Stabilizer algebra of adjoint-invariant forms

Tran Do
K55, honors program of mathematics.

January 16, 2015

Abstract

In this paper we study the stabilizer algebra of adjoint-invariant l-forms on a simple Lie algebra over the complex number field. We prove that the stabilizers of most adjoint-invariant l-forms on a complex simple Lie algebra g coincide with $\mathfrak{ad}(g)$.

Keywords: Adjoint-invariant forms, stabilizer algebra

1 Introduction

Special geometries associated with a class of differential forms on manifolds are motivated by many known geometries including Riemannian geometry, symplectic geometry and geometry with special holonomy [3]. To study the geometry associated with a class of differential forms on manifold one could study the stabilizer group of those forms. This method is widely used by geometer, for example, see [3], [6], [7]. To study the stabilizer group of a form, one may first study its Lie algebra. Once we know the Lie algebra, we can trace back to compute the group.

Let g be a complex simple Lie algebra. Suppose that ω is an Adjoint-invariant l-form on g, $\text{Stab}(\omega)$ is the stabilizer group of ω and $\text{stab}(\omega)$ is the Lie algebra of $\text{Stab}(g)$. In case ω is the 3-Cartan form, $\text{Stab}(\omega)$ is studied by Anthony C. Kable in [4] and by Hồng Vân Lê in [6]. Our paper can be thought as a continuation of Kable’s paper, [4]. The main result is the following

Theorem 1. The stabilizer algebra of any Adjoint-invariant l-form on a simple Lie algebra g coincides with $\mathfrak{ad}(g)$ if $l < \text{dim}(g)$.

This result can be useful in finding the stabilizer group $\text{Stab}(\omega)$ of ω and further, we may hope to extend the result of Hồng Vân Lê in [6] for Adjoint-invariant forms.

Our plan is as follows
In the first part, we introduce a notion, ε-decomposable form (see Definition 1), and recall a result of Kempf (see Lemma 1).

In the second part, we give a proof of the main theorem and remarks for further researches.

2 Preliminary

In this paper, we assume that \mathfrak{g} is a complex simple Lie algebra.

Let V be a vector space of dimension n, and $\varepsilon = \{e^1, e^2, \ldots, e^n\}$ a basis of V^*. An l-form ω of V can be written as $\omega = \sum_{1 \leq i_1 < i_2 < \ldots < i_l \leq n} a_{i_1 \ldots i_l} e^{i_1} \wedge e^{i_2} \wedge \ldots \wedge e^{i_l}$, we call it the canonical form of ω with respect to ε. For each element A of $\mathfrak{gl}(V)$ we define

$$\omega_A := A(\omega) = \sum_{1 \leq i_1 < i_2 < \ldots < i_l} \sum_j a_{i_1 \ldots i_l j} e^{i_1} \wedge e^{i_2} \wedge \ldots \wedge e^{i_l}$$

We now introduce a notion for later use.

Definition 1. (ε-decomposable form)

Let V be a vector space of dimension n, and $\varepsilon = \{e^1, e^2, \ldots, e^n\}$ a basis of V^*. An l-form ω is called ε-decomposable if it can be written as $\delta = e^{i_1} \wedge e^{i_2} \wedge \ldots \wedge e^{i_l}$ where $1 \leq i_1, i_2, \ldots, i_l \leq n$ are integers.

Define the ε-presentation of a form γ to be the expression of γ as the sum of ε-decomposable forms.

Definition 2. (Equivalent ε-decomposable forms)

For each X in $\mathfrak{gl}(V)$ and a differential form β we write $\beta_X := X(\beta)$. Then we say two ε-decomposable forms α, β equivalent if α appears as a summand in the ε-presentation of β_X in ε.

Proposition 1. Given two ε-decomposable l-forms α and β, they are equivalent if and only if we can write $\alpha = a \wedge \gamma$, $\beta = b \wedge \gamma$, for some $a, b \in \varepsilon$, and $\gamma = e^{i_1} \wedge e^{i_2} \wedge \ldots \wedge e^{i_{l-1}}$.

Proof. If we can write $\alpha = a \wedge \gamma$, $\beta = b \wedge \gamma$, where $a, b \in \varepsilon$, $\gamma = e^{i_1} \wedge e^{i_2} \wedge \ldots \wedge e^{i_{l-1}}$. Then we can choose an element $X \in \mathfrak{gl}(\mathfrak{g})$ such that it transforms b to a. Then, α is a summand in the ε-presentation of β_X.

Conversely, if α and β are equivalent, let $X \in \mathfrak{gl}(V)$ be such that α is a summand in the ε-presentation of β_X. We write $\beta = e^{i_1} \wedge e^{i_2} \wedge \ldots \wedge e^{i_l}$, then $X(\beta) = \sum_{j=1}^l e^{i_1} \wedge e^{i_2} \wedge \ldots \wedge X(e^{i_j}) \wedge \ldots \wedge e^{i_l}$. Hence, α appears as a summand of $X(\beta)$ only if it has the form $\alpha = a \wedge \gamma$, where $\gamma = e^{i_{j_1}} \wedge e^{i_{j_2}} \wedge \ldots \wedge e^{i_{j_{l-1}}}$, $\{j_1, j_2, \ldots, j_{l-1}\} \subset \{i_1, i_2, \ldots, i_l\}$, $a \in \varepsilon$.

Later, we will use Dynkin’s classification of triples $(\alpha_1, \alpha_2, \rho)$ where α_2 is a simple Lie algebra, α_1 is a semisimple Lie subalgebra of α_2 and ρ is an
irreducible representation of α_2 which remains irreducible when restricted to α_1. Suppose ρ_α and ρ_β are representations of α_2 and β_2 on V_α and V_β respectively where V_α and V_β are some vector spaces, then two triples $(\alpha_1, \alpha_2, \rho_\alpha)$ and $(\beta_1, \beta_2, \rho_\beta)$ are called equivalent if there is a linear isomorphism $L : V_\alpha \to V_\beta$ such that $\rho_\beta (\beta_2) = L \rho_\alpha L^{-1}$. The classification will be found in Table 5 of [2].

We also introduce a direct consequence of Theorem 3.4, Corollary 3.5 and Theorem 4.4 in [5]. We refer the readers to [5] for the proof of the following

Lemma 1. Given $\rho : G \times X \to X$ an action of an affine algebraic group G on an affine variety X and x a point in X. If the orbit O_x of x is not closed in X then G possesses a non-trivial one parameter subgroup $\lambda : G_m \to G$. Further, the subgroup

$$P(\lambda) := \{ g \in G : \lim_{t \to 0} \lambda(t)g\lambda(t)^{-1} \text{ exists in } G \}$$

is a parabolic subgroup of G containing the stabilizer subgroup of x in G.

3 Main result

We state the main result of this article.

Theorem 1. The stabilizer algebra of any Adjoint-invariant l-form on a simple Lie algebra g coincides with $\mathfrak{ad}(g)$ if $l < \text{dim}(g)$.

In Proposition 2 we will first prove that $\mathfrak{stab}(g)$ is is a simple Lie algebra. To prove that Proposition, we need the following lemmas.

Lemma 2. Denote $\mathfrak{SL}(g)(\cdot)$ the standard action of $\mathfrak{SL}(g)$ on $\Lambda^l g^*$. Then the orbit $O(\omega) = \mathfrak{SL}(g)(\omega)$ is closed in $\Lambda^l g^*$ under the Zariski topology, consequently $O(\omega)$ is an affine variety.

Proof. Suppose conversely that $O(\omega)$ is not closed. Applying Lemma 1 we can find a non-trivial one-parameter subgroup $\lambda : G_m \to \mathfrak{SL}(g)$ of $\mathfrak{SL}(g)$ and a parabolic subgroup

$$P(\lambda) = \{ g \in \mathfrak{SL}(g) : \lim_{t \to 0} \lambda(t)g\lambda(t)^{-1} \text{ exists in } \mathfrak{SL}(g) \}$$

of $\mathfrak{SL}(g)$ containing the stabilizer subgroup of ω in $\mathfrak{SL}(g)$.

Because g is a simple Lie algebra, we have

$$\mathfrak{ad}(g) = [\mathfrak{ad}(g), \mathfrak{ad}(g)] \subset [\mathfrak{gl}(g), \mathfrak{gl}(g)] \subset \mathfrak{sl}(g).$$

Hence,

$$\mathfrak{Aut}_0(g) = \exp(\mathfrak{ad}(g)) \subset \exp(\mathfrak{sl}(g)) \subset \mathfrak{SL}(g).$$
In addition, the stabilizer group of ω contains $Aut_0(\mathfrak{g})$, consequently $P(\lambda)$ contains $Aut_0(\mathfrak{g})$.

As $\lambda(t)$ is a one parameter subgroup of $SL(\mathfrak{g})$, there exists a basis $\{e_1, e_2, \ldots, e_n\}$ of \mathfrak{g} such that the action of $\lambda(t)$ on \mathfrak{g} can be written in the matrix form

$$\lambda(t) = \begin{pmatrix}
t^{m_1} & 0 & \cdots & 0 \\
0 & t^{m_2} & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots \\
0 & \cdots & 0 & t^{m_n}
\end{pmatrix},$$

where n is the dimension of \mathfrak{g} and $m_1 \leq m_2 \leq \ldots \leq m_n$ are integers.

Then for any matrix $A = (a_{ij}) \in SL(\mathfrak{g})$ we have

$$\lambda(t)A\lambda(t)^{-1} = (t^{m_i - m_j}a_{ij}).$$

Thus, if $A \in P(\lambda)$ then $a_{ij} = 0$ for $m_i < m_j$. Let i_0 be the greatest number such that $m_1 = m_2 = \ldots = m_{i_0}$. Then

$$a_{ij} = 0$$

for any i, j such that $1 \leq i \leq i_0 < j \leq n$. Therefore, the vector subspace V spanned by $\{e_1, e_2, \ldots, e_{i_0}\}$ is invariant under the action of $P(\lambda)$. As a result, V is stable under the action of $Aut_0(\mathfrak{g})$.

Because \mathfrak{g} is simple, the action of $Aut_0(\mathfrak{g})$ on \mathfrak{g} is irreducible, hence V should be either 0 or \mathfrak{g}. Notice that $V \neq 0$ for $e_1 \in V$, we have $V = \mathfrak{g}$. It follows $i_0 = n$, in other words

$$m_1 = m_2 = \ldots = m_n.$$

Further, $P(\lambda)$ is a subset of $SL(\mathfrak{g})$ and this implies $\lambda(t) \subset SL(\mathfrak{g})$. It follows that $det(\lambda(t)) = 1$. As a result,

$$\sum_{i=1}^{n} m_i = 0.$$

In addition, we have

$$m_1 = m_2 = \ldots = m_n,$$

hence

$$m_1 = m_2 = \ldots = m_n = 0.$$

And therefore $\lambda(t) \equiv I_n$ contradicting from the assumption that $\lambda(t)$ is non-trivial.

\[\square \]

Remark 1. The idea of using Lemma 4 in the above proof comes from Theorem 1 in [4]. In fact, Kable’s proof of Theorem 1 in [4] is applicable in our case. However, our proof is simpler, more specifically, we do not need to compute $\lim_{t \to 0} \lambda(t)\omega$.

4
The following lemma is in [4].

Lemma 3. The commutant of $ad(g)$ in $\text{stab}(\omega)$ is zero.

Proof. Since g is simple, then $ad(g)$ is simple. It follows that

$$[ad(g), ad(g)] = ad(g),$$

hence

$$ad(g) = [ad(g), ad(g)] \subset [gl(g), gl(g)] \subset sl(g).$$

Let ϕ be a non-zero element in $\text{stab}(\omega)$ commuting with $ad(g)$. we have

$$\phi([X,Y]) = \phi(ad_X(Y)) = (\phi \circ ad_X)(Y) = ad_X(\phi(Y)) = [X, \phi(Y)].$$

Consequently, if $\phi(Y) = 0$ then $\phi([X,Y]) = 0$. That is $[X,Y] \in ker(\phi)$ for every $X \in g, Y \in ker(\phi)$. Thus $ker(\phi)$ is an ideal of g. Because g is simple, $ker(\phi)$ is either 0 or g. Notice that $ker(\phi) \neq g$ as ϕ is non-zero, it follows that $ker(\phi) = 0$. As a result, ϕ possesses a non-zero eigenvalue c.

Denoted by X an eigenvector of ϕ corresponding to c. Consider $\psi = \phi - cI$, then $\psi(X) = 0$. Further, as ϕ commutes with $ad(g)$, then ψ also commutes with $ad(g)$. It yields that if ψ is different from zero then by the same argument as we did with ϕ, we obtain $ker(\psi) = 0$, a contradiction since $X \in ker(\psi)$. Thus, $\psi = 0$. Therefore

$$\phi(X) = cX$$

for any X in g and for some constant $c \in \mathbb{C}$. It follows that

$$\phi \circ \omega = -c.l.\omega.$$

It implies $c = 0$ as $\phi \circ \omega = 0$. In other words, $\phi = 0$, contradicting the assumption that $\phi \neq 0$, by which the lemma follows.

As a direct consequence of Lemma 3 we obtain the following

Corollary 1. The Lie subalgebra $\text{stab}(\omega)$ has zero center.

Lemma 4. The Lie subalgebra $\text{stab}(\omega)$ is semisimple and contained in $sl(g)$.

Proof. Let

$$I(\omega) = \text{Stab}(\omega) \cap SL(g)$$

and $i(\omega)$ its Lie algebra. Since the commutant of $ad(g)$ in $\text{stab}(\omega)$ is zero, we have the commutant of $ad(g)$ in $i(\omega)$ is zero. Hence, $i(\omega)$ has zero center.

Lemma 2 shows that $SL(g)/I(\omega)$ is an affine variety. Matsushima’s criterion, [1], then implies $I(\omega)$ is reductive, hence $i(\omega)$ is reductive. Furthermore, $i(\omega)$ has zero center, it is semisimple.
Let $\mathfrak{h} = \text{stab}(\omega) \setminus i(\omega)$ be the set complement of $i(\omega)$ in $\text{stab}(\omega)$. Since
\[
[\mathfrak{gl}(\mathfrak{g}), \mathfrak{gl}(\mathfrak{g})] \subset \mathfrak{sl}(\mathfrak{g}),
\]
then
\[
[i(\omega), \text{stab}(\omega)] \subset \mathfrak{sl}(\mathfrak{g}).
\]
But we already have
\[
[i(\omega), \text{stab}(\omega)] \subset \text{stab}(\omega),
\]
thus
\[
[i(\omega), \text{stab}(\omega)] \subset \mathfrak{sl}(\mathfrak{g}) \cap \text{stab}(\mathfrak{g}) = i(\omega).
\]
Therefore, $i(\omega)$ is an ideal of $\text{stab}(\omega)$.

Suppose that $\text{stab}(\omega)$ has some abelian ideal α. We have two cases

1. **Case 1** $\alpha \subset \mathfrak{h}$

 We have
 \[
 [\alpha, i(\omega)] \subset [\mathfrak{h}, i(\omega)] \subset i(\omega)
 \]
 and
 \[
 [\alpha, i(\omega)] \subset \alpha \subset \mathfrak{h}.
 \]
 Since \mathfrak{h} is the set complement of $i(\omega)$ in $\text{stab}(\omega)$, we have $[\alpha, i(\omega)] = 0$.
 In other words, α commutes with $i(\omega)$. In particular, α commutes with $\mathfrak{ad}(\mathfrak{g})$. Lemma 3 then implies $\alpha = 0$.

2. **Case 2** $\alpha \not\subset \mathfrak{h}$

 We have $\alpha \cap i(\omega) \neq 0$ is a non-zero abelian ideal of $i(\omega)$ contradicting with the fact that $i(\omega)$ is semisimple.

Therefore, $\text{stab}(\omega)$ is semisimple. Hence,
\[
[\text{stab}(\omega), \text{stab}(\omega)] = \text{stab}(\omega),
\]
consequently,
\[
\text{stab}(\omega) = [\text{stab}(\omega), \text{stab}(\omega)] \subset [\mathfrak{gl}(\mathfrak{g}), \mathfrak{gl}(\mathfrak{g})] \subset \mathfrak{sl}(\mathfrak{g}).
\]

Remark 2. The idea of using Matsushima’s criterion ([7]) in Proposition 4 comes from the proof of Theorem 2 in Kable’s paper [4]. Indeed, Kable’s proof works in our case but here we have given a different proof.

Proposition 2. The stabilizer algebra $\text{stab}(\omega)$ is simple.
Proof. Since $\text{stab}(\omega)$ is semisimple, we can write it as a sum of non-zero simple ideals,
$$ \text{stab}(\omega) = S_1 \oplus S_2 \oplus \ldots \oplus S_k. $$
Since $\text{ad}(\mathfrak{g}) \subset \text{stab}(\mathfrak{g})$ and the action of $\text{ad}(\mathfrak{g})$ on \mathfrak{g} is irreducible, $\text{stab}(\omega)$ acts irreducibly on \mathfrak{g}. For each i, we consider the action of S_i on \mathfrak{g} and denote $V_i := \text{ker}(S_i)$. As S_i is an ideal of $\text{stab}(\omega)$, we have $[\text{ad}(\mathfrak{g}), S_i] \subset S_i$.

We then obtain
$$ [\text{ad}(\mathfrak{g}), S_i](V_i) = 0, $$
more specifically
$$ (\text{ad}_X A - A \text{ad}_X)(V_i) = 0, $$
for any $X \in \mathfrak{g}, A \in S_i$.

It follows
$$ A \text{ad}_X(V_i) = 0, \forall A \in S_i. $$
Consequently
$$ \text{ad}_X(V_i) \subset \text{ker}(S_i) = V_i, $$

hence $\text{ad}(\mathfrak{g})V_i \subset V_i$. In other words, V_i is a subrepresentation of $\text{ad}(\mathfrak{g})$ on \mathfrak{g}, V_i must be either 0 or \mathfrak{g}. If $V_i = \mathfrak{g}$ then $\text{ker}(S_i) = \mathfrak{g}$, it implies $S_i = 0$, a contradiction. Thus $\text{ker}(S_i) = 0$, that is $S_i \mathfrak{g} = \mathfrak{g}$.

We now can consider the representations from each S_i on \mathfrak{g}. We have the following

Claim 1. The representation of S_1 on \mathfrak{g} is irreducible.

Proof (of the claim). Let $U(\text{stab}(\omega)), U(S_1), U(S_2), \ldots, U(S_k)$ be the smallest associative subalgebras of $\text{gl}(\mathfrak{g})$ containing $\text{stab}(\omega), S_1, S_2, \ldots, S_k$, respectively.

Since,
$$ \text{stab}(\omega) = S_1 \oplus S_2 \oplus \ldots \oplus S_k, $$
then
$$ U(\text{stab}(\omega)) = U(S_1) + U(S_2) + \ldots + U(S_k). $$
Furthermore, as S_i’s are simple ideals of $\text{stab}(\mathfrak{g})$, S_i and S_j are commute under the Lie bracket. It means
$$ [X_i, X_j] = 0 \ \forall X_i \in S_i, X_j \in S_j, i \neq j. $$
In other words,
$$ X_iX_j = X_jX_i \ \forall X_i \in S_i, X_j \in S_j, i \neq j. $$
It follows that $U(S_i)$ and $U(S_j)$ are commute.
Now, suppose that S_1 does not act irreducibly on g. As S_1 is a simple Lie algebra, the action of S_1 on g reduced completely. We can write g as a sum of non-zero irreducible subrepresentations of S_1

\[g = V_1 \oplus V_2 \ldots \oplus V_m \]

Consider the action of S_1 on V_i because $\ker(S_1) = 0$, then $S_1(V_i) = V_i$; hence $U(S_1)(V_i) = V_i$. Let B be any element in $U(S_2)$ such that $B(V_1) \neq 0$. Since $U(S_1)$ and $U(S_2)$ are commute, we have

\[A(B(V_1)) = B(A(V_1)) = B(V_1), \forall A \in U(S_1). \]

Thus $B(V_1)$ is a subrepresentation of S_1, then there exists some i such that $B(V_1) = V_i$, we have two cases.

1. **Case 1:** $i \neq 1$.

 Without loss of generality, we may assume $B(V_1) = V_2$. Let C be an element in $U(S_2)$ such that $C(V_2) \neq 0$ and C is different from B, $-B$. Applying the argument above for C and $B + C$, there exist j and k such that $C(V_1) = V_j$ and $(B + C)(V_1) = V_k$. On the other hand

\[(B + C)(V_1) \subset V_2 \oplus V_j. \]

In addition,

\[V_k \cap (V_2 \oplus V_j) = \emptyset \text{ if } k \neq 2, j. \]

Consequently, k is either 2 or j. If $j \neq 2$ then $(B + C)(V_1)$ is different from V_2 and V_j, then there will be no such k. Hence, $j = 2$ and therefore

\[B(V_1) = V_2, \forall B \in U(S_2), \]

in other words $U(S_2)(V_1) = V_2$. We then have

\[
\begin{align*}
U(S_2)(V_2) &= U(S_2)(U(S_2)(V_1)) \\
&= (U(S_2)U(S_2))(V_1) \\
&= U(S_2)(V_1) \\
&= V_2.
\end{align*}
\]

Thus, V_2 is a subrepresentation of $U(S_2)$, hence it is a subrepresentation of S_2. For any $B \in S_2$ we have $BV_2 \subset V_2$. As V_2 is a complex vector space, by Schur’s lemma the action of B on V_2 is a multiplication by a scalar c_B.

As s_2 is simple, we have $[S_2, S_2] = 0$. Then, for any $B \in s_2$ there exist $C, D \in S_2$ such that

\[B = [C, D] = CD - DC, \]
then
\[c_B = c_Cc_D - c_DC = 0. \]
Thus, the action of \(\mathcal{S}_2 \) on \(V_2 \) is the multiplication by zero, contradicting the fact that \(\ker(\mathcal{S}_2) = 0 \).

2. Case 2: \(i = 1 \).
Using the same argument as above, we have \(\mathcal{S}_2(V_1) = V_1 \) and then the action of \(s_2 \) on \(V_1 \) is the multiplication by zero, that is \(V_1 \in \ker(\mathcal{S}_2) \), a contradiction.

\[\square \]

We now come back to the proof of Proposition \([2]\). The action of \(\mathcal{S}_1 \) on \(\mathfrak{g} \) is irreducible. For each \(j \) the actions of \(\mathcal{S}_j \) on \(\mathfrak{g} \) are \(\mathbb{C} \)-linear and it commutes with the action of \(\mathcal{S}_1 \) on \(\mathfrak{g} \). Let \(X_j \) be any non-zero element in \(\mathcal{S}_j \), \(X_1 \) a non-zero element in \(\mathcal{S}_1 \). If \(Y \in \ker(X_j) \), i.e, \(X_j(Y) = 0 \), then
\[X_j(X_1(Y)) = X_1(X_j(Y)) = 0. \]
By Schur’s lemma, \(X_j \) acts on \(\mathfrak{g} \) as a scalar multiplication. Therefore, for any \(X_j \in \mathcal{S}_j \), \(X_j \mathfrak{g} = c_{X_j} \mathfrak{g} \) for some constant \(c_{X_j} \in \mathbb{C} \). But then
\[X_j(\omega) = -lc_{X_j}\omega = 0. \]
It implies \(c_{X_j} = 0 \). Thus \(\delta_j \mathfrak{g} = 0 \) and therefore \(\mathcal{S}_j = 0 \) if \(j \neq 1 \), hence \(\text{stab}(\omega) = \mathcal{S}_1 \) is simple.

\[\square \]

In order to use Dynkin’s classification we need the followings

Lemma 5. Let \(l \) be an integer smaller than \(\dim(\mathfrak{g}) \), then \(\mathfrak{sl}(\mathfrak{g}) \) can not preserve any \(l \)-form in \(\mathfrak{g} \).

Proof. For a \(l \)-form \(\omega \) in \(\mathfrak{g} \) and an element \(A \) in \(\mathfrak{sl}(\mathfrak{g}) \), if \(A(\omega) \neq 0 \) then the lemma is proved. If not, we consider one \(\epsilon \)-decomposable summand \(\gamma \) of \(\omega \), as \(l < \dim(\mathfrak{g}) \) then there exist another \(\epsilon \)-decomposable \(l \)-form \(\delta \) that equivalent to \(\gamma \) . From Proposition \([1]\) we can write \(\gamma = e^1 \wedge \eta, \delta = e^2 \wedge \eta \). Now we can make the entry in \(B \) (when regard it as a matrix in a basis that has \(e^1 \) and \(e^2 \) as component) that transforms \(e^1 \) to \(e^2 \) arbitrary large such that the new transformation is still in \(\mathfrak{sl}(\mathfrak{g}) \) and the coefficient of \(\delta \) in \(B(\omega) \) is different from zero, which contradicts with the fact that \(A(\omega) = 0, \forall A \in \mathfrak{sl}(\mathfrak{g}) \). \(\square \)

Remark 3. For any matrix \(A \in \mathfrak{so}(\mathfrak{g}) \), we can also make \(a_{ij} \) and \(a_{ji} \) arbitrarily large such that \(A \) still in \(\mathfrak{so}(\mathfrak{g}) \) . Then we can apply the same argument as in Lemma \([4]\) to prove that \(\mathfrak{so}(\mathfrak{g}) \) can not preserve any \(l \)-form.

Proposition 3. If \(l < \dim(\mathfrak{g}) \) then \(\text{stab}(\omega) \) can not be \(\mathfrak{sl}(\mathfrak{g}), \mathfrak{so}(\mathfrak{g}) \) or \(\mathfrak{sp}(\mathfrak{g}) \).
Proof. From Lemma 5 and Remark 3 we have that \(\text{stab}(\omega) \) can not be either \(\mathfrak{sl}(g) \) or \(\mathfrak{so}(g) \).

If \(\text{stab}(\omega) = \mathfrak{sp}(g) \) then it must preserve a non-zero skew-symmetric bilinear form \(\alpha \). Since \(\mathfrak{ad}(g) \subset \text{stab}(\omega) \), the form \(\alpha \) should be preserved by \(\mathfrak{ad}(g) \). But any bilinear form preserved by \(\mathfrak{ad}(g) \) must be a multiple of the Killing form on \(g \), which is a symmetric form, a contradiction.

We now come to the proof of the main theorem.

Proof. (Of the theorem)

As \(\mathfrak{ad}(g) \) is a subalgebra of \(\text{stab}(\omega) \) and \(\text{stab}(\omega) \) is simple, we now consider the triple \((\mathfrak{ad}(g), \text{stab}(g), id) \). Proposition 3 states that \(\text{stab}(g) \) can not be \(\mathfrak{sl}(g) \), \(\mathfrak{so}(g) \), or \(\mathfrak{sp}(g) \). Hence, if \((\alpha_1, \alpha_2, \rho) \) be any triple that equivalent to \((\mathfrak{ad}(g), \text{stab}(g), id) \) then \(\alpha_2 \) can not be \(\mathfrak{sl}(V) \), \(\mathfrak{sp}(V) \) or \(\mathfrak{so}(V) \) with \(V \) is the representation vector space of \(\alpha_2 \) by \(\rho \). So, we can look for possibilities of \((\mathfrak{ad}(g), \text{stab}(\omega), id) \) in Table 5 of [2].

Furthermore, the restriction of \(\rho \) on \(\alpha_1 \) must isomorphic to the adjoint representation, as the restriction of \(id \) on \(\mathfrak{ad}(g) \) is the adjoint action. We can restrict the triple \((\mathfrak{ad}(g), \text{stab}(g), id) \) to the cases \(I_1 (n \geq 2, k = 2), I_2 (n \geq 3, k = 2), I_4 (n \geq 4, k = 2) \) by comparing the dimension of cases in Table 5 in [2].

In Table 5 in [2], the models for types \(I_1, I_2, I_4 \) are \((\mathfrak{sp}(n), \mathfrak{sl}(2n), \vee \rho_{2n}), (\mathfrak{so}(n), \mathfrak{sl}(2n + 1), \wedge \rho_{2n+1}) \) (n is odd), \((\mathfrak{so}(n), \mathfrak{sl}(2n), \wedge \rho_{2n}) \) (n is even), respectively.

In addition, the triple \((\mathfrak{ad}(g), \text{stab}(g), id) \) has the property that \(\text{stab}(g) \) preserves a \(\mathfrak{l} \)-form on \(g \). We will show that neither of the above three types satisfy this property if \(l < \text{dim}(g) \). For a prove of this, one only need to show that there exist an element \(X \in \mathfrak{sl}(m, \mathbb{C}) \) \((m = 2n \) in cases \(I_2 \) and \(I_4 \) and \(m = 2n + 1 \) in case \(I_1 \) \) such that \(X(\omega) \neq 0 \). But the proof of these facts are same as the proof of Lemma 5.

3.1 Final remarks

We can use the same technique as in Kable’s paper, [4], to prove that the stabilizer group of \(\omega \) is isomorphic to

\[
\text{Aut}(g) \ltimes M(g)
\]

where \(M(g) = \{ \phi \in GL(g) \mid \phi^t = \text{id}_g \text{ and } \mathfrak{ad}(X) \circ \phi = \phi \circ \mathfrak{ad}(X) \forall X \in g \} \)

References

[1] Ivan V. Arzhantsev, Invariant Ideals and Matsushima’s Criterion. Preprint, available at arXiv:math/0506430, 2005.
[2] Dynkin E. B, \textit{The maximal subgroups of the classical groups}, Tr. Mosk. Math. Soc., Vol. 1 (1952) pp. 1639 or Amer. Math. Soc. Transl. Ser 2, Vol. 6, pp. 245-378, 1957.

[3] Dominic D. Joyce, \textit{Riemannian Holonomy Groups and Calibrated Geometry}, Oxford University Press, 2007.

[4] Anthony C. Kable, \textit{The isotropy subalgebra of the canonical 3-form of a semisimple Lie algebra}, Indag. Mathem., N.S., Vol. 20 (1), pp. 73-85, 2009.

[5] George R.Kempf, \textit{Instability in Invariant theory}, Annals of Mathematics, Second Series, Vol. 108, No. 2, pp. 299-316, 1978.

[6] Hông Vân Lê, \textit{Geometric structures associated with a simple Cartan 3-form}, Journal of Geometry and Physics, Vol. 70, pp. 205-223, 2013.

[7] Hông Vân Lê, Martin Panak, Jiri Vanzura, \textit{Manifolds admitting stable forms}, Comm. Math. Carolinae, vol 49, n1, 101-117, 2008.

[8] Mumford D., Fogarty J., Kirwan F, \textit{Geometric Invariant Theory}, 3rd ed. New York: Springer, 1994.