Health Risk Perceptions Are Associated with Domestic Use of Basic Water and Sanitation Services. Evidence from Rural Ethiopia

Carmen Anthonj¹, Lisa Fleming¹, Samuel Godfrey², Argaw Ambelu³, Jane Bevan², Ryan Cronk¹ and Jamie Bartram¹

¹ UNC Water Institute, Gillings School of Global Public Health, Chapel Hill, USA
² Water, Sanitation and Hygiene (WASH), UNICEF Ethiopia
³ Department of Environmental Health Sciences & Technology, Jimma University, Ethiopia
Background

• Evaluations of WaSH interventions facilitate improvement of global health policy making and implementation practice by identification of factors determining provision

• Technical, engineering, sociological and cultural aspects of WaSH
 – ‘Rural WaSH do not only incorporate engineering (functionality, water system breakdowns, access to services and sustainability), but also sociology’ (Mara 2003)
 – Need for consideration of ‘software’: health risk perceptions, (mis)beliefs related to WaSH, WaSH-related behaviours and the cultural context of WaSH

• Health-related knowledge and risk perceptions are motivators for the adoption of health-promoting WaSH behaviour, but often neglected in project evaluations
WaSH context in rural Ethiopia

- 30% with basic drinking water, 4% with basic sanitation service (WHO / UNICEF 2015)
- Increasing water scarcity and environmental degradation may compound inadequate WaSH services, while also increasing food insecurity and malnutrition even further

Objectives of this study
(i) Identification of WaSH-related factors and practices, socioeconomic aspects, as well as risk perceptions and health beliefs associated with the domestic use of basic drinking water and sanitation service levels
(ii) Exploration of differences between the WaSH intervention and control group two years after the completion of an integrated nutrition and WaSH programme
Intervention and methodology
Integrating WASH and nutrition in Ethiopia

Goal

Maximize health impact of community-based nutrition (CBN) programs in rural Ethiopia, responding to combined risks of chronic malnutrition and inadequate access to basic WASH services for 1.4 million people.
Intervention and evaluation

- Rural water supply (CWS) through 1,800 water supply systems
- Water schemes with focus on multiple use services (MUS)
- Community-led total sanitation and hygiene promotion (CH&S)
- Community-based nutrition programme

Intervention (CBN+WaSH)
30 woredas; 576 kebeles

- 230 CBN & CWS kebeles
 - 16 CBN & CWS kebeles
 - 33-50 households

- 319 CBN & CLTSH kebeles
 - 22 CBN & CH&S kebeles
 - 40-44 households

- 27 CBN & MUS kebeles
 - 2 CBN & MUS kebeles
 - 36-39 households

Control (CBN only)
92 woredas; 2,158 kebeles

- 40 control kebeles
 - 38-42 households

4 Regions (Amhara, Oromia, SNNPR, Tigray)
Results
Main drinking water source, distance, time and volume

Use of basic water service (JMP)
Type of and sharing of sanitation facility

Sanitation Facility: Hygiene and Structure	CBN Only	CBN + WaSH
Only cleaned when needed	526	748
	65.83 %	70.77 %
Empty at least once	920	1050
	72.27 %	70.71 %
Never emptied before	353	435
	27.73 %	29.29 %
Currently observed to be clean	162	187
	20.56 %	17.54 %
Structure observed to be in good condition	664	918
	84.26 %	86.12 %

→ Use of basic water service (JMP)
Risk perceptions

Health beliefs and behaviours	CBN only	CBN + WaSH		
	N		N	
Opinion of main benefits of latrine				
Clean compound	1029	85.11	1236	88.16
Better health	991	81.97	1191	84.95
Easier / safer at night	292	24.15	395	28.17
Better privacy	489	40.45	602	42.94
Better social position	240	19.85	327	23.32
Opinion of main disadvantage of latrine				
Construction costs	394	32.59	391	27.89
Maintenance costs	227	18.78	215	15.34
Cleaning work	48	3.97	68	4.85
Dark	24	1.99	48	3.42
Small space	108	8.93	124	8.84
Bad smell, dirt	230	19.02	257	18.33
Reason for diarrhoea	82	6.78	120	8.56
Perceived reasons for diarrhoea				
Human faeces	1079	92.06	1278	93.56
Presence of animal faeces in compound	790	67.41	965	70.64
Flies in contact with faeces via food	1108	94.54	1325	97
Mosquitos	607	51.79	698	51.1
Perceived measures that prevent diarrhoea				
Washing hands with water only	334	28.5	366	26.79
Washing hands with ash	733	62.54	906	66.33
Washing hands with soap	1047	89.33	1241	90.85
Washing hands once a day is enough	193	16.47	174	12.74
Activities at the household to prevent diseases, especially diarrhea				
Drink safe water	649	55.38	793	58.05
Water treatment	155	13.23	194	14.2
Use of the latrine	277	23.63	334	24.45
Good hygiene practices	846	72.18	1039	76.06
Wash hands after using latrine	633	54.01	795	58.2
Wash hands before eating	799	68.17	1011	74.01
Covering the food	660	56.31	855	62.59
Household cleanliness	727	62.03	946	69.25

High awareness on risk factors related to WaSH and diarrhoea in the programme area.
Results of regression analysis: use of basic services

Outcome: use of basic water service	OR	CI 95%	p-value	
Explanatory variable				
Intervention (CBN+WaSH) vs control (CBN only)	1.00	0.83	1.21	0.968
Oromia vs Amhara	1.27	0.92	1.75	0.152
SNNPR vs Amhara	1.11	0.87	1.41	0.417
Tigray vs Amhara	1.03	0.75	1.40	0.861
Household has electricity* vs none	2.45	1.90	3.15	<0.001
Household head's highest level of formal education	1.01	0.97	1.07	0.385
MUS of water point vs no	0.63	0.48	0.84	0.001
Water quality is good vs not good	3.94	3.06	5.08	<0.001
Household paid for water in the rainy season vs no	1.11	0.88	1.40	0.385
Main cause of diarrhoea: drinking unsafe water	1.48	1.20	1.81	<0.001

Outcome: use of basic sanitation service	OR	CI 95%	p-value	
Explanatory variable				
Intervention (WaSH = CBN) vs control (CBN only)	1.41	1.18	1.69	<0.001
Oromia vs Amhara	0.86	0.63	1.16	0.313
SNNPR vs Amhara	1.58	1.26	1.99	<0.001
Tigray vs Amhara	1.05	0.80	1.38	0.729
Household has electricity* vs none	1.19	0.95	1.47	0.123
Latrine has been emptied at least once vs no	6.00	4.86	7.40	<0.001
Household has received training before vs no	1.55	1.22	1.97	<0.001
Opinion of main reason for diarrhoea: dirty space vs no	1.81	1.50	2.19	<0.001
Benefit of latrine: better privacy vs no	2.00	1.67	2.40	<0.001
Disadvantage of latrine: maintenance costs vs no	0.49	0.38	0.63	<0.001

*Electricity was used as a proxy variable to wealth in this study. **Significant factors are marked in bold. The significance level was set at p-value ≤ 0.05.
Discussion
The role of risk perceptions for basic services

High awareness on risk factors related to WaSH and diarrhoea:

Diarrhoea linked to faeces, the presence of flies, poor food hygiene, ‘dirty spaces’ and unsafe drinking water

Risk perceptions reflect the WaSH-related risks as described in the framework on faecal-oral disease transmission

Wagner & Lanoix (1958)
The role of risk perceptions for basic services

• Believing that unsafe drinking water or unhygienic environments caused diarrhoea, and perceiving drinking water quality as good motivated the use of basic drinking water and sanitation services

• Risk perceptions matter: closely linked to and motivating positive WaSH-related and health-protective behaviour: the use of basic services

Major motivator for behaviour change
Well-designed communication strategies and health messaging could speak to a highly effective form to engage households to accept and use basic services
The value of risk perception studies

- Key information from grassroots levels and data-scarce settings to understand health risks and health-related behaviours

- Need to integrate community risk perceptions in risk communication strategies and health messaging to constitute a highly effective form to engage households to accept and the use of basic drinking water and sanitation services

- With their potential to motivate households to ‘climb up’ the WaSH service ladders, thus, ultimately, health beliefs relevant for the achievement of the SDG 6 (United Nations 2018)
Acknowledgements

Coordination of the study: Getachew Hailemichael of UNICEF Ethiopia
Start-up and training: Georgia Kayser, Ronna Chan, Margaret Bentley
Data collection: Argaw Ambelu’s team from Jimma University
Data cleaning, project report: Jeanne Luh, Amy Guo, A.J. Karon, Kate Shields

We thank all of the study participants who shared their information for this study.
Akpabio, E.M., 2012. Water meanings, sanitation practices and hygiene behaviours in the cultural mirror: a perspective from Nigeria. J Water, San Hyg Dev (3), 168-181.

Anthonj, C., Diekrueger, B., Borgemeister, C., Kistemann, T., 2018. Health risk perceptions and local knowledge of water-related disease exposure among Kenyan wetland communities. Int J Hyg Env Health.

Anthonj, C., Fleming, L., Ambelu, A., Cronk, R., Godfrey, S., Sozzi, E., Bevan, J., Bartram, J., 2018. Water point functionality and areas for improvement of monitoring in rural Ethiopia.

Bisung, E., Elliott, S.J., Abudho, B., Schuster-Wallace, C.J., Karanja, D.M., 2015. Dreaming of toilets: using photovoice to explore knowledge, attitudes and practices around water-health linkages in rural Kenya. Health & Place 31, 208–215.

Curtis, V.A., Danquah, L.O., Aunger, R.V., 2009. Planned, motivated and habitual hygiene behaviour: an eleven country review. Health Edu Res 24 (4), 655–673.

Halvorson, S.J., Williams, A.L., Ba, S., Dunkel, F.V., 2011. Water quality and waterborne disease in the Niger River Inland Delta, Mali: A study of local knowledge and response. Geogr Care 17 (2), 449–457.

Munguti, K.J., 1998. Community perceptions and treatment seeking for malaria in Baringo district, Kenya: implications for disease control. East African Med J 75 (12), 687–691.

Pidgeon, N., 1998. Risk assessment, risk values and the social science programme: Why we do need risk perception research. Rel Eng Sys Saf 59 (1), 5–15.

Rohrmann, B., Renn, O., 2000. Risk Perception Research. An Introduction, in: Renn, O., Rohrmann, B. (Eds.), Cross-Cultural Risk Perception. A Survey of Empirical Studies. Springer Verlag, pp. 11–53.

Trent, M., Dreibelbis, R., Bir, A., Tripathi, S.N., Labhasetwar, P., Nagarnaik, P., Loo, A., Bain, R., Jeuland, M., Browin, J., 2018. Access to Household Water Quality Information Leads to Safer Water: A Cluster Randomized Trial in India. Env Sci Tech.

Watson, J.A., Ensink, J.H.J., Ramos, et al., 2017. Does targeting children with hygiene promotion messages work? The effect of handwashing promotion target at children, on diarrhea, soil-transmitted helminth infections and behaviour change, in low- and middle-income countries. Trop Med Int Health, 22 (5), 526-538.
Limitations

- Cross-sectional study design could not represent the factor time or uncover cause-effect relationships, e.g. in terms of seasonal differences (inaccessibility of services during to flooding or reduced or intermittent water supply during droughts).

- Mainly male-headed households did not allow for gender-disaggregation of results, which may have allowed interesting insights and perceptions.

- Health risk perceptions, health beliefs and WaSH-related choices could have been influenced by cultural practices and social factors, which were not captured with this study.

- Future studies may consider the integration of qualitative data for triangulation.