Higher dimensional Thompson groups have subgroups with infinitely many relative ends

Motoko Kato

Abstract

The Thompson group V is a subgroup of the homeomorphism group of the Cantor set C. Brin [3] defined higher dimensional Thompson groups nV as generalizations of V. For each n, nV is a subgroup of the homeomorphism group of C^n. We prove that the number of ends of nV is equal to 1, and there is a subgroup of nV such that the relative number of ends is ∞. This is a generalization of the corresponding result of Farley [8], who studied the Thompson group V. As a corollary, nV has the Haagerup property and is not a Kähler group.

1 Introduction

Higher dimensional Thompson groups nV were introduced by Brin in [3] as generalizations of the Thompson group V. The Thompson group V is an infinite simple finitely presented group, which is described as a subgroup of the homeomorphism group of the Cantor set C. Basic facts about V are found in a paper by Cannon, Floyd and Parry [6].

Brin first studied the case of $n = 2$ in detail, and showed that V and $2V$ are not isomorphic ([3]), $2V$ is simple ([3]) and $2V$ is finitely presented ([3]). These properties also hold true for general nV. The simplicity of nV was shown by Brin later in [5]. Bleak and Lanoue showed n_1V and n_2V are isomorphic if and only if $n_1 = n_2$ in [2]. Hennig and Matucci gave a finite presentation for each nV ([10]).

In this paper we prove that for each n, the number of ends of nV is equal to 1 and there is a subgroup of nV such that the relative number of ends is ∞. We also show that nV has the Haagerup property and does not have the structure of a Kähler group. These are properties related to the number of relative ends of the group. These theorems are the generalizations of the corresponding results of Farley [8], who studied V.

Section 2 contains a brief summary of the definition and properties of the higher dimensional Thompson group. We have compiled some well-known facts on the number of ends in Section 3.1. We will look more closely at the relative number of ends in Section 3.2. Sections 4 and 5 are devoted to the proof of main theorems.
The author wishes to thank her adviser, Takuya Sakasai for his support and insightful discussion throughout the process of writing this paper. The author acknowledges Professor Koji Fujiwara for conversations and advice. The author acknowledges Professor Matthew G. Brin for suggesting related problems. The author acknowledges Professor Daniel S. Farley for helpful information on higher dimensional Thompson groups. The author wishes to thank Dr. Tomohiko Ishida for several helpful comments. Finally, the author would like to mention that this work was supported by the Program for Leading Graduate Schools, MEXT, Japan.

2 Higher dimensional Thompson groups nV

In this section, we give the definition of higher dimensional Thompson groups according to Brin’s paper [3]. The symbol I denotes $[0,1)$ throughout this paper.

An n-dimensional rectangle is defined inductively as follows. First, I^n is a rectangle.

If $R = [a_1, b_1] \times \cdots \times [a_i, b_i] \times \cdots \times [a_n, b_n]$ is a rectangle, then for all $i \in \{1, \ldots, n\}$, the “i-th left half” and “the i-th right half” defined by

$$R_{l,i} = [a_1, b_1] \times \cdots \times [a_i, (a_i + b_i)/2] \times \cdots \times [a_n, b_n] \quad (2.1)$$

$$R_{r,i} = [a_1, b_1] \times \cdots \times [(a_i + b_i)/2, b_i] \times \cdots \times [a_n, b_n] \quad (2.2)$$

are again rectangles.

Throughout this paper, I_l denotes $[0, 1/2) \times I^{n-1}$. Similarly, I_r denotes $[1/2, 1) \times I^{n-1}$.

Let $R = [a_1, b_1] \times \cdots \times [a_i, b_i] \times \cdots \times [a_n, b_n]$ be a rectangle. A corner of R is a point in $\text{cl}(R)$, whose i-th coordinate is either a_i or b_i. Here $\text{cl}(R)$ denotes the closure of R in \mathbb{R}^n. An n-dimensional pattern is a finite set of n-dimensional rectangles, with pairwise disjoint, non-empty interiors and whose union is I^n. A numbered pattern is a pattern with a one-to-one correspondence to $\{0, 1, \ldots, r - 1\}$ where r is the number of rectangles in the pattern.

From now on, we will identify n-dimensional rectangle with a subset of C^n and use the common symbol. First we identify I^n and C^n. I denotes
both \([0, 1]\) and \(C\). Let \(R\) be a rectangle which is identified with a subset of \(C^n\),

\[
R' = C^n \cap [a'_1, b'_1] \times \cdots \times [a'_i, b'_i] \times \cdots \times [a'_n, b'_n].
\]
(2.3)

Define rectangles \(R_{l,i}\) and \(R_{r,i}\) in the same way as we obtained (2.1) and (2.2). These rectangles are identified respectively with the “\(i\)-th left third” and the “\(i\)-th right third” of \(R'\), which is defined by

\[
C^n \cap [a'_1, b'_1] \times \cdots \times [a'_i, (2a' + b'_i)/3] \times \cdots \times [a'_n, b'_n],
\]
(2.4)

\[
C^n \cap [a'_1, b'_1] \times \cdots \times [a'_i, (a' + 2b'_i)/3] \times \cdots \times [a'_n, b'_n].
\]
(2.5)

We proceed by induction. In the same manner, every pattern describes a division of \(C^n\).

We will construct a self-homeomorphism of \(C^n\) from a pair of numbered patterns with the same number of rectangles. Let \(P = \{P_i\}_{0 \leq i \leq r-1}\) and \(Q = \{Q_i\}_{0 \leq i \leq r-1}\) be numbered patterns. We define \(g(P, Q) : I^n \to I^n\) which takes each \(P_i\) onto \(Q_i\) affinely so as to preserve the orientation. Namely, the restriction of \(g(P, Q)\) to each \(P_i\) has the form \((x_1, \ldots, x_n) \mapsto (a_1 + 3^{j_1}x_1, \ldots, a_n + 3^{j_n}x_n)\) for some integers \(j_1, \ldots, j_n\).

With the former identification of rectangles with subsets of \(C^n\), above construction defines a self-homeomorphism of \(C^n\). We again write \(g(P, Q)\) for this homeomorphism.

When \(n = 2\), we illustrate \(g(P, Q)\) as follows. First we draw \(P\) and \(Q\) as divisions of \(I^2\). Next we add an arrow from \(P\) to \(Q\), which indicates the domain and the range.
The n-dimensional Thompson group nV is the set of self-homeomorphisms of C^n of the form $g(P,Q)$. Every element of nV is identified with a partially affine, partially orientation preserving bijection from I^n to itself.

Next is an important property which will be used in later discussion.

Theorem 2.1 (Brin [5]). For all $n \in \mathbb{N}$, nV is simple.

The following fact does not appear in the rest of this paper, but it is important to justify studying nV for general n aside from the well discussed case, $n = 1$.

Theorem 2.2 (Bleak and Lanoue [2]). n_1V and n_2V are isomorphic if and only if $n_1 = n_2$.

3 Ends of groups

Let Γ be a path-connected locally finite CW complex. For a compact subset K, $\|\Gamma - K\|$ denotes the number of unbounded connected components of $\Gamma - K$. The number of ends of Γ, $e(\Gamma)$, is defined to be the supremum of $\|\Gamma - K\|$ taken over all the compact subsets.

When Γ is a graph, we equip Γ with graph metric. $B(m)$ denotes a ball of radius m in Γ, based at some fixed vertex. For simplicity, we ignore the dependence of $B(m)$ on the base point in notation.

Throughout this section, G denotes a finitely generated group and S denotes a finite generating set of G. The Cayley graph $\Gamma_{G,S}$ is a graph whose vertex set is G, and there is an oriented edge from $g \in G$ to $h \in G$ if some $s \in S$ satisfies $g \cdot s = h$. G acts freely on $\Gamma_{G,S}$ from the left.

3.1 The number of ends

The number of ends of G, $e(G)$, is the number of ends of $\Gamma_{G,S}$.

Theorem 3.1 (cf. Geoghegan [9, Corollary 13.5.12]). Let Γ be a path-connected locally finite CW complex on which G acts freely. Further suppose that the quotient space Γ/G is a finite CW-complex. Then $e(\Gamma) = e(G)$.

Proposition 3.2. (1) $e(G)$ does not depend on the choice of S.

(2) (The Freudenthal-Hopf Theorem) $e(G)$ is 0, 1, 2 or ∞.

(3) $e(G) = 0$ if and only if G is finite.

(4) $e(G) = 2$ if and only if G has an infinite cyclic subgroup of finite index.

The following result, Stallings’ theorem, provides a group-theoretical characterization of the case where $e(G) \geq 2$.

4
Theorem 3.3 (Stallings [15], Bergman [1]). \(e(G) \geq 2 \) if and only if \(G \) has a structure of an amalgamated product or an HNN-extension on some finite subgroup.

In the light of this theorem, we can characterize the case of \(e(G) = 1 \) in terms of group actions on trees. We say that \(G \) has property \(FA \) if every simplicial action of \(G \) on a simplicial tree without edge-inversions has a fixed point. Here, a fixed point means \(x \in T \) such that \(g(x) = x \) for every \(g \in G \).

Theorem 3.4 (Serre [14]). If \(e(G) \geq 2 \), \(G \) does not have property \(FA \).

3.2 The relative number of ends

Let \(H \) be a subgroup of \(G \). \(H \) acts freely on \(\Gamma_{G,S} \), since \(G \) does. The relative number of ends \(e(G, H) \) is the number of ends of a quotient graph \(H \backslash \Gamma_{G,S} \).

Let \(\Gamma \) be a path-connected CW complex. The symmetric difference of two sets \(A \) and \(B \), denoted by \(A \Delta B \), is defined to be \((A \cup B) - (A \cap B) \).

Lemma 3.5 (cf. Meier [11, Lemmas 11.30, 11.31]). Suppose that \(G \) is infinite and acts freely on a path-connected locally finite graph \(\Gamma \) with 2 ends. Let \(m \) be a number such that \(\Gamma - B(m) \) has two unbounded connected components, \(\Gamma^+ \) and \(\Gamma^- \). Let \(X \) be the vertex set of \(\Gamma^+ \).

(1) For all \(g \in G \), either \(gX \Delta X \) or its complement is finite.

(2) \(H := \{ g \in G \mid |gX \Delta X| < \infty \} \) is a subgroup of \(G \) with index at most two.

Lemma 3.6 (cf. Geoghegan [9, Theorem 13.5.9, Exercise 7 on page 308]). Suppose that \(G \) is infinite and acts freely on a path-connected locally finite graph \(\Gamma \). If \(e(\Gamma) = 2 \) then \(e(G) = 2 \).

Proof. It is enough to show that \(\Gamma/G \) is a finite graph. The symbols \(m, \Gamma^+, \Gamma^- \) and \(X \) are the same as in Lemma 3.5.

We first show that there is an element of \(G \) with infinite order. By Lemma 3.5, there is an infinite subgroup \(G' \) whose element \(g' \) makes \(g'X \Delta X \) finite. \(G' \) also acts on \(\Gamma \) freely. Since \(\Gamma \) is locally finite and \(G' \) is infinite, there is some \(g \in G' \) such that \(g(B(m+1)) \cap B(m+1) = \emptyset \) and \(g(B(m+1)) \subset \Gamma^+ \).

We next claim that \(g(\text{cl}(\Gamma^+)) \) is contained in \(\Gamma^+ \). Suppose that this were false. We can take \(x \in \text{cl}(\Gamma^+) \) such that \(g(x) \in \Gamma^- \cup B(m) \). Since \(g(B(m+1)) \subset \Gamma^+ \), this \(x \) is in \(\Gamma^+ \). Let \(\omega : [0, \infty) \to \Gamma \) be an isometry which satisfies \(\omega(0) = x \) and \(\omega([0, \infty)) \subset \Gamma^+ \). Since \(\omega([0, \infty)) \) does not meet \(B(m) \), \(g \cdot \omega([0, \infty)) \) does not meet \(g(B(m)) \). Let \(\tau : [0, \infty) \to \Gamma \) be another isometry which satisfies \(\tau(0) = g(x) \), \(\tau([0, \infty)) \subset \Gamma^- \cup B(m) \), and \(\tau([t, \infty)) \subset \Gamma^- \) for some \(t > 0 \). By definition, \(\omega \) and \(\tau \) define the opposite ends, \(\Gamma^+ \) and \(\Gamma^- \) respectively. We have assumed that \(gX \Delta X \) is finite, which implies that \(g \)
fixes two ends. Therefore, \(g(\omega) \) and \(\tau \) define the opposite ends while both do not meet \(g(K) \). This proves that \(g(\omega) \cap \tau = \emptyset \), contradiction.

Hence \(g(\Gamma^+) \subseteq \Gamma^+ \), \(g^i(\Gamma^+) \neq \Gamma^+ \) for all \(i \neq 0 \). This shows that \(g \) is an element of infinite order.

Finally, we prove that there is a finite subgraph \(L \) of \(\Gamma \) such that \(\{g^j(L)\}_{j \in \mathbb{Z}} \) covers \(\Gamma \). Let \(L \) be the closure of \(\Gamma - (\Gamma^- \cup g(\Gamma^+)) \). Since the vertex set of \(L \) is included in \(g(X\Delta X) \), \(L \) is finite. For any \(y \in \Gamma \), there is the greatest integer \(l(y) \) such that \(y \in g^{l(y)}(B(m) \cup \Gamma^+) \). This \(y \) is included in \(g^{l(y)}(L) \). Therefore, \(\bigcup_{j \in \mathbb{Z}} g^j(L) = \Gamma \).

The quotient of \(\Gamma \) by \(G \) is included in \(L \), which is finite. Applying Theorem 3.1, we obtain \(e(G) = 2 \). \(\square \)

Proposition 3.7 (cf. Geoghegan [9, Theorem 13.5.21, Proposition 10.1.12]). Let \(H \) be a subgroup of \(G \).

1. If \(H \) has infinite index in its normalizer \(N_G(H) = \{ g \in G \mid g^{-1}Hg = H \} \), then \(e(G, H) = 1, 2 \) or \(\infty \).

2. Further suppose that \(e(G, H) = 2 \). Then the quotient group \(N_G(H)/H \) is virtually infinite cyclic.

Proof. The group \(N_G(H)/H \) acts freely on the quotient graph \(H \setminus \Gamma_{G,S} \) from the right. By Theorem 3.1, \(e(G, H) = 0, 1, 2 \) or \(\infty \). Since \([N_G(H) : H] \) is infinite, (1) is proved. We now suppose that \(e(G, H) = 2 \). By Lemma 3.6, we conclude that \(N_G(H)/H \) is finitely generated and has two ends. \(\square \)

The following result will be needed in the later section.

Suppose \(G \) acts on a set. A subset \(X \) is said to be almost invariant if the symmetric difference \(gX\Delta X \) is finite for any \(g \in G \).

Theorem 3.8 (Sageev [13, Theorem 2.3]). Let \(H \) be a subgroup of \(G \). \(G \) acts on the set of left (or right) cosets from the the left (or right).

\(e(G, H) \geq 2 \) if and only if there is a subset \(X \subset G/H \) (or \(H \setminus G \)) such that both \(X \) and its complement \(X^c \) are infinite, and \(X \) is almost invariant.

Proof. We discuss the case where \(G \) acts on \(H \setminus G \) from the right. Let \(d \) and \(d_H \) be distances on \(\Gamma_{G,S} \) and \(H \setminus \Gamma_{G,S} \) respectively. First, suppose that \(e(G, H) \geq 2 \). Let \(m \) be a number such that \(\Gamma_{G,S} - B(m) \) has at least two unbounded components. Let \(X \) be the vertex set of one of such components. \(X \) and \(X^c \) are infinite. It remains to prove that \(X \) is almost invariant. Fix \(g \in G \) and consider \(X - Xg = \{ Hk \mid Hk \in X, Hkg^{-1} \notin X \} \). For all \(Hk \in X - Xg \), \(d_H(Hk, B(m)) \leq d_H(Hk, Hkg^{-1}) \leq d(g, \text{the base point}) \). By the local finiteness of \(H \setminus \Gamma_{G,S} \), \(X - Xg \) is finite. This observation shows that \(X \) is almost invariant.

We next suppose that there is an almost invariant subset \(X \) such that \(X \) and \(X^c \) are infinite. Let \(K \) be the set of edges of \(H \setminus \Gamma_{G,S} \) having exactly one
endpoint in X. K is finite, because the endpoints of edges in K are included in $sX\Delta X$. Since X and X^c are infinite, there are at least two unbounded components in $(H\setminus \Gamma_{G,S}) - K$. Therefore, $H\setminus \Gamma_{G,S}$ has at least two ends.

To treat the case of the left action, we may convert the definition of the Cayley graph to get another graph Γ' on which G acts from the right. The vertex set of Γ' is again G, and the edges correspond to left multiplications of generators. Since $e(H\setminus \Gamma) = e(\Gamma'/H)$, similar arguments apply to this case.

\[\square\]

4 \hspace{1cm} nV has one end

In this section, we prove that nV has one end, using a finite presentation of nV. Throughout this section, T denotes a simplicial tree. For $x, y \in T$, we write $[x : y]$ for the geodesic joining x to y. An action of a group on T is assumed to be simplicial and to act without edge inversions.

Let G be a group acting on T. Let $g \in G$. If $\text{Fix}(g)$ is non-empty, g is said to be elliptic. Otherwise, we say that g is hyperbolic.

The following proposition is a basic fact about group actions on trees.

Proposition 4.1 (Serre \[14\]). Let G be a group acting on T. Let $g \in G$.

1. $\text{Fix}(g) = \{x \in T \mid g(x) = x\}$ is either empty or a subtree of T.

2. If g is hyperbolic, g acts on a unique simplicial line in T by translation.

 This line is called the axis of g.

3. (Serre’s lemma) Assume that G is generated by a finite set of elements $\{s_j\}_{1 \leq i \leq m}$ such that every element and the multiplication of every two elements are elliptic. Then there is $x \in T$ which is fixed by every element of G.

Lemma 4.2. Let G be a group acting on T. If g and h are elliptic and satisfy $gh = hg$, then g and h have a common fixed point.

Proof. Let g and h be elliptic elements which satisfy $gh = hg$. Assume to the contrary that g and h do not have a common fixed point. Fix $y \in \text{Fix}(h)$. Let $[y : x]$ be the shortest geodesic joining y to $\text{Fix}(g)$. The composition of $g^{-1}([y : x])$ and $[y : x]$ is $[y : g^{-1}(y)]$. Now $g^{-1}(y) \in \text{Fix}(h)$, because $h^{-1}g^{-1}(y) = g^{-1}h^{-1}(y) = g^{-1}(y)$. By Lemma 4.1(1), $[y : g^{-1}(y)] \subset \text{Fix}(h)$. Therefore $x \in \text{Fix}(h)$. This contradicts our assumption. \[\square\]

We define $X_{1,0}, X_{d',0}, C_{d',0}, \pi_0, \overline{\pi}_0 \in nV$ ($2 \leq d' \leq n$) as shown in the following figure. For $i \geq 1$, $X_{d,i}$ ($1 \leq d \leq n$) is defined inductively. On I_r, $X_{d,i}$ restricts to the identity. For $x \in I_l$, we write $x = (x_1, x_2)$ where $x_1 \in [0,1/2)$ and $x_2 \in \mathbb{R}^{n-1}$. We define $\phi : I_l \rightarrow I^n$ by $\phi(x_1, x_2) = (2x_1, x_2)$. On I_l, $X_{d,i} = X_{d,i-1} \phi$. Similarly, $C_{d',i}, \pi_i$ and $\overline{\pi}_i$ restricts to the identity on I_r and $C_{d',i-1} \phi$, $\pi_{i-1} \phi$ and $\overline{\pi}_{i-1} \phi$ respectively on I_l.
Theorem 4.3 (Hennig and Matucci [10, Theorem 23]). Let

\[\Sigma = \{ X_{d,i}, C_{d',i}, \pi_i, \pi_j \} \text{ where } 1 \leq d \leq n, 2 \leq d' \leq n, i \geq 0. \]

(1) \(\Sigma \) is a generating set of \(nV \).

(2) The elements of \(\Sigma \) satisfy the following relations.

\begin{align*}
X_{d'',j}X_{d,i} &= X_{d,i}X_{d'',j+1} & (i < j, 1 \leq d, d'' \leq n) \quad (4.2) \\
C_{d',j}X_{d,i} &= X_{d,i}C_{d',j+1} & (i < j, 1 \leq d \leq n, 2 \leq d' \leq n) \quad (4.3) \\
Y_jX_{d,i} &= X_{d,i}Y_{j+1} & (i < j, Y \in \{ \pi_i, \pi_j \}, 1 \leq d \leq n) \quad (4.4) \\
\pi_jX_{d,i} &= X_{d,i}\pi_j & (i > j + 1, 1 \leq d \leq n) \quad (4.5) \\
\pi_jC_{d',i} &= C_{d',i}\pi_j & (i > j + 1, 2 \leq d' \leq n) \quad (4.6) \\
\pi_j\pi_i &= \pi_i\pi_j & (|i - j| > 2) \quad (4.7) \\
\pi_j\pi_i &= \pi_i\pi_j & (j > i + 1) \quad (4.8) \\
\pi_iX_{1,i} &= \pi_i\pi_{i+1} & (i \geq 0) \quad (4.9) \\
C_{d',i}X_{d,i} &= X_{d,i}C_{d',i+2\pi_{i+1}} & (i \geq 0, 2 \leq d' \leq n) \quad (4.10) \\
\pi_iX_{d,i} &= X_{d,i+1}\pi_i\pi_{i+1} & (i \geq 0, 1 \leq d \leq n) \quad (4.11)
\end{align*}

Corollary 4.4. Let

\[S = \{ X_{d,1}, X_{d,1}(X_{d,0})^{-1}, C_{d',2}, \pi_0, \pi_3, \pi_3 \} \text{ where } 1 \leq d \leq n, 2 \leq d' \leq n. \]

This is a generating set of \(nV \).
Proof. $\langle S \rangle$ denotes a subgroup generated by S. $X_{d,0} \in \langle S \rangle$. For $i \geq 2$, the relation (4.2) shows that $X_{d,i} = (X_{d,0})^{-(i-1)}X_{d,1}(X_{d,0})^{i-1} \in \langle S \rangle$.

Similarly, the relation (4.3) shows that $Y_i = (X_{d,0})^{-(i-3)}Y_3(X_{d,0})^{i-3} \in \langle S \rangle$ for $i \geq 1$, where Y is π or $\overline{\pi}$. By the relation (4.2), $\pi_0 \in \langle S \rangle$.

The relation (4.4) shows that $C_{d,i} = (X_{d,0})^{-(i-2)}C_{d,2}(X_{d,0})^{i-2} \in \langle S \rangle$ for $i \geq 1$. By the relation (4.10), $C_{d,0} \in \langle S \rangle$.

The next lemma is a generalization of Lemma 4.2 in [8].

Lemma 4.5. Let $g \in nV$ which acts identically on some rectangle. If nV acts on T, g is elliptic.

Proof. Let $g \in nV$ be an element with a rectangle R on which g acts as the identity. Assume to the contrary that g is hyperbolic. We write l_g for the axis of g. Let

$$H_g = \{ h \in nV \mid \text{supp}(h) \subseteq R \} \cong nV. \quad (4.13)$$

For every $h \in H_g$, $hg = gh$ and g acts on $h(l_g)$ as a translation. By the uniqueness of the axis, $h(l_g) = l_g$. Restricting the action of h on l_g, we regard h as an element of the infinite dihedral group D_∞. In this way we obtain a homomorphism $\Phi : H_g \to D_\infty$. By the simplicity of H_g, $\ker \Phi$ is H_g or the trivial subgroup. We claim that $\ker \Phi$ is not trivial. Indeed, H_g has the subgroup which is isomorphic to the Thompson group F. $\ker \Phi$ contains the commutator subgroup of this subgroup, because every proper quotient of F is abelian (8). Hence $\ker \Phi = H_g$.

There is $k \in nV$ such that $k \cdot \text{supp}(g) \subseteq R$. For this k, $kgk^{-1} \in H_g$. Therefore, kgk^{-1} is elliptic, which contradicts our assumption that g is hyperbolic.

The following theorem is the main result in this section.

Theorem 4.6. nV has property FA. Especially, $e(nV) = 1$.
Proof. Let S be the generating set of $\{4.12\}$. By Serre’s lemma, it is enough to show that every element and the product of every two elements of S are elliptic. By Lemma 4.5 every element of S is elliptic.

$S = S_1 \cup S_2$, where

\[
S_1 = \{X_{d,1}, C_{d',2}, \pi_3, \pi_3\}_{1 \leq d \leq n, 2 \leq d' \leq n}, \tag{4.14}
\]

\[
S_2 = \{X_{d,1}(X_{d,0})^{-1}, \pi_0\}_{1 \leq d \leq n} \tag{4.15}
\]

Every element of S_1 acts as the identity on I_r. Every element of S_2 acts as the identity on the “left quarter” of the unit cube, $[0, 1/4) \times I^{n-1}$. Therefore, Lemma 4.5 shows that the product of every two elements in S_1 ($i = 1, 2$) is elliptic.

Next we consider $S_1' = \{C_{d',2}, \pi_3, \pi_3\}_{2 \leq d' \leq n} \subset S_1$. The relations $\{4.3\}$, $\{4.4\}$ and $\{4.5\}$ imply that $X_{d,1}(X_{d,0})^{-1}$ and $Z \in S_1'$ are commutative. In fact,

\[
X_{d,1}(X_{d,0})^{-1}Z(X_{d,1}(X_{d,0})^{-1})^{-1}Z^{-1} = (X_{d,1}(X_{d,0}^{-1}ZX_{d,0})X_{d,1}^{-1})Z^{-1} = 1.
\]

The relations $\{4.6\}$, $\{4.7\}$ and $\{4.8\}$ say that π_0 and the elements of S_1 are commutative. Thus Lemma 4.5 shows the products of $Z \in S_1'$ and $X_{d,1}(X_{d,0})^{-1}$ or π_0 are elliptic.

The rest of the proof is to show the following lemma. \hfill \Box

Lemma 4.7. For every $d, d'' \in \{1, \ldots, n\}$,

1. $X_{d,1}$ and $X_{d'',1}(X_{d'',0})^{-1}$ have a common fixed point.
2. $X_{d,1}$ and π_0 have a common fixed point.

Proof. (1) $X_{d'',1}$ and $X_{d,2}$ act identically on I_r. By Lemma 4.5 and Serre’s lemma, there exists $y \in T$ which is fixed by $X_{d'',1}$ and $X_{d,2}$.

To obtain a contradiction, suppose $X_{d,1}$ and $X_{d'',1}(X_{d'',0})^{-1}$ do not have a common fixed point. Take the shortest geodesic $[y : x]$ joining y to $\text{Fix}(X_{d'',1}(X_{d'',0})^{-1})$. The composition of $(X_{d'',1}(X_{d'',0})^{-1})^{-1}[y : x]$ and $[y : x]$ is $[y : X_{d'',0}(y)]$. By the relation $\{4.2\}$,

\[
X_{d,1}X_{d'',0}(y) = X_{d'',0}(X_{d'',0})^{-1}X_{d,1}X_{d'',0}(y) = X_{d'',0}X_{d,2}(y) = X_{d'',0}(y).
\]

Therefore, $[y : X_{d'',0}(y)] \subset \text{Fix}(X_{d,1})$ and $x \in \text{Fix}(X_{d,1})$. This contradicts our assumption.

(2) We first show that π_0 and $X_{d,0}$ have a common fixed point. To obtain a contradiction, suppose π_0 and $X_{d,0}$ do not have a common fixed point. By (1), $\text{Fix}(X_{d,0})$ is not empty. We consider a new element $(X_{d,0})^{-1}X_{d,1}$, which acts as the identity on the left one-eighth of I^n. Since π_0 and π_1 also act as the identity on this rectangle, we can take y as a common fixed point of $(X_{d,0})^{-1}X_{d,1}, \pi_0$ and π_1. There is the shortest geodesic $[y : x]$ joining y to
Fix$(X_{d,0})$. The composition of $[y : x]$ and $X_{d,0}([x : y])$ is $[y : X_{d,0}(y)]$. By the relation \(4.11\),

\[\pi_0 X_{d,0}(y) = X_{d,1} \pi_0 \pi_1(y) = X_{d,1}(y) = X_{d,1}((X_{d,0})^{-1} X_{d,1})^{-1}(y) = X_{d,0}(y).\]

Therefore, $[y : X_{d,0}(y)] \subset \text{Fix}(\pi_0)$ and $x \in \text{Fix}(\pi_0)$. This contradicts our assumption.

We consider a subgroup generated by \(\{\pi_0, (X_{d,0})^{-1} X_{d,1}, X_{d,0}\}\). By Serre’s lemma, this subgroup has a fixed point. Therefore, \(\text{Fix}(\pi_0) \cap \text{Fix}(X_{d,1})\) is not empty. \(\square\)

5 \(nV\) has subgroups with infinitely many relative ends

The argument in this section follow Farley’s paper [8] closely.

Lemma 5.1 (Farley [7, Lemma 2.2]). Let P be a 1-dimensional pattern. $C_P = \{x_i\}_{0 \leq i \leq r}$ is the set of corners of rectangles in P. Let $R = (a, b)$ be a 1-dimensional rectangle.

If R has nonempty intersection with some rectangle in P, then $a, b \in C_P$.

The next theorem is a generalization of Proposition 3.2 in [8].

Theorem 5.2. Let $H = \{h \in nV \mid h \text{ acts as the identity on } I_r\}$. H is a subgroup of nV. Let $X = \{kH \in nV/H \mid k \in nV, k \text{ is affine on } I_r\}$.

1. H has infinite index in its normalizer $N_G(H)$. The quotient group $N_G(H)/H$ is not virtually infinite cyclic.

2. Both X and its complement are infinite, and X is almost invariant under the left action of nV on nV/H.

Therefore, we get $e(G, H) = \infty$.

Proof. (1) We first prove that H has infinite index in $N_G(H)$. Let \overline{H} denote the subgroup of nV which acts as the identity on I_r. For every $\overline{h} \in \overline{H}$, $\overline{h}^{-1} \overline{H} \overline{h} = H$ and $\overline{H} \subset N_G(H)$. If \overline{h}_1 and \overline{h}_2 in \overline{H} satisfy $\overline{h}_1 H = \overline{h}_2 H$, $\overline{h}_1 = \overline{h}_2$. Therefore, \overline{H} can be regarded as a subgroup of $N_G(H)/H$. Since \overline{H} is infinite, H has infinite index in $N_G(H)$.

Suppose $N_G(H)$ has a finite index subgroup which is isomorphic to the infinite cyclic group. We write \mathbb{Z} for this subgroup. According to a basic fact of the group theory, $[N_G(H)/H : \mathbb{Z}] \geq [\overline{H} : \overline{H} \cap \mathbb{Z}]$. Hence $\overline{H} \cap \mathbb{Z}$ is a finite index subgroup of \overline{H}. By definition, \overline{H} is isomorphic to nV, and \overline{H} is simple. Since nV is an infinite simple group, it does not contain a proper finite index subgroup. Therefore, $\overline{H} \cap \mathbb{Z} = \overline{H}$. This is impossible, because \overline{H} is not abelian.
(2) It is easily seen that X and X^c are infinite. In fact, an element kH of nV/H is characterized by $k(I_l)$, and there are infinitely many choices of a rectangle $k(I_l)$. This shows that X is infinite. Similar considerations apply to X^c.

Fix $g \in nV$ arbitrarily. Let $\pi_g = \chi_{gX} - \chi_X$ be a function on nV/H, where χ denotes the characteristic function.

We will rewrite π_g, using X_P and X_Q defined below. Let (P, Q) be the pair of patterns which represents g. As in Lemma 5.1 we write CP (resp. C_Q) for the set of corners in P (resp. Q). Let

$$X_P = \{ kH \in X \mid k(I_l) \cap CP = \emptyset \}, \quad (5.1)$$

$$X_Q = \{ kH \in X \mid k(I_l) \cap C_Q = \emptyset \}. \quad (5.2)$$

Since every element of nV is a bijection, $h \in H$ maps the $I^n - I_l$ onto itself. Therefore, the image of I_l by k depends only on the coset kH. This shows that X_P and X_Q are well-defined.

For $kH \in X_P$, $g \cdot k(I_l)$ does not contain an element of Q and $gkH \in X_Q$. Similarly, the multiplication of g^{-1} from the left defines a map from X_Q to X_P. It follows that $g(X_P) = X_Q$. Therefore,

$$\pi_g = (\chi_{g(X-X_P)} + \chi_{g(X_P)}) - (\chi_{(X-X_Q)} + \chi_X)$$

$$= \chi_{g(X-X_P)} - \chi_{(X-X_Q)}. \quad (5.3)$$

If $X - X_P$ and $X - X_Q$ are finite sets, then X is almost invariant. To prove that $X - X_P$ is finite, it is enough to show that the following function f_P is injective. Let $Pr_i(C_P) = \{ \text{the } i\text{-th coordinate of a corner of } R \mid R \in P \}$. Define a function $f_P : X - X_P \to (Pr_1(C_P) \times \cdots \times Pr_n(C_P))^n$ by

$$f_P(kH) = (kH(\alpha_1), \ldots, kH(\alpha_i), \ldots, kH(\alpha_n)). \quad (5.4)$$

Here, $\alpha_1 \in I^n$ is the element whose first coordinate is 1/4, and the other ones are all 0. For $i \geq 2$, α_i is the element whose i-th coordinate is 1/2, and the other ones are 0. By applying Lemma 5.1 repeatedly, $kH(\alpha_i) \in Pr_1(C_P) \times \cdots \times Pr_n(C_P)$ for all $i \geq 1$. This shows that f_P is well-defined.

Since k is affine on I_l, $k(I_l)$ is characterized by $f_P(kH)$. Therefore, if there exist k_1H and k_2H which satisfy $f_P(k_1H) = f_P(k_2H)$, then $k_1(I_l) = k_2(I_l)$, which implies $k_1H = k_2H$. This proves f_P is injective and that $X - X_P$ is a finite set.

By the same discussion, $X - X_Q$ is also finite. Therefore, $|X \Delta gX| < \infty$ for all $g \in X$.

6 Relevant properties

A finitely generated group G has property (T) if every affine isometric action of G on any Hilbert space has a fixed point.
G has the *Haagerup property* if there exists a proper affine isometric action of G on a Hilbert space.

Let S be a countable set, equipped with the counting measure μ. For $p > 0$, we define the norm space $l^p(S)$ to consist of all functions $f : S \to \mathbb{C}$ satisfying $\|f\|_p = \left(\int |f|^p d\mu \right)^{1/p} < \infty$. $l^2(S)$ is a Hilbert space. One can also define $l^\infty(S)$ as the set of essentially bounded \mathbb{C}-valued functions on S.

Corollary 6.1. For all $n \geq 1$,

1. nV does not have the property (T).
2. nV has the Haagerup property.

Proof. (1) We use the same notations as in the proof of Theorem 5.2. The function $\pi : nV \to l^\infty(nV/H)$ is defined by $\pi(g) = \pi_g$. For each $g \in nV$, the support of $\pi(g)$ is finite. Since $\|\pi(g)\|_2 = |X_\Delta g X|^1/2$, $\pi(g) \in l^2(nV/H)$. Therefore, π gives an affine isometric action of nV on $l^2(nV/H)$ by $f \mapsto f + \pi(g)$. If π has a global fixed point, $X = gX$ for all $g \in X$. Since $H \in X$, for all $g \in nV$, there exists $k_g H \in X$ which satisfies $g k_g H = H$. Therefore, $g^{-1} H \in X$ for all g and $X = nV/H$; contradiction.

(2) We would confirm that the action on $l^2(nV/H)$ defined by π is proper. It is enough to see that for all $m > 0$, there are only finitely many $g \in nV$ such that $\|\pi(g)\|_2 < m$.

Let α_i be the same elements as we used in (5.4). We consider a function $f_1 : X - X_P \to \text{Pr}_1(C_P) - \{0, 1, 1/2, 1/4\}$, which maps kH to the first coordinate of $kH(\alpha_1)$. Similarly, for all $i \geq 2$ we consider the surjection $f_i : X - X_P \to \text{Pr}_i(C_P) - \{0, 1, 1/2\}$ which maps kH to the i-th coordinate of $kH(\alpha_i)$.

For all $i \geq 1$, f_i is a surjection. It follows that the number of rectangles in P is less than $(m^2 + 4)^n$. When m is fixed, there are finitely many $g = (P, Q)$ with such condition. Combined with (1), this shows that π gives a proper affine isometric action of nV on $l^2(nV/H)$. $$\square$$

A group G is a *Kähler group* if there is a connected compact Kähler manifold M whose fundamental group is G.

Theorem 6.2. nV is not Kähler.

We recall the following result by Napier and Ramachandran.

Theorem 6.3 (Napier and Ramachandran [12, Corollary 3.7(a)]). Suppose M is a connected complete Kähler manifold which has bounded geometry. If M has at least three ends, then there exists a proper holomorphic mapping of M onto a hyperbolic surface.

In our context, this theorem can be used to derive the following.
Theorem 6.4 (Napier and Ramachandran \[12\]). If a Kähler group G has a subgroup H such that $e(G, H) \geq 3$, then H must have a quotient that is isomorphic to a hyperbolic surface group.

Proof. Suppose that G is the fundamental group of a connected compact Kähler manifold M, and that G has a subgroup H satisfying $e(G, H) \geq 3$. According to \[9\], page 303, $e(M(H)) = e(G, H)$, where $M(H)$ is the covering space of M whose fundamental group is H. We may confirm that $M(H)$ is a connected complete Kähler manifold with bounded geometry. By Theorem 6.3, there is a holomorphic map from M onto a hyperbolic surface S. The kernel of this map gives the normal subgroup N of $\pi_1(M(H)) = H$ such that H/N is isomorphic to a hyperbolic surface group S.

Proof of 6.2. Suppose that nV is the fundamental group of a compact Kähler manifold M. We take H which satisfies $e(nV, H) = \infty$, as in the proof of Theorem 6.2. By Theorem 6.4, there is a normal subgroup N of H such that H/N is isomorphic to a hyperbolic surface group S. Since H is simple, H/N is H and its commutator subgroup is trivial or H. In fact $[H, H] = H$, because $[nV, nV]$ contains non-identity elements, such as the elements of $[F, F]$ where F is the Thompson group F. Therefore, the first homology group is trivial, $H_1(S) = \pi_1(S)/[\pi_1(S), \pi_1(S)] = 0$. This means the Euler number of S is non-negative, which contradicts to the supposition that S is a hyperbolic surface. This completes the proof.

References

[1] G. M. Bergman, *On groups acting on locally finite graphs*, Ann. of Math. (2) 88, 335–340, 1968.

[2] C. Bleak and D. Lanoue, *A family of non-isomorphism results*, Geom. Dedicata, 146, 21–26, 2010.

[3] M. G. Brin, *Higher dimensional Thompson groups*, Geom. Dedicata, 108, 163–192, 2004.

[4] M. G. Brin, *Presentations of higher dimensional Thompson groups*, J. Algebra 284, 520–558, 2005.

[5] M. G. Brin, *On the baker’s map and the simplicity of the higher dimensional Thompson groups nV*, Publ. Mat. 54, 433–439, 2010.

[6] J. W. Cannon, W. J. Floyd, and W. R. Parry, *Introductory notes on Richard Thompson’s groups*, Enseign. Math. (2) 42, 215–256, 1996.

[7] D. S. Farley, *Proper isometric actions of Thompson’s groups on Hilbert space*, Int. Math. Res. Not. 45, 2409–2414, 2003.
[8] D. S. Farley, *A proof that Thompson’s groups have infinitely many relative ends*, J. Group Theory **14**, 649–656, 2011.

[9] R. Geoghegan, Topological methods in group theory, Springer, 2008.

[10] J. Hennig and F. Matucci, *Presentations for the higher-dimensional Thompson groups nV*, Pacific J. Math. **257**, 53–74, 2012.

[11] J. Meier, Groups, graphs and trees, Cambridge University Press, 2008.

[12] T. Napier and M. Ramachandran, *Structure theorems for complete Kähler manifolds and applications to Lefschetz type theorems*, Geom. Funct. Anal. **5**, 809–851, 1995.

[13] M. Sageev, *Ends of group pairs and non-positively curved cube complexes*, Proc. London Math. Soc. (3) **71**, 585–617, 1995.

[14] J-P. Serre, Trees, Springer, 1980.

[15] J. R. Stallings, *On torsion-free groups with infinitely many ends*, Ann. of Math. (2) **88**, 312–334, 1968.