Susceptibility of gastrointestinal dysmotility increases with age-associated colonic degeneration. A paucity of remedies reversing colonic degeneration per se hinders the fundamental relief of symptoms. Here we discovered the correlation between colonic degeneration and altered nicotinamide adenine dinucleotide (NAD) level in aged mice. Compared to 3-month-old young controls, 2-year-old mice showed a spectrum of degenerative colonic phenotypes and exhibited a significant elongated transit time and slowed stool frequency in the context of Lomotil-induced slow-transit constipation. Despite upregulated colonic tryptophan hydroxylases expression, serotonin release and expression of colon-predominant type IV serotonin receptor, reduced viability of interstitial cells of Cajal while enhanced aquaporins (Aqp1, 3 and 11) led to a less colonic motility and increased luminal dehydration in aged mice. Notably, this colonic degeneration was accompanied with reduced key NAD⁺-generating enzyme expression and lowered NAD⁺/NADH ratio in aged colon. Three-month continuous administration of beta nicotinamide mononucleotide, a NAD⁺ precursor, elevated colonic NAD⁺ level and improved defeation in aged mice. In contrast, pharmacological inhibition of nicotinamide phosphoribosyltransferase, the rate-limiting enzyme for NAD⁺ biosynthesis, induced a reduction in colonic NAD content and impaired gastrointestinal function in young mice. Taken together, these findings suggest the beneficial effect of NAD⁺ in maintaining colonic homoeostasis and reactivating NAD⁺ biosynthesis may represent a promising strategy to counteract age-related gastrointestinal degeneration.
or inhibition of NAD⁺ biosynthesis, we uncovered the protective role of NAD⁺ in aged colon both in vitro and in vivo. Our results demonstrated that NAD⁺ replenishment improved defecation in the aged mice and thus may represent a novel approach to protect against aging-related constipation.

MATERIALS AND METHODS

Animal

All procedures involving experimental animals were conducted in full accordance with approval by the Animal Care and Use Committee of Hangzhou Normal University. Young (3-month-old) and old (22 to 25-month-old) C57Bl6J mice were maintained in a temperature-controlled room (22 ± 1 °C) on a 12-h light/dark cycle with ad libitum access to food and water.

Chemicals and antibodies

Beta nicotinamide mononucleotide (β-MNM) (BT05) was purchased from BONTAC (Shenzhen, China). Nicotinamide phosphoribosyltransferase (Nampt) inhibitor (GMX1778) was from Selleck (Shanghai, China). Lomotil (Atropine-diphenoxylate) was purchased from Kangpu Pharmaceutical Ltd Co (Shanghai, China). Antibodies against serotonin transporter (ab181034), tropothenyl hydroxylase (ab52954), Lgr5 (ab75850) and Nampt (ab45890) were purchased from Abcam (Cambridge, MA, USA). Proliferating cell nuclear antigen (2586), GAPDH (5174) and signal transduction and targeted therapy (2017) e17017

Faecal output and water content

Faecal output was analyzed by separately housing each group of mice in a 24-h cycle for continuous 2 weeks. Typically three–five mice of each group were housed in one cage and average pellet output were calculated every 24 h. Three cages of each group of mice were enrolled. Faecal pellets were removed at the end of every 24 h period and overall weight of wet pellet counts was obtained. The pellets were then left to dry at 50 °C for 24 h. Total wet and dry faecal weight was recorded. For the relative faecal content, the differences between wet and dry faecal weight were divided by wet faecal weight, and this calculation from young mice was normalized as 1.0.

Colon methylene blue staining

The staining was performed as previously described.5 Briefly, small segments of colon mucosa (~5 × 1.0 cm) were pinned out flat and fixed for 2 h in 2% paraformaldehyde in 0.1 M sodium phosphate buffer (pH 7.4) at 4 °C. The fixed tissue was stained for 3–5 min in 0.2% methylene blue in 0.1 M sodium phosphate buffer (pH 7.4) and rinsed in fresh phosphate buffer at 4 °C for 30–60 min to allow more even distribution of the blue stain. The intact mucosa segments were placed luminal side up on microscope slides and observed with a low magnification (>x4 objective lens and a x10 or x15 ocular lens).

Senescence β-galactosidase staining

The fresh isolated colons were fixed in fixation solution containing 2% formaldehyde and 0.2% glutaraldehyde in phosphate-buffered saline (PBS) for 4 h, rinsed with PBS three times and then transferred to 30% sucrose and fixed for 24 h. Then after, the tissues were embedded in Tissue-Tek O.C.T. Compound (Sakura Finetek, Torrance, CA, USA) for cutting to 6-μm thick sections. Cryosections were fixed with 1× fixation buffer for 2 min, rinsed with PBS three times and incubated overnight at 37 °C with the staining mixture supplied from the Senescence β-Galactosidase Staining Kit (Cell Signal, Danvers, MA, USA). The sections were counterstained with Nuclear Fast Red solution for nuclei labelling. Finally, the slides were scanned and photographed using a panamonic MIPI system from 3DHISTECH (Budapest, Hungary).

Immunoblotting

Total proteins were extracted from colon tissues using RIPA buffer (Applygen Technologies Inc, Beijing, China) supplemented with phosphotase and protease inhibitors (Roche). Equal amounts of proteins were separated by SDS-PAGE, and then transferred to polyvinylidene fluoride membranes (Millipore, Billerica, MA, USA). The membranes were reacted with primary antibody followed by secondary antibody. The immunoreactive bands were detected by Immun-Star Western chemiluminescence solutions (Bio-Rad Laboratories Inc).

Immunohistochemistry and immunofluorescence staining

For immunohistochemical staining, the fresh isolated colons were fixed in 4% paraformaldehyde solution for 24–48 h, embedded in paraffin, then cut to 6 μm and mounted on glass slides. The slides were counterstained by haematoxylin (4 min), rinsed in running water (5 min), incubated with 1% eosin (aqueous, 1 min) and rinsed with water until slide runs clear. Tissues were dehydrated sequentially with 70, 95 and 100% ethanol, immersed in xylene and cover-slipped using a mounting medium, and images were captured using a panaromic MIPI system from 3DHISTECH.

For immunofluorescence staining, sections were deparaffinized, hydrated, washed, antigen unmasked and then blocked in 10% normal goat serum for 1 h, following with incubation overnight at 4 °C with SR4 or Nampt antibody. After washing three times in PBS with 1.5% normal blocking serum, the slides were incubated with goat anti-mouse IgG-FITC for 1 h at room temperature. The slides were then mounted with Vectorshield Mounting Medium supplemented with 1.5 μg ml⁻¹ diamidino-2-phenylindole (H-1200; Vector Laboratories, Burlingame, CA, USA). Immunofluorescent images were acquired using a senior upright Axio imager M2 fluorescence microscope from Carl Zeiss (Jena, Germany).

Quantitative polymerase chain reaction

Transcriptional expression levels of targeted genes in colon were assayed by quantitative polymerase chain reaction using primer sequences listed in Supplementary Table 1. Fresh excised colon tissues were snap frozen in liquid nitrogen and stored at ~80 °C. Total RNA was extracted using Trizol reagent (Life Technologies, Carlsbad, CA, USA) according to the manufacturer’s instructions. Reverse transcription and quantitative polymerase chain reaction were performed using the PrimeScript first strand cDNA Synthesis Kit (TaKaRa Bio Inc) and EvaGreen Supermix.
NAD protects against colon degeneration
X Zhu et al

(agarose gel) as per the manufacturers’ instructions. The cycle threshold value determined for each RNA was normalized to the β-actin content to indicate relative RNA level.

Serotonin measurement
Whole colon was excised longitudinally and rinsed in cold PBS for five times to remove faeces. Longitudinal thin strip (~20 mg) of colon was cut for quantification. Colonic intracellular serotonin (5-HT) levels were measured using a commercial available ELISA kit (ADI-900-175, Enzo Life Sciences, Farmingdale, NY, USA) as per the manufacturers’ instructions.

Quantification of NAD+/NADH ratio
Whole colon was excised longitudinally and rinsed in cold PBS for five times to remove faeces. Longitudinal thin strip (~20 mg) of colon was cut for quantification. Tissue NAD+/NADH ratio was analysed with a commercial NADH/NAD quantification kit (K352-100; Biovision, San Francisco, CA, USA) as per the manufacturers’ instructions.

Flow cytometry
For flow cytometry analysis, APC c-Kit-labelled cell suspensions were analysed with an LSRFortessa cell analyser (BD Biosciences, Franklin Lakes, NJ, USA). Rectangular regions were selected to define clusters with pink (presumed ICC).

Statistics
The data are represented as mean values ± s.e.m. Student’s t-tests or one-way ANOVA post Newman–Keuls multiple comparison tests were used where appropriate. P < 0.05 was considered significant.

RESULTS
Defecation difficulty is accompanied with age-associated colonic degeneration
We compared defecation status of 3-month-old C57BL/6 (young) and 24-month-old (old) mice with identical breeding conditions. Mice body mass, food and drink intake were all similar between the two cohorts. To test whether the effect of (atropine-diphenoxylate) Lomotil-induced slow-transit constipation (STC) on transit time was age-dependent, both young and old mice were assigned into two groups receiving either placebo (distilled water) or Lomotil at a dose of 5 mg kg⁻¹ per day. After 2 weeks of gavage, no statistical difference of transit time between young and old mice was seen in vehicle group, but there was a significant elongated transit time in STC group versus that of young mice (Figure 1a). No sex-related differences were observed in current study (data not shown). The daily faecal output was significantly less in STC-treated groups in comparison to young groups, with an augmented reduction (old: 35.4% versus young: 29.6%) in old group upon Lomotil treatment (Figure 1b). To evaluate whether these amplified defecation difficulty in STC old mice links to age-related colon degeneration, we next examined histological changes between young and old colonies. Indeed, a significant reduction in villus number was found in the old colon versus the young colon (Figure 1c). Villus atrophy was seen in both vehicle and STC old mice (Figure 1d), while aged colon exhibited a higher frequency of hyperplasia independent of Lomotil treatment (Figure 1e). Lomotil-induced STC per se did not change the villus number or promote hyperplasia (data not shown). In addition, β-galactosidase (SA-β-gal) assay revealed more positive stains in aged colon while almost none in the young colon (Figure 1f), suggesting an increased incidence of age-associated colonic senescence. This was further confirmed by decreased intestinal stem cell marker Lgr5 and increased cell senescence marker cdkn2a (p16) seen in aged colon (Figures 1g and h). Taken together, these data implicate that the defecation difficulty in the aged mice may stem from the degenerative colonic phenotypes.

Tph-5-HT-SR4 signalling axis is activated in aged colon
We next investigated the molecular mechanism linking defecation difficulty with age-associated colonic degeneration. Given serotonin signalling pathway plays a crucial role in regulating gut motility and defecation,9,12 we examined the serotonin release and downstream signalling in young and aged mice. Transcriptional expression of tryptophan hydroxylase 1 (Tph1), the predominant serotonin synthesis enzyme, together with Tph2, were upregulated, while serotonin reuptake transporter Slc6a4 (Sert) was downregulated in old colon in comparison to young colon (Figure 2a). Consistent with upregulated Tph expression, a higher serotonin level (Figure 2b) in parallel with enhanced type IV serotonin receptor (SR4) expression (Figure 2c) were seen in old colonies. These results were further confirmed by immunoblotting analysis (Figure 2d), suggesting that the Tph-5-HT-SR4 signalling axis is activated in aged colon.

Decreased faecal water content and number of ICC in aged mice
Given that increased 5-HT release led to enhanced aquaporin-3 (Aqp3) expression,13 which in turn promoted luminal dehydration, we speculated that increased 5-HT in aged colon may lead to enhanced luminal dehydration via increasing local aquaporins expression. Indeed, expression levels of Aqp1, 3 and 11 were upregulated in aged colon while Aqp4 and 8 were unchanged (Figure 2e), leading to a ~17% faecal water content reduction compared to young patterns (Figure 2f). In identifying further correlation to defecation difficulty in aged mice, the intestinal pacemakers, ICC were considered as a possible target due to the ability to control enteric nervous system.44 Freshly prepared young and old colonic cells were stained with antibodies against ICC marker c-kit, and flow cytometry analysis displayed a significant reduction of c-kit positive population in aged colonocytes (Figure 2g: young: 2.65 ± 0.17% versus old: 1.60 ± 0.39%). Together, these data suggest that reduced viability of ICC while enhanced aquaporins (Aqp1, 3 and 11) may contribute to a less colonic motility and increased luminal dehydration in aged mice.

NAD regulates colonic function and homeostasis
Since several lines of evidence demonstrate that oxidized form of NAD⁺ or NAD⁺/NADH ratio is reduced in various age-related pathologies as well as during ageing process,45,46 we next assessed the major NAD⁺-generating enzyme expression in the salvage pathway to test whether a reduction in these enzymes accounts for the degeneration in the aged colon. Remarkably, transcription of nicotinamide mononucleotide adenylyltransferase 1, 2 and 3 (Nmnat1, 2 and 3), Nampt as well as nicotinamide riboside kinase 1 and 2 (Nmrk1 and 2) were all downregulated in old colon versus that in young colon (Figure 3a), which was further evidenced as aged colon exhibited a significantly lowered NAD⁺/ NADH ratio (Figure 3b). Interestingly, almost no positive immunofluorescent staining of Nampt was seen in those hyperplastic tissues from aged colon (Figure 3c), suggesting that lowered NAD⁺ level may correlate with vulnerability of hyperplasia/tumorigenesis. To further explore the correlation between NAD⁺ level and colonic function, we administered the Nampt inhibitor GMX1778 to 2-month-old young mice intraperitoneally twice daily for 4 weeks. Injection of GMX1778 to young mice led to an ageing colon phenotype, including thinning of colonic muscle layer and villus atrophy (Figure 3d), with concurrent reductions in NAD content and faecal output (Figures 3e and f). In contrast, 3-month continuous administration of β-MNM, an NAD⁺ precursor, restored colonic NAD⁺ level to that of young mice (Figure 4a) and improved colon function. Specifically, old mice receiving β-MNM favoured an increased colonic c-kit⁺ population (Figure 4b) and significantly improved faecal output (Figure 4c). In addition,
enhanced proliferation was seen in the isolated colon epithelial cells (Figure 4d) as well as proliferating cell nuclear antigen-stained from aged mice receiving \( \beta \)-NMN (Figure 4e). Taken together, these data indicate that NAD\(^+\) may serve as a regulator in colon homoeostasis during ageing and repletion of NAD\(^+\) is able to improve colon function.

**DISCUSSION**

Colon ageing featured by altered morphology, dysregulated enteric nervous system, decreased secretion and propulsive motility, and other phenotypes, causes multiple gastrointestinal disorders in the elderly. In this study, we demonstrated that aged mice exhibited a spectrum of colon ageing phenotypes such as longer transit time and less faecal output partially due to reduced ICC availability and augmented aquaporin-mediated fluid reabsorption. Inhibiting NAD biosynthesis in young mice exhibited similar phenotype of aged colon. Intriguingly, these age-related colon defects could be partially rescued by NAD\(^+\) repletion, thus, our results light up the veiled connection between NAD\(^+\) and colon ageing.

Chronic constipation represents one of the most common problems among older people, exploration of its etiopathogenesis and emerging strategies of anti-constipation continuously
Figure 2. Decreased faecal water content and number of ICC contributes to defecation difficulty in aged mice. (a) Relative Tph1, Tph2 and Slc6a4 (sert) mRNA expression in young and colons (n = 8–12). β-actin was used to normalize data. Data were presented as mean ± s.e.m. *P < 0.05. (b) Relative serotonin (5-HT) release in young and colons (n = 4). *P < 0.05. (c) Representative fluorescent images of SR4 expression in young and old colons. Bar = 100 μm. (d) Immunoblotting images of Sert, Tph1/2 and SR4 protein levels in young and old colons. (e) Relative aquaporins mRNA expression in young and colons (n = 4). β-actin was used to normalize data. Data were presented as mean ± s.e.m. *P < 0.05. (f) Relative faecal water content in young and old mice. Data were presented as mean ± s.e.m. *P < 0.05. (g) Representative flow cytometry plots and quantification of ICC (c-kit positive% gated in pink in the rectangle) in young and old colons (n = 4). Data were presented as mean ± s.e.m. *P < 0.05.

Figure 3. NAD regulates colonic function and homeostasis. (a) Relative mRNA expression of salvage NAD biosynthetic enzymes in young and colons (n = 3). β-actin was used to normalize data. Data were presented as mean ± s.e.m. **P < 0.001. (b) Colonic NAD+/NADH ratio was analysed in young and colons (n = 4). ***P < 0.001. (c) Representative fluorescent images of Nampt expression in young and old colons. Bar = 100 μm. Irregularly dotted area in red denotes the occurrence site of hyperplasia. (d) Representative images of haematoxylin and eosin staining from young colons treated with or without specific Nampt inhibitor GMX1778. Bar = 100 μm. (e) Colonic NAD+/NADH ratio was analysed in young mice treated with or without Nampt inhibitor GMX1778 (n = 5). *P < 0.05. (f) Daily faecal number of young mice treated with or without specific Nampt inhibitor GMX1778 (n = 6). **P < 0.01.
accelerate the relief of symptom, however, slow progress has been made due to the massive heterogeneity among humans and lack of suitable drugs that can fundamentally rejuvenate the ageing colon, plus the inevitable global ageing. Unlike human gastrointestinal studies puzzled by mixed genetic backgrounds, different geographic allocation and lifestyles, mice of high homo- geneity fed standard chow and housed in an environment of constant temperature and humidity allow us to the explore the mechanisms underlying the age-related intestinal changes and its relevance to gastrointestinal disorders. By comparing young (3-month-old) with old (24-month-old) mice, we observed significant colon degeneration in old mice, including villus atrophy, aberrant hyperplasia, increased senescence markers and defecation difficulty. Of note, the expression of Lgr5, the intestinal stem cell marker, was markedly reduced in old colon, which is thought to impair colon function by limiting the differentiation and proliferation of specific cell types regulating colon motility such as enterochromaffin cells, ICC, epithelial cells and so on.

The Tph-5-HT-SR4 axis has been long studied in colon motility. Elevation of Tph expression and activity promotes the biosynthesis of 5-HT. Increased 5-HT concentration and binding to its receptor in colon further enhances bowel movement and accelerates colon transit. Abnormal Tph-5-HT-SR4 signalling has been found in diverticular disease, inflammatory bowel disease and irritable bowel syndrome. Previous observations have shown increased Tph1 activity, EC cell 5-HT content and 5-HT release, but not decreased sert activity in patients with chronic constipation. In agreement, our results confirmed that aged colon exhibited an activated Tph-5-HT-SR4 signalling pathway with a decreased sert expression. Given activated Tph-5-HT-SR4 signalling leads to an enhanced intestinal propulsion, it seems paradoxical that aged colon exhibited a higher 5-HT level with a decreased stool output. One possible explanation is that 5-HT receptor is desensitized upon long-term exposure of high 5-HT level, which leads to visceral hyposensitivity thereby a resulting reduction in stool frequency. Consistently, acutely increasing serotonergic activity with the selective serotonin reuptake inhibitor showed no effect on rectal motor function. In addition, serotonin was found to elevate aquaporin-3 expression in the colon using a morphine-induced constipation, we also found decreased faecal water content and shrinking number of ICC in aged mice, suggesting that altered 5-HT signalling as a crucial driver to defecation problem in the aged.

Many studies have linked NAD with colorectal cancer, however, currently no direct evidence confirm the association between NAD level and defecation problem, although susceptibility of constipation increases with age concurrent with ageing-related decreasing NAD level. Besides, a previous drug safety and efficacy study reported that NAD depleting drugs (mainly, Nampt inhibitors) caused various gastrointestinal symptoms, including constipation, suggesting NAD may play a role in regulating colon function. Indeed, our results demonstrated that administration of Nampt inhibitor GMX1778 was able to reduce faecal output and impair colon homoeostasis. In contrast, repletion of NAD via its precursor NAD levels in parallel with increased tryptophan-5-HT signalling axis, decreased ICC cells and increased luminal dehydration could be one possible reason leading to the condition of constipation. By
replenishing NAD, we observed a significant improvement of faecal output in the old mice, thus opening a novel avenue for the drug design to combat constipation.

ACKNOWLEDGEMENTS
This work was supported by grants from the Natural Science Foundation of Zhejiang province (Y13H030005) to QS, National Natural Science Foundation of China (81400221) and Hangzhou Normal University (PF1400200417) to XZ. The authors thank the assistance from Weisi Yi for the flow cytometry analysis. XZ, ZJ and QS initiated the study and developed the concept of the paper; XZ, ZJ and QS designed the experiments; XZ, WS and YW performed experiments; XZ, ZJ and QS analysed and interpreted the data; and XZ, ZJ and QS wrote the manuscript with help from JA.

COMPETING INTERESTS
The authors declare no conflict of interest.

REFERENCES
1 Bannister JJ, Abouzeirky L, Read NW. Effect of ageing on anorectal function. Gut 1987; 28: 353–357.
2 Lovat LB. Age related changes in gut physiology and nutritional status. Gut 1996; 38: 306–309.
3 Madsen JL, Graff J. Effects of ageing on gastrointestinal motor function. Age Ageing 2004; 33: 154–159.
4 Fox JC, Fletcher JC, Zimsmeeiter AR, Seide B, Riederer SJ, Bharucha AE. Effect of aging on anorectal and pelvic floor functions in females. Dis Colon Rectum 2006; 49: 1726–1735.
5 Rao SS, Go JT. Update on the management of constipation in the elderly: new treatment options. Clin Interv Aging 2010; 5: 163–171.
6 Burns AJ. Disorders of interstitial cells of Cajal. J Pediatr Gastroenterol Nutr 2007; 45(Suppl 2): S103–S106.
7 McClain JL, Grubisic V, Fried D, Gomez-Suarez RA, Leinninger GM, Sevigny J. Cell 2015; 161: 264–276.
8 Xu L, Yu BP, Chen JG, Luo HS. Mechanisms mediating serotonin-induced contraction of colonic myocytes. Clin Exp Pharmacol Physiol 2007; 34: 120–128.
9 Costedio MM, Coates MD, Brooks EM, Glass LM, Ganguly EK, Blaszyk H. Mucosal serotonin signaling is altered in chronic constipation but not in opiate-induced constipation. Am J Gastroenterol 2010; 105: 1133–1180.
10 Maew GM, Hoffman JM. Serotonin signalling in the gut–functions, dysfunctions and therapeutic targets. Nat Rev Gastroenterol Hepatol 2013; 10: 473–486.
11 D ’Addio F, La Rosa S, Maestroni A, Jung P, Orsenigo E, Ben Nasr M. Impaired colon motility and reduction in tachykinin signalling in the aged mouse. Exp Gerontol 2014; 53: 24–30.
12 El-Salhy M, Hatlebak SG, Hausken T. Reduction in duodenal endocrine cells in irritable bowel syndrome is associated with stem cell abnormalities. World J Gastroenterol 2015; 21: 9577–9587.
13 Zhu F, Xu S, Zhang Y, Chen F, Ji J, Xie G. Total glucosides of paeony promote intestinal motility in slow transit constipation rats through amelioration of interstitial cells of Cajal. PLoS ONE 2016; 11: e0160398.
14 Rao SS, Rattanakovit K, Patcharatrakul T. Diagnosis and management of chronic constipation in adults. Nat Rev Gastroenterol Hepatol 2016; 13: 295–305.
15 Hall KE, Proctor DD, Fisher L, Rose S. American gastroenterological association future trends committee report: effects of ageing of the population on gastroenterology practice, education, and research. Gastroenterology 2005; 129: 1305–1328.
16 Bitar K, Greenwood-Van Meerveld B, Saad R, Wiley JW. Aging and gastrointestinal neuromuscular function: insights from within and outside the gut. Neurogastroenterol Motil 2011; 23: 490–501.

NAD protects against colon degeneration
X Zhu et al

21 Tran L, Greenwood-Van Meerveld B. In a non-human primate model, aging disrupts the neural control of intestinal smooth muscle contractility in a region-specific manner. Neurogastroenterol Motil 2014; 26: 410–418.
22 Gershon MD, Tack J. The serotonin signaling system: from basic understanding to drug development for functional GI disorders. Gastroenterology 2007; 132: 397–414.
23 Chiarugi A, Dolle C, Felici R, Ziegler M. The NAD metabolome—a key determinant of cancer cell biology. Nat Rev Cancer 2012; 12: 741–752.
24 Nilforoer A, Kulikova V, Ziegler M. The human NAD metabolome: functions, metabolism and compartmentalization. Crit Rev Biochem Mol Biol 2015; 50: 284–297.
25 Braidy N, Guillenin GJ, Mansour H, Chan-Ling T, Poljak A, Grant R. Age related changes in NAD+ metabolism oxidative stress and Sirt1 activity in wistar rats. PLoS One 2011; 6: e19194.
26 Massudi H, Grant R, Braidy N, Guest J. Farnsworth B, Guillenin GJ. Age-associated changes in oxidative stress and NAD+ metabolism in human tissue. PLoS One 2012; 7: e42357.
27 Verdin E. NAD(+) in aging, metabolism, and neurodegeneration. Science 2015; 350: 1208–1213.
28 Camacho-Pereira J, Tarrago MG, Chini CC, Nin V, Escande C, Warner GM et al. CD38 dictates age-related NAD decline and mitochondrial dysfunction through an SIRT3-dependent mechanism. Cell Metab 2016; 23: 1127–1139.
29 Le Page-Otto C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell 2013; 153: 1194–1217.
30 Belenky P, Racette FG, Bogan KL, McCleire JM, Smith JS, Brenner C. Nicotinamide riboside promotes Sir2 silencing and extends lifespan via Nrk and Uhp1/Prnp/Meu1 pathways to NAD+. Cell 2007; 129: 473–484.
31 Mouchiroud L, Houtkooper RH, Moullan N, Katsuya E, Ryu D, Canto C et al. The NAD(+)–sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling. Cell 2013; 154: 430–441.
32 Imai S, Guarente L. NAD+ and sirtuins in aging and disease. Trends Cell Biol 2014; 24: 464–471.
33 Ramsey KM, Yoshino J, Brace CS, Abrassart D, Kobayashi Y, Marcheva B et al. Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science 2009; 324: 651–654.
34 Gariani K, Menzies KJ, Ryu D, Wegner CJ, Wang X, Ropele ER et al. Eliciting the mitochondrial unfolded protein response by nicotinamide adenine dinucleotide–repletion reverses fatty liver disease in mice. Hepatology 2016; 63: 1190–1204.
35 Yoshino J, Mills KF, Yoon MJ, Imai S. Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab 2011; 14: 528–536.
47 Guarino M, Cheng L, Cicala M, Ripetti V, Biancani P, Behar J. Progesterone receptors and serotonin levels in colon epithelial cells from females with slow transit constipation. *Neurogastroenterol Motil* 2011; 23:575–e210.

48 Oosterbosch L, von der Ohe M, Valdovinos MA, Kost LJ, Phillips SF, Camilleri M. Effects of serotonin on rat ileocolonic transit and fluid transfer in vivo: possible mechanisms of action. *Gut* 1993; 34: 794–798.

49 Hoffman JM, Tyler K, MacEachern SJ, Balemba OB, Johnson AC, Brooks EM et al. Activation of colonic mucosal 5-HT(4) receptors accelerates propulsive motility and inhibits visceral hypersensitivity. *Gastroenterology* 2012; 142: 844–54 e4.

50 Bottner M, Barrenschee M, Hellwig I, Harde J, Egberts JH, Becker T et al. The enteric serotonergic system is altered in patients with diverticular disease. *Gut* 2013; 62: 1753–1762.

51 Linden DR, Foley KF, McQuoid C, Simpson J, Sharkey KA, Mawe GM. Serotonin transporter function and expression are reduced in mice with TNBS-induced colitis. *Neuergastroenterol Motil* 2005; 17: 565–574.

52 Coates MD, Mahoney CR, Linden DR, Sampson JE, Chen J, Blaszyk H et al. Molecular defects in mucosal serotonin content and decreased serotonin reuptake transporter in ulcerative colitis and irritable bowel syndrome. *Gastroenterology* 2004; 126: 1657–1664.

53 Lincoln J, Crowe R, Kamm MA, Burnstock G, Lennard-Jones JE. Serotonin and S-hydroxyindoleacetic acid are increased in the sigmoid colon in severe idiopathic constipation. *Gastroenterology* 1990; 98(5 Pt 1): 1219–1225.

54 Miwa J, Echizen H, Matsueda K, Umeda N. Patients with constipation-predominant irritable bowel syndrome (IBS) may have elevated serotonin concentrations in colonic mucosa as compared with diarrhea-predominant patients and subjects with normal bowel habits. *Digestion* 2001; 63: 188–194.

55 Kilkens TO, Honig A, Fekkes D, Brummer RJ. The effects of an acute serotonergic challenge on brain-gut responses in irritable bowel syndrome patients and controls. *Aliment Pharmacol Ther* 2005; 22: 865–874.

56 van Nieuwenhoven MA, Kilkens TO. The effect of acute serotonergic modulation on rectal motor function in diarrhea-predominant irritable bowel syndrome and healthy controls. *Eur J Gastroenterol Hepatol* 2012; 24: 1259–1265.

57 von Heideman A, Berglund A, Larsson R, Nygren P. Safety and efficacy of NAD depleting cancer drugs: results of a phase I clinical trial of CHS 828 and overview of published data. *Cancer Chemother Pharmacol* 2010; 65: 1165–1172.

Supplementary Information accompanies the paper on the *Signal Transduction and Targeted Therapy* website (http://www.nature.com/sigtrans)