Identification and preoperative optimization of risk factors to prevent periprosthetic joint infection

Seung-Hoon Baek

Seung-Hoon Baek, Department of Orthopedic Surgery, Kyungpook National University Hospital, Daegu 700-721, South Korea
Author contributions: Baek SH contributed to conception design and drafted as well as revised the article, and final approval of the version
Supported by The grant of Research Institute of Medical Science, Catholic University of Daegu (2011)
Correspondence to: Seung-Hoon Baek, MD, Department of Orthopedic Surgery, Kyungpook National University Hospital, 130 Dong-duk Ro, Jung-gu, Daegu, 700-721, South Korea. insideme@paran.com
Telephone: +82-53-4205633 Fax: +82-53-4226605
Received: December 8, 2013 Revised: April 9, 2014
Accepted: May 16, 2014
Published online: July 18, 2014

Abstract
Despite significant improvements over the past several decades in diagnosis, treatment and prevention of periprosthetic joint infection (PJI), it still remains a major challenge following total joint arthroplasty. Given the devastating nature and accelerated incidence of PJI, prevention is the most important strategy to deal with this challenging problem and should start from identifying risk factors. Understanding and well-organized optimization of these risk factors in individuals before elective arthroplasty are essential to the ultimate success in reducing the incidence of PJI. Even though some risk factors such as demographic characteristics are seldom changeable, they allow more accurate expectation regarding individual risks of PJI and thus, make proper counseling for shared preoperative decision-making possible. Others that increase the risk of PJI, but are potentially modifiable should be optimized prior to elective arthroplasty. Although remarkable advances have been achieved in past decades, many questions regarding standardized practice to prevent this catastrophic complication remain unanswered. The current study provide a comprehensive knowledge regarding risk factors based on general principles to control surgical site infection by the review of current literature and also share own practice at our institution to provide practical and better understandings.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Total joint arthroplasty; Periprosthetic joint infection; Prevention; Risk factors; Preoperative optimization

Core tip: Despite general success in joint arthroplasty, periprosthetic joint infection remains a serious challenge. With the accelerated incidence and increased charges, PJIs are expected to impose substantial medical and socioeconomic burden in the future. There is no debate that the prevention is the first and the best strategy to minimize this catastrophic complication and the specific strategies for prevention should be integrated into and be in accordance with the general principles to control surgical site infection. Thus, we provide a comprehensive approach based on these general principles as well as own specific practice at our institution for better understandings.

INTRODUCTION
Although significant improvements have reduced the rate of periprosthetic joint infection (PJI) in the past decades[1-3], PJI still remains the leading cause of revision after total knee arthroplasty (TKA) ranging from 0.4% to 4.0%, and it is the third most common complication afflicting 0.3% to 2.2% following total hip arthroplasty.
Controversies remain regarding some of these risk factors due to lack of prospective studies of high quality as well as low incidence of PJI. Studies using Medicare administrative claims data providing up to 10 years of follow-up identified the following independent risk factors for PJI (in decreasing order of significance): congestive heart failure, chronic pulmonary disease, preoperative anemia, diabetes, depression, renal disease, pulmonary circulation disorders, obesity, rheumatologic disease, psychoses, metastatic tumor, peripheral vascular disease, valvular disease in THA and rheumatologic disease, obesity, coagulopathy and preoperative anemia in TKA. Among retrospective studies with fewer subjects from a single institution, Keats reported higher American Society of Anesthesiologists (ASA) score, morbid obesity, bilateral arthroplasty, knee arthroplasty, allo geneic transfusion, postoperative atrial fibrillation, myocardial infarction, urinary tract infection and longer hospitalization as risk factors for developing PJI within the first year after TJA. ASA score ranks patients for risk of adverse events during an operative procedure and this classification is usually used as a surrogate for underlying severity of illness. Lai et al. also reported that diabetes, absence of prophylactic antibiotics, previous operations, remote infection and total number of medical comorbidities including cardiovascular, respiratory, gastrointestinal, genitourinary, metabolic/endocrine, neurologic and hematologic conditions had a cumulative effect on the likelihood of developing PJI and each medical comorbidity increased the risk of PJI by 35%. In the following sections, risk factors that are commonly encountered will be discussed separately:

Cardiac disorder

The adjusted hazard ratio (HR) after TKA in patients with congestive heart failure is 1.28, for valvular disease 1.15, and pulmonary circulation disorders 1.42. Patients with cardiac disorders have a higher chance of receiving aggressive anticoagulation, an independent risk factor for developing PJI due to post-operative hematoma. Patients with serious cardiac disorder are generally more sick and older and have slower wound healing resulting in later infection. Thus, the patients at higher risk should be referred to a cardiologist for a pre-operative evaluation. We currently give no aggressive anticoagulation to these patients.

Preoperative anemia

Patients with preoperative anemia are at increased risk for developing PJI, HR of 1.36 after THA and HR of 1.26 after TKA. Patients with preoperative anemia undergoing arthroplasty are more likely to receive allogeneic blood transfusions, increasing the risk of postoperative infection. Preoperative prescription of medication such as recombinant human erythropoietin can decrease the need for transfusion, lessening the risk of PJI. Because of high cost, however, we currently do not prescribe preoperative erythropoietin, but instead, evaluate any possible causes of anemia such as poor nutrition, another risk factor for developing PJI. We don’t withhold nec-
and hemoglobin A1C levels that reflect long-term glucose control should be normalized (under 6.9%) in diabetic patients, especially when combined with anemia.

Peripheral vascular disease and smoking

Vascular insufficiencies are at increased risk of PJI, especially after TKA with HR of 1.13\(^{26}\). Also, smoking is associated with a higher rate of developing infection after TKA\(^{37}\). Smoking has deleterious effects including decreased tissue oxygenation, impaired neutrophil defense and resultant retardation of wound healing\(^{38-40}\). Following CDC guidelines, we currently enroll smokers in a smoking cessation program and instruct them to abstain for at least 30 d before elective arthroplasty. Working with patients and an appropriate consultant together is often beneficial to optimize this risk factor and reduce the risk of PJI.

Malnutrition

Although theoretical arguments can be made for a belief that preoperative malnutrition should increase the risk of PJI, the CDC reported that benefits of preoperative nutritional repletion of malnourished patients in reducing SSI risk were unproven and concluded that randomized clinical trials would be necessary to determine if nutritional support alters SSI risk in specific patient-operation combinations (Table 1)\(^{41}\). The diagnosis of malnutrition can be made if serum transferrin levels are less than 200 mg/dL, serum albumin less than 3.4 g/dL, and total lymphocyte count less than 1500 cells/mm\(^3\)\(^3\). Greene \textit{et al}\(^{33}\) reported that preoperative lymphocyte count of less than 1500 cells/mm\(^3\) was associated with a five times greater frequency of developing a major wound complication and an albumin level of less than 3.5 g/dL had a seven times greater risk. At our institution, the level of serum albumin and total lymphocyte count can be easily obtained from routine blood test and elective arthroplasty is delayed in any patients in whom malnutrition is diagnosed.

Rheumatologic disease and immunosuppressant

Patients with rheumatoid arthritis are at increased risk of developing PJI\(^{42-44}\) and the independent attributable risk for developing PJI has been reported up to 5.5% with HR of 1.71 after THA\(^{26}\) and HR of 1.18 after TKA\(^{26}\). The increased risk seems mainly due to the immunosuppressive disease modifying drugs and use of systemic steroids for extended periods\(^{45-47}\). The CDC reported that data supporting this relationship were contradictory (Table 1)\(^{41}\), but these controversies may originate from imbalance between suppressive effect of inflammatory disease process and deleterious effect of immune suppression by long-term use of immunosuppressive agents. We currently taper or discontinue systemic steroid use when medically permissible or unless flare is apparent.

Coagulopathy

Coagulopathy including high international normalized ratio (INR) coagulopathy is one of the major risk factors for PJI. This is supported by work of Moore et al\(^{48}\). For patients with INR > 1.5, we currently increase the anticoagulant dose and delay the elective surgery after normalization of INR. We also delay the surgery for patients with a history of deep venous thrombosis, pulmonary embolism or stroke in the past 6 months.

Table 1: Risk factors for periprosthetic joint infection

Risk factors	Grade of recommendation by CDC\(^{26}\)
Demographic characteristics	
Gender	-
Socioeconomic states	-
Preexistent comorbidities	-
Cardiac disorder	-
Preoperative anemia	-
Obesity	-
Diabetes	Category 1 B
Smoking	Category 1 B
Malnutrition\(^1\)	No recommendation. Unresolved issue
Rheumatologic disease and Coagulopathy	No recommendation. Unresolved issue
Cessation of Steroid use\(^2\)	-
Cessation of Steroid use\(^2\)	-
Malnutrition\(^1\)	No recommendation. Unresolved issue
Rheumatologic disease and Coagulopathy	No recommendation. Unresolved issue
Cessation of Steroid use\(^2\)	-
Cessation of Steroid use\(^2\)	-
Malnutrition\(^1\)	No recommendation. Unresolved issue
Rheumatologic disease and Coagulopathy	No recommendation. Unresolved issue
Cessation of Steroid use\(^2\)	-
Cessation of Steroid use\(^2\)	-
Malnutrition\(^1\)	No recommendation. Unresolved issue
Rheumatologic disease and Coagulopathy	No recommendation. Unresolved issue

\(^1\)Enhance nutritional support for surgical patients solely as a means to prevent infection; \(^2\)Taper or discontinue systemic steroid use (when medically permissible) before elective operation. CDC: Centers for Disease Control and Prevention. Category 1 A: Strongly recommended for implementation and supported by well-designed experimental, clinical, or epidemiological studies; Category 1 B: Strongly recommended for implementation and supported by some experimental, clinical, or epidemiological studies and strong theoretical rationale; Category 2: Suggested for implementation and supported by suggestive clinical or epidemiological studies or theoretical rationale. No recommendation. Unresolved issue. Practices which insufficient evidence or no consensus regarding efficacy exists.
tio (INR), can lead to a higher chance of intra-operative bleeding and subsequent hematoma formation and is an independent risk factor with an attributable risk of 2.7% as well as HR of 1.58 after THA. Recently, increased compliance for venous thromboembolism (VTE) prophylaxis has led to unintended bleeding and increased infections after THA. We routinely use intermittent pneumatic compression device, but reserve chemoprophylaxis against VTE for selective patients with positive ultrasonographic findings because the prevalence of VTE in Korean patients without thromboprophylaxis is reported to be low.

Malignancy
Berbari et al. suggested that the presence of a malignancy is associated with an increased risk of PJI in a matched case-control study and Bozic et al. reported metastatic tumor as a risk factor with HR of 1.59 as well. At our institution, optimization after evaluating immune function as well as nutritional status are important steps in these patients in whom elective arthroplasty is scheduled.

Depression and psychosis
Depression and psychosis are risk factors of developing PJI after TKA with HR of 1.28 for depression and with HR of 1.26 for psychosis. Depression may be associated with poor nutritional status, an important risk factor for the development of PJI. At our institution, evaluation of coexisting depression is integrated with the initial medical screening and often, management of depressive mood itself improves the clinical symptoms of osteoarthritis. Consequently, we can avoid unnecessary arthroplasty in early stage. Also, we rarely perform elective arthroplasty in patients with psychosis.

Remote or coexistent infection
It is critical to make sure that the patient has no other remote or concurrent infections such as a urinary tract infection and those with remote infections should be optimized by eradication of the infection prior to elective arthroplasty with appropriate antibiotic therapy. Human immunodeficiency virus (HIV) is a risk factor for developing PJI and those with HIV should be placed on regimens to maintain the viral load under detectable level. In our institution, these infections should be eradicated via appropriate antibiotic therapy prior to elective arthroplasty except hemiarthroplasty for patients with femur neck fracture. We don’t have an experience of arthroplasty in those with HIV because of low prevalence in our country.

Other comorbidities
Patients with chronic renal insufficiency should have normal creatinine value before the elective arthroplasty. Although the creatinine values may be optimized, patients with chronic renal failure are still at high risk of mortality and morbidity including PJI (HR of 1.38 after TKA). General skeletal abnormalities and combined multiple comorbidities in these patients may explain the increased risk for developing PJI. However, among 32 THAs performed in 18 patients with chronic renal failure (five patients received kidney transplantation later) at our institution, two patients (4 hips) died at two and four years after THA. At the average follow-up of 147 mo, there were two cup revisions due to aseptic loosening, and the remaining 14 patients who have survived have no infection or no revision yet.

Prior history of infection or steroid injection at the same joint was reported as a risk factor for developing PJI that is seldom modifiable. We routinely delay TKA in patients with a history of recent injection into the knee joint within 4 weeks and use antibiotic-impregnated cement when performing TKA in these patients.

INTEGRATION OF MULTIPLE RISK FACTORS AND MEDICAL CLEARANCE

The risk factors mentioned above are all important for developing PJI. Measures like the modified Charlson Co-morbidity Index or ASA score are of value to quantify overall health of the patient. Patients with an ASA score more than 2 or 3 are at significantly higher risk for developing infection following THA. Also, those with a Charlson index score greater than 4 are at 157% increased risk of infection after THA and 116% after TKA compared to those with a score of 0. While these measures help imagine overall pictures of the patients, they are often of limited value at the time of counseling with evaluating the individual-specific risks for developing PJI. An easily accessible electronic risk calculator has recently been developed to provide the individualized risk for PJI after THA integrating interactions between and synergistic effect of these risk factors, especially in patients who have multiple comorbidities.

We currently start preoperative medical screening with questionnaires regarding individual background medical history and preoperative routine tests including electrocardiography, chest radiography, blood test and urinalysis. In addition to history taking and laboratory test, we conduct a thorough clinical evaluation with observation of clinical signs or symptoms and physical examination. This is especially important in Asian countries, where acupuncture or moxa cautery is in common use. Also, skin ulceration implies vascular insufficiency or neuropathy, and a patient with any skin problems is not an ideal candidate for elective arthroplasty. These patients are referred to a dermatologist and surgery is delayed until the skin lesion improves. Once any medical comorbidity is identified, they are optimized by a medical consultant prior to elective arthroplasty and the consultant continues to follow the patients during postoperative period as well.

CONCLUSION
Thorough understanding of risk factors in individual patients and attentive application of the general principle...
for preoperative optimization are paramount to reduce overall incidence of periprosthetic joint infection. Even though some risk factors such as demographic characteristics are seldom changeable, they allow more accurate expectation regarding individual risks of PJI and thus, make proper counseling for shared preoperative decision-making possible. Others that increase the risk of PJI, but are potentially modifiable should be optimized prior to elective arthroplasty. Although remarkable advances have been achieved in past decades, many questions regarding standardized practice to prevent this catastrophic complication remain unanswered. Randomized controlled trials incorporated with general principles for preventing surgical site infection are necessary to determine the best approach.

REFERENCES

1 Charnley J, Eftekhar N. Postoperative infection in total prosthetic replacement arthroplasty of the hip-joint. With special reference to the bacterial content of the air of the operating room. Br J Surg 1969; 56: 641-649 [PMID: 5988372 DOI: 10.1002/bjs.1800560902]
2 Salvati EA, Wilson PD, Jolley MN, Vakili F, Aglietti P, Brown GC. A ten-year follow-up study of our first one hundred consecutive Charnley total hip replacements. J Bone Joint Surg Am 1981; 63: 753-767 [PMID: 6780759]
3 Adeli B, Parviz J. Strategies for the prevention of periprosthetic joint infection. J Bone Joint Surg Br 2012; 94: 42-46 [PMID: 23183879 DOI: 10.1302/0301-620X.94B1.30833]
4 Ong KL, Kurtz SM, Lau E, Bozic KJ, Berry DJ, Parviz J. Prosthetic joint infection risk after total hip arthroplasty in the Medicare population. J Arthroplasty 2009; 24: 105-109 [PMID: 19493644 DOI: 10.1016/j.arthro.2009.04.027]
5 Pulido L, Ghanem E, Joshi A, Purtill JJ, Parviz J. Periprosthetic joint infection: the incidence, timing, and predisposing factors. Clin Orthop Relat Res 2008; 466: 1710-1715 [PMID: 18421542 DOI: 10.1097/BLO.0b013e3282f86f8a]
6 Bozic KJ, Kurtz SM, Lau E, Ong K, Chiu V, Vail TP, Rubash HE, Berry DJ. The epidemiology of revision total knee arthroplasty in the United States. Clin Orthop Relat Res 2010; 468: 45-51 [PMID: 19553895DOI: 10.1007/s11999-009-0945-0]
7 Kurtz SM, Lau E, Schmier J, Ong KL, Zhao K, Parviz J. Infection burden for hip and knee arthroplasty in the United States. J Arthroplasty 2008; 23: 984-991 [PMID: 18534466 DOI: 10.1016/j.arthro.2007.10.017]
8 Kurtz S, Ong K, Lau E, Mowat F, Halpern M. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg Am 2007; 89: 780-785 [PMID: 17403880 DOI: 10.2106/JBJS.F.00222]
9 Matar WY, Jafari SM, Restrepo C, Austin M, Purtill JJ, Parviz J. Preventing infection in total joint arthroplasty. J Bone Joint Surg Am 2010; 92 Suppl 2: 36-46 [PMID: 21125590 DOI: 10.2106/JBJS.F.01046]
10 Hanssen AD, Osmom DR, Nelson CL. Prevention of deep periprosthetic joint infection. Instr Course Lect 1997; 46: 555-567 [PMID: 9143999]
11 Shuman EK, Urquhart A, Malani PN. Management and prevention of prosthetic joint infection. Infect Dis Clin North Am 2012; 26: 29-39 [PMID: 22284374 DOI: 10.1016/j.idc.2011.09.011]
12 Kuper M, Rosenstein A. Infection prevention in total knee and total hip arthroplasties. Am J Orthop (Belle Mead NJ) 2008; 37: E2-E5 [PMID: 18309300]
13 Hanssen AD, Osmom DR. Prevention of deep wound infection after total hip arthroplasty: the role of prophylactic antibiotics and clean air technology. Semin Arthroplasty 1994; 5: 114-121 [PMID: 10155153]
14 Garvin KL, Konigsberg BS. Infection following total knee arthroplasty: prevention and management. J Bone Joint Surg Am 2011; 93: 1167-1175 [PMID: 21776555]
15 Fitzgerald RH. Total hip arthroplasty sepsis. Prevention and diagnosis. Orthop Clin North Am 1992; 23: 259-264 [PMID: 1570138]
16 Gillespie WJ. Infection in total joint replacement. Infect Dis Clin North Am 1990; 4: 465-484 [PMID: 2212600]
17 Gillespie WJ. Prevention and management of infection after total joint replacement. Clin Infect Dis 1997; 25: 1310-1317 [PMID: 9431369 DOI: 10.1086/516134]
18 An YH, Friedman RJ. Prevention of sepsis in total joint arthroplasty. J Hosp Infect 1996; 33: 93-108 [PMID: 8808743 DOI: 10.1016/S0195-6701(96)00094-8]
19 Shuman EK, Malani PN. Prevention and management of prosthetic joint infection in older adults. Drugs Aging 2011; 28: 13-26 [PMID: 2174448 DOI: 10.2165/11586530-000000-00000]
20 Mangam AJ, Horan TC, Pearson ML, Silver LC, Jarvis WR. Guideline for Prevention of Surgical Site Infection, 1999. Centers for Disease Control and Prevention (CDC) Hospital Infection Control Practices Advisory Committee. Am J Infect Control 1999; 27: 97-132; quiz 133-134; discussion 96 [PMID: 10196487 DOI: 10.1016/S0191-6553(99)70088-X]
21 Jansen E, Huhtala H, Puolakkia T, Moilanen T. Risk factors for infection after knee arthroplasty. A register-based analysis of 43,149 cases. J Bone Joint Surg Am 2009; 91: 38-47 [PMID: 19122077 DOI: 10.2106/JBJS.G.01686]
22 Kurtz SM, Ong KL, Lau E, Bozic KJ, Berry D, Parviz J. Prosthetic joint infection risk after TKA in the Medicare population. Clin Orthop Relat Res 2010; 468: 52-56 [PMID: 1969386 DOI: 10.1097/JOR.0b013e3282f91a35]
23 Urquhart DM, Hanna FS, Brennan SL, Wluka AE, Leder K, Cameron PA, Graves SE, Cicuttini FM. Incidence and risk factors for deep surgical site infection after primary total hip arthroplasty: a systematic review. J Arthroplasty 2010; 25: 1216-1222.e1-3 [PMID: 19879720 DOI: 10.1016/j.arthro.2009.08.011]
24 Barrett J, Losina E, Baron JA, Mahomed NN, Wright J, Katz JN. Survival following total hip replacement. J Bone Joint Surg Am 2005; 87: 1965-1971 [PMID: 16140810 DOI: 10.2106/JBJS.D.02440]
25 Hinman A, Bozic KJ. Impact of payer type on resource utilization, outcomes and access to care in total hip arthroplasty. J Arthroplasty 2008; 23: 9-14 [PMID: 18722285 DOI: 10.1016/j.arthro.2008.05.010]
26 Bozic KJ, Lau E, Kurtz S, Ong K, Berry DJ. Patient-related risk factors for postoperative mortality and periprosthetic joint infection in medicare patients undergoing TKA. Clin Orthop Relat Res 2012; 470: 130-137 [PMID: 21874391 DOI: 10.1007/s11999-011-2043-3]
27 Bozic KJ, Lau E, Kurtz S, Ong K, Rubash H, Vail TP, Berry DJ. Patient-related risk factors for periprosthetic joint infection and postoperative mortality following total hip arthroplasty in Medicare patients. J Bone Joint Surg Am 2012; 94: 794-800 [PMID: 22552668 DOI: 10.2106/JBJS.K.00072]
28 Keats AS. The ASA classification of physical status—a recapitulation. Anesthesiology 1978; 49: 233-236 [PMID: 697075 DOI: 10.1097/00000542-197806000-00001]
29 Peersman G, Laskin R, Davis J, Peterson MG, Richart T. ASA physical status classification is not a good predictor of infection for total knee replacement and is influenced by the presence of comorbidities. Acta Orthop Belg 2008; 74: 360-364 [PMID: 18686462]
30 Lai K, Bohn ER, Burnell C, Hedden DR. Presence of medical comorbidities in patients with infected primary hip or knee arthroplasties. J Arthroplasty 2007; 22: 651-656 [PMID: 17689771 DOI: 10.1016/j.arthro.2006.09.002]
31 Parviz J, Ghanem E, Joshi A, Sharkey PF, Hozack WJ, Roth-
man RH. Does “excessive” anticoagulation predispose to perioperative infection? J Arthroplasty 2007; 22: 24-28 [PMID: 17823010 DOI: 10.1016/j.arth.2007.03.007]

32 Borghi B, Casati A. Incidence and risk factors for alloegenic blood transfusion during major joint replacement using an integrated autotransfusion regimen. The Rizzoli Study Group on Orthopaedic Anaesthesia. Eur J Anaesthesiol 2000; 17: 411-417 [PMID: 10964142 DOI: 10.1046/j.1365-2346.2000.00693.x]

33 Marik PE. The hazards of blood transfusion. Br J Hosp Med (Lond) 2009; 70: 12-15 [PMID: 19357571]

34 Moonen AF, Thomassen B, Knoos NT, van Os Jf, Verburg AD, Pilot P. Pre-operative injections of epoetin-alpha versus post-operative retransfusion of autologous shed blood in total hip and knee replacement: a prospective randomised clinical trial. J Bone Joint Surg Br 2008; 90: 1079-1083 [PMID: 18669967 DOI: 10.1002/(SICI)1099-0603(200501)85:1<1112::AID-BJS356>3.0.CO;2-A]

35 Greene KA, Wilde AH, Stubberg BN. Preoperative nutritional status of total joint patients. Relationship to postoperative wound complications. J Arthroplasty 1991; 6: 321-325 [PMID: 1770368 DOI: 10.1016/S0883-5403(06)80183-X]

36 Bongartz T, Halligan CS, Osmon DR, Reinalda MS, Bamlet WR, Crowson CS, Hanssen AD, Matteson EL. Incidence and risk factors of prosthetic joint infection after total hip or knee replacement in patients with rheumatoid arthritis. Arthritis Rheum 2008; 59: 1713-1720 [PMID: 19035425 DOI: 10.1002/art.24060]

37 Peersman G, Laskin R, Davis J, Peterson M. Infection in total knee replacement: a retrospective review of 489 total knee replacements. Clin Orthop Relat Res 2001; (392): 15-23 [PMID: 11716377 DOI: 10.1097/00003086-200111000-00003]

38 Sørensen LT. Wound healing and infection in surgery. The clinical impact of smoking and smoking cessation: a systematic review and meta-analysis. Arch Surg 2012; 147: 373-383 [PMID: 22508785 DOI: 10.1001/archsurg.2012.5]

39 Jensen JA, Goodson WH, Hopf HW, Hunt TK. Cigarette smoking decreases tissue oxygen. Arch Surg 1991; 126: 1131-1134 [PMID: 1929845 DOI: 10.1001/archsurg.1991.01401030093013]

40 Allen DB, Maguire JJ, Mahdavian M, Wicke C, Marcorci L, Scheunestuhl H, Chang M, Le AX, Hopf HW, Hunt TK. Wound hypoxia and acidosis limit neutrophil bacterial killing mechanisms. Arch Surg 1997; 132: 991-996 [PMID: 9301612 DOI: 10.1001/archsurg.1997.01401030057009]

41 Alexander JW, Solomkin JS, Edwards MJ. Updated recommendations for control of surgical site infections. Ann Surg 2011; 253: 1082-1093 [PMID: 21587113 DOI: 10.1097/SLA.0b013e3182175f8]

42 Jensen JE, Jensen TG, Smith TK, Johnston DA, Dudrick SJ. Nutrition in orthopaedic surgery. J Bone Joint Surg Am 1982; 64: 1263-1272 [PMID: 7142234]

43 Burnett RS, Clohisy JC, Wright RW, McDonald DJ, Shively RA, Givens SA, Barrack RL. Failure of the American College of Chest Physicians-1A protocol for lovenox in clinical outcomes for thromboembolic prophylaxis. J Arthroplasty 2007; 22: 317-324 [PMID: 17400085 DOI: 10.1016/j.arth.2007.01.007]

44 Wang Z, Chen F, Ward M, Bhattacharyya T. Compliance with Surgical Care Improvement Project measures and hospital-associated infections following hip arthroplasty. J Bone Joint Surg Am 2012; 94: 1359-1366 [PMID: 22740029 DOI: 10.2106/JBJS.K.00911]

45 Kim YH, Oh SH, Kim JS. Incidence and natural history of deep-vein thrombosis after total hip arthroplasty. A prospective and randomised clinical study. J Bone Joint Surg Br 2003; 85: 661-665 [PMID: 12892186]

46 Berbari EF, Hanssen AD, Duffy MC, Steckelberg JM, Ilstrup DM, Harmsen WS, Osmon DR. Risk factors for prosthetic joint infection: case-control study. Clin Infect Dis 1998; 27: 1247-1254 [PMID: 9827278]

47 Kim KW, Han JW, Cho HJ, Chang CB, Park JH, Lee JJ, Lee SB, Seong SC, Kim TK. Association between comorbid depression and osteoarthritis symptom severity in patients with knee osteoarthritis. J Bone Joint Surg Am 2011; 93: 556-563 [PMID: 21411706 DOI: 10.2106/JBJS.1.01344]

48 Parvisi J, Sullivan TA, Pagnano MW, Trousdale RT, Bolander ME. Total joint arthroplasty in human immunodeficiency virus-positive patients: an alarming rate of early failure. J Arthroplasty 2003; 18: 259-264 [PMID: 12728415 DOI: 10.1054/arth.2003.50094]

49 Bosco JA, Slover JD, Haas JP. Perioperative strategies for decreasing infection: a comprehensive evidence-based approach. J Bone Joint Surg Am 2010; 92: 232-239 [PMID: 20048188]

50 Murzic WJ, McCollum DE. Hip arthroplasty for osteonecrosis after renal transplantation. Clin Orthop Relat Res 1994; (299): 212-219 [PMID: 8119021]

51 McCleery MA, Leach WJ, Norwood T. Rates of infection and revision in patients with renal disease undergoing total knee replacement in Scotland. J Bone Joint Surg Br 2010; 92: 1535-1539 [PMID: 21037348 DOI: 10.1002/bjs.6811.23870]

52 Nowicki P, Chaudhary H. Total hip replacement in renal transplant patients. J Bone Joint Surg Br 2007; 89: 1561-1566 [PMID: 18057353 DOI: 10.1002/bjs.6811.23870]

53 Kaspar S, de V de Beer J. Infection in hip arthroplasty after previous injection of steroid. J Bone Joint Surg Br 2005; 87: 454-457 [PMID: 15795191 DOI: 10.1002/bjs.6811.23874.145]

54 Jerry GJ, Rand JA, Ilstrup D. Old sepsis prior to total knee arthroplasty. Clin Orthop Relat Res 1988; (236): 135-140 [PMID: 3180565]

55 Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis 1987; 40: 373-383 [PMID: 3558716]

56 Bozic KJ, Ong K, Lau E, Berry DJ, Vail TP, Kurtz SM, Rubash HE. Estimating risk in Medicare patients with THA: an electronic risk calculator for periprosthetic joint infection and mortality. Clin Orthop Relat Res 2013; 471: 574-583 [PMID: 23179112 DOI: 10.1007/s00199-012-2605-x]

P-Reviewer: Franco AL S-Editor: Wen LL L-Editor: A E-Editor: Lu YJ
