Radionuclidic Imaging Procedures in the Diagnosis of Cancer *

James L. Quinn, III, M.D.

Radionuclide is a comprehensive term which includes isotopes, isobars, isotones and isomers. The obsolescence of the designation "radioisotope" for all scanning agents is only one indication of the changes in Nuclear Medicine during the past few years. Progress in this field has been so extensive that the Joint Committee on the Accreditation of Hospitals now requires that all approved hospitals have convenient access to Nuclear Medicine diagnostic procedures.

Of the 25 different radionuclides used in diagnostic procedures, only a few are valuable in diagnosing cancer. The choice of one of these agents is dictated by the organ or system under study, the method of biological transport of the radionuclide and its degree of concentration within the organ. The radionuclide should have the least potential for damage to the target organ or system, and the shortest possible half-life consistent with diagnosis.

*These tables are an up-to-date revision of the work by Dr. Norman R. Ackerman, "Use of Radioisotopic Agents in the Diagnosis of Cancer," published by the American Cancer Society, Inc., in 1965.

Dr. Quinn is Director of Nuclear Medicine, Chicago Wesley Memorial Hospital, Chicago, Illinois, and Professor of Radiology, Northwestern University Medical School, Chicago.
Once the appropriate radionuclide is chosen it is added to a pharmaceutical compound (such as the chemical form of the nuclide in a saline solution). When the radiopharmaceutical enters the body, it behaves like the chemical the organ normally metabolizes so that the organ tissue "takes up" the radionuclide (for example, radioactive iodine which concentrates in the thyroid just as stable iodine does).

Radionuclides localize cancer in one of two ways: either the tumor (1) concentrates the radionuclide from the rest of the organ and shows up as a "hot spot" on the scan or camera recording, or (2) it does not concentrate the compound and is seen as a "cold spot" on the surrounding normal tissue which has concentrated the radionuclide. It is easier to detect the hot lesions than the cold because the higher background surrounding cold lesions is more difficult to resolve with currently available detectors. The diagnostic accuracy of the scans which show active pickup in tumor such as brain, bone and functioning thyroid metastases exceeds 90 percent. Those studies where the absence of activity indicates disease are less accurate; for example, in liver imaging for possible metastases the scans are positive in less than 80 percent of cases.

There are two types of detectors currently in use for radionuclidic imaging. One is the rectilinear scanner which moves back and forth across the area, charting the concentration of radioactivity within or around the tumor by means of parallel lines. This technique requires 5 to 45 minutes to produce a complete "picture," depending on the dose of the radionuclide, the energy of its radiation, the size of the scintillation crystal, etc.

The other device is a stationary scanner or "camera" which produces a rapid complete image of the entire organ or system at one time. The camera's speed of imaging is an advantage especially if the patient is uncooperative or unable to remain immobile for the time necessary to obtain a rectilinear scan. The camera also provides a better picture of the features near the surface of the organ; however, the rectilinear scanner achieves a better resolution at depth which makes it more useful in certain situations, despite the longer exposure time.

To date, radionuclidic imaging has proved quite useful in diagnosing cancer of several sites. It is now used routinely in detecting tumors of thyroid and primary or metastatic tumors of the bone, brain and liver or spleen. Efforts are currently directed towards screening for metastases in cases where a primary tumor is proven or strongly suspected. The brain and bone scans are most useful in detecting metastases from carcinoma of the breast, colon and lung. Because the liver scan has detected only 75 to 80 percent of known metastases, it is more useful as a confirmatory procedure in cases of suspected metastases than as a screening technique.

Newer radionuclides are becoming available through the expanded use of medical cyclotrons. For example, Gallium-67 citrate has been used experimentally in the staging of lymphoma and shows a great deal of promise, as does fluorine-18 in bone scanning. Many of these newer agents have very short physical half lives. Because the radioactivity disintegrates within the body at a faster rate, and many of these nuclides are pure gamma emitters, larger doses may be tolerated and the quality of the image improved without risking excessive patient irradiation.

Several radiopharmaceuticals which are not on the Atomic Energy Commission's list of generally accepted radionuclides or procedures are included in these tables because they are promising and, in many instances, will be used routinely in the near future.
Radionuclides in the Diagnosis of Cancer

Radionuclide	Pharmaceutical Name	Physical Half-Life	Dose	Detection Method
Thyroid				
Iodine-123	Sodium Iodide	13.3 hours	50-100 µCi	Scan 24 hours after injection
(¹²³I)				
Technetium-99m	Sodium Pertechnetate	6 hours	1-3 mCi	Scan 30-60 minutes after injection
(⁹⁹ᵐTc)				
Iodine-125	Sodium Iodide	60 days	50-100 µCi	Scan 24 hours after injection
(¹²⁵I)				
Iodine-131	Sodium Iodide	8.1 days	50-100 µCi	Scan 24 hours after injection
(¹³¹I)				
Parathyroid				
Selenium-75	Selenomethionine	120 days	250 µCi	Serial imaging during first hour
(⁷⁵Se)			(IV or IA)	
Spleen				
Technetium-99m	Technetium sulfur	6 hours	1-2 mCi	Imaging 1-2 hours after injection
(⁹⁹ᵐTc)	colloid			
Indium-113m	Indium colloid	1-7 hours	1-2 mCi	Imaging 1-2 hours after injection
(¹¹³mIn)				
Technetium-99m	Crenated	6 hours	1-2 mCi	Imaging 1-2 hours after injection
(⁹⁹ᵐTc)	Technetium tagged			
Chromium-51	Crenated	27.8 days	150-300 µCi	Imaging 1-2 hours after injection
(⁵¹Cr)	Chromium tagged			
Lymph Nodes				
Gold-198	Gold colloid	2.7 days	50 µCi	Imaging 4-24 hours after intralymphatic injection
(¹⁹⁸Au)				
Technetium-99m	Technetium sulfur	6 hours	1-5 mCi	Imaging 4-24 hours after intralymphatic injection
(⁹⁹ᵐTc)	colloid			
Rationale	Application			
---	--			
Incorporated into thyroid hormogenesis	Evaluation of functional status of nodules. High cancer probability in single nonfunctioning nodules in young adults			
Trapped by the thyroid	Some tumors, benign or malignant, retain trapping function but cannot organify.			
Incorporated into thyroid hormogenesis	Evaluation of functional status of nodules. High cancer probability in single nonfunctioning nodules in young adults			
Incorporated into thyroid hormogenesis	Evaluation of functional status of nodules. High cancer probability in single nonfunctioning nodules in young adults			
Locates in active anabolic structures	Location of parathyroid adenomas			
Reticuloendothelial system of spleen removes about 10% of injected colloid	Determination of size and presence of masses in the spleen			
Reticuloendothelial system of spleen removes about 10% of injected colloid	Determination of size and presence of masses in the spleen			
Spleen removes damaged red cells.	Determination of size and presence of masses in the spleen			
Spleen removes damaged red cells.	Determination of size and presence of masses in the spleen			
Lymph nodes act as a filter to the colloid	Determination of patency of lymphatic chains			
Lymph nodes act as a filter to the colloid	Determination of patency of lymphatic chains			
Radionuclide	Pharmaceutical Name	Physical Half-Life	Dose	Detection Method
---------------------	-------------------------------------	-------------------	----------	--
Kidney				
Technetium-99m (Tc)	Technetium Diethylentriaminepenta-acetic Acid	6 hours	2-10 mCi	Serial camera or scanning images immediately to hours after injection
Iodine-131 (I)	Sodium orthiodohippurate	8 days	15-300 µCi	Serial camera or scanning images immediately to hours after injection
Mercury-197 (Hg)	Chloromerodrin	2.7 days	70-200 µCi	Camera or scan image 0.5-24 hours post injection
Mercury-203 (Hg)	Chloromerodrin	47.9 days	50-200 µCi	Camera or scan image 0.5-24 hours post injection
Ytterbium-169 (Yb)	Ytterbium Diethylentriaminepenta-acetic Acid	32 days	2-10 mCi	Serial camera or scan images immediately to hours after injection
Technetium-99m (Tc)	Pertechnetate or technetium labeled human serum albumin	6 hours	5-20 mCi	Camera images during bolus injection
Brain				
Technetium-99m (Tc)	Sodium Pertechnetate	6 hours	10-20 mCi (IV)	Scan or camera images immediately to 4 hours after injection
Technetium-99m (Tc)	Technetium labeled human serum albumin	6 hours	5-15 mCi (IV)	Scan or camera images immediately to 6 hours
Indium-113m (In)	Indium-Diethylentriaminepenta-acetic Acid (DTPA)	1.7 hours	10-15 mCi	Scan or camera images immediately to 4 hours
Ytterbium-169 (Yb)	Ytterbium Diethylentriaminepenta-acetic Acid (DTPA)	32 days	5-10 mCi (IV)	Scan or camera images 30-60 minutes
Spinal Cord and Ventrices				
Iodine-131 (I)	Iodinated human serum albumin (High specific activity)	8.1 days	50-100 µCi intrathecal	Image 4 to 72 hours after injection
Technetium-99m (Tc)	Technetium labeled human serum albumin	6 hours	0.5-1 mCi intrathecal	Image 4-24 hours
Rationale	Application			
--	--			
Cleared from kidneys by glomerular filtration	Evaluation of renal structure and function			
Cleared from the kidney mainly by tubular secretion (about 20% by glomerular filtration)	Evaluation of renal structure and function			
Locates in functioning renal tubules	Evaluation of renal structure and function			
Locates in functioning renal tubules	Evaluation of renal structure and function			
Cleared from kidney by glomerular filtration	Evaluation of renal structure and function			
Blood pool agent	Evaluation of vascularity of known renal masses			
Disruption in the blood brain barrier, which normally keeps these agents out of the brain, permits intracerebral concentration	To screen for or confirm a variety of intracranial neoplastic or non-neoplastic conditions			
Disruption in the blood brain barrier, which normally keeps these agents out of the brain, permits intracerebral concentration	To screen for or confirm a variety of intracranial neoplastic or non-neoplastic conditions			
Disruption in the blood brain barrier, which normally keeps these agents out of the brain, permits intracerebral concentration	To screen for or confirm a variety of intracranial neoplastic or non-neoplastic conditions			
Disruption in the blood brain barrier, which normally keeps these agents out of the brain, permits intracerebral concentration	To screen for or confirm a variety of intracranial neoplastic or non-neoplastic conditions			
Follows the normal cerebrospinal fluid flow	Used to diagnose low pressure hydrocephalus, location CSF leaks and confirm CSF blocks			
Follows the normal cerebrospinal fluid flow	Used to diagnose low pressure hydrocephalus, location CSF leaks and confirm CSF blocks			
Radionuclide	Pharmaceutical Name	Physical Half-Life	Dose	Detection Method
------------------	---------------------	-------------------	----------	--
Phosphorus-32 (32P)	Sodium Phosphate	14.3 days	250-750 μCi (IV)	Semiconductor counting at surgery 1-12 hours after injection
Technetium-99m (99mTc)	Technetium Sulfur Colloid	6 hours	1-5 mCi (IV)	Image 30-90 minutes after injection
Indium-113m (113mIn)	Indium Colloid	1.7 hours	1-2 mCi (IV)	Image 30-90 minutes after injection
Gold-198 (198Au)	Gold Colloid	2.7 days	50-200 μCi (IV)	Image 30-90 minutes after injection
Iodine-131 (131I)	Iodinated Micro-aggregated human serum albumin	8.1 days	150-300 μCi (IV)	Image 0.5-4 hours after injection
Iodine-131 (131I)	Iodinated Rose Bengal	8.1 days	25-250 μCi (IV)	Image 0.5, 4 and 24 hours after injection
Selenium-75 (75Se)	Selenomethionine	127 days	150-250 μCi	Image serially up to 2 hours after injection
Technetium-99m (99mTc)	Technetium labeled human serum albumin microspheres	6 hours	1-4 mCi (IV)	Image immediately after injection
Iodine-131 (131I)	Iodine Macro-aggregated human serum albumin	8.1 days	50-300 μCi	Image immediately after injection
Indium-113m (113mIn)	Indium Ferric Hydroxide Macro-aggregates	1.7 hours	1-4 mCi	Image immediately after injection
Technetium-99m (99mTc)	a) Macroaggregated Technetium labeled human serum albumin. b) Ferrous hydroxide macroaggregates	6 hours	1-4 mCi	Image immediately after injection
Rationale	Application			
--	--			
Increased uptake in tumors of the eye	Separate benign from malignant conditions of the eye both of which may cause retinal detachment			
Colloid cleared by reticuloendothelial system	Detection of hepatic neoplasia, abscesses, cirrhosis and trauma.			
Colloid cleared by reticuloendothelial system	Detection of hepatic neoplasia, abscesses, cirrhosis and trauma.			
Colloid cleared by reticuloendothelial system	Detection of hepatic neoplasia, abscesses, cirrhosis and trauma.			
Colloid cleared by reticuloendothelial system	Detection of hepatic neoplasia, abscesses, cirrhosis and trauma.			
Dye excreted in bile duct after clearance by polygonal cells	Separation of obstructive from nonobstructive jaundice in children and adults			
Selenomethionine, an analog of Methionine, is picked up in the active anabolic tissues, including the pancreas and liver.	To detect pancreatic tumors or to exclude acute pancreatitis. The finding of a normal pancreas scan has a 90% probability of excluding pancreatic carcinoma. Hepatomegaly interferes with pancreatic imaging.			
Held up in first capillary bed	To assess integrity of pulmonary capillary bed. Especially useful in cases of pulmonary emboli, carcinoma and intracardiac shunting.			
Held up in first capillary bed	To assess integrity of pulmonary capillary bed. Especially useful in cases of pulmonary emboli, carcinoma and intracardiac shunting.			
Held up in first capillary bed	To assess integrity of pulmonary capillary bed. Especially useful in cases of pulmonary emboli, carcinoma and intracardiac shunting.			
Held up in first capillary bed	To assess integrity of pulmonary capillary bed. Especially useful in cases of pulmonary emboli, carcinoma and intracardiac shunting.			
Radionuclide	Pharmaceutical Name	Physical Half-Life	Dose	Detection Method
--------------	---------------------	-------------------	------	------------------
Technetium-99m (\(^{99m}\)Tc)	Technetium Sulfur Colloid	1-5 mCi	Image 6-24 hours after inhalation thru positive pressure or ultrasonic nebulizer	
Technetium-99m (\(^{99m}\)Tc)	Technetium labeled human serum albumin	1-5 mCi	Image 6-24 hours after inhalation thru positive pressure or ultrasonic nebulizer	
Gold-198 (\(^{198}\)Au)	Gold Colloid	250 μCi	Image 6-24 hours after inhalation thru positive pressure or ultrasonic nebulizer	
Fluorine-18 (\(^{18}\)F)	Sodium Fluoride	1.87 hours	1-4 (PO or IV)	Scan or camera images after 1-4 hours
Strontium-85 (\(^{85}\)Sr)	Strontium Chloride or Nitrate	65 days	75-100 μCi (IV)	Scan or camera images at 5-7 days
Strontium-87m (\(^{87m}\)Sr)	Strontium Chloride	2.8 hours	1-3 mCi (IV)	Scan or camera images 2-6 hours after injection
Technetium-99m (\(^{99m}\)Tc)	Technetium phosphates	6 hours	1-5 mCi (IV)	Scan or camera images 2-24 hours after injection
Gallium-67 (\(^{67}\)Ga)	Gallium Citrate	78 hours	1-4 mCi	Serial imaging 48-96 hours after injection
Indium-111 (\(^{111}\)In)	Indium Chloride	2.8 days	0.5-2 mCi	Serial imaging 48-96 hours after injection
Selenium-75 (\(^{75}\)Se)	Selenomethionine	120 days	250 μCi	Serial imaging 0.5-2 hours after injection
Iodine-131 (\(^{131}\)I)	19-Radioiodocholesterol	8.1 days	2 mCi	Imaging 48 hours after injection
Iodine-125 (\(^{125}\)I)	4-(3-dimethylaminopropylamino)-7-radio-iodoquinoline	60 days	2 mCi	Imaging 24-96 hours after injection
Rationale	Application			
--	---			
Deposited along areas of bronchial patency	Used to locate or confirm areas of intrabronchial obstruction in lung tumor suspects			
Deposited along areas of bronchial patency	Used to locate or confirm areas of intrabronchial obstruction in lung tumor suspects			
Deposited along areas of bronchial patency	Used to locate or confirm areas of intrabronchial obstruction in lung tumor suspects			
Localizes in actively metabolizing bone and bone tumors	Detection of metastases to bone			
Localizes in actively metabolizing bone and bone tumors	Detection of metastases to bone			
Localizes in actively metabolizing bone and bone tumors	Detection of metastases to bone			
Localizes in actively metabolizing bone and bone tumors	Detection of metastases to bone			
Selective concentration in certain malignancies, especially lymphoma	Staging of lymphoma cases.			
Selective concentration in certain malignancies, especially lymphoma	Staging of lymphoma cases.			
Locates in active anabolic tissue	Detection of Thymoma as in patients with myasthenia gravis			
Locates in adrenal cortex	Visualization of adrenal glands			
Selective concentration in pigmented tissues	Detection of melanoma metastases			