Endobronchial ultrasound-guided transbronchial needle aspiration can improve the diagnostic accuracy of positron emission tomography/computed tomography in hilar and/or mediastinal lymphadenopathy

ABSTRACT

Context: Endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) and positron emission tomography/computed tomography (PET/CT) are the two most extensively used methods for the diagnosis and staging of lung cancer.

Aims: The present study was designed to compare the diagnostic performance of EBUS-TBNA with that of PET/CT in patients with hilar and/or mediastinal lymphadenopathy.

Settings and Design: We compared the accuracy of EBUS-TBNA with that of PET/CT in the diagnosis of hilar and/or mediastinal lymphadenopathy and evaluated the diagnostic utility of EBUS-TBNA in patients with PET/CT false-positive and false-negative findings.

Methods: This study retrospectively analyzed 85 patients with hilar and/or mediastinal lymphadenopathy who underwent EBUS-TBNA and PET/CT between January 2014 and December 2017. The accuracy of EBUS-TBNA histopathology and cytopathology was evaluated and compared with PET/CT scan findings.

Results: The diagnostic accuracy of EBUS-TBNA combined with PET/CT was significantly higher than that of the single diagnostic method (P < 0.001). Among PET/CT-negative lymph nodes, 4 of 9 (44.4%) malignant lymph nodes were identified by EBUS-TBNA. Among PET/CT-positive lymph nodes, 43 of 47 (91.5%) benign lymph nodes were diagnosed by EBUS-TBNA.

Conclusions: EBUS-TBNA combined with PET/CT could effectively reduce false-positive and false-negative rates in the diagnosis of hilar and mediastinal lymphadenopathy, which might provide accurate staging, determine optimum therapeutic strategy and improve survival in patients with lung cancer.

KEY WORDS: Endobronchial ultrasound-guided transbronchial needle aspiration, lung cancer, lymphadenopathy, positron emission tomography/computed tomography

INTRODUCTION

Mediastinal lymph node (LN) metastases are diagnosed in approximately 28%–38% of patients with lung cancer.[1] Accurate staging is crucial for selecting the optimum treatment strategy and determining the prognosis of patients with lung cancer.[2,3] Positron emission tomography/computed tomography (PET/CT) is the most widely employed noninvasive imaging modality for clinical staging of lung cancer. Previous studies have indicated benefits of PET/CT in detecting LN metastases.[4] However, due to lacking of pathological diagnosis in the evaluation of mediastinal LN metastases by imaging, misdiagnosis often occurs.[5] Therefore, histological
confirmation of mediastinal LN metastases is still necessary for accurate staging. Owing to its high accuracy, minimal invasiveness, and safety, endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) has emerged as the most effective tool for the diagnoses of enlarged LNs and masses near the trachea and bronchus.\[5,6\] Furthermore, it has been recommended by international guidelines,\[2,3,7\] Several studies have demonstrated application of EBUS-TBNA and PET/CT in the assessment of mediastinal LN metastases from lung cancer.\[8,9\] However, there is a paucity of literature providing histopathologic and cytopathologic evidence of hilar and/or mediastinal lymphadenopathy based on EBUS-TBNA. Therefore, the present study retrospectively analyzed the diagnostic significance of EBUS-TBNA histopathology and cytopathology for the diagnosis of hilar and/or mediastinal lymphadenopathy. Furthermore, the diagnostic utility of EBUS-TBNA was compared with that of PET/CT in the diagnosis of mediastinal lymphadenopathy.

METHODS

This retrospective study included a total of 85 patients with hilar and/or mediastinal lymphadenopathy who underwent EBUS-TBNA and PET/CT at the First Affiliated Hospital of Soochow University between January 2014 and December 2017 (Table 1). The patients included 55 and 30 with malignant and benign diseases, respectively (Table 2). At least one enlarged mediastinal or hilar LN measuring ≥1 cm on the short axis was observed in all patients in chest CT. All patients underwent PET/CT examination first and followed by EBUS-TBNA. Written informed consent was obtained from each patient. The present study was approved by the Ethics Committee of the First Affiliated Hospital of Soochow University.

Positron emission tomography with computed tomography acquisition

18F-fluorodeoxyglucose (FDG) PET/CT scans were obtained using an advanced Discovery STE PET/CT scanner (General Electric Medical Systems, Milwaukee, WI, USA). The patients fasted for at least 6 h before the PET/CT examination. Blood glucose was measured in all patients to ensure that the value was <11 mmol/L. Imaging was performed after intravenous injection of 18F-FDG (dose of 0.12 mCi/kg) tracer for 60 min. A whole-body emission scan in three-dimensional mode was obtained from the base of the skull to the mid-femur, 2–3 min per bed position. The PET/CT images were reconstructed using an ordered-subset expectation maximization iterative reconstruction algorithm. Attenuation correction and image fusion were performed using low-dose CT data. A maximum standardized uptake value (SUV\(_{\text{max}}\)) ≥2.5 was used as the cut-off for malignancy.\[9\]

Endobronchial ultrasound-guided transbronchial needle aspiration

The patients kept fast for at least 4 h before the procedure. Before commencing the bronchoscopy, Local anesthesia was administered with 2% lidocaine. Some patients received an intravenous bolus injection of midazolam and/or fentanyl for conscious sedation. Initially, conventional flexible bronchoscopy (BF-260, Olympus, Tokyo, Japan) was performed in each patient to examine the tracheobronchial tree, followed by an EBUS with a dedicated convex probe (BF-UC260FW, Olympus or Fujifilm EB-530US, Fujifilm, Tokyo, Japan). All EBUS-TBNA procedure was performed using a 21G needle (NA-201SX-4021, Olympus) under real-time ultrasound guidance through the working channel of the EBUS bronchoscope. Scanning was performed at a frequency of 7.5 MHz and images were processed using an Olympus ultrasound processor (EU-ME1, Olympus or SU-8000, Fujifilm), which scans in a direction parallel to the insertion of the bronchoscope to visualize the surrounding vascular structure. Once the target LN was located, the needle was advanced into the target lesion. An average of five punctures per LN was obtained. The locations of the LNs were classified according to the International Association for the Study of Lung Cancer LNs map criteria.\[10\] No rapid on-site cytological evaluation was performed. Part of the aspirated materials were immediately immersed and rinsed in a vial containing Thinprep PreservCyt

Table 1: Patients’ characteristics

Gender	n (%)
Male	60 (70.6)
Female	25 (29.4)

Table 2: Summary of the diagnoses of the patients

	Patients, n (%)	Total LNs	Malignant LNs	Benign LNs
Malignant				
Pulmonary SCC	7 (8.2)	10	8	2
Pulmonary ADC	26 (30.6)	48	41	7
SCLC	9 (10.6)	15	13	2
NSCLC-NOS	5 (5.9)	6	6	0
B cell lymphoma	2 (2.4)	3	3	0
NHL	2 (2.4)	6	6	0
T cell lymphoma	1 (1.2)	1	1	0
HL	1 (1.2)	1	1	0
IMT	1 (1.2)	1	1	0
Cervical SCC	1 (1.2)	1	1	0
Suspicious of malignancy*	1 (1.2)	2	2	0
Benign				
Reactive	19 (22.4)	39	0	39
Granuloma	6 (7.1)	13	0	13
Tuberculosis	4 (4.7)	5	0	5
Total	85 (100)	151	83	68

*Cases were considered suspicious of malignancy if disease progression was identified in follow-up images, but evidence was insufficient for malignant diagnosis. LNs=Lymph nodes, SCC=Squamous cell carcinoma, ADC=Adenocarcinoma, SCLC=Small cell lung cancer; NSCLC-NOS=Non-small cell lung cancer not otherwise specified; IMT=Inflammatory myofibroblastic tumor; NHL=Non-Hodgkin lymphoma; HL=Hodgkin lymphoma
solution (Hologic Ltd., Massachusetts, USA). The preservCyt vial was placed into Thinprep 2000 (Hologic Ltd., USA) for preparation for liquid-based cytological analysis. Other aspirated samples were discharged onto glass slides, smeared, fixed in 95% (v/v) ethanol, and sent for cytological examination. Specimens from both conventional smears and liquid-based cytology were stained with hematoxylin and eosin (H and E). EBUS-TBNA specimens were classified as “positive” if malignant cells were observed and “negative” if no malignancy was found. The staining results appearing atypical cells were also considered as negative. Aspired histologic materials, including tissue cores or fragments, were immediately fixed in 10% formalin, paraffin-embedded, sliced, H and E-stained, or further immunostained.

Diagnostic criteria
A true negative was defined as no evidence of malignancy on EBUS-TBNA and at least 6 months of clinical follow-up documenting no radiological progression of the disease. Histopathologic finding of malignancy in samples obtained by EBUS-TBNA was considered as a true positive. A false negative was defined as histopathological finding providing no evidence of malignancy in EBUS-TBNA samples and surgical confirmation of malignancy or obvious progression of lesions within 6 months of follow-up images.

Statistical analysis
The sensitivity, specificity, positive predictive value, negative predictive value and accuracy between EBUS-TBNA and PET/CT in the diagnoses of hilar and/or mediastinal lymphadenopathy were compared by McNemar’s method or Fisher’s exact test. Unpaired Student’s t-tests were used to compare SUV max between the EBUS-TBNA false-negative group and the EBUS-TBNA true-positive group. Statistical analysis was performed using the SPSS for Windows, version 16.0 (SPSS, Chicago, IL, USA). P < 0.05 was considered as statistically significant.

RESULTS
The diagnostic utility of EBUS-TBNA and PET/CT for lung cancer were shown in Table 3. The histopathological and cytopathological findings of 151 LNs were summarized in Tables 4-6. The most frequently sampled LN stations were 4R (26.5%), 7 (29.1%), and 1R (17.2%). During EBUS-TBNA, several patients experienced bleeding, which was effectively managed. There were 23 EBUS-TBNA false-negative LNs (13 patients). Of these, 22 LNs were confirmed to be malignant by surgery, and one LN was considered suspicious for malignancy in subsequent follow-up. The mean SUV max of the EBUS-TBNA false-negative LNs (5.7, range, 1.4–25.6; n = 23) was significantly lower than that of the true-positive LNs diagnosed by EBUS-TBNA (7.8, range, 1.5–15.7; n = 60) (P < 0.05).

Table 7 presented the pathological diagnoses of PET/CT-positive and PET/CT-negative LNs. Of the 46 PET/CT-positive benign LNs, 29 were reactive and diagnosed by EBUS-TBNA. A representative case was shown in Figure 1. Eleven of 13 (84.6%) granulomas and 3 of 4 (75%) TB cases were diagnosed by EBUS-TBNA. Among the 74 PET/CT-positive malignant LNs, 8 of 9 (88.9%) metastatic LNs of squamous cell carcinoma were diagnosed by EBUS-TBNA. Thirty-two of 36 (88.9%) metastatic LNs of adenocarcinoma, 11 of 12 (91.7%) metastatic LNs of small cell lung cancer, 4 of 6 (66.7%) metastatic LNs of non-small cell lung cancer not otherwise specified, and 1 of 5 (20%) non-Hodgkin lymphoma LNs were diagnosed by EBUS-TBNA. However, three B-cell lymphoma LNs and one Hodgkin lymphoma LN were not detected by EBUS-TBNA and were diagnosed by surgical biopsy.

Among the PET/CT-negative LNs, 21 reactive LNs and one case of TB were diagnosed by EBUS-TBNA. Two of 5 (40%) metastatic LNs of adenocarcinoma, 1 metastatic LN of small cell lung cancer and 1 non-Hodgkin lymphoma LN were detected by EBUS-TBNA. One T-cell lymphoma LN was not detected by EBUS-TBNA and was diagnosed by surgical biopsy.

The sensitivity of EBUS-TBNA for the histopathological and cytopathological diagnoses of hilar and/or mediastinal LN malignancies was 72.3%, and 61.4% and the negative predictive value were 74.5% and 68%, respectively. The specificity and positive predictive value of both tests were

Table 3: Diagnostic value of PET/CT and EBUS-TBNA in the detection of mediastinal metastases of lung cancer

	Sensitivity (%)	Specificity (%)	PPV (%)	NPV (%)	Accuracy (%)
ADC PET/CT	87.8	57.1	92.3	44.4	83.3
EBUS-TBNA	82.9	100	100	50	85.4
SCLC PET/CT	92.3	-	85.7	-	80
EBUS-TBNA	92.3	100	100	66.7	93.3
SCC PET/CT	100	100	100	100	100
EBUS-TBNA	100	100	100	66.7	90.9
NSCLC-NOS PET/CT	100	-	100	-	100
EBUS-TBNA	66.7	100	-	66.7	

PET/CT=Positron emission tomography/computed tomography, EBUS-TBNA=Endobronchial ultrasound-guided transbronchial needle aspiration, SCC=Squamous cell carcinoma, ADC=Adenocarcinoma, SCLC=Small cell lung cancer, NSCLC-NOS=Nonsmall cell lung cancer not otherwise specified, PPV=Positive predictive value, NPV=Negative predictive value
Table 4: Locations of lymph nodes diagnosed as malignant lesions by EBUS-TBNA

Total, n (%)	SCC	ADC	SCLC	NSCLC-NOS	NHL
2R	5 (8.3)	0	3	1	1
4R	20 (33.3)	2	13	3	1
4L	2 (3.3)	0	1	1	0
7	20 (33.3)	4*	8	5	2
10R	3 (5)	0	2	1	0
10L	1 (1.7)	0	1	0	0
11R	8 (13.3)	2	5	1	0
11L	1 (1.7)	0	1	0	0
Total, n (%)	60 (100)	8 (13.3)	34 (56.7)	12 (20)	4 (6.7)

*Including one cervical SCC. EBUS-TBNA=Endobronchial ultrasound-guided transbronchial needle aspiration, SCC=Squamous cell carcinoma, ADC=Adenocarcinoma, SCLC=Small cell lung cancer, NSCLC-NOS=Non-small cell lung cancer not otherwise specified, NHL=Non-Hodgkin lymphoma.

Table 6: Summary of locations of all lymph nodes diagnosed by EBUS-TBNA cytopathology

Malignant, n (%)	Benign, n (%)	
2R	5 (9.8)	5 (5)
4R	20 (39.2)	20 (20)
4L	1 (2)	8 (8)
7	14 (27.5)	30 (30)
10R	2 (3.9)	10 (10)
10L	0	2 (2)
11R	8 (15.7)	18 (18)
11L	1 (2)	7 (7)
Total, n (%)	51 (100)	100 (100)

Table 7: Summary of histopathological diagnosis of PET/CT-positive and -negative lymph nodes

PET/CT-positive LNs, n (%)	PET/CT-negative LNs, n (%)	
SCC	9 (7.5)	0
ADC	36 (30)	5 (16.1)
SCLC	12 (10)	1 (3.2)
Suspicious of malignancy*	1 (0.8)	1 (3.2)
NSCLC-NOS	6 (5)	0
Granuloma	29 (24.2)	21 (67.7)
Tuberculosis	13 (10.8)	0
B cell lymphoma	4 (3.3)	1 (3.2)
NHL	5 (4.2)	1 (3.2)
T cell lymphoma	0	1 (3.2)
HL	1 (0.8)	0
IMT	1 (0.8)	0
Total, n (%)	120 (100)	31 (100)

*Cases were considered suspicious of malignancy if disease progression was identified in follow-up images but the evidence was insufficient for malignant diagnosis. PET/CT=Positron emission tomography/computed tomography, SCC=Squamous cell carcinoma, ADC=Adenocarcinoma, SCLC=Small cell lung cancer, NSCLC-NOS=Non-small cell lung cancer not otherwise specified, IMT=Inflammatory myofibroblastic tumor, NHL=Non-Hodgkin lymphoma, HL=Hodgkin lymphoma.

DISCUSSION

PET/CT is a noninvasive technique that cannot provide tissue samples for pathological diagnosis. Moreover, it is not sufficiently sensitive and specific to determine hilar or mediastinal LN involvement, which leads to potential false-positive findings. For patients with suspected malignant mediastinal LNs, tissue specimens should be extracted for pathological diagnosis and accurate staging to determine prognosis.\[2,3,7,11,12\]

In this study, among the PET/CT-positive LNs, 46 (38.3%) were benign LNs, most of which were granulomatous inflammation and reactive lymphoid hyperplasia. Mediastinal lymphadenopathy in some patients with lung cancer may be attributed to a hypersensitivity reaction induced by the tumor.\[13,14\]

Among the PET/CT-negative LNs, 8 was diagnosed as malignant by EBUS-TBNA or surgery, and one LN was suspected to be malignant in follow-up. Among PET/CT-negative LNs, 17.6% were diagnosed as malignant by EBUS-TBNA.\[15\] A previous study reported that among 104 patients staged N0 by PET/CT before surgery, 27 (26.0%) were false-negative findings,\[16\] which may be associated with micrometastases.\[17\]

Due to the high false-negative rate, PET/CT could not reliably determine which patient had a chance of surgery.\[17\]
A previous review indicated a significant decrease in the sensitivity of PET/CT when evaluating metastatic LNs of adenocarcinoma. Consistent with this finding, in our study, 5 PET/CT-negative LNs of 3 patients were confirmed to be metastatic LNs. Similarly, Herth et al.[19] showed that 6 of 100 NSCLC patients without mediastinal PET activity had Stage N2 or N3 disease, of which all were identified by EBUS-TBNA. These findings may be attributed to the most frequent prevalence of mediastinal LN metastases in adenocarcinoma[20] and may also be related to the reduced uptake of FDG in LNs of patients with adenocarcinoma.[21]

The findings of the present study revealed the high sensitivity, specificity, and accuracy of cytopathology in differentiating benign from malignant LNs, suggesting its potential in lung cancer staging. Histopathology combined with cytopathology was superior to the single diagnostic method in terms of diagnostic sensitivity, negative predictive value, and accuracy. Vaidya et al.[22] also found that the histopathology and cytopathology and cytology of EBUS-TBNA could improve diagnostic efficacy.

This study had several limitations. First, our findings were based on a retrospective analysis of data obtained from a single center. Second, only a few EBUS-TBNA negative patients were confirmed histopathologically by surgical sampling. Despite these limitations, our findings suggested that EBUS-TBNA histopathology and cytopathology could significantly improve the diagnostic accuracy of PET/CT for the diagnosis of mediastinal lymphadenopathy.

CONCLUSIONS

EBUS-TBNA combined with PET/CT could effectively reduce false-positive and false-negative rates in the diagnosis of hilar and mediastinal lymphadenopathy to provide accurate staging and determine optimum therapeutic strategy, which might improve survival in patients with lung cancer.

Acknowledgments

This work was partly supported by a Clinical Key Specialty Project of China and the Clinical Medical Center of Suzhou, China (Szzx201502), The Science and Education of Public Health Project for Young Medical Talents of Jiangsu Province (grant nos. QNRC2016747), The National Natural Science Foundation of China (grant nos. 81300026), and Jiangsu Province Special Program of Medical Science, China (BE2016762).

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

1. Silvestri GA, Gould MK, Margolis ML, Tanoue LT, McCrory D, Toloza E, et al. Noninvasive staging of non-small cell lung cancer: ACCP evidenced-based clinical practice guidelines (2nd edition). Chest 2007;132:178S-201S.
2. Postmus PE, Kerr KM, Oudkerk M, Senan S, Waller DA, Vansteenkiste J, et al. Early and locally advanced non-small-cell lung cancer (NSCLC): ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 2017;28:iv1-21.
3. Planchard D, Popat S, Kerr K, Novello S, Smit EF, Faire-Finn C, et al. Metastatic non-small cell lung cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 2018;29:iv1-21.
4. Burger IA, Casanova R, Steiger S, Husmann L, Stolzmann P, Hueliner MW, et al. 18F-FDG PET/CT of non-small cell lung carcinoma under neoadjuvant chemotherapy: Background-based adaptive-volume metrics outperform TLG and MTV in predicting histopathologic response. J Nucl Med 2016;57:849-54.
5. Kinsey CM, Arenberg DA. Endobronchial ultrasound-guided transbronchial needle aspiration for non-small cell lung cancer under neoadjuvant chemotherapy: Background-based adaptive-volume metrics outperform TLG and MTV in predicting histopathologic response. J Nucl Med 2014;55:640-9.
6. Navani N, Nankivel M, Lawrence DR, Lock S, Makker H, Baldwin DR, et al. Lung cancer diagnosis and staging with endobronchial ultrasound-guided transbronchial needle aspiration compared with conventional approaches: An open-label, pragmatic, randomised controlled trial. Lancet Respir Med 2015;3:282-9.
7. Vilmann P, Clements PF, Colella S, Siemsen M, De Leyn P, Dumonceau JM, et al. Combined endobronchial and esophageal endosonography for the diagnosis and staging of lung cancer: European Society of Gastrointestinal Endoscopy (ESGE) guideline, in cooperation with the European Respiratory Society (ERS) and the European Society of Thoracic Surgeons (ESTS). Endoscopy 2015;47:545-59.

8. Murgu SD. Diagnosing and staging lung cancer involving the mediastinum. Chest 2015;147:1401-12.

9. Hellwig D, Graeter TP, Ukena D, Groeschel A, Sybrecht GW, Schaefer HS, et al. 18F-FDG PET for mediastinal staging of lung cancer: Which SUV threshold makes sense? J Nucl Med 2007;48:1761-6.

10. Rusch VW, Asamura H, Watanabe H, Giroux DJ, Rami-Porta R, Goldstraw P. The IASLC lung cancer staging project: A proposal for a new international lymph node map in the forthcoming seventh edition of the TNM classification for lung cancer. J Thorac Oncol 2009;4:568-77.

11. Travis WD, Brambilla E, Burke AP, Marx A, Nicholson AG. Introduction to the 2015 World Health Organization classification of tumors of the lung, pleura, thymus, and heart. J Thorac Oncol 2015;10:1240-2.

12. Silvestri GA, Gonzalez AV, Jantz MA, Margolis ML, Gould MK, Tanoue LT, et al. Methods for staging non-small cell lung cancer: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 2013;143:e2115S-305.

13. Steinfort DP, Irving LB. Sarcoidal reactions in regional lymph nodes of patients with non-small cell lung cancer: Incidence and implications for minimally invasive staging with endobronchial ultrasound. Lung Cancer 2009;66:305-8.

14. Bellinger CR, Sharma D, Ruiz J, Parks G, Dotson T, Haponik EF. Negative predictive value of granulomas on EBUS-TBNA in suspected extrathoracic malignancy. Lung 2016;194:387-91.

15. Shingyoji M, Nakajima T, Yoshino M, Yoshida Y, Ashinuma H, Itakura M, et al. Endobronchial ultrasonography for positron emission tomography and computed tomography-negative lymph node staging in non-small cell lung cancer. Ann Thorac Surg 2014;98:1762-7.

16. Cornwell LD, Bakaen FG, Lan CK, Omer S, Preventza O, Pickrell B, et al. Endobronchial ultrasonography-guided transbronchial needle aspiration biopsy for preoperative nodal staging of lung cancer in a Veteran population. JAMA Surg 2013;148:1024-9.

17. Schmidt-Hansen M, Baldwin DR, Zamora J. FDG-PET/CT imaging for mediastinal staging in patients with potentially resectable non-small cell lung cancer. JAMA 2015;313:1465-6.

18. Schmidt-Hansen M, Baldwin DR, Hasler E, Zamora J, Abraira V, Roqué I Figuls M, et al. PET-CT for assessing mediastinal lymph node involvement in patients with suspected resectable non-small cell lung cancer. Cochrane Database Syst Rev 2014;11:CD009519.

19. Herth FJ, Eberhardt R, Krasnik M, Ernst A. Endobronchial ultrasound-guided transbronchial needle aspiration of lymph nodes in the radiologically and positron emission tomography-normal mediastinum in patients with lung cancer. Chest 2008;133:887-91.

20. Fibla JJ, Molins I, Simon C, Perez J, Vidal G. The yield of mediastinoscopy with respect to lymph node size, cell type, and the location of the primary tumor. J Thorac Oncol 2006;1:430-3.

21. Casali C, Cucca M, Rossi G, Barbieri F, Iacuzzo L, Bagni B, et al. The variation of prognostic significance of maximum standardized uptake value of [18F]-fluoro-2-deoxy-glucose positron emission tomography in different histological subtypes and pathological stages of surgically resected non-small cell lung carcinoma. Lung Cancer 2010;69:687-93.

22. Vaidya PJ, Saha A, Kate AH, Pandey K, Chavhan VB, Leuppi JD, et al. Diagnostic value of core biopsy histology and cytology sampling of mediastinal lymph nodes using 21-gauge EBUS-TBNA needle. J Cancer Res Ther 2016;12:1172-7.