Fractional order β-Laplace integral transform

Amit Gaur1,* and Garima Agarwal2
1Department of Mathematics and Statistics, Manipal University Jaipur, Jaipur, Rajasthan, India
2Department of Computer Applications, Manipal University Jaipur, Jaipur, Rajasthan, India
E-mail: *gaur84amit@gmail.com

Abstract. We introduce a (new) generalized form of β-Laplace integral transform, fractional β-Laplace integral transform, or β-Laplace integral transform of fractional order. The β-Laplace integral transform of fractional order can be applied to functions which are fractional differentiable but are not differentiable. After review some literature on fractional analysis based on the modified Riemann-Liouville derivative, we define the fractional order β-Laplace integral transform, obtain some main properties, convolution property and formula for the inverse of fractional order β-Laplace integral transform.

1. INTRODUCTION
The classical Laplace transform of a given function $\phi(t)$, which is defined on non-negative real line ($t \geq 0$) is given by

$$\mathcal{L}\{\phi(t)\}(s) = \int_{0}^{\infty} e^{-s\zeta} \phi(\zeta) d\zeta, \quad \Re(s) > 0 \quad (1.1)$$

When it converges. It has numerous applications in the field of applied mathematics and engineering sciences [1–3]. Recently Gaur et. al. [4], has introduced β-Laplace integral transform which is a new form of exponential kernel type generalization of Laplace transform and this new β-Laplace integral transform is defined by [4].

$$\mathcal{L}_\beta\{\phi(t)\}(s) = \int_{0}^{\infty} e^{-s\zeta} \phi(\zeta) d\zeta, \quad \beta > 1, \quad \Re(s) > 0. \quad (1.2)$$

and this new generalization shows many special properties over Laplace integral transform [4,5]. Beauty of new generalized transform is that many of the recently introduced exponential kernel type linear integral transforms are particular case of the β-Laplace integral transform, for detail see [6].

Mittag-Leffler function $E_\alpha(z)$ is given by (one parameter)

$$E_\alpha(s) = \sum_{n=0}^{∞} \frac{s^n}{\Gamma(1+\alpha k)}, \quad s \in \mathbb{C} \quad (1.3)$$

Mittag-Leffler function has great importance because of it is natural generalization of most of the elementary function such as exponential, trigonometric and hyperbolic functions, since
\[E_1(s) = e^s, \quad E_2((-s)^2) = \cos(s), \quad E_2(s^2) = \cosh(s) \]

Usually, involved function in Eq.(1.2) is continuous and continuously differentiable. But here a question arises what happen when involved function in Eq.(1.2) is a continuous function with a fractional-order derivative but not necessarily has a derivative. Here Two main cases arises:

(i) \(\phi(t) \) has both a continuous and fractional order derivative.
(ii) \(\phi(t) \) has a fractional order derivative but no derivative.

in first case the equation (1.2) is quite mathematically valid but in the second case, equation (1.2) cannot be applied and to counter the problem we need an alternative. To present the alternative of this problem is the main objective of the present paper by introducing a fractional order \(\beta \)-Laplace integral transform.

2. DEFINITIONS AND PREPOSITIONS

2.1. Fractional order difference

Definition 2.1. Let \(\phi(t) \) be a continuous function defined on non-negative real numbers, and the forward operator \(E_{(d)} \) is defined by

\[
E_{(d)}\phi(t) = \phi(t + d), \quad d > 0
\]

then the fractional order difference [7–12] is given by

\[
\Delta^n \phi(t) = (E_{(d)} - 1)^n \phi(t) = \sum_{j=0}^{\infty} (-1)^j \left(\frac{\alpha}{j} \right) \phi[t + (\alpha - j)d], \quad 0 < \alpha < 1
\]

2.2. Fractional order derivative

Definition 2.2. Fractional-order derivative of the defined function (2.1) of order \(\alpha, \quad 0 < \alpha < 1 \) is in terms of fractional order difference is given by

\[
\phi^{(\alpha)}(t) = \lim_{d \to 0} \frac{\Delta^\alpha \phi(t)}{d^\alpha}
\]

2.3. Modified Riemann–Liouville fractional-order derivative [9]

Definition 2.3. Let \(\phi(t) \) be a continuous function defined on non-negative real numbers then

(i) If \(\phi(t) = K \) (constant), then its fractional-order derivative

\[
D_t^\alpha K = \frac{K}{\Gamma(1 - \alpha)t^{\alpha}}, \quad \text{if} \quad \alpha \leq 0,
\]

\[
= 0, \quad \text{otherwise.}
\]

(ii) If \(\phi(t) \) is not a constant function, then

\[
\phi(t) = \phi(0) + \{\phi(t) - \phi(0)\}
\]

and its fractional-order derivative

\[
\phi^{(\alpha)}(t) = D_t^\alpha \phi(0) + D_t^\alpha \{\phi(t) - \phi(0)\},
\]
for negative $\alpha (< 0)$, we have
\[
D^\alpha_t (\phi(t) - \phi(0)) = \frac{1}{\Gamma(-\alpha)} \int_0^t (t - \zeta)^{-(\alpha+1)} \phi(\zeta) d\zeta,
\] (2.6)

for positive $\alpha (> 0)$, we have
\[
D^\alpha_t (\phi(t) - \phi(0)) = D^\alpha_t (\phi(t)) = D_t (\phi^{(\alpha-1)}(t))
\] (2.7)

when $k \leq \alpha < k + 1$, then
\[
\phi^{(\alpha)}(t) = \left(\phi^{(\alpha-n)}(t) \right)^{(n)}, \quad k \leq \alpha < k + 1, k \geq 1.
\] (2.8)

2.4. Integration with respect to $(dt)^\alpha$

Definition 2.4. Consider the fractional differential equation
\[
dz = \phi(t)(dt)^\alpha, \quad t \geq 0, \ z(0) = 0
\] (2.9)

And solution is given by
\[
z = \int_0^t \phi(\zeta)(d\zeta)^\alpha
\] (2.10)
\[
= \alpha \int_0^t \zeta^{(\alpha-1)} \phi(\zeta) d\zeta \quad 0 < \alpha < 1
\] (2.11)

To understand above results and for detail review on fractional calculus, see [13–29].

2.5. Fractional-order Dirac’s delta function

Definition 2.5. Fractional-order Dirac’s delta function is defined by [13]
\[
\delta_{\alpha}(t) = \lim_{\epsilon \to 0} \left\{ \begin{array}{ll}
0 & x \notin [0, \epsilon] \\
\epsilon^{-\alpha} & 0 < t \leq \epsilon
\end{array} \right.
\] (2.12)

And also, can be defined by equality
\[
\int_{-\infty}^{+\infty} \phi(t)\delta_{\alpha}(t)(dt)^\alpha = \alpha \phi(0)
\] (2.13)

Lemma 2.1. The following result holds:
\[
D_t^\alpha \int_0^t \phi(\zeta)(d\zeta)^\alpha = \Gamma(\alpha + 1) \phi(t)
\] (2.14)

Proof. This result can be obtained directly from the definition 2.3

Lemma 2.2. ([13]) The following result holds:
\[
\int_0^\infty E_{\alpha}(-(st)^\alpha)E_{\alpha}(-(ct)^\alpha)\phi(t)(dt)^\alpha = \int_0^\infty E_{\alpha}(-(s + c)t)^\alpha)\phi(t)(dt)^\alpha
\] (2.15)

where $c, s \in \mathbb{C}$
Lemma 2.3. If M_α denotes the period of Mittag-Leffler function where period is defined by

$$E_\alpha(i(M_\alpha)^\alpha) = 1$$

then the following result holds:

$$\frac{\alpha(\ln \beta)^\alpha}{(M_\alpha)^\alpha} \int_{-\infty}^{+\infty} E_\alpha(i(-\omega \ln \beta)^\alpha)(d\omega)^\alpha = \delta_\alpha(t)$$\hspace{1cm}(2.16)

Proof. We check that Eq. (2.16) is consistent with

$$\alpha = \int_{-\infty}^{+\infty} E_\alpha(i(\omega \ln \beta t)^\alpha) \delta_\alpha(t)(dt)^\alpha$$

Replace $\delta_\alpha(t)$ by eq.(2.16) to obtain

$$\alpha = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \frac{\alpha(\ln \beta)^\alpha}{(M_\alpha)^\alpha} E_\alpha(i(\omega - \zeta) \ln \beta)^\alpha)(d\zeta)^\alpha(dt)^\alpha$$

$$= \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \frac{\alpha(\ln \beta)^\alpha}{(M_\alpha)^\alpha} E_\alpha(i(-\omega \ln \beta)^\alpha)(dv)^\alpha(dt)^\alpha$$

$$= \int_{-\infty}^{+\infty} \delta_\alpha(t)(dt)^\alpha$$

\[\square\]

3. FRACTIONAL-ORDER β-LAPLACE INTEGRAL TRANSFORM

Definition 3.1. Let $\phi(t)$ be a function defined on non-negative real numbers, its β-Laplace integral transform $L^\alpha_\beta\{\phi(t)\}_{(s)}$ of order α is defined by:

$$L^\alpha_\beta\{\phi(t)\}_{(s)} = \int_0^\infty E_\alpha(-(s\ln \beta)^\alpha)\phi(\zeta)(d\zeta)^\alpha \hspace{1cm} \beta > 1, s \in \mathbb{C}.$$ \hspace{1cm}(3.1)

when it converges.

4. PROPERTIES OF β-LAPLACE INTEGRAL TRANSFORM OF FRACTIONAL ORDER

4.1. Linearity Property

Theorem 4.1. Let $\phi_1, \phi_2 : [0, \infty) \to \mathbb{R}$ be continuous functions and $c_1, c_2 \in \mathbb{C}$ then

$$L^\alpha_\beta\{c_1\phi_1(t) + c_2\phi_2(t)\}_{(s)} = c_1 L^\alpha_\beta\{\phi_1(t)\}_{(s)} + c_2 L^\alpha_\beta\{\phi_2(t)\}_{(s)}$$ \hspace{1cm}(4.1)

Proof. By the definition of Fractional order β-Laplace integral transform

$$L^\alpha_\beta\{c_1\phi_1(t) + c_2\phi_2(t)\}_{(s)} = \int_0^\infty E_\alpha(-(s\ln \beta)^\alpha)\{c_1\phi_1(t) + c_2\phi_2(t)\}(dt)^\alpha$$

$$= c_1 \int_0^\infty E_\alpha(-(s\ln \beta)^\alpha)\phi_1(t)(dt)^\alpha$$

$$+ c_2 \int_0^\infty E_\alpha(-(s\ln \beta)^\alpha)\phi_2(t)(dt)^\alpha$$

$$= c_1 L^\alpha_\beta\{\phi_1(t)\}_{(s)} + c_2 L^\alpha_\beta\{\phi_2(t)\}_{(s)}$$

\[\square\]
4.2. Shifting Property

Theorem 4.2. Let \(\phi : [0, \infty) \rightarrow \mathcal{R} \) be continuous function then following result holds:

\[
\mathcal{L}_\alpha^\beta \{ \phi(t-b) \}_{(s)} = E_\alpha\left(-\left(s\ln \beta\right)^\alpha\right)\mathcal{L}_\alpha^\beta \{ \phi(t) \}_{(s)} - \Gamma(1 + \alpha)\phi(0)
\]

(4.2)

\[
\mathcal{L}_\alpha^\beta \{ E_\alpha\left(-\left(s\ln \beta\right)^\alpha\right)\phi(t-b) \}_{(s)} = \mathcal{L}_\alpha^\beta \{ \phi(t) \}_{(s+c)}
\]

(4.3)

Proof. We can simply obtain by using the definition (3.1)

\[
\mathcal{L}_\alpha^\beta \{ \phi(t-b) \}_{(s)} = \int_0^\infty E_\alpha\left(-\left(s\ln \beta\right)^\alpha\right)\phi(t-b)(dt)^\alpha
\]

after substituting \(t-b = u \), and by the Eq.(2.15) we get our desired result

\[
\mathcal{L}_\alpha^\beta \{ \phi(t-b) \}_{(s)} = E_\alpha\left(-\left(s\ln \beta\right)^\alpha\right)\mathcal{L}_\alpha^\beta \{ \phi(t) \}_{(s)}
\]

\(\square \)

4.3. Scaling Property

Theorem 4.3. Let \(\phi : [0, \infty) \rightarrow \mathcal{R} \) be continuous function then following result holds:

\[
\mathcal{L}_\alpha^\beta \{ \phi(at) \}_{(s)} = \left(\frac{1}{a}\right)^\alpha \mathcal{L}_\alpha^\beta \{ \phi(t) \}_{\left(\frac{\xi}{a}\right)}
\]

(4.4)

where \(a \neq 0 \) is any constant.

Proof. We can obtain by the definition of fractional order \(\beta \)-Laplace Integral transform

\[
\mathcal{L}_\alpha^\beta \{ \phi(at) \}_{(s)} = \int_0^\infty E_\alpha\left(-\left(s\ln \beta\right)^\alpha\right)\phi(at)(dt)^\alpha
\]

after substituting \(at = u \), we get our desired results

\[
\mathcal{L}_\alpha^\beta \{ \phi(at) \}_{(s)} = \left(\frac{1}{a}\right)^\alpha \mathcal{L}_\alpha^\beta \{ \phi(t) \}_{\left(\frac{\xi}{a}\right)}
\]

\(\square \)

4.4. Derivative Property

Theorem 4.4. Let \(\phi(t) \) be continuous real valued function defined on non-negative real number has a fractional-order derivative then

\[
\mathcal{L}_\alpha^\beta \{ \phi^{(\alpha)}(t) \}_{(s)} = s^\alpha \mathcal{L}_\alpha^\beta \{ \phi(t) \}_{(s)} - \Gamma(1 + \alpha)\phi(0)
\]

(4.5)

Proof. The equality

\[
(uv)^\alpha = u^\alpha v + uv^\alpha
\]

(4.6)

yields

\[
D_\alpha^\beta E_\alpha\left(-\left(s\ln \beta\right)^\alpha\right)\phi^{(\alpha)}(t) = -(s\ln \beta)^\alpha E_\alpha\left(-\left(s\ln \beta\right)^\alpha\right)\phi(t) + E_\alpha\left(-\left(s\ln \beta\right)^\alpha\right)\phi^{(\alpha)}(t)
\]

integrating \((D^{-\alpha}) \) both sides and using eq. (4.6), we obtain

\[
D^{(-\alpha)}\phi(t) = \frac{1}{\Gamma(1 + \alpha)} \int_0^t \phi(\xi)(d\xi)^\alpha
\]

then, we have

\[
\frac{1}{\Gamma(1 + \alpha)} \lim_{t \to \infty} E_\alpha\left(-\left(s\ln \beta\right)^\alpha\right)\phi(t) - \phi(0) = -(s\ln \beta)^\alpha \mathcal{L}_\alpha^\beta \{ \phi(t) \}_{(s)} + \mathcal{L}_\alpha^\beta \{ \phi^{(\alpha)}(t) \}_{(s)}
\]

\[
\mathcal{L}_\alpha^\beta \{ \phi^{(\alpha)}(t) \}_{(s)} = s^\alpha \mathcal{L}_\alpha^\beta \{ \phi(t) \}_{(s)} - \Gamma(1 + \alpha)\phi(0)
\]

\(\square \)
4.5. Integral Property

Theorem 4.5. Let \(\phi(t) \) be continuous real valued function defined on non-negative real number \(t \geq 0 \) has a fractional-order derivative and \(\int_0^\infty f(u)(du)^\alpha \) converges then following result holds:

\[
\mathcal{L}^\beta_\alpha \left\{ \int_0^t \phi(u)(du)^\alpha \right\}(s) = \frac{\Gamma(1 + \alpha)}{(s \ln \beta)^\alpha} \mathcal{L}^\beta_\alpha \{ \phi(t) \}(s) \tag{4.7}
\]

Proof. By using the derivative property

\[
\mathcal{L}^\beta_\alpha \left\{ D^\alpha_x \int_0^t \phi(u)(du)^\alpha \right\}(s) = (s \ln \beta)^\alpha \mathcal{L}^\beta_\alpha \left\{ \int_0^t \phi(t)(du)^\alpha \right\}(s)
\]

by using the equality

\[
D^\alpha_x \int_0^t \phi(u)(du)^\alpha = \Gamma(\alpha + 1)\phi(t)
\]

yields the result

\[
\mathcal{L}^\beta_\alpha \left\{ \int_0^t \phi(\zeta)(d\zeta)^\alpha \right\}(s) = \frac{\Gamma(1 + \alpha)}{(s \ln \beta)^\alpha} \mathcal{L}^\beta_\alpha \{ \phi(t) \}(s)
\]

\[\square\]

5. CONVOLUTION PROPERTY

Theorem 5.1. Let \(\phi_1, \phi_2 : [0, \infty) \rightarrow \mathbb{R} \) be two continuous functions and if the convolution of fractional-order \(\alpha \) is defined by

\[
\left(\phi_1(t) * \phi_2(t) \right)_\alpha = \int_0^\infty \phi_1(t - \zeta)\phi_2(\zeta)(d\zeta)^\alpha \tag{5.1}
\]

then,

\[
\mathcal{L}^\beta_\alpha \{ (\phi_1(t) * \phi_2(t))_\alpha \}(s) = \mathcal{L}^\beta_\alpha \{ \phi_1(t) \}(s) \mathcal{L}^\beta_\alpha \{ \phi_2(t) \}(s) \tag{5.2}
\]

Proof. By the definition

\[
\mathcal{L}^\beta_\alpha \{ (\phi_1(t) * \phi_2(t))_\alpha \}(s) = \int_0^\infty E_\alpha(-s t \ln \beta)^\alpha \left(\phi_1(t) * \phi_2(t) \right)_\alpha (dt)^\alpha
\]

\[
= \int_0^\infty E_\alpha(-s t \ln \beta)^\alpha \left\{ \int_0^\infty \phi_1(t - \zeta)\phi_2(\zeta)(d\zeta)^\alpha \right\}(dt)^\alpha
\]

substitute \(y = t - \zeta, v = \zeta \)

\[
\mathcal{L}^\beta_\alpha \{ (\phi_1(t) * \phi_2(t))_\alpha \}(s) = \int_0^\infty \int_0^\infty E_\alpha(-s y \ln \beta)^\alpha E_\alpha(-s v \ln \beta)^\alpha \phi_1(y)\phi_2(v)(dy)^\alpha(dv)^\alpha
\]

\[
= \mathcal{L}^\beta_\alpha \{ \phi_1(t) \}(s) \mathcal{L}^\beta_\alpha \{ \phi_2(t) \}(s)
\]

\[\square\]
6. FORMULA FOR INVERSE FRACTIONAL-ORDER β-LAPLACE INTEGRAL TRANSFORM

Theorem 6.1. Let $\phi(t)$ be a function and $\mathcal{L}_\beta^{\alpha}\{\phi(t)\}_{(s)}$ be the Fractional order β-Laplace integral transform then the inverse β-Laplace transform is given by the formula

$$
\phi(t) = \frac{(\ln \beta)^\alpha}{(M_\alpha)^\alpha} \int_{-\infty}^{+\infty} E_\alpha\left((st \ln \beta)^\alpha\right) \mathcal{L}_\beta^{\alpha}\{\phi(t)\}_{(s)} (ds)^\alpha \tag{6.1}
$$

Proof. After substituting Eq.(3.1) into Eq.(6.1), we obtain

$$
\frac{(\ln \beta)^\alpha}{(M_\alpha)^\alpha} \int_{-\infty}^{+\infty} E_\alpha\left((st \ln \beta)^\alpha\right) (ds)^\alpha \int_0^{\infty} E_\alpha\left(-(s\zeta \ln \beta)^\alpha\right) \phi(\zeta) (d\zeta)^\alpha
\Rightarrow \frac{1}{\alpha} \int_{\mathbb{R}} \phi(\zeta) \delta_\alpha (t - \zeta) (d\zeta)^\alpha = \phi(t)
$$

7. CONCLUSION

Proposed new form of generalization is mathematical valid for an involved function whether it has continuous derivative or continuous fractional derivative.

References

[1] I. N. Sneddon, *The use of integral transforms*, McGraw-Hills, United States, 1972.
[2] L. Debnath, D. Bhatta, *Integral transforms and their applications*, Chapman and Hall/CRC, 2015.
[3] G. Doetsch, *Introduction to the theory and applications of the Laplace transformation*, Springer-Verlag, New York, 1970.
[4] A. Gaur, G. Agarwal, *On β-Laplace integral transforms and their properties*, International Journal of Advanced Science and Technology, 29 (2020), 1481–1491.
[5] A. Gaur, G. Agarwal, *Application of β-Laplace integral transform*, Talent Development and Excellence, 12 (2020), 3s,1058–1068.
[6] A. Gaur, G. Agarwal, *Relation of β-Laplace integral transforms with other integral transforms*, Test Engineering and Management, 83 (2020), 8653–8659.
[7] G. Jumarie, *Stochastic differential equations with fractional Brownian motion input*, Int. J. Syst. Sci. 24, no. 6 (1993), 1113–1132.
[8] G. Jumarie, *On the solution of the stochastic differential equation of exponential growth driven by fractional Brownian motion*, Appl. Math. Lett. 18 (2005), 817–826.
[9] G. Jumarie, *Modified Riemann-Liouville derivative and fractional Taylor Series of non-differentiable functions Further results*, Comput. Math. Appl. Ann. of Math. 51 (2006), 1367–1376.
[10] G. Jumarie, *New stochastic fractional models for Malthusian growth, the Poissonian birth process and optimal management of populations*, Math. Comput. Modelling 44 (2006), 231–254.
[11] G. Jumarie, *Fractional partial differential equations and modified Riemann-Liouville derivatives. Method for solution*, J. Appl. Math. Computing 24 (2007), 31–48.
[12] G. Jumarie, *Table of some basic fractional calculus formule derived from a modified Riemann-Liouville derivative for non-differentiable functions*, Appl. Math. Lett. 22 (2009), 378–385.
[13] G. Jumarie, *Laplace’s transform of fractional order via the Mittag-Leffler function and modified Riemann-Liouville derivative*, Applied Mathematics Letters 22 (2009), 1659-1664.
[14] KM. Kolwanker, AD. Gangal, *Holder exponents of irregular signals and local fractional derivatives*, Pramana J. Phys. 48 (1997), 9–68.
[15] K. M. Kolwanker, AD. Gangal *Local fractional Fokker-Plank equation*, Phys. Rev. Lett. 80 (1998), 214–217.
[16] M. Al-Akaidi, *Fractal Speech Processing*, Cambridge University Press, USA, 2004.
[17] L. M. C. Campos, *On a concept of derivative of complex order with applications to special functions*, IMA J. Appl. Math. 33 (1984), 109–133.
[18] R. Carpinteri, P. Mainardi, *Fractal and Fractional Calculus in Continuum Mechanics*, in: CISM Lecture Notes, vol. 378, 1997.
[19] M. M. Djbashian A.B. Nersesian, *Fractional derivative and the cauchy problem for differential equations of fractional order*, Izv. Acad. Nauk Armjaskoi SSR 3 (1968), no. 1, 3–29.

[20] K. Falconer, *Techniques in Fractal Geometry*, Wiley, New York, 1997.

[21] R. Hilfer, *Fractional time evolution*, in: R. Hilfer (Ed.), Applications of Fractional Calculus in Physics, World Scientific, Singapore, (2000), 87–130.

[22] F. Huang, F. Liu, *The spaca-time fractional diffusion equation with Caputo derivative*, J. Appl. Math. Computing, 19 (2005), 1873–1886.

[23] G. Jumarie, *Further results on Fokker-Plank equation of fractional order*, Chaos Solitons Fractals, 12 (2001), 739–748.

[24] G. Jumarie, *On the representation of fractional Brownian motion as an integral with respect to $(dt)^{\alpha}$*, Appl. Math. Lett. 18 (2005), 739–748.

[25] K. S. Miller, B. Ross, *An Introduction to the Fractional Calculus and Fractional Differential Equations*, Wiley, New York, 1973.

[26] K. Nishimoto, *Fractional Calculus*, Descartes Press Co., Koroyama, 1989.

[27] K. B. Oldham, J. Spanier, *The Fractional Calculus. Theory and application of Differentiation and Integration of Arbitrary Order*, Academic Press, New York, 1974.

[28] I. Podlubny, *Fractional Differential Equations*, Academic Press, San Diego, 1999.

[29] J. Agnihotri, G. Agarwal, *Solution of fractional kinetic equations by using generalized Mittag-Leffler functions*, International Journal of Advanced Science and Technology, 29(2020), no. 3s, 1475–1480.