Supplementary of: Changes in Taxonomic and Phylogenetic Diversity in the Anthropocene

Daijiang Li¹*, Julian D. Olden², Julie L. Lockwood³, Sydne Record⁴, Michael L. McKinney⁵, and Benjamin Baiser¹

18 May, 2020

Journal: Proceedings B
DOI: 10.1098/rspb.2020.0777
This supplementary information file includes:

Phylogeny building process
Table S1 to S5
Figs. S1 to S9
Text S1

Phylogenies

For plants, we generated the phylogeny using Phylomatic v4.2 [1] based on the synthesis phylogeny zanne2014 [2], which was constructed and time-calibrated from seven gene regions for \(>32000\) plant species using maximum-likelihood. We chose this phylogeny because it is one of the most up-to-date phylogenies for plants.

For birds, because we had extinct birds in the historical data period [3], we used the 100 augmented phylogenies constructed by Baiser et al [4]. They augmented 100 randomly selected global bird phylogenies generated by Jetz et al [5] by inserting extinct birds into the phylogenies in a position from the stem branch preceding the most recent common ancestor of species from the same family. The branch length of the inserted species extended to the present time to make the augmented phylogenies ultrametric. We analyzed each dataset with all 100 augmented phylogenies and then used the average values as final measurements. Previous studies [4,6] suggested that 100 phylogenies were enough to get stable phylogenetic diversity values.

For fishes, we were unable to find a phylogeny built with gene sequences that was large enough to contain most of the species in our datasets. The most recent large fish phylogeny [7] had 11,638 species. However, only 6,115 out of 13,236 fishes in our datasets were included in this phylogeny. Therefore, we instead extracted a phylogeny for our fishes from the Open Tree of Life [8], which is a comprehensive phylogeny with \(~2.3\) million tips by synthesizing published phylogenies. However, the phylogeny extracted from the Open Tree of Life did not have branch lengths (i.e., not a chronogram), which is required for most phylogenetic diversity measures. To calculate branch length, for each of the 3,404 internal nodes, we first derived its descendants and then searched for their divergence time through the TimeTree of Life database [9]. The TimeTree database was
compiled based on 3,163 studies and 97,085 species (as of October 10, 2017). For each pair of species included in their database, we extracted their average divergence time from all previous studies. In the end, we extracted divergence time for 767 internal nodes. With the phylogeny from the Open Tree of Life and the divergence date of internal nodes from the TimeTree database, we then solved the branch length using Phylocom \cite{10} and its \texttt{b1adj} function. The \texttt{b1adj} algorithm placed estimated node ages onto the phylogeny. Ages of nodes without dates were then estimated by equally placing ages between nodes with dates to minimize variance in branch lengths.

These final phylogenies, however, still did not cover all species in our datasets. This was because there were taxa not identified to species level or species that were not included in the Open Tree of Life database. In the end, we had 31,131 out of 32,382 (96.14\%) plant species, 2,399 out of 2,903 (95.66\%) bird species, and 12,448 out of 13,236 (94.05\%) fish species in their corresponding phylogenies. Therefore, we calculated the proportion of species in the phylogeny for each dataset.

We removed datasets that had less than 80\% of their species covered in the phylogeny from any ‘time period’ (\texttt{dat}_1 and \texttt{dat}_2), resulting in 162 out of 189 datasets for final analyses (Supplementary Table S5). For these 162 datasets, we removed the small fraction of species that were not in the phylogeny prior to analyses.

\section*{References}

1. Webb CO, Donoghue MJ. 2005 Phylomatic: Tree assembly for applied phylogenetics. \textit{Molecular Ecology Notes} 5, 181–183.

2. Zanne AE \textit{et al.} 2014 Three keys to the radiation of angiosperms into freezing environments. \textit{Nature} 506, 89–92.

3. Cassey P, Lockwood JL, Blackburn TM, Olden JD. 2007 Spatial scale and evolutionary history determine the degree of taxonomic homogenization across island bird assemblages. \textit{Diversity and Distributions} 13, 458–466.

4. Baiser B, Valle D, Zelazny Z, Burleigh JG. 2018 Non-random patterns of invasion and extinction reduce phylogenetic diversity in island bird assemblages. \textit{Ecography} 41, 361–374.
5. Jetz W, Thomas G, Joy J, Hartmann K, Mooers A. 2012 The global diversity of birds in space and time. *Nature* **491**, 444–448.

6. Li D, Monahan WB, Baiser B. 2018 Species richness and phylogenetic diversity of native and non-native species respond differently to area and environmental factors. *Diversity and Distributions* **24**, 853–864.

7. Rabosky DL et al. 2018 An inverse latitudinal gradient in speciation rate for marine fishes. *Nature* **559**, 392–395. (doi:10.1038/s41586-018-0273-1)

8. Hinchliff CE et al. 2015 Synthesis of phylogeny and taxonomy into a comprehensive tree of life. *Proceedings of the National Academy of Sciences* **112**, 12764–12769.

9. Kumar S, Stecher G, Suleski M, Hedges SB. 2017 TimeTree: A resource for timelines, timetrees, and divergence times. *Molecular Biology and Evolution* **34**, 1812–1819.

10. Webb CO, Ackerly DD, Kembel SW. 2008 Phylocom: Software for the analysis of phylogenetic community structure and trait evolution. *Bioinformatics* **24**, 2098–2100.
Table S1. Summary of LMM output for effect sizes of α and β diversity for different taxonomic groups. Significant changes (i.e., 95% confidence interval does not include zero) are in bold. Abbreviations: SR, species richness; PD, Faith’s phylogenetic diversity (without root); PSV: phylogenetic species variation; Sorensen_tur, Turnover component of Sorensen dissimilarity; pSorensen_tur, Turnover component of Phylogenetic Sorensen dissimilarity; PCDp, phylogenetic component of phylogenetic community dissimilarity.

index	Changes in diversity	Estimate	Std. Error	2.5 %	97.5 %	Random Terms
α: Bird (54)						
SR	6.18 %	0.060	0.061	-0.059	0.179	study; grain_size
PD	3.37 %	0.033	0.051	-0.066	0.132	study; grain_size
PSV	-2.08 %	-0.021	0.013	-0.047	0.005	study; grain_size
α: Fish (55)						
SR	10.62 %	**0.101**	**0.049**	**0.005**	**0.197**	study
PD	8.21 %	0.079	0.037	**0.007**	**0.151**	study
PSV	-0.11 %	-0.001	0.000	-0.002	0.000	study
α: Plant (50)						
SR	4.69 %	0.046	0.065	-0.081	0.173	study
PD	2.84 %	0.028	0.101	-0.170	0.226	study; data_type
PSV	-0.77 %	-0.008	0.003	-0.014	-0.002	study
β: Bird (54)						
Sorensen_tur	-4.58 %	-0.047	0.092	-0.228	0.134	study; data_type; driver
pSorensen_tur	-5.16 %	-0.053	0.063	-0.177	0.071	study; data_type; driver
PCDp	1 %	0.010	0.014	-0.018	0.038	study
β: Fish (55)						
Sorensen_tur	-8.89 %	**-0.093**	**0.047**	**-0.185**	**-0.002**	study
pSorensen_tur	-2.43 %	-0.025	0.037	-0.098	0.049	study
PCDp	**0.6 %**	**0.006**	**0.001**	**0.004**	**0.008**	study
β: Plant (50)						
Sorensen_tur	-6.37 %	-0.066	0.031	-0.126	-0.005	study
pSorensen_tur	-5.47 %	-0.056	0.028	-0.112	-0.001	study
PCDp	-0.44 %	-0.004	0.009	-0.022	0.013	study
Table S2. Summary of LMM output for effect sizes of α and β diversity for different sampling methods. Significant changes (i.e., 95% confidence interval does not include zero) are in bold. Abbreviations: SR, species richness; PD, Faith’s phylogenetic diversity (without root); PSV: phylogenetic species variation; Sorensen_tur, Turnover component of Sorensen dissimilarity; pSorensen_tur, Turnover component of Phylogenetic Sorensen dissimilarity; PCDp, phylogenetic component of phylogenetic community dissimilarity.

index	Changes in diversity	Estimate	Std. Error	2.5 %	97.5 %	Random Terms
α: Land Use Data (66); land use gradient approach						
SR	-10.22 %	-0.108	0.052	-0.209	-0.007	study
PD	-12.29 %	-0.131	0.041	-0.212	-0.050	study
PSV	-3.31 %	-0.034	0.011	-0.055	-0.013	study
α: Land Use Data (66); landscape approach						
SR	-1.04 %	-0.011	0.025	-0.060	0.039	study; taxa; driver
PD	-2.35 %	-0.024	0.024	-0.070	0.023	study; taxa; driver
PSV	-1.05 %	-0.011	0.003	-0.017	-0.004	study; taxa; driver
α: Resample Data (18)						
SR	17.09 %	0.158	0.093	-0.024	0.339	study
PD	15.18 %	0.141	0.074	-0.003	0.286	study
PSV	1.19 %	0.012	0.012	-0.012	0.036	study
α: Species List Data (78)						
SR	6.93 %	0.067	0.016	0.036	0.098	study
PD	4.59 %	0.045	0.010	0.025	0.064	study
PSV	-0.25 %	-0.002	0.001	-0.005	0.000	study
β: Land Use Data (66); land use gradient approach						
Sorensen_tur	-6.24 %	-0.064	0.095	-0.251	0.122	study; taxa; driver
pSorensen_tur	-5.56 %	-0.057	0.071	-0.197	0.083	study; taxa; driver
PCDp	0.55 %	0.005	0.006	-0.006	0.017	study; taxa; driver
β: Land Use Data (66); landscape approach						
Sorensen_tur	7.88 %	0.076	0.035	0.008	0.144	study; taxa; driver
pSorensen_tur	5.88 %	0.057	0.034	-0.010	0.124	study; driver
PCDp	1.24 %	0.012	0.012	-0.012	0.037	study
β: Species List Data (78)						
Sorensen_tur	-4.17 %	-0.043	0.026	-0.094	0.009	study
pSorensen_tur	-0.09 %	-0.001	0.010	-0.021	0.020	study
PCDp	-0.08 %	-0.001	0.006	-0.013	0.011	study
β: Resample Data (18)						
Sorensen_tur	-9.6 %	-0.101	0.046	-0.191	-0.011	study
pSorensen_tur	-7.71 %	-0.080	0.032	-0.144	-0.017	study
PCDp	-1.41 %	-0.014	0.010	-0.034	0.006	study
Table S3. Summary of LMM output for effect sizes of α and β diversity for different continents. Significant changes (i.e., 95% confidence interval does not include zero) are in bold. Abbreviations: SR, species richness; PD, Faith’s phylogenetic diversity (without root); PSV: phylogenetic species variation; Sorensen_tur, Turnover component of Sorensen dissimilarity; pSorensen_tur, Turnover component of Phylogenetic Sorensen dissimilarity; PCDp, phylogenetic component of phylogenetic community dissimilarity.

index	Changes in diversity	Estimate	Std. Error	2.5%	97.5%	Random Terms
α: Africa (22)						
SR	-14.16%	-0.153	0.100	-0.349	0.044	study
PD	-11.48%	-0.122	0.082	-0.282	0.038	study
PSV	0.01%	0.000	0.000	-0.001	0.001	study
α: Asia (27)						
SR	4.38%	0.043	0.006	0.031	0.055	study
PD	3.16%	0.031	0.005	0.022	0.040	study
PSV	-0.12%	-0.001	0.001	-0.002	0.000	study
α: Europe (29)						
SR	6.45%	0.062	0.010	0.044	0.081	study
PD	3.5%	0.034	0.005	0.024	0.044	study
PSV	-0.49%	-0.005	0.003	-0.010	0.000	study
α: North America (33)						
SR	6.68%	0.083	0.081	-0.075	0.241	study
PD	3.17%	0.031	0.066	-0.098	0.160	study
PSV	-1.45%	-0.015	0.010	-0.034	0.005	study
α: Oceania (39)						
SR	6.5%	0.063	0.021	0.023	0.103	study
PD	4.78%	0.047	0.010	0.027	0.067	study
PSV	-2.46%	-0.025	0.029	-0.082	0.032	study; grain_size; data_type; driver
α: South America (12)						
SR	24.28%	0.217	0.086	0.048	0.387	study
PD	15.78%	0.147	0.062	0.025	0.269	study
PSV	0.14%	0.001	0.002	-0.002	0.004	study
β: Africa (22)						
Sorensen_tur	-4.96%	-0.051	0.046	-0.142	0.040	study
pSorensen_tur	-8.09%	-0.084	0.044	-0.170	0.002	study
PCDp	-0.92%	-0.009	0.015	-0.039	0.021	study
β: Asia (27)						
Sorensen_tur	-9.46%	-0.099	0.053	-0.203	0.005	study
pSorensen_tur	-5.2%	-0.053	0.039	-0.129	0.022	study
PCDp	-0.4%	-0.004	0.009	-0.021	0.013	study
β: Europe (29)						
Sorensen_tur	-3.47%	-0.035	0.056	-0.146	0.075	study; grain_size
pSorensen_tur	1.62%	0.016	0.004	0.009	0.023	study
PCDp	-0.05%	0.000	0.011	-0.022	0.021	study
β: North America (33)						
Sorensen_tur	-10.23%	-0.108	0.045	-0.197	0.019	study
pSorensen_tur	-6.43%	-0.066	0.026	-0.118	0.015	study
PCDp	1.14%	0.011	0.012	-0.012	0.035	study
β: Oceania (39)						
Sorensen_tur	-0.54%	-0.005	0.007	-0.018	0.008	study
pSorensen_tur	2.22%	0.022	0.046	-0.069	0.113	study
PCDp	1.11%	0.011	0.016	-0.021	0.043	study
β: South America (12)						
Sorensen_tur	-0.38%	-0.004	0.004	-0.012	0.004	study
pSorensen_tur	0.6%	0.006	0.005	-0.003	0.015	study
PCDp	2.79%	0.028	0.024	-0.075	0.018	study
Table S4. Changes in pairwise taxonomic β diversity when measured with Sorensen dissimilarity or its nestedness component. Both measurements gave qualitatively similar results, albeit the smaller numbers from Sorensen dissimilarity.

Groups	Sorensen	Turnover
Bird (54)	-2.73 %	-4.58 %
Fish (55)	-4.95 %	-8.89 %
Plant (53)	-4.88 %	-6.37 %
Land Use Data (66)	-4.74 %	-6.24 %
Species List Data (78)	-1.65 %	-4.17 %
Resample Data (18)	-6.37 %	-9.6 %
Table S5. Sources and characteristics of datasets collected in the study. Detailed reference information see Text S1.

Ref	location	n_site	sp_in_phy_dat1	sp_in_phy_dat2	taxa	spatial_extent	grain_size	data_type	driver	decision
1	united_states	93	0.639	0.979	plant	region	small	old_new	ongoing disturbance	
2	canada	133	0.660	0.955	plant	region	small	old_new	ongoing disturbance	
3	united_states	3	0.662	0.938	bird	continent	moderate	land_use	urbanization	
4	india	3	0.776	0.718	bird	region	small	land_use	urbanization	
5	archipelago_Antarctic	4	1.000	1.000	bird	continent	high	native_exotic	invasion	
6	archipelago_Azores	9	1.000	1.000	bird	region	high	native_exotic	invasion	
7	archipelago_CapeVerdes	13	1.000	1.000	bird	region	high	native_exotic	invasion	
8	archipelago_Comoros	4	1.000	1.000	bird	region	high	native_exotic	invasion	
9	archipelago_CookIslands	15	1.000	1.000	bird	region	moderate	native_exotic	invasion	
10	archipelago_Galapagos	11	1.000	1.000	bird	region	high	native_exotic	invasion	
11	archipelago_GreaterAntilles	4	1.000	1.000	bird	region	very_high	native_exotic	invasion	
12	archipelago_Hawaii	6	1.000	1.000	bird	region	very_high	native_exotic	invasion	
13	archipelago_LesserAntilles	12	1.000	1.000	bird	region	high	native_exotic	invasion	
14	archipelago_Marianas	15	1.000	1.000	bird	region	moderate	native_exotic	invasion	
15	archipelago_NewZealand	10	1.000	1.000	bird	region	moderate	native_exotic	invasion	
16	archipelago_Pitcairns	4	1.000	1.000	bird	region	moderate	native_exotic	invasion	
17	archipelago_SocietyIslands	11	1.000	1.000	bird	region	moderate	native_exotic	invasion	
18	world_ocean	152	1.000	1.000	bird	continent	very_high	native_exotic	invasion	
19	ocean_Atlantic	45	1.000	1.000	bird	region	moderate	native_exotic	invasion	
20	ocean_Caribbean	21	1.000	1.000	bird	continent	high	native_exotic	invasion	
21	ocean_Indian	11	1.000	1.000	bird	continent	high	native_exotic	invasion	
22	ocean_Pacific	75	1.000	1.000	bird	continent	moderate	native_exotic	invasion	
23	iberian_peninsula	10	0.919	0.817	fish	region	very_high	native_exotic	invasion	
24	solomon_islands	16	0.820	0.941	plant	region	small	land_use	grazing	
25	solomon_islands	16	0.820	0.917	plant	region	small	land_use	management	
26	italy	9	0.240	0.250	plant	region	small	land_use	urbanization	
27	uganda	35	0.907	0.980	bird	region	small	land_use	agriculture	
28	papua_new_guinea	6	0.934	0.940	bird	region	small	land_use	agriculture	
29	south_africa	24	0.938	0.979	bird	region	small	land_use	agriculture	
30	costa_rica	8	0.902	0.975	bird	region	small	land_use	management	
31	malaysia	20	0.929	0.964	bird	region	small	land_use	agriculture	
32	malaysia	20	0.929	0.970	bird	region	small	land_use	management	
33	sao_tome_and_principe	40	0.941	0.949	bird	region	small	land_use	agriculture	
34	sao_tome_and_principe	40	0.941	0.926	bird	region	small	land_use	management	
35	sao_tome_and_principe	40	1.000	1.000	plant	region	small	land_use	agriculture	
36	sao_tome_and_principe	40	1.000	1.000	plant	region	small	land_use	management	
37	china	15	0.864	0.835	fish	region	moderate	native_exotic	invasion	
38	australia	95	0.964	1.000	bird	region	small	land_use	grazing	
39	portugal	9	1.000	1.000	plant	region	small	land_use	management	
40	philippines	8	0.951	0.938	bird	region	small	land_use	agriculture	
41	sao_tome_and_principe	6	0.955	0.889	bird	region	small	land_use	management	
42	south_africa	56	0.990	1.000	plant	region	small	land_use	agriculture	
Region	Value	Similarity	Land Use	Area	Management					
-----------------	-------	------------	----------	------	------------------					
South Africa	0.990	0.983	Grazing	Small	Land Use					
South Africa	0.990	0.990	Urbanization	Small	Land Use					
France	0.881	0.881	Urbanization	Moderate	Land Use					
Costa Rica	0.981	1.000	Agriculture	Small	Land Use					
Costa Rica	0.980	0.977	Agriculture	Small	Land Use					
Burkina Faso	0.975	0.993	Agriculture	Small	Land Use					
Germany	1.000	1.000	Old New	Management	Land Use					
Germany	0.977	0.977	Old New	Management	Land Use					
United States	0.825	0.773	Very High	Native Exotic	Invasion	Excluded				
Mexico	0.850	0.829	Management	Land Use	Land Use					
Indonesia	0.976	0.988	Management	Land Use	Land Use					
Costa Rica	0.963	1.000	Agriculture	Small	Land Use					
Panama	0.963	1.000	Agriculture	Small	Land Use					
Costa Rica	0.963	0.984	Grazing	Small	Land Use					
Panama	0.963	0.984	Grazing	Small	Land Use					
Costa Rica	0.963	0.988	Management	Land Use	Land Use					
Panama	0.963	0.988	Management	Land Use	Land Use					
Kenya	0.887	0.901	Management	Land Use	Land Use					
Costa Rica	0.982	0.976	Grazing	Small	Land Use					
India	0.964	0.944	Management	Land Use	Land Use					
Ethiopia	0.918	0.943	Management	Land Use	Land Use					
Ethiopia	0.973	1.000	Management	Land Use	Land Use					
Ethiopia	0.900	0.020	Management	Land Use	Land Use					
Ethiopia	0.552	0.633	Management	Land Use	Land Use					
Indonesia	0.731	0.855	Management	Land Use	Land Use					
Indonesia	0.938	0.943	Management	Land Use	Land Use					
Ethiopia	1.000	0.989	Management	Land Use	Land Use					
Ethiopia	0.778	0.887	Management	Land Use	Land Use					
Ethiopia	0.762	0.722	Management	Land Use	Land Use					
United States	0.989	0.984	Agriculture	Land Use	Land Use					
United States	0.989	0.980	Grazing	Small	Land Use					
United States	0.989	0.966	Management	Land Use	Land Use					
United States	0.989	0.983	Urbanization	Land Use	Land Use					
Argentina	1.000	1.000	Management	Land Use	Land Use					
Australia	1.000	1.000	Management	Land Use	Land Use					
United Kingdom	0.990	0.991	Ongoing Disturbance	Old New	Land Use					
Germany	0.990	0.990	Urbanization	Land Use	Land Use					
Germany	0.989	0.990	Urbanization	Land Use	Land Use					
United States	1.000	0.987	Management	Land Use	Land Use					
China	0.921	0.906	Native Exotic	Invasion	Native Exotic	Invasion				
Brazil	0.994	0.988	Post Disturbance	Old New	Land Use					
North Atlantic	0.885	0.866	Climate Change	Old New	Land Use					
United States	0.820	0.810	Native Exotic	Invasion	Native Exotic	Invasion				
United States	0.820	0.810	Native Exotic	Invasion	Native Exotic	Invasion				
United States	0.784	0.797	Native Exotic	Invasion	Native Exotic	Invasion				
United States	0.731	0.740	Native Exotic	Invasion	Native Exotic	Invasion				
Country	Continent	Region	Land Use	Management	Native Exotic	Invasion	Excluded			
--------------------	-----------	--------	----------	------------	---------------	----------	----------			
United States	North America	Moderate	Native Exotic	Invasion	Excluded					
Canada	North America	Small	Old/New	Ongoing Disturbance						
Ghana	Africa	Small	Land Use	Management						
Kenya	Africa	Small	Land Use	Management						
Australia	Oceania	Very High	Native Exotic	Invasion	Excluded					
Spain	Europe	Moderate	Native Exotic	Invasion						
France	Europe	Small	Land Use	Urbanization						
United States	North America	Small	Land Use	Management						
Argentina	South America	Small	Land Use	Grazing						
Greece	Europe	Small	Land Use	Agriculture						
North America	North America	Moderate	Old/New	Ongoing Disturbance						
United States	North America	High	Native Exotic	Invasion						
Indonesia	Southeast Asia	Small	Land Use	Agriculture						
Indonesia	Southeast Asia	Small	Land Use	Management						
South Africa	Africa	Small	Land Use	Grazing						
Spain	Europe	Small	Land Use	Grazing	Excluded					
France	Europe	Small	Land Use	Grazing	Excluded					
Philippines	Asia	Small	Land Use	Agriculture						
Egypt	Africa	Small	Land Use	Management						
Egypt	Africa	Small	Land Use	Urbanization						
Argentina	South America	Small	Land Use	Grazing						
Argentina	South America	Small	Land Use	Grazing						
United Kingdom	Europe	Moderate	Old/New	Ongoing Disturbance						
Afghanistan	Asia	High	Native Exotic	Invasion	Excluded					
Argentina	South America	High	Native Exotic	Invasion						
Australia	Oceania	High	Native Exotic	Invasion						
Country	Score	Probability	Region	High	Native Exotic	Invasion				
----------------------	-------	-------------	--------	------	---------------	----------				
Belgium	3	0.875	Fish	High	Native Exotic	Invasion				
Brazil	92	0.963	Fish	High	Native Exotic	Invasion				
Bulgaria	4	0.915	Fish	High	Native Exotic	Invasion				
Canada	80	0.900	Continent	High	Native Exotic	Invasion				
Chile	21	0.985	Fish	High	Native Exotic	Invasion				
China	72	0.933	Fish	High	Native Exotic	Invasion				
Colombia	9	0.962	Fish	High	Native Exotic	Invasion				
Congo	3	0.985	Fish	High	Native Exotic	Invasion				
Denmark	4	0.862	Fish	High	Native Exotic	Invasion				
Finland	6	0.857	Fish	High	Native Exotic	Invasion				
France	50	0.868	Fish	High	Native Exotic	Invasion				
French Polynesia	17	1.000	Fish	High	Native Exotic	Invasion				
Germany	4	0.887	Fish	High	Native Exotic	Invasion				
Greece	18	0.966	Fish	High	Native Exotic	Invasion				
India	44	0.951	Fish	Continent	High	Native Exotic	Invasion			
Indonesia	72	0.924	Fish	High	Native Exotic	Invasion				
Iran	42	0.897	Fish	High	Native Exotic	Invasion				
Ireland	4	0.857	Fish	High	Native Exotic	Invasion				
Italy	43	0.938	Fish	High	Native Exotic	Invasion				
Japan	138	0.931	Fish	High	Native Exotic	Invasion				
Kenya	8	0.972	Fish	High	Native Exotic	Invasion				
Madagascar	11	0.938	Fish	High	Native Exotic	Invasion				
Malaysia	61	0.954	Fish	High	Native Exotic	Invasion				
Martinique	5	0.929	Fish	High	Native Exotic	Invasion				
Mexico	83	0.944	Fish	High	Native Exotic	Invasion				
Morocco	12	0.923	Fish	High	Native Exotic	Invasion				
New Caledonia	11	0.969	Fish	High	Native Exotic	Invasion				
New Zealand	195	1.000	Fish	High	Native Exotic	Invasion				
Norway	8	0.905	Fish	High	Native Exotic	Invasion				
Panama	18	0.950	Fish	High	Native Exotic	Invasion				
Papua New Guinea	26	0.853	Fish	High	Native Exotic	Invasion				
Philippines	6	0.892	Fish	High	Native Exotic	Invasion				
Poland	4	0.889	Fish	High	Native Exotic	Invasion				
Portugal	9	0.848	Fish	High	Native Exotic	Invasion				
Russia	104	0.926	Fish	Continent	High	Native Exotic	Invasion			
South Africa	53	0.953	Fish	High	Native Exotic	Invasion				
South Korea	195	0.922	Fish	High	Native Exotic	Invasion				
Spain	22	0.789	Fish	High	Native Exotic	Invasion				
Sri Lanka	91	0.956	Fish	High	Native Exotic	Invasion				
Sweden	22	0.886	Fish	High	Native Exotic	Invasion				
Tanzania	13	0.979	Fish	High	Native Exotic	Invasion				
Thailand	19	0.948	Fish	High	Native Exotic	Invasion				
Tunisia	13	0.923	Fish	High	Native Exotic	Invasion				
Turkey	46	0.933	Fish	High	Native Exotic	Invasion				
United Kingdom	43	0.892	Fish	High	Native Exotic	Invasion				
United States	193	0.959	Fish	Continent	High	Native Exotic	Invasion			
Venezuela	17	0.943	Fish	High	Native Exotic	Invasion				
---	---	---	---	---	---	---	---	---	---	---
74	vietnam	25	0.927	0.922	fish	region	high	native_exotic	invasion	
75	ecuador	49	0.961	0.958	bird	region	small	land_use	agriculture	
76	south_africa	13	0.866	0.820	bird	region	small	land_use	urbanization	
77	north_america	60	0.974	0.977	plant	continent	very_high	native_exotic	invasion	
77	eu	30	0.990	0.990	plant	continent	very_high	native_exotic	invasion	
Figure S1. Sampling methods, grain sizes, and continents of datasets for the three taxonomic groups we collected. a: 54 out of 55 fish datasets were native-non-native ones; the majority of resurvey studies were about plants. b: none of the fish datasets had small grain size locales; the majority of bird and plant datasets were at small scale.
Figure S2. Partition of Sorensen dissimilarity into nestedness and turnover. Sorensen is a measure of pairwise dissimilarity of species (taxonomic) composition of assemblages.
Figure S3. Changes in taxonomic diversity vs. changes in phylogenetic diversity across all datasets. A: changes in α diversity. B: changes in β diversity. Positive effect size suggests increases in site dissimilarity while negative effect size suggests decreases in site dissimilarity. Therefore, the grey area indicates both species homogenization and phylogenetic homogenization. Note that effect sizes of PSV and PCDp are independent from the effect sizes of species richness and Sorensen dissimilarity, respectively. This is not the case for pd_{unroot} (Faith’s PD without root) and $psor_turnover$ (turnover part of PhyloSor). Consequently, to examine patterns of “pure” phylogenetic diversity, metrics that are independent with species diversity should be used.
Figure S4. Changes in taxonomic and phylogenetic diversity of datasets from different continents.
Figure S5. Histogram of log ratio effect size.
Figure S6. The average number (a) and average proportion of site occupation (b) of species that were lost and gained within datasets of different taxonomic groups. Each colored dot represents the average value of a dataset while each black dot represents mean values across all datasets. Values from the same dataset were connected with lines. Plant and fish on average have more gained species than lost ones, resulting in higher alpha diversity; gained species also occupied more sites than lost species, resulting in lower beta diversity. Note that the values in this figure were observed ones while statistics in Fig. 2 were based on weighted linear mixed models, therefore, their patterns were not exactly the same.
Figure S7. The average number (a) and average proportion of site occupation (b) of species that were lost and gained within datasets of different data types. Each colored dot represents the average value of a dataset while each black dot represents mean values across all datasets. Values from the same dataset were connected with lines. Datasets from Resample Data and Species List Data on average have more gained species than lost ones, resulting in higher alpha diversity; gained species also occupied more sites than lost species, resulting in lower beta diversity. Note that the values in this figure were observed ones while statistics in Fig. 3 were based on weighted linear mixed models, therefore, their patterns were not exactly the same.
Figure S8. Site level changes in mean pairwise phylogenetic distances between gained/lost species and species that maintained of different taxonomic groups. Each colored dot represents the average value of a dataset while each black dot represents mean values across all datasets. MPDs: mean pairwise phylogenetic distance among shared species in both ‘time periods’; MPDsl: mean pairwise phylogenetic distance between shared species and lost species.; MPDsg: mean pairwise phylogenetic distance between shared species and gained species. To account for differences of MPDs among datasets, we compared MPDsl − MPDs and MPDsg − MPDs for each dataset. For Species List Data, we set MPDsg − MPDs to NA (not available) for datasets did not have any lost species; and we only connected datasets that have lost and gained species with lines.
Figure S9. Site level changes in mean pairwise phylogenetic distances between gained/lost species and species that maintained of different data types. Each colored dot represents the average value of a dataset while each black dot represents mean values across all datasets. MPDs: mean pairwise phylogenetic distance among shared species in both ‘time periods’; MPDsl: mean pairwise phylogenetic distance between shared species and lost species.; MPDsg: mean pairwise phylogenetic distance between shared species and gained species. To account for differences of MPDs among datasets, we compared MPDsl - MPDs and MPDsg - MPDs for each dataset. For Species List Data, we set MPDsg - MPDs to NA (not available) for datasets without any lost species; and we only connected datasets that have lost and gained species with lines.
Text S1: References for original studies used in this study. Numbers correspond to the “Ref” column in Supplementary Table S5.

1. Alstad, A. O. et al. The pace of plant community change is accelerating in remnant prairies. Science Advances 2, e1500975 (2016).
2. Beauvais, M.-P., Pellerin, S. & Lavoie, C. Beta diversity declines while native plant species richness triples over 35 years in a suburban protected area. Biological Conservation 195, 73–81 (2016).
3. Blair, R. B. & Johnson, E. M. Suburban habitats and their role for birds in the urban–rural habitat network: Points of local invasion and extinction? Landscape Ecology 23, 1157–1169 (2008).
4. Naithani, A. & Bhatt, D. Bird community structure in natural and urbanized habitats along an altitudinal gradient in pauri district (garhwal himalaya) of uttarakhand state, india. Biologia 67, 800–808 (2012).
5. Cassey, P., Lockwood, J. L., Blackburn, T. M. & Olden, J. D. Spatial scale and evolutionary history determine the degree of taxonomic homogenization across island bird assemblages. Diversity and Distributions 13, 458–466 (2007).
6. Clavero, M. & Garci’a-Berthou, E. Homogenization dynamics and introduction routes of invasive freshwater fish in the iberian peninsula. Ecological Applications 16, 2313–2324 (2006).
7. Katovai, E., Burley, A. L. & Mayfield, M. M. Understory plant species and functional diversity in the degraded wet tropical forests of kolombangara island, solomon islands. Biological Conservation 145, 214–224 (2012).
8. Giordano, S. et al. Biodiversity and trace element content of epiphytic bryophytes in urban and extraurban sites of southern italy. Plant Ecology 170, 1–14 (2004).
9. Naidoo, R. Species richness and community composition of songbirds in a tropical forest-agricultural landscape. in Animal conservation forum 7, 93–105 (Cambridge University Press, 2004).
10. Dawson, J. et al. Bird communities of the lower waria valley, morobe province, papua new guinea: A comparison between habitat types. Tropical Conservation Science 4, 317–348 (2011).
11. Neuschulz, E. L., Botzat, A. & Farwig, N. Effects of forest modification on bird community composition and seed removal in a heterogeneous landscape in south africa. Oikos 120, 1371–1379 (2011).
12. Reid, J. L., Harris, J. B. C. & Zahawi, R. A. Avian habitat preference in tropical forest restoration in southern costa rica. Biotropica 44, 350–359 (2012).
13. Azhar, B. et al. The influence of agricultural system, stand structural complexity and landscape context on foraging birds in oil palm landscapes. Ibis 155, 297–312 (2013).
14. Lima, R. F. de, Dallimer, M., Atkinson, P. W. & Barlow, J. Biodiversity and land use change: Understanding the complex responses of an endemic-rich bird assemblage. *Diversity and Distributions* **19**, 411–422 (2013).

15. Ding, C., Jiang, X., Xie, Z. & Brosse, S. Seventy-five years of biodiversity decline of fish assemblages in chinese isolated plateau lakes: Widespread introductions and extirpations of narrow endemics lead to regional loss of dissimilarity. *Diversity and Distributions* **23**, 171–184 (2017).

16. Woinarski, J. et al. Fauna assemblages in regrowth vegetation in tropical open forests of the northern territory, australia. *Wildlife Research* **36**, 675–690 (2010).

17. Proença, V. M., Pereira, H. M., Guilherme, J. & Vicente, L. Plant and bird diversity in natural forests and in native and exotic plantations in nw portugal. *Acta Oecologica* **36**, 219–226 (2010).

18. Mallari, N. et al. Population densities of understorey birds across a habitat gradient in palawan, philippines: Implications for conservation. *Oryx* **45**, 234–242 (2011).

19. Dallimer, M., Parnell, M., Bicknell, J. E. & Melo, M. The importance of novel and agricultural habitats for the avifauna of an oceanic island. *Journal for Nature Conservation* **20**, 191–199 (2012).

20. Siebert, S. J. Patterns of plant species richness of temperate and tropical grassland in south africa. *Plant Ecology and Evolution* **144**, 249–254 (2011).

21. Filippi-Codaccioni, O., Devictor, V., Clobert, J. & Julliard, R. Effects of age and intensity of urbanization on farmland bird communities. *Biological Conservation* **141**, 2698–2707 (2008).

22. Frishkoff, L. O. et al. Loss of avian phylogenetic diversity in neotropical agricultural systems. *Science* **345**, 1343–1346 (2014).

23. Devineau, J.-L., Fournier, A. & Nignan, S. ‘Ordinary biodiversity’ in western burkina faso (west africa): What vegetation do the state forests conserve? *Biodiversity and Conservation* **18**, 2075 (2009).

24. Heinrichs, S. & Schmidt, W. Biotic homogenization of herb layer composition between two contrasting beech forest communities on limestone over 50 years. *Applied Vegetation Science* **20**, 271–281 (2017).

25. Hoagstrom, C. W., Wall, S. S., Kral, J. G., Blackwell, B. G. & Berry Jr, C. R. Zoogeographic patterns and faunal change of south dakota fishes. *Western North American Naturalist* **67**, 161–184 (2007).

26. Hietz, P. Conservation of vascular epiphyte diversity in mexican coffee plantations. *Conservation Biology* **19**, 391–399 (2005).

27. Kessler, M. et al. Tree diversity in primary forest and different land use systems in central sulawesi, indonesia. *Biodiversity & Conservation* **14**, 547–560 (2005).

28. Ranganathan, J., Chan, K. & Daily, G. C. Satellite detection of bird communities in tropical
29. Farwig, N., Sajita, N. & Böhning-Gaese, K. Conservation value of forest plantations for bird communities in western kenya. *Forest Ecology and Management* **255**, 3885–3892 (2008).
30. Gomes, L. G., Oostra, V., Nijman, V., Cleef, A. M. & Kappelle, M. Tolerance of frugivorous birds to habitat disturbance in a tropical cloud forest. *Biological Conservation* **141**, 860–871 (2008).
31. Ranganathan, J., Daniels, R. R., Chandran, M. S., Ehrlich, P. R. & Daily, G. C. Sustaining biodiversity in ancient tropical countryside. *Proceedings of the National Academy of Sciences* **105**, 17852–17854 (2008).
32. Hylander, K. & Nemomissa, S. Complementary roles of home gardens and exotic tree plantations as alternative habitats for plants of the ethiopian montane rainforest. *Conservation Biology* **23**, 400–409 (2009).
33. Kessler, M. *et al.* Alpha and beta diversity of plants and animals along a tropical land use gradient. *Ecological Applications* **19**, 2142–2156 (2009).
34. Schmitt, C. B., Senbeta, F., Denich, M., Preisinger, H. & Boehmer, H. J. Wild coffee management and plant diversity in the montane rainforest of southwestern ethiopia. *African Journal of Ecology* **48**, 78–86 (2010).
35. Chapman, K. A. & Reich, P. B. Land use and habitat gradients determine bird community diversity and abundance in suburban, rural and reserve landscapes of minnesota, usa. *Biological Conservation* **135**, 527–541 (2007).
36. Lantschner, M. V., Rusch, V. & Peyrou, C. Bird assemblages in pine plantations replacing native ecosystems in nw patagonia. *Biodiversity and Conservation* **17**, 969–989 (2008).
37. Fensham, R., Dwyer, J., Eyre, T., Fairfax, R. & Wang, J. The effect of clearing on plant composition in mulga (acacia aneura) dry forest, australia. *Austral Ecology* **37**, 183–192 (2012).
38. Keith, S. A., Newton, A. C., Morecroft, M. D., Bealey, C. E. & Bullock, J. M. Taxonomic homogenization of woodland plant communities over 70 years. *Proceedings of the Royal Society of London B: Biological Sciences* **276**, 3539–3544 (2009).
39. Kühn, I. & Klotz, S. Urbanization and homogenization–comparing the florals of urban and rural areas in germany. *Biological Conservation* **127**, 292–300 (2006).
40. Li, D. & Waller, D. Drivers of observed biotic homogenization in pine barrens of central wisconsin. *Ecology* **96**, 1030–1041 (2015).
41. Liu, C., He, D., Chen, Y. & Olden, J. D. Species invasions threaten the antiquity of china’s freshwater fish fauna. *Diversity and Distributions* **23**, 556–566 (2017).
42. Lôbo, D., Leão, T., Melo, F. P., Santos, A. M. & Tabarelli, M. Forest fragmentation drives atlantic forest
of northeastern brazil to biotic homogenization. *Diversity and Distributions* 17, 287–296 (2011).

43. Magurran, A. E., Dornelas, M., Moyes, F., Gotelli, N. J. & McGill, B. Rapid biotic homogenization of marine fish assemblages. *Nature Communications* 6, 8405 (2015).

44. Marchetti, M. P., Lockwood, J. L. & Light, T. Effects of urbanization on california’s fish diversity: Differentiation, homogenization and the influence of spatial scale. *Biological Conservation* 127, 310–318 (2006).

45. McCune, J. L. & Vellend, M. Gains in native species promote biotic homogenization over four decades in a human-dominated landscape. *Journal of Ecology* 101, 1542–1551 (2013).

46. Baur, B. *et al.* Effects of abandonment of subalpine hay meadows on plant and invertebrate diversity in transylvania, romania. *Biological Conservation* 132, 261–273 (2006).

47. Sheldon, F. H., Styring, A. & Hosner, P. A. Bird species richness in a bornean exotic tree plantation: A long-term perspective. *Biological Conservation* 143, 399–407 (2010).

48. Phalan, B., Onial, M., Balmford, A. & Green, R. E. Reconciling food production and biodiversity conservation: Land sharing and land sparing compared. *Science* 333, 1289–1291 (2011).

49. Munyekenye, F., Mwangi, E. & Gichuki, N. Bird species richness and abundance in different forest types at kakamega forest, western kenya. *Ostrich-Journal of African Ornithology* 79, 37–42 (2008).

50. Olden, J. D., Kennard, M. J. & Pusey, B. J. Species invasions and the changing biogeography of australian freshwater fishes. *Global Ecology and Biogeography* 17, 25–37 (2008).

51. Pino, J., Font, X., De Cáceres, M. & Molowny-Horas, R. Floristic homogenization by native ruderal and alien plants in north-east spain: The effect of environmental differences on a regional scale. *Global Ecology and Biogeography* 18, 563–574 (2009).

52. Plue, J. *et al.* Persistent changes in forest vegetation and seed bank 1,600 years after human occupation. *Landscape Ecology* 23, 673–688 (2008).

53. Pool, T. K. & Olden, J. D. Taxonomic and functional homogenization of an endemic desert fish fauna. *Diversity and Distributions* 18, 366–376 (2012).

54. Puhl, L., Perelman, S., Batista, W., Burkart, S. & León, R. Local and regional long-term diversity changes and biotic homogenization in two temperate grasslands. *Journal of Vegetation Science* 25, 1278–1288 (2014).

55. Rahel, F. J. Homogenization of fish faunas across the united states. *Science* 288, 854–856 (2000).

56. Ricotta, C. *et al.* Phylogenetic beta diversity of native and alien species in european urban floras. *Global Ecology and Biogeography* 21, 751–759 (2012).

57. Rogers, D. A., Rooney, T. P., Olson, D. & Waller, D. M. Shifts in southern wisconsin forest canopy and
understory richness, composition, and heterogeneity. *Ecology* **89**, 2482–2492 (2008).

58. Rooney, T. P., Wiegmann, S. M., Rogers, D. A. & Waller, D. M. Biotic impoverishment and homogenization in unfragmented forest understory communities. *Conservation Biology* **18**, 787–798 (2004).

59. Savage, J. & Vellend, M. Elevational shifts, biotic homogenization and time lags in vegetation change during 40 years of climate warming. *Ecography* **38**, 546–555 (2015).

60. Doulton, H., Marsh, C., Newman, A., Bird, K. & Bell, M. Conservation comoros 2005: Biodiversity and resource-use assessment and environmental awareness, final report. *Unpublished report* (2007).

61. Mayfield, M. M., Ackerly, D. & Daily, G. C. The diversity and conservation of plant reproductive and dispersal functional traits in human-dominated tropical landscapes. *Journal of Ecology* **94**, 522–536 (2006).

62. Marsh, C. J., Lewis, O. T., Said, I. & Ewers, R. M. Community-level diversity modelling of birds and butterflies on anjouan, comoro islands. *Biological Conservation* **143**, 1364–1374 (2010).

63. Kati, V., Zografou, K., Tzirkalli, E., Chitos, T. & Willemse, L. Butterfly and grasshopper diversity patterns in humid mediterranean grasslands: The roles of disturbance and environmental factors. *Journal of Insect Conservation* **16**, 807–818 (2012).

64. Schipper, A. M. *et al.* Contrasting changes in the abundance and diversity of north american bird assemblages from 1971 to 2010. *Global Change Biology* **22**, 3948–3959 (2016).

65. Schwartz, M. W., Thorne, J. H. & Viers, J. H. Biotic homogenization of the california flora in urban and urbanizing regions. *Biological Conservation* **127**, 282–291 (2006).

66. Sheil, D. *et al.* Exploring biological diversity, environment, and local people’s perspectives in forest landscapes: Methods for a multidisciplinary landscape assessment. (CIFOR, 2002).

67. O’Connor, T. Influence of land use on plant community composition and diversity in highland sourveld grassland in the southern drakensberg, south africa. *Journal of Applied Ecology* **42**, 975–988 (2005).

68. Medina, R. *et al.* Epiphytic bryophytes in harsh environments: The juniperus thurifera forests. *Journal of Bryology* **32**, 23–31 (2010).

69. Center for International Forestry Research (CIFOR). Multidisciplinary Landscape Assessment - Philippines. (2013).

70. Norfolk, O., Eichhorn, M. P. & Gilbert, F. Traditional agricultural gardens conserve wild plants and functional richness in arid south sinai. *Basic and Applied Ecology* **14**, 659–669 (2013).

71. Peri, P. L., Lencinas, M. V., Martínez Pastur, G., Wardell-Johnson, G. W. & Lasagno, R. Diversity
patterns in the steppe of argentinean southern patagonia: Environmental drivers and impact of grazing. *Steppe ecosystems: Biological diversity, Management and Restoration* 346 (2013).

72. Smart, S. M. *et al.* Biotic homogenization and changes in species diversity across human-modified ecosystems. *Proceedings of the Royal Society of London B: Biological Sciences* 273, 2659–2665 (2006).

73. Taylor, E. B. An analysis of homogenization and differentiation of canadian freshwater fish faunas with an emphasis on british columbia. *Canadian Journal of Fisheries and Aquatic Sciences* 61, 68–79 (2004).

74. Tedesco, P. A. *et al.* A global database on freshwater fish species occurrence in drainage basins. *Scientific Data* 4, (2017).

75. O’Dea, N. & Whittaker, R. J. How resilient are andean montane forest bird communities to habitat degradation? *Biodiversity and Conservation* 16, 1131–1159 (2007).

76. Rensburg, B. J. van, Peacock, D. S. & Robertson, M. P. Biotic homogenization and alien bird species along an urban gradient in south africa. *Landscape and Urban Planning* 92, 233–241 (2009).

77. Winter, M. *et al.* The role of non-native plants and vertebrates in defining patterns of compositional dissimilarity within and across continents. *Global Ecology and Biogeography* 19, 332–342 (2010).