Models of intestinal infection by *Salmonella enterica*: introduction of a new neonate mouse model [version 1; peer review: 2 approved]

Marc Schulte, Michael Hensel

Department of Microbiology, University of Osnabrück, Osnabrück, Germany

Abstract

Salmonella enterica serovar Typhimurium is a foodborne pathogen causing inflammatory disease in the intestine following diarrhea and is responsible for thousands of deaths worldwide. Many *in vitro* investigations using cell culture models are available, but these do not represent the real natural environment present in the intestine of infected hosts. Several *in vivo* animal models have been used to study the host-pathogen interaction and to unravel the immune responses and cellular processes occurring during infection. An animal model for *Salmonella*-induced intestinal inflammation relies on the pretreatment of mice with streptomycin. This model is of great importance but still shows limitations to investigate the host-pathogen interaction in the small intestine *in vivo*. Here, we review the use of mouse models for *Salmonella* infections and focus on a new small animal model using 1-day-old neonate mice. The neonate model enables researchers to observe infection of both the small and large intestine, thereby offering perspectives for new experimental approaches, as well as to analyze the *Salmonella*-enterocyte interaction in the small intestine *in vivo*.

Keywords

Salmonella, intestinal inflammation, neonate mouse model, infection

Open Peer Review

Approval Status

1	2
![Check for updates](https://doi.org/10.12688/f1000research.8468.1)	![Check for updates](https://doi.org/10.12688/f1000research.8468.1)

Faculty Reviews are review articles written by the prestigious Members of Faculty Opinions. The articles are commissioned and peer reviewed before publication to ensure that the final, published version is comprehensive and accessible. The reviewers who approved the final version are listed with their names and affiliations.

1. **Ohad Gal-Mor**, Sheba Medical Center, Tel-Hashomer, Israel
 Tel Aviv University, Tel Aviv, Israel

2. **John S Gunn**, The Ohio State University, Columbus, USA

Any comments on the article can be found at the end of the article.
Introduction

The Gram-negative Enterobacteriaceae Salmonella enterica are among the main causes of bacterial gastrointestinal infections of millions of humans and animals around the world every year. The highest infection risk is oral ingestion of contaminated food or water often associated with insufficient hygiene conditions, but even industrial countries are not safe from infections. About 2600 serovars of S. enterica are known, and serovars pathogenic to humans cause typhoidal and non-typhoidal forms of disease. The systemic disease enteric typhoid fever is caused by the human-restricted typhoidal serovars Typhi and Paratyphi A and is associated with high mortality if not treated by antibiotics. Non-typhoidal serovars, predominantly Enteritidis and Typhimurium, can infect a broad range of animals and humans, causing an acute self-limiting gastroenteritis associated with intestinal inflammation and diarrhea. This gastroenteritis is usually self-limiting without serious complications. However, systemic spread of non-typhoidal S. enterica may occur in infants, in the elderly, or in people with underlying infections or immunodeficiency (for example, due to HIV infection) and result in a more severe disease outcome. Persistent infections caused by non-typhoidal Salmonella are poorly investigated, and the prevalence of long-term non-typhoidal Salmonella carriers is not known.

Salmonella pathogenicity is mediated mainly by horizontally transferred chromosomal regions, encoding sets of virulence factors enabling the pathogen to successfully infect and colonize its host. The role in pathogenesis and the molecular functions of these so-called Salmonella pathogenicity islands (SPIs) are partly understood, but many functions remain to be resolved. The SPI1 encodes a type III secretion system (T3SS) and the associated effector proteins, which can be injected into the host target cell (for example, epithelial cells) and thereby promote pathogen-induced internalization by non-phagocytic cells.

The invasion of non-phagocytic cells by Salmonella and intracellular proliferation has been studied in much detail by using in vitro models. Also, enterocyte invasion in different ex vivo tissue explants has been observed. Nevertheless, these models bear limitations in studying the host-pathogen interaction in the natural anatomical environment, especially with respect to hallmarks of Salmonella pathogenesis – the invasion of polarized epithelial cells, intracellular survival, and formation of microcolonies.

Murine infection models are attractive, since mice can be genetically manipulated. A previously developed mouse model for intestinal inflammation by S. enterica was based on antibiotic pretreatment of adult mice to reduce intestinal microbiota. Here, we discuss a new infection model deploying 1-day-old neonate mice that allows the investigation of Salmonella enterocyte invasion, intracellular proliferation, and microcolony formation in vivo without pretreatment by antibiotics.

Animal models of non-typhoidal Salmonella infections

The disease outcome of S. enterica infection, that is intestinal inflammation and diarrhea, or systemic infection with colonization of other organs is dependent on the host susceptibility and the serotype of the pathogen. In humans or cattle, S. enterica serovar (sv.) Typhimurium induces enterocolitis, resulting in intestinal inflammation and diarrhea, whereas infected mice present no intestinal inflammation because of intrinsic resistance. Nevertheless, certain mouse strains with defects in genes encoding Slc11A1 (previously named Nramp1) develop a typhoidal-like disease, similar to human infection with typhoidal serovars. In infected susceptible mice, S. enterica sv. Typhimurium penetrates the epithelial barrier by invasion of microfold cells (M cells) or transport via dendritic cells. M cells are specialized epithelial cells located in Peyer’s patches, which are organized lymphoid regions of the intestine. M cells phagocytose and transport antigens and bacteria to immune cells present in Peyer’s patches and mesenteric lymph nodes following spread to liver and spleen. Owing to this pathogenesis and the absence of an appropriate small animal model, detailed analyses of Salmonella gastroenteritis were not possible. Earlier work investigated Salmonella-induced diarrhea in Rhesus monkeys. As an alternative, infection of ligated murine and rabbit ileal loops was used as a model. Furthermore, a bovine infection model was established that allowed the identification of certain Salmonella-associated factors, such as the SPI1-T3SS, needed to induce enterocolitis. In addition, bovine ligated ileal loops infected with Salmonella were investigated. However, the use of large animals for infection causes technical limitations, and only restricted investigation of the role of the host in the host-pathogen interaction is possible. Hence, many features of Salmonella intestinal pathogenesis were analyzed by using tissue culture or intestinal organ culture.

Oral application of the antibiotic streptomycin makes mice more susceptible to infection with Salmonella. This effect was ascribed to removal of commensal intestinal microbes by streptomycin. Based on these observations, a mouse model of oral infection of 6- to 8-week-old mice after pretreatment with streptomycin was established, and this enabled the investigation of Salmonella-induced colitis in small animals. The pathogenesis of colitis caused by S. enterica sv. Typhimurium in streptomycin-pretreated mice showed many similarities to the human infection and its pathology is highly dependent on function of the SPI1-T3SS. With a knockout mouse strain that lacks all lymphoid tissue, only one of the two Peyer’s patches was investigated, and only the infection of the colon was studied. Furthermore, the infection of rabbits, calves, and primates is often accompanied by massive luminal fluid secretion; however, streptomycin-pretreated mice do not show this phenomenon. Translocation of Salmonella over the colonic epithelium in the absence of intracellular proliferation as well as enterocyte invasion and presence of Salmonella in the lamina propria in the mouse large intestine was demonstrated by using streptomycin-pretreated mice. However,
streptomycin-pretreated adult animals did not allow investigation of the infection process of the small intestinal epithelium, including invasion into polarized epithelial cells and intracellular survival.

To understand the role of bacterial as well as host factors for pathogenesis, it is of great importance to analyze the interaction of *Salmonella* with host cells within their natural environment. These factors, facilitating enterocyte invasion but also intraepithelial proliferation resulting in formation of intraepithelial bacterial colonies, remained undefined.

A new neonate mouse model for *Salmonella*

A small animal model using 1-day-old C57BL/6 mice was recently reported that may serve as an attractive alternative to the use of streptomycin-pretreated mice. An investigation of oral *Salmonella* infection of neonate and adult mice was accomplished, revealing age-dependent differences in intestinal colonization, mucosal translocation, and systemic spread. The work demonstrated rapid colonization of the small intestine and the colon of neonate mice, as opposed to adult animals as well as efficient entry of *Salmonella* into intestinal epithelial cells, followed by bacterial proliferation and formation of intraepithelial microcolonies.

The penetration of the mucosal barrier was dependent on enterocyte invasion and led to systemic spread to liver, spleen, and mesenteric lymph nodes. Without a functional SPI1-T3SS, systemic spread of *Salmonella* was largely abolished. Enterocytes were infected by wild-type, but not SPI1-T3SS-deficient, *Salmonella*. The major entry pathway for bacterial translocation is dependent on M cells, but this cell population appears only after the neonatal period. It was shown that the expression of genes of differentiated M cells (for example, Spi-B and Ccl9) was very low in epithelial cells of neonate mice. Furthermore, no M cell markers like glycoprotein 2, Ulex europaeus agglutinin, or Ccl9 were found by immunostaining intestinal tissue. That shifts the major port of entry to enterocyte invasion and therefore of *Salmonella* infection to adult hosts, neonatal intestinal tissue remained largely intact in terms of histopathological parameters and epithelial barrier integrity.

There are some important similarities such as the constituents of the mature *Salmonella*-containing vacuole as well as autophagosomal factors that are expressed by both neonatal and adult epithelial cells. This may enable the future investigation of the intracellular lifestyle of *Salmonella* during the initial phase of infection.

Advantages, limitations, and future perspectives

In contrast to other infection models (for instance, the bovine host), the mouse is amenable to efficient genetic manipulation and therefore offers the opportunity to analyze the host-pathogen interaction with both genetically altered pathogen and host (Table 1). Owing to the absence of M cells in the neonate host, *Salmonella*-enterocyte interaction as well as invasion of polarized epithelial cells, intraepithelial proliferation, and the formation of microcolonies can be observed in their natural anatomical environment, which is a requirement for understanding the contribution of bacterial virulence factors. This may enable researchers to characterize the early steps in *Salmonella* pathogenesis and to discover the implications of these findings for the development of new therapeutic strategies.
Figure 1. Age-dependent differences in intestinal colonization, mucosal translocation, and systemic spread. A comparison of 1-day-old, 6-day-old, and streptomycin-pretreated 6-week-old C57BL/6 mice shows many differences in intestinal colonization, mucosal translocation, and systemic dissemination in comparison with other organs after oral infection with *Salmonella enterica* serovar Typhimurium. Shading indicates no or low (red) and fully developed (green) features. M cell, microfold cell; SCV, *Salmonella*-containing vacuole.

Table 1. Advantages and limitations of the neonate mouse model for investigation of *Salmonella*-enterocyte interaction *in vivo*.

Advantages	Limitations
No antibiotic pretreatment of the host required	Small animal size, special care for handling
Invasion of small intestine enterocytes by *Salmonella*	Short time window for experiments
Intraepithelial proliferation and microcolony formation	Lack of suitable anesthetics needed for intravital microscopy
Characterization of early stages in intestinal pathogenesis	Investigation of entry via microfold cells not possible
Host cells appear morphologically intact despite invasion and intracellular proliferation	Reduced/ altered microflora
Accessible to genetic manipulation of the host	Spread of the pathogen to systemic sites
Analysis of innate immune response of the host	
The neonate mouse animal model provides advantages in investigating the Salmonella-enterocyte interaction in vivo, but there are some limitations like the small animal size and a lack of suitable anesthesia needed for intravital microscopy that have to be considered. Owing to the lack of M cells, one important route of infection is not represented in the neonate model. The role of intestinal microbiota during Salmonella infection cannot be addressed, since the microbiome in neonates is highly reduced and distinct from the microbiota of adult individuals. Regardless, the new neonate animal model could contribute to a better understanding of the cellular processes during infection. The model allows in vivo analyses of both hallmarks of Salmonella pathogenesis: the internalization by non-phagocytic cells and the intracellular activity of Salmonella leading to the formation of intraepithelial microcolonies.

Abbreviations
M cell, microfold cell; SPI, Salmonella pathogenicity island; T3SS, type 3 secretion system; TLR, Toll-like receptor.

Competing interests
The authors declare that they have no competing interests.

Grant information
Work in the group of Michael Hensel was funded by the DFG, the BMBF, and the MKW Niedersachsen.

Acknowledgements
We thank Mathias Hornef, Uniklinik RWTH Aachen, for sharing unpublished data.

References

1. Brenner FW, Villar RG, Angulo FJ, et al.: Salmonella nomenclature. J Clin Microbiol. 2000; 38(7): 2465–7. PubMed Abstract | Publisher Full Text

2. Haraga A, Ohlson MB, Miller SI, et al.: Salmonella enterica serovar Typhi induces cytokine release in human macrophages via the TLR4 pathway. PLoS One. 2012; 7(1): e28968. PubMed Abstract | Publisher Full Text

3. Figueira R, Watson KG, Holden DW, et al.: Identification of Salmonella pathogenicity island-2 type III secretion system effectors involved in intramacrophage replication of S. enterica serovar typhimurium: implications for rational vaccine design. MBio. 2013; 4(2): e00065. PubMed Abstract | Publisher Full Text

4. Gerlach RG, Hensel M: Salmonella pathogenicity islands in host specificity, host-pathogen-interactions and antibiotics resistance of Salmonella enterica. Bfr Munch Tierarztl Wochenschr. 2007; 120(7-8): 317–27. PubMed Abstract

5. Gal-Mor O, Boyle EC, Grassl GA: Same species, different diseases: how and why typhoidal and non-typhoidal Salmonella enterica serovars differ. Front Microbiol. 2014; 5: 391. PubMed Abstract | Publisher Full Text | F1000 Recommendation

6. Subramoney EL: Non-typhoidal Salmonella infections in HIV-positive adults. S Afr Med J. 2015; 105(10): 805–7. PubMed Abstract | Publisher Full Text | F1000 Recommendation

7. Gerlach RG, Hensel M: Salmonella pathogenicity islands in host specificity, host-pathogen-interactions and antibiotics resistance of Salmonella enterica. Bfr Munch Tierarztl Wochenschr. 2007; 120(7-8): 317–27. PubMed Abstract

8. Que F, Wu S, Huang R: Salmonella pathogenicity island 1(SPI-1) at work. Curr Microbiol. 2013; 66(6): 582–7. PubMed Abstract | Publisher Full Text

9. Schlumberger MC, Hardt WD: Salmonella type III secretion effectors: pulling the host cell’s strings. Curr Opin Microbiol. 2006; 9(1): 46–54. PubMed Abstract | Publisher Full Text

10. Gerlach RG, Hensel M: Protein secretion systems and adhesins: the molecular armory of Gram-negative pathogens. Int J Med Microbiol. 2007; 297(6): 401–15. PubMed Abstract | Publisher Full Text

11. Collazo CM, Galán JE: The invasion-associated type-III protein secretion system in Salmonella—a review. Gene. 1997; 192(1): 51–9. PubMed Abstract | Publisher Full Text

12. Figueira R, Watson KG, Holden DW, et al.: Identification of Salmonella pathogenicity island-2 type III secretion system effectors involved in intramacrophage replication of S. enterica serovar typhimurium: implications for rational vaccine design. MBio. 2013; 4(2): e00065. PubMed Abstract | Publisher Full Text | F1000 Recommendation

13. Rappl C, Deiwick J, Hensel M: Acidic pH is required for the functional assembly of the type III secretion system encoded by Salmonella pathogenicity island 2. FEMS Microb Lett. 2003; 226(2): 363–72. PubMed Abstract | Publisher Full Text

14. Niefs JC, Tyler DE, Harrison LR, et al.: Invasion of enterocytes in cultured porcine small intestinal mucosal explants by Salmonella choleraesuis. Am J Vet Res. 1992; 53(9): 1493–9. PubMed Abstract

15. Giannella RA, Formal SB, Dammin GJ, et al.: Pathogenesis of salmonellosis. Studies of fluid secretion, mucosal invasion, and morphologic reaction in the rabbit ileum. J Clin Invest. 1975; 56(2): 441–53. PubMed Abstract | Publisher Full Text | F1000 Recommendation

16. Frost AJ, Bland AP, Wallis TS: The early dynamic response of the caecal epithelium to Salmonella typhimurium. Vet Pathol. 1997; 34(3): 369–86. PubMed Abstract | Publisher Full Text

17. Barthel M, Hapfelmeyer S, Quintanilla-Martínez L, et al.: Pretreatment of mice with streptomycin provides a Salmonella enterica serovar Typhimurium colitis model that allows analysis of both pathogen and host. Infect Immun. 2003; 71(5): 2839–58. PubMed Abstract | Publisher Full Text | F1000 Recommendation

18. Zhang K, Dupont A, Torow N, et al.: Age-dependent enterocyte invasion and microcolony formation by Salmonella. PLoS Pathog. 2014; 10(9): e1004385. PubMed Abstract | Publisher Full Text | F1000 Recommendation

19. Uzzau S, Brown DJ, Wallis T, et al.: Host adapted serotypes of Salmonella enterica. Epidemiol Infect. 2000; 125(2): 229–55. PubMed Abstract | Publisher Full Text

20. Santos RL, Zhang S, Tsolis RM, et al.: Animal models of Salmonella infections: enteritis versus typhoid fever. Microbes Infect. 2001; 3(14–15): 1335–44. PubMed Abstract | Publisher Full Text

21. Tsolis RM, Kingsley RA, Townsend SM, et al.: Of mice, calves, and men. Comparison of the mouse typhoid model with other Salmonella infections. Adv Exp Med Biol. 1999; 473: 261–74. PubMed Abstract | Publisher Full Text

22. Clark MA, Jepson MA, Simmons NL, et al.: Preferential interaction of Salmonella typhimurium with mouse Peyer’s patch M cells. Res Microbiol. 1994; 145(7): 543–52. PubMed Abstract | Publisher Full Text

23. Jones BD, Ghorii N, Falkow S: Salmonella typhimurium initiates murine infection by penetrating and destroying the specialized epithelial M cells of the Peyer’s patches. J Exp Med. 1994; 180(1): 15–23. PubMed Abstract | Publisher Full Text | F1000 Recommendation

24. Vazquez-Torres A, Jones-Carson J, Bäumler AJ, et al.: Extraintestinal dissemination of Salmonella by CD18-expressing phagocytes. Nature. 1999; 401(6753): 804–8. PubMed Abstract | Publisher Full Text
25. Jang MH, Kweon MN, Iwataki K, et al.: Intestinal villous M cells: an antigen entry site in the mucosal epithelium. Proc Natl Acad Sci U S A. 2004;101(16):6110–5. PubMed Abstract | Publisher Full Text | F1000 Recommendation

26. Carter PB, Collins FM: The route of enteric infection in normal mice. J Exp Med. 1974;139(5):1189–203. PubMed Abstract | Free Full Text | F1000 Recommendation

27. Hohmann AW, Schmidt G, Rowley D: Intestinal colonization and virulence of Salmonella in mice. Infect Immun. 1978;22(3):763–70. PubMed Abstract | Free Full Text

28. Rout WR, Formal SB, Dammin GJ, et al.: Pathophysiology of Salmonella diarrhea in the Rhesus monkey: Intestinal transport, morphological and bacteriological studies. Gastroenterology. 1974;67(1):59–70. PubMed Abstract

29. Penheiter KL, Mathur N, Giles D, et al.: Non-invasive Salmonella typhimurium mutants are avirulent because of an inability to enter and destroy M cells of ileal Peyer’s patches. Mol Microbiol. 1997;24(4):691–709. PubMed Abstract | Publisher Full Text

30. Bolton AJ, Osborne MP, Wallis TS, et al.: Interaction of Salmonella choleraesuis, Salmonella dublin and Salmonella typhimurium with porcine and bovine terminal ileum in vivo. Microbiology. 1999;145(Pt 9):2431–41. PubMed Abstract | Publisher Full Text

31. Santos RL, Tsolis RM, Zhang S, et al.: Resistance of the mouse’s intestinal tract to experimental salmonella infection. I. Factors which interfere with the initiation of infection by oral inoculation. J Exp Med. 1964;120:817–28. PubMed Abstract | Free Full Text

32. Galán JE: Enhanced susceptibility to salmonella infection in streptomycin-treated mice. J Infect Dis. 1962;111:117–27. PubMed Abstract | Publisher Full Text

33. Bohnhoff M, Drake BL, Miller CP: Effect of streptomycin on susceptibility of intestinal tract to experimental Salmonella infection. Proc Soc Exp Biol Med. 1964;116(1):126–7. PubMed Abstract | Publisher Full Text

34. Bohnhoff M, Miller CP: Enhanced susceptibility to Salmonella infection in streptomycin-treated mice. J Infect Dis. 1963;112:17–20. PubMed Abstract | Publisher Full Text

35. Meynell GG, Subbaiah TV: Antibacterial mechanisms of the mouse gut. I. Kinetics of infection by Salmonella typhi-murium in normal and streptomycin-treated mice studied with abortive transductants. Br J Exp Pathol. 1963;44:197–208. PubMed Abstract | Free Full Text

36. Bohnhoff M, Miller CP, Martin WR: Resistance of the mouse’s intestinal tract to experimental salmonella infection. II. Factors responsible for its loss following streptomycin treatment. J Exp Med. 1964;120:817–28. PubMed Abstract | Free Full Text

37. Bohnhoff M, Miller CP, Martin WR: Resistance of the mouse’s intestinal tract to experimental salmonella infection. I. Factors which interfere with the initiation of infection by oral inoculation. J Exp Med. 1964;120:805–16. PubMed Abstract | Free Full Text

38. Tsolis RM, Townsend SM, Miao EA, et al.: Identification of a putative Salmonella enterica serotype typhimurium host range factor with homology to Ipaf and YopM by signature-tagged mutagenesis. Infect Immun. 1999;67(10):6985–93. PubMed Abstract | Free Full Text

39. Müller AJ, Kaiser P, Dittmar KE, et al.: Salmonella gut invasion involves TTSS-2-dependent epithelial traversal, basolateral exit, and uptake by epithelium-sampling lamina propria phagocytes. Cell Host Microbe. 2012;11(1):19–32. PubMed Abstract | Publisher Full Text

40. Hapfelmeier S, Stecher B, Barthel M, et al.: The Salmonella pathogenicity island (SPI)-2 and SPI-1 type III secretion systems allow Salmonella serovar typhimurium to trigger colitis via MyD88-dependent and MyD88-independent mechanisms. J Immunol. 2005;174(3):1675–85. PubMed Abstract | Publisher Full Text

41. Felmy B, Songhel P, Stack EM, et al.: NADPH oxidase deficient mice develop colitis and bacteremia upon infection with normally avirulent, TTSS-1- and TTSS-2-deficient Salmonella Typhimurium. PLoS One. 2013;8(10):e77204. PubMed Abstract | Publisher Full Text | Free Full Text

42. Müller AJ, Hoffmann C, Galie M, et al.: The S. Typhimurium effector SopE induces caspase-1 activation in stromal cells to initiate gut inflammation. Cell Host Microbe. 2009;6(2):125–36. PubMed Abstract | Publisher Full Text | F1000 Recommendation

43. Ménard S, Férster V, Lots M, et al.: Developmental switch of intestinal antimicrobial peptide expression. J Exp Med. 2008;205(1):183–93. PubMed Abstract | Publisher Full Text | F1000 Recommendation

44. Zarepour M, Bhullar K, Montero M, et al.: The mucin Muc2 limits pathogen burdens and epithelial barrier dysfunction during Salmonella enterica serovar Typhimurium colitis. Infect Immun. 2013;81(10):3672–83. PubMed Abstract | Publisher Full Text | Free Full Text

45. Dupont A, Kacoin Y, Yang L, et al.: Intestinal mucus affinity and biological activity of an orally administered antibacterial and anti-inflammatory peptide. Gut. 2015;64(2):222–32. PubMed Abstract | Publisher Full Text | F1000 Recommendation

46. de Santa Barbara P, van den Brink GR, Roberts DJ: Development and differentiation of the intestinal epithelium. Cell Mol Life Sci. 2003;60(7):1322–32. PubMed Abstract | Publisher Full Text | Free Full Text
Open Peer Review

Current Peer Review Status: ✔ ✔

Editorial Note on the Review Process

Faculty Reviews are review articles written by the prestigious Members of Faculty Opinions. The articles are commissioned and peer reviewed before publication to ensure that the final, published version is comprehensive and accessible. The reviewers who approved the final version are listed with their names and affiliations.

The reviewers who approved this article are:

1. John S Gunn
 Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, The Ohio State University, Columbus, OH, USA
 Competing Interests: No competing interests were disclosed.

2. Ohad Gal-Mor
 1 The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
 2 Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
 Competing Interests: No competing interests were disclosed.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com