Spectral Analysis of Guanine and Cytosine Fluctuations of Mouse Genomic DNA

Wentian Lia and Dirk Holsteb

\textit{a. The Robert S. Boas Center for Genomics and Human Genetics}
North Shore LIJ Institute for Medical Research, Manhasset, NY 11030, USA.

\textit{b. Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.}

key words: DNA sequences; GC fluctuations; 1/f noise; long-ranging correlations; mouse genome.

Abstract

We study global fluctuations of the guanine and cytosine base content (GC\%) in mouse genomic DNA using spectral analyses. Power spectra $S(f)$ of GC\% fluctuations in all nineteen autosomal and two sex chromosomes are observed to have the universal functional form $S(f) \sim 1/f^\alpha$ ($\alpha \approx 1$) over several orders of magnitude in the frequency range $10^{-7} < f < 10^{-5}$ cycle/base, corresponding to long-ranging GC\% correlations at distances between 100 kb and 10 Mb. $S(f)$ for higher frequencies ($f > 10^{-5}$ cycle/base) shows a flattened power-law function with $\alpha < 1$ across all twenty-one chromosomes. The substitution of about 38\% interspersed repeats does not affect the functional form of $S(f)$, indicating that these are not predominantly responsible for the long-ranged multi-scale GC\% fluctuations in mammalian genomes. Several biological implications of the large-scale GC\% fluctuation are discussed, including neutral evolutionary history by DNA duplication, chromosomal bands, spatial distribution of transcription units (genes), replication timing, and recombination hot spots.

1 Introduction

DNA sequences, the blueprint of almost all essential genetic information, are polymers consisting of two complementary strands of four types of bases: adenine (A), cytosine (C), guanine (G), and thymine (T). Among the four bases, the presence of A on one strand is always paired with T on the opposite strand, forming a “base pair” with 2 hydrogen bonds; similarly, G and C are complementary to one another, while forming a base-pair with 3 hydrogen bonds \cite{1, 2, 3}. Consequently, one may characterize AT base-pairs as “weak” bases and GC base-pairs as “strong” bases. In addition, the frequency of A (G) on a single strand is approximately equal to the frequency of T (C) on the same strand, a phenomenon that has been termed “strand symmetry” \cite{4} or “ Chargaff’s second parity” \cite{5}. Therefore, DNA sequences can be transformed into reduced 2-symbol sequences of
weak W (A or T) and strong S (G or C) bases. The percentage of S (G or C) bases of a DNA sequence segment is denoted as the GC base content (GC%).

The spatial variation of GC% along a DNA sequence has been of long-standing interests [6, 7, 8, 9]. GC%-series can be considered as fluctuating or unsteady signals, and consequently many signal processing and stochastic analysis techniques can be applied to characterize and quantify the statistical properties of the DNA sequences [10, 11, 12]. In particular, spectral and correlation analyzes are standard tools that can be applied [13]. Initial spectral analysis [14, 15, 16] provided evidence that DNA sequences, especially non-protein-coding sequences, exhibit a power spectrum $S(f)$ that can be approximated by $S(f) \sim 1/f^\alpha$ ($\alpha \approx 1$) and are termed “1/f noise” (or “1/f^α noise” with $0.5 \leq \alpha \leq 1.5$) [17, 18, 19, 20, 21]. 1/f noise lies in-between the realm of white noise ($\alpha = 0$) and Brownian noise ($\alpha = 2$) [22], and is indicative of a wide distribution of length scales (or time, in the case of stochastic processes) [23].

The observation of 1/f^α spectra in many, but not all, short DNA sequences (of the order of a few thousands bases) poses the question of whether 1/f^α spectra are a universal characteristic across all DNA sequences. Several lines of evidence show that the 1/f^α spectrum is indeed a generic phenomenon of GC% fluctuations in DNA sequences and is found in genomic DNA sequences from different taxonomic classes, including genomes from bacteria [24, 25], yeast [26], insect [27], worm (W Li, unpublished data), and human [28, 29]. The human and mouse genomes are evolutionarily separated by about 65-75 million years, and they exhibit a high level of homology [30]. Yet several species-specific differences exist that might lead to different functional properties of $S(f)$:

- While the overall, genome-wide GC% of both human and mouse genomic DNA sequences is about 42%, the distribution of GC% is different: GC% when measured in 20 kb (20×10^3 bases) windows in mouse genomic DNA lacks extremely high and low GC% values [30].

- There exist pronounced differences between large sequence segments (of the order of several Mb (10^6 bases)) of human and mouse chromosomes due to chromosomal rearrangements. At such length scales, GC% correlations existing in the human genome may be absent in mouse genome.

This Letter examines the presence of 1/f^α spectra in spatial GC% variations across all Mus musculus chromosomes. A graphic display of the mouse genome GC% fluctuation can be found at [31].
2 Material and Methods

2.1 DNA Sequence Data

We download mouse genomic DNA sequences for nineteen autosomal chromosomes (Chr1–Chr19) and two sex chromosomes (ChrX and ChrY) from the UCSC Genome Bioinformatics Site http://genome.ucsc.edu/ (the October 2003 release, or UCSC version mm04). All twenty-one chromosomes are evenly partitioned into $2^{17} = 131,072$ non-overlapping windows of ω bases, and the GC% of each window is computed. A fraction of bases are yet uncharacterized and at these positions A, C, G, or T is substituted by the symbol “N” (sequence gaps). Windows that contain only uncharacterized bases have an undetermined GC% value. In this study, we replace all undetermined GC% values by randomly chosen values from a normal distribution with GC% mean and variance taken from the empirical distribution of all determined GC% windows.

![Figure 1: Genome-wide GC content (GC%) of mouse Mus musculus for overall, non-repetitive, and repetitive sequences.](image)

Higher eukaryotic genomes are enriched in repetitive sequences [32]. Repeats are approximate copies of DNA sequence segments, and interspersed repeats are an abundant class of repetitive sequence segments in mammalian genomes that scattered throughout the genome. In both the human and the mouse genome, transposon-derived interspersed repeats constitute about 35-45% [33, 34] and 38% [30] of the total genome, respectively. As can be seen from Fig. 1, the distribution of GC% for repetitive sequences is markedly different from that of the non-repetitive sequences. In order to study the effects of interspersed repeats, we use interspersed repeat-annotated versions of mouse chromosomes [35].
and separately analyze GC% fluctuations obtained from DNA sequences with retained and substituted interspersed repeats. In the latter DNA sequences, we substitute GC% from interspersed repeats by randomly GC% values taken from a normal distribution with mean and variance taken from the empirical distribution of the non-repetitive proportion of each individual chromosome.

2.2 Spectral analysis of DNA Sequences

We coarse-grain sequences into a spatial-series of GC contents (GC%) and conduct spectral analysis of the spatial GC%-series. To this end, we chose a window of size ω bases, compute GC%, move the window along the DNA sequence by $\Delta \omega$ bases, and iterate the computation to obtain a spatial-series of GC% values. Non-overlapping windows are obtained by setting $\Delta \omega = \omega$.

The power spectrum, the absolute squared average of the Fourier transform, is defined as

$$S(f) \equiv \frac{1}{N} \left| \sum_{k=1}^{N} (\text{GC})_k \cdot e^{-i2\pi kf/N} \right|^2$$

where N is the total number of windows. Table 1 lists the window sizes and averaged GC% calculated at these window sizes for all chromosomes.

Table 1: Window sizes (ω) and average GC contents (GC%). Each mouse chromosome (Chr) is partitioned into 2^{17} non-overlapping windows.

Chr	GC%	ω (kb)
1	41	1.52
2	42	1.39
3	40	1.25
4	42	1.18
5	43	1.15
6	41	1.15
7	43	1.05
8	42	1.00
9	43	0.96
10	41	1.02
X/Y	39/39	1.21/0.17

3 Results

We use the computational Fast Fourier Transform (FFT), implemented in the S-PLUS statistical package (Version 3.4, MathSoft, Inc.). The S-PLUS subroutine Spectrum takes as input a discrete FFT to calculate as output a periodogram (the power spectrum in units
10 \cdot \log_{10} S(f))$, and subsequently applies Daniell-filtering (i.e. rectangular window) to compute a smoothed spectrum using a user-specified parameter value (span).

Figure 2 shows the power spectrum $S(f)$ as a function of the frequency f across nineteen autosomal and two sex chromosomes. We find for sequences with retained interspersed repeats that $S(f)$ exhibits the functional form $S(f) \sim 1/f^\alpha$ persistently across twenty-one chromosomes. The exponent α is close to $\alpha \approx 1$ for frequency ranges of $10^{-7} < f < 10^{-5}$ cycle/base, corresponding to length scales $L = 1/f$ of $100\text{kb} < L < 10\text{Mb}$. At higher frequencies $f > 10^{-5}$ cycle/base ($L < 100 \text{kb}$), $S(f)$ generally becomes flattened with $\alpha < 1$ across all chromosomes. This deviation from the $1/f$ spectrum was also observed in human genome. At lower frequencies $f < 10^{-7}$ cycle/base ($L > 10 \text{Mb}$), there are much less spectral components, and hence $S(f)$ shows relatively larger fluctuations, and the estimation of $S(f) \sim 1/f^\alpha$ is less reliable. In the frequency range of $10^{-7} < f < 10^{-8}$ cycle/base, only $S(f)$ for Chr2, chr4, Chr7, Chr11 and Chr16 is indicative of a persistence of $\alpha \approx 1$.

When we compute $S(f)$ for mouse chromosomes 1, 2, ..., 19, X and Y with substituted interspersed repeats, we find that $S(f)$ is higher than $S(f)$ obtained for the original sequences, especially at frequency ranges higher than $f > 10^{-5}$ ($L > 10 \text{kb}$). One possible explanation is that the substitution of GC% estimated from repetitive GC bases by random GC% values increases the level of white noise fluctuations at length scales comparable to lengths of interspersed repeats.

It is interesting to note that the substitution of about 38% interspersed repeats hardly affects $S(f)$ at intermediate and lower frequencies. A similar observation has been made for human genomic DNA sequences. Thus, interspersed repeats may not contribute predominantly to long-ranging correlations in mammalian genomic DNA.

4 Discussion

4.1 Spatial 1/f spectra are not an in generally held property

Before discussing the universal spectral shape of GC% of genomic DNA sequences, note that not all spatial sequences or signals exhibit $1/f^\alpha$ ($\alpha \approx 1$) power spectra.

An instructive example is provided by the spatial spectrum of images taken of natural scenes, where it is known that the amplitude spectrum of image pixels is typically $1/f$, and consequently its power spectrum is $S(f) \sim 1/f^2$. Sometimes, the exponent α in $S(f) \sim 1/f^\alpha$ may not be exactly equal to 2: for example, it was shown that underwater images tend to exhibit a larger exponent of α (or deeper slope) than that of atmospheric images. There are mainly two theories of the $1/f^2$ scaling in such images: (i) it is caused by luminance edges, and (ii) it is caused by a power-law distribution of sizes of...
regions with constant intensity \[43\]. Experiments have been carried out to test whether images with a change of the slope \(\alpha\) can be detected visually by human objects \[44, 45\].

This well established \(1/f^2\) spatial power spectrum in images provides a case example that spatial power spectra are not necessarily of the form \(S(f) \sim 1/f\). Rather, \(S(f) \sim 1/f\) and \(1/f^2\) spectra are considered to belong to two different classes \[22\], and so the exponent \(\alpha \approx 1\) observed in DNA sequences is not a priori expected.

4.2 Spatial \(1/f\) spectra are consistent with the evolutionary expansion-modification model

One hypothesis is that \(1/f^\alpha\) (\(\alpha \approx 1\)) constitutes a universal property of all long DNA sequences subject to neutral evolution that involved duplications and mutations \[14, 46\]. A simplified model, termed “expansion-modification (EM) model” \[47, 46\] generates a binary 2-symbol sequence by two local operations: (i) expansion/duplication: \(0 \rightarrow 00\), \(1 \rightarrow 11\); and (ii) modification/mutation: \(0 \rightarrow 1\), \(1 \rightarrow 0\). When the probability of the first operation is large (e.g. probability \(p_1 = 0.9\)), resulting binary sequences exhibit \(1/f^\alpha\) (\(\alpha \approx 1\)) power spectra. If the probability of the second operation (\(p_2\)) is large, the resulting sequences exhibit white spectra (\(\alpha \approx 0\)) \[46\]. Since the sequence generating process is hierarchical, it is implicit that the resulting sequence exhibit scale-invariance (or perhaps multiple-scale-invariance \[48\]).

The EM model contains two features that are essential for DNA evolution: duplication and mutation. Duplications, both inter-chromosomal or intra-chromosomal, expand DNA sequences and provide a potential for genes to develop novel functions \[19\]. In one point of view, duplications have a larger impact than natural selection in Darwin’s evolution theory, as duplications and the resulting redundancy actually created the foundation upon which natural selection acts \[50\]. Although point mutations might be detrimental to biological fitness, they nevertheless provide a potential for evolution, perhaps on a smaller scale as compared to that for duplications.

A more realistic modeling of neutral evolution of DNA sequences by duplication and mutation beyond the EM model is still lacking \[51\], and so the hypothesis that all long DNA sequences undergoing duplications and mutations exhibit \(1/f^\alpha\) (\(\alpha \approx 1\)) power spectra remains to be validated. The results presented in this paper, that \textit{Mus musculus} genomic DNA exhibits \(\alpha \approx 1\) adds another line of evidence toward verification of this hypothesis.

4.3 High level of chromosomal segment translocations did not destroy \(1/f\) spectra in mouse genomic DNA

About 90% of the human and 93% of the mouse genome reside within syntenic blocks, in which the order of a series of biological markers (e.g. genes) are approximately conserved
However, with the exception of ChrX, these syntenic blocks have different loci at human and mouse chromosomes. About 65-75 million years ago, the human genome and the mouse genome embarked on a different evolutionary history, with many chromosomal translocations, that left syntenic blocks of a human chromosome scattered on different mouse chromosomes.

This basic picture indicates that the observation of 1/f spectra in the human genome will not guarantee similar spectra in mouse genome, as random translocations can easily destroy any long-range order a given DNA sequence. An alternative explanation of 1/f spectra in the mouse genome, in light of observed 1/f spectra in human genome, is that both are in fact a consequence of the large-scale dynamics, such as translocation and duplication. Theoretically, DNA sequences frozen at about 65-75 million years ago before the divergence of human and mouse species could test this hypothesis.

Besides translocation/duplication, mutations may also affect GC% fluctuations. If chromosomal segment translocations were the only process in the evolution, the human and mouse genomes ought to have the same GC content distribution. Nevertheless, the GC% distribution in the mouse genome is tighter (with smaller variance) and lacks segments with higher GC% (“outliers”) as in the human genome, a fact both observed experimentally and by sequence analysis.

One might think that this difference of variances of the GC% distributions between the human and the mouse genome may render their spatial spectra different. However, as pointed out in, the exponent α in 1/fα is related to how the variance of GC% changes with the window size, instead of the variance itself (and the isochore or fairly homogeneous sequence segment of about 200–300 kb long or more is related to the asymmetry or the third moment of the GC% distribution).

4.4 GC content correlates with many biological features and 1/f spectra of GC% imply a scale-invariant distribution of these features

Although variations in GC% are not of direct biological relevance, they are correlated with many other other measurements and biological functions of DNA sequences, including chromosome bands, protein-coding gene density, replication timing, or recombination hot spots. If the correlation between GC% and a biological function is strong, then the scale-invariance pattern in GC% can be transformed into a similar spatial structure of these biologically functioning units.

While a stretched out chromosome is too thin to be visible (the diameter of a DNA thread is about 2×10^{-9} m), during the metaphase of a cell cycle it becomes visible because it is tightly packed into a chromatin structure (with the length of a typical human chromosome of this compact form of about 10^{-5} m). Using Giemsa dyes to stain chro-
mosomes leads to alternating dark and light bands [58]. The mechanism of this staining
difference at different chromosomal regions is thought to be caused by the degree of condensa-
tion of the chromatin structure [59]. The connection between GC% and Giemsa bands
was long before suggested: Giemsa-light bands (termed R-bands) are GC-rich, whereas
Giemsa-dark bands (G-bands) are GC-poor [60, 61]. This connection has been further
 calibrated, such that being relatively GC-rich or GC-poor as compared to the flanking
regions is correlated with Giemsa-bands [61]. This new proposal manages to reproduce
chromosome bands quite well by sequence analysis [61].

After the sequencing of the human genome has been completed, it was revealed that
many long GC-poor regions contain a low gene density (“gene desert”) [33, 57], confirming
the earlier proposed correlation between GC% and gene density [62, 63, 64]. In fact, the
gene density not only increases with GC%, but increases faster than in a linear fashion
[67]. Extremely GC-rich regions in the human genome are also extremely gene-rich, and
beyond the GC content of GC% $\approx 46\%$ the gene-density increases markedly.

Due to the large genome size for most eukaryotic species, the replication of DNA se-
quences starts at multiple positions. Specific chromosome regions replicate earlier in time,
while other regions replicate later, marked by a clear boundary between the two types of
regions. While a correlation between replicating-timing and chromosome bands was pro-
posed in [60, 61] (R-band replicates earlier), the extent and biological relevance are still
subject to investigation [65].

Furthermore, regions with high recombination rate (recombination of spots) have been
associated with being GC-rich [66]. While this correlation has been established for yeast
Saccharomyces cerevisiae genome sequence [67], no conclusive result have yet been ob-
tained for higher genomes such as human genomic DNA [68]. The general difficulty in the
determination of regional recombination rates in human genome is that it is either indirect
(using pedigree analysis [69, 70]) or limited to only male samples (using sperm typing [71]).
Even a newly proposed population genealogy-based inference of recombination rates [68] is
still not a direct measurement. In addition, it has also been proposed that recombination
events increase the local GC content [72, 73, 74]. While switching the role of cause and
effect, from a statistical (correlation) point of view, the outcome remains the same.

Instead of using the GC% as a “surrogate”, there also have been attempts to study
large-scale patterns of biological units directly. It has been shown that in circular bacterial
genome sequences, the positions and orientations of genes do not have any preferable length
scale and are scale-invariant [75]. This result should be directly linked to a similar scale-
invariance of GC% in bacterial genomes. The universally observed $1/f^\alpha$ ($\alpha \approx 1$) spectra in
the mouse Mus musculus chromosomes, as well as in human chromosomes [29], motivates
further sequence analysis on the spatial arrangement of functional biological units.
Acknowledgements

W. Li acknowledges support from NIH-N01-AR12256.

References

[1] L. Pauling and R.B. Corey, A proposed structure for the nucleic acids, Proceedings of National Academy of Sciences 39 (1953) 84–97.

[2] J.D. Watson and C. Crick, A structure for deoxyribose nucleic acid, Nature 171 (1953) 737–738.

[3] C.R. Calladine and H.R. Drew Understanding DNA (Academic Press, London, 1992).

[4] J.W. Fickett, D.C. Torney and D.R. Wolf, Base compositional structure of genomes, Genomics 13 (1992) 1056–1064.

[5] D.R. Forsdyke and J.R. Mortimer, Chargaff’s legacy, Gene 261 (2000) 127–137.

[6] G.A. Churchill, Stochastic models for heterogeneous DNA sequences, Bulletin of Mathematical Biology 51 (1989) 79–94.

[7] R.A. Elton, Theoretical models for heterogeneity for base composition in DNA, Journal of Theoretical Biology 45 (1974) 533–553.

[8] T. Ikemura and S. Aota, Global variation in G+C content along vertebrate genome DNA: possible correlation with chromosome band structure, Journal of Molecular Biology 203 (1988) 1–13.

[9] T. Ikemura, K.N. Wada and S. Aota, Giant G+C% mosaic structures of the human genome found by arrangement of GenBank human DNA sequences according to genetic positions, Genomics 8 (1990) 207–216.

[10] D. Anastassiou, Genomic signal processing, IEEE Signal Processing Magazine 18 (2001) 8–20.

[11] P.D. Cristea, Large scale features in DNA genomic signals, Signal Processing 83 (2003) 871–888.

[12] P.P. Vaidyanathan and B.J. Yoon, The role of signal-processing concepts in genomics and proteomics, Journal of the Franklin Institute 341 (2004) 111–135.

[13] D. Sussillo, A. Kundaje and D. Anastassiou, Spectrogram analysis of genomics, EURASIP Journal on Applied Signal Processing 2004 (2004) 29–42.
[14] W. Li, Generating nontrivial long-range correlations and 1/f spectra by replication and mutation, *International Journal of Bifurcation and Chaos* 2 (1992) 137–154.

[15] W. Li and K. Kaneko, Long-range correlation and partial 1/fα spectrum in a non-coding DNA sequence, *Europhysics Letters* 17 (1992) 655–660.

[16] R. Voss, Evolution of long-range fractal correlations and 1/f noise in DNA base sequences, *Physical Review Letters* 68 (1992) 3805–3808.

[17] M.S. Keshner, 1/f noise, *Proceedings of the IEEE* 70 (1982) 212–218.

[18] W. Li, An online bibliography on 1/f noise, http://www.nslij-genetics.org/wli/1fnoise/

[19] E. Milotti, 1/f noise: a pedagogical review, arxiv preprint, [physics/0204033](http://arxiv.org/abs/physics/0204033) (2002)

[20] B.J. West and M.F. Shlesinger, The noise in natural phenomena, *American Scientist* 78 (1990) 40–45.

[21] W. Press, Flicker noise in astronomy and elsewhere, *Comments on Astrophysics* 7 (1978) 103–119.

[22] M. Gardner, Mathematical games – white and brown music, fractal curves and 1/f fluctuations, *Scientific American* 238 (1978) 16–32.

[23] J.M. Hausdorff and C.K. Peng, Multiscaled randomness: a possible source of 1/f noise in biology, *Physical Review E* 54 (1996) 2154–2155.

[24] M. de Sousa Vieira, Statistics of DNA sequences: a low frequency analysis, *Physical Review E* 60 (1999) 5932–5937.

[25] X. Lu, Z.R. Sun, H.M. Chen and Y.D. Li, Characterizing self-similarity in bacteria DNA sequences, *Physical Review E* 58 (1998) 3578–3584.

[26] W. Li, G. Stolovitzky, P. Bernaola-Galvan and J.L. Oliver, Compositional heterogeneity within, and uniformity between, DNA sequences of yeast chromosomes, *Genome Research* 8 (1998) 916–928.

[27] A. Fukushima, Periodicity in Genome Architecture from Bacteria to Human (Ph.D Thesis, Nara Institute of Science and Technology, 2003).

[28] A. Fukushima, T. Ikemura, M. Kinouchi, T. Oshima, Y. Kudo, H. Mori and S. Kanaya, Periodicity in prokaryotic and eukaryotic genomes identified by power spectrum analysis, *Gene*, 300 (2002) 203–211.
[29] W. Li and D. Holste, *Universal 1/f noise, cross-overs of scaling exponents, and chromosome specific patterns of GC content in DNA sequences of the human genome*, Physical Review E, submitted.

[30] R.H. Waterston *et al.*, *Initial sequencing and comparative analysis of the mouse genome*, Nature 420 (2002) 520–562.

[31] J. Pañes, R. Zíka, V. Pañes, A. Pavlíček, O. Clay and G. Bernardi, *Representing GC variation along eukaryotic chromosomes*, Gene 333 (2004) 135–141.

[32] A.F. Smit, *Interspersed repeats and other mementos of transposable elements in mammalian genomes*, Current Opinion in Genetics & Development 9 (1999) 657–663.

[33] E.S. Lander *et al.*, *Initial sequencing and analysis of the human genome*, Nature 409 (2001) 860–921.

[34] J.C. Venter *et al.*, *The sequence of the human genome*, Science 291 (2001) 1304–1351.

[35] A.F. Smit and P. Green, RepeatMasker, http://repeatmasker.genome.washington.edu/.

[36] P.J. Daniell, *Discussion on the Paper by Bartlett, Foster, Cummingham and Hynd*, Supplement to the Journal of the Royal Statistical Society 8 (1946) 88–90.

[37] M.B. Priestley, *Spectral Analysis and Time Series* (Academic Press, London, 1981).

[38] D. Holste, S. Beirer, P. Schieg, I. Grosse and H. Herzel, *Repeats and correlations in human DNA sequences*, Physical Review E 67 (2003) 061913.

[39] G.J. Burton and T.R. Moorehead, *Color and spatial structure in natural scenes*, Applied Optics 26 (1987) 157–170.

[40] D.J. Fields, *Relations between the statistics of natural images and the response properties of cortical cells*, Journal of the Optical Society of America A 4 (1987) 2379–2394.

[41] D.J. Tolhurst, Y. Tadmor and T. Chao, *Amplitude spectra of natural images*, Ophthalmic & Physiological Optics 12 (1992) 229–232.

[42] R.M. Balboa and N.M. Grzywacz, *Power spectra and distribution of contrasts of natural images from different habitats*, Vision Research 43 (2003) 2527–2537.

[43] R.M. Balboa, C.W. Tyler and N.M. Grzywacz, *Occlusions contribute to scaling in natural images*, Vision Research 41 (2001) 955–964.

[44] D.J. Tolhurst and Y. Tadmor, * Discrimination of changes in the slopes of the amplitude spectra of natural images: band-limited contrast and psychometric functions*, Perception 26 (1997) 1011–1025.
[45] C.A. Parraga and D.J. Tolhurst, *The effect of contrast randomisation on the discrimination of changes in the slopes of the amplitude spectra of natural scenes*, *Perception* **29** (2000) 1101–1116.

[46] W. Li, *Expansion-modification systems: a model for spatial 1/f spectra*, *Physical Review A* **43** (1991) 5240–5260.

[47] W. Li, *Spatial 1/f spectra in open dynamical systems*, *Europhysics Letters* **10** (1989) 395–400.

[48] R. Mansilla and G. Cocho, *Multiscaling in expansion-modification systems: an explanation for long range correlation in DNA*, *Complex Systems* **12** (2000) 207–240.

[49] S. Ohno, *Evolution by Gene Duplication* (Springer-Verlag, Berlin, 1970).

[50] A. Meyer and Y. van de Peer, *Natural selection merely modified while redundancy created. Susumu Ohno’s idea of evolutionary importance of gene and genome duplication*, *Journal of Structural and Functional Genomics* **3** (2003) vii-ix.

[51] E.E. Eichler and D. Sankoff, *Structural dynamics of eukaryotic chromosome evolution*, *Science* **301** (2003) 793–797.

[52] J.P. Thiery, G. Macaya and G. Bernardi, *An analysis of eukaryotic genomes by density gradient centrifugation*, *Journal of Molecular Biology* **108** (1976) 219–235.

[53] O. Clay, N. Carels, C. Douady, G. Macaya, G. Bernardi, *Compositional heterogeneity within and among isochores in mammalian genomes*, *Gene* **27** (2001) 615–24.

[54] W. Li, *Large-scale fluctuation of guanine and cytosine content in genome sequences: isochores and 1/f spectra*, in: *Progress in Bioinformatics* (Nova Science, 2005).

[55] G. Bernardi, *The isochore organization of the human genome*, *Annual Review of Genetics* **23** (1989) 637–661.

[56] G. Bernardi, *Structural and Evolutionary Genomics* (Elsevier, 2004).

[57] G. Bernardi, *Misunderstandings about isochores. Part I*, *Gene* **276** (2001) 3–13.

[58] T. Ried, *Cytogenetics – in color and digitized*, *New England Journal of Medicine* **350** (2004) 1597–1600.

[59] Y. Saitoh and U.K. Laemmli, *From the chromosomal loops and the scaffold to the classic bands of metaphase chromosomes*, *Cold Spring Harbor Symposium on Quantitative Biology* **58** (1993) 755–765.
[60] D.E. Comings, *Mechanisms of chromosome banding and implications for chromosome structure*, Annual Review of Genetics 12 (1978) 25–46.

[61] Y. Niimura and T. Gojobori, *In silico chromosome staining: reconstruction of Giemsa bands from the whole human genome sequence*, Proceedings of the National Academy of Sciences 99 (2002) 797–802.

[62] G. Bernardi, B. Olofsson, J. Filipski, M. Zerial, J. Salinas, G. Cuny, M. Meunier-Rotival and F. Rodier, *The mosaic genome of warm-blooded vertebrates*, Science 228 (1985) 953–958.

[63] D. Mouchiroud, G. D’Onofrio, B. Aissani, G. Macaya, C. Gautier and G. Bernardi, *The distribution of genes in the human genome*, Gene 100 (1991) 181–187.

[64] S. Zoubak, O. Clay and G. Bernardi, *The gene distribution of the human genome*, Gene 174 (1996) 95–102.

[65] Y. Watanabe, A. Fujiyama, Y. Ichiba, M. Hattori, T. Yada, Y. Sakaki and T. Ikemura, *Chromosome-wide assessment of replication timing for human chromosomes 11q and 21q: disease-related genes in timing-switch regions*, Human Molecular Genetics 11 (2002) 13–21.

[66] S.M. Fullerton, A. Bernardo Carvalho and A.G. Clark, *Local rates of recombination are positively correlated with GC content in the human genome*, Molecular Biology and Evolution 18 (2001) 1139–1142.

[67] J.L. Gerton, J. DeRisi, R. Shroff, M. Lichten, P.O. Brown and T.D. Petes, *Global mapping of meiotic recombination hotspots and coldspots in the yeast Saccharomyces cerevisiae*, Proceedings of the National Academy of Sciences 7 (2000) 11383–11390.

[68] G.A.T. McVean, S.R. Myers, S. Hunt, P. Deloukas, D.R. Bentley and P. Donnelly, *The fine-scale structure of recombination rate variation in the human genome*, Science 304 (2004) 581–584.

[69] A. Yu, C. Zhao, Y. Fan, W. Jang, A.J. Mungall, P. Deloukas, A. Olsen, N.A. Doggett, N. Ghebranious, K.W. Broman and J.L. Weber, *Comparison of human genetic and sequence-based physical maps*, Nature 409 (2001) 951–953.

[70] A. Kong, et al. *A high-resolution recombination map of the human genome*, Nature Genetics 31 (2002) 241–247.

[71] A.J. Jeffreys, A. Ritchie and R. Neumann, *High resolution analysis of haplotype diversity and meiotic crossover in the human TAP2 recombination hotspot*, Human Molecular Genetics 9 (2000) 725–733.
[72] J.A. Birdsell, Integrating genomics, bioinformatics, and classical genetics to study the effects of recombination on genome evolution, *Molecular Biology and Evolution* **19** (2002) 1181–1197.

[73] J.I. Montoya-Burgos, P. Boursot and N. Galtier, Recombination explains isochores in mammalian genomes, *Trends in Genetics* **19** (2003) 128–130.

[74] J. Meunier and L. Duret, Recombination drives the evolution of GC-content in the human genome, *Molecular Biology and Evolution* **21** (2004) 984–990.

[75] B. Audit and C.A. Ouzounis, From genes to genomes: universal, scale-invariant properties of microbial chromosome organisation *Journal of Molecular Biology* **332** (2003) 617–633.
Figure 2: Double logarithmic representation of the power spectrum $10 \log_{10} S(f)$ of GC% fluctuations across nineteen autosomal (Chr1–Chr19) and two sex (ChrX and ChrY) mouse chromosomes. The functional form of $S(f)$ can be approximated by $S(f) \sim 1/f^\alpha$ over several orders of frequency magnitudes ($\alpha = 1$ is plotted for comparison). Two curves represent $S(f)$ obtained for DNA sequences with retained and substituted interspersed repeats, respectively. For clear representation, $S(f)$ is smoothed at different frequency ranges, using Daniell/rectangular-filter with sizes (span parameter) 1, 3, 31, and 501 for the 1–10, 10–100, 100–500, and 500–65,536 spectral components. Vertical lines mark the length scales $L = 1/f$ (base/cycle) for $L = 10$ Mb, $L = 1$ Mb, and $L = 100$ kb.