Model of Pulsed Electrical Discharge Machining (EDM) using RL Circuit

Ade Erawan Minhat*, Nor Hisham Hj Khamis**, Azli Yahya*, Trias Andromeda*, Kartiko Nugroho***

* Department of Electronic and Computer Engineering, Universiti Teknologi Malaysia
** Department of Communication Engineering, Universiti Teknologi Malaysia
*** Department of Biotechnology and Medical Engineering, Universiti Teknologi Malaysia

ABSTRACT

This article presents a model of pulsed Electrical Discharge Machining (EDM) using RL circuit. There are several mathematical models have been successfully developed based on the initial, ignition and discharge phase of current and voltage gap. According to these models, the circuit schematic of transistor pulse power generator has been designed using electrical model in Matlab Simulink software to identify the profile of voltage and current during machining process. Then, the simulation results are compared with the experimental results.

KeyWords:
Electrical Discharge Machining
Pulse Width Modulation
Gap current
Gap voltage

1. INTRODUCTION

Electrical Discharge Machining (EDM) is a machining process that enables noncontact drill via electrochemical effects irrespective of the hardness of the workpiece (see Figure 1). In EDM process, pulse power generator is required in order to obtain the discharge spark. The efficiency of production is depending on the performance of the pulse power generator. Control servo is used to control the space gap between electrode and workpiece. In creating the spark discharge, a current flow from the electrode through a dielectric fluid due to the gap distance between electrode and workpiece is reduced to a very small clearance approximately 10 to 50 microns [1, 2]. Electrical energy from the spark is converted into heat energy, then builds up the workpiece temperature and melts the area on its surface. The working pulse power generator is an important role in affecting the material removal rate (MRR) and the properties of the machined surface [3, 4]. The filtration system is used to maintain the dielectric fluid and flush out the eroded gap particles. This article presents the pulse phase in the EDM process due to improve in machining parameter. In order to prove the theoretical more clearly is determine by performing the simulation and experimental studies.

Copyright © 2014 Institute of Advanced Engineering and Science. All rights reserved.
2. EDM POWER GENERATOR

Generally, EDM power generator is configured by two important parts known as power supply and pulse generator as shown in Figure 2 [5]. There are several of power supply can be used, such as linear power supply and switching mode power supply (SMPS). Based on the power consumption cost issue, higher material removal rate and good surface finish in EDM parameter, the study is focused on the switching power supply [6]. By using the SMPS topology, the configuration has a high efficiency and high performance [1], [7]-[8].

Pulse generator is divided into two types. There are relaxation (resistance-capacitance) generator and transistor pulse generator. The relaxation circuit type of EDM pulse power generator create pulses through the capacitor charge and discharge behavior. Discharge energy is determined by the used capacitance and by the stray capacitance that exists between electrode and workpiece. The electrical sparks are created from the released charges of capacitor.

The transistor pulse generator is widely used in conventional EDM and provides a higher MRR due to its high discharge energy [9]-[11]. Moreover, the pulse duration and discharge current can be arbitrarily changed depending on the required machining characteristics. The transistor pulse generator generates a rectangular pulse discharges by controlling the current or voltage source. By changing the duty cycle, pulse width modulation is used to control the transistor states. To ensure a constant processing, the MOSFET transistor is used as a switch to control the output pulse power as shown in Figure 3.
3. MODELLING EDM SYSTEM

In this study, a model of EDM pulse power generator was developed to investigate the pulse profile during EDM process. Based on Figure 3, the schematic circuit of EDM pulse generator has been developed and the mathematical model has been proved by the derived equation. In this schematic design, DC power source as an input source is connected to resistor R_1 (load). Then connected to the gap model between electrode and workpiece which is consisting of R_{ig}, R_{dis} and L_{dis}. To get pulse signal at the output side, it is connected to the MOSFET. Basically there are three phases in the pulse EDM is known as the initial phase, the ignition phase and discharge phase.

3.1. Initial Phase

As can be seen from Figure 4, the schematic circuit of EDM pulse generator and the gap model has been designed. In the initial phase of EDM process, the gap is in open circuit state while switch S_1 is off. In this condition, the output voltage is equal to V_{gap} and current gap is zero. This is occur when the position of the electrode and the workpiece is far or non-discharge.

By applying Kirchhoff’s voltage law. The voltage gap is in open circuit voltage state can be expressed as follows.

$$V_{in} = V_{r_{shunt}} + V_{gap}$$
(1)

$$V_{gap} = V_{in} - V_{r_{shunt}} = V_{ac}$$
(2)

When the circuit is not formed in a closed-loop network, then no current through in the circuit.

$$i_{gap} = \frac{V_{gap}}{r_{shunt} + r_{ig}} = 0$$
(3)

3.2. Ignition Phase

In the ignition phase, a strong electric field is established between electrode and workpiece. Due to the attractive force of the electric field, there is created an ionization path through the dielectric. During the process, if ignition delay time is too long, this means the circuit is in open circuit and if the ignition delay time is too short, this means the circuit is a short circuit. Both cases are abnormal. It is important keep the ignition delay time to be a constant. From Figure 5, the switch S_1 is turn on and S_2 is turn off. The circuit is formed in a closed loop network. The gap voltage is refers to the voltage through resistor R_{ig} which is become a voltage divider between resistors R_{ig} and R_{shunt}.

$$V_{in} = V_{r_{shunt}} + V_{gap}$$

Figure 4. The circuit in ignition phase condition

Figure 5. The circuit in ignition phase condition
Applying Kirchhoff’s current law,

\[i_{\text{gap}} = i_{\text{rig}} + i_{\text{rdis}} \] \hspace{1cm} (4)

When \(i_{\text{rdis}} \) is zero, current gap during ignition phase can be expressed as follows,

\[i_{\text{gap}} = i_{\text{rig}} \] \hspace{1cm} (5)

According to Figure 5, the circuit is formed in a closed-loop network. The gap voltage is the difference between \(V_{\text{in}} \) and voltage across \(R_{\text{ig}} \). By applying Kirchhoff’s voltage law, gap voltage can be expressed as follows,

\[V_{\text{in}} = V_{\text{shunt}} + V_{\text{gap}} \] \hspace{1cm} (6)

\[V_{\text{in}} = i_{\text{gap}} R_{\text{shunt}} + V_{\text{gap}} \] \hspace{1cm} (7)

\[V_{\text{gap}} = V_{\text{in}} - i_{\text{gap}} R_{\text{shunt}} \] \hspace{1cm} (8)

From Equation (8), the gap voltage can be express as the voltage divider rule during the ignition phase,

\[V_{\text{gap}} = \frac{R_{\text{ig}}}{R_{\text{shunt}} + R_{\text{ig}}} V_{\text{in}} \] \hspace{1cm} (9)

3.3. Discharge Phase

During the discharge phase, it is initiated by moving the electrode very close to the workpiece. A plasma channel has been formed due to ionization of dielectric. Due to the spark gap, voltage drops and current rises abruptly which forms the crater at spot of discharge on the workpiece.

As evident in Figure 6, both of switch S1 and switch S2 are turn ON. Switch S1 has been used due to control the main pulse in pulse generator such duty cycle, time ON and time OFF. Whereas, switch S2 used to control the transient current and voltage drop during the discharge phase. In order to get current gap \(i_{\text{gap}} \), it is obtained by combination between current through resistor \(R_{\text{ig}} \) and current at \(i_{\text{rdis}} \).

Refer to the gap model in Figure 6, it consist an inductance \(L_{\text{dis}} \) connected in series with a resistance \(R_{\text{dis}} \) and parallel with resistance \(R_{\text{ig}} \). The transient time of current and voltage during the discharge phase is determined by the relationship between the inductance \(L_{\text{dis}} \) and the resistance \(R_{\text{dis}} \). The fixed value resistance \(R_{\text{dis}} \) and larger the inductance \(L_{\text{dis}} \), the slower will be the transient time. However, for a fixed value inductance \(L_{\text{dis}} \), by increasing the resistance value \(R_{\text{dis}} \), fast transient time and therefore the time constant of the circuit becomes shorter. In general, the voltage will drop to about 20V-30V during discharge time [12].

Then, the process will be repeated to the ignition phase which is both switch S1 and switch S2 is turn off. All phases will be repeated until the end of the EDM process.

In mathematical model, the gap voltage can be expressed as follows.

\[V_{\text{gap}} = i_{\text{rdis}} R_{\text{dis}} + L_{\text{dis}} \frac{\text{d}i_{\text{rdis}}}{\text{dt}} \] \hspace{1cm} (10)

\[V_{\text{gap}} - i_{\text{rdis}} R_{\text{dis}} - L_{\text{dis}} \frac{\text{d}i_{\text{rdis}}}{\text{dt}} = 0 \] \hspace{1cm} (11)

Figure 6. The circuit in discharge phase condition which is switch (S1) and switch (S2) is turn ON

Model of Pulsed Electrical Discharge Machining (EDM) using RL Circ (Ade Erawan Minhat)
After adjusted,
\[
\frac{dt}{L_{dis}} = \frac{\text{dir}_{dis}}{V_{gap} - \ln_{dis} R_{dis}}
\]
(13)

Integrating both the equations,
\[
\int_{t_0}^{t} \frac{dt}{L_{dis}} = \int_{0}^{i} \frac{\text{dir}_{dis}}{V_{gap} - \ln_{dis} R_{dis}}
\]
(14)
\[
\frac{t}{L_{dis}} = \int_{0}^{i} \frac{\text{dir}_{dis}}{V_{gap} - \ln_{dis} R_{dis}}
\]
(15)

By using assumption,
\[
z = V_{gap} - i_{R_{dis}} R_{dis}
\]
(16)
\[
\frac{dz}{di_{dis}} = - R_{dis}
\]
(17)
\[
di_{R_{dis}} = - \frac{dz}{R_{dis}}
\]
(18)

So, \(-\frac{R_{dis}}{L_{dis}}\) can be expressed as follows.
\[
\frac{t}{L_{dis}} = - \frac{1}{R_{dis}} \int_{0}^{i} \frac{dz}{z}
\]
(19)
\[
-\frac{R_{dis}}{L_{dis}} = \frac{i}{z} \int_{0}^{i} \frac{dz}{z}
\]
(20)

By using integration rule,
\[
\ln(z) = \int_{0}^{i} \frac{dz}{z}
\]
(21)

The Equation (20), can be expressed as follows,
\[
-\frac{R_{dis}}{L_{dis}} = \ln(z)_{0}^{i}
\]
(22)
\[
-\frac{R_{dis}}{L_{dis}} = \ln(V_{gap} - i_{R_{dis}} R_{dis})_{0}^{i}
\]
(23)

Applying limits, \(-\frac{R_{dis}}{L_{dis}}\) can be expressed as follows,
\[
-\frac{R_{dis}}{L_{dis}} = \ln(V_{gap} - i_{R_{dis}} R_{dis}) - \ln(V_{gap})
\]
(24)
\[
-\frac{R_{dis}}{L_{dis}} = \ln\left(\frac{V_{gap} - i_{R_{dis}} R_{dis}}{V_{gap}}\right)
\]
(25)

Taking antilog on both sides in Equation (25),
\[
e^{-\frac{R_{dis}}{L_{dis}}} = \frac{V_{gap} - i_{R_{dis}} R_{dis}}{V_{gap}}
\]
(26)
\[V_{\text{gap}} e^{-\frac{R_{\text{dis}}}{L_{\text{dis}}}} = V_{\text{gap}} - i_{R_{\text{dis}}} R_{\text{dis}} \] \hspace{1cm} (27)

The current \(i_{R_{\text{dis}}} \) flow through inductance \(L_{\text{dis}} \) in series to resistance, \(R_{\text{dis}} \) can be expressed as follows.

\[i_{R_{\text{dis}}} = \frac{V_{\text{gap}}}{R_{\text{dis}}} \left(1 - e^{-\frac{R_{\text{dis}}}{L_{\text{dis}}}} \right) \] \hspace{1cm} (28)

Then, the current gap can be obtained as follows.

\[i_{\text{gap}} = i_{R_{\text{dis}}} + i_{R_{\text{dis}}} \] \hspace{1cm} (29)

In using Equation (4), the current gap in discharge condition is,

\[i_{\text{gap}} = \frac{V_{\text{gap}}}{R_{\text{ig}}} + \frac{V_{\text{gap}}}{R_{\text{dis}}} \left(1 - e^{-\frac{R_{\text{dis}}}{L_{\text{dis}}}} \right) \] \hspace{1cm} (30)

\[i_{\text{gap}} = V_{\text{gap}} \left[\frac{1}{R_{\text{ig}}} \left(1 - e^{-\frac{R_{\text{dis}}}{L_{\text{dis}}}} \right) + \frac{1}{R_{\text{dis}}} \right] \] \hspace{1cm} (31)

Using the Kirchhoff law again, \(V_{\text{in}} \) can be determined by,

\[V_{\text{in}} = i_{\text{gap}} R_{\text{shunt}} + V_{\text{gap}} \] \hspace{1cm} (32)

In this phase \(V_{\text{gap}} = V_{\text{dis}} \), the discharge voltage can be represented as below,

\[V_{\text{dis}} = V_{\text{in}} - i_{\text{gap}} R_{\text{shunt}} \] \hspace{1cm} (33)

As illustrated in Figure 7, the three phases of EDM pulses has been shown in details. based on the
time duration in one period, the initial phase from 0 until \(t_1 \), followed by the ignition phase of the \(t_1 \) to \(t_2 \) and
the next phase of the discharge of the \(t_2 \) to \(t_3 \).

\[V_{\text{in}} = i_{\text{gap}} R_{\text{shunt}} + V_{\text{gap}} \] \hspace{1cm} (32)

In this phase \(V_{\text{gap}} = V_{\text{dis}} \), the discharge voltage can be represented as below,

\[V_{\text{dis}} = V_{\text{in}} - i_{\text{gap}} R_{\text{shunt}} \] \hspace{1cm} (33)

As illustrated in Figure 7, the three phases of EDM pulses has been shown in details. based on the
time duration in one period, the initial phase from 0 until \(t_1 \), followed by the ignition phase of the \(t_1 \) to \(t_2 \) and
the next phase of the discharge of the \(t_2 \) to \(t_3 \).

Figure 7. The profile of EDM pulse which is consists switch \((S_1) \), switch \((S_2) \), gap voltage \((V_{\text{gap}}) \) and current
\[V_{\text{gap}} e^{-\frac{R_{\text{dis}}}{L_{\text{dis}}}} = V_{\text{gap}} - i_{R_{\text{dis}}} R_{\text{dis}} \] \hspace{1cm} (27)

The current \(i_{R_{\text{dis}}} \) flow through inductance \(L_{\text{dis}} \) in series to resistance, \(R_{\text{dis}} \) can be expressed as follows.

\[i_{R_{\text{dis}}} = \frac{V_{\text{gap}}}{R_{\text{dis}}} \left(1 - e^{-\frac{R_{\text{dis}}}{L_{\text{dis}}}} \right) \] \hspace{1cm} (28)

Then, the current gap can be obtained as follows.

\[i_{\text{gap}} = i_{R_{\text{dis}}} + i_{R_{\text{dis}}} \] \hspace{1cm} (29)

In using Equation (4), the current gap in discharge condition is,

\[i_{\text{gap}} = \frac{V_{\text{gap}}}{R_{\text{ig}}} + \frac{V_{\text{gap}}}{R_{\text{dis}}} \left(1 - e^{-\frac{R_{\text{dis}}}{L_{\text{dis}}}} \right) \] \hspace{1cm} (30)

\[i_{\text{gap}} = V_{\text{gap}} \left[\frac{1}{R_{\text{ig}}} \left(1 - e^{-\frac{R_{\text{dis}}}{L_{\text{dis}}}} \right) + \frac{1}{R_{\text{dis}}} \right] \] \hspace{1cm} (31)

Using the Kirchhoff law again, \(V_{\text{in}} \) can be determined by,

\[V_{\text{in}} = i_{\text{gap}} R_{\text{shunt}} + V_{\text{gap}} \] \hspace{1cm} (32)

In this phase \(V_{\text{gap}} = V_{\text{dis}} \), the discharge voltage can be represented as below,

\[V_{\text{dis}} = V_{\text{in}} - i_{\text{gap}} R_{\text{shunt}} \] \hspace{1cm} (33)

As illustrated in Figure 7, the three phases of EDM pulses has been shown in details. based on the
time duration in one period, the initial phase from 0 until \(t_1 \), followed by the ignition phase of the \(t_1 \) to \(t_2 \) and
the next phase of the discharge of the \(t_2 \) to \(t_3 \).

\[V_{\text{in}} = i_{\text{gap}} R_{\text{shunt}} + V_{\text{gap}} \] \hspace{1cm} (32)

In this phase \(V_{\text{gap}} = V_{\text{dis}} \), the discharge voltage can be represented as below,

\[V_{\text{dis}} = V_{\text{in}} - i_{\text{gap}} R_{\text{shunt}} \] \hspace{1cm} (33)

As illustrated in Figure 7, the three phases of EDM pulses has been shown in details. based on the
time duration in one period, the initial phase from 0 until \(t_1 \), followed by the ignition phase of the \(t_1 \) to \(t_2 \) and
the next phase of the discharge of the \(t_2 \) to \(t_3 \).
4. SIMULATION AND EXPERIMENTAL RESULTS

By using the electrical model in Matlab Simulink software, the simulation process has been conducted. As can be seen in Figure 8, the configuration of the EDM circuit was constructed based on the mathematical model derived. In this simulation, the parameters have been set as the input voltage is 100V, 50 percent duty cycle and 100 microsecond time period. Displayed in Figure 9(a) shows the results obtained from the simulation design is open circuit voltage, \(V_{oc} = 100V \), discharge voltage, \(V_{dis} = 28V \) and current gap, \(I_{gap} = 2.8A \).

In the experimental, transistor type of EDM pulse power generator is used to the design. The following input process parameters are used such as input voltage, \(V_{in} = 100V \), load resistance, \(R_{load} = 113\Omega \) and copper material for electrode and workpiece. As can be observed in Figure 9(b), the output result shows the open circuit voltage, \(V_{oc} = 95V \), discharge voltage, \(V_{dis} = 18V \) and current gap (current through the load resistance), \(I_{gap} = 0.8A \). Comparing the simulation and the experimental results, it is evident that these results are in good agreement with the mathematical model derived.

To analyze the completed result, surface finish of the experimental material were viewed under the OMAX Microscope about 100X magnification as shown in Figure 10(b) and Figure 10(c). The result shows the diameter hole is about 1 mm with better surface quality. Usually, a small current gap obtained the better surface finish compare with higher current [13].

![Figure 8](image_url)

Figure 8. The electrical model of EDM pulse power generator and the configuration of EDM pulses inside the block diagram

![Figure 9](image_url)

Figure 9. (a) The simulation results show the pulse width modulation, voltage and current in the gap. (b) The gap waveform displayed from the experiment (Ch1: Gap Voltage, Ch2: Gap Current)
5. CONCLUSION

In conclusion, a new mathematical model of EDM pulses has been presented and implemented successfully. Based on current and voltage gap, there are three mathematical models has been developed such as initial, ignition and discharge phase. Referring to the equations described above, Equation (2) and Equation (3) can be used in an initial phase conditions while Equation (5) and Equation (9) on the ignition phase and Equation (31) and Equation (33) for discharge phase. Mathematical model of EDM pulses as the objective of this study has been achieved. The model has been validated by simulation and experimental result. The performance of the simulation design has been tested and give a good result compared with the theoretical pulse shape. Comparing simulation and experimental result, this mathematical model is applicable to other simulation studies relating to the EDM pulses. This is great theoretical and practical importance for EDM process.

ACKNOWLEDGMENTS

The authors would like to thank the Universiti Teknologi Malaysia (UTM) and Ministry of Education (MoE) Malaysia for financial support through Research University Grant (GUP) with Vote No.05H41.

REFERENCES

[1] A Yahya, et al. Communication within hardware of Electrical Discharge Machining (EDM) system. Jurnal Teknologi (Special Edition) Sciences & Engineering. 2011; 55(1): 201-212.
[2] A Yahya. Digital control of an electro discharge machining (EDM) system. Ph.D Thesis, Loughborough University, 2005.
[3] AE Minhat, et al. Power Generator of Electrical Discharge Machining (EDM) System. Applied Mechanics and Materials. 2014; 554: 638-642.
[4] Y Tsai, C Lu. Influence of current impulse on machining characteristics in EDM. Journal of Mechanical Science and Technology. 2007; 21: 1617-1621.
[5] AE Minhat, et al. Model of Pulse Power Generator in Electrical Discharge Machining (EDM) System. Applied Mechanics and Materials. 2014; 554: 613-617.
[6] A Yahya, et al. Comparison Studies of Electrical Discharge Machining (EDM) Process Model for Low Gap Current. Advanced Materials Research Journal. 2012; 133-440: 650-654.
[7] Y Yang, et al. Design of pulse power for EDM based on DDS chip AD9851. Mechanic Automation and Control Engineering (MACE), 2010 International Conference on. 2010: 3302-3304.
[8] AE Minhat, et al. Control Strategy for Electrical Discharge Machining (EDM) Pulse Power Generator. Applied Mechanics and Materials. 2014; 554: 643-647.
[9] T Andromeda, et al. Predicting material removal rate of Electrical Discharge Machining (EDM) using artificial neural network for high Igap current. Kuantan, 2011.
[10] N Mahmud, et al. Pulse Power Generator Design for Machining Micro-pits on Hip Implant. Jurnal Teknologi (Sciences & Engineering). 2013; 61: 33-38.
[11] M Rahman. A comparative study of transistor and RC pulse generators for micro-EDM of tungsten carbide. International Journal of Precision Engineering and Manufacturing. 2008; 9: 3-10.
[12] W Mysinski. Power supply unit for an electric discharge machine. Power Electronics and Motion Control Conference, 2008. EPE-PEMC 2008. 13th, 2008: 1321-1325.
[13] M Gostimirovic, et al. Effect of electrical pulse parameters on the machining performance in EDM. Indian Journal of Engineering & Materials Sciences. 2012; 18: 411-415.
BIOGRAPHIES OF AUTHORS

Ade Erawan is a Ph.D. candidate in the Electronic and Computer Engineering Department, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Skudai, Johor. He obtained his bachelor and master's degrees from Universiti Teknologi Malaysia in 2007 and 2011 respectively. His recent research is about pulse power generator for Electrical Discharge Machining (EDM) system. He is interested in Switch Mode Power Supply, Analog/Digital Circuit, MATLAB Simulink and PSoc (Programmable System-on-Chip) microcontroller.

Dr. Nor Hisham Haji Khamis is a senior lecturer in the Radio Communication Engineering Department (RaCED), Faculty of Electrical Engineering Department, Universiti Teknologi Malaysia, Skudai, Johor. He received his B.Sc.E.E. from the University of Evansville, Indiana, USA in 1988, M.E.Sc.E.E. from the University of New South Wales, Australia in 1992, and PhD from UTM in 2005. He joined UTM in 1989 and currently is the Head of Radar Laboratory. He is also the subject coordinator for the Microwave Engineering, RF Microwave Circuit Design, and Radar courses at the faculty. He also leads the Sonar and Marine Instrumentation Research Group (STAR). His research interest includes antenna design especially microstrip antenna, microwave components, wireless transmission, and propagation studies. He is a member of Eta Kappa Nu (Electrical Engineering Honor Society, USA) and IEEE.

Azli Yahya is a senior lecturer at the Faculty of Electrical Engineering, UTM and attached to the Faculty of Health Science and Biomedical Engineering, UTM. In faculty, he is a Head of Department for Postgraduate Studies. He got his B.Eng (Hons) degree in Electro-Mechanical Power System and M.Sc. degree in Electronic Production from University of Glamorgan, Wales-UK. In 2006, he obtained his PhD degree in Electronic/Electrical Engineering from University of Loughborough, UK. His research areas cover Electrical Discharge Machining System, Analog / Digital Circuit, Microcontroller, PSPICE, MATLAB, Switch Mode Power Supply, Biomedical instrumentation.

Trias Andromeda is a lecturer at Diponegoro University, Semarang, Indonesia since 1999. He has 8 years professional experiences in industrial control electronics and Telecommunications field. He has done several projects collaboration with PJKA (Perusahaan Jawatan Kereta Api), LPP (Lembaga Pendidikan Perkebunan) (LPP) Yogyakarta, PT Jasa Produksi, PLN (Perusahaan Listrik Negara), PT Limas, Nokia, Indosat and Huawei in Indonesia. He got his Master degree at Gadjah Mada university in 2002. In 1998, he graduated from Electrical Engineering Department, Engineering Faculty, Gadjah Mada University. He is interested in industrial and power electronics, control system, artificial intelligence, power supply, electrical discharge machining system, microprocessor based system and telecommunications.

Kartiko Nugroho is a Master candidate from Faculty of Bioscience and Medical Engineering in Universiti Teknologi Malaysia. His recent research is about Electrical Discharge Machining (EDM) for biomedical application. He obtained his bachelor degree in Electrical Engineering of Gadjah Mada University. His bachelor thesis is about remotely operated robot.