Sensitivity Analysis of Economic Variables using Neuro-Fuzzy Approach

E. Lotfia,*, S. Babrzadehb, A. Khosravic, Member, IEEE

a Department of Computer Engineering, Torbat-e Jam Branch, Islamic Azad University, Torbat-e Jam, Iran (Corresponding author. Tel: +989355700102, e-mail: esilof@gmail.com, elotfi@bitools.ir).

b Department of Computer Engineering and Information Technology, Payam-e Noor University, Asalooye, Iran.

c Center for Intelligence Systems Research, Deakin University, Geelong 3217, Australia.

Abstract— Sensitivity analysis (SA) is a vital task for decision making in economic management. In this paper, a novel fuzzy sensitivity analyzer (FSA) is proposed to analyze the sensitivity of economic variables. The proposed FSA algorithm consists of an adaptive neuro-fuzzy inference system (ANFIS) that is adjusted for forecasting economic time series. Based on the output of ANFIS, FSA can determine the importance degree of parameters. In the numerical studies, the proposed method is applied for the sensitivity analysis of oil and gold time series. According to the results, FSA indicates that oil price is highly dependent upon the inflation rate, dollar index and market index while OPEC production level and gold price have less impact. Furthermore, in the gold price modeling, the highest sensitivity is obtained from silver price while demand for gold is more a function of market index and inflation rate. The proposed method can be used in many SA applications.

Index Terms— Fuzzy forecast, economic time series, sensitivity analysis, soft computing, economic management.

1. INTRODUCTION

An economic time series is a sequence of successive measurements of an economic activity obtained at regular time intervals (hourly, daily, weekly, monthly, quarterly or annually). It can include price sequence of a commodity or sequence of an economic index e.g. oil price, gold price and market index. In this framework, there is a critical issue considered by researchers and economic analyzers and related to the sensitivity analysis (SA) of variables and determination of their importance [1]. SA determines the relationship between the economic parameters and can help economic managers with decision making in economic problems. In the literature, there are two approaches for SA methods including local and global methods [2-6]. Local or one-factor-at-a-time methods are limited to examining the effects of variations in input parameters in the vicinity of their nominal values. Global SA methods define the contribution of
individual input parameters, including their sets, and provide more comprehensive information on the computational model regarding changes in input parameters throughout their domain [2, 4, 5, 6, 7, 8]. Some mathematics-based SA methods have been proposed in this regards. For example, cosine amplitude method (CAM) has been applied by [9] in order to find the most sensitive parameters. Although, CAM and other mathematics-based SA methods applied in [11-15] can be used for economic time series, they cannot consider the behavioral similarities of parameters. They do not consider the interactions among the parameters [7]. So they cannot be a proper method in the case of economic variables. On the other side, learning-based SA methods [9, 10] can learn the interactions among the economic parameters and consequently they can better assess the influence of parameters on the output of an economic model. For example, in [10], an artificial neural network (ANN) has been applied for SA. In contrast to mathematical methods, ANNs can learn the nonlinear behaviour and hence they can show better results in SA. In [3], [12] and [13], [47] fuzzy-based multiple criteria decision-making (MCDM) models have been reviewed and the effective of a sensitivity analysis on the fuzzy MCDM systems has been shown. In this paper, we aim to propose a novel learning-based SA method using ANFIS. ANFIS has been successfully applied in various applications from prediction [18-22] to estimation [21-23] and enjoys from more number of learning parameters compared with ANNs and it may show more accurate results [21]. To the best of our knowledge, fuzzy approaches have not yet been examined in the SA of economic variables and we aim to introduce it and apply the resulting model in SA problems of oil and gold price and demand [18-23]. However, the proposed method is general and can be used in various applications [18-23] such as product cost estimation [20, 24] and stock price prediction [25-27].

The paper is organized as follows, a short review on ANFIS is presented in Section 2. The fuzzy SA (FSA) is proposed in Section 3. Then it is evaluated in Section 4 and conclusions are drawn in Section 5.

2. ANFIS

The architecture of Sugeno-type ANFIS [31, 32] presented in Fig. 1 includes the following five layers; fuzzifier, production, normalized, defuzzy, and output layer. Through these layers the output of ANFIS is determined. Fig. 1 shows 2 inputs single-output architecture as an example. Fig. 2 shows its inference mechanism. This example includes two linguistic rules as follows:

Rule 1: If \(x \) is \(A_1 \) and \(y \) is \(B_1 \) then \(z_1 = p_1 x + q_1 y + r_1 \)

Rule 2: If \(x \) is \(A_2 \) and \(y \) is \(B_2 \) then \(z_2 = p_2 x + q_2 y + r_2 \)

where \(p_1, p_2, q_1, q_2, r_1, \) and \(r_2 \), are linear parameters whereas \(A_1, A_2, B_1, \) and \(B_2 \) are nonlinear and called membership functions. The final output of ANFIS is formed by using following Eq. (1):
\[Z = \frac{w_1 z_1 + w_2 z_2}{w_1 + w_2} \] (1)

In this sample ANFIS architecture the learning parameters including \(p_1, p_2, q_1, q_2, r_1, r_2 \) and \(A_1, A_2, B_1, B_2 \) should be adjusted. This adjustment is done by using input-target examples, error backpropagation and LMSE algorithm. In Sugeno model, the subtractive clustering method can be applied [30-34]. More description can be found in [28-29] and [30-33].

Fig. 1. Two inputs single-output architecture of ANFIS [31-34]

Fig. 2. Fuzzy reasoning of ANFIS presented in Fig. 1 [31-34]

3. THE PROPOSED FUZZY SENSITIVITY ANALYZER

In this section, we propose a novel method based on ANFIS to identify the most sensitive factors affecting price and demand.

In contrast to mathematical methods, proposed methods named fuzzy SA (FSA) consider the behavioral similarity of variables. FSA is based on the behaviour learning and can extract the most affecting independent parameters from input variables.

Let \(EV \) be the set of economic parameters under consideration (Tables 1 and 2).

\[EV_i = \{\text{Inf}_i, \text{Int}_i, \text{Opl}_i, \text{Gol}_i, \text{Sil}_i, \text{Dji}_i, \text{Din}_i\} \] (2)

where \(i \) is index of sample number. If a variable such as \(\text{Int} \) is removed from \(EV \), then we have a new set likes \(EV_{\text{-Int},i} \) that is as follows

\[EV_{\text{-Int},i} = \{\text{Inf}_i, \text{Opl}_i, \text{Gol}_i, \text{Sil}_i, \text{Dji}_i, \text{Din}_i\} \] (3)

By using this definition, the proposed FSA is as follows;
Algorithm 1. Fuzzy sensitivity analyzer

Inputs: a trained ANFIS model, EV_i

Output: Sensitivity Values of EV_i elements

The adjustable weights: AMFIS linear and non-linear weights.

- For j = each variable of EV
 - For $i = 1$... # of samples
 - Train ANFIS using $EV_{j,i}$ and Target(i)
 - Output(i) = ANFIS($EV_{j,i}$)
 - Error(i) = Output(i) - Target(i)
 - $ErrorEV(j) = \text{sum}(Error)/\text{# of sample}$
 - For j = each variable of EV
 - Sensivity(j) = $ErrorEV(j)/\text{sum}(ErrorEV)$

In the algorithm, function $\text{sum}(x)$ returns the sum of values of the array x. In Algorithm 1, EV_i should be defined for every economic time series. Table 1 shows them and Table 2 provides more information about these economic variables. Thus the inputs and outputs of ANFIS for training in Algorithm 1 must be considered as presented in Table 1. For example, for demand SA, the inputs include Inf, Int, Opl, Gol, Sil, Dj, Din and Op at ith period and output of the model is Od (U.S. crude oil imports from OPEC) and Gd (Global gold demand).

Table 1. A set of parameters under consideration in Algorithm 1.

| Table 2. Economic variables under consideration [37], [38] |

4. Numerical Results

Oil and gold markets play critical roles in other large commodity markets and their SA are very important [38-43]. In this section we use oil and gold time series to assess the proposed FSA. According to the algorithm 1, the result of the FSA is dependent on the prediction results of ANFIS model on these time series. The prediction results of ANFIS for proce and demand functions of gold and oil are presented in Figs. 3-6 and the final result of FSA is presented in Fig. 7. The prediction results have been compared with an optimum ANN in Tables 3 and 4. According to the comparative results, ANFIS can provide more accurate prediction. In this experiment, the inputs and outputs of ANFIS is determined according to the Table 1. For example, in oil/gold demand prediction, inputs include Inf, Int, Opl, Gol, Sil, Dj, Din and Op at ith period, and the output of the model is Od (U.S. crude oil imports from OPEC) and Gd (Global gold
demand). Also two or more previous values of output can be considered as input variables. In Table 2, For oil demand learning, monthly datasets have been downloaded from http://tonto.eia.gov. And for gold demand learning, the quarterly datasets have been obtained from the source presented in Table 2. Fig. 3 is the curves of estimated values of oil demand versus monthly observations from 2002 till 2012 and in the steady state. A correlation \(\text{COR} = 0.22298 \) is obtained from the ANFIS model. Additionally results show that the \(\text{RMSE} = 181.9693 \pm 0 \) obtained from ANFIS simulation which is lower than \(236.6038 + 113.0307 \) obtained from ANN. Tables 3 and 4 summarize the comparative results.

The gold demand prediction results are shown in Figs. 4 and 5. Fig. 4 shows the observed and predicted demand and related error between 4th quarter of year 2001 and 4th quarter in year 2012. The \(\text{COR} = 0.78801 \) is obtained from ANFIS based model in steady state. In subtractive clustering we used here, \(\text{radii} = [0.5 0.5 0.5 0.5 0.5 0.5 0.5 .50 .49 0.5 0.5] \).

Fig. 3. Online predicted oil demand values (top) and related error (bottom) from start point in Sep. 2001 obtained using ANFIS.

Table 3. The average error, RMSE and correlation comparisons between optimum ANN and in demand function estimation.

Fig. 4. Online predicted gold demand values (top) and related error (bottom) from start point in Sep. 2001 obtained using ANFIS.

Fig. 5. Actual versus desired output of gold demand, between Q’4 2001 and Q’4 2012 obtained from ANFIS model.

Table 4 Comparative results of price prediction between ANN and ANFIS with proposed variables set.
Fig. 6. Predicted gold prices (top) and related error (bottom) from start point in Sep. 2001 obtained using ANFIS.

Fig. 6 shows the target and predicted gold price and related error obtained from proposed input variables presented in Table 2. Fig. 6 presents the results of prediction from the start point at Dec-2001. As illustrated in Fig. 6, last 24 months are used for testing the system. The predicted curve illustrated in Fig. 6, is divided into the three segments; the first is the training region that is between months [Sep-2001 Nov-2009]. And the second is the validating region that is between months (Nov-2009 Dec-2010) and the thirds is testing region where the prediction results are validated and it’s between [Dec-2010 Dec-2012]. Fig. 6 shows the target and predicted gold price and related error obtained from proposed input variables presented in Table 2. As illustrated in Table 2, in gold prediction, the best COR = 0.97211 is obtained from the model. According to the more experiments, if ANFIS does not apply the previous values of time series then the error is increased while the proposed input sets provide error = 255.4686±0 in gold forecasting that is much lower than 354.5491±95.17189 obtained from optimum ANN. According to the Student-t test, these results are statistically significant.

Fig. 7. Sensitivity analysis of economic variables obtained from the proposed FSA

To assess the proposed FSA, the trained ANFIS model with parameters provided in Table 1 is applied in Algorithm 1. Fig. 7 shows the final results of SA. The sensitivity value of a variable shows the relationship between the variable and output. For example, in oil price prediction, If the oil price has no relation with a variable like x, then the sensitivity(x) = 0, i.e. x does not affect directly on the oil price or it’s not independent and highly correlated with another input variable. The largest value of sensitivity shows that variable is most sensitive factor affecting oil prices.

The importance of parameters on the oil price, oil demand, gold price and gold demand are shown in Fig. 7. According to the Fig.7, the most effective parameters on the oil price are inflation rate and market index. Fig. 7 presents the sensitivity average and the confidence interval obtained from proposed FSA with various learning parameters such as number of rules in ANFIS. It’s obvious that according to the confidence interval, the results of market index and inflation rate were statistically significant. The results indicated in Fig. 7 are based on student’s t-test with 95% confidence. Fig. 7 shows that the sensitivity average 0.21 and
0.20 obtained from FSA for inflation rate and dollar index respectively. Furthermore, the highest sensitivity were obtained from inflation rate and dollar index in oil demand modeling. These results are statistically significant with respect to the OPEC oil production level, interest rate and silver price but it’s not statistically significant with respect to the gold price and oil price. Gold price model is highly dependent upon the silver price. So our model testifies the results reported by Yazdani et al. (2012) [9] about gold and silver dependency.

5. CONCLUSION

The FSA is proposed here to analyze the sensitivity of economic parameters (source code may be accessible from www.bitools.ir). The proposed FSA applies an ANFIS model in order to predict the economic time series. It has been shown that ANFIS is an appropriate model for senility analysis of price and demand. Furthermore, Numerical studies present the following conclusions. Firstly, according to the results of fuzzy SA, the importance of the inflation rate is higher than OPEC oil production level, market index, USD index, gold price, interest rate, silver Price in one month ahead prediction of oil price and demand. The proposed FSA indicates that oil price is highly dependent upon the inflation rate, dollar index and market index while OPEC production level and gold price have less impact. Secondly, in the gold price modeling, the highest sensitivity is obtained from silver price while demand for gold is more a function of market index and inflation rate. Demand for gold is more a function of market index and inflation rate. Some results, obtained here are new and some other confirmed the results of previous studies especially in dependency of gold and silver price. These results show the proposed learning-based method is highly reliable for testing on other applications. FSA shows a high performance in price and demand modeling and can be used in various applications such as sensitivity analysis of environmental models, in MADM, in renewable energy analysis, etc. Additionally, the excellent results of ANFIS in SA show it can be a proper model for similarity analysis methods [44-47] such as those for economic data.

However the proposed FSA has some weakness. It cannot directly measure the interactions between the parameters. These interactions are very important and can lead to a global SA result. For future developments, factorial design [4] and interactions of parameters with each other should be considered. The factorial design enables the measurement of interactions between each different group of factors [4] and these interactions are very important and may affect the SA results.

Acknowledgement
The authors would like to thank the reviewers for their feedback on the paper.
REFERENCES

1. Kilian, Lutz, and Robert J. Vigfusson. "Do oil prices help forecast US real GDP? The role of nonlinearity and asymmetries." *Journal of Business & Economic Statistics* 31.1 (2013): 78-93.

2. Iooss, Bertrand, and P. Lemaître. "A review on global sensitivity analysis methods In: Uncertainty Management in Simulation-Optimization of Complex Systems." (2015): 101-122.

3. Sarrazin, Fanny, Francesca Pianosi, and Thorsten Wagener. "Global Sensitivity Analysis of environmental models: Convergence and validation." *Environmental Modelling & Software* 79 (2016): 135-152.

4. Kamiński, Bogumił, Michał Jakubczyk, and Przemysław Szufel. "A framework for sensitivity analysis of decision trees." *Central European journal of operations research* 26.1 (2018): 135-159.

5. Soberanis, MA Escalante, et al. "A sensitivity analysis to determine technical and economic feasibility of energy storage systems implementation: A flow battery case study." *Renewable energy* 115 (2018): 547-557.

6. Borgonovo, Emanuele, and Elmar Plischke. "Sensitivity analysis: a review of recent advances." *European Journal of Operational Research* 248.3 (2016): 869-887.

7. Antucheviciene, Jurgita, et al. "Solving civil engineering problems by means of fuzzy and stochastic MCDM methods: current state and future research." *Mathematical Problems in Engineering* 2015 (2015).

8. Kala, Z., & Valeš, J. (2017). Sensitivity assessment and lateral-torsional buckling design of I-beams using solid finite elements. Journal of Constructional Steel Research, 139, 110-122.

9. Yazdani-Chamzini, Abdolreza, et al. "Forecasting gold price changes by using adaptive network fuzzy inference system." *Journal of Business Economics and Management* 13.5 (2012): 994-1010.

10. Valdivia, Stephanie, and Arturo Morales. "Determinants of the Index of Prices and Quotations on the Mexican Stock Exchange: Sensitivity Analysis Based on Artificial Neural Networks." (2016).

11. Harenberg, D., Marelli, S., Sudret, B., & Winschel, V. (2017). Uncertainty Quantification and Global Sensitivity Analysis for Economic Models.

12. Ghosh, Nilanjan, and Somnath Hazra. "Sensitivity Analysis with Calibration of Natural Resource Variables under Climate Change: Comparing Computable General Equilibrium (CGE) and Econometric Frameworks." *Natural Resources Management: Concepts, Methodologies, Tools, and Applications*. IGI Global, 2017. 681-691.

13. Ferretti, Federico, Andrea Saltelli, and Stefano Tarantola. "Trends in sensitivity analysis practice in the last decade." *Science of the Total Environment* 568 (2016): 666-670.

14. Rahmati, Omid, et al. "Evaluating the influence of geo-environmental factors on gully erosion in a semi-arid region of Iran: An integrated framework." *Science of the Total Environment* 579 (2017): 913-927.
15. Kala, Zdeněk, and Jan Valeš. "Global sensitivity analysis of lateral-torsional buckling resistance based on finite element simulations." Engineering Structures 134 (2017): 37-47.
16. Bams, Dennis, et al. "Does oil and gold price uncertainty matter for the stock market?." Journal of Empirical Finance 44 (2017): 270-285.
17. Wang, Le, et al. "Picture fuzzy normalized projection-based VIKOR method for the risk evaluation of construction project." Applied Soft Computing 64 (2018): 216-226.
18. Tigdemir, M., and S. F. Kalyoncuoglu. "Fatigue life prediction of the modified asphalt mixtures with ANFIS modeling." Scientia Iranica. Transaction A, Civil Engineering 24.1 (2017): 72.
19. Hasheminejad, Mohammad Mehdi, Nasrin Sohankar, and Alborz Hajiannia. "Predicting the collapsibility potential of unsaturated soils using adaptive neural fuzzy inference system and particle swarm optimization." Scientia Iranica 25.6 (2018): 2980-2996.
20. Asvar, Fariba, Arash Shirmohammadi Faradonbeh, and Kazem Barkhordari. "Predicting potential of controlled blasting-induced liquefaction using neural networks and neuro-fuzzy system." Scientia Iranica 25.2 (2018): 617-631.
21. Cengiz ÖZEL; Alper TOPSAKAL, Comparison of ANFIS and ANN for Estimation of Thermal Conductivity Coefficients of Construction Materials Volume 22, Issue 6, November and December 2015, Page 2001-2011
22. Nazlioglu, Saban, N. Alper Gormus, and Uğur Soytas. "Oil prices and real estate investment trusts (REITs): Gradual-shift causality and volatility transmission analysis." Energy Economics 60 (2016): 168-175.
23. Silvennoinen, Annastiina, and Susan Thorp. "Crude oil and agricultural futures: an analysis of correlation dynamics." Journal of Futures Markets 36.6 (2016): 522-544.
24. Jobling, Andrew, and Tooraj Jamasb. "Price volatility and demand for oil: A comparative analysis of developed and developing countries." Economic Analysis and Policy 53 (2017): 96-113.
25. Liu, Zuoming, Thomas G. Johnson, and Ira Altman. "The moderating role of biomass availability in biopower co-firing—A sensitivity analysis." Journal of cleaner production 135 (2016): 523-532.
26. Tse, Ka-Kui, Tin-Tai Chow, and Yan Su. "Performance evaluation and economic analysis of a full scale water-based photovoltaic/thermal (PV/T) system in an office building." Energy and Buildings 122 (2016): 42-52.
27. Chang, Angela Y., et al. "Economics in “Global Health 2035”: a sensitivity analysis of the value of a life year estimates." Journal of global health 7.1 (2017).
28. Liu, Heping. "Cost estimation and sensitivity analysis on cost factors: a case study on Taylor Kriging, regression and artificial neural networks." The Engineering Economist 55.3 (2010): 201-224.
29. Thawornwong, Suraphan, David Enke, and Cihan Dagli. "Neural networks as a decision maker for stock trading: a technical analysis approach." International Journal of Smart Engineering System Design 5.4 (2003): 313-325.
30. Ince, Huseyin, and Theodore B. Trafalis. "Short term forecasting with support vector machines and application to stock price prediction." *International Journal of General Systems* 37.6 (2008): 677-687.

31. Ince, Huseyin, and Theodore B. Trafalis. "Kernel principal component analysis and support vector machines for stock price prediction." *IEEE Transactions* 39.6 (2007): 629-637.

32. Jang, J-SR. "ANFIS: adaptive-network-based fuzzy inference system." *IEEE transactions on systems, man, and cybernetics* 23.3 (1993): 665-685.

33. Jang, Jyh-Shing Roger, Chuen-Tsai Sun, and Eiji Mizutani. "Neuro-fuzzy and soft computing-a computational approach to learning and machine intelligence [Book Review]." *IEEE Transactions on automatic control* 42.10 (1997): 1482-1484.

34. Chiu, Stephen L. "Fuzzy model identification based on cluster estimation." *Journal of Intelligent & fuzzy systems* 2.3 (1994): 267-278.

35. Yager, Ronald R., and Dimitar P. Filev. "Generation of fuzzy rules by mountain clustering." *Journal of Intelligent & Fuzzy Systems* 2.3 (1994): 209-219.

36. Lotfi, E. and Karimi, M.R., OPEC Oil Price Prediction Using ANFIS. Journal of mathematics and computer science 10 (2014), 286-296.

37. Lotfi, Ehsan, M. Darini, and M. R. Karimi-T. "Cost estimation using ANFIS." *The Engineering Economist* 61.2 (2016): 144-154.

38. Lotfi, E., & Karimi, M. R.. An Economic Dataset for OPEC Oil Economic Functions. *Majlesi Journal of Energy Management*, (2014), 3(3).

39. Narayan, Paresh Kumar, Seema Narayan, and Xinwei Zheng. "Gold and oil futures markets: Are markets efficient?." *Applied energy* 87.10 (2010): 3299-3303.

40. Melvin, Michael, and Jahangir Sultan. "South African political unrest, oil prices, and the time varying risk premium in the gold futures market." *The Journal of Futures Markets* (1986-1998) 10.2 (1990): 103.

41. Zhang, Yue-Jun, and Yi-Ming Wei. "The crude oil market and the gold market: Evidence for cointegration, causality and price discovery." *Resources Policy* 35.3 (2010): 168-177.

42. Sujit, K. S., and B. Rajesh Kumar. "Study on dynamic relationship among gold price, oil price, exchange rate and stock market returns." *International journal of applied business and economic research* 9.2 (2011): 145-165.

43. Smith, Alice E., and Anthony K. Mason. "Cost estimation predictive modeling: Regression versus neural network." *The Engineering Economist* 42.2 (1997): 137-161.

44. Ghermandi, A., Sheela, A. M., & Justus, J. (2016). Integrating similarity analysis and ecosystem service value transfer: Results from a tropical coastal wetland in India. Ecosystem services, 22, 73-82.

45. Kubo, M., Sato, H., Yamaguchi, A., & Aruka, Y. (2017). Similarity Analysis of Survey on Employment Trends in Japan. In Intelligent and Evolutionary Systems (pp. 211-221). Springer, Cham.
46. Ciampi, Giovanni, Antonio Rosato, and Sergio Sibilio. "Thermo-economic sensitivity analysis by dynamic simulations of a small Italian solar district heating system with a seasonal borehole thermal energy storage." *Energy* 143 (2018): 757-771.

47. Ghorabaee, Mehdi Keshavarz, et al. "A new hybrid fuzzy MCDM approach for evaluation of construction equipment with sustainability considerations." *Archives of Civil and Mechanical Engineering* 18.1 (2018): 32-49

Ehsan Lotfi is faculty member of department of computer engineering, Azad University, Torbat-e-Jam branch, Torbat-e-Jam, Iran. He received the B.Sc. degree in Computer Engineering (2006), from Ferdowsi University of Mashhad, M.Sc. degree in artificial intelligence (2009) from Azad University, Mashhad Branch and his PhD in artificial intelligence from Science and Research campus of Azad University. From 2006-to-2008 he was research assistant in Khorasan Research Center for Advance Technology of Iran. His research interest includes cognitive sciences, computational and artificial intelligence, soft computing and their applications. He has published 12 peer-reviewed articles and a national patent in his research programs.

Abbas Khosravi is Associate Professor of Systems Modelling and Soft Computing in Department of Inst Intelligent Sys Res & Inn, Deakin University, Australia. 2010-present includes his research fellow in Centre for Intelligent Systems Research, Deakin University, Australia. He received his PhD from Deakin University in 2010. His research interests include Neural networks -Fuzzy logic systems, Computational intelligence, Evolutionary optimization, Uncertainty quantification and Application of AI-based methods for decision-making.

Saeedeh Babrzadeh received the B.S.(2013) in IT engineering from elmi karbordi univ.,shiraz,iran, the M.S.(2016) from payam-e noor univ.,asalooyeh,iran. Her research interest includes target tracking, ecommercece, multi media system.

List of Figures

Fig. 1. Two inputs single-output architecture of ANFIS [31-34]

Fig. 2. Fuzzy reasoning of ANFIS presented in Fig. 1 [31-34]

Fig. 3. Online predicted oil demand values (top) and related error (bottom) from start point in Sep. 2001 obtained using ANFIS.

Fig. 4. Online predicted gold demand values (top) and related error (bottom) from start point in Sep. 2001 (Q’4 2001) obtained using ANFIS.

Fig. 5 Actual versus desired output of gold demand, between Q’4 2001 and Q’4 2012 obtained from ANFIS model

Fig. 6. Predicted gold prices (top) and related error (bottom) from start point in Sep. 2001 obtained using ANFIS.
Fig. 7. Sensitivity analysis of economic variables obtained from the proposed FSA

List of Tables

Table 1. A set of parameters under consideration in Algorithm 1.

Table 2. Economic variables under consideration [37, 38].

Table 3. The average error, RMSE and correlation comparisons between optimum ANN and in demand function estimation.

Table 4 Comparative results of price prediction between ANN and ANFIS with proposed variables set.

Tables and Figures

Fig. 1. Two inputs single-output architecture of ANFIS [31-34]
Fig. 2. Fuzzy reasoning of ANFIS presented in Fig. 1 [31-34]
Fig. 3. Online predicted oil demand values (top) and related error (bottom) from start point in Sep. 2001 obtained using ANFIS.
Fig. 4. Online predicted gold demand values (top) and related error (bottom) from start point in Sep. 2001 (Q4' 2001) obtained using ANFIS.
Fig. 5 Actual versus desired output of gold demand, between Q'4 2001 and Q'4 2012 obtained from ANFIS model
Fig. 6. Predicted gold prices (top) and related error (bottom) from start point in Sep. 2001 obtained using ANFIS.
Fig. 7. Sensitivity analysis of economic variables obtained from the proposed FSA
Table 1. A set of parameters under consideration in Algorithm 1.

Application	Target	EV_i
Oil price	Op$_i$	Inf$_i$, Int$_i$, Opl$_i$, Gp$_i$, Sil$_i$, Dji$_i$, Din$_i$
Gold price	Gp$_i$	Inf$_i$, Int$_i$, Opl$_i$, Gp$_i$, Sil$_i$, Dji$_i$, Din$_i$, Op$_i$
Oil demand function	Od$_i$	Inf$_i$, Int$_i$, Opl$_i$, Gp$_i$, Sil$_i$, Dji$_i$, Din$_i$, Op$_i$
Gold demand function	Gd$_i$	Inf$_i$, Int$_i$, Opl$_i$, Gp$_i$, Sil$_i$, Dji$_i$, Din$_i$, Op$_i$

Table 2. Economic variables under consideration [9], [11]

Input Variable	Unit	Symbol	Source
1) US Inflation rate	-	Inf$_i$	http://inflationdata.com
2) Interest rate	-	Int$_i$	http://www.EconStats.com
3) OPEC oil production level	Thousand Barrels Per Day	Opl$_i$	http://tonto.eia.gov
4) Gold Price	$/ounce	Gp$_i$	http://www.gold.org
5) Silver Price	$/ounce	Sil$_i$	https://www.silverinstitute.org
6) Market Index	$	Dji$_i$	http://finance.yahoo.com
7) U.S. Dollar Index	-	Din$_i$	http://research.stlouisfed.org
8) Oil price (USA F.O.B. cost of OPEC)	Dollars per Barrel	Op$_i$	http://tonto.eia.gov
9) U.S. crude oil imports from OPEC	Thousand Barrels	Od$_i$	http://tonto.eia.gov
10) Global gold demand	Tones	Gd$_i$	http://www.gold.org
Table 3. The average error, RMSE and correlation comparisons between optimum ANN and in demand function estimation

Time series	Model	RMSE	RMSE	Correlation
Oil Demand	ANFIS	34614±0	23757±0	0.22298
	Optimum ANN	31082.11±1860.656	23982.22±8781.989	0.20403
Gold Demand	ANFIS	13.4329±0	181.9693±0	0.78801
	Optimum ANN	146.81±44.54263	236.6038±113.0307	0.32314

Table 4 Comparative results of price prediction between ANN and ANFIS with proposed variables set

Time series	Model	TrainingSet RMSE	TestSet RMSE	Best Correlation
Gold	ANFIS	131.7283±0	255.4686±0	0.97211
	Optimum ANN	205.4037±229.2613	354.5491±95.17189	0.96091