Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Maneuvering for advantage: the genetics of mouse susceptibility to virus infection

Seung-Hwan Lee¹, Ken Dimock¹, Douglas A Gray¹,2, Nicole Beauchemin³, Kathryn V. Holmes⁴, Majid Belouchi⁵, John Realson⁵ and Silvia M. Vidal¹

¹Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
²Centre for Cancer Therapeutics, Ottawa Regional Cancer Centre, Ottawa, Ontario, Canada K1H 1C4
³McGill Cancer Centre and Departments of Biochemistry, Medicine and Oncology, McGill University, Montreal, Quebec, Canada H3G 1Y6
⁴Department of Microbiology, University of Colorado, Denver, CO 80262, USA
⁵Galileogenomics Inc., Montreal, Quebec, Canada H4T 2C7

Genetic studies of host susceptibility to infection contribute to our understanding of an organism’s response to pathogens at the immunological, cellular, and molecular levels. In this review we describe how the study of host genetics in mouse models has helped our understanding of host defense mechanisms against viral infection, and how this knowledge can be extended to human infections. We focus especially on the innate mechanisms that function as the host’s first line of defense against infection. We also discuss the main issues that confront this field, as well as its future.

Viral infections in humans are notable for the diversity of host responses, rates of progression, and disease outcomes. A large body of evidence indicates that these differential responses depend not only on viral factors but also on inherited components affecting host susceptibility. Significant advances in our understanding of the host response to infection in humans and other animal species have recently been achieved through the use of mouse models of infection. In laboratory mice, years of inbreeding have fixed deleterious alleles, which can be detected as susceptibility phenotypes. Two major breakthroughs advanced this field. One was our ability to manipulate the mouse genome using transgenic and gene knockout technologies. This ‘reverse genetics’ approach allows direct testing of specific genes for their role in host resistance or susceptibility to infection. The other was our ability to clone genes responsible for natural variation in susceptibility among inbred strains of mice, through molecular genetics. This ‘forward genetics’ approach can uncover novel mechanisms of host defense that are crucial to effective and protective responses to infection.

To date more than 30 mouse loci (Table 1) and many fewer human genes (Table 2) have been associated with the outcome of virus infection [1,2]. Each locus controls infection by a single virus family or strain. This is probably related to the vast diversity of virus life cycles and the likelihood that the product of each host resistance gene interacts with unique molecules encoded by individual viruses (Fig. 1).

In this review we illustrate the contribution of mouse genetics to our understanding of mechanisms of host resistance to virus infection. These mechanisms might manifest themselves as: (1) barriers to infection at the host cell membrane; (2) intracellular host responses to infection; or (3) recognition or destruction of infected cells. Viruses used as examples are described in Table 3.

Barriers to infection at the host cell membrane

The first step in the life cycle of a virus is attachment to a receptor on the cell surface and delivery of the viral genome into the interior. Usually the virus takes advantage of a host molecule with an unrelated function, such as an adhesion molecule or complement regulator, for its own benefit. Receptors are recognized as important determinants of virus host range and tissue tropism; and some host resistance/susceptibility loci encode molecules that are expressed on the cell surface.

For example, SJL mice are 10 000 times more resistant to a lethal dose of mouse hepatitis virus (MHV) – a murine coronavirus – than C57BL/6 or BALB/c mice [3]. Resistance is due to allelic variation in the gene encoding carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) [4]. Susceptible strains carry the Ceacam1a allele, which encodes the principal MHV receptor, CEACAM1a. Resistant strains, such as SJL, are homozygous for the Ceacam1b allele, which encodes a 27-amino-acid substitution in the N-terminal virus-binding domain of CEACAM1a [4]. A potential immunomodulatory function for this molecule during MHV infection. Although no role for human CEACAM1a has been described during viral infection of humans [5], a possible immunomodulatory function is consistent with the observation of a CEACAM1-mediated interaction.
endogenous ecotropic provirus that encodes an Env protein (HIV) is also mediated by a barrier at the cell surface. CD4 is Fv4 protein in infection by the mouse and restricting the amount of receptor available for MuLV infection by interacting with the cellular receptor proposed that the Env protein encoded by Fv4 gene. Binding of retroviral Env proteins involved in cellular activation.

Immunoreceptor tyrosine-based activation motif (ITAM) : a cytoplasmic tyrosine-containing motif that is the site of tyrosine phosphorylation. These motifs are associated with tyrosine kinases and other phosphotyrosine-binding proteins involved in cellular activation.

Immunoreceptor tyrosine-based inhibitory motif (ITIM) : a cytoplasmic tyrosine-containing motif. In contrast to ITAMSs, phosphorylation of the tyrosine residues within ITIMs recruits the Src-homology-2-domain-containing tyrosine phosphatase SHP-1 and/or SHP-2, transducing a negative signal that inhibits cellular activation.

Interferons (IFNs) : a group of immunoregulatory proteins that are produced by cells infected with a virus and have the ability to inhibit viral growth. IFNs are classified as type I (IFN-α/β) and type II (IFN-γ), which is known as immune interferon. Despite the use of different receptors, certain IFN-α/β and IFN-γ functions are shared because the signal transduction pathways activated through these receptors partly overlap.

Murine leukemia virus (MuLV) : there are four subgroups of naturally occurring MuLvVs based on receptor usage on mouse cells: ecotropic MuLVs, which are able to infect only mouse cells utilizing the cationic amino acid transporter as a receptor; amphotropic MuLVs, which are able to infect mouse cells as well as those of other species (including human) by binding to an inorganic phosphate transporter protein; polytropic MuLVs, which can infect cells from mouse as well as nonmurine species using yet another cellular receptor protein, thought to be a G-protein-coupled receptor; and xenotropic MuLVs, which use receptors from cells of most species except mice.

Quantitative trait loci (QTLs) : the locations of genes that affect a trait that is measured on a quantitative (linear) scale, such as body weight or blood pressure in animals, as identified by statistical analysis. These traits are typically affected by more than one gene, and also by the environment. Recombinant congenic strain : a variation on recombinant inbred strains in which the initial outcross is followed by several generations of backcrossing before inbreeding.

Retroviral interference : the phenomenon by which prior infection of cells with a retrovirus confers strong resistance to infection of the same cells by a second retrovirus that utilizes the same receptor; however, cells remain susceptible to viruses that use a different receptor. This process results from masking or downregulation of the receptor due to interaction with the glycoprotein of the established virus.

In humans, resistance to human immunodeficiency virus (HIV) is also mediated by a barrier at the cell surface. CD4 is the primary or ‘attachment’ receptor for HIV, but CD4 is necessary but not sufficient for the productive entry of HIV into target cells. The identification of CCR5 as a coreceptor for HIV prompted genetic screening of individuals that escape HIV disease despite high-risk behavior [10]. Individuals carrying a homozygous 32 bp deletion in the coding sequence of CCR5 (CCR5Δ32) are extremely resistant to the ‘R5 strain of HIV because the deletion results in a frame shift and generates a nonfunctional receptor [10]. The CCR5Δ32 mutation is found predominantly in the Caucasian population and is absent in Africans, American Indians and East Asians [11]. It has been speculated that this distribution is consistent with resistance to an agent that predates HIV and caused enormous mortality. One candidate is Yersinia pestis, the causative agent of bubonic plague, although other pathogens targeting the macrophage/monocyte lineage cannot be excluded [12].

Intracellular inhibitors of virus replication: Delivery of a viral genome to the interior of an infected host cell does not guarantee that an infection will be
Table 1. Mouse loci affecting susceptibility to viral infections

Virus	Locus	Locus definition	Chromosome location	Gene product	Mode of action
Coronaviridae					
Mouse hepatitis virus-2	Hv1	Provides viral entry receptor	7 (5.5 cM)	CEACAM1	Provides viral entry receptor
Mouse hepatitis virus-4	Hv2	Provides viral entry receptor	9 (60 cM)	STK	Provides viral entry receptor
Retroviridae					
Ecotropic murine leukemia virus (MuLV)	Fv1	Influences susceptibility to FV-induced erythroleukemia	4 (76.5 cM)	Endogenous gag-related gene STK	Blocks viral preintegration complex
Spleen focus-forming virus (SFFV)	Fv2	Controls resistance to spleen focus formation	9 (60 cM)		Truncated STK results in expansion
					of infected cell in the primary
					phase of erythroleukemia
Ecotropic MuLV	Fv4/Akvr1	Controls resistance to Friend MuLV	12 (38 cM)	Ecotropic Env protein	Blocks ecotropic virus receptor
Mink cell focus-forming (MCF) virus	Rmcf	Controls resistance to the polytropic MCF virus	17 (10 cM)	Polytropic Env protein	Blocks polytropic virus receptor
Friend virus (FV)	Rf1	Influences susceptibility to FV-induced disease	17	H2-D	Induces an efficient cytotoxic T
	Rf2	Modulates FV-induced disease	17	H2-linked	lymphocyte (CTL) response
	Rf3	Influences susceptibility to FV-induced disease	15	H2-linked	Controls antibody responses against
					infection
Moloney murine leukemia virus (MoMLV)	Rmv1	Increases IgG-specific anti-MoMLV response	17	H2-linked	Controls antibody responses against
	Rmv2	Increases IgG-specific anti-MoMLV response	17	H2-linked	infection
	Rmv3	Increases IgG-specific anti-MoMLV response	17	H2-linked	Controls antibody responses against
					infection
Orthomyxoviridae					
Influenza virus and Thogoto virus	Mx1	Rescues lethal infection	16 (71.2 cM)	GTPase	Blocks primary transcription and
Rhabdoviridae					facilitates the degradation of the
Vesicular stomatitis virus	Mx2	Rescues lethal infection	16 (71.2 cM)	GTPase	viral ribonucleoprotein complexes
Flaviviridae					
Flavivirus	Flv	Controls virus replication of flavivirus infection in mouse brain	5 (67 cM)	OAS1B	Induces RNA degradation by activating RNase L
Herpesviridae					
Murine cytomegalovirus	Cmv1	Controls viral replication on spleen	6 (63.29 cM)	Ly49H	Recognizes and kills viral-infected
	H2	Serves as receptor for mouse cytomegalovirus (MCMV)	17	H2	virus
Herpes simplex virus	Rhs1	Controls early primary infection	6		Provides viral entry receptor
γ-Herpesvirus	Trbv4c1	Results in increased Vbeta4+ T cells	17 (23 cM)		
	Trbv4c2	Results in increased Vbeta4+ T cells	6 (0.5 cM)		
Picornaviridae					
Theiler’s virus	Tmevd1	Confers resistance to Theiler’s murine encephalomyelitis virus (TMEV)-induced	6 (22 cM)		
		demyelinating disease			
	Tmevd2	Confers resistance to TMEV-induced demyelinating disease	3 (43 cM)		
	Tmevd3	Confers resistance to TMEV-induced demyelinating disease	14		
	Tmevd4	Confers resistance to TMEV-induced demyelinating disease	14		
	Tmevd5	Confers resistance to TMEV-induced demyelinating disease	11 (52 cM)		
	Tmevp1	Controls susceptibility to persistent infection	17	H2-Db	Induces an efficient CTL response
	Tmevp2	Controls susceptibility to persistent infection	10 (67 cM)		
	Tmevp3	Controls susceptibility to persistent infection	10 (60 cM)		
Poxviridae					
Mousepox virus	Rmp1	Rescues lethal infection	6		NK cell mediated
	Rmp2	Rescues lethal infection	2 (23.5 cM)		
	Rmp3	Rescues lethal infection	17 (19.5 cM)	H2-Db	
	Rmp4	Controls virus replication in spleen and liver	1 (79 cM)		
Togaviridae					
Sindbis virus	Nsv1	Reduces levels of viral RNA in the brain	2		

*Based on information available in Mouse Genome Informatics at Jackson Laboratory (http://www.informatics.jax.org).

*Chromosome number, with map distance to centromere in centimorgans (cM) in parentheses.

*The mechanisms of action of some genes are hypothetical.

http://tigs.trends.com
where it inhibits not only the replication of orthomyxoviruses, but also other RNA viruses such as measles virus, coxsackievirus B4 and Semliki Forest virus [14].

A mechanism of resistance to flaviviruses, which also appears to be IFN-mediated, was recently revealed by the cloning of Flv, which confers resistance (Flv[−]) or susceptibility (Flv⁺) to flavivirus infection. Virus titers in the brains of resistant mice infected with Murray Valley encephalitis virus, yellow fever virus or West Nile virus are orders of magnitude lower than in susceptible animals. Viral yields in tissue cultured from resistant or susceptible animals are also dramatically different, indicating that the Flv gene product acts intracellularly on flavivirus replication [18]. Genetic mapping localized Flv1 to chromosome 5 [19] and, more recently, it was demonstrated that Flv susceptibility is associated with a nonsense mutation in a member of the 2[′],5[′]-oligoadenylate synthetase (OAS) family, Oas1b [20,21]. OAS proteins are induced by IFNs and play a central role in producing the antiviral state by binding double-stranded RNA and catalyzing the synthesis of 2[′],5[′]-oligoadenylates (2-5A), which, in turn, interact with and activate RNase L to degrade single-stranded viral and cellular RNAs. Whereas Oas1b genes from resistant mice encode full-length proteins, those from susceptible mice encode proteins truncated at the C-terminus that might not form active synthetases. In contrast to the single OAS1 gene found in humans, there are eight closely linked Oas1 genes in the murine genome [20,22], but only Oas1b is associated with resistance to flaviviruses.

Recognition/destruction of infected cells
In addition to resistance imparted by barriers to virus entry or by intracellular antiviral defense mechanisms, cytotoxic cells can control the level of viral replication in an animal (Box 2). Host recognition of virus-infected cells is mediated by two players: natural killer (NK) cells and cytotoxic T cells.

Role of NK cells in cytomegalovirus infection
Herpesviruses avoid recognition and activation of the adaptive immune system by downregulating major histocompatibility complex (MHC) class I molecules. NK cells recognize cells infected with these viruses by binding recognition molecules, such as KIRs (killer cell immunoglobulin-like receptors), which are expressed on the surface of NK cells. The binding of KIRs to their ligands on the surface of virus-infected cells activates the NK cells, which can then lysis infected cells.

Other genes associated with resistance to viral infections in humans

Virus	Affected gene	OMIM^b	Chromosome	Polymorphisms	Consequences	Refs	
Retroviridae	HIV	CCR5	601373	3p21	Deletion	Resistance to HIV infection	[10]
		CCR2	601267	3p21	Deletion	Delayed progression to AIDS	[10]
		CXCL12 3′UTR	600835	10q11.1	Point mutation	Delayed progression to AIDS	[10]
		MBL2	154454	10q11.2–q21	Point mutation	Increased susceptibility to HIV infection	[70]
		IL10 promoter	124092	1q31–q32	Point mutation	Accelerated progression to AIDS	[71]
Hepadnaviridae	Hepatitis B	TNF-α promoter	191160	6p21.3	Point mutation	Increased hepatitis B virus (HBV) persistence	[41]
		MBL2	154454	10q11.2–q21	Point mutation	Increased HBV persistence	[72]
		VDR	601769	12q12–q14	Point mutation	Decreased HBV persistence	[73]
Herpesviridae	Epstein–Barr virus (EBV)	SH2D1A	308240	Xq25	Various	Development of X-linked lymphoproliferative disease (XLP) following infection by EBV	[74,75]

^aMutations in several genes associated with immunodeficiency, such as severe combined immunodeficiency (SCID), also result in increased susceptibility to various pathogens, including viruses, and are not listed here.

^bOnline Mendelian Inheritance in Man (http://www.ncbi.nlm.nih.gov/Omim).

Table 2. Host genes primarily associated with susceptibility to viral infections in humans*
Box 2. Cell-mediated immunity against viruses

In vertebrates, host defense against virus infection is mediated by innate and adaptive immunity. Innate immunity constitutes the first line of defense, providing a rapid response through germ-line encoded proteins that pre-exist or are induced within hours of infection. Adaptive immunity is a slower, yet highly specific response mediated by B cells and T cells that confers effective and long-lasting protection against infection, and is characterized by immunological memory. Major histocompatibility complex (MHC) molecules are highly polymorphic glycoproteins encoded by MHC class I and II genes, which are mainly involved in the presentation of peptide antigens to T cells. MHC class I molecules bind peptides derived from proteins synthesized in the cytosol, such as viral proteins, and present them to cytotoxic CD8+ T cells. By contrast, MHC class II molecules are loaded with peptides derived from exogenous antigens engulfed within intracellular vesicles, for presentation to CD4+ T cells. MHC class I molecules also play an important role in modulating the cytotoxic activity of natural killer (NK) cells.

NK cells are a component of the innate system, so named because of their propensity to kill certain neoplastic and virus-infected cells without prior sensitization. The cytotoxic activity of NK cells is regulated by signals elicited by inhibitory receptors containing immunoreceptor tyrosine-based inhibitory motifs (ITIMs), or stimulatory receptors associated with immunoreceptor tyrosine-based activation motifs (ITAMs) bearing adaptor molecules. Inhibitory receptors interact with MHC class I molecules and prevent cell killing of healthy cells by autologous NK cells. In situations where MHC class I is downregulated, such as during tumorigenesis or viral infection, reduced inhibitory signals result in NK-cell-mediated lysis [85]. Activating NK-cell receptors recognize stress-induced or pathogen-encoded MHC class I-like proteins and stimulate killing of cells expressing these molecules [85].

class I homologs, such as m144, which confer resistance to the innate immune response by inhibiting NK-cell-mediated attack (Box 2) [24]. Strains of the C57BL/6 background carry a dominant resistance allele, Cmv1+, that restricts viral replication in target organs, whereas other mouse strains carry a recessive susceptibility allele, Cmv1–, that allows rapid proliferation of the virus [25]. Cmv1+ encodes an activating NK-cell receptor, Ly49H [26–28], which is absent in susceptible strains. Mouse strains express different repertoires of Ly49 molecules, which are part of a large family of polymorphic receptors expressed on overlapping populations of NK cells. Upon binding of MHC class I ligands, different Ly49 molecules deliver either activating or inhibitory signals that modulate NK-cell function [29]. Recent studies have revealed that Ly49H recognizes MCMV-infected cells via direct interaction with the viral antigen, m157, which shares structural homology with MHC class I molecules and is expressed on the surface of infected cells [30,31]. m157 also binds to an inhibitory receptor, Ly49I, expressed in susceptible strain 129 mice, suggesting that m157 could have evolved as a mechanism to escape NK-cell killing by targeting inhibitory receptors [30]. In resistant mice, Ly49H might have evolved as a countermeasure against virus-encoded MHC class I homologs, providing an overriding activating signal to the NK cell, and promoting the elimination of MCMV-infected cells (Fig. 2a). Considering the prevalence of human cytomegalovirus (HCMV) in the human population, we expect that there are likely to be HCMV-specific activating receptors present on human leukocytes that might function in a manner analogous to Ly49H.

Role of the MHC in efficient T-cell recognition

The MHC (Box 2) is a set of genes, present in all vertebrates, with immunological and nonimmunological functions. MHC class I genes play a crucial role in histocompatibility complex (MHC) class I molecules on infected cells. However, class I downregulation renders the infected cell susceptible to recognition by NK cells expressing inhibitory receptors, in accordance with the ‘missing self’ hypothesis of Karre et al. [23]. Viruses such as mouse cytomegalovirus (MCMV) have upped the ante in their battle against the immune system by deploying MHC

![Diagram](https://tigs.trends.com)
combating viral infection in mice (Fig. 3a). Congenic mice with intra-MHC recombinations provide an important tool for dissecting the contribution of MHC class I subregions to virus infection. For example, comparisons of T-cell responses in H2 congenic mice that differ in their recovery from Friend leukemia virus infection were used to localize Friend leukemia virus resistance loci Rfv1 and Rfv2. Rfv1 mapped to the H2D subregion and determined T-cell activation. Rfv2 mapped to the IA subregion and determined unresponsiveness of T cells in a proliferation assay [35]. Resistance to acute lethal infection of MCMV is also controlled by genes linked to H2, with the k haplotype being more resistant than b or d. Resistance was associated with genes of subregions K/IA and D. Interestingly in this model, transfection of macrophages with sequences encoding MHC molecules such as H2-Kd, Dd or Kk renders these cells, which are major reservoirs for MCMV, sensitive to MCMV infection [37], consistent with a role for MHC molecules as MCMV receptors.

In humans, association analysis between MHC and specific viral infections has also suggested a differential role of specific alleles in susceptibility to HIV, hepatitis B virus (HBV) and hepatitis C virus (HCV) (Fig. 3b). For example, HLA-DRB1*1302 is associated with resistance to chronic HBV infection in both African and European populations [42,43] whereas HLA-B*35-Cw*04 is associated with the rapid progression of AIDS in Caucasian populations [38].

Although polymorphisms in the classical MHC class I and class II genes are known to be related to antigen presentation, it is important to note that there are other genes within the MHC class III region, such as components of the complement cascade (C2, C4), cytokines – tumor necrosis factor (TNF)-α and -β – and proteins involved in antigen processing (Lmp2, Tap1), which also have an important function in immunity [51]. Therefore, disease resistance or susceptibility that maps to the MHC must be interpreted with caution, to differentiate the role of antigen presentation from the other roles of MHC-associated genes.

Studies of complex models of susceptibility to viral infection

Although advances in genomic analysis have paralleled the discovery of host susceptibility traits that are determined by single alleles, most differences in host susceptibility to viral infection are the result of interactions among different genes with multiple alleles. The study of infectious disease under complex genetic control in humans is complicated by a variety of factors including genetic heterogeneity, low penetrance and environmental factors. The tools currently available to the mouse

Table 3. Viruses discussed in this review

Virus	Official virus species name	Family	Comments
MHV	Mouse hepatitis virus	Coronaviridae	One of the most common causes of epizootics in laboratory mouse colonies
Moloney murine leukemia virus (MoMLV) and Friend murine leukemia virus (MuLV)	Gammaretrovirus	Retroviridae	Provides mouse model for a mechanism of oncogenic transformation by RNA tumor virus
HIV-1	Human immunodeficiency virus 1	Retroviridae	Member of the subfamily Lentivirinae Associations with the acquired immunodeficiency syndrome (AIDS)
Influenza virus	Influenza virus	Orthomyxoviridae	Causes an infection of the respiratory tract that affects millions of people every year. There are three types of influenza viruses, A, B and C. Influenza A can infect humans and other animals whereas influenza B and C infect humans
MVE virus	Murray Valley encephalitis virus	Flaviviridae	Causes various symptoms from mild to severe with permanent impaired neurological functions, sometimes fatal
YF virus	Yellow fever virus	Flaviviridae	Causes yellow fever, a viral hemorrhagic fever. The virus can result in epidemics with mortality rates of up to 60%
WN virus	West Nile virus	Flaviviridae	Causes fatal encephalitis and lesions of diffuse inflammation and neuronal degeneration in humans
Murine cytomegalovirus (MCMV)	Murid herpesvirus 1	Herpesviridae	Mouse model of human cytomegalovirus infection and disease
HBV	Hepatitis B virus	Hepadnaviridae	Infects human hepatocytes Associated with acute and chronic hepatitis in humans Persistent infection is associated with chronic liver disease, which can lead to the development of cirrhosis and hepatocellular carcinoma
HCV	Hepatitis C virus	Flaviviridae	Infects human hepatocytes Persistence of HCV occurs in ~80% of infections Persistent infection is associated with chronic liver disease, which can lead to the development of cirrhosis and hepatocellular carcinoma
Theiler’s murine encephalomyelitis virus (TMEV)	Theilovirus	Picornaviridae	Causes a chronic persistent demyelinating infection of the white matter in mice Provides a highly relevant mouse model of multiple sclerosis
Several complementary avenues promise significant acceleration in the identification of genes that determine resistance or susceptibility in complex models of virus infection. The well-defined sets of recombinant congenic strains (RCS) [57], consomic (chromosome substitution) strains [58] and advanced intercrossed lines [59] that are now available can be used to map a locus of interest and to characterize the specific phenotypic component of disease susceptibility under genetic control. Also, traditional genetic mapping techniques are now complemented by high-throughput methods for studying gene function and regulation. For example, high-density oligonucleotide arrays [60] or cDNA arrays [61] allow for gene expression monitoring on a genome-wide scale and offer an opportunity to establish functional links between genotype and phenotype. A strategy that combines congenic mapping with microarray expression profiling would aid in the identification of novel susceptibility genes and biochemical pathways not previously known to be involved in disease etiology. Furthermore, the availability of the human and mouse genome sequences represents the ultimate breakthrough in quantitative trait loci (QTL) studies by placing the identification of candidate genes within a defined genetic interval only a (computer) mouse click away.

One of the current limitations of using inbred strains of mice to study susceptibility to viral infection is the limited extent of genetic variation, mainly due to a small number of original progenitor strains [62]. Therefore, although these resources are valuable, they do not permit the identification of all possible resistance or susceptibility loci. Wild-derived inbred strains of mice are an important source of additional resistance alleles [63] that is just beginning to be exploited, as demonstrated by the characterization of Flv. Chemical mutagenesis, a method that has been successfully applied to the study of other model organisms, from bacteria to Drosophila, is another promising strategy for creating novel susceptibility alleles in the mouse. The alkylating agent N-ethyl-N-nitrosourea (ENU) introduces point mutations and creates random variation throughout the genome [64]. This is highly advantageous for defining host susceptibility phenotypes because it represents an unbiased method for identifying previously unrecognized physiological pathways because no assumptions are made about the relevant genes. ENU mutagenesis yields models of simple inheritance that are readily accessible to analysis by positional cloning [64].

Conclusions and future perspectives
The effort to understand the genetic basis of susceptibility to viral disease is driven by three considerations: (1) the increased public awareness of the toll imposed by viruses on the host; (2) the increase in susceptible human populations because of longer life expectancy, frequently accompanied by chronic illness, and the consequences of advances in medical technology, including immunosuppressive therapies for organ transplantation or treatment of malignancy; and (3) the need to develop new therapies for infections caused by multidrug-resistant
microorganisms and by microorganisms for which there is currently no treatment.

Genetic studies of host resistance to viral infection have provided fundamental insights into cell biology, viral pathogenesis, and molecular and cellular immunology. We have provided examples of three levels at which the genetics of the host can determine the outcome of a viral infection. Mouse genetics has shown the importance of allelic variation of virus receptor genes in determining the severity of viral disease. However, in addition to virus–receptor interaction, a complex multicomponent process is required for virus entry into the host cell. Disrupting functional interactions crucial to virus entry via genetic manipulation of virus receptors or associated molecules, or

Fig. 3. Roles of the major histocompatibility complex (MHC) in combating virus infections. (a) Mouse susceptibility loci in the MHC are shown. Studies using congenic mice having intra-MHC recombination identified the contribution of specific MHC alleles to virus infection. Mostly, MHC class I genes play a crucial role against virus infection of mice. Only a small number of genes in the MHC and their relative positions on chromosome 17 are shown. (b) Genetic associations of the human MHC with susceptibility to virus infection. Only a small number of genes in the MHC, with their relative positions on chromosome 6, are shown. The genes encoding class I are depicted in red, class II in yellow and class III in green. TNF is the gene encoding tumor necrosis factor. C2 and C4 are complement genes.

http://tigs.trends.com
by using inhibitory small molecules, represent promising approaches to antiviral therapy. Therapies based on the principle of receptor interference for viruses other than retroviruses (Box 1) could be explored.

Type I IFN induces an intracellular antiviral response against many different RNA and DNA viruses. Mouse genetics has provided a starting point for dissecting intracellular mechanisms of host defense, and has revealed that several IFN-inducible gene products have inhibitory effects on a much more restricted number of viruses than expected. The precise nature (sequence or structural) of determinants recognized by effector proteins such as MX or OAS1B remain to be characterized. The identification of additional effector molecules and viral targets must continue to be an important area of active research, particularly in view of the existence of orthologous human genes.

Mouse genetics has also demonstrated that recognition and destruction of virus-infected cells by NK cells is mediated by specific interactions between activating NK-cell receptors and viral target molecules. Viruses pose a particular problem for specific recognition because all the components of the virus are synthesized and assembled in the host cell. Important questions to be answered include: (1) Do other activating NK-cell receptors have specialized functions in virus recognition? (2) Is the MHC class I fold a recognition-associated structure? (3) What is the extent of the repertoire of target molecules for NK-cell-activating receptors? In addition, studies of mouse NK-cell receptors, such as the Ly49 family, have provided a conceptual framework for understanding human NK-cell biology. Because no functional human Ly49 counterpart has been identified, prime candidates for the recognition of viral pathogens by human NK cells are members of the killer-cell immunoglobulin-like receptor (KIR) family [65]. Although the ligands of activating KIR receptors remain to be identified, it has been proposed that activating KIR molecules have evolved to recognize infectious agents (Fig. 2b) [32].

It is suspected that several common and/or chronic human diseases under complex genetic control are triggered by a viral infection. This idea is supported by experimental evidence derived from mouse models for initiation and exacerbation of atherosclerosis following MCMV infection [66], for diabetes [67] or dilated cardiomyopathy [68] following coxsackievirus infection, and for multiple sclerosis-like disease following TMEV [33] or MHV [69] infection. Identifying genes that control susceptibility to acute and chronic viral infection in these models is a crucial step in understanding the development of these complex pathologies.

Comparisons between mouse and human mechanisms of host resistance or susceptibility to viral infection have increased our awareness not only of their differences but also, more importantly, of their similarities. In the future, the use of comparative genomic approaches in animal model systems will provide more comprehensive knowledge of the impact of viruses on human health.

Acknowledgements
We are grateful to Christine di Donato for critical reading of the manuscript. Our laboratories are supported by grants from the Canadian Institutes of Health Research (CIHR) and Natural Sciences and Engineering Research Council of Canada (NSERC). Seung-Hwan Lee is supported by a CIHR doctoral scholarship and Silvia M. Vidal is a Junior Scientist of CIHR.

References
1 Casanova, J.L. et al. (2002) Forward genetics of infectious diseases: immunological impact. Trends Immunol. 23, 469–472
2 Cooke, G.S. and Hill, A.V. (2001) Genetics of susceptibility to human infectious disease. Nat. Rev. Genet. 2, 967–977
3 Stohlm, S.A. and Frelinger, J.A. (1978) Resistance to fatal central nervous system disease by mouse hepatitis virus strain JHM. I. Genetic analysis. Immunogenetics 6, 277–281
4 Holmes, K.V. and Dveksler, G.S. (1994) Specificity of coronavirus/receptor interactions. In Cellular Receptors for Animal Viruses (Wimmer, E., ed.), pp. 403–443, Cold Spring Harbor Laboratory Press
5 Yeager, C.L. et al. (1995) Human aminopeptidase N is a receptor for human coronavirus 229E. Nature 375, 420–422
6 Tan, K. et al. (2002) Crystal structure of murine sCEACAM1a[14]: a coronavirus receptor in the CEA family. EMBO J. 21, 2076–2086
7 Dandekar, S. et al. (1987) Molecular characterization of the Akrv-1 restriction gene: a defective endogenous retrovirus-borne gene identical to Fv-4r. J. Virol. 61, 308–314
8 Ikeda, H. and Sugimura, H. (1989) Fv-4 resistance gene: a truncated endogenous murine leukemia virus with ectropic interference properties. J. Virol. 63, 5405–5412
9 Taylor, G.M. et al. (2001) Fv-4: identification of the defect in Env and the mechanism of resistance to ectropic murine leukemia virus. J. Virol. 75, 12244–12248
10 Berger, E.A. et al. (1999) Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annu. Rev. Immunol. 17, 657–700
11 Martinson, J.J. et al. (1997) Global distribution of the CCR5 gene 32-basepair deletion. Nat. Genet. 16, 100–103
12 Stephens, J.C. et al. (1998) Dating the origin of the CCR5-Delta32 AIDS-resistance allele by the coalescence of haplotypes. Am. J. Hum. Genet. 62, 1507–1515
13 Lindemann, J. (1962) Resistance of mice to mouse adapted influenza virus. Virology 16, 203–204
14 Haller, O. and Kochs, G. (2002) Interferon-induced mx proteins: dynamin-like GTPases with antiviral activity. Traffic 3, 710–717
15 Stueheli, P. et al. (1988) Influenza virus-susceptible mice carry Mx genes with a large deletion or a nonsense mutation. Mol. Cell. Biol. 8, 4518–4523
16 Strandum, A.M. et al. (1993) Function of the mouse Mx1 protein is inhibited by overexpression of the PB2 protein of influenza virus. Virology 197, 642–651
17 Engelhardt, O.G. et al. (2001) Interferon-induced antiviral Mx1 GTPase is associated with components of the SUMO-1 system and promyelocytic leukemia protein nuclear bodies. Exp. Cell Res. 271, 286–295
18 Darnell, M.B. and Koprowski, H. (1974) Genetically determined resistance to infection with group B arboviruses. II. Increased production of interfering particles in cell cultures from resistant mice. J. Infect. Dis. 129, 248–256
19 Urosevic, N. et al. (1999) Development and characterization of new flavivirus-resistant mouse strains bearing Fv(r)-like and Fv(nmr) alleles from wild or wild-derived mice. J. Gen. Virol. 80, 897–906
20 Perelygin, A.A. et al. (2002) Positional cloning of the murine flavivirus receptor gene. Proc. Natl. Acad. Sci. U. S. A. 99, 9322–9327
21 Mashimo, T. et al. (2002) A nonsense mutation in the gene encoding 2’-5’ oligoadenylate synthetase/1 isosom is associated with West Nile virus susceptibility in laboratory mice. Proc. Natl. Acad. Sci. U. S. A. 99, 11311–11316
22 Eskildsen, S. et al. (2002) Gene structure of the murine 2’5’- oligoadenylate synthetase family. Cell. Mol. Life Sci. 59, 1212–1222
23 Karre, K. et al. (1986) Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defense strategy. Nature 319, 675–678
24 Farrell, H.E. et al. (1997) Inhibition of natural killer cells by a
cytomegalovirus MHC class I homologue in vivo. Nature 386, 510–514
25 Scalzo, A.A. et al. (1990) Cmv-1, a genetic locus that controls murine cytomegalovirus replication in the spleen. J. Exp. Med. 171, 1469–1483
26 Lee, S.H. et al. (2001) Susceptibility to mouse cytomegalovirus is associated with deletion of an activating natural killer cell receptor of the C-type lectin superfamily. Nat. Genet. 28, 42–45
27 Brown, M.G. et al. (2001) Vital involvement of a natural killer cell activation receptor in resistance to viral infection. Science 292, 934–937
28 Daniels, K.A. et al. (2001) Murine cytomegalovirus is regulated by a discrete subset of natural killer cells reactive with monoclonal antibody to Ly49H. J. Exp. Med. 194, 29–44
29 Anderson, S.K. et al. (2001) The ever-expanding Ly49 gene family: repertoire and signaling. Immunol. Rev. 181, 79–89
30 Arase, H. et al. (2002) Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors. Science 296, 1233–1236
31 Smith, H.F. et al. (2002) Recognition of a virus-encoded ligand by a natural killer cell activation receptor. Proc. Natl. Acad. Sci. U. S. A. 99, 8826–8831
32 Martin, M.P. et al. (2002) Epistatic interaction between KIR3DS1 and HLA-B delays the progression to AIDS. Nat. Genet. 31, 429–434
33 Bihl, F. et al. (1998) Genetics of susceptibility to Thielers virus infection. Bioessays 20, 627–633
34 Brownstein, D.G. et al. (1998) A tumor necrosis factor-alpha (TNF-alpha) activating and inhibitory NK cell receptors. Science 283, 1748–1752
35 Debre, P. et al. (1980) Genetic control of sensitivity to Moloney leukemia virus in mice. III. The three H-linked Rvn genes are immune response genes controlling the antiviral antibody response. Eur. J. Immunol. 10, 914–918
36 Price, P. (1994) Are MHC proteins cellular receptors for CMV? Immunol. Today 15, 295–296
37 Carrington, M. et al. (1999) HLA and HIV-1: heterozygote advantage and B*35-Cw*04 disadvantage. Science 283, 1748–1752
38 Kaslow, R.A. et al. (1996) Influence of combinations of human major histocompatibility complex genes on the course of HIV-1 infection. Nat. Med. 2, 405–411
39 Ferry, K.J. et al. (1999) HLA alleles determine human T-lymphotropic virus-I (HTLV-I) proviral load and the risk of HTLV-I-associated myelopathy. Proc. Natl. Acad. Sci. U. S. A. 96, 3848–3853
40 Rohler, T. et al. (1998) A tumor necrosis factor-alpha (TNF-alpha) promoter polymorphism is associated with chronic hepatitis B infection. Clin. Exp. Immunol. 111, 579–582
41 Rohler, T. et al. (1997) HLA-DRB1*1301 and *1302 protect against chronic hepatitis B. J. Hepatol. 26, 503–507
42 Thruss, M.R. et al. (1995) Association between an MHC class II allele and clearance of hepatitis B virus in the Gambia. N. Engl. J. Med. 332, 1065–1069
43 Thio, C.L. et al. (1999) Class II HLA alleles and hepatitis B virus persistence in African Americans. J. Infect. Dis. 179, 1004–1006
44 Thurn, M. et al. (1999) Influence of MHC class II genotype on outcome of infection with hepatitis C virus. The HENCORE group. Hepatitis C European Network for Cooperative Research. Lancet 354, 2119–2124
45 Minton, E.J. et al. (1998) Association between MHC class II alleles and clearance of circulating hepatitis C virus. Members of the Trent Hepatitis C Virus Study Group. J. Infect. Dis. 178, 39–44
46 Alix, L. et al. (1997) Genes of the major histocompatibility complex class II influence the outcome of hepatitis C virus infection. Gastroenterology 113, 1675–1681
47 Cramp, M.E. et al. (1998) Association between HLA class II genotype and spontaneous clearance of hepatitis C virus. Hepatology 27, 240–244
48 Akaita, T. et al. (1996) HLA DRB1 and DQB1 alleles and haplotypes influencing the progression of hepatitis C. J. Med. Virol. 49, 274–278
49 Sequencing Consortium, M.H.C., (1999) Complete sequencing and gene map of a human major histocompatibility complex (MHC). Nature 401, 921–923
50 Monteny, P. et al. (1997) The infection of mouse by Thielers virus: from genetics to immunology. Immunol. Rev. 159, 163–176
51 Azarval, A. et al. (1994) FVB mice transgenic for the H-2Db gene become resistant to persistent infection by Thielers’s virus. J. Virol. 68, 4049–4052
52 Bureau, J.F. et al. (1993) Mapping loci influencing the persistence of Thielers’s virus in the murine central nervous system. Nat. Genet. 5, 87–91
53 Bihl, F. et al. (1999) Two loci, Tmevpg2 and Tmevpg3, located on the telomeric region of chromosome 10, control the persistence of Thielers’s virus in the central nervous system of mice. Genetics 152, 385–392
54 Vigneau, S. et al. (2003) Tmevpg1, a candidate gene for the control of Thielers’s virus persistence, could be implicated in the regulation of gamma interferon. J. Virol. 77, 5632–5638
55 Fortin, A. et al. (2001) Recombinant congenic strains derived from AJJ and BALB/cI-B6F1: a tool for genetic dissection of complex traits. Genomics 74, 21–35
56 Nadeau, J.H. et al. (2000) Analysing complex genetic traits with chromosome substitution strains. Nat. Genet. 24, 221–225
57 Mott, R. and Flint, J. (2002) Simultaneous detection and fine mapping of quantitative trait loci in mice using heterogeneous stocks. Genetics 160, 1609–1618
58 Lipshutz, R.J. et al. (1999) High density synthetic oligonucleotide arrays. Nat. Genet. 21, 20–24
59 Schena, M. et al. (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470
60 Wade, C.M. et al. (2002) The mosaic structure of variation in the laboratory mouse genome. Nature 420, 574–578
61 Guenet, J.L. and Bonhomme, F. (2003) Wild mice: an ever-increasing contribution to a popular mammalian model. Trends Genet. 19, 24–31
62 Balling, R. (2001) ENU mutagenesis: analyzing gene function in mice. Annu. Rev. Genomics Hum. Genet. 2, 483–492
63 Barten, R. et al. (2001) Divergent and convergent evolution of NK-cell receptors. Trends Immunol. 22, 52–57
64 Bruggeman, C.A. (2000) Does cytomegalovirus play a role in atherosclerosis? Herpes 7, 51–54
65 Ramsingh, A.J. et al. (1997) Coccackieviruses and diabetes. Bioessays 19, 793–800
66 Hill, S.L. and Rose, N.R. (2001) The transition from viral to autoimmune myocarditis. Autoimmunity 34, 169–176
67 Glass, W.G. et al. (2002) Mouse hepatitis virus infection of the central nervous system: chemokine-mediated regulation of host defense and disease. Viral Immunol. 15, 261–272
68 Garred, P. et al. (1997) Susceptibility to HIV infection and progression of AIDS in relation to variant alleles of mannose-binding lectin. Lancet 349, 236–240
69 Shin, H.D. et al. (2000) Genetic restriction of HIV-1 pathogenesis to AIDS by promoter alleles of IL10. Proc. Natl. Acad. Sci. U. S. A. 97, 14467–14472
70 Thomas, H.C. et al. (1996) Mutation of gene of mannose-binding protein associated with chronic hepatitis B viral infection. Lancet 348, 1417–1419
71 Bellamy, R. et al. (1999) The X-linked lymphoproliferative disease gene product SAP regulates signals induced through the co-receptor SLAM. J. Exp. Med. 194, 203–207
72 Best, S. et al. (1997) Endogenous retroviruses and the evolution of resistance to retroviral infection. Trends Microbiol. 5, 313–318
73 Kitagawa, M. et al. (2001) A gene therapy model for retrovirus-induced disease: with a viral env: gene: expression-dependent resistance in immunosuppressed hosts. Leukemia 15, 1779–1784
74 Lilly, F. (1967) Susceptibility to two strains of Friend leukemia virus in mice. Science 155, 461–462
75 Odaka, T. and Yamamoto, T. (1965) Inheritance of susceptibility to
Friend mouse leukemia virus. 11. Spleen foci method applied to test the susceptibility of crossbred progeny between a sensitive and a resistant strain. *Jpn. J. Exp. Med.* 35, 311–314

80 Best, S. et al. (1996) Positional cloning of the mouse retrovirus restriction gene Fv1. *Nature* 382, 826–829

81 DesGroseillers, L. and Jolicoeur, P. (1983) Physical mapping of the Fv-1 tropism host range determinant of BALB/c murine leukemia viruses. *J. Virol.* 48, 685–696

82 Towers, G. et al. (2000) A conserved mechanism of retrovirus restriction in mammals. *Proc. Natl. Acad. Sci. U. S. A.* 97, 12295–12299

83 Cowan, S. et al. (2002) Cellular inhibitors with Fv1-like activity restrict human and simian immunodeficiency virus tropism. *Proc. Natl. Acad. Sci. U. S. A.* 99, 11914–11919

84 Persons, D.A. et al. (1999) Fv2 encodes a truncated form of the Stk receptor tyrosine kinase. *Nat. Genet.* 23, 159–165

85 Cerwenka, A. and Lanier, L.L. (2001) Natural killer cells, viruses and cancer. *Nat. Rev. Immunol.* 1, 41–49