A number of feed additives are marketed to assist in boosting the pigs’ immune system, regulate gut microbiota, and reduce negative impacts of weaning and other environmental challenges. The most commonly used feed additives include acidifiers, zinc and copper, prebiotics, direct-fed microbials, yeast products, nucleotides, and plant extracts. Inclusion of pharmacological levels of zinc and copper, certain acidifiers, and several plant extracts have been reported to result in improved pig performance or improved immune function of pigs. It is also possible that use of prebiotics, direct-fed microbials, yeast, and nucleotides may have positive impacts on pig performance, but results have been less consistent and there is a need for more research in this area.

1. Introduction

The increased awareness of potential negative effects of including antibiotic growth promoters in diets fed to pigs has resulted in an increased interest in producing pigs without using antibiotic growth promoters. However, by eliminating antibiotic growth promoters from diets fed to newly weaned pigs, disease problems may be increased and growth performance may be reduced. In contrast, removal of antibiotic growth promoters from diets fed to growing-finishing pigs does not always result in increased disease problems (Wierup, 2001). Because growth performance is increased to a greater extent in weanling pigs than in growing – finishing pigs if antibiotic growth promoters are used, the negative effects on growth performance of removing antibiotics from diets fed to finishing pigs is less than for weanling pigs (Cromwell, 2013). Nevertheless, to avoid the negative effects of removing antibiotic growth promoters from diets for pigs, changes in management and nutritional strategies may be required (Pettigrew, 2006; Stein and Kil, 2006; Kil and Stein, 2010). The aim of these changes is to improve the pigs’ ability to prevent pathogenic bacteria from colonizing the intestinal system, which often is accomplished via an improved immunological response to pathogens. This also can be accomplished via mechanisms that prevent the pathogens from adhering to intestinal mucosa or releasing toxins, and thus, reduce the damaging effects of the pathogens on the host. In the present contribution, some of the additives that may be used to ameliorate the negative impacts of removing antibiotic growth promoters from the diets will be discussed. The objective of the review is to provide an overview over the additives that are available for inclusion in diets for pigs and also to include the believed mechanisms for each additive as well as the most recent results from growth performance and digestibility experiments that are available. However, it is not the objective to provide an exhaustive review on each additive.
2. Acidifiers

Acidifiers are often used as alternatives to antibiotic growth promoters because of their ability to create a favorable intestinal environment for beneficial microbes which may result in increased nutrient digestibility, increased growth performance, and reduced diarrhea. Dietary acidifiers may be organic or inorganic acids or salts of acids (Partanen and Mroz, 1999; Papatsiros and Billinis, 2012). Blends of acids including mixtures of various organic acids, or mixtures of organic and inorganic acids may also be used to maximize acidification effects in diets for pigs (Zentek et al., 2013; Ahmed et al., 2014; Kuang et al., 2015). However, despite many years of research, the exact mode of action of dietary acidifiers has not been fully elucidated, but the following mechanisms have been proposed: 1) a decreased or stabilized gastric pH may lead to increased pepsin activity; 2) a modulation and alteration of the gut microbiota may inhibit pathogenic bacterial activity; and 3) acidifiers may improve nutrient digestibility in the small and large intestines resulting in increased nutrient retention (Kil et al., 2011; Papatsiros and Billinis, 2012).

2.1. Organic acids

The most commonly used organic acids include formic acid, fumaric acid, lactic acid, and citric acid and a comprehensive review of the effects of these acids is available (Suryanarayana and Ramana, 2015). Supplementation of diets with organic acids usually results in a reduction in stomach pH (Eidelsburger et al., 1992b; Roth et al., 1992a; Radcliffe et al., 1998). Formic acid, citric acid, and benzoic acid improved growth rate and feed conversion ratio when included in diets fed weanling pigs (Guggenbuhl et al., 2007; Halas et al., 2010; Papatsiros et al., 2011; Diao et al., 2016; Luise et al., 2017) and growing pigs (Giesting and Easter, 1985; Suryanarayana et al., 2012). Formic acid and its salts have a positive effect on the apparent total tract digestibility (ATTD) of protein (Eckel et al., 1992), but not on ileal amino acid digestibility (Gaber et al., 1995) and in fact a reduction in ileal amino acid digestibility has been reported as a result of diet acidification (Gaber and Sauer, 1995). However, supplementation of diets with citric acid had a positive effect on the digestibility of protein, calcium and phosphorus in sows (Liu et al., 2014a, b). Dietary benzoic acid has been shown to improve the apparent digestibility of Ca and P in growing pigs (Sauer et al., 2009; Bühler et al., 2010; Xu et al., 2018), crude protein in weaning pigs (Guggenbuhl et al., 2007; Halas et al., 2010; Xu et al., 2018), and organic matter, crude protein, ether extract and crude fiber in sows (Klage et al., 2010). Formic acid added to diets for weaning pigs may also increase intestinal microbial diversity and change concentrations of certain intestinal microbes (Luise et al., 2017). It is possible that sources of protein and inclusion levels of acids in the diets are among the reasons for the inconsistent results that have been reported (Blank et al., 1999; Kil et al., 2011). As an example, diets containing oilseed meals as the primary protein source usually show a greater response to acidifiers compared with diets containing milk protein and responses to acidifiers are usually dose dependent (Ravindran and Kormegay, 1993).

Recently, combinations of organic acids and medium-chain fatty acids have been demonstrated to reduce pathogenic activity than if acids or fatty acids are fed individually (Zentek et al., 2013) and the combination of organic acids and medium-chain fatty acids had positive effects on the digestibility of nutrients as well as on growth performance (Upadhaya et al., 2014; Kuang et al., 2015; Long et al., 2018). It was demonstrated that the reason for this observation is that expression of proinflammatory cytokines was downregulated and proliferation of lactobacillus was increased (Kuang et al., 2015). The pH in the stomach as well as the concentration of pathogenic bacteria in the intestinal tract were also reduced in pigs fed diets containing a combination of organic acids and medium-chain fatty acids (Zentek et al., 2013). Likewise, the concentration of hydroxyl radicals in serum was reduced if pigs were fed a combination of organic acids and medium-chain fatty acids (Long et al., 2018).

2.2. Inorganic acids

Inorganic acids commonly used in diets include hydrochloric acid, sulfuric acid, and phosphoric acid. Positive responses to supplementations of diets with phosphoric acid and hydrochloric acid have been reported (Mahan et al., 1996), although a lack of a positive response to hydrochloric acid has also been observed (Gedek et al., 1992; Eidelsburger et al., 1992a; Roth et al., 1992b; Kil et al., 2006, 2011). Supplementation of diets with sulfuric acid has been reported to result in a negative effect on growth performance (Eidelsburger et al., 1992b; Mahan et al., 1996).

2.3. Salts of acids

Salts of acids also have been used as acidifiers for pigs and these salts include calcium-formate, potassium-diformate, sodium-diformate and sodium-fumarate. Positive effects of calcium-formate on growth performance and diarrhea scores were reported (Bosi et al., 2007), but in general, calcium-formate is not as efficient as potassium-diformate (Li et al., 2008a). Potassium-diformate may result in greater gastric hydrochloric acid and lactic acid concentrations because of increased mRNA expression of H1- K+ -ATPase and gastrin receptors in the gastric oxyntic mucosa (Xia et al., 2016). Positive effects on dry matter and protein digestibility of supplementing diets with sodium-diformate and sodium-fumarate have also been reported (Eidelsburger et al., 1992b).

Butyric acid, also known as butanoic acid, is one of the short-chain fatty acids (SCFA) that are produced by microbial fermentation in the gastrointestinal (GI) tract of pigs (Mallo et al., 2012). Especially, the propionic and butyric acids produced in the GI tract are considered important metabolites that have antibacterial effects on pathogenic bacteria (Stecher and Hardt, 2011). Addition of butyric acid directly to a swine diet may be limited because of its highly volatile and corrosive characteristics (Piva et al., 2002). Therefore, some products of butyric acid have been used in combined forms with Ca and Na. Machinsky et al. (2015) observed a positive effect of Na-butyrate on the protein digestibility of pigs. Recently, dietary Na-butyrate decreased diarrhea scores of weanling pigs (Fang et al., 2014) and improved growth performance (Lu et al., 2008; Hanczakowska et al., 2014; Huang et al., 2015). In addition, Na-butyrate supplementation to gestating sow diets and pre-weanling pig diets (Le Gall et al., 2009; Lu et al., 2012) was reported to have a positive effect on muscle and adipose tissue oxidative genes and growth performance.

2.4. Blends of acids

A mixture of citric acids and sorbic acids resulted in improved growth performance of pigs (Grilli et al., 2010), and a blend of organic and inorganic acids increased fecal Lactobacillus spp. and decreased Escherichia coli counts, but did not improve growth performance of pigs (Ahmed et al., 2014). Likewise, addition of a blend of organic acids (fumaric, lactate, citric, propionic, and benzoic acids) followed by a blend of phosphoric, fumaric, lactic, and citric acid improved growth performance of newly weaned pigs (Walsh et al., 2007). Upadhaya et al. (2014) also reported increased Lactobacillus spp. count in feces from pigs fed a blend of acidifiers and a blend of acidifiers was effective in reducing diarrhea in pigs that were stressed by changing temperatures (Wang et al., 2016a, b).
In conclusion, a number of acidifiers are used in diets fed to pigs, but results reported in the literature have not been consistently positive. Further research is, therefore, needed to clarify the modes of action of acidifiers and establish under which conditions a positive response can be expected.

3. Minerals

Minerals are inorganic elements needed by pigs for maintenance, growth, and reproduction. Minerals needed in quantities greater than 100 mg/kg of feed are called macro minerals whereas minerals required in smaller quantities are called micro minerals or trace minerals. Examples of micro minerals are Cu and Zn, which are needed for normal bodily functions of pigs. However, unlike most other minerals, Cu and Zn have antimicrobial properties and they are therefore often added to diets in quantities greater than what is needed to fulfill the nutritional requirements.

3.1. Zinc

Zinc is a component and activator of several metalloenzymes, and has a major function in production and secretion of hormones. It also plays a role in skin and wound healing and in the integrity of the immune system (McDowell, 1992). Nursery pigs usually require 80 to 100 mg/kg of Zn (van Heugten et al., 2003; NRC, 2012) and deficiency of Zn in weanling pig diets leads to growth retardation, loss of appetite, skeletal abnormalities, and hyperkeratinization of the skin called parakeratosis (Ku et al., 1970; Prasad et al., 1971). However, use of pharmacological levels (2,000 to 4,000 mg/kg) of inorganic Zn in the form of ZnO is a common recommendation to reduce post-weaning diarrhea and improve growth performance (Poulson, 1998; Smith et al., 1997; Hill et al., 2000; Hu et al., 2012). It has also been reported that high levels of Zn stimulate and can improve feed intake by 14% to 17% (Hahn and Baker, 1993; Case and Carlson, 2002). Aside from ZnO, there are also other forms of Zn, which can be included in diets at lower concentrations. These forms include the chelated sources of Zn such as Zn-methionine, which has greater bioavailability of Zn than ZnO (Ward et al., 1996) and addition of 250 mg/kg of Zn-methionine to nursery diets has beneficial effects that are equivalent to addition of 2,000 mg/kg of Zn from ZnO (Mavromichalis et al., 2001). The biological mechanism of Zn in enhancing growth performance points may be related to its function in the intestinal integrity and morphology in weanling pigs (Pearce et al., 2015). High Zn intake improves the intestinal morphology of weanling pigs, increasing the villous height and the villous height to crypt depth ratio (Carlson et al., 1998; Li et al., 2001, 2006; Hu et al., 2013a; Zhu et al., 2017) and decreases crypt depth in the small intestine of weanling pigs (Pearce et al., 2015). High Zn intake improves the intestinal redox state in weaned piglets by increasing the ratio of reduced glutathione to oxidized glutathione and prevented apoptosis in the small intestine and increased the number of goblet cells in the intestinal tract (Slade et al., 2011).

However, addition of pharmacological levels of ZnO in diets for weanling pigs will reduce the digestibility of Ca and P and reduce the effectiveness of microbial phytate in the diets (Walk et al., 2013, 2015; Blavi et al., 2017). The reason for the reduced digestibility of P is most likely that an antagonistic relationship between Zn and P exists, whereas reduced digestibility of Ca is a result of competition for the absorptive transporters in the brush border (Bertolo et al., 2001; Walk et al., 2015).

Inclusion of pharmacological levels of ZnO will be discontinued in the European Union from 2022 due to concerns about buildup of Zn in soil fertilized with pig manure. However, in the rest of the world, ZnO may still be used.

3.2. Copper

Copper is an essential component of several metalloenzymes including cytochrome oxidase and lycyl oxidase, and is involved in oxidation—reduction reactions, transport of oxygen and electrons, and protection against oxidative stress (Hill, 2013). Copper is also involved in metabolic reactions, including cellular respiration, tissue pigmentation, hemoglobin formation, and connective tissue development (McDowell, 1992). Neonatal pigs usually require 5 to 6 mg/kg of Cu for normal metabolism (Underwood, 1977; NRC, 2012), but as pigs get older, the requirement for Cu decreases. Pigs deprived of copper develop critical dysfunctions and hypocuprosis (Suttle, 2010). Microcytic anemia is a sign of copper deficiency due to its role in hemoglobin formation and development (Hart et al., 2002; Suttle and Angus, 1978). Pigs may also suffer from bone abnormalities and unusual leg condition with various degrees of crookedness due to a lack of copper in the diet (Baxter et al., 1953). Addition of pharmacological levels of Cu in pig diets has been a common practice to improve growth performance (Ma et al., 2015), and supplementing Cu to diets fed to weanling pigs at 100 to 250 mg/kg may reduce post-weaning scouring and improve average daily gain (ADG) and average daily feed intake (ADFI) (Poulson, 1995; Rukawska-Pejsak et al., 1998; Perez et al., 2011). In most cases, additional Cu is included in the sulfate form, however, other chemical forms of Cu may be used. It has been reported that tribasic copper chloride (TBCC) is as effective as CuSO₄ in enhancing the epithelium (Hu et al., 2013a; Song et al., 2015), which is an indication of improved intestinal barrier function.

Zinc is also a molecular signal for immune cells, and it is required for differentiation and generation of T helper cells (Prasad, 2014). Deficiency of Zn induces thymic atrophy, lymphopenia, and compromised cell- and antibody-mediated responses, resulting in increased rates and longer duration of infection (Hirano et al., 2008). In contrast, high levels of Zn downregulate the mRNA expression of pro-inflammatory cytokines: TNF-α, IFN-γ, IL-6, IL-8, IL-1β and nuclear factor kappa beta (Hu et al., 2013a; Zhu et al., 2017), and upregulate the anti-inflammatory cytokine TGF-β (Zhu et al., 2017). Pro-inflammatory cytokines (e.g., TNF-α, IFN-γ, IL-1β and IL-6) may induce pathological openings of the intestinal tight junction barrier and increase intestinal epithelial permeability (Al-Sadi et al., 2009), which will disrupt intestinal barrier function (Hu et al., 2013b). High doses of Zn doses may also increase mRNA expression of IGF-1 and CDK4 (Xia et al., 2017). The IGF-1 can be locally synthesized in the gastrointestinal tract, is an important mediator of the proliferation and differentiation of enterocytes (Prasad, 2014), whereas CDK4 is used as a marker to monitor proliferation and apoptosis due to its functions in G1 phase of cell cycle (Hu et al., 2013b). Also, high Zn levels in the diet improved the small intestinal redox state in weaned piglets by increasing the ratio of reduced glutathione to oxidized glutathione and prevented apoptosis in the small intestine and increased the number of goblet cells in the intestinal tract (Slade et al., 2011).
growth rate and feed efficiency in pigs (Cromwell et al., 1998). Use of TBCC instead of CuSO₄ also results in improved utilization of P in broilers (Banks et al., 2004), which may be because TBCC results in less inhibition of microbial phytase (Pang and Applegate, 2006). It also appears that TBCC is less aggressive in premixes, and therefore reduces the destruction of vitamins, phytase, and probiotics in vitamin mineral premixes during storage. Chelated Cu, such as Cu citrate, may also be used in diets for pigs, and because the availability of Cu in Cu citrate is greater than in CuSO₄, lower concentrations are needed in the diets which results in reduced excretion of Cu (Armstrong et al., 2004).

The growth promoting effects of dietary Cu have been attributed to its bacteriostatic and bactericidal properties (Stahly et al., 1980) because Cu may reduce bacterial populations in the intestine, which may affect the growth and community structure of microorganisms in the cecum and colon (Højberg et al., 2005). It has also been speculated that improvement in ADFI as a result of Cu supplementation is due to the role of Cu in upregulating the mRNA expression of neutrophil Y (Li et al., 2008b), which is considered a feed intake inducer (Gehlert, 1999). Copper may also disrupt enzyme structure and functions of bacteria by binding to S or carboxylate-containing groups and amino groups of proteins (Sterritt and Lester, 1986). Inclusion of Cu at pharmacological levels in diets fed to weaning pigs also increases villus height and reduces crypt depth, thus improving intestinal health (Zhao et al., 2007).

3.3. Additive effects of Cu and Zn

Results of several experiments have indicated beneficial effects of supplementing pharmacological levels of Cu and Zn individually, but in some experiments, effects of adding pharmacological levels of both Cu and Zn were investigated. However, results of some experiments indicated that effects of the two minerals are not additive (Hill et al., 2000), but other results have indicated some additive effects (Perez et al., 2011). It was reported that ZnO may modify the colonic microbial profile, whereas Cu in addition to altering the microbiota profile also reduces microbial diversity in the ileum and colon, which may be the reason for additive effects of the two minerals (Namkung et al., 2006).

4. Prebiotics

The composition of the gut microbiota plays an important role in the health of pigs and increasing the population of bacteria of genus Bifidobacterium, lactobacilli, and eubacteria in the gut may improve the health of the animals, and decrease the risk of diseases (Roberfroid et al., 2010; van der Aar et al., 2017). Growth of these bacteria increases the concentration of lactic acid and acetate acid, which will reduce the pH in the intestine and increase fermentation with a subsequent increase in the concentration of SCFA and a reduced concentration of pathogenic bacteria (Smiricky-Tjardes et al., 2003).

Prebiotics are mainly non-digestible oligosaccharides and have been defined as “non-digestible food ingredients that beneficially affects the host by selectively stimulating the growth and/or activity of one or a limited number of bacteria in the colon, and thus improves host health” (Gibson and Roberfroid, 1995). Non-digestible carbohydrates are the main substrate for gut microbiota, however, only a fraction of non-digestible carbohydrates can be considered as prebiotic because not all indigestible carbohydrates impacts the microbial population. Inulin, fructo-oligosaccharides, transgalacto-oligosaccharides, and lactulose are the most common carbohydrates that have been recognized as prebiotics because these carbohydrates are easily fermentable and therefore will result in reduced luminal pH (de Lange et al., 2010; Bach Knudsen et al., 2012). However, other dietary carbohydrates such as arabinino-xylans, xyloglucans, and resistant starch also may have prebiotic effects (Bach Knudsen et al., 2012). Prebiotics also may be obtained by chemical processing that hydrolyze polysaccharides (i.e., isomalto-oligosaccharides from starch) or by enzymatic or chemical synthesis from disaccharides (Broek et al., 2008). Most prebiotics are synthesized or isolated from plant and algae polysaccharides (Smiricky-Tjardes et al., 2003; Saad et al., 2013; Wu et al., 2017).

Beneficial effects of prebiotics in diets fed to pigs have been related to increased fermentability, because the subsequent synthesis of SCFA results in reduced intestinal pH. Increased concentrations of SCFA also reduce protein fermentation in the intestinal tract (Awati et al., 2006; Roberfroid et al., 2010; Lindberg, 2014). Butyrate regulates epithelial cell growth and induces differentiation and apoptosis in the small intestine, which is believed to result in increased intestinal cell proliferation and improved digestive and absorptive capacities of the small intestine (Lindberg, 2014; van der Aar et al., 2017). Addition of 100 or 200 mg/kg of chito-oligosaccharide (a derived of the of chitosan) to diets for weaning pigs, improved growth performance and increased digestibility of dietary nutrients, decreased the incidence of diarrhea, and improved small intestine morphology (Li et al., 2008). Isomalto-oligosaccharides, added at 6.0 g/kg to diets for weaning pigs improved growth performance, decreased fecal scores and increased ATTD of dry matter, organic matter, and gross energy in diets fed to weaning pigs. Also, greater villus height in the ileum and increased concentrations of volatile fatty acids in cecum and colon contents were observed by adding isomalto-oligosaccharides to diets (Wang et al., 2016a, b; Wu et al., 2017). However, supplementation of 0.1% of chicory, mannan oligosaccharides, or 0.02% of chitosan to diets for weaning pigs had no effect on growth performance or serum concentration of IgA (Li et al., 2016) and addition of inulin to diets for weaning pigs had no effect on ATTD of gross energy or dry matter or on nitrogen retention (Acosta et al., 2017).

Results of several studies have also demonstrated that the prebiotic lactulose may result in greater concentrations of serum IgM and IgA and improved immunity against Salmonella typhimurium (Naqid et al., 2015). Positives effects of lactulose on growth performance, microbiota composition, and immune response of weaning pig challenged with enterotoxigenic E. coli K88 or S. typhimurium have also been reported, but those effects have not been observed in growing pigs (Guerra-Ordaz et al., 2014; Naqid et al., 2015; Tran et al., 2016). Likewise, increased cell-mediated immune response, IL-1β gene expression, and serum levels of IL-1β, IL-2, and IL-6, were observed when diets for weaned pigs were supplemented with chitosan [6-sugar unit of N acetyl glucosamine with β-(1 to 4) linkages] and galacto-mannan oligosaccharides (Yin et al., 2008).

In conclusion, although several mechanisms have been suggested for the action of action of prebiotics, it appears that modified intestinal microbiota and increased concentrations of volatile fatty acids in the intestinal tract are the best documented and accepted effects of prebiotics. However, it is possible that prebiotics also impact the immune system, but additional research is needed to document these effects. Among the compounds with prebiotic effects, inulin and fructo oligosaccharides are the most studied. The inconsistent results that have been obtained with these compounds may be due to differences in age of pigs, health status, or environmental conditions.

5. Direct-fed microbials (DFM) and yeast

Direct-fed microbials, which may be more commonly known as probiotics, are defined as, “live microorganisms which, when administered in adequate amounts, confer a health benefit on the host (FAO/WHO, 2001).” Since 1989, the Food and Drug
Administration has required that the term probiotic only be used when referring to human microbial products; therefore, the term “DFM” is used in the U.S. feed industry, whereas “probiotic” is used interchangeably with human and animal feed worldwide. Direct-fed microbials are categorized into 3 main groups: *Bacillus*, lactic acid-producing bacteria, and yeast *(Stein and Kil, 2006; NRC, 2012)*. Yeast include a broad range of products that may be available in pig feed, therefore, a brief overview of yeast will be separately discussed in the current review. *Bacillus*-based DFM are spore-forming, which makes them thermostable and able to survive at low pH. *Bacillus*-based DFM have been identified as potent producers of extracellular fiber-degrading enzymes, which may aid nutrient digestion and utilization *(Ferrari et al., 1993; Schreier, 1993)*. Lactic-acid producing bacteria are not spore-forming and survival during feed processing is of concern *(de Lange et al., 2010)*. Lactic-acid producing bacteria dominate the gastrointestinal tract of the nursing pig *(Li et al., 2003; Richards et al., 2005)*, which helps reduce the pH in the gut by producing lactic acid through fermentation, inhibiting enteric pathogens *(Vandenbergh, 1993)*, and improving host immunity *(Niers et al., 2005; de Lange et al., 2010)*. However, after weaning of pigs, the concentration of lactic-acid producing bacteria diminishes; therefore, supplementation of weaned pig diets with lactic-acid producing DFM may be beneficial *(Stein and Kil, 2006)*.

Addition of DFM to swine diets may improve gut health by modifying the microflora, which may help control pathogens *(Prescott et al., 2005)*, enhance immune regulation and response *(Galdeano and Perdigon, 2006)*, increase nutrient digestibility *(Giang et al., 2011)*, improve health status, and improve pig growth performance *(Kenny et al., 2011; Cromwell, 2013)*. Addition of DFM to diets for pigs may also reduce the immune stimulation, indicated by a reduction in pro-inflammatory cytokines in enterocytes, which may shift energy normally used for excessive immune stimulation to growth, thereby improving feed efficiency *(Cho et al., 2011)*.

5.2. Efficacy of direct-fed microbials

Published reviews have concluded that the efficacy of DFM added to swine diets is inconsistent *(Pollmann, 1986, 1992; Nousiainen and Setala, 1993; Stavric and Konrasy, 1995)*. However, due to improvements in the strains used in commercial DFM, older reports may not always be appropriate to use to assess the efficacy of new DFM because the development of DFM and the technology associated with production of DFM has improved, which may lead to increased efficiency.

Addition of *0.5 × 10^6, 6.7 × 10^6*, or *7.5 × 10^6* cfu/d of *Bifidobacterium globosum A* (lactic-acid producing DFM) to weaning pig corn-soybean meal-based diets quadratically improved ADG and average daily feed intake, but did not affect G:F, immune response, or pH of intestinal contents *(Appar et al., 1993)*. This same feeding regimen was maintained through the growing-finishing phase and pig performance and carcass characteristics were not affected by DFM addition *(Appar et al., 1993)*. More recent studies utilizing lactic-acid producing DFM *(Bifidobacterium lactis NCC2818)* supplemented to a weaning pig diet produced an up-regulation of proteins associated with epithelial tight cell junctions and reduced IgA in intestinal mucosal tissues, indicating increased gut barrier function *(Lewis et al., 2013)*. It has also been demonstrated that effects of DFM are most likely diet dependent *(Merrifield et al., 2013; Bailey, 2016)*.

Feeding DFM has been suggested to increase cellulolytic bacteria in the rumen of cows *(Dawson et al., 1990)* and to enhance dietary fiber fermentation in the horse *(Godbee, 1983)*. However, addition of 0%, 8%, or 16% peanut hulls, added at the expense of corn, to diets fed to pigs linearly reduced the ATTD of dry matter, acid detergent fiber, and neutral detergent fiber, and DFM addition did not ameliorate the reduced digestibility *(Kornegay et al., 1995)*. Kornegay and Risley *(1996)* observed no difference in the ATTD of dry matter, acid detergent fiber, and neutral detergent fiber by 60 kg pigs fed either a corn-soybean meal diet without or with a DFM containing *Bacillus subtilis* and *Bacillus licheniformis*, or with a DFM containing *B. subtilis, B. licheniformis*, and *Bacillus pumilus*.

In a study utilizing 270 wean-to-finish pigs, the dose of DFM *(0, 0.64 × 10^6, 1.28 × 10^6, 1.92 × 10^6)* viable spores of BioPlus 2B, which contained *B. licheniformis* and *B. subtilis* in a 1:1 ratio and duration of DFM addition (weaning only or wean-to-finish) to pig diets was investigated. Results indicated that ADG, G:F, and carcass quality were improved with increased dose and duration of DFM addition *(Alexopoulos et al., 2004)*. Lee et al. *(2014)* produced a *B. subtilis* DFM grown on citrus-juice waste and included this DFM at 0, 1.5, 3.0, or 4.5 g/kg in phase 1 and phase 2 corn-soybean meal based nursery pig diets. Linear improvements were observed in pig growth performance. ATTD of nutrients and energy, serum immunoglobulins, and small intestinal morphology *(Lee et al., 2014)*.

Improved ADG and G:F and reduced time required to wash manure off of mats was observed by addition of 0.05% DFM comprised of two strains of *B. licheniformis* and one strain of *B. subtilis* *(Davis et al., 2008)*. The authors hypothesized that performance and pen cleaning were improved with DFM addition because of increased dietary fiber degradation by enzymes secreted by the DFM. Therefore, further research is necessary to determine the effect of *Bacillus*-based DFM on dietary fiber fermentation. The ATTD of N and energy by pigs fed a corn-soybean meal-based diet were improved by addition of a DFM composed of *B. subtilis* and *Clostridium butyricum* and, subsequently, pig ADG and G:F were improved *(Meng et al., 2010)*. Pigs challenged with *Salmonella enterica* had reduced ADG and G:F and increased bacterial shedding scores compared with non-challenged pigs, but addition of a *Lactobacillus plantarum* DFM did not influence recovery from the challenge *(Gebru et al., 2010)*. Weanling pigs fed a *Lactobacillus*...
reuteri and L. plantarum DFM for 28 d had improved overall ADG and ATTD of protein and gross energy compared with pigs fed no DFM. Results for pigs fed the DFM were similar to results for pigs fed a diet containing 0.01% apramycin, indicating that the Lactobacillus reuteri and L. plantarum DFM may minimize antibiotic use in weanling pig diets (Zhao and Kim, 2015). However, DFM cannot replace antibiotics in terms of preventing or treating of sickness or disease, but seem to be a viable alternative to antibiotics used as growth promoters.

A diet containing corn, soybean meal, and distillers dried grains with solubles (DDGS) supplemented with 500 g/metric ton Bacillus spp. DFM and fed to nursery pigs had a 100 kcal/kg increase in digestible energy (DE) due to a 9.2% increase in the ATTD of neutral detergent fiber compared with the control diet with no DFM (Owusu-Asiedu et al., 2014). Growing-finish pigs fed high-fiber diets based on corn, soybean meal, DDGS, wheat middlings, corn germ, and soybean hulls supplemented with a Bacillus spp. DFM had increased fecal SCFA concentrations and, subsequently, greater available dietary energy, which corresponded with improved ADG and G:F, and a greater loin eye area and fat-free lean percentage compared with pigs fed no DFM (Jaworski et al., 2014). Likewise, improved G:F of weanling pigs has also been reported as a result of inclusion of DFM in the diets (Jaworski et al., 2017). These results are supportive of the hypothesis that Bacillus DFM may result in increased fiber degradation in the intestinal tract of pigs. A consequence of this is that the response to DFM most likely is diet dependent because not all diets contain the same amount and types of fibers. In addition, addition of a DFM to diets for pigs may result in increased concentrations of intestinal microbes that express enzymes that aid in fiber fermentation.

5.3. Yeast

Yeast may be supplemented in diets fed to pigs in several forms: whole live yeast cells, heat-treated yeast cells, ground yeast cells, purified yeast cell cultures, and yeast extracts. Effects of the supplements vary based on the form of supplementation, and therefore, the intended uses of each type of supplementation also vary. As such, care must be taken in the interpretation of results of various yeast supplements. However, there are some generally proposed uses for yeast supplements. Yeast or yeast-based product supplementation may boost ADFI and pig growth performance, augment mucosal immunity, promote intestinal development, adsorb mycotoxins, reduce post-weaning diarrhea, and modulate gut microbiota (Kogan and Kocher, 2007; Shen et al., 2009; Sauer et al., 2011; Jiang et al., 2015). Substantial evidence, however, for many of these claims has yet to be reported.

Yeast is resilient to deactivation in the gut and may be effective in modulating colonization of the host’s gut (Bontempo et al., 2006). The mechanism by which yeast cells can provide these benefits is the result of the composition of the yeast cells. The specific sugar types that form large parts of the cell walls of yeast, notably β-D-glucans and α-D-mannans, are believed to be responsible for the effects of yeasts cells (Kogan and Kocher, 2007; Shen et al., 2009).

Additionally, yeast extracts contains nucleotides, and although nucleotides are present in nearly all feed ingredients and the requirement for nucleotides is typically met via endogenous synthesis (Sauer et al., 2011), there is some evidence that the requirement for nucleotides may be increased under certain conditions, such as during disease, high stress, or rapid growth (Carver and Walker, 1995; Waititu et al., 2016). If there was a period of a pig’s life that matched these conditions, and therefore induced a potential nucleotide deficiency, it would be during the time right after weaning, and in that case, yeast cells may be potentially beneficial. Part of easing the transition around weaning of pigs involves preparing the gut for the change in diet form. Weaning itself causes villus atrophy and decreases replacement of enterocytes both of which inhibit nutrient absorption (Jiang et al., 2015). However, supplementation of live yeast and finely ground live yeast may result in increased villus heights and villus-to-crypt ratios (Bontempo et al., 2006; Jiang et al., 2015). Similar results were reported for yeast fermentation products (Shen et al., 2009). Additionally, there has been evidence that live yeast supplementation may increase gut cell proliferation and increase the concentration of glycoconjugates in the mucus of supplemented pigs, thereby increasing their resistance to pathogenic invasion (Bontempo et al., 2006). However, supplementation with yeast cultures or yeast culture products supplemented with mannan-oligosaccharides has also been shown to have no benefits on gut morphology (van der Peet-Schwering et al., 2007).

Many of the beneficial effects of yeast products are claimed to be the result of immune-modulation (Kogan and Kocher, 2007; Molist et al., 2014) and there is evidence that yeast and yeast products stimulate the immune system because the β-D-glucans in yeast cell walls enhance the function of macrophages and neutrophils by binding to their receptors causing cascade cytokines and increased antibody production (Kogan and Kocher, 2007; Kim et al., 2017). Feeding of live yeast and finely ground live yeast also increases serum concentrations of IgA, IL-2, and IL-6 (Jiang et al., 2015). The α-D-mannans in yeast have possible antioxidant effects (Kogan and Kocher, 2007). In particular, the α-D-mannans are believed to bind to mannose-specific receptors that are present on many bacteria such as E. coli and Salmonella spp., which prevents adhesion of these pathogens to the mannose rich glycoproteins lining the intestinal lumen (Kogan and Kocher, 2007). Indeed, it was reported that pigs that were fed diets supplemented with live yeast and exposed to enterotoxigenic E. coli had reduced disease-related stress, reduced diarrhea scores, reduced duration of diarrhea, and reduced shedding of E. coli (Trckova et al., 2014). Likewise, pigs that are challenged with E. coli K88 and fed diets containing a yeast fermentation product have grater concentrations of serum tumor necrosis factor-alpha, less diarrhea, greater appetite and reduced adherence of E. coli to the intestinal mucosa than pigs fed an unsupplemented control (Kiarie et al., 2011, 2012). However, results of other studies were less affirmative (Weedman et al., 2011).

Results from research investigating growth performance of pigs fed yeast or yeast-based products are mixed, but it has been reported that there were no difference between pigs fed antibiotic growth promoters and pigs fed diets supplemented with yeast on growth performance, nutrient digestibility, and intestinal morphology, indicating that yeast products may be an effective alternative to antibiotic growth promoters (Shen et al., 2009). It also was demonstrated that the immune-potentiating costs of yeast-based supplements had no negative effect on pig growth performance (Molist et al., 2014). However, it has also been reported that yeast cultures have no impact on pig growth performance or ATTD of dry matter, crude protein, acid detergent fiber, and neutral detergent fiber (Kornegay et al., 1995). In conclusion, DFM supplementation to swine diets has produced more beneficial results in the past decade compared with earlier reports, indicating an improvement in the development and use of DFM. Lactic acid-producing bacteria appear to be more beneficial for weaning pigs to help stabilize the gastrointestinal tract after weaning, whereas Bacillus-based DFM may be more beneficial for growing-finish pigs to increase the digestibility of energy and nutrients in less expensive high-fiber diets and, subsequently, increase performance and carcass characteristics. Effects of supplementing pig diets with yeast products is not fully understood, but it is believed that yeast products may have a number of
positive effects if added to diets for pigs and there is some evidence that yeast-based products may be used as partial or fully substitutes for antibiotic growth promoters. Intestinal health benefits and immunomodulatory effects of yeast-cells are significant and represent the most likely benefits of addition of yeast to diets for pigs.

6. Nucleotides

Nucleotides are molecules that contain a nitrogenous base, which is a purine or a pyrimidine, linked to a pentose sugar and at least one phosphate group. In ribonucleic acids (RNA), the pentose sugar is a ribose whereas the ribose in deoxyribonucleic acid (DNA) is a 2'-deoxyribose. Pyrimidines include uridine, cytosine, and thymine and they all have a six membered ring structure. Purines are similar in structure to nucleotides with the exception that the phosphate groups are absent. The phosphate group may be in a mono, di, or tri phosphate form, and is commonly esterified to the C-5' hydroxyl group of the pentose sugar (Rudolph, 1994). A chain of nucleotides attached together via a phosphodiester linkage at the 3' and 5' positions of neighboring ribose units are called polynucleotides or nucleic acids. Nucleotides are synthesized in structure to nucleotides with the exception that the phosphate groups are absent.

Nucleotides are synthesized by the animals via the de novo Pathway or the Salvage Pathway, but de novo synthesis requires the amino acid glutamine and is considered a metabolically costly process as it requires energy in the form of adenosine triphosphate. The salvage pathway synthesizes nucleotides by using products of nucleotide catabolism or from dietary sources. In addition to being building blocks for nucleic acids (DNA and RNA), nucleotides also have physiological roles in the body such as being a source of energy, cofactors in oxidation and reduction reactions, serve as physiological regulators, and carry activated intermediates (i.e., UDP-glucose, CMP-sialic acid, and CDP-choline) and acyl groups (i.e., CoA). In addition, nucleotides may influence the development of the immune system, the microbiota of the intestinal tract, and the integrity of the small intestine.

Dietary nucleotide supplementation has been associated with both humoral and cellular immunity, but the exact mechanism has not been elucidated. Dietary nucleotides contribute to the circulating pool of nucleotides available to stimulate leukocyte production (Kulkarni et al., 1994; Carver and Walker, 1995). Therefore, there is an elevated need for nucleotides during periods of immunological challenges. Supplementation of diets with nucleotides may increase the number of lymphocytes and macrophages of the intra-epithelium of the piglet ileum (Domenechini et al., 2004; Sperranda et al., 2008), decrease damage of the blood lymphocyte DNA (Salobir et al., 2005), decrease the concentration of TNF-α and IL-6 in blood serum 2 and 4 h after an E. coli infection (Hung, 2015), and increase plasma and serum concentrations of IgA (Lee et al., 2007; Sauer et al., 2012a, b) in pigs.

Dietary nucleotides enhance intestinal absorption of iron, affect lipoprotein and long chain polysaturated fatty acid metabolism, have trophic effects on the intestinal mucosa and liver, and reduce the incidence of diarrhea (Cosgrove, 1998; Schlimme et al., 2000). The fecal microbiota of human infants fed a nucleotide-supplemented commercial milk formula had a predominance of bifidobacteria (Tanaka and Mutai, 1980), whereas enterobacteria dominated in the fecal microbiota of infants fed a commercial formula without nucleotide supplementation (Uauy, 1994). These data indicate that nucleotide supplementation may positively influence the microbiota in the gastrointestinal tract which leads to a lowering of gastric pH and hinders proliferation of pathogenic bacterial species as evidenced by a lower rate of diarrhea (Yu, 1998).

Newly weaned pigs fed a nucleotide deficient diet supplemented with nucleosides had elevated quantities of probiotic bacteria and reduced concentrations of Cl. perfringens compared with control pigs fed non-supplemented diets (Mateo et al., 2004). Pigs infected by E. coli that were fed diets supplemented with 4% yeast extract as a source of nucleotides had ADG and G:F, and reduced incidence of diarrhea (Maribo, 2003). However, it has also been reported that nucleotide supplementation has no impact on the composition of the microbiota in the small and large intestine of piglets (Sauer et al., 2011, 2012a, b).

Dietary nucleotides may enhance the growth and maturation of intestinal epithelial cells as evidenced by an increased formation of mucosal protein, DNA, taller villi in the small intestine, and increased maltase to lactase enzyme ratio (Uauy et al., 1990; Carver, 1994). Dietary nucleotides may also stimulate enterocyte differentiation (Sanderson and He, 1994). Parenteral supplementation of nucleic acids supports mucosal cell proliferation and function as demonstrated by increased mucosal wet weight, protein and DNA contents, villous height, and narrower tight junctions of the jejunal mucosa width (Kishibuchi et al., 1997; Tsujimaka et al., 1999).

Improvement in growth performance was observed when pure nucleotides were supplemented to diets fed to pigs (Zombrorsky-Kovacs et al., 2000; Weaver and Kim, 2014), or if a nucleotide-rich yeast extract was used (Carlson et al., 2005; Waititu et al., 2016). However, results of several other studies indicated that supplementation of pig diets with nucleotides had no influence on growth performance (Di Giancamillo et al., 2003; Domenechini et al., 2004; Lee et al., 2007; Martinez-Puig et al., 2007; Sperranda et al., 2008; Moore et al., 2011; Sauer et al., 2012a,b; Waititu, 2016). It is possible that these inconsistent responses to nucleotide supplementation are a result of differences in the amount and type of nucleotides provided and the existing environmental condition (Grimble and Westwood, 2001; Sauer et al., 2011; Hung, 2015; Waititu, 2016).

7. Plant extracts

Plant extracts are secondary plant metabolites, which are responsible for the odor and color of plants. Plant extracts are composed of more than a hundred individual components and in two different forms: liquid oil and solid powder. Most of the oil formed plant extracts are water-insoluble and often called essential oils. Plant extracts may be extracted from plants through steam distillation, maceration, cold pressing, and solvent extraction or may be synthesized (Kerrola, 1995). Plant extracts are of potential interest due to their potential biological functions, such as antiviral, antimicrobial, antioxidiant, and anti-inflammatory effects (Baydar et al., 2004, Sökmen et al., 2004, Dundar et al., 2008, Liu et al., 2012; 2013a, b; 2014a, b). This may lead to the ability to use plant extracts to replace antibiotics in-feed to improve performance and health of animals (Pettigrew, 2006; Stein and Kil, 2006). Based on the literature, plant extracts may improve animal health through several mechanisms such as direct suppression of the proliferation of pathogens, alteration of gut microbial populations, and enhancement of immune functions. Lee et al. (2004), Calsamiglia et al. (2007), and Bakkali et al. (2008) have well reviewed plant extracts and their biological effects.

Anti-microbial activities of various plant extracts have been well organized. Plant extracts exhibit a wide spectrum of antibacterial activities against gram-negative and gram-positive bacteria, including Escherichia, Salmonella, Staphylococcus, Klebsiella, Proteus, Bacillus, Clostridium, and Mycobacterium (Hammer et al., 1999; Dorman and Deans, 2000; Wong et al., 2008). Considering the large number of different groups of chemical components present in plant extracts, it is not surprising that several modes of action are...
involved in their anti-microbial effects. Plant extracts may directly kill pathogens due to their hydrophobicity and due to the high percentage of phenolic compounds (Farag et al., 1989; Dorman and Deans, 2000; Lambert et al., 2001; Carson et al., 2002; Burt, 2004; Xu et al., 2008). Certain bioactive components in plant extracts may prevent the development of virulent structures in bacteria (Burt et al., 2007). The active components in plant extracts may also disturb the enzyme system of bacteria and then block the virulence of the microbe (Ankri and Mirelman, 1999).

The anti-inflammatory effects of plant extracts have been well identified in in vitro cell culture models. Plant extracts (i.e. carvacrol, cinnamaldehyde, eugenol, etc.) inhibit the production of pro-inflammatory cytokines and chemokines from endotoxin-stimulated immune cells and epithelial cells (Lang et al., 2004; Lee et al., 2005; Tung et al., 2008; Liu et al., 2012). The research on the potential mechanisms of anti-inflammatory effects of plant extracts are still limited. It has been indicated that anti-inflammatory activities may be partially mediated by blocking the NF-κB activation pathway (Jobin et al., 1999; Lee et al., 2005; Choi et al., 2007).

Plant extracts are also proposed to be used as antioxidants in animal feed, which will protect animals from oxidative damage caused by free radicals. The antioxidative properties of extracts of oregano, thyme, clove, pepper, lavender, and basil have been evaluated by many studies in vitro (Economou et al., 1991; Cülcin et al., 2004; Oboh et al., 2007). Slamova et al. (2008) indicated that carvacrol given in drinking water reduced the level of DNA damage in the genetic material of bacteria in vitro (Jobin et al., 1999; Lee et al., 2005; Choi et al., 2007).

Extracts of many plants and plant-derived products have anti-inflammatory effects. Plant extracts (i.e. carvacrol, cinnamaldehyde, eugenol, thymol, and others) are rich sources of antioxidants and contain many biological activities that are effective in the inhibition of inflammation and oxidative stress. The anti-inflammatory effects of plant extracts may be due to their ability to inhibit the production of pro-inflammatory cytokines and chemokines from endotoxin-stimulated immune cells and epithelial cells (Lang et al., 2004; Lee et al., 2005; Tung et al., 2008; Liu et al., 2012).

7.1. Plant extracts on performance and health

Use of phytochemicals as feed additives for swine has been reviewed by Windisch et al. (2008). Allan and Bilkei (2005) reported that sows fed diets containing 1,000 mg/kg oregano (dried leaf and flower of *Origanum vulgare*, consisted of 50% cold-pressed essential oil of *O. vulgare*) had lower annual sow mortality rate, lower sow culling rate, increased farrowing rate, increased number of liveborn piglets per litter, and decreased stillbirth rate. However, in a different study, no beneficial effect was observed from sows fed with oregano EO (Arita-Nieto et al., 2011).

A large variation was observed in growth performance of newly-weaned pigs fed diets supplemented with different types of plant extracts. Supplementation of 1,000 mg/kg of oregano extract increased body weight gain but reduced disease incidence of weaned pigs (Sads and Bilkei, 2003), however, no benefits on performance of weaned pigs were observed in other studies (Manzanilla et al., 2004; Neill et al., 2006; Nofrarias et al., 2006).

Although failing to find beneficial effect on productive performance, feeding plant extracts have been indicated to improve gut health by modulating gut microbiota or immunity. Manzanilla et al. (2004) and Nofrarias et al. (2006) reported that a mixture of plant extracts (oregano, cinnamon and Mexican pepper) increased stomach contents and percentage of DM, suggesting an increased gastric retention time. In addition, those mixture decreased ileal total microbial mass and increased the Lactobacilli to Enterobacteria ratio. Michiels et al. (2010) also indicated that supplementing with 500 mg/kg carvacrol and thymol reduced the number of intra-epithelial lymphocytes and increased villus height/crypt depth in the distal small intestine. Disease challenge study with a pathogenic *E. coli* indicated that inclusion of low dose (10 mg/kg) of capsicum oleoresin, turmeric oleoresin, or garlic reduced frequency of diarrhea and improved gut health of weanling pigs, as indicated by improved intestinal villi height and gut barrier function and integrity (Liu et al., 2013b). Feeding plant extracts also reduced the systemic and gut inflammation of weanling caused by *E. coli* infection (Liu et al., 2013b).

In the grower-finisher period, the application of different levels and different sources of plant extracts also shows benefits on growth performance. Cullen et al. (2005) and Janz et al. (2007) reported pigs fed with a garlic-treated diet had higher ADG, ADFI, and feed conversion ratio compared with the pigs fed with the control diets. Grela et al. (1998) observed a significant improvement in ADG and feed conversion ratio with the use of an herb mixture (great nettle, garlic, wheat grass) in the diet of pigs from 25 to 105 kg. Dunshea et al. (2003) demonstrated an improvement in growth performance with the inclusion of vanillylnonamide, a capsaicin analog, in the diets of finisher pigs.

In summary, plant extracts are strong candidates to replace antibiotics in feed to improve growth performance and health of pigs in different stages. However, the potential benefits of plant extracts may differ due to the large variation in the composition of plant extracts, resulting in difficulty in comparing the efficiency of different plant extracts. The major bioactive compounds of plant extracts are polyphenols, and their composition and concentration vary according to the plant, parts of the plant, geographical origin, harvesting season, environmental factors, storage conditions, and processing techniques. The predominant constituents in the popular plant extracts include anethol, carvacrol, cinnamaldehyde, curcumin, eugenol, thymol, and others. The chemical compositions of many plant extracts were summarized by Burt (2004) and Surburg and Panten (2006) and plant extracts may contain 20 to 60 components in different concentrations. The major components can constitute up to 85% of the plant extracts, whereas other components are present only as trace amounts. For example, the concentration of thymol from the same species of plants, *Origanum vulgare* can vary from trace amounts to 64%, while *Thymus vulgaris* may vary from 10% to 64%. Another component, carvacrol, has been reported to range from trace amounts to 80% in the extract of *O. vulgare* and from 2% to 11% in *T. vulgaris* (Lawrence and Reynolds, 1984; Burt, 2004). Thus, the variations in active compounds in plants and plant-derived products have to be considered when plant extracts are used as potential alternatives to antibiotic growth promoters. Nevertheless, one commercial blend of plant extracts (containing carvacrol, cinnamaldehyde and capsicum oleoresin) has been approved in the European Union as the first botanical feed additive for improving growth performance in broiler chickens and livestock. Synthetic components have been used by the industry to keep the finished products more consistent and reduce the cost. In addition, different encapsulation methods by using polymer particles, liposomes, and solid lipid nanoparticles have also been adopted to control the release of plant extracts and
effectively deliver them to the middle of the small intestine, which is believed to most effectively improve intestinal health (Sherry et al., 2013; El Asbahani et al., 2015). However, more research will be needed to evaluate the efficacy of plant-derived products and the modes of action in order to improve the utilization of plant extracts on animal health and production.

8. Conclusions

Several feed additives may be effective in regulating intestinal environments and improving pig growth performance if diets without antibiotic growth promoters are fed. For example, acidifiers may modulate GI tract pH, and thereby affect the diversity of the gut microbiota and increase nutrient digestibility. Zinc and copper have beneficial effects on gut health beyond their nutritional values, which is likely due to the antibacterial effects of these minerals. Prebiotics and DFM may increase the population of beneficial microbes in the GI tract by serving as substrates for specific microbes in the gut or by directly adding beneficial microbes in the gut. Nucleotides and plant extracts also affect the gut microbiota and may boost immunity of pigs. Thus, there are a number of feed additives that potentially may be used in diets fed to pigs, but the challenge with most of these additives is the fact that results obtained so far have been inconsistent. The reason for this inconsistency may be that efficiencies of each additive are diet dependent and also dependent on the health status of the animals. It is, therefore, not possible to recommend a specific additive that will have positive effects in all diets, but it is likely that if no antibiotic growth promoters are used, at least some additives will be beneficial in diets fed to pigs.

References

Acosta JA, Gable NK, Frank JW, Bass BE, Patience JF. Effect of lactose, inulin, Lactobacillus acidophilus fermentation product, or dietary antibiotics on nursery pig digestibility and nitrogen retention. J Anim Sci 2017;95(Suppl. 2):143.

Ahmed ST, Hwang JA, Hoon J, Mun HS, Yang CJ. Comparison of single and blend feed additives as alternative to antibiotics on growth performance, fecal microflora, and humoral immunity in weaned pigs. Asian Australas J Anim Sci 2014;27:175–5.

Alam AN, Sarker SA, Wahed MA, Khatun M, Rahaman MM. Enteric protein loss and biliary excretion of albumin in pigs fed with commercial feed additives. J Anim Sci Feed Technol 2012;12:124–23.

Al-Sadi R, Boivin M, Ma T. Mechanism of cytokine modulation of epithelial tight junction barrier. Front Biosci 2009;14:2765–81.

Apgar GA, Kornegay ET, Lindemann MD, Wood CM. The effect of feeding various feed additives to stimulate gut health and development in young pigs. Livest Sci 2003;93:25–39.

Bakker A, Averbeck S, Averbeck D, Idazoomar M. Biological effects of essential oils—a review. Food Chem Toxicol 2008;46:446–57.

Banks KM, Thompson KL, Caron M, Gogolewski T. Effects of copper source on phosh- phorus retention in broiler chicks and laying hens. Poult Sci 2004;83:990–6.

Baxter JH, Van Wyk JJ, Follis Jr RH. A bone disorder associated with copper defi- ciency. Ill. Histological and chemical studies on the bones. Bull Johns Hopkins Hosp 1953;93:25–39.

Baydar NG, Ozkan G, Sagdic O. Total phenolic contents and antibacterial activities of grape (Vitis vinifera L.) extracts. Food Control 2004;15:335–9.

Bertolo R, Betterg W, Atkinson S. Calcium competes with zinc for a channel mediating zinc transport. J Nutr Biochem 2001;12:66–72.

Blank R, Mosenthin R, Sauer WC, Huang S. Effect of fumaric acid and dietary buffering capacity on ileal and faecal amino acid digestibilities in early-weaned pigs. J Anim Sci 1998;76(Suppl. 1):57 [Abstract].

Blavi L, Sola-Orriol D, Perez JF, Stein HH. Influence of zinc oxide and microbial phytase on digestibility of calcium and phosphorus in maize-based diets fed to growing pigs. J Anim Sci 2013;81:98–109.

Bontempi V, Di Giancamillo A, Savoini G, Dell’Orto V, Domeneghini C. Live yeast dietary supplementation acts upon intestinal morpho-functional aspects and growth in weanling piglets. Anim Feed Sci Technol 2006;129:224–36. https:// doi.org/10.1016/j.anipts.2005.12.015.

Bosi P, Sarli G, Casini L, De Filippi S, Trevisi P, Mazzoni M, et al. The influence of fat and protein of calcium formate on growth and intestinal defence in Escherichia coli K88-challenged weaning pigs. Anim Feed Sci Technol 2007;139:175–85.

Broek LAM, Min SWA, Beldman G, Vinken JP, Voragen AGJ. Bifidobacterium carbohyd- rases – their role in breakdown and synthesis of (potential) prebiotics. Mol Nutr Food Res 2008;52:146–53.

Buijs K, Liesegang A, van der Zee R, Geurts M, C. Broz J. Influence of benzoic acid and phytase in low-phosphorus diets on bone characteristics in growing-finisher pigs. J Anim Sci 2010;88:3363–71.

Burt S. Essential oils: their antibacterial properties and potential applications in foods—a review. Int J Food Microbiol 2004;94:221–31.

Burt SA, van der Zee R, Koets AP, de Graaff AM, van Knapen F, Gaastra W, et al. Carvacrol induces heat shock protein 60 and inhibits synthesis of flagellin in Escherichia coli O157:H7. Appl Environ Microbiol 2007;73:4484–90.

Calamargiu S, Busquet M, Cardozo PW, Castillejos L, Ferrer A. Invited review: essential oils as modifiers of rumen microbial fermentation. J Dairy Science 2007;90:95–105.

Carlson M, Veum T, Turk J. Effects of yeast extract versus animal plasma in weanling pig diets on growth performance and intestinal morphology. J Swine Health Prod 2005;13:204.

Carlson MS, Hoover SL, Hill GM, Link JE, Turk JR. Effect of pharmacological zinc on intestinal metallothionein concentration and morphology in the nursery pig. J Anim Sci 1998;76(Suppl. 1):57 [Abstract].

Carson CF, Mee BJ, Riley TV. Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time-kill, lysis, leakage, and salt tolerance assays and electron microscopy. Antimicrob Agents Chemother 2002;46:1941–20.

Carver JD, Walker AW. The role of nucleotides in human nutrition. J Nutr Biochem 1995;6:58–72.

Carver JD. Dietary nucleotides: cellular immune, intestinal and hepatic system ef- fects. J Anim Sci 1994;12(Suppl. 1):1446–8s.

Case CL, Carlson MS. Effect of feeding organic and inorganic sources of additional zinc on growth performance and zinc balance in nursery pigs. J Anim Sci 2007;85:1971–97.

Chen Y, Zhao P, Liu J, Liu T, Zhou Y, Sun H. Probiotics: a dietary additive for pigs: a review. J Anim Nutr Sci 2014;27:1231–47.

Choi CY, Park KR, Lee JH, Jeon YJ, Liu KH, Oh S, et al. Isoeugenol suppression of inducible nitric oxide synthase expression is mediated by down-regulation of NF-κB, ERK1/2, and p38 kinase. Eur J Pharmacol 2007;576:151–9.

Cosgrove M. Perinatal and infant nutrition. Nucleotides. Nutrition 1998;14:748–51.

Cromwell GL, Lindemond MD, Monegue HJ, Hall DD, Orr Jr DE. Tribasic copper chloride and copper sulfate as copper sources for weaning pigs. J Anim Sci 1998;76:118–23.

Cromwell GL. Feed additives in swine diets. In: Chiba LI, editor. Sustainable swine nutrition. 1st ed. Ames, IA: John Wiley & Sons; Inc, 2013. p. 302–42.

Cullen SP, Monahan FJ, Callan JJ, O’Doherty JV. The effect of dietary garlic and yeast and lactobacilli on roughage-fed ruminal microbial activities. J Anim Sci 1990;68:3392–401.

Cullen SP, Monahan FJ, Callan JJ, O’Doherty JV. The effect of dietary garlic and rosemary on grower-finisher pig performance and sensory characteristics of pork. J Agric Food Res 2005;45:44–57.

Davis ME, Parrott T, Brown DC, de Rodas BZ, Johnson ZB, Maxwell CV, et al. Effect of a Bacillus-based direct-fed microbial feed supplement on growth performance and pen cleaning characteristics of growing-finisher pigs. J Anim Sci 2008;86:1459–67.

Dawson KA, Newman KE, Boling JA. Effects of microbial supplements containing yeast and lactic acid in growing-finishing pig diets. Livest Prod Sci 2007;104:95–105.

Dawson KA, Newman KE, Boling JA. Effects of microbial supplements containing yeast and lactic acid in growing-finishing pig diets. Livest Prod Sci 2007;104:95–105.

Dawson KA, Newman KE, Boling JA. Effects of microbial supplements containing yeast and lactic acid in growing-finishing pig diets. Livest Prod Sci 2007;104:95–105.

Dawson KA, Newman KE, Boling JA. Effects of microbial supplements containing yeast and lactic acid in growing-finishing pig diets. Livest Prod Sci 2007;104:95–105.

Dawson KA, Newman KE, Boling JA. Effects of microbial supplements containing yeast and lactic acid in growing-finishing pig diets. Livest Prod Sci 2007;104:95–105.
Diao H, Gao Z, Yu B, Zheng P, He J, Yu J, et al. Effects of benzoic acid (VeveoVital(R)) on the performance and jejunal digestive physiology in young pigs. J Anim Sci Biotechnol. 2016;7:120.

Djeradian A, Youssi M, Nadjemi B, Boutilawna S, Stocker P, Vidal N. Antioxidative activity of some Algerian medicinal plants containing phenolic compounds. Food Chem 2006;97:654–60.

Domeniconi C, De Vito C, Savoini G, Paratte R, Bontempo V, Dell’Orto V. Structural patterns of swine ileal mucosa following GLUT-an interaction and nutrient administration during the weaning period. An histochemical and histometrical study. Histol Histopathol 2004;19:49–58.

Dorn HJ, Deane SC. Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J Appl Microbiol 2000;88:308–16.

Dundar E, Olguin EG, Isiksoy S, Kurkcuoglu M, Baser KH, Bai C. The effects of intra-rectal and intra-peritoneal application of Organum ontes L. essential oil on 2,4-Dinitrophenol-hydrochloric acid-induced colitis in the rat. Exp Toxicol Pathol 2008;59:399–408.

Dunshea FR, Suster D, Kerton DJ, Leury BJ. A capsacin analogue improves growth and dressing rate in pigs, particularly gilt. In: Paterson JE, editor. Manipulating pig production, vol. IX. Werribee, Australia: Australasian Pig Science Association Inc.; 2003. p. 26.

Eckel B, Kirchgessner M, Roth FX. Influence of formic acid on daily weight gain, feed intake, feed conversion rate and digestibility. 1. The nutritive value of organic acids in the rearing of piglets. J Anim Physiol Anim Nutr (Berl) 2014;98:680–92.

Eberman KD, Oreopoulou V, Thomopoulos CD. Antioxidant activity of some plant extracts. J Appl Nutr Sci 1999;2:93–105.

Economou KD, Oreopoulou V, Thomopoulos CD. Antioxidant activity of some plant extracts of the family labiatae. J Anim Nutr Sci 1991;68:109–13.

Edelshurber U, Roth KD, Kirchgessner M. Influence of formic acid, calcium formate and sodium bicarbonate on daily weight gain, feed intake, feed conversion rate and digestibility. 7. Nutrative value of organic acids in piglet rearing. J Anim Physiol Anim Nutr 1992a;67:258–67.

Eidelberg M, Roth KD, Kirchgessner M. Influence of fumaric acid, hydrochloric acid, sodium formate, tylosin and tosycillin on daily weight gain, feed conversion rate and digestibility. 11. Nutritive value of organic acids in piglet rearing. J Anim Physiol Anim Nutr 1992b;68:82–92.

El Assabba H, Miladi K, Badri W, Sala M, Ait Addi EH, Casabianca H, et al. Essential oils: from extraction to encapsulation. In: J Int Pharm 2015;483:220–43.

Fang CL, Sun H, Wu J, Niu HH, Feng J. Effects of sodium butyrate on growth performance, haematological and immunological characteristics of weaning pigs. J Anim Physiol Anim Nutr (Berl) 2014;38:680–1.

FAO/WHO (Food and Agriculture Organization/World Health Organization). Health and nutritional properties of probiotics in food including milk. Report of a joint FAO/WHO expert consultation. Washington, DC: ASM Press; 1993. p. 917.

Gabert VM, Sauer WC. The effect of fumaric acid and sodium fumarate supplementation on the growth performance, acute-phase response, and bacterial shedding of grower pigs challenged with Salmonella enterica serotype Typhimurium. Vaccine Immunol 2006;13:2058–62.

Gabert VM, Sauer WC, Schmitz M, Ahrens F, Mosenthin R. The effect of formic acid and sodium bicarbonate on daily weight gain, feed intake, feed conversion rate and digestibility. 1. The nutritive value of organic acids in piglet rearing. J Anim Physiol Anim Nutr 1992;62:93.

Gehlert DR. Role of hypothalamic neuropeptide Y in feeding and obesity. Neurosci Biobehav Rev 1982;6:321–33.

Grilli E, Messina MR, Tedeschi M, Piva A. Feeding a microencapsulated blend of organic acids and nature identical compounds to weaning piglets: a critical evaluation. J Anim Sci Biotechnol 2011;2:137–55.

Grumble GK, Westwood OM. Nucleotides as immunomodulators in clinical nutrition. Curr Opin Clin Nutr Metab Care 2001;4:57–64.

Guerra-Ortiz AA, Gonzalez-Ortiz G, La Rognone RM, Woodward MJ, Collins JW, Perez-Mendez A, et al. Lactulose supplementation on the zootechnical performance and the gastrointestinal microflora and the ideal digestibility of the young pig. Livest Sci 2007;108:218–21.

Güçlü C, Gungor Ş, Iyidemir S, Elmaslar M, İrlen Kürşükoğlu V. Comparison of antioxidant activity of carvacrol and cinnamaldehyde (Thuya) buds and lavender. (Lavandula stoechas L.). Food Chem 2004;87:393–400.

Hahn JD, Baker DH. Growth and plasma zinc responses of young pigs fed pharmacologic levels of zinc. J Anim Sci 1993;71:3020–4.

Halas D, Hansen CF, Hampson DJ, Mullan BP, Kim JC, Wilson RH, et al. Dietary supplementation with benzoic acid improves apparent ileal digestibility of total nitrogen and increases villus height and caecal microbial diversity in weaner pigs. Anim Feed Sci Technol 2010;160:137–47.

Hammer KA, Carson CF, Riley TV. Antimicrobial activity of essential oils and other plant extracts. J Appl Microbiol 1999;86:985–90.

Hanczakowska E, Niwinska B, Grela ER, Weglarzy K, Okon K. Effect of dietary glutamine, glucose and/or sodium butyrate on piglet growth, intestinal environment, subsequent fatter performance and meat quality. Czech J Anim Sci 2014;59:460–70.

Hart EB, Steenbock H, Waddell J, Elleveghem CA. Iron in nutrition. VII. Copper as a supplement to iron for hemoglobin building in the rat. 1928. J Biol Chem 1927;222:777.

Hill GM, Cromwell GD, Crenshaw TD, Dove CR, Ewan RC, Knabe DA, et al. Growth promotion effects and plasma changes from feeding high dietary concentrations of zinc and copper to weaning pigs (regional study). J Anim Sci 2000;78:1010–6.

Hill GM. Minerals and mineral utilization in swine. In: Chiba LI, editor. Sustainable swine nutrition. Oxford, U.K.: Blackwell Publishing Ltd.; 2013. p. 186–9.

Hirano T, Murakami M, Fukada T, Nishida K, Yamasaki S, Suzuki T. Roles of zinc and zinc signaling in immunity: zinc as an intracellular signaling molecule. Adv Immunol 2008;97:149–76.

Hjøberg Ø, Canibe N, Poulsen HD, Hedenmus MS, Jensen BB. Influence of dietary zinc oxide and copper sulfate on the gastrointestinal ecosystem in newly weaned piglets. Appl Environ Microbiol 2005;71:2267–77.

Hu C, Song J, You Z, Luan Z, Li W. Zinc Oxide- and Montmorillonite hybrid influences diarrhea, intestinal mucosal integrity, and digestive enzyme activity in weaned piglets. Biol Trace Elem Res 2012;149:190–6.

Hu C, Song J, Li Y, Luan Z, Zhu K. Diosmetitin-zinc oxide compound improves intestinal barrier function, modulates expression of pro-inflammatory cytokines and tight junction protein in early weaned pigs. Br J Nutr 2013a;110:681–8.

Hu CH, Xiao K, Luan ZS, Song J. Early weaning increases intestinal permeability alters expression of cytokines and tight junction proteins, and activates mitogen-activated protein kinase in pigs. J Anim Sci 2013b;91:1094–101.

Huang C, Song P, Pan P, Hou C, Thacker P, Ma X. Dietary sodium butyrate decreases porcine diarrhea but increases intestinal permeability and alters the bacterial communities in weaned piglets. J Nutr 2015:145:2774–80.

Hung IF. The effect of dietary nucleotides in sow and nursery piglet diets on reproduction, growth, and immune response [PhD Thesis]. Lexington: University of Kentucky; 2015.

Janz JA, Morel PC, Wilkinson BH, Purchas RW. Preliminary investigation of the effects of low-level dietary inclusion of fragrant essential oils and oleosomes on pig performance and pork quality. Meat Sci 2007;75:350–5.

Jaworski NW, Owusu-Asiedu A, Walsh MC, McCann KC, Loor JJ, Stein HH. Effects of a 3 strain Bacillus-based direct-fed microbial and dietary fiber concentration on growth performance, intestinal concentrations of volatile fatty acids, and expression of genes related to absorption and metabolism of volatile fatty acids in weanling pigs. J Anim Sci 2017;95:308–19.

Jaworski NW, Owusu-Asiedu A, Owusu-Asiedu B, Stein HH. Effect of Bacillus spp. direct-fed microbials on fecal VFA concentrations, growth performance, and carcass characteristics of growing-finishing pigs. J Anim Sci 2014;92(Suppl. 2):56 [Abstract].

Jiang Z, Wei S, Wang Z, Chu H, Zheng C, et al. Effects of different forms of yeast Saccharomyces cerevisae on growth performance, intestinal development, and systemic immune in early-weaned pigs. J Anim Sci Biotechnol 2015;6:47–54.

John C, Bradham CA, Russo MP, Juma B, Narula AS, Brenner DA, et al. Curcumin blocks cytokine-mediated NF-kappa B activation and proinflammatory gene expression by inhibiting inhibitory factor kappa B kinase activity. J Immunol 1999;163:3474–83.

Katouli M, Melin L, Jensen-Vaern M, Wallgren P, Molloby R. The effect of zinc oxide supplementation on the stability of the intestinal flora with special reference to composition appearance of coliforms in weaned pigs. J Appl Microbiol 1996;87:564–73.

Kenny M, Smidt H, Menghei E, Miller B. Probiotics - do they have a role in the pig industry? Animal 2011;5:462–70.

Kerrola K. Literature review: isolation of essential oils and flavor compounds by density carbon dioxide. Food Rev Int 1995;11:547–73.
Klie E, Bhandari S, Scott M, Krause DO, Nyachoti CM. Growth performance and gastrointestinal microbiology responses of piglets receiving Saccharomyces cerevisiae fermented products after an oral challenge with Escherichia coli (K88). J Anim Sci 2011;89:1062–78.

Klie E, Scott M, Krause DO, Khazaehei E, Khalfipour E, Nyachoti CM. Interactions of Saccharomyces cerevisiae fermentation product and an in-feed antibiotic on gastrointestinal and immunological responses of piglets challenged with with Escherichia coli K88. J Anim Sci 2012;90:Suppl. 4:1–3.

Kil DY, Piao LG, Long HF, Lim JS, Yun MS, Kong CS, et al. Effects of organic or inorganic acid supplementation on growth performance, nutrient digestibility and white blood cell counts in weaning pigs. Asian Australas J Sci 2006;19:252–61.

Kil DY, Kwon WB, Kim BG. Dietary acidifiers in weaning pig diets: a review. Rev Colombiana Ciencias Pecuarias 2011;24:231–47.

Kil DY, Park JH. Invited Review. Management and feeding strategies to ameliorate the impact of removing antibiotic growth promoters from diets fed to weaning pigs. Can J Anim Sci 2010;90:447–60.

Kim J, Hossenoudout A, Lee S, Choi Y, Kim M, Lee J, et al. Bacteriophage cocktail and multi-strain probiotics in the feed for weaning pigs: effects on intestine morphology and targeted intestinal coliforms and clostridium. Animal 2017;11:45–53. https://doi.org/10.3389/fj.animal.2017.000166.

Kishibuchi M, Tsuchiaka N, Yano M, Morimoto T, Ijima S, Ogawa A, et al. Effects of nucleosides and a nucleotide mixture on gut mucosal barrier function on parenteral nutrition in rats. JPEN J Parenter Enter Nutr 1997;21:104–11.

Klug H, Broz J, Eder K. Effects of dietary benzoic acid on urinary pH and nutrient digestibility in lactating sows. Livest Sci 2010;134:119–21.

Kogan C, Kocher A, Klie E. Yeast cell wall polysaccharides in pig nutrition and health protection. Livest Sci 2007;109:161–5.

Kornegay ET, Rhein-Roelcke D, Lindemann MD, Wood CM. Performance and nutrient digestibility in weaning pigs influenced by yeast culture additions to starter diets containing dried whey or one of two fiber sources. J Anim Sci 1995;73:1381–9.

Kornegay ET, Risley CR. Nutrient digestibilities of a corn-soybean meal diet as influenced by Bacillus products fed to finishing swine. J Anim Sci 1996;74:799–805.

Ku PK, Ullrey DE, Miller ER. In: Mills CF, editor. Zinc deficiency in ruminants. Wallingford, UK: CABI Publishing; 2000. p. 222–4.

Kuang Y, Wang Y, Zhang Y, Song Y, Zhang X, Lin Y, et al. Effects of dietary combinations of organic acids and medium chain fatty acids as a replacement of zinc oxide on growth, digestibility and immunity of weaned pigs. Anim Feed Sci Technol 2015;208:148–55.

Kulikarni AD, Rudolph FB, Van Buren CT. The role of dietary sources of nucleic acids in immune function: a review. J Nutr 1994;124(Suppl. 4):1442s–6s.

Lambert RJ, Skandamis PN, Coote PJ, Nychas GJ. A study of the minimum inhibitory concentration and mode of action of organo essential oil, thymol and carvac- rrol. J Appl Microbiol 2001;91:453–62.

Lang A, Lahav M, Sakhnini E, Barshaw I, Fidder HH, Avidan B, et al. Allergic infection is spontaneous and TNF-alpha induced secretion of proinflammatory cytokines and chemokines from intestinal epithelial cells. Clin Nutr 2004;23:1199–206.

Lawrence BM, Reynolds RJ. Progress in essential oils. Perfum Flavor 1984;9:23–31.

Le Gall M, Galleo S, Beve S, Louveau I, Holst JJ, Oswald IP, et al. Comparative effect of orally administered sodium butyrate before or after weaning on growth and several indices of gastrointestinal biology of piglets. Br J Nutr 2009;102:1285–96.

Lee DN, Liu SR, Chen YT, Wang RC, Lin SY, Weng CF. Effects of diets supplemented with organic acids and nucleotides on growth, immune responses and digestive tract development in weaned pigs. J Anim Physiol Anim Nutr (Berl) 2007;91:180–91.

Lee KW, Everts H, Beynen AC. Essential oils in broiler nutrition. Int J Poult Sci 2004;3:738–52. https://doi.org/10.2746/1684-7382.3.4.738.

Lee SH, Ingale SL, Kim JS, Kim KH, Lokhande A, Kim EK, et al. Effects of dietary supplementation with Bacillus subtilis LS 1–2 fermentation biomass on growth performance, nutrient digestibility, cecal microbiota and intestinal morphology of weaning pig. Anim Feed Sci Technol 2014;188:102–10.

Lee SH, Lee SY, Son DJ, Lee H, You HS, Song S, et al. Inhibitory effect of 2-hydroxy-2-ynaldehyde on nitric oxide production through inhibition of NF-kappa B activation in RAW 264.7 cells. Biochem Pharmacol 2005;69:791–9.

Lewis MC, Patel DV, Fowler J, Duncker S, Zwirner AW, Mercenier A, et al. Dietary supplementation with Bifidobacterium lactis NCC2818 from weaning reduces local immunoglobulin production in lymphoid-associated tissues but increases systemic antibodies in healthy neonates. Br J Nutr 2013;110:1243–52.

Li BT, van Kessel AG, Caine WR, Huang SX, Kirkwood RN. Small intestinal morphology and bacterial populations in ileal digesta and feces of newly weaned pigs receiving a high dietary level of zinc oxide. Can J Anim Sci 2001;81:511–6.

Li J, van den Broek AC, Liu G, Zhang N, Wang Z. Effect of high dietary copper on weight gain and neuropsychological level in the hypothalamus of pigs. J Trace Elem Med Biol 2008a;22:33–8.

Li M, Gong J, Cottrell M, Yu H, de Lange C, Burton J, et al. Evaluation of Q&Amp;P DNA Steel Mini Kit for ecological studies of gut microbiota. J Microbiol Methods 2004;51:14–20.

Li X, Yin J, Li D, Chen X, Zang J, Zhou X. Dietary supplementation with zinc oxide increases Igf-1 and Igf-1 receptor gene expression in the small intestine of weaning pigs. J Nutr 2006;136:1786–91.
Molost F, van Eerden F, Parmentier HK, Vuorennma J. Effects of inclusion of hydroyzed yeast on the immune response and performance of piglets after weaning. Anim Feed Sci Technol 2004;110:137–42.

Moore KL, Mullan BP, Pliske JR, Kim JC, D’Souza DN. The use of nucleotides, vitamins and functional amino acids to enhance the structure of the small intestine and circulating measures of immune function in the post-weaned pig. Anim Feed Sci Technol 2015;201:57–69.

Namkung G, Gong J, de Lange CFM. Effect of pharmaceutical intake of zinc and copper on growth performance, circulating cytokines and gut microbiota of newly weaned piglets challenged with coliform lipopolysaccharides. Can J Anim Sci 2006;86:631–42. https://doi.org/10.4141/05-175.

Naipad IA, Owen JP, Maddison BC, Gardiner DS, Foster N, Chorzewski MA, et al. Prebiotic and probiotic agents enhance antibody-based immune responses to Salmonella Typhimurium infection in pigs. Anim Feed Sci Technol 2015;201:57–69.

Neil CR, Neilsen JL, Tokach MD, Goodband RD, DeRouchey JM, Dritz SS, et al. Effects of oregano oil on growth performance of nursery pigs. J Swine Health Prod 2001;9:312–8.

Niers LE, Timmerman HM, Rijkers GT, van Bleek GM, van Uden NO, Knol EF, et al. Identification of strong interleukin-10 inducing lactic acid bacteria which down-regulate T helper type 2 cytokines. Clin Exp Allergy 2005;35:1481–9.

Nofarman M, Mananli EA, Pujol J, Gibert X, Majo N, Segales J, et al. Effects of spray-dried porcine plasma and plant extracts on intestinal morphology and on leucocyte cell subsets of weaned pigs. J Anim Sci 2006;84:2735–42.

Nousiainen J, Setala J. Lactic acid bacteria as animal probiotics. In: Salminen S, von Wright A, editors. Probiotics in swine diets. In: Leger DA, Ho SK, editors. Proc. int. roundtable anim. feed biotechnol. Agriculture Canada; 1992. p. 65–79.

Oberleas D, Miller ER, Luecke RW. Biochemical effects of zinc deficiency on performance and immune response of voluntarily fatty fed and lactic acid in the gastrointestinal tract. 3. Nutritive value of organic acids in pig rearing. J Anim Physiol Anim Nutr 1992;68:93–103.

Roth FX, Eckel B, Kirchgesner M, Eidelberger U. Influence of fumaric acid, hydrochlorid acid, sodium formate, tylosin and tososycin on pH, dry matter content, concentration of carbonic acids and ammonia in different segments of the gastrointestinal tract. 12. Nutritive value of organic acids in pig rearing. J Anim Physiol Anim Nutr 1992b;67:148–56.

Rudolph FB. The biochemistry and physiology of nucleotides. J Nutr 1994;124(Suppl. 1):S1–124.

Rutkovska-Pejas B, Mokrzycka A, Szkoda J. Influence of zinc oxide in feed on the health status of weaned pigs. Med Weter 1998;54:194–200.

Saad NA, Delattre C, Urdaci M, Schmitter JM, Bressolleier P. An overview of the last advances in probiotic and prebiotic field. JWTF Food Sci Technol 2013;30:16–26.

Sads OR, Bilgic G. The effect of oregano and vaccination against Glassier’s disease and pathogenic Escherichia coli on postweaning performance of pigs. Ir Vet J 2003;56:611–5.

Salohir J, Rezar V, Pajk T, Levart A. Effect of prebiotic and probiotic agents on lymphocyte DNA damage induced by dietary antibiotic stress in pigs. Anim-feed Sci Technol 2005;118:35–40.

Sanderson BR, He Y. Nucleotide uptake and metabolism by intestinal epithelial cells. J Nutr 1994;124(Suppl. 1):S1–12.

Sauer N, Eklund M, Bauzer E, Ganzle MG, Field CJ, Zilstra RT, et al. The effects of pure nucleotides on performance, humoral immunity, gut structure and numbers of intestinal bacteria of newly weaned pigs. J Anim Sci 2012a;90:3126–37.

Sauer N, Eklund M, Roth S, Eklund M. Effect of dietary inclusion of vitamin C on growth performance of piglets. J Animal Feed Sci 2012b;96:700–8.

Sauer N, Mosenthin R, Bauer E. The role of dietary nucleotides in single-stomached animals. Nutr Res Rev 2011;24:46–59.

Sauer W, Cervantes M, Yanez J, Alaraza B, Murdoch G, Morales A, et al. Effect of dietary inclusion of benzoic acid on mineral balance in growing pigs. Livest Sci 2009;122:162–8.

Schlimme E, Martin D, Messel H. Nucleosides and nucleotides: natural bioactive substances in milk and colostrom. Br J Nutr 2000;84(Suppl. 1):S59–68.

Schreier HJ. Biosynthesis of glutathione and glutamate and the stimulation of complicated functions. In: Sonenschein AI, Hoch JA, Losick R, editors. Bacteria subtilis and other gram-positive bacteria. Washington, DC: Am Soc Microbiol; 1993. p. 281–5.

Shen YB, Falen XS, Kim SW, Wang L, Liu P, Yoon I, et al. Effects of yeast culture supplementation on growth performance, intestinal health, and immune response of nursery pigs. J Anim Sci 2009;87:2614–24.

Sherry M, Charosselt C, Fessi H, Greige-Gerger H. Essential oils encapsulated in liposomes: a review. J Liposome Res 2013;23:268–78.

Slade RD, Kyriazakis I, McEwin H, Broom LJ, et al. Effect of rearing environment and dietary zinc oxide on the response of group-housed weaned pigs to enterotoxogenic Escherichia coli O149 challenge. Animal Health Res Rev 2011;5:170–8.

Slamenova D, Horvathova E, Marsalkova I, Wioslova L. Carvacrol given to rats in drinking water reduces the level of DNA lesions induced in freshly isolated hepatocytes and testicular cells by H(2)O(2). Neoplasma 2008;55:193–200.

Pollmann DS. Probiotics in swine diets. In: Leger DA, Ho SK, editors. Proc. int. roundtable anim. feed biotechnol. Agriculture Canada; 1992. p. 65–74.

Poulsen HD. Zinc oxide for weaning piglets. Acta Agric Scand A Anim Sci 1995;45:159–67.

Poulsen HD. Zinc and copper as feed additives, growth factors or unwanted environmental factors. J Anim Feed Sci 1998;7:135–42.

Prescott SL, Dunstan JA, Hale J, Breckler L, Lehmann H, Weston S, et al. Clinical effects of nutritional modulation of the gut microbiota on enteropathogenic EPEC infection in weaned pigs. In: Nielson KL, Mullan BM, editors. Proc. int. roundtable anim. feed biotechnol. Ottawa, ON, Canada: Agriculture Canada; 1992. p. 15–18.

Praz M, Rezaei A, Ghiaci M, Prandini S. Sodium butyrate improves growth performance of weaned piglets during the first period after weaning. Ital J Anim Sci 2002;1:35–41. https://doi.org/10.4081/jais.2002.35.

Pollmann DS. Probiotics in pig diets. In: Haresign W, Cole DJ, editors. Recent advances in animal nutrition and animal health. London, UK: Butterworths; 1988. p. 193–205.

Pollmann DS. Probiotics in swine diets. In: Leger DA, Ho SK, editors. Proc. int. roundtable anim. feed biotechnol. – res. sci. reg. 1st ed. Ottawa, ON, Canada: Agriculture Canada; 1992. p. 65–74.

Poulsen HD. Zinc oxide for weaning piglets. Acta Agric Scand A Anim Sci 1995;45:159–67.

Prasad AS, Oberleas D, Miller ER, Luecke RW. Biochemical effects of zinc deficiency: changes in activities of zinc-dependent enzymes and ribonuclease acid and deoxyribonuclease acid content of tissues. J Lab Clin Med 1971;77:144–52.

Prasad AS. Zinc: an antioxidant and anti-inflammatory agent: role of zinc in degenerative disorders of aging. J Trace Elem Med Biol 2014;28:364–71.

Prescott SL, Dunstan JA, Hale J, Breckler L, Lehmann H, Weston S, et al. Clinical effects of probiotics are associated with increased interferon–gamma responses in very young children with atopic dermatitis. Clin Exp Allergy 2005;35:1557–64.

Radcliffe JS, Zhang Z, Kornegay ET. The effects of microbial phytase, citric acid, and their interaction in a corn-soybean meal-based diet for weaning pigs. J Anim Sci 1998;76:1880–8.

Ravindran V, Kornegay ET. Acidification of weaner pig diets: a review. J Sci Food Agr 1993;62:313–22.

Richards JD, Gong J, de Lange CFM. The gastrointestinal microbiota and its role in mononutrient nutrition and health with an emphasis on pigs: current understanding, possible mechanisms, and new technologies for ecological studies. Can J Anim Sci 2005;85:421–35.

Roberfroid M, Gibson GR, Hoyles L, McCartney AL, Rastall R, Rowland L, et al. Prebiotic effects: metabolic and health benefits. Br J Nutr 2010;104(Suppl. 2):S1–63.
van der Peet-Schwering CM, Jansman AJ, Smidt H, Yoon I. Effects of yeast culture on van der Aar PJ, Molist F, van der Klis JD. The central role of intestinal health on the Underwood EJ. Trace elements in human and animal nutrition. 4th ed. New York, Tsujinaka T, Kishibuchi M, Iijima S, Yano M, Monden M. Nucleotides and intestine. Walsh MC, Sholly DM, Hinson RB, Saddoris KL, Sutton AL, Radcliffe JS, et al. Effects of graded levels of Walsh CL, Wilcock P. Influence of a microbial phylotype and zinc oxide on young pig growth performance and serum minerals. J Anim Sci 2013;91: Wang XX, Song PX, Wu H, Xue JX, Zhong X, Zhang LY. Effects of graded levels of isomalto-oligosaccharides on the performance, immune function and intestinal status of weaned pigs. Asian Australas J Anim Sci 2016a;29(2):250–6. https://doi.org/10.5713/ajas.15.0194.

Y. Liu et al. / Animal Nutrition 4 (2018) 113–125

Suttle NF. Mineral nutrition of livestock. 4th ed. Oxon, U.K: CABI Publishing; 2010. 93.

Wang X, Wang Y, Zhang Y, Song Y, Zhang X, Liu Y, et al. Rearing conditions affected responses of weaned pigs to organic acids showing a positive effect on di-gestibility, microflora and immunity. Anim Sci J 2016b;87:1267–80.

Wang Y, Huang Y, Zhang Y, Song Y, Zhang X, Liu Y, et al. Effects of graded levels of isomalto-oligosaccharides on the performance, immune function and intestinal status of weaned pigs. Asian Australas J Anim Sci 2016a;29(2):250–6. https://doi.org/10.5713/ajas.15.0194.

Wang Y, Huang Y, Zhang Y, Song Y, Zhang X, Liu Y, et al. Rearing conditions affected responses of weaned pigs to organic acids showing a positive effect on di-gestibility, microflora and immunity. Anim Sci J 2016b;87:1267–80.

Ward TL, Asche GA, Lous G, Poliman DS. Zinc-methionine improves growth performance of starter pigs. J Anim Sci 1996;74(Suppl.1):182 [Abstract].

Weaver AC, Kim SW. Supplemental nucleotides high in inosine 5’-monophosphate to improve the growth and health of nursery pigs. J Anim Sci 2014;92:645–51.

Weedman SM, Rostagno MH, Patterson JA, Yoon I, Pitzer C, Eicher SD. Yeast culture supplement during nursing and transport affects immunity and intestinal microfloral ecology of weaning pigs. J Anim Sci 2011;89:1908–21.

Wierup M. The Swedish experience of the 1986 year ban of antimicrobial growth promoters, with special reference to animal health, disease prevention, productivity, and use of antimicrobials. Microb Drug Resist 2001;7:183–90.

Windisch W, Schedle K, Pitzczer C, Kromsray A. Use of phytogenic products as feed additives for swine and poultry. J Anim Sci 2008;86(Suppl.14):E140–8.

Wong SY, Grant IR, Friedman M, Elliott CT, Situ C. Antibacterial activities of naturally occurring compounds against Mycobacterium avium subsp. paratuberculosis. Appl Environ Microbiol 2008;74:5986–90.

Wu Y, Pan L, Shang QH, Ma XK, Long SF, Xu YT, et al. Effects of isomalto-oligosaccharides as potential prebiotics on performance, immune function and gut microbiota in weaned pigs. Anim Feed Sci Technol 2017;230:126–35. https://doi.org/10.1016/j.anifeedsci.2017.05.011.

Xia S, Yao W, Zou B, Li Y, Lu N, Lei H, et al. Effects of potassium dideinate on the gastric function of weaning piglets. Anim Prod Sci 2016;56:1161–6.

Xia T, Lai W, Han M, Ma A, Zhang L. Dietary ZnO nanoparticles alters intestinal microbiota and inflammation response in weaned piglets. Oncotarget 2017;8:64878–91.

Xu J, Zhou F, Ji BP, Pei RS, Xu N. The antibacterial mechanism of carvacrol and thymol against Escherichia coli. Lett Appl Microbiol 2008;47:174–9.

Xu YT, Liu LJ, Long SF, Piao XS. Effects of organic acids and essential oils on performance, intestinal health and digestive enzyme activities of weaned pigs. Anim Feed Sci Technol 2018;235:110–9.

Yin YL, Tang ZR, Sun ZH, Liu ZQ, Li TJ, Huang RL, et al. Effect of galacto-mannan-oligosaccharides or chitosan supplementation on cytoimmunity and humoral immunity in early-weaned piglets. Asian Australas J Anim Sci 2018;21:723–31.

Yu XY. The role of dietary nucleotides in neonatal and infant nutrition. Singapore Med J 1998;39:145–50.

Zentek J, Ferrara F, Pieper R, Tedin I, Meyer W, Vahjen W. Effects of dietary combi-nations of organic acids and medium chain fatty acids on the gastrointestinal microbial ecology and bacterial metabolites in the digestive tract of weaning piglets. J Anim Sci 2013;91:3200–10.

Zhang B, Guo Y. Supplemental zinc reduced intestinal permeability by enhancing occludin and zonula occludens protein-1 (ZO-1) expression in weaning piglets. Br J Nutr 2009;102:687–93.

Zhao J, Harper AF, Estienne MJ, Webb JR KE, McElroy AP, Denbrow DM. Growth performance and intestinal morphology responses in early weaned pigs to supplementation of antibiotic-free diets with an organic copper complex and spray-dried plasma protein in sanitary and nonsanitary environments. J Anim Sci 2007;85:1302–10.

Zhao PY, Kim IH. Effect of direct-fed microbial on growth performance, nutrient digestibility, fecal nosocic gas emission, fecal microbial flora and diarrhea score in weaning pigs. Anim Feed Sci Technol 2015;200:86–92.

Zhou C, Lv H, Chen Z, Wang K, Wu X, Chen Z, et al. Dietary zinc oxide modulates antioxidant capacity, small intestinal development, and jejunal gene expression in weaned pigs. Biocl Trace Elem Res 2017;175:331–8.

Zomborzszyk-Kovacs M, Bardos L, Biro H, Tuboly S, Wolf-Tasaki E, Toth A, et al. Effect of beta-carotene and nucleotide base supplementation on blood composition and immune response in weaned pigs. Acta Vet Hung 2000;48:301–11,

Surburg H, Panten J. Common fragrance and flavor materials: preparation, prop-erties and uses. Weinheim: Wiley-VCH; 2006. p. 289–303.

Suryanarayana MVAN, Suresh R, Rajasekhar MV. Organic acids in swine feeding: a review. Agric Sci Res J 2012;2:523–33.

Sutliff NF, Angus KW. Effects of experimental copper deficiency on the skeleton of the calf. J Comp Pathol 1978;88(1):137–48.

Sutliff NF, Mineral nutrition of livestock. 4th ed. Oxon, U.K: CAB Publishing; 2010.

Takana R, Mutai M. Improved medium for selective isolation and enumeration of Bifidobacterium. Appl Environ Microbiol 1980;40:866–9.

Teissedre PL, Waterhouse AL. Inhibition of oxidation of human low-density lipo-proteins by phenolic substances in different essential oils varieties. J Agr Food Chem 2000;48:3801–5.

Tran THT, Everaert N, Bindelle K. Review on the effects of potential prebiotics on controlling intestinal enteropathogens Salmonella and Escherichia coli in pig production. J Anim Physiol Anim Nutr 2016. https://doi.org/10.1111/jpp.12666.

Trckova M, Faldyna M, Alexa P, Smrklova Zajacova Z, Gopfert E, Kumprechtova D, et al. The effects of live yeast Saccharomyces cerevisiae on postweaning diar-rhea, immune response, and growth performance in weaned piglets. J Anim Sci 2014;92:767–74.

Tsujinaka T, Kishibuchi M, Iijima S, Yano M, Monden M. Nucleotides and intestine. JPNJ J Parenter Enter Nutr 1999;23(Suppl. 5):574–7.

Tung YT, Chua MT, Wang SY, Chang ST. Anti-in

Walk CL, Wilcock P, Magowan E. Evaluation of the effects of pharmacological zinc oxide and phosphorus source on weaned piglet growth performance, plasma minerals and mineral digestibility. Animal 2015;9:1145–52.

Walsh MC, Sholly DM, Hinson RB, Saddoris KL, Sutton AL, Radcliffe JS, et al. Effects of water and diet acidification with and without antibiotics on weaning pig growth and microbial shedding. J Anim Sci 2007;85:1799–808.

Wang XX, Song PX, Wu H, Xue JX, Zhong X, Zhang LY. Effects of graded levels of isomalto-oligosaccharides on the performance, immune function and intestinal status of weaned pigs. Asian Australas JAnim Sci 2016a;29(2):250–6. https://doi.org/10.5713/ajas.15.0194.