Investigation of the physical and mechanical characteristics of the applied corrosion-resistant powder coating

N S Dovbysh¹ and A V Zhdanov
Department of Mechanical Engineering Technology, Institute of Mechanical Engineering and Automobile Transport, Vladimir State University, Vladimir,600000, Russia

¹E-mail: Nickita863@gmail.com

Abstract. This article presents the results of experimental work on the development of a laser complex for micro- and nanomodification of metal surfaces using hybrid technologies. As an alloying material, a corrosion-resistant composite powder of the national brand was chosen, which is used in industry to prevent the occurrence of corrosion formations on the working surfaces of the executive parts of machines. One of the most used national grades of structural carbon steels was chosen as the substrate. The parameters of the laser radiation varied in two parameters: scanning speeds in the range of 12-15 mm/sec and radiation power in the range of 3-5 kW. As a result of the work carried out under various power modes, prototypes were obtained. On their basis, tabular data on the obtained values of microhardness, wear resistance and friction coefficients are compiled. The description of the obtained results is given and the direction of further work is indicated.

1. Introduction
Conducting experimental work in this direction is associated with the high interest of the scientific community and industrial figures in the field of alternative methods of processing materials. This interest is primarily associated with the high degree of efficiency of the products obtained when processing with a laser, plasma or other energy sources. Moreover it is much more cheaper use of the energy consumed by the equipment [1]. Do not forget about the wide range of new properties obtained and the improvement of existing properties of parts after this kind of processing.

During the work carried out, special interest was paid to improving the wear-resistant characteristics of metal surfaces. In addition, it was necessary to find out how the increase in wear resistance affects the hardness parameter of the coating. A wide range of powder compositions available on the market, both foreign and national manufacturers, is suitable for these properties. But in this experiment, powders of only national brands participated, due to the desire to achieve maximum economic efficiency.

The structural carbon steel of the national brand, which is common in the production of bushings, plates, gears and other products, was chosen as the substrate material.

The expected results of the experiment were an increase in the hardness of the initial metal surface and increased wear resistance values. Of particular interest was the comparison of the obtained friction coefficients for the obtained coatings and the initial surface.
2. Materials and methods
The initial steel samples were small rectangular plates with a wall thickness of about 4 mm. Before the experiment, the surface of the samples was sanded and treated with a degreasing compound [2]. The experiment involved several plates, each of which was processed under different power modes. Three (3) powder tracks were applied to each of the plates. Only the scanning speed of the laser beam was varied within one plate. When switching to the next plate, the radiation power increased in increments of 1 kW. A total of 9 tracks were applied [3].

The application parameters used are shown in Table 1. The values of the powder feed rate and the focal length of the laser head remained unchanged during the experiment [4].

№	Power, kW	Feed rate of powder, l/min	Speed of scanning, mm/sec	Focal length, mm
1	3		12	
2	3		13	
3	3		15	
4	4		12	
5	4	9	13	30
6	5		15	
7	5		12	
8	5		13	
9	5		15	

The coatings obtained on the substrate were captured in photographs. It should be noted that the coatings with the specified power parameters of 3 kW and the beam scanning speed in the range of 12-15 mm / sec did not give a satisfactory result, in which the fusion with the substrate would be strong [5], and the coating structure would be able to withstand external mechanical influences. This result was noted and presented in figure 1 below the text.

![Figure 1](image)

Figure 1. Coatings obtained at a power of 3 kW and scanning speeds of 12, 13, and 15 mm / sec from top to bottom, respectively.

The coatings obtained by increasing the power to 4 and 5 kW and varying the speed within the same limits showed much more effective results. The powder successfully fused with the substrate in both cases [6], and the formation of coagulated powder granules was minimized [7]. The results are shown in figures 2 and 3.
Figure 2. Coatings obtained at a power of 4 kW and scanning speeds of 12, 13 and 15 mm/sec from top to bottom, respectively.

Figure 3. Coatings obtained at a power of 5 kW and scanning speeds of 12, 13 and 15 mm/sec from top to bottom, respectively.

The obtained samples were carefully cut out of the substrate for the convenience of further research [8]. The end surfaces of the samples were carefully sanded, polished and etched in a special chemical composition.

3. Results
The microhardness study was carried out in accordance with the state standard "Measurement of microhardness by indentation of diamond tips" on a microhardness meter of the PMT-3 model [9]. The method consisted in awarding individual zones of the coating structure with a load weighing 100 gs, which left prints with a certain shape of geometry on the surface. Further, these prints were studied on microscopic equipment and, using the geometric parameters of the print diagonals, were transformed by the formula into Vickers hardness parameters [10]. The results of the performed measurements are shown in table 2.

Table 2. The results of measurements of the microhardness of samples at the specified processing parameters.

Sample mode	Place of measurement	Number of measurements	The arithmetic mean of the diagonal	The arithmetic mean of the obtained hardness, HV	The arithmetic mean of the obtained hardness, HRC
4 kW/12 mm/sec	Deposited layer	2	18.5	541.7092768	51.8
	Main material	2	25.7	280.706919	27.3
4 kW/13 mm/sec	Deposited layer	2	17.2	626.6901028	56.5
	Main material	2	24.1	319.20938	32.2
4 kW 15 mm/sec	Deposited layer	2	19.15	505.5593807	49.5
	Main material	2	25.3	289.6467684	28.5
5 kW 12 mm/sec	Deposited layer	2	17.65	595.1416029	54.8
	Main material	2	26.2	270.0891556	25.9
The obtained results are displayed visually in figure 4. The hardness values are given in the HRC system [11]. The modes are assigned with an indication of the power used and the scan speed through the separator character «/».

![Figure 4. Histogram of the microhardness values of the obtained layers (orange column) versus the hardness of the substrate material (blue column).](image)

Table 3. The values of the friction coefficients obtained during tests on the tribometer.

Marking of the sample /№ diagram	Friction before running-in	Friction after running-in	Total coefficient of friction
4 kW-10 mm*sec/1	0.379	0.416	0.4
5 kW-10 mm*sec/2	0.58	0.66	0.63
4 kW-13 mm*sec/3	0.45	0.56	0.55
5 kW-13 mm*sec/4	0.57	0.62	0.61

The dynamics of the change in the coefficient of friction of the sample surfaces is visually displayed in figure 6. It shows a graph that takes into account the friction before/during and after the indenter is applied to the surface of the material.

4. Discussing
The process of selecting laser treatment modes for various materials and applications is a rather time-consuming and complex process. Many of the results obtained during such tests may not be sufficient, or even not at all satisfy the needs of the consumer and the application industry. The implementation of a series of numerous experiments, during which a wide range of available controlled laser parameters will be tested, can neutralize failures and help achieve a positive result.
Figure 5. Diagrams of changes in the coefficient of friction during tests on a tribometer.

Figure 6. Image of the results of measuring the friction coefficients of the obtained samples.

This work demonstrates exactly such an excerpt of the process of selecting the necessary processing mode. The results obtained in this work are nevertheless promising, due to the obtained
microhardness characteristics and wear resistance coefficients. The values of microhardness, based on the obtained data, are able to reach values twice as large as their original ones. However, an absolutely solid material is also not an ideal option for solving emerging problems, since due attention should be paid to the values of impact strength, plasticity and fatigue.

The increase in the coefficient of friction of the samples, based on the graph, is associated with an increase in the radiation power and the processes occurring on the sample surface during the melting of the base and the reinforcing substance. So, at reduced capacities, the coefficient of friction varies within 0.37-0.52, and at increased capacities within 0.6-0.64. The measurement error is caused by irregularities formed when powder granules are deposited on the surface of the product. It is worth noting that in order to achieve a high degree of protection against abrasive wear, it is necessary to keep the coefficient of friction within the limits not exceeding 0.8 values.

The overall result should be noted the effectiveness of the laser-hybrid processing method and its effect on the internal structure of the steel material. In future works, a larger range of the studied parameters will be investigated.

Acknowledgments
The work was carried out by the state task of the Ministry of Science and Higher Education of the Russian Federation (agreement No. 075-03-2020-046 / 1 dated 17.03.2020 topic FZUN-2020-0015, state task of the VLSU GB 1187/20 «Development of new compositions and technologies for manufacturing composite materials to improve the performance characteristics of building structures».

References
[1] Zhданов A V, Беляев I V and Морозов V V 2021 Effect of laser surface modification on the hardness and wear resistance of structural bearing steel for roller screw mechanism J. Phys.: Conf. Ser. 1822 012009
[2] Bernstein M E 1991 Met. Sci. h. treat. st. vol 3 (Moscow: Metallurgy) p 472
[3] Smirnova N A and Misyurov A I 2012 Features of structure formation during laser processing Bull. Baum. M. st. tech. U. ser. Mech. eng pp 115-29
[4] Voitovich O N and Sokolov I O 2013 Investigation of the influence of laser heat treatment parameters on the properties of hardened surface layers Bull. Bel-Rus. Uni. 2 6
[5] Grigoryants A G, Shiganov I N, Misyurov A I 2006 Technological processes of laser processing (Moscow: Publishing house of MSTU) p 664
[6] Lawrence J and Waugh D G 2015 Laser Surface Engineering. Processes and Applications (Cambridge: Woodhead Publishing) p 688
[7] Pasquale C 2021 Laser Cladding of Metals (Springer International Publishing) p 444
[8] Ehsan Toyserkani, Amir Khajepour and Stephen Corbin 2005 Laser Cladding (CRC Press LLC) p 263
[9] Wang P Z, Yang Y S, Ding G, Qu J X and Shao H S 1997 Laser cladding coating against erosion-corrosion wear and its application to mining machine parts Wear 209 96-109
[10] Gedda H, Kaplan A and Powell J 2005 Melt-solid interactions in laser cladding and laser casting Met. Mat. Trans. 36B(6) 683-9
[11] Amara E H, Hamadi F, Achab L and Boumia O 2006 Numerical modelling of the laser cladding process using a dynamic mesh approach J. Arch. Mat. M. Eng. 15 100-6
[12] Liu C Y and J Li 2003 Thermal processes of a powder particle in coaxial laser cladding O. L. Tech 35 81–6
[13] De Oliveira, Ocelik U V and De Hosson J Th 2005 Analysis of coaxial laser cladding processing conditions Surf. C. Tech. 197 127–36
[14] Huang F X, Jiang Z H, Liu X M, Lian J S and Chen L 2011 Effects of process parameters on microstructure and hardness of layers by laser cladding I. S. I. J. Int. 51 441–7