Lattice Ginzburg-Landau Model of a Ferromagnetic \(p \)-wave Pairing Phase in Superconducting Materials and an Inhomogeneous Coexisting State

Akihiro Shimizu, Hidetoshi Ozawa, Ikuo Ichinose
Department of Applied Physics, Nagoya Institute of Technology, Nagoya, 466-8555 Japan

Tetsuo Matsui
Department of Physics, Kinki University, Higashi-Osaka, 577-8502 Japan
(Dated: May 1, 2012)

We study the interplay of the ferromagnetic (FM) state and the \(p \)-wave superconducting (SC) state observed in several materials such as UCoGe and URhGe in a totally nonperturbative manner. To this end, we introduce a lattice Ginzburg-Landau model that is a genuine generalization of the phenomenological Ginzburg-Landau theory proposed previously in the continuum and also a counterpart of the lattice gauge-Higgs model for the \(s \)-wave SC transition, and study it numerically by Monte-Carlo simulations. The obtained phase diagram has qualitatively the same structure as that of UCoGe in the region where the two transition temperatrures satisfy \(T_{FM} > T_{SC} \). For \(T_{FM}/T_{SC} < 0.7 \), we find that the coexisting region of FM and SC orders appears only near the surface of the lattice, which describes an inhomogeneous FMSC coexisting state.

I. INTRODUCTION

In the last decade, superconducting (SC) materials coexisting with ferromagnetic (FM) long-range orders have been found and of intensive interest. In UGe\(_{2}\) and URhGe\(_2\), a SC state appears only within the FM state in the pressure-temperature (P-T) phase diagram, whereas in UCoGe\(_2\), the SC state exists both in the FM and paramagnetic states. Phenomenological models of FMSC materials have been proposed soon after their discovery. The most important observation in those studies is that the FMSC state is a spin-triplet \(p \)-wave state of electron pairs.

In the present paper, we propose a lattice model for describing FMSC materials and investigate it by numerical methods. The model contains a vector potential (i.e., gauge field) to describe a FM order parameter (magnetization) and also a SC order parameter, i.e., Cooper-pair field for the \(p \)-wave SC state. These two physical variables couple with each other as the Cooper pair bears the electric charge \(2e \). Finite magnetization inside the material tends to induce vortices of the Cooper-pair field and destabilize SC state. In this sense, the FMSC state is a result of frustration.

Introduction of the spatial lattice in the present model has several advantages over the Ginzburg-Landau (GL) theory in the continuum space:

1. It reflects the lattice structure of the real materials,
2. It works as a regularization of vortex configurations because the energy of these topological excitations becomes finite, and
3. It allows us to make a nonperturbative study by means of Monte-Carlo simulations in which contributions from all the field configurations including topologically non-trivial excitations are taken into account, and so the obtained results are quite reliable. In this sense, the present study is complementary to the previous analytical studies employing perturbative and mean-field like approximations.

The present paper is organized as follows. In Sec.II, we introduce the lattice GL model that is derived from the previously integral study behavior of vortices in a constant magnetic field in the present model in order to obtain an intuitive picture of the Meissner state. Section IV is devoted for conclusion.

II. LATTICE MODEL FOR FMSC STATE

A. Lattice gauge-Higgs model for SC transition

In this subsection, we review a typical lattice model to describe the conventional SC transition, which is called the U(1) gauge-Higgs model (or the Abelian Higgs model). Reader who is familiar with this subject can skip this subsection and go to Sec.II.B.

Let us start with the GL theory of \(s \)-wave SC state in the three-dimensional (3D) continuum space. Its free-energy density is given by

\[
f_{GL} = |D_\mu \psi|^2 + \alpha (T - T^0_c)|\psi|^2 + \lambda |\psi|^4 + \frac{1}{8e^2} (\text{rot} \bar{A}^{\text{em}})^2,
\]

\[
D_\mu = \partial_\mu - i A^{\text{em}}_\mu,
\]

where \(\psi \) is the complex scalar field for \(s \)-wave Cooper pairs, \(\bar{A}^{\text{em}} \) is the vector potential \((\times 2e)\) for fluctuating electromagnetic field, \(D_\mu \) is the covariant derivative in the \(\mu \)-th direction \((\mu = 1, 2, 3)\), \(T^0_c \) is the bare criti-
The lattice-field model corresponding to the GL theory (2.1) is defined by giving its free energy (or the action including the inverse temperature) F as follows;

$$F = -\frac{K}{2} \sum_{x,\mu} \left(\psi_x^* U_{x,\mu} \psi_x + \text{c.c.} \right) + F_\psi + F_A, \quad (2.2)$$

$$F_\psi = \sum_{x} \left(|\sigma| |\psi_x|^2 + \lambda |\psi_x|^4 \right),$$

$$U_{x,\mu} = \exp(iA_{x,\mu}^{\text{em}}),$$

where x is the site of the 3D lattice, ψ_x is a complex SC order-parameter field defined on the site x, and we use μ also as the unit vector in the μ-th direction. ψ_x is sometimes called a Higgs field because it is a complex scalar field. $A_{x,\mu}^\text{em}$ is a real electro-magnetic field put on the link $(x, x + \mu)$. F_A is the free energy of the electro-magnetic field and has the following two versions. One is the compact version,

$$F_A = -\frac{1}{2e^2} \sum_{x, \mu < \nu} \left(U_{x,\mu}^* U_{x+\nu,\mu} U_{x,\nu} U_{x+\mu,\nu} + \text{c.c.} \right),$$

$$A_{x,\mu}^\text{em} \in (-\pi, \pi),$$

(2.4)

The other is the noncompact version,

$$F_A = \frac{1}{2e^2} \sum_{x, \mu < \nu} \left(\nabla_\mu A_{x,\mu}^\text{em} - \nabla_\nu A_{x,\mu}^\text{em} \right)^2,$$

$$A_{x,\mu}^\text{em} \in (-\infty, \infty),$$

(2.5)

where ∇_μ is the lattice difference operator such that

$$\nabla_\mu f_x \equiv f_{x+\mu} - f_x.$$

(2.6)

These two F_A are distinguished by having the periodicity under $A_{x,\mu} \to A_{x,\mu} + 2\pi$ or not. We note that F of (2.2) is invariant under the local U(1) gauge transformation,

$$\psi_x \to \psi_x' = \exp(i\lambda_x) \psi_x,$$

$$A_{x,\mu}^\text{em} \to A_{x,\mu}^\text{em} = A_{x,\mu}^\text{em} + \lambda_{x+\mu} - \lambda_x,$$

$$U_{x,\mu} \to U_{x,\mu}' \equiv \exp(i\lambda_{x+\mu}) U_{x,\mu} \exp(-i\lambda_x),$$

(2.7)

where λ_x is a site-dependent real variable.

Let us first consider the pure gauge system described by the energy F_A alone. In the case in which fluctuations of the vector potential $A_{x,\mu}^\text{em}$ are small, the above two versions belong to the same universality class, i.e., the system is in the Coulomb phase. This is because F_A of (2.4) approaches to Eq. (2.5) due to the relation,

$$U_{x,\mu}^* U_{x+\nu,\mu} U_{x,\nu} U_{x+\mu,\nu} + \text{c.c.} = 2 \cos \theta_{x,\mu},$$

$$\theta_{x,\mu} \equiv \nabla_\mu A_{x,\mu}^\text{em} - \nabla_\nu A_{x,\nu}^\text{em},$$

$$\cos \theta_{x,\mu} \simeq 1 - \frac{1}{2} g_{x,\mu}^2 \text{ for small } \theta_{x,\mu}.$$

(2.8)

For large fluctuations of vector potentials, the compact version generally allows topologically nontrivial excitations like magnetic monopoles and may exhibit another phase called the confinement phase, which is not allowed in the noncompact version.

Next we consider the case in which the magnetic field is switched off by setting $A_{x,\mu}^\text{em} = 0$. Then the system (2.2) is reduced to the $|\phi|^4$ theory. In the 3D $|\phi|^4$ theory, there exists a second-order phase transition accompanying the spontaneous symmetry breaking of the global U(1) symmetry under the phase rotation, $\psi_x \to \exp(i\theta) \psi_x$. This broken phase is called Higgs phase and corresponds to the SC phase. In the limit of $\lambda \to \infty$ with the ratio σ/λ kept fixed to a finite negative value, the system reduces to the so called XY model defined with $|\psi_x|^2 = \sqrt{1 - |\phi|^4}$, which is well known to exhibit a second-order transition as K is varied. This limit corresponds to the London limit of the SC (or superfluidity), and the phase transition in the $|\phi|^4$ theory for large λ and that of the XY model belong to the same universality class. Even in this simplified model, the detailed critical behavior at the phase transition is different from that described by the mean-field theory (MFT).

Finally, let us turn on the vector potential $A_{x,\mu}^\text{em}$. In the continuum, it is shown\(^\text{12}\) that the second-order transition for $A_{x,\mu}^\text{em} = 0$ is changed to a first-order one as the GL parameter $\kappa \propto \lambda/e^2$ is decreased. On the lattice, the compact version of the system is studied in Ref\(^\text{13}\) and it is verified that the phase transition takes place as one varies K with fixed κ. More precisely, the phase transition is of first order for small κ and becomes second order for large κ as in the model defined in the continuum. Here we should note that the study in Ref\(^\text{12}\) shows that the critical behavior of the second-order transition near the London limit is not in the same universality class as the 3D XY model due to the gauge-field fluctuations.

The noncompact lattice version is also studied in the London limit in Ref\(^\text{13}\). The corresponding energy is obtained from Eq. (2.2) by making the replacement,

$$\frac{K}{2} \sum_{x,\mu} \left(\psi_x^* U_{x,\mu} \psi_x + \text{c.c.} \right) \to \frac{\tilde{K}}{2} \sum_{x,\mu} \left(e^{-i\varphi_x + \mu U_{x,\mu} e^{i\varphi_x}} + \text{c.c.} \right),$$

(2.9)

where φ_x is the phase of the Cooper-pair (Higgs) field ψ_x, and neglecting F_ψ in Eq. (2.3) because it becomes a constant. In Ref\(^\text{13}\) this U(1) gauge-Higgs model on the four dimensional lattice is studied for large $1/e^2$, which exhibits a second-order transition as \tilde{K} is varied. This is consistent with the fact that, in the limit of $1/e^2 \to \infty$, the system reduces to the four-dimensional XY model. This phase transition is induced by the condensation of vortex excitations in φ_x. In the terminology of XY spin model, the XY spin $\vec{S}_x \equiv (\cos \varphi_x, \sin \varphi_x, 0)^t$ has a definite amplitude $|\vec{S}_x| = 1$, whereas the disorder phase ($\vec{S}_x = 0$) is possible due to the strong fluctuations of its angle φ_x.

Then it is useful to rewrite the system in terms of topological excitations such as vortices and monopoles. In the London limit of Eq. (2.2), the duality transformation can
be performed\cite{13,14}, and the free energy is expressed by the integer-valued vortex line-element variables $J_{\vec{x} \mu}$ and the integer-valued monopole-density variables $Q_{\vec{x}} \equiv \nabla_{\mu} J_{\vec{x} \mu}$ sitting on the dual lattice (\vec{x} denotes its site) as

$$F_v = 4\pi^2 K \sum_{\vec{x}, \vec{y}} \left(\sum_{\mu} J_{\vec{x} \mu} J_{\vec{y} \mu} + \frac{1}{m_0^2} Q_{\vec{x}} Q_{\vec{y}} \right) D_{\vec{x}, \vec{y}},$$

$$D_{\vec{x}, \vec{y}} \simeq \frac{\exp(-m_0 |r|)}{m_0 r}, \quad r = |\vec{x} - \vec{y}|, \quad m_0^2 = 2K e^2, \quad (2.10)$$

where $D_{\vec{x}, \vec{y}}$ is the 3D lattice Green’s function with mass m. As explained in introduction, there appear no singularities in F_v \footnote{13,14}.

For the noncompact version of the gauge system, it is shown in Ref.\cit\footnote{13} that no monopoles exist $Q_{\vec{x}} = 0$ and only the closed vortex loops that satisfy $\sum_{\mu} \nabla_{\mu} J_{\vec{x} \mu} = 0$ are allowed as expected. In the Coulomb phase with lower K these vortex loops condense while in the Higgs phase with higher K vortex loops are suppressed.

On the other hand, for the compact version\footnote{13,14}, open vortex strings may appear and a monopole should locate at every end of an open string such that $\sum_{\mu} \nabla_{\mu} J_{\vec{x} \mu} = Q_{\vec{x}} \neq 0$. Condensation of these monopoles may imply sufficiently large fluctuations of \vec{A}^{em} and drive the system into the confinement phase\footnote{13,14}. In fact, in the 3D compact case, the system is known to stay always in the confinement phase\footnote{13,14}. In the 4D compact case, there is a gauge transition from the confinement phase to the Coulomb phase as $1/e^2$ increases and a Higgs transition from the Coulomb phase to the Higgs phase as K' increases\footnote{13}. Here let us comment on the 3D multi-component Higgs model in the compact version with N Higgs fields in the London limit\footnote{13,14}. In contrast to the above 3D model with $N = 1$, the model with $N \geq 2$ supports the Higgs phase due to the extra phase degrees of freedom that are free from coupling to the gauge field.

The above discussion clearly shows that the SC phase transition do take place even in the London limit for the gauge Higgs model in the noncompact gauge version with $N = 1$ and in the compact version with $N \leq 2$, and topological excitations of SC order parameters, vortices, play an important role for that.

Usually, the genuine transition temperature T_c of the system \footnote{2.23} is lower than the bare critical temperature T^0 due to fluctuation effect. The radial degrees of freedom of ψ_x may certainly contribute such renormalization of T_c, but should not change the universality class of the continuous phase transition we are to study because their fluctuations are massive.

In the rest of the present paper, we shall study the FMSC state by starting with a lattice model corresponding to Eq.\footnote{2.23} in the London limit, in which vortices are expected to be generated spontaneously, and therefore nonperturbative study is indispensable for the investigation.

B. GL theory in the continuum

In the proposed GL theory\footnote{2.25} for the FMSC materials in the 3D continuum space at finite T, the free energy density f_{GL} for the SC state measured from the normal state is given as

$$f_{GL} = K \sum_{\mu} (D_{\mu} \vec{\psi})^2 \cdot (D_{\mu} \vec{\psi}) + \alpha(T - T^0_{SC}) \vec{\psi}^* \cdot \vec{\psi} + \lambda \vec{\psi}^* \cdot \vec{\psi}^2 + K' \sum_{\mu} (\partial_{\mu} m)^2 + (T - T^0_{PL}) m^2$$

$$+ \alpha_f (m^2)^2 + f_{Z},$$

$$D_{\mu} = \partial_{\mu} - 2ieA_{\mu}, \quad f_{Z} = -J\vec{m} \cdot \vec{S},$$

$$\vec{S} = i\vec{\psi}^* \times \vec{\psi}, \quad (2.11)$$

with the spatial direction index $\mu = 1, 2, 3$. The three-component complex field $\vec{\psi} = (\psi_1, \psi_2, \psi_3)$ is the spin-triplet SC order parameter, i.e., the Cooper-pair field (we omit the spatial coordinate x in the field $\vec{\psi}(x)$, etc.). $\vec{\psi}$ is proportional to the \vec{d}-vector in the spin space, $\vec{\psi} \propto \vec{d}$, and also the wave function of the p-wave SC state in the real space as a result of the spin-orbit coupling. In terms of $\vec{\psi}$, the magnetization (spin and angular momentum) \vec{S} of Cooper pairs is expressed as in Eq.\footnote{2.11,5}. The FM order is described by the magnetization field \vec{m} of electrons that do not participate in the SC state. T^0_{SC} and T^0_{PL} are the bare critical temperatures of SC and FM transitions, respectively. Because \vec{m} satisfies $\vec{\nabla} \cdot \vec{m} = 0$, it can be expressed in terms of the vector potential \vec{A} as $\vec{m} = \vec{rot}\vec{A}$. Because the Cooper-pair field bears the electric charge $-2e$, it couples with \vec{A} minimally via the covariant derivative D_{μ} reflecting the electromagnetic gauge invariance. We note that this vector potential \vec{A} is not the one for the external electro-magnetic field $A^{em}_{\vec{x} \mu}$ in Eq.\footnote{2.23}. f_{Z} is the Zeeman coupling term between \vec{S} and \vec{m}. It may induce the FMSC state, in which $\langle \vec{m} \rangle \neq 0, \langle \vec{S} \rangle \neq 0$.

The GL theory\footnote{2.11} and the related ones have been studied so far by means of MFT-type methods\footnote{2}. However, the gauge coupling between \vec{A} and $\vec{\psi}$ makes a simple MF approximation assuming, e.g., a constant SC order parameter and ignoring topologically nontrivial fluctuations unreliable for the description of the FMSC state. This is also indicated as we explained for the model of s-wave SC state, Eqs.\footnote{2.11} and\footnote{2.22}. Therefore f_{GL} in Eq.\footnote{2.11} is a kind of frustrated system of the AF and SC. We dare to use the word “frustrated” here. This is because the case with a finite magnetization $\vec{m} \neq 0$ corresponds to the case with a non-vanishing external magnetic field; a well known case of frustration. In fact, the phase of matter field there should acquire a finite additional phase when it is rotated along a closed loop and so the phase is not determined uniquely except for an integer magnetic flux inside the loop. In other words, vortices are to be generated because of the presence of the nonvanishing magnetization.
It is of course important to study the set of GL equations derived from \(f_{\text{GL}} \) in Eq. (2.11). The GL equations should be solved self-consistently to obtain \(\tilde{\psi}(x) \) and \(A_{\mu}(x) \). In the FM phase, \(\tilde{\psi}(x) \) describes multi-vortex states and the vector potential \(A_{\mu}(x) \) is determined by the locations of vortices in addition to the other terms in \(f_{\text{GL}} \) including the magnetization \(\tilde{m}(x) \).

In the present paper, we shall introduce a GL theory defined on a cubic lattice which is a discretized version of Eq. (2.11), and study its phase structure etc by means of the Monte-Carlo simulations. In this approach, all relevant fluctuations of \(\tilde{\psi} \) and \(A_{\mu} \) are taken into account. Some related lattice model describing a two-component SC was studied and interesting results were obtained. The above two approaches, MFT of the GL solutions and the numerical study of the GL theory, are complementary and not exclusive each other.

\section*{C. Derivation of the lattice model}

As announced in Sect.I, we introduce an effective lattice gauge model based on the GL theory in the continuum (2.11) by making a couple of simplifications. We stress that topological defects such as vortices are allowed on the lattice without introducing an additional short-distance cutoff for vortex cores. This point is quite important because it is expected that such nontrivial excitations are generated in the FMSC phase.

As the first step of simplification, we consider the “London limit” of \(\tilde{\psi} \) such that \(\tilde{\psi}^* \cdot \tilde{\psi} = \text{const.} \), neglecting its radial fluctuations. As discussed in Sect.II.A for the s-wave SC model, this is legitimate because the phase degrees of freedom of \(\tilde{\psi} \) play an essential role for (in)stability of the SC state.

Second, the FMSC materials have a FM easy-axis, which we choose the \(z \)-direction (\(\mu = 3 \)). The Zeeman coupling \(f_z \) prefers such that \(\psi_{\uparrow \uparrow} \propto \psi_1 + i \psi_2 \) or \(\psi_{\downarrow \downarrow} \propto \psi_1 - i \psi_2 \) takes large amplitude. In fact, as the Fermi surfaces of up and down-spin electrons have different energies due to \(f_z \), the Cooper-pair amplitude of mixed spins, \(\psi_3 = \psi_{\uparrow \downarrow} \), is small.

Therefore, in the effective model, we ignore \(\psi_3 \) as in the previous studies, and consider only the two-component complex field \(\psi = (\psi_1, \psi_2)^t \) in the London limit,

\[
\begin{align*}
 (\psi_1, \psi_2, \psi_3) & \rightarrow (\psi_1, \psi_2, 0) \\
 \text{with } |\psi_1|^2 + |\psi_2|^2 & = \frac{\alpha}{2\lambda} (T^0_{\text{SC}} - T).
\end{align*}
\]

Here we introduce a two-component complex field \(z \) that is the normalized Cooper-pair field: \(z = (z_1, z_2)^t \) satisfying

\[
|z_1|^2 + |z_2|^2 = 1, \quad \text{(2.13)}
\]

and from (2.12)

\[
(\psi_1, \psi_2)^t = \sqrt{\frac{\alpha}{2\lambda} (T^0_{\text{SC}} - T)} (z_1, z_2)^t. \quad \text{(2.14)}
\]

We note that two-component complex variables satisfying Eq. (2.13) such as \(z(x) \) is called a CP\(^1\) (complex projective) field. In term of \(z(x) \), the first term of \(f_{\text{GL}} \) in Eq. (2.11) is given as

\[
\frac{K\alpha}{2\lambda} (T^0_{\text{SC}} - T) \sum_{\mu} (D_{\mu} z)^* \cdot (D_{\mu} z). \quad \text{(2.15)}
\]

Now let us consider the effective lattice model on the 3D cubic lattice. Its GL free-energy density \(f_z \) at the site \(x \) is given up to an irrelevant constant by

\[
\begin{align*}
 f_z = & -\frac{c_1}{2} \sum_{\mu=1}^3 \sum_{\nu=1}^2 \left(\xi_{\mu+\nu} U_{\nu \mu z_{\nu \mu} + \text{c.c.}} \right) - c_3 \tilde{m}_x^2 \\
 & - c_3 \tilde{m}_x \cdot \tilde{S}_x + c_4 (\tilde{m}_x^2)^2 - c_5 \sum_{\mu} \tilde{m}_x \cdot \tilde{m}_{x+\mu}, \\
 U_{\nu \mu} & = \exp(iA_{\nu \mu}). \quad \text{(2.16)}
\end{align*}
\]

The five coefficients \(c_i \) (\(i = 1 \sim 5 \)) in (2.16) are real nonnegative parameters that are expected to distinguish various materials in various environments. \(z_x = (z_{x1}, z_{x2})^t \) is the CP\(^1\) variable at the site \(x \) and plays the role of SC order-parameter field. \(U_{\nu \mu} \) is the exponentiated vector potential put on the link \((x, x + \mu) \). \(\tilde{m}_x = (m_{x1}, m_{x2}, m_{x3})^t \) is the magnetic field made out of \(A_{\nu \mu} \) as

\[
m_{\nu \mu} = \sum_{\nu, \lambda=1}^3 \epsilon_{\nu, \lambda} \nabla_{\lambda} U_{\nu \lambda} = A_{\nu \lambda} - A_{\nu \lambda}. \quad \text{(2.17)}
\]

\(\tilde{m}_x \) serves as the FM order-parameter field. \(\tilde{S}_x = (0, 0, S_{x3})^t \) is an Ising-type spin vector of Cooper pairs made out of \(z_{\nu \mu} \) as

\[
S_{\nu \lambda} = i(z_{\nu \lambda} z_{\lambda \nu} - z_{\nu \lambda}^* z_{\lambda \nu}^*) \propto |\psi_{\uparrow \downarrow}|^2 - |\psi_{\uparrow \downarrow}|^2. \quad \text{(2.18)}
\]

As for the case of (2.7), \(f_z \) is invariant under a U(1) gauge transformation,

\[
\begin{align*}
 z_{\nu \mu} & \rightarrow z'_{\nu \mu} = \exp(i\lambda_x) z_{\nu \mu}, \\
 U_{\nu \mu} & \rightarrow U'_{\nu \mu} = \exp(i\lambda_{x+\mu}) U_{\nu \mu} \exp(-i\lambda_x). \quad \text{(2.19)}
\end{align*}
\]

We note that both \(m_x \) and \(\tilde{S}_x \) are gauge invariant.

The meaning of each term in \(f_z \) is as follows. The \(c_1 \)-term describes a hopping of Cooper pairs. From (2.13), it is obvious that

\[
c_1 \sim K\alpha\lambda^{-1} (T^0_{\text{SC}} - T), \quad \text{(2.20)}
\]

where \(a \) is the lattice spacing. At sufficiently large \(c_1 \), the \(c_1 \)-term may stabilize the phase of \(z_{\nu \mu} \), and then a coherent condensation of the phase degrees of freedom of \(z_x \) induces the superconductivity. The \(c_2 \) and \(c_4 \)-terms are the quartic GL potential of \(m_x \) and favor a finite amount of local magnetization \(\langle \tilde{m}_x \rangle \neq 0 \) (note that we take \(c_2 > 0 \)). Again we note these terms controls intrinsic magnetization and different from \(F_A \) of (2.2) for the fluctuation but external magnetic field. The \(c_5 \)-term enhances uniform configurations of \(\tilde{m}_x \), i.e., a
FM long-range order signaled by a finite magnetization, \(\lim_{L \rightarrow \infty} \langle \vec{m}_x \cdot \vec{m}_y \rangle \neq 0 \). The \(c_3 \)-term is the Zeeman coupling, which favors collinear configurations of \(\vec{m}_x \) and \(\vec{S}_x \), namely the coexistence of ferromagnetism and superconductivity.

The partition function \(Z \) at \(T \) is given by the integral over a set of two fundamental fields \(z_{x \alpha} \) and \(A_{x \mu} \) as

\[
Z = \int [dz][dA] \exp(-\beta F), \quad \beta = T^{-1}, \quad F = \sum_x f_x,
\]

\[
[dz] = \prod_x d^2 z_{x1} d^2 z_{x2} \delta((z_{x1})^2 + (z_{x2})^2 - 1),
\]

\[
[dA] = \prod_{x, \mu} dA_{x \mu}, \quad A_{x \mu} \in (-\infty, \infty).
\]

The coefficients \(c_i \) in \(f_x \) may have nontrivial \(T \)-dependence as Eqs. (2.11) and (2.20) suggest. However, in the present study we consider the response of the system by varying the “temperature” \(T = 1/\beta \) defined by \(\beta \), an overall prefactor in Eq. (2.21), while keeping \(c_i \) fixed. This method corresponds to well-known studies such as the FM transition by means of the \(O(3) \) nonlinear-\(\sigma \) model and the lattice gauge-Higgs models discussed in Sect.II.A, and sufficient to determine the critical temperature. See later discussion leading to Eq. (3.3).

III. NUMERICAL STUDIES

A. FM and SC phase transition and Meissner effect

For explicit procedures of our Monte-Carlo simulations, we first prepare a 3D lattice of the size of \((2 + L + 2)^2 \times L\), namely the lattice coordinates running as \(x_1, x_2 = 0, \ldots, L + 3, x_3 = 0, \ldots, L - 1 \). The extra width \(2 + 2 \) in the \(\mu = 1, 2 \) directions is introduced as a buffer zone in which the supercurrent is damped. The calculations of physical quantities are done in the central region \(R \) of the size \(L^3 \) to suppress the effects of the boundary. For the boundary condition we choose the periodic boundary condition in the \(\mu = 3 \) direction. For the \(\mu = 1, 2 \) directions, we first note that the supercurrent density \(j^{SC}_{x \mu} \) on the lattice is expressed as

\[
j^{SC}_{x \mu} \propto \text{Im} \left(z_{x + \mu} U_{x \mu} z_2 \right).
\]

Then we impose

\[
z_{x + \mu} - U_{x \mu} z_x = 0 \quad \text{for} \quad x = (0, x_2, x_3), \quad \mu = 1,
\]

\[
x = (L + 2, x_2, x_3), \quad \mu = 1,
\]

\[
x = (x_1, 0, x_3), \quad \mu = 2,
\]

\[
x = (x_1, L + 2, x_3), \quad \mu = 2,
\]

whereas we impose the free boundary condition on \(A_{x \mu} \).

The above condition (3.2) is gauge invariant and assures us that \(j^{SC}_{x \mu} = 0 \) (\(\mu = 1, 2 \)) on the boundary surfaces in the \(\mu - 3 \) plane; the supercurrent do not leak out of the SC material put in the region \(R \). We note this boundary condition enhances the third-component of the FM order so that \(\langle \vec{m}_x \rangle = (0, 0, m_3) \). This fact is traced back to our choice \(\psi_3 = 0 \) in Eq. (2.12) and reflects the experimental fact that the real FMSC materials exhibit the Ising-type anisotropy of the FM magnetization. Note also that the conventional periodic boundary condition for \(A_{x \mu} \) in all the three directions implies \(\sum_x \vec{m}_x = 0 \) and the FM order cannot exist.

We use standard Metropolis algorithm for the lattice size up to \(L = 20 \). The typical sweeps for measurement is \((30000 \sim 500000) \times 10 \) and the acceptance ratio is \(40\% \sim 50\% \).

Explicitly, we calculate the internal energy \(U \), the specific heat \(C \) of the central region \(R \), the FM magnetization \(m_\mu \),

\[
U = \frac{1}{L^3} \langle F' \rangle, \quad C = \frac{1}{L^3} (\langle F' - \langle F' \rangle \rangle)^2, \quad F' = \sum_{x \in R} f_x, \quad m_\mu = \frac{1}{L^3} (\sum_{x \in R} m_{x \mu})
\]

and the normalized correlation functions,

\[
G_m(x - x_0) = \langle \vec{m}_x \cdot \vec{m}_{x_0} \rangle / \langle \vec{m}_{x_0} \cdot \vec{m}_{x_0} \rangle,
\]

\[
G_S(x - x_0) = \langle S_{x \in R} S_{x_0,3} \rangle / \langle S_{x_0,3} S_{x_0,3} \rangle,
\]

where \(x_0 \) is chosen on the boundary of \(R \) such as \((3, 2 + L/2, z)\).

We first show that the model (2.21) exhibits a FM phase transition as \(T \) is lowered. To this end, we put \(c_1 = c_3 = 0 \) and \((c_2, c_4, c_5) = (0.5, 4.0, 1.0)\), and increase \(\beta \) in the Boltzmann factor of Eq. (2.21). In Fig. 1 we show \(C \) and \(m_\mu \). It is obvious that a second-order phase transition to the FM state takes place at \(\beta_{FM} = 1/T_{FM} \approx 2.0 \). We verified that other cases with various values of \((c_2,4,5)\) exhibit similar FM phase transitions.

Next, let us study the SC phase transition. Here it is useful to consider the case of all \(c_i = 0 \) except for \(c_1 \). Then the model is related to the \(\mathbb{CP}^1 + \text{U}(1) \) lattice gauge theory which has the energy of the form \(f_c = -(c_1/2) \sum (zUz + c.c.) + FA \) where \(FA \) is the compact version (2.5). In fact, they agree by setting \(1/e^2 = 0 \). The phase structure of this model is studied in Ref. and
FIG. 2. (a) Specific heat vs β for $(c_1, c_2) = (0.2, 0.2)$ and $(c_2, c_1, c_3) = (0.5, 4.0, 1.0)$ ($L = 20$). There are a large peak at $\beta \simeq 2.1$ and a small one at $\beta \simeq 4.5$. (b,c) Specific heat C_i of each term of F in (2.21) vs β. The small and broad peak at $\beta \simeq 4.5$ in C is related to fluctuations of c_1-term.

it is found that the phase transition from the confinement phase to the Higgs phase takes place at $c_1 \simeq 2.85$ for $1/e^2 = 0$. Thus the SC state exists at sufficiently large c_1.

For simulation, we put $(c_1, c_3) = (0.2, 0.2)$ and $(c_2, c_1, c_3) = (0.5, 4.0, 1.0)$. In Fig.2a, we show C vs β. There are a large and sharp peak at $\beta \simeq 2.1$ and a small and broad one at $\beta \simeq 4.5$. In order to understand physical meaning of the second peak, it is useful to measure "specific heat" of each term f_i in the free energy defined by $C_i = \langle (F_i' - \langle F_i'\rangle)^2 \rangle / L^4$. Fig.2 shows that the specific heat of the c_1-term has a relatively large and broad peak at $\beta \simeq 4.5$. Then we conclude that the SC phase transition takes place at $\beta_{SC} \simeq 4.5$.

To verify this conclusion, we show $G_m(r)$ and $G_S(r)$ in Fig.3 At $\beta = 2.5$, $G_m(r)$ exhibits a finite amount of the FM order, whereas $G_S(r)$ decreases very rapidly to vanish. This means that, as T is decreased, the FM transition takes place first and then the SC transition does. Therefore, for $\beta \geq \beta_{SC} \simeq 4.5$, the FM and SC orders coexist.

It is interesting to clarify the relation between the bare transition temperature T_{SC}^0 in Eq. (2.11) and the genuine transition temperature T_{SC}. From Eq. (2.21), any physical quantity is a function of βc_i. In the numerical simulations, we fix the values of c_i and vary β as explained. Then the result $\beta_{SC} \approx 4.5$ means

$$\beta c_1 |_{T= T_{SC}} = 4.5 \times 0.2.$$ (3.5)

By using Eq. (2.20), this gives the following relation;

$$\frac{1}{T_{SC}} \frac{K \alpha (T_{SC}^0 - T_{SC}) \lambda}{\lambda} = 0.90,$$

$$T_{SC} = (1 + \frac{0.90 \lambda}{K \alpha \lambda})^{-1} T_{SC}^0.$$ (3.6)

Eq. (3.6) shows that the transition temperature is lowered by the fluctuations of the phase degrees of freedom of Cooper pairs. We expect that a relevant contribution to lowering the SC transition temperature comes from vortices that are generated spontaneously in the FMSC as we show in Sec.III.B.

After having confirmed that the genuine critical temperature can be calculated by the critical value of β with fixed c_i, we use the word temperature in the rest of the paper just as the one defined by $T \equiv 1/\beta$ while c_i are T-independent parameters.

Meissner effect is one of the most important phenomena for a SC order. To study it, we follow the following steps: (i) introduce a vector potential $A_{ex}^{x\mu}$ for an external magnetic field, (ii) couple it to Cooper pairs by replacing $U_{x\mu} \rightarrow U_{x\mu} \exp(i A_{ex}^{x\mu})$ in the c_1 term of f_x and add its magnetic term $f_{ex} = +c_2 (m_{ex}^2)^2 (c_2 > 0)$ to f_x with m_{ex} defined in the same way as (2.17) by using $A_{ex}^{x\mu}$, (iii) let $A_{ex}^{x\mu}$ fluctuate together with $z_{2\pi}$ and A_{su} and measure an effective mass M_G of $A_{ex}^{x\mu}$ via the decay of correlation functions of m_{ex}. The result of m_{ex} propagating in the $1-2$ plane is shown in Fig.4. It is obvious that the mass M_G starts to develop at the SC phase transition point, and we conclude that Meissner effect takes place in the SC state.

FIG. 3. Correlation functions $G_m(r)$ and $G_S(r)$ at various T’s for $L = 20$. c_i’s are the same as in Fig.2

FIG. 4. Gauge-boson mass M_G of the external magnetic field propagating in x-y plane vs β for the same c_i as in Fig.2 and $c_2' = 3.0$ ($L = 16$). At the SC phase transition point $\beta_{SC} \approx 4.5$ (indicated by an arrow) determined by the peak of C, M_G starts to increase from small values.
B. SC transition and vortices in a constant magnetic field

Because the observed SC state in Figs. 2 and 3 coexists with the FM order, it is expected that vortices of the SC order parameter are induced spontaneously. To verify this expectation, we set the vector potential \(\mathbf{A} \) to a position-dependent but nonfluctuating value that corresponds to a uniform magnetic field in the third-direction, and study the behavior of \(z_{xa} \) itself. In this case, the free energy \(f_x \) loses the local gauge symmetry \((2.19) \), and therefore the correlation function of \(z_{xa} \),

\[
G_z(x - x_0) = \langle \bar{z}_x \cdot z_{x_0} \rangle, \tag{3.7}
\]

has nonvanishing values in the SC phase.

In Fig. 4, we show \(C \) and \(G_z(x) \) for two cases of fixed \(\bar{m}_x \). For the case with \(\bar{m}_x = (0, 0, \frac{\pi}{4}) \), \(C \) has a shape similar to \(C_1 \) in Fig. 2, and indicates a SC phase transition at \(\beta \approx 4.8 \). \(G_z(r) \) exhibits fluctuating behavior even for low \(T \)’s, \(\beta \geq 4.9 \), is decreased. As the \(m \) tends to align \(\bar{m}_x \), \(T_{PM} \) decreases as \(c_5 \) is decreased. Most of the FMSC materials loses the FM order as \(P \) is increased, and then it is phenomenologically expected that \(c_5 \) is a decreasing function of \(P \). We consider several cases of \(m \).

In order to verify the above expectation, we calculate vortex density directly. In the present model, one may define the following two kinds of gauge-invariant vortex densities \(V^\pm_x \) and \(V^-_x \) in the 1-2 plane:

\[
z^\pm_x = z_{x_1} \pm i z_{x_2} \equiv \rho_x \exp(i \theta_x^\pm),
\]

\[
V^\pm_x(\bar{m}) = \frac{1}{2\pi} \mod(\theta^\pm_{x+1} - \theta^\pm_x - A_{x_1}) + \mod(\theta^\pm_{x+2} - \theta^\pm_{x+1} - A_{x_+1,2}) - \mod(\theta^\pm_{x+2} - \theta^\pm_x - A_{x+2,1}) + \mod(\theta^\pm_{x+2} - \theta^\pm_{x+1} - A_{x+2,1}), \tag{3.8}
\]

where \(\mod(x) \equiv \mod(x, 2\pi) \). In short, \(V^\pm_x \) describes vortices of electron pairs with the amplitude \(\psi_{\uparrow\downarrow(\downarrow\uparrow)} = \psi_1 + i\psi_2 \propto z_1 \pm i z_2 \).

In Fig. 5, we present snapshots of \(V^\pm_x \) at \(c_1 = c_3 = 0.2 \) for fixed values of gauge potential \(A_{x_1} \) corresponding to a constant magnetization, \(\bar{m} = (0, 0, \frac{\pi}{4}) \). It shows that (i) both of the fluctuations around zero, \(\langle |V^\pm_x| \rangle \), decrease as \(\beta \) increases, and (ii) \(V^+_x \) has larger fluctuations than \(V^-_x \) at high \(T \), whereas smaller ones at low \(T \). These behaviors are consistent with the Zeeman \(c_3 \)-term in the energy \(f_x \) of \(c_1 \), which distinguishes the \(z^\pm \) order and the \(z^- \) order, and the fact that \(\bar{m} \) directs to the third-direction in the present case. In Fig. 7, we also show the vortex snapshots at \(c_1 = c_3 = 0.2 \) and \(\bar{m} = (0, 0, \pi/4) \). Compared with the case \(\bar{m} = (0, 0, \frac{\pi}{4}) \), vortices here are located rather systematically as we expected from the result of correlation function \(G_z(r) \).

C. Order of FM and SC phase transitions and phase diagram

Let us next examine the possibility that the order of the FM and SC phase transitions are interchanged as \(c_5 \) is decreased. As the \(c_5 \)-term in \(f_x \) tends to align \(\bar{m}_x \), \(T_{PM} \) decreases as \(c_5 \) is decreased. Most of the FMSC materials loses the FM order as \(P \) is increased, and then it is phenomenologically expected that \(c_5 \) is a decreasing function of \(P \). We consider several cases of \(m \).
cases with $c_5 = 1.5, 1.0, 0.7, 0.5, 0.4$ and 0.3, while other c_i are fixed to the same values as those in Fig.2 where $c_5 = 1.0$.

We find that the order of two phase transitions actually interchanges at $c_5 \approx 0.5$. In Fig.8, we show the specific heat C, C_1, C_5 for $c_5 = 0.4$. C has the two peaks at $\beta_{5c} \sim 5.0 < \beta_{FM} \sim 8.3$. C_1 is sharper than in the case of $c_5 = 1.0$ in Fig.2.

In Fig.9 we present $G_m(r)$ and $G_S(r)$ with r in the 1-2 plane for $c_5 = 0.4$, which exhibit very peculiar behavior; In the FM and SC coexisting phase ($T < T_{FM}$), they have nonvanishing values only near the surface of the lattice in contrast with Fig.3. This behavior survives in larger systems. For example, we define the thickness ΔL of the coexisting region such that the ordered region in the 1-2 plane occupies the interval $2+\Delta L$ (disordered region) + $\Delta L + 2$ in the lattice length $2 + L + 2$ in the $\mu = 1, 2$ directions. We obtain $\Delta L \approx 3$ for $L = 12$ (Fig.9) and $\Delta L \approx 4$ for $L = 16$, so about the outer half region in the linear dimension is occupied by the ordered state. This implies that the FMSC coexisting phase appear in the region including the surface of the material, and not in the central region inside the system. We note that this “surface” region is not two-dimensional but 3D, because the SC-FM transition is a genuine second-order one, which is not allowed in a two-dimensional system. This phenomenon is a prediction of the present model.

It is intriguing to draw a phase diagram in the P-T plane assuming certain phenomenological relation between c_5 and P. In the experiments, the critical temperature T_{FM} is a decreasing function of P. This means that the parameters c_2, c_4 and c_5 in Eq.2.12 vary as functions of P. Changes of c_2 and/or c_4 influence the magnitude of the magnetization vector m and result in a change of c_5 after a renormalization of \overline{m}. Then for example, one may “phenomenologically” assume

$$c_5 = c_5^* \left(1 - \frac{P(c_5)}{P_c}\right)^{1/\gamma},$$

where P_c is the critical pressure at which the FM order disappears even at $T \rightarrow 0$ (i.e., at $c_5 = 0$), c_5^* is the value of c_5 at which $P = 0$, and the power γ is a fitting parameter. In Fig.10 we show the phase diagram drawn with certain choice of these parameters. This phase diagram has a similar structure to the experimental result of UCoGe.

In the same way as decreasing c_5, the case of increasing c_3 has been studied with several choices of c_5 and $(c_1, c_2, c_4) = (0.2, 0.5, 4.0)$. Both T_{FM} and T_{SC} increase as c_3 increases. Furthermore, for sufficiently large values such as $c_3 = 1.5$, $T_{FM} > T_{SC}$ even for $c_5 = 0.5$ as

![Figure 7](image_url)
FIG. 7. Snapshots of vortex densities V_\pm at $c_1 = c_3 = 0.2$ for a fixed $m = (0, 0, \pi) (L = 16)$. (A)V_\pm at $\beta = 3.0$, (B)V_\pm at $\beta = 3.0$, (C)V_\pm at $\beta = 7.0$, (D)V_\pm at $\beta = 7.0$. The average magnitude $|V_\pm(x)|$ is (A) 0.528, (B) 0.537, (C) 0.560 and (D) 0.508. The points $V_\pm(x) = -0.5 = -m/2\pi$ reflect m itself.

![Figure 8](image_url)
FIG. 8. Specific heats for $c_5 = 0.4 (L = 12)$. (a) Total C and the specific heat C_1 of the c_1-term, (b) C_5 of the c_5-term. Order of two phase transitions is interchanged ($\beta_{SC} < \beta_{FM}$).

![Figure 9](image_url)
FIG. 9. Correlation functions $G_m(r)$ and $G_S(r)$ at $c_5 = 0.4 (L = 12)$. The other c_i are the same as those in Fig.2. They exhibit orders near the surface of the lattice.

![Figure 10](image_url)
FIG. 10. Phase diagrams in (a) c_3-T and (b) P-T planes with $P_c = 1.0$, $c_4^* = 2.2$ and $\gamma = 3.0$. $c_1 - c_4$ are same as in Fig.2.
expected. This indicates that the present model with larger \(c_3 \) may provide a phase diagram similar to that of \(\text{UGe}_2 \) and \(\text{URhGe} \).

\section*{IV. CONCLUSION}

In summary, we have proposed a GL model defined on the 3D lattice for the FMSC state, and shown that it explains some experimental observations such as the phase diagram and the homogeneous and inhomogeneous FMSC states. This model naturally includes effects of fluctuations may change the order of SC phase transitions and may play an important role in SC transitions that are induced by an external magnetic-field. This problem is under study and results will be reported in a future publication.

\section*{ACKNOWLEDGMENTS}

We thank Kenji Sawamura, Kento Uchida, and Tomonori Shimizu for their collaborations in the early stage of the present study. This work was partially supported by Grant-in-Aid for Scientific Research from Japan Society for the Promotion of Science under Grant No.20540264 and No.23540301.

1. S. S. Saxena, P. Agarwal, K. Ahilan, F. M. Grosche, R. K. W. Haselwimmer, M. J. Steiner, E. Pugh, I. R. Walker, S. R. Julian, P. Monthoux, G. G. Lonzarich, A. Huxley, I. Sheikin, D. Braithwaite, and J. Flouquet, Nature (London) \textbf{406}, 587 (2000); A. Huxley, I. Sheikin, E. Ressouche, N. Kernavanois, D. Braithwaite, R. Calemczuk, and J. Flouquet, Phys. Rev. B \textbf{63}, 144519 (2001); N. Tateiwa, T. C. Kobayashi, K. Hanazono, K. Amaya, Y. Haga, R. Settai, and Y. Onuki, J. Phys. Condens. Matter \textbf{13}, L17 (2001).

2. D. Aoki, A. Huxley, E. Ressouche, D. Braithwaite, J. Flouquet, J.-P. Brison, E. Lhotel, and C. Paulsen, Nature (London) \textbf{413}, 613 (2001).

3. N. T. Huy, A. Gasparini, D. E. de Nijs, Y. Huang, C. P. Klaasse, T. Gortenmulder, A. de Visser, A. Hamann, T. Görler, and H. v. Löhneysen, Phys. Rev. Lett. \textbf{99}, 067006 (2007).

4. E. Slooten, T. Naka, A. Gasparini, Y. K. Huang, and A. de Visser, Phys. Rev. Lett. \textbf{103}, 097003 (2009).

5. K. Machida and T. Ohmi, Phys. Rev. Lett. \textbf{86}, 850 (2001), M. B. Walker and K. V. Samokhin, Phys. Rev. Lett. \textbf{88}, 207001 (2002).

6. V. P. Mineev, Phys. Rev. B \textbf{66}, 134504 (2002).

7. For experimental evidence, see F. Hardy and A. D. Huxley, Phys. Rev. Lett. \textbf{94}, 247006 (2005); A. Harada, S. Kawasaki, H. Mukuda, Y. Kitaoka, Y. Haga, E. Yamamoto, Y. Onuki, K. M. Itoh, E. E. Haller and H. Harima, Phys. Rev. B \textbf{75}, 140502 (2007).

8. The preliminary version of the present work has been reported in 26th Int. Conf. on Low Temp. Phys., Beijing, Aug. 10-17 (2011), A. Shimizu, H. Ozawa, I. Ichinose and T. Matsu, J. Phys. (Conference Series) in press.

9. V. P. Mineev and T. Champel, Phys. Rev. B \textbf{69}, 144521 (2004); D. V. Shopova and D. I. Uznov, Phys. Rev. B \textbf{79}, 064501 (2009); X. Jian, J. Zhang, and Q. Gu, Phys. Rev. B\textbf{80}, 224514 (2009).

10. S. Coleman and E. Weinberg, Phys. Rev. D\textbf{7}, 1888 (1973).

11. K. Kajantie, M. Karjalainen, M. Laine, and J. Peisa, Phys. Rev. B\textbf{57}, 3011 (1998) and references cited therein.

12. K. Kajantiea, M. Laineb, T. Neuhausc, A. Rajantied and K. Rummukainene Nucl. Phys. Proc. Suppl. \textbf{106}, 959 (2002).

13. M. Chavel, Phys. Lett. B \textbf{378}, 227 (1996).

14. M. B. Einhorn and R. Savit, Phys. Rev. D \textbf{17}, (1978) 2583; D \textbf{19}, (1979) 1198.

15. K. G. Wilson, Phys. Rev. D \textbf{10} (1974) 2445, A. M. Polyakov, Phys. Lett. \textbf{59B} 82 (1975).

16. S. Wenzel, E. Bittner, W. Janke, A. M. J. Schakel, A. Schiller, Phys. Rev. Lett. \textbf{95}, 051601 (2005).

17. D. J. E. Callaway and L. J. Carson, Phys. Rev. D \textbf{25}, 531 (1981).

18. T. Ono, S. Doi, Y. Hori, I. Ichinose, and T. Matsui, Ann. Phys. \textbf{324}, 2453 (2009).

19. E. Smargrav, J. Smiseth, E. Babaev, and A. de Visser, Phys. Rev. Lett. \textbf{94}, 096401 (2005), and references cited therein.

20. N. T. Huy, D. E. de Nijs, Y. K. Huang, and A. de Visser, Phys. Rev. Lett. \textbf{100}, 077002 (2008).

21. We have included the charge \(-2e\) in \(A_{\alpha\mu}\).

22. See, e.g., J. Zinn-Justin, “Quantum field theory and critical phenomena”, (1993, Clarendon press, Oxford).

23. S. Takashima, I. Ichinose, and T. Matsui, Phys. Rev. B \textbf{72}, 071112 (2005).

24. T. Ohta, T. Hattori, K. Ishida, Y. Nakai, E. Osaki, K. Deguchi, N. K. Sato and I. Satoh, J. Phys. Soc. Jpn. \textbf{79}, 023707 (2010); K. Deguchi, E. Osaki, S. Ban, N. Tamura, Y. Simura, T. Sakakibara, I. Satoh and N. K. Sato, J. Phys. Soc. Jpn. \textbf{79}, 083708 (2010).

25. N. D. Mermin and H. Wagner, Phys. Rev. Lett. \textbf{17}, 1133 (1966), P. C. Hoehngen, Phys. Rev. \textbf{158}, 383 (1967), S. Coleman, Commun. Math. Phys. \textbf{31}, 259 (1973).

26. E. A. Yelland, S. J. C. Yates, O. Taylor, A. Griffiths, S. M. Hayden and A. Carrington, Phys. Rev. B \textbf{72}, 184436 (2005); E. A. Yelland, S. M. Hayden, S. J. C. Yates, C. Pfleiderer, M. Uhlarz, R. Vollmer, H. v. Löhneysen, N. R. Bernhoeft, R. P. Smith, S. S. Saxena and N. Kimura, Phys. Rev. B \textbf{72}, 214523 (2005).