GR-Athena++: puncture evolutions on vertex-centered oct-tree AMR

BORIS DASZUTA,1 FRANCESCO ZAPPA,1 WILLIAM COOK,1 DAVID RADICE,2,3,4 SEBASTIANO BERNUZZI,1 AND VIKTORIYA MOROZOVA2,3

1 Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universität Jena, 07743, Jena, Germany
2 Institute for Gravitation and the Cosmos, The Pennsylvania State University, University Park, PA 16802, USA
3 Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA
4 Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802, USA

(Dated: November 8, 2021)

ABSTRACT

Numerical relativity is central to the investigation of astrophysical sources in the dynamical and strong-field gravity regime, such as binary black hole and neutron star coalescences. Current challenges set by gravitational-wave and multi-messenger astronomy call for highly performant and scalable codes on modern massively-parallel architectures. We present GR-Athena++, a general-relativistic, high-order, vertex-centered solver that extends the oct-tree, adaptive mesh refinement capabilities of the astrophysical (radiation) magnetohydrodynamics code Athena++. To simulate dynamical space-times GR-Athena++ uses the Z4c evolution scheme of numerical relativity coupled to the moving puncture gauge. We demonstrate stable and accurate binary black hole merger evolutions via extensive convergence testing, cross-code validation, and verification against state-of-the-art effective-one-body waveforms. GR-Athena++ leverages the task-based parallelism paradigm of Athena++ to achieve excellent scalability. We measure strong scaling efficiencies above 95% for up to \(\sim 1.2 \times 10^4 \) CPUs and excellent weak scaling is shown up to \(\sim 10^5 \) CPUs in a production binary black hole setup with adaptive mesh refinement. GR-Athena++ thus allows for the robust simulation of compact binary coalescences and offers a viable path towards numerical relativity at exascale.

1. INTRODUCTION

Numerical relativity (NR) provides robust techniques for constructing numerical solutions to the Einstein field equations (EFE). The phenomenology of astrophysical inspiral and merger events, such as those between binary constituents involving (variously) black holes (BH) or neutron stars (NS) can be succinctly described with gravitational waves (GW) computed with NR Pretorius (2005); Baker et al. (2007); Campanelli et al. (2006); Shibata & Uryu (2000). This has crucially assisted in the recent detection of such events by the LIGO and Virgo collaborations Abbott et al. (2016a,b, 2017a). As the operating sensitivity of these detectors is improved Abbott et al. (2020) and new (KAGRA Akutsu et al. (2020), approved (LISA Amaro-Seoane et al. (2017)), or proposed (Einstein telescope Punturo et al. (2010), Cosmic explorer Abbott et al. (2017b)) designs come online a concomitant enlargement of the physical parameter space that may be experimentally probed is offered. These experimental efforts are complemented by publicly available catalogs of simulation data provided by the NR community (see e.g. Dietrich et al. (2018); Boyle et al. (2019); Healy et al. (2019); Jani et al. (2016)).

On the NR side there is thus a pressing requirement to better resolve and characterize the underlying physics during simulation of binary black holes (BBH) in ever more extreme configurations, such as higher mass ratio Lousto et al. (2010); Nakano et al. (2011) or to provide discrimination between candidate models in description of binary NS Radice et al. (2020); Bernuzzi (2020) or BH-NS Shibata & Taniguchi (2011) events. Such simulations can be extremely demanding from the point of view of computational resources and viability typically hinges upon the availability of high performance computing (HPC) infrastructure Huerta et al. (2019). Thus accurate NR codes that remain performant as HPC resources are scaled up and simultaneously allow for the scope of input physics to be simply extended are crucial.

An important concern for NR investigations of the binary merger problem is treatment of features sensitive to widely-varying length and time-scales. An approach inspired by Berger-Oliger Berger & Oliger (1984) (see also Berger & Colella (1989)) is based on the introduction of a sequence of hierarchically, well-nested patches (usually boxes) of increasing resolution and decreasing diameter centered at the constituents of the binary. The rela-
tive spatial positions of such patch configurations may be arranged to automatically track the time-evolution of the aforementioned compact objects. This has been a common approach adopted for NR codes that build upon the open source Cactus framework Goolday et al. (2003) and utilize the Carpet thorn Schnetter et al. (2004) (see also the Einstein toolkit Loffler et al. (2012) for an overview tailored to astrophysical applications). Some notable code implementations based on Cactus are Llama Pollney et al. (2011); Reisswig et al. (2013), McLachlan Brown et al. (2009), LEAN Sperhake (2007), LaZeV Zlochower et al. (2005), and Maya Herrmann et al. (2007) furthermore within this framework magnetohydrodynamics (MHD) may be coupled through use of GRHydro Mösta et al. (2014) or WhiskyTHC Radice et al. (2014). Other examples of non-Cactus codes adopting the Berger-Oliger approach include BAM Brügmann et al. (2008); Galaviz et al. (2010); Thierfelder et al. (2011), AMSS–NCKU Cao et al. (2008). Elements of this approach are also shared by the recent GRChombo Clough et al. (2015). Thus far, all code-bases discussed here make (at least some) use of Cartesian grid coordinatizations and involve use of finite-difference (FD) approximants to derivative operators.

Unfortunately here a priori specification of patch hierarchies is usually required which makes capturing emergent features at unexpected locations challenging. More importantly for Berger-Oliger the overhead of synchronization of solution data between patches on differing levels can incur heavy performance penalties which spoil scaling in modern highly-parallel HPC architectures Stout et al. (1997).

Other approaches such as those based on pseudospectral methods are represented by SpeC Szilagyi et al. (2009) where multi-patch decomposition of the computational domain is made using a combination of topological spheres and cylinders. The SXS collaboration Boyle et al. (2019) has used SpeC to produce some of the longest and most-accurate binary GW to date, albeit BBH mass ratio (defined $q := m_1/m_2$ where m_i are constituent masses and $m_1 \geq m_2$) for publicly available GR templates remains confined to $q \leq 10$. Closely related are efforts based on the discontinuous Galerkin (DG) method such as bamps Hilditch et al. (2016); Bugner et al. (2016) and SpeCtre Kidder et al. (2017). Another recently pursued alternative has been an attempt to eliminate the need for refinement altogether through generation of adapted, problem-specific curvilinear-grids as recently demonstrated in SENR/NRPy+ Mewes et al. (2020, 2018); Ruchlin et al. (2018).

A blend of benefits that ameliorates some of the disadvantages of the above approaches is offered in block-based adaptive mesh refinement (AMR) strategies Stout et al. (1997). Crucially, in contrast to hierarchical, nested patches, for block-based AMR each physical position on a computational domain is covered by one and only one level. This reduces the problem of synchronizing the data of a solution over differing levels to communication between block boundaries (as in DG) which when logically arranged into an oct-tree (in 3 spatial dimensions – see e.g. Burstedde et al. (2011)) can greatly improve computational efficiency through preservation of data locality in memory. Furthermore, making use of task-based parallelism as the computational model greatly facilitates the overlap of communication and computation. Additionally, great flexibility is maintained in how the computational domain can be refined. The recent work of Dendro–GR Fernando et al. (2018) utilizes such an approach in treatment of the vacuum sector of the EFE with the BSSNOK formulation Nakamura et al. (1987); Shibata & Nakamura (1995); Baumgarte & Shapiro (1999) where solution representation is in terms of adaptive wavelets and choice of regions to refine controlled by the wavelet expansion itself Holmström (1999). Scaling in terms of HPC performance appears to have been convincingly demonstrated with Dendro–GR for a mock $q = 10$ BBH event, although numerical accuracy and full scale evolutions, together with GW characteristics that would potentially be calculated during production runs are not presented for any q.

In this work we present our effort to build upon a public version of Athena++ White et al. (2016); Felker & Stone (2018); Stone et al. (2020) where changes to core functionality have been made, together with introduction of new modules targeted towards solution of the EFE. We refer to these new features as GR-Athena++. Originally Athena++ was conceived as a framework for purely non- and special-relativistic MHD, as well as GRMHD for stationary space-times, which adopts many of the mature and robust numerical algorithms of Stone et al. (2008) in a modern C++ design centered around block-based AMR. Key design elements include native support for Cartesian and curvilinear coordinates and a particular focus on future-proofing through code modularity. The computational model is task-based and embeds hybrid parallelism through dual use of message passing interface (MPI) and threading via OpenMP (OMP). In addition to excellent scaling properties on HPC infrastructure, modularity and modern code practices have allowed for extension of Athena++ to heterogeneous architectures through Kokkos Carter Edwards et al. (2014) resulting in performant MHD calculation on graphics processing units with K–Athena Grete et al. (2019) (see also parthenon Miller et al. (2021)).
These attractive properties served as a strong motivation in development of GR-\texttt{Athena++} where we have implemented the Z4c formulation Bernuzzi & Hilditch (2010); Ruiz et al. (2011); Weyhausen et al. (2012); Hilditch et al. (2013) of NR utilizing the (moving) puncture gauge Brandt & Brügmann (1997); Baker et al. (2007); Campanelli et al. (2006). We provide accurate and efficient extensions to derivative approximants through (templated) arbitrary-order FD based on Alfieri et al. (2018). Our introduction of vertex-centered (VC) variable treatment (extending core cell- and face-centered functionality) is motivated by a desire to match any selected FD order in calculations that involve AMR. Furthermore our implementation of the level to level transfer operators that occur in AMR takes advantage of the particular structure over sampled nodes at differing grid levels to simultaneously improve computational efficiency and accuracy. Within (GR-)\texttt{Athena++} time-evolution is achieved through the standard method of lines approach where scheme order may be specified flexibly. In this work the formal order of the spatial discretizations considered are 4th and 6th whereas the temporal treatment is at 4th order.

As calculating quantities such as GW typically involves integration over spherical surfaces we have introduced a module implementing geodesic spheres based on Wang & Lee (2011). A primary demonstration of this functionality is presented in direct, cross-code validation against \texttt{BAM} where extracted GW are computed from the Weyl scalar Ψ_4 and the gravitational strain is examined for the prototype BH and BBH calibration problems of Brügmann et al. (2008). Additionally, it is important that simulations can be carried out that provide data of physical relevance to detection efforts. To this end we consider an equal mass BBH inspiral on an initially quasi-circular (i.e low eccentricity) co-orbit that results in a merger event. Initial data is based on the configuration of Hannam et al. (2010). Verification is made utilizing the state-of-the-art, NR informed, effective one body model of \texttt{TEOBResumS} Nagar et al. (2018).

As we prioritized HPC efficiency it is thus important that GR-\texttt{Athena++} preserves the already impressive behavior of \texttt{Athena++} where over 80\% parallel efficiency is shown in weak scaling tests with uniform grids employing up to $\sim 1.3 \times 10^5$ CPUs for MHD/HD problems Stone et al. (2020). \texttt{Dendro-GR} code, in which BBH are evolved using an oct-tree grid as we do in GR-\texttt{Athena++} but with different strategies, demonstrates very good scaling properties of $q = 10$ BBH evolutions utilizing up to $\sim 1.3 \times 10^5$ CPUs. In these tests, however, re-mesh and inter-grid transfer operations are disabled. In this work we aim to reach such performance for BBH evolutions within AMR.

The rest of this paper is organized as follows: In §2 we provide further details on the computational approach taken within (GR-)\texttt{Athena++} together with the various extensions we have made to core functionality. Subsequently in §3 an overview of the Z4c system we use in our calculations is provided together with description of the numerical algorithms employed. Refinement strategy and details concerning grids are provided in §4. In §5 we discuss results of extensive testing of GR-\texttt{Athena++} on BH and BBH problems performing cross-code validation and assessing convergence properties whereupon in §6 computational performance is detailed through strong and weak scaling tests. Finally §7 summarizes and concludes.

2. METHOD

GR-\texttt{Athena++} builds upon \texttt{Athena++} thus in order to specify nomenclature, provide a self-contained description, and explain our extensions, we first briefly recount some details of the framework (see also White et al. (2016); Felker & Stone (2018); Stone et al. (2020)).

In (GR-)\texttt{Athena++} overall details about the domain Ω over which a problem is formulated are abstracted from the salient physics and contained within a class called the \texttt{Mesh}. Within the \texttt{Mesh} an overall representation of the domain as a logical n-rectangle is stored, together with details of coordinatization type (Cartesian or more generally curvilinear), number of points along each dimension for the coarsest sampling $N_M = (N_{M_1}, \cdots, N_{M_d})$, and physical boundary conditions on $\partial \Omega$. In order to partition the domain we first fix a choice $N_B = (N_{B_1}, \cdots, N_{B_d})$ where each element of N_B must divide each element of N_M component-wise. Then Ω is domain-decomposed through rectilinear sub-division into a family of n-rectangles satisfying $\Omega = \cup_{i \in Z} \Omega_i$, where Z is the set of \texttt{MeshBlock} indices, corresponding to the ordering described in §2.1. Nearest-neighbor elements are constrained to only differ by a single sub-division at most. The \texttt{MeshBlock} class stores properties of an element Ω_i of the sub-division. In particular the number of points in the sampling of Ω_i is controlled through the choice of N_B. For purposes of communication of data between nearest neighbor \texttt{MeshBlock} objects the sampling over Ω_i is extended by a thin layer of so-called “ghost nodes” in each direction. Furthermore the local values (with respect to the chosen, extended sampling on Ω_i) of any discretized, dependent field variables of interest are stored within the \texttt{MeshBlock}.

In both uniform grid ($\forall i \in Z$) $\text{vol}(\Omega_i) = C$ and refined meshes ($\exists i, j \in Z$) $\text{vol}(\Omega_i) \neq \text{vol}(\Omega_j)$ it is crucial to
arrange inter-MeshBlock communication efficiently – to this end the relationships between differing MeshBlock objects are arranged in a tree data structure, to which we now turn.

2.1. Tree Structure of Mesh

For the sake of exposition here and convenience in later sections we now particularize to a Cartesian coordinate system though we emphasize that the general picture (and our implementation) of the discussions here and in §2.2 carry over to the curvilinear context with only minor modification.

(GR-)Athena++ stores the logical relationship between the MeshBlock objects (i.e. \(\Omega_i\)) involved in description of a domain \(\Omega\) within a tree data structure. A binary-tree, quad-tree or oct-tree is utilized when \(d := \text{dim}(\Omega) = 1, 2, 3\) respectively. The relevant tree is then constructed by first selecting the minimum \(N\) such that \(2^N\) exceeds the largest number of \(\Omega_i\) along any dimension. The root of the tree is assigned a logical level of zero and the tree terminates at level \(N\) with every MeshBlock assigned to an appropriate leaf, though some leaves and nodes of the tree may remain empty. Data locality is enhanced, as references to MeshBlock objects are stored such that a post-order, depth-first traversal of the tree follows Morton order (also termed Z-order) Morton (1966). This order can be used to encode multi-dimensional coordinates into a linear index parametrizing a Z-shaped, space-filling curve where small changes in the parameter imply spatial coordinates that are close in a suitable sense Burstedde et al. (2019).

As an example we consider a three-dimensional Mesh described by \((N_x, N_y, N_z) = (2, 5, 3)\) MeshBlock objects in each direction at fixed physical level in Fig.1.

Consider now a Mesh with refinement. Function data at a fixed physical level is transferred one level finer through use of a prolongation operator \(P\); dually, function data may be coarsened by one physical level through restriction \(R\). The number of physical refinement levels added to a uniform level, domain-decomposed \(\Omega\) is controlled by the parameter \(N_L\). By convention \(N_L\) starts at zero. Subject to satisfaction of problem-dependent refinement criteria, there may exist physical levels at \(0, \ldots, N_L\). When a given MeshBlock is refined (coarsened) \(2^d\) MeshBlock objects are constructed (destroyed). This is constrained to satisfy a \(2 : 1\) refinement ratio where nearest-neighbor MeshBlock objects can differ by at most one physical level.

In Fig.2 we consider an example of a non-periodic \(\Omega\) described by \(N_x = N_y = N_z = 2\) MeshBlock objects with \(N_L = 3\) selected with refinement introduced at the corner \(x_{\text{max}}, z_{\text{max}}\). If periodicity conditions are imposed on \(\partial\Omega\) then additional refinement may be required for boundary intersecting MeshBlock objects so as to maintain the aforementioned inter-MeshBlock \(2 : 1\) refinement ratio.

2.2. Vertex-centered Discretization

Natively Athena++ supports cell-centered (CC) and face-centered (FC) description of variables, together with calculation of line-averages on cell edges Stone et al. (2020). GR-Athena++ extends support to allow for vertex-centering (VC). The modifications required to achieve this are extensive as core code must be changed in such a way so as to complement existing functionality. The modularity and good code practices of Athena++ greatly facilitated matters. Our motivation for introduction of VC is a desire to ensure each stage of our numerical scheme maintains consistent (high) order while simultaneously maintaining efficiency of \(R\) and \(P\) operator choice and implementation. In the remainder of this section we briefly describe this newly introduced functionality.

2.2.1. VC and Communication: Fixed Physical Level

Unless otherwise stated in all remaining sections we fix \(N_M\) and \(N_B\) to be uniform in each dimension and represent each of these tuples with a single scalar. As a
preliminary, $x \in [a, b]$ is said to be vertex-centered when discretized as $x_I = a + I\delta x$ where $\delta x = (b - a)/N_B$ and $I = 0, \ldots, N_B$ yielding $N_B + 1$ total samples. In practice, to this an additional N_g so-called ghost nodes are appended which extend the interval by $N_g\delta x$ on both sides. When $d = \dim(\Omega) = 2, 3$ an appropriate tensor product of such extended one-dimensional discretizations is utilized. When a field component V is sampled on such grids it is said to be VC. The additional ghost nodes form a layer that enables imposition of physical boundary conditions and inter-MeshBlock communication.

Consider a domain decomposed into multiple MeshBlock objects. Discretized variable data must be communicated. An additional intricacy however arises due to the sharing of vertices at neighboring MeshBlock interfaces that are not part of the ghost-layer. The number of MeshBlock objects a node is shared between is referred to as the node-multiplicity.

We illustrate this with a two-dimensional example. Let V be sampled on neighboring MeshBlock objects of fixed physical level, where $N_B = 6$ is chosen and ghost-zone layer selected to have $N_g = 2$ nodes. Further, we assume that Ω_i is not on the physical boundary of the domain. This entails that $(N_B - 1)^2$ nodes are internal and the remainder require synchronization via data received (i.e. populated) from neighboring blocks as depicted in Fig.(3). Note that independent communication requests and buffers are posted for each neighbor. Communication from neighbors therefore has no preferred order and consequently we follow an averaging approach to achieve consistency as follows: All received data is first additively accumulated on the MeshBlock with node-multiplicity μ dynamically updated in an auxiliary array of 7^d elements based on the location of the relevant neighbor\(^1\). After data from all relevant neighbors has been received, a final division by μ is performed. This is done so as to not preferentially weight data from any particular neighbor. In principle, it is possible to construct μ a priori, however, we elect to follow this dynamical strategy to facilitate automatic treatment of boundary conditions and avoid the additional complexity involved during Mesh refinement.

\(^1\) For a given node μ is uniform in all VC variables that are to be communicated and hence need only be constructed once in the absence of Mesh refinement. The choice of 7^d elements is made to simultaneously treat communication over distinct physical levels (see §2.2.2).
2.2.2. Communication: Distinct Physical Levels

We now consider a Mesh featuring refinement. The fundamental description of variables between neighboring MeshBlock objects may therefore differ by (at most) a single physical level (see also 2.1).

A MeshBlock at physical level \(p \) will be denoted by \(p\Omega \) and the corresponding collection of fields sampled using VC discretization over the MeshBlock as \(\mathcal{F}(p\Omega) \). In this context \(\mathcal{V} \subseteq \mathcal{F}(p\Omega) \), has a complementary, coarse analogue \(\mathcal{V}_c \) of \(((N_B/2) + 1)^d \) samples further extended by a coarse ghost-layer comprised of \(N_{cg} \) nodes. The sampling resolution for \(\mathcal{V}_c \) is thus half that used for \(\mathcal{V} \). In order to emphasize the physical level of a given MeshBlock and not blur the distinction between the types of samplings we also make use of the notation \(\mathcal{F}_c(p\Omega) \equiv \mathcal{F}(p^{-1}\Omega) \).

In contrast to CC and FC as implemented in Athena++, our implementation of VC allows for \(N_g \) and \(N_{cg} \) to take odd values and be independently varied. For simplicity of discussion we impose \(N_g = N_{cg} \).

When a Mesh involves multiple physical levels, prior to any communication of data, VC variables are initially restricted so as to have a fundamental and coarse description on each MeshBlock excluding the ghost-layers. For logically Cartesian grids in particular, this turns out to be an inexpensive and exact operation (§2.2.3). With this initial step neighboring MeshBlock objects at the same physical level have \(\mathcal{V} \) and \(\mathcal{V}_c \) communicated using the method described in §2.2.1.

To describe our treatment when neighboring physical levels differ, consider a two-dimensional Mesh where \(N_B = 8 \) and \(N_g = 2 \). Once more, we work within a local portion of the full Mesh where the role of the physical boundary may be ignored. Suppose \(p\Omega \) is neighbored by \(p^{-1}\Omega \) to the east and the latter two MeshBlock objects share a common edge. Figure 4 shows how the ghost-layer nodes of the finer \(p^{-1}\Omega \) based on the coarser neighbor \(p\Omega \) are populated. In this situation data may be freely posted for communication to the MeshBlock on the finer level whereupon ghost-zones of its coarse variable are populated. However, depending on the details of \(\mathcal{P} \), the prolongation operation over the ghost-layer is blocked in the sense that the entirety of the coarse ghost-layer of \(\mathcal{F}_c(p^{-1}\Omega) \) must first be populated. Once fully populated, prolongation is carried out on the target MeshBlock. During synchronization of data from coarse to fine levels interface nodes are maintained at the value of the finer level.

An example of the dual process of populating nodes on a coarser level involving \(p\Omega \) and \(p^{-1}\Omega \) is depicted in Fig.5. In this case (previously) restricted data of the finer MeshBlock interior is communicated, updating the

![Figure 4](image-url) **Figure 4.** Schematic of two-dimensional MeshBlock \(p\Omega \) used to populate ghost-nodes of finer MeshBlock \(p^{-1}\Omega \). Local view of the Mesh depicts nearest-neighbor MeshBlock connectivity and physical levels. Nodes over \(p\Omega \) and \(p^{-1}\Omega \) together with coarse analogues are shown. Sampled values \(\mathcal{V} \subseteq \mathcal{F}(p\Omega) \) that are to be sent are marked by "●" in dark green; this data is received and directly populates the ghost-nodes marked by "■" in dark green, i.e., \(\mathcal{V} \subseteq \mathcal{F}(p\Omega) \). Once the remaining data for \(\mathcal{F}_c(p^{-1}\Omega) \) — marked by "□" — is filled, and any multiplicity conditions (here suppressed) are accounted for, prolongation \(\mathcal{P} : \mathcal{F}_c(p^{-1}\Omega) \rightarrow \mathcal{F}(p\Omega) \) can be performed in order to populate values at the ghost-nodes of \(p^{-1}\Omega \) marked by "•" in purple. Notice that for this procedure data at nodes on the neighbor interface remain unchanged. See text for further discussion.

![Figure 5](image-url) **Figure 5.** Schematic of two-dimensional MeshBlock \(p\Omega \) used to populate ghost-layer of coarser MeshBlock \(p^{-1}\Omega \). Locally the Mesh has the same structure as in Fig.4. Nodes over \(p\Omega \) and \(p^{-1}\Omega \) together with coarse analogues are shown. Prior to communication, sampled data of \(\mathcal{V} \subseteq \mathcal{F}(p^{-1}\Omega) \) at nodes marked by "●" in purple must be restricted to populate data \(\mathcal{V}_c \subseteq \mathcal{F}_c(p^{-1}\Omega) \) at nodes marked by "●" in dark green. This is then sent whereupon data at the nodes of \(p\Omega \) marked by "■" in dark green is provided. During this procedure data at nodes on the neighbor interface are (additively) updated (cf. Fig.4) and multiplicity conditions (here suppressed) dynamically updated in an auxiliary array. See text for further discussion.
common interface and ghost-layer of $\mathcal{F}(p\Omega_A)$. In this situation no blocking occurs. However, non-trivial multiplicity conditions arise on the common neighbor interface. Furthermore, the equivalent operation involving $p+1\Omega_B$ instead of $p+1\Omega_C$ induces another edge within the ghost-layer of $p\Omega_A$. Finally, we note that values of $\mathcal{F}_c(p\Omega_A)$ must also be updated. Thus another restriction of samples of $\mathcal{F}_c(p+1\Omega_C)$ is also made and the overall communication process repeated.

The steps for the above communication procedure are summarized in §2.2.4.

2.2.3. Restriction and Prolongation

When a Mesh is refined restriction \mathcal{R} and prolongation \mathcal{P} operations are required. In GR-Athena++ these operations for VC variables are implemented based on univariate Lagrange polynomial interpolation or products thereof when $\dim(\Omega) > 1$ with function data utilized at nodes centered about a target-point of interest.

For a Mesh sampled according to a Cartesian coordinatization MeshBlock grids are uniformly spaced in each dimension. This provides immediate simplifications to \mathcal{R} and \mathcal{P} which may be understood as follows. Consider interpolation of a smooth function \mathcal{V} on a one-dimensional interval. A polynomial interpolant $\hat{\mathcal{V}}$ of degree $2N$ with samples of the function \mathcal{V} symmetrically and uniformly spaced about x^* that passes through the $2N + 1$ distinct points:

$$I_V := \{(x_i, \mathcal{V}(x_i))|x_i = x^* + i\delta x \land i \in \{-N, \ldots, N\}\},$$

is unique and may be written in Lagrange form Trefethen (2013):

$$\hat{\mathcal{V}}(x) = \sum_{i=-N}^{N} l_i(x)\mathcal{V}(x_i), \quad (1)$$

where the Lagrange cardinal polynomials satisfy $l_i(x_j) = \delta_{ij}$ when x_j is a node used during formation of I_V and δ_{ij} is the Kronecker delta. We use Eq.(1) (or appropriate product generalizations) in order to specify \mathcal{R}. Given function data on a uniform, VC discretized interval suppose we wish to construct data on the interior of a coarser overlapping interval that shares the same end-points and is sampled at twice the spacing. We find that points in the image of \mathcal{R} (i.e. desired points over the coarse grid) form a subset of points over the original fine grid. Therefore the desired data may simply be immediately copied (see Fig.5). This is efficient and involves no approximation.

Recall that the restriction operator is utilized during transfer of data from a MeshBlock to a coarser neighbor. Consider the case of the two-fold coarsened data that must be provided to the neighbor MeshBlock. While \mathcal{R} as specified here is an idempotent operation, some care must be taken, because the spatial extent of the ghost-nodes to be populated is sampled by the non-ghost data of the source MeshBlock. To ensure this is possible we impose a constraint relating MeshBlock sampling and ghost-layer through:

$$N_B \geq \max(4, 4N_g - 2). \quad (2)$$

The above does not place any constraint on whether N_g is even and therefore a choice of an odd or even number is allowed.

Interpolation based on Eq.(1) is also utilized for prolongation. Here function data is transferred to a finer, uniformly sampled grid of half the spacing and consequently interspersed nodes coincide (see Fig.4) offering another optimization in execution efficiency. Due to the uniform structure of the source and target grids, interpolation at non-incident nodes may be implemented through a weighted sum where weight factors can be precomputed Berrut & Trefethen (2004). In practice the width of the interpolation stencil we utilize is $N = [N_{cg}/2] + 1$.

Tailored, optimized routines for GR-Athena++ incorporate the above simplifications for the case of logically Cartesian grids.

Finally, for later convenience we note that the d-rectangle $[x_L, x_R]^d$ as represented by a Mesh with Cartesian coordinatization, N_M points along each dimension, and N_L physical levels of refinement has a grid spacing on the finest level of:

$$\delta x = \frac{x_R - x_L}{N_M - 1}. \quad (3)$$

2.2.4. Summary

We close discussion of VC by providing a compact summary of the overall logic involved during synchronization of data between MeshBlock objects for a problem involving refinement.

At compile time N_g and N_{cg} are selected and C++ templates specify precomputed weights for any requisite interpolation during a computation (thus fixing \mathcal{R} and \mathcal{P}). A given problem of interest may then be executed for some choice of N_M, N_B (subject to Eq.(2)), N_L, and physical grid.

The following steps are taken when function data from a MeshBlock $p\Omega_i$ is to be sent:

i. Non-ghost data is restricted populating $\mathcal{F}_c(p\Omega_i)$.

ii. Neighbor MeshBlock objects are iterated over and treated according to the physical level of the target neighbors and the communication buffers are populated from:
\(p - 1 \): Relevant interior (and shared interface) nodes of \(\mathcal{F}(p\Omega_i) \); similarly \(\mathcal{F}(p\Omega_i) \) is twice restricted directly to the communication buffer.

\(p \): Relevant interior (and shared interface) nodes of \(\mathcal{F}(p\Omega_i) \) together with \(\mathcal{F}(p\Omega_i) \).

\(p + 1 \): Relevant interior nodes not on the common interface from \(\mathcal{F}(p\Omega_i) \).

The following steps are taken when function data on \(p\Omega_i \) is to be received:

i. The ghost-layer of variable data for the given \(\text{MeshBlock} \) \(p\Omega_i \) is set to zero and any previously accumulated multiplicites are reset.

ii. Non-ghost data is restricted populating \(\mathcal{F}(p\Omega_i) \).

iii. Function data is independently received (unordered) from neighbor \(\text{MeshBlock} \) objects. Treatment again splits based on physical level of the salient neighbor with additive updating of the following \(\text{MeshBlock} \)-local function data:

\(p - 1 \): Relevant ghost-layer nodes of \(\mathcal{F}(p\Omega_i) \).

\(p \): Relevant ghost-layer and interface nodes of \(\mathcal{F}(p\Omega_i) \) and \(\mathcal{F}(p\Omega_i) \).

\(p + 1 \): Relevant ghost-layer and interface nodes of \(\mathcal{F}(p\Omega_i) \) and \(\mathcal{F}(p\Omega_i) \).

iv. Once all neighbor function data is received, division by multiplicity conditions is carried out.

v. Regions of the ghost-layer involving a coarser level neighbor may finally be prolonged.

For local calculations (in the absence of distributed, MPI communications) operations are performed locally in memory. Finally we emphasize that the base \(\text{Athena++} \) CC and FC variables when required continue to simultaneously function as explained in Stone et al. (2020).

2.3. Geodesic spheres

Calculating quantities such as the ADM mass, momentum and gravitational radiation associated with an isolated system typically involves integration over spherical surfaces, the radii of which are controlled by a limiting procedure. In practice, a large but finite radius is often selected during numerical work. Denote the 2-sphere of fixed radius \(R \) by \(S^2_R \). The natural choice of spherical coordinatization for \(S^2_R \) involves uniform sampling in the polar and azimuthal angles \((\vartheta, \varphi)\) and it is well-known that problems may arise at the poles during description of geometric quantities; furthermore, points tend to cluster there which may be undesirable from the stand-point of efficiency in some applications. In \(\text{GR-Athena++} \) we avoid these issues by instead working with triangulated geodesic spheres. In short, a geodesic sphere of radius \(R \) (denoted \(Q_R \)) may be viewed as the boundary of a convex polyhedron embedded in \(\mathbb{R}^3 \) with triangular faces, i.e., a simplicial 2-sphere that is homeomorphic to \(S^2_R \). A sequence of geodesic spheres with an increasing number of vertices (and consequently surface tiling triangles) thus serves as a sequence of increasingly accurate approximants to \(S^2_R \); see Fig.6.

To construct the geodesic grid we start from a regular icosahedron with 12 vertices and 20 plane equilateral triangular faces, embedded in a unit sphere. We refine it using the so called “non-recursive” approach described in Wang & Lee (2011). In this approach, each plane equilateral triangle of the icosahedron is divided into \(n_Q \) small equilateral triangles (each side of the triangle is split into \(n_Q \) equal segments, where \(n_Q \) is called the grid level). The intersection points are projected onto the unit sphere, and together with the original 12 vertices of the icosahedron they form the convex polyhedron used as a grid. The resulting polyhedron has \(10n_Q^2 + 2 \) vertices, in which we define the desired physical quantities. The left panel of Fig.6 shows the grid consisting of 92 vertices \((n_Q = 3) \), while the right panel shows the grid consisting of 9002 vertices \((n_Q = 30) \).

Integrals on the sphere are computed with numerical quadratures. To this aim we associate to each grid point a solid angle in the following way. We construct cells around each vertex of the grid by connecting the circumcenters of any pair of triangular faces that share a common edge. The resulting cells are mostly represented by hexagons, apart from the 12 vertices of the original icosahedron, which have only five neighbors and therefore correspond to pentagonal cells. The solid angles subtended by the cells at the center of the sphere...
are used as weighting coefficients when computing the averages. The logical connection between the neighboring cells is implemented as described in Randall et al. (2002).

Using a geodesic grid ensures more even tiling of the sphere compared to the uniform latitude-longitude grid of similar resolution. The ratio between the solid angles corresponding to the largest and smallest cells in the \(n_Q = 30 \) grid is equal to 2. For comparison, a grid of comparable resolution with uniform sampling in the polar and azimuthal angles (say, 67 \(\theta \) angles and 134 \(\varphi \) angles, with the total of 8978 cells), would have the ratio between the areas of the smallest and largest cells \(\simeq 1/\sin(\pi/67) \simeq 2.13 \).

3. Z4c SYSTEM IN GR-Athena++

In the Cauchy problem for the Einstein field equations (EFE), a globally hyperbolic space-time \(M \) is foliated by a family of non-intersecting spatial slices \(\{ \Sigma_t \}_{t \in \mathbb{R}} \) where the parametrizing time-function \(t \) is assumed globally defined. An initial slice \(\Sigma_{t_0} \) is selected and well-posed evolution equations based on the EFE must be prescribed. A variety of mature approaches exist to this problem such as BSSNOK Nakamura et al. (1987); Shibata & Nakamura (1995); Baumgarte & Shapiro (1999) or those based on the generalized harmonic gauge (GHG) formulation Friedrich (1985); Pretorius (2005); Lindblom et al. (2006). A unifying framework is provided in the Z4 approach Bona et al. (2003) where particular cases of both GHG and BSSNOK formulations may be recovered (see Bona et al. (2010) and references therein). In particular Z4c Bernuzzi & Hilditch (2010); Ruiz et al. (2011); Weyhausen et al. (2012); Hilditch et al. (2013) seeks to combine the strengths of these other two approaches Cao & Hilditch (2012) thus motivating it as the choice of formulation for GR-Athena++.

In §3.1 and §3.2 we describe the overall idea behind numerical evolution with Z4c and implementation within GR-Athena++. Details on our method for wave extraction (i.e., calculation of gravitational radiation) is provided in §3.3 whereupon §3.4 closes with a brief description of numerical methods we utilize.

3.1. Overview

At its core, the Z4 formulation Bona et al. (2003) seeks to stabilize the time-evolution problem through direct augmentation of the EFE via suitable introduction of an auxiliary, dynamical vector field \(Z^a \) and first-order covariant derivatives thereof. The approach admits natural incorporation of constraint damping via explicit appearance of (freely chosen) parameters \(\kappa_i \) Gundlach et al. (2005); Weyhausen et al. (2012).

Recall that in the standard method of ADM-decomposition Arnowitt et al. (1959); Baumgarte & Shapiro (2010) one introduces a future-directed \(t^a \) satisfying \(t^a \nabla_a [t] = 1 \) and considers \(t^a = \alpha n^a + \beta^a \) where \(n^a \) is a future-directed, time-like, unit normal \(n^a \) to each member of the foliation \(\Sigma_t \), \(\alpha \) is the lapse and \(\beta^a \) the shift. Subsequently geometric projections of ambient fields, to (products of) the tangent and normal bundle(s) of \(\Sigma \) may be considered, which here leads to evolution equations for the augmented EFE. The evolution equations are written in terms of the variables \((\gamma_{ij}, K_{ij}, \Theta, Z_t) \) where \(\gamma_{ij} \) is the induced metric and \(K_{ij} \) the extrinsic curvature associated with \(\Sigma_t \); \(\Theta := -n_a Z^a \) and \(Z_t := \perp^a Z_a \) (with \(\perp^a := g^{ab} + n^a n_b \) and \(g_{ab} \) being the space-time metric) are the normal and spatial projections of \(Z^a \) respectively. Furthermore Hamiltonian, momentum, and auxiliary vector constraints must also be satisfied \(C_U := (\mathcal{H}, \mathcal{M}_i, Z_a) = 0 \) such that a numerical space-time is faithful to a solution of the standard EFE. Importantly, for a space-time without boundary if \(C_U = 0 \) for some element of the foliation \(\Sigma_t \), then analytically this property extends for all \(t \) Bona et al. (2003). This compatibility of \(C_U \) with the evolution is one crucial property for numerical calculations allowing for a choice of free-evolution scheme. In such a scheme equations are discretized and initial data of interest is prepared so as to satisfy \(C_U = 0 \) on \(\Sigma_{t_0} \), during the course of the time-evolution \(C_U \) is monitored and it must be verified that any accumulated numerical error converges away with increased resolution.

In Z4c Bernuzzi & Hilditch (2010); Hilditch et al. (2013) to fashion an evolution scheme an additional step is taken wherein a spatial conformal degree of freedom is first factored out via:

\[
\bar{\gamma}_{ij} := \psi^{-4} \gamma_{ij}, \quad \bar{A}_{ij} := \psi^{-4} \left(K_{ij} - \frac{1}{3} K \gamma_{ij} \right) ;
\]

with \(K := K_{ij} \gamma^{ij} \) and \(\psi := (\gamma/f)^{1/12} \) where \(\gamma \) and \(f \) are determinants of \(\gamma_{ij} \) and some spatial reference metric \(f_{ij} \) respectively. Here we assume \(f_{ij} \) is flat and in Cartesian coordinates which immediately yields the algebraic constraints:

\[
C_A := (\ln(\bar{\gamma}), \bar{\gamma}^{ij} \bar{A}_{ij}) = 0.
\]

The expression \(C_A = 0 \) must be continuously enforced\(^2\) during numerical evolution (see §3.4) to ensure consistency Cao & Hilditch (2012). Additionally we introduce

\(^2\)From the point of view of computational efficiency this is trivial to accomplish but strictly speaking doing so entails a partially-constrained evolution scheme.
the transformations:
\[\chi := \gamma^{-1/3}, \quad \tilde{K} := K - 2\Theta; \]
(6)
\[\tilde{\Gamma}^i := 2\gamma_{ij}Z_j + \tilde{z}^{ij}\tilde{z}^{k}\partial_l[\gamma_{jk}], \quad \tilde{\Gamma}^i := \tilde{z}^{ij}\tilde{\Gamma}^j; \]
(7)
where the definition of \(\chi \) implies that \(\chi = \psi^{-4} \). Collectively the Z4c system is comprised of dynamical variables \(\{\chi, \tilde{\gamma}_{ij}, \tilde{K}, \tilde{A}_{ij}, \Theta, \tilde{\Gamma}^i\} \) which are governed by the evolution equations:
\[\partial_t[\chi] = \mathcal{I}(\tilde{K} + 2\Theta - \partial_t[\beta^i]) + \beta^i\partial_i[\chi], \]
(8)
\[\partial_t[\tilde{\gamma}_{ij}] = -2\alpha\tilde{A}_{ij} + \beta^k\partial_k[\tilde{\gamma}_{ij}] - \frac{3}{2}\tilde{z}_{ij}\partial_k[\beta^k] \]
+ 2\tilde{z}^{jk}\partial_{(i}\partial_{j)}[\beta^k]. \]
(9)
\[\partial_t[\tilde{K}] = -D^i[\tilde{D}_{i}[\alpha]] + \alpha \left[\tilde{A}_{ij}\tilde{A}^{ij} + \frac{1}{3} (\tilde{K} + 2\Theta)^2 \right] \]
+ \beta^i\partial_i[\tilde{K}] + \alpha\kappa_1 (1 - \kappa_2)\Theta + 4\pi\alpha[S + \rho], \]
(10)
\[\partial_t[\tilde{A}_{ij}] = \chi[-D_i[D_j[\alpha]] + \alpha(R_{ij} - 8\pi S_{ij})]^{\mu\nu} + \alpha[(\tilde{K} + 2\Theta)\tilde{A}_{ij} - 2\tilde{A}_{ik}\tilde{A}_{kj}] + \beta^k\partial_k[\tilde{A}_{ij}] \]
+ 2\tilde{A}_{k[i}\partial_{j]}[\beta^k] - \frac{2}{3}\tilde{A}_{ij}\partial_k[\beta^k], \]
(11)
\[\partial_t[\Theta] = \alpha \left[\mathcal{H} - 2\kappa_1 (2 + \kappa_2)\Theta \right] + \beta^i\partial_i[\Theta], \]
(12)
\[\partial_t[\tilde{\Gamma}^i] = -2\tilde{A}^{ij}\partial_j[\alpha] + 2\alpha \left[\tilde{\Gamma}^{jk}\tilde{A}_{jk} - \frac{3}{2} \tilde{A}^{ij}\partial_j[\ln(\chi)] \right] \]
- \kappa_1 (\tilde{\Gamma}^i - \tilde{\Gamma}^i) - \frac{1}{3}\tilde{z}^{ij}\partial_j[2\tilde{K} + \Theta] - 8\pi\tilde{z}^{ij}S^i_{\mu
u} \]
+ \tilde{z}^{jk}\partial_k[\partial_j[\beta^i]] + \frac{1}{3}\tilde{z}^{ij}\partial_j[\partial_k[\beta^k]] \]
+ \beta^j\partial_{j}[\tilde{\Gamma}^i] - \tilde{\Gamma}^i\partial_j[\beta^j] + 2\tilde{\Gamma}^i\partial_j[\beta^j]; \]
(13)
where in terms of the conformal connection \(\tilde{\Gamma}^i \) compatible with \(\tilde{\gamma}_{ij} \):
\[\tilde{R}^i_{ij} = \frac{1}{2\chi} \left[\tilde{D}_i[\tilde{D}_j[\chi]] + \tilde{\gamma}_{ij}\tilde{D}_k[\chi]\tilde{D}_l[\chi] - \frac{1}{2\chi} \tilde{D}_i[\chi]\tilde{D}_j[\chi] \right] \]
- \frac{3}{4\chi^2} \tilde{D}_k[\chi]\tilde{D}_l[\chi]\tilde{D}_m[\chi]\tilde{D}_n[\chi]; \]
(16)
and:
\[\tilde{R}_{ij} = -\frac{1}{2} \tilde{z}^{lm}\partial_l[\partial_m[\tilde{\gamma}_{ij}]] + \tilde{\gamma}_{ki}\partial_j[\tilde{\Gamma}^k] + \tilde{\Gamma}^k\tilde{\Gamma}_{(ij)k} \]
+ \tilde{z}^{lm}(2\tilde{\Gamma}^k_{li}\tilde{\Gamma}_{jm} + \tilde{\Gamma}^l_{im}\tilde{\Gamma}_{jk}). \]
(17)
Furthermore, we emphasize that in Eq.(13) and Eq.(17) it is crucial to impose \(\tilde{\Gamma}^i \) where it appears through the definition of Eq.(7).

The dynamical constraints in terms of transformed variables \(\{\mathcal{H}, \mathcal{M}_i, \Theta, \mathcal{Z}^i\} \) may be monitored to assess the quality of a numerical calculation:
\[\mathcal{H} := R - \tilde{A}_{ij}\tilde{A}^{ij} + \frac{2}{3} (\tilde{K} + 2\Theta)^2 - 16\pi\rho = 0, \]
(18)
\[\mathcal{M}_i := \tilde{D}_i[\tilde{A}^i] - \frac{3}{2} \tilde{A}^i\partial_i[\ln(\chi)] \]
- \frac{2}{3}\partial_j[\tilde{K} + 2\Theta] - 8\pi S_j = 0, \]
(19)
\[\Theta = 0, \quad \mathcal{Z}^i = \bar{\mathcal{Z}}^i - \bar{\mathcal{Z}}^i = 0. \]
(20)
Depending on the quantities of interest we may alternatively monitor the original non-rescaled constraints \(\mathcal{C} \).
Furthermore, we introduce for later convenience a single, scalar-valued collective constraint monitor:
\[\mathcal{C} := \sqrt{\mathcal{H}^2 + \gamma_{ij}\mathcal{M}^i\mathcal{M}^j + \Theta^2 + 4\gamma_{ij}\mathcal{Z}^i\mathcal{Z}^j}. \]
(21)
Finally we note that we have made use of the freedom to adjust the system by non-principal parts prior to conformal decomposition so as to have a result closer to BSSNOK (which may be obtained by taking the formal limit \(\Theta \rightarrow 0 \) in Eqs.(8–13)).

3.2 Gauge choice and boundary conditions

To close the Z4c system it must be further supplemented by gauge conditions (i.e., conditions on \(\alpha \) and \(\beta^i \)) that specify how the various elements \(\Sigma_t \) of the foliation piece together. Furthermore in this work the computational domain does not extend to spatial infinity and consequently boundary conditions (BC) on \(\partial\Omega \) must also be imposed.

In GR-Athena++ we make use of the puncture gauge condition which consists of the Bona-Másso lapse...
et al. (1995) and the gamma-driver shift Alcubierre et al. (2003):
\begin{equation}
\begin{aligned}
\partial_t [\alpha] &= -\mu_L \alpha^2 \tilde{K} + \beta^i \partial_i [\alpha], \\
\partial_t [\beta^i] &= \mu_S \alpha^2 \tilde{F}^i - \eta \beta^i + \beta^j \partial_j [\beta^i].
\end{aligned}
\end{equation}
In specification of Eq. (22) we employ the 1 + log lapse variant \(\mu_L = 2/\alpha \) together with \(\mu_S = 1/\alpha^2 \). Initially a “precollapsed” lapse and zero-shift is set:
\begin{equation}
\begin{aligned}
\alpha|_{t=0} &= \psi^{-2}|_{t=0}, \\
\beta^i|_{t=0} &= 0;
\end{aligned}
\end{equation}

where the choice is motivated by a resulting reduction in initial gauge dynamics Campanelli et al. (2006). The shift damping parameter \(\eta \) appearing in Eq. (22) reduces long-term drifts in the metric variables Alcubierre et al. (2003) and serves to magnify the effective spatial resolution near a massive feature, which in turn reduces noise in its local motion and extracted gravitational waveforms Brügmann et al. (2008) (see also §5). We adopt a fixed choice \(\eta = 2/M \) where \(M \) is the total ADM mass Arnowitt et al. (2008) of the system throughout this work as it is known to lead to successful time evolution of binary black holes (BBH) of comparable masses Brügmann et al. (2008) and improves stability more broadly Cao & Hilditch (2012). With a view towards potential investigations of high mass ratio binaries we have also incorporated \(\eta \) damping conditions within GR-Athena++ based on BBH location as a function of time Purrer et al. (2012) together with the conformal factor based approach of Nakano et al. (2011); Lousto et al. (2010); Müller & Brügmann (2010).

When coupled to the puncture gauge with the choices made above Z4c forms a PDE system that is strongly hyperbolic Cao & Hilditch (2012) and consequently the initial value problem is well-posed Bernuzzi & Hilditch (2010). Artificial introduction of a boundary at finite distance complicates the analysis of numerical stability significantly Hilditch & Ruiz (2018). For the initial boundary value problem the analysis benefits from symmetric hyperbolicity of the underlying evolutionary system however for Z4c starting in fully second order form this property does not appear to exist within a large class of symmetrizers Cao & Hilditch (2012). We do not seek to address this issue further here. Our boundary treatment follows an approach due to Hilditch et al. (2013). We consider a Cartesian coordinatization of the mesh \(\Omega \) as a compactly contained domain within \(\Sigma_t \) capturing the physics of interest. On \(\partial \Omega \) Sommerfeld BC are imposed on the subset of dynamical fields \(\{ \tilde{K}, \tilde{\Gamma}, \tilde{\Theta}, \tilde{A}_{ij} \} \). Though this choice is not optimal, as it is not constraint-preserving, we have not experienced issues on account of this. An interesting consideration for future work would be to incorporate within GR-Athena++ the constraint-preserving BC of e.g. Ruiz et al. (2011); Hilditch et al. (2013) (see also Rinne et al. (2009)).

3.3. Wave extraction
To obtain the gravitational wave content of the space-time, we calculate the Weyl scalar \(\Psi_4 \), the projection of the Weyl tensor onto an appropriately chosen null tetrad \(k, l, m, \bar{m} \). We use the same definition of \(\Psi_4 \) here as Brügmann et al. (2008):
\begin{equation}
\Psi_4 = -R_{abcd}k^a \bar{m}^b l^c \bar{m}^d,
\end{equation}

where we have exchanged the Weyl tensor for the Riemann tensor since we extract the gravitational waves in vacuum. The 4 dimensional Riemann tensor is constructed from 3+1 split ADM variables using the Gauss-Codazzi relations as detailed in Brügmann et al. (2008). To construct the null tetrad we start from a spatial coordinate basis:
\begin{equation}
\phi^i = (-y, x, 0), \quad r^i = (x, y, z), \quad \theta^i = \epsilon_{ikl} \phi^k r^l;
\end{equation}

which is then Gram-Schmidt orthonormalized. The newly formed orthonormal, spatial triad is extended to space-time with \(\theta^0 \) components set to 0. With this we construct the null tetrad:
\begin{equation}
k = \frac{1}{\sqrt{2}}(n - \dot{r}), \quad l = \frac{1}{\sqrt{2}}(n + \dot{r});
\end{equation}
\begin{equation}
m = \frac{1}{\sqrt{2}}(\dot{\theta} + i \dot{\phi}), \quad \bar{m} = \frac{1}{\sqrt{2}}(\dot{\theta} - i \dot{\phi});
\end{equation}

where \(n^a = (1/\alpha, -\beta^i/\alpha) \). Once the Weyl scalar is obtained we perform a multipolar decomposition onto spherical harmonics of spin-weight \(s = -2 \), defined as follows\(^3\):
\begin{equation}
\psi_{\ell m} = \int_0^{2\pi} \int_0^\pi \Psi_{4-2} Y_{\ell m} \sin \vartheta d\vartheta d\varphi,
\end{equation}
\begin{equation}
-2 Y_{\ell m} = \sqrt{\frac{2\ell + 1}{4\pi}} d_{\ell m}(\vartheta) e^{im\varphi},
\end{equation}
\begin{equation}
d_{\ell m}(\vartheta) = \sum_{k=k_1}^{k_2} \frac{(-1)^k ((\ell + m)!(\ell - m)!(\ell - 2)!)(\ell + 2)!}{(\ell + m - k)!(\ell - k - 2)!k!(k - m + 2)!} \\
\times \left(\cos \frac{\vartheta}{2} \right)^{2\ell+m-2-2k} \left(\sin \frac{\vartheta}{2} \right)^{2k-m+2}
\end{equation}
\begin{equation}
k_1 = \max(0,m-2),\quad k_2 = \min(\ell + m, \ell - 2).
\end{equation}

\(^3\) Convention here is that of Goldberg et al. (1967) up to a Condon-Shortley phase factor of \((-1)^m \).
To obtain the multipolar decomposition, Ψ_4 is first calculated at all grid points throughout the Mesh. This is then interpolated onto a set of geodesic spheres Q_R (see §2.3) at given extraction radii R_Q, over which the integral in Eq.(27) is performed. Recall that the grid level parameter n_Q controls the total number of samples on Q_R as $10n_Q^2 + 2$. We select n_Q through local matching to an area element of a MeshBlock:

$$n_Q = \left\lceil \sqrt{\frac{\pi R_Q^2}{\delta x^2}} - 2 \right\rceil. \quad (32)$$

The modes of the gravitational wave strain h are computed from the projected Weyl scalar by integrating twice in time

$$\psi_{\ell m} = \tilde{h}_{\ell m}, \quad (33)$$

The strain is then given by the mode-sum:

$$R (h_+ - ih_\times) = \sum_{\ell=2}^{\infty} \sum_{m=-\ell}^{\ell} h_{\ell m}(t) - 2Y_{\ell m}(\theta, \varphi). \quad (34)$$

Following the convention of the LIGO algorithms library LIGO Scientific Collaboration (2018) we set:

$$Rh_{\ell m} = A_{\ell m} \exp(-i\phi_{\ell m}), \quad (35)$$

and the gravitational-wave frequency is:

$$\omega_{\ell m} = \frac{d}{dt}\phi_{\ell m}. \quad (36)$$

3.4. Numerical technique

We implement the Z4c system described in §3.1 in GR-Athena++ based on the method of lines approach where field variables may be chosen to obey a VC or CC discretization at compile time and time-evolution is performed using the fourth order in time, four stage, CC discretization at compile time and time-evolution is based on the method of lines approach Alfieri et al. (2018) and utilizes Z4c system described in §3.1 in GR-Athena++ and utilizes first order spatial derivatives in the bulk (away from $\partial\Omega$) are computed with high-order, centered, finite difference (FD) stencils whereas shift advection terms use stencils lopsided by one grid point Zlochower et al. (2005); Husa et al. (2008); Brügmann et al. (2008); chirvasa & Husa (2010). The implementation is based on Alfieri et al. (2018) and utilizes C++ templates to offer flexibility in problem-specific accuracy demands without performance penalties. A similar approach is taken for implementation of the R and P operators discussed in §2.2.3. With this a consistent, overall, formal order throughout the bulk of the computational domain is maintained during calculations by compile-time specification of the ghost-layer through choice of N_g together with N_{cg}. Throughout this work we take $N_g = N_{cg}$ though for a VC discretization this is not a requirement within GR-Athena++ and may be tuned to the demands of the desired Mesh refinement strategy. In the case of Z4c and VC this translates to an order for spatial discretization in the bulk of $2(N_g - 1)$.

We emphasize that during calculation of FD, R and P approximants, special care has been taken in the ordering and grouping of arithmetical operations so as to reduce accumulation of small floating-point differences. This is a particularly important consideration in the presence of physical symmetries where linear instabilities may amplify unwanted features present in the operator approximants and lead to resultant, spurious appearance of asymmetry during late-time solutions Stone et al. (2020).

For most calculations involving Z4c the treatment of the physical boundary is non-trivial. GR-Athena++ extends Athena++ by providing the Sommerfeld BC motivated in §3.2. To accomplish this, within every time-integrator substep an initial Lagrange extrapolation is performed so as to populate the ghost-layer at $\partial\Omega$. Order is again controlled at compile-time and we typically select $N_g + 1$ points for the extrapolation, albeit numerical experiments did not indicate significant changes when this choice was varied. The dynamical equations of §3.1 and gauge conditions of §3.2 populate the subset of fields $\{\tilde{\chi}, \tilde{\gamma}_{ij}, \alpha, \beta^i\}$ on nodes of $\partial\Omega$ whereas for $\{\tilde{K}, \tilde{\Gamma}, \Theta, A_{ij}\}$ Sommerfeld BC are imposed as in Hilditch et al. (2013) where first order spatial derivatives are approximated through second order accurate, centered FD; we have found this to be crucial for numerical stability.

As observed in Cao & Hilditch (2012) in the absence of algebraic constraint C_A projection Z4c is only weakly hyperbolic. Therefore in GR-Athena++ we enforce C_A at each time-integrator substep. On the other hand a coarse indicator on the overall error during the course of a calculation is provided through inspection of the constraints C_U together with C (of Eq.(21)). Note that these latter constraints are not enforced.

In order to have confidence in implementation details we have replicated a subset of tests from the “Apples with Apples” test-bed suite Alcubierre et al. (2004); Babici et al. (2008); Cao & Hilditch (2012); Daverio et al. (2018) a discussion of which is provided in the appendix §A.

The Z4c system does not strictly impose any particular underlying Mesh structure or refinement strategy and consequently we use this freedom to improve efficiency and accuracy by raising resolution only where it is required. During evolution the Courant-Friedrichs-
For a vector of variables \mathbf{u} the replacement $\partial_i[u] \leftarrow \partial_i[u] + \sigma D[u]$ is made where $D[\cdot]$ is proportional to a spatial derivative of order $2N_g - 2$.

4. MESH REFINEMENT FOR PUNCTURES

Black holes in GR-Athena++ are modeled as in BAM making use of the puncture formalism Brügmann et al. (2008). In numerical relativity, BH can be treated by adopting the Brill-Lindquist wormhole topology which consists of considering N black holes with $N+1$ asymptotically flat ends for the initial geometry. These flat ends are compactified and identified with points on \mathbb{R}^3 and the coordinate singularities at these points are called punctures. This allows one to produce black hole initial data associating masses, momenta and spins to any number of black holes. The main application of this formalism is binary black hole evolution.

The adaptive mesh refinement criterion implemented in GR-Athena++ for puncture evolution mimics the classic box-in-box refinement (used in e.g. BAM, Cactus), within the Athena++ infrastructure. The main idea is to follow the punctures’ position during the evolution and refine the grid depending on the distance from each puncture.

4.1. Punctures’ initial data

Black holes initial data are constructed following Brügmann et al. (2008). We consider as our initial data the positive-definite metric and extrinsic curvature (γ_{ij}, K_{ij}) on a spatial hypersurface Σ with time-like unit normal n^i such that $n^i n_i = -1$. Such initial data are constructed by means of the conformal, transverse-traceless decomposition of the initial-value equations York (1979). We can use the map of Eq.(4) and freely choose an initially conformally flat background $\tilde{\gamma}_{ij} = \delta_{ij}$ and take a maximal slice, i.e. set $K = 0$. Doing so, the momentum constraint becomes $\partial_j (\dot{\psi}^i \tilde{A}_{ij}) = 0$ and admits Bowen-York solutions Bowen & York (1980) for an arbitrary number of black holes.

The Hamiltonian constraint reduces to an elliptic equation for ψ, with solution (for N black holes with centers at r_i):

$$\psi_0 = 1 + \sum_{i=1}^{N} \frac{m_i}{2r_i} + u.$$ \hspace{1cm} (37)

The variable ψ_0 represents the initial value of ψ, which, based on its relation to χ, is evolved according to Eq.(8). In this equation the function u can be determined by an elliptic equation on \mathbb{R}^3 and is C^2 at the punctures and C^∞ elsewhere. The variable m_i is called the bare mass of a black hole and it coincides with the actual mass only in the Schwarzschild case. The total ADM mass of each black hole at the puncture is given by:

$$M_i = m_i \left(1 + u_i + \sum_{i \neq j} \frac{m_j}{2d_{ij}} \right),$$ \hspace{1cm} (38)

where u_i is the value of u at each puncture and d_{ij} is the coordinate distance between each pair of punctures. Ultimately, we denote the total mass of the system with M, which represents the physical mass scale of the problem and thus all results will be reported accordingly.

To produce BBH initial data following the above description, we make use of an external C library based on the pseudo-spectral approach of Ansorg et al. (2004), which is also used in the TwoPunctures\footnote{We adapted the public code into a stand-alone library that may be found at the URL https://bitbucket.org/bernuzzi/twopuncturesc/} thorn of Cactus.

4.2. Puncture tracker

To follow the punctures’ position we need to solve an additional ODE, which is not coupled to the Z4c system. Since the conformal factor χ vanishes at the puncture, Eq.(8) implies that Campanelli et al. (2006):

$$x_p(t) = -\beta_{x_p}(t),$$ \hspace{1cm} (39)

where β_{x_p} is the shift function evaluated at the puncture position. We solve this vectorial equation at every timestep using an explicit Euler solver. Though BAM implements higher order methods to solve this equation (Crank–Nicolson method), the solution obtained with the first order Euler solver agrees with that of BAM where a comparison is made for two trajectories in the left panel of Fig.10.

4.3. Oct-tree box-in-box

In Athena++, adaptive mesh refinement (AMR) is implemented as follows: during the evolution a certain...
condition is evaluated on each MeshBlock and consequently the code refines the particular MeshBlock, de-refines it or does nothing. In the punctures’ case the condition we employ relies on the punctures’ position. For a given MeshBlock we first calculate the distance \(\min_i || x_p^i - x_{MB} ||_\infty \), where \(x_p \), \(x_{MB} \) denote the puncture and MeshBlock positions\(^5\) respectively, and \(i \) labels each puncture that is present. This allows one to assess the theoretical refinement level the MeshBlock should be in. If the refinement level of the considered MeshBlock is not the same as the theoretical one just calculated, then the block is either refined or de-refined according to its current level. The theoretical refinement level is determined by considering a classic box-in-box structure of the grid, in which each puncture is enclosed in a series of nested boxes centered on the puncture, all with the same number of points but with increasing physical extent, i.e. with decreasing resolution. In particular, each box has half of the resolution of the next one it contains. The presence of punctures and their position determines a structure of nested boxes, in such a way that the smallest (and finest) imaginary box around a puncture defines the highest refinement level. The box containing it corresponds to a lower refinement level and so on up to the 0th level which corresponds to the initial mesh itself. Practically, to define a grid in (GR-)Athena++ one needs to specify the number of points of the initial mesh \(N_M \), the number of points per MeshBlock constituting the mesh \(N_B \), and the number of total refinement levels \(N_L \) up to which the grid has to be refined. Following the procedure above, GR-Athena++ will refine each MeshBlock, producing an oct-tree box-in-box grid structure. A visualization of this can be seen in Fig.7, in which the initial configuration of two coalescing black holes and a snapshot at later time are shown. Here \(N_M = 64 \) and \(N_B = 16 \), thus the initial mesh is divided into \(4^3 \) MeshBlocks (level 0, see §2.1). Following the procedure described above, MeshBlocks are subdivided up to level 10, which corresponds to the smallest MeshBlocks containing the two black holes. The final grid is composed of the initial MeshBlocks, which are those far from the punctures and thus untouched, and increasingly smaller blocks (in terms of physical extent) for each refinement level. Note that in the top panel levels 7, 8, 9, 10 are visible, while due to regridding at later times in the bottom panel MeshBlocks of level 7 (the ones closest to the edges of the plot) have been subdivided and their children belong to level 8.

\(x_{MB} \) are the coordinates of the corner of this cube which is closer to the closest puncture.

\(\chi \) For implementation reasons, \(x_{MB} \) is defined as follows: we consider a cube with same center, the edge of which is \(1/4 \) of the edge of the original MeshBlock. \(x_{MB} \) are the coordinates of the corner of this cube which is closer to the closest puncture.

Figure 7. 2D slice at \(z = 0 \) of a mesh grid produced with GR-Athena++, setting 11 refinement levels. Top panel: black holes at initial position \(x_\pm = (\pm 3.257, 0, 0) \) \(M \). Bottom panel: snapshot at 50 \(M \) in which trackers are shown (red lines). The color code refers to the value of the conformal factor \(\chi \). For clarity, in the figure only a subset of the total slice is shown, therefore only highest levels are visible. It is also possible to see the underlying box-in-box structure, in which boxes are made up of MeshBlocks.

4.4. Grid configurations

In order to accurately and efficiently perform a BBH merger simulation it is crucial to optimize the grid configuration for a given problem. Thus to attain accuracy at reduced computational cost a balance must be struck such that the strong-field dynamics are well-resolved and...
their effects propagate cleanly into the wave-zone for extraction. The former can be directly controlled based on the oct-tree box-in-box refinement criterion and fixing a target puncture resolution \(\delta x_p \) or equivalently, maximum number of refinement levels \(N_L \). For the wave-zone an extraction radius \(R \) must be selected and the underlying refinement strategy together with choices of \(N_M \) and \(N_B \) induce\(^6\) a resolution \(\delta x_w \). Finally, the maximum spatial extent \(x_M \) of the computational domain \(\Omega \) must be chosen to be sufficiently large so as to mitigate any potential spurious effects due to imposed approximate boundary conditions.

Unless otherwise stated we select \(\Omega \) as the Cartesian coordinatized cube \([-x_M, x_M]^3\) which results in a resolution on the most refined level in the vicinity of a puncture of:

\[
\delta x_p = \frac{2x_M}{N_M2^{N_L-1}}. \tag{40}
\]

Wave-zone resolution \(\delta x_w \) may similarly be computed taking \(N_L = \lfloor \log_2 \left(\frac{2x_M}{R} \right) \rfloor \) in the above where \(R \) is the extraction radius. For the calculations presented in this work, we typically select \(N_B = 16 \), which allows for up to \(6^{th} \) order accuracy for approximants to operators pertaining to quantities appearing during spatial discretization. The constraint on maximum approximant order that can be selected for a choice of \(N_B \) is given in Eq.\((2) \) which arises on account of the double restriction operation described in §2.2.3. Natively, \(\text{GR-Athena}^{++} \) supports up to \(8^{th} \) order which may be further extended through simple modification of the relevant C++ templates.

We have observed that a simple approach to further optimize for efficiency once convergence properties are established is to modify \(N_M \) and \(N_B \).

5. PUNCTURE TESTS

In this section we present several tests of puncture evolutions to validate \(\text{GR-Athena}^{++} \). We compare our results against \(\text{BAM} \) code and \(\text{TEOBResumS} \), used as benchmarks. We also demonstrate the convergence properties of our code for these tests.

Unless otherwise stated, throughout this section we adopt tortoise coordinates, in which evolution time \(t \) is mapped as \(t \rightarrow u \equiv t - r^* \), where \(r^* = r + 2M \log \left(\frac{r}{2M} \right) - 1 \) and \(M, r \) are the total mass of the binary system and the Schwarzschild coordinate, respectively. In waveform plots quantities are suitably rescaled by \(M \) (see §4.1) and by the symmetric mass ratio \(\nu := \frac{M_1M_2}{(M_1+M_2)^2} \). The merger or time of merger is defined as the time corresponding to the peak of the \((t = 2, m = 2) \)-mode of \(\Lambda_{\ell m} \)\(^7\) (defined as in Eq.\((35)\)).

5.1. Single Spinning Puncture

In order to verify the evolution of a single black hole puncture, as well as the gravitational wave signal calculated by \(\text{GR-Athena}^{++} \) we perform a direct comparison with the established \(\text{BAM} \) code. Using initial data generated by the \(\text{TwoPunctures} \) library for both codes, as used in similar tests of the \(\text{BAM} \) code in Hilditch et al. (2013), we simulate the evolution of a single spinning puncture, representing a Kerr black hole with dimensionless spin parameter \(a = 0.5 \). To this end we initialize two black holes, one with the target mass, \(1M \), and spin \(a = 0.5 \), and another with negligible mass, \(10^{-12}M \), and zero spin, with a small initial separation, \(10^{-8}M \). These black holes merge soon after the simulation begins, and the resulting single black hole can be treated as our target Kerr BH. We use the static mesh refinement of \(\text{GR-Athena}^{++} \) to construct a refined grid around the puncture that matches the resolution of the \(\text{BAM} \) evolution both at the puncture \((\delta x = 0.08333M) \) and in the wave zone \((\delta x = 0.66667M) \).

To compare the two wave signals, we calculate the dominant \((2,0) \) mode of the strain from the expressions above in Eqs.\((27-31, 33) \). In doing so, we perform two integrations in the time domain (note this is different to the frequency domain integration performed for the \((2,2) \) mode studied below for the black hole binary, as here we have no well-motivated cut-off frequency available Dietrich & Bernuzzi (2015)). These integrations may add an arbitrary quadratic polynomial in time onto the strain as constants of integration Damour et al. (2008); Baiotti et al. (2009) and so, in the results presented here, we fit for, and then subtract, this quadratic. We further note this reconstruction has been shown to introduce errors in the waveform ring-down Dietrich & Bernuzzi (2015).

In Fig.8 we show the match between the two calculated signals for the real part of the \((2,0) \) mode of the gravitational wave strain. These show consistency in the phasing of the signal, with slight discrepancies in the amplitude of the strain.

We also demonstrate the convergence properties of the waveforms in \(\text{GR-Athena}^{++} \) for this test. We perform the same simulation at a coarse, medium and fine resolution (with finest grid spacings \(\delta x_c = 0.025M, \delta x_m = \)

\(^6\) Direct control on \(\delta x_w \) is offered in \(\text{GR-Athena}^{++} \) through optional introduction of a minimum refinement level maintained over a ball of radius \(R \) centered at \(C \) but for the results presented it was not found to be necessary to utilize.

\(^7\) Hereafter the \((2,2) \) mode, and similarly for other \((\ell, m) \) modes and for all related quantities.
later times, although without a precise point-wise scaling. We note that for similar tests performed with the BAM code in Hilditch et al. (2013) using initial data constructed in the same manner, these same convergence properties are observed for the waveform of the spinning puncture problem.

5.2. Calibration evolution of two punctures

We validate GR-Athena++ against binary black hole evolutions by comparing with BAM and performing convergence tests. For these tests the two initial non-spinning black holes, with bare-mass $m_\pm = 0.483$ M, are located on the $x-$axis, with $x_{p,\pm}(t = 0) = \pm 3.257$ M, and initial momenta directed along the $y-$axis, $p_{y,\pm}(t = 0) = \mp 0.133$ M. The gauge is chosen as explained in §3.2. For the GR-Athena++ vs. BAM comparison and for convergence tests several runs at different resolutions have been performed. The grid configuration for both codes is described in detail below. This initial setup results in a ~ 2.5 orbits evolution of the two black holes before merger, which happens at evolution time $t \sim 170$ M, as can be seen in Fig.10.

In the next two subsections the $(2,2)$ mode of gravitational wave strain is calculated according to Eq.(33).

5.2.1. GR-Athena++ vs. BAM comparison

Athena++ and BAM implement completely different grid structures. To compare the two codes, we try to generate grids as similar as possible aiming to match the resolution at the puncture and the physical extent of the grid. In the case of GR-Athena++ we choose grid parameters $N_B = 16$, $N_L = 11$, $x_M = 3072$ M and various resolutions $N_M = [96, 128, 192, 256]$. This results in resolutions at the puncture of $\delta x_p = [1.5625, 1.171875, 0.78125, 0.5859375] \times 10^{-2}$ M (see Eq.(40)). For BAM the same is achieved in each corresponding simulation by considering 6 nested boxes of N_M points and 10 smaller boxes (5 per puncture, centered at each one) of $N_M/2$ points and maximum spacing in the outermost grids $\Delta x = [96, 64, 48, 32, 24]$ M respectively. In both cases all simulations are performed with 4th order finite differences stencils for derivatives. Fig.10 shows very good agreement between the two codes regarding black hole trajectories (left panel). This can be also seen looking at the right panel, in which the two GW frequencies perfectly match. There is a discrepancy of 2% between GW amplitudes that converges away with increasing resolution.

5.2.2. Convergence tests for GR-Athena++

Convergence tests are performed on the same runs as the previous section plus an additional run made at resolution $N_M = 384$, with $N_B = 24$ resulting in
Figure 10. Comparison between \texttt{BAM} and \texttt{GR-Athena++} of the trajectories of puncture – (left panel) and of gravitational waveforms (right panel) for resolution $N_M = 192$. Waveforms are extracted at a representative radius $R = 120 \ M$ and merger time is defined as the amplitude peak time. Discrepancy between the two amplitudes is $\lesssim 2\%$.

Figure 11. Convergence plots for calibration BBH evolution. Left and right plots correspond respectively to 4th order and 6th order finite differencing. In both case waves are extracted at $R = 120 \ M$. In bottom panels phase differences between resolutions are rescaled according to Eq.(41) with respect to the blue line (corresponding to lowest resolutions).

$\delta x_p = 0.390625 \times 10^{-2} \ M$. Moreover, we consider another set of runs employing 6th order finite differences, with the same grid setup as in the previous section but halving the maximum extent of the physical grid, namely in this case $x_M = 1536 \ M$. This has the effect of doubling the resolution at the puncture. In the top panels of Fig.11 we compare the gravitational wave strain extracted at $R = 120 \ M$ for every resolution, both for 4th and 6th order.

In order to quantitatively investigate the effect of resolution on phase error we inspect differences in phase between runs in the bottom panels of Fig.11. Inverting Eq.(35) allows us to write the phase difference as:

$$|\Delta \phi(\alpha, \beta)| := \left| \phi[h_{22}]_\alpha - \phi[h_{22}]_\beta \right|.$$ \hspace{1cm} (42)

In the bottom panel of the 4th order plot (Fig.11 left) the red and green lines match, demonstrating 4th order convergence for the highest resolutions. In the 6th order case (Fig.11 right) the waveforms (and corresponding
frequencies) lay on top of each other, so as to be indistinguishable, and this translates into smaller phase differences comparing the bottom panels of the two plots. Even though the red line, corresponding to the phase difference between the two highest resolutions, is quite noisy, 6th order convergence can be seen here for the three highest resolutions as in the previous case. This behavior is present in every extraction radius. In all cases, the plots show a convergent behavior with respect to the phase differences, i.e., the differences between each pair of lines decreases with increasing resolution. Additionally, we check the accuracy of our convergence tests by evaluating the error on the phase differences, estimated for each line as the difference between the phase corresponding to the highest resolution used to calculate the Richardson extrapolated phase, similarly to what is done in Bernuzzi & Dietrich (2016). For each corresponding phase difference line, we find that this error is always at least $\sim 50\%$ smaller than $\Delta \phi$.

Additionally, we show in Fig. 12 a convergence plot in which phase differences are calculated at merger (see beginning of §5). This figure further confirms the clean 4th order convergence of GR-Athena++ for the highest resolution cases. For the 6th order case, comparing with the other, phase differences are smaller and the convergence is faster. However, the noise in the phase differences with respect to the highest resolution (right plot in Fig.11, bottom panel) makes the convergence assessment less clean.

5.3. Two punctures evolution of ten orbits

Physically one anticipates that inspiral of astrophysical binary systems is well-described by a significant duration of co-orbit on a quasi-circular trajectory Peters & Mathews (1963); Peters (1964). This assumption is consistent with the events detected by the LIGO and Virgo collaborations Abbott et al. (2016a,b, 2017a). Consequently it is of considerable interest to also test the performance of GR-Athena++ in this scenario. To this end we evolve non-spinning, equal-mass, low eccentricity initial data based on Hannam et al. (2010) where bare-mass parameters are $m_b = 0.488479 M$ and the punctures are initially on-axis at $x_\pm = \pm 6.10679 M$ with instantaneous momenta $p_\pm = (\mp 5.10846 \times 10^{-4}, \mp 8.41746 \times 10^{-2}, 0) M$. This choice of parameters results in ~ 10 orbits prior to merger at $t \sim 2145 M$. In comparison to the calibration evolution this evolution is of significantly longer duration and therefore it is of interest to investigate how waveform accuracy is affected for a selection of Mesh parameters that reduce computational resource requirements. In order to provide another comparison that is independent of BAM here we provide a final assessment on the quality of waveforms computed with GR-Athena++ based on the NR informed, effective-one-body model TEOBResumS Nagar et al. (2018).

5.3.1. Setup

The convergence studies performed for the calibration BBH merger problem provide a guide as to how to choose resolution at the puncture δx_p. Here we fix the MeshBlock sampling to $N_B = 16$ and work at 6th order in the spatial discretization. For the Mesh sampling we select $N_M = 64$ and construct a sequence of grid configurations where each value of δx_p is reduced by a factor of $3/2$ compared to the previous in Tab.1.

$\rho_{(\cdot)}$	N_L	x_M	$\delta x_p \times 10^{-2} [M]$	#MB
vvl	10	768	4.6875	1072
vl	11	1152	3.515625	1352
l	11	768	2.34375	1184
ml	12	1152	1.757812	1464
m	12	768	1.171875	1296
mh	13	1152	0.878906	1576
h	13	768	0.585938	1744

Table 1. A distinct label $\rho_{(\cdot)}$ is assigned to each run with corresponding maximum number of refinement levels N_L and fixed physical extent x_M of the Mesh (see §4.4). Resultant puncture resolutions δx_p and total number of MeshBlock objects initially partitioning a Mesh are provided.

That the choice of parameters in Tab.1 reduce overall computational resource requirements can be understood...
Figure 13. Coordinate trajectories of both punctures \((x_+(t)\) in blue and \(x_-(t)\) in orange) for parameter choice \(\rho_h\).

as follows. Consider the choice of parameters made in \(\rho_h\) and suppose \(N_M\) and \(N_L\) are varied while maintaining \(\delta x_p\) fixed. With this, the number of \texttt{MeshBlock} objects required to partition the initial \texttt{Mesh} changes. For example, taking \(N_M = 128\) and \(N_L = 12\) resulted in an initial number of \texttt{MeshBlock} objects of \(\#MB = 8352\). Whereas selecting \(N_M = 256\) and \(N_L = 11\) leads to \(\#MB = 58752\) initially. Generally, we found an approximate cubic scaling in \(\#MB\) as \(N_M\) is scaled which is related to the dimensionality of the problem.

In this section an extraction radius of \(R = 100\,M\) is used. The CFL condition is \(0.25\) and a KO dissipation of \(\sigma = 0.5\) is chosen. Constraint damping parameters are selected as \(\kappa_1 = 0.02\) and \(\kappa_2 = 0\).

The coordinate trajectories of the punctures for a calculation utilizing grid parameters \(\rho_h\) of Tab.1 can be seen to satisfy ten orbits in Fig.13. This provides an initial verification of expected qualitative properties Hanmann et al. (2010) of the BBH inspiral and merger. In order to investigate the behavior of the constraints we focus attention on the collective constraint \(C\) of Eq.(21). We display values of \(C\) in the orbital plane \((z = 0)\) at fixed times \(t = 500\,M\) and \(t = 2100\,M\) in Fig.14. The general properties of \(C\) discussed here we found to be shared between other simulations utilizing parameters from Tab.1. Crucially, this means that increasing refinement in the vicinity of the puncture does not contaminate the rest of the physical domain. In all cases we found that away from the punctures values of \(C\) decrease on average as the boundary of the computational domain is approached. In particular, for the calculation involving parameters \(\rho_h\) and during \(500\,M \leq t \leq 2200\,M\) as \(\varrho := \sqrt{x^2 + y^2} \to 100\,M\) we found \(C \sim 10^{-8}\) which continues to decrease as \(\varrho \to 300\,M\) to \(C \sim 10^{-10}\) thereafter plateauing at \(C \sim 10^{-11}\) towards the boundary. We found qualitatively similar behavior when inspecting the Hamiltonian constraint. We remark that, even in the continuum limit, constraints are not expected to converge to zero in the entire domain for this solution because punctures are excluded from \(\mathbb{R}^3\).

Of principal interest for gravitational wave detection is the strain. To this end we solve Eq.(33) for \(h_{22}\) in

Figure 14. Values of the (normalized) collective constraint \(\hat{C}(x, y, z) := C(x, y, 0)/\max_{x,y} C(x, y, 0)\) over the orbital plane \(z = 0\) for a simulation with \(\rho_h\) of Tab.1. Upper panel: Evolution time is \(t = 500\,M\) where \(\max_{x,y} C(x, y, 0) \simeq 111.3\). Lower panel: Evolution time is \(t = 2100\,M\) where \(\max_{x,y} C(x, y, 0) \simeq 3.3\). As can be seen in both cases constraint violation is greatest directly in the vicinity of the punctures. See text for further discussion.
the frequency domain making use of the FFI method of Reisswig & Pollney (2011). A cut-off frequency of
\(f_0 = 1/300 \times 3/4 \) is chosen which is physically motivated by inspecting the early time puncture trajectories of the
inspiral. We display the resulting \((2, 2)\) mode of the strain for calculations using the parameters of Tab.1 in
Fig.15.

The peak amplitude of \(h_{22} \) indicates the end of the inspiral Bernuzzi et al. (2014) and for a grid parameter
choice of \(\rho_h \) occurs at \(u = 2037.5 \ M \). The maximum deviation from this value for parameters investigated in
Fig.15 occurs when \(\rho_m \) is utilized resulting in \(\Delta u = 10.3 \ M \). In order to directly quantify how the choice
of \(\delta x_p \) affects the phase error in the strain waveform as merger time is approached we compute \(\Delta \phi \) using Eq.(42)
and show the result in Fig.16.

As we have not modified resolution globally over the computational domain but rather considered the effect of introducing additional refinement levels in the vicinity of the punctures it is not clear what sort of convergence
should be expected. Furthermore the extent to which a time-integrator order below the order of the spatial
discretization affects GW waveform quality can also be somewhat delicate (see e.g. the super-convergence
discussion of Reisswig & Pollney (2011)). In Fig.16 (upper panel) clean 6th order convergence in \(\Delta \phi \) is not found for
all \(u \) upon rescaling with the appropriate factors determined through Eq.(41). An additional issue that com-
plicates the discussion here is that the parameters of Tab.1 also vary the spatial extent of the computational
domain potentially introducing a source of systematic error. For example, at merger \(\Delta \phi(\rho_{mh}, \rho_h) \approx 4 \times 10^{-1} \)
and \(\Delta \phi(\rho_m, \rho_h) \approx 6 \times 10^{-3} \) though \(\delta x_p(\rho_m) > \delta x_p(\rho_{mh}) \). In order to compensate for this effect we consider phase
differences at fixed \(x_M \). In particular the lower panel of Fig.16 displays phase differences at merger where \(\rho_h \) is
taken as the reference value for all comparisons. While displayed \(\Delta \phi \) are compatible with a 6th order trend the
\(\rho_{\text{ref}} \) choice of parameters is likely of too low resolution to make a robust claim on convergence order with respect to
varying \(\delta x_p \). Nonetheless it is clear that judicious choice of refinement level (and hence resolution local to the
punctures through \(\delta x_p \)) reduces GW phase error.

5.3.2. EOB comparison

We compare the gravitational waveform from the 10 orbit simulation to the state-of-the-art EOB model
TEOBResumS Nagar et al. (2018). The latter is in-
formed by several existing NR datasets and faithfully
models the two-body dynamics and radiation of spin-
aligned BBH multipolar waveforms for a wide variety of
mass ratio and spins magnitudes. We focus again on the \((2,2)\) mode of the gravitational wave strain. The GR-Athena++ \(\psi_{22}\) output mode is first extrapolated to null infinity using the asymptotic extrapolation formula Lousto et al. (2010); Nakano (2015):

\[
\lim_{r \to \infty} r \psi_{22} \sim A(r \psi_{22} - \frac{(l-1)(l+2)}{2r} \int r \psi_{22} \, dr),
\]

where \(A(r) := 1 - 2M/r\) and \(r := R(1 + M/(2R))^2\) with \(R\) being the (finite) GW extraction radius of an NR simulation. The extrapolated result is successively integrated twice in time (Eq.(33)) using the FFI method Reisswig & Pollney (2011) to obtain the strain mode \(h_{22}\). The waveform comparison is performed by suitably aligning the two waveforms; the time and phase relative shifts are determined by minimizing the \(L^2\) norm of the phase differences Bernuzzi et al. (2012).

Figure 17 shows the two waveforms are compatible within the NR errors. The accumulated EOBNR phase differences are of order \(\lesssim 0.1\) rad to merger and \(\lesssim 0.4\) rad to the ring-down for the highest resolution GR-Athena++ simulation. The larger inaccuracy of the ring-down part is a resolution effect related to the higher frequency of the wave; it can potentially be improved by adding a refinement level so as to better resolve the black hole remnant. The maximum relative amplitude difference is of order \(\lesssim 0.01\). The same comparison using the lowest resolution gives \(\lesssim 0.4\) rad at merger (\(\lesssim 1\) rad during the ring-down) and maximum relative amplitude differences of \(\lesssim 0.01\). Overall, this analysis demonstrates that GR-Athena++ can produce high-quality data for waveform modeling.

6. SCALING TESTS

To test the strong scaling behavior of the code in different regimes of CPU numbers, we consider 6 resolutions, namely \(N_M = [64, 96, 128, 192, 256, 384]\). For each of them we perform an evolution on \(i = N_{\text{nodes}}^{\min}, \ldots, N_{\text{nodes}}^{\max}\) nodes, where \(N_{\text{nodes}}^{\min}\) represent some limits on the possible number of nodes that can be used for each resolution. The presence of these boundaries is due to the fact that for a certain resolution a specific number of MeshBlocks is produced and consequently on the one hand a sufficient number of CPUs is required to handle those MeshBlocks and, on the other hand, Athena++'s parallelization strategy is based on MeshBlocks and so is not possible to use more OMP threads (and consequently CPUs) than MeshBlocks. Fig.18 (left) shows that excellent strong scalability is obtained up to \(\sim 1.5 \times 10^3\) CPUs, with efficiency above 90%. For the aforementioned reasons, for a given resolution it is not possible to achieve high efficiency when increasing CPU number above a certain point. Fig.18 (right) shows that efficiency strongly depends on the ratio between MeshBlock number and CPUs. In particular, for each resolution, an efficiency of above 90% is obtained when there are at least 10 MeshBlocks/CPU. By contrast, the efficiency shown in the strong scaling plot of Fernando et al. (2018) appears to decrease faster when comparing to the brown line in Fig.18 (left), although the two results are obtained in slightly different regimes of CPU number.

6.2. Weak scaling tests

For weak scaling tests we use asymmetric grids in terms of \(N_M\) in each direction, while keeping MeshBlocks of a constant size \(N_B = 16\). In particular, we start with a run on a single node with a grid \(N_M^x = 128, N_M^y = 64, N_M^z = 64\). Then for 2 nodes we double \(N_M^y\). For 4 nodes \(N_M^z\) is doubled as well and for 8 nodes \(N_M^y\) is also doubled. We continue this up to 2048 nodes. In this way, we are able to double the resources together with the required computations, and we manage to keep a ratio of \(\sim 33\) MeshBlocks/CPU in each different run. The results are displayed in Fig.19. We performed these tests twice, once with the code compiled using the Intel compiler and once with the code compiled using the GNU compiler. The top panel of Fig.19 shows that the total CPU time per MPI task remains constant up to \(10^5\) CPUs employed, thus demonstrating excellent scalability in an unprecedented CPU number regime for a numerical relativity code. The bottom panel displays the same result, but focuses on how the execution time is distributed between the main computational kernels. Notably, most of the computation time is spent in the calculation of the right hand side of the equations, which
Figure 17. Comparison between the GR-Athena++ BBH $q = 1$ waveform and the semi-analytical effective-one-body model TEOBResumS. The plot shows the $(2,2)$ multipole of the GW strain normalized to the symmetric mass ratio $\nu = 1/4$ and the instantaneous GW frequency. The time is shifted to the mode amplitude peak that approximately defines the merger time. The GR-Athena++ waveform is from the highest resolution simulation (ρ_h of Tab.1), extracted at coordinate radius $R = 100 \, M$ and extrapolated to null infinity using Eq.(43). Note: horizontal axis scale changes at $(t - t_{merg})/M = -400$.

Figure 18. Strong scaling tests for GR-Athena++ for several CPU number regimes. Left plot: speed-up (top panel) and efficiency (bottom panel) calculated with respect to the first point of the series. In each series the second point corresponds to a theoretical speed-up by a factor of 2, the third point a factor of 4 and so on. Right plot: efficiency as a function of the MeshBlock load each CPU carries.

is indeed the expected behavior in absence of race conditions or other bottlenecks elsewhere in the code. The discrepancy between the height of each bar in the bottom panel of the plot and the dotted line in the top panel give an estimate on the communication time among all MPI processes and OMP threads and the comparison between the two plots suggests that this also has good scaling behavior.

7. SUMMARY AND CONCLUSION

In this work we have presented GR-Athena++; a vertex-centered extension of the block-based AMR framework of Athena++ for numerical relativity (NR) calculations. To this end we described our introduction of vertex-centered (VC) discretization for field variables which may be utilized for general problems. A principle advantage of VC is that restriction of sampled function data from fine to coarse grids that are interspersed and the coarser of which has fully coincident grid-points is efficiently achieved by copying of data. This procedure is formally exact. The dual operation of prolongation via interpolation of data from coarse to finer grids also takes advantage of the aforementioned grid structure where possible.

Another novel feature is our introduction of geodesic spheres in the sense of highly refined, triangulated convex, spherical polyhedra. Placement on a Mesh may
be arbitrarily chosen without restriction on underlying coordinatization. An advantage of this is that the associated vertices defining a geodesic sphere achieve a more uniform spatial sampling distribution when contrasted against traditional uniform spherical latitude-longitude grids at comparable resolution. Furthermore, the potential introduction of coordinate singularities is avoided. We demonstrated the utility of this approach when quantities need to be extracted based on spherical quadratures.

Our code implements the Z4c formulation of NR of the \(\chi \) moving-punctures variety. The overall spatial order of the scheme may be selected at compile time where easily extensible C++ templates define the formal order for desired finite difference operators and VC restriction and prolongation operators. Time-evolution is performed with a low-storage 4th order Runge-Kutta method. Our primary analysis tool is based on extraction of gravitational radiation waveforms within GR-Athena++ through the use of the \(\Psi_4 \) Weyl scalar with numerical quadrature thereof based on the aforementioned geodesic spheres. Through a post-processing step we also analyze the gravitational strain \(h \).

In order to assess the numerical properties of our implementation we have repeated a subset of the standard Apples with Apples test-bed suite Alcubierre et al. (2004); Babiuc et al. (2008); Cao & Hilditch (2012); Daverio et al. (2018) and performed a variety of cross-code...
validation tests against BAM. To accomplish the latter within the oct-tree AMR approach of GR-Athena++ we constructed a refinement criterion so as to closely emulate a nested box-in-box grid structure. Test problems in the cross-code comparison involved a single spinning puncture and the two puncture binary black hole (BBH) inspiral calibration problem of Brügmann et al. (2008). For overall 4th order spatial scheme selection a commensurate 4th order convergence was clearly observed. For 6th order, convergence was also achieved for the same problem, though less cleanly. As another external validation of GR-Athena++ and a demonstration of utility for potential future studies of high mass ratio BBH that involve significant evolution duration and where accurate phase extraction from the gravitational strain is crucial, we investigated a quasi-circular ten orbit inspiral problem based on parameters from Hannam et al. (2010). Here the evolution was performed with 6th order spatial discretization and comparison was made against the NR informed EOB model of TEOBResumS Nagar et al. (2018). Using a Mesh tailored to moderate computational resources we found accumulated EOBNR phase differences of order \(\simeq 0.1\text{rad} \) to merger and \(\simeq 0.4\text{rad} \) to the ring-down for the highest resolution calculation. These tests highlight that GR-Athena++ is accurate and robust for BBH inspiral calculations and a strong contender for construction of high-quality data for waveform modeling.

In addition to accuracy, efficiency of computational resource utilization is crucial. The task-based computational model for distribution of calculations within Athena++ and concomitant impressive scalability properties as available resources are increased we have found to readily extend to GR-Athena++ and the Z4c system with VC discretization for a wide variety of problem specifications. Indeed during strong scaling tests it was found that efficiency above 95% is reached up to \(\sim 1.2 \times 10^4 \) CPUs, whereas in weak scaling tests almost perfect scaling is achieved up to \(\sim 10^5 \) CPUs. This indicates that for the high resolutions and consequently resources required for a potential calculation describing an intermediate mass ratio BBH inspiral GR-Athena++ compares favorably with the code-base of Dendro-GR Fernando et al. (2018) in terms of scalability.

Finally, as GR-Athena++ builds upon the modular framework of Athena++ we inherit all its extant infrastructure which will enable incorporating an NR treatment of the matter sector in future work. It is our intention to make GR-Athena++ code developments publicly available in future in coordination with the Athena++ team.

ACKNOWLEDGMENTS

The authors thank Bernd Brügmann, Alessandro Nagar, and Jim Stone for discussions, and Nestor Ortiz for initial work on AwA tests. B.D., F.Z. and S.B. acknowledge support by the European Union’s H2020 under ERC Starting Grant, grant agreement no. BinGraSp-714626. D.R. acknowledges support from the U.S. Department of Energy, Office of Science, Division of Nuclear Physics under Award Number(s) DE-SC0021177 and from the National Science Foundation under Grant No. PHY-2011725. Computations were performed on the ARA cluster at Friedrich Schiller University Jena, on the supercomputer SuperMUC-NG at the Leibniz-Rechenzentrum (LRZ, www.lrz.de) Munich, and on the HPE Apollo Hawk at the High Performance Computing Center Stuttgart (HLRS). The ARA cluster is funded in part by DFG grants INST 275/334-1 FUGG and INST 275/363-1 FUGG, and ERC Starting Grant, grant agreement no. BinGraSp-714626. The authors acknowledge the Gauss Centre for Supercomputing e.V. (www.gauss-centre.eu) for funding this project by providing computing time on the GCS Supercomputer SuperMUC-NG at LRZ (allocations pn56zo, pn68wi and pn96bu). The authors acknowledge HLRS for funding this project by providing test account access on the supercomputer HPE Apollo Hawk under the grant number ACID 44191, GR AthenaBBH.

APPENDIX

A. APPLES WITH APPLES TEST-BEDS

In order to provide a series of computationally inexpensive and standard tests of differing formulations in numerical relativity (tailored for the vacuum sector) a suite of so-called “Apples with Apples” test-bed problems (hereafter AwA) have been proposed Alcubierre et al. (2004); Babiuc et al. (2008).

Our goal here is to ensure that the implementation of Z4c within GR-Athena++ reflects the overall properties observed in prior tests made based on the same formulation Cao & Hilditch (2012); Daverio et al. (2018) with a particular focus on elements directly relevant to gravitational wave propagation and extraction. Specifically, we examine the AwA: robust stability §A.1, linearized wave §A.2 and gauge-wave §A.3 tests.
Generically the *AwA* tests are specified for three-dimensional periodic spatial grids (i.e. of T^3 topology) where the effective dynamics occur over one (or two) spatial dimensions. Dynamics in “trivial” directions are reduced to a thin layer which in GR-\textsc{Athena++} is achieved by selecting the relevant component(s) of N_M of the \texttt{Mesh} sampling to be equal to 4 (selected chosen as to probe potential “checker-board instability” Babiuc et al. (2008)). This entails the full Z4c equations and implementation of (§3.1) are active during a calculation. Directions involving non-trivial dynamics are sampled and tested on both cell-centered G_{CC} and vertex-centered G_{VC} grids:

\[
G_{CC} := \left\{ -\frac{1}{2} + \left(n + \frac{1}{2}\right)\delta x \right\} \mid n \in \{0, \ldots, N - 1\},
\]
\[
G_{VC} := \left\{ -\frac{1}{2} + n\delta x \right\} \mid n \in \{0, \ldots, N\};
\]

(A1)

where $\delta x = 1/N$ and $N = 50\rho$ with $\rho \in \mathbb{N}$ serving to adjust resolution as required. Each direction is further extended by ghost-zones as described in §2. No refinement is present in this section though \texttt{MeshBlock} objects have N_B chosen so as to partition the domain and allow for a further consistency check on the MPI-OMP hybrid parallelism. Selection of Z4c parameters is as follows: Constraint damping $\kappa_1 = 0.02$ and $\kappa_2 = 0$ with shift-damping typically selected as $\eta = 2$. Kreiss-Oliger (KO) dissipation is taken as $\sigma = 0.02$ and the Courant-Friedrich-Lewy (CFL) condition as $1/2$. These choices are motivated by those made in prior work Cao & Hilditch (2012) and we comment on behavior upon deviation from them as tests are presented.

For the tests performed here Z4c is always coupled to the puncture gauge described in §3.2 as this is of primary interest in this work. We take initial gauge conditions to be:

\[
\alpha_{|t=0} = 1, \quad \beta^i_{|t=0} = 0.
\]

Furthermore, in order to facilitate comparison we set $N_g = 2$ throughout such that spatial discretization is of 2nd order, though numerical experiments with $N_g = 3$ reveal similar properties. Time-evolution is performed using the 4th order RK4(4/25) method of Ketcheson (2010).

A.1. Robust stability

The robust stability test is performed with one effective spatial dimension and is designed to efficiently detect instability within numerical algorithms affecting the principal part of the evolution system. An initial spatial slice of Minkowski is made where all Z4c field components (§3.1) have to each sampled grid point a resolution dependent, distinct (i.e. independent) uniform random value added:

\[
\varepsilon \in (-10^{-10}/\rho^2, 10^{-10}/\rho^2).
\]

(A2)

Values are selected such that ε^2 is below round-off in double precision arithmetic. The variable ε models the effect of finite machine precision and for a code to pass the test stable evolution must be observed. A code that cannot pass this test would potentially have severe issues with any evolution of smooth initial data. We evolve to a final time $T = 1000$ and monitor $\|C\|_\infty$ where C is defined in Eq.(21) together with $\|H\|_\infty$ as suggested in Daverio et al. (2018). Results are displayed in Fig.20.

We find that over the duration of the time-evolution $\|C\|_\infty$ plateaus for $\rho \geq 2$ with $\rho = 1$ appearing also to tend towards a plateau. Similar behavior is found for $\|H\|_\infty$. This indicates stability in the sense that no spurious exponential modes are excited. Reducing $\eta \rightarrow 0$ is observed to lead to qualitatively similar general behavior. This was also observed in Cao & Hilditch (2012). As errors decrease as resolution is increased we consider GR-\textsc{Athena++} to pass this test.

A.2. Linearized wave

The purpose of the linearized wave test is to check whether a code can propagate a linearized gravitational wave, a minimal necessity for reliable wave extraction from strong-field sources Babiuc et al. (2008).

An effective one-dimensional test with dynamics aligned along the x-axis is specified through spatial slic-
ing of:

\[ds^2 = -dt^2 + dx^2 + (1 + H)dy^2 + (1 - H)dz^2, \]

(A3)

where:

\[H(x, t) = A \sin \left(\frac{2\pi(x - t)}{d} \right), \]

(A4)

and \(d = 1 \) is set to match the periodicity of the underlying computational domain and \(A = 10^{-8} \) selected such that quadratic terms are on the order of numerical round-off in double precision arithmetic. Consequently, initially we have \(\alpha = 1 \) and \(\beta^i = 0 \) with non-trivial extrinsic curvature components:

\[K_{yy} = -\frac{1}{2} \partial_t [H(x, t)], \quad K_{zz} = \frac{1}{2} \partial_t [H(x, t)]. \]

(A5)

Time evolution is performed to a final time of \(T = 1000 \).

Rather than displaying approximate sinusoidal profiles at some final time as in Alcubierre et al. (2004); Babiuc et al. (2008); Cao & Hilditch (2012) we follow a suggestion of Daverio et al. (2018) to instead consider the spectra of data. To this end we compute the discrete Fourier transform as:

\[F_k(t) := \frac{1}{N} \sum_{n=1}^{N} (\gamma_{zz}(t, x_n) - 1) \exp(-2\pi ik(x_n - t)), \]

where \(x_n \in \mathcal{G}_1 \) (see Eq.(A1)). In the case of VC discretization the last point of the (periodic) grid is identified with the first and therefore dropped from the summation. Thus comparing Eq.(A4) a spectral measure of the relative error in the travelling wave amplitude is provided through \(\epsilon_a(t) := \|F_k(t) - A\|/A \). The absolute phase error may be directly inspected through \(\epsilon_p(t) := |\arg(F_k(t)) - \pi/2| \). We also compute the offset of the numerical waveform relative to the amplitude \(\epsilon_o(t) = |F_0(t)|/A \).

The initial data are constraint violating Cao & Hilditch (2012) and the puncture gauge is not necessarily compatible with simple advection, nonetheless we find that to an excellent approximation the solution is a simple travelling wave with results of the analysis described above shown in Fig.21.

In agreement with Cao & Hilditch (2012); Daverio et al. (2018) we find the dominant source of error to be in the phase of the propagating waveform where the coarsest sampling \(\rho = 1 \) leads to a final absolute phase error of \(\approx 3.9 \) rad cf., the finest sampling \(\rho = 16 \) yielding \(\approx 1.5 \times 10^{-2} \) rad. For \(\epsilon_a(t) \) and \(\epsilon_p(t) \) we observe convergence with increasing resolution. For \(\epsilon_o(T) \) at \(T = 1000 \) increasing \(\rho \) tended to increase error albeit overall this is acceptably within \([7.4, 97] \times 10^{-3} \); this is compatible with the general behavior found in Daverio et al. (2018).

As observed in Cao & Hilditch (2012) reducing \(\kappa_1 \to 0 \) or \(\eta \to 0 \) leads to qualitatively very similar results. We thus consider GR-Athena++ to pass this test.

A.3. Gauge wave

A gauge transformation of Minkowski space-time defines this test with parameters selected so as to involve the full non-linear dynamics. One takes \(\eta_{ab} = \text{diag}(-1, 1, 1, 1) \) in Cartesian coordinates \(x^a \) and transforms:

\[(t', x', y', z') \to (t + G_+(x, t), x - G_+(x, t), y, z), \]

where \(G_+(x, t) := \pm \partial_t[H(x, t)]/(8\pi^2) \) with \(H \) defined in Eq.(A4). Two test cases are defined: shifted where \(G_- \) is selected for the transformation on the \(x' \) component whereas for unshifted \(G_+ \) is chosen in both components. For the latter the induced metric is:

\[\gamma_{xx} = 1 - H, \quad \gamma_{yy} = \gamma_{zz} = 1; \]

(A6)

resulting in non-trivial extrinsic curvature component:

\[K_{xx} = -\frac{\partial_t[H(x, t)]}{2\sqrt{1 - H(x, t)}}. \]

(A7)

During calculations we evolve to a final time of \(T = 1000 \). In contrast to the standard Athena specification Alcubierre et al. (2004); Babiuc et al. (2008) we make use of
we plot $\epsilon_\gamma(t; \rho)$ for a choice of $A = 1/100$ and $d = 1$ in Eq.\((A4)\) and find a 2nd order rate of convergence as is expected for $N_\gamma = 2$.

The behavior of the shifted case is identical for the stated parameters and therefore we do not show it.

A two-dimensional variant of the gauge wave test may also be considered where an initial spatial rotation of $\pi/4$ is made. In particular, coordinates are mapped according to $SO(2) \ni R : (x, y) \mapsto (\hat{x}, \hat{y}) = (x + y, x - y)/\sqrt{2}$. This results in x-aligned propagation mapped to a periodic diagonal trajectory in the \hat{x}-\hat{y} plane. Here as per AwA specification we evolve to a final time of $T = 100$ and selected resolutions based on $\rho \in \{1, 2, 4, 8\}$. For an amplitude of $A = 1/100$ we similarly found a 2nd order rate of convergence with $N_\gamma = 2$ in rescaling of $\epsilon_\gamma(\rho)$. For the case of $A = 1/10$ however we did not observe clean 2nd order convergence. Indeed the AwA specification suggestion to use an even higher amplitude $A = 1/2$ is well-known to cause issues with stability in a variety of formulations and regardless of puncture or harmonic gauge choice Daverio et al. (2018); Cao & Hilditch (2012); Boyle et al. (2007).

We consider GR-Athena++ to pass this test in both the one-dimensional (un)-shifted cases and in the two-dimensional unshifted case with the caveat that initial amplitude must be reduced.

A.4. AwA summary

We have demonstrated that GR-Athena++ with $Z4c$ coupled to the moving puncture gauge passes the AwA robust stability ($\S A.1$) and the one-dimensional linearized wave ($\S A.2$) tests. For the gauge wave tests ($\S A.3$) we find that GR-Athena++ passes for a choice of reduced initial amplitude of the propagated wave.

REFERENCES

Abbott, B. P., et al. 2016a, Phys. Rev. Lett., 116, 061102, doi: 10.1103/PhysRevLett.116.061102

—. 2016b, Phys. Rev. Lett., 116, 241102, doi: 10.1103/PhysRevLett.116.241102

—. 2017a, Phys. Rev. Lett., 119, 161101, doi: 10.1103/PhysRevLett.119.161101

—. 2017b, Class. Quant. Grav., 34, 044001, doi: 10.1088/1361-6382/aa51f4

Alcubierre, M., et al. 2003, Phys. Rev., D70, 064011, doi: 10.1103/PhysRevD.70.064011

Alcubierre, M., Brügmann, B., Diener, P., et al. 2004, Class. Quant. Grav., 21, 589, doi: 10.1088/0264-9381/21/2/019

Alfieri, R., Bernuzzi, S., Perego, A., & Radice, D. 2018, Journal of Low Power Electronics and Applications, 8, doi: 10.3390/jlpea8020015

Amaro-Seoane, et al. 2017, arXiv:1702.00786 [astro-ph]. https://arxiv.org/abs/1702.00786

Ansorg, M., Brügmann, B., & Tichy, W. 2004, Phys. Rev., D70, 064011, doi: 10.1103/PhysRevD.70.064011

Avery, M. R., Deser, S., & Misner, C. W. 1959, Phys. Rev., 116, 1322, doi: 10.1103/PhysRev.116.1322
