The Number of Locally p-stable Functions on Q_n

Asier Calbet

School of Mathematical Sciences
Queen Mary, University of London
Mile End Road, London E1 4NS
United Kingdom
a.calbetripodas@qmul.ac.uk

Abstract
A Boolean function $f : V(G) \to \{-1, 1\}$ on the vertex set of a graph G is locally p-stable if for every vertex v the proportion of neighbours w of v with $f(v) = f(w)$ is exactly p. This notion was introduced by Gross and Grupel in [1] while studying the scenery reconstruction problem. They give an exponential type lower bound for the number of isomorphism classes of locally p-stable functions when $G = Q_n$ is the n-dimensional Boolean hypercube and ask for more precise estimates. In this paper we provide such estimates by improving the lower bound to a double exponential type lower bound and finding a matching upper bound. We also show that for a fixed k and increasing n, the number of isomorphism classes of locally $(1 - k/n)$-stable functions on Q_n is eventually constant. The proofs use the Fourier decomposition of functions on the Boolean hypercube.

1 Introduction

Let G be a graph with vertex set $V(G)$. By a Boolean function on G we mean a function $f : V(G) \to \{-1, 1\}$. Motivated by the scenery reconstruction problem, Gross and Grupel, in [1], define a locally p-stable function on G to be a Boolean function f on G such that for every vertex $v \in V(G)$ we have

$$\frac{|\{w \in \Gamma(v) : f(v) = f(w)\}|}{d(v)} = p,$$

where $\Gamma(v)$ denotes the neighbourhood of v in G and $d(v) = |\Gamma(v)|$ is the degree of v. They say that two Boolean functions f and g on G are isomorphic if there is an automorphism ϕ of G such that $f = g \circ \phi$. They show that the scenery reconstruction problem on the n-dimensional Boolean hypercube is impossible for $n \geq 4$ by constructing two non-isomorphic locally p-stable functions and noting that the scenery processes for these functions have exactly the same distribution.

Let us now restrict ourselves to the case when $G = Q_n$ is the n-dimensional Boolean hypercube. It will be more convenient for us to work with a re-parametrised definition of locally p-stable functions.

Definition 1. A k-function is a Boolean function f on Q_n such that for every vertex $v \in V(G)$ we have

$$|\{w \in \Gamma(v) : f(v) \neq f(w)\}| = k.$$

Note that a k-function is precisely a locally p-stable function on Q_n with $p = 1 - k/n$. Combinatorially, a k-function corresponds to a partition of Q_n into two parts such that every vertex has precisely k neighbours in the opposite part.

It will also be more convenient for us to work with an extended notion of isomorphism. We say that two real-valued functions f and g on Q_n are isomorphic if there is an automorphism ϕ of Q_n and a sign $\epsilon \in \{-1, 1\}$ such that $f = \epsilon g \circ \phi$. Note that if f and g are isomorphic then f is a k-function if and only if g is. The number of isomorphism classes of k-functions changes by at most a factor of 2 when passing from our definition of isomorphism to that of Gross and Grupel.

Let us now introduce some notation. For integers $0 \leq k \leq n$, let $F(n,k)$ denote the number of k-functions on Q_n and let $G(n,k)$ denote the number of isomorphism classes of k-functions on Q_n. We are mainly interested
in $G(n,k)$, but will need $F(n,k)$ in the proofs.

In [1], Gross and Grupel obtain a lower bound of the form

$$G(n,k) = 2^\Omega(\sqrt{n})$$

for $n \geq 2k - 2$ and ask for more precise estimates (Question 5.12.).

In this paper, we provide such estimates:

Theorem 1. Let $0 \leq k \leq n$ be integers. Then

$$2^{2m+o(1)} \leq G(n,k) \leq 2^{2m+O(\log_2 m)},$$

where $m = \min(k,n-k)$.

We also prove the following theorem, which is a key ingredient in the proof of Theorem 1:

Theorem 2. Let $k \geq 0$ be an integer. Then the sequence $(G(n,k))_{n=k}^{\infty}$ is increasing and eventually constant. Moreover, denoting by $n(k)$ the first value of n after which the sequence is constant, we have

$$3 \cdot 2^{k-1} - 2 \leq n(k) \leq 4.394 \cdot 2^k.$$

The paper is organised as follows. In Section 2 we introduce some definitions and notation, describe the automorphisms of Q_n and recall some basic facts about Fourier analysis on the Boolean hypercube. In Section 3 we prove Theorems 1 and 2.

2 Preliminaries

In this section we introduce some definitions and notation, describe the automorphisms of Q_n and recall some basic facts about Fourier analysis on the Boolean hypercube.

2.1 The Boolean hypercube

We first introduce some definitions and notation that we will need later on. It will be convenient to think of Q_n as having vertex set $V(Q_n) = \{-1,1\}^n$. The edge set $E(Q_n)$ is the set of pairs of vectors differing in precisely one entry. We will sometimes write Q_S, where S is a finite set, for the Boolean hypercube indexed by S (so $V(Q_n) = \{-1,1\}^S$ and $E(Q_n)$ is as before). One can think of Q_n as $Q_{[n]}$, where $[n] = \{1,2,3,\ldots,n\}$. We will write vectors $x \in Q_n$ as $x = (x_1,x_2,x_3,\ldots,x_n)$, so that $x_i \in \{-1,1\}$ for all $i \in [n]$.

For each $x \in Q_n$, we write $\Gamma(x) = \{y \in Q_n : xy \in E(Q_n)\}$ for the neighbourhood of x. Let f be a real-valued function on Q_S. We say that an index $i \in S$ is irrelevant if the value of $f(x)$ does not depend on the value of x_i. Otherwise, we say that i is relevant. Given a finite set $T \supseteq S$, we can think of f as a function on Q_T for which all the indices in $T \setminus S$ are irrelevant. Conversely, a real-valued function on Q_T for which all the indices in $T \setminus S$ are irrelevant can be thought of as a function on Q_S.

We now describe the automorphisms of Q_n. For each $\alpha \in Q_n$ there is an automorphism of Q_n, which we will also denote by α, given by $\alpha(x)_i = \alpha_i x_i$ for all $x \in Q_n$ and $i \in [n]$. Let S_n be the set of permutations of $[n]$. For each $\sigma \in S_n$ there is an automorphism of Q_n, which we will also denote by σ, given by $\sigma(x)_i = x_{\sigma(i)}$ for all $x \in Q_n$ and $i \in [n]$. It is well known that any automorphism ϕ of Q_n can be written uniquely as $\phi = \alpha \circ \sigma$ with $\alpha \in Q_n$ and $\sigma \in S_n$.

In particular, there are $2^n n!$ automorphisms of Q_n. Hence, since there are 2 signs, every isomorphism class of k-functions on Q_n has size at least 1 and at most $2^{n+1} n!$, which gives the following lemma.

Lemma 1. Let $0 \leq k \leq n$ be integers. Then

$$\frac{F(n,k)}{2^{n+1} n!} \leq G(n,k) \leq F(n,k).$$

We will also need the following easy lemma later on.
Lemma 2. Let $0 \leq m \leq n$ be integers and let f and g be real-valued functions on Q_m. Then f and g are isomorphic when thought of as functions on Q_m if and only if they are isomorphic when thought of as functions on Q_n.

Proof. Suppose f and g are isomorphic when thought of as functions on Q_m, say $f = \epsilon g \circ \alpha \circ \sigma$, where $\epsilon \in \{-1, 1\}$, $\alpha \in Q_m$ and $\sigma \in S_m$. Let $\beta \in Q_n$ and $\tau \in S_n$ be given by

$$
\beta_i = \begin{cases}
\alpha_i & \text{for } i \in [m] \\
1 & \text{for } i \notin [m]
\end{cases} \quad \text{and} \quad \tau(i) = \begin{cases}
\sigma(i) & \text{for } i \in [m] \\
i & \text{for } i \notin [m]
\end{cases}.
$$

Then, when f and g are thought of as functions on Q_n, we have $f = \epsilon g \circ \beta \circ \tau$, so f and g are isomorphic when thought of as functions on Q_n.

Suppose f and g are isomorphic when thought of as functions on Q_n, say $f = \epsilon g \circ \alpha \circ \sigma$, where $\epsilon \in \{-1, 1\}$, $\alpha \in Q_n$ and $\sigma \in S_n$. Let $\beta \in Q_n$ be given by $\beta_i = \alpha_i$ for all $i \in [m]$. Let $S, T \subseteq [n]$ be the sets of relevant indices of f and g, respectively. Then, by considering the set of relevant indices of $f = \epsilon g \circ \alpha \circ \sigma$, we see that $\sigma(T) = S$. Let $\tau \in S_n$ be any permutation such that $\tau(i) = \sigma(i)$ for all $i \in T$. Then, when f and g are thought of as functions on Q_n, we have $f = \epsilon g \circ \beta \circ \tau$, so f and g are isomorphic when thought of as functions on Q_n. $
$

2.2 Fourier analysis on the Boolean hypercube

We now recall some basic facts about Fourier analysis on the Boolean hypercube. For a comprehensive treatment see [2]. Let V be the vector space of real-valued functions on Q_n. For each subset $S \subseteq [n]$, let $\chi_S \in V$ be the function given by

$$
\chi_S(x) = \prod_{i \in S} x_i.
$$

The χ_S form a basis of V, so any $f \in V$ can be written uniquely as

$$
f = \sum_{S \subseteq [n]} \hat{f}(S) \chi_S,
$$

where the $\hat{f}(S)$ are the Fourier coefficients of f. The function \hat{f} mapping each $S \subseteq [n]$ to its Fourier coefficient $\hat{f}(S)$ is known as the Fourier transform of f and this decomposition is known as the Fourier decomposition.

For each integer $0 \leq k \leq n$, let V_k be the subspace of V spanned by the χ_S with $|S| = k$. We will need the following two basic facts later on, so we state them here as separate lemmas.

Lemma 3 (Parseval’s Theorem in [2]). Let f be a Boolean function on Q_n. Then

$$
\sum_{S \subseteq [n]} \hat{f}(S)^2 = 1.
$$

Lemma 4 (Exercise 1.11(b) in [2]). Let $f \in V_k$ be a Boolean function, where $k \geq 1$. Then \hat{f} is $\frac{1}{2^{n-k}}$-valued.

3 Results

In this section we prove Theorems 1 and 2. An outline of the proof is as follows. We first obtain a criterion for a Boolean function to be a k-function in terms of its Fourier decomposition which will be used throughout the rest of the paper. We then prove Theorem 2. Next, we prove a symmetry of $F(n, k)$ and $G(n, k)$ which explains the appearance of $m = \min(k, n-k)$ in Theorem 1.

We then show how to obtain a $(k+1)$-function on Q_{n+2} given a pair of k-functions on Q_n, which is the key to proving the lower bound in Theorem 3. Next, we introduce a new function which counts the number of ways of writing a non-negative integer as a sum of squares and obtain an upper bound for $F(n, k)$ in terms of this function. We then prove an upper bound for this new function. Finally, we put all our previous results together to prove Theorem 4.
3.1 Criterion for a Boolean function to be a k-function

In [1], Gross and Grupel show that a Boolean function f on Q_n is an $n/2$-function if and only if $f \in V_{n/2}$ (Proposition 3.5.). The following lemma uses the same argument to generalise this result.

Lemma 5. A Boolean function f on Q_n is a k-function if and only if $f \in V_k$.

Proof. Consider the linear map $\alpha : V \to V$ given by

$$(\alpha f)(x) = \sum_{y \in F(x)} f(y).$$

We claim that a Boolean function f on Q_n is a k-function if and only if $\alpha f = (n - 2k)f$. To see this, for each $x \in Q_n$, let $k(x) = |\{y \in \Gamma(x) : f(x) \neq f(y)\}|$. Then

$$(\alpha f)(x) = \sum_{y \in F(x)} f(y) = (n - k(x))f(x) + k(x)(-f(x)) = (n - 2k(x))f(x).$$

Then, by definition, f is a k-function if and only if $k(x) = k$ for all $x \in Q_n$, i.e. if and only if $\alpha f = (n - 2k)f$.

For each $S \subseteq [n]$, since χ_S is an $|S|$-function, we thus have $\alpha \chi_S = (n - 2|S|)\chi_S$. So the Fourier basis diagonalises α. Hence, f is a k-function if and only if $\alpha f = (n - 2k)f$, which happens if and only if $f \in V_k$.

Throughout the rest of the paper we will view Lemma 5 as the definition of a k-function.

3.2 Proof of Theorem 2

We now prove Theorem 2.

Theorem 2. Let $k \geq 0$ be an integer. Then the sequence $(F(n,k))_{n=k}^{\infty}$ is increasing and eventually constant. Moreover, denoting by $n(k)$ the first value of n after which the sequence is constant, we have

$$3 \cdot 2^{k-1} - 2 \leq n(k) \leq 4.394 \cdot 2^{k}.$$

Proof. Gross and Grupel note in [1] that given integers $n \geq m \geq k$ we can think of a k-function on Q_m as a k-function on Q_n for which all the indices $m < i \leq n$ are irrelevant (Observation 4.4.). Combining this observation with Lemma 2 we obtain that the sequences $(F(n,k))_{n=k}^{\infty}$ and $(G(n,k))_{n=k}^{\infty}$ are increasing.

Moreover, in light of this observation and Lemma 2 a moment’s thought shows that for all integers $N \geq k$ the following two statements are equivalent:

- $G(n,k) = G(N,k)$ for all integers $n \geq N$.
- Every k-function has at most N relevant indices.

Wellens proved in [3] that every k-function has at most $4.394 \cdot 2^k$ relevant indices (Theorem 1.1.). Hence $(G(n,k))_{n=k}^{\infty}$ is eventually constant and $n(k) \leq 4.394 \cdot 2^k$. In [1], Chiarelli, Hatami and Saks recursively construct k-functions with $3 \cdot 2^{k-1} - 2$ relevant indices (Theorem 3.1.). Hence $n(k) \geq 3 \cdot 2^{k-1} - 2$.

3.3 Symmetry of $F(n,k)$ and $G(n,k)$

We now prove a symmetry of $F(n,k)$ and $G(n,k)$.

Lemma 6. Let $0 \leq k \leq n$ be integers. Then $F(n,k) = F(n,n-k)$ and $G(n,k) = G(n,n-k)$.

Proof. Define a linear map $\beta : V \to V$ by $\beta f = \chi_{[n]} f$. Since $\chi_{[n]}^2 = 1$, $\beta^2 = id$, where id is the identity function on V. We have $\beta \chi_S = \chi_{[n]} \chi_S = \chi_{S'}$ for all $S \subseteq [n]$. Hence β swaps V_k and V_{n-k}. Note that βf is a Boolean function if and only if f is. Hence, by Lemma 5 β induces a bijection between k-functions and $(n-k)$-functions on Q_n. So $F(n,k) = F(n,n-k)$.

To show that $G(n,k) = G(n,n-k)$ it suffices to check that β respects isomorphisms. Let $f, g \in V$ be isomorphic, say $f = \epsilon g \circ \phi$, where $\epsilon \in \{-1,1\}$ and $\phi \in Aut(Q_n)$. Then

$$\beta f = \beta (\epsilon g \circ \phi) = \epsilon \chi_{[n]} (g \circ \phi) = \epsilon (\chi_{[n]} \circ \phi^{-1} \circ \phi)(g \circ \phi) = \epsilon ((\chi_{[n]} \circ \phi^{-1})g) \circ \phi .$$
3.4 Obtaining a $(k + 1)$-function on Q_{n+2} from a pair of k-functions on Q_n

The following lemma is the key to proving the lower bound in Theorem 1. A similar construction was used in [4] by Chiarelli, Hatami and Saks to recursively construct k-functions with $3 \cdot 2^{k-1} - 2$ relevant indices.

Lemma 7. Let f and g be k-functions on Q_n. Then

$$h = \left(\frac{f + g}{2} \right) x_{n+1} + \left(\frac{f - g}{2} \right) x_{n+2}$$

is a $(k + 1)$-function on Q_{n+2}.

Proof. By Lemma 5 we need to check that h is a Boolean function in V_{k+1}. By considering the four possible values for the pair (x_{n+1}, x_{n+2}), we see that the values obtained by h are those obtained by $\pm f$ and $\pm g$. Since f and g are Boolean functions, so is h. Since f and g are in V_k, so are $(f + g)/2$ and $(f - g)/2$. Hence $((f + g)/2) x_{n+1}$ and $((f - g)/2) x_{n+2}$ are in V_{k+1}, since $(f + g)/2$ and $(f - g)/2$ are functions on Q_n. Hence $h \in V_{k+1}$.

Corollary 1. Let $0 \leq k \leq n$ be integers. Then $F(n + 2, k + 1) \geq F(n, k)^2$.

Proof. In Lemma 7 distinct pairs (f, g) give distinct h.

Corollary 2. Let $k \geq 0$ be an integer. Then $F(2k, k) \geq 2^{2^k}$.

Proof. This follows from $F(0, 0) = 2$ and iterating Corollary 1 with $n = 2k$.

Lemma 7 gives a way of constructing a $(k + 1)$-function given a pair of k-functions. One might ask whether every $(k + 1)$-function arises in this way. It turns out this is not the case. We give an example of a 4-function which cannot be obtained from a pair of 3-functions in this way. Note that the h in Lemma 7 is “covered” by the indices $n + 1$ and $n + 2$, in the sense that for all $S \subseteq [n + 2]$ with $\hat{h}(S) \neq 0$, either $n + 1 \in S$ or $n + 2 \in S$. Hence it is sufficient to construct a 4-function h which cannot be covered by two indices.

We have 1-functions x_1 and x_2, so by Lemma 7 we have a 2-function

$$f(x_1, x_2, x_3, x_4) = \left(\frac{x_1 + x_2}{2} \right) x_3 + \left(\frac{x_1 - x_2}{2} \right) x_4 = x_1 x_3 + x_2 x_3 + x_1 x_4 - x_2 x_4.$$

Let g_1, g_2, g_3 and g_4 be copies of f with disjoint relevant indices. Let

$$h = f(g_1, g_2, g_3, g_4) = g_1 g_3 + g_2 g_3 + g_1 g_4 - g_2 g_4.$$

Then it is easy to check that h is a 4-function with 64 non-zero terms in its Fourier decomposition and that for every relevant index i there are precisely 16 sets S with $i \in S$ and $\hat{h}(S) \neq 0$. Hence h cannot be covered by 2 indices.
3.5 Relation between $F(n,k)$ and $S(q,t)$

We now introduce a new function, $S(q,t)$, and prove an upper bound for $F(n,k)$ in terms of $S(q,t)$. For integers $q,t \geq 0$, let $S(q,t)$ denote the number of $x \in \mathbb{Z}^t$ such that

$$\sum_{i=1}^{t} x_i^2 = q.$$

We then have the following lemma.

Lemma 8. Let $1 \leq k \leq n$ be integers. Then $F(n,k) \leq S\left(4^{k-1}, \binom{n}{k}\right)$.

Proof. Let f be a k-function on Q_n. By Lemma 4 and Lemma 5, $\hat{f}(S) = \frac{xS}{2^{|S|}}$, where $x_S \in \mathbb{Z}$, for all $S \subseteq [n]$ with $|S| = k$. Note that $\hat{f}(S) = 0$ for $S \subseteq [n]$ with $|S| \neq k$ by Lemma 5. By Lemma 5,

$$\sum_{S \in \binom{n}{k}} x_S^2 = 4^{k-1}.$$

Distinct f give distinct $x \in \mathbb{Z}^{\binom{n}{k}'}$, so the result follows. \[\square\]

3.6 An upper bound for $S(q,t)$

The function $S(q,t)$ has been studied in number theory, where it is denoted by $r_t(q)$. The author searched the literature but was only able to find estimates in the regime where q is fixed and t is large, whereas for our purposes we need to consider the regime where both q and t are large and t is much larger than q. When t is much larger than q, most of the x_i have to be 0, so the size of $S(q,t)$ is governed less by the number theory and more by the combinatorics of choosing which x_i are non-zero. We have the following upper bound for $S(q,t)$.

Lemma 9. For all integers $t \geq q \geq 0$, we have

$$S(q,t) \leq 2^{q \log_2 t + O(q \log_2 q)}.$$

Proof. We first prove an upper bound for $S(q,t)$ for all integers $q,t \geq 0$. If $x \in \mathbb{Z}^t$ is such that $\sum_{i=1}^{t} x_i^2 = q$, then $|x_i| \leq \sqrt{q}$ for all $i \in [t]$, so there are at most $2\sqrt{q} + 1$ possibilities for each x_i. Hence $S(q,t) \leq (2\sqrt{q} + 1)^t$. Now suppose $t \geq q \geq 0$ are integers. For each $x \in \mathbb{Z}^t$ with $\sum_{i=1}^{t} x_i^2 = q$, the set $\{i \in [t] : x_i \neq 0\}$ has size at most q, so we can pick a subset of $[t]$ of size q containing it. Then there are $\binom{t}{q}$ such subsets and for each subset there are at most $S(q,q)$ different $x \in \mathbb{Z}^t$ with $\sum_{i=1}^{t} x_i^2 = q$ for which that subset is picked, so $S(q,t) \leq \binom{t}{q} S(q,q)$.

Combining these two bounds, we have

$$S(q,t) \leq \binom{t}{q} S(q,q) \leq \binom{t}{q} (2\sqrt{q} + 1)^q = 2^{q \log_2 t + O(q \log_2 q)}.$$

For the last inequality, note that we have

$$\frac{t^q}{q^q} \leq \binom{t}{q} \leq \frac{t^q}{q!}$$

for all integers $t \geq q \geq 0$ and hence

$$\binom{t}{q} = 2^{q \log_2 t + O(q \log_2 q)}.$$

By considering $x \in \mathbb{Z}^t$ with $x_i \in \{-1,1\}$ for q different $i \in [t]$ and $x_i = 0$ for all other i, we have

$$S(q,t) \geq \binom{t}{q} 2^q = 2^{q \log_2 t + O(q \log_2 q)}$$

for all integers $t \geq q \geq 0$. Hence the bound in Lemma 9 is tight. \[\square\]
3.7 Proof of Theorem

We now put all our previous results together to prove Theorem.

Theorem. Let \(0 \leq k \leq n \) be integers. Then

\[
2^{2^m + o(1)} \leq G(n, k) \leq 2^{2^m + O(\log_2 m)},
\]

where \(m = \min(k, n - k) \).

Proof. By Lemma \[\text{6}\], we may assume that \(m = k \), i.e. that \(n \geq 2k \). We first prove the lower bound. We have

\[
G(n, k) \geq G(2k, k) \geq \frac{F(2k, k)}{2^{2k+1}(2k)!} \geq \frac{2^{2^k}}{2^{2k+1}(2k)!} = 2^{2^k + o(1)}.
\]

(by Corollary \[\text{2}\])

We now prove the upper bound. We have

\[
G(n, k) \leq G(n(k), k) \leq S \left(4^k - 1, \binom{n(k)}{k} \right) \leq 2^{2^k + O(\log_2 k)}.
\]

(by Lemma \[\text{8}\] and Theorem \[\text{2}\])

\[\square\]

4 Acknowledgement

The author thanks Robert Johnson for suggesting the problem and for useful feedback on a draft of this paper and the anonymous referee for helpful suggestions. This work was supported by the Engineering and Physical Sciences Research Council.

References

[1] Renan Gross and Uri Grupel. *Indistinguishable sceneries on the Boolean hypercube*. Combinatorics, Probability and Computing, Volume 28, Issue 1, January 2019, pp. 46 - 60.

[2] Ryan O’Donnell. *Analysis of Boolean Functions*. Cambridge University Press, New York, NY, USA, 2014.

[3] Jake Wellens. *Relationships between the number of inputs and other complexity measures of Boolean functions*. arXiv preprint, arXiv:2005.00566, May 2020.

[4] John Chiarelli, Pooya Hatami and Michael Saks. *An Asymptotically Tight Bound on the Number of Relevant Variables in a Bounded Degree Boolean function*. Combinatorica 40, 237–244, March 2020.

[5] Peter van Hintum. *Biased Partitions of \(\mathbb{Z}^n \)*. European Journal of Combinatorics, Volume 79, 2019, Pages 262-270.

[6] Itai Benjamini, and Harry Kesten. *Distinguishing sceneries by observing the scenery along a random walk path*. Journal d’Analyse Mathématique, Volume 69, 1996, pages 97–135.

[7] Hilary Finucanea, Omer Tamuz and Yariv Yaaria. *Scenery Reconstruction on Finite Abelian Groups*. Stochastic Processes and their Applications, Volume 124.8, August 2014, pp.2754-2770.

[8] Elon Lindenstrauss. *Indistinguishable sceneries*. Random Structures and Algorithms, Volume 14.1, January 1999, pp. 71-86.