A Universal Behavior of Half-BPS Probes in the Superstar Ensemble

Ilies Messamah

1 National Institute for Theoretical Physics, School of Physics and Centre for Theoretical Physics, University of the Witwatersrand, Wits 2050, South Africa

e-mail: Ilies.Messamah@wits.ac.za

Abstract: In this paper, we probe the typical states of the superstar ensemble of [1] using half-BPS states of type-IIB string theory on AdS$_5 \times$ S5. We find a very simple universal result that has the structure $\log \langle \langle \psi \, \psi \rangle \rangle_\sigma \approx \alpha h \log N$, where h is the conformal weight of the probe ψ, and α is a constant that depends mainly of the shape of the probe ψ. A complete understanding of some properties of this leading term from the dual effective superstar geometry point of view is still lacking.
1. Introduction

The thermodynamical nature of black holes was revealed by studying the response of black holes to both perturbations in their defining parameters (mass, angular momentum, charge) \[2\], as well as their response to the presence of quantum fields in the bulk of their geometry \[3, 4\]. This unexpected nature of black holes led to the famous black hole puzzles\(^1\): The black hole entropy puzzle, and the information loss puzzle. A lot of effort was spent in the last four decades or so to solve these puzzles. Among the ideas that emerged during this investigation is the fuzzball proposal, first advanced by Mathur and collaborators \[5, 6, 7\]. By now there are many nice reviews on the subject, see for example \[7, 8, 9, 11, 12, 13\]. The idea of the fuzzball proposal is that the black hole geometry is an effective description of an underlying exponentially large system of microstates. It is widely believed that some of these microstates manifest themselves as smooth geometries on the gravity side. However, depending on the kind of black holes under consideration, not all of them can have a gravity description \[14\]. Another point of view that was advanced in \[15\], is that the black hole geometry is the effective description of a set of microstates that do not have a smooth geometry description. The situation is far from being conclusive and we will not be concerned with these issues in the present paper. For a further discussion on these issues see e.g. \[16, 17\].

One of the papers that went beyond comparing the macroscopic and microscopic entropies in checking the fuzzball proposal is \[1\] (see also \[18\] for a different approach). They studied a specific ensemble of heavy half-BPS states of type-IIB string theory on asymptotic \(\text{AdS}_5 \times S^5\), called the superstar ensemble, and constructed its effective dual geometry (see \[19\] for the application of similar ideas to the case of the D1-D5 system). It turned out that this geometry is the same as the one of the superstar of \[20\]. This led them to conjecture that the superstar is an effective description of the superstar ensemble in line with the fuzzball proposal. They supplemented this claim with further checks using some correlation functions. We initiate in this paper a further check of this proposal by studying the effect of light half-BPS probes on the heavy states of the superstar ensemble. We find that at leading order, the final answer is universal and does not depend on the details of the typical states of the superstar ensemble.

This paper is organized as follows. In the second section we quickly review the superstar ensemble and discuss some important properties of its typical states that will be useful later

\(^1\)Another puzzle, the singularity puzzle, is usually added to the list. This puzzle questions the validity of general relativity near the singularity and has nothing to do with the thermodynamical nature of black holes. That is why we did not include it in our list.
on. This material is not new and can be found in [1]. After that, we introduce the different classes of probes that we will be dealing with in this paper, and discuss some of their properties. In the third section, we introduce the two point function which is the main quantity we will be evaluating in this paper. Essentially, half-BPS states of type-IIB string theory on asymptotic \(\text{AdS}_5 \times S^5 \) can be described using Young diagrams (YDs) which are treated as irreducible representations of the unitary group\(^2\) \(U(N) \), where \(N \) is the flux of the background geometry [23, 24]. When evaluating the two point function, we face the problem of decomposing the tensor product of two \(U(N) \) representations into irreducible ones. This is the topic of the fourth section. Although it is impossible to completely carry out this decomposition, we manage to extract enough information about it to be able to evaluate the leading order of the two point function. In the fifth section, we calculate the leading order term of the log of the two point function for the different classes of probes. We close the paper by discussing these results, and pointing out some further directions of research. Part of the conclusion is devoted to discussing a mysterious non-differentiability of the leading term of the two point function at the point \(h \sim N \). A full understanding of this might have deep implications on the physics of black holes. We left some details to the appendices. Among them, let us mention appendix-A which includes a summary of our notations and YD terminology that is heavily used in this paper. We advise the reader to read it before reading the main part of the paper (sections 4 and 5).

2. Backgrounds and probes

Our central aim in this paper is to probe a class of “heavy” half-BPS states of type-IIB string theory on asymptotically \(\text{AdS}_5 \times S^5 \) spacetimes, using “light” half-BPS states of the same theory. By heavy we mean states with energy/conformal weight that scales as \(N^2 \), whereas by light we mean states with energy/conformal weight that scales slower than \(N^2 \). Since on the gravity side, the heavy half-BPS states backreact on spacetime and generate the bulk geometry, an LLM geometry [25], we will call them the background states. The light half-BPS states on the other hand probe these geometries, hence we name them probes.

Our probe analysis will take place entirely in the dual conformal field theory, the \(\mathcal{N} = 4 \) \(SU(N) \) super Yang-Mills theory [26]. As is well known, the half-BPS states of this theory can be described using YDs with at most \(N \) rows [23, 24]. The conformal weight of the state is the total number of the boxes of its corresponding YD. As a result, we will heavily use the YDs technology in this paper. For the needed notions, properties, as well as conventions used in this paper we refer the reader to appendix-A.

In this section, we will review the background states that we are interested in. We will discuss some of their main properties that will be crucial later on. After that, we will discuss the type of probes we will be using and some of their most important properties which will play a prominent role in sections 4 and 5.

\(^2\)Whether the actual group is \(SU(N) \) or \(U(N) \) is still a matter of debate. We expect that our leading large \(N \) result will not be modified if we use \(SU(N) \) group instead. See [21, 22] for details on the use of the \(SU(N) \) group and modifications to be brought to the \(U(N) \) formulas.
2.1 The superstar ensemble

In the following, we review the superstar ensemble discussed in [1, section 3.3] in some detail. Our main interest is the main structure of the typical YDs of this ensemble. Hence, we will neither discuss the mapping between the LLM geometries [25] and the YDs of this ensemble, nor its effective description in terms of the superstar of [20]. We refer the interested reader to the paper [1]. We will start by describing the ensemble and its “average” YD. Then, we will discuss some general properties of the typical states that will be of interest to us in the bulk of the paper. We will be following closely [1].

2.1.1 The ensemble and its limiting shape YD

The superstar ensemble is the set of YDs with fixed number of columns D, fixed number of rows N, and fixed number of boxes Δ, such that:

$$D \sim N, \quad \Delta = \frac{1}{2} N D \sim N^2,$$

which are weighed equally. Let r_i be the length of row i, and let c_j be the number of columns of length j.

In our conventions (see appendix-A), we have the relations:

$$c_N = r_N, \quad c_i = r_i - r_{i+1}; \quad 1 \leq i \leq N - 1.$$

We can describe the superstar ensemble using a canonical ensemble. The associated partition function is given by:

$$Z = \sum_{c_1, c_2, \ldots, c_N = 1}^{\infty} e^{\beta \sum_{j=1}^{N} j c_j - \lambda \sum_{j=1}^{N} c_j} = \prod_{j=1}^{N} \frac{1}{1 - p q^j},$$

where $q = e^{-\beta}$, $p = e^{-\lambda}$, β and λ are some positive parameters that will be fixed later on. Since we are dealing with the canonical ensemble instead of the microcanonical one, we need to fix the average of the number of boxes Δ, as well as the average of the number of columns D such that:

$$\Delta = \langle \sum_{j=1}^{N} j c_j \rangle = q \partial_q \log Z = \sum_{j=1}^{N} j p q^j 1 - p q^j = \frac{1}{2} N D ,$$

$$D = \langle \sum_{j=1}^{N} c_j \rangle = p \partial_p \log Z = \sum_{j=1}^{N} p q^j 1 - p q^j .$$

We restrict ourselves to spelling out the results here, leaving the details to appendix-C.

We find that by fixing β and p as:

$$p = \frac{1 - q^D}{1 - q^{D+N}} \approx \frac{D}{D+N}, \quad \beta \sim \frac{1}{N},$$

we have a different convention for numbering the YD rows than the one used in [1]. We start the numbering from top to bottom, whereas they number the way around, from bottom to top. This is the reason we have different expressions for r_i and c_i than them.
we satisfy the constraints above. The scaling of \(\log q \) with \(N \) is fixed by evaluating the entropy of this ensemble and using that \(\log q = (\partial S/\partial \Delta) \).

When dealing with very large YDs that come with certain probability/weight, it is usually beneficial to construct the limit shape YD. This YD can be thought of as the “average” YD, as it is constructed by finding a relation between the average length of a row and its position. In our present case, if we denote by \(y(x) \) the length of a row whose position is given by its number \(x \), the limit shape YD turns out to be a triangle with the diagonal given by the equation:

\[
y(x) = D \left(1 - \frac{x}{N} \right). \tag{2.7}
\]

According to the usual intuition from statistical mechanics, most of the YDs in the superstar ensemble will be close to this limit shape YD. How close are they will be the subject of the next subsection.

2.1.2 Typical states

In the following, we will summarize some of the main properties of typical YDs in the superstar ensemble that will be of importance to us. More precisely, we want to know the deviation between a random typical YD \(O \) and the limit shape YD \(O_0 \). Since the number of boxes, columns and rows is held fixed in the superstar ensemble, the only thing that can happen is for boxes near the diagonal of \(O_0 \) to move from one row to another.

Let us first worry about boxes in the same row. A good estimate for the number of moved boxes is given by the variance \(\sigma^2(D) \). The reason being that for the limit shape YD, there is a linear relation between \(D \) and the length of a row \(i \), \(O_i = D(1 - i/N) \). For a more precise treatment of \(\sigma(O_i) \) see \[\text{[1]}\]. We have:

\[
\sigma^2(D) = \sum_{i=1}^{N} \left(\langle c_i^2 \rangle - \langle c_i \rangle^2 \right) = (p \partial_p)^2 \log Z \approx \frac{D}{N} (D + N) \sim N. \tag{2.8}
\]

Hence the fluctuation in the length of a row is of order \(\sqrt{N} \). This is the usual thermal fluctuation since the length of almost all of the rows of the limit shape YD is of order \(N \).

The other quantity that will be crucial to us is the total number of migrating boxes i.e. the total number of boxes that are moved around when comparing a typical YD in the superstar ensemble with its limit shape YD. A good estimate of that is the fluctuation in \(\Delta \). We have:

\[
\sigma^2(\Delta) = (q \partial_q)^2 \log Z \approx \frac{1}{2} D (D + N) \sim N^2. \tag{2.9}
\]

Hence, the fluctuation in \(\Delta \) is of order \(N \). Once again, we find the usual thermal fluctuation.

Before moving on, let us estimate the number of corners in a typical YD of the superstar ensemble. This quantity will play an important role later on, see appendix \[\text{[F]}\]. First of all, due to the nature of the limit shape YD, and the fact that both the number of columns and the number of rows are of order \(N \), one easily concludes that we have order \(N \) corners in the limit shape YD \(O_0 \). Next, using the fact that when comparing \(O_0 \) to a typical YD \(O \), the total number of moved boxes is of order \(N \), we arrive at the conclusion that typical
YDs of the superstar ensemble have also order N corners. Let us check this claim in the simple case of the superstar ensemble of YDs with the same number of columns and rows, N. In this case, the limit shape YD O_0 has N corners. Let us suppose for a moment that the number of corners of a typical YD O is of order N^b, where $b \leq 1$. We need to prove that $b = 1$. In order for a typical YD O to have order N^b corners, this YD O needs to have N^b sets of equal length rows. Suppose that there are n_i rows in each set, $i = 1, 2, \ldots, N^b$. Then, the total number of moved boxes $(\delta \Delta)$ in this case is:

$$2 (\delta \Delta) \approx \sum_{i=1}^{N^b} n_i^2 = \sum_{i=1}^{N^b} \left[(n_i - N^{1-b}) + N^{1-b} \right]^2 = \sum_{i=1}^{N^b} \left(n_i - N^{1-b} \right)^2 + N^{2-b} \geq N^{2-b},$$

where we used the fact that $\sum_i n_i = N$. But we know from our discussion above that $(\delta \Delta) \sim N$ at worst. Hence $b = 1$. We can repeat the same arguments for other superstar ensembles, which confirms our previous claim.

Let us summarize the main properties of typical YDs here. If we pick a random typical YD O from the superstar ensemble, almost all of its rows have a length which is of order $^4 N$. Furthermore, this YD O has order N corners.

2.2 The probes and their SU(N) and S_h dimensions

After we discussed the most important properties of our background YDs, we turn our attention to the probe YDs. Their main property is that the total number of their boxes h is much less than N^2 i.e. $h \ll N^2$. Another property of these YDs is that the total number of their rows n equals N at most. This is because we will be treating them as irreducible representations of $U(N)$ when evaluating their two point function in our backgrounds, see section 3.1 for more details.

Among all possible probe YDs, we will limit our discussion in this paper to the homogeneous YDs. These are YDs where the ratio of the numbers of rows (columns) whose length does not scale with N in the same way as the number of columns d (respectively rows n) to the total number of rows (respectively columns) tends to zero in the limit $N \to \infty$. If d denotes the total number of columns, n the total number of rows then we have:

$$h \sim nd. \quad (2.10)$$

For the other kinds of probes, we should think of them as the result of a tensor product of two or more homogeneous probes. In a sense, the homogeneous YDs are our building blocks that generate all the other YDs by the means of taking the tensor product between them. Form now on, whenever we talk about a probe YD we mean a homogeneous one.

Before going on, let us fix the notation once and for all5. ψ will stand for a probe YD, ψ_i the length of its i^{th} row, d the total number of its columns, n the total number of its rows, $\psi_0 = \text{Max} \{d, n\}$, and h the total number of its boxes.

4This is a straightforward result of the combined fact that almost all the rows of the limit shape YD have a length which is of order N, and that the difference in length of the same row in the limit shape YD and a typical YD is at worst of order \sqrt{N}.

5The conventions to be used throughout this paper are collected in appendix-A.
In the remaining of this subsection, we will study the leading behavior of \(\dim_N \psi \) the dimension of a probe \(YD \psi \) as an irreducible representation of \(SU(N) \), as well as \(\dim_h \psi \) its dimension as an irreducible representation of the permutation group \(S_h \). These quantities will play an important role in this paper as they are intimately connected to the decomposition of the tensor product \(O \otimes \psi \) (see section 4 for more details). The latter will play a role in the evaluation of the two point function (3.1) whose leading term we are after. Let us first start by giving two different formulas for the dimension of an \(SU(N) \) irreducible representation specified by a \(YD \psi \) (see for example [27, 28]). The first one is in terms of the difference in the lengths of different rows and reads:

\[
\dim_N \psi = \prod_{k=1}^{N-1} \prod_{i=1}^{N-k} \left(1 + \frac{\psi_i - \psi_i+k}{k} \right).
\]

(2.11)

The second formula is in terms of the hook lengths. It reads:

\[
\dim_N \psi = \frac{\prod_{i,j} h_{i,j} \psi_{i,j}}{H_{\psi} \prod_{i=1}^{N} \prod_{j=1}^{N-i} (N - i + j)},
\]

(2.12)

where \(H_{\psi} = \prod_{i,j} h_{i,j} \), \(h_{i,j} \) is the hook length associated to the box \((i, j) \), see appendix-A for its definition. Although we will heavily use the first expression, we will still need the second expression since it has a similar form as the dimension of \(\psi \) as a representation of the permutation group \(S_h \). The latter reads (see for example [27, 28]):

\[
\dim_h \psi = \frac{h!}{H_{\psi}}.
\]

(2.13)

Since we are working with exponentially large quantities, it is much useful to evaluate the log of these dimensions given that we are interested in the large \(N \) limit. Taking into account that the number of rows of \(\psi \) is given by \(n \leq N \), we find using equation (2.11):

\[
\log \dim_N \psi = \sum_{i=1}^{n} \sum_{j=1}^{n-i} \log \left(1 + \frac{\psi_i - \psi_i+j}{j} \right) + \sum_{i=1}^{n} \sum_{j=n+1-i}^{N-i} \log \left(1 + \frac{\psi_i}{j} \right).
\]

(2.14)

It is clear that the leading term of the expression above will depend on how \(\psi_i \) scales with \(N \). Such behavior leads us to classify the probes into three classes which are the following:

- **Generic probes class:** In this case, both \(n \) and \(d \) are very small compared to \(N \) i.e. \(n, d \ll N \). The reason we call them generic is that they exist for all regimes of \(h \) of interest to us \((h \ll N^2) \).
- **Linear probes class:** In this case, either \(n \) or \(d \) but not both scales as \(N \). The reason we coin them the name linear is that the leading behavior of the log of their \(SU(N) \) dimension is linear in \(h \) as we will see below. This class of probes is associated to the following regime of \(h \): \(N \lesssim h \ll N^2 \).
- **Long probes class:** In this case \(d \gg N \). Notice that this class of probes exists only in the regime \(h \gg N \).
We will also use the nomenclature “non-generic probes class” to collectively denote the linear and long probes classes.

When evaluating the leading order of the log of the SU(N) and S_h dimensions of ψ in the following, we will discuss each class of probes on its own. For reasons that will be clear later on (see section 4), the leading behavior of $\dim_h \psi$ will be of interest to us only if $h \ll N$. We will keep the discussion general and leave the treatment of a concrete example to appendix-D. But before continuing with the discussion of the dimensions of the different probe classes, let us pause for a moment and discuss a curious duality of YDs6 that will be useful below.

2.2.1 An approximate duality of Young diagrams

We know that two YDs that are related by the flip row ↔ column have the same S_h dimension. This is easily understood from equation (2.13) since the number of boxes as well as the hook length remain the same under such a flip. We will show in this section that the leading term of log $\dim_N \psi$ exhibits such an invariance for7 $d \leq N$.

We will assume in the following that $d \ll n$. This assumption is not restrictive since we know that such YDs are one end of this duality. The only non-covered case is when $d \sim n$, but as we will see later on, this case fits nicely in the manipulations used for $d \ll n$. A property that will be used below, which will be argued for in subsections 2.2.2 and 2.2.3 below and further checked in a concrete example in appendix-D, is that the leading behavior of log $\dim_N \psi$ is either of order $h \log N$ or at worst of order h for the cases of interest to us. We will take these properties as granted for now.

Our starting point is the relation (2.12) in the case $d \ll n$. First, we rewrite it as:

$$\log \dim_N \psi = \sum_{i=1}^{N-1} \sum_{j=1}^{\psi_i} \log(N - \psi_i + i + j) - \sum_{i=1}^{N-1} \sum_{j=1}^{\psi_i} \log h_{(i,j)}. \quad (2.15)$$

The duality in this formula is a statement about the exchange $i \leftrightarrow j$. The part that depends only on the hook length is trivially invariant under such a change. The quantity $(i + j)$ is also invariant. The only problematic part is ψ_i. However, its contribution is much smaller than h, and hence, subleading given our claim above. To prove this claim, we use that $\psi_i \ll N$ to expand the log term and get:

$$\delta \log \dim_N \psi \approx \sum_{i=1}^{N-1} \sum_{j=1}^{\psi_i} \frac{\psi_i}{N + i + j} < \sum_{i=1}^{N-1} \frac{\psi_i^2}{N + i} < d^2 \ll h,$$

where we used that $h \sim n d$. Notice that these manipulations do not work if $d \gg n$. But this is not a problem since this regime will be at the other end of the duality for the case $n \gg d$.

6This duality looks like a manifestation of the hole/particle symmetry \cite{Mirzakhani2013, Mirzakhani2014} but not quite. This is because $\dim_N \psi$ does not have a clear physical interpretation. However, through its connection with the decomposition of the tensor product $O \otimes \psi$ (see section 4), it has a connection with the aforementioned symmetry.

7This is because $n \leq N$ as a result of the YD being an U(N) representation.
As already advanced in the beginning, the same manipulations lead to the same conclusion in the case \(n \sim d \). The reason being that, in this case both \(n \) and \(d \ll N \) because we are interested in cases where \(h \ll N^2 \). Hence, these kind of YDs belong to the generic class. Although the correction that we get form the terms depending on \(\psi_i \) will be of order \(h \), the leading behavior of \(\log \dim_N \psi \) is of order \(h \log N \) (see the subsection below, and also appendix-D). Hence, the duality survives in this case as well.

2.2.2 The generic probes class

In this case, we have \(n \ll N \) and \(\psi_i \ll N \). In turns out that we need to distinguish between two cases: \(n \ll d \), and \(d \ll n \). The case \(d \sim n \) is a trivial consequence of the previous two cases. The easiest case to deal with is when we have \(n \ll d \). Let us discuss it first, then turn to the second case \(d \ll n \). In the case \(n \ll d \) (or \(n^2 \ll h \)), we have from equation (2.14) the following upper bound:

\[
\log \dim_N \psi \leq \sum_{i=1}^{n} \sum_{j=1}^{N-i} [\log (j + \psi_i) - \log j] \\
\lesssim \sum_{i=1}^{n} [(N - i + \psi_i) \log(N - i + \psi_i) - (N - i) \log(N - i) - \psi_i \log \psi_i] \\
\lesssim \sum_{i=1}^{n} [\psi_i \log N + \psi_i - \psi_i \log \psi_i] \approx h \log \left(\frac{N}{d} \right), \tag{2.16}
\]

where in the first line we used that \(\psi_i - \psi_{i+j} < \psi_i \) for \(1 \leq i < n \). To move form the first to the second line, we used equation (B.3) to evaluate the sum over \(j \), and to get the third line we used that \(\psi_i \ll N \) and \(n \ll N \). The last result is a consequence of:

\[
\sum_{i=1}^{n} \psi_i \log \psi_i - h \log d = \sum_{i=1}^{n} \psi_i \log \left(\frac{\psi_i}{d} \right) \sim \sum_{i=1}^{n} \psi_i \sim h, \tag{2.17}
\]

where we used the fact that the ratio \(\psi_i/d \) is independent of \(N \) for almost all of the rows.

For the lower bound of (2.14), we get:

\[
\log \dim_N \psi \geq \sum_{i=1}^{n} \sum_{j=n+1-i}^{N-i} [\log (j + \psi_i) - \log j] \\
\gtrsim h \log N + h - \sum_{i=1}^{n} [(n - i + \psi_i) \log(n - i + 1 + \psi_i) - (n - i) \log(n - i + 1)] ,
\]

where in the first line we use that the first sum in (2.14) is a positive number. To get the last line, we used the same steps as above. We need to deal with the last sum. We find using that \(\psi_i \sim d \gg n \) the following approximate value:

\[
\sum_{i=1}^{n} [(n - i + \psi_i) \log(n - i + 1 + \psi_i) - (n - 1) \log(n - i + 1)] \approx \sum_{i=1}^{n} \psi_i \log \psi_i \approx h \log d ,
\]
which we discussed before. Plugging this result in the expression for $\log \dim_N \psi$ above, we find:

$$
\log \dim_N \psi \gtrsim h \log \left(\frac{N}{d} \right).
$$

Combining this lower limit with the upper limit in (2.16), we conclude that the leading behavior of $\log \dim_N \psi$ in the case $N \gg d \gg n$ is given by:

$$
\log \dim_N \psi \approx h \log \left(\frac{N}{d} \right).
$$

What about the other case $n \gg d$? For this case, we take advantage of the duality discussed in section 2.2.1 to swap the rows and columns of ψ, which brings us to the previous case where n here plays the role of d there and vice versa. Hence, in the case $n \gg d$, the leading behavior of $\log \dim_N \psi$ is given by:

$$
\log \dim_N \psi \approx h \log \left(\frac{N}{n} \right).
$$

As a conclusion, we find that the leading behavior of $\log \dim_N \psi$ in the large N limit in the case where n and $d \ll N$ is given by:

$$
\log \dim_N \psi \approx h \log \left(\frac{N}{\psi_0} \right),
$$

where $\psi_0 = \max\{d, n\}$.

The next quantity we want to find is the leading term of $\log \dim_h \psi$ in the case $h \ll N$. The only non-trivial term in the dimension relation (2.13) is \mathcal{H}_ψ. Its leading behavior can be derived using the expression (2.12) together with the leading behavior (2.18). First, we need to deal with the numerator of (2.12), we have:

$$
\log \text{num}_N \psi = \sum_{i=1}^{n} \sum_{j=1}^{\psi_i} \log(N + j - i)
\approx \sum_{i=1}^{n} [(N - i + \psi_i) \log(N - i + \psi_i) - (N - i) \log(N - i) - \psi_i]
\approx \sum_{i=1}^{n} \psi_i \log(N - i) \approx h \log N,
$$

where we used the approximation (B.3) to get the second line, then we used that $\psi_i \ll N$ and $n \ll N$ to approximate the sums in the second and third line respectively. Next, we plug the leading behavior of $\log \dim_N \psi$ given in equation (2.18), and the leading behavior of the numerator of (2.12) that is given in (2.19) above, in the equation (2.12), to get the following leading behavior of the product over the hook lengths:

$$
\log \mathcal{H}_\psi \approx h \log \psi_0,
$$
where \(\psi_0 = \text{Max} \{d, n\} \). As a result, the expression (2.13) for the dimension of \(\psi \) as a representation of \(S_h \) leads to the following leading behavior:

\[
\log \dim_h \psi \approx h \log \left(\frac{h}{\psi_0} \right),
\]

(2.20)

where we used that \(\log h! \approx h \log h \). Notice that in the case where \(h \sim \psi_0 \), the leading behavior of \(\log \dim_h \psi \) will be proportional to \(h \). We will use the expression above for the leading behavior of the \(S_h \) dimension for all cases of this class of probes. This is because the final result of the leading term of the two point function will not change due to continuity, see subsection 5.1.

This is the only class of probes where we will need the leading behavior of their dimension as a representation of \(S_h \). In the remaining of this section we will look for the leading behavior of the \(\text{SU}(N) \) dimension of \(YD \) in the other two classes. Although a universal exact expression for the leading term is not always possible, we will derive its leading behavior in the worst situations.

2.2.3 The linear probes class

In this class of probes, we have either \(d \sim N \) or \(n \sim N \). Following the same route as above, we first discuss the case \(d \sim N \), then use the duality discussed in section 2.2.1 for the case \(n \sim N \). The reason we can use this duality has to do with the leading term of the dimension \(\dim_N \psi \), which will be evaluated below.

Our starting point is once again the relation (2.14). We have in the case \(d \sim N \gg n \) the following upper bound:

\[
\log \dim_N \psi \leq \sum_{i=1}^{n} \sum_{j=1}^{N-i} [\log (j + \psi_i) - \log j]
\]

\[
\lesssim \sum_{i=1}^{n} [(N - i + \psi_i) \log (N + \psi_i) - (N - i) \log N - \psi_i \log \psi_i]
\]

\[
\lesssim \sum_{i=1}^{n} [(N + \psi_i) \log (1 + \psi^{-1}_i) - \psi_i \log \psi^{-1}_i] \sim h,
\]

where we used the approximation (B.3) to evaluate the sum over \(j \) in the first line and that \(n \ll N \) to get the second line. In the last line, we introduced the quantity \(\psi^{-1}_i = \psi_i / N \), which is independent of \(N \). At the end we used that \(\psi_i \sim d \sim N \) and \(h \sim n d \sim nN \). The reason we did not try to get an exact result here is that knowing that the upper bound is of order \(h \) is more than enough for our purposes, see subsection 1.2 for more details.

To complete the circle of thoughts, although not needed, let us look for a lower bound
on the leading behavior of \(\log \dim_N \psi \). We have:

\[
\log \dim_N \psi \geq \sum_{i=1}^{n} \sum_{j=n+1-i}^{N-i} [\log(j + \psi_i) - \log j]
\]

\[
\geq \sum_{i=1}^{n} [(N - i + \psi_i) \log(N + \psi_i) - (N - i) \log N]
\]

\[
- \sum_{i=1}^{n} [(n - i + \psi_i) \log \psi_i - (n - i) \log(n - i)]
\]

\[
\geq \sum_{i=1}^{n} [(N + \psi_i) \log(1 + \bar{\psi}_i) - \psi_i \log \bar{\psi}_i] \sim h ,
\]

Where we used the same steps as in the derivation above. Notice that we get the same expression as for the upper bound. Hence, we conclude that in the case \(d \sim N \), we have the following leading behavior of \(\log \dim_N \psi \):

\[
\log \dim_N \psi \approx \sum_{i=1}^{n} [(N + \psi_i) \log(1 + \bar{\psi}_i) - \psi_i \log \bar{\psi}_i] \sim h ,
\]

which is of order \(h \) as argued above.

This was for the case \(d \sim N \), what about the other possibility \(n \sim N \). Once again, we take advantage of the duality discussed in section 2.2.1 to safely conclude that the leading behavior of the dimension in this case \((n \sim N) \), is given by:

\[
\log \dim_N \psi \approx \sum_{i=1}^{n} [(N + n_i) \log(1 + \bar{n}_i) - n_i \log \bar{n}_i] \sim h ,
\]

where \(n_i \) stands for the length of the columns of \(\psi \) and \(\bar{n}_i = n_i / N \).

All in all, we conclude that the leading behavior of the dimension of the linear probes is such that:

\[
\log \dim_N \psi \sim h , \tag{2.21}
\]

where the actual value of the non-zero coefficient that multiplies \(h \) is not important to us.

2.2.4 The long probes class

The shape of these probes suggest that their dimension will have a slower growth than the previous cases. This is because \(\mathcal{H}_\psi \) in (2.12) will be of the same order as the numerator. Let us proceed and check this intuitive guess. As usual, we are going to look for an upper and a lower bounds of \(\log \dim_N \psi \) using equation (2.14). For the upper bound, we find:

\[
\log \dim_N \psi \leq \sum_{i=1}^{n} \sum_{j=n+1-i}^{N-i} [\log(j + \psi_i) - \log j]
\]

\[
\lesssim \sum_{i=1}^{n} [(N - i + \psi_i) \log(N - i + \psi_i) - \psi_i \log \psi_i - (N - i) \log(N - i)]
\]

\[
\lesssim \sum_{i=1}^{n} [N \log \psi_i - N \log N] \approx n N \log \left(\frac{d}{N} \right) ,
\]
where we used as usual (3.3) to evaluate the sum over \(j \) to get the second line. To get the third line, we used that \(\psi_i \gg N \gg n \). To arrive at the last result, we took advantage of the fact that:

\[
n \log d - \sum_{i=1}^{n} \log \psi_i = \sum_{i=1}^{n} \log \frac{d}{\psi_i} \sim n ,
\]

since the ratio \((\psi_i/d) \) is \(N \)-independent for almost all \(\psi_i \)’s.

What about the lower bound? Using the same manipulations as above, we easily find:

\[
\log \dim_N \psi \geq \sum_{i=1}^{n} \sum_{j=n+1-i}^{N-i} [\log(\psi_i + j) - \log j]
\]

\[
\geq \sum_{i=1}^{n} [(N - i + \psi_i) \log(N - i + \psi_i) - (n - i + \psi_i) \log(n - i + \psi_i)]
\]

\[
- \sum_{i=1}^{n} [(N - i) \log(N - i) - (n - i) \log(n - i)]
\]

\[
\geq \sum_{i=1}^{n} [N \log \psi_i - N \log N] \approx n \log \left(\frac{d}{N} \right).
\]

Combining this result with the upper bound above, we conclude that the leading behavior of the SU(\(N \)) dimension of these probes is given by:

\[
\log \dim_N \psi \approx n \log \left(\frac{d}{N} \right) .
\]

Notice that by exchanging the roles of \(N \) and \(d \), one can map this leading term to the corresponding one in the case of generic probes given in (2.18), taking into account that \(h \sim n d \).

3. Probes in AdS\(_5\) × S\(^5\)

The states we are dealing with in this paper are half-BPS states of type-IIB string theory on asymptotic AdS\(_5\) × S\(^5\). These states can be described on the dual field theory side using YDs, which are seen as irreducible representation of U(\(N \)), where \(N \) is the number of fluxes in the background geometry [23, 20]. We are mainly interested in probing the backgrounds associated to the microstates of the superstar of [20] according to the proposal advanced in [1]. Remember that these microstates are characterized by YDs whose number of columns \(N_c \), number of rows \(N_r \) and number of boxes \(\Delta \) are all held fixed as follows:

\[
N_c = N , \quad N_r = D \sim N , \quad \Delta = \frac{1}{2} N N_c ,
\]

see subsection 2.1 and reference [1] for more details. In this section, we will spell out the probing tool that we will be using in this paper in its full generality. After that, we will warm up with a toy model that describes a background which does not belong to the superstar ensemble for reasons that will be clear later on.
3.1 The two point function

The game we will be playing in this paper is as follows. We have a background that is generated by a typical state \(\mathcal{O} \) of the superstar ensemble and we add on top of that a light probe \(\psi \), then see what happens. According to [23], modulo an overall trivial space time dependence which is completely fixed by conformal symmetry, everything boils down to evaluating the two point function:

\[
\langle \langle \psi \psi \rangle \rangle_\mathcal{O} = \frac{\langle (\mathcal{O} \otimes \psi) (\mathcal{O} \otimes \psi) \rangle}{\langle \mathcal{O} \mathcal{O} \rangle},
\]

(3.1)

where \(\psi \) is our probe, \(\mathcal{O} \) is our background, and the vacuum two point function \(\langle \alpha \beta \rangle \) is given by:

\[
\langle \alpha \beta \rangle = \delta_{\alpha \beta} \prod_{i,j} (N - i + j),
\]

(3.2)

where \(\delta_{\alpha \beta} \) is a schematic notation that means that the two YDs \(\alpha \) and \(\beta \) should be identical, and the product is over all the boxes of the YD \(\alpha \) where \(i \) is the row number and \(j \) is the column number. The expression (3.1) is evaluated as follows. We first decompose the tensor product \(\mathcal{O} \otimes \psi \) into irreducible representations of \(U(N) \):

\[
\mathcal{O} \otimes \psi = \bigoplus_k d_k \varphi_k,
\]

(3.3)

where \(d_k \) is the degeneracy of the YD \(\varphi_k \), and \(k \) is a summation index that will not play any important role in the following. Next, we use that the two-point \(\langle \mathcal{O} \mathcal{O}' \rangle \) is bilinear to find:

\[
\langle \langle \psi \psi \rangle \rangle_\mathcal{O} = \sum_k d_k^2 \langle \varphi_k \varphi_k \rangle_\mathcal{O},
\]

(3.4)

where we used that the two point function (3.2) is diagonal and introduced the notation:

\[
\langle \bullet \bullet \rangle_\mathcal{O} = \frac{\langle \bullet \bullet \rangle}{\langle \mathcal{O} \mathcal{O} \rangle},
\]

(3.5)

in order not to get a cluttered expression. We will be using this simplified notation from now on. So, our task can be summarized into the following steps:

1. Get the needed information from the tensor product decomposition (3.3). These include the degeneracy \(d_k \), the type of YDs \(\varphi_k \), and their total number. From now on, we will refer to the tensor product of two irreducible representations of \(U(N) \) by the tensor product between the associated YDs, in an abuse of language.

2. Evaluate the term \(\langle \varphi_k \varphi_k \rangle_\mathcal{O} \) in the expression (3.4).

3. Finally collect all the intermediate results to get the final answer.

We will deal with each step on its own in the following sections. Some of the details will be left to appendices that we will refer to at the right places. But before doing so, let us discuss a simple toy model. What we will obtained here will serve as a good reference point for results to be derived later on.
3.2 A toy model: A background outside the superstar ensemble

The decomposition of the tensor product $O \otimes \psi$ is very involved in general (see subsection 4.1.1), but there are some simple situations where things become straightforward. One of the simplest cases correspond to a background $YD \ Q$ where all of its N rows have the same length:

$$Q_i = \kappa N,$$

where κ is an arbitrary constant. Although this background Q is not of immediate importance to us since it is not part of the superstar ensemble, it is both a good warm up exercise as well as a good reference point for the two point function (3.5) of the superstar ensemble.

The simplicity of the background Q resides in the fact that there is only one $YD \ varphi_0$ when decomposing the tensor product $Q \otimes \psi$. If we denote by δ_i the number of boxes added to the i^{th} row of Q to form the $YD \ varphi_0$ then we have:

$$\delta_i = \psi_i.$$

The two point function (3.5) simplifies drastically in this case as we need to only evaluate $\langle \varphi_0 \varphi_0 \rangle_Q$. The latter can be easily evaluated using its defining equation (3.5) together with the explicit expression of the vacuum two point function $\langle \alpha \beta \rangle$ given by (3.2). Using these equations we find that:

$$\log \langle \varphi_0 \varphi_0 \rangle_Q = \sum_{i=1}^{N} \sum_{j=1}^{\delta_i} \log(N + Q_i + j - i),$$

where Q_i stands for the length of row i of the YD Q. We can easily evaluate the sum over j using equation (3.3) to get the following approximate expression:

$$\log \langle \varphi_k \varphi_k \rangle_Q \approx -h + \sum_{i=1}^{N} (N + Q_i + \delta_i - i) \log(N + Q_i + \delta_i - i) - \sum_{i=1}^{N} (N + Q_i - i) \log(N + Q_i - i),$$

where we used $\sum_{i=1}^{k} \delta_i = h$. Let us now specify this formula to our case where $Q_i = \kappa N$ and $\delta_i = \psi_i$ is nonzero only for $i \leq n$. We get:

$$\log \langle \varphi_0 \varphi_0 \rangle_Q \approx -h + \sum_{i=1}^{n} [(1 + \kappa)N + \psi_i - i] \log[(1 + \kappa)N + \psi_i - i] - \sum_{i=1}^{n} [(1 + \kappa)N - i] \log[(1 + \kappa)N - i].$$

To proceed further, we need to distinguish between different probe classes.

The generic probes class In this class, we have both $\psi_i \ll N$ and $n \ll N$. We find after expand the log:

$$\log \langle \langle \psi \psi \rangle \rangle_Q = \log \langle \varphi_0 \varphi_0 \rangle_Q \approx h \log N.$$
The linear probes class In this class, we have either $d \sim N$ or $n \sim N$. In the case $n \sim N$, we have $d \ll N$ and hence we can use the same manipulations as before to get:

$$\log \langle \psi \psi \rangle_Q \approx h \log N .$$

In the opposite case $\psi_i \sim N$, we have $n \ll N$ which allows us to expand the log term around $i = 0$. We get in this case the same result as above.

The long probes class In this class, we have $d \gg N$ and $n \ll N$. Expanding the log term appropriately, we get:

$$\log \langle \psi \psi \rangle_Q \approx h \log d .$$

Notice that this result does not depend explicitly on N. Actually, we can combine the results for the linear and long probes in a single one that reads:

$$\log \langle \psi \psi \rangle_Q \approx h \log \psi_0 . \quad (3.9)$$

Notice that the leading term of the log of the two point function is continuous, however it is not differentiable at the point $\psi_0 \sim N$. This non-differentiability can be related to the phase transition between gravitons and (dual-)giant gravitons when the angular momentum of the probe becomes very large [31, 32].

Although the results derived here are in a background that is not related to the super-star ensemble, some of the results are valid for a wide range of backgrounds including the superstar ones. We will discuss this observation in subsection 4.2. For the moment let us continue with our investigation and discuss the tensor product decomposition of $\mathcal{O} \otimes \psi$.

4. Dealing with the tensor product $\mathcal{O} \otimes \psi$

Our starting point in evaluating the two point function (3.1) is to construct the tensor product decomposition (3.3). For our purposes, we do not need to get all the details of this decomposition which is hopeless. We only need to get an estimate of the degeneracies d_k of the YDs φ_k, an estimate of the total number of these YDs $d_t = \sum_k d_k$, and a rough idea on the shape of the YDs φ_k so that we can evaluate the quantities $\langle \varphi_k \varphi_k \rangle_O$. In the following, we will start by reviewing the construction of the YDs that appear in the decomposition of the tensor product of two YDs of $U(N)$. By studying carefully the conditions on these YDs that appear in such decomposition, we propose a map between semi-standard Young tableaux (SSYTx) and these YDs. Next, using this map we discuss the shape of “dominant” YDs φ_k and their degeneracies d_k according to the scaling of h with N. Some of the details will be left to appendices E and F.

4.1 The tensor product decomposition and the semi-standard Young tableaux

The first question to answer is how to construct the YD φ_k starting from the YDs \mathcal{O} and ψ, when the tensor product $\mathcal{O} \otimes \psi$ is seen as a tensor product between two irreducible representation of $U(N)$? Fortunately, there is a well known recipe to construct the decomposition of the tensor product of two YDs of $U(N)$. We will first review this recipe, then we will repackage the information about such decomposition into labelings of ψ in the case of our interest.
4.1.1 Decomposing the tensor product of two representations

Let A and B be two YDs associated to two irreducible representations of $U(N)$. The YDs corresponding to the irreducible representations appearing in the decomposition of the tensor product $A \otimes B$ are constructed by adding all the boxes of one of the two YDs, say B, to the other YD, here A, in all possible ways subject to the following rules (see for example [33, Chapter.9]):

- First, we fill each box of the YD B with a label a_i, where i stands for the number of the row the box belongs to.

- We start by adding the leftmost box\(^8\) form the first row of B, which carries the label a_1, to the YD A in all possible positions such that we end up with a YD of $U(N)$ i.e. the length of rows is decreasing from top to bottom, and the length of each column is at most N. We repeat the same process with the remaining boxes in the first row of B following their order from left to right, keeping in mind that each new added box should be to the right or below the previous one, and that, no two boxes among the added ones are in the same column. The latter two conditions are solely for boxes that belong to the same row in B.

- We repeat exactly the same process for each row of the YD B until we finish all of its boxes. The order in which the rows of ψ are dealt with, follows exactly their position in the YD ψ. Explicitly and in our conventions, we start by the first row, then the second one, and so on and so forth.

- Finally, we keep only the YDs that satisfy the following rule. Let C denote one of the resultant YDs. We start our journey at the upper rightmost box of the YD C going from the right to the left of the first row, then move down to the second row and, once again, start from its rightmost box and move to the left, and so on and so forth until we reach the lower leftmost box of C. At each box in this journey, the number of the newly added boxes, encountered so far, with label a_i should not exceed the number of boxes with label a_j if $j < i$.

At the end, we collect the resulting YDs according to their shape. Since the decomposition of the tensor product will play a crucial role in this paper, it is a good idea to name the rules in the construction above, instead of trying to explain them each time. Essentially, we have three important rules which are as follows. The **YD** rule, which refers to the condition that the resultant digram should be a YD after each step of adding a new box. The **antisymmetry** rule, which refers to the condition that two boxes originating from the same row of the YD B should not belong to the same column in the resulting YDs. The **ordering** rule, which refers to the combination of the order in which we add boxes originating from the same row in the YD B (explained in the first step above), which will be called

\(^8\)This is a matter of choice as boxes belonging to the same row are treated on equal footing, hence the reason they carry the same label. In most literature, one starts from the rightmost box. We choose to start from the leftmost one for reasons to be clear later on.
the row rule from now on, and the last condition above which will be called the column rule from now on.

Before continuing, let us apply these rules in the case of the following tensor product:

\[
\begin{array}{cccc}
\times & a & a & b \\
\end{array}
\end{array}
\]

\[
= \left(\begin{array}{ccc}
\cdot & a & a \\
\cdot & a & a \\
\cdot & b & b \\
\cdot & a & b \\
\end{array} \right) \times b
\]

In this example, we used letters to label the boxes, which is fine since we are still following the rules. Notice that in this example we have a single YD that appears twice with different order of the letters \(a, b\), hence it is doubly degenerate. Notice also that the box with the letter \(b\) never appears in the first row. This is a straightforward consequence of the ordering rule. In general, boxes from row \(i\) in \(B\) cannot be attached to the row \(j\) in \(A\) if \(j < i\).

There is another immediate consequence of the ordering rule, which has to do with the number of added boxes to a row \(i\) in \(A\). Let us denote by \(n_j^i\) the number of boxes from row \(j\) in \(B\) that are added to row \(i\) in \(A\). Suppose that \(i\) is the row we are interested in, and suppose also that the added boxes to this row belong to the rows \(m \leq k \leq n\) from \(B\). We have the following conditions:

\[
n_i^k \leq \sum_{j=1}^{i-1} \left(n_j^{k-1} - n_j^k \right) ; \quad \forall k , \quad m + 1 \leq k \leq n .
\]

Summing these relations gives us:

\[
\sum_{k=m}^{n} n_i^k \leq n_i^m + \sum_{j=1}^{i-1} \left(n_j^{m} - n_j^{n} \right) < b_m ,
\]

where \(b_m\) is the length of row \(m\) in \(B\). Hence, if the boxes added to row \(i\) of the YD \(A\) used to be in rows of the YD \(B\), with \(m\) denoting the number of the upper row among
them, then, the number of added boxes to the row \(i \) is smaller or equal the number of boxes in the row \(m \) of the YD \(B \). These two implications of the ordering rule will have a nice interpretation after introducing our map between the YD \(\varphi_k \) and SSYTx \(\psi \). See appendix-E for more details.

Our next target, after we learned how to decompose a tensor product into irreducible representations (YDs), is to count the number of the resulting YDs and their degeneracies. This will be the subject of the next few subsections. We will first start by encoding the information about YDs that appear in the tensor product decomposition of \(\mathcal{O} \otimes \psi \) into labelings of \(\psi \). Then, using this new way of characterizing the tensor product decomposition, we proceed to deal with our main target, estimating the number of YD \(\varphi_k \) and their degeneracies \(d_k \).

4.1.2 Repackaging the information about the tensor product decomposition

Our aim in this paper is to study the two point function (3.1) as we vary the probe \(\psi \). Hence, it will be very effective and fruitful to use the YD \(\psi \) in packaging the information about the tensor product \(\mathcal{O} \otimes \psi \). It is clear from the way we construct the decomposition of the tensor product of two YDs, that it is much easier in the present case \(\mathcal{O} \otimes \psi \) to distribute the boxes of \(\psi \) on \(\mathcal{O} \). A naive guess for packaging the information about the YDs \(\varphi_k \) that will appear in the decomposition of \(\mathcal{O} \otimes \psi \), is to associate to each box of \(\psi \) the number of the row of the YD \(\mathcal{O} \) it is attached to. As a result, we get for each \(\varphi_k \) a certain labeling of \(\psi \). To get more information about the type of these labelings, we need to answer the following question: What are the implications of the tensor product decomposition rules, that we discussed previously, on the labelings of \(\psi \)?

The easiest condition to apply on the possible labelings of \(\psi \), is that the number of rows of \(\varphi_k \) should not exceed \(N \). Since the YD \(\mathcal{O} \) has already \(N \) rows, see section 2.1, the labels of \(\psi \) should be among the numbers \(\mathcal{L} = \{1, 2, \ldots, N\} \). For a specific \(\varphi_k \), the set of numbers appearing in associated labeling of \(\psi \) will in general be a subset of \(\mathcal{L} \). This observation will play an important role later on. What about the impact of the three rules: the YD rule, the antisymmetry rule, and the ordering rule? It is clear that the last rule, the ordering rule, is universal in the sense that its outcome does not depend on the YD \(\mathcal{O} \), in contrast to the other two rules whose outcomes depend highly on which background \(\mathcal{O} \) we are studying. Hence, it is a good idea to look first for the implications of the ordering rule on the possible labelings of \(\psi \), then look for possible corrections due to the other two rules. In the remaining of this subsection, we will only discuss the impact of the ordering rule on the labelings of \(\psi \) leaving the inclusion of the other two rules mainly to appendix-F.

The ordering rule as defined previously (section 4.1.1) has two parts to it. The first part, called the row rule, has to do with boxes that belong to the same row of \(\psi \) whereas the second one, called the column rule, has to do with boxes that belong to different rows of \(\psi \). It is easy to see that the row rule is equivalent to the requirement that, in the associated labeling of \(\psi \), the numbers in the same row should be weakly increasing from left to right. What about the column rule? To understand its consequence, let us assume for a moment that \(\psi \) is a YD with a single column. To simplify the discussion below, we will also number the boxes of \(\psi \) according to their row i.e. box \(i \) means a box in row \(i \) of
ψ. It is easy to see that in this case, the column rule is equivalent to the condition that the box \(i\) should not be added to the rows of \(O\) that are before the one that has box \(j\) added to it if \(j < i\). Hence, the acceptable labelings of \(ψ\) in this case should be such that, the numbers labeling boxes of the single column are strictly increasing from top to bottom. What about the case where \(ψ\) has two columns? Let us concentrate on the four boxes belonging to rows \(i\) and \(j\) where \(j > i\). The column rule implies that, the row to which the box \(j\) from the first column of \(ψ\) is attached to, should be below the row to which the box \(i\) from the first column of \(ψ\) is attached to. The same condition should be satisfied by the boxes \(i\) and \(j\) from the second column of \(ψ\). Hence, in this case, the column rule requires that the numbers labeling boxes in the same column of \(ψ\) to be strictly increasing from top to bottom for an acceptable labeling of \(ψ\). It is not hard to see that this is the manifestation of the column rule for acceptable labelings of a generic \(ψ\). This can be easily seen by iterating the previous discussion for each row of \(ψ\).

In our previous example of the tensor product decomposition (4.1), the labelings of the resultant YDs are:

\[
\begin{array}{cccc}
1 & 1 & 1 & 1 \\
2 & 1 & 2 & 3 \\
4 & 2 & 1 & 3 \\
3 & 2 & 3 & 2
\end{array}, \quad \left(\begin{array}{cc}
1 & 2 \\
3 & 1 \\
2 & 3 \\
4 & 2
\end{array}\right), \quad \begin{array}{cccc}
1 & 3 \\
4 & 2 \\
3 & 2 \\
4 & 1
\end{array}
\] (4.3)

which clearly satisfies the two conditions: numbers in the same row are weakly increasing from left to right, and numbers in the same column are strictly increasing from top to bottom. The two YTx between bracket correspond to the degenerate YD.

To summarize, the shape of the YD \(O\), the fact that we are dealing with the \(U(N)\) group, together with the ordering rule, imply that the acceptable labelings of \(ψ\) that are associated to a YD \(φ_k\) in the decomposition of \(O \otimes ψ\) should be such that:

- The labels belong the set of numbers \(L = \{1, 2, \ldots, N\}\).
- Numbers labeling boxes in the same row, are weakly increasing from left to right.
- Numbers labeling boxes in the same column, are strictly increasing from top to bottom.

These last two conditions define the so called SSYT, see appendix A. If we take into account the first condition, the number of these SSYTx \(ψ\) is the dimension of \(ψ\) as a representation of \(SU(N)\), see for example [27]. Since we are not taking into account neither the YD rule nor the antisymmetry rule, \(\dim_N ψ\) is an upper bound on the total number of the YDs \(φ_k\) i.e. \(d_t = \sum_k d_k \leq \dim_N ψ\).

Parameterizing the decomposition of the tensor product \(O \otimes ψ\) in terms of SSYTx \(ψ\), gave us an idea about the total number of the YDs \(φ_k\). But, what we are really after is the value of the degeneracies \(d_k\) and the range of the index \(k\). Let us pick a YD \(φ_k\). This YD is fixed once we know the \(N\)-tuple \(β = (n_1, n_2, \ldots, n_N)\), where \(n_i\) stands for the added boxes to row \(i\) of the YD \(O\). Its degeneracy \(d_k\) on the other hand, corresponds to
the total number of the possible different rows origin\(^9\) in the YD ψ of these added boxes. In our interpretation of the tensor product decomposition as associating fillings to the YD ψ to get a SSYT, the n_i in the N-tuple β counts the number of times the number i appears in the SSYT. As a result, the N-tuple β is precisely a filling, see appendix-A. So, the degeneracy d_k is bounded from above\(^10\) by the number of different SSYTx ψ that are associated to the same filling β. Such a number is called a Kostka number, and is denoted by $K_{\psi,\beta}$, see appendix-A. Actually, there is a precise relationship between Kostka numbers and degeneracies of YDs appearing in the decomposition of a tensor product, see for example [34]. However, we will not need this exact relation in what we are trying to do in this paper.

Before continuing, let us clarify a point that will play an important role in extracting the leading behavior of d_k in the following. We concluded that we can repackage the information about the tensor product $O \otimes \psi$ in terms of SSYTx, where the labels take values in $L = \{1, 2, \ldots, N\}$. We, as well, mentioned above that the number of SSYTx ψ with a certain filling β is given by the Kostka numbers $K_{\psi,\beta}$. However, this is not completely exact. Essentially, the Kostka number $K_{\psi,\beta}$ encodes only the information about ψ and β being partitions of the same integer h, but not the information about the range of labels, see for example [35]. Remember that β is a collection of positive integers β_i, some of them can be zero, which are ordered according to their index i. We know on the other hand that, a partition of an integer is a collection of strictly positive ordered integers that sum to that integer. So, we seem to have a mismatch between the number of SSYTx of interest to us and Kostka numbers: We can have zero entries in the filling β, as well as ordering that depends on the index of the entry β_i and not its value. We will discuss the issue of the zeros here, and leave the ordering issue to appendix-E. This appendix contains also some further useful properties of Kostka numbers.

Remember that in order for a YT to be SSYT, the labels should have a certain order along the rows and the columns of the associated YD (see appendix-A). This means that if β has some zero entries, the number of SSYTx is the same as the one for a filling $\tilde{\beta}$, which is constructed from β by omitting the zero terms, then relabeling its remaining entries $\tilde{\beta}_j$, keeping the order of their index untouched. Take as an example $\beta = (\beta_1, 0, \beta_4, \beta_5)$. Then, $\tilde{\beta} = (\tilde{\beta}_1, \tilde{\beta}_2, \tilde{\beta}_3)$, where $\tilde{\beta}_1 = \beta_1$, $\tilde{\beta}_2 = \beta_4$ and $\tilde{\beta}_3 = \beta_5$. Since the map χ between the indices i and j of the two fillings preserves the order i.e. $(i_1 \geq i_2) \iff \chi(i_1) \geq \chi(i_2)$, the conditions on the order of labels along the rows and column of the YD remain intact. Hence, the number of SSYTx for both fillings is the same. Notice that $\tilde{\beta}_j$ counts how many times the index j appears in the labeling of the YD.

4.2 Non-generic probes: The toy model reloaded

Before continuing with our discussion of the tensor product decomposition, let us briefly discuss the claim raised at the end of subsection 3.2 regarding the universality of some of the values of the leading term of the two point function derived there. To this end,

\(^9\)Remember that boxes in the same row are treated symmetrically.

\(^10\)Since we are not taking into account the modifications due to the YD and antisymmetry rules.
we will review the most important properties that were used in the derivations in subsection 3.2 and, at the same time, discuss possible modifications when dealing with general backgrounds.

The first important ingredient in the derivations of subsection 3.2 is the YD φ_0. Notice that this YD (with appropriate modifications) always exists for any background YD \mathcal{O} as it satisfies all the rules of the tensor product decomposition reviewed in the beginning of this section. On top of this, the YD φ_0 enjoys another equally important property: it is the YD that maximizes the quantity $\langle \varphi_k \varphi_k \rangle_\mathcal{O}$ as can be easily deduced starting from equation (3.7). To see this, let us look for the values of δ_i such that we maximize the aforementioned expression. From its explicit form given by equation (3.7), it is easy to see that we reach the maximum if we minimize the possible values of the summation index and maximize the values of δ_i. Taking into account the tensor product decomposition rules, the solution to these conditions is: $\delta_i = \psi_i$ i.e. the YD φ_0. To arrive at this conclusion, we start by minimizing the smallest value of i which is 1. Due to the ordering rule we can only add boxes from the first row of ψ. Maximizing this number leads us to the equality $\delta_1 = \psi_1$. Since we are left with boxes from the YD ψ, let us move to the next smallest value of i which is 2. The ordering rule tells us to only add boxes from the first two rows of ψ. Since we are not left with any boxes from the first row of ψ, maximizing δ_2 leads us to the equality $\delta_2 = \psi_2$. Repeating the same arguments for the following values of i leads us to our claim that φ_0 maximizes the quantity $\langle \varphi_k \varphi_k \rangle_\mathcal{O}$.

The next important ingredient used in subsection 3.2 is the length of the rows of \mathcal{Q}, which is the same and equals to κN. This enters essentially in the evaluation of the quantity $\langle \varphi_0 \varphi_0 \rangle_\mathcal{Q}$. What happens in the case of a generic background \mathcal{O}? Looking back at the construction of φ_0, it is easy to see that the leading term of $\langle \varphi_0 \varphi_0 \rangle_\mathcal{O}$ will be the same as the one of $\langle \varphi_0 \varphi_0 \rangle_\mathcal{Q}$, if the length of almost all of the rows of \mathcal{O} is of order N, even if they are not equal to each other.

Building on the observations above, can we say something on the full two point function (3.1)? Taking into account that the YD φ_0 is non-degenerate ($d_0 = 1$), there is a term associated to the DY φ_0 in the explicit expression of the two point function given in equation (3.4). The log of the leading term contribution of this quantity ($\langle \varphi_0 \varphi_0 \rangle_\mathcal{O}$) is given by either equation (3.8) or (3.9) depending on the type of the probe ψ. What happens when we take into account the tensor product decomposition? Let us denote by d_t the total number of the YDs φ_k i.e. $d_t = \sum_k d_k$. We proved in the previous subsection that $d_t \leq \dim_N \psi$, in the case where \mathcal{O} is a member of the superstar ensemble. Actually, this inequality is valid for any YD that is treated as a representation of the group $U(N)$. This is because the biggest allowed number of rows of these YDs is N. Hence, the two point function (3.1) satisfies the following inequality:

$$\langle \varphi_0 \varphi_0 \rangle_\mathcal{O} \leq \langle \langle \psi \psi \rangle \rangle_\mathcal{O} \leq (\dim_N \psi)^2 \langle \varphi_0 \varphi_0 \rangle_\mathcal{O} ,$$

11This is a straightforward result of the fact that the function $f(x) = (B-x) \log(B-x)-(A-x) \log(A-x)$, with $B > A > x > 0$, is a decreasing function.

12Actually, it is enough that the first n rows of \mathcal{O} satisfy this requirement. But since we allow n to be of order N (linear probes class), we end up with our condition above.
which is a consequence of the fact that φ_0 maximizes the quantity $\langle \varphi_k \varphi_k \rangle_\mathcal{O}$. Given the leading behavior of $\log \langle \varphi_0 \varphi_0 \rangle_\mathcal{O}$ (see equations (3.8) and (3.9)), it is clear that in the case where:

$$\log \dim_N \psi \ll h \log N ,$$

the leading term of the two point function (3.1) is completely fixed by the YD φ_0 according to the equation:

$$\log \langle \langle \psi \psi \rangle \rangle_\mathcal{O} \approx \log \langle \varphi_0 \varphi_0 \rangle_\mathcal{O} .$$

In the case where almost all the rows of \mathcal{O} have a length of order N, the value of the leading term above will be the same as the one associated to the background \mathcal{Q}. In our case of interest, the non-generic probes class satisfy the above inequality on their $\text{SU}(N)$ dimension, see equations (2.21) and (2.22). Hence, in the case of the non-generic probes ψ, the leading term of the full two point function (3.1) reads:

$$\log \langle \langle \psi \psi \rangle \rangle_\mathcal{O} \approx h \log \psi_0 , \quad (4.4)$$

for any YD \mathcal{O} whose almost all of its rows have a length of order N. This set of YDs includes almost all of the YDs of the superstar ensemble and many more. This universal result has a nice intuitive interpretation from the dual gravity perspective. The dual objects of this class of probes are a bound state of dual giant gravitons with a large angular momenta. Since the radius of a dual giants is proportional to its angular momentum, these giants probe the outer region of the geometry which is completely fixed by its asymptotic $\text{AdS}_5 \times S^5$ and the background flux. Given the result above, the only class of probes that we need to worry about in the remaining of this paper are the generic probes that satisfy $\psi_0 \ll N$. The study of the tensor product decomposition of $\mathcal{O} \otimes \psi$ in this class of probes will be the main topic of the remaining of this section.

4.3 The tensor product $\mathcal{O} \otimes \psi$: I-The case $h \ll N$

We are ready to tackle our main question of estimating the maximal possible degeneracy of a YD in the decomposition of $\mathcal{O} \otimes \psi$ through the corresponding Kostka number. Our idea is to use $\dim_N \psi$ since it is related to the number of possible SSYT\times and hence to the Kostka numbers. Remember that $\dim_N \psi$ is the number of all possible SSYT\times with labels among the set $\{1, 2, \ldots, N\}$. This number has two contributions: The first one is the number of possible choices of labels, and the second one is the associated Kostka number $K_{\alpha, \beta}$. Using that $K_{\alpha, \beta} = 0$ if $|\beta| < n$, where n is the number of rows of ψ, and $|\beta|$ is the number of nonzero entries of the filling β (see appendix-E), it is easy to see that the dimension of ψ as a representation of $\text{SU}(N)$ written in terms of Kostka numbers reads:

$$\dim_N \psi = \sum_{\beta; n \leq |\beta| \leq \text{Min} \{N, h\}} C_N^{[|\beta|]} K_{\psi, \beta} , \quad (4.5)$$

where n is the number of rows of ψ, $|\beta|$ stands for the number of nonzero elements in the filling β, h is the number of boxes of ψ, C_n^m is the usual binomial coefficient:

$$C_n^m = \frac{n!}{m! (n-m)!} ,$$

which is a consequence of the fact that φ_0 maximizes the quantity $\langle \varphi_k \varphi_k \rangle_\mathcal{O}$. Given the leading behavior of $\log \langle \varphi_0 \varphi_0 \rangle_\mathcal{O}$ (see equations (3.8) and (3.9)), it is clear that in the case where:

$$\log \dim_N \psi \ll h \log N ,$$

the leading term of the two point function (3.1) is completely fixed by the YD φ_0 according to the equation:

$$\log \langle \langle \psi \psi \rangle \rangle_\mathcal{O} \approx \log \langle \varphi_0 \varphi_0 \rangle_\mathcal{O} .$$

In the case where almost all the rows of \mathcal{O} have a length of order N, the value of the leading term above will be the same as the one associated to the background \mathcal{Q}. In our case of interest, the non-generic probes class satisfy the above inequality on their $\text{SU}(N)$ dimension, see equations (2.21) and (2.22). Hence, in the case of the non-generic probes ψ, the leading term of the full two point function (3.1) reads:

$$\log \langle \langle \psi \psi \rangle \rangle_\mathcal{O} \approx h \log \psi_0 , \quad (4.4)$$

for any YD \mathcal{O} whose almost all of its rows have a length of order N. This set of YDs includes almost all of the YDs of the superstar ensemble and many more. This universal result has a nice intuitive interpretation from the dual gravity perspective. The dual objects of this class of probes are a bound state of dual giant gravitons with a large angular momenta. Since the radius of a dual giants is proportional to its angular momentum, these giants probe the outer region of the geometry which is completely fixed by its asymptotic $\text{AdS}_5 \times S^5$ and the background flux. Given the result above, the only class of probes that we need to worry about in the remaining of this paper are the generic probes that satisfy $\psi_0 \ll N$. The study of the tensor product decomposition of $\mathcal{O} \otimes \psi$ in this class of probes will be the main topic of the remaining of this section.

4.3 The tensor product $\mathcal{O} \otimes \psi$: I-The case $h \ll N$

We are ready to tackle our main question of estimating the maximal possible degeneracy of a YD in the decomposition of $\mathcal{O} \otimes \psi$ through the corresponding Kostka number. Our idea is to use $\dim_N \psi$ since it is related to the number of possible SSYT\times and hence to the Kostka numbers. Remember that $\dim_N \psi$ is the number of all possible SSYT\times with labels among the set $\{1, 2, \ldots, N\}$. This number has two contributions: The first one is the number of possible choices of labels, and the second one is the associated Kostka number $K_{\alpha, \beta}$. Using that $K_{\alpha, \beta} = 0$ if $|\beta| < n$, where n is the number of rows of ψ, and $|\beta|$ is the number of nonzero entries of the filling β (see appendix-E), it is easy to see that the dimension of ψ as a representation of $\text{SU}(N)$ written in terms of Kostka numbers reads:

$$\dim_N \psi = \sum_{\beta; n \leq |\beta| \leq \text{Min} \{N, h\}} C_N^{[|\beta|]} K_{\psi, \beta} , \quad (4.5)$$

where n is the number of rows of ψ, $|\beta|$ stands for the number of nonzero elements in the filling β, h is the number of boxes of ψ, C_n^m is the usual binomial coefficient:

$$C_n^m = \frac{n!}{m! (n-m)!} ,$$

- 23 –
and \(K_{\psi,\beta}\) is the Kostka number associated to the filling \(\beta\). The expression (4.5) above reflects the fact that when labeling the YD \(\psi\), we first need to choose the labels to use, among all the possibilities \(L = \{1, 2, \ldots, N\}\) which gives rise to the binomial coefficient, then we need to decide on the possible multiplicities of these labels (i.e. choose a filling) each of which gives rise to its associated Kostka numbers.

Notice that when fixing the value of \(|\beta|\), not all fillings \(\beta\) contribute to the sum (4.5) above as the corresponding Kostka number might vanish. Our approach will be to include all of these fillings \(\beta\) in the sum keeping in mind that some of the associated Kostka numbers can vanish. How many \(\beta\)'s are there? For a fixed \(|\beta|\), the number of possible fillings \(\gamma\) such that \(|\gamma| = |\beta|\) is the same as the number of partitions of the integer \(h\) into \(|\beta|\) strictly positive integers \(\gamma_i\) that are ordered according to their index \(i\) and not their value. This is similar to the problem discussed in section-B.2 of appendix-B. The difference resides in the fact that we want to only count partitions that do not have zero entries here. It is easy to adapt the counting there to this case by putting from the start one ball in each box, reducing the number we want to partition to \(h - |\beta|\). Hence, we get the number:

\[
N_{|\beta|} = C_{h-1}^{h-1}.
\]

(4.6)

It is clear that this is an over-estimate for the actual number of fillings \(\gamma\) with fixed \(|\gamma| = |\beta|\), in the sense that not all the associated Kostka numbers are different from zero, but this will be enough for our arguments in this and the next subsection. Using the estimate above, the total number of fillings \(\beta\) is bounded from above by:

\[
N_\beta = \sum_{|\beta|=1}^{h} N_{|\beta|} = 2^{h-1}.
\]

(4.7)

It is an upper bound since we allowed for fillings \(\beta\) with \(|\beta| < n\) in this sum for which we know that their associated Kostka number vanishes. We have also allowed the range of summation to run all the way to \(h\) even if \(h > N\). Notice that we are still missing the contribution of the binomial coefficient \(C_N^{h-1}\) to get the actual number of fillings, however we will not do so here and keep calling \(N_\beta\) above the total number of fillings in an abuse of language.

As is clear from the form of the expression (4.5), our search for the “dominant” SSYTx \(\psi\) will depend on whether \(h\) or \(N\) is bigger. We will concentrate on the case \(h \ll N\) here, and leave the cases \(h \sim N\) and \(h \gg N\) to the next subsection. Before continuing with our discussion, let us be more precise about what we are dealing with. First of all, what we really mean by comparing \(h\) and \(N\) is comparing the leading behavior of \(h\) with \(N\). Hence, \(h = N/2 - \sqrt{N}\) is part of the cases \(h \sim N\). The next point we need to keep in mind is that, we are only interested in the generic probes class, see the previous subsection for details. These probes are such that \(\psi_0 = \text{Max} \{d, n\} \ll N\).

The idea in the case \(h \ll N\) is to maximize both the binomial coefficient \(C_N^{h-1}\) and the Kostka number \(K_{\psi,\beta}\) independently. Notice that the sum in this case is over the range \(n \leq |\beta| \leq h\). Hence, the maximum of the binomial coefficient \(C_N^{h-1}\) is reached for \(|\beta| = h\). This is satisfied only for the filling \(\beta_0 = (1)_{13}\), which gives rise to standard Young tableaux.

\footnote{The notation \(\beta_0 = (1)\) means that all the entries in the filling \(\beta_0\) equal 1.}
The reason we have only one filling $\beta = (1)$ for $|\beta| = h$ is that the number of fillings in a family with fixed $|\beta|$ is the number of $|\beta|$-tuples $(n_1, n_2, \ldots, n_{|\beta|})$ such that:

$$\forall i; \quad n_i > 0, \quad \sum_{i=1}^{\beta} n_i = h.$$

It is clear from this condition that the only solution in the case $|\beta| = h$ is $n_i = 1, \forall i$, and hence the claim that $\beta_0 = (1)$ is the only filling such that $|\beta| = h$. What about the Kostka number $K_{\psi,\beta}$? A moment thought reveals that this number is also maximized by the filling $\beta_0 = (1)$. This is because in this filling all the labels used to label the boxes of the YD ψ are different from each other. Combining this observation with the fact that for SSYTx, the labels along the same column should be strictly increasing from top to bottom leads us the aforementioned claim. As a result, the filling with the maximum contribution to the sum in (4.3) is $\beta_0 = (1)$. Notice that maximum here does not mean that the contribution coming from the filling $\beta_0 = (1)$ dominates over the other contributions to the sum (4.3).

It will be nice to find out if there is a condition on the shape of the YD ψ such that this is true\footnote{The author is very grateful to Robert de Mello Koch for pointing out a mistake in an argument related to this point in a previous version of this paper.}. What is the value of the Kostka number $K_{\psi,(1)}$? Remember that this is the same as the number of SYTx associated to the YD ψ, which in turn is the dimension of the YD ψ when seen as an irreducible representation of the permutation group S_h. The latter is given by (see equation (2.13)):

$$K_{\alpha,(1)} = \dim_h \psi = \frac{h!}{H_\psi}.$$

As a side note, one can get this formula by rescaling N as (λN) in both the formulas (4.3) and (2.12) of $\dim_N \psi$ without touching the YD ψ, then picking the leading contribution to both of them in the limit $\lambda \to \infty$ and equating them. This scaling argument may be useful in answering the question raised above about the condition on ψ so that the dominant contribution to (4.3) comes form SYTx.

Let us continue our investigation of the SYTx associated to ψ in the present situation i.e. the labels of the fillings of ψ are subsets of $\mathcal{L} = \{1, 2, \ldots N\}$. Their total number, taking into account the contribution coming form the possible different choices of labels, is given by $\mathcal{N}_{\text{SYT}} = \mathcal{N}_{\text{lab}} \times \mathcal{N}_{\text{perm}}$, where:

$$\log \mathcal{N}_{\text{lab}} = \log \binom{h}{N} \approx h \log \frac{N}{h}, \quad \log \mathcal{N}_{\text{perm}} = \log \dim_h \psi \approx h \log \frac{h}{\psi_0},$$

(4.8)

where \mathcal{N}_{lab} is the number of possible labelings and $\mathcal{N}_{\text{perm}}$ the number of SYTx ψ given fixed labels. Notice that:

$$\log \dim_N \psi \approx \log \mathcal{N}_{\text{lab}} + \log \mathcal{N}_{\text{perm}}.$$

This is a very interesting observation as it suggests that we can restrict ourselves to the SYTx ψ when studying the SSYTx ψ if we are only interested in leading order quantities.
For example, the contribution from the other fillings to (4.5) is bounded from above by:

$$\delta \dim_N \psi \approx 2^{h-1} C_N^h K_{\psi, (1)}.$$

As a result, the correction to $\log \dim_N \psi$ due to SSYTx that are not SYTx, after taking the contribution of the latter into account, is subleading as one expects based on the observation above.

Although we managed to get ample information about the SSYTx ψ in the case $h \ll N$, we still lack the information we need: d_k the degeneracy of the YDs φ_k in (3.3) and their type. Using the discussion of the Kostka numbers above as a guide, together with the map between SSYTx ψ and φ_k, one expects that one can also take as representatives of the YDs φ_k appearing in the decomposition of $O \otimes \psi$, the ones that we get by adding at most one box to each row of O. These are the “duals” of the SYTx ψ according to our map between SSYTx and YDs φ_k, and we will denote them from now on by φ^0_k. The reasons that we can do so can be summarized as follows. First of all, the leading terms of log of their degeneracy d^0_k and their number N_0 which are given by:

$$\log d^0_k \approx h \log \frac{h}{\psi_0}, \quad \log N_0 \approx h \log \frac{N}{h},$$

(4.9)

do no change once we take into account the the YD and the antisymmetry rules. See section F.1 of appendix F for more details. Secondly, the leading term of the log of $\langle \varphi_k \varphi_k \rangle_O$, that appears in the explicit form (3.4) of the two point function (3.1), is the same for almost all the YDs φ_k, see section 3 for more details. Lastly, the degeneracies d_k are maximized for this kind of YDs. This is because d_k are related to Kostka numbers and these YDs are associated to the filling $\beta = (1)$ which maximizes the Kostka number. We will come back to these issues and others when we discuss the full two point function of these probes in subsection 5.1.

4.4 The tensor product $O \otimes \psi$: II-The cases $h \sim N$ and $h \ll N$

As previously mentioned, when studying the decomposition of the tensor product $O \otimes \psi$, we are solely interested in the generic probes. Let us first look for a lower bound on the maximum possible value of $K_{\alpha, \beta}$ using equation (4.5) in this case. Since it is the maximum, it is bigger or equal to the average value of $K_{\psi, \beta}$ in this equation. To calculate this average we need to know the total number of terms in (4.5). Using the estimate (4.6), an over-estimate of the total number of terms is given by:

$$N_{\text{tot}} = \sum_{k=0}^{N} C_N^k C_{h-1}^{k-1} < 2^{N+h}.$$

The combination of this estimate together with equation (4.5), the fact that $\log \dim_N \psi \sim h \log N$ (see subsection 2.2), gives the following approximate value for $K_{\psi, \beta}^{\text{max}}$ the maximum value for the Kostka numbers:

$$\log K_{\psi, \beta}^{\text{max}} \approx \log \dim \psi \sim h \log N.$$

(4.10)
This means that there are some SSYT$\times\psi^*$ whose Kostka number is big enough to give rise to the leading term in $\dim N \psi$. What are the fillings of such SSYT$\times\psi^*$? According to our discussion in appendix-E, the fillings β^* are such that all the labels $1, 2, \ldots, N$ are present with almost equal frequency.

Based on this results, one expects that there are few15 YD φ_k^* in the decomposition3.3 whose degeneracy d_k^* has the leading behavior:

$$\log d_k^* \approx \log \dim N \psi \approx h \log \frac{N}{\psi_0}. \quad (4.11)$$

Once again, we need to check the effect of taking into account the YD and the antisymmetry rules. We will discuss the inclusion of the YD rule here as it is relatively easier to discuss than the inclusion of the other rule, the antisymmetry rule, which will be dealt with in section F.2 of appendix-F.

The fillings of these special SSYT$\times\psi^*$ include all the numbers from 1 to N. So, the potential associated YD φ_k^* will be obtained by adding boxes to all the rows of O. The YD rule then implies that the length of the new rows should be decreasing from top to bottom. The invariance of the Kostka numbers $K_{\psi, \beta}$ under the reshuffling of the entries β_i of the filling β comes to our rescue, see appendix-E. Using this invariance, we choose the ordered filling β^*: $\beta_1 \geq \beta_2 \ldots \geq \beta_N$ to correspond to one of these possible φ_k^*. At this point one might be tempted to declare victory and conclude that taking into account the YD rule does not change the results obtained through the Kostka number means. However, one should remember that the YD rule is not limited to the final φ_k, but it is enforced after the addition of each box to the YD O. Although we could not come up with a satisfactory argument to why the final conclusion will not change even after fully taking into account the YD rule, it does not seems to be that crazy to conjecture that this is the case. A piece of evidence has to do with the entries β_i^* of the filling β^*. Remember that for maximum Kostka numbers in our case of interest, we have (see appendix-E for details):

$$\forall i \in \{1, 2, \ldots, N\} \ ; \ \beta_i^* \approx \frac{h}{N}. \quad \quad$$

Using that for our probes $h \ll N^2$, we conclude that $\beta_i^* \ll N$. This implies that it is more probable for the newly added box to end up in different row than the previous one, rather than the same row. So, one can think of the cases where the YD rule is violated as organized constructions in contrast to the cases where it is satisfied, which can be thought of as random constructions. As a result, one can conclude that the number of cases where the YD rule is violated is subleading with respect to the total number of possible φ_k^*. This conclusion is in conformation with the assumption that the leading term of $\log \langle \langle \psi \psi \rangle \rangle_O$ is continuous, see the end of the next section and the conclusions for more details.

The inclusion of the antisymmetry rule is more involved and is left to section-F.2 of appendix-F as already advertised to. The final conclusion is that, in the decomposition of the tensor product $O \otimes \psi$, for ψ a generic probe and $h \sim N$ or $h \gg N$, there are special

15 Few in the sense that the leading behavior of the log of their number is subleading with respect to $h \log N$.\footnote{ Few in the sense that the leading behavior of the log of their number is subleading with respect to $h \log N$.}
YDs φ^*_k whose degeneracy d^*_k reproduces the leading behavior of $\text{dim}_N\psi$, which is given in (4.11). Restricting ourselves to one of these YDs will give us the leading order of the log of the two point function (3.1) that we are after. For more details see subsection 5.2.

5. The full two point function and its universality

After we managed to gather the information we need on the decomposition of the tensor product $O \otimes \psi$, we are almost ready to solve the last piece of our puzzle: evaluate the leading term of the two point function (3.1), whose explicit expression is given by (3.4), in the case of generic probes. The only remaining step is to evaluate the quantity $\langle \varphi_k \varphi^*_k \rangle_O$. Our aim in this section is to evaluate the latter quantity, then get the leading term of the log of the full two point function (3.1). Before continuing let us, for completeness, remind ourselves of the leading term of the two point function in the case of non-generic probes. This was derived in subsection 4.2 and is given by equation (4.4), which we rewrite here for convenience:

$$\log \langle \langle \psi \psi \rangle \rangle_O \approx h \log \psi_0 ,$$

where h is the total number of boxes of the probe ψ, $\psi_0 = \text{Max}\{d, n\}$, d is the total number of columns of ψ, and n is the total number of its rows. In the formula above, we should only keep the leading term of h and just the leading behavior of ψ_0 i.e. its scaling with N. We want to make a small observation before moving on to the case of the generic probes. Notice that this formula does not have an explicit dependence on N, except for linear probes where $\psi_0 \sim N$. This suggests that it might be better to see the long probes ($\psi_0 = d \gg N$) as living in an SU(d) field theory rather than an SU(N) one. We will discuss this observation in some detail in the conclusions.

Back to our generic probes and their two point function. First of all, we need to deal with the quantity $\langle \varphi_k \varphi^*_k \rangle_O$. To do so and in order to have a unified discussion below, let us introduce some new notations as well as remind ourselves of old ones. O_i is the length of the row i of the background YD O. For almost all the values of i, O_i is of order N. Remember that i runs from 1 to N. $\delta_i^{(k)}$ denotes the number of added boxes to row i of O to form the YD φ_k, and n_δ stands for the total number of non-zero $\delta_i^{(k)}$. The ordering rule implies that:

$$n_\delta \geq n , \forall k , \forall i ; \ \delta_i^{(k)} \leq d .$$

These inequalities are also a straightforward implications of the properties of the SSYT labelings in conformation with the equivalence between the ordering rule and the SSYTx ψ. These inequalities will play an important role in the following. Our starting point is equation (3.7) adapted to the present case:

$$\log \langle \varphi_k \varphi^*_k \rangle_O \approx -h + \sum_{i=1}^{N} (N + O_i + \delta_i^{(k)} - i) \log (N + O_i + \delta_i^{(k)} - i) - \sum_{i=1}^{N} (N + O_i - i) \log (N + O_i - i) .$$
To proceed further, remember that for the generic probes we have \(d \ll N \). This implies, according to (5.2), that \(\delta_i^{(k)} \ll N \). Using that for almost all \(i \)'s \(\mathcal{O}_i \sim N \), we can expand the log term in the equation above and perform the sum to get:

\[
\log \langle \varphi_k \varphi_k \rangle_{\mathcal{O}} \approx -h + \sum_{i=1}^{N} \delta_i^{(k)} \log(N + \mathcal{O}_i - i) \approx h \log N .
\]

A legitimate objection to the use of this result in the expression (3.4) is that the rows where \(\mathcal{O}_i \ll N \) might spoil the final result. An in depth discussion of this point depends on the type of dominant YDs \(\varphi_k \), which in turn depends on whether \(h \ll N \), or \((h \sim N, h \gg N) \). Since the leading term of the degeneracy \(d_k \) depends also on this splitting in the regimes of \(h \), we will specialize below to these two distinct cases for the evaluation of the full two point function (3.1).

5.1 Generic probes with \(h \ll N \)

We concluded at the end of subsection 4.3 that, in this case, a good set of representative YDs \(\varphi_k^0 \) are the ones resulting from adding at most one box to each row of \(\mathcal{O} \). The number of these YDs \(\mathcal{N}_0 \) as well as their degeneracy \(d_k^0 \) have the leading terms that are given in equation (4.9), reproduced here for convenience:

\[
\log d_k^0 \approx h \log \frac{h}{\psi_0} , \quad \log \mathcal{N}_0 \approx h \log \frac{N}{h} .
\]

We need to settle the question of the usage of the expression (5.3) for all \(\langle \varphi_k \varphi_k \rangle_{\mathcal{O}} \) in the expression (3.4). The issue as pointed out earlier is that the behavior \(\mathcal{O}_i \sim N \) used in deriving this expression is not valid always. Although the ratio of the number of such rows in \(\mathcal{O} \) to the total number of rows \(N \) tends to zero in the large \(N \) limit, which is the limit we are interested in, one still should check that things do not go astray. First of all, notice that we only need to worry about these rows in the case where the number of boxes added to these rows is a finite fraction of the total number of boxes \(h \). This is because we are interested in leading order terms. From the properties of the background YDs \(\mathcal{O} \), see section 2.1, one easily infers that these problematic rows sit at the tail of the YD \(\mathcal{O} \). Let us denote their number by \(m \), \(m \ll N \) but can be as big as we want. The probability that a box from \(\psi \) ends up in one of these rows is \(p = (m/N) \). Let us suppose that \(\varphi \) is a YD among the dominant \(\varphi_k \) YDs where \((\kappa h) \) boxes from \(\psi \) are added to some rows among these \(m \) rows. Then the probability of finding such a YD among all the available YDs \(\varphi_k \) is bounded from above by:

\[
\mathcal{P} \leq C_h^{\kappa h} p^{\kappa h} (1-p)^{(1-\kappa)h} \rightarrow 0 , \quad \text{for} \quad N \rightarrow \infty ,
\]

as one expects. This is an upper limit since we did not take into account that we still have a further contribution coming from the ratio between the total number of possibilities to distribute \(h \) boxes on \(N \) rows and the number of possibilities to distribute \((\kappa h) \) boxes on \(m \) rows and the remaining boxes on \((N-m) \) rows. This contribution reduces the probability further, but its effect is small, hence can be neglected.
As a result, when evaluating the contribution of the YDs φ^0_k to the leading term of the two point function (3.1), using the explicit expression (3.4), we can safely use (5.3) for $\langle \varphi^0_k \varphi^0_k \rangle_\mathcal{O}$, the degeneracy d^0_k as well as the number N_0 given by equation (5.4). At the end, we get the following leading behavior of the contribution of the YDs φ^0_k.

$$
\log(\langle \psi \psi \rangle_\mathcal{O})^0 \approx h \log N + 2h \log \frac{h}{\psi_0} + h \log \frac{N}{h} \approx h \log \left[h \left(\frac{N}{\psi_0} \right)^2 \right].
$$

We need to worry about possible corrections to this leading behavior due to the other YDs. For this, we need to remember that the degeneracies d^0_k take the maximum possible value of d_k. We need also to remember that the leading term of the maximum of $\langle \varphi_k \varphi_k \rangle_\mathcal{O}$ is the value used for $\langle \varphi^0_k \varphi^0_k \rangle_\mathcal{O}$. The final piece of information that we need is that the number of all possible YDs φ_k is bounded from above by:

$$
\overline{N} = C h N^2 \approx 2^h N_0,
$$

see subsection 4.3 for more details. Using all these information, it is easy to conclude that the correction to the log of the full two point function $\langle \langle \psi \psi \rangle_\mathcal{O} \rangle$ when we include all the other YDs φ_k is subleading. Hence, the log of the two point function for a generic probe with $h \ll N$ in the background of a typical state \mathcal{O} of the superstar ensemble has the following leading term:

$$
\log(\langle \psi \psi \rangle_\mathcal{O}) \approx h \log \left[h \left(\frac{N}{\psi_0} \right)^2 \right].
$$

This expression should be understood as follows. We should only take into account the leading behavior of the terms inside the log, whereas for h outside the log, we keep only its leading term. Notice the huge difference between this leading term and the corresponding one in the case of the backgrounds discussed in subsection 3.2, given by equation (3.8). Due to this difference, one concludes that this class of probes ψ probe deep into the geometry, which allows us to distinguish between typical states and a random one, even if it is very close to a typical state.

5.2 Generic probes with either $h \sim N$ or $h \gg N$

In these cases there are few dominant YD φ^*_k that are the result of adding $\delta_i^{(k)} \approx (h/N)$ boxes to each row of \mathcal{O}. Their degeneracy is such that its leading term is:

$$
\log d^*_k \approx \log \dim_N \psi \approx h \log \frac{N}{\psi_0}.
$$

(5.6)

See section 4.4 and appendix-F section F.2 for more details. The reason we can use expression (5.3) for $\langle \varphi_k \varphi_k \rangle_\mathcal{O}$ is much easier to understand in the present situation. Due to the way we build the dominant YDs φ^*_k, one easily concludes that the number of boxes added to the m rows whose length $\mathcal{O}_i \approx N$ is less than:

$$
\frac{h}{N} m \log m \sim \frac{m}{N} h \log N \ll h \log N,
$$

– 30 –
which implies that the leading order of $\langle \varphi_k^* \varphi_k^* \rangle_{O}$ is the same as in the equation (5.3).

Now using the fact that $\dim_N \psi$ is an upper bound on the total number of YDs φ_k, the leading term of the degeneracy d_k^* of the dominant YDs φ_k^*, as well as the leading behavior of $\langle \varphi_k^* \varphi_k^* \rangle_{O}$, we find the following leading term of the two point function (3.1):

$$\log \langle \langle \psi \psi \rangle \rangle_{O} \approx h \log N + 2 h \log \frac{N}{\psi_0} \approx h \log \left[N \left(\frac{N}{\psi_0} \right)^2 \right]. \quad (5.7)$$

Once again, we only care about scaling with N for what is inside the log, and for h outside the log we only keep its leading term in this expression. Using the same ideas as in the previous case, we can show that the inclusion of the other YDs φ_k adds only subleading corrections to this formula. Notice that in this case as well, the leading term of the two point function is different from the corresponding one discussed in subsection 3.2 and given by equation (3.3). Hence, we conclude that the generic probes are very efficient in distinguishing typical states from other backgrounds as well as other states in the superstar ensemble.

What about the analytic properties of the leading term of the two point function in the background of typical states of the superstar ensemble? By looking at equations (5.1), (5.3), and (5.7) it clear that the leading term of the two point function is continuous in all the regime of parameters we are interested in. As a by-product, this continuity in the case of generic probes gives a further support of our conjecture that the leading term of the degeneracies d_k^* is given by the leading term of the associated Kostka number16. See section 4.4 as well as appendix-F section F.2 for more details. On top of being continuous, the leading term is differentiable except at two “distinct” points. The first happens at $\psi_0 \sim N$ and is the same as the one we stumbled onto in subsection 3.2. As already discussed in the latter subsection, this non-differentiability can be attributed to the phase transition gravitons/(dual-)giant gravitons in the bulk. The second non-differentiability is new and happens at the point $h \sim N$. This non-differentiability does not have a counterpart in the case of the background Q of subsection 3.2. It seems also that the point $h \sim N$ is intimately connected to the fact that the typical states of the superstar ensemble have order N corners, and we expect that this point will shift for other backgrounds. So, this non-differentiability tells us something about the background we are probing rather than the probes. Although we lack at the moment a complete understanding of this non-differentiability, we will advance some proposals in the conclusions section below.

6. Discussion and conclusions

The fuzzball proposal for black holes1, 2, 3 has a lot of potential to solve the black hole puzzles. Even though there are several tests of this proposal (see the reviews4, 5, 6, 7, 8, 9, 10, 11, 12, 13 and the references therein.), it is not fully clear yet whether it is right or wrong,

16One should take these claims with a grain of salt. According to1, the dual effective description of the superstar ensemble is a singular geometry. So, a priori, it is not clear that the two point function should be continuous.
or needs just a better phrasing. In this paper, we started a further test of this proposal in
the case of the superstar of [20] and its conjectured ensemble, the superstar ensemble, that
was introduced in [1]. We probed the different typical states of this ensemble using light
half-BPS probes. Of course, to complete the test one needs to do the dual calculation in
the superstar geometry. We hope to come back to this issue in the future.

Although what we did in this paper was half the needed job, the results we obtained
puts a question mark on the validity of the conjecture of [1]. Performing the dual gravity
calculation is bound to bring more clarification on this question mark. We find the following
universal leading term of the two point function (3.1):

\[
\log \langle \langle \psi \psi \rangle \rangle_\mathcal{O} \approx \alpha h \log N ,
\]

(6.1)

where \(h \) is the energy/conformal weight of the probe \(\psi \), \(N \) the flux of the background we
are probing, and \(\alpha \) is a constant that depends heavily on the shape of the probe \(\psi \) and,
on a lesser level, on the scaling of \(h \) with \(N \), see equations (5.1), (5.5), and (5.7). By the
shape of the YD \(\psi \), we mean which of the two numbers: the number of columns \(d \) or the
number of rows \(n \) dominates in the large \(N \) limit. Notice that the value of \(\alpha \) is invariant
under the exchange (rows \(\leftrightarrow \) columns). This invariance can be seen as a manifestation
of the symmetry (particle \(\leftrightarrow \) hole) in the quantum hall description of the half-BPS sector
of type-IIB string theory on asymptotically AdS\(_5 \times S^5\) [29, 30]. Two questions beg for an
answer at this stage: Is there an intuitive explanation for the form of the leading term of
\(\log \langle \langle \psi \psi \rangle \rangle_\mathcal{O} \) given above? What can we say about the different values of \(\alpha \)?

Before attempting to answer these two questions, let us first discuss a subtle issue
about the value of \(\alpha \). To be fair, we cheated a little bit when we declared that \(\alpha \) did
not depend on the background. Naively, one would expect it to depend on the shape of
the background. This is the case and this dependence is encoded in the tensor product
decomposition of \(\mathcal{O} \otimes \psi \), see section 4 and appendix F. However, since we are dealing with
typical states of an ensemble which we claim that it has a well defined effective gravity
description [1], the leading order of \(\alpha \) should have a definite value irrespective of the typical
state we pick from the ensemble. This is precisely what we find. Actually we find more. If
we try to move a little bit out of typicality, the value of \(\alpha \) changes in the case of generic
probes. This can be observed in the discussion of appendix F. There, when we discussed
the possible modifications to \(\alpha \) when we change the background YD \(\mathcal{O} \), we concluded that
as far as the number of corners of the background YD is of order \(N \), \(\alpha \) remains intact.
This was only satisfied by typical states. We can actually construct YDs \(\mathcal{O} \) that are very
close to typicality but with a different value of \(\alpha \). These are YDs \(\overline{\mathcal{O}} \) where the rows are
grouped into \(N^{1-a} \) sets of rows of equal length, where each set has \(N^a \) rows, or YDs that
are close enough to these. It is clear from the discussion in appendix F that even for very
small \(a \ll 1 \), we still get a different value of \(\alpha \). The deviation is proportional to \(a \), and
hence small for small \(a \). So, we can talk about near typical states.

By assuming that each box in the probe YD can be thought of as a free graviton,
one can intuitively understand the dependence of the two point function \(\langle \langle \psi \psi \rangle \rangle_\mathcal{O} \) on \(N^h \)
as follows. The only thing that the graviton will see is the mass \(N^2 \) of the background.
So, one expects that the two point function of a single free graviton to be proportional
to N^2. As a result, once we are dealing with h free gravitons, we should get something proportional to $N^2 h$. However, this result should be modified since these gravitons are not completely free as they are in a complicated bound state. Intuitively, one can think of the interaction between these gravitons as effectively reducing the number of free gravitons. Hence, one expects the two point function to take the form $N^\alpha h$. What about the value of the constant α?

Roughly speaking, one can relate the dependence of α on the shape of the probe ψ to the effects of angular momentum. The presence of the latter gives rise to a centrifugal force that pushes the particles away from the center. When we are dealing with a gas of bound gravitons, there are two competing effects: Attraction due to gravity which is proportional to its mass h, and “repulsion” due to the centrifugal force which is proportional to the angular momentum ψ_0. Hence, one expects that α will depend on the ratio between h and ψ_0. This intuition works perfectly for generic probes when $h \ll N$ or $h \sim N$ in the superstar ensemble, equation (5.5). However, things seem to go wrong once we cross the $h \sim N$ point, equation (5.7). Notice that the leading term of the two point function is not differentiable at this point. Unfortunately, we do not have a complete understanding of this behavior. However, we will discuss some suggestions to explain the origin of such behavior later on in this section.

To complete the previous discussion, let us deal with the non-generic probes case. Remember that these probes are dual to (dual-)giant gravitons. For these type of probes, things fall nicely into place. Remember that the radius of a (dual-)giant graviton is proportional to its angular momentum only [31, 32]. As a result, one expects that the leading term of the two point function will only depend on the angular momentum ψ_0. This is precisely what we find in equation (5.1). Actually, in this regime of ψ_0, the leading term of the two point function is universal in the sense that it is insensitive to the background. This universality can be attributed to the position of the (dual-)giant which is at the outer region of the background geometry. The latter is fixed to be AdS$_5 \times$ S5 which depends essentially on the flux of the background and not its details.

An observation that was made after equation (5.1), and deserves a further discussion, has to do with YDs ψ whose number of columns d is such that $d \gg N$ (long probes). It was observed that the leading term of the log of two point function $\langle \langle \psi \psi \rangle \rangle_\mathcal{O}$, given by equation (5.1), did not depend on N explicitly. Taking into account that this formula is valid for both regimes $\psi_0 \sim N$ and $\psi_0 \gg N$, the two point function for the long probes ($\psi_0 = d \gg N$) will have the same leading order if we were dealing with backgrounds with d units of flux instead of N. This observation suggests that one can pretty much conjecture that these probes have a non-trivial backreaction on the background. This could be the case when interpreting these probes as d giants in S5. However, the picture is more obscure on the dual-giants side. It could very well be the case that since the dual-giants are close to the boundary, one should be careful about interpreting calculations on the dual field theory, see for example [36]. On the other hand, if we would have naively used very heavy probes $h \gg N^2$, we will end up always with these kind of YDs, since the number of rows is bounded by N. In this case, we will safely conclude that one should be dealing with a different dual field theory since these probes are heavier that the background and their
backreaction should be taken into account. This gives a nice explanation for the “absence” of states of conformal weight \(h \gg N^2 \) in \(\mathcal{N} = 4 \) SU(\(N \)) super Yang-Mills theory, even though there is no good reason for that. It is just that these states belong to a different theory when using AdS/CFT duality.

Finally, and before discussing possible extensions, ameliorations of this work, let us go back to our open question regarding the non-differentiability of the leading term of \(\log \langle (\psi \psi) \rangle_\mathcal{O} \) at the point \(h \sim N \) in the case of generic probes. As already alluded to at the end of the section 5, this point of non-differentiability depends highly on the background we are probing. Let us try to look for possible origins of such non-differentiability and discuss them. To do so, we need to remember two important points. First of all, in principle, we can do a dual gravity calculation. Secondly, as already mentioned in the beginning of subsection 3.1, the spacetime dependence of the two point function was factored out. The latter is trivial and is completely fixed by demanding the conformal invariance [23]. Hence, the expression (6.1) of the leading term of the two point function includes only information about the type of probes and backgrounds. In light of these two remarks, let us examine possible origins of non-differentiability of the two point function. We have the following possible scenarios:

1. The two point function is continuous but not differentiable in general. On the gravity side, this might be the result of adding \(\delta \)-like sources when doing the probe analysis. However, such an effect would manifest itself in the spacetime dependence of the two point function which we have already factored out. Hence, this possibility is ruled out. Another reason in support of ruling out this proposal is that, the leading term of \(\log \langle (\psi \psi) \rangle_\mathcal{O} \) is continuous and differentiable except at certain points. Hence, it is more logical that there is a physical explanation of such non-differentiability rather than declaring that it is a generic property of the two point function.

2. Subleading terms of the two point function contribute in such a way to kill this non-differentiability. This is very plausible, since when taking the derivative we end up reducing the order of some terms. However, trying to remedy the non-differentiability using subleading terms in our case spoils either continuity or the leading term expression. Hence, this option is ruled out.

3. There is a further phase transition from a gas of gravitons to either (dual-)giants or a new unknown state. This is a very plausible possibility. As we mentioned when arguing for the shape of the leading term (6.1) of the two point function, we can think of the YD as a bound state of graviton with certain quantum numbers (mass and angular momentum). When moving in the space of parameters, we are either increasing the mass or the angular momentum of the probe. So one expects that when the probes are heavy enough, or the angular momentum is large enough, that there will be a phase transition. We have already encountered a similar phenomenon at the point \(\psi_0 \sim N \), where the leading term of the two point function was non-differentiable. The latter was associated to the well known phase transition gravitons/(dual-)giant gravitons [31, 32]. This is because this phase transition occurs when the angular
momentum ψ_0 is large enough. Notice that this phase transition occurs irrespective of the details of the background, in contrast to our mysterious phase transition (if this is the right explanation) at $h \sim N$. As already mentioned, the point of non-differentiability $h \sim N$ depends on more details than just the mass of the background. Tracing back our derivations, it seems that this point is tightly related to the two facts that the typical YDs have order N corners, and the length of almost all of its rows is of order N. Due to such dependence, one can safely rule out this explanation.

4. A manifestation of the stringy exclusion principle [37, 38, 39]. The reason behind this proposal is as follows. Imagine that our two point function is the result of scattering some bound state of graviton off the superstar. In this process, a “bound” state of our probe and the superstar will form in the intermediate stages. Now, due to the stringy exclusion principle, some of these intermediate bound states will not be allowed reducing the value of the two point function. This reduction can lead to a non-differentiability of the two point function when the effects of the stringy exclusion principle are not negligible. This explanation seems very plausible, however, the fact that this point of non-differentiability depends on more than just the conserved charges of the background puts this proposal on shaky grounds.

5. A tempting explanation would be to declare that this non-differentiability is, somehow, connected to the singularity of the background geometry. An argument in favor of such claim is that, in absence of a phase transition, we seem to have lost some information about our probes. Such a proposal, if true, gives a strong support for the fuzzball proposal. It also gives a hope that we can actually see the imprint of the singularity of the bulk geometry in the dual field theory. One can object to this explanation by advocating the different nature of the bulk singularity (spacetime) and the non-differentiability of the two point function (parameter space of the probes).

6. The generic probes can actually see some inner-structure of the superstar geometry. Remember that the value of the leading term of the two point function differs depending on whether we probe typical or non-typical states of the superstar ensemble. If this explanation turns to be true, then we expect that by varying our probes, we can see behind the horizon of black holes. Notice that, at best, we can only distinguish between typical and non-typical states by doing so. This is very encouraging from the point of view of the fuzzball proposal, as we can have an idea about the ensemble to associate to black holes using gravity probes. However, it is kind of hard to imagine that by just probing a single geometry, we can get information about its typical states.

7. The gravity calculation in the superstar background does not reproduce this behavior of the two point function. This is a bold proposal and, if it is true, invalidates the proposal of [1]. Notice that this does not prove that the fuzzball proposal is completely wrong, but puts it still in a bad position.
It is not very clear to us which of the proposals above is the right one. Our confusion stems from the fact that in the bulk we are, in principle, evaluating supergravity quantities whereas the point of non-differentiability seems to be intimately connected to some stringy phenomena in general. It is clear that a bulk calculation is required to solve this puzzle. The only issue there is that the type of probes we are dealing with, the generic probes, are a beast on the gravity side: they are a complicated bound states of a gas of gravitons. Hence, the needed dual calculations are very challenging and we seem to not have the right technology to tackle them at the moment.

We close this section by discussion some further open questions and possible future directions of research. The first one, which was mentioned already, is to do the dual calculation in the superstar background. Another direction of research has to do with the simple final result (6.1) that we got. Its simplicity begs for a better approach to derive it instead of our “tour-de-force” approach. A third open question has to do with beyond the leading term calculation. Unfortunately, the techniques developed here are limited to the leading order, and things get wild when going beyond except for long probes where one can easily calculate the first subleading term. Given that the long probes are the worst to use, this does not seem to be such an interesting progress. Maybe a different approach to the problem can help here. On a slightly related note, one of the original motivations to this work was to try to distinguish the typical states of the superstar ensemble. We found, as expected, that we need to go beyond the leading term for that. The question is then, at which subleading term can we start to distinguish some typical states from the others. According to the calculations in this paper, it seems that we might have some chance in the first subleading correction in the case of generic probes. However, our technology that we used here comes short to this task. In the same line of thoughts, one wonders if there is a nice expansion parameter for \(\log \langle \langle \psi \psi \rangle \rangle \sigma \)? It seems that the general structure will be an alternation of terms that contain \(\log N \), and terms without this \(\log \). It does seem also that for generic probes, \((1/\psi_0) \) might be the parameter of expansion, however we could not come up with a nice reason to why this is the case. It is possible that this parameter will work only for the first few subleading terms since it reflects the separation of the (dual-)giants in the background geometry, and one would expect that at certain stage the flux of the background will kick in. This happens for the second subleading term in the case of the long probes as the parameter of expansion seems to be \((N/d) \). Actually, it is not even clear that there will be a nice expansion in the first place. Hopefully, further works tackling the same problem discussed in this paper using a better technology will help shed light on these open questions and others.

Acknowledgements

The author wishes to thank Vishnu Jejjala and Robert de Mello Koch for their collaboration in the early stages of this project, and for the subsequent useful discussions. The author is also very grateful to Robert de Mello Koch for carefully reading the first version of this paper, as well as to Dimitrios Giataganas for useful discussions. This project is financially supported by NITheP fellowship.
A. Conventions and notation

In this appendix we will summarize our conventions and notation that are used throughout this paper.

Young diagrams (YD) Throughout this paper we will use YD as a short notation for a Young diagram and YDs for more than one. A YD is a collection of boxes, arranged in left-justified rows, with the row lengths weakly decreasing from top to bottom. For example:

\[\psi = \begin{array}{c c c c c}
\hline
& & & & \\
& & & & \\
& & & & \\
& & & & \\
& & & & \\
\hline
\end{array} \]

is a YD. We start enumerating rows from top to bottom and columns from left to right. Our main use of YDs in this paper is through their connection with irreducible representations of the unitary and the permutation groups.

The shape of a YD is the collection of the lengths of the rows of the YD into an \(n \)-tuple of integers. For example the shape of the previous YD is \(\psi = (4, 3, 2, 2) \). We will be using the same symbol to denote the YD as well as its shape.

The hook length A box in a YD is denoted by the pair \((i, j)\) where \(i\) is the number of the row and \(j\) is the number of the column whose intersection is this box. \(h_{(i,j)}\) stands for the hook length associated to the box \((i, j)\). The hook length associated to a box is the number of boxes below and to the left of it plus one. As an example, we depict below a YD whose boxes are filled with their associated hook lengths \(h_{(i,j)}\):

\[\begin{array}{c c c c c}
\hline
\hline
& & & & \\
& & & & \\
& & & & \\
& & & & \\
& & & & \\
\hline
\end{array} \rightarrow \begin{array}{c c c}
7 & 6 & 2 \\
5 & 4 & 1 \\
3 & 2 \\
2 & 1 \\
\hline
\end{array} \]

The product of all the hook lengths plays an important role in the formulation of the dimension of the SU\((N)\) group or the permutation group representation given by this YD, see equations (2.12) and (2.13).

Young tableau (YT) Throughout this paper we will use YT as a short notation for a Young tableau and YTx for more than one. A YT is a YD where each box is filled with a number\(^{17}\). The collection of these number is called a filling, and will be denoted by a Greek letter e.g. \(\beta\). We will use the word labeling of the YD to refer to all possible fillings \(\beta\). It is more convenient to denote a filling \(\beta\) by \(\beta = (\beta_1, \beta_2, \ldots, \beta_m)\), where \(\beta_i\) denotes

\(^{17}\)This is not the only possibility as we can use letters for example to label the boxes. However, we will be mainly interested in labels that are strictly positive integers.
the number of times the integer \(i \) appears. We denote by \(|\beta|\) the length of the filling \(\beta \) which is the number of its non-zero entries \(\beta_i \neq 0 \). As an example, the following YTxs:

\[
\begin{array}{ccc}
1 & 1 & 2 \\
2 & 4 & 4 \\
4 & 5 & 7 \\
5 & 7 & 2 \\
\end{array},
\begin{array}{ccc}
5 & 7 & 2 \\
4 & 4 & 4 \\
2 & 5 & 2 \\
1 & 1 & 1 \\
\end{array},
\begin{array}{ccc}
5 & 7 & 2 \\
1 & 4 & 2 \\
2 & 2 & 4 \\
4 & 4 & 4 \\
\end{array},
\ldots
\]

correspond to the YD of the previous example with the filling \(\beta = (2, 3, 0, 3, 2, 0, 1) \). The length of this filling is \(|\beta| = 5\).

Standard Young tableau (SYT) Throughout this paper we will use SYT as a short notation for a standard Young tableau, and SYTx for more than one. Let \(h \) be the number of boxes of a YD under consideration. A STY is a YD whose boxes are filled with numbers \(1, 2, \ldots, h \), each one occurring once such that, the numbers on the same row are strictly increasing from left to right, and the numbers on the same column are strictly increasing from top to bottom. The following YTxs depict some examples of SYT.

\[
\begin{array}{ccc}
1 & 2 & 3 \\
5 & 6 & 7 \\
8 & 9 & 1 \\
\end{array},
\begin{array}{ccc}
1 & 3 & 4 \\
2 & 6 & 9 \\
7 & 8 & 3 \\
\end{array},
\begin{array}{ccc}
1 & 4 & 9 \\
2 & 5 & 8 \\
3 & 6 & 7 \\
\end{array},
\ldots
\]

The number of all SYTx associated to a YD \(\psi \) gives the dimension of the representation of the permutation group \(S_h \) given by this YD \(\psi \), see for example [27].

Semi-standard Young tableau (SSYT) Throughout this paper we will use SSYT as a short notation for a semi-standard Young tableau and SSYTx for more than one. A SSYT is a YD whose boxes are filled with positive integers such that the numbers on the same row are weakly increasing from left to right and the numbers on the same column are strictly increasing from top to bottom. The following YTxs are examples of SSYT.

\[
\begin{array}{ccc}
1 & 1 & 2 \\
2 & 4 & 4 \\
4 & 5 & 7 \\
\end{array},
\begin{array}{ccc}
1 & 1 & 2 \\
2 & 2 & 4 \\
4 & 4 & 4 \\
\end{array},
\begin{array}{ccc}
1 & 1 & 2 \\
2 & 2 & 4 \\
5 & 5 & 5 \\
\end{array},
\ldots
\]

The number of all possible SSYTx associated to a YD \(\psi \), whose labels are integers running from 1 to \(N \) is the dimension of the representation of the group \(SU(N) \) given by this YD \(\psi \), see for example [27].

Kostka numbers The Kostka number \(K_{\psi, \beta} \) is the number of SSYTx associated to the YD of shape \(\psi \) and the filling \(\beta \).
Background YD conventions In this paper we will use the letter O to denote the background under consideration, be it a state, a geometry, or a dual YD. We will denote by O_i the length of the ith row of the YD O. We will reserve the notation O_0 to the limit shape YD of the ensemble under consideration. The energy/conformal dimension/number of boxes of the background will be denoted by Δ, whereas the number of its columns will be denoted by D. For characteristics of these backgrounds see section 2.1.

Probe YD conventions In this paper we will use the letter ψ to denote the probe, be it a state, or a dual YD. Its energy/conformal dimension/number of boxes will be denoted by h. ψ_i will denote the length of its ith row. We will also reserve the letter d to denote the number of its columns ($d = \psi_1$), the letter n to denote the number of its rows, $\psi_0 = \text{Max} \{n, d\}$, and the letter H to denote the product over all its hook lengths. See section 2.2 for characteristics of the probe YDs that will be used in this paper.

The dimension of a YD Two dimensions associated to the probe YD ψ will play an important role in this paper. $\text{dim}_N \psi$ will denote the dimension of ψ seen as an irreducible representation of the group $SU(N)$, whereas $\text{dim}_h \psi$ stands for its dimension seen as an irreducible representation of the permutation group S_h.

Leading behavior vs leading term Two notions that will be used extensively in the paper: leading behavior and leading term. By the leading behavior of a quantity A we mean its scaling behavior with N. We use the symbol “\sim” to express the leading behavior. On the other hand, the leading term of a quantity A means the dominant term in an expansion of A in the large N limit. We will use the symbol “\approx” to express the leading term. For example:

$$A = \sum_{k=1}^{N} k^2 = \frac{1}{6} N (N + 1)(2 N + 1), \quad A \sim N^3, \quad A \approx \frac{1}{3} N^3.$$

B. A collection of some useful formulas

Most of the results derived in this paper rely on formulas that will be discussed in this appendix. The first kind of formulas has to do with approximating sums of the form:

$$S_\ell(h, a; n) = \sum_{k=0}^{n} (h k + a)^\ell \log(h k + a),$$

for $n \gg 1$, and $\ell \leq 2$, which will be the topic of the first section below. The second formula has to do with counting the possible ways to partition a positive integer n into m positive integers $n_i; i = 1, 2, \ldots m$, where the order of the index i is important. We will be more precise about what we are really counting in the second section below. In the last section we will discuss some useful properties of polylogarithm function $\text{Li}_n(x)$ that will be used in appendix-C.
B.1 Sum approximation

In the following we will discuss an approximation to sums of the form:

$$S_\ell(h, a; n) = \sum_{k=0}^{n} (hk + a)^\ell \log(hk + a), \quad (B.1)$$

for $n \gg 1$. There are different approaches to deal with this kind of sums. We will use the Euler-Maclaurin approximation which is valid for all smooth real functions $f(x)$. We have (see [40] for example):

$$\sum_{k=0}^{n} f(hk + a) = \frac{1}{h} \int_{a}^{b} f(x) \, dx + \frac{f(a) + f(b)}{2} + \sum_{k=1}^{p} \frac{h^{2k-1}}{(2k)!} B_{2k} \left(f^{(2k-1)}(b) - f^{(2k-1)}(a) \right) + \mathcal{R}_h, \quad (B.2)$$

where $b = a + hn$, and \mathcal{R}_h is the remainder and is given by:

$$\mathcal{R}_h = \frac{h^{2p+2}}{(2p+2)!} B_{2p+2} \sum_{k=0}^{n-1} f^{(2p+2)}(a + hk + \theta),$$

where θ is some constant between 0 and 1 i.e. $0 < \theta < 1$. It can also be shown that \mathcal{R} is bounded by:

$$|\mathcal{R}| \leq \frac{2 \zeta(2p)}{(2\pi)^{2p}} \int_{1}^{n} |f^{(2p)}(x)| \, dx,$$

where $\zeta(t)$ is the Riemann zeta function. The constants B_n that appear in the relation (B.2) are the Bernoulli numbers with $B_1 = 1/2$. Their generating function is given by:

$$\sum_{m=0}^{\infty} B_m \frac{t^m}{m!} = \frac{t}{1 - e^{-t}} := B(t).$$

It is clear from the generating function above that if $n \geq 1$ then $B_{2n+1} = 0$. The easiest way to see this is by using the observation:

$$B(t) - B(-t) = t.$$

To apply the Euler-Maclaurin formula to our sum (B.1), we need to calculate the integral as well as the derivatives of the function $f(x) = x^\ell \log x$. We have:

$$\int f(x) \, dx = \frac{1}{\ell + 1} x^{\ell+1} \left(\log x - \frac{1}{\ell + 1} \right),$$

$$f^{(i)}(x) = \frac{\ell!}{(\ell - i)!} x^{\ell-i} \left(\log x + \sum_{j=1}^{i} \left[\frac{1}{\ell + 1 - j} \right] \right); \quad \text{for} \quad i < \ell,$$

$$f^{(m)}(x) = \ell! \log x + \ldots$$

The last ingredient we need is the values of the first few Bernoulli numbers. We have:

$$B_0 = 1, \quad B_1 = \frac{1}{2}, \quad B_2 = \frac{1}{6}, \quad B_4 = -\frac{1}{30},$$
Putting everything together we get the following approximations to the first few sums:

\[S_0(h, a; n) \approx \frac{1}{h} \left[\left(b + \frac{h}{2} \right) \log b - \left(a - \frac{h}{2} \right) \log a \right] - n, \quad (B.3) \]

\[S_1(h, a; n) \approx \frac{1}{2h} \left[\left(b (b + h) + \frac{h^2}{6} \right) \log b - \left(a (a - h) + \frac{h^2}{6} \right) \log a \right] - \frac{1}{4} n (b + a), \quad (B.4) \]

\[S_2(h, a; n) \approx \frac{1}{3h} \left[b (b + h) \left(b + \frac{h}{2} \right) \log b - a (a - h) \left(a - \frac{h}{2} \right) \log a \right] - \frac{1}{9} n (a^2 + b^2 + ab) + \frac{h^2}{12} n, \quad (B.5) \]

where we truncated the sums to the log order which is enough for our purposes.

In the remaining of this subsection, we will use the approximations above to evaluate a double sum that will appear frequently in Appendix D. This double sum is given by:

\[\log \mathcal{H}_0 = \sum_{i=0}^{n-1} \sum_{j=0}^{d-1} \log(N + 1 + i + j), \quad (B.6) \]

where \(N \) is some positive integer. The idea is to use the special structure of the summand to change the double sum over \(i \) and \(j \) to a single one over \(k = i + j \). For that we need to introduce the following quantities:

\[a = \text{Min} \{ n, d \}, \quad b = \text{Max} \{ n, d \}. \]

Notice that \(a + b = n + d \). It is easy to see that one gets:

\[
\begin{align*}
\log \mathcal{H}_0 &= \sum_{k=1}^{a-1} k \log(N + k) + a \sum_{k=a}^{b} \log(N + k) + \sum_{k=b+1}^{a+b-1} (a + b - k) \log(N + k) \\
&= H_N(n + d) - H_N(n) - H_N(d), \quad (B.7)
\end{align*}
\]

where \(H_{\beta}(\alpha) \) is a short notation for the sum:

\[H_{\beta}(\alpha) = \sum_{k=1}^{\alpha-1} (\alpha - k) \log(\beta + k), \quad (B.8) \]

It is a straightforward exercise to get an approximate expression for \(H_{\beta}(\alpha) \) using equations (B.3) and (B.4). We get:

\[
H_{\beta}(\alpha) = (\alpha + \beta) \sum_{k=0}^{\alpha-2} \log(\beta + 1 + k) - \sum_{k=0}^{\alpha-2} (\beta + 1 + k) \log(\beta + 1 + k)
\]

\[
\approx \frac{1}{2} \left[(\alpha + \beta)^2 - \frac{1}{6} \right] \log(\alpha + \beta) - \frac{1}{2} \left[\beta^2 + \alpha (2 \beta + 1) - \frac{1}{6} \right] \log \beta - \frac{1}{4} \alpha (2 \beta + 3 \alpha).
\]

Plugging in this result into the expression (B.7) of \(\log \mathcal{H}_0 \) above, we find:

\[
\begin{align*}
\log \mathcal{H}_0 &\approx \frac{1}{2} \left(N + n + d - \frac{1}{6} \right) \log(N + n + d) + \frac{1}{2} \left(N - \frac{1}{6} \right) \log N - \\
&- \frac{1}{2} \left(N + n - \frac{1}{6} \right) \log(N + n) - \frac{1}{2} \left(N + d - \frac{1}{6} \right) \log(N + d) - \frac{3}{2} n d. \quad (B.9)
\end{align*}
\]
B.2 A counting formula

We will need at different places in this paper to count the possible ways to partition a positive integer \(n \) into \(m \) positive integers \(n_i; \ i = 1, 2, \ldots m \). More precisely we are interested in counting the \(m \)-tuples \((n_1, n_2, \ldots, n_m) \) such that:

\[
\forall \ i; \quad n_i \geq 0, \quad \sum_{i=1}^{m} n_i = n.
\]

Notice that this is different, and much easier, than the usual notion of partition of integers. In the latter case the order of the index \(i \) is not important i.e. we are counting sets of integers instead of \(m \)-tuples. On top of that, in the usual counting of partitions, we require the integers \(n_i \) to be strictly positive.

The answer to our counting question is easy. It is the same as counting the number of ways to distribute \(n \) balls on \(m \) boxes. The answer to the latter question is given by:

\[
P_m(n) = C^n_{n+m-1}, \tag{B.10}
\]

where \(C^n_a \) is the binomial coefficient:

\[
C^n_b = \frac{b!}{a!(b-a)!}.
\]

B.3 The polylogarithm function

In this section, we will summarize some of the important properties of the polylogarithm functions \(\text{Li}_n(z) \), that will be of importance to us in appendix C. Since, in appendix C, we will be dealing with quantities that are of the form \(e^{-\beta x - \lambda y} \), where \(\beta, \ x, \ \lambda \) and \(y \) are all positive, we restrict the argument \(z \) of the function \(\text{Li}_n(z) \) to lay in the interval \(0 < z < 1 \).

We have by definition:

\[
\text{Li}_n(z) = \sum_{k=1}^{\infty} \frac{z^k}{k^n}; \quad \forall \ n > 0. \tag{B.11}
\]

It is easy to see, using the definition above that:

\[
\int_0^z \frac{\text{Li}_n(y)}{y} \ dy = \text{Li}_{n+1}(z); \quad \text{for} \quad 0 < z < 1, \tag{B.12}
\]

\[
z \partial_z \text{Li}_n(z) = \text{Li}_{n-1}(z). \tag{B.13}
\]

One can use the second property to define polylog for negative \(n \). We find:

\[
\text{Li}_{(-n)}(z) = (z \partial_z)^n \frac{z}{1-z}; \quad \forall \ n \geq 0, \tag{B.14}
\]

where the case \(n = 0 \) corresponds to the function that the operator \((z \partial_z)^n \) acts on.

The last property we would like to discuss is the Taylor expansion of the polylogarithm function whose argument takes the special form \(z = z_0 e^{\alpha} \), where \(\alpha \ll 1 \). It can be easily proved, using the defining equation of the polylogarithm (B.11) that:

\[
\text{Li}_n(z_0 e^{\alpha}) - \text{Li}_n(z_0) \simeq \sum_{k=1}^{n} \frac{\alpha^k}{k!} \text{Li}_{n-k}(z_0) + \ldots. \tag{B.15}
\]

This expansion is more than enough for our purposes even though we truncated the sum to \(n \).
C. Thermodynamics of the superstar ensemble

In this appendix, we will evaluate some thermodynamical quantities of our superstar ensemble of background YDs defined in subsection 2.1. Our first step in our study, is to evaluate the log of the partition function \(Z \) defined in equation (2.3), using the approximation (B.2). We will check the validity of our approximation at the end. After that, we will move on to fix the values of the parameters \(\beta \) and \(\lambda \). All the expressions derived below can be found in [1] with appropriate modifications.

Our starting point is the defining equation of \(Z \), equation (2.3), that we rewrite here for convenience.

\[
\log Z = - \sum_{j=1}^{N} \log(1 - pq^j) = \sum_{j=1}^{N} \text{Li}_1(pq^j),
\]

where \(\text{Li}_n(x) \) stands for the polylog function defined in (B.11). To evaluate the sum that appears in the expression of \(\log Z \) above using the approximation (B.2), we need to take \(h = 1, a = 1, b = N, \) and \(f(x) = \text{Li}_1(pq^x) \). We have:

\[
\int_1^N \text{Li}_1(pq^x) \, dx = \frac{1}{\log q} \int_{pq}^{pq^N} \frac{\text{Li}_1(y)}{y} \, dy = \frac{1}{\log q} \left[\text{Li}_2(pq^N) - \text{Li}_2(pq) \right],
\]

where we used the change of variables \(y = pq^x \), then the property (B.12) of the polylog functions since both \(q \) and \(p \) are positive and less than one, and \(N \) is a positive integer. Next, we need to evaluate the derivatives of \(f(x) \). One can prove using the property (B.13) and the definition (B.14) that:

\[
f^{(n)}(x) = (\log q)^n \text{Li}_{1-n}(pq^x).
\]

The proof proceeds by using once again the variable \(y = pq^x \), then the chain rule to change the derivative with respect to \(x \) to:

\[
\partial_x = (\log q) (y \partial_y).
\]

Collecting everything, we find the following approximate expression for \(\log Z \):

\[
\log Z \simeq \frac{1}{\log q} \left[\text{Li}_2(pq^N) - \text{Li}_2(pq) \right] + \frac{1}{2} \left[\text{Li}_1(pq^N) + \text{Li}_1(pq) \right] + \sum_{k=1}^{\infty} \frac{B_{2k}}{(2k)!} (\log q)^{(2k-1)} \left[\text{Li}_{2-2k}(pq^N) - \text{Li}_{2-2k}(pq) \right],
\]

Although we managed to evaluate \(\log Z \), we need to check the validity of our approximation. Luckily enough, our \(\beta = -\log q \) is very small [1, section 3.3]. In this regime, we can safely neglect the sum over \(k \) in equation above, to get the more manageable approximation:

\[
\log Z \simeq \frac{1}{\log q} \left[\text{Li}_2(pq^N) - \text{Li}_2(pq) \right] + \frac{1}{2} \left[\text{Li}_1(pq^N) + \text{Li}_1(pq) \right], \quad (C.2)
\]
To evaluate Δ, we plug this expression in the relation (2.4) to get:

$$\Delta \simeq \frac{1}{(\log q)^2} \left[\text{Li}_2(p) - \text{Li}_2(p q^N) \right] - \frac{1}{(\log q)} \left[\text{Li}_1(p) - N \text{Li}_1(p q^N) \right] + \frac{N}{2} \text{Li}_0(p q^N),$$

(C.3)

where we used the property (B.13). To make connection with a similar expression that appears in [1], we need to use the fact that $\text{Li}_1(x) = -\log(1-x)$ and the identity:

$$\text{Li}_2(y) + \text{Li}_2(1-y) = \frac{\pi^2}{6} - \log y \log(1-y).$$

The expression (C.2) above together with the relation (2.5), gives for D the following expression\(^{18}\):

$$D \simeq \frac{1}{\log q} \left[\log(1-p) - \log(1-p q^N) \right].$$

(C.4)

Observe that we can arrive at the same expressions as (C.3) and (C.4) by starting from (2.4) and (2.7), then performing the sum following the same steps we did for $\log Z$. The value of p can be already fixed using the constraint (C.4). We find:

$$p = \frac{1 - q^D}{1 - q^{D+N}}.$$

(C.5)

We need also a way to fix β, however the expression (C.3) is complicated, even after substituting p by its value, and the solution depends on the regime of β. We will take a slight detour here to have an idea about the regime of β, then we will come back to its value later on. The idea is to use the constraint on the limit shape YD of this ensemble [1]. Remember that we want the limit shape curve to be a line. This is because the superstar maximized the entropy. The latter is associated to moving around the outer boxes of the YDs. So, naively one would expect that the typical YDs of these ensemble should be closer to a triangular YD [1].

Following [1], we start by the expression\(^{19}\):

$$y(x) = \sum_{i=x}^N \langle c_i \rangle,$$

where x is the coordinate along the rows that increases from the top to the bottom of YDs, and $y(x)$ is the length of the row x. Using the expression for $\langle c_i \rangle$ that appears in (2.5), we find the following equation for the limit shape:

$$(1 - p q^N) q^y + p q^x = 1.$$

One can easily check that the box $(N,0)$ is part of this limit shape curve. Requiring, on the other hand, that $(0,D)$ is also part of this limit shape curve leads to the same value

\(^{18}\)It turns out that keeping only the leading term is enough for our purposes.

\(^{19}\)We have a different expression for $y(x)$ than the one in [1] since we have different conventions.
of p as before, equation (C.5). Plugging this value into the expression above, leads to the following limit shape curve equation:

$$(1 - q^N) q^y + (1 - q^D) q^x = 1 - q^{D+N}.$$
(C.6)

To get a straight line out of this equation, we need to bring down x and y from the exponent. Since both x and y are of order N, we need $(\beta N) \ll 1$ i.e. $\beta \ll (1/N)$. If this is satisfied, one gets for p the following approximate value:

$$p \approx \frac{D}{D + M}, \quad \text{(C.7)}$$

The limit shape curve becomes in this case:

$$y \approx D \left(1 - \frac{x}{N}\right), \quad \text{(C.8)}$$

which is a straight line.

To fix completely β, one can try to use the fact that $(\beta N \ll 1)$, expand the expression (C.3) appropriately using equation (B.15) and equate Δ to $(N D)/2$. However, one gets exactly the latter equality independently of β. One could have anticipated this since the limit shape Y_D is a triangle and $\langle \Delta \rangle$ should give to leading order the same number of boxes as in this YD, which is precisely $(N D)/2$, a value that is independent of β.

Our last card is to use the entropy S of this ensemble [1]. We have:

$$S = \beta \Delta + \lambda D + \log Z \approx -N \log(1 - p) - D \log p + O(\log^2 q) \sim N.$$

Notice that there is no linear term in $\beta = \log q$, so the superstar ensemble extremizes the entropy. It can be shown easily by calculating the coefficient in front of $\log^2 q$, that the superstar ensemble maximizes the entropy. Using the relation between the inverse temperature β, the energy Δ and the entropy S, we find:

$$\beta = \frac{\partial S}{\partial \Delta} \sim \frac{1}{N}, \quad \text{(C.9)}$$

where we used that $\Delta \sim N^2$. Finally, we should remember that in the expressions above we set the Plank constant to one $\hbar = 1$ [1]. Once we restore it, we find $N \log q \ll 1$ even though the scaling of $\log q$ with N is $\log q \sim 1/N$.

D. A non-trivial simple family of Young diagrams

In the following, we are going to evaluate the dimension of a family of YDs that we call from now on the optimum family. This family is generic enough for our purposes and, at the same time, simple enough to allow for exact evaluation of the leading term of the log of the dimensions of its YDs. In contrast to the general discussion about the dimension of different probe YDs in section 2.2, where equation (2.11) was mainly used, we will instead be using equation (2.12) in this appendix. We summarized the results at the end of this appendix for the convenience of the reader. This allows for an easier comparison with the general discussion in section 2.2.
Let us first start by introducing this family of YDs. The rows of a YD in this family are grouped into groups of \(n_0 \) rows of equal length. Two consecutive groups will have a constant shift in length given by \(d_0 \). The number of sets of equal length rows will be \(m \leq \lfloor N/n_0 \rfloor \) and the last rows will be of length \(d_0 \). The total number of boxes is:

\[
h = \frac{1}{2} n_0 d_0 m (m + 1) .
\]

Let us denote by \(0 \leq k \leq (m - 1) \), the “group” of rows number, and by \(1 \leq a \leq n_0 \) the row number in each group, then the row length takes the form:

\[
\psi_{kn_0+a} = d_0 (m - k) ; \quad \text{if } 1 \leq k \leq m - 1 ,
\]

and vanishes for \(k \geq m \). To make connection with our conventions in appendix \[A\], notice that the number of rows of a YD in this family is \(n = n_0 \tilde{m} \), and the number of columns is \(d = d_0 m \). Notice also that the YDs in this family are homogeneous as can be checked easily, even though not all the lengths of columns/rows scale in the same way with \(N \).

We will start our discussion by looking for an approximate expression of the log of the numerator of equation (2.12) for this family, in the case where \(N, n_0, d_0 \), are very large. From now on, we will call this numerator num \(\psi_{opt} \). Before that, let us first fix the parametrization of the position of a box in a YD of this family. Since the YD is divided into \(m \) blocks of \(n_0 \) rows and \(m \) blocks of \(d_0 \) columns, one will need four integers \(i, j, s, \) and \(r \) where \(0 \leq i \leq m - 1, 0 \leq j \leq m - 1 - i, 1 \leq s \leq n_0, \) and \(1 \leq r \leq d_0 \) to parametrize a position of a box. The latter will be characterized by its row number \((in_0 + s) \), and its column number \((jd_0 + r) \). We will denote such information by \((i, j; s, r)\). Before continuing, let us also introduce a set of short notations:

\[
\tilde{m} = n_0 + d_0 , \quad \tilde{\psi} = m \tilde{m} = d + n , \quad d = d_0 m , \quad n = n_0 m , \quad \tilde{N} = N - n , \quad N = d = \tilde{N} + m \tilde{m} . \tag{D.2}
\]

We will subdivide this family of YDs into two subfamilies corresponding to the case \(m \sim N^0 \) and the case \(m \sim N^\mu, \mu > 0 \) and we will discuss them independently. We will call the first subfamily \(opt_0 \) and the second subfamily \(opt_\mu \). Before specializing to the two subfamilies, we will approximate log num \(\psi_{opt} \) and log \(H_{opt} \) by carrying out all the sums involved except for the sum that depends on \(m \).

As declared above, we start by evaluating log num \(\psi_{opt} \). Using the parametrization of the position of boxes in \(\psi_{opt} \) we get:

\[
\log \text{num } \psi_{opt} = \sum_{i=0}^{m-1} \sum_{j=0}^{m-1-i} \sum_{s=1}^{n_0} \sum_{r'=1}^{d_0} \log(N + j d_0 + r' - i m - s) = \sum_{k=0}^{m-1} \left[\sum_{t=0}^{n_0-1} \sum_{u=0}^{(k+1)d_0-1} \log(\tilde{N} + k n_0 + t + u + 1) \right]
\]

where we introduced the new variables \(k = m - 1 - i, t = n_0 - s, r = r' - 1, \) and \(u = d_0 j + r \). Notice that the sum inside the two brackets is of the form of the sum \[B.4\]
whose approximate expression is given by (3.9). Using this observation, we get:

\[
\log \text{num} \psi_{opt} \approx -\frac{3}{2} h + \frac{1}{2} \sum_{k=0}^{m-1} \left(\left(\tilde{N} + (k+1) \tilde{m} \right)^2 - \frac{1}{6} \right) \log(\tilde{N} + (k+1) \tilde{m}) \\
- \left(\left(\tilde{N} + (k+1) \tilde{m} - n_0 \right)^2 - \frac{1}{6} \right) \log(\tilde{N} + (k+1) \tilde{m} - n_0) \\
+ \frac{1}{2} \left(\tilde{N}^2 - \frac{1}{6} \right) \log \tilde{N} - \left(N^2 - \frac{1}{6} \right) \log N \right). \\
\]

(D.3)

Next, we need to evaluate \(\log H_{opt} \). Once gain our starting point is the parametrization of the position of boxes in a YD of this family. It is easy to see that the hook length associated to a box \((i, j; s, r)\) is given by:

\[h(i,j; s, r) = \left(m - (i+j) \right) \tilde{m} + 1 - (r+s), \]

where \(1 \leq s \leq n_0, 1 \leq r \leq d_0, \) and \(i+j \leq m-1 \). So we need to evaluate:

\[
\log H_{opt} = \sum_{i=0}^{m-1} \sum_{j=0}^{m-1-i} \sum_{s=1}^{n_0} \sum_{r=1}^{d_0} \log([m-(i+j)] \tilde{m} + 1 - (r+s)) \\
= \sum_{k=0}^{m-1-n_0-d_0-1} \sum_{u=0}^{n_0-k} \sum_{v=0}^{d_0-k} (n_0 - k) \log(k \tilde{m} + 1 + u + v) \\
\approx -\frac{3}{2} h + \frac{1}{2} \sum_{k=0}^{m-1} (m-k) \left\{ \left[(k+1)^2 \tilde{m}^2 - \frac{1}{6} \right] \log((k+1) \tilde{m}) \\
- \left[(k \tilde{m} + n_0)^2 - \frac{1}{6} \right] \log(k \tilde{m} + n_0) - \left[(k \tilde{m} + d_0)^2 - \frac{1}{6} \right] \log(k \tilde{m} + d_0) \right\} \\
+ \frac{1}{2} \sum_{k=1}^{m-1} (m-k) \left[k^2 \tilde{m}^2 - \frac{1}{6} \right] \log(k \tilde{m}), \]

(D.4)

where we introduced the new variables \(k = m - 1 - (i+j), u = n_0 - s, \) and \(v = d_0 - r \) to move from the first to the second line. The evaluation of the sum over \(u \) and \(v \) follows the same steps as in evaluating \(H_0 \) defined in equation (3.6) whose approximate expression is given by equation (3.9).

We have two options in evaluating the leftover sum over \(k \) in the equations (D.3) and (D.4). We can either look for an approximate expression of the sum (3.1) for \(\ell \leq 3 \), perform the sum over \(k \), then expand the final result depending on the regime of the parameters \(n_0, d_0, \) and \(m \). Or, we can first expand the summands in equations (D.3) and (D.4), then perform the sum over \(k \) using, at worst, the approximations (3.3), (4.4) and (3.5). We find it easier to follow the second option and that is what we are going to do in the following for each subfamily. Another reason to follow such route is that we want to make our \(opt \) family of YDs as large as possible. In doing so, the number \(m \) can be finite and small and hence the techniques of section 3.1 of appendix-B will not be applicable. Before going ahead with our task, let us introduce some notations for the sake of unifying the discussion.
below. We will assume the following leading behavior of \(n_0, m \) and \(d_0 \):

\[
\begin{align*}
n_0 &\approx \bar{n} N^\nu, \quad m \approx \bar{m} N^\mu, \quad d_0 \approx \bar{d} N^\delta, \\
n &\approx \bar{n} \bar{m} N^{\mu+\nu}, \quad d \approx \bar{m} \bar{d} N^{\mu+\delta}, \quad h \approx \bar{h} N^{2\mu+\nu+\delta},
\end{align*}
\] (D.5)

where \(\bar{n}, \bar{m}, \bar{d} \) are \(N \)-independent and \(\bar{h} = (1/2) \bar{n} \bar{d} \bar{m} (\bar{m} + 1) \). Remember that we are interested in the regime of parameters:

\[
2 \mu + \nu + \delta < 2, \quad \nu + \mu \leq 1.
\] (D.6)

D.1 The \(\text{opt}_0 \) family

This case corresponds to \(\mu = 0 \). In the present case our regime of parameters (D.6) simplifies to:

\[
\nu + \delta < 2, \quad \nu \leq 1,
\]

and since \(N \) enters in the expression (D.3), we distinguish the following cases:

- \(1 < \delta < 2 \): This implies that \(\nu < 1 \), and hence \(\bar{m} \approx d_0 \). We get:

\[
\begin{align*}
\log \text{num} \psi_{opt} &\approx \delta h \log N - h + \frac{2h}{m (m + 1)} \left(\sum_{k=1}^{m} k \log(k \bar{d}) \right) + m \bar{n} N^{1+\nu} \log \frac{d_0}{N}, \\
\log \mathcal{H}_{opt} &\approx \delta h \log N - h + \frac{2h}{m (m + 1)} \left(\sum_{k=1}^{m} k \log(k \bar{d}) \right) + \frac{1}{2} (\delta - \nu) N^{2\nu} \log N, \\
\log \text{dim}_N \psi_{opt} &\approx (\delta - 1) m \bar{n} N^{1+\nu} \log N \approx n N \log \frac{d}{N}.
\end{align*}
\] (D.7)

- \(\delta = 1 \): Once again we have \(\nu < 1 \) and hence \(\bar{m} \approx d_0 \). We find:

\[
\begin{align*}
\log \text{num} \psi_{opt} &\approx h \log N - h + \frac{2h}{dm (m + 1)} \left[\sum_{k=1}^{m} (1 + k \bar{d}) \log(1 + k \bar{d}) \right], \\
\log \mathcal{H}_{opt} &\approx h \log N - h + \frac{2h}{m (m + 1)} \left(\sum_{k=1}^{m} k \log(k \bar{d}) \right), \\
\log \text{dim}_N \psi_{opt} &\approx \frac{2h}{dm (m + 1)} \sum_{k=1}^{m} [(1 + k \bar{d}) \log(1 + k \bar{d}) - (k \bar{d}) \log(k \bar{d})].
\end{align*}
\] (D.8)

- \(\delta < 1 \): We need to distinguish between four subcases:
* \(\nu < \delta\): This is the simplest case as \(\bar{m} \approx d_0\) as before. We find:

\[
\log \text{num } \psi_{opt} \approx h \log N + 0 \, h ,
\]

\[
\log H_{opt} \approx \delta h \log N - h + \frac{2}{m(m+1)} \left(\sum_{k=1}^{m} k \log(k \bar{d}) \right) ,
\]

\[
\log \text{dim}_N \psi_{opt} \approx (1 - \delta) h \log N \approx h \log \frac{N}{d} ,
\]

\[
\log \text{dim}_h \psi_{opt} \approx \nu h \log N + \left(\log \left[\frac{1}{2} \bar{n} m (m + 1) \right] - \frac{2}{m(m+1)} \sum_{k=1}^{m} k \log k \right) h
\]

\[
\approx h \log \frac{h}{d} + a \, h ,
\]

where \(a\) is some constant. The reason we included the next subleading term in the last expression is that \(\nu = 0\) is a valid point in our space of parameters. It is easy to check that this subleading term is positive when \(\nu = 0\) as it should be. This is because in this case \(\bar{n} \geq 1\) and:

\[
\sum_{k=1}^{m} k \log k \leq \sum_{k=1}^{m} k \log m = \frac{1}{2} m (m + 1) \log m .
\]

* \(\nu = \delta\): This case is slightly more complicated than the previous one. We find:

\[
\log \text{num } \psi_{opt} \approx h \log N + 0 \, h ,
\]

\[
\log H_{opt} \approx \delta h \log N + O(h) ,
\]

\[
\log \text{dim}_N \psi_{opt} \approx (1 - \delta) h \log N \approx h \log \frac{N}{d} \approx h \log \frac{N}{n} ,
\]

\[
\log \text{dim}_h \psi_{opt} \approx \delta h \log N \approx \log \frac{h}{d} \approx \log \frac{h}{n} ,
\]

where we used that \(\nu = \delta \neq 0\).

* \(1 > \nu > \delta\): In this case we have \(\bar{m} \approx n_0\). We find:

\[
\log \text{num } \psi_{opt} \approx h \log N + 0 \, h ,
\]

\[
\log H_{opt} \approx \nu h \log N - h + \frac{2}{m(m+1)} \left(\sum_{k=1}^{m} k \log(k \bar{d}) \right) ,
\]

\[
\log \text{dim}_N \psi_{opt} \approx (1 - \nu) h \log N \approx h \log \frac{N}{n} ,
\]

\[
\log \text{dim}_h \psi_{opt} \approx \delta h \log N + \left(\log \left[\frac{1}{2} \bar{d} m (m + 1) \right] - \frac{2}{m(m+1)} \sum_{k=1}^{m} k \log k \right) h
\]

\[
\approx h \log \frac{h}{n} + a \, h ,
\]

where \(a\) is a constant. Notice that the roles of \(n_0\) and \(d_0\) here are switched with respect to the case \(\delta > \nu\), even though the approximate expression (D.3) is not symmetric under the exchange \(n_0 \leftrightarrow d_0\). This is a manifestation the duality discussed in subsection (2.2).
$1 = \nu > \delta$: In this case $\tilde{m} \approx n_0 \sim N$. We find:

$$\log \text{num}\,\psi_{\text{opt}} \approx h \log N - h - \frac{2h}{\tilde{m} m (m + 1)} \left[\sum_{k=1}^{m} (1 - k \tilde{n}) \log(1 - k \tilde{n}) \right],$$

$$\log \mathcal{H}_{\text{opt}} \approx h \log N - h + \frac{2h}{m (m + 1)} \left(\sum_{k=1}^{m} k \log(k \tilde{n}) \right),$$

$$\log \text{dim}_N \psi_{\text{opt}} \approx -\frac{2h}{\tilde{n} m (m + 1)} \sum_{k=1}^{m} [(1 - k \tilde{n}) \log(1 - k \tilde{n}) + (k \tilde{n}) \log(k \tilde{n})].$$

(D.15)

Notice that $\log \text{dim}_N \psi_{\text{opt}}$ is well defined and positive since $m \tilde{n} < 1$

D.2 The opt_μ family

In this case, we have the following range of parameters:

$$0 < \mu \leq 1, \quad 0 < \nu + \mu \leq 1, \quad 0 < 2 \mu + \nu + \delta < 2.$$

The origin of the complication in this case is that we need to worry about $d = md_0$ and $n = n_0 m$ on top of n_0 and d_0. As in the previous subfamily we will use the different ranges of δ as the main classifying tool. We have the following cases:

- $1 < \delta < 2$: This is the easiest case. We find:

 $$\log \text{num}\,\psi_{\text{opt}} \approx \left(h + n N - \frac{1}{2} n^2 \right) \log \tilde{\psi} + \frac{h}{6 m^2} \log m - n \left(N - \frac{1}{2} n \right) \log N - \frac{3}{2} h + \frac{h}{2 m} + \ldots,$$

 $$\log \mathcal{H}_{\text{opt}} \approx \left(h - \frac{1}{2} n_0 n \right) \log \tilde{\psi} + \frac{h}{6 m^2} \log m - \frac{1}{2} n_0 n \log n_0 - \frac{3}{2} h + \frac{h}{2 m} + \ldots,$$

 $$\log \text{dim}_N \psi_{\text{opt}} \approx (\mu + \delta - 1) \tilde{n} \tilde{m} N^{1+\nu+\mu} \log N \approx n N \log \frac{d}{N}. \quad \text{(D.16)}$$

- $\delta = 1$: Following the same steps as before we find:

 $$\log \text{num}\,\psi_{\text{opt}} \approx \left(h + \frac{h}{6 m^2} + n N - \frac{1}{2} n^2 \right) \log \tilde{\psi} - \left(\frac{1}{6} + \frac{1 + d}{(d)^2} \right) \left(\frac{h}{m^2} \right) \log(N + d_0) - n \left(N - \frac{1}{2} n \right) \log N - \frac{3}{2} h + \frac{h}{2 m} + \ldots,$$

 $$\log \mathcal{H}_{\text{opt}} \approx \left(h - \frac{1}{2} n_0 n \right) \log \tilde{\psi} + \frac{h}{6 m^2} \log m - \frac{1}{2} n_0 n \log n_0 - \frac{3}{2} h + \frac{h}{2 m} + \ldots,$$

 $$\log \text{dim}_N \psi_{\text{opt}} \approx \mu \tilde{m} \tilde{n} N^{1+\mu+\nu} \log N \approx n N \log \frac{d}{N}. \quad \text{(D.17)}$$
• $\delta < 1$: As before we distinguish three subcases:

 * $\nu < \delta$: We distinguish three possibilities:
 * $\delta + \mu > 1$: In this case we need to keep terms that involve d_0 in the log expression. We find:
 \[
 \log \num \psi_{opt} \approx (h + n N) \log \tilde{\psi} - n N \log N - \frac{3}{2} h + \ldots , \\
 \log \mathcal{H}_{opt} \approx \left(h - \frac{1}{2} n_0 n \right) \log \tilde{\psi} - \frac{3}{2} h + \frac{h}{2 m} + \ldots , \\
 \log \dim_N \psi_{opt} \approx (\delta + \mu - 1) \tilde{m} \tilde{n} N^{1+\mu+\nu} \log N \approx n N \log \frac{d}{N} . \tag{D.18}
 \]
 * $\delta + \mu = 1$: Following the same steps as in the previous case, we find:
 \[
 \log \num \psi_{opt} \approx \left(h - \frac{1}{2} n^2 \right) \log N + \left(1 + \frac{1}{\psi} \right)^2 h \log(1 + \frac{1}{\psi}) \]
 \[
 - \left(\frac{3}{2} + \frac{1}{\psi} \right) h + \ldots , \\
 \log \mathcal{H}_{opt} \approx \left(h - \frac{1}{2} n_0 n \right) \log \tilde{\psi} - \frac{3}{2} h + \ldots , \\
 \log \dim_N \psi_{opt} \approx \left(\frac{1}{\psi} \right)^2 \left[(1 + \frac{1}{\psi})^2 \log(1 + \frac{1}{\psi}) - (\frac{1}{\psi})^2 \log \frac{1}{\psi} - \frac{1}{\psi} \right] h , \tag{D.19}
 \]
 where $\tilde{\psi} = \tilde{m} \tilde{d}$.
 * $\delta + \mu < 1$: We find in this case:
 \[
 \log \num \psi_{opt} \approx h \log N + 0 h + \ldots , \\
 \log \mathcal{H}_{opt} \approx \left(h - \frac{1}{2} n_0 n \right) \log \tilde{\psi} - \frac{3}{2} h + \ldots , \\
 \log \dim_N \psi_{opt} \approx (1 - \mu - \delta) h \log N \approx h \log \frac{N}{d} , \tag{D.20}
 \]
 \[
 \log \dim_h \psi_{opt} \approx \left(\mu + \delta \right) h \log N \approx h \log \frac{h}{d} . \tag{D.21}
 \]
 * $\delta = \nu$: We find:
 \[
 \log \num \psi_{opt} \approx h \log N - \frac{3}{2} \left(\frac{\tilde{n}}{N} \right) h + \ldots , \\
 \log \mathcal{H}_{opt} \approx h \log \tilde{\psi} + \ldots , \\
 \log \dim_N \psi_{opt} \approx (1 - \mu - \delta) h \log N \approx h \log \frac{N}{N} , \tag{D.22}
 \]
 \[
 \log \dim_h \psi_{opt} \approx \left(\mu + \delta \right) h \log N \approx h \log \frac{h}{d} \approx h \log \frac{N}{n} . \tag{D.23}
 \]
 * $\delta < \nu$: We distinguish two possibilities:
In this case we need to keep terms involving n_0 untouched when expanding the log terms. Then, we evaluate the sum over k. We find:

$$
\log \text{num} \psi_{\text{opt}} \approx h \log N + \left(1 - \frac{\bar{m} \bar{n}}{\hat{m} \hat{n}}\right)^2 h \log(1 - \bar{m} \bar{n}) + \left(1 - \frac{\bar{m} \bar{n}}{\hat{m} \hat{n}} - \frac{3}{2}\right) h,
$$

$$
\log H_{\text{opt}} \approx h \log \hat{\psi} - \frac{3}{2} h + \ldots,
$$

$$
\log \dim N \psi_{\text{opt}} \approx \frac{h}{(\bar{m} \bar{n})^2} \left[(1 - \bar{m} \bar{n})^2 \log(1 - \bar{m} \bar{n}) - (\bar{m} \bar{n})^2 \log(\bar{m} \bar{n}) + (\bar{m} \bar{n})\right].
$$

(D.24)

Notice that $\dim N \psi_{\text{opt}}$ is positive as it should be. To see that remember that $20(\bar{m} \bar{n}) \leq 1$.

* $\mu + \nu < 1$: Here we expand the log terms keeping only N. We find, after summing over k:

$$
\log \text{num} \psi_{\text{opt}} \approx h \log N + \ldots,
$$

$$
\log H_{\text{opt}} \approx h \log \hat{\psi} - \frac{3}{2} h + \ldots,
$$

$$
\log \dim N \psi_{\text{opt}} \approx (1 - \nu - \mu) h \log N \approx h \log \frac{N}{n},
$$

(D.25)

$$
\log \dim h \psi_{\text{opt}} \approx (\mu + \delta) h \log N \approx h \log \frac{h}{n}.
$$

(D.26)

D.3 Summary

In the following, we summarize what we got in the previous two subsections. This will make it much easier to compare with the general discussion in section 2.2. To make contact with the expressions there, we introduce the quantity:

$$
\psi_0 = \text{Max}\{d, n\}.
$$

We will also borrow the classification of probes from there. Looking at the different cases above, we find the following leading behavior of $\log \dim N \psi$ and $\log \dim h \psi$:

- **Generic Probes:** In the case $\mu = 0$, these probes correspond to $\delta < 1$ and include the cases $\delta < \nu$, $\delta = \nu$ and $\delta > \nu$. In the case $\mu \neq 0$, these probes correspond to $\delta < 1$ once again and include the cases $(\nu < \delta$, $\mu + \delta < 1)$, $\nu = \delta$ and $(\delta < \nu$, $\nu + \mu < 1)$. In all these cases, we find that:

$$
\log \dim N \psi \approx h \log \frac{N}{\psi_0}, \quad \log \dim h \psi \approx h \log \frac{h}{\psi_0} + ah, \quad (D.27)
$$

where a is some constant whose precise value is not of interest to us.

20It is easy to prove that the function: $f(x) = (1 - x)^2 \log(1 - x) - x \log x + x$, is an increasing function in the interval $(0, 1]$ which implies that $0 \leq f(x) \leq 1$.

• **Linear Probes:** In the case $\mu = 0$, these probes include $\delta = 1$ and $\nu = 1$ cases. In the case $\mu \neq 0$, we have the cases $(\nu < \delta, \mu + \delta = 1)$ and $(\delta < \nu, \nu + \mu = 1)$. In all this cases we find:

$$\log \dim_N \psi \approx b h ,$$

where b is some constant whose value is not important to us.

• **Long Probes:** In the case $\mu = 0$, these probes correspond to $\delta > 1$. In the other case $\mu \neq 0$, the probes correspond to the cases $\delta > 1$, $\delta = 1$, and $(\delta < 1, \delta + \mu > 1)$. In all of these cases, we find:

$$\log \dim_N \psi \approx n N \log \frac{d}{N} .$$

These results are in complete agreement with what we found in the general discussion in subsection 2.2.

E. Some useful properties of Kostka numbers

In this appendix, we will discuss some of the properties of Kostka numbers $K_{\psi, \beta}$ that will be very useful in subsections 4.3 and 4.4. In the following, the filling β has no zero entries, see the end of subsection 4.1.2 for more details.

E.1 Kostka numbers and fillings

The first property we are going to discuss has to do with the behavior of the Kostka numbers under the reshuffling of the numbers β_i’s that define a filling β. The claim is that the Kostka numbers are invariant under that, and hence, we can take $\tilde{\beta}$ the ordered counterpart of β as a representative of these fillings i.e. start from a filling $\beta = (\beta_1, \beta_2, \ldots, \beta_m)$, and construct the filling $\tilde{\beta} = (\tilde{\beta}_1, \tilde{\beta}_2, \ldots, \tilde{\beta}_m)$ such that:

$$\tilde{\beta}_1 \geq \tilde{\beta}_2 \geq \ldots \geq \tilde{\beta}_m .$$

To prove the claim above, it is enough to prove that we can construct a one-to-one map between the SSYTx ψ with fillings β and $\tilde{\beta}$ that are related by exchanging two numbers β_i and β_{i+1}, i.e.

$$\beta = (\beta_1, \beta_2, \ldots, \beta_i, \beta_{i+1}, \ldots, \beta_m) , \quad \tilde{\beta} = (\beta_1, \beta_2, \ldots, \beta_{i+1}, \beta_i, \ldots, \beta_m) .$$

Let us assume that we constructed all the SSYTx ψ with filling β and we want to construct the ones associated to the filling $\tilde{\beta}$. This is done in three steps:

1. First, we relabel by $(i + 1)$ the boxes labeled by i, and vice versa. Notice that since we are not touching the other labels in this step, we need only to deal with the order of the labels i and $(i + 1)$.

2. Next, we first deal with the order of the labels i and $(i + 1)$ in each column. If the label i sits below the label $(i + 1)$ we exchange their position, otherwise we leave the column unchanged. Notice that in this step if the column in not left unchanged then all we have done is switching the labels of only two boxes in this column.
3. Finally, we look at the order of labels in each row. Once again we need to reorder the boxes with labels i and $(i + 1)$ only. This is done by putting the boxes with label i that are to the right of the boxes with labels $(i + 1)$ to their left. At the end of this step, we get a SSYT ψ with filling $\bar{\beta}$ for each SSYT ψ with filling β.

Notice that we could have done the same by starting with the filling $\bar{\beta}$, then construct the SSYTx associated to the filling $\bar{\beta}$. Hence, the two Kostka numbers associated to β and $\bar{\beta}$ are equal.

Take for example the fillings $\beta = (1, 1, 2, 1)$ and $\bar{\beta} = (1, 2, 1, 1)$ and the YD:

\[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
3 & 4 & & \\
\end{array}
\]

The only SSYTx associated to the filling β are:

\[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
3 & 4 & & \\
2 & 4 & & \\
\end{array}
, \quad
\begin{array}{cccc}
1 & 3 & 3 & 4 \\
2 & 4 & & \\
3 & 3 & & \\
\end{array}
, \quad
\begin{array}{cccc}
1 & 2 & 4 & 3 \\
3 & 3 & & \\
\end{array}
\]

Let us follow the steps above to construct the SSYTx associated to $\bar{\beta}$. The first step gives:

\[
\begin{array}{cccc}
1 & 3 & 2 & 4 \\
2 & 4 & & \\
\end{array}
, \quad
\begin{array}{cccc}
1 & 2 & 2 & 4 \\
3 & 4 & & \\
\end{array}
, \quad
\begin{array}{cccc}
1 & 3 & 4 & 2 \\
3 & 3 & & \\
2 & 2 & & \\
\end{array}
\]

The only YT that is affected by the second step is the last one, so we have:

\[
\begin{array}{cccc}
1 & 3 & 2 & 4 \\
2 & 4 & & \\
\end{array}
, \quad
\begin{array}{cccc}
1 & 2 & 2 & 4 \\
3 & 4 & & \\
\end{array}
, \quad
\begin{array}{cccc}
1 & 2 & 4 & 3 \\
2 & 3 & & \\
\end{array}
\]

Finally, the last step remedies the first YT which is the only non-SSYT. We get at the end the following SSYTx associated to the filling $\bar{\beta} = (1, 2, 1, 1)$:

\[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
2 & 4 & & \\
\end{array}
, \quad
\begin{array}{cccc}
1 & 2 & 2 & 4 \\
3 & 4 & & \\
\end{array}
, \quad
\begin{array}{cccc}
1 & 2 & 4 & 3 \\
2 & 3 & & \\
\end{array}
\]

It is not hard to see that the SSYT above are the only ones possible for the filling $\bar{\beta}$. In the remaining of this appendix, whenever we talk about a filling β, we assume that it is completely ordered i.e. $\beta_1 \geq \beta_2 \geq \ldots$.

E.2 The non-zero Kostka numbers

The question we want to address here is: when is the Kostka number non vanishing? Since Kostka numbers $K_{\psi, \beta}$ are related to SSYTx ψ which are themselves related to decomposition of the tensor product $\psi \otimes B$, where B is some arbitrary YD21, through the ordering rule defined in subsection 4.1.1 according to our discussion in subsection 4.1.2, we can use the implications of the ordering rule as a guiding tool.

21We choose B such that the number of its columns is large enough.
The first implication of the ordering rule is that a box in row \(i \) of the YD \(\psi \) cannot be attached to a row \(j \) of the YD \(B \) if \(i < j \), see end of section 4.1.1. This can be easily understood in the case of SSYT and has to do with the fact that the labels in the same column should be strictly increasing from top to bottom, and labels in the same row should be weakly increasing from left to right. In the language of SSYT, \(i \) will be the row number and \(j \) will be the label. Due to the aforementioned conditions on the labels in a SSYT, the labels in row \(i \) should bigger or equal than \(i \), which implies the absence of the label \(j \) in row \(i \) if \(j < i \).

The second implication of the ordering rule (see end of section 4.1.1) can also be understood as a consequence of the conditions of the labels of SSYTx. In terms of the tensor product decomposition, it was shown that if the boxes added to a row \(i \) of \(B \) come from different rows of \(\psi \) with \(m \) being the highest one among them, than the number of added boxes to the row \(i \) is less or equal than \(\psi_m \) the length of this row. In terms of the SSYT labeling, this situation corresponds to the presence of the label \(i \) in the row \(m \) of \(\psi \). Due to the conditions on the labeling of SSYT, any other box with label \(i \) in a row below this row should be to the left of this box. As a result the number of labels \(i \) in the SSYT \(\psi \) is less or equal \(\psi_m \) the length of the row \(m \) of \(\psi \).

The combination of the previous two conditions, together with the fact that the filling \(\beta \) is a totally ordered filling, implies the following condition for a non-vanishing Kostka number \(K_{\psi,\beta} \), see for example [35]. The Kostka number \(K_{\psi,\beta} \) is nonzero if and only if both \(\psi \) and \(\beta \) are partitions of the same integer \(h \), and moreover, \(\psi \) is larger than \(\beta \) in the dominance order. The latter is defined as follows. Let \(\psi = (\psi_1, \psi_2, \ldots, \psi_n) \), \(\beta = (\beta_1, \beta_2, \ldots, \beta_m) \) with \(\psi_1 \geq \psi_2 \geq \ldots \) and \(\beta_1 \geq \beta_2 \geq \ldots \) be two ordered tuples of integers. We say that \(\psi \) is larger than \(\beta \) in dominance order, and we write \(\psi \trianglerighteq \beta \), if and only if for each integer \(k \geq 1 \), the following is true:

\[
\forall k \geq 1 ; \quad \sum_{i=1}^{k} \psi_i \geq \sum_{i=1}^{k} \beta_i ,
\]

where we fill in the non-existing integers \(\psi_k \) for \(k > n \) by zeros. An immediate consequence of this is that the number of entries in \(\beta \) should be bigger or equal to the the number of rows of \(\psi \). Notice that this condition is only true for \(\beta \) being totally ordered. If \(\beta \) is not ordered than the statement above works in one directions only: \(K_{\psi,\beta} \) nonzero then we have the dominance order condition but not the way around.

E.3 Maximizing Kostka numbers

The final point in our investigation on the Kostka numbers is to find conditions on the filling \(\beta \) such that we get a maximum value for \(K_{\alpha,\beta} \). This is important as we are interested in leading order behavior of the degeneracy of YD appearing in the decomposition of \(O \otimes \psi \), and as we will see in subsection 4.4 and section F.2 of appendix-F, this degeneracy is intimately connected to the maximum Kostka number in cases of interest to us. Notice that we are fixing the shape \(\psi \) here and varying \(\beta \). Two claims can be made here. First of all, \(|\beta| \) the “length” of the filling \(\beta \) should be maximized. By length we mean the number of
non-zero entries $\beta_i \neq 0$. Secondly, the entries β_i should be very close to the average $h/|\tilde{\beta}_0|^{22}$. In the following, h will stand, as usual, for the number of boxes of the YD ψ whose shape is also denoted by ψ, whereas N is, as usual, the flux of the background geometry which is the same N that appears in the group of our interest $U(N)$.

The first claim is easy to understand. The condition on the columns ordering implies that we cannot have the same label on more than one box in the same column. Hence, to have more options in labeling we need to have more labels. As a result, the bigger $|\beta|$ the more options we have. In the case $N \leq h$, the biggest $|\beta|$ possible is h which implies that $\beta_i = 1$. So, the condition on $|\beta|$ is strong enough to imply the second claim above. Things are more complicated in the case $N < h$ since here we have at least one β_i that is bigger than “1” for fillings associated with the largest possible value of $|\beta| = N$. In this case the second claim adds a non-trivial condition on the filling β. The argument for the validity of the second claim in this case is as follows.

First of all, we are going to work with the ordered filling $\tilde{\beta}$. We will also concentrate on the case $N < h$. Hence, we are starting with the N-tuple $\tilde{\beta} = (\tilde{\beta}_1, \tilde{\beta}_2, \ldots, \tilde{\beta}_N)$ such that:

$$\tilde{\beta}_1 \geq \tilde{\beta}_2 \geq \ldots \geq \tilde{\beta}_N , \quad \sum_{i=1}^{N} \tilde{\beta}_i = h .$$

Let us first concentrate on $\tilde{\beta}_1$ and $\tilde{\beta}_2$. Let us fix the sum $\tilde{\beta}_1 + \tilde{\beta}_2$ but allow each of them to vary. Notice that the boxes with label 1 are confined to the first row, whereas the ones with label 2 have the freedom to be located in either of the first two rows. So, the bigger $\tilde{\beta}_2$ the bigger the Kostka number. We reach the maximum if $\tilde{\beta}_2 \approx \tilde{\beta}_1$ since $\tilde{\beta}_2 \leq \tilde{\beta}_1$. Repeating the same argument for the labels $3 \leq i \leq n$, where we use that boxes with label j are confined to be in the first j rows, we conclude that to maximize the Kostka number we should choose:

$$\tilde{\beta}_1 \approx \tilde{\beta}_2 \approx \ldots \approx \tilde{\beta}_n .$$

To complete the argument we start from below. Once again fixing the sum $\tilde{\beta}_N + \tilde{\beta}_{N-1}$, but allowing both of them to vary. The position of the boxes with label N is at the end of the rows with the condition that there are no boxes below them. For the boxes with label $(N - 1)$, they can be either on top of the boxes with label N, or to their left under the condition that if there are boxes below, they should carry the label N. So, if we have in a row k boxes with label N, we have at least k possible boxes to carry the label $(N - 1)$. Hence the bigger $\tilde{\beta}_N$, the more options we have which leads to the optimum situation $\tilde{\beta}_{N-1} \approx \tilde{\beta}_N$. We can repeat the same argument for the other labels and reach a similar conclusion. Hence the second claim.

In the argument above, we cheated a little bit. Remember that there should be no boxes below the ones with label N. So the number of such boxes i.e. boxes with no box below in the YD, constitute an upper bound on $\tilde{\beta}_N$. So, the claim above should be modified accordingly. However, as we will see in subsection 4.4, our case of interest corresponds to

\footnote{An intuitive argument to why such a choice is special is as follows. We argued before that the Kostka numbers are invariant under permutations of the entries of the filling β. The fixed point of such a permutation is when all the entries are equal which reproduces precisely this choice.}
(h/N) being small enough, together with the type of YD we are dealing with, puts us in a safe position.

F. From Kostka numbers to actual degeneracies \(d_k \)

In the following, we will discuss the possible modifications to the conclusions derived in subsections 4.3 and 4.4 for SSYTx \(\psi \) and their Kostka numbers once the YD and the antisymmetry rules are included to make contact with the tensor decomposition (3.3). Following the arguments for the Kostka numbers, the discussion depends on whether \(h \ll N \), or \(h \sim N \), \(h \gg N \).

F.1 The case \(h \ll N \)

We arrived in subsection 4.3 at the conclusion that, without the inclusion of the YD and the antisymmetry rule, we can take the YDs \(\varphi_k^0 \) as representatives of the the YDs \(\varphi_k \) that appear in the decomposition of the tensor product \(\mathcal{O} \otimes \psi \). Remember that the YDs \(\varphi_k^0 \) are the result of adding at most one box to each row of \(\mathcal{O} \). Their degeneracy \(d_k^0 \) as well as their number \(N_0 \) have the leading terms given in equation (4.9), which we rewrite here for convenience.

\[
\log d_k \approx h \log \frac{h}{\psi_0}, \quad \log N_0 \approx h \log \frac{N}{h}.
\]

(F.1)

What happens when we take into account the YD and the antisymmetry rules? For concreteness, let us restrict ourselves to the special case of the background YD \(\mathcal{O}_0 \) whose rows’ lengths are given by:

\[
\mathcal{O}_i = N - i; \quad i = 1, 2, \ldots, N - 1.
\]

This corresponds to the limit shape YD of the superstar ensemble of YDs with the same number of columns and rows, \(N \). We will discuss the possible modifications that we need to take into account for the general case at the end.

Notice that for this background \(\mathcal{O}_0 \), neither the YD rule nor the antisymmetry rule modify the results above, since both are trivially satisfied. Hence, there are \(N_0 \) YDs that are constructed by adding at most one box to each row, each of them has the degeneracy \(d_k^0 \), which in total reproduces the leading behavior\(^{23}\) of \(\dim N \psi \). We will not discuss the other YDs \(\varphi_k \) since they will not play a role in what we are trying to do, see subsection 5.1 for more details.

To close the line of thoughts, we need to discuss what happens in the case of a different background \(\mathcal{O} \). We claim that the worst scenario that can happen is to replace \(N \) by \(\kappa N \), with \(\kappa \leq 1 \) in the formulas above. The idea is to replace every set of consecutive equal length rows with just one row, which brings our discussion close enough\(^{24}\) to the one for \(\mathcal{O}_0 \). The only thing we need to make sure about is that, after doing so, we are still left with

\(^{23}\)This is after taking the log of the numbers under consideration.

\(^{24}\)In general, the shift in the length of consecutive rows can be more than one box which does not change the essence of the discussion of the case of \(\mathcal{O}_0 \).
order N rows. This is the case since we know that typical YDs of the superstar ensemble have order N corners, see the end of subsection 2.1 for more details.

All in all, in the tensor product decomposition of $\mathcal{O} \otimes \psi$, where ψ is a YD with number of boxes $h \ll N$, the number of representative YDs φ_k^0 and their degeneracy has the following leading behavior:

$$\log d_k \approx h \log \frac{h}{\psi_0}, \quad \log N \approx h \log \frac{N}{h},$$

where, according to our conventions (appendix A), $\psi_0 = \text{Max}\{n, d\}$, d is the number of columns of ψ, and n is the number of its rows.

F.2 The cases $h \sim N$ and $h \gg N$

We arrived in subsection 4.4 to the conclusion that, in the case where ψ is a generic probe and $h \sim N$ or $h \gg N$, and forgetting about the antisymmetry rule, there are special YDs φ_k^* in the tensor product decomposition (3.3) whose degeneracy d_k^* has a leading behavior given by equation (4.11), which we rewrite here for convenience:

$$\log d_k^* \approx \text{dim}_N \psi \approx h \log \frac{N}{\psi_0}.$$

These YDs are constructed by adding $h_i \approx (h/N)$ boxes to each row of the YD \mathcal{O}. Notice that $h_i \ll d$ and $h_i \ll n$ since $n, d \ll N$ and $h \sim n d$. In this appendix, we want to study the implication of taking into account the antisymmetry rule. To fix the notations below, we will denote by β_0 the filling of the SSYT ψ^* associated to one of the YDs φ_k^*. Hence:

$$\beta_0 = (h_1, h_2, \ldots, h_N), \quad h_i \approx \frac{h}{N}, \quad h_1 \geq h_2 \geq \ldots \geq h_N,$$

where h_i is as usual the degeneracy of the label i. We have the following leading behavior of the associated Kostka number:

$$\log K_{\alpha, \beta} \approx \text{dim}_N \psi,$$

We further concentrate, as in the previous section, on the simple case where the background YD \mathcal{O}_0 whose rows’ lengths are given by:

$$\mathcal{O}_i = N - i; \quad i = 1, 2, \ldots, N - 1.$$

We will come back to the possible modifications to the arguments below at the end of this section.

What does the antisymmetry rule imply? First of all, the labels associated to the first raw should be different for each box except for the first few ones that carry the label 1. So, for $i > 1$ we cannot find more than one box in the first row with this label. The same argument leads to the conclusion that in row k, there should be at most one box with label $i > k$. So essentially, taking into account the antisymmetry rule forces the labeling of the YD ψ^* to be of the following form. The label $1 \leq i \leq n$ is mostly confined to the row i. In
other words there will be at most one box with label \(j \) in a row \(i \neq j \). The remaining labels \(i > n \) will appear at most once in each row. To proceed further, we write schematically the different contributions to the associated Kostka number as:

\[
K_{\alpha, \beta_0} = K_{\alpha, \beta_0}^{(0)} + \sum_a K_{\alpha, \beta_0}^{(a)} ,
\]

where \(K_{\alpha, \beta_0}^{(0)} \) stands for the contribution giving rise to the degeneracy we are after i.e. the labelings that satisfies the required conditions discussed above, and the sum is over the remaining “bad” contributions. We will call the former the good labelings and the latter the bad labelings. The meaning of the index \(a \) in the sum will be clear below, but at the moment it stands for some indexing of the bad labelings. Our aim in the following, is to relate somehow the bad labelings to the good ones. But before that, let us first deal with the special labels \(\{1, 2, \ldots, n\} \). Remember that these labels are special in the sense that they are the only ones that are allowed to occur more than once given that they are in the row with the same number as the label. In other words, we can have more than one box with label \(i \) if and only if \(1 \leq i \leq n \) and the associated boxes belong to row \(i \) in the tableau \(\psi \). Let us count the number of labelings of \(\psi \) that violate this requirement. It is easy to see that this number is smaller than:

\[
\log n_{\text{wrong}} = \sum_{i=1}^n \log C_{h_i}^{h_i+1} \sim \left(\frac{n}{N} \right) h \log N \ll h \log N .
\]

Given that \(\log K_{\alpha, \beta_0} \sim h \log N \), we can safely restrict ourselves to counting the number of labelings where the first \(n \) labels are fixed as above. Said differently, we will try in the following to estimate the number of labeling \(K_{\alpha, \beta_0} \) such that the labels \(1 \leq i \leq n \) are mainly confined to be each in its corresponding row \(i \). Our discussion below will concern only the labels \(n < i \leq N \).

A useful way to think about counting the labelings \(K_{\alpha, \beta_0} \) is as follows. First construct all the labelings where each row of \(\psi \) has at most one box with label \(i \), for all the labels \(n < i \leq N \). These labelings were called good labelings and their number \(K_{\alpha, \beta_0}^{(0)} \) is the one we are after. For each labelings among these, we will move the boxes around in order to increase the degeneracy of labels in the rows of \(\psi \). For each good labeling \(a \), \(\tilde{K}_{\alpha, \beta_0}^{(a)} \) the number of bad labelings constructed so, is smaller than:

\[
N_a = \prod_{k=1}^N C_{2h_k-1}^{2h_k} \approx 2^{2h} ,
\]

where we used that \(\sum_k h_k = h \). It is easy to convince yourself that in this way, we will be able to construct all the labeling of \(\psi \) associated to \(\beta_0 \). The reason is once again the inequality \(h_i \ll n \). This is because, starting from a bad labeling, one can find a lot of possible rows to accommodate the degenerate labels in order to construct at the end a good labeling of \(\psi \).

Now identifying the label \(a \) in the sum \(\text{(F.4)} \) with the index of good labels, together with the identification \(\tilde{K}_{\alpha, \beta_0}^{(a)} = K_{\alpha, \beta_0}^{(a)} \) and its upper bound above, we conclude that to
leading order:
\[
\log K_{\alpha,\beta}^{(0)} \approx \log K_{\alpha,\beta} \approx \log \dim_N \psi \sim h \log N .
\] (F.5)

This result looks universal despite the fact that we started with a specific background tableau \(O_0 \). Actually one can easily generalize the arguments above to other backgrounds, either belonging to the same ensemble as \(O_0 \), or other ensembles. The key idea is the observation mentioned above regarding the scale of \(h_i \). Remember we have \(h_i \ll n, d \). Let us discuss each case on its own.

For other backgrounds in the ensemble of \(O_0 \), the complication arises because in this case we do not have the simple picture of a jump by one box between consecutive rows as in \(O_0 \). We could either have some rows with the same length, or the difference in length of some consecutive rows will be larger than one box. The first situation in principle reduces the number of possible YDs in the tensor decomposition, however we can easily see that the leading order does not change. An easy way to see this is to follow the steps bellow to construct YDs in the decomposition of the tensor product \(O \otimes \psi \), where \(O \) is some YD in the same ensemble of \(O_0 \).

- The effect of having sets of rows with equal length has at worst the effect of reducing \(N \) inside the log to a fraction of it, which does not modify the leading order (see the end of the previous section). A way to think about this is to imagine that we replaced our background YD \(O \) with a new one \(\overline{O} \) by replacing all the sets of rows of equal length by a single row. By doing so, we reduce the range of possible labels to just a fraction of \(N \). But since we are not altering the inequalities \(h_i \ll n, d \), we can still use our original arguments used in the case of \(O_0 \).

- After deflating \(O \) to \(\overline{O} \), we first construct all the good labelings associated to the latter YD. After that, we inflate back \(\overline{O} \) to the original YD \(O \). At the end of this operation we will end up with diagrams that are not YDs. Essentially, the rows right after each set of equal length rows of \(O \) might be bigger than the one above it. But we can redistribute the extra boxes on the empty rows since they come from different rows in \(\psi \), and hence they do not violate the antisymmetry rule. The ordering rule is also preserved because of the way we construct the tensor product if we move the boxes in the following way. We just cut the excess boxes and slide them up without changing their order. This is explained in the following example:

\[
\begin{array}{c}
\cdot \cdot \cdot 2 3 4 5 \\
1 2 3 4 5 \\
2 3 4 5 \\
3 4 5 \\
\end{array}
\rightarrow
\begin{array}{c}
\cdot \cdot \cdot 2 3 4 5 \\
\cdot \cdot \cdot \\
\cdot \cdot \cdot \\
1 2 3 4 5 \\
2 3 4 5 \\
3 4 5 \\
\end{array}
\rightarrow
\begin{array}{c}
\cdot \cdot \cdot 2 3 4 5 \\
\cdot \cdot \cdot \\
\cdot \cdot \cdot \\
\cdot \cdot \cdot 4 5 \\
1 2 3 4 5 \\
2 3 4 5 \\
3 4 \\
\end{array}
\]

As a result, we do not change the leading order given in equation (F.4).

The second difference, the difference in length of consecutive rows is bigger than one box, is beneficial as it allows to have more options because now we can allow for more than
one box with the same label $i > n$, for some i's. But, since the leading behavior of the degeneracy is already saturated by (F.4), we conclude once again that the leading term remains intact.

All in all, dealing with a different background YD in the same ensemble of \mathcal{O}_0 leads to the same leading term of the largest degeneracy of YDs in the decomposition of $\mathcal{O} \otimes \psi$ as in equation (F.4). In the case of other ensembles, the same story goes through as the only change in this case can be reabsorbed by replacing N by a fraction of it in the worst case. This is because the background YDs we are dealing with are the ones where the number of rows is N and the number of columns D is of order N, and the number of boxes in fixed to be $(ND)/2$.

References

[1] V. Balasubramanian, J. de Boer, V. Jejjala, and J. Simon, The Library of Babel: On the origin of gravitational thermodynamics, JHEP 0512 (2005) 006, [hep-th/0508023].

[2] J. M. Bardeen, B. Carter, and S. W. Hawking, The Four laws of black hole mechanics, Commun. Math. Phys. 31 (1973) 161–170.

[3] S. W. Hawking, Particle Creation by Black Holes, Commun. Math. Phys. 43 (1975) 199–220.

[4] S. W. Hawking, Black Holes and Thermodynamics, Phys. Rev. D13 (1976) 191–197.

[5] O. Lunin and S. D. Mathur, AdS / CFT duality and the black hole information paradox, Nucl.Phys. B623 (2002) 342–394, [hep-th/0109154].

[6] S. D. Mathur, A proposal to resolve the black hole information paradox, Int. J. Mod. Phys. D11 (2002) 1537–1540, [hep-th/0205192].

[7] S. D. Mathur, The Fuzzball proposal for black holes: An Elementary review, Fortsch.Phys. 53 (2005) 793–827, [hep-th/0502050].

[8] S. D. Mathur, The Quantum structure of black holes, Class.Quant.Grav. 23 (2006) R115, [hep-th/0510180].

[9] I. Bena and N. P. Warner, Black holes, black rings and their microstates, Lect.Notes Phys. 755 (2008) 1–92, [hep-th/0701216].

[10] K. Skenderis and M. Taylor, The fuzzball proposal for black holes, Phys.Rept. 467 (2008) 117–171, [arXiv:0804.0552].

[11] S. D. Mathur, Fuzzballs and the information paradox: A Summary and conjectures, [arXiv:0810.4525].

[12] V. Balasubramanian, J. de Boer, S. El-Showk, and I. Messamah, Black Holes as Effective Geometries, Class.Quant.Grav. 25 (2008) 214004, [arXiv:0811.0263].

[13] J. Simon, Extremal black holes, holography and coarse graining, Int.J.Mod.Phys. A26 (2011) 1903–1971, [arXiv:1106.0116].

[14] J. de Boer, S. El-Showk, I. Messamah, and D. Van den Bleeken, A Bound on the entropy of supergravity?, JHEP 1002 (2010) 062, [arXiv:0906.0011].

[15] A. Sen, Two Charge System Revisited: Small Black Holes or Horizonless Solutions?, JHEP 1005 (2010) 097, [arXiv:0908.3402].
[16] J. Simon, *Small Black holes versus horizonless solutions in AdS*, Phys.Rev. D81 (2010) 024003, arXiv:0910.3225.

[17] I. Bena, M. Berkooz, J. de Boer, S. El-Showk, and D. Van den Bleeken, *Scaling BPS Solutions and pure-Higgs States*, arXiv:1205.5023.

[18] P. G. Shepard, *Black hole statistics from holography*, JHEP 0510 (2005) 072, hep-th/0507260.

[19] L. F. Alday, J. de Boer, and I. Messamah, *The gravitational description of coarse grained microstates*, JHEP 12 (2006) 063, hep-th/0607222.

[20] R. C. Myers and O. Tafjord, *Superstars and giant gravitons*, JHEP 0111 (2001) 009, hep-th/0109127.

[21] R. de Mello Koch and R. Gwyn, *Giant graviton correlators from dual SU(N) super Yang-Mills theory*, JHEP 0411 (2004) 081, hep-th/0410236.

[22] R. de Mello Koch, A. Jevicki, and S. Ramgoolam, *On exponential corrections to the 1/N expansion in two-dimensional Yang Mills theory*, JHEP 0508 (2005) 077, hep-th/0504115.

[23] S. Corley, A. Jevicki, and S. Ramgoolam, *Exact correlators of giant gravitons from dual N=4 SYM theory*, Adv.Theor.Math.Phys. 5 (2002) 809–839, hep-th/0111222.

[24] D. Berenstein, *A Toy model for the AdS / CFT correspondence*, JHEP 0407 (2004) 018, hep-th/0403110.

[25] H. Lin, O. Lunin, and J. M. Maldacena, *Bubbling AdS space and 1/2 BPS geometries*, JHEP 0410 (2004) 025, hep-th/0409174.

[26] J. M. Maldacena, *The Large N limit of superconformal field theories and supergravity*, Adv.Theor.Math.Phys. 2 (1998) 231–252, hep-th/9711200.

[27] W. Fulton, *Young Tableaux: With Applications to Representation Theory and Geometry*, vol. 35 of London Mathematical Society Student Texts. Cambridge University Press, 1996.

[28] B. Sagan, *The ubiquitous Young tableau*, Invariant theory and tableaux, IMA Vol. Math. Appl. 19 (1990) 262–298.

[29] D. Berenstein, *A Matrix model for a quantum Hall droplet with manifest particle-hole symmetry*, Phys.Rev. D71 (2005) 085001, hep-th/0409115.

[30] A. Ghodsi, A. Mosaffa, O. Saremi, and M. Sheikh-Jabbari, *LLL vs. LLM: Half BPS sector of N=4 SYM equals to quantum Hall system*, Nucl.Phys. B729 (2005) 467–491, hep-th/0505129.

[31] J. McGreevy, L. Susskind, and N. Toumbas, *Invasion of the giant gravitons from Anti-de Sitter space*, JHEP 0006 (2000) 008, hep-th/0003075.

[32] A. Hashimoto, S. Hirano, and N. Itzhaki, *Large branes in AdS and their field theory dual*, JHEP 0008 (2000) 051, hep-th/0008016.

[33] C. Predrag, *Group theory : birdtracks, Lie’s, and exceptional groups*. Princeton University Press, Princeton, NJ, 2008.

[34] E. Rassart, *Geometric approaches to computing Kostka numbers and Littlewood-Richardson coefficients*. Thesis for the Ph.D. degree in Mathematics, Massachusetts Institute of Technology (MIT). 2004.
[35] R. P. Stanley, *Enumerative Combinatorics. Volume 2*, vol. 62 of *Cambridge Studies in Advanced Mathematics*. Cambridge University Press, Cambridge, UK, 1999.

[36] N. Seiberg and E. Witten, *The D1 / D5 system and singular CFT*, JHEP 9904 (1999) 017, [hep-th/9903224](http://arxiv.org/abs/hep-th/9903224).

[37] J. M. Maldacena and A. Strominger, *AdS(3) black holes and a stringy exclusion principle*, JHEP 9812 (1998) 005, [hep-th/9804085](http://arxiv.org/abs/hep-th/9804085).

[38] A. Jevicki and S. Ramgoolam, *Noncommutative gravity from the AdS / CFT correspondence*, JHEP 9904 (1999) 032, [hep-th/9902059](http://arxiv.org/abs/hep-th/9902059).

[39] P.-M. Ho, S. Ramgoolam, and R. Tatar, *Quantum space-times and finite N effects in 4-D superYang-Mills theories*, Nucl.Phys. B573 (2000) 364–376, [hep-th/9907145](http://arxiv.org/abs/hep-th/9907145).

[40] M. Abramowitz and I. A. Stegun., *Handbook of mathematical functions with formulas, graphs, and mathematical tables*, vol. 55 of *Applied mathematics series*. Dover Publications, New York, NY, 1964.