Lattice Polytopes of Degree 2

Jaron T reutlein

Abstract. A theorem of Scott gives an upper bound for the normalized volume of lattice polygons with exactly $i > 0$ interior lattice points. We will show that the same bound is true for the normalized volume of lattice polytopes of degree 2 even in higher dimensions. In particular, there is only a finite number of quadratic polynomials with fixed leading coefficient being the h^*-polynomial of a lattice polytope.

1. Introduction

An n-dimensional lattice polytope $P \subset \mathbb{R}^n$ is the convex hull of a finite number of elements of \mathbb{Z}^n. In the following, we denote by $\text{Vol}(P) = n!\text{vol}(P)$ the normalized volume of P and may call it the volume of P. By $\Pi^{(1)} := \Pi(P) \subset \mathbb{R}^{n+1}$, we denote the convex hull of $(P,0) \subset \mathbb{R}^{n+1}$ and $(0,\ldots,0,1) \in \mathbb{R}^{n+1}$, which we will call the standard pyramid over P. Recursively we define $\Pi^{(k)}(P) = \Pi\left(\Pi^{(k-1)}(P)\right)$ for all $k > 0$. Δ_n will denote the n-dimensional basic lattice simplex throughout, i.e. $\text{Vol}(\Delta_n) = 1$. If two lattice polytopes P and Q of the same dimension are equivalent via some affine unimodular transformation, we will write $P \equiv Q$. The k-fold of a polytope P will be the convex hull of the k-fold vertices of P for every $k \geq 0$.

Pick’s formula gives a relation between the normalized volume, the number of interior lattice points and the number of lattice points of a lattice polygon, i.e. of a two-dimensional lattice polytope: $\text{Vol}(P) = |P \cap \mathbb{Z}^2| + |P^o \cap \mathbb{Z}^2| - 2$. Here P^o means the interior of the polytope P.

In 1976 Paul Scott [9] proved that the volume of a lattice polygon with exactly $i \geq 1$ interior lattice points is constrained by i:

Theorem 1.1 (Scott). Let $P \subset \mathbb{R}^2$ be a lattice polygon such that $|P^o \cap \mathbb{Z}^2| = i \geq 1$. If $P \cong 3\Delta_2$, then $\text{Vol}(P) = 9$ and $i = 1$. Otherwise the normalized volume is bounded by $\text{Vol}(P) \leq 4(i + 1)$. According to Pick’s formula, this implies $|P \cap \mathbb{Z}^2| \leq 3i + 6$ and $|P \cap \mathbb{Z}^2| \leq \frac{3}{2}\text{Vol}(P) + 3$.

Besides Scott’s proof, there are two proofs by Christian Haase and Joseph Schicho [5]. Another proof is given in [13].

Our aim is to generalize Scott’s theorem. Therefore we need to introduce another invariant, the degree of a lattice polytope:

1991 *Mathematics Subject Classification*. Primary 52B20.

Key words and phrases. Lattice polytopes, Scott.
It is known from [4], [10] and [11] that $h^*_P(t) := (1-t)^{n+1} \sum_{k \geq 0} |kP \cap \mathbb{Z}^n| t^k \in \mathbb{Z}[t]$ is a polynomial of degree $d \leq n$. This number is described as the degree of P and is the largest number $k \in \mathbb{N}$ such that there is an interior lattice point in $(n+1-k)P$ (cf. [2]). The leading coefficient of h^*_P is the number of interior lattice points in $(n+1-d)P$ and the constant coefficient is $h^*_P(0) = 1$. Moreover the sum of all coefficients is the normalized volume of P and all coefficients are non-negative integers by the non-negativity theorem of Richard P. Stanley [10].

It is easy to show that the h^*-polynomial of P and $\Pi(P)$ are equal. So P and $\Pi(P)$ have the same degree and the same normalized volume, which is the sum of all coefficients of the h^*-polynomial. Moreover

$$\left|\left((n+2-d)\Pi(P)\right)^\circ \cap \mathbb{Z}^{n+1}\right| = \left|\left((n+1-d)P\right)^\circ \cap \mathbb{Z}^n\right|.$$

Scott’s theorem shows that the normalized volume of a two-dimensional lattice polytope of degree 2 with exactly $i > 0$ interior lattice points is bounded by $4(i+1)$, except for one single polytope: $3\Delta_2$. We generalize this result to the case of n-dimensional lattice polytopes of degree 2.

Theorem 1.2. Let $P \subset \mathbb{R}^n$ be a n-dimensional lattice polytope of degree 2. If $P \cong \Pi^{(n-2)}(3\Delta_2)$, then $\text{Vol}(P) = 9$, $|P \cap \mathbb{Z}^n| = 8 + n$ and $\left|\left((n-1)P\right)^\circ \cap \mathbb{Z}^n\right| = 1$. Otherwise the following equivalent statements hold:

1. $\text{Vol}(P) \leq 4(i+1)$
2. $b \leq 3i + n + 4$
3. $b \leq \frac{3}{4} \text{Vol}(P) + n + 1$,

where $b := |P \cap \mathbb{Z}^n|$ and $i := \left|\left((n-1)P\right)^\circ \cap \mathbb{Z}^n\right| \geq 1$.

The following theorem of Victor Batyrev [1] motivates our estimation of the normalized volume of a lattice polytope of degree d:

Theorem 1.3 (Batyrev). Let $P \subset \mathbb{R}^n$ be an n-dimensional lattice polytope of degree d. If $n \geq 4d \left(2d + \text{Vol}(P) - 1\right)$, then P is a standard pyramid over an $(n-1)$-dimensional lattice polytope.

There is a recent result by Benjamin Nill [7] which even strengthens this bound:

Theorem 1.4 (Nill). Let $P \subset \mathbb{R}^n$ be a n-dimensional lattice polytope of degree d. If $n \geq (\text{Vol}(P) - 1)(2d + 1)$, then P is a standard pyramid over an $(n-1)$-dimensional lattice polytope.

Jeffrey C. Lagarias and Günter M. Ziegler showed in [6] that up to unimodular transformation there is only a finite number of n-dimensional lattice polytopes having a fixed volume. From Theorem 1.3 or Theorem 1.4 follows

Corollary 1.5 (Batyrev). For a family \mathcal{F} of lattice polytopes of degree d, the following is equivalent:

1. \mathcal{F} is finite modulo standard pyramids and affine unimodular transformation,
There is a constant $C_d > 0$ such that $\text{Vol}(P) \leq C_d$ for all $P \in \mathcal{F}$.

Conjecture 1.6 (Batyrev). Let P be a lattice polytope of degree d with exactly $i \geq 1$ interior lattice points in its $(\dim(P) + 1 - d)$-fold. Its normalized volume $\text{Vol}(P)$ can then be bounded by a constant $C_{d,i}$, only depending on d and i. The finiteness of lattice polytopes of degree d with this property up to standard pyramids and affine unimodular transformation follows from Theorem 1.3.

Theorem 1.2 proves Conjecture 1.6 in the case $d = 2$.

Corollary 1.7. Up to affine unimodular transformations and standard pyramids there is only a finite number of lattice polytopes of degree 2 having exactly $i \geq 1$ interior lattice points in their adequate multiple. This follows from Theorem 1.2 and Theorem 1.3.

Corollary 1.8. There is only a finite number of quadratic polynomials $h \in \mathbb{Z}[t]$ with leading coefficient $i \in \mathbb{N}$, such that h is the h^*-polynomial of a lattice polytope. This follows from Theorem 1.2 and the fact that all coefficients of h^*_P are positive integers summing up to $\text{Vol}(P)$.

In the remaining part of the paper we prove Theorem 1.2.

Acknowledgments: The author would like to thank Victor Batyrev and Benjamin Nill for discussions and joint work on this subject.

2. Preparations

The formula of Pick can be easily generalized for higher dimensional polytopes of degree 2 using their h^*-polynomial. This shows that statements (1) – (3) in Theorem 1.2 are equivalent.

Lemma 2.1. An n-dimensional lattice polytope of degree 2 has normalized volume $\text{Vol}(P) = b + i - n$, where $b := |P \cap \mathbb{Z}^n|$ and $i := \left| \left((n - 1)P \right)^\circ \cap \mathbb{Z}^n \right|$.

Proof. The normalized volume of P can be computed by adding the coefficients of the h^*-polynomial of P. Consequently $\text{Vol}(P) = 1 + (b - n - 1) + i$. \qed

Let $s \subset P$ be a face of P. By $\text{st}(s) = \bigcup F$, we denote the star of s in P, where the union is over all faces $F \subset P$ of P containing s.

Lemma 2.2. Let P be an n-dimensional lattice polytope of degree 2 and $s \subset P$ a face of P having exactly $j > 0$ interior lattice points in its $(n-2)$-fold:

$$\left((n - 2)s \right)^\circ \cap \mathbb{Z}^n = \{x_1, \ldots, x_j\}.$$

Moreover, we suppose

$$z := \left| P \setminus \text{st}(s) \cap \mathbb{Z}^n \right| \geq 1.$$

Then $0 < j + z - 1 \leq \left| \left((n - 1)P \right)^\circ \cap \mathbb{Z}^n \right|$.
Remark 2.3. Let us first consider an easy case. If \(z = 1 \), i.e., \(P \setminus \text{st}(s) \cap \mathbb{Z}^n = \{ p \} \), then
\[
p + x = (n - 1) \left(\frac{n - 2}{n - 1} x + \frac{p}{n - 1} \right) \in (n - 1)P \cap \mathbb{Z}^n \quad \forall x \in (n - 2)s \cap \mathbb{Z}^n
\]
yield \(j > 0 \) distinct lattice points in \((n - 1)P \). So \(0 < j \leq \left| (n - 1)P \right| \cap \mathbb{Z}^n \) as claimed.

Proof. If \(l = 1 \), the claim is certainly correct. Hence let \(l \geq 2 \).
There is a lattice point \(z_i \in y_i \cap \left(D \setminus \left(\frac{x_i}{n} \right) \right) \cap \mathbb{Z}^{n+1} \). Define \(\pi_l := \text{conv}(s_l, z_i) \). Obviously \(\pi_l \cap s = s_l \). By induction, there are further pyramids \(\pi_1, \ldots, \pi_{l-1} \) satisfying \(\pi_k \cap s = s_k \) and \(\pi_k \cap \pi_{k'} \subset \{ z_1, \ldots, z_{k'} \} \subset D \cap \mathbb{Z}^{n+1} \forall k < k' < l \).

Assume \(\pi_l \cap \pi_k \not\subset \{ z_1, \ldots, z_l \} \), i.e. there exists a point \(q \in \pi_l \cap \pi_k \), \(q \not\in \{ z_1, \ldots, z_l \} \) and \(k < l \). Therefore \(y_k|\pi_k \geq 0 \), because \(y_k|s_k \geq 0 \) and \(y_k(z_i) = 0 \).
In particular, \(y_k(q) \geq 0 \), and \(y_l(q) \geq 0 \) as well. As \(q \in \pi_l \cap \text{conv}(s_l, z_i) \), there is a point \(p \in s_l \) and a number \(\lambda \in [0, 1] \) such that \(q = \lambda p + (1 - \lambda)z_i \). Therefore \(0 \leq y_k(q) = y_k(p) + (1 - \lambda)y_k(z_i) \) with \(y_k(z_i) \leq 0 \) as \(z_i \in D \) and \(y_k|D \leq 0 \).

If \(y_k(p) > 0 \), then \(p \in s \cap \{ x \in \mathbb{R}^{n+1} : y_k(x) \geq 0 \} = s_k \cap \bigcup_{r \leq k} s_r \). But this is a contradiction to \(p \in s_l \). So
\[
0 \leq y_k(q) = \lambda y_k(p) + (1 - \lambda)y_k(z_i) \leq 0
\]
with equality only in the case of \(\lambda = 0 \) and \(y_k(z_i) = 0 \). Therefore the intersection of \(\pi_k \) and \(\pi_l \) is \(q = z_i \) or empty. This is a contradiction to \(\pi_l \cap \pi_k \not\subset \{ z_1, \ldots, z_l \} \) and so the claim is proven.

The pyramids \(\pi_1, \ldots, \pi_k \) intersect with \(D \) only in faces of \(D \).
To any \(k \in \{ 1, \ldots, K \} \) denote by \(a_k := \left| \left((n - 2)s_k \right) \cap \mathbb{Z}^{n+1} \right| \) the number of interior lattice points of \((n - 2)s_k \). By Remark 2.3, there are \(a_k \geq 0 \) interior lattice points of \((n - 1)s \) in \((n - 1)\pi_k \). By adding up the number of interior lattice points in \((n - 1)\pi_1, \ldots, (n - 1)\pi_K \), we derive from the claim
\[
\left| \bigcup_{k=1}^K \left((n - 1)\pi_k \right) \cap \mathbb{Z}^{n+1} \right| \geq \sum_{k=1}^K a_k = j - 1.
\]
Furthermore to every \(p \in D \setminus \left(\frac{x_i}{n} \right) \) we get a lattice point of \(\left((n - 1)\left(D \setminus \left(\frac{x_i}{n} \right) \right) \right) \cap \mathbb{Z}^{n+1} \) in \((n - 1)P \) in the following way:
\[
p + x_1 = (n - 1) \left(\frac{n - 2}{n - 1} x_1 + \frac{p}{n - 1} \right) \in (n - 1)P \cap \mathbb{Z}^{n+1}.
\]
Finally we get \(\left| (n - 1)P \right| \cap \mathbb{Z}^{n+1} \geq j - 1 + z \). □

3. The Proof of the Main Theorem
If \(n = 2 \), then Theorem 1.2 is equal to Scott’s Theorem 1.1. So let \(n > 2 \).
The monotonicity theorem of Stanley 12 says that the degree of every face of a polytope is not greater than the degree of the polytope itself. In particular this is true for every facet. So we will distinguish the two cases that there is a facet of \(P \) having degree 2 or there is not.
For the second case we need a result of Victor Batyrev and Benjamin Nill. They
proved in [2] that every \(n \)-dimensional lattice polytope of degree less than 2 either is equivalent to a pyramid over the exceptional lattice simplex \(2\Delta_2 \) or it is a Lawrence polytope, i.e. a lattice polytope projecting along an edge onto an \((n-1)\)-dimensional basic simplex.

Case 1: There is a facet \(F \subset P \) of \(P \) having degree two, i.e.
\[
\left| \left(P \setminus \right) \cap \mathbb{Z}^n \right|^o = j \geq 1.
\]
Define \(z := |\left(P \setminus \cap \mathbb{Z}^n \right)|. \) From Lemma 2.2 we get \(z + j - 1 \leq i. \) Thus, by induction, we get, if \(F \notin \Pi^{(n-3)}(3\Delta_2), \)
\[
|P \cap \mathbb{Z}^n| = |F \cap \mathbb{Z}^n| + |(P \setminus F) \cap \mathbb{Z}^n| \leq 3j + n - 1 + 4 + z = 3j + z - 1 - 2z + 2 + n + 4 \leq 3i + n + 4.
\]
Otherwise \(F \equiv \Pi^{(n-3)}(3\Delta_2) \) and again by induction and Lemma 2.2
\[
|P \cap \mathbb{Z}^n| = (n - 1) + 8, \ z \leq i \text{ and so } |P \cap \mathbb{Z}^n| = n - 1 + 8 + z \leq i + 7 + n. \text{ This term is smaller than } 3i + n + 4 \text{ if } i \geq 2. \text{ If } i = 1 \text{ however, we get}
\]
\[
n + 8 \leq |P \cap \mathbb{Z}^n| = n + 7 + z \leq i + 7 + n = 8 + n,
\]
so \(|P \cap \mathbb{Z}^n| = 8 + n \) and \(\text{Vol}(P) = 9 \) by Lemma 2.1 In this case \(P \equiv \Pi^{(n-2)}(3\Delta_2) \) because \(\text{Vol}(F) = 9 \) and \(F \equiv \Pi^{(n-3)}(3\Delta_2). \)

Case 2: Every facet \(F \) of \(P \) has degree \(\text{deg}(F) \leq 1. \)

Let \(y \) be an edge of \(P \) having the maximal number of lattice points; its length will be denoted by \(h_1 \), i.e. \(h_1 = |y \cap \mathbb{Z}^n| - 1 \). Among all \(2 \)-codimensional faces of \(P \) containing \(y \), \(s \) should be the face having the maximal number of lattice points. We will denote by \(F_1 \) and \(F_2 \) the two facets of \(P \) containing \(s \).

Again the monotonicity theorem of Stanley [12] implies \(\text{deg}(s) \leq \text{deg}(F_1) = 1. \)

Similarly to case 1, we will denote by \(z := |P \setminus \{F_1 \cup F_2\} \cap \mathbb{Z}^n| \) the number of lattice points of \(P \) not in \(F_1 \) and \(F_2 \).

By the result of Victor Batyrev and Benjamin Nill [2] we find that the facets \(F_1 \) and \(F_2 \) are either \((n-1)\)-dimensional Lawrence polytopes or pyramids over \(2\Delta_2. \)

(A) \(F_1 \) and \(F_2 \) are Lawrence polytope with heights \(h_1^{(k)}, h_2^{(k)}, \ldots, h_{n-1}^{(k)} \forall k \in \{1, 2\} \), where we assume that \(h_1^{(1)} = h_2^{(1)} = h_1 \forall l \in \{1, \ldots, n - 2\}, \)
\[
s = \text{conv}(0, h_1e_1, e_i, e_l + h_1e_1 : 2 \leq l \leq n - 2),
\]
where \(\{e_1, \ldots, e_{n-2}, e_{n-1}^{(k)}\} \) should denote a lattice basis of \(\text{lin}(F_k) \cap \mathbb{Z}^n \) such that \(F_k = \text{conv}(s, e_{n-1}^{(k)}, e_{n-1}^{(k)} + h_1^{(k)} e_1) \) for \(k \in \{1, 2\} \). Since the degree of the Lawrence prism \(s \) is at most one, we obtain
\[
\left| \left(P \setminus s \right)^o \cap \mathbb{Z}^n \right| = \text{Vol}(s) - 1 = \left(\sum_{i=1}^{n-2} h_1 \right) - 1.
\]
We may assume \(z = |\left(P \setminus \right) \cap \mathbb{Z}^n| \neq 0 \) because otherwise \(P \) would be a prism over the face \(P \cap \{X_1 = 0\} \), which is an \((n-1)\)-dimensional lattice simplex of degree at most 1, whose only lattice points are vertices. By [2] this is a basic simplex and
hence P is a Lawrence polytope. Consequently $\deg(P) < 2$, a contradiction.

We have to distinguish the following two cases:

(i) $\left(\left((n-2)s\right)^{\circ}\cap\mathbb{Z}^n\right) \cap \mathbb{Z}^n \geq 1$.

Because of Lemma 2.2, we get the estimation

$$z + \left(\sum_{i=1}^{n-2} h_i - 1\right) - 1 \leq i.$$

So we can bound the number of lattice points of P:

$$|P \cap \mathbb{Z}^n| = \left|\{(F_1 \cup F_2) \cap \mathbb{Z}^n\} + z = |s \cap \mathbb{Z}^n| + h_{n-1}^{(1)} + h_{n-1}^{(2)} + 1 + z\right.$$

$$= \sum_{i=1}^{n-2} h_i + (n-2) + h_{n-1}^{(1)} + h_{n-1}^{(2)} + 2 + z \leq i + n + 2h_1 + 2$$

$$h_1 \leq i + 1 \leq i + n + 2(i + 1) + 2 = 3i + n + 4.$$

(ii) $\left(\left((n-2)s\right)^{\circ}\cap\mathbb{Z}^n\right) = 0$.

In this case, s has degree zero, so it is a basic simplex. Our assumption on s implies that every lattice point of P is a vertex. If $n = 3$, then Howe’s theorem \cite{8} yields that P has at most 8 vertices, therefore $|P \cap \mathbb{Z}^n| \leq 8 < n + 4 + 3i$. So let $n \geq 4$.

In that case, since every 2-codimensional face is a simplex and every facet is a Lawrence prism, we see that P is simplicial, i.e. every facet is a simplex. We may suppose that P is not a simplex. Let S be a subset of the vertices of P such that the convex hull of S is not a face of P. Then the sum over the vertices of S is a lattice point in the interior of $|S| \cdot P$. Since the degree of P is two, this implies $|S| \geq n - 1$. In other words, every subset of the vertices of P that has cardinality at most $n - 2$ forms the vertex set of a face of P, i.e. P is $(n - 2)$-neighbourly. As is known from \cite{3}, a polytope of dimension n that is not a simplex is at most $\lfloor \frac{n}{2} \rfloor$-neighbourly. Therefore $n - 2 \leq \frac{3}{2}$. This shows $n = 4$.

Let $f_j \geq 0$ be the number of j-dimensional faces of P. Since P is a 2-neighbourly simplicial 4-dimensional polytope we get $f_1 = \left(\frac{f_2}{2}\right)$ and $f_2 = 2f_3$. Since the Euler characteristic of the boundary of P vanishes, i.e. $f_0 - f_1 + f_2 - f_3 = 0$, we deduce $f_3 = \frac{f_0(f_0-3)}{6}$. Let D denote the set of subsets Δ of the vertices of P such that Δ has cardinality three but Δ is not the vertex set of a face of P. Therefore, $|D| = \left(\frac{f_0}{2}\right) - f_2 = f_0 \left(\frac{(f_0-1)(f_0-2)}{6} - f_0 - 3\right)$. Since $|\{(e, \Delta) : e \text{ is an edge of } P, \Delta \in D, e \subset D\}| = 3|D|$, double counting yields that there exists an edge e of P that is contained in at least $\frac{3|D|}{f_1}$ many elements $\Delta \in D$. Therefore, any such Δ contains one vertex that is not in the star of e, and hence Lemma 2.2 yields

$$i \geq \frac{3|D|}{f_1} = f_0 - 2 - 6\frac{f_0 - 3}{f_0 - 1} \geq f_0 - 8.$$

Thus, $|P \cap \mathbb{Z}^n| = f_0 \leq 8 + i < n + 4 + 3i$.

(A') F_1, F_2 and s have no common projection direction.

Without loss of generality let F_1 and s have two different projection directions. If s contains an edge of length at least 2, then this has to be a common projection
direction with F_1, because s and F_1 are Lawrence prisms. But this is a contradiction. Hence, all lattice points in s are vertices. In particular, y has length one, so also all lattice points of P are vertices.

Since any of the two different projection directions of the Lawrence prism s maps a four-gon face onto the edge of an unimodular base simplex and two edges of the four-gon give the projection direction, we see that there is at most one four-gon face in s. Therefore, s contains at most $(n-2)+2=n$ lattice points.

Since F_k contains at most two vertices not in s for $k \in \{1, 2\}$, we get $|(F_1 \cup F_2) \cap \mathbb{Z}^n| \leq n+4 < n+4+3i$. Therefore we may assume $z:=|P \setminus (F_1 \cup F_2) \cap \mathbb{Z}^n| \neq 0$.

If $\left((n-2)s\right)^\circ \cap \mathbb{Z}^n = 0$, then we will proceed exactly like in case (ii) from (A).

So let $j:=\left|\left((n-2)s\right)^\circ \cap \mathbb{Z}^n\right| \geq 1$.

Because of Lemma [2,2] we get the estimation $z+j-1 \leq i$, in particular $z \leq i$. Hence we can bound the number of lattice points of P:

$$|P \cap \mathbb{Z}^n| = |(F_1 \cup F_2) \cap \mathbb{Z}^n| + z \leq n + 4 + i < 3i + n + 4.$$

(B) F_1 is a Lawrence polytope with the heights $h_1 \geq h_2 \geq \ldots \geq h_{n-1}$, $F_2 \cong \Pi^{(n-3)}(2\Delta_2)$.

Here

$s \cong \text{conv}(0, h_1 e_1, e_l, \ 2 \leq l \leq n-2)$

and $h_1 = 2$, $h_2 = \ldots = h_{n-2} = 0$, because s is contained in the simplex F_2. If $z = |P \setminus (F_1 \cup F_2) \cap \mathbb{Z}^n| = 0$, then

$$|P \cap \mathbb{Z}^n| = |F_2 \cap \mathbb{Z}^n| + |F_1 \setminus F_2 \cap \mathbb{Z}^n| = 6 + (n-3) + h_{n-1} + 1 \leq 4 + n + 2 < 3i + n + 4.$$

Otherwise if $z \geq 1$, we obtain just like in (A) $0 < z + (h_1 - 1) - 1 \leq i$. Therefore

$$|P \cap \mathbb{Z}^n| = |(F_1 \cup F_2) \cap \mathbb{Z}^n| + z = |s \cap \mathbb{Z}^n| + (h_{n-1} + 1) + 3 + z \leq h_{n-1} + (n-2) + (h_{n-1} + 1) + 3 + z \leq i + 4 + h_{n-1} + n \leq 3i + n + 4.$$

(C) $F_1 \cong F_2 \cong \Pi^{(n-3)}(2\Delta_2)$.

Here either s is a pyramid over $2\Delta_1$ or $s \cong \Pi^{(n-4)}(2\Delta_2)$. Again $h_1 = 2$.

If $z = |P \setminus (F_1 \cup F_2) \cap \mathbb{Z}^n| = 0$, then

$$|P \cap \mathbb{Z}^n| = |F_2 \cap \mathbb{Z}^n| + |F_1 \setminus F_2 \cap \mathbb{Z}^n| \leq 6 + (n-3) + 3 < 3i + n + 4.$$

Otherwise if $z \geq 1$, we obtain $z \leq i$ because of $\left|(n-2)s\right)^\circ \cap \mathbb{Z}^n \geq 1$ and Lemma [2,2]. So as a result

$$|P \cap \mathbb{Z}^n| = |F_1 \cap \mathbb{Z}^n| + |F_2 \setminus F_1 \cap \mathbb{Z}^n| + z \leq (6 + n - 3) + 3 + z = n + z + 6 \leq n + i + 6 \leq n + 3i + 4.$$

This completes the proof. \qedsymbol
Remark 3.1. In [11], Stanley shows that the coefficients of h^*_P, also appear in the polynomial $(1-t)^{n+1}\sum_{k\geq 0} |(kP)^{\circ}\cap \mathbb{Z}^n| t^k \in \mathbb{Z}[t]$. So we can also compute the coefficients of h^*_P in a different way than in Lemma 2.1. Then it is easy to show that the bounds of Theorem 1.2 are also equivalent to the following estimations:

$$|(nP)^{\circ}\cap \mathbb{Z}^n| \leq (n+4)i + 3,$$

$$|2P\cap \mathbb{Z}^n| \leq (4+3n)(i+1) + \frac{n(n+3)}{2}.$$

References

[1] V.V. Batyrev, Lattice polytopes with a given h^*-polynomial, in: C.A. Athanasiadis (ed.) et al., Algebraic and geometric combinatorics, Proceedings of a Euroconference in Mathematics, Anogia, Crete, Greece, August 20–26, 2005, AMS, Contemp. Math. 423 (2007) 1–10.

[2] V.V. Batyrev, B. Nill. Multiples of lattice polytopes without interior lattice points. Moscow Math. J. 7 (2007) 195–207.

[3] A. Brondsted. An introduction to Convex Polytopes, Springer, 1983.

[4] E. Ehrhart. Polynômes arithmétiques et méthode des polyedres en combinatoire. International Series of Numerical Mathematics, Vol. 35, Birkhäuser Verlag, 1977.

[5] C. Haase, J. Schicho. Lattice polygons and the number $2i+7$. To appear in Amer. Math. Mon.

[6] J.C. Lagarias, G.M. Ziegler. Bounds for lattice polytopes containing a fixed number of interior points in a sublattice. Can. J. Math. 43 (1991) 1022–1035.

[7] B. Nill. Lattice polytopes having h^*-polynomials with given degree and given linear coefficient. Europ. J. Comb. 29 (2008) 1596–1602.

[8] H.E. Scarf. Integral Polyhedra in Three Space. Math. Oper. Res. 10 (1985), 403–438.

[9] P.R. Scott. On convex lattice polygons. Bull. Austral. Math. Soc. 15 (1976), 395–399.

[10] R.P. Stanley. Decompositions of rational convex polytopes. Ann. Discr. Math. 6 (1980) 333–342.

[11] R.P. Stanley. Enumerative Combinatorics, Vol. I. Wadsworth & Brooks/Cole, 1986.

[12] R.P. Stanley. A monotonicity property of h-vectors and h^*-vectors. European J. Combin. 14 (1993), 251–258.

[13] J. Treutlein. Lattice polytopes of degree 2. Preprint. [math.CO/0706.178v1].

Department of Mathematics and Physics, University of Tübingen, Auf der Morgenstelle 10, D-72076 Tübingen, Germany

E-mail address: jaron@mail.mathematik.uni-tuebingen.de