RESEARCH ARTICLE

RADIOLOGICAL RISK ESTIMATION OF DRINKING AND IRRIGATION WATER FOR SOME EGYPTIAN SITES

Hekmat Mohammed El-Begawy
Egyptian Nuclear and Radiological Regularity Authority.

The objective of this work was to determine the radiological health risk due to natural radionuclides (e.g., 226Ra, 228Ra and 40K) in drinking and irrigation water resources in different locations in Egypt. The water resources in Egypt are diverse and include the river Nile, ground water, springs and lakes in addition to rain waters. The total annual effective dose in all estimated water resources were ranged from 0.02, 0.03 and 0.03 mSv y$^{-1}$ to 13.49, 26.13 and 13.13 mSv y$^{-1}$ for infants, children and adults respectively. The average life-long cancer risk and the average hereditary effects due to ingestion of radionuclides by adults show that 12 out of 10,000 may suffer some form of cancer fatality and 43 out of 1000,000 may suffer some hereditary effects. It is concluded that the radiological health risk data obtained were within their safe values.

Corresponding Author: - Hekmat Mohammed El-Begawy
Address: - Egyptian Nuclear and Radiological Regularity Authority.

Introduction:

Natural radioactivity has always been present and broadly distributed in the earth’s crust and the atmosphere (Koloet al., 2017) and it exists in various geological formations like air, rocks, plants, sand, water and soils. It is found also in our building materials constituting main sources of radiation exposure for human beings (Usikalu, et al., 2017) Soil radionuclide activity concentration is one of the main determinants of the natural background radiation (Dizmanet al., 2016).

Radium is considered as a highly toxic element in water and attention for human health requires more investigations for radium concentrations in water and its associated hazards. Two natural radium isotopes are a cause of worry in public water supplies; 226Ra, which is made as a result of the decay of 238U, and 228Ra, which is explicitly created through 232Th decay. Radium propels into groundwater through aquifer solid disintegration, through direct recoil over the liquid–solid limit through its arrangement by its parent radioactive decay in the solid, and moreover through desorption. The movements of radium in water are a component of the geochemical properties of solids in the aquifer. The behavior of radium in the body is similar to that of calcium and a ratable fraction deposited in the bone, which in turn can cause bone and head-sinus cancer (Ajayi and Owolabi 2008).

40K is discharged into water bodies, adding to the nearness of radioactive segments in drinking water. 40K is the primary radioactive isotope of potassium. It decays explicitly into 40Ca in the ground state through β-emission (89%) and also to 40Ar in a 1.46 MeV excited state pursued by a prompt 1.46 MeV gamma emission through electron capture (11%) due to water-shake/soil associations (Chowdhury et al., 2017).
Natural radionuclide present in water beyond the safe levels can be considered to have potential risks to human. Increased concern for the radiological status of drinking water has led to an increased demand for data on water quality. The recommended reference dose level (RDL) of committed effective dose is 100 μSv from one-year consumption of drinking water (WHO, 2008). Gamma rays can enter the skin and interact with tissues or organs. Uranium and radium found in water do not emit strong gamma radiation, so showering with that water will not pose any significant risk. However, if this radionuclide is inhaled or ingested through eating and drinking, the emissions rays can come into direct contact with sensitive tissues or organs in the body (Irina et al., 2011). Findings of many studies have shown that long-term exposure to uranium in drinking water may cause toxic effects to the kidney and can lead to cancer (Irina et al., 2011).

The potential harmfulness of radionuclides is based on their long half-lives and chemical behavior (232Th: 1.4 × 10^10 yr, 238U: 4.47 × 10^9 yr and 40K: 1.28 × 10^9 yr). 232Th is mainly radiotoxic, 238U is both radiotoxic as well as chemically toxic whereas 40K is radiotoxic as well as nutritionally important element (Tykva and Sabol 1995). Owing to the health risks associated with the exposure to indoor radiation, many governmental and international bodies such as the International Commission on Radiological Protection (ICRP), the World Health Organization (WHO), etc. have adopted strong measures aimed at minimizing such exposures (ICRP, 2006).

There are a lot of papers discussed the natural radionuclide concentration in water resources in Egypt such as (El-Sayed 2015, Arafat 2017, Yehiaa 2017 and Atef 2019) but no attention was paid to estimation of annual effective dose and Cancer and Hereditary Risk. So, this work estimates annual effective dose, Cancer and Hereditary Risks due to 238U, 232Th series and 40K present in water resources samples collected from different locations in Egypt. The obtained data and information from this study are highly needed to provide a basis for the sustainable development strategies in Egypt.

Materials and Methods:

Study Area
The study area is extended along the northern part of Egypt from Sinai governorate in the East to Marsa Matrouh governorate in the West. Water samples were collected from selected cities and towns in the area under investigation (tap water samples, ground water samples and surface water samples). The coordinates of all sampling points were identified by the Global Positioning System device (GPS) as shown in figure (1). The collected samples were analyzed using HPGe detector to determine Ra-226, Ra-228 and K-40. The data obtained were used to calculate the annual dose for different organs from consumption of water for four age groups (5 years, 10 years, 15 years and adults) using Acute Dose calculator program and the results were previously published (Atef et al., 2019).

In the present work, the specific activities of 226Ra, 228Ra and 40K were used to estimate Cancer and Hereditary Risk for the studied area. Also, to obtain a complete overview about the Cancer and Hereditary Risk for different water resources in Egypt, the published results of 226Ra, 228Ra and 40K of El-Alamein-Alam El-Rum Area (harvested rain water) (El-Sayed et al., 2015), Marsa Allam area (ground water) (Arafat et al., 2017) and Northern area of the western desert (ground water) (Yehiaa et al., 2017) were used to estimate the total annual effective dose and Cancer and Hereditary to these regions.

![Fig.1: -Samples locations.](image-url)
Annual Effective Dose
The annual effective dose (AED) due to ingestion of water was computed using the following formula (UNSCEAR 2008).

\[
\text{AED (mSv y}^{-1}) = \sum_{i=1}^{3} \text{DCF}_{\text{ing}}(i) \times A_i \times L \quad (1)
\]

Where; \(\text{DCF}_{\text{ing}}(i) \) is the dose coefficient of a particular radionuclide in Sv. Bq\(^{-1}\) for a particular age category. \(A_i \) is the specific activity concentration of radionuclide in the water sample measured in Bq. L\(^{-1}\) and \(L \) is the radionuclide intake in liters per year for each age group categories.

Cancer and Hereditary Risk
In addition to the estimated annual effective dose, the risk incurred by a population is estimated by assuming a linear dose-effect relationship with no threshold as per ICRP practice. For low doses ICRP fatal cancer risk factor is \(5.5 \times 10^{-2}\) Sv\(^{-1}\) (IAEA 2004). The risk factor states the probability of a person dying of cancer increases by 5% for a total dose of 1 Sv received during his lifetime. Therefore, the probability of death from cancer due to ‘natural incidence’ increases from about 25% to 30% following a total lifetime exposure of 1 Sievert.

For hereditary effects, the detriment-adjusted nominal risk coefficient for the whole population as stated in (ICRP, 2007) for stochastic effects after exposure to low dose rates was estimated at \(2 \times 10^{-1}\) Sv\(^{-1}\). The risk factor states the probability of a person dying of cancer increases by 5% following a total lifetime exposure of 1 Sv.

By applying equation 2 and 3 the radiation risk due to ingestion of \({^{226}}\text{Ra}, {^{232}}\text{Th} \) and \({^{40}}\text{K} \) in drinking water and using dose coefficient for ingestion of radionuclides for members of the public to 70 years of age (ICRP, 2012).

Results and Discussion:
- Radioactivity measurements

The specific activity concentrations of the measured samples are under the detection limit of the used analytical procedures (0.7 Bq L\(^{-1}\) for \({^{226}}\text{Ra} \) and 0.6 Bq L\(^{-1}\) for \({^{228}}\text{Ra} \) while, \({^{40}}\text{K} \) is the only detected radionuclide. The specific activity concentration results of \({^{40}}\text{K} \) of water resources ranged from \(< \text{DL} \) to 5.30 Bq L\(^{-1}\) with a mean of 1.06 Bq L\(^{-1}\) for tap water, ranged from \(< \text{DL} \) to 5.16 Bq L\(^{-1}\) with a mean of 1.01 Bq L\(^{-1}\) for ground water, and ranged from \(< \text{DL} \) to 32.09 Bq L\(^{-1}\) with a mean of 3.16 Bq L\(^{-1}\) for surface water (Atef, et.al., 2019). The specific activity concentration of harvested rain water collected from El-Alamein-Alam El-Rum Area ranges from \(< \text{DL} \) to 4.16, from \(< \text{DL} \) to 3.45 and from \(< \text{DL} \) to 26.18 Bq L\(^{-1}\) for \({^{226}}\text{Ra}, {^{232}}\text{Th}, \) and \({^{40}}\text{K} \), respectively (El Arabiet.al., 2019). The specific activity concentrations of ground water samples collected from marsaalam area ranges from \(< \text{DL} \) to 10.66, from \(< \text{DL} \) to 2.33 and from 6.89 to 54.31 Bq L\(^{-1}\) for \({^{226}}\text{Ra}, {^{232}}\text{Th}, \) and \({^{40}}\text{K} \), respectively (Arafat et.al., 2017).

These results are comparable with the results of 15 different water samples (wells and springs) collected from Elba protective area, south-eastern desert of Egypt (\({^{226}}\text{Ra}, {^{232}}\text{Th} \) and \({^{40}}\text{K} \) ranged from 1.6 to 11.1 Bq/L, from 0.21 to 0.97 Bq/L, and from 9.1 to 23 Bq/L respectively) (El Arabiet.al., 2006) and higher than the activity concentrations levels for water (surface and groundwater) samples collected from the west bank of the Nile River in Assiut Governorate, Egypt (\({^{226}}\text{Ra}, {^{232}}\text{Th} \) and \({^{40}}\text{K} \) ranged from 0.0192 to 0.492 Bq/L, from 0.015 to 0.351 Bq/L, and from 0.050 to 2.25 Bq/L for \({^{226}}\text{Ra}, {^{232}}\text{Th}, \) and \({^{40}}\text{K} \), respectively) (El-Gamalet.al., 2019).

Radiation Dose Estimation and the estimated Cancer Risks and the Hereditary Effects
The annual effective dose for different age groups calculated for 30 water samples collected from different locations from Egypt presented in table 1 considering the ingestion of \({^{226}}\text{Ra}, {^{232}}\text{Th} \) and \({^{40}}\text{K} \) in drinking water. While the estimated Cancer Risks and the Hereditary Effects of adult member of the public are presented in table [2].

Table 1: -The annual effective dose in (mSv y\(^{-1}\)) for different age categories.
S. no	Harvested rain water	Marasa Allam area	Northern area of the western desert									
	annual effective dose of Ra-226	annual effective dose of Ra-228	annual effective dose of K-40	total annual effective dose								
	infant	children	adult									
1	0.10	0.20	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.10	0.20	0.10
2	0.00	0.00	0.00	0.02	0.03	0.03	0.01	0.02	0.03	0.03	0.05	0.07
3	0.18	0.34	0.17	0.07	0.10	0.11	0.01	0.02	0.03	0.25	0.46	0.31
4	0.41	0.80	0.40	0.00	0.00	0.00	0.00	0.00	0.00	0.41	0.80	0.40
5	0.05	0.10	0.05	0.01	0.01	0.01	0.00	0.00	0.00	0.06	0.11	0.06
6	0.02	0.04	0.02	0.00	0.00	0.00	0.01	0.02	0.03	0.03	0.06	0.05
7	0.60	1.16	0.58	0.23	0.35	0.40	0.01	0.02	0.03	0.84	1.54	1.01
8	0.10	0.20	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.10	0.20	0.10
9	0.00	0.00	0.00	0.07	0.10	0.11	0.01	0.02	0.03	0.07	0.12	0.14
10	0.02	0.04	0.02	0.00	0.00	0.00	0.01	0.02	0.03	0.03	0.07	0.05
11	0.02	0.04	0.02	0.02	0.03	0.04	0.01	0.02	0.03	0.05	0.09	0.09
12	0.10	0.20	0.10	0.09	0.13	0.15	0.01	0.02	0.03	0.20	0.35	0.28
13	0.30	0.59	0.30	0.04	0.07	0.07	0.01	0.02	0.03	0.36	0.68	0.40
14	0.14	0.27	0.13	0.00	0.00	0.00	0.02	0.05	0.07	0.16	0.31	0.20
	Ground water	Marasa Allam area	Northern area of the western desert									
	annual effective dose of Ra-226	annual effective dose of Ra-228	annual effective dose of K-40	total annual effective dose								
	infant	children	adult									
6	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.03	0.04	0.01	0.03	0.04
7	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.04	0.06	0.02	0.04	0.06
8	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.05	0.07	0.02	0.05	0.07
10	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.02	0.03	0.01	0.02	0.03
11	1.09	2.13	1.06	0.00	0.00	0.00	0.02	0.05	0.07	1.12	2.18	1.14
12	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.05	0.07	0.02	0.05	0.07
13	0.36	0.70	0.35	0.00	0.00	0.00	0.02	0.06	0.08	0.38	0.76	0.43
14	1.02	1.99	0.99	0.00	0.00	0.00	0.01	0.02	0.03	1.03	2.01	1.03
In our previous study (Atef, et al., 2019) all water resources under investigation, the lower age is the higher the annual effective dose. For tap water, the highest annual dose delivered to 5 y age group (6.16 μSv\(^{-1}\)) with a mean of 1.32 μSv\(\cdot\)y\(^{-1}\) and the lowest annual dose delivered to adults with a maximum of 1.79 μSv\(\cdot\)y\(^{-1}\) and a mean of 0.33 μSv\(\cdot\)y\(^{-1}\). For ground water, the highest annual dose (6.12 μSv\(\cdot\)y\(^{-1}\)) delivered to 5 y age group with a mean of 1.35 μSv\(\cdot\)y\(^{-1}\) and the lowest annual dose delivered to adults with a maximum of 1.71 μSv\(\cdot\)y\(^{-1}\) and a mean of 0.34 μSv\(\cdot\)y\(^{-1}\) (Atef, et al., 2019).

The annual effective dose of the harvested rain water (Table 1) for infants ranged from 0.02, 0.1 and 0.01 mSv\(\cdot\)y\(^{-1}\) to 0.6, 0.23, and 0.02 mSv\(\cdot\)y\(^{-1}\) for \(^{226}\)Ra, \(^{228}\)Ra, and \(^{40}\)K respectively. The annual effective dose of the harvested rain water for children ranged from 0.04, 0.01, and 0.02 mSv\(\cdot\)y\(^{-1}\) to 1.16, 0.35 and 0.05 mSv\(\cdot\)y\(^{-1}\) for \(^{226}\)Ra, \(^{228}\)Ra, and \(^{40}\)K respectively. The annual effective dose of the harvested rain water for adults ranged from 0.03, 0.05, and 0.05 mSv\(\cdot\)y\(^{-1}\) to 0.84, 1.54 and 1.01 mSv\(\cdot\)y\(^{-1}\) for \(^{226}\)Ra, \(^{228}\)Ra, and \(^{40}\)K respectively. The total annual effective dose ranged from 0.03, 0.05 and 0.05 mSv\(\cdot\)y\(^{-1}\) to 0.84, 1.54, and 1.01 mSv\(\cdot\)y\(^{-1}\) for infants, children and adults respectively. The children have the maximum total dose values because the children have the maximum annual effective dose values for \(^{226}\)Ra. The adults have the maximum annual effective dose values for \(^{228}\)Ra and \(^{40}\)K.

Table 1 indicates that the annual effective dose of the ground water (Marsa Allam area) for infants ranged from 0.36 and 0.01 mSv\(\cdot\)y\(^{-1}\) to 1.09 and 0.02 mSv\(\cdot\)y\(^{-1}\) for \(^{226}\)Ra and \(^{40}\)K respectively. The annual effective dose of the ground water (Marsa Allam area) for children ranged from 0.7 and 0.02 mSv\(\cdot\)y\(^{-1}\) to 2.13 and 0.06 mSv\(\cdot\)y\(^{-1}\) for \(^{228}\)Ra and \(^{40}\)K respectively. The annual effective dose of the ground water (Marsa Allam area) for adults ranged from 0.35 and 0.03 mSv\(\cdot\)y\(^{-1}\) to 1.06 and 0.08 mSv\(\cdot\)y\(^{-1}\) for \(^{226}\)Ra and \(^{40}\)K respectively. The total annual effective dose ranged from 0.01, 0.02 and 0.03 mSv\(\cdot\)y\(^{-1}\) to 1.12, 2.18, and 1.14 mSv\(\cdot\)y\(^{-1}\) for infants, children and adults respectively.

Table 1 indicates that the annual effective dose of the ground water (Northern area of the western desert) for infants ranged from 2.85, 0.07 and 0.01 mSv\(\cdot\)y\(^{-1}\) to 13.24, 0.39 and 0.02 mSv\(\cdot\)y\(^{-1}\) for \(^{226}\)Ra, \(^{228}\)Ra, and \(^{40}\)K respectively. The annual effective dose of the ground water (Northern area of the western desert) for children ranged from 5.02, 0.11, and 0.01 mSv\(\cdot\)y\(^{-1}\) to 6.30, 0.58, and 0.04 mSv\(\cdot\)y\(^{-1}\) for \(^{226}\)Ra, \(^{228}\)Ra, and \(^{40}\)K respectively. The annual effective dose of the ground water (Northern area of the western desert) for adults ranged from 2.51, 0.13, and 0.01 mSv\(\cdot\)y\(^{-1}\) to 12.87, 0.66, and 0.05 mSv\(\cdot\)y\(^{-1}\) for \(^{226}\)Ra, \(^{228}\)Ra, and \(^{40}\)K respectively. The total annual effective dose ranged from 2.80, 5.34 and 2.88 mSv\(\cdot\)y\(^{-1}\) to 13.49, 26.13, and 13.3 mSv\(\cdot\)y\(^{-1}\) for infants, children and adults respectively. The children have the maximum total dose values because the children have the maximum annual effective dose values for \(^{226}\)Ra. The adults have the maximum annual effective dose values for \(^{228}\)Ra and \(^{40}\)K.

The total annual effective doses of our samples (Atef, et al., 2019) are lower than the recommended reference level of 0.26, 0.2 and 0.1 mSv\(\cdot\)y\(^{-1}\) for annual effective doses for infants, children and adults, respectively which published by (WHO, 2004, IAEA 1996 and UNSCEAR 2000), from one-year consumption of drinking water. While the total annual effective doses (Table 1) are more than these recommended reference levels.

Table 2: Estimated Cancer Risks and Hereditary Effects of adult member of the public.

No	S. no	Fatality Cancer Risk per year	Estimated lifetime Cancer Risk	Severe Hereditary Effects per year	Estimated Lifetime Hereditary Effects
1	1	4.53E-09	3.17E-07	1.65E-10	1.15E-08
2	2	3.17E-09	2.22E-07	1.15E-10	8.06E-09

NB: All zero values in the table are a result of \(^{226}\)Ra, \(^{228}\)Ra, and \(^{40}\)K values which are less than the minimum detection activity by the used technique. The locations of the studied samples for the three areas are presented in previous work (El-Sayed 2015, Arafat 2017 and Yehiaa 2017).
Ground water	Fatality Cancer Risk per year	Estimated Lifetime Cancer Risk	Severe Hereditary Effects per year	Estimated Lifetime Hereditary Effects
5	2.06E-09	1.44E-07	7.48E-11	5.24E-09
6	1.91E-09	1.33E-07	6.93E-11	4.85E-09
7	3.53E-08	2.47E-06	1.28E-09	8.98E-08
8	2.97E-09	2.08E-07	1.08E-10	7.56E-09
10	5.68E-09	3.98E-07	2.07E-10	1.45E-08
14	1.92E-09	1.34E-07	6.97E-11	4.88E-09

Surface water	Fatality Cancer Risk per year	Estimated Lifetime Cancer Risk	Severe Hereditary Effects per year	Estimated Lifetime Hereditary Effects
16	9.76E-08	6.83E-06	3.55E-09	2.48E-07
18	3.56E-09	2.49E-07	1.30E-10	9.07E-09
19	3.70E-09	2.59E-07	1.35E-10	9.43E-09
22	4.20E-09	2.94E-07	1.53E-10	1.07E-08
23	1.50E-09	1.05E-07	5.45E-11	3.82E-09
24	2.71E-09	1.90E-07	9.85E-11	6.90E-09
25	5.47E-09	3.83E-07	1.99E-10	1.39E-08
26	5.68E-09	3.91E-07	2.03E-10	1.42E-08
27	5.62E-09	3.94E-07	2.05E-10	1.43E-08
32	2.23E-09	1.56E-07	8.11E-11	5.67E-09
36	2.25E-09	1.57E-07	8.17E-11	5.72E-09
38	1.82E-09	1.27E-07	6.62E-11	4.63E-09

El-Alamein-Alam El-Rum Area

Harvested rain water	Fatality Cancer Risk per year	Estimated Lifetime Cancer Risk	Severe Hereditary Effects per year	Estimated Lifetime Hereditary Effects
1	5.56E-09	3.89E-07	2.02E-10	1.41E-08
3	9.41E-09	6.58E-07	3.42E-10	2.39E-08
4	2.20E-08	1.54E-06	8.00E-10	5.60E-08
5	2.85E-09	1.99E-07	1.04E-10	7.25E-09
6	1.16E-09	8.09E-08	4.20E-11	2.94E-09
7	3.20E-08	2.24E-06	1.16E-09	8.15E-08
8	5.39E-09	3.77E-07	1.96E-10	1.37E-08
10	1.23E-09	8.62E-08	4.48E-11	3.14E-09
11	1.08E-09	7.55E-08	3.92E-11	2.74E-09
12	5.39E-09	3.77E-07	1.96E-10	1.37E-08
13	1.62E-08	1.14E-06	5.90E-10	4.13E-08
14	7.32E-09	5.12E-07	2.66E-10	1.86E-08

Marasa Allam area

Ground water	Fatality Cancer Risk per year	Estimated Lifetime Cancer Risk	Severe hereditary Effects per year	Estimated Lifetime hereditary Effects
6	2.45E-09	1.72E-07	8.92E-11	6.24E-09
7	3.23E-09	2.26E-07	1.17E-10	8.22E-09
8	4.00E-09	2.80E-07	1.45E-10	1.02E-08
10	1.77E-09	1.24E-07	6.42E-11	4.49E-09
11	6.27E-08	4.39E-06	2.28E-09	1.60E-07
12	3.64E-09	2.55E-07	1.32E-10	9.27E-09
13	2.38E-08	1.66E-06	8.64E-10	6.05E-08
14	5.67E-08	3.97E-06	2.06E-09	1.44E-07

Northern area of the western desert

Ground water	Fatality Cancer Risk per year	Estimated Lifetime Cancer Risk	Severe Hereditary Effects per year	Estimated lifetime Hereditary Effects
11B	3.48E-07	2.44E-05	1.27E-08	8.86E-07
12B	4.23E-07	2.96E-05	1.54E-08	1.08E-06
13B	3.15E-07	2.21E-05	1.15E-08	8.02E-07
The fatality cancer risk per year, estimated lifetime cancer risk, severe hereditary effects per year and estimated lifetime hereditary Effects of tape water (studied area) ranged from 1.58×10^{-9}, 8.17×10^{-9}, 2.28×10^{-8}, 1.60×10^{-7}, 2.33×10^{-6} respectively.

The fatality cancer risk per year, estimated lifetime cancer risk, severe hereditary effects per year and estimated lifetime hereditary Effects of ground water (studied area) ranged from 1.5×10^{-9}, 1.05×10^{-8}, 5.45×10^{-8} and 3.82×10^{-8} to 9.76×10^{-8}, 6.83×10^{-8}, 3.55×10^{-7} and 2.84×10^{-7} respectively.

By comparing all the results in table 2 we can conclude that; the ground water (Northern area of the western desert) has the maximum values for the fatality cancer risk per year, estimated lifetime cancer risk, severe hereditary effects per year and estimated lifetime hereditary Effects.

Conclusion:

The present work provides information dealing with associated hazards of Ra-226 (U-238) series, Th-232 series and K-40 radionuclides in water resources. Such information should be known before executing the economic projects related to the development process in Egypt. This work depends on laboratory measurements and mathematical calculations. Surface water and tape water have total annual effective dose levels lower than the recommended...
reference level determined by ICRP while ground water and harvested rain water have values more than these recommended reference levels. In all the studied water resources, the estimated fatal cancer risk to adult per year ranged from 1.08×10^{-5} to 7.32×10^{-7} with the associated lifetime fatality cancer risk ranged from 7.55×10^{-6} to 5.12×10^{-8}. And the estimated hereditary effect to adult per year ranged from 3.92×10^{-11} to 2.66×10^{-8} with its associated lifetime hereditary effect ranged from 2.74×10^{-6} to 1.86×10^{-6}.

Acknowledgement:-
The authors thankfully acknowledge for Prof Associate Dr. Ashraf Arafat and Prof Dr. Khalid Allam.

References:-
1. Kolo MT, Amin YM, Khandaker MU, Abdullah WHB (2017): Radionuclide concentrations and excess life me cancer risk due to gamma radioactivity in tailing enriched soil around Maiganga coal mine, Northeast Nigeria. International Journal of Radiation Research, 15(1): 71-80.
2. Usikalu MR, Rabiu AB, Oyeyemi KD, Achuka JA, Maaza M. (2017): Radiation hazard in soil from Ajao-kuta North-central Nigeria. International Journal of Radiation Research, 15(2):220-224.
3. Dizman S, Gorur FK, Keser R (2016): Determination of radioactivity levels of soil samples and the excess of lifetime cancer risk in Rize province, Turkey. International Journal of Radiation Research, 14(3): 237-244.
4. Ajayi, O.S.; Owolabi, T.P. (2008): Determination of natural radioactivity in drinking water in private dug wells in Akure, Southwestern Nigeria. Radiat. Prot. Dosim. 128, 477-484.
5. Chowdhury, M.I.; Alam, M.N.; Hazari, S.K.S. (1999): Distribution of radionuclides in the river sediments and coastal soils of Chittagong, Bangladesh and evaluation of the radiation hazard. Appl. Radiat. Isot. 51, 747-755. [CrossRef]
6. World Health Organization (2008): Guidelines for Drinking Water Quality. Third Edition Incorporating the first two Addenda, Volume 1, Recommendations; WHO Geneva., 1 – 200.
7. Irina GusevaCanu, Olivier Laurent, Nathalie Pires, Dominique Laurier, and Isabelle Dublineau, (2011): Health effects of naturally radioactive water ingestion: The need for enhanced studies, Environ Health Perspect., 119(12), 1676-1680.
8. Tykva R., Sabol J. (1995): Low Level Environmental Radioactivity, Sources and Evaluation. Technomic Publishing, USA.
9. ICRP, 2006: Recommendations of the 448 (ICRP) 103 Publication. Pergammon Press, 2007.
10. El-Sayed, S.A., Ramadan, A. B., Salama, M. H. and Diab, M. (2015): Geochemical and Radiological Characteristics of Harvested Rainwater and Surficial Soil in El-Alamein-Alam El-Rum Area, Western Mediterranean Coastal Zone, Egypt Isotope and Radiation Research; v. 47 (2); p. 177-198.
11. A.A. Arafat, M.H.M. Salama, S.A. El-Sayed, A.A. Elfeel, (2017): Distribution of natural radionuclides and assessment of the associated hazards in the environment of Marsa Alam-Shalateen area, Red Sea coast, Egypt. Journal of Radiation Research and Applied Sciences. 10 219-232.
12. Mohamed Yehiaa, Ashraf Baghdady, Fares M. Howaric, Samir Awad, Ahmed Gad., (2017): Natural radioactivity and groundwater quality assessment in the northern area of the Western Desert of Egypt. Journal of Hydrology: Regional Studies 12, 331–344.
13. Amira Atef, et.al., (2019): Natural radioactivity and assessment of the internal dose of water resources for selected sites in Egypt., International Journal of Environmental Sciences ISSN 2519-5549 (online) Vol. 2, Issue 1, No. 3, pp 28-37.
14. United Nations Scientific Committee on the Effects of Atomic UNSCEAR (2008): Radiation Sources and effects of ionizing radiation. Report to the General Assembly, with Scientific Annexes, United Nations, New York.
15. International Atomic Energy Agency (IAEA) (2004): Radiation, people and the environment: A broad view of ionizing radiation, its effects and uses as well as the measures in place to it safely. Division of Radiation and Waste Safety, IAEA Vienna, Austria.
16. ICRP, (2012): Compendium of Dose Coefficients based on ICRP Publication 60. ICRP Publication 119. Ann. ICRP 41(Suppl.).
17. A. M. El Arabi, N. K. Ahmed and K. Salahel Din, (2006): Natural radionuclides and dose estimation in natural water resources from Elba protective area, Egypt., Radiation Protection Dosimetry., 121(3), 284–292.
18. El-Gamal, H.; Sefelnasr, A.; Salaheldin, G. (2019): Determination of Natural Radionuclides for Water Resources on the West Bank of the Nile River, Assiut Governorate, Egypt. Water, 11, 311.
19. WHO (World Health Organization) (2004): Guidelines for drinking water quality: radiological aspects, http://www.who.int/water_sanitation_health/dwq/gdwq3/en/S?

20. IAEA, (1996): International basic safety standards for protection against ionizing radiation and for the safety of radiation sources. Safety series 15, Vienna.

21. UNSCEAR. (2000): Report to General Assembly. Annex B: Exposure from Natural Radiation Sources. and, Report to General Assembly. With Scientific Annexes. Sources and Effects of Ionizing Radiation. United Nations Sales Publications No. E.00.IX.3 Volume I: Sources and No. E.00.IX.4 (Volume II: Effects). United Nations, New York, 1220 Pp.