Effect of Surface Treatment and Type of Resin Cement on Marginal Fit of Zirconia Crowns

Ali Sayed*, Yasser F Gomaa, and Sherif Adel Mohsen

Department of Dental Biomaterials, Assiut University, Egypt

*Corresponding author: Ali Sayed, Department of Dental Biomaterials, Assiut University, Egypt

Abstract

This in vitro study was conducted to evaluate effect of surface treatment and two resin cements on marginal integrity of zirconia crowns.

Materials and Methods: Forty zirconia crowns (Amann Girrbach AG, Austria) were fabricated and divided into 2 groups according to type of resin cement, group 1 Rely x ultimate clicker (3M Deutschland, Germany) and group 2 Rely x unicem (3M ESPE, USA), each group was then subdivided into 4 groups according to type of surface treatment, no surface treatment, sandblasting, sandblasting with silane, sand blasting with MDP. After cementation each specimen was photographed using USB Digital microscope with a built-in camera (Scope Capture Digital Microscope, Guangdong, and China) for measuring and evaluation of gap width.

Results: Group 2 showed higher significant mean of marginal gap than group 2.

Conclusion: Group 1 Rely x ultimate clicker resin cement showed less marginal gap than group 2 Rely x unicem resin cement.

Keywords: Surface treatment; resin cement; zirconia

Introduction

As esthetic restorative materials for crowns and fixed partial dentures (FPDs), all-ceramic systems can be used as alternatives to metal ceramic systems. During the last decade, zirconium dioxide (zirconia, ZrO) ceramics, which have superior mechanical properties [1], have been used increasingly for copings and frameworks of fixed restorations. An ideal all-ceramic dental material should exhibit excellent esthetic characteristics, like translucency, natural tooth color, outstanding light transmission and, at the same time, optimal mechanical properties, like flexural strength, fracture toughness and limited crack propagation at the functional and parafunctional load conditions, in order to ensure long-term service. To date, zirconia has been considered a suitable choice for dental restorations due to its good mechanical properties, tooth-colored and natural appearance and low plaque accumulation [2-4]. Zirconia (zirconium oxide) was introduced by Martin Heinrich Klaproth in 1789. This material is a non-cytotoxic metal oxide, is insoluble in water and has no potential of bacterial adhesion. In addition, it has radio-opacity properties and exhibits low corrosion [5]. There are 3 crystalline shapes of this material at different temperatures are as follows: cubic (c) tetragonal (t) monoclinic (m). Increasing the crystal volume, constrained by the surrounding ones, leads to a favorable compressive stress. This limits growth of cracks. Transformation toughening or “phase transformation toughening” (PTT) is the reported mechanism for exceptional flexural strength and fracture toughness of zirconia among all the other ceramics, hence Zirconia is considered as one of the most reliable ceramic materials [6,7]. Zirconia based fixed partial dentures (FPDs) have the potential to withstand physiological occlusal forces applied in the posterior region, and therefore provided interesting alternatives to metal-ceramic restorations. Although combined surface treatment and specific adhesives with a hydrophobic phosphate monomer such as methacryloyl oxydecyl dihydrogen phosphate (MDP), are currently considered reliable for bonding to zirconia ceramics, but further clinical and invitro studies are still needed to obtain long-term clinical information on zirconia-based restorations [8] (Figure 1).
Materials and Methods

Teeth selection, cleaning, storage and preparation

A total of 40 extracted caries free human teeth were collected from clinics of the faculty of Dentistry Al-Azhar University, Assiut branch, after obtaining permissions from patients for using their extracted teeth in research purposes. Caries free human upper first premolars extracted for orthodontic purposes from patients aged 18-20 years old were collected for standardization. Extracted teeth stored in 0.5% thymol not more than 2 months following esthetic protocol of the faculty of dentistry Al-Azhar University, Assiut branch.

Specimens Preparation

A machined standard stainless steel was used with 5 mm height and 5 mm diameter with 10 degrees convergent axial walls, the dye was prepared with 50° shoulder finish line (1 mm thickness), forty polyvinyl siloxane impressions (silibest via m.Bonarroti, cappanoli, Italy).

Fabrication of zirconia crowns

Crowns made of a partially sintered zirconia ceramic material by using CAD/CAM technology optical impression was made to the epoxy specimen after being sprayed, using model scanning via: desktop extra-oral scanner map 400 Amann girrbach)

a) Crowns were designed via (Exocad software) with the following parameters,

b) 0.05mml cement gap starting 1mml from the restoration margins, Milling the designed restoration with (ceramill motion 25 axis machine manufactured by Amann girrbach).

Testing procedures

Each specimen was photographed using USB Digital microscope with a built-in camera (Scope Capture Digital Microscope, Guangdong and China) connected with an IBM compatible personal computer using a fixed magnification of 45X. A digital image analysis system (Image J 1.43U, National Institute of Health, USA) was used to measure and qualitatively evaluate the gap width. Within the Image J software, all limits, sizes, frames and measured parameters are expressed in pixels. Therefore, system calibration was done to convert the pixels into absolute real world units. Calibration was made by comparing an object of known size (a ruler in this study) with a scale generated by the Image J software. Specimens were held in place over their corresponding dies using a specially designed and fabricated holding device. Shots of the margins were taken for each specimen. Then morphometric measurements were done for each shot (3 equidistant landmarks along the cervical circumference for each surface of the specimen) (Mesial, buccal, distal, and lingual) [4]. Readings of each surface of specimen were taken, then the data obtained were collected, tabulated then statistically described in terms of mean and standard deviation (SD) (Table 1).

Figure 1: Showing marginal gap values according to surface treatment and type of resin cement.
Table 1.

Material	Composition	Manufacturer	
1	Zirconia blocks	Amann Girrbach AG, Herrschautswiesen 1 6842 Koblach	Austria
2	Base Paste: Methacrylate monomers, catalyst paste: Methacrylate monomers	3M Deutschland 41453 Neuss-Germany	
3	RelyX ultimate clicker (conventional)	3M ESPE, 2510 Conway Avenue, St. Paul, USA	
4	Methacrylate monomers containing phosphoric acid groups	Kuraray Noritake Dental Inc. 1621 Sakazau, Kurashiki, Okayama, Japan	
5	Methacrylate monomers, Silanated fillers, Alkaline	Kuray Noritake Dental, Okayama, Japan	
6	liquid A: 10-methacryloyloxydecyl dihydrogen phosphate (MDP), 2-hydroxyethyl-methacrylate (HEMA), water	Chemapoxy 150	
7	Epoxy resin	CMB, 43 Haram Street, Giza, Egypt	

Results

Rely x unicem showed the higher insignificant mean of marginal. According to following Table 2.

Table 2.

Resin Cement	Rely x ultimate clicker (conventional)	Rely x unicem (self-adhesive)	p-value		
Mean	SD	Mean	SD		
Gap	No Surface	39.69	15.94	8.85	0.865 NS
	Sand blasting	40.21	8.85	0.001*	
	Silane	49.06	50.41	12.11	0.879 NS
	Sand blasting + MDP	40.1	60.67	18.67	≤0.001*

Discussion

Zirconia ceramics have superior strength, toughness, fatigue resistance and enhanced long-term durability than other ceramics. Oilo et al. [9], Della Bona [10]. CAD/CAM system crowns demonstrated more accurate marginal fit than the traditional fabrication methods Martínez et al. [11]. The treatment of zirconia ceramic surfaces with abrasive alumina enhances the surface roughness resulting in the increase of the effective contact surface between ceramic and resin cement which leads to the increase of the bond strength [12]. also improves micromechanical interlocking resulting to a strong and durable bond between resin/zirconia [13]. Silane coupling primers have been reported to increase the wettability of the surface but there is no chemical reaction occurs between the silane and surface of zirconia which may explain the low bond strength resulting in comparison to the other surface treatment methods [14]. In the present study maximum gap found in zirconia crowns cemented by self-adhesive resin cement after sand blasting with MDP surface treatment, this finding was in agreement with Yuksel et al. [15] which may be due to short setting time of conventional cement as opposed to that of the self-cure resin bonding system [16]. This finding disagreed with Kern et al. [17] which reported that self-adhesive resin cement (RelyX Unicem) produced better marginal continuity, and high adaptation to substrate.
References

1. Christel P, Meunier A, Heller M, Torre JP, Peille CN (1989) Mechanical properties and short-term in vivo evaluation of yttrium-oxide-partially-stabilized zirconia. J Biomed Mater Res 23: 45-61.

2. Olsson KG, Fürst B, Andersson B, Carlsson GE (2003) A long-term retrospective and clinical follow-up study of In-Ceram Alumina FPDs. Int J Prosthodont 16: 150-156.

3. Bateli M, Kern M, Wolkowitz M, Strub JR, Att W (2013) A retrospective evaluation of teeth restored with zirconia ceramic posts: 10-year results. Clin Oral Investig 18: 4.

4. Raggardtaki AJ (2004) Contemporary materials and technologies for all ceramic fixed partial dentures: a review of the literature. J Prostheth Dent 92: 557-562.

5. Dion L, Bordenave L, Levebre F (1994) Physicochemistry and cytotoxicity of ceramics. J Mater Sci Mater Med 5: 18-24.

6. Scotti R, Kantorski KZ, Monaco C, Valandro LF, Giocca L, et al. (2007) SEM evaluation of in situ bacterial colonization on a Y-TZP ceramic: a pilot study. Int J Prosthodont 20: 419-22.

7. Hannink RHJ, Kelly PM, Muddle BC (2000) Transformation toughening in zirconia containing ceramics. J Am Ceram Soc 83: 461-487.

8. Futoshi Komine, Markus B Blatz, Hideo Matsumura (2010) Current status of zirconia-based fixed restorations. J Oral Sci 52(4): 531-539.

9. Oilo M, Gjednet T, Vinnemirem H (2008) The firing procedure influences properties of a zirconia core ceramic. Dent Mater 24(4): 471-475.

10. Della Bona A, Pecho OE, Alessandretti R (2015) Zirconia as a dental biomaterial. Materials 8(8): 4978-4991.

11. Martinez Rus F, Suarez MJ, Rivera B, Pradis G (2011) Evaluation of the absolute marginal discrepancy of zirconia-based ceramic copings. J Prostheth Dent 105: 108-114.

12. Kern M (2009) Resin bonding to oxide ceramics for dental restorations. J Adhes Sci Technol 23: 1097-1111.

13. Xie H, Tay FR, Zhang F, Lu Y, Shen S, et al. (2015) Coupling of 10-methacryloyloxydecyldihydrogenphosphate to tetragonal zirconia: effect of pH reaction conditions on coordinate bonding. Dent Mater 31: 218-225.

14. Lei Zhu, Toru N, Shauzo K (2009) Effect of surface abrasion and silica coating on tensile bond strength of resin cement to zirconia ceramics. J Chin J Dent 9: 23-30.

15. Yüksel E, Zaimoglu A (2011) Influence of marginal fit and cement types on microleakage of all-ceramic crown systems. Braz Oral Res 25(3): 261-266.

16. Gu XH, Kern M (2003) Marginal discrepancies and leakage of all ceramic crowns: Influence of luting agents and ageing conditions. Int J Prosthodont 16: 109-116.

17. Kern M (2009) Resin bonding to oxide ceramics for dental restorations. J Adhes Sci Technol 23: 1097-1111.

This work is licensed under Creative Commons Attribution 4.0 License

To Submit Your Article Click Here: Submit Article

DOI: 10.32474/IPDOAJ.2020.04.000182