Kicked nonlinear quantum scissors and entanglement generation

Anna Kowalewska-Kudłaszyk, Wiesław Leoński, Thi Dung Nguyen and Van Cao Long

1 Nonlinear Optics Division, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
2 Quantum Optics and Engineering Division, Institute of Physics University of Zielona Góra, Prof. Z. Szafrana 4a, Zielona Góra 65-516, Poland

E-mail: annakow@amu.edu.pl

Received 14 September 2013
Accepted for publication 28 September 2013
Published 2 April 2014

Abstract
We consider a nonlinear coupler with two Kerr-like oscillators mutually coupled by continuous linear interaction and excited by a series of ultrashort external pulses. We show that the system behaves like nonlinear quantum scissors. It evolves in such a way that it can be treated as a qubit–qubit system. We derive analytic formulas for the probabilities of the states involved in the system’s evolution and show that they differ from those already discussed in the literature and corresponding to the continuously excited models. Moreover, for the model discussed here, maximally entangled Bell states can be generated with high efficiency.

Keywords: Kerr-like oscillator, nonlinear quantum scissors, entanglement, Bell states

1. Introduction
Systems involving nonlinear or parametric oscillators were applied in numerous quantum optical models. For instance, they were concerning generation of various quantum states of the field [1–4], and quantum-optical properties of nonlinear structures [5–7]. Moreover, nonlinear oscillator models were considered in the context of the Einstein–Podolsky–Rosen paradox [8], construction of various models of quantum nonlinear scissors (QNS) [9–16] or photon (phonon) blockade [17, 18]. In this paper, we shall concentrate on a new model involving two quantum nonlinear oscillators that behave like a qubit–qubit system that allows for generation of Bell states.

2. The model and its solutions
In this paper, we discuss a model similar to that considered in [12], involving two nonlinear quantum oscillators that are characterized by Kerr-like nonlinearities \(\chi_a \) and \(\chi_b \), and labeled by \(a \) and \(b \). The oscillators are mutually coupled by linear interaction and are excited by an external electromagnetic field. In fact, we deal here with a Kerr-like nonlinear coupler discussed in numerous papers (for instance, see [19]) that is described by the following Hamiltonian expressed in terms of boson creation and annihilation operators \(\hat{a}^\dagger \) (\(\hat{b}^\dagger \)) and \(\hat{a} \) (\(\hat{b} \)), respectively:

\[
\hat{H}_{\text{NL}} = \frac{\chi_a}{2} (\hat{a}^\dagger)^2 \hat{a}^2 + \frac{\chi_b}{2} (\hat{b}^\dagger)^2 \hat{b}^2 + \epsilon \hat{a}^\dagger \hat{b} + \epsilon^* \hat{a} \hat{b}^\dagger, \quad (1)
\]

where \(\epsilon \) describes the strength of the internal coupler’s coupling. The system is externally excited in one mode and this excitation is in the form of a series of ultrashort coherent pulses and differs at this point from the model discussed in [12] where continuous excitation of a constant amplitude was assumed. In particular, we assume the interaction between the external classical field and the field of the quantum mode \(a \) inside a coupler. This interaction can be modeled with the use of a Dirac-delta function. In consequence, the Hamiltonian corresponding to this interaction can be written as

\[
\hat{H}_K = \langle a \hat{a}^\dagger + a^* \hat{a} \rangle \sum_{k=0}^{\infty} \delta(t - kT). \quad (2)
\]

The parameter \(\alpha \) appearing here describes the strength of the external field–nonlinear system interaction, \(k \) enumerates external pulses, whereas \(T \) is the time between two subsequent pulses.

Since in this communication we restrict ourselves to the case of the ideal situation, i.e. the model without damping processes, we shall describe the system’s evolution in terms of the time-dependent wave function. It can be expressed in
the n-photon Fock basis as

$$|\Psi\rangle = \sum_{m,n=0}^{\infty} c_{m,n}|m\rangle_a |n\rangle_b,$$ \hspace{1cm} (3)

where $c_{m,n}$ are complex probability amplitudes and $|m\rangle_a$ and $|n\rangle_b$ are n-photon Fock states corresponding to the modes a and b, respectively.

We assume that our system is externally pumped and the losses are neglected. Nevertheless, if we assume that the excitation is sufficiently weak, the system’s dynamics will remain closed within the finite set of n-photon states. Thanks to the presence of the resonant coupling by the zero-frequency component of external excitation between some eigenstates generated by the Hamiltonian \hat{H}_{NL}, only four states are involved in the system’s evolution. They are: $|0\rangle_a \otimes |0\rangle_b$, $|0\rangle_a \otimes |1\rangle_b$, $|1\rangle_a \otimes |0\rangle_b$, and $|1\rangle_a \otimes |1\rangle_b$. All these states correspond to the same eigenenergy of \hat{H}_{NL} equal to zero. Hence, we can truncate the wave function and it takes the following form:

$$|\Psi\rangle_{cut} = c_{0,0}|0\rangle_a |0\rangle_b + c_{0,1}|0\rangle_a |1\rangle_b + c_{1,0}|1\rangle_a |0\rangle_b + c_{1,1}|1\rangle_a |1\rangle_b.$$ \hspace{1cm} (4)

Thus, using the Schrödinger equation and applying a standard procedure, we can derive equations of motion determining probability amplitudes $c_{i,j}$, $i, j = 0, 1$. With the use of the method shown in [20], we find solutions for the amplitudes corresponding to the moments of time just after the kth pulse. If we assume that for the time $t = 0$ we have no photons in the system, i.e. $|\Psi(t = 0)\rangle = |0\rangle_a |0\rangle_b$, the amplitudes become

$$c_{0,0}(k) = \frac{1}{2\epsilon T \Omega} \left((2\alpha^2 - \Omega^2) \cos k\Omega_1 \sqrt{2} - (2\alpha^2 - \Omega^2) \cos k\Omega_2 \sqrt{2} \right),$$

$$c_{0,1}(k) = \frac{\alpha}{\Omega} \left(\cos k\Omega_1 \sqrt{2} - \cos k\Omega_2 \sqrt{2} \right),$$

$$c_{1,0}(k) = \frac{i\epsilon}{\sqrt{2} \epsilon T \Omega \Omega_1 \Omega_2} \left(\Omega_2^2 - 2(\epsilon^2 T^2 + \alpha^2) \right) \Omega_1 \sin k\Omega_1 \sqrt{2},$$

$$+ \epsilon T (\epsilon T - \Omega) \Omega_1 \sin k\Omega_2 \sqrt{2},$$

$$c_{1,1}(k) = \frac{i\sqrt{2} \alpha^2}{\Omega} \left(\frac{1}{\Omega_2} \sin \frac{k\Omega_2}{\sqrt{2}} - \frac{1}{\Omega_1} \sin \frac{k\Omega_1}{\sqrt{2}} \right),$$ \hspace{1cm} (5)

where the following frequencies were defined:

$$\Omega = \sqrt{\epsilon^2 T^2 + 4\alpha^2},$$

$$\Omega_1 = \sqrt{\epsilon^2 T^2 + 2\alpha^2 + \epsilon T \Omega},$$

$$\Omega_2 = \sqrt{\epsilon^2 T^2 + 2\alpha^2 - \epsilon T \Omega}.$$ \hspace{1cm} (6)

This result is an extension of that discussed in [20]. If we assume here that there is no coupling between two modes ($\epsilon = 0$) and the system’s evolution starts from the state $|\Psi(t = 0)\rangle = |0\rangle_a |0\rangle_b$ (we have no photons in both modes), the probability amplitudes $c_{0,1} = c_{1,0} = 0$. Moreover, we have $c_{0,0} = \cos k\alpha$ and $c_{1,1} = -i \sin k\alpha$. In consequence, during the system’s evolution, we have no photons in the mode b, whereas we can observe regular oscillations between the states $|0\rangle_a$ and $|1\rangle_a$. This result is identical to that discussed in [20].

To check the validity of the solution and, in consequence, exactness of the wave-function truncation, we compare the above analytical results with those of numerical calculations. Therefore, we define unitary evolution operators on the basis of the Hamiltonians (1) and (2). They are (we use units of $\hbar = 1$):

$$\hat{U}_{NL} = \exp(-i \hat{H}_{NL} T)$$

and $\hat{U}_K = \exp(-i (\alpha a^\dagger + \alpha^* a) T)$,

$$\hspace{1cm} (7)$$

where the first (\hat{U}_{NL}) corresponds to the ‘free’ evolution of the wave function during the time between two subsequent pulses, whereas the second (\hat{U}_K) describes the influence of a single infinitesimally short pulse. Thus, the product of these two operators transforms the wave function from that corresponding to the moment of time just after the kth pulse to that after the $(k+1)$th. In consequence, we perform some sort of quantum mapping procedure and compare its numerical results with those from our analytical formulae. Figure 1(a) shows the probabilities for four states ($|0\rangle_a |0\rangle_b$, $|0\rangle_a |1\rangle_b$, $|1\rangle_a |0\rangle_b$, and $|1\rangle_a |1\rangle_b$) involved in the system’s evolution. We see very good agreement between numerical (cross-marks) and analytical results (lines). It should be stressed that numerical results presented in this figure were obtained for a basis involving considerably more than four states appearing in the definition of $|\Psi\rangle_{cut}$ (4)—we assumed 15 states for each of the two modes. Moreover, figure 1(b) shows the deviation of the sum of the probabilities corresponding to our analytical result from unity. We see that its amplitude is $\sim 10^{-3}$. In fact, this result shows how the fidelity between cut wave function $|\Psi\rangle_{cut}$ and its ‘full’ numerical counterpart $|\Psi\rangle$ differs from unity. The results presented in figure 1 indicate very good agreement between our analytical solution and results obtained from numerical simulations. It is seen that for the exemplary parameters assumed there our system behaves like nonlinear quantum scissors [21]—we assumed that couplings are much smaller than nonlinearity constants. From the other side, our system can be treated as a qubit–qubit one, because we have only two possibilities for each of the modes—the vacuum state or one-photon state.

3. Results and discussion

It is seen from figure 1(a) that for some moments of time the probabilities corresponding to the states $|0\rangle_a |0\rangle_b$ and $|1\rangle_a |1\rangle_b$ become simultaneously close to 1/2. Moreover, we can observe a similar situation for the pair $|0\rangle_a |1\rangle_b$ and $|1\rangle_a |0\rangle_b$, although for this case the values of the maxima of these probabilities differ from 1/2. Therefore, we can expect that at least states close to maximally entangled states (MES) could be generated in our model. Therefore, we calculated
shows how the concurrence changes with time (9). We see that the state is rather broad and, additionally, is accompanied by two satellite maxima. This is an effect of the fact that when the moments of time corresponding to the generation of MES are the same as those for which (2014) 014023 A Kowalewska-Kudłaszyk are produced. Moreover, each maximum shown in figure 1 pulse number |c00|^2−|c01|^2−|c10|^2−|c11|^2 shown in (b) corresponds to the same parameters.

Thus, figure 1. The probabilities (a) for the states: |0⟩_a|0⟩_b—solid line, |0⟩_a|1⟩_b—dashed line, |1⟩_a|0⟩_b—dotted line, |1⟩_a|1⟩_b—dash-dotted line. Cross marks correspond to numerical results. We assume that κ = 1/25, ε = 1/100 and T = 1. All energies are expressed in units of nonlinearity constant χ = χ_0 = 1. The deviation 1−|c00|^2−|c01|^2−|c10|^2−|c11|^2 of the matrix λ are square roots of eigenvalues, in decreasing order, of the matrix ̂ρ(δ_a^i ⊗ δ_b^j)̂ρ^∗(δ_a^p ⊗ δ_b^q) (operators δ_a^i and δ_b^j are Pauli matrices for the modes/qubits a and b, respectively). Thus, figure 2 shows how the concurrence changes with time for the same parameters as those for figure 1. We see that it reaches its maximal values equal to 1 repeatedly, so we get MES. The moments of time corresponding to the generation of MES are the same as those for which |c_00|^2 ≃ |c_11|^2 ≃ 1/2. That means that at those moments of time Bell states are produced. Moreover, each maximum shown in figure 2 is rather broad and, additionally, is accompanied by two satellite maxima. This is an effect of the fact that when the probabilities |c_00|^2 and |c_10|^2 reach their own maximal values, |c_01|^2 and |c_11|^2 become close to zero. For the moments of time when we observe such features, other Bell states are generated as well, although with less accuracy. To check which Bell states appear in the system, we calculate the fidelities between four Bell states and the wave function |Ψ⟩_{B1}. The Bell states are:

|B⟩_1 = \frac{1}{\sqrt{2}} (|0⟩_a|0⟩_b + i|1⟩_a|1⟩_b) ,

|B⟩_2 = \frac{1}{\sqrt{2}} (|0⟩_a|0⟩_b − i|1⟩_a|1⟩_b) ,

|B⟩_3 = \frac{1}{\sqrt{2}} (|0⟩_a|1⟩_b + i|1⟩_a|0⟩_b) ,

|B⟩_3 = \frac{1}{\sqrt{2}} (|0⟩_a|1⟩_b − i|1⟩_a|0⟩_b) .

(9)

From figure 3 we see that the state |B⟩_1 can be generated almost perfectly (the first maximum for figure 3(a), dashed line). Moreover, other Bell states mentioned here could be produced but with slightly less accuracy. The situation resembles that discussed in [12], but here we deal with the system excited by pulses instead of a continuous external field with a constant amplitude. For the case discussed here, we have an additional parameter, the time between two subsequent pulses T, that can be applied for tuning the system. Here the system evolution can be divided into two stages. The first of them is evolution during extremely short pulses where interaction with the external field plays a crucial role and the energy of the system is changed. The second stage is related to the system’s ‘free’ evolution during the period of time between two subsequent pulses. For that time, the energy of the system is conserved and the phase factor related to the presence of nonlinearities is dominant. It is a completely different mechanism from that presented in the system discussed in [12] where these two factors, pumping and phase evolution, act simultaneously.

Figure 1. Time evolution of concurrence. Parameters describing the system are the same as those for figure 1.
Figure 3. Fidelities corresponding to the Bell states: (a) $|B⟩_1$—dashed line, $|B⟩_2$—solid line, and (b) $|B⟩_3$—dashed line, $|B⟩_4$—solid line. The parameters are the same as for the previous figures.

4. Conclusions

We discussed a system of Kerr-like couplers excited by a series of ultrashort pulses. We derived analytical formulae for the probability amplitudes and showed that the system can evolve as nonlinear quantum scissors and behaves like a qubit–qubit system. Moreover, it can be treated as a source of various Bell states. The model differs from that with continuous excitation where the solutions for probability amplitudes were different from those discussed here. It gives new potential possibilities of controlling evolution of the model and engineering various quantum states of the field.

Acknowledgments

AK-K acknowledges the NCN (grant no. DEC-2011/03/B/ST2/01903) for the support.

References

[1] Miranowicz A, Tanaś R and Kielich S 1990 Quantum Opt. 2 253
[2] Tanaś, R, Miranowicz A and Kielich S 1991 Quantum Opt. 43 4014
[3] El-Orany F A A and Peñina J 2004 Phys. Lett. A 333 204
[4] El-Orany F A A, Abdalla M S and Peñina J 2004 J. Opt. B: Quantum Semiclass. Opt. 6 460
El-Orany F A A, Abdalla M S and Peñina J 2005 Eur. Phys. J. D 33 453
El-Orany F A A, Abdalla M S and Peñina J 2007 Eur. Phys. J. D 41 391
[5] Svozilik J and Peñina J Jr 2010 Opt. Express 18 27130
[6] Peñina J Jr 2011 Phys. Rev. A 84 053840
[7] Antonosyan D A, Gevorgyanand T V and Kryuchkyan G Y 2011 Phys. Rev. A 83 043807
[8] Adamyan H H and Kryuchkyan G Y 2006 Phys. Rev. A 74 023810
[9] Leónski W and Tanaś R 1994 Phys. Rev. A 49 R20
[10] Leónski W 1996 Phys. Rev. A 54 3369
[11] Leónski W 1997 Phys. Rev. A 55 3874
[12] Miranowicz A and Leónski W 2004 J. Opt. B: Quantum Semiclass. Opt. 6 S43
[13] Leónski W and Miranowicz A 2004 J. Opt. B: Quantum Semiclass. Opt. 6 S37
[14] Said R S, Wahiddin M R B and Umarov B A 2006 J. Phys. B: At. Mol. Opt. Phys. 39 023809
Said R S, Wahiddin M R B and Umarov B A 2007 Phys. Lett. A 365 380
[15] Kowalewska-Kudłaszyk A and Leónski W 2006 Phys. Rev. A 73 042318
Kowalewska-Kudłaszyk A and Leónski W 2009 J. Opt. Soc. Am. 26 1289
Kowalewska-Kudłaszyk A and Leónski W 2010 J. Phys. B: At. Mol. Opt. Phys. 43 205503
[16] Kowalewska-Kudłaszyk A, Leónski W and Peñina J Jr 2011 Phys. Rev. A 83 052326
[17] Liu Y X, Miranowicz A, Gao Y B, Bajer J, Sun C P and Nori F 2010 Phys. Rev. A 82 0232101
[18] Miranowicz A, Paprzycka M, Liu Y X, Bajer J and Nori F 2013 Phys. Rev. A 87 023809
[19] Korolkova N and Peñina J 1997 Opt. Commun. 136 135
[20] Leónski W, Dyrrting S and Tanaś R 1997 J. Mod. Opt. 44 2105
[21] Leónski W and Kowalewska-Kudłaszyk A 2011 Quantum scissors—finite-dimensional states engineering Prog. Opt. 56 131–85
[22] Hill S and Wootters W K 1997 Phys. Rev. Lett. 78 5022
[23] Wootters W K 1998 Phys. Rev. Lett. 80 2245