Viperidae snakebites in Ecuador: A review of epidemiological and ecological aspects

Angélíca Ochoa-Avilésa,b, Odalys S. Heredia-Andinob, Samuel A. Escandónb, Cristopher A. Celorio-Carvajalb, María C. Arias-Peláezb, Fausto Zaruma-Torresb,e, Cleópatra A. da S. Caldeirac,d, Andreimar M. Soaresc,d, Saulo L. Da Silvab,e,f*

a Department of Biosciences, Faculty of Chemical Sciences, University of Cuenca, Cuenca, Azuay, Ecuador
b College of Biochemistry and Pharmacy, Faculty of Chemical Sciences, University of Cuenca, Cuenca, Azuay, Ecuador
c Biotechnology Laboratory for Proteins and Bioactive Compounds from the Western Amazon, Oswaldo Cruz Foundation Rondonia, Porto Velho, Rondonia, Brazil
d Graduate Program in Experimental Biology (PGBIOEXP), Federal University of Rondonia (UNIR), Porto Velho, Rondonia, Brazil
e Health Innovation Center - (CIS), Cuenca, Azuay, Ecuador
f LAQV - REQUIMTE, University of Porto, Porto, Portugal

\textbf{A R T I C L E I N F O}

Keywords:
Epidemiology of snakebites
Viperidae
Snakebite envenoming
Ecuadorian vipers
Ecuador

\textbf{A B S T R A C T}

Snakebite envenoming is a neglected disease of public health concern. Most snakebite accidents occur in developing countries. In Ecuador, 17 viper species are responsible for 99% of official accidents, and ten species are in critical conservation states. This report analyzes the snakebite incident cases and mortality rates in Ecuador between 2014 and 2019. The data obtained from the national surveillance system suggests that the incidence and mortality rates remained constant. The geographic region with the highest incidence rates is the Amazonian region. National policies are urgently needed to prevent snakebite accidents and to protect snakes in danger of extinction.

Snakebite envenoming continues to be a neglected disease. This problem affects approximately five million people each year worldwide (Chippaux, 2017a; Perry et al., 2020) and constitutes a significant health problem in tropical Latin American regions (Chippaux, 2017b; Gutierrez et al., 2017; Marcussi et al., 2011). Particularly in Ecuador, the last available scientific publication estimated incidence and mortality rates of 9.5 and 0.058 cases per 100,000 inhabitants between 2014 and 2016 (Chippaux, 2017a). It is necessary to improve our understanding of this critical health problem to identify research gaps that can guide public health programs in Ecuador. This report comprises two sections: an updated summary of snakebite incident cases and deaths in Ecuador between 2014 and 2019, and an analysis of the snakes’ species distribution and conservation status in the country.

A literature review was carried out to summarize the available data regarding the snakes’ species distribution and conservation in the country. Snakebite incidence rates and mortality rates were calculated using secondary data. Cumulative data of snakebite cases of the last week of each year was obtained from the National Surveillance System webpage (Gaceta Epidemiológica Ecuador, n.d.). Snakebite deaths data was obtained from the causes of death datasets in the general population publicly available on the National Institute of Statistics webpage (INEC, n.d.). The total population and population per region were obtained from the inter-census projections from the last census (INEC, n.d.). Data were analyzed and managed using Origin 8 v8.0891, Origin Lab Corporation, Northampton, MA USA.

Ecuador is located in the northwestern region of South America; its continental territory comprises three geographic regions. The Coastal region concentrates 49% of the total population (altitude: 0–1200 m above sea level; temperature: 20–40 °C, and pluviometric indexes below 1000 mm/year). The Andean region houses 45% of the Ecuadorian population (altitude: 1200–6400 m above sea level; temperatures usually below 15 °C, and pluviometric indexes below 500 mm/year). Finally, the Amazonian region is the least populated, with 5% of the Ecuadorian inhabitants (altitude below 750 m above sea level; temperature above 28 °C, and pluviometric indexes between 2000 and 3000 mm/year) (INEC, n.d.; Derrotero, 2005) (Fig. 1A and 1B).

The Andean mountains shape the Ecuadorian landscape with heterogeneous environments, climatic conditions, and diverse flora and...
Fig. 1. Human demographics and snake population distribution in Ecuador: A) Political map of Ecuador: the continental area comprises three regions with its provinces (Coast: provinces 1–7; Andean: provinces 8–17; and Amazon: provinces 18–23) (Modified from Yañez-Arenas et al., 2018), B) Viperidae Family snake species in the country and altitudes where they are found. The species in critical state of preservation are denoted: Endangered (En), Critically Endangered (CEn), Vulnerable (Vu), Date Deficient (DD) (Birskis-Barros, 2019; Carrillo et al., 2005). C) National snakebite incidence rate per year (per 100,000 inhabitants). D) Snakebite incidence rate per year per geographic region (per 100,000 inhabitants). E) National snakebite mortality rate per year (per 100,000 inhabitants). E) Snakebite mortality rate per year per geographic region per (100,000 inhabitants).
fauna in the lowlands compared to the highlands (INEC, n.d.; Derrottero, 2005). The last explains the country’s vast biodiversity, considered as one of the most megadiverse in the world (Moura et al., 2014; Esquerre et al., 2019; Almeida et al., 2020).

Ecuador’s exuberant biodiversity is also reflected in the variety of its venomous snakes, exemplified by the presence of Elapidae and Viperidae families in the country. The Elapidae family comprises two genera and 19 species distributed at different altitudes, from cero to 2100 m above sea level: Hydrophis platarius and 18 Micrurus species. Among the Micrurus species, seven (anconalis, bocourtii, mpiratius decussates, dumelii trasandinus, multicoloratus, tschudi olsoni, mertensi) are distributed in the Coastal region, and eleven in the Amazonian region (peruvianus, peteiri, steindacheri, melanotus, obscurus, ortoni, scutiventris, langsdorffi, helleri, ornatissimus, surinamensis). In Ecuador, however, snakebite accidents caused by the Elapidae family are unusual (less than 1% of total accidents), with M. miapititus decussates and M. helleri being the most common species responsible for these accidents (Torres-Carvajal et al., 2020; MSP, 2017; Valencia et al., 2016).

On the other hand, the Viperidae family is concentrated in Ecuador’s Coastal (8 species) and the Amazonian regions (8 species). This family comprises five distinct genera and 17 species that can be found in several provinces at different altitudinal levels, ranging from sea level up to approximately 3000 m: Bothriechis (schlegeli), Bothrocophus (campbelli, hyoprona, microphthalum), Bothrops (asper, atrox, bilineata, brazili, loja, nus, osbornei, pulcher, punctatus, taeniatus), Lachesis (acochorda, muta), Porthidium (arcosae, nasutum) (Table 1) (Torres-Carvajal et al., 2020; Valencia et al., 2016; Alencar et al., 2016). The majority of snakebite accidents in Ecuador are caused by the species B. asper, B. bilineata and L. muta (MSP, 2017; WHO, 2010; Yanez-Arenas et al., 2018). Fig. 1B presents the species distribution by geographic region. The species are separated from each other by the Andes and have no contact between them, except Bothrops lojanus, which can be found in these three Ecuadorian regions. It is possible that the movement of this species occurs through the Inter-Andean valley of Vilcabamba (Torres-Carvajal et al., 2020; Salazar-Valenzuela et al., 2018; Valencia et al., 2016) (Fig. 1B and Table 1).

In Ecuador, from 2014 to 2019 the average snakebite incident and mortality rates remained constant (average cases: 1506 [range: 1400–1800]; average incidence rate: 9.1 [range: 7.6–11.1] cases per 100,000 inhabitants; mortality rate: 0.07 [range: 0.03–0.10] per 100,000 inhabitants) as compared to the reported cases from Chippaux et al. (2017a; Chippaux, 2017b). On the contrary, in the Amazonian Region, where only 5% of the national population lives, only one species is in grave danger of extinction (B. pucher), and two are in a vulnerable state (B. microphthalum and L. muta) (Fig. 1B) (Birkis-Barrós, 2019; Carrillo et al., 2005). From a geographical perspective, the Coastal region is a highly limited strip of land in an east-west direction between the Pacific Ocean and the Andes. Therefore, both humans and snakes tend to move in the north-south direction, which increases the possibilities of interactions between them.

On the other hand, this geographic restriction observed in the Coastal region is absent in the Amazonian region. The only restriction that exists in the Ecuadorian Amazon is the Andes that limits it on the west side. Thus, both human and snake populations have greater freedom and can disperse to the Peruvian, Colombian, and Brazilian Amazon, decreasing the likelihood of contact. In the Amazonian environment, the multi-environmental complexity might protect biodiversity in general, including snake populations (Antonelli et al., 2018; Ritter et al., 2018).

Ecuador is extremely rich in biodiversity; thus, it must be treated with extreme care to avoid the loss of this valuable heritage, including snake environments. Nevertheless, a crucial aspect to consider is the species’ conservation in the context of essential economic activities. Therefore, behavioral, ecological, and environmental research is needed to understand the population’s dynamics to support the actions of environmental management without impacting economic growth. In this sense, this study offers an insight of the accidents and deaths caused by snakebites in Ecuador. Still, several questions remain unanswered. Future research should identify the real impact of snakebite envenoming in affected communities, and the perceptions of victims about health care access and pertinence. Programs are urgently needed to: (i) improve the national surveillance system reporting, by avoiding inconsistencies and providing a more detailed description (i.e., species involved), (ii) implement programs aimed at educating the population concerning the importance of snake conservation, (iii) evaluate the diagnosis and treatments provided by primary health care practitioners, and (iv) develop appropriate interventions to prevent snakebite accidents. The Ecuadorian Ministry of Health should invest in improving primary
Genus	Species	Photo	Common Names	Province localizations (See Fig. 1A)
Bothriechis	schlegelii	![Photo by Omar Torres-Carvajal](image1)	Eyelash palm-pit vipers; Cushili; Víbora papagayo; Zampiña; Campanita.	1; 2; 3; 4; 5; 7; 9; 10; 11; 15; 16
Bothrocophias	campbelli	![Photo by David Valenzuela-Salazar](image2)	Ecuadorian toad headed pit vipers; Boca de sapo; Curruncha.	1; 2; 9; 10; 11; 13; 14
Hoploprora	microphthalmus	![Photo by Wolfgang Wuster](image3)	Amazonian toad headed pit vipers; Nariz de Puerco; Cabeza de candado; Ushuali.	18; 19; 20; 21; 22; 23
Bothrops	asper	![Photo by Museo de Zoologia QCAZ](image4)	American Lancehead; Cuatroariceps; Equis; Pudridora; Macanchi mariposa.	1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 13; 14; 15; 16; 17
	atrux	![Photo by Wolfgang Wuster](image5)	South American lanceheads; Equis negra; Shishi; Macanchi.	18; 19; 20; 21; 22; 23
	bilineata	![Photo by Museo de Zoologia QCAZ](image6)	Two-striped forest-pitvipers; Lorito; Palo verde; Nukam; Tobenaka.	18; 19; 20; 21; 22

(continued on next page)
Genus	Species	Common Names	Province localizations (See Fig. 1A)
brazili	lojanus	Brazil’s lanceheads; Equis de Brazil; Pitala; Kara napi; Yawayawaa.	18; 20; 21; 22; 23
	osbornei	Osborne’s lanceheads; Llucti negra.	10; 11; 14

(continued on next page)
Genus	Species	Photo	Common Names	Province localizations
Lachesis	muta	![Image](https://example.com/image1)	Amazon bushmasters; Verrugosa; Sol; Motolo; Cofase.	18; 19; 20; 21; 22; 23
	acrochorda	![Image](https://example.com/image2)	Chocooan bushmasters; Guacama; Verrugosa	1; 2; 3; 10
		![Image](https://example.com/image3)		
		![Image](https://example.com/image4)		
		![Image](https://example.com/image5)		
		![Image](https://example.com/image6)		
		![Image](https://example.com/image7)		
		![Image](https://example.com/image8)		
		![Image](https://example.com/image9)		
		![Image](https://example.com/image10)		
		![Image](https://example.com/image11)		
		![Image](https://example.com/image12)		
		![Image](https://example.com/image13)		
		![Image](https://example.com/image14)		
		![Image](https://example.com/image15)		
		![Image](https://example.com/image16)		
		![Image](https://example.com/image17)		
		![Image](https://example.com/image18)		
		![Image](https://example.com/image19)		
		![Image](https://example.com/image20)		
		![Image](https://example.com/image21)		
		![Image](https://example.com/image22)		
		![Image](https://example.com/image23)		

Table 1 (continued)
health care services and provide high-quality training to health professionals and community members.

Ethical statement

International ethical guidelines for scientific papers were followed in the preparation of this manuscript.

Declaration of competing interest

The authors declare that they have no competing interests.

CRediT authorship contribution statement

Angélica Ochoa-Avilés: Conceptualization, Formal analysis, Investigation, Methodology, Project administration, Writing - original draft, Writing - review & editing. *Odalys S. Heredia-Andino*: Formal analysis. *Samuel A. Escandón*: Formal analysis. *Cristopher A. Celorio-Carvajal*: Investigation, Methodology. *María C. Arias-Peláez*: Investigation, Methodology. *Fausto Zaruma-Torres*: Investigation, Methodology. *Cleopatra A. da S. Caldeira*: Investigation, Methodology. *Andreimar M. Soares*: Investigation, Methodology. *Saulo L. Da Silva*: Conceptualization, Investigation, Methodology, Project administration, Writing - original draft, Writing - review & editing.

References

Alencar, L.R.V., et al., 2016. Diversification in vipers: phylogenetic relationships, time of divergence and shifts in speciation rates. Mol. Phylogenet. Evol. 105, 50-62.
Almeida, J.R., et al., 2020. Assessing the stability of historical and desiccated snake venoms from a medically important Ecuadorian collection. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 230, 108702.
Antonelli, A., et al., 2018. Amazonia is the primary source of Neotropical biodiversity. Proc. Natl. Acad. Sci. U.S.A. 115, 6034-6039.
Birksk-Barros, I., et al., 2014. Ecological and conservation conservation of rarity in new world pitvipers. Diversity 11, 147-162.
Carrillo, E., et al., 2005. Lista roja de los reptiles del Ecuador. Fundación Novum Milenium, UICN-Sur, UICN-Comité Ecuatoriano, Ministerio de Educación y Cultura. Quito Ecuador.
Chippaux, J.-P., 2017a. Incidence and mortality due to snakebite in the Americas. PLoS Neglected Trop. Dis. 11 (6), e0005662.
Chippaux, J.-P., 2017b. Snakebite envenomation turns again into a neglected tropical disease! J. Venom. Anim. Toxins Incl. Trop. Dis. 23, 38.
Derrotero, 2005. De la Costa Continental e Insular del Ecuador. Quito Ecuador. Instituto Oceanográfico de la Armada INOCAR Retrieved from.
Eckhardt, M., et al., 2018. Universal health coverage in rural Ecuador: a cross-sectional study of perceived emergencies. West. J. Emerg. Med. 19 (5), 889-900.
Esquerre, D., et al., 2019. How mountains shape biodiversity: the role of the Andes in biogeography, diversification, and reproductive biology in South America’s most species-rich lizard radiation (Squamata: liolaemidae). Evolution 73, 214-230.
Gutierrez, J.M., et al., 2017. Preclinical evaluation of the efficacy of antivenoms for snakebite envenoming: state-of-the-art and challenges ahead. Toxins 9, INEC (Instituto Nacional de Estadística y Censos). (n.d.). Proyecciones poblacionales. Instituto nacional de Estadistica Y censos. from. https://www.ecuadorencifras.gob.ec/proyecciones-poblacionales/. (Accessed 6 February 2020).
Laines, J., et al., 2014. Toxicity of Bothrops sp snake venoms from Ecuador and preclinical assessment of the neutralizing efficacy of a polyspecific antivenom from Costa Rica. Toxicon 88, 34-37.
Marcussi, S., et al., 2011. Evaluation of the genotoxicity of Crotalus durissus terrificus snake venom and its isolated toxins on human lymphocytes. Mutat. Res. Genet. Toxicol. Environ. Mutagen 274, 59-63.
Moura, A.A., et al., 2014. Purification and biochemical characterization of three myotoxins from Bothrops matogrossensis snake venom with toxicity against Leishmania and tumor cells. BioMed Res. Int. Article number 195356, MSP (Ministerio de Salud Pública), 2017. Manejo clínico del envenenamiento por mordeduras de serpientes venenosas y picaduras de espinas. Protocolo basado en evidencia. https://www.coursera.com/file/41672301/Manejo-clinico-del-envenenamiento.pdf/.
Perry, G., Lacy, M., Dan, L., 2020. Snakes, snakebites, and humans. In: Angelici, F.M., Rossi, L. (Eds.), Problematic Wildlife II: New Conservation and Management Challenges in the Human-Wildlife Interactions. Springer International Publishing, pp. 561-580.
Rittler, C.D., et al., 2018. Locality or habitat? Exploring predictors of biodiversity in Amazonia. Ecography 42, 321-333.
Salazar-Velazuela, D., et al., 2018. Divergence of tropical pitvipers promoted by independent colonization events of dry montane Andean habitats. J. Biogeogr. 46, 1826-1840.
Scheldann, E., et al., 2018. Why snakebite patients in Myanmar seek traditional healers despite availability of biomedical care at hospitals? Community perspectives on reasons. PLoS Neglected Trop. Dis. 12 (2), e0006299.
Teran, M.C., Lomonte, B., 2016. Actividad letal de seis venenos de serpientes de importancia médica en el Ecuador. Rev. Ecuat. Med. Cienc. Biol. 37, 25-30.
Torres-Carvajal, O., et al., 2020. Reptiles del Ecuador from. https://bioweb.bio/faunawe b/reptilaweb/ListaspeciesPorFamilia/115. (Accessed 6 February 2020).
Valencia, J.H., et al., 2016. Serpientes Venenosas del Ecuador Fundación Herpetológica Gustavo Orcés. Universidad de Texas Quito Ecuador. WHO (World Health Organization), 2010. Guide Lines for the Production Control and Regulation of Snake Antivenom Immunglobulins, pp. 1-134.
Yanez-Arenas, C., et al., 2018. Estimating geographic patterns of ophidism risk in Ecuador. Neotropical Biodiversity 4, 55-61.