ANTHYPERLIPIDEMIC AND HEPATOPROTECTIVE STUDIES ON LEAVES OF MACARANGA TANARIUS

PHEBE HENDRA*, OKTARIANU AURELIA JAMIL, DIAN AYO MAHARANI, MARIA ANGELIKA SUHADI, CYNDI YULANDA PUTRI, FENTY, JEFFRY JULIANUS

Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sanata Dharma University, Jogjakarta, Indonesia.
Email: phebe_hendra@usd.ac.id

Received: 04 September 2016, Revised and Accepted: 17 September 2016

ABSTRACT

Objective: This study investigated the antihyperlipidemic and hepatoprotective effects of the hexane-ethanol fraction of methanol extract of Macaranga tanarius (HEM) in rats.

Methods: The hexane-ethanol fraction was screened for toxicity by oral acute toxicity study. The antihyperlipidemic effect of the hexane-ethanol fraction and the unsolved of the hexane-ethanol fraction is measured against Wistar rats induced by glucose-fructose diet for 42 days through measuring serum cholesterol, triglyceride (TG), high-density lipoprotein cholesterol (HDL-c), low-density lipoprotein cholesterol (LDL-c), and fasting blood glucose. The hepatoprotective effect of the hexane-ethanol fraction is determined against Wistar rats with liver damage induced by carbon tetrachloride through measuring serum glutamate pyruvate transaminase (SGPT), serum glutamate oxaloacetate transaminase (SGOT), alkaline phosphatase (ALP), albumin, lactate dehydrogenase (LDH), and total bilirubin.

Results: There is no toxic effect that was observed on acute toxicity study. The TG, LDL-c, and fasting blood glucose levels were significantly (p<0.05) reduced after both of treatment the hexane-ethanol fraction and the unsolved HEM. Administration of the hexane-ethanol fraction 68.6 mg/kgBW significantly (p<0.05) prevented elevation of SGPT, SGOT, LDH, ALP, and decreasing of albumin level.

Conclusion: The study showed antihyperlipidemic and hepatoprotective activities of the HEM in animal models.

Keywords: Macaranga tanarius, Antihyperlipidemic, Hepatoprotective.

INTRODUCTION

Nonalcoholic fatty liver disease (NAFLD) is defined as the presence of hepatic steatosis with no evidence of hepatic cellular injury in the form of ballooning of the hepatocytes. NAFLD is associated with metabolic risk factors such as obesity, diabetes mellitus, and dyslipidemia [1]. Global prevalence of NAFLD is 25.24%, which was highest in the Middle East and South America and the lowest prevalence in Africa. Metabolic comorbidities associated with NAFLD included obesity, type 2 diabetes, hyperlipidemia, hypertension, and metabolic syndrome. As the global epidemic continues to fuel development of metabolic disorders, NAFLD will create a massive clinical and economic burden [2].

Carbon tetrachloride (CCL) is one of the most commonly hepatotoxic agents that have been reported to show steatosis, centrilobular necrosis, inflammation, fibrosis, and liver cancer in the experimental animals [3,4]. Administration of high carbohydrate diet in animal models is frequently induced obesity, insulin resistance, impaired glucose tolerance, hyperinsulinemia, hypertension, and hyperlipidemia [5-10].

Macaranga tanarius is a pioneer species in disturbed forest areas. It has great potential in scavenging free radical [11,12] and can be a vital source of antioxidant phytochemicals [13]. Anti-2,2-diphenyl-picrylhydrazyl radical-scavenging activity of the isolated compounds of M. tanarius also been reported previously [14-16]. These activities are effective in treating CCL, induced toxicity.

The isolated ellagitannin and chebulagic acid of M. tanarius was found to inhibit α-glucosidase and intestinal maltase that may benefit diabetes treatment [17]. Although the earlier study has demonstrated that the hexane-ethanol fraction of methanol extract of M. tanarius (HEM) for 5 days has not antidiabetic and antihyperlipidemic in rats feed with high glucose-fructose (GF) diet [10], a prolonged administration of HEM remains to be established.

In this present study, the HEM was interesting to observe for their hepatoprotective and antihyperlipidemic anti-inflammatory activities. Carbon tetrachloride was chosen as model study for hepatotoxicity and administration of high GF to induce hyperlipidemia.

METHODS

Plant material and chemicals

The fresh leaves of M. tanarius were collected from Sleman, Yogyakarta, Indonesia and were identified and authenticated using descriptive literature. A voucher specimen was deposited in the Laboratory of Pharmaceutical Biology, Pharmacy Faculty, Sanata Dharma University, Yogyakarta, Indonesia. Sodium carboxymethyl cellulose (CMC) was supplied by Bracteco Chemika, Indonesia. Glucose, fructose, methanol, and carbon tetrachloride as hepatotoxin were from E. Merck (Darmstadt, Germany). Olive oil was supplied by Bertoli, Italy. Diagnostic kit for the estimation of serum glutamate pyruvate transaminase (SGPT), serum glutamate oxaloacetate transaminase (SGOT), alkaline phosphatase (ALP), albumin, lactate dehydrogenase (LDH), total bilirubin, glucose, cholesterol, high-density lipoprotein cholesterol (HDL-c), low-density lipoprotein cholesterol (LDL-c), and triglyceride (TG) kits were purchased were from Roche Diagnostics GmbH, Mannheim, Germany. All other chemicals were of analytical grade and were purchased from E. Merck, Darmstadt, Germany.

Preparation of plant extract

Dried leaves of M. tanarius were extracted with 50% aqueous methanol for 24 hrs at room temperature. The crude extract was extracted with hexane-ethanol 50:50 for 24 hrs at room temperature. The resulting suspension was filtered and was evaporated by vacuum rotary evaporator at 50°C to yield a solid residue of soluble HEM (yield 21%) and unsoluble of HEM (UHEM) (yield 79%).

*Corresponding author.
Test animals and housing
Adult male rats of Wistar strain weighing 150-250 g were selected for this experiment. The animals were obtained from the Imo University Laboratory of Pharmacology in Makurdi, Nigeria. The animals were housed in standard cages (five animals per cage) at temperature 22±2°C and 12-14 hrs light dark cycle. The animals were provided with pelleted diet as normal diet or GF-enriched diet and water ad libitum. The experimental protocol and procedures used in this study were approved by the Institutional Animal Ethical Committee, University of Makurdi.

Acute oral toxicity study
Acute toxicity study was performed according to the acute toxic conventional method. Adult female rats of Wistar strain weighing 150-250 g were used for acute toxicity study. The animals were kept in fasting condition for overnight providing only water, and then, the HEM was administered orally at the doses of 34.2, 34.2, and 342.0 mg/kg BW. The animals were closely observed for any signs of toxicity during the first 3 hrs, and the number of dead animals was recorded at 24 hrs.

Antihyperlipidemic study
Healthy rats were weighed and randomly divided into 4 groups of 5 animals each. Group 1 as normal control rats was fed normal diet for 52 days. Group 2-4 were fed GF diets for 42 days [9,10]. After 42 days, Group 2 were received CMC as negative control, whereas Group 3 were administered HEM 34.3 mg/kgBW and Group 4 were given UHEM 34.3 mg/kgBW. All treatments were fed GF diet and continued for 10 days following oral administration. Blood for biochemical analysis from all groups was obtained by sinus orbitalis after 24 hrs administration. The blood serum was used to measured serum cholesterol, TG, HDL-c, LDL-c, and fasting blood glucose. All tests were estimated in a Cobas C501 analyzer using commercial kits (Roche Diagnostic GmbH, Germany) following standard procedures.

Table 1: Effect of HEM on different biochemical parameters in carbon tetrachloride-induced hepatotoxicity

Treatment	Cholesterol (mmol/l)	Triglyceride (mmol/l)	HDL-c (mmol/l)	LDL-c (mmol/l)	Fasting blood glucose (mmol/l)
Normal diet	1.70±0.14	0.07±0.10	0.81±0.02	0.23±0.01	3.21±0.16
GF	1.89±0.15	2.98±0.25	0.85±0.05	0.33±0.04	4.97±0.29
GF+HEM 34.3 mg/kgBW	1.81±0.19	1.25±0.49	0.80±0.08	0.25±0.03	3.81±0.61
GF+UHEM 34.3 mg/kgBW	1.92±0.23	2.12±0.14	0.76±0.03	0.25±0.01	3.83±0.26

Values are expressed as mean±SD of five animals in each group; *p<0.05 vs normal diet; **p<0.05 vs GF. SGPT: Serum glutamate pyruvate transaminase, SGOT: Serum glutamate oxaloacetate transaminase, HDL: High-density lipoprotein cholesterol, LDL: Low-density lipoprotein cholesterol, UHEM: Unsoluble of hexane-ethanol fraction of Macaranga tanarius, GF: Glucose-fructose, HEM: Hexane-ethanol fraction of methanol extract of Macaranga tanarius, SD: Standard deviation

Table 2: Effect of HEM on different biochemical parameters in carbon tetrachloride-induced hepatotoxicity

Treatment	SGPT (U/l)	SGOT (U/l)	Albumin (mg/dl)	LDH (U/l)	ALP (U/l)	Total Bilirubin (mg/dl)
Normal	55.3±4.4	144.0±6.5	3.47±0.15	1021.2±277	177.0±29.0	0.16±0.01
Standard CCl	156.1±16.9	674.3±19.8	2.95±0.12	1848.0±106.8	24.4±30.6	0.22±0.05
HEM 34.3 mg/kgBW	72.2±10.9	510.4±17.6	3.39±0.19	9684±119.0	150.0±18.2	0.22±0.06
HEM 6.86 mg/kgBW	57.3±10.7	170.0±39.1	3.27±0.09	875.0±43.3	18.0±12.1	0.21±0.02
HEM 137.1 mg/kgBW	157.4±20.3	639.4±35.6	3.09±0.11	835.8±54.0	196.6±21.5	0.24±0.02

Values are expressed as mean±SD of five animals in each group; *p<0.05 vs normal diet; **p<0.05 vs standard. SGPT: Serum glutamate pyruvate transaminase, SGOT: Serum glutamate oxaloacetate transaminase, LDH: Lactate dehydrogenase, ALP: Alkaline phosphatase, HEM: Hexane-ethanol fraction of methanol extract of Macaranga tanarius, SD: Standard deviation

Statistical analyses
The results are expressed as mean±standard deviation. Data were analyzed using Kolmogorov-Smirnov test, followed by analysis of variance with 95% confidence interval. Scheffe test was used for significantly different results using the IBM SPSS 22. Differences were regarded as statistically significant with p<0.05.

RESULTS
Acute toxicity study in rats indicated that oral administration of GF diet produced no toxic effect. No unusual changes in behavior or in locomotor activity and no signs of intoxication were observed.

The administration of GF diet exhibited a significant (p<0.05) rise in TG, LDL-c, and fasting blood glucose. This was significantly (p<0.05) reduced after both of treatment the HEM and the UHEM as shown in Table 1.

The effect of HEM on SGPT, SGOT, ALP, albumin, LDH, total bilirubin in CCl intoxicated rats was summarized in Table 2. The biomarker enzyme levels are mainly increased in the hepatic damage by the CCl. SGPT, SGOT, LDH, ALP, and total bilirubin increased significantly (p<0.05) and albumin decreased significantly (p<0.05) with CCl treated. Administration of HEM 68.6 mg/kgBW significantly (p<0.05) prevented elevation of SGPT, SGOT, LDH, ALP, and decreasing of albumin level, thus signifying its hepatoprotective effect.

DISCUSSION
For the acute toxicity study, the results suggest that the HEM is not toxic after an acute expose to the dose of 3420 mg/kg.

After 42 days of GF diet, the elevation of TG, LDL-c, and fasting blood glucose levels were recorded in this study indicated that GF diet caused hyperlipidemia and hyperglycemia in rats. Our previous study demonstrated that the HEM for 5 days has not antidiabetic and antihyperlipidemic in rats fed with high GF diet [10]. However, in this study, concurrent administration 10 days both of HEM markedly decreased the release of TG, LDL-c, and fasting blood glucose levels. This indicates that the prolonged administration of fraction possesses an antihyperlipidemic and antihyperglycemic effect against GF diet.
Puteri and Kawabata, 2010, have investigated the α-glucosidase inhibitor activity of isolated of *M. tanarius* [17]. It is reasonable to suppose the antihyperlipidemic and antihyperglycemic effect of HEM. Similarly, we have shown that the HEM contained pharmacologically active compound(s) that interfere with the elevation of TG, LDL-c, and fasting blood glucose levels. In contrast, it can be postulated that the HEM contained pharmacologically active compound(s) that interfere with the elevation of TG, LDL-c, and fasting blood glucose levels.

In this present study, we examined the hepatoprotective effect of HEM against liver damage induced by carbon tetrachloride in rats. Carbon tetrachloride as common hepatotoxin used in the experimental study, induced a significant elevation of blood hydroperoxide and malondialdehyde (lipid peroxidation products in liver; moreover, this toxicant caused a significant decrease in glutathione content in hepatic tissue [23]). Carbon tetrachloride exhibited drastic alterations on liver such as extensive fatty change, fatty degeneration [24], and infiltration by inflammatory cells [25]. Administration of carbon tetrachloride causes severe liver injuries in the present rats. Our results provided evidence for the hepatotoxicity effect of carbon tetrachloride (2 mL/kg) on the liver functions (Table 2). The SGPT, SGOT, ALP, LDH, albumin, and total bilirubin level significantly increased when compared with the normal rats [4,26,27]. This injury is indicated of liver cell damage as steatosis and leakage of enzymes from cell [18,22,28].

The result of this study shows that the HEM has the potential to protect the hepatotoxicity. Since the HEM contains antioxidant compound [11-16], it might effective in treating CCl₄-induced hepatotoxicity. It results show that the HEM at dose of 68.6 mg/kgBW gave the most potent hepatoprotective effect which decreased the elevation of SGPT, SGOT, LDH, ALP, and increasing of albumin level. The possible mechanism of action may be associated with scavenging of free radicals for CCl₄ toxicity.

CONCLUSION

In conclusion, the study showed antihyperlipidemic and hepatoprotective activities of HEM in animal models.

ACKNOWLEDGMENT

This research project was supported by a grant from Ministry of Research, Technology and Higher Education of the Republic of Indonesia with contract number 010/HB-LIT/III.2016.

REFERENCES

1. Chalasani N, Younossi Z, Lavine JE, Diehl AM, Brunt EM, Cusi K, et al. The diagnosis and management of non-alcoholic fatty liver disease: Practice guideline by the American association for the study of liver diseases, American college of gastroenterology, and the American gastroenterological association. Hepatology 2012;55(6):2005-23.

2. Younossi ZM, Koenig AB, Abdelatif D, Fazeli Y, Henry L, Wymer M, et al. Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016;64(1):73-84.

3. Riordan JD, Nadeau JH. Modeling progressive non-alcoholic fatty liver disease in the laboratory mouse. Mammm Genome 2014;25(9-10):473-86.

4. Jonnalagadda VG, Selkar NA, Vemula SK, Chawda MB, Thakur KS, et al. Abrogation of carbon tetrachloride (CCL₄) induced hepatotoxicity by arogyavardhini in Wistar rats. Asian J Pharm Clin Res 2014;7(1):183-5.

5. Elliott SS, Kein NL, Stern JS, Teff K, Havel PJ. Fructose, weight gain, and the insulin resistance syndrome. Am J Clin Nutr 2002;76(5):911-22.

6. Nugroho AE. Review: Animal model of diabetes mellitus: Pathology and mechanism of some diabetogenic. Biodiversitas 2006;7(7):378-82 (in Indonesian).

7. Saleh DO, El-Awdan SA, Noef SM, El-Eraky WI, El-Khatib AS, Kenawy SA. Estrogens improve the cardiovascular alterations in fructose-induced insulin resistant ovariectomized rats. Int J Pharm Pharm Sci 2015;7(7):241-7.

8. Srivastava SP, Mishra A, Lakshmi V, Tamrakar AK, Srivastava MN, Srivastava AK. Antidiabetic and antidiyslipemic activity of ethyl acetate fractions of *Syzygium grantum* and *Syzygium mohollicensis* on high fructose high fat and high sucrose high fat fed-dosed streptozotocin treated diabetic rats. Int J Pharm Pharm Sci 2017;5(2):537-43.

9. Aligita W, Kurniati NF, Sukandar EY. Antidiabetic study of combination of *Andrographis paniculata* (Burm. F.) Wallich. Ex Ncss. Herbs extract and *Guazuma ulmifolia* Lamb. Leaves extract in obese diabetic mice model. Int J Pharm Pharm Sci 2016;8(1):316-20.

10. Hendra P, Fenty, Julianus J. Evaluation of antidiabetic and antihyperlipidemic activities of *Macaranga tanarius* in rats feed with high glucose-fructose diet. Int J Pharm Pharm Sci 2016;8(1):462-3.

11. Kumazawa S, Nakamura J, Murase M, Miyagawa M, Ahn MR, Fukushima M, Fukumoto S. Plant origin of okinawan propolis: Honeybee behavior observation and phytochemical analysis. Naturwissenschaften 2008;95(8):781-6.

12. Lim TY, Lim YY, Yale CM. Evaluation of antioxidant and anti-tyrosinase activity of isolated of *Andrographis paniculata* (in Indonesian). Hendra et al. Asian J Pharm Clin Res, Vol 10, Issue 1, 2017, 239-241