Keeping an eye on the use of eye-lens weight as a universal indicator of age for European wild rabbits

Patricia H. Vaquerizas¹², Simone Santoro³, Miguel Delibes-Mateos¹, Francisca Castro² & Rafael Villafuerte¹

Accurate methods for age determination are critical to the knowledge of wildlife populations’ age structure and, therefore, to their successful management. The reliability of age estimation may have profound economic and ecological consequences on the management of the European wild rabbits, Oryctolagus cuniculus, in its native and introduced range, where it is a keystone species and a major pest, respectively. As in other mammal species, European rabbits’ age is often estimated using the Gompertz relationship between age and lens’ weight. The growth rate formula has been developed based on data collected from European rabbits introduced in Australia, where a single subspecies (O. cuniculus cuniculus, Occ) is present. However, this curve has never been validated in the species native range, the Iberian Peninsula, where two subspecies (Occ, and O. c. algirus, Oca) coexist naturally. In this study, we tested the relationship between age and lens’ weight using 173 Occ and 112 Oca wild rabbits that were surveyed in two experimental facilities in Spain. Our findings show that, in the native range, the published growth curve formula fits well Occ but not Oca data. Therefore, we recommend using the formula reported in this study to estimate the age of Oca (Lens dry weight = 240 × 10^{−64.9/(Age+32)}). This study supports Oca rabbits’ distinctiveness revealed by previous studies, which suggests that management interventions should be applied to protect this subspecies whose distribution range is very narrow and whose populations seem to be declining. More broadly, our findings point to the importance of testing the suitability of growth curves defined for other species with different genetic forms as occurs in the European wild rabbit case.

Accurate knowledge of the study system's biological and ecological parameters is essential for decision-making regarding wildlife management. One of these parameters is the population’s age structure, which is useful for understanding its dynamics. Age determination is, therefore, crucial to the effective management of wildlife species. For example, reliable age techniques allow managers to establish the optimal wildlife harvesting or periods to control populations of pest species.

A variety of methodologies has been used to determine the age of wild mammals. Traditionally, it has been estimated by using morphometric traits like body weight, total length, length of the trunk, length of the extremities, dental cementum layers, or dental wear. The epiphysis or cranial suture fusion have been used too for this purpose. However, many of these traits depend on age and on many other factors such as the environment, nutritional history or gender. For example, body mass relates well to the age only at the early stage of an individual’s development.

As regards mammals, there is currently a wide consensus that the dry weight of the eye lens (hereafter LDW) is not significantly affected by environmental variables such as those mentioned above. Therefore, the LDW, first studied by Lord in cottontail rabbits (Sylvilagus floridanus), provides a good source of information to determine the age of a specimen. The constant proliferation of the lenses during an individual’s lifetime, and the almost impossibility of cellular loss inside the lens, allow a good fit curve between age and dry-eye lens.

¹Instituto de Estudios Sociales Avanzados (IESA-CSIC), Campo Santo de los Mártires 7, 14004 Córdoba, Spain. ²Departamento de Didácticas Específicas, Avda. San Alberto Magno, Universidad de Córdoba, “Sociedad, Ecología y Gestión del Medio Ambiente, UCO-IESA”, Unidad Asociada Al CSIC, 14004 Córdoba, Spain. ³Departamento de Ciencias Integradas, Facultad de Ciencias Experimentales, Universidad de Huelva, Avda de Las Fuerzas Armadas S/N, 21007 Huelva, Spain. *email: p.h.vaquerizas@csic.es
weight9,10,12,13. LDW method has been employed on different mammal species, including ungulates, rodents, or lagomorphs12,14. Among the latter, this method has been proved particularly useful in assessing the age of European wild rabbits (\textit{Oryctolagus cuniculus}) in areas where the species was introduced15–17. In this species, the LDW growth was described as an asymptotic logistic growth curve:

$$LDW = a \times 10^{(-b/(A+c))}$$

where \(a\) is the maximum asymptotic value of LDW, \(b\) is the constant growth rate, \(A\) is the postnatal age, \(c\) is the time during prenatal life and, therefore, \(A + c\) corresponds to the elapsed growth time. Equation (1) is the logistic form of the linearized equation commonly used for describing asymptotic growth:

$$\log(LDW) = \log(a) - \frac{b}{(A + c)}$$

Previous works observed significant regional differences in LDW curves between populations of \textit{O. cuniculus} from different areas of eastern and southwestern Australia15–17. All of them concluded that, although the use of joint curves was not inappropriate, defining alternatives at the regional level offered a more precise fit. However, more recently, Augusteyn11 rejected the idea of environmental influence and attributed the effect observed in previous studies to differences in the data's logistic analysis. He demonstrated that if the same value of \(c\) was used for all rabbits' populations analyzed until then in the literature, the other parameters in the logistic equation became almost identical11. Therefore, despite the large heterogeneity of rabbits' environmental conditions worldwide18 and the fact that the LDW method was originally calibrated from Australian specimens (where rabbits are heavier than in their native range19), a single equation should be valid for European wild rabbits regardless of their geographical origin. In other words, the curve described using Australian rabbits should work well also in the rabbit native range.

Besides, this independence of environmental variation proposed by Augusteyn11 suggests that the same curve should be valid for the two existing rabbit subspecies. \textit{Oryctolagus cuniculus cuniculus} (hereafter Occ) and \textit{Oryctolagus cuniculus algirus} (hereafter Oca) diverged approximately 1.8 million years ago20,21. Currently, they coexist naturally in the Iberian Peninsula (IP) where they hold differentiated natural distributions, with a narrow contact zone22 (Fig. 1). Domestic rabbits and nearly all European wild rabbits occurring out of the IP belong to Occ. A growing number of studies have revealed the critical genetic differences between both subspecies23,24. Furthermore, they also differ morphologically, being Oca lighter and with shorter ear and hind foot lengths19. Also, a recent study has suggested that both subspecies may be facing different trends in abundance in Spain.

Figure 1. Distribution areas of \textit{Oryctolagus cuniculus algirus} and \textit{O. c. cuniculus} in the Iberian Peninsula and their contact zone22. Putative glacial refugia of European rabbit lineages described by Branco et al.20 is shown. Black squares indicate the experimental facilities' locations where rabbits were kept in captivity at Ciudad Real (1) and Córdoba (2). Ellipses indicate the areas where initial stocks of wild rabbits for the facilities were captured.
after the outbreak of a new variant of rabbit haemorrhagic disease (RHD) virus, with Oca declining and Occ being stable or even increasing.

In this study, we assessed if a unique curve (i.e. a single set of constants) describes the relationship between the LDW and the age in the European rabbit regardless of the origin of the animals (IP or Australia) or the subspecies (Occ or Oca) they belong to. Following the rationale of Augusteyn, we did not expect differences in the relationship between the LDW and age between Australian and Iberian rabbits. Also, we hypothesized that the eye-lens growth curves should not vary between both rabbit subspecies.

Results
A total of 112 (38 from cages, 74 from enclosures) Oca and 173 (82 from cages, 91 from enclosures) Occ dead rabbits were dated, and their eye lenses weighed. Rabbits’ age ranged from 17 to 1392 days (approx. 3.5 years), and distributed among all ages (<3 months: 138 individuals; 3–12 months: 76; >12 months: 71). Model 4, which contemplates the different a and same b for the two subspecies, yielded the largest support (Table 1; R² = 0.93). Model 2, which differs from the previous one in that it also includes a different b between subspecies, slightly exceeded the threshold of 2 AICc units and could be considered to be considerably less supported (Table 1). The rest of the models, which assigned the same a to the subspecies, were far less parsimonious, being their AICc-Wp = 0 (Table 1).

Our estimate of a from Occ in the IP (present study) was similar to that found in Australia. Accordingly, the overlapping index computed by comparing the distribution of a in the Iberian and Australian Occ datasets was very high (η = 0.71; i.e. 71% overlap in their distribution), as can be visually appreciated in Fig. 2. Conversely, a of the Iberian Oca populations was clearly outside the lower range described for the Occ subspecies (aOca = 240; aOcc = 273; see Table 2). The overlapping index between a from the Oca and both Iberian or Australian Occ distributions indicates they are entirely different (η = 0 in both cases, see Fig. 2). Using the Australian age-LDW curve to estimate rabbits’ age in IP would decrease very slightly the age estimated for Occ (Fig. 3). In contrast, such a bias would become very high if that curve was employed for determining the age of Iberian Oca rabbits, the error being huge for older animals (Fig. 3).

Discussion
Our study reveals that the use of a single age-LDW curve can be inappropriate for age determination of all individuals within a particular species when different genetic forms exist. In the case of European rabbits, the same European age-LDW curve has been used previously to determine rabbit age both in its native range and in introduced areas like Australia, Great Britain, France or Argentina. However, there is much evidence of the large genetic variability between rabbit subspecies. For the first time, the published LDW-age has been fitted to data collected from the native range. By doing so, we demonstrated the existence of two well-differentiated curves depending on rabbit subspecies. The curve for Oca (LDW = 240 × 10^{(−64.9/(Age+32)}) is different not only to that described in Australia but also to the curve estimated with Iberian Oca rabbits (LDW = 273 × 10^{(−64.9/(Age+32)}) (Fig. 3). Our results show that estimating Oca rabbits’ age through the curve used to date (i.e. Australian Oca) would lead to severe biases in age estimation. For example, the age of Iberian Oca rabbits of 180, 360 and 720 days old (~0.5, ~1 or ~2 y) would be underestimated 45, 124 and 360 days, respectively (Fig. 3). In contrast, such biases would be almost inappreciable in the case of Iberian Occ rabbits; only a few days (8, 19 or 40 days, respectively) in the example mentioned above.

This study demonstrated the existence of differences between the maximum asymptotic (MA) values of both rabbit subspecies in the IP. The MA value was near 15% smaller for Oca than for Iberian Occ rabbits (Table 2), approximately the same percentage of variation between their body weights (average weight Oca: 1040 g; Iberian Occ: 1240 g). In contrast, our results showed that MA values of Iberian Occ rabbits did not differ substantially from those reported for Australian rabbits, which are similar in body size (e.g. 1240 g vs 1300 g for Iberian Occ and Australian rabbits; respectively). Previous studies have proved that there is little advantage for individuals in increasing lens size over a given threshold, since this would require a reduction in its focal length, resulting in a loss of resolution at the retina.

On this basis, Augusteyn asserted MA value should be the same for animals that belong to the same species, and therefore the estimation of animals of the same age should be accurate regardless of their body sizes. According to this statement, differences in MA between rabbit subspecies in the IP should not be related to their body size differences. Alternatively, such variation of the eye lenses between both subspecies could provide new evidence that Occ and Oca are already two well-differentiated species, as it has been previously suggested. This would not contradict Augusteyn ideas and would indeed support recent studies that revealed reproductive isolation between Occ and Oca, and by the growing number of studies showing genetic morphological and behavioral differences between both subspecies as well as by variations in their demographic trends after the outbreak of viral diseases. Also, this study could stress the need of conducting additional studies to confirm the distinctiveness of O. c. algirus as this subspecies only occurs in the IP and few oceanic islands and its conservation status could be threatened.

The European rabbit is likely one of the most managed vertebrate species in the world. In its native range, many efforts are made to restore the declining rabbit populations either because rabbits are keystone species for predators or because of their role as game species. Iberian rabbits are also managed in some farmland areas for population control and reduce of the damage the species causes to crops. Furthermore, the European rabbit is one of the most devastating pests where it has been introduced and, as a consequence, it is the object of many control and eradication programs. Developing accurate methods for rabbit aging is necessary to understand the species’ dynamics (e.g. age-sex class composition) and condition (e.g. age-sex specific body mass), which may guide its conservation, and management as a game species or for population control.
Our proposed curves could be valuable for the long-term assessment of age structure of Iberian rabbit populations in the distribution area of both rabbit subspecies, which might be helpful to assess the sustainability of rabbit hunting as well as the success of rabbit restocking practices that are very often employed in the IP to feed endangered predators such as the Iberian lynx, *Lynx pardinus*^{40,42,47,48}. Moreover, this study points to the convenience of assessing the reliability of age-LDW growth curves for other species with different genetic forms. Indeed, as it has been shown here, not doing so may lead to errors with negative implications for management and conservation. This could be the case for other ubiquitous mammalian species, such as the brown hare (*Lepus europaeus*), which has exceptional geographical and genetic heterogeneity and whose age is often estimated on the basis of a single age-LDW curve^{49,50}.

Methods

European wild rabbit sampling. We collected data from a total of 112 Oca and 173 Occ European wild rabbits kept in captivity under controlled conditions in two experimental facilities in Spain: Dehesa de Galiana experimental facility (Instituto de Investigación en Recursos Cinegéticos, Ciudad Real), and the Research Center of Wild Lagomorphs facility (Instituto de Estudios Sociales Avanzados, Córdoba) (Fig. 1). The initial animal stocks for both facilities consisted of rabbits captured from wild populations in the Oca and Occ's distribution areas, southern and north-eastern Spain, respectively (Fig. 1). To ascertain the subspecies to which each captured rabbit belonged to, we collected samples of epithelial tissue from the ear and analyzed restriction fragment length polymorphisms (RFLPs) specific for four specific molecular markers located in different genomic regions⁵¹. The initial stocks were released in the facilities 31-01-2008 and 26-01-2015 respectively.

Model	MA_{Oca}	MA_{Occ}	GR_{Oca}	GR_{Occ}	K	AIC_{Oca}	AIC_{Occ}	ΔAICc	AICcWt	Cum.Wt
Model 4	273	240	64.9		4	2499.52	4.00	0.73	0.73	0.73
Model 2	273	238	64.3	65.1	5	2501.52	2.01	0.27	1.0	
Model 3	261		74.4	61.8	4	2520.60	21.09	0.0	1.0	
Model 1	256		64.6		3	2545.42	45.90	0.0	1.0	

Table 1. Comparison of the four models considered depending on equality or difference of the parameters a, corresponding to maximum asymptotic (MA) and b, corresponding to growth rate (GR) of the age-LDW curves between both subspecies (Occ: *Oryctolagus cuniculus cuniculus*; Oca: *Oryctolagus cuniculus algirus*). Model with ΔAICc² is in italic. K the number of estimated parameters, AIC_c, the second-order Akaike information criterion, ΔAICc, the difference between AIC_c and the lowest value of AIC_c, AIC_cWt, the Akaike weight, Cum. Wt, the cumulative Akaike weight.

![Figure 2](https://example.com/figure2.png)

Figure 2. Estimated densities for the maximum asymptotic value of the growth curve of dry eye lens (MA) for *Oryctolagus cuniculus algirus* (Oca) and *Oryctolagus cuniculus cuniculus* (Occ) in the Iberian Peninsula (IP), and the latter subspecies in Australia (Aus). Dotted lines indicate the estimate of a for each group.
The experimental facilities consisted of six (Ciudad Real) and four (Córdoba) semi-captive populations enclosed, each one, in fenced plots of 2500 m². At both facilities Occ rabbits occurred in half of the plots and Oca rabbits in the other half. As all the plots were fenced, both subspecies’ rabbits were never in contact in the same plot. Each plot had several artificial warrens (nine in Ciudad Real, ten in Córdoba) surrounded with a wire net (approx. 1 m high), connected to three rabbit-traps. Such a system allows the capture of a large proportion of the rabbit population inside the warren (i.e. 50–60% in only one night). Rabbits were live-trapped in all warrens every month (28 days) from 2008 to 2011 in Ciudad Real and 2016–2018 in Córdoba.

Additionally, Córdoba facilities had 42 smaller outdoor cages (200 × 350 cm), which were specifically designed to improve the reproduction and monitoring of wild rabbits during the study period. These small enclosures had artificial cover tunnels, a wooden shelter (100 × 150 cm), and two wooden nest compartments filled with straw to improve insulation. On each cage, we introduced a pair of rabbits from the large enclosures. Both enclosures and cages had water suppliers and feeders; water and pelleted food were provided ad libitum. Overall conditions in both facilities (i.e. Ciudad Real and Córdoba) were very similar.

All animals (both in enclosures and cages) were marked with individually numbered ear tags and measured (sex, weight, tarsus, and ear length) when they were firstly captured in the facilities or when their birth was noticed in the cages. All cages were checked every 1–2 days to assess birth dates and survival of litters and breeders. As a consequence, we knew the exact age of the rabbits born in those cages. We estimated the age of those rabbits live-captured in the larger enclosures by using the linear equation (i.e. Eq. 3) described by Southern and revised by Dunnet with Occ in Australia and recently employed by Ferreira and Ferreira with Iberian Oca. This age calculation only works efficiently for juvenile animals because their weight range exhibits a perfectly

Location	Parameter a; MA	Parameter b; GR	Reference
Gungahlin (E Australia)	272	51.9	15
Canberra (E Australia)	306	65.6	16
Chidlow (W Australia)	280	50.8	17
Forrestfield (W Australia)	275	51.8	17
Combining all the above	276	51.7	18
Occ Iberian Peninsula	273	64.9	This study
Oca Iberian Peninsula	240	64.9	This study

Table 2. Constants determined for the relationships between rabbit age and lens dry weight in this (Model 4) and previous studies. MA maximum asymptotic value, GR growth rate.

Figure 3. Age estimates for European rabbits calculated with the parameters obtained with the curve corresponding to each Iberian subspecies’ dataset and the Australian or subspecies counterpart. The black line corresponds to the linear regression (y = 1x). Occ: Oryctolagus cuniculus cuniculus; Oca: Oryctolagus cuniculus algirus; Aus: Australia; IP: Iberian Peninsula.
linear relation with age 55 (which does not occur for adults). For this reason, and to avoid potential biases associated with aging adult rabbits using this method, we only estimated the age of animals under 500 g at their first capture; this is almost half the weight considered for Oca adults 19.

\[W = w_i + r * (A - 21) \]

where \(W \) is the body weight (g), \(w_i \) is the weight at weaning age (g), \(r \) is the body growth rate (g/day), and \(A \) is the postnatal age (days). Postnatal age has been described as 21 days for both subspecies 55. We used as body growth rate the same recommended by Dunnet 54 (i.e. 9.77 g/day), which is almost the same as the one described for Oca (9.80 g/day; personal data). Similarly, we used as weight at weaning age the value recommended by Southern 53 and Dunnet 54 for Occ (200 g), which is also coincident with the one gathered for Oca (personal data).

Ethics declaration. Our sample collection was opportunistic as we did not sacrifice animals specifically for this study. We took eye lens samples from animals found dead by natural causes, including old animals and those killed by rabbit diseases (myxomatosis and RHD), or whose sacrifice was part of other research projects. Cervical dislocation was used for euthanasia of animals of less than 1 kg, while barbiturates were used for heavier animals. In particular, sodium pentobarbital by intracardiac injection was used after analgesia and anesthesia using xylazine and ketamine. Personnel trained consistently applied these methods humanely and effectively. All the proceedings agreed with the guidelines and regulations concerning animal welfare and experimentation set forth by Spanish legislation and were previously approved by the Animal Experimentation Ethical Committees of the Castilla-La Mancha University (Register Projects PAI06-0170, PEII09-0097-436, CGL2009-11665), and the Consejo Superior de Investigaciones Científicas (CGL2013-43197-R) for Ciudad Real and Córdoba facilities, respectively. The authors complied with ARRIVE guidelines 56.

Eye lenses processing. Lenses were extracted from eyeballs with a scalpel. We always extracted the right eye lens of every individual, except when it was damaged; in those cases, we extracted the left eye. Lenses were immediately stored in 10% formaldehyde during a minimal period of two months to allow its protein’s fixation. Fixed lenses were dried for 14 days at 85 °C as recommended by Wheeler and King 57 and Augusteyn 10 to stabilize their weight. We weighted lenses to the fourth decimal place (0.1 mg) with professionally calibrated Mettler AE260 scales.

Statistical analysis. All the statistical analyses were conducted in R version 4.0.2 57. We performed the comparative analysis of eye growth curves of Occ and Oca by fitting four different nonlinear regression models between the rabbit age and its corresponding LDW. These models were fit to estimate the parameters \(a \) (maximum asymptotic value; MA) and \(b \) (constant growth rate value; GR) in the Eqs. (1) and (2) (see above), by a nonlinear least square approach using function `nls` from package `stats`. Using this approach, we checked the potential similarity or difference of these parameters between rabbit subspecies.

1. Model 1: \(MA_{Occ} = MA_{Oca} \); \(GR_{Occ} = GR_{Oca} \) (number of different parameters = 2)
2. Model 2: \(MA_{Occ} \neq MA_{Oca} \); \(GR_{Occ} \neq GR_{Oca} \) (number of different parameters = 4)
3. Model 3: \(MA_{Occ} = MA_{Oca} \); \(GR_{Occ} \neq GR_{Oca} \) (number of different parameters = 3)
4. Model 4: \(MA_{Occ} \neq MA_{Oca} \); \(GR_{Occ} = GR_{Oca} \) (number of different parameters = 3)

We considered the AIC weight of each model (\(AIC, W \)) and the cumulative Akaike weight (\(Cum.W \)), which serve to describe the weight of evidence in support of each model. If two models differed less than two AICc units (\(AICc < 2 \)), they were both considered equally plausible 58. To assess the predictive performance of the most supported model (the one with least AICc), we used a repeated (\(n = 100 \)) ten-fold cross-validation. The training and testing subsets were randomly sampled 100 times (using a 90–10% split, respectively). The average \(R^2 \) of all iterations was calculated.

As we did not have access to the original datasets employed for estimation of rabbit Australian age-LDW curve, we simulated the expected distribution of \(a \) (\(n = 1000 \)) in Australian rabbit population and compared it to our estimation of Occ and Oca Iberian populations. For that aim, we first estimated \(a \) from our Occ data in Iberia and then, we used the estimate of \(a \) and its standard error to simulate the expected distribution of the maximum asymptotic value (\(n = 1000 \)) for Occ in the IP. We did the same with Oca population and then, given that the standard error of \(a \) for the combined Australian populations was not reported in Augusteyn 10, we simulate the expected distribution of \(a \) (\(n = 1000 \)) in Australia by using the coefficient value shown in Augusteyn 10 and the standard error estimated in our study.

We employed the ‘overlapping’ R package 59 to quantify the differences of \(a \) between the Australian and Iberian datasets. The resulting overlapping index, \(\eta \), is normalized between 0 and 1 (\(\eta = 0 \): distributions are entirely separated; \(\eta = 1 \): distributions are equal) and does not assume the normality of distributions nor any other distributional form 60. We did not analyze the differences in \(b \) between populations because it varies according to the habitat quality 61.

Received: 15 December 2020; Accepted: 8 April 2021
Published online: 22 April 2021
References

1. Stearns, S. C. *The Evolution of Life Histories* (Oxford University Press, 1992).

2. Caughley, G. & Sinclair, A. R. E. *Wildlife Ecology* (Blackwell Science, 1994).

3. Servanty, S. et al. Influence of harvesting pressure on demographic tactics: Implications for wildlife management. *J. Appl. Ecol.* 48(4), 835–843 (2011).

4. Marboutin, E., Bray, Y., Péroux, R., Mauvy, B. & Lartiges, A. Population dynamics in European hare: Breeding parameters and sustainable harvest rates. *J. Appl. Ecol.* 40(3), 580–591 (2003).

5. Stoneberg, R. P. & Jonkel, C. L. Age determination of black bears by cementum layers. *J. Wildlife Manage.* 30(2), 411–414 (1966).

6. Roth, V. L. & Shoshani, J. Dental identification and age determination in *Elephas maximus*. *J. Zool.* 214, 567–588 (1988).

7. Dutta, S. & Sengupta, P. Men and mice: Relating their ages. *Life Sci.* 152, 244–248 (2016).

8. Dimmock, R. W. & Pelton, M. R. Criteria of sex and age. In *Research and Management Techniques for Wildlife and Habitats* 5th edn, (ed. Bookhout, T.A.) 169–214 (The Wildlife Society, Bethesda, MA, US, 1994).

9. Morris, P. A review of mammalian age determination methods. *Mamm. Rev.* 2, 69–103 (1972).

10. Augusteyn, R. C. On the relationship between rabbit age and lens dry weight: Improved determination of the age of rabbits in the wild. *Mol. Vis.* 13, 2030–2034 (2007).

11. Augusteyn, R. C. Growth of the lens: In vitro observations. *Clin. Exp. Optom.* 91(3), 226–239 (2008).

12. Augusteyn, R. C. Growth of the eye lens: I. Weight accumulation in multiple species. *Mol. Vis.* 20, 410–426 (2014).

13. Lord, D. R. The lens as an indicator of age in cottontail rabbits. *J. Wildl. Manage.* 23, 358–360 (1959).

14. Forsyth, D. M., Garel, M. & McLeod, S. R. Estimating age and age class of harvested hog deer from eye lens mass using frequentist and Bayesian methods. *Wildlife Biol.* 22(4), 137–143 (2016).

15. Dudzinski, M. L. & Myftywczyn, R. The eye lens as an indicator of age in the wild rabbit in Australia. *CSIRO Wildl. Res.* 6, 156–159 (1961).

16. Myers, K. & Gilbert, N. Determination of age of wild rabbits in Australia. *J. Wildl. Manage.* 32, 841–849 (1968).

17. Wheeler, S. H. & King, D. R. The use of eye-lens weights for ageing wild rabbits, *Oryctolagus cuniculus* (L.) in Australia. *Aust. Wildl. Res.* 7, 79–84 (1980).

18. Tablado, Z., Revilla, E. & Palomares, F. Breeding like rabbits: Global patterns of variability and determinants of European wild rabbit reproduction. *Ecography* 32, 310–320. https://doi.org/10.1111/j.1600-0688.2008.05532.x (2009).

19. Ferreira, C. et al. Biometrical analysis reveals major differences between the two subspecies of the European rabbit. *Biol. J. Linn. Soc.* 116, 106–116 (2015).

20. Branco, M., Monnerot, M., Ferrand, N. & Templeton, A. R. Postglacial dispersal of the European rabbit (*Oryctolagus cuniculus*) on the Iberian peninsula reconstructed from nested clad and mismatch analyses of mitochondrial DNA genetic variation. *Evolution* 56, 792–803. https://doi.org/10.1111/evo.12802.2015.tb01390.x (2002).

21. Gómez, A. & Lant, D. H. Refugia within refugia: Patterns of phyleogeographic concordance in the Iberian Peninsula. In *Phylogeography in Southern European Refugia* (eds Weiss, S. & Ferrand, N.) 155–188 (Springer, 2006).

22. Geraldes, A. et al. Reduced introgression of the Y chromosome between subspecies of the European rabbit (*Oryctolagus cuniculus*) in the Iberian Peninsula. *Mol. Ecol.* 17, 4489–4499 (2008).

23. Carneiro, M., Ferrand, N. & Nachman, M. W. Recombination and speciation: Loci near centromeres are more differentiated than loci near telomeres between subspecies of the European rabbit (*Oryctolagus cuniculus*). *Genetics* 181, 593–606 (2009).

24. Rafati, N. et al. A genomic map of clinal variation across the European rabbit hybrid zone. *Mol. Ecol.* 27, 1457–1478. https://doi.org/10.1111/mec.14494 (2018).

25. Vaquerizas, P. H. et al. The paradox of endangered European rabbits regarded as pests in the Iberian Peninsula: Subspecies differences in trends matter. *Endang. Species Res.* 43, 99–102 (2020).

26. Arques, J. & Peiris, V. Estructura de Sexos y Edades de una población de Conejos (*Oryctolagus cuniculus*) del suroeste de España. *Mediterr. Serie de Estudios Biológicos* 18, 1–33 (2005).

27. Trout, R. C. & Smith, G. C. The reproductive productivity of the wild rabbit (*Oryctolagus cuniculus*) in southern England on sites with different soils. *J. Zool.* 237(3), 411–422 (1995).

28. Bouséès, P., Arthur, C. & Chapuis, J. L. Rôle du facteur trophique sur la biologie des populations de lapins (*Oryctolagus cuniculus*) des îles Kerguelen. *Revue d’écologie* 43, 329–343 (1988).

29. Bonino, N. & Donadio, E. Body parameters and sexual dimorphism in the European wild rabbit (*Oryctolagus cuniculus*). *Mastozool. Neotrop.* 1074–1079 (2014).

30. Carneiro, M. et al. Rabbit genome analysis reveals a polygenic basis for phenotypic change during domestication. *Science* 345(6200), 1074–1079 (2014).

31. Myers, K. The rabbit in Australia. In *Dynamics of Numbers in Populations* (eds den Boer, P. J. & Gradwell, G. R.) 478–506 (Proceedings of the NATO Advanced Study Institute Oosterbeek, 1970). (eds den Boer, P. J. & Gradwell, G. R.) 478–506 (Proceedings of the NATO Advanced Study Institute Oosterbeek, 1970).

32. Delibes-Mateos, M., Villafuerte, R., Cooke, B. & Alves, P. C. *Oryctolagus cuniculus* (Linnaeus, 1758). In *Lagomorphs: Pikas, Rabbits and Hares of the World* (eds Smith, A. T. et al.) 99–104 (John Hopkins University Press, 2018).

33. Carneiro, M. et al. The genomic architecture of population divergence between subspecies of the European rabbit. *PLoS Genet.* 13(11), e1007554. https://doi.org/10.1371/journal.pgen.1007554 (2017).

34. Miller, G. S. *Catalogue of the Mammals of Western Europe in the Collection of the British Museum* (Trustees of the British Museum, 1912).

35. Sharples, J. M. et al. Geographical variation in size in the European rabbit (*Oryctolagus cuniculus*) (Lagomorpha: *Leporidae*) in western Europe and North Africa. *Zool. J. Linn. Soc.-Lond.* 117, 141–158. https://doi.org/10.1111/j.1096-3642.1996.tb02153.x (1996).

36. Carro, F., Ortega, M. & Soriguer, R. C. Is restocking a useful tool for increasing rabbit densities?. *Global Ecol. Conserv.* 17, e00560. https://doi.org/10.1016/j.gecco.2019.e00560 (2019).

37. Angulo, E. & Villafuerte, R. Modelling hunting strategies for the conservation of wild rabbit populations. *Biol. Conserv.* 115, 291–301 (2003).

38. Delibes-Mateos, M., Delibes, M., Ferreras, P. & Villafuerte, R. Key role of European rabbits in the conservation of the Western Mediterranean Basin Hotspot. *Conserv. Biol.* 22, 1106–1117 (2008).

39. Garrido, J. L., Ferreres, J. & Gortázar, C. Las especies cinegéticas españolas en el siglo XXI. (eds. Garrido, J. L., Ferreres, J. & Gortázar, C.) Independently published, Ciudad Real, Spain, 2019.)
Acknowledgements
Special thanks go to all people who help during the fieldwork and to three anonymous reviewers for their constructive comments. PHV was supported by a scholarship (FPU17/04821) from Spanish Ministry of Science, Innovation and Universities. This study was partially funded by Projects PAI06-170, PEII09-0097-436, CGL2009-11665, CGL2013-43197-R.

Author contributions
R.V. and M.D.M. conceived and designed the study. R.V., P.H.V. and M.D.M. carried out the methodology. S.S. performed the data analysis. P.H.V., R.V. and M.D.M. wrote the manuscript with contributions from all authors.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to P.H.V.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021
Terms and Conditions

Springer Nature journal content, brought to you courtesy of Springer Nature Customer Service Center GmbH (“Springer Nature”). Springer Nature supports a reasonable amount of sharing of research papers by authors, subscribers and authorised users (“Users”), for small-scale personal, non-commercial use provided that all copyright, trade and service marks and other proprietary notices are maintained. By accessing, sharing, receiving or otherwise using the Springer Nature journal content you agree to these terms of use (“Terms”). For these purposes, Springer Nature considers academic use (by researchers and students) to be non-commercial.

These Terms are supplementary and will apply in addition to any applicable website terms and conditions, a relevant site licence or a personal subscription. These Terms will prevail over any conflict or ambiguity with regards to the relevant terms, a site licence or a personal subscription (to the extent of the conflict or ambiguity only). For Creative Commons-licensed articles, the terms of the Creative Commons license used will apply.

We collect and use personal data to provide access to the Springer Nature journal content. We may also use these personal data internally within ResearchGate and Springer Nature and as agreed share it, in an anonymised way, for purposes of tracking, analysis and reporting. We will not otherwise disclose your personal data outside the ResearchGate or the Springer Nature group of companies unless we have your permission as detailed in the Privacy Policy.

While Users may use the Springer Nature journal content for small scale, personal non-commercial use, it is important to note that Users may not:

1. use such content for the purpose of providing other users with access on a regular or large scale basis or as a means to circumvent access control;
2. use such content where to do so would be considered a criminal or statutory offence in any jurisdiction, or gives rise to civil liability, or is otherwise unlawful;
3. falsely or misleadingly imply or suggest endorsement, approval, sponsorship, or association unless explicitly agreed to by Springer Nature in writing;
4. use bots or other automated methods to access the content or redirect messages
5. override any security feature or exclusionary protocol; or
6. share the content in order to create substitute for Springer Nature products or services or a systematic database of Springer Nature journal content.

In line with the restriction against commercial use, Springer Nature does not permit the creation of a product or service that creates revenue, royalties, rent or income from our content or its inclusion as part of a paid for service or for other commercial gain. Springer Nature journal content cannot be used for inter-library loans and librarians may not upload Springer Nature journal content on a large scale into their, or any other, institutional repository.

These terms of use are reviewed regularly and may be amended at any time. Springer Nature is not obligated to publish any information or content on this website and may remove it or features or functionality at our sole discretion, at any time with or without notice. Springer Nature may revoke this licence to you at any time and remove access to any copies of the Springer Nature journal content which have been saved.

To the fullest extent permitted by law, Springer Nature makes no warranties, representations or guarantees to Users, either express or implied with respect to the Springer nature journal content and all parties disclaim and waive any implied warranties or warranties imposed by law, including merchantability or fitness for any particular purpose.

Please note that these rights do not automatically extend to content, data or other material published by Springer Nature that may be licensed from third parties.

If you would like to use or distribute our Springer Nature journal content to a wider audience or on a regular basis or in any other manner not expressly permitted by these Terms, please contact Springer Nature at

onlineservice@springernature.com