Minocycline Activates the Nucleus of the Solitary Tract-associated Network to Alleviate Lipopolysaccharide-induced Neuroinflammation

Jianbo Xiu1,2, Lanlan Li1,2, Qi Xu1,2*

1 State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
2 Neuroscience center, Chinese Academy of Medical Sciences, Beijing, 100005, China

Key words: Neuroinflammation; lipopolysaccharide; depression; nucleus tractus solitaries; microglia

Objective To examine the neuroanatomical substrates underlying the effects of minocycline on alleviating LPS-induced neuroinflammation.

Methods Forty C57BL/6 male mice were randomly and equally divided into eight groups. Over three consecutive days, saline was administered to four groups of mice and minocycline to the other four groups. Immediately after the administration of saline or minocycline on the third day, two groups of mice were additionally injected with saline and the other two groups were injected with lipopolysaccharide (LPS). Six or twenty-four hours after the last injection, mice were sacrificed to remove the brains. Immunohistochemistry staining across the whole brain was performed to detect microglia activation via Iba1 and neuronal activation via c-Fos. Morphology of microglia and the number of c-Fos positive neurons were analyzed by Image-Pro Premier 3D. One-way ANOVA and Fisher’s least-significant differences were employed for statistical analysis.

Results Minocycline alleviated LPS-induced neuroinflammation as evidenced by reduced activation of microglia in multiple brain regions, including the shell part of the nucleus accumbens (Acbsh), paraventricular nucleus of the hypothalamus (PVN), central nucleus of the amygdala (CeA), locus coerules (LC), and nucleus tractus solitarius (NTS). Minocycline significantly increased the number of c-Fos positive neurons in NTS and area postrema (AP) after LPS treatment. Furthermore, in NTS-associated brain areas, including LC, lateral parabrachial nucleus (LPB), periaqueductal gray (PAG), dorsal raphe nucleus (DR), amygdala, PVN, and bed nucleus of the stria terminali (BNST), minocycline also significantly increased the number of c-Fos positive neurons after LPS administration.

Conclusion The present study shows that minocycline alleviates LPS-induced neuroinflammation in multiple brain

* Corresponding author E-mail: xuqi@pumc.edu.cn; Phone: 86-10-69156432
This article has been accepted for publication but has not been through the typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record.
Please cite this article as: Xiu JB, Li LL, Xu Q. Minocycline Activates the Nucleus of the Solitary Tract-associated Network to Alleviate Lipopolysaccharide-induced Neuroinflammation. Chin Med Sci J 2021; 36: ePublication ahead of print. doi:10.24920/003954.
regions. The effects may result from increased activation of neurons in the NTS-associated network.

INTRODUCTION

INFLAMMATION is a key factor that contributes to the development of depression in both humans and animal models.[1-5] Peripheral inflammatory challenges may activate microglia in the brain and trigger central neuroinflammation, ultimately leading to symptoms of sickness and depressive-like behaviors. Microglia, as the primary brain-resident immune cells, exhibit ramified morphology with highly motile processes and distribute in a stable tiling pattern throughout the whole brain.[6,7] Orchestrating neuroinflammation is one of the major roles that microglia exert in response to local environmental changes.[8] Mounting evidence demonstrates microglia as a critical player in the pathophysiology of depression.[9-11]

Lipopolysaccharide (LPS), the prototypical endotoxin released by bacteria, can activate the peripheral immune system. LPS first induces sickness behavior at approximately 6 hours after administration, while one day later, animals show depressive-like behaviors.[12] Sickness behavior during acute inflammation is an adaptive response to infection or tissue damage. Once the pathogen is cleared, the sickness can be fully recovered, while depressive behaviors persist relatively for a long time. The chronic responses are thought to be mediated through pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs), even after inflammation has subsided. Once molecules with characteristic PAMPs and/or DAMPs enter the brain, the activation of microglia is directly stimulated by specific receptors, which induces the secretion of inflammatory mediators and neurotransmitters, further promoting the development of depressive symptoms.[13] Microglia participate in LPS-induced sickness and delayed depressive-like behaviors.[11] LPS-induced sickness and depressive-like symptoms can be alleviated by treatment with minocycline, a microglia inhibitor.[14] However, which regions at the global brain level where microglia are activated after LPS administration remain to be clarified.

Preclinical and preliminary clinical studies have shown that minocycline has antidepressant effects.[14-28] Minocycline is a tetracycline derivative with good permeability through the blood-brain barrier and exerts a variety of neuroprotective effects by inhibiting microglia activation.[29-31] Minocycline attenuates LPS-stimulated mRNA expression of inflammatory genes including IL-6, IL-1β, MHC II, and TLR2, in BV-2 cells, a microglial-derived cell line.[14] Minocycline also improves depressive-like behaviors with a reduction in microglial activation in the prefrontal cortex.[28] Twenty-four hours after LPS treatment, minocycline improves depressive-like behaviors.[14,32] At the molecular level, minocycline reduces mRNA expression of pro-inflammatory genes including IL-1β, IL-6, and IDO (indoleamine 2, 3 dioxygenase) in the cortex and hippocampus.[14] Previous work mainly focuses on limited
brain regions such as the hippocampus; however, how minocycline exerts its effects across the whole brain remains unclear.

Here, we examined the LPS-induced activation of microglia and expression of c-Fos by immunohistochemistry throughout the mouse brain at 6 hours and 24 hours after treatment. We also investigated which brain regions where minocycline pretreatment can suppress activation of microglia, as well as which brain network that may be involved in the antidepressant effects of minocycline. Previous studies have shown that a number of nuclei may be involved in LPS-induced neuropathological responses, including NTS, AP, LPB, PVN, and CeA.\[^{33}\] Our results reveal that minocycline may attenuate LPS-induced neuroinflammation by activating the NTS-associated network.

Material and Methods

Ethics statement

All animal studies were approved by the Institutional Review Board of the Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences. All mice were treated according to the guidelines of the Beijing Laboratory Animal Management Office on the care and use of laboratory animals. Great efforts have been made to ensure minimal suffering of the mice used in this study.

Animals

Eight-week-old C57BL/6 male mice were purchased from Vital River Laboratories (Vital River Laboratories, Beijing, China). Mice were acclimated to the environment for two weeks prior to the formal experiment. Food and water were available without restriction in a room with a 12-hour light/dark cycle. The temperature and humidity were maintained at 23 °C ± 2 °C and 60% ± 5%, respectively.

Experimental design

LPS (Sigma, USA) was administered via intraperitoneal (i.p.) at a dose of 0.83 mg/kg. At this dose, it was reported that LPS can induce sickness and depressive-like behaviors in mice.\[^{32}\] Minocycline (Sigma, USA) was administered via i.p. at a dose of 50 mg/kg. At this dose, it was reported that minocycline can alleviate the neuroinflammation caused by LPS and block sickness and depressive-like behaviors.\[^{14,32}\]

Forty mice were randomly and equally divided into eight groups, each group representing different combinations of treatments with saline (S), minocycline (M), or LPS (L). As illustrated in Figure 1, over three consecutive days, we administered saline to four groups (designated as S3) and minocycline to the other four groups (designated as M3). Immediately after the saline or minocycline administration on the third day, half of the
mice in each of the saline/minocycline-treated groups were additionally injected with saline and the other half were injected with LPS. Six or twenty-four hours after the last injection, mice were sacrificed to remove the brains. Therefore, we obtained eight treatment combinations designated as S3S6, S3S24, S3L6, S3L24, M3S6, M3S24, M3L6, and M3L24. For example, the S3S6 group of mice received three days of saline administration and additional saline treatment and was sacrificed 6 hours after the last treatment.

Immunohistochemical examination

For immunostaining, mice were deeply anesthetized with 10% chloral hydrate (wt/vol, Sangon, China) followed by cardiac perfusion with ice-cold 0.01M phosphate buffered saline (PBS, pH 7.4) and paraformaldehyde (formulated in 0.01M PBS, 4%, wt/vol, Sigma, USA). Brains were postfixed for 24 hours in the same fixative and stored at 4 °C. After dehydration for 24 hours in 30% sucrose (wt/vol), serial 40-μm-thick coronal sections were cut on a cryostat (CM1950, Leica, Germany) and immediately subjected to immunohistochemistry staining.

The following primary antibodies were used: anti-c-Fos antibody (1:2000, Cell Signaling Technology, USA) and anti-Iba1 antibody (1:800, Abcam, USA). First, brain sections were incubated in the solution containing the corresponding primary antibody overnight at 4 °C. After washing with 0.01 M PBS (pH 7.4, 3 x 10 mins), the slices were incubated with the biotinylated secondary antibody against c-Fos primary antibody (1:300, MXB, China) or Iba-1 primary antibody (1:800, Solarbio, China) overnight at 4 °C. On the third day, after washing with 0.01 M PBS (pH 7.4, 3 x 10 mins), the slices were treated with PBS containing 1% hydrogen peroxide for 10 mins to block the activity of endogenous peroxidase. Next, after washing with 0.01 M PBS (pH 7.4, 3 x 10 mins), the slices were incubated with streptavidin-conjugated HRP (1:300, MXB, China) for two hours followed by a DAB reaction to label the signal. After dehydration with gradient ethanol and clearance with xylene, slices were mounted and sealed with neutral resin.

Image acquisition and analysis

All images were acquired by a full-slice linear scanning pathology device (Aperioe Pathology, Leica, Germany). All slides were scanned in a bright field. Among them, images of c-Fos staining were collected at 20× magnification, and images of microglia staining were collected at 40× magnification. The brain regions investigated in this study are as follows: Acbc, Bregma: 1.10 mm; Acbs, Bregma: 1.10 mm; BNSTd, Bregma: 0.26 mm; BNSTv, Bregma: 0.26 mm; PVN, Bregma: -0.82 mm; CeA, Bregma: -0.94 mm; BLA: Bregma: -0.94 mm; DG, Bregma: -1.46mm; VTA, Bregma: -3.28 mm; PAG, Bregma: -3.28 mm; DR, Bregma: -4.48 mm; LPB, Bregma: -5.34 mm; LC, Bregma: -5.56 mm; AP, Bregma: -7.48 mm; NTS, Bregma: -7.48 mm.
The number of c-Fos positive cells was analyzed by the image analysis software (Image-Pro Premier 3D, Media Cybernetics, Inc. Rockville, USA). To avoid false positives or false negatives, we used the manual counting function of Image-Pro Premier 3D to count the number of c-Fos positive cells. Morphological analysis of microglia was also performed with Image-Pro Premier 3D. Firstly, the measurement area of 1436 pixels in width and 871 pixels in height was randomly selected from the interested brain region in each sample. Secondly, the measurement of the cell body area was based on the two-dimensional automatic selection function of the Image-Pro Premier 3D. We manually identified the background area in the software. Multiple background areas can be marked manually so that the background recognition of the software can be more accurate. Then, we identified the positive cell area manually and the software would automatically identify the positive areas in the entire picture. Thirdly, the scale correction was performed. As a result, the software can convert pixel units into actual area units (μm²). Fourthly, the screening area from 20 to 90 μm² was set to exclude non-cell positive particles. Fifthly, by selecting “Smooth” in the options, the software automatically recognized the cell body more accurately. Finally, each sample data was exported. And we pooled data from five samples of the same group for further analysis.

As for determining the activation of microglia, we are concerned with the change in the average area of microglia cell bodies in each group. It has been consistently reported that once microglia are activated, the size of their cell bodies increases.\cite{34,35} The size of each microglia cell indicated by Iba1 immunoreactivity can be used as a reliable indicator for its activation. Throughout the process of data acquisition, the analyzer did not know the experimental conditions.

Statistical analysis

Statistical significance was calculated with Prism software (GraphPad Prism 7). All data were represented as the mean ± SEM. One-way ANOVA and Fisher’s least-significant differences were employed for statistical analysis. \(P < 0.05 \) was used as a criterion for statistical significance. All animals were analyzed, and no data points were excluded.

RESULTS

Minocycline blocks the activation of microglia induced by LPS across the brain

Microglia are the resident immune cells in the brain and have highly specialized morphologies. Under quiescent conditions, microglia are characterized by small cell bodies and many long-branched filaments, which constantly scan the environment for signs of danger associated with pathogens or damage.\cite{36} Upon neuroinflammatory stimuli, the morphology and function of activated microglia change rapidly. Usually, their protrusions become contracted...
and thickened. The cell body size increases, and the cells begin to secrete cytokines and free radicals. Finally, microglia may become amoeba-like cells that can phagocytose other cells, such as neurons.[36,37] Here, we conducted morphological analysis of microglia among different groups in multiple brain regions involved in emotion regulation, including Acbs, BNSTd, PVN, CeA, DG, LPB, LC, NTS, and AP. We found that 6 hours after LPS treatment, the cell body size of the microglia in group S3L6 was significantly increased in Acbs, BNSTd, PVN, CeA, DG, LPB, LC, and NTS, compared with that in group S3S6, indicating that at this time point LPS had already resulted in neuroinflammation in most observed brain regions (Table 1 and Fig. 2).

Next, we found that in group M3L6, 6 hours after LPS administration, the cell body size of the microglia in Acbs, PVN, CeA, LC, and NTS decreased significantly compared with that in group S3L6, revealing that treatment with minocycline for three days markedly blocked the activation of microglia induced by LPS (Table 1 and Fig. 2). Although the effects of LPS on the activation of microglia were mitigated from 6 hours to 24 hours in some brain regions, the cell body size of the microglia in group S3L24 was still significantly larger than that in group S3S24 in most brain regions, including PVN, CeA, DG, LPB, and LC, suggesting that neuroinflammation still existed 24 hours after LPS treatment (Table 1). It is interesting that the cell body size of microglia increased in Acbs, BNSTd, and CeA at 24 hours after LPS treatment by comparing groups S3L24 and M3L24 (Table 1). The underlying mechanisms remain to be clarified.

\textbf{Minocycline increased the number of neurons activated by LPS in NTS and AP}

NTS is the central target of the sensory afferents of the vagus nerve, which acts to integrate visceral signals. AP is located close and dorsally to NTS. Through vagus-mediated neural immune signals and humoral signals transduced by the AP region, NTS and AP play a critical role in the early integration of pathogen-associated signals.[38] We investigated the role of NTS and AP in the minocycline-mediated alleviation of neuroinflammation induced by LPS. As previously reported, we used c-Fos as a marker of neuronal activation to map activated neurons under specific stimulation conditions.

The expression levels of c-Fos protein in groups S3S6 and S3S24 that were treated with saline were very low in most of the brain structures analyzed (Table 2, and A, C, E, G in Fig. 3, Fig. 4, & Fig. 5). Consistent with other studies[33], we found that significantly more neurons in NTS and AP showed c-Fos immunoreactivity in group S3L6 than in group S3S6 (Table 2, and A, B, I, J in Fig. 3). When mice were treated with minocycline, the number of c-Fos positive neurons in group M3L6 significantly increased to 195% in NTS and to 237% in AP of those in group S3L6, indicating that minocycline activated more neurons in these two regions after LPS administration.
(Table 2, and B, D, I, J in Fig. 3). Twenty-four hours later, the number of LPS-induced activated neurons in NTS remained nearly the same in group S3L24 compared to group S3L6, while there were almost no c-Fos positive neurons 24 hours later in AP (Table 2, and B, F, I, J in Fig. 3). For the minocycline-treated groups, the number of LPS-induced activated neurons in NTS was reduced by 52% in group M3L24 compared to group M3L6, while in AP there were almost no c-Fos positive neurons 24 hours later (D, H, I, J in Fig. 3). There was no statistically significant difference in the number of activated neurons between groups S3L24 and M3L24 in both NTS and AP (Table 2, and F, H, I, J in Fig. 2). Taken together, these results indicate that minocycline recruits more neurons in NTS and AP to cope with the peripheral immune inflammation evoked by LPS.

Minocycline increased the number of neurons activated by LPS in LPB, CEA, and BNST

We further investigated the responses to LPS in other brain regions, including LPB, CeA, and BNST, which receive direct projections from NTS.\[39,40\] Six hours after LPS administration, there were more neurons in LPB with c-Fos immunoreactivity in group S3L6 than in group S3S6 (Table 2, and A, B, I, J in Fig. 4). When mice were treated with minocycline, the number of c-Fos positive neurons in group M3L6 significantly increased to 281% of that in group S3L6 in LPB, indicating that minocycline activated more neurons in these regions after LPS treatment (Table 2, and B, D, I, J in Fig. 4). Twenty-four hours after LPS administration, the number of activated neurons in LPB was reduced by 42% in group S3L24 compared with group S3L6 (Table 2, and B, F, I, J in Fig. 4). In the minocycline-treated groups, the number of c-Fos positive neurons in LPB was reduced by 62% in group M3L24 compared with group M3L6 (Table 2, and D, H, I, J in Fig. 4). Notably, 24 hours after LPS treatment, mice administered minocycline still showed a larger number of c-Fos positive neurons in LPB in group M3L24 than in group S3L24 (Table 2, and F, H, I, J in Fig. 2). Similar results were observed in CEA and BNST.

Minocycline increased the number of neurons activated by LPS in PVN

PVN is another projecting target of NTS, which is the initial hub to constitute the hypothalamic–pituitary–adrenal (HPA) axis.\[39,40\] The activity of the HPA axis is initiated by corticotropin-releasing hormone (CRH) neurons in PVN. In the anterior pituitary, CRH causes systemic release of adrenocorticotropic hormone, a major stimulatory factor for glucocorticoid release from the adrenal cortex. Glucocorticoids then signal to regulate many systemic and neurological functions in response to peripheral immune inflammation.\[41\] Therefore, we were concerned about the role of PVN in the attenuation of LPS-induced neuroinflammation by minocycline.

As previously reported\[33\], six hours after LPS administration, a significantly larger number of neurons in PVN showed c-Fos immunoreactivity in group S3L6 than in group S3S6 (Table 2, and A, B, I, J in Fig. 5). When mice
were treated with minocycline, the number of c-Fos positive neurons in group M3L6 significantly increased to 138% of that in group S3L6, indicating that minocycline activated more neurons in PVN after LPS administration (Table 2, and B, D, I, J in Fig. 5). Twenty-four hours after LPS administration, the number of c-Fos positive neurons in PVN was reduced by 79% in group S3L6 compared with that in group S3L24 (Table 2, and B, F, I, J in Fig. 3). In minocycline-treated groups, the number of c-Fos positive neurons in PVN was reduced by 62% in group M3L24 compared with that in group M3L6 (D, H, I, J in Fig. 3). Notably, 24 hours after LPS treatment, mice administered minocycline still showed a significantly larger number of c-Fos positive neurons in PVN in group M3L24 than in group S3L24 (Table 2, and F, H, I, J in Fig. 2). These results indicate that much more neurons in PVN are activated and involved in the effects of minocycline on alleviating neuroinflammation induced by LPS.

Contributions of other nuclei to the effects of minocycline

We further examined several other nuclei anatomically associated with NTS and functionally related to emotion regulation, including Acbc/Acbs, DG, BLA, VTA, DR, PAG, and LC. VTA and Acbc/Acbs are key components of the brain’s reward system, which has long been associated with depression and addiction. DR is mainly beneath the periaqueductal gray matter of the midbrain and plays an important role in regulating moods. PAG is the midbrain region surrounding the cerebral aqueduct, which processes negative emotions with autonomic, neuroendocrine, and immune signals to facilitate adaptation to threat. LC is a discrete pontine nucleus adjacent to the fourth ventricle, which houses noradrenergic neurons regulating behaviors associated with arousal, attention, cognitive flexibility, and stress response.

As shown in Table 2, no positive signal for c-Fos was detected in VTA in any of the eight groups. At 6 hours, minocycline significantly increased the number of c-Fos positive neurons induced by LPS in Acbs, BLA, DR, and LC in group S3L6 compared with that in group S3S6. In Acbc, DG, and PAG, LPS induced little c-Fos immunoreactivity at 6 hours, consistent with previous report. When mice were treated with minocycline, the number of c-Fos positive neurons significantly increased in DR, PAG, and LC in group M3L6 compared with that in group S3L6. Interestingly, a delayed response was observed in Acbc and DG, as revealed by the increased number of activated neurons in group S3L24 compared with that in group S3L6, while there was no change in Acbs, DR, PAG, and LC. Notably, 24 hours after LPS treatment, mice treated with minocycline showed significantly larger number of c-Fos positive neurons in BLA, PAG, and LC in group M3L24 than in group S3L24, while there was no significant change in Acbc, Acbs, DG, and DR.

DISCUSSION
As Prof. Daniel S. Zahm has noted, "it seems unlikely that a particular behavioral state should correlate specifically with activity in a particular structure or its outputs, but rather that behavior will instead correspond with more global profiles of activity distributed throughout the continuum". Here, we studied the global profiles of LPS-induced neuroinflammation across the brain as revealed by microglial activation. Furthermore, we examined the global profiles of the effects of minocycline on alleviating LPS-induced neuroinflammation across the brain as revealed by neuronal activation. These profiles have not been investigated before.

We found that at six and twenty-four hours after LPS treatment, the cell body size of microglia significantly increased in Acbs, BNSTd, PVN, CeA, DG, LPB, LC, and NTS. Minocycline inhibited the increase of the cell body size of microglia induced by LPS in multiple brain regions, including Acbs, PVN, CeA, LC, and NTS at 6 hours. Consistent with previous reports, LPS treatment induced neuronal activation in NTS, AP, LC, LPB, DR, BLA, CeA, PVN, BNSTv, BNSTd, and Acbs at 6 hours. Interestingly, minocycline treatment resulted in an increase in the number of activated neurons in NTS, AP, LC, LPB, PAG, DR, CeA, PVN, BNSTv, and BNSTd at 6 hours after LPS administration (Fig. 6). Although the effects of minocycline attenuated in most brain regions at 24 hours after LPS administration, there were still more activated neurons in LC, LPB, PAG, BLA, CeA, PVN, and BNSTv, by comparing group M3L24 and group S3L24. The spatiotemporal selectivity of the effects of minocycline may underlie its effects on ameliorating LPS-induced sickness and depressive-like behaviors.

One of the main functions of NTS is to transmit visceral reflex information to the forebrain region to coordinate neuroendocrine and autonomic responses to internal challenges. Subphrenic vagotomy and whole-brain c-Fos mapping have revealed that the vagus sensory pathway and its primary and secondary projection regions are strongly involved in cytokine responses. One of the main targets of NTS projection neurons is LPB, which further can transmit the LPS-induced immune response to BNST and CEA. Reversibly inactivating NTS completely blocks depressive symptoms of LPS-induced social withdrawal and significantly reduces LPS-induced c-Fos expression in LPB, CEA, BSNT, and PVN. Medullary catecholaminergic neurons in NTS play a key role in mediating the effects of interleukin-1 on stress-related neuroendocrine neurons. Therefore, NTS may be a nexus in mediating central responses to peripheral inflammatory challenges. Our data show that neurotransmission through NTS may play an important role in LPS-induced neuroinflammation, sickness and depressive behaviors. By activating nearly double neurons, minocycline alleviates neuroinflammation induced by LPS in NTS, although the types of activated neurons are unclear and require further investigation. Minocycline significantly increased the number of activated neurons in LPB, CeA, and BNSTd to 281%, 188% and 236% respectively, suggesting that minocycline treatment recruits more neurons to inhibit the neuroinflammation induced by LPS in these nuclei.
LC directly receives projections from NTS.[39,40] Previous studies demonstrate that barosensitive NTS neurons may directly modulate the activity of neurons in LC through efferent projections of NTS to peri-LC dendrites in rat brain.[52] A single i.p. injection of LPS causes long-lasting increase in the activity of LC neurons.[53] What’s more, selective transection of the dorsal subdiaphragmatic vagus nerve trunk fails to excite LC neurons in response to i.p. LPS, suggesting the important role of NTS in transmitting peripheral inflammatory signals.[54] PAG also directly receive innervations from NTS.[39,40] Visceral nociceptive information can be transmitted to NTS via the vagus nerve and further passed down to PAG by the catecholaminergic neurons in NTS.[55] PAG plays an important role in behavioral responses to uncontrollable stress, threats, anxiety and pain.[44] Peripheral administration of LPS in the cat significantly elevates response latencies from 60 to 300 min for defensive rage induced by electrical stimulation from PAG, which was demonstrated to act through peripheral TNF-α, suggesting that NTS may be involved in transmitting peripheral inflammatory signal to PAG.[56] Fibers from the ventrolateral PAG strongly target the medial, dorsal and anterior parvocellular divisions, as well as the lateral and medial posterior magnocellular divisions of PVN, providing an anatomical basis for HPA axis regulation.[57] PVN is the key hub in the brain to integrate autonomic, neuroendocrine, and cardiovascular responses to external or internal challenges.[41] It receives substantial noradrenergic input from NTS A2 and C2 neurons.[58] Noradrenergic inputs to PVN contribute to LPS-induced activation of the HPA axis and c-Fos expression[59], indicating that NTS plays a critical role in regulating the HPA response to stressors.[60] Our results showed that minocycline pretreatment for three days significantly increased the number of activated neurons in LC, PAG, and PVN to 207%, 364%, and 138%, respectively, indicating that minocycline treatment recruits more neurons in these NTS-associated nuclei to inhibit the neuroinflammation induced by LPS.

The brain can sense peripheral inflammation through two main pathways: the neural and humoral pathways.[61] The neural pathway relies in the stimulation of the afferent sensory fibers of the vagus nerve by specific pathogens or cytokines released from immune cells. The main vagal sensory input is received by neurons in NTS, which coordinates autonomic function and interaction with the endocrine system. Ascending projections from NTS reach most brain regions regulating emotions and stress responses, including LC, LPB, PAG, DR, VTA, CEA, PVN, BNST and Acb.[39,40] Our results show that minocycline significantly increases the number of activated neurons in NTS, AP, LC, LPB, PAG, DR, CeA, PVN, BNSTv, and BNSTd. Therefore, we propose that the activated NTS-associated network may contribute to the effects of minocycline on reducing the neuroinflammation induced by LPS and improving sickness and depressive-like behaviors. As to the humoral pathway, cytokine-to-brain communication may also occur via circumventricular organs that lack normal blood-brain barrier function.[62] AP is located in the
floor of the caudal 4th ventricle and has close proximity to NTS, which is an important circumventricular organ and site for humoral immune-to-brain communication.\cite{63} Minocycline has good permeability through the blood-brain barrier and exerts anti-inflammatory, antioxidant, anti-apoptotic and neuroprotective effects.\cite{15} Our results show that minocycline significantly increases the number of activated neurons in AP. Therefore, minocycline may directly act on this region through the humoral pathway. The antidepressant effects of minocycline have been well studied in many reports;\cite{14-28} however, our work is the first to investigate the neural substrates across the brain that may contribute to the effects of minocycline. Although we used well-referred doses of minocycline/LPS,\cite{14,32} one limitation of the work is that only a single dose of minocycline/LPS was employed in our study. Different concentrations of minocycline/LPS might elicit different reactions in the brain, which needs to be investigated in the future.

The present study shows that minocycline alleviates LPS-induced neuroinflammation in multiple brain regions. The effects may result from increased activation of neurons in the NTS-associated network. Although the specific types of neurons activated by minocycline and whether each specific component within the activated network is directly or indirectly connected to NTS remain to be determined, these findings reveal an alternative mechanism at the neural circuitry level underlying the effects of minocycline on reducing the neuroinflammation induced by LPS. Our work may open new avenues to combat depression, especially related to inflammation.

Conflict of interest

The authors have no conflicts of interest to declare.

Funding

This work was supported by the research grants from the National Natural Science Foundation of China (81625008, 81930104, and 31970952), the National Key Research and Development Program of China (2016YFC1306700).

Authors’ contributions

Qi Xu and Jianbo Xiu conceived and designed the study. Lanlan Li and Jianbo Xiu performed the main experiments and analysed the data. Lanlan Li and Jianbo Xiu wrote the manuscript. Qi Xu supervised the project.

REFERENCES

1. Wohleb ES, Franklin T, Iwata M, et al. Integrating neuroimmune systems in the neurobiology of depression. Nature
2. Miller AH, Raison CL. The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nature Reviews Immunology 2016; 16, 22-34, doi:10.1038/nri.2015.5.

3. Dantzer R, O’Connor JC, Freund GG, et al. From inflammation to sickness and depression: when the immune system subjugates the brain. Nature Reviews Neuroscience 2008; 9, 46-56, doi:10.1038/nrn2297.

4. Hodes GE, Kana V, Menard C, et al. Neuroimmune mechanisms of depression. Nature neuroscience 2015; 18, 1386-1393, doi:10.1038/nn.4113.

5. Beurel E, Toups M, Nemeroff CB. The Bidirectional Relationship of Depression and Inflammation: Double Trouble. Neuron 2020; 107, 234-256, doi:10.1016/j.neuron.2020.06.002.

6. Zhan L, Krabbe G, Du F, et al. Proximal recolonization by self-renewing microglia re-establishes microglial homeostasis in the adult mouse brain. PLoS biology 2019; 17, e3000134, doi:10.1371/journal.pbio.3000134.

7. Lawson LJ, Perry VH, Dri P, et al. Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 1990; 39, 151-170, doi:10.1016/0306-4522(90)90229-w.

8. Prinz M, Jung S, Priller J. Microglia Biology: One Century of Evolving Concepts. Cell 2019; 179, 292-311, doi:10.1016/j.cell.2019.08.053.

9. Deng SL, Chen JG, Wang F. Microglia: A Central Player in Depression. Current medical science 2020; 40, 391-400, doi:10.1007/s11596-020-2193-1.

10. Jia X, Gao Z, Hu H. Microglia in depression: current perspectives. Science China. Life sciences 2020; doi:10.1007/s11427-020-1815-6.

11. Yirmiya R, Rimmerman N, Reshef R. Depression as a microglial disease. Trends in neurosciences 2015; 38, 637-658, doi:10.1016/j.tins.2015.08.001.

12. Dantzer R. Cytokine-induced sickness behavior: Mechanisms and implications. Ann Ny Acad Sci 2001; 933, 222-234, doi:10.1111/j.1749-6632.2001.tb05827.x.

13. Quan N & Banks WA. Brain-immune communication pathways. Brain Behavior And Immunity 2007; 21, 727-735, doi:10.1016/j.bbi.2007.05.005.

14. Henry CJ, Huang Y, Wynne A, et al. Minocycline attenuates lipopolysaccharide (LPS)-induced neuroinflammation, sickness behavior, and anhedonia. Journal of neuroinflammation 2008; 5, doi:10.1186/1742-2094-5-15.

15. Soczynska JK, Mansur RB, Briezeke E, et al. Novel therapeutic targets in depression: Minocycline as a candidate treatment. Behav Brain Res 2012; 235, 302-317, doi:10.1016/j.bbr.2012.07.026.

16. Zhu FR, Zheng YJ, Ding YQ, et al. Minocycline and Risperidone Prevent Microglia Activation and Rescue Behavioral Deficits Induced by Neonatal Intrahippocampal Injection of Lipopolysaccharide in Rats. Plos One 2014; 9, doi:10.1371/journal.pone.0093966.

17. Zheng LS, Kaneko N, Sawamoto K. Minocycline treatment ameliorates interferon-alpha-induced neurogenic deficits and depression-like behaviors in mice. Front Cell Neurosci 2015; 9, doi:10.3389/fncel.2015.00005.

18. Majidi J, Kosari-ubas M, Salari AA. Developmental minocycline treatment reverses the effects of neonatal immune activation on anxiety- and depression-like behaviors, hippocampal inflammation, and HPA axis activity in adult mice. Brain Res Bull 2016; 120, 1-13, doi:10.1016/j.brainresbull.2015.10.009.

19. Husain MI, Chaudhry IB, Husain N, et al. Minocycline as an adjunct for treatment-resistant depressive symptoms: A pilot randomised placebo-controlled trial. J Psychopharmacol 2017; 31, 1166-1175, doi:10.1177/026988117724352.

20. Han Y, Zhang LJ, Wang QZ, et al. Minocycline inhibits microglial activation and alleviates depressive-like behaviors in male adolescent mice subjected to maternal separation. Psychoneuroendocrinology 2019; 107, 37-45, doi:10.1016/j.psyneuen.2019.04.021.

21. Zhang C, Zhang YP, Li YY, et al. Minocycline ameliorates depressive behaviors and neuro-immune dysfunction induced by chronic unpredictable mild stress in the rat. Behav Brain Res 2019; 356, 348-357, doi:10.1016/j.bbr.2018.07.001.
22. Wang B, Huang X, Pan X, et al. Minocycline prevents the depressive-like behavior through inhibiting the release of HMGB1 from microglia and neurons. Brain Behavior And Immunity 2020; 88, 132-143, doi:10.1016/j.bbi.2020.06.019.

23. Yang Q, Luo L, Sun T, et al. Chronic minocycline treatment exerts antidepressant effect, inhibits neuroinflammation, and modulates gut microbiota in mice. Psychopharmacology 2020; 237, 3201-3213, doi:10.1007/s00213-020-05604-x.

24. Nettis MA, Lombardo G, Hastings C, et al. Augmentation therapy with minocycline in treatment-resistant depression patients with low-grade peripheral inflammation: results from a double-blind randomised clinical trial. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 2021; 46, 939-948, doi:10.1038/s41386-020-00948-x.

25. Bassett B, Subramaniyam S, Fan Y, et al. Minocycline alleviates depression-like symptoms by rescuing decrease in neurogenesis in dorsal hippocampus via blocking microglia activation/phagocytosis. Brain Behavior And Immunity 2021; 91, 519-530, doi:10.1016/j.bbi.2020.11.009.

26. Rosenblat JD, McIntyre RS. Efficacy and tolerability of minocycline for depression: A systematic review and meta-analysis of clinical trials. J Affect Disorders 2018; 227, 219-225, doi:10.1016/j.jad.2017.10.042.

27. Reis DJ, Casteen EJ & Ilardi SS. The antidepressant impact of minocycline in rodents: A systematic review and meta-analysis. Sci Rep-Uk 2019; 9, doi:10.1038/s41598-018-36507-9.

28. Burke NN, Kerr DM, Moriarty O, et al. Minocycline modulates neuropathic pain behaviour and cortical M1-M2 microglial gene expression in a rat model of depression. Brain Behavior And Immunity 2014; 42, 147-156, doi:10.1016/j.bbi.2014.06.015.

29. Yrjanheikki J, Keinanen R, Pellikka M, et al. Tetracyclines inhibit microglial activation and are neuroprotective in global brain ischemia. P Natl Acad Sci USA 1998; 95, 15769-15774, doi: 10.1073/pnas.95.26.15769.

30. TikkaT, Fiebich BL, Goldsteins G, et al. Minocycline, a tetracycline derivative, is neuroprotective against excitotoxicity by inhibiting activation and proliferation of microglia. J Neurosci 2001; 21, 2580-2588, doi:10.1523/Jneurosci.21-08-02580.2001.

31. Ekdahl CT, Claasen JH, Bonde S, et al. Inflammation is detrimental for neurogenesis in adult brain. P Natl Acad Sci USA 2003; 100, 13632-13637, doi:10.1073/pnas.2234031100.

32. O’Connor JC, Lawson MA, Andre C, et al. Lipopolysaccharide-induced depressive-like behavior is mediated by indoleamine 2,3-dioxygenase activation in mice. Mol Psychiatr 2009; 14, 511-522, doi:10.1038/sj.mp.4002148.

33. Frenois F, Moreau M, O’Connor J, et al. Lipopolysaccharide induces delayed FosB/DeltaFosB immunostaining within the mouse extended amygdala, hippocampus and hypothalamus, that parallel the expression of depressive-like behavior. Psychoneuroendocrinology 2007; 32, 516-531, doi:10.1016/j.psyneuen.2007.03.005.

34. Tyinan RJ, Naicker S, Hinwood M, et al. Chronic stress alters the density and morphology of microglia in a subset of stress-responsive brain regions. Brain Behavior And Immunity 2010; 24, 1058-1068, doi:10.1016/j.bbi.2010.02.001.

35. Han RR, Liu ZY, Sun NN, et al. BDNF Alleviates Neuroinflammation in the Hippocampus of Type 1 Diabetic Mice via Blocking the Aberrant HMGB1/RAGE/NF-kappa B Pathway. Aging Dis 2019; 10, 611-625, doi:10.14336/Ad.2018.0707.

36. Ransohoff RM, Perry VH. Microglial Physiology: Unique Stimuli, Specialized Responses. Annu Rev Immunol 2009; 27, 119-145, doi:10.1146/annurev.immunol.021908.132528.

37. Kettenmann H, Hanisch UK, Noda M, et al. Physiology of Microglia. Physiol Rev 2001; 91, 461-553, doi:10.1152/physrev.00011.2010.

38. Konsman JP, Kelley K, Dantzer R. Temporal and spatial relationships between lipopolysaccharide-induced expression of fos, interleukin-1 beta and inducible nitric oxide synthase in rat brain. Neuroscience 1999; 89, 535-548, doi:10.1016/S0306-4522(98)00368-6.

39. Rinaman L. Ascending projections from the caudal visceral nucleus of the solitary tract to brain regions involved in
40. Kawai Y. Differential Ascending Projections From the Male Rat Caudal Nucleus of the Tractus Solitarius: An Interface Between Local Microcircuits and Global Macrocircuits. Front Neuroanat 2018; 12, doi:10.3389/Fnana.2018.00063.

41. Ulrich-Lai YM, Herman JP. Neural regulation of endocrine and autonomic stress responses. Nature Reviews Neuroscience 2009; 10, 397-409, doi:10.1038/nrn2647.

42. Russo SJ, Nestler EJ. The brain reward circuitry in mood disorders. Nature Reviews Neuroscience 2013; 14, 609-625, doi:10.1038/nrn3381.

43. Michelsen KA, Schmitz C, Steinbusch HWM. The dorsal raphe nucleus - From silver stainings to a role in depression. Brain Res Rev 2007; 55, 329-342, doi:10.1016/j.brainresrev.2007.01.002.

44. George DT, Ameli R, Koob GF. Periaqueductal Gray Sheds Light on Dark Areas of Psychopathology. Trends in neurosciences 2019; 42, 349-360, doi:10.1016/j.tins.2019.03.004.

45. Schwarz LA, Luo LQ. Organization of the Locus Coeruleus-Norepinephrine System. Curr Biol 2015; 25, R1051-R1056, doi:10.1016/j.cub.2015.09.039.

46. Zahm DS. An integrative neuroanatomical perspective on some subcortical substrates of adaptive responding with emphasis on the nucleus accumbens. Neurosci Biobehav R 2000; 24, 85-105, doi:10.1016/S0149-7634(99)00065-2.

47. Konsman JP, Luheshi GN, Bluthe RM, et al. The vagus nerve mediates behavioural depression, but not fever, in response to peripheral immune signals; a functional anatomical analysis. Eur J Neurosci 2000; 12, 4434-4446, doi:10.1046/j.1460-955X.2000.01319.x.

48. Sarhan M, Freund-Mercier MJ, Veinante P. Branching patterns of parabrachial neurons projecting to the central extended amygdala: Single axonal reconstructions. J Comp Neurol 2005; 491, 418-442, doi:10.1002/cne.20697.

49. Gaykema RPA, Chen CC, Goehler LE. Organization of immune-responsive medullary projections to the bed nucleus of the stria terminalis, central amygdala, and paraventricular nucleus of the hypothalamus: Evidence for parallel viscerosensory pathways in the rat brain. Brain Res 2007; 1130, 130-145, doi:10.1016/j.brainres.2006.10.084.

50. Marvel FA, Chen CC, Badr N, et al. Reversible inactivation of the dorsal vagal complex blocks lipopolysaccharide-induced social withdrawal and c-Fos expression in central autonomic nuclei. Brain Behavior And Immunity 2004; 18, 123-134, doi:10.1016/j.bbi.2003.09.004.

51. Ericsson A, Kovacs KJ, Sawchenko PE. A Functional Anatomical Analysis Of Central Pathways Subserving the Effects Of Interleukin-1 on Stress-Related Neuroendocrine Neurons. J Neurosci 1994; 14, 897-913, doi:10.1523/JNEUROSCI.14-02-00897.1994.

52. Van Bockstaele EJ, Peoples J, Telegan P. Effferent projections of the nucleus of the solitary tract to peri-locus coeruleus dendrites in rat brain: Evidence for a monosynaptic pathway. J Comp Neurol 1999; 412, 410-428, doi:10.1002/(Sici)1096-9861(19990927)412:3<410::Aid-Cne3>3.0.Co;2-F.

53. Borsody MK, Weiss JM. The effects of endogenous interleukin-1 bioactivity on locus coeruleus neurons in response to bacterial and viral substances. Brain Res 2004; 1007, 39-56, doi:10.1016/j.brainres.2004.02.011.

54. Borsody MK, Weiss JM. The subdiaphragmatic vagus nerves mediate activation of locus coeruleus neurons by peripherally administered microbial substances. Neuroscience 2005; 131, 235-245, doi:10.1016/j.neuroscience.2004.09.061.

55. Chen LW, Rao ZR, Shi JW. Catecholaminergic Neurons In the Nucleus-Tractus-Solitarii Which Send Their Axons To the Midbrain Periaqueductal Gray Express Fos Protein after Noxious-Stimulation Of the Stomach - a Triple Labeling Study In the Rat. Neurosci Lett 1995; 189, 179-181, doi:10.1016/0304-3940(95)11475-C.

56. Bhatt S, Bhatt RS, Zalcman SS, et al. Peripheral And Central Mediators Of Lipopolysaccharide Induced Suppression Of Defensive Rage Behavior In the Cat. Neuroscience 2009; 163, 1002-1011, doi:10.1016/j.neuroscience.2009.07.050.
57. Floyd NS, Keay KA, Arias CM, et al. Projections from the ventrolateral periaqueductal gray to endocrine regulatory subdivisions of the paraventricular nucleus of the hypothalamus in the rat. Neurosci Lett 1996; 220, 105-108, doi:10.1016/S0304-3940(96)13240-7.

58. Sawchenko PE, Swanson LW. The Organization Of Noradrenergic Pathways From the Brain-Stem To the Paraventricular And Supraoptic Nuclei In the Rat. Brain Res Rev 1982; 4, 275-325, doi:10.1016/0165-0173(82)90010-8.

59. Bienkowski MS, Rinaman L. Noradrenergic Inputs To the Paraventricular Hypothalamus Contribute To Hypothalamic-Pituitary-Adrenal Axis And Central Fos Activation In Rats after Acute Systemic Endotoxin Exposure. Neuroscience 2008; 156, 1093-1102, doi:10.1016/j.neuroscience.2008.08.011.

60. Herman JP. Regulation of Hypothalamo-Pituitary-Adrenocortical Responses to Stressors by the Nucleus of the Solitary Tract/Dorsal Vagal Complex. Cell Mol Neurobiol 2018; 38, 25-35, doi:10.1007/s10571-017-0543-8.

61. Watkins LR, Maier SF, Goehler LE. Cytokine-To-Brain Communication - a Review And Analysis Of Alternative Mechanisms. Life Sci 1995; 57, 1011-1026, doi:10.1016/0024-3205(95)02047-M.

62. Buller KM. Role of circumventricular organs in pro-inflammatory cytokine-induced activation of the hypothalamic-pituitary-adrenal axis. Clin Exp Pharmacol P 2001; 28, 581-589, doi:10.1046/j.1440-1681.2001.03490.x.

63. Shapiro RE, Miselis RR. The Central Neural Connections Of the Area Postrema Of the Rat. J Comp Neur 1985; 234, 344-364, doi:10.1002/cne.902340306.

Figure 1. Experimental design.
Over three consecutive days, saline was administered to four groups of mice and minocycline to the other four groups. Immediately after the administration of saline or minocycline on the third day, two groups of mice were additionally injected with saline and the other two groups were injected with LPS. Six or twenty-four hours after the last injection, mice were sacrificed to remove the brains. The eight groups of mice with eight treatment combinations were designated as S3S6, S3S24, S3L6, S3L24, M3S6, M3S24, M3L6, and M3L24.
Figure 2. Microglial activation in NTS in response to LPS and minocycline treatment.

(A) Microglia morphology detected by Iba-1 immunohistochemistry in NTS of mice of groups S3S6, S3L6, M3S6, M3L6, S3S24, S3L24, and M3S24. Scale bars: 60μm; scale bars of the insert: 30μm. (B) Schematic illustration of the area of NTS analyzed in this study. (C) Statistical summary of the cell body area of microglia (μm²) in NTS of different groups of animals. Values were expressed as the mean ± SEM. S3S6: n = 97; S3L6: n = 123; M3S6: n = 133; M3L6: n = 75; S3S24: n = 107; S3L24: n = 124; M3S24: n = 118; M3L24: n = 150. ***P<0.001, ****P<0.001.
Figure 3. Neuronal activation in NTS and AP in response to LPS and minocycline treatment.

(A-H) Representative images showing c-Fos immunostaining. Scale bars, 100 μm. (I-J) Statistical summary of the number of c-fos positive neurons. Values were expressed as the mean ± SEM. n = 4-5 per group, n = 37 per brain region.

†††P<0.001, ***P<0.001, $$$P<0.001.
Figure 4. Neuronal activation in LPB in response to LPS and minocycline treatment.

(A-H) Representative images showing c-Fos immunostaining. Scale bars, 100 μm. (I-J) Statistical summary of the number of c-Fos positive neurons. Values were expressed as the mean ± SEM. n = 4-5 per group, n = 38 per brain region.

†††P<0.001, ***P<0.001, #P<0.05.
Figure 5. Neuronal activation in PVN in response to LPS and minocycline treatment.

(A-H) Representative images showing c-Fos immunostaining. Scale bars, 100 μm. (I-J) Statistical summary of the number of c-Fos positive neurons. Values were expressed as the mean ± SEM. n = 4-5 per group, n = 38 per brain region.

†††P<0.001, **P<0.001, $$$P<0.001, #P<0.01.
Figure 6. Schematic summary of neuronal activation in the NTS-associated network in response to LPS and minocycline. (A) Neuronal activation in the brains of animals treated with saline for three days and once more 6 hours before sacrifice (group S3S6). (B) Neuronal activation in the brains of animals treated with saline for three days and LPS 6 hours before sacrifice (group S3L6). (C) Neuronal activation in the brains of animals treated with minocycline for three days and LPS 6 hours before sacrifice. Brain regions with red dots show significantly increased number of c-Fos positive neurons, comparing groups S3L6 and M3L6. Each dot in every brain region represents one-tenth of the actual number of c-Fos positive neurons.
Table 1. Statistical summary of the cell body area of microglia (μm²) in various regions across the brains of mice treated with saline/minocycline and saline/LPS.

Region	S3S6	S3L6	M3S6	M3L6	S3S24	S3L24	M3S24	M3L24
Acbs	29.5±1.4	48.3±2.8†††	33.8±1.7	34.7±1.8***	31±1.7	31.2±1.7	34.2±1.6	41.2±1.9‡‡‡
BNStd	31.3±1.6	41.2±2.2††	37.3±2	35.7±2.3	31.9±1.9	40±2.3	35.7±2	49.7±2.8‡‡‡
PVN	28.8±1.4	43.4±4.1††***	29.7±1.4	32.6±3.1*	30.5±1.3	38.5±2.4‡	32.9±1.5	40.8±2.4
CeA	32.9±1.8	49.4±2.2***	38±1.2	39.8±2.7***	32.4±1.2	39.5±1.7**	37.6±1.3	47.5±2***
DG	35.7±1.4	49.9±2.5†††	38.1±2	44.7±2.2	34.7±1.4	49.4±2.3**	39.9±1.5	45.6±2
LPB	33.9±1.9	44.9±3.1†††	35.4±1.6	41±2.6	30±1.5	43±2.2**	35.4±1.6	38.3±2.2
LC	31.7±1.5	43.8±3.2†††	36.6±1.8	37.2±2*	32.8±1.6	38.7±1.9‡	35.6±3.9	36.8±2.9
NTS	30.8±1.7	50.7±3.1†††	37.2±2.2	35.9±2.1***	33.2±1.9	38.9±2.1	35.1±1.9	40.8±2.4
AP	46.2±4.5	54.8±3.2	55.3±3.3	58.5±4.8	48.9±3.2	57.9±2.5	47±3.5	54.2±3.2

Abbreviations: Acbs: shell part of the nucleus accumbens; AP: area postrema; BNStd: dorsal part of the bed nucleus of the stria terminali; CeA: central nucleus of the amygdala; DG: dentate gyrus; LC: locus coeruleus; LPB: lateral parabrachial nucleus; NTS: nucleus tractus solitarius; PVN: paraventricular nucleus of the hypothalamus. Values were expressed as the mean ± SEM. ANOVA and Fisher's least-significant differences were employed for statistical analysis. The number of microglia cells sampled from each brain region is the following: Acbs: n = 850; BNStd: n = 1077; PVN: n = 698; CeA: n = 1461; DG: n = 1405; LPB: n = 846; LC: n = 590; NTS: n = 927; AP: n = 1061. †P < 0.01 and ††P < 0.001 for S3L6 vs. S3S6. *P < 0.05 and *P < 0.001 for M3L6 vs. S3L6. †P < 0.05, ††P < 0.01, and †††P < 0.001 for S3L24 vs. S3S24. ‡‡P < 0.01 and ‡‡‡P < 0.001 for M3L24 vs. S3L24.
Table 2. Statistical summary of the number of c-Fos immunoreactive neurons in various regions across the brains of mice treated with saline/minocycline and saline/LPS

Region	S3S6	S3L6	M3S6	M3L6	S3S24	S3L24	M3S24	M3L24
Acbc	0	0	0	0	0	35.4±6.8⁵⁵	0	30.2±2.5
Acbs	37.8±2.5†	8.6±2.2	23±5.7	0	59±11.9	41.8±15.7	87.6±18.1	
BNSTd	29±4.9††	4.4±2.9	68.3±11.6***	0	7.2±2.8⁵⁵	4.4±2.77	12.4±3.91	
BNSTv	5±3.5	46±7.3††	2±2	123±17.2***	0	16.8±2.4⁵⁵	5.8±2.7	27.4±8.3*
PVN	0.8±0.8	174±19.8†††	6±1.1	240±3.6***	15.4±7.4	36.4±6.2⁵⁵	17.2±4.3	90.8±21.9**
CeA	28±3†††	6.8±2	52.6±7.8***	2±2	13.6±4.2⁴	11.6±3.2	45±5.8***	
BLA	25.3±2†††	6±0.8	9.4±3†	3.2±3.2	7.8±3.4⁴	9.8±4.7	47.2±9.3***	
DG	5±3.5	46±7.3†††	2±2	123±17.2***	0	16.8±2.4⁵⁵	5.8±2.7	27.4±8.3*
VTA	0	0	0	0	0	0	0	0
DR	65±7.9††	12.4±3.5	121.6±21***	11.8±8.9	60.4±19.6	29.2±4.1	83.4±10.6	
PAG	7±1.2	14±1.8	9±1.9	51±8.3***	8±5.8	18±5.7	25.4±6.7	103±9.5***
LPB	3±1.8	36±12†††	5.8±2.9	101±8.5***	2±2	21±4.3	1.8±1.1	38±5.6*
LC	4.3±3.3	34±2.1†	6.4±4.7	70.4±8.1***	14.6±9	24.6±5.9	52.8±7.4	58.2±10.8**
NTS	0	104±8.2†††	0	204.8±13.5***	13.8±7.8	106.8±35.9	11.6±1.3	97.4±9.4
AP	72.0±8.6†††	0	170.6±22.1***	0	4.3±4.3⁵⁵	0	3±2.1	

*Abbreviations: Acbc: core part of the nucleus accumbens; Acbs: shell part of the nucleus accumbens; AP: area postrema; BLA: basolateral amygdala; BNSTd: dorsal part of the bed nucleus of the stria terminalis; BNSTv: ventral part of the bed nucleus of the stria terminalis; CeA: central nucleus of the amygdala; DG: dentate gyrus; DR: dorsal raphe; LC: locus coeruleus; LPB: lateral parabrachial nucleus; NTS: nucleus tractus solitarius; PAG: periaqueductal gray; PVN: paraventricular nucleus of the hypothalamus; VTA: ventral tegmental area. Values were expressed as the mean ± SEM. ANOVA and Fisher’s least-significant differences were employed for statistical analysis. The number of sections analyzed for each brain region is 36-38. †P < 0.05, ††P < 0.01, and †††P < 0.001 for S3L6 vs. S3S6. ‡P < 0.05, ‡‡P < 0.01, and ‡‡‡P < 0.001 for M3L6 vs. S3L6. §P < 0.05, §§P < 0.01, and §§§P < 0.001 for S3L24 vs. S3L6. ¶P < 0.05, ¶¶P < 0.01, and ¶¶¶P < 0.001 for M3L24 vs. S3L24.