Cytotoxicity Studies of Functionalized Gold Nanoparticles Using Yeast Comet Assay

Saritha Suvarna1, Rajesha Nainy2, Sunil K C1 and Narayana Y*1

1Department of Studies in Physics, Mangalore University, Mangalagangotri, India
2Department of Physics, P.A College of Engineering, Mangalore, India

*Corresponding author: Narayana Y, Department of Studies in Physics, Mangalore University, India, Tel: +91 8242887363; E-mail: narayanay@yahoo.com

Received date: March 10, 2017, Accepted date: May 08, 2017, Published date: May 15, 2017

Abstract

In the present study gold nanoparticles and glucose capped gold nanoparticles are synthesized by chemical route method and characterized using UV-SPR, FTIR and TEM analysis. Single cell gel electrophoresis (SCGE) assay was used to study DNA damage. Studies show that glucose capped gold nanoparticles are less toxic as compared to gold nanoparticles at DNA level. Somewhat larger gold nanoparticle used to monitor endocytosis in log-phase S. cervisiae spheroplasts at 10 to 30 µM was not reported to cause growth inhibition. It shows that glucose capped gold nanoparticles are nontoxic to yeast strain D7. DNA damage was observed by using standard method called Yeast comet assay, which provides a very sensitive method for detecting strand breaks and repair kinetics in single cells. Studies showed that 5 µM-30 µM having very less sign of DNA damage in case of Glucose capped gold nanoparticles and it also shows toxic effect for without glucose capped gold nanoparticles. OTM for different concentration as shown in the image and OTM with respect to different concentration shows the DNA damage, these studies also correlated with survival studies.

Keywords: Gold nanoparticles; Glucose capped gold nanoparticles; Yeast Comet assay; DNA damage

Introduction

In recent years, most of the metal nanoparticles, particularly gold nanoparticles are very attractive from their property such as biomedical applications, therapeutics and diagnostics. Synthesis of nanoscale structures of inert metals like gold is of great interest for the current day researchers as gold possess certain physical properties, which are suitable for several biomedical applications. Thus gold nanoparticles (AuNPs) having unique physicochemical features show significant future promise in the fields of biomedical imaging and therapy [1-5]. Studies also lay special emphasis on the uniqueness of the gold nanoparticles for treatment of life threatening diseases like cancer [6]. Available reports show potential of gold nanoparticles as explored in different fields of biomedical application due to their easy availability. 

Studies showed that 5 µM-30 µM having very less sign of DNA damage in case of Glucose capped gold nanoparticles and it also shows toxic effect for without glucose capped gold nanoparticles. OTM for different concentration as shown in the image and OTM with respect to different concentration shows the DNA damage, these studies also correlated with survival studies.

Keywords: Gold nanoparticles; Glucose capped gold nanoparticles; Yeast Comet assay; DNA damage

Introduction

In recent years, most of the metal nanoparticles, particularly gold nanoparticles are very attractive from their property such as biomedical applications, therapeutics and diagnostics. Synthesis of nanoscale structures of inert metals like gold is of great interest for the current day researchers as gold possess certain physical properties, which are suitable for several biomedical applications. Thus gold nanoparticles (AuNPs) having unique physicochemical features show significant future promise in the fields of biomedical imaging and therapy [1-5]. Studies also lay special emphasis on the uniqueness of the gold nanoparticles for treatment of life threatening diseases like cancer [6]. Available reports show potential of gold nanoparticles as explored in different fields of biomedical application due to their easy availability. 

Studies showed that 5 µM-30 µM having very less sign of DNA damage in case of Glucose capped gold nanoparticles and it also shows toxic effect for without glucose capped gold nanoparticles. OTM for different concentration as shown in the image and OTM with respect to different concentration shows the DNA damage, these studies also correlated with survival studies.

Keywords: Gold nanoparticles; Glucose capped gold nanoparticles; Yeast Comet assay; DNA damage

Abstract

In the present study gold nanoparticles and glucose capped gold nanoparticles are synthesized by chemical route method and characterized using UV-SPR, FTIR and TEM analysis. Single cell gel electrophoresis (SCGE) assay was used to study DNA damage. Studies show that glucose capped gold nanoparticles are less toxic as compared to gold nanoparticles at DNA level. Somewhat larger gold nanoparticle used to monitor endocytosis in log-phase S. cervisiae spheroplasts at 10 to 30 µM was not reported to cause growth inhibition. It shows that glucose capped gold nanoparticles are nontoxic to yeast strain D7. DNA damage was observed by using standard method called Yeast comet assay, which provides a very sensitive method for detecting strand breaks and repair kinetics in single cells. Studies showed that 5 µM-30 µM having very less sign of DNA damage in case of Glucose capped gold nanoparticles and it also shows toxic effect for without glucose capped gold nanoparticles. OTM for different concentration as shown in the image and OTM with respect to different concentration shows the DNA damage, these studies also correlated with survival studies.

Keywords: Gold nanoparticles; Glucose capped gold nanoparticles; Yeast Comet assay; DNA damage

Abstract

In the present study gold nanoparticles and glucose capped gold nanoparticles are synthesized by chemical route method and characterized using UV-SPR, FTIR and TEM analysis. Single cell gel electrophoresis (SCGE) assay was used to study DNA damage. Studies show that glucose capped gold nanoparticles are less toxic as compared to gold nanoparticles at DNA level. Somewhat larger gold nanoparticle used to monitor endocytosis in log-phase S. cervisiae spheroplasts at 10 to 30 µM was not reported to cause growth inhibition. It shows that glucose capped gold nanoparticles are nontoxic to yeast strain D7. DNA damage was observed by using standard method called Yeast comet assay, which provides a very sensitive method for detecting strand breaks and repair kinetics in single cells. Studies showed that 5 µM-30 µM having very less sign of DNA damage in case of Glucose capped gold nanoparticles and it also shows toxic effect for without glucose capped gold nanoparticles. OTM for different concentration as shown in the image and OTM with respect to different concentration shows the DNA damage, these studies also correlated with survival studies.

Keywords: Gold nanoparticles; Glucose capped gold nanoparticles; Yeast Comet assay; DNA damage

Abstract

In the present study gold nanoparticles and glucose capped gold nanoparticles are synthesized by chemical route method and characterized using UV-SPR, FTIR and TEM analysis. Single cell gel electrophoresis (SCGE) assay was used to study DNA damage. Studies show that glucose capped gold nanoparticles are less toxic as compared to gold nanoparticles at DNA level. Somewhat larger gold nanoparticle used to monitor endocytosis in log-phase S. cervisiae spheroplasts at 10 to 30 µM was not reported to cause growth inhibition. It shows that glucose capped gold nanoparticles are nontoxic to yeast strain D7. DNA damage was observed by using standard method called Yeast comet assay, which provides a very sensitive method for detecting strand breaks and repair kinetics in single cells. Studies showed that 5 µM-30 µM having very less sign of DNA damage in case of Glucose capped gold nanoparticles and it also shows toxic effect for without glucose capped gold nanoparticles. OTM for different concentration as shown in the image and OTM with respect to different concentration shows the DNA damage, these studies also correlated with survival studies.

Keywords: Gold nanoparticles; Glucose capped gold nanoparticles; Yeast Comet assay; DNA damage

Abstract

In the present study gold nanoparticles and glucose capped gold nanoparticles are synthesized by chemical route method and characterized using UV-SPR, FTIR and TEM analysis. Single cell gel electrophoresis (SCGE) assay was used to study DNA damage. Studies show that glucose capped gold nanoparticles are less toxic as compared to gold nanoparticles at DNA level. Somewhat larger gold nanoparticle used to monitor endocytosis in log-phase S. cervisiae spheroplasts at 10 to 30 µM was not reported to cause growth inhibition. It shows that glucose capped gold nanoparticles are nontoxic to yeast strain D7. DNA damage was observed by using standard method called Yeast comet assay, which provides a very sensitive method for detecting strand breaks and repair kinetics in single cells. Studies showed that 5 µM-30 µM having very less sign of DNA damage in case of Glucose capped gold nanoparticles and it also shows toxic effect for without glucose capped gold nanoparticles. OTM for different concentration as shown in the image and OTM with respect to different concentration shows the DNA damage, these studies also correlated with survival studies.

Keywords: Gold nanoparticles; Glucose capped gold nanoparticles; Yeast Comet assay; DNA damage

Abstract

In the present study gold nanoparticles and glucose capped gold nanoparticles are synthesized by chemical route method and characterized using UV-SPR, FTIR and TEM analysis. Single cell gel electrophoresis (SCGE) assay was used to study DNA damage. Studies show that glucose capped gold nanoparticles are less toxic as compared to gold nanoparticles at DNA level. Somewhat larger gold nanoparticle used to monitor endocytosis in log-phase S. cervisiae spheroplasts at 10 to 30 µM was not reported to cause growth inhibition. It shows that glucose capped gold nanoparticles are nontoxic to yeast strain D7. DNA damage was observed by using standard method called Yeast comet assay, which provides a very sensitive method for detecting strand breaks and repair kinetics in single cells. Studies showed that 5 µM-30 µM having very less sign of DNA damage in case of Glucose capped gold nanoparticles and it also shows toxic effect for without glucose capped gold nanoparticles. OTM for different concentration as shown in the image and OTM with respect to different concentration shows the DNA damage, these studies also correlated with survival studies.

Keywords: Gold nanoparticles; Glucose capped gold nanoparticles; Yeast Comet assay; DNA damage

Abstract

In the present study gold nanoparticles and glucose capped gold nanoparticles are synthesized by chemical route method and characterized using UV-SPR, FTIR and TEM analysis. Single cell gel electrophoresis (SCGE) assay was used to study DNA damage. Studies show that glucose capped gold nanoparticles are less toxic as compared to gold nanoparticles at DNA level. Somewhat larger gold nanoparticle used to monitor endocytosis in log-phase S. cervisiae spheroplasts at 10 to 30 µM was not reported to cause growth inhibition. It shows that glucose capped gold nanoparticles are nontoxic to yeast strain D7. DNA damage was observed by using standard method called Yeast comet assay, which provides a very sensitive method for detecting strand breaks and repair kinetics in single cells. Studies showed that 5 µM-30 µM having very less sign of DNA damage in case of Glucose capped gold nanoparticles and it also shows toxic effect for without glucose capped gold nanoparticles. OTM for different concentration as shown in the image and OTM with respect to different concentration shows the DNA damage, these studies also correlated with survival studies.

Keywords: Gold nanoparticles; Glucose capped gold nanoparticles; Yeast Comet assay; DNA damage

Abstract

In the present study gold nanoparticles and glucose capped gold nanoparticles are synthesized by chemical route method and characterized using UV-SPR, FTIR and TEM analysis. Single cell gel electrophoresis (SCGE) assay was used to study DNA damage. Studies show that glucose capped gold nanoparticles are less toxic as compared to gold nanoparticles at DNA level. Somewhat larger gold nanoparticle used to monitor endocytosis in log-phase S. cervisiae spheroplasts at 10 to 30 µM was not reported to cause growth inhibition. It shows that glucose capped gold nanoparticles are nontoxic to yeast strain D7. DNA damage was observed by using standard method called Yeast comet assay, which provides a very sensitive method for detecting strand breaks and repair kinetics in single cells. Studies showed that 5 µM-30 µM having very less sign of DNA damage in case of Glucose capped gold nanoparticles and it also shows toxic effect for without glucose capped gold nanoparticles. OTM for different concentration as shown in the image and OTM with respect to different concentration shows the DNA damage, these studies also correlated with survival studies.

Keywords: Gold nanoparticles; Glucose capped gold nanoparticles; Yeast Comet assay; DNA damage
Materials and Methods

Chemicals

HAuCl₄·3H₂O (Sigma), β-D glucose, Sodium hydroxide, Agarose normal and low melting powder form, EDTA sodium salt, Tris base, Triton X – 100, Di methyl sulphoxide, Ethidium bromide, Sodium chloride, Methanol were procured from Alpha.

Synthesis of gold nanoparticles

Gold nanoparticles are synthesized by using citrate reduction method and Glucose-capped AuNPs were synthesized by chemical route method [18] using HAuCl₄·3H₂O and β-D-Glucose. The aqueous solution of 0.05M HAuCl₄·3H₂O was added to β-D-glucose (0.03M) and stirred for 30 minutes. Subsequently, 0.5 M sodium hydroxide (NaoH) was added for completing reduction of gold salt. This resulted in a red colored solution of Glu-AuNPs. β-D-glucose acted as both reducing as well as capping agent in the AuNp synthesis. Capping was confirmed by FTIR and TEM analysis.

Characterization of Glucose capped gold nanoparticles

Synthesis of glucose-capped gold nanoparticles and gold nanoparticles are observed by UV-visible absorption spectrometer (model HU-1090) which shows a surface plasma resonance(SPR) at a wavelength 540 nm FTIR analysis was carried out to study the elemental chemical bonding, and Transmission electronic microscopic (TEM) analysis shows dimension of gold nanoparticles.

Samples preparation

A mutant type diploid yeast strain, S. cerevisiae D7 was used for the present study. The single cell stationary-phase cultures were obtained by growing the cells in Yeast extract: Peptone: Dextrose (YEPD) (1:2:2%) medium for several generations in stationary phase to a density of approximately 3 x10⁶ cells/ml. Cells were washed thrice by centrifugation (2000 for 5 min) using double distilled water and re-suspended to a cell concentration of 1000 cells/ml (by counting in hemocytometer) in a polypropylene vial for treatment with gold nanoparticles and without capped gold nanoparticles for 1hr.

Survival assay

Treated and untreated samples were suitably diluted and plated in quadruplicate on YEPD agar medium. Plates were incubated for 2-3 days at 30°C in dark and normal atmospheric conditions and the colonies were counted. The data points in all figures in the survival results are the means from at least three independent experiments. The error bars in all figures indicate the standard error of the mean. The statistical analysis was carried out using origin 8.0 software.

Yeast comet assay

Yeast comet assay was performed by using Saccharomyces cerevisiae D7 strains. Five milliliters of YEPD (Yeast extract: Peptone : Dextrose) (1:2:2%) are inoculated with D7 strain and incubated overnight at 30°C, 200 rpm. At 1 x 10⁶ cells were harvested by centrifugation at 4°C, after washing, the pellet was re suspended in 10 ml ice-cold S buffer (1 M sorbitol, 25 mM KH₂PO₄, pH-6.5). Cells were distributed by aliquots containing 4 x 10⁶ cells and centrifuged at 4°C, 18000 rpm. These cells are treated with nanoparticles for 1 h in the concentration range of 5 µM-30 µM. The cells were re suspended in 80 µl of 1.5% (w/v) LMA (Low Melting Agarose) containing 2 mg/ml zymolyase 100 T at 35°C (LMA was previously melted with S buffer at 50°C, cooled to 35°C and zymolyase was added, mixed and maintained at 35°C until use). The suspension was transferred to a glass slide and covered immediately with the cover slip before solidification. Glass slides were incubated at 30°C for 60-90 min and cover slips were removed gently. All subsequent manipulations were done at 4°C. The toxic was removed by incubating the glass slides in S buffer for 5 mins and cells were lysed with lysis buffer (30 mM NaoH, 1 M NaCl, 0.05%, w/v, laurylsarcosine, 50 mM EDTA, 10 mM Tris-HCl, pH 10) for 20 min. After lysis, cells were washed three times with electrophoresis buffer (30 mM NaOH, 10 mM EDTA, 10 mM Tris-HCl, pH10) for 20 min. Glass slides were placed in an electrophoresis tank immersed in electrophoresis buffer and electrophoresis was done at 0.7 V/cm for 10 min. After electrophoresis cells were neutralized with incubation in 10 mM Tris-Hcl, pH 7.4 for 10 min and treated with 76% ethanol 10 min and, subsequently with 96% ethanol for 10 min. DNA was stained with 10 µg/ml ethidium bromide (10 µl), covering the area of the cells in the glass slide, without the cover slip, and overlaying with a new one and visualization was done immediately or after several days (slides were stored at 4°C). Observation of comets was done with a fluorescence microscope with 100x magnification. Comets were analyses using the Comet score software.

Gold nanoparticles are treated with Yeast strains: Yeast strain D7 was treated with different concentration of with and without capped gold nanoparticles of the range of 10 µM, 20 µM, 30 µM and 40 µM. D7 strains are treated with different concentration of nanoparticles for 1hr.

Result and Discussions

UV-Visible spectroscopy shows absorbance peak at 545 nm as shown in the Figure 1, FTIR spectrum shows the –OH stretching at 3332.5 cm⁻¹ due to the presence of glucose on the surface of gold nanoparticles (Figure 2).

![Figure 1: Shows the UV-absorbance spectrum of 545 nm Glu-capped gold nanoparticles.](image-url)
Figure 2: Shows the FTIR Spectrum of Glucose-capped gold nanoparticles.

Morphology of gold nanoparticles is analyzed from TEM analysis. It shows the triangular shape of the gold nanoparticles and also shows the size distribution plot as shown in Figures 3 and 4.

Figure 3: Shows the TEM image of glucose-capped gold nanoparticles: i) d spacing 0.236nm was calculated by using J-image software. ii) Shows the images of glucose-capped gold nanoparticles.

Figure 4: Shows that diameter of glucose-capped gold nanoparticles are 19.04 ± 1.13 nm.

Glucose capped gold nanoparticles are treated yeast strain D7 with different concentration in the range of 10 µM-30 µM. The increasing use of nanoparticles in industrial processes and commercial products has generated a need for systematic assessment of potential biological and environmental risks. A related but somewhat larger gold nanoparticle used to monitor endocytosis in log-phase S. cervisiae spheroplasts at 10 to 30 µM was not reported to cause growth inhibition Survival plot as shown in the Figure 5.

Figure 5: Shows OTM increases with increase in concentration of Glu-Au.
A related but somewhat larger gold nanoparticle used to monitor endocytosis in log-phase S. cervisiae spheroplasts at 10 to 30 µM was not reported to cause growth inhibition, from the graph it shows that 90% of the viability at concentration 10 µM and upon increasing the concentration to 30 µM, viability was reduced to 70 %. It shows that glucose capped gold nanoparticles are nontoxic to yeast strain D7. DNA damage was observed by using standard method called Yeast comet assay, OTM for different concentration as shown in the image and OTM with respect to different concentration shows the DNA damage. Correlation plot between OTM and Survival Fraction gives R2 value is about -0.99 as shown in the Figure 6. Results shows that gold nanoparticles are toxic as compare to glucose capped gold nanoparticles, Because of the metabolic properties (Figure 7).

Figure 6: Images shows DNA damage when treated with glucose capped gold nanoparticles in 100X resolution.

Figure 7: Images shows DNA damage captured using fluorescent microscopy using 100X resolution treated with citrate gold nanoparticles

Conclusion

Concluded that, Gold nanoparticles and Glucose capped gold nanoparticles are characterized by using UV, FTIR and TEM analysis. Yeast strain D7, are treated with different concentration of with and without capped gold nanoparticles, to check the DNA damage using Single-cell gel electrophoresis (yeast comet assay), which provides a very sensitive method for detecting strand breaks and repair kinetics in single cells. Studies showed that 5 µM-30 µM having very less sign of DNA damage in case of Glucose capped gold nanoparticles and it also shows toxic effect for without glucose capped gold nanoparticles.

Acknowledgment

The authors thankfully acknowledge Prof. P.V. Satyam for the use of HRTEM facility at Institute of Physics, Bhubaneswar, India. The authors also acknowledge use of the facilities at Microtron center, Mangalore University.

References

1. Pradeep T (2001) A Textbook of Nanoscience and Nanotechnology. Pub: Tata McGraw Hill Education Private Limited, USA.
2. Che H, Li XY (2012) In Integrated Biomaterials for Biomedical technology. Wiley 1184: 1-34.
3. Sanjay SS, Singh R, Tiwari A, Pandey AC (2012) In Intelligent Nanomaterials. APE (Edn) Wiley 978: 625-648.
4. Qingfeng Z, Nicolas L, Peter N, Hui W (2014) Porous Au Nanoparticles with tunable Plasmon resonances and intense field enhancements for single-particle SERS. J Phys Chem Lett 5: 370-374.
5. Pedro Pedrosa, Raquel Vinhas, Alexandra Fernandes, Pedro V Baptista (2015) Gold Nanotheranostics: Proof-of-concept or clinical tool? Nanomaterials 5: 853-887.
6. Jyothi M, Parth J, Pranali T, Khanh V, Baohong Y, et al. (2013) Nanomaterials for photo-based diagnostic and therapeutic applications. Theranostics 3: 152-166.
7. Carlo M, Dora B, Renzo V, Marzia B, Elena F, et al. (2013) One-step synthesis of star-like gold nanoparticles for surface enhanced Raman spectroscopy. Materials chemistry and Physics 143: 1215-1221.
8. Zhang X (2015) Gold Nanoparticles: Recent Advances in the Biomedical Applications. Cell Biochem Biophys 72: 771-775.
9. Hyangah C, Sangyeop L, Sang W, Hwan C, Jaebum C (2009) Highly Sensitive Immunoassay of Lung Cancer Marker Carcinoembryonic Antigen using Surface-Enhanced Raman Scattering of Hollow Gold nanospheres. Anal chem 81: 3029-3034.
10. Wang X, Yang DP, Huang P, Li M, Li C, et al. (2012) Hierarchically assembled Au micro spheres and sea-urchin-like architectures: formation mechanism and SERS study. Nanoscale 4:7766-7772.
11. Lanlan S, Dongxu Z, Meng D, Haifeng Z, Binghui Li (2013) One-step synthesis of shape-controllable Gold Nanoparticles and their application in surface-enhanced Raman scattering. J Mater Sci Technol 29: 613-618.
12. Mohammed S, Gowda D, Siddaramaiah H (2013) Gold nanoparticles, A paradigm shift in biomedical applications. Adv colloid inter sci 200: 44-58.
13. Chunyuuan S, Zhuyuan W, Ruhuo Z, Jing Y, Xueb T, et al. (2014) Highly sensitive immunoassay based on Raman reporter-labeled immune-Au aggregates and SERS-active immune substrate. J Biosci 25: 826-831.
14. Tatsuo M, Yuhei F, Tetsuya M (2015) Synthesis of gold nanoparticles using various amino acids. J Colloid Inter Sci 447: 254-257.
15. Ji L, Ahmed C, Steven JC, Charles P, Tijana R, et al. (2010) A novel functional CT contrast agent for molecular imaging of cancer. Phys Med Biol 55: 4389-4397.
16. Wilson R, Xiaojiang Z, Linghong G, Andrew S, Xiuying H, et al. (2009) Gold nanoparticle sensitize radiotherapy of Prostate cancer cells by regulation of the cell cycle. Nanotechnology 9: 9.
17. Chenxia H, Martin N, Daniel Y, Steven C, Iie C (2015) Treating cancer stem cells and cancer metastasis using glucose-coated gold nanoparticles. Int J Nanomed 10: 2065-2077.
18. Jun cheng L, Gaowen Q, Poo varthinhodyiyil R, Yukata R (2006) Facile “Green” Synthesis, characterization, and catalytic Function of β-D-glucose Stabilized Au Nanocrystals. A European Journal 12: 2131-2138.
19. Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Diss Farad Sol 11: 55-75.

20. Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, et al. (2000) Single Cell Gel/Comet assay: Guidelines for in vitro and invivo genetic toxicology testing. EnviroMol mutagenss 35:206-201.

21. Jette R, Kristian S, Klara J (2009) Comet assay on tetraploid yeast cells. Mutation Research 673: 53-58.

22. George M, Ivailo M, Boyka A (2002) Application of the single cell gel electrophoresis on yeast cells. Mutation Research 513: 69-74.

23. Ekaterina P, Radostina A, George M (2014) Application of the yeast comet assay in testing of food additives for genotoxicity. Fd Sci Technolo 59: 510-517.

24. Anna L, Beata M, Wnek M (2014) Assessment of Yeast Chromosome comet assay. Fung gens biol 63: 9-16.

25. Saritha Suvarna, Ujjal Das, Sunil K C, Snehasis Mishra, Sudarshan M, et al. (2017) Synthesis of novel glucose capped gold nanoparticles are better candidate for theranostic. PLOS ONE.