Genetic sleep deprivation: using sleep mutants to study sleep functions

Henrik Bringmann*

Abstract

Sleep is a fundamental conserved physiological state in animals and humans. It may serve multiple functions, ranging from energy conservation to higher brain operation. Understanding sleep functions and the underlying mechanisms requires the study of sleeplessness and its consequences. The traditional approach to remove sleep is sleep deprivation (SD) by sensory stimulation. However, stimulation-induced SD can be stressful and can cause non-specific side effects. An emerging alternative method is "genetic SD", which removes sleep using genetics or optogenetics. Sleep requires sleep-active neurons and their regulators. Thus, genetic impairment of sleep circuits might lead to more specific and comprehensive sleep loss. Here, I discuss the advantages and limits of genetic SD in key genetic sleep model animals: rodents, zebrafish, fruit flies and roundworms, and how the study of genetic SD alters our view of sleep functions. Genetic SD typically causes less severe phenotypes compared with stimulation-induced SD, suggesting that sensory stimulation-induced SD may have overestimated the role of sleep, calling for a re-investigation of sleep functions.

Keywords genetics; model organism; optogenetics; sleep; sleep deprivation
DOI 10.15252/embr.201846807 | Received 24 July 2018 | Revised 14 November 2018 | Accepted 23 November 2018 | Published online 25 February 2019
EMBO Reports (2019) 20: e46807

See the Glossary for abbreviations used in this article.

Introduction

We spend about one-third of our lives asleep. Sleep curtailment is detrimental to human health and is associated with an increased risk of infection, depression, cardiovascular disease, obesity, type 2 diabetes, and cancer, illustrating the importance of this time investment. The high prevalence of insomnia and insufficient sleep quality in modern societies thus presents a massive unmet health problem [1–4]. Sleep appears to affect virtually all aspects of animal physiology, and numerous processes have been proposed to depend on the regular occurrence of sleep. While the broad detrimental consequences of sleep loss are obvious, there still is no consensus as to what the direct consequences of sleep loss are, and how sleep carries out its functions at the molecular level.

Sleep research first focused on humans. Seminal work using EEG recordings showed that humans have two types of sleep, REM sleep and non-REM sleep, which are also called active and quiet sleep, respectively. During REM sleep, the brain shows high asynchronous activity similar to wake, concomitant with paralysis of striated muscles, with a few exceptions including the musculature controlling eye movement or breathing. During non-REM sleep, both muscles and neurons show reduced activity with highly synchronous brain activity [5,6]. Using the electrophysiological characteristics of human sleep, it has been possible to detect both types of sleep in a wide range of mammals and birds [7,8]. Even reptiles possess two different states of sleep that resemble non-REM and REM sleep, whereas amphibians appear to only show quiet sleep [9]. This led to the conclusion that sleep diverged at the base of the amniotes into non-REM and REM sleep.

Behavioral quiescence has long been observed across species, including invertebrates. However, defining sleep using EEG correlates for REM and non-REM sleep often is not possible due to brain anatomical differences. Nevertheless, quiescence can also be identified as sleep by using four key behavioral criteria [10]. (i) A typical posture is assumed that is compatible with reduced muscle activity. (ii) Sleep reduces responsiveness to sensory stimulation, indicating a global neural dampening that extends to sensory systems, and which contrasts sleep to quiet wakefulness. (iii) Sleep is rapidly reversible, meaning that the human or animal can be readily awoken, separating sleep from coma or paralysis. (iv) Sleep is under homeostatic regulation, implying that mechanisms exist that ensure that this state takes place, underscoring its importance [10]. By applying these behavioral criteria, sleep has been identified in all animals that have a nervous system, with cnidaria presenting the most basal phylum in which sleep has been detected [11]. Thus, sleep is much more widespread among animals than initially thought [12]. Particularly important was the identification of sleep in three key non-mammalian animal models, zebrafish, Drosophila, and Caenorhabditis elegans, as these models facilitate a molecular and mechanistic dissection of sleep [13–17].

Compelling evidence for the existence of a species that has a nervous system but never sleeps is lacking, but the amount of sleep is highly plastic and some animals can get away with little sleep. Environmental conditions impact sleep need, and the time spent in
sleep differs substantially across species. Under extreme conditions, temporary sleep restriction or even complete loss appears to exist and confers a selective advantage. For example, migrating and mating birds appear to be able to suspend or reduce the need to sleep for at least several days \[18,19\]. Also, some species, such as large herbivores or cave-dwelling fish, manage to live with sleeping only little, and even 3 h per day can be sufficient \[20,21\]. On the other extreme, some animals such as bats sleep up to 20 h per day \[21\]. This suggests that the amount of sleep is adapted to, and depends on ecological constraints, perhaps to regulate behavior and to preserve energy \[22\]. Because animals appear to be asleep for at least 10% of their time, a lower limit of how little sleep is required for survival seems to exist (Fig 1).

Functions and molecular underpinnings of sleep

The physiological state of sleep has been proposed to play multiple roles that can be coarsely sorted into three groups that are overlapping and not mutually exclusive. (i) The first group of sleep function theories posits that sleep plays a role in optimizing behavior and the conservation or allocation of energy. (ii) The second group states that sleep may regulate core molecular and cellular processes. (iii) The third group suggests that sleep serves higher brain functions \[12,23\] (Fig 2).

1. An adaptive value of sleep could be understood by viewing sleep as an inactive state. At times when wakefulness is not advantageous, the organism would enter an inactive state and thus save energy. A strong argument that energetic and ecological constraints play a role in determining sleep is the large variation in sleep amount and intensity seen across species \[22\]. Sleep would thus share an energy-saving function with torpor, a metabolically and behaviorally inactive phase found in mammals and birds that is characterized by a massive drop in body temperature, for instance during hibernation. Both the transitions from wakefulness to torpor as well as the exit from torpor into wakefulness involve a phase of non-REM sleep, suggesting that they are related \[22,24,25\]. Sleep and torpor differ behaviorally as sleep is defined as a readily reversible state, whereas torpor generally is not rapidly reversible. A main functional difference of torpor and sleep is that sleep

Glossary

- **ALA**: name of a specific *Caenorhabditis elegans* interneuron/mechanosensory neuron
- **AMPA**: α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
- **CNO**: clozapine-N-oxide
- **dFB**: dorsal fan-shaped body
- **EEG**: electroencephalogram
- **EGF**: epidermal growth factor
- **GABA**: γ-aminobutyric acid
- **GPCR**: G protein-coupled receptor
- **hPA**: hypothalamic-pituitary-adrenal axis
- **MS**: medial septum
- **PB**: parabrachial nuclei
- **PI**: pars intercerebralis
- **PZ**: parafacial zone
- **REM**: rapid eye movement
- **RIS**: ring interneuron s, name of a specific *C. elegans* interneuron
- **ROS**: reactive oxygen species
- **SD**: sleep deprivation
- **SIK3**: salt-inducible kinase 3
- **VLPO**: ventrolateral preoptic nucleus

![Figure 1](https://via.placeholder.com/150)

Figure 1. Sleep time fraction varies greatly but does not drop below 10%.
Sleep time fraction varies between 3–20 h/24 h with large herbivores sleeping little and bats sleeping a lot \[21\]. Model organisms fall within the range of wild species \[38,85,103,124\].
need does not appear to dissipate during torpor [26,27]. Thus, sleep seems to serve benefits that cannot be simply explained by an energy conservation function alone. According to the energy allocation theory of sleep, energy is not primarily conserved for later use but is diverted to restorative processes such as anabolic biosynthetic reactions [25,28].

It has been proposed that sleep becomes regenerative by allowing or facilitating key molecular and cellular housekeeping functions. This view has been supported by biochemical and transcriptomic studies that found that sleep is associated with an increase in the expression of genes required for biosynthesis and transport [29–31]. Anabolic metabolism...
Seminal experiments showed that a good night’s sleep is important for learning and memory. Memory formation requires synaptic and cellular changes across neural circuits and brain regions that encode this memory. Transcriptome analysis of sleeping brains has found that an increased expression of genes required for plasticity and protein synthesis during sleep is required for memory formation, suggesting that sleep serves the expression of plasticity genes to support learning [42–44]. Plasticity involves alterations in the size and composition of synapses. For new memories to form, specific synapses need to strengthen and new synapses need to form whereas other synapses need to weaken or disappear. It has been proposed that wakefulness leads to a net increase in synapse size and that sleep causes a subsequent net synaptic downscaling, which mostly affects weak synapses and leaves strong synapses intact [45]. The weakening of synapses involves a phosphorylation and subsequent removal of AMPA receptors, a process that is supported by Homer1a [46]. According to the working model, Homer1a is kept out of the synapse during wakefulness by noradrenergic signaling and enters the synapse during sleep. This recruitment of Homer1a to the synapse is promoted by adenosine, a somnogenic (sleep-promoting) factor that is thought to accumulate as a function of wakefulness and that promotes homeostatic sleep drive [47,48]. Besides these cell biological changes of synapse size and composition, the process of memory consolidation occurs at the systems level involving recurrent reactivation of memories and its redistribution and integration into existing circuits, allowing the updating of knowledge. Disconnecting neural circuits from sensory input may facilitate the massive restructuring of brain circuits as memories mature [49]. Thus, sleep may even allow novel associations and creative insights into problems that are hard to solve during wakefulness [50]. REM sleep may help consolidate certain types of memories, a process that, at least in part, is mediated by rhythmic activity in the hippocampus, though the underlying mechanisms are not well understood [6,49].

Sleep deprived reveals sleep functions

Most of the theories regarding the functions of sleep are based on observations of processes that correlate with sleep, and causality is established by studying the consequences of sleep deprivation. Sleep is under the control of wakefulness-promoting and sleep-promoting circuits, which oppose each other to generate discrete states [54]. SD is typically induced by sensory stimulation, i.e., by increasing the activity of the wake-promoting arousal system leading to an inhibition of the sleep-promoting system. Stimulation-induced SD accounts for virtually all the causal testing of the theories summarized above. Acute complete SD has been used to study the essential functions of sleep. Complete SD in rodents caused weight loss, skin ulceration, sepsis, and ultimately death in experimental animals [55]. To prevent lethality, SD can be applied partially to shorten sleep and then is often called sleep restriction, which often is imposed chronically to study sleep functions. Chronic sleep restriction in animal models has been important to understand the effects of chronic sleep curtailment on human health. For example, sleep restriction in rodents leads to neuronal injury and reduced vigilance [56]. However, it has been difficult to attribute the detrimental consequences of complete or partial SD to sleep loss rather than to stress. The pleiotropic consequences of complete SD have also made it impossible to clearly deduce the more immediate consequences of sleep loss. Sleep, arousal, and stress are intimately linked across species, and hyperarousal caused by mental stress is the main cause of insomnia in humans [2]. In mammals, hyperarousal activates the HPA axis and thus sets off a physiological stress response, which maintains arousal and suppresses sleep,
perpetuating a vicious cycle [57,58]. Gentler protocols are standard today and aim to arouse by motivating instead of stressing. Nevertheless, SD still is achieved by an over stimulation of sensory and arousal pathways (Fig 3) [59]. A second confounding factor for studying sleep functions after SD is the interference of homeostatic sleep rebound with wake functions. SD leads to homeostatic increases in sleep pressure that can even lead to “lapses” or “micro-sleep” bouts that can disturb wake functions. SD in humans causes deficits in attention, working memory, and information processing [60]. While it is important to study the consequences of SD on brain performance, it is difficult to understand whether the observed defects are directly caused by sleep loss or whether they are caused by homeostatic rebound mechanisms.

Genetic sleep deprivation

An alternative strategy to SD by sensory stimulation is to render model animals sleepless by impairing the sleep-inducing system. In this paradigm, the organism specifically lacks sleep induction, not requiring additional stimulation. The increase in arousal following sleep neuron inhibition should be attributable to a disinhibition of the wake-promoting system (Fig 3). How can the sleep-inducing system be impaired? While it is possible to ablate brain parts using neurosurgical methods, a more specific way to impair sleep-inducing brain centers is through genetic targeting. Here, I thus call the use of genetics to remove sleep “genetic SD”. Genetic SD may be achieved by the deletion of sleep genes or by genetic ablation of neurons that are required for sleep induction. Complete genetic SD likely results in lethality in many systems requiring either conditional or partial approaches. Conditional genetic SD could be generated by optogenetic or chemogenetic inhibition of sleep-active neurons as well as by inducible knockouts to create a genetic analog of SD by sensory stimulation. Alternatively, genetic SD could be induced only partially by using hypomorphic mutations to generate genetic analogs of chronic sleep restriction. In systems in which sleep loss is not imminently lethal, chronic complete SD might be a good choice to generate strong phenotypes. As an alternative to targeting sleep-active neurons directly, manipulating neurons that are upstream or downstream of sleep-active neurons could be employed for removing sleep. This could be achieved, for instance, by activating neurons that inhibit sleep-active neurons or by preventing activity reduction of wake neurons that are normally inhibited by sleep-active neurons. To complement genetic SD studies, gain-of-function experiments can be devised that activate the sleep-inducing system and cause increased sleep, or “genetic sleep gain”.

Specificity of the sleep mutant phenotype is essential to link sleep loss to its consequences. However, many mutations affect sleep indirectly. For example, circadian rhythms control global physiology, and their abrogation can also result in sleep loss [61,62]. In mutants that confer a strong circadian phenotype, it will be difficult to attribute physiological phenotypes to sleep loss. Similarly, sleep loss can be caused by mutations leading to hyperactivity. However, hyperactivity also strongly affects wake behavior and causes the same problems as SD by sensory stimulation [63]. The most specific sleep loss would probably be obtained by mutating genes that are specifically required for sleep induction, i.e., sleep-active neurons

Figure 3. Classic SD suppresses sleep by increasing arousal, whereas genetic SD impairs the sleep-inducing system.

According to the flip-flop switch model, sleep and wake are under the control of two antagonizing systems, a wake-inducing arousal system and a sleep-inducing system [52]. (A) During wake, the arousal system dominates and suppresses sleep. (B) During sleep, the sleep-inducing system dominates and suppresses wake. (C) Sensory stimulation during sleep increases the activity of the arousal system, suppressing sleep despite increased sleep drive. (D) Genetically impairing the sleep-inducing system permits wakefulness by disinhibition. Sleep-active neurons might also contribute to arousal dampening as part of the normal waking behavior and thus their ablation might cause some level of hyperarousal. However, this arousing effect likely is smaller than the level of hyperactivity caused by sensory stimulation-induced SD, and genetic manipulations can remove sleep without causing massive hyperactivity. Both SD approaches change the organism by fundamentally different means and are thus complementary. Both approaches should be pursued for establishing a causal link between sleep and phenotypes observed after sleep deprivation.
and their circuits. Because sleep-active neurons inhibit wake circuits, the removal of the sleep-active neurons should lead to an increase in arousal. Assuming that sleep-active neurons play only a minor role in limiting wakefulness activity but rather a prominent role in inducing sleep, their ablation may result in moderate arousal but should not result in severe hyperarousal during normal wakefulness. Consistent with this idea, mutants exist that reduce sleep without causing hyperactivity (see below). It is possible that sleep genes and neurons play roles also in other processes and that thus complete specificity of genetic SD will be difficult or impossible in some or even all systems. However, it is likely that a high degree of specificity can be achieved in most systems, which should be sufficient for studying sleep functions.

Chronic sleep restriction in humans is associated with long-term health consequences, and model animals that genetically reduce sleep will be important tools to study the mechanisms underlying chronic sleep restriction. For studying the functions of sleep in model organisms, it may be favorable if the degree of sleep removal is high, perhaps even complete. Homeostatic compensatory processes exist that can compensate for sleep loss. For example, reduction of sleep amount in experimental models can lead to increased sleep depth during the remaining sleep time, which, at least in part, ameliorates the consequences of sleep loss. Some animals can live with little sleep, suggesting that relatively small amounts of sleep can be sufficient to fulfill sleep’s essential functions [21,52]. Thus, some sleep functions may not be detectable as long as residual sleep is present and it would be advantageous to be able to ablate sleep bound. Because sleep homeostasis induces rebound sleep through over-activation of sleep-active neurons, the targeting of these neurons should not only allow the control of baseline sleep, but also rebound sleep [54,64].

Genetically removing sleep in model systems: rodents

Seminal discoveries on sleep were made using a variety of mammalian models including mice, rats, cats, and monkeys. These model animals have been pivotal in studying both non-REM and REM sleep. The brain structures controlling sleep in mammals have turned out to be highly conserved. Its molecular amenability has made the mouse the most intensively used species for genetic sleep studies in mammals [23,65,66]. SD by sensory stimulation has been the main method by which sleep functions have been investigated in mammals. Genetic SD is partially possible in rodent models for both REM sleep and non-REM sleep. Forward genetic screening for sleep mutants identified a mouse mutant called Dreamless, a dominant mutation in a gene that encodes an ion channel required to control neural excitability, leading to a strong reduction of REM sleep but also causing defects in other rhythmic processes [38]. REM sleep is induced from non-REM sleep by GABAergic neurons in the ventral medulla of the brain stem. Inhibition of these neurons reduces REM sleep, and it has also been possible to induce REM sleep by optogenetically depolarizing these neurons [67]. Thus, the Dreamless mutant and optogenetic induction of REM sleep present tools to investigate REM sleep functions, but such studies have not yet been published. Proving causality for REM sleep functions has been a challenge because manipulating REM sleep typically also affects non-REM sleep [6]. REM sleep is thought to be involved in specific types of memory formation and consolidation through brain activity characterized by high-amplitude theta waves in the hippocampal EEG. To study the effects of hippocampal theta activity on memory, the activity of GABAergic MS neurons, which are required for theta activity during REM sleep but not for REM sleep itself, was optogenetically silenced during REM sleep. Silencing GABAergic MS neurons specifically during REM sleep caused defects in specific types of memory formation, providing a causal link between hippocampal theta activity during REM sleep and memory formation [68]. This example shows how optogenetics can be employed for functional studies of REM sleep [6].

Mutants that specifically and completely remove non-REM sleep in mammals have not yet been described, and the known mutants that show reduced sleep all display only partial sleep loss and often are not very specific but also confer additional phenotypes and are thus not ideal for genetic SD [62,69]. However, manipulations of specific brain areas can lead to substantial sleep loss or gain (Fig 4). There are two principal approaches for triggering sleep loss via manipulations of brain areas that have been successfully applied in rodents. (i) The activity of wake-promoting areas can be increased and (ii) sleep-inducing centers can be impaired. (i) An important wake-promoting area is the PB, which causes arousal in many brain areas and which can be activated chemogenetically to extend wakefulness and restrict sleep for several days without causing hyperarousal [70]. Alternatively to activating the PB, wakefulness can also be extended by activating other arousal centers of the brain including supramammillary glutamatergic neurons [71]. (ii) Sleep-active neurons were first found in the VLPO and lesioning this area in rodents reduced sleep by approximately 50% without causing stress, hyperarousal, or strong circadian effects [72,73]. VLPO sleep-active neurons can also be controlled using optogenetics [74]. Sleep-promoting VLPO neurons can not only be silenced directly but also indirectly, for instance though chemogenetic activation of inhibitors of sleep-inducing centers, such as GABAergic neurons of the ventral lateral hypothalamus or basal forebrain [75,76]. Other brain areas such as the basal forebrain, the lateral hypothalamus, brain stem, and cortex also contain sleep-active neurons [66]. For example, GABAergic neurons of the PZ of the medulla of the brainstem present an important sleep-inducing brain region in mammals. These neurons were shown to be sleep-active, ablation of this region led to a reduction of sleep by about 40%, and chemogenetic activation of this region led to an increase in sleep (Fig 5) [77–79]. The occurrence of multiple populations of sleep-active neurons in mammalian brains may explain why ablation of subsets of sleep-active neurons only caused a partial removal of sleep. It would be fascinating to completely remove sleep from mice by ablating all or at least the key populations of sleep-active neurons. A reasonable next step could be to combine genetic ablations of GABAergic sleep-active neurons of the VLPO and PZ to see whether this would lead to a stronger or even complete sleep loss.

Restriction of sleep by VLPO lesion in rats has been used to study the role of sleep in metabolism. While ghrelin was increased and leptin was reduced, a decreased body weight and no signs of metabolic syndrome or obesity were found in this model [73]. Restricting sleep by activating the PB in mice led to a modest increase in blood glucose levels and decreased leptin, but body weight was reduced similar to the results obtained by VLPO lesion [70]. Interestingly, in these sleep restriction models, the metabolic consequences were
thus either minor or contrary to what has been found after sleep restriction in humans [3,4]. Together these results suggest that either there are different responses of humans and rodents to sleep restriction or that the consequences of sleep restriction observed in humans may not be caused directly by sleep loss but by other factors such as stress or circadian effects, underscoring the importance to re-evaluate sleep function theories using genetic SD models.

Genetically removing sleep in model systems: zebrafish

The zebrafish *Danio rerio* presents an important vertebrate sleep model system between rodent and invertebrate models. Like humans and unlike rodents, zebrafish sleep mostly during the night. Zebrafish appear to have a quiet sleep state but evidence for a sleep state that resembles REM is lacking. While one study could not find evidence for rapid eye movement during sleep, this result does not exclude the possibility that other components of REM sleep are present in zebrafish [80]. Major advantages of zebrafish as a sleep model are the high level of conservation of genes involved in sleep control, such as neuropeptide systems, a high level of conservation of genes involved in sleep control, such as neuropeptide systems, a high level of conservation of key brain anatomical structures within a transparent brain, the possibility to model neuropsychiatric disorders as well as the possibility to scale up genetic and pharmacological screens [13,14,81–84]. Several physical methods exist for SD in zebrafish. For instance, electrical shocks and physical shaking have been used but are quite harsh and can even injure the animal [83,85]. Light potently suppresses sleep in fish leading to a 90% reduction of sleep [85]. This level of sleep deprivation is impressive but sleep deprivation by light still might cause unspecific effects through sensory stimulation and alternations of the circadian clock. Perhaps the gentlest method for physical SD in zebrafish is through constant water flow [86]. Physical SD in zebrafish has been mostly used to study sleep reversibility and homeostasis, but some studies have also started to address the effects of SD on cognitive functions and learning [87–89].

Through genetic screening multiple mutants with reduced sleep have been identified. For example, knockout of the sleep-promoting gene *iast* (Figure 4) reduces sleep by about 50% [77]. In zebrafish, mutation of the sleep-promoting npuf gene reduces sleep by about 10% [99], voltage-gated potassium channel gene kcnh4a knockout caused a 15% reduction [94], melatonin receptor mutation aannat2–/– led to approximately 50% reduction [96], and overexpression of wake-promoting factors such as hct and neumodin u genes led to a variable reduction of sleep of around half [90,91]. In Drosophila, inhibition of SIFamide receptor–expressing PI neurons reduces sleep by about 30% (estimated from [110,146]) and interference with the mushroom body by about 45% without causing hyperactivity during wake [112]. Mutation of redeye [99], cyclin A RNAi [100], deletion of hyperkinetic [101], or interference with sleep-promoting neurons of the DFB (activating CAMP signaling [115] or crossveinless-c RNAI [113]) reduce sleep by about half. insomniac [103], fumin [104], or shaker led to approximately 2/3 reduction of sleep [102].

Figure 4. Genetic SD across the four key genetic animal models.

Shown are examples of genetic and neural ablations that result in reduction of sleep, some of which have low specificity, for instance manipulations leading to generally increased activity levels or impairment of circadian rhythms do not present specific manipulations. Inhibition of the PZ reduces non-REM sleep by about 44% [38]. Chemogenetic activation of the PB and ablation of the VLPO reduce sleep by about 50% (estimated from [70] for the first day of CNO application) [72]. In zebrafish, mutation of the sleep-promoting npuf gene reduces sleep by about 10% [99], voltage-gated potassium channel gene kcnh4a knockout caused a 15% reduction [94], melatonin receptor mutation aannat2–/– led to approximately 50% reduction [96], and overexpression of wake-promoting factors such as hct and neumodin u genes led to a variable reduction of sleep of around half [90,91].
causes hyperactivity and suppresses sleep. The effects of medin U
neuropeptides QRFP and prokineticin 2 reduce sleep. However,
activation or inhibition of hctr neurons can be used to decrease or
increase sleep, respectively [92,93]. Consistent with these findings,
neurotoxin gene also causes hyperactivity and reduces sleep by 10% [95]. Mutation of the melatonin
neuropeptide gene gene aanaat2 in zebrafish reduces night sleep in the
presence of light–dark cycles by about 50%. In free-running condi-
tions (i.e., constant darkness), the increase of sleep during the
subjective night is almost completely eliminated. These results
suggest that melatonin is the major factor for circadian regulation of
sleep in zebrafish [96] (Fig 4). Reports on sleep functions based on
genetic SD are still lacking in the literature. While sleep-active
neurons have not yet been reported in zebrafish, they likely exist
and their ablation should provide a valuable model for studying the
consequences of sleep loss.

Genetically removing sleep in model systems: Drosophila

Drosophila melanogaster has emerged as a leading model system to
study the molecular basis of sleep. Its main advantages are genetic
amenability and a clear coupling of sleep to the circadian rhythm.
Like humans and zebrafish, *Drosophila* sleep mostly during the
dark phase and also have a period of behavioral inactivity during the
middle of the light phase that is called a siesta. Thus, behav-
ioral activity in fruit flies occurs mostly during both the morning
and the evening hours. *Drosophila* has been instrumental in solving
the molecular underpinnings of circadian rhythms and thus
presents a prime system to study the control of sleep and its regula-
tion by the circadian clock [15,97,98]. Genetic accessibility has
motivated multiple large-scale screens for mutations that alter sleep
behavior. Mutations and neural manipulations in *Drosophila* can
severely reduce sleep. For instance, mutation of the nicotinic
acetylcholine receptor *α* subunit gene *redeye*, the potassium chan-
nel regulator *hyperkinetic*, or RNAi of *cyclin A* or its regulator
sleep reduced by about half [99–101]. Mutation of the *shaker*
potassium channel, the ubiquitin ligase adapter complex gene *insom-
niac*, and the dopamine transporter gene *fumin* reduced sleep by
about two-thirds [102–104]. Among the strongest mutations that
reduce sleep is the *sleepless* mutation with about 80% of sleep
reduction. *sleepless* encodes a neurotoxin that regulates *shaker*
[105,106] (Fig 4). However, several of these mutants are severely
hyperactive. Thus, results regarding sleep functions based on
hyperactive mutants should be interpreted with caution
[101,104,105,107].

Fly brains possess several centers that contain wake-promoting
or sleep-promoting neurons. Wake-promoting centers are, for
example, *cyclin A*-expressing neurons of the pars lateralis [108].
Important sleep-promoting centers are formed by sub-populations
of neurons in the mushroom body, dorsal paired medial neurons,
and peptidergic neurons in the PI [109–111]. As another example,
sleep-promoting neurons of the dFB can actively induce sleep and
confer homeostatic sleep drive stemming from R2 neurons of the
ellipsoid body and are thus similar to mammalian sleep-promoting
neurons [112–114]. Interference with the function of dFB neurons,
for instance by RNAi of *crossveinless-c*, a Rho GTPase-activating
gene, reduced sleep by about half. Importantly, mutation of

**Figure 5. Chemogenetics and optogenetics allow specific gain-of-
function experiments for sleep.**

Shown are examples from mouse and *Caenorhabditis elegans*, but chemogenetic
and optogenetic sleep control is also applicable to other models such as
Drosophila and zebrafish. (A) Non-REM sleep can be triggered in mice by
chemogenetic activation of GABAergic neurons in the PZ. To achieve specific
activation of GABAergic neurons within a specific brain locus, a transgenic mouse
is taken that expresses Cre recombinase from the GABA-specific GAD2 promoter.
A Cre-inducible excitatory muscarinic modified G protein-coupled receptor is
expressed using an adeno-associated virus construct, which is injected locally
into the PZ and transforms only the neurons in the vicinity of the injections.
Intraperitoneal injection of CNO, an agonist of the excitatory muscarinic
modified G protein-coupled receptor, then leads to an increased activity of
GABAergic PZ neurons, leading to the induction of non-REM sleep. Mice with
increased non-REM sleep can then be analyzed for phenotypes such as learning
and memory [78]. (B) Sleep can be induced optogenetically in *Caenorhabditis
elegans* by depolarizing the GABAergic and peptidergic sleep-active RIS neuron
[134]. Transgenic animals are generated that express Channelrhodopsin (here
the red-light-activated variant ReaChR) specifically in RIS, which is achieved by
using a specific promoter. Illuminating the entire animal, which is transparent,
with red light leads to the depolarization of RIS and sleep induction. The
phenotypes caused by increased sleep can then be studied.
crossveinless-c decreases sleep without causing signs of hyperactivity [113,115]. This supports the hypothesis that genetic SD without hyperactivity is possible in Drosophila (Fig 4). Thus, specific interference of DBN neurons and crossveinless-c mutants present specific, albeit partial, genetic SD in Drosophila and should, along with other mutants, provide useful models for studying the effects of sleep restriction in fruit flies. Similar to mammals, several populations of sleep-promoting neurons exist and the ablation of individual populations causes partial sleep loss. It is not well understood how the various sleep centers in Drosophila interact to cause sleep, but they likely act, at least in part, in parallel pathways. It might be possible to combine mutations that target different sleep-promoting areas and test whether this would result in near-complete sleep loss. This would not only shed light on how the different sleep centers interact but might also generate stronger models of genetic SD. It will be interesting to see whether near-complete genetic SD will be possible and whether and how it would result in lethality.

Sensory stimulation-induced SD leads to hyperarousal, the activation of cellular stress responses in Drosophila, and is detrimental [116]. Genetic sleep reduction has been associated with reduced lifespan in many but not all Drosophila sleep mutants. For instance, loss of the sleepless gene causes both a shortening of sleep and lifespan, while neuronal knockdown of insomniac leads to sleep reduction without a shortening of longevity [102,103,105,117]. Also, knockout of fumin did not cause a shortening of lifespan but a reduction of brood size [104,118]. Also, defects in memory have been observed in sleep mutants [101]. Genetic sleep reduction by neuronal knockdown of insomniac did not demonstrate a role for sleep in survival of infection or starvation. The short-sleeping mutant did, however, exhibit a sensitivity to survive oxidative stress. Several other short-sleeping mutants showed oxidative stress sensitivity as well, suggesting that the sensitivity was probably not conferred by pleiotropic side effects caused by the mutation but rather is broadly associated with sleep loss. Consistent with this finding, increasing sleep genetically or pharmacologically conferred greater resistance to oxidative stress [107]. These experiments not only identified resistance to oxidative stress as a potential core function of sleep in Drosophila, but also illustrate how the use of multiple sleep mutants distills a sleep phenotype from potentially pleiotropic mutations.

Genetically removing sleep in model systems: C. elegans

Caenorhabditis elegans is the genetic animal model with the smallest nervous system, as it has only about 0.3% the number of neurons of an adult Drosophila or zebrafish embryo brain. The connectome of the 302 neurons of the hermaphrodite has been mapped, providing an entry point for circuit studies [119]. Sleep in C. elegans is attractive to study due to its genetic amenability and the invariant number of neurons allowing straightforward genetic SD. Caenorhabditis elegans shows sleeping behavior across many life stages and conditions. In the developing larva, sleep is linked to the molting cycle, and sleep bouts occur during a phase called lethargus prior to the molt [120–122]. This developmentally controlled sleep does not seem to be coupled to the day–night cycle, but its timing still is controlled by the circadian period homolog lin-42 [123]. If hatched in the absence of food, larvae arrest development and during this phase alternate between sleep and wake cycles [124]. In the presence of adverse conditions, worms develop into an enduring alternative larval stage called the “dauer”, which spends much of its time sleeping [121,124]. Adult worms sleep both in the presence and in the absence of food, with food amount and quality determining the amount of sleep [124–126]. Finally, C. elegans sleep following severe cellular stress [35].

As in other species, hyperactive mutations can reduce sleep in C. elegans; however, they do not present specific manipulations [127,128]. Caenorhabditis elegans possess two major individual neurons that have been implicated in the induction of sleep. Cellular stress causes the secretion of EGF, which activates EGF receptor signaling in a neuron called ALA [35,129,130]. EGF activation leads to the secretion of multiple neuropeptides from ALA, which have both overlapping and distinct inhibitory functions on behavioral activity by binding to downstream receptors, likely involving a diffusional mechanism [131–133]. It is not yet clear whether ALA presents a sleep-active neuron in the sense that it depolarizes specifically during a sleep bout or whether it promotes sleep by a different mechanism. ALA can be easily ablated physically or genetically. Loss of function of the homeobox transcription factor genes ceh-17 or ceh-14 renders ALA dysfunctional and thus strongly impairs sleep following cellular stress [129] (Fig 4).

The second major known sleep-promoting neuron of C. elegans is called RIS. This neuron is sleep-active as it depolarizes at the onset of sleep bouts and its optogenetic depolarization acutely induces sleep [134–136] (Fig 5). Similar to ALA, RIS can be easily ablated physically or genetically. A mutation in the AP2 transcription factor gene aptf-1 renders RIS inactive, because AP2 is required for the expression of sleep-inducing neuropeptides [134]. Interestingly, AP2 transcription factors are conserved regulators of sleep also in Drosophila and humans [137,138]. Sleep bouts become undetectable in these “RIS mutants” during many life stages and physiological conditions. aptf-1 mutant worms show no severe hyperactivity during wake, indicating that they are not strongly hyperaroused following sleep loss and that sleep loss is likely not a consequence of increased arousal [124,134,135,139]. Thus, during many physiological conditions, RIS inactivation in C. elegans presents both a virtually complete as well as a highly specific model for sleeplessness (Fig 4).

It has been proposed that ALA and RIS present mostly parallel systems that act during un-physiological and physiological conditions, respectively, and whether and how these neurons interact is not known [140]. Together, ALA and RIS ablation present valuable tools for studying the functions of sleep in different conditions.

Loss of ALA function is viable during physiological conditions but impairs survival upon cellular stress, demonstrating the importance of sleep in recuperating from cellular insult. The need to sleep after cellular stress is plastic and is reduced if the general stress resistance is increased, suggesting that sleep is part of a stress resistance program [35,129,130,141]. RIS-ablated C. elegans are viable and display much less severe consequences compared with SD by sensory stimulation, which can even be lethal [134,139,142,143]. It is possible that sensory stimulation causes non-specific side effects or that long-term genetic SD is compensated for by development or other homeostatic processes. Caenorhabditis elegans lives a boom-and-bust lifestyle and alternates between short periods of superfluous food and long periods of starvation. Consistent with these
In need of answers

(i) What are the vital functions of sleep?
The functions of sleep have been studied for decades, mostly by either correlation or SD induced by sensory stimulation. Genetic SD is an emerging alternative to remove sleep but typically produces weaker phenotypes compared with stimulation-induced SD. It could be that constitutive genetic SD leads to compensatory changes, whereas acute SD cannot be easily compensated for. However, the power of constitutive genetic SD lies in the potential accumulation of the consequences of sleep loss over time. Also, transgenerational effects of sleep loss should be studied for long-term effects of sleep loss. Thus, a thorough analysis of the different SD methods and a re-evaluation of the previously proposed roles of sleep will be necessary to understand sleep functions.

(ii) Can sleep be removed specifically and completely using genetic SD?
A prerequisite for genetic SD is specificity of the manipulation as well as a high degree of deprivation. However, it is yet unclear what level of specificity can be achieved. Genes and neurons that control sleep may have functions that overlap with other processes. Also, complete genetic SD likely is lethal in many systems such as mammals. Thus, partial or conditional genetic SD will be the methods of choice for studying sleep functions in this case.

(iii) How did sleep evolve and how conserved are sleep functions?
Molecular analysis has suggested that there is a high level of conservation of sleep regulation but it is less clear how conserved molecular sleep functions are. Also, it is not clear for which initial functions sleep has been selected for. Speculatively, sleep emerged in evolution to save energy or serve basic needs and was co-opted later to also serve higher brain functions. Studying sleep functions across models should shed light on these questions. Evolutionary studies would be aided by studying sleep and sleeplessness in additional models beyond the widely used animals described herein.

(iv) How does sleep exert its functions?
While many ideas exist as to the potential functions of sleep, little is known about the underlying mechanisms. For example, it is not known what molecules are preserved, how resources are allocated, and how cellular processes are aided. It is unclear how basic molecular and cellular functions of sleep support a healthy physiology and how sleep is linked to aging. Also, how sleep aids higher brain functions is not clear. To answer these questions, the consequences of sleep loss need to be studied using multiple molecular and systems approaches across animals.

generically remove sleep to a high degree and specificity. Acute SD by sensory deprivation and chronic genetic SD are obviously different experiments and can lead to different conclusions as to the functions of sleep. In future studies, it will be important to understand the basis of these differences. It is as of now unclear whether SD by sensory stimulation overestimates the role of sleep because it causes non-specific side effects or whether genetic SD underestimates the role of sleep because of compensation processes. Genetic SD models can be used to study the consequences of sleep restriction or loss. Until now, specific phenotypes from genetic SD are scarce. However, sleepless model animals are increasingly employed for studies aiming to understand the consequences of sleep loss and will likely be key to comprehend why animals and humans need to sleep. Initial results indicate that much of the phenotypes observed after SD may not be a direct consequence of the lost sleep. For instance, the metabolic consequences of sleep loss in humans have been challenged by more specific surgical or genetic SD in rodents. Similarly, genetic SD in Drosophila and C. elegans produces smaller phenotypes compared with stimulation-induced SD. Work from Drosophila and C. elegans suggests that sleep becomes especially important for survival during challenging conditions. Improving the genetic sleep loss models by increasing the degree and specificity of sleeplessness as well as fine-tuning the amount and timing of lost or gained sleep will be important next steps in facilitating the study of sleep functions in animals. Analyzing phenotypes of genetic SD models will help define core functions of sleep and support our endeavor to understand how sleep becomes vital.

Acknowledgements
I would like to thank Mimi Shirasu-Hiza, Mary Osborn, Jason Rihel, and David Prober for comments on the manuscript. This work was supported by the Max Planck Society (Max Planck Research Group) and the European Research Council (Horizon 2020 Starting Grant, agreement no. 637860, SLEEPCONTROL).

Conflict of interest
The author declares that he has no conflict of interest.

References
1. Irwin MR (2015) Why sleep is important for health: a psychoneuroimmunology perspective. Annu Rev Psychol 66: 143 – 172
2. Drake CL, Roehrs T, Roth T (2003) Insomnia causes, consequences, and therapeutics: an overview. Depress Anxiety 16: 163 – 176
3. Van Cauter E, Spiegel K, Tasali E, Leproult R (2008) Metabolic consequences of sleep and sleep loss. Sleep Med Rev 9(Suppl 1): S23 – S28
4. Knutson KL, Spiegel K, Penev P, Van Cauter E (2007) The metabolic consequences of sleep deprivation. Sleep Med Rev 11: 163 – 178
5. Aserinsky E, Kleitman N (1953) Regularly occurring periods of eye motility, and concomitant phenomena, during sleep. Science 118: 273 – 274
6. Peever J, Fuller PM (2017) The biology of REM sleep. Curr Biol 27: R1237 – R1248
7. Beckers GJ, Rattenborg NC (2015) An in depth view of avian sleep. Neurosci Biobehav Rev 50: 120 – 127
8. Vorster AP, Born J (2015) Sleep and memory in mammals, birds and invertebrates. Neurosci Biobehav Rev 50: 103 – 119
32. Krueger JM, Frank MG, Wisor JP, Roy S (2016) Sleep function: toward elucidating an enigma. Sleep Med Rev 28: 46–54
33. Zielenki MR, Krueger JM (2011) Sleep and innate immunity. Front Biosci 3: 632–642
34. Kayser MS, Biron D (2016) Sleep and development in genetically tractable model organisms. Genetics 203: 21–33
35. Hill AJ, Mansfield R, Lopez JM, Raizen DM, Van Buskirk C (2014) Cellular stress induces a protective sleep-like state in C. elegans. Curr Biol 24: 2399–2405
36. Tu BP, McKnight SL (2006) Metabolic cycles as an underlying basis of biological oscillations. Nat Rev Mol Cell Biol 7: 696–701
37. Wang Z, Ma J, Miyoshi C, Li Y, Sato M, Ogawa Y, Lou T, Ma C, Gao X, Lee C et al (2018) Quantitative phosphoproteomic analysis of the molecular substrates of sleep need. Nature 558: 435–439
38. Funato H, Miyoshi C, Fujyama T, Kanda T, Sato M, Wang Z, Ma J, Nakane S, Tomita J, Iikyu A et al (2016) Forward-genetics analysis of sleep in randomly mutagenized mice. Nature 539: 378–383
39. Choi S, Lim DS, Chung J (2015) Feeding and fasting signals converge on the LBK1-SIK3 pathway to regulate lipid metabolism in Drosophila. PLoS Genet 11: e1005263
40. Uebe T, Itoh Y, Hatano O, Kumagai A, Sanosaka M, Sasaki T, Sasagawa S, Doi J, Tatsumi K, Mitamura K et al (2012) Involvement of SIK3 in glucose and lipid homeostasis in mice. PLoS ONE 7: e37803
41. Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, O’Donnell J, Christensen DJ, Nicholson C, IiiFF JJ et al (2013) Sleep drives metabolite clearance from the adult brain. Science 342: 373–377
42. Cirelli C, Gutierrez CM, Tononi G (2004) Extensive and divergent effects of sleep and wakefulness on brain gene expression. Neuron 41: 35–43
43. Seibt J, Dumoulin MC, Aton SJ, Coleman T, Watson A, Naidoo N, Frank MG (2012) Protein synthesis during sleep consolidates cortical plasticity in vivo. Curr Biol 22: 676–682
44. Marshall L, Helgadottir H, Molle M, Born J (2006) Boosting slow oscillations during sleep potentiates memory. Nature 444: 610–613
45. de Vivo L, Bellesi M, Marshall W, Bushong EA, Eilissman MH, Tononi G, Cirelli C (2017) Ultrastructural evidence for synaptic scaling across the wake/sleep cycle. Science 355: 507–510
46. Maret S, Dorsaz S, Gurcel L, Pradervand S, Petit B, Pfister C, Hagenbuchle O, O’Hara BF, Franken P, Tafti M (2007) Homer1a is a core brain molecular correlate of sleep loss. Proc Natl Acad Sci USA 104: 20090–20095
47. Diering GH, Nirujogi RS, Roth RH, Worley PF, Pandey A, Huganir RL (2017) Homer1a drives homeostatic scaling-down of excitatory synapses during sleep. Science 355: 511–515
48. PORKA-HEISKANEN T, STRECKER RE, THAKKAR M, BJORKAM AA, GREENE RW, MCCARLEY RW (1997) ADENOSINE: A MEDIATOR OF THE SLEEP-INDUCING EFFECTS OF PROLONGED WAKEFULNESS. SCIENCE 276: 1265–1268
49. DUDAI Y, KARNI A, BORN J (2015) THE CONSOLIDATION AND TRANSFORMATION OF MEMORY. Neuron 88: 20–32
50. WAGNER U, GAIS S, HAIDER H, VERLEGER R, BORN J (2004) SLEEP INSPIRES INSIGHT. Nature 427: 352–355
51. von ECONOMO C (1930) SLEEP AS A PROBLEM OF LOCALIZATION. J Neru Ment Dis 71: 249–259
52. SAPER CB, FULLER PM, PEDersen NP, LU J, Scammell TE (2010) SLEEP STATE SWITCHING. Neuron 68: 1023–1042
53. BRINGMANN H (2018) SLEEP-ACTIVE NEURONS: CONSERVED MOTORS OF SLEEP. Genetics 208: 1279–1289
54. SAPER CB, Scammell TE, LU J (2005) Hypothalamic regulation of sleep and circadian rhythms. Nature 437: 1257–1263
55. Rechtschaffen A, Bergmann BM (1995) Sleep deprivation in the rat by the disk-over-water method. Behav Brain Res 69: 55 – 63
56. Zhao Z, Zhao X, Veasey SC (2017) Neural consequences of chronic short sleep: reversible or lasting? Front Neurol 8: 235
57. Meerlo P, Koehl M, van der Borght K, Turek FW (2002) Sleep restriction alters the hypothalamic-pituitary-adrenal response to stress. J Neuroendocrinol 14: 397 – 402
58. Chrousos G, Vgontzas AN, Kritikou I (2000) HPA axis and sleep. In Endotext, De Groot LJ, Chrousos G, Dungan K, Feingold KR, Grossman A, Hershman JM, Koch C, Korbonits M, McLachlan R, New M, Purnell J, Rebar R, Singer F, Vinik A (eds). South Dartmouth, MA: endotext.org
59. Fuller PM, Sherman D, Pedersen NP, Saper CB, Lu J (2011) Reassessment of the structural basis of the ascending arousal system. J Comp Neurol 519: 933 – 956
60. Krause AJ, Simon EB, Mander BA, Greer SM, Saletin JM, Goldstein-Piekarski AN, Walker MP (2017) The sleep-deprived human brain. Nat Rev Neurosci 18: 404 – 418
61. Guo F, Yu J, Jung HJ, Abruzzi KC, Luo W, Griffith LC, Rosbash M (2016) Circadian neuron feedback controls the Drosophila sleep-activity profile. Nature 536: 292 – 297
62. Naylor E, Bergmann BM, Krauski K, Zee PC, Takahashi JS, Vitaterna MH, Turek FW (2000) The circadian clock mutation alters sleep homeostasis in the mouse. J Neurosci 20: 8138–8143
63. Angelakos CC, Watson AJ, O'Brien WT, Krainock KS, Nickl-Jockschat T, Abel T (2017) Hyperactivity and male-specific sleep deficits in the 16p11.2 deletion mouse model of autism. Autism Res 10: 572–584
64. Alam MA, Kumar S, McCoyy D, Alam MN, Szymusiak R (2014) Neuronal activity in the preoptic hypothalamus during sleep deprivation and recovery sleep. J Neurophysiol 111: 287–299
65. Saper CB, Chou TC, Scammell TE (2001) The sleep switch: hypothalamic control of sleep and wakefulness. Trends Neurosci 24: 726–731
66. Weber F, Dan Y (2016) Circuit-based interrogation of sleep control. Nature 538: 51–59
67. Weber F, Chung S, Beier KT, Xu M, Luo L, Dan Y (2015) Control of REM sleep by ventral medulla GABAergic neurons. Nature 526: 435–438
68. Boyce R, Glasgow SD, Williams S, Adamantidis A (2016) Causal evidence for the role of REM sleep theta rhythm in contextual memory consolidation. Science 352: 812–816
69. Douglas CL, Vyazovskiy V, Southard T, Chiu SY, Messing A, Tononi G, Cirelli C (2007) Sleep in Kcnq2 knockout mice. BMC Biol 5: 42
70. Qiu MH, Chen MC, Fuller PM, Lu J (2016) Stimulation of the pontine parabrachial nucleus promotes wakefulness via extra-thalamic forebrain circuit nodes. Curr Biol 26: 2301–2312
71. Pedersen NP, Ferrari L, Venner A, Wang JL, Abbott SBG, Vujovic N, Arrigoni E, Saper CB, Fuller PM (2017) Supramammillary glutamate neurons are a key node of the arousal system. Nat Commun 8: 1405
72. Lu J, Greco MA, Shiromani P, Saper CB (2000) Effect of lesions of the ventrolateral preoptic nucleus on NREM and REM sleep. J Neurosci 20: 3830–3842
73. Vetrivelan R, Fuller PM, Yokota S, Lu J, Saper CB (2012) Metabolic effects of chronic sleep restriction in rats. Sleep 35: 1511–1520
74. Chung S, Weber F, Zhong P, Tan CL, Nguyen TN, Beier KT, Hormann N, Chang WC, Zhang Z, Do JP et al (2017) Identification of preoptic sleep neurons using retrograde labelling and gene profiling. Nature 545: 477–481
75. Venner A, Anaclet C, Broadhurst RY, Saper CB, Fuller PM (2016) A novel population of wake-promoting GABAergic neurons in the ventral lateral hypothalamus. Curr Biol 26: 2137–2143
76. Anaclet C, Pedersen NP, Ferrari LL, Venner A, Bass CE, Arrigoni E, Fuller PM (2015) Basal forebrain control of wakefulness and cortical rhythms. Nat Commun 6: 8744
77. Anaclet C, Lin JS, Vetrivelan R, Kreiner M, Vong L, Fuller PM, Lu J (2012) Identification and characterization of a sleep-activating cell group in the rostral medullary brainstem. J Neurosci 32: 17970–17976
78. Anaclet C, Ferrari L, Arrigoni E, Bass CE, Saper CB, Lu J, Fuller PM (2014) The GABAergic parafacial zone is a medullary slow wave-sleep-promoting center. Nat Neurosci 17: 1217–1224
79. Anaclet C, Fuller PM (2017) Brainstem regulation of slow-wave-sleep. Curr Opin Neurobiol 44: 139–143
80. Arnason BB, Thornorsteinsson H, Karloae KAE (2015) Absence of rapid eye movements during sleep in adult zebrafish. Behav Brain Res 291: 189–194
81. Chen A, Chiu CN, Mosser EA, Kahn S, Spence R, Prober DA (2016) QRFP and its receptors regulate locomotor activity and sleep in zebrafish. J Neurosci 36: 1823–1840
82. Chen S, Reichert S, Singh C, Oikonomou G, Rihel J, Prober DA (2017) Light-dependent regulation of sleep and wake states by prokineticin 2 in zebrafish. Neuron 95: 153–168 e6
83. Zhdanova IV, Wang SY, Leclair OU, Danilova NP (2001) Melatonin promotes sleep-like state in zebrafish. Brain Res 903: 263–268
84. Levitas-Djerbi T, Appelbaum L (2017) Modeling sleep and neuropsychiatric disorders in zebrafish. Curr Opin Neurobiol 44: 89–93
85. Yokogawa T, Marín W, Faraco J, Pezeron G, Appelbaum L, Zhang J, Rosa F, Mourrain P, Mignot E (2007) Characterization of sleep in zebrafish and insomnia in hypocretin receptor mutants. PLoS Biol 5: e277
86. Aho V, Vainikka M, Puttonen HAJ, Ikonen HMK, Salminen T, Panula P, Porkka-Heiskanen T, Wigren HK (2017) Homeostatic response to sleep/rest deprivation by constant water flow in larval zebrafish in both dark and light conditions. J Sleep Res 26: 394–400
87. Pinheiro-da-Silva J, Silva PF, Nogueira MB, Luchiar AC (2017) Sleep deprivation effects on object discrimination task in zebrafish (Danio rerio). Anim Cogn 20: 159–169
88. Pinheiro-da-Silva J, Tran S, Luchiar AC (2018) Sleep deprivation impairs cognitive performance in zebrafish: a matter of fact? Behav Processes 157: 656–663
89. Pinheiro-da-Silva J, Tran S, Silva PF, Luchiar AC (2017) Good night, sleep tight: the effects of sleep deprivation on spatial associative learning in zebrafish. Pharmacol Biochem Behav 159: 36–47
90. Prober DA, Rihel J, Onah AA, Sung RJ, Schier AF (2006) Hypocretin/orexin overexpression induces an insomnia-like phenotype in zebrafish. J Neurosci 26: 13400–13410
91. Chiu CN, Rihel J, Lee DA, Singh C, Mosser EA, Chen S, Sapin V, Pham U, Engle J, Niles B et al (2016) A zebrafish genetic screen identifies neuropepmin U as a regulator of sleep/wake states. Neuron 89: 842–856
92. Chen S, Chiu CN, McArthur KL, Fetcho JR, Prober DA (2016) TRP channel mediated neuronal activation and ablation in freely behaving zebrafish. Nat Methods 13: 147–150
93. Singh C, Oikonomou G, Prober DA (2015) Norpapephrine is required to promote wakefulness and for hypocretin-induced arousal in zebrafish. Elife 4: e07000
94. Yelin-Bekerman L, Elbaz I, Diber A, Dahary D, Gibbs-Bar L, Alon S, Leerd-Goldstein T, Appelbaum L (2015) Hypocretin neuron-specific transcriptome profiling identifies the sleep modulator Kcnh4a. Elife 4: e08638
95. Lee DA, Andreev A, Truong TV, Chen A, Hill AJ, Oikonomou G, Pham U, Hong YK, Tran S, Class L et al (2017) Genetic and neuronal regulation of sleep by neuropeptide VF. Elife 6: e25727
Henrik Bringmann Genetic sleep deprivation

96. Gandhi AV, Mosser EA, Oikonomou G, Prober DA (2015) Melatonin is required for the circadian regulation of sleep. Neuron 85: 1193 – 1199

97. Hendricks JC, Finn SM, Pancken KA, Chavkin J, Williams JA, Sehgal A, Pack AI (2000) Rest in Drosophila is a sleep-like state. Neuron 25: 129 – 138

98. Shaw PJ, Cirelli C, Greenspan RJ, Tononi G (2000) Correlates of sleep and waking in Drosophila melanogaster. Science 287: 1834 – 1837

99. Shi M, Yue Z, Kuryatov A, Lindstrom JM, Sehgal A (2014) Identification of Redeye, a new sleep-regulating protein whose expression is modulated by sleep amount. Elife 3: e01473

100. Rogenjua D, Young MW (2012) Control of sleep by cyclin A and its regulator. Science 335: 1617 – 1621

101. Bushey D, Huber R, Tononi G, Cirelli C (2007) Drosophila Hyperkinetic mutants have reduced sleep and impaired memory. J Neurosci 27: 5384 – 5393

102. Cirelli C, Bushey D, Hill S, Huber R, Kreber R, Gantetzky B, Tononi G (2005) Reduced sleep in Drosophila Shaker mutants. Nature 434: 1087 – 1092

103. Stavropoulos N, Young MW (2011) insomniac and Cullin-3 regulate sleep and wakefulness in Drosophila. Neuron 72: 964 – 976

104. Kume K, Kume S, Park SK, Hirsh J, Jackson FR (2005) Dopamine is a regulator of arousal in the fruit fly. J Neurosci 25: 7877 – 7884

105. Koh K, Joiner WJ, Wu MN, Yue Z, Smith CJ, Sehgal A (2008) Identification of SLEEPLESS, a sleep-promoting factor. Science 321: 372 – 376

106. Wu MN, Joiner WJ, Dean T, Yue Z, Smith CJ, Chen D, Hoshi T, Sehgal A, Koh K (2010) SLEEPLESS, a Ly-6/neurotoxin family member, regulates the levels, localization and activity of Shaker. Nat Neurosci 13: 69 – 75

107. Hill VM, O’Connor RM, Sissoko GB, Irobunda IS, Leong S, Canman JC, Stavropoulos N, Shirasu-Hiza M (2018) A bidirectional relationship between sleep and oxidative stress in Drosophila. PloS Biol 16: e2005206

108. Afonso DJ, Liu D, Machado DR, Pan H, Jepson JE, Rogenjua D, Koh K (2015) TARANIS functions with cyclin A and Cdk1 in a novel arousal center to control sleep in Drosophila. Curr Biol 25: 1717 – 1726

109. Foltenyi K, Greenspan RJ, Newport JW (2007) Activation of EGFR and ERK by rhomboid signaling regulates the consolidation and maintenance of sleep in Drosophila. Nat Neurosci 10: 1160 – 1167

110. Haynes PR, Christmann BL, Griffith LC (2015) A single pair of neurons links sleep to memory consolidation in Drosophila melanogaster. Elife 4: e03686

111. Joiner WJ, Crocker A, White BH, Sehgal A (2006) Sleep in Drosophila is regulated by adult mushroom bodies. Nature 441: 757 – 760

112. Liu S, Liu Q, Tabuchi M, Wu MN (2016) Sleep drive is encoded by neural plastic changes in a dedicated circuit. Cell 165: 1347 – 1360

113. Donlea JM, Pimentel D, Miesenbock G (2014) Neuronal machinery of sleep homeostasis in Drosophila. Neuron 81: 860 – 872

114. Pimentel D, Donlea JM, Talbot CB, Song SM, Thurston AJ, Miesenbock G (2016) Operation of a homeostatic sleep switch. Nature 536: 333 – 337

115. Liu Q, Liu S, Kodama L, Driscoll MR, Wu MN (2012) Two dopaminergic neurons signal to the dorsal fan-shaped body to promote wakefulness in Drosophila. Curr Biol 22: 2114 – 2123

116. Shaw PJ, Tononi G, Greenspan RJ, Robinson DF (2002) Stress response genes protect against lethal effects of sleep deprivation in Drosophila. Nature 417: 287 – 291

117. Bushey D, Hughes KA, Tononi G, Cirelli C (2010) Sleep, aging, and lifespan in Drosophila. BMC Neurosci 11: 56

118. Potdar S, Daniel DK, Thomas FA, Lall S, Sheeba V (2018) Sleep deprivation negatively impacts reproductive output in Drosophila melanogaster. J Exp Biol 221: jeb174771

119. White JC, Southgate E, Thomson JN, Brenner S (1986) The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 314: 1 – 340

120. Raizen DM, Zimmerman JE, Maycock MH, Ta UD, You YJ, Sundaram MV, Pack AI (2008) Lethargus is a Caenorhabditis elegans sleep-like state. Nature 451: 569 – 572

121. Cassada RC, Russell RL (1975) The dauerlarva, a post-embryonic developmental variant of the nematode Caenorhabditis elegans. Dev Biol 46: 326 – 342

122. Iwanir S, Tramm N, Nagy S, Wright C, Ish D, Biron D (2013) The microarchitecture of C. elegans behavior during lethargus: homeostatic bout dynamics, a typical body posture, and regulation by a central neuron. Sleep 36: 385 – 395

123. Monsalve GC, Van Buskirk C, Frand AR (2011) LIN-42/PERIOD controls cyclical and developmental progression of C. elegans molts. Curr Biol 21: 2033 – 2045

124. Wu Y, Masurat F, Preis J, Bringmann H (2018) Sleep counteracts aging phenotypes to survive starvation-induced developmental arrest in C. elegans. Curr Biol 28: 3610 – 3624.e8

125. Skora S, Mende F, Zimmer M (2018) Energy scarcity promotes a brain-wide sleep state modulated by insulin signaling in C. elegans. Cell Rep 22: 953 – 966

126. You YJ, Kim J, Raizen DM, Avery L (2008) Insulin, cGMP, and TGF-beta signals regulate food intake and quiescence in C. elegans: a model for satiety. Cell Metab 7: 249 – 257

127. Schwarz J, Bringmann H (2013) Reduced sleep-like quiescence in both hyperactive and hypoactive mutants of the Galphag Gene egl-30 during lethargus in Caenorhabditis elegans. PLoS ONE 8: e75853

128. Singh K, Ju JY, Walsh MB, Dilioar MO, Hart AC (2014) Deep conservation of genes required for both Drosophila melanogaster and Caenorhabditis elegans sleep includes a role for dopaminergic signaling. Sleep 37: 1439 – 1451

129. Van Buskirk C, Sternberg PW (2007) Epidermal growth factor signaling induces behavioral quiescence in Caenorhabditis elegans. Nat Neurosci 10: 1300 – 1307

130. DeBardeleben HK, Lopes LE, Nessel MP, Raizen DM (2017) Stress-induced sleep after exposure to ultraviolet light is promoted by p53 in Caenorhabditis elegans. Genetics 207: 571 – 582

131. Nelson MD, Lee KH, Churkin MA, Hill AJ, Van Buskirk C, Fang-Yen C, Raizen DM (2014) FMR1amide-like FLP-13 neuropeptides promote quiescence following heat stress in Caenorhabditis elegans. Curr Biol 24: 2406 – 2410

132. Nath RD, Chow ES, Wang H, Schwarz EM, Sternberg PW (2016) C. elegans stress-induced sleep emerges from the collective action of multiple neuropeptides. Curr Biol 26: 2446 – 2455

133. Iannaccone MJ, Beets I, Lopes LE, Churkin MA, Fang-Yen C, Nelson MD, Schoofs L, Raizen DM (2017) The FNRamide receptor DMSR-1 regulates stress-induced sleep in C. elegans. Elife 6: e21937

134. Turek M, Lewandrowski I, Bringmann H (2013) An AP2 transcription factor is required for a sleep-active neuron to induce sleep-like quiescence in C. elegans. Curr Biol 23: 2215 – 2223
135. Turek M, Besseling J, Spies JP, König S, Bringmann H (2016) Sleep-active neuron specification and sleep induction require FLP-11 neuropeptides to systemically induce sleep. Elife 5: e12499
136. Nichols ALA, Eichler T, Latham R, Zimmer M (2017) A global brain state underlies C. elegans sleep behavior. Science 356: eaam6851
137. Kucherenko MM, Ilangovan V, Herzig B, Shcherbata HR, Bringmann H (2016) TFAP-2 is required for night sleep in Drosophila. BMC Neurosci 17: 72
138. Mani A, Radhakrishnan J, Farhi A, Carew KS, Warnes CA, Nelson-Williams C, Day RW, Pober B, State MW, Lifton RP (2005) Syndromic patent ductus arteriosus: evidence for haploinsufficient TFAP2 mutations and identification of a linked sleep disorder. Proc Natl Acad Sci USA 102: 2975–2979
139. Bennett HL, Khoruzhik Y, Hayden D, Huang H, Sanders J, Walsh MB, Biron D, Hart AC (2018) Normal sleep bouts are not essential for C. elegans survival and FoxO is important for compensatory changes in sleep. BMC Neurosci 19: 10
140. Trojanowski NF, Nelson MD, Flavell SW, Fang-Yen C, Raizen DM (2015) Distinct mechanisms underlie quiescence during two Caenorhabditis elegans sleep-like states. J Neurosci 35: 14571–14584
141. Goetting DI, Soto R, Van Buskirk C (2018) Food-dependent plasticity in Caenorhabditis elegans stress-induced sleep is mediated by TOR-FOXO and TGF-beta signaling. Genetics 209: 1183–1195
142. Driver RJ, Lamb AL, Wyner AJ, Raizen DM (2013) DAF-16/FOXO regulates homeostasis of essential sleep-like behavior during larval transitions in C. elegans. Curr Biol 23: 501–506
143. Sanders J, Scholz M, Merutka I, Biron D (2017) Distinct unfolded protein responses mitigate or mediate effects of nonlethal deprivation of C. elegans sleep in different tissues. BMC Biol 15: 67
144. Porkka-Heiskanen T (2013) Sleep homeostasis. Curr Opin Neurobiol 23: 799 – 805
145. Tononi G, Cirelli C (2003) Sleep and synaptic homeostasis: a hypothesis. Brain Res Bull 62: 143 –150
146. Park S, Sonn JY, Oh Y, Lim C, Choe J (2014) SI-Fam ide and SI-Fam ide receptor defines a novel neuropeptide signaling to promote sleep in Drosophila. Mol Cells 37: 295–301

License: This is an open access article under the terms of the Creative Commons Attribution 4.0 License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.