Aerosol Black Carbon Measurement at High Altitude Western Ghats Location of Ooty, Tamil Nadu

M. Kowsalya¹*, S. Paul Sebastian¹ and R. M. Jayabalakrishnan¹

¹Department of Environmental Sciences, AC&RI, TNAU, Coimbatore 641 003, India.

Authors’ contributions

This work was carried out in collaboration among all authors. Author MK designed the study, performed the statistical analysis, wrote the protocol and wrote the first draft of the manuscript. Authors SPS and RMJ managed the analyses of the study and literature searches. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/IJECC/2020/v10i1230314
Editor(s): (1) Dr. Wen-Cheng Liu, National United University, Taiwan.
Reviewers: (1) Aline Macedo de Oliveira, Federal University of Rio Grande do Norte, Brazil. (2) Zulfiqar Ali, University of the Punjab, Pakistan.
Complete Peer review History: http://www.sdiarticle4.com/review-history/64659

ABSTRACT

The aerosol Black Carbon (BC) are particles formed from the incomplete combustion of fossil fuel and biomass combustion which was collected from high altitude location in Western Ghats, Ooty, Tamil Nadu using Aethalometer Instrument (model AE-31 of Magee Scientific, USA) during 2017. The monthly averaged BC concentration shows highest value of $1.88 \pm 0.44 \mu g \ m^{-3}$ during April with the annual mean of $0.83 \pm 0.20 \mu g \ m^{-3}$. The diurnal variation shows higher seasonality especially in winter and summer with highest peak in 17:00 to 22:00 hr. The aerosol optical depth derived from MERRA 2 model showed annual mean of 0.29 and it is in line with BC concentration. The results showed that the concentrations are varying within a day, month and season depends on the local meteorological conditions.

Keywords: Black carbon; aethalometer; aerosol optical depth; aerosol; MERRA-2.

1. INTRODUCTION

Aerosols are particulate air pollutants suspended in the atmosphere have a much bigger impact on the earth and are ubiquitous [1]. Aerosols have sizes ranging from 0.001 to 10 \mu m [2]. Among them, BC is the second largest contributor to global warming [3] has been more attention in recent times. The major sources of BC are forest fires, wood burning, vehicular emission and
industries, which are of anthropogenic origin [4]. The global BC emission using bottom-up inventory methods are 7500 Gg/yr [5]. It is well known that aerosols affect the climate through scattering and absorptive properties, which are depending on the type of particle, their size and altitude where they found [6]. For example, sulphate aerosols scatters the solar radiation results in negative radiative forcing responsible for cooling of Earth, whereas BC has efficient light absorbing characteristics, that leads to warming effect. Freshly formed BC aerosols are hydrophobic in nature and their residence time in the atmosphere varies between minutes to week, whereas the aged particles are changed to hygroscopic due to mixing of other species during atmospheric process [7]. To understand the effect of atmospheric transport and anthropogenic source, diurnal BC concentration is essential [8].

Aerosol Optical Depth is the quantitative measurement of aerosols distributed in the atmosphere by which they can absorbs or scatters the sunlight. It is good indicator of biomass burning [9]. As black carbon aerosol is a primary pollutant particulate matter, its absorption coefficient is important to calculate the direct radiative forcing. In previous studies, Udayasoorian et al. [10] reported the dominance of fossil fuel and biomass burning in the study period especially during summer. Another study, Kompalli et al. [11] confirms the highest concentration of BC during summer attributed to winds mainly from south and south directions and found the possibilities of ex-situ particles and gaseous species in the study site. Based on the prelude, current study was taken up to understand the daily, monthly and seasonal variability in the study site.

2. MATERIALS AND METHODS

2.1 Study Site Description

The “Ooty” observational site belongs to Nilgiris biosphere (Blue Mountains), is situated in one of the highest mountainous ranges of Western Ghats of Southern India (Fig. 1). The observational site is known for its own microclimatic condition as well as considered as rural (Clean) site and is located at 2520 m a.m.s.l.

Courtesy: Google Earth: The study site is one of the main tourist sites in southern India because of the elevation results in a much cooler and wetter climate than the surrounding plains. The only local source of pollution is wood burning for domestic purpose, tea industry and vehicular traffic during day time particularly in winter and summer season. Around 3.269 million people visited Ooty in 2017. Dense forests, lofty mountains, an amazing variety of flora and fauna extensive tea and coffee plantation and sprawling grasslands characterize the location. The Nilgiris is India's first biosphere reserve and it has been declared as world heritage site by UNESCO in 2012 [12,13].

2.2 Black Carbon Measurement

BC mass concentrations were measured daily with a temporal resolution of 5 min using a seven-channel Aethalometer (Model AE-31, Magee Scientific, USA) for a period of one year (2017). As the particles deposited on the quartz fiber filter paper as spot, the change in attenuation were observed at seven different wavelength (370, 470, 520, 590, 660, 880 and 950 nm). As the instrument has been factory calibrated with a flow rate of 4 LPM, the light attenuation absorption coefficient is converted into BC mass concentration [14].

The true BC mass concentration (\(M_{BC}\)) was calculated as:

\[
M_{BC} = M_{BC}^* \frac{P_0 T_0}{P T_0}
\]

Where, \(M_{BC}^*\) is the Raw mass concentration of BC measured at ambient condition, \(P_0\) and \(P\) is the Standard pressure and Ambient pressure, \(T_0\) and \(T\) is the Standard temperature and Ambient temperature.

2.3 Aerosol Optical Depth Measurement Derived from MERRA-2 Model Data

The second Modern-Era Retrospective analysis for Research and Applications (MERRA-2), NASA's global Earth system model, was used to study the aerosol components at 0.5° x 0.625° resolution from Giovanni [15]. The MERRA 2 timely averaged data at 550 nm for the period of one year (2017) was downloaded from M2TINXAER 5.12.4 from MDISC, Goddard Earth Sciences (GES) Data and Information Services Center (DISC) in NetCDF format. Using GIS tool, the data are imported as a raster layer and the values are extracted for the study site coordinates.
3. RESULTS AND DISCUSSION

3.1 Monthly Variation of BC Concentration

The averaged monthly variation of Black carbon concentration measured in 2017 are shown in Fig. 2. The highest concentration of $1.8 \pm 0.4 \mu g m^{-3}$ was recorded during April month, while the lowest during September ($0.2 \pm 0.1 \mu g m^{-3}$). The annual mean BC concentration during 2017 was $0.83 \pm 0.20 \mu g m^{-3}$. Overall, the BC concentration increases gradually during January and reached the highest in April. Then, the concentration suddenly falls to the lowest during May to September and again it increases in October. It might be attributed to the local meteorological conditions and also the rainy season occurred in the study site from June to September, 2017. During study period, the decrease in the BC
aerosol might be due to the scavenging effect of precipitation resulted in the lower concentration. Likewise, from March to May, the temperature was high when compared with rest of the other months. This may lead to uplift of BC aerosols from the local source. In previous study, the mean concentration of BC in the study site was 0.61 µg m⁻³ [10]. Whereas, other sites in Southern India like Madurai and Agartala has mean BC concentration of 1.62 and 17.8 µg m⁻³, respectively [7,16].

3.2 Diurnal Variation of BC Aerosol

The seasonally averaged diurnal variation of BC aerosol measured for the period of 2017 are shown in Fig. 3. The BC concentrations are divided in four seasons namely, winter (January-February), summer (March-May), monsoon (June-September) and post monsoon (October-December). The BC concentration gradually increases from 00:00 (local time) to 23:00 and has highest peak (1.6 - 1.9 µg m⁻³) in (17:00 to 22:00) uniformly in all seasons (Fig. 3). It indicates the that the black carbon are transported from the local source emitted during daytime and reaches the study site in evening. This shows that the wind play a major role in transferring of pollutants from the source region to the study site. The results are in accordance with previous study [10] whereas, Bhaskar et al. [8] and Kant et al. [17], observed two peaks at morning and evening in Madurai and Dehradun, respectively.

3.3 Aerosol Optical Depth (AOD) of BC Aerosol

The monthly Aerosol optical depth data retrieved from MEERA 2 model at 550nm are shown in Fig. 4. The aerosol optical depth data shows similar pattern with monthly averaged BC concentration (Fig. 2) with the highest concentration during April and lowest during the monsoon season of June to September, 2017. As the aerosol loading increases, BC aerosol concentration also increases. The mean AOD value of 2017 was 0.29. As mentioned above, the particles are driven by wind from different source region to the study site. Pathak et al. [18] and Gogoi et al. [19] reported the AOD value of 0.52 and 0.071 in Shillong and Hanle, respectively.
Fig. 3. Diurnal variation of BC during 2017

Fig. 4. Aerosol optical depth in the study site during 2017
4. CONCLUSION

The mean mass concentration of black carbon and aerosol optical depth during the study period was 0.83 ± 0.20 µg m$^{-3}$ and 0.29, respectively. Eventhough the observation site is clean, the BC concentration showed daily, monthly and seasonal variability. It confirms the influence of meteorological parameters on BC concentration during the study site. In future, studies on influence of meteorological conditions, source and origin in detail is essential for better understanding of BC concentration in the study site. As, BC is the second largest contributor to radiative forci

6. Mogo S, Cachorro V, De Frutos A. Morphological, chemical and optical absorbing characterization of aerosols in the urban atmosphere of Valladolid. Atmospheric Chemistry & Physics. 2005; 5:2739–2748.

7. Rajeshkumar R, Bhaskar BV, Muthuchelian K. Characteristics of Black Carbon Aerosol at an Educational Site in Southern India. Environment Asia. 2019; 12(1):108-119.

8. Bhaskar BV, Rajeshkumar R, Muthuchelian K, Ramachandran S. Spatial, temporal and source study of black carbon in the atmospheric aerosols over different altitude regions in Southern India. Journal of Atmospheric and Solar-Terrestrial Physics. 2018;179:416-424.

9. Jethva H, Torres O. Satellite-based evidence of wavelength-dependent aerosol absorption in biomass burning smoke inferred from Ozone Monitoring Instrument. Atmospheric Chemistry and Physics 2011; 11(20):10541-10551.

10. Udayasoorian C, Jayabalakrishnan R, Suguna A, Gogoi MM, Suresh Babu S. Aerosol black carbon characteristics over a high-altitude Western Ghats location in Southern India. Annales Geophysicae 2014;32(10):1361-1371.

11. Kompalli SK, Babu SS, Udayasoorian C, Jayabalakrishnan R. Role of anthropogenic emissions and meteorology on ultrafine particle bursts over a high altitude site in Western Ghats during pre-monsoon. Journal of Atmospheric and Solar-Terrestrial Physics. 2018;179:378-388.

12. Chitale V, Behera M, Roy P. Global biodiversity hotspots in India: significant yet under studied. Curr Sci. 2015;108(2): 149-150.

13. Dubey R. Periconia chandoliensis-A new microfungus from Western Ghats of India. Journal of Mycopathological Research. 2017;55(1):101-104.

14. Yang M, Howell S, Zhuang J, Huebert B. Attribution of aerosol light absorption to black carbon, brown carbon, and dust in China--interpretations of atmospheric measurements during EAST-AIRE.

ACKNOWLEDGEMENT

This work was carried out as a part of the ARFI project of ISRO-GBP. The authors are grateful to Indian Space Research Organization for providing fund and constant support.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Li Z, Rosenfeld D, Fan J. Aerosols and their impact on radiation, clouds, precipitation, and severe weather events. In Oxford Research Encyclopedia of Environmental Science; 2017.

2. Haywood J. Atmospheric aerosols and their role in climate change. In Climate Change. Elsevier; 2016;449-463.

3. Cao X, Liang J, Tian P, Zhang L, Quan X, Liu W. The mass concentration and optical properties of black carbon aerosols over a semi-arid region in the northwest of China. Atmospheric Pollution Research. 2014; 5(4):601-609.

4. Ramachandran S, Rajesh T. Black carbon aerosol mass concentrations over Ahmedabad, an urban location in western India: comparison with urban sites in Asia, Europe, Canada, and the United States. Journal of Geophysical Research: Atmospheres. 2007;112(6):1-19.

5. Bond TC, Doherty SJ, Fahey DW, Forster PM, Berntsen T, DeAngelo BJ et al. Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research: Atmospheres. 2013;118(11):5380-5552.
15. Sun E, Che H, Xu X, Wang Z, Lu C, Gui K, Zhao H, Zheng Y, Wang Y, Wang H. Variation in MERRA-2 aerosol optical depth over the Yangtze River Delta from 1980 to 2016. Theoretical and Applied Climatology. 2019;136(1-2):363-375.

16. Guha A, De BK, Dhar P, Banik T, Chakraborty M, Roy R, Choudhury A, Gogoi MM, Babu SS, Moorthy KK. Seasonal characteristics of aerosol black carbon in relation to long range transport over Tripura in Northeast India. Aerosol and Air Quality Research. 2014;15(3):786-798.

17. Kant Y, Shaik DS, Mitra D, Chandola H, Babu SS, Chauhan P. Black carbon aerosol quantification over north-west Himalayas: Seasonal heterogeneity, source apportionment and radiative forcing. Environmental Pollution. 2020;257:113446.

18. Pathak B, Subba T, Dahutia P, Bhuyan P, Moorthy KK, Gogoi M, Babu SS, Chutia L, Ajay P, Biswas J. Aerosol characteristics in north-east India using ARFINET spectral optical depth measurements. Atmospheric Environment. 2015;125:461-473.

19. Gogoi MM, Chaubey JP, Sreekanth V, Kompalli SK, Babu SS, Prabhu TP, Moorthy KK. Columnar aerosol extinction characteristics: measurements from a free-tropospheric observatory in western-Himalayas. Journal of the Institute of Engineering. 2011;8(3):52-57.