Hydrometallurgical Processes for the Recovery of Metals from Steel Industry By-Products: A Critical Review

Koen Binnemans · Peter Tom Jones · Álvaro Manjón Fernández · Victoria Masaguer Torres

Received: 20 April 2020 / Accepted: 14 October 2020 / Published online: 13 November 2020

© The Author(s) 2020

Abstract
The state of the art for the recovery of metals from steel industry by-products using hydrometallurgical processes is reviewed. The steel by-products are different slags, dusts, and sludges from a blast furnace (BF), basic oxygen furnace (BOF), electric arc furnace (EAF), and sinter plant, as well as oily mill scale and pickling sludge. The review highlights that dusts and sludges are harder to valorize than slags, while the internal recycling of dusts and sludges in steelmaking is inhibited by their high zinc content. Although the objectives of treating BF sludges, BOF sludges, and EAF dust are similar, i.e., the removal of zinc and the generation of an Fe-rich residue to be returned to the steel plant, these three classes of by-products have specific mineralogical compositions and zinc contents. Because wide variations in the mineralogical composition and zinc content occur, it is impossible to develop a one-size-fits-all flow sheet with a fixed set of process conditions. The reason for the interest in EAF dust is its high zinc content, by far the highest of all steel by-products. However, EAF dust is usually studied from the perspective of the zinc industry. There are not only different concentrations of zinc, but also variations in the all-important ZnO/ZnFe$_2$O$_4$ (zincite-to-franklinite) ratio. In many chemical processes, only the ZnO dissolves, while the ZnFe$_2$O$_4$ is too refractory and reports to the residue. It only dissolves in concentrated acids, or if the dust is pre-treated, e.g., with a reductive roasting step. The dissolution of ZnFe$_2$O$_4$ in acidic solutions also brings significant amounts of iron in solution. Finally, due to its high potassium chloride content, sinter-plant dust could be a source of potassium for the fertilizer industry.

Graphical Abstract

Keywords Hydrometallurgy · Iron · Industrial process residues · Steel · Recycling · Zinc

The contributing editor for this article was Markus Reuter.

Extended author information available on the last page of the article
Introduction

Producing one ton of steel in an integrated steel plant generates about half a ton of by-products, i.e., slags (90% by mass), dusts, and sludges. A blast furnace (BF) produces the most slag, with smaller amounts generated in a basic oxygen furnace (BOF) and an electric arc furnace (EAF). Dusts and sludges originate from the off-gas produced in BF, BOF, and EAF installations. Minor by-products include sinter-plant dust, oily mill scale, and pickling sludge. Although most steel slags have applications, dusts and sludges are often seen as waste. Research is turning to the valorization of those steel by-products that have no applications yet.

The motivation can be the valorization of the metal content. However, in most cases the removal of metals inhibits the recycling of by-products. For instance, the zinc content of BF and BOF sludges is too low for zinc recovery, but too high to recycle the by-products to the BF via the sinter plant. Stewart and Barron suggested the reason for the sensitivity to zinc is that, once charged into a blast furnace, any zinc component is reduced to elemental zinc [1]. Due to its low boiling point (907 °C) compared to the blast furnace (1600–1650 °C), the vapor re-condenses, leading to the condensation of zinc scaffolds (accretions) on the blast-furnace walls. These deposits affect the solid and gas flows through the furnace, so damaging the lining through burden slippage. Zinc is also known to attack refractories in the upper stack of the furnace, thus shortening its operating life. Therefore, landfilling (or internal stockpiling) is often the only option. Despite this, with partial removal (“bleeding”) of the zinc, these sludges can be recycled and their iron content recovered in the BF.

Most studies were performed on dusts and sludges (with only a few references to slags), primarily on EAF dust, because it is sufficiently Zn-rich to be a secondary resource, making extraction economically attractive.

With respect to pyrometallurgical processes, hydrometallurgical routes have several advantages. First, the capital expenditure (CAPEX) required is lower, making them more suitable for small-scale operations. As a result, the by-products do not require transport over long distances to large processing plants, such as Waelz kilns. Second, the operating expenses (OPEX) can be lower, because less energy is used. Third, hydrometallurgical processes are often more selective, so they can be more efficient.

This paper reviews the state of the art for the recovery of metals from steel-industry by-products using hydrometallurgical processes. The steel by-products are different types of slags, dusts, and sludges from a blast furnace (BF), basic oxygen furnace (BOF), electric arc furnace (EAF), and sinter plant, as well as the oily mill scale and pickling sludge. The literature covers the period to March 2020, and this review complements others on the valorization of steel-industry by-products [2–10].

Slags

Blast Furnace Slag (BF Slag)

Almost 100% of BF slag is recovered, either internally or externally [11]. Its main use is in the cement industry (75%), as a hydraulic binder, or as a raw material for clinker kilns. About 18% of BF slags are used as aggregates in construction: for concrete, asphalt pavements, roads, and waterways. The slag is crushed and screened (air-cooled slags) or granulated. The remainder is reused internally by steel plants for roadmaking and landfills. There are currently no technical limitations on the use of BF slags. Granulation is becoming the standard route, with cement being the high-value application. In other words, BF slag has been promoted from a by-product to a co-product.

Because there are no toxic or valuable metals, there is no need to hydrometallurgically treat BF slag to remove and recover metals. An exception are the slags produced from Ti-rich iron ores. These also contain vanadium and chromium, which are reduced by the coke in the BF and report to the hot metal. In contrast, vanadium and chromium are oxidized in a BOF, where they are enriched in the BOF slag, usually called vanadium slag [12]. Titanium is not reduced in a BF and is enriched in the form of TiO₂ in a BF slag. The grade of Ti-bearing slags is too low to recover the titanium and produce TiCl₄ or TiO₂, but too rich for use in the cement industry. As such, hydrometallurgical routes recover the titanium from these slags with concentrated H₂SO₄ [13]. However, these methods co-dissolve the CaO, MgO, and Al₂O₃, and thus consume more acid. But with mild conditions, less co-dissolution occurs.

Much more titanium was recovered from water-quenched and naturally cooled slag. Valighazvini et al. leached titanium from BF slags with H₂SO₄ [14]. They noted that the TiO₂, Al₂O₃, and MgO became soluble, whereas the CaO remained in the residue as CaSO₄. Nearly all the titanium could be leached with 2-M H₂SO₄ in 2 h at 65 °C and a liquid-to-solid ratio of 30. He et al. described recovering titanium by alkali roasting with NaOH, followed by leaching with H₂SO₄ at 160 °C [15]. Under ideal conditions, 93% of the titanium was recovered. It is also possible to dissolve part of the matrix, which results in a residue with enough TiO₂ for use as a secondary raw material. Mang et al. leached titanium-bearing BF slag with hydrochloric acid to dissolve the Ca, Mg, Al, and Fe, leaving behind a TiO₂-rich residue. They increased the TiO₂ content after solid/liquid
Basic Oxygen Furnace (BOF) Slag

It is important to differentiate (1) BOF or converter slag in primary steelmaking, (2) BOF secondary-metallurgy slag (BOF SM slag), and (3) desulfurization slag (de-S slag) [11].

Compared to BF slag, converter slag is difficult to recover. The problems are the presence of steel droplets (making metal recovery necessary) and the free (unhydrated) lime (CaO) and periclase (MgO) content, which varies from 2 to 12%, with the former being more abundant. Both can hinder applications through expansion, a high fines content and a high pH in water. The high free-lime content is a problem in applications like aggregates, but can be used for fertilizers and cement.

BOF slags can be internally recycled to the sinter plant, the BF or the converter. External applications include fertilizers, soil conditioners, cement components, raw material for clinker or rock wool, filler for concrete, and absorbent for wastewater pollutants. As with BF slag, converter slag is used for CO₂ sequestration, with the high lime content being an advantage. The phosphorus content of BOF slag limits its internal recycling to the sinter plant or the BF. Phosphorus reports to the hot metal and comes back in a loop to the converter, where it must be removed by consuming more lime and generating more slag, which is a costly process. In general, the heavy-metal content of converter slags is not problematic, but there is concern about the chromium content of slags used for clinker production. The average is 460 ppm, with a maximum of 2000 ppm. The chromium in slag is trivalent, but it can be oxidized in the clinker kiln and become the hazardous hexavalent chromium.

BOF secondary-metallurgy (SM) slag has a chemical composition different to that of converter slag and so these slags should be kept separate. BOF SM slags have a high Al₂O₃ content and a low iron content, which is an advantage in some applications. However, a high Al₂O₃ content is undesirable for recycling in a sinter plant. This type of slag is used in construction, particularly for roads; however, about one-third is landfilled.

The main problem with desulfurization slag is the high content of sulfur, alkali, free lime, and sometimes fluorine. This makes it more difficult to valorize than converter slag. It also contains metal droplets, so that metal recovery is required. Some of these slags are recycled via the sinter plant or the EAF and some to road construction. More than 40% was landfilled in 2006 [11].

The vanadium content of vanadium-titanium-containing magnetite iron ores—called “vanadium slags” (vide supra)—reports to BOF slags in the primary steelmaking process. Vanadium co-occurs with iron, titanium, manganese, aluminum, and silicon. The main mineral phases in vanadium slag are fayalite (Fe₂SiO₄), titanomagnetite (Fe₂Si₃Ti₆O₁₄), and spinel (Fe₃V₂O₇ or more generally (Mn,Fe)(V,Cr)₂O₄). Chromium spinel phases can also be present. Vanadium slag is an important resource of vanadium. For instance, it accounts for 40% of production in China [21].

The molten NaOH roasting method can extract vanadium from vanadium slag. But this process uses a lot of energy and NaOH, making it costly. The conventional approach to recovering vanadium is roasting with NaCl, followed by water leaching, purification of the vanadium solution, and precipitation of the vanadium as ammonium polyvanadate (NH₄V₅O₈). Finally, calcination yields vanadium pentoxide (V₂O₅). Figure 1 shows a flow sheet of this process [22]. The purpose of roasting with NaCl (or other sodium salts) is to convert the spinel phase into soluble sodium vanadate (NaVO₃). However, roasting with NaCl is being abandoned due to the emissions of HCl and Cl₂ and the loss of vanadium from volatile VOCl₃ during chlorination roasting above 600 °C. The low vanadium recovery (<60%) and high energy use make this process uneconomic. Chromium spinel, which is commonly found in vanadium slag, can be partially oxidized to hexavalent chromium when roasting with sodium salts [23]. Chromium can be leached with vanadium in the water-leach process, resulting in toxic CrO₄²⁻ in the water and the leaching residue. The removal of CrO₄²⁻ from wastewater involves reducing with sulfur or SO₂. This generates a lot of chromium sludge, and so new vanadium-extraction technologies have been developed.

By roasting with CaO, the problem of sodium salts can be avoided [23, 24]. After calcification roasting, the fayalite phase Fe₂SiO₄ is decomposed and transformed to CaSiO₃ and Fe₂O₃, and, subsequently, the spinel phase (Fe₃V₂O₇) is oxidized and transformed to Ca₂V₂O₇ and Ca(VO₃)₂ [25]. The leaching involves dilute H₂SO₄ [23]. However, there are operational difficulties and a low vanadium recovery.
Furthermore, during acid leaching, calcium sulfate accumulates in the residues, inhibiting further use as a raw material. Leaching is easier with ammonium carbonate, since it allows the selective leaching of the vanadium into the liquor from calcification-roasted vanadium slag, but maintains the phosphorus in the solid phase because of the differences in the reactivity of calcium vanadate and calcium phosphate with ammonium carbonate [25]. Vanadium was recovered from Ca-rich slags by direct oxidative roasting, without added salt, followed by leaching with a sodium carbonate solution [26]. During the oxidation roasting, the olivine phases and spinel phases decomposed at 500 and 800 °C, respectively. Vanadium-rich phases were formed above 850 °C. To recover the vanadium and titanium, the vanadium slag was roasted with ammonium sulfate at moderately high temperatures, followed by dilute H₂SO₄ leaching [27]. To enhance the extraction, an activation pre-treatment of the vanadium slag via high-temperature water quenching was employed. The activation accelerated the extraction, with the yields increasing by 16% and 12%, respectively, compared with the untreated slag. Li et al. developed non-salt roasting, followed by leaching with ammonium carbonate [23, 28]. This can be recycled in the process and the leaching residue can be returned to the blast furnace. The vanadium is recovered as ammonium vanadate (NH₄VO₃). Instead of ammonium carbonate, ammonium oxalate was found to be an efficient lixiviant [29]. After roasting with CaO, the vanadium could be extracted from Cr-rich vanadium slag by leaching with a (NH₄)₂SO₄-H₂SO₄ mixture at 20 °C [30] and recovered from the leachate as a (NH₄)₂V₆O₁₆ precipitate after heating to 60 °C and adjusting the pH to 8.0. Roasting the (NH₄)₂V₆O₁₆ precipitate yielded V₂O₅.

Direct vanadium leaching with acids, without prior roasting, is efficient and has no emission problems. Unfortunately, it consumes a lot of acid and has poor selectivity. Zhang et al. recovered the vanadium from slag using high-pressure oxidative acid leaching [21] where the fayalite and spinel phases are decomposed by H₂SO₄, releasing vanadium and iron in solution, while the unreacted silicon and titanium are enriched in the residues. With an initial 250 g L⁻¹ concentration of H₂SO₄, leaching at 140 °C, a time of 50 min, a liquid-to-solid ratio of 10:1 mL g⁻¹, and an oxygen pressure at 0.2 MPa, vanadium recovery reached 97.7%. To mitigate the acid consumption, waste acids have been proposed [31]. To mitigate the low selectivity, the leachate can be purified by solvent extraction. For instance, Zhang et al. purified a leachate with bis(2-ethylhexyl)phosphoric acid (D2EHPA) as the extractant, tri-n-butyl phosphate (TBP) as the modifier, and sulfonated kerosene as the diluent [32]. It is clear that the recovery of vanadium from vanadium slags is an active research field.

The US Bureau of Mines has developed a process to recover manganese from BOF slag by leaching with ammonium carbamate [33]. Figure 3 shows the flow sheet. The ammonium carbamate hydrates irreversibly to ammonium carbonate: NH₂CO₂NH₄ + H₂O → (NH₄)₂CO₃. Therefore, leaching with mixtures of NH₃ solution and ammonium carbamate is essentially ammonia–ammonium carbonate (AAC) leaching. The BOF slag was pre-treated at high temperatures in a reducing (H₂ or CO) or oxidizing atmosphere (air), for 2 h at 700 °C, prior to leaching. Only a treatment with H₂ improved the leaching compared to the as-received slag: 71% Mn recovery versus 34% recovery for the as-received slag. There was also a large co-dissolution of iron,
indicating that it is present as Fe(II). After leaching, MnCO₃ and FeCO₃ were recovered from the solution by heating, with the NH₃ and CO₂ driven off. Under optimum conditions, 80% of the manganese and 50% of the iron could be recovered. Manganese is a valuable, strategic metal, but the process was uneconomic because of the cost of roasting, the low manganese content, and ammonium carbamate cannot leach manganese from all types of BOF slags.

Krasheninin et al. recovered manganese from a residue after leaching vanadium with Na₂CO₃ from oxidatively roasted manganese-vanadium slag [34]. The manganese was present as MnCO₃ and could be recovered from the leachates by adding (NH₄)₂CO₃ and then calcining to Mn₂O₃.

Electric Arc Furnace (EAF) Slag

There is a difference between EAF primary slag and EAF secondary-metallurgy slag [11]. The main use of EAF slags is in roads, waterways, railways, etc. The chemical composition of EAF slags varies, based on the type of feed. The main components are calcium, iron, magnesium, aluminum, and silicon oxides. Less than 1% of the calcium is present as free lime. EAF slags have high chromium and iron contents and low basicity (=CaO/SiO₂ mass ratio). The metallic iron content is 0.8–11.4%, with an average of 4%. The chromium content can be problematic, i.e., 0.01–2.52%, with an average of 1.03%, because in clinker production it can be oxidized to the soluble and toxic hexavalent chromium. Standard tests on EAF slag have investigated the leachability of chromium and other metals [35], where it is related to the slag’s basicity and particle size [36]. The cooling conditions also influence the leachability of chromium from EAF slags, e.g., a neutral or reducing atmosphere can prevent the formation of hexavalent chromium [37]. EAF slags are better for metal recovery than other slags due to their high iron and chromium contents [38]. Chromium is present in spinel phases and FeCr metallic droplets. Few studies have looked at metal recovery from EAF slags, and most of these concern manganese recovery from ferromanganese slags.

Researchers at the Flemish Institute for Technological Research (VITO) in Belgium studied the recovery of chromium from landfilled Cr-rich stainless-steel slags. They used alkali roasting with a low concentration of alkaline salt (NaOH or NaOH + NaNO₃), followed by water leaching [39]. Figure 4 shows the flow sheet. The effects of the processing parameters and a pre-treatment on leaching behavior were checked. NaNO₃ acts as an oxidizing agent and increases the chromium recovery, while the residue could be used in construction. In a follow-up, alkaline pressure leaching with a NaOH solution was investigated [40]. The design-of-experiment method was used to optimize the process parameters. The maximum chromium leaching was 46% with 1-M NaOH, 240 °C, 6 h, mechanical activation 30 min, while the matrix material was only partially dissolved (Al 2.88%, Si 0.12%, Ca 0.05%). After chromium leaching, followed by alkali washing, a carbonation treatment stabilized the remaining chromium and the matrix was recycled for construction. Chromium can also be recovered under milder reactions conditions, with a temperature-controlled
extraction using NaOH in the presence of NaOCl, followed by water leaching [41]. The dissolved chromium can be precipitated as barium chromate (BaCrO₄). The dissolution of chromium was optimized by studying parameters like NaOCl concentration, NaOH-to-slag ratio, leaching time and temperature, and particle size. The reuse of the residue via accelerated carbonation was also studied. Lab-scale batch and column leaching showed that the process can be used in the heap leaching of chromium from landfilled stainless-steel slags, allowing in-situ chromium recovery [42].

Ferromanganese slag comprises waste from the production of ferromanganese metal in BFs and EAFs [43]. The manganese content of the slag (>30%) makes it attractive for manganese recovery with hydrometallurgical methods and using the residue for cement. Mohanty et al. used dilute H₂SO₄ to leach ferromanganese slag at temperatures up to 80 °C at a liquid-to-solid ratio of 10:1 with almost 100% recovery of the manganese [44]. Step-wise leaching with dilute acid was proposed to reduce the dissolution of impurities, which can be precipitated from the leachate by increasing the pH from 2.5 to 5.65. The purified MnSO₄ can be used as an electrolyte for the recovery of manganese metal, with the residue containing only aluminum and calcium. Naganoor et al. used FeCl₃ to leach ferromanganese slag [45]. Roasting with CaO or CaCO₃ prior to leaching ensured the manganese was in soluble form. A manganese recovery of 82% was achieved with a 0.154-M FeCl₃ solution in 2 h at 80 °C and a pulp density of 5–10%. The sucrose in the FeCl₃ solution meant 86% of the manganese was recovered from the slag in 1 h. The pregnant leach solution was then treated to produce electrolytic MnO₂ and manganese metal. Ferromanganese slags contain silicate phases, so leaching silicate minerals with dilute acids can be difficult due to silica-gel formation, which hinders solid–liquid separation. Silica-gel formation can be avoided by dry digestion with concentrated acid. This creates water-starved conditions where the condensation of orthosilicic acid to silica gel is impossible [46]. Kazadi et al. digested ferromanganese slags with concentrated H₂SO₄ and the residue was leached with water [47]. Up to 90% manganese recovery was achieved, depending on the number of leachings. The leachate could then be processed to manganese metal by electrolysis, as well as MnO₂ or other salts. The residue obtained after solid–liquid separation, containing amorphous silica and calcium sulfate, was tested as an additive for Portland cement. In a follow-up, Baumgartner and Groot purified a MnSO₄ leach solution [43], with the pregnant leach solution having 25–35 g/L of Mn. Impurities were removed by hydroxide precipitation using NH₃ or NaOH. The NH₃ was the most effective, reducing Fe, Si, and Al to less than 1 ppm. MnCO₃ precipitated at pH > 8 by adding Na₂CO₃ or (NH₄)₂CO₃. However, phases such as (NH₄)₂Mg(SO₄)₂·6H₂O and Na₂SO₄ co-precipitated and contaminated the product, rendering it unsuitable as a furnace feed. Therefore, the product was washed with distilled water to produce a viable furnace feed. Pure MnCO₃ (>92%) was produced; however, although technically viable, the large amounts of base reagent required to enhance the pH made the process uneconomic. An optimization to determine the ideal amount of acid for the water-starved digestion stage was conducted, which reduced acid and base consumption while optimizing the quality of the pregnant leach solution, and producing a leach residue that contained less than 1% Mn. The outcome was an economically viable process.

Hocheng et al. bioleached metals from EAF slag that was washed with water before bioleaching [48]. This reduced the slag’s pH from 11.2 to 8.3. Culture supernatants of Acidithio- bacillus thiooxidans (At. thiooxidans), Acidithiobacillus ferrooxidans (At. ferrooxidans), and Aspergillus niger (A. niger) were used for metal solubilization. The At. thiooxidans culture supernatant containing 0.016-M H₂SO₄ was the most effective for bioleaching metals from EAF slag. The maximum metal extraction was obtained for Mg (28%), while the lowest was obtained for Mo (0.1%) in 6 days. Repeated bioleaching increased the metal recovery from 28 to 75%, from 14 to 60% and from 11 to 27%, for Mg, Zn, and Cu, respectively.

Dusts and Sludges

BF Dust and Sludge

Chemistry and Mineralogy

Dust leaves a BF via the top gas, which carries the particles through the gas cleaner, creating a coarse fraction called BF dust (or primary dust) and a wet-scrubbed, fine fraction, called BF sludge (or secondary dust) [49]. Less BF dust and sludge are produced now, due to improvements in the coke and sinter properties and better control of blast furnaces. The average production in 2006 was 11.4 kg/ton of hot metal for primary dusts and 8.9 kg/ton of hot metal for secondary sludges [11]. It is not clear if the value for secondary sludge is for wet or dry material.

The difference between primary and secondary materials is the zinc and lead contents, with more of these elements in the finer BF sludge. On average, there is 0.2 wt% of Zn in BF dusts and 1.5 wt% in BF sludges [11]. Maximum values are 1.2 wt% for the BF dusts and 2.7 wt% for the BF sludges. Zinc, with its boiling point of 907 °C, travels with the ascending gas in the BF, condensing in its upper parts. The dust-forming mechanism for zinc is therefore chemical, not mechanical [49]. Consequently, the zinc, unable to form larger particles, will be found in the finest particles. Furthermore, zinc will condense more on finer particles due to their large surface area. The Pb content in BF sludges is...
0.1–0.9 wt%. The zinc (and lead) in BF off-gas, BF dusts and sludges, originates from the reuse of BOF dust in the sinter plant. The zinc (and lead) in the BOF dust comes mainly from the scrap (vide infra). These elements negatively affect the BF because they can destroy the refractory lining. The total iron content is 20–70%, while the carbon content is 10–50%.

The main mineral phase in BF sludge is hematite (Fe₂O₃), together with calcite, periclase, graphite, and amorphous coke. Magnetite and quartz have also been reported [50]. Kretschmar stated that identifying zinc phases in BF sludges is demanding, because of the low zinc content, the large amounts of amorphous phase, and the isomorphism of zinc-containing phases with non-zinc phases [51]. For instance, franklinite is isostructural with magnetite, and smithsonite is isostructural with calcite. In general, zinc is associated with all the phases in BF sludge [49, 52]. Since the zinc reactions are in the gas phase, ZnO condenses on solid particles and can react with the particles’ matrix. For instance, if ZnO condenses on a Fe₃O₄ particle, it can react with it to form ZnFe₂O₄. This means solid particles with an Fe₃O₄ core, a layer of ZnFe₂O₄, and an outer layer of ZnO can be found.

There are also reports that the zinc in BF sludge is in the form of zinc sulfide (ZnS, sphalerite) [53]. The sulfur is introduced in the BF via coke or coal. The highest sulfur contents occur when pulverized coal injection (PCI) is used [54], with the coal containing more sulfur than the coke. Although most of the sulfur reports to the slag, about 2–3% is found in the dusts and off-gases, where it can react with the particles’ matrix. For instance, if ZnO condenses on a Fe₃O₄ particle, it can react with it to form ZnFe₂O₄. This means solid particles with an Fe₃O₄ core, a layer of ZnFe₂O₄, and an outer layer of ZnO can be found.

Sulfuric Acid Leaching

Sulfuric acid (H₂SO₄) leaching is the most popular way to recover zinc from BF sludges, because of its availability and price. A process was developed to leach BF sludge with this acid at room temperature [60]. For 1.0-M H₂SO₄, liquid-to-solid ratio = 10, leaching time = 10 min. 82% of the zinc was recovered, with a 5% co-dissolution of iron. Shorter times reduced the co-dissolution of iron, but only at room temperature. The dissolved iron was precipitated from the leachate as jarosite, and the solution was purified by solvent extraction using LIX622 and LIX984. Finally, zinc metal was obtained by electrowinning from the sulfate solution. Havlik et al. leached BF sludges with 1-M and 2-M H₂SO₄, at 20, 50, and 80 °C [61]. The zinc was dissolved in H₂SO₄ concentrations of 1 M or higher within a few minutes. Although the amount of iron leached at 20 °C was relatively low, it increased with temperature. For 2-M H₂SO₄ and 80 °C, a lot of iron went into solution. Banerjee leached BF flue dust and sludge with a low zinc content (0.007% for the dust and 0.45% for the sludge) in H₂SO₄ solutions between 0.1 and 1.0 M and reported less selectivity with higher concentrations: for 1.0-M H₂SO₄ a significant amount of iron was dissolved [62]. Steer and Griffiths reported very efficient zinc leaching: > 98% dissolved, but 47% of the iron went into solution [52]. This is probably due to the longer leaching time (24 h) and high acid concentration (1 mol/L).

Andersson et al. found that leaching with H₂SO₄ is better than with HCl or HNO₃ [49]. Hot leaching (80 °C) with H₂SO₄ at pH 1 dissolved 95% of the zinc, leaving just 0.025% in the residue, which also had 91% of the iron. The leaching took 10 min. Longer times increased the heat losses, acid consumption, and iron leaching. Therefore, shorter times mean more iron in the residue, which contained 86% of the original solid, 91% of the iron, and 100% of the carbon. When using pH 3, iron recovery increased to 96%, with 93% of the original solid remaining. Although the leachate was not purified, cementation was suggested as a way to remove the lead and recover the zinc as ZnCO₃ by adding Na₂CO₃. ZnCO₃ can then be calcined to ZnO. This suggests it is easy to de-zinc BF sludge, making it suitable for in-plant recycling. Nevertheless, although the process
works, the liquid-to-solid ratio is high (L/S = 10). By leaching BF sludge with 0.1-M H₂SO₄ in a strongly oxidizing ozone gas, the co-dissolution of iron could be suppressed, while 85% of the zinc could be leached [63].

The microwave-assisted leaching of BF sludge with H₂SO₄ solutions recovered only slightly more zinc (4%), although the authors claim that the process was faster [64]. Mikhailov et al. reported the ultrasound-assisted leaching of BF sludge with H₂SO₄–H₂O₂ solutions [65]. For 0.4-M H₂SO₄ + 0.1-M H₂O₂ and a liquid-to-solid ratio of 10, 84% of the zinc and 1.3% of the iron were removed, with hydrogen peroxide oxidizing the sulfides of sphalerite to sulfate ions. A conceptual flow sheet for an industrial process is shown in Fig. 5. The mechanism is not entirely clear and probably has errors (for instance, that Fe₂O₃ would dissolve by bringing Fe²⁺ into solution).

Pure ZnSO₄·7H₂O was leached from zinc-containing BF sludge with H₂SO₄ [50]. Fe(II) was oxidized to iron(III) by H₂O₂ and precipitated as Fe(OH)₃ with the addition of CaCO₃. Calcium was removed from the filtrate by adding ZnF₂ to form insoluble CaF₂. High-purity (99.57%) hydrated zinc sulfate, ZnSO₄·7H₂O, was crystallized from the filtrate by evaporating the water.

Hydrochloric Acid Leaching

SIDMAR (now ArcelorMittal Gent, Belgium) and the Department of Chemical Engineering of KU Leuven (Belgium) have developed a hydrometallurgical process based on oxidative leaching in HCl to treat BF sludges in SIDMAR’s tailings pond [53]. A flow sheet is shown in Fig. 6. Oxidative leaching was chosen because part of the zinc was in the form of ZnS (sphalerite), which only dissolves in very acidic conditions (pH < 0.25) because of the low solubility product. When oxidizing conditions are used, ZnS dissolves more easily, and at higher pH values because the sulfide ions are oxidized. In a BF dust sample, 17% of the zinc was present as ZnS, and only 3–4% as ZnFe₂O₄. Leaching involved HCl and NaNCl, and/or FeCl₃ as an oxidizing agent. The HCl and NaNCl were added directly to the reactor to keep the pH below 1.5 and the redox potential above 650 mV. The slurry could leach zinc and lead, while iron and calcium dissolved. The sludge was added to the bottom of the reactor, with the reagents and the recirculate. The turbulent reaction mixed the sludge and the chemicals. A flocculant was added to the overflow of the reactor, with the solid/liquid separation carried out by a filter band.

The leaching efficiencies were 95% for zinc and 92% for lead, while that for iron was 32–49%. Zinc and lead chlorocomplexes were removed using two anion exchangers, which did not retain the iron, calcium, and aluminum. That part of the iron was extracted was not a problem, as it is not retained on the anion exchanger. It is returned to the reactor to precipitate once more as goethite and remain with the residue as the concentration increases. Recirculating the solution limits the consumption of water and chemicals. The average consumption of reagent was 0.5 L of 12-M HCl per kg of incoming dry solids and 0.4 L of NaNCl (min. 120 g of active chlorine per L) per kg of incoming dry solids. The overall costs for the process (including investment, personnel, reagents, energy, and maintenance) were estimated in 2000 to be $125 per ton of dry solids. Belgian patent BE1011619A3, assigned to SIDMAR, is the same process, but with Cl₂ replacing NaNCl [66]. The same claim is covered by patent WO 99/31285 [67].

Belgian patent BE1001781A6 discloses the use of an oxidized, spent pickling liquor used for steel plate. The liquor is oxidized with Cl₂ solution to obtain one rich in FeCl₃. This FeCl₃-enriched HCl solution is then used to leach BF sludge, which is washed and sent to a sintering plant [68]. Canadian patent CA2985027A1, assigned to ArcelorMittal,
discloses the leaching of BF sludge with a mixture of HCl and sodium chlorate (NaClO₃) oxidizing agent [69]. To keep the lead soluble, the leaching is at pH 0.8–1.2 and 50–60 °C. If the pH is too low, too much iron dissolves. The iron is precipitated as goethite by increasing the pH to > 1.5 with lime. The method was used for BF sludges with 4.5–12% zinc, i.e., well above normal levels.

In patent WO 2018/219464, ThyssenKrupp discloses how to treat BF sludge with a HCl solution and dissolve most of the iron, leaving behind a C-rich residue [70]. The HCl solution has a concentration of 5–20%, a time of 5–15 min, at temperature of 60–80 °C. Ultrasound can help to homogenize the solution and shorten reaction times. The C-rich phase is filter-pressed and washed with water to remove any chloride impurities. After drying, this C-rich phase can be returned to the BF. After solid/liquid separation, the Fe-rich solution is treated to recover the iron as Fe₂O₃. The Fe-rich solution can be reduced by hydroxylammonium chloride to Fe²⁺, and the lead and zinc are removed with an iron exchanger. Next, the Fe²⁺ is oxidized to Fe³⁺ by H₂O₂ and the Fe³⁺ is trapped on a second ion exchanger. After eluting the Fe³⁺ with HCl, the FeCl₃ solution is treated by pyrohydrolysis. The HCl is recovered and the residue is 99% Fe₂O₃. Alternatively, after solid/liquid separation the Fe-rich solution can be treated with H₂O₂ to oxidize the Fe²⁺ to Fe³⁺, and the Fe³⁺ is precipitated as Fe(OH)₃ by adding lime. Fe(OH)₃ is separated by a filter press and Fe(OH)₃ is transformed into Fe₂O₃ in a roaster furnace. The HCl is regenrated for reuse in the process by treating the solution in a spray roaster furnace (pyrohydrolysis).

Leaching with Organic Acids

Steer and Griffith tested some carboxylic acids for zinc and iron extraction with a concentration of 1 mol/L: acetic, citric, oxalic, benzoic, malonic, and acrylic acid (prop-2-enoic acid) [52]. The BF sludge was from a tailing pond with 2.25% zinc content. The results are shown in Fig. 7. Although H₂SO₄ gave the highest zinc yield, large amounts of iron were also co-dissolved. The authors then selected acrylic acid (prop-2-enoic acid). This gave a better extraction efficiency for zinc (83.1%), with the co-dissolution of small amounts of iron (8.5%). However, the use of acrylic acid is not appropriate from the safety and environmental points of view. It is very hazardous for skin (permeator) and eye contact (irritant, corrosive). Although the authors considered acetic and benzoic acid to be inferior to acrylic acid, because of the lower zinc extraction, the acetic and especially the benzoic acid (with just 0.1%) led to less co-dissolution of iron. An interesting feature of this paper is the effect of non-aqueous solvents on the extraction of zinc and iron with acrylic acid (Fig. 8). Mixtures of water and methylbenzene (toluene) extracted around 85% of the zinc. More importantly, the co-dissolution of iron was just 0.1% for 2:1 water:toluene mixtures. This is probably because the iron was re-precipitated after dissolution due to a high pH. There have been no follow-up studies.

Citric acid is often used to remove zinc from contaminated soils [71–74]. Therefore, we could anticipate that citric acid, and related chelating organic acids, have the potential to remove zinc from landfilled BF sludges. Something that has not been investigated yet. Furthermore, there is little on recycling the lixiviant in soil-remediation studies with citric acid. All the lead (but not zinc) could be removed from BF sludges with an EDTA solution [75].
Leaching with Ammonia + Ammonium Salts

Tata Steel discloses in EP 3 333 272 A1 a process for leaching BF (and BOF) residues with a leaching solution of NH₃ and an ammonium salt, (NH₄)₂SO₄, NH₄Cl, or (NH₄)₂CO₃, at pH 8–12 [76]. When leaching with an NH₃ + ammonium sulfate solution, dried and untreated BF sludge yielded 40% zinc with only 1% of co-dissolved iron. With roasting in air, the zinc recovery was 60%. Roasting with Na₂CO₃, followed by leaching with NH₃ + (NH₄)₂SO₄, gave 70%. These increases are due to the decomposition of ZnFe₂O₄.

Bioleaching

Cheikh et al. suggested a clean-up for BF sludges that combined an initial leaching with Na-EDTA (pH 6) to remove the lead, followed by a second bioleaching with A. ferrooxidans to remove the zinc [75]. For the bioleaching, 1 g of sludge was used in 50 mL of solution.

BOF Dust and Sludge

Chemistry and Mineralogy

According to a 2006 survey, the average amount of BOF dust and sludge is about 22 kg/ton of crude steel (range 10–40 kg/ton) [11]. Most BOF dusts and sludges are collected in the secondary/fine systems. Improvements in gas cleaning systems mean more material is being collected, rather than emitted into the atmosphere. This has led to slightly increased amounts of BOF dusts and sludges over the years. There are also increases in BOF dusts and sludges due to altered process conditions, e.g., blowing rates, slag practices, bath additions, and bath agitations.

Tables 1 and 2 show the chemical composition of primary (coarse) and secondary (fine) BOF dusts and sludges. These are mainly iron particles ejected from the BOF, which partially oxidize within the gas cleaning system [11]. The extent of the oxidation depends on the extraction system. Due to the high temperatures involved and the mechanism of formation, the carbon levels associated with BOF dusts and sludges are low compared to BF dusts and sludges. A study of BOF sludge by ArcelorMittal Monlevade, Brazil, showed that the fine fraction is much richer in zinc and lead than the coarse fraction. Whereas the coarse fraction contained 0.51% Zn and < 0.010% Pb, the fine fraction contained 4.37% Zn and 0.068% Pb [77]. A study of the distribution of zinc in BOF off-gases in two ArcelorMittal steelmaking plants showed that the dusts collected close to the BOF vessels contain much less zinc than the dust collected downstream in the off-gas cleaning system. The primary dust contains such a low zinc content and is so Fe-rich that it can be considered as a secondary iron resource, comparable to high-quality iron ores [78]. BOF sludge contains much less sulfur than BF sludge [79].

A mineralogical study of BOF sludge from ArcelorMittal Monlevade found the following mineralogical phases were present in both the coarse and fine fractions: wüstite (FeO), magnetite (Fe₃O₄), metallic iron (α-Fe), lepidocrocite (γ-FeOOH), calcite (CaCO₃), and portlandite (Ca(OH)₂) [77]. Zincite (ZnO) was not identified, and franklinite (ZnFe₂O₄) could not be identified due to an overlap with the peaks of magnetite in the X-ray diffractogram. Graphite (C) was only found in the fine fraction and fluorite (CaF₂) only in the coarse fraction. Sammut et al. made a zinc speciation in BOF dust and found 43% ZnFe₂O₄, 23% ZnCO₃, and 16% ZnO [80]. The ZnCO₃ was attributed to the presence of limestone in the process. Veres et al. reported the following mineralogical phases in a 9.37%-Zn BF dust: magnetite, hematite, wüstite, franklinite, zincite, and amorphous phases [81]. Wang et al. investigated the zinc distribution and zinc speciation in Zn-rich (3.4% ZnO) BOF sludge by micro-XRD and micro-XANES. The main zinc phases were franklinite (ZnFe₂O₄) and smithsonite (ZnCO₃) [82, 83].

Since BOF dusts and sludges have a lot of iron, their recycling should be a high priority. Internal recycling via the sinter plant/BF route is limited by the concentrations of zinc and lead. In such cases, steel plants can blend materials and produce briquettes/pellets that are then charged back to the BOF [11]. Another option is stockpiling, and a significant fraction is used by the cement industry. Environmental concerns are reducing the amount of landfilling, while the high moisture content of BOF sludge is an obstacle to recycling [84].

Table 1	Chemical composition of primary BOF dust and sludge (wt%) [11]		
Element	Minimum	Maximum	Average
Iron (total)	47.6	92	73.7
Iron (metallic)	1.9	79.4	44.1
Carbon	0.1	2.2	0.9
Zinc	0.01	1.7	0.3
Lead	0.0016	0.1	0.06

Table 2	Chemical composition of secondary/fine BOF dust and sludge (wt%) [11]		
Element	Minimum	Maximum	Average
Iron (total)	39.9	82	60.5
Iron (metallic)	2.1	25	12.9
Carbon	0.1	5.9	1.9
Zinc	0.05	8	1.6
Lead	0.01	0.3	0.1
Leaching with Mineral Acids

There are very few studies on leaching BOF dust and sludge with mineral acids. Kelebek et al. studied the leaching of BOF sludge with H$_2$SO$_4$ [85]. Leaching with a solution at pH 2 for 20 min reduced the zinc in the coarse fraction from 1.6 to 0.4% and in the fine fraction from 1.9 to 1.6%. In the coarse fraction, the zinc removal rate was 80–85%, with an 18% iron loss. However, in the fine fraction the zinc removal was only 29%, with a 1.85% iron loss. The differences were due to mineralogy (with more ZnFe$_2$O$_4$ in the fine fraction). The flow sheet (Fig. 9) has an upfront size separator to split the sludge stream into fine and coarse fractions (with a hydrocyclone). The fine stream is directed to a dewatering circuit (e.g., thickener) and then to a disposal site (with no treatment). The coarse fraction is sent to a leaching system, preferably arranged as a counter-current circuit. The solid particles leaving this system are relatively coarse and low in zinc, and can be recycled to the sinter plant.

Trung et al. studied the leaching of BOF sludge with H$_2$SO$_4$ [86, 87]. The BOF sludge was a very heterogeneous material, so that it was hard to select a H$_2$SO$_4$ solution with the right concentration for leaching. After 15 min at 80 °C, 70% of the zinc was removed with a 1-M solution. Veres et al. used the microwave-assisted leaching of BOF sludge with a 1-M H$_2$SO$_4$ solution at a liquid-to-solid ratio of 20 [88]. The microwaves increased the zinc leaching, but also the iron leaching, resulting in poor selectivity. US patent 3,375,069 discloses how to remove zinc from BOF sludge with mineral acids. Kelebek et al. studied the leaching of BOF sludge at pH 2 with a H$_2$SO$_4$ solution. Adapted from [85]

Fig. 9 Flow sheet for the mild treatment of BOF sludge at pH 2 with a H$_2$SO$_4$ solution. Adapted from [85]

Leaching with Organic Acids

Wang et al. recovered zinc from BOF sludge with different organic acids [90]: oxalic, citric, acetic, propionic, butyric, and valeric acid. These organic acids are biodegradable, so that secondary waste can be avoided. The leaching tests aimed to maximize zinc recovery and minimize iron dissolution. Based on the most promising results for butyric acid, the authors then investigated the leaching behavior of BOF sludge with butyric acid in a follow-up study. The optimum leaching conditions were determined. In the best case, 51% of zinc was leached, with less than 1% of iron co-dissolution [91]. The results showed that zinc extraction increased with a higher acid-to-filter-cake ratio. Acid concentration had no effect on zinc, but iron dissolution decreased with a stronger acid. The authors suggested leaching in counter-current mode (Fig. 11). A key finding was butyric acid cannot dissolve ZnFe$_2$O$_4$ (franklinite). To assess the butyric route, three BOF filter cakes with 2.42%, 6.52%, and 13.8% Zn, as well as weathered samples, were tested [92]. After optimum leaching, 2–3% Zn remained. The effects of adding other organic or mineral acids to butyric acid on leaching zinc and iron from BOF filter cake were investigated to find the maximum-allowed impurity levels in butyric acid [93].

While the presence of acetic and propionic acids in butyric acid has little effect on zinc leaching, the addition of H$_2$SO$_4$ or HCl reduced the selectivity, unless the acids were added such that the pH did not fall below that of pure butyric acid.

Alkali Leaching

Leaching BOF sludge with 5-M sodium hydroxide (NaOH) solution was very selective for zinc over iron [77]. However, as no ZnFe$_2$O$_4$ was dissolved, the total zinc recovery rate was only 40–60%. The ZnFe$_2$O$_4$ could be decomposed
by heating with NaOH (\(T = 450 \, ^\circ C, \, t = 1\text{–}5\, \text{h}, \, \text{NaOH/sludge ratio} = 0.75\)). Leaching this BOF sludge sample with 5-M NaOH resulted in 94% of zinc recovered. The main disadvantage of leaching with NaOH is that concentrated solutions are required and a lot of reagent is consumed (see section on “EAF Dust”). Gargul et al. reduced the zinc content of a BOF sludge from 2.82% Zn to 1% Zn after leaching for 100 h with 5-M NaOH [94]. Leaching with a 1-M (or less) NaOH solution selectively recovered molybdenum and tungsten from steelmaking dust, with no significant co-dissolution of zinc [95].

Leaching with Ammonium Salts

Gargul and Boryczko compared the leaching of a BOF sludge containing 2.82% Zn with an NH₃ solution and the ammonium salts NH₄Cl and (NH₄)₂CO₃ [96]. The best results came with NH₄Cl, where the zinc was reduced to < 1%. Although the authors claimed minimal loss of iron,
there were no data for its co-dissolution. In European patent EP 3 333 272 A1, Tata Steel discloses the leaching of BF and BOF residues with a solution of NH$_3$ and an ammonium salt, (NH$_4$)$_2$SO$_4$, NH$_4$Cl or (NH$_4$)$_2$CO$_3$, at pH 8–12 [76]. In an example, BOF and BF flue dusts were roasted at 750–900 °C for 1 h with Na$_2$CO$_3$ to decompose the ZnFe$_2$O$_4$. After leaching with NH$_3$ + ammonium sulfate solution, > 80% of the zinc was recovered.

EAF Dust and Sludge

Chemistry and Mineralogy

EAF dust and sludge amount to 14.2 kg/ton of crude steel (range 3.4–25 kg/ton) [11]. The first stage of the gas cleaning (typically a baghouse) is the main generator of dust: 12.7 kg/ton of crude steel on average. The other dusts and sludges collected from the process represent a small fraction, and most studies focus on the primary dust. The chemical composition of EAF dust is shown in Table 3 [11]. Iron and zinc are the dominant components, while there is a relatively low carbon content (1.8% on average), similar to the carbon content of BOF dusts and sludges, suggesting it is driven off during steelmaking. The zinc content of EAF dust varies with the steel plant because of the different zinc contents of the input scrap and the grades being produced. EAF dust can also contain various amounts of lead and cadmium.

The physical properties of EAF dust depend on the steel type and the melting process. The particle size is 0.1 μm to > 200 μm. Therefore, EAF can be airborne, which makes it difficult to handle or separate using physical methods [97]. Due to the presence of salts (NaCl and KCl), the soluble fraction can be up to 10 wt%. Zinc accumulates in the fine fraction of the dust, whereas iron tends to report to the larger particles, being present as ZnO (zincite) or ZnFe$_2$O$_4$ (franklinite). The zincite in EAF dust is due to the high zinc content [98]. However, there is usually less zincite than franklinite.

Pyrometallurgical Versus Hydrometallurgical Processes

The high zinc content of EAF dusts means they cannot be used in steelmaking. They must either be landfilled or processed for zinc recovery. However, the content is low compared to conventional zinc-industry raw materials, and a proportion is present as ZnFe$_2$O$_4$, a refractory phase. The levels of toxic heavy metals, particularly lead, are far too high to permit disposal in sanitary landfills. Hence, there has been a trend to send less EAF dust to landfills and recover more using external methods. The most common of these is the (pyrometallurgical) Waelz-kiln process [5, 99], accounting for around 80%. A Waelz kiln is expensive, but it is attractive for EAF dusts with 15–20% zinc and plant capacities of at least 50,000 tons/year [100]. In contrast, hydrometallurgical treatment methods are better suited to a smaller scale. Their advantages are low energy consumption, high zinc solubility in different lixivants, and the possibility to recycle residues to the EAF or BF. Although these hydrometallurgical methods have lower CAPEX and OPEX, the purification process is more complex. The EAF dust recycling produces a residue with a huge moisture content, which must be dried before it can enter the steelmaking process. Hydrometallurgical processes can recover metals other than zinc, such as lead, cadmium, and copper, generating iron oxide with less metal contamination. As well as pyrometallurgical and hydrometallurgical methods, EAF dust can be used in construction or as a filler in acoustic or thermal insulators [97].

It is difficult to compare studies on zinc leaching from EAF dust, because the compositions can vary widely, not only from steel plant to steel plant, but also over time, because of feed fluctuations. Therefore, we have different concentrations of zinc, but also variations in ZnO/ZnFe$_2$O$_4$ ratio, with ZnO (zincite) easy to dissolve, whereas ZnFe$_2$O$_4$ (franklinite) is not. Because of the fluctuating chemical and mineralogical compositions of EAF dust, the optimum process parameters also vary.

Removal of Chlorides

EAF dust contains chloride salts. This is a problem when leaching EAF dust with H$_2$SO$_4$, because the chloride will end up in the leachate and, hence, in the electrolyte for the electrowinning of zinc. Chloride impurities in ZnSO$_4$ electrolytes are problematic because they corrode the electrodes, incorporate lead dissolved from the anode in the zinc, and make it hard to remove the electrodeposited zinc from the aluminum cathode. Therefore, the chloride salts must be removed from the EAF dust prior to leaching or from the pregnant leachate.

A convenient way to remove the chloride salts from EAF dust is washing with water, because the chlorides are mostly water soluble (NaCl and KCl). Bruckard et al. removed 99% by washing with tap water at room temperature for 60 min at the natural pH of EAF dust (pH 12). The residue had only 200 ppm chloride [101]; the liquid-to-solid ratio was 3:1; no

Table 3 Chemical composition of EAF dust (wt%) [11]

Element	Minimum	Maximum	Average
Iron (total)	16	60.8	35.1
Iron (metallic)	0.19	9.2	3.5
Carbon	0.94	4.1	1.8
Zinc	0.03	37	14.6
Lead	0.05	21.5	3.1
adjustment of the pH was necessary; and water at ambient temperature was as effective as hot water. The kinetic experiments showed that about 1 h was sufficient to eliminate the water-soluble salts from the EAF dust. The washing step removed all the potassium and sulfate in the sample, about 50% of the sodium and less than about 10% of the calcium. Only trace amounts of zinc and manganese were leached. Environmentally significant amounts of lead, chromium, and cadmium reported to the wash solution, so this solution must be treated for heavy-metal removal. This involved Na2S solution to precipitate the heavy metals and then adding a little Fe(II) sulfate to remove the excess of sulfide ions. H2SO4 was used to lower the pH from 12 to 8–10.

However, some of the chloride in EAF dust is in the form of water-insoluble lead hydroxyl chloride (PbOHCl) and lead chloride carbonate (Pb2Cl3CO3) [102]. Washing with water cannot remove the chloride from these compounds. They require roasting of the EAF dust at < 600 °C before washing with water. Sulfation roasting is more efficient than carbonation or air roasting. The metal chlorides in the roasted EAF dust are NaCl and KCl, which can be easily removed with water. The roasting must be below 600 °C to avoid the evaporation of zinc and lead. Carbonation roasting requires a CO2 gas stream, whereas sulfuration roasting requires SO2, and air roasting requires air. The washing step should be applied to freshly collected EAF dust, because it absorbs CO2 from the atmosphere and this can lock up part of the chloride in water-insoluble zinc hydroxyl-chloride, ZnCl2·4Zn(OH)2·H2O.

After leaching with H2SO4, chloride impurities can be removed by electrodialysis with a mono/bipolar ion-exchange membrane [103]. Monopolar membranes are either cation-exchange or anion-exchange membranes. A bipolar membrane contains an anion-exchange and a cation-exchange layer. These membranes split water into H+ and OH− ions in an electric field. A one-step electrodialysis process produces a ZnSO4 solution with a low-enough chloride concentration for an electrolytic zinc production process from leaching solutions of Zn-bearing raw materials with up to 1% chloride.

Sulfuric Acid Leaching

Solutions of sulfuric acid (H2SO4) are the most popular lixivants for a hydrometallurgical treatment of EAF dust. H2SO4 is cheap and it is possible to use the ZnSO4 leachate for the electrowinning of zinc metal [104]. Zinc oxide (zincite) dissolves very rapidly in H2SO4 solutions, irrespective of the concentration and the temperature [105]. The diffusion-controlled reaction can take as little as 1 min. The dissolution of ZnFe2O4 (franklinite) is much slower and depends on the temperature [106]. The rate-limiting step is the rate of the chemical reaction. For the highest selectivity of zinc over iron, it is better to use 0.5-M (or lower) H2SO4 solutions and to stop leaching after about 15 min. The co-dissolution of iron is suppressed by working at lower concentrations [107, 108]. The reason why only a little iron is dissolved at lower H2SO4 concentrations is that the other elements are dissolved first and there is not enough free acid to dissolve all of the iron. The final pH after leaching with a dilute H2SO4 solution will be so elevated that co-dissolved Fe(III) will precipitate on the residue. Lead is not solubilized by leaching with H2SO4, because poorly soluble PbSO4 (anglesite) is formed. A problem often encountered when leaching with H2SO4 is the poor settling and filtration behavior of the residues.

Leaching for longer times with higher H2SO4 concentrations at high temperatures will always bring significant iron into solution [61, 109]. For instance, 100% of zinc and 90% of iron were dissolved in 3-M H2SO4 at 80 °C and a liquid-to-solid ratio of 5:1 for 6 h [109]. A small residual fraction rich in lead was obtained. The iron could be precipitated after sufficient dilution as goethite (α-FeOOH), which has the advantage that it can precipitate iron from an Fe(III) sulfate solution without the need for high temperatures and pressure. The main disadvantage is that a lot of alkali is required for neutralization, although it is more efficient if the solution is neutralized by fresh EAF dust. A study of autoclave leaching of EAF dust with H2SO4 confirmed that calcium dissolves up to 150 °C, but later precipitates as calcium sulfate [110]. Above 150 °C, calcium remains permanently in solution, even after cooling to room temperature after the leaching process. High concentrations of calcium in the EAF dust have a negative influence on the cost of leaching, because the dissolution of CaO consumes H2SO4 and leads to the precipitation of CaSO4 [111].

When leaching EAF dust with H2SO4, iron co-dissolution can be avoided by using moderate concentrations so that the final pH is 4–5 [112] and the dissolved iron will precipitate as Fe(III) hydroxide.

AMAX Inc. developed a two-stage leaching process to recover zinc from steel-plant dusts, with the complete rejection of iron as hematite [113]. The conceptual flow sheet is shown in Fig. 12. The first stage is leaching at atmospheric pressure and a temperature below the boiling point. In the second stage, leaching is at high pressures in an autoclave, at 225–300 °C. The two stages are connected in counter-current fashion, with two liquid/solid separation steps. Under autoclave conditions, most of the iron in the feed slurry was converted to hematite (Fe3O4), which is more dense and separates more easily from the solution than goethite, jarosite, or Fe(III) hydroxide. Due to its high iron content and virtually zero sulfur content, hematite is the preferred form of iron precipitate for recycling in steelmaking furnaces. The solids were washed to recover ZnSO4. If lead is still present in the residue, it can be leached with brine.
US patent 5,286,465 discloses the leaching EAF dust with hot concentrated H₂SO₄ at 100–200 °C for 5–10 min (Fig. 13) [114]. Under these conditions, zinc is dissolved as ZnSO₄ and iron precipitates as ferric sulfate, Fe₂(SO₄)₃. The precipitate can be separated by filtration and washing with methanol, which can be recovered by distillation. The zinc can be recovered from the H₂SO₄ solution by adding water to precipitate hydrated ZnSO₄ at 10 °C, separating it by filtration and evaporating the water to regenerate the H₂SO₄. Iron can be recovered by roasting the Fe₂(SO₄)₃, yielding ferric oxide and sulfur trioxide, which can be reconverted to H₂SO₄ by rehydration. Alternatively, the Fe₂(SO₄)₃ can be reacted with an NH₃ solution. The resulting ammonium sulfate can be thermally decomposed into NH₃ and H₂SO₄, both of which can be recycled.

The Modified Zincex Process involves the following steps to recover the zinc from zincite in EAF dust: (1) atmospheric leaching with 0.5 N H₂SO₄ at 40 °C, 1 h, pH 2 to dissolve ZnO; (2) purifying the leachate by precipitating the iron with lime; (3) extracting the zinc with bis(2-ethylhexyl) phosphoric acid (D2EHPA), (4) stripping the zinc from the loaded organic phase, and (5) electrowinning of the zinc metal [115].

A design of experiment for leaching EAF dust with dilute H₂SO₄ indicated that the optimum leaching conditions were 3 N H₂SO₄, 60 °C and a liquid-to-solid ratio of 10:1 [116], where 80% of the zinc was extracted, while 45% of iron was co-dissolved. The main phases in the residue were basanite (CaSO₄·1/2H₂O), anhydrite (CaSO₄), and anglesite (PbSO₄). The leachate was further purified [117]. The proposed flow sheet had four unit operations: (1) removal of iron as jarosite, by precipitation at 95 °C and pH 3.5; (2) solvent extraction of zinc by the extractant Cyanex 272 at pH 3.5, 40 °C, 25 vol% extractant, diluted in kerosene + 5 vol. TBP, organic-to-aqueous phase volume ratio (O/A) = 2 (3) stripping of the loaded organic phase by spent zinc electrolyte (62.5 g/L Zn²⁺) at 40 °C, diluted with H₂SO₄ (3 M); (4) zinc electrowinning from ZnSO₄ solutions at 38 °C, using an aluminum cathode and a lead anode. The acidity of the electrolyte was 180 g/L H₂SO₄, with a zinc concentration of 80.4 g/L, and a current density of 500 A/m². Gotfryd et al. leached EAF dust with H₂SO₄ and purified the leachate by solvent extraction with D2EHPA [118, 119]. The tests were performed on a pilot scale.

Montenegro et al. described an efficient process to recover zinc from EAF dust [100]. The process has three leaching stages: (1) 60% of zinc and 80% of cadmium can be leached at ambient temperature with 2 N H₂SO₄ and 20% pulp density, for 20 min. (2) A second leaching stage on the first-stage leach residue with dilute H₂SO₄ (0.5 N) and 20% pulp density at ambient temperature for 20 min led to total dissolution of the zinc content contained in the EAF dust. Zinc recovery in this stage is 75% and cadmium recovery is 90%. (3) A third step of autoclave leaching using 2 N H₂SO₄ and 20% pulp density, at 200 °C for 60 min, led to total zinc recovery from the second-stage leach residue, mainly as ZnFe₂O₄. After three stages, the metal content in the final residue was 0.16% Zn, 5.67% Pb, 11.96% Fe, and 0.003% Cd. The total zinc recovery was 99% and the total cadmium recovery was 94%. The process reduced the initial residue mass by 30%. EAF dust has a high calcium content, due to lime being added during the steelmaking process. The dissolution of ZnO in the first stage takes 20 min. Lead is dissolved in the first stage, but precipitates as PbSO₄ in the
solid residue. CaO reacts with H₂SO₄ forming CaSO₄·2H₂O (gypsum) and crystallizes in the residue. The reaction of CaO with H₂SO₄ consumes more acid. In the first stage, the acid concentration was kept at 2 N H₂SO₄ to minimize iron dissolution, but this led to lower ZnO dissolution. The leach residue after the first stage still contained zinc because of the high concentration of zinc ions in solution, and the consumption of acid, due to the reaction with CaO, reduced the dissolution of free ZnO. Therefore, a second stage at room temperature was used to dissolve any zinc from the ZnO and increase the metal recovery. No iron was dissolved during the second stage. Iron was, however, dissolved during the first stage, and re-precipitated as α-FeOOH during the leaching when more acid was consumed and the pH rose to 4–5. The leachate from both stages could be combined and directed to zinc and cadmium recovery by cementation or solvent extraction, followed by zinc electrowinning. Pressure leaching was applied to dissolve the remaining zinc, which is present in the form of ZnFe₂O₄. The leachate after pressure leaching was contaminated by iron, which was removed by precipitation as jarosite at atmospheric pressure at pH 3.5 and 95 °C.

Montenegro et al. further improved their flow sheet for H₂SO₄ leaching of EAF dust with water washing, at ambient temperature and equilibrium pH 10, before the leaching [120]. More than 50% of the calcium, present as free CaO, dissolved without the co-dissolution of any other metals. Removing the CaO prior to leaching reduced the consumption of H₂SO₄. The washing also removed the water-soluble chloride salts. Next, the washed EAF dust was leached with dilute H₂SO₄ (2 N) at ambient temperature and pH 4. Almost complete dissolution of the free ZnO took 10 min. The recovery of zinc was 70% and that of cadmium was 90%. This leaching was very selective regarding iron and lead. The pregnant leach solution could be directly treated for zinc and cadmium recovery by solvent extraction and electrolysis. The leaching residue from the previous step was treated with H₂SO₄ (3 N) at 95 °C, in two stages. Under these conditions, almost all the ZnFe₂O₄ was dissolved in 120 min. The total zinc recovery was 97%, with cadmium removal also 97%. The final leach residue consisted of CaSO₄, PbSO₄, and Fe₃O₄. Its dry mass was about 27% of the initial dry mass of the dust. It was proposed to remove the iron from the pregnant leachate of the hot leaching step as jarosite or goethite, with subsequent recovery of zinc and cadmium by solvent extraction and electrolysis. Lead could be extracted by leaching with a NaCl solution at 95 °C and precipitation of the lead from PbS by adding Na₂S at ambient temperature. The residue after NaCl leaching contained 1.3% Zn, 6.6% Fe, 0.5% Pb, and 19.5% Ca. Its dry mass was about 20% of the dry mass of the original dust. The final residue could be used in the cement industry. Instead of electrowinning, the zinc in the pregnant leachates can be precipitated [121]. By adding Na₂CO₃ in 110% of the stoichiometric quantity, 95% of the zinc could be recovered at pH 6.5–7.5, after the addition of ZnCO₃ seed crystals. The main mineralogical phases were hydrozincite (Zn₅(OH)(CO₃)₂) and a hydrated basic zinc carbonate (Zn₄(CO₃)(OH)₆·H₂O).

Ultrasound was found to enhance the dissolution of ZnFe₂O₄ at low H₂SO₄ concentrations, and resulted in more zinc recovery under all conditions [122]. For instance, after 30 min of leaching in 0.5-M H₂SO₄ at 80 °C, the zinc recovery was 38% for conventional leaching and 59% for ultrasound-assisted leaching, i.e., an increase of 55%. As ultrasound brings more calcium into solution, it is assumed that it destroys the CaSO₄ layer that forms on top of the CaO in the EAF dust. The CaO reacts with H₂SO₄ to CaSO₄, which enhances the pH.

Hydrochloric Acid Leaching

Hydrochloric acid (HCl) has an extraordinary dissolving power for many oxides, hydroxides, and carbonates [123]. In contrast to H₂SO₄, HCl solutions are volatile and corrosive, but problems can be mitigated by selecting suitable materials. Steel manufacturers have experience with chloride hydrometallurgy because of steel pickling [124].

Compared to H₂SO₄, which dissolves metallic iron, and thus “blows” the iron oxide layer with H₂ gas, HCl dissolves the oxides and forms Fe(III) ions, which prevent the hydrogen forming. Since steel makers want to remove iron oxides and not iron metal, HCl pickling is preferred. Furthermore, HCl pickling offers better surface quality and higher pickling rates. But the technology has to wait for a process by which the HCl is regenerated through the thermal decomposition of Fe(II) chloride in a spray roaster or fluid bed. Solid/liquid separation of iron precipitated from chloride solutions is easier to filter than iron precipitated in sulfate solutions. The chlorides present in the EAF dust must not be removed before HCl leaching [125], because the chlorides aid the leaching process. Lead and cadmium can be removed from the dust as soluble chlorides if a high concentration of chlorides is present in the lixiviant.

AMAX Inc. developed a HCl leaching process for EAF dust [126]. The flow sheet is shown in Fig. 14. In the first step, EAF dust is leached with HCl. After liquid/solid separation, the solution is oxidized by chlorine gas and simultaneously neutralized by adding lime to precipitate the iron. The Fe-rich residue is free of sulfur and can be recycled to the steel furnace. Alternatively, the leach residue can be treated to recover the lead prior to being fed back to the steel plant. The Fe-free solution, following solid/liquid separation from the residue, can be further purified by solvent extraction with D2EHPA or Cyanex 272. The purified ZnCl₂ electrolyte is electrolyzed and zinc metal is produced at the cathode. The chlorine gas released during electrowinning is
recycled to the system, partly as chlorine gas to oxidize the iron, and partly as HCl to dissolve more zinc. The process can treat many Zn-containing feed materials, not only EAF dust, and a wide range of concentrations. When a HCl concentration of 75 g/L was used for leaching, 88% of the zinc and 48% of the iron were dissolved. Higher HCl concentrations dissolved significantly more iron; at a HCl concentration of 200 g/L, 100% of the zinc dissolved, but also 93% of the iron. The leaching was at 90 °C, because higher temperatures increased zinc recovery and the slurry was easier to filter. Leaching can also be in counter-current mode. The first stage will receive all the HCl and discharge the leach residue. This stage can be operated at pH 0.5 or lower. The last stage will receive the EAF dust and discharge the leach liquor. This stage can be operated at pH 2.5 to 3. A pulp density of 5–40% is recommended. Although counter-current leaching makes best use of reagents, it is more costly (inter-stage thickeners and pumps).

Another AMAX Inc. patent describes the leaching of EAF dust with a mixture of HCl and H₂SO₄ [127]. The inventors claim that H₂SO₄ leaching is undesirable because the residue is hard to separate from the liquid. Likewise, direct HCl leaching must be avoided as it solubilizes nearly all of the iron and most of the lead, leading to a separation problem. A mixed lixiviant, on the other hand, will provide sulfate ions for the formation of Pb(II) sulfate, while solubilizing zinc and aluminum. Partial dissolution of aluminum is advantageous, because it provides aluminum ions for the precipitation of fluoride ions. The mixed lixiviant allows the use of chlorine as the oxidant in the iron oxidation/precipitation stage. It is remarkable that in this patent the formation of insoluble Pb(II) sulfate (anglesite) is seen as an advantage, whereas it is seen as a disadvantage when leaching EAF dust with H₂SO₄.

Terra Gaia Environmental Group Inc. developed a process for leaching EAF dust with FeCl₃ solution [128, 129]. Figure 15 shows a flow sheet of the leaching process. The first step is leaching the EAF dust with a FeCl₃ solution at atmospheric pressure. The EAF dust is delivered to a tank, where it is mixed with a FeCl₃ solution. Hydrolyzing the FeCl₃ solution produces HCl, which dissolves ZnO and PbO. The concentration of FeCl₃ in the solution should be sufficient to provide the stoichiometric amount of Fe³⁺ required to dissolve all the ZnO and PbO, as well as to leave a surplus of Fe³⁺ (5 g/L iron as FeCl₃) to maintain acidity. The leach solution should also contain at least 140 g/L of chloride for the zinc solvent-extraction step. In the second step, the hydrous iron oxide slurry produced by the atmospheric leach settles sluggishly and is difficult to filter. In the conditioning step, the slurry is treated in an autoclave to convert the hydrous iron oxide slurry into a crystalline residue that can settle and be filtered. The conditioning involves the conversion of the goethite (α-FeOOH) that is stable at low temperatures, or hydrous iron oxide, to crystalline hematite (Fe₂O₃) at temperatures above 110 °C in an acidic chloride solution: 2 α-FeOOH → Fe₂O₃ + H₂O. The next step in the process is a liquid/solid separation, which involves hot filtration of the conditioned slurry, with brine washing, to produce the hematite residue for recycling. The hot brine washing removes the lead from the residue. The filtration and the washing require more than 80 °C to keep the Pb(II) chloride in solution, but which can be recovered.

Fig. 14 Flow sheet of the AMAX HCl leaching process. Adapted from [126]

Fig. 15 Simplified flow sheet of the leaching part of the Terra Gaia process. Adapted from [129]
by precipitation upon cooling. Lead can be reclaimed by reacting the solid Pb(II) chloride with iron scrap in a cementation reaction: \(\text{Fe}^0 + \text{PbCl}_2 \rightarrow \text{Pb}^0 + \text{FeCl}_2 \). Zinc is recovered from the filtrate by solvent extraction, followed by stripping and electrowinning. The chlorine gas evolved at the anode is used to oxidize the FeCl\(_3\) of the lead cementation step: \(2\text{FeCl}_2 + \text{Cl}_2 \rightarrow 2\text{FeCl}_3 \). The excess chlorine gas is reacted with scrap iron to form FeCl\(_3\): \(3\text{Cl}_2 + 2\text{Fe}^0 \rightarrow 2\text{FeCl}_3 \). Cadmium can be removed from the circulation circuit via a bleed stream and precipitated as CdS by adding Na\(_2\)S. Except for the washing of the leach residue, the system is closed for chloride. Any shortfall can be overcome by adding NaCl or spent HCl picking liquor.

US patent 5,709,730 discloses the leaching of EAF dust with a mixed solution of CaCl\(_2\) and HCl, with subsequent regeneration of the HCl with H\(_2\)SO\(_4\) to produce gypsum as a building material [130]. The process makes use of the low solubility of iron oxides in moderately acidic chloride solutions. Leaching is executed at pH 2.6 at 15–30% pulp density. Fe(II) is oxidized to Fe(III) and hematite is formed by heating the slurry in an oxygen atmosphere at 90–120 °C. The combination CaCl\(_2\)/HCl puts more lead in solution compared to leaching with only HCl. CaCl\(_2\) alone will not dissolve metal oxides, whereas HCl by itself will dissolve only a minor fraction of the lead present in the EAF dust. Lead, cadmium, and copper can be recovered by cementation with zinc powder. Adding lime to the Zn-rich solution will precipitate the zinc as zinc hydroxide and generate a CaCl\(_2\) solution. The lixiviant can be recovered by adding H\(_2\)SO\(_4\) to the CaCl\(_2\) solution, and clean gypsum will precipitate.

A two-stage leaching process with HCl was developed to extract the zinc from EAF dust [125, 131]. The first low-acid leaching dissolves the ZnO from the dust, while the second step reacts HCl at 90 °C with the ZnFe\(_2\)O\(_4\) residue from the first leach. H\(_2\)O\(_2\) was found to be efficient for oxidizing Fe(II) to Fe(III). This oxidation could also be with aeration. The iron residue from the hot-acid leach was hematite and goethite. Fresh EAF dust was added to the filtrate after the hot-acid leach to raise the pH and precipitate iron. The ZnCl\(_2\) solution was purified by activated carbon to eliminate the organics and by cementation with metallic zinc powder to remove the lead, cadmium, and copper. The purified ZnCl\(_2\) solution was electrolyzed in electrowinning cells with a cation-exchange membrane to high-purity zinc metal and regenerated the HCl. The spent electrolyte contained 1–2-M HCl and was used for the residue in the hot-acid leach. The zinc recovery exceeded 90%. A drawback of the process is the need for the costly membrane in the cell.

Barrera-Godinez et al. investigated ultrasound leaching for the selectivity of zinc from double-kiln-treated EAF calcined with CaCl\(_2\) and HCl [132]. Recovery was enhanced in this way, possibly due to a combination of lixiviant pore penetration, boundary, and product layer breakdown. Iron recovery was inhibited by the ultrasound, attributed to the precipitation of any dissolved iron. The material investigated consisted largely of zonite, with a very small amount of refractory ZnFe\(_2\)O\(_4\) phase.

Nitric Acid Leaching

Nitric acid (HNO\(_3\)) is less common for leaching EAF dust than H\(_2\)SO\(_4\) or HCl. However, HNO\(_3\) can give a near-zero-waste valorization of EAF dust, with iron recovered as hematite. There are no insoluble metal nitrates, so HNO\(_3\) can be regenerated by precipitating gypsum in a mixed nitrate/sulfate system. Lead is solubilized by HNO\(_3\). HNO\(_3\) processes were considered to be expensive, environmentally unfriendly, and unsafe, but this is changing. HNO\(_3\) can be recycled [133–136], and HNO\(_3\) leaching is becoming more popular in hydrometallurgy, for instance, for nickel laterites [137], where the advantage of HNO\(_3\) is not in digesting the ore, but in the way the acid can be recycled, eliminating a major cost of H\(_2\)SO\(_4\) high-pressure leaching plants, i.e., neutralization after leaching. A hydrometallurgical HNO\(_3\) process plant can be built with modular stainless-steel equipment, i.e., no titanium-lined autoclaves are required.

Hematite produced from sulfate solutions often contains zinc and sulfate impurities, while that formed by the thermal decomposition of Fe(III) nitrate is purer [138]. The hydrolysis of Fe(NO\(_3\))\(_3\) requires more than 100 °C in an autoclave. However, the advantage over conventional neutralization is that the hydrolyzed product contains fewer impurities and the lixiviant can be regenerated without introducing foreign ions. Another advantage is that the precipitate has a larger particle size and is easier to filter. Fe(III) hydroxides produced at room temperature can be gelatinous and it is hard to remove any entrained mother liquor. Below 140 °C, a mixture of hematite and goethite is formed, whereas above 160 °C, only hematite [138]. The high-temperature precipitate was free of nitrate ions. The precipitate formed at 180 °C was dense (\(\rho \approx 2450 \text{ kg/m}^3 \)), while those obtained from more concentrated Fe(III) solutions were easier to filter than in the case of more dilute Fe(III) solutions.

US patent 5,912,402 discloses a HNO\(_3\)-based process for the zero-waste valorization of EAF dust [139]. The dust is washed with water to remove soluble chlorides. Next, it is reacted with HNO\(_3\) (53%) to dissolve zinc, cadmium, copper, magnesium, calcium, manganese, and lead. The residue can be recycled to the EAF. Dissolution in HNO\(_3\) results in NO\(_x\) gases that must be recovered for reconversion to HNO\(_3\). Iron is precipitated from the filtrate by increasing the pH of the solution with basic ZnCO\(_3\). The dissolved lead, copper, and cadmium can be recovered by electrolysis or sulfide precipitation. The filtrate is evaporated and decomposed to obtain
a solid residue of metal oxides and Ca(NO$_3$)$_2$. The solid residue is leached with water to solubilize the Ca(NO$_3$)$_2$, which can be crystallized from the leachate. The zinc can be separated from the manganese and magnesium by leaching with an AAC solution. After solid–liquid separation, the residue is treated with H$_2$SO$_4$ to solubilize the magnesium as MgSO$_4$. The residue consists largely of MnO$_2$. The filtrate of the AAC leaching step is heated to drive off the CO$_2$ and to precipitate ZnCO$_3$. The advantages include the recycling of the iron to the EAF and selling the other by-products. In addition, the process can be carried out at atmospheric pressure, without an autoclave, and the HNO$_3$ can be recycled.

US patent 7,399,454 describes a process for leaching EAF dust with HNO$_3$ at elevated temperatures and pressures, with the iron recovered as hematite [140]. The process is built on the principle that, at a certain pressure and temperature, the iron forms hematite in a HNO$_3$/nitrate solution. Since many of the other metal contaminants are solubilized in HNO$_3$ when the Fe$_2$O$_3$ precipitates, the Fe$_2$O$_3$ can be separated. Before the pressure leach, an atmospheric leach in conditions at which ZnO dissolves, but the ZnFe$_2$O$_4$ and other iron compounds do not. Pressure leaching involves 180–220 °C for 180 min at 15–20% pulp density with varying concentrations of HNO$_3$. Recovering zinc from the leachate is not described here.

Acetic Acid Leaching

Acetic acid (CH$_3$COOH, sometimes AcOH) is weak compared with H$_2$SO$_4$, HCl, or HNO$_3$. Since CH$_3$COOH is an organic acid consisting only of carbon, hydrogen, and oxygen, it does not contaminate the leaching residue with elements that are incompatible with BF, BOF, or EAF installations. CH$_3$COOH will dissolve oxides and carbonates of calcium, zinc, and lead, but not of iron, and so can be used for selective leaching. Unfortunately, CH$_3$COOH cannot dissolve ZnFe$_2$O$_4$.

The **UBC-Chaparral Process** treats EAF dust so as (1) to recover zinc, cadmium, and lead; (2) to render the EAF dust non-toxic (1990s legislation), and (3) to process it at minimum cost [141]. The process decontaminates EAF dust for sanitary landfill, rather than recovering an iron product for the steel industry. This complex process combines CH$_3$COOH leaching for calcium removal with...
AAC leaching for zinc removal (Fig. 16). The free CaO is removed before the zinc leach with AAC, so that the CaO does not react with CO₂ to form CaCO₃ (i.e., high CO₂ consumption). The CaO and CaCO₃ in the EAF dust will react with CH₃COOH to form calcium acetate. The zinc acetate formed by the reaction between ZnO and CH₃COOH will further react with the CaO as follows: CaO + Zn(OAc)₂ + H₂O → Ca(OAc)₂ + Zn(OH)₂. Leaching involves adding EAF dust to a 3-M CH₃COOH solution close to the boiling point. Lead and calcium can be removed from the leachate by cementation with zinc powder. Calcium can be removed by the addition of H₂SO₄, precipitating gypsum and regenerating the CH₃COOH. The Zn-rich residue is then leached with AAC, after which the zinc is precipitated as basic ZnCO₂ by steam stripping. The final residue is resin-in-pulp treated with a very acidic cation exchanger in H⁺ form to dissolve the lead. A preliminary economic analysis was conducted.

The Hatch Acetic Acid Leach Process is a simplified form of the UBC-Chaparral Process, developed to recover an Fe-rich residue for recycling to the steel plant rather than landfiling [142, 143]. Figure 17 shows a flow sheet. First water removes the soluble chloride salts. Next, a 3-M CH₃COOH leach at room temperature separates the easily removable elements. The pulp density is 150 g/L. The leach residue is separated by filtration, washed, pelletized, and recycled to the EAF to recover the iron. CH₃COOH leaching removes zinc and lead from EAF dust to bleed them from the recycling process. The zinc, cadmium, lead, and copper are precipitated as a sulfide product using a stream of H₂S gas. The sulfide precipitation simplifies the process, because the metals are recovered as useful sulfides, while regenerating the CH₃COOH. The filtrate is then treated with H₂SO₄ to precipitate the calcium as a clean gypsum, which can be sold, and reform the CH₃COOH. Adding the correct amount of H₂SO₄ avoids any excess of sulfate ions. The remaining solution is treated with a strong acetic cation exchanger to remove the Mg²⁺ and other cations, and a weakly basic anion exchanger in OH⁻ form to remove the chloride and sulfate anions. The cation exchanger can be regenerated by H₂SO₄, the anion exchanger by NaOH. The CH₃COOH after the ion-exchange step is too dilute to recycle to the leach step, and so must be concentrated. The process minimizes the quantity of liquid effluents that require treatment before discharge. All the products are solid and either commercially valuable or recyclable in a steel-plant furnace. The Hatch Acetic Acid Leaching Process is attractive if no ZnFe₂O₄ has to be recovered. That it has not been developed further is probably due to the price of CH₃COOH.

Siebenhofer et al. investigated leaching EAF dust with CH₃COOH in concentrations of 25% to 100% [144]. For 80% CH₃COOH, 90–93% of zinc and 5–7% of iron were extracted. For 100% glacial acetic acid, the zinc (35%) and iron (0.6%) extractions were much lower with water present. This leaching process can be considered as a pure “solvo-metallurgical” process. Lead was recovered as PbSO₄ by adding H₂SO₄, while zinc required electrowinning. The solubility of the zinc from EAF dust in aqueous CH₃COOH was nearly twice that of analytical-grade zinc acetate [145]. The solubility of zinc acetate is also highly temperature dependent. The CH₃COOH leaching of EAF dust is negatively...
affected by an acid excess, while zinc can be electrowon from a zinc acetate solution [146].

Versatic Acid Leaching

A solvometallurgical process has been developed to recover zinc from chloride-containing solid residues, e.g., EAF dust and the crude ZnO of the Waelz process [147–149]. It is based on reacting fine-grained ZnO with acidic extractants, particularly carboxylic acids, like naphthenic and Versatic (a mixture of branched carboxylic acids with 10 carbon atoms).

A flow sheet is shown in Fig. 18.

The carboxylic acids are used as a 30% solution in an aliphatic diluent. The co-dissolved chlorides can be scrubbed from the organic phase with water. After this, the organic phase is chloride-free and contains only the dissolved zinc carboxylate salt. Zinc can be stripped from the loaded organic phase by H₂SO₄, resulting in a ZnSO₄ solution, from which the zinc metal can be electrolyzed. Alternatively, the ZnSO₄ can be crystallized (ZnSO₄·7H₂O) by stripping the organic phase with an excess of H₂SO₄. After stripping the zinc with H₂SO₄, the carboxylic acid is regenerated to leach a new batch. After leaching, the solid residue is decontaminated with hot water and Na₂CO₃ solution. The residue from the zinc ash was mainly metallic zinc particles, while the residue from the flue dust was Pb-rich.

To separate the zinc from the iron, the Versatic acid leaching step can be combined with solvent extraction. ZnO is leached with a 30% solution of Versatic acid in an aliphatic diluent. After subsequent contact between the zinc-containing organic phase and an iron-containing ZnSO₄ solution, an exchange between the zinc and iron takes place. The iron is transferred to the organic phase, where it is present as an Fe(III) versatate complex. In this exchange, an equivalent amount of zinc passes from the organic phase to the ZnSO₄ solution. This completely removes the iron from the ZnSO₄ solution through the contact between two immiscible phases. This involves one or more stages, depending on the technical procedure. Iron can be stripped from the organic phase by bringing it into contact with H₂SO₄ or another mineral acid in one or more stages. In this way, the Versatic acid can be regenerated and is ready to be loaded with zinc when reacted with solid ZnO. Instead of Versatic acid, extractants such as D2EHPA can be used. With this approach, it is also possible to separate zinc from copper.

Ammonium Chloride Leaching

The advantage of ammonium chloride (NH₄Cl) leaching is that the solution pH remains almost neutral (pH 6–7) [150], contains few dissolved impurities, and is totally iron-free.

The INDUTEC/EZINEX process is the only hydrometallurgical treatment that operates on an industrial scale [151–154]. In the 1990s, the Italian company Engitec developed the EZINEX (“Engitec zinc extraction”) process and a pilot plant to treat Zn-bearing EAF dust. In the following year, a plant producing 2000 tons/year of cathode zinc was introduced. A thermal pilot plant for converting Zn-bearing materials to crude ZnO (C.Z.O.) was also built. This thermal fuming process, called INDUTEC, is based on an induction furnace. The first industrial scale EZINEX plant produced zinc directly from EAF dust. Several tests using a C.Z.O. feed were run in this plant, and the results were promising.

C.Z.O. simplified the problem of the EZINEX process: the recovery of zinc from ZnFe₂O₄. EZINEX leaching involves a hot concentrated NH₄Cl + NaCl solution. The ZnO is almost 100% leached, but the ZnFe₂O₄ is unleached. When there are solubility problems, the leaching is at 70 to 80 °C, making it a very quick operation. The leaching residue with all the iron and ZnFe₂O₄ is then recycled to the thermal system that generated the C.Z.O. The lead, cadmium, and copper are removed by cementation with zinc powder. The chloride solution is electrowon with titanium cathode blanks and graphite anodes at 65 °C to avoid solubility problems. The electro-active complex should be [Zn(NH₃)₂]Cl₂ (5 g/L). Chlorine gas reacts with NH₃ at the anode to form N₂ and HCl without any hydrogen gas, which means a high current efficiency. However, a major drawback of zinc electrowinning from chloride solutions is the evolution of chlorine gas at the anode, instead of oxygen. This problem can be overcome by a cationic perm-selective membrane using H₂SO₄ in the anodic compartment to evolve oxygen at the anode. However, this is not devoid of technical issues. Calcium and magnesium are removed from the spent electrolyte by adding Na₂CO₃ or NaHCO₃ to precipitate CaCO₃ and MgCO₃. The presence of Ca²⁺ ions keeps the number of fluoride ions very low due to CaF₂ precipitation. HCl and NaCl are removed from the filtrate of the carbonation step by evaporation and
crystallization. Figure 19 shows a flow sheet of the combined INDUTEC/EZINEX process.

Pedrosa et al. compared the leaching of EAF dust with H₂SO₄, HCl, and NH₄Cl [155]. NH₄Cl was more selective, but less effective for zinc recovery, whereas the acids were more effective, but less selective. NH₄Cl is very good for iron rejection. Rao et al. reported leaching in an NH₄/NH₄Cl solution containing nitrilotriacetic acid (NTA) as a complexing agent for leaching of low-grade ZnO [156]. The complex formation between NTA and zinc ions enhanced the zinc dissolution.

Ammonia–Ammonium Carbonate (AAC) Leaching

Leaching with ammonium-ammonium carbonate (AAC) solutions has advantages [157]. The lixiviant can be prepared by reacting NH₃ and CO₂, which are among the cheapest chemicals. Furthermore, they can be recycled in a process with minimal environmental impact. NH₃–(NH₄)₂CO₃ can dissolve ZnO, but not ZnFe₂O₄. The processes are as follows: (1) leaching with NH₃–(NH₄)₂CO₃; (2) purification by cementation with zinc powder; (3) air oxidation to precipitate iron as Fe(OH)₃; (4) process to recover NH₃; and (5) precipitation of zinc as basic ZnCO₃ by steam heating. During the steam heating, (NH₄)₂CO₃ is decomposed into NH₃ and CO₂; (6) recovery of NH₃ and CO₂, and recycling of the leachant to the depleted solution; and (7) calcination of the basic ZnCO₃ to ZnO.

US patents 4,071,357 [158] and 5,538,532 [159] disclose the AAC leaching process for EAF dust, Waelz oxide, and C.Z.O [160]. Leaching must be below 60 °C or under pressure. While heating is preferred, excessive heating results in the undesirable evolution of NH₃ and CO₂, limiting the capacity to dissolve zinc and risking the premature precipitation of zinc. A stoichiometric excess of NH₃ is required to keep the zinc in solution as the ammine complex. In general, the excess NH₃ is such that the ratio NH₃ to CO₂ is 3:1. Steam stripping can remove the NH₃ in the steam vapor. The NH₃ and CO₂ stripped during the precipitation of basic ZnCO₃ can be recovered in a condenser-absorber to regenerate the lixiviant, so only steam is required as a process input. When cool, the residual solution can be recycled to the condenser-absorber to reconstitute the lixiviant or discarded to get rid of the chloride salts. The calcination requires a suitable calcining vessel to decompose the basic ZnCO₃ at 250–600 °C. Aeration after leaching can oxidize the iron present as Fe(II) and precipitate Fe(III) hydroxides.

The leaching capacity is affected by the NH₃ and carbonate in solution [158]. These substances are regulated by adding NH₃ and CO₂, respectively. More free NH₃ increases the total leaching capacity with respect to zinc, by a tendency to form metal ammine complexes. On the other hand, an increase in CO₂ acts in the opposite direction, with an increased tendency to form soluble carbonates. The addition of NH₃ should be enough for the sum of NH₃ and ammonium to be 3–7 mol/L. The addition of CO₂ should be enough for the sum of the carbonate and hydrogen carbonate ions to be 1–3 mol/L.

After the AAC leaching of ZnO, iron can be removed by oxidation [161]. Varga and Torok describe the AAC
leaching of EAF dust [162], where ZnCO$_3$ is precipitated by bubbling of CO$_2$ gas, followed by steam distillation. Ruiz et al. reported that the ammonium carbonate concentration (60–200 g/L) had hardly any influence on the leaching of zinc [163]. The average zinc recovery was 45%. The solution needs 80–90 °C to drive out the NH$_3$ and CO$_2$, with the gases used to reform the lixiviant. Wylock et al. developed a model to predict the time evolution of pH during the injection of CO$_2$ in aqueous solutions of NH$_3$ and ammonium carbonate during the leaching of Waelz oxides [164].

Alkaline Leaching

The motivation for the leaching of EAF dust with NaOH solutions is the high rejection rate for iron and the compatibility with the alkaline electrowinning of zinc. The approach is based on the amphoteric character of ZnO, cadmium oxide, and Pb(II) oxide, which dissolve in an alkaline solution, unlike Fe(III) oxide. This is similar to the dissolution of aluminum oxide from bauxite in the Bayer process, where Fe(III) oxide is not dissolved. However, the conditions used for alkaline leaching of EAF dust are milder than those of the Bayer process. The concentration of the NaOH solution is 5 M or higher, which means high reagent consumption. Moreover, it is difficult to remove the sodium after leaching, which is a problem for reuse of the iron residue in the BF. Also, alkaline leaching (also called caustic leaching) is much slower than with acids, ZnFe$_2$O$_4$ cannot be dissolved, and NaOH is more expensive than H$_2$SO$_4$.

In the Cebedeau Process, EAF dust is leached in hot (95 °C) concentrated NaOH (6–12 M) for 1–2 h to dissolve the zinc, lead, and cadmium [165]. The flow sheet is shown in Fig. 20. It was developed commercially in France in 1986. However, the plant closed due to problems with filtration. The recovery of zinc is dependent on the amount of zinc that is present in ZnFe$_2$O$_4$, since this phase is not solubilized. For the tested EAF dust, 65–85% of the zinc and 70–85% of the lead were recovered. Centrifuging separated the leachate from the solid residue, which is precipitated in a thickener with starch (1 kg/ton) as a flocculant. After washing with water, the residue was ready for disposal. The filtrate was clarified by adding a calcium hydroxide solution. Lead and cadmium were removed by cementation with zinc powder. The Pb-free purified solution was electrolyzed to produce high-quality zinc metal.

In the early 1980s, there was a pilot facility for treating EAF dust at Cardiff University (Wales, UK) (Fig. 21) [165]. The Cardiff Process is similar to the Cebedeau process, but used centrifugal filtration for solid–liquid separation and a magnetic separator. The solids settling was very slow, the centrifugal separation disappointing, and the flocculants and filters were unsuccessful. Another difference was the Cardiff Process had reduction roasting to break down the ZnFe$_2$O$_4$, present in the leach residue. The Cardiff process was able to recover 85–90% of the zinc.

Mordogan et al. investigated leaching in solutions with a low concentration of NaOH (3.75 M), but the zinc yield was only about 21% [166]. Dutra et al. achieved 76% at a NaOH concentration of 6 M and 90 °C [167]. Orhan used even more drastic conditions (10-M NaOH, 95 °C) and achieved 95% recovery [168]. Palimaka et al. investigated zinc extraction from EAF dust and found 88% for 8-M NaOH at 80 °C and a liquid-to-solid ratio of 40 [169]. However, these yields are hard to compare because the different types of EAF dust. It is important to note that ZnFe$_2$O$_4$ is, once more, not dissolved under these conditions.

Although ZnFe$_2$O$_4$ cannot be dissolved in a NaOH solution, it can be decomposed by roasting with NaOH at 350–450 °C [170]. Although the authors called it “caustic roasting,” “caustic fusion,” or “alkali fusion,” there are more appropriate terms because the NaOH is above its melting point of 318 °C. This treatment transfers the ZnFe$_2$O$_4$ in soluble sodium zincate (Na$_2$ZnO$_2$) and insoluble hematite (Fe$_2$O$_3$). After the caustic roasting process, the EAF dust can be leached with a dilute NaOH solution, with zinc recoveries in excess of 95%. The zinc can be reclaimed as zinc metal with alkaline electrolysis. The main disadvantage of this process is the large quantities of NaOH: depending on the zinc content of the EAF dust, 100–500 kg of NaOH per ton of EAF dust is required. It was reported that zinc recovery from synthetic ZnFe$_2$O$_4$ by alkali fusion could be increased by hydrotreating with water or dilute NaOH prior to the fusion step [171, 172], although the mechanism for this pre-treatment is not clear. Lenz and Martins applied this method to EAF dust and recovered the dissolved lead as PbS by adding Na$_2$S, with the zinc recovered as ZnS by adding Na$_2$S to the solution [173].

ZnFe$_2$O$_4$ has been decomposed by roasting with lime (CaO). Xie et al. heated ZnFe$_2$O$_4$ with lime at 1000 °C for 4 h (“calcified roasting”) [174]. This treatment transforms the ZnFe$_2$O$_4$ into ZnO and Ca$_2$Fe$_2$O$_5$ in the reaction: ZnFe$_2$O$_4$ + 2 CaO \rightarrow ZnO + Ca$_2$Fe$_2$O$_5$. After roasting the solid was leached with NH$_4$ and NH$_4$Cl to dissolve the ZnO. Zinc recoveries were close to 90%. Yakornov et al. roasted EAF dust with lime at 1400 °C to decompose the ZnFe$_2$O$_4$. The ZnO formed could be dissolved in 4-M NaOH [175]. Chairaksa-Fujimoto et al. used ZnO dissolution in 2-M NaOH for a liquid-to-solid ratio of 300 [176].

Zhang et al. ball-milled ZnFe$_2$O$_4$ with metallic iron (2:1 molar ratio Fe:ZnFe$_2$O$_4$), prior to leaching with 6 M NaOH at 90 °C [177]. The metallic iron reduced Fe(III) in the ZnFe$_2$O$_4$ lattice to Fe(II), making it more susceptible to leaching. Some 70% of zinc could be extracted from the mechanochemically reduced ZnFe$_2$O$_4$, compared to less than
2% from untreated ZnFe$_2$O$_4$. However, the process would be difficult to upscale.

Microwave-assisted alkali leaching of EAF dust resulted in the rapid dissolution of ZnO [178]. Leaching took minutes, whereas several hours were required for conventional leaching to achieve the same recovery. With microwave heating, the zinc recoveries were 10–15% higher than with conventional heating, which indicates that some ZnFe$_2$O$_4$ dissolved. The optimum NaOH concentration was 8 M.

Leaching with Deep-Eutectic Solvents

Deep-eutectic solvents (DESs) are an alternative to volatile organic solvents [179–181]. Most DESs are mixtures of choline chloride and a hydrogen-bond donor (urea, ethylene glycol, malonic acid, lactic acid, citric acid) or mixtures of choline chloride with a hydrated metal salt. DESs have much lower melting points than their individual components. Popular DESs are obtained by mixing chloride and urea in a 1:2 molar ratio, or choline chloride and ethylene glycol in a 1:2 molar ratio. These solvents are liquid at room temperature. DESs are relatively cheap, but more expensive than conventional lixiviants. They often have a significant water content, but their properties are different from those of aqueous solutions. It is claimed that DESs can be easily recycled, but their long-term stability is questionable. Moreover, DESs can be very corrosive due to their high chloride content. Another disadvantage is their high viscosity, especially with a low water content, making solid/liquid separations difficult.
Abbott et al. developed a DES process to extract the lead and zinc from EAF dust. The DES choline chloride:urea (1:2) selectively dissolves ZnO and lead oxide, but has negligible solubility for iron oxides [182]. DESs based on urea can dissolve large amounts of ZnO and have high selectivity of zinc over iron, in contrast to DESs based on carboxylic acids. After the dissolution, lead and zinc can be recovered by electrodeposition. However, the high viscosity of the DES (about 800 cP at 25 °C) resulted in impeded pumping and a more difficult separation of the DES from the undissolved solids by filtration. A leaching time of 48 h at 60 °C was used. The viscosity could be reduced by adding ethylene glycol to the choline chloride:urea DES [183]. A DES with the composition choline chloride:ethylene glycol:urea in the molar ratios 1:1:5:0.5 had a viscosity of 56 cP at room temperature. A pulp density of up to 7 wt% was used, with a digestion time of at least 24 h. The fine-particulate EAF dust powder decreased the viscosity of the DES. Hardly any iron was co-dissolved (<1 ppm). The DES can dissolve part of the ZnFe$_2$O$_4$, but only very slowly, i.e., the extraction of zinc was incomplete after 72 h. Lead was recovered by cementation with zinc dust, and zinc chloride could be precipitated by adding aqueous NH$_4$. The electrowinning of zinc showed that the process was very slow and that the current efficiency was poor. A pilot plant was built to process 5 kg EAF dust batches. It consisted of a 125 L extraction tank, two 25 L cementation tanks, and a 12 L electrolysis cell. Difficulties were experienced with solid/liquid separation. The cementation of lead was efficient, with levels below 12 ppm. NH$_3$ could be boiled off the precipitate, leaving pure zinc chloride. Bakkar repeated the work of Abbott et al. for choline chloride:urea (1:2) [184] and the 1-M chloride:1.5-M urea:0.5-M ethylene glycol systems [185], but provided no additional information.

Miscellaneous Lixiviants

Halli et al. leached EAF dust with 16 different lixiviants in 27 conditions, focusing on five elements: zinc, iron, lead, chromium, and manganese [186]. The objective was to selectively leach zinc and lead to leave a recyclable Fe-rich material for the steel plant. The four lixiviants with the highest zinc extraction (> 75%) and the lowest iron extraction (< 10%) were 10% *aqua regia*, 1.2-M HCl, 0.94-M citric acid, and 1.5-M HNO$_3$. There was also partial dissolution of lead, chromium, and manganese. The best for lead removal was 1.75-M acetic acid. The results for zinc and iron are in Figs. 22 and 23, respectively. In a follow-up study, leaching with citric acid, which can dissolve ZnO but not ZnFe$_2$O$_4$, was investigated in more detail [187]. Halli et al. alkali roasted with NaOH at 450 °C as a pre-treatment for ZnFe$_2$O$_4$ decomposition, followed by leaching with 0.8-M citric acid at 40 °C with oxygen purging for 2 h [187]. All of the zinc was leached, more than 80% of the lead, and with less than 10% co-dissolution of iron. A study of leaching EAF dust in organic acids (formic, acetic, and citric acid) confirmed that citric acid had the highest zinc yield (> 75%), with less than 20% iron co-dissolution [188]. The co-dissolution of lead by citric acid is seen as an advantage. Acetic acid (1.75 M) was the second best. All the organic acids dissolved ZnO, but not ZnFe$_2$O$_4$. The citric acid needs to be 0.8–0.9 M for good zinc recovery, which means dilute citric acid waste streams (e.g., from fermentation) cannot be used. High concentrations of citric acid (3.0 M) removed 99% of the lead from EAF dust [189], while removing 54% of the zinc and 6% of the iron. In a follow-up study, Halli et al. recovered lead and zinc from a citric acid leach solution [190]. The lead precipitated as PbSO$_4$ by adding H$_2$SO$_4$ to a pH of 2. The zinc was extracted with D2EHPA and Cyanex 572. The best results were for D2EHPA.

Wang et al. leached EAF dust with (NH$_4$)$_2$Fe(SO$_4$)$_2$·12H$_2$O [191]. The reagent dissolves upon heating in its own crystal water and ionized to Fe$^{3+}$, NH$_4^+$, and SO$_4^{2-}$. Fe$^{3+}$ hydrolys and released H$^+$, and a solution with a high proton concentration was formed. These protons reacted with EAF dust and brought Zn$^{2+}$ in solution. In the meantime, NH$_4^+$, SO$_4^{2-}$, and Fe$^{3+}$ ions in solution formed a jarosite precipitate, (NH$_4$)$_2$Fe(SO$_4$)$_3$(OH)$_6$. The reaction was for 6 to 12 h in an autoclave at 180–220 °C. After leaching and cooling to room temperature, the solid and liquid were separated. All the zinc was in solution (93% recovery). A disadvantage is the high reagent consumption; the mass ratio for the reagent and EAF dust was 1:1 to 7:1.

Bioleaching

The bioleaching of EAF dust is rare. Bayat et al. bioleached zinc and iron with *Acidithiobacillus ferrooxidans* [192]. Under optimum conditions, 35% of the zinc and 37% of the iron were dissolved, i.e., poor selectivity. The pulp density was 1% and the process is slow. Carranza et al. treated EAF dust and acid mine drainage (AMD) [193]. First, the EAF dust is leached with AMD water. Next, Fe(II) ions are biooxidized, and iron and aluminum are precipitated. Then, copper, nickel, cobalt, and cadmium are cemented by zinc metal, and finally the zinc is precipitated as zinc hydroxide. Lime is used to neutralize the acidic water, with gypsum precipitating.

Thermal Pre-treatment

Stopic and Friedrich describe the thermal treatment of ZnFe$_2$O$_4$ to decompose it into ZnO and magnetite in nitrogen at 1150 °C [194]. This avoids the energy intensive ZnO reduction and Zn evaporation. The residue was leached with H$_2$SO$_4$ at pH 4.3 at 60 °C to dissolve the ZnO, leaving...
Fe₃O₄. ZnFe₂O₄ can be decomposed to ZnO and wüstite (FeO) by a reductive thermal treatment in a CO/CO₂ gas mixture [195]. When iron is present as wüstite, it dissolves with zinc during mild acid leaching. To avoid the unwanted formation of wüstite, it can be reoxidized to magnetite by magnetization roasting in a CO₂ atmosphere, after which the zinc can be extracted from ZnO at a low acid concentration [196]. ZnFe₂O₄ is decomposed to metallic iron and ZnO by hydrogen gas at 600 °C [197]. The main advantages of this are high reaction rates, low energy requirements, and no CO₂ emissions. Antrekowitsch and Antrekowitsch decomposed ZnFe₂O₄ in a N₂/H₂ mixture [198]. The reduction took 30 min at 350 °C. A 100% zinc yield was possible by leaching with H₂SO₄ or NaOH, when the ZnFe₂O₄ was decomposed in a N₂/H₂ mix with > 50% H₂. Li et al. decomposed ZnFe₂O₄ by roasting with ammonium sulfate [199].

In the section on alkali leaching of EAF dust (vide supra), the decomposition of ZnFe₂O₄ by alkali roasting or alkali fusion with NaOH was discussed. Another approach is to roast EAF dust with Na₂CO₃ to form ZnO and NaFeO₂ [200]. After roasting, the residue can be leached with H₂SO₄ or NaOH. H₂SO₄ brings more iron into solution. The advantage of Na₂CO₃ roasting over NaOH roasting is that a smaller amount of Na₂CO₃ is required, compared to NaOH, although Na₂CO₃ roasting needs higher temperatures. Typical Na₂CO₃ roasting of EAF dust requires 80% Na₂CO₃ at 950 °C.

EAF dust can also be reacted with CaO at high temperatures. Miki et al. treated EAF dust with CaO (Ca/Fe molar ratio = 1.3) at 1100 °C for 5 h [201]. The ZnFe₂O₄ is decomposed into ZnO and Ca₃Fe₂O₅. Leaching with NH₄Cl solution dissolves the ZnO, but not the Ca₃Fe₂O₅. The optimum leaching conditions were 70 °C, 2-M NH₄Cl, liquid-to-solid ratio = 300, 2 h.

Sinter-Plant Dust

About 0.2–3.6 kg of sinter-plant dust are produced per ton of sinter. The sinter dust has a high concentration of chloride salts, particularly KCl. The dust contains up to 28.7 wt% of K₂O, with the potassium mainly in the fine particles. Sinter-plant dust could be a source of potassium for the fertilizer industry [202]. Peng et al. recovered 90% of the potassium in sinter-plant dust by leaching with water in a liquid-to-solid ratio of 2 for 5 min [203]. With a counter-current process, close to 100% of the KCl could be leached, but 40% of the other components dissolved. The washed residues could be reused. The other compounds in solution were NaCl and CaCl₂. Heavy metals (Pb, Cd, Zn, Cu) were precipitated by adding Na₂S. KCl could be obtained by evaporation, followed by fractional crystallization. K₂SO₄ was selected as a precipitating agent for Ca²⁺ ions, and 95% pure KCl was obtained.

A potassium chloride plant with a capacity of 10,000 tons/year was built in Tangshan (China) for potassium fertilizer [204]. The flow sheet is shown in Fig. 24. The sinter-plant dust is leached with water and filtered, with the residue recycled to the plant. Heavy metals are removed from the filtrate by sulfide precipitation, which is evaporated to obtain high-purity products. A modified flow sheet, Ca²⁺ is removed as spherical CaCO₃ particles by adding Na₂CO₃ before the CaSO₄ starts to crystallize [205]. Spherical CaCO₃ is used in paint, ink, and other industries. The sulfate will crystallize as K₂SO₄.

Sinter-plant dust can also be a source of rubidium (Rb); it contains about 0.30 wt% Rb in the form of RbCl [206], making it richer than any other rubidium resource. Some 95% of the rubidium could be leached at a liquid-to-solid ratio of 5, at 25 °C for 10 min. Also, 93% of the potassium and 95% of the sodium in the dust dissolved. In fact, 50% of the dust dissolved. Ca²⁺ and Mg²⁺ impurities could be removed by adding Na₂CO₃, precipitating CaCO₃ and MgCO₃. The concentrations of metal ions in the leachate were [Na] = 7.76 g/L, [K] = 33.85 g/L, [Rb] = 0.74 g/L. Potassium/rubidium were separated by solvent extraction with 4-tert-butyl-2-(α-methylbenzyl)phenol (t-BAMBP) in the Na⁺ form. The extraction used counter-current mode, with two mixer-settler batteries, each consisting of 4 extraction, 6 washing, and 3 stripping stages. The composition of the eluate was [Rb] = 11.36 g/L, [K] = 0.027 g/L, [Na] = 0.013 g/L. The recovery rate of rubidium was 58% and the purity of RbCl after crystallization was 99.5%.
Oily Mill Sludge

In hot roll mill (HRM), due to oxidation, mill scale forms on the surface of the steel in reheat furnaces, and on rolling trains and stands [207]. It is removed by a water jet. Oil, used to lubricate rolling equipment, is also removed [208]. The discarded sludge is treated in a series of horizontal settling tanks, and the clarified water is reused. Coarse sediments from the primary tanks (primary mill scale) with particles > 2 mm and an oil content of < 1% can be recycled, e.g., as an additive to the iron ore sinter mixture. Fine scale from the secondary tanks (secondary mill scale) has particles > 2 mm, and contains up to 20 wt% of oil and 10 wt% of water. Mill scale consists mainly of iron oxides, with small amounts of sulfur, phosphorus, and alkali metals. Depending on the steel grade, it also contains chromium, nickel, vanadium, etc. At the wastewater treatment plant, oil, water, and oily mill sludge are generated. The oily mill sludge is a mixture of mill scale, oil, water, and residual chemicals. It cannot be further separated and so is sent to landfills. The oily mill sludge is a sticky solid that is difficult to handle [209]. Also, during the cold roll mill (CRM), an oily mill sludge is generated.

The recycling of secondary scale is difficult due to the negative effects of oil on the environment and equipment. For instance, if the oiled scale is an additive to the iron ore sinter mixture, it is a problem for gas cleaning and can damage these installations with fires. One option to improve combustion of the scale’s oil in the sintering process is to prepare a mixture with peat [208]. The oily mill sludge can be recycled with direct reduction iron (DRI), where the oil participates directly in the reactions for the reduction and conversion of hematite (Fe2O3) and magnetite (Fe3O4) to wüstite (FeO) [210].

De-oiling of mill scale and oily mill sludge was studied, but no technology proved to be economic and eco-friendly, and there are presently no de-oiling plants in operation [207]. Biological treatment for oil removal was investigated, but was reported to be difficult and impractical, due to the long treatment time and the low oil-removal efficiency [210]. Microwave heating was used to remove the water and to reduce the oil content in oily mill sludge [209]. Microwave heating speeds up the drying of sludge, saving both energy and time. After the microwave treatment, the material has better rheological properties. The microwaved samples are less oxidized than conventionally heat treated, which is an advantage for recycling sludge because less carbon is required to reduce it to metallic iron. However, the costs of microwave equipment versus gas heating or residual heat can be prohibitive.

To the best of our knowledge, no studies were published on the recovery of metals from oily HRM sludge by hydrometallurgical methods. However, some studies looked at the recovery of oily mill sludge generated by CRM process. Liu et al. investigated the combined recovery of iron and organic materials from oily CRM sludge, and how to prepare micaceous iron oxide (MIO) pigment from the material [211]. This pigment is used in construction materials, paints, and coatings. The oily CRM sludge was leached in H2SO4, until complete dissolution (6-M H2SO4, 85 °C, 4 h, solid-to-liquid ratio = 1:5). After leaching, the mixture was centrifuged into an organic part (used as fuel) and a solution. The solution consisted of FeSO4 and Fe2(SO4)3. The iron was precipitated as Fe(OH)2 and Fe(OH)3 by an NH3 solution. Fe(OH)2 was oxidized by air to Fe(OH)3. The MIO pigment was prepared by hydrothermal synthesis in alkaline media, starting from the hydroxide precursor. The pigment was metallic gray with uniform flake shape. A flow sheet is shown in Fig. 25. Later, the authors reported an alternative for the preparation of the MIO pigment, using H2O2 to oxidize FeSO4 to Fe2(SO4)3 [212]. Liu et al. removed the oil from oily CRM sludge by vacuum distillation [213]. The oil can be used as fuel or chemical feedstock. The distillation gases can be collected and also reused as fuel. When the distillation residue is oxidized by roasting, high-purity Fe2O3 is obtained, whereas reduction with H2 leads to the formation of iron powder.

Pickling Sludge

Pickling is used in steel plants to remove oxide scales from steel. These hydrometallurgical processes utilize mineral acids for leaching. Carbon-steel pickling in hot-dip galvanizing works with HCl or H2SO4, whereas stainless-steel pickling in rolling mills is based on mixtures of HF and HNO3 [214]. HNO3 dissolves and oxidizes the Fe(II) oxide scale, whereas HF is used for its reactivity and stabilizing capacity of metals in solution.
Most methods for the treatment of spent pickling liquor involve acid recovery [215, 216]. The methods based on acid retardation or diffusion dialysis only recover the free acid, producing a residual effluent with a high metal content that is treated by solvent extraction or precipitation. The precipitation involves adding lime (CaO) or alkali (NaOH or KOH). The precipitation generates picking sludge, which is sent to landfills [217]. The metals in the sludge of stainless-steel pickling are iron, chromium, and nickel [218]. If lime is used for neutralization, the sludge will also contain CaF$_2$. A chemical analysis of a pickling sludge yielded the following: 21.68 wt% Fe, 2.42 wt% Cr, and 2.78 wt% Ni [218].

There are few studies on the recovery of metals from pickling sludges, because if the objective is to recover the metals, solvent extraction is used. For a good overview of the treatment of spent pickling liquor by solvent extraction, the reader is referred to a review by Regel-Rosocka [219]. One of the few studies on metal recovery from pickling sludge is by Ji et al. who recovered nickel by controlled leaching with H$_2$SO$_4$, followed by solvent extraction [218].

Dufour et al. recovered metals from spent pickling liquor by sequential selective precipitation [215]. In the first stage, iron and chromium are precipitated as K$_3$MF$_6$ (M = Fe, Cr) by adding fluoride ions (as HF or KF) at pH 4. Also, molybdenum will precipitate at this pH. The effluent contains nickel(II) and nitrate ions, and nickel is precipitated in a second precipitation step as Ni(OH)$_2$ at pH 7 to 9. The K$_3$MF$_6$ compounds can be re-dissolved and iron and chromium re-precipitated at pH 5. The same authors described the recovery of iron from a spent H$_2$SO$_4$ pickling liquor as magnetite by oxidation-precipitation [220]. The crystalline magnetite could be used as a pigment in the paint industry. Hermoso et al. described the selective precipitation of K$_2$FeF$_5$, CrF$_3$, and Ni(OH)$_2$ [221].

Conclusions and Outlook

The studies on the recovery of metals by hydrometallurgical methods from steel by-products are very unequally divided among the different by-products. Studies of metal recovery from slags are outnumbered by those on dusts and sludges. There are several reasons for this. Firstly, slags are much easier to valorize. Secondly, the heavy-metal content of slags does not hamper their valorization. There is an exception with EAF slags that are intended for clinker production: in this case the chromium content can be a major problem, because Cr(III) can oxidize to Cr(VI) that is soluble in water and toxic. Thirdly, the treatment of slags by hydrometallurgical methods not only generates a residue that is of less commercial value than the original slag, it also yields aqueous waste streams that need further treatment. In contrast, dusts and sludges are much more difficult to valorize than slags and internal recycling in steelmaking is often inhibited by their high zinc content. The number of studies follows this order: EAF dust > BF sludge > BOF sludge > sinter dust (Fig. 26).

In the past 5 years, there has been a sharp increase in research on the recovery of vanadium from vanadium slags, especially in China. This is an important trend, because of the increasing demand for vanadium for use in redox flow batteries. In contrast, the economics of manganese recovery from ferromanganese slags or chromium recovery from Cr-rich stainless-steel slags are much less favorable.

Although the main objectives of the treatment of BF sludges, BOF sludges, and EAF dust are similar, i.e., the removal of zinc and generating an Fe-rich residue that can be returned to the steel plant, these three classes of by-products exhibit different mineralogical compositions and zinc contents. Moreover, within the same class of materials (e.g., EAF dust), wide variations in composition and zinc content are possible, so that it is not simple to develop a “silver bullet” process with the same set of process conditions.

The majority of the studies described in the review relate to EAF dust. This interest in EAF dust is because of its enhanced zinc content, which is by far the highest of all steel by-products. However, EAF dust is typically of interest to the zinc industry rather than that of steel. This means that the objective is to maximize zinc recovery from EAF dust, using the processes of the zinc industry. Several of the processes proposed for EAF dust treatment are similar to the roast–leach–electrowinning (RLE) process that is state of the art in the zinc industry. In fact, EAF dust is similar to the calcine that is obtained by dead-roasting ZnS concentrate, with the difference that EAF dust is much richer in lime (CaO). As a consequence, EAF dust will consume more acid during leaching than zinc calcine. Much less emphasis has been paid to the destination of the iron in the process. As
a result, iron will often be precipitated as jarosite or goethite, which are of little interest to the steel industry. This is because these iron-containing compounds are too contaminated with unwanted metals or their iron content is too low for economic use in the BF.

Many processes for the treatment of EAF dust integrate, as a final step in the targeted flow sheet, the electrowinning of zinc from the leachate (to produce high-quality zinc metal). They do this independently of the lixiviant (H₂SO₄, HCl, or NaOH). However, this is less interesting for steel plants that want to clean up EAF dust and do not have an electrolysis plant on site. On the other hand, zinc electrolyte is less convenient to transport than solid zinc compounds. For this reason, the treatments of EAF dust that are of interest to the zinc industry have a flow sheet that produces a solid zinc compound, e.g., ZnO, ZnCO₂, basic ZnCO₂, or ZnS. The latter is usually preferred.

It is very difficult to compare the leaching results and the zinc yields published for EAF dust in different studies, because the composition of the EAF dust varies widely. Different types of EAF dust not only have different concentrations of zinc, but also show variations in the ZnO/ZnFe₂O₄ ratio (zincite-to-franklinite ratio). In many processes, only the ZnO is dissolved, while the refractory ZnFe₂O₄ phase remains in the residue. ZnFe₂O₄ is only dissolved in concentrated acids, or if the EAF dust is pre-treated (e.g., by a reductive roasting step). Furthermore, dissolving ZnFe₂O₄ in acidic solutions also brings iron into solution.

Compared to EAF dust, there is much less research on BF sludges, with most of it performed by the steel industry. There has been limited interest in BF sludges from academics, probably due to the low content of non-ferrous metals such as zinc. This limits the value of BF sludge as a potential secondary source of zinc. Very few studies focus on BF sludges with a low zinc content. Some investigations have considered BF sludges with exceptionally high zinc contents, which begs the question about how representative such studies are. In some studies, it is evident that zinc is present in BF sludges in the form of ZnS (sphalerite). This requires oxidative leaching, e.g., with FeCl₃. It is not clear how general the presence of ZnS in BF sludges actually is, because many studies did not report the sulfur content in BF sludges or in the minor mineralogical phases. Concurrently, the high carbon content in BF sludges leads to operational problems with hydrometallurgical processes, because of foaming.

The recovery of zinc from BOF dusts and sludges has received little attention so far, and very little information has been published in the literature and as patents.

When treating dusts and sludges, it is recommended to focus on the easily soluble zinc (in the form of ZnO), because this needs relatively mild conditions and the dissolution takes just a couple of minutes. However, in general, the selected leaching times are often much too long. This is unnecessary for the dissolution of ZnO and leads to unacceptable levels of iron co-dissolution. On the other hand, if the dissolution of the more refractory ZnFe₂O₄ (franklinite) phase is targeted, much harsher conditions are required and a lot of iron will co-dissolve. Therefore, it is better to “bleed” the zinc from the system by dissolving the ZnO, and to return the ZnFe₂O₄ back to the BF or BOF. In the BF or BOF, the ZnFe₂O₄ is partly decomposed to ZnO. The removal of zinc via ZnO, therefore, constitutes the “low-hanging fruit.” A compromise has to be found between the zinc removal yield and the requirements in terms of OPEX and CAPEX. The maximum permissible value of the zinc concentration in the leaching residues of the dusts and sludges depends on the operational conditions of the BF or BOF, and in particular on the average zinc content of the regular iron-containing feeds to the furnace. However, as a rule of thumb, the zinc content in the residue that is sent back to the BF or BOF must be below 1 wt%.

Since it is difficult to remove iron from leachates, it is better to avoid bringing iron into solution in the first place. When/if iron has to be precipitated from the solution, the preferred iron phase is hematite (Fe₂O₃), because hematite is Fe-rich and has a very low level of impurities, in contrast to jarosite or goethite. Unfortunately, hematite can only be formed at elevated temperatures, i.e., above 100 °C, which requires an expensive autoclave. However, there are ways to obtain hematite at lower temperatures, for instance by seeding the iron-containing solution with hematite crystals. There is definitively room for research on the formation of hematite precipitates under milder conditions. Hematite is easier to form from chloride than from sulfate solutions. Also, nitrate media can lead to hematite formation. The precipitation of jarosite or goethite is not sustainable, because it creates a solid-waste problem. It simply transfers the zinc industry’s solid-waste problem to the steel industry.

Although this review focused on hydrometallurgical processes, several process flow sheets contain a high-temperature pre-processing step. Examples include alkali roasting with NaOH or Na₂CO₃ to decompose the ZnFe₂O₄ phases in EAF dust, the roasting of vanadium slags with NaCl to decompose the vanadium spinel phases, and the dry digestion with concentrated H₂SO₄ of silicate-rich slags. In all these cases, the thermal pre-processing temperature should be as low as possible, in order to curb the energy consumption. In any case, the reaction temperatures are much lower than those of pyrometallurgical processes. A concern with thermal pre-processing is that often large amounts of chemicals are used for the roasting step. Therefore, it is better to pay more attention to reducing the consumption of chemicals or developing reagent-free roasting processes.
Acknowledgements The authors acknowledge funding from the European Institute of Innovation and Technology (EIT), a body of the European Union, under Horizon 2020, part of the ‘KAVA Call 6,’ in the framework of the ‘Innovation Theme’ No.3 of EIT Raw Materials Project Number 19205 (SAMEX). Alma Capa and Jose Luis García are acknowledged for their contributions during discussions and for editing this paper. Paul McGuiness is acknowledged for his text editing work.

Compliance with Ethical Standards

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Stewart D, Barron A (2020) Pyrometallurgical removal of zinc from basic oxygen steelmaking dust—a review of best available technology. Resour Conserv Recycl 157:104746. https://doi.org/10.1016/j.resconrec.2020.104746
2. Zhang H, Hong X (2011) An overview for the utilization of wastes from stainless steel industries. Resour Conserv Recycl 55:745–754. https://doi.org/10.1016/j.resconrec.2011.03.005
3. Candian Lobato NC, Villegas EA, Mansur MB (2015) Management of solid wastes from steelmaking and galvanizing processes: a brief review. Resour Conserv Recycl 102:49–57. https://doi.org/10.1016/j.resconrec.2015.05.025
4. Fisher LV, Barron AR (2019) The recycling and reuse of steelmaking slags - a review. Resour Conserv Recycl 146:244–255. https://doi.org/10.1016/j.resconrec.2019.03.010
5. Lin X, Peng Z, Yan J et al (2017) Pyrometallurgical recycling of electric arc furnace dust. J Clean Prod 149:1079–1100. https://doi.org/10.1016/j.jclepro.2017.02.128
6. Yang C, Pan J, Zhu D et al (2019) Pyrometallurgical recycling of stainless steel pickling sludge: a review. J Iron Steel Res Int 26:547–557. https://doi.org/10.1016/j.jisre.2019.01.002
7. Antunano N, Cambra JF, Arias PL (2019) Hydrometallurgical processes for Waelz oxide valorisation - an overview. Proces Saf Environ Prot 129:308–320. https://doi.org/10.1016/j.psep.2019.06.028
8. Das B, Prakash S, Reddy PSR, Misra VN (2007) An overview of utilization of slag and sludge from steel industries. Resour Conserv Recycl 50:40–57. https://doi.org/10.1016/j.resconrec.2006.05.008
9. Du C, Gao X, Kitamura S (2019) Measures to decrease and utilize steelmaking slag. J Sustain Metall 5:141–153. https://doi.org/10.1007/s40831-018-0202-4
10. Rieger J, Schenk J (2019) Residual processing in the European steel industry: a technological overview. J Sustain Metall 5:295–309. https://doi.org/10.1007/s40831-019-00220-2
11. Worldsteel (2010) Steel industry by-products: project group report 2007–2009. World Steel Association, Brussels
12. Ji Y, Shen S, Liu J, Xue Y (2017) Cleaner and effective process for extracting vanadium from vanadium slag by using an innovative three-phase roasting reaction. J Clean Prod 149:1068–1078. https://doi.org/10.1016/j.jclepro.2017.02.177
13. Jiang T, Dong H, Guo Y et al (2010) Study on leaching Ti from Ti bearing blast furnace slag by sulphuric acid. Trans Inst Min Metall Sect C 119:33–38. https://doi.org/10.1179/037195509X12585446038807
14. Valighazvini F, Rashchi F, Nekouei RK (2013) Recovery of titanium from blast furnace slag. Ind Eng Chem Res 52:1723–1730. https://doi.org/10.1021/ie301837m
15. He S, Sun H, Tan D, Peng T (2016) Recovery of titanium compounds from Ti-enriched product of alkali melting Ti-bearing blast furnace slag by dilute sulfuric acid leaching. Procedia Environ Sci 31:977–984. https://doi.org/10.1016/j.proenv.2016.03.003
16. Mang G, Cheng M (2014) Research of Al and Fe leaching rate in the process of slag leaching by hydrochloric acid. Appl Mech Mater 675–677:1417–1420. https://doi.org/10.4028/www.scientific.net/AMM.675-677.1417
17. Meshram P, Sarkar S, Venugopalan T (2017) Exploring blast furnace slag as a secondary resource for extraction of rare earth elements. Miner Metall Process 34:178–182
18. Huijgen W, Witkamp G, Comans R (2005) Mineral CO2 sequestration by steel slag carbonation. Environ Sci Technol 39:9676–9682. https://doi.org/10.1021/es050795f
19. Bilen M, Altimir M, Yildirim M (2018) Evaluation of steelmaking slag for CO2 fixation by leaching-carbonation process. Part Sci Technol 36:368–377. https://doi.org/10.1007/10272635.2016.1267285
20. Halls C, Large DJ, Adderley B, West HM (2014) Calcium leaching from waste steelmaking slag: significance of leachate chemistry and effects on slag grain mineralogy. Miner Eng 65:156–162. https://doi.org/10.1016/j.mineng.2014.06.002
21. Zhang G, Zhang T, Lu G et al (2015) Extraction of vanadium from vanadium slag by high pressure oxidative acid leaching. Int J Miner Metall Mater 22:21–26. https://doi.org/10.1007/s12613-015-1038-6
22. Zhang J, Zhang W, Zhang L, Gu S (2014) A critical review of technology for selective recovery of vanadium from leaching solution in V2O5 production. Solvent Extr Ion Exch 32:221–248. https://doi.org/10.1080/07366299.2013.877753
23. Li M, Zheng S, Liu B et al (2017) A clean and efficient method for recovery of vanadium from vanadium slag: nonsalt roasting and ammonium carbonate leaching processes. Miner Process Extr Metall Rev 38:228–237. https://doi.org/10.1080/08827508.2017.1288117
24. Zhang J, Zhang W, Xue Z (2019) An environment-friendly process featuring calcified roasting and precipitation purification to prepare vanadium pentoxide from the converter vanadium slag. Metals. https://doi.org/10.3390/met9010021
25. Li H-Y, Wang K, Hua W-H et al (2016) Selective leaching of vanadium in calcification-roasted vanadium slag by ammonium carbonate. Hydrometallurgy 160:18–25. https://doi.org/10.1016/j.hydromet.2015.11.014
26. Li X, Xie B (2012) Extraction of vanadium from high calcium vanadium slag using direct roasting and soda leaching. Int J Miner Metall Mater 19:595–601. https://doi.org/10.1007/s12613-012-0600-8
27. Zhang G, Luo D, Deng C et al (2018) Simultaneous extraction of vanadium and titanium from vanadium slag using ammonium sulfate roasting-leaching process. J Alloys Compd 742:504–511. https://doi.org/10.1016/j.jallcom.2018.01.300
28. Li M, Liu B, Zheng S et al (2017) A cleaner vanadium extraction method featuring non-salt roasting and ammonium bicarbonate leaching. J Clean Prod 149:206–217. https://doi.org/10.1016/j.jclepro.2017.02.093
29. Li M, Du H, Zheng S et al (2017) Extraction of vanadium from vanadium slag via non-salt roasting and ammonium oxalate leaching. JOM 69:1970–1975. https://doi.org/10.1007/s11837-017-2494-4
30. Wen J, Jiang T, Zhou W et al (2019) A cleaner and efficient process for extraction of vanadium from high chromium vanadium slag: leaching in (NH₄)₂SO₄·H₂SO₄ synergistic system and NH₄⁺ recycle. Sep Purif Technol 216:126–135. https://doi.org/10.1016/j.sepurt.2019.01.078
31. Zhang G-Q, Zhang T-A, Zhang Y et al (2016) Pressure leaching of converter vanadium slag with waste titanium dioxide. Rare Met 35:576–580. https://doi.org/10.1007/s12598-014-0225-3
32. Zhang Y, Zhang T-A, Dreisinger D et al (2017) Extraction of vanadium from direct acid leach solution of converter vanadium slag. Can Metall Q 56:281–293. https://doi.org/10.1080/0008433.2017.1327501
33. Mcintosh S, Baglin E (1992) Recovery of manganese from steel plant slag by carbonate leaching. US Bur Mines Rep Invest 9400:1–16
34. Krasheninnik AG, Khalezov BD, Bornovolokov AS, Ordinartsev DP (2019) Technology for extracting manganese from vanadium converter slag after leaching vanadium. Metallurgist 63:534–542. https://doi.org/10.1007/s11015-019-00854-3
35. Mombelli D, Mapelli C, Barella S et al (2016) The effect of chemical composition on the leaching behaviour of electric arc furnace (EAF) carbon steel slag during a standard leaching test. J Environ Eng 4:1050–1060. https://doi.org/10.1016/j.jece.2015.09.018
36. Mombelli D, Barella S, Grutta daura A et al (2019) Effects of basicity and mesh on Cr leaching of EAF carbon steel slag. Appl Sci 9:1–12. https://doi.org/10.3390/app9010121
37. Yu Y, Wang D, Li J et al (2018) Effect of cooling conditions on the leachability of chromium in Cr₂O₃-containing steelmaking slag. J South Afr Inst Min Metall 118:539–543
38. Wang X, Geysen D, Van Gerven T et al (2017) Characterization of landfilled stainless steel slags in view of metal recovery. Front Chem Sci Eng 11:353–362. https://doi.org/10.1007/s11705-017-1656-9
39. Kim E, Spooren J, Broos K et al (2015) Selective recovery of Cr from stainless steel slag by alkaline roasting followed by water leaching. Hydrometallurgy 158:139–148. https://doi.org/10.1016/j.hydromet.2015.10.024
40. Kim E, Spooren J, Broos K et al (2016a) Valorization of stainless steel slag by selective chromium recovery and subsequent carbonation of the matrix material. J Clean Prod 117:221–228. https://doi.org/10.1016/j.jclepro.2016.01.032
41. Kim E, Spooren J, Broos K et al (2016b) New method for selective Cr recovery from stainless steel slag by NaOCl assisted alkaline leaching and consecutive BaCrO₄ precipitation. Chem Eng J 295:542–551. https://doi.org/10.1016/j.cej.2016.03.073
42. Spooren J, Kim E, Horckmans L et al (2016) In-situ chromium and vanadium recovery of landfill ferrochromium and stainless steel slags. Chem Eng J 303:359–368. https://doi.org/10.1016/j.cej.2015.05.128
43. Baumgartner S, Groot D (2014) The recovery of manganese products from ferromanganese slag using a hydrometallurgical route. J South Afr Inst Min Metall 114:331–340
44. Mohanty J, Sahoo P, Nath sarma K et al (1998) Characterization and leaching of ferro-manganese slag. Miner Metall Process 15:30–33. https://doi.org/10.1007/BF03403221
45. Naganoor P, Prasanna A, Shivaprasad K, Bhat K (2000) Extraction of manganese from Ferro-manganese slag. Int Symp Process Fines Jamshedpur India 2–3 November 2000 Natl Metall Lab Jamshedpur 300–306
46. Kazadi DM, Groot DR, Steenkamp JD, Poellmann H (2016) Control of silica polymerisation during ferromanganese slag sulphuric acid digestion and water leaching. Hydrometallurgy 166:214–221. https://doi.org/10.1016/j.hydromet.2016.06.024
47. Kazadi D, Groot D, Pollmann H et al (2013) Utilization of Ferromanganese slags for manganese extraction and as a cement additive. Proceedings of the Advances in Cement and Concrete Technology in Africa conference, Emperor’s Palace, Johannesburg (South Africa), 28–30 January 2013, 983–995
48. Hocheng H, Su C, JadHAV UU (2014) Bioleaching of metals from steel slag by Acidithiobacillus thiooxidans culture supernatant. Chemosphere 117:652–657. https://doi.org/10.1016/j.chemosphere.2014.09.089
49. Andersson A, Ahmed H, Rosenkranz J et al (2017) Characterization and upgrading of a low zinc-containing and fine blast furnace sludge - a multi-objective analysis. ISIJ Int 57:262–271. https://doi.org/10.2355/isijinternational.ISIJINT-2016-512
50. Li B, Wei Y, Wang H et al (2019) Preparation of ZnSO₄·7H₂O and separation of zinc from blast furnace sludge by leaching-purification-crystallization method. ISIJ Int 59:201–207. https://doi.org/10.2355/isijinternational.ISIJINT-2018-401
51. Kretzschmar R, Mansfeld T, Mandaliev PN et al (2012) Speciation of Zn in blast furnace sludge from former sedimentation ponds using synchrotron X-ray diffraction, fluorescence, and absorption spectroscopy. Environ Sci Technol 46:12381–12390. https://doi.org/10.1021/es302981v
52. Steer IM, Griffiths AJ (2013) Investigation of carboxylic acids and non-aqueous solvents for the selective leaching of zinc from blast furnace dust slurry. Hydrometallurgy 140:34–41. https://doi.org/10.1016/j.hydromet.2013.08.011
53. Van Herck P, Vandecasteele C, Swennen R, Mortier R (2000) Zinc and lead removal from blast furnace sludge with a hydrometallurgical process. Environ Sci Technol 34:3802–3808. https://doi.org/10.1021/es9910331
54. Schrama F, Beunder E, Van den Berg B et al (2017) Sulphur removal in ironmaking and oxygen steelmaking. Ironmak Steelmak 44:333–343. https://doi.org/10.1080/03019941.2017.1309194
55. Trinkel V, Mallow O, Thaler C et al (2015) Behavior of chromium, nickel, lead, zinc, cadmium, and mercury in the blast furnace—a critical review of literature data and plant investigations. Ind Eng Chem Res 54:11759–11771. https://doi.org/10.1021/acs.iecr.5b03442
56. Trinkel V, Mallow O, Aschenbrenner P et al (2016) Characterization of blast furnace sludge with respect to heavy metal distribution. Ind Eng Chem Res 55:5590–5597. https://doi.org/10.1021/acs.iecr.6b00617
57. Foeldi C, Dohrmann R, Mansfeld T (2015) Volatilization of elemental mercury from fresh blast furnace sludge mixed with basic oxygen furnace sludge under different temperatures. Environ Sci Process Impacts 17:1915–1922. https://doi.org/10.1039/c5em00403a
58. Foeldi C, Dohrmann R, Mansfeld T (2014) Mercury in dumped blast furnace sludge. Chemosphere 99:248–253. https://doi.org/10.1016/j.chemosphere.2013.11.007
59. Ma N (2014) In-Process Separation of Zinc From Blast Furnace Offgas Solid Wastes. In: AISTech 2014 Proceedings. Association for Iron & Steel Technology, pp 623–634
60. Zeydabadi B, Mowla D, Shariat M, Kalajahi J (1997) Zinc and lead removal from blast furnace sludge with a hydrometallurgical process. Hydrometallurgy 46:12381–12390. https://doi.org/10.1021/es302981v
62. Banerjee D (2007) Metal recovery from blast furnace sludge and flue dust using leaching technologies. Res J Chem Environ 11:18–21
63. Soria-Aguilar MJ, Davila-Pulido GI, Carrillo-Pedroza FR et al (2019) Oxidative leaching of zinc and alkal sis from iron blast furnace sludge. METALS. https://doi.org/10.3390/met9091015
64. Veres J, Lovas M, Jakabsky S et al (2012) Characterization of blast furnace sludge and removal of zinc by microwave assisted extraction. Hydrometallurgy 129:67–73. https://doi.org/10.1016/j.hydromet.2012.09.008
65. Mikhailov I, Komarov S, Levina V et al (2017) Nanosized zero-valent iron as Fenton-like reagent for ultrason ic-assisted leaching of zinc from blast furnace sludge. J Hazard Mater 321:557–565. https://doi.org/10.1016/j.jhazmat.2016.09.046
66. SIDMAR (1999) Werkwijze voor het behandelen van gecontamin eerd ijzerhoudend slib. Belgian Patent 1011619A3
67. Mortier R (1999) Oxidising elutriation of contaminated sludge containing iron with separation of zinc and lead. Patent WO 9913285
68. Josis C, Hissel J (1988) Procédé de traitement des matières contenant des metaux lourds par lixiviation acide. Belgian Patent 1001781A6
69. Giordana S (2016) Method for the treatment of iron-containing sludge, and associated equipment. Canadian Patent CA 2985027 A1
70. Flock J, Mittelstädt H, Pappert E, Tebeck A (2018) Integrated process for recycling washing tower sludge for recovery of iron oxide and carbon. Patent WO 2018219464
71. Peters R (1999) Chelant extraction of heavy metals from contaminated soils. J Hazard Mater 66:151–210. https://doi.org/10.1016/S0304-3894(99)00010-2
72. Wasay S, Barrington S, Tokunaga S (1998) Remediation of soils polluted by heavy metals using salts of organic acids and chelating agents. Environ Technol 19:369–379. https://doi.org/10.1080/09593330.1998.10861692
73. Voglar D, Lestan D (2014) Chelant soil-washing technology for metal-contaminated soil. Environ Technol 35:1389–1400. https://doi.org/10.1080/09593330.2013.869265
74. Chen Y, Zhang S, Xu X et al (2016) Effects of surfactants on low-molecular-weight organic acids to wash soil zinc. Environ Sci Pollut Res 23:4629–4638. https://doi.org/10.1007/s11356-015-5700-3
75. Cheikh M, Magnin J, Gondrexon N et al (2010) Zinc and lead leaching from contaminated industrial waste sludges using coupled processes. Environ Technol 31:1577–1585. https://doi.org/10.1080/09593330.2010.503801548
76. Peeters T, Xiao Y, Yang Y (2018) Process for selective removal of zinc from metallurgical plant waste. European Patent EP 3 333 272 A1
77. Cantarino M, de Carvalho FC, Mansur M (2012) Selective removal of zinc from basic oxygen furnace sludges. Hydro metallurgy 111:124–128. https://doi.org/10.1016/j.hydromet.2011.11.004
78. Na M (2016) Recycling of basic oxygen furnace steelmaking dust by in-process separation of zinc from the dust. J Clean Prod 112:4497–4504. https://doi.org/10.1016/j.jclepro.2015.07.009
79. Jalkanen H, Oghbashilasie H, Raipala K (2010) Recycling of steel-dust, and associated equipment. Canadian Patent CA 2985027 A1
80. Sammut ML, Rose J, Masion A et al (2008) Determination of zinc speciation in basic oxygen furnace flying dust by chemical extractions and X-ray spectroscopy. Chemosphere 70:1945–1951. https://doi.org/10.1016/j.chemosphere.2007.09.063
81. Veres J, Sepelak V, Hredzak S (2015) Chemical, mineralogical and morphological characterisation of basic oxygen furnace dust. Trans Inst Min Metall Sect C 124:1–8. https://doi.org/10.1179/1743285514Y.0000000069
82. Wang L, Lu X, Huang Y (2013) Determination of Zn distribution and speciation in basic oxygen furnace sludge by synchrotron radiation induced µ-XRF and µ-XANES microspectroscopy. X-Ray Spectrom 42:423–428. https://doi.org/10.1002/xrs.2494
83. Wang L, Huang Y, Lu X (2013) Zn distribution and speciation in zinc-containing steelmaking wastes by synchrotron radiation induced µ-XRF and µ-XANES spectroscopy. J Phys Conf Ser 430:012097. https://doi.org/10.1088/1742-6596/430/1/012097
84. Singh AKP, Raju MT (2011) Recycling of basic oxygen furnace (BOF) sludge in iron and steel works. Int J Environ Technol Manag 14:19–32. https://doi.org/10.1504/IETJM.2011.039255
85. Kelebek S, Yoruk S, Davis B (2004) Characterisation of basic oxygen furnace dust and zinc removal by acid leaching. Miner Eng 17:285–291. https://doi.org/10.1016/j.mineng.2003.10.030
86. Trung Z, Kukurugya H, Takáčová Z et al (2010) Leaching of basic oxygen furnace sludge with sulphuric acid. Acta Montan Slovaca 15:200–203
87. Trung ZH, Kukurugya F, Takacova Z et al (2011) Acidic leaching both of zinc and iron from basic oxygen furnace sludge. J Hazard Mater 192:1100–1107. https://doi.org/10.1016/j.jhazmat.2011.06.016
88. Veres J, Jakabsky S, Lovas M, Hredzak S (2010) Non-isothermal microwave leaching kinetics of zinc removal from basic oxygen furnace dust. Acta Montan Slovaca 15:204–211
89. Duval L (1968) Process for removing zinc oxide from iron oxide dust by the use of spent pickle liquor. US Patent 3375069
90. Wang J, Wang Z, Zhang Z, Zhang G (2019a) Zinc removal from basic oxygen steelmaking filter cake by leaching with organic acids. Metall Mater Trans B 50:480–490. https://doi.org/10.1007/s11663-018-1440-3
91. Wang J, Wang Z, Zhang Z, Zhang G (2019b) Removal of zinc from basic oxygen steelmaking filter cake by selective leaching with butyric acid. J Clean Prod 209:1–9. https://doi.org/10.1016/j.jclepro.2018.10.253
92. Wang J, Wang Z, Zhang Z, Zhang G (2019c) Comparison of butyric acid leaching behaviors of zinc from three basic oxygen steelmaking filter cakes. Metals 9:417–428. https://doi.org/10.3390/met9040417
93. Wang J, Wang Z, Zhang Z, Zhang G (2019d) Effect of addition of other acids into butyric acid on selective leaching of zinc from basic oxygen steelmaking filter cake. Metall Mater Trans B 50:1378–1386. https://doi.org/10.1007/s11663-019-01563-7
94. Gargul K, Jarosz P, Malecki S (2016) Alkaline leaching of low zinc content iron-bearing sludges. Arch Metall Mater 61:43–49. https://doi.org/10.1515/ammp-2016-0013
95. Petraniokova M, Szentenza V, Lousada CM et al (2020) Novel process for decontamination and additional valorization of steel making dust processing using two-step correlative leaching. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2019.121442
96. Gargul K, Boryczko B (2015) Removal of zinc from dusts and sludges from basic oxygen furnaces in the process of ammoniacal leaching. Arch Civ Mech Eng 15:179–187. https://doi.org/10.1016/j.acme.2014.08.004
97. Al-Harahsheh M, Al-Nuairat J, Al-Otoom A et al (2019) Treatments of electric arc furnace dust and halogenated plastic waste: a review. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2018.102856
98. Keglevich W, de Buzin PJ, Heck NC, Faria Vilela AC (2017) EAF dust: an overview on the influences of physical, chemical and mineral features in its recycling and waste incorporation routes. J Mater Res Technol 6:194–202. https://doi.org/10.1016/j. jmrxt.2016.10.002
99. Antrekowitsch J, Roesler G, Steinacker S (2015) State of the art in steel mill dust recycling. Chem Eng Tech 37:1498–1503. https://doi.org/10.1002/cite.201500073

100. Montenegro V, Oustadakis P, Tsakiridis PE, Agatzini-Leonardou S (2013) Hydrometallurgical treatment of steelmaking electric arc furnace dusts (EAFD). Metall Mater Trans B 44:1058–1069. https://doi.org/10.1007/s11663-013-9874-0

101. Bruckard W, Davey K, Rodopoulos T et al (2005) Water leaching and magnetic separation for decreasing the chloride level and upgrading the zinc content of EAF dust. J Miner Process 75:1–20. https://doi.org/10.1016/j.minpr.2004.04.007

102. Chen W-S, Shen Y-H, Tsai M-S, Chang F-C (2011) Removal of chloride from electric arc furnace dust. J Hazard Mater 190:639–644. https://doi.org/10.1016/j.jhazmat.2011.03.096

103. Chmielarz A, Gnot W (2001) Conversion of zinc chloride to zinc sulphate by electrodialysis - a new concept for solving the chloride ion problem in zinc hydrometallurgy. Hydrometallurgy 61:21–43. https://doi.org/10.1016/S0304-386X(01)00153-0

104. Langova S, Matysek D (2010) Zinc recovery from steel-making wastes by acid pressure leaching and hematite precipitation. Hydrometallurgy 101:171–173. https://doi.org/10.1016/j.hydromet.2010.01.003

105. Cruells M, Roca A, Nunez C (1992) Electric arc furnace arc dust flues: characterization and leaching with sulphuric acid. Hydrometallurgy 31:213–231. https://doi.org/10.1016/0304-386X(92)90119-K

106. kukuruya F, Vindt T, Havlik T (2015) Behavior of zinc, iron and calcium from electric arc furnace (EAF) dust in hydrometallurgical processing in sulfuric acid solutions: thermodynamic and kinetic aspects. Hydrometallurgy 154:20–32. https://doi.org/10.1016/j.hydromet.2015.03.008

107. Havlik T, Turzakova M, Stopic S, Friedrich B (2005) Atmospheric leaching of EAF dust with diluted sulphuric acid. Hydrometallurgy 77:41–50. https://doi.org/10.1016/j.hydromet.2004.10.008

108. Havlik T, Vidor e Souza B, Bernandes AM et al (2006) Hydrometallurgical processing of carbon steel EAF dust. J Hazard Mater 135:311–318. https://doi.org/10.1016/j.jhazmat.2005.11.067

109. Langova S, Kiplova J, Vallova S (2007) Atmospheric leaching of steel-making wastes and the precipitation of goethite from the ferric sulphate solution. Hydrometallurgy 87:157–162. https://doi.org/10.1016/j.hydromet.2007.03.002

110. Havlik T, Friedrich B, Stopic S (2004) Pressure leaching of EAF dust with sulphuric acid. World Metall-Erzmetall 57:83–90

111. Havlik T, Miskufova A, Turek P, Kobialkova IU (2019) Considering the influence of calcium on EAF dust acid leaching. Physicochem Probl Miner Process 55:528–536. https://doi.org/10.5277/ppm18164

112. Pazdej R (1982) Hydrometallurgical treatment of metallurgical dust. US Patent 4332777

113. Duyvesteyn W, Jha M (1986) Two-stage leaching process for steel plant dusts. US Patent 4610721

114. Zanobi S, Lawson D (1994) Hydrometallurgical process for recovering iron sulfate and zinc sulfate from baghouse dust. US Patent 5286465

115. Diaz G, Martin D (1994) Modified zincex process - the clean, safe and profitable solution to the zinc secondaries treatment. Resour Conserv Recycl 10:43–57. https://doi.org/10.1016/0921-3449(94)90037-X

116. Oustadakis P, Tsakiridis PE, Katsiapi A, Agatzini-Leonardou S (2010) Hydrometallurgical process for zinc recovery from electric arc furnace dust (EAFD) part i: characterization and leaching by diluted sulphuric acid. J Hazard Mater 179:1–7. https://doi.org/10.1016/j.jhazmat.2010.01.059

117. Tsakiridis PE, Oustadakis P, Katsiapi A, Agatzini-Leonardou S (2010) Hydrometallurgical process for zinc recovery from electric arc furnace dust (EAFD). Part II: downstream processing and zinc recovery by electrowinning. J Hazard Mater 179:8–14. https://doi.org/10.1016/j.jhazmat.2010.04.004

118. Gottfried L, Chmielarz A, Szolomicki Z (2011a) Recovery of zinc from arduous wastes using solvent extraction technique part I. Preliminary laboratory studies. Physicochem Probl Miner Process 47:149–158

119. Gottfried L, Chmielarz A, Szolomicki Z (2011b) Recovery of zinc from arduous wastes using solvent extraction technique part II. Pilot plant tests. Physicochem Probl Miner Process 47:249–258

120. Montenegro V, Agatzini-Leonardou S, Oustadakis P, Tsakiridis P (2016) Hydrometallurgical treatment of EAF dust by direct sulphuric acid leaching at atmospheric pressure. Waste Biomass Valoriz 7:1531–1548. https://doi.org/10.1007/s12649-016-9543-z

121. Xanthopoulos P, Agatzini-Leonardou S, Oustadakis P, Tsakiridis PE (2017) Zinc recovery from purified electric arc furnace dust leach liquors by chemical precipitation. J Environ Chem Eng 5:3550–3559. https://doi.org/10.1016/j.jece.2017.07.023

122. Brunelli K, Dabala M (2015) Ultrasound effects on zinc recovery from EAF dust by sulfuric acid leaching. Int J Miner Metall Mater 22:353–362. https://doi.org/10.1007/s12613-015-1080-4

123. Winand R (1991) Chloride hydrometallurgy. Hydrometallurgy 27:285–316. https://doi.org/10.1016/0304-386X(91)90055-Q

124. Van Weert G, Peek E (1992) Reagent recovery in chloride hydrometallurgy - some missing links. Hydrometallurgy 29:513–526. https://doi.org/10.1016/0304-386X(92)90030-4

125. Baik D, Fray D (2000) Recovery of zinc from electric-arc furnace dust by leaching with aqueous hydrochloric acid, plating of zinc and regeneration of electrolyte. Trans Inst Min Metall Sect C 109:C121–C128. https://doi.org/10.1179/mnp.2000.109.3.121

126. Duyvesteyn W, Jha M (1986) Zinc recovery from steel plant dusts and other zinciferous materials. US Patent 4572771

127. Duyvesteyn W, Hogsett R (1986) Zinc recovery for metal recovery from steel plant dust. US Patent 4610722

128. McElroy R (1994) Process for the treatment of electric arc furnace dust. US Patent 5336297

129. McElroy R (1994) Processing of electric arc furnace dust via chloride hydrometallurgy. Hydrometallurgy 94:993–1010. https://doi.org/10.1016/0304-386X(94)90035-Q

130. Cashman J (1998) Hydrometallurgical processing of flue dust. US Patent 5709730

131. Lee H, Baik D, Jo H (2002) Hydrometallurgical method for recovery of zinc from electric arc furnace dust. US Patent 6338748

132. Barrera-Godinez J, O’Keefe T, Watson J (1992) Effect of ultrasound on acidified brine leaching of double-kiln treated EAF dust. Miner Eng 5:1365–1373. https://doi.org/10.1016/0892-6875(92)90172-6

133. Prater J, Quenou P, Hudson T (1973) Nitric acid route to processing copper concentrates. AIME Trans 254:117–122

134. Drinkard Jr. W (2001) Nitric acid production and recycle. US Patent 6264909

135. Matsuoka S, Kodama T, Kumagai M et al (2003) Development of adsorption process for NOx recycling in a reprocessing plant. J Nucl Sci Technol 40:410–416. https://doi.org/10.1080/18811248.2003.9715373

136. Matsuoka S, Kodama T, Izumi J et al (2004) Development of NOx recycle process for practical use at reprocessing plant. J Nucl Sci Technol 41:466–472. https://doi.org/10.1080/18811248.2004.9715509
Ma B, Yang W, Yang B et al (2015) Pilot-scale plant study on the innovative nitric acid pressure leaching technology for laterite ores. Hydrometallurgy 155:88–94. https://doi.org/10.1016/j.hydromet.2015.04.016

Shang Y, Van Weert G (1993) Iron control in nitrate hydrometallurgy by autoclave hydrolysis of iron(III) nitrate. Hydrometallurgy 33:273–290. https://doi.org/10.1016/0304-386X(93)90067-N

Drinkard Jr. W, Woerner H (1999) Metallurgical dust recycling process. US Patent 5912402

Koningen D, Freund W (2008) Metallurgical dust reclamation process. US Patent 7399454

Hilber T, Marr R, Siebenhofer M, Simon V (2003) Extractive treatment of carbon-steel electric-arc furnace dusts by the UBC-Chaparral process. Hydrometallurgy 25:137–152. https://doi.org/10.1016/S0304-386X(03)90035-Z

Barrett E, Nenniger E, Dziewinski J (1992) A hydrometallurgical treatment of carbon-steel electric-arc furnace dusts by the UBC-Chaparral process. Hydrometallurgy 30:59–68. https://doi.org/10.1016/0304-386X(92)90077-D

Barrett E, Nenniger E (1992) Processing of carbon steel furnace dusts. US Patent 5082493

Siebenhofer M, Zapfel W, Luttenberger H (1999) Method for processing residues containing at least one non-ferrous metal and/or compounds thereof. Patent WO 9960176

Ilhier T, Marr R, Siebenhofer M, Zapfel W (2001) Solid/liquid extraction of zinc from EAF-dust. Sep Sci Technol 36:1323–1333. https://doi.org/10.1081/SS-100103652

Ilhier T, Marr R, Siebenhofer M, Simon V (2003) Extractive separation of zinc from oxidic solid bulk feed. Sep Sci Technol 38:2867–2880. https://doi.org/10.1081/SS-120022576

Thorsen G (1977) Extraction and separation of metals from solids using liquid cation exchangers. US Patent 4008134

Thorsen G, Grislingas A, Staintveit G (1981) Recovery of zinc from zinc ash and flue dusts by hydrometallurgical processing. JOM 33:24–29. https://doi.org/10.1007/BF03354397

Thorsen G, Svendsen H, Grislingas A (1984) The integrated organic leaching - solvent extraction operation in hydrometallurgy. In: Hydrometallurgical Process Fundamentals. Proceedings of a NATO Advanced Research Institute on Hydrometallurgical Process Fundamentals, held July 25 - 31, 1982, in Churchill College, Cambridge University, Cambridge, United Kingdom, Editor: R.G. Bautista. Springer, New York, pp 269–292

Filippou D (2004) Innovative hydrometallurgical processes for the primary processing of zinc. Miner Process Extr Metall Rev 25:205–252. https://doi.org/10.1080/08827500490441341

Olper M, Maccagni M (1993) Process for recovering zinc and lead from flue dusts from electrical steel works and for recycling said purified metals to the furnace, and installation for implementing said process. European Patent EP 0 551 1 55 A1

Olper M, Maccagni M (2000) Electrolytic zinc production from crude zinc oxides with the EZINEX process. In: Recycling of Metals and Engineered Materials, Edited by D.L. Stewart, Jr., J.C. Daley and R.L. Stephens. TMS (The Minerals, Metals & Materials Society), pp 379–396

Olper M, Maccagni M (2008) From C.Z.O. to zinc cathode without any pretreatment. The EZINEX process. In: Lead and Zinc Metallurgy, The Southern African Institute of Mining and Metallurgy, pp 485–493

Maccagni MG (2016) INDUTEC/EZINEX integrate process on secondary zinc-bearing materials. J Sustain Metall 2:133–140. https://doi.org/10.1007/s40831-016-0041-0

Pedrosa F, Cabral M, Margarido F, Nogueira CA (2013) Recycling of exhausted batteries and EAF dusts by leaching with several aqueous media. Mater Sci Forum 730–732:636–641. https://doi.org/10.4028/www.scientific.net/MSF.730-732.636

Rao S, Yang T, Zhang D et al (2015) Leaching of low grade zinc oxide ores in NH₄Cl-NH₃ solutions with nitritolactric acid as complexing agents. Hydrometallurgy 158:101–106. https://doi.org/10.1016/j.hydromet.2015.10.013

Harvey TG (2006) The hydrometallurgical extraction of zinc by ammonium carbonate: a review of the Schnabel process. Miner Process Extr Metall Rev 27:231–279. https://doi.org/10.1080/0882725006008115271

Peters M (1978) Process for recovering of zinc from steel-making flue dust. US Patent 4075357

Keegel Jr. J (1996) Methods for recycling electric arc furnace dust. US Patent 5538532

Bucket G, Fountain C, Sinclair R (1998) Refining of zinc sulphides. World Patent WO1998036102A1

Antunano N, Cambra JF, Arias PL (2017) Development of a combined solid and liquid wastes treatment integrated into a high purity ZnO hydrometallurgical production process from Waelz oxide. Hydrometallurgy 173:250–257. https://doi.org/10.1016/j.hydromet.2017.09.002

Varga T, Torok T (2013) Experimental investigation of zinc precipitation from EAF dust leaching solutions. Mater Sci Eng 38:61–71

Ruiz O, Clemente C, Alonso M, Alguacil FJ (2007) Recycling of an electric arc furnace flue dust to obtain high grade ZnO. J Hazard Mater 141:33–36. https://doi.org/10.1016/j.jhazmat.2006.06.079

Wylock C, Antuñano N, Arias P, Haut B (2014) Analysis of the simultaneous gas-liquid CO₂ absorption and liquid-gas NH₃ desorption in a hydrometallurgical waelz oxides purification process. Int J Chem React Eng 12:1–14

Xia D (1997) Recovery of zinc from zinc ferrite and electric arc furnace dust. PhD Thesis Queens University of Kingston, Ontario, Canada

Mordogan H, Cicek T, Isik A (1999) Caustic soda leach of electric arc furnace dust. Turk J Eng Environ Sci 23:199–207

Dutra A, Paiva P, Tavares L (2006) Alkaline leaching of zinc from electric arc furnace steel dust. Miner Eng 19:478–485. https://doi.org/10.1016/j.mineng.2005.08.013

Othman G (2005) Leaching and cementation of heavy metals from electric arc furnace dust in alkaline medium. Hydrometallurgy 78:236–245. https://doi.org/10.1016/j.hydromet.2005.03.002

Palimaka P, Pietrzyk S, Stepień M et al (2018) Zinc recovery from steelmaking dust by hydrometallurgical methods. Metals. https://doi.org/10.3390/met8070547

Xia D, Pickles C (1999) Caustic roasting and leaching of electric arc furnace dust. Can Metall Q 38:175–186. https://doi.org/10.1016/S0008-4433(99)00014-2

Youcai Z, Stanford R (2000) Extraction of zinc from zinc ferrites by fusion with caustic soda. Miner Eng 13:1417–1421. https://doi.org/10.1016/S0892-6875(00)00123-0

Zhao Y, Stanford R (2000) Integrated hydrometallurgical process for production of zinc from electric arc furnace dust in alkaline medium. J Hazard Mater 80:223–240. https://doi.org/10.1016/S0304-3894(00)00305-8

Lenz D, Martins F (2007) Lead and zinc selective precipitation from leach electric arc furnace dust solutions. Rev Mater 12:503–509

Xie Z, Guo Y, Jiang T et al (2017) The Extraction of Zinc from Zinc Ferrite by Calcified-Roasting and Ammonia-Leaching Process. In: Hwang, JY and Jiang, T and Kennedy, MW and Yucel, O and Pistorius, PC and Seshadri, V and Zhao, B and Gregurek, D and Keskinkilic, E (ed) 8th International Symposium on High-temperature Metallurgical Processing. pp 85–98
175. Yakornov SA, Panshin AM, Grudinsky PI et al (2018) Method of electric arc furnace dust processing by calcination with lime with following alkaline leaching. Russ Metall. https://doi.org/10.1134/S0036029518130268

176. Chairaksa-Fujimoto R, Maruyama K, Miki T, Nagasaka T (2016) The selective alkaline leaching of zinc oxide from Electric Arc Furnace dust pre-treated with calcium oxide. Hydrometallurgy 159:120–125. https://doi.org/10.1016/j.hydromet.2015.11.009

177. Zhang C, Zhuang L, Wang J et al (2016) Extraction of zinc from zinc-ferrite by alkaline leaching: enhancing recovery by mechanochemical reduction with metallic iron. J South Afr Inst Min Metall 116:1111–1114

178. Xia D, Pickles C (2000) Microwave caustic leaching of electric arc furnace dust. Miner Eng 13:79–94. https://doi.org/10.1016/S0892-6875(99)00151-X

179. Abbott A, Capper G, Davies D et al (2003) Novel solvent properties of choline chloride/urea mixtures. Chem Commun. https://doi.org/10.1039/b210714g

180. Smith EL, Abbott AP, Ryder KS (2014) Deep eutectic solvents (DESs) and their applications. Chem Rev 114:11060–11082. https://doi.org/10.1021/cr500626p

181. Abbott AP, Frisch G, Hartley J, Ryder KS (2011) Processing of metals and metal oxides using ionic liquids. Green Chem 13:471–481. https://doi.org/10.1039/c0gc00716a

182. Abbott A, Capper G, Davies D, Shikotra P (2006) Processing of electric arc furnace dust using deep eutectic solvents. Aust J Chem 62:341–347. https://doi.org/10.1071/CH08476

183. Bakkar A (2014) Recycling of electric arc furnace dust through dissolution in deep eutectic ionic liquids and electrowinning. J Hazard Mater 280:191–199. https://doi.org/10.1016/j.jhazmat.2014.07.066

184. Bakkar A, Neubert V (2019) Recycling of cupola furnace dust: extraction and electrodeposition of zinc in deep eutectic solvents. J Alloys Compd 771:424–432. https://doi.org/10.1016/j.jallcom.2018.08.246

185. Halil P, Hamuyuni J, Revitzer H, Lundstrom M (2017) Selection of leaching media for metal dissolution from electric arc furnace dust. J Clean Prod 164:265–276. https://doi.org/10.1016/j.jclepro.2017.06.212

186. Halil P, Hamuyuni J, Leikola M, Lundstrom M (2018) Developing a sustainable solution for recycling electric arc furnace dust via organic acid leaching. Miner Eng 124:1–9. https://doi.org/10.1016/j.mineng.2018.05.011

187. Hamuyuni J, Halli P, Tesfaye F et al (2018) A sustainable methodology for recycling electric arc furnace dust. In: Sun Z, Wang J, Miki T, Leikola M, Lundstrom M (eds) Energy technology 2018: carbon dioxide management and other zero wastes in the steel hot-rolling process. Springer, Cham, pp 233–240

188. Forrester K, Francis A (1998) Extraction of metals from heavy metal-bearing wastes. Patent WO 9824938

189. Halil P, Agarwal V, Partimen J, Lundstrom M (2020) Recovery of Pb and Zn from a citrate leach liquor of a roasted EAF dust using precipitation and solvent extraction. Sep Purif Technol. https://doi.org/10.1016/j.seppur.2019.116264

190. Wang H, Jia N, Liu W et al (2016) Efficient and selective hydrothermal extraction of zinc from zinc-containing electric arc furnace dust using a novel bifunctional agent. Hydrometallurgy 166:107–112. https://doi.org/10.1016/j.hydromet.2016.10.013

191. Bayat O, Sever E, Bayat B et al (2009) Bioleaching of zinc and iron from steel plant waste using Acidithiobacillus ferrooxidans. Appl Biochem Biotechnol 152:117–126. https://doi.org/10.1007/s12010-008-8257-5

192. Carranza F, Romero R, Mazuecos A, Iglesias N (2016) Recovery of Zn from acid mine water and electric arc furnace dust in an integrated process. J Environ Manage 165:175–183. https://doi.org/10.1016/j.jenvman.2015.09.025

193. Stopic S, Friedrich B (2009) Kinetics and mechanism of thermal zinc-ferrite phase decomposition. Proceedings of the EMC 2009 conference, June 28-July 1, 2009, Innsbruck, Austria, 1–14

194. Offenthaler D, Ludewig F, Antrekowitsch J (2009) Avoiding the hot acid leaching process in zinc metallurgy by reduction of calcine. World Metall - ERZMETALL 62:376–384

195. Han J, Liu W, Qin W et al (2016) Thermodynamic and kinetic studies for intensifying selective decomposition of zinc ferrite. JOM 68:2543–2550. https://doi.org/10.1007/s11837-015-1807-8

196. Kazemi M, Sichen D (2016) Investigation of selective reduction of iron oxide in zinc ferrite by carbon and hydrogen. J Sustain Metall 2:73–78. https://doi.org/10.1007/s40831-015-0037-1

197. Stopic S, Friedrich B (2009) Kinetics and mechanism of thermal zinc-ferrite phase decomposition. Proceedings of the EMC 2009 conference, June 28-July 1, 2009, Innsbruck, Austria, 1–14

198. Offenthaler D, Ludewig F, Antrekowitsch J (2009) Avoiding the hot acid leaching process in zinc metallurgy by reduction of calcine. World Metall - ERZMETALL 62:376–384

199. Lanzerstorfer C (2019) Potential of industrial de-dusting residues as a source of potassium for fertilizer production - a mini review. Resour Conserv Recycl 143:68–76. https://doi.org/10.1016/j.resconrec.2018.12.013

200. Peng C, Zhang F, Guo Z (2009) Separation and recovery of potassium chloride from sintering dust of ironmaking works. ISIJ Int 49:735–742. https://doi.org/10.2355/isijinternational.49.735

201. Zhang G, Guo Z (2013) Basic properties of sintering dust from iron and steel plant and potassium recovery. J Environ Sci 25:1226–1234. https://doi.org/10.1016/S1001-0742(12)60166-5

202. Zhang G, Guo Z (2015) Preparation of potassium salt with joint production of spherical calcium carbonate from sintering dust. Trans Nonferrous Met Soc China 25:628–639. https://doi.org/10.1016/S1003-6326(15)63646-9

203. Deng H, Zhao L, Sun W et al (2018) Extraction of rubidium from respirable sintering dust. Hydrometallurgy 175:144–149. https://doi.org/10.1016/j.hydromet.2017.11.003

204. Ma N, McDowell BJ, Houser JB et al (2019) Separation of mill scale from flume wastewater using a dynamic separator toward zero wastes in the steel hot-rolling process. J Sustain Metall 5:97–106. https://doi.org/10.1016/j.jenvman.2019.08.023

205. Shatokha VI, Gogenko OO, Kripak SM (2011) Utilising of the oily hot rolling mill sludge by direct reduced iron method. Resour Conserv Recycl 55:435–440. https://doi.org/10.1016/j.resconrec.2011.10.006

206. Gomez V, Wright K, Esquenazi GL, Barron AR (2019) Microwave treatment of a hot mill sludge from the steel industry: en route to recycling an industrial waste. J Clean Prod 207:182–189. https://doi.org/10.1016/j.jclepro.2018.08.294

207. Park J, Ahn J, Song H et al (2002) Reduction characteristics of oily hot rolling mill sludge by direct reduced iron method. Resour Conserv Recycl 34:129–140. https://doi.org/10.1016/S0921-3449(01)00098-2
211. Liu B, Zhang S, Tian J et al (2013a) New technology for recycling materials from oily cold rolling mill sludge. Int J Miner Metall Mater 20:1141–1147. https://doi.org/10.1007/s12613-013-0847-8

212. Liu B, Zhang S, Pan D, Chang C (2016) Synthesis and characterization of micaceous iron oxide pigment from oily cold rolling mill sludge. Procedia Environ Sci 31:653–661. https://doi.org/10.1016/j.proenv.2016.02.121

213. Liu B, Zhang S, Tian J et al (2013b) Recycle of valuable products from oily cold rolling mill sludge. Int J Miner Metall Mater 20:941–946. https://doi.org/10.1007/s12613-013-0818-0

214. Devi A, Singhal A, Gupta R, Panzade P (2014) A study on treatment methods of spent pickling liquor generated by pickling process of steel. Clean Technol Environ Policy 16:1515–1527. https://doi.org/10.1007/s10098-014-0726-7

215. Dufour J, Negro C, Heras F, Lopez-Mateos F (2001) Recovery of the metals from pickling liquors of stainless steel by precipitation methods. ISIJ Int 41:801–806. https://doi.org/10.2355/isijinternational.41.801

216. Heras F, Dufour J, Lopez-Delgado A et al (2004) Feasibility study of metals recycling from nitric-hydrofluoric waste pickle baths. Environ Eng Sci 21:583–590. https://doi.org/10.1089/ees.2004.21.583

217. Galvez JL, Dufour J, Negro C, Lopez-Mateos F (2009) Routine to estimate composition of concentrated metal-nitric-hydrofluoric acid pickle liquors. Hydrometallurgy 96:88–94. https://doi.org/10.1016/j.hydromet.2008.08.007

218. Ji Z, Lou X, Wang W et al (2017) Recovery of nickel from stainless steelmaking sludge by circular leaching and extraction. AIP Conf Proc 1794:030011. https://doi.org/10.1063/1.4971933

219. Regel-Rosocka M (2010) A review on methods of regeneration of spent pickling solutions from steel processing. J Hazard Mater 177:57–69. https://doi.org/10.1016/j.jhazmat.2009.12.043

220. Dufour J, Lopez L, Negro C et al (2002) Mathematical model of magnetite synthesis by oxidation of sulfuric pickling liquors from steelmaking. Chem Eng Commun 189:285–297. https://doi.org/10.1080/00986440212080

221. Hermoso J, Dufour J, Galvez J et al (2005) Nickel hydroxide recovery from stainless steel pickling liquors by selective precipitation. Ind Eng Chem Res 44:5750–5756. https://doi.org/10.1021/ie050422n

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Affiliations

Koen Binnemans1 · Peter Tom Jones2 · Álvaro Manjón Fernández3 · Victoria Masaguer Torres3

1 Koen Binnemans
Koen.Binnemans@kuleuven.be

Department of Chemistry, KU Leuven, Celestijnenlaan 200F - box 2404, 3001 Leuven, Belgium

2 Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44 - box 2450, 3001 Leuven, Belgium

3 Global R&D Asturias, ArcelorMittal, P.O. Box 90, 33400 Avilés, Spain