Beyond the $c = 1$ Barrier in Two-Dimensional Quantum Gravity

Gudmar Thorleifsson and Bengt Petersson

Fakultät für Physik, Universität Bielefeld, D-33615 Bielefeld, Germany

Abstract

We introduce a simple model of touching random surfaces, by adding a chemical potential ρ for “minimal necks”, and study this model numerically coupled to a Gaussian model in d–dimensions (for central charge $c = d = 0$, 1 and 2). For $c \leq 1$, this model has a phase transition to branched polymers, for sufficiently large ρ. For $c = 2$, however, the extensive simulations indicate that this transition is replaced by a cross-over behavior on finite lattices — the model is always in the branched polymer phase. This supports recent speculations that, in 2d–gravity, the behavior observed in simulations for $c \leq 1$, is dominated by finite size effects, which are exponentially enhanced as $c \to 1^+$.

1 Introduction

When conformally invariant matter $S_M(X)$ is coupled to two-dimensional quantum gravity:

$$Z(\mu) = \int Dg DX e^{-\mu \int d^2 \xi \sqrt{|g|} - S_m(X; g)},$$

(1)

this breaks down when the matter central charge c becomes larger than one. We get unphysical complex critical exponents, such as the string susceptibility exponent γ_s: $Z(\mu) \sim (\mu_c - \mu)^{2-\gamma_s}$; given by the KPZ-scaling relation:

$$\gamma_s = \frac{1}{12} \left(c - 1 - \sqrt{(c-25)(c-1)} \right)$$

(2)

Hence, predictions of continuum theories become meaningless for $c > 1$. This puzzle, which is related to the occurrence of tachyons in bosonic string theories in $d > 2$, still remains a challenging problem in 2d–gravity.
Discretized models of $2d$–gravity are, on the other hand, well defined for $c > 1$, and suitable for studying this problem. Simplicial gravity, alias dynamical triangulations, is a discretization of quantum gravity with integrations over metrics replaced by all possible gluing’s of simplices into piecewise linear manifolds T:

$$Z = \sum_A e^{-\mu A} \sum_{T \in T(A)} Z_M .$$

(3)

A is the area of the surface, Z_M the (discretized) matter partition function; for example, a d–dimensional Gaussian model (bosonic string theory with $c = d$):

$$Z_M = \int \text{d}^d x \, \delta(x_{cm}) \, e^{-\sum_{<ij>} (\vec{x}_i - \vec{x}_j)^2} ,$$

(4)

and T is an appropriate class of triangulations; different classes amount to different discretizations of the manifolds, but should yield the same continuum theory. Commonly used are combinatorial (T_C) and degenerate (T_D) triangulations.

Models of dynamical triangulations have been studied extensively, both as matrix models (for $c \leq 1$) and using numerical simulations. What have we learned so far:

- For $c \leq 1$ the models are well understood; γ_s agrees with the KPZ–scaling and the (internal) fractal dimension of the triangulations ($A(r) \sim r^{d_H}$) is $d_H \approx 4$ (still somewhat controversial).
- For $c \gtrsim 5$ the dominant triangulations are branched polymers (bubbles glued together in a tree-like structure) with $\gamma_s = 1/2$ and $d_H = 2$.
- But, for $1 < c \lesssim 5$ the situation is still unclear. Numerical simulations indicate a smooth cross-over to the branched polymer phase as c increases.

Is this due to very big finite-size effects [1], or is there a different critical behavior for $1 < c \lesssim 5$?

2 Touching random surfaces

A conjecture for the observed $c > 1$ behavior, was put forward in [2]: “For $c > 1$ the dynamical triangulation model is always in a branched polymer phase. But finite size effects are exponentially enhanced as $c \to 1^+$, due to the influence of the $c = 1$ fixed point (which becomes complex for $c > 1$).”

This is based on a large-N renormalization group analysis of a matrix model including “touching” interactions:

$$Z = \int \text{d}M \, e^{-N \text{tr}(M^2 + gM^4) - x (\text{tr}(M^2))^2} .$$

(5)
For $c \leq 1$ this model has a transition to branched polymers at a critical value of the touching coupling x \cite{3}. For $c > 1$, however, this fixed point moves into the complex plane; but it still influences the RG-flow’s when c is not too big.

How do we verify this conjecture? We introduce a simple model of touching random surfaces, adding a chemical potential ρ for minimal necks n_m on the surface. As we work with degenerate triangulations, a minimal neck is a vertex connected to itself via a link (a tadpole in the dual graph). The (fixed area) partition function is:

$$Z_A(\rho) = \sum_{T \in \mathcal{T}_D} e^{\rho n_m} Z_M.$$ (6)

We have simulated this model for $c \leq 2$, using 0, 1 and 2 Gaussian models, on surfaces up to 8000 triangles. Our goal is to verify the existence of a transition to branched polymers for $c \leq 1$, and to see if this transition still exists for $c > 1$. Or, alternatively, is it replaced by cross-over behavior on finite lattices.

To study the phase structure we measure the second derivative of the free energy: $C_A = A^{-1} \partial^2 \log Z_A/\partial \rho^2$, and the string susceptibility exponent γ_s. The latter is obtained from the distribution of baby universes on the surface, using the large-A behavior of the partition function: $Z_A \approx e^{\mu A} A^{\gamma_s-3}$. For $c = 1$ this behavior is modified by logarithmic corrections, $Z_A \approx e^{\mu A} A^{\gamma_s-3} \log^\alpha A$, — including them is essential to extract the correct γ_s numerically \cite{4}.

3 Results

For $c = 0$ (pure gravity) we see a clear signal of a phase transition. There is a peak in C_A, which gets sharper as A increases, but does not diverge (Fig. 1a). Finite size scaling of the peak ($C_A \sim c_0 + c_1 A^{\alpha/\nu d_H}$) gives: $\rho_c = 0.695(5)$ and $\alpha = -1.07(11)$, assuming hyper-scaling is valid ($\alpha = 2 - \nu d_H$). (Note that this ν is related to the
touching interaction; hence $\nu \neq 1/d_H$). At the same value of ρ_c there is a sharp transition in γ_s from its pure gravity value, $\gamma_s(PG) = -1/2$, to branched polymers, $\gamma_s(BP) = 1/2$ (Fig. 1b).

We observe a similar behavior for $c = 1$ (Figs. 2a and 2b): a non-divergent peak in C_A, with $\rho_c = 0.45(1)$ and $\alpha = -0.8(2)$, accompanied by a transition to branched polymers in γ_s. In this case, γ_s is extracted using logarithmic corrections, with α as a free parameter. Below ρ_c, $\alpha \approx -1$, whereas $\alpha \approx 0$ for branched polymers.

For $c > 1$, on the other hand, the behavior is different. We still observe a peak in C_A (Fig. 3a), but it saturates faster than for $c \leq 1$. In fact, $\alpha/\nu d_H < -1$, which implies, if this is a phase transition, that hyper-scaling is violated. And, more important, there is no indication of a phase transition in γ_s, only a smooth crossover to branched polymers, which seems to disappear as $A \to \infty$ (Fig. 3b). This is
independent of the corrections included in extracting γ_s. This behavior is, in our opinion, not compatible with the existence of a phase transition, and we conclude that there is only a branched polymer phase. This strongly supports the conjecture in [2] about the nature of the $c = 1$ “barrier”.

References

[1] M. Bowick, M. Falcioni, G. Harris and E. Marinari, Nucl. Phys. B419 (1994) 665 (hep-th/9310136).

[2] F. David, Nucl. Phys. B487 (1997) 633 (hep-th/9610037).

[3] S.R. Das et al., Mod. Phys. Lett. A5 (1990) 1041; G. Korchemsky, Mod. Phys. Letts. A7 (1992) 3081 (hep-th/9205014); S. Gubser, I.R. Klebanov, Phys. Lett. B340 (1994) 35 (hep-th/9407014).

[4] S. Jain and S.D. Mathur, Phys. Lett. B286 (1992) 239 (hep-th/9204017); J. Ambjørn, S. Jain and G. Thorleifsson, Phys. Lett. B307 (1993) 34 (hep-th/9303149).