Subgroups of the additive group of real line

Jitender Singh
Department of Mathematics, Guru Nanak Dev University,
Amritsar-143005, Punjab, INDIA
sonumaths@gmail.com

Abstract
Without assuming the field structure on the additive group of real numbers \(\mathbb{R} \) with the usual order \(<\), we explore the fact that, every proper subgroup of \(\mathbb{R} \) is either closed or dense. This property of the subgroups of the additive-group of reals is special and well known (see Abels and Monoussos [4]). However, by revisiting it, we provide another direct proof. We also generalize this result to arbitrary topological groups in the sense that, any topological group having this property of the subgroups, in a given topology, is either connected or totally-disconnected.

By a topological group, we mean, an abstract group \(G \) which is also a topological space where the two maps \(G \times G \to G \) and \(G \to G \) defined by \((x, y) \mapsto xy \) and \(x \mapsto x^{-1} \), are continuous. An example is, the additive group of real numbers \((\mathbb{R}, +) \) with the standard topology of \(\mathbb{R} \). A subgroup of a topological group is also a topological group in the subspace topology and, for any fixed elements \(a \) and \(b \) of \(G \), the map \(x \mapsto axb \) is a homeomorphism of \(G \) onto itself. Consequently for any open subset \(U \) of \(G \), the subsets \(U^{-1} := \{x^{-1} | x \in U\} \), \(xU := \{xu | u \in U\} \), and \(WU := \cup_{w \in W} wU \) with the similar definitions for \(Ux \) and \(UW \), are all open in \(G \), where \(W \subset G \). Similarly, for any closed subset \(V \) of \(G \), the subsets \(xV \), \(Vx \), \(V^{-1} \) are closed in \(G \) but each of the sets \(WV \) and \(VW \), being arbitrary union of closed subsets of \(G \), need not be closed in \(G \). It is easy to see that any open subgroup \(H \) of \(G \) is closed in \(G \) because its compliment \(G \sim H \) is open as being union of left co-sets of \(H \) in \(G \) each of which is an open subset of \(G \). However, a closed subgroup of \(G \), of finite index, is open in \(G \) Also if \(H \) is a subgroup of \(G \) then so is its closure \(\overline{H} \). To see this, note that, for any \(x, y \in \overline{H} \) and the basis elements \(B_x \ni x \) and \(B_y \ni y \); the open sets \(xB_y^{-1}, B_x y^{-1} \) contain \(xy^{-1} \). Since \(B_x B_y^{-1} \cap H \neq \emptyset \) as \(B_x \) and \(B_y \) intersect \(H \) nontrivially, it follows that \(xy^{-1} \in \overline{H} \). It is also easy to observe that any subgroup \(H \) of \(G \) that contains an open subset \(U \ni 1_G \) is always open, as then, it would be union of the open sets obtained by the co-sets of \(U \) in \(H \). An interesting feature of a topological group \(G \) is that, it is homogeneous, i.e., for any pair of points \(x \) and \(y \) in \(G \), there is a homeomorphism...
of G sending $x \mapsto y$ (e.g. $t \mapsto tx^{-1}y$) (see [1, pp. 95-119], [2, p.219], [3, p.16]). The following
Theorem 1 is an easy consequence of these basic notions about the algebraic structure of the
real line with respect to the operation of usual addition (see for a ‘semigroup version proof’
of this result in [4] namely the lemma 2.2-2.3).

Theorem 1. Any proper subgroup of the additive group \mathbb{R} is either its closed subset or its
dense subset.

Proof. Let H be a subgroup of \mathbb{R}. Assume w.l.o.g that H is not a closed subset of \mathbb{R}. If
possible, let us suppose that there is a basis element (a, b), which does not intersect H. Then
there is a limit point $x \notin H$ of H in \mathbb{R}. So, every basis element $(c, d) \ni x$ intersects H.
For each integer n and $t \in H$, nx and $x + t$ are also limit points of H, since, the
maps defined by $x \mapsto nx$ and $x \mapsto x + t$ are homeomorphisms of \mathbb{R}. Assume w.l.o.g. that
$(a, b) \subset (mx, (m+1)x)$ for some integer m. Then for every positive integer q, satisfying
$q(b-a) > x$, there is an integer $p < q$ and a real number z such that $qz = px \in (qa, qb)$
or $z \in (a, b)$. The point z is a limit point of H since so is qz and the map $z \mapsto qz$, is a
homeomorphism. But, then $H \cap (a, b) \neq \emptyset$ which is a contradiction. This completes the
proof.

Remark 2. Here is more simplified version of the proof of Theorem 1 based on author’s
personal communication with Dr. Keerti Vardhan Madahar. Let $x \in \mathbb{R} - H$ be a limit point of
H. Choose two points (say x_1 and x_2) of H which belong to the open set $U = (x - \epsilon/2, x + \epsilon/2)$
of x for some $\epsilon > 0$. Now $y = x_1 - x_2$ and all its integral multiples lie in H. Also notice that
if (a, b) is an arbitrary basis element of length at least ϵ then some multiple of y must lie in
(a, b) (otherwise there is a positive integer N such that $Ny \leq a < b \leq (N + 1)y$ which gives
$\epsilon \leq (b-a) \leq y < \epsilon$ a contradiction). That shows (a, b) has a non-trivial intersection with
H, so H is dense in \mathbb{R}.

The hypothesis of Theorem 1 does not hold incase we consider the topological group \mathbb{R}^n, $n \geq 2$
either is a closed subset of \mathbb{R}^n nor it is a dense subgroup (i.e. its closure is homeomorphic to \mathbb{R}^{n-1}). It is also easy
to see that the above result is not true for the multiplicative group $(\mathbb{R}^\times, \cdot, <)$, because, the
subgroup $\{e^r \mid r \in \mathbb{Q}\}$ is neither dense nor a closed subset of \mathbb{R}^\times.

Remark 3. Let $H \neq \{0\}$ be a proper subgroup of the additive group \mathbb{R}. Define $A := \{|x| : x \in H - \{0\}\}$ and $\alpha := \inf \{A\}$.

If H is closed in \mathbb{R} then so is $H - \{0\}$ and $\alpha \in \bar{A} \subset \overline{H - \{0\}} = H - \{0\}$; it follows that
$\alpha \neq 0$ and $\alpha \in H$. For any $x \in H$ by division algorithm, $|x| = n\alpha + r$, $0 \leq r < \alpha$ for some
positive integer \(n \). This means that \(r = (|x| - n\alpha) \in H \) such that \(r < \alpha \) which is possible only when \(r = 0 \). Hence \(H = \alpha \mathbb{Z} \). We have proved that \(H \) is cyclic.

Conversely, if \(\alpha \neq 0 \) then for any \(x \in H, |x| = n\alpha + r, 0 \leq r < \alpha \) for some positive integer \(n \). We claim that \(r = 0 \). If possible let \(r > 0 \). Using definition of inf, choose for every \(\epsilon > 0 \) a \(y \in H \) s.t. \(-n\alpha \in (y, y+\epsilon) \). Take \(\epsilon = \alpha + r \), s.t. \(|x| + y \in H \) and \(-\alpha = r - \epsilon < |x| + y < r < \alpha \) or \(||x| + y| < \alpha \). This is a contradiction since \(\alpha = \inf \{A\} \). Thus \(r = 0 \) and \(H = \alpha \mathbb{Z} \) which is closed and cyclic subgroup of \(\mathbb{R} \).

It is clear that if \(\hat{H} = \mathbb{R} \) then \(\alpha := \inf \{A\} = 0 \). Conversely, if \(\alpha = 0 \) then \(H \) is not closed subset of \(\mathbb{R} \). Therefore by Theorem 1, \(H \) is dense in \(\mathbb{R} \).

We have proved the following necessary and sufficient conditions for the subgroups of the additive group of reals.

Theorem 4. Let \(H \neq \{0\} \) be a proper subgroup of the additive group \(\mathbb{R} \) and \(\alpha := \inf \{|x| : x \in H - \{0\}\} \). Then

(a) \(H \) is closed in \(\mathbb{R} \) if and only if \(\alpha \neq 0 \). Moreover such a subgroup is cyclic.

(b) \(H \) is dense in \(\mathbb{R} \) if and only if \(\alpha = 0 \).

As an application of the preceding result, we have following special case of Kronecker’s (1884) approximation theorem.

Theorem 5. (Kronecker) For an irrational \(\alpha \), the subgroup \(\alpha \mathbb{Z} + \mathbb{Z} \) is dense in \(\mathbb{R} \).

Proof. First note that \(\alpha \mathbb{Z} + \mathbb{Z} \leq \mathbb{R} \) and so is its closure. If possible let \(\alpha \mathbb{Z} + \mathbb{Z} \) be closed in \(\mathbb{R} \). Then by preceding theorem, \(\alpha \mathbb{Z} + \mathbb{Z} = \beta \mathbb{Z} \) for some nonzero real \(\beta \). But then \(\mathbb{Z} \subseteq \beta \mathbb{Z} \) and \(\alpha \mathbb{Z} \subseteq \beta \mathbb{Z} \). This gives \(1 = \beta n \) and \(\alpha = \beta m \) for some \(0 \neq m, n \in \mathbb{Z} \) from which we obtain \(\beta = \frac{1}{n} \) and \(\alpha = \beta m = \frac{m}{n} \in \mathbb{Q} \). This contradicts the fact that \(\alpha \in \mathbb{R} - \mathbb{Q} \). \(\square \)

Example 6. If we let \(S := \{\sin n \mid n \in \mathbb{Z}\} \) then closure of \(S \) in \(\mathbb{R} \) is the interval \([-1, 1]\).

We prove this well known fact (see for detail [5]) using the preceding result. For any real \(r \in [-1, 1] \), and \(\alpha = 2\pi \) there exist \(s \in [-\pi/2, \pi/2] \) s.t. \(\sin s = r \) and integer-sequences \(\{p_n\} \) and \(\{q_n\} \) such that \(2\pi p_n + q_n \to s \). By continuity of \(\sin \) function, we have \(\sin(2\pi p_n + q_n) \to \sin s = r \) or \(\sin q_n \to r \). Thus every point of the interval \([-1, 1]\) is limit of some subsequence of the sequence \(\{\sin n\} \).

We now establish a general result concerning the topological groups having the nice property of Theorem 1.
Theorem 7. Let G be a topological group such that
(a) G has a proper dense subgroup H
(b) any proper subgroup K of G is such that either $\bar{K} = K$ or $\bar{K} = G$.
Then G is either connected or totally disconnected.

Proof. Let G is not connected and $C \neq G$ be the connected component of G containing the identity element. If there is a connected open subset $U \neq G$ of G containing a point x of G then so is the open set $x^{-1}U \ni 1_G$ such that $x^{-1}U \cap C \neq \emptyset$; consequently, $x^{-1}U \cup C$ is connected and hence $C \supset x^{-1}U$. It follows that C is open in G; as $C \leq G$ and $\bar{H} = G$ we see using the hypothesis (b) that $\bar{H} \cap C = \bar{C} = C$ is closed subset of G which gives $\bar{H} \cap \bar{C} = H \cap C = C$ or $C \subset H$. But then H is open subgroup of G and since every open subgroup of a topological group is also a closed subset, it follows that $\bar{H} = H$ contradicting the fact that H was assumed to be dense subgroup of G. We have proved that there does not exist any connected open subset of G and by (a) none of the singleton set in G can be open. It follows that every proper open subset of G is totally disconnected. Finally, since C is closed subset of G and if $C \neq G$, it follows that $G - C$ is totally disconnected. But then for every $y \in G - C$, $yC = \{y\}$ which is possible only if $C = \{1_G\}$. This proves that G is totally disconnected. \hfill \Box

In view of the hypothesis of Theorem 7 through Theorem 1, we see that \mathbb{R} is connected in ‘usual topology’, ‘indiscrete topology’, and ‘finite-closed topology’ while \mathbb{R} is totally disconnected in ‘the lower limit topology’. In the latter topology we see that every interval in \mathbb{R} is totally disconnected!

Acknowledgement

The author is indebted to Dr. Keerti Vardhan Madahar for useful discussion on proof of theorem 1.

References:

[1] L. S. Pontryagin. Selected Works: Topological Groups Vol 2. (English translation by A. Brown), Gordon and Breach Science Publishers, New York, 1986.

[2] N. Bourbaki. Elements of Mathematics: Part I-General Topology, Addison Wesley, 1966.
[3] P. J. Higgins. *Introduction to Topological Groups, Lecture notes 15*, London Mathematical Society. Cambridge University Press, 1974.

[4] H. Abels and A. Manoussos. Topological generators of abelian Lie groups and hypercyclic finitely generated abelian semigroups of matrices. (2010) pp 1-14.

[5] J. H. Staib and M. S. Demos. On the limit points of the sequence $\sin n$. *Mathematics Magazine*, 40:4 (1967) pp 210-213.