Effect of incorporation of green tea extract in icing medium on the quality and shelf life of *Nemipterus japonicus* (Bloch, 1791) in chilled storage

FEMEENA HASSAN AND V. GEETHALAKSHMI

ICAR-Central Institute of Fisheries Technology, Matsuapuri, P. O., Kochi - 682 029, Kerala, India

e-mail: femeenahassan@rediffmail.com

ABSTRACT

The present study was aimed at investigating the effect of inclusion of green tea leaf (GTE) extract (at 3 and 6% levels) in the icing medium employed during the chilled storage (2±1°C) of Japanese threadfin bream *Nemipterus japonicus*. Fish stored in normal ice (NI) was treated as control. Changes in microbiological, biochemical and sensory quality characteristics were monitored during the period of storage. Multivariate comparison was performed using principal component analysis (PCA) for the mean sensory, microbiological and chemical attributes. Samples stored in normal ice (NI) had only 8 days shelf life whereas both 3% GTE and 6% GTE stored samples had a shelf life of 16 days. From an economic point of view 3% GTE can be adopted for preservation of fish and there was no significant difference (p>0.05) in the parameters between 3 and 6% GTE levels. The present study indicated that the application of GTE in ice (GTEI) is a promising technique to increase the shelf life of *N. japonicus* in chilled condition and hence the technique can be commercially exploited.

Keywords: Chilled storage, Green tea leaf extract, *Nemipterus japonicus*, Principal component analysis, Shelf life

Introduction

Fish is often referred to as ‘rich food for poor people’ and provides quality proteins, fats, vitamins and minerals. The nutrient intake of populations from fish is directly proportional to the amount of fish consumed (Gormley, 2013) but fresh seafood has a short shelf life, which causes substantial practical problems for its distribution. Improvements in shelf life can have an important economic impact by reducing losses attributed to spoilage and by allowing the products to reach distant and new markets (Rhodehamel, 1992).

Food borne illnesses are still a major threat globally, including even the developed countries. In this context, it is imperative to research and develop application of substances with antibacterial and antifungal properties, to which pathogens and spoilage organisms do not develop resistance and that would be harmless to human beings (Bilska *et al.*, 2012). Consumers increasingly demand for safe, healthy seafood, free of harmful additives and contaminators. The use of natural preservatives to increase the shelf life of seafood products is a promising opportunity since many organic substances have antioxidant and antimicrobial properties (Negro *et al.*, 2003).

Camellia sinensis (tea plant) is described as a potent natural source for promoting good health and longevity, as well as keeping the mind alert and sharp and treating many ailments, from indigestion to common cold. Green tea is higher in catechins than black tea. Catechins are polyphenolic compounds present in the unfermented leaves of tea. Biological and pharmacological activities of green tea leaf extract (anti-inflammatory, anti-microbial, anti-tumour, anti-oxidative and anti-ageing) have been attributed to the presence of catechins and the crude green tea extract exhibits higher antimicrobial activity than that of isolated catechins. Shi *et al.* (1994) and Fan *et al.* (2008) reported that the tea extract has beneficial antibacterial and anti-oxidative activities, which demonstrates potential for their use as preservatives and antioxidants in food industry especially in the field of preservation of manufactured meat.

The present study was aimed at investigating the effect of incorporating green tea leaf extract in the icing medium used during chilled storage (2±1°C) of pink perch *Nemipterus japonicus*, one of the most commonly caught marine, demersal fish species, abundant in Indian coastal waters which has a significant, commercial value owing to its unique meat quality and taste.

Materials and methods

Preparation of frozen green tea extract

Green tea was extracted at 3 and 6% (w/v) levels in 5000 ml distilled water for 1 min at 90°C. The extract was allowed to cool, filtered and then ice cubes (GTEI) were prepared from both the extracts. Control ice cubes were prepared with potable water.
Sample preparation

Fresh pink perch _N. japonicus_ (average weight varying from 60 to 80 g) procured from Cochin Fisheries Harbour were iced immediately in 1:1 ratio and brought to the laboratory in insulated boxes within 1 h of procurement. It was de-iced, washed with potable water, divided into three batches and re-iced. The first batch was chilled with ice prepared from potable water (control, NI) and the other two batches were iced with GTEI having 3 and 6% concentrations of GTE, at fish:ice ratio of 1:1 (w/w). All samples were then kept in polystyrene boxes for 20 days with replenishment of NI and GTEI daily. Periodical samplings at every 4 days were done for quality assessment using biochemical, microbiological and sensory methods. All analyses were performed in triplicate on 0, 4, 8, 12, 16 and 20 days of storage.

Sensory evaluation

Sensory evaluation of the sampled pink perch fillets was done by a panel of 10 experts at each sampling time during the entire storage period of 20 days. Using a well-structured questionnaire, the panelists independently assessed the coded samples in small porcelain dishes. Panelists’ gave scores for sensory characteristics, such as appearance, odour, flavour, texture and overall acceptability using a 9 point descriptive scale (Peryam and Pilgrims, 1957). On this scale, score 9.0 indicated liked extremely; score 1 indicated disliked extremely and score 5 was the limit of acceptability.

Chemical analyses

Total volatile base nitrogen (TVB-N) and trimethylamine nitrogen (TMA-N) were determined by the Conway micro diffusion method of Beatty and Gibbons (1937). Peroxide value (PV) and free fatty acids (FFA) were determined according to AOCS (1989). Thiobarbituric acid value (TBA) was determined using AOAC (2000) method. The pH was measured using digital pH meter (AOAC, 2000). Extraction of sarcoplasmic and myofibrillar protein content was carried out by the method of Sankar (2000).

Microbiological analysis

For microbiological analysis, 50 g of the fish flesh was transferred to a stomacher bag (Seward, London, UK), 450 ml of Butterfield’s phosphate buffer was added and blended for 2 min with a stomacher (Lab blender 400, Seward, Medical, London, UK) to obtain the original homogenate fluid (10^1 dilution). From the 10^1 dilution, other serial decimal dilutions were prepared. Three replicates of at least three appropriate dilutions were enumerated. Plate count agar (Difco 247940) was used for mesophilic plate count which was made according to the American Public Health Association standard (APHA, 2002) and the inoculated plates were incubated for 48±2 h at 35°C for aerobic plate count (BAM, 2001) and for 7 days at 5°C for psychrotrophic count. Streptomycin-thallus-acetate-actidioneagar (STAA) (Oxoid CM0881) supplemented with STA supplement was used for the isolation and quantitative enumeration of _Brochothrix thermosphacta_ (Gardner, 1996). Hydrogen sulphide producers were cultured on peptone iron agar (Gram et al., 1990). White or semi-transparent convex colonies on STAA plates and black colonies formed on peptone iron agar (Himedia M440) plates were enumerated after 5 days of incubation at 20°C. _Pseudomonas_ colonies were enumerated from Kings B agar medium (Himedia M1544) after 2 days of incubation at 20°C (King et al., 1954). Violet red bile glucose agar media (VRBGA) (Difco 218661) was used for _Enterobacteriaceae_ enumeration and characteristic large colonies with purple haloes were counted from VRBGA plates after 24±2 h of incubation at 35°C (Mossel et al., 1979). Microbial data were transformed into logarithms of the number of colony forming units (CFU) per gram. Averages and standard deviations of the transformed values were then estimated, to take the variability in bacterial cell counts into consideration.

Principal component analysis

Principal component analysis is one of the widely used statistical techniques for reducing the number of variables to a smaller set (called factors) based on patterns of correlation among the original variables (Lawless and Heymann, 1998). In order to describe the changes in microbial and chemical parameters for _N. japonicus_ samples and to obtain an overall view of the main variations among 3 and, 6% GTEI stored samples and control samples, the experimental data was subjected to PCA using SAS 9.3 and variability explained by each principal component was estimated. The principal components with maximum variation were taken for clustering the treatments.

Results and discussion

Changes in sensory attributes

Sensory assessment has always played a key role in quality and freshness evaluation in the fish industry. The most important methods to evaluate freshness of seafood are the sensory methods (Bonilla et al., 2007). The various sensory characteristics, such as outer appearance, odour and colour are still very important in the quality assessment in the fish processing industry. Loss of freshness in seafood is the result of post-mortem biochemical, physicochemical and microbiological processes
characteristic of each species and influenced by handling onboard and on land and by technological processing. These changes are perceivable and can be evaluated in sensory terms by sight, touch, smell and taste. Sensory panel evaluations for the fresh fish in the present study indicated that all fish samples on the initial day rated as good (average score 8.79). On the initial day, the fish samples had fresh “seaweed” odour; firm and elastic texture and bright, shining colour and appearance. Changes in the sensory score of fish samples over the entire storage period are shown in Figs. 1a-1e. Sensory scores for all the three samples significantly reduced with the days of storage but even the control samples retained its sensory characteristics for a period of 12 days. In this study, fish stored in GTEI exhibited slight grey discolouration on the skin and scales but no discolouration was observed in the fish muscle. The grey colour in the skin could be attributed to the leaching of some components like tea catechins in the GTE. The study also indicated that this colour has not leached onto the flesh during the entire storage period. Similar to this study, Mitsumoto et al. (2005) found that tea catechins caused a certain grey discolouration in cooked beef and chicken patties. Jo et al. (2003) found that GTE improved colour and did not affect the odour, flavour or tenderness of cooked pork patties. Present study exhibited significant variation in organoleptic quality between samples stored in GTEI and control samples. It was obvious that storing fish samples in GTEI exhibited higher sensory scores compared to control samples, which could be explained on the basis of the antioxidant properties of the tea catechins. Fish spoilage gave rise to the subsequent development of strongly fishy, rancid and putrid odour in fish stored in NI (control sample), but the sensory parameters of the fish samples stored in GTEI were
within the acceptance limit till the last day of storage. Fish is more susceptible to oxidation and tea catechins present in the GTE can inhibit lipid oxidation in raw fish. The tea catechins are potent natural antioxidants and exhibit greater antioxidant efficacy. Hence the flavour and taste of fish stored in GTEI is protected to an extent.

Changes in chemical parameters

TVB-N levels were monitored as a good index of fish muscle freshness, because its increase is related to spoilage by the activity of endogenous enzymes and bacterial growth. TVB-N is produced by the degradation of proteins and non-protein nitrogenous compounds into simpler substances mainly ammonia, trimethylamine, creatine, purine bases and free amino acids, which is caused by microbial activity. Connell (1995) reported that a level of 30-35 mg N 100 g\(^{-1}\) is considered to be the upper limit, beyond which fishery products are considered unfit for human consumption. Scherer et al. (2006) noted that TVB-N levels were more suitable for spoilage assessment in marine than in freshwater fish. The level of TVBN in freshly caught fish is generally between 5 and 20 mg N per 100 g muscle. During storage, a progressive increase in the TVBN content is reported for chilled, vacuum packed, modified atmosphere packed and active packed refrigerated fish products (Mohan et al., 2008). In the present study, at the beginning of storage, the TVBN value was 11.16 mg 100 g\(^{-1}\) of fish flesh. This value decreased to 7.02 and 6.346 mg TVB-N 100 g\(^{-1}\) for 3 and 6% GTEI stored samples respectively on 4\(^{th}\) day of storage, thereafter significantly (p<0.05) increased to 35.41 and 35.026 mg TVB-N 100 g\(^{-1}\) respectively by day 20 (Fig. 2a). Control sample exhibited an increasing trend in the TVBN value from the first day onwards and crossed the maximum permissible limit on 12\(^{th}\) day of storage. Since TVBN is produced mainly by bacterial decomposition of fish flesh, the higher mesophilic count of control samples compared to other samples throughout storage could account for the higher TVBN values of control samples. This could also be attributed to rapid reduction of bacterial population or decreasing the capacity of bacteria for oxidative deamination of non-protein nitrogen compounds.

The spoiled fishy odour of marine fish is often linked with trimethylamine (TMA), which is formed due to the activity of the bacterial enzyme on trimethylamine oxide (TMAO) reductase on TMAO. Bacteria like Aeromonas spp., Shewanella putrefaciens, Photobacterium phosphoreum, psychrotolerant Enterobacteriaceae and Vibrio spp. are known to possess the ability to reduce TMAO (Gram et al., 1990). Chytiri et al. (2004) have shown that TMA levels increased during chilled storage of whole fish and fillets of rainbow trout in ice, due to an increase in specific spoilage bacteria. TMAO is mainly present in marine fish and absent in freshwater fish. In the current study TMA on initial day was zero and during storage, the levels increased gradually and on the 12\(^{th}\) day of storage, control sample (NI) recorded TMA-N value of 15.26 mg 100 g\(^{-1}\) (Fig. 2b) which exceeded the limits of acceptability of 10-15 mg 100 g\(^{-1}\) (Connell, 1995). TMA-N production for GTEI stored samples were within the acceptable limits upto 16\(^{th}\) day of storage. This could be attributed to rapid reduction of bacterial population or decrease in the capacity of bacteria for oxidative deamination of non-protein nitrogen compounds due to the effect of phenolic compounds in GTE. Bahmani et al. (2011) reported 0.64 mg TMA-N per 100 g flesh of golden grey mullet, after 16 days of iced storage.

Lipid oxidation is a major quality problem, which leads to the development of off-flavour and off-odours in edible oils and fat-containing foods and is known as oxidative rancidity. The primary product of lipid oxidation is the fatty acid hydroperoxide, which is measured as peroxide value (PV). The peroxide value (PV) was 3.36 milli equivalents kg\(^{-1}\) in the initial sample. Initial PV was found to be 0.8-1.2 for herring (Smith et al., 1980), 1.21 for seerfish steaks (Mohan et al., 2008) and 27.6 for fresh sardine (Cho et al., 1989). PV increased progressively with the storage in all the samples but the control samples exhibited significantly higher values than the other samples (Fig. 2c). Antioxidants inhibit lipid oxidation by acting as hydrogen or electron donors and interfere with the radical chain reaction by forming non-radical compounds that will not propagate further radical reaction which may have accounted for the lower values in the case of GTEI stored samples. In this study, PV values were significantly affected (p<0.05) by holding fish samples in different concentrations of GTEI.

Apart from these primary and secondary oxidation products, glycerides, glycolipids and phospholipids are hydrolysed by lipases to free fatty acids (FFA), which then undergo further oxidation to produce low molecular weight compounds, such as aldehydes and ketones. These compounds are also responsible for off-flavour, off-odour and taste of fish (Toyomizu et al., 1981). The presence of FFA is due to the oxidation and hydrolysis of lipids and is undesirable since the fatty acids may be converted to odorous volatiles. The initial FFA content of pink perch flesh was low, which increased with storage period. Fig. 2d depicts the FFA values of fish in control sample (NI) and GTEI in threadfin bream during 20 days of chilled storage. During chilled storage, initially FFA formation was due to the result of endogenous enzyme activity. Later on, microbial activity overtook and FFA formation was mostly as a result of bacterial enzyme activity. A partial inhibitory effect of the GTE on the endogenous enzyme
activity results in lowering FFA formation in the fish muscle. Barassi et al. (1987) reported a direct relationship between FFA release and loss of fish freshness for hake (Merluccius hubbsi). Ozyurt et al. (2009) reported an increase in FFA content with storage period for red mullet (Mullus barbatus) and gold band goat fish (Upeneus moluccensis) during storage in ice. FFA may be involved in reactions with myofibrillar proteins and promote protein aggregation (Pacheco-Aguilar et al., 2000).

Changes in pH value of fish stored in GTEI and NI is depicted in (Fig. 2e). Nam et al. (2002) reported that the pH value was a crucial factor for determination of meat quality. In the present study, a gradual increase in the pH value of fish was observed in control sample during 20 days of storage (p<0.05) and reached a maximum of 6.77 at the end of sampling period (day 20). This increase in the pH may be due to the enzymatic degradation of the fish muscles and the production of volatile basic components (e.g., ammonia and trimethylamine) by spoilage bacteria. From the same figure, it could also be noted that the pH of GTEI stored samples did not significantly increase (p>0.05), however, slight increase was recorded for samples stored in 3 and 6% GTEI after 8 days of storage. It can be concluded that the lower pH of GTE-treated samples enhanced microbial inhibition and contributed to extending shelf life of fish samples by inhibiting the activity of endogenous proteases on total protein.

Thiobarbituric acid is used as an indicator of lipid oxidation. The presence of TBA-reactive substances is due to the second stage auto-oxidation during which peroxides are oxidised to aldehydes and ketones. Fig. 2f depicts TBA values of fish in control sample (NI) and GTEI in threadfin bream during 20 days of chilled storage. The level of tissue aldehydes, the secondary degradation products of lipid oxidation as a result of peroxide breakdown into smaller molecules, is often assessed in biological systems (Khayat and Schwall, 1983). TBA measurements showed that there was an increase in lipid oxidation in control sample and those stored in GTEI. The increase in TBA value during iced storage may be attributed to the partial dehydration of fish and to the increased oxidation of unsaturated fatty acids. However, the increase in TBA values of samples stored in GTEI was lower than that of control samples throughout the period of storage as shown in Fig. 2f. This indicated that the formation of malonaldehydes was significantly retarded in samples stored in GTEI. Upto 8th day of storage, significant (p<0.05) differences were observed in the TBARs content of the treatments at all sampling time except for samples stored in 6% GTEI. There were no significant (p>0.05) differences among treatments 3 and 6% GTEI. However, a significant difference (p<0.05) was observed between samples stored in 6% GTEI at the end of storage time. On 8th day of storage, the lowest amount of malonaldehyde was observed in chilled fish stored in 6% GTEI. The minimum TBARs value for fish stored in higher concentrations of GTEI, suggested positive correlation between antioxidant properties of GTE extract to prevent or retard the formation of malonaldehydes. In an investigation by Tang et al. (2001), tea catechins added at concentration greater than 300 mg kg-1 were necessary to reduce lipid oxidation in mackerel patties as indicated by significant decrease (p<0.05) in TBARs content. However, previous report by Van Het Hof et al. (1997) revealed that green tea extract applications has no adverse influence on lipid deterioration in terms of TBARs analysis. The data from the present study revealed that GTE can extend the shelf life of fish by inhibiting lipid oxidation in fish. This indicates that the GTE has beneficial bactericidal and antioxidative activities, which demonstrated potential for their use as preservatives and antioxidants in seafood industry especially to enhance shelf life on storage.

Fig. 2g and h depict myofibrillar and sarcoplasmic protein values respectively of threadfin bream under chilled storage in control sample (NI) and GTEI. Myofibrillar and sarcoplasmic protein contents showed a gradual decrease till 20th day of storage in all samples. Here a negative correlation between FFA formation and protein extractability was observed. FFAs attach themselves hydrophobically or hydrophilically to the appropriate sites on the protein surface, creating a hydrophobic environment which results in decrease in protein solubility. According to Leake and Karel (1985), decrease in protein content has been attributed to oxidised lipid-protein interactions that lead to losses in labile amino acids. Comparison among the control and treated samples, clearly indicated effect of the treatments on protein digestibility. Protein content in both NI and GTEI stored fish showed an inverse correlation with microbial load and degree of oxidation (TBA value) during chilled-frozen storage. The lower protein content on chilled storage may be due to increased microbial growth resulted from higher water activity (aw) and enzymatic autolysis. Moreover on chilled storage, the protein content decreased due to protein denaturation and proteolysis induced by enzymatic activities of psychrotrophic microbial growth.

Changes in the microbiological attributes

Total microbial count is an important criterion for quality evaluation in fresh and frozen seafood products. The changes in the microbial flora of control fish samples and those stored in GTEI at various time intervals are depicted in Fig. 3a. As shown, initial mesophilic count of fresh fish was 5.23 log cfu g-1, then a reduction to 4.8 log cfu g-1 and 5.18 log cfu g-1 was observed in GTEI stored samples and control samples respectively. Then
the mesophilic counts exhibited an increasing trend with time. The initial mesophilic log_{10} values were similar to the values reported in cod (Dalgaard et al., 1993). Lakshmanan et al. (2000) reported that the TPC levels above 10^7 cfu g^{-1} resulted in visible spoilage of fish flesh. In the present study, mesophilic counts in the control samples, crossed the acceptable limit of 7 log_{10} cfu g^{-1} on 12th day of storage, where as 3 and 6% GTEI stored samples did not cross the acceptance limit till the 20th day of storage. Shewan (1977) found that mesophilic Gram-positives were dominant in fish from warmer waters such as the Indian Ocean. Bahmani et al. (2011) reported an initial 3 log total plate count (TPC), which reached log_{10} 7 on the 16th day of storage. Chytiri et al. (2004) reported a count of 7.0 log cfu cm^{-2} for trout fillet after 10 days of storage.

As the time of storage increased, psychrophilic bacteria showed higher growth than the mesophilic bacteria, dominating the flora at low temperatures. Psychrophilic count on the initial day was log_{10} 4.26 cfu g^{-1}, which exhibited an increasing trend over time and reached up to log_{10} 9.05 cfu g^{-1} in control samples, log_{10} 7.66 cfu g^{-1} in 3% GTEI stored samples and log_{10} 7.18 cfu g^{-1} in 6% GTEI stored samples (Fig. 3b) on 20th day of chilled storage. Bahmani et al. (2011) reported an initial 2 log psychrotrophic count which reached 9 log on the 16th day of storage. Chytiri et al. (2004) reported a count of 7.0 log cfu cm^{-2} for trout fillet after 10 days of storage.

With regard to B. thermosphacta, a bacterium more common in meat products, an initial value of log_{10} 3.88 cfu g^{-1} reached log_{10} 8.24 cfu g^{-1} in control samples on 20th day of storage (Fig. 3c). The conditions of fish in chilled storage selectively favour development of this organism due to its ability to grow at 1°C under oxygen depletion and in the presence of elevated carbon dioxide concentrations. B. thermosphacta is one of the most abundant spoilage
organisms of fresh and cured meats, fish and fish products, due to its tolerance to high-salt and low-pH conditions, its ability to grow at refrigeration temperatures and its production of organoleptically unpleasant compounds (Borch et al., 1996).

H$_2$S producing bacteria have been reported as the specific spoilage bacteria in fish from temperate and tropical waters (Gram and Huss, 1996) and fresh fish stored aerobically (Koutoumanis and Nychas, 1999). H$_2$S producers release several sulphur-containing compounds, including hydrogen sulphide, methyl mercaptan and dimethyl sulphide leading to very intense and unpleasant off-odours and are capable of reducing TMAO to TMA, thus generating strong ammonia and foul smell (Stammen et al., 1990). Initial hydrogen sulphide producing bacterial count obtained in the present study was 2.75 log cfu g$^{-1}$. The initial number of H$_2$S producing bacteria was much lower than the initial total viable count. This is probably due to the fact that in newly processed fresh fish, specific spoilage organisms are usually present in very low concentrations and constitute only a minor part of the total microflora. But, on advancement of storage, H$_2$S producing bacterial count reached log$_{10}$ 5.08, log$_{10}$ 4.7866 and log$_{10}$ 7.093 in 3% GTEI, 6% GTEI stored samples and control samples respectively (Fig. 3d).

Pseudomonas constituted the major fraction of the bacterial flora in the present study. This was in agreement with Gram et al. (1990), Gram and Huss (1996) and Liston (1980). _Pseudomonas_ species is the main spoilage bacteria in fish stored in ice mainly because of their short generation time, which produces a number of volatile aldehydes, ketones and esters of short-chain fatty acids and non-hydrogen sulphides, imparting fruity, rotten and sulfhydryl odours and flavours (Lougovois and Kyran, 2005). Liston (1980) reported that _Pseudomonas_ was able to utilise a variety of compounds including NPN in the fish muscle juice quickly and efficiently as one of the characteristics to ensure dominance. Some species of _Pseudomonas_ were responsible for the objectionable off-odours detected during the last days of storage. According to Liston (1980), this is due to the breakdown of S-containing compounds e.g. cysteine and methionine by _P. fluorescens_, _P. aeruginosa_, _P. putida_ and _P. putrefaciens_. However, in the present study, the initial count of _Pseudomonas_ was found to be log$_{10}$ 4.46. Earlier studies reported an Initial _Pseudomonas_ count of 1.3 log cfu g$^{-1}$ in seer fish steaks (Mohan et al., 2008) and for trout (Chytiri et al., 2004), which increased with storage period in both samples. On the 4th day of storage _Pseudomonas_ count decreased in all samples from the initial value which then showed an increasing trend over time and reached log$_{10}$ 6.76, log$_{10}$ 6.55 and log$_{10}$ 8.43 in 3% GTEI, 6% GTEI stored samples and control samples respectively, on the 20th day of storage (Fig. 3e). _Pseudomonas_ count in this study was significantly lower than that of hydrogen sulphide producers, because when grown in co-culture on fish siderophore producing _Pseudomonas_ inhibited _Shewanella putrefaciens_ (Gram and Dalgaard, 2002). Significant lower counts (p<0.01) were exhibited by GTEI stored samples than the control samples which affirmed the preservative nature of green tea extract.

The presence of _Enterobacteriaceae_ in fish and their spoilage potential are important when fish are obtained from polluted water or if there is a delay in chilling after catch (Bahmani et al., 2011). In the present study, the initial _Enterobacteriaceae_ count was log$_{10}$ 3.11, which was comparable to that reported for may tropical and temperate fishes (Chytiri et al., 2004). On the 4th day of chilled storage, the total _Enterobacteriaceae_ count in GTEI stored samples reduced from that of the initial value, while the control samples exhibited an increase in counts from the initial values. The reduction in microbial counts may be due to the inhibitory activity of green tea extracts. The _Enterobacteriaceae_ population was lower than that obtained for other bacterial groups in this study, which was in agreement with the results reported for sea bream (Tejada and Huidobro, 2002). Total _Enterobacteriaceae_ count for control and treated samples reached 5.53, 4.45 and 4.27 log10 cfu g$^{-1}$ for control sample and samples stored on GTEI at 3 and 6% after 20 days of storage, respectively (Fig. 3f). Although this group can grow at low temperature, their abundance decreased during ice storage, possibly because of their slow growth rate than that of other Gram negative psychrotrophic spoilers and due to their inability to compete with the other Gram negative psychrotrophic spoilers.

It can be concluded that the use of GTE incorporated ice can extend the shelf life of fish samples by delaying the spoilage activity. The results of the treatment also indicated that 6% GTEI storage exhibited more activity in inhibiting spoilage bacteria and extending the iced storage life of fish samples to 16 days compared to 8 days for control sample. Hanafy et al. (2011) reported that 4% GTEI storage extended shelf life of _Oreochromis niloticus_ samples to 14 days compared to 6 days for control fishes.

Principal component analysis PCA was performed on the mean values of 17 variables of microbiological and chemical parameters of the samples of pink perch. The first two principal components extracted, explained 85.93% of the variation in the data. The first 3 principal components explained 93.02% of the variance in the
The correlation loadings of the PCs showed high correlations of all the parameters studied. PCA plot clearly separated the investigated samples according to storage time and conditions, thus indicating the importance of the impact of frozen GTEI stored samples. The storage period influenced the distribution of the samples along the PC 1 (Fig. 4a). From the PC score plots it is very clear that the control samples have exhibited the microbial, chemical and sensory attributes distinct from the treated samples. Also the samples treated with GTE which were 16 to 20 days old were depicted in 3rd quadrant of the PC score graphs (Fig. 4b and Fig. 4c), whereas the samples which are 4-8 days old were plotted near the X-axis (Fig. 4a and Fig. 4c).
Worldwide, people are moving towards ‘green consumerism’. ‘Going back to nature’ will minimise the risks associated with synthetic preservatives. The use of frozen green tea extract is a promising food safety approach in the shelf life extension of fish. The present study has clearly shown that preservation of fish using GTEI resulted in a longer shelf life than normal ice. Extracts of leaves from the tea plant *Camellia sinensis* contain polyphenolic components, which can inhibit the growth of a wide range of Gram-positive and Gram-negative bacteria with moderate potency. In this study 6% GTEI exhibited more activity than 3% GTEI, but the results obtained were comparable. So from an economic point of view 3% GTEI can be adopted for preservation of fish. Moreover, as fish has good sensory quality, a proper preservation technique suggested in this study is highly relevant.
References

AOAC. 2000. *Official methods of analysis*. 17th edn. Association of Official Analytical Chemists, Washington, DC, USA.

AOCS. 1989. *Official methods of recommended practices*, American Oil Chemists Society, Champaign, USA.

Bahmani, A. Z., Rezai, M., Hosseini, V. S., Regenstein, M. J., Bohme, K., Alishahi, A. and Yadollahi, F. 2011. Chilled storage of golden gray mullet (*Liza aurata*), *LWT - Food Sci. Technol.*, 44: 1894-1900.

Barassi, C. A., Pecora, R. P., Roldan, H. and Trucco, R. E. 1987. Total, non volatile free fatty acids as a freshness index for hake (*Merluccius hubbsi*) stored in ice. *J. Sci. Food Agric.*, 38: 373-376. https://doi.org/10.1002/jsfa.2740380410.

Beatty, S. A. and Gibbons, N. F. 1937. The measurement of spoilage in fish. *J. Biol. Board Canada*, 3(1): 77-91. https://doi.org/10.1139/f37-007.

Bilska, A., Danyluk, B. and Kowalski, R. 2012. The effect of an addition of sodium chloride and sodium triphosphate on fat oxidation products in cold stored beef. *Acta Sci. Pol. Technol. Aliment.*, 11(1): 27-36.

Bonilla, C., Sveinsdottir, K. and Martinsdottir, E. 2007. Development of quality index method (QIM) scheme for fresh cod (*Gadus morhua*) fillets and application in shelf life study. *Food Control*, 18: 352-358. doi:10.1016/j.foodcont.2005.10.019.

Borch, E., Kant-Muermans, M. L. and Blixt,Y 1996 Bacterial spoilage of meat and cured meat products. *Int. J. Food Microbiol.*, 33: 103-120. DOI: 10.1016/0168-1605(96)01135-x.

Cho, S., Endo, Y., Fujimoto, K. and Kaneda, T. 1989. Oxidative deterioration of lipids in salted and dried sardines during storage at 5°C. *Nippon Suisan Gakkaishi*, 55: 541-544. https://doi.org/10.2331/suisan.55.541.

Chytiri, S., Paleologos, E., Savvaidis, I. and Kontominas, M. G. 2004. Relation of biogenic amines with microbial and sensory changes of whole and filleted freshwater rainbow trout (*Oncorhynchus mykiss*) stored on ice. *J. Food Prot.*, 67(5): 960-965.

Connell, J. J. 1995. *Control of fish quality*, 4th edn.Fishing News Books, Oxford, UK, 245 pp.

Fan,W., Chi, Y. and Zhang, S. 2008. The use of a tea polyphenol dip to extend the shelf life of silver carp (*Hypophthalmichthys molitrix*) during storage in ice. *Food Chem.*, 108: 148-153.

Gardner, G. A. 1996. A selective medium for the enumeration of *Microbacterium thermosphactum* in meat and meat products. *J. Appl. Bacteriol.*, 29: 455. https://doi.org/10.1111/j.1365-2672.1966.tb03497.x.

Gormley, R. 2013. Fish as a functional food: some issues and outcomes. *Sea Health- UCD Issue 9*. UCD Institute of Food and Health, University College, Belfield, Dublin.

Gram, L. and Dalgaard, P. 2002. Fish spoilage bacteria- Problems and solutions. *Curr. Op. Biotechnol.*, 13: 262-266. doi: 10.1016/s0958-1669(02)00309-9.

Gram, L. and Huss, H. H. 1996. Microbiological spoilage of fish and fish products. *Int. J. Food Microbiol.*, 33: 121-137. https://doi.org/10.1016/0168-1605(96)01134-8.
Effect of green tea extract medium in chilled storage of *Nemipterus japonicus*

Gram, L., Wedell-Neergaard, C. and Huss, H. H. 1990. The bacteriology of spoiling Lake Victorian Nile perch (*Lates niloticus*). *Int. J. Food Microbiol.*, 10: 303-316. DOI: 10.1016/0168-1605(90)90077-i.

Hanafy, A. E., Shawky, H. A. and Ram, M. F. 2011. Preservation of *Oreochromis niloticus* fish using frozen green tea extract: Impact on biochemical, microbiological and sensory characteristics. *J. Food Process. Pres.*, 35: 639-646. https://doi.org/10.1111/j.1745-4549.2011.00513.x.

Jo, C., Son, J. H., Son, C. B. and Byun, M. W. 2003. Functional properties of raw and cooked pork patties with added irradiated, freeze-dried green tea leaf extract powder during storage at 4°C. *Meat Sci.*, 64: 17-33. DOI: 10.1016/s0309-1740(02)00131-6.

King, E. O., Ward, M. K. and Raney, D. E. 1954. Two simple media for the demonstration of pyocyanin and fluorescein. *J. Lab. Clin. Med.*, 44(2): 301-307.

Khayat, A. and Schwall, D. 1983. Lipid oxidation in seafood. *Food Technol.*, 7: 130-143.

Koutoumanis, K. and Nychas, G. J. E. 1999. Chemical and sensory changes associated with microbial flora of Mediterranean boke (*Boops boops*) aerobically at 1°C, 3°C, 7°C and 10°C. *Appl. Environ. Microbiol.*, 65: 698-706.

Lakshmanan, P. T., Varma, P. R. G., Iyer, T. S. G. and Gopakumar, K. 1990. Quality changes in seafozen whole and filleted rock cod (*Epinephelus spp.*) during storage. *Fish. Res.*, 9: 1-12.

Lawless, H. T. and Heymann, H. 1998. *Sensory evaluation of food: Principles and practices*. Chapman and Hall, New York, USA, p. 606-608.

Leake, L. and Karel, M. 1985. Nature of fluorescent compounds generated by exposure of protein to oxidizing lipids. *J. Food Biochem.*, 9: 117-136. DOI: 10.1111/j.1745-4514.1985.tb00343.x.

Liston, J. 1980. Microbiology in fishery science. In: Connel, J. J. (Ed.), *Advances in fish science and technology*. Papers presented at the Jubilee Conference of the Torry Research Station, Aberdeen, Scotland, 23-27, July 1979, Fishing News Books Ltd., Farnham, Surrey, UK, p. 138-157.

Mitsumoto, M., O’Grady, M. N., Kerry, J. P. and Buckley, D. J. 2005. Addition of tea catechins and vitamin C on sensory evaluation, colour and lipid stability during chilled storage in cooked or raw beef and chicken patties. *Meat Sci.*, 69(4): 773-779. doi: 10.1016/j.meatsci.2004.10.010.

Mohan, C. O., Ravishankar, C. N. and Srinivasa Gopal, T. K. 2008. Effect of O2-scavenger on the shelf-life of catfish (*Pangusius sucki*) steaks during chilled storage. *J. Sci. Food Agric.*, 88: 442-448. DOI: 10.1002/jsfa.3105.

Mossel, D. A. A., Eelderink, I., Koopmans, M. and Van Rossum, F. V. 1979. Influence of carbon source, bile salts and incubation temperature on recovery of Enterobacteriaceae from foods using MacConkey-type agar. *J. Food Protect.*, 42: 470.

Nam, K. C., Du, M., Jo, C. and Ahn, D. U. 2002. Effect of ionizing radiation on quality characteristics of vacuum-packaged normal, pale-soft-exudative and dark-firm-dry pork. *Innov. Food Sci. Emerg. Technol.*, 3: 73-79. https://doi.org/10.1016/S1466-8564(01)00058-3.

Negro, C., Toma’is, L. and Miceli, A. 2003. Phenolic compounds and antioxidant activity from red grape marc extracts. *Bioresour. Technol.*, 87(1): 41-44. doi: 10.1016/s0960-8524(02)00202-x.

Ozyurt, G., Kuley, E., Ozkutuk, S. and Ozogul, F. 2009. Sensory, microbiological and chemical assessment of the freshness of red mullet (*Mullus barbatus*) and goldband goatfish (*Upeneus moluccensis*) during storage in ice. *Food Chem.*, 114: 505-510. DOI: 10.1016/j.foodchem.2008.09.078.

Pacheco-Aguilar, R., Lugo-Sanchez, M. E. and Robles-Burgueno, M. R. 2000. Postmortem biochemical and functional characteristic of Monterey sardine muscle stored at 0°C. *J. Food Sci.*, 65: 40-47. https://doi.org/10.1111/j.1365-2621.2000.tb15953.x.

Peryam, D. R. and Pilgrim, F. J. 1957. Hedonic scale method of measuring food preferences. *Food Technol.*, 11: 9-14.

Rhodenhamel, E. J. 1992. FDA’s concerns with sous vide processing. *Food Technol.*, 46(12): 73-76.

Sankar, T. V. 2000. *Biochemical and storage characteristics of myofibrillar protein (surimi) from freshwater major carps*. Ph. D. thesis, Cochin University of Science and Technology, Kochi, Kerala, India.

Shi, B., He, X. Q. and Haslam, E. 1994. Gelatin-polyphenol interaction. *J. Am. Leather Chem. Ass.*, 89: 98-104.

Scherer, R., Augusti, P. R., Bochi, V. C., Steffens, C., Fries, L. L. M., Daniel, A. P., Kubota, E. H., Neto, J. R. and Emanuelli, T. 2006. Chemical and microbiological quality of grass carp (*Ctenopharyngodon idella*) slaughtered by different methods. *Food Chem.*, 99: 136-142. DOI: 10.1016/j.foodchem.2005.06.048.

Shewan, J. M. 1977. The bacteriology of fresh and spoilage fish and the biochemical changes induced by bacterial action. *Tropical Products Institute*, London, UK, p. 51-66.

Smith, J. G. M., Hardy, R. S., McDonald, I. and Temhleton, J. 1980. The storage of herring (*Clupea harengus*) in ice, refrigerated seawater and at ambient temperature: Chemical and sensory assessment. *J. Sci. Food Agric.*, 31: 375-385. https://doi.org/10.1002/jsfa.2740310408.

Stammen, K., Gerdes, D. and Caporaso, F. 1990. Modified atmosphere packaging of sea food. *CRC Rev. Food Sci. Nutr.*, 29: 301-303. doi: 10.1080/10408399009527530.

Tejada, M. and Huidobro, A. 2002. Quality of farmed gilthead seabream (*Sparus aurata*) during ice storage related to the slaughter method and gutting. *Eur. Food Res. Technol.*, 215: 1-7.

Tang, S., Kerry, J. P., Sheehan, D., Buckley, D. J. and Morrissey, P. A. 2001. Antioxidative effect of added tea catechins on...
susceptibility of cooked red meat, poultry and fish patties to lipid oxidation. *Food Res. Int.*, 34: 651-657. DOI: 10.1016/S0963-9969(00)00190-3.

Toyomizu, M., Hanaoka, K. and Yamaguchi, K. 1981. Effects of release of fatty acids by enzymatic hydrolysis of phospholipids on lipid oxidation during storage of fish at -5°C, *Nippon Suisan Gakkaishi*, 47(5): 615-620.

Van Het Hof, K. H., De Boer, H. S., Wiseman, S. A., Liien, N., Westrate, J. A. and Tijburg, L. B. 1997. Composition of green or black tea does not increase resistance of low density lipoprotein to oxidation in humans. *Am. J. Clin. Nutr.*, 66: 1125-1132.

USFDA 2001. Aerobic plate count. *Bacteriological analytical manual*. United States Foods and Drugs Administration, USA.