Abstract: Group theory, the ultimate theory for symmetry, is a powerful tool that has a direct impact on research in robotics, computer vision, computer graphics and medical image analysis. Symmetry is very important in chemistry research and group theory is the tool that is used to determine symmetry. Usually, it is not only the symmetry of molecule but also the symmetries of some local atoms, molecular orbitals, rotations and vibrations of bonds, etc. that are important. Harada-Norton group is an example of a sporadic simple group. There are 14 maximal subgroups of Harada-Norton group. Generators (also known as words) of 11 maximal subgroups are already known. The aim of this note is to give generators of the remaining 3 maximal subgroups, which is an open problem mentioned on A World-wide-web Atlas of Group Representations [1]. In this report we compute the generators of $A_6 \times A_6, D_8, 2^{3+2} \times (3 \times L_3(2))$ and $3^4 : 2.(A_4 \times A_4).4$. Moreover we also compute the generators for the Maximal subgroups of some linear groups.

Keywords: Harada-Norton group, maximal subgroup, generators, finite group, normalizer

1 Introduction

Group theory is important in organic chemistry in studying symmetry of molecules [2]. Usually, all the molecules are symmetric and rotations and vibrations of bonds are important [3]. For example, from the symmetries of molecular orbital wave functions one can figure out the information about the binding [4]. From the symmetries, we can explain the transition and change the bands [3, 4]. Symmetry elements and symmetric operations are important concepts in group theory and if we apply any operation on a molecule and the molecule remains unchanged we call it symmetry operation. That means, the molecule remains same after applying any symmetric operation [5–7]. When we apply symmetric operation on a molecule, the position of items and bounds get changes but the appearance of molecule remains unchanged [9]. With the help of group theory and using the symmetry of molecule, we can decide physical properties of molecule [10]. The symmetry of a molecule provides with the information of what energy levels the orbitals will be, what the orbitals symmetries are, what transitions can occur between energy levels, even bond order to name a few can be found, all without rigorous calculations. The fact that so many important physical aspects of molecules can be derived from symmetry is a very profound statement and this is what makes group theory so powerful [11]. The study of the maximal subgroups of sporadic simple groups began in the 1960s. Chang Choi [12, 13] found all the maximal subgroups of M_{24}. In literature, the maximal subgroups of HS and McL groups, HN and fisher groups Fi_{22} and Fi_{23} are known. The local and non-local subgroups of Fi_{22}, Fi_{23} and Fi_{24} are given in [16–18]. In 1979, R.A. Wilson discovered the maximal subgroups of Suzuki group [19] and Rudvís group [20]. In 1990, Steve Linton determined the maximal subgroups of Th, Fi_{24} and its automorphism groups. He completely discussed the maximal subgroups in [21, 22]. In 1999, R.A. Wilson constructed the maximal subgroups of B. Recently Wilson has updated the list of maximal subgroups of the Monster Group. There are still some undetermined cases. To date there are 44 maximal subgroups of Monster. Its standard generators are given in [1]. Fur-
ther, the sporadic groups can be classified into three generations. The first generation contains the Mathieu groups. The second generation contains Co_1, Co_2, Co_3, Suz, McI, HS and J_2. The third generation contains the remaining 8 groups: Fi_{22}, Fi_{23}, Fi_{24}, Th, HN, He and B. Finally, the Monster group itself is considered to be in this generation.

The concept of standard generators for sporadic simple groups was introduced by R. A. Wilson. He started a project known as an online version of Atlas, which would provide not only representations (matrix and permutation) but also words for the maximal subgroups of simple and almost simple groups. The words for the maximal subgroups of $M_{12}.2$, $M_{22}.2$, $HS.2$, $McL.2$, $J_2.2$, $Suz.2$, $He.2$, $Fi_{22}.2$, $HN.2$ and Fi_{24} are discussed by Simon in [23]. In 2001, John N. Bray worked on the maximal subgroups of sporadic simple groups of order less than 10^{16}. He presents a complete list by providing words for the maximal subgroups of 17 sporadic simple groups which includes M_{11}, M_{12}, J_1, M_{22}, J_2, J_3, Ru, $O’N$, Co_3, HS, McL, Suz, He, Fi_{22}, Co_2, M_{26}, M_{2} and Fi_{22}. Words for maximal subgroups of these groups are given on the world-wide-web. However, there are still some cases to be dealt with. We pursue the work initiated by R.A. Wilson of finding words for maximal subgroups of certain sporadic simple groups. Thus, the only cases on the list of the world-wide-web Atlas of finite group representations which need to be solved are HN, Fi_{23}, Co_1, B and M.

There are still some hard cases which must be solved in order to have a complete list. In this paper we provide words for the maximal subgroups of the Harada-Norton Group. Moreover, we provide words of some linear groups i.e., $L_2(8)$, $L_2(8) : 2$, $L_2(13)$, $L_2(13) : 2$, $L_2(16)$, $L_2(17)$, $L_2(17) : 2$, $L_3(19)$, $L_3(19) : 2$, $L_3(23)$, $L_3(29)$, $L_3(31)$, $L_3(3)$, $L_3(3) : 2$, $L_3(5)$. Ideally the words should be as short as possible. We use extensively GAP [26] and MAGMA [25] for group theoretic calculations.

Our notation follows [26]. In particular, $a^b = b^{-1}ab$ and $[a, b] = a^{-1}b^{-1}ab$.

2 Main Results

In this section we give generators for the maximal subgroups of Harada-Norton and some Linear Groups.

2.1 Harada-Norton Group

In modern algebra, more precisely in group theory, an example of a sporadic simple group is the Harada-Norton group denoted by HN having order $2^{14}.3^6.5^6.7.11.19 = 273030912000000 \cong 3 \times 10^{16}$. There are total 26 sporadic groups and Harada-Norton group is one of them founded in 1976 by Harada and in 1975 by Norton. By observing that the Harada-Norton group has a trivial Schur multiplier and has an order 2 outer automorphism group. Let the Higman-Sims group HS, then the Harada-Norton group has involution whose centralizer is of the form $2.HS.2$.

The prime 5 assumes an exceptional part in the group. For instance, it centralizes an element of order 5 in the Monster group (which is the manner by which Norton thought that it was), and thus acts normally on a vertex operator algebra over the field with 5 element [27]. This infers it follows up on a 133 dimensional algebra over F_5, with a commutative however nonassociative product, practically equivalent to the Griess algebra [28].

Conway and Norton proposed in their 1979 paper [29] that monstrous moonshine isn’t constrained to the monster, yet comparative wonders might be found for different groups. Larissa Queen [30] and others in this manner found that one can develop the extensions of numerous Hauptmoduln from simple combinations of dimensions of sporadic group. For HN, the pertinent McKay-Thompson series is $T_{5A}(r)$ where one can set the constant $a(0) = -6,

$$
\eta(5) = 5 \eta(5) - 6 = \left(\frac{\eta(r)}{\eta(5)} \right)^6 + 3 \left(\frac{\eta(5r)}{\eta(r)} \right)^6
$$

where $\eta(t)$ denotes Dedekind eta function.

The Harada-Norton group has been studied extensively in recent years and many papers are written on this group, here we mention a few [31–39]. Monomial modular representations and symmetric generation of the Harada-Norton group. The uniqueness of this group was proved in [32]. Ryba et al. [41] found matrix generators for this group and in [42] Norton and Wilson found all maximal subgroups of the Harada-Norton group in 1986. The following 14 are the maximal subgroups of Harada-Norton group.

1. A_{12}
2. $2.HS.2$
3. $U_3(8) : 3$
4. $2^{1+8}.(A_5 \times A_5).2$
5. $(D_{10} \times U_3(5)).2$
6. $5^{1+6}, 2^{1+4}, 5.4$
7. $2^6.U_4(2)$
8. $A_6 \times A_6, D_8$
9. $2^{3+2+6}.(3 \times L_2(2))$
10. $5^{2+1+2}.4.A_5$

References

[1] A
[2] 2.HS.2
[3] $U_3(8) : 3$
[4] $2^{1+8}.(A_5 \times A_5).2$
[5] $(D_{10} \times U_3(5)).2$
[6] $5^{1+6}, 2^{1+4}, 5.4$
[7] $2^6.U_4(2)$
[8] $A_6 \times A_6, D_8$
[9] $2^{3+2+6}.(3 \times L_2(2))$
[10] $5^{2+1+2}.4.A_5$
We want to work inside the subgroups as much as possible. It is an interesting problem to find the generators of a group. The Atlas of group representations contains the words for 11 maximal subgroups of HN except the 3 cases marked by asterisk. In this report we determine the generators for the above mentioned subgroups as words in the generators of HN. It is well known that if G is a simple group, M is the maximal subgroup of G and K is the minimal normal subgroup of M, then $M = N_G(K)$. The cases we have dealt with, occur as normalizers of elementary abelian groups and the required information is provided in [26]. Thus we see that $N(2B^3) = 2^{2+2+6}.(3 \times L_5(2))$ and $N(3^4) = 3^4 \times (A_6 \times A_6).4$. The normalizers were computed by the methods given in [23]. We have used GAP [24] and MAGMA [25] for computations.

2.1.1 Generators of $(A_6 \times A_6) : D_8$

We want to work inside the subgroups as much as possible. We see that $H = (A_6 \times A_6) : 2^2 \times A_{12} < HN$, so all we need is to construct H inside A_{12} and then find an involution inside HN which extends H to $(A_6 \times A_6) : D_8$. The details are as follows.

It is trivial to find $(A_6 \times A_6)$ inside A_{12}. Next we find an involution inside $N_{A_{12}}(A_6 \times A_6)$, which extends $(A_6 \times A_6)$ to $(A_6 \times A_6) : 2$. We find another involution which extends $(A_6 \times A_6) : 2$ to H. Now we want to use this working inside HN.

The standard generators of A_{12} inside HN can be constructed by observing that the 3A and 11A classes of A_{12} fuse to 3A and 11A classes of HN. After obtaining the standard generators of A_{12}, we lift A_{12} inside $HN = \langle a, b \rangle$, where a, b are as in [1]. As a final step, we find an involution inside $N_{HN}(2^2)$ which extends H to $(A_6 \times A_6) : D_8$. The computational details are given below.

First we download the standard generators of A_{12} from Atlas given by c, d. Then we find the Centralizer of A_6 inside A_{12}. We now give the details of computing the centralizer of A_6 inside A_{12}, for that first we consider the standard generators of A_6 given in Atlas c, d next we convert the c and d in terms of standard generators of A_{12} which is given by

\[
x_1 = c \\
x_2 = d^{-1}cd^2cd^3c
\]

Here x_1, x_2 are generators of A_6 inside A_{12}, now we find the centralizer of A_6 inside A_{12} which includes the following computations given by

\[
b_6 = (cd^4cd^2cd)^5c(cd^3cd^2cd)^5 \\
i_1 = b_2 \\
c_3 = x_2 \\
e_3 = (i_1x_2^3i_1x_2^3)^2x_2i_1x_2^3i_1x_2^3i_1 \\
u_1 = b_6 \\
u_9 = c_3e_3 \\
u_{16} = u_1u_9
\]

Here u_{16} and u_6 are generators of centralizer of A_6 inside A_{12}. Then the generators of A_6 plus the generators of Centralizer of A_6 inside A_{12} gives us $A_6 \times A_6$ given by

\[
v_1 = u_1u_9x_2 \\
v_2 = x_2u_6x_1
\]

Here v_1, v_2 are generators of $A_6 \times A_6$.

Now we find the normalizer of $A_6 \times A_6$ inside A_{12}. This normalizer contain an involution given by

\[
v_3 = (c^3d^{11}c^3d^2c^1)^{15}
\]

which extends the group $A_6 \times A_6$ to $A_6 \times A_6 : 2$. Similarly in the same way we can find the normalizer of $A_6 \times A_6 : 2$ inside A_{12} and this normalizer contains an involution given by

\[
v_4 = (c^3d^{10}c^2d^3c^3)^{15}
\]

which extends $A_6 \times A_6 : 2$ inside $A_6 \times A_6 : 2^2$. Here all the calculations are inside A_{12} and $A_6 \times A_6 : 2^2$ is the maximal subgroup of A_{12} and it is not possible to extend $A_6 \times A_6 : 2^2$ to $A_6 \times A_6 : D_8$ so our next target is to uplift the whole structure inside HN. Before uplifting we have to calculate the standard generators of A_{12} inside HN. The generators of A_{12} inside HN are given in [1], now we use these generators to find the standard generators of A_{12} inside HN. The words for the generators of A_{12} are given by c and d. Before this we will give some random elements.

\[
a_1 = (cd)^2 \\
a_2 = cd \\
a_3 = a_1^{a_1}a_1a_1a_2, a_2a_1a_1a_1 \\
a_4 = a_1^2
\]

with the help of a power maps search inside the 3A and 11A classes, we found the standard generators of A_{12} are given by

\[
x = a_4^2
\]
We find the normalizer of 1512 involution inside A_{12}. After lifting $A_6 \times A_6 : 2^2$ inside HN we just need one more involution which gives us the required subgroup. It is not an easy task to find the last involution inside HN by random searching. So first here we find the normalizer of $A_6 \times A_6 : 2^2$ inside HN, then searching an involution inside this normalizer such that this involution extends $A_6 \times A_6 : 2^2$ to $(A_6 \times A_6) : D_8$ and combining this involution with w_3, w_4 will give us D_8. The words for the normalizer of $A_6 \times A_6 : 2^2$ inside HN are given below.

\[w_8 = (w_4^2 b (w_1 b w_4^2 a)^2 (w_4^2 b)^2 (w_3)^2 \]
\[w_9 = w_4 w_5 b (w_3 a)^3 w_2 b^3 w_2 b^2 \]
\[w_{10} = a (b a^{-1}) (b a)^2 b^3 (w_4 b^2)^2 \]
\[w_{11} = w_4 a^3 b^3 a^4 (w_3 b^2)^2 (w_4 b^2)^2 \]
\[w_{12} = w_7 w_2 b^2 a^2 (w_6 a)^3 b^2 a (w_3)^2 a^2 \]
\[w_{13} = (a^2 b)^2 b^5 w_3 (w_1)^2 (w_4)^3 w_3 b^{-1} \]
\[w_{14} = a^{-1} w_4 (a (w_3)^2 b (w_1)^2 b^2 w_3 a^{-1} b)^3 \]
\[w_{15} = a^{-1} (b a^2 b)^2 w_6 w_3 a^4 (a^2 b)^2 \]
\[w_{16} = a^2 b (b^2 a)^2 w_6 b^2 a^3 (w_3 b^3)^2 \]
\[w_{17} = a^3 b a^6 (w_3 b^2)^2 (w_4 b^2 a^2)^2 \]
\[w_{18} = w_4^2 (w_3 b)^2 w_3 (w_1 b^2 a)^2 (w_2 b)^2 \]
\[w_{19} = b w_2 b^2 a b^2 a^6 (w_6 a b^2)^2 w_3 a^3 b^3 \]
\[w_{20} = a^6 (a w_2 b^2)^2 (w_4 b^2 a)^2 w_7 w_3^2 \]
\[w_{21} = b^2 a^2 w_6 b^2 b^2 a (w_4 b^2)^2 \]
\[w_{22} = a b^5 w_3 w_1^2 w_4 w_5 b^{-1} (w_3 a)^3 \]
\[w_{23} = w_3 b^3 w_5 b^2 a b^{-1} b_3 a^2 \]
\[w_{24} = (w_4 b^2)^2 w_3 a b b^6 a (w_3 b)^2 b^2 \]
\[w_{25} = (b a^2)^2 w_7 (w_3)^2 b^2 b^2 (w_6 a)^6 b^2 \]
\[w_{26} = a b w_2 a^2 (w_2 b)^2 a b^5 w_3 (w_1)^2 \]
\[w_{27} = w_4 w_5 b^{-1} \]
\[y_1 = (w_2 a)^2 w_2 b^3 b^2 a (w_3 b)^2 w_6 \]
\[y_2 = b (w_2 a)^3 b w_6 a b^3 b^2 w_3 a b^{-1} b \]
\[w_{28} = ((w_3 b)^2 a)^3 w_2 b^3 w_1 b^3 w_3 a^{-1} y y_1 \]
\[w_{29} = (w_3 a)^3 a^3 b w_7 b a b (b a^{-1})^2 \]
\[w_{30} = w_4 (w_3 b)^2 a b w_2 b^3 w_2 a (w_3 a)^2 \]
\[w_{31} = a^2 b (b a^{-1}) (b a)^2 \]
\[w_{32} = a^2 b (b a b)^2 w_2 b^2 a^3 (w_3 b a)^2 \]
\[w_{33} = (w_4 b)^3 a^{-1} b (w_3 b a)^2 b w_2 b (b a^2)^2 \]
\[w_{34} = (w_3 b)^3 a^{-1} b a b^3 a (w_4 b)^2 \]
\[w_{35} = (w_3 b a)^2 b a (w_3 b a)^2 \]
\[w_{36} = w_3 b^2 a^2 (w_6 a)^6 b^2 a (w_3 a)^2 \]
\[w_{37} = a^{-1} (b a^2 b)^2 a b^5 w_3 (w_4 b)^3 \]
\[w_{38} = (w_5 b)^2 w_5 b a^3 (w_4 b)^2 \]
\[w_{39} = b^3 a^6 (a w_2 b^2)^2 (b a^2)^2 w_7 \]
\[w_{40} = (w_3 b a)^2 b^2 (w_4 b)^2 a (w_3 a)^2 \]
\[w_{41} = (a b a)^2 \]
\[w_{42} = (w_3 b)^2 a b^5 w_3 (w_4 b)^3 (w_3 a)^2 b a \]
\[w_{43} = \]
\[w_{44} = (w_3 a)^2 a b w_2 b^3 w_2 w_3 a b^{-1} b a^{-1} w_4 \]
\[y_3 = w_8 w_9 w_{10} w_{11} w_{12} w_{13} w_{14} w_{15} w_{16} w_{17} \]
\[y_4 = w_{18} w_{19} w_{20} w_{21} w_{22} w_{23} w_{24} w_{25} w_{26} w_{27} w_{28} w_{29} \]
\[y_5 = w_{30} w_{31} w_{32} w_{33} w_{34} w_{35} w_{36} w_{37} w_{38} w_{39} w_{40} w_{41} \]
\[y_6 = w_{42} w_{43} w_{44} \]
\[y_7 = y_3 y_4 y_5 y_6 \]

The words for $(A_6 \times A_6) : D_8$ are f_1, f_2 and y_7 and these three generators can be converted into the two generators given below.

\[f_1 y_7, f_2 y_7 \]

We use an orbit shape to search for a conjugate of the subgroup we just found to reduce the word length of the
generators. Thus we have

\[(A_6 \times A_6) : D_8 = \langle a, d \rangle,\]

where \(d = ((ab)^2a^2(ba)^6(ab)^6a((ba)^3)^9)^5\).

2.1.2 Generators of \(2^{3+2+6}.(3 \times L_3(2))\)

Here our required subgroup is the \(N_{HN}(2B^3)\) [26]. From [42] we know that there are two classes of \(2B\)-pure subgroups inside \(HN\). The first class is generated by the center and any other \(2B\)-involutions such that these two involutions are taken from the extra special group \(2^{1+8}\) inside the centralizer of \(2B\)-involutions [42].

The group \(2^{1+8}\) can be constructed by finding the centralizer of a \(2B\) element. Then inside this centralizer, search for elements of order 4, 8, 12, 16, 24 or 32. Then power up these elements to obtain involutions which generate \(2^{1+8}\). Now searching inside \(2^{1+8}\), one can easily find a \(2B^3\). The details of computing the \(2B^3\) are given below:

The element of \(2B\) is given by \(a_1 = ((ba)^6b(ba)^3b(ba)^6b^2ab^2)^6\). The generators of centralizer of \(a_1\) inside \(HN\) are given by: \(b_1 = [a_1, a]\)

\[b_2 = [a_1, b]^{10}\]

\[b_3 = ab[a_1, ab]^5\]

\[b_4 = (ab^2aba) \left[a_1, ab^2aba \right] \]

\[b_5 = ab^2(ab)^3 \left[a_1, ab^2(ab)^3a \right]^{12}\]

\[b_6 = \left(b \ (ab)^2 \ (ab)^2 \ bab^2ab \right) \left[a_1, b \ (ab)^2 \ (ab)^2 \ bab^2ab \right]^7\]

Thus generators of \(2B^3\) are \(b_7 = b_6^{10}\), \(b_8 = (b_1b_2b_3)^8\) and \(b_9 = (b_1b_2b_3)^6\). The generators for normalizer of \(2B^3\) inside \(HN\) are given below.

\[c_1 = (ab)^2 \left[b_{29}, (ab)^2 \right]^7\]

\[c_2 = \left[b_{29}, (ab)^2a \right]^7\]

\[d_1 = [b_{36}, a]^2\]

\[d_2 = [b_{36}, b]^{11}\]

\[d_3 = (ab) \left[b_{34}, ab \right]^7\]

The generators for \(2^{3+2+6}.(3 \times L_3(2))\) are:

\[k_1 = (c_6c_3)^6c_2^2c_6c_2^2\]

\[k_2 = (d_1d_3)^3 \left(d_1d_3 \right)^2.\]

is in the following chain of subgroups.

\[3^4 < 3^{1+4} : 4A_5 < HN.\]

The generators for \(3^{1+4} : 4A_5\) which were copied from [1] are given below.

\[c_1 = (ab)^9 \left((ab)^3b \right)^{10} (ab)^9\]

\[d_1 = (ab)^{10}b(ab)^8\]

Now we give some random elements of \(3^{1+4} : 4A_5\).

\[e_2 = (c_1d_1)^2 \ d_1c_1d_1\]

\[b_1 = c_1e_2c_1e_3^2(c_1e_7)^2c_1e_7^1\]

\[b_2 = c_1e_2c_1e_3^4c_1e_7^2 \ \left(c_1e_2^4 \right)^2\]

\[b_3 = c_1e_2c_1e_3^2c_1e_7 c_1e_3^3\]

\[b_4 = c_1e_2c_1e_3^2c_1e_7^1c_1e_3^3c_1e_3^2\]

The generators of \(3^4\) are \(b_1, b_2, b_3\) and \(b_5\). Before computing the normalizer we give some random elements of \(3^{1+4} : 4A_5\).

\[c_2 = c_1d_1\]

\[c_3 = ab_1\]

\[k_3 = (ac_3)^4c_3^4ac_3^4\]

\[c_4 = bb_1\]

\[c_5 = b_1c_4\]

\[k_4 = (b_1c_3^2b_1c_6^2)^2b_1c_5\]

\[c_6 = k_3k_4\]

\[k_1 = (c_1c_2)^5\]

\[k_2 = c_1c_2c_1c_2^2c_1c_2^2c_1c_2^2c_1c_2^2\]

\[k_5 = (k_3c_6)^6c_6k_3c_6\]

The generators of the normalizer of \(3^4\) inside \(HN\) are given below.

\[k_1 = (c_1c_2)^5\]

\[k_2 = c_1c_2c_1c_2^2c_1c_2^2c_1c_2^2c_1c_2^4\]

\[k_5 = (k_3c_6)^6c_6k_3c_6\]

Thus it turns out that \(3^4 : 2.(A_4 \times A_4).4 = \langle k_2, k_1k_5 \rangle.\)

The orbit shapes and order of the above subgroups of \(HN\) are given below.

2.1.3 Generators of \(3^4 : 2.(A_4 \times A_4).4\)

Following [26], we see that the required subgroup is the normalizer of \(3^4\) inside \(HN\). It turns out that \(3^4\) we seek
2.2 Linear Groups

In this section we provide words for the maximal subgroups of $L_2(8)$, $L_2(8) : 2$, $L_2(13)$, $L_2(13) : 2$, $L_2(16)$, $L_2(17)$, $L_2(17) : 2$, $L_2(19)$, $L_2(19) : 2$, $L_2(23)$, $L_2(29)$, $L_2(31)$, $L_3(3)$, $L_3(3) : 2$, $L_5(5)$ ideally the words should be as short as possible.

Most often, the subgroups have been generated by two elements by using random searching in [44]. This method is quite successful if one of the short words is a and is in a very small conjugacy class. One can then search by generating subgroups using those short words. The generators for the maximal subgroup $2^3 : 7$ of $L_2(8)$, $9 : 6$ and $L_2(8)$ of the group $L_2(8)$: 2, D_{14} of the group $L_2(13)$, D_{28} of the group $L_2(13) : 2$, D_{32} and D_{16} of the group $L_2(17)$: 2, D_{20} of the group $L_2(19)$, D_{16} and $19 : 18$ of the group $L_2(19) : 2$, D_{24} of the group $L_2(23)$, A_5 of the group $L_2(29)$, D_{30}, D_{32} and S_4 of the group $L_2(31)$, $3^2 : 2S_4$ of the group $L_3(3)$ are computed by random searching. There are still some hard cases in which this method is not of much use.

The next method depends on the information given in Atlas of Finite Simple Groups [26]. Following Atlas, the maximal subgroup $31 : 15$ of $L_2(31)$ is computed by taking the normalizer of $31A B$ i.e., $N(31AB) = 31 : 15$. Similarly $N(2A) = D_{12}$ and $N(3A) = D_{30}$. The normalizer here is computed by the methods given in [43] and the programmes given by simon [23] with a little change in them.

Table 1: Maximal subgroups of $L_2(8)$.

SubGroups	1st generator	2nd generator
D_{18}	$b^4(ab)^{-1}(ab)^{-1}aba$	$(ba)^2(b^3a)^2b^{-1}a$
D_{16}	ab	$(ba^{-1}ab)^{-1}aba$
$2^3 : 7$	a	$(ab(ab)^{-1})^2a$

Following Atlas, the subgroup D_{18} is the normalizer of $3A$. i.e., $D_{18} = N(3A)$. Similarly $D_{14} = N(7ABC)$ and $3^3 : 7 = N(2A^2)$.

The subgroups $9 : 6$, $7 : 6$ and $L_2(8)$ were computed by random searching, while $2^3 : 7$ is computed by the information given in Atlas [34], i.e., $3^3 : 7 : 3 = N(2A^2)$.

Following Atlas, $D_{14} = N(7ABC)$, $D_{12} = N(2A)$, $A_6 = N(2A^2)$ and $13 : 6 = N(13AB)$.

Table 2: Maximal subgroups of $L_2(8) : 2$.

SubGroups	1st generator	2nd generator
D_{14}	a	$(ab)^2b$
D_{12}	$(bab^{-1})^2(ba)^2$	$(ab)^{-1}aba$
A_{12}	$(bab^{-1})^2(ba)^2$	$(b^{-1}abab^{-1})^2a$
$13 : 6$	ab	$b(ab)^{-1}aba$

The maximal subgroup D_{28} is computed by random searching, while the remaining four were constructed by the information given in Atlas $D_{28} = C(2B)$, $D_{24} = N(3A)$ and $S_4 = N(2A^2)$.

Table 3: Maximal subgroups of $L_2(13)$.

SubGroups	1st generator	2nd generator
S_4	ba	$(ba)^3(b^{-1}a)^{-1}b$
D_{28}	a	$(ab)^{-1}aba$
D_{26}	$b^{-1}a(bab^{-1}ab)^{-2}ab^2a$	$(bab^{-1})^3(ab)^2a$
$L_{2}(13)$	bab^{-1}	$bab(ab)^{-1}(ab)^2b$

The maximal subgroup A_5 is computed by random searching, while the remaining maximal subgroups were constructed by the information given in Atlas $D_{34} = N(17A - H)$, $D_{30} = N(3A)$ and $2^4 : 15 = N(2A^4)$.

Table 4: Maximal subgroups of $L_2(16)$.

SubGroups	1st generator	2nd generator
D_{30}	ab	$(ab^{-1})(ab)^{-1}aba$
D_{34}	$abab^{-1}$	$(bab^{-1})^2bab^{-1}$
A_5	b	$(bab^{-1})^2bab^{-1}$
$2^4 : 15$	ab	$(bab^{-1})^4bab^{-1}$

Table 5: Maximal subgroups of $L_2(17)$.

SubGroups	1st generator	2nd generator
D_{18}	$(bab^{-1})^2bab^{-1}$	$(bab^{-1})^2b$
D_{16}	$(bab^{-1})^2(ba)^2$	$(ba^{-1})^2b^{-1}ab$
S_4	$(ab(ab)^{-1})^2ab$	$(ab(ab)^{-1})^2bab^{-1}$

The maximal subgroup A_5 is computed by random searching, while the remaining maximal subgroups were constructed by the information given in Atlas $D_{34} = N(17A - H)$, $D_{30} = N(3A)$ and $2^4 : 15 = N(2A^4)$.
The maximal subgroups were computed by the information given in Atlas, i.e., $17 : 8 = N(17AB)$, $S_4 = N(2A^2)$, $D_{18} = 3A$ and $D_{16} = N(2A)$.

Table 7: Maximal subgroups of $L_2(17) : 2$.

SubGroups	1st generator	2nd generator
D_{32}	a	$((ab)^h b)^a$
D_{36}	a	$((ba)^h b^{-1}a^2 b$
$L_2(17)$	b	$(abab)^3$
	$17 : 16$	$(ab)^6 ab^{-1} ab^{-1}$
		$(b^{-1})^3 (ba)^3 b^{-1} ab^{-1}$

The maximal subgroups D_{32}, $L_2 17$ and D_{36} were computed by random searching, while the subgroup $17 : 16$ is constructed by the information given in Atlas i.e., $17 : 16 = N(17AB)$.

Table 8: Maximal subgroups of $L_2(19)$.

SubGroups	1st generator	2nd generator
$19 : 9$	ab	$baba^{-1}(ab)^2 (abab)^{-1} (ab^{-1})^2$
D_{20}	a	$(ab)^{-1} (ab)^3 ab^{-1}$
D_{18}	$abab^{-1}$	$(abab)^{-1} a$
A_5	b	$b(abab)^{-1} (ab)^3 ab^{-1}$

Following Atlas, $19 : 9 = N(19AB)$, $A_5 = N(2A, 3A, 5AB)$, $D_{20} = N(2A)$ and $D_{18} = N(3A)$.

Table 9: Maximal subgroups of $L_2(19) : 2$.

SubGroups	1st generator	2nd generator
$L_2(19)$	b	$(ab)^2$
D_{40}	ab	$(ab)(ab^{-1})^2 (ab^{-1})^2 ab^{-1} (ab)^2 a$
D_{16}	a	$(ab)^2 (b^{-1})^2 (abab)^{-1} aba$
S_4	b	$b^{-1} ab^{-1} (ab^{-1} b)^3 (ab)^3$
	$19 : 18$	$(ab^{-1} (ab)^2) a baba$

The maximal subgroups $L_2(19)$, D_{36}, S_4 and $19 : 18$ were computed by random searching, while the subgroup D_{40} is constructed by the information given in Atlas i.e., $D_{40} = N(5AB)$.

Table 10: Maximal subgroups of $L_2 (23)$.

SubGroups	1st generator	2nd generator
$23 : 11$	ab	$baba^{-1} (abab)^{-1} (ab)^2 (ab)^2 a$
D_{24}	a	$(ab)^{-1} a baba^{-1}$
S_4	$(ba)^3 (b^{-1} a)^2 (abab)^{-1} (ba)^{-1} a$	
D_{22}	$(ab)^2 (abab)^{-1} (b^{-1} a)^2 (baba)^3 (ab)^{-1} a$	

The maximal subgroups D_{22}, D_{24}, S_4 and $23 : 11$ was constructed by the information given in Atlas i.e., $D_{22} = C(2B)$, $D_{24} = N(2A)$, $S_4 = N(2A^2)$ and $23 : 11 = N(23AB)$.

Table 11: Maximal subgroups of $L_2 (29)$.

SubGroups	1st generator	2nd generator
$29 : 14$	ab	$(ba)^2 (b^{-1} a)^2 (ba)^2 (abab)^{-1} (ab)^2 a$
D_{28}	$(ba)^2 (b^{-1} a)^2 (ba)^2 (abab)^{-1} (ab)^2$	
D_{30}	$((ab)^2 (ab^{-1})^2)^2 a$	
A_5	a	$b^{-1} ab^{-1} (ab)^{-1} ab^{-1} (ab)^2$

The maximal subgroup A_5 is computed by random searching, while the subgroups D_{28}, D_{30} and $29 : 14$ were constructed by the information given in Atlas i.e., $D_{28} = N(2A)$, $D_{30} = N(3A)$ and $29 : 14 = N(29AB)$.

Table 12: Maximal subgroups of $L_2 (31)$.

SubGroups	1st generator	2nd generator
$31 : 15$	ab	$ab^{-1} ab (ab)^{-1} (ab)^{-1} (ab)^2$
D_{30}	a	bab^{-1}
D_{32}	a	$b^{-1} (abab)^{-1} a (ab)^{-1} a baba$
A_5	b	$b^{-1} (abab)^{-1} a (ab)^{-1} a baba$
S_4	a	$b^{-1} (abab)^{-1} a (ab)^{-1} a baba$

The maximal subgroups D_{30}, D_{32} and S_4 were computed by random searching, while the subgroup A_5, and $31 : 15$ were constructed by the information given in Atlas i.e., $A_5 = N(2A, 3A, 5AB)$, and $31 : 15 = N(31AB)$.

Table 13: Maximal subgroups of $L_3 (3)$.

SubGroups	1st generator	2nd generator
$3^2 : 2S_4$	a	$(ab)^2$
S_6	$abab^{-1} (abab)^{-1} a (abab)^{-1} (ab)^{-1} a$	
	$13 : 3$	ab
		$(ba)^2 (b^{-1} a)^2 (ab)^{-1} a baba$

The maximal subgroups $3^2 : 2S_4$, S_6 and $13 : 3$ were constructed by the information given in Atlas i.e., $3^2 : 2S_4 = N(3A^2)$, $S_6 = N(2A^2)$ and $13 : 3 = N(13ABCD)$.

Table 14: Maximal subgroups of $L_3 (3) : 2$.

SubGroups	1st generator	2nd generator
$L_3 (3)$	$(b^{-1} a b a)^2$	$(ab)^2 (ab)^{-1} (abab)^{-1} (ab)^{-1} a$
$S_4 : 2$	$(b^{-1} a b a)^2 (b^{-1} a b a)^2 (abab)^{-1} a$	
$2S_{1,2}$	$(ab)^3 a b^2 (abab)^{-1} a baba$	
$3^2 : 2S_4$	$a (abab)^{-1} a baba$	
D_8	$(ab)^2 (b^{-1} a b a)^2 (ab)^{-1} a baba$	
$13 : 6$	$(ab)^3 a (ab)^{-1} a baba$	
	$(ab)^2 (b^{-1} a b a)^2 (ab)^{-1} a baba$	
The maximal subgroups $L_3(3)$, $2S_4$, $3^{1+2}.D_8$ and $13 : 6$ were constructed by random searching, while the subgroup $S_4 : 2$ is constructed by the information given in Atlas i.e., $S_4 : 2 = C(2B)$.

Table 15: Maximal subgroups of $L_3(5)$.

SubGroups	1st generator	2nd generator
$5^2 : GL_2(5)$	$(ab)^2(a(ab))^5$	$(ab)^3((ba)^2b)(ba)^3((ba)^3b)^5$
S_5	$bab(ba)^7a$	$b^{-1}aba^{-1}b^{-1}a^{-1}(bab)^2(ab^{-1})^2b^{-3}a$
$4^2 : S_3$	$(ab)^2a(a(ab)^5$	$(ab)^3((ba)^2b)(ba)^3((ba)^3b)^5$
S_5	$(ab)^2a(ab)^5$	$(ab)^3((ba)^2b)(ba)^3((ba)^3b)^5$

The maximal subgroups $5^2 : GL_2(5)$, S_5, and $4^2 : S_3$ were constructed by the information given in Atlas i.e., $5^2 : GL_2(5) = N(5A^2)$, $S_5 = N(2A, 3A, 5AB)$, and $4^2 : S_3 = N(2A^2)$.

3 Conclusions

Mathematical tools help to solve many problems arising in chemistry and other areas of sciences [45–60], for example, graph theory help us to know about structural and physico-chemical properties of chemical compounds without using wet labs [50–54]. The finite groups are helpful in studying symmetry of molecules because almost all organic and inorganic compounds are symmetric about its center [56–60]. Our aim is to study some finite groups of higher order and find their words. In this paper we provide generators for the maximal subgroups of Harada-Norton and some linear groups. In the world-wide-web Atlas of Group Representations [1], there is only one copy of S_5 in the list of maximal subgroups of $L_3(5)$, but here we provide generators for two non-conjugate copies of S_5.

Data Availability Statement: All data required for this research is available in this paper.

Ethical approval: The conducted research is not related to either human or animal use.

Author Contribution: All authors contribute equally in this paper.

Funding Statement: The work was supported in part by Funding: This research was funded by the natural science research key project from Education Department of Anhui Province (Grant No. KJ2017A492), youth research special fund project of Anhui Jianzhu University (Grant No.2011183-8).

Acknowledgements: We are thankful to the reviewers for positive suggestions that improve the quality of this paper. The third author would like to thank Prof. R. A. Wilson for teaching him everything written in this paper while he was his student.

Competing Interest: The authors do not have any competing interests.

References

[1] Wilson R.A., Nickerson S.J., Bray J.N., A World-wide-web Atlas of Group Representations, http://brauer.maths.qmul.ac.uk/Atlas.
[2] Chatfield D., Christopher J. Cramer: Essentials of Computational Chemistry: Theories and Models. Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta), 2002, 108(6), 367-368.
[3] Cotton F.A., Chemical applications of group theory. John Wiley & Sons, 2003.
[4] Balasubramanian K., Applications of combinatorics and graph theory to spectroscopy and quantum chemistry. Chemical Reviews, 1985, 85(6), 599-618.
[5] Chen C., Wu Y., Li R., The anionic group theory of the non-linear optical effect and its applications in the development of high-quality NLO crystals in the borate series. International Reviews in Physical Chemistry, 1989, 8(1), 65-91.
[6] O’Keeffe M., Peskov M.A., Ramsden S.J., Yaghi O.M., The reticular chemistry structure resource (RCSR) database of, and symbols for, crystal nets. Accounts of chemical research, 2008, 41(12), 1782-1789.
[7] Heine V., Group theory in quantum mechanics: an introduction to its present usage. Courier Corporation, 2007.
[8] Pietro W.J., Levi B.A., Hehre W.J., Stewart R.F., Molecular orbital theory of the properties of inorganic and organometallic compounds. 1. STO-NG basis sets for third-row main-group elements. Inorganic Chemistry, 1980, 19(8), 2225-2229.
[9] Barnett M.P., Capitani J.F., von zur Gathen J., Gerhard J., Symbolic calculation in chemistry: selected examples. International Journal of Quantum Chemistry, 2004, 100(2), 80-104.
[10] Barner L., Davis T.P., Stenzel M.H., Barner-Kowollik C., Complex macromolecular architectures by reversible addition fragmentation chain transfer chemistry: theory and practice. Macromolecular Rapid Communications, 2007, 28(5), 539-559.
[11] Dobos K.D., Hehre W.J., Molecular orbital theory of the properties of inorganic and organometallic compounds 4. Extended basis sets for third-and fourth-row, main-group elements. Journal of computational chemistry, 1986, 7(3), 359-378.
[12] Choi C., On Subgroups of M_{24}. I. Stabilizers of subsets, Trans. Amer. Math. Soc., 1972, 167, 1-27.
[13] Choi C., On Subgroups of M_{24}. II. The maximal subgroups of M_{24}, Trans. Amer. Math. Soc., 1972, 167, 29-47.
[58] Cleveland D., Cleveland J.H., Norloff P.L., Forsythe J.A., Collier, R.W., LC Technologies Inc, Method and apparatus for mirror control. U.S. Patent, 1992, 5,090,797.

[59] Manoharan V.N., Elsesser M.T., Pine D.J., Dense packing and symmetry in small clusters of microspheres, Science, 2003, 301(5632), 483-487.

[60] Hargittai M., Hargittai I., Symmetry through the Eyes of a Chemist, Springer Science & Business Media, 2009.