INTRODUCTION

Dark septate endophytes (DSE) compose a form-group of root-associated fungi (RAF) (Jumpponen & Trappe 1998a), which generally have melanised hyphae, colonise the root epidermis and the cortex inter- and intracellularly and form densely septated intracellular structures, called microsclerotia (Jumpponen & Trappe 1998a, Barrow & Aaltonen 2001, Yu et al. 2001, Addy et al. 2005, Mandyam & Jumpponen 2008, Peterson et al. 2008). DSE fungi occur in all climate regions and major biome types (Mandyam & Jumpponen 2005, Rodriguez et al. 2009, Porras-Alfaro & Bayman 2011) and are relatively frequent in extreme and nutrient-limited environments such as arid and semiarid areas (Kovács & Szigetvári 2002, Rodriguez et al. 2009, Khidir et al. 2010). Although there is an increasing research interest in DSE, our knowledge on the diversity and function of these fungi is limited, especially compared to mycorrhizal fungi.

No sexual morph of DSE is known and their sexual relations are not completely understood (Jumpponen & Trappe 1998a, Grünig et al. 2008, Rodriguez et al. 2009). Even conidogenesis is infrequent and conidiogenous processes have only been induced in a minority of isolates after specific treatments (Jumpponen & Trappe 1998a, Sieber & Grünig 2006).

Dark septate endophytes represent a group of fungal endophytes from different ascomycete lineages forming similar structures (Jumpponen & Trappe 1998a). They generally belong to numerous orders of phylum Ascomycota (e.g. Capnodiales, Chaetothyriales, Eurotiales, Helotiales, Hypocreales, Microascales, Pleosporales, Sordariales, Xylariales – see e.g. Jumpponen & Trappe 1998b, Cadophora finlandica (= Philophora finlandica) and the widely studied Phialocephala fortinii s.l. – Aceilaha aplanata species complex (PAC) (e.g. Fernando & Currah 1996, Jumpponen & Trappe 1998b, Caldwell et al. 2000, Tellenbach et al. 2011, Reinerger et al. 2012). Pleosporales, which is the largest order of Dothideomycetes (Schoch et al. 2009, Zhang et al. 2012), is one of the most represented orders in DSE communities of semiarid areas (Porras-Alfaro et al. 2008, Knapp et al. 2012).

In a previous study, the compositional diversity of DSE fungi colonising native and invasive plants of semiarid sandy areas on the Great Hungarian Plain was investigated (Knapp et al. 2012). Based on an in vitro resynthesis assay, isolates of 14 lineages were considered as DSE fungi, several groups of which could not be identified. Three of these groups (DSE-4, DSE-8 and DSE-7 sensu Knapp et al. 2012) clustered in the Pleosporales. In case of DSE-4, no similar sequences of either cultured or uncultured fungi were found in public databases. Although group DSE-7 was found to be the third most frequent DSE clade (Knapp et al. 2012), and similar findings were obtained in other studies (Porras-Alfaro et al. 2008, Khidir et al. 2010, Herrera et al. 2010), the identity and phylogenetic placement of this taxon and other DSE fungi in the Pleosporales remained unclear.

The main aim of our study was therefore to conduct a taxonomic study of the pleosporalean DSE groups originating from semiarid sandy areas (Knapp et al. 2012). We further aimed to collect more isolates of group DSE-7 to study the intragroup heterogeneity, and conduct a multi-locus molecular phylogenetic and morphological comparison of isolates.

Key words
Dothideomycetes
endophytes
Massarinia
classification
sexual state
taxonomy

Abstract
Dark septate endophytes (DSE) are distributed worldwide as root-colonising fungi, and frequent in environments with strong abiotic stress. DSE is not a taxon, but constitutes numerous fungal taxa belonging to several orders of Ascomycota. In this study we investigate three unidentified DSE lineages belonging to Pleosporales that were found previously in semiarid sandy grasslands. For molecular phylogenetic studies seven loci (ITS, partial 18S nrRNA, 28S nrRNA, actin, calmodulin, transcription-elongation factor 1-a and 9-tubulin genes) were amplified and sequenced. Based on morphology and the resulting molecular phylogeny these isolates were found to represent three novel genera within the Pleosporales, namely Aquilomyces, Flavomyces and Darksidea, with eight novel species. Molecular data revealed that monotypic Aquilomyces belongs to Morosphaeraceae, monotypic Flavomyces represents an incertae sedis lineage related to Massarinaeae, and Darksidea, with six new species, is allied to the Lentitheciaeae. During this study we tested numerous conditions to induce sporulation, and managed for the first time to induce several DSE to form their sexual morphs.

Article info
Received: 11 November 2014; Accepted: 6 February 2015; Published: 24 February 2015.

© 2015 Naturalis Biodiversity Center & Centraalbureau voor Schimmelcultures

http://dx.doi.org/10.3767/003158515X687669
Species	Strain no. 1	Isolate no.	Host plant	Collection date	Strains published 2	GenBank Accession no. 3	
Aquilomyces patris	CBS 135661 = CPC 22895 (ex-type)	DSE-4 / 099	*Populus alba*	July 2005	REF099	KP184002, KP184041, KP184077, KP184119, –	KP184154 –
	CBS 135700 = CPC 22896	DSE-4 / 100	*P. alba*	July 2005	REF100	KP184004, KP184042, KP184078, KP184120, –	KP184155 –
	CBS 135662 = CPC 22897	DSE-4 / 101	*P. alba*	July 2005	REF101	KP184003, KP184043, KP184079, KP184121, –	KP184156 –
Darksidea alpa	CBS 135627 = CPC 22861	DSE-7 / 1	*Bromus tectorum*	June 2012	–		
	CBS 135628 = CPC 22862	DSE-7 / 2	*Festuca vaginata*	June 2012	–		
	CBS 135630 = CPC 22864	DSE-7 / 4	*S. borysbergenica*	July 2012	–		
	CBS 135631 = CPC 22865	DSE-7 / 5	*F. vaginata*	September 2010	–		
	CBS 135632 = CPC 22866	DSE-7 / 6	*F. vaginata*	September 2010	–		
	CBS 135641 = CPC 22875	DSE-7 / 15	*Allanthus alismatis*	July 2008	REF132		
	CBS 135642 = CPC 22876	DSE-7 / 16	*F. vaginata*	July 2005	REF133		
	CBS 135643 = CPC 22877	DSE-7 / 17	*S. borysbergenica*	May 2005	REF135		
	CBS 135644 = CPC 22878	DSE-7 / 18	*F. vaginata*	July 2005	REF136		
	CBS 135645 = CPC 22879	DSE-7 / 19	*S. borysbergenica*	May 2005	REF137		
	CBS 135646 = CPC 22880	DSE-7 / 20	*F. vaginata*	July 2005	REF138		
	CBS 135647 = CPC 22881	DSE-7 / 21	*F. vaginata*	July 2005	REF139		
	CBS 135648 = CPC 22882	DSE-7 / 22	*F. vaginata*	July 2012	–		
	CBS 135649 = CPC 22883	DSE-7 / 23	*F. vaginata*	July 2012	–		
	CBS 135650 = CPC 22884 (ex-type)	DSE-7 / 24	*F. vaginata*	July 2012	–		
	CBS 135651 = CPC 22885	DSE-7 / 25	*F. vaginata*	July 2012	–		
	CBS 135652 = CPC 22886	DSE-7 / 26	*F. vaginata*	July 2012	–		
	CBS 135653 = CPC 22887	DSE-7 / 27	*F. vaginata*	July 2012	–		
	CBS 135654 = CPC 22888	DSE-7 / 28	*F. vaginata*	July 2012	–		
	CBS 135655 = CPC 22889	DSE-7 / 29	*F. vaginata*	July 2012	–		
	CBS 135656 = CPC 22890	DSE-7 / 30	*F. vaginata*	July 2012	–		
	CBS 135657 = CPC 22893	DSE-7 / 31	*F. vaginata*	July 2012	–		
	CBS 135660 = CPC 22894	DSE-7 / 34	*S. borysbergenica*	July 2012	–		
D. beta	CBS 135636 = CPC 22870	DSE-7 / 10	*F. vaginata*	July 2005	REF127		
	CBS 135637 = CPC 22871 (ex-type)	DSE-7 / 11	*F. vaginata*	July 2005	REF128		
	CBS 135657 = CPC 22891	DSE-7 / 31	*F. vaginata*	July 2012	–		
D. gamma	CBS 135633 = CPC 22867	DSE-7 / 7	*F. vaginata*	July 2005	REF123		
	CBS 135634 = CPC 22868	DSE-7 / 8	*F. vaginata*	July 2005	REF124		
	CBS 135635 = CPC 22869	DSE-7 / 9	*F. vaginata*	July 2005	REF125		
D. delta	CBS 135629 = CPC 22863	DSE-7 / 3	*F. vaginata*	June 2012	–		
	CBS 135638 = CPC 22872 (ex-type)	DSE-7 / 12	*F. vaginata*	July 2005	REF129		
	CBS 135639 = CPC 22873	DSE-7 / 13	*Fumana procumbens*	July 2005	REF130		
D. epsilon	CBS 135658 = CPC 22892 (ex-type)	DSE-7 / 32	*S. borysbergenica*	July 2012	–		
D. zeta	CBS 135640 = CPC 22874 (ex-type)	DSE-7 / 14	*F. vaginata*	July 2005	REF131		
Flavomycina fulfohiza	CBS 135664 = CPC 22899	DSE-8 / 143	*F. vaginata*	July 2005	REF143		
	CBS 135761 = CPC 22900 (ex-type)	DSE-8 / 5	*F. vaginata*	July 2005	REF144		
Pestonia macrospinosa	CBS 135663 = CPC 22898	DSE-8 / 8	*F. vaginata*	June 2012	–		

1. CBS: CBS: Fungal Biodiversity Centre, Utrecht, The Netherlands; CPC: Collection Pedro Crous, housed at CBS.
2. Strains published by Knapp et al. 2012. PLoS ONE 7: e32570.
3. ITS: internal transcribed spacer regions of the nrDNA and intervening 5.8S nrDNA; LSU: partial 28S large subunit of the nrRNA gene; SSU: partial 18S small subunit of the nrRNA gene; ACT: partial actin gene; TUB: partial beta-tubulin gene; CAL: partial calmodulin gene; TEF: partial translation elongation factor 1-alpha gene. All of the strains were isolated from surface sterilized healthy root segments of healthy-looking host plants. Isolates were collected by Dénes G. Knapp, Alexandra Pintye, Erik Zajda and Galibor M. Kovács at Fügőörs, Hungary (44°52' E19°25') except the strain CBS 135664, which was collected near Tatárszentgyörgy, Hungary (44°03'3 E19°24'3').
MATERIAL AND METHODS

Isolates and locus selection

Roots of three native grass species – sand feather grass (Stipa borystenhica), Festuca vaginata and cheat grass (Bromus tectorum) – were collected from semiarid grasslands near Fulopsháza (N46°52′ E19°25′), Hungary, during the summer of 2012 (for detailed description of the site see Kóvács & Szigetvári 2002 and Knapp et al. 2012). Isolates were collected from surface-sterilised healthy roots as described in Knapp et al. (2012), and cultivated on a Modified Melin-Norkrans agar (MMN, Marx 1969). As the colony morphology of isolates with similar or even identical nrDNA ITS sequences can be completely different in the clade DSE-7, we designed a diagnostic PCR primer pair for rapid identification of isolates belonging to this clade. Based on the internal transcribed spacer regions ITS alignment of our sequences and sequences from GenBank we designed specific forward (DSE7F: GTGTGGTCCTCGGCAGGTC) and reverse (DSE7R: ACGACGCTGCGCAATACC) primers targeting the ITS1 and ITS2 regions, and amplifying an c. 300-bp long segment. Nineteen isolates obtained from roots of the three grass species (Table 1) with positive reaction to the designed primers, were kept for further study.

Two additional isolates obtained during the present survey were included in this study. Both belonged to group DSE-8. One of the isolates (CBS 135761) had colony characteristics similar to isolate REF143 (CBS 135664) and was considered a member of group DSE-8 (Knapp et al. 2012). The other isolates (CBS 135663) belonged to another subclade of DSE-8 representing Periconia macrospinosa, and was used in the phylogenetic analyses (see below) (Knapp et al. 2012).

Other than the isolates collected during the present survey, 19 isolates obtained previously (Knapp et al. 2012) were also included: 15 isolates of group DSE-7, three isolates of group DSE-4 and one isolate (REF143) from group DSE-8 (Table 1), representing 40 isolates in total. All isolates investigated in this study are deposited in the CBS culture collection (CBS 135627–135664, 135760, 135761), and nomenclatural novelties and descriptions deposited in MycoBank (www.MycoBank.org, Crous et al. 2004).

Sporulation

To induce sporulation, isolates were cultured on different media in 9-cm Petri dishes; potato-dextrose agar (PDA), synthetic nutrient-poor agar (SNA), malt extract agar (MEA), oatmeal agar (OA) (see Crous et al. 2009), MMN (Marx 1969) and Murashige-Skoog agar (MS, Murashige & Skoog 1962, M5524 Sigma-Aldrich Co. LLC., USA) were used. All cultures were incubated at room temperature in the dark, while cultures on MMN and MS were also incubated in the dark at 10 °C.

Furthermore, isolates were also cultured onto the following autoclaved plant parts laid on media to promote sporulation: barley shoots, pine needles, stinging nettle stems and rye grass roots on SNA, and white elm stems on MS. Two parallel replicates of each representative isolate studied were incubated at room temperature and at 10 °C in the dark.

Three parallel replicates of each representative isolate of the groups were cultured onto MEA and MMN and three different treatments applied: i) colonies were burned with a red-hot needle and incubated for 4 wk at room temperature; ii) colonies were exposed daily to near-ultraviolet light for 3 x 10 min for 3 d and subsequently incubated for 4 wk at room temperature, and afterwards stored in dark at 4 °C for several months; and iii) colonies were allowed to dry out on the laboratory bench over a period of 3 mo at room temperature.

Morphology

Observations were made with a Zeiss V20 Discovery stereomicroscope, and with a Zeiss Axio Imager 2 light microscope using differential interference contrast (DIC) illumination and an AxioCam MRc5 camera and ZEN software. Measurements and photographs were made from structures mounted in clear lactic acid. Colony morphology was assessed on MMN and MEA media inoculated with 4-mm-diam fungal plugs in 5-cm Petri dishes at room temperature after 4 wk. Colony colours (surface and reverse) were established using the colour charts of Rayner (1970).

DNA extraction, amplification and phylogeny

DNA was isolated from all isolates, amplified, and sequenced using both forward and reverse primers for partial ITS, partial 18S nrRNA (SSU), 28S nrRNA (LSU), actin (ACT) and calmodulin (CAL) genes; for the DSE-7 isolates, partial transcription-elongation factor 1-α (TEF) and β-tubulin (TUB) gene sequences were also determined. For rapid identification of DSE-7 isolates, a small amount of mycelium was disrupted in 30 μL TE, incubated on 96 °C for 10 min, and used in the diagnostic PCR performed in a Biometra Gradient Thermocycler (Biometra) with an initial denaturing at 95 °C for 5 min, followed by 35 cycles of denaturation at 95 °C for 30 s, annealing at 55 °C for 30 s, extension 72 °C for 40 s and 5 min final extension at 72 °C. The PCR products visualised under UV light after electrophoresis on a 1.5 % agarose gel at 100 V for 20 min. Genomic DNA was extracted from fungal mycelia using the UltraClean™ Microbial DNA Isolation Kit (Mo Bio Laboratories, Inc., Solana Beach, CA, USA) according to the manufacturer’s instructions.

The primers V9G (de Hoog & Gerrits van den Ende 1998) and LR5 (Vilgalys & Hester 1990) were used to amplify the nrDNA operon containing the 3’ end of the 18S nrRNA gene (SSU), the ITS region and the partial 28S nrRNA gene (LSU). The ITS region and partial 28S nrRNA gene were sequenced using internal primers ITS4 and ITS5 (White et al. 1990) and LR1R (Rehner & Samuels 1994) and LR5 (Vilgalys & Hester 1990) primers. The primers NS1 and NS4 (White et al. 1990) were used to amplify and sequence part of the 18S nrRNA gene. The partial actin gene (ACT) was amplified using the primers ACT-512F (Carbone & Kohn 1999) and ACT-2Rd (Quaedvlieg et al. 2011) and part of the translation elongation factor 1-α gene (TEF) using EF1-728F (Carbone & Kohn 1999) and EF-2Rd (Groenewald et al. 2013) primers. The primers CAL-228F (Carbone & Kohn 1999) and CAL-2Rd (Groenewald et al. 2013) were used to amplify part of the calmodulin gene (CAL) while the primers CYLTUB1F (Groenewald et al. 2013) and Bt-2b (Glass & Donaldson 1995) were used to amplify part of the β-tubulin gene (TUB). The protocols outlined by Groenewald et al. (2013) were followed for the amplification of these loci. The PCR products were sequenced in both directions using the primers listed above and the BigDye Terminator v. 3.1 Cycle Sequencing Kit (Applied Biosystems, Foster City, CA, USA), according to the manufacturer’s recommendations, and analysed with an ABI Prism 3730XL DNA Analyzer (Applied Biosystems). The sequences were compiled from electrophoregrams using the Pregap4 and Gap4 software packages (Staden et al. 2000) and deposited in GenBank (KP183965–KP184224). The sequences obtained were compared to sequences in public databases using a blast search (http://blast.ncbi.nlm.nih.gov/Blast.cgi) (Altschul et al. 1990).

Phylogenetic analyses

Three datasets were used in the phylogenetic analyses. The order-level dataset was used to gain information about the phylogenetic position of groups DSE-4, DSE-7 and DSE-8 in Pleo-
Fig. 1 Phylogenetic tree of representative sequences from Dothideomycetes and from the dark-septate endophyte genera Darksidea, Aquilomyces and Flavomyces (labeled with red). The 50% majority rule consensus phylogram (from the Bayesian analysis of the combined dataset of ITS, LSU, SSU, TEF), Bayesian posterior probabilities (≥ 0.90) are shown as percentages before slashes or above branches, ML bootstrap support values (≥ 70%) are shown after slashes or below branches. Schisnatoma decolorans (DUKE 0047570) served as outgroup. Highlighted sections indicate affiliations to families or orders. The scale bar indicates 0.2 expected changes per site per branch.
sporales (Fig. 1). This dataset also contains taxa belonging to other dothideomycete orders, but only Pleosporales was represented by all its known families. The family-level dataset was used to study the position of group DSE-7 within the family Lecythidiaceae (Fig. 2). The third dataset was established to study the intra-group phylogenetic relation of DSE-7 isolates (Fig. 3).

Alignments of our sequences supplemented with sequences from GenBank of respective loci were made using the online version of MAFFT v. 6 (Katoh & Toh 2008). The alignments were checked and edited with MEGA v. 5 (Tamura et al. 2011) and version of MAFFT v. 6 (Katoh & Toh 2008). The alignments were carried out using the partial LSU, SSU and TEF sequences. The phylogenetic trees were visualised and edited by FigTree v. 1.4.0 (http://tree.bio.ed.ac.uk/software/figtree) and MEGA v. 5 (Tamura et al. 2011).

The order-level multi-loci phylogenetic analyses (Fig. 1) were carried out using the partial LSU, SSU and TEF sequences. The following priors were set in MrBayes for the different partitions: all partitions had dirichlet base frequencies and GTR+I+G model with inverse gamma-distributed rates for LSU. Four Markov chains were run for 10 000 000 generations sampled every 500 generations with a burn-in value set at 7 500 sampled trees.

Fig. 1 (cont.)
For the family-level phylogeny (Fig. 2) the partial LSU, SSU and TEF sequences of representative strains of DSE-7 and sequences of taxa reported to belong to family Lentitheciaceae were examined. In the Bayesian analysis the substitution models GTR+I+G were implemented for SSU and TEF, and HKY+I+G for LSU. Four Markov chains were run for 15 000 000 generations and sampled every 1 000 generations with a burn-in value set at 3 000 sampled trees.

For the intra-group phylogenetic analysis of isolates of DSE-7 (Fig. 3) the more variable sequences, namely ITS, partial ACT, TUB, CAL and TEF, were used. The GTR+I+G model with inverse gamma-distributed rates was implemented for ITS and partial ACT, TUB and TEF, while CAL was analysed using the K2P model. To gain phylogenetic information of indel regions of the ITS (Nagy et al. 2012), indel coding was accomplished with FastGap v. 1.1 (Borchsenius 2007). The two-parameter binary matrix of indel characters appended to the alignments in the Bayesian analyses. Four Markov chains were run for 10 000 000 generations sampled every 1 000 generations with a burn-in value set at 3 000 sampled trees.

RESULTS

Molecular phylogeny

Targeted DNA sequences of isolates could be used for the phylogenetic analyses excluding the following that failed to be amplified: TEF of strain CBS 135636, CAL of strain CBS 135655 and all regions except ITS of strain CBS 135635 (Table 1). The TUB sequence of strain CBS 135646 failed to align properly with other TUB sequences and was therefore excluded from further analysis.

According to the results of the order-level phylogenetic analyses (Fig. 1), all three DSE groups unambiguously belong to the order Pleosporales and are nested in different families. The group DSE-4 represents a basal lineage in Morosphaeriaceae. The distinct isolates of group DSE-8 form a well-supported incertae sedis clade together with Massarina igniaria (CBS 845.96), Periconia macropinosa (CBS 135663) and Noosia banksiae (CPC 17282) in the suborder Massarineae. There was almost no sequence heterogeneity of the loci among the studied isolates in the group DSE-4 and DSE-8 (data not shown). Representative isolates of group DSE-7 formed a well-supported clade in the family Lentitheciaceae in a sister group position with Tingoldiago graminicola.

In the family-level phylogenetic analyses group DSE-7 also formed a well-supported distinct clade as a sister group of Tingoldiago graminicola (Fig. 2). The type species of the family, Lentithecium fluviatile, grouped with L. calvescens while L. arundinaeum formed a distant lineage with Stagonospora macropycnidia. Interestingly, both species isolated from bamboo, Kumatotoa bambusicola and Ophiosphaerella sasicola, formed a common clade (Fig. 2).

The intra-group phylogenetic analyses of group DSE-7 (Fig. 3) resulted in well-supported distinct clades. One clade comprised the majority of isolates (23 isolates) with a moderate intra-clade heterogeneity at all loci studied (data not shown). The second and third clades formed monophyletic groups with 3 and 2 isolates, respectively. The fourth and fifth clades formed monophyletic groups with 3 and 1 isolates, respectively. The sixth clade was a basal distinct lineage consisting of a single isolate (Fig. 3). Results of the molecular phylogenetic analyses reinforce our hypothesis that these lineages represent three novel genera within the Massarineae.
Fig. 3 Phylogenetic tree of the isolates of six Darksidea species. The 50 % majority rule consensus phylogram inferred from the Bayesian analysis of the combined dataset of five loci (ITS, ACT, TUB, TEF, CAL). Bayesian posterior probabilities (≥ 0.90) are shown as percentages before slashes or above branches. RAxML bootstrap support values (≥ 0.70) are shown after slashes or below branches. *Aquilomyces patris* (CBS 135760) served as outgroup. The scale bar indicates 0.02 expected changes per site per branch.

Taxonomy

Although numerous media and culture conditions were set and tested to induce sporulation, sporocarp-like structures could be observed only under one specific circumstance. These structures were observed on the surface of stinging nettle stem kept on SNA at room temperature 3–4 wk after inoculation. Sporocarps were produced by several isolates of DSE-7, but not of DSE-4 or DSE-8. Fertile isolates of the DSE-7 group formed dark brown, globose sporocarps with asci and ascospores. Although we tried to reproduce the sporulation using the same circumstances several times, subsequent attempts proved unsuccessful.

Aquilomyces patris D.G. Knapp, Kovács, J.Z. Groenew. & Crous, gen. & sp. nov. — MycoBank MB810756 (genus); MB810757 (species); Fig. 1, 4

Etymology. Named after the dark hyphae and colony (*aquis* = dark coloured), and in honour and memory of DGK’s father (= patris).

Aquilomyces patris differs from its closest phylogenetic neighbour, *Morosphaeria ramunculicola* (BCC 18405) by unique fixed alleles in the LSU and SSU loci based on alignments of the separate loci deposited in TreeBASE as study S16626: LSU positions: 129 (T), 139 (A), 145 (C), 232 (T), 335 (C), 349 (C), 355 (A), 357 (T), 369 (A), 382 (T), 422 (G), 478 (G), 550 (T), 661 (C), 662 (T), 669 (T); SSU positions: 24 (C), 70 (T), 71 (C), 72 (C), 79 (C), 80 (T), 295 (G), 1002 (C), 1094 (C), 1123 (C).

Culture characteristics — Colonies covering the Petri dish after 4 wk at 24 °C. On MMN colonies fluffy, spreading with abundant aerial mycelium, olivaceous-grey to pale-brown with smoke-grey marginal zone. Colonies on MEA smoke-grey to olivaceous-grey, somewhat flat, less fluffy with pale grey marginal zone.

Specimens examined. HUNGARY: Fülöpháza, N46°52’ E19°25’, in root of *Populus alba*, July 2005, G.M. Kovács & A. Pintye (holotype permanently preserved in a metabolically inactive state CBS 135661; other numbers CPC 22895 = DSE-4/099 = REF099); ibid., (CPC 22896 = CBS 135760 = DSE-4/100 = REF100); ibid., (CPC 22897 = CBS 135662 = DSE-4/101 = REF101).

Notes — Isolates belonging to the genus *Aquilomyces* are root endophytes associated with white poplar (*Populus alba*) in Fülöpháza, Hungary.

Flavomyces fulophazii D.G. Knapp, Kovács, J.Z. Groenew. & Crous, gen. & sp. nov. — MycoBank MB810758 (genus); MB810759 (species); Fig. 1, 4

Etymology. Named after the characteristic pale yellow-eosine pigment diffusing into the medium, and after the collection site Fülöpháza in Hungary.

Flavomyces fulophazii is a fungal root endophyte. *Flavomyces fulophazii* (CBS 135761) differs from its closest phylogenetic neighbour, *Massarina igniaria* (CBS 84596) (Fig. 1) by unique fixed alleles in the LSU and SSU loci based on alignments of the separate loci deposited in TreeBASE as study S16626: LSU
Fig. 4 Colonies of the strains of the three novel genera and P. macrospinosa on MMN media. a–w. Darksidae alpha; x–z. Darksidae beta; aa–ac. Darksidae gamma; ad–af. Darksidae delta; ag. Darksidae epsilon; ah. Darksidae zeta; ai–ak. Aquilomyces patris; al–am. Flavomyces fulophazii; an. Periconia macrospinosa.
positions: 38 (C), 48 (A), 65 (C), 74 (C), 78 (G), 84 (C), 146 (deletion), 147 (T), 174 (C), 435 (C), 456–481 (insertion), 490 (C), 624 (G), 630 (C), 658–672 (insertion), 860 (C), 862 (G), 864 (A); SSU positions: 22 (C), 26 (G), 34 (G), 39 (G), 71 (T), 294 (C), 408–834 (insertion), 890 (A), 971 (G), 1011 (C), 1028 (A), 1050 (G), 1081 (A), 1082 (T), 1083 (A), 1084 (G), 1090 (G).

Culture characteristics — Colonies covering the Petri dish after 2 wk at 24 °C. On MMN colonies submerged, white to pale yellow with sparse hyaline aerial mycelium, with diffuse pale yellow-eosine pigment forming in media. After years of storage the ability to stain the medium can be lost, while colonies become flat with lobate marginal zone. On MEA colonies submerged, white with more aerial hyaline mycelium.

Specimens examined. **Hungary**, Fülöpháza, N46°52' E19°25', in root of *Festuca vaginata*, July 2012, E. Zajta & D.G. Knapp (holotype permanently preserved in a metabolically inactive state CBS 135761; other numbers CPC 22900 = DSE-8/S); Fülöpháza, N46°52' E19°25', in root of *Festuca vaginata*, July 2005, G.M. Kovács & A. Pintye (CPC 22899 = CBS 135644 = DSE-8/143 = REF143).

Notes — Isolates belonging to the genus *Flavomyces* are root endophytes associated with *Festuca vaginata* in semiarid grasslands near Fülöpháza, Hungary.

Darksidea D.G. Knapp, Kovács, J.Z. Groenew. & Crous, gen. nov. — MycoBank MB810760; Fig. 1–6

Etymology. The name of the genus alludes to the fact that these fungi belong to dark septate endophytes, the enigmatic root colonising fungal group ‘on the dark side’.

Type species. Darksidea alpha D.G. Knapp, Kovács, J.Z. Groenew. & Crous, sp. nov.

Ascomata globose, brown; ostiole not seen; wall of 3–4 layers of brown [*textura angularis*], surface of [*textura epidermoidea*]. Pseudoparaphyses intermingled among asci, hyaline, septate, hyphal, anastomosing. Ascii bitunicate, clavate to ellipsoid, with weakly developed apical chamber, stipitate, 4–6-spored. Ascospores multiseriate in asci, hyaline, guttulate, aseptate, thick-walled, ellipsoid. The genus *Darksidea* contains root endophytic fungi associated almost exclusively with grasses in arid and semiarid areas. *Darksidea* isolates can be collected from surface-sterilised roots and can be cultured and maintained on general media. Using the primer pairs DSE7F / DSE7R (this study), a c. 300-bp-long partial ITS region of fungi belonging to the genus *Darksidea* can be amplified by PCR.

Notes — Colony morphology is variable among *Darksidea* spp. Shape, growth characteristics, colour, presence of exudates and diffusion can even vary among isolates of the same species (Fig. 6). Cultures are generally sterile. Isolates were collected from surface-sterilised roots of *Festuca vaginata*, sand feather grass (*Stipa borysthenica*), cheat grass (*Bromus tectorum*) and two dicots, namely sprawling needle sunrose (*Fumana procumbens*) and tree of heaven (*Ailanthus altissima*) (Knapp et al. 2012). Sequence data of uncultured *Darksidea* spp. were gained from below-ground tissues of Indian ricegrass (*Stipa hymenoides*) (Hawkes et al. 2006), blue grama grass (*Bouteloua gracilis*) (e.g. Green et al. 2008), sand dropseed (*Sporobolus cryptandrus*) (e.g. Herrera et al. 2011b), *Stipa grandidis* (Su et al. 2010), European beachgrass (*Ammophila arenaria*) (Sánchez-Márquez et al. 2008) and soil of semiarid grasslands (e.g. Porras-Alfaro et al. 2011). Sequence data of *Darksidea* spp. have been obtained from roots of dominant...
grasses of arid-semiarid regions in at least three different continents (Porras-Alfaro et al. 2008, Su et al. 2010, Knapp et al. 2012).

Darksidea alpha D.G. Knapp, Kovács, J.Z. Groenew. & Crous, sp. nov. — MycoBank MB810761; Fig. 3–5

Etymology. Referring to the Greek alphabet.

Ascomata globose, brown, up to 180 µm diam; ostiole not seen; wall of 3–4 layers of textura angularis, 5–10 µm diam, surface of textura epidermoidea. Pseudoparaphyses intermingled among asci, hyaline, septate, hyphal, anastomosing, 2–3 µm diam. Asci bitunicate, clavate, with weakly developed apical chamber, stipitate, 60–80 × 40–45 µm, 4–6-spored. Ascospores multiseriate in asci, hyaline, guttulate, aseptate, thick-walled, ellipsoid, 18–30 × 12–17 µm. *Darksidea alpha* is a fungal root endophyte. *Darksidea alpha* (CBS 135650) differs from *Tingoldiago graminicola* (KH 68) by unique fixed alleles in the LSU and SSU loci based on alignments of the separate loci deposited in TreeBASE as study S16626: LSU positions: 30 (A); SSU positions: 442 (C), 467 (C), 555 (C), 649 (C), 675 (C), 742 (G), 743 (A), 815 (T), 816 (T).

Culture characteristics — On both MMN and MEA colonies can be white-yellow (e.g. CBS 135645 or CBS 135646), dark-grey (e.g. CBS 135630 or CBS 135643) or pale brown (e.g. CBS 135653). Colonies can be slow-growing (e.g. CBS 135631 and CBS 135632) do not reach the edge of the 5-cm Petri dish in 12 wk at 24 °C) or fast-growing (e.g. CBS 135627 and CBS 135628 covering the 5-cm Petri dish after 2 wk at 24 °C), flat with an entire edge without sparse aerial mycelium (e.g. CBS 135643 and CBS 135650), or fluffy with a submerged marginal zone (e.g. CBS 135655). The majority of strains stain the agar from pale orange-brown to deep red (e.g. CBS 135631, CBS 135643, CBS 135647 and CBS 135650). Two strains also produced red crystals in the agar (CBS 135631 and CBS 135632), while some strains secreted sparse exudate droplets (e.g. CBS 135654 and CBS 135655).

Specimens examined. **Hungary.** Fülöpháza, N46°52' E19°25', in root of Festuca vaginata, July 2012, D.G. Knapp & E. Zajta (holotype permanently preserved in a metabolically inactive state CBS 135650; other numbers CPC 22884 = DSE-7/24); ibid., (CPC 22862 = CBS 135628 = DSE-7/2); ibid., (CPC 22882 = CBS 135648 = DSE-7/22); ibid., (CPC 22883 = CBS 135649 = DSE-7/23); ibid., (CPC 22885 = CBS 135651 = DSE-7/25); ibid., (CPC 22886 = CBS 135652 = DSE-7/26); ibid., (CPC 22887 = CBS 135653 = DSE-7/27); ibid., (CPC 22888 = CBS 135654 = DSE-7/28); ibid., (CPC 22890 = CBS 135655 = DSE-7/29); ibid., (CPC 22891 = CBS 135656 = DSE-7/30); Sept. 2010, D.G. Knapp (CPC 22865 = CBS 135631 = DSE-7/5); ibid., (CPC 22866 = CBS 135632 = DSE-7/6); July 2005, G.M. Kovács & A. Pintye (CPC 22876 = CBS 135642 = DSE-7/16 = REF133); ibid., (CPC 22878 = CBS 135644 = DSE-7/18 = REF136); ibid., (CPC 22880 = CBS 135646 = DSE-7/20 = REF138); ibid., (CPC 22881 = CBS 135647 = DSE-7/21 = REF139); in root of Stipa borysthenica, July 2012, D.G. Knapp & E. Zajta (CPC 22864 = CBS 135630 = DSE-7/4); May 2005, G.M. Kovács & A. Pintye (CPC 22877 = CBS 135643 = DSE-7/17 = REF135); ibid., (CPC

![Fig 6 Ascus and ascospores of *Darksidea* spp. — a–e. *Darksidea gamma* (CBS 135634). a–c. Conidiomata showing ostioles; d. ascoma; e–g. asci. — h–l. *Darksidea beta* (CBS 135637). h–k. Asci; l. ascospores. — Scale bars: a, c = 300 µm, d = 200 µm, all others = 10 µm.](image-url)
Notes — Sporocarp-like structures of several isolates were observed once on the surface of autoclaved stinging nettle stem kept on SNA at room temperature 3-4 wk after the inoculation. The colony morphology of _D. alpha_ isolates is highly diverse.

Darksidea beta D.G. Knapp, Kovács, J.Z. Groenew. & Crous, _sp. nov._ — MycoBank MB810762; Fig. 3, 4, 6

Etymology. Referring to the Greek alphabet.

Ascomata globose, brown, up to 250 µm diam; ostiolo not seen; wall of 3–4 layers of _textura angularis_, 5–10 µm diam, surface of _textura epidermoidea_. **Pseudoparaphyses** intermingled among ascii, hyaline, septate, hyphal, anastomosing, 4–5 µm diam. Ascii bitunicate, ellipsoid, with weakly developed apical chamber, stipitate, 23–30 × 14–19 µm. _Darksidea beta_ is a fungal root endophyte. **Darksidea beta** (_CBS 135637_) differs from _D. alpha_ (_CBS 135650_) by unique fixed alleles in the ITS, ACT and TEF loci based on alignments of the separate loci deposited in TreeBASE as study S16626: ITS positions: 102 (T), 263 (T), 607 (A), 614 (deletion); ACT positions: 292 (T), 400 (C), 553 (T); TEF positions: 201 (T), 414 (A).

Culture characteristics — Colonies covering the Petri dish after 2–3 wk at 24 °C. On MMN colonies smoke-grey to olivaceous-grey, with sparse aerial mycelium, and a submergent pale brown marginal zone. On MEA colonies smoke-grey to olivaceous-grey, with abundant white aerial mycelium; exudates often observed in concentric rings.

Specimens examined. **HUNGARY,** Fülöpháza, N46°52' E19°25', in root of _Festuca vaginata_, July 2005, G.M. Kovács & A. Pínnye (holotype permanently preserved in a metabolically inactive state CBS 135634; other numbers CPC 22868 = DSE-7/8 = REF124); ibid., _CBS 22867 = CBS 135633 = DSE-7/7 = REF123_; ibid., _CBS 22869 = CBS 135635 = DSE-7/9 = REF125_.

Notes — Ascomata of CBS 135634 were observed on the surface of autoclaved stinging nettle stem kept on SNA at room temperature 3–4 wk after inoculation.

Darksidea delta D.G. Knapp, Kovács, J.Z. Groenew. & Crous, _sp. nov._ — MycoBank MB810764; Fig. 3, 4

Etymology. Referring to the Greek alphabet.

Darksidea delta is a fungal root endophyte. **Darksidea delta** (_CBS 135638_) differs from _D. alpha_ (_CBS 135650_) by unique fixed alleles in the ITS, ACT, TEF and CAL loci based on alignments of the separate loci deposited in TreeBASE as study S16626: ITS positions: 238 (T), 281 (A), 465 (C); ACT positions: 200 (T), 337 (C), 547 (T); TEF positions: 38 (C), 39 (G), 40 (A), 230 (T), 404 (T); CAL positions: 142 (A), 256 (T), 633 (T).

Culture characteristics — Colonies covering the 5-cm Petri dish after 3–5 wk at 24 °C on MMN. Colonies smoke-fluffy, olivaceous-grey to pale brown, spreading with abundant aerial mycelium, exudates often observed in concentric rings. Colonies covering the dish after 6 wk at 24 °C on MEA. Colonies smoke-grey to yellow or white with an entire edge and sparse aerial mycelium, exudates generally observed.

Specimens examined. **HUNGARY,** Fülöpháza, N46°52' E19°25', in root of _Festuca vaginata_, July 2005, G.M. Kovács & A. Pínnye (holotype permanently preserved in a metabolically inactive state CBS 135638; other numbers CPC 22872 = DSE-7/12 = REF129); June 2012, D.G. Knapp & E. Zajta (_CBS 135650_). _CBS 135629_ = DSE-7/34); in root of _Ailanthus altissima_, 97

Notes — Isolate CBS 135629 were observed when colonies were inoculated onto the surface of autoclaved stinging nettle stem on SNA at room temperature for 3–4 weeks. These structures remained sterile.

Darksidea epsilon D.G. Knapp, Kovács, J.Z. Groenew. & Crous, _sp. nov._ — MycoBank MB810765; Fig. 3, 4

Etymology. Referring to the Greek alphabet.

Darksidea epsilon is a fungal root endophyte. **Darksidea epsilon** (_CBS 135658_) differs from _D. alpha_ (_CBS 135650_) by unique fixed alleles in the ITS, ACT, TUB and CAL loci based on alignments of the separate loci deposited in TreeBASE as study S16626: ITS positions: 98 (T), 289 (A), 406 (T); TUB positions: 56–57 (deletion), 461 (A), 579 (T). _Darksidea epsilon_ is a fungal root endophyte. **Darksidea epsilon** (_CBS 135650_) differs from _D. alpha_ (_CBS 135650_) by unique fixed alleles in the ITS, ACT, TUB and CAL loci based on alignments of the separate loci deposited in TreeBASE as study S16626: ITS positions: 98 (T), 289 (A), 406 (T); TUB positions: 56–57 (deletion), 461 (A), 579 (T). _Darksidea epsilon_ is a fungal root endophyte. **Darksidea epsilon** (_CBS 135650_) differs from _D. alpha_ (_CBS 135650_) by unique fixed alleles in the ITS, ACT, TUB and CAL loci based on alignments of the separate loci deposited in TreeBASE as study S16626: ITS positions: 98 (T), 289 (A), 406 (T); TUB positions: 56–57 (deletion), 461 (A), 579 (T). _Darksidea epsilon_ is a fungal root endophyte. **Darksidea epsilon** (_CBS 135650_) differs from _D. alpha_ (_CBS 135650_) by unique fixed alleles in the ITS, ACT, TUB and CAL loci based on alignments of the separate loci deposited in TreeBASE as study S16626: ITS positions: 98 (T), 289 (A), 406 (T); TUB positions: 56–57 (deletion), 461 (A), 579 (T).
Darksidea zeta
D.G. Knapp, Kovács, J.Z. Groenew. & Crous, sp. nov. — MycoBank MB810766; Fig. 3–5

Etymology. Referring to the Greek alphabet.

Ascomata globose, brown, erumpent, up to 200 µm diam; ostiole not seen; wall of 3–4 layers of textura angularis; 5–10 µm diam, surface of textura epidermoidea. Pseuroparaphyses intermingled among asci, hyaline, septate, hyphal, anastomosing, 2–3 µm diam. Asci bitunicate, ellipsoid, with weakly developed apical chamber, stipitate, 60–80 × 40–50 µm, 4–6-spored. Asco- spores multisierate in asci, hyaline, guttulate, aseptate, thick- walled, ellipsoid, 19–30 × 12–15 µm. Darksidea zeta is a fungal root endophyte. Darksidea zeta (CBS 135640) differs from D. alpha (CBS 135650) by unique fixed alleles in the ITS, ACT, TUB, TEF and CAL loci based on alignments of the separate loci deposited in TreeBASE as study S16626: ITS positions: 173 (G), 220 (C), 246 (deletion), 256 (T), 604 (A); ACT positions: 42 (T), 94 (C), 156 (C), 161 (C), 166–168 (deletion), 173 (T), 183 (G), 185 (T), 186 (C), 250 (T), 253 (A), 525 (T), 577 (T); TUB positions: 63 (T), 81 (T), 246 (C), 276 (T), 282 (T); TEF positions: 10 (C), 153 (G), 194 (T), 202 (G), 230 (G), 269 (C), 362 (T), 409 (G), 622 (T), 835 (T), 877 (C); CAL positions: 107 (T), 167 (G), 258 (G), 307 (C), 431 (G).

Culture characteristics — Colony covering the Petri dish after 2 wk at 24 °C; colony white to 4–5 wk at 24 °C on MMN. Colony on MMN brown-grey with asexual growth, smooth, shiny, and it was further supported by our findings. Sexual morphs of Darksidea zeta were not observed in the cultures described here. The new genus Darksidea belongs to the Lentitheciaceae (Zhang et al. 2009), although morphologically it is clearly distinct from the Lentitheciaceae, a family in which it clusters. Aquilomyces clusters in the Morasphaeriaceae, representing a new basal taxon within the family Heliscaceae, and it was further supported by our findings. Sexual morphs of Darksidea zeta were not observed in the cultures described here. The new genus Darksidea belongs to the Lentitheciaceae (Zhang et al. 2009), although morphologically it is clearly distinct from the Lentitheciaceae, a family in which it clusters. Aquilomyces clusters in the Morasphaeriaceae, representing a new basal taxon within the family Heliscaceae, and it was further supported by our findings. Sexual morphs of Darksidea zeta were not observed in the cultures described here. The new genus Darksidea belongs to the Lentitheciaceae (Zhang et al. 2009), although morphologically it is clearly distinct from the Lentitheciaceae, a family in which it clusters. Aquilomyces clusters in the Morasphaeriaceae, representing a new basal taxon within the family Heliscaceae, and it was further supported by our findings. Sexual morphs of Darksidea zeta were not observed in the cultures described here. The new genus Darksidea belongs to the Lentitheciaceae (Zhang et al. 2009), although morphologically it is clearly distinct from the Lentitheciaceae, a family in which it clusters.

DISCUSSION

In spite of the increasing general interest in DSE, our knowledge on the diversity and distribution of these fungi is still limited. Only c. 30 DSE species have been described to date (Wang & Wilcox 1985, Jumpponen & Trappe 1998a, Knapp et al. 2012). Further- more, only a fraction of these DSE species have been well-defined and tested to determine if they really fulfil the definition of DSE.

To the best of our knowledge the Pleosporales includes several DSE fungi: Rhizopogon vagum (Andrade-Linares & Franken 2013, Walsh et al. 2014). Furthermore, only a fraction of these DSE species have been well-defined and tested to determine if they really fulfil the definition of DSE.

The three new genera described here nested in the suborder Massarineae in Pleosporales, which comprises mostly sapro- bic species of terrestrial or aquatic environments (Zhang et al. 2012).
septate fungi within the order Pleosporales, named ‘clade A,’ including ‘subclade B’ and ‘subclade C.’ Analyses of those ITS sequences with those of our isolates show that subclade B unambiguously grouped into Darksidea and is most probably grouped with the four species described here. Khidir et al. (2010) also observed several sequences belonging to the aforementioned ‘subclade B,’ and hypothesised that the clade is a Paraphaeosphaeria species (sensu Câmara et al. 2001). This taxonomic hypothesis – later used in Herrera et al. (2010), too – cannot be supported, as Paraphaeosphaeria is unambiguously nested in Montagnulaceae (Verkley et al. 2014). Herrera et al. (2010) compared the RAF communities of B. gracilis along a latitudinal gradient and concluded that the most consistent and common members of the RAF community belonged to this clade. Sequences of Darksidea were also gained from the dung of mammalian herbivores from two distinct grasslands (Herrera et al. 2011a), and from a root of S. cryptandrus in a rainfall manipulation experiment study (Herrera et al. 2011b). The genus was also found in the Eurasian Steppe Belt in both the western (Knapp et al. 2012, see above) and the eastern region (Su et al. 2010). Su et al. (2010) investigated fungal endophytes of the grass S. grandis in the semiarid steppe zone of the Inner Mongolia Plateau, and one of the isolates obtained from a root of S. grandis (named Pleosporales sp. 3 (GenBank HM007086)) was conspecific with D. alpha. Based on this finding we assume that Darksidea is one of the common members of the core DSE community hypothesised to be shared by the semiarid grassland areas worldwide (Knapp et al. 2012).

Although our trials to induce sporulation were not consistent and reproducible, we could detect ascomata, and in several cases asci and ascospores. Although asexual sporulation is also rarely observed among many of the DSE fungi (Jumpponen & Trappe 1998a), it could be induced in culture (e.g. Sieber & Grünig 2006), e.g. extreme long incubation times at low temperatures (Wang & Wilcox 1985, Grünig et al. 2009). Previous studies hypothesised that the sexual stage of some DSE exists and/or existed (e.g. Grünig et al. 2004). Zaffarano et al. (2011) studied the MAT locus structure of thousands of strains of 19 PAC species from various hosts, continents and ecosystems and hypothesised that cryptic sexual reproduction regularly occurs in the PAC. Although data from population genetic studies, genome analysis and attribution of MAT genes could provide evidence of a possible sexual state (e.g. Zaffarano et al. 2011), inducing the sexual morph for DSE fungi has to date been unsuccessful. Although sterile ascocarp-like structures with no ascospores were observed in studies investigating other DSE species in Acephala sp. (UAMH 6816, Currah et al. 1993), to our best knowledge, the present study is the first in which sexual morphs formed by DSE fungi were observed. This demonstrated capability for ascospore production in DSE fungi might help us to better understand the widespread and common occurrence of these root colonizing fungi.

Conclusions

DSE fungi constitute a polyphyletic form-group of fungi representing several orders of the Pezizomycotina. Not only are their functional contributions to ecosystems ‘elusive’ (Mandyam & Jumpponen 2005), but also, their taxonomic diversity is far from known. The three genera described from a semiarid sandy region in the present study illustrate that even distinct new lineages of DSE can still be identified. These well-defined and formally described DSE lineages from distantly related families can be useful in future comparative studies focusing on whether these endophytes have functional similarities, or whether the eponymous morphological characteristics are the only similarities. Since root-associated pleosporalean fungi, including Darksidea species, seem to be common in arid and semiarid regions of different continents (e.g. Porras-Alfaro et al. 2008, Su et al. 2010, Knapp et al. 2012), they can be used in experiments aimed at broadening our understanding the function of DSE fungi in arid and semiarid environments.

Acknowledgements: Funding was provided by the Hungarian Scientific Research Fund (OTKA K72776 and K109102). The study was partly conducted during Dániel G. Knapp’s research stay at CBS supported by a research scholarship of FEMS. Gábor M. Kovács is supported by a János Bolyai Research Scholarship of the Hungarian Academy of Sciences.

REFERENCES

Addy HD, Piercey MM, Currah RS. 2005. Microfungal endophytes in roots. Canadian Journal of Botany 83: 1–13.

Altschul SF, Gish W, Miller W, et al. 1990. Basic local alignment search tool. Journal of Molecular Biology 215: 403–410.

Andrade-Linares DR, Franken P. 2013. Fungal endophytes in plant roots: taxonomy, colonization patterns, and functions. In: Aroca R (eds). Symbiotic endophytes. Soil biology 37: 311–334. Springer-Verlag, Berlin.

Andrade-Linares DR, Grosch R, Franken P, et al. 2011. Colonization of roots of cultivated Solanum lycopersicum by dark septate and other ascomycetous endophytes. Mycologia 103: 710–721.

Barrow JR, Aaltonen RE. 2001. Evaluation of the internal colonization of Atriplex canescens (Pursh) Nutt. roots by dark septate fungi and the influence of host physiological activity. Mycorrhiza 11: 199–205.

Borschgensius F. 2007. FastGap 1.0.8. Software distributed by the authors at: http://www.aubot.dk/FastGap_home.htm.

Caldwell BA, Jumpponen A, Trappe JM. 2000. Utilization of major detrital substrates by dark-septate root endophytes. Mycologia 92: 230–232.

Câmara MPS, Palm ME, Berkum P van, et al. 2001. Systematics of Paraphaeosphaeria: a molecular and morphological approach. Mycological Research 105: 41–56.

Carbone I, Kohn LM. 1999. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91: 553–556.

Cross PW, Gams W, Stajner JA, et al. 2004. MycoBank: an online initiative to launch mycology into the 21st century. Studies in Mycology 50: 19–22.

Crous PW, Verkley GJM, Groenewald JZ, et al. (eds). 2009. Fungal biodiversity. CBS Laboratory Manual Series 1: 1–269. Centraalbureau voor Schimmelcultures, Utrecht, The Netherlands.

Currah RS, Tsuneda A, Murakami S. 1993. Morphology and ecology of Phialocephala fortinii in roots of Rhododendron brachycarpum. Canadian Journal of Botany 71: 1071–1078.

Fernando AA, Currah RS. 1996. A comparative study of the effects of the root endophytes Leptodontodium orchidicola and Phialocephala fortinii (Fungi Imperfect) on the growth of some subalpine plants in culture. Canadian Journal of Botany 74: 1071–1078.

Glass NL, Donaldson G. 1995. Development of primer sets designed for use with PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology 61: 1323–1330.

Green LE, Porras-Alfaro A, Sinsabaugh RL. 2008. Translocation of nitrogen and carbon integrates biotic crust and grass production in desert grassland. Journal of Ecology 96: 1076–1085.

Groenewald JZ, Nakashima C, Nishikawa J, et al. 2013. Species concepts in Cercospora: spotting the weeds among the roses. Studies in Mycology 75: 115–170.

Grünig CR, McDonald BA, Sieber TN, et al. 2004. Evidence for subdivision of the root-endophyte Phialocephala fortinii into cryptic species and recombination within species. Fungal Genetics and Biology 41: 676–687.

Grünig CR, Queloz V, DoÅ, et al. 2009. Phylogeny of Phaeomollisia piceae gen. sp. nov.: a dark, septate, conifer-needle endophyte and its relationships to Phialocephala and Aephepa. Mycological Research 113: 207–221.

Grünig CR, Queloz V, Sieber TN, et al. 2008. Dark septate endophytes (DSE) of the Phialocephala fortinii s.l. – Aephepa antennata species complex in tree roots: classification, population biology, and ecology. Canadian Journal of Botany 86: 1358–1370.

Hawkes CV, Belnap J, D’Antonio C, et al. 2006. Arbuscular mycorrhizal assemblages in native plant roots change in the presence of invasive grasses. Plant and Soil 281: 369–380.

Herrera J, Khidir HH, Eudy DM, et al. 2010. Shifting fungal endophyte communities colonize Bouteloua gracilis: effect of host tissue and geographical distribution. Mycologia 102: 1012–1026.

Herrera J, Poudel R, Khidir HH. 2011a. Molecular characterization of coprophilous fungal communities reveals sequences related to root-associated fungal endophytes. Microbial Ecology 61: 239–244.
Hemera J, Pouget R, Nebel KA, et al. 2011b. Precipitation increases the abund-
dance of some groups of root-associated fungal endophytes in a semiarid
grainland. Ecosphere 2, 4:art50. doi: 10.1890/ES11-00001.1.

Hirayama K, Tanaka K, Raja HA, et al. 2010. A molecular phylogenetic as-
seessment of Massarina ingoldiana sensu lato. Mycologia 102: 729–746.

Hoog GS de, Gerrits van den Ende AHG. 1998. Molecular diagnostics of
clinical strains of filamentous Basidiomycetes. Mycoses 41: 183–189.

Huelsnacke JP, Ronquist F. 2001. MrBayes: Bayesian inference of phy-
genetic trees. Bioinformatics 17: 754–755.

Jumpoonen A, Trappe JM. 1998a. Dark septate endophytes: a review of facul-
tative biotrophic root-colonizing fungi. New Phytologist 140: 295–310.

Jumpoonen A, Trappe JM. 1998b. Performance of Pirurn contorta inoculated
with two strains of root endophytic fungus, Phialocephala fortinii: effects of
synthesis system and glucose concentration. Canadian Journal of Botany
76: 1205–1213.

Junker C, Draeger S, Schulz B. 2012. A fine line – endophytes or pathogens
in Arabidopsis thaliana. Fungal Ecology 5: 657–662.

Kato H, Toh H. 2008. Improved accuracy of multiple ncRNA alignment by
incorporating structural information into a MAFFT-based framework. BMC
Bioinformatics 9: 212.

Khidir HH, Eudy DM, Porras-Alfaro A, et al. 2010. A general suite of fungal
endophytes dominate the roots of two dominant grasses in a semiarid
grassland. Journal of Arid Environments 74: 35–42.

Knapp DG, Pintye A, Kovács GM. 2012. The dark side is not fastidious - Dark
septate endophytic fungi of native and invasive species of semiarid sands.
PLoS ONE 7, e32570.

Kovács GM, Szigetvári C. 2002. Mycorrhizae and other root-associated
fungi to root pathogenic infection. I. Antagonism of mycorrhizal
fungi to root pathogenic infection fungi and soil bacteria. Phytopathology
59: 153–163.

Murashige T, Skoog F. 1962. A revised medium for rapid growth and bioas-
says with tobacco tissue cultures. Physiologia Plantarum 15: 473–497.

Nagy LG, Kocsubé S, Csanádi Z, et al. 2012. Re-mind the gap! Insertion
of symbiotic biotrophic root-colonizing fungi. New Phytologist 190: 783–793.

Porras-Alfaro A, Herrera J, Sinsabaugh RL, et al. 2008. Novel root fungal
consortium associated with a dominant desert grass. Applied and Envi-
nmental genetics analysis using maximum likelihood, evolutionary distance,
and maximum parsimony methods. Molecular Biology and Evolution 28:
2731–2739.

Rajagopal S, Sadowsky MI, Arnold A, et al. 2011. Characterization of acidic New Jersey Pine Barrens. Mycologia 102: 813–821.

Rayner RW. 1970. A mycological colour chart. CMI and British Mycological
Society, Kew, Surrey, England.

Rehner SA, Samuels GJ. 1994. Taxonomy and phylogeny of Gliocladium
analysed from nuclear large subunit ribosomal DNA sequences. Mycologi-
cal Research 98: 625–634.

Ronquist F, Huelsenbeck JP. 2003. MrBayes 3: Bayesian phylogenetic infer-
tion based on maximum likelihood, evolutionary distance, and maximum
parsimony methods. Molecular Biology and Evolution 20: 1572–1574.

Rodriguez R, White J, Arnold A, et al. 2009. Fungal endophytes: diversity and
functional roles. New Phytologist 182: 314–330.

Sánchez Marín S, Bilis GF, Zabalgozamacoa I. 2006. Diversity and structure of the fungal endophytic assemblages from two sympatric coastal grasses.
Fungal Diversity 33: 87–100.

Schoch CL, Crous PW, Groenewald JZ, et al. 2009. A class-wide phylogenetic
assessment of Dothideomycetes. Studies in Mycology 64: 1–15.

Seiber TN, Grünig CR. 2006. Biodiversity of fungal root-endophyte com-
munities and populations in particular of the dark septate endophyte
Phialocephala fortinii. In: Schulz B, Boyle C, Seiber TN (eds), Microbial
root endophytes: 107–132. Springer-Verlag, Berlin.

Silverstrov D, Michalak I. 2012. raxmlIGU: A graphical front-end for RAxML.
Organisms Diversity and Evolution 12: 335–337.

Sieber TN, Beal KP, Bonfjeld JK. 2000. The Staden package, 1998. Methods
in Molecular Biology 132: 115–130.

Su YY, Guo LD, Hyde KD. 2010. Response of endophytic fungi of Stipa
grandis to experimental plant function group removal in Inner Mongolia
steppe, China. Fungal Diversity 43: 93–101.

Suetsong S, Schoch CL, Spatafora JW, et al. 2009. Molecular systematics of
the marine Dothideomycetes. Studies in Mycology 64: 155–173.

Tamura K, Peterson D, Peterson N, et al. 2011. MEGAS: Molecular evolu-
tionary genetics analysis using maximum likelihood, evolutionary distance,
and maximum parsimony methods. Molecular Biology and Evolution 28:
2731–2739.

Tellenbach C, Grünig CR, Seiber TN. 2011. Negative effects on survival and
performance of Norway spruce seedlings colonized by dark septate root
endophytes are primarily isolate-dependent. Environmental Microbiology
13: 2508–2517.

Vilgalys R, Hester M. 1990. Rapid genetic identification and mapping of en-
yzymatically amplified ribosomal DNA from several Cryptococcus species.
Journal of Bacteriology 172: 4239–4246.

Wang CJK, Wilcox HE. 1985. New species of ectendomycorrhizal and pseu-
domycorrhizal fungi. Phialophora finlandia, Chloridium paucisporum, and
Phialocephala fortinii. In: Schulz B, Boyle C, Sieber TN (eds), Microbial
endophytes: 107–132. Springer-Verlag, New York, USA.

Walsh E, Luo J, Zhang N. 2014. Acidomelania panicicola gen. et. sp. nov.
from switchgrass roots in acidic New Jersey Pine Barrens. Mycologia 106:
856–864.

Wang CJG, Wilcox HE. 1985. New species of ectendomycorrhizal and pseu-
domycorrhizal fungi: Phialocephora finlandia, Chloridium paucisporum, and
Phialocephala fortinii. Mycologia 77: 951–958.

White TJ, Bruns TD, Lee S, et al. 1990. Amplification and direct sequencing
of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand
DH, Sninsky JJ, et al. (eds), PCR Protocols: a guide to methods and ap-
plications: 315–322. Academic Press, New York, USA.

Yu T, Nassuth A, Peterson RL. 2001. Characterization of the interaction
between the dark septate fungus Phialocephala fortinii and Asparagus
officinalis roots. Canadian Journal of Microbiology 47: 741–753.

Zaffarano PL, Queloz V, Du B, et al. 2011. Sex in the PAC: A hidden affair
in dark septate endophytes? BMC Evolutionary Biology 11: 282.

Zhang Y, Crous PW, Schoch CL, et al. 2012. Pleosporales. Fungal Diversity
33: 1–221.

Zhang Y, Schoch CL, Fournier J, et al. 2009. Multi-locus phylogeny of Pleo-
sporales: a taxonomic, ecological and evolutionary re-evaluation. Studies in
Mycology 64: 85–102.