THE STRUCTURE OF SYMMETRIC N-PLAYER GAMES WHEN INFLUENCE AND INDEPENDENCE COLLIDE

MIKE STEEL AND AMELIA TAYLOR

Abstract. We study the mathematical properties of probabilistic processes in which the independent actions of \(n \) players (‘causes’) can influence the outcome of each player (‘effects’). In such a setting, each pair of outcomes will generally be statistically correlated, even if the actions of all the players provide a complete causal description of the players’ outcomes, and even if we condition on the outcome of any one player’s action. This correlation always holds when \(n = 2 \), but when \(n = 3 \) there exists a highly symmetric process, recently studied, in which each cause can influence each effect, and yet each pair of effects is probabilistically independent (even upon conditioning on any one cause). We study such symmetric processes in more detail, obtaining a complete classification for all \(n \geq 3 \). Using a variety of mathematical techniques, we describe the geometry and topology of the underlying probability space that allows independence and influence to coexist.

1. Introduction

The study of causality is a long-standing topic at the interface of statistics and the philosophy of science. It is also an area where the mathematical analysis of graphical models has led to some important recent advances (see e.g. [2, 5]). In this paper, we investigate a particular class of symmetric causal processes which achieves two apparently conflicting requirements (‘independence’ and ‘influence’ defined shortly).

In Section 2, we provide formal definitions, but give the main ideas here to facilitate the discussion. Let \(E_1, \ldots, E_n \) be \(n \) dichotomous (two states) random variables with the same state spaces, which we call ‘effects’ and let \(C_1, \ldots, C_n \) be \(n \) independent dichotomous random variables, also with the same state spaces, which we call ‘causes’.

We say that a cause \(C_i \) ‘influences’ effect \(E_j \) if there exists at least one assignment of states for the remaining causes such that a change in the state of \(C_i \) changes the (conditional) probability of at least one state of the \(E_j \) [8]. ‘Independence’ refers to pair-wise probabilistic independence of the effects (either absolutely, or conditional on knowing the state of any one cause).

We explore a symmetric system because it is applicable to any scenario in which the probability of \(E_i \) depends just on how many causes take the same value as \(C_i \). We can view this process as a game where we identify \(C_i \) with the action of some player \(i \); the outcome for each player \(i \) (i.e. \(E_i \)) then depends solely on how many of the other players chose the same action.

For example, suppose there are \(n \) flowering plants in an area of study. For plant \(i \), the cause \(C_i \) might describe whether the plant flowers early or late. The corresponding effect \(E_i \)

Date: May 7, 2014.
Key words and phrases. Conditional independence, causality, quadratic form, homology.
could denote whether or not a plant is pollinated. For example, flowering early with many other flowers might be advantageous because such a mass flowering attracts more bees and increases the probability the plant is pollinated. On the other hand, there may be a limit in the number of bees, so flowering at the same time as a smaller number of plants may also be advantageous. Either way, the probability of an effect (pollination of plant \(i \)) depends on the number of causes which match the cause of that particular effect (i.e. how many other plants flower at the same time as plant \(i \)).

Recently, such processes have been studied in the philosophy of science literature as they provide insights into the extent to which subsets of causes can render effects independent (Theorem 5b of [8]). The authors of [8] illustrated such a process with an entertaining application involving \(n \) people playing a tequila drinking game. In [8] they consider just the case \(n = 3 \). In the game, the \(n \) people simultaneously and independently reveal a clenched fist or an open hand (with equal probability), and the states of the \(n \) hands are regarded as the \(n \) causes. The event that person \(i \) drinks tequila is \(E_i \), for \(1 \leq i \leq n \). The rules for determining if person \(E_i \) drinks when \(n = 3 \) are that if a player’s hand position is unique then they drink with probability \(p_1 = 1 \). For the ties (e.g. a tie of two or three), those in the tie drink independently with probability \(p_2 = 1/2 \) when there are two people in the tie and probability \(p_3 = 1/3 \) when there are three people in the tie (see Fig. 1). The probabilities used here are quite special when we consider influence and independence in relation to each other and the effect on the system. We study what is special and how it can generalize.

We call this extension of this game to \(n \) players the ‘generalized symmetric tequila problem’ (GST) but, as noted in the previous paragraph, the relevance of such processes extends well beyond bar drinking games.

![Figure 1](image_url)

Figure 1. A simple three-player game exhibiting independence and influence, for various values of \((p_1, p_2, p_3)\); including \((1, \frac{1}{2}, \frac{1}{3})\) from [8], and \((3^{-1}, 3^{-2}, 3^{-3})\) from Section 4.2; see text for details.

Our main results assume the system has some symmetry, as explained at the beginning of Section 3 and we define three spaces in this context: \(\text{Inf}_n \), \(\text{Ind}_n \) and \(\text{GST}_n = \text{Inf}_n \cap \text{Ind}_n \). These spaces are formally defined in Section 3 but, in short, are the set of probabilities for the fully symmetric system which lead to influence, independence and both, respectively.
We fully analyze the case \(n = 3 \) (Section 3), we establish a useful equivalence relation on \(\text{Ind}_n \) (Section 6), we show that \(\text{Ind}_n \) is contractible (Section 7) but not convex (Section 6), and that \(\text{GST}_n \) is neither.

We establish a characterization (Proposition 3.1) for the system to be in \(\text{Inf}_n \). We show, via a quadratic form and its Hessian matrix, that \(\text{GST}_n \) contains infinitely many points for any \(n \geq 3 \). We use this structure to investigate the topology and geometry of the space \(\text{GST}_n \), with a main objective being to determine whether or not it is connected. We show that \(\text{GST}_n \) is disconnected for \(n = 3, 4 \) and connected when \(n \geq 8 \) in Theorem 7.3 and Corollary 7.4. The remaining cases where \(n = 5, 6, 7 \) seems an interesting question for future study.

Our results involve an interplay of linear algebra, analysis, combinatorics and topology, including some classical results in these fields, such as Sylvester’s Inertia Theorem, Alexander Duality and Smith’s theorem on periodic maps.

2. Formal Setup

We begin by giving the formal set-up of the system of causes and effects, and proceed to provide formal definitions of influence, and conditional independence.

Let \(E_1, \ldots, E_n \) and \(C_1, \ldots, C_n \) be random variables with two possible states (also called ‘dichotomous’), labeled throughout this paper as 0 and 1 (although our results do not depend on this). We assume that the \(C_i \) are (mutually) independent, and each event \(E_j \) depend on the outcome of the events \(C_i \); accordingly we call the \(C_i \) causes and the \(E_j \) effects. To simplify notation, we write conditional probabilities of the form \(\mathbb{P}(E_i = 1 | \star) \) more simply as \(\mathbb{P}(E_i | \star) \) (i.e. \(E_i = 1 \) is the event that \(E_i \) ‘occurs’). The model we study makes the following assumptions:

(A1) The causes are (mutually) independent, with \(\mathbb{P}(C_i = 1) = r \) for some \(0 < r < 1 \).

(A2) The effects are conditionally independent, given the joint outcome of the causes.

\[
\mathbb{P}(E_i | \bigwedge_{j=1}^n C_j = x_j) = \begin{cases}
p_k, & x_i = 0, \text{ and } k \text{ total causes are in state } 0;
q_k, & x_i = 1, \text{ and } k \text{ total causes are in state } 1.
\end{cases}
\]

Property (A2) states that the probability of \(E_i \) depends only on the number of causes that are in the same state as \(C_i \). Flowers often seem to flower with some dependence on the number of other flowers which have also flowered. In the tequila example, \(p_1 = q_1 = 1, p_2 = q_2 = 1/2 \) and \(p_3 = q_3 = 1/3 \).

In this paper we will mostly deal with the case where \(p_k = q_k \) for all \(k \), and \(r = 1/2 \) (the fully-symmetric (or GST) model), but it is helpful to pose the problem more generally.

2.1. Influence and Independence. While the set-up we explore has the same number of causes as effects, we give the definitions here for arbitrary numbers of causes and effects.

Definition 2.1. [8] A set of \(k \) causes influences a set of \(m \) effects if for each cause \(C_i \), there exists at least one assignment of states for the remaining \(k - 1 \) causes, such that some change in the state of \(C_i \), while holding the values of the remaining \(k - 1 \) causes fixed, changes the probability of at least one state of each of the \(m \) effects.
The influence condition is equivalent to the requirement that none of the causes can be eliminated for any effect — that is, for each \(i\), there is no proper subset \(J\) of \(\{1, \ldots, k\}\) for which \(\mathbb{P}(E_i | \bigwedge_{j=1}^{k} C_j = x_j)\) can be written as a function of \((x_j : j \in J)\), for all \((x_1, \ldots, x_k)\).

We also study probabilistic independence. Recall that two random variables \(X\) and \(Y\) are independent with respect to a third random variable \(Z\) if and only if \(\mathbb{P}(X \land Y | Z) = \mathbb{P}(X | Z)\mathbb{P}(Y | Z)\). In the language of causality and graphical models we would say that \(Z\) screens off \(X\) from \(Y\). This language is natural when looking at graphical models and, to be consistent with that literature, we will use this phrasing as well.

The independence condition is then the requirement that each cause screens off each effect from any other effect.

For example, in the tequila drinking game, any cause \(C_k\) screens off any pair of effects as \(\mathbb{P}(E_i \land E_j | C_k) = \mathbb{P}(E_i | C_k)\mathbb{P}(E_j | C_k)\). However, the reason this example is of interest in \([8]\) is because any pair of causes \((C_{k_1}, C_{k_2})\) do not screen \(E_i\) from \(E_j\) for any pair \((E_i, E_j)\) and yet the set of all three causes screens off any pair of events. This provides a contrast to what happens when \(n = 2\). In that case, Theorem 2 of \([8]\) shows that neither of two dichotomous causes can screen off \(E_1\) from \(E_2\) (i.e. the independence condition fails) whenever the two causes:

(a) have non-zero joint probability for any combination of states,
(b) together screen off \(E_1\) from \(E_2\), and
(c) each influence \(E_1\) and \(E_2\).

We might also wonder whether, when \(n \geq 3\), we can strengthen the independence condition to apply when we condition on more than one cause. However, there is a limit to the extent to which we can do this if we wish to also maintain influence, due to the following result, which follows directly from Corollary 2 of \([8]\).

Proposition 2.2. For any model that satisfies (A1), (A2), influence and independence, any two effects are dependent once we specify the values of any subset of the causes of size \(n - 1\).

3. The fully symmetric (GST) model: structure of the probabilities

The symmetric setting where \(p_k = q_k\) and \(r_k = 1/2\) for all \(k \in \{1, \ldots, n\}\) is of particular interest, as it is tractable and leads to some interesting results when we couple influence with independence. We call the model where \(p_k = q_k\) and \(r_k = 1/2\) the *generalized symmetric tequila* (GST) setting, as it generalizes the tequila example in \([8]\), where \(n = 3\). We note that taking \(r_k = 1/2\) is the natural choice for symmetric games where it is beneficial to each player play a minority action (for example, if \(p_k = q_k\) is decreasing with \(k\)), as this provides a Nash equilibrium strategy.

We explore the case \(n = 3\) further to characterize all the solutions satisfying influence and independence, before turning to general values of \(n\) as it serves to further understand the example in \([8]\), it serves as a ‘boundary’ example for larger \(n\) and we return to this example throughout the text.

Firstly, notice that in the GST setting, \(\mathbb{P}(E_i | C_j = x)\) takes the same value for each choice of \(i, j\) and \(x\) (this probability is given formally in the proof of Proposition 3.2). In particular, \(E_i\) and \(C_j\) are (pairwise) independent, for any pair \(i, j\) (including \(i = j\)). If influence applies then \(E_i\) ‘depends on’ \(C_j\) (and the other causes) but this does not translate through to probabilistic independence.
A second basic observation in the GST setting is that symmetry gives the following:

\[P(E_i) = P(E_i \mid C_k = 0)P(C_k = 0) + P(E_i \mid C_k = 1)P(C_k = 1) \]

\[= P(E_i \mid C_k = 0)\frac{1}{2} + P(E_i \mid C_k = 0)\frac{1}{2} = P(E_i \mid C_k = 0). \]

Therefore, effects \(E_i \) and \(E_j \) are independent if and only if any single cause \(C_k \) screens off the two effects.

In the GST setting, the conditions (A1) and (A2), coupled with influence and independence, can be stated more succinctly as:

- (i) The causes represent independent tosses of a fair coin;
- (ii) The effects are mutually (probabilistically) independent once we specify the states of all the causes;
- (iii) The probability of \(E_i \) depends (exactly) on the number of causes that take the same value as \(C_i \);
- (iv) Each pair of effects is (probabilistically) independent;
- (v) Each cause can influence each effect.

3.1. The cases \(n = 2 \) and \(n = 3 \). In the case where \(n = 2 \), it is easy to verify that any process that satisfies properties (i)-(iv) must have \(p_1 = p_2 \) and so must fail to satisfy the influence condition (v).

The case where \(n = 3 \) is more interesting. We study independence by studying the following equation, which follows from direct computation or Eqn. (3), assuming \(p_k = q_k \) and \(r = 1/2 \).

\[\frac{p_1^2}{16} - \frac{p_2p_1}{4} + \frac{p_3p_1}{8} - \frac{3p_2^3}{16} + \frac{p_2p_3}{4} = 0 \]

Notice that \(p_1 = 1, p_2 = 1/2, p_3 = 1/3 \) is a solution to the final equation which corresponds to the solution presented for the original tequila game in [8]. Also observe that the space of probabilities leading to independence consists of two planes, as shown in Fig. 2.

Further, any solution with \(p_1 = p_3 \) corresponding to the vanishing of the first term \((p_1 - p_3)\) in Eqn. (2) fails to satisfy the influence property. This is an easy example to work through but also follows from the more general Proposition 3.1 below.

The intersection of the two planes is \(p_1 = p_2 = p_3 \), where influence clearly fails. For the remaining points on the plane \(p_1 - 4p_2 + 3p_3 = 0, p_1 \neq p_2 \neq p_3 \) which implies influence (again easy to work through or use Proposition 3.1 below). Therefore the space of probabilities satisfying both influence and independence for \(n = 3 \) consists of two connected pieces formed by removing the line \(p_1 = p_2 = p_3 \) from the plane \(p_1 - 4p_2 + 3p_3 = 0 \) (the fact that this space is disconnected also follows from Theorem 7.3 and Corollary 7.4).

3.2. Characterizing influence. For the fully symmetric model we can characterize when the system has influence. First, however, a brief discussion of influence is useful. We say a particular cause \(C_j \) influences a particular effect \(E_i \) if there exists an assignment of states
Figure 2. The plane $p_1 = p_3$ (green) where influence fails, and the plane $p_1 - 4p_2 + 3p_3 = 0$ (blue) where independence holds.

for the remaining $n-1$ causes such that changing the state of C_j changes the probability of at least one state of E_i. We might consider two types of influence:

(I$_1$) For every $1 \leq i \leq n$, the cause C_i influences the effect E_i.

(I$_2$) For every $1 \leq i, j \leq n$, the cause C_i influences the effect E_j.

The statement (I$_2$) matches Definition 2.1 and is stronger than (I$_1$). However, in thinking about applications, like the flowers blooming early versus late, we are largely concerned with the flower’s cause influencing its own effect which is likely to be subject to natural selection. In the symmetric case, these two types of influence are equivalent, which we establish in the next proposition, along with a characterization of influence in terms of the probabilities p_i.

Proposition 3.1. Assume the GST setting, so $r = 1/2$ and $p_i = q_i$. Then the following are equivalent:

(i) The system satisfies (I$_1$);

(ii) The system satisfies (I$_2$);

(iii) There exists $s \in [n]$ such that $p_s \neq p_{n-s+1}$.

Proof. We argue that (i) \Rightarrow (iii) \Rightarrow (ii) \Rightarrow (i). If a system satisfies (I$_2$), it obviously satisfies (I$_1$), so (ii) \Rightarrow (i).

((i) \Rightarrow (iii)) We prove the contrapositive. Assume that $p_s = p_{n-s+1}$ for all $1 \leq s \leq n$. Then

$$
P(E_i \mid C_i = 0 \bigwedge_{j \neq i} C_j = x_j) = p_{k+1} = p_{n-k} = P(E_i \mid C_i = 1 \bigwedge_{j \neq i} C_j = x_j),$$

where k is the number of zeros occurring in the sequence $(x_j : j \neq i)$. Therefore C_i has no influence on E_i and the system fails (I$_1$).
((iii) ⇒ (ii)) Suppose that \(p_s \neq p_{n-(s+1)} \) for some \(s \in [n] \). As above, since
\[
\mathbb{P}(E_i \mid C_i = 0 \bigwedge_{j \neq i} C_j = x_j) = p_{k+1} \neq p_{n-k} = \mathbb{P}(E_i \mid C_i = 1 \bigwedge_{j \neq i} C_j = x_j),
\]
where \(k \) is the number of zeros occurring in the sequence \((x_j : j \neq i) \), \(C_i \) influences \(E_i \). Observe that if \(p_s \neq p_{n-(s+1)} \) for some \(s \in [n] \), there must exist some \(t \in [n] \) such that \(p_t \neq p_{t+1} \). Let \(j \neq i \in [n] \). Set \(x_k = 0 \) for any \(t-1 \) values of \(k \neq i,j \). Then
\[
\mathbb{P}(E_i \mid C_i = 0, C_j = 0, \bigwedge_{k \neq i,j} C_j = x_j) = p_{t+1} \neq p_t = \mathbb{P}(E_i \mid C_i = 0, C_j = 1, \bigwedge_{k \neq i,j} C_j = 0).
\]
Therefore each \(C_j \) influences each \(E_i \) for all \(i,j \in [n] \) and the system satisfies \((I_2)\).

To aid in further discussions, set \(\text{Inf}_n \) to be the set of points \(\mathbf{p} \in [0,1]^n \) such that the system has influence.

3.3. Characterizing independence

We continue to assume the GST setting, that is \(r = 1/2 \) and \(p_i = q_i \). For the vector \(\mathbf{p} = (p_1, p_2, \ldots, p_n) \), let
\[
(3) \quad \psi(p) = \left(\frac{1}{2^{n-1}} \sum_{k=0}^{n-1} \binom{n-1}{k} p_{k+1} \right)^2 - \frac{1}{2^{n-1}} \sum_{k=0}^{n-2} \binom{n-2}{k} (p_{k+2}^2 + p_{k+1}p_{n-(k+1)}).
\]

The function \(\psi \) allows us to characterize independence as follows.

Proposition 3.2. The effects are pairwise independent (equivalently, each pair of effects is screened off by any cause) if and only if \(\psi(p) = 0 \).

Proof. The symmetry in the GST model implies that for all \(i,j \in \{1, \ldots, n\} \)
\[
\mathbb{P}(E_i) = \mathbb{P}(E_i \mid C_j = x) = \mathbb{P}(E_1 \mid C_1 = 0).
\]
This last probability can be expressed as the sum over \(k = 0, \ldots, n-1 \) of the binomial probability \(\left(\binom{n-1}{k} 2^{-(n-1)} \right) \) that \(k \) of the causes \(C_2, \ldots, C_n \) are also in state 0, times the probability \((p_{k+1}) \) of \(E_1 \) given this event and given that \(C_1 = 0 \). This leads to:
\[
\mathbb{P}(E_i) \mathbb{P}(E_j) = \mathbb{P}(E_1|C_1 = 0)^2 = \left(\frac{1}{2^{n-1}} \sum_{k=0}^{n-1} \binom{n-1}{k} p_{k+1} \right)^2.
\]
Similarly, for any \(i \neq j \)
\[
\mathbb{P}(E_i \land E_j) = \mathbb{P}(E_1 \land E_2|C_1 = 0).
\]
We consider two cases here: either \(C_2 = 0 \) or \(C_2 = 1 \), each of which has probability 1/2. In the first case, \(\mathbb{P}(E_1 \land E_2|C_1 = 0, C_2 = 0) \) can be expressed as the sum over all \(k = 0, \ldots, n-2 \) of the binomial probability \(\left(\binom{n-2}{k} 2^{-(n-2)} \right) \) that \(k \) of the causes \(C_2, \ldots, C_n \) are also in state 0, times the probability \((p_{k+2}^2) \) of \(E_1 \) and \(E_2 \) given this event and given that \(C_1 = 0 \) and \(C_2 = 0 \). This leads to the first term on the right-hand side of the expression for \(\psi(p) \). An analogous argument for the case where \(C_2 = 1 \) leads to the second term on the right. Notice that the factor \(1/2 \) (\(= \mathbb{P}(C_2 = 0) = \mathbb{P}(C_2 = 1) \)) gives the required power of 2 as: \(\frac{1}{2} \cdot 2^{-(n-2)} = 2^{-(n-1)} \).
Again, to aid our discussion set

\[\text{Ind}_n := \{ p \in [0, 1]^n \mid \psi(p) = 0 \}; \]

that is \(\text{Ind}_n \) is the set of all points so that the system has independence. Finally, we set

\[\text{GST}_n := \text{Ind}_n \cap \text{Inf}_n. \]

While our discussion is entirely in the GST setting, when talking about subsets of \([0, 1]^n\) we will only use \(\text{GST}_n\) when the system has both influence and independence.

4. Some special points in \(\text{GST}_n\)

Before we dig deep into the geometric and topological structure of \(\text{GST}_n\), we show the space is non-empty by explicitly establishing a few useful points in the space, starting with \(\text{Ind}_n\) and moving on to points that are in \(\text{GST}_n\).

The quadratic form discussed in the next section gives us an easy way, from details in the proof of Theorem 7.3, to show that there are infinitely many points in \(\text{GST}_n\). However, we found the following explicit points useful for proving that both \(\text{GST}_n\) and \(\text{Ind}_n\) are not convex. These examples also illustrate the challenge of trying to write down explicit points.

4.1. Explicit points in \(\text{Ind}_n\).

If \(p_i = p \) for all \(i \in \{1, \ldots, n\} \) then any two events \(E_i \) and \(E_j \), where \(i \neq j \), are independent (equivalently, they are screened off by a single cause \(C_k \) for any \(k \in \{1, \ldots, n\} \)), i.e. \(\psi(p, p, \ldots, p) = 0 \). It is relatively easy to establish this fact explicitly, but it also follows directly from the fact that \(\psi \) is a quadratic form and \((1, \ldots, 1)\) is an eigenvector for its Hessian matrix with eigenvalue 0 (see Section 5 and Proposition 5.1). This point fails influence by Proposition 3.1.

Furthermore, when \(n \) is odd, easy computations show that \(p_i = p \) (for \(i \) odd) and \(p_i = p' \) (for \(i \) even), where \(0 < p, p' < 1 \) satisfies independence. However, this also fails the influence requirement, since when \(n \) is odd, \(i \) is odd/even if and only if \(n - i + 1 \) is odd/even and therefore Proposition 3.1 implies no influence.

An alternative approach to try to achieve independence and influence simultaneously using two parameters \(p \neq p' \) is to select \(p \) so that influence applies, and then attempt to enforce independence. For example, if we select some \(j \in \{1, \ldots, n\} \) where \(j \neq n/2 \) and define \(p \) by setting:

\[
 p_i = \begin{cases}
 p, & \text{if } i \neq n - j; \\
 p', & \text{if } i = n - j;
 \end{cases}
\]

then it is clear from Proposition 3.1 that influence holds. However, it is easy to show that independence fails in this case, illustrating how challenging it can be to write down points in \(\text{GST}_n\) explicitly.

4.2. Explicit points in \(\text{GST}_n\) with all coordinates non-zero.

In the next two subsections we explicitly compute points in \(\text{GST}_n\) which are particularly useful for showing that \(\text{Ind}_n\) is not convex. For the first set of points set \(p_k = \theta^k \) for some \(0 < \theta < 1 \). Then \(p_i \neq p_j \) for all \(i \neq j \), which implies influence. We claim there exists at least one \(\theta \) that implies
independence of effects. Since we are in the GST setting we use Eqn. (3) and substitute \(\theta^k \) for \(p_k \) to obtain:

\[
\psi(p) = \left(\frac{1}{2^{n-1}} \sum_{k=0}^{n-1} \binom{n-1}{k} \theta^{k+1} \right)^2 - \frac{1}{2^{n-1}} \sum_{k=0}^{n-2} \binom{n-2}{k} ((\theta^{k+2})^2 + \theta^{k+1} \theta^{n-(k+1)})
\]

\[
= \left(\frac{1}{2^{n-1}} \theta(1 + \theta)^{n-1} \right)^2 - \frac{1}{2^{n-1}} (\theta^4 (1 + \theta^2)^{n-2} + 2^{n-2} \theta^n)
\]

\[
= \frac{1}{2^{2n-2}} \theta^2 (1 + \theta)^{2n-2} - 2^{n-1} \theta^2 (1 + \theta^2)^{n-2} - 2^{2n-3} \theta^{n-2}. \tag{4} \]

To determine \(\theta \) such that one cause screens off two events we need to determine when Eqn. (4) is equal to zero. Of course, \(\theta = 0 \) is a solution but it fails to satisfy influence, by Proposition 3.1. So we study the equation

\[
(1 + \theta)^{2n-2} - 2^{n-1} \theta^2 (1 + \theta^2)^{n-2} - 2^{2n-3} \theta^{n-2} = 0. \tag{5}
\]

For \(n = 3 \), we can explore the structure in two ways, using either Eqn. (2) or Eqn. (5). In the case of Eqn. (2), the polynomial factorizes as

\[
\theta^2 (1 - \theta^2)(1 - 4\theta + 3\theta^2) = 0,
\]

and without the \(\theta^2 \) in the case of Eqn. (5). The solutions \(\theta = 0 \) and \(\theta = 1 \) correspond to no influence by Proposition 3.1 and \(\theta = -1 \) is not stochastic. That leaves \(1 - 4\theta + 3\theta^2 = 0 \) which factorizes as \((1 - 3\theta)(1 - \theta) \), showing two solutions: \(\theta = 1 \) and \(\theta = 1/3 \). Therefore, for \(n = 3 \), there is one value of \(\theta \) which is stochastic and all the probabilities involved are distinct, so the causes influence the effects (i.e. the system satisfies influence). Note that \(\theta = 1/3 \) provides a different point in GST than that used in [8].

Set \(f(\theta) = (1 + \theta)^{2n-2} - 2^{n-1} \theta^2 (1 + \theta^2)^{n-2} - 2^{2n-3} \theta^{n-2} \). Notice that

\[
f(0) = 1, \quad f(1) = 2^{2n-2} - 2^{2n-3} - 2^{2n-3} = 0. \]

We use these facts, the behavior of \(f(1/n) \) as \(n \) tends to infinity, and the Intermediate Value Theorem, to study the zeros of \(f(\theta) \). We proceed with a study of \(f(1/n) \) as \(n \) tends to infinity.

\[
f\left(\frac{1}{n}\right) = \left(1 + \frac{1}{n} \right)^{2n-2} - 2^{n-1} \frac{1}{n^2} \left(1 + \frac{1}{n^2} \right)^{n-2} - 2^{2n-3} \frac{1}{n^{n-2}}.
\]

The first term tends to \(e^2 \) as \(n \) becomes large. The last term tends to 0 as \(n \) tends to infinity. The middle term tends to \(-\infty \) since \(2^{n-1} \gg \frac{1}{n} \) and \(\left(1 + \frac{1}{n^2} \right)^{n-2} \) tends to 1. Thus for large \(n \), \(f(1/n) < 0 \). Since \(f(0) = 1 \), the Intermediate Value Theorem establishes that \(f \) has a root between 0 and \(1/n \) for all large \(n \). We note that we can determine numerically that \(f(1/n) > 0 \) for \(n \leq 10 \) and \(f(1/n) < 0 \) for all \(n \geq 11 \).

A few graphs of \(f(\theta) \) in Fig. 3 are instructive. We use a window that makes the roots easy to observe on the interval \([0, 1]\), but this cuts off some of the extreme parts of the curves as \(n \) increases. First we notice that a root between 0 and \(1/n \) appears in the graph of \(f(\theta) \) for \(n = 10 \), but the argument above only guarantees it for \(n \geq 11 \) and it does not appear
in the graph for \(n = 9 \) (or smaller). However, there is another root (and, once \(n \geq 10 \), two other roots) that appear to be converging to 1 rather than 0 and this root already appears for \(n \geq 3 \).

In summary, there exists points in \(\text{GST}_n \) for any \(n \geq 11 \). For \(n \leq 10 \) we can explore the system numerically to determine that \(f \) still has a root in \((0, 1)\). We use these points in our discussion of convexity in Section 6.

4.3. Explicit points in \(\text{GST}_n \) with many zero coordinates. A second way to construct explicit elements of \(\text{GST}_n \) is to look at ‘boundary points’.

Proposition 4.1. For any \(n \geq 4 \), there is exactly one value of \(p_n \) such that the point \(p = (1, 0, 0, 0, \ldots, 0, p_n) \) lies in \(\text{GST}_n \).

Proof. To simplify initial computations, we let \(N = 2^{n-1} \) to obtain:

\[
\psi(p) = \frac{1}{N^2} \left(\sum_{k=0}^{n-1} \binom{n-1}{k} p_{k+1} \right)^2 - \frac{1}{N} \sum_{k=0}^{n-2} \binom{n-2}{k} p_{k+2}^2 - \frac{1}{N} \sum_{k=0}^{n-2} \binom{n-2}{k} p_{k+1} p_{n-(k+1)}.
\]

Thus the quadratic formula gives

\[
p_n = \frac{-2 \pm \sqrt{4 - 4(1 - N)}}{2(1 - N)} = \frac{-1 \pm \sqrt{N}}{1 - N}.
\]

Then for any \(N > 1 \), one root lies between 0 and 1, namely \(\frac{-1 - \sqrt{N}}{1 - N} = \frac{1}{\sqrt{N-1}} \). The point \(p = (1, 0, 0, 0, \ldots, 0, \frac{1}{\sqrt{N-1}}) \) is in \(\text{GST}_n \), since it also satisfies influence as \(1 \neq \frac{1}{\sqrt{2^{n-1} - 1}} \) for any \(n \geq 4 \).
The vector

\[\begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix} \]

is an eigenvector for the eigenvalue \(0\) if and only if the row sums are 0. The sum of the the entries in the \(i\)th row of \(H_n\), for \(i \neq 1, n\) (it does not matter here whether \(n\) is even or odd), using Eqn. (7), is

\[\sum_{j=1}^{n} \frac{2}{N^2} \binom{n-1}{i-1} \binom{n-1}{j-1} = \frac{2}{N} \binom{n-2}{i-2} - \frac{2}{N} \binom{n-2}{i-1} = \frac{2}{N} \binom{n-1}{i-1} - \frac{2}{N} \binom{n-1}{i-1} = 0. \]

This uses \(\sum_{j=1}^{n} \binom{n-1}{j-1} = 2^{n-1} = N\) and \(\binom{n-2}{i-2} + \binom{n-2}{i-1} = \binom{n-1}{i-1}\). The arguments for \(i = 1, n\) are similar, with simpler computations.

\[\square \]
Remark 5.2. Observe from Eqn. (7) that the Hessian matrix \(H_n = vv^T - X \), where \(v \) is the vector with \(i^{th} \) entry equal to \(\frac{\sqrt{2}}{N} \binom{n-1}{i-1} \). The matrix \(X \) has non-zero entries on the diagonal, except for the \((1,1)\) location, which is 0, and there are non-zero entries on the opposite diagonal given by \(i + j = n \). For example, below are the matrices \(X \) for \(n = 4 \) and \(n = 5 \), in both cases scaled by multiplying by \(N/2 = 2^{n-2} \). These two cases also illustrate the differences in \(X \) for odd vs. even values of \(n \). Finally, it is helpful to keep the shape of this matrix in mind for many of the following arguments.

\[
\begin{bmatrix}
0 & 0 & \binom{2}{0} & 0 \\
0 & \binom{2}{1} & 0 & 0 \\
\binom{2}{1} & 0 & \binom{2}{0} & 0 \\
0 & 0 & 0 & \binom{2}{1}
\end{bmatrix},
\begin{bmatrix}
0 & 0 & 0 & \binom{3}{0} & 0 \\
0 & \binom{3}{1} & 0 & 0 \\
\binom{3}{1} & 0 & \binom{3}{0} & 0 \\
0 & 0 & 0 & \binom{3}{1}
\end{bmatrix}
\]

Lemma 5.3. The matrix \(X \) has rank \(n \).

Proof. If \(i \neq 1, n-1, n \) or, when \(n \) is even, \(\frac{n}{2} \), then rows \(i \) and \(n-i \) each have two entries in the same columns, which are \(i \) and \(n-i \). To simplify the discussion, assume, without loss of generality, that \(i < \frac{n}{2} < n-i \), and we indicate row \(j \) in the matrix by \(R_j \). The entries in \(R_i \) are \(\frac{2}{N} \binom{n-2}{i-2} \) and \(\frac{2}{N} \binom{n-2}{i-1} \) respectively, and in \(R_{n-i} \) they are \(\frac{2}{N} \binom{n-2}{n-i-1} = \frac{2}{N} \binom{n-2}{i-1} \) and \(\frac{2}{N} \binom{n-2}{n-i-2} \) respectively. The standard row operation replacing \(R_{n-i} \) with \(-\frac{n-i}{i-1} R_i + R_{n-i} \) places a 0 in the \(i^{th} \) entry in \(R_{n-i} \), and

\[
\frac{2}{N} \binom{n-2}{i-2} \left(\frac{-n+1}{(n-i-1)(i-1)} \right) \neq 0
\]

in the \(n-i^{th} \) entry. Then swap rows 1 and \(n-1 \), and observe that row \(n \), and, when \(n \) is even, row \(\frac{n}{2} \) have only one non-zero entry in column \(n \), respectively column \(\frac{n}{2} \). Therefore \(X \) is row-equivalent to an upper triangular matrix where all the diagonal entries are non-zero. \(\Box \)

Proposition 5.4. For all \(n \geq 4 \), the eigenspace corresponding to the eigenvalue 0 has dimension 1.

Proof. It is enough to prove that \(\text{rk}(H_n) = n-1 \). Since \(H_n = vv^T - X \), the subadditivity of matrix rank applied to \(-X = H_n = vv^T \) gives \(\text{rk}(X) \leq \text{rk}(H_n) + \text{rk}(vv^T) \). Since \(\text{rk}(vv^T) = 1 \) and \(\text{rk}(X) = n \), \(n-1 \leq \text{rk}(H_n) \). Since 0 is an eigenvector, \(n-1 = \text{rk}(H_n) \). \(\Box \)

Remark 5.5. Since \(\psi(x) = x^T Q_n x \) is a quadratic form, we can diagonalize \(Q_n \) using an orthogonal matrix \(P \), that is \(P^T Q_n P = D \), where \(D \) is a diagonal matrix of real eigenvalues of \(Q_n \). Since \(H_n = 2Q_n \), we could equivalently write \(\psi(x) = \frac{1}{2} x^T H_n x \) and diagonalize \(H_n \) instead. Furthermore, all the results in this section apply equally to \(Q_n \), but are easier to prove and think about in terms of \(H_n \). However, in later arguments, we use \(Q_n \) instead of \(H_n \) to avoid having to keep track of the factor \(\frac{1}{2} \).
We prove in Theorem 7.3 that the connectedness of GST$_n$ depends on the number of strictly positive and strictly negative eigenvalues of H_n. We establish here that H_n has “enough” of each type of eigenvalue for $n \geq 6$. For ease of notation, we use $H = H_n$ in the following discussion.

Theorem 5.6. For all $n \geq 6$, H (equivalently, Q_n) has at least two strictly positive and at least two strictly negative eigenvalues.

Proof. Let $A = H + \epsilon B$ where $\epsilon > 0$ and

$$B_{ij} = \begin{cases} 1, & \text{if } i + j = n + 1; \\ 0, & \text{otherwise.} \end{cases}$$

Let A_k denote the submatrix of A consisting of the first k rows and columns of A so that $\det(A_k)$ is the k^{th} leading principal minor of A. Then $A_k = H_k$ for all $1 \leq k \leq \lfloor \frac{n}{2} \rfloor$. Therefore, for all $1 \leq k \leq \lfloor \frac{n}{2} \rfloor$, $A_k = (vv^T)_k - X_k$ for a vector v and a matrix X, where X_k is diagonal and its first entry is 0 (see Remark 5.2). Hence elementary row operations on A_k transform it into an upper triangular matrix T such that $T_{11} = A_{11} = \frac{1}{N^2}$ and $T_{ii} = X_{ii} = \frac{1}{N}(n-2) \neq 0$ for all $2 \leq i \leq k$. Thus $\det(A_k) \neq 0$ for all $1 \leq k \leq \lfloor \frac{n}{2} \rfloor$.

If $k \geq \lfloor \frac{n}{2} \rfloor + 1$, then $\det(A_k)$ is a polynomial in ϵ (for example, when $k = \lfloor \frac{n}{2} \rfloor + 1$, and n is odd, ϵ appears in the $(\lfloor \frac{n}{2} \rfloor + 1, \lfloor \frac{n}{2} \rfloor + 1)$ entry). Set $p_k(\epsilon) = \det(A_k)$ for $\lfloor \frac{n}{2} \rfloor + 1 \leq k \leq n$. This is a finite set of polynomials, each with a finite number of zeros. Call that set of zeros Z, and let

$$\epsilon_Z = \min(\{|z|: z \in Z\} - \{0\}),$$

which is strictly positive (since Z is finite). Then for any $\epsilon \in (0, \epsilon_Z)$ we have that $\det(A_k) \neq 0$ for all $\lfloor \frac{n}{2} \rfloor + 1 \leq k \leq n$. Therefore all the leading principal minors of A are non-zero (including $\det(A) = \det(A_n)$).

Since all of the leading principal minors of A are non-zero, A has a unique LU-decomposition [6, Theorem 2.13]. Since A is symmetric, the LU-decomposition can be transformed into an LDLT-decomposition where L is lower triangular and D is diagonal [6, Theorem 2.14 and discussion]. Furthermore, simply writing this expression out gives the following recursive formulae for the entries of D and L, assuming $i > j$:

$$D_j = A_{jj} - \sum_{k=1}^{j-1} L_{jk}^2 D_k \quad (9)$$

$$L_{ij} = \frac{1}{D_j} \left(A_{ij} - \sum_{k=1}^{j-1} L_{ik} L_{jk} D_k \right). \quad (10)$$

We show that $D_1 > 0$, $D_i < 0$ for $2 \leq i \leq \lfloor \frac{n}{2} \rfloor$ and $D_{\lfloor \frac{n}{2} \rfloor + 1} > 0$. Therefore D has at least two strictly negative eigenvalues and two strictly positive eigenvalues for $n \geq 6$. By Sylvester’s Theorem [10], A and D have the same index (or inertia) and hence A also has at least two strictly negative eigenvalues and two strictly positive eigenvalues for $n \geq 6$. Before digging into computing D_i we argue that H must also have at least two strictly negative eigenvalues and two strictly positive eigenvalues for $n \geq 6$.
Over the complex numbers, roots of a polynomial are continuous functions of the coefficients of the polynomial \([3, \text{ Theorem } (1,4)]\) which implies that each eigenvalue of \(A\) corresponds to an eigenvalue of \(H\). More formally, let \(p_A(x) = x^n + c_1x^{n-1} + \cdots + c_n\) denote the characteristic polynomial of \(A\) and \(p_H(x) = x^n + d_1x^{n-1} + \cdots + d_n\) be the characteristic polynomial of \(H\). By construction, \(d_i = c_i + \epsilon_i\) for \(1 \leq i \leq n\) and each \(\epsilon_i\) approaches 0 as \(\epsilon\) (in the definition of \(A\)) goes to 0. Suppose that:

\[
p_A(x) = \prod_{k=1}^q (x - a_i)^{m_i}
\]

with the distinct \(a_i \in \mathbb{R}\), since \(A\) is symmetric. Then for any

\[
0 < r_k < \min\{|a_k - a_i|, \ i = 1, 2, \ldots, k - 1, k + 1, \ldots q\},
\]

there exists a \(\delta\) such that if \(|c_j - d_j| < \delta\) for all \(1 \leq j \leq n\), then \(p_H(x)\) has \(m_k\) roots in a circle of radius \(r_k\) centered at \(a_k\). Since \(H\) is also symmetric, its roots are also real and if \(a_k\) is positive (resp. negative), then for small enough values of \(r_k\), the corresponding roots of \(p_H(x)\) are also positive (resp. negative). Let \(\epsilon\) (in the definition of \(A\)), be less than \(\epsilon_Z\) from [8], and also small enough so that if \(A\) has at least two strictly positive eigenvalues and at least two strictly negative eigenvalues for \(n \geq 6\), then \(H\) does also.

We finish by showing that \(D_1 > 0, D_i < 0\) for \(2 \leq i \leq \left\lfloor \frac{n}{2} \right\rfloor\) and \(D_{\left\lfloor \frac{n}{2} \right\rfloor + 1} > 0\) for \(A\).

Throughout this discussion, we assume \(i > j\) and use Eqns. [9] and [10]. For all \(i \neq n-j+1\), \(A_{ij} = H_{ij}\). Thus \(D_1 = H_{11} = \frac{2}{N^2} > 0\). Furthermore,

\[
L_{i1} = \frac{1}{D_1} \left(D_1 \begin{pmatrix} n - 1 \\ i - 1 \end{pmatrix} \begin{pmatrix} n - 1 \\ 0 \end{pmatrix}\right) = \begin{pmatrix} n - 1 \\ i - 1 \end{pmatrix}, \text{ for } 1 \leq i \leq n - 1.
\]

Therefore

\[
A_{ij} = H_{ij} = D_1L_{i1}L_{j1}, \text{ for all } i \neq n-j, n-j+1.
\]

We use this fact repeatedly throughout the remaining discussion. Also note that \(i \neq n-j, n-j+1\) for all \(1 \leq i, j \leq \left\lfloor \frac{n}{2} \right\rfloor\). Hence,

\[
L_{ij} = -\frac{1}{D_j} \left(\sum_{k=1}^{j-1} L_{ik}L_{jk}D_k\right) \text{ for all } i \neq n-j, n-j+1.
\]

Then, by induction on \(j\), \(L_{ij} = 0\) for all \(1 < i, j \leq \left\lfloor \frac{n}{2} \right\rfloor\) since \(L_{i2}\) is trivially zero and then the sum for \(L_{ij}\) only includes expressions where the second index is strictly less than \(j\). Therefore

\[
D_i = H_{ii} - \sum_{k=1}^{j-1} L_{ijk}^2D_k = -\frac{2}{N} \left(\frac{n - 2}{i - 2}\right) < 0, \text{ for all } 1 < i \leq \left\lfloor \frac{n}{2} \right\rfloor.
\]

Thus we have \(D_1 > 0\) and, for \(n \geq 6\), at least two strictly negative eigenvalues for \(D\).

Finally, we need to argue that \(D_{\left\lfloor \frac{n}{2} \right\rfloor + 1} > 0\). While the arguments are similar, they differ slightly for even and odd values of \(n\) and are somewhat technical so we placed them in the appendix. When \(n \geq 6\) is odd, we get

\[
D_{\left\lfloor \frac{n}{2} \right\rfloor + 1} = \frac{2}{N} \left(\frac{n - 2}{\left\lfloor \frac{n}{2} \right\rfloor}\right)\left(\frac{2}{\left\lfloor \frac{n}{2} \right\rfloor - 1}\right) + \epsilon > 0,
\]
and when \(n \geq 6 \) is even, \(\left\lfloor \frac{n}{2} \right\rfloor = \frac{n}{2} \), so that

\[
D_{\frac{n}{2}+1} = \frac{2}{N} \left(\frac{n-2}{t-1} \right) \left(\frac{n-1}{\frac{n}{2} - 2} \right) + \frac{\epsilon^2 N}{(n-2)} > 0.
\]

\(\square \)

6. The Geometry of \(\text{GST}_n \)

The space \(\text{GST}_n \) is a bounded (but not closed) subspace of \(\mathbb{R}^n \). Fig. 2 shows that when \(n = 3 \), this space consists of a pair of two-dimensional components, each of which is convex.

Remark 6.1. For any \(n \), if \(p \in \text{GST}_n \) then \(1 - p = (1 - p_1, 1 - p_2, \ldots, 1 - p_n) \in \text{GST}_n \) as may be verified either algebraically or, more directly, by the symmetry of the states 0 and 1 in the GST problem. Thus the map \(p \mapsto 1 - p \) is an involution from the solution space to itself; in Fig. 2 this maps each connected component onto the other. This involution also moves every point, since the unique fixed point has \(p_i = 1/2 \) for all \(i \) and this point fails influence.

Furthermore, if \(p \in \text{GST}_n \) lies in the GST solution space then for any constant \(0 < c \leq 1 \), the scaled vector \(c \cdot p \in \text{GST}_n \), since \(\psi \) is a homogeneous quadratic in the coordinates of \(p \).

These observations are part of the following more general result.

Proposition 6.2.

(i) For any real values \(x \) and \(y \) and real vector \(p = (p_1, \ldots, p_n) \),

\[
\psi(x p + y 1) = x^2 \psi(p).
\]

(ii) In particular, if \(p \in [0,1]^n \) satisfies independence then \(x p + y 1 \) does also, provided this vector also lies in \([0,1]^n \).

Proof. Part (i) holds for \(y = 0 \), since \(\psi \) is a homogeneous quadric polynomial, so it suffices to establish part (i) when \(x = 1 \). In that case, if we replace \(p_i \) by \(p_i + y \) in \(\psi \), we see that the coefficient of \(y^2 \) is \(\psi(y 1) = 0 \), and the coefficient of \(y^0 \) is \(\psi(p) \). The remaining terms correspond to the coefficient of \(y^1 \). Checking that this coefficient is equal to 0 requires more careful algebraic analysis (and the use of the combinatorial identity: \(\binom{n-2}{k-1} + \binom{n-2}{k} = \binom{n-1}{k} \)), but the computation is straightforward. This establishes part (i). Part (ii) now follows from Proposition 3.2. \(\square \)

This proposition has a few consequences of note. First, it provides an alternative argument for the point made in Remark 6.1. However, it proves further that if \(p \in \text{Ind}_n \) then the entire line between \(p \) and \(1 - p \) also lies in \(\text{Ind}_n \). Note that any such line must pass through the ‘middle point’ of \([0,1]^n \), namely

\[m = (1/2, 1/2, \ldots, 1/2), \]

and this point will play an important role in forthcoming arguments.

Furthermore, if we want to explore points near \(m \in \text{Ind}_n \) (which is helpful for the proof of Theorem 7.3) — say, points of the form \(p = (1/2 + x_1, \ldots, 1/2 + x_n) \) where \(-1/2 < x_i < 1/2\) — then \(p \in \text{Ind}_n \) if and only if \(\psi(x_1, \ldots, x_n) = 0 \). Note that \((x_1, \ldots, x_n)\) may or may not be in \(\text{Ind}_n \) since the coordinates may or may not all be non-negative. The question of which of
these points are in GST\(_n\) is a bit more subtle but, generally, they will be so if \(p \in \text{GST}_n\) to start with.

Remark 6.3. Let \(p, q \in \text{Ind}_n\). We note that Proposition 6.2 gives an equivalence relation on \(\text{Ind}_n\). We say \(p \sim q\) if and only if \(p = aq + b1\) for some \(a, b \in \mathbb{R}\) with \(a \neq 0\). For example, the two points given in Section 4.3 are equivalent, as are the two solutions to GST\(_3\) shown in Fig. 1 (use \(a = \frac{9}{4}\) and \(b = \frac{1}{4}\)). Also note that if \(p, q \in [0, 1]^n\) and \(p \sim q\) then \(p \in \text{GST}_n\) if and only if \(q \in \text{GST}_n\).

The more general expression \(\psi(xp + yq)\) for two points \(p\) and \(q\) in \(\mathbb{R}^n\) is helpful for investigating the convexity of \(\text{Ind}_n\) and \(\text{GST}_n\), and is useful for our next result regarding the equivalence relation \(\sim\).

\[
\psi(xp + yq) = (xp + yq)^TQ_n(xp + yq) = x^2\psi(p) + y^2\psi(q) + xyCT(p, q)
\]

where the ‘cross term’ \(CT\) is given by

\[
(11) \quad CT(p, q) = 2p^TQ_nq.
\]

It is the *cross term* that we are concerned with in our study of GST space since the line between two arbitrary points \(p\) and \(q\) in \(\text{Ind}_n\) lies in \(\text{Ind}_n\) if and only if the cross term \(CT(p, q)\) is zero.

6.1. A geometrically special point in \(\text{Ind}_n\).

Proposition 6.4. For any \(n \geq 3\), a point \(x \in \text{Ind}_n\) has the property that for all \(p \in \text{Ind}_n\) the line segment from \(p\) to \(x\) lies in \(\text{Ind}_n\) if and only if \(x \sim 1\).

Proof. The ‘if’ direction is readily established. If \(x \sim 1\) and \(p \in \text{Ind}_n\) then Eqn. (11) and the identity \(Q_n1 = 0\), implies that \(CT(p, x) = 0\). Thus, \(\psi(tp + (1 - t)x) = 0\) for all \(t \in [0, 1]\), and thus each point on this line lies in \(\text{Ind}_n\).

For the ‘only if’ part, suppose that \(x \in [0, 1]^n\) satisfies the property described (we will say that \(x\) is *permissible*). For all \(q \in [-1/3, 1/3]^n\) for which \(\psi(q) = 0\) we have \(m + q \in \text{Ind}_n\) by Proposition 6.2(ii). Thus, since \(x \in \text{Ind}_n\) and by the special assumption concerning this point, we have:

\[
0 = CT(x, m + q) = CT(x, m) + CT(x, q) = 0 + CT(x, q),
\]

which gives

\[
(12) \quad CT(x, q) = 0
\]

for all \(q \in [-1/3, 1/3]^n\) for which \(\psi(q) = 0\). Let \(P\) and \(D\) be as given in Remark 5.5. If we let (fixed) \(y = P^Tx\) and (variable) \(z = P^Tq\), then for all \(z \in B = P^T[-1/3, 1/3]^n\) for which \(z^TDz = 0\) (i.e. \(\psi(q) = 0\)) we have (from (12)):

\[
(13) \quad 2y^TDz = 0.
\]
By Proposition 5.4, we can order the diagonal entries \(D \) as \(d_1, \ldots, d_n \) so that \(d_1 = 0 \), and \(d_j \neq 0 \) for \(j > 1 \). Set \(c_i = d_i y_i \) for each \(i \). Then for all \(z \) in \(B \) for which

\[
\sum_{i=2}^{n} d_i z_i^2 = 0, \tag{14}
\]

we must also have (from Eqn. (13)):

\[
\sum_{i=2}^{n} c_i z_i = 0. \tag{15}
\]

Now, \(D \) not only has \(n - 1 \) non-zero eigenvalues, but at least one is strictly positive and at least one is strictly negative. This is readily verified for \(3 \leq n \leq 5 \), and for \(n \geq 6 \) it is an immediate consequence of the stronger result stated in Proposition 5.6. Consequently, for any \(j > 1 \), the equation \(\sum_{i=2}^{n} d_i z_i^2 = 0 \) has a solution for \(z \in B \) with \(z_j \neq 0 \).

Now, suppose that \(c_j \neq 0 \) for some value of \(j \). Let \(z \) be a vector in \(B \) that satisfies Eqn. (14) and has \(z_j \neq 0 \), and let \(z' \) be the vector obtained from \(z \) by flipping the sign of \(z_j \) while leaving the \(z_i \) values unchanged for all \(i \neq j \). Then \(z' \) still lies in \(B \) and satisfies Eqn. (14) but \(\sum_{i=2}^{n} c_i z_i \) and \(\sum_{i=2}^{n} c_i z'_i \) cannot both be zero, since they differ by a term of magnitude \(2|c_i z_i| \neq 0 \). Thus if \(x \) is permissible then \(c_i \) must be zero for all \(i > 1 \) and since \(d_i \neq 0 \) for all \(i > 1 \), we must have:

\[
y_2 = y_3 = \ldots y_n = 0.
\]

Thus, the set of possible values of \(y \) for which \(x \) is permissible is precisely the set

\[
\{ y = (y, 0, 0, \ldots, 0) : P y \in [0, 1]^n \},
\]

and this is simply \(\{p \cdot 1 : p \in [0, 1] \} \), since \((1, 1, \ldots, 1) \) is the eigenvector of \(H_n \) corresponding to \(1 \).

\[\square \]

6.2. Convexity. As previously noted, Proposition 6.2 shows that if \(p \in \text{GST}_n \) then \(1 - p \) and the line segment \((1 - t)p + t(1 - p) \), for \(0 \leq t \leq 1 \), between them are all in \(\text{Ind}_n \). Easy computations show that the point \(m = (1/2, \ldots, 1/2) \) lies on the line \((1 - t)p + t(1 - p) \) for any point \(p \) but \(m \) fails influence and hence is not in \(\text{GST}_n \). Therefore \(\text{GST}_n \) is not convex. However, in this example, all the points still lie in independence space and so it might still seem possible that \(\text{Ind}_n \) is convex. Using the cross term given in Eqn. (11) and the points from Section 5 we show, more strongly, that there are points in \(\text{GST}_n \) where the line between them does not lie in \(\text{Ind}_n \) and hence independence space is not convex either.

If \(n \geq 10 \), then we can use two different solutions to \(f(\theta) = 0 \) to test the convexity of the space by evaluating CT. The polynomial \(f(\theta) \) has three solutions when \(n = 10 \), two of which are approximately \(0.100499 \) and \(0.86659 \). If we set \(p = (0.100499, 0.100499^2, \ldots, 0.100499^{10}) \) and \(q = (0.86659, 0.86659^2, \ldots, 0.86659^{10}) \), we have two points in \(\text{GST}_n \) such that \(CT(p, q) = 30.0527 \). Thus every point on the line \(tp + (1 - t)q \), except for \(p \) and \(q \), is outside independence space and hence outside \(\text{GST}_n \).

For smaller values of \(n \), we get only one point in \(\text{GST}_n \) from looking at \(f(\theta) \), but we can use one of the points \((0, 1, \ldots, 1, \sqrt{\frac{n-2}{n-1}}) \) or \((1, 0, \ldots, 0, \sqrt{\frac{n-2}{n-1}}) \) along with the one point obtained using \(f(\theta) \) to produce points where the line between them lies entirely outside \(\text{GST}_n \).
Let \(p \in \text{GST}_n \). Proposition 6.2 shows that \(\frac{1}{\max p}p \in \text{Ind}_n \) and that every point on the line segment connecting \(p \) and \(\frac{1}{\max p}p \) is in independence space. Furthermore since each point on the line is a non-zero multiple of \(p \), they satisfy influence and hence the entire line is in \(\text{GST}_n \).

These results show that there are pairs of points for \(n \geq 4 \) in \(\text{GST}_n \) where (i) the line between them lies entirely outside the space, (ii) exactly one point lies outside the space and (iii) the line is entirely inside the space.

7. The Topology of \(\text{GST}_n \)

As noted previously, the space \(\text{GST}_n \) is a bounded (but not closed) subspace of \(\mathbb{R}^n \). Fig. 2 shows that when \(n = 3 \), this space consists of a pair of two-dimensional components, each of which is contractable.

7.1. Contractable. Recall that a space is contractable if it can be continuously shrunk to a point (i.e. if the identity map is homotopic to the constant map).

Proposition 7.1. For each \(n \geq 3 \), \(\text{Ind}_n \) is contractable, but \(\text{GST}_n \) is not.

Proof. For \(\text{Ind}_n \), select any point \(x \in \text{Ind}_n \) for which \(x \sim 1 \) (e.g. \(x = 0 \) or \(m = (\frac{1}{2}, \ldots, \frac{1}{2}) \)). Then we have the homotopy:

\[
F : \text{Ind}_n \times [0,1] \to \text{Ind}_n \n\]

\[
(p, t) \mapsto (1 - t)p + tx,
\]

for which \(F(\cdot, 0) \) is the identity map, \(F(\cdot, 1) \) maps \(\text{Ind}_n \) to \(x \), and \(F(p, t) \in \text{Ind}_n \) for all \(t \in [0,1] \) by Proposition 6.2.

An early classical topological result of Smith [7] implies that any subset \(S \) of Euclidean space is not contractable if there is a continuous function \(f : S \to S \) that has period two (i.e. \(f \circ f \) is the identity map) and which has no fixed point. For \(\text{GST}_n \), the map \(p \mapsto 1 - p \) is such a function, and since \(\text{GST}_n \) is a subset of Euclidean space it follows that \(\text{GST}_n \) is not contractable. \(\square \)

7.2. Connectedness of \(\text{GST}_n \). Since \(\text{Ind}_n \) is contractable, it is connected. The connectedness of \(\text{GST}_n \) is much more subtle and depends on the eigenvalues of the Hessian matrix \(H_n \) of \(\psi \). Consider any two points \(p, q \in \text{GST}_n \). By Proposition 6.4 there are straight-line-paths from \(p \) to \(m = (\frac{1}{3}, \ldots, \frac{1}{3}) \), and from \(m \) to \(q \) and the concatenation of these two paths lies entirely in \(\text{Ind}_n \). However, exactly one point on this concatenated path, namely \(m \), fails to lie in \(\text{Inf}_n \). It is not enough to show there is a ‘perturbed’ path within \(\text{Ind}_n \) from \(p \) to \(q \) that avoids \(m \); we must also avoid all points not in \(\text{Inf}_n \). To study this further, we require one more topological result.

Lemma 7.2. Let \(M \) be a compact manifold and \(I \) an open interval. Let \(p = (x, t) \in M \times I \) and \(q = (y, s) \in M \times I \). Then there exists \(\phi : M \to M \times I \) such that \(M \) is homeomorphic to \(\text{im}(\phi) \) and \(p, q \in \text{im}(\phi) \).

Proof. Let \(f : M \to I \) be any continuous function such that \(f(x) = t \) and \(f(y) = s \). Set \(\phi : M \to M \times I \) to be \(\phi(v) = (v, f(v)) \) for any \(v \in M \). By construction, \(\phi \) is continuous, since \(f \) is continuous. It is one-to-one, since it is the identity on the first coordinate of the
image. Since M is compact, $M \times I$ is Hausdorff and ϕ is continuous and one-to-one, ϕ^{-1} is also continuous \cite[Corollary 5.9.2]{9}. Hence M is homeomorphic to the image of ϕ. \hfill \square

Theorem 7.3. If the quadratic form Q_n (equivalently, the Hessian matrix H_n) has at least two strictly positive and at least two strictly negative eigenvalues and $n \geq 8$, then GST$_n$ is connected. If H_n has only one strictly positive or one strictly negative eigenvalue, then GST$_n$ is disconnected.

Proof. Let Inf$_n^c$ denote the linear subspace of \mathbb{R}^n of dimension $\left\lceil \frac{n}{2} \right\rceil$ defined by:

$$x_i - x_{n-i+1} = 0 \text{ for all } i \in [n].$$

Consider any two points $p, q \in$ GST$_n$. We first show that, if $n \geq 8$ and Q_n has certain eigenvalues, there is a path from p to q that lies entirely in GST$_n$. We then use related structures to argue that if Q_n has exactly one strictly positive or strictly negative eigenvalue then GST$_n$ is disconnected.

Since $m = \frac{1}{2}I$, Proposition 6.2 (or Taylor expansion using the fact that m is a zero of ψ and a critical point) implies that

$$\psi(m + x) = x^T Q_n x,$$

where Q_n is the matrix corresponding to the quadratic form ψ (see Section 5 and Remark 5.5).

Let P and D be as in Remark 5.5 (i.e. $P^T Q_n P = D$, where D is the diagonal matrix of real eigenvalues of Q and P is a real orthogonal matrix). Let $y = P^T x$ (so $x = Py$). We then have:

$$\psi(m + x) = x^T Q_n x = y^T P^T Q_n P y = y^T D y. \tag{15}$$

For our argument, we need a few subsets of \mathbb{R}^n which depend on D and P. The first two are

$$T_1 = \{ P^T x : x \in \text{Inf}_n^c \},$$

and

$$T_2 = \{ P^T x : x \in [-1/3, 1/3]^n \}.$$

Since P has full rank, it follows that T_1 is a linear subspace of \mathbb{R}^n of dimension $\left\lceil \frac{n}{2} \right\rceil$, while T_2 is a convex polytope of dimension n, containing 0. The others are defined in the next paragraph.

By Proposition 5.4, D has zero as an eigenvalue with geometric multiplicity one. Suppose that D has k strictly positive eigenvalues, and l strictly negative eigenvalues, so that $k + l + 1 = n$. By Theorem 5.6, $k > 0$ and $l > 0$. We may assume that the first eigenvalue is 0 and that the next k eigenvalues $\lambda_1, \ldots, \lambda_k$ are all strictly positive, while the final l eigenvalues, μ_1, \ldots, μ_l are all strictly negative. For any $s > 0$ and $t \geq 0$, the set

$$S_{s,t} := \{ y \in \mathbb{R}^n : -s < y_1 < s, \sum_{i=1}^{k} \lambda_i y_i^2 = t \text{ and } \sum_{j=1}^{l} (-\mu_j) y_{k+j}^2 = t \}$$

is a set of solutions to the equation:

$$y^T D y = 0.$$

Observe that we have the homeomorphism $S_{s,t} \cong I \times S^{k-1} \times S^{l-1}$. If $\min\{k, l\} > 1$, then $S_{s,t}$ is the cross product of an open interval – call it I_s – and a compact orientable
We then look at what happens if \(\min\{k, l\} = 1 \) (say \(k = 1 \), so \(l = n - 2 \)) then \(S_{s,t} \) is the cross product of the following three spaces: an open interval \(I_s \), two points (i.e. \(S^0 \)), which comes from the equation \(\lambda_1 y_2^2 = t \) and an \((n - 3)\)-sphere.

We first assume that \(k, l > 1 \) and \(n \geq 8 \), and continue the proof that \(\text{GST}_n \) is connected. We then look at what happens if \(\min\{k, l\} = 1 \) and argue that \(\text{GST}_n \) is disconnected. Assume that \(k, l > 1 \).

Set \(s, t' > 0 \) sufficiently small so that \(S_{s,t'} \subseteq T_2 \) (the requirement that \(S_{s,t'} \subseteq T_2 \) is so that \(m + x \) for \(x \in S_{s,t'} \) lies in \([0,1]^n\), which is a requirement of Proposition 6.2(ii) for \(m + x \) to be in \(\text{Ind}_n \)). Let \(y_p = c_1 P^t p \) and \(y_q = c_2 P^t q \) where \(c_1 > 0 \) and \(c_2 > 0 \) are chosen sufficiently small to ensure that, for some \(t \in (0, t') \), we have: \(y_p, y_q \in S_{s,t} \).

Write \(y_p = (u_p, u_p) \) and \(y_q = (v_q, v_q) \). By Lemma 7.2, there exists \(\phi : M_t \to I_s \times M_t = S_{t,s} \) such that \(\phi(u_p) = y_p \) and \(\phi(v_q) = y_q \) and \(M_t \) is homeomorphic to the image of \(\phi \). For ease of notation and acknowledging the abuse, we set \(M_t = \text{im}(\phi) \).

Set \(A = M_t \cap T_1 \). Thus \(A \) is a closed and bounded subspace of \(\mathbb{R}^{[n/2]} \). Therefore, \(A \) is a proper closed subset of \(M_t \) as long as \(m = n - 3 > [n/2] \), which is true for \(n \geq 8 \). In addition, \(A \) is locally contractable (it is a CW-complex).

In the following discussion, we compute all homology modules over \(\mathbb{Z} \). Consider the terminal end of the long exact sequence relating homology to relative homology:

\[
\cdots \to H_1(M_t, M_t - A) \to H_0(M_t - A) \to H_0(M_t) \to H_0(M_t, M_t - A) \to 0.
\]

By Alexander Duality [1, Proposition 3.46] we have:

\[
H_i(M_t, M_t - A) \cong H^{m-i}(A).
\]

Therefore,

\[
H_1(M_t, M_t - A) \cong H^{m-1}(A) \text{ and } H_0(M_t, M_t - A) \cong H^m(A).
\]

For \(t > 0 \), \(0 \notin M_t \) and therefore \(0 \notin A \). However, \(0 \in \mathbb{R}^{[n/2]} \), so \(A \) is a proper closed subset of \(\mathbb{R}^{[n/2]} \) and hence it is a proper closed subspace of a compact manifold (sphere) of dimension \([n/2]\) as well. Since \([n/2]\) \(\leq m - 1 \) for \(n \geq 8 \), by [4, Proposition 6.5], \(H^{m-1}(A) = H^m(A) = 0 \) (we are using that \(A \) is a CW-complex so Čech cohomology coincides with singular cohomology). Hence the exactness of the sequence in (16) implies

\[
H_0(M_t - A) \cong H_0(M_t) \cong \mathbb{Z}.
\]

Therefore, \(M_t - A \) is connected.

By the connectivity of \(M_t - A \) and the fact that \(\phi \) is a homeomorphism, there is a path in \(\text{GST}_n \) from \(m + P y_p \) to \(m + P y_q \). We can then sandwich this path between the straight-line-paths from \(p \) to \(m + P y_p \) and from \(m + P y_q \) to \(q \) (which are in \([0,1]^n\) for sufficiently small \(c_1, c_2 \) and in \(\text{GST}_n \) by Theorem 6.2 and Remark 6.3) to obtain the required path in \(\text{GST}_n \) from \(p \) to \(q \).

Now assume that \(\min\{k, l\} = 1 \). Without loss of generality, take \(k = 1 \) and hence \(l = n - 2 \).

In this case, \(S_{s,t} \cong I_s \times S^0 \times S^{n-3} \). The \(S^0 \) consists of the two points which come from the equation \(\lambda_1 y_2^2 = t \). Thus we see that \(S_{s,t} \) for \(t > 0 \) is two copies of \(I_s \times S^{n-3} \), each located in the \(y_2 \) coordinate at the values \(\pm \sqrt{\frac{t}{\lambda_1}} \). Let \(S^1_{s,t} \) and \(S^2_{s,t} \) denote the two copies of \(I_s \times S^{n-3} \) for a given \(s \) and \(t \). Then for \(t > 0 \) and all \(s \geq 0 \), these spaces are disconnected and therefore the union over all \(s \geq 0 \), \(t > 0 \) of \(S^1_{s,t} \) is disconnected from the union over all \(s \geq 0 \), \(t > 0 \) of \(S^2_{s,t} \).
The union of the spaces $S_{s,t}$ over all $s, t \geq 0$ is the set of all solutions to $y^T D y = 0$, which is connected by joining $S^1_{s,0}$ and $S^2_{s,0}$ in the shared space $S^1_{s,0} = S^2_{s,0}$. However, $S^1_{s,0} = S^2_{s,0}$ is all points of the form $y = (y, 0, \ldots, 0)^T$ and $P y = y \left(\frac{1}{\sqrt{n}}, \ldots, \frac{1}{\sqrt{n}} \right)^T$, which is in Inf_n. Thus GST_n is disconnected, since the set of solutions to $y^T D y = 0$ includes GST_n (by Eqn. (15)), and we have shown that elements of GST_n lie in two disjoint components of this space. □

Corollary 7.4. GST_n is disconnected for $n = 3, 4$ and GST_n is connected for $n \geq 8$.

Proof. Direct computation shows that H_3 has one positive and one negative eigenvalue and H_4 has one positive eigenvalue and two negative eigenvalues and thus GST_3 and GST_4 are disconnected (of course we also know this for $n = 3$ from direct computation given in Section 3.1). Theorem 5.6 shows that for $n \geq 8$, H_n has at least two strictly negative and two strictly positive eigenvalues and therefore GST_n is connected. □

8. **Concluding comments**

We consider it an interesting question to determine whether GST_n for $n = 5, 6, 7$ is connected or disconnected. Theorem 5.6 implies that H_n (equivalently, Q_n) has at least two positive and two negative eigenvalues for $n = 6, 7$. Direct computation shows the same is true for $n = 5$, but the dimensions of M_t and A do not suffice for the homology argument given in the proof of Theorem 7.3.

Further exploration of the topology of GST_n may be of interest, for example classification up to homotopy or homeomorphism. Also, note that the (two) connected components of GST_3 are contractable, and we leave this question open for $n = 4$ (and $5 \leq n \leq 7$, if they are disconnected).

We gave a thorough analysis of the GST set-up where $r = \frac{1}{2}$ and $p_k = q_k$. One possible approach to the study of the probabilities where influence and independence collide for more general values of r, p_k, and q_k might be to treat r, p_k, q_k as variables in a ring $R = k[r, p_1, \ldots, p_n, q_1, \ldots, q_n]$ and use polynomial ring theory. From a practical point of view, the flexibility to allow r to vary seems interesting.

9. **Acknowledgments**

We thank the Burroughs Wellcome Fund Collaborative Research Travel Grant, and the New Zealand Marsden Fund for funding.

References

1. A. Hatcher (2001). Algebraic Topology. Cambridge University Press, New York.
2. G. Hofer-Szabó, M.Rédei, L.E. Szabó (2013). The principle of the common cause. Cambridge University Press.
3. M. Marden, (1949). The Geometry of the Zeros of a Polynomial in a Complex Variable. The American Mathematical Society, New York.
4. W.S. Massey (1980). Singular Homology Theory. Springer-Verlag, New York Inc.
5. J. Pearl (2000). Causality. Models, Reasoning and Inference. Cambridge University Press, Cambridge UK.
6. R. Piziak and P.L. Odell (2007). Matrix Theory: From Generalized Inverses to Jordan Form. Taylor & Francis Group, LLC, Florida.
7. P.A. Smith (1934). A theorem on fixed points for periodic transformations Ann. Math. 35(3): 572–578.
8. E. Sober and M. Steel (2012). Screening-off and causal incompleteness: A no-go theorem, Brit. J. Phi. Sci. (in press).
9. W.A. Sutherland (1975). Introduction to metric and topological spaces, 1975 Oxford University Press, London.
10. J.J. Sylvester (1852). A demonstration of the theorem that every homogeneous quadratic polynomial is reducible by real orthogonal substitutions to the form of a sum of positive and negative squares. Philosophical Magazine (Ser. 4) 4(23): 138–142.

10. APPENDIX

We include here the details for the computations of $D_{\lfloor \frac{n}{2} \rfloor + 1}$ from the end of Section 5. As in that section, we set $H = H_n$ to clean up the notation.

We need to argue that $D_{\lfloor \frac{n}{2} \rfloor + 1} > 0$. We recall a few of the formulae found in the proof of Theorem 5.1 since we use them all:

\[
D_1 = H_{11} = \frac{2}{N^2},
\]

\[
L_{11} = \binom{n-1}{i-1}, \text{ for } 1 \leq i \leq n-1,
\]

\[
A_{ij} = H_{ij} = D_1 L_{i1} L_{j1}, \text{ for all } i \neq n-j, \ n-j+1,
\]

\[
L_{ij} = -\frac{1}{D_j} \left(\sum_{k=2}^{j-1} L_{ik} L_{jk} D_k \right) \text{ for all } i \neq n-j, \ n-j+1,
\]

\[
L_{ij} = 0 \text{ for all } 1 < i, j \leq \lfloor \frac{n}{2} \rfloor,
\]

\[
D_i = -\frac{2}{N} \binom{n-2}{i-2} < 0, \text{ for all } 1 < i \leq \lfloor \frac{1}{2} \rfloor.
\]

We first assume that n is odd, so that $\lfloor \frac{n}{2} \rfloor + 1 + \lfloor \frac{n}{2} \rfloor = n$. For ease of notation, let $t = \lfloor \frac{n}{2} \rfloor + 1$. Then:

\[
L_{tt-1} = \frac{1}{D_{t-1}} \left(H_{tt-1} - \sum_{k=1}^{t-2} L_{tk} L_{t-1k} D_k \right).
\]

However, $L_{t-1k} = 0$ for $2 \leq k \leq t-2 < \lfloor \frac{n}{2} \rfloor$ since $t-1 = \lfloor \frac{n}{2} \rfloor$. Using that $D_{t-1} = -\frac{2}{N} \binom{n-2}{t-3}$, we have:

\[
L_{tt-1} = -\frac{1}{2} \frac{\binom{n-2}{t-1} \binom{n-1}{t-2} - \frac{2}{N} \binom{n-2}{t-1} \binom{n-1}{t-1} - \binom{n-1}{t-2} \binom{n-1}{t-1} \frac{2}{N^2}}{\binom{n-2}{t-3}}.
\]

\[
= \frac{(n-2)(t-1)}{(n-2)(t-3)}.
\]
Therefore:

\[D_t = H_{tt} - \sum_{k=1}^{t-1} L_{tk}^2 D_k \]

\[= \frac{2}{N^2} \binom{n-1}{t-1}^2 - \frac{2}{N} \binom{n-2}{t-2} + \epsilon - \binom{n-1}{t-1}^2 \frac{2}{N^2} - L_{tt-1} D_{t-1} \]

\[= - \frac{2}{N} \binom{n-2}{t-2} + \epsilon - \binom{n-2}{t-3} \left(- \frac{2}{N} \binom{n-2}{t-3} \right) \]

\[= \frac{2}{N} \left(- \binom{n-2}{t-2} + \frac{\binom{n-2}{t-1}^2}{\binom{n-2}{t-3}} \right) + \epsilon \]

\[= \frac{2}{N} \left(- \left(\left\lfloor \frac{n}{2} \right\rfloor - 1 \right) + \left(\left\lfloor \frac{n}{2} \right\rfloor + 1 \right) \left(\left\lfloor \frac{n}{2} \right\rfloor \right) \right) + \epsilon \]

\[= \frac{2}{N} \left(\left\lfloor \frac{n}{2} \right\rfloor \right) \left(\frac{2}{\left\lfloor \frac{n}{2} \right\rfloor - 1} \right) + \epsilon > 0. \tag{18} \]

where (18) uses the symmetry of the binomial.

Now assume \(n \) is even, so that \(\left\lfloor \frac{n}{2} \right\rfloor = \frac{n}{2} \). This time, let \(t = \frac{n}{2} \). Then the entries of \(L \) we need to be concerned with are \(L_{t+1,t-1} \) and \(L_{t+1,t} \). In both cases, as in Eqn. (17), the sum has all terms zero, except for the first one. We note that \(\epsilon \) potentially appears in \(L_{t+1,k} \), but \(L_{tk} \) or \(L_{t-1k} \) are still zero and hence the full sum is zero. Therefore:

\[L_{t+1,t} = \frac{\epsilon}{D_t} = -\frac{\epsilon N}{2 \binom{n-2}{t-2}}, \]

and

\[L_{t+1,t-1} = \binom{n-2}{t} \binom{n-2}{t-3}. \]
We are now ready to compute D_{t+1}.

\[
D_{t+1} = A_{t+1,t+1} - \sum_{k=1}^{t} L_{t+1,k}^2 D_k
\]

\[
= -\frac{2}{N} \left(\frac{n-2}{t-1} \right) - L_{t+1,t-1}^2 D_{t-1} - L_{t+1,t} D_t
\]

\[
= -\frac{2}{N} \left(\frac{n-2}{t-1} \right) - \left(\frac{n-2}{t-3} \right)^2 \left(-\frac{2}{N} \left(\frac{n-2}{t-3} \right) \right) - \left(-\frac{\epsilon N}{2^{(n-2)/(t-2)}} \right)^2 \left(-\frac{2}{N} \left(\frac{n-2}{t-2} \right) \right)
\]

\[
= -\frac{2}{N} \left(\frac{n-2}{t-1} \right) + \left(\frac{n-2}{t-3} \right)^2 + \frac{\epsilon^2 N}{2^{(n-2)/(t-2)}}
\]

\[
= -\frac{2}{N} \left(\frac{n-2}{t-1} \right) + \frac{(n/2 + 1)(n-2)!}{(n/2 - 2)(n/2)!} \left(\frac{n/2 - 1}{(n/2 - 2)} \right) + \frac{\epsilon^2 N}{2^{(n-2)/(t-2)}}
\]

\[
= -\frac{2}{N} \left(\frac{n-2}{t-1} \right) + \frac{(n/2 + 1)(n-2)!}{(n/2 - 2)(n/2)!} \left(\frac{n-2}{t-1} \right) + \frac{\epsilon^2 N}{2^{(n-2)/(t-2)}}
\]

\[
= \frac{2}{N} \left(\frac{n-2}{t-1} \right) \left(\frac{n-1}{2(n/2 - 2)} \right) + \frac{\epsilon^2 N}{2^{(n-2)/(t-2)}} > 0.
\]