Data Article

Data on the expression of cellular IncRNAs in human adenovirus infected cells

Maoshan Chen a, Hongxing Zhao c,*, Sara Bergström Lind b, Ulf Pettersson c

a Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
b Department of Chemistry-BMC, Analytical Chemistry, Science for Life Laboratory, Uppsala University, Box 599, SE-751 24 Uppsala, Sweden
c The Beijer Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, S-751 85 Uppsala, Sweden

ARTICLE INFO

Article history:
Received 26 April 2016
Received in revised form
29 May 2016
Accepted 28 June 2016
Available online 5 July 2016

Keywords:
Adenovirus
Long noncoding RNA
IncRNA
IMR-90

ABSTRACT

Expression of cellular long non-coding RNAs (IncRNAs) in human primary lung fibroblasts (IMR-90) during the course of adenovirus type 2 (Ad2) infection was studied by strand-specific whole transcriptome sequencing. In total, 645 cellular IncRNAs were expressed at a significant level and 398 of them were changed more than 2-fold. The changes in expression followed a distinct temporal pattern. Significantly, 80% of the changes occurred at the late phase and 80% of the de-regulated IncRNAs were up-regulated. The three largest groups of deregulated IncRNAs were 125 antisense RNAs, 111 pseudogenes and 85 long intergenic non-coding RNAs (lincRNAs). Lastly, more than 36% of IncRNAs have been shown to interact with RNA binding proteins.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

* Corresponding author. Fax: +46 18 471 4808.
E-mail address: Hongxing.Zhao@igp.uu.se (H. Zhao).
Specifications Table

Subject area	Biology
More specific subject area	Gene expression
Type of data	Tables
How data was acquired	LncRNA expression was measured by paired-end cDNA sequencing using an Illumina HiSeq 2000 sequencer.
Data format	Filtered, processed
Experimental factors	Human primary lung fibroblast cells were infected with Ad2 and RNA was extracted after 6, 12, 24, and 36 h. Uninfected cells were used as control.
Experimental features	Differentially expressed IncRNAs required that their expression level was more than 10 FPKM (Fragments per Kilobase of exon per Million fragments mapped) and that the minimal change was 2-fold
Data source location	Uppsala university, Sweden
Data accessibility	Data is presented within this article

Value of the data

- Provide unique insights into the changes in IncRNA expression in human primary lung fibroblasts during an adenovirus infection.
- Provide a valuable and unique resource for studies of IncRNAs expression and regulation.
- Provide unique insights in the regulation of cellular gene expression mediated by IncRNAs.
- Provide clues to our understanding of IncRNA biological function.
- Since the effect of adenovirus on host cells in the early phase mimics tumorigenesis by promoting cell growth and inhibiting apoptosis, our data are applicable to cancer research.

1. Data

Using pair-end sequencing, 398 cellular IncRNAs were identified as differentially expressed more than 2-fold in IMR-90 cells during the course of Ad2 infection. According to GENCODE, 125 are antisense RNAs, 111 are pseudogenes and 85 are long intergenic non-coding RNAs (lincRNA). Based on their expression profiles, these IncRNAs fell into 10 major clusters. The list of differentially expressed IncRNAs, sequencing reads, fold change, biotypes, expression cluster as well as their lengths and location on the genome are included in Table S1. Among differentially expressed IncRNAs, 149 IncRNAs have been shown to interact with RNA binding proteins (RBPs) (Table 1). In total, 33 RBPs proteins have been proved to interact with these IncRNAs. Furthermore, we showed here that 21 and 15 out of 33 RBPs are detected at mRNA and protein level, respectively (Table 2).

2. Experimental design, materials and methods

2.1. Cell culture and Ad2 infection

Human primary lung fibroblast cells (IMR-90) were cultured in a complete Eagle’s minimum essential medium (10% fetal bovine serum, 100 U/ml penicillin and 100 μg/ml streptomycin). After reaching confluence, the cells were cultured for two more days to reach growth synchronization [1]. Cells were mock-infected or infected with Ad2 at a multiplicity of infection (MOI) of 100 fluorescence-
Table 1
LncRNAs interacting with RNA binding proteins.

Tracking_id	Locus	Length	IncRNA	Biotype	No. of Interacted RBP						
ENSG00000188206	1:244840637-244846903	6267	HNRNPU-AS1	antisense	31						
ENSG00000255717	11:62851987-62855914	3928	SNHG1	processed_transcript	31						
ENSG00000260032	20:36045621-36050960	5340	LINC00657	lincRNA	31						
ENSG00000229807	X:73820650-73825735	32,104	XIST	lincRNA	29						
ENSG00000247556	15:41283989-41309737	25,749	OIP5-AS1	processed_transcript	29						
ENSG00000163597	17:76557765-76565348	7584	SNHG16	processed_transcript	27						
ENSG00000203875	6:85660949-85678736	17,788	SNHG5	processed_transcript	27						
ENSG00000242125	1:28505979-28510892	4914	SNHG3	sense_intrinsic	25						
ENSG00000245532	11:65422773-65445540	22,768	NEAT1	lincRNA	25						
ENSG00000245910	8:66921683-66923698	4716	SNHG6	processed_transcript	24						
ENSG00000245694	16:54918862-54921989	10,328	CRNDE	lincRNA	23						
ENSG00000233016	9:136721365-136728184	6820	SNHG7	antisense	22						
Tracking_id	Locus	Length	lncRNA	Biotype	No. of Interacted RBP						
-------------	-------	--------	--------	---------------	-----------------------						
ENSG00000259001	14:20343047-20343685	639	RPPH1	antisense	20 HuR,PTB,TNRC6,ef4AIII,DGCR8,FMRP,FXR2,FUS,LIN28A,LIN28B,ALKBH5, C17orf85,C2orf28,CA41IP1,NCAPG,FAT15,TFAP2B,EFIP1,PTBP1,DIP3,						
ENSG00000232956	7:4498322-44986961	3940	SNHG15	lincRNA	20 HuR,ef4AIII,DGCR8,FMRP,FXR2,FUS,LIN28A,LIN28B,CA41IP1,NCAPG,FAT15, NCAPG,FAT15,PTBP1,PTBP1,DIP3,						
ENSG00000231607	13:4998255-50125720	143,170	DLEU2	antisense	19 TIAL1,hnRNPC,IGF2BP3,FUS,FUS-mutant,U2AF65,ELF28F1,FMRP,FXR2,FUS,LIN28A,LIN28B,						
ENSG00000269893	4:118278708-118279823	1116	SNHG8	lincRNA	19 TIAL1,hnRNPC,IGF2BP3,FUS,FUS-mutant,U2AF65,ELF28F1,FMRP,FXR2,FUS,LIN28A,LIN28B,						
ENSG00000258441	14:21200078-21206900	6823	LINC00641	processed_transcript	19 PTB,IGF2BP1,IGF2BP2,IGF2BP3,ef4AIII,DGCR8,FMRP,FXR2,FUS,LIN28B,						
ENSG00000243960	1:111438637-11441364	2728	RP11-552M11.4	sense_overlapping	19 TIAL1,hnRNPC,IGF2BP3,FUS,FUS-mutant,U2AF65,PTBP1,PTBP1,PTBP1,DIP3,						
ENSG00000215417	13:91347819-91354579	6761	MIR17HG	processed_transcript	18 TIAL1,hnRNPC,IGF2BP3,FUS,FUS-mutant,U2AF65,PTBP1,PTBP1,PTBP1,DIP3,						
ENSG00000197989	1:2857837-28582983	4447	SNHG12	antisense	18 TIAL1,hnRNPC,IGF2BP3,FUS,FUS-mutant,U2AF65,PTBP1,PTBP1,PTBP1,DIP3,						
ENSG00000226950	4:52712403-52720351	7949	DANC4	processed_transcript	18 TIAL1,hnRNPC,IGF2BP3,FUS,FUS-mutant,U2AF65,PTBP1,PTBP1,PTBP1,DIP3,						
ENSG00000177410	20:49278177-49295738	17,562	ZFAS1	antisense	18 TIAL1,hnRNPC,IGF2BP3,FUS,FUS-mutant,U2AF65,PTBP1,PTBP1,PTBP1,DIP3,						
ENSG00000276232	12:6510274-6510522	249	SCARNA10	sense_intrinsic	18 TIAL1,hnRNPC,IGF2BP3,FUS,FUS-mutant,U2AF65,PTBP1,PTBP1,PTBP1,DIP3,						
ENSG00000170846	4:6673450-6676047	2598	AC093323.3	lincRNA	17 TIAL1,hnRNPC,IGF2BP3,FUS,FUS-mutant,U2AF65,PTBP1,PTBP1,PTBP1,DIP3,						
ENSG00000179818	2:6996226-70088846	126,585	PCBP1-A51	antisense	16 TIAL1,hnRNPC,IGF2BP3,FUS,FUS-mutant,U2AF65,PTBP1,PTBP1,PTBP1,DIP3,						
ENSG00000267575	19:27793462-27981863	125,402	CTC-459F4.3	processed_transcript	16 TIAL1,hnRNPC,IGF2BP3,FUS,FUS-mutant,U2AF65,PTBP1,PTBP1,PTBP1,DIP3,						
ENSG00000270066	1:109100192-109100619	428	SCARNA2	lincRNA	15 TIAL1,hnRNPC,IGF2BP3,FUS,FUS-mutant,U2AF65,PTBP1,PTBP1,PTBP1,DIP3,						
ENSG00000251022	4:82893008-82900960	7953	THAP9-A51	antisense	15 TIAL1,hnRNPC,IGF2BP3,FUS,FUS-mutant,U2AF65,PTBP1,PTBP1,PTBP1,DIP3,						
ENSG00000261553	13:75549772-75807120	257,349	RP11-29G8.3	processed_transcript	15 TIAL1,hnRNPC,IGF2BP3,FUS,FUS-mutant,U2AF65,PTBP1,PTBP1,PTBP1,DIP3,						
ENSG00000254911	11:93721512-93721865	354	SCARNA9	antisense	14 TIAL1,hnRNPC,IGF2BP3,FUS,FUS-mutant,U2AF65,PTBP1,PTBP1,PTBP1,DIP3,						
ENSG00000260035	19:45200324-45200632	309	CTD-2651B20.6	sense_intrinsic	14 TIAL1,hnRNPC,IGF2BP3,FUS,FUS-mutant,U2AF65,PTBP1,PTBP1,PTBP1,DIP3,						
Gene ID	Chromosome	Start Base Pair	End Base Pair	Type	Expression Factors	Functions					
--------------	------------	----------------	---------------	--------------	-------------------	---					
ENSG00000230590	X:73963954-74293574	329,621 FTX lincRNA	14	IGF2BP1, IGF2BP2, IGF2BP3, eIF4AIII, DGR8, FUS, ZC3H7B, SFR51, U2AF65, TIA1, TIAL1, hnRNPC, UPF1, TDP43,							
ENSG00000126005	20:35216461-35278131	61,671 MMP24-AS1 antisense	13	HuR, IGF2BP1, IGF2BP2, IGF2BP3, eIF4AIII, DGR8, FMRP, FUS, LIN28A, ZC3H7B, U2AF65, TIA1, UPF1,							
ENSG00000267321	17:35568119-35574792	6674 RP11-1004M14.11 lincRNA	13	IGF2BP1, IGF2BP2, IGF2BP3, eIF4AIII, FRMR, FUS, LIN28A, LIN28B, ZC3H7B, FUS-mutant, TAF15, U2AF65, UPF1,							
ENSG00000226688	10:95753205-96090238	337,034 ENTPD1-AS1 antisense	12	HuR, RTB, eIF4AIII, DGR8, FUS, LIN28B, EWSR1, U2AF65, TIA1, TIAL1, hnRNPC, UPF1,							
ENSG00000264112	17:35568119-35574792	5813 RP11-159D12.2 lincRNA	12	HuR, RTB, IGF2BP1, IGF2BP2, IGF2BP3, eIF4AIII, DGR8, FUS, ZC3H7B, TAF15, U2AF65, hnRNPC,							
ENSG00000233429	7:27095646-27100265	4620 HOTAIRM1 antisense	12	PTB, IGF2BP1, eIF4AIII, DGR8, FUS, LIN28A, CAPRIN1, SFRS1, U2AF65, TIA1, hnRNPC, UPF1,							
ENSG000002323427	17:5111467-5115004	3538 ACO12146.7 processed_transcript	12	IGF2BP1, IGF2BP2, IGF2BP3, eIF4AIII, DGR8, LIN28B, EWSR1, FUS-mutant, TAF15, SFRS1, U2AF65, TIA1,							
ENSG00000223546	X:102769160-102885406	116,247 LINC00630 lincRNA	11	IGF2BP1, IGF2BP2, IGF2BP3, eIF4AIII, DGR8, FMRP, FUS, LIN28B, U2AF65, TIA1, hnRNPC, UPF1,							
ENSG00000186594	17:1711492-1717174	5863 MIR220G lincRNA	11	IGF2BP1, IGF2BP2, IGF2BP3, eIF4AIII, DGR8, FUS, LIN28B, ZC3H7B, U2AF65, UPF1,							
ENSG00000247828	5:88268894-88436685	167,792 TMEM161B-AS1 antisense	10	PTB, IGF2BP3, eIF4AIII, DGR8, FUS, SFR51, U2AF65, TIA1, hnRNPC, UPF1,							
ENSG00000247092	14:95532296-95534872	2577 SNHG10 antisense	10	U2AF65, hnRNPC, FUS, LIN28B, U2AF65, IGF2BP1, TIA1, TIAL1, hnRNPC, UPF1,							
ENSG00000142396	19:58305318-58315663	10,346 ERVK3-1 processed_transcript	10	PTB, eIF4AIII, DGR8, FMRP, FUS, LIN28A, LIN28B, U2AF65, TIA1, UPF1,							
ENSG00000261889	16:3156735-3157483	749 RP11-473M20.16 lincRNA	10	eIF4AIII, DGR8, FMRP, FXR2, LIN28A, LIN28B, EWSR1, TIA1, TIAL1, UPF1,							
ENSG00000196295	7:30513608-30594809	78,502 AC005154.6 processed_transcript	10	PTB, eIF4AIII, DGR8, FUS, LIN28B, EWSR1, U2AF65, TIA1, hnRNPC, UPF1,							
ENSG00000261061	16:81030679-81031485	717 RP11-303E16.2 sense_intronic	10	HuR, PTB, IGF2BP1, IGF2BP2, IGF2BP3, TNRC6, eIF4AIII, DGR8, U2AF65, UPF1,							
ENSG00000255198	16:1964958-1965509	552 SNHG9 lincRNA	9	CAPRIN1, U2AF65, FUS, HuR, DGR8, FMRP, UPF1, eIF4AIII, C22orf28,							
ENSG00000231312	2:39436636-39665343	228,708 AC007246.3 antisense	9	PTB, eIF4AIII, DGR8, FUS, U2AF65, TIA1, TIAL1, UPF1, TDP43,							
ENSG00000258297	11:66666035-6668374	2340 RP11-658F2.8 antisense	8	IGF2BP1, IGF2BP2, IGF2BP3, eIF4AIII, FUS, ZC3H7B, U2AF65, UPF1,							
ENSG00000234608	12:111839763-111842902	3140 MAPKAPK3-AS1 lincRNA	8	IGF2BP1, IGF2BP3, eIF4AIII, FMRP, FUS, LIN28A, U2AF65, UPF1,							
ENSG00000230844	X:46545492-46548408	2917 ZNF674-AS1 lincRNA	8	HuR, PTB, eIF4AIII, FMRP, LIN28B, U2AF65, hnRNPC, UPF1,							
ENSG00000258486	14:49586578-49586878	301 RN7SL1 known_ncrna	8	DGR8, FMRP, FXR2, LIN28A, LIN28B, MOV10, hnRNPC, TDP43,							
ENSG00000228549	1:16870944-16874092	3149 RP11-108M9.3 lincRNA	8	PTB, DGR8, LIN28A, U2AF65, TIA1, TIAL1, hnRNPC, UPF1,							
Tracking_id	Locus	Length	lncRNA	Biotype	No. of Interacted RBP	RBP					
------------	---------------------	----------	---------	--------------------	-----------------------	--					
ENSG00000224078	15:24978582-25056565	77,984	SNHG14	processed_transcript	8	PTB, eIF4AIIIDGCR8, FUS, LIN28, TIAL1, UPF1, TDP43,					
ENSG00000229152	13:110894638-110899172	4535	ANKR10-	sense_intronic	7	IGF2BP1, IGF2BP2, IGF2BP3, eIF4AIII, FUS, U2AF65, hnRNPC,					
ENSG00000253552	7:27107776-27134302	26,527	HOXA-AS2	antisense	7	eIF4AIII, DGCR8, FMRP, FUS, U2AF65, UPF1, TDP43,					
ENSG00000240498	9:21994777-22121097	126,321	CDKN2B-	antisense	7	PTB, eIF4AIII, DGCR8, FUS, LIN28A, U2AF65, UPF1,					
ENSG00000261526	19:1874870-1876169	1300	CTB-31020.2	lincRNA	7	IGF2BP1, eIF4AIII, DGCR8, FMRP, FUS, U2AF65, hnRNPC,					
ENSG00000222041	2:8745367-87606805	151,439	LINC00152	lincRNA	7	PTB, eIF4AIII, FUS, U2AF65, TIAL1, TIAL1, UPF1,					
ENSG00000236088	17:13756477-14069495	313,019	COX10-AS1	processed_transcript	6	PTB, eIF4AIII, U2AF65, TIAL1, hnRNPC, UPF1,					
ENSG00000269825	19:52650436-52653284	2849	CTD-3099C6.9	sense_intronic	6	PTB, IGF2BP2, eIF4AIII, FMRP, LIN28B, UPF1,					
ENSG00000268388	16:86474528-86509099	34,572	FENDRR	lincRNA	6	PTB, eIF4AIII, DGCR8, FUS, hnRNPC, UPF1,					
ENSG00000236824	2:47331059-47344517	13,459	BCYRN1	lincRNA	6	eIF4AIII, FUS, U2AF65, TIAL1, UPF1, TDP43,					
ENSG00000255248	11:122028354-122116323	87,970	RP11-166D19.1	sense_overlapping	6	eIF4AIII, DGCR8, FUS, U2AF65, hnRNPC, UPF1,					
ENSG00000255090	11:122155421-122422871	267,451	RP11-820L6.1	lincRNA	6	eIF4AIII, U2AF65, TIAL1, hnRNPC, UPF1,					
ENSG00000233461	1:231522387-231528556	6170	RP11-295G20.2	antisense	5	IGF2BP1, IGF2BP2, IGF2BP3, eIF4AIII, UPF1,					
ENSG00000255135	11:76441337-76444656	3320	RP11-111M22.3	lincRNA	5	eIF4AIII, LIN28, U2AF65, TIAL1, UPF1,					
ENSG00000261094	9:122937622-122940333	2712	RP11-35501.11	sense_overlapping	5	PTB, eIF4AIII, U2AF65, hnRNPC, UPF1,					
ENSG00000232442	20:63627226-63628824	1599	CTD-3184A7.4	antisense	5	eIF4AIII, DGCR8, FUS, U2AF65, UPF1,					
ENSG00000233421	1:16533885-16536172	2288	RP5-875013.1	lincRNA	5	eIF4AIII, DGCR8, FMRP, LIN28, U2AF65,					
ENSG00000214548	14:100779409-100861031	81,623	MEG3	lincRNA	5	PTB, eIF4AIII, DGCR8, FUS, TDP43,					
ENSG00000247137	11:83184490-83193794	9305	RP11-727A23.5	processed_transcript	5	eIF4AIII, DGCR8, U2AF65, TIAL1, hnRNPC,					
Gene ID	Chromosome	Start Location	End Location	Feature	Length	Associated Proteins					
-----------------	------------	----------------	--------------	----------------	--------	---					
ENSG00000248690	8:121639292-121644693	5402	HAS2-AS1 antisense	4	PTB, eIF4AIII, FUS, UPF1,						
ENSG00000237491	1:778769-810060	31,292	RP11-206L10.9 lincRNA	4	eIF4AIII, FUS, SFRS1, U2AF65,						
ENSG00000224505	17:45150399-45161510	11,112	AC002117.1 antisense	4	eIF4AIII, FUS, U2AF65, UPF1,						
ENSG00000269926	10:72274914-72275980	1067	RP11-442H21.2 antisense	3	eIF4AIII, DGCR8, UPF1,						
ENSG00000256813	17:48549629-48606414	56,786	HOXB-A53 antisense	3	PTB, LIN28A, LIN28B,						
ENSG00000269243	19:16123660-16139892	16,233	CTD-2349P21.9 lincRNA	3	eIF4AIII, FUS, UPF1,						
ENSG00000267008	22:46761893-46762563	21,851	RP11-32422.4 antisense	3	eIF4AIII, FUS, UPF1,						
ENSG00000271335	10:35314551-35336401	2976	RP11-602.4 antisense	3	HuR, eIF4AIII, FUS,						
ENSG00000261054	15:99128831-99131806	463	CTD-2349P21.9 lincRNA	3	eIF4AIII, FUS, UPF1,						
ENSG00000266490	17:30792371-30792833	803	RP11-572017.1 lincRNA	3	eIF4AIII, FUS, U2AF65,						
ENSG00000219665	19:11987616-12046275	58,660	CTD-2006C1.2 processed_transcript	3	IGF2BP1, IGF2BP2, eIF4AIII,						
ENSG00000223343	3:48850484-48899988	4941	RP13-131K19.2 antisense	3	eIF4AIII, FUS, UPF1,						
ENSG00000261220	8:133573182-133573861	680	RP11-62901.2 lincRNA	3	PTB, eIF4AIII, UPF1,						
ENSG00000269051	19:53197110-53197110	13,906	CTD-2245P17.3 lincRNA	3	eIF4AIII, FUS, SFRS1,						
ENSG00000225511	9:92141297-92160114	18,818	LIN00475 antisense	3	PTB, eIF4AIII, FUS,						
ENSG00000245573	11:27506837-27698174	191,338	BDNF-AS antisense	3	eIF4AIII, FUS, UPF1,						
ENSG00000224959	2:111491942-111494811	2870	AC017002.2 lincRNA	3	eIF4AIII, FUS, TIAL1,						
ENSG00000249669	5:149406688-149428678	21,991	MIR143HG lincRNA	3	FUS, TIAL1, hnRNPC,						
ENSG00000230606	2:97416164-97433527	17,364	AC159540.1 lincRNA	3	eIF4AIII, FUS,						
ENSG00000258399	14:100894769-100935999	41,231	MEG8 lincRNA	2	TDP43, FUS,						
Tracking_id	Locus	Length	IncRNA	Biotype	No. of Interacted RBP	RBP					
----------------	-------------------------	--------	----------	------------------	-----------------------	--------------------------					
ENSG00000256940	11:64245963-64248217	2255	RP11-783K16.5	antisense	2	eIF4AIII,UPF1,					
ENSG00000269604	19:4791744-4795559	3816	AC005523.2	antisense	2	FUS,UPF1,					
ENSG00000267776	19:56376703-56377284	582	AC006116.24	sense_intronic	2	FUS,EWSR1,					
ENSG00000267458	19:12944117-12944487	371	CTC-425F1.4	antisense	2	FUS,UPF1,					
ENSG00000257553	12:56104613-56113905	9293	RP11-603J24.17	antisense	2	eIF4AIII,UPF1,					
ENSG00000238045	16:29808635-29821252	12,618	AC009133.12	antisense	2	eIF4AIII,U2AF65,					
ENSG00000259952	16:29806495-29807732	1238	AC009133.15	antisense	2	eIF4AIII,LIN28B,					
ENSG00000228109	3:196999459-19700474	5286	MFI2-AS1	antisense	2	eIF4AIII,U2AF65,					
ENSG00000261822	15:42567030-42569994	2965	RP11-265N6.2	antisense	2	eIF4AIII,UPF1,					
ENSG00000260934	16:19501688-19502286	599	CTA-363E6.7	antisense	2	eIF4AIII,FUS,					
ENSG00000240801	11:2129120-2129964	845	AC132217.4	3prime_overlapping_ncrna	2	eIF4AIII,FUS,					
ENSG00000227896	10:86521944-86525101	3158	RP11-77P6.2	antisense	2	eIF4AIII,FUS,					
ENSG00000254452	11:66276778-66277492	715	RP11-867G23.4	antisense	2	FUS,UPF1,					
ENSG00000259357	1:15096524-150966256	1013	RP11-31GM1.12	antisense	2	eIF4AIII,UPF1,					
ENSG00000269968	12:6537793-6538370	578	RPS-940J5.9	antisense	2	eIF4AIII,UPF1,					
ENSG00000260923	16:90185996-90222678	36,683	AC137934.1	lincRNA	2	eIF4AIII,FUS,					
ENSG00000269439	19:17488989-17511889	22,901	CTD-3131K8.2	lincRNA	2	eIF4AIII,FUS,					
ENSG00000261602	16:69709873-69710583	711	CTD-203A16.1	antisense	2	eIF4AIII,UPF1,					
ENSG00000234961	10:17233324-17234833	1510	RP11-124N14.3	antisense	2	FUS,UPF1,					
Gene Symbol	Chromosome	Start Position	End Position	Strand	Description	Number of antisense	Other Genes				
-------------	------------	----------------	--------------	--------	-------------	---------------------	-------------				
ENSG00000258377	14:49620814-49623480	2667	RP11-649E7.5	antisense	2	FUS,UPF1					
ENSG00000249786	3:15436170-15431602	15,433	EAF1-AS1	antisense	2	eIF4AIII,UPF1					
ENSG00000263424	18:67506588-67514030	7443	CTD-2541J13.2	antisense	2	DGCR8,UPF1					
ENSG00000267257	18:58535414-58538552	3139	RP11-1151B14.4	antisense	2	DGCR8,FUS					
ENSG00000255864	12:24213255-2456290	349,336	RP11-444D3.1	lincRNA	2	eIF4AIII,FUS					
ENSG00000227112	6:128505124-128506276	1153	RP1-86D1.4	antisense	1	FUS					
ENSG00000258908	14:20474788-20477089	2302	RP11-203M5.8	lincRNA	1	UPF1					
ENSG00000263065	16:15741150-15741791	642	AF001548.6	antisense	1	FUS					
ENSG00000249835	5:83541476-83581320	39,845	VCAN-AS1	antisense	1	eIF4AIII					
ENSG00000268309	19:16551772-16552328	557	CTD-3222D19.11	antisense	1	UPF1					
ENSG00000236498	2:6188431-61886082	17,652	AC107081.5	antisense	1	UPF1					
ENSG00000264558	17:47682416-47682683	268	RP11-138C9.1	antisense	1	FUS					
ENSG00000250186	17:49404080-49405197	1118	RP11-1079K10.4	antisense	1	UPF1					
ENSG00000253174	8:4154380-41545044	4665	RP11-360L9.7	antisense	1	UPF1					
ENSG00000254682	11:71448673-71452157	3485	RP11-660L16.2	antisense	1	U2AF65					
ENSG00000234883	21:25561908-25575168	13,261	MIR155HG lincRNA	antisense	1	PTB					
ENSG00000267886	19:23075200-23100361	19,23075200	CTD-229D10.4	lincRNA	1	DGCR8					
ENSG00000269292	19:46609276-46610779	19,46609276	CTD-12A17.3	antisense	1	UPF1					
ENSG00000268854	19:50480118-50483351	3234	CTD-2545M3.2	antisense	1	UPF1					
ENSG00000262831	17:81843164-81843958	795	RP11-498C9.2	antisense	1	UPF1					
ENSG00000267512	19:13139616-13141147	1532	CTC-250I14.3	antisense	1	UPF1					
ENSG00000203279	9:97200474-97238700	38,227	RP11-498P14.5	lincRNA	1	eIF4AIII					
Tracking_id	Locus	Length	IncRNA	Biotype	No. of Interacted RBP	RBP					
-----------------	-------------------	----------	----------	-----------	-----------------------	-------					
ENSG00000232527	1:144227029-144250288	23,260	RP11-14N7.2	lincRNA	1	eIF4AIII,					
ENSG00000257181	12:68841287-68843237	1951	RP11-611O2.5	antisense	1	UPF1,					
ENSG00000236886	2:216694463-216994079	299,617	AC007563.5	antisense	1	FUS,					
ENSG00000259627	15:63070024-63071911	1888	RP11-244F12.2	antisense	1	DGCR8,					
ENSG00000260349	16:9105833-9107174	1342	RP11-473I1.5	antisense	1	UPF1,					
ENSG00000265784	17:38918800-38921769	2970	RP1-56K13.3	antisense	1	UPF1,					
ENSG00000261295	X:100673329-100673981	653	RP11-524D16_A.3	antisense	1	eIF4AIII,					
ENSG00000236581	13:33271378-33281334	9957	STARD13-A5	processed_transcript	1	eIF4AIII,					
ENSG00000279753	19:1038726-1039064	339	AC011558.5	TEC	1	UPF1,					
ENSG00000259498	15:63046033-63049387	3355	RP11-244F12.3	antisense	1	FUS,					
ENSG00000227248	13:10778341-107835451	47,111	FAM155A-IT1	sense_intronic	1	FUS,					
RBP	Number of lncRNA interacted with	The list of lncRNAs that interact with RBP	RNA seq Reads (FPKM)	Fold change at mRNA level	Fold changes of RBP at protein level						
--------	----------------------------------	---	----------------------	--------------------------	-------------------------------------						
			Mock	**Ad2-6 hpi**	**Ad2-12 hpi**	**Ad2-24 hpi**	**Ad2-36 hpi**	**Ad2-6 hpi/M**	**Ad2-12 hpi/M**	**Ad2-24 hpi/M**	**Ad2-36 hpi/M**
elf4AIII	112	NEAT1, DLEU2, SNHG10, SNHG1, SNHG5, SNHG6, SNHG12, XIST, SHG7, MIR17HG, SNHG9, CTD-2033A16.1, RP11-552M11.4, BCYRN1, CTA-3636E6.7, ENTPD1-A51, RP11-32422.4, EAF1-A51, RP11-524D16.2, A3, AC012146.7, RP11-14N7.2, CTD-2349P21.9, AC007246.3, ERVKE-1, RP11-442H21.2, SNHG3, RP11-727A23.5, RP11-166D19.1, AC002117.1, AC017002.2, RP11-603J24.17, RP11-629O1.2, RP11-295G20.2, RP11-44D3.1, HNRNPUS-A51, AC009133.15, RP11-783K16.5, SNORA71A, RP11-111M22.3, CTA-29F11.1, RP11-29G8.3, TMEM161B-A51, CTD-2231E14.8, HAS2-A51, RP11-303E16.2, RP11-820L6.1, SNHG8, CTD-2245F17.3, LINC00641.41, RP11-473M20.16, SNHG15, MIR22HG, FTX, HOXA-A52, SNHG14, AC132217.4, LINC00152, AC093323.3, STARD13-A51, MF12-A51, CRNDE, CTC-459F7.6, LINC00657, MEG3, RP11-602.4, RP11-206L10.9, VCAN-A51, ZFAS1, MMP24-A51, THAP9-A51, RP11-77P6.2, RP5-94059.5, CTD-2651B20.6, RP11-159D12.2, RP11-316M11,2, ANKRD10-FT1, CDKN2B-A51, CTD-3099C6.9, RP11-1094M14.11, RPPH1-A51, RP11-572017.1, CTD-3131K2.8, RP5-875O13.1, RP11-498P14.5, DANC, FENDRR, RP11-355011.1, AC009133.12, RP11-265N2, LINC00630, CTD-3102O2.2, BDNF-A51, CTD-3184A7.4, SCARNA10, SCARNA9, AC159540.1, SCARNA2, HOTAIRM1, ZNF674-A51, OIP5-A51, SNHG16, LINC00475, RP11-658F2.8, RP11-131K19.2, AC137934.1, RN4UATGAC, RN11U1, MAPKAPK3-A51, PCBP1-A51, COX10-A51, AC005154.6, CTD-2006C1.2, SNHG5, NEAT1, SNHG9, SNHG1, MIR17HG, SNHG6, SNHG10, SNHG7, SNHG12, DLEU2, XIST, CTD-3222D19.11, CTD-2033A16.1, RP11-552M11.4, RP11-498E9.2, BCYRN1, CTD-12A173, ENTPD1-A51, RP11-32422.4, EAF1-A51, CTD-2349P21.9, RP11-6102.5, AC007246.3, ERVKE-1, RP11-442H21.2, SNHG3, RP11-473I1.5, RP11-166D19.1, AC002117.1, RP11-804A23.4, RP11-603J24.17, RP11-629O1.2, RP11-295G20.2, RNU6-2, HNRNPUS-A51, RP11-783K16.5, CTD-2545M3.2, SNORA71A, RP11-111M22.3, AC015558.5, RP11-29G8.3, RP11-124N14.3, TMEM161B-A51, CTD-2231E14.8, HAS2-A51, RP11-303E16.2, RP11-820L6.1, SNHG8, RP11-1079K10.4, LINC00641, RP11-473M20.16, SNHG15, MIR22HG, FTX, HOXA-A52, SNHG14, AC093323.3, LINC00152, RP11-56K13.3, CTC-425F1.4, CRNDE, RP11-108M9.3, CTC-459F4.3, LINC00657, RP11-203M5.8, RP11-649E7.5, AC107081.5, ZFAS1, MMP24-A51, THAP9-A51, CTD-2541J13.2, RP11-867G23.4, RP5-94059.5, RP11-360I9.7, CTD-2651B20.6, RP11-316M11,2, CDKN2B-A51, CTD-3099C6.9, CTC-250114.3, RP11-1094M14.11, RPPH1, DANC, FENDRR, RP11-355011.1, RP11-265N2, LINC00630, BDNF-A51, CTD-3184A7.4, SCARNA10, SCARNA9, SCARNA2, HOTAIRM1, ZNF674-A51, OIP5-A51,	21.5	24.3	29.2	49.7	34.6	2.3	1.6	1.3	1.6
UPF1	104		11.6	11.8	12.9	24.5	24.1	2.1	2.1	1.5	1.9

Table 2
RNA and protein expression of RNA binding proteins of lncRNAs identified in this study.
RBP	Number of lncRNA interacted with	The list of lncRNAs that interact with RBP	RNA seq Reads (FPKM)	Fold change at mRNA level	Fold-changes of RBP at protein level						
			Mock	Ad2-6 hpi	Ad2-12 hpi	Ad2-24 hpi	Ad2-36 hpi	Ad2-24 hpi/M	Ad2-36 hpi/M	Ad2-24 hpi/M	Ad2-36 hpi/M
FUS	96	SNHG16,RP11-658F2.8,RP13-131K19.2,RNU4ATAC,AC005523.2,RNU11,MAPKAPK5-AS1,PCBP1-AS1,Cox10-AS1,AC005154.6,	5.3	3.8	5.7	8.4	9.3	1.6	1.8	1.5	1.5
		SNHG12,DLEU2,SNHG1,MIR17HG,SNHG6,SNHG10,SNHG9,NEAT1,SNHG7,SNHG5,MEG8,XIST,RP11-552MI1.4,BCYRN1,CTA-3636.7,AC007563.5,RP11-138C9.1,ENTPD1-AS1,RP11-32422.4,CBD-2349P19.1,AC007246.3,ERVK3-1,SNHG3,RP11-166DI19.1,RP11-86D1.4,AC00217.1,RP11-804A23.4,AC017002.2,RP11-444D3.1,HRNRNU-AS1,CTA-29F11.1,RP11-29G8.3,RP11-124N14.3,TMEM161B-AS1,CBD-2231E14.8,HAS2-AS1,SNHG8,CBD-2245F17.3,LINC06041,RP11-244F12.3,SNHG15,MIR22HG,FXA,AP001548.6,HOXA-AS2,SNHG14,AC132217.4,AC093323.3,LINC00152,CBD-425F1.4,MIR143HG,CRNDE,CBD-459F4.3,LINC00657,MEG3,RP11-602.4,RP11-649F7.5,FAM155A-IT1,RP11-206L10.9,ZFAS1,MMPP24-AS1,THAP9-AS1,RP11-77P6.2,RP11-867G23.4,RP11-1151B14.4,RP11-159D12.2,ANKRD10-IT1,CDKN2B-AS1,RP11-1094M14.11,RPPH1,RP11-572017.1,CBD-3131K8.2,DCNCR,PEFDR,LINC00630,CTB-31020.2,BDNF-AS,AC006116.24,CBD-3184A7.4,SCARNA10,SCARNA9,AC159540.1,SCARNA2,HOTAIRM1,OIP5-AS1,SNHG16,LU000475,RP11-658F2.8,RP13-131K19.2,AC137934.1,RNU4ATAC,AC005523.2,RNU11,MAPKAPK5-AS1,PCBP1-AS1,AC005154.6,	–	–	–	–	–	–	–	–	–
U2AF65	72	SNHG10,SNHG9,DLEU2,SNHG12,SNHG1,SNHG7,MIR17HG,NEAT1,SNHG5,RP11-552MI1.4,BCYRN1,ENTPD1-AS1,AC012146.7,AC007246.3,ERVK3-1,SNHG3,RP11-727A23.5,RP11-166D19.1,AC00217.1,RNRNU-AS1,RP11-111M22.3,CBD-29F11.1,RP11-29G8.3,TMEM161B-AS1,RP11-303E16.2,RP11-8206L1.5,SNHG8,RP11-666L16.2,LINC00641,SNHG15,MIR22HG,FXA,HOXA-AS2,AC093323.3,LINC00152,MF22-AS1,CRNDE,RP11-108M9.3,CBD-459F4.3,LINC00657,RP11-206L10.9,ZFAS1,MMPP24-AS1,THAP9-AS1,RP11-159D12.2,ANKRD10-IT1,CDKN2B-AS1,RP11-1094M14.11,RPPH1,RP11-572017.1,CBD-3131K8.2,DCNCR,PEFDR,LINC00630,CTB-31020.2,CBD-3184A7.4,SCARNA10,SCARNA9,HOTAIRM1,ZNF674-AS1,OIP5-AS1,SNHG16,RP11-658F2.8,RNU4ATAC,RNU11,MAPKAPK5-AS1,PCBP1-AS1,Cox10-AS1,AC005154.6,	–	–	–	–	–	–	–	–	
DGC8R	64	SNHG12,SNHG1,MIR17HG,NEAT1,SNHG9,DLEU2,SNHG7,XIST,SNHG5,SNHG6,SN751L,AC012146.7,AC007246.3,ERVK3-1,RP11-442H21.2,SNHG3,RP11-727A23.5,RP11-166D19.1,RP11-804A23.4,HRNRNU-AS1,SNORA17A,RP11-29G8.3,TMEM161B-AS1,RP11-303E16.2,SNHG8,LINC00641,RP11-473M20.16,SNHG15,MIR22HG,FXA,HOXA-AS2,SNHG14,AC093323.3,RP11-244F12.2,CRNDE,RP11-108M9.3,CBD-459F4.3,LINC00657,MEG3,MMPP24-AS1,THAP9-AS1,CBD-2541J13.2,RP11-1151B14.4,CTD-	9.4	11.1	10.5	8.9	2.7	–	–	–	–
Gene Name	Value	Value	Value	Value	Value						
-----------	-------	-------	-------	-------	-------						
hnRNPC	50	157.8	169.3	181.6	289.6						
FMRP	49	1.8	3	1.1	1.1						
TIAL1	48	14.8	8.7	9.1	6.3						
PTB	47	13.5	12.7	1.6	1.5						
LIN28B	39	8.3	8.2	7.9	13.5						
LIN28A	38	12.7	1.6	1.5	1.1						
IGF2BP1	34	12.7	1.6	1.5	1.1						
RBP	Number of lncRNA interacted with	The list of lncRNAs that interact with RBP	RNA seq Reads (FPKM)	Fold change at mRNA level	Fold-changes of RBP at protein level						
-------------	----------------------------------	--	---------------------	--------------------------	-------------------------------------						
		AS1,LINC00641,RP11-658F2.8,SNHG3,FTX,MAPKAP5-AS1,RP11-159D12.2,AC093323.3,RP11-295G20.2,CTD-2006C1.2,ANKRD10-IT1,SNHG7,DLEU2,SNHG1,SNHG6,NEAT1,SNHG5,XIST,HRNRPU-AS1,RP11-1094M14.11,RP11-552M11.4,DANCR,CRNDE,CTC-459F4.3,LINC00657,RP11-29G8.3,LINC00630,AC012146.7,ZFAS1,RP11-303E16.2,OP5-AS1,SNHG16,LINC00641,RP11-658F2.8,SNHG3,FTX,CTD-2651B20.6,RP11-159D12.2,AC093323.3,RP11-295G20.2,CTD-2006C1.2,ANKRD10-IT1,CTD-309RC6.9,IGF2BP2	33	19.9 16.9 8.3 9.5 9.8 2.1 2.0 1.2 1.1							
IGF2BP3	31	SNHG1,DLEU2,SNHG7,NEAT1,SNHG6,XIST,SNHG5,HRNRPU-AS1,RP11-1094M14.11,RP11-552M11.4,DANCR,CRNDE,CTC-459F4.3,LINC00657,LINC00630,AC012146.7,TMEM161B-AS1,ZFAS1,RP11-303E16.2,OP5-AS1,MMP24-AS1,SNHG16,LINC00641,RP11-658F2.8,SNHG3,FTX,MAPKAP5-AS1,RP11-159D12.2,AC093323.3,RP11-295G20.2,ANKRD10-IT1	28.7 25.7 28.1 17.1 16	–1.7 1.8 1.1 1.2							
ZC3H7B	31	SNHG6,SNHG1,DLEU2,NEAT1,SNHG7,SNHG10,SNHG5,XIST,MIR17HG,RP11-552M11.4,SNHG3,HRNRPU-AS1,SNHG8,LINC00641,SNHG15,MIR22HG,FTX,RP11-1094M14.11,RP11-552M11.4,DANCR,CRNDE,CTC-459F4.3,LINC00657,LINC00630,AC012146.7,TMEM161B-AS1,ZFAS1,RP11-303E16.2,OP5-AS1,MMP24-AS1,SNHG16,LINC00641,RP11-658F2.8,SNHG3,FTX,MAPKAP5-AS1,RP11-159D12.2,AC093323.3,RP11-295G20.2,ANKRD10-IT1	9.7 13.7 10.5 9.1 7.8	–1.1 –1.2 –1.2 –1.2							
TDP43	30	SNHG12,NEAT1,SNHG1,SNHG6,SNHG5,MEG8,SNHG7,XIST,RP11-552M11.4,BCYRN1,RN75L,AC007246.3,SNHG3,SNHG8,LINC00641,SNHG15,FTX,HOXA-AS2,SNHG14,LINC00657,MEG3,CTD-2651B20.6,RP1PH1,SCARNA10,SCARNA9,SCARNA2,OP5-AS1,SNHG16,RNU11,PCBP1-AS1,SNHG12,NEAT1,SNHG1,SNHG6,SNHG5,MEG8,SNHG7,XIST,RP11-552M11.4,BCYRN1,RN75L,AC007246.3,SNHG3,SNHG8,LINC00641,SNHG15,FTX,HOXA-AS2,SNHG14,LINC00657,MEG3,CTD-2651B20.6,RP1PH1,SCARNA10,SCARNA9,SCARNA2,OP5-AS1,SNHG16,RNU11,PCBP1-AS1	– – – – – – – – – – – – – –	– – – – – – – – – – – – – –							
HuR	30	SNHG1,SNHG6,DLEU2,SNHG9,MIR17HG,SNHG7,SNHG10,SNHG12,SNHG5,XIST,RP11-303E16.2,HRNRPU-AS1,ZFAS1,SNHG8,LINC00641,SNHG15,RP11-552M11.4,DANCR,CRNDE,SNHG3,SNHG15,MIR22HG,ENTPD1-AS1,LINC00657,RP11-29G8.3,RP11-159D12.2,AC093323.3,RP11-602.4,ZFAS1,SNHG1,SNHG6,DLEU2,SNHG9,MIR17HG,SNHG7,SNHG10,SNHG12,SNHG5,XIST,RP11-303E16.2,HRNRPU-AS1,ZFAS1,SNHG8,LINC00641,SNHG15,RP11-552M11.4,DANCR,CRNDE,SNHG3,SNHG15,MIR22HG,ENTPD1-AS1,LINC00657,RP11-29G8.3,RP11-159D12.2,AC093323.3,RP11-602.4,ZFAS1	– – – – – – – – – – – – – –	– – – – – – – – – – – – – –							
TIA1	29	MIR17HG,SNHG1,DLEU2,NEAT1,SNHG6,XIST,RP11-552M11.4,ENTPD1-AS1,AC007246.3,SNHG3,HRNRPU-AS1,RP11-820L6.1,SNHG8,RP11-473M20.16,SNHG15,FTX,AC093323.3,LINC00152,CRNDE,RP11-108M9.3,LINC00657,MMP24-AS1,THAP9-AS1,CTD-2651B20.6,DANCR,OP5-AS1,SNHG16,RNU11,PCBP1-AS1,SNHG12,MIR17HG,SNHG1,DLEU2,NEAT1,SNHG7,SNHG5,XIST,RP11-552M11.4,ENTPD1-AS1,AC007246.3,SNHG3,HRNRPU-AS1,RP11-820L6.1,SNHG8,RP11-473M20.16,SNHG15,FTX,AC093323.3,LINC00152,CRNDE,RP11-108M9.3,LINC00657,MMP24-AS1,THAP9-AS1,CTD-2651B20.6,DANCR,OP5-AS1,SNHG16,RNU11,PCBP1-AS1	45.1 31 40.2 34 23.9	–1.3 –1.9 –1.3 –1.5							
EWSR1	25	SNHG12,MIR17HG,SNHG1,DLEU2,NEAT1,SNHG7,SNHG5,XIST,ENTPD1-AS1,AC012146.7,SNHG3,HRNRPU-AS1,SNHG8,LINC00641,RP11-473M20.16,SNHG15,CRNDE,LINC00657,AC006116.24,SCARNA10,SCARNA9,OP5-AS1,SNHG16,RNU11,AC005154.6,SNHG12,MIR17HG,SNHG1,DLEU2,NEAT1,SNHG7,SNHG5,XIST,RP11-552M11.4,ENTPD1-AS1,AC007246.3,SNHG3,HRNRPU-AS1,RP11-820L6.1,SNHG8,RP11-473M20.16,SNHG15,FTX,AC093323.3,LINC00152,CRNDE,RP11-108M9.3,LINC00657,MMP24-AS1,THAP9-AS1,CTD-2651B20.6,DANCR,OP5-AS1,SNHG16,RNU11,PCBP1-AS1	133.3 143.5 118.2 69.6 94.2	–1.9 –1.4 –1.3 –1.5							
Gene	Fold Change (a)	Expression (b)									
--------	-----------------	----------------									
SFRS1											
LIN28											
TAF15											
FXR2											
C22ORF28											
FUS-mutant											
CAPRIN1											
MOV10											
TNRC6											
C17ORF85											
PUM2											
ALKBH5											
QKI											
FXR1											

(a) Fold change in lncRNA, mRNA or protein expression between adenovirus infected and uninfected cells (mock).

(b) Expression was not detected or low sequencing reads (< 10 FPKM).
forming units (FFU) per cell in serum-free medium. After 1 h adsorption at 37 °C, the medium was replaced with complete medium and incubated at 37 °C. Infected cells were collected at 6, 12, 24, and 36 hours post-infection (hpi). Mock-infected cells were collected at 6 hpi.

2.2. RNA extraction, cDNA library preparation, and sequencing

Total RNAs were extracted using TRIZOL Reagent (Invitrogen). The quality of the input RNA was controlled by the Agilent 2100 Bioanalyzer (Agilent Technologies). Purified RNAs were treated with RiboZero (Epicenter) to remove ribosomal RNAs and cDNA libraries were constructed using Script-Seq™ v2 RNA-Seq library preparation kit according to the manufacturer’s protocol (Epicenter). The cDNA libraries were sequenced using Illumina HiSeq 2000.

2.3. Bioinformatics analysis

After data cleaning, the reads were aligned to human genome sequences (GRCh38, Ensembl) with TopHat2 software [2]. TopHat2 incorporates Bowtie2 (http://bowtie-bio.sourceforge.net/bowtie2/index.shtml) algorithm to perform the alignment. We used default parameters which allowed a maximum of two mismatches when mapping the reads to the human genome. Cufflinks was then used to profile gene expression at each time point based on human gene annotation by Ensembl [3]. Differentially expressed IncRNAs were identified by three statistical values. 1), fold change was calculated by the FPKM (Fragments per Kilobase of exon per Million fragments mapped) values between Ad2-infected to uninfected cells; 2), based on Poison distribution, p-values were used to present the significances of differentially expressed IncRNAs [4]; 3), using the NOIseq package, the probability of a differentially expressed IncRNA was calculated [5]. The hierarchical IncRNAs with different expression patterns were analyzed with uncentered correlation and centroid linkage method by Cluster and Tree View software.

2.4. Expression of IncRNA binding proteins

All the proteins that interacted with IncRNAs were downloaded from starBase v2.0 which is based on CHIP-Seq analysis (http://starbase.sysu.edu.cn) [6]. mRNA expression data was extracted from the current data. Whereas the protein expression data was obtained by SILAC-MS using the same cell culture and infection condition (manuscript in preparation). Briefly, IMR-90 cells were cultured in cell culture medium for stable isotope labeling by amino acids in cell culture (SILAC) for at least six population doublings. Cells labeled with heavy or light amino acids were then infected with Ad2 or mock infected, respectively. A biological replicate with swapped labeling was also performed. Mock- and Ad2-infected lysates of different labeling were combined in a 1:1 protein ratio. Proteins were fractionated using SDS-PAGE and each lane was cut into ten pieces. Following in-gel tryptic digestion, peptides were extracted and analyzed using QExactive Orbitrap Plus Mass spectrometer (Thermo-Fisher Scientific, Bremen, Germany) Acquired data (raw-files) was imported into MaxQuant software (version: 1.4) and searched against a FASTA-file containing both cellular and Ad2 proteins. The ratio of the chromatographic areas of heavy and light peptides matching to specific proteins was used for determining the differences in protein expression. The reported values are the average of two biological replicates.

Acknowledgments

Sequencing was performed at the SNP&SEQ Technology Platform in Uppsala University and University Hospital. We thank Ulrika Liljedahl and Johanna Lagensjö for excellent sequencing. Martin Dahlö at UPPMAX is acknowledged for assistance concerning technical and implementational aspects in making the code run on the UPPMAX resources. This work was supported by the Kjell and Märta Beijer Foundation (UP), Åke Wiberg Foundation (SBL) and Magnus Bergvall Foundation (SBL).
Transparency Document. Supporting information

Transparency data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2016.06.053.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2016.06.053.

References

[1] H. Zhao, F. Granberg, U. Pettersson, How adenovirus strives to control cellular gene expression, Virology 363 (2007) 357–375.
[2] N. Imamachi, H. Tani, R. Mizutani, K. Imamura, T. Irie, Y. Suzuki, N. Akimitsu, BRIC-seq: a genome-wide approach for determining RNA stability in mammalian cells, Methods 67 (2014) 55–63.
[3] C. Trapnell, A. Roberts, L. Goff, G. Pertea, D. Kim, D.R. Kelley, H. Pimentel, S.L. Salzberg, J.L. Rinn, L. Pachter, Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks, Nat. Protoc. 7 (2012) 562–578.
[4] S. Audic, J.M. Claverie, The significance of digital gene expression profiles, Genome Res. 7 (1997) 986–995.
[5] S. Tarazona, F. Garcia-Alcalde, J. Dopazo, A. Ferrer, A. Conesa, Differential expression in RNA-seq: a matter of depth, Genome Res. 21 (2011) 2213–2223.
[6] J.H. Li, S. Liu, H. Zhou, L.H. Qu, J.H. Yang, starBase v2.0: decoding miRNA–ceRNA, miRNA–ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data, Nucleic Acids Res. 42 (2014) D92–D97.