ON THE CATENARITY OF VIRTUALLY NILPOTENT MOD-\(p\) IWASAWA ALGEBRAS

BY

WILLIAM WOODS

Department of Mathematics, Ben-Gurion University, Be’er Sheva 84105, Israel

e-mail: billywoods@gmail.com

ABSTRACT

Let \(p > 2\) be a prime, \(k\) a finite field of characteristic \(p\), and \(G\) a nilpotent-by-finite compact \(p\)-adic analytic group. Write \(kG\) for the completed group ring of \(G\) over \(k\). We show that \(kG\) is a catenary ring.

Introduction

Fix a prime \(p\), a commutative pseudocompact ring \(k\) (e.g., \(\mathbb{F}_p\) or \(\mathbb{Z}_p\)) and a compact \(p\)-adic analytic group \(G\). (Such groups are perhaps most accessibly characterised as those groups \(G\) which are isomorphic to a closed subgroup of \(GL_n(\mathbb{Z}_p)\) for some \(n\).) The completed group ring \(kG\) (sometimes written \(k[[G]]\)) is defined by

\[
kG := \lim_{\rightarrow} k[G/N],
\]

where the inverse limit ranges over all open normal subgroups \(N\) of \(G\), and \(k[G/N]\) denotes the ordinary group algebra of the (finite) group \(G/N\) over \(k\). This ring satisfies an obvious universal property [24 Lemma 2.2], and modules over it characterise continuous \(k\)-representations of \(G\) (which has the profinite topology). When \(k = \mathbb{F}_p, \mathbb{Z}_p\) or related rings, this is often called the Iwasawa algebra of \(G\).

Received August 21, 2017 and in revised form June 29, 2018
Iwasawa algebras (and related objects, such as locally analytic distribution algebras [21]) have recently become a very active research area due to their number-theoretic interest, for instance in the p-adic Langlands programme: see [20], for example. They are also interesting objects of study in their own right, as an interesting class of noetherian rings: see [3] for a 2006 survey of what is known about these rings.

Our main result is the following.

Theorem A: Take $p > 2$. Let G be a nilpotent-by-finite compact p-adic analytic group, and let k be a finite field of characteristic p. Then kG is a catenary ring.

Recall that a ring R is said to be catenary if any two maximal chains of prime ideals with common endpoints have the same length, i.e., whenever

$$P = P_1 \prec P_2 \prec \cdots \prec P_r = P',$$
$$P = Q_1 \prec Q_2 \prec \cdots \prec Q_s = P'$$

are two chains of prime ideals of R which cannot be refined further (i.e., by adding an extra prime ideal $P_i \prec I \prec P_{i+1}$ or $Q_i \prec I \prec Q_{i+1}$), we have that $r = s$. This is a “well-behavedness” condition on the classical Krull dimension of kG: it says that, whenever $P \preceq P'$ are adjacent prime ideals and the height $h(P)$ of P is finite, then we have

$$h(P') = h(P) + 1.$$

This result goes some way towards redressing the long-standing gap between Iwasawa algebras and similar algebraic objects; for instance, similar catenarity results had already been established for classical group rings of virtually polycyclic groups (in a special case in [19], in full generality in [14]), for universal enveloping algebras of finite-dimensional soluble Lie algebras over \mathbb{C} [6]; for quantised coordinate rings over \mathbb{C} [8], and over more general fields in [26]; for q-commutative power series rings [11]; and so on.

In proving this result, we crucially use the prime extension theorem, [23, Theorem A]. Before we can state this, we need to recall a few concepts.

Let G be a nilpotent-by-finite compact p-adic analytic group. Then [25, Theorem C] there exists a unique maximal subgroup H of G with the property that H is an open normal subgroup of G, H contains a finite normal subgroup F, and H/F is nilpotent p-valuable. This H is called the **finite-by-(nilpotent p-valuable)** radical of G, and is written $\text{FN}_p(G)$.
Given a prime ideal P of kG, as in [2, §1.3] and [23, Introduction], we will write P^\dagger for the kernel of the natural composite map

$$G \to (kG)^\times \to (kG/P)^\times.$$

We say that P is **faithful** if $P^\dagger = 1$, and P is **almost faithful** if P^\dagger is finite.

We now state the prime extension theorem:

Theorem (23, Theorem A): Take $p > 2$. Let G be a nilpotent-by-finite compact p-adic analytic group, and let k be a finite field. Write $H = \text{FN}_p(G)$. If P is an almost faithful prime ideal of kH, then the ideal P^G is a prime ideal of kG.

We will use this result to generalise Ardakov’s analogue of Zalesskii’s theorem [2, Theorem 8.6] to our current context.

Recall [25, Definition 1.4, Lemma 1.10] that a group G is **orbitally sound** if, whenever H is a subgroup of G with finitely many G-conjugates and H^o is the largest normal subgroup of G contained in H, we have $[H : H^o] < \infty$; and recall that nilpotent p-valuable groups are indeed orbitally sound [2, Proposition 5.9].

As in [25], we will write throughout this paper

$$\Delta(G) = \{x \in G \mid [G : C_G(x)] < \infty \},$$

$$\Delta^+(G) = \{x \in \Delta \mid o(x) < \infty \},$$

where $o(x)$ denotes the order of x. We will also often simply write Δ and Δ^+ to denote $\Delta(G)$ and $\Delta^+(G)$. For the basic properties of these (closed, characteristic) subgroups, see [25, Lemma 1.3 and Theorem D].

Following Roseblade [19], we say that a prime ideal P of kG is **controlled** by the normal subgroup H of G if the right ideal $(P \cap kH)kG$ is equal to P.

Theorem B: Let G be a nilpotent-by-finite, orbitally sound compact p-adic analytic group. Suppose P is an almost faithful prime ideal of kG. Then P is controlled by Δ.

The analogous classical result, for group algebras of polycyclic-by-finite groups, was proved by Roseblade [19, Corollary H3]. Taken together with the results of [1] and [24], this also gives a precise partial answer to a question of Ardakov and Brown [3, Question G]: when G is as in Theorem B, this completely describes the prime ideals of kG in terms of closed normal subgroups, central elements and prime ideals of (classical) group algebras of finite groups over k.
This is all we need to deduce that kG is catenary when G is nilpotent-by-finite and orbitally sound—see Theorem 3.12. In order to pass from orbitally sound to general nilpotent-by-finite groups, we partly develop the theory of vertices and sources along the lines of [12], [13].

Theorem C: Let G be a nilpotent-by-finite compact p-adic analytic group, P a prime ideal of kG, H an orbitally sound open normal subgroup of G, and Q a minimal prime ideal of kH above $P \cap kH$. Write N for the G-isolator [25, Definition 1.6] of Q^\dagger, and write ∇ for the subgroup of G containing N defined by

$$\nabla/N = \Delta(G/N).$$

Then P is induced from an ideal L of $k\nabla$.

For the precise meaning of induced here, see §1.2.

Theorem A then follows from Theorems B and C by adapting an argument from [14], as follows. Let G be a (not necessarily orbitally sound) nilpotent-by-finite compact p-adic analytic group, k a finite field of characteristic $p > 2$, and P a faithful prime ideal of kG. We already know [25, Theorem A] that G contains an open normal orbitally sound subgroup, which we denote $\text{nio}(G)$. From Theorem C, we may deduce Corollary 3.20 that P is induced from some proper open subgroup H of G containing $\text{nio}(G)$. If $H = \text{nio}(G)$, then we can deduce from Theorem B (as above) that kH is catenary, and now by Lemma 3.22 we are done. In general, $\text{nio}(G) \leq H < G$, and we may not have equality: but it is easy to see that

$$[H : \text{nio}(H)] < [G : \text{nio}(G)] < \infty,$$

and Corollary 3.23 establishes Theorem A by induction on the index $[G : \text{nio}(G)]$.

1. Heights of primes and Krull dimension

1.1. Prime and G-prime ideals.

Definition 1.1: Let G be a compact p-adic analytic group [5, Definition 8.14]. Suppose the group G acts (continuously) on the ring R, and that the ideal $I \triangleleft R$ is G-stable. Then, following [17, §14], we will say that I is G-prime if, whenever $A, B \triangleleft R$ are G-stable ideals and $AB \subseteq I$, then either $A \subseteq I$ or $B \subseteq I$.
Lemma 1.2: Let G be a compact p-adic analytic group and H a closed normal subgroup.

(i) If P is a prime ideal of kG, then $P \cap kH$ is a G-prime ideal of kH. If H is open in G, then P is a minimal prime ideal above $(P \cap kH)kG$.

(ii) Let Q be a G-prime ideal of kH, and P any minimal prime of kH above Q. Then

$$Q = \bigcap_{x \in G} P^x.$$

Furthermore, the set of minimal primes of kH above Q is

$$\{P^x | x \in G\}.$$

Proof.

(1) The former statement follows from [17, Lemma 14.1(i)], and the latter from [17, Theorem 16.2(i)].

(2) This follows from [17, Lemma 14.2(i)(ii)].

Definition 1.3: Let P be a prime ideal of a ring R. Then we define the height of P to be the greatest integer $h(P) := r$ for which there exists a (finite) chain

$$P_0 \leq P_1 \leq \cdots \leq P_r = P$$

of prime ideals in R (or ∞ if no such longest finite chain exists).

Suppose instead that the group G acts on R by automorphisms, and P is a G-prime ideal of R. Then the G-height of P is the greatest integer $h_G(P) := r$ for which there exists a chain $\langle 1 \rangle$ of G-prime ideals in R (or ∞).

Finally, suppose that the group G acts on R by automorphisms, and P is a G-orbital prime ideal of R (i.e., a prime ideal of R with finite orbit under the action of G). Then the G-orbital height of P is the greatest integer $h_G^{\text{orb}}(P) := r$ for which there exists a chain $\langle 1 \rangle$ of G-orbital prime ideals in R (or ∞).

We note the following consequence of the correspondence of Lemma 1.2.

Corollary 1.4: Let G be a compact p-adic analytic group and H an open normal subgroup. Take P a prime ideal of kG, and let Q be a minimal prime of kH above $P \cap kH$. Then

$$h(P) = h_G(P \cap kH) = h(Q).$$
Proof. As H is open in G, we may regard kG as a crossed product of kH by the finite group G/H. Hence the claim that $h(P) = h(Q)$ follows from \cite[Corollary 16.8]{17}.

Next, given any two G-prime ideals $I_1 \leq I_2$ of kH, we may find prime ideals $K_1 \leq K_2$ of kH such that $I_i = \bigcap_{x \in G} K_i^x$ (for $i = 1, 2$) by Lemma 1.2(ii). Now, by taking a longest chain of G-prime ideals of kH whose greatest member is $P \cap kH$, we get a chain of prime ideals of kH, say with greatest member K, some minimal prime of kH above $P \cap kH$. This shows that $h_G(P \cap kH) \leq h(K)$. But now Lemma 1.2(ii) tells us that Q is also a minimal prime ideal above $P \cap kH$, and hence Q and K are G-conjugate, so that $h(K) = h(Q)$.

Finally, suppose we are given two prime ideals $J_1 \leq J_2$ of kH, whose G-orbits are O_1 and O_2 respectively. Then it is easy to see that the ideals $I_1 = \bigcap O_1$ and $I_2 = \bigcap O_2$ are G-prime and satisfy $I_1 \leq I_2$, and that J_i is a minimal prime above I_i for $i = 1, 2$. But we must have $I_1 \neq I_2$: otherwise, both J_1 and J_2 are minimal primes above I_1, a clear contradiction. Now note that $\bigcap_{x \in G} Q^x = P \cap kH$ by Lemma 1.2(ii): so by taking a longest chain of prime ideals of kH whose greatest member is Q, and passing to a chain of G-prime ideals of kH in this way, we have shown that $h(Q) \leq h_G(P \cap kH)$.

1.2. Inducing ideals.

Definition 1.5: Let H be an open (not necessarily normal) subgroup of G, and let L be an ideal of kH. We define the induced ideal $L^G \triangleleft kG$ to be the largest (two-sided) ideal contained in the right ideal $LkG \triangleleft kG$. In other words, by \cite[2.1]{14}, L^G is the annihilator of kG/LkG as a right kG-module, or by \cite[Lemma 14.4(ii)]{17},

$$L^G = \bigcap_{g \in G} Lg kG.$$

Lemma 1.6: Induction of ideals is transitive: if H and K are open subgroups of G with $H \leq K \leq G$, and $L \triangleleft kH$, then

$$L^G = (L^K)^G.$$

Proof. Let N be an open normal subgroup of G contained in H, and write $\overline{\cdot}$ to denote the quotient by N, so that we have $kG = kN \star \overline{G}$ with $\overline{H} \leq K \leq \overline{G}$, and we may view L as an ideal of $kN \star \overline{H}$. The result now follows from \cite[Lemma 1.2(iii)]{13}.
1.3. KRULL DIMENSION. We recall some facts about Krull dimension, used here in the sense of Gabriel and Rentschler: see [7, §15].

Definition 1.7: Let \(0 \neq M \) be an \(R \)-module, and fix some ordinal \(\alpha \). We define the following notation inductively:

- \(\text{Kdim}(M) = 0 \) if \(M \) is an Artinian module,
- \(\text{Kdim}(M) \leq \alpha \) if, for every descending chain
 \[
 M_0 \supseteq M_1 \supseteq M_2 \supseteq \cdots
 \]
 of submodules of \(M \), we have \(\text{Kdim}(M_i/M_{i+1}) < \alpha \) for all but finitely many \(i \).

Of course, if there exists some \(\alpha \) such that \(\text{Kdim}(M) \leq \alpha \), but we do not have \(\text{Kdim}(M) \leq \beta \) for any \(\beta < \alpha \), then we write \(\text{Kdim}(M) = \alpha \).

Remark: \(\text{Kdim}(M) \) is a measure of complexity of the poset of submodules of \(M \).

\(\text{Kdim}(M) \) may not be defined for some modules \(M \), that is, we may not have \(\text{Kdim}(M) \leq \alpha \) for any ordinal \(\alpha \). However, if \(M \) is a noetherian module, then \(\text{Kdim}(M) \) is defined [7, Lemma 15.3].

Definition 1.8: Suppose that \(\text{Kdim}(M) = \alpha \). We say that \(M \) is \(\alpha \)-**homogeneous** if \(\text{Kdim}(N) = \alpha \) for all nonzero submodules \(N \) of \(M \).

Examples 1.9:

(i) Nonzero Artinian modules are \(0 \)-homogeneous.
(ii) Prime rings \(R \), as modules over themselves, are \(\alpha \)-homogeneous (where we set \(\alpha \) equal to \(\text{Kdim}(R_R) \)) [7, Exercise 15E].
(iii) The property of being \(\alpha \)-homogeneous is inherited by products [7, Corollary 15.2] and (nonzero) submodules (by definition).

We now cite and adapt some standard results on Krull dimension.

Lemma 1.10:

(i) [14, 1.4(ii)] Let the ring \(R \) be \(\alpha \)-homogeneous as a right \(R \)-module. If \(x \in R \) satisfies \(\text{Kdim}(R/xR) < \text{Kdim}(R) \), then \(x \) is a regular element of \(R \).

(ii) [10, Théorème 5.3] Suppose \(B \) is a finite normalising extension of \(A \), and let \(M \) be a \(B \)-module. Then \(\text{Kdim}(M_B) \) exists if and only if \(\text{Kdim}(M_A) \) does, and if so, then they are equal.
(iii) [7] Exercise 15R] If R is a right noetherian subring of a ring S such that S is finitely generated as an R-module, and M is a finitely generated S-module, then $\Kdim(M_S) \leq \Kdim(M_R)$. □

Corollary 1.11: Suppose $A \subseteq C \subseteq B$ are right noetherian rings, and B is a finite normalising extension of A. Let M be a finitely generated B-module. Then, if $\Kdim(M_B)$ exists, we have

$$\Kdim(M_A) = \Kdim(M_C) = \Kdim(M_B).$$

Proof. This follows immediately from Lemma [1.10(ii) and two applications of Lemma [1.10(iii)]. □

Lemma 1.12: Let G be a compact p-adic analytic group, H an open subgroup of G, and k a field of characteristic p. Let M be a finitely generated kG-module.

(i) $\Kdim(M_{kG}) = \Kdim(M_{kH}).$

(ii) Suppose that $M = WkG$ for some submodule W of M_{kH}. Then we have $\Kdim(M_{kG}) = \Kdim(W)$.

(iii) M_{kG} is α-homogeneous if and only if M_{kH} is α-homogeneous.

Proof (Adapted from [14, 1.4(iii)–(v)]).

(i) Let N be the (open) largest normal subgroup of G contained in H, so that kG is a finite normalising extension of kN. Now apply Corollary [1.11].

(ii) Let N be as in (i). Then, by (i), it suffices to prove that $\Kdim(M_{kN})$ is equal to $\Kdim(W_{kN})$. But, as a kN-module, M is a finite sum of modules Wg for various $g \in G$, and these are all isomorphic, so in particular have isomorphic submodule lattices and therefore the same \Kdim.

(iii) It is clear from the definition that, if M_{kH} is α-homogeneous, then M_{kG} is α-homogeneous. Conversely, suppose that M_{kG} is α-homogeneous, and let W be a nonzero submodule of M_{kH}. Then WkG is a nonzero submodule of M_{kG}, so has Krull dimension α by assumption, and hence also $\Kdim(W) = \alpha$ by (ii). □

Lemma 1.13: Let G be a finite group, H a subgroup, and $R \ast G$ a fixed crossed product. Fix a semiprime ideal I of $R \ast G$. If $R \ast G/I$ is α-homogeneous, then $R \ast H/(I \cap R \ast H)$ is α-homogeneous.
Proof (Adapted from [4, Lemma 4.2(i)]). Let M be a nonzero right ideal of the ring $R*H/(I \cap R*H)$, and write $\beta = \text{Kdim}(M_{R*H})$. We wish to show that $\beta = \alpha$.

Now M is a right module over both $R*H$ and R; and $R*G/I$ is a right module over both $R*G$ and R. As $R*G$ and $R*H$ are both finite normalising extensions of R, we may apply Lemma 1.10(ii) to both of these situations to see that

$$\beta = \text{Kdim}(M_{R*H}) = \text{Kdim}(M_R)$$

and

$$\alpha = \text{Kdim}((R*G/I)_{R*G}) = \text{Kdim}((R*G/I)_R).$$

Now, as right R-modules, we have

$$R*H/(I \cap R*H) \cong (R*H + I)/I \leq R*G/I,$$

and so M is isomorphic to some nonzero R-submodule of $R*G/I$. In particular, this means that

$$\beta = \text{Kdim}(M_R) \leq \text{Kdim}((R*G/I)_R) = \alpha.$$

But now $(R*G/I)_R$ is α-homogeneous by Corollary 1.11 so we must have $\beta = \alpha$. □

Corollary 1.14: Let G be a compact p-adic analytic group, H be an open subgroup of G, and N the largest open normal subgroup of G contained in H. Take k to be a field of characteristic p, and let Q be a prime ideal of kH, $I = Q^G \cap kN$, and $\alpha = \text{Kdim}(kH/Q)$. Then kH/Q, kG/Q^G, kG/IkG are all α-homogeneous rings.

Proof. As we observed in Example 1.9(ii), kH/Q is already α-homogeneous, as it is prime of Krull dimension α.

We know from Definition 1.5 that the ideal Q^G can be written as $\bigcap_{g \in G} Q^g kG$, and that this intersection can be taken to be finite. Hence, as a right kG-module, kG/Q^G is isomorphic to a (nonzero) submodule of the direct product of the various (finitely many) $kG/Q^g kG$; and each $kG/Q^g kG$ is generated as a kG-module by kH^g/Q^g, which is ring-isomorphic to kH/Q. Hence

$$\text{Kdim}(kG/Q^G) = \text{Kdim}(kH/Q)$$

by Lemma 1.10(ii).
Finally, as
\[Q^{G} = \bigcap_{g \in G} (QkG)^g, \]
we see that
\[I = \bigcap_{g \in G} (QkG)^g \cap kN = \bigcap_{g \in G} (QkG \cap kN)^g = \bigcap_{g \in G} (Q \cap kN)^g, \]
and so, as above, \(kN/I \) is a (nonzero) subdirect product of the various \(kN/(Q \cap kN)^g \), which are all ring-isomorphic to \(kN/Q \cap kN \); now Lemma [1.13] implies that \(kN/Q \cap kN \) is \(\alpha \)-homogeneous, so \(kN/I \) is also, and \(kG/IkG \) is generated as a \(kG \)-module by \(kN/I \), so finally \(kG/IkG \) also inherits this property.

We borrow a result from the standard proof of Goldie’s theorem.

Lemma 1.15 ([22, Lemma 3.13]): Suppose \(R \) is a semiprime ring, satisfying the ascending chain condition on right annihilators of elements, and which does not contain an infinite direct sum of nonzero right ideals. If \(I \) is an essential right ideal of \(R \) (i.e., a right ideal that has nonzero intersection \(I \cap J \) with each nonzero right ideal \(J \) of \(R \)), then \(I \) contains a regular element.

These hypotheses are satisfied when \(R \) is \(G \)-prime and noetherian, for example.

Proposition 1.16: With notation as in Corollary [1.14], suppose \(P \) is a prime ideal of \(kG \) containing \(Q^{G} \). If \(P \) is minimal over \(Q^{G} \), then
\[h(P) = h(Q). \]

Proof. First, set \(I = Q^{G} \cap kN. \) This is a \(G \)-prime ideal contained in \(P \cap kN \).

Suppose for contradiction that the inclusion \(I \subseteq P \cap kN \) is strict.

First, we will show that \(P \cap kN/I \) is essential as a right ideal inside \(kN/I \). Indeed, the left annihilator \(L \) in \(kN/I \) of \(P \cap kN/I \) is a \(G \)-invariant ideal which annihilates the nonzero \(G \)-invariant ideal \(P \cap kN/I \), so we must have \(L = 0 \); and so, given any right ideal \(T \) of \(kN/I \) having zero intersection with \(P \cap kN/I \), as we must have \(T \leq L \), we conclude that \(T = 0 \).

Hence, by Lemma [1.15] we may find an element \(c \in P \cap kN \subseteq kN \) which is regular modulo \(I \). As \(kG/IkG \) is a free \(kN/I \)-module, \(c \) may also be considered
as an element of $P \subseteq kG$ which is regular modulo IkG. Hence

$$K\dim(kG/(Q^G + ckG))_{kG}$$

\begin{align*}
&\leq K\dim(kG/(IkG + ckG))_{kG} \quad \text{as } IkG + ckG \subseteq Q^G + ckG \\
&< K\dim(kG/IkG)_{kG} \quad \text{by Lemma 1.10(i)} \\
&= K\dim(kG/Q^G)_{kG} \quad \text{by Corollary 1.14}
\end{align*}

which, again by Lemma 1.10(i), shows that $c \in P$ is regular modulo Q^G.

However, we may now deduce from a reduced rank argument that P cannot be minimal over Q^G, as follows. Write ρ for the reduced rank [7, §11, Definition] of a right module over the semiprime noetherian (hence Goldie) ring $R = kG/Q^G$, and write (\cdot) for images under the map $kG \to R$. Now, $c \in P$ implies $\overline{\tau R} \subseteq \overline{P}$, and so by [7, Lemma 11.3] we have

$$\rho(R/\overline{\tau R}) \geq \rho(R/\overline{P}) \geq 0.$$

Further, if $\overline{\tau}$ is a regular element of R, then $\overline{\tau R} \cong R$ as right R-modules, so $\rho(R/\overline{\tau R}) = 0$, again by [7, Lemma 11.3]. But now [7, Exercise 11C] implies that \overline{P} cannot be a minimal prime of R.

This contradicts the assumption we made at the start of the proof, and so we have shown that

$$P \cap kN = Q^G \cap kN.$$

We observed during the proof of Corollary 1.14 that

$$Q^G \cap kN = \bigcap_{g \in G} (Q \cap kN)^g.$$

But Q is a prime ideal of kH, so $Q \cap kN$ is an H-prime ideal of kN, so may be written as

$$Q \cap kN = \bigcap_{h \in H} Q^h_0$$

for some prime ideal Q_0 of kN. Combining these two shows that

$$P \cap kN = Q^G \cap kN = \bigcap_{g \in G} Q^g_0.$$

Now, by applying [17, corollary 16.8] to both $P \cap kN$ and $Q \cap kN$, we have that

$$h(P) = h(Q^G) = h(Q)$$

as required. ■
2. Control theorem

2.1. The abelian case. We will require some facts about prime ideals in power series rings.

Lemma 2.1: Let A be a free abelian pro-p group of finite rank and B a closed isolated (normal) subgroup. Take k to be a field of characteristic p. Write $\text{Spec}^B(kA)$ for the set of primes of kA that are controlled by B. Then the maps

$$\text{Spec}^B(kA) \leftrightarrow \text{Spec}(kB)$$

$$P \mapsto P \cap kB$$

$$QkA \leftrightarrow Q$$

are well-defined and mutual inverses, and preserve faithfulness.

Proof. If P is a prime ideal of kA, then $P \cap kB$ is an A-prime ideal (and hence a prime ideal) of kB by Lemma 1.2(i).

Conversely, note that, as B is isolated in A, the quotient A/B is again free abelian pro-p; so we may write $A = B \oplus C$, where the natural quotient map $A \to A/B$ induces an isomorphism $A/B \cong C$. Now, if Q is a prime ideal of kB, then $kA/QkA = (kB/Q)[[C]]$ is a power series ring with coefficients in the commutative domain kB/Q, and is hence itself a domain.

It follows from [1, Lemma 5.1] that $QkA \cap kB = Q$, and by assumption, if P is controlled by B then we already have $(P \cap kB)kA = P$.

Now suppose the prime ideals $P \preceq Q$ of kA, and suppose B controls P. Then, again viewing A as $B \oplus C$, we may similarly consider kA/P as the completed tensor product $[24]$ Definition 2.3 $kB/Q \hat{\otimes}_k kC$. Then the map $A \to (kA/P)^\times$ can be written as

$$B \oplus C \to (kB/Q)^\times \oplus (kC)^\times \lesssim (kB/Q \hat{\otimes}_k kC)^\times$$

$$(b, c) \mapsto ((b + Q), c),$$

so it is clear that P is faithful if and only if Q is faithful.

Lemma 2.2: Let A, B, k be as in Lemma 2.1. Take two neighbouring prime ideals $P \preceq Q$ of kA, and suppose B controls P. Then

(i) $h(P) + \dim(A/P) = r(A)$,

(ii) $h(Q) = h(P) + 1$,

(iii) $h(P) = h(P \cap kB)$.

Proof.

(i) This follows from [27, Ch. VII, §10, Corollary 1].

(ii) This follows from [27, Ch. VII, §10, Corollary 2].

(iii) Under the correspondence of Lemma 2.1, any saturated chain of prime ideals \(0 = Q_0 \preceq Q_1 \preceq \cdots \preceq Q_n = P \cap kB\) of \(kB\) extends to a chain of prime ideals \(0 = P_0 \preceq P_1 \preceq \cdots \preceq P_n = P\) of \(kA\). As any two saturated chains of prime ideals in \(kA\) have the same length [27, Ch. VII, §10, Theorem 34 and Corollary 1], we need only check that this chain is saturated.

Take two adjacent prime ideals \(I_1 \preceq I_2\) of \(kB\), so that \(h(I_2) = h(I_1) + 1\) [27, Ch. VII, §10, Corollary 2] and \(I_1 kA \leq I_2 kA\) are prime. We will show that \(I_1 kA\) and \(I_2 kA\) are adjacent by showing that their heights also differ by 1. By performing induction on \(r(A/B)\), it will suffice to prove this for the case \(r(A/B) = 1\), i.e., \(kA = kB[[X]]\).

It is clear that, when \(R\) is a commutative ring,
\[
\dim(R[[X]]) \geq 1 + \dim(R)
\]
(where \(\dim\) denotes the classical Krull dimension). But, giving \(R[[X]]\) the \((X)\)-adic filtration, we see that
\[
\text{gr}(R[[X]]) \cong R[x].
\]

By [16, 6.5.6], we have
\[
\dim(R[[X]]) \leq \dim(\text{gr}(R[[X]])) = \dim(R[x]) = 1 + \dim(R),
\]
where this last equality follows from [16, 6.5.4(i)].

Hence, for any prime ideal \(I\), we have
\[
\dim(kA/IkA) - \dim(kB/I) = \dim((kB/I)[[X]]) - \dim(kB/I) = 1.
\]
But, from (i), we see that
\[
\dim(kA/IkA) = r(A) - h(IkA),
\]
\[
\dim(kB/I) = r(B) - h(I),
\]
and hence we conclude that \(h(I) = h(IkA)\). Setting \(I = I_1, I_2\) now shows that
\[
h(I_2 kA) = h(I_1 kA) + 1
\]
as required. \(\blacksquare\)
2.2. Faithful primes are controlled by Δ. As in [25], if P is a prime ideal of some completed group ring kG, we will write

$$P^\dagger := \ker(G \to (kG/P)^\times),$$

and say that P is **faithful** if $P^\dagger = 1$ and P is **almost faithful** if P^\dagger is finite.

Fix a prime p, which will be arbitrary until otherwise stated.

Recall the control theorem of Ardakov [2, 8.6]:

Theorem 2.3: Let G be a nilpotent p-valued group of finite rank with centre Z.

(i) If p is a prime ideal of kZ, then pkG is a prime ideal of kG.

(ii) If P is a faithful prime ideal of kG, then P is controlled by Z.

Proof. This is [2, 8.4, 8.6].

Lemma 2.4: Let G be finite-by-(nilpotent p-valuable), i.e., $G = \text{FN}_p(G)$. Then

$$Z(G/\Delta^+) = \Delta/\Delta^+.$$

Proof. Given $x \in G$, the two conditions $[G/\Delta^+ : C_{G/\Delta^+}(x\Delta^+)] < \infty$ and $[G : C_G(x)] < \infty$ are equivalent, as Δ^+ is finite; this shows that we have $\Delta(G/\Delta^+) = \Delta/\Delta^+$. Take some $x \in \Delta$, so that x satisfies this condition: then, given arbitrary $g \in G$, there exists some k such that $g^k \Delta^+ \in C_{G/\Delta^+}(x\Delta^+)$, so that $(x^{-1}gx)^k \Delta^+ = g^k \Delta^+$, and it now follows from [9, III, 2.1.4] that $x^{-1}gx\Delta^+ = g\Delta^+$. This shows that $\Delta/\Delta^+ \leq Z(G/\Delta^+)$. Conversely, we must have $Z(G/\Delta^+) \leq \Delta(G/\Delta^+)$ by definition.

We extend Theorem 2.3 to:

Proposition 2.5: Let G be a finite-by-(nilpotent p-valuable) group and k a finite field of characteristic p.

(i) If p is a G-prime ideal of $k\Delta$, then pkG is a prime ideal of kG.

(ii) If P is an almost faithful prime ideal of kG, then P is controlled by Δ.

Proof. Adopt the notation of [24, Lemma 1.1 and Notation 1.2]. Let $e \in \text{cpi}^{k\Delta^+}(p)$, and write $f = e|_G$. To prove (i), it suffices to prove that the ideal $f \cdot \overline{pkG} \triangleleft f \cdot \overline{kG}$ is prime. But, by the Matrix Units Lemma [24, Lemma 6.1], we have an isomorphism

$$f \cdot \overline{kG} \cong M_s(e \cdot \overline{kG_1}),$$
where G_1 is the stabiliser in G of e, and under which

$$f \cdot p k G \mapsto M_s(e \cdot p_1 k G_1)$$

for some G_1-prime ideal p_1 of $k[[\Delta \cap G_1]]$. So, by Morita equivalence, it will suffice to show that the ideal $e \cdot p_1 k G_1 < e \cdot k G_1$ is prime.

Now recall from [24, Theorems A and C] that we have an isomorphism

$$\psi : e \cdot k G_1 \simeq M_t(k'[G_1/\Delta^+])$$

under which

$$e \cdot p_1 k G_1 \mapsto q k'[G_1/\Delta^+]$$

for a (G_1/Δ^+)-prime ideal q of $k'[\Delta \cap G_1/\Delta^+]$. Hence we need now only show that $q k' N < k' N$ is prime, where $N = G_1/\Delta^+$.

Note that, as G_1 is open in G, we have $\Delta(G_1) = \Delta \cap G_1$ [25, Lemma 1.3(ii)]; and from Lemma 2.4,

$$\Delta(G_1)/\Delta^+ = Z(G_1/\Delta^+).$$

Hence, still writing $N = G_1/\Delta^+$, we see that q is an N-prime ideal of $k'[Z(N)]$, and hence a prime ideal. But now $q k' N$ is prime by Theorem 2.3(i). This establishes part (i) of the proposition.

To show part (ii), take an almost faithful prime ideal P of kG. We would like to show that P is a minimal prime ideal above $(P \cap k \Delta)kG$. But this is clearly true when $\Delta^+ = 1$ by Theorem 2.3 and in the general case, another application of the Matrix Units Lemma [24 Lemma 6.1] and [24 Theorems A and C], as above, reduces to the case $\Delta^+ = 1$.

Hence, finally, we need only show that $(P \cap k \Delta)kG$ is prime; but $P \cap k \Delta$ is a G-prime ideal of $k \Delta$ (again by Lemma 1.2(i)), so we are done by part (i) of the proposition.

Until the end of this section, we will write $(-)^\circ$ to mean $\bigcap_{g \in G} (-)^g$.

Corollary 2.6: Let G be a finite-by-(nilpotent p-valuable) group, and H an open normal subgroup of G containing Δ. Let k be a finite field of characteristic p. If P is an almost faithful G-prime ideal of kH, then $P k G$ is a prime ideal of kG.

Proof. Take a minimal prime Q of kH above P. Then we have $Q^\circ = P$, so Q^\dagger is finite (as G is orbitally sound [25, Definition 1.4, Corollary 2.4]). Hence Q is controlled by Δ, by Proposition 2.5(ii), and by applying $(-)^\circ$ to both sides.
of the equality $Q = (Q \cap k\Delta)kH$, we see that P is also: $P = (P \cap k\Delta)kH$. In particular, $PkG = (P \cap k\Delta)kG$. But now Proposition 2.5(i) shows that $(P \cap k\Delta)kG$ is prime.

For the following results, we need to assume that $p > 2$ in order to be able to invoke [23, Theorem A].

Proposition 2.7: Let G be a nilpotent-by-finite, orbitally sound compact p-adic analytic group, and k a finite field of characteristic $p > 2$. Let $H = \mathbf{FN}_p(G)$. If P is an almost faithful prime ideal of kG, then P is controlled by H.

Proof. Let Q be a minimal prime ideal of kH above $P \cap kH$. Then

$$(Q^\dagger)^\circ = P^\dagger \cap H$$

is finite, so, as G is orbitally sound, Q^\dagger is also finite. By [17, Corollary 14.8], in order to prove that $(P \cap kH)kG$ is prime, it suffices to show that QkS is prime, where S is the stabiliser in G of Q.

Let $T = \mathbf{FN}_p(S)$. As H is a finite-by-(nilpotent p-valuable) open normal subgroup of S, we see that H must be an open normal subgroup of T. It is also clear that $\Delta(H) = \Delta(T) = \Delta(S) = \Delta(G)$ [25, Lemma 1.3(ii) and Theorem C]. Now, by Corollary 2.6, QkT must be prime; and we have that $(QkT)^\dagger$ is finite. Now, by the prime extension theorem [23, Theorem A], $(QkT)kS = QkS$ is prime.

Lemma 2.8: Let G be a nilpotent-by-finite compact p-adic analytic group, and let $H \geq K$ be any two closed normal subgroups of G. Take P to be a prime ideal of kG. Let Q be a minimal prime ideal of kH above $P \cap kH$. If P is controlled by H and Q is controlled by K, then P is controlled by K.

Proof. By Lemma 1.2(ii), we have $Q^\circ = P \cap kH$, and so

$$(P \cap kK)kG = ((P \cap kH) \cap kK)kG$$

$$(Q^\circ \cap kK)kG$$

$$(Q \cap kK)^\circ kG$$

$$(Q \cap kK)^\circ kG$$

$$(Q^\circ kG)$$

$$(Q^\circ kG)$$

$$(P \cap kH)kG = P$$

as P is controlled by H.

$$(Q^\circ kG)^\circ kG$$

as Q is controlled by K.

$$(Q^\circ kG)^\circ kG$$

as Q is controlled by K.

$$(Q^\circ kG)^\circ kG$$

as Q is controlled by K.

$$(Q^\circ kG)^\circ kG$$

as Q is controlled by K.

$$(Q^\circ kG)^\circ kG$$

as Q is controlled by K.

$$(Q^\circ kG)^\circ kG$$

as Q is controlled by K.

$$(Q^\circ kG)^\circ kG$$

as Q is controlled by K.
Now back to:

Theorem 2.9: Let G be a nilpotent-by-finite, orbitally sound compact p-adic analytic group, k a finite field of characteristic $p > 2$, and P an almost faithful prime ideal of kG. Then P is controlled by Δ.

Proof. Proposition 2.7 shows that P is controlled by H. Let Q be a minimal prime of kH above $P \cap kH$: then $Q^\circ = P \cap kH$ by Lemma 1.2(ii), so we see that $(Q^\dagger)^\circ = P^\dagger \cap H$ is finite, so (as G is orbitally sound) Q^\dagger must also be finite. Hence, as Q is almost faithful, Proposition 2.5(ii) shows that it is controlled by Δ. Now Lemma 2.8 applies.

2.3. Primes adjacent to faithful primes. We begin with a property of the “finite-by-(nilpotent p-valuable) radical” operator.

Lemma 2.10: Let G be a nilpotent-by-finite, orbitally sound compact p-adic analytic group, let N be a normal subgroup of G which is contained in Δ, and let F be a finite normal subgroup of G. Then the following three statements hold.

(i) $\text{FN}_p(G/F) = \text{FN}_p(G)/F$.

(ii) Suppose that $\text{FN}_p(G/i\Delta(N)) = \text{FN}_p(G)/i\Delta(N)$. Then $\text{FN}_p(G/N)$ is equal to $\text{FN}_p(G)/N$.

(iii) Suppose N is Δ-isolated. Then we have either $\text{FN}_p(G/N) = \text{FN}_p(G)/N$ or $N = \Delta = \text{FN}_p(G)$.

Proof.

(i) This is clear from the construction of $\text{FN}_p(G)$ (see [25, Definition 5.3]).

(ii) First, note that $\text{FN}_p(G)/N$ is a quotient of a finite-by-(nilpotent p-valuable) normal subgroup of G, and hence is still a finite-by-(nilpotent p-valuable) normal subgroup of G/N, i.e., $\text{FN}_p(G)/N \leq \text{FN}_p(G/N)$. As both of these are of finite index in G, it will suffice to show that these indices are equal.

Consider the natural surjection

$$\alpha : G/N \to G/i\Delta(N).$$

We can see that

$$\ker \alpha = i\Delta(N)/N = \Delta^+(\Delta/N) \leq \Delta^+(G/N) \leq \text{FN}_p(G/N)$$
is a finite normal subgroup of G/N, and hence from (i) we see that
\[
\frac{\mathbb{F}N_p(G/N)}{i_\Delta(N)/N} \cong \mathbb{F}N_p(G/i_\Delta(N)).
\]
That is, the restricted map
\[
\alpha|_{\mathbb{F}N_p(G/N)} : \mathbb{F}N_p(G/N) \to \mathbb{F}N_p(G/i_\Delta(N))
\]
is also surjective with kernel $i_\Delta(N)/N$. Hence we have the following commutative diagram, in which the first two rows are exact, all three columns are exact, and C_1 and C_2 are the cokernels of the vertical maps.

\[
\begin{array}{cccccc}
1 & 1 & 1 \\
\downarrow & \downarrow & \downarrow \\
1 \to i_\Delta(N)/N & \mathbb{F}N_p(G/N) & \mathbb{F}N_p(G/i_\Delta(N)) & \to 1 \\
\downarrow & \downarrow & \downarrow & \downarrow \\
1 \to i_\Delta(N)/N & G/N & G/i_\Delta(N) & 1 \\
\downarrow & \downarrow & \downarrow & \downarrow \\
1 \to 1 & C_1 & C_2 & 1 \\
\downarrow & \downarrow & \downarrow & \downarrow \\
1 & 1 & 1 \\
\end{array}
\]

By the Nine Lemma [15, Chapter XII, Lemma 3.4], the third row is now also exact, so that $C_1 \cong C_2$. But by assumption, $C_2 \cong G/\mathbb{F}N_p(G)$, and hence
\[
[G/N : \mathbb{F}N_p(G/N)] = |C_1| = [G : \mathbb{F}N_p(G)] = [G/N, \mathbb{F}N_p(G)/N],
\]
as required.

(iii) **Case 1.** First, assume that $\Delta^+ = 1$.

Write $H = \mathbb{F}N_p(G)$, and \hat{H} for the preimage of $\hat{H}/N = \mathbb{F}N_p(G/N)$.

If $G = \mathbb{F}N_p(G)$, then we clearly have $\mathbb{F}N_p(G/N) = \mathbb{F}N_p(G)/N$ for any closed normal subgroup N. So suppose that $H \leq \hat{H} \leq G$, and take some $z \in \hat{H} \setminus H$. Now conjugation by z induces the automorphism $x \mapsto x^\zeta$ on H/H' (where H' denotes the isolated derived subgroup), and hence also on $H/H'N$, for some $\zeta \in t(\mathbb{Z}_p^\times)$ [25, Lemma 4.2] satisfying $\zeta \neq 1$ [23, Lemma 3.3].
If $H/H'N$ has nonzero rank, we may take an element $x \in H$ whose image in $H/H'N$ has infinite order; and now the image in $\hat{H}/H'N$ of $\langle x, z \rangle$ is not finite-by-nilpotent, contradicting the definition of \hat{H}. So we must have $H = i_H(H'N)$.

In particular, this implies that

$$H = i_H(H'Z),$$

where $Z = Z(H) = \Delta(G)$, and so, by Lemma 3.5, we see that H is abelian, i.e., $H = \Delta$. Furthermore, this implies that $H' = 1$, and as N is already H-isolated (because Δ is H-isolated), the equality $H = i_H(H'N)$ simplifies to give $H = N$. This is what we wanted to prove.

Case 2. Now suppose instead that $\Delta^+ \neq 1$. As N is isolated in G, we see that

- $\Delta^+ \leq N$, and N/Δ^+ is isolated normal inside G/Δ^+, contained in Δ/Δ^+;
- $\Delta^+(G/\Delta^+) = 1$;
- $\Delta(G/\Delta^+) = \Delta/\Delta^+ = Z(FN_p(G)/\Delta^+);$
- $FN_p(G/\Delta^+) = FN_p(G)/\Delta^+$;

and so the result follows by applying Case 1 to G/Δ^+.

Remark: If G is a compact p-adic analytic group, H is a closed normal subgroup, and Q is a G-stable ideal of kH, then $Q^\dagger = (Q + 1) \cap H$ is normal in G.

Lemma 2.11: Let G be a nilpotent-by-finite, orbitally sound compact p-adic analytic group, and let k be a finite field of characteristic $p > 2$. If Q is a G-prime ideal of $k\Delta$, and $FN_p(G/Q^\dagger) = FN_p(G)/Q^\dagger$, then QkG is a prime ideal of kG.

Remark: The hypothesis

$$(\dagger) \quad FN_p(G/Q^\dagger) = FN_p(G)/Q^\dagger$$

has the following consequence. Let G be a nilpotent-by-finite, orbitally sound compact p-adic analytic group, k a finite field of characteristic $p > 2$, and let $P \preceq P'$ be adjacent prime ideals of kG, with P almost faithful. Then P is controlled by Δ, by Theorem

Set

$$Q := P' \cap k\Delta.$$
Consider $i_\Delta(Q^\dagger)$: if this is not equal to Δ, then by Lemma 2.10(ii), (iii), the hypothesis $i_\Delta(Q^\dagger)$ is satisfied. So suppose it is equal to Δ. Now, as Q contains the ideal ker$(kG \to k[[G/Q^\dagger]])$ (the augmentation ideal of Q^\dagger), if we further have that $\text{FN}_p(G) = \Delta$, then kG/Q is a finite prime ring, which is therefore simple, and so Q must be a maximal ideal of kG of $i_G(\Delta) = G$; otherwise, we again have $i_\Delta(Q^\dagger)$ by Lemma 2.10(ii), (iii).

That is, under these conditions, we always have $i_\Delta(Q^\dagger)$ unless Q is a maximal ideal of kG and G is virtually abelian, in which case Q^\dagger is open in G.

Proof. Write $H = \text{FN}_p(G)$.

As Q is a G-prime, we may write it as $\bigcap_{g \in G} I^g$ for some minimal prime ideal I above Q. Suppose the G-orbit of I splits into distinct H-orbits O_1, \ldots, O_r, and write

$$P_i := \bigcap_{A \in O_i} A.$$

Then P_i is an H-prime of $k\Delta$, and $\bigcap_{i=1}^r P_i = Q$. In particular, since P_i is an H-prime of $k\Delta$, we have that $P_i kH$ is prime by Proposition 2.5(i).

It remains to show that

$$\left(\bigcap_{g \in G} (P_i kH)^g \right) kG$$

is prime. By [17, Corollary 14.8], it suffices to show that $P_i kS$ is prime, where $S = \text{Stab}_G(P_i)$.

Write

$$p = P_i kH,$$

and note that $p^\dagger = P_i^\dagger \leq \Delta$. Now, if $\text{FN}_p(G)/\Delta^+$ is non-abelian, we have $\text{FN}_p(S/p^\dagger) = \text{FN}_p(S)/p^\dagger$. If, on the other hand, $\text{FN}_p(G)/\Delta^+$ is abelian, then we must have $Q^\dagger \leq \Delta$, and as Q^\dagger is H-isolated orbital, we have $[\Delta : Q^\dagger] = \infty$. But as G is orbitally sound, and

$$Q^\dagger = \bigcap_{g \in G} (P_i^\dagger)^g,$$

we must have that Q^\dagger is open in P_i^\dagger, so that in particular $[\Delta : p^\dagger] = \infty$. Hence again we have $\text{FN}_p(S/p^\dagger) = \text{FN}_p(S)/p^\dagger$.

Write $\overline{\cdot}$ for the quotient map $S \to S/p^\dagger$. Now, to show that $P_i kS = p kS$ is prime, we need only show that $\overline{p} k\overline{S}$ is prime. But \overline{p} is a faithful prime ideal of \overline{kH}, and $\overline{H} = \text{FN}_p(\overline{S})$, so by [23, Theorem A], we are done.

Lemma 2.12: Let k be a finite field of characteristic $p > 2$. Let G be a nilpotent-by-finite, orbitally sound compact p-adic analytic group, and let $P \leq Q$ be adjacent prime ideals of kG, with P almost faithful. Suppose that Q is not a maximal ideal of kG. Then Q is controlled by Δ.

Proof. $Q \cap k\Delta$ is a G-prime of $k\Delta$, and so $(Q \cap k\Delta)kG$ is prime by Lemma 2.11 and the accompanying remark. But

$$P = (P \cap k\Delta)kG \leq (Q \cap k\Delta)kG \leq Q$$

(with the equality as a result of Theorem 2.9, and P and Q are adjacent, so $(Q \cap k\Delta)kG$ must equal either P or Q).

Let us assume for contradiction that $(Q \cap k\Delta)kG = P$. Then we must have

$$P \cap k\Delta \leq Q \cap k\Delta \leq (Q \cap k\Delta)kG = P,$$

and by intersecting each of these with $k\Delta$, we see that $P \cap k\Delta = Q \cap k\Delta$. In particular, by taking $(\cdot)^\dagger$ of both sides of this equality, we see that $Q^\dagger \cap \Delta$ is finite (as P is almost faithful).

Let N be an open normal nilpotent p-valued subgroup of G, and let $Z = Z(N)$. By [25, Lemma 1.3(ii)], $Z = \Delta(N)$ is a finite-index torsion-free subgroup of Δ, and so $Q^\dagger \cap Z = 1$. Now, as N is nilpotent and the normal subgroup $Q^\dagger \cap N$ has trivial intersection with its centre, [18, 5.2.1] implies that $Q^\dagger \cap N = 1$, and hence Q^\dagger must be a finite normal subgroup of G. So $Q^\dagger \leq \Delta^+$, and in particular $Q^\dagger = Q^\dagger \cap \Delta$, which we earlier determined is finite. Hence Q is almost faithful, and must be controlled by Δ by Theorem 2.9. In particular, we must have $P \cap k\Delta \neq Q \cap k\Delta$. But this contradicts our assumption.

3. Catenarity

3.1. The orbitally sound case: plinths and a height function. Much of the material in this subsection is adapted from [19].

Unless stated otherwise, throughout this section, G is an arbitrary compact p-adic analytic group, and k is a finite field of characteristic p. We start by outlining our plan of attack:

Lemma 3.1: Let R be a ring in which every prime ideal has finite height. Suppose we are given a function $h : \text{Spec}(R) \to \mathbb{N}$ satisfying

- $h(P) = 0$ whenever P is a minimal prime of R,
- $h(P') = h(P) + 1$ for each pair of adjacent primes $P \leq P'$ of R.

Then R is a catenary ring.

Proof. Obvious. ■
Lemma 3.2: kG has finite classical Krull dimension, i.e., the maximal length of any chain of prime ideals is bounded.

Proof. The classical Krull dimension of kG is bounded above by $\text{Kdim}(kG)$ by \cite{16} Lemma 6.4.5], which is equal to $\text{Kdim}(\mathbb{F}_pG)$ by \cite{16} Proposition 6.6.16(ii)], and this is bounded above by the dimension (in the sense of \cite{5} Theorem 8.36]) of G, which is finite by definition (see the remarks after \cite{5} Definition 3.12)].

Definition 3.3: Let V be a \mathbb{Q}_pG-module, and suppose it has finite dimension as a vector space over \mathbb{Q}_p. Take a chain

$$0 = V_0 \leq V_1 \leq \cdots \leq V_r = V$$

of G-orbital subspaces, that is, \mathbb{Q}_p-vector subspaces of V with finitely many G-conjugates, or equivalently \mathbb{Q}_p-vector subspaces that are \mathbb{Q}_pN-submodules for some open subgroup N of G. Assume further that this chain is saturated, in the sense that it cannot be made longer by the addition of some G-orbital subspace

$$V_i \leq V' \leq V_{i+1}.$$

Such a chain is necessarily finite, as it is bounded above in length by $\dim_{\mathbb{Q}_p}(V) + 1$. We call the number r the G-plinth length of V, written $p_G(V)$. If $p_G(V) = 1$, we say that V is a plinth for G.

Remark: The number r is independent of the V_i chosen. Indeed, fix a longest possible chain

$$0 = V_0 \leq V_1 \leq \cdots \leq V_r = V$$

of G-orbital subspaces, and let G_0 be the intersection of the normalisers $N_G(V_i)$, i.e., the largest subgroup of G such that each V_i is a \mathbb{Q}_pG_0-module; G_0 is open in G. Now, given any chain

$$0 = W_0 \leq W_1 \leq \cdots \leq W_s = V$$

of G-orbital subspaces, take

$$H_0 = \bigcap_{j=1}^s N_G(W_j),$$

and note that $G_0 \cap H_0$ is a finite-index open subgroup of G that normalises each V_i and W_j. Hence, by the Jordan–Hölder theorem \cite{7} Theorem 4.11], the chain W_j may be refined to a chain of length r; so if the chain W_j is saturated, then $s = r$.
Definition 3.4: A \textbf{G-group} is a topological group \(H\) endowed with a continuous action of \(G\). For example, closed subgroups of \(G\), and quotients of \(G\) by closed normal subgroups of \(G\), are \(G\)-groups under the action of conjugation.

Let \(H\) be a nilpotent-by-finite compact \(p\)-adic analytic group with a continuous action of \(G\). We aim to define \(p_G(H)\). In fact, as plinths are insensitive to finite factors, we may immediately replace \(H\) by the open subgroup formed by the intersection of the (finitely many) \(G\)-conjugates of any given open normal nilpotent uniform subgroup of \(H\). Then there is a series

\[
1 = H_0 < H_1 < \cdots < H_n = H
\]

of \(G\)-subgroups such that \(A_i = H_i/H_{i-1}\) is abelian for each \(i = 1, \ldots, n\). Let

\[
V_i = A_i \otimes \mathbb{Q}_p
\]

for each \(i = 1, \ldots, n\), with \(G\)-action given by conjugation. In this case, we define

\[
p_G(H) = \sum_{i=1}^{n} p_G(V_i).
\]

Lemma 3.5: \(p_G(H)\) is well-defined, and does not depend on the series \((1)\).

Proof. Apply the Jordan–Hölder theorem, as in the remark above. \(\blacksquare\)

For our purposes, the most important property of \(p_G\) is that it is additive on short exact sequences of \(G\)-groups, which also follows from the Jordan–Hölder theorem. We record this as:

Lemma 3.6: Suppose that

\[
1 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 1
\]

is a short exact sequence of \(G\)-groups. Then \(p_G(A) + p_G(C) = p_G(B)\). \(\blacksquare\)

We now define Roseblade’s function \(\lambda\). (Later, we will show that, in the case when \(G\) is nilpotent-by-finite and orbitally sound, \(\lambda\) is actually equal to the height function on \(\text{Spec}(kG)\).)

Definition 3.7:

\[
\lambda(P) = \begin{cases}
p_G(P^\dagger) + \lambda(P^\pi), & P^\dagger \neq 1, \\
h_G(P \cap k\Delta), & P^\dagger = 1,
\end{cases}
\]

where \(P^\pi\) is the image of \(P\) under the map

\[
\pi : kG \to kG/(P^\dagger - 1)kG \cong k[[G/P^\dagger]].
\]
This definition is recursive, in that if P is an unfaithful prime ideal, then $\lambda(P)$ is defined with reference to $\lambda(P^\pi)$; but P^π is then a faithful prime ideal of kG^π, so this process terminates after at most two steps.

We make the following remark on this definition immediately:

Lemma 3.8: Let G be a nilpotent-by-finite, orbitally sound compact p-adic analytic group, k a finite field of characteristic $p > 2$, and P a faithful prime ideal of $k\Delta$. Then $\lambda(P) = h(P)$.

Proof. $\lambda(P)$ is defined to be $h_G(P \cap k\Delta)$. But, by Theorem 2.9 and Lemma 2.11 we see that there is a one-to-one, inclusion-preserving correspondence between faithful prime ideals of kG and faithful G-prime ideals of $k\Delta$, so that

$$h_G(P \cap k\Delta) = h(P).$$

We return to the general case of G an arbitrary compact p-adic analytic group.

Lemma 3.9: Let $P \leq Q$ be neighbouring prime ideals of kG, and write

$$\pi : kG \to kG/(P^\dagger - 1)kG \cong k[[G/P^\dagger]].$$

Then

$$\lambda(Q) - \lambda(P) = \lambda(Q^\pi) - \lambda(P^\pi).$$

Proof. Firstly, as $P \leq Q$, we have $P^\dagger \leq Q^\dagger$, so the map

$$\rho : kG \to k[[G/Q^\dagger]]$$

factors as

$$kG \xrightarrow{\pi} k[[G/P^\dagger]] \xrightarrow{\sigma} k[[G/Q^\dagger]].$$

We now compute $\lambda(Q) - \lambda(P)$ using Definition 3.7

$$\lambda(Q) - \lambda(P) = p_G(Q^\dagger) - p_G(P^\dagger) + \lambda(Q^\rho) - \lambda(P^\pi)$$

$$= p_G((Q^\dagger)^\pi) + \lambda(Q^\rho) - \lambda(P^\pi)$$

by Lemma 3.6

$$= p_G((Q^\dagger)^\pi) + \lambda(Q^\pi^\sigma) - \lambda(P^\pi)$$

by definition of ρ

$$= p_G((Q^\pi)^\dagger) + \lambda((Q^\pi)^\sigma) - \lambda(P^\pi)$$

as $(Q^\dagger)^\pi = (Q^\pi)^\dagger$

$$= \lambda(Q^\pi) - \lambda(P^\pi)$$

by Definition 3.7.
Remark: Suppose G is a nilpotent-by-finite compact p-adic analytic group, and suppose we are given a subquotient A of G which is a plinth, with G-action induced from the conjugation action of G on itself. Then it is easy to see that

$$\dim_{Q_p}(A \otimes Z_p Q_p) = 1.$$

(Roseblade calls such plinths centric.) Indeed, suppose $A = H/K$, where H and K are closed normal subgroups of G with K contained in H. Then we may replace G by an open normal nilpotent uniform subgroup G', and A by $A' = H'/K'$, where $H' = H \cap G'$ and $K' = i_{H'}(K \cap G')$; after doing this, we still have that A' is a plinth for G', and that

$$\dim_{Q_p}(A \otimes Z_p Q_p) = \dim_{Q_p}(A' \otimes Z_p Q_p).$$

But, as G'/K' is nilpotent, and A' is a non-trivial normal subgroup, A' must meet the centre $Z(G'/K')$ non-trivially; and as A' is torsion-free, we must have that $A' \cap Z(G'/K')$ is a plinth for G', and so must be equal to A'. Hence G' centralises A', and its plinth length is simply equal to its rank.

Again, we will write $(-)^\circ$ to mean $\bigcap_{g \in G} (-)^g$.

Lemma 3.10: Let G be a nilpotent-by-finite compact p-adic analytic group. Let U be a G-prime of $k\Delta$, and write $\rho : k\Delta \to k[[\Delta/U^\dagger]]$. Then

$$h(U) = h_G(U^\rho) + p_G(U^\dagger).$$

Proof. Let $A = Z(\Delta)$, and let U_1 be a minimal prime of kA above $U \cap kA$, so that $U \cap kA = U_1^\circ$. Then $h_G(U) = h(U_1)$ by Corollary 1.4, and so $h_G(U^\rho) = h(U_1^\rho)$. Now, from Lemma 2.2(i), we have that $h(U_1) + \dim(kA/U_1) = r(A)$ and $h(U_1^\rho) + \dim(kA/U_1) = r(A^\rho)$, from which we may deduce that

$$h(U_1) = h(U_1^\rho) + r(A) - r(A^\rho).$$

But $r(A) - r(A^\rho) = r(A \cap \ker \rho) = p_G(U^\dagger \cap A)$ by the above remark. Now this is just $p_G(U^\dagger)$, as A is open in Δ.

Lemma 3.11: Let G be arbitrary compact p-adic analytic. Let H be a closed normal subgroup of G, and let K be an open subgroup of H which is normal in G. If P is a G-prime ideal of kH, then

$$h_G(P) = h_G(P \cap kK).$$
Proof (Adapted from [19, Lemma 29]). We know that $P = Q^\circ$ for some prime Q of kH, and $Q \cap kK = \bigcap_{h \in H} V^h$ for some prime V of kK. Hence $P \cap kK = V^\circ$. Then, writing h_G^{orb} for the height function on G-orbital primes,

$$h_G(P) = h_G^{\text{orb}}(Q) \quad \text{by Lemma 1.2(ii)}$$

$$= h_G^{\text{orb}}(V) \quad \text{by Lemma 1.2(i)}$$

$$= h_G(P \cap kK) \quad \text{by Lemma 1.2(ii).}$$

Here, we deduce from Theorem 2.9 and [19, proof of theorem H2] the following corollary:

Theorem 3.12: Let G be a nilpotent-by-finite, orbitally sound compact p-adic analytic group, and k a finite field of characteristic $p > 2$. Then kG is a catenary ring.

Proof. Let $P \preceq Q$ be neighbouring prime ideals of kG. We will first show that $\lambda(Q) = \lambda(P) + 1$.

By passing to $k[[G/P]]$, we may assume that P is a faithful prime ideal, by Lemma 3.9. Hence, by Theorem 2.9 (and as $p > 2$), we have that

$$(P \cap k\Delta)kG = P.$$

We also have either that $(Q \cap k\Delta)kG = Q$, by Lemma 2.12 or $Q^\dagger \geq \Delta$ by the remark of Lemma 2.11 and so, in either case, we have $P \cap k\Delta \preceq Q \cap k\Delta$.

We will now show that $P \cap k\Delta$ and $Q \cap k\Delta$ are neighbouring G-primes of $k\Delta$. Suppose that they are not: then there must be a G-prime J strictly between them, i.e., $P \cap k\Delta \preceq J \preceq Q \cap k\Delta$. Then, again by Lemma 2.11 and the remark made there, we see that JkG is a prime ideal of kG. Now it is clear that

$$P \preceq JkG \preceq Q$$

by the previous paragraph; and if $JkG = Q$, then intersecting both sides with $k\Delta$ shows that $J = Q \cap k\Delta$, and likewise if $JkG = P$. Hence we must have $P \preceq JkG \preceq Q$, so that P and Q are not neighbouring primes. But this contradicts our initial assumptions.

So we conclude that

$$h_G(Q \cap k\Delta) = h_G(P \cap k\Delta) + 1.$$

The right-hand side is, by definition, just equal to $\lambda(P) + 1$; and we have $\lambda(Q) = \lambda(Q^\rho) + p_G(Q^\dagger)$, where $\rho : G \to G/Q^\dagger$. It remains to show that this is equal to $h_G(Q \cap k\Delta)$.
Case 1. Q^\dagger is not open in G. Then Q is controlled by Δ by Lemma 2.12 and the remark of Lemma 2.11, and so Q^ρ is controlled by Δ^ρ, and in particular by $i_{G^\rho}(\Delta^\rho) \leq i_{G^\rho}(\Delta(G^\rho))$. Write $A = Z(\Delta(G^\rho))$ and $B = A \cap i_{G^\rho}(\Delta^\rho)$: as Q^ρ is controlled by $i_{G^\rho}(\Delta^\rho)$, we have that $Q^\rho \cap kA$ is controlled by B. Furthermore, we can write $Q^\rho \cap kA = q^\circ$ for some prime q of kA, so that q is also controlled by B, and hence

$$\lambda(Q^\rho) = h_G(Q^\rho \cap k[\Delta(G^\rho)]) = h_G(Q^\rho \cap kA) = h(q) = h(q \cap kB) = h_G(Q^\rho \cap kB) = h_G(Q^\rho \cap k[\Delta^\rho]) = h_G(Q^\rho \cap k\Delta^\rho)$$

We also have $p_G(Q^\dagger) = p_G((Q \cap k\Delta)^\dagger)$. Hence

$$\lambda(Q) = h_G((Q \cap k\Delta)^\rho) + p_G((Q \cap k\Delta)^\dagger).$$

Now we are done by Lemma 3.10.

Case 2. Q^\dagger is open in G. We have already seen that this case only occurs when $G = i_G(\Delta)$, and so $\lambda(Q^\rho) = \lambda(0) = 0$, and $p_G(Q^\dagger) = p_G(G)$, and $h_G(Q \cap k\Delta) = h_G(Q \cap kA) = r(A)$. These are clearly equal, as A is open in G.

In order to invoke Lemma 3.11 it remains only to show that $\lambda(P) = 0$ when P is a minimal prime. But as all minimal primes are induced from Δ^\dagger, this follows immediately from the definition of λ: we will have $P^\dagger \leq \Delta^\dagger$ (and hence $p_G(P^\dagger) = 0$), and $P^\pi \cap k\Delta^\pi$ will be a minimal G-prime of $k\Delta^\pi$ (and hence $h_G(P^\pi \cap k\Delta^\pi) = 0$).

3.2. Vertices and sources. We now study a more general setting. Let G be an arbitrary compact p-adic analytic group, and P an arbitrary prime ideal of kG.

Remark: Suppose G is orbitally sound and nilpotent-by-finite, N is a closed normal subgroup of G, and I is a prime ideal of kG with $N \leq I^\dagger$ and $[I^\dagger : N] < \infty$. Writing $\overline{(-)}$ for the natural map $kG \to k[[G/N]]$, it is clear that the prime ideal $\overline{I} \subset k[[G/N]]$ is almost faithful, and so, by Theorem 2.9, is controlled by $\Delta(G/N)$, and that I is the complete preimage in kG of \overline{I}, and is therefore controlled by the preimage in G of $\Delta(G/N)$.
This motivates the following definition:

Definition 3.13: Let I be an ideal of kG, and N a closed subgroup of G. We say that I is **almost faithful** mod N if I^\dagger contains N as a subgroup of finite index. We also write $\nabla_G(N)$ for the subgroup of $N_G(N)$ defined by

$$\nabla_G(N)/N = \Delta(N_G(N)/N).$$

Diagrammatically:

```
G
|   |   |
|---|---|
N_G(N) --- N_G(N)/N
|   |   |
|---|---|
\nabla_G(N) --- \Delta(N_G(N)/N)
|   |   |
|---|---|
N --- N/N
|   |   |
|---|---|
1
```

We will extend this notion to ideals I with I^\dagger contained in N as a subgroup of finite index.

Lemma 3.14: Let H be an open subgroup of N. Then there exists an open characteristic subgroup M of N contained in H.

Proof (Adapted from [17, 19.2]). Let $[N : H] = n < \infty$. Now, as N is topologically finitely generated, there are only finitely many continuous homomorphisms $N \to S_n$, where S_n is the symmetric group. Take M to be the intersection of the kernels of these homomorphisms. \blacksquare

Lemma 3.15: Let N be a closed subgroup of G, and $A = N_G(N)$. Suppose I is an ideal of kA, and $I^\dagger \leq N$ with $[N : I^\dagger] < \infty$. Then there is a closed normal subgroup M of A such that I is almost faithful mod M. Furthermore, this M can be chosen so that

$$\nabla_G(N) = \nabla_A(M).$$
Proof. Set $H = I^\dagger$ in Lemma 3.14, then the subgroup M is characteristic in N, hence normal in A; M contains I^\dagger; and M is open in N, so we must have

$$[I^\dagger : M] < \infty.$$

By definition, we have $\nabla_G(N) = \nabla_A(N)$. Now, N/M is a finite normal subgroup of A/M, so is contained in $\Delta^+(A/M)$. Hence the preimage under the natural quotient map $A/M \rightarrow A/N$ of $\Delta(A/N)$ is $\Delta(A/M)$. But this is the same as saying that

$$\nabla_A(N) = \nabla_A(M).$$

When G is a general compact p-adic analytic group, we will use the following lemma to translate between prime ideals of kG and prime ideals of kA for certain open subgroups A of G.

Lemma 3.16: Let H be an open normal subgroup of G. Suppose P is a prime of kG, and write Q for a minimal prime of kH above $P \cap kH$. Let B be the stabiliser in G of Q, and let A be any open subgroup of G containing B, so that

$$H \leq B \leq A \leq G.$$

Then there is a prime ideal T of kA with $P = T^G$, and furthermore this T satisfies

$$T \cap kH = \bigcap_{a \in A} Q^a.$$

Proof. This follows from [17, 14.10(i)].

Definition 3.17: A prime $P \triangleleft kG$ is standard if it is controlled by Δ and we have

$$P \cap k\Delta = \bigcap_{x \in G} L^x$$

for some almost faithful prime $L \triangleleft k\Delta$.

Lemma 3.18: Let G be a nilpotent-by-finite compact p-adic analytic group and H an open normal subgroup. Let P be a prime ideal of kG, and Q a minimal prime of kH above P, so that

$$P \cap kH = \bigcap_{x \in G} Q^x.$$

If Q is a standard prime, then P is a standard prime.
Proof (Adapted from [17, 20.4(i)]). Write $\Delta = \Delta(G), \Delta_H = \Delta(H)$, and

$$P \cap k\Delta = \bigcap_{x \in G} S^x \quad \text{and} \quad Q \cap k\Delta_H = \bigcap_{y \in H} T^y,$$

for prime ideals $S \triangleleft k\Delta$ and $T \triangleleft k\Delta_H$. On the one hand,

$$P \cap k\Delta_H = (P \cap k\Delta) \cap k\Delta_H$$

$$= \left(\bigcap_{x \in G} S^x \right) \cap k\Delta_H$$

$$= \bigcap_{x \in G} (S \cap k\Delta_H)^x,$$

but on the other hand,

$$P \cap k\Delta_H = (P \cap kH) \cap k\Delta_H$$

$$= \left(\bigcap_{x \in G} Q^x \right) \cap k\Delta_H$$

$$= \bigcap_{x \in G} (Q \cap k\Delta_H)^x$$

$$= \bigcap_{x \in G} T^x.$$

Now, the conjugation action of G on Δ_H has kernel $C_G(\Delta_H)$, which contains $C_G(\Delta)$ by [25, Lemma 1.3(ii)]. But

$$C_G(\Delta) = \bigcap C_G(a),$$

where the intersection runs over a set of topological generators a for Δ, and each $C_G(a)$ is open in G by definition of Δ. Now, as Δ is topologically finally generated, we see that $C_G(\Delta)$ and hence $C_G(\Delta_H)$ are also open in G.

That is, the conjugation action of G on Δ_H factors through the finite group $G/C_G(\Delta_H)$, and hence the intersections above are finite, so that (by the primality of T) we have

$$S \cap k\Delta_H \subseteq T^x$$

for some $x \in G$.

Now, by assumption, Q is standard, so T is almost faithful. This means that

$$S^\dagger \cap \Delta_H \subseteq (T^\dagger)^x$$

is a finite group, and so, since $[\Delta : \Delta_H] < \infty$, we have that S^\dagger is also finite, so S is almost faithful.
It remains to show that $S^\circ kG = P$. By Lemma 2.11, we see that $S^\circ kG = P'$ is a prime ideal of kG contained in P. Now,

$$
(P \cap kH)kG = \left(\bigcap_{g \in G} Q^g \right)kG
= \left(\bigcap_{g \in G} \left(\bigcap_{h \in H} T^h kH \right)^g \right)kG
= \left(\bigcap_{g \in G} T^g \right)kG
= (P \cap k\Delta_H)kG \quad \text{by calculation above}
\subseteq (P \cap k\Delta)kG = P' \subseteq P,
$$

and as H is open and normal in G, we know from Lemma 1.2(i) that P is a minimal prime above $(P \cap kH)kG$, so that $P = P'$. ■

Finally, the main theorem of this subsection:

Theorem 3.19: Let G be a nilpotent-by-finite compact p-adic analytic group, P a prime ideal of kG, H an orbitally sound open normal subgroup of G, Q a minimal prime ideal above $P \cap kH$, and $N = i_G(Q^\dagger)$. Then there exists an ideal $L \subseteq k[[\nabla_G(N)]]$ with $P = L^G$.

Remark: The subgroup N is a vertex of the prime ideal P, and the ideal L is a source of P corresponding to the vertex N.

Proof. We follow the proof of [13, 2.3], as reproduced in [17, 20.5].

Trivially, H stabilises Q, i.e.,

$$
H \leq B := \text{Stab}_G(Q);
$$

and B normalises Q^\dagger. Set

$$
N := i_G(Q^\dagger).
$$

Now we must have $N_G(Q^\dagger) \leq A := N_G(N)$: indeed, if $x \in G$ normalises Q^\dagger, then it permutes the (finitely many) closed orbital subgroups K of G containing Q^\dagger as an open subgroup, and hence it normalises N, which is generated by those K. [25, Definition 1.6].
We are in the following situation:

Now, Lemma 3.16 shows that there is a prime ideal T of kA with $P = T^G$ and $T \cap kH = \bigcap_{a \in A} Q^a$. It will suffice to show the existence of a prime ideal L of $k[[\nabla_G(N)]]$ with $T = L^A$, by Lemma 1.6.

Let M be an open characteristic subgroup of N contained in Q^\dagger, whose existence is guaranteed by Lemma 3.14. Write $\nabla = \nabla_G(N)$, which we know is equal to $\nabla_A(M)$ by Lemma 3.15 and denote by $\langle \cdot \rangle$ images under the natural map $kA \to k[[A/M]]$.

Now Q is a prime ideal of kH with $M \leq Q^\dagger$ an open subgroup, so \overline{Q} is an almost faithful prime ideal of $k\overline{H}$; hence, as \overline{H} is orbitally sound [25, Lemma 1.5(ii)], we see that \overline{Q} is a standard prime of $k\overline{H}$.

But $T \cap kH = \bigcap_{a \in A} Q^a$ clearly implies

$$\overline{T} \cap k\overline{H} = \bigcap_{\pi \in \overline{A}} \overline{Q}^\pi,$$

by the modular law. Now Lemma 3.18 implies that \overline{T} is also a standard prime ideal of $k\overline{A}$: that is, there is an almost faithful prime ideal \overline{L} of $k[[\Delta(\overline{A})]]$ with $\overline{T} = \overline{L}$. Lifting this back to kA, we see that we have an almost faithful mod M prime ideal L of $k\nabla$ with $T = L^A$ as required. \[\square\]
We end this subsection with an important application of this theorem. Recall the definition of $\text{nio}(G)$ from \cite[Definition 2.5]{25}.

Corollary 3.20: Suppose G is a nilpotent-by-finite compact p-adic analytic group which is not orbitally sound. Let P be a faithful prime ideal of kG. Then P is induced from some proper open subgroup of G containing $\text{nio}(G)$.

Proof. Write $H = \text{nio}(G)$. H is orbitally sound by \cite[Theorem 2.6(ii)]{25}.

Let Q be a minimal prime ideal above $P \cap kH$, so that $N = i_G(Q^\dagger)$ is a vertex for P by Theorem 3.19. Then P is induced from $\nabla_G(N)$, which is contained in $N_G(N)$, and so P is induced from $N_G(N)$ itself by Lemma 1.6 But, as $\text{nio}(G)$ is orbitally sound, in particular it must normalise N \cite[Theorem 2.6(i)]{25}. Hence, if $N_G(N)$ is a proper subgroup of G, we are done.

Suppose instead that $N_G(N) = G$, i.e., that $i_G(Q^\dagger)$ is a normal subgroup of G. Then, for each $g \in G$, $(Q^\dagger)^g$ is a finite-index subgroup of $i_G(Q^\dagger)$ \cite[Proposition 1.7]{25}; and Q^\dagger is orbital in G, so there are only finitely many $(Q^\dagger)^g$, and their intersection $(Q^\dagger)^o$ must also have finite index in $i_G(Q^\dagger)$. But $(Q^\dagger)^o = P^\dagger = 1$, so in particular we have $i_G(Q^\dagger) = \Delta^+$, and hence P is induced from $\nabla_G(N) = \Delta$, again by Theorem 3.19. Hence, as $\text{nio}(G)$ contains Δ, P must be induced from $\text{nio}(G)$ itself. \blacksquare

3.3. The General Case: Inducing from Open Subgroups

Now we will proceed to show that kG is catenary.

Lemma 3.21: Let H be an open subgroup of G, and P a prime ideal of kG. Suppose Q is an ideal of kH maximal amongst those ideals A of kH with $A^G \subseteq P$. Then Q is prime, and P is a minimal prime ideal above Q^G.

Proof. Suppose I and J are ideals strictly containing Q: then, by the maximality of Q, we see that I^G and J^G must strictly contain P. Hence $I^G J^G \subseteq (IJ)^G$ \cite[Lemma 14.5]{17} strictly contains P, and so IJ strictly contains Q. Hence Q is prime.

Now P is clearly a prime ideal containing Q^G, so to show it is minimal it suffices to find any ideal A of kH with P a minimal prime above A^G. Let N be the normal core of H in G, and take $A = (P \cap kN)^H$: then by Lemma 1.6 we have

$$A^G = (P \cap kN)^G = (P \cap kN)kG,$$

and by Lemma 1.2(i), P is a minimal prime above this. \blacksquare
Lemma 3.22: Let H be an open subgroup of G with kH catenary. If $P \lhd P'$ are adjacent primes of kG, and P is induced from kH, then

$$h(P') = h(P) + 1.$$

Proof (Adapted from [14, 3.3]). Choose an ideal Q (resp. Q') of kH which is maximal amongst those ideals A of kH with $A^G \subseteq P$ (resp. $A^G \subseteq P'$). Then Q and Q' are prime, and P (resp. P') is a minimal prime ideal over Q^G (resp. Q'^G), by Lemma 3.21. Hence, by Proposition 1.16 we see that it suffices to show that $h(Q') = h(Q) + 1$.

Suppose not. Then there exists some prime ideal I of kH with $Q \lhd I \lhd Q'$; and we may choose a prime ideal J of kG which is minimal over I^G. Then $P \leq J \leq P'$. But $h(Q) < h(I) < h(Q')$ implies (by another application of Proposition 1.16) that $h(P) < h(J) < h(P')$, contradicting our assumption that P and P' were adjacent primes.

Corollary 3.23: Let G be a nilpotent-by-finite compact p-adic analytic group, and k a finite field of characteristic $p > 2$. Then kG is a catenary ring.

Proof (Adapted from [14, 3.3]). Take two adjacent prime ideals $P \lhd Q$ of kG, and assume without loss of generality that P is faithful. We proceed by induction on the index $[G : \text{nio}(G)]$. When this index equals 1, we are already done by Theorem 3.12; so suppose not. Then Corollary 3.21 implies that P is induced from some proper open subgroup H of G containing $\text{nio}(G)$. As $\text{nio}(G)$ is an orbitally sound open normal subgroup of H, it must be contained in $\text{nio}(H)$ (by the maximality of $\text{nio}(H)$), and so we have

$$[H : \text{nio}(H)] < [G : \text{nio}(G)].$$

By induction, kH is catenary, so we may now invoke Lemma 3.22 to show that $h(Q) = h(P) + 1$.

References

[1] K. Ardakov, Localisation at augmentation ideals in Iwasawa algebras, Glasgow Mathematical Journal 48 (2006), 251–267.
[2] K. Ardakov, Prime ideals in nilpotent Iwasawa algebras, Inventiones mathematicae 190 (2012), 439–503.
[3] K. Ardakov and K. A. Brown, Primeness, semiprimeness and localisation in Iwasawa algebras, Transactions of the American Mathematical Society 359 (2007), 1499–1515.
[4] K. A. Brown, *The structure of modules over polycyclic groups*, Mathematical Proceedings of the Cambridge Philosophical Society 89 (1981), 257–283.

[5] J. D. Dixon, M. P. F. du Sautoy, A. Mann and D. Segal, *Analytic Pro-p Groups*, Cambridge Studies in Advanced Mathematics, Vol. 61, Cambridge University Press, Cambridge, 1999.

[6] O. Gabber, *Équidimensionalité de la variété caractéristique*, Exposé de O. Gabber redigé par T. Levasseur, Université de Paris VI, 1982.

[7] K. R. Goodearl and R. B. Warfield, Jr, *An Introduction to Noncommutative Noetherian Rings*, London Mathematical Society Student Texts, Vol. 61, Cambridge University Press, Cambridge, 2004.

[8] K. R. Goodearl and J. J. Zhang, *Homological properties of quantized coordinate rings of semisimple groups*, Proceedings of the London Mathematical Society 94 (2007), 647–671.

[9] M. Lazard, *Groupes analytiques p-adiques*, Institut des Hautes Études Scientifiques. Publications Mathématiques 26 (1965), 389–603.

[10] B. Lemonnier, *Dimension de Krull et codéviation. Application au théorème d’Eakin*, Communications in Algebra 6 (1978), 1647–1665.

[11] E. S. Letzter and L. Wang, *Prime ideals of q-commutative power series rings*, Algebras and Representation Theory 14 (2011), 1003–1023.

[12] M. Lorenz, *Prime ideals in group algebras of polycyclic-by-finite groups: vertices and sources*, in Séminaire d’Algèbre Paul Dubreil et Marie-Paule Malliavin, Lecture Notes in Mathematics, Vol. 867, Springer, Berlin, 1981, pp. 406–420.

[13] M. Lorenz and D. S. Passman, *Prime ideals in group algebras of polycyclic-by-finite groups*, Proceedings of the London Mathematical Society 43 (1981), 520–543.

[14] M. Lorenz and D. S. Passman, *Polycyclic-by-finite group algebras are catenary*, Mathematical Research Letters, 6 (1999), 183–194.

[15] S. Mac Lane, *Homology*, Grundlehren der mathematischen Wissenschaften, Vol. 114, Academic Press, New York; Springer, Berlin–Göttingen–Heidelberg, 1963.

[16] J. C. McConnell and J. C. Robson, *Noncommutative Noetherian Rings*, Graduate Studies in Mathematics, Vol. 30, American Mathematical Society, Providence, RI, 2001.

[17] D. S. Passman, *Infinite Crossed Products*, Pure and Applied Mathematics, Vol. 135, Academic Press, Boston, MA, 1989.

[18] D. J. S. Robinson, *A Course in the Theory of Groups*, Graduate Texts in Mathematics, Vol. 80, Springer, New York, 1996.

[19] J. E. Roseblade, *Prime ideals in group rings of polycyclic groups*, Proceedings of the London Mathematical Society 36 (1978), 385–447.

[20] P. Schneider and J. Teitelbaum, *Banach space representations and iwasawa theory*, Israel Journal of Mathematics 127 (2002), 359–380.

[21] P. Schneider and J. Teitelbaum, *Locally analytic distributions and p-adic representation theory, with applications to GL2*, Journal of the American Mathematical Society 15 (2002), 443–468.

[22] R. G. Swan, *Goldie’s theorem*, http://math.uchicago.edu/~swan/expo/Goldie.pdf

[23] W. Woods, *Extensions of almost faithful prime ideals in virtually nilpotent mod-p Iwasawa algebras*, Pacific Journal of Mathematics 297 (2018), 477–509.
[24] W. Woods, Maximal prime homomorphic images of mod-p Iwasawa algebras, Mathematical Proceedings of the Cambridge Philosophical Society, to appear.

[25] W. Woods, On the structure of virtually nilpotent compact p-adic analytic groups, Journal of Group Theory 21 (2018), 165–188.

[26] M. Yakimov, On the spectra of quantum groups, Memoirs of the American Mathematical Society 229 (2014).

[27] O. Zariski and P. Samuel, Commutative Algebra, D. Van Nostrand, Princeton, NJ, 1965.