Development of the production technology for semi-finished meat products with addition of mushrooms

N V Gizatova¹, Yu N Chernyshenko¹, T N Zaitseva², T V Rybchenko³, D A Kulikov⁴ and I N Mikolaychik⁵

¹Bashkir State Agrarian University, 34 50-letiya Oktyabrya Str., Ufa, Russian Federation
²Nosov Magnitogorsk State Technical University, 38 Lenin Avenue, Magnitogorsk, Chelyabinsk region, Russian Federation
³Omsk State Agrarian University named after P. A. Stolypin, 1 Institutskaya square, Omsk, Russian Federation
⁴K G Razumovsky Moscow State University of technologies and management (the First Cossack University), 73 Zemlyanoy Val, Moscow, Russian Federation
⁵Kurgan State Agricultural Academy by T.S. Maltsev, Lesnikovo village, Kurgan district, Kurgan region, Russian Federation

E-mail: natgiz@yandex.ru

Abstract. The study aims to provide an analytical substantiation of a promising direction – development of specialized meat products enriched with macro- and micronutrients, dietary fiber and organic acids. To create conditions for a balanced diet and to improve the health of the population, we propose to use a technique that employs non-traditional resources of plant origin. Meat occupies one of the first places in nutrition, since it contains almost all nutrients needed for the human body. A product has been developed with addition of oyster mushrooms to increase its nutritive value. The formulation for pork cutlets was taken as a basis. The main raw materials used were pork and mushrooms, and auxiliary raw materials were bread, crackers, onions, melange, salt, pepper, and water. All raw materials were pre-processed, mixed and molded before use. As a result, an improved production technology of semi-finished meat products with mushrooms was proposed. The expediency of using mushrooms in production of semi-finished meat products was substantiated, studies of the effect of mushroom addition on properties of cutlets were conducted, and sensory assessment was performed. Introduction of mushrooms into the formulation improved the sensory properties of the finished product, improved the color and texture. In addition, the product exhibited tender texture, enhanced chewiness, and decreased stiffness. Calculation of the energy value of the control and experimental samples of the product showed that the use of the filler reduced the calorie content of the new product by 28.34 kcal. Thus, semi-finished products with inclusion of mushrooms can be recommended for both mass meals and diet food.

1. Introduction
One of the many basic requirements for the latest food technologies is an increased range of products due to creation of new combined products with a professionally selected composition of food and
biological substances [1–7]. The lack of important food nutrients such as proteins, vitamins in the diet of an average person, the current unfavorable environmental situation, and the need to economically use secondary resources put forward a task to manufacture meat products and use various types of raw materials, including raw materials of plant origin, namely mushrooms [8–12].

Any food product must contain components that are required for normal metabolism for each human body in a required ratio [13–17]. Full implementation of the proposed technologies will increase the range of functional products in case of deficiency of dietary protein, vitamins, and dietary fiber [18–20]. Meat is central to nutrition due to essential nutrients necessary for the body [21–24]. Meat diversifies the human diet and include food rich in tastes [25–28].

Mushrooms are a valuable food product. Mushrooms contain an entire complex of macronutrients (carbohydrates, proteins, fats), micronutrients (almost the entire complex of B vitamins, fat-soluble vitamins D and E, macro- and microelements, dietary fiber, organic acids, enzymes) and they do not contain plant starch. Mushrooms differ from plants in the absence of starch. Fresh mushrooms contain 84–94% water. About half of dry solids are nitrogenous compounds, which on average are 70% proteins. Glycogen and sugar from the group of carbohydrates are found in mushrooms (trehalose is a non-reducing disaccharide; mannitol is a polyhydric alcohol; chitin as part of the fiber fraction). Instead of fiber, the shells of mushroom are composed of a specific substance – fungine. Mushrooms contain about 0.5% fat, most of it is located in the fruiting layer of the pileus.

Oyster mushrooms are dietetic food, since 100 g of mushrooms contain only 33 kcal. Despite the low calorie content, the nutrient content needed for the human body in oyster mushroom is high. The amount of amino acids and protein in mushrooms significantly exceeds that in vegetables and can compete with dairy and meat products. In protein content and amino acid composition, oyster mushrooms are closer to plant raw materials compared with raw materials of animal origin. Oyster mushroom protein contains all the essential amino acids that human needs.

Vitamins A and E found in large quantities make oyster mushroom an anti-cancer product. Oyster mushrooms contain a large amount of biologically active substances. According to studies, the juice of this mushroom prevents the growth of colibacillus, and due to its bactericidal properties, mushrooms remove radioactive substances from the human body. Regular addition of mushrooms to the diet makes a person more resistant to X-ray effects.

Oyster mushroom is involved in elimination of various salts of heavy metals and radionuclides from the human body; it enhances immunity, and has an antiviral effect. The indisputable advantage of oyster mushroom polysaccharides is their low toxicity. The fruiting bodies of mushrooms contain compounds that delay the aging process of the body due to their antioxidant activity. Oyster mushrooms are involved in elimination of cholesterol from the body, which reduces the risk of atherosclerosis.

2. Materials and methods
The product was produced according to the formulation presented in table 1.

Table 1. Formulation.

Raw materials	%
Main raw materials	
Pork	46.16
Mushrooms	11.54
Auxiliary raw materials	
Bread	13
Crackers	4
Bow	2
Melange	2
Salt	1.2
Pepper	0.1
The sensory evaluation of the resulting product was carried out, namely, the appearance, color, taste, flavor, texture, etc., and the energy value of the product was determined by the calculation method.

The production process includes the following technological operations: meat, lard, onion, and garlic were ground using a mincer with a 2–3 mm hole disk. White bread, previously soaked in water, was ground using the mincer with the same hole disk. Frozen eggs were previously thawed in water not exceeding 45 °C. This product must be used immediately for its intended purpose. Dry eggs in the form of egg powder were mixed with water in a ratio of 274 g of egg powder and 726 g of water. Flour for breading was passed through a sieve and magnetic catchers. Salt used in a dry form was previously sieved.

To produce a high-quality product, pork was used with a fatty tissue content of 30%, and a connective tissue content of not more than 15%.

The components were placed into the meat mincer according to the formulation. The ingredients were filled in the order specified in the formulation and stirred until smooth. The finished minced meat was transferred to a molding machine to shape the minced meat into cutlets.

3. Results
Traditionally, semi-finished products are made from raw meat. If vegetable or any other raw materials (for example, mushrooms) are introduced into the formulation, the biological value of products can be increased due to a large amount of vitamins and dietary fiber, while the cost of products can significantly reduce. For example, oyster mushrooms can be added to the minced meat.

In our study, we used an edible mushroom of the genus Pleurotus, family Pleurotaceae, sp. Pleurotus ostreatus (oyster mushroom). Almost all species from the genus Pleurotus are edible. The species is restricted to countries with a temperate climate, including Ukraine and Russia, where seven species of oyster mushrooms grow, of which five are edible.

In terms of sensory properties, new products are not inferior to traditional ones. Addition of mushrooms has a beneficial effect on the sensory properties of the finished product, primarily color and texture.

The mushroom added to the formulation imparts the finished product with tender texture, enhanced chewiness, and decreased stiffness (table 2).

Sample	Appearance	View and color in section	Odor	Taste	Consistency	Juiciness	Overall rating
Control: Pork cutlets	7.5	7.2	8.5	8.6	7.4	8.1	7.9
Experimental: Pork cutlets	7.7	7.4	8.7	8.8	7.8	8.4	8.1
Pork cutlets with mushrooms	7.7	7.4	8.7	8.8	7.8	8.4	8.1

Based on the results of the experiments, certain properties were evaluated. At the same time, samples containing oyster mushrooms in their formulation were distinguished by a uniform texture, and did not have voids and gray spots.
Similar to the control, samples of chopped semi-finished products with mushrooms have a pleasant appearance, color, and flavor.

According to the protocols of the descriptive panels, the optimal dosage of mushroom as a substitute was determined and amounted to 20% replacement of minced meat. Samples with application rates of 30% and 40% differed in the minimum texture ratio.

A five-point scale was used to evaluate appearance, flavor, texture, taste, juiciness, and color of the samples (figure 1).

![Figure 1. Sensory evaluation of samples.](image)

Based on the results obtained, the optimal dosage for replacing raw meat with mushrooms was equal to 20%.

Analysis of the data obtained showed that the appearance of the samples is pleasant, uniform, without gray spots and voids; without foreign taste and smell.

According to the descriptive panels, control samples and samples with 20% content of oyster mushrooms showed similar results during evaluation of sensory properties.

In the study, the energy value of the sample product was found to decrease by 28.34 kcal, and amounted to 186.92 kcal.

4. Conclusion

In the study, the percentage of a vegetable component in the cutlet formulation that does not impair the taste of the finished product was determined and amounted to 20%. The data obtained show that the developed product containing dietary fiber and micro- and macronutrients exhibits improved sensory properties. This product can be used to expand the range of meat products.

References

[1] Sydykova M, Nurymkhan G, Gaptar S, Rebezov Y, Khayrullin M, Nesterenko A and Gazeev I 2019 Using of lactic-acid bacteria in the production of sausage products: modern conditions and perspectives International Journal of Pharmaceutical Research 11 (1) 1073–83

[2] Gorelik O et al. 2017 Study of chemical and mineral composition of new sour milk bio-product with sapropel powder Annual Research & Review in Biology 18 (4) 1–5 DOI:
[3] Gavrilova N, Chernopolskaya N, Rebezov M, Moisejkina D, Dolmatova I, Mironova I, Peshcherov G, Gorielik O and Derkho M 2019 Advanced biotechnology of specialized fermented milk products *International Journal of Recent Technology and Engineering* **8 (2)** 2718–22

[4] Chernopolskaya N, Gavrilova N, Rebezov M, Harlap S, Nigmatyanov A, Peshcherov G, Bychkova T, Vlasova K and Karapetyan I 2019 Biotechnology of specialized fermented product for elderly nutrition *International Journal of Pharmaceutical Research* **11 (1)** 545–50

[5] Kassymov S, Amanzholov S, Sharipova A, Peshcherov G, Kanareikin V, Kanareikina S, Grunina O, Ponomarev E and Koval E 2020 Effect of phytoadditive and ferments on the physical, chemical and organoleptic properties of fermented milk product *International Journal of Pharmaceutical Research* **12 (3)** 501–06

[6] Kanareykina S, Kanareykin V, Ganieva E, Burakovskaya N, Shadrin M, Halepo O, Babaeva M, Nikolaeva N and Voskanyan O 2019 The structure development of yogurt with vegetable ingredients *International Journal of Recent Technology and Engineering* **8 (2)** 2718–22

[7] Mironova I, Nigmatyanov A, Radchenko E and Gizatova N 2019 Effect of feeding haylage on milk and beef quality indices *E3S Web of Conferences The conference proceedings Innovative Technologies in Environmental Science and Education. Don State Technical University* 01100

[8] Okuskhanova E, Rebezov Y, Khayrullin M, Nesterenko A, Mironova I, Gazeev I, Nigmatyanov A and Goncharov A 2019 Low-calorie meat food for obesity prevention *International Journal of Pharmaceutical Research* **11 (1)** 1589–92

[9] Kassymov S, Rebezov M, Ikonnikova A, Fedin I, Rodionov I, Rukhadze S and Bokuchava O 2020 Using of pumpkin and carrot powder in production of meat cutlets: effect on chemical and sensory properties *International Journal of Psychosocial Rehabilitation* **24 (4)** 1663–70 DOI: 10.37200/IJPR/V24I4/PR201274

[10] Igenbayev A, Okuskhanova E, Nurgazezova A, Rebezov Y, Kassymov S, Nurymkhan G, Tazeddinova D, Mironova I and Rebezov M 2019 Fatty acid composition of female turkey muscles in Kazakhstan *Journal of World's Poultry Research* **9 (2)** 78–81

[11] Nesterenko A, Koschreaev A, Kenijz N, Akopyan K, Rebezov M and Okuskhanova E 2018 Biomodification of meat for improving functional-technological properties of minced meat *Research Journal of Pharmaceutical, Biological and Chemical Sciences* **9 (6)** 95–105 WOS: 000449630700013

[12] Okuskhanova E, Assenova B, Rebezov M, Yessimbekov Zh, Kulushtayeva B, Zinina O and Stuart M 2016 Mineral composition of deer meat pâté *Pakistan Journal of Nutrition* **15 (3)** 217–22 DOI: 10.3923/pjn.2016.217.222

[13] Nesterenko A, Goushchin V, Koschreaev A, Kenijz N, Rebezov M and Khayrullin M 2020 Electromagnetic treatment of fresh sausage meat and starter cultures in summer sausage production *International Journal of Advanced Science and Technology* **29 (9S)** 1173

[14] Abilmazhinova B, Rebezov M, Fedoseeva N, Belookov A, Belookova O, Mironova I, Nigmatyanov A and Gizatova N 2020 Study chemical and vitamin composition of horsemeat cutlets with addition of pumpkin *International Journal of Psychosocial Rehabilitation* **24 (8)** 7614–21 DOI: 10.37200/IJPR/V24I8/PR280773

[15] Kuramshina N, Rebezov M, Kuramshin E, Tretjak L, Topuria G, Kulikov D, Evtushenko A, Harlap S and Okuskhanova E 2019 Heavy metals content in meat and milk of Orenburg region of Russia *International Journal of Pharmaceutical Research* **11 (1)** 1301–05 DOI: 10.21668/health.risk/2019.2.04.eng

[16] Okuskhanova E, Smolnikova F, Kassymov S, Zinina O, Mustafayeva A, Rebezov M, Rebezov Y, Tazeddinova D, Galieva Z and Maksimiuk N 2017 Development of minced meat ball composition for population from the unfavorable ecological regions *Annual Research & Review in Biology* **13 (3)** 1–9 DOI: 10.9734/ARRB/2017/33337

[17] Okuskhanova E, Assenova B, Rebezov M, Amirkhanov K, Yessimbekov Z, Smolnikova F,
Nurgazezova A, Nurymkhan G and Stuart M 2017 Study of morphology, chemical, and amino acid composition of red deer meat Veterinary World 10 (6) 623–29 DOI: 10.14202/vetworld.2017.623-629

[18] Okuskhanova E, Rebezov M, Yessimbekov Zh, Suychinov A, Semenova N, Rebezov Y, Gorelik O and Zinina O 2017 Study of water binding capacity, pH, chemical composition and microstructure of livestock meat and poultry Annual Research & Review in Biology 14 (3) 1–7 DOI: 10.9734/ARRB/2017/34413

[19] Okuskhanova E, Rebezov M, Yessimbekov Zh, Tazeddinova D, Shcherbakov P, Bezhinar T, Vagapova O, Shcherbakova T and Stuart M 2018 Rheological properties of low-calorie red deer meat pate Journal of Pharmaceutical Research International 23 (1) 1–9 DOI: 10.9734/JPRI/2018/42317

[20] Zhumanova G, Rebezov M, Assenova B and Okuskhanova E 2018 Prospects of using poultry by-products in the technology of chopped semi-finished products International Journal of Engineering and Technology (UAE) 7 (3.34) 495–98 DOI: 10.14419/ijet.v7i3.34.19367

[21] Zinina O, Merenkova S, Tazeddinova D, Rebezov M, Stuart M, Okuskhanova E, Yessimbekov Zh and Baryshnikova N 2019 Enrichment of meat products with dietary fibers: a review Agronomy Research 17 (4) 1808–22 DOI: 10.15159/AR.19.163

[22] Zinina O V and Rebezov M B 2016 Biotechnological processing of collagen containing by-products of bovine Animals Research Journal of Pharmaceutical, Biological and Chemical Sciences 7 (1) 1530–34

[23] Zinina O, Merenkova S, Rebezov M, Tazeddinova D, Yessimbekov Z and Vietoris V 2019 Optimization of cattle by-products amino acid composition formula Agronomy Research 17 (5) 2127–38 DOI: 10.15159/AR.19.159

[24] Zinina O V, Borisovich R M and Vaiscrobova E S 2016 A microstructure of the modelling systems on the basis of the ferment raw material with a high collagen content Pakistan Journal of Nutrition 15 (3) 249–54 DOI: 10.3923/pjn.2016.249.254

[25] Assenova B, Okuskhanova E, Rebezov M, Korzhikenova N, Yessimbekov Zh and Dragoev S 2016 Trace and toxic elements in meat of maral (red deer) grazing in Kazakhstan Research Journal of Pharmaceutical, Biological and Chemical Sciences 7 (1) 1425–33

[26] Akhmetova S, Suleimenova M and Rebezov M 2019 Mechanism of an improvement of business processes management system for food production: case of meat products enterprise Entrepreneurship and sustainability issues 7 (2) 1015–35 DOI: 10.9770/jesi.2019.7.2(16)

[27] Rebezov M, Naumova N, Lukin A, Alkhamanova G and Khayrullin M 2011 Food behavior of consumers (for example, Chelyabinsk) Voprosy Pitaniia 80 (6) 23–26

[28] Kabulov B, Kassymov S, Moldabayeva Zh, Rebezov M, Zinina O, Chernyshenko Yu, Arduvanova F, Peshcherov G, Makarov S and Vasyukova A 2020 Developing the formulation and method of production of meat frankfurters with protein supplement from meat by-products EurAsian Journal of BioSciences 14 (1) 213–18 DOI: 10.31838/jcr.07.02.30