Cyclooxygenase-2 polymorphisms and susceptibility to gastric carcinoma: A meta-analysis

Jia-Li Liu, Yuan Liang, Zhen-Ning Wang, Xin Zhou, Li-Li Xing

RESULTS: Ten studies were retrieved reporting a total of 11 COX-2 polymorphisms. Carriers of -765C, -1195A, -1290G, *2430T alleles and *429TT genotype revealed increased risk for GC (OR = 1.71, 95% CI: 1.01-2.90, \(P = 0.05 \); OR = 1.58, 95% CI: 1.05-2.38, \(P = 0.03 \); OR = 1.55, 95% CI: 1.01-2.39, \(P = 0.05 \); OR = 2.62, 95% CI: 1.20-5.73, \(P = 0.02 \) and OR = 0.74, 95% CI: 0.59-0.95, \(P = 0.02 \), respectively).

CONCLUSION: The -765C, -1195A, -1290G, *2430T alleles and *429TT genotype of COX-2 polymorphisms were determined a significant association with susceptibility to GC.

© 2010 Baishideng. All rights reserved.

Key words: Cyclooxygenases-2; Gastric cancer; Polymorphisms; Susceptibility; Meta-analysis

INTRODUCTION

Gastric cancer (GC) is the fourth most common cancer and the second leading cause of cancer-related death worldwide\[1-3\]. In 2008, around 215,000 people were diagnosed with gastric cancer and approximately 135,130 died of the disease in the United States\[4\]. GC is a complex and multifactorial disease. The marked geographic variation, time trends, and the migratory effect on GC incidence suggest that environmental or lifestyle factors are major contribu-
tors to the etiology of this disease. Examples include: diet, lifestyle, *Helicobacter pylori* (*H. pylori*) infection and genetic material[9].

Recent data has expanded upon the concept that inflammation is a critical component of tumor progression. Many cancers arise from sites of infection, chronic irritation and inflammation[8]. Tumor microenvironment is largely orchestrated by inflammatory cells, which are an indispensable participant in the neoplastic process, fostering proliferation, survival and migration. Inflammation also plays an important role in the development and progression of GC[9]. Epidemiological and animal data revealed that the use of non-steroidal anti-inflammatory drugs (NSAIDs) might reduce the risk of GC[7]. NSAIDs primarily inhibit the activity of the cyclooxygenase enzymes (COXs) and thereby affect the synthesis of prostaglandin signalling molecules, which are involved in a wide range of physiological processes beyond inflammation[8].

COXs catalyze the rate-limiting step in the production of prostaglandins (PG), bioactive compounds involved in processes such as fever and sensitivity to pain, and are the target of NSAIDs[9]. In mammals, the two COXs genes encode a constitutive isoenzyme (COX-1) and an inducible isoenzyme (COX-2); both of which are of significant pharmacological importance[9]. COX-1 is constitutively expressed in the majority of tissues and is associated with housekeeping functions such as vascular homeostasis and platelet aggregation[10]. COX-2, which is highly inducible and almost undetectable under normal physiological conditions, is readily induced in response to mitogens, tumor promoters, cytokines, growth factors, stress-inducing agents promoting inflammatory reactions, and tumor development[11]. COX-2 overexpression was found in a large proportion of GC tissues and was significantly associated with advanced tumor stage, *H. pylori* infection and lymph node metastasis[12]. COX-2 may also play a role in gastric carcinogenesis, which was associated with inhibition of apoptosis, increased metastasis potential and neoangiogenesis[10-16]. The expression of COX-2 is regulated by a complex signal transduction pathway in which many nuclear proteins interact with the COX-2 promoter region and play a decisive role in gene transcription[17]. Therefore, single nucleotide polymorphisms (SNPs) in the COX-2 promoter may have a great impact on gene transcriptional activity by altering the binding capability with certain nuclear proteins, resulting in inter-individual variability in susceptibility to cancer[18].

Systematic review can be a resourceful tool in detecting an association that could otherwise remain masked in the sample size studies, especially in those evaluating rare allele frequency polymorphisms[9]. The aim of this meta-analysis was to investigate the association of the COX-2 polymorphisms with susceptibility to GC by conducting a meta-analysis from all eligible case-control studies published to date.

MATERIALS AND METHODS

Search strategy and identification of studies

Medline, EMBASE and CBMdisc databases search were performed to retrieve papers linking COX-2 polymorphisms and susceptibility to GC available online by April 2010 without language restrictions, using the following query: [COX 2 OR COX-2 OR COX2 OR PEGS2 OR PEGS-2 OR “Cyclooxygenase 2” (MeSH) AND [polymorphism OR polymorphisms OR “Polymorphism, Genetic” (MeSH) OR “Polymorphism, Single Nucleotide” (MeSH) AND [gastric cancer OR “Stomach Neoplasms” (MeSH)]. The reference lists of major textbooks, review articles, and of all the included articles identified by the search were then individually searched to find other potentially eligible studies.

Inclusion criteria

To be eligible for inclusion in this meta-analysis, the following criteria were established: (1) the study must include a case-control study that addressed GC patients and normal or benign gastric diseases controls; (2) the study must have evaluated the COX-2 polymorphisms and susceptibility to GC; and (3) the study must have included sufficient data for extraction.

Exclusion criteria

Studies were excluded from consideration if: (1) the study was based on family data or incomplete raw data; (2) the study did not have the outcomes of comparison reported or it was not possible to determine them; or (3) the study contained a smaller sample size (number of cases < 30) and overlapped others.

Data extraction and quality assessment

Using a standardized form, data from published studies were extracted independently by two investigators (Liu JL and Liang Y) to populate the necessary information. From each of the included articles the following information was extracted: first author, year of publication, country, ethnicity, study design, source of cases, sample size, histological type, polymorphisms of genes, histopathological confirmations and evidence of Hardy-Weinberg equilibrium (HWE).

The quality of papers was also independently assessed by two researchers (Liu JL and Xing LL) based on the STROBE quality score systems[20,21]. 39 items relevant to the quality appraisal were used for assessment, scores ranged from 0 (lowest) to 50 (highest)[21]. Main items for quality assessment included: title and abstract, introduction, methods, study design, setting, participants, variables of interest, bias, HWE, sample size, statistical methods, funding and disclosure statement, internal validity, descriptive data, outcome data, main results, discussion, limitations, generality and interpretation[20,21].

Statistical analysis

Individual or pooled odds ratio (OR) and 95% confidence interval (CI) were calculated for each study using Review Manager version 5.2.23 software (provided by The Cochrane Collaboration, Oxford, England)[22]. Between-study heterogeneity was estimated using the χ^2-based Q statistic[23]. Heterogeneity was considered statistically
significant when $P_{\text{heterogeneity}} < 0.01$ or $I^2 > 50\%$. If heterogeneity existed, data was analyzed using a random effects model. In the absence of heterogeneity, a fixed effects model was used. Sources of heterogeneity were appraised by subgroup stratification analysis, based on several study characteristics, such as ethnicity and source of control individuals (population or hospital based). The funnel plot method was used to assess the possible presence of publication bias [24].

Before the effect estimation of the several COX-2 polymorphisms in gastric carcinogenesis, the HWE was assessed for all the polymorphisms in each study. A χ^2 test was performed to examine HWE when genotype data was available. If HWE disequilibrium existed ($P < 0.05$), or it was impossible to evaluate this equilibrium, sensitivity analysis was performed.

RESULTS

Search results

The search strategy retrieved 114 potentially relevant papers (52 in Medline, 35 in Embase, 27 in CBMdisc). There were 10 studies included in this meta-analysis. One-hundred and four studies were subjected to a full text review and excluded according to the selection criteria stated above. The flow chart of study selection is summarized in Figure 1.

Study characteristics and quality

In total, 3074 GC cases from 10 case-control studies were included in the meta-analysis. All studies were considered as case-control studies. Five ethnicities were addressed: two studies focused on Caucasian populations [25,26], five on Asian populations [27-32], one on a Hispanic population [32], one on a Dutch population [18] and one on an Indian population [32]. Eight studies [18,25,26,28,31,32] used hospital-based cases and controls and two studies [25,32] described a population-based design. Cases and controls of four studies [25,27,30,32] were mainly defined through endoscopic multiple biopsies procedures and three studies [28,30,31] through endoscopy, with histological assessment. However, there were three studies [26,28,29] that did not mention the method of confirmation. The characteristics and methodological quality of all studies are summarized in Table 1.

The characteristics of COX-2 polymorphisms in gastric cancer

Eleven COX-2 polymorphisms were addressed in gastric carcinogenesis: -765G>C, -1195G>A, Gly587Arg(G>A), 1290A>G, 8473T>C, IVS5-275T>G, IVS7+111T>C, V102V, *429T>C, *2430C>T, 587codonG>A. The genotype distribution of COX-2 polymorphisms and the variant allele frequency are described in Table 2. A HWE test was performed on all included studies, all of them showed in HWE ($P > 0.05$).

Association between COX-2 polymorphism and gastric cancer

Meta-analysis of eight studies identified a significant association between the -765C allele and susceptibility to GC ($OR = 1.71, 95\% CI: 1.01-2.90, P = 0.05$) using the random effects model ($P_{\text{heterogeneity}} < 0.00001, I^2 = 89\%$). The -1195G>A COX2 polymorphism analysis revealed that the -1195A allele was also a risk factor for susceptibility to GC ($OR = 1.58, 95\% CI: 1.05-2.38, P = 0.03$) using the random effects model ($P_{\text{heterogeneity}} = 0.04, I^2 = 70\%$). The -1290A>G analysis showed that the -1290G allele was a risk factor for GC ($OR = 1.58, 95\% CI: 1.05-2.38, P = 0.03$) using the random effects model ($P_{\text{heterogeneity}} = 0.04, I^2 = 70\%$). The -1290A>G analysis showed that the -1290G allele was a risk factor for GC ($OR = 1.58, 95\% CI: 1.05-2.38, P = 0.03$) using the random effects model ($P_{\text{heterogeneity}} = 0.04, I^2 = 70\%$).
A significant association with the susceptibility to GC was also determined in the *2430T allele analysis (OR = 2.62, 95% CI: 1.20-5.73, P = 0.02) (Figure 2). However, the Gly587Arg(G>A), 8473T>C, IVS5-275T>G, IVS7+111T>C, V102V and 587codonG>A polymorphisms showed no association with the susceptibility to GC (OR = 0.95, 95% CI: 0.68-1.33, P = 0.77; OR = 1.03, 95% CI: 0.49-2.14, P = 0.95 and OR = 1.35, 95% CI: 0.64-2.87, P = 0.43, respectively).

Subgroup analysis was performed on -765G>C polymorphism by ethnicity, such as Caucasian, Asian, Indian and Dutch. Results showed no significant association between the -765C allele and susceptibility to GC in Caucasians (OR = 1.19, 95% CI: 0.65-2.15, P = 0.58), while an obviously significant association was determined in Asians (OR = 1.87, 95% CI: 1.19-2.94, P = 0.006) and Indians (OR = 8.38, 95% CI: 4.34-16.16, P < 0.00001). However, the results showed that the -765C allele was a protective factor for GC in Dutch (OR = 0.93, 95% CI: 0.59-1.42, P = 0.43). Sensitivity analysis was performed after excluding studies conducted by Saxena et al[33] and Sitarz et al[29], because of the anomalous OR and rare ethnicity.
No significant differences were observed between before and after results (OR = 1.59, 95% CI: 1.08-2.35, P = 0.02) (Figure 4).

Publication bias

The publication bias of the meta-analysis on the association between COX-2 and GC was detected by the funnel plot on -765G>C. The graphical funnel plot of 8 studies of -765G>C polymorphism appeared to be asymmetrical (Figure 5). Publication bias might occur if smaller studies showed no significant results remain unpublished, leading to an asymmetrical appearance of the funnel plot with a gap at the bottom of the graph.

DISCUSSION

Evidence suggests that COX-2 plays an important role in the carcinogenesis pathway, such as in the inhibition of apoptosis, tumor growth, angiogenesis, invasion and metastasis\(^{34-36}\). The specific function of COX-2 in the formation of prostaglandins makes it a strong candidate for increasing susceptibility to common cancers such as GC, colorectal cancer, lung cancer and other cancers\(^{37}\). As is known, genetic polymorphisms altering the level of protein expressed would be anticipated to have a substantial influence on disease activity. Several polymorphisms in COX-2 have been reported previously, although some
of these polymorphisms are not functionally significant or associated with susceptibility to cancer21. There were also many polymorphisms of COX-2 gene which were determined to have a significant association with the susceptibility to GC21,38.

Our meta-analysis quantitatively assessed the asso-

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|}
\hline
Study or subgroup & Case & Controls & OR (random) & Weight & OR (random) \\
(n/N) & (n/N) & (95% CI) & (%) & (95% CI) \\
\hline
01 -765G>C polymorphism in Caucasians & & & & & \\
Pereira et al(25) 2006 & 37/73 & 80/210 & 12.4 & 1.67 (0.98-2.86) \\
Hou et al(26) 2007 & 80/290 & 121/409 & 13.5 & 0.91 (0.65-1.27) \\
Subtotal (95% CI) & 363 & 619 & 25.9 & 1.19 (0.65-2.15) \\
Total events & 117 & 201 & & \\
Heterogeneity: $\chi^2 = 10.44; df = 9 (P = 0.06); I^2 = 72\%$ \\
Test for overall effect: $Z = 0.86 (P = 0.40)$ \\
\hline
02 -765G>C polymorphism in Asians & & & & & \\
Liu et al(27) 2006 & 42/388 & 43/427 & 12.9 & 1.08 (0.69-1.70) \\
Zhang et al(28) 2007 & 35/323 & 26/646 & 12.5 & 2.90 (1.71-4.91) \\
Zhu et al(29) 2008 & 38/140 & 20/125 & 12.0 & 1.96 (1.07-3.59) \\
Tang et al(30) 2009 & 45/100 & 29/105 & 12.2 & 2.14 (1.20-3.84) \\
Subtotal (95% CI) & 951 & 1303 & 49.6 & 1.87 (1.19-2.94) \\
Total events & 160 & 118 & & \\
Heterogeneity: $\chi^2 = 3.70; df = 3 (P = 0.35); I^2 = 65\%$ \\
Test for overall effect: $Z = 2.73 (P = 0.006)$ \\
\hline
03 -765G>C polymorphism in Indians & & & & & \\
Saxena et al(33) 2008 & 48/62 & 70/241 & 11.7 & 8.38 (4.34-16.16) \\
Subtotal (95% CI) & 62 & 241 & 11.7 & 8.38 (4.34-16.16) \\
Total events & 48 & 70 & & \\
Heterogeneity: Not applicable \\
Test for overall effect: $Z = 6.34 (P < 0.00001)$ \\
\hline
04 -765G>C polymorphism in Dutch & & & & & \\
Sitarz et al(18) 2008 & 65/241 & 41/100 & 12.7 & 0.53 (0.33-0.87) \\
Subtotal (95% CI) & 241 & 100 & 12.7 & 0.53 (0.33-0.87) \\
Total events & 65 & 41 & & \\
Heterogeneity: Not applicable \\
Test for overall effect: $Z = 2.53 (P = 0.01)$ \\
\hline
Total (95% CI) & 1617 & 2263 & 100.0 & 1.71 (1.01-2.90) \\
Total events & 390 & 430 & & \\
Heterogeneity: $\chi^2 = 62.28; df = 7 (P < 0.00001); I^2 = 89\%$ \\
Test for overall effect: $Z = 1.98 (P = 0.05)$ \\
\hline
\end{tabular}
\caption{Subgroup analysis of -765G>C polymorphism by ethnicity.}
\end{table}
Mechanism involving gastric carcinogenesis.

*2430C>T COX-2 polymorphisms and their molecular function studies, future investigations should focus on the -765G>C, -1195G>A, -1290A>G, *429T>C, and IVS7+111T>C, V102V and 587codonG>A COX-2 polymorphisms. -765G>C, -1195G>A, Gly587Arg(G>A), 8473T>C, IVS5-275T>G, IVS7+111T>C, V102V, *429T>C, *2430C>T, 587codonG>A. -765G>C, the most common polymorphism of the COX-2 gene and investigated in eight studies, revealed an increased risk behavior associated with gastric carcinogenesis in the normal population (OR = 1.71, 95% CI: 1.01-2.90, P = 0.05). As strong heterogeneity was reported, an ethnicity-based subgroup analysis was performed. The results showed that no association between the -765C allele and the susceptibility to GC in Caucasians, but an obviously significant association was determined in Asians (OR = 1.87, 95% CI: 1.19-2.94, P = 0.006) and Indians (OR = 8.38, 95% CI: 4.34-16.16, P < 0.00001). Interestingly, the -765C allele was a protective factor for GC in Dutch (OR = 0.53, 95% CI: 0.33-0.87, P = 0.01). Three studies discussed the association of the -1195G>A polymorphism and the susceptibility to GC. The results of the pooled analysis indicated that the -1195A allele was a risk factor for susceptibility to GC (OR = 1.58, 95% CI: 1.05-2.38, P = 0.03). In the study carried out by Zhang et al,[28] the increased susceptibility was higher in individuals that were -1290G allele carriers (OR = 1.55, 95% CI: 1.01-2.39, P = 0.05). Unlike most of the COX-2 polymorphisms addressed, the *429C allele seems to play a protective role in GC development. However, the *429T allele was a risk factor for susceptibility to GC (OR = 0.74, 95% CI: 0.59-0.95, P = 0.02). Another study worth mentioning is the one by Hou et al,[29] where we observed an increased risk of GC in Caucasians population with the *2430T allele (OR = 2.62, 95% CI: 1.20-5.73, P = 0.02). Unfortunately, no statistically significant results were observed in the Gly587Arg(G>A), 8473T>C, IVS5-275T>G, IVS7+111T>C, V102V and 587codonG>A COX-2 polymorphisms in gastric carcinogenesis. Therefore, in further functional studies, future investigations should focus on the -765G>C, -1195G>A, -1290A>G, *429T>C, and *2430C>T COX-2 polymorphisms and their molecular mechanism involving gastric carcinogenesis.

There were some limitations in our meta-analysis. Firstly, because of incomplete raw data or publication limitations, some relevant studies could not be included in our analysis. Secondly, we were not able to address the sources of heterogeneity that existed among studies for most polymorphisms. However, we could not perform subgroup stratification analysis for the limited number of published studies. Thirdly, the lack of genotype frequency information provided by some published studies did not allow the estimation of the best genetic model of inheritance to follow. Although we actively contacted the authors, they did not provide a comprehensive set of data. In addition, the small sample size available was not ideal for detecting small genetic effects. Finally, our systematic review was based on unadjusted data, as the genotype information stratified for the main confounding variables was not available in the original papers and also the confounding factors addressed across the different studies were variable.

In conclusion, our meta-analysis of 10 case-control studies demonstrated an association between the -765C, -1195A, -1290G, *2430T alleles and *429TT genotype of COX-2 polymorphisms and GC. In addition, all of these findings suggested that ethnicity was the main sources of heterogeneity, and different ethnicities with COX-2 polymorphisms had varying susceptibility to GC. From the analysis, we also concluded that the Gly587Arg(G>A), 8473T>C, IVS5-275T>G, IVS7+111T>C, V102V and 587codonG>A polymorphisms showed no association with susceptibility to GC. As few studies are available in this field and current evidence remains limited, the necessity should be emphasized to conduct large studies with an adequate methodological quality, properly controlling for possible confounds in order to obtain valid results.

ACKNOWLEDGMENTS

We would like to thank Wu Yan (Department of Dermatology, First Affiliated Hospital, China Medical University) for her valuable contribution and kindly revising the manuscript.

COMMENTS

Background

Accumulated evidence indicates that the cyclooxygenases-2 (COX-2) play an important role in gastric carcinogenesis, which was associated with inhibition of apoptosis, increased metastasis potential and neangiogenesis. To investigate the association of COX-2 polymorphisms with susceptibility to gastric cancer (GC), the authors carried out a meta-analysis of all related case-control studies.

Research frontiers

Much attention has been paid to the potential role of COX-2 in gastric carcinogenesis. Some of them have been trying to confirm the definite relationship between COX-2 polymorphisms and susceptibility to GC, and meanwhile, others attempt to uncover underlying mechanisms.

Innovations and breakthroughs

The current study demonstrated that the -765C, -1195A, -1290G, *2430T alleles and *429TT genotype of COX-2 polymorphisms have significant association regarding the susceptibility to GC.

Applications

Meta-analysis suggests that the -765C, -1195A, -1290G, *2430T alleles and *429TT genotype of COX-2 polymorphisms were statistically significant risk
factors for GC. These genetic profiles may enable clinicians to select individu- als for early diagnosis strategies, diverse management schedules such as the follow-up of patients with GC, or even to propose selective COX-2 inhibitors or non-specific COX inhibitors in patients with precancerous lesions.

Terminology

Meta-analysis is a statistical tool in detecting an association that could other- wise remain masked in the sample size studies, especially in those evaluating rare allele frequency polymorphisms.

Peer review

This is an interesting and good paper, the described analysis has been per- formed with precision and accuracy.

REFERENCES

1 Crew KD, Neugut AI. Epidemiology of gastric cancer. World J Gastroenterol 2006; 12: 354-362.
2 Parkin DM. International variation. Oncogene 2004; 23: 6329-6340.
3 Parkin DM, Pisani P, Ferlay J. Estimates of the worldwide incidence of eighteen major cancers in 1985. Int J Cancer 1993; 54: 594-606.
4 Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ. Cancer statistics. 2008. CA Cancer J Clin 2008; 58: 71-96.
5 Cousens LM, Werb Z. Inflammation and cancer. Nature 2002; 420: 860-867.
6 Marx J. Cancer research. Inflammation and cancer: the link grows stronger. Science 2004; 306: 966-968.
7 Ulrich CM, Bigler J, Potter JD. Non-steroidal anti-inflammatory drugs for cancer prevention: promise, perils and pharmacogenetics. Nat Rev Cancer 2006; 6: 130-140.
8 Vane JR, Botting RM. Mechanism of action of nonsteroidal anti-inflammatory drugs for cancer prevention: promise, perils and pharmacogenetics. Nat Rev Cancer 2006; 6: 130-140.
9 Chandrasekharan NV, Simmons DL. The cyclooxygenases. Genome Biol 2004; 5: 241.
10 Dubois RN, Abramson SB, Crofford L, Gupta RA, Simon LS, Van De Putte LB, Lipsky PE. Cyclooxygenase in biology and disease. FASEB J 1998; 12: 1063-1073.
11 Bakhle YS. COX-2 and cancer: a new approach to an old problem. Br J Pharmacol 2001; 134: 1117-1120.
12 Yu LZ, Gao HJ, Bai JF, Sun G, Zhao HL, Sun L, Miu K, Zhao ZQ. Expression of COX-2 proteins in gastric mucosal lesions. World J Gastroenterol 2004; 10: 292-294.
13 Souza RF, Shewmake K, Beer DG, Cryer B, Spechler SJ. Selective inhibition of cyclooxygenase-2 suppresses growth and induces apoptosis in human esophageal adenocarcinoma cells. Cancer Res 2000; 60: 5767-5772.
14 Nithipatikom K, Isbhall MA, Lindholm PF, Kajdacy-Balla A, Kaul S, Campbell WB. Requirement of cyclooxygenase-2 expression and prostaglandins for human prostate cancer cell invasion. Clin Exp Metastasis 2002; 19: 593-601.
15 Tsuji M, Kawano S, Tsuji S, Sawaoka H, Hori M, DuBois RN. Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell 1998; 93: 705-716.
16 Fujimura T, Ohta T, Oyama K, Miyashita T, Miwa K. Role of cyclooxygenase-2 in the carcinogenesis of gastrointestinal tract cancers: a review and report of personal experience. World J Gastroenterol 2006; 12: 1336-1345.
17 Dixon DA. Regulation of COX-2 expression in human can-cers. Prog Exp Tumor Res 2003; 37: 52-71.
18 Sitarz R, Leguit RJ, de Leng WW, Polak M, Morsink FM, Bak-ker O, Maciejewski R, Offerhaus GJ, Milne AN. The COX-2 promoter polymorphism -765 G>C and its association with early-onset, conventional and stumpy gastric cancers. Mod Pathol 2008; 21: 685-690.
19 Attia J, Thakkinstian A, D’Este C. Meta-analyses of molecular association studies: methodologic lessons for genetic epide-miology. J Clin Epidemiol 2003; 56: 297-303.
20 Vandebroucke JP, von Elm E, Altman DG, Gotzsche PC, Mulrow CD, Pocock SJ, Poole C, Schlesselman JJ, Egger M. Strengthening the Reporting of Observational Studies in Epi-demiology (STROBE): explanation and elaboration. Epidemi-ology 2007; 18: 803-835.
21 Pereira C, Medeiros RM, Dinis-Ribeiro MJ. Cyclooxygenase polymorphisms in gastric and colorectal carcinogenesis: are conclusive results available? Eur J Gastroenterol Hepatol 2009; 21: 76-91.
22 Higgins JP, Green S, editors. Cochrane Handbook for Sys-tematic Reviews of Interventions. Version 5.0.2 [updated Sep-tember 2009]. Available from: URL: http://www.cochrane-handbook.org.
23 Zintzaras E, Ioannidis JP. Heterogeneity testing in meta- analysis of genome searches. Genet Epidemiol 2005; 28: 123-137.
24 Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med 2002; 21: 1539-1558.
25 Pereira C, Sousa H, Ferreira P, Fragoso M, Moreira-Dias L, Lopes C, Medeiros R, Dinis-Ribeiro M. -765G-->C: COX-2 polymorphism may be a susceptibility marker for gastric adenocarcinoma in patients with atrophy or intestinal meta-plasia. World J Gastroenterol 2006; 12: 5473-5478.
26 Hou L, Grillo P, Zhu ZZ, Lissowska J, Yeager M, Zatonski W, Zhu G, Baccarelli A, Chanock SJ, Fraumeni JF Jr, Chow WH. COX1 and COX2 polymorphisms and gastric cancer risk in a Polish population. Anticancer Res 2007; 27: 4243-4247.
27 Liu F, Pan K, Zhang X, Zhang Y, Zhang L, Ma J, Dong C, Shen L, Li J, Deng D, Lin D, You W. Genetic variants in cyclo-oxygenase-2: Expression and risk of gastric cancer and its precursors in a Chinese population. Gastroenterology 2006; 130: 1975-1984.
28 Zhang XM, Miao XP, Tan W, Sun T, Guo YL, Zhao D, Lin DX. [Genetic polymorphisms in the promoter region of cyclo-oxygenase-2 and their association with risk of gastric cancer] Zhejiang Yixue Xueyuan Xuebao 2006; 28: 119-123.
29 Jiang GJ, Wang HM, Zhou Y, Tan YF, Ding WL, Gao J, Ke Q, Wang Y, Shen J, Xu YC, Shen HB. The correlation study between the nucleotide polymorphisms of cyclooxygenase-2 gene and the susceptibility to gastric cancer. Nanjing Yike Daxue Xuebao 2007; 27: 890-894.
30 Zhu KX, Li YM, Li X, Shi B, Zhou WC, Shan Y, Liu T, He WT, Feng TL. Association of COX-2 polymorphisms and H pylori infection with gastric cancer in high-incidence Hexi area of Gansu Province in China. Shijie Huaren Xiaohua Zazhi 2008; 16: 2364-2370.
31 Tang XF, Li YM, Li SX, Li X, He WT, Zhang D, Zhang QB, Zhu KH. Correlation between the nucleotide polymorphisms of COX-2 and the susceptibility to gastric cancer in a Uighur ethnic group. Shijie Huaren Xiaohua Zazhi 2009; 17: 1772-1776.
32 Canzian F, Franceschi S, Pummer M, van Doorn LJ, Lu Y, Gioia-Patricola L, Vivas J, Lopez G, Severson RK, Schwartz AG, Muñoz N, Kato I. Genetic polymorphisms in mediators of inflammation and gastric precancerous lesions. Eur J Can-cer Prev 2008; 17: 178-183.
33 Saxena A, Prakash KN, Ghoshal UC, Bhagat MR, Krishnani N, Husain N. Polymorphism of -765G-->C: COX-2 is a risk factor for gastric adenocarcinoma and peptic ulcer disease in addition to H pylori infection: a study from northern India. World J Gastroenterol 2008; 14: 1498-1503.
34 Wang D, Mann JR, Dubois RN. The role of prostaglandins and other eicosanoids in the gastrointestinal tract. Gastroen-terology 2005; 128: 1415-1426.
35 Li HY, Zhang XM, Song ZJ, He SX. Correlation between expression of cyclooxygenase-2 and angiogenesis in human gastric adenocarcinoma. World J Gastroenterol 2003; 9: 674-677.
36 Leahy KM, Koki AT, Masferrer JL. Role of cyclooxygenases in angiogenesis. Curr Med Chem 2000; 7: 1163-1170.
37 Prescott SM, Fitzpatrick FA. Cyclooxygenase-2 and carcino-gensis. Biochim Biophys Acta 2000; 1470: M69-M78.
38 Ristimäki A, Honkanen N, Jinkalla H, Sipponen P, Härkönen M. Expression of cyclooxygenase-2 in human gastric carcino-ma. Cancer Res 1997; 57: 1276-1280.

S-Editor Tian L E-Editor Rutherford A E-Editor Zheng XM