Data Article

Metagenomic profiling dataset of bacterial communities of a drinking water supply system (DWSS) in the arid Namaqualand region, South Africa: Source (lower Orange River) to point-of-use (O'Kiep)

Innocentia G. Erdogana, b, c, *, Lukhanyo Mekutob, d, Seteno K.O. Ntwampeb, c, Elvis Fosso-Kankeua, Frans B. Waandersa

a Water Pollution Monitoring and Remediation Initiatives Research Group in the CoE C-based Fuels School of Chemical and Minerals Engineering, Faculty of Engineering, North-West University, Potchefstroom, South Africa
b Bioresource Engineering Research Group (BioERG), Cape Peninsula University of Technology, Cape Town, South Africa
c Department of Chemical Engineering, Cape Peninsula University of Technology, Cape Town, South Africa
d Department of Chemical Engineering, University of Johannesburg, Johannesburg, 2028, South Africa

\textbf{ARTICLE INFO}

\textbf{Article history:}
Received 11 February 2019
Received in revised form 27 May 2019
Accepted 3 June 2019
Available online 11 June 2019

\textbf{Keywords:}
Drinking water supply system (DWSS)
Metagenomics
O’Kiep
16S rRNA gene

\textbf{ABSTRACT}

The metagenomic data presented herein contains the bacterial community profile of a drinking water supply system (DWSS) supplying O’Kiep, Namaqualand, South Africa. Representative samples from the source (Orange River) to the point of use (O’Kiep), through a 150km DWSS used for drinking water distribution were analysed for bacterial content. PCR amplification of the 16S rRNA V1–V3 regions was undertaken using oligonucleotide primers 27F and 518R subsequent to DNA extraction. The PCR amplicons were processed using the illumina® reaction kits as per manufactures guidelines and sequenced using the illumina® MiSeq-2000, by means of MiSeq V3 kit. The data obtained was processed using a bioinformatics QIIME software with a compatible fast nucleic acid (fna) file. The raw sequences were deposited at the National Centre of Biotechnology (NCBI) and the Sequence
Read Archive (SRA) database, obtaining accession numbers for each species identified.

© 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Data

The presented data contains the microbial composition of a drinking water supply system (DWSS) for O’Kiep, Namaqualand, South Africa. Table 1 represents the bacterial composition of the source point at the lower Orange River while Table 2 shows the microbial composition of the treated water, distributed by a state owned agency responsible for water management activities in the region. Table 3 represents the microbial composition from a local municipal reservoir at O’Kiep storing the treated water from the water agency, which is further distributed to individual households in O’Kiep. Tables 4–10 represents microbial composition at the point-of-use, i.e. households’ tap.

2. Experimental design, materials and methods

2.1. Sample collection

The DWSS samples were obtained from a 100km long pipe system designed to deliver a flow of 18 ML/day. Freshwater is sourced from the lower Orange River by a regional water supply system to the nearby towns including O’Kiep which is located in the Northern Cape,
The bacterial community composition of the Orange River as identified by 16S rDNA amplicon gene sequencing is presented in Table 1. DWSS samples (n = 9) were collected in April 2017 from the source to the point-of-use, i.e. at numerous household taps, in the Namaqualand region of South Africa [29°35′45″S, 17°52′51″E]. DWSS samples (n = 1) was initially collected from lower Orange River (Table 1). The second sample was composed of the treated water prior to transportation to the laboratory. A composite sample (n = 1) was immediately placed on ice prior to transportation to the laboratory. A composite sample (n = 1) was immediately placed on ice prior to transportation to the laboratory. A composite sample (n = 1) was immediately placed on ice.
to distribution (n = 1) at the local water supply agency reservoir (Table 2). A similar composite sample (n = 1) from the local municipal reservoir (Table 3) and samples (n = 6) were randomly collected from households’ taps (Tables 4–10). All samples were handled according to the guidelines used for drinking water quality standard quantification [2,3].

Table 3
Bacterial community composition of the O’Kiep municipal reservoir as identified by 16S rDNA amplicon gene sequencing.

Organism/HIT	%	Accession				
Uncultured bacterium	81.6	gi	399762709	gb	X079102.1	
Uncultured verrucomicrobia	4.32	gi	325973802	emb	FR749796.1	
Uncultured pseudonocardia	1.61	gi	532020985	gb	KF150649.1	
Nocardoides sp.	0.88	gi	119534933	gb	CP000509.1	
Uncultured acidobacteria	0.87	gi	31789464	gb	AY281356.1	
Natronomonas moologens	0.67	gi	452081962	emb	HF582854.1	
Bradyrhizobium sp.	0.61	gi	146189981	emb	CU234118.1	
Uncultured rhizobiales	0.42	gi	630060146	gb	K191972.1	
Desulfovibrio desulfuricans	0.42	gi	219867585	gb	CP001358.1	
Pinelobacter simplex	0.36	gi	723622094	gb	CP009896.1	
Conexibacter woesei	0.35	gi	283945692	gb	CP001854.1	
Sphingomonas sp.	0.34	gi	918399443	emb	HF544321.2	
Variovorax paradoxus	0.33	gi	239799596	gb	CP001635.1	
Modestobacter marinus	0.30	gi	388483940	emb	FO203431.1	
Uncultured proteobacterium	0.27	gi	155008368	gb	EU052121.1	
Uncultured actinobacterium	0.25	gi	289231355	emb	FN811226.1	
Mycobacterium smegmatis	0.22	gi	432294648	gb	CP003078.1	
Clavibacter michiganensis	0.20	gi	147829108	emb	AM711867.1	
Leptothrix cholelndii	0.19	gi	831206920	gb	CP001103.1	
Croceicoccus naphthovorans	0.16	gi	170774137	gb	CP0011770.1	
Limnocorda pilosa	0.15	gi	119534933	gb	LC065182.1	
Microvirga sp.	0.14	gi	827413822	gb	CP001501.1	
Pandorea apista	0.13	gi	918399443	emb	HF544321.2	
Uncultured planctomycete	0.13	gi	197360261	gb	EU979049.1	

Table 4
Bacterial community composition of the household as identified by 16S rDNA amplicon gene sequencing.

Organism/HIT	%	Accession				
Uncultured bacterium	81.6	gi	399762709	gb	X079102.1	
Uncultured verrucomicrobia	4.32	gi	325973802	emb	FR749796.1	
Uncultured pseudonocardia	1.61	gi	532020985	gb	KF150649.1	
Nocardoides sp.	0.88	gi	119534933	gb	CP000509.1	
Uncultured acidobacteria	0.87	gi	31789464	gb	AY281356.1	
Natronomonas moologens	0.67	gi	452081962	emb	HF582854.1	
Bradyrhizobium sp.	0.61	gi	146189981	emb	CU234118.1	
Uncultured rhizobiales	0.42	gi	630060146	gb	K191972.1	
Desulfovibrio desulfuricans	0.42	gi	219867585	gb	CP001358.1	
Pinelobacter simplex	0.36	gi	723622094	gb	CP009896.1	
Conexibacter woesei	0.35	gi	283945692	gb	CP001854.1	
Sphingomonas sp.	0.34	gi	918399443	emb	HF544321.2	
Variovorax paradoxus	0.33	gi	239799596	gb	CP001635.1	
Modestobacter marinus	0.30	gi	388483940	emb	FO203431.1	
Uncultured proteobacterium	0.27	gi	155008368	gb	EU052121.1	
Uncultured actinobacterium	0.25	gi	289231355	emb	FN811226.1	
Mycobacterium smegmatis	0.22	gi	432294648	gb	CP003078.1	
Clavibacter michiganensis	0.20	gi	147829108	emb	AM711867.1	
Leptothrix cholelndii	0.19	gi	170774137	gb	CP001103.1	
Croceicoccus naphthovorans	0.16	gi	831206920	gb	CP0011770.1	
Limnocorda pilosa	0.15	gi	119534933	gb	LC065182.1	
Microvirga sp.	0.14	gi	827413822	gb	CP001501.1	
Pandorea apista	0.13	gi	197360261	gb	EU979049.1	
2.2. DNA extraction and sequencing

The samples were filtered through a 0.22-μm micropore cellulose membrane (Merckmillepoire, USA) and the membrane was pre-washed with a sterile saline solution followed by the isolation of

Table 5

Bacterial community composition of the household as identified by 16S rDNA amplicon gene sequencing.

Organism/HIT	%	Accession
Uncultured bacterium	68.84	gi[3857622390][gb]JQ427676.1
Uncultured modestobacter	10.87	gi[627529403][gb]KJ473576.1
Uncultured pseudonocardia	2.99	gi[56547765][gb]AY834333.1
Uncultured acidobacteria	1.82	gi[255669588][gb]GQ301073.1
Uncultured micrococccineae	1.20	gi[192806380][emb]FM176888.1
Uncultured actinobacterium	1.11	gi[197360258][gb]EU979046.1
Microbacterium sp.	0.81	gi[166197412][db]AB376081.1
Uncultured niastella	0.73	gi[429999989][gb]KCI110902.1
Nocardioides sp.	0.62	gi[119534933][gb]CP000509.1
Uncultured beta proteobacterium	0.62	gi[451916627][gb]KC450491.1
Uncultured actinomycete	0.48	gi[400830686][gb]JX507179.1
Pimelobacter simplex	0.34	gi[723622094][gb]CP009896.1
Uncultured proteobacterium	0.33	gi[781849781][emb]LN808336.1
Uncultured planctomycte	0.31	gi[781829912][emb]LN03963.1
Kineococcus radiotolerans	0.29	gi[196121877][gb]CP000759.2
Proteobacterium	0.28	gi[238953279][emb]FM252918.1
Modestobacter marinus	0.23	gi[388483940][emb]FO203431.1
Uncultured streptomyces	0.23	gi[192805496][emb]FM176298.1
Uncultured hyphomicrobium	0.21	gi[630060167][gb]KJ191993.1
Uncultured burkholderiales	0.18	gi[723606223][gb]CP007595.1
Arthrobacter sp.	0.14	gi[86570155][gb]CP000250.1
Rhodopseudomonas palustris	0.14	gi[389547438][gb]JQ402366.1
Uncultured hyphomicrobiaceae	0.14	gi[113528459][emb]AM260480.1
Raistonia eutropha	0.14	gi[111147037][emb]CT573213.2

Table 6

Bacterial community composition of the household as identified by 16S rDNA amplicon gene sequencing.

Organism/HIT	%	Accession
Uncultured bacterium	81.15	gi[330372577][gb]JF340965.1
Uncultured actinobacterium	3.87	gi[339646678][gb]JN037891.1
Uncultured rhizobiales	2.37	gi[389546865][gb]JQ401793.1
Uncultured acidobacteria	1.08	gi[430803015][gb]KCI11124.1
Proteobacterium	1.04	gi[18874511][gb]AF469355.1
Uncultured planctomycte	0.80	gi[146430072][gb]EF220888.1
Nocardioides sp.	0.79	gi[119534933][gb]CP000509.1
Uncultured gemmamitamonadetes	0.58	gi[151352239][gb]EF664948.1
Uncultured anaerolineae	0.52	gi[219332282][emb]FM209128.1
Uncultured actinomadura	0.48	gi[389546715][gb]JQ401643.1
Streptomyces sp.	0.47	gi[822591927][gb]CP011492.1
Pimelobacter simplex	0.44	gi[723622094][gb]CP009896.1
Uncultured pirellula	0.33	gi[192804504][emb]FM175306.1
Proteobacterium	0.29	gi[197360274][gb]EU979062.1
Uncultured chloroflexi	0.27	gi[311336157][gb]HJ83884.1
Modestobacter marinus	0.26	gi[388483940][emb]FO203431.1
Rhizobium sp.	0.24	gi[584450787][emb]HC916852.1
Varivovorax paradoxus	0.20	gi[239799596][gb]CP001635.1
Uncultured sphingomonas	0.20	gi[389547992][gb]JQ402920.1
Uncultured frankineae	0.19	gi[192805020][emb]FM175822.1
Frankia alni	0.15	gi[111147037][emb]CT573213.2
Uncultured xiphinematabacteriaceae	0.14	gi[192806445][emb]FM176953.1
Uncultured hyphomicrobiaceae	0.13	gi[166783119][gb]EU267799.1
Rhodopseudomonas palustris	0.11	gi[39648490][emb]BX572598.1
Table 7
Bacterial community composition of the household as identified by 16S rDNA amplicon gene sequencing.

Organism/HIT	%	Accession	
Uncultured bacterium	77.81	gi	558611484[gb]KF711530.1
Proteobacterium	1.68	gi	451914712[gb]KC448576.1
Uncultured actinobacterium	0.98	gi	347438733[gb]JN178920.1
Alicyclobacillus acidocaldarius	0.73	gi	339287872[gb]CP002902.1
Proteobacterium	0.67	gi	294828896[gb]GU929355.1
Nocardioiides sp.	0.65	gi	119534933[gb]CP005091.1
Uncultured rubrobacterales	0.58	gi	672229606[emb]HE861099.1
Uncultured acidobacteria	0.56	gi	389545490[gb]JQ400418.1
Uncultured anaerolineae	0.54	gi	219932282[emb]FM209128.1
Uncultured proteobacterium	0.49	gi	110753058[gb]DQ827745.1
Uncultured novospingibium	0.45	gi	375271615[gb]JQ649064.1
Uncultured cyanoabacterium	0.33	gi	300679387[gb]HM439308.1
Pimelobacter simplex	0.33	gi	723622094[gb]CP009896.1
Natronomonas moanolapensis	0.28	gi	452081962[emb]HF582854.1
Uncultured janthinobacterium	0.27	gi	726937365[gb]KM391622.1
Uncultured myxococcales	0.18	gi	389545327[gb]JQ400255.1
Microbacterium sp.	0.18	gi	900121444[emb]HE716334.1
Uncultured hypmohicrobiaceae	0.17	gi	166783147[gb]EU266807.1
Variovorax paradoxus	0.17	gi	239799956[gb]CP001635.1
Uncultured verrucomicrobica	0.16	gi	523452882[gb]KF183302.1
Conexibacter woesei	0.15	gi	283945692[gb]CP001854.1
Uncultured prokaryote	0.14	gi	283463150[gb]GU208299.1
Modestobacter marinus	0.14	gi	388483940[emb]FO203431.1
Uncultured planctomycete	0.12	gi	523452694[gb]KF183114.1

the genomic DNA using a PowerWater® DNA isolation kit (MO BIO Laboratories, Canada) as per the manufacturer guidelines. The DNA purity and concentration were quantified using a microspectrophotometry (NanoDrop™ 2000/2000c Spectrophotometers Technologies, Wilmington, DE) and the DNA concentration ranged from 10.7 to 17.3 ng/μL.

Table 8
Bacterial community composition of the household as identified by 16S rDNA amplicon gene sequencing.

Organism/HIT	%	Accession	
Uncultured bacterium	73.89	gi	134021494[gb]EF020070.1
Uncultured acidobacteria	5.01	gi	325147373[gb]H9597354.1
Pseudonocardia sp.	3.34	gi	124488038[gb]EF216352.1
Uncultured singulipshafea	3.25	gi	343787932[gb]JN367174.1
Uncultured firmicutes	2.81	gi	392522374[gb]JX041802.1
Proteobacterium	1.59	gi	451918460[gb]KC452324.1
Uncultured actinobacterium	1.42	gi	110753103[gb]DQ827790.1
Uncultured verrucomicrobales	1.04	gi	192804575[emb]FM175377.1
Uncultured balneimonas	1.01	gi	389548038[gb]JQ402966.1
Enterococcus hirae	0.72	gi	94467694[gb]DQ467841.1
Plasticumal us acidivorans	0.45	gi	645320195[ref]NR_117458.1
Uncultured proteobacterium	0.27	gi	781795286[emb]LN769725.1
Pseudonocardia dianivarvans	0.24	gi	44430041[ref]NR_074646.1
Frankia albi	0.22	gi	111217037[emb]CT573123.2
Uncultured planctomycete	0.19	gi	344050678[gb]JN409084.1
Rhodococcus sp.	0.18	gi	900653191[emb]LN867321.1
Uncultured earthworm	0.17	gi	259898009[gb]AY154543.1
Uncultured carnobacterium	0.16	gi	319659383[gb]HM565028.1
Nocardioiides sp.	0.13	gi	119534933[gb]CP005091.1
Pimelobacter simplex	0.12	gi	723622094[gb]CP009896.1
Sphingomonas wittichii	0.12	gi	148498119[gb]CP009699.1
Uncultured chloroflexi	0.12	gi	219896099[emb]AM394855.1
Microbacterium sp.	0.11	gi	76252801[emb]AM051266.1
Actinomycespora sp.	0.10	gi	557126830[gb]KF600710.1
that targeted the V1 and V3 regions of the 16S rRNA. The PCR amplicons were sent for sequencing using the 16S rRNA forward bacterial primers 27F-16S-50-AGAGTTTGATCMTGGCTCAG-3' and reverse primers 518R-16S-50-ATTACCGCGGCTGCTGCTGCTGAGC-3' [4] that targeted the V1 and V3 regions of the 16S rRNA. The PCR amplicons were sent for sequencing at Inqaba Biotechnical Industries (Pretoria, South Africa), a commercial NGS service provider.

Table 9

Bacterial community composition of the household as identified by 16S rDNA amplicon gene sequencing.

Organism/HIT	%	Accession			
Uncultured bacterium	73.91	gi	399762838	gb	JX079231.1
Uncultured actinobacterium	6.32	gi	781841436	emb	LN06491.1
Blastocestus saexbesdens	3.71	gi	378783573	emb	FOI17623.1
Uncultured proteobacterium	2.31	gi	781835702	emb	LN05367.1
Methylomycyis bryophila	1.90	gi	384080409	emb	HE97855.1
Marmorica sp.	1.29	gi	384157059	gb	JQ419668.1
Uncultured acidobacteria	1.02	gi	375271308	gb	JQ648757.1
Uncultured rhizobiales	0.94	gi	389546865	gb	JQ401793.1
Proteobacterium	0.71	gi	583268268	emb	HC917246.1
Microbacterium sp.	0.67	gi	166197412	dbj	AB376081.1
Uncultured anaerolineae	0.62	gi	523452566	gb	KF182986.1
Uncultured pirellula	0.49	gi	545344262	gb	KF507494.1
Uncultured planctomycete	0.48	gi	380838170	gb	JN86814.1
Uncultured flavisolibacter	0.31	gi	396083910	gb	JX114425.1
Pelomonas sp.	0.26	gi	530445182	gb	KC141456.1
Uncultured soliurbobacterales	0.24	gi	389546277	gb	JQ401205.1
Uncultured planctomycetaceae	0.23	gi	389546841	gb	JQ401760.1
Uncultured xiphinematobacteriaceae	0.14	gi	192806445	emb	FM176953.1
Pimelobacter simplex	0.14	gi	723622094	gb	CP009896.1
Nocardioides sp.	0.14	gi	119534933	gb	CP000509.1
Uncultured chloroflexus	0.14	gi	307564378	gb	HM241129.1
Uncultured planctomyces	0.12	gi	219906527	emb	AM935815.1
Uncultured chloroflexi	0.12	gi	389547105	gb	JQ402033.1
Uncultured verminephrobacter	0.10	gi	630060094	gb	KJ191920.1

Table 10

Bacterial community composition of the household as identified by 16S rDNA amplicon gene sequencing.

Organism/HIT	%	Accession			
Uncultured bacterium	76.2	gi	301246918	gb	HM710267.1
Uncultured soliurbobacterales	4.04	gi	389545531	gb	JQ400459.1
Uncultured alpha proteobacterium	3.25	gi	451914712	gb	KC448576.1
Uncultured actinobacterium	2.70	gi	298231355	emb	FN811226.1
Uncultured acidobacteria	1.31	gi	396083926	gb	JX114441.1
Uncultured rhodospirillaceae	0.60	gi	83999434	emb	AM159371.1
Uncultured arthrobacter	0.53	gi	389546219	gb	JQ401147.1
Pimelobacter simplex	0.50	gi	723622094	gb	CP009896.1
Nocardioides sp.	0.30	gi	119534933	gb	CP000509.1
Uncultured proteobacterium	0.28	gi	134021577	gb	EF020153.1
Uncultured acidobacterium	0.28	gi	386649463	gb	JQ825225.1
Uncultured bacteroidetes	0.28	gi	143933241	gb	EF612696.1
Uncultured sphingomonas	0.24	gi	468112524	gb	AY569282.1
Uncultured chloroflexi	0.21	gi	313576414	gb	HQ397210.1
Uncultured chitinophaga	0.20	gi	672229257	emb	HE860750.1
Proteobacterium	0.33	gi	56547781	gb	AY834349.1
Novosphingobium pentaromativorans	0.17	gi	698178797	gb	CP009291.1
Uncultured microorganism	0.17	gi	529086744	gb	KF725220.1
Microbacterium sp.	0.17	gi	914697494	gb	CP012299.1
Modestobacter marinus	0.16	gi	388483940	emb	FO203431.1
Uncultured planctomyces	0.12	gi	443301414	emb	HE613599.1
Uncultured planctomycetaceae	0.11	gi	389547008	gb	JQ401936.1
Uncultured xanthomonas	0.11	gi	82792029	gb	DQ279336.1
Brachyacterium faecium	0.10	gi	256558041	gb	CP001643.1
provider. Briefly, the PCR amplicons were gel purified, end repaired and illumina® specific adapter sequence were ligated to each amplicon. Following quantification, the samples were individually indexed, followed by a purification step. Amplicons were then sequenced using the illumina® MiSeq-2000, using a MiSeq V3 (600 cycle) kit. Generally, 20 Mb of the data (2 x 300 bp long paired end reads) [5] were produced for each sample. The Basic Local Alignment Search Tool (BLAST)-based data analyses was performed using an Inqaba Biotech (Pretoria, South Africa) in-house developed data analysis system. Overall, sequences were deposited in two databases, i.e. the National Centre of Biotechnology (NCBI) and the Sequence Read Archive (SRA) database, prior to the generation of accession numbers for individual bacterial species.

Acknowledgments

The authors are grateful for the sponsorship from the North-West University, the Cape Peninsula University of Technology University Research Fund (Grant no. URF RY12) and the National Research Foundation of South Africa. The authors would like to acknowledge Inqaba Biotech Bioinformaticist, Dr. Hamilton Ganesan, for his technical assistance of data. The authors are also grateful to the assistance received from the waterbody agency tasked with drinking water distribution to O’Kiep, Namakhoi Municipality and the community of O’Kiep, South Africa.

Conflict of interest

The authors declare that they have no known competing financial or personal relationships that could have appeared to influence the work reported on this paper.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.dib.2019.104135.

References

[1] C.L. Richards, S.C. Broadaway, M.J. Eggers, J. Doyle, B.H. Pyle, A.K. Camper, T.E. Ford, Detection of pathogenic and non-pathogenic bacteria in drinking water and associated biofilms on the crow reservation, Montana, USA, Microb. Ecol. 76 (2018) 52–63.
[2] American Public Health Association, American water works association, water pollution control federation and water environment federation, in: Standard Methods for the Examination of Water and Wastewater, vol. 2, American Public Health Association, 1915.
[3] World Health Organization, Guidelines for Drinking-Water Quality, World Health Organization, Geneva, 2011.
[4] R.M. Satokari, E.E. Vaughan, A.D. Akkermans, M. Saarela, W.M. de Vos, Bifidobacterial diversity in human feces detected by genus-specific PCR and denaturing gradient gel electrophoresis, Appl. Environ. Microbiol. 67 (2) (2001) 504–513.
[5] S. Das, P. Adhicari, Lichen striatus in children: a clinical study of ten cases with review of literature. Satokari, R.M., Vaughan, E.E., Akkermans, A.D., Saarela, M. and de Vos, W.M., 2001. Bifidobacterial diversity in human feces detected by genus-specific PCR and denaturing gradient gel electrophoresis, Appl. Environ. Microbiol. 67 (2) (2017) 504–513, 18(2), p.89.