Ecological aspects of Phlebotomines (Diptera: Psychodidae) and the transmission of American cutaneous leishmaniasis agents in an Amazonian/Guianan bordering area

Thiago Vasconcelos dos Santos1,2*, Ghislaine Prévot3, Marine Ginouvès3, Rosemere Duarte4, Fernando Tobias Silveira1, Marinete Marins Póvoa1,2 and Elizabeth Ferreira Rangel2,5

Abstract

Background: An entomological study was conducted in the municipality of Oiapoque (lower Oyapock River Basin) in the Brazilian side bordering French Guiana to gain information on the transmission pattern of American cutaneous leishmaniasis (ACL) in that region, presumed to reflect the classical Amazonian/Guianan enzootic scenario.

Methods: Three ecologically isolated forested areas near urban environments were surveyed during the rainy and dry seasons of 2015 and 2016, using a multi-trapping approach comprising ground-level and canopy light traps, black and white colored cloth Shannon traps and manual aspiration on tree bases. Female phlebotomines were dissected to find infections and isolate flagellates from Leishmania spp. The strains were characterized by restriction fragment length polymorphism analysis and compared with those of local ACL cases and World Health Organization reference strains.

Results: Nyssomyia umbratilis, Trichopygomyia trichopyga and Evandromyia infraspinosa were the most frequently found species. Findings on relative abundance, spatiotemporal vector/ACL congruence, natural infections and anthropophilic insights strengthened the Guianan classical transmission of Leishmania (Viannia) guyanensis by Ny. umbratilis and suggested further investigations for Ev. infraspinosa. Nyssomyia umbratilis showed an eclectic feeding habit, including bird blood. Ecological data and literature reports also included Psychodopygus squamiventris maripaensis and Bichromomyia flaviscutellata on the list of suspected vectors.

Conclusions: These findings contributed to understanding ACL ecoepidemiology in the Amazonian/Guianan scenario. Local studies are required to better comprehend the Leishmania spp. enzootic mosaic in specific ecotopes.

Keywords: Leishmania guyanensis, Disease transmission, Vector ecology, State of Amapá, Brazil

Background

Phlebotomine sand flies (Diptera: Psychodidae) play determinant roles in transmitting Leishmaninae (Kinetoplastida: Trypanosomatidae) parasites, the causative agents of leishmaniasis [1–5]. In American cutaneous leishmaniasis (ACL), biologically compatible vector/parasite/reservoir arrangements can be driven naturally or triggered by ecological/human-made pressures, resulting in highly diverse and countless natural transmission cycles [2, 6–8]. Such diversity is reflected in the emergence of a wide and worrisome clinical-immunological spectrum, since some phlebotomine species can carry ACL agents that cause life-threatening and debilitating disease forms such as the anergic diffuse and mucosal forms [9].

In the Amazonian/Guianan region, the major Leishmania/vector-recognized transmission cycle involves
Leishmania (Viannia) guyanensis and the phlebotomine Nyssomyia umbratilis [10–13]. However, in this region, an emerging ACL pattern is currently being considered, and at least four dermotropic Leishmania species have been reported: L. (V.) braziliensis, L. (Leishmania) amazonensis, L. (V.) lainsoni and L. (V.) naiffi [14]. Within that region, in the Oiapock River Basin, L. (V.) guyanensis accounts for 81% of ACL etiology, followed by L. (V.) braziliensis (17%) and L. (V.) lainsoni (2%) [15]. However, in this region, ACL foci are assumed to be concentrated in the upper basin, where gold mining represents a high-risk factor for exposure [16]. Underreported outbreaks associated with periurban forested environments should be surveyed.

The present study assessed potential ACL transmission cycles in the lower Oyapock River Basin to promote knowledge on phlebotomine ecology, mainly focusing on species composition, multi-trapping stratification, blood-source investigation and natural Leishmania spp. infections. The isolates obtained were also compared with human isolates.

Methods

Study area

The municipality of Oiapoque (03°49′29″N, 51°49′05″W) is in the Oiapock River Basin, a border region between Brazil and the Ultramarine Department of French Guiana. It is the northernmost municipality of the Brazilian State of Amapá (AP) and is limited by the AP municipalities of Calçoene, Serra do Navio and Pedra Branca do Amapari to the south, by Laranjal do Jari to the west, by the Atlantic Ocean to the east, and by the French-Guianan communes of Camopi and Saint Georges de l’Oyapock to the north. Oiapoque has a population of approximately 24,263 distributed over 22,625 km² [17]. During 2008–2017, a total of 1299 new ACL cases were registered by the health services in Oiapoque (average of 118 cases/year), with 560 shown to be autochthonous for that municipality (average of 50 cases/year). Because of Oiapoque’s border characteristics, ACL epidemiology is a mosaic of “binationale” infections, as half of ACL-notified cases were autochthonous from Brazil and half were likely imported from French Guiana [18].

Sampling sites

Located in the lower Oyapock River Basin, the urban area of Oiapoque is surrounded by different forested environments with slightly distinct ecological characteristics. Thus, three “terra-firme” (dry-land) forested sites, approximately 7 km apart, were selected for sampling as follows (Fig. 1):

(i) Vila Vitória Road (03°51′28.1″N, 51°48′41.3″W): a recently opened road that provides eastern access from Oiapoque to Vila Vitória. The sampling site shows minimal evidence of human activity and is considered well preserved.

(ii) Highway BR156-Km6 (03°49′21.0″N, 51°45′59.6″W): an impacted area in southern urban Oiapoque with evidence of human activities, such as wood extraction.

(iii) Clevelândia do Norte Road (3°49′4.14″N, 51°51′6.35″W): an old colonized area on the western side of urban Oiapoque, where the original vegetation was partially suppressed and replaced by secondary forest. It is currently an environmentally protected area by the Brazilian Army.

Captures

Systematic field expeditions were initially performed during 2015–2016 to provide information on the predominantly rainy (February-May) and dry (September-November) Guianan/Amazonian seasons of the three sampling sites. Phlebotomines were obtained by surveying a horizontal transect from the edge inside each sampling site’s forested area, using a multi-trapping approach described elsewhere [8]. The approach comprised captures using CDC light traps (John W. Hock Company, Gainesville, USA) set up from 6:00 h to 18:00 h at 1.5 m (ground level; n = 8 traps/night) and at 20 m (canopy level; n = 2 traps/night), captures from 6:00 h to 20:00 h with modified Shannon black and white colored cloth [19], and manual aspiration on tree bases from 6:00 h to 20:00 h.

Processing and identification of phlebotomines

Phlebotomines were immediately processed in the field laboratory. Females were dissected under sterile conditions [20]. Flagellate infection was semi-quantified (in a cross ‘+’ scale) according to Freitas et al. [21], and parasite development was classified by Lainson & Shaw [22]. The guts of infected females were triturated and inoculated into Difco™ culture media (Becton, Dickinson and Company, Franklin Lakes, USA) to isolate the parasites. Phlebotomine species were identified under fresh conditions using morphological characteristics. Unidentified specimens were processed for mounting on glass slides using Canada balsam. Morphology and taxonomic criteria, terminology and generic abbreviations were adopted following Galati [23] and Galati et al. [24].

Investigation of phlebotomine blood sources

Intestines dissected from engorged females were macerated in PBS (pH 7.2, 0.001 M) and stored at -20 °C until processing by Enzyme-Linked Immunosorbent Assay according to Afonso et al. [25]. Based on local observation and the antisera available for testing, the panel chosen comprised bird, armadillo, opossum, dog, rodent and human antisera, obtained from the Immunodiagnostics
Laboratory, Department of Biological Science, Escola Nacional de Saúde Pública Sérgio Arouca, FIOCRUZ, Brazil.

Investigation of ACL cases
Patients residing the study area who required diagnosis in the field laboratory (Oiapoque) or in the Ralph Lainson Leishmaniasis Laboratory, Instituto Evandro Chagas (Ananindeua, Brazil), were investigated according to the standard procedures of the Programa de Vigilância e Controle da Leishmaniose Tegumentar Americana (ACL Surveillance and Control Programme, Brazil). When clinically epidemiologically suggestive, patients were diagnosed by parasitological demonstration (Giemsa-stained smears of exudates from ACL lesions), the Montenegro skin test (inactivated promastigotes of *L. (V.) braziliensis* - MHOM/BR/M17323 - 1 × 10⁷ parasites/ml) and parasite isolation (inoculating exudates from ACL lesions in Difco™ media) [2, 26].

Leishmania spp. characterization
In both cases (phlebotomines and ACL patients), *Leishmania* DNA was obtained from successfully isolated strains. If no growth or contamination occurred, parasites were recovered from the remaining dissection slide contents (phlebotomines) or Giemsa-stained slides (ACL patients) using the DNeasy Tissue and Blood Kit (Qiagen, Hilden, Germany). Species were characterized by polymerase chain reaction-restriction fragment length polymorphism analysis (PCR-RFLP) of a 615 bp region of the RNA polymerase II gene amplified using the primers RPOF2 (5’-AGA ACA TGG GCG GCC-3’) and RPOR2 (5’-CGA GGG TCA CGT TCT TG-3’) and digested with *TpsRI* and *HgaI* endonucleases following previously established and validated methodology [27]. Digestion profiles were compared with those of the WHO *Leishmania* reference strains occurring in the Guiana Shield.

Environmental assessment and data analysis
Forest cover degree was estimated using digital hemispherical images captured 1.6 m above ground, pointing directly upward in the CDC-ground trap sites (8 images per sampling site). Canopy coverage in each image was determined using CAN-EYE v.6.314 hemispherical image analysis software. Microclimate parameters (temperature and humidity) were measured using data loggers placed in the CDC traps. Species composition at the three sampling sites was analyzed using the Shannon-Wiener diversity index (*H*’) using PAST version 2.12 software [28]. All comparisons were performed using Student’s t-test to determine significance level (*P* ≤ 0.05). Sampling effort, species infection rate (SIR) and number of phlebotomines per hour were calculated according to Souza et al. [8].

Results
Phlebotomine composition/Environmental assessment
From the three sample areas, 9119 phlebotomines were captured during 2015–2016, belonging to 48 species. Among the 15 genera identified, *Psychodopygus* and *Psathyromyia* had the highest number of species (10 spp. and 9 spp., respectively). The composition was dominated (74.8%) by *Nyssomyia umbratilis* (29.65%), *Trichopygomyia trichopyga* (28.50%) and *Evandromyia infraspinosa* (16.36%) (Table 1). Area I had more species
in the CDC canopy trap (0.96 lis 5880 h), white Shannon traps rendered 5.6 phlebotomines and 24 h of aspiration on tree bases (total sampling effort: canopy trap, 48 h of white Shannon, 48 h of black Shannon, respectively: I (27.4 °C; 82.9%); II (26.6 °C; 77.1%); III (25.0 °C; 85.7%). However, no statistically significant differences were found between average temperature (t(3) = 1.77, P = 0.63) or humidity (t(3) = 1.95, P = 0.21).

Based on 4608 h of CDC ground, 1152 h of CDC canopy trap, 48 h of white Shannon, 48 h of black Shannon, and 24 h of aspiration on tree bases (total sampling effort: 5880 h), white Shannon traps rendered 5.6 phlebotomines per hour. The greatest number of phlebotomines found per hour for these capture methods included Ny. umbratilis in the CDC canopy trap (0.96 ♀♀), white Shannon trap (0.93 ♀♀), and on aspiration on tree bases (1.16 ♀♀; 1.62 ♂♂). Evandromyia infraspinosa was also found on the black Shannon trap (0.97 ♂♂), and Ps. s. maripaensis was found on the white Shannon trap (2.29 ♀♀). These three species attempted to bite the professionals during capture (Table 2).

Parasite infections and Leishmania typing

Forty-eight parasite infections were found, representing 40 flagellates, five nematodes (Nemathelminthes) and three gregarines (Apicomplexa). Flagellate infections were detected in Nyssomyia umbratilis (n = 28), Evandromyia infraspinosa (n = 3), Migonemyia migonei (n = 2), Scioemyia flavitellata (n = 2) Viannomyia furcata (n = 2), Psathyromyia dendrophylla (n = 2), Sciopemyia sor-dellii (n = 1) and Pintomyia damascenoi (n = 1). Nematode infections occurred in Evandromyia williamsi (n = 2), Psathyromyia aragaoi (n = 1), Evandromyia moun-stuosa (n = 1) and Ps. s. maripaensis (n = 1). Gregarines were found in Bi. flaviscutellata (3).

Twelve flagellate strains were successfully isolated (Table 3), all without visible blood meals, and with infections varying from ++ to ++++. Isolates occurred in 10 Ny. umbratilis at sites I (n = 3), II (n = 6) and II (n = 1) and in one Sc. flavitellata (site I) and one Vi. furcata (site I).

All isolates from Ny. umbratilis exhibited a PCR-RFLP profile identical to that of the L. (V.) guyanensis WHO reference strain (MHOM/BR/1975/M4147) (Fig. 3), while those from Sc. flavitellata and Vi. furcata were inconclusive.

Twenty-eight infections were not isolated. The PCR-RFLP for the remaining DNA fixed on the glass dissection slides allowed characterizing L. (V.) guyanensis from one Ny. umbratilis and two Ev. infraspinosa specimens (Fig 4).

Blood sources

One hundred thirty-eight guts were tested, and 20 (14.4%) reacted to at least one antiserum on the available panel (Table 4). Positive species comprised Ny. umbratilis (n = 12), Ps. s. maripaensis (n = 4), Ps. claustrei (n = 2), Bichromomyia flaviscutellata (n = 1) and Ev. infraspinosa (n = 1). The sampling site with the most engorged flies was I (n = 16). The engorged specimens were mostly found in tree bases (n = 7), followed by the CDC ground trap (n = 4) and lastly the Shannon trap (n = 1).

Species with the greatest numbers of identified blood sources included Ny. umbratilis (bird, dog, armadillo, opossum and human), followed by Ps. claustrei (dog, opossum, rodent and armadillo). The other positive species had only one blood source: Bichromomyia flaviscutellata (bird); Ps. s. maripaensis (armadillo); and Ev. infraspinosa (armadillo).

Species with more than one blood source in the same specimen included Ny. umbratilis (sample 13: dog and opossum; sample 16: bird, dog and armadillo) and Ps. claustrei (sample 3: dog, opossum and rodent). One Ny. umbratilis naturally infected with flagellates morphologically compatible with Leishmania spp. was positive for bird antiserum.

American cutaneous leishmaniasis cases

During 2015–2016, ten patients belonging to the Guiana Shield asked for ACL diagnostics in our laboratory, and eight believed that they had been infected on the Brazilian-French Guianan/Oyapock border (six from gold mining and two from agricultural settlements) (Table 5). All Leishmania strains were isolated and characterized as L. (V.) guyanensis. A Brazilian agricultural settlement with L. (V.) guyanensis isolated from an ACL patient (MHOM/BR/2017/M32218) is located in site I, near the forested area subjected to the captures.

Figure 3 shows a PCR-RFLP analysis of Leishmania isolates from infected phlebotomines and a human ACL case compared against the WHO L. (V.) guyanensis reference strain.

Discussion

Few studies have been conducted on ACL ecology in the lower Oyapock basin. The first available information on that region (the French Guianan side) came from entomological studies conducted in the 1940s and 1950s, which provided much information on phlebotomine taxonomy and ecology [29]. The available commented checklist including that region can be found elsewhere [30] as a metabarcoding-based local inventory [31]. Evidence on ACL etiology was only provided recently [15].
Table 1 Phlebotomine species compositions at three sampling sites surveyed during four 12-day field expeditions in Oiapoque, Amapá, Brazil (2015–2016). Species found infected by flagellates are shown in bold, with the number of specimens found infected with flagellates in parentheses

No.	Species	I ♀♀	I ♂♂	II ♀♀	II ♂♂	III ♀♀	III ♂♂	Total	SIR
1	*Nyssomyia umbratilis* (28)	282	426	725	479	355	237	2704	29.65
2	*Trichopygomyia trichopyga*	456	522	128	124	655	714	2599	28.50
3	*Evandromyia infraspinosa* (3)	344	352	233	122	255	186	1492	16.36
4	*Trichophoromyia ininii*	172	158	27	34	13	24	428	4.69
5	*Psathyromyia aragaoi*	108	121	16	9	39	47	340	3.73
6	*Psyshodopygus maripaensis*	68	11	130	9	2		220	2.41
7	*Sciopeomyia sordellii* (1)	24	14	18	19	45	15	135	1.48
8	*Micropygomyia rorotaensis*	67	36	6	3	19	2	133	1.46
9	*Psyshodopygus ayrozai*	59	25	29	15	4		132	1.45
10	*Bichromomyia flaviscutellata*	69	30	1	3	7	1	111	1.22
11	*Nyssomyia anduzei*	4	1	4	–	64	18	91	1.00
12	*Evandromyia williamsi*	17	5	7	36	5	1	71	0.78
13	*Evandromyia brachyphalla*	41	14	5	–	4	5	69	0.76
14	*Vianamyia furcata* (2)	17	10	18	11	1	1	68	0.75
15	*Vianamyia tuberculata*	19	3	26	3	5	–	56	0.61
16/17	*Pressatia choti/ Pr. trispinosa*	12	8/21	8	–1/1	2	–1/1	53	0.58
18	*Evandromyia sp. of Baduel*	11	19	8	10	–	–	48	0.53
19	*Nyssomyia pajoti*	9	2	3	15	8	–	37	0.41
20	*Sciopeomyia fluviatilis* (2)	4	2	16	4	3	4	31	0.34
21	*Psathyromyia iriflata*	8	13	4	6	–	–	31	0.34
22	*Lutzomyia spathomichia*	2	1	17	11	–	–	31	0.34
23	*Evandromyia monstroosa*	13	3	10	–	2	2	30	0.33
24	*Migonemomyia migonei* (2)	14	2	8	6	2	1	25	0.27
25	*Psyshodopygus hisutsu*	6	2	8	6	2	1	25	0.27
26	*Pintomyia damascenoi* (1)	4	1	7	6	2	–	19	0.21
27	*Psyshodopygus davisi*	4	4	1	2	4	–	15	0.16
28	*Psathyromyia dendrophyla* (1)	3	1	4	3	1	4	15	0.16
29	*Psyshodopygus claussteii*	4	7	–	2	1	1	14	0.15
30	*Psyshodopygus corroroniensis*	3	1	–	–	8	2	14	0.15
31	*Psathyromyia bigeniculata*	4	1	5	1	1	1	13	0.14
32	*Psathyromyia dreisbachi*	–	–	–	–	9	4	13	0.14
33	*Trichophoromyia ubiquitalis*	–	–	–	–	5	8	13	0.14
34/35	*Brumptomyia travassosi/Br. pentacantha*	4	1/1	1	–	2	2/–	7	0.07
36	*Psyshodopygus amazonensis*	–	–	2	2	1	–	5	0.05
37	*Psyshodopygus paraensis*	3	–	–	–	–	1	4	0.04
38	*Psathyromyia punctigeniculata*	–	–	–	3	1	–	4	0.04
39	*Trichophogryma dasypoodogeton*	3	–	–	–	–	3	3	0.03
40	*Pintomyia pacae*	1	–	–	1	–	2	2	0.02
41	*Pintomyia serrana*	1	–	–	–	1	2	2	0.02
42	*Psathyromyia luziana*	2	–	–	–	2	–	2	0.02
43	*Psathyromyia abonnenci*	1	1	–	–	2	–	2	0.02
44	*Psathyromyia barrettoi barrettoi*	–	–	1	1	–	–	2	0.02
With reasonable sampling efforts (5880 h) for the multi-trapping approach, the present findings showed high species diversity (48 spp.). We preferred to use different capture methods because, although light-baited suction traps are one of the most widely used tools for vector surveillance, they have biases and limitations in terms of their effect on collection efficiency, population data, and pathogen detection [32]. Multi-trapping approaches with large samplings may offer a broader picture on the surveyed fauna, as shown by Souza et al. [33] in the Lower Amazon Basin (68 spp.) and by Freitas et al. [21] (46 spp.) and Souza et al. [8] (63 spp.) in Amapá. However, the use of CDC light traps in long term surveys and/or with strategical placement (i.e. with spatial stratification biasing to find feeding/resting sites) may, in part, supply some of these limitations. The present results are also reasonably compatible with ‘CDC trap-based’ surveys recently conducted in the

Table 1 Phlebotomine species compositions at three sampling sites surveyed during four 12-day field expeditions in Oiapoque, Amapá, Brazil (2015–2016). Species found infected by flagellates are shown in bold, with the number of specimens found infected with flagellates in parentheses (Continued)

No.	Species	I			II			III			Total		SIR					
45	*Evandromyia* begonae	♂♂			♂♂			♂♂			1	1	0.01					
46	*Micropygomyia* (Pilosa Series)	1	♂♂		♂♂			♂♂			1	1	0.01					
47	*Psychodapygus bispinosus*	♂♂			♂♂			♂♂			1	1	0.01					
48	*Psychodapygus carrerai*	♂♂			♂♂			♂♂			1	1	0.01					
Total											2064	1457	920	1552	1,285	9119	100.00	
											3905	2377	2837	0.78				
												40	33	38	-	-		
											2.251	1.857	1.662	-	-	-		
Abbreviations: I Vila Vitória Road; II Highway BR156-Km6; III Clevelândia do Norte Road; ♂♂ females, ♂♂ males, SIR species infection rate (flagellates), n/n number of males, while indistinguishable females, N total number																		
*The t-test for diversity was significant for all comparisons between sample sites (t = 11.1, P = 0.008)

Fig. 2 Estimation of canopy cover degree at the three surveyed ecotopes (forested areas) on the outskirts of the Oiapoque urban area (lower Oyapock River Basin), Amapá State, Brazil, bordering French Guiana. Asterisk indicates significant differences (P ≤ 0.05). Abbreviations: I, Vila Vitória Road; II, Highway BR156-Km6; III, Clevelândia do Norte Road
Table 2 Averages for the ten most frequently captured species per hour compiled for the three sampling sites surveyed during four 12-day field expeditions in Oiapoque, Amapá, Brazil (2015–2016). Highest individual values found (above 0.9) are shown in bold.

No.	Species	Capture method	CDC ground	CDC canopy	White Shannon	Black Shannon	Tree bases	Total					
			♀	♂	♀	♂							
1	Nyssomyia umbratilis	CDC ground	0.08	0.05	**0.96**	0.74	0.93	0.1	0.04	1.16	1.62	0.46	
2	Trichopygomyia trichopyga	CDC ground	0.23	0.25	0.15	0.11	0.08	0.08	0.12	0.06	–	0.44	
3	Evandromyia infraspinosa	CDC ground	0.13	0.10	0.13	0.11	0.5	0.29	**0.97**	0.54	0.04	0.08	0.25
4	Trichophoromyia ininii	CDC ground	0.04	0.04	0.00	0.01	0.04	–	0.08	–	–	0.07	
5	Psathyromyia aragaoi	CDC ground	0.02	0.02	0.04	0.02	–	–	0.08	–	–	0.05	
6	Psychodopus squamiventris maripaensis	CDC ground	0.00	0.00	0.02	0.00	**2.29**	0.1	0.68	0.12	0.04	–	0.03
7	Sciapemyia sordellii	CDC ground	0.02	0.00	0.02	0.01	0.04	0.04	0.12	0.04	0.08	–	0.03
8	Psychodopus ayrozai	CDC ground	0.00	0.00	0.04	0.02	0.22	–	0.22	0.02	–	0.02	
9	Micropygomyia rorotaensis	White Shannon	0.01	0.00	0.02	0.01	0.1	–	0.06	–	0.16	0.16	0.02
10	Bichromomyia flaviscutellata	CDC ground	0.01	0.00	0.00	0.00	0.14	0.08	0.1	–	–	–	0.01
	Other species (11–48)	White Shannon	0.05	0.03	0.15	0.09	0.35	0.1	0.22	0.06	0.12	0.29	0.12
Total			0.62	0.54	1.54	1.21	4.7	0.81	2.75	0.05	1.62	2.16	1.55
Total (♀ + ♂)			1.17	2.76	5.6		3.6		3.79	–	–	–	1.62

*a*Based on 4608 h CDC ground; 1152 h CDC canopy; 48 h white Shannon; 48 h black Shannon; and 24 h tree bases

*b*Total sampling effort: 5880 h

*c*Specimens found attempting to bite

Guiana Shield by Rotureau et al. [34] (46 spp.) and Fouque et al. [35] (38 spp.) in French Guiana, as well as by Furtado et al. [36] (45 spp.) in Amapá. Compiled information shows that approximately 84 species are registered in Amapá, and Brumptomyia pentacantha was a newly recorded species for that state. In Brazil, this species was recorded only in Pará, Acre, Rondônia and Mato Grosso states [8, 36–45].

Despite high overall species diversity, numerical domination (74.8%) of only three species was expected. Studies on forested environments have shown a phlebotomine fauna generally composed of a few dominant species and many species with few specimens [46, 47].

Differences in the degree of canopy cover between the three sampling sites were congruent with their respective Shannon indices (H), suggesting forest cover as an eligible variable for maintaining species diversity, although deforestation associated with human settlements can also produce environmental conditions suitable for maintaining...

Table 3 Strains of Leishmania and other flagellates isolated in vitro from naturally infected phlebotomine specimens captured at the three sampled sites in Oiapoque, Amapá, Brazil (2015–2016).

No.	Species	IEC code	Capture site	Capture method	Infectiona	PCR-RFLP result - WHO code
1	Nyssomyia umbratilis	M31681	II	CDC ground	+++	L. (V) guyanensis - IUMB/BR/2015/M31681
2	Nyssomyia umbratilis	M32146	I	CDC ground	+++	L. (V) guyanensis - IUMB/BR/2016/M32146
3	Nyssomyia umbratilis	M32149	I	Tree bases	++	L. (V) guyanensis - IUMB/BR/2016/M32149
4	Nyssomyia umbratilis	M32152	I	CDC canopy	+++	L. (V) guyanensis - IUMB/BR/2016/M32152
5	Nyssomyia umbratilis	M32154	II	CDC ground	+++	L. (V) guyanensis - IUMB/BR/2016/M32154
6	Nyssomyia umbratilis	M32156	II	CDC canopy	++++	L. (V) guyanensis - IUMB/BR/2016/M32156
7	Nyssomyia umbratilis	M32157	II	CDC canopy	++++	L. (V) guyanensis - IUMB/BR/2016/M32157
8	Nyssomyia umbratilis	M32158	II	CDC canopy	++	L. (V) guyanensis - IUMB/BR/2016/M32158
9	Nyssomyia umbratilis	M32159	II	CDC canopy	++	L. (V) guyanensis - IUMB/BR/2016/M32159
10	Nyssomyia umbratilis	M32160	III	CDC ground	+++	L. (V) guyanensis - IUMB/BR/2016/M32160
11	Sciapemyia sordellii	M32316	I	CDC ground	++	Unconclusive - IFU/BR/2016/M32316
12	Viannamyia furcata	M32652	I	CDC ground	+++	Unconclusive - IFUR/BR/2016/M32652

Abbreviations: I Vila Vitória Road, II Highway BR156-Km6, III Clevelândia do Norte Road

*a*Parasites per field (<40 objective): ++, 6–20; ++++, 21–40; ++++, > 40
the life-cycles of several sand fly species that are adaptable to these environments [48, 49]. Conversely, high SIR was found at sites with high degrees of canopy cover. Dense and humid substrate provided by a well-covered canopy may contribute to vector/host availability. In addition, low light penetration in the denser forest can provide suitable conditions for vector/host movements, as observed with the inverse correlation of phlebotomine density on light traps versus moonlight [50]. However, a minimum light is important for these insects to fly [51]; thus, vector-host interactions may result from equilibrium between these factors.

Numerous nematodes were found in the body cavity of five phlebotomine species. Although these flies were captured at different sampling sites and different vertical strata (ground/canopy level), some entomopathogenic nematode species infect phlebotomines on the ground, during the larval stage [52], suggesting that these infected flies may share the same breeding site.

Gregarines found in Bi. flaviscutellata (three specimens) were morphologically similar to Psychodiella sp. oocysts, although only molecular sequencing could confirm the species. Insect-host specificity between Bi. flaviscutellata and the gregarine species supports the hypothesis of a long, strong coevolutionary association between them [53].

Only 14.4% of blood-fed phlebotomines tested were positive by ELISA. This result could be attributed to the low blood content in the specimens as well as the blood recuperation procedure for the dissected slides, which may have contributed to the loss of material. Another possibility is the presence of animal blood; this was not accounted for by the available test panel since anteaters and sloths, for example, are presumably present in the Guianan ecosystem, acting as potential reservoir hosts of
These results provided a better understanding of the biology of five phlebotomine species. Undoubtedly, *Ny. umbratilis* is closely associated with *L. (V.) guyanensis* and has been consequently implicated as the main ACL vector in Oiapock based on data consistent with its well-recognized regional importance in the Guiana Shield [14] and in the wide Amazonian region [7]. Infection rates for this fly vary greatly in the literature, with some being consistent with the present findings [8, 56, 57]. Higher rates are usually biased by captures performed in the dry season [58] or supporting the dissection of fed and gravid females [21]. Infected specimens were captured in both levels of CDC traps and tree bases; however, they may have been infected at other sites. A natural vertical migration of these flies is well documented [13] and may explain dissociation movements between infection/resting sites as supposed for *L. (V.) naiffi* in the Lower Amazonian basin, where a canopy of *Ps. davisi* was found infected by that parasite, whose only recognized

Table 4 Phlebotomine specimens captured at three sampling sites in Oiapoque, Amapá, Brazil (2015–2016), tested by ELISA for blood sources and found positive for at least one antiserum from the available panel

No.	Species	Site	Method	Blood source
1	*Nyssomyia umbratilis*	III	CDC canopy	Bird
2	*Nyssomyia umbratilis*	III	CDC canopy	Bird
3	*Psychodopygus clastrei*	I	CDC ground	Dog, opossum, rodent
4	*Psychodopygus clastrei*	I	CDC ground	Armadillo
5	*Bichromomyia flaviscutellata*	I	CDC canopy	Bird
6	*Psychodopygus squamiventris maripaensis*	I	CDC canopy	Armadillo
7	*Psychodopygus squamiventris maripaensis*	II	CDC canopy	Armadillo
8	*Psychodopygus squamiventris maripaensis*	II	CDC canopy	Armadillo
9	*Evandromyia infraspinosa*	I	CDC ground	Armadillo
10	*Nyssomyia umbratilis*	I	Tree bases	Bird
11	*Nyssomyia umbratilis*	I	Tree bases	Bird
12	*Nyssomyia umbratilis*	I	Tree bases	Bird
13	*Nyssomyia umbratilis*	I	Tree bases	Dog, opossum
14	*Psychodopygus squamiventris maripaensis*	I	Shannon	Armadillo
15	*Nyssomyia umbratilis*	I	Tree bases	Bird
16	*Nyssomyia umbratilis*	I	Tree bases	Bird, dog, armadillo
17	*Nyssomyia umbratilis*	I	CDC canopy	Bird
18	*Nyssomyia umbratilis*	I	CDC ground	Man
19	*Nyssomyia umbratilis*	I	Tree bases	Armadillo
20	*Nyssomyia umbratilis*	I	CDC canopy	Bird

Abbreviations: I Vila: Vitória Road, II Highway BR156-Km6, III Clevelândia do Norte Road

Antisera panel: dog, bird, opossum, man, armadillo and rodent

*Positive sample with flagellates morphologically compatible with Leishmania sp.

L. (V.) guyanensis [54, 55]. These results provided a better understanding of the biology of five phlebotomine species. Undoubtedly, *Ny. umbratilis* is closely associated with *L. (V.) guyanensis* and has been consequently implicated as the main ACL vector in Oiapock based on data consistent with its well-recognized regional importance in the Guiana Shield [14] and in the wide Amazonian region [7]. Infection rates for this fly vary greatly in the literature, with some being consistent with the present findings [8, 56, 57]. Higher rates are usually biased by captures performed in the dry season [58] or supporting the dissection of fed and gravid females [21]. Infected specimens were captured in both levels of CDC traps and tree bases; however, they may have been infected at other sites. A natural vertical migration of these flies is well documented [13] and may explain dissociation movements between infection/resting sites as supposed for *L. (V.) naiffi* in the Lower Amazonian basin, where a canopy of *Ps. davisi* was found infected by that parasite, whose only recognized

Table 5 *Leishmania* (*Viannia*) *guyanensis* strains isolated from cutaneous lesions of patients treated at the Ralph Lainson Leishmaniasis Laboratory (IEC/SVS/MS) (2015–2017) who declared the Brazil-French Guiana border as the probable place of infection

Mnemonic	Infection site	No. of lesions (location)	IDR(M) (mm)	WHO code
FCF	Vila Vitória (BR)	2 (face/neck)	12 × 12	MHOM/BR/2017/M32218
HMLR	Gold mining (FG)	1 (foot)	12 × 12	MHOM/BR/2016/M31987
MRP	Gold mining (FG)	2 (hand/leg)	7 × 7	MHOM/BR/2016/M32048
ARSN	Gold mining (FG)	1 (arm)	8 × 8	MHOM/BR/2015/M31041
PSLS	Gold mining (FG)	Disseminated	10 × 10	MHOM/BR/2015/M31157
HS	Gold mining (FG)	1 (thorax)	12 × 12	MHOM/BR/2015/M31498
OSM	Régina (FG)	1 (leg)	10 × 10	MHOM/BR/2015/M32273
LMSJr	Gold mining (FG)	6 (leg (4), arm (1), neck (1))	17 × 17	MHOM/BR/2015/M32382

Abbreviations: BR Brazil, FG French Guiana
potential reservoir host is the terrestrial armadillo, Dasyurus novemcintus [32].

Blood contents from Ny. umbratilis reacted mainly with bird antisera (9/12). The role of birds in the population dynamics of phlebotomine species has been discussed [59–62]. Nyssomyia umbratilis being found with bird blood and concomitantly with a flagellate (likely leishmanine parasites) infection could be an occasional finding or suggests that this blood source provided suitable conditions for L. (V.) guyanensis development, as has been demonstrated in experiments between Gallus gallus blood and L. (L.) mexicana [63]. The findings on the eclectic food habits of Ny. umbratilis from the DNA content on the dissection slides. Considerable infections (+++) and absence of blood observed with these peripylaric parasites suggest the necessity to continuously investigate this fly’s possible involvement in the L. (V.) guyanensis enzootics. In addition, this species was frequent in Shannon captures (mainly in the black cloth, 0.97 females/h), with some specimens attempting to bite the professionals. It was impossible to determine whether Ev. infraspinosa could feed on potential L. (V.) guyanensis reservoirs. The present results indicate that this phlebotomine can feed on armadillos. The rodent Dasyprocta leporina is the only known blood source for this species [65] although anuran trypanosomatid isolated from this species from the western Brazilian Amazon suggests it feeds on cold-blooded rather than warm-blooded vertebrates [67].

In addition to Ny. umbratilis and Ev. infraspinosa, flagellate infections have been found in Mi. migonei, Sc. flaviatilis, Sc. sordellii and Vi. furchata. Negative PCR-RFLP for the other infected specimens suggested low DNA for Leishmania-typing or that they were other trypanosomatids. The apparent high infection rates of some of these species may have been biased by the low number of dissected females and thus cannot yield conclusive findings.

Other phlebotomine species were found with flagellates. The trypanosomatid isolated from Sc. flaviatilis will be further characterized. Parasites found in the blood of Pa. dendrophyla should be cautiously interpreted; this species shares the same ecotope as Ny. umbratilis, and some specimens likely receive occasional parasite ingestions, as observed by Freitas et al. [21]. These considerations can be extended to Vi. furchata and Pi. damascenoi [13].

Although no Leishmania infections were found for the following two fly species, they should still be discussed as putative vectors in the lower Oyapock River Basin based on the current Guianan/Amazonian ACL epidemiological background:

(i) Psychodopygus s. maripaensis has been included on the long list of possible vectors of L. (V.) naiffi based on infection findings in Régina, French Guiana [35] and Serra do Navio (AP) [8], extending its epidemiological relevance in other Brazilian/Guianan regions [36]. In addition, the Ps. s. maripaensis specimens tested for blood sources reacted positively to antiserum from an armadillo, the recognized potential reservoir of L. (V.) naiffi. Interestingly, DNA from L. (V.) braziliensis was detected in a pooled sample of Ps. s. maripaensis [referred to as P. squamiventris (s.L.)] in Sabajo Heuvels, Suriname, suggesting an additional putative vector role [68]. However, L. (V.) braziliensis transmission in Oyapock remains unclear. The most females found per hour in our Shannon captures (2.29; white colored cloth), with some attempting to bite the professionals, demonstrates the aggressive behavior of this species.

(ii) Bichromomyia flaviscutellata is the vector of L. (L.) amazonensis [7]. The presence of this sand fly in the surveyed sites, mainly site I, is noteworthy because of the pathological spectrum of its associated parasite [9] despite only the cutaneous form being documented in French Guiana [14, 15]. The synanthropic behavior of the Guianan population of Bi. flaviscutellata, which appears to adapt to environments under ecological pressures and human-made modifications [36, 69], has been documented. One Bi. flaviscutellata from a CDC canopy trap was positive for bird antiserum, raising the hypothesis that this species could migrate vertically to search for alternative blood sources. Domestic birds, such as chickens, may be attractive for this phlebotomine species, triggering it to adapt to modified environments. Our preliminary results from a peri domiciliary-forest stratification study have shown that some Bi. flaviscutellata specimens are captured outdoors, where animal shelters can stimulate phlebotomines to cross a 200 m gradient between the forest border and households (Vasconcelos dos Santos, unpublished data).

Most ACL isolates (6/8) were from patients infected while gold mining, showing that L. (V.) guyanensis ACL hotspots may be concentrated in these environments (upper Oyapock River Basin) [14, 15, 18]. Conversely, the present entomological results showed considerable infection rates of enzootics near urban cities, in which less economically attractive periurban forests (absence of gold mining) may reflect less human exposure to the disease (and consequently few ACL cases) in that area.

Conclusions
Our findings show that ACL transmission in the Oyapock River Basin reflects the Guianan/Amazonian
classical ecosystem, where *Ny. umbratilis* remains the main vector. A putative alternative transmission by *Ev. infraspinosa* is possible, but circumstantial parasite ingestion is also likely, as seen with other biologically compatible phlebotomine species cohabiting the same potential *L. (V.) guyanensis* reservoir ecotopes. Conversely, epidemiological relevance of these putative alternative transmission cycles cannot be estimated with certainty. Literature-based evidence indicates that others fly species, such as *Ps. s. maripaensis* and *Bi. flaviscutellata* are also epidemiologically relevant, and we included them on the priority list for vector surveillance in the lower Oyapock basin. Local studies on ACL enzootics should be encouraged, since each an ecological mosaic is unique. The ACL etiology shows that the transmission pattern in the upper Oyapock may differ slightly from the lower basin, but only further surveys of the former environment can confirm this hypothesis.

Abbreviations

ACL: American cutaneous leishmaniasis; WHO: World Health Organization; CDC: Center of Diseases Control

Acknowledgments

The authors wish to thank the team of the Instituto Evandro Chagas (Fábio Márcio Medeiros da Silva Freire, Iolando da Rocha Barata and Luciene Aranha da Silva Santos), the team of the Universidade Federal do Amapá (Dr. Emerson Monteiro dos Santos, Marcos Barbosa da Silva, Sebastiane de Freitas Araújo and Viviane Caetano Firmino) for their technical support in field work; and the team of Laboratório de Fronteira de Oiapoque (Rômulo Lima de Souza and Valmir Corrêa e Corrêa) and the team of Secretaria Municipal de Saúde de Oiapoque (Andrew Breno Ferreira da Silva and Wilson Clei Sales Marques) for their logistical and laboratory support.

Funding

This research was financially supported by the IEC and by the Programa de Apoio à Publicação Qualificada (Editorial 01/2018 PROPESP/UFPJ).

Availability of data and materials

All data supporting the conclusions of this article are included within the article. The datasets used and/or analysed during the current study are available from the corresponding author upon reasonable request.

Authors’ contributions

Study design: TVS, MMP and EFR. Data acquisition: TVS, GP, MG, RD and FTS. Resources: GP, MG, RD and FTS. Data analysis: TVS, GP, MG, RD, FTS, MMP and EFR. Manuscript, original draft: TVS and EFR; final version: TVS, GP, MG, RD, FTS, MMP and EFR. All authors read and approved the final manuscript.

Ethics approval and consent to participate

Procedures involving humans were submitted and approved by the Comité de Ética em Pesquisa - CEP (Ethics in Research Committee), under protocol CAAE: 57710416.2.0000.0019. Capturing and processing invertebrate fauna (phlebotomines) were authorized by the Sistema de Autorização e Informação em Biodiversidade - SISBIO (Biodiversity Authorization and Information System), under protocol No. 44524.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details

1 Programa de Pós Graduação em Biologia de Agentes Infecciosos e Parasitários, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará State, Brazil. 2 Seção de Parasitolgia, Instituto Evandro Chagas (Secretaria de Vigilância em Saúde, Ministério da Saúde), Ananindeua, Pará State, Brazil. 3 Département de Médecine, Ecosystemes Amazoniens et Pathologie Tropicale, EA 3593, Labex CEBa, Université de Guyane, Cayenne, French Guiana. 4 Laboratório de Imunodiagnóstico, Escola Nacional de Saúde Publica Sérgio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro State, Brazil. 5 Laboratório Interdisciplinar de Vigilância Entomológica em Diptera e Hemiptera, Instituto Oswaldo Cruz/ Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro State, Brazil.

Received: 23 August 2018 Accepted: 6 November 2018

Published online: 29 November 2018

References

1. Lainson R, Shaw JJ. Leishmaniasis in the New World. In: Collier L, Balows A, Sussman M, editors. Topley & Wilson's Microbiology and Microbial Infections, 10th ed., v. 5. Parasitology. London: Hodder Arnold; 2005. p. 313–49.
2. WHO. Control of the leishmaniasises, report of a meeting of the WHO Expert Committee on the control of leishmaniasises, Geneva, 22–26 March 2010. WHO Technical Report Series, n° 949. Geneva: WHO Press; 2010.
3. Ready PD. Biology of phlebotomine sand flies as vectors of disease agents. Annu Rev Entomol. 2013;58:227–50.
4. Brazil RP, Rodrigues AAF, Andrade Filho JD. Sand fly vectors of Leishmanis in the Americas - a mini review. Entomol Ornithol Herpetol. 2015;4:144.
5. Espinosa OA, Serano MG, Camargo EP, Teixeira MWG, Shaw JJ. An appraisal of the taxonomy and nomenclature of trypanosomatids presently classified as Leishmania and Endotrypanum. Parasitology. 2016;15:430–42.
6. Killick-Kendrick R. Some epidemiological consequences of the evolutionary fit between leishmaniasis and their phlebotomine vectors. Bull Soc Path Exot Fil. 1985;78:747–55.
7. Rangel EF, Lainson R. Proven and putative vectors of American cutaneous leishmaniasis in Brazil: aspects of their biology and vectorial competence. Mem Inst Oswaldo Cruz. 2009;104:937–55.
8. Souza AAA, Barata IR, Silva MGS, Lima JAN, Jennings YLL, Ishikawa EAY, et al. Natural Leishmania (Viannia) infections of phlebotomines (Diptera: Psychodidae) indicate classical and alternative transmission cycles of American cutaneous leishmaniasis in the Guiana Shield, Brazil. Parasite. 2017;24:13.
9. Silveira FT, Lainson R, Corbett CEP. Clinical and immunopathological spectrum of American cutaneous leishmaniasis with special reference to the disease in Amazonian Brazil a review. Mem Inst Oswaldo Cruz. 2004;99:239–51.
10. Lainson R, Ward RD, Shaw JJ. Cutaneous leishmaniasis in North Brazil: Lutzomyia anduzei as a major vector. Trans R Soc Trop Med Hyg. 1976;70:171–2.
11. Ward RD, Fraiha H. Lutzomyia umbratilis, a new species of sand fly from Brazil (Diptera: Psychodidae). J Med Entomol. 1977;14:313–7.
12. Lainson R, Shaw JJ, Ready PD, Miles MA, Povoa MM. Leishmaniasis in Brazil: XVI. Isolation and identification of Leishmania species from sand flies, wild mammals and man in north Para State, with particular reference to L. braziliensis guyanensis causative agent of “pián-bois”. Trans R Soc Trop Med Hyg. 1981;75:530–6.
13. Ready PD, Lainson R, Shaw JJ, Ward RD. The ecology of Lutzomyia umbratilis Ward & Fraiha (Diptera: Psychodidae), the major vector to man of Leishmania braziliensis guyanensis in north-eastern Amazonian Brazil. Bull Entomol Res. 1986;76:21–40.
14. Rotureau B. Ecology of the Leishmania species in the Guianan Ecoregion Complex. Am J Trop Med Hyg. 2006;74:811–96.
15. Simon S, Nacher M, Camire B, Basurko C, Roger A, Adenis A. Cutaneous leishmaniasis in French Guiana: revising epidemiology with PCR-RFLP. Trop Med Health. 2017;45:5.
16. Rotureau B, Joubert M, Cyriy E, Djossou F, Carre B. Leishmaniasis among gold miners, French Guiana. Emerg Infect Dis. 2006;12:169–70.
17. Instituto Brasileiro de Geografia e Estatística. Coordenação de População e Indicadores Sociais (1st July 2013). Estimates of resident population in the Brazilian municipalities. 2013. http://www.ibge.gov.br. Accessed 14 Aug 2017
58. Le Pont F, Pajot FX. La leishmaniose en Guyane Française. I. Étude de l'écologie et du taux d’infection naturelle d’un vecteur Lutzomyia (Nyssomyia) umbratilis Ward et Fraiha, 1977 en saison sèche. Considerations épidémiologiques. Cahiers ORSTOM Ser Entomol Med Parasitol. 1980;18:359–83.

59. Brazil RP, Almeida DC, Brazil BG, Mamede SM. Chicken house as a resting site of sand flies in Rio de Janeiro, Brazil. Parasitologia. 1991;33:113–7.

60. Teodoro U, La Salvia FV, Lima EM, Spinosa RP, Barbosa OC, Ferreira MEMC, et al. Observações sobre o comportamento de flebotomíneos em écotoxos florestais e extraflorestais, em área endêmica de leishmaniose tegumentar americana, no norte do Estado do Paraná, sul do Brasil. Rev Saude Publica. 1993;27:242–9.

61. Dias FFOP, Lorosa ES, Rebêlo JMM. Fonte alimentar sanguínea e a peridomiciliação de Lutzomyia longipalpis (Lutz & Neiva, 1912) (Psychodidae, Phlebotominae). Cad Saude Publica. 2003;19:1373–80.

62. Ávila MM, Brilhante AF, de Souza CF, Bevilacqua PD, Galati EAB, Brazil RP. Ecology, feeding and natural infection by Leishmania spp. of phlebotomine sand flies in an area of high incidence of American tegumentary leishmaniasis in the municipality of Rio Branco, Acre, Brazil. Parasit Vectors. 2018;11:64.

63. Sant’Anna MRV, Nascimento A, Alexander B, Dilger E, Cavalcante RR, Daz-Albitre HM, et al. Chicken blood provides a suitable meal for the sand fly Lutzomyia longipalpis and does not inhibit Leishmania development in the gut. Parasit Vectors. 2010;3:3.

64. Christensen HA, Arias JR, Vasquez AM, Freitas RA. Hosts of sand fly vectors of Leishmania braziliensis guyanensis in the central Amazon of Brazil. Am J Trop Med Hyg. 1982;31:239–42.

65. Kocher A, de Thoisy B, Catzeflis F, Valière S, Bahuls AL, Murienne J. iDNA screening: disease vectors as vertebrate samplers. Mol Ecol. 2017;26:6478–86.

66. Nery LCR, Lorosa ES, Franco AMR. Feeding preference of the sand flies Lutzomyia umbratilis and L. spathotrichia (Diptera: Psychodidae, Phlebotominae) in an urban forest patch in the city of Manaus, Amazonas, Brazil. Mem Inst Oswaldo Cruz. 2004;99:571–4.

67. Ferreira RC, Souza AA, Freitas R, Campaner M, Takata CSA, Barret TV, Shaw JJ, et al. Phylogenetic lineage of closely related trypanosomes (Trypanosomatidae, Kinetoplastida) of anurans and sand flies (Psychodidae, Diptera) sharing the same ecotopes in Brazilian Amazonia. J Eukaryot Microbiol. 2008;55:427–35.

68. Kent A, Santos TV, Gandadin A, Samjhawan A, Mans DRA, Schallig HDFH. Studies on the sand fly fauna (Diptera: Psychodidae) in high-transmission areas of cutaneous leishmaniasis in the Republic of Suriname. Parasit Vectors. 2013;6:318.

69. Ready PD, Lainson R, Shaw JJ. Leishmaniasis in Brazil: XX. Prevalence of enzootic rodent leishmaniasis (Leishmania mexicana amazonensis), and apparent absence of “pian bois” (Le. braziliensis guyanensis), in plantations of introduced tree species and in other non-climax forests in eastern Amazonia. Trans R Soc Trop Med Hyg. 1983;77:775–85.