Climate and pH Predict the Potential Range of the Invasive Apple Snail (*Pomacea insularum*) in the Southeastern United States

James E. Byers1*, William G. McDowell1, Shelley R. Dodd2, Rebecca S. Haynie2, Lauren M. Pintor1,3, Susan B. Wilde2

1 Odum School of Ecology, University of Georgia, Athens, Georgia, United States of America, 2 Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, United States of America, 3 School of Environment and Natural Resources, The Ohio State University, Columbus, Ohio, United States of America

Abstract

Predicting the potential range of invasive species is essential for risk assessment, monitoring, and management, and it can also inform us about a species’ overall potential invasiveness. However, modeling the distribution of invasive species that have not reached their equilibrium distribution can be problematic for many predictive approaches. We apply the modeling approach of maximum entropy (MaxEnt) that is effective with incomplete, presence-only datasets to predict the distribution of the invasive island apple snail, *Pomacea insularum*. This freshwater snail is native to South America and has been spreading in the USA over the last decade from its initial introductions in Texas and Florida. It has now been documented throughout eight southeastern states. The snail’s extensive consumption of aquatic vegetation and ability to accumulate and transmit algal toxins through the food web heighten concerns about its spread. Our model shows that under current climate conditions the snail should remain mostly confined to the coastal plain of the southeastern USA where it is limited by minimum temperature in the coldest month and precipitation in the warmest quarter. Furthermore, low pH waters (pH ∼5.5) are detrimental to the snail’s survival and persistence. Of particular note are low-pH blackwater swamps, especially Okefenokee Swamp in southern Georgia (with a pH below 4 in many areas), which are predicted to preclude the snail’s establishment even though many of these areas are well matched climatically. Our results elucidate the factors that affect the regional distribution of *P. insularum*, while simultaneously presenting a spatial basis for the prediction of its future spread. Furthermore, the model for this species exemplifies that combining climatic and habitat variables is a powerful way to model distributions of invasive species.

Introduction

Invasive species can often negatively impact native species and ecosystems, especially in cases where they spread disease or over-consume resources [1]. Early detection and prediction are central to the effective management of such invasive species to minimize negative impacts [2]. Many invasive species are still expanding their range, especially those that have recently been introduced into novel areas. Recently there has been a rise in the application of ecological niche modeling to predict habitats vulnerable to invasion, which then can guide early detection and rapid response efforts against invasive species. These modern modeling technologies not only can help predict invasions, but also identify what particular environmental factors limit a species’ distribution [3]. In many cases, these factors may be regionally correlated, which makes them conducive to utilizing data from large-scale sampling programs and even remote sensing (e.g., [4–6]) to model and predict sites that are vulnerable to invasion.

The *Pomacea* genus of freshwater snails is known to be quite invasive and can pose risks to agricultural crops and human and wildlife health [7,8]. The best studied *Pomacea* species is the channeled apple snail, *P. canaliculata*, which is classified as one of the 100 “World’s Worst” invaders by the Global Invasive Species Database. It has large impacts on aquatic ecosystems as a consumer of vegetation and is among the few aquatic snail vectors of the zoonotic nematode, rat lungworm (*Angiostrongylus cantonensis*) [9]. A species endemic to Mexico, *Pomacea patula catenacea*, which is a food item for humans and wildlife, was shown to accumulate appreciable levels of cyanotoxins [10]. Several invasive *Pomacea* are major agricultural pests in Asia where rice production suffered after intentional introduction as a potential food source for local consumption and export [11,12].

The island apple snail, *Pomacea insularum*, is originally native to South America and was introduced to the United States most likely in the early 1990’s, but possibly as late as 2002 [7] (Figure 1). Since then, it has rapidly spread from its initial introduced populations in Texas and Florida, and has been documented throughout eight southeastern states in the USA [7,13,14]. The limited ecological data on *P. insularum* in the USA show that the species has considerable impacts, especially on native aquatic...
vegetation and snail species [15–17]. In Florida, in particular, *P. insularum* is much larger and more fecund than the native *P. paludosa* (e.g., *P. insularum* egg clutches contain 2000 eggs as opposed to its native counterpart which produces 20–30 eggs) [18–20]. The invasion of *P. insularum* has possibly affected the endangered snail kite, a specialist predator on the native *P. paludosa*, which seemingly experienced decreased foraging success and juvenile survival following invasion of *P. insularum* [21]. Thus, predicting habitats that are vulnerable to further invasion by *P. insularum* is of particular conservation interest from the perspective of preventing species replacement and larger ecosystem impacts.

Our objectives were to build a predictive model of *P. insularum* distribution in the southeastern USA and identify which environmental variables best predict its distribution using Maximum Entropy modeling (MaxEnt). MaxEnt models use geo-referenced species occurrence records and data on environmental variables to generate a predictive continuous probability distribution of habitat suitability over a spatial domain. MaxEnt is effective with incomplete, presence-only datasets and is a useful approach when modeling a species not at equilibrium, or one that has detection issues [22]. MaxEnt has been shown to consistently outperform more established methods of estimating species’ distributions from occurrence data (e.g., Genetic Algorithm for Rule Set Production-GARP, BIOClim models) and has been increasingly applied to predicting the distribution of invasive species in both terrestrial and aquatic systems [23–25]. MaxEnt models have been increasingly utilized, especially with advances in the collection of large scale environmental data (e.g., [26,27]).

Our MaxEnt model uses bioclimatic data to predict the distribution of *P. insularum* in the southeastern USA. Although the large scale climate modeling provides an excellent initial estimate of the snail’s abiotic tolerances, we also discuss known tolerances of the snail to habitat and non-climate related environmental factors that can provide further guidance for refining which water bodies within the proper climate zone may be inhospitable to invasion. In particular, we focus on pH as a secondarily influential variable and layer this variable onto the model to refine the snail’s predicted conceivable distribution.

Methods

Model Areas of Current and Predicted Climatic Suitability for *P. insularum* in the USA

We collected *P. insularum* distribution data from the USGS Non-indigenous Aquatic Species database [14]. In spring and summer of 2011 and 2012 we surveyed and spot-checked many of these sites, especially in Georgia (including two newly reported sites), to verify the presence of *P. insularum* (Table S1). Because these sites are on the advancing edge of the species’ distribution, their inclusion heavily influences the model. Also, since habitat at the edges of the snail’s distribution may have been colonized more recently or may not be as suitable, we needed to ascertain if the populations showed evidence of persistence.

P. insularum individuals can be difficult to differentiate morphologically from *P. canaliculata*. We relied on the findings of Rawlings et al. (2007) whose genetic work indicated that *P. canaliculata* was mostly restricted to Arizona and California locations, while all *Pomacea* populations in Georgia were *P. insularum*. Furthermore, the field surveyors (R. Haynie and S. Robertson) were familiar with the appearance of *P. insularum* egg masses, which are strikingly different to a trained observer, than those of *P. canaliculata*. Nonetheless, we tested the robustness of our model by performing a sensitivity analysis (Materials S1), and found our model was extremely robust to the potential of misidentified populations. Because *P. insularum* is an invertebrate and none were collected, no specific permits were required for the described field studies. We accessed most sites through public boat landings or publicly owned right-of-ways. However, three of the sites required permission to...
We gathered environmental data for climate variables from WorldClim to use as predictive variables in the MaxEnt modeling of *P. insularum*’s distribution. In particular, we began by using 19 bioclimatic variables (i.e. BioClim variables), which were derived from monthly temperature and rainfall values (Table 1). Co-linearity of predictor variables in MaxEnt models can lead to spurious results [28–30], and BioClim variables are often collinear. Thus, we calculated the Pearson’s correlation coefficient of all combinations of the 19 BioClim variables for known point locations of *P. insularum*. Variables were then selected a priori for their biological importance in affecting apple snail populations and to minimize the number of correlation coefficients above 0.6. Using these criteria, two temperature variables [maximum temperature of the warmest month (Bio5) and minimum temperature in the coldest month (Bio6)] and three precipitation variables [annual precipitation (Bio12), precipitation of the driest quarter (Bio17), and precipitation of the warmest quarter (Bio18)] were selected as predictor variables. These variables were chosen over others with which they correlated strongly because *P. insularum* is known to experience mortality at low temperatures [31], and fluctuations in water levels can have impacts on snail reproduction and juvenile survival [32].

An important step in evaluating the model is to verify that the data used to train and test the model performed significantly better than random. A typical approach is to look at the area under the curve (AUC) score associated with the models. An AUC score of 0.5 indicates a model is no better than random while 1.0 indicates the model distinguishes perfectly between presence and absence of a species. However, there are criticisms of reporting an AUC score by itself, particularly for a species that is not at equilibrium [34,35]. To address this, we also report a graph of the receiver operating curve (ROC). The logistic output from MaxEnt, is scaled between 0–1; however, interpretation is made easier in most cases by defining thresholds of habitat suitability. To establish which areas are climatically suitable for *P. insularum*, we used two different commonly used thresholds based on the average model outputs. One, the “correctly classify all points” threshold, uses looser criteria so that it would correctly classify all known *P. insularum* points. By correctly classifying all known *P. insularum* points, a larger area will be designated as suitable habitat compared to other thresholds. A second, stricter, threshold uses tighter criteria that allows up to 10% of known *P. insularum* points to be misclassified. This has the effect of conservatively identifying a region of highest fit that does not allow outlying points of *P. insularum* presence to expand the predicted area of occupancy beyond a core region.

Table 1. List of environmental variables from the BIOCLIM dataset used in the MaxEnt model.

BIOCLIM predictor variables	10. mean temperature of warmest quarter
1. annual mean temperature	11. mean temperature of coldest quarter
2. mean diurnal range temperature	12. annual precipitation
3. isothermality	13. precipitation of wettest month
4. temperature seasonality	14. precipitation of driest month
5. maximum temperature of warmest month	15. precipitation seasonality
6. minimum temperature of coldest month	16. precipitation of wettest quarter
7. temperature annual range	17. precipitation of driest quarter
8. mean temperature of wettest quarter	18. precipitation of warmest quarter
9. mean temperature of driest quarter	19. precipitation of coldest quarter

Bold font indicates variables considered in initial model run; superscript indicates the two variables included in final model.

doi:10.1371/journal.pone.0056812.t001
Enhancing Predictions of Apple Snail Distribution with Non-climatic Variables

To identify the tolerance range of *P. insularum* to different abiotic variables and thus refine the predictions of the snail’s distribution based solely on climate variables, we conducted a literature review of both published and unpublished studies (e.g., reports, websites) focusing on known influential water properties: salinity, pH, and temperature, as well as emersion and desiccation tolerances [31] (Table 2). We chose to focus on pH, since pH and hardness may be limiting factors for growth (especially shell maintenance) and hatching success in nonindigenous *Pomacea* sp. [31,36]. Also, low pH in general is known to preclude shell construction in many molluscs, including apple snails [37–40]. Furthermore, pH is a tracked variable with a large amount of variability throughout the southeastern USA.

To examine how pH might affect snail distribution, we downloaded pH measurements from the EPA STORET database, which contains surface water quality data for the entire USA [41]. In the case of Florida, only the last five years of data were used due to the large number of records in the state, and limits on the maximum number of records in a STORET search. For sites with multiple measurements, the lowest recorded measurement was used, because low pH can lead to mortality in *P. insularum* in fewer than 10 days [31]. We investigated further any locations with a pH below 2 since such a value is suspiciously low for a natural water body. If other measurements at that location showed substantially higher pH, we used the second lowest pH recorded for the location. These points were then used to create a continuous map of pH distributions in the southeastern United States using Kriging, a spatial analysis approach used to interpolate between points. A similar approach has been used for demonstrating regional patterns in the pH of lakes [42], including one study examining the potential for zebra mussel expansion [43]. In total, the pH data layer was generated from point measurements of pH at 35,000 different locations in the southeast.

On top of the MaxEnt map predicting the influence of climate variables, we plotted areas representing two different pH thresholds. One threshold was a pH <4 as determined by Ramakrishnan [31] to be lethal for *P. insularum* (Table 2). A second, less extreme threshold was a pH = 5.5, which was determined by Bernatis (unpublished data) to be lethal to *P. insularum* hatchlings (median lethal dose over 3 days, or LD₉₀/3). Although these pH layers could have formally been included in the maximum entropy modeling, due to the high amount of spatial variability in pH measurements, we felt more comfortable viewing the interpolated pH layer as a rough guide to pH values in an area. Specifically, the pH layer is good at reflecting large scale regional processes that drive low pH, such as underlying soil and bedrock composition and organic matter inputs. However, it is not as good at reflecting small scale variation that is unlikely to be driven by regionally correlated processes. For example, because of its size and position within the landscape, a roadside mud puddle would probably not be affected by the larger scale drivers of low pH like a big swamp in a region would.

Results

Maximum Entropy Modeling

Three point locations were discarded from the USGS invasive species database due to our verification process. First, we were unable to verify the Savannah River (Cowden, SC) population during two separate field surveys. The initial report, of numerous shells (but no live snails or eggs) was made by a U.S. Fish and Wildlife Service malacologist and therefore had been considered highly reliable (L. Zimmerman, pers comm). We did document both live and dead Japanese mystery snails, *Bellamya japonica*, (or possibly Chinese mystery snails, *B. chinensis*), at this site during our April 2012 survey. Second, the point location in Fort Worth, Texas was removed from the dataset because the population had apparently been extirpated [13,44,45]. In both these cases the initial sightings seem highly reliable and we presume that cold winter temperatures may not have allowed the populations to persist. A third point in Arizona was eliminated because a recent genetic study identified that population of apple snails as a different *Pomacea* species [7].

Only two of our initial five climatic variables were selected as significant contributors to the distribution model of *P. insularum*: minimum temperature in the coldest month (Bio6) and precipitation in the warmest quarter (Bio18). Minimum temperature in the coldest month was the more important variable of the two, with a 60.6% permutation of importance. More precipitation in the warmest quarter and higher minimum temperatures were associated with an increased likelihood of the climate being suitable for *P. insularum*. From the ten model runs, the average AUC was 0.94, with little variation in AUC between runs. The averaged output from these ten model runs is shown in Figure 2. The good fit of the model is further evidenced by the average receiver operating curve (Figure 3). All of Florida, as well as coastal Louisiana, Alabama, Mississippi, Georgia, South Carolina, and portions of coastal Texas and North Carolina were reflected to have the highest climatic compatibility as determined by using an inclusion threshold that correctly classifies all sites above the minimum 10% training omission threshold. Coastal regions in pink represent areas determined to be suitable by using the less stringent threshold calculated by correctly classifying all known *P. insularum* points above the minimum training presence. Areas farther inland in the previously mentioned states, were classified as

| Table 2. Experimentally determined incipient physiological tolerance limits under laboratory conditions for adult and juvenile *Pomacea insularum* collected in Texas (from Ramakrishnan [31]). |
|------------------------|------------------|------------------|
| Physiological parameter | Lower limit | Upper limit |
| Salinity | 0.0% | 6.8–10.2% |
| pH | 3.5–4.0 | 10–10.5 |
| Temperature | 15.23°C | 36.0°C |
| Emersion | 70 days at 30°C, <5% relative humidity | >308 days at 20–25°C, >75% relative humidity |

For salinity and pH the ranges of values bracket the median lethal values at 28 days exposure (LD₉₀/28). Temperature limits were statistically calculated from experimental data to yield the temperatures at which 99% mortality occurred in 28 days (LT₉₀p). Emersion values are the maximum observed survival time of the snail out of water at the stated temperature and humidity.

doi:10.1371/journal.pone.0056812.t002
suitable using this less restrictive inclusion threshold that correctly classifies all known *P. insularum* points.

pH as an Additional Factor

Areas with inappropriate pH for apple snails are fairly abundant throughout a large swath of otherwise likely areas of establishment for *P. insularum* (Figure 4). Of areas predicted to be in highly favorable climatic zones, the Okefenokee Swamp in southern Georgia appears to have a low enough pH to strongly prohibit *P. insularum* from invading (Figure 4, Table 2). The majority of the coastal plain of North Carolina appears inhospitable due to the combination of large areas with low pH coupled with a limited area of favorable climate.

Discussion

Pomacea insularum has spread rapidly in the southeastern USA only during the last decade. Our maximum entropy model indicates that the coastal plain from Texas to South Carolina is at high risk for *P. insularum* invasion based on climate suitability. The coastal plain of North Carolina appears less at risk because of both borderline climate conditions and widespread low pH (Figure 4). Knowledge of the necessary physical environmental attributes for invasion aids greatly in understanding issues regarding *P. insularum*’s regional and microscale distribution, as well as the efficacy of possible control measures via alteration of physical variables. Identifying the regions where climatic conditions are suitable for *P. insularum* informs managers of the risks and directs regional efforts to monitor water bodies for early signs of an invasion. Because *P. insularum* can be easily identified through its bright pink egg masses laid above the waterline, early detection is possible.

Our results indicate that the minimum temperature in the coldest months and maximum amount of precipitation in the warmest months are the best predictors of the nineteen variables included in the BioClim database. For shallow or smaller water bodies, these climatic variables equate to warmer overwintering temperatures and more permanent aquatic habitat (i.e. reduced chance of desiccation). These abiotic variables should directly reflect the likelihood of surviving freezing and desiccation. However, they may interact with important biological variables, like predation, which should also affect invasion success. Fecundity and survival of *P. insularum* has been found to be negatively associated with habitat permanence because of increased abundance and diversity of predators in more permanent water bodies [46]. This may suggest that the habitats most vulnerable to high impacts (e.g. via high densities of apple snails) are those with an intermediate level of habitat permanence (which might explain the important, but less influential role of precipitation of the two significant climate variables).

Known locations with *P. insularum* exhibit average minimum monthly temperatures as low as 6°C (Charleston, SC), and

Figure 2. Present populations of the island apple snail, *Pomacea insularum*, and its occupiable area. Map shows the southeastern United States. As predicted by the maximum entropy model, red represents areas with the highest climatic compatibility for the snail as determined by using an inclusion threshold that correctly classifies all sites above the minimum 10% training omission threshold. Pink represents areas determined to be suitable by using the less stringent threshold calculated by correctly classifying all known *P. insularum* points above the minimum training presence. doi:10.1371/journal.pone.0056812.g002
uninvaded areas modeled as suitable have minimum monthly temperatures as low as 2°C (Wilmington, NC). These values nicely bracket the average minimum monthly temperatures of 4–6°C observed in Buenos Aires near the colder extreme of the snail’s native range [7,12]. Ramakrishnan [31] had demonstrated a lethal minimum temperature of 15°C in the laboratory (Table 2), however in those trials the temperature was held low for 28 consecutive days. Differences in minimum monthly temperatures between studies might be a consequence of the duration of exposure to low temperatures. For example, the thresholds for low temperature tolerance over a month-long period may be substantially higher than tolerance of low temperature events of shorter duration. It is also possible that the snails have behavioral mechanisms to tolerate low temperatures, such as burrowing, which could not be exhibited in laboratory experiments [8].

The BioClim temperature variables themselves stem from air temperatures. These values have been used in successful models of aquatic species [25,47–49] because the values typically correlate well with water temperatures. However, in some cases the tight correlation between air and water temperatures may break down, particularly in fast moving water or deep water bodies. Given that _P. insularum_ commonly colonizes small water bodies, such as roadside ditches and littoral edges of larger water bodies, the air temperatures should correlate well with temperatures of its favored aquatic environments.

Although the climate model predicts that southern Georgia is a highly suitable area for _P. insularum_, low pH values may exclude the snail from many areas such as the Okefenokee Swamp and other black water swamps of the southeastern coastal plain. The acidic waters appear to limit the snail’s spread in an otherwise hospitable climate. There are several important caveats to our approach. It is important to recognize that the Kriging used to create the predicted pH layer smooths out the extreme points and only provides a general guideline for the expected pH values for water bodies in the region. There can be significant departures from the predicted pH for individual water bodies, particularly for smaller water bodies and ones that are man-made. In fact, _P. insularum_ can thrive in very small water bodies such as roadside ditches [13,50]. Any bodies of water that depart from the expected pH within the appropriate climate zone may be vulnerable to invasion, and a local assessment of pH in an area would greatly benefit any management plan and monitoring. As a case in point, two populations of island apple snails are found in southern Georgia within the area that has a minimum predicted pH of below 5.5 based on STORET measurements. One of these water bodies was an isolated pond in the flood plain of the Alabaha River and the other was in the main stem of the river. However, in the sites where these populations were found, a quarter of STORET pH values were >5.5 and our own measurements at the time of snail surveys had a pH >7. As with any measurement where temporal variation is involved, care should be taken in interpretation, especially in areas where the minimum predicted pH is near the tolerance threshold. Thus, while low pH may make an overall region on average more resistant to _P. insularum_ establishment, in localized areas, _P. insularum_ may still be able to establish.

The spread of _P. insularum_ is concerning because of at least two particularly worrisome ecological impacts. First, _P. insularum_ voraciously consumes aquatic vegetation. Together with invasions of the closely related congener, _P. canaliculata_, their high consumption of vegetation has led to a regime shift from aquatic plants to a system dominated by algae, and often cyanobacteria.
Many natural wetlands surveyed in Thailand showed a strong association of high densities of the snail with almost complete absence of aquatic plants. Second, *Pomacea* sp. can bioaccumulate algal toxins, which poses a threat to a variety of organisms that feed on both the native and invasive snails [10]. Recent laboratory studies have demonstrated that *P. insularum* can transfer the neurotoxin linked to Avian Vacuolar Myelinopathy (AVM) to its avian predators [52]. This often lethal neurologic disease affects waterbirds and their avian predators in the Southern United States and has been linked to a novel cyanobacterium that grows as an epiphyte on submerged aquatic vegetation [53,54] including the invasive *Hydrilla verticillata*, a preferred food source for *P. insularum* [17]. The presence of the invasive apple snails may substantially increase the risk of AVM for local bird populations, particularly the molluscivorous, federally-listed endangered Everglade snail kite (*Rostrhamus sociabilis plumbeus*) [52]. There is a further, but largely unexplored risk that *P. insularum* harbors rat lungworm parasite (*Angiostrongylus cantonensis*), a nematode that causes eosinophilic meningitis in humans and has been reported in invasive populations of *P. canaliculata* in Asia [9].

Our results provide insight into the factors that affect the distribution of *P. insularum* and present a spatial basis for the prediction of its future spread. Many niche models are based purely on climate variables because these data are readily available, covering large spatial scales. When possible, adding in other data layers can greatly enhance predictions (e.g., [48,55,56]). An additional advantage of the maximum entropy approach is that it is effective with incomplete, presence-only datasets [22]. The thoroughness of sampling is always an issue to consider with any species distribution modeling effort, but especially for an invasive species whose distribution is not likely yet at equilibrium. Furthermore, the habitat suitability map that results from modeling with this approach can be an essential visualization tool to galvanize action by resource managers on potentially harmful species [57]. Predicting the spread and potential range of non-native species helps prioritize areas for vigilance and management, while also informing a species’ overall potential invasiveness.

Supporting Information

Table S1 Descriptions and locations of field sites surveyed in 2011.

(DOCX)

Table S2 List of all *Pomacea insularum* presence sites used in MaxEnt model.

(DOCX)

Materials S1 Information and test supporting robustness of MaxEnt model predictions.

(DOCX)
Acknowledgments

We thank N. Nihbelink and K. Barrett for useful modeling input, C. Sexton for providing presence data and coordinating sampling efforts in South Georgia, and Amy Benson (USGS) for P. insularum records from the USGS, NAS database.

References

1. Parker I, Simmerhoff D, Lonsdale M, Goodell K, Wonham M, et al. (1999) Impact: toward a framework for understanding the ecological effects of invaders. Biological Invasions 1: 3–19.
2. Stohlgren TJ, Schmida J, (2006) Risk analysis for biological hazards: What we need to know about invasive species. Risk Analysis 26: 163–173.
3. Byers JE, Reichard S, Randall JM, Parker JM, Smith CS, et al. (2002) Directing research to reduce the impacts of nonindigenous species. Conservation Biology 16: 630–640.
4. Bradley BA, Mustard JF (2006) Characterizing the landscape dynamics of an invasive plant and risk of invasion using remote sensing. Ecological Applications 16: 1132–1147.
5. Reour-Pascal N, Suarez AV, McNyset K, Gomez C, Pons P, et al. (2006) Niche differentiation and fine-scale projections for Argentine ants based on remotely sensed data. Ecological Applications 16: 1032–1041.
6. He KS, Rocchini D, Neteler M, Nagendra H (2011) Benefits of hyperspectral remote sensing for tracking plant invasions. Diversity and Distributions 17: 301–309.
7. Rawlings TA, Hayes KA, Collins TM (2007) The identity, distribution, and impacts of non-native apple snails in the continental United States. BMC Evolutionary Biology 7: doi:10.1186/1471-2148-11-1179.
8. Cowie RH (2002) Apple snails (Ampullariidae) as agricultural pests: their biology, impacts, and management. In: Barker GM, editor. Molluscs as Crop Pests. Wallingford, UK: CABI Publishing. 145–192.
9. Lu S, Zhang Y, Steinmann P, Yang GJ, Yang K, et al. (2011) The emergence of angiospermy in the People’s Republic of China: the interplay between invasive snails, climate change and transmission dynamics. Freshwater Biology 56: 717–734.
10. Berry JP, Lind O (2010) First evidence of “paralytic shellfish toxins” and cyanobacteria in a Mexican freshwater system. Lago Tunamaro, and apparent bioaccumulation of the toxins in “tegoleyo” snails (Planorbarius corneus). Toxicon 55: 930–938.
11. Naylor R (1996) Invasions in agriculture: Assessing the cost of the golden apple snail in Asia. Ambio 25: 443–448.
12. Hayes KA, Joshi RC, Thiaro NG, Cowie RH (2008) Out of South America: multiple origins of non-native apple snails in Asia. Diversity and Distributions 14: 701–712.
13. Karatayev AY, Burlakova LE, Karatayeva VA, Padilla DK (2009) Introduction, distribution, spread, and impacts of exotic freshwater gastropods in Texas. Hydrobiologia 619: 181–194.
14. Benson AJ (2010) Pomacea insularum. USNII Nonindigenous Animal Species Database, Gainesville, FL: Revision Date: 10/8/2009 ed.
15. Conner SL, Pomeroy CM, Darby PC (2008) Density effects of native and exotic snails on growth of juvenile apple snails Pomacea paludosa (Gastropoda: Ampullariidae): a laboratory experiment. Journal of Molluscan Studies 74: 355–362.
16. Burlakova LE, Karatayev AY, Padilla DK, Cartwright LD, Hollas DN (2009) Wetland Restoration and Invasive Species: Apple snail (Pomacea paludosa) Feeding on Native and Invasive Aquatic Plants. Restoration Ecology 17: 433–440.
17. Baker P, Zimmack F, Baker SM (2010) Feeding rates of an introduced freshwater gastropod Pomacea insularum on native and nonindigenous aquatic plants in Florida. Journal of Molluscan Studies 76: 138–143.
18. Perera G, Wallis JG (1996) Apple snails in the aquarium. Neptune City, NJ: TFH Publications.
19. Barnes MA, Fordham RK, Burks RL, Hazel J (2006) Feecundity of the exotic apple snail, Pomacea insularum. Journal of the North American Benthological Society 27: 738–745.
20. Turner RL (1996) Use of stems of emergent vegetation for oviposition by the exotic apple snail, Pomacea paludosa. Hydrobiologia 350: 34–49.
21. Castron SE, Martin J, Kitchens WM (2010) Effects of exotic prey species on a native specialist: Example of the snail kite. Biological Conservation 143: 513–520.
22. Jarnevich CS, Stohlgren TJ, Barnett D, Kartesz J (2006) Filling in the gaps: modelling native species richness and invasions using spatially incomplete data. Diversity and Distributions 12: 511–520.
23. Ellith J, Graham CH, Anderson RF, Dutik M, Ferrier S, et al. (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29: 129–131.
24. Evangelista PH, Kumar S, Stohlgren TJ, Jarnevich CS, Crall AW, et al. (2008) Modelling invasion for a habitat generalist and a specialist plant species. Diversity and Distributions 14: 808–817.

Author Contributions

Conceived and designed the experiments: JEB WSG SRD RH LMP SBW. Performed the experiments: JEB WGM. Analyzed the data: JEB WGM. Contributed reagents/materials/analysis tools: SRD RH LMP SBW. Wrote the paper: JEB WSG SRD RH LMP SBW.
51. Carlsson NOL, Bronmark C, Hansson LA (2004) Invading herbivory: The golden apple snail alters ecosystem functioning in Asian wetlands. Ecology 85: 1575–1580.
52. Robertson S (2012) Potential threats of the exotic apple snail Pomacea insularum to aquatic ecosystems in Georgia and Florida. [Masters Thesis]: University of Georgia, Athens, GA.
53. Thomas NJ, Meteyer CU, Sileo L (1998) Epizootic vacuolar myelinopathy of the central nervous system of bald eagles (Haliaeetus leucocephalus) and American coots (Fulica americana). Veterinary Pathology 35: 479–487.
54. Wilde SB, Murphy TM, Hope CP, Habrun SK, Kempton J, et al. (2005) Avian vacuolar myelinopathy linked to exotic aquatic plants and a novel cyanobacterial species. Environmental Toxicology 20: 340–353.
55. Rosalino LM, Sousa M, Pedroso NM, Basto M, Rosario J, et al. (2010) The Influence of Food Resources on Red Fox Local Distribution in a Mountain Area of the Western Mediterranean. Vie Et Milieu-Life and Environment 60: 39–45.
56. de Rivera CE, Steves BP, Fofonoff PW, Hines AH, Ruiz GM (2011) Potential for high-latitude marine invasions along western North America. Diversity and Distributions 17: 1198–1209.
57. Morisette JT, Jarnevich CS, Ullah A, Cai WJ, Pedelty JA, et al. (2006) A tamarisk habitat suitability map for the continental United States. Frontiers in Ecology and the Environment 4: 11–17.