Two-photon transport through a waveguide coupling to a whispering gallery resonator containing an atom and photon-blockade effect

T. Shi1 and Shanhui Fan2

1Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, 85748 Garching, Germany
2Ginzton Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA

(Dated: May 2, 2014)

We investigate the two-photon transport through a waveguide side-coupling to a whispering-gallery-atom system. Using the Lehmann-Symanzik-Zimmermann (LSZ) reduction approach, we present the general formula for the two-photon processes including the two-photon scattering matrices, the wavefunctions and the second order correlation functions of the out-going photons. Based on the exact results of the second order correlation functions, we analyze the quantum statistics behaviors of the out-going photons for two different cases: (a) the ideal case without the inter-modal coupling in the whispering gallery resonator; (b) the case in the presence of the inter-modal coupling which leads to more complex nonlinear behavior. In the ideal case, we show that the system consists of two independent scattering pathways, a free pathway by a cavity mode without atomic excitation, and a "Jaynes-Cummings" pathway described by the Jaynes-Cummings Hamiltonian of a single-mode cavity coupling to an atom. The free pathway does not contribute to correlated two-photon processes. In the presence of intermodal mixing, the system no longer exhibit a free resonant pathway. Instead, both the single-photon and the two photon transport properties depend on the position of the atom. Thus, in the presence of intermodal mixing one can in fact tune the photon correlation properties by changing the position of the atom. Our formalism can be used to treat resonator and cavity dissipation as well.

PACS numbers: 42.50.-p, 42.79.Gn, 11.55.Ds

I. INTRODUCTION

Recently, the whispering-gallery-atom system inspires a lot of interest[1–11], owing to its broad applications in the studies of quantum optics. A schematic of such a system are shown in Fig. 1, where a waveguide is side-coupled to a whispering-gallery resonator, which then couples to a two-level system. In the experimental study of this system[2–4], the two-level system can be either a quantum dot[2], or an actual atom[3]. Here, we will refer such a two-level system as an “atom”. These experiments have measured the transmission properties of such a waveguide-resonator-atom system under weak light excitation, and have demonstrated quantum effects including anti-bunching and photon blockade effects.

The experimental progress on this system, in turn, motivated several recent theoretical studies. Srinivasan and Painter analyzed this system under the excitation of a weak coherent state input[12], and obtained transmission properties and coherence properties of the transmission through a numerical procedure with a truncated number-state basis for the photons in the resonator[5]. Shen and Fan calculated analytically the transmission properties of such a waveguide-resonator-atom system under weak light excitation, and have demonstrated quantum effects including anti-bunching and photon blockade effects.

In this paper, we study the two-photon transport property of this system shown in Fig. 1. While the response of the system under weak coherent-state input yields much information about its non-classical properties, we note that one important goal of integrated quantum optics is to process quantum states. Therefore, it is important to study such a system with the input of non-classical states such as Fock state as well. In addition, in contrast to the study of the transport properties of a single photon[13–18], the studies of two-photon transports provide important information[14 20] about atom-induced photon-photon interaction that is absent in the single-photon Hilbert space. Of particular interest is the anti-bunching behavior of the two outgoing photons, which indicate the photon blockade effects[24], as has been observed in a variety of systems[27 40].

FIG. 1: (Color online) The schematics for the system: The blue and red arrows denote the two whispering-gallery modes, which interact with the atom and the waveguide.
The paper is organized as follows. In Sec. II we review the model Hamiltonian and our theoretical approach based on the Lehmann-Symanzik-Zimmermann (LSZ) reduction formula in quantum field theory. This approach results in an exact formula for the scattering matrix of the system in multi-photon sub-space. In Sec. III, we present the exact analytical results, including the single-photon transmissions and the wavefunctions for the two out-going photons. Based on the general analytical results, we analyze the very distinct quantum statistics behaviors of the out-going photons for two different cases in Sec. IV and Sec. V. Section IV considers the ideal case in the absence of inter-modal coupling in the whispering gallery resonator. Section V analyzes the effect of inter-modal coupling which leads to more complex nonlinear behavior. In Sec. VI, the results are summarized with some remarks and outlooks.

II. MODEL SETUP

The system in Fig. 1 is described by the Hamiltonian [4, 7]

\[H = H_W + H_{wg} + H_{hyb}. \] (1)

Here,

\[H_W = \sum_{k>0} k r_k^+ r_k - \sum_{k<0} k l_k^+ l_k \] (2)

describes photons propagating in the waveguide. \(r_k \) (\(r_k^+ \)) and \(l_k \) (\(l_k^+ \)) are the annihilation (creation) operators of right-moving and left-moving photons, respectively. The right-moving photons have momentum \(k > 0 \), and the left-moving photons have momentum \(k < 0 \).

In Eq. (1),

\[H_{wg} = \Omega |e\rangle \langle e| + \omega_c(a^+ a + b^+ b) + h b^+ a + h^* a^+ b + \sigma^+ (g_a a + g_b b) + \text{H.c.} \] (3)

describes the two-level system, the resonator, and the interaction between them under the rotating-wave approximation. In Eq. (3), \(a \) and \(b \) are the annihilation operators for the two counter rotating modes in the resonator. \(h \) is the strength of inter-modal-coupling between these two modes and is typically induced by surface roughness on the resonator. The atom supports a ground state \(|g\rangle \) and an excited state \(|e\rangle \) with a transition frequency \(\Omega \). \(g_a \) (\(g_b \)) is the coupling constant between mode \(a \) (\(b \)) and the atom, and \(\sigma^+ = |e\rangle \langle g| \).

In Eq. (1),

\[H_{hyb} = \frac{1}{\sqrt{L}} \sum_k (V_R r_k^+ a + V_L l_k^+ b + \text{H.c.}) \] (4)

describes the coupling between the waveguide and the resonator. Here, we adopt a box-normalization scheme with \(L \) being the length of the waveguide, and \(V_R \) (\(V_L \)) is the coupling strength between the right-moving (left-moving) photon in the waveguide and the mode \(a \) (\(b \)) in the whispering-gallery system.

We end this section by briefly commenting on various experimental aspects that are related to the Hamiltonian of Eq. (1). As a representative example, the experiment in Refs. [2–4] has \(\hbar c / 2\pi = 0.1 \sim 10^6 \text{GHz} \). The resonator linewidth \(\Gamma / 2\pi = 0.1 \sim 10^6 \text{Hz} \). The atom-resonator coupling constant \(|g_i| / 2\pi (i = a, b) \) can reach \(10 \text{MHz} \) \(\sim 10^6 \text{GHz} \). While our theory does not depend on such a detailed choice of parameters, in the numerical examples below we will be focusing on a similar strong-coupling regime where \(|g_i| \gg \Gamma \).

In the experiment in Refs. [3] the intermodal mixing has a strength of \(|h| / 2\pi = 1 \sim 10^6 \text{MHz} \). The phase of the \(h \) depends on the detail of the surface roughness and typically cannot be controlled in an experiment. On the other hand, the relative phase of \(g_a \) and \(g_b \) depends on the position of the atom, which can be controlled experimentally [3, 7]. Since the size of the whispering gallery mode is at least a few wavelength, the relative phase of \(g_a \) and \(g_b \) can vary anywhere between 0 and 2\pi.

III. OVERVIEW OF THE THEORETICAL APPROACH

We solve the single- and two-photon scattering matrix (S-matrix) for the Hamiltonian in Eq. (1) using the LSZ approach. This approach has been discussed in details in Refs. [23, 24]. Here we only provide a brief summary of those aspects that are relevant for subsequent discussions.

The single-photon and two-photon S-matrices read

\[S_{p;k} = \delta_{kp} + iT_{p;k}, \] (5)

and

\[S_{p_1p_2;k_1k_2} = S_{p_1;k_1}S_{p_2;k_2} + S_{p_1;k_2}S_{p_2;k_1} + iT_{p_1p_2;k_1k_2}, \] (6)

respectively, where \(k \) (\(p \)) is the momentum of the incident (out-going) single-photon, and \(k_1, k_2 \) (\(p_1, p_2 \)) are the momenta of two incident (out-going) photons. The right and left moving photons have the positive and negative momenta, respectively. Here, the \(T \)-matrix element \(T_{p_1,...,p_n;k_1,...,k_n} \equiv T_{[p;k]} \) has the form

\[iT_{[p;k]} = \lim_{\omega_{k_j} \to \omega_{p_j}} n \prod_{j=1}^n \left[G_0(\omega_{k_j}, k_j)G_0(\omega_{p_j}, p_j) \right]. \] (7)

In Eq. (7), \(G_0(\omega, k) = i/(\omega - \varepsilon_k + i0^+) \) is the free propagator of a single photon with \(\varepsilon_k = |k| \) being the dispersion relation of the waveguide.

\[G_{[p;k]}(\omega_p, \omega_k) = \int \prod_{j=1}^n \frac{dt_j dt_j'}{2\pi} G_{[p;k]}(t', t) \times \prod_{j=1}^n \left[\exp(\omega_{p_j} t_j' - i\omega_k t_j) \right]. \] (8)
describes the external sources η into the waveguide. Based on the formalism as outlined above, in the next section we show the exact analytical results for the single-photon and two-photon scattering processes.

IV. ANALYTIC RESULTS FOR ONE AND TWO PHOTON S-MATRICES

In this section, the S-matrices are obtained by LSZ reduction, which leads to the exact results of the single-photon transmission and the second order correlation functions of the two out-going photons.

A. Single-photon transport

For the single-photon case, using the T-matrix element \[T_{k} \delta_{p,k} + R_{k} \delta_{p,-k}, \] the Green function \[G_{[p,k]}(t', t) \] and the generating functional \[\begin{equation}
S_{c} = \sum_{f=r,l} \int dt \int dt_{k} \left[n_{f,k}^{*}(t) n_{f,k}(t) + H.c. \right]. \tag{11}
\end{equation} \] describes the external sources $n_{f,k}(t)$ that injects photons into the waveguide.

Based on the formalism as outlined above, in the next section we show the exact analytical results for the single-photon and two-photon scattering processes.

B. Two-photon transport

In the subsection, we derive the exact formula for the scattering wavefunctions and the second order correlation functions of the two out-going photons. is the effective Hamiltonian with $\Gamma_{R} = |V_{R}|^{2}$ and $\Gamma_{L} = |V_{L}|^{2}$ being the decay rates of the two whispering-gallery modes to the waveguide, respectively. Without loss of generality, we consider $\Gamma_{R} = \Gamma_{L} \equiv \Gamma$. We notice that the excitation number $N = \langle e \rangle (c) + a^\dagger a + b^\dagger b$ commutes with H_{eff}. Thus, for the single-photon scattering, in the single-excitation subspace as spanned by the basis $\{ |0\rangle_{a} |0\rangle_{b}, |g\rangle |1\rangle_{a} |0\rangle_{b}, |g\rangle |0\rangle_{a} |1\rangle_{b} \}$, we represent the effective Hamiltonian as \[H_{\text{eff}}^{(1)} = \begin{pmatrix}
\Omega & g_{a} & g_{b} \\
g_{a} & \omega_{c} - i \frac{\Gamma}{2} & h^* \\
g_{b} & h & \omega_{c} - i \frac{\Gamma}{2}
\end{pmatrix}. \tag{16}\]

Using the form of $H_{\text{eff}}^{(1)}$ in Eq. (16), the single-photon reflection and transmission coefficients can be determined as \[R_{k} = \frac{-iV_{L} V_{R}^*}{D(k)} [g_{a} g_{b}^* + h(k - \Omega)], \tag{17} \]
and \[T_{k} = 1 - \frac{i\Gamma}{D(k)} [(k - \Omega)(k - \omega_{c} + i \frac{\Gamma}{2}) - |g_{0}|^{2}], \tag{18} \]
respectively. Here, we define \[D(k) = (k - \omega_{c} + i \frac{\Gamma}{2})[(k - \Omega)(k - \omega_{c} + i \frac{\Gamma}{2}) - G_{+}^{2}] \]
and \[G_{+} = \sqrt{|g_{a}|^{2} + |g_{b}|^{2}}. \tag{20} \]

The results (17) and (18) accord with that obtained in Ref. [6, 7]. Equations (17) and (18) are applicable in the absence of intrinsic atomic or cavity dissipation. In the presence of intrinsic dissipations, the reflection and transmission probabilities $|R_{k}|^{2}$ and $|T_{k}|^{2}$ are obtained by substitution $\Omega \rightarrow i\gamma_{a}$ and $\omega_{c} \rightarrow i\gamma_{c}$ for Ω and ω_{c} in Eqs. (17) and (18), where γ_{a} and γ_{c} are the intrinsic decay rates of the cavity and the atom.
and
\[S_{p_1 p_2 ; k_1 k_2}^{(T)} = T_1 T_2 (\delta_{p_1 k_1} \delta_{p_2 k_2} + \delta_{p_2 k_1} \delta_{p_1 k_2}) \]
\[-i |V_R|^4 \delta_{p_1 + p_2 k_1 + k_2} W_{p_1 p_2 k_1 k_2}, \]
(22)
for two reflected photons and transmitted photons, where R and T refers to transmission and reflection, respectively. In Eqs. (21) and (22),
\[U_{p_1 p_2 ; k_1 k_2} = F_1 (p_1, p_2; k_1, k_2) + F_1 (p_1, p_2; k_2, k_1) \]
(23)
\[+ F_2 (p_2, p_1; k_1, k_2) + F_2 (p_2, p_1; k_2, k_1) , \]
and
\[W_{p_1 p_2 ; k_1 k_2} = F_2 (p_1, p_2; k_1, k_2) + F_2 (p_1, p_2; k_2, k_1) \]
(24)
\[+ F_2 (p_2, p_1; k_1, k_2) + F_2 (p_2, p_1; k_2, k_1) , \]
Here, we define
\[F_1 (p_1, p_2; k_1, k_2) = \begin{align*}
(0 b & k_1 a | 0 a | 0 b) p_1 - H_1^{(1)} k_1 + k_2 - H_2^{(2)} k_2 - H_1^{(1)} k_2 \frac{1}{k_1 - k_2} a \frac{a}{0} | 0 \\
+ \frac{1}{k_1 - k_2} (0 a & k_1 a | 0 a | 0 b) p_1 - H_2^{(1)} k_1 + k_2 - H_1^{(1)} k_2 \frac{a}{k_2} \frac{a}{0} | 0
\end{align*} \]
(25)
and
\[F_2 (p_1, p_2; k_1, k_2) = \begin{align*}
(0 a & k_1 a | 0 a | 0 b) p_1 - H_2^{(1)} k_1 + k_2 - H_2^{(1)} k_2 \frac{1}{k_2 - k_1} a \frac{a}{0} | 0 \\
+ \frac{1}{k_2 - k_1} (0 a & k_1 a | 0 a | 0 b) p_1 - H_2^{(1)} k_1 + k_2 - H_2^{(1)} k_2 \frac{a}{k_2} \frac{a}{0} | 0
\end{align*} \]
(26)
where \(H_1^{(1)} \) is defined in Eq. (19). In the two-excitation subspace as spanned by the basis \{|1\rangle | 1 \rangle | 0 \rangle | 0 \rangle, |g\rangle | 1 \rangle | 1 \rangle | 0 \rangle, |e\rangle | 0 \rangle | 1 \rangle | 0 \rangle, |g\rangle | 0 \rangle | 2 \rangle | 0 \rangle\}, we represent the effective Hamiltonian
\[H_2^{(2)} = \begin{pmatrix}
2 \alpha & \sqrt{2} g_a & \sqrt{2} h & 0 \\
\sqrt{2} g_a & \alpha + \Omega & g_b & h \\
\sqrt{2} h & g_b & 2 \alpha & \sqrt{2} h \\
0 & h & g_a & \alpha + \Omega \\
0 & 0 & \sqrt{2} h & 2 g_b \\
0 & 0 & \sqrt{2} h & 2 g_b \\
\end{pmatrix} \]
(27)
where \(\alpha = \omega_c - \ii \Gamma / 2 \). In general, direct evaluation of \(U_{p_1 p_2 ; k_1 k_2} \) and \(W_{p_1 p_2 ; k_1 k_2} \) can be rather complicated. However, there are cases where \(U_{p_1 p_2 ; k_1 k_2} \) and \(W_{p_1 p_2 ; k_1 k_2} \) can be obtained exactly in a compact form. We will discuss such examples in the next section.

The Fourier transformations of matrix elements (21) and (22) result in wavefunctions of the two reflected or transmitted photons:
\[\psi_R (x_1, x_2) = \frac{1}{4 \pi} \int dp_1 dp_2 R_{p_1 p_2 ; k_1 k_2} e^{i p_1 x_1 + i p_2 x_2} \]
\[= \frac{1}{2 \pi} e^{-i E x} |R_1 R_2| \cos(\Delta_k x) \]
\[+ \frac{1}{2} |V_R|^2 \int d\Delta_k e^{i \Delta_k x} U_{p_1 p_2 ; k_1 k_2} , \]
(28)
and
\[\psi_T (x_1, x_2) = \frac{1}{4 \pi} \int dp_1 dp_2 T_{p_1 p_2 ; k_1 k_2} e^{i p_1 x_1 + i p_2 x_2} \]
\[= \frac{1}{2 \pi} e^{i E x} |T_1 T_2| \cos(\Delta_k x) \]
\[+ \frac{1}{2} |V_R|^2 \int d\Delta_k e^{i \Delta_k x} W_{p_1 p_2 ; k_1 k_2} , \]
(29)
respectively. Here, we define the total momentum \(E = k_1 + k_2 = p_1 + p_2 \), the relative momenta \(\Delta_k = (k_1 - k_2) / 2 \) and \(\Delta_p = (p_1 - p_2) / 2 \). As well as the center of mass coordinate \(x_c = (x_1 + x_2) / 2 \) and the relative coordinate \(x = x_1 - x_2 \). Because \(U_{p_1 p_2 ; k_1 k_2} \) and \(W_{p_1 p_2 ; k_1 k_2} \) are both even functions of \(\Delta_p \), \(\psi_R (x_1, x_2) \) and \(\psi_T (x_1, x_2) \) are invariant under the permutation \(x_1 \leftrightarrow x_2 \), as required since photons are bosons. From now on, we only focus on the wavefunctions for \(x > 0 \).

The integral in Eqs. (28) and (29) can be evaluated by analyzing the analytic properties of the matrix elements \(U_{p_1 p_2 ; k_1 k_2} \) and \(W_{p_1 p_2 ; k_1 k_2} \). These matrix elements exhibit three poles \(p_l = E / 2 - \ii \alpha_k \) on the upper half plane, where \(\alpha_k \) is the eigenvalue of \(H_1^{(1)} \) with \(l = 1, 2, 3 \). Here, notice that the eigenvalues of \(H_2^{(2)} \) do not contribute to the poles in \(U_{p_1 p_2 ; k_1 k_2} \) and \(W_{p_1 p_2 ; k_1 k_2} \), because they only associate with the total energy \(E \), as shown in Eqs. (28) and (29), and we consider here an incident two-photon state with a fixed total energy. The residue theorem then leads to the wavefunctions
\[\psi_R (x_1, x_2) = \frac{1}{2 \pi} e^{-i E x} |R_1 R_2| \cos(\Delta_k x) \]
\[+ \frac{1}{2} |V_R|^2 \sum_l \text{Res}_{p_l} U_{p_1 p_2 ; k_1 k_2} e^{i p_l x} , \]
(30)
and
\[\psi_T (x_1, x_2) = \frac{1}{2 \pi} e^{i E x} |T_1 T_2| \cos(\Delta_k x) \]
\[+ \frac{1}{2} |V_R|^2 \sum_l \text{Res}_{p_l} W_{p_1 p_2 ; k_1 k_2} e^{i p_l x} , \]
(31)
where \(\text{Res}_{p_l} \Phi (\Delta_p) \) denotes the residue of the function \(\Phi (\Delta_p) \) at \(p_l \).

From the two-photon wavefunctions, the second-order correlation functions for the reflected and transmitted photons can be obtained as:
\[g_R^{(2)} (\tau) = \langle \psi_R^\dagger (x) \psi_R (x + \tau) \rangle \]
\[= \frac{1}{|\Psi_R^\dagger (x) \psi_R (x)|^2} \]
\[g_T^{(2)} (\tau) = \langle \psi_T^\dagger (x) \psi_T (x + \tau) \rangle \]
\[= \frac{1}{|\Psi_T^\dagger (x) \psi_T (x)|^2} \]
(32)
where \(r(x) \) \((l(x))\) is the Fourier transformation of \(r_k \) \((l_k)\). Equation (32) can be simplified to yield
\[g_s^{(2)} (\tau) = |\psi_s (x + \tau, x)|^2 \]
where \(s \) denote “R” and “T”. Therefore, our theoretical results on the two-photon
wavefunctions can be compared to experimental measurement of second-order correlation functions for this system.

In the presence of intrinsic atomic or cavity dissipation, Eqs. (30) and (31) remain valid, provided that we substitute $\Omega - i\gamma_a$ and $\omega_c - i\gamma_c$ for Ω and ω_c in $U_{p_1p_2;k_1k_2}$ and $W_{p_1p_2;k_1k_2}$.

C. Spectrum of the whispering-galley-atom system

For this system, its transport properties are closely related to the spectrum of the resonator coupling to the atom. Therefore, in this section we provide a brief discussion of the spectrum of the resonator-atom Hamiltonian H_{WG} as defined in Eq. (3). We consider two separate cases:

Case (a): As seen in Eq. (3), the whispering-galley resonator by itself supports a clockwise and a counter clockwise rotating mode, both coupled to the atom. However, assuming that either

$$h = 0,$$ \hspace{1cm} (33)

or

$$h \neq 0, \text{ and } \frac{g_a}{g_b} = \pm e^{-i\theta_h},$$ \hspace{1cm} (34)

it is then possible form a linear superposition of these modes that is decoupled from the atom. In Eq. (34), $\theta_h = \arg h$ is the phase of h. In either case, the resonator-atom Hamiltonian can be rewritten as:

$$H_{\text{eff}} = \Omega |e\rangle \langle e| + \omega_A A^\dagger A + \omega_B B^\dagger B + (G_+ \sigma^+ A + \text{H.c.}),$$ \hspace{1cm} (35)

where the operators $A = (g_a a + g_b b)/G_+$ and $B = (g_b^* a - g_a^* b)/G_+$. For the case described by Eq. (33), we have $\omega_A = \omega_B = \omega_c - i\Gamma/2$. For the case described by Eq. (34), we have $\omega_A = \omega_c - i\Gamma/2 + |h|$ and $\omega_B = \omega_c - i\Gamma/2 - |h|$.

It follows from Eq. (34) that the mode B is decoupled from the atom, while mode A couples to the atom through the standard Jaynes-Cummings (JC) Hamiltonian

$$H_{\text{JC}} = \Omega |e\rangle \langle e| + \omega_A A^\dagger A + (G_+ \sigma^+ A + \text{H.c.}).$$ \hspace{1cm} (36)

For subsequent discussion, we refer to mode A as the “JC mode” and mode B as the “free mode”, respectively.

The spectrum of the Hamiltonian (35) is displayed in Fig. 2a for the case $h = 0$, and in Fig. 2b for the case when $h \neq 0$, and $g_b/g_a = \pm e^{-i\theta_h}$. In either case, due to the very different nature of modes A and B, for the incident photons with energy on resonance with modes A and B, the out-going photons must exhibit very different statistics behaviors, which could be investigated by the second order correlation functions $g^{(2)}(\tau)$.

Case (b): When neither conditions in Eq. (33) nor Eq. (34) are satisfied, we can no longer form a linear superposition of the two whispering gallery modes that decouples with the atom. The energy spectrum, shown in Fig. 2c, is more complicated.

In the next two sections, we study the photon transmissions for the cases (a) and (b), respectively. In case (a), the atom effectively couples only to one of the two modes of the resonator, below we refer to this case as an “effective single-mode case”. In contrast, for case (b) the atom couples to both modes, and below we refer to this case as a “two-mode case”.

V. RESULTS FOR THE EFFECTIVE SINGLE-MODE CASE

In this section, we present transport properties of single-photon and two-photons, for the effective single-mode case as discussed in Section III.C, where the resonator supports a photon mode that is decoupled from the atom. For the numerical results in this and next section, we normalize all quantities that have the dimension of energy with respect to Γ, the waveguide-resonator coupling rate. Also, we choose ω_c as the origin of the energy axis.
FIG. 3: (Color online) Single photon transmission (Red dashed curve) and reflection (Blue solid curve) spectra for the effective single-mode case. All quantities with energy dimensions are normalized to Γ, δ_k is the detuning between the incident photon and ω_c: (a) $h = 0$, $|g_a| = |g_b| = 5$, and $\Omega = \omega_c$; (b) $|h| = 2$, $|g_a| = |g_b| = 5$, $g_b/g_a = e^{-i\theta}$, and the detuning $\Omega - \omega_c = 2$ between atom and the cavity.

A. Single-photon transport

For this effective single-mode case, the single-photon reflection coefficient R_k can be rewritten as

$$R_k = -i \Gamma g_a g_b^* \frac{k - \Omega}{G_+^2 - (k - \Omega)(k - \omega_A) - G_+} - \frac{1}{k - \omega_B}, \quad (37)$$

in which the first and second terms describe the contributions from the JC mode and the free mode, respectively. We show the single-photon reflection and transmission probabilities $|R_k|^2$ and $|T_k|^2$ in Fig. 3. In Fig. 3a, we choose $h = 0$, $\Omega = \omega_c$, and $|g_a| = |g_b|$. We find that in the strong coupling limit $\Gamma \ll G_+$, there are three peaks in the reflection spectrum. The peak in the center of the spectrum corresponds to the free mode B. Two other peaks correspond to the JC modes in the single-excitation subspace.

In Fig. 3b, we choose $\Omega = \omega_c + |h|$ and $g_b/g_a = e^{-i\theta}$. In the strong coupling limit $\Gamma \ll G_+$, the reflection spectrum again exhibits three peaks. The central peak again corresponds to the free mode. Compared to the free mode in Fig. 3a at the frequency ω_c, here the frequency of the free mode is shifted to $\omega_c - |h|$ due to the intermodal coupling. Other two peaks correspond to the two JC modes.

Based on these results, we conclude that the single-photon transport consists of two independent scattering processes, i.e., the scattering by the JC modes, which have atomic excitation, and by the free mode that is decoupled from the atom.

B. Two-photon transport and photon blockade

For this effective single-mode case, straightforward calculations of Eqs. (25) and (26) lead to the analytic results

$$U_{p_{11}; k_1, k_2} = -\frac{2g_b^2g_a^2(E - \omega_A - \Omega)}{\prod_{s=\pm}(E - \lambda_{2s})} \frac{(E - 2\Omega)(E - 2\omega_A) - 4G_+^2}{\prod_{s=\pm}\prod_{i=1,2}(k_i - \lambda_{1s})(p_i + \lambda_{1s})}, \quad (38)$$

and

$$W_{p_{11}; k_1, k_2} = -\frac{2|g_a|^4(E - \omega_A - \Omega)}{\prod_{s=\pm}(E - \lambda_{2s})} \frac{(E - 2\Omega)(E - 2\omega_A) - 4G_+^2}{\prod_{s=\pm}\prod_{i=1,2}(k_i - \lambda_{1s})(p_i - \lambda_{1s})}. \quad (39)$$

Here, $\lambda_{1\pm}$ and $\lambda_{2\pm}$ are the eigenvalues of H_{JC} in the single- and two-excitation subspaces [24]. We note that $U_{p_{11}; k_1, k_2}$ and $W_{p_{11}; k_1, k_2}$, i.e., the two-photon correlated scattering, have contributions only from the JC modes. The free mode does not contribute to the correlated scattering since it does not have any atomic excitation.

In Fig. 4, the two-photon background fluorescence $B_R = |V_R|^4 |V_L|^4 |U_{p_{12}; k_1, k_2}|^2 / 4\pi^2$ of the reflected photons is shown for the strong coupling limit $G_+ \gg \Gamma$. The two-photon background fluorescence displays a single peak at $\Delta_k = \Delta_p = 0$ when the total energy of the incident photons approaches $2\text{Re}\lambda_{1\pm}$ (Fig. 4a and b), while the two-photon background fluorescence splits into four peaks when the total energy of the incident photons deviates from $2\text{Re}\lambda_{1\pm}$ (Fig. 4c and d).

In general, the background fluorescence peaks when one of the incident or outgoing photons has energy that coincides with a single-excitation eigenstate [24]. Examining Eqs. (38) and (39), we see that the poles occur at $\Delta_k = \pm(E/2 - \text{Re}\lambda_{1\pm})$ and $\Delta_p = \pm(E/2 - \text{Re}\lambda_{1\pm})$. Thus, one might expect eight peaks in the background fluorescence spectra in the general case. However, four of these poles turn out to have very small residues, resulting in the presence of only four peaks in Figs. 4c and d.

Together with Eqs. (38) and (39), it follows from Eqs. (30) and (31) that the outgoing two-photon wavefunctions are

$$\psi_R(x_1, x_2) = \frac{e^{-iEx_c}}{2\pi} [R_{k_1} R_{k_2} \cos(\Delta_k x) - V_L^2 V_{R_1}^2 g_b^2 g_a^2 F(x)],$$

and

$$\psi_T(x_1, x_2) = \frac{e^{iEx_c}}{2\pi} [T_{k_1} T_{k_2} \cos(\Delta_k x) - |V_R|^4 |g_a|^4 F(x)],$$

of the reflected and transmitted photons, respectively, where we define

$$F(x) = \sum_s \frac{s(E - 2\lambda_{1s})e^{i(E/2 - \lambda_{1s})x}}{\prod_{s=\pm}(E - \lambda_{2s})\prod_{i=1,2}(k_i - \lambda_{1s})(\lambda_{1s} - \lambda_{1s})}. \quad (42)$$
In Fig. 5 we plot the second-order correlation for the two reflected photons, as obtained by applying Eq. (32) to the wavefunctions determined from Eqs. (40) and (41). Here, we consider the same two systems in Fig. 3, and assume that the two incident photons have the same single-photon energy of $E/2$. In Fig. 3 we saw that the systems exhibit strong resonant reflection for single photon, when the single-photon energy is resonant with either the JC modes or the free modes. However, in the presence of two incident photons, the statistics of the outgoing photons at these resonances are very different. As we see in Fig. 5, when the single-photon energy coincides with the energy of one of JC modes, e.g., $E/2 - \omega_c \sim -7$ in Fig. 5a and $E/2 - \omega_c \sim -5$ in Fig. 5b, we observe pronounced anti-bunching behavior with $g_R^{(2)}(0) < g_R^{(2)}(\tau) \lesssim 1$, and therefore a strong photon-blockade effect. On the other hand, no anti-bunching behavior or photon blockade effect is observed when the single-photon energy coincides with that of the free mode, e.g., $E/2 - \omega_c \sim 0$ in Fig. 5c and $E/2 - \omega_c \sim -2$ in Fig. 5d.

The presence or absence of photon blockade effect at the different resonances is closely related to energy spectrum as we analyzed in Figs. 2a and b. Since the free mode B is decoupled from the atom, its energy spectrum $E = n(\omega_c + |B|)$ is linear. Thus, there is no photon blockade effect when the incident photon is resonant with the free mode. On the other hand, the spectrum of the JC mode is highly non-linear. Thus, while a single-photon on resonance with one of the JC modes is reflected, two such photons can not be simultaneously reflected since the total energy is off resonance in the two-excitation subspace.

VI. RESULTS FOR THE TWO-MODE CASE

In this section, we use the general formula derived in Sec. III to study the single- and two-photon transports for the two-mode case. In the presence of the intermodal coupling, i.e., $h \neq 0$, we see in Eq. (44) that except for a very special choice of the relative phase of g_0 and g_2, corresponding to one special choice of atom position, in general one can not form a photon mode that decouples from the atom. We define $\theta_0 = \arg(g_0/g_2)$. The analytic results for the single-photon intensity response function, and the two-photon correlation function, depends only on $\theta_0 + \theta_h$. Thus, in the numerical results, without loss of generality we fix $\theta_h = \pi/2$, and vary θ_0 from 0 to 2π.

In the two-mode case, where atom couples to two photons.
transport and two-photon correlation properties.

Similar to the effective one-mode case, here with the choice of parameters that place the system in the strong-coupling regime, the single-photon reflection also exhibits three peaks (Fig. 7a, dashed line). Unlike the effective one-mode case, however, here all three peaks exhibit photon blockade effect. In Fig. 7b, we plot $g^{(2)}(0)$ for the two reflected photons, when two photons having the same energy $E/2$ are incident upon the system. We see strong resonant behavior of $g^{(2)}(0)$ at the energy corresponding to the three single-photon eigenmodes. The $g^{(2)}(\tau)$ at these three energies are plotted in Fig. 7c, where we see strong photon blockade effect with $g^{(2)}(0) \ll 1$. In the two-mode case, all eigenmodes have atom excitation, and hence contributes to correlated transport.

VII. FINAL REMARK AND CONCLUSION

As a final remark, in the numerical examples we have focused on the case where there is no intrinsic dissipation of either the atom or the cavity. In general, the dissipations suppress the single-photon reflection and the photon blockade effect. We expect that due to the small decay rates of the whispering-gallery system to the environment, the photon blockade effect is well-protected.

In summary, in this paper we study the two-photon transport of the whispering-gallery-atom system by LSZ reduction approach. We consider the cases of systems with or without intermodal mixing, and present exact results on the second-order correlation functions of the two reflected photons, which exhibit photon-blockade effect. We expect the LSZ formalism may be developed to treat photon-blockade effect in other systems as well, including the opto-mechanical system that was considered in [42–45].

Acknowledgments

Tao Shi was supported by the EU project AQUTE. Shanhui Fan acknowledges the support of an AFOSR-MURI program on quantum metamaterial.

[1] M. Rosenblit, P. Horak, S. Helsby, and R. Folman, Phys. Rev. A 70, 053808 (2004).
[2] K. Srinivasan and O. Painter, Nature (London) 450, 862 (2007).
[3] B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, Science 319, 1062 (2008).
[4] T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Appl. Phys. Lett. 85, 6113 (2004).
[5] K. Srinivasan and O. Painter, Phys. Rev. A 75, 023814 (2007).
[6] J. T. Shen and S. Fan, Phys. Rev. A 79, 023838 (2009).
[7] J. T. Shen and S. Fan, Phys. Rev. A 82, 021802(R) (2010).
[8] E. E. Hach, III, A. W. Elshaari, and S. F. Preble, Phys. Rev. A 82, 063839 (2010).
[9] X. Zang and C. Jiang, J. Phys. B: At. Mol. Opt. Phys. 43 065501 (2010); 43 215501 (2010).
[10] Y. C. Liu, Y. F. Xiao, B. B. Li, X. F. Jiang, Y. Li, and Q. Gong, Phys. Rev. A 84, 011805(R) (2011).
[11] Y. Shen and J. T. Shen, Phys. Rev. A 85, 013801 (2012).
[12] H. J. Carmichael, Statistical Methods in Quantum Optics I: Master Equations and Fokker-Planck Equations (Springer-Verlag, Berlin, 2003).
[13] J. T. Shen and S. Fan, Phys. Rev. Lett. 95, 213001 (2005).
[14] L. Zhou, J. Lu, and C. P. Sun, Phys. Rev. A 76, 012313 (2007).
[15] L. Zhou, Z. R. Gong, Y. X. Liu, C. P. Sun, and F. Nori, Phys. Rev. Lett. 101, 100501 (2008).
[16] H. Dong, Z. R. Gong, H. Ian, Lan Zhou, and C. P. Sun, Phys. Rev. A 79, 063847 (2009).
[17] Y. Chang, Z. R. Gong, and C. P. Sun, Phys. Rev. A 83, 013825 (2011).
[18] L. Zhou, Y. Chang, H. Dong, L. M. Kuang, and C. P. Sun, Phys. Rev. A 85, 013806 (2012).
[19] J. T. Shen and S. Fan, Phys. Rev. Lett. 98, 153003 (2007); Phys. Rev. A 76, 062709 (2007).
[20] D. Roy, Phys. Rev. A 83, 043823 (2011).
[21] J. Q. Liao and C. K. Law, Phys. Rev. A 82, 053836 (2010).
[22] P. Longo, P. Schmitteckert, and K. Busch, Phys. Rev. A 83, 063828 (2011); Phys. Rev. Lett. 104, 023602 (2010).
[23] T. Shi and C. P. Sun, Phys. Rev. B 79, 205111 (2009); arXiv:0907.2776.
[24] T. Shi, S. Fan, and C. P. Sun, Phys. Rev. A 84, 063803 (2011).
[25] E. Rephaeli and S. Fan, Phys. Rev. Lett. 108, 143602 (2012).
[26] E. Rephaeli, Ş. E. Kocabas, and S. Fan, Phys. Rev. A 84, 063832 (2011).
[27] T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, Nature 443, 671 (2006).
[28] T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, Nature 432, 200 (2004).
[29] A. Badolato, K. Hennessy, Mete Atatüre, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, Science 308, 1158 (2005).
[30] D.englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, J. Vučković, Nature 450, 857 (2007).
[31] K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Dulde, S. Fält, E. L. Hu, and A. Imamoglu, Nature 445, 896 (2007).
[32] I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vučković, Science 320, 769 (2008).
[33] P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, Lidong Zhang, E. Hu, and A. Imamoglu, Science 290, 2282 (2000).
[34] K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, Nature (London) 436, 87 (2005).
[35] A. Kubanek, A. Ourjoumtsev, I. Schuster, M. Koch, P. W. H. Pinkse, K. Murr, and G. Rempe, Phys. Rev. Lett. 101, 203602 (2008).
[36] A. Badolato, M. Winger, K. J. Hennessy, E. L. Hu, A. Imamoglu, C. R. Physique 9, 850 (2008).
[37] J. P. Reithmaier, G. Sek, A. Löfler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, Nature 432, 197 (2004).
[38] T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, Nature 432, 200 (2004).
[39] E. Ginossar, L. S. Bishop, D. I. Schuster, and S. M. Girvin, Phys. Rev. A 82, 022335 (2010).
[40] A. Blais, R. S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, Phys. Rev. A 69, 062320 (2004).
[41] H. Lehmann, K. Symanzik, and W. Zimmermann, Nuovo Cimento 1, 1425 (1955).
[42] F. Marquardt and S. M. Girvin, Physics 2, 40 (2009).
[43] P. Zhang, Y. D. Wang, and C. P. Sun, Phys. Rev. Lett. 95, 097204 (2005).
[44] F. Xue, L. Zhong, Y. Li, and C. P. Sun, Phys. Rev. B 75, 033407 (2007).
[45] P. Rabl, Phys. Rev. Lett. 107, 063601 (2011).