 1994; 331: 842–5.

5 Lofberg R, Danielsson A, Suhr O et al. Oral budesonide versus prednisolone in patients with active extensive and left-sided ulcerative colitis. *Gastroenterology* 1996; 110: 1713–8.

6 De Cassan C, Fiorino G, Danese S. Second-generation corticosteroids for the treatment of Crohn’s disease and ulcerative colitis: more effective and less side effects? *Dig. Dis.* 2012; 30: 368–75.

7 Schoon EJ, Bollani S, Mills PR et al. Matrix Study Group. Bone mineral density in relation to efficacy and side effects of budesonide and prednisolone in Crohn’s disease. *Clin. Gastroenterol. Hepatol.* 2005; 3: 113–21.

8 Hanauer S, Sandborn WJ, Persson A, Persson T. Budesonide as maintenance treatment in Crohn’s disease: a placebo-controlled trial. *Aliment. Pharmacol. Ther.* 2005; 21: 363–71.

9 Ferguson A, Campieri M, Doe W, Persson T, Nygård G. Oral budesonide as maintenance therapy in Crohn’s disease—results of a 12-month study. Global Budesonide Study Group. *Aliment. Pharmacol. Ther.* 1998; 12: 175–83.

10 Münch A, Bohr J, Miehlke S et al. BUC-63 investigators. Low-dose budesonide for maintenance of clinical remission in collagenous colitis: a randomised, placebo-controlled, 12-month trial. *Gut* 2016; 65: 47–56.

11 Gomollón F, Dignass A, Annese V et al. ECCO. 3rd European Evidence-based Consensus on the Diagnosis and Management of Crohn’s Disease 2016: Part 1: Diagnosis and Medical Management. *J. Crohns Colitis* 2017; 11: 3–25.

12 Nguyen GC, Smalley WE, Vege SS et al. Clinical Guidelines Committee. American Gastroenterological Association Institute Guideline on the Management of Microscopic Colitis. *Gastroenterology* 2016; 150: 242–6.

13 American Gastroenterological Association. AGA Institute Guideline on the Management of Microscopic Colitis: Clinical Decision Support Tool. *Gastroenterology* 2016; 150: 276.

14 Harbord M, Eliakim R, Bettenworth D et al. European Crohn’s and Colitis Organisation [ECCO]. Third European Evidence-Based Consensus On Diagnosis And Management Of Ulcerative Colitis. Part 2: Current Management. *J. Crohns Colitis* 2017; 11: 769–84.

15 Lofberg R, Rutgeerts P, Malchow H et al. Budesonide prolongs time to relapse in ileal and ileo-caecal Crohn’s disease. A placebo controlled one year study. *Gut* 1996; 39: 82–6.

16 Bondenup OK, Hansen JB, Teglbjaerg PS, Christensen LA, Fallborg JF. Long-term budesonide treatment of collagenous colitis: a randomised, double-blind, placebo-controlled trial. *Gut* 2009; 58: 68–72.

17 Miehlke S, Madisch A, Bethke B et al. Oral budesonide for maintenance treatment of collagenous colitis: a randomized, double-blind, placebo-controlled trial. *Gastroenterology* 2008; 135: 1510–6.

18 Data on file, Dr. Falk Pharma GmbH, Fribourg, Germany

19 Nilsson N, Edsbäcker Larsson P, Wiren JE. Dose-proportional kinetics of budesonide controlled ileal release (CIR) capsules. World Congress Gastroenterology 1994 [Abstract 1783P]

20 Brunner M, Ziegler S, Di Stefano AF et al. Gastrointestinal transit, release and plasma pharmacokinetics of a new oral budesonide formulation. *Br. J. Clin. Pharmacol.* 2006; 61: 31–8.

21 Greenberg GR, Feagan BG, Martin F et al. Oral budesonide for active Crohn’s disease. Canadian Inflammatory Bowel Disease Study Group. *N. Engl. J. Med.* 1994; 331: 836–41.

22 Campieri M, Ferguson A, Doe W, Persson T, Nilsson LG. Oral budesonide is as effective as oral prednisolone in active Crohn’s disease. The Global Budesonide Study Group. *Gut* 1997; 41: 209–14.

23 Tromm A, Bungani I, Tomsöv E et al. International Budesonide Study Group. Budesonide 9 mg is as least as effective as mesalamine 4.5 g in patients with mildly to moderately active Crohn’s disease. *Gastroenterology* 2011; 140: 425–34.

24 Gross V, Andus T, Caesar I et al. Oral pH-modified release budesonide versus 6-methylprednisolone in active Crohn’s disease. German/Austrian Budesonide Study Group. *Eur. J. Gastroenterol. Hepatol.* 1996; 8: 905–9.

25 Bar-Meir S, Chowers Y, Lavy A et al. Budesonide versus prednisone in the treatment of active Crohn’s disease. The Israeli Budesonide Study Group. *Gastroenterology* 1998; 115: 835–40.

26 Thomsen OO, Cortot A, Jewell D et al. A comparison of budesonide and mesalamine for active Crohn’s disease. International Budesonide-Mesalamine Study Group. *N. Engl. J. Med.* 1998; 339: 370–4.

27 Tremaine WJ, Hanauer SB, Katz S et al. Budesonide CIR United States Study Group. Budesonide CIR capsules (once or twice daily divided-dose) in active Crohn’s disease: a randomized placebo-controlled study in the United States. *Am. J. Gastroenterol.* 2002; 97: 1748–54.

28 Escher JC, European Collaborative Research Group on Budesonide in Paediatric IBD. Budesonide versus prednisolone for the treatment of active Crohn’s disease in children: a randomized, double-blind, controlled, multicentre trial. *Eur. J. Gastroenterol. Hepatol.* 2004; 16: 47–54.

29 Dignass A, Stoynov S, Dorofoyev AE et al. International Budesonide Study Group. Once versus three times daily dosing of oral budesonide for active Crohn’s disease: a double-blind, double-dummy, randomised trial. *J. Crohns Colitis* 2014; 8: 970–80.

30 Herfarth H, Gross V, Andus T et al. German/Austrian Budesonide Study Group. Analysis of the therapeutic efficacy of different doses of budesonide in patients with active Crohn’s ileocolitis depending on disease activity and localization. *Int. J. Colorectal Dis.* 2004; 19: 147–52.
Optimising therapy with budesonide

31 Rezaie A, Kuenzig ME, Benchimol EI et al. Budesonide for induction of remission in Crohn’s disease. Cochrane Database Syst. Rev. 2015; CD000296.
32 Moja L, Danese S, Fiorino G, Del Giovane C, Bonovas S. Systematic review with network meta-analysis: comparative efficacy and safety of budesonide and mesalazine (mesalamine) for Crohn’s disease. Aliment. Pharmacol. Ther. 2015; 41: 1055–65.
33 Coward S, Kuenzig ME, Hazlewwood G et al. Comparative effectiveness of mesalazine, sulfasalazine, corticosteroids, and budesonide for the induction of remission in Crohn’s disease: a Bayesian network meta-analysis. Inflamm. Bowel Dis. 2017; 23: 461–72.
34 Münch A, Aust D, Bohr J et al. European Microscopic Colitis Group (EMCG). Microscopic colitis: Current status, present and future challenges: statements of the European Microscopic Colitis Group. J. Crohns Colitis 2012; 6: 932–45.
35 European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Autoimmune hepatitis. J. Hepatol. 2015; 63: 971–1004.
36 Andus T, Gross V, Caesar I et al. German/Austrian Budesonide Study Group. Replacement of conventional glucocorticoids by oral pH-modified release budesonide in active and inactive Crohn’s disease: results of an open, prospective, multicenter trial. Dig. Dis. Sci. 2003; 48: 373–8.
37 Cortot A, Colombel JF, Rutgeerts P et al. Switch from systemic steroids to budesonide in steroid dependent patients with inactive Crohn’s disease. Gut 2001; 48: 186–90.
38 de Jong DJ, Bac DJ, Tan G et al. Maintenance treatment with budesonide 6 mg versus 9 mg once daily in patients with Crohn’s disease in remission. Seth. J. Med. 2007; 65: 339–45.
39 Gross V, Andus T, Ecker KW et al. Low dose oral pH modified release budesonide for maintenance of steroid induced remission in Crohn’s disease. The Budesonide Study Group. Gut 1998; 42: 493–6.
40 Green JR, Lobo AJ, Giaffer M, Travis S, Watkins HC, Freedom Investigator Group. Maintenance of Crohn’s disease over 12 months: fixed versus flexible dosing regimen using budesonide controlled ileal release capsules. Aliment. Pharmacol. Ther. 2001; 15: 1331–41.
41 Kuenzig ME, Rezaie A, Seow CH et al. Budesonide for maintenance of remission in Crohn’s disease. Cochrane Database Syst. Rev. 2014: CD002913.
42 Lichtenstein GR, Bengtsson B, Hatpen-White L, Rutgeerts P. Oral budesonide for maintenance of remission of Crohn’s disease: a pooled safety analysis. Aliment. Pharmacol. Ther. 2009; 29: 643–53.
43 Baert F, Schmit A, D’Haens G et al. Belgian IBD Research Group; Codiál Brussels. Budesonide in collagenous colitis: a double-blind placebo-controlled trial with histologic follow-up. Gastroenterology 2002; 122: 20–5.
44 Miehlke S, Heymer P, Bethke B et al. Budesonide treatment for collagenous colitis: a randomized, double-blind, placebo-controlled, multicenter trial. Gastroenterology 2002; 123: 978–84.
45 Bonderup OK, Hansen JB, Birket-Smith L, Vestergaard V, Teglbjærg PS, Fällingborg J. Budesonide treatment of collagenous colitis: a randomised, double blind, placebo controlled trial with morphometric analysis. Gut 2003; 52: 248–51.
46 Miehlke S, Madisch A, Kupcinets L et al. BUC-60/COC Study Group. Budesonide is more effective than mesalazine or placebo in short-term treatment of collagenous colitis. Gastroenterology 2014; 146: 1222–30 e1–e2.
47 Miehlke S, Madisch A, Karimi D et al. Budesonide is effective in treating lymphocytic colitis: a randomized double-blind placebo-controlled study. Gastroenterology 2009; 136: 2092–100.
48 Miehlke S, Aust D, Tulassay Z et al. Budesonide is superior to mesalazine and placebo for induction of remission in lymphocytic colitis. United European Gastroenterol. J. 2017; Suppl 5: A299.
49 Stewart MJ, Seow CH, Storr MA. Prednisolone and budesonide for short- and long-term treatment of microscopic colitis: systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 2011; 9: 881–90.
50 Munck LK, Kjeldsen J, Philipsen E, Fischer Hansen B. Incomplete remission with short-term prednisolone treatment in collagenous colitis: a randomized study. Scand. J. Gastroenterol. 2003; 38: 606–10.
51 Travis SP, Danese S, Kupcinets L et al. Once-daily budesonide MMX in active, mild-to-moderate ulcerative colitis: results from the randomised CORE II study. Gut 2014; 63: 433–41.
52 Sandborn WJ, Travis S, Moro L et al. Once-daily budesonide MMX® extended-release tablets induce remission in patients with mild to moderate ulcerative colitis: results from the CORE I study. Gastroenterology 2012; 143: 1218–26 e1–e2.
53 D’Haens GR, Kovács A, Vergauwe P et al. Clinical trial: Preliminary efficacy and safety study of a new Budesonide-MMX® 9 mg extended-release tablets in patients with active left-sided ulcerative colitis. J. Crohns Colitis 2010; 4: 153–60.
54 Sherlock ME, MacDonald JK, Griffiths AM, Steinhart AH, Seow CH. Oral budesonide for induction of remission in ulcerative colitis. Cochrane Database Syst. Rev. 2015; 10: CD007698.
55 Rubin DT, Cohen RD, Sandborn WJ et al. Budesonide multi-matrix is effective for mesalamine-refractory, mild to moderate ulcerative colitis: a randomized, placebo-controlled trial. J. Crohns Colitis 2018 in press.
56 Sandborn WJ, Danese S, Ballard ED et al. Efficacy of budesonide MMX 6mg QD for the maintenance of remission in patients with ulcerative colitis: results from a phase III, 12 safety and extended use study. Gastroenterology 2012; 142: S564.
57 Manns MP, Woynarowski M, Kreisel W et al. European AIH-BUC-Study Group. Budesonide induces remission more effectively than prednisone in a controlled trial of patients with autoimmune hepatitis. Gastroenterology 2010; 139: 1198–206.
58 Danielsson A, Prytz H. Oral budesonide for treatment of autoimmune chronic active hepatitis. Aliment. Pharmacol. Ther. 1994; 8: 585–90.
59 Peiseler M, Liebscher T, Sebode M et al. Efficacy and limitations of budesonide as a second-line treatment for patients with autoimmune hepatitis. Clin. Gastroenterol. Hepatol. 2018; 16: 260–7.
60 Zhang H, Yang J, Zhu R et al. Combination therapy of ursodeoxycholic acid and budesonide for PBC-AIH overlap syndrome: a meta-analysis. Drug Des. Devel. Ther. 2015; 9: 567–74.
61 Leuschner M, Maier KP, Schlichting J et al. Oral budesonide and ursodeoxycholic acid for treatment of primary biliary cirrhosis: results of a prospective double-blind trial. Gastroenterology 1999; 117: 918–25.
62 Vestergaard P, Rejnmark L, Mosekilde L. Fracture risk associated with different types of oral corticosteroids and effect of termination of corticosteroids on the risk of fractures. Calcif. Tissue Int. 2008; 82: 249–57.
63 Suzuki Y, Motoya S, Takazoe M et al. Efficacy and tolerability of oral budesonide in Japanese patients with active Crohn’s disease: a multicentre, double-blind, randomized, parallel-group Phase II study. J. Crohns Colitis 2013; 7: 239–47.