Activity Concentration of Natural Radionuclides in Sediment of Tigris River in the City of Mosul, Iraq

Taha Yaseen Wais¹, Laith A. Najam²
¹,² Department of physics, College of Science, University of Mosul, Mosul, IRAQ
² Email: prof.lai2014@gmail.com

Abstract: Ten samples were studied from sediments collected from the Tigris River in the city of Mosul, and gamma ray spectroscopy NaI(Tl) was used in order to detect and calculate the content of natural radionuclides for all samples collected. The results of the samples analyzed for the specific activity of ²²⁶Ra ranged from 6.30±0.319 Bq/kg to 13.73±0.411 Bq/kg with mean of 9.86±0.385 Bq/kg, and for ²³²Th from 13.39±0.626 Bq/kg to 29.84±0.923 Bq/kg and with mean of 23.05±0.838 Bq/kg, while for ⁴⁰K, it ranged from 166.83±6.456 Bq/kg to 275.96±7.601 Bq/kg and at mean of 232.91±6.456 Bq/kg. The results of the study were within the range of the recommended global values. Therefore, it can be said that the study area is safe and does not pose a threat to the residents near it. Statistical data such as skewness and kurtosis were calculated, and box plot, were applied in order to assess the distribution of radiological parameters.

Keywords: Tigris River, sediments, natural radioactivity, gamma spectroscopy.

1, Introduction

Humans are generally and permanently exposed to natural radiation resulting from the concentration of elementary radionuclides, ²³⁸U, ²²⁶Ra, ²³²Th and ⁴⁰K, which are found in the earth's crust, water, air and food, as well as in building materials and the human body [1]. The natural radioactivity spreads in the earth's environment on a large scale and is also found in geological formations such as soil, sediments, rocks, plants, air and water [2-5]. The decay products of the ²²⁶Ra and ²³²Th series exist in the Earth’s crust in parts per million (ppm) level [6,7]. ⁴⁰K is a single natural radionuclide and makes up 0.0118% of the total potassium present in the crust. ²²⁶Ra, ²³²Th, and ⁴⁰K concentrations in the soil vary because their concentration level depends on the soil and the nature of the rocks [8]. In marine sediments, natural radionuclides dissolve in the water over time, and move to humans, animals and plants. Knowledge of the distribution and concentration of natural radionuclides is very important, where the level of radioactivity concentration affects human exposure to radiation. In the literature, a number of studies have been conducted regarding natural radioactivity [9-14]. Gamma rays are released from naturally occurring radionuclides, which are always known as background radiation produced from the earth, and are responsible for the main external source of exposure to the human body [15]. The terrestrial radiative background is related to the types of rocks that make up the soil, so the geographical and geological conditions are considered among the basic factors on which the radioactivity depends [16]. The level of natural radioactivity of river sediments results from the presence of natural radionuclide concentrations in soil and rock [17].

The degree of exposure to natural nuclides...
varies depending on the site. Often, artificial opportunity with artificial sources [18,19]. Natural radiation often comes from the 238U and 232Th series radionuclides and their hydrolyzed products, and from potassium 40K, as this radiation affects human safety [20]. This research aims to measure the natural activity in sediments of the Tigris River in the city of Mosul, northern Iraq, using gamma spectroscopy with a detector of thallium-activated sodium iodide. This study is considered the first to measure the activity concentrations of natural radionuclides in sediments in the city of Mosul - Nineveh governorate in northern Iraq.

2, Materials and Methods

2.1, Study Area

Nineveh governorate is an Iraqi governorate located in the north of Iraq, located 402 km from the capital Baghdad, the center of Nineveh governorate is the city of Mosul, where the Tigris River in the city of Mosul was chosen as a study area. The astronomical location of the city is between latitude 36 north and longitude 43 east. The area of the city is 180 km2, and its population is about three million seven hundred thousand people, and it is the second largest city in Iraq. As for the administrative borders of Nineveh governorate, it is bordered from the north by Dohuk governorate, from the south by Salah al-Din governorate, on the east by Erbil and Kirkuk governorate, and to the west by the Syrian Arab Republic.

2.2, Sample Collection

In this study, Ten samples were collected from sediments of the Tigris River in the city of Mosul, and they were collected from random sites along the river, as shown in the figure(2). The mechanism for collecting each sample was to determine an area of 0.5×0.5 m2 and remove debris and obstructions to a depth of 5-10 cm[21]. Where three samples were collected for each site from different points and mixed well in order to obtain a uniform sample covering the whole site. The masses of samples collected while wet ranged between 1.5 – 2 kg. The coordinates of the study samples were determined according to the Global Site Map program as shown Figure (2). Table (1) shows the coordinates of the samples sites for the studied areas.

Table (1): illustrates the names, symbols and coordinates of the samples sites from the Tigris River sediments in the city of Mosul.

Sample No.	Sample ID	Sample Location	Latitude N	Longitude E
1	RS1	Mushirifa	36° 23 37.39	43° 03 54.54
2	RS2	Mosul Water Project	36° 23 47.19	43° 04 47.19
3	RS3	Fourth Church	36° 23 42.88	43° 05 14.59
4	RS4	Church Container	36° 23 34.55	43° 06 06.34
5	RS5	The Victory Bridge	36° 23 22.05	43° 06 54.49
6	RS6	Church Container2	36° 22 19.44	43° 06 20.61
7	RS7	The Third Bridge	36° 21 39.62	43° 06 49.57
8	RS8	Atomic Medical Hospital	36° 21 35.77	43° 06 55.42
9	RS9	Republic Hospital	36° 21 29.62	43° 07 02.93
10	RS10	Pashtabiya Castle	36° 21 20.18	43° 07 20.33
2.3, Sample preparation

The sediment samples were prepared well and dried by exposing them to sunlight for 7 days and then placed in an oven at 105 °C, after which they were crushed by an electric grinder. They were also sifted using a clamp with holes of 0.75 µm in diameter to obtain homogeneous patterns. The samples were weighed and put them in a 500 gm Marinelle container, to be then stored in this container for at least 28 days in order to achieve the radiative balance of natural radionuclides and their offspring [22].

2.4, Gamma-Ray Spectrometry

In the study, SPECTCH UCS-20 gamma ray spectroscopy was used with a crystal of thallium activated sodium iodide (TI) detector of dimensions (3.8 * 2.5 cm), and the detector crystal was surrounded by a lead shield to reduce the radiation background, where the detector is connected to the system. It consists of a primary, a main amplifier and a high-voltage power supply that equips the detector with the necessary voltage, and the voltage used in this research is (600) Volt, which is within the range of the detector operating voltage and a multi-channel analyzer, then it is connected with a computer in order to operate and display the resulting spectrum, and before starting the process of spectrophotometry, the energy calibration process and the efficiency of the detector were also performed using reference source, by using the energy barium source 133Ba (356) keV, the cesium source 137Cs with energy (661.6) keV and the energy cobalt source 60Co (1332.5) keV for the purpose of conducting the energy calibration of the detector. As energy calibration is one of the most important factors that should be taken into account before starting the analysis process in order to obtain accurate results, due to the fact that the interpretation of the gamma spectrum depends on radionuclides and energy instead of voltage and channel number [23]. After that, the efficiency calibration was performed using a standard source with known energies, if the isotope urmium-152 (152Eu) was used, which contains a number of energies ranging from (1408.0-121.8) keV placed in a Marnelli Baker's vessel.
2.5, Activity Measurement

Before any measurement of the radiation effectiveness of a model, the radiation background must be measured for the possible presence of contaminated materials or radioactive sources that become a source of radiation. The radiation background was measured by placing an empty half-kilogram Marnelli Baker vessel below the detector, the same vessel used to measure the radiative effectiveness of the models. The time period for the assembly of a full spectrum on the computer screen was (18000) seconds, the same time period used to measure sample models. As well as knowing the space below the curve for the purpose of projecting this number of recorded readings of the models and of the energies themselves. Activity concentrations of 226Ra, 232Th and 40K have been calculated using the following equation\cite{24,25}:

$$A = \frac{N - B}{\varepsilon I t m}$$

Whereas
A: Specific Activity.
N: The area under the curve for each sample.
B: The radiological background of the laboratory.
ε: The detector efficiency for a specific gamma ray.
I: The relative intensity.
t: Spectrum collection time in units of second.
m: The mass of samples in units of kilograms.

The gamma-ray lines of 295.22 keV from 214Pb and the 609.31 keV from 214Bi was to the determine the activity concentration of 226Ra in the sediment samples. The activity concentration of 232Th was evaluated using gamma-ray peak at 338.32 keV and 911.2 keV for 228Ac a. The activity concentration of 40K was determined using gamma-ray peak at 1460.83 keV.

3. Result and discussion

The activity concentrations for Radium-226, Thorium-232, and potassium-40 in sediment samples of the Tigris River are mentioned in the table (2), Figure (3). It represents the comparative activity concentrations between 226Ra, 232Th and 40K in the studied sediment samples.

The activity concentration for 226Ra in sediment samples recorded lowest value 6.30 Bq/kg in sample RS2 (Mosul Water Project), and the highest value 13.73 Bq/kg in sample RS10 (Pashtabiya Castle) with a mean 9.86 Bq/kg. The average level of radioactivity of 238U nuclide in sediment samples are well below the recommended global limits 33 Bq/kg \cite{26}.

The lowest value of the activity concentration for 232Th was equal to 13.39 Bq/kg in the sample RS1 (Mushirifa), while the highest value was equal to 29.84 Bq/kg in the sample RS2 (Mosul water project) with a mean of 23.05 Bq/kg. Where the mean radioactivity of 232Th nuclides in the river sediments samples was less than the global permissible limit of 45 Bq/kg \cite{26}.

Also, the lowest value of the activity concentration for 40K was recorded in the RS4 (church container) sample, which is 166.83 Bq/kg, while the highest value was equal to 275.96 Bq/kg with a mean of 232.91 Bq/kg. Where the mean radioactivity of nuclide 40K in the sediment samples studied was less than the global permissible limit of 420 Bq/kg\cite{26}.

The concentration of 40K accounted for approximately 87% of the total gamma activity of the sediment samples from the Tigris River. The study shows that the specific activity due to 40K is the largest contributor to the total activity for all the samples. Figure (4) It represents contributions of radionuclides 226Ra, 232Th and 40K are normal at the sampled sites in the study.

The activity concentrations of radium-226, thorium-232 and potassium-40 in sediment samples in the studied areas were compared with other studies for different countries of the world, and the results are presented in table (3) and figure (5). The comparison shows that the normal
radioactivity values of the studied samples are very low compared with the results of other studies in neighboring and non-neighboring countries to Iraq, as well as compared with local studies conducted in Iraq. It was found that the average value of the concentration of 226Ra activity in the current study was close to the results reported in Ghana, Saudi Arabia and Nigeria, while the average concentration of Ra activity in this study was less than what was reported in Wasit, Basra and Dhuluiya in Iraq. As well as Egypt, Turkey, India, Syria and Iran. It was also found that the activity concentration rate for 232Th was close to the results recorded in Dhi-Qar and Wasit in Iraq, as well as in Syria, India, Iran and Nigeria, and the activity concentration rate for Th in this study was less than the results recorded in Basra Governorate in Iraq and Turkey, and higher than those results were recorded in Egypt, Saudi Arabia and Ghana. When comparing the rate of 40K activity concentration in our study with other studies, we find that the average of 40K activity concentration in Wasit, Basra and Dhi-Qar in Iraq was similar to the results of our study, and it was less than the average of the results obtained in Turkey, Iran and Ghana.

The geological and geographical conditions, so physical and chemical difference of earth of the region are the factors on which the specific activity of different countries of the world depends [1].

Table (2): The activity concentration of natural radionuclides 226Ra, 232Th and 40K in sediments of Tigris River of Mosul City, Iraq

Sample ID	Activity concentration (Bq/Kg)		
	226Ra	232Th	40K
RS1	10.43±0.404	13.39±0.626	243.86±7.145
RS2	6.30±0.319	20.15±0.895	275.96±7.601
RS3	10.09±0.251	29.84±0.923	208.31±6.604
RS4	12.89±0.405	28.61±0.909	166.83±6.456
RS5	10.30±0.369	29.38±0.911	241.37±6.358
RS6	8.56±0.334	24.20±0.830	241.15±6.358
RS7	9.38±0.349	16.72±0.689	240.15±6.355
RS8	6.53±0.291	22.24±0.898	235.91±6.286
RS9	10.40±0.722	22.99±0.820	203.90±5.844
RS10	13.73±0.411	23.05±0.882	271.69±6.746
Ava.	9.86±0.385	23.05±0.838	232.91±6.456
Max.	13.73±0.411	29.84±0.923	275.96±7.601
Min	6.30±0.319	13.39±0.626	166.83±6.456
World Ave.	33	45	420
Figure 2: Comparison of radioactivity concentrations between 226Ra, 232Th and 40K in different sediment samples for all sites.

Figure 3: The relative contribution of radionuclides from total natural radiation in the studied samples.
Table (3): Comparison of the activity concentrations of the studied Tigris river sediment samples with the results of various previous studies from the world.

Country	Mean activity concentration (Bq/kg)	Reference		
	^{226}Ra	^{232}Th	^{40}K	
Egypt	16.30	12.94	200.21	[27]
Saudi Arabia	11.68	6.21	169.40	[28]
Ghana	7.31	6.91	379.94	[29]
Turkey	37	40	667	[30]
India	41	29	400	[1]
Syria	23	20	270	[1]
Iran	28	22	640	[1]
Nigeria	7.8	29.4	229.4	[31]
Iraq/ Thi-Qar	29.2	22.7	304.6	[32]
Governorate				
Iraq/ Wassit	19.42	18.487	204.266	[33]
Governorate				
Iraq/ Dhuluiya	15.48	8.36	418.47	[34]
City				
Iraq/ Basra	46.548	40.325	165.599	[35]
Governorate				
Iraq/ Mosul	9.86	23.05	232.91	Present Study
City				

Figure 4: Shows a comparison between the activity concentrations of ^{226}Ra, ^{232}Th and ^{40}K in samples from current study with local studies, neighboring countries and global ones.

4. Statistical approach

By the descriptive statistical program (SPSS 25.0), descriptive statistical data such as the mean, median, standard deviation, skewness and kurtosis for assessed parameters in sediment samples were calculated as shown in the Table (3). A positive skewness of (0.018) was found with respect to ^{226}Ra, while a skewness was found for ^{232}Th with (-0.396) negative, and also for
potassium-40 with a negative (-0.758) ratio. Where information about the asymmetric distribution was obtained through the values of the skewness, whether positive or negative. Positive values for the skewness of 226Ra indicate that the peak of the distribution lies is right of the average value, While the negative values for the skewness of 232Th and 40K indicate that the peak of the distribution goes to the left of the mean value. The information that we obtain about the degree of the peakedness of the probability distribution is done by kurtosis, where a negative (-0.246) kurtosis was found for 226Ra, which means that the distribution is somewhat flat. Kurtosis of 232Th of (-0.420) was found negative, which also means that the distribution is relatively flat. A positive K-40 (0.733) kurtosis was found. Whereas, positive kurtosis indicates that the distribution has reached a relative peak. Figure (6,7,8) shows the box diagram for the activity concentrations of 226Ra, 232Th and 40K in units of Bq/ kg, and respectively. In order to obtain information about how the values in the data are spread, we use a box diagram for the activity concentration. As Figure (6.8) shows that the median is closer to the top of the box for 226Ra and 40K, and this means that the distribution is negatively skewed. As for Figure (7), it shows that the median of the box diagram for 232Th is closer to the bottom of the box, and this means that the distribution is positively skewed.

Table(4): Descriptive statistical data for the measured parameters in the sediments of the Tigris River in the city of Mosul

Variable	226Ra	232Th	40K
Mean	9.861	23.057	232.913
Median	10.195	23.020	240.650
Standard deviation	2.252	5.107	30.808
Variance	5.070	26.086	949.129
Kurtosis (Fisher)	-0.246	-0.420	0.737
Skewness (Fisher)	0.018	-0.396	-0.758
Minimum	6.300	13.390	166.830
Maximum	13.730	29.840	275.960
Range	7.430	16.450	109.130
5, Conclusion

Ten samples were collected from the sediment of the Tigris River in the city of Mosul, and the radioactivity of these samples was determined. All the values of the activity concentrations of radionuclides ^{226}Ra, ^{232}Th and ^{40}K in the sediment of the Tigris River in the studied areas were less than the adult global average values (33, 45, 420) Bq/kg respectively recommended by the united nations scientific committee on sources and effects on ionizing radiation [26]. Therefore, we conclude that the area under study is safe for the residents close to it, as well as fishermen and tourist. From through statistical analysis, we found that both of ^{232}Th and ^{40}K were leading to an increase in the radioactivity in the sediments. This study can be used as a baseline for future researches and the data obtained in this study may be useful for radioactivity mapping. Information obtained from the study was intended to help in the determination of radionuclide sources and radionuclide distribution of Tigris River in city of Mosul.
6. Acknowledgement

The authors are grateful to the Department of Physics at the College of Science at the University of Mosul. They remained supportive while analyzing samples. Thanks and appreciation are also extended to the Head of the Physics Department, Dr. Mazin Ahmad Abd and colleague Khalid Abdullah Muhammad for their contributions.

7. References

[1] Unscear (United Nations Scientific Committee ON Sources And Effects On Ionizing Radiation) 2000. *Sources and Effects of Ionizing Radiation*. Unscear 2000 Report, Vol II: Effects. New York, United Nations.
[2] Ahmad N, Mattullah, Khatiben Ajah, Ma'ly A, Kenawy MA 1997 "Measurement of natural radioactivity in Jordanian sand". Radiat Meas (28:341-344).
[3] Xinwei L (2004) Natural radioactivity in some building materials and by-products of Shaanxi, China. J Radional Nucl Chem 262:775–777.
[4] Ibrahim NM, Shawky S, Amer HA (1995) Radioactivity levels in Lake Nasser sediments. Appl, Radiat Isot 46:297–299.
[5] Yang, Y.X.; Wu X.M.; Jiang, Z.Y.; Wang, W.X.; Lu, J.G.; Lin, J.; Wang L.M.; Hsia, Y.F. (2005). Radioactivity concentrations in soils of the Xiazhuang granite area, China. Appl. Radiat Isot., 63:255–259.
[6] Abbasi A, Mirekhtiary F (2020) Heavy metals and natural radioactivity concentration in sediments of the Mediterranean Sea coast. Mar Pollut Bull. https://doi.org/10.1016/j.marpolbul.2020.111041
[7] Abbasi A, Mirekhtiary SF (2020) Radiological impacts in the high-level natural radiation exposure area residents in the Ramsar, Iran. Eur Phys J Plus. https://doi.org/10.1140/epjp/s13360-020-00306-x
[8] El Rakaiby ML, Shalaby MH (1992) Geology of gebel qattar batholith, central eastern desert, Egypt. Int J Remote Sens 13:2337-2347. https://doi.org/10.1080/01431169208904272
[9] Mavi B, Akkurt I (2010) Natural radioactivity and radiation hazards in some building materials used in Isparta, Turkey. Radiat Phys Chem 79(9):933–937.
[10] Günay O, Saç MM, Içhedef M, Taşköprü C (2018a) Soil gas radon concentrations along the Ganos Fault (GF). Arab J Geosci 11(9):213.
[11] Günay O, Saç MM, Içhedef M, Taşköprü C (2018b) Natural radio-activity analysis of soil samples from Ganos fault (GF). Int J Environ Sci Technol 16:5055–5058. https://doi.org/10.1007/s13762-018-1793-9.
[12] Günay O (2018) Assessment of lifetime cancer risk from natural radio-activity levels in Kadikoy and Uskudar District of Istanbul. Arab J Geosci 11(24):782.
[13] Ewaid, S.H.; Abed, S.A.; Al-Ansari, N. Crop Water Requirements and Irrigation Schedules for Some Major Crops in Southern Iraq. Water 2019, 11, 756.
[14] Ewaid, S.H.; Abed, S.A.; Al-Ansari, N. Water Footprint of Wheat in Iraq. Water 2019, 11, 535.
[15] Ewaid, S.H.; Abed, S.A.; Al-Ansari, N. Assessment of Main Cereal Crop Trade Impacts on Water and Land Security in Iraq. Agronomy 2020, 10, 98.
[16] Günay O, Aközcan S, Kuluıçi F (2019) Measurement of indoor radon concentration and annual effective dose estimation for a university campus in Istanbul. Arab J Geosci 12(5):171.
[17] Külahcı F, Aközcan S, Günay O (2020) Monte Carlo simulations and forecasting of radium-226, thorium-232, and potassium-40 radioactivity concentrations. J Radioanal Nucl Chem:1–16.
[18] Tabassum Nasirm, Huda Al-Sulaiti and Patrick Henry Regan, (2012) “Assessment of Radioactivity in Some Soil Samples of Quatar by Gamma-Ray Spectroscopy and the Derived Dose Rates”, Pak. J. sci. ind.res.Ser.A: physsci.55(3)128-134.
[19] Florou, M.; Kritidis, P. (1992). Gamma radiation measurement and dose rate in the costal areas of a volcanic island, Aegean Sea, Greece. Radiat. Protect. Dosim. 45(1-4), 277-279.

[20] Xinwei, Lu.; Zhang, X.; Wang, F. (2008). Natural radioactivity in sediment of Wei River, China. Environ Geol., 53, 1475–1481.

[21] Cenci, R.M. and Martin, J.M. 2004. Concentration and fate of trace metals in Mekong River Delta. The Science of the Total Environment 332(1–3): 167–182. https://doi.org/10.1016/j.scitotenv.2004.01.018.

[10] Salam Hussein Ewaid et al 2021 IOP Conf. Ser.: Earth Environ. Sci. 722 012008

[11] Ajanaku, O., Ilori, A.O., Ibitola, G.A. & Faturoti, O.B. 2018. Assessment of natural radioactivity and associated dose rates in surface soils around oluwa glass industry environments, Igbokoda, Ondo State, southwestern Nigeria. Physical Science International Journal, 20(3): 1–13. https://doi.org/10.9734/PSIJ/2018/42372.

[12] Eisenbud, M. & Gesell, T. 1997. Environmental Radioactivity from Natural, Industrial and Military Sources. 4th ed. San Diego, Academic Press.

[13] Mudhafar A. Salim et al 2020 J. Phys.: Conf. Ser. 1664 012105.

[14] Ahmed Sabah Al-Jasimee et al 2020 J. Phys.: Conf. Ser. 1664 012141.

[15] Salwan Ali Abed et al 2019 J. Phys.: Conf. Ser. 1294 072025.

[16] Salam Hussein Ewaid et al 2021 IOP Conf. Ser.: Earth Environ. Sci. 790 012075

[17] Ahmed Alaa Kandoh and Salwan Ali Abed 2021 IOP Conf. Ser.: Earth Environ. Sci. 790 012034

[18] Ahmed Alaa Kandoh et al 2021 IOP Conf. Ser.: Earth Environ. Sci. 790 012073

[19] Ali Abed Salwan et al 2021 IOP Conf. Ser.: Earth Environ. Sci. 790 012076

[20] Aladeniyi, K., Olowookere C. and Oladele, B.B. (2019) Measurement of natural radioactivity and radiological hazard evaluation in the soil samples collected from Owo, Ondo State, Nigeria, Journal of Radiation Research and Applied Sciences, 12:1, 200-209. https://doi.org/10.1080/16878507.2019.1593675

[21] Alencar AS, Freitas AC (2005) Reference levels of natural radioactivity for the beach sands in a Brazilian southeastern coastal region. Radiat Meas 40:76–83.

[10] Salam Hussein Ewaid et al 2020 J. Phys.: Conf. Ser. 1664 012143.

[11] KERNFORS CHUNG SANLAGE JULICH, technical reports series No.295, " M. of Radionuclides in food and the Environment", IAEA, 1989.

[12] Najam L. A., Tawfiq N. F., and Kitah F. H., (2013). Measurement of Natural Radioactivity in Building Materials Used in Iraq. Australian Journal of Basic and Applied Sciences, 7(1):56-66.

[13] Ewaid, S.H.; Abed, S.A.; Al-Ansari, N.; Salih, R.M. Development and Evaluation of a Water Quality Index for the Iraqi Rivers. Hydrology 2020, 7, 67.

[25] Najam L. A. and Younis Sh. A., (2015). Assessment of Natural Radioactivity Level in Soil Samples For Selected Regions in Nineveh Province (Iraq).International Journal of Novel Research in physics Chemistry & Mathematics, 2(2). :1-9.

[26] Unscear (United Nations Scientific Committee On Sources AND EFFECTS On IONIZING RADIATION) 2008. Sources and Effects of Ionizing Radiation. Unscear 2008 Report Vol. 1: Sources. New York, United Nations.

[27] EL-Taher, A., Najam, L.A., Hussian, I. & Omer, M.A.A. 2019. Evaluation of natural radionuclide content in Nile River sediments and excess lifetime cancer risk associated with gamma radiation. Iranian Journal of Medical Physics 16:27-33 https://doi.org/10.22038/ijmp.2018.30622.

[28] Lotfalinezhad P, Kashian S, Kotahi M S and Fathivand A A. Estimation of Natural Radioactivity and Radiation Exposure in Environmental Soil Samples of Golestan, Iran, Iranian Journal of Medical Physics.2017;14(2): 98-103. DOI:10.22038/ijmp.2017.20549.1196.
[29] Agalga, R., Darko, E.O. & Schandof, C. 2013. Preliminary study on the levels of natural radionuclides in sediments of the Tono irrigation dam, Navrongo. International Journal of Science and Technology 2: 770–776. http://doi.org/10.4236/jep.2015.66058.

[30] Taskin, H., Karavus, M., AY, P., Topuzoglu, A., Hindiroglu, S. & Rarahan, G. 2009. Radionuclide concentration in soil and lifetime cancer risk due to the gamma radioactivity in Kirkkareli, Turkey. Journal of Environmental Radioactivity 100(1): 49–53. https://doi.org/10.1016/j.jenvrad.2008.10.012.

[31] Kolo, M.T.; Baba-Kutigi, A.N.; Olarinoye, I.O.; Sharifat, I. (2012). Assessment of natural radioactivity levels and radiation hazards in the tertiary institutions in Minna, Niger State, Nigeria. Continental J. Environmental Sci., 6, 25-31.

[32] Najam, L.; Mansour, H. L.; Tawfiq, N.F.; Karim, M.S. (2016). Measurement of radioactivity in soil samples for selected regions in Thi-Qar Governorate-Iraq. J. Rad. Nucl. Appl., 1 (1), 25-30

[33] Najam, L.; Karim, M.S.; Hameed, T. (2017). Evaluation of natural radioactivity of soil samples from different regions of Wassit governorate. Pollution, 3(1), 47-53.

[34] Khudair Sh. J., Ali A. M., Tawfiq N. F., (2020). Taha, Assessment of Natural and Industrial Radioactivity and Radiological Hazard in Sediments of Tigris River of Dhuluiya City, Iraq, Rafidain Journal Vol. 29, No. 4, ISSN:1608-9391, pp. 14-22, e-ISSN: 2664-2786

[35] Al-Hamdani A. S. H., Al-Sadi M. A. H., (2020), Radioactivity Assessment With Different Samples (Soil, Sediment) Selected From Al-Basra Governorate, Iraq, Vol.20, Supplement 2, INSS:0972-5210 , pp. 3103-3110, e-ISSN:2581-6063.

[36] Alsabbagh, A. R. A. A., & Al-taai, E. A. (2020). ON THE STABILITY CONDITIONS OF 2D TIME FRACTIONAL DIFFUSION EQUATION . Al-Qadisiyah Journal Of Pure Science, 25(1), math 11-15.

[37] Alalaq, S., & Alshaybawee, T. (2019). New Bayesian Single Index Quantile Regression Based on Uniform Scale Mixture. Al-Qadisiyah Journal Of Pure Science, 24(4).