Signatures of axion-like particles in the spectra of TeV gamma-ray sources

Alessandro Mirizzi,1,2 Georg G. Raffelt,1 and Pasquale D. Serpico3

1Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München, Germany
2Dipartimento di Fisica and Sezione INFN di Bari, Via Amendola 173, 70126 Bari, Italy
3Center for Particle Astrophysics, Fermi National Accelerator Laboratory, Batavia, IL 60510-0500 USA

(Dated: 23 April 2007)

One interpretation of the unexplained signature observed in the PVLAS experiment invokes a new axion-like particle (ALP) with a two-photon vertex, allowing for photon-ALP oscillations in the presence of magnetic fields. In the range of masses and couplings suggested by PVLAS, the same effect would lead to a peculiar dimming of high-energy photon sources. For typical parameters of the turbulent magnetic field in the galaxy, the effect sets in at $E_{\gamma} \gtrsim 10$ TeV, providing an ALP signature in the spectra of TeV gamma sources that can be probed with Cherenkov telescopes. A dedicated search will be strongly motivated if the ongoing photon regeneration experiments confirm the PVLAS particle interpretation.

PACS numbers: 98.70.Rz, 14.80.Mz

I. INTRODUCTION

One of the phenomenologically most important properties of the hypothetical axions is their two-photon vertex that allows for photon-axion conversions in external electric or magnetic fields [1, 2]. In particular, this coupling is used by the ADMX experiment to search for axion dark matter [2, 3] and by the CAST experiment to search for solar axions [5, 6]. Generically such particles affect the propagation of photons in magnetic fields. For a linearly polarized laser beam propagating in a transverse magnetic field, signatures are a rotation of the plane of polarization and the development of an elliptical polarization component [7, 8, 9]. The latter effect is also caused by the effective four-photon interaction predicted by QED [10, 11].

Recently the laser experiment PVLAS has reported such results with an amplitude about 10^4 times larger than expected from QED [12]. If one interprets this signal in terms of photon-axion conversions, these measurements imply an axion mass $m_a \approx 1.3$ meV and a coupling with photons $g_{a\gamma} \approx 3 \times 10^{-6}$ GeV$^{-1}$, where the coupling constant is defined in Eq. (1) below. This combination of m_a and $g_{a\gamma}$ is incompatible with axions in the usual sense. Therefore, the new states require a different interpretation and are generically termed “axion-like particles” (ALPs), meaning bosons with a two-photon vertex where the mass and coupling strength are taken as independent parameters.

The main problem with the PVLAS signature is that it violates simple astrophysical limits by a huge margin. ALPs are produced in the Sun and other stars by the Primakoff process where thermal photons convert in the fluctuating electric fields of the stellar plasma [1, 13]. Assuming the PVLAS-inspired parameters, a standard solar model leads to an ALP luminosity so large that the Sun would burn out in 1000 years. Circumventing this vast discrepancy is the main theoretical challenge for the PVLAS particle interpretation [13, 15].

It is conceivable that the presence of the hot stellar plasma modifies the effective couplings or that these couplings are different at the momentum transfers relevant in stars. Therefore, it has been stressed that the PVLAS particle interpretation should be tested with experiments where the transition takes place in vacuum and where the momentum transfer is small [21]. Photon regeneration experiments (“shining light through a wall”) are of particular interest because it will be fairly easy to confirm PVLAS if the particle interpretation is indeed correct. Several such efforts are now being discussed or are already under way [22, 23, 24], notably ALPs at DESY, BMV at LULI, GammeV at Fermilab, LIPSS at Jefferson Laboratory, OSQAR at CERN, and PVLAS-regeneration at INFN Laboratory in Legnaro.

If the PVLAS particle interpretation is confirmed, some radical new low-energy physics must be at work that prevents ALP emission from stars. However, other astrophysical settings provide conditions similar to the laboratory experiments, i.e., a vacuum environment and near-vanishing momentum transfers. One example is “shining light through the Sun” where a high-energy photon source would become visible through the Sun by photon-ALP conversion in the solar magnetic field on the far side of the Sun, and their regeneration on our side [25]. Another example is the double pulsar J0737-3039, where gamma rays emitted by one pulsar periodically pass through the magnetosphere of the other on their way to us [26].

We here consider another example, the photon-ALP conversion in the turbulent magnetic field of our galaxy. Beyond energies of order 10 TeV, the gamma-ray flux would be depleted, leaving a distinct signature in the spectrum of TeV gamma-ray sources. Current data from Imaging Atmospheric Cherenkov Telescopes (IACTs) do not allow for a stringent constraint on this effect. However, if the laboratory experiments confirm the existence of ALPs with the properties suggested by PVLAS, this depletion must be included in the analysis of TeV gamma-ray sources by IACTs. Given the strong motivation that would be provided by a positive laboratory ALP confirmation, dedicated efforts by present and future investigations are therefore indicated.
struts would be mandatory that could provide an independent astrophysical signature of these novel particles and/or allow one to study or constrain the turbulent galactic B field.

We begin in Sec. II with a summary of the formalism to describe photon-ALP conversions and turn in Sec. III to phenomenological consequences on the propagation of TeV photons in our galaxy. In Sec. IV we briefly touch on the possible effect of millicharged particles on photon propagation. We conclude in Sec. V.

II. PHOTON-AXION CONVERSION

Axion-like particles by definition have a two-photon coupling. For pseudoscalars, it is of the form

$$\mathcal{L}_{a\gamma} = \frac{1}{4}g_{a\gamma}F_{\mu\nu}F^{\mu\nu}a = g_{a\gamma}E \cdot B a,$$

where a is the axion-like field with mass m_a, $F_{\mu\nu}$ the electromagnetic field-strength tensor, $\tilde{F}_{\mu\nu} = \frac{1}{2}\epsilon_{\mu\nu\rho\sigma}F^{\rho\sigma}$ its dual, and $g_{a\gamma}$ the ALP-photon coupling with dimension of inverse energy. For a scalar particle, the coupling is proportional to $F_{\mu\nu}F^{\mu\nu}$ a. To be definite we limit our discussion to the pseudoscalar case, but similar consequences apply to scalars.

As a consequence of this coupling, ALPs and photons oscillate into each other in an external magnetic field. Under quite general assumptions, the probability for an unpolarized photon beam to convert to ALPs after traversing a magnetic field $B = (B_x, B_y, B_z)$ from 0 to z is (Appendix A)

$$P_{\gamma\rightarrow a}(z) = \frac{g_{a\gamma}^2}{8} \left(\left| \int_0^z dz' e^{-i2\pi z'/l_0}B_x(x, y, z') \right|^2 + \left| \int_0^z dz' e^{-i2\pi z'/l_0}B_y(x, y, z') \right|^2 \right)^2,$$

(2)

where for simplicity we have chosen the z-axis along the propagation direction. Further, $l_0 = \pi s E/m_a^2$ is the oscillation length with m_a the axion mass and E the photon energy. The meV range of ALP masses, relevant for the PVLAS particle interpretation, is so large that the photon-plasma mass is completely negligible by comparison, in contrast to the case of cosmic-microwave conversion into intergalactic magnetic fields, studied in [22, 28].

We consider a simplified case where the field is of constant magnitude and random direction in each patchy domain, each with typical size $s \ll z$, so that a large number N of domains is crossed. The previous expression then further simplifies to (Appendix A)

$$P_{\gamma\rightarrow a}(z) = N P_0,$$

(3)

where the probability per single domain is

$$P_0 = \frac{g_{a\gamma}^2 \langle |B|^2 \rangle s^2}{4} \frac{\sin^2(\pi s/l_0)}{\pi s/l_0}.$$

(4)

Equation (3) only holds in the perturbative regime where $N P_0 \ll 1$. For N sufficiently large, this result violates unitarity. It can be shown (Appendix of Ref. [28]) that the correct continuum limit after travelling over $z \gg s$ is

$$P_{\gamma\rightarrow a}(z) = \frac{1}{3} \left[1 - \exp \left(-\frac{3 P_0 z}{2s} \right) \right].$$

(5)

As physically expected, Eq. (5) implies for $z/s \rightarrow \infty$ that the conversion probability saturates so that on average one third of all photons converts to axions.

III. CONVERSIONS IN THE TURBULENT GALACTIC MAGNETIC FIELD

For the PVLAS-inspired parameters $m_a = 1.3$ meV and $g_{a\gamma} = 3 \times 10^{-6}$ GeV$^{-1}$, it is useful to write P_0 in suitable numerical units,

$$P_0 = (1.5g_b B_{\mu G} s_{pc})^2 \frac{\sin^2(3.8 \times 10^3 m_a^2 s_{pc}/E_{10})}{(3.8 \times 10^3 m_a^2 s_{pc}/E_{10})^2} \approx 0.8 \times 10^{-7} \left(g_b B_{\mu G} E_{10} \right)^2.$$

(6)

Here, we have introduced $g_b = g_{a\gamma}/10^{-6}$ GeV$^{-1}$, $B_{\mu G}$ is the root mean square (rms) magnetic field strength in micro-Gauss, s_{pc} is the domain size in pc, m_{meV} is the ALP mass in meV, and E_{10} the photon energy in units of 10 TeV. In the second line we have replaced $\sin^2\theta$ with its average value $\frac{1}{2}$ because its argument is large and oscillates rapidly for any realistic energy resolution.

Although the galactic B field has a regular component with several kpc coherence length, on small scales a turbulent component dominates (Ref. [29] and references therein). The power spectrum follows a Kolmogorov power law, with a lower cutoff at very small dissipative scales, perhaps as small as 6×10^{-4} pc [30], but in any case at most comparable to 0.01 pc, with an rms intensity of order μG on pc scales. For typical galactic distances of 10 kpc, there are approximately 10^9 domains with $s \approx 0.01$ pc towards a typical TeV gamma source such as the one at the galactic center [31, 32, 33, 34]. For nominal values of the parameters in Eq. (6), $P_0 \approx 10^{-7}$–10^{-6} at energies of order 10 TeV, implying $N P_0 \approx 0.1$–1. Therefore, observable effects must be expected.

In Fig. I we show the spectral modification of a TeV source at the galactic center (distance 8.5 kpc) superimposed with H.E.S.S. data [35]. For illustration we have used Eq. (5) with $g_b = 3$, $B_{\mu G} = 0.7$, $s_{pc} = 0.01$ and $m_{meV} = 1$ and we have assumed that the power-law spectrum does not break before 60 TeV. Photon-ALP oscillations (dashed curve) cause a downward shift of the spectrum at high energies, i.e., a change of normalization of the typical power-law spectrum (continuous curve) between low and high energies ($E \gtrsim 10$ TeV). The maximum shift is 33% when the conversion saturates.

Evidently current data do not allow for a serious constraint on this depletion effect. Note, however, that
be written in terms of its Fourier transform as
tdetection.

cated campaigns were motivated by a positive laboratory
have a sufficient aperture to probe this scenario, if dedi-
ray mode. Already the current generation of IACTs
are based on 17 hours of data in 2003 with two tele-

a lack of statistics. The points reported in Fig. 1
the large error bars at high energy are only due to
required by the onset of a positive laboratory
tot be more quantitative, one would model the turbu-
ment with index

m

\int d^3k/(2\pi)^3 \tilde{B}_i(k) e^{i[x_k+k_i(k)]} \right)
\right) (2\pi)^6 \delta^3(k-k'),
\end{equation}

where the tensor in brackets implements the condition
\nabla \cdot B = 0. In the generic case of a power-law spec-
trum with index \alpha between the scales \sm and \smax, i.e.,
between wavenumbers \k_L \equiv 2\pi/\smax and \k_H \equiv 2\pi/\sm,
one has

\mathcal{B}^2(k) = B_{\text{rms}}^2 (\alpha - 1) k^{-\alpha} (k_L^{-1-\alpha} - k_H^{1-\alpha})^{-1}, \tag{9}

which is already normalized such that \langle |\mathcal{B}(x)|^2 \rangle = B_{\text{rms}}^2.

In the limit \k_L \ll \k_H, and if \alpha > 1, one finds

\mathcal{B}^2(k) \simeq B_{\text{rms}}^2 (\alpha - 1) k^{-\alpha} k_L^{\alpha-1}. \tag{10}

Therefore, the field averaged over scales less than \s is

\langle (|\mathcal{B}(x)|^2)_s \rangle = B_{\text{rms}}^2 (s/s_{\text{max}})^{\alpha-1}. \tag{11}

For the Kolmogorov spectrum \alpha = 5/3 suggested by the
data, this means that the rms intensity of the field varies
as \s^{1/3}. The intensity below 0.001 pc is then only a fac-
tor 10 weaker than the \mu G level at the pc scale. Below
0.01 pc it is only a factor \sim 4 lower than at the pc scale.
Therefore, our simple estimate of \P_0 may be too optim-
istic by an order of magnitude. However, the effect
would still be observable simply by looking at a factor
\sim 3 larger energies. Additionally, the true field config-
uration may be more complicated, and recently a more
intense turbulence than previously estimated has been
suggested \[36\].

In a more detailed treatment one would consider
stochastic realizations of the realistic power spectrum of
the turbulent B field. However, for our purpose sim-
ple estimates are probably more instructive and show
that: (i) Possible effects may start manifesting them-
selves around 10 TeV, and are more and more likely to
show up at 20–30 TeV. (ii) The smaller the characteris-
tic scale of turbulence of a given intensity, the larger the
number of domains available, and the lower the energy
at which the effect appears. (iii) The conversion prob-
ability depends on \E^2. Therefore, on the scale of the
typical energy resolution of a Cherenkov telescope, the
depletion rapidly drops from negligible to the saturation
value of 1/3. (iv) The phenomenology described here
would be universal, affecting both galactic and extra-
galactic sources. Yet, the exact energy at which the shift
manifests depends on the properties of the field along
that line of sight. Although for all sources the light must
cross the galactic B field to reach us, one may not ex-
clude an additional role of a small-scale field close to the
sources. Our estimate for the onset of the effect is conser-
ervative, especially for extragalactic sources. As a general
rule, for sources in similar directions, the more distant
ones may manifest the signature at lower energies.

\section{IV. MILLICHARGED PARTICLES}

Another particle-physics explanation of the PVLAS
anomaly postulates the existence of low-mass milli-
charged particles \[37, 38\]. We briefly check if this hy-
thesis would also affect the propagation of photons in the
astrophysical context.

At TeV energies, the extragalactic medium becomes
opaque due to the onset of e± pair-production on the
diffuse low-energy photon backgrounds. At a few PeV,
the mean free path of photons reaches a minimum of \lambda_e \lesssim 10 \text{kpc due to pair production on the Cosmic Mi-
crowave Background (CMB) [39]. The threshold energy
\E_{\text{th}} \sim 3 \times 10^{14} \text{eV scales as } m_e^2 \text{ and the cross section as } e^4/m_e^2. \text{ Scaling these quantities to millicharged particles
}

\text{FIG. 1: Spectral energy density } \pi^2 \times dN/dE \text{ of photons from}
the galactic center source, for the 2004 data (full points) and
2003 data (open points) of H.E.S.S. [53]. Error bars represent
95\% CL. The continuous line shows the best-fit power-law
dN/dE \sim E^{-3} with \Gamma = 2.25 [53]. The dashed line shows
the effect of photon-ALP conversion with coupling and mass
suggested by PVLAS.

0.01 pc it is only a factor \sim 4 lower than at the pc scale. Below
0.01 pc it is only a factor \sim 4 lower than at the pc scale. Therefore, our simple estimate of \P_0 may be too optim-
istic by an order of magnitude. However, the effect
would still be observable simply by looking at a factor
\sim 3 larger energies. Additionally, the true field config-
uration may be more complicated, and recently a more
intense turbulence than previously estimated has been
suggested [36].

In a more detailed treatment one would consider
stochastic realizations of the realistic power spectrum of
the turbulent B field. However, for our purpose sim-
ple estimates are probably more instructive and show
that: (i) Possible effects may start manifesting them-
selves around 10 TeV, and are more and more likely to
show up at 20–30 TeV. (ii) The smaller the characteris-
tic scale of turbulence of a given intensity, the larger the
number of domains available, and the lower the energy
at which the effect appears. (iii) The conversion prob-
ability depends on \E^2. Therefore, on the scale of the
typical energy resolution of a Cherenkov telescope, the
depletion rapidly drops from negligible to the saturation
value of 1/3. (iv) The phenomenology described here
would be universal, affecting both galactic and extra-
galactic sources. Yet, the exact energy at which the shift
manifests depends on the properties of the field along
that line of sight. Although for all sources the light must
cross the galactic B field to reach us, one may not ex-
clude an additional role of a small-scale field close to the
sources. Our estimate for the onset of the effect is conser-
ervative, especially for extragalactic sources. As a general
rule, for sources in similar directions, the more distant
ones may manifest the signature at lower energies.

\section{IV. MILLICHARGED PARTICLES}

Another particle-physics explanation of the PVLAS
anomaly postulates the existence of low-mass milli-
charged particles [37, 38]. We briefly check if this hy-
thesis would also affect the propagation of photons in the
astrophysical context.

At TeV energies, the extragalactic medium becomes
opaque due to the onset of e± pair-production on the
diffuse low-energy photon backgrounds. At a few PeV,
the mean free path of photons reaches a minimum of \lambda_e \lesssim 10 \text{kpc due to pair production on the Cosmic Mi-
crowave Background (CMB) [39]. The threshold energy
\E_{\text{th}} \sim 3 \times 10^{14} \text{eV scales as } m_e^2 \text{ and the cross section as } e^4/m_e^2. \text{ Scaling these quantities to millicharged particles
}
with charge $q \ll e$ and mass $m_q \ll m_e$ one finds

$$\lambda_q^{-1} \approx \lambda_e^{-1} \left(\frac{q}{e}\right)^4 \left(\frac{m_e}{m_q}\right)^2,$$

(12)

and

$$E_{ih}^q \approx E_{ih}^e \left(\frac{m_q}{m_e}\right)^2.$$

(13)

The preferred mass range of the millicharged candidate is $0.01-0.1$ eV, i.e., $m_q/m_e \sim 2 \times 10^{-8}-2 \times 10^{-7}$. The peak of the cross section is very close to the threshold and would fall in the $(10^{-16}-10^{-14}) \times 10^{15}$ eV range, i.e., ranging from infrared to ultraviolet. Sources at cosmological distances do not show such a universal dimming. The conservative requirement $\lambda_q \gtrsim 1$ Gpc implies $q \lesssim 10^{-5} e$.

A much more constraining limit of $q \lesssim 10^{-7} e$ arises from spectral distortion effects of the CMB that may already rule out the millicharged particle explanation of PVLAS [40]. In any event, it appears safe to assume that millicharged particles with the relevant properties would not affect TeV photon observations.

V. CONCLUSIONS

The unexpected optical properties of the vacuum suggested by the PVLAS experiment has inspired various interpretations in terms of axion-like particles. The severe conflict with stellar structure arguments implies that this interpretation requires radical new physics at low energies. If the new particles interact differently in a stellar plasma or at vanishing momentum transfers, they may still show up in the upcoming photon regeneration experiments. In this case one necessarily expects signatures also in other settings that are characterized by a vacuum environment and/or small momentum transfers.

We have discussed possible signatures of PVLAS particles in the spectra of TeV gamma-ray sources in our galaxy. If the PVLAS signal can be attributed to photon-ALP conversion in the laboratory, the same effect must occur in the astrophysical context. For an ALP mass around 1 meV, as suggested by PVLAS, one would observe a peculiar distortion in the photon spectra at $E_\gamma \gtrsim 10$ TeV due to conversions in the turbulent galactic B-field. This process would take place under better vacuum conditions than are achievable in the laboratory and the momentum transfer would be extremely small.

Present data from TeV gamma-ray telescopes do not allow for a stringent constraint on this effect. However, a positive ALP detection would strongly motivate a dedicated search, perhaps allowing one to find signatures for ALPs in current or future instruments and to investigate or constrain the properties of the turbulent magnetic field in the galaxy and beyond.

Acknowledgments

We would like to thank Marco Roncadelli and Pratik Majumdar for comments. P.S. acknowledges support by the US Department of Energy and by NASA grant NAG5-10842. The work of A.M. is supported by an Alexander von Humboldt fellowship grant. A.M. also acknowledges support in the initial phase of this work by the Italian “Istituto Nazionale di Fisica Nucleare” (INFN) and by the “Ministero dell’Istruzione, Università e Ricerca” (MIUR) through the “Astroparticle Physics” research project. In Munich, partial support by the Deutsche Forschungsgemeinschaft Grant TR 27 by the Cluster of Excellence “Origin and Structure of the Universe” (Garching and Munich), and by the European Union under the ILIAS project, contract No. RII3-CT-2004-506222, is acknowledged.

APPENDIX A: PHOTON-ALP CONVERSION IN A RANDOM MAGNETIC FIELD

We here derive the photon-ALP conversion probabilities [Eqs. (2)–(3)] in a random magnetic field distribution. These detailed results are not used for the simple estimates derived in our paper, but would be necessary for a detailed treatment involving the numerical study of different realizations of the turbulent galactic B-field.

For relativistic ALPs, the equations of motion following from Eq. (11) reduce to the linearized system [9]

$$(\omega - i\partial_z + \mathcal{M}) \begin{pmatrix} A_x \\ A_y \\ a \end{pmatrix} = 0,$$

(A1)

where z is the direction of propagation, A_x and A_y are orthogonal components of the photon field in a fixed frame perpendicular to z, and ω is the photon energy. The mixing matrix is

$$\mathcal{M} = \begin{pmatrix} \Delta_{xx} & \Delta_{xy} & \frac{i}{2} g_{a\gamma} B_x \\ \Delta_{yx} & \Delta_{yy} & \frac{i}{2} g_{a\gamma} B_y \\ \frac{1}{2} g_{a\gamma} B_x & \frac{1}{2} g_{a\gamma} B_y & \Delta_a \end{pmatrix},$$

(A2)

where $\Delta_a = -m_a^2/2\omega$. Notice that the component of \mathbf{B} parallel to the direction of motion does not induce photon-axion mixing, since only B_x and B_y enter the third row/column of \mathcal{M}. The entries Δ_{ij} ($i, j = x, y$) that mix the photon polarization states are energy-dependent terms determined by the properties of the medium and the QED vacuum polarization effect. We will neglect the latter because it is sub-dominant here.

The Δ_{ij} terms have a simple interpretation when the x or y direction coincides with the transverse field direction $\mathbf{B}_T = \mathbf{B} - (\mathbf{B} \cdot \hat{z}) \hat{z}$. We can then specify the previous equations for the case of a single domain with uniform magnetic field \mathbf{B}_T, whose modulus will be denoted by
$B_T = |B_T|$. Equation (A4) is in the new basis

$$
(\omega - i \partial_z + M) \begin{pmatrix} A_\perp \\ A_\parallel \end{pmatrix} = 0,
$$
(A3)

where $i = \perp$ or \parallel refer to the B_T direction. The mixing matrix is now

$$
M \equiv \begin{pmatrix} \Delta_\perp & \Delta_R \\ \Delta_R & 0 \\ 0 & \Delta_\parallel \end{pmatrix},
$$
(A4)

where

$$
\Delta_\perp = \Delta_{pl} + \Delta_{CM}^{\perp}, \quad \Delta_\parallel = \Delta_{pl} + \Delta_{CM}^{\parallel}, \quad \Delta_{a\gamma} = \frac{i}{2} g_{a\gamma} B_T,
$$
(A5)

Here, $\omega^2_{pl} = 4\pi \alpha n_e/m_e$ is the plasma frequency with m_e the electron mass and α the fine-structure constant. The Faraday rotation term Δ_R, which depends on the energy and the longitudinal component B_z, would couple the modes A_\parallel and A_\perp. While it is important when analyzing polarized photon sources, it plays a negligible role here. The Δ_{CM} terms describe the Cotton-Mouton effect, i.e., the birefringence of fluids in presence of a longitudinal magnetic field, with $|\Delta_{CM}^{\perp} - \Delta_{CM}^{\parallel}| \propto B_T^2$. These terms are of little importance for the following arguments and will be neglected hereafter.

Therefore, we finally concentrate on the simple two-level mixing problem

$$
(\omega - i \partial_z + \Delta_{pl} + \Delta_{CM}^{\perp} A_{a\gamma}) \begin{pmatrix} A_\parallel \\ A_\perp \end{pmatrix} = 0.
$$
(A6)

The solution of this system follows from a diagonalization of the mixing matrix by a rotation with an angle

$$
\theta = \frac{1}{2} \arctan \left(\frac{2 \Delta_{a\gamma}}{\Delta_{pl} - \Delta_a} \right).
$$
(A7)

In analogy to the neutrino case, the probability for a photon emitted in the state A_\parallel to convert to an ALP after traveling a distance s in a constant transverse magnetic field B_T is

$$
P_0(\gamma \to a) = \left| \langle A_\parallel(0) | a(s) \rangle \right|^2 = \sin^2(2\theta) \sin^2(\Delta_{osc}s/2),
$$
(A8)

$$
= (\Delta_{a\gamma}s)^2 \sin^2(\Delta_{osc}s/2) \left(\frac{\Delta_{osc}s/2}{\Delta_{osc}s/2} \right)^2,
$$
(A10)

where the oscillation wave number is given by

$$
\Delta_{osc}^2 = (\Delta_{pl} - \Delta_a)^2 + 4\Delta_{a\gamma}^2.
$$
(A11)

The conversion probability is energy independent when $2|\Delta_{a\gamma}| \gg |\Delta_{pl} - \Delta_a|$ or in any case when the oscillatory term $\sin^2 x/x^2 \approx 1$ in Eq. (A10), corresponding to $\Delta_{osc}s/2 \ll 1$.

We now return to the 3×3 formalism to derive a perturbative solution. In a fixed x-y-z frame with z the direction of motion, the propagation equations are

$$
\left[\omega - i \partial_z + \begin{pmatrix} \Delta_{xx} & \Delta_{xy} & \Delta_{a\gamma} s_\gamma \\ \Delta_{yx} & \Delta_{yy} & \Delta_{a\gamma} c_\gamma \\ \Delta_{a\gamma} c_\gamma & \Delta_{a\gamma} s_\gamma & \Delta_a \end{pmatrix} \right] \begin{pmatrix} A_x \\ A_y \\ A_a \end{pmatrix} = 0,
$$
(A12)

where $c_\gamma = \cos \gamma$ and $s_\gamma = \sin \gamma$ with γ the angle between B_T and the y axes (measured clockwise). Further, from Eq. (A5) one can write

$$
\Delta_{xx} \simeq \Delta_{pl}, \quad \Delta_{xy} \simeq 0, \quad \Delta_{yy} \simeq \Delta_{pl}.
$$
(A13)

The field strength entering $\Delta_{a\gamma}$ is $B_T = |B_T| = |B| \sin \psi$, where ψ is the angle between the field and the photon propagation direction. Thus we have $B_z = B_T c_\gamma$, $B_y = B_T s_\gamma$, and all z-dependent quantities. All of the Δ_{ij} are z-dependent as well because this applies to γ, n_e, and B_T, entering the quantities in Eq. (A5).

Since the ALP is weakly coupled, the 3rd row/column off-diagonal terms are much smaller than ω, and it makes sense to write

$$
i \partial_z \mathbf{A} = (\mathcal{H}_0 + \mathcal{H}_1) \mathbf{A},
$$
(A14)

where $\mathbf{A} = (A_x, A_y, A_a)$,

$$
\mathcal{H}_0 = \omega \mathbf{I} + \begin{pmatrix} \Delta_{pl} & 0 & 0 \\ 0 & \Delta_{pl} & 0 \\ 0 & 0 & \Delta_a \end{pmatrix},
$$
(A15)

and

$$
\mathcal{H}_1 = \begin{pmatrix} 0 & 0 & \Delta_{a\gamma} s_\gamma \\ 0 & 0 & \Delta_{a\gamma} c_\gamma \\ \Delta_{a\gamma} c_\gamma & \Delta_{a\gamma} s_\gamma & 0 \end{pmatrix}.
$$
(A16)

For $g_{a\gamma} \to 0$ this equation is solved exactly by $\mathbf{A}^{(0)}(z) = \mathcal{U}_0(z) \mathbf{A}(0)$, where

$$
\mathcal{U}_0(z) = \exp \left[-i \int_0^z dz' \mathcal{H}_0(z') \right].
$$
(A17)

If we now include the perturbation, the complete solution can be written perturbatively in the interaction representation. In particular, to first order we have $\mathbf{A}_{\text{int}} = \mathcal{U}_0^\dagger \mathbf{A}$, $\mathcal{H}_{\text{int}} = \mathcal{U}_0^\dagger \mathcal{H}_1 \mathcal{U}_0$, and

$$
\mathbf{A}_{\text{int}}^{(1)}(z) = -i \int_0^z dz' \mathcal{H}_{\text{int}}(z') \mathbf{A}_{\text{int}}^{(0)}(0),
$$
(A18)

and $\mathbf{A}_{\text{int}}^{(2)}(z) = 0$ because

$$
\mathbf{A}_{\text{int}}^{(0)}(z) = \mathcal{U}_0^\dagger \mathbf{A}^{(0)}(z) = \mathcal{U}_0^\dagger \mathcal{U}_0 \mathbf{A}(0).
$$
(A19)

Since \mathcal{H}_0 is diagonal, \mathcal{U}_0 has the general form $\mathcal{U}_0(z) = \text{diag}[e^{-i\alpha(z)}, e^{-i\beta(z)}, e^{-i\gamma(z)}]$ so that
This result is a straightforward generalization of the one derived in Ref. [9]. The probability for photon-ALP conversion is then schematically

\[
P_{\gamma \rightarrow a}(z) = |A_{\gamma}(0)|^2 |I_1|^2 + |A_{\gamma}(0)|^2 |I_2|^2 + 2 \text{Re}[A_{\gamma}(0) A_{\gamma}(0) I_1 I_2].
\]

For an unpolarized source, an average over the initial state has to be performed. The interference term averages to zero, and \(|A_{\gamma}(0)|^2 \) = \(|A_{\gamma}(0)|^2 \) = 1/2. Then

\[
P_{\gamma \rightarrow a}(z) = \frac{g_{\gamma\gamma}^2 |B|^2}{8} \left(\left| \int_0^z dz' \sin \psi(z') e^{i(A_\gamma - A_{\gamma\gamma}) z'} c_\gamma(z') \right|^2 + \left| \int_0^z dz' \sin \psi(z') e^{i(A_\gamma - A_{\gamma\gamma}) z'} s_\gamma(z') \right|^2 \right).
\]

Here we have assumed \(A_{\gamma\gamma} \) to be independent of \(z \).

We next consider a “patchy” pattern of domains of equal size \(s \) and constant field in each of them. We will show that, when evaluated after a distance \(z \approx N s \), with \(N \gg 1 \), the conversion probability is roughly the product of the conversion probability in a single domain times the number of domains. Except for the replacement \(s_\gamma \rightarrow c_\gamma \), each one of the two integrals in Eq. (A27) can be evaluated as follows, where \(l_0 = 2\pi/(\Delta_{\text{pl}} - \Delta_a) \),

\[
I = \left| \int_0^z dz' \sin \psi(z') e^{-i2\pi z'/l_0} s_\gamma(z') \right|^2
\]

\[
= \frac{l_0^2}{2} \pi^2 \sin^2 \left(\frac{\pi s}{l_0} \right) \left(\sum_{k=1}^N \mu_k e^{-i(2\pi z + s)/l_0} \right)^2
\]

\[
= \frac{l_0^2}{2} \pi^2 \sin^2 \left(\frac{\pi s}{l_0} \right) \left(\sum_{k=1}^N (\mu_k c_\gamma) + \sum \text{interference terms} \right).
\]

The ALP amplitude developed at distance \(z \) is then

\[
a^{(1)}(z) = -\frac{g_{\gamma\gamma}}{2} \int_0^z dz' \left\{ A_x(0) B_x(z') e^{i(c(z') - a(z'))} + A_y(0) B_y(z') e^{i(c(z') - b(z'))} \right\}.
\]

Here, \(N = \frac{z}{s} \gg 1 \) and \(\mu_k = |\sin \psi_k| s_\gamma(k) \) or \(\mu_k = |\sin \psi_k| c_\gamma(k) \) is a random variable in the interval \([-1, 1]\). The random nature of the field directions implies that the interference term vanishes on average. For the geometrical factor we have \(\langle \mu_k^2 \rangle = \langle \sin^2 \psi \sin^2 \gamma \rangle = 1/3 \).

Then we find

\[
P_{\gamma \rightarrow a}(z) \approx \frac{g_{\gamma\gamma}^2 |B|^2 l_0^2}{8} \sin^2 \left(\frac{\pi s}{l_0} \right) \times 2 \times \frac{N}{3}
\]

\[
= N \langle (\Delta_{\gamma\gamma})^2 \rangle \sin^2 \left(\frac{(\Delta_{\gamma\gamma})^2}{(\Delta_{\text{pl}} - \Delta_a)/2} \right)
\]

\[
= N P_0,
\]

having the structure of a probability per single domain \(P_0 \) times the number of domains \(N \). We stress that Eq. (A20) only holds perturbatively, i.e., \(\langle \Delta_{\gamma\gamma} \rangle s \ll 1 \) is a necessary condition.

In the limit \(|\Delta_{\text{pl}} - \Delta_a| \gg \langle \Delta_{\gamma\gamma} \rangle s \), we have in Eq. (A10) that \(\Delta_{\text{osc}} = |\Delta_{\text{pl}} - \Delta_a| \) and Eq. (A10) coincides with Eq. (A20), provided that \(B_T \rightarrow \langle B \rangle = |B|/\sqrt{3} \) because of the projection effect. In the opposite limit \(|\Delta_{\text{pl}} - \Delta_a| \ll \langle \Delta_{\gamma\gamma} \rangle \), Eq. (A20) reduces to

\[
P_{\gamma \rightarrow a}(z) \approx N \langle (\Delta_{\gamma\gamma})^2 \rangle^2,
\]

again in agreement with the corresponding limit of Eq. (A10).

This exercise shows explicitly how the classical rule of “adding the probabilities” instead of amplitudes arises from the randomness of the polarization and of the field configuration over scales much larger than \(s \). However,
since we used first-order perturbation theory, the validity of these results breaks down when $P_{z \rightarrow a}(z)$ becomes large. This is always the case for z large enough, since we are not including the back reaction $a \rightarrow \gamma$, that are second order in $g_{a\gamma}$, and that prevent the violation of unitarity. In the saturation regime, the correct generalization of Eq. (A10) is provided by Eq. (5) as discussed in the text.

[1] D. A. Dicus, E. W. Kolb, V. L. Teplitz and R. V. Wagoner, “Astrophysical bounds on the masses of axions and Higgs particles,” Phys. Rev. D 18, 1829 (1978).

[2] P. Sikivie, “Experimental tests of the invisible axion,” Phys. Rev. Lett. 51, 1415 (1983) [Erratum ibid. 52, 695 (1984)].

[3] R. Bradney et al., “Microwave cavity searches for dark-matter axions,” Rev. Mod. Phys. 75, 777 (2003).

[4] L. D. Duffy et al., “A high resolution search for dark-matter axions,” Phys. Rev. D 74, 012006 (2006) [astro-ph/0603108].

[5] K. Zioutas et al. [CAST Collaboration], “First results from the CERN axion solar telescope (CAST),” Phys. Rev. Lett. 94, 121301 (2005) [hep-ex/0411033].

[6] S. Andrianonje et al. [CAST Collaboration], “An improved limit on the axion-photon coupling from the CAST experiment,” JCAP 0704, 010 (2007) [hep-ex/0702006].

[7] L. Maiani and P. Petronzio and E. Zavattini, “Effects of nearly massless, spin zero particles on light propagation in a magnetic field,” Phys. Lett. B 175, 359 (1986).

[8] M. Gasperini, “Axion production by electromagnetic fields,” Phys. Rev. Lett. 59, 396 (1987).

[9] G. Raffelt and L. Stodolsky, “Mixing of the photon with low mass particles,” Phys. Rev. D 37, 1237 (1988).

[10] S. L. Adler, “Photon splitting and photon dispersion in a strong magnetic field,” Ann. Phys. 67, 599 (1971).

[11] E. Iacopini and E. Zavattini, “Experimental method to detect the vacuum birefringence induced by a magnetic field,” Phys. Lett. B 85, 151 (1979).

[12] E. Zavattini et al. [PVLAS Collaboration], “Experimental observation of optical rotation generated in vacuum by a magnetic field,” Phys. Rev. Lett. 96, 110406 (2006) [hep-ex/0507107].

[13] G. G. Raffelt, “Astrophysical axion bounds diminished by screening effects,” Phys. Rev. D 33, 897 (1986).

[14] G. G. Raffelt, “Particle physics from stars,” Ann. Rev. Nucl. Part. Sci. 49, 163 (1999) [hep-ph/9903472].

[15] E. Massó and J. Redondo, “Evidencing astrophysical constraints on axion-like particles,” JCAP 0509, 015 (2005) [hep-ph/0504202].

[16] E. Massó and J. Redondo, “Compatibility of CAST search with axion-like interpretation of PVLAS results,” Phys. Rev. Lett. 97, 151802 (2006) [hep-ph/0606163].

[17] R. N. Mohapatra and S. Nasri, “Reconciling the CAST and PVLAS results,” Phys. Rev. Lett. 98, 050402 (2007) [hep-ph/0610068].

[18] C. Coriano and N. Irges, “Windows over a new low energy axion,” hep-ph/0612140.

[19] T. Fukuyama and T. Kikuchi, “Axion and PVLAS data in a little Higgs model,” Phys. Rev. D 74, 115004 (2006) [hep-ph/0608228].

[20] I. Antoniadis, A. Boyarsky and O. Ruchayskiy, “Axion alternatives,” hep-ph/0606306.

[21] J. Jaeckel et al., “The need for purely laboratory-based axion-like particle searches,” Phys. Rev. D 75, 013004 (2007) [hep-ph/0610203].

[22] A. Ringwald, “Photon regeneration plans,” hep-ph/0612127.

[23] Talks at the workshop “Axions at the Institute for Advanced Study” (20–22 October 2006, Princeton, New Jersey), www.sns.ias.edu/axions/axions.shtml

[24] A. Lindner and K. Zioutas, “Axions create excitement and doubt at Princeton,” CERN Courier 47/2, 14 (2007).

[25] M. Fairbairn, T. Rashba and S. Troitsky, “Shining light through the Sun,” astro-ph/0610844.

[26] A. Dupays, C. Rizzo, M. Roncadelli and G. F. Bignami, “Looking for light pseudoscalar bosons in the binary pulsar system J0737-3039,” Phys. Rev. Lett. 95, 211302 (2005) [astro-ph/0510324].

[27] A. Mirizzi, G. G. Raffelt and P. D. Serpico, “Photon axion conversion as a mechanism for supernova dimming: Limits from CMB spectral distortion,” Phys. Rev. D 72, 023501 (2005) [astro-ph/0506078].

[28] A. Mirizzi, G. G. Raffelt and P. D. Serpico, “Photon axion conversion in intergalactic magnetic fields and cosmological consequences,” to appear in Lecture Notes in Physics (Springer Verlag) [astro-ph/0607415].

[29] J. L. Han, K. Ferriere and R. N. Manchester, “The spatial energy spectrum of magnetic fields in our Galaxy,” Astrophys. J. 610, 820 (2004) [astro-ph/0404221].

[30] I. McVor, “The inertial range of weak magnetohydrodynamic turbulence in the interstellar medium,” MNRAS 178, 85 (1977).

[31] K. Tsuchiya et al. [CANGAROO-II Collaboration], “Detection of sub-TeV gamma-rays from the galactic center direction by CANGAROO-II,” Astrophys. J. 606, L115 (2004) [astro-ph/0403592].

[32] K. Kosack et al. [VERITAS Collaboration], “TeV gamma ray observations of the galactic center,” Astrophys. J. 608, L97 (2004) [astro-ph/0403422].

[33] J. Albert et al. [MAGIC Collaboration], “Observation of gamma rays from the galactic center with the MAGIC telescope,” Astrophys. J. 638, L101 (2006) [astro-ph/0512469].

[34] F. Aharonian et al. [H.E.S.S. Collaboration], “Very high energy gamma rays from the direction of Sagittarius A*” Astron. Astrophys. 425, L13 (2004) [astro-ph/0408145].

[35] F. Aharonian et al. [H.E.S.S. Collaboration], “HESS observations of the galactic center region and their possible dark matter interpretation,” Phys. Rev. Lett. 97, 221102 (2006); Erratum ibid. 97, 249901 (2006).

[36] J. Han, “Measuring the magnetic fields of our Galaxy: Progress in the last decade” talk at the “XIV International Symposium on Very High Energy Cosmic Ray Interactions ” (15–22 August 2006, Weihai, China), available at the URL http://isvhcerci2006.ihep.ac.cn/isvhcerci2006/
licharged fermions,” Phys. Rev. Lett. 97, 140402 (2006) [hep-ph/0607118].

[38] M. Ahlers, H. Gies, J. Jaeckel and A. Ringwald, “On the particle interpretation of the PVLAS data: Neutral versus charged particles,” Phys. Rev. D 75, 035011 (2007) [hep-ph/0612098].

[39] S. Lee, “On the propagation of extragalactic high-energy cosmic and gamma-rays,” Phys. Rev. D 58, 043004 (1998) [astro-ph/9604098].

[40] A. Melchiorri, A. D. Polosa and A. Strumia, “New bounds on millicharged particles from cosmology,” hep-ph/0703144.