Assessment of Bacteriological Quality of Street Vended Fast Foods and their Antimicrobial Resistance

Abdullah Al Momen Sabuj, Zobayda Farzana Haque, Nanda Barua, Md. Alimul Islam and Sukumar Saha*

Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh

*Corresponding author

INTRODUCTION

Street fast food refers to the state of food and beverages that are prepared or sold by vendors in streets and other public places for direct human consumption immediately or later, with or without need for further processing and preparation (Tsang, 2002). In developing country like Bangladesh, it is getting popular day by day due to cheap price and easily available and convenient in urban habitant.

For this reason, without following the rule of food safety and hygiene, an increasing number of shops are getting established throughout the Bangladesh (Ahmed et al., 2008).

Fast foods are easy to prepare and serve. Samosa, shingara, vegetable roll, chicken roll, sandwich, pakura, puri, chop, cake, patties and burgar are most popular fast food in Bangladesh (Rahman et al., 2014). Fast foods are served as snacks in meeting, seminar, any

KEYWORDS

Street vended fast food, Total bacterial load, Antimicrobial susceptibility test

ARTICLE INFO

Accepted: 26 October 2018
Available Online: 10 November 2018

The present study was conducted to determine the total bacterial load with special emphasis on Staphylococcus spp., Salmonella spp. and Escherichia coli in street vended fast foods sold in Bangladesh Agricultural University campus, Mymensingh and to evaluate the antibiotic resistance of isolates. A total of 72 samples from six street vended fast food items included Shingara, Samosa, Piazu, Puri, Potato chop and Beguni were collected. Bacterial enumeration and antimicrobial susceptibility test were made using the following standard microbiological methods. The mean total bacterial count, Staphylococcus spp., Salmonella spp. and E. coli count in all the fast food samples ranged from 1.0 x 10^7 to 2.4 x 10^7, 6.3 x 10^3 to 4.2 x 10^4, 2.4 x 10^3 to 3.2 x 10^4 and 2.7 x 10^4 to 4.0 x 10^4 cfu/g respectively. Among the 60 isolates, Staphylococcus spp. was most detected isolate (40%) followed by E. coli (33.3%) and Salmonella spp. (26.7%). All the isolates were tested to antibiotic susceptibility against ten commonly used antibiotics and the results showed most of the bacterial isolates were resistant to ampicillin, amoxicillin, nalidixic acid, tetracycline and erythromycin whereas many of the isolates of these organisms were sensitive to ciproflaxacin, gentamycin, azithromycin and chloramphenical. Thus the study revealed that street vended fast food in this area is contaminated with foodborne bacteria that can pose a serious health problem.
festival and most of the students take those
during the tiffin period as alternative regular
food items. Most of the ingredients used in
fast food are nutritious but they harbor various
pathogenic organism including *Escherichia
coli*, *Enterobacter* spp. *Staphylococcus
aureus*, *Salmonella* spp. and *Listeria
monocytogens* (Ahmed et al., 2014).

Street fast foods contribute a significant role
in foodborne illness to consumers. Most of the
food handlers and worker are uneducated and
lack of the knowledge about handling practice,
sanitation and hygiene so that food can easily
be contaminated (Tabashsum et al., 2013).
There are several reasons for contamination of
street fast foods includes the utensils and
equipment that enhance cross contamination,
 vending sites that are filthy in nature, tap
water used in preparation of food, waste and
garbage produce in restaurants discard nearby
that attract the rodents and insect which may
carry foodborne pathogens, flies that land on
food sporadically and finally handling of food
by vendors with bare hand (Nicolas et al.,
2007; Tambekar et al., 2009).

Foodborne illness is occurred after
consumption of contaminated foods
containing microorganisms and their toxin
(Clarence et al., 2009). It is now becoming a
great concern involving a wide range of illness
caused by bacterial, viral, parasitic and
chemical contamination of food. In addition,
resistant to multi-drug against these organisms
is a great concern of public health (Tabashsum
et al., 2013). It is stated that approximately 30
million people in Bangladesh getting infected
from foodborne illness each year (FAO,
2012). The incidence of foodborne illness is
on the rise worldwide and becomes an
alarming issue involving broad range of
disease caused by the pathogenic organisms
(De Vogli et al., 2014). Most of the bacteria
present in foods are resistant to antibiotic and
sometimes it reaches at such as level that can
cause death of an individual stated by Ahmed
et al., (2008).

Studies have been carried out in different
countries throughout the world to investigate
the microbiological quality of street fast food.
Eromo et al., (2016) isolated three bacteria
from six street food items in Hawassa,
Ethiopia where 29.6% of *E. coli* followed by
12.7% of *Salmonella* spp. and 9.9% of *S.
aureus*. Adimasu et al., (2016) identified *E.
coli*, *S. aureus* and *Salmonella* spp. in street
vended foods in Gondar, Ethiopia. Manguiat
and Fang (2013) were found higher number of
coliforms, *E. coli* and *S. aureus* in pork and
chicken based food samples. Kibret and
Tadesse (2013) also identified contamination
in lupin by *Salmonella* spp., *Shigella* spp.
and *E. coli*. Sharma and Mazumdar (2014) carried
out the experiment on street food samples in
Silchar city, India and the isolates recovered
was 37.5% *E. coli*, 5.35% *Salmonella*, 19.94%
Shigella and remaining percentage was other
microbial species. In Orissa, India *E. coli*,
Klebsiella spp. *Vibrio* spp. *Shigelladyserteriae*
and *Salmonella paratyphi* were detected in
Panipuri samples by Das et al., (2012).

Popularity of street fast foods is increasing
day by day among the all ages. About 10
thousand students are studying in Bangladesh
Agricultural University. The university is
considered as one of the densely populated
areas in Mymensingh and is surrounded by a
number of food vendors and restaurants. So,
there is lots of chance of getting infection
through consumption of fast food from these
street vended restaurants. Considering above
mentioned facts, this study was carried out to
assess the total bacterial load and also
isolation, identification and antimicrobial
susceptibility of common bacterial pathogen
with special emphasis on *Staphylococcus* spp.,
Salmonella spp. and *Escherichia coli* in street
vended fast foods.
Materials and Methods

Sample collection

The study was carried out on street vended fast foods sold in Bangladesh Agricultural University, Mymensingh, Bangladesh during the period of January 2017 to December 2017. For this purpose, a total of 72 fast food samples comprising six items (Shingara, Samosa, Piazu, Puri, Potato chop and Beguni) were randomly collected from different street vended restaurants including Jabbarer More (5 restaurants), Kamal-Ranjit Market (3 restaurants), Kewatkhali (2 restaurants) and Shesh More (2 restaurants). These fast foods items and places were selected as per as consumer preference and their availability. After collection, samples were kept in labeled sterile polyethylene containers and transported to the Bacteriology laboratory, Department of Microbiology and Hygiene, Bangladesh Agricultural University in cold box (contain ice blocks) and processed immediately for bacteriological analysis.

Sample processing

For analysis, 10g of samples were weighed using electric balance and blended in mortar and pestle. After that samples were homogenized properly with 90ml of phosphate buffered saline (PBS) solution. Serial dilutions of 10^{-1} to 10^{-6} were made depending upon contamination level using 1ml of homogenized sample with 9 ml of PBS.

Microbial analysis

All the media were prepared according to Manufacture’s instruction, and sterilized by autoclaving for 15 mins at 121°C. Salmonella-shigella agar (SS) which did not require autoclaving, were sterilized by boiling for 15 mins according to the instruction of manufacturer’s. Nutrient agar was used to count the total bacterial colonies. A 0.1 ml aliquot from each dilution was inoculated onto the center of petridishes of nutrient agar and spread by a glass stick smoothly. Then it was kept in incubator at 37°C for 24 to 48hrs in an inverted position. After incubation, colonies on nutrient agar were counted and recorded in cfu/g of fast food samples. Similar method was applied to enumerate the *Staphylococcus* spp., *Salmonella* spp. and *E. coli* using Mannitol-salt agar, Salmonella-shigella agar and Eosin methylene blue agar respectively.

Isolation and identification of bacteria

For obtaining pure culture, bacterial colonies of different agar were streaked in their respective media and incubated overnight at 37°C. Bacteria was identified on the basis of colony characteristics, morphological characteristics by Gram’s staining, sugar fermentation test and a series of biochemical tests including Methyl red (MR), VogesProskauer (VP), Catalase and coagulase test (Cheesbrough, 2006).

Molecular detection by PCR

Genus specific PCR was performed to identify the microorganisms using previously published primers. The lists of primers and their oligonucleotide sequences are shown in Table 1. Genomic DNA was extracted from each isolate by heat lysis method as described previously by Dashti *et al.*, (2009). A 20µl reaction mixture was used comprising 4µl PCR master mix (MP Bio Medical), 1µl forward primer, 1µl reverse primer, 9µl nuclease free water and 5µl DNA template. Thermal condition used for amplification was 5 mins at 94°C for initial denaturation followed by 35 cycles comprising of denaturation at 94°C for 1 min, annealing at 52°C for 1 min, extension at 72°C for 1 min and final extension at 72°C for 10 mins in case of *Staphylococcus* spp. For *Salmonella* spp.
amplification condition was 5 mins at 94°C for initial denaturation followed by 30 cycles of reaction comprising denaturation at 94°C for 30s, annealing at 66°C for 30s, extension at 72°C for 45s and final extension at 72°C for 10 mins.

Thermal condition used for amplification of *E. coli* was 5 mins at 95°C for initial denaturation followed by same reaction cycle used in *Salmonella* spp. consisting at denaturation at 94°C for 40s, annealing at 56°C for 30s, extension at 72°C for 30s and final extension at 72°C for 7 mins. After that 5 µl of PCR products was loaded in 1.5% agarose gel well and electrophoresed in 1X TAE buffer for 25 mins at 100V. Ethidium bromide was used to stain the DNA and then visualized under ultraviolet trans-illuminator (Biometra, Germany).

Antimicrobial susceptibility test

Kirby–Bauer disc diffusion method described by Bauer et al., (1966) was used to perform antimicrobial susceptibility test on Mueller Hinton agar using the following antibiotic discs includes ampicillin (25µg), gentamycin (10µg), ciprofloxacin (5µg), azithromycin (30µg), chloramphenicol (30µg), tetracycline (30µg), neomycin (30µg), erythromycin (5µg), nalidixic acid (30µg) and amoxicillin (30µg). Antimicrobial agents tested in this study were selected on the criteria of commercially availability and widely used as treatment of bacterial diseases. The zone sizes of bacteria were compared with standard of Clinical and Laboratory Standards Institute (CLSI, 2016).

Statistical analysis

All data was incorporated in SPSS software (SPSS-20.0) and analyzed. Descriptive analysis was performed to calculate mean and frequency.

Results and Discussion

During the investigation, a total of 72 street fast food samples were investigated to determine the microbial load. From this study, it was revealed that food samples examined from the various street vended restaurants were contaminated with indicator organisms including *Staphylococcus* spp., *Salmonella* spp. and *E. coli*. Bacteria enumerated from different types of food samples are shown in Table 2.

Total bacterial count (TBC)

In present study, all the six food items were examined for determination of total bacterial load and all of them were found to be contaminated. Total bacterial count in all the food items was recorded ranged from 1.0 x 10⁷ to 2.4 x 10⁷ cfu/g whereas highest one was estimated from piazu samples and lowest one from puri samples. TBC of samples from all the tested street vended restaurants were not within acceptable limit recognized by the International Commission for Microbiological Specification for Foods (10⁶ to < 10⁷ cfu/g) (ICMSF, 2002). The count of TBC was relatively higher than the findings of Nguendo (2018) who found TBC ranged from 1.71 x 10⁵ cfu/g to 3.71 x 10⁵ cfu/g for different street foods and beverages in three location of Yaounde, Cameroon. Khandoker et al., (2014) was also reported TVC ranging from 10⁴ to 10⁵ cfu/g for spicy puffed rice sold by street vendors at Bangladesh Agricultural University campus, Bangladesh. Sharma and Mazumder (2014) examined the TBC in street fast food samples ranged from 4.5 x 10⁵ to 1.12 x 10⁶ cfu/g in Silchar city, Assam, India. On the other hand, mean TBC obtained in present study was quite comparable with the findings of Madueke et al., (2014) who observed average mean bacterial count ranging from 5.0 x 10⁵ to 2.08 x 10⁵ cfu/g forakara and fish, respectively in Lokoja-Abuja Express Way,
Lokoja. The variations of TBC with the other research might be due to types of sampled food items, number of food samples, food content, way of preparation, handling and serving of foods by vendors. Environment and personal hygiene along with prolong exposure of foods to the different environmental conditions might be other cause of differences.

Total Staphylococcal count

Among the all tested food samples, 95% (68/72) of them was found to be contaminated with *Staphylococcus* spp. The *Staphylococcal* count in food items ranged from 6.3×10^4 to 4.2×10^5 cfu/g. Among the all samples highest *Staphylococcus* spp. was found in puri and lowest in piazu samples. This finding was some extent comparable with the findings of Adimasu *et al.*, (2016) who obtained 1.5×10^4 cfu/g of *S. aureus* from street vended foods in Gonder, Ethiopia. Similarly, Wimalasekara and Gunasena (2016) also found 10^4 cfu/g in meat based fast food samples in Colombo, Srilanka which was quite similar to present research. But present findings disagreed with the research of Khater-Dalia *et al.*, (2013) and Cho *et al.*, (2011) that documented 10^2 cfu/g and 10^3cfu/g of *Staphylococcus* spp. in fast food samples of Tanta city, Egypt and Korea respectively which was comparatively lower than the present findings. Hoque *et al.*, (2012) noted 10^3cfu/g of Staphylococcal count in sandwich collected from fast food outlets of Dhaka and Mymensingh city, Bangladesh that was slightly higher than the current study. Among the *Staphylococcus* spp. contaminated food samples, 78% (53/68) samples exceed acceptable range (10^3cfu/g) of *Staphylococcus* spp. which indicates that tested fast food samples are hazardous to health. This variation might happen because it is stated that the presence of *Staphylococcus* was an indication of contamination from the skin and mouth or nose of food handlers. Tambekar *et al.*, (2009) stated that lack of adequate knowledge on hygiene practices and food safety and contaminated hands of vendors may enhance the contamination.

Total Salmonella spp. count

In this study, 27% (20/72) samples were found to be contaminated with *Salmonella* spp. and all of them crossed the acceptable limit as according to ICMSF (2002) no *Salmonella* will be detected in 25g of samples. Total *Salmonella* count ranged from 2.4×10^3 to 3.2×10^4cfu/g. The count of *Salmonella* was the highest in potato chop and lowest in samosa samples whereas no *Salmonella* was detected in piazu samples. The present finding agrees with several previous reports such as Akusu *et al.*, (2016) in Rivers State, Nigeria who obtained 10^3cfu/g of *Salmonella* in egg burger, fried rice, meat pie and vegetable salad samples and Adimasu *et al.*, (2016) was also found 1.6×10^3cfu/g in street vended fast food samples in Gonder, Ethiopia. However, No *Salmonella* was detected in street food samples in different locations of Chennai city reported by Arunaand Rajan (2017). The presence of *Salmonella* spp. in this study may due to in clothing, handling and serving practices of vendors.

Total E. coli count

From results, *E. coli* count was estimated from 2.7×10^4 to 4.0×10^4cfu/g which crossed the acceptable range where the range is 2 log CFU/g (ICMSF, 2002). This indicates the high amount of *E. coli* were present on investigated fast food samples which can induce infection. Similar results were also observed by other researchers include Nguendo (2018) who reported 4.10×10^3cfu/g of bacteria in fast samples in three location of Yaounde, Cameroon and Tabashsum *et al.*, (2013) who seen 10^2 to 10^7 cfu/g of *E. coli* in different street foods of Dhaka city. Similarly, Amissah and Owusu (2012) carried out a study in
Koforidua Polytechnic campus, Ghana and the results showed 1.0 x 10^3 cfu/g of *E. coli* in fast foods which was comparable to our study. Such variation in study could be linked with the use of unhygienic water for cleaning utensils and cooking of foods, secondary contamination via contact with contaminated equipment’s.

Table.1 Oligonucleotide sequence of primers for PCR

Primer	Sequence	Size (bp)	References
Staphylococcus spp. 16S (F)	5′-GGAGGAAGGTGGGG ATGACG-3′	241	Stuhlmeier and Stuhlmeier, 2003
Staphylococcus spp. 16S (R)	5′-ATGGTGTCGACGGGC GGTGTG-3′	241	
Salmonella common (F)	5′-ACTGGCGTTATCCCTTCTCTGGT-3′	496	Cohen et al., 1993
Salmonella common (R)	5′-ATGTTGTCCTGCCCCTGGTAAGAGA-3′	496	
Escherichia coli (F)	5′-AATTGAAGAGTTTGATCATG-3′	704	Guan et al., 2002
Escherichia coli (R)	5′-CTCTACGCATTTCCACCACGCT-3′		

Note: F=Forward, R= Reverse and bp= Base pair

Table.2 Mean total bacteria, *Staphylococcus* spp., *Salmonella* spp. and *E. coli* counts in street vended fast foods

Food items	Number of samples	Mean bacterial colony count (cfu/g)	Total bacterial count (cfu/g)	*Staphylococcus* spp. count (cfu/g)	*Salmonella* spp. count (cfu/g)	*E. coli* (cfu/g)
Shingara	12	1.6 x 10^7	1.0 x 10^7	5.0 x 10^4	3.2 x 10^4	
Samosa	12	1.7 x 10^7	1.5 x 10^5	2.4 x 10^3	4.0 x 10^4	
Piazu	12	2.4 x 10^7	6.3 x 10^4	-	2.7 x 10^4	
Puri	12	1.0 x 10^7	4.2 x 10^5	2.0 x 10^4	3.7 x 10^4	
Potato chop	12	2.0 x 10^7	1.1 x 10^5	3.2 x 10^4	3.8 x 10^4	
Beguni	12	1.7 x 10^7	8.4 x 10^4	2.1 x 10^4	2.9 x 10^4	

* According to the International Commission for Microbiological Specification for Foods (ICMSF, 2002), Acceptable range of TBC, *Staphylococcus* and *E. coli* are 10^6 cfu/g (6 log cfu/g); 10^5 cfu/g (4 log cfu/g); and 10^2 cfu/g (2 log cfu/g) respectively and detection of *Salmonella* spp. in 25g sample is unacceptable.
Table 3: Bacterial isolates of street vended fast foods

Identified organism	Food items	Total bacterial isolates (%)
Staphylococcus spp.		
Shingara	5 (20.8)	24 (40)
Samosa	4 (16.7)	
Piazu	2 (8.3)	
Puri	6 (25)	
Potato chop	4 (16.6)	
Beguni	3 (12.5)	
Total	**12 (20)**	**60 (100%)**
Salmonella spp.		
	3 (18.7)	16 (26.7)
Potato chop	4 (25)	
Beguni	4 (25)	
Total	**9 (15)**	**33.3%**
E. coli		
Potato chop	4 (15)	
Beguni	4 (15)	
Total	**8 (13.3)**	**33.3%**

* Percentages were calculated by dividing the number of isolates in a particular food items by total number of isolates

Table 4: Antimicrobial resistance pattern of bacterial isolates from ready to eat fast food samples

Organisms	Antibiotics tested	No (%) of resistance								
	AMP	GEN	CIP	AZM	C	TE	N	E	NA	AMX
Staphylococcus spp.										
(n=24)	24 (100)	6 (25)	0 (0)	4 (16.7)	8 (33.3)	20 (83.3)	14 (58.3)	20 (83.3)	24 (100)	24 (100)
Salmonella spp.										
(n=16)	16 (100)	4 (25)	0 (0)	2 (12.5)	4 (25)	14 (87.5)	8 (50)	12 (75)	16 (100)	16 (100)
E. coli										
(n=20)	20 (100)	6 (30)	0 (0)	4 (20)	6 (30)	16 (80)	6 (30)	16 (80)	18 (90)	20 (100)

Legends: AMP=Ampicillin; GEN=Gentamycin; CIP=Ciprofloxacin; AZM=Azithromycin; C=Chloramphenicol; TE=Tetracycline; N=Neomycin; E=Erythromycin; NA=Nalidixic acid and AMX=Amoxicillin

Identification of bacteria

In this study microbiological methods were used to identify bacteria from the street fast foods. The results of cultural characteristics, Gram’s staining, biochemical tests and genus specific PCR used to identify the microorganisms were similar to the findings of previously published paper. Konuku et al., (2012) stated that *Staphylococcus* spp. on mannitol salt agar showed colonies that fermented mannitol and appeared golden yellow. *Salmonella* spp. produced small round black center colonies on Salmonella-Shigella (SS) agar which was in agreement with the study of Muktaruzzaman et al., (2010). *E. coli* on Eosin Methylene Blue (EMB) agar plate appeared as dark with characteristics metallic sheen as indicated by El-Aziz et al., (2014).

Among the identified bacteria *Staphylococcus* spp. and *E. coli* were most frequently isolated whereas *Salmonella* spp. was prevalent in only five food items except piazu. A total of 60 isolates of three organisms were identified. Among the isolates, 40% (24) were *Staphylococcus* spp. followed by 33.3% (20) *E. coli* and 26.7% (16) *Salmonella* spp. (Table 3). The highest number of bacteria was isolated from Puri (13/60) and lowest number in piazu sample (5/60). This variation might be associated with the ingredient that was used for preparation of particular food. The percentages of different types of bacteria recovered from the food samples were incomparable with the findings of Bereda et al., (2016) who reported 84.6% of *S. aureus*, 51.5% of *E. coli* and 19.7% of *Salmonella* spp. in street vended foods of Jigjaj city of
Ethiopia that was comparatively higher than our study. The same types of bacteria were isolated in several previous studies includes in street vended foods of Rivers state Nigeria by Akusu et al., (2016), in selected street foods of Gondar town, Ethiopia by Adimasu et al., (2016) and in street food of Silchar city, Assam, India by Sharma and Mazumdar (2014).

Antimicrobial susceptibility test

From the antimicrobial susceptibility test results, it was revealed that 70-100% isolates of three organisms showed resistant to ampicillin, amoxicillin, nalidixic acid, tetracycline and erythromycin which would make the treatment of infections difficult (Table 4). However, ciprofloxacin was 100% sensitive to all isolates. The isolates of *Staphylococcus* showed sensitive against gentamycin (75%), azithromycin (83.33%) and chloramphenicol (66.67%) respectively. About 75% of isolates *Salmonella* spp. showed sensitive to gentamycin followed by 87.5% to azithromycin and 75% chloramphenicol respectively and similar results were also observed in *E. coli*.

That means this drug still can be used as a choice of treatment of foodborne illness in this area. This study completely agreed with the previous study conducted by Sultana et al., (2015) who observed highest resistance rate for ampicillin, cephalexin and vancomycin against *S. aureus*. This result was also some extent comparable with the findings of Eromo et al., (2016) who reported that 89% isolates of *Salmonella* spp. and 14.3% of *S. aureus* were resistant to chloramphenicol and vancomycin respectively whereas ciprofloxacin was sensitive against all isolates in street foods of Hawassa, Ethiopia. Similar reports were also described by following researchers Khandokar et al., (2014), Sharma and Kalantari et al., (2012). Multi drug resistant bacteria pose a big challenge to human survival and continued existence in relation to bacterial infection and diseases. The results from this study show that street vended fast food samples are contaminated with various bacteria most of which are resistant to commonly used antibiotics and therefore represent risks and public health hazards.

The results of the current study clearly demonstrated that street vended fast foods sold in Bangladesh Agricultural University campus premises are contaminated with *Staphylococcus* spp., *Salmonella* spp. and *E. coli*. The existence of these bacteria in fast foods could cause potential public health problems for consumers. Poor personal hygiene, improper handling practices, prolong storage of foods in ambient temperature and lack of knowledge of restaurants operators towards food safety and foodborne infections were the associated factors to contamination of fast foods. Furthermore, the study revealed that majority of restaurants vendors did not have any food safety training. Moreover, multiple drug resistant bacteria from fast foods might act as a vector in the spread of antibiotic resistant strains in the community and environment. So, necessary information, education facilities and food safety training program should be ensured for all the restaurants vendors that can help to reduce the chance of infection and at the meantime provide safe and good quality foods to consumers.

Therefore, consumers should be aware of harmful effect of consumption street foods. Finally, regular inspection of fast foods vending site should be ensured by public health authority of respected country to improve the quality of street vended fast foods as well as to avoid foodborne disease outbreaks in community.
Acknowledgement

The author would like to acknowledge the Ministry of Science and Technology, Bangladesh for the financial support and also grateful to Department of Microbiology and Hygiene, Bangladesh Agricultural University for the lab facilities to carry out the research work smoothly.

References

Adimasu, A., Mekonmen, B., Guadu T., Gizaw Z., Adane T. 2016. Bacteriological quality assessment of selected street foods and their public health importance in Gondar Town, North West Ethiopia. Glob Vet., 17:255-264.

Ahmed, J., Hossain, M. L., Malek, M. A., Begum, F. 2008. Assessment of bacteriological quality of fast foods and soft drinks in relation to safety and hygiene. Bangla. J. Microbiol., 25:73-75.

Ahmed, S., Tasnim, U. T., Pervin, S., Islam, M. T. 2014. An assessment of bacteriological quality of some fast food items available in Jessore City and antibiotic susceptibility of isolated Klebsiella spp. Int J Biosci., 5: 125-130.

Akusu, O. M., Kiin-Kabari, D. B., Wemedo, S. A. 2016. Microbiological quality of selected street vended foods in Port Harcourt metropolis, Rivers State, Nigeria. Sky J. Food Sci., 5: 8-11.

Amissah, A., Owusu, J. 2012. Assessing the microbiological quality of food sold around Koforidua Polytechnic Campus of Ghana. Annal. Food Sci. Technol., 13: 60-67.

Aruna, N., Rajan, V. 2017. Microbial analysis of street foods of different locations at Chennai city, India. Innovat Int. J. Med. Pharma. Sci., 2: 21-23.

Bauer, A. W., Kirby, W. M. M., Sherris, J. C., Turck, M. 1966. Antibiotic susceptibility testing by a standardized single disk method. Am. J. ClinPathol., 45: 493-496.

Bereda, T. W., Emerie, Y. M., Reta, M. A., Asfaw, H. S. 2016. Microbiological safety of street vended foods in Jigjiga City, Eastern Ethiopia. Ethiop. J. Health Sci., 26: 163-172.

Cheesbrough, M. 2006. District laboratory practice in tropical countries. Cambridge university press.

Cho, J. I., Cheung, C. Y., Lee, S. M., Ko, S. I., Kim, K. H., Hwang, I. S., Kim, S. H., Cho, S. Y., Lim, C. J., Lee, K.H., Ha, S. D., Kim, K. S. 2011. Assessment of microbial contamination levels of street- vended foods in Korea. J. Food Safety, 31: 41-47.

Clarence, S. Y., Obinna, C. N., Shalom, N. C. 2009. Assessment of bacteriological quality of ready to eat food (Meat pie) in Benin City metropolis, Nigeria. Afr.J. Microbiol Res., 3: 390-395.

CLSI, 2016. Performance standards for antimicrobial susceptibility testing, 27th informational supplement. Wayne, USA.

Cohen, N. D., Neibergs, H. L., McGruder, E. D., Whitford, H. W., Behle, R. W., Ray, P. M., Hargis, B. M. 1993. Genus-specific detection of salmonellae using the polymerase chain reaction (PCR). J. Vet. Diag. Invest. 5: 368-371.

Das, M., Rath, C. C., Mohapatra, U. B. 2012. Bacteriology of a most popular street food (Panipuri) and inhibitory effect of essential oils on bacterial growth. J. Food Sci. Technol., 49: 564-571.

Dashti, A. A., Jadaon, M. M., Abdulsamad, A. M., Dashthi, H. M. 2009. Heat treatment of bacteria: A simple method of DNA extraction for molecular techniques. Kuwait Med. J., 41: 117-122.
De Vogli, R., Kouvon, A., Gimeno, D. 2014. The influence of market deregulation on fast food consumption and body mass index: a cross-national time series analysis. Bull. World Health Organ., 92: 99-107.

El-Aziz, N. K. A., Eldesoky, I. E., Ammar, A. M., Eissa, S. I., Mohamed, Y. H. 2014. Molecular studies on M. gallisepticum and avian pathogenic E. coli induced infections in broilers. Eur. J. Vet. Med., 2014: 1-11.

Eromo, T., Tassew, H., Daka, D., Kibru, G. 2016. Bacteriological quality of street foods and antimicrobial resistance of isolates in Hawassa, Ethiopia. Ethiop. J. Health Sci., 26: 533-542.

FAO, 2012. The State of Food Insecurity in the World 2012. Economic growth is necessary but not sufficient to accelerate reduction of hunger and malnutrition. Rome, FAO. Available at: http://www.fao.org/3/a-i3027e.pdf.

Guan, S., Xu, R., Chen, S., Odumeru, J., Gyles, C. 2002. Development of a procedure for discriminating among Escherichia coli isolates from animal and human sources. App. Environ. Microbiol., 68: 2690-2698.

Hoque, N., Kabir, S. M. L., Rahman, M. M., Khan, M. S. R. 2012. Microbial quality of selected sandwiches sold at retail outlets of fast food shops in Dhaka city and Mymensingh town of Bangladesh. Sci. J. Microbiol., 1: 101-112.

ICMSF, 2002: Microorganisms in Foods 7: Microbiological testing in food safety Management. Kluwer Academic/Plenum Publishers.

Kalantari, S., Sepehri, G., Bahrampour, A., Sepehri, E. 2012. Determination of bacterial contamination isolated from Sandwiches in Kerman City and their resistance to commonly used antimicrobials. Arch. App. Sci. Res., 4: 1100-1105.

Khandoker, A., Islam, M. A., Rahman, M. M., Husna, A. A., Das, S., Khatun, M. M. 2015. Bacterial contamination of street-vended spicy puffed-rice sold at Bangladesh Agricultural University campus. Bangla. Vet., 31: 20-26.

Khater-Dalia, F., Heikal, G. E., Shehata, A. A., El-Hofy, F. I. 2013. The microbiological assessment of Ready-To-Eat-Food (Liver and Koft Sandwiches) in Tanta City, Egypt. Benha Vet. Med. J., 25: 187-197.

Kibret, M., Tadesse, M. 2013. The bacteriological safety and antimicrobial susceptibility of bacteria isolated from street-vended white lupin (Lupinus albus) in Bahir Dar, Ethiopia. Ethiop. J. Health Sci. 23: 19-26.

Konuku, S., Rajan, M. M., Muruhan, S. 2012. Morphological and biochemical characteristics and antibiotic resistance pattern of Staphylococcus aureus isolated from grapes. Int. J. Nutr. Pharmacol. Neurol. Dis., 2: 70-73.

Madueke, S. N., Awe, S., Jonah, A. I. 2014. Microbiological analysis of street foods along Lokoja-Abuja express way, Lokoja. Am. J. Res. Commun., 2: 196-211.

Manguiat, L. S., Fang, T. J. 2013. Microbiological quality of chicken-and pork-based street-vended foods from Taichung, Taiwan, and Laguna, Philippines. Food Microbiol, 36: 57-62.

Muktaruzzaman, M., Haider, M. G., Ahmed, A. K. M., Alam, K. J., Rahman, M. M., Khatun, M. B., Rahman, M. H., Hossain, M. M. 2010. Validation and refinement of Salmonella pullorum (SP) colored antigen for diagnosis of Salmonella infections in the field. Int. J. Poult. Sci., 9: 801-808.

Nguendo, Y. H. B. 2018. Eating to live or eating to damage one’s health: Microbiological risks associated with street-vended foods in a subtropical
RESOURCE 1

urban setting (Yaoundé-Cameroon). Nutr. Food Sci. Int. J., 6: 555695.

Nicolas, B., Razack, B. A., Yollande, I., Aly, S., Tidiane, O. C. A., Philippe, N. A., Comlan, D.S., Sababénédjo, T. A. 2007. Street-vended foods improvement: Contamination mechanisms and application of Food Safety Objective Strategy: Critical review. Pak. J. Nutr., 6: 1-10.

Rahman, M. M., Rahman, M. H., Ansary, N. P. 2014. Safety issues of street foods in Bangladesh. Time J. Biol. Sci. Technol., 2: 21-32.

Sharma, I., Mazumdar, J. A. 2014. Assessment of bacteriological quality of ready to eat food vended in streets of Silchar city, Assam, India. Indian J. Med. Microbiol., 32: 169-171.

Stuhlmeier, R., Stuhlmeier, K. M. 2003. Fast, simultaneous, and sensitive detection of staphylococci. J. Clin. Pathol., 56: 782-785.

Sultana, S., Islam, M. A., Khatun, M. M. 2015. Bacteria in chicken rolls sold by fast food restaurant and their public health significance. Bangla. Vet. 32: 13-18.

Tabashsum, Z., Khalil, I., Nazimuddin, M. D., Mollah, A. K. M., Inatsu, Y., Bari, M. L. 2013. Prevalence of foodborne pathogens and spoilage microorganisms and their drug resistant status in different street foods of Dhaka city. Agric. Food Anal. Bacteriol. J., 3: 281-292.

Tambekar, D. H., Jaiswal, V. J., Dhanorkar, D. V., Gulhane, P. B., Dudhane, M. N. 2009. Microbial quality and safety of street vended fruit juices: a case study of Amravati city. Internet J. Food Safety, 10: 72-76.

Tsang, D. 2002. Microbiological guidelines for ready to eat food. Road and Environmental Hygiene Department, Hongkong, 115-116.

Wimalasekara, Gunasena. 2016. Microbiological quality of ready-to-eat meat based food available in temporary food outlets in gall face green, Colombo, Srilanka. Int. J. Agric. Forest. Plant. 4: 38-44.

How to cite this article:

Abdullah Al Momen Sabuj, Zobayda Farzana Haque, Nanda Barua, Md. Alimul Islam and Sukumar Saha. 2018. Assessment of Bacteriological Quality of Street Vended Fast Foods and their Antimicrobial Resistance. Int. J. Curr. Microbiol. App. Sci. 7(11): 3049-3059.

doi: https://doi.org/10.20546/ijcemas.2018.711.350