Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
The coronavirus disease 2019 (COVID-19) pandemic is a global disaster. Globally, the cumulative number of confirmed patients with COVID-19 was 82,401,958, while the number of deaths reached 1,801,312 by 31 December 2020 [1]. These figures might increase the fear of infection and decrease the willingness to perform bystander cardiopulmonary resuscitation (CPR), that is a crucial component of the chain of survival that improves outcomes in patients with out-of-hospital cardiac arrest (OHCA) [2-4]. However, results of previous reports of bystander CPR rates during the COVID-19 pandemic period were inconsistent [5-8]. We evaluated the association between the COVID-19 pandemic and bystander CPR provision and clinical outcomes of patients with OHCA in public places.

This retrospective observational study used data from a multicentre emergency medical service-treated OHCA database in the Republic of Korea (ROK); the Korean Cardiac Arrest Resuscitation Consortium (KoCARC) [9].

The Korean EMS system is a partially multi-tiered and government-based system that covers 51,826,287 people across an area of 100,210 km². The first case of COVID-19 was reported on 20 January 2020, in the ROK [10]. The cumulative number of patients confirmed with COVID-19 was 12,850 (24.8 per 100,000 persons), and the cumulative number of deaths caused by COVID-19 was 282 (0.5/100,000 persons) until 30 June 2020 [11]. The case fatality rate was reported to be 2.2% in the ROK [11]. There was no general lockdown of businesses in the ROK, although high-risk areas such as churches, bars, and gyms were closed soon after the large cluster of cases associated with specific religious groups in late February 2020 [12].

We included patients with OHCA who collapsed in public locations from January 26 to June 30, 2020 (COVID-19 pandemic period) and the same period in 2016, 2017, 2018, and 2019 (non-pandemic period). The exposure variable was the COVID-19 pandemic. The pandemic period spanned from 26 January to 30 June 2020, because the Korean Centers for Disease Control and Prevention upgraded the level of caution for infectious diseases to ‘Warning’ with the emergence of the COVID-19 pandemic in communities [13]. The primary outcome variable was bystander CPR provision. The secondary outcomes were survival to discharge and neurological recovery. We conducted multivariable logistic regression analyses to assess the associations between the exposure variable and the outcome variables with adjustment for potential confounders, including patient age, patient sex, urbanization level of the OHCA location, season of event, day of event, time of event, witnessed status, patient–bystander relationship, and provision of telephone-assisted CPR (TA-CPR) instruction to the bystander.

In total, 788 patients included: 628 (79.7%) in the non-pandemic group and 160 (20.3%) in the pandemic group (Fig. 1). Bystander CPR rates did not differ significantly between the pandemic and non-pandemic groups (63.9% vs 63.1%; p = 0.86). There were no significant differences in survival to discharge (21.0% vs. 26.9%; p = 0.11) and neurological recovery (16.7% vs 21.3%; p = 0.18) between the pandemic and non-pandemic groups (Table 1). In multivariable logistic regression analysis, the adjusted odds ratio (AOR) for bystander CPR was 0.88 (95% confidence interval [CI] 0.57–1.35). Clinical outcomes were maintained in the pandemic (AOR: 1.11; 95% CI: 0.67–1.85 for survival to discharge, and AOR: 0.97; 95% CI: 0.55–1.73 for neurologic recovery) (Table 2).

Bystander CPR rates and clinical outcomes of patients with OHCA collapsed in public locations did not change significantly during the COVID-19 pandemic compared with those in the non-pandemic period. Overall survival to discharge and neurological recovery of patients with OHCA could be maintained during the pre-pandemic and pandemic periods in the ROK.

It is unclear why the bystander CPR rate was not affected by the COVID-19 pandemic. One possible explanation is the well-established infrastructure of bystander CPR in the ROK, mandatory CPR education for first responders and students, modified good Samaritans’ law, TA-CPR, etc. [14] Additionally, the Korean Association of Emergency Physicians released the recommendation of bystander CPR for laypersons in the early phase of the epidemic. They recommended that the bystander should wear personal protective equipment (PPE), such as masks, gloves, and goggles and should wash hands after performing CPR [15]. Another explanation is that wearing a face mask could mitigate the fear of infection of laypersons. A previous study reported that less than 20% of Koreans admitted being at high risk of contracting COVID-19 in their daily lives [16]. This perception of Korean is based on the belief that face masks play a crucial role in preventing the spread of the infection [17]. An international survey reported that the ROK ranked the highest rate of wearing face masks (94%) among 28 countries, and 63.2% of the Korean respondents reported always wearing a face mask when outside [18]. However, our viewpoint of the maintenance of the bystander CPR rate during the COVID-19 pandemic is not only positive. The bystander CPR rate has constantly been increasing in the ROK [14]. According to our data, the bystander CPR rate in public places improved from 56.2% in 2016 to 70.8% in 2019. Despite this soaring trend of bystander CPR rates in recent years, bystander CPR rates in 2020 reached only 63.1%, breaking away from the uptrend. To overcome this stagnation of the bystander CPR rate, the Korean dispatch centre should consider revising TA-CPR instruction protocols to protect bystanders from the risk of infection and to help reduce bystander fear of the risk of infection.

This study has several limitations. First, all hospitals voluntarily participated in the KoCARC program and were academic teaching hospitals. These hospitals tended to be larger and more specialised than non-participating hospitals. Second, this study was an observational study; therefore, there could be unmeasurable confounders, bystander...
Fig. 1. Patients selection flow.

Table 1: Baseline characteristics and clinical outcomes of study population

	Total	Non-pandemic period (n = 628)	Pandemic period (n = 160)	p-Value
Age (years)				
<18	10	9 (1.4)	1 (0.6)	0.52
18–64	443	348 (55.4)	95 (59.4)	
≥65	335	271 (43.2)	64 (40.0)	
Sex				
Male	625	490 (78.0)	135 (84.4)	0.08
Female	163	138 (22.0)	25 (15.6)	
Urbanization level				0.00
Metropolitan	356	304 (48.4)	52 (32.5)	
Non-metropolitan	432	324 (51.6)	108 (67.5)	
Witnessed by bystander				0.86
No	310	248 (39.5)	62 (38.8)	
Yes	478	380 (60.5)	98 (61.3)	
Bystander CPR				0.86
No	286	227 (36.1)	59 (36.9)	
Yes	502	401 (63.9)	101 (63.1)	
Relationship				0.55
Non-family	662	525 (83.6)	137 (85.6)	
Family	114	92 (14.6)	22 (13.8)	
Unknown	12	11 (1.8)	1 (0.6)	
Telephone-assisted CPR				0.36
No	473	382 (60.8)	91 (56.9)	
Yes	315	246 (39.2)	69 (43.1)	
Season				0.30
Spring	487	395 (62.9)	92 (57.5)	
Summer	163	123 (19.6)	40 (25.0)	
Winter	138	110 (17.5)	28 (17.5)	
Day of the week				0.26
Weekday	568	447 (71.2)	121 (75.6)	
Weekend	220	181 (28.8)	39 (24.4)	
Time of day				0.06
Day	206	155 (24.7)	51 (31.9)	
Night	582	473 (75.3)	109 (68.1)	
Initial ECG rhythm				0.42
Non-shockable	480	387 (61.6)	93 (58.1)	
Shockable	308	241 (38.4)	67 (41.9)	
EMS response time (minute)				
Unknown	71	67 (10.7)	4 (2.5)	
≤10	567	449 (71.5)	118 (73.8)	
11–20	139	103 (16.4)	36 (22.5)	
20–30	8	8 (1.3)	0 (0.0)	
>30	3	1 (0.2)	2 (1.3)	
Survival to discharge				0.11
No	613	496 (79.0)	117 (73.1)	
Yes	175	132 (21.0)	43 (26.9)	
Neurological recovery				0.18
No	640	523 (83.3)	126 (78.8)	
Yes	139	105 (16.7)	34 (21.3)	

CPR, Cardiopulmonary resuscitation; ECG, electrocardiogram; EMS, Emergency medical services.
characteristics, patients’ clinical information (pre-arrest symptoms such as fever, respiratory symptoms, etc.), PPE usability of bystanders, etc. Finally, the results of this study are short-term outcomes of the COVID-19 pandemic. We included data from only five months after the COVID-19 pandemic in our analysis. The long-term effects of the COVID-19 pandemic on bystander CPR rate should be investigated because the number of education and training sessions for laypersons reduced, and many sessions were virtually converted after the COVID-19 pandemic.

Financial support
There is no financial support.

Contributorship statement
(1) Conception and design of the study, or analysis and interpretation of data: Dr. Lim, and Dr. Ahn
(2) Drafting the article or revising it critically for important intellectual content: Dr. Lim and Dr. Ahn,
(3) Acquisition of data and Obtained funding: Dr. Park, Dr. Lim, and Dr. Lee
(4) Final approval of the version to be submitted: All authors.

Declaration of Competing Interest
All authors report no conflicts of interest.

Acknowledgement
We would like to acknowledge and thank to investigators from all participating hospitals of KoCARC: Do Kyun Kim (Seoul National University Hospital), Sang Kuk Han, Phil Cho Choi (Kangbuk Samsung Medical Center), Sang O Park, Jeong Wooyong Kim (Konkuk University Medical Center), Han Sung Choi, Jong Seok Lee (Kyung Hee University Hospital), Sung Hyuk Choi, Young Hoon Youn (Korea University Guro Hospital), Su Jin Kim (Korea University Anam Hospital), Min Seob Sim, Gun Tak Lee (Samsung Medical Center), Shin Ahn (Asan Medical Center), Jong Whan Shin (SMG-SNU Boramea Medical Center), Sang Hyun Park, Keun Hong Park (Seoul Medical Center). In Cheol Park, Yoo Seok Park (Yonsei University Severance Hospital), Tae Young Kong (Yonsei University Gangnam Severance Hospital), Kyoun Won Lee, Chu Hyun Kim (Inje University Seoul Paik Hospital), Youngsuk Cho (Hallym University Kangdong Sacred Heart Hospital), Gu Hyun Kang, Yong Soo Jiang (Hallym University Kangnam Sacred Heart Hospital), Tai Ho Im, Jae Hoon Oh (Hanyang University Seoul Hospital), Seok Ran Yeom, Sang Kyoon Han (Pusan National University Hospital), Jae Hoon Lee (Dong-A University Hospital), Jeong Bae Park, Hyun Wook Ryoo (Kyungpook National University Hospital), Kyung Woo Lee, Tae Chang Jang (Daegu Catholic University Medical Center), Jae-hyung Woo (Gachon University Gil Medical Center), Woon Jeong Lee, Seon Hee Woo (The Catholic University of Korea Incheon St. Mary's Hospital), Sung Hyun Yun, Tae Jin Cho (Catholic Kwandong University International St. Mary's Hospital), Sun Pyo Kim, Yong Jin Park (Chosun University Hospital), Jin Woong Lee, Wonjoon Jeong (Chungnam National University Hospital), Sung Soo Park, Jae Kwang Lee (Konyang University Hospital), Ryooek Ahn, Wook Jin Choi (Ulsan University Hospital), Young Gi Min, Eun Jung Park (Ajou University Hospital), You Hwan Jo, Joong Hee Kim (Seoul National University Bundang Hospital), In Byung Kim, Ki Oh Ahn (Myongji Hospital), Han Jin Cho (Korea University Ansan Hospital), Seung Cheol Lee, Sang Hun Lee (Dongguk University Ilsan Hospital), Young Sik Kim, Young Rock Ha (Bundang Jesaeng Hospital), Jin Sik Park, Myoung Woo Lee (Sejong Hospital), Dai Han Wi (Wonkwang University Sanbon Hospital), Sang Duk Ha, Won Seok Yang (Hallym University Pyeongchon Sacred Heart Hospital), Ok Jun Kim, Tae Nyoung Chung (Cha University Bundang Medical Center), Soon Joo Wang, Hang A Park (Hallym University Dongsan Sacred Heart Hospital), Jun Hwi Cho, Chan Wook Park (Kangwon National University Hospital), An Mu Eoh, Tae Hun Lee (Hallym University Chuncheon Sacred Heart Hospital), Sang Chul Kim, Hoon Kim (Chungbuk National University Hospital), Han Joo Choi, Chan Young Koh (Dankook University Hospital), Jung Won Lee, Dong Wook Lee (Soonchunhyang University Cheonan Hospital), Tae Oh Jung, Jae Choi Yoon (Chonbuk National University Hospital), Dai Hai Choi, Jung Tae Choi (Dongguk University Gyeongju Hospital), Jin Hee Jeong, Soo Hoon Lee (Gyeongsang National University Hospital), Ji Ho Ryu, Maeng Real Park (Pusan National University Yangsan Hospital), Won Kim (Cheju Halla General Hospital), Sung Wook Song, Woo Jung Kim (Jeju National University Hospital), Joon-myoung Kwon, Eui Hyuk Kang (Mediplex Sejong Hospital), Sang Chan Jin, Tae-kwon Kim (Keimyung University Dongsan Medical Center), Hyuk Joong Choi (Hanyang University Guri Hospital), Seong Chun Kim (Gyeongsang National University Changwon Hospital).

To steering committee, comprised of following individuals: Sung Oh Hwang (Chair, Wonju Severance Christian Hospital), Sang Do Shin (Chair of Steering Committee, Seoul National University Hospital), Hyuk Jun Yang (Advisory Committee, Gachon University Gil hospital), Sung Phil Chung (Data Safety and Management Board, Yonsei University Gangnam Severance Hospital), Sung Woo Lee (Security and Monitoring Board, Korea University Anam hospital), Kyung Jun Song (Secretariat, SMG–SNU Boramae Medical Center), Seung Sik Hwang (Epidemiology and Prevention Research Committee, Seoul National University), Gyu Chong Cho (Community Resuscitation Research Committee, Hallym University Kangdong Sacred Heart Hospital), Sung Woo Moon (Emergency Medical Service Resuscitation Research Committee, Korea University Ansan Hospital), Kyoung Chul Cha (Hospital Resuscitation Research Committee, Wonju Severance Christian Hospital), Won Young Kim (Hyperthermia and Post-Resuscitation Care Research Committee, Asan Medical Center), Sang Hoon Na (Cardiac Care Resuscitation Research Committee, Seoul National University Hospital), Young Ho Kwack (Pediatric Resuscitation Research Committee, Seoul National University Hospital) To member of Secretariat: Joo Yeong Kim (Korea University Ansan hospital), Jeong Hoon Park (Seoul National University hospital), Sun Young Lee (Seoul National University hospital), and Jung Eun Kim (Seoul National University hospital).

To National Fire Agency for providing prehospital EMS data.
And to Korean Association of Cardiopulmonary Resuscitation (KACPR) for support.

Table 2
Multivariable logistic regression analysis on the bystander CPR and clinical outcomes

	Non-pandemic period n/N (%)	Pandemic period n/N (%)	Crude OR (95% CI)	Adjusted OR (95% CI)
Bystander CPR	401/628 (65.9)	101/160 (63.1)	0.97 (0.68–1.39)	0.88 (0.57–1.35)
Survival to discharge	132/628 (21.0)	43/160 (26.9)	1.38 (0.95–2.06)	1.11 (0.67–1.85)
Neurologic recovery	105/628 (16.7)	34/160 (21.3)	1.34 (0.87–2.07)	0.97 (0.55–1.73)

Adjusted variables of Bystander CPR: age, sex, urbanization level, season, day of event, time of event, witnessed status, relationship between patient and bystander, providing the TA-CPR instruction to bystander.

Adjusted variables of Survival and neurologic recovery: age, sex, urbanization level, witnessed status, provision of bystander CPR, first documented ECG rhythm, EMS response time interval.
References

[1] World Health Organization. WHO Coronavirus Disease (COVID-19) Global Situation. Available from: https://covid19.who.int/.

[2] Perkins GD, Morley PT, Nolan JP, Soar J, Berg K, Olavevenen T, et al. International liaison committee on resuscitation: COVID-19 consensus on science, treatment recommendations and task force insights. Resuscitation. 2020;151:145–7.

[3] Scquizzato T, Olavevenen TM, Ristagno G, Semeraro F. The other side of novel coronavirus outbreak: fear of performing cardiopulmonary resuscitation. Resuscitation. 2020;150:92–3.

[4] Couper K, Taylor-Phillips S, Grove A, Freeman K, Osoogu O, Court R, et al. COVID–19 in cardiac arrest and infection risk to resuscitators: a systematic review. Resuscitation. 2020;151:59–66.

[5] Marjion E, Karam N, Jost D, Perrot D, Frattini B, Derkenne C, et al. Out-of-hospital cardiac arrest during the COVID–19 pandemic in Paris, France: a population-based,observational study. Lancet Public Health. 2020;5:e437–43.

[6] Sayre MR, Barnard LM, Counts CR, Drucker CJ, Kudenchuk PJ, Rea TD, et al. Prevalence of COVID–19 in out-of-hospital cardiac arrest: implications for bystander CPR. Circulation. 2020;142:507–9.

[7] Lai PH, Lancer EA, Weiden MD, Webster WP, Zeig-Owens R, Hall CB, et al. Characteristics associated with out-of-hospital cardiac arrests and resuscitations during the novel coronavirus disease 2019 pandemic in New York City. JAMA Cardiol. 2020;5:1154–63.

[8] Lim ZJ, Ponnapa Reddy M, Afoz A, Billah B, Shaker K, Subramaniam A. Incidence and outcome of out-of-hospital cardiac arrests in the COVID–19 era: a systematic review and meta-analysis. Resuscitation. 2020;157:248–58.

[9] Kim JY, Hwang SO, Shin SD, Yang HJ, Chung SP, Lee SW, et al. Korean cardiac arrest research consortium (KoCARC): rationale, development, and implementation. Clin Exp Emerg Med. 2018;5:165–76.

[10] Korea Centers for Disease Control and Prevention, Press release: 2020-01-20 The other side of novel coronavirus disease 2019 pandemic in New York city. JAMA Cardiol. 2020;5:1154–63.

[11] Korea Centers for Disease Control and Prevention. The cumulative number of patients confirmed with COVID19 and death with COVID19. Available from: http://ncov.mohw.go.kr/index.jsp.

[12] Dighe A, Cattarino L, Cuomo-Dannenburg G, Skarp J, Imai N, Bhatta S, et al. Response to COVID–19 in South Korea and implications for lifting stringent interventions. BMC Med. 2020;18:321.

[13] Korea Centers for Disease Control and Prevention. Press release: 2020-01-20 The Korean Centers for Disease Control and Prevention upgraded the level of caution to 'Warning' according to emerging of Covid19 epidemic in Republic of Korea. Accessed 16 February 2021, at https://covid19.who.int/.

[14] Kim YT, Shin SD, Hong SO, Ahn KO, Ro YS, Sorg KJ, et al. Effect of national implementation of utstein recommendation from the global resuscitation alliance on ten steps to improve outcomes from out-of-hospital cardiac arrest: a ten-year observational study in Korea. BJM Open. 2017;7:e016925.

[15] The Korean Society of Emergency Medicine. Recommendations of bystander CPR for patients with presumed infection of COVID–19. Accessed 18 March 2021, at https://emergency.or.kr/bbs/notice/2107.

[16] Zastrow M. South Korea is reporting intimate details of COVID–19 cases: Has it helped? Nature. 2020. https://doi.org/10.1038/d41586-020-00740-y In press

[17] Lee M, You M. Psychological and behavioral responses in South Korea during the early stages of coronavirus disease 2019 (COVID–19). Int J Environ Res Public Health. 2020;17:2977.

[18] Gallup International Association. Snap poll on Covid19 in 28 countries by Gallup international association. Accessed 16 February 2021, at https://www.gallup.co.kr/gallupdb/reportContent.asp?seqNo=1100.

Kyu Tae Lim, MD
Department of Emergency Medicine, Myongji Hospital, Goyang, Republic of Korea

Ki Ok Ahn, MD, PhD
Department of Emergency Medicine, Myongji Hospital, Hanyang University College of Medicine, Goyang, Republic of Korea

*Corresponding author at: 679-24 Hwajung-Dong, Deokyang-Gu, Goyang-Si, Gyeonggi-Do 412-270, Korea.
E-mail address: arendt75@hanyang.ac.kr

Jeong Ho Park, MD
Department of Emergency Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea

Chi Ho Park, MD
Department of Emergency Medicine, Myongji Hospital, Hanyang University College of Medicine, Goyang, Republic of Korea

Jangsun Lim
Department of Emergency Medicine, Myongji Hospital, Hanyang University College of Medicine, Goyang, Republic of Korea

Kyeongjae Lee
Department of Emergency Medicine, Myongji Hospital, Hanyang University College of Medicine, Goyang, Republic of Korea

14 April 2021