Invited Review

Matrix-induced autologous chondrocyte implantation (mACI) versus autologous matrix-induced chondrogenesis (AMIC) for chondral defects of the knee: a systematic review

Filippo Migliorini1,†, Jörg Eschweiler1,†, Christian Götze2, Arne Driessen1, Markus Tingart1, and Nicola Maffulli3,4,5,*

1Department of Orthopaedic and Trauma Surgery, RWTH University Hospital Aachen, Pauwellstr. 31, 52074 Aachen, Germany, 2Department of Orthopaedic Surgery, Auguste-Viktoria Clinic, Ruhr University Bochum, Am Kotturkanal 2, 32545 Bad Oeynhausen, Germany, 3Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy, 4Queen Mary University of London, Barts and the London School of Medicine and Dentistry, Centre for Sports and Exercise Medicine, Mile End Hospital, 275 Bancroft Road, London E1 4DG, UK, and 5School of Pharmacy and Bioengineering, Keele University Faculty of Medicine, Thornburrow Drive, Stoke on Trent, ST5 5BG, UK

*Correspondence address. Queen Mary University of London, Mile End Hospital, 275 Bancroft Road, London E1 4DG, UK.
E-mail: n.maffulli@qmul.ac.uk
†Both authors contributed equally to the final version of the manuscript and share the first authorship

Editorial Decision 16 January 2022; Accepted 26 January 2022

Abstract

Introduction: Chondral defects of the knee are common and their treatment is challenging.
Source of data: PubMed, Google scholar, Embase and Scopus databases.
Areas of agreement: Both autologous matrix-induced chondrogenesis (AMIC) and membrane-induced autologous chondrocyte implantation (mACI) have been used to manage chondral defects of the knee.
Areas of controversy: It is debated whether AMIC and mACI provide equivalent outcomes for the management of chondral defects in the knee at midterm follow-up. Despite the large number of clinical studies, the optimal treatment is still controversial.
Growing points: To investigate whether AMIC provide superior outcomes than mACI at midterm follow-up.
Areas timely for developing research: AMIC may provide better outcomes than mACI for chondral defects of the knee. Further studies are required to verify these results in a clinical setting.

Key words: Knee, chondral defect, mACI, AMIC

Introduction

Hyaline cartilage tissue is alymphatic and hypocellular, with low metabolic activity and limited regenerative capabilities.\(^1\)\(^-\)\(^3\) The healing process of chondrocytes often does not result in *restitutio ad integrum*, and residual chondral defects or a fibrotic scar are frequent.\(^4\)\(^,\)\(^5\) Focal chondral defects of the knee are debilitating, leading to marked decline in quality of life and, in athletes, a high chance of retirement from sport.\(^5\)\(^,\)\(^6\) Conservative strategies are often not adequate to manage focal chondral defects of the knee.\(^5\)\(^,\)\(^9\) Thus, surgical management is often required.\(^10\)\(^,\)\(^11\) Several different surgical strategies have been proposed to manage focal chondral defects of the knee.\(^12\)\(^-\)\(^14\) After its introduction, membrane-induced autologous chondrocyte implantation (mACI) has been broadly performed.\(^11\)\(^,\)\(^15\)\(^,\)\(^16\) In 2005, Behrens\(^17\) first described an enhanced microfractures technique, which quickly evolved into the autologous matrix-induced chondrogenesis (AMIC) procedure. Given its simplicity, AMIC quickly gained the favour of surgeons and patients.\(^18\)

To the best of our knowledge, no previous study compared these two strategies in a clinical setting for chondral defect of the knee. AMIC was supposed to perform better than the mACI procedure; however, no consensus has been reached, and updated evidenced-based recommendations are required. Thus, a systematic review was conducted to investigate whether AMIC provides better outcomes than mACI for knee chondral defects at midterm follow-up. This study focused on patient-reported outcome measures (PROMs) and complication rates. We hypothesized that AMIC and mACI procedures provided equivalent clinical outcome.

Method

Search strategy

This systematic review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA).\(^19\) The PICO algorithm was preliminarily stated:

- **P** (Problem): knee chondral defect;
- **I** (Intervention): chondral regeneration;
- **C** (Comparison): AMIC versus mACI;
- **O** (Outcomes): PROMs and complications.

Data source and extraction

The literature search was conducted by two authors (Filippo Migliorini1 and Jörg Eschweiler) separately in January 2022. The following databases were accessed: PubMed, Google scholar, Embase and Scopus. The following keywords were used in combination: chondral, cartilage, articular, damage, defect, injury, chondropathy, knee, pain, matrix-induced, autologous, chondrocyte, transplantation, implantation, mACI, AMIC, therapy, management, surgery, outcomes, hypertrophy, failure, revision, reoperation, recurrence. The same authors independently screened the resulting articles from the search. The full-text of the articles of interest was accessed. A cross-reference of the bibliographies was also performed. Disagreements between the two authors were solved by a third author (Nicola Maffulli).

Eligibility criteria

All the studies investigating the outcomes of AMIC and/or mACI for knee chondral defects were accessed. Given the authors language abilities, articles in English, Italian, French, Spanish and
German were eligible. Levels I to IV of evidence studies, according to the Oxford Centre of Evidence-Based Medicine, were suitable. Only studies investigating a minimum of five patients were included. Abstracts, reviews, letters, opinion, editorials and registries were excluded. Biomechanics, animals or in vitro studies were not considered. Only studies that used a cell-free bioresorbable membrane were considered. Studies augmenting AMIC or mACI with less committed cells (e.g. bone marrow concentrate, mesenchymal stem cells) or growth factors were not considered. Studies involving patients with kissing lesions were not included, nor were those involving patients with end-stage osteoarthritis. Only studies that clearly stated the duration of the follow-up were eligible. Only studies which reported quantitative data with regards to the outcomes of interest were included in this study.

Data extraction

Data extraction was conducted independently by two authors (Filippo Migliorini and Jörg Eschweiler). Generalities of the included studies (author and year, journal, study design) and patients demographic at baseline were collected (length of symptoms prior of treatment, number of procedures, mean body mass index (BMI) and age of the patients, length of the follow-up, gender, mean defect size). For each of the two techniques, the following data were retrieved: Visual Analogue Scale (VAS), Tegner Activity Scale, International Knee Documentation Committee (IKDC) and the Lysholm Knee Scoring Scale. Data regarding the following complications were also collected: rate of hypertrophy, failures, revision surgeries and total knee arthroplasty. The recurrence of symptomatic chondral defects which affect negatively the patient quality of life was considered as failure.

Methodological quality assessment

The methodological quality assessment was accomplished by two independent authors (Filippo Migliorini and Jörg Eschweiler). The risk of bias graph tool of the Review Manager Software (The Nordic Cochrane Collaboration, Copenhagen) was used. The following risks of bias were evaluated: selection, detection, attrition, reporting and other sources of bias.

Statistical analysis

The statistical analysis was performed with IBM SPSS Version 25. Continuous data were reported as mean difference (MD), while binary data were evaluated using the odd ratio (OR) effect measure. The confidence interval (CI) was set at 95% in all the comparisons. T-test and \(\chi^2 \) were evaluated for continuous and binary data, respectively, with \(P < 0.05 \) considered statistically significant.

Results

Search result

A total of 503 articles were initially obtained and 107 were excluded as they were duplicates. A further 349 articles were excluded because they did not match the inclusion criteria: not focused on mACI or AMIC (N = 225), not focusing on knee (N = 37), study design (N = 51), not reporting quantitative data under the outcomes of interest (N = 12), combined with other committed cells (N = 12), other (N = 8), language limitations (N = 3), not clearly stating the duration of the follow-up (N = 1). Finally, 47 articles were available for this study. The results of the literature search are shown in Figure 1.

Methodological quality assessment

As 27% (12 of 45) of the investigations were randomized clinical trials, and 20% (9 of 45) were retrospective studies, the risk of selection bias of random sequence generation was moderate. The overall risk of selection bias of allocation concealment was low. Given the overall lack of blinding, detection bias was moderate-high. The risk of attrition and reporting bias across all included studies was low, as was the risk of other bias. In conclusion, the risk of
bias was moderate, attesting to this study acceptable methodological assessment (Fig. 2).

Patient demographics

Data from 1667 procedures were retrieved; 36% (600 of 1667 patients) were women. The mean follow-up was 37.9 ± 21.7 months. The mean age of the patients was 34.7 ± 6.5, and the mean BMI 25.5 ± 1.6 kg/m². The mean defect size was 3.9 ± 1.2 cm². Generalities and demographics of the study are shown in Table 1.

Good comparability was found between the two groups at baseline (Table 2).

Outcomes of interest

The AMIC group demonstrated greater values of IKDC (MD 7.7; \(P = 0.03 \)) and Lysholm (MD 16.1; \(P = 0.02 \)) scores. Similarity was found concerning
the VAS ($P = 0.5$) and Tegner ($P = 0.2$) scores (Table 3).

Complications

The AMIC group demonstrated lower rate of failures (OR 0.2; $P = 0.04$). Similarity was found concerning the rate of hypertrophy ($P = 0.05$), knee arthroplasty ($P = 0.4$) and revision surgery ($P = 0.07$) (Table 4).

Discussion

According to the main findings of the present systematic review, AMIC performed better than mACI for chondral defects of the knee at ~40 months follow-up. The rate of complications was noticeably lower in the AMIC group. While the Tegner and VAS scores were similar, the mean difference of the Lysholm and IKDC scales exceeded the minimally clinically important difference (MCID) in favour of the AMIC group.\(^{21,24}\)

mACI has been largely performed in patients with focal chondral defects of the knee.\(^{25,26}\) For the mACI procedure, an arthroscopy of the knee is performed first to assess cartilage status, identify the chondral defect and harvest chondrocytes from a non-weightbearing zone of the distal femur.\(^{27-29}\) Autologous chondrocytes are subsequently extracted and cultivated, and expanded in vitro for ~3 weeks, over a membrane that acts as medium for cell proliferation.\(^{30,31}\) In a second-step surgery, the defect is debrided and the membrane is secured into the defect.\(^{32,33}\) The current literature presents several clinical trials reporting the surgical outcomes of mACI. However, there are still controversies. The optimal surgical approach, whether arthrotomy, mini-arthrotomy or arthroscopy, has not been clarified. Additionally, there are several different membranes used for expansion (resorbable cell-free or cell-based, synthetic), and the most appropriate type of fixation (suture or fibrin glue) is still unclear.\(^{34-39}\)

Recently, AMIC has gained increasing interest.\(^{36,40-43}\) Differently from mACI, which uses laboratory expanded autologous chondrocytes, AMIC is a single session procedure which exploits the regenerative potential of bone marrow derived mesenchymal stem cells (BM-MSCs).\(^{14,44}\) After defect debridement and curettage, microfractures are performed.\(^{45,46}\) A membrane is then placed into the defect. BM-MSCs from the subchondral layer migrate into the membrane and regenerate the hyaline cartilage layer.\(^{12,37,48}\) Similar to mACI, AMIC can be performed through arthrotomy, mini-arthrotomy or arthroscopy.\(^{49,50}\) However, AMIC is more cost-effective, since it requires only one surgical step, avoiding in vitro cell expansion. Moreover, along with the avoidance of chondrocyte harvesting, AMIC should lead to less morbidity and faster recovery. These features make AMIC attractive to both surgeons and patients. We were unable to identify clinical studies which directly compare AMIC versus mACI for chondral defects of the knee:
Author, year	Journal	Study Design	Follow-up (months)	Treatment	Procedures Female (%)	Mean age	Mean BMI		
Akgun et al. 2015 28	Arch Orthop Trauma Surg	Prospective, Randomized	24	Control Group	mACI	7	57	32	24.1
Anders et al. 2013 64	Open Orthop J	Prospective, Randomized	24	AMIC	Control Group	8	12	35	27.4
Astur et al. 2018 65	Rev Bras Ortoph	Prospective	12	AMIC	Control Group	7	14	37	
Bartlett et al. 2005	J Bone Joint Surg	Prospective, Randomized	12	AMIC	Control Group	44	41		
Basad et al. 2010 27	Knee Surg Sports Traumatol Arthrosc	Prospective, Randomized	24	AMIC	Control Group	40	38	33	25.3
Basad et al. 2015 15	Knee Surg Sports Traumatol Arthrosc	Prospective, Randomized	60	AMIC	Control Group	25	37	32	24.0
Bocher et al. 2017 54	J Orthop Surg Res	Prospective, Randomized	36	AMIC	Control Group	25	16	34	25.6
Behrens et al. 2006 23	Knee	Prospective	35	AMIC	Control Group	38	50	35	
Britberg et al. 2018 86	Am J Sports Med	Prospective, Randomized	60	AMIC	Control Group	65	38	35	
Chung et al. 2014 57	Knee Surg Sports Traumatol Arthrosc	Prospective	24	Control Group	AMIC	12	83	44	
Cvitdanovich et al. 2017 68	Am J Sports Med	Prospective	24	Control Group	AMIC	24	42	47	
De Girolamo et al. 2019 47	J Clin Med	Prospective, Randomized	100	AMIC	Control Group	12	38	30	
Ebert et al. 2011 31	Am J Sports Med	Prospective	60	mACI	Control Group	44	48	39	25.5
Ebert et al. 2012 56	Arthroscopy	Prospective	24	mACI	Control Group	20	50	24	26.6
Ebert et al. 2015 69	Am J Sports Med	Prospective	24	mACI	Control Group	10	20	39	25.8
Ebert et al. 2017 70	Am J Sports Med	Prospective	60	mACI	Control Group	31	51	35	26
Efe et al. 2011 71	Am J Sports Med	Prospective	24	mACI	Control Group	15	60	26	
Enea et al. 2013 72	Knee	Retrospective	22	AMIC	Control Group	9	45	48	
Enea et al. 2015 73	Knee	Retrospective	29	AMIC	Control Group	9	44	43	
Ferruzzi et al. 2008 74	J Bone Joint Surg	Prospective	60	Control Group	mACI	48	38	32	
Gille et al. 2013 73	Arch Orthop Trauma Surg	Prospective	24	AMIC	Control Group	57	33	37	
Gobbi et al. 2009 76	Am J Sports Med	Prospective	60	mACI	Control Group	34	32	31	
Gudas et al. 2018 77	J Orthop Surg	Retrospective	54	AMIC	Control Group	15	33	31	
Hoffburg et al. 2019 33	Orthop J Sports Med	Prospective	63	mACI	Control Group	29	48	16	21.3
Kon et al. 2011 61	Am J Sports Med	Prospective	61	Control Group	mACI	22	32	24	24.7
Lahner et al. 2018 78	Biomed Res Int	Prospective	15	AMIC	Control Group	9	48	29.3	
Lopez-Alcorocho et al. 2018 79	Cartilage	Prospective	24	mACI	Control Group	50	30	35	
Macnill et al. 2011 80	Int Orthop	Prospective	66	Control Group	mACI	24	29	16	
Macnill et al. 2012 81	Am J Sports Med	Prospective	45	Control Group	mACI	25	80	35	
Marlovits et al. 2012 82	Am J Sports Med	Prospective	60	mACI	Control Group	24	12	35	
Meyerkort et al. 2014 83	Knee Surg Sports Traumatol Arthrosc	Prospective	60	mACI	Control Group	23	42		
Migliorini et al. 2021 84	LIFE	Prospective	43.7	AMIC	Control Group	32	35	27.1	
Migliorini et al. 2021 85	LIFE	Prospective	45.1	AMIC	Control Group	27	48	36	26.9
Nawaz et al. 2014 32	J Bone Joint Surg	Retrospective	74	Control Group	mACI	827	40	34	

(Continued)
Table 1 Continued.

Author, year	Journal	Study Design	Follow-up (months)	Treatment	Procedures	Female (%)	Mean age	Mean BMI	
mACI	Nejadnik et al. 2010	Retrospective	24	mACI	Control Group	36	50	43	
	Niemeyer et al. 2008	Retrospective	38	mACI	Control Group	36	44	44	
	Niemeyer et al. 2016	Am J Sports Med	12	mACI	Control Group	25	33	33	
	Niemeyer et al. 2019	Arch Orthop Trauma Surg	Prospective, Randomized	12	mACI	25	16	34	25.6
	Saris et al. 2014	Am J Sports Med	24	mACI	Control Group	72	37	35	
	Schagemann et al. 2018	Arch Orthop Trauma Surg	Retrospective	24	AMIC	20	35	38	27.0
Schiavone Panni et al. 2018	Knee Surg Sports Traumatol Arthrosc	Retrospective	84	AMIC	21				
Schneider et al. 2011	Am J Sports Med	Prospective	30	mACI	Control Group	116	42	33	
Schütter et al. 2019	Arch Orthop Trauma Surg	Prospective	60	mACI	Control Group	23	34	27.8	
Seibold et al. 2018	Knee Surg Sports Traumatol Arthrosc	Prospective	35	mACI	Control Group	30	36	36	
Steinwachs et al. 2019	Knee	Prospective	6	AMIC	Control Group	93	28	42	
Vole et al. 2017	Int Orthop	Prospective, Randomized	60	AMIC	17	29	34	27.4	
Zeilang et al. 2010	Am J Sports Med	Prospective, Randomized	24	mACI	11	45	29	25.0	

Table 2 Characteristics of the two cohorts at baseline (n.s.: not significant)

Endpoint	AMIC (n = 373)	mACI (n = 1237)	P
Follow-up (months)	37.8 ± 29.9	39.8 ± 17.2	n.s.
Women	34% (125 of 373)	37% (455 of 1237)	n.s.
Mean age	28.2 ± 6.0	33.5 ± 6.5	n.s.
Mean BMI	26.1 ± 1.6	25.9 ± 1.2	n.s.
Right side	33% (124 of 373)	52% (643 of 1237)	n.s.
Defect size (cm²)	3.5 ± 0.9	3.8 ± 1.0	n.s.
VAS	6.4 ± 0.9	5.6 ± 1.1	n.s.
Tegner	4.0 ± 1.4	3.1 ± 1.3	n.s.
Lysholm	54.1 ± 12.6	53.7 ± 10.7	n.s.
IKDC	47.0 ± 9.1	40.2 ± 8.3	n.s.

Table 3 Results of Tegner and IKDC scores (n.s.: not significant)

Endpoint	AMIC	mACI	MD	P
VAS	2.8 ± 2.2	2.9 ± 1.3	0.07	n.s.
Tegner	4.4 ± 0.6	4.7 ± 0.8	0.3	n.s.
Lysholm	81.9 ± 7.1	65.7 ± 28.2	1f	0.02
IKDC	79.2 ± 10.4	71.5 ± 6.3	7.7	0.03

this is the single most important limitation of the available literature. Future studies should establish the most appropriate strategy for knee chondral defects. We hypothesize that the AMIC procedure will promote faster recovery and result in higher patient satisfaction.

We point out that all statistical analyses were performed regardless of the surgical approach.
Conclusion

AMIC may provide better outcomes than mACI for chondral defects of the knee. Further studies are needed to validate these results in a clinical setting.

Conflict of interest statement

The authors have no potential conflicts of interest.

Funding

No external source of funding was used.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study informed consent is not required.

Data availability

The data underlying this article are available in the article and in its online supplementary material.

References

1. Kreuz PC, Steinwachs MR, Erggelet C, et al. Results after microfracture of full-thickness chondral defects in
different compartments in the knee. Osteoarthr Cartil 2006;14:1119–25.
2. Scillia AJ, Aune KT, Andrachuk JS, et al. Return to play after chondroplasty of the knee in National Football League athletes. Am J Sports Med 2015;43:663–8.
3. Dávila Castrodad IM, Mease SJ, Werheim E, et al. Arthroscopic chondral defect repair with extracellular matrix scaffold and bone marrow aspirate concentrate. Arthrosc Tech 2020;9:e1241–7.
4. Atala A, Irvine DJ, Moses M, Shaunak S. Wound healing versus regeneration: role of the tissue environment in regenerative medicine. MRS Bull 2010;35:597–606.
5. Buckwalter JA. Articular cartilage injuries. Clin Orthop Relat Res 2002;402:21–37.
6. Robinson PG, Williamson T, Murray IR, et al. Sporting participation following the operative management of chondral defects of the knee at mid-term follow up: a systematic review and meta-analysis. J Exp Orthop 2020;7:76.
7. Migliorini F, Maffulli N, Baroncini A, et al. Allograft versus autograft osteochondral transplant for chondral defects of the talus: systematic review and meta-analysis. Am J Sports Med 2021;036354652110373.
8. Hinckel BB, Gomoll AH. Autologous chondrocytes and next-generation matrix-based autologous chondrocyte implantation. Clin Sports Med 2017;36:525–48.
9. Migliorini F, Maffulli N, Eschweiler J, et al. Reliability of the MOCART score: a systematic review. J Orthop Traumatol 2021;22:39.
10. Carey JL, Remmers AE, Flanagan DC. Use of MACI (autologous cultured chondrocytes on porcine collagen membrane) in the United States: preliminary experience. Orthop J Sports Med 2020;8:232596712094181.
11. Ebert JR, Robertson WB, Woodhouse J, et al. Clinical and magnetic resonance imaging-based outcomes to 5 years after matrix-induced autologous chondrocyte implantation to address articular cartilage defects in the knee. Am J Sports Med 2011;39:753–63.
12. Migliorini F, Berton A, Salvatore G, et al. Autologous chondrocyte implantation and mesenchymal stem cells for the treatments of chondral defects of the knee- a systematic review. Curr Stem Cell Res Ther 2020;15:547–56.
13. Rosa D, Balato G, Ciaramella G, et al. Long-term clinical results and MRI changes after autologous chondrocyte implantation in the knee of young and active middle aged patients. J Orthop Traumatol 2016;17:55–62.
14. Migliorini F, Eschweiler J, Schenker H, et al. Surgical management of focal chondral defects of the knee: a Bayesian network meta-analysis. J Orthop Surg Res 2021;16:543.
15. Basad E, Wissing FR, Fehrenbach P, et al. Matrix-induced autologous chondrocyte implantation (MACI) in the knee: clinical outcomes and challenges. Knee Surg Sports Traumatol Arthrosc 2015;23:3729–35.
16. Ebert JR, Fallon M, Ackland TR, et al. Arthroscopic matrix-induced autologous chondrocyte implantation: 2-year outcomes. Art Ther 2012;28:952–64 e1-2.
17. Behrens P. Matrixgekoppelte Mikrofrakturierung. Art Ther 2005;18:193–7.
18. Bark S, Piontek T, Behrens P, et al. Enhanced microfracture techniques in cartilage knee surgery: fact or fiction? World J Orthop 2014;5:444–9.
19. Moher D, Liberati A, Tetzlaft J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 2009;339:b2535.
20. Howick J CI, Glasziou P, Greenhalgh T, Carl Heneghan, Liberati A, Moschetti I, Phillips B, Thornton H, Goddard O, Hodgkinson M. The 2011 Oxford CEBM levels of evidence. Oxford Centre for Evidence-Based Medicine. Available at https://www.cebm.net/index.aspx?o=5653 2011.
21. Briggs KK, Lysholm J, Tegner Y, et al. The reliability, validity, and responsiveness of the Lysholm score and Tegner activity scale for anterior cruciate ligament injuries of the knee: 25 years later. Am J Sports Med 2009;37:890–7.
22. Higgins LD, Taylor MK, Park D, et al. International knee documentation C. reliability and validity of the international knee documentation committee (IKDC) subjective knee form. Joint Bone Spine 2007;74:594–9.
23. Lysholm J, Gillquist J. Evaluation of knee ligament surgery results with special emphasis on use of a scoring scale. Am J Sports Med 1982;10:150–4.
24. Collins NJ, Misra D, Felson DT, et al. Measures of knee function: international knee documentation committee (IKDC) subjective knee evaluation form, knee injury and osteoarthritis outcome score (KOOS), knee injury and osteoarthritis outcome score physical function short form (KOOS-PS), knee outcome survey activities of daily living scale (KOS-ADL), Lysholm knee scoring scale, Oxford knee score (OKS), western Ontario and McMaster universities osteoarthritis index (WOMAC), activity rating scale (ARS), and Tegner activity score (TAS). Arthritis Care Res (Hoboken) 2011;63:5208–28.
25. Behrens P, Bitter T, Kurz B, Russlites M. Matrix-associated autologous chondrocyte transplantation/implantation (MACT/MACI)–5-year follow-up. Knee 2006;13:194–202.
26. Bartlett W, Skinner JA, Gooding CR, et al. Autologous chondrocyte implantation versus matrix-induced autologous chondrocyte implantation for osteochondral defects of the knee: a prospective, randomised study. J Bone Joint Surg Br 2005;87:640–5.

27. Basad E, Ishaque B, Bachmann G, et al. Matrix-induced autologous chondrocyte implantation versus microfracture in the treatment of cartilage defects of the knee: a 2-year randomised study. Knee Surg Sports Traumatol Arthrose 2010;18:519–27.

28. Akgun I, Unlu MC, Erdal OA, et al. Matrix-induced autologous mesenchymal stem cell implantation versus matrix-induced autologous chondrocyte implantation in the treatment of chondral defects of the knee: a 2-year randomized study. Arch Orthop Trauma Surg 2015;135:251–63.

29. Korner D, Gonser CE, Dobele S, et al. Matrix-associated autologous chondrocyte implantation with autologous bone grafting of osteochondral lesions of the talus in adolescents: patient-reported outcomes with a median follow-up of 6 years. J Orthop Res 2021;1:243.

30. Niemeyer P, Steinwachs M, Erggelet C, et al. Autologous chondrocyte implantation for the treatment of retropatellar cartilage defects: clinical results referred to defect localisation. Arch Orthop Trauma Surg 2008;128:1223–31.

31. Nejadnik H, Hui JH, Feng Choong EP, et al. Autologous bone marrow-derived mesenchymal stem cells versus autologous chondrocyte implantation: an observational cohort study. Am J Sports Med 2010;38:1110–6.

32. Nawaz SZ, Bentley G, Briggs TW, et al. Autologous chondrocyte implantation in the knee: mid-term to long-term results. J Bone Joint Surg Am 2014;96:824–30.

33. Hoburg A, Loer I, Korsmeier K, et al. Matrix-associated autologous chondrocyte implantation is an effective treatment at midterm follow-up in adolescents and young adults. Orthop J Sports Med 2019;7:232596711984107.

34. Kwan H, Chisari E, Khan WS. Cell-free scaffolds as a monotherapy for focal chondral knee defects. Materials (Basel) 2020;13:306.

35. Bekkers JE, Tsuchida AI, Malda J, et al. Quality of scaffold fixation in a human cadaver knee model. Osteoarthritis Cartilage 2010;18:266–72.

36. Benthen JP, Behrens P. Autologous matrix-induced Chondrogenesis (AMIC): combining microfracturing and a collagen I/III matrix for articular cartilage resurfacing. Cartilage 2010;1:65–8.

37. Hindle P, Hall AC, Biant LC. Viability of chondrocytes seeded onto a collagen I/III membrane for matrix-induced autologous chondrocyte implantation. J Orthop Res 2014;32:1495–502.

38. Gigante A, Bevilacqua C, Ricevuto A, et al. Membrane-seeded autologous chondrocytes: cell viability and characterization at surgery. Knee Surg Sports Traumatol Arthrose 2007;15:88–92.

39. Cappuccio JA, Blanchette CD, Sulchek TA, et al. Cell-free co-expression of functional membrane proteins and apolipoprotein, forming soluble nanolipoprotein particles. Mol Cell Proteomics 2008;7:2246–53.

40. Gao L, Orth P, Cucchiariini M, Madry H. Autologous matrix-induced Chondrogenesis: a systematic review of the clinical evidence. Am J Sports Med 2019;47:222–31.

41. Gotze C, Nieder C, Felder H, Migliorini F. AMIC for focal osteochondral defect of the Talar shoulder. Life (Basel) 2020;10:328.

42. Migliorini F, Eschweiler J, Maffulli N, et al. Autologous matrix induced Chondrogenesis (AMIC) compared to microfractures for chondral defects of the Talar shoulder: a five-year follow-up prospective cohort study. Life (Basel) 2021;11:244.

43. Gotze C, Nieder C, Felder H, et al. AMIC for traumatic focal osteochondral defect of the talar shoulder: a 5 years follow-up prospective cohort study. BMC Musculoskelet Disord 2021;22:638.

44. Dewan AK, Gibson MA, Elisseeff JH, Trice ME. Evolution of autologous chondrocyte repair and comparison to other cartilage repair techniques. Biomed Res Int 2014;2014:1–11.

45. Gille J, Schuseil E, Wimmer J, et al. Mid-term results of autologous matrix-induced Chondrogenesis for treatment of focal cartilage defects in the knee. Knee Surg Sports Traumatol Arthrose 2010;18:1456–64.

46. Kusano T, Jakob RP, Gautier E, et al. Treatment of isolated chondral and osteochondral defects in the knee by autologous matrix-induced Chondrogenesis (AMIC). Knee Surg Sports Traumatol Arthrose 2012;20:2109–15.

47. de Girolamo L, Schonhuber H, Viganò M, et al. Autologous matrix-induced Chondrogenesis (AMIC) and AMIC enhanced by autologous concentrated bone marrow aspirate (BMAC) allow for stable clinical and functional improvements at up to 9 years follow-up: results from a randomized controlled study. J Clin Med 2019;8:392.

48. Migliorini F, Maffulli N, Baroncini A, et al. Matrix-induced autologous chondrocyte implantation versus autologous matrix-induced chondrogenesis for chondral defects of the talus: a systematic review. Br Med Bull 2021;138:144–54.
49. Migliorini F, Maffulli N, Schenker H, et al. Surgical Management of Focal Chondral Defects of the talus: a Bayesian network meta-analysis. *Am J Sports Med* 2021;036354652110296.

50. Migliorini F, Eschweiler J, Spiezia F, et al. Arthroscopy versus mini-arthrotomy approach for matrix-induced autologous chondrocyte implantation in the knee: a systematic review. *J Orthop Traumatol* 2021;22:23.

51. Migliorini F, Eschweiler J, Goetze C, et al. Membrane scaffolds for matrix-induced autologous chondrocyte implantation in the knee: a systematic review. *Br Med Bull* 2021;140:50–61.

52. Vilchez F, Lara J, Alvarez-Lozano E, et al. Knee chondral lesions treated with autologous chondrocyte transplantation in a tridimensional matrix: clinical evaluation at 1-year follow-up. *J Orthop Traumatol* 2009;10:173–7.

53. Bozkurt M, Asik MD, Gursoy S, et al. Autologous stem cell-derived chondrocyte implantation with bio-targeted microspheres for the treatment of osteochondral defects. *J Orthop Surg Res* 2019;14:394.

54. Becher C, Laute V, Fickert S, et al. Safety of three different product doses in autologous chondrocyte implantation: results of a prospective, randomised, controlled trial. *J Orthop Surg Res* 2017;12:71.

55. Ishihara K, Nakayama K, Akieda S, et al. Simultaneous regeneration of full-thickness cartilage and subchondral bone defects in vivo using a three-dimensional scaffold-free autologous construct derived from high-density bone marrow-derived mesenchymal stem cells. *J Orthop Surg Res* 2014;9:98.

56. Klangojhor J, Nimkingratana P, Settakorn J, et al. Hyaluronic production and chondrogenic properties of primary human chondrocyte on gelatin based hemostatic spongostan scaffold. *J Orthop Surg Res* 2012;7:40.

57. Jamil K, Chua KH, Joudi S, et al. Development of a cartilage composite utilizing porous tantalum, fibrin, and rabbit chondrocytes for treatment of cartilage defect. *J Orthop Surg Res* 2015;10:27.

58. Tomaszewski R,Wiktor I,Gap A. Enhancement of cartilage repair through the addition of growth plate chondrocytes in an immature skeleton animal model. *J Orthop Surg Res* 2019;14:260.

59. Delgado-Enciso I,Paz-Garcia J,Valtierra-Alvarez J, et al. A phase I-II controlled randomized trial using a promising novel cell-free formulation for articular cartilage regeneration as treatment of severe osteoarthritis of the knee. *Eur J Med Res* 2018;23:52.

60. Kon E,Gobbi A,Filardo G, et al. Arthroscopic second-generation autologous chondrocyte implantation compared with microfracture for chondral lesions of the knee: prospective nonrandomized study at 5 years. *Am J Sports Med* 2009;37:33–41.

61. Kon E,Filardo G,Condello V, et al. Second-generation autologous chondrocyte implantation: results in patients older than 40 years. *Am J Sports Med* 2011;39:1668–75.

62. Filardo G, Kon E, Andriolo L, et al. Clinical profiling in cartilage regeneration: prognostic factors for midterm results of matrix-assisted autologous chondrocyte transplantation. *Am J Sports Med* 2014;42:898–905.

63. Filardo G,Kon E,Di Martino A, et al. Arthroscopic second-generation autologous chondrocyte implantation: a prospective 7-year follow-up study. *Am J Sports Med* 2011;39:2153–60.

64. Anders S,Volz M,Frick H,Gellissen J. A randomized, controlled trial comparing autologous matrix-induced Chondrogenesis (AMIC(R)) to microfracture: analysis of 1- and 2-year follow-up data of 2 Centers. *Open Orthop J* 2013;7:133–43.

65. Astur DC,Lopes JC,Santos MA, et al. Surgical treatment of chondral knee defects using a collagen membrane - autologous matrix-induced chondrogenesis. *Rev Bras Ortop* 2018;53:733–9.

66. Britterg MB,Recker D,Ilegenfritz J, et al. Matrix-applied characterized autologous cultured chondrocytes versus microfracture: five-year follow-up of a prospective randomized trial. *Am J Sports Med* 2018;46:1343–51.

67. Chung JY,Lee DH,Kim TH, et al. Cartilage extracellular matrix biomembrane for the enhancement of microfractured defects. *Knee Surg Sports Traumatol Arthrosc* 2014;22:1249–59.

68. Cvetanovich GL,Riboh JC,Tilton AK,Cole BJ. Autologous chondrocyte implantation improves knee-specific functional outcomes and health-related quality of life in adolescent patients. *Am J Sports Med* 2017;45:70–6.

69. Ebert JR,Fallon M,Smith A, et al. Prospective clinical and radiologic evaluation of patellofemoral matrix-induced autologous chondrocyte implantation. *Am J Sports Med* 2015;43:1362–72.

70. Ebert JR,Fallon M,Wood DJ,Ranes GC. A prospective clinical and radiological evaluation at 5 years after arthroscopic matrix-induced autologous chondrocyte implantation. *Am J Sports Med* 2017;45:59–69.

71. Efeg T,Theisen C,Fuchs-Winkelmann S, et al. Cell-free collagen type I matrix for repair of cartilage defects-clinical and magnetic resonance imaging results. *Knee Surg Sports Traumatol Arthrosc* 2012;20:1915–22.

72. Enea D,Cecconi S,Calcagnio S, et al. Single-stage cartilage repair in the knee with microfracture covered with a
resorbable polymer-based matrix and autologous bone marrow concentrate. *Knee* 2013;20:562–9.

73. Enea D, Cecconi S, Calcagno S, et al. One-step cartilage repair in the knee: collagen-covered microfracture and autologous bone marrow concentrate. A pilot study. *Knee* 2015;22:30–5.

74. Ferruzzi A, Buda R, Faldini C, et al. Autologous chondrocyte implantation in the knee joint: open compared with arthroscopic technique. Comparison at a minimum follow-up of five years. *J Bone Joint Surg Am* 2008;90:90–101.

75. Gille J, Behrens P, Volpi P, et al. Outcome of autologous matrix induced Chondrogenesis (AMIC) in cartilage knee surgery: data of the AMIC registry. *Arch Orthop Trauma Surg* 2013;133:87–93.

76. Gobbi A, Kon E, Berruto M, et al. Patellofemoral full-thickness chondral defects treated with second-generation autologous chondrocyte implantation: results at 5 years’ follow-up. *Am J Sports Med* 2009;37:1083–92.

77. Gudas R, Maciulaitis J, Staskunas M, Smailys A. Clinical outcome after treatment of single and multiple cartilage defects by autologous matrix-induced chondrogenesis. *J Orthop Surg (Hong Kong)* 2019;27:230949901985101.

78. Lahner M, Ull C, Hagen M, et al. Cartilage surgery in overweight patients: clinical and MRI results after the autologous matrix-induced Chondrogenesis procedure. *Biomed Res Int* 2018;2018:1–6.

79. Lopez-Alcorocho JM, Aboli L, Guillen-Vicente I, et al. Cartilage defect treatment using high-density autologous chondrocyte implantation: two-year follow-up. *Cartilage* 2018;9:363–9.

80. Macmull S, Parratt MT, Bentley G, et al. Autologous chondrocyte implantation in the adolescent knee. *Am J Sports Med* 2011;39:1723–30.

81. Macmull S, Jaiswal PK, Bentley G, et al. The role of autologous chondrocyte implantation in the treatment of symptomatic chondromalacia patellae. *Int Orthop* 2012;36:1371–7.

82. Marlovits S, Aldrian S, Wondrasch B, et al. Clinical and radiological outcomes 5 years after matrix-induced autologous chondrocyte implantation in patients with symptomatic, traumatic chondral defects. *Am J Sports Med* 2012;40:2273–80.

83. Meyerkort D, Ebert JR, Ackland TR, et al. Matrix-induced autologous chondrocyte implantation (MACI) for chondral defects in the patellofemoral joint. *Knee Surg Sports Traumatol Arthrosc* 2014;22:2522–30.

84. Migliorini F, Eschweiler J, Maffulli N, et al. Autologous matrix-induced Chondrogenesis (AMIC) and microfractures for focal chondral defects of the knee: a medium-term comparative study. *Life (Basel)* 2021;11:183.

85. Migliorini F, Eschweiler J, Maffulli N, et al. Management of Patellar Chondral Defects with autologous matrix induced Chondrogenesis (AMIC) compared to microfractures: a four years follow-up clinical trial. *Life (Basel)* 2021;11:141.

86. Niemeyer P, Laute V, John T, et al. The effect of cell dose on the early magnetic resonance morphological outcomes of autologous cell implantation for articular cartilage defects in the knee: a randomized clinical trial. *Am J Sports Med* 2016;44:2005–14.

87. Niemeyer P, Laute V, Zinser W, et al. A prospective, randomized, open-label, Multicenter, phase III noninferiority trial to compare the clinical efficacy of matrix-associated autologous chondrocyte implantation with spheroid technology versus arthroscopic microfracture for cartilage defects of the knee. *Orhop J Sports Med* 2019;7:232596711985444.

88. Saris D, Price A, Widuchowski W, et al. Matrix-applied characterized autologous cultured chondrocytes versus microfracture: two-year follow-up of a prospective randomized trial. *Am J Sports Med* 2014;42:1384–94.

89. Schagemann J, Behrens P, Paech A, et al. Mid-term outcome of arthroscopic AMIC for the treatment of articular cartilage defects in the knee joint is equivalent to mini-open procedures. *Arch Orthop Trauma Surg* 2018;138:819–25.

90. Schiavone Panni A, Del Regno C, Mazzitelli G, et al. Good clinical results with autologous matrix-induced chondrogenesis (Amic) technique in large knee chondral defects. *Knee Surg Sports Traumatol Arthrosc* 2018;26:1130–6.

91. Schneider U, Rackwitz L, Andereya S, et al. A prospective multicenter study on the outcome of type I collagen hydrogel-based autologous chondrocyte implantation (CaReS) for the repair of articular cartilage defects in the knee. *Am J Sports Med* 2011;39:2558–65.

92. Schuttler KF, Gotschenberg A, Klasan A, et al. Cell-free cartilage repair in large defects of the knee: increased failure rate 5 years after implantation of a collagen type I scaffold. *Arch Orthop Trauma Surg* 2019;139:99–106.

93. Siebold R, Sueit F, Schmitt B, et al. Good clinical and MRI outcome after arthroscopic autologous chondrocyte implantation for cartilage repair in the knee. *Knee Surg Sports Traumatol Arthrosc* 2018;26:831–9.

94. Steinwachs M, Cavalcanti N, Mauvava Venkatesh Reddy S, et al. Arthroscopic and open treatment of cartilage lesions with BST-CAR格尔 scaffold and microfracture: a cohort study of consecutive patients. *Knee* 2019;26:174–84.
95. Volz M, Schaumberger J, Frick H, et al. A randomized controlled trial demonstrating sustained benefit of autologous matrix-induced Chondrogenesis over microfracture at five years. *Int Orthop* 2017;41:797–804.

96. Zeifang F, Oberle D, Nierhoff C, et al. Autologous chondrocyte implantation using the original periosteum-cover technique versus matrix-associated autologous chondrocyte implantation: a randomized clinical trial. *Am J Sports Med* 2010;38:924–33.