Productivity and land equivalent ratio of intercropping cotton with some winter crops in Egypt

ABSTRACT

Two field experiments were carried out at Research Station, El-Sharkia Governorate, ARC, Egypt during 2009/2010 and 2010/2011 seasons to investigate the effect of relay intercropping cotton with some winter crops as compared with sequential solid plantings of these crops on the productivity, land equivalent ratio and net returns from these systems. The split plot design with three replications was used. Two cotton cultivars were grown in the main plots, while cropping systems were allocated in sub-plots as follows: relay intercropping cotton with faba bean and wheat at 20th March, faba bean and wheat were grown with two population densities. These treatments were compared with growing cotton after Egyptian clover each of 20th March, 20th April and 20th May, as well as, faba bean at 20th April and wheat at 20th May in solid plantings. Intercropping cotton with faba bean and wheat lead to caused significant reductions in yields of these crops.

The results showed that cotton cultivar Giza 86 had higher values of seed cotton yield than Giza 90. Intercropping cotton with faba bean at 20th March as well gave higher yield values, also it had the same effects of cotton characters grown in sequential solid plantings at 20th April after faba bean and after Egyptian clover at 20th March. Intercropping cotton with wheat at 20th March had the same values of cotton characters of traditional culture. Late planting date of cotton (20th May) as followed after Egyptian clover or wheat caused significant reductions in cotton characters as compared with those grown in the early date. Low plant densities of faba bean or wheat decreased their effects on cotton characters under relay intercropping.

Also, cotton cultivars and the interactions between cotton cultivars and cropping systems had insignificant effects on yield of preceding crops (faba bean and wheat), while cropping systems had significant effects on yield of wheat and faba bean. Solid planting of wheat in two rows/ridge (S10) has the highest grain yield; also, solid planting of faba bean in high density has the highest seed yield.

All intercropping systems gave advantages in LERs as compared with sequential cropping systems where it ranged from 1.9 to 2.81 of S2 and S4 respectively. The results revealed that cotton cultivar Giza 86 had higher values of economic returns than cultivar Giza 90.

Key Words: Cropping systems, Cotton cultivars, Field crops, Competitive relationships, Economic return

INTRODUCTION

In recent years, trends in agricultural production systems have changed towards achieving high productivity and promote sustainability over time as a to meet the need result of the rapid increase of the population in Egypt. It is known that Egyptian cotton (Gossypium barbadense L.) is an important crop for fiber and vegetable oil not only in Egypt, but also in the world. However, one of the main problems associated with the Egyptian farmers is escaping from growing cotton on their farms in view of low cotton productivity after wheat harvest. A gradual reduction of cultivated area of cotton occurred from 448 thousand ha in 1982 to 136 thousand ha in 2012 as a result of high costs
of cotton cultivation productivity as compared with other summer crops, i.e. maize (*Zea mays* L.) and rice (*Oryza sativa* L.). Additionally, wheat (*Triticum aestivum* L.) and faba bean (*Vicia faba* L.) are grown in Egypt whereas they are considered as strategic cereal crops and the mainstay as food. On the other hand, Egyptian clover (*Trifolium alexandrinum* L.) is very important for successful animal production. The cultivated area of wheat, Egyptian clover and faba bean were 1,336,788 million, 746,787 thousand and 45,362 thousand ha, respectively (*Bulletin of Statistical Cost Production and Net Return, 2014*).

To solve the problem efficiently, intercropping cotton is a promising strategy through increasing cropping index and maximizing land use. Intercropping should technically help the agricultural policy to be in the challenge against food crises in Egypt (*Sayed Galal and Metwally 1986 and Metwally, 1999*). Relay intercropping is a kind of intercropping systems in which two or more crops grew simultaneously during part of the life cycle.

So, it may be possible that relay intercropping cotton with wheat or faba bean without tillage.

So, it may be possible that relay intercropping cotton with wheat or faba bean with no tillage through modified cotton sowing dates could be increased land use and decreased fixed costs. Also, modifying in growing cotton after wheat, Egyptian clover or faba bean could be more remunerative to cotton growers. All intercropping systems with cotton have an advantage in land productivity compared to mono-cultures (*Zhang et al., 2007*). The present study investigated the effect of cotton cultivars and cropping systems on the productivity and land equivalent ratio, as well as, net returns from relay intercropped of cotton and some winter crops.

MATERIALS AND METHODS

1. The treatments of the study

The present investigation was carried out at Kafr EL-Hamam El-Sharkia governorate, ARC, Egypt, during the two successive seasons 2009/2010 and 2010/2011 to investigate the effect of cotton cultivars and some new cropping systems on the productivity, land equivalent ratio and net returns of cotton and some winter crops. The experiment included twenty two treatments which were the combinations between two cotton cultivars and eleven cropping systems (Table 2). The Egyptian cotton cultivars Giza 86 and Giza 90 were used as planting material. The preceding winter crops were wheat (Sakha 93), faba bean (Giza 3) and Egyptian clover (Helaly) during were used in the two growing seasons. Some varietal differences of the two tested Egyptian cotton cultivars are as follows: Pedigree (Giza 86, Giza 75 x Giza 81 & Giza 90, Dandra x Giza 83), country of origin (Egypt), class – growing areas
(Giza 86, North Delta & Giza 90, Middle and Upper Egypt), the 1st node of sympodial branch (Giza 86, 7 or 8 & Giza 90, 6 or 7), plant height (Giza 86, tall & Giza 90, medium) and size of boll casings (Giza 86, medium & Giza 90, large). Cropping systems of growing cotton in relay intercropping or after harvesting winter crops are illustrated in Table (1) and Figure (1). The experiments were carried out in clay loamy soil and the preceding crop was rice in the two seasons before winter crops.

No.	Cropping system
S₁	Cotton was planted on one side of the ridge (70 cm) after two cuts of Egyptian clover at 20th March (control)
S₂	Faba bean was planted on one side of the ridge (70 cm) at mid-October and cotton was intercropped with faba bean on the other side of the ridge at 20th March in the next year. This system is called 'relay intercropping cotton with faba bean'
S₃	Faba bean was planted on two sides of the ridge (70 cm) at mid-October and cotton was intercropped with faba bean on one side of the ridge at 20th March on the next year. Plant density of faba bean was doubled than that of cropping system S₂
S₄	Relay intercropping cotton with wheat, which was planted in two rows on the ridge (70 cm) at mid-November (low density) and cotton was intercropped on one side of the ridge at 20th March in the next year
S₅	Relay intercropping cotton with wheat as that of system 4, but wheat was grown in three rows on the ridge (high and recommended density)
S₆	Cotton was planted after three cuts of Egyptian clover at 20th April, as that of cropping system S₁
S₇	Planting cotton after harvesting faba bean at 20th April without tillage; whereas faba bean was grown as that of cropping system S₂
S₈	Planting cotton after harvesting faba bean at 20th April without tillage; whereas faba was grown as that of cropping system S₃
S₉	Cotton was planted after four cuts of Egyptian clover at 20th May
S₁₀	Planting cotton after harvesting wheaat at 20th May without tillage; whereas, wheat was grown as that of cropping system S₄
S₁₁	Planting cotton after harvesting wheaat at 20th May without tillage; whereas, wheat was grown as that of cropping system S₅
Figure 1. Cropping systems of growing cotton in relay intercropping or after harvesting winter crops.
Treatments were arranged in a split plot design with three replications. Cotton cultivars were assigned to the main plots, while cropping systems were allocated in sub-plots. Each sub-plot consisted of 6 ridges, 5.0 m in length, 0.7 m in width and plot area was 21.0 m2. Other agronomic recommended practices were practiced according to technical recommendations of cotton, wheat, faba bean and Egyptian clover. Cotton cultivars were grown by 142,857 plants per ha, while faba bean was planted by 285,714 plants per ha in S$_3$ and S$_7$; but density at S$_2$ and S$_6$ reduced to 142,857 plants per ha. Egyptian clover was drilled by rate of 48.0 kg/ha. Wheat was planted by rate 119 kg/ha (high density) in S$_5$ and S$_9$, while S$_4$ and S$_8$ was planted by rate 95 kg/ha (low density). Ten individual guarded plants from cotton, faba bean and wheat were randomly taken from each experimental plot to study yield components. Seed cotton yield per ha was estimated as the weight of seed cotton yield picked from the four middle ridges in plot, then converted to yield per ha. With respect to faba bean seed yield and wheat grains per ha were estimated from the four middle ridges in sub-plots and converted to yield per ha. Forage yield of Egyptian clover per ha (ton) was estimated as fresh weight of cuttings taken from the sub plot and converted to yield per ha.

The studied characters were as follows:

A. Yield
1. Seed cotton yield (t/ha).
2. Yield (t/ha) of wheat and faba bean, as well as, forage yield of Egyptian clover (t/ha).

B. Competitive relationship

1. Land equivalent ratio (LER)
 It is calculated as follows as according to Mead and Willey (1980): $\text{LER}= \dfrac{(Y_{ab}/Y_{aa}) + (Y_{bb}/Y_{bb})}{1}$, where Y_{aa}= pure stand yield of crop a (cotton), Y_{bb} = pure stand yield of crop b (faba bean or wheat), Y_{ab} = intercrop yield of crop a (cotton), Y_{ba}= intercrop yield of crop b (faba bean or wheat).

2. Area time equivalent ratio (ATER)
 It is calculated according to Hiebsch (1980) as follows:
 $\text{ATER}= \dfrac{(L_aT_a + L_bT_b)}{T}$
 where, L_a= relative yield of the first crop(wheat or faba bean), T_a= the time of the first crop, L_b = relative yield of the second crop(cotton), T_b= the time of the second crop, T= the time from planting the first crop until harvesting the second crop.

C. Economic return
Farmer's benefit was calculated by determining each of total return, costs and net returns of intercropping cultures, as well as, solid plantings according to Metwally et al. (2009)

1. Total return/ha (L.E.).
Total return = (yield a x price a + yield b x price b). The prices were presented by Bulletin of Statistical Cost Production and Net Return (2013), as well as, market prices.

2. Net return / ha (L.E.).
Net return / ha = total return – variable costs for both crops in solid and intercropping patterns.

D. Statistical manipulation

The data were statistically analyzed according to the technique of analysis of variance (ANOVA) for the split plot design using COSTAT Computer software package. Least Significant Difference (LSD) was used to test the differences between treatment means at 5% level of probability as described by Gomez and Gomez (1984). The homogeneity test was conducted of error mean squares and accordingly, the combined analysis of the two experimental seasons was carried out.

RESULTS AND DISCUSSION

Seed cotton yield

Cotton cultivars

Seed cotton yield was affected significantly by the two cotton cultivars in the combined data across 2010 and 2011 seasons (Table 2). In all cropping systems, cotton cultivar Giza 86 had higher seed cotton yield than Giza 90. These may be due to some varietal differences of each cultivar which formed its canopy could be interacted with the environmental conditions that reflected finally on seed cotton yield (Table 2).

So, it is known that differing cotton leaf shapes with varying lobing cause large alterations in the structure of the plant canopy and its ability to intercept light (Wells and Meredith, 1986). Accordingly, cotton cultivar Giza 86 was more adapted to environmental conditions of the experiment because it has some genetic characters (which characters??) which suitable for environmental conditions of North and East Delta such as light intensity and temperature than cotton cultivar Giza 90 during boll formation and maturation. These results are in agreement with those of Hosny et al. (1990), Zhang et al. (2007) and Safina et al. (2014) who showed that cotton cultivar Giza 86 gave high yield than Giza 90 under environmental conditions of Giza, Egypt.
Table 2. Seed cotton yield (t/ha) as affected by cotton cultivars, cropping systems and their interaction (combined data across 2010 and 2011 seasons).

Cropping systems	Seed cotton yield (t/ha)			
	Giza 86	Giza 90	Mean	
(S_1) Solid cotton after Egyptian clover at 20\(^{th}\) March (2 cuts)	3.46	3.11	3.28	
(S_2) Intercropping cotton with faba been at low density (one side /ridge) at 20\(^{th}\) March	3.59	3.10	3.34	
(S_3) Intercropping cotton with faba been at high density (two sides/ridge) at 20\(^{th}\) March	3.35	2.88	3.11	
(S_4) Intercropping cotton with wheat at low density (two rows/ridge) at 20\(^{th}\) March	3.03	2.31	2.67	
(S_5) Intercropping cotton with wheat at high density (three rows/ridge) at 20\(^{th}\) March	2.76	2.26	2.51	
Average of 20\(^{th}\) March	3.23	2.73	2.98	
(S_6) Solid cotton after Egyptian clover at 20\(^{th}\) April (3 cuts)	2.68	2.42	2.55	
(S_7) Solid cotton after faba been at low density (one side/ridge) at 20\(^{th}\) April	3.15	2.76	2.95	
(S_8) Solid cotton after faba been at recommended density (two sides/ridge) at 20\(^{th}\) April	3.10	2.81	2.95	
Average of 20\(^{th}\) April	2.97	2.66	2.81	
(S_9) Solid cotton after Egyptian clover at 20\(^{th}\) May (4 cuts)	1.42	1.47	1.44	
(S_{10}) Solid cotton after wheat at low density (two rows/ridge) at 20\(^{th}\) May	1.61	1.62	1.61	
(S_{11}) Solid cotton after wheat at recommended density (three rows/ridge) at 20\(^{th}\) May	1.38	1.53	1.45	
Average of 20\(^{th}\) May	1.47	1.54	1.50	
Average of cropping systems	2.68	2.38	2.53	
Sig. cotton cultivars (A)	**			
LSD 0.05 Cropping systems (B)		0.58		
LSD 0.05 Interaction (AB)		0.82		
2. Cropping systems

Seed cotton yield was affected significantly by cropping systems (Table 2). Growing cotton with faba bean by relay intercropping system at 20th March or sequential double cropping system at 20th April gave significant increases in seed cotton yield as compared to the corresponding cropping system of wheat. Also, low density of faba bean (S\textsubscript{2}) caused insignificant increment of cotton production (compare between S\textsubscript{2} and S\textsubscript{3}).

These results could be due to the reduction of inter and intra-specific competition between the two species for basic growth resources in relay intercropping cotton with faba bean as compared with those of wheat. Also, it seems that faba bean and Egyptian clover fixed most of their N requirements from the atmosphere and do not compete with cotton for N resource. Management of a crop residue can contribute to increase nutrient cycling and greater crop yields (Delgado et al., 2007). In addition to short period of growing both crops through the intercropping systems between faba bean and cotton (a month) as compared to wheat and cotton (2 months).

It is evident from the results that one row of faba bean per ridge (two plants distanced at 20 cm between hills) could provide suitable spaces for light transmission during the seedling stage of cotton in comparison to those grown with faba bean under high plant density (S\textsubscript{3}). It is known that the light environment surrounding plants affects seedling growth (Schopfer and Plachy, 1984) and resource use efficiency, is not likely to be much affected in intercropping systems with component crops that differ in growing period, since competition between component crops is weak (Fukai and Trenbath, 1993).

Growing cotton with wheat increased inter and intra-specific competition between the two species for basic growth resources, i.e. light, water and nutrients from the sowing of cotton on 20th March, until harvesting wheat at 20th May. During this period (about 8 weeks), shading of wheat had adverse effects on cotton plants. This effect was increased with increasing plant density of wheat from two to three rows per ridge. Increasing plant density of wheat may result in increased soil nutrients deficiency through its allelopathic effects for cotton growth and development compared with low density (S\textsubscript{4} and S\textsubscript{8}). Also, three rows of wheat per ridge allowed lower light transmission inside cotton canopy than two wheat rows. Relay intercropping cotton with wheat at 20th March increased seed cotton yield significantly as compared with sequential double cropping system of cotton after Egyptian clover and wheat on 20th May, these may be due to longer period of vegetative growth.
during normal environmental conditions to produce more dry matter accumulation through photosynthesis process from stem elongation stage to pollination process as compared with the late date of 20th May.

3. Response of the interaction between cotton cultivars and cropping systems

Seed cotton yields per plant and per ha were affected significantly by the interaction between the two cotton cultivars and cropping systems (Table 2). Relay intercropping cotton cultivar Giza 86 with low density of faba bean gave the highest value of seed cotton yield than other systems. Also, cotton cultivar Giza 86 recorded higher seed cotton yields than the other cultivar in all cropping systems except growing it in sequential systems on 20th May after wheat or Egyptian clover. These results revealed that cotton cultivar Giza 90 was more tolerant to delaying sowing date than cultivar Giza 86.

B. Yield of wheat grains and faba bean seeds

1. Cotton cultivars

There were no significant effects of cotton cultivars on the productivity of winter crops (wheat and faba bean).

2. Cropping systems

- Productivity of wheat crop

Grain yield of wheat were affected significantly by cropping systems (Table 3). Grain yield per ha was decreased significantly under intercropping culture (S4) and (S5) compared to solid ones (S10 and S11). These results may be due to the competition between cotton and wheat plants for light, nutrients and available water. These results are in agreement with those obtained by Zohry (2005), Hussein (2006), Toaima et al. (2007), Zhang et al. (2007) and El-Hawary (2009).

With regard to wheat plant densities, there were no significant differences between high and low densities under solid or intercropping systems.

- Productivity of faba bean crop

Seed yield was decreased significantly under intercropping culture (S2) and (S3) as compared to solid ones, (S7 and S8). These results may be due to the competition between cotton and faba bean plants for light, nutrients and available water (Table 3).

With respect to faba bean plant densities, seed yield was higher by doubling plant density of faba bean (on both sides) under solid and intercropping cultures (S3 and S8) than low plant densities (one side). The increasing in seed yield was quite expected as a result of
Table 3. Yield of preceding winter crops (faba bean, wheat and Egyptian clover) as affected by cotton cultivars, cropping systems and their interaction (combined data across 2010 and 2011 seasons).

Characters	Seed yield of faba bean (t/ha)	Grain yield of wheat (t/ha)	Forage yield of Egyptian clover (t/ha)				
	Giza 86	Giza 90	Mean	Giza 86	Giza 90	Mean	
Intercropping cotton with faba bean (S2) / wheat (S4) at 20th March (low densities)	2.55	2.47	2.51	5.00	5.03	5.01	---
Intercropping cotton with faba bean (S3) / wheat (S2) at 20th March (high densities)	2.84	2.78	2.81	4.84	4.87	4.86	---
Solid faba bean(S7) / wheat(S16) at 20th April and 20th May (low densities)	3.12	3.08	3.10	5.22	5.29	5.25	---
Solid faba bean(S8) / wheat (S11) at 20th April and 20th May (high densities)	3.27	3.20	3.23	5.20	5.14	5.17	---
Average	2.94	2.88	2.91	5.06	5.08	5.07	---
Egyptian clover – 2 cuts at 20th March (without cotton)*	---	---	---	---	---	---	26.19
Egyptian clover – 3 cuts at 20th April (without cotton)*	---	---	---	---	---	---	41.65
Egyptian clover – 4 cuts at 20th May (without cotton)*	---	---	---	---	---	---	57.12
Average	---	---	---	---	---	---	41.65
Sig.cotton cultivars(A)	N.S.	N.S.					
LSD 0.05 Cropping systems (B)	0.21	0.39	1.16				
LSD 0.05 Interaction (AB)	N.S.	N.S.					

*Cotton was grown after harvesting Egyptian clover as solid plantings.
increasing stand of faba bean as compared by low densiy. The results are in agreement with those reported by El-Douby et al. (1996), Hassan and Hafiz (1998), Mokhtar (2001), El-Metwally et al. (2003) and Abdel-Galil et al. (2014).

3. Response of the interaction between cotton cultivars and cropping systems

The interaction between cotton cultivars and cropping systems had non-significant effects on grain yield of wheat, as well as, faba bean seed yields (Table 3).

- Productivity of Egyptian clover

In Egypt, cotton and Egyptian clover are grown in sequential solid cropping system at different planting dates for cotton from March to May. Forage yield of Egyptian clover recorded 26.19, 41.65 and 57.12 t/ha of cropping systems (S1, S6 and S9), respectively, as a result of increasing number of cuts and growing cycles (Table 3).

C. Competitive relationships

Relative yield and Land equivalent ratio (LER)

Relative yield of intercropping cotton with faba bean or wheat was affected significantly by cotton cultivars (Table 4). Cotton cultivar Giza 86 had higher values of relative seed cotton yield than the cultivar Giza 90.

Relative seed cotton yield of relay intercropping cotton with faba bean was increased significantly than that of sequential cropping system (compare systems S2 and S3 with system S8, Table 4) where it reached + 8 %. The corresponding value of intercropping cotton with wheat was increased to 178 % as compared to by sequential doubling cropping system (100 %), (compare systems S4 and S5 with system S11). These increments were due to long period of vegetative growth during normal environmental conditions to produce more dry matter accumulation and yield production.

Also, relative seed cotton yield of intercropping cotton with low densities of faba bean or wheat in S2 and S4 systems had higher values as compared to high densities of these crops at S3 and S5 systems. These results may be due to little competition effects at low densities of faba bean and wheat with cotton plants.

In regard to relative yields of winter crops (faba bean and wheat), relative yield of faba bean and wheat was not did not affected significantly by cotton cultivars (Table 4). Relative yield of faba bean was decreased significantly + 20 % (how it can be + 20%?, when it is stated that it decreased) by relay intercropping with cotton than that of sequential double cropping system (S2 and S3 with S5). On the other hand, relative yield of wheat did not differ significantly by relay intercropping cotton as compared to solid culture (S4 and S5 with S11).
Table 4. Relative yields and LERs of relay intercropped cotton with faba bean and wheat, as compared by double cropping system of winter crops (combined data 2010 and 2011 seasons).

Characters	Relative yield	LER							
	L cotton Giza 86	L other crops Giza 90	Mean						
Intercropping cotton with faba bean (low density) at 20th March (S2)	1.15	1.10	1.12	0.78	0.77	0.77	1.93	1.87	1.90
Intercropping cotton with faba bean (high density) at 20th March (S3)	1.08	1.02	1.05	0.86	0.86	0.86	1.94	1.88	1.91
Average	1.11	1.06	1.08	0.82	0.81	0.81	1.93	1.87	1.90
Solid cotton after faba bean (recom. density) at 20th April (S6)	1.00	1.00	1.00	1.00	1.00	1.00	2.00	2.00	2.00
Sig. cotton cultivars (A)	*	*	N.S.						
LSD 0.05 Cropping systems (B)	*	*	N.S.						
Intercropping cotton with wheat (low density) at 20th March (S4)	2.19	1.50	1.84	0.96	0.97	0.96	3.15	2.47	2.81
Intercropping cotton with wheat (high density) at 20th March (S5)	2.00	1.47	1.73	0.93	0.94	0.94	2.93	2.41	2.67
Average	2.09	1.48	1.78	0.94	0.95	0.95	3.04	2.44	2.74
Solid cotton after wheat (recommended density) at 20th May (S11)	1.00	1.00	1.00	1.00	1.00	1.00	2.00	2.00	2.00
Sig. cotton cultivars (A)	N.S.								
LSD 0.05 Cropping systems (B)	*	*	N.S.						
LSD 0.05 Interaction (AB)	N.S.								
Cotton after Egyptian clover - 2 cuts at 20th March (S1)	2.43	2.11	2.27	0.45	0.45	0.45	2.89	2.56	2.72
Cotton after Egyptian clover - 3 cuts at 20th April (S6)	1.88	1.64	1.76	0.72	0.72	0.72	2.60	2.36	2.48
Cotton after Egyptian clover - 4 cuts at 20th May (S9)	1.00	1.00	1.00	1.00	1.00	1.00	2.00	2.00	2.00
Sig. cotton cultivars (A)	*	*	N.S.						
LSD 0.05 Cropping systems (B)	*	*	N.S.						
LSD 0.05 Interaction (AB)	0.09	0.09	0.09	0.09	0.09	0.09	0.12	0.12	0.12

Values of LERs were estimated by using data of relay intercropping compared with solid double cropping systems of those crops (Table 4). LER was not affected significantly by cotton cultivars in case of faba bean. But the converse was true with wheat (Table 4). Cotton cultivar Giza 86 had higher values of LER than those of cultivar (Giza 90).

With respect to faba bean, LER was decreased significantly +10% (how it can be +20%?, when it is stated that it decreased) by intercropping cotton with faba bean (S2 and S3) as compared to sequential double cropping system (S8).

In regard to intercropping cotton with wheat, LER increased significantly +74% than that of sequential double cropping system "S11" (Table 4).

LER was not affected significantly by the interaction between cotton cultivars and cropping systems in case of faba bean but the converse was true with wheat. LER was
decreased more by intercropping cotton cultivar Giza 86 with high plant density of wheat (S₅) as compared with cotton cultivar Giza 90.

2- Area time equivalent ratio (ATER)

Results of ATER were calculated according to Hiebsch and McCollum (1987). Values of ATER were less than LER. With respect to faba bean crop, ATER was not affected significantly by cotton cultivars (Table 5). But it was affected significantly by cropping systems (Table 5). In general, intercropping cotton with faba bean (S₂ and S₃) had higher values of ATER compared to sequential double cropping system (S₈). This mean that yield advantage was exhibited produced and land usage efficiency increased by intercropping cotton with faba bean by 4 %. ATER was influenced significantly by the interaction between cultivars and cropping systems.

Characters Cropping systems	Relative yields	ATER							
	L cotton	L other crops							
	Giza 86	Giza 90	Mean	Giza 86	Giza 90	Mean	Giza 86	Giza 90	Mean
Intercropping cotton with faba bean (low density) at 20th March (S₂)	1.15	1.10	1.12	0.78	0.77	0.77	1.06	1.02	1.04
Intercropping cotton with faba bean (high density) at 20th March (S₃)	1.08	1.02	1.05	0.86	0.86	0.86	1.06	1.02	1.04
Average of intercropping cotton with faba bean	1.11	1.06	1.08	0.82	0.81	0.81	1.06	1.02	1.04
Solid cotton after faba bean (recommended density) at 20th April (S₈)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

With respect to intercropping cotton with wheat, values of ATER were affected significantly by cotton cultivars, cropping systems and the interaction between them. Giza 86 had higher values than Giza 90 (Table 5). Intercropping cotton with two rows of wheat (low density, S₄) had higher ATER values as compared to cropping systems (S₅ and S₁₁) whereas it reached 1.69 %. These results may be due to decreasing inter and intra-specific competition between the two species (cotton + wheat) and the same species (wheat), respectively, for basic growth resources (nutrients, water and solar radiation)
D. Economic performance

The results revealed that cotton cultivar Giza 86 had higher values of total and net returns than cotton cultivar Giza 90. In regard to cropping systems, total and net returns of intercropping cotton after faba bean gave higher values of total and net returns (Tables 6 and 7); while, planting cotton at 20th May, harvesting gave lower values in total and net returns, i.e. 4,609.0 and 4,423.0, and 1,144.0 and 1,454.0 USD / ha in S3 and S9, respectively.

Table 6. Total return and costs/ha of cotton and winter crops (faba bean, wheat and Egyptian clover) in Egyptian pounds as affected by cotton cultivars, cropping systems and their interactions.

Treatment	Crops	Total return	Costs			
	Giza 86	Giza 90	Mean			
Intercropping cotton with faba bean at low density at 20th March (S2)	Faba bean	2276.0	2214.0	2245.0	1771.0	1771.0
	Cotton	4405.0	3812.0	4108.0	1818.0	1818.0
	Total	6682.0	6027.0	6354.0	3589.0	3589.0
Intercropping cotton with faba bean at high density at 20th March (S3)	Faba bean	2496.0	2454.0	2475.0	1771.0	1771.0
	Cotton	4111.0	3531.0	3821.0	1818.0	1818.0
	Total	6608.0	5986.0	6297.0	3589.0	3589.0
Average	Faba bean	23860.0	2334.0	2360.0	1771.0	1771.0
	Cotton	4258.0	3672.0	3965.0	1818.0	1818.0
	Total	6648.0	6066.0	6325.0	3589.0	3589.0
Intercropping cotton with wheat at low density at 20th March (S4)	Wheat	2827.0	2878.0	2852.0	1740.0	1740.0
	Cotton	3715.0	3232.0	3274.0	1724.0	1724.0
	Total	6542.0	5710.0	6126.0	3464.0	3464.0
Intercropping cotton with wheat at high density at 20th March (S5)	Wheat	2841.0	2861.0	2851.0	1740.0	1740.0
	Cotton	3389.0	2772.0	3081.0	1724.0	1724.0
	Total	6230.0	5633.0	5932.0	3464.0	3464.0
Average	Wheat	2834.0	2869.0	2851.0	1740.0	1740.0
	Cotton	3552.0	2802.0	3177.0	1724.0	1724.0
	Total	6386.0	5671.0	6028.0	3464.0	3464.0
Solid cotton after faba bean at low density at 20th April (S6)	Faba bean	2711.0	2680.0	2695.0	1771.0	1771.0
	Cotton	3872.0	3393.0	3632.0	1818.0	1818.0
	Total	6583.0	6073.0	6328.0	3589.0	3589.0
Solid cotton after faba bean at recommended density at 20th April (S7)	Faba bean	2826.0	2776.0	2801.0	1771.0	1771.0
	Cotton	3812.0	3453.0	3632.0	1818.0	1818.0
	Total	6639.0	6229.0	6434.0	3589.0	3589.0
Average	Faba bean	2768.0	2728.0	2748.0	1771.0	1771.0
	Cotton	3842.0	3423.0	3632.0	1818.0	1818.0
	Total	6611.0	6151.0	6381.0	3589.0	3589.0
Solid cotton after wheat at low density at 20th May (S8)	Wheat	2955.0	2999.0	2977.0	1740.0	1740.0
	Cotton	1982.0	1986.0	1984.0	1724.0	1724.0
	Total	4937.0	4985.0	4963.0	3464.0	3464.0
Solid cotton after wheat at recommended density at 20th May (S9)	Wheat	3025.0	3031.0	3029.0	1740.0	1740.0
	Cotton	1696.0	1876.0	1786.0	1724.0	1724.0
	Total	4721.0	4907.0	4815.0	3464.0	3464.0
Average	Wheat	2990.0	3015.0	3003.0	1740.0	1740.0
	Cotton	1841.0	1930.0	1885.0	1724.0	1724.0
	Total	4831.0	4945.0	4888.0	3464.0	3464.0
Solid cotton after Egyptian clover – 2 cuts at 20th March (S1)	Egyptian clover	1321.0	1321.0	1321.0	589.0	589.0
	Cotton	4253.0	3816.0	4035.0	2159.0	2159.0
	Total	5575.0	5138.0	5356.0	2749.0	2749.0
Solid cotton after Egyptian clover – 3 cuts at 20th April (S2)	Egyptian clover	1982.0	1982.0	1982.0	809.0	809.0
	Cotton	3288.0	2975.0	3131.0	2049.0	2049.0
	Total	5270.0	4958.0	5114.0	2859.0	2859.0
Solid cotton after Egyptian clover – 4 cuts at 20th May (S3)	Egyptian clover	2643.0	2643.0	2643.0	1030.0	1030.0
	Cotton	1747.0	1811.0	1779.0	1938.0	1938.0
	Total	4391.0	4455.0	4423.0	2969.0	2969.0
Average	Total	5834.0	5463.0	5648.0	3344.0	3344.0

Prices of main products are that of 2012: ton of cotton=1227.0 USD, ton of wheat=416.0 USD, ton of faba bean =764.0 USD and average forage price per cutting / ha=660.0 USD, ton of Straw crop value wheat =100.0 USD, Straw crop value faba bean /ha =324.0 USD.
Table 7. Net returns in Dollar (USD) for two Egyptian cotton cultivars grown under different cropping systems with faba bean, wheat and Egyptian clover.

Treatment	Crops	Giza 86	Giza 90	Mean
	Faba bean	505.0	443.0	474.0
	Cotton	2587.0	1994.0	2290.0
	Total	3093.0	2437.0	2765.0
Intercropping cotton with faba bean at low density at 20th March (S2)	Faba bean	725.0	683.0	704.0
	Cotton	2293.0	1713.0	2063.0
	Total	3018.0	2397.0	2707.0
Average	Faba bean	615.0	563.0	589.0
	Cotton	2440.0	1853.0	2147.0
	Total	3055.0	2417.0	2736.0
Intercropping cotton with wheat at low density at 20th March (S4)	Wheat	1086.0	1137.0	1111.0
	Cotton	1991.0	1108.0	1550.0
	Total	3077.0	2245.0	2661.0
Average	Wheat	1093.0	1128.0	1110.0
	Cotton	1828.0	1078.0	1453.0
	Total	2921.0	2206.0	2563.0
Solid cotton after faba bean at low density at 20th April (S5)	Faba bean	940.0	909.0	924.0
	Cotton	2053.0	1575.0	1814.0
	Total	2994.0	2484.0	2739.0
Average	Faba bean	1055.0	1005.0	1030.0
	Cotton	1994.0	1615.0	1814.0
	Total	3049.0	2640.0	2845.0
Solid cotton after faba bean at recommended density at 20th April (S6)	Wheat	1224.0	1258.0	1236.0
	Cotton	257.0	262.0	260.0
	Total	1471.0	1520.0	1495.0
Average	Wheat	1249.0	1274.0	1261.0
	Cotton	117.0	206.0	161.0
	Total	1366.0	1480.0	1422.0
Solid cotton after Egyptian clover – 2 cuts at 20th March (S7)	Egyptian clover	732.0	732.0	732.0
	Cotton	2094.0	1657.0	1875.0
	Total	2826.0	2398.0	2607.0
Average	Egyptian clover	1172.0	1172.0	1172.0
	Cotton	1238.0	926.0	1082.0
	Total	2411.0	2098.0	2255.0
Solid cotton after Egyptian clover – 4 cuts at 20th May (S8)	Egyptian clover	1612.0	1612.0	1612.0
	Cotton	-191.0	-126.0	-158.0
	Total	1421.0	1486.0	1454.0
Average	Total	2489.0	2118.0	2303.0

Net returns from cropping systems depend on the total production of crop components of cotton, faba bean, wheat and Egyptian clover, as well as, variable and fixed costs. Net return of cotton decreased with delay in planting from March to May. These results were in agreement with those obtained by (El-Shazly, 1992; Seif El-Nasr et al., 1996; Hussein, 2006 and Toaima et al., 2007).
CONCLUSION

The finding of this study is useful to increase cotton production in Egypt by using new cropping systems such as relay intercropping cotton with faba bean and wheat at 20th March and planting cotton after faba bean at 20th April. These cropping systems produced high production of seed cotton with good quality, in addition to the increases of land equivalent ratio and economic returns. These new cropping systems will be encouraged Egyptian farmers to grow cotton in their fields.

REFERENCES

Abdel-Galil M. A., El-Ghobashy, Y. E. and Lamlom M. M. 2014. Sugar beet productivity and profitability as affected by three cropping systems and mineral nitrogen fertilizer rates. The 8th Int. Conf. Techno. and Sustain. Dev., Third millennium, 22 – 24 November 2014, pp. 161 – 188.

Bulletin of Statistical Cost Production and Net Return, 2013. Summer and Nili Field Crops and Vegetables and Fruit. Agriculture Statistics and Economic Sector, Ministry of Egyptian Agriculture and Land Reclamation", Part (2), August 2013.

Bulletin of Statistical Cost Production and Net Return 2014. Winter Field Crops and Vegetables and Fruit. Agriculture Statistics and Economic Sector, Ministry of Egyptian Agriculture and Land Reclamation", Part (1).

Delgado J. A., Dillon M. A., Sparks R. T. and Essah S. Y. C. 2007. A decade of advances in cover crops: Cover crops with limited irrigation can increase yields, crop quality, and nutrient and water use efficiencies while protecting the environment. J. Soil Water Conserv., 62 (5): 110A –117A.

El-Douby K. A., El-Habbak K. E. D., Khalil H. E. and Attia Zahira M. 1996. Effect of some intercropping patterns on growth and yield of corn and soybean. Ann. Agric. Sci., Moshtohor, 34 (3): 919 – 33.

El-Hawary N. A. 2009. Formulas for relay intercropping and crop sequence systems evaluation. J. Appl. Sci. Res., 15 (2): 2079 – 2082.

El-Metwally, El-M. A, Abdalla, M. M. F., Darwish, D.S and Mohamed, Waffa, K. 2003. Performance of two faba bean cultivars under different plant distribution patterns. Abstract of Proc. 10th National Conf. Agron., 7-10 Oct., El- Arish, Egypt. 24-25.

El-Shazly W. M. O.1992. Studies on cotton growing methods. Ph. D. Thesis, Fac. Agric., Kafr El-Sheikh. Tanta Univ., Egypt, 276 Pp.

Fukai S. and Trenbath B. R. 1993. Processes determining intercrop productivity and yields of component crops. Field Crops Res., 34: 247–271.

Gomez K. A. and Gomez A. A. 1984. Statistical procedures for agriculture research. 2nd Ed., John Willey and Sons, New York, USA.

Hassan, A. A. and Hafiz, Si. I. 1998. Agronomic Characteristics, yield and its components of some field bean cultivars as affected by planting methods and plant spacing. Proc. 8th Conf. Agron., Suez Canal Univ., Ismailia, Egypt, 28-29. Nov.317-325

Hiebsch C.K. 1980. Principles of Intercropping. "Effect of N fertilization and crop duration on equivalency ratios in intercrops versus monoculture comparisons." Ph D Thesis. North Carolina State University, Raleigh, N. C., USA.

Hosny A. A, Mohamed H. M. A and Aly S. A. 1990. Effect of preceding crops and nitrogen levels on yield and yield components of Giza 80 cotton variety. Ann. Agric. Sci., Moshtohor, 28 (2): 761 – 782.

Hussein Samira M. A. 2006. Performance of cotton and wheat under intercropping planting patterns and nitrogen fertilization. Ann Agric. Sci., Moshtohor, 44 (4): 1385 -1404.
Mead R. and Willey R.W. 1980. The concept of a "land equivalent ratio" and advantages in yields from intercropping. Exp. Agric., 16: 217 – 28.

Metwally A. A. 1999. Intensive cropping systems in the battle against food crises. Proc. 1st congress on Recent technologies in Agriculture, Cairo Univ. Fac. Agric. 333-341.

Metwally A. A., Shafik M. M., Sherief M. N. and Abdel-Wahab. 2009. Intercropping maize with Egyptian cotton. Egypt. J. Agron., 31 (2): 179 – 197.

Mokhtar Soheir A. 2001. Response yield and yield components of Faba bean (Vicia faba L) to increasing levels nitrogen and phosphorus under two levels of plant stand density. Ann Agric. Sci., Ain Shams Univ., Cairo, 46 (1): 143 – 154.

Safina S. A., Noaman A. H. and Metwally A. A. 2014. Performance of Egyptian cotton cultivars under solid and intercropping cultures with Maiza. Int. J. Agric. and Crop Sci., 7 (11): 778 – 785.

Sayed Galal Jr. and Metwally A.A. 1986. Science in practice. Proc. 2nd Conf. Agron., Alexandria Univ., 1: 489 – 503.

Schopfer P. and Plachy C. 1984. Control of seed germination by abscisic acid. Plant Physiol., 76: 155 – 160.

Seif El-Nasr F. M, Attia Zahira M., Khalil H. E., Sharms S. A. A. and Kamel A. S. 1996. Growing long duration wintercrop in cotton rotation. Ann. Agric. Sci., Moshtohor, 34 (2): 501 – 512.

Toaima S. E., Gadallah R. A. and Mohamadin E. S. A. 2007. Effect of relay intercropping system on yield and its components of wheat and cotton. Ann. Agric. Sci. AinShams Univ., 52 (2): 317 – 326.

Wells R. and Meredith W. R. J. 1986. Okra leaf normal leaf yield interactions. II. Analysis of vegetative and reproductive growth. Crop Sci., 26: 219 – 228.

Zhang L., Vander Werf W., Zhang L. and Spiertz J. H. J. 2007. Growth yield and quality of wheat and cotton in relay strip intercropping system. Field Crop Res., 3 (3): 178 – 188.

Zohry A. A. 2005. Effect of relaying cotton on some crops under bio-mineral N fertilization rates on yield and yield components. Ann. Agric. Sci., Moshtohor, 43(1): 89 – 103.