Korean–English MT and S-TAG

Mark Dras and Chung-hye Han
Macquarie University and Simon Fraser University

1. Introduction

An early motivation for Synchronous TAG (S-TAG) (Shieber and Schabes, 1990) was machine translation (Abeille, Schabes and Joshi, 1990). Abeille et al. note that traditionally difficult problems outlined by Dorr (1994)—for example, categorial, thematic, conflational, structural and lexical divergences—have been used to argue for the necessity of an explicit semantic representation. However, many of these divergences are not problems for an S-TAG-based approach. Synchronous TAG translation models thus allow us to explore the question of the extent to which a semantic representation is actually necessary.

S-TAG was redefined by Shieber (1994) for both theoretical and practical reasons, introducing the requirement that the derivation trees of target and source be isomorphic. Under this definition it has been noted (Shieber, 1994; Dras and Bleam, 2000) that there are mappings that cannot be described under S-TAG. This was the motivation for meta-level grammars (Dras, 1999), by which two TAG grammars can be paired while retaining their original properties, as under standard S-TAG, allowing for a description of mappings that include unbounded non-isomorphisms (Dras and Bleam, 2000).

This work on exploring how S-TAG (with and without meta-level grammars) can be used for MT has only been applied to languages that are closely related—English, French, Italian and Spanish. In this paper we aim to take a much more widely differing pair of languages, English and Korean, to investigate the extent to which syntactic mappings are satisfactory.

English and Korean have a wide range of differences: rigid SVO word order in English vs verb-final with free word order in Korean, the largely analytic structure of English vs the agglutinative structure of Korean with its complex morphology, optional subject and object and the absence of number and articles in Korean, and many others. These all suggest that a meta-level grammar will be necessary as there are various many-to-one or many-to-many mappings between derivation tree nodes (i.e., there will be few cases where a single elementary tree corresponds to another single elementary tree, which has been the case with closely related languages).

Although there is an implemented Korean/English MT system that includes a TAG Korean parser as a source language analysis component (Han et al., 2000), this system as a whole is based on Meaning Text Theory (Mel'čuk, 1988), an enriched dependency formalism. Thus, it requires a conversion component that converts the TAG parser output to a dependency notation. As pointed out in Palmer et al. (2002), however, this conversion process resulted in a loss of crucial information such as predicate-argument structure encoded in TAG elementary trees, which had negative consequences in the translation results. This then provides further motivation to explore the feasibility of applying a single TAG-based formalism to modeling and implementing a Korean/English MT system.

As a first step towards exploring the extent to which an S-TAG style approach can successfully model these widely different languages, we have taken from a parallel English-Korean Treebank twenty examples of divergent constructions (see Appendix). Each half has roughly 50,000 word tokens and 5,000 sentences. While the annotation guidelines for the Korean half was developed in Han, Han and Ko (2001) for this corpus, the English half follows the guidelines already developed for Penn English Treebank (Bieset et al., 1995), as closely as possible.

The example pairs represent structures including copula, predicative/attribution adjective, passive, causative, interrogative, relative clause, complex verb, and modal construction, among others. We find that using a TAG-based meta-level grammar to model Korean/English correspondences for machine translation is quite feasible.

2. Analyses

In this section we discuss two example pairs of sentences, taken from the parallel Treebank, that illustrates several divergences, and how an S-TAG with meta-level grammar can handle them. The trees we use for the subgrammars for the sentences are extracted automatically from the Treebank using Lextract (Xia, Palmer and
2.1. Korean complex NP vs. English modal

The sentence pair in (1) represents a modal construction. The key divergence is that the Korean uses a noun complement structure, while the English uses a modal adjective structure:

(1) 셔트들을 그 능력을 개복지에서 충분히 발휘할 수 있습니까.

Tanks are able to fully demonstrate their potential in open terrain.

A closer but less natural translation of the Korean is *The possibility that tanks fully demonstrate their potential in open terrain exists*; the noun representing *possibility* is modified by an adnominal clause. The corresponding English translation contains *be able to* followed by an infinitival clause. The derivation trees are as in Figure 1, and the Lextract elementary trees grouped according to the translation pairing in Figure 2.

Figure 1: Derivation trees for (1)

Note that the Lextract trees do not contain features, although the corresponding Korean XTAG (Han et al., 2000) trees do. We will make use of the features where necessary.
Figure 2: Lextract elementary trees for (1)
The trees are clearly far from isomorphic. The relationship between *able* and *are* is inverted between the corresponding Korean セ@セ@ (be) and セ@セ@ (possibility), although *demonstrate* is the child of *able* (부적절) and *to* respectively in both. Most crucially, however, the infinitival *to* in English, attached to *demonstrate*, has no corresponding element in Korean; rather, *to* and *demonstrate* correspond to the single 부적절 in Korean. But, given TAG's approach to modification, an unbounded number of modifiers (fully, the PP headed by *in*) can be inserted between *demonstrate* and *to*, giving an unbounded non-isomorphism. In other examples we have noted that this unbounded non-isomorphism is quite prevalent, occurring inter alia with nouns and determiners.

Other divergences attested in (1) are that *tanks* is an argument of *able*, but the *able* form (tanks) is an argument of 부적절 (*demonstrate*); and that the preposition *in* is represented by the suffix -'t, a type of correspondence that occurs frequently because of the analytic-agglutinative language mismatch. Using the algorithm of Dras (1999), however, it is possible to construct a meta-level grammar to characterize appropriate paired substructures in the trees, as in Figure 3. The basic principle is that the divergent material is captured by the multi-level tree pairs (such as 19–A), in particular in cases with unbounded non-isomorphisms, where the recursive material (such as 19–D and 19–E) is factored out. The other structures that are not a cause of the isomorphism violation continue to be paired by single-level tree pairs (either as in 19–B, or in cases not illustrated here where there is a single node corresponding to a lexicalized tree plus a substitution node).²

Figure 3: Meta-level grammar for (1)

The groupings that arise from the algorithm are fairly intuitive. 19–A represents the concept the ability of X to demonstrate Y (X here being tanks and Y potential), with two consequent argument slots, and one slot where a modifier can be adjoined marked βm.*VP*.*.³ 19–B and 19–D are straightforward; 19–C aggregates the nodes because in general Korean does not use determiners, so an English noun and determiner correspond to a

2. If a pairing of isomorphic trees was expressed by a meta-level TAG, all trees would be single-level.
3. This regular expression represents a node where any tree with a root whose label matches can adjoin; technically this is
single unit in Korean (although this is not the case here, we follow that general principle); and 19–E represents the correspondence between the English PP *in open terrain* and the single Korean "방개지역임". Under this meta-level grammar we have isomorphic meta-level derivation trees for English and Korean with structure as in Figure 4.

Note that, as a next step, the obvious generalisation is to have a single parametrized tree pair in cases like 19–A and 19–E. From 19–A we will have the same structure for *X are able to demonstrate Y, X are able to see Y,* and so on, with a Korean correspondent for each choice of verb. From 19–E we will have the same structure for *in open terrain, near open terrain,* and so on, with a corresponding Korean suffix for each choice of preposition. With the suffixes in Korean XTAG represented by features, the approach would be similar to that of Abeillé, Schabes and Joshi (1990) for cases where the French and English share a feature-related attribute like number.

For the example here it could be argued that perhaps *to* 'should' be in the same tree as *demonstrate,* and that in general there should not be separate elementary trees for function words. Frank (2001) argues for functional elements to be part of lexical elementary trees, and this is the principle used in building the large-scale French TAG grammar, although each has different ideas as to which trees functional elements should be included in. However, part of the aim of translating with S-TAG is to use already existing grammars; there are not special separate grammars for translation that have matching choices about function word treatment. And it is unlikely that all choices would match in any case, for example with determiners, which would be likely separate in English and French, but not in Korean.

2.2. Copula constructions

Korean does not have an explicit copula; this gives rise divergences as in the sentence pair (2).

(2) oplay-den light-machinegun squad-leader-Top sergeant-Cop-Decl

The light machinegun squad leader is a sergeant.

This is not problematic because of the way in which TAG conventionally represents copular constructions, where the predication is the root of the derivation and the copula is adjoined in. Derivation trees are as in Figure 5.

The feature of interest in this translation is the absence of Korean determiners, as mentioned in the previous example. The combined noun-determiner in English thus corresponds to only the noun in Korean; and there can be recursive intervening material (such as *light, machinegun* and *squad* between *the* and *leader*). Thus we again have an unbounded non-isomorphism, and we handle it with a meta-level grammar as in Figure 6.

3. Discussion

In our analysis of twenty sentence pair types (see Appendix) chosen to illustrate particular divergences not typically found between closely related languages, a TAG meta-level grammar is basically adequate for describing the mapping between them, using the algorithm of Dras (1999).

because the labels are really just features (Kasper et al., 1995; Dras, Chiang and Schuler, 2002). Thus, slightly confusingly, there are three types of asterisk in a meta-level grammar. Firstly, there is the asterisk that is part of the name of an XTAG or Lextract tree; this is indicated by a normal asterisk *. Secondly, there is the asterisk to indicate a regular expression over these names; this is indicated by a bold asterisk **. Thirdly, there is the asterisk to indicate a footnode in a meta-level auxiliary tree; this is indicated by a subscripted asterisk *. All three occur in, for example, the right projection of 19–E.

4. In fact, the fact that F-TAG includes function words in lexical trees and the XTAG English grammar does not suggests that a meta-level grammar may be useful there also.
Figure 5: Derivation trees for (2)

05-A:

05-B:

05-C:

Figure 6: Meta-level grammar for (2)

Figure 7: Meta-level derivation for (2)
The major exception is with some adverbial modifiers that can occur both sentence-initially and adjacent to VP without any semantic difference. Because TAG is fundamentally a constituent-based formalism, it is necessary to have two different trees for such modifiers (e.g., *soon*) depending on the location of the modifier (S-rooted and VP-rooted). Thus, in a sentence pair as in (3) in which *now* is VP-adjoined and *'now'* is S-adjoined, it is not possible to build a reasonable TAG meta-level grammar. To see this examine the derivation trees given in Figure 8. Most nodes pair up straightforwardly (*on schedule* pairing with *전행사*', with the Korean containing a suffix to parallel *on*); the exceptions are the nodes for *now* and *proceeding*, which would have to be grouped together because of the different dominance relations (*'종합사*', being immediately dominated by *전행사*', but there being the possibility of unbounded intervening material between *proceeding* and *now*). This grouping of *proceeding* and *now* would be fairly unprincipled, as *now* is a case of recursive material that does not belong in an elementary tree pair at the meta-level. That is, a meta-level grammar is still formally adequate, but linguistically undesirable.

(3) now that attack preparations-Nom plan-as proceed-Pass-Auxconn be-Past-Decl
now that attack preparations-Nom plan-as proceed-Pass-Auxconn be-Past-Decl

However, no semantic difference will result if *now* were sentence-initial in the English, or if *'now'* were adjacent to the verb *'proceed'* in the Korean. This means that even if the Treebank translation does not allow a meta-level grammar, one is possible just by moving the modifier. From our initial exploration, then, a meta-level grammar appears to be a promising candidate for describing English-Korean translation.

The next stage of the work is to build a prototype system and use a Lextract-like approach to extract a meta-level grammar from the parallel Treebank. Lextract already provides us with elementary and derivation trees for Treebank pairs; the algorithm of Dras (1999) gives a systematic method for identifying paired substructures in derivation trees. Further, our prototype system will include a generation component (for Korean and/or English, depending on what the target language is) that generates derivation and derived trees from a given meta-level derivation structure.

A. Sample divergences

#_simple_declaratives
I reported my observations to the battalion commander.

I don't know their sizes or designations.

Road conditions and the enemy situation are key factors.

The authority of the battalion political officer is very extensive.

Unit designations are normally transmitted in code.

The attack preparations are now proceeding on schedule.

So don't be deceived by that propaganda anymore!

The company first sergeant ensures that the members of the company have the weapons and ammunition.
Our battalion HQ then had the ammunition brought in by the battalion’s supply section.

Has the call sign of the platoon leader been changed?

What types of radios is the inclined beam antenna used with?

The book that the radiotelephone operator used was big.

When artillery support units are attached to the battalion, they would use the VHF network also.

One must clean the transmitters and receivers occasionally.

Please give me back the letter.

The squad leader carefully looked into the eyes of the wounded soldier.

Tanks are able to fully demonstrate their potential in open terrain.

The T-54 tank emitted smoke.
References

Abeilî, Anne, Yves Schabes and Aravind K. Joshi. 1990. Using lexicalized tree adjoining grammars for machine translation.
In Proceedings of the 13th International Conference on Computational Linguistics (COLING '90), Helsinki, Finland, August.

Bies, Ann, Mark Ferguson, Karen Katz and Robert MacIntyre. 1995. Bracketing Guidelines for Treebank II Style Penn
Treebank Project.

Dorr, Bonnie. 1994. Machine Translation Divergences: A Formal Description and Proposed Solution. Computational Linguistics, 20(4):597-633.

Dras, Mark. 1999. A meta-level grammar: redefining synchronous TAG for translation and paraphrase. In Proceedings of the
37th Annual Meeting of the Association for Computational Linguistics (ACL '99), pages 80-87.

Dras, Mark and Tonia Bleam. 2000. How Problematic are Clitics for S-TAG Translation? In Proceedings of the Fifth
International Workshop on Tree Adjoining Grammars and Related Formalisms (TAG+5), pages 241-244, Paris, France.

Dras, Mark, David Chiang and William Schuler. 2002. On Relations of Constituency and Dependency Grammars. Journal of
Language and Computation.

Frank, Robert. 2001. Phrase Structure Composition and Syntactic Dependencies. MS. Johns Hopkins University, June.

Han, Chunghye, Benoit Lavoie, Martha Palmer, Owen Rambow, Richard Kittredge, Tanya Korelsky, Nari Kim and Myunghee
Kim. 2000. Handling Structural Divergences and Recovering Dropped Arguments in a Korean/English Machine Translation
System. In John S. White, editor, Envisioning Machine Translation in the Information Future, Lecture Notes in
Artificial Intelligence. Springer-Verlag, pages 40-53. Proceedings of the Association for Machine Translation in the
Americas, AMTA 2000.

Han, Chunghye, Na-Rae Han and Eon-Suk Ko. 2001. Bracketing Guidelines for Penn Korean Treebank. Technical Report
JRCS-01-10, Institute for Research in Cognitive Science, University of Pennsylvania.

Han, Chunghye, Juntae Yoon, Nari Kim and Martha Palmer. 2000. A Feature-Based Lexicalized Tree Adjoining Grammar for
Korean. Technical Report IRCS-00-04, Institute for Research in Cognitive Science, University of Pennsylvania.

Kasper, Robert, Bernd Kiefer, Klaus Netter and K. Vijay-Shanker. 1995. Compilation of HPSG to TAG. In Proceedings of the
33rd Annual Meeting of the Association for Computational Linguistics (ACL '95).

Mel'cuk, !gor. 1988. Dependency syntax: theory and practice. Albany: State University of NY Press.

Palmer, Martha, Chunghye Han, Anoop Sarkar and Ann Bies. 2002. Integrating Korean analysis components in a modular
Korean/English machine translation system. MS. University of Pennsylvania and Simon Fraser University.

Shieber, Stuart M. 1994. Restricting the weak-generative capability of synchronous tree adjoining grammars. Computational
Intelligence, 10(4).

Shieber, Stuart M. and Yves Schabes. 1990. Synchronous tree adjoining grammars. In Proceedings of the 13th International
Conference on Computational Linguistics (COLING '90), Helsinki, Finland, August.

Xia, Fei, Martha Palmer and Aravind Joshi. 2000. A Uniform Method of Grammar Extraction and Its Applications. In
Proceedings of EMNLP 2000.