Construction of Shelf-Life Prediction Model for Golden Delicious Apple Based on Electronic Nose

Pushun Xi, Danshi Zhu*, Yusi Shen, Xiaojun Ren and Yueyi Zhang

College of Food Science and Technology, Bohai University; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products; Jinzhou, Liaoning, 121013, China

*Corresponding author: tjzds@sina.com

Abstract. The Golden Delicious apple shelf-life prediction model based on electronic nose was built by partial least squares regressions (PLSR). Sensory quality, such as, weight loss, texture, color changes and electronic nose were studied. The correlation between the electronic nose sensors and the sensory quality of Golden Delicious apples were analyzed to select the appropriate sensors for the construction of the shelf-life model. The results of the shelf-life prediction model on Golden Delicious apples building by PLSR showed that R^2 of training set was 0.86, RMSEC was 3.94. The R^2 of prediction set reached to 0.98, and the model was relatively accurate.

Keywords: Apple, Shelf-life, Model.

1. Introduction

Apple is considered to be one of the most widely cultivated fruits in the world [1]. It is also one of the fruits with the highest consumption and that people eat most commonly [2, 3]. Nowadays, researchers mainly focused on the effects of storage on the quality, flavor components and the comparison of quality differences. Few researches studied the correlation between quality and flavor substances during storage and evaluated fruits shelf-life. Most of the shelf-life prediction models of fruits were mainly constructed at different storage time, humidity and temperature, by measuring quality indexes, such as rot index, to build a dynamic prediction model, and then verified it. However, physical and chemical detection methods have disadvantages like low efficiency and destruction of samples [4, 5], therefore, rapid detection of fruit and vegetable quality became more and more popular. Electronic nose, as one of the rapid detection methods of food flavor, has the advantages of rapid detection, nondestructive detection and labor-saving [6, 7], and gained more and more attention in recent years. In this study, the Golden Delicious apples stored at 4°C were sampling for construction of shelf-life prediction model, and key electronic nose sensors were selected by correlation analysis with other apple quality indicators. This study could provide some theoretical reference on non-destructive and fast judgment of apple shelf-life.
2. Materials and methods

2.1. Materials
The Golden Delicious apples were hand-harvested from a commercial orchard in Jinzhou, Liaoning Province, China. All apples were stored at 4°C. Random samples were taken for determination during storage once a week.

2.2. Weight loss
Fifteen fruits were measured and averaged. The formula of weight loss rate is as follows.

\[
\text{Weightloss}(\%) = \frac{\text{Original mass} - \text{Final mass}}{\text{Original mass}} \times 100\%
\]

(1)

2.3. Texture determination
The texture of the apple was measured using TA-XT-PLUS texture analyzer. Apples were cut into 1.5 × 1.5 × 2 cm samples for testing. The configuration parameters were set as follows: P/2 probe, pre-test speed 1.00 mm/s, test speed 1.00 mm/s, post-test speed 1.00 mm/s, measurement distance 5 mm.

2.4. Chromatic aberration
The chromatic aberration of apple was measured with CR-400 colorimeter. Colors are represented by \(L^*, a^*,\) and \(b^*\), representing luminance, chromaticity on the green (−) to red (+) axis, and chromaticity on the blue (−) to yellow (+) axis, respectively \[8\]. The total chromaticity change (\(\Delta E^*\)) is calculated according to formula (2).

\[
\Delta E^* = \sqrt{(\Delta L^*)^2 + (\Delta a^*)^2 + (\Delta b^*)^2}
\]

(2)

2.5. Electronic nose
PEN3 electronic nose was used to determine: apples were made into juice, put 15 mL of apple juice into a 50 mL calibrated centrifuge tube sealed with four layers of plastic wrap, placed at room temperature for 30 min, and repeated the experiment for 3 times. The cleaning time of the electronic nose was 100 s, and the detection time was 120 s. The flavor component information of apple juice was analyzed by Win-Muster software.

2.6. Statistical analysis
One-way ANOVA test and correlation analysis (Pearson correlation) were performed between apple quality indexes and E-nose sensors. The partial least squares regression (PLSR) was using the Unscrambler 9.7 software to construct the model.

3. Results and Discussion
Fig. 1 (A) showed the change of weight loss rate of Golden Delicious apples during storage. The weight loss rate increased gradually with increasing storage time. As shown in Fig. 1 (B), the hardness of both peel and flesh of Golden Delicious apples presented a decreasing trend along with storage time increasing.
Figure 1. Weight Loss (A) and texture changes (B) of Golden Delicious apples during storage

The value of ΔE^* represents the total color difference, and the larger the value, the greater the color change. From Table 1, the total color difference of Golden Delicious apples pericarp was significantly different from that at the early stage $(P < 0.05)$.

Table 1. Changes on color difference of Golden Delicious apples during storage

Storage time (d)	L^*	a^*	b^*	ΔE^*	h^*	C^*
0	83.13±0.70bc	-12.18±0.73j	42.15±2.48h	87.97±1.29h	106.14±0.96a	43.88±2.48g
5	83.82±1.17a	-11.59±0.63g	43.53±3.27g	89.13±1.78g	105.00±1.50b	45.06±3.11g
10	83.79±0.81a	-11.96±0.64j	45.40±2.10h	89.94±1.01f	104.78±0.95b	46.95±2.05f
15	83.07±0.96bc	-10.99±0.50fh	46.81±2.34g	89.86±1.51f	103.27±1.19e	48.09±2.18ef
20	83.36±0.89h	-10.89±0.43fh	47.39±1.89g	90.37±0.94ef	102.97±0.96e	48.63±1.76e
25	82.75±0.53cd	-10.74±0.79fh	51.30±2.29g	91.74±1.12ed	101.85±1.05d	52.43±2.22c
30	82.90±0.70c	-10.33±0.52g	50.06±3.11f	90.97±1.38de	101.72±1.23d	51.13±2.96d
35	82.23±0.62ef	-11.10±1.25h	52.62±2.70e	92.01±1.45bc	101.94±1.52d	53.79±2.61b
40	81.72±0.52d	-11.15±1.33h	52.72±2.74e	91.64±1.52cd	101.99±1.71e	53.91±2.57b
47	81.53±0.57gh	-9.80±1.44ef	53.73±2.05de	91.88±0.97bc	100.38±1.75ef	54.64±1.86g
54	81.82±0.35fg	-10.58±1.21eh	55.29±1.80abc	93.03±1.05a	100.86±1.40ae	56.31±1.66a
61	80.97±0.50b	-9.53±1.57g	55.69±1.94a	92.44±1.19ab	99.73±1.69c	56.52±1.85a
68	81.11±0.70b	-9.44±1.47g	55.86±1.77a	92.65±1.31ab	99.61±1.58fg	56.67±1.69a
75	80.73±0.87b	-8.61±1.70e	55.56±1.70ab	92.10±1.47bc	98.81±1.77bc	56.25±1.66a
82	78.10±1.35b	-6.21±2.45e	54.31±1.44bcd	49.29±1.63b	96.54±2.60e	54.72±1.35b
89	77.59±0.27b	-5.52±0.98b	53.65±1.73cd	48.77±1.66d	95.88±1.10e	53.94±1.69b
96	74.61±0.44b	-1.98±0.51b	54.12±2.33ed	50.40±2.04d	92.11±0.60e	54.16±2.32b

Different superscripts (a-k) indicate significant differences $(P < 0.05)$ at a same column for a certain quality attribute.

Fig. 2 showed the principal component analysis and load diagram changes of Golden Delicious apples during storage. Fig. 2-A showed that the contribution rate of the first principal component was 99.56%. Hence, from PCA1, the aroma components of Golden Delicious apples changed significantly under different storage time, especially at early stage.
As shown in Fig. 3, the E-nose sensor of R9 showed little correlation with other quality indexes, while other sensors more or less correlated with some quality indicators. So, the Golden Delicious apples shelf-life prediction model was constructed by the 9 key E-nose sensors (except R9).

In the process of building the PLSR prediction model, 9 key sensors of the electronic nose were taken as the independent variable, and the storage time was taken as the dependent variable. The electronic
nose response values measured during the storage period were selected as the prediction set to verify the model.

The parameter of PLSR prediction model for the shelf-life model of Golden Delicious apples are shown in table 2, and this model has a good prediction accuracy. Fig. 4 is the fitting result of the predicted and measured values. It could be seen from table 2 and fig. 4 that R^2 of the shelf-life prediction model training set was 0.86 and RMSEC was 3.94. Using this model to predict the shelf-life, R^2 was 0.98. Therefore, the PLSR shelf-life prediction model of Golden Delicious apples based on electronic nose was relatively accurate ($R^2 > 0.80$).

Table 2. Parameter of shelf-life of Golden Delicious apples based on electronic nose sensor signal by PLSR

	Training set	Prediction set
R^2	0.86	0.98
RMSEC	3.94	3.83

Figure 4. Correlation between measured and predicted values from PLSR model for shelf-life of Golden Delicious apples.

4. Conclusion
Correlation analysis of electronic nose sensor and sensory quality of Golden Delicious apples were studied. The shelf-life prediction model of Golden Delicious apples was constructed by 9 sensors of the electronic nose (except R9). The results of PLSR prediction model showed that R^2 was 0.86 and RMSEC was 3.94. Using this model to predict the shelf-life, R^2 was 0.98. This showed that the model was relatively accurate.

Acknowledgments
This study was financially supported by the National Key Research and Development Program (2017YFD0400106) and the Key Research and Development Project of Liaoning Province, China (No. 2020JH2/10200045). We are grateful to Dr. Danshi Zhu for her critical review of the manuscript.

References
[1] Schmutzer G, Magdas A, David L, et al. Determination of the Volatile Components of Apple Juice Using Solid Phase Microextraction and Gas Chromatography–Mass Spectrometry [J]. Analytical Letters, 2014, 47 (10): 1683 - 1696.
[2] Yi J, Zhou L-Y, Bi J-F, et al. Influence of Number of Puffing Times on Physicochemical, Color, Texture, and Microstructure of Explosion Puffing Dried Apple Chips [J]. Drying Technology,
2015, 34 (7): 773 - 782.

[3] Wu J, Gao H, Zhao L, et al. Chemical compositional characterization of some apple cultivars [J]. Food Chemistry, 2007, 103 (1): 88 - 93.

[4] Lerma-García M J, Lantano C, Chiavaro E, et al. Classification of extra virgin olive oils according to their geographical origin using phenolic compound profiles obtained by capillary electrochromatography [J]. Food Research International, 2009, 42 (10): 1446 - 1452.

[5] Falasconi M, Gobbi E, Pardo M, et al. Detection of toxigenic strains of Fusarium verticillioides in corn by electronic olfactory system [J]. Sensors and Actuators B: Chemical, 2005, 108(1): 250 - 257.

[6] Paolesse R, Alimelli A, Martinelli E, et al. Detection of fungal contamination of cereal grain samples by an electronic nose [J]. Sensors and Actuators B: Chemical, 2006, 119 (2): 425 - 430.

[7] Pan L, Zhang W, Zhu N, et al. Early detection and classification of pathogenic fungal disease in post-harvest strawberry fruit by electronic nose and gas chromatography–mass spectrometry [J]. Food Research International, 2014, 62 (8): 162 - 168.

[8] Chen Z, Zhu C, Zhang Y, et al. Effects of aqueous chlorine dioxide treatment on enzymatic browning and shelf-life of fresh-cut asparagus lettuce (Lactuca sativa L.) [J]. Postharvest Biology and Technology, 2010, 58 (3): 232 - 238.