Liver injury models for induction of hepatic oval cells in rodents

Abstract

Hepatic oval cells are progenitor stem cells residing in the liver that play an important role in liver regeneration when hepatocyte response to the injury is inadequate. Ongoing studies continue to characterize these elusive cells, understand their role in carcinogenesis, and determine their potential for therapeutics. Since oval cells proliferate only upon exposure to liver injury, a multitude of injury models have been developed in the past years to investigate their activity. These injury models comprise chemical, surgical and biological components. Depending on the chemical toxicity or lethality of injury, different extents and time required to induce oval cell responses are seen. Here, we review the various strategies available that can be used to induce hepatic oval cells in rodents.

Keywords: animal models, liver, liver regeneration, oval cells, rodentia

Introduction

The liver is a remarkable organ with immense regenerative potential. Hesiod’s Theogony describes the punishment meted out to Prometheus for restoring fire to humanity—his liver would be eaten by an eagle daily only for it to regenerate overnight before the ordeal is revisited. Modern science now affords us the opportunity to investigate why and how the liver regenerates. Most humans tolerate major hepatectomies with the remnant liver undergoing hypertrophy to maintain homeostasis. Animal experiments reveal that after a partial hepatectomy (PH), rats and mice regenerate their liver mass almost completely by 7 and 14 days, respectively.1-3

Injury models to explore liver behavior with chemical induction of cirrhosis and carcinogenesis led to the work of Opie EL.4 He recognized the development of biliary ductular cells proliferating around portal tracts of rats fed butter yellow (dimethyl aminoazobenzene). These cells were further characterized and given the name “oval cells” by Farber E.5 Since then, numerous studies using a multitude of injury models in rodents have identified oval cells as hepatic progenitor or stem cells. We reviewed the MEDLINE database with a PubMed search using terms “hepatic oval cells” up till Dec 2013. Publications written in English pertaining to injury models and oval cells were reviewed in-depth. We begin with a concise summary of hepatic oval cells in rodents.

Hepatic oval cells

After massive injury, the liver regenerates by compensatory proliferation of hepatocytes.4 However, when this pathway is inhibited or inadequate such as hepatocyte replicative senescence, hepatic oval cells may proliferate.7 In such situations, oval cells constitute an available transit amplifying cell compartment to continue liver regeneration and repopulation.8-9

Oval cells appear as small cells approximately 1/3 the size of hepatocytes.10 As so named, they are oval-shaped with unclear margins and scant, slightly basophilic-like cytoplasm.3 The cell has a large round or oval-shaped blue-staining nuclei on routine hematoxylin & eosin staining, that contains a fine chromatin network and prominent nucleolus. In mice, oval cells have a diameter of 7-10 µm.11,12 In rats, they measure 7-12 µm.13-17 They are even slightly larger in hamsters at 7-14 µm.18 When oval cells proliferate, active DNA synthesis occurs and this can be observed using bromodeoxyuridine or 5-ethyl-2’-deoxyuridine labeling.19 Electron microscopy indicate that oval cells initially exhibit characteristics of undifferentiated cells with a high ratio of nucleus to cytoplasm with obvious nucleoli, rare cytoplasmic organelles, and some villus-like apophyses the cell surface.20,21 The nuclei and cytoplasmic organelles resemble bile duct cells except that oval cells contain greater numbers of ribonucleoprotein granules.20 While the scientific literature on the origin of oval cells is still incomplete, oval cells are likely to originate from the embryonic ductal plate and reside facultatively at the canal of Hering.12,22-25 Upon injury, they first appear near biliary ductules, spreading along portal tracts before infiltrating the rest of the liver.24,25 Initially, they resemble proliferating bile duct cells, save that they do not form recognizable ductular profiles.26 Cell surface markers have identified oval cells in normal rodent liver.27 Normal mice have on average 8.07±5.02 oval cells per portal tract,28 or 0.04% of total liver cells.29 In normal rats, 2.5±0.5 x 105 oval cells have been isolated per 100 g body weight.30

Oval cell surface markers

A major impediment in studying oval cells is the lack of consistent and specific cellular markers. Identification begins with hematoxylin and eosin staining to visualize typical histological characteristics. In the past decade, developments in immunohistochemistry and hybridoma technology have defined the oval cell population.
Liver injury models for induction of hepatic oval cells in rodents

Background on rodent liver injury models

The Solt-Farber protocol was the first consistent and reproducible method to induce oval cell proliferation. This involved an intraperitoneal dose of di-ethyl-nitrosamine (DEN) 20mg per 100g body weight at day 0 followed by a recovery period of 2 weeks. Thereafter, 2-AAF was added in the basal diet and PH performed one week later. Oval cells were identified 30 hours after PH.

Since then, variations to streamline this induction process, new toxicology tests yielding oval cells, and gene modification have led to a myriad of injury models. We propose an adaptation of Terblanche et al. model for acute hepatic failure.

An ideal injury model to study oval cells would comprise:

i. a standardized animal model,
ii. an option for gene modification to investigate activation pathways,
iii. reproducible oval cell response,
iv. minimize mortality to allow studying long-term effects of oval cell activation and carcinogenesis,

minimal hazard to personnel.

We will first discuss the factors surrounding animal models followed by the injury agents.

Animal models

Species, gender and strain: Rats and mice are the two most common rodents used as they are easily standardized animal models. Few studies have used hamsters and woodchucks. Each species possesses different metabolic pathways and liver micro-environments. Between species, the same agent does not generate equivalent oval cell responses and cellular expression, possibly even of oval cell phenotype, as indicated...
Liver injury models for induction of hepatic oval cells in rodents

by discrepant markers.52 Gender discrepancies have been observed in rats. In the pioneering work by Farber, oval cell responses after ethionine and 2-AAF were seen only in male Wistar rats while livers of corresponding females were normal.5 Bisgaard et al.79 also found that 2-AAF elicited smaller mitogenic responses in female Fischer-344 rats compared to males. This phenomenon may be due to female rats having a smaller enzymatic capacity to N-hydroxylate 2-AAF into N-hydroxy-2-AAF, the chemical that elicits the mitogenic effects of 2-AAF.79 Notwithstanding, oval cell proliferation in female Wistar, Sprague-Dawley and Fischer-344 rats has been reported in other studies.50–54

Limited information is available on strain-related differences although one study by Wood et al.85 compared oval cell responses between 2 strains of age-matched rats. The oval cell response in Fischer-344 rats was extensive but oval cells remained localized to the portal areas in Copenhagen rats. Further work is required to characterize the gender discrepancies within rats, the different rat strains and how they affect interpretation of oval cell responses.

Age: Consistent with other stem cell types, oval cells are subject to age-related quiescence and decline in function.86 While experiments with mice ranging from 3 up to 12 weeks have identified oval cells,43,57,58 age-related discrepancies have been noted in terms of number of cells and proliferative ability. With regard to number of oval cells, conflicting evidence has been reported. Comparing mice older and younger than 8 weeks undergoing an interval-feeding injury model, no oval cells were seen in mice younger than 8 weeks. It was suggested that this may be related to how oval cells respond to cumulative proliferative demand over extended periods of time.1 On the other hand, studies exist reporting age dependent oval cell responses in the opposite direction, with younger animals demonstrating greater responses compared to older animals.90,91 Concerning the actual proliferative ability of the oval cells isolated, evidence has been consistent in finding that oval cells from older mice have lower regenerative potential.25,90 Cell lines cultured from mice 4 weeks old were maintained for more than 30 passages, but those from mice 8 weeks old were maintained for only 20 passages.91,92 Therefore, the age of the animal may influence the extent of oval cell response as well as the ability of the oval cells to effect a regenerative response.

Table 1 Chemical liver injury models in rodents

Model	Species	Selected references
CDE	Mouse, Rat	[17,20,27,44,99,192]
DDC	Mouse	[11,12,52,100,101,106,193,194]
GaIN	Rat	94,111,115
DEN	Mouse	117,119
APAP	Mouse	28,52,27
CCl\textsubscript{4}	Mouse, Rat	130,131
2-AAF	Rat	5,133
2-AAF/CCl\textsubscript{4}	Rat	33,92,84,136,162
2-AAF/AA	Rat	92,136,139
Choline deficient diet/2-AAF	Rat	52
3’-Me-DAB	Rat	5,53,114,144,188
Phenobarbital/Cocaine hydrochloride	Mouse	145
TCPOBOP	Mouse	45

Injury agent

Basis and methods of oval cell induction: There are two differing hypotheses on how oval cells are activated. One hypothesis is the resistant hepatocyte model that involves the use of a toxic carcinogen.76 The cytotoxic effect of the carcinogen causes hepatic cell death which selects for cells resistant to or acquire resistance to the toxicity and gain a proliferative advantage. Oval cells become selected and activated through this mechanism. Experiments by Anil kumar et al.93 instead indicate that oval cells belong to a facultative stem cell compartment. The alternative two-hit hypothesis suggests that oval cells exist facultatively and that both hepatocytes and oval cells respond to the injury, except that hepatocytes proliferate preferentially. A "first hit" exhausts or inhibits hepatocyte responses while the "second hit" initiates the oval cell response.92,93

Cellular injury does not guarantee oval cell proliferation.74 The site of injury within the liver (centri-lobular vs peri-portal) influences the time taken and magnitude of oval cell response. Chemicals such as N-acetyl-p-aminophenol (APAP) and carbon tetrachloride (CCl\textsubscript{4}) which preferentially damage centri-lobular liver have been observed to induce quicker and greater oval cell responses.26,55 This has been hypothesized to be due to oval cells residing in the peri-portal region. Hence, agents targeting centri-lobular regions spare the oval cells, allowing for more prolific responses.28 Combining agents may result in synergistic effects. For example, allyl alcohol (AA) and CCl\textsubscript{4} were compared using dosages that resulted in equivalent levels of hepatic necrosis. When 2-AAF was added to these dosages of AA and CCl\textsubscript{4}, the 2-AAF/CCl\textsubscript{4} model generated significantly greater and more persistent responses as compared to 2-AAF/AA.92

Classification of injury agents: Injury models can be broadly classified into chemical, surgical and biological, or a combination. The 2 most common injury methods are chemical agents (Table 1) and the combination of chemical agents with PH (Table 2). The high number of permutations of agents, dosage, delivery method, kinetics, and duration presents a challenge in providing a meaningful analysis. We have elected to discuss the published results of more commonly used agents.
Liver injury models for induction of hepatic oval cells in rodents

Table 2 Combined chemical and surgical liver injury models in rodents

Model	Species	Selected references
DDC/TCPOBOP	Mouse	150
Retrorsine/GalN	Rat	115
Fumosin B₁	Rat	148,149
Ethanol	Mouse, Rat	7,151
High fat diet & ethanol	Mouse	150
Iron overload	Rat	152

CDE: choline-deficient diet supplemented with ethionine; 3′-Me-DAB, 3′-methyl-4-dimethyl aminozobenzene; DDC, 3,5-diethoxycarbonyl-1,4-dihydrocollidine; GalN, d-galactosamine; DEN, diethyl nitrosamine; APAP, n-acetyl-p-aminophenol; CCl₄, carbon tetrachloride; 2-AAF, n-acetyl-2-aminofluorene; AA, allyl alcohol; TCPOBOP, 1,4 bis[2-(3,5-dichloropyridyloxy)] benzene.

Chemical

A. Choline-deficient diet supplemented with ethionine (CDE): Choline, a quaternary compound (trimethyl-[<i>l</i>-hydroxyethylammonium), is an essential nutrient and precursor of the acetylcholine. It is needed to form cellular membranes and is an important methyl-group donor necessary for converting homocysteine to methionine. Choline deficiency leads to inflammation and oxidative stress, causing steatohepatitis and liver fibrosis. Its involvement with methylation and epigenetic changes also causes genetic mutations and cancer when deficient.

Choline-deficient diets can be supplemented with ethionine in drinking water to exacerbate their toxicity. Ethionine is the ethyl analogue of methionine in mammals and results in homopentylation of hepatic DNA due to the accumulation of S-adenosyl homocysteine. This is the most commonly applied diet model on both rats and mice. Akhurst et al. suggested that an ideal response using CDE in mice was achieved with 50% choline-deficient diet and 0.15% DL-ethionine for 2-3 weeks. Full choline-deficient diets resulted in extensive hepatic steatosis while 50% choline-deficient diets maintained the mice in a good condition with minimal steatosis. Reducing ethionine results in fewer oval cells seen. Peak oval cell response and plateauing of doubling time is seen at around 2 weeks.

B. 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC): DDC is a porphyrinogen hepatotoxin that can be reconstituted at 0.1% in the diet to generate a prolific oval cell response at 3-6 weeks. It activates constitutive androstane receptor (CAR, NR113) that induces transcription of the cytochrome p450 2b gene in hepatocytes. CAR also regulates endogenous energy metabolism by inhibiting key gluconeogenic genes that encode phosphoenolpyruvate carboxylase and glucose-6-phosphatase.

DDC causes the accumulation of N-methylporphyrin IX, a potent inhibitor of the enzyme ferrochelatase which converts protoporphyrin IX into heme. This result in aggregation of protoporphyrin IX and porphyrin precursor 6-aminoevulinic acid. Porphyria crystals form within hepatocytes in the peri-portal regions, causing hepatic ductal and oval cell proliferation. In contradistinction to other models where hepaticocyte proliferation is inhibited, hepaticocyte proliferation continues allowing the study of interactions between hepatocytes and oval cells.

C. D-Galactosamine (GalN): GalN is a hexosamine metabolized through the galactose pathway in the liver. GaIN sequesters available uridine which results in depletion of intracellular uridine derivatives in hepatocytes and loss of intracellular calcium homeostasis. Cell membranes and organelles are disrupted, and RNA and protein synthesis are arrested. GaIN liver injury in rats causes panlobular, focal hepatic necrosis that is microscopically and biochemically similar to that of viral hepatitis in humans. GaIN is administered intra-peritoneally as a single dose to rats between 50-140mg per 100g body weight. Maximal oval cell proliferation is seen between 2-5 days and oval cells disappear 7-10 days after the injection. GaIN can also be given 2 weeks after retorsine, a tumorigenic pyrrolizidine alkaloid, to generate greater numbers of oval cells.
Liver injury models for induction of hepatic oval cells in rodents

d. Di-ethylnitrosamine (DEN): DEN belongs to the family of carcinogenic N-nitroso compounds. It causes alkylation of nucleic acids and proteins in hepatocytes resulting in cirrhosis and cancer. DEN can be given per-oral or intra-peritoneally, and/or in combination with other agents.

e. N-acetyl-p-aminophenol (APAP): APAP is an aminobenzene that is metabolized by cytochrome p450 into the toxic metabolite N-acetyl-p-benzoquinone imine (NAPQI). NAPQI is usually conjugated by glutathione in the liver into harmless cystine and mercapturic acid conjugates. When given in overdose quantities, glutathione stores are depleted and NAPQI covalently binds to DNA and cysteine residues on hepatic proteins leading to 3-(cysteine-S-yl) APAP adducts. Changes in the liver may be detected within 30 minutes of injury – sinusoidal endothelial cells swell and microvascular congestion occurs in the centri-lobular region. Necrosis of hepatocytes develops at around 2 hours. Oval cell responses are detected as early as 3 hours after injury and it is hypothesized that this rapid response is due to a centri-lobular form of injury. For mice, APAP is given as a single intra-peritoneal dose between 25-100 mg per 100 g body weight or in multiple doses at 30 mg per 100 g body weight.

f. Carbon Tetrachloride (CCl4): CCl4 is a halogenated alkane that is metabolized in the liver into trichloromethyl radical (CCl3⋅) and chlorine. CCl3⋅ binds to numerous cellular molecules, produces reactive oxygen species and forms DNA adducts. Similar to APAP, CCl4 preferentially damages the centri-lobular region. Studies in rats have found that CCl4 alone cannot generate an oval cell response, although the converse has been reported. In mice, few A6 positive oval cells were seen after chronic CCl4 exposure. CCl4 is commonly used with 2-AAF for use in rats. In 2-AAF/CCl4 models, the oral dose of CCl4 is 90 mg per 100 g body weight while the intra-peritoneal dose is 150 mg per 100 g body weight. Maximal oval cell responses after 2-AAF/CCl4 are detected between 7-9 days after the start of the protocol.

g. N-acetyl-2-aminofluorene (2-AAF): N-acetyl-2-aminofluorene is an aromatic amine that becomes metabolized to N-hydroxy-2-AAF which is the potent proximate carcinogen. It blocks proliferation of hepatocytes and forms DNA adduct leading eventually to cancer. These studies delivered 2-AAF at doses of 0.4-2 mg per 100 g body weight daily or 1-1.5 mg per day by gavage. In recent years, 2-AAF is commonly administered with a time-released pellet implanted subcutaneously or intra-peritoneally, delivering 2.5 mg per day. In 2-AAF/PH models, 2-AAF is started for 4-6 days prior to PH, omitted (if administered orally) on the day of PH, and resumed thereafter for another 4-10 days. Maximal oval cell proliferation after 2-AAF/PH is reported at 6-11 days after PH.

h. Others: Numerous other chemical agents are available. One example is 3'-methyl-4-dimethylaminoazobenzene (3'-Me-DAB), an azo dye with significant hepatocarcinogenic properties. Nearly 100% of rats develop hepatocellular carcinoma after 20 weeks of 3'-Me-DAB diet. Measuring serum AFP levels while on 3'-Me-DAB demonstrates two peaks: the first corresponds with the appearance of oval cells while the second indicates the development of hyperplastic nodules and hepatocellular carcinoma.

Carcinoid hydrochloride is a hepatotoxin that, in contrast to APAP and CCl4, causes periportal injury. It activates the same CAR-ligand as DDC. Interestingly, there is preferential CYP2B10 induction in centri-lobular hepatocytes, as opposed to DDC. Dipin (1, 4-bis [N,N'-dihylylene-phosphamido]-piperazine) is an alkylating drug that causes irreversible damage to DNA, RNA and proteins. Dipin is combined with PH to induce oval cell proliferation although the time taken varies from 1-11 weeks. Fumosin B1, a mycotoxin produced by Fusarium moniliforme, is a non-genotoxic carcinogen that induces oval cell proliferation but allows for hepatocytes to proliferate, similar to DDC. Diet modification using high fat or alcohol diets leads to steatohepatitis and oval cells responses can be observed after chronic exposure. Chronic diet-induced iron overload also shows similar oval cell responses.

Surgical

i. Partial hepatectomy (PH): The surgical procedures that can be performed on rodent livers to induce injury are listed in Table 3. The most commonly used procedure is PH, which involves removing 50-83.4% of the liver. A widely described technique is the 70% or 2/3 PH model described by Higgins et al. The left lateral and median lobes are approximately 72% of total liver weight. PH alone does not always generate oval cells and is used in combination with chemical agents. However, some studies have isolated oval cells in a pure PH model and is used in combination with chemical agents. This is a unique opportunity to study oval cell responses in livers that are otherwise healthy and naïve to toxic injury. The modified Soft-Farber protocol uses 2-AAF/PH without DEN. 2-AAF/PH can be used on mice and rats, and peak responses are between 7 to 11 days after PH.

Table 3	Surgical liver injury models in rodents	
Model	**Species**	**Selected references**
PH	Mouse, Rat	15,37,52,156,157
Bile duct ligation	Rat	164,165
Portal vein branch ligation	Mouse, Rat	164,167
PH, 2/3 partial hepatectomy		
Liver injury models for induction of hepatic oval cells in rodents

ii. Bile duct or portal vein branch ligation: Bile duct ligation causes cholestatic liver injury and biliary ductal proliferation. Oval cell proliferation is not commonly associated with this model, although several studies have identified oval cells in rat and mouse models post-ligation using M, PK and CK19 as markers, respectively. Ligating a portal vein branch causes ischemia, atrophy of the affected lobes and compensatory hypertrophy of non-affected lobes. Ligating the left portal vein branch produces a peak oval cell response after 7 days.

Similar to PH alone, these ligation models allow the study of oval cells induced by non-carcinogenic injury.

iii. Other surgical adjuncts: Parasympathetic stimulation is known to modulate oval cell responses. Vagotomized rats generated a smaller response due to the loss of stimulatory effects of acetylcholine via the muscarinic acetylcholine receptor subtype-3. Inhibiting the sympathetic nervous system chemically with 6-hydroxydopamine or pharmacologically with prazosin generated heightened oval cell responses but less hepatic necrosis and steatosis. These findings have implications on the role of oval cells in liver transplantation since donor grafts are denervated.

Table 4 Biological liver injury models in rodents

Model	Species	Selected references
Long-Evans Cinnamon	Rat	170,171
Obese mutant (ob/ob)	Mouse	7,45
Urokinase-type plasminogen activator transgene	Mouse	172
Herpes simplex virus thymidine kinase gene	Rat	173
Taurine transporter knockout (taut/-)	Mouse	175
Helicobacter hepaticus	Mouse	177,170
Woodchuck hepatitis virus	Woodchuck	54,179
Woodchuck hepatitis virus/ Aflatoxin B_i	Woodchuck	179,178
Fas receptor/CD95	Mouse	25

Gene knockout models can be used to induce liver injury or investigate pathways of oval cell activation. Taurine transporter knockout (taut/-) mice develop non-specific non-steatotic hepatitis and oval cells could be identified in these mice beyond 1 year of age. Interleukin-6 (IL-6), WW45 and p53 knockout models are some examples used with injury models described above to delineate oval cell signaling and carcinogenic pathways. Infective hepatitis models include Helicobacter hepatitis infection in mice and chronic woodchuck hepatitis virus in woodchucks. Acute and chronic hepatitis develops in these animals, eliciting oval cell responses and subsequently, hepatocellular carcinoma. Direct immune-mediated injury can be induced by stimulating the Fas receptor/CD95 causing apoptosis of hepatocytes and fulminant hepatic failure. Tsuchiya et al. injected mice intra-peritoneally with 3 doses of 0.03 mg per 100g body weight anti-mouse Fas every 2 days and isolated oval cells after 5 days.

Dose, duration and delivery of injury agent: The dose of injurious agent should be titrated to deliver significant liver injury and yet minimize both short- and long-term mortality. In the case of chemicals, we can introduce the agent at LD₅₀ dose.

Biological: Biological injury models involve gene modification or the introduction of and infection or immune-mediated injury (Table 4). Gene modification generates animals which develop different forms of liver injury. Mutation of the Atp7b gene creates Long-Evans Cinnamon rats that have toxic accumulation of copper within the liver. Spontaneous hepatitis develops at 6 weeks of age with concomitant oval cell proliferation. Homozygous obese (ob/ob) mice develop steatohepatitis and oval cell responses similar to alcohol-induced models. AL-uPA transgenic mice express hepatotoxic urokinase-type plasminogen activator in hepatocytes, generating a proliferative response from trans-gene deficient hepatocytes and oval cells. Gene-transfer models with suicide genes induce the liver biochemically. One example is recombinant adenoviral vector AdCMVtk which contains herpes simplex virus thymidine kinase (HSV-tk) gene. When ganciclovir is administered to animals treated with AdCMVtk, HSV-tk phosphorylates ganciclovir into a cytotoxic derivative that causes severe liver injury and massive oval cell responses. Adenoviral vectors can also introduce growth factors such as hepatocyte growth factor (HGF) and vascular endothelial growth factor (VEGF) to modulate oval cell behavior. In the cases of HGF and VEGF, increased oval cell responses were seen after liver injury.

Extent of injury can be objectively assessed by measuring the transaminases induced or by quantifying the amount of hepatic necrosis on microscopy. It should be noted that oval cells may not respond equally even if the extent of injury is comparable biochemically. One study compared GaIN with CCl₄. Other injury models such as choline-deficient ethionine supplemented (CDE) diet and 3, 5-diethoxycarbonyl-1, 4-dihydrocollidine (DDC) require sequential dosing, and their dosages have been derived empirically.

Depending on the injury agent, the first appearance of oval cells may be anytime between 1 day to 3 weeks after inducing the injury. Cessation of the injury agent leads to termination of oval cell response although changes to the liver such as cholangiofibrosis are not reversed once formed. Prolonging exposure...
Liver injury models for induction of hepatic oval cells in rodents: The process of cancer induction and the entity cancer stem cells are comprehensive topics that warrant discourses of their own. Nevertheless, we briefly introduce some relevant issues. Many injury models inducing oval cell responses also form cancer nodules as chronic injury leads to acquisition of mutations over periods of hyper-proliferation. Oval cells have been suspected to be tumor-initiating cells or cancer stem cells. Indeed, oval cell responses often correlate directly with the likelihood of tumor formation. Cancerous and oval cells often co-express markers such as OV-6, c-kit, Glypican-3, and AFP as well. Since much interest in oval cells come from the potential for therapy, this raises the concern of transplanting potentially cancerous cells. It was reported that oval cell lines became tumorigenic and formed carcinomas when inoculated into rats and nude mice. However, non-tumorigenic propagable oval cell lines have also been reported in literature. The significance of oval cells in carcinogenesis needs to be further explored and perhaps, may lead to developments in targeted cancer therapy.

Future direction

Oval cells may play an important role in liver regeneration. We summarized pertinent information on oval cells and reviewed various injury models used to generate them. Future work to characterize these cells will provide greater insight into the exact pathways of activation and translate toward therapeutic utility. Developing surgical methods to induce oval cells will allow research on oval cells naïve to toxic chemicals and recreate scenarios that better mirror clinical situations. Elucidation of malignant transformation pathways will determine the exact role oval cells play in carcinogenesis and may potentially contribute toward targeted therapy.

Acknowledgements

None.

Conflict of interest

Author declares that there is no conflict of interest.
References

1. Batistic DS, von Bargen A, Blaschke S, et al. Different physiology of interferon-alpha-gamma in models of liver regeneration in the rat. *Histochem Cell Biol*. 2011;136(2):131–144.

2. Cimica V, Batistic D, Chen Y, et al. Transcriptome analysis of rat liver regeneration in a model of oval hepatic stem cells. *Genomics*. 2005;86(3):352–364.

3. Ueberham E, Lindner R, Krapamard M, et al. Oval cell proliferation in p16INK4a expressing mouse liver is triggered by chronic growth stimuli. *J Cell Mol Med*. 2008;12(2):622–638.

4. Opie EL. The pathogenesis of tumors of the liver produced by butter yellow. *J Exp Med*. 1944;80(3):231–246.

5. Farber E. Similarities in the sequence of early histological changes induced in the liver of the rat by ethionine, 2-acetylaminofluorene, and 3'-methyl-4-dimethylaminoazobenzene. *Cancer Res*. 1956;16(2):142–148.

6. Alison M, Golding M, Lalan i e N, et al. Wound healing in the liver with particular reference to stem cells. *Philos Trans R Soc Lond B Biol Sci*. 1998;353(1370):877–894.

7. Yang S, Kotesia A, Lin H, et al. Oval cells compensate for damage and replicative senescence of mature hepatocytes in mice with fatty liver disease. *Hepatology*. 2004;39(2):403–411.

8. Assimakopoulous SF, Talamandos AC, Alexandris IH, et al. Stimulation of oval cell and hepatocyte proliferation by exogenous bombesin and neurotensin in partially hepatomectomized rats. *World J Gastroint Pathophysiol*. 2011;2(6):146–154.

9. Sanchez A, Factor VM, Schroder IS, et al. Activation of NF-kappaB and STAT3 in rat oval cells during 2-acetylaminofluorene/partial hepatectomy-induced liver regeneration. *Hepatology*. 2004;39(2):376–385.

10. Fang CH, Gong JQ, Zhang W. Function of oval cells in hepatocellular carcinoma in rats. *World J Gastroenterol*. 2004;10(17):2482–2487.

11. Petersen BE, Grossbard B, Hatch H, et al. Mouse A6-positive hepatic oval cells also express several hematopoietic stem cell markers. *Hepatology*. 2003;37(3):632–640.

12. Wang X, Foster M, Al-Dhalimy M, et al. The origin and liver repopulating capacity of murine oval cells. *Proc Natl Acad Sci U S A*. 2003;100:11881–11886.

13. Kaplansci C, Pealey CJ, Griffiths TG, et al. Differentiation of rat oval cells after activation of peroxisome proliferator-activated receptor alpha43. *Cancer Res*. 2000;60(3):580–587.

14. Li Z, Chen J, Li L, et al. In vitro proliferation and differentiation of hepatic oval cells and their potential capacity for intrahepatic transplantation. *Braz J Med Biol Res*. 2013;46(8):681–688.

15. Qin AL, Zhou XQ, Zhang W, et al. Characterization and enrichment of hepatic progenitor cells in adult rat liver. *World J Gastroenterol*. 2004;10(10):1480–1486.

16. Wang P, Liu T, Cong M, et al. Expression of extracellular matrix genes in cultured hepatic oval cells: an origin of hepatic stellate cells through transforming growth factor beta? *Liver Int*. 2009;29(4):575–584.

17. Yoshimura H, Harris R, Yokoyama S, et al. Anaplastic carcinomas in nude mice and in original donor strain rats inoculated with cultured oval cells. *Am J Pathol*. 1983;110(3):322–332.

18. Yoon BI, Choi YK, Kim DY . Differentiation processes of oval cells into hepatocytes: proposals based on morphological and phenotypical traits in carcinogen-treated hamster liver. *J Comp Pathol*. 2004;131(1):1–9.

19. Alison MR, Poulsom R, Jeffery R, et al. Expression of hepatocyte growth factor mRNA during oval cell activation in the rat liver. *The Journal of Pathology*. 1993;171(4):291–299.

20. Grisham JW, Hartroft WS. Morphologic identification by electron microscopy of “oval” cells in experimental hepatic degeneration. *Lab Invest*. 1961;10:317–332.

21. Carpenter R, Suner RE, van Hul N, et al. Embryonic ductal plate cells give rise to cholangiocytes, perportal hepatocytes, and adult liver progenitor cells. *Gastroenterology*. 2011;41(4):1432–1438.

22. Theise ND, Saxena R, Portmann BC, et al. The canals of Hering and hepatic stem cells in humans. *Hepatology*. 1999;30(6):1425–1433.

23. Petersen BE, Bowen WC, Patruni KD, et al. Bone marrow as a potential source of hepatic oval cells. *Science*. 1999;284(5417):1168–1170.

24. Thorgerisson SS, Evarts RP, Bisgaard HC, et al. Hepatic stem cell compartment: activation and lineage commitment. *Proc Soc Exp Biol Med*. 1993;204(3):253–260.

25. Tsuchiya A, Heike T, Baba S, et al. Long-term culture of postnatal mouse hepatic stem/progenitor cells and their relative developmental hierarchy. *Stem Cells*. 2007;25(4):895–902.

26. Lenzi R, Liu MH, Tarsetti F, et al. Histogenesis of bile duct-like cells proliferating during ethionine hepatocarcinogenesis. Evidence for a biliary epithelial nature of oval cells. *Lab Invest*. 1992;66(3):390–402.

27. Knight B, Matthews VB, Akhurst B, et al. Liver inflammation and cytokine production, but not acute phase protein synthesis, accompany the adult liver progenitor (oval) cell response to chronic liver injury. *Immunol Cell Biol*. 2005;83(4):364–374.

28. Koffman AV, Morgan G, Kirschbaum A, et al. Dose- and time-dependent oval cell reaction in acetaminophen-induced murine liver injury. *Hepatology*. 2005;41(6):1252–1261.

29. Qiu Q, Hernandez JC, Dean AM, et al. CD24-positive cells from normal adult mouse liver are hepatic progenitor cell stem cells. *Stem Cells Dev*. 2011;20(12):2177–2188.

30. Guo J, Li J, Lu Y, et al. A novel technique for hepatic progenitor cell isolation from normal adult rat livers. *ASAIJO J*. 2012;58(1):73–78.

31. Yang L, Faris RA, Hixson DC. Phenotypic heterogeneity within clonogenic ductal cell populations isolated from normal adult rat liver. *Proc Soc Exp Biol Med*. 1993;204(3):280–288.

32. Yovich MJ, Grozdanov PN, Joseph B, et al. Novel hepatic progenitor cell surface markers in the adult rat liver. *Hepatology*. 2007;45(1):139–149.

33. Chiu CC, Sheu JC, Chen CH, et al. Global gene expression profiling reveals a key role of CD44 in hepatic oval-cell reaction after 2-AAF/CC14 injury in rodents. *Histochem Cell Biol*. 2009;132(5):479–489.

34. Kon J, Ooe H, Oshima H, et al. Expression of CD44 in rat hepatic progenitor cells. *J Hepatol*. 2006;45(1):90–98.

35. Petersen BE, Geoff JP, Greenberger JS, et al. Hepatic oval cells express the hematopoietic stem cell marker Thy-1 in the rat. *Hepatology*. 1999;27(2):433–445.

36. Corelle V, Stiegler B, Gjinovci A, et al. Characterization of two distinct liver progenitor cell subpopulations of hematopoietic and hepatic origins. *Exp Cell Res*. 2006;312(15):2826–2836.

37. Yovich MJ, Grozdanov PN, Zhou H, et al. Identification of adult hepatic progenitor cells capable of repopulating injured rat liver. *Hepatology*. 2008;47(2):636–647.

38. Bird TG, Lorenzini S, Forbes SJ. Activation of stem cells in hepatic diseases. *Cell Tissue Res*. 2008;331(1):283–300.

39. Fang CH, Zhang W, Zhu XY, et al. The expression of c-kit and proliferating cell nuclear antigen in oval cells of rats with hepatocellular carcinoma. *Hepatobiliary Pancreat Dis Int*. 2003;2(4):537–544.

Citation: Tan EK, Shuh M, Cohen A. Liver injury models for induction of hepatic oval cells in rodents. *J Liver Res Disord Ther*. 2015;1(1):15–27.
DOI: 10.15406/jlrdt.2015.01.00005
Liver injury models for induction of hepatic oval cells in rodents

10.15406/jlrdt.2015.01.00005

Liver injury models for induction of hepatic oval cells in rodents

 expr patterns
tanimizu n, tsujimura t, takahide k, et al. expression of dlk/pref-1
1990;110(4):1001‒1020.

potter cs, loeffler m. stem cells: attributes, cycles, spirals, pitfalls and uncertainties. lessons for and from the crypt.
dermatology. 1990;110(4):1001‒1020.

Tanimizu N, Tsujimura T, Takahide K, et al. Expression of Dlk/Pref-1 defines a subpopulation in the oval cell compartment of rat liver. Gene Expr Patterns. 2004;5(2):209‒218.

Yang L, Li S, Hatch H, et al. In vitro trans-differentiation of adult hepatic cells into mesenchymal tumor tissue. Front Biosci. 2009;14(18):507‒521.

Barat V, Sarraf CE. Intestinal metaplasia in liver of rats after partial hepatectomy and treatment with acetylaminoﬂuorene. Cell Prolif. 2009;42(5):657‒660.

Zhang W, Chen XP, Zhang WG, et al. Hepatic non-parenchymal cells and extracellular matrix participate in oval cell-mediated liver regeneration. World J Gastroenterol. 2009;15(5):552‒560.

Vorczyckik M, Bloch K, Zemel R, et al. Immunohistochemical evaluation of hepatic oval cell activation and differentiation toward pancreatic beta-cell phenotype in streptozotocin-induced diabetic mice. J Mol Histol. 2008;39(4):463‒468.

Li Y, Zhao LJ, Xia FZ, et al. Transdifferentiation of hepatic oval cells into pancreatic islet beta-cells. Front Biosci. 2012;17:2391‒2395.

Yang L, Li S, Hatch H, et al. In vitro trans-differentiation of adult hepatic cells into mesenchymal tumor tissue. Proc Natl Acad Sci U S A. 2002;99(12):8078‒8083.

Dong HH, Xiang S, Chen XP, et al. The epithelial-mesenchymal transition promotes transdifferentiation of subcutaneously implanted hepatic oval cells into mesenchymal tumor tissue. Stem Cells Dev. 2009;18(9):1293‒1298.

Deng J, Steindler DA, Laywell ED, et al. Neural trans-differentiation potential of hepatic oval cells in the neonatal mouse brain. Exp Neurol. 2003;182(2):373‒382.

Forbes SJ, Newsome PN. New horizons for stem cell therapy in liver disease. J Hepatol. 2012;56(2):496‒499.

Wu CX, Zou Q, Zhu ZY, et al. Intrahepatic transplantation of hepatic oval cells for liver. World J Gastroenterol. 2003;9(3):544‒546.

Chen JZ, Hong H, Xiang J, et al. A selective tropism of transfused oval cells for liver. J Hepatol. 2010;53(5):863‒871.

Chen JZ, Hong H, Xiang J, et al. A selective tropism of transfused oval cells for liver. J Hepatol. 2010;53(5):863‒871.

Wu CX, Zou Q, Zhu ZY, et al. Intrahepatic transplantation of hepatic oval cells for fulminant hepatic failure in rats. World J Gastroenterol. 2009;15(12):1506‒1511.

Solt DB, Medline A, Farber E. Rapid emergence of carcinogen-induced hyperplastic lesions in a new model for the sequential analysis of liver carcinogenesis. Am J Pathol. 1977;88(3):595‒618.

Terblanche J, Hickman R. Animal models of fulminant hepatic failure. Dig Dis Sci. 1991;36(6):770‒774.

Bisgaard HC, Nagy P, Santoni-Rugiu E, et al. Proliferation, apoptosis, and induction of hepatic transcription factors are characteristics of the early response of biliary epithelial (oval) cells to chemical carcinogens. Hepatology. 1996;23(1):62‒70.

Citation: Tan EK, Shuh M, Cohen A. Liver injury models for induction of hepatic oval cells in rodents. J Liver Res Disord Ther. 2015;1(1):15‒27. DOI: 10.15406/jlrdt.2015.01.00005
Liver injury models for induction of hepatic oval cells in rodents.

79. Kriek E. Fifty years of research on N-acetyl-2-aminofluorene, one of the most versatile compounds in experimental cancer research. J Cancer Clin Oncol. 1992;118(7):481–489.

80. Anilkumar T, Ryan CJ, Aslam M, et al. The anti-proliferative effect of plasma from rats with acute fulminating hepatic failure. Scand J Gastroenterol. 1997;32(11):1152–1161.

81. Ito Y, Watanabe T, Nagatomo S, et al. Annexin A3-expressing cellular phenotypes emerge from necrotic lesion in the pericentral area in 2-acetylaminofluorene/carbon tetrachloride-treated rat livers. Biosci Biotechnol Biochem. 2007;71(12):3082–3089.

82. Piscaglia AC, Shupe TD, Oh SH, et al. Granulocyte-colony stimulating factor promotes liver repair and induces oval cell migration and proliferation in rats. Gastroenterology. 2007;133(2):619–631.

83. Yin L, Lynch D, Ilie Z, et al. Proliferation and differentiation of ductular progenitor cells and litoral cells during the regeneration of the rat liver to CCl4/2-AAF induced. Histol Histopathol. 2002;17(1):65–81.

84. Wojcik M, Bobowicz R, Lisiecka U, et al. Proliferation, differentiation and apoptosis of choline deficient ethionine supplemented diet-rat oval cells under the influence of 2-methoxyestradiol. J Pharmacol Pharmacol. 2012;63(6):669–676.

85. Wood GA, Sarma DS, Archer MC. Resistance to the promotion of multipotential for differentiation of progenitor mesenchymal-like stem cells from livers of young and old rats. Folia Histochem Cytobiol. 2007;45(3):245–254.

86. Anilkumar TV, Golding M, Edwards RJ, et al. The resistant hepatocyte model of carcinogenesis in the rat: the apparent independent development of oval cell proliferation and early nodules. Carcinogenesis. 1995;16(4):845–853.

87. Petersen BE, Zajac VF, Michalopoulos GK. Hepatic oval cell activation in response to injury following chemically induced periportal or pericentral damage in rats. J Cell Physiol. 2000;157(2):537–548.

88. Schwendepberg P, Biernpica L, et al. Timing of protooncogene expression varies in toxin-induced liver regeneration. J Cell Physiol. 1993;154(2):294–300.

89. Al-Humadi H, Zarros A, Kyriakaki A, et al. Choline deprivation: an overview of the major hepatic metabolic response pathways. Scand J Gastroenterol. 2012;47(8–9):874–886.

90. Zeisel SH. Dietary choline deficiency causes DNA strand breaks and alters epigenetic marks on DNA and histones. Mutat Res Rev. 2012;733(1-2):34–38.

91. Niederer C, Luthen R, Niederer MC, et al. Acute experimental hemorrhagic-nerotizing pancreatitis induced by feeding a choline-deficient, ethionine-supplemented diet. Methodology and standards. Eur Surg Res. 1992;24:40–54.

92. Shivapurkar N, Wilson MJ, Poirier LA. Hypomethylation of DNA in ethanol-fed rats. Carcinogenesis. 1984;5(8):989–992.

93. Akhurst B, Croager EJ, Farley-Roche CA, et al. A modified choline-deficient, ethionine-supplemented diet protocol effectively induces oval cells in mouse liver. Hepatol. 2001;34(3):519–522.

94. Apte U, Thompson MD, Cui S, et al. Wnt/beta-catenin signaling mediates oval cell response in rodents. Hepatology. 2008;47(1):288–295.

95. Yamazaki Y, Moore R, Negishi M. Nuclear receptor CAR (NR1I3) is essential for DDC-induced liver injury and oval cell proliferation in mouse liver. Lab Invest. 2011;91(11):1624–1633.

96. Dong B, Saha PK, Huang W, et al. Activation of nuclear receptor CAR ameliorates diabetes and fatty liver disease. Proc Natl Acad Sci U S A. 2009;106(44):18831–18836.

97. Ueda A, Hamadheh HK, Webb HK, et al. Diverse roles of the nuclear orphan receptor CAR in regulating hepatic genes in response to phenobarbital. Mol Pharmacol. 2002;61(1):1–6.

98. Cole SP, Marks GS. Ferrochelatase and N-alkylated porphyrins. Mol Cell Biochem. 1984;64(2):127–137.

99. Fonia O, Weizman R, Coleman R, et al. PK 11195 aggravates 3,5-diethoxybenzoyl-1,4-di-hydroxycollidine-induced hepatic porphyria in rats. Hepatology. 1996;24(3):697–701.

100. Hu M, Kurobe M, Jeong YJ, et al. Wnt/beta-catenin signaling in murine hepatic transit amplifying progenitor cells. Gastroenterology. 2007;133(5):1579–1591.

101. Tunon MJ, Alvarez M, Culebras JM, et al. An overview of animal models for investigating the pathogenesis and therapeutic strategies in acute hepatic failure. World J Gastroenterol. 2009;15(25):3086–3098.

102. Ferencikova R, Cervinkova Z, Drahota Z. Hepatotoxic effect of D-galactosamine and protective role of lipid emulsion. Physiol Res. 2003;52(1):73–78.

103. Shinozuka H, Farber JL, Konishi Y, et al. D-galactosamine and acute liver cell injury. Fed Proc. 1973;32(4):1516–1526.

104. Kucera O, Lotkova H, Kand’ar R, et al. The model of D-galactosamine-induced injury of rat hepatocytes in primary culture. Acta Medica (Hradec Kraltov). 2006;49(1):59–65.

105. Grozdanov PN, Yovchev MI, Dabeva MD. The oncoprotein fetal glypican-3 is a novel marker of hepatic progenitor/oval cells. Lab Invest. 2006;86(12):1272–1284.

106. Holic N, Suzuki T, Cortu A, et al. Differential expression of the rat gamma-glutamyl transpeptidase gene promoters along with differentiation of hepatoblasts into biliary or hepaticytic lineage. Am J Pathol. 2000;157(2):537–548.

107. Ichinohe N, Kon J, Mitaka T. Isolation of hepatic progenitor cells from the galactosamine-treated rat liver. Methods Mol Biol. 2012;826:49–58.

108. Kahlmann WD, Peschke P. Hepatic progenitor cells, stem cells, and AFP expression in models of liver injury. Int J Exp Pathol. 2006;87(5):343–359.

109. Yu CH, Chang MH, Chien CS, et al. Hepatocyte transplantation and the differentiation fate of host oval cells in acute severe hepatic injury. Cell Transplant. 2010;19(2):231–243.

110. Lewis DF, Brantom PG, Ioannides C, et al. Nitrosamine carcinogenesis: rodent assays, quantitative structure-activity relationships, and human risk assessment. Drug Metab Rev. 1997;29(4):1055–1078.

111. Xu XM, Yuan GJ, Deng J, et al. Hepatic oval cells activated by hepatocyte apoptosis in diethylamino-sulfamined-induced rat liver cirrhosis. Saudi Med J. 2010;31(5):490–494.

112. Wu K, Ding J, Chen C, et al. Hepatic transforming growth factor beta gives rise to tumor-initiating cells and promotes liver cancer development. Hepatology. 2012;56(6):2255–2267.

Citation: Tan EK, Shuh M, Cohen A. Liver injury models for induction of hepatic oval cells in rodents. J Liver Res Disord Ther. 2015;1(1):15–27.
DOI: 10.15406/jlrdt.2015.01.00005
Liver injury models for induction of hepatic oval cells in rodents

J Pharmacol Exp Ther.

Citation:

137. 135. 134. 133. 132. 131.

2012;7(9):e44805.

Li Z, Chen J, Li L, et al. Human hepatocyte growth factor (hHGF)-cell recruitment to the injured liver of rats. Mechanism for hepatic oval cell activation and bone marrow stem cell involvement. Am J Pathol. 1997;154(4):905–909.

He ZP, Tan WQ, Tang YF, et al. Activation, isolation, identification and in vitro proliferation of oval cells from adult rat livers. Cell Prolif. 2004;37(2):177–187.

Sakamoto S, Hira H, Taga H, et al. Thymidine kinase and alpha-fetoprotein as biochemical markers of hepatocarcinogenesis induced by 3'-methyl-4-dimethylaminoazobenzene treatment in rats. Carcinogenesis. 1990;11(1):145–150.

Iwai M, Kashiwadani M, Takino T, et al. Demonstration by light and ultrastructural immunoperoxidase study of alpha-fetoprotein-positive non-hepatoma cells and hepatoma cells during 3'-methyl-4-dimethylaminoazobenzene hepatocarcinogenesis. Virchows Arch B Cell Pathol Incl Mol Pathol. 1988;55(2):117–123.

Rosenberg D, Ilic Z, Yin L, et al. Proliferation of hepatic lineage cells of normal C57BL and interleukin-6 knockout mice after cocaine-induced periporal injury. Hepatology. 2000;31(4):948–955.

Factor VM, Radaeva SA, Thorgeirsson SS. Origin and fate of oval cells in dipin-induced hepatocarcinogenesis in the mouse. Am J Pathol. 1994;145(2):409–422.

Braun KM, Sandgren EP. Cellular origin of regenerating parenchyma in a mouse model of severe hepatic injury. Am J Pathol. 2000;157(2):561–569.

Lemmer ER, de la Motte Hall P, Omori N, et al. Histopathology and gene expression changes in rat liver during feeding of fumonisin B1, a carcinogenic mycotoxin produced by Fusarium moniliforme. Carcinogenesis. 1999;20(5):817–824.

Lemmer ER, Vessey CJ, Gelderblom WC, et al. Fumonisin B1-induced hepatocellular and cholangiocellular tumors in male Fischer 344 rats: potentiating effects of 2-acetylaminofluorene on oval cell proliferation and neoplastic development in a discontinued feeding study. Carcinogenesis. 2004;25(7):1257–1264.

Jung Y, Brown KD, Witek RP, et al. Accumulation of hedgehog-responsive progenitors parallels alcoholic liver disease severity in mice and humans. Gastroenterology. 2008;134(5):1532–1543.

Smith PG, Yeo GH. Appearance of oval cells in the liver of rats after long-term exposure to ethanol. Hepatology. 1996;23(1):145–154.

Smith PG, Yeo GH. Chronic iron overload in rats induces oval cells in the liver. Am J Pathol. 1996;149(2):389–398.

Gong P, Wang Y, Zhang J, et al. Differential hepatic stem cell proliferation and differentiation after partial hepatectomy in rats. Mol Med Rep. 2013;8(4):1005–1010.

Higgins GM, Anderson RM. Experimental pathology of the liver - restoration of the liver of the white rat following partial surgical removal. Arch Pathol. 1931;12:186–202.

Oe H, Kaido T, Mori A, et al. Hepatocyte growth factor as well as vascular endothelial growth factor gene induction effectively promotes liver regeneration after hepatectomy in Solt-Farber rats. Hepatogastroenterology. 2005;52(65):1393–1397.

Citation: Tan EK, Shuh M, Cohen A. Liver injury models for induction of hepatic oval cells in rodents. J Liver Res Disord Ther. 2015;1(1):15–27.

DOI: 10.15406/jlrdt.2015.01.00005
Liver injury models for induction of hepatic oval cells in rodents

156. Bisgaard HC, Holmskov U, Santoni-Rugiu E, et al. Heterogeneity of ductular reactions in adult rat and human liver revealed by novel expression of deleted in malignant brain tumor 1. Am J Pathol. 2002;161(4):1187–1198.

157. Jensen CH, Jauho EI, Santoni-Rugiu E, et al. Transit-amplifying ductular (oval) cells and their hepatic progeny are characterized by a novel and distinctive expression of delta-like proteins/proadipocyte factor 1/fetal antigen 1. Am J Pathol. 2004;164(4):1347–1359.

158. Chang C, Xu C. Transcriptome atlas of glutamine family amino acid metabolism-related genes in eight regenerating liver cell types. Cell Biol Int. 2010;34(12):1189–1198.

159. Wang J, Clark JB, Rhee GS, et al. Proliferation and hepatic differentiation of adult-derived progenitor cells. Cells Tissues Organs. 2003;173(4):193–203.

160. Dezső K, Papp V, Bugyi E, et al. Structural analysis of oval-cell-mediated liver regeneration in rats. Hepatology. 2012;56(4):1457–1467.

161. Hu Z, Evarts RP, Fujio K, et al. Expression of hepatocyte growth factor and c-met genes during hepatic differentiation and liver development in the rat. Am J Pathol. 1993;142(6):1823–1830.

162. Araiz M, Yokosuka O, Fukai K, et al. Gene expression profiles in liver regeneration with oval cell induction. Biochem Biophys Res Commun. 2004;317(2):370–376.

163. Paku S, Schnur J, Nagy P, et al. Origin and structural evolution of the early proliferating oval cells in rat liver. Am J Pathol. 2001;158(4):1313–1323.

164. Assimakopoulos SF, Tsamandas AC, Georgiou CD, et al. Bombesin and neurotensin exert antiproliferative effects on oval cells and augment the regenerative response of the cholestatic rat liver. Peptides. 2010;31(12):2294–2303.

165. Olynyk JK, Yeoh GC, Ramm GA, et al. Gadolinium chloride suppresses hepatic oval cell proliferation in rats with biliary obstruction. Am J Pathol. 1998;152(2):347–352.

166. Sakai H, Tagaya Y, Tamai M, et al. Isolation and characterization of portal branch ligation-stimulated Hmg2-positive bipotent hepatic progenitor cells. Biochem Biophys Res Commun. 2010;403(3–4):298–304.

167. Ise N, Sato T, Yasui O, et al. Enhanced proliferation of hepatic progenitor cells in rats after portal branch occlusion. Liver Transpl. 2004;10(6):748–754.

168. Cassiman D, Libbrecht L, Sinelli N, et al. The vagal nerve stimulates activation of the hepatic progenitor cell compartment via muscarinic acetylcholine receptor type 3. Am J Pathol. 2002;161(2):521–530.

169. Ohen JA, Roskams T, Yang S, et al. Sympathetic nervous system inhibition increases hepatic progenitors and reduces liver injury. Hepatology. 2003;38(3):664–673.

170. Fujimoto Y, Takahashi H, Denko K, et al. Hereditary hepatitis in LEC rats: accumulation of abnormally high ploid nuclei. Cancer Detect Prev. 1989;14(2):235–237.

171. Irani AN, Malhi H, Shehri S, et al. Correction of liver disease following transplantation of normal rat hepatocytes into Long-Evans Cinnamon rats modeling Wilson’s disease. Mol Ther. 2001;3(3):302–309.

172. Braun KM, Thompson AW, Sandgren EP. Hepatic microenvironment affects oval cell localization in albumin-urokinase-type plasminogen activator transgenic mice. Am J Pathol. 2003;162(1):195–202.

173. Bustos M, Sangro B, Alzugaray P, et al. Liver damage using suicide genes. A model for oval cell activation. Am J Pathol. 2000;157(2):549–559.

174. Shiota G, Kunisada T, Oyama K, et al. In vivo transfer of hepatocyte growth factor gene accelerates proliferation of hepatic oval cells in a 2-acetylaminofluorene/human portal hypertension model in rats. FEBS Lett. 2000;470(3):325–330.

175. Warskulat U, Borsch E, Reinhr R, et al. Chronic liver disease is triggered by tauinine transporter knockout in the mouse. FASEB J. 2006;20(3):574–576.

176. Lee KP, Lee JH, Kim TS, et al. The Hippo-Salvador pathway restrain hepatic oval cell proliferation, liver size, and liver tumorigenesis. Proc Natl Acad Sci U S A. 2010;107(18):8248–8253.

177. Diwan BA, Ward JM, Ramjak D, et al. Promotion by Helicobacter hepaticus-induced hepatitis of hepatic tumors initiated by N-nitosodimethylamine in male A/Jcr mice. Toxicol Pathol. 1997;25(6):597–605.

178. Ihig M, Schrenzel MD, Fox JG. Differential susceptibility to hepatic inflammation and proliferation in AXB recombinant inbred mice chronically infected with Helicobacter hepaticus. Am J Pathol. 1999;155(2):571–582.

179. Bannasch P, Khoshkhou NI, Hacker HJ, et al. Synergistic hepatocarcinogenic effect of hepavidural infection and dietary aflatoxin B1 in woodchucks. Cancer Res. 1995;55(15):3318–3330.

180. Eichhorst ST, Krueger A, Muerkoster S, et al. Suramin inhibits death receptor-induced apoptosis in vitro and fulminant apoptotic liver damage in mice. Nat Med. 2004;10(6):602–609.

181. Yin L, Lynch D, Sell S. Participation of different cell types in the restorative response of the rat liver to periporal injury induced by allyl alcohol. J Hepatol. 1999;31(3):497–507.

182. Ghoshal AK, Mulllen B, Medline A, et al. Sequential analysis of hepatic carcinogenesis. Regeneration of liver after carbon tetrachloride-induced liver necrosis when hepatoocyte proliferation is inhibited by 2-acetylaminofluorene. Lab Invest. 1983;48(2):224–230.

183. Lipsky MM, Hinton DE, Klauning JE, et al. Biology of hepatocellular neoplasia in the mouse. I. Histogenesis of safrrole-induced hepatocellular carcinoma. J Natl Cancer Inst. 1981;67(2):365–376.

184. Turner PV, Brabb T, Pekow C, et al. Administration of substances to laboratory animals: routes of administration and factors to consider. J Am Assoc Lab Anim Sci. 2011;50(5):600–613.

185. Digernes V, Iversen OH. Flow cytometry of nuclear DNA content in liver cirrhosis and liver tumours in rats exposed to acetylaminofluorene. Virchows Arch B Cell Pathol Incl Mol Pathol. 1984;47(2):139–146.

186. Fausto N. Oval cells and liver carcinogenesis: an analysis of cell lineages in hepatic tumors using oncogene transfection techniques. Prog Clin Biol Res. 1990;331:325–334.

187. Wu XZ, Yu XH. Bone marrow cells: the source of hepatocellular carcinoma? Med Hypotheses. 2007;69(1):36–42.

188. Sano T, Kagawa M, Okuno M, et al. Prevention of rat hepatocarcinogenesis by acyclic retinoid is accompanied by reduction in emergence of both TGF-alpha-expressing oval-like cells and activated hepatic stellate cells. Nutr Cancer. 2005;51(2):197–206.

189. Sell S, Leffert HL. Liver cancer stem cells. J Clin Oncol. s2008;26(17):2800–2805.

190. Tirmiz-Parker JE, Tonkin JN, Knight B, et al. Isolation, culture and immunochemical characterization of oval cells from adult mice fed a choline-deficient, ethionine-supplemented diet. Int J Biochem Cell Biol. 2007;39(12):2226–2239.

191. Alison MR. Liver stem cells: implications for hepatocarcinogenesis. Stem Cell Rev. 2005;1(3):253–260.

192. Sanders JA, Brilliant KE, Cynö D, et al. The inhibitory effect of rapamycin on the oval cell response and development of preneoplastic foci in the rat. Exp Mol Pathol. 2012;93(1):40–49.

193. Fan L, Xu C, Wang C, et al. Bmi1 is required for hepatic progenitor cell expansion and liver tumor development. PLoS One. 2012;7(9):e46472.
Liver injury models for induction of hepatic oval cells in rodents

Citation: Tan EK, Shuh M, Cohen A. Liver injury models for induction of hepatic oval cells in rodents. J Liver Res Disord Ther. 2015;1(1):15–27.
DOI: 10.15406/jlrdt.2015.01.00005

194. Weng HL, Feng DC, Radaeva S, et al. IFN-gamma inhibits liver progenitor cell proliferation in HBV-infected patients and in 3,5-diethoxycarbonyl-1,4-dihydrocollidine diet-fed mice. J Hepatol. 2013;59(4):738–745.

195. Bisgaard HC, Nagy P, Ton PT, et al. Modulation of keratin 14 and alpha-fetoprotein expression during hepatic oval cell proliferation and liver regeneration. J Cell Physiol. 1994;59(3):475–484.

196. Pichard V, Aubert D, Ferry N. Direct in vivo cell lineage analysis in the retrorsine and 2-AAF models of liver injury after genetic labeling in adult and newborn rats. PLoS One. 2009;4(9):e7267.

197. Radaeva S, Bannasch P. Changes in catalase and glucose-6-phosphatase distribution patterns within oval cell compartment as possible differentiation markers during viral hepatocarcinogenesis in woodchucks. Differentiation. 1996;60(3):169–178.