Search for a Dark Leptophilic Scalar in e^+e^- Collisions

J. P. Lees, 1 V. Poireau, 1 E. Grauges, 2 A. Palano, 3 G. Eigen, 4 D. N. Brown, 5 Yu. G. Kolomensky, 5 M. Fritsch, 5 H. Koch, 6 T. Schroeder, 8 R. Cheaib, 7b C. Hearty, 7a,7b T. S. Mattison, 7b J. A. McKenna, 7b R. Y. So, 7b V. E. Blinov, 8a,8b,8c A. R. Buzylkaev, 8a V. P. Druzhinin, 8a,8b V. B. Golubev, 8a,8b E. A. Kozyrev, 8a,8b E. A. Kravchenko, 8a,8b A. P. Onuchin, 8a S. I. Serednyakov, 8a,8b Yu. I. Skovpen, 8a,8b E. P. Solodov, 8a,8b K. Yu. Todyshev, 8a,8b A. J. Lankford, 9 B. Dey, 10 J. W. Gary, 10 O. Long, 10 A. M. Eisner, 11 W. S. Lockman, 11 W. Panduro Vazquez, 11 D. S. Chao, 12 C. H. Cheng, 12 B. Echenard, 12 K. T. Flood, 12 D. G. Hitlin, 12 J. Kim, 12 Y. Li, 12 D. X. Lin, 12 T. S. Miyashita, 12 P. Ongmongkolkit, 12 J. Oyang, 12 F. C. Porter, 12 M. Röhrken, 12 Z. Huard, 13 B. T. Meadows, 13 B. G. Pushpawela, 13 M. D. Sokoloff, 13 L. Sun, 13 P. Taras, 38 G. De Nardo, 39 C. Sciacca, 39 G. Raven, 40 C. P. Jessop, 41 J. M. LoSecco, 41 K. Honscheid, 42 R. Kass, 42 A. Gaz, 43a P. R. Burchat, 56 E. M. T. Puccio, 56 M. S. Alam, 57 J. A. Ernst, 57 R. Gorodeisky, 58 N. Guttman, 58 D. R. Peimer, 58 A. Soffer, 58 A. Rossi, 45a G. Batignani, 46a,46b S. Bettarini, 46a,46b M. Carpinelli, 46a,46b G. Casarosa, 46a,46b M. Chrzaszcz, 46a F. Forti, 46a M. A. Giorgi, 46a,46b A. Lusiani, 46a,46b C. Ovyn, 46a,46b M. Rama, 46a G. Rizzo, 46a,46b J. W. Walsh, 46a L. Zani, 46a,46b A. J. S. Smith, 47 F. Anulli, 48a R. Faccini, 48a,48b F. Ferrarotto, 48a F. Ferroni, 48a,48b A. Pilloni, 48a,48b G. Piredda, 48a C. Bünger, 49 O. Grünberg, 49 M. Heß, 49 T. Ledig, 49 C. Voß, 49 R. Waldl, 49 T. Adye, 50 F. W. Wilson, 50 S. Emery, 51 G. Vasseur, 51 D. C. Asta, 52 D. A. Cartaro, 52 M. R. Convery, 52 J. Dorfan, 52 W. Dunwoodie, 52 M. Ebert, 52 R. C. Field, 52 B. G. Fuson, 52 M. T. Graham, 52 C. Hast, 52 W. R. Innes, 52 P. Kim, 52 D. W. G. S. Leith, 52 S. Lutz, 52 D. B. MacFarlane, 52 R. D. Muller, 52 H. Neal, 52 B. N. Ratcliffe, 52 A. Roodman, 52 M. K. Sullivan, 52 J. Värum, 52 W. J. Wisniewski, 52 M. V. Purohit, 53 J. R. Wilson, 53 A. Randle-Conde, 54 S. J. Sekula, 55 H. Ahmed, 55 M. Bellis, 56 P. R. Burchat, 56 E. M. T. Puccio, 56 M. S. Alam, 57 J. A. Ernst, 57 R. Gorodeisky, 58 N. Guttman, 58 D. R. Peimer, 58 A. Soffer, 58 S. M. Spanier, 59 J. L. Ritchie, 50 R. F. Schwitters, 50 J. M. Izen, 50 X. C. Lou, 50 F. Bianchi, 62a,62b F. De Moris, 62a,62b A. Filippi, 62a D. Gamba, 62a,62b L. Lanceri, 63 L. Vitale, 63 F. Martínez-Vidal, 64 A. Oyanguren, 64 J. Albert, 65a A. Beaulieu, 65b F. U. Berlouchner, 65b G. J. King, 65b R. Kowalewski, 65b T. Lueck, 65b I. M. Nugent, 65b J. M. Roney, 65b R. J. Sobie, 65a,65b N. Tasneem, 65b T. J. Gershon, 66 P. F. Harrison, 66 T. E. Latham, 66 R. Prepost, 67 and S. L. Wu 67

(BABAR Collaboration)

1Laboratoire d’Annecy-le-Vieux de Physique des Particules (LAPP), Université de Savoie, CNRS/IN2P3, F-74941 Annecy-Le-Vieux, France
2Universitat de Barcelona, Facultat de Física, Departament ECM, E-08028 Barcelona, Spain
3INFN Sezione di Bari e Dipartimento di Fisica, Università di Bari, I-70126 Bari, Italy
4University of Bergen, Institute of Physics, N-5007 Bergen, Norway
5Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
6Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany
7INFN Sezione di Bari and Dipartimento di Fisica, Università di Bari, I-70126 Bari, Italy
8Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090, Russia
9Novosibirsk State University, Novosibirsk 630090, Russia
10INFN Sezione di Bari e Dipartimento di Fisica, Università di Bari, I-70126 Bari, Italy
11University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA

0031-9007/20/125(18)/181801(8) Published by the American Physical Society

PHYSICAL REVIEW LETTERS 125, 181801 (2020)
Many scenarios of physics beyond the standard model (SM) predict the existence of new gauge singlets, which might be substantially lighter than the weak scale. The experimental constraints on additional scalars with masses in the MeV to GeV range could be significantly weakened if they interact predominantly with leptons rather than quarks. At an e^+e^- collider, such a leptophilic scalar (ϕ_L) would be produced predominantly through radiation from a τ lepton. We report herein a search for $e^+e^- \rightarrow \tau^+\tau^- \phi_L$, $\phi_L \rightarrow \ell^+\ell^-$ ($\ell = e, \mu$) using data collected by the BABAR experiment at SLAC. No significant signal is observed, and we set limits on the ϕ_L coupling to leptons in the range $0.04 < m_{\phi_L} < 7.0$ GeV. These bounds significantly improve upon the current constraints, excluding almost entirely the parameter space favored by the observed discrepancy in the muon anomalous magnetic moment below 4 GeV at 90% confidence level.

DOI: 10.1103/PhysRevLett.125.181801
The search is based on 514 fb\(^{-1}\) of data collected at the \(\Upsilon(2S), \Upsilon(3S), \Upsilon(4S)\) resonances and their vicinities [15] by the BABAR experiment at the SLAC PEP-II \(e^+e^-\) collider. The BABAR detector is described in detail elsewhere [16,17]. A sample corresponding to about 5\% of the data, called the optimization sample, is used to optimize the search strategy and is subsequently discarded. The remaining data are examined only once the analysis procedure has been finalized.

Signal Monte Carlo (MC) samples with prompt decays are simulated for 36 different \(\phi_L\) mass hypotheses by the MADGRAPH event generator [18] and showered using PYTHIA8 [19], including final-state radiation. For \(m_{\phi_L} < 0.3\) GeV, events with \(cT_{\phi_L}\) values up to 300 mm are also generated. We simulate the following reactions to study the background: \(e^+e^-\rightarrow \ell^+\ell^- (\gamma)\) (BBHIDE [20]), \(e^+e^-\rightarrow \mu^+\mu^- (\gamma)\) and \(e^+e^-\rightarrow \tau^+\tau^- (\gamma)\) (KK with the TAUOLA library [21,22]), \(e^+e^-\rightarrow q\bar{q} \gamma\) with \(q = u, d, s, c\) (Jetset [23]), and \(e^+e^-\rightarrow BB\) and generic \(e^+e^-\rightarrow \Upsilon(2S,3S)\) decays (EvtGen [24]). The resonance production \(e^+e^-\rightarrow \gamma\Upsilon(2S), \Upsilon(2S)\rightarrow \pi^+\pi^- J/\psi, J/\psi \rightarrow \mu^+\mu^-\) is simulated with EvtGen using a structure function technique [25,26]. The detector acceptance and reconstruction efficiencies are estimated with a simulation based on GEANT4 [27].

We select events containing exactly four charged tracks with zero net charge, focusing on \(\tau\) lepton decays to single tracks and any number of neutral particles. The \(\phi_L\rightarrow \ell^+\ell^-\) candidates are formed by combining two opposite-sign tracks identified as an electron or muon pair by particle identification (PID) algorithms [12,16]. We do not attempt to select a single \(\phi_L\) candidate per event, but simply consider all possible combinations. Radiative Bhabha and dimuon events in which the photon converts to an \(e^+e^-\) pair are suppressed by rejecting events with a total visible mass greater than 9 GeV. We further veto \(e^+e^-\rightarrow e^+e^-e^+e^-\) events by requiring the cosine of the angle between the momentum of the \(\phi_L\) candidate and that of the nearest track to be less than 0.98, the missing momentum against all tracks and neutral particles to be greater than 300 MeV, and that there be three or less tracks identified as electrons. We perform a kinematic fit to the selected \(\phi_L\) candidates, constraining the two tracks to originate from the same point in space. The dimuon production vertex is required to be compatible with the beam interaction region, while we only constrain the momentum vector of the \(e^+e^-\) pair to point back to the beam interaction region since the dielectron vertex can be substantially displaced. We select dielectron (dimuon) combinations with a value of the \(\chi^2\) per degree of freedom of the fit, \(\chi^2/\text{n.d.f.}\), less than 3 (12).

A multivariate selection based on boosted decision trees (BDT) further improves the signal purity [28]. The BDTs include variables capturing the typical \(\tau\) and \(\phi_L\) decay characteristics: a well-reconstructed \(\ell^+\ell^-\) vertex, either prompt or displaced; missing energy and momentum due to neutrino emission; relatively large track momenta; low neutral particle multiplicity; and two or more tracks identified as electrons or muons. A few variables are also targeted at specific backgrounds, such as \(\Upsilon(2S)\rightarrow \pi^+\pi^- J/\psi, J/\psi \rightarrow \mu^+\mu^-\) production in initial-state radiation (ISR) events. The \(m_{\phi_L}\) mass is specifically excluded to limit potential bias in the classifier. A full description of these variables can be found in the Supplemental Material [29]. We train a separate BDT for each of the different final states and \(cT_{\phi_L}\) values with signal events modeled using a flat \(m_{\phi_L}\) distribution and background events modeled using the optimization sample data.

The final selection of \(\phi_L\) candidates for each lifetime selection and decay channel is made by applying a mass-dependent criterion on the corresponding BDT score that maximizes signal sensitivity. The distributions of the resulting dielectron and dimuon masses for prompt decays are shown in Fig. 1, and spectra for other lifetimes for \(\phi_L\rightarrow e^+e^-\) decays are shown in Fig. 2, together with the dominant background components among the set of simulated MC samples. The differences between the data and summed-MC distributions are mainly due to processes that
are not simulated, dominated by ISR production of high-multiplicity QED and hadronic events as well as two-photon processes. Peaking contributions from $J/\psi \to \mu^+\mu^-$ and $\psi(2S) \to \mu^+\mu^-$ decays are also seen, and the corresponding regions are excluded from the signal search. In addition, the dielectron spectrum for $c\tau_{\phi L}=1$ mm features a broad enhancement from $\pi^0 \to \gamma\gamma$ decays in which one or both photons convert to e^+e^- pairs. Since this feature is much broader than the signal, we do not exclude this mass region but instead treat it as an additional background component. No statistically significant π^0 component is observed for other values of $c\tau_{\phi L}$.

We extract the signal yield for the different lifetimes and final states separately by scanning the corresponding mass spectrum in steps of the signal mass resolution, σ. The latter is estimated by performing fits of a double-sided Crystal Ball function [30] to each signal MC sample and interpolating the results to the full mass range. The resolution ranges from 1 MeV near $m_{\phi L} = 40$ MeV for $c\tau_{\phi L}=100$ mm to 50 MeV near $m_{\phi L} = 7.0$ GeV for prompt decays. The signal MC predictions are validated with samples of $K^0_S \to \pi^+\pi^-$ and $\psi(2S) \to \pi^+\pi^-J/\psi$, $J/\psi \to \mu^+\mu^-$ decays; agreement with the data is observed. For each mass hypothesis, we perform an unbinned likelihood fit over an interval varying between $20 - 50\sigma$ (fixed to 60σ) for the dielectron (dimuon) final state. To facilitate the background description, the reduced dimuon mass, $m_R = (m_{\mu\mu} - 4m_{\mu}^2)^{1/2}$, is used for $2m_\mu < m_{\phi L} < 260$ MeV. In that region, fits are performed over a fixed interval $m_R < 0.2$ GeV.

The likelihood function includes contributions from signal, continuum background, and, where needed, peaking components describing the π^0, $J/\psi \to \mu^+\mu^-$, and $\psi(2S) \to \mu^+\mu^-$ resonances. The signal probability density function (pdf) is described by a nonparametric kernel density function modeled directly from the signal MC mass distribution. An algorithm based on the cumulative density function [31] is used to interpolate the pdf between simulated mass points. The uncertainty associated with this procedure is on average 4% (3%) of the corresponding statistical uncertainty for the dielectron (dimuon) analysis.

The dielectron continuum background is modeled by a second-order polynomial for the $c\tau_{\phi L}=100$ mm sample and by a second-order polynomial plus an exponential function for the other lifetimes. The peaking π^0 shape for the $c\tau_{\phi L}=1$ mm sample is determined from sideband data obtained by applying all selection criteria, but requiring the χ^2/n.d.f. of the kinematic fit to be greater than 3. The peaking π^0 yield and all the continuum background parameters are determined in the fit. To assess systematic uncertainties, we repeat the fits with a third-order polynomial for the continuum background, vary the width of the π^0 shape within its uncertainty, or include a π^0 component for all lifetime samples. The resulting systematic uncertainties are typically at the level of the statistical uncertainty, but dominate the total uncertainty for several mass hypotheses in the vicinity of the π^0 peak.

The reduced mass distribution of the dimuon continuum background is modeled by a third-order polynomial constrained to intersect the origin, and the dimuon continuum is described by a second-order polynomial at higher masses. The shape of the J/ψ and $\psi(2S)$ resonances are fixed to the predictions of the corresponding MC samples, but their yields cannot be accurately estimated from MC
simulations and are therefore left to float freely in the fit. A range of ± 50 MeV around the nominal J/ψ and $\psi(2S)$ masses is therefore excluded from the search. The systematic uncertainty associated with the choice of the background model, assessed by repeating the fits with alternative descriptions, is typically at the level of a few events, but can be as large as half the statistical uncertainty for a few points in the high mass region, where statistical precision is limited.

The fitted signal yields and statistical significances are presented in the Supplemental Material [29], together with a few examples of fits. The bias in the fitted values is determined from pseudoexperiments to be negligible compared to the statistical uncertainties. Since the systematic uncertainty associated with the choice of background model can be large in the dielectron channel, we define the signal significance as the smallest of the significance values determined from each background model. Including trial factors, the largest significance is 1.4σ observed near $m_{\phi_L} = 2.14$ GeV, consistent with the null hypothesis.

The signal efficiency varies between 0.2% for $m_{\phi_L} = 40$ MeV and $c_8 = 100$ mm, to 26% around $m_{\phi_L} = 5$ GeV for prompt decays. The effect of ISR, not included in the samples generated by MADGRAPH, is assessed by simulating events with PYTHIA8 using the matrix elements calculated by MADGRAPH, and reweighting this sample to match the p_T distribution of the ϕ_L predicted by MADGRAPH. The resulting change in efficiency is found to be about 4% over the full mass range covered by the dielectron channel, and varies from 7% near the dimuon threshold to less than 1% at $m_{\phi_L} \sim 7$ GeV. Half the value of each of these differences is propagated as a systematic uncertainty in the signal yield. A correction factor of 0.98 (0.93) on the signal efficiency is included for the dielectron (dimuon) final state to account for differences between data and simulation in track and neutral reconstruction efficiencies, charged particle identification, and trigger efficiencies. The correction for the dielectron channel is derived from a sample of $K_S^0 \rightarrow \pi^+\pi^-$ produced in τ decays, while that for the dimuon channel is assessed from the BDT score distribution for events in which the missing transverse momentum is greater than 2 GeV, a region where the contribution of unsimulated background components can be neglected. An uncertainty of 3.8% (4.0%) in the dielectron (dimuon) efficiency correction is propagated as a systematic uncertainty.

The $e^+e^- \rightarrow \tau^+\tau^- \phi_L$ cross section at the $\Upsilon(4S)$ energy is derived for each lifetime and final state by taking into account the variation of the cross section and signal efficiencies with the beam energy and the $\phi_L \rightarrow \ell^+\ell^-$ branching fraction:

$$\sigma_{4S} = \frac{N_{\text{sig}}}{\sum_{i=2S,3S,4S} (\frac{\sigma_{4S}}{\sigma_{4S,n}}, c_i L_i) BF(\phi_L \rightarrow \ell^+\ell^-)},$$

where N_{sig} denotes the number of signal events, and $\sigma_{4S,n}$, c_n and L_n ($n = 2, 3, 4$) are the theoretical $e^+e^- \rightarrow \tau^+\tau^- \phi_L$ cross section, signal efficiency, and data luminosity at the $\Upsilon(nS)$ center-of-mass energy, respectively. In the absence of a significant signal, Bayesian upper limits at 90% confidence level (CL) on the cross sections are derived by assuming a uniform prior in the cross section. Systematic effects are taken into account by convolving the likelihood with a Gaussian having a width equal to the systematic uncertainty. The uncertainties due to the luminosity (0.6%) [15] and the limited statistical precision of the signal MC sample (1%–4%) are incorporated. The resulting limits are shown in Fig. 3. The sharp increase just above the ditau threshold is a reflection of the $\phi_L \rightarrow \mu^+\mu^-$ branching fraction decreasing quickly in favor of the $\tau^+\tau^-$ final state. The limit on the production cross section of a scalar S without any assumptions on other decay modes is presented in the Supplemental Material [29].

The limits on the scalar coupling ξ, presented in Fig. 4, are derived with an iterative procedure that accounts for a potentially long ϕ_L lifetime. An estimate of ξ is first

\begin{figure}
\centering
\includegraphics[width=\figurewidth]{90% CL limit}
\caption{The 90% C.L. upper limits on the $\sigma(e^+e^- \rightarrow \tau^+\tau^- \phi_L)$ cross section at the $\Upsilon(4S)$ resonance derived from (top) the dielectron and (bottom) dimuon final states. The gray bands indicate the regions excluded from the search around the nominal J/ψ and $\psi(2S)$ masses.}
\end{figure}
convergence is obtained. Bounds at the level of 0.5 of the coupling is updated. The procedure is iterated until section limit interpolated at that lifetime, and the estimate

c
set on the dielectron final state, corresponding to 4 GeV . Since these results rely only on

and dedication of the computing organizations that support

success of this project also relies critically on the expertise

machine conditions that have made this work possible. The

PEP-II colleagues in achieving the excellent luminosity and

interacting with tau leptons. The Belle II experiment should

constraints on other leptonically decaying new bosons

decay, they can also be reinterpreted to provide powerful

association with tau leptons and its subsequent leptonic

remain parameter space above the beam dump

be able to further probe these possibilities, and cover

FIG. 4. The 90% C.L. limits on the coupling ξ as a function of the ϕ_L mass (green shaded area), together with existing constraints [9,10,12–14] (gray shaded areas) and the parameter space preferred by the muon anomalous magnetic moment [3,10] (red band).

chosen, and the corresponding lifetime and cross section are calculated [3]. These values are compared to the cross section limit interpolated at that lifetime, and the estimate of the coupling is updated. The procedure is iterated until convergence is obtained. Bounds at the level of 0.5–1 are set on the dielectron final state, corresponding to $c t \phi_L$ values of the order of 1 cm, and limits down to 0.2 are derived for dimuon decays. These results are approximately an order of magnitude smaller than the couplings favored by the muon anomalous magnetic moment below the ditau threshold [3] and rule out a substantial fraction of previously unexplored parameter space at 90% C.L.

In summary, we report the first model-independent search for the direct production of a new dark leptophilic scalar. The limits significantly improve upon the previous constraints over a large range of masses, almost entirely ruling out the remaining region of parameter space below the dimuon threshold. More significantly, this search excludes the possibility of the dark leptophilic scalar accounting for the observed discrepancy in the muon magnetic moment for almost all ϕ_L masses below 4 GeV. Since these results rely only on ϕ_L production in association with tau leptons and its subsequent leptonic decay, they can also be reinterpreted to provide powerful constraints on other leptonically decaying new bosons interacting with tau leptons. The Belle II experiment should be able to further probe these possibilities, and cover the remaining parameter space above the beam dump constraints.

We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the computing organizations that support

BABAR. The collaborating institutions wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the U.S. Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat à l’Energie Atomique and Institut National de Physique Nucléaire et de Physique des Particules (France), the Bundesministerium für Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Economía y Competitividad (Spain), the Science and Technology Facilities Council (United Kingdom), and the Binaional Science Foundation (U.S.-Israel). Individuals have received support from the Marie-Curie IEF program (European Union) and the A. P. Sloan Foundation (USA).
[14] M. Davier and H. Nguyen Ngoc, Phys. Lett. B 229, 150 (1989).
[15] J. P. Lees et al. (BABAR Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 726, 203 (2013).
[16] B. Aubert et al. (BABAR Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 479, 1 (2002).
[17] B. Aubert et al. (BABAR Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 729, 615 (2013).
[18] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H.-S. Shao, T. Stelzer, P. Torrielli, and M. Zaro, J. High Energy Phys. 07 (2014) 079.
[19] T. Sjöstrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna, S. Prestel, C. O. Rasmussen, and P. Z. Skands, Comput. Phys. Commun. 191, 159 (2015).
[20] S. Jadach, W. Placzek, and B. F. L. Ward, Phys. Lett. B 390, 298 (1997).
[21] S. Jadach, B. F. L. Ward, and Z. Was, Phys. Rev. D 63, 113009 (2001).
[22] S. Jadach, Z. Was, R. Decker, and J. H. Kühn, Comput. Phys. Commun. 76, 361 (1993).
[23] T. Sjöstrand, Comput. Phys. Commun. 82, 74 (1994).
[24] D. J. Lange, Nucl. Instrum. Methods Phys. Res., Sect. A 462, 152 (2001).
[25] A. B. Arbuzov, E. A. Kuraev, G. V. Fedotovich, N. P. Merenkov, V. D. Rushai, and L. Trentadue, J. High Energy Phys. 10 (1997) 001.
[26] M. Caffo, H. Czyż, and E. Remiddi, Nuovo Cimento A 110, 515 (1997); Phys. Lett. B 327, 369 (1994).
[27] S. Agostinelli et al. (GEANT4 Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).
[28] Y. Freund and R. E. Schapire, J. Comput. Syst. Sci. 55, 119 (1997).
[29] See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.125.181801 for additional plots and a complete description of the variables used for the boosted decision trees.
[30] T. Skwarnicki, Ph.D thesis, DESY F31-86-02, Appendix E, 1986.
[31] A. L. Read, Nucl. Instrum. Methods Phys. Res., Sect. A 425, 357 (1999).