Modification of the existing maximum residue levels for fluopyram in herbal infusions from leaves, herbs and flowers

EFSA (European Food Safety Authority), Maria Anastassiadou, Giovanni Bernasconi, Alba Brancato, Luis Carrasco Cabrera, Luna Greco, Samira Jarrah, Aija Kazocina, Renata Leuschner, Jose Oriol Magrans, Ileana Miron, Stefanie Nave, Ragner Pedersen, Hermine Reich, Alejandro Rojas, Angela Sacchi, Miguel Santos, Alois Stanek, Anne Theobald, Benedicte Vagenende and Alessia Verani

Abstract

In accordance with Article 6 of Regulation (EC) No 396/2005, the applicant Landesanstalt fuer Landwirtschaft und Gartenbau Sachsen-Anhalt submitted a request to the competent national authority in Germany to modify the existing maximum residue levels (MRLs) for the active substance fluopyram in certain herbal infusions. The data submitted in support of the request were found to be sufficient to derive MRL proposals for the herbal infusions from leaves and herbs. A risk management decision needs to be taken whether the proposed MRL is considered appropriate for herbal infusions from flowers. Adequate analytical methods for enforcement are available to control the residues of fluopyram in the commodities under consideration at the validated limit of quantification (LOQ) of 0.01 mg/kg. Based on the risk assessment results, EFSA concluded that the dietary intake of residues resulting from the use of fluopyram according to the reported agricultural practice is unlikely to present a risk to consumer health.

© 2019 European Food Safety Authority. EFSA Journal published by John Wiley and Sons Ltd on behalf of European Food Safety Authority.

Keywords: fluopyram, herbal infusions, pesticide, MRL, consumer risk assessment

Requestor: European Commission

Question Number: EFSA-Q-2019-00398

Correspondence: pesticides.mrl@efsa.europa.eu
Acknowledgements: EFSA wishes to acknowledge the contribution of Marianna Raczyk and Silvia Ruocco to this opinion.

Suggested citation: European Food Safety Authority (EFSA), Anastassiadou M, Bernasconi G, Brancato A, Carrasco Cabrera L, Greco L, Jarrah S, Kazocina A, Leuschner R, Magrans JO, Miron I, Nave S, Pedersen R, Reich H, Rojas A, Sacchi A, Santos M, Stanek A, Theobald A, Vagenende B and Verani A, 2019. Reasoned Opinion on the modification of the existing maximum residue levels for fluopyram in herbal infusions from leaves, herbs and flowers. EFSA Journal 2019;17(12):5942, 25 pp. https://doi.org/10.2903/j.efsa.2019.5942

ISSN: 1831-4732

© 2019 European Food Safety Authority. EFSA Journal published by John Wiley and Sons Ltd on behalf of European Food Safety Authority.

This is an open access article under the terms of the Creative Commons Attribution-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited and no modifications or adaptations are made.

The EFSA Journal is a publication of the European Food Safety Authority, an agency of the European Union.
Summary

In accordance with Article 6 of Regulation (EC) No 396/2005, the applicant Landesanstalt fuer Landwirtschaft und Gartenbau Sachsen-Anhalt submitted an application to the competent national authority in Germany (evaluating Member State, EMS) to modify the existing maximum residue levels (MRLs) for the active substance fluopyram in herbal infusions from flowers, leaves and herbs. The EMS drafted an evaluation report in accordance with Article 8 of Regulation (EC) No 396/2005, which was submitted to the European Commission and forwarded to the European Food Safety Authority (EFSA) on 20 June 2019. To accommodate for the intended uses of fluopyram, the EMS proposed to raise the existing MRLs for herbal infusions from flowers and leaves and herbs from 0.1 to 40 mg/kg.

EFSA assessed the application and the evaluation report as required by Article 10 of the MRL regulation.

Based on the conclusions derived by EFSA in the framework of Directive 91/414/EEC, the data evaluated under previous MRL assessments and the additional data provided by the EMS in the framework of this application, the following conclusions are derived.

The metabolism of fluopyram in primary crops following foliar application was investigated in the fruit (grapes, peppers), root (potatoes) and pulses/oilseeds (beans) crop groups and the residue definition was proposed as ‘fluopyram’ for enforcement and as ‘sum of fluopyram and fluopyram-benzamide (M25) expressed as fluopyram’ for risk assessment purposes. The metabolism of fluopyram in rotational crops and the effect of processing on the nature of the residues were assessed in the framework of the peer review and it was concluded that the residue definitions set on primary crops are applicable to rotational crops and processing commodities.

For the use supported in this MRL application, EFSA concludes that the metabolism of fluopyram is sufficiently addressed and that the derived residue definitions are applicable.

Sufficiently validated analytical methods are available to quantify residues in the crops assessed in this application according to the enforcement residue definition. The methods enable quantification of residues at or above 0.01 mg/kg in the crops assessed (limit of quantification (LOQ)).

Studies investigating the effect of processing on the nature of fluopyram (hydrolysis studies) demonstrated that the active substance is stable.

Based on the available information, EFSA could not exclude that the use of fluopyram according to the proposed Good Agricultural Practice (GAP) will result in significant residues in rotational crops. Therefore, Member States should consider the need to setting specific risk mitigation measures to avoid the presence of fluopyram residues in rotational crops.

Residues of fluopyram in commodities of animal origin were not assessed since the crops under consideration in this MRL application are normally not fed to livestock.

The toxicological profile of fluopyram was assessed in the framework of the EU pesticides peer review under Directive 91/414/EEC and the data were sufficient to derive an acceptable daily intake (ADI) of 0.012 mg/kg body weight (bw) per day and an acute reference dose (ARfD) of 0.5 mg/kg bw. The metabolites included in the residue definition are of similar toxicity as the parent active substance.

The consumer risk assessment was performed with revision 2 of the EFSA Pesticide Residues Intake Model (PRIMO).

The long-term exposure assessment was performed, taking into account the supervised trials median residue (STMR) value derived for herbal infusions; for the remaining commodities, the MRLs, the STMR values derived in previous assessments of EFSA or derived by JMPR (for crops for which the Codex maximum residue limits (CXLs) were taken over in the European Union (EU) legislation) have been used to estimate the dietary exposure, as appropriate.

The estimated long-term dietary intake accounted for up to 96.2% of the ADI for Dutch children. Herbal infusions accounted for maximum 0.8% of the ADI.

Since no consumption data are available for herbal infusions from flowers and from leaves and herbs, EFSA calculated the short-term exposure for a scenario assuming a child of 10 kg body weight consumes herbal infusions from a portion of 4 g (corresponding to one tea bag). The calculated short-term (acute) exposure for this scenario accounted for 2.1% of the ARfD.

EFSA concluded that the proposed use of fluopyram on herbal infusions from flowers and leaves and herbs will not result in a consumer exposure exceeding the toxicological reference values and therefore is unlikely to pose a risk to consumers’ health.

EFSA proposes to amend the existing MRLs as reported in the summary table below.
Full details of all end points and the consumer risk assessment can be found in Appendices B–D.

Code(a)	Commodity	Existing EU MRL (mg/kg)	Proposed EU MRL (mg/kg)	Comment/justification
0631000	Herbal infusions from flowers	0.1	40	No specific residue trials have been provided. EFSA derived an MRL proposal for further risk management consideration, by extrapolation from fresh herbs, applying a generic dehydration factor of 7. Since this extrapolation is not explicitly reported in the EU guidance document on extrapolations, risk managers should discuss whether this extrapolation is acceptable.
0632000	Herbal infusions from leaves and herbs	0.1	40	The submitted data are sufficient to derive an MRL proposal for the NEU/SEU use. The MRL proposal is derived by extrapolation from trials on fresh herbs (chervil, parsley, sage and savoury), applying a generic dehydration factor of 7. The extrapolation from fresh herbs to herbal infusions from leaves and herbs is in line with the EU extrapolation guidance document. Risk for consumers unlikely.

MRL: maximum residue level; NEU: northern Europe; SEU: southern Europe.
(a): Commodity code number according to Annex I of Regulation (EC) No 396/2005.
Table of contents

Abstract... 1
Summary... 3
Assessment... 6

1. Residues in plants .. 7
 1.1. Nature of residues and methods of analysis in plants .. 7
 1.1.1. Nature of residues in primary crops ... 7
 1.1.2. Nature of residues in rotational crops ... 7
 1.1.3. Nature of residues in processed commodities ... 7
 1.1.4. Methods of analysis in plants ... 7
 1.1.5. Storage stability of residues in plants .. 7
 1.1.6. Proposed residue definitions ... 7
 1.2. Magnitude of residues in plants ... 8
 1.2.1. Magnitude of residues in primary crops ... 8
 1.2.2. Magnitude of residues in rotational crops .. 8
 1.2.3. Magnitude of residues in processed commodities .. 9
 1.2.4. Proposed MRLs ... 9
2. Residues in livestock ... 9
3. Consumer risk assessment ... 9
4. Conclusion and Recommendations ... 10
References... 10

Abbreviations ... 11

Appendix A – Summary of intended GAP triggering the amendment of existing EU MRLs............. 13
Appendix B – List of end points ... 15
Appendix C – Pesticide Residue Intake Model (PRIMo) ... 20
Appendix D – Input values for the exposure calculations ... 22
Appendix E – Used compound codes ... 25
Assessment

The European Food Safety Authority (EFSA) received an application to modify the existing maximum residue level (MRL) for fluopyram in herbal infusions from flowers, leaves and herbs. The detailed description of the intended uses of fluopyram, which are the basis for the current MRL application, is reported in Appendix A.

Fluopyram is the ISO common name for N-(2-[3-chloro-5-(trifluoromethyl)-2-pyridyl]ethyl)-\(\alpha,\alpha,\alpha\)-trifluoro-o-toluamide (IUPAC). The chemical structures of the active substance and its main metabolites are reported in Appendix E.

Fluopyram was evaluated in the framework of Directive 91/414/EEC\(^1\) with Germany designated as rapporteur Member State (RMS); the representative usages assessed were foliar applications on grapes, tomatoes and strawberries. The draft assessment report (DAR) prepared by the RMS has been peer reviewed by EFSA (2013). Fluopyram was approved\(^2\) for the use as fungicide on 1 February 2014.

The EU MRLs for fluopyram are established in Annex III of Regulation (EC) No 396/2005\(^3\). The review of existing MRLs according to Article 12 of Regulation (EC) No 396/2005 (MRL review) is currently ongoing. EFSA has issued several reasoned opinions on the modification of MRLs for fluopyram (EFSA, 2011, 2014, 2016, 2017, 2019); the proposals from these reasoned opinions have been considered in the MRL legislation. In addition, certain Codex maximum residue limits (CXLs) were implemented in the EU MRL legislation.\(^4\)

In accordance with Article 6 of Regulation (EC) No 396/2005, Landesanstalt fuer Landwirtschaft und Gartenbau Sachsen-Anhalt submitted an application to the competent national authority in Germany (evaluating Member State, EMS) on 18 July 2016 to modify the existing maximum residue levels (MRLs) for the active substance fluopyram in herbal infusions (from flowers and from leaves and herbs)). The EMS drafted an evaluation report in accordance with Article 8 of Regulation (EC) No 396/2005, which was submitted to the European Commission and forwarded to EFSA on 20 June 2019 (Germany, 2019). To accommodate for the intended uses of fluopyram, the EMS proposed to raise the existing MRLs for herbal infusions from 0 to 40 mg/kg.

EFSA based its assessment on the evaluation report submitted by the EMS (Germany, 2019), the DAR and its addendum (Germany, 2011, 2012) prepared under Council Directive 91/414/EEC, the Commission review report on fluopyram (European Commission, 2013), the conclusion of the peer review of the pesticide risk assessment of the active substance fluopyram (EFSA, 2013), JMPR reports (FAO, 2013, 2015, 2016, 2017, 2018) as well as the conclusions from previous EFSA opinions on fluopyram under Article 10 of EU Regulation 396/2005 (EFSA, 2011, 2014, 2016, 2017, 2019). For this application, the data requirements established in Regulation (EU) No 544/2011\(^5\) and the guidance documents applicable at the date of submission of the application to the EMS are applicable (European Commission, 1997a–g, 2000, 2010a,b, 2017; OECD, 2011). The assessment is performed in accordance with the legal provisions of the Uniform Principles for the Evaluation and the Authorisation of Plant Protection Products adopted by Commission Regulation (EU) No 546/2011\(^6\).

As the review of the existing MRLs under Article 12 of Regulation 396/2005 is not yet finalised, the conclusions reported in this reasoned opinion may need to be reconsidered in the light of the outcome of the MRL review.

A selected list of end points of the studies assessed by EFSA in the framework of this MRL application including the end points of relevant studies assessed previously, are presented in Appendix B.

1 Council Directive 91/414/EEC of 15 July 1991 concerning the placing of plant protection products on the market. OJ L 230, 19.8.1991, p. 1-32.
2 Commission Implementing Regulation (EU) No 802/2013 of 22 August 2013 approving the active substance fluopyram, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending the Annex to Commission Implementing Regulation (EU) No 540/2011. OJ L 225, 23.8.2013, p. 13-16.
3 Regulation (EC) No 396/2005 of the Parliament and of the Council of 23 February 2005 on maximum residue levels of pesticides in or on food and feed of plant and animal origin and amending Council Directive 91/414/EEC. OJ L 70, 16.3.2005, p. 1-16.
4 For an overview of all MRL Regulations on this active substance, please consult: http://ec.europa.eu/food/plant/pesticides/ep-pesticides-database/public/?event=pesticide.residue.selection&language=EN
5 Commission Regulation (EU) No 544/2011 of 10 June 2011 implementing Regulation (EC) No 1107/2009 of the European Parliament and of the Council as regards the data requirements for active substances. OJ L 155, 11.6.2011, p. 1-66.
6 Commission Regulation (EU) No 546/2011 of 10 June 2011 implementing Regulation (EC) No 1107/2009 of the European Parliament and of the Council as regards uniform principles for evaluation and authorisation of plant protection products. OJ L 155, 11.6.2011, p. 127-175.
The evaluation report submitted by the EMS (Germany, 2019) and the exposure calculations using the EFSA Pesticide Residues Intake Model (PRIMo) are considered as supporting documents to this reasoned opinion and, thus, are made publicly available as background documents to this reasoned opinion.

1. Residues in plants

1.1. Nature of residues and methods of analysis in plants

1.1.1. Nature of residues in primary crops

The metabolism of fluopyram has been investigated in the framework of EU pesticides peer review in primary crops in three crop groups, i.e. fruit, root and pulses/oilseeds crops using the radiolabelled active substance (labelled on the phenyl or the pyridyl moiety) (EFSA, 2013). After foliar application, fluopyram constitutes the major component of the radioactive residues in grapes, potato leaves and bean leaves. Fluopyram is however observed in lower proportions in potato tubers and beans (fresh and dry), where the residues are mostly composed of the metabolites resulting from the cleavage of the parent molecule, the fluopyram-benzamide (M25), fluopyram pyridyl-acetic acid (M40) and fluopyram pyridyl-carboxilic acid (M43). Similar metabolic profiles were observed in pepper following drip irrigation. In addition, metabolite M42 was detected.

1.1.2. Nature of residues in rotational crops

Since crops under consideration can grow in rotation with other crops and due to the high persistence of fluopyram in soils (DT_{50} > 300 days, DT_{90} > 1,000 days) (EFSA, 2013), the possible occurrence of residues in rotational crops had to be investigated. The metabolism of fluopyram in rotational crops (root, leafy and cereals crops categories) was assessed in the framework of the EU peer review process. The metabolism in rotational crops was shown to be similar to primary crop metabolism (EFSA, 2013).

1.1.3. Nature of residues in processed commodities

The effect of processing on the nature of residues was investigated in the framework of the EU pesticides peer review. Fluopyram and fluopyram-benzamide (metabolite M25) were found to be stable under standard hydrolysis conditions (EFSA, 2013).

1.1.4. Methods of analysis in plants

Analytical methods for the determination of fluopyram residues in plant commodities were assessed during the peer review under Directive 91/414/EEC (EFSA, 2013). An analytical method using gas chromatography with tandem mass spectrometry (GC–MS/MS) detection was concluded to be sufficiently validated for the determination of fluopyram residues in high acid (orange), high oil (oilseed rape), high water (lettuce), dry/protein (pea) and dry/starch (wheat) commodities at the validated limit of quantification (LOQ) of 0.01 mg/kg.

Analytical methods for difficult commodities such as herbal infusions are not available. However, considering that sufficiently validated methods are available for products with high oil content and for commodities – matrices which have similar characteristics for residue analysis with the commodities under assessment – EFSA considers that the available methods are appropriate for routine enforcement of the proposed MRL for herbal infusions.

1.1.5. Storage stability of residues in plants

The stability of fluopyram and its benzamide metabolite (metabolite M25) in plant matrices under storage conditions prior to analysis was assessed during the peer review under Directive 91/414/EEC (EFSA, 2013) and additional studies were assessed in the previous EFSA reasoned opinions (EFSA, 2014, 2016). Based on the available data, it was concluded that residues of fluopyram and its metabolite M25 are stable for at least 3 years in high water (lettuce, cabbage), high starch (wheat), high protein (dry pea), high oil (rapeseeds) and in high acid matrices (orange), when stored at −18°C (EFSA, 2014).

1.1.6. Proposed residue definitions

Based on the metabolic pattern identified in metabolism studies on primary and rotational crops, the results of hydrolysis studies, the toxicological significance of metabolites and/or degradation
products, the capabilities of enforcement analytical methods, the following general residue definitions were proposed:

- Residue definition for enforcement: fluopyram;
- Residue definition for risk assessment: sum of fluopyram and fluopyram-benzamide (M25), expressed as fluopyram.

The residue definition for enforcement set in Regulation (EC) No 396/2005 is identical with the above-mentioned residue definition as well as the residue definitions proposed by JMPR. The residue definitions proposed from primary crops are also applicable to processed commodities.

Based on the available information, EFSA concluded that these residue definitions are appropriate and applicable for the intended use in crops used to produce herbal infusions.

1.2. Magnitude of residues in plants

1.2.1. Magnitude of residues in primary crops

a) Herbal infusions from flowers and leaves and herbs

To support the intended use of fluopyram in herbal infusions from flowers and leaves and herbs (application rate 1 x 200 g a.s./ha, preharvest interval (PHI) 14 days), the applicant provided in total 11 northern European (NEU) residue trials performed in different crops classified in the group of fresh herbs (two trials in chervil, four in parsley, three in sage and two in savoury). The trials were conducted in different locations in Germany in 2011–2013.

The samples were analysed for the parent compound fluopyram and the metabolite fluopyram-benzamide (M25) achieving an LOQ of 0.01 mg/kg per analyte. According to the assessment of the EMS, the methods used were sufficiently validated and fit for purpose. Samples in the residue studies were stored deep-frozen within 24 h after sampling for 36 months; therefore, it is concluded that the residue data are valid with regard to storage stability.

According to the EU guidance document (European Commission, 1997b), any representative of the subgroup herbs and edible flowers (0256000) is suitable for extrapolation to the subgroup of herbal infusions from leaves and herbs, applying appropriate dehydration factors to recalculate the residues measured in fresh herbs to the dry products classified in the subgroup of herbal infusions from leaves and herbs.

In the absence of specific processing studies for dried herbs, a generic dehydration factor of 7 (assuming a dry matter content of 14%) was applied to recalculate residue concentrations measured in fresh herbs to dried herbs.

Overall, the studies were considered appropriate to derive an MRL proposal of 40 mg/kg for herbal infusions from leaves and herbs (crops classified under the code 0632000) using the OECD calculator (OECD, 2011).

b) Herbal infusions from flowers

For setting MRLs for the subgroup of herbal infusions from flowers – according to the EU guidance document on extrapolation (European Commission, 2017) – residue trials on either crops classified under subgroup herbal infusions from flowers (0631000) or herbal infusions from leaves and herbs (0632000) can be used.

Although no residue trials are available for herbal infusions from flowers or from leaves, the use of residue trials on fresh herbs, taking into account a dehydration factor, could be considered by risk managers as appropriate.

1.2.2. Magnitude of residues in rotational crops

The confined rotational crop study previously evaluated (EFSA, 2013) has shown that residues of fluopyram cannot be excluded in rotational crops.

A default MRL of 0.1 mg/kg was recommended by the peer review (EFSA, 2013) for root and leafy crops and of 0.01 mg/kg for cereals, oilseed grown in rotation with crops treated with fluopyram. These proposals were derived from the field studies conducted at the exaggerated dose rate of 500 g/ha, representative for the predicted plateau concentration in soil (0.08 mg/kg soil, 20 cm depth) reached after 10 years of consecutive application (EFSA, 2013). In addition, a default MRL of 0.2 mg/kg was proposed for spinach grown in rotation to crops treated with fluopyram (EFSA, 2014).

New rotational field studies were not submitted in the framework of the current application.
The GAP for the crops under consideration is comparable with the previously assessed uses. Thus, the new uses will not have an impact on the residues in succeeding crops grown on fields where the crops under consideration were treated according to the intended GAP.

Considering that the residue level in the crops under consideration (primary crop treatment) is significantly higher than the residues found in the rotational crops, even if a dehydration factor is taken into account, the uptake of residues from the soil will not significantly change the residue concentration for herbal infusions grown in crop rotation on fields where fluopyram was used on previous crops.

1.2.3. **Magnitude of residues in processed commodities**

New studies to address the effect of processing on the magnitude of fluopyram residues were not submitted in the framework of the current assessment. However, numerous processing studies were evaluated in previous assessments (EFSA, 2011, 2013) and processing factors (PFs) were proposed for a wide range of processed products.

Since herbal infusions are usually consumed only after processing (preparation of infusions with boiling water), it would be desirable to quantify the residues consumed after processing. However, considering the low contribution to the dietary intake, these studies are not essential in view of refinement of the risk assessment.

1.2.4. **Proposed MRLs**

The available data are considered sufficient to derive an MRL proposal as well as risk assessment values for herbal infusions from leaves and herbs (see Appendix B.1.2.1). EFSA also derived an MRL proposal for herbal infusions from flowers for further risk management consideration.

In Section 3, EFSA assessed whether the expected residues on herbal infusions resulting from the intended use are likely to pose a consumer health risk.

2. **Residues in livestock**

Residues of fluopyram in commodities of animal origin were not assessed in the framework of this application, since herbal infusions from flowers and from leaves and herbs are not fed to livestock.

3. **Consumer risk assessment**

The toxicological reference values for fluopyram used in the risk assessment (i.e. acceptable daily intake (ADI) and acute reference dose (ARfD) values) were derived in the framework of the EU pesticides peer review (EFSA, 2013); the toxicological reference values were formally approved by Member States (European Commission, 2013). The metabolites (M02, M03 and M25) included in the risk assessment residue definitions for plant and animal commodities are considered to be of similar toxicity/not more toxic than the parent compound.

The consumer risk assessment was performed with revision 2 of the EFSA PRIMo. The PRIMo model contains the relevant European food consumption data for different subgroups of the EU population (EFSA, 2007).

The long-term exposure assessment was performed, taking into account the supervised trials median residue (STMR) value derived for herbal infusions for flowers (EFSA, 2011, 2013). For the remaining commodities, the STMR values derived in previous assessments of EFSA (2011, 2013) were selected as input values. For crops for which the CXLs were taken over in the EU legislation, the related STMR values derived by JMPR have been used to estimate the dietary exposure. For the remaining commodities, the MRLs established in most recent MRL regulation were used. The complete list of input values is presented in Appendix D.1.

The estimated long-term dietary intake accounted for up to 96.2% of the ADI for Dutch children. Herbal infusions accounted for maximum 0.8% of the ADI. EFSA concludes that the long-term intake of residues of fluopyram resulting from the existing and the intended use is unlikely to present a risk to consumer health.

7 Since detailed consumption data are not available for the crops under consideration, EFSA used the STMR value to calculate the exposure for the whole group of commodities listed under herbal infusions, including herbal infusions from flowers, from leaves and herbs and from roots.
The short-term exposure assessment was performed in accordance with the internationally agreed methodology. Since no consumption data are available for herbal infusions from flowers and from leaves and herbs, EFSA calculated the short-term exposure for a scenario assuming a child of 10 kg body weight consumes herbal infusions from a portion of 4 g; no PFs were taken into account assuming a complete transfer of residues in the dried herbal infusions to the herbal tea. The calculated short-term (acute) exposure for this scenario accounted for 2.1% of the ARfD.

Based on these calculations, EFSA concluded that the proposed use of fluopyram on the crop assessed is unlikely to pose a risk for the consumers.

For further details on the exposure calculations, a screenshot of the Report sheet of the PRIMo is presented in Appendix C.

4. Conclusion and Recommendations

The data submitted in support of this MRL application were found to be sufficient to derive an MRL proposal for herbal infusions from flowers and from leaves and herbs. Additional risk management considerations are however required for herbal infusions from flowers.

EFSA concluded that the proposed use of fluopyram on crops used for producing herbal infusions (listed under crop codes 0631000 and 0632000), will not result in a consumer exposure exceeding the toxicological reference values and therefore is unlikely to pose a risk to consumers' health.

The MRL recommendations are summarised in Appendix B.4.

References

EFSA (European Food Safety Authority), 2007. Reasoned opinion on the potential chronic and acute risk to consumers' health arising from proposed temporary EU MRLs. EFSA Journal 2007;5(3):32r, 1141 pp. https://doi.org/10.2903/j.efsa.2007.32r

EFSA (European Food Safety Authority), 2011. Reasoned opinion on the setting of new MRLs and import tolerances for fluopyram in various crops. EFSA Journal 2011;9(9):2388, 68 pp. https://doi.org/10.2903/j.efsa.2011.2388

EFSA (European Food Safety Authority), 2013. Conclusion on the peer review of the pesticide risk assessment of the active substance fluopyram. EFSA Journal 2013;11(4):3052, 76 pp. https://doi.org/10.2903/j.efsa.2013.3052

EFSA (European Food Safety Authority), 2014. Reasoned opinion on the modification of the existing MRLs for fluopyram in various crops. EFSA Journal 2014;12(12):3947, 33 pp. https://doi.org/10.2903/j.efsa.2014.3947

EFSA (European Food Safety Authority), 2016. Reasoned opinion on the modification of the existing maximum residue levels for fluopyram in various crops. EFSA Journal 2016;14(6):4520, 27 pp. https://doi.org/10.2903/j.efsa.2016.4520

EFSA (European Food Safety Authority), Brancato A, Brocca D, De Lentdecker C, Erdos Z, Ferreira L, Greco L, Janossy J, Jarrah S, Kardassi D, Leuschner R, Lythgo C, Medina P, Miron I, Molnar T, Nougadere A, Pedersen R, Reich H, Sacchi A, Santos M, Stanek A, Sturma J, Tarazona J, Theobald A, Vagenende B, Verani A and Villamar-Bouza L, 2017. Reasoned opinion on the modification of the existing maximum residue level for fluopyram in purslanes. EFSA Journal 2017;15(9):4984, 22 pp. https://doi.org/10.2903/j.efsa.2017.4984

EFSA (European Food Safety Authority), Anastassiadou M, Brancato A, Brocca D, Carrasco Cabrera L, Ferreira L, Greco L, Jarrah S, Kazocina A, Leuschner R, Lostia A, Magrans JO, Medina P, Miron I, Pedersen R, Raczyk M, Reich H, Ruocco S, Sacchi A, Santos M, Stanek A, Tarazona J, Theobald A and Verani A, 2019. Reasoned opinion on the modification of the existing maximum residue level for fluopyram in broccoli. EFSA Journal 2019;17(2):5624, 23 pp. https://doi.org/10.2903/j.efsa.2019.5624

European Commission, 1997a. Appendix A. Metabolism and distribution in plants. 7028/IV/95-rev., 22 July 1996.

European Commission, 1997b. Appendix B. General recommendations for the design, preparation and realization of residue trials. Annex 2. Classification of (minor) crops not listed in the Appendix of Council Directive 90/642/EEC. 7029/VI/95-rev. 6, 22 July 1997.

European Commission, 1997c. Appendix C. Testing of plant protection products in rotational crops. 7524/VI/95-rev. 2, 22 July 1997.

European Commission, 1997d. Appendix E. Processing studies. 7035/VI/95-rev. 5, 22 July 1997.

European Commission, 1997e. Appendix F. Metabolism and distribution in domestic animals. 7030/VI/95-rev. 3, 22 July 1997.

European Commission, 1997f. Appendix H. Storage stability of residue samples. 7032/VI/95-rev. 5, 22 July 1997.

European Commission, 1997g. Appendix I. Calculation of maximum residue level and safety intervals.7039/VI/95 22 July 1997. As amended by the document: classes to be used for the setting of EU pesticide maximum residue levels (MRLs). SANCO 10634/2010, finalised in the Standing Committee on the Food Chain and Animal Health at its meeting of 23–24 March 2010.

European Commission, 2000. Residue analytical methods. For pre-registration data requirement for Annex II (part A, section 4) and Annex III (part A, section 5 of Directive 91/414. SANCO/3029/99-rev. 4.
European Commission, 2010a. Classes to be used for the setting of EU pesticide Maximum Residue Levels (MRLs). SANCO 10634/2010-rev. 0, Finalised in the Standing Committee on the Food Chain and Animal Health at its meeting of 23–24 March 2010.

European Commission, 2010b. Residue analytical methods. For post-registration control. SANCO/825/00-rev. 8.1, 16 November 2010.

European Commission, 2013. Review report for the active substance fluopyram. Finalised in the Standing Committee on the Food Chain and Animal Health at its meeting on 16 July 2013 in view of the approval of fluopyram as active substance in accordance with Regulation (EC) No 1107/2009. SANCO/11456/2013 rev 2,16 July 2013.

European Commission, 2017. Appendix D. Guidelines on comparability, extrapolation, group tolerances and data requirements for setting MRLs. 7525/VI/95-rev. 10.3, 13 June 2017.

FAO (Food and Agriculture Organization of the United Nations), 2013. Fluopyram. In: Pesticide residues in food–2012. Report of the Joint Meeting of the FAO Panel of Experts on Pesticide residues in Food and the Environment and the WHO expert Group on Pesticide Residues. FAO Plant Production and Protection Paper. 215.

FAO (Food and Agriculture Organization of the United Nations), 2014. Fluopyram. In: Pesticide residues in food–2014. Report of the Joint Meeting of the FAO Panel of Experts on Pesticide residues in Food and the Environment and the WHO expert Group on Pesticide Residues. FAO Plant Production and Protection Paper. 221.

FAO (Food and Agriculture Organization of the United Nations), 2015. Fluopyram. In: Pesticide residues in food–2015. Report of the Joint Meeting of the FAO Panel of Experts on Pesticide residues in Food and the Environment and the WHO expert Group on Pesticide Residues. Residues. FAO Plant Production and Protection Paper. 223.

FAO (Food and Agriculture Organization of the United Nations), 2016. Submission and evaluation of pesticide residues data for the estimation of Maximum Residue Levels in food and feed. Pesticide Residues. 3rd Ed. FAO Plant Production and Protection Paper 225.

FAO (Food and Agriculture Organization of the United Nations), 2017. Fluopyram. In: Pesticide residues in food–2017. Report of the Joint Meeting of the FAO Panel of Experts on Pesticide residues in Food and the Environment and the WHO expert Group on Pesticide Residues. Residues. FAO Plant Production and Protection Paper. 232.

FAO (Food and Agriculture Organization of the United Nations), 2018. Fluopyram. In: Pesticide residues in food–2018. Report of the Joint Meeting of the FAO Panel of Experts on Pesticide residues in Food and the Environment and the WHO expert Group on Pesticide Residues. Residues. FAO Plant Production and Protection Paper. 234.

Germany, 2011. Draft assessment report on the active substance fluopyram prepared by the rapporteur Member State Germany in the framework of Council Directive 91/414/EEC, August 2011. Available online: www.efsa.europa.eu

Germany, 2012. Final addendum to the draft assessment report on the active substance fluopyram prepared by the rapporteur Member State Germany in the framework of Council Directive 91/414/EEC, September 2012. Available online:www.efsa.europa.eu

Germany, 2019. Evaluation report on the modification of MRLs for fluopyram in herbal infusions. January 2019, 28 pp.

OECD (Organisation for Economic Co-operation and Development), 2011. OECD MRL calculator: spreadsheet for single data set and spreadsheet for multiple data set, 2 March 2011. In: Pesticide Publications/Publications on Pesticide Residues. Available online: http://www.oecd.org

Abbreviations

a.s. active substance
ADI acceptable daily intake
ARfd acute reference dose
BBCH growth stages of mono- and dicotyledonous plants
bw body weight
CF conversion factor for enforcement to risk assessment residue definition
CXL Codex maximum residue limit
DAR draft assessment report
DAT days after treatment
DM dry matter
DT$_{50}$ period required for 50% dissipation (define method of estimation)
DT$_{90}$ period required for 90% dissipation (define method of estimation)
EMS evaluating Member State
FAO Food and Agriculture Organization of the United Nations
GAP Good Agricultural Practice
GC–MS/MS gas chromatography with tandem mass spectrometry
Modification of the existing MRLs for fluopyram in herbal infusions from leaves, herbs and flowers

HPLC-MS/MS high performance liquid chromatography with tandem mass spectrometry
HR highest residue
IEDI international estimated daily intake
IESTI international estimated short-term intake
InChIKey International Chemical Identifier Key
ISO International Organisation for Standardisation
IUPAC International Union of Pure and Applied Chemistry
JMPR Joint FAO/WHO Meeting on Pesticide Residues
LOQ limit of quantification
MRL maximum residue level
MS Member States
NEU northern Europe
OECD Organisation for Economic Co-operation and Development
PBI plant-back interval
PF processing factor
PHI preharvest interval
PRIMo (EFSA) Pesticide Residues Intake Model
RA risk assessment
RAC raw agricultural commodity
RD residue definition
RMS rapporteur Member State
SANCO Directorate-General for Health and Consumers
SC suspension concentrate
SEU southern Europe
SMILES simplified molecular-input line-entry system
STMR supervised trials median residue
WHO World Health Organization

www.efsa.europa.eu/efsajournal 12 EFSA Journal 2019;17(12):5942
Appendix A – Summary of intended GAP triggering the amendment of existing EU MRLs

Crop and/or situation	NEU, SEU, MS or country	F G or T(a)	Pests or group of pests controlled	Preparation	Application	Application rate per treatment	PHI (days)(d)	Remarks	
Chamomile NEU F	F	SC 200 g/L	Fungal leaf spot diseases, powdery mildew	Foliar treatment – broadcast spraying	At the beginning of infestation and/or when first symptoms become visible, from 50% ground coverage onwards	1 n.a.	200-400	200 g/ha	14
Rose NEU F	F	SC 200 g/L	Fungal leaf spot diseases, powdery mildew	Foliar treatment – broadcast spraying	At the beginning of infestation and/or when first symptoms become visible, from 50% ground coverage onwards	1 n.a.	200-400	200 g/ha	14

Remarks:
- Use requested for herbal infusions from several crops (e.g. 0631030-009, -022, -024, -031, -036)
- Extrapolation to the whole group to set a group MRL.
| Crop and/or situation | NEU, SEU, MS or country | F G or I(a) | Pests or group of pests controlled | Preparation | Application | Application rate per treatment | PHI (days)(d) | Remarks | |
|---|---|---|---|---|---|---|---|---|---|
| Strawberry leaves | NEU F | F | Fungal leaf spot diseases, powdery mildew | SC 200 g/L | Foliar treatment – broadcast spraying | At the beginning of infestation and/or when first symptoms become visible, from 50% ground coverage onwardbs | 1 n.a. | 200–400 200 g/ha 14 | Use requested for herbal infusions from several crops (e.g. 0632010-001, -017, -021, -060, -065, -077) Extrapolation to whole group to set a group MRL |

NEU: northern European Union; SEU: southern European Union; MS: Member State; a.s.: active substance; SC: suspension concentrate; MRL: maximum residue level.

(a): Outdoor or field use (F), greenhouse application (G) or indoor application (I).
(b): CropLife International Technical Monograph no 2, 6th Edition. Revised May 2008. Catalogue of pesticide formulation types and international coding system.
(c): Growth stage range from first to last treatment (BBCH Monograph, Growth Stages of Plants, 1997, Blackwell, ISBN 3-8263-3152-4), including, where relevant, information on season at time of application.
(d): PHI: minimum preharvest interval.
Appendix B – List of end points

B.1. Residues in plants

B.1.1. Nature of residues and methods of analysis in plants

B.1.1.1. Metabolism studies, methods of analysis and residue definitions in plants

Primary crops (available studies)	Crop groups	Crop(s)	Application(s)	Sampling (DAT)	Comment/Source
	Fruit crops	Grapes	Foliar, 1× 100 + 2× 200 g/ha	18–19	Radiolabelled active substance: phenyl-UL-14C and pyridyl-2,6-14C Reference: EFSA (2013)
	Fruit crops	Peppers	Drip irrigation, 5 and 20 mg/plant	33–97	Radiolabelled active substance: phenyl-UL-14C and pyridyl-2,6-14C Reference: EFSA (2013)
	Root crops	Potatoes	Foliar, 3× 167 g/ha	51	Radiolabelled active substance: phenyl-UL-14C and pyridyl-2,6-14C Reference: EFSA (2013)
	Pulses/oilseeds	Beans	Foliar, 2× 250 g/ha	4–29	Radiolabelled active substance: phenyl-UL-14C and pyridyl-2,6-14C Reference: EFSA (2013)

Rotational crops (available studies)	Crop groups	Crop(s)	Application(s)	PBI (DAT)	Comment/Source
	Root	Turnips	Bare soil, 1× 534 g/ha	30, 139, 280	Phenyl-UL-14C and pyridyl-2,6-14C Reference: Germany (2011); EFSA (2013)
	Leafy	Swiss chard	Bare soil, 1× 534 g/ha	30, 139, 280	Phenyl-UL-14C and pyridyl-2,6-14C Reference: Germany (2011); EFSA (2013)
	Cereal (small grain)	Wheat	Bare soil, 1× 534 g/ha	30, 139, 280	Phenyl-UL-14C and pyridyl-2,6-14C Reference: Germany (2011); EFSA (2013)

Processed commodities (hydrolysis study)	Conditions	Stable?	Comment/Source
	Pasteurisation (20 min, 90°C, pH 4)	Yes	EFSA (2013)
	Baking, brewing and boiling (60 min, 100°C, pH 5)	Yes	EFSA (2013)
	Sterilisation (20 min, 120°C, pH 6)	Yes	EFSA (2013)
	Other processing conditions	–	–
Can a general residue definition be proposed for primary crops?

Rotational crop and primary crop metabolism similar?

Residue pattern in processed commodities similar to residue pattern in raw commodities?

Plant residue definition for monitoring (RD-Mo)

Plant residue definition for risk assessment (RD-RA)

Methods of analysis for monitoring of residues (analytical technique, crop groups, LOQs)

Yes

Yes

Yes

Fluopyram

Sum of fluopyram and fluopyram-benzamide (M25), expressed as fluopyram

Matrices with high water content, high oil content, high acid content and dry matrices: HPLC–MS/MS, GC–MS, LOQ 0.01 mg/kg (EFSA, 2013; EFSA, 2016; EFSA, 2019)

DAT: days after treatment; PBI: plant-back interval; HPLC–MS/MS: high-performance liquid chromatography with tandem mass spectrometry; GC–MS/MS: gas chromatography with tandem mass spectrometry LOQ: limit of quantification.

B.1.1.2. Stability of residues in plants

Plant products (available studies)	Category	Commodity	T (°C)	Stability period	Compounds covered	Comment/Source
	High water content	Lettuces, cabbages	−18°C	36 Months	Fluopyram, M25	EFSA (2014)
	High oil content	Rapeseeds	−18°C	36 Months	Fluopyram, M25	EFSA (2014)
	Dry/High starch	Dry peas/wheat	−18°C	36 Months	Fluopyram, M25	EFSA (2014)
	High acid content	Oranges	−18°C	36 Months	Fluopyram, M25	EFSA (2014)
B.1.2. Magnitude of residues in plants

B.1.2.1. Summary of residues data from the supervised residue trials

Commodity	Region/Indoor\(^{(a)}\)	Residue levels observed in the supervised residue trials (mg/kg)	Comments/Source	Calculated MRL (mg/kg)	HR\(^{(b)}\) (mg/kg)	STMR\(^{(c)}\) (mg/kg)	Cf\(^{(d)}\)
Herbal infusions from leaves and herbs	NEU	Chervil, fresh:	Residue trials on chervil, parsley, sage and savoury compliant with GAP for herbal infusions from flowers and leaves and herbs	40	Mo: 25.2	Mo: 2.24	1.03
		Mo: 0.083, 0.38 RA: 0.084, 0.39	Extrapolation from fresh herbs to herbal infusions from leaves and herbs is possible, after correction of results by applying a dehydration factor (default dehydration factor) MRL OECD: 32.43/40				
		Parsley, fresh:					
		Mo: 0.31, 0.39, 0.54, 0.64 RA: 0.32, 0.40, 0.55, 0.67					
		Sage, fresh:					
		Mo: 0.13, 0.13, 0.32 RA: 0.14, 0.32, 0.33					
		Savoury, fresh:					
		Mo: 0.11, 3.6 RA: 0.12, 3.7	All trials on fresh herbs; results recalculated to dried products: Mo: 0.58, 0.77, 0.91, 2 × 2.17, 2.24, 2.66, 2.73, 3.78, 4.48, 25.2 RA: 0.59, 0.84, 0.98, 2 × 2.24, 2.31, 2.73, 2.8, 3.85, 4.69, 25.9				
Herbal infusions from flowers	NEU	See comment	No residue trials available for crops classified under herbal infusions from flowers EFSA derived the MRL proposal and the risk assessment values by extrapolation from herbal infusions from leaves and herbs (see above)	40	Mo: 25.2	Mo: 2.24	1.03

MRL: maximum residue level; GAP: Good Agricultural Practice; OECD: Organisation for Economic Co-operation and Development.

(a): Region/Indoor: NEU: outdoor trials performed in northern Europe.

(b): Highest residue.

(c): Supervised trials median residue.

(d): Conversion factor to recalculate residues according to the residue definition for monitoring to the residue definition for risk assessment.
B.1.2.2. Residues in rotational crops

Question	Answer
Residues in rotational and succeeding crops expected based on confined rotational crop study?	Yes
Residues in rotational and succeeding crops expected based on field rotational crop study?	Yes

A default MRL of 0.1 mg/kg was recommended by the peer review (EFSA, 2013) for root and leafy crops and of 0.01 mg/kg for cereals, oilseed grown in rotation with crops treated with fluopyram. These proposals were derived from the field studies conducted at the exaggerated dose rate of 500 g/ha, representative for the predicted plateau concentration in soil (0.08 mg/kg soil, 20 cm depth) reached after 10 years of consecutive application (EFSA, 2013).

In addition, a default MRL of 0.2 mg/kg was proposed for spinach grown in rotation to crops treated with fluopyram (EFSA, 2014). New rotational field studies were not submitted in the framework of the current application.

MRL: maximum residue level.

B.1.2.3. Processing factors

No processing studies were submitted in the framework of the present MRL application.

B.2. Residues in livestock

Not relevant.

B.3. Consumer risk assessment

Parameter	Value
ARfD	0.5 mg/kg bw (European Commission, 2013)
Highest IESTI, according to EFSA PRIMo	2.1% of ARfD
Assumptions made for the calculations	Since no consumption data are available for herbal infusions from flowers and from leaves and herbs, EFSA calculated the short-term exposure for a scenario assuming a child of 10 kg body weight consumes herbal infusions from a portion of 4 g; no processing factors were taken into account assuming a complete transfer of residues in the dried herbal infusions to the herbal tea
Calculations performed with PRIMo revision 2	
ADI	0.012 mg/kg bw per day (European Commission, 2013)
Highest IEDI, according to EFSA PRIMo	96.2% ADI (Dutch child) Contribution of herbal infusions: 0.83% of ADI
Assumptions made for the calculations	The calculation is based on the STMR value for herbal infusions; for the remaining commodities, the STMR values derived in previous assessments of EFSA or the STMR values derived by JMPR (for crops for which the CXLs were taken over in the EU legislation) were used to estimate the dietary exposure. For the remaining commodities, the MRLs established in most recent MRL regulation were used
Calculations performed with PRIMo revision 2	

ARfD: acute reference dose; bw: body weight; IESTI: international estimated short-term intake; PRIMo: (EFSA) Pesticide Residues Intake Model; ADI: acceptable daily intake; IEDI: international estimated daily intake; STMR: supervised trials median residue; CXL: codex maximum residue limit; MRL: maximum residue level.
B.4. Recommended MRLs

Code\(^{(a)}\)	Commodity	Existing EU MRL (mg/kg)	Proposed EU MRL (mg/kg)	Comment/justification
0631000	Herbal infusions from flowers	0.1	40	Further risk management considerations required. No specific residue trials have been provided. EFSA derived an MRL proposal for further risk management consideration, by extrapolation from fresh herbs, applying a generic dehydration factor of 7. Since this extrapolation is not explicitly reported in the EU guidance document on extrapolations, risk managers should discuss whether this extrapolation is acceptable.
0632000	Herbal infusions from leaves and herbs	0.1	40	The submitted data are sufficient to derive an MRL proposal for the NEU/SEU use. The MRL proposal is derived by extrapolation from trials on fresh herbs (chervil, parsley, sage and savoury), applying a generic dehydration factor of 7. The extrapolation from fresh herbs to herbal infusions from leaves and herbs is in line with the EU extrapolation guidance document. Risk for consumers unlikely.

MRL: maximum residue level; NEU: northern Europe; SEU: southern Europe.

\(^{(a)}\): Commodity code number according to Annex I of Regulation (EC) No 396/2005.
Pesticide Residue Intake Model (PRiMo)

Fluopyram

Commodity/group of commodities	TMDI (range) in % of ADI	Minimum – Maximum
Milk and cream	12.2	8.8
Apples		
Sheep: Meat	6.3	Table grapes
		0.2
Milk and cream	4.8	Milk and cream
Bovine: Meat	4.0	Milk and cream
		0.1
Lettuce	4.0	Milk and cream
Sheep: Liver	3.0	Bovine: Liver
		0.2
Milk and cream	4.0	Milk and cream
Bovine: Meat	3.0	Milk and cream
		0.3
Lettuce	3.0	Bovine: Meat
		0.1
Milk and cream	2.6	Bannanas
		0.2
Sheep: Liver	2.6	Bovine: Liver
		0.3
Milk and cream	2.5	Bovine: Meat
Bovine: Liver	1.7	Poultry: Meat
		0.3
Lettuce	2.4	Milk and cream
Sheep: Liver	2.4	Bovine: Liver
		0.2
Milk and cream	2.3	Bovine: Meat
Bovine: Liver	1.7	Poultry: Liver
		0.1
Lettuce	1.7	Lettuce
Sheep: Liver	1.7	Bovine: Liver
		0.1
Milk and cream	1.6	Bovine: meat
Other lettuce and other salad plants	1.6	Other other small fruit & berries
		0.0
Lettuce	1.5	Tomatoes
Sheep: Liver	1.5	Table grapes
		0.2
Milk and cream	1.5	Table grapes
Bovine: Liver	1.5	Tomatoes
		0.1

Conclusion:

The estimated Theoretical Maximum Daily Intakes (TMDI), based on pTMRLs were below the ADI. A long-term intake of residues of Fluopyram is unlikely to present a public health concern.
The acute risk assessment is based on the ARfD.

For each commodity, the calculation is based on the highest reported MS consumption per kg bw and the corresponding unit weight from the MS with the critical consumption. If no data on the unit weight was available from that MS, an average European unit weight was used for the IESTI calculation.

In the IESTI 1 calculation, the variability factors were 10, 7 or 5 (according to JMPR manual 2002); for lettuce, a variability factor of 5 was used.

In the IESTI 2 calculation, the variability factors of 10 and 7 were replaced by 5. For lettuce, the calculation was performed with a variability factor of 3.

Threshold MRL is the calculated residue level which would lead to an exposure equivalent to 100% of the ARfD.

No exceedance of the ARfD/ADI was identified for any unprocessed commodity.

Conclusion:

For Fluopyram, IESTI 1 and IESTI 2 were calculated for food commodities for which pTMRLs were submitted and for which consumption data are available. In the IESTI 1 calculation, the variability factors were 10, 7 or 5 (according to JMPR manual 2002); for lettuce, a variability factor of 5 was used. In the IESTI 2 calculation, the variability factors of 10 and 7 were replaced by 5. For lettuce, the calculation was performed with a variability factor of 3.

Threshold MRL is the calculated residue level which would lead to an exposure equivalent to 100% of the ARfD.

No exceedance of the ARfD/ADI was identified for any unprocessed commodity.

Conclusion:

For Fluopyram, IESTI 1 and IESTI 2 were calculated for food commodities for which pTMRLs were submitted and for which consumption data are available.

No exceedance of the ARfD/ADI was identified for any unprocessed commodity.

For processed commodities, no exceedance of the ARfD/ADI was identified.
Appendix D – Input values for the exposure calculations

D.1. Consumer risk assessment

Commodity	Existing/proposed MRL	Source/type of MRL	Chronic risk assessment	Acute risk assessment
			Input value (mg/kg)	Comment
			Comment	
Herbal infusions	40	Proposed MRL	2.31	STMR
Grapefruits	0.4	FAO (2017)	0.14	STMR-RAC
Oranges	0.6	FAO (2017)	0.15	STMR-RAC
Lemons	1	FAO (2017)	0.325	STMR-RAC
Limes	1	FAO (2017)	0.325	STMR-RAC
Mandarins	0.6	FAO (2017)	0.15	STMR-RAC
Tree nuts (except coconuts)	0.05	EFSA (2011)	0.011	STMR-RAC
Coconuts	0.04	FAO (2013)	0.01	STMR-RAC
Pome fruit	0.6/0.5	EFSA (2011)	0.231	STMR-RAC
Apricots	1.5	EFSA (2016)	0.36	STMR-RAC
Cherries (sweet)	2	FAO (2017)	0.57	STMR-RAC
Peaches	1.5	EFSA (2014)	0.26	STMR-RAC
Plums	0.5	EFSA (2014)	0.2	STMR-RAC
Table grapes	1.5	EFSA (2011)	0.6	STMR-RAC
Wine grapes	1.5	EFSA (2011)	0.065	STMR-RAC
Strawberries	2	EFSA (2011)	0.44	STMR-RAC
Cane fruit	5	FAO (2017)	0.83	STMR-RAC
Blueberries	7	FAO (2017)	1.15	STMR-RAC
Cranberries	3	EFSA (2014)	0.83	STMR-RAC
Currants (red, black and white)	7	FAO (2017)	1.15	STMR-RAC
Gooseberries (green, red and yellow)	7	FAO (2017)	1.15	STMR-RAC
Rose hips	7	FAO (2017)	1.15	STMR-RAC
Mulberries (black and white)	7	FAO (2017)	1.15	STMR-RAC
Elderberries	7	FAO (2017)	1.15	STMR-RAC
Bananas	0.8	FAO (2013)	0.175	STMR-RAC
Mangos	1	FAO (2017)	0.02	STMR-RAC
Potatoes	0.15	FAO (2017)	0.021	STMR-RAC
Root and tuber vegetables (except carrots)	0.3	EFSA (2014)	0.1	STMR-RAC
Carrots	0.4	FAO (2013)	0.09	STMR-RAC
Bulb vegetables (except spring onions)	0.1	EFSA (2014)	0.02	STMR-RAC
Spring onions/green onions and Welsh onions	15	FAO (2017)	5.1	STMR-RAC
Tomatoes	0.9	EFSA (2011)	0.2	STMR-RAC
Sweet peppers/bell peppers	3	FAO (2017)	0.14	STMR-RAC
Aubergines/egg plants	0.9	EFSA (2014)	0.2	STMR-RAC

Risk assessment residue definition: Sum of fluopyram and fluopyram-benzamide (M25), expressed as fluopyram.

Acute risk assessment was performed only for the commodities under assessment.
Commodity	Existing/proposed MRL	Source/type of MRL	Chronic risk assessment	Input value (mg/kg)	Comment	Acute risk assessment	Input value (mg/kg)	Comment
Cucurbits - edible peel	0.5	EFSA (2011)		0.15	STMR-RAC			
Cucurbits - inedible peel	0.4	EFSA (2011)		0.0117	STMR-RAC			
Cauliflowers	0.2	EFSA (2011)		0.0117	STMR-RAC			
Broccoli	0.3	EFSA (2019)		0.04	STMR-RAC			
Brussels sprouts	0.3	FAO (2014)		0.06	STMR-RAC			
Head cabbages	0.3	EFSA (2011)		0.03	STMR-RAC			
Chinese cabbages/pe-tsai	0.7	EFSA (2011)		0.18	STMR-RAC			
Lettuces (except escaroles)	15	EFSA (2011)		2.63	STMR-RAC			
Spinaches	0.2	EFSA (2014)		0.09	STMR-RAC			
Purslanes	20	EFSA et al. (2017, 2019)		1.61	STMR-RAC			
Chards/beet leaves	0.2	EFSA (2016)		0.2	STMR-RAC			
Witloofs/Belgian endives	0.3	EFSA (2016)		0.14	STMR-RAC			
Herbs (except basil)	8	EFSA (2016)		1.19	STMR-RAC			
Basil and edible flowers	70	FAO (2017)		19	STMR-RAC			
Beans (with pods)	1	FAO (2015)		0.2	STMR-RAC			
Beans (without pods)	0.2	FAO (2015)		0.03	STMR-RAC			
Peas (with pods)	1.5	EFSA (2016)		0.15	STMR-RAC			
Peas (without pods)	0.2	FAO (2015)		0.03	STMR-RAC			
Lentils (fresh)	0.2	EFSA (2016)		0.05	STMR-RAC			
Globe artichokes	0.5	EFSA (2011)		0.18	STMR-RAC			
Leeks	0.7	EFSA (2011)		0.14	STMR-RAC			
Pulses	0.4	EFSA (2011)		0.045	STMR-RAC			
Linseeds	0.3	EFSA (2014)		0.12	STMR-RAC			
Peanuts/groundnuts	0.2	FAO (2017)		0.033	STMR-RAC			
Sesame seeds	0.3	EFSA (2016)		0.12	STMR-RAC			
Sunflower seeds	0.7	FAO (2017)		0.066	STMR-RAC			
Rapeseeds/canola seeds	1	FAO (2014)		0.33	STMR-RAC			
Soya beans	0.3	FAO (2017)		0.0205	STMR-RAC			
Cotton seeds	0.8	FAO (2017)		0.0585	STMR-RAC			
Other minor oil seeds	0.3	EFSA (2016)		0.12	STMR-RAC			
Barley	0.2	EFSA (2016)		0.03	STMR-RAC			
Buckwheat and other pseudo-cereals	0.2	EFSA (2016)		0.03	STMR-RAC			
Maize/corn	0.02	EFSA (2011)		0.011	STMR-RAC			
Oat	0.2	EFSA (2016)		0.03	STMR-RAC			
Rye	0.9	FAO (2017)		0.19	STMR-RAC×PF			
Sorghum	1.5	EFSA (2011)		0.429	STMR-RAC			
Wheat	0.9	FAO (2017)		0.19	STMR-RAC×PF			
Herbal infusions (dried roots)	2.5	EFSA (2014)		0.72	STMR-RAC			
HOPS (dried)	50	FAO (2017)		10.35	STMR-RAC			
Dill seed	70	FAO (2017)		19	STMR-RAC			
Commodity	Existing/proposed MRL	Source/type of MRL	Chronic risk assessment	Acute risk assessment				
---------------------------------	------------------------	--------------------	-------------------------	-----------------------				
			Input value (mg/kg)	Comment				
Spices (roots)	0.3	EFSA (2014)	0.72	STMR-RAC				
Risk assessment residue definition (animal products): Sum fluopyram and metabolites M02, M03, M25, expressed as fluopyram								
Mammalians (all species) Muscle/meat	1.5	FAO (2017)	0.51	STMR-RAC				
Mammalians (all species) Fat tissue	1.5	FAO (2017)	0.67	STMR-RAC				
Mammalians (all species) Liver	8	FAO (2017)	3.8	STMR-RAC				
Mammalians (all species) Kidney	8	FAO (2017)	0.6	STMR-RAC				
Mammalians (all species) Edible offals (other than liver and kidney)	8	FAO (2017)	0.67	STMR-RAC				
Poultry: Muscle/meat	1.5	FAO (2017)	0.51	STMR-RAC				
Poultry: Fat tissue	1	FAO (2017)	0.67	STMR-RAC				
Poultry: Liver	5	FAO (2017)	3.8	STMR-RAC				
Poultry: Kidney	5	FAO (2017)	0.6	STMR-RAC				
Poultry: Edible offals (other than liver and kidney)	5	FAO (2017)	0.67	STMR-RAC				
Milk (all species)	0.6	FAO (2015)	0.12	STMR-RAC				
Eggs (all species)	2	FAO (2017)	0.46	STMR-RAC				
Wild terrestrial vertebrate animals	1.5	FAO (2017)	0.51	STMR-RAC				
Other crops/commodities	MRL	Regulation (EC) 396/2005						

STMR: supervised trials median residue; HR: highest residue; PF: processing factor; RAC: raw agricultural commodity.
Appendix E – Used compound codes

Code/trivial name	IUPAC name/SMILES notation/InChiKey	Structural formula
Fluopyram	\(N\)-[2-[3-chloro-5-(trifluoromethyl)-2-pyridyl]ethyl]-\(\alpha\),\(\alpha\),\(\alpha\)-trifluoro-o-toluamide	![Structural formula](image1)
	FC(F)(F)c1ccccc1Q(=O)NCCc2ncc(cc2Cl)C(F)(F)F KVDJTXBXMWJJEF-UHFFFAOYSA-N	![Structural formula](image2)
M02 fluopyram-E-olefine	\(N\)-([E]-2-[3-chloro-5-(trifluoromethyl)pyridin-2-yl]vinyl)-2-(trifluoromethyl)benzamide	![Structural formula](image3)
	FC(F)(F)c1ccccc1C(=O)N\(\cdot\)C/C2ncc(cc2Cl)C(F)(F)F ZBXOWYYWCPUPM-AATRIKPKSA-N	![Structural formula](image4)
M03 fluopyram-Z-olefine	\(N\)-([Z]-2-[3-chloro-5-(trifluoromethyl)pyridin-2-yl]vinyl)-2-(trifluoromethyl)benzamide	![Structural formula](image5)
	FC(F)(F)c1ccccc1C(=O)N\(\cdot\)C/C2ncc(cc2Cl)C(F)(F)F ZBXOWYYWCPUPM-WAYWQWQTS-N	![Structural formula](image6)
M25 fluopyram-benzamide	2-(trifluoromethyl)benzamide	![Structural formula](image7)
	FC(F)(F)c1ccccc1C(N)=O QBayIBZITZBSFO-UHFFFAOYSA-N	![Structural formula](image8)
M40 Fluopyram-pyridyl-acetic acid	Fluopyram-PAA \([3-chloro-5-(trifluoromethyl)pyridin2-yl]acetic acid\)	![Structural formula](image9)
	OC(=O)Cc1ncc(cc1Cl)C(F)(F)F ZCMWOZJLGQSV-UHFFFAOYSA-N	![Structural formula](image10)
M42 Fluopyram pyridyl-acetic-acid-glycoside	1-O-\([3-chloro-5-(trifluoromethyl)pyridin-2-yl]acetyl\)-\(\alpha\)-D-glucopyranose	![Structural formula](image11)
	O=C(O)[C@H](10)[C@H](CO)[C@H](O)[C@H](O)[C@H](10)Cc1ncc(cc1Cl)C(F)(F)F VLNHHNRBMWFQDSH-KABQKQYSA-N	![Structural formula](image12)
M43 Fluopyram pyridyl-carboxylic acid	Fluopyram-PCA \((AE C657188)\)	![Structural formula](image13)
	3-chloro-5-(trifluoromethyl)pyridine-2-carboxylic acid Clic1cc(nnc1O)=O C(F)(F)F HXRMCZBDTDCCOP-UHFFFAOYSA-N	![Structural formula](image14)

IUPAC: International Union of Pure and Applied Chemistry; SMILES: simplified molecular-input line-entry system; InChiKey: International Chemical Identifier Key.

(a): The metabolite name in bold is the name used in the conclusion.
(b): ACD/Name 2019.1.1 ACD/Labs 2019 Release (File version N05E41, Build 110555, 18 July 2019).
(c): ACD/ChemSketch 2019.1.1 ACD/Labs 2019 Release (File version C05H41, Build 110712, 24 July 2019).