Outcome Analysis and Prognostic Factors in Patients of Glioblastoma Multiforme: An Indonesian Single Institution Experience

Sudibio Sudibio,1,2,4* Jellica Anton,1,2 Handoko Handoko,1,2,3 Tiara Bunga Mayang Permata,1,2,3 Henry Kodrat1,2,3,4,5,6,7, Endang Nuryadi1,2,4,5,7, Henry Riyanto Sofyan1,2,4,5,7, Rahmad Mulyadi1,2,4,5,7, Renindra Ananda Aman1,2,4,5,7, Soehartati Gondhowiardjo1,2,4,5,7

1Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; 2Department of Radiation Oncology, Dr. Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia; 3Department of Neurology, Dr. Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia; 4Department of Radiology, Dr. Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia; 5Department of Neurosurgery, Dr. Cipto Mangunkusumo National General Hospital, Jakarta, Indonesia

Abstract

AIM: This study was done to assess the survival of patients with glioblastoma multiforme (GBM) and to identify factors that can affect patient survival.

MATERIALS AND METHODS: From January 2015 to December 2019, 55 patients with histopathologically confirmed GBM and received adjuvant radiation/chemoradiation in our department were retrospectively analyzed.

RESULTS: The median overall survival (OS) for entire cohort was 13 months and 1-year OS and 2-year OS rate were 52.7% and 3.6% with the mean follow-up period was 12 months. In univariate analysis, age (≤50 years vs. >50 years, p = 0.02), performance status (≥90 vs. 70–80 vs. <70, p < 0.001), radiation therapy oncology group recursive partitioning analysis (RTOG-RPA) classification (Class III vs. Class IV vs. Class V-VI, p < 0.001), parietal lobes tumor site (vs. others, p = 0.02), residual tumor volume (≤20.4 cm³ vs. >20.4 cm³, p = 0.001), and time to initiate adjuvant therapy (<4 weeks vs. 4-6 weeks vs. >6 weeks, p = 0.01) were significantly affect OS. In multivariate analysis, RTOG-RPA classification and involvement of parietal lobes were independent prognostic factors for OS.

CONCLUSIONS: RTOG-RPA classification that consisted of age and performance status is an independent prognostic factor for the clinical outcome of GBM. Besides this well-known factor, we also identified the involvement of parietal lobe gives a strong negative influence on survival of GBM patients.

Introduction

Glioblastoma multiforme (GBM) is an aggressive primary brain tumor with devastatingly poor prognosis and account for approximately 12–15% of all primary intracranial neoplasm and 60–75% of glial tumors [1, 2]. GBM usually present in sixth or seventh decades of life and most commonly found in male than female [1]. Standard treatment for GBM is based on multidisciplinary approach employing resection followed by radiotherapy with or without concurrent and adjuvant chemotherapy with Temozolomide (TMZ) [3]. Phase III randomized trial by Stupp et al. showed that concomitant and adjuvant TMZ in addition to standard post-operative radiotherapy relatively improved the survival, increasing the median survival to 12–15 months, even though this results is still considered to be dismal [4, 5]. In a developing country like Indonesia, not all of the patients with GBM received concomitant chemoradiotherapy and adjuvant TMZ. Sometimes radiotherapy alone is still the only adjuvant treatment option in these patients. The aim of this retrospective study was to present and discuss clinical features, various treatment schedules and identify independent prognostic factors that significantly predict survival in GBM from our institute and to compare the results with literature.

Materials and Methods

Medical records from 2015 to 2019 were retrospectively reviewed and patients with newly diagnosed and pathologically confirmed GBM were identified. The following data were collected from the medical records of patients: (1) Demographic profile (age and gender); (2) Karnofsky performance Status (KPS); (3) radiation therapy oncology group recursive partitioning analysis (RTOG-RPA) classification; (4) site of tumor location (frontal, parietal, temporal, occipital, and others); (5) age and gender; (6) Karnofsky performance Status (KPS); (7) radiation therapy oncology group recursive partitioning analysis (RTOG-RPA) classification; (8) tumor volume; (9) time to initiate adjuvant therapy; (10) adjuvant chemotherapy; (11) surgery site and extent; (12) age and gender; (13) Karnofsky performance Status (KPS); (14) radiation therapy oncology group recursive partitioning analysis (RTOG-RPA) classification; (15) tumor volume; (16) time to initiate adjuvant therapy; (17) adjuvant chemotherapy; (18) surgery site and extent; and (19) survival data. The data were analyzed using the statistical software package SPSS (Statistical Package for the Social Sciences) version 22.0 for Windows. The survival data were analyzed by Kaplan-Meier survival analysis and the survival curves were compared using the log-rank test. The factors that were significant in univariate analysis were then included in multivariate analysis using the Cox proportional hazards model.
partitioning analysis (RTOG-RPA) Classification; (3) site of tumor; (4) treatment regimen; and (5) overall survival (OS), which was mainly collected when patients visited the outpatient clinic or during phone interview with patients and/or relatives. OS was calculated from date of diagnosis to date of death or date of last contact. Patients who were alive at the end of study were censored from analysis. Statistical analysis was done using SPSS 23.0. OS was calculated using Kaplan-Meier method, and prognostic factors were determined by log rank test. Cox proportional hazards model was used for multivariate analysis. p < 0.05 indicates statistical significance. This study was approved by the ethics committee of the Faculty of Medicine, University of Indonesia, Jakarta, Indonesia. This study was exempted from acquisition of written consent for publication from participants by the institutional ethics committee because of its retrospective and observational nature.

Results

The retrospective review identified 55 patients with newly diagnosed GBM who met the inclusion criteria. The characteristics of the patients are summarized in Table 1. Standard treatment included surgery and post-operative radiotherapy 59.4 Gy in 33 fractions or 60 Gy in 30 fractions with or without concurrent and/or adjuvant TMZ. The median OS for entire cohort was 13 months and 1-year OS and 2-year OS rate were 52.7% and 3.6% as shown in the figure 1 with the mean follow-up period was 12 months.

Table 2: Prognostic factors of OS in the univariate analysis

Characteristics	Median OS (months)	p-value
Age ≤50	14	0.02
>50	12	
Gender		
Male	13.3	0.73
Female	12	
KPS ≥90	16	<0.001
70–80	13	
<70	8.1	
RTOG-RPA III	18	<0.001
IV	13	
V–VI	6.7	
Site of tumor		
Frontal (vs. Others)	13	0.78
Temporal (vs. Others)	14	0.6
Parietal (vs. Others)	11	0.02
Occipital (vs. Others)	14	0.84
Basal Ganglia (vs. Others)	6.7	0.22
Corpus Callosum (vs. Others)	11	0.29
Brainstem (vs. Others)	4	0.34
Extend of resection		
Gross tumor removal (GTR)	15	0.14
Subtotal tumor removal (STR)	12	
Biopsy	1.9	
Unknown	13	
RTV		
MGMT	18	0.001
MGMT Methylated	15	0.57
Unmethylated	12	
Unknown	13	

Prognostic factors

The impact of various patient and treatment related factors on OS is described in Table 2. In univariate analysis using log rank test, patients with age >50, KPS <90, RTOG-RPA V–VI, biopsy, residual tumor volume (RTV) >20.4 cm³, time to initiate adjuvant therapy (TTI) <4 weeks and parietal lobe tumors had worse survival as compared to others. In multivariate analysis using cox proportional hazards RTOG-RPA and parietal lobe tumors was found to be independent prognostic factors for OS as shown in Table 3. A sequential Kaplan-Meier survival curve analyses revealed that the cutoff values for RTV were ≤20.4 cm³ (HR: 0.30, 95% CI 0.14–0.65, p: 0.001). Receiver operating characteristic analysis was performed to internally validate the RTV cutoff values as well as to know its predictive accuracies, the maximum Youden index was 0.51 and referred to a cutoff volume of ≤20.4 cm³. The area under the curve for RTV was 0.67 (95% CI 0.42–0.90).
Table 3: Prognostic of OS in multivariate analysis

Characteristics	Hazard Ratio	95% CI	p-value
RTOG-RPA	3.06	1.75–5.33	<0.001
Parietal lobe tumors	2.63	1.16–6.94	0.02
Basal Ganglia (vs. Others)	1.57	0.57–4.26	0.37
Extend of resection	0.84	0.57–1.23	0.57
RTV	2.21	0.89–5.49	0.08
Adjuvant therapy	1.11	0.85–1.52	0.36
TTI	0.71	0.46–1.09	0.11

Discussion

The prognosis of patients with GBM has not showed much improvement over the last few decades. The established standard treatment for GBM consists of maximal safe resection followed by radiotherapy or without concurrent and adjuvant chemotherapy with TMZ [3].

The baseline characteristics of our patients were similar to other reported series with male-female ratio of 1.3:1 and the median age of patients in this study is 45 years old. This difference result might be due to the lower life expectancy of the Indonesian population compared to the population of the United States [6].

There is no difference in survival between men and women. The findings in this study were in line with several studies [7], [8], [9]. However, several other studies showed better survival in women compared to men [10], [11], [12]. An in vivo study on rats with GBM expressing estrogen receptor-β (ERβ) demonstrated an increase of cytotoxic effect compared to GBM without ERβ expression. Overexpression of ERβ will reduce the proliferation of cancer cells and suppress the growth of GBM and also improve the response of therapy. ERβ can also modulate DNA repair genes and ATM signaling [13]. However, there is a lack of strong scientific evidence that theoretically could explain the effect of the reproductive hormone on GBM.

Age and performance status is the most important variables affecting patient's survival in GBM. Historically, a set of prognosis classes were developed by Curran et al. using RPA model and a better prognosis was seen in patients who were <50 years old and had KPS of 90–100. Li et al. validated and simplified the RPA classification and a better prognosis was shown in Class III with median survival of 16.3 months and 6.7 months in Class V + VI [14], [15]. Interestingly, similar results were also seen in our study, even though not all patients underwent chemoradiation in our study.

The current GBM studies consistently stated that the older the age of the patient when diagnosed with GBM, the poorer the survival [7], [9], [14], [16], [17]. Besides the different biological nature of GBM in older patients, poorer survival may be caused by a reduction to tolerate medication in older patients [18]. Poorer KPS often associated with the patient’s inability in tolerating an overly aggressive therapy and increased morbidity [19]. There are limited prospective studies on GBM patients with poor KPS due to poor survival and the presumption that the benefit did not outweigh the cost, morbidity, and treatment received.

This study found that RTV >20.4 cm³ showed poorer survival, although it did not reach significance in multivariate analysis. Some studies also showed that RTV independently affects survival [20], [21], [22], [23], [24], [25]. The cutoff value of RTV in each study tends to vary. However, the lower the volume, the better the survival of GBM patients. Yong et al. showed that RTV >30 cm³ tended to have faster tumor regrowth (odds ratio 4.22 with p = 0.02) [26]. Grabowski et al. and Woo et al. stated that RTV was more predictor than EOR. Although total tumor resection is an independent prognostic factor of survival in several studies, it is not possible done in most cases. Therefore, reducing RTV to the smallest extent is very recommended.

TTI within 4–6 weeks provides better survival than TTI <4 weeks. However, the difference in survival between TTI 4 and 6 weeks and TTI >6 weeks was not statistically significant. Several studies showed that TTI 4–6 weeks affect survival
[27], [28], [29]. However, several studies also did not find a difference in survival regard to TTI [30], [31], [32], [33]. There are some possible explanations for the worse outcomes seen in patients with shorter TTI. The possible detrimental effect of initiating radiation immediately within 2 weeks after surgery would be caused greater cerebral tissue damage in animal study [34]. Moreover, the brain is more edematous after surgery which contributes to hypoxia and reducing the radiosensitivity of tumor. Furthermore, the surgical cavity also has not really shrunk within the first 4 weeks after surgery, leading to larger radiation field, and increased normal tissue damage. There is also a possibility that early initiation radiation before the patient fully recovery from surgery could result in impaired healing and increased radiation toxicity [28], [35], [36], [37].

This study showed no statistically difference in survival from the administration of adjuvant therapy. However, there is a trend toward better survival in the group that received concurrent chemoradiation and adjuvant TMZ. Several randomized showed the benefit of survival in patient who received adjuvant concurrent chemoradiation and adjuvant TMZ compared to patients who received adjuvant radiation only [5], [38], [39], [40]. A randomized study also showed no difference of survival in patients who received concurrent chemoradiation without adjuvant TMZ compared to patients who received adjuvant radiation only [41]. Recent research in GBM treatment focuses on novel targeted molecular therapies, and in particular, those targeting the epidermal growth factor receptor (EGFR) pathway. Substantial evidence supports a causal role for aberrant EGFR signaling in cancer pathogenesis and resistance in glioma. Nimotuzumab, a humanized anti-EGFR monoclonal antibody has proven efficacy for various tumor types. However, in several studies conducted in patients with GBM, no survival benefit was seen in the addition of nimotuzumab concurrently with standard therapy [42], [43], [44], [45].

O6-methylguanine-DNA methyl-transferase (MGMT) methylation status was not examined in all patients; only 22 patients had data on MGMT methylation status (because the MGMT test was not covered by national insurance). The survival was not statistically difference in this study. However, there was a trend of better survival in methylated MGMT. As much as 87.5% of patients with methylated MGMT in this study received adjuvant concurrent chemoradiation with TMZ, followed by adjuvant TMZ. Methylation of MGMT promoter caused epigenetic silencing and reduced the mechanism of DNA repair which will increase the effectivity of received TMZ and radiation. Systematic review and meta-analyses revealed better survival in GBM patients with MGMT promoter methylation compared to GBM patients without MGMT promoter methylation [46], [47].

In this study, tumors involving the parietal lobe showed statistically significant poorer survival, while tumors involving the basal ganglia, corpus callosum, and brainstem also showed poorer survivability, although statistically insignificant. A number of studies have included tumor location in their data analysis. In a study by Kumar et al., found poorer survivability in GBM involving the parietal lobe, corpus callosum, and brainstem. The study by Awad et al., Tian et al., and Wee et al. also reported poor survival in patients with GBM located in the periventricular, brainstem, corpus callosum, and basal ganglia [9], [11], [16], [48]. However, several other studies showed that tumor location does not affect survival [49], [50], [51].

Conclusions

This is a valuable retrospective study with a full scale analysis. RTOG-RPA classification that consisted of age and performance status is an independent prognostic factor for the clinical outcome of GBM. Besides this well-known factor, we also identified the involvement of parietal lobe gives a strong negative influence on survival of GBM patients.

References

1. Ostrom QT, Cioffi G, Gittleman H, Patil N, Waite K, Kruchko C, et al. CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2012-2016. Neuro Oncol. 2019;21 Suppl 5:v1-100. https://doi.org/10.1093/neuonc/noz150
PMid:31675094

2. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization classification of tumors of the central nervous system: A summary. Acta Neuropathol. 2016;131(6):803-20. https://doi.org/10.1007/s00401-016-1545-1
PMid:27157931

3. National Comprehensive Cancer Network. Central Nervous System Cancers V3.2019. 2019. p. 123. Available from: https://www.nccn.org/professionals/physician_gls/pdf/cns.pdf [Last accessed on 2021 Feb 24].

4. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987-96. https://doi.org/10.1056/NEJMoa043330
PMid:15758009

5. Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised Phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10(5):459-66. https://doi.org/10.1016/S1470-2045(09)70025-7
PMid:19268895
6. World Health Organization. Life Expectancy and Healthy life Expectancy Data by Country. Geneva: World Health Organization; 2016. Available from: https://www.apps.who.int/gho/data/view.main.sdg2016exv?lang=en [Last accessed on 2021 Feb 24].

7. Ahn S, Park JS, Song JH, Jeun SS, Hong YK. Effect of a time delay for concomitant chemoradiation for newly diagnosed glioblastoma: A single-institution study with subgroup analysis according to the extent of tumor resection. World Neurosurg. 2020;133:e640-5. https://doi.org/10.1016/j.wneu.2019.09.122

PMId:31568907

8. Nizamutdinov D, Stock EM, Dandashi JA, Vasquez EA, Mao Y, Dayawan SA, et al. Prognostication of survival outcomes in patients diagnosed with glioblastoma. World Neurosurg. 2018;109:e67-74. https://doi.org/10.1016/j.wneu.2017.09.10

PMId:28951270

9. Warheit M, Schürmeyer G, Niederle B, et al. Impact of interim progression during the surgery-to-radiotherapy interval and its predictors in glioblastoma treated with temozolomide-based radiochemotherapy. J Neurooncol. 2017;134(1):169-75. https://doi.org/10.1007/s11060-017-2505-x

PMId:28547592

10. Blumenthal DT, Won M, Mehta MP, Gilbert MR, Brown PD, Bokstein F, et al. Short delay in initiation of radiotherapy for patients with glioblastoma—effect of concurrent chemotheraphy: A secondary analysis from the NCOR oncology/radiation therapy oncology group database. Neuro Oncol. 2018;20(7):966-74. https://doi.org/10.1093/neuonc/noy017

PMId:32662493

11. Tian M, Ma W, Chen Y, Yu Y, Zhu D, Shi J, et al. Impact of gender on the survival of patients with glioblastoma. Biosci Rep. 2018;8(6):BSR20180752. https://doi.org/10.1042/BSR20180752

PMId:30305382

12. Tseng MY, Tseng JH. Survival analysis for adult glioma in England and Wales. J Formos Med Assoc. 2005;104(5):341-8.

PMId:15959601

13. Zhou M, Sareddy GR, Li M, Liu J, Luo Y, Venkata PP, et al. Estrogen receptor beta enhances chemotherapy response of GBM cells by down regulating DNA damage response pathways. Sci Rep. 2019;9(1):6124. https://doi.org/10.1038/s41598-019-42313-8

PMId:30992459

14. Curran WJ, Scott CB, Horton J, Nelson JS, Weinstein AS, Fischbach AJ, et al. Recursive partitioning analysis of prognostic factors in three radiation therapy oncology group malignant glioma trials. J Natl Cancer Inst. 1993;85(9):704-10. https://doi.org/10.1093/jnci/85.9.704

PMId:8478956

15. Li J, Wang M, Won M, Shaw EG, Coughlin C, Curran WJ, et al. Validation and Simplification of the radiation therapy oncology group recursive partitioning analysis classification for glioblastoma. Int J Radiat Oncol Biol Phys. 2011;81(3):623-30. https://doi.org/10.1016/j.ijrobp.2010.06.012

PMId:20888136

16. Kumar N, Kumar P, Angurana S, Khosla D, Mukherjee K, Aggarwal R, et al. Evaluation of outcome and prognostic factors in patients of glioblastoma multiforme: A single institution experience. J Neurosci Rural Pract. 2013;4 Suppl 1:S46-55. https://doi.org/10.4103/0976-3147.116455

PMId:24174800

17. Lamborn KR, Chang SM, Prados MD. Prognostic factors for survival of patients with glioblastoma: Recursive partitioning analysis. Neuro Oncol. 2004;6(3):227-35. https://doi.org/10.1215/15258651703000620

PMId:15279715

18. Kita D, Ciermik IF, Vaccarella S, Franceschi S, Kleihues P, Lööf UM, et al. Age as a predictive factor in glioblastomas: Population-based study. Neuroepidemiology. 2009;33(1):17-22. https://doi.org/10.1159/000210107

PMId:19325245

19. Tabchi S, Kassouf E, Florescu M, Tehfe M, Blais N. Factors influencing treatment selection and survival in advanced lung cancer. Curr Oncol. 2017;24(2):e115-22. https://doi.org/10.3747/co.24.3355

PMId:28490934

20. Bette S, Barz M, Wiestler B, Huber T, Gerhardt J, Buchmann N, et al. Prognostic value of tumor volume in glioblastoma patients: Size also matters for patients with incomplete resection. Ann Surg Oncol. 2018;25(2):558-64. https://doi.org/10.1245/s10434-017-6253-0

PMId:29159745

21. Chaichana KL, Jusua-Torres I, Navarro-Ramirez R, Raza SM, Pascual-Gallego M, Ibrahim A, et al. Establishing percent resection and residual volume thresholds affecting survival and recurrence for patients with newly diagnosed intracranial glioblastoma. Neuro Oncol. 2014;16(1):113-22. https://doi.org/10.1093/neuonc/not137

PMId:24265550

22. Grabowski MM, Recinos PF, Nowacki AS, Schroeder JL, Angelov L, Barnett GH, et al. Residual tumor volume versus extent of resection: Predictors of survival after surgery for glioblastoma. J Neurosurg. 2014;121(5):1115-23. https://doi.org/10.3171/2014.7.JNS13244

PMId:25192475

23. Roeltz F, Strohmaier D, Jabbabi R, Kraeutle R, Egger K, Coenen VA, et al. Residual tumor volume as best outcome predictor in low grade glioma—a nine-years near-randomized survey of surgery vs. biopsy. Sci Rep. 2016;6:32286. https://doi.org/10.1038/srep32286

PMId:27574036

24. Woo PY, Ho JM, Tse TP, Lam SW, Mak CH, Chan DT, et al. Determining a cut-off residual tumor volume threshold for patients with newly diagnosed glioblastoma treated with temozolomide chemoradiotherapy: A multicenter cohort study. J Clin Neurosci. 2019;63:134-41. https://doi.org/10.1016/j.jocn.2019.01.022

PMId:30712777

25. Ellingson BM, Abrey LE, Nelson JS, Angelov L, Barnett GH, et al. Residual tumor volume versus extent of resection for patients with newly diagnosed glioblastoma: A secondary analysis of the RTOG 0817 trial. J Neurosurg. 2014;121(1):111-15. https://doi.org/10.3171/2014.7.JNS13244

PMId:25061868

26. Han SJ, Rutledge WC, Molinaro AM, Chang SM, Clarke JL, Prados MD, et al. The effect of timing of concurrent chemoradiation in patients with newly diagnosed glioblastoma. Neurosurgery. 2015;77(2):248-53; discussion 253. https://doi.org/10.1277/JNEU.0000000000000766

PMId:25856113

27. Blumenthal DT, Won M, Mehta MP, Curran WJ, Souhami L, Michalski JM, et al. Short delay in initiation of radiotherapy may not affect outcome of patients with glioblastoma: A secondary
analysis from the radiation therapy oncology group database. J Clin Oncol. 2009;27(5):733-9. https://doi.org/10.1200/JCO.2008.18.9035
PMid:19114694
29. Buszek SM, Al Feghali KA, Elhalawany H, Chevli N, Allen PK, Chung C. Optimal timing of radiation therapy following gross total or subtotal resection of glioblastoma: A real-world assessment using the national cancer database. Sci Rep. 2020;10(1):4926. https://doi.org/10.1038/s41598-020-61701-z
PMid:32188907
30. Lai R, Henshman DL, Doan T, Neugut AI. The timing of cranial radiation in elderly patients with newly diagnosed glioblastoma multiforme. Neuro Oncol. 2010;12(2):190-8. https://doi.org/10.1093/neuonc/nop004
PMid:20150386
31. Loureiro LV, de Barros Pontes L, Callegaro-Filho D, de Oliveira Koch L, Weltman E, da Silva Victor E, et al. Waiting time to radiotherapy as a prognostic factor for glioblastoma patients in a scenario of medical disparities. Arq Neuropsiquiatr. 2015;73(2):104-10. https://doi.org/10.1590/0004-282X20140202
PMid:25742578
32. Louvel G, Metellus P, Noel G, Peeters S, Guyotat J, Duntze J, et al. Delays in diagnosis and treatment of glioblastoma patients in France. Eur J Cancer. 2015;51(4):522-32. https://doi.org/10.1016/j.ejca.2014.12.019
PMid:25616467
33. Randolph DM 2nd, McTye ER, Paulsson AK, Holmes JA, Hinson WH, Lesser GJ, et al. Impact of timing of radiotherapy in patients with newly diagnosed glioblastoma. Clin Neurol Neurosurg. 2016;151:73-8. https://doi.org/10.1016/j.clineuro.2016.10.012
PMid:27816029
34. Peker S, Abacioglu U, Sun I, Yukseel M, Pamir MN. Irradiation after surgically induced brain injury in the rat: Timing in relation to severity of radiation damage. J Neurooncol. 2004;70(1):17-21. https://doi.org/10.1023/b:neuo.0000040820.76643.0a
PMid:15527102
35. Champ CE, Siglin J, Mishra MV, Shen X, Werner-Wasik M, Andrews DW, et al. Evaluating changes in radiation treatment volumes from post-operative to same-day planning MRI in high-grade gliomas. Radiat Oncol. 2012;7(1):220. https://doi.org/10.1186/1748-717X-7-220
PMid:23259933
36. Patel DM, Agarwal N, Tomei KL, Hansberry DR, Goldstein IM. Optimal timing of whole-brain radiation therapy following craniotomy for cerebral malignancies. World Neurosurg. 2015;84(2):412-9. https://doi.org/10.1016/j.wneu.2015.03.052
PMid:25839399
37. Patel RA, Lock D, Helenowski IB, Chandler JP, Sachdev S, Tate MC, et al. Post-surgical cavity evolution after brain metastasis resection: How soon should postoperative radiosurgery follow? World Neurosurg. 2018;110:e310-4. https://doi.org/10.1016/j.wneu.2017.10.159
PMid:29122731
38. Joo JD, Chang JH, Kim JH, Hong YK, Kim YH, Kim CY. Temozolomide during and after radiotherapy for newly diagnosed glioblastoma: A prospective multicenter study of Korean patients. J Korean Neurosurg Soc. 2012;52(2):92-7. https://doi.org/10.3340/jkns.2012.52.2.92
PMid:23091665
39. Karacetin D, Okten B, Yalcin B, Incekara O. Concomitant temozolomide and radiotherapy versus radiotherapy alone for treatment of newly diagnosed glioblastoma multiforme. J BUON. 2011;16(1):133-7.
PMid:21674864
40. Szczepanek D, Marchel A, Moskal M, Krupa M, Kunert P, Trojanowski J. Efficacy of concomitant and adjuvant temozolomide in glioblastoma treatment. A multicentre randomized study. Neurol Neurochir Pol. 2013;47(2):101-8. https://doi.org/10.5114/nihp.2013.34398
PMid:23649997
41. Kocher M, Frommolt P, Borberg SK, Ruhl U, Steingräber M, Niewald M, et al. Randomized study of postoperative radiotherapy and simultaneous temozolomide without adjuvant chemotherapy for glioblastoma. Strahlenther Onkol. 2008;184(11):572-8. https://doi.org/10.1007/s00066-008-1897-0
PMid:19016015
42. Gondhowiardjo S, Muthalib A, Khotimah S, Rachman A. Nimotuzumab combined with radiotherapy reduces primary tumor and nodal volume in advanced undifferentiated nasopharyngeal carcinoma. Asia Pac J Clin Oncol. 2009;5(3):175-80. https://doi.org/10.1111/j.1743-7563.2009.01227.x
43. Du XJ, Li XM, Cai LB, Sun JC, Wang SY, Wang XC, et al. Efficacy and safety of nimotuzumab in addition to radiotherapy and temozolomide for cerebral glioblastoma: A Phase II multicenter clinical trial. J Cancer. 2019;10(14):3214-23. https://doi.org/10.7150/jca.30123
PMid:31289592
44. Westphal M, Heese O, Steinbach JP, Schnell O, Schackert G, Mehdorn M, et al. A randomised, open label Phase III trial with nimotuzumab, an anti-epidermal growth factor receptor monoclonal antibody in the treatment of newly diagnosed adult glioblastoma. Eur J Cancer. 2015;51(4):522-32. https://doi.org/10.1016/j.ejca.2014.12.019
PMid:25616647
45. Wang Y, Pan L, Sheng XF, Chen S, Dai JZ. Nimotuzumab, a humanized monoclonal antibody specific for the EGFR, in combination with temozolomide and radiotherapy for newly diagnosed glioblastoma multiforme: First results in Chinese patients. Asia Pac J Clin Oncol. 2016;12(1):e23-9. https://doi.org/10.1111/ajco.12166
PMid:24571331
46. Binabaj MM, Bahrami A, ShahidSales S, Joodi M, Joudi Mashhad M, Hassanian SM, et al. The prognostic value of MGMT promoter methylation in glioblastoma: A meta-analysis of clinical trials. J Cell Physiol. 2018;233(1):378-86. https://doi.org/10.1002/jcp.25896
PMid:28266716
47. Chen Y, Hu F, Zhou Y, Chen W, Shao H, Zhang Y. MGMT promoter methylation and glioblastoma prognosis: A systematic review and meta-analysis. Arch Med Res. 2013;44(4):281-90. https://doi.org/10.1016/j.arcmed.2013.04.004
PMid:23608672
48. Awad AW, Karsy M, Sanai N, Spetzler R, Zhang Y, Xu Y, et al. Impact of removed tumor volume and location on patient outcome in glioblastoma. J Neurooncol. 2017;135(1):161-71. https://doi.org/10.1007/s11060-017-2562-1
PMid:28685405
49. Carr MT, Hochheimer CJ, Rock AK, Dincer A, Ravindra L, Zhang FL, et al. Comorbid medical conditions as predictors of overall survival in glioblastoma patients. Sci Rep. 2019;9(1):20018. https://doi.org/10.1038/s41598-019-56574-w
PMid:31882968
50. Carroll KT, Bryant AK, Hirshman B, Alattar AA, Joshi R, Gabel B, et al. Interaction between the contributions of tumor location, tumor grade, and patient age to the survival benefit associated with gross total resection. World Neurosurg. 2018;111:e790-8.
51. Ghosh M, Shubham S, Mandal K, Trivedi V, Chauhan R, Naseera S. Survival and prognostic factors for glioblastoma multiforme: Retrospective single-institutional study. Indian J Cancer. 2017;54(1):362-7. https://doi.org/10.4103/ijc.IJC_157_17 PMid:29199724