Quantitative analysis of vegetation structure, composition and species diversity of moist Sal bearing tropical forest of Sumbuk reserve forest in South Sikkim, India

Sanjyoti Subba1*, Kusum Gurung2, Sanchi Subba1 and Sumitra Nepal1

1Sikkim Biodiversity Conservation and Forest Management Project (SBFP), Department of Forest and Environment, Gangtok, Sikkim, India
2State Pollution Control Board & ENVIS Sikkim, Department of Forest and Environment, Gangtok, Sikkim, India

*Corresponding Author: sanjyoti234@gmail.com

Abstract: A total of 28 tree species were recorded in 0.024 ha in all along with the sampling plots. The higher individual plant density of trees was recorded for Shorea robusta followed by Schima wallichii and Pinus roxburghii. The high IVI exhibited by Shorea robusta is largely due to its higher relative frequency, relative density and relative dominance compared to other species. The occurrence of many species with low IVI values indicates that most species are rarely distributed in the forest. The result of species diversity showed the highest diversity index for trees (2.78) followed by sapling (2.55) and seedling (2.38). The value of species richness in the present study was found to be falling between ranges 15.81 to 37.81. According to girth classes, the tree species Shorea robusta and Tectona grandis followed almost a normal distribution curve with less trees belonging to smaller and big GBH classes suggesting a fairly stable population in the study area. A reverse J-shaped curve for Lagerstroemia parviflora, Schima wallichii, Pinus roxburghii, Terminalia crenata which depicts more of the characteristics of a stable population is found. Quantitative evaluation and analysis of the community structure are important for accurate assessment of biodiversity.

Keywords: Quantitative analysis - Vegetation structure - Species diversity - Biodiversity conservation.

INTRODUCTION

Tropical forests are home to the greatest wealth of biological and genetic diversity (Hubbell & Foster 1983). Tropical dry forests form a major biome in India by covering around 38% of the total forest area of the country (Thakur & Khare 2006). The tropical and sub-tropical forest of Sikkim comprises the lower hills and valley enjoy a sub-tropical climate, warm in winter, hot and extremely humid in summer (Singh & Sanjappa 2011).

Quantitative evaluation and analysis of the community structure are important for accurate assessment of biodiversity. The structure and composition of forests change with the length of wet period, amount of rainfall, latitude, longitude and altitude (Thakur & Khare 2006). The structure of the forest is expressed in terms of the number of individuals present in each of the definite girth class distribution of tree species (Sarkar & Devi 2014). The plant diversity inventories in tropical forests have mostly been concentrated on tree species than other life-forms (Mani & Parthasarathy 2006, Bajpai et al. 2012) and mostly dominated by tree species in lower hills of Sikkim Himalayas. The plant diversity is influenced by species distribution and abundance (Palit & Chanda 2012) and the species richness is controlled by a variety of biotic and abiotic parameters (Rannie 1986, Huston 1994, Bajpai et al. 2020).

The northeast region of India is considered as one of the biodiversity hotspots of the Eastern Himalayan Region. According to Takhtajan (1969), it is the center of origin of angiosperms. Sikkim Himalayas is a...
storehouse of biodiversity which includes a variety of plant and animal species and considered as a biodiversity hotspot in this region. In Sikkim, several botanical explorations have been made by early times. It was visited and documented the biodiversity of Sikkim by eminent botanists like J.D. Hooker, C.B. Clarke, G. King, T. Anderson, W.W. Smith, G.H. Cave, J.M. Cowan, R. Pantling, G.A. Gammie, D. Prain, B. Osmaston and I.H. Burkill. After so many years, the many researches and documentation have been done and recorded by (Cowan & Cowan 1929, Pradhan & Lachungpa 1990, Rai & Rai 1994, Singh & Chauhan 1997) and vegetation studies were done by (Chettri et al. 2008, Pradhan & Lachungpa 2015, Subba et al. 2015, Subba et al. 2016, Subba et al. 2017a) and life-form spectrum study by (Subba et al. 2017b) and inventory of biodiversity (Subba et al. 2018). The six broad vegetation types have been demarcated in Sikkim based on Champion & Seth (1986) as Tropical semi-evergreen forests, sub-tropical broad-leaved hill forest, Himalayan Wet temperate forests, Sub-alpine forest, moist alpine forests and dry alpine forest.

Therefore, the present study was undertaken to analyze the vegetation structure, composition and species diversity of the Moist Sal Bearing Tropical Forest of Sumbuk reserve forest in South Sikkim. The rapid biodiversity survey of quantitative data that provides information on species diversity, richness and evenness will represent an important tool for the conservation of biodiversity and information from this quantitative inventory will provide a valuable reference for forest assessment and forest management plan.

MATERIALS AND METHODS
Study area
Sumbuk Reserve forest is located in the south district between latitude to 27° 06’00.58” N to 27° 06’27.73” N and longitude 88° 21’34.62’ E to 88° 21’53.16” E, the study area its height ranges from 475 m to 765 m asl. This reserve forests are very rich in floral and faunal diversity. The reserve forest showing the aspects of E, N and NE with the slope angle falling between 30 to 65 degree inclinations and the humus depth is not less than 0.5 and the average humus depth is 1.5 cm depth.

Figure 1. Showing the forest compartment boundary along sampling plots of Sumbuk Reserve Forest, South Sikkim, India.

www.tropicalplantresearch.com
Figure 2. Showing the forest density & forest types along the sampling plots of Sumbuk Reserve Forest, South Sikkim, India.

Methodology

Prior to field survey, the entire area (vegetation map) of the present study was prepared into 0.5 km × 0.5 km grids in GIS laboratory (Table 1). Based on this, each vegetation/forest types and forest density on the total grids in the specific vegetation type was sampled for the rapid biodiversity assessment (flora and fauna) inventory. The selection of grids was done by taking the following aspects of consideration.
1. Covering forest types, forest density (dense & moderate forest).
2. Based on the compartment

The present field survey was carried out in Sumbuk Reserve Forest, South Sikkim. The random sampling plots of 10 m × 10 m were laid, depending upon the site feasibility. Within the main plot, all the standing tree species were enumerated & measured (CBH) at 1.37 m from the ground by using measuring tape. Within the subplots, 5 m × 5 m were laid for recording the sapling (no. of species & its height) & shrub for the percent cover was recorded. Within this, 1 m × 1 m were laid in 4 corners and 1 plot at the center point for seedling species were enumerated, in the same plot was used for recording the herb percentage in the area. The location and altitude of the plots were recorded by calibrate the global positioning system (GPS; Garmin eTrex) and the humus depth was measured with the help of measuring scale. Plant species were identified through herbarium record and flora published (Hooker 1849, Hooker 1888–1890, Pradhan & Lachungpa 1990, Kholia 2010, 2014). The unidentified plants species in the field were photographed, and later identified by consulting plant taxonomist, & BSI and web-references (www.efloras.org; www.flowersofindia.net & www.florafchina.org) were made and by referring to local people too. All the sampling plots were geo-tagged for reference under long-term monitoring. All the quantitative data were analysed (Kent & Coker 1992).

Table 1. Site characteristics of Sumbuk reserve forest, South Sikkim.

| Site Code | Forest types               | Altitude (m) asl | Coordinates | Slope Angle (°) | Slope Aspect | Humus depth (cm) |
|-----------|----------------------------|------------------|-------------|-----------------|--------------|-----------------|
| SRF1      | Moist Mixed deciduous forest | 765              | 27° 06'27.73" | 88° 23'00.96"   | 45           | N               | 0.5             |
| SRF2      | Moist Mixed deciduous forest | 748              | 27° 06'21.48" | 88° 22'53.16"   | 30           | SW              | 0.5             |
| SRF3      | Very moist Sal bearing forest | 648              | 27° 06'16.84" | 88° 23'01.87"   | 30           | NW              | 1.5             |
| SRF4      | Very moist Sal bearing forest | 593              | 27° 06'14.50" | 88° 23'05.60"   | 26           | SW              | 0.5             |
| SRF5      | Very moist Sal bearing forest | 532              | 27° 06'17.13" | 88° 23'14.30"   | 36           | S               | 0.5             |
| SRF6      | Very moist Sal bearing forest | 528              | 27° 06'19.51" | 88° 23'20.93"   | 33           | E               | 0.5             |
| SRF7      | Very moist Sal bearing forest | 519              | 27° 06'18.04" | 88° 23'18.31"   | 35           | N               | 0.5             |
| SRF8      | Very moist Sal bearing forest | 495              | 27° 06'16.05" | 88° 23'17.80"   | 45           | S               | 0.5             |
| SRF9      | Very moist Sal bearing forest | 500              | 27° 06'13.76" | 88° 23'15.43"   | 42           | E               | 0.8             |
| SRF10     | Very moist Sal bearing forest | 488              | 27° 06'09.02" | 88° 23'11.61"   | 50           | S               | 1.5             |
RESULTS

A total of 58 plant species were recorded all along 24 sampling plots, and covering an area 0.024 ha. Regarding forest compartment boundary, randomly laid 19–23 sampling plots for compartment 1 and other remaining 1–18 & 24 sampling plots for compartment 2. In the forest density (dense) forest, randomly laid (1, 2, 4 & 11–18, 23–24) sampling plots and other remaining sampling plots were randomly laid for moderate dense forest. However, in the forest types, the sampling plots (Plot 1 & 2) were randomly laid in the East Himalayan Moist Mixed deciduous forest and other remaining was laid in the Very moist Sal bearing forest.

Plant density, frequency and importance value index

The tree species were recorded cumulatively, viz., adult, sapling and seedling in all the sampling plots. Of the 28 large tree species recorded in all the sampling plots, the adult individuals of *Shorea robusta* Gaertn. (316.67 Ind ha\(^{-1}\); ± 0.506 SE) recorded the highest density followed by *Schima wallichii* Choisy (104.17 Ind ha\(^{-1}\); ± 0.222 SE) and *Pinus roxburghii* Sarg (104.17 Ind ha\(^{-1}\); ± 1.315 SE) and *Lagerstroemia parviflora* Roxb. (66.67 Ind ha\(^{-1}\); ± 0.494 SE). The lowest density (8.33 Ind ha\(^{-1}\)) recorded the highest density followed by *Mangifera indica* L. and *Ficus benjamina* L. Other remaining density was showed in table 2. Regarding, the highest density of sapling and seedling was recorded for *Shorea robusta* Gaertn. (1250 Ind ha\(^{-1}\); 3666.67 Ind ha\(^{-1}\)) followed by *Schima wallichii* Choisy (450 Ind ha\(^{-1}\); 12500 Ind ha\(^{-1}\)) respectively.

Table 2. Availability and distribution of major tree species (dominant taxa) of Sumbuk RF, South Sikkim, India.

| Scientific name and Family | Tree | Sapling | Seedling |
|----------------------------|------|---------|----------|
| *Shorea robusta* Gaertn. [Dipterocarpaceae] | 316.67 | 0.506 | 1250.00 | 0.692 | 3666.67 | 0.888 |
| *Schima wallichii* Choisy [Theaceae] | 104.17 | 0.222 | 450.00 | 0.300 | 12500.0 | 0.559 |
| *Terminalia myriocarpa* Van Heurck & Muller [Combretaceae] | 20.83 | 0.500 | 100.00 | 1.000 |
| *Alstonia scholaris* (L.) R. Br [Apocynaceae] | 12.50 | 0.500 |
| *Callicarpa arborea* Roxb. [Verbenaceae] | 12.50 | 0.500 |
| *Ficus benjamina* L. [Moraceae] | 8.33 | 0.000 | 50.00 | 0.500 |
| *Macaranga denticulate* Blume [Euphorbiaceae] | 12.50 | 0.500 |
| *Pentapanax leschenaultia* (DC) Seem. [Araliaceae] | 12.50 | 0.500 | 50.00 | 0.500 |
| *Diploknema butyrosperma* Roxb. [Sapotaceae] | 12.50 | 0.500 | 33.33 | 0.000 |
| *Albizia procera* (Roxb.) Benth [Fabaceae] | 16.67 | 0.000 | 50.00 | 0.500 | 5000.0 | 1.000 |
| *Bombax ceiba* L. [Bombacaceae] | 20.83 | 0.333 | 66.67 | 1.000 | 2500.0 | 1.000 |
| *Phyllanthus emblica* Linn. [Phyllanthaceae] | 54.17 | 0.183 | 183.33 | 1.202 | 3333.3 | 0.667 |
| *Terminalia chebula* Retz. [Combretaceae] | 25.00 | 0.577 | 100.00 | 1.000 | 5000.0 | 0.245 |
| *Toxicodendron wallichii* (Hook.f.) Kuntze [Anacardiaceae] | 45.83 | 0.401 | 133.33 | 0.333 | 0.645 |
| *Terminalia crenata* Tul. [Combretaceae] | 41.67 | 0.316 | 133.33 | 0.333 | 6250.0 | 0.707 |
| *Bischofia javanica* Blume [Phyllanthaceae] | 20.83 | 0.500 | 50.00 | 0.500 | 1666.7 | 1.000 |
| *Malottos philippinensis* Muell. Arg.[Euphorbiaceae] | 25.00 | 0.000 |
| *Lagerstroemia parviflora* Roxb. [Lythraceae] | 66.67 | 0.494 | 233.33 | 0.211 | 7916.7 | 0.477 |
| *Toona ciliata* M. Roem [Meliaceae] | 20.83 | 0.500 |
| *Bassia butyrosperma* Roxb.[Sapotaceae] | 12.50 | 0.500 | 50.00 | 0.500 |
| *Terminalia bellera* Roxb. [Combretaceae] | 12.50 | 0.500 | 83.33 | 0.500 | 2083.3 | 0.500 |
| *Tectona grandis* L. [Verbenaceae] | 62.50 | 0.500 | 200.00 | 2.000 | 2.906 |

www.tropicalplantresearch.com
Daubanga grandiflora (Roxb. ex. Candollee). [Lythraceae]  
16.67 1.000 66.67 1.000

Chukrasia tabularis A Juss. [Meliaceae]  
12.50 0.500 66.67 1.000 2083.3 1.500

Eugenia jambolana L. [Myrtaceae]  
12.50 0.500 1250.0 0.000

Bridelia retusa (L.) A. Juss [ Euphorbiaceae]  
12.50 0.500

Mangifera indica L. [Anacardiaceae]  
8.33 0.000

Pinus roxburghii Farjon. [Pinaceae]  
104.17 1.315 316.67 0.792 5000.0 1.000

Regarding frequency percentage of tree species, the maximum number of occurrences was recorded for Shorea robusta Gaertn (83.3%) followed by Schima wallichii Choisy (37.5%) and Phyllanthus emblica L. (33.3%) respectively. For sapling, the maximum number of occurrences was that of Shorea robusta Gaertn (75.0%) followed by Schima wallichii Choisy (41.7%) respectively. Whereas, in the seedling category, Shorea robusta Gaertn (62.5%) followed by Schima wallichii Choisy (11.95%) were recorded.

Shannon & Wiener (1963) species diversity, richness and evenness were calculated

A result pertaining to species diversity showed the highest diversity index of trees (2.78) followed by sapling (2.55) and seedling (2.38). Regarding the highest species richness was recorded for tree (37.81) followed by sapling (22.81) and seedling (15.81) as compared with species evenness of tree (0.817) followed by (0.749) and seedling (0.699) (Table 3).

| S.N. | Life form | Species diversity | Species richness | Evenness |
|------|-----------|-------------------|-----------------|----------|
| 1    | Tree      | 2.78              | 37.81           | 0.817    |
| 2    | Sapling   | 2.55              | 22.81           | 0.749    |
| 3    | Seedling  | 3.38              | 15.81           | 0.699    |

The importance value index (IVI) was calculated as sum of relative frequency, relative density and relative dominance. The higher importance value index was recorded for Shorea robusta Gaertn (75.5) followed by Schima wallichii Choisy (22.4) and Pinus roxburghii Farjon (22.4) respectively. The lower IVI was recorded for Ficus benjamina L. (2.78) followed by Bassia butyracea Roxb. (3.17) respectively (Fig. 3).

![Importance Value Index of major tree species of Sumbuk Reserve Forest, South Sikkim, India.](www.tropicalplantresearch.com)
The Girth Class profiles of the selected trees as showed in figure 4. The tree species *Shorea robusta* and *Tectona grandis* followed almost a normal distribution curve with less trees belonging to smaller and big GBH classes suggesting a fairly stable population in the study area. A reverse J-shaped curve for *Lagerstroemia parviflora, Schima wallichii, Pinus roxburghii, Terminalia crenata* which depicts more of the characteristics of a stable population is found. These tree species, there is larger proportion of smaller GBH class to moderate GBH class than fairly big to big GBH classes which does exits as the tree hardly grows to bigger GBH classes. Some of the species which showed an inverted J-shaped, with a higher density of lower diameter classes which suggests the characteristics of stable population in the forest. In the case of *Pinus roxburghii*, there is higher density of low diameter class and low density of high diameter class which depicts of an unstable population as there were very few or no trees in the smaller GBH class. This suggests that the population of these trees is more stable and can regenerate to mature trees under favorable conditions.

![Graphs showing Girth size class-wise density (Ind ha⁻¹) of dominant tree species of Sumbuk RF, South Sikkim, India.](image)

**Figure 4.** Girth size class-wise density (Ind ha⁻¹) of dominant tree species of Sumbuk RF, South Sikkim, India.

*Distribution patterns (A/F) ratio*

The distribution of species is one of the important aspects of ecological studies. In the present study, abundance to frequency ration was observed for all the tree species showing contiguous distribution patterns. The tree species such as *Shorea robusta* (0.046) and *Phyllanthus emblica* (0.049) were random distribution in all the sampling plots. But none of the tree species showed regular distribution pattern.

*Shrub/herb/ferns and fern-allies*

A total of 30 Shrub/herb/ferns and fern-allies species belonging to 28 genera & 19 family were recorded in **www.tropicalplantresearch.com**
all along with the sampling plots (Table 4). The changes in species diversity patterns reflect the moderate type of disturbance in the present forest. The lower value of shrub and herb in the forest indicates that the forest is under great pressure of anthropogenic disturbances. On the other hand, forest disturbance, reflecting, it might be under high interest of local peoples towards the utilization of herbs and shrubs. Finally, proper conservation and management actions should be taken immediately by concerned authorities to protect the endemic, endangered and threatened species in an ecosystem.

Table 4. Shrub/herb/ferns and fern-allies were recorded all along the sampling plots of Sumbuk RF, South Sikkim.

| Scientific name and Family | Local name | Altitudinal gradients (m) asl |
|----------------------------|------------|-----------------------------|
| *Achyranthes aspera* L. [Amaranthaceae] | 800–2300 |
| *Acemella aliginosa* (Sw.) Cass [Asteraceae] | |
| *Ageratum conyzoides* L. [Asteraceae] | ElameyJhar 1000–1500 |
| *Ageratum sp.* [Asteraceae] | ElameyJhar |
| *Anisomeles indica* (L.) Kuntze [Lamiaceae] | |
| *Barleria sp.* [Acanthaceae] | |
| *Bidens pilosa* L. [Asteraceae] | Kuro 200–1900 |
| *Boehmeria platyphylla* D. Don [Urticaceae] | Kamley 700–1500 |
| *Chromolaena odorata* [Asteraceae] | |
| *Colebrookea oppositifolia* Sm. [Lamiaceae] | Dhusure 200–2200 |
| *Commelina benghalensis* L. [Commelinaceae] | Kane jhar <2300 |
| *Cycas sp.* [Cycadaceae] | 1000–1800 |
| *Cyperus compressus* L. [Cyperaceae] | mothejhar 900–1600 |
| *Desmodium heterocarpum* L. [Fabaceae] | BakhreGhans 300–1800 |
| *Drymaria cordata* (L.) Roem & Schutt [Caryophyllaceae] | Amilejhar 200–2400 |
| *Fagopyrum sp.* [Polygonaceae] | Ban faper |
| *Flemingia strobilifera* (L.) Kuntze. [Poaceae] | Bhatmase 200–1600 |
| *Gonostegia hirta* (Blume) Miq [Urticaceae] | Chiple 100–1000 |
| *Imperata cylindrica* L. [Poaceae] | Siru <1000 |
| *Jasminum sp.* [Oleaceae] | |
| *Justicia sp.* [Acanthaceae] | 100–1500 |
| *Kanejhar* | |
| *Kuro* | |
| *Kuro* | |
| *Lantana camara* L. [Verbenaceae] | 2300 |
| *Lygodium flexuosum* (L.) Sw. [Lygodiaceae] | 1500 |
| *Lygodium japonicum* (Thunb.) Sm. [Lygodiaceae] | 100–1500 |
| *Lygodium rubrum* (L.) Sw. [Lygodiaceae] | 700 |
| *Lygodium robustum* (Thunb.) Sw. [Lygodiaceae] | 200 |
| *Oxalis corniculata* L. [Oxalidaceae] | 1800 |
| *Rubus ellipticus* Sm. [Rosaceae] | 2400 |
| *Thysanolaena maxima* (Roxb.) Kuntze. [Poaceae] | 3400 |
| *Triumfetta homboidea* Jacq. [Malvaceae] | 1500 |
| *Woodfordia fruticosa* (L.) Kurtz [Lythraceae] | 200 |

### DISCUSSION

In the present study, 28 tree species were recorded in 0.024 ha, whereas 200 tree species were reported by Gentry (1990) in a plot of 0.1 ha from tropical rain forest of central America and upper and central Amazonia. The tropical forest is home to many living animals as well as plant species. It has been estimated that many new species of plants, insects and micro-organisms are still yet to discovered. The tropical forest is a suitable and highly favorable environment for species (Linsenmair 1997). In the present study, the higher individual plant density of tree was recorded for *Shorea robusta* followed by *Schima wallichii* and *Pinus roxburghii*. Among them, the *Pinus roxburghii* was a higher standard error as compared to other species in the sampling plots. That means, the species was not uniformly distributed in all along with the sampling plots and it showed higher standard error. Out of 24 sampling plots, this species was distributed in 4 sampling plots. The standard error of balance can provide an uneven evaluation for intervals where the population balance is likely to decline. The statistical measures the accuracy with which a sample distribution represents a population by using standard deviation.

As per Dash & Singh (2011), the tropical forest of Sikkim has the maximum tree diversity is exhibited by *Shorea robusta*. Some places in the dry valley of South Sikkim, for example, Kitam forests, Chire pine (*Pinus roxburghii*), which are generally found elsewhere in subtropical and temperate regions, thrive well. In the present study of Sumbuk RF, *Shorea robusta* was highly dominated as compared to other species. Similarly, *Shorea robusta* exhibited higher sapling and seedling were recorded in all along the sampling plots.
regeneration can be predicted by structure and composition of forest (Khan et al. 1987). Successful regeneration of tree species depends on the ability to produce large numbers of seeds and the ability of saplings and seedlings to survive and grow (Good & Good 1972). Forests with dense canopy may have affected the survival of seedlings (Pokhriyal et al. 2010) possibly by reducing the penetration of sunlight under the forest floor.

For frequency occurrences of tree, sapling and seedling, the maximum number of occurrences was recorded for Shorea robusta followed by Schima wallichii. Maximum number of plant species in tropical and sub tropical forests is predicted to be predominantly by Shorea robusta and Schima wallichii in the surveyed areas.

The importance value index (IVI) is often used in ecological studies because it shows the ecological importance of a species in a particular ecosystem. The IVI is also used to prioritize species conservation, with low IVI species requiring a high conservation priority compared to the high IVI species. In the present study, the high IVI exhibited by Shorea robusta is largely due to its higher relative frequency, relative density and relative dominance compared to other species. In the present study, many species with low IVI values are reported which means the species are rarely distributed in the forest. The lower IVI were recorded for Ficus benjamina and Bassia butyracea. Ficus benjamina is houseplants in the tropical forest which is either planted in the forest or cultivated plants. Similarly, Bassia butyracea was second lowest importance value index in all along the sampling plots. There are many ecological reasons for the lowest IVI, 1) due to unsustainable harvesting of fruits of Bassia butyracea (Churi) for edible purpose; 2) the regeneration is decreased due to anthropogenic disturbance during the plant community development stage and 3) Sumbuk reserve forest is one of the fire-prone zone in Sikkim. So, this plant species needs to conserved and preserved for further conservation plan and the fruits are also good feed for wildlife species. Lemenih (2011) has added that adequate regeneration status makes it possible for the occurrence of sustainable forest management.

The distribution of species is one of the important aspects of ecological studies. According to the Odum (1971), species distribution can be divided into three broad patterns, random, regular, and connected. In general, higher frequency and lower abundance indicates regular distribution pattern while low frequency and high abundance indicates contiguous distribution. These two tree species such as Shorea robusta (0.046) and Phyllanthus emblica (0.049) were randomly distributed in all the sampling plots.

In the present study, the result of species diversity showed the highest diversity index for trees (2.78) followed by sapling (2.55) and seedling (2.38). The species diversity ranges from 2.38 to 2.78 is more as compared to the tropical dry evergreen forest (H= 2.28) of South India (Parthasarathy & Sethi 1997) and almost equal to the tropical moist deciduous forests (H= 0.56–2.79) of Himalayan Terai (Bajpai et al. 2012, 2017, 2020). However, Pascal (1988) reported much higher Shannon Weiner’s Index (4.3) for the west evergreen forest of the Western Ghats. It is evident from the results that in general species diversity of tropical dry deciduous forests is much lower as reported in the present study. Species diversity is one of the most important indices used for evaluating the sustainability of forest communities (Rad et al. 2009). Shannon-Weiner diversity index usually fluctuates from 1.5 to 3.5 and rarely exceeds 4.5 (Kent & Coker 1992) and is generally higher in tropical forest. The results of beta diversity show that diversity index values of 0.2 to 2.35, a low index value compared to the values reported by others in different sites with different environmental gradients (Thakur & Khare 2006).

Regarding the highest species richness was recorded for tree (37.81) followed by sapling (22.81) and seedling (15.81) as compared with species evenness of tree (0.817) followed by sapling (0.749) and seedling (0.699). Species uniformity tells us how species are evenly distributed across the ecosystem that scarcely distributed species need to be focus. During the present study, observed the lowest species evenness in the study sites showed by seedling followed by sapling and tree. The high species evenness was recorded for tree; the number of individuals within a species is fairly constant throughout the community. The value of species richness in the present study was found to be falling between ranges 15.81 to 37.81. Species richness is the quantity of different species represented in a community, landscape or ecological region. According to girth classes, the tree species Shorea robusta and Tectona grandis followed almost a normal distribution curve with less trees belonging to smaller and big GBH classes suggesting a fairly stable population in the study area. A reverse J-shaped curve for Lagerstroemia parviflora, Schima wallichii, Pinus roxburghii, Terminalia crenata which depicts more of the characteristics of a stable population is found in the study area.

CONCLUSIONS

Through a rapid biodiversity survey, it is quite clear that the forest is highly dominant by tree species Shorea robusta as compared to other species. Pinus roxburghii has fragment distribution in all along with the sampling
plots. It may be noted that the trees might have a broad distributional range and the present survey only took up a small part of it. There might also be other reasons which may be connected to human infringement during the process of plant community development.

The floristic composition of the study site depicts tropical floral diversity in the Sikkim context despite habitat disturbance due to forest fire-prone zone, unsustainable harvesting of wild edible fruits, small landslide and landslide. Total plant diversity of 58 plant species on a small area of 0.024 ha is a value that can be said to be rich, even if the sampling performed was at best not close to one percent of the sampling intensity. However, it documents that rapid biodiversity survey needs to be conducted on a different season to get the overall picture of biodiversity value in the sub-tropical forest of Sikkim.

ACKNOWLEDGEMENTS

Authors are thankful to the Japan International Cooperation Agency (JICA)-assisted Sikkim Biodiversity Conservation and Forest Management Project (SBFP) of Department of Forest and Environment, Govt. of Sikkim, for providing the necessary facilities and encouragement.

REFERENCES

Bajpai O, Dutta V, Singh R, Chaudhary LB & Pandey J (2020) Tree Community Assemblage and Abiotic Variables in Tropical Moist Deciduous Forest of Himalayan Terai Eco-Region. *Proceedings of the National Academy of Sciences, India Section B: Biological Sciences*, Available online. [https://doi.org/10.1007/s40011-019-01161-2]

Bajpai O, Kumar A, Mishra AK, Sahu N, Pandey J, Behera SK & Chaudhary LB (2012) Recongregation of tree species of Katerniaghat Wildlife Sanctuary, Uttar Pradesh, India. *Journal of Biodiversity and Environmental Sciences* 2(12): 24–40.

Bajpai O, Kumar A, Mishra AK, Sahu N, Pandey J, Behera SK & Chaudhary LB (2012) Recongregation of tree species of Katerniaghat Wildlife Sanctuary, Uttar Pradesh, India. *Journal of Biodiversity and Environmental Sciences* 2(12): 24–40.

Bajpai O, Suman S & Upadhyay N (2017) Ecological exploration of Kuwana forest A tropical moist deciduous forest of eastern Terai, India. *Annals of Plant Sciences* 6(12): 1811–1816.

Champion HG & SK Seth (1968) *A Revised Survey of the forest types of India*. Govt. of India Press, Delhi.

Chhetri N, Shakya B, Sharma E (2008) Biodiversity conservation in the Kangchenjunga landscape. ICIMOD, Kathmandu, Nepal.

Cowan & Cowan (1929) *The Trees of Northern Bengal Including Shrubs, Woody Climbers, Bamboos, Palms and Tree Ferns*. International Book Distributors: Dehra Dun.

Dash SS & Singh P (2011) *Trees of Sikkim*. Biodiversity of Sikkim Exploring and Conserving a Global Hotspot. Govt. of Sikkim. pp: 65–88.

Gentry AH (1990) Floristic Similarities and differences between southern Central America and upper and central Amazonia. In: Gentry AH (ed) *Four Neo tropical Rainforests*. Yale University Press, New Haven, CT, pp.141–160.

Good NF & Good RE (1972) Population dynamics of tree seedlings and saplings in mature eastern hardwood forests. *Bulletin of the Torrey Botanical Club* 99: 172–178.

Hooker JD (1849) *The Rhododendrons of Sikkim-Himalaya*. L Reeve & Co., London

Hooker JD (1872–1897) *Flora of British India, Vol. I–VII*. Reeve & Co., London.

Hubbell SP & RB Foster (1983) Diversity of canopy trees in a neotropical forest and implications for conservation. In: Sutton SL, Whitmore TC & Chadwick AC (eds) *Tropical Rain forest: Ecology and Management*. Blackwell Scientific Publications, Oxford, pp. 25–41.

Huston MA (1994) *Biological Diversity*. Cambridge University Press, Cambridge.

Kent M & Coker P (1992) *Vegetation description and analysis: A practical approach*. Belhaven Press, London.

Khan ML, Rai JPN & Tripathi RS (1987) Population structure of some tree species in disturbed and protected sub-tropical forests of north-east India. *Acta Oecologica - Oecologia Applicata* 8: 247–255.

Kholia BS (2010) *Ferns and fern-allies of Sikkim: Part I*. Beracah Printing & Stationeries, Gangtok.

Kholia BS (2014) *Ferns and fern-allies of Sikkim: Part II*. Beracah Printing & Stationeries, Gangtok.

Lemenih M (2011) Resource base of gums and resins and challenges of productivity. In: Lemenih M & Kassa H (eds) *Opportunities and challenges for sustainable production and marketing of gums and resins in Ethiopia*. Center for International Forestry Research (CIFOR), Bogor, Indonesia, pp. 12–45.

Linsenmair KE (1997) *Biodiversity and Sustainable Management of Tropical Forests*. Natural Resource and www.tropicalplantresearch.com
Development. Biannual collection of recent German contributions concerning exploration and exploitation of resources. 45/46: 11-27. Institute for Scientific Co-operation, Tubingen.

Mani S & Parthasarathy N (2006) Tree diversity and stand structure in inland and coastal tropical dry evergreen forests of peninsular India. Current Science 90: 1238–1246.

Odum EP (1971) *Fundamental of ecology, 3rd edition.* W. B. Saunders o., Philadelphia, U.S.A. 574 p.

Paliit D, Pal S & Chanda S (2012) Diversity and richness of plants in Darjeeling Himalaya with an eye on Gaddikhana forest beat, Senchal east zone forest range, Darjeeling. Indian Journal of Forestry 35: 39–44.

Parthasarathy N & Sethi P (1997) Troop. Ecol. 38 (1), 19-30. 10.

Parthasarathy N & Sethi P (1997) Tree and liana species diversity and population structure in dry evergreen forest in south India. *Tropical Ecology* 38(1): 19–30.

Pascal JP (1988) West evergreen forests of the Western Ghats of India: Ecology, Structure, floristic composition and succession. Int. Franc. de Pondicherry, traw. De la Sci. et Tech. Tome XX bis, 345.

Pokhriyal P, Uniyal P, Chauhan DS & Todaria NP (2010) Regeneration status of tree species in forest of Phakot and PathriRao watersheds in Garhwal Himalaya. Current Science 98: 171–174.

Pradhan B & Lachungpa D (2015) Rapid Biodiversity Survey - Report I. Sikkim Biodiversity Conservation and Forest Management Project (SBFP), FEWMD, Govt. of Sikkim, Gangtok, p. 1–120.

Pradhan UC & Lachungpa ST (1990) *Sikkim Himalayan Rhododendrons.* Primulaceae Books, Kalimpong, India.

Rad JE, Manthey M & Mataji A (2009) Comparison of Plant species diversity with different plant communities in deciduous forests. *International Journal of Environmental Science and Technology* 6(3): 389–394.

Rai TD & Rai LK (1994) *Trees of Sikkim Himalaya.* Indus Publishing House, New Delhi.

Rannie WF (1986) Summer air temperature and number of vascular species in arctic Canada. *Arctic* 39: 133–137.

Sarkar M & Devi A (2014) Assessment of diversity, population structure and regeneration status of tree species in Hollongapar Gibbon Wildlife Sanctuary, Assam, Northeast India. *Tropical Plant Research* 1(2): 26–36.

Shannon CE & Wiener W (1963) *The mathematical theory of communities.* University of Illinois Press, Urbana Illinois.

Singh P & Chauhan AS (1997) Plant Diversity in Sikkim Himalaya. In: Hajra PK & Mudgal V (eds) *Plant Diversity Hotspots in India: An Overview.* BSI, Calcutta, India, pp. 137–162.

Singh P & Sanjappa M (2011) *Flowering Plants of Sikkim - An Analysis.* Biodiversity of Sikkim Exploring and Conserving a Global Hotspot, Govt. of Sikkim, pp: 65–89.

Subba SJ, Lachungpa D, Subba S & Nepal S (2015) Analysis of Vegetation in a Representative Temperate Plant Community in Lachung Range of the Sikkim Himalaya. *NeBIO* 6(3): 18–24.

Subba SJ, Subba S, Bhutia DC & Pradhan BK (2017a) Analysis of Vegetation of Temperate Forest at Sang-Tinjure Area of FambongLho Wildlife Sanctuary in Sikkim, India. *Pleione* 11(1): 71–84.

Subba SJ, Pradhan A & Chamling N (2017b) Barsey Rhododendron Sanctuary Rich Biological Diversity in West Sikkim, India. *Panda* 9(4): 44–51.

Subba SJ, Lachungpa D, Subba S, Nepal S, Tamang M & Bhutia DC (2016) Quantitative Analysis of Vegetation Patterns and Plant Species Diversity in Different Forest Types at Yuksam - Dzongri - Gochela Sampling Path in Khangchendzonga Biosphere Reserve, West Sikkim, India. *Journal of International Academic Research for Multidisciplinary* 4(9): 203–219.

Subba SJ, Dahal SP, Pradhan A, Chamling N, Subba S, Nepal S, Subba S, Bhutia DC, Tamang M & Gurung K (2018) *Inventory of Biodiversity-Rapid Biodiversity Survey - Report IV.* Sikkim Biodiversity Conservation and Forest Management Project, Department of Forests, Environment and Wildlife Management, Government of Sikkim, pp. 1–288.

Takhtajan A (1969) *Flowering Plants: Origin and Dispersal.* Oliver & Boyd Ltd., Edinburg (English translation by C. Jeffery).

Thakur AS & Khare PK (2006) Species diversity and Dominance in tropical dry deciduous forest ecosystem. *Journal of Environmental Research and Development* 1(1): 26–31.