A Review on Anti-diabetic Activity of Medicinal Spices

Ramya P1*, Lavanya Krishnadhas2
1Post Graduate Student, 2Assistant Professor, Department of Biochemistry, PSG College of Arts & Science, Coimbatore, TN, India. *Corresponding author’s E-mail: ramyamiya11@gmail.com

Received: 14-04-2021; Revised: 24-06-2021; Accepted: 30-06-2021; Published on: 15-07-2021.

ABSTRACT
Diabetes mellitus is a common metabolic disorder in which the human body does not produce insulin hormone, this leads to the increase in blood glucose levels. Diabetes infects more than 387 million individuals globally, posing a significant threat to both personal well-being and global economies. Normally, medicinal plants are highly used for the treatment of diabetes mellitus but some spices also have the efficiency to treat diabetes. Still, spices which we are using as ingredients plays important role in foods also have the ability to treat diabetes. This article describes the anti-diabetic activity of those medicinal spices.

Keywords: Diabetes Mellitus, Medicinal spices, Anti-diabetic activity, In vitro study, In vivo study.

INTRODUCTION
Diabetes Mellitus (DM) is a most common metabolic disorder which affects human throughout the world by raising their blood sugar level. It is mostly characterized by hyperglycemia, in which the human body does not produce insulin, a hormone that transforms the food particles into energy. DM is categorized into three major types: Type-1, Type-2 & Gestational. Type 1 diabetes mellitus is a most common type of DM, an auto-immune disorder, occurs when your body attacks its pancreatic cells with Ab’s. Type 2 diabetes mellitus is correlated with obesity, which happens when the pancreas fails to function normally. Gestational diabetes is a class of diabetes only happens in pregnant persons.1

Type 1 diabetes is well known as insulin-dependent diabetes. It is distinguished by deficiency of insulin which is required for daily administration. It occurs due to the cellular mediated autoimmune demolition of β-cells of the pancreas. Type 2 diabetes is also well known as non-insulin-dependent diabetes, caused by the unproductive use of insulin hormone by the body. Another type of DM is called Gestational Diabetes which is arising out of glucose tolerance, during pregnancy. It is a short-term condition but it carries the long time risk of DM.

Normally, Medicinal plants are widely used for the approach of diabetes. Still, spices which we are using as ingredients plays important role in foods also have the ability to treat diabetes. There are numerous spices including cinnamon, cumin, garlic, curry leaves, ginger, turmeric, onion, coriander etc.,

From the detailed survey and the knowledge of spices, we can up to discover new drugs that are therapeutically effective and has many advantages because they are easily available and used daily in foods.

REVIEW
This paperwork was done by going through different articles from different journals from science direct, google scholar and Pubmed etc., This review article shows detailed information about the spices which have anti-diabetic property.

Coriander sativum
Common name: Dhania
Family: Umbelliferae

Figure 1: Coriander seeds

It is a small-sized tree growing all over India, Italy, China, and Bangladesh. 40 mg/kg concentration of aqueous extract of coriander seeds shown dormant anti-hyperglycemic activity in streptozotocin-diabetic rats by reduced their blood sugar level and cholesterol2. Coriander leaves extract expressed stronger activity in in-vitro anti-diabetic studies, by inhibiting the alpha-glucosidase activity. In in vivo studies, ethanolic extract of leaves was orally administrated to alloxan-induced mice. 200mg/kg of the extract showed a significant effect on hyperglycemic mice. Thus, ethanolic extracts of leaves have the efficiency to decrease the blood sugar level, enhance the pancreatic β-cell regeneration, and inhibit alpha-glucosidase enzyme activity3.
Cinnamomum verum
Common name: Cinnamon also called as True cinnamon
Family: Lauraceae

It is also known as *Cinnamomum zeylanicum* and is widely distributed in India, Sri Lanka, and South Asia regions. *In vitro* studies of cinnamon carried out on α-amylase and α-glucosidase inhibitory assays using bark extracts which shown great effectiveness for diabetes by inhibited both alpha-amylase and alpha-glucosidase activity. 200 mg/kg of *Cinnamomum verum* bark extracts exhibits dormant activity on alloxan-induced rats with the decrement in blood glucose level and total cholesterol, LDL, TG, and Improved the bodyweight gain. So, *Cinnamomum verum* has well effective in diabetes mellitus treatment.

Syzygium aromaticum
Common name: Clove also called as Lavang
Family: Myrtaceae

It is highly originated from Maluku islands in Indonesia, also found in tropical areas of Africa, Asia throughout oceanic regions. *In-vitro* studies of essential oils of *Syzygium aromaticum* was carried out and 100 μg/ml concentration shown more inhibition activity on alpha-amylase enzyme. So, the essential oils from cloves have the ability to treat diabetes by inhibiting the enzyme activity.

Murraya koenigii
Common name: Curry leaves
Family: Rubataceae

It is widely distributed in India, Sri Lanka, Pakistan, China and is mainly cultivated from East Asia and Australia. Anti-hyperglycemic activity of aqueous extract of curry leaves indicates a significant effect on STZ-induced rats. 200 mg/kg of aqueous extracts of leaves enhance tissue damage and body weight gain in STZ-induced rats. Combination of curry leaves and *Vitis vinifera* seeds extracts down elevated activity if alkaline phosphatase enzyme and decreases the cholesterol level in alloxan-induced diabetic rats.
Zingiber officinale
Common name: Ginger
Family: Zingiberaceae

It is generally found in China, India, Maluka islands, and West Africa. The anti-hyperglycemic activity was carried out using aqueous extracts of *Zingiber officinale* rhizomes on Sprague Dawley rats which is induced by Streptozotocin. 60 mg/kg concentration of aqueous extract shown great potential and exhibits hyperglycemia with weight loss. This extract also possesses hypoglycemic properties. An anti-hyperglycemic study of *Zingiber officinale* was performed on alloxan-induced rats and insulin-resistant rats. This study revealed ginger reduced blood sugar levels and enhance insulin sensitivity in both diabetic rats.

Allium sativum
Common name: Garlic
Family: Alliaceae

It is a common worldwide seasoning, distributed in Central Asia mainly in India, Sri Lanka, and Northeastern Iran. Aqueous extracts of *Allium sativum* bulb shown dormant *in vitro* anti-diabetic potential with increased alpha-amylase inhibitory activity. This inhibition helps to drop the release of glucose in blood. The anti-hyperglycemic activity was done by using bulb extract of *Allium sativum*. Depletion of blood sugar level and lipid profile were observed. Thus, the bulb of *Allium sativum* has great efficiency for the treatment of diabetes mellitus.

Curcuma longa
Common name: Turmeric
Family: Zingiberaceae

It is mainly cultivated in Southeast Asian countries such as India, Sri Lanka, and China. Anti-diabetic activity of *Curcuma longa* rhizome was studied in normal and alloxan-induced diabetic rats. 200 mg/kg concentration shown a notable decreased in levels of blood glucose, cholesterol, LDL, and increased the levels of HDL, total protein, body weight pain in diabetic rats. In normal rats, it results in a reciprocal manner. Thus, aqueous extract of *Curcuma longa* has effectiveness for the treatment of diabetes mellitus. Methanolic extracts of *Curcuma longa* roots have high efficiency than aqueous extract on alloxan-induced diabetic rats for hypoglycemic activity.
Coriandrum sativum

Common name: Coriander
Family: Apiaceae/Umbelliferae

Discussion

Spices do not only enrich the taste, flavor, and color of foods, also have distinctive medicinal properties as medicinal plants. Spices are used as a worldwide ingredient in foods that have significant capability towards diabetes. This review article elucidates some spices having anti-diabetic properties and the part of plants like leaf, root, seed, and specific extract such as ethanol, aqueous which have more efficiency also reported.

Conclusion

In India, various spices have anti-diabetic potential and are used traditionally for the approach and management of diabetes mellitus. Ongoing research on the anti-diabetic activity of spices helps for the discovery of new potent drugs which are used for the treatment and management of diabetes. For this, appropriate information about the spices is needed. This article provides genuine information about the spices which possess anti-diabetic properties.

References

1. Chaudhary N, Tyagi N Diabetes mellitus- an overview. International Journal of Research and Development of Pharmaceutical Sciences. 2018;7(4):3030-3033. DOI: 10.21276/IJRDRP.2278-0238.2018.7(4).3030
2. Das S, Chaware S, Narkar N, Tilak A V, Raveendran S, Rane P. Antidiabetic activity of *Coriandrum sativum* in streptozotocin-induced diabetic rats. International Journal of Basic Clinical Pharmacology. 2019;8(5):925-929. DOI: http://dx.doi.org/10.18203/2319-2003.ijbcp20191577
3. Aligita W, Susilawati E, Septiani H, Atsil R. Antidiabetic activity of Coriander (*Coriandrum sativum* L.) Leaves' ethanolic extract. International Journal of Pharmaceutical and Phytopharmacological research. 2018;8(2):59-63.
4. Gulcin I, Kaya R, Goren A C, Akincioglu H, Topal M, Bingol Z, Cakmak K C, Sarikaya S B, Durmalz L, Alwasei S. Anticholinergic, anti-diabetic and antioxidant activities of cinnamon (*Cinnamomum verum*) bark extracts: polyphenol contents analysis by LC-MS/MS. International Journal of Food Properties. 2019;22:1511-1526. DOI: https://doi.org/10.1080/10942912.2019.1656232
5. El-Dosoky G E, Mourad A M, Aboul S, Al-numair K S. Antidiabetic and hyperlipidemic effects of Ceylon cinnamon. Journal of Medicinal Plant Research. 2012;6:1685-1691. DOI: 10.5897/JMPR11.1472
6. Mohamed D A, Hamed I M, Fouda K A. Antioxidant and anti-diabetic effects of cumin seeds crude ethanol extract. Research Journal of Biological Sciences. 2018;18:251-259. DOI: 10.3923/jbs.2018.251.259
7. Tahir H U, Sarfraz R A, Ashraf A, Shazia A. Chemical composition and anti-diabetic activity of essential oils obtained from two species (*Syzygium aromaticum* and *Cuminum cyminum*). International Journal of Food Properties. 2015;19:2156-2164. DOI: 10.1080/10942912.2015.1110166
8. Al-Ani I M, Santos A R, Yankuzu M H, Saxena A K, Alazawi K S. The anti-diabetic activity of curry leaves *Murraya koenigii* on the glucose levels, kidneys, and islets of langerhans of rats with streptozotocin induced diabetes. MJHR. 2017;21:54-60. DOI: 10.7454/msk.v21i2.7393
9. Shreya M, Palwankar, Kale P P, Kadu P K, Prabhavalkar K. Assessment of anti-diabetic activity of combination of *Murraya koenigii* leaves extract and *Vitis venifera* seeds extract in alloxan-induced diabetic rats. 2019;9:79-85. DOI: 10.4103/rjptps.JRTPPS_50_19
10. Hassan N A, Karunakaran R, Sankar U A, Aye K M. Antidiabetic effect of *Zingiber officinale* on sprague dawley rats. International Journal of Pharmacogony and Phytochemistry. 2016;8:1940-1943.
11. Iraniroye B O, Arikawe A P, Rotimi G, Sogbade A O. Anti-diabetic and anti-oxidant effects of *Zingiber officinale* on alloxan-induced and insulin-resistant diabetic male rats. Nigerian Journal of Physiological Sciences. 2011;26:89-96.
12. Andleeb S, Tariq F, Muneeb A, Nazir T, Shahid B, Latif Z, Abbasi S A, Haq I U, Maleeha Z, Khan S U, Khan S U, Khan T M, Al Farraj D A. *In vitro* bactericidal, anti-diabetic, cytotoxic, anticoagulant, and hemolytic effect of green-synthesised silver nanoparticles using *Allium sativum* clove extract incubated at various temperatures. 2020;9:538-553. DOI:https://doi.org/10.1515/gps-2020-0051
13. Sureshkumar S, Senthilkumar B, Rajeshkumar S, Nangalingam M. Antihyperglycemic and antioxidant effect of *Allium sativum* bulb extract against alloxan-induced diabetic male albino rats. Drug Invention Today. 2019;12:965-1968. DOI: 10.1177/1179069519866185
14. Jevas C. Anti-diabetic effects of *Allium cepa* (onions) aqueous extracts on alloxan-induced diabetic *Rattus norvegicus*. Journal of Medicinal Plant Research. 2011;5:1134-1139.
15. Ojieh A E, Ugorji A E, Ovuakporaye I, Ewhe O L, Ossai N R. Comparative evaluation of hypoglycemic properties of raw...
and boiled *Allium cepa* in alloxan-induced diabetes mellitus rats. International Journal of Pharmacy and Biological Sciences. 2016;4:38-44.

16. Olatunde A, Joel E B, Tijjani H, Obidola S M, Luka C D. Antidiabetic activity of aqueous extract of *Curcuma longa* (Linn) rhizome in normal and alloxan-induced diabetic rats. 2014;6:58-65.

17. Mohammed A, Wudil A M, Alhasaan A J, Imam A A, Muhammad I U, Idi A. Hypoglycemic activity of *Curcuma longa* linn root extracts on alloxan-induced diabetic rats. Haya: the Saudi Journal of Life Sciences. 2017;2:43-49.

18. El-Soud N A, El-Laithy N, El-Saeed M S, Wahby M S, Khalil M, Morsy F, Shaffle N. Antidiabetic activities of *Foreniculum vulgare* mill. Essential oil in streptozotocin-induced diabetic rats. Macedonian Journal of Medical Sciences. 2011;4:139-146. DOI: 10.3889/MJMS.1857-5773.2011.0173

19. Godaveri A, Amudha K, Manicka M N. *In-vitro* hypoglycemic effect of *Foeniculum vulgare* mill. Seeds on the carbohydrate hydrolyzing enzymes. α-amylase and α-glucosidase, International Journal of Pharmaceutical Science Research. 2018;9:4441-4445. DOI: 10.13040/IJPSR.0975-8232.9(10).4441-45

Source of Support: The author(s) received no financial support for the research, authorship, and/or publication of this article.

Conflict of Interest: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

For any question relates to this article, please reach us at: editor@globalresearchonline.net
New manuscripts for publication can be submitted at: submit@globalresearchonline.net and submit_ijpsrr@rediffmail.com