Lobular Capillary Hemangioma Originating From the Nasopharynx

Hyun Jin Min, MD, PhD, and Kyung Soo Kim, MD, PhD

Recently, we experienced a case of lobular capillary hemangioma (LCH) originating from the nasopharynx completely resected by endoscopic surgery. To our knowledge, this is the first case report of nasopharyngeal LCH.

A 27-year-old man presented to our hospital with asymptomatic nasopharyngeal mass. Four months ago, he had a history of complete endoscopic excision due to nasopharyngeal mass which was histopathologically diagnosed as adenocarcinoma at another hospital. During follow-up at 1-month interval, nasopharyngeal mass was found and the patient was transferred to our hospital for further evaluation and proper management. He denied any mass-related Ear, Nose, & Throat (ENT) symptoms. He was a nonsmoker and nondrinker. On transnasal nasopharyngoscopic examination (Figure 1A and B), single, well-defined, round-shaped, and broad-based mass with smooth surface margins measuring approximately 5 mm × 6 mm in size was evident in the roof of the nasopharynx. Computed tomography scans revealed about 5 mm well-enhancing, midline mass from the nasopharyngeal roof with no suspicious adjacent bone erosion. Under the impression of recurrent adenocarcinoma, excisional biopsy via transoral retrovelar approach using a 70° endoscope combined with transnasal approach was performed. Under general anesthesia, the mass was completely resected with a 0.5-cm surgical margin of healthy mucosa and the base of nasopharyngeal mass including the periosteum was curetted and electrocauterized with a coagulation suction device (Figure 1C). Histopathological results were consistent with LCH (Figure 2). The wound healed well, and there was no evidence of recurrence at 12-month postoperative follow-up.

Lobular capillary hemangioma, commonly known as “pyogenic granuloma,” which is a misnomer because it is neither infectious nor granulomatous, is a relatively common benign vascular lesion of unknown etiology which was histologically characterized by vascular proliferation of endothelial cells arranged in a characteristic pattern of circumscribed capillaries arranged in lobules.1-4 The disease usually affects the skin and mucous membranes of the oral cavity (gingiva, lips, tongue, and buccal mucosa), but the nasal cavity has been frequently indicated as an unusual site of origin.5 The most commonly affected site of nasal cavity is anterior portion of nasal septum, followed by vestibule, the inferior turbinate, vestibule, middle turbinate, and posterior portion of nasal septum in order of frequency.3,5,6 To date, nasopharyngeal location has not been described so far in the literature.

Although the pathophysiology for the development of LCH has not been elucidated so far, hormonal influence (gestational hormones) and trauma/microtrauma (localized irritation) are known as the major etiologic factors.4,5 Based on reports related to trauma as a trigger, 7% to 23% of patients with LCH report a previous traumatic injury at the site.7,8 The types of trauma are as follows: habitual nose picking, nasal packing, and inferior turbinate surgery.4 The majority of LCH caused by trauma usually form at the caudal septum or anterior aspect of the lateral nasal wall.4 In our case, LCH occurred in the nasopharynx. We think surgical trauma (excisional biopsy) performed 4 months ago is considered to be the trigger factor. On the basis of Gregorio et al’s report, surgical trauma may cause vascular rupture and damage of the surrounding soft tissue, which progresses to tissue necrosis with subsequent inflammatory and angiogenesis stimuli and eventually leads to the hemangioma formation.

The most frequently presented clinical symptoms of LCH of the nasal cavity are epistaxis and progressive nasal obstruction, depending on the size and location of the lesion.5,9 We think the clinical symptoms of nasopharyngeal LCH may be similar to LCH of the nasal cavity. Grossly, LCH usually appears as a solitary, glistening papule or nodule and friable surface with or without macroscopic superficial ulceration. Also, it may be pedunculated or broad-based with variable size and color (red to purple).9,10

1 Department of Otorhinolaryngology–Head and Neck Surgery, Chung-Ang University College of Medicine, Seoul, Korea

Received: March 4, 2020; accepted: April 7, 2020

Corresponding Author:
Kyung Soo Kim, MD, PhD, Department of Otorhinolaryngology–Head and Neck Surgery, Chung-Ang University College of Medicine, 224-1, Heukseok-dong, Dongjak-gu, Seoul, Korea.

Email: entlbs@cau.ac.kr

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
An accurate preoperative evaluation of the origin may be important for surgical planning, consequently preventing recurrences. Direct visualization with nasal endoscopy can usually be diagnostic, but image studies may be sometimes necessary for assessing the extent and suggesting the possible nature (site of origin, pattern of growth, and vascularization) of the lesion. Like LCH of the nasal cavity, we suggest nasopharyngeal LCH can be diagnosed only with nasopharyngoscopy. Diagnosis of LCH in case of small-sized mass arising from the anterior portion of the nasal cavity is not problematic, but the differential diagnosis includes a number of benign and malignant hypervascularized lesions, such as angiofibroma, angiomatous polyp, hemangioma, hemangiopericytoma, paraganglioma, and angioscaroma. Also, in case of nasopharyngeal LCH like our patient, benign tumors such as choanal polyp, teratoma, meningoencephalocele, chordoma, paraganglioma, inverted papilloma, and adenoid hypertrophy should be taken into consideration in the differential diagnosis.

Surgery is the treatment of choice for LCH of the nasal cavity. Regardless of LCH size, transnasal endoscopic surgery may be considered the ideal approach with low surgical morbidity and high long-term cure. However, in our case, the combination of the retrovelar approach using a 70° endoscope and transnasal approach was used. A key point to obtaining successful results is to perform the resection along the subperichondrial or subperiosteal plane, according to the location of the lesion, with a margin of normal mucosa all around.

In conclusion, this report has 3 main points. First, this is the first case report of LCH originating from the nasopharynx which its etiologic factor may be hypothesized as the previous surgery. Second, there may be potential for being misdiagnosed as a tumor recurrence due to extremely rare location of nasopharyngeal LCH. Third, although endoscopic findings of nasopharyngeal LCH are similar to LCH of the nasal cavity, transoral retrovelar approach using a 70° endoscope may be required for complete surgical excision.

Authors' Note
The patient’s permission was obtained.

Declaration of Conflicting Interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) received no financial support for the research, authorship, and/or publication of this article.

ORCID iD
Kyung Soo Kim https://orcid.org/0000-0003-2637-0555
References

1. Miller FR, D’Agostino MA, Schlack K. Lobular capillary hemangioma of the nasal cavity. Otolaryngol Head Neck Surg. 1999;120(5):783-784.
2. Jones JE, Nguyen A, Tabaee A. Pyogenic granuloma (pregnancy tumor) of the nasal cavity: a case report. J Reprod Med. 2000;45(9):749-753.
3. Lee DG, Lee SK, Chang HW, et al. CT features of lobular capillary hemangioma of the nasal cavity. AJNR Am J Neuroradiol. 2010;31(4):749-754.
4. Gregorio LL, Wu CL, Busaba NY. Lobular capillary hemangioma formation: an unusual complication of submucous resection with power instrumentation of the inferior turbinate. Laryngoscope. 2015;125(12):2653-2655.
5. Puxeddu R, Berlucchi M, Ledda GP, Parodo G, Farina D, Nicolai P. Lobular capillary hemangioma of the nasal cavity: a retrospective study on 40 patients. Am J Rhinol. 2006;20(4):480-484.
6. Kim KS. Lobular capillary hemangioma originating from the posterior portion of the inferior turbinate. J Craniofac Surg. 2016;27(7):1917-1919.
7. Pagliai KA, Cohen BA. Pyogenic granuloma in children. Pediatr Dermatol. 2004;21(1):10-13.
8. Patrice SJ, Wiss K, Mulliken JB. Pyogenic granuloma (lobular capillary hemangioma): a clinicopathologic study of 178 cases. Pediatr Dermatol. 1991;8(4):267-276.
9. Ochi JW, Kearns DB, Seid AB, Pransky SM, Krous HF. Do angiomas of the nasal septum exist? Int J Pediatr Otorhinolaryngol. 1990;19(2):169-173.
10. Ozcan C, Apa DD, Görür K. Pediatric lobular capillary hemangioma of the nasal cavity. Eur Arch Otorhinolaryngol. 2004;261(8):449-451.
11. Simo R, de Carpentier J, Rejali D, Gunawardena WJ. Pediatric pyogenic granuloma presenting as a unilateral nasal polyp. Rhinology 1998;36(3):136-138.
12. Weber AL. Tumors of the paranasal sinuses. Otolaryngol Clin North Am. 1988;21(3):439-454.