Associated efficiency of *Saccharomyces cerevisiae* and vitamin E in ameliorating adverse effects of ochratoxin A on biochemical profile and immune response in broiler chickens

SATYENDRA SINGH¹, RAM SINGH² and A B MANDAL³

ICAR-Central Avian Research Institute, Izatnagar, Uttar Pradesh 243 122 India

Received: 29 June 2018; Accepted: 29 October 2018

ABSTRACT

The associated efficacy of *Saccharomyces cerevisiae* and vitamin E, in ameliorating ochratoxicosis was investigated in broiler chickens. Day-old broiler chicks (320) were divided into 8 treatment groups, viz. T₁ (control; basal diet); T₂ (T₁ + 150 ppb OTA); T₃ (T₂ + 0.05% SC + 100 mg vitamin E-VE); T₄ (T₂ + 0.075% SC + 100 mg VE); T₅ (T₂ + 0.1% SC + 100 mg VE); T₆ (T₂ + 0.05% SC + 200 mg VE); T₇ (T₂ + 0.075% SC + 200 mg VE) and T₈ (T₂ + 0.1% SC + 200 mg VE/kg diet). Each diet was fed to 5 replicated groups of 8 birds from 0–42 days of age. The total serum protein, cholesterol and haemoglobin content of control group (T₁) was higher than that of ochratoxin fed group (T₂). The serum protein, cholesterol and haemoglobin value in groups T₅, T₇ and T₈ was higher than T₂ but statistically similar to that of control. The serum uric acid, creatinine, ALP, SGOT, SGPT and H/L ratio value in T₁ was lower than that of T₂. The uric acid, creatinine, ALP, SGOT, SGPT and H/L ratio value in T₅, T₇ and T₈ was lower than T₂ and statistically similar to that of control. The CMI and HA titre value of T₁ was higher than that of T₂. The CMI and HA titre value in T₅, T₇ and T₈ was higher than that of T₂ but statistically similar to that of control. It can be concluded that ochratoxin contamination at the rate of 150 ppb in the feed resulted in decreased total serum protein, cholesterol and haemoglobin content and increased serum uric acid, creatinine, ALP, SGOT, SGPT and H/L ratio value. Inclusion of *Saccharomyces cerevisiae* at 0.1% level along with 100 mg vitamin E or *Saccharomyces cerevisiae* at 0.075% level along with 200 mg vitamin E/kg diet to the ochratoxin (150 ppb) contaminated feed ameliorated the adverse effects of ochratoxicosis on biochemical profile and immune response in broiler chickens.

Key words: Biochemical profile, Broiler, Immune response, Ochratoxin, *Saccharomyces cerevisiae*, Vitamin E

Feed is the major input in poultry production. Poultry feed industry is facing some challenges and mycotoxins are one of them. Ochratoxin A (OTA), a mycotoxin, is receiving increasing attention worldwide because of the hazard it possesses to animal and human health. Ochratoxin A is a natural contaminant of animal feedstuffs (Pozzo et al. 2010) and documented field outbreaks of ochratoxicosis, as well as experimental feeding trials with OTA contaminated feeds, have indicated its detrimental effects on chicks (Santin et al. 2002, Stoev et al. 2002, Elaroussi et al. 2008, Hanif et al. 2008) and its potential risk for the poultry industry. Ochratoxin A causes significant losses and reduction in the profitability of poultry industry due to its effects on performance and health (Agawane and Lonkar 2004). It causes a reduction in productive performance (growth rate, feed consumption, poor feed conversion) and increased mortality (Singh et al. 2015, Singh et al. 2016). Inclusion of 0.1% *S. cerevisiae* to the ochratoxin (200 ppb) contaminated diet ameliorated the ill effects of ochratoxicosis on production performance, relative weight of organs, serum protein, uric acid, creatinine, haemoglobin, ALP, SGPT, SGOT, H/L ratio and immune response in broiler chickens (Singh 2015, Singh et al. 2016). Various antioxidants are beneficial in reducing the toxicity of ochratoxins, involved in increasing oxidative stress (Sorrenti et al. 2013). Addition of vitamin E (200 mg/kg) to the ochratoxin contaminated diet improved the production performance, relative weight of liver and bursa, blood biochemical, haematological parameters and immune response of broiler chickens (Singh 2015). The objective of this investigation was to study the associated efficiency of *S. cerevisiae* and vitamin E to ameliorate the adverse effects of ochratoxicosis on biochemical profile and immune response in broiler chickens.

MATERIALS AND METHODS

Ochratoxin production: The lyophilised preparation of
Aspergillus westerdijkiae NRRL 3147 was revived on potato dextrose agar medium. Ochratoxin was produced as per the method described by Singh et al. (2013). Cracked maize (50 g) was taken in 250 ml conical flasks. The moisture content of substrate was adjusted to 35%. The flasks were plugged with non-absorbent cotton and sealed with aluminium foil and autoclaved for 20 min at 121°C and inoculated with 1-week old mycelium of Aspergillus westerdijkiae NRRL 3174. The inoculated flasks were incubated in a BOD incubator for 14 days. After removal from the incubator, the flasks were dried at 70°C and the ochratoxin assays were performed as per AOAC (1995).

Experimental design: Experimental design was completely randomized design (CRD). There were eight dietary treatments, viz. T₁ (control; basal diet); T₂ (T₁ + 150 ppb OTA); T₃ (T₂ + 0.05% SC + 100 mg vitamin E-VE); T₄ (T₂ + 0.075% SC + 100 mg VE); T₅ (T₂ + 0.1% SC + 100 mg VE); T₆ (T₂ + 0.05% SC + 200 mg VE); T₇ (T₂ + 0.075% SC + 200 mg VE) and T₈ (T₂ + 0.1% SC + 200 mg VE/kg diet). Each dietary treatment had 5 replicates and each replicate had 8 chicks. The experiment was conducted in broiler chickens from day-old to 6 weeks of age. The various dietary treatments were prepared by mixing the required quantity of mouldy maize to get the desired concentration of 150 ppb OTA in basal diet.

Biological experiment and analysis: Day-old broiler chicks (320) were obtained from experimental hatchery, CARI, Izatnagar. The chicks were wing banded, weighed individually and distributed randomly into eight groups. All birds were reared under standard management conditions from 0–6 weeks. All birds were fed with broiler starter ration from 1–21 days and broiler finisher ration from 22–42 days. The composition of broiler starter and finisher ration are given in Table 1. The starter diet contained 22.3% crude protein, 2,807 Kcal ME/kg, 1.28% lysine, 0.51% methionine, 1.09% calcium and 0.50% available P. The corresponding values in finisher diet were 20.06%, 2,876 Kcal/kg, 1.04%, 0.43%, 1.09% and 0.42%.

The protein as per AOAC (1995) and calcium contents as per Talapatra et al. (1940) were estimated, while the concentrations of lysine, methionine, available P and metabolizable energy values were calculated. After 6 weeks, the blood samples from each treatment group were collected. The serum was separated and stored at –20°C and analyzed for various biochemical parameters using commercial kit manufactured by Span Diagnostics Ltd, Surat. The haemoglobin concentration in blood was estimated by Sahli’s method. Haemoglobin is converted into acid haematin by addition of 0.1 N HCl. The resultant solution was then matched against a reference solution (Sahli’s Haemoglobinometer). Reading on the graduated tube was noted and expressed as haemoglobin level in g/dl. The heterophil/lymphocyte (H/L) ratio was calculated by dividing the number of heterophil by that of lymphocyte. The cell mediated immune response to PHA-P antigen was evaluated by the method described by Corrider and DeLoach (1990). The microtitre haemagglutination procedure as

Ingredient	Starter diet	Finisher diet
Maize	55.5	62.42
Decoiled rice bran	1.88	2.01
Soybean meal	31.0	20.5
Guar corma	4	4
Rapeseed meal	4	4
Fish meal	4.5	4
Limestone	0.7	0.5
Dicalcium phosphate	1.6	1.6
Common salt	0.2	0.25
DL-methionine	0.07	0.03
Lysine	0.125	0.07
TM premix*	0.11	0.10
Vitamin premix**	0.15	0.15
B complex***	0.015	0.015
Choline chloride	0.05	0.05
Coccidiostat	0.05	0.05

*TM premix supplied Mg, 300; Mn, 55; I, 0.4; Fe, 56; Zn, 30; Cu, 4 mg/kg diet. **Vitamin premix supplied Vit A, 8250 IU; Vit. D₃, 1200 IU; Vit. K, 1 mg/kg diet. ***B complex supplied Vit. B₁, 2 mg; Vit. B₂, 4 mg; Vit. B₁₂, 10 mcg; niacin, 60 mg; pantothenic acid, 10 mg; choline, 500 mg/kg diet.

described by Siegel and Gross (1980) was followed to measure total HA antibody titres in chickens.

Statistical analysis: The collected data was subjected to statistical analysis using Statistical Package for Social Sciences (SPSS Version 16.0) available in the Central Avian Research Institute, Izatnagar, Bareilly, India. The recorded data were subjected to one-way analysis of variance (Snedecor and Cochran 1989) with comparison among means was made by Duncan’s multiple range test with significance level of P<0.05.

RESULTS AND DISCUSSION

Total serum protein: The total serum protein content of control group (T₁) was higher (P<0.05) than that of ochratoxin alone fed group (T₂) (Table 2). The total serum protein value in T₁ and T₂ was statistically similar to that of T₂. The total serum protein value of T₆ was higher (P<0.05) than T₁ but lower (P<0.05) than that of T₁. The serum protein value in groups T₃, T₇ and T₈ was higher (P<0.05) than T₂ and statistically similar to that of control. The present study revealed that 150 ppb ochratoxin contamination in feed resulted in significant (P<0.05) reduction in serum protein content. Reduced serum protein content due to ochratoxin contamination in feed was in agreement with the earlier investigations (Stoev et al. 2002, Santin et al. 2002, Hatab 2003, Stoev et al. 2004, Koyarski et al. 2007, Elaroussi et al. 2008, El-Barkouky 2008, El-Barkouky and Abu-Taleb 2008, Singh et al. 2015, Singh 2015, Singh et al. 2016). Decreased serum protein is attributed to the decrease in protein absorption and/or utilization or to the inhibition of protein synthesis by ochratoxin (Kubena et al. 1983, Kubena et al. 1988, Kubena et al. 1989). Also, low serum protein
concentration might have been due to the decreased albumin and globulin levels or to the degeneration of endoplasmic reticulum that led to pathological changes in the liver that in turn caused a reduction in hepatic protein synthesis, as OTA is known to inhibit hepatocyte protein synthesis (Stoev et al. 2000, Garcia et al. 2003). In our present study, inclusion of 0.1% S. cerevisiae + 100 mg vitamin E or 0.75% S. cerevisiae + 200 mg vitamin E/kg ochratoxin contaminated diet significantly (P<0.05) increased the serum protein content equal to that of control. Bailey et al. (1990), Bradley et al. (1994), Agawane and Lonkar (2004) also reported significant improvement in serum protein as a result of addition of probiotic containing Saccharomyces yeast culture at 10 mg/kg diet to 0.5 ppm OTA intoxicated broiler chickens. Significant improvement in serum protein content due to addition of S. cerevisiae in OTA contaminated feed was also reported by El-Barkouky (2008) and Khalil (2008). Singh (2015) also reported that inclusion of 0.1% S. cerevisiae or 200 mg vitamin E/kg diet partially ameliorated the ill effects of ochratoxicosis on serum uric acid concentration in broiler chickens. Increased uric acid level in serum might be due to reduced protein synthesis and breakdown of amino acids.

Serum uric acid: The serum uric acid content in T1 was lower (P<0.05) than that of T2 (Table 2). The uric acid value in groups T3, T4 and T6 was higher (P<0.05) than that of control. The uric acid value in T3, T5 and T7 was lower (P<0.05) than T2 and statistically similar to that of control. This result revealed that inclusion of S. cerevisiae (0.1%) + vitamin E (100 mg/kg) or S. cerevisiae (0.075%) + vitamin E (200 mg/kg) to the ochratoxin contaminated feed reversed the serum uric acid concentration equal to control. In our study, 150 ppb ochratoxin contamination in feed resulted in significant (P<0.05) increase in serum uric acid content. Significantly increased concentration of uric acid in ochratoxin treated birds was in agreement with earlier reports (Stoev et al. 2002, Dalia 2003, Garcia et al. 2003, Patil et al. 2005, Koynarski et al. 2007, Singh 2015, Singh et al. 2015). Kubena et al. (1989) indicated that uric acid is the primary product of nitrogen catabolism in chickens and is excreted by the kidney. The elevation in serum uric acid level was accompanied by the increase in kidney weight in OTA fed birds, indicating impaired renal excretory functions. Our study revealed that addition of S. cerevisiae (0.1%) along with vitamin E (100 mg/kg) or S. cerevisiae (0.075%) along with vitamin E (200 mg/kg) to the OTA contaminated feed reversed the uric acid content equal to control. Singh (2015) also reported that addition of 0.1% S. cerevisiae or 200 mg vitamin E/kg diet partially ameliorated the ill effects of ochratoxicosis on uric acid contamination in broiler chickens. Increased uric acid level in serum might be due to reduced protein synthesis and breakdown of amino acids.

Serum creatinine: The creatinine content in T1 was lower (P<0.05) than that of T2 (Table 2). The creatinine content in T3 and T6 was statistically similar to T2 and higher (P<0.05) than that of T1. The creatinine content of groups T4, T5, T7 and T8 was lower (P<0.05) than T2 and similar to that of T1. The present study revealed that ochratoxin (150 ppb) contamination of feed resulted in increased (P<0.05) creatinine content. Increased creatinine content due to ochratoxin contamination in feed was earlier reported in several investigations (Stoev et al. 2002, Kumar et al. 2003, Hatab 2003, Koynarski et al. 2007, Sakhare et al. 2007, Elaroussi et al. 2008, Singh 2015). Increase in creatinine content in the ochratoxin fed birds might be due to nephrotoxic action of OTA, which caused renal impairment by destruction of epithelial cells of proximal and distal convoluted tubules and tubular damage (Agawane and Lonkar 2004). Agawane and Lonkar (2004) also reported significant improvement in creatinine concentration of broilers as a result of addition of probiotic containing yeast culture Saccharomyces boulardii at 10 mg/kg in diet of broilers intoxicated with ochratoxin. Also, Singh (2015) reported that inclusion of S. cerevisiae (0.1%) or vitamin E (200 mg/kg) to the 200 ppb ochratoxin contaminated diet ameliorated the ill effects of ochratoxicosis on creatinine content in broiler chickens.

Alkaline phosphatase (ALP): The ALP activities in

Treatment	Protein (g/dl)	Cholesterol (mg/dl)	Uric acid (mg/dl)	Creatinine (mg/dl)
T1	7.03±0.05c	192.05±2.03cd	5.87±0.10a	0.34±0.01b
T2	4.58±0.16a	150.74±2.10a	7.78±0.14a	0.42±0.00c
T3	4.83±0.11a	190.15±1.93cd	7.77±0.12c	0.41±0.00c
T4	5.04±0.19a	186.75±1.49c	7.01±0.12b	0.35±0.00b
T5	6.96±0.19c	194.08±2.06d	5.92±0.08a	0.32±0.00a
T6	5.59±0.16b	166.45±3.88b	6.99±0.08b	0.39±0.00c
T7	6.95±0.14c	193.08±1.67d	5.84±0.08a	0.36±0.00a
T8	6.94±0.18c	189.38±1.42cd	5.92±0.07a	0.34±0.00b

Values bearing different superscripts in a column differ significantly (P<0.05).
control group was lower (P<0.05) than that of ochratoxin alone fed group (T2) (Table 3). The ALP activities in T3, T4 and T6 was higher (P<0.05) than that of control. The ALP value in T5, T7 and T8 was lower (P<0.05) than T2 and similar to that of control, indicating that addition of *S. cerevisiae* + vitamin E in T6, T7 and T8 reversed the ALP value equal to that of control. The present study indicated that 150 ppb ochratoxin contamination in feed resulted in increased activities of ALP. Increased activities of ALP due to ochratoxicosis were earlier reported in several investigations in chickens (Koyarhus et al. 2007, Denli et al. 2008, Hanif et al. 2008, Sawale et al. 2009, Khan et al. 2014, Singh 2015). Our study revealed that addition of 0.1% *S. cerevisiae* along with 100 mg vitamin E or 0.075% *S. cerevisiae* along with 200 mg vitamin E/kg to the 150 ppb ochratoxin contaminated diet ameliorated the ill effects of ochratoxicosis on ALP activities in broiler chickens. Singh (2015) also reported that inclusion of *S. cerevisiae* (0.1%) or vitamin E (200 mg/kg) alleviated the harmful effects of ochratoxicosis on ALP activities in broiler chickens.

Serum glutamic oxaloacetictransferase (SGOT): The SGOT value in T1 was lower (P<0.05) than that of T2 (Table 3). The SGOT value in groups T3, T4 and T6 was higher (P<0.05) than the control. The SGOT value in groups T5, T7 and T8 was lower (P<0.05) than T2 and similar to that of control. In the present study, ochratoxin (150 ppb) contaminated in feed resulted in increased activities of SGOT. This result was in agreement with earlier reports (Santin et al. 2002, Kumar et al. 2003, Hatab 2003, Patil et al. 2005, Elaroussi et al. 2008, Singh 2015). Raina et al. (1991) reported that increased level of SGOT in broiler was attributed to cellular damage and increased plasma membrane permeability. Our study revealed that inclusion of 0.1% *S. cerevisiae* along with 100 mg vitamin E or 0.075% *S. cerevisiae* along with 200 mg vitamin E/kg to the ochratoxin contaminated feed alleviated the ill effects of ochratoxicosis on SGOT activities in broiler chickens. Also, Raju and Devegowda (2000) reported that inclusion of esterified glucomannan (EG) at 1 g/kg level in feed resulted in decreased activities of SGOT that were elevated by mycotoxins. Singh (2015) also reported that inclusion of 0.1% *S. cerevisiae* or vitamin E (200 mg) to the 200 ppb ochratoxin containing feed alleviated the ill effects of ochratoxicosis on SGOT activities in broiler chickens.

Haemoglobulin (Hb): The Hb content in control group was higher (P<0.05) than that of ochratoxin fed group (Table 4). The Hb content in T5, T6 and T8 was lower (P<0.05) than that of control. The Hb value in groups T3, T7 and T8 was higher (P<0.05) than that of toxin fed group (T2) and similar to that of control. In the present study, ochratoxin contamination (150 ppb) in the feed of broiler chickens decreased Hb level. These results were in agreement with those reported by Agawane and Lonkar (2004), Sakhare et al. (2007), El-Barkouky (2008), El-Barkouky and Abu-Taleb (2008) who reported that Hb concentration was significantly (P<0.05) reduced due to ochratoxin contamination in feed ranging from 50–500 ppb level. Our study revealed that addition of 0.1% *S. cerevisiae* + 100 mg vitamin E or 0.075 *S. cerevisiae* + 200 mg vitamin E/kg to the ochratoxin contaminated feed reversed the Hb level which was statistically equal to that of control. Bradley et al. (1994) and Agawane and Lonkar (2004) reported significant improvement in Hb value as a result of addition of probiotic containing yeast culture to ochratoxin intoxicated birds. El-Barkouky (2008) also reported that supplementation of broiler diet with *S. cerevisiae* (200 mg/kg feed) significantly counteracted the deleterious effects of ochratoxin on Hb and PCV of broilers subjected to ochratoxin intoxication. Singh (2015) also reported that inclusion of 0.1% *S. cerevisiae* or 200 mg vitamin E/kg ochratoxin (200 ppb) contaminated feed alleviated the deleterious effects of ochratoxin on Hb concentration in broiler chickens.
Table 4. Blood haematological constituents and immune response of broilers fed different dietary treatment (Mean±SEM; n=5)

Treatment	Haematological constituent (gm/dl)	Immune response
	H/L ratio	CMI Titre
T1	10.71±0.24c 0.53±0.00d 0.48±0.00d 10.37±0.03d	
T2	6.30±1.00b 0.55±0.00c 0.31±0.00c 6.40±0.02a	
T3	6.17±0.08c 0.54±0.00bc 0.32±0.00b 6.40±0.02a	
T4	6.87±0.09b 0.54±0.00bc 0.34±0.00b 7.04±0.06b	
T5	10.71±0.23c 0.53±0.00c 0.50±0.00d 10.38±0.02d	
T6	6.94±0.22b 0.53±0.00c 0.36±0.00b 6.98±0.06b	
T7	10.60±0.21c 0.53±0.00c 0.50±0.00d 10.22±0.05cd	
T8	10.53±0.17c 0.53±0.00c 0.51±0.00d 10.13±0.17cd	

Values bearing different superscripts in a column differ significantly (P<0.05).

Heterophils/Lymphocytes ratio: The H/L ratio in control group was lower (P<0.05) than that of ochratoxin fed group (Table 4). The H/L ratio in T3 and T4 was statistically similar to the T2 and higher (P<0.05) than that of control. The H/L ratio in T5, T6, T7 and T8 was lower (P<0.05) than T2 and statistically similar to the control, indicating that addition of S. cerevisiae along with vitamin E at any level in T3 to T8 reversed the H/L ratio equal to that of control. The present study revealed that 150 ppb ochratoxin contamination in feed resulted in increased H/L ratio in broiler chickens. This result was in agreement with Singh (2015) who reported increased H/L ratio due to 200 ppm OTA contamination in the diet of broiler chickens. In our study, addition of 0.1% S. cerevisiae + 100 mg vitamin E or 0.075% S. cerevisiae + 200 mg vitamin E/kg OTA contaminated feed reversed the H/L ratio value equal to control. Singh (2015) also reported that inclusion of 0.1% S. cerevisiae to the 200 ppb OTA contaminated feed reversed the H/L ratio equal to control.

Effect on cell mediated immunity (CMI): The CMI value of control group was higher (P<0.05) than that of ochratoxin alone fed group (Table 3). The CMI value in T3, T4 and T6 was lower (P<0.05) than that of control. The CMI value in T5, T7 and T8 was higher (P<0.05) than that of T2 and statistically similar to that of control. This result indicated that inclusion of S. cerevisiae (0.1%) + vitamin E (100 mg) or S. cerevisiae (0.075%) + vitamin E (200 mg/kg) to the 150 ppb ochratoxin contaminated feed ameliorated the ill effects of ochratoxicosis on CMI response in broiler chickens. Our study revealed that ochratoxin (150 ppb) concentration in the diet of broiler chickens resulted in reduction (P<0.05) in CMI response to PHA-P. Elaroussi et al. (2006) also reported that feeding ochratoxin @ 400 to 800 µg/kg feed to day-old broiler chicks until 5th week of age significantly reduced the CMI response as determined by wattle response to PHA-P antigen. Singh et al. (1990) showed suppression of CMI response in chickens due to ochratoxicosis and described the significant reduction of T-lymphocyte count and phagocytic ability of splenic macrophages after feeding 0.5 and 2.0 ppm ochratoxin.

Verma et al. (2004) reported similar findings in broilers fed with 1–4 ppm ochratoxin for 47 days from day one of age. In the present study, addition of S. cerevisiae (0.1%) along with vitamin E (100 mg/kg) or S. cerevisiae (0.075%) along with vitamin E (200 mg/kg) to the ochratoxin contaminated feed ameliorated the ill effects of ochratoxin on CMI response. Khalil (2008) also observed that dietary inclusion of S. cerevisiae at 2 g/kg ameliorated the negative effects of ochratoxin in growing quails. Singh (2015) also reported that inclusion of 0.1% S. cerevisiae or 200 mg vitamin E/kg ochratoxin contaminated diet partially ameliorated the ill effects of ochratoxin on CMI response. Also, Khatoon et al. (2013) observed that vitamin E (200 mg/kg diet) alone or in combination with silymarin (10 g/kg) ameliorated the immunotoxic effects induced by 1.0 mg OTA/kg feed.

Humoral immune response: The HA titre value in T1 was higher (P<0.05) than that of T2 (Table 4). The HA titre value in groups T3, T4 and T6 was lower (P<0.05) than that of control. The HA titre value in T5, T7 and T8 was higher (P<0.05) than T2 and statistically similar to that of control, indicating that inclusion of 0.1% S. cerevisiae + 100 mg vitamin E or 0.075% S. cerevisiae + 200 mg vitamin E to the ochratoxin contaminated diet alleviated the adverse effects of ochratoxicosis on humoral immune response. In the present study, dietary ochratoxin at 150 ppb level reduced (P<0.05) the HA titre against SRBC’s. Ochratoxin interferes with protein, DNA and RNA synthesis through competitive inhibition of phenylalanine-t-RNA synthetase by phenylalanine moiety of ochratoxin that leads to decreased plasma proteins and immunoglobulin (Hsieh 1987, Marguardt and Frohlich 1992). Also, leucocytopenia (lymphocytopenia and monocytopenia) that is noticed during ochratoxicosis can adversely affect immunoglobulin production (Campbell et al. 1983, Effat 1989). Singh (2015) reported that dietary ochratoxin at 200 ppb level reduced (P<0.05) the HA titre against SRBC’s. Our study revealed that incorporation of 0.1% S. cerevisiae + 100 mg vitamin E or 0.075% S. cerevisiae + 200 mg vitamin E to the 150 ppb ochratoxin contaminated feed ameliorated the ill effects of ochratoxicosis on humoral immune response. El-Barkouky (2008) also found that inclusion of 0.1% S. cerevisiae improved humoral immune response negatively affected by 50 and 100 ppb ochratoxin. Singh (2015) also reported that inclusion of 0.1% S. cerevisiae or 200 mg vitamin E/kg ochratoxin (200 ppb) contaminated feed ameliorated the ill effect of ochratoxicosis on humoral immune response of broiler chickens.

It can be concluded that ochratoxin contamination at the rate of 150 ppb in the feed resulted in decreased total serum protein, cholesterol and haemoglobin content, and increased serum uric acid, creatinine, ALP, SGOT, SGPT and H/L ratio value. Inclusion of Saccharomyces cerevisiae at 0.1% level along with 100 mg vitamin E or Saccharomyces cerevisiae at 0.075% level along with 200 mg vitamin E/kg diet to the ochratoxin (150 ppb) contaminated feed ameliorated the adverse effects of ochratoxicosis on..
biochemical profile and immune response in broiler chickens.

REFERENCES

Agawane S B and Lonkar P S. 2004. Effect of probiotic containing Saccharomyces boulardii on experimental ochratoxinsis in broilers: hematobiochemical studies. Journal of Veterinary Medicine B 50: 359–67.

AOAC. 1995. Official Methods of Analysis. 15th edn. Association of Official Analytical Chemists, Washington, DC.

Bailey C A, Gibson R M, Kubena L F, Huff W E and Harvey R B. 1990. Impact of phenylalanine supplementation on the performance of three-week-old broilers fed diets containing ochratoxin A. 2-Effects on hematological and clinical chemistry. Poultry Science 69: 420–25.

Bradley G I, Savage T F and Timm K I. 1994. The effect of supplementing diet with Saccharomyces cerevisiae var. boulardii on male poult growth and ideal morphology. Poultry Science 73: 1766–70.

Campbell M L, May J D, Huff W E and Doerr J A. 1983. Evaluation of immunity of young broiler chickens during simultaneous aflatoxicosis and ochratoxicosis. Poultry Science 62: 2138–44.

Corrier D E and Deloach J R. 1990. Evaluation of cell mediated cutaneous basophil, hypersensitivity in young chickens by an interdigital skin test. Poultry Science 69: 403–08.

Dalia G. 2003. Effect of antioxidant preparation “oxynil” on health status and productivity of laying hens fed naturally moulded feed. VeterinarijalnoZoolichnika. T. 24(6): 22–29.

Denli M, Blandon J C, Guynot M E, Salado S and Perez J F. 1990. Impact of phenylalanine supplementation on the performance of three-week-old broilers fed diets containing ochratoxin A. 2-Effects on hematological and clinical chemistry. Poultry Science 69: 420–25.

Kubena L F, Harvey R B, Huff W E, Corrier D E, Phillips T D and Creger C R. 1988. Influence of ochratoxin A and deoxynivalenol on growing broiler chicks. Poultry Science 67: 253–60.

Kubena L F, Harvey R B, Huff W E, Corrier D E, Phillips T D and Rottinghaus G E. 1989. Influence of ochratoxin A and T-2 toxin singly and in combination on broiler chickens. Poultry Science 68: 867–72.

Kubena L F, Phillips T D, Creger C R, Witzel D A and Heidelberg N D. 1983. Toxicity of ochratoxin A and tannic acid to growing chicks. Poultry Science 62: 1786–92.

Kumar A, Jindal N, Shukla C L, Pal Y, Ledoux D R and Rottinghaus G E. 2003. Effect of ochratoxin A on Escherichia coli-challenged broiler chicks. Avian Diseases 47: 415–24.

Marquardt R R and Frohlich A L. 1992. A review of recent advances in understanding ochratoxicosis. Journal of Animal Science 70: 3968–88.

Patil R D, Degloorokkar N M, Moregaonkar S D and Kulkami G B. 2005. Ameliorative efficacy of Bantoxo® in induced ochratoxicosis in broilers: A haemato-biochemical study. Indian Journal of Veterinary Pathology 29: 23–30.

Pozzo L, Cavallarin L, Nucera D, Antoniassi S and Schiavone A. 2010. A survey of ochratoxin A contamination in feeds and sera from organic and standard swine farms in northwest Italy. Journal of the Science of Food and Agriculture 90: 1467–72.

Raina J S, Roy K S and Singh B. 1991. Biochemical and histochemical studies in experimental mycotoxicosis in chicks. Indian Journal of Animal Sciences 62: 1276–81.

Raju M V L N and Devegowda G. 2000. Influence of esterified-glucosamann on performance and organ morphology, serum biochemistry and hematology in broilers exposed to individual and combined mycotoxicosis aflatoxin, ochratoxin and T-2 toxin. British Poultry Science 41: 640–50.

Sakhare P S, Harne S D, Kalorey D R, Warke S R, Bhandarkar A G and Kurkure N V. 2007. Effect of Toxiroak® polyherbal feed supplement during induced aflatoxicosis, ochratoxicosis and combined mycotoxicoses in broilers. Veterinarski Arhiv 77: 129–46.

Santin E, Paulillo A C, Nakagui L S O, Alessi A C and Maiorka A. 2006. Evaluation of yeast cell wall on the performance of broilers fed diets with or without mycotoxins. Brazilian Journal of Poultry Science 8: 221–22.

Santin E, Maiorka A, Krabbe E L, Paulillo A C and Alessi A C. 2002. Effect of hydrated sodium calcium aluminosilicates on the use of nuclear techniques.' MSc Thesis, Faculty of Agriculture, Cairo University, Egypt. p. 336.

Hsieh D P H. 1987. Mode of action of mycotoxins, pp. 149–76. Mycotoxins in Food. (Ed) Krogh P. Academic Press, London.

Khalil M R. 2008. ‘Effects of ochratoxin on immune response in quails and traits for control.’ PhD Thesis, Faculty of Veterinary Medicine, Benha University, Egypt. 182 p.

Khan S A, Venancio E J, Hirooka E Y, Rigobello F, Ishikawa A, Nagashima L A, Oba Alexandre and Itano E N. 2014. Avian ochratoxicosis: A review. African Journal of Microbiology Research 8: 3216–19.

Khatooon A, Khan M Z, Khan A, Saleemi M K and Javed I. 2013. Amelioration of ochratoxin A-induced immunotoxic effects by silymarin and vitamin E in White Leghorn cockerels. Journal of Immunotoxicology 101: 25–31.

Koynyarski V, Stoev S, Grozeva N, Miticheva T, Daskalo H, Mitev J and Mantle P. 2007. Experimental coccidiosis provoked by Eimeria acervulina in chicks simultaneously fed on ochratoxin A contaminated diet. Research in Veterinary Science 82: 225–31.

Kubena L F, Harvey R B, Huff W E, Corrier D E, Phillips T D and Creger C R. 1988. Influence of ochratoxin A and deoxynivalenol on growing broiler chicks. Poultry Science 67: 253–60.

Kubena L F, Harvey R B, Huff W E, Corrier D E, Phillips T D and Rottinghaus G E. 1989. Influence of ochratoxin A and T-2 toxin singly and in combination on broiler chickens. Poultry Science 68: 867–72.

Kubena L F, Phillips T D, Creger C R, Witzel D A and Heidelberg N D. 1983. Toxicity of ochratoxin A and tannic acid to growing chicks. Poultry Science 62: 1786–92.

Kumar A, Jindal N, Shukla C L, Pal Y, Ledoux D R and Rottinghaus G E. 2003. Effect of ochratoxin A on Escherichia coli-challenged broiler chicks. Avian Diseases 47: 415–24.

Marquardt R R and Frohlich A L. 1992. A review of recent advances in understanding ochratoxicosis. Journal of Animal Science 70: 3968–88.
the prevention of the toxic effects of ochratoxin. *Journal of Applied Poultry Research* **11**: 22–28.

Sawale G K, Gosh R C, Ravikanth K, Maini S and Rekhe D S. 2009. Experimental mycotoxicosis in layer induced by ochratoxin A and its amelioration with herbomineral toxin binder toxiroak. *International Journal of Poultry Science* **8**: 798–803.

Schaeffer J L, Tyczkowski J K and Hamilton P B. 1987. Alterations in carotenoid metabolism during ochratoxicosis in young broiler chickens. *Poultry Science* **66**: 318–24.

Siegel P B and Gross W B. 1980. Production and persistence of antibodies to sheep erythrocytes. 1. Directional selection. *Poultry Science* **59**: 1–5.

Singh G S P, Chauhan H V S, Jha G J and Singh K K. 1990. Immunosuppression due to chronic ochratoxicosis in broiler chicks. *Journal of Comparative Pathology* **103**: 399–410.

Singh M. 2015. ‘Influence of dietary *Saccharomyces cerevisiae* and vitamin E supplementation on ochratoxicosis in broiler chickens.’ MVSc Thesis, IVRI, Izatnagar, Uttar Pradesh, India.

Singh M, Singh R and Mandal A B. 2016. Use of *Saccharomyces cerevisiae* to suppress the effects of ochratoxicosis in broiler chickens. *Indian Journal of Animal Sciences* **86**: 790–94.

Singh R, Mandal A B, Sharma M and Biswas A. 2015. Effect of varying levels of dietary ochratoxin A on the performance of broiler chickens. *Indian Journal of Animal Sciences* **85**: 296–300.

Singh R, Tyagi P K, Divya and Sharma M. 2013. Ochratoxigenic potential of *Aspergillus westerdijkiae* NRRL 3174 under laboratory conditions. *Indian Journal of Poultry Sciences* **48**: 247–49.

Snedecor G W and Cochran W G. 1989. *Statistical Methods*. 8th edn. Iowa State University.

Sorrenti V, Giacomo C D, Acquaviva R, Barbagallo I, Bognanno M and Galvano F. 2013. Toxicity of ochratoxin A and its modulation by antioxidants: A review. *Toxins (Basel)* **5**: 1742–66.

Sreemannaarayana O, Marquardt R R, Frohlich A A, Abramson D and Phillips T D. 1989. Organ weights, liver constituents and serum components in growing chicks fed ochratoxin A. *Archives of Environmental Contamination and Toxicology* **18**: 404–10.

Stoev S D, Steanov M, Denev S, Radic B, Domijan A M and Peraica M. 2004. Experimental mycotoxicosis in chickens induced by ochratoxin A and penicillic acid and intervention with natural plant extracts. *Veterinary Research Communication* **28**: 727–46.

Stoev S D, Anguelov G, Ivanov I and Pavlov D. 2000. Influence of ochratoxin A and an extract of artichoke on the vaccinal immunity and health in broiler chicks. *Experimental and Toxicologic Pathology* **52**: 43–55.

Stoev S D, Djuninov D, Mirtcheva T, Pavlov D and Mantle P. 2002. Studies on some feed additives giving partial protection against ochratoxin A toxicity in chicks. *Toxicology Letters* **135**: 33–50.

Talapatra S K, Ray S C and Sen K C. 1940. Estimation of phosphorus, choline, calcium, magnesium, sodium and potassium in feeding stuffs. *Journal of Veterinary Science and Animal Husbandry* **10**: 243–45.

Verma J, Johri T S, Swain B K and Ameena S. 2004. Effect of graded levels of aflatoxin, ochratoxin and their combinations on the performance and immune response of broilers. *British Poultry Science* **45**: 512–18.