Ultrasound-Assisted, ZnCr$_2$O$_4$ Nanocatalyzed Synthesis of Substituted Tetrahydroquinolines via Povarov Reaction

Pravin Chavan 1, Amol Ghoti 1, Shivaji Jadhav 2, Megha Rai 3, Dhanraj Kamble 4, Rohini Shelke 5, Dattatraya N. Pansare 6,*

1 Department of Chemistry, Doshi Vakil College, Goregaon-Raigad, (MS), India
2 Department of Chemistry, Tarai College of Arts and Science, Paithan-Aurangabad, (MS), India
3 Department of Chemistry, Dr. Rafiq Zakariya College for Woman, Aurangabad, (MS), India
4 Department of Chemistry, SBES College, Aurangabad, (MS), India
5 Department of Chemistry, Sadguru Gadage Maharaj College Karad, 415124, MS, India
6 Department of Chemistry, Deogiri College, Aurangabad, (MS), India
* Correspondence: dattatraya.pansare7@gmail.com (D.P.);

Scopus Author ID 55623428200

Received: 1.07.2021; Revised: 15.08.2021; Accepted: 19.08.2021; Published: 30.10.2021

Abstract: Eco-friendly, reusable ZnCr$_2$O$_4$ Nano catalyzed tetrahydroquinoline derivatives are prepared via Povarov reaction route from aromatic aldehydes, α-amino napthalene, and 2,3-dihydrofuran under reflux/ultrasonic irradiation methods. This several affords several benefits like good to excellent yields, a higher percentage of atom economy. Substituted tetrahydroquinolines have been shown great biological potential.

Keywords: Povarov reaction; tetrahydroquinoline; ZnCr$_2$O$_4$; multi-component reaction.

© 2021 by the authors. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

1. Introduction

Recently, three-component reactions allow the construction of several new bonds in single pot reactions (MCRs) have uplifting importance in synthetic heterogenic chemistry, and their routes provide excellent benefits over conventional synthetic techniques [1] like saved reaction time, low energy consumption, high degree-atom economy, improved percentage of yield, easier progress of the reaction, less handling of hazardous substances are most importance [2]. Tetrahydroquinoline derivatives are one of the important classes of natural products, and they cover a broad area of biological fields such as cytotoxic, psychotropic, anti-allergic, antipyretic, anti-inflammatory, antimicrobial, antibacterial, estrogenic, antimalarial, antitumoral, antiplatelet, and anticancer [3]. Povarov (Aza Diels-Alder) reaction is one of the powerful and efficient tools for the synthesis of substituted tetrahydroquinolines [4]. The imines formed from aldehydes and aromatic amines act as heterodienes, and they cyclize with various dienophiles in the presence of various Lewis’s acid catalysts. The Lewis acid like AlCl$_3$ [5], ZnCl$_3$ [6], BF$_3$OEt$_2$ [7], TiCl$_4$ [8], InCl$_3$ [9], ZrCl$_4$ [10], trifluoroacetic acid [11], p-TsOH [12], and HBH$_3$ [13], Lanthanide triflates [14], CAN [15], L-proline [16], protic acids [17], montmorillonite clay [18] and polymer-supported benzotriazole [19] has been used to catalysed in Povarov reactions. Besides, the Povarov (Aza-Diels-Alder) reactions have been reported to be carried under microwave irradiations and photochemical conditions as well as water media and ionic liquids [20]. Ultra-sonochemistry is the biggest application of ultrasound to chemical synthesis and its processes. Luche and Co-workers have described a number of schemes that
supplied the fundamental of ultra-sonochemistry [21]. Ultrasound technique can act for many organic syntheses due to Pressure inside the bubbles, cavitation collapse, and cavity induced at high temperature, and increases mass transfer [22]. This technique provides significant benefits compared to traditional techniques like short reaction time, low power consumption, a higher percentage of yields, mild reaction conditions, and easier handling [23].

Here, because of the above discussion and continuation of our previous work on thiazole and thiazolidinones of medicinal interest [24-35], we have reported on the three-component in one pot, recyclable ZnCr$_2$O$_4$ nano catalyzed Povarov (Aza-Diels-Alder) reaction for preparation of substituted tetrahydroquinolines under conventional/ultrasonic irradiation techniques.

2. Materials and Methods

2.1. General characterization information.

All chemicals were used AR Grade. All chemicals were purchased from Avro Chemical Laboratory. The reaction was carried out in 5 L liquid holding capacity ultrasonic cleaner (230 V AC, 50 Hz power) at 70°C temperature. The reactor was 100 ml Round Bottom flask. The water bath temperature is controlled by the addition or removal of water. Synthesized Tetrahydroquinoline derivatives were evaluated for spectroscopic characterization, such as FT-IR spectra were recorded on Bruker FT-IR spectrometer using KBr disc, the frequencies are reported in cm$^{-1}$. 1H NMR spectra were recorded a Bruker DRX-300 and Bruker 400MHz NMR spectrometer, 13C spectra were recorded on a Bruker DRX75 and 100 MHz NMR in CDCl$_3$/DMSO-d_6. Elemental analysis was performed using an Elementor Vario MICRO cube instrument. The Tetrahydroquinoline reaction was monitored by TLC technique (silica gel, 60F254 aluminium sheet as an absorbent). The melting point was measured on the Gallen Kamp melting point apparatus.

2.2 General procedure for the synthesis substituted Tetrahydroquinoline (4a-j).

Aryl imine (1) (1.00 mmol), Aromatic aldehydes (2a-j) (1.00 mmol), freshly, pure 2,3-dihydrofuran (3) (3.00 mmol) were added successively to ZnFe$_2$O$_4$ (10 mol %) in dry PhMe (4.00 ml) at room temperature. The reaction was reflux at 110°C for 5 hours under the nitrogen atmosphere. Completion of the reaction was monitored through TLC. The reaction mixture was diluted with water (10 ml) and extracted with ethyl acetate (2 x 10 ml). The combined organic phase was dried using Na$_2$SO$_4$, filtered, and concentrated in a vacuum. Resulted product of yield was purified by recrystallization of pure ethanol.

2.3. General procedure for the synthesis substituted Tetrahydroquinoline under ultrasonic irradiation method (4a-j).

For ultrasonication irradiation method, Aryl imine (1) (1.00 mmol), Aromatic aldehydes (2a-j) (1.00 mmol), freshly, pure 2,3-dihydrofuran (3) (3.00 mmol) were added successively to a solution of ZnFe$_2$O$_4$ (5 mol %) in dry PhMe (3.00 ml) at room temperature. The reaction was irradiated at 70°C for 50 minutes under the nitrogen atmosphere. The reaction flask was placed at the center of the ultrasonic clear bath, and the surface of reactants was placed slightly lower than the level of the ultrasonic cleaner water bath. We have maintained the temperature of the water bath by the addition or removal of water. Completion of the
reaction was monitored through TLC. The reaction mixture was diluted with water (10 x 2 ml) and extracted with ethyl acetate (2 x 10 ml). The combined organic phase was dried using Na₂SO₄, filtered, and concentrated in a vacuum. Resulted product of yield was purified by recrystallization of pure ethanol.

2.3.1. 11-(phenyl)-2,3,3a,10,11,11a-hexahydrobenzo[h]furo[2,3-c]quinoline (4a).

Blackish grey crystal; M.P. 215-218 °C; FTIR (KBr cm⁻¹) 3357(-NH), 2922(-CH), 1578 (-C=C- aromatic), 1216 (ether); ¹H NMR (400 MHz, DMSO) δ 9.92 (s, 1H, D₂O exchangeable -NH), 8.32-7.47 (m, 6H,Ar),7.62-7.10 (m, 5H,Ar), 4.8 (t, 1H, -CH), 4.39 (d, 1H, -CH). 3.68-3.86 (m, 2H, -CH₂), 2.42 (m, 1H, -CH₂), 1.1-1.7 (m, 2H, -CH₂); ¹³N MNR (100 MHz, DMSO) δ 191.98, 157.45, 153.97, 153.64, 127.92, 126.23, 125.36, 113.12, 112.20, 111.53, 110.14, 105.25, 92.23, 78.08, 76.11, 40.02, 38.13 ppm. Elemental Analysis: C₂₁H₁₉NO. C, 83.69, H,6.35, N, 4.65; Found C, 83.76, H, 6.41, N, 4.62.

2.3.2. 11-(2,5-dimethoxyphenyl)-2,3,3a,10,11,11a-hexahydrobenzo[h]furo[2,3-c]quinoline (4b).

White crystal; M.P. 220-222°C; FTIR (KBr cm⁻¹) 3324(-NH), 2910(-CH), 1568 (-C=C- aromatic), 1210 (ether); ¹H NMR (400 MHz, DMSO) δ9.96 (s, 1H, D₂O exchangeable -NH), 8.32-7.45 (m, 6H,Ar), 6.9-7.10 (m, 2H,Ar), 6.75 (s, 1H, Ar),4.8 (t, 1H, -CH), 4.38 (d, 1H, -CH); 3.77-3.85 (m, 2H, -CH₂), 3.8 (s, 6H, -CH₃), 2.43 (m, 1H, -CH), 1.1-1.7(m, 2H, CH₂); ¹³N NMR (100 MHz, DMSO) δ189.51, 156.24, 153.76, 151.34, 127.92, 125.36, 113.12, 112.20, 111.53, 110.14, 105.25, 92.23, 78.08, 76.11, 40.02, 38.13 ppm. Elemental Analysis: C₂₁H₁₉NO. C, 83.69, H,6.35, N, 4.65; Found C, 83.76, H, 6.41, N, 4.62.

2.3.3. 11-(4-cynophenyl)-2,3,3a,10,11,11a-hexahydrobenzo[h]furo[2,3-c]quinoline (4c).

Yellow crystal; M.P. 250-253 °C; FTIR (KBr cm⁻¹) 3324(-NH), 3372(-NH), 2965(-CH), 2183(-CN), 1559 (-C=C- aromatic), 1215 (ether); ¹H NMR (400 MHz, DMSO) δ 10.14 (s, 1H, D₂O exchangeable -NH), 8.33- 7.45(m, 6H,Ar), 7.64 (d, 2H, Ar), 7.34 (d,2H, Ar), 4.82 (t, 1H, CH), 4.37 (d, 1H, CH), 3.77-3.85 (m, 2H, CH₂), 2.43 (m, 1H, CH), 1.1-1.7(m, 2H, CH₂); ¹³N NMR (100 MHz, DMSO) 188.51, 156.24, 153.76, 151.34, 127.72, 125.26, 124.96, 112.90, 111.70, 111.34, 110.34, 104.37, 93.19, 78.0, 76.0, 56.10, 40.0, 38.0; Elemental Analysis: C₂₁H₂₀N₂O, C, 76.43, H, 6.41, N, 3.88; Found C, 73.43, H, 6.41, N, 3.88.

2.3.4. 11-(3-methoxy-4-hydroxyphenyl)-2,3,3a,10,11,11a-hexahydrobenzo[h]furo[2,3-c]quinoline (4d).

Brown crystal; M.P. 210-212 °C; FTIR (KBr cm⁻¹) 3377(-OH), 3338(-NH), 2940(-CH), 1556 (-C=C- aromatic), 1213(ether); ¹H NMR (400 MHz, DMSO) δ 9.95 (s, 1H, D₂O exchangeable -NH), 8.32-7.44 (m, 6H,Ar),7.12-6.92 (d, 2H,Ar), 7.02 (s, 1H, Ar), 4.9 (s, 1H,-OH), 4.8 (t, 1H, -CH), 4.39 (d, 1H, -CH), 3.67-3.88 (m, 2H, -CH₂), 3.8 (s, 3H, -CH₃), 2.43 (m, 1H, -CH₂), 1.1-1.8 (m, 2H, -CH₂); ¹³N NMR (100 MHz, DMSO) 192.60, 157, 153.98, 152.44, 128.02, 126.26, 125.16, 113.10, 112.20, 111.53, 110.14, 105.01, 93.20, 78.0, 76.0, 56.11, 40.10, 38.5; Elemental Analysis: C₂₂H₂₁NO₃, C, 76.06, H, 6.09, N, 4.03; Found C, 76.06, H, 6.09, N, 4.03.

2.3.5. 11-(3-bromophenyl)-2,3,3a,10,11,11a-hexahydrobenzo[h]furo[2,3-c]quinoline (4e).

https://nanobioletters.com/
Brownish crystal; M.P. 195-197°C: FTIR (KBr cm⁻¹) 3372(-NH), 2930(-CH), 1581(-C=C-aromatic), 1237 (ether); ¹H NMR (400 MHz, DMSO) δ 9.93 (s, 1H, D₂O exchangeable -NH), 8.33-7.47 (m, 6H,Ar),7.46 (s, 1H,Ars), 7.52-7.26(m, 3H, Ar), 4.8 (t, 1H, -CH), 4.39 (d, 1H, -CH), 3.67-3.88 (m, 1H, -CH), 2.44 (m, 2H, -CH₂), 1.1-1.79 (m, 2H, -CH₂); ¹³H NMR (100 MHz, DMSO) 192.63, 148.25, 154.18, 152.10, 123.77, 126.12, 124.96, 114.00, 112.21, 111.62, 110.04, 105.11, 93.31, 78.12, 76.06, 40.25, 38.07; Elemental Analysis: C₂₁H₁₈BrNO C, 66.33, H, 4.77, N, 3.68, Founded: C, 66.36, H, 4.79, N, 3.63.

2.3.6. -(4-methoxyphenyl)-2,3,3a,10,11,11a-hexahydrobenzo[h]furo[2,3-c]quinoline (4f).

Whitish Grey crystals; M.P. 216-218°C: FTIR (KBr cm⁻¹) 3377(-NH), 2931(-CH), 1562(-C=C- aromatic), 1234 (ether); ¹H NMR (400 MHz, DMSO) δ 9.94 (s, 1H, D₂O exchangeable -NH), 8.31-7.43 (m, 6H,Ar),7.23 (d, 2H,Ar), 7.04 (d, 2H, Ar), 4.81 (t, 1H, -CH), 4.40 (d, 1H, -CH), 3.67-3.86 (m, 2H, -CH₂), 3.82 (s, 3H, -CH₃), 2.44 (m, 1H, -CH₂), 1.13-1.80 (m, 2H, -CH₂); ¹³H NMR (100 MHz, DMSO) 189.63, 157.25, 154.15, 152.54, 128.22, 126.46, 125.12, 113.08, 112.15, 111.51, 111.01, 105.31, 92.96, 78.01, 76.22, 56.21, 40.30, 38.06; Elemental Analysis: C₂₂H₂₁NO₂, C, 77.73, H, 6.39, N, 4.23, Founded: C, 77.68, H, 6.42, N, 4.19.

2.3.7. 11-(4-chlorophenyl)-2,3,3a,10,11,11a-hexahydrobenzo[h]furo[2,3-c]quinoline (4g).

White crystals; M.P. 222-223°C: FTIR (KBr cm⁻¹) 3382(-NH), 2917(-CH), 1563(-C=C- aromatic), 1209 (ether); ¹H NMR (400 MHz, DMSO) δ 9.96 (s, 1H, D₂O exchangeable -NH), 8.31-7.45 (m, 6H,Ar),7.66 (d, 2H,Ar), 7.52 (d, 2H, Ar), 4.80 (t, 1H, -CH), 4.41 (d, 1H, -CH), 3.67-3.85 (m, 2H, -CH₂), 2.44 (m, 1H, -CH₂), 1.13-1.78 (m, 2H, -CH₂); ¹³H NMR (100 MHz, DMSO) 186.41, 148.60, 148.40, 148.11, 139.99, 136.80, 131.14, 129.79, 131.72, 127.02, 126.81, 126.44, 126.57, 123.97, 123.91, 113.30, 93.00, 79.12, 78.00, 40.12, 38.20.; Elemental Analysis: C₂₁H₁₈ClNO C, 77.11, H, 5.40, N, 4.17, Founded: C, 77.03, H, 5.37, N, 4.23.

2.3.8. 11-(2,4-dichlorophenyl)-2,3,3a,10,11,11a-hexahydrobenzo[h]furo[2,3-c]quinoline (4h).

White crystals; M.P. 226-228°C: FTIR (KBr cm⁻¹) 3384(-NH), 2932(-CH), 1545 (-C=C-aromatic), 1218 (ether); ¹H NMR (400 MHz, DMSO) δ 9.98 (s, 1H, D₂O exchangeable -NH), 8.32-7.47 (m, 6H,Ar),7.78 (s, 1H,Ar), 7.46 (d, 1H, Ar), 7.11 (d, 1H, Ar), 4.82 (t, 1H, -CH), 4.40 (d, 1H, -CH), 3.67-3.86(m, 2H, -CH₂), 2.45 (m, 1H, -CH₂), 1.14-1.79 (m, 2H, -CH₂); ¹³H NMR (100 MHz, DMSO) 190.61, 156.00, 153.88, 12.44, 127.92, 126.16, 125.10, 113.13, 112.21, 121.93, 110.09, 105.11, 93.19, 78.05, 76.11, 40.22, 38.12; Elemental Analysis: C₂₁H₁₇Cl₂NO C, 68.12, H, 4.63, N, 3.78, Founded: C, 68.21, H, 4.66, N, 3.71.

2.3.9. 11-(4-nitrophenyl)-2,3,3a,10,11,11a-hexahydrobenzo[h]furo[2,3-c]quinoline (4i).

Yellow crystals; M.P. 232-233°C: FTIR (KBr cm⁻¹) 3300(-NH), 2921(-CH), 1550 (-C=C-aromatic), 1217 (ether); ¹H NMR (400 MHz, DMSO) δ 10.00 (s, 1H, D₂O exchangeable -NH), 8.77-7.10 (m, 6H,Ar),8.11 (d, 2H,Ar), 7.61 (d, 2H, Ar), 4.80 (t, 1H, -CH), 4.37 (d, 1H, -CH), 3.68-3.33 (m, 2H, -CH₂), 2.44 (m, 1H, -CH₂), 1.1-1.45 (m, 2H, -CH₂); ¹³H NMR (100 MHz, DMSO) 187.51, 158.69, 149.30, 147.51, 141.90, 133.90, 130.04, 128.89, 127.92, 126.96, 126.80, 126.34, 126.25, 124.17, 123.81, 113.20, 93.00, 79.10, 78.00, 40.02, 38.23; Elemental Analysis: C₂₁H₁₈N₂O₃, C, 72.82, H, 5.24, N, 8.09, Founded: C, 72.86, H, 5.30, N, 8.06.
2.3.10. 11-(4-fluorophenyl)-2,3,3a,10,11,11a-hexahydrobenzofuro[2,3-c]quinoline (4j).

Pale Yellow crystals; M.P. 211-213°C: FTIR (KBr cm⁻¹) 3321(-NH), 2920(-CH), 1536(-C=O-aromatic), 1205 (ether); ¹H NMR (400 MHz, DMSO) δ 9.94 (s, 1H, D₂O exchangeable -NH), 8.31-7.44 (m, 6H,Ar), 7.32 (d, 2H,Ar), 7.21 (d, 2H, Ar), 4.80 (t, 1H, -CH₂), 4.39 (d, 1H, -CH), 3.66-3.80 (m, 2H, -CH₂), 2.43 (m, 1H, -CH₂), 1.13-1.70 (m, 2H, -CH₂); ¹³C NMR (100 MHz, DMSO) 179.21, 152.49, 148.30, 147.33, 141.84, 133.72, 131.14, 127.89, 127.88, 127.16, 126.65, 125.83, 124.10, 113.90, 92.90, 78.93, 78.00, 40.00, 38.13; Elemental Analysis : C, 78.98, H, 5.68, N, 4.39, Founded: C, 78.99, H, 5.71, N, 4.20.

3. Results and Discussion

Although cyclopentadiene has been extensively used in three-component one-pot Povarov (Aza-Diels-Alder) reaction, there are few examples of tetrahydroquinolines synthesized using the Povarov reaction of 2,3 dihydrofuran.

In the present study, we reported mild and efficient conditions for the synthesis of tetrahydroquinolines derivatives (Scheme 1, Table 1) through Povarov ((Aza-Diels-Alder) reaction using ZnCr₂O₄ nanocatalyst with good to excellent yields. This reaction was first explored by stirring a reaction mixture of 1-amino naphthylamine (1), benzaldehyde (2a), and 2,3 dihydrofuran (3) with ZnCr₂O₄ nanocatalyst 10 mol % at room temperature in ethanol solvent for 20 hours (table 1). Then the same reaction was carried out in refluxing with ethanol solvent for 6 hours but again, the tetrahydroquinolines product was not observed at room temperature. After we changed solvent like toluene. The tetrahydroquinolines product was not observed at room temperature. Once again, the same reaction mixture was refluxed, but that time provided 110°C temperature for 20 hours. tetrahydroquinolines, 60 % product, was observed due to the significant effect of temperature (Table 1).

Finally, all the above experiments were performed under ultrasonic irradiation in order to observe the effect of the ultrasonic irradiations. The reaction mixture of 1-amino naphthylamine (1), benzaldehyde (2a), and 2,3 dihydrofuran (3) with ZnCr₂O₄ 10 mol % at room temperature in PhMe solvent for 5 hours did not give THQs product (Table 1). Then, we changed the reaction temperature from room temperature to 70°C gave the THQs 75 % product; the reaction was completed in 50 minutes (Table 1). In the present study, we sequenced observed the effect of the amount of ZnCr₂O₄ nanocatalyst on the reaction; then, we performed the same experiments using the varied amount of catalyst as shown in Table 1. If the amount of ZnCr₂O₄ decreased to 15 %, 10 %, and 5%, the yield of the THQs increased to 75 %, 76 %, and 78 %, respectively. From the optimal above, it has been shown that 1-amino naphthylamine (1), benzaldehyde (2a), and 2,3 dihydrofuran (3) with ZnCr₂O₄ 5 mol % at 70°C in toluene under the ultrasonic irradiation presented an efficient protocol in terms of and shorter reaction time and excellent yield. By using these optimal reaction conditions, we have then examined various functional group-containing aromatic aldehydes in conventional and ultrasonic irradiated catalytic Povarov reactions. Various N-arylimines cyclized smoothly with 2,3 dihydrofuran (3) under conventional and ultrasonic techniques to afford the corresponding tetrahydroquinolines. Comparatively, in every case, ultrasonic irradiation improved the percentage of yields, and reactions were completed within 50 minutes. (Table 2). The effect of ultrasound was equally effective on both electron-deficient and electron-rich aromatic aldehydes.
Scheme 1. One-pot Povarov (Aza-Diels-Alder) reaction of amine (1), aromatic aldehydes (2a-j), and 2,3 dihydrofuran (3) with ZnCr$_2$O$_4$ catalyst. Method A: 10 mol % ZnCr$_2$O$_4$ catalyst reflux in PhMe at 110°C for 5 hours. Method B: 5 mol % ZnCr$_2$O$_4$ catalyst ultrasound irradiated in PhMe at 70°C for 50 minutes.

Table 1. Screening for Direct Povarov reaction with 2,3 dihydrofuran (3).

Entry	Tech.	Solvent	Catalyst	Temp. (°C)	Time	Yields (%)
1	Stirring	Ethanol	ZnCr$_2$O$_4$ (10 mol %)	r.t.	20 hrs	-
2	Stirring	PhMe	ZnCr$_2$O$_4$ (10 mol %)	85	6 hrs	-
3	Stirring	PhMe	ZnCr$_2$O$_4$ (10 mol %)	110	6 hrs	60
4	Ultrasound	PhMe	ZnCr$_2$O$_4$ (15 mol %)	70	5 hrs	75
5	Ultrasound	PhMe	ZnCr$_2$O$_4$ (10 mol %)	70	50 mins	76
6	Ultrasound	PhMe	ZnCr$_2$O$_4$ (5 mol %)	70	50 mins	78

Reaction condition: naphthylamine (1) (1 mmol), aromatic aldehydes (2a-j) (1 mmol), 2,3 dihydrofuran (3) (3 mmol) dry toluene (4 ml).

Table 2. Direct Povarov reaction with 2,3 dihydrofuran.

Entry	R	Comp.	Yield (%) (Method A)	Yield (%) (Method B)
1.	Phenyl	4a	60	80
2.	2,5-Dimethoxyphenyl	4b	63	79
3.	4-Cyano phenyl	4c	61	78
4.	3-Methoxy,4-Hydroxyphenyl	4d	65	81
5.	3-Bromophenyl	4e	58	78
6.	4-Methoxyphenyl	4f	55	77
7.	4-Chlorophenyl	4g	59	80
8.	2,4-Dichlorophenyl	4h	54	78
9.	4-Nitrophenyl	4i	53	76
10.	4-Fluorophenyl	4j	55	77

Figure 1. Recyclability of ZnCr$_2$O$_4$ nanocatalyst.

Recyclability of ZnCr$_2$O$_4$ Nano-catalyst under Reflux conditon method A

Recyclability of ZnCr$_2$O$_4$ Nano-catalyst under Ultrasoiongation method B

Reaction condition: Method A: 1 naphthylamine (1) (1 mmol), aromatic aldehydes(2a-j) (1 mmol), 2,3 dihydrofuran (3) (3 mmol), ZnCr$_2$O$_4$ (10 mol %), dry toluene (4 ml), reflux at 110°C. Method B: 1-naphthylamine (1) (1 mmol), aromatic aldehydes(2a-j) (1 mmol), 2,3 dihydrofuran (3) (3 mmol), ZnCr$_2$O$_4$ (5 mol %), dry toluene (4 ml) ultrasonic irradiation at 70°C.

Recyclability of ZnFe$_2$O$_4$: Recyclability of ZnCr$_2$O$_4$ nanocatalyst was studied for the model reaction. Isolation of ZnCr$_2$O$_4$ nanocatalyst was carried out through centrifuging reaction mass after diluting ethyl acetate solvent. Consequently, ZnCr$_2$O$_4$ nanocatalyst proved...
its ability to re-use two-three times with the corresponding yield and no change in yield purity. The reusability of the ZnCr$_2$O$_4$ nano-catalyst for three cycles is shown in Figure 1.

Ultrasound-assisted recyclable ZnCr$_2$O$_4$ nano catalytic amount is higher than that of the refluxing method due to the ultrasonic effect. The synthesized products were identified by FT-IR, 1H NMR, 13C NMR, and mass spectroscopic data.

4. Conclusions

We conclude that we have developed an efficient and easy method for the synthesis of substituted tetrahydroquinolines (4a-j) through multi-component one-pot Povarov (Aza-Diels-Alder) reaction of 1-naphthylamine (1), aromatic aldehydes (2a-j), 2,3 dihydrofuran (3), using commercially available ZnCr$_2$O$_4$ as a nanocatalyst. One of the important benefits we are mentioned here, ZnCr$_2$O$_4$ nanocatalyst was recyclable and reusable. Recyclable catalytic amount ZnCr$_2$O$_4$ nanoparticles were slightly higher in the Ultrasonic method than that of a conventional method. Hence, we suggest that the ultrasonic method for organic synthesis purposes.

Funding

This research received no external funding.

Acknowledgments

The authors are grateful to the principal, Doshi Vakil College, Goregaon Raiagad, for providing research-related necessary facilities.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Domling, A. Recent developments in isocyanide based multi-component reactions in applied chemistry. *Chem. Rev.* **2006**, *106*, 17–89, https://doi.org/10.1021/cr0505728.
2. Periyaraja, S.; Shanmugam, P.; Mandal, A.B.; Kumar, T.S.; Ramamurthy, P. Unusual reactivity of 1-aminooctraquinone in copper catalyzed multi-component reaction with isatins and aryl alkynes: synthesis and photophysical properties of regioisomeric fluorescent 3-spiroheterocyclic 2-oxindoles. *Tetrahedron*. **2013**, *69*, 2891–2899, https://doi.org/10.1016/j.tet.2013.02.037.
3. Gore, V.K.; Ma, V.V.; Yin, R.; Ligutti, J.; Immke, D.; Doherty, E.M.; Norman, M.H. Structure–activity relationship (SAR) investigations of tetrahydroquinolines as BKCa agonists. *Bioorg. Med. Chem. Lett.* **2010**, *20*, 3573–3578, https://doi.org/10.1016/j.bmcl.2010.04.125.
4. Perez-Ruiz, R.; Domingo, L.R.; Jimenez, M.C.; Miranda, M.A. Experimental and Theoretical Studies on the Radical-Cation-Mediated Imino-Diels–Alder Reaction. *Org. Lett.* **2011**, *13*, 5116–5119, https://doi.org/10.1021/ol201984s.
5. Fadel, F.; Titouani, S.L.; Soufiaoui, M.; Ajamay, H.; Mazzah, A. Synthèse de nouveaux dérivés tétrahydroquinoléines et quinoléines via la réaction d’aza-Diels–Alder suivie d’aromatisation. *Tetrahedron Lett.* **2004**, *45*, 5905–5908, https://doi.org/10.1016/j.tetlet.2004.05.127.
6. Kervin J.F.; Danishefsky, S.J. On the lewis acid catalyzed cyclocondensation of imines with a siloxydiene. *Tetrahedron Lett.* **1982**, *23*, 3739–3742, https://doi.org/10.1016/S0040-4039(00)87694-7.
7. Zhang, W.; Dai, Y.; Wang, X.; Zhang, W. One-pot synthesis of pyrrolidino- and piperidinoquinolinolines by three-component aza-Diels–Alder reactions of in situ generated N-arylimesines and cyclic enamides. *Tetrahedron Lett.* **2011**, *52*, 6122–6126, https://doi.org/10.1016/j.tetlet.2011.09.021.
8. Makino, K.; Henmi, Y.; Terasawa, M.; Hara, O.; Hamada, Y. Remarkable effects of titanium tetrachloride in diastereoselective aza Diels–Alder cycloaddition: synthesis of (S)-piperazic acid. *Tetrahedron Lett.* **2005**, *46*, 555–558, https://doi.org/10.1016/j.tetlet.2004.12.003.
9. Babu, G.; Perumal, P.T. Imino Diels-Alder reactions catalyzed by indium trichloride (InCl3). Facile synthesis of quinoline and phenanthridinone derivatives. *Tetrahedron Lett.* **1997**, *38*, 5025–5026, https://doi.org/10.1016/S0040-4099(97)01060-5

10. Das, B.; Reddy, M.R.; Reddy, V.S.; Ramu, R. Novel and efficient Lewis acids as catalysts for single-step synthesis of pyrano- and furanofuroquinolines. *Chem. Lett.* **2004**, *33*, 1526–1528, https://doi.org/10.1246/cl.2004.1526.

11. Mellor, J.M.; Merriman, G.D.; Riviere, P. Synthesis of tetrahydroquinolines from aromatic amines, formaldehyde and electron rich alkenes: evidence for nonconcertedness. *Tetrahedron Lett.* **1991**, *32*, 7103–7106, https://doi.org/10.1016/0040-4099(91)80552-7.

12. Boger, D.L. Comprehensive organic synthesis. In: *Pergamon*. Trost, B.M.; Fleming, I. (Eds.), *5*, Oxford, 1991; pp. 451.

13. Akiyama, T.; Takaya, J.; Kagoshima, H. Brønsted acid-catalyzed aza Diels-Alder reaction of Danishefsky's diene with aldimine generated in situ from aldehyde and amine in aqueous media. *Tetrahedron Lett.* **1999**, *40*, 7831–7834, https://doi.org/10.1016/S0040-4099(99)01630-5.

14. Turhan, K.; Pelit, E.; Turgut, Z. Aza-Diels–Alder Reactions with Lanthanide Triflates: Syntheses of Quinoline and Phenanthridine Derivatives. *Synth. Commun.* **2009**, *39*, 1729–1741, https://doi.org/10.1080/00397910902585902.

15. Sridharan, V.; Avendano, C.; Menendez, J.C. CAN-catalyzed three-component reaction between anilines and alkyl vinyl ethers: stereoselective synthesis of 2-methyl-1,2,3,4-tetrahydroquinolines and studies on their aromatization. *Tetrahedron* **2007**, *63*, 673–681, https://doi.org/10.1016/j.tet.2006.11.002.

16. Rajanarendar, E.; Reddy, M.N.; Reddy, K.G.; Krishna, S.R. 1-Proline catalyzed efficient one-pot three-component aza-Diels–Alder reactions on nitrostyrylisoxazoles: a facile synthesis of new isoxazolyl tetrahydroquinolines and isoxazololo[2,3-alpyrimidines. *Tetrahedron Lett.* **2012**, *53*, 2909–2913, https://doi.org/10.1016/j.tetlet.2012.04.002.

17. Nagaiah, K.; Sreenu, D.; Srinivasa Rao, R.; Vashishta, G.; Yadav, J.S. Phosphomolybdic acid catalyzed efficient one-pot three-component aza-Diels–Alder reactions under solvent-free conditions: a facile synthesis of trans-fused pyrano- and furanotetrahydroquinolines. *Tetrahedron Lett.* **2006**, *47*, 4409–4413, https://doi.org/10.1016/j.tetlet.2006.04.085.

18. Yadav, J.S.; Reddy, B.V.S.; Sadasiv, K.; Reddy, P.S.R. Montmorillonite clay-catalyzed [4+2] cycloaddition reactions: a facile synthesis of pyrano- and furanofuroquinolines. *Tetrahedron Lett.* **2002**, *43*, 3853–3856, https://doi.org/10.1016/S0040-4099(02)00679-2.

19. Palaniappan, Rajender, B.; Umashankar, M. Controllable stereoselective synthesis of cis or trans pyrano and furano tetrahydroquinolines: Polyaniline catalyzed [4+2] cycloaddition reactions: a facile synthesis of pyrano and furanotetrahydroquinolines. *Tetrahedron Lett.* **2006**, *47*, 4409–4413, https://doi.org/10.1016/j.tetlet.2006.04.085.

20. Mason, T.J. Sonochemistry and the environment - providing a green link between chemistry, physics and engineering. *Ultrasound. Sonochem.* **2007**, *14*, 476–483, https://doi.org/10.1016/j.ultsonch.2006.10.008.

21. Kumar, H.; Parmar, A. Ultrasound promoted ZrCl4 catalyzed rapid synthesis of substituted 1,2,3,4-tetrahydropyrimidine-2-ones in solvent or dry media. *Ultrasound. Sonochem.* **2008**, *15*, 129–132, https://doi.org/10.1016/j.ultsonch.2007.02.003.

22. Chebbi, N.; Cintas, P.; Luche, J.L. Sonochrome effects in the additions of furan to masked orthobenzoquinones. *Ultrason. Sonochem.* **2003**, *10*, 25–31, https://doi.org/10.1016/S1350-4177(02)00103-7.

23. Chebbi, N.; Cintas, P.; Luche, J.L. Sonochrome effects in the additions of furan to masked orthobenzoquinones. *Ultrason. Sonochem.* **2007**, *14*, 476–483, https://doi.org/10.1016/j.ultsonch.2006.10.008.

24. Chebbi, N.; Cintas, P.; Luche, J.L. Sonochrome effects in the additions of furan to masked orthobenzoquinones. *Ultrason. Sonochem.* **2008**, *15*, 129–132, https://doi.org/10.1016/j.ultsonch.2007.02.003.

25. Chebbi, N.; Cintas, P.; Luche, J.L. Sonochrome effects in the additions of furan to masked orthobenzoquinones. *Ultrason. Sonochem.* **2009**, *36*, 383–386, https://doi.org/10.1016/j.ultsonch.2009.02.011.

26. Chebbi, N.; Cintas, P.; Luche, J.L. Sonochrome effects in the additions of furan to masked orthobenzoquinones. *Ultrason. Sonochem.* **2010**, *17*, 383–386, https://doi.org/10.1016/j.ultsonch.2009.02.011.
Iron (III) Tartarate Complex. *Lett. App. NanoBioScience* **2022**, *11*, 3208–3217, https://doi.org/10.33263/LIANBS111.32083217.

30. Shelke, R.N.; Pansare, D.N.; Pawar, C.D.; Shinde, D.B.; Thore, S.N.; Pawar, R.P.; Bembalkar, S.R. Synthesis of Novel 2H-Pyrano [2,3-D]Thiazole-6-Carbonitrile Derivatives in Aqueous Medium. *Res. Rev. J. Chem.* **2016**, *5*, 29-36.

31. Pawar, C.D.; Pansare, D.N.; Shinde, D.B. Synthesis and antiproliferative evaluation of new (4-substituted-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-yl)methane substituted sulfonamide derivatives. *Eur. J. Chem.* **2017**, *8*, 384-390, https://doi.org/10.5155/eurjchem.8.4.384-390.1635.

32. Dhas, A.K.; Deshmukh, S.U.; Pansare, D.N.; Pawar, R.P.; Kakade, G. Synthesis of imidazo [1, 2-a] pyridine derivatives using copper silicate as an efficient and reusable catalyst. *Lett. App. NanoBioScience* **2021**, *10*, 2565–2570, https://doi.org/10.33263/LIANBS103.25652570.

33. Chavan, P.N.; Pansare, D.N.; Shelke, R.N.; Shejul S.; Bhoir. P. Ultrasound-assisted synthesis and biological significance of substituted 4H-chromene-3- carbonitrile using greener approaches. *Curr. Chem. Lett.* **2021**, *9*, 43–52, https://doi.org/10.5267/j.ccl.2020.7.003.

34. Pansare, D.N.; Mulla N.A.; Pawar, C.D.; Shende, V.R.; Shinde, D.B. One pot three components microwave assisted and conventional synthesis of new 3-(4-chloro-2-hydroxyphenyl)-2-(substituted) thiazolidin-4-one as antimicrobial agents. *Bioorg. Med. Chem. Lett.* **2014**, *24*, 3569–3573, https://doi.org/10.1016/j.bmcl.2014.05.051.

35. Pansare, D.N.; Shinde, D.B. A facile synthesis of (Z)-5-(substituted)-2-(methylthio)thiazol-4(5H)-one using microwave irradiation and conventional method. *Tet. Lett.* **2014**, *55*, 1107-1110, https://doi.org/10.1016/j.tetlet.2013.12.113.