Existence of Solutions for a Singular Fractional q-Differential Equations under Riemann–Liouville Integral Boundary Condition

Mohammad Esmael Samei1,2, Rezvan Ghaffari1, Shao-Wen Yao3,*, Mohammed K. A. Kaabar4,5, Francisco Martínez6 and Mustafa Inc7,8

1 Department of Mathematics, Faculty of Basic Science, Bu-Ali Sina University, Hamedan 65178, Iran; mesamei@basu.ac.ir (M.E.S.); rghaffari68@yahoo.com (R.G.)
2 Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
3 School of Mathematics and Statistics, Henan Polytechnic University, Jiaozuo 454000, China
4 Department of Mathematics and Statistics, Washington State University, Pullman, WA 99163, USA; mohammed.kaabar@wsu.edu
5 Institute of Mathematical Sciences, University of Malaya, Kuala Lumpur 50603, Malaysia
6 Department of Applied Mathematics and Statistics, Technological University of Cartagena, 30203 Cartagena, Spain; f.martinez@upct.es
7 Department of Computer Engineering, Biruni University, Istanbul 34025, Turkey; minc@firlat.edu.tr
8 Department of Mathematics, Science Faculty, Firat University, Elazig 23119, Turkey
* Correspondence: yaoshaowen@hpu.edu.cn

Abstract: We investigate the existence of solutions for a system of m-singular sum fractional q-differential equations in this work under some integral boundary conditions in the sense of Caputo fractional q-derivatives. By means of a fixed point Arzelá–Ascoli theorem, the existence of positive solutions is obtained. By providing examples involving graphs, tables, and algorithms, our fundamental result about the endpoint is illustrated with some given computational results. In general, symmetry and q-difference equations have a common correlation between each other. In Lie algebra, q-deformations can be constructed with the help of the symmetry concept.

Keywords: Caputo q-derivative; singular sum fractional q-differential; fixed point; equations; Riemann–Liouville q-integral

MSC: 34A08; 34B16; 39A13

1. Introduction

There are many definitions of fractional derivatives that have been formulated according to two basic conceptions: one of a global (classical) nature and the other of a local nature. Under the first formulation, the fractional derivative is defined as an integral, Fourier, or Mellin transformation, which provides its non-local property with memory. The second conception is based on a local definition through certain incremental ratios. This global conception is associated with the appearance of the fractional calculus itself and dates back to the pioneering works of important mathematicians, such as Euler, Laplace, Lacroix, Fourier, Abel, and Liouville, until the establishment of the classical definitions of Riemann–Liouville and Caputo.

Until relatively recently, the study of these fractional integrals and derivatives was limited to a purely mathematical context; however, in recent decades, their applications in various fields of natural Sciences and technology, such as fluid mechanics, biology, physics, image processing, or entropy theory, have revealed the great potential of these fractional integrals and derivatives [1–9]. Furthermore, the study from the theoretical and practical point of view of the elements of fractional differential equations has become a focus for interested researchers [10–15].

https://www.mdpi.com/journal/symmetry
The q-difference equations (qDifEqs) were first proposed by Jackson in 1910 [16]. After that, qDifEqs were investigated in various studies [17–24]. On the contrary, integro-differential equations (InDifEqs) have been recently studied via various fractional derivatives and formulations based on the original idea of qDifEqs (see [25–32]). The concept of symmetry and q-difference equations are connected to each other while theoretically investigating the differential equation symmetries.

The solution existence and uniqueness for the fractional qDifEqs were investigated in 2012 by Ahmad et al. as:

\[D_q^α[u](t) = T(t, u(t)) + c_1 u(η_1), \]

where \(α ∈ (1, 2) \), \(α_i, β_i, γ_i, η_i \) are real numbers, for \(i = 1, 2 \) and \(T ∈ C(J × R, R) \). The q-integral problem was studied in 2013 by Zhao et al. as:

\[D_q^α[u](t) + f(t, u(t)) = 0, \]

with B.Cs: \(u(t) = μ \mathcal{I}_q^β[u](η) \) and \(u(0) = 0 \) almost \(\forall t ∈ (0, 1) \), where \(q ∈ (0, 1), α ∈ (1, 2) \), \(β ∈ (0, 2), η ∈ (0, 1), μ \) is positive real number, and \(D_q^α \) is the q-derivative of Riemann–Liouville (RL) and the real values continuous map \(u \) defined on \(I × [0, ∞) \). The problem:

\[c D_q^α(D_q^β + λ)[u](t) = pf(t, u(t)) + k \mathcal{I}_q^β[g](t, u(t)) \]

was investigated in 2014 by Ahmad et al. with B.Cs:

\[a_1 u(0) = β_1 (l^{1−γ} D_q^λ u(0)) \big|_{t=0} = c_1 u(η_1) \]

and

\[a_2 u(1) + β_2 D_q^α[u](1) = c_2 u(η_2), \]

where \(t, q ∈ [0, 1], c D_q^α \) is the Caputo fractional q-derivative (CpFqDr), \(0 < β, γ ≤ 1, \mathcal{I}_q^β(.) \) represents the RL integral with \(ξ ∈ (0, 1), f \) and \(g \) are given continuous functions, \(λ \) and \(p, k \) are real constants, \(a_i, β_i, c_i ∈ R \) and \(η_i ∈ (0, 1) \) for \(i = 1, 2 \). The solutions’ existence was studied in 2019 by Samei et al. for some multi-term q-integro-differential equations with non-separated and initial B.Cs ([23]).

Inspired by all previous works, we investigate in this work the positive solutions for the singular fractional q-differential equation (SFqDEqs) as follows:

\[c D_q^α[u](t) + h(t, u(t)) = 0, \]

with the B.Cs: \(u(0) = 0, cu(1) = \mathcal{I}_q^λ[u](1) \) and \(u''(0) = \cdots = u^{(n−1)}(0) = 0 \), where \(t ∈ J = (0, 1), \mathcal{I}_q^λ \) is the RL q-integral of order \(γ \) for the given function: \(u \), here \(q ∈ J, c ≥ 1, n = [α] + 1, α ≥ 3, γ ∈ [1, ∞), 2Γ_q(γ) ≥ Γ_q(α), h : (0, 1) × [0, ∞) → [0, ∞) \) is continuous, \(\lim_{t→0^+} h(t,.) = +∞ \) that is, \(h \) is singular at \(t = 0 \), and \(c D_q^α \) represents the CpFqDr of order \(α, q ∈ J \).

This work is divided into the following: some essential notions and basic results of q-calculus are reviewed in Section 2. Our original important results are stated in Section 3. In Section 4, illustrative numerical examples are provided to validate the applicability of our main results.

2. Essential Preliminaries

Assume that \(q ∈ (0, 1) \) and \(a ∈ R \). Define \([a]_q = \frac{1−q^a}{1−q} \) [16]. The power function:

\[(x − y)_q^n = \prod_{k=0}^{n−1} (x − yq^k) \]
for \(n \geq 1 \) and \((x - y)^{(0)}_q = 1\), where \(x \) and \(y \) are real numbers and \(\mathbb{N}_0 := \{0\} \cup \mathbb{N} \) ([17]). In addition, for \(\sigma \in \mathbb{R} \) and \(a \neq 0 \), we obtain:

\[
(x - y)^{(\sigma)}_q = x^\sigma \prod_{k=0}^{\infty} \frac{x - yq^k}{x - yq^{\sigma + k}}.
\]

If \(y = 0 \), then it is obvious that \(x^{(\sigma)}_q = x^\sigma \). The \(q \)-Gamma function is expressed by

\[
\Gamma_q(z) = \frac{(1-q)^{(z-1)}}{(1-q)z},
\]

where \(z \in \mathbb{R} \setminus \{0, -1, -2, \ldots\} \) ([16]). We know that \(\Gamma_q(z + 1) = [z]_q \Gamma_q(z) \). The value of the \(q \)-Gamma function, \(\Gamma_q(z) \), for input values \(q \) and \(z \) with counting the sentences’ number \(n \) in summation by simplification analysis. A pseudo-code is constructed for estimating \(q \)-Gamma function of order \(n \). The \(q \)-derivative of function \(w \) is expressed as:

\[
D_q[w](x) = \left(\frac{d}{dx} \right)_q w(x) = \frac{w(x) - w(qx)}{(1-q)x},
\]

and \(D_q[w](0) = \lim_{x \to 0} D_q[w](x) \) ([17]). In addition, the higher order \(q \)-derivative of a function \(w \) is defined by \(D_q^n[w](x) = D_q D_q^{n-1}[w](x) \) for all \(n \geq 1 \), where \(D_q^n[w](x) = w(x) \) ([17,18]). The \(q \)-integral of a function \(f \) defined on \([0,b]\) is expressed as:

\[
\mathcal{I}_q[w](x) = \int_0^x w(s) \, dq_s = x(1-q) \sum_{k=0}^{\infty} q^k w(xq^k),
\]

for \(0 \leq x \leq b \), provided that the series is absolutely convergent ([17,18]). If \(a \) in \([0,b]\), then we have:

\[
\int_a^b w(u) \, dq_u = \mathcal{I}_q[w](b) - \mathcal{I}_q[w](a) = (1-q) \sum_{k=0}^{\infty} q^k \left[bw(bq^k) - aw(aq^k) \right],
\]

if the series exists. The operator \(\mathcal{I}_q^n \) is given by \(\mathcal{I}_q^n[w](x) = w(x) \) and \(\mathcal{I}_q^n[w](x) = x_n \mathcal{I}_q^{n-1}[w](x) \) for \(n \geq 1 \) and \(q \in C([0,b]) \) ([17,18]). It is proven that \(D_q \mathcal{I}_q^n[w](x) = w(x) \) and \(\mathcal{I}_q D_q[w](x) = w(x) - w(0) \) whenever \(w \) is continuous at \(x = 0 \) ([17,18]). The fractional RL type \(q \)-integral of the function \(w \) on \(J \) for \(\sigma \geq 0 \) is defined by \(I_q^\sigma[w](t) = w(t) \), and

\[
\mathcal{I}_q^\sigma[w](t) = \frac{1}{\Gamma_q(\sigma)} \int_0^t (t - qs)^{(\sigma-1)} w(s) \, dq_s
\]

\[
= t^\sigma(1-q)^\sigma \sum_{k=0}^{\infty} q^k \prod_{i=1}^{k-1} \frac{1 - q^{\sigma+1}}{1 - q^{i+1}} w(tq^k),
\]

for \(t \in J \) and \(\sigma > 0 \) ([22,33]). In addition, the CpFqDr of a function \(w \) is expressed as:

\[
^c D_q^\rho[w](t) = \frac{1}{\Gamma_q(|\rho| - \sigma)} \int_0^t (t - qs)^{(|\rho| - \sigma - 1)} w(s) \, dq_s
\]

\[
\quad = \frac{1}{\rho^\sigma(1-q)^\sigma} \sum_{k=0}^{\infty} q^k \prod_{i=1}^{k-1} \frac{1 - q^{\rho+1}}{1 - q^{i+1}} w(tq^k),
\]

where \(t \in J \) and \(\sigma > 0 \) ([22]). It is proven that

\[
\mathcal{I}_q^\beta \left[\mathcal{I}_q^\rho[w](x) \right] = \mathcal{I}_q^{\rho+\beta}[w](x) \quad \text{and} \quad ^c D_q^\rho \left[\mathcal{I}_q^\sigma[w](x) \right] = w(x),
\]
where \(\sigma, \beta \geq 0 \) ([22]).

Some essential notions and lemmas are now presented as follows: In our work, \(L^1(\mathcal{J}) \) and \(C_\mathbb{K}(\mathcal{J}) \) are denoted by \(\mathcal{L} \) and \(\mathcal{B} \), respectively, where \(\mathcal{J} = \{0,1\} \).

Lemma 1 ([34]). If \(x \in \mathcal{B} \cap \mathcal{L} \) with \(\mathcal{D}_Q^n x \in \mathcal{B} \cap \mathcal{L} \), then

\[
\mathcal{T}_Q^n \mathcal{D}_Q^n x(t) = x(t) + \sum_{i=1}^{n} c_i t^{\sigma-i},
\]

where \(n \) is the smallest integer \(\geq a \), and \(c_i \) is some real number.

Here, we restate the well-known Arzelá–Ascoli theorem. Assume that \(S = \{s_n\}_{n \geq 1} \) is a sequence of bounded and equicontinuous real valued functions on \([a,b]\). Then, \(S \) has a uniformly convergent subsequence. We need the following fixed point theorem in our main result:

Lemma 2 ([35]). Assume that \(A \) is a Banach space, \(P \subseteq A \) is a cone, and \(O_1, O_2 \) are two bounded open balls of \(A \) centered at the origin with \(\overline{O}_1 \subset O_2 \). Assume that \(\Omega : P \cap (\overline{O}_2 \setminus O_1) \to P \) is a completely continuous operator such that either

\[
\| \Omega(a) \| \leq \| a \| \text{ for all } a \in P \cap \partial O_1 \text{ and } \| \Omega(a) \| \geq \| a \| \text{ for each } a \in P \cap \partial O_2 \text{ and } \| \Omega a \| \leq \| a \|
\]

for \(a \in P \cap \partial O_2 \). Then, \(\Omega \) has a fixed point in \(P \cap (O_2 \setminus O_1) \).

3. Main Results

Differential Equation

Let us now present our fundamental lemma as follows:

Lemma 3. The \(u_0 \) is a solution for the \(q \)-differential equation \(\mathcal{D}_Q^n [u](t) + g(t) = 0 \) with the B.C.s: \(u(0) = 0, cu(1) = \mathcal{T}_q u(1) \) and \(u''(0) = \cdots = u^{(n-1)}(0) = 0 \) if \(u_0 \) is a solution for the \(q \)-integral equation

\[
u(t) = \int_0^1 G_q(t,s) f(s) \, d_q s,
\]

where

\[
G_q(t,s) = \begin{cases}
\frac{-(t qs)^{(a-1)}}{\Gamma_q(\alpha)} & s \leq t,
\frac{t^2}{\Gamma_q(\alpha) \Gamma_q(\alpha + \gamma) [c \Gamma_q(\alpha + \gamma) - 2 \Gamma_q(\gamma) - \Gamma_q(\alpha + \gamma) - c \Gamma_q(\gamma)]} \left[a \Gamma_q(\alpha + \gamma) (1 - qs)^{(a-1)} - \Gamma_q(\alpha) (1 - qs)^{(c+\gamma-1)} \right] & t \leq s,
\end{cases}
\]

for \(s, t \in \mathcal{J}, n = [a] + 1, \) the function \(g \in \mathcal{B}, \alpha \geq 3 \) and \(\gamma \in [1, \infty) \) with \(2 \Gamma_q(\gamma) \geq \Gamma_q(\alpha) \).

Proof. Let us first assume that \(u_0 \) is a solution for the equation \(\mathcal{D}_Q^n u(t) + g(t) = 0 \) with the B.C.s. By using Lemma 1, we obtain:

\[
u_0(t) = -\mathcal{T}_Q^n [g](t) + c_0 + c_1 t + c_2 t^2 + \cdots c_{n-1} t^{n-1}
\]

and by using the condition \(u_0(0) = u_0''(0) = \cdots = u_0^{(n-1)}(0) = 0 \), we have

\[
u_0(t) = -\mathcal{T}_Q^n [g](t) + c_2 t^2.
\]
Indeed,
\[I_q^a \{ u_0 \}(t) = -I_q^{a+\gamma} \{ g \}(t) + c_2 \frac{2\Gamma_q(\gamma)}{\Gamma_q(\gamma + 3)} t^{\gamma+2}, \]
and thus
\[I_q^a \{ u_0 \}(1) = -I_q^{a+\gamma} \{ g \}(1) + c_2 \frac{2\Gamma_q(\gamma)}{\Gamma_q(\gamma + 3)}. \]
Note that \(cu_0(1) = -cI_q^a \{ g \}(1) + cc_2 \) and
\[c_2 \left(c - \frac{2\Gamma_q(\gamma)}{\Gamma_q(\gamma + 3)} \right) = cI_q^a \{ g \}(1) - I_q^{a+\gamma} \{ g \}(1) = \frac{c\Gamma_q(a + \gamma)}{\Gamma_q(a + \gamma)} I_q^a \{ g \}(1) - \frac{\Gamma_q(a)}{\Gamma_q(a)} I_q^{a+\gamma} \{ g \}(1) = \int_0^1 c\Gamma_q(a + \gamma)(1 - qs)^{(a-1)} - \Gamma_q(a)(1 - qs^{a+\gamma-1}) \frac{\Gamma_q(a)}{\Gamma_q(a + \gamma)} g(s) \, ds. \]
On the other hand,
\[c - \frac{2\Gamma_q(\gamma)}{\Gamma_q(\gamma + 3)} = \frac{c\Gamma_q(\gamma + 3) - 2\Gamma_q(\gamma)}{\Gamma_q(\gamma + 3)}. \]
Hence,
\[c_2 = \int_0^1 \frac{\Gamma_q(a + \gamma)}{\Gamma_q(a)} \left[c\Gamma_q(a + \gamma)(1 - qs)^{(a-1)} - \Gamma_q(a)(1 - qs^{a+\gamma-1}) \right] \frac{\Gamma_q(a + \gamma)}{\Gamma_q(a + \gamma)} g(s) \, ds. \]
Therefore, we have
\[u_0(t) = -I_q^a \{ g \}(t) + t^2 \int_0^1 \frac{\Gamma_q(a + \gamma)}{\Gamma_q(a)} \left[c\Gamma_q(a + \gamma)(1 - qs)^{(a-1)} - \Gamma_q(a)(1 - qs^{a+\gamma-1}) \right] \frac{\Gamma_q(a + \gamma)}{\Gamma_q(a + \gamma)} g(s) \, ds, \]
where
\[G_q(t,s) = \frac{-((t - qs)^{(a-1)})}{\Gamma_q(a)} + t^2 \frac{\Gamma_q(a + \gamma)}{\Gamma_q(a + \gamma)} \left[c\Gamma_q(a + \gamma)(1 - qs)^{(a-1)} - \Gamma_q(a)(1 - qs^{c+\gamma-1}) \right], \]
whenever \(0 \leq s \leq t \leq 1 \) and
\[t^2 \frac{\Gamma_q(a + \gamma)}{\Gamma_q(a + \gamma)} \left[c\Gamma_q(a + \gamma)(1 - qs)^{(a-1)} - \Gamma_q(a)(1 - qs^{c+\gamma-1}) \right], \]
whenever \(0 \leq t \leq s \leq 1 \). Hence, \(u_0 \) is an integral equation’s solution. By simple review, we can see that \(u_0 \) is a solution for the equation \(D_q^a u(t) + g(t) = 0 \) with the B.Cs whenever \(u_0 \) is an integral equation’s solution. \(\square \)
Remark 1. By applying some simple calculations, one can show that \(G_q(t, s) \geq 0 \) for each \(s, t \in \mathcal{J} \). Now, let us define the operator \(\Omega \) on the Banach space \(\mathcal{B} \) by

\[
\Omega(u(t)) = \int_0^1 G_q(t, s)h(s, u(s)) \, ds.
\]

It is easy to check that \(u_0 \) is a fixed point of the operator \(\Omega \) if \(u_0 \) is a solution for Equation (1).

Consider \(\mathcal{B} \) together the supremum norm and cone, \(P \) is the set of all \(u \in \mathcal{B} \) such that \(u(t) \geq 0 \) for all \(t \in \mathcal{J} \). Suppose that \(h : (0, 1] \times [0, \infty) \rightarrow [0, \infty) \) is the singular function at \(t = 0 \) in the Equation (1) and \(G_q(t, s) \) is the \(q \)-Green function in Lemma 3. Now, define the self operator \(\Omega \) on \(P \) by

\[
\Omega(u(t)) = \int_0^1 G_q(t, s)h(s, u(s)) \, ds,
\]

for all \(t \in \mathcal{J} \). At present, we can provide our first main result on the solution’s existence for problem (1) under some assumptions.

Theorem 1. Problem (1) has a unique solution if the following conditions hold.

I. There exists a continuous function \(h : (0, 1] \times [0, \infty) \rightarrow [0, \infty) \) such that

\[
\lim_{t \to 0^+} h(t, s) = \infty,
\]

for \(s \in [0, \infty) \).

II. There exists \(L > 0 \), \(\beta \in \mathcal{J} \) and positive constant \(k \) such that

\[
kc \Gamma_q(\gamma + 3) < (c \Gamma_q(\gamma + 3) - 2 \Gamma_q(\gamma)),
\]

\[
|t^\beta h(t, 0)| \leq L \text{ for each } t \in \mathcal{J}
\]

and

\[
|t^\beta h(t, u(t)) - t^\beta h(t, v(t))| \leq k \| u - v \|
\]

for each \(u, v \) belong to \(P \).

Proof. Note that

\[
|\Omega(u(t))| \leq \ell^2 \frac{c \Gamma_q(\gamma + 3)}{\Gamma_q(\gamma + 3) - 2 \Gamma_q(\gamma)} \int_0^1 \left(1 - q s \right)^{(a - 1)} s^{-\beta} \beta h(s, u(s)) \, ds
\]

for all \(t \in \mathcal{J} \). Now, put

\[
\ell = L \frac{c \Gamma_q(\gamma + 3) \Gamma_q(1 - \beta)}{c \Gamma_q(\gamma + 3) - 2 \Gamma_q(\gamma)}
\]

and define \(B = \{ u \in P : \| u \| \leq \ell \} \). Clearly, \(B \) is a bounded and closed subset of \(\mathcal{A} \), and thus \(B \) is complete. If \(u \in B \), then we obtain:

\[
|\Omega(u(t))| \leq \frac{c \Gamma_q(\gamma + 3)}{\Gamma_q(a) [c \Gamma_q(\gamma + 3) - 2 \Gamma_q(\gamma)]} \int_0^1 \left(1 - q s \right)^{(a - 1)} s^{-\beta} \beta h(s, u(s)) \, ds
\]

\[
\forall t \in \mathcal{J}
\]

and thus

\[
|F(x(t))| \leq \frac{c \Gamma_q(\gamma + 3)}{\Gamma_q(a) [c \Gamma_q(\gamma + 3) - 2 \Gamma_q(\gamma)]} \times \int_0^1 \left(1 - q s \right)^{(a - 1)} s^{-\beta} \beta (|h(s, u(s) - h(s, 0)| + |h(s, 0)|) \, ds
\]

\[
\leq (k \ell + L) \frac{c \Gamma_q(\gamma + 3)}{\Gamma_q(a) [c \Gamma_q(\gamma + 3) - 2 \Gamma_q(\gamma)]} B_q(1 - \beta, a)
\]
Proof. Since the map Ω is continuous and $\Omega(t) = \int_0^t G_q(t,s)g(s) \, dq \, ds$, we obtain

$$\left| \Omega(t) \right| \leq \sup_{s \in \delta} \left| G_q(t,s) s^\delta g(s) \right| \int_0^t s^{-\beta} \, ds = \frac{m t^{1-\beta}}{1-\beta},$$

where $\delta = [0,t]$, $m = \sup_{s \in \delta} \left| G_q(t,s) s^\beta g(s) \right| < \infty$. Therefore, Ω is completely continuous whenever there exists $\beta \in J$ such that the map $t^\beta \mathcal{G}(t)$ is a continuous map on J. Let $u, v \in B$. Then, we obtain

$$\left\| \Omega(u(t)) - \Omega(v(t)) \right\| \leq \frac{1}{\Gamma_q(\alpha)} \int_0^1 (t - qs)^{(\alpha-1)} |h(s, u(s)) - h(s, v(s))| \, dq \, ds$$

Indeed, $\Omega(B) \subseteq B$, and therefore a restriction of Ω on B is an operator on B. Let $u, v \in B$. Then, we obtain

$$\left\| \Omega(u(t)) - \Omega(v(t)) \right\| \leq \frac{c_3 \Gamma_q(\gamma + 3)}{\Gamma_q(\alpha)} \left[\Gamma_q(\alpha + 1) + \frac{c_3 \Gamma_q(\gamma + 3) \Gamma_q(1 - \beta)}{\Gamma_q(\alpha + 1) \Gamma_q(\gamma + 3) - 2 \Gamma_q(\gamma)} \right]$$

for all $t \in J$. Take

$$\lambda = \frac{c_3 \Gamma_q(\omega + 3) - 2 \Gamma_q(\omega)}{c_3 \Gamma_q(\omega + 3) \Gamma_q(\alpha)} + \frac{1}{\Gamma_q(\alpha)}.$$
Indeed, \(\Omega(0) = 0 \). Note that, \(G_q(t,s) \) is continuous in \(\mathcal{T}^2 \). First, suppose that \(t_1 = 0 \) and \(t_2 \in (0,1] \). By continuity \(t^\beta g(t) \), there exists \(L > 0 \) such that
\[
\sup_{t \in T} |t^\beta g(t)| \leq L.
\]

Thus, we have:
\[
|\Omega(t_2) - \Omega(t_1)| = |\Omega(t_2)| \leq \int_0^{t_2} \frac{(1 - qs)^{\alpha-1}}{\Gamma_q(a)} s^{-\beta} g(s) \, dq \, ds + t_2^2 \left(\frac{1}{\Gamma_q(a)} \right) \frac{\Gamma_q(\gamma+3) [c \Gamma_q(\alpha + \gamma) + \Gamma_q(\alpha)]}{\gamma \Gamma_q(\gamma+3) - 2 \Gamma_q(\gamma)} (1 - qs)^{(\alpha-1)} s^{-\beta} g(s) \, dq \, ds
\]
\[
\leq L \frac{t_2^a}{\Gamma_q(a)} B_q(1 - \beta, a) + L \Gamma_q(\gamma+3) \Gamma_q(1 - \beta) \frac{[c \Gamma_q(\alpha + \gamma) + \Gamma_q(\alpha)]}{\gamma \Gamma_q(\gamma+3) - 2 \Gamma_q(\gamma)} t_2^2.
\]

This implies that \(\lim_{t_2 \to t_1} |\Omega(t_2) - \Omega(t_1)| = 0 \). At present, in the next case, we assume that \(t_1 \in J \) and \(t_2 \in (t_1,1) \). Thus, we obtain:
\[
|\Omega(t_2) - \Omega(t_1)| \leq \frac{1}{\Gamma_q(a)} \left| \int_0^{t_2} (t_2 - qs)^{\alpha-1} s^{-\beta} g(s) \, dq \, ds \right| + \int_0^{t_1} (t_1 - qs)^{\alpha-1} s^{-\beta} g(s) \, dq \, ds + t_2^2 - t_1^2 \left(\frac{1}{\Gamma_q(a)} \right) \frac{\Gamma_q(\gamma+3) [c \Gamma_q(\alpha + \gamma) + \Gamma_q(\alpha)]}{\gamma \Gamma_q(\gamma+3) - 2 \Gamma_q(\gamma)} t_2^2 \Gamma_q(\gamma+3) \Gamma_q(1 - \beta) \frac{1}{\gamma \Gamma_q(\gamma+3) - 2 \Gamma_q(\gamma)}
\]
\[
\times \int_0^{1} (1 - qs)^{(\alpha-1)} s^{-\beta} g(s) \, dq \, ds.
\]

On the other hand,
\[
\frac{1}{\Gamma_q(a)} \left| \int_0^{t_2} (t_2 - qs)^{\alpha-1} s^{-\beta} g(s) \, dq \, ds \right| \leq \frac{1}{\Gamma_q(a)} \left| \int_0^{t_1} (t_2 - qs)^{\alpha-1} s^{-\beta} g(s) \, dq \, ds \right| + \int_0^{t_1} (t_1 - qs)^{\alpha-1} s^{-\beta} g(s) \, dq \, ds
\]
\[
\leq L \frac{t_2^a}{\Gamma_q(a)} B_q(1 - \beta, a) + L \Gamma_q(\gamma+3) \Gamma_q(1 - \beta) \frac{[c \Gamma_q(\alpha + \gamma) + \Gamma_q(\alpha)]}{\gamma \Gamma_q(\gamma+3) - 2 \Gamma_q(\gamma)} t_2^2 \Gamma_q(\gamma+3) \Gamma_q(1 - \beta) \frac{1}{\gamma \Gamma_q(\gamma+3) - 2 \Gamma_q(\gamma)}
\]
\[
\times \int_0^{1} (1 - qs)^{(\alpha-1)} s^{-\beta} g(s) \, dq \, ds.
\]
and therefore \(\lim_{t_2 \to t_1} |\Omega(t_2) - \Omega(t_1)| = 0 \). By applying in a similar way, we conclude that

\[
\lim_{t_2 \to t_1} |\Omega(t_2) - \Omega(t_1)| = 0,
\]

whenever \(t_1 \in \mathcal{J} \) and \(t_2 \in [0, t_1) \). Now, we prove that the self-operator \(\Omega \) is completely continuous. Assume that \(\varepsilon > 0 \). Since the function \(T^\beta h(t, u(t)) \) is continuous, there exist \(\delta > 0 \) such that

\[
|T^\beta h(t, u(t)) - T^\beta h(t, v(t))| < \varepsilon,
\]

for each \(u, v \in P \) with \(\|u - v\| < \delta \). Thus, we obtain

\[
\|\Omega(u) - \Omega(v)\| = \sup_{t \in \mathcal{J}} |\Omega(u(t)) - \Omega(v(t))| \\
= \sup_{t \in \mathcal{J}} \left[\int_0^t -(t - qs)^{(a-1)} \Gamma_q(\alpha) s^{-\beta} (s^\beta h(s, u(s)) - s^\beta h(s, v(s))) \, ds \right] \\
+ \varepsilon^2 \int_0^1 \Gamma_q(\gamma + 3) \left[c\Gamma_q(\gamma + \alpha) (1 - q^s)^{(a-1)} - \Gamma_q(\alpha) (1 - q^s)^{(a+\gamma-1)} \right] \\
\times \frac{\Gamma_q(\gamma + 3 - 2\Gamma_q(\gamma))}{\Gamma_q(\alpha) \Gamma_q(\alpha + \gamma) [c\Gamma_q(\gamma + 3)]} \, ds \\
\leq \sup_{t \in \mathcal{J}} \left[\varepsilon \int_0^t (t - qs)^{(a-1)} \Gamma_q(\alpha) \, ds \right] \\
+ \varepsilon^2 \int_0^1 \Gamma_q(\gamma + 3) \left[c\Gamma_q(\gamma + \alpha) + \Gamma_q(\alpha) \right] \\
\times \frac{\Gamma_q(\gamma + 3 - 2\Gamma_q(\gamma))}{\Gamma_q(\alpha + \gamma) \Gamma_q(\alpha + \beta + 1) [c\Gamma_q(\gamma + 3)]} \, ds \\
\leq \sup_{t \in \mathcal{J}} \varepsilon \int_0^t (t - qs)^{(a-1)} \Gamma_q(\alpha) \, ds \\
+ \varepsilon^2 \int_0^1 \Gamma_q(\gamma + 3) \left[c\Gamma_q(\gamma + \alpha) + \Gamma_q(\alpha) \right] \\
\times \frac{\Gamma_q(\gamma + 3 - 2\Gamma_q(\gamma))}{\Gamma_q(\alpha + \gamma) \Gamma_q(\alpha + \beta + 1) [c\Gamma_q(\gamma + 3)]} \, ds \\
= \left[\varepsilon \int_0^t (t - qs)^{(a-1)} \Gamma_q(\alpha) \, ds \right] \\
+ \varepsilon^2 \int_0^1 \Gamma_q(\gamma + 3) \left[c\Gamma_q(\gamma + \alpha) + \Gamma_q(\alpha) \right] \\
\times \frac{\Gamma_q(\gamma + 3 - 2\Gamma_q(\gamma))}{\Gamma_q(\alpha + \gamma) \Gamma_q(\alpha + \beta + 1) [c\Gamma_q(\gamma + 3)]} \, ds \right] \varepsilon.
\]

Therefore, \(\Omega \) is continuous. Let \(Q \subset P \) be bounded. Choose \(k > 0 \) such that \(\|u\| \leq k \) for each \(u \in Q \). Since the function \(T^\beta h(t, u) \) is continuous on \(\mathcal{J} \times [0, \infty) \), the function:

\[
T^\beta h(t, u)
\]

is also continuous on \(\mathcal{J} \times [0, k] \). Select \(r \geq 0 \) such that \(|T^\beta h(t, u)| \leq r \) for all \(u \in Q \), and \(t \) belongs to \(\mathcal{J} \). Thus,

\[
|\Omega(u(t))| \leq \int_0^1 G_q(t, s) s^{-\beta} |s^\beta h(s, u(s))| \, ds \\
\leq r \left[\int_0^t (t - qs)^{(a-1)} \Gamma_q(\alpha) s^{-\beta} \, ds \right] \\
+ \varepsilon^2 \frac{\Gamma_q(\gamma + 3) \left[c\Gamma_q(\gamma + \alpha) + \Gamma_q(\alpha) \right] \Gamma_q(\gamma + 3 - 2\Gamma_q(\gamma))}{\Gamma_q(\alpha + \gamma) \Gamma_q(\alpha + \beta + 1) [c\Gamma_q(\gamma + 3)]} \int_0^1 (1 - q^s)^{(a-1)} \, ds \right],
\]

for each \(t \in \mathcal{J} \), and thus

\[
\|\Omega(x(t))\| = \sup_{t \in \mathcal{J}} |\Omega(x(t))| \\
\leq \frac{\Gamma_q(1 - \beta)}{\Gamma_q(\alpha - \beta + 1)} + \frac{\Gamma_q(\gamma + 3) \Gamma_q(1 - \beta) \left[c\Gamma_q(\gamma + \alpha) - \Gamma_q(\alpha) \right]}{\Gamma_q(\alpha + \gamma) \Gamma_q(\alpha - \beta + 1) [c\Gamma_q(\gamma + 3)] - 2\Gamma_q(\gamma)} \varepsilon.
\]

Therefore, \(\|\Omega(x(t))\| \) is bounded.
This implies that $\Omega(Q)$ is bounded. Assume that $u \in Q$ and $t_1, t_2 \in J$ with $t_1 < t_2$. Then, we obtain

$$|\Omega(u(t_2)) - \Omega(u(t_1))| \leq |\int_{0}^{t_2} \frac{(t_2 - qs)^{(a-1)}}{\Gamma_q(a)} h(s, u(s)) \,dq \,ds - \int_{0}^{t_1} \frac{(t_1 - qs)^{(a-1)}}{\Gamma_q(a)} h(s, u(s)) \,dq \,ds| + |t_2^2 - t_1^2| \frac{\Gamma_q(\gamma + 3) [c\Gamma_q(a + \gamma) + \Gamma_q(a)]}{\Gamma_q(a) [c\Gamma_q(\gamma + 3) - 2\Gamma_q(\gamma)]} \int_{0}^{1} h(s, u(s)) \,dq \,ds - r \int_{t_1}^{t_2} \frac{(t_2 - qs)^{(a-1)}}{\Gamma_q(a)} s^{-\beta} \,dq \,ds + r |t_2^2 - t_1^2| \frac{\Gamma_q(\gamma + 3) [c\Gamma_q(a + \gamma) + \Gamma_q(a)] \Gamma_q(1 - \beta)}{\Gamma_q(a) \Gamma_q(a - \gamma + 1) [c\Gamma_q(\gamma + 3) - 2\Gamma_q(\gamma)]}.
$$

Thus,

$$\lim_{t_2 \to t_1} |\Omega(u(t_2)) - \Omega(u(t_1))| = 0.$$

In other cases, one can prove a similar result. Hence, $\Omega(Q)$ is equicontinuous. Now, by applying the Arzelà–Ascoli theorem, $\Omega(Q)$ is compact, and therefore Ω is completely continuous.

Theorem 2. The problem (1) has at least one positive solution whenever the hypothesis as follows holds:

I. There exists $\bar{r} \in J$ such that the map $\theta^q \gamma(t)$ is a continuous map on J.

II. There exists $r_1' > 0$ and $r_2' > 0$ with $r_2' < r_1'$ such that $t^q \gamma(t, u) \leq r_1'$ and $t^q \gamma(t, u) \leq r_2'$ for each $(t, u) \in J \times [0, r_1]$ and $(t, u) \in J \times [0, r_2]$, respectively, where

$$r_1 > \frac{\Gamma_q(\gamma + 3) \Gamma_q(1 - \beta) [c\Gamma_q(a + \gamma) + \Gamma_q(a)]}{\Gamma_q(a + \gamma) \Gamma(a - \sigma + 1) [c\Gamma_q(\gamma + 3) - 2\Gamma_q(\gamma)]} r_1'$$

$$r_2 > \frac{2 \Gamma_q(\gamma) \Gamma_q(a + \gamma) - \Gamma_q(\gamma + 3) \Gamma_q(a) \Gamma_q(1 - \beta)}{\Gamma_q(a + \gamma) [c\Gamma_q(\gamma + 3) - 2\Gamma_q(\gamma)]} \Gamma_q(a - \gamma + 1) r_2'.$$

Proof. We take the set \mathcal{A}_1 and \mathcal{A}_2 of all $u \in P$ such that

$$\|u\| < \frac{2 \Gamma_q(\gamma) \Gamma_q(a + \gamma) - \Gamma_q(\gamma + 3) \Gamma_q(a)}{\Gamma_q(a + \gamma) [c\Gamma_q(\gamma + 3) - 2\Gamma_q(\gamma)]} \Gamma_q(a - \beta + 1) r_2'$$

and

$$\|u\| < \frac{\Gamma_q(\gamma + 3) \Gamma_q(a) r_1'}{\Gamma_q(a + \gamma) [c\Gamma_q(\gamma + 3) - 2\Gamma_q(\gamma)]} r_1',$$

respectively. Since $2 \Gamma_q(\gamma) > \Gamma_q(a)$ and $\Gamma_q(a + \gamma) > \Gamma_q(\gamma + 3)$, we have:

$$\frac{2 \Gamma_q(\gamma) \Gamma_q(a + \gamma) - \Gamma_q(\gamma + 3) \Gamma_q(a)}{\Gamma_q(a + \gamma) [c\Gamma_q(\gamma + 3) - 2\Gamma_q(\gamma)]} > 0.$$
Since \(\gamma \in [1, \infty) \) and \(r'_1 > r'_2 \), \(2\Gamma_q(\gamma) < \Gamma_q(\gamma + 3) \) and
\[
\frac{\Gamma_q(\gamma + 3) [\Gamma_q(\alpha + \gamma) + \Gamma_q(\alpha)] r'_1}{\Gamma_q(\alpha + \gamma) [\Gamma_q(\gamma + 3) - 2\Gamma_q(\gamma)]} > \frac{2\Gamma_q(\gamma) \Gamma_q(\alpha + \gamma) - \Gamma_q(\gamma + 3) \Gamma_q(\alpha) r'_2}{\Gamma_q(\epsilon + \gamma) [\Gamma_q(\gamma + 3) - 2\Gamma_q(\gamma)]},
\]
therefore, \(x_1 \subset \mathcal{X}_2 \). If \(u \in P \cap \partial \mathcal{X}_1 \), then
\[
0 \leq u(t) \leq \frac{[2\Gamma_q(\gamma) \Gamma_q(\alpha + \gamma) - \Gamma_q(\gamma + 3) \Gamma_q(\alpha) \Gamma_q(1 - \beta)]}{\Gamma_q(\alpha + \gamma) \Gamma_q(\alpha - \beta + 1) [\Gamma_q(\gamma + 3) - 2\Gamma_q(\gamma)]} r'_2
\]
\(\forall \ t \in \mathcal{T} \), and also
\[
\Omega(u(1)) = -\int_0^1 \frac{(1 - qs)^{(a-1)}}{\Gamma_q(a)} h(s, u(s)) \, ds
\]
\[
+ \int_0^1 \frac{\Gamma_q(\gamma + 3) [\Gamma_q(\alpha + \gamma) - \Gamma_q(\alpha)] - \Gamma_q(\alpha + \gamma) [\Gamma_q(\gamma + 3) - 2\Gamma_q(\gamma)]}{\Gamma_q(\alpha) \Gamma_q(\alpha + \gamma) [\Gamma_q(\gamma + 3) - 2\Gamma_q(\gamma)]} \times h(s, u(s)) \, ds \, q \leq \int_0^1 [2\Gamma_q(\gamma) \Gamma_q(\alpha + \gamma) - \Gamma_q(\gamma + 3) \Gamma_q(\alpha)] \Gamma_q(1 - \beta) \quad 2\Gamma_q(\gamma) \Gamma_q(\alpha + \gamma) - \Gamma_q(\gamma + 3) \Gamma_q(\alpha) \Gamma_q(1 - \beta)
\]
\(\Omega(u(t)) = \int_0^1 \frac{-(t - qs)^{(a-1)}}{\Gamma_q(a)} h(s, u(s)) \, ds
\]
\[
+ \int_0^1 \frac{\Gamma_q(\gamma + 3) [\Gamma_q(\alpha + \gamma) - \Gamma_q(\alpha)] - \Gamma_q(\alpha + \gamma) [\Gamma_q(\gamma + 3) - 2\Gamma_q(\gamma)]}{\Gamma_q(\alpha) \Gamma_q(\alpha + \gamma) [\Gamma_q(\gamma + 3) - 2\Gamma_q(\gamma)]} \times h(s, u(s)) \, ds \leq \int_0^1 [2\Gamma_q(\gamma) \Gamma_q(\alpha + \gamma) - \Gamma_q(\gamma + 3) \Gamma_q(\alpha)] \Gamma_q(1 - \beta) \quad 2\Gamma_q(\gamma) \Gamma_q(\alpha + \gamma) - \Gamma_q(\gamma + 3) \Gamma_q(\alpha) \Gamma_q(1 - \beta)
\]

\[\|\Omega(u)\| \geq \|u\| \quad \text{on} \quad P \cap \partial \mathcal{X}_1. \quad \text{If} \quad u \in P \cap \partial \mathcal{X}_2, \quad \text{then}
\]
\[\Omega(u(t)) = \int_0^1 \frac{-(t - qs)^{(a-1)}}{\Gamma_q(a)} h(s, u(s)) \, ds
\]
\[
+ \int_0^1 \frac{\Gamma_q(\gamma + 3) [\Gamma_q(\alpha + \gamma) - \Gamma_q(\alpha)] - \Gamma_q(\alpha + \gamma) [\Gamma_q(\gamma + 3) - 2\Gamma_q(\gamma)]}{\Gamma_q(\alpha) \Gamma_q(\alpha + \gamma) [\Gamma_q(\gamma + 3) - 2\Gamma_q(\gamma)]} \times h(s, u(s)) \, ds \leq \int_0^1 [2\Gamma_q(\gamma) \Gamma_q(\alpha + \gamma) - \Gamma_q(\gamma + 3) \Gamma_q(\alpha)] \Gamma_q(1 - \beta) \quad 2\Gamma_q(\gamma) \Gamma_q(\alpha + \gamma) - \Gamma_q(\gamma + 3) \Gamma_q(\alpha) \Gamma_q(1 - \beta)
\]

Thus, \(\|\Omega(u)\| \leq \|u\| \) on \(P \cap \partial \mathcal{X}_2. \) Since the self-operator \(\Omega \) defined on \(P \) is completely continuous and \(P \cap (\mathcal{X}_2 \cup \mathcal{X}_1) \) is a closed subset of \(P \), the restriction \(\Omega : P \cap (\mathcal{X}_2 \cup \mathcal{X}_1) \to P \) is completely continuous. At present, by employing Lemma 2, \(\Omega \) has a fixed point in \(P \cap (\mathcal{X}_2 \cup \mathcal{X}_1) \). By simple review, we can see that the fixed point of \(\Omega \) is a positive solution for problem (1). \(\square \)

4. Illustrative Examples with Application

Some illustrative examples are provided in this section to validate our original results. At the same time, a computational technique is constructed for testing the problem (1) and (2). A simplified analysis is also studied for executing the \(q \)-Gamma function’s values. As
a result, a pseudo-code that describes our simplified method is presented for calculating
the q-Gamma function of order n in Algorithm A1 (for more details, see the following
online resources: https://en.wikipedia.org/wiki/Q-gamma_function and https://www.
dm.uniba.it/members/garrappa/software, accessed on 10 March 2021).

When the analytical solution is impossible to find for certain problems, we need to
find the numerical approximation with a tiny step h via the implicit trapezoidal PI rule,
which usually shows excellent accuracy [36]. Our numerical experiments were performed
with the help of MATLAB software. Some additional supporting information are provided
in Appendix A of this paper including some algorithms of the proposed method (see
Algorithms A1–A5), and Tables A1–A3 present various numerical experiments to provide
additional support to the validity of our results in this work.

Example 1. Consider the SFqDEq with the B.C:

$$
\begin{aligned}
 c D_q^{17/5} [u](t) + \frac{\cos t}{t^2} [1 + (u(t))^3] &= 0, \\
 \frac{15}{7} u(1) &= \mathcal{I}_q^{29/7} [u](1), \\
 u(0) &= u''(0) = u'''(0) = 0,
\end{aligned}
$$

for all $t \in J = (0, 1)$ and $q \in J$.

In Problem (1), define

$$
\alpha = \frac{17}{5} \geq 3, \quad n = \left\lfloor \frac{17}{5} \right\rfloor + 1 = 4, \quad c = \frac{15}{7} \geq 1, \quad \gamma = \frac{29}{7} \in [1, \infty).
$$

Define the continuous map:

$$
h(t, u(t)) = \left\lfloor \frac{\cos t}{t^2} [1 + (u(t))^3] \right\rfloor,
$$

such that

$$
\lim_{t \to 0^+} h(t, \cdot) = +\infty,
$$

that is, h is singular at $t = 0$. In addition to, Table 1 shows that

$$
2 \Gamma_q(\gamma) \geq \Gamma_q(\alpha),
$$

holds for each q.
Table 1. Numerical experiment for calculating $\Gamma_q(\alpha), \Gamma_q(\gamma)$ in Example 1 for $q = \frac{1}{10}, \frac{1}{2}, \frac{8}{9}$.

n	$q = \frac{1}{10}$	$q = \frac{1}{2}$	$q = \frac{8}{9}$			
$\Gamma_q(\alpha)$	$2\Gamma_q(\gamma)$	$\Gamma_q(\alpha)$	$2\Gamma_q(\gamma)$	$\Gamma_q(\alpha)$	$2\Gamma_q(\gamma)$	
1	1.1479	2.4817	2.2951	7.2266	34.0843	265.2795
2	1.1467	2.4792	2.0569	6.414	21.5589	153.3424
3	1.1466	2.479	1.9515	6.056	15.299	101.2765
4	1.1466	2.479	1.9018	5.8876	11.7053	73.0841
...
17	1.1466	2.479	1.8539	5.7258	3.4748	16.2557
18	1.1466	2.479	1.8539	5.7258	3.3755	15.6765
19	1.1466	2.479	1.8539	5.7257	3.2907	15.1843
20	1.1466	2.479	1.8539	5.7257	3.2177	14.7638
...
106	1.1466	2.479	1.8539	5.7257	2.709	11.8963
107	1.1466	2.479	1.8539	5.7257	2.709	11.8963
108	1.1466	2.479	1.8539	5.7257	2.709	11.8963
109	1.1466	2.479	1.8539	5.7257	2.709	11.8962
110	1.1466	2.479	1.8539	5.7257	2.709	11.8962

To numerically show our results, we consider the problem (2) as follows:

\[
\mathcal{D}^{\frac{10}{9}}_{q} [u](t) + \Gamma_q(5) t^{-\frac{1}{3}} |u|^\frac{1}{3} + \Gamma_q(4) t^{-\frac{1}{4}} |u'|^{\frac{1}{2}} \\
+ \Gamma_q(6) t^{-\frac{1}{3}} |\mathcal{D}^{\frac{1}{9}\alpha}_{q} [u](t)|^{\frac{2}{3}} + \Gamma_q(3) t^{-\frac{1}{4}} |v_u|^{\frac{3}{5}} \\
+ \frac{1}{1 + u'^2(t)} + \frac{1}{1 + (u')^2} + \frac{1}{1 + \left(\mathcal{D}^{\frac{1}{9}\alpha}_{q} [u]
ight)^2} + \frac{1}{1 + (v_u)^2} \\
\leq \mathcal{D}^{\frac{10}{9}}_{q} [u](t) + \Gamma_q(5) t^{-\frac{1}{3}} |u|^\frac{1}{3} + \Gamma_q(4) t^{-\frac{1}{4}} |u'|^{\frac{1}{2}} \\
+ \Gamma_q(6) t^{-\frac{1}{3}} |\mathcal{D}^{\frac{1}{9}\alpha}_{q} [u](t)|^{\frac{2}{3}} + \Gamma_q(3) t^{-\frac{1}{4}} |v_u|^{\frac{3}{5}} \\
+ (u(t))^{-2} + (u')^{-2} + \left(\mathcal{D}^{\frac{1}{9}\alpha}_{q} [u]\right)^{-2} + (v_u)^{-2} = 0.
\]

Thus,

\[
\mathcal{D}^{\frac{10}{9}}_{q} [u](t) + \Gamma_q(5) t^{-\frac{1}{3}} |u|^\frac{1}{3} + \Gamma_q(4) t^{-\frac{1}{4}} |u'|^{\frac{1}{2}} \\
+ \Gamma_q(6) t^{-\frac{1}{3}} |\mathcal{D}^{\frac{1}{9}\alpha}_{q} [u](t)|^{\frac{2}{3}} + \Gamma_q(3) t^{-\frac{1}{4}} |v_u|^{\frac{3}{5}} \\
+ (u(t))^{-2} + (u')^{-2} + \left(\mathcal{D}^{\frac{1}{9}\alpha}_{q} [u]\right)^{-2} + (v_u)^{-2} = 0.
\]

Table 2 shows numerically the values of $x(t)$ in Equation (5). In addition, the curve of $x(t)$ w.r.t t in Figures 1–3 for $q = \frac{1}{10}, \frac{1}{2}, \frac{8}{9}$, respectively (Algorithm A1).
Table 2. Numerical experiment of Equation (5) in Example 1 for $q \in \left\{ \frac{1}{10}, \frac{1}{2}, \frac{6}{7} \right\}$ and $n = 1, \ldots, 20$ (Algorithm A1).

n	$q = \frac{1}{10}$	$q = \frac{1}{2}$	$q = \frac{6}{7}$			
	t	$u(t)$	t	$u(t)$	t	$u(t)$
1	0	0	0	0	0	0
1	0.25	0.00172	0.25	0.00806	0.25	0.38812
1	0.5	0.01733	0.5	0.08187	0.5	4.1244
1	0.75	0.06744	0.75	0.32299	0.75	17.97576
1	1	0.17909	1	0.87607	1	56.89764
2	0	0	0	0	0	0
2	0.25	0.00171	0.25	0.0071	0.25	0.21494
2	0.5	0.01731	0.5	0.07216	0.5	2.26527
2	0.75	0.06737	0.75	0.2846	0.75	9.69401
2	1	0.17891	1	0.77148	1	29.82949

20	0	0	0	0	0	0
20	0.25	Inf	0.25	Inf	0.25	Inf
20	0.5	Inf	0.5	Inf	0.5	Inf
20	0.75	Inf	0.75	Inf	0.75	Inf
20	1	Inf	1	Inf	1	Inf
20	1.25	Inf	1.25	Inf	1.25	Inf
20	1.5	Inf	1.5	Inf	1.5	Inf
20	1.75	Inf	1.75	Inf	1.75	Inf

We can see that all conditions of Theorem 2 hold. Thus, the fixed point of Ω is a positive solution for problem (4).

Figure 1. $u(t)$ with respect to t in Equation (5) in Example 1 for $q = \frac{1}{10}$ according to Table 2.

Linear motion is the most basic of all motion. According to Newton’s first law of motion, objects that do not experience any net force will continue to move in a straight line with a constant velocity until they are subjected to a net force. In the next example, we consider an application to examine the validity of our theoretical results on the fractional order representation of the motion of a particle along a straight line.
Example 2. We consider a constrained motion of a particle along a straight line restrained by two linear springs with equal spring constants (stiffness coefficient) under an external force and fractional damping along the t-axis (Figure 4).

The springs, unless subjected to force, are assumed to have free length (unstretched length) and resist a change in length. The motion of the system along the t-axis is independent of the initial spring tension. The springs are anchored on the t-axis at $t = -1$ and $t = 1$, and the vibration of the particle in this example is restricted to the t-axis only.

The vibration of the system is represented by a system of equations with the first equation having similar form of a simple harmonic oscillator, which cannot produce instability. Hence, the existence solution of the system depends on the following equation represented as the SFqDEq with the B.C:

$$
\begin{cases}
\frac{cD^\alpha_q}{\gamma} u(t) + \frac{1}{8} \left[2 - 2L - \theta^2 L - \theta^2 L \cos t \right] u(t) = v \sin(u(t)), \\
\frac{\delta u(1)}{\gamma} = \frac{\delta}{\gamma} u(1), \\
u(0) = u''(0) = u'''(0) = (0) = 0,
\end{cases}
$$

(6)

for all $t \in J = (0, 1)$, $q \in J$. Here, θ and v are constants, and L is the unstretched length of the spring. In Problem (1),

$$
\alpha = \frac{10}{3} \geq 3, \quad n = \left\lfloor \frac{10}{3} \right\rfloor + 1 = 4, \quad c = \frac{16}{9} \geq 1, \quad \gamma = \frac{23}{6} \in [1, \infty).
$$
Define the continuous map:

\[
h(t, u(t)) = \frac{1}{8} \left[2 - 2L - \theta^2 L - \theta^2 L \cos t \right] u(t) - \nu \sin(u(t))
\]

for \(t \in (0, 1) \), such that

\[
\lim_{t \to 0^+} h(t, \cdot) = +\infty,
\]

that is, \(h \) is singular at \(t = 0 \). Consider particular values of the parameters \(L = 1.5 \, \text{m}, \theta = 0.5 \). We consider particular values of the parameter \(\nu = 7.25 \). Therefore, all conditions of Theorem 2 hold. Thus, the SFqDEq (6) has a solution.

Figure 4. A particle along a straight line restrained by two linear springs with equal spring constants.

5. Conclusions

The existence of solutions was successfully investigated for a system of \(m \)-singular sum fractional \(q \)-differential equations under some integral B.Cs in the sense of CpFqDr. The positive solutions’ existence was also studied with the help of a fixed point Arzelà–Ascoli theorem. Illustrative examples and numerical experiments were provided to validate our theoretical results.

Author Contributions: Conceptualization, M.E.S., R.G., M.K.A.K. and F.M.; methodology, M.E.S., M.I. and F.M.; software, M.E.S. and R.G.; validation, M.K.A.K., F.M. and S.-W.Y.; formal analysis, R.G.; investigation, M.E.S. and M.K.A.K.; resources, F.M., S.-W.Y. and M.I.; data curation, R.G.; writing—original draft preparation, M.E.S., R.G., M.K.A.K. and F.M.; writing—review and editing, M.K.A.K., F.M. and M.I.; visualization, M.E.S.; supervision, M.K.A.K., M.I. and S.-W.Y.; project administration, M.K.A.K.; funding acquisition, S.-W.Y. All authors have read and agreed to the published version of the manuscript.

Funding: Not applicable.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The first and second authors were supported by Bu-Ali Sina University.

Conflicts of Interest: The authors declare that they have no competing interest.
Appendix A. Supporting Information

Algorithm A1 The proposed method for calculating $\Gamma_q(x)$.
1: function $g = qGamma(q, x, n)$
2: %q-Gamma Function
3: p=1;
4: for k=0:n
5: $p=p*(1-q(k+1))/(1- q(x+k))$;
6: end;
7: $g=p/(1-q)(x-1)$;
8: end

Algorithm A2 The proposed method for calculating $(x - y)^{(a)}_q$.
1: function $p = qfunction1(x, y, q, sigma, n)$
2: s=1;
3: if n==0
4: $p=1$
5: else
6: for k=1:n-1
7: $s = s*(x-y*q^k)/(x-y*q(sigma+k))$;
8: end;
9: $p=x*sigma * s$;
10: end;
11: end

Algorithm A3 The proposed method for calculating $(D_q f)(x)$.
1: function $g = Dq(q, x, n, fun)$
2: if $x==0$
3: $g=\text{limit} ((\text{fun}(x)-\text{fun}(q*x))/((1-q)*x),x,0)$;
4: else
5: $g=(\text{fun}(x)-\text{fun}(q*x))/((1-q)*x)$;
6: end;
7: end

Algorithm A4 The proposed method for calculating $(D_q f)(x)$.
1: function $g = Iq(q, x, n, fun)$
2: p=1;
3: for k=0:n
4: $p=p+ q^k*\text{fun}(x*q^k)$;
5: end;
6: $g=x^*(1-q) * p$;
7: end
Algorithm A5 The proposed method for calculating $I^q_{\alpha}(x)$.

1: function $g = I_q_{\alpha}(q, \alpha, x, n, \text{fun})$
2: \(p=0; \)
3: for $k=0:n$
4: \(s1=1; \)
5: for $i=0:k-1$
6: \(s1=s1*(1-q^{\alpha+i}); \)
7: end
8: \(s2=1; \)
9: for $i=0:k-1$
10: \(s2=s2*(1-q^{i+1}); \)
11: end
12: \(p=p + q^k*s1*\text{eval(subs(fun, t*q^k))/s2}; \)
13: end;
14: \(g=\text{round}((t^{\alpha})*(1-q)^{\alpha})*p, 6); \)
15: end

Table A1. Some numerical results for the calculation of $\Gamma_q(x)$ with $q = \frac{1}{3}$ that is constant, $x = 4.5, 8.4, 12.7$ and $n = 1, 2, \ldots, 15$ of Algorithm A1.

n	$x = 4.5$	$x = 8.4$	$x = 12.7$
1	2.472950	11.909360	68.080769
2	2.383247	11.468397	65.559266
3	2.354446	11.326853	64.749894
4	2.344963	11.280255	64.483434
5	2.341815	11.264786	64.394980
6	2.340767	11.259636	64.365536
7	2.340418	11.257921	64.355725
8	2.340301	11.257349	64.352456

Table A2. Some numerical results for the calculation of $\Gamma_q(x)$ with $q = \frac{1}{3}, \frac{1}{2}, \frac{2}{3}$, $x = 5$ and $n = 1, 2, \ldots, 35$ of Algorithm A1.

n	$q = \frac{1}{3}$	$q = \frac{1}{2}$	$q = \frac{2}{3}$
1	3.016535	6.291859	18.937427
2	2.906140	5.548726	14.154784
3	2.870699	5.222330	11.819974
4	2.859031	5.069033	10.537540
5	2.855157	4.994707	9.782069
6	2.853868	4.958107	9.317265
7	2.853438	4.939945	9.023265
8	2.853295	4.930899	8.833940
9	2.853247	4.926384	8.710584
10	2.853232	4.921292	8.629588
11	2.853226	4.923002	8.576133
12	2.853224	4.922438	8.540736
13	2.853224	4.922157	8.517243
14	2.853224	4.922016	8.501627
15	2.853224	4.921945	8.491237
16	2.853224	4.921910	8.484320
17	2.853224	4.921893	8.479713
Table A3. Some numerical results for the calculation of $\Gamma_q(x)$ with $x = 8.4$, $q = \frac{1}{3}, \frac{1}{2}, \frac{2}{3}$ and $n = 1, 2, \ldots, 40$ of Algorithm A1.

n	$q = \frac{1}{3}$	$q = \frac{1}{2}$	$q = \frac{2}{3}$
1	11.909560	63.618604	664.767669
2	11.468397	55.707508	474.809053
3	11.326853	52.245122	384.795341
4	11.280255	50.621828	336.326796
5	11.264786	49.835472	308.146441
6	11.256936	49.448420	290.958806
7	11.257921	49.256401	280.150029
8	11.257349	49.160766	273.216364
9	11.257158	49.113041	268.710272
10	11.257095	49.089202	265.766606
11	11.257074	49.077288	263.809514
12	11.257066	49.071333	262.521127
13	11.257064	49.068355	261.666471
14	11.257063	49.066867	261.098587
15	11.257063	49.066123	260.720833
16	11.257063	49.065271	260.469369
17	11.257063	49.065564	260.301890
18	11.257063	49.065471	260.190310
19	11.257063	49.065425	260.115957
20	11.257063	49.065402	260.066402

References

1. Beyer, H.; Kempfle, S. Definition of physical consistent damping laws with fractional derivatives. *Z. Angew. Math. Mech.* 1995, 75, 623–635. [CrossRef]
2. He, J.H. Some applications of nonlinear fractional differential equations and their approximations. *Sci. Technol. Soc.* 1999, 15, 86–90.
3. He, J.H. Approximate analytic solution for seepage flow with fractional derivatives in porous media. *Comput. Methods Appl. Mech. Eng.* 1998, 167, 57–68. [CrossRef]
4. Caputo, M. Linear models of dissipation whose Q is almost frequency independent-II. *Geophys. J. Int.* 1967, 13, 529–539. [CrossRef]
5. Yan, J.P.; Li, C.P. On chaos synchronization of fractional differential equations. *Chaos Solitons Fractals* 2007, 32, 725–735. [CrossRef]
6. Sommacal, L.; Melchior, P.; Dossat, A.; Petit, J.; Cabelguen, J.M.; Oustaloup, A.; Ijspeert, A.J. Improvement of the muscle fractional multimodel for low-rate stimulation. *Biomed. Signal Process. Control* 2007, 2, 226–233. [CrossRef]
7. Rezapour, S.; Mojammadi, H.; Samei, M.E. SEIR epidemic model for COVID-19 transmission by Caputo derivative of fractional order. *Adv. Differ. Equ.* 2020, 2020, 490. [CrossRef] [PubMed]
8. Silva, M.F.; Machado, J.A.T.; Lopes, A.M. Fractional order control of a hexapod robot. *Nonlinear Dyn.* 2004, 38, 417–433. [CrossRef]
9. Mathieu, B.; Melchior, P.; Oustaloup, A.; Ceyral, C. Fractional differentiation for edge detection. *Signal Process* 2003, 83, 2421–2432. [CrossRef]
10. Diethelm, K.; Ford, N.J. Analysis of Fractional Differential Equations. *J. Math. Anal. Appl.* 2002, 265, 229–248. [CrossRef]
11. Mishra, S.K.; Samei, M.E.; Chakraborty, S.K.; Ram, B. On q-variant of Dai–Yuan conjugate gradient algorithm for unconstrained optimization problems. *Nonlinear Dyn.* 2021, 2021, 35. [CrossRef]
12. Ntouyas, S.K.; Samei, M.E. Existence and uniqueness of solutions for multi-term fractional q-integro-differential equations via quantum calculus. *Adv. Differ. Equ.* 2019, 2019, 475. [CrossRef]
13. Lakshmikantham, V.; Vatsala, A.S. Basic theory of fractional differential equations. *Nonlinear Anal. Theory Methods Appl.* 2008, 69, 2677–2682. [CrossRef]
14. Samei, M.E. Existence of solutions for a system of singular sum fractional q-differential equations via quantum calculus. *Adv. Differ. Equ.* 2020, 2020, 23. [CrossRef]
15. Matar, M.M.; Abbas, M.I.; Alzabut, J.; Kaabar, M.K.A.; Etemad, S.; Rezapour, S. Investigation of the p–Laplacian nonperiodic nonlinear boundary value problem via generalized Caputo fractional derivatives. *Adv. Differ. Equ.* 2021, 2021, 68. [CrossRef]
16. Jackson, F. q-difference equations. *Am. J. Math.* 1910, 32, 305–314. [CrossRef]
17. Adams, C. The general theory of a class of linear partial q-difference equations. *Trans. Am. Math. Soc.* 1924, 26, 283–312.
18. Adams, C. Note on the integro-q-difference equations. *Trans. Am. Math. Soc.* 1929, 31, 861–867.
19. Ahmad, B.; Nieto, J.J.; Alsaedi, A.; Al-Hutami, H. Existence of solutions for nonlinear fractional q-difference integral equations with two fractional orders and nonlocal four-point boundary conditions. *J. Franklin Inst.* 2014, 351, 2890–2909. [CrossRef]
20. Ahmad, B.; Ntouyas, S.; Purnaras, I. Existence results for nonlocal boundary value problems of nonlinear fractional q–difference equations. *Adv. Differ. Equ.* 2012, 2012, 140. [CrossRef]

21. Balkani, N.; Rezapour, S.; Haghi, R.H. Approximate solutions for a fractional q–integro-difference equation. *J. Math. Ext.* 2019, 13, 201–214.

22. Ferreira, R. Nontrivials solutions for fractional q–difference boundary value problems. *Electron. J. Qual. Theory Differ. Equ.* 2010, 70, 1–101. [CrossRef]

23. Samei, M.E.; Ranjbar, G.K.; Hedayati, V. Existence of solutions for equations and inclusions of multi-term fractional q–integro-differential with non-separated and initial boundary conditions. *J. Inequalities Appl.* 2019, 2019, 273. [CrossRef]

24. Zhao, Y.; Chen, H.; Zhang, Q. Existence results for fractional q–difference equations with nonlocal q–integral boundary conditions. *Adv. Differ. Equ.* 2013, 2013, 48. [CrossRef]

25. Agarwal, R.P.; Baleanu, D.; Hedayati, V.; Rezapour, S. Two fractional derivative inclusion problems via integral boundary condition. *Appl. Math. Comput.* 2015, 257, 205–212. [CrossRef]

26. Akbari Kojabad, E.; Rezapour, S. Approximate solutions of a sum-type fractional integro-differential equation by using Chebyshev and Legendre polynomials. *Adv. Differ. Equ.* 2017, 2017, 351. [CrossRef]

27. Liang, S.; Samei, M.E. New approach to solutions of a class of singular fractional q–differential problem via quantum calculus. *Adv. Differ. Equ.* 2020, 2020, 14. [CrossRef]

28. Aydogan, S.M.; Baleanu, D.; Mousalou, A.; Rezapour, S. On high order fractional integro-differential equations including the Caputo-Fabrizio derivative. *Bound. Value Probl.* 2018, 2018, 90. [CrossRef]

29. Baleanu, D.; Rezapour, S.; Etemad, S.; Alsaedi, A. On a time-fractional integro-differential equation via three-point boundary value conditions. *Math. Probl. Eng.* 2015, 2015, 12. [CrossRef]

30. He, C.Y. *Almost Periodic Differential Equations*; Higher Education Press: Beijing, China, 1992. (In Chinese)

31. Barbálat, I. Systems d’équations differential d’oscillations nonlinesaries. *Rev. Roumaine Math. Pure Appl.* 1959, 4, 267–270.

32. Samei, M.E.; Hedayati, V.; Rezapour, S. Existence results for a fractional hybrid differential inclusion with Caputo-Hadamard type fractional derivative. *Adv. Differ. Equ.* 2019, 2019, 163. [CrossRef]

33. Annaby, M.; Mansour, Z. *q–Fractional Calculus and Equations*; Springer: Heidelberg, Germany; Cambridge, UK, 2012; [CrossRef]

34. Samko, S.; Kilbas, A.; Marichev, O. *Fractional Integrals and Derivatives: Theory and Applications*; Gordon and Breach Science Publishers: Lausanne, Switzerland; Philadelphia, PA, USA, 1993.

35. Krasnoselskii, M.A. *Positive Solution of Operator Equation*; Noordhoff: Groningen, The Netherlands, 1964.

36. Garrappa, R. *Numerical Solution of Fractional Differential Equations: A Survey and a Software Tutorial*. *Mathematics* 2018, 6, 16. [CrossRef]