The clinical features of COVID - 19 in a group of Iraqi patients: A record review

DOI: https://doi.org/10.32007/jfacmedbagdad.6311799.

Haider N. Dawood* FABM, FIBM, FIBM (Resp.)
Ayad Hwayyiz** HDFE, FETP
Ibrahim K. Alshemary*** FICMS, FICMS clinical hematology
Imad Abdul Rahman **** MD, MSc, PhD

Abstract
Background: The number of coronavirus infection cases has increased rapidly since early reports in the December 2019 in China. But data on the clinical features of infected peoples is variable from one country to the other.
Objective: Studying clinical features of patients with a positive RT PCR COVID – 19, in a group of Iraqi patients.
Patients and Methods: This is a record review study of 200 patients with a confirmed COVID - 19, conducted in Al Immam Al Kadhimain Medical City from 1 May to 30 August 2020, the diagnosis of patients during this period. Data about demographic and the clinical characteristics have been recorded.
Results: The study included 200 patients with 133 (66.5%) males and 67 (33.5%) females, and age range of 14- 89 years, with mean age 46.4 years. A history of contact with a COVID -19 positive case was found in 80 patients (40%), Ischemic Heart Disease in 11 patients (5.5%), hypertension 34 (17%), diabetes mellitus 36 patients (18%). The most frequently seen age group was between 21-39 years (76 patients - 38%). The most frequently seen symptoms were fever 76.5% and generalized weakness 73%. A statistically significant association was found between age and dyspnea (p = 0.014) and also diarrhea (p = 0.035), as well as between gender and rhinorrhea (p = 0.08) and nausea and/ or vomiting (p = 0.005).
Conclusion: In this study fever and generalized weakness were the most common symptoms in COVID patients. The clinical features of COVID disease can be affected by age and gender of patients.
Keywords: Clinical features, COVID - 19, Iraqi patients.

Introduction:
COVID - 19 is a new infectious disease caused by a SARS-CoV-2 virus, which is manifested primarily as an acute respiratory disease with an interstitial alveolar pneumonia. However it can affect other organs including the heart, kidneys, nervous system, blood and the digestive tract (1). Coronaviruses are subdivided into four types: α-CoV, β-CoV, γ-CoV, and δ-CoV depending on the basis of the phylogenetic clustering. SARS-CoV-2 which causes COVID - 19 belongs to β group (2, 3). Infection with the novel coronavirus leads to development of an acute respiratory syndrome COVID - 19 (4). It is a complex pathogen because of the ability for infecting multiple hosts, and causing different diseases in spite of a common association with the acute respiratory infections in the humans (5). The droplet transmission can occur when the person is in close contact (about one meter) with another person who has the respiratory symptoms (like cough or sneeze) and is at a high risk to have the nasal and/ or oral mucosa or the conjunctiva exposed to the potentially infective droplets (of more than 5-10 μm in diameter) (6). A recent study revealed that the viral load detected in asymptomatic people was similar to that in symptomatic patients, which suggests the transmission potential from symptomatic or asymptomatic people (7). To limit the spread, regionally and globally many countries have adopted measures including lockdowns, closing airports and borders, and restrictions of travel to decrease the transmission (8). The incubation period of COVID - 19 can be up to 14 days from the time of exposure, (a median is 4 - 5 days) (7). The Infection is reported in all age groups including children. The majority of cases are mild, presenting with a flu-like illness. The common features of COVID - 19 are fever, cough, fatigue and myalgia (9). The features of upper respiratory infection as rhinorrhea and sputum are uncommon, except in children, with leucopenia.
Patients and Methods:

Study design and participants
This is a record review study of 200 patients who had been confirmed as COVID – 19, conducted in Al Imamain Al Kadhimain Medical City from 1 May to 30 August 2020, when the diagnosis were during this period, patients were either hospitalized or treated as outpatients.

Definitions
COVID - 19 was confirmed by the detection of SARS-CoV-2 RNA, in the swab samples from throat using a virus nucleic acid detection kit COVID-19, by a real-time polymerase chain reaction (RT-PCR). The case definition of the confirmed infection with SARS-CoV-2 was made according to the guidance from World Health Organization (WHO) (18). Confirmed patients were either hospitalized or treated as outpatients, these whom treated as outpatients have a record saved in public health department, from which data took.

Data collection
A COVID - 19 data collection form was designed to collect the data including demographics and clinical features. The following information was collected for each patient: Age, gender, risk factors (ischemic heart disease, hypertension, and diabetes mellitus), COVID - 19 exposure history, symptoms (fever, dyspnea, nasal congestion, cough, rhinorrhea, sore throat, diarrhea, generalized weakness, and headache).

Inclusion criteria: All patients who have clinical features of COVID - 19 and positive a RT - PCR from the throat.

Exclusion criteria:
1- Patients with negative RT - PCR of throat.
2- Patients with incomplete data in the medical records.

Statistical Analysis: The collected data were entered and analyzed using SPSS (Statistical Packages for Social Sciences) version 20. Data were classified into qualitative and quantitative. The quantitative data were classified into parametric and non-parametric according to the normality tests. For nominal qualitative data, the Chi square and the Fisher exact tests were used for association. For quantitative data the mean measuring tests was used. P-value of < 0.05 was considered as statistically significant.

Results
Two hundred patients were included in this study, of whom 133 (66.5%) were males and 67 (33.5%) were females, with an age range of 14- 89 years and a mean age of 46.4 years. A history of contact with a COVID – 19 case was found in 80 patients (40%), ischemic heart diseases (IHD) in 11 (5.5%), hypertension in 34 (17%), and diabetes mellitus in 36 (18%), table 1. Table 2 shows the distribution of the patients by age group. More than a third of the cases fell in the 21-39 years group with 76 patients (38%), followed by those 40-59 years with 66 patients (33%), and those ≥60 years with 52 patients (26%).

Table 1:- Demographical features of the patients with COVID_19

Variables	Number	%
Age (mean ± SD) (range)	46.39 ± 18.01 (14-89)	
Gender		
Male	133	66.5
Female	67	33.5
History of contact with COVID - 19 case	80	40
IHD	11	5.5
Hypertension	34	17
Diabetes mellitus	36	18

Table 2: Distribution of the patients according to the age and gender

Age group (Years)	Males	Females	Total	%
	Number	Number	Number	
< 20	3	3	6	3
21-39	55	21	76	38
40-59	44	22	66	33
≥60	31	21	52	26
Total	133	67	200	100

Table 3 show that fever was the most frequent symptom (76.5%), followed by generalized weakness (73%), cough and dyspnea (65%) each, headache (59%), sore throat (58%), nausea and vomiting (28%), and rhinorrhea and diarrhea (25%) each. The table also shows the distribution of these clinical features by gender with a statistically significant association between gender and rhinorrhea (p = 0.08) and nausea and/ or vomiting (p = 0.005), both being higher among females than males. Table 4 shows a statistically significant association between age group and dyspnea (p = 0.014) and diarrhea (p = 0.035), but not with other symptoms.
in China (23) reported that 40% of patients were between 19-40 years and 53% between 41-65 years, and only 3% between 10 - 11 years. A summary of report from the Chinese center of Disease Control and Prevention (CDC) (32), shows the age distribution to be as follows: ≥ 80 years (3%), 30-79 years (87%), 20-29 years (8%), 10-19 years (1%), and <10 years (1%). These studies together with the China CDC reports indicated that general population is susceptible to the SARS-CoV-2 infection, regardless the age. The clinical features of patients with the COVID-19 in the present study include fever (76.5%), generalized weakness (73%), cough and dyspnea (65%) each, and rhinorrhea and diarrhoea (25%) each. The most common symptoms reported by Chaolin (29) were fever (98%), cough (76%), headache (8%), while 55% developed dyspnea. Yousef in Saudi Arabia (33) reported fever (85.6%), cough (89.4%), sore throat (81.6%), runny nose (72%), and headache (27.3%). Clinical studies showed that the occurrence of diarrhoea ranges from 2% - 50%, and it may appear before or after the onset of respiratory symptoms. Analyses revealed that the overall percent of diarrhoea is 10.4% (34). Barnaby in Singapore (35) reported Sore throat at (61%), rhinorrhea (6%) which may be due to the small number of cases in this study. Kim (36) reported headache in 31.4% and rhinorrhea in 26.2%. Clinicians must be aware about COVID-19 and consider the possibility of the COVID-19 even in the absence of fever, generalized weakens, or even respiratory symptoms to ensure the appropriate investigation for the diagnoses. Dyspnea and diarrhoea had a statistically significant association with age in the present study, while other symptoms did not. Liu (37) found that only sore throat had a statistically significant association with age. Nicholas (38) found an age risk in the susceptibility to infection and the probability to have clinical symptoms of COVID-19, ranging from about 20% in children to about 70% in older adults. The present study found a statistically significant association between gender and rhinorrhea and nausea and/or vomiting. A previous study found that male patients were susceptible to have more severe symptoms in comparison with females (39). The definite factors underlying such difference remain unknown. The differences between males and females in their immune response to infectious diseases, inflammation and autoimmunity show that females appear to respond more vigorously to viral infections and produce more antibodies in response to the infection and vaccination (40). The limitations of this study include not classifying the patients according to the WHO classification for severity (mild, moderate, severe and critical cases), and the small number of cases in comparison to the cases of COVID-19 in Iraq. In conclusion, this study showed that fever and generalized weakness were the most common symptoms in COVID patients. The clinical features of COVID disease can be affected by the age and gender of patients.

Table 3: Clinical features of the patients with COVID-19 distributed by gender

Clinical feature	Males	Females	Total	P Value			
	No.	%	No.	%			
Fever	102	76.7	51	76.1	153	76.5	0.53
Generalized weakness	94	70.7	52	77.6	146	73	0.192
Dyspnea	89	66.9	41	61.2	130	65	0.25
Cough	85	63.9	45	67.2	130	65	0.385
Headache	74	55.6	44	65.7	118	59	0.113
Sore throat	74	55.6	51	62.9	125	58	0.444
Nausea and/or Vomiting	29	21.8	27	40.3	56	28	0.005
Rhinorrhea	29	21.8	21	31.3	50	25	0.08
Diarrhoea	36	27.1	14	20.9	50	25	0.219
Total (100%)	133	67	79	60	212	100	

Table 4: Distribution of the cases by age group and clinical features

Symptom	Age group (years)	P. Value		
	< 40	40-60	≥ 60	
Dyspnea	52	36	42	0.011
Cough	53	41	36	0.721
Fever	63	49	41	0.839
Rhinorrhea	24	14	12	0.496
Sore throat	51	37	27	0.549
Nausea and/or Vomiting	22	19	15	0.954
Diarrhoea	27	13	10	0.097
Headache	53	38	27	0.482
Generalized weakness	59	44	43	0.143

Discussion

In this study there were twice males as females. The World Health Organization data has also shown a male predominance in Iraq in June 2020, when out of the total of 12,366 infected by COVID-19, 56% were males (19). Ali et al (20) has also reported a higher percentage of Iraqi COVID-19 patients among males (59.7%). Dawei in Wuhan, China (21) reported a smaller male predominance of (54.3%). The age of our patients ranged from 14-89 years, with a mean of 46.4 years. Omran in Basrah, Iraq (22) reported a median age of 45 years, with the youngest patient being 13 years old, while Xiao-Wei in Wuhan, China (23) reported a median age 41 years and a range of 32-52 years. A history of contact with a COVID – 19 case was present in 40% of our patients. Most of COVID-19 cases were linked to person-to-person transmission through close contact with a case with respiratory symptoms (24, 25) or close contact with a person during the incubation period, later confirmed to be COVID-19 (26, 27). Nitesh from India (28) reported the history of close contact with a case to be 38.1%. In the present study, 5.5% of the patients had IHD, 17% had hypertension, and 18% had diabetes mellitus, while Chaolin in China (29) showed IHD to be present in 15%, hypertension in 15%, and diabetes mellitus in 20%. Zhou in China (30) reported a much higher percentage of hypertension in his study (30%), diabetes (19%), and coronary heart disease (8%). Sarfraz in Saudi Arabia (31) reported Hypertension in (41%), Diabetes (18%), and Cardiovascular disease (18%) of their cases, but the latter study had a small number of cases (51 patients). In the present study, the highest percentage of patients were between 21-39 years (38%), follow by those 40-50 years (33%), and the lowest were those ≤ 20 years (3%). Xiao-Wei
Author’s Contributions:
First author data collection and analysis
Second author data collection
Third author data analysis
Forth author data analysis

References
1- Wang D, Hu B, Hu C, Fangfang Z, Xing L, Jing Z, et al. Clinical Characteristics of 138 Hospitalized Patients with 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020; 323(11) : 1061-1069
2- Peng X, Xu X, Li Y, Cheng L, Zhou X, Ren B. Transmission routes of 2019-nCoV and controls in dental practice. Int J Oral Sci. 2020;12(1):9. doi: 10.1038/s41368-020-0075-9. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
3- Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10224):565–574.
4- Zhu N, Zhang D, Wang W, Xingwang L, Yang B, Jingdong S, et al. A novel coronavirus from patients with pneumonia in China. 2019. N Engl J Med. 2020;382(8):727–33.
5- Fung TS, Liu DX. Human Coronavirus: Host-Pathogen Interaction. Annual review of microbiology 2019;73:529-57.
6- World Health organization (WHO). Modes of transmission of virus causing COVID-19: implications for IPC precaution recommendations. 27 March 2020
7- Zhou L, Ruan F, Huang M, Liang L, Huang H, Hong Z, et al. SARS-CoV-2 viral load in upper respiratory specimens of infected patients. N Engl J Med. 2020;382(12):1177-9.
8- Gostin LO, Wiley LF. Governmental public health powers during the COVID19 pandemic: stay-at-home orders, business closures, and travel restrictions. JAMA. 2020;10.1001
9- Wang W, Tang J, Wei F. Updated understanding of the outbreak of 2019 novel coronavirus (2019-nCoV) in Wuhan, China. J. Med. Virol. 92 (4) (2020) 441–447.
10 - Joseph S, Kwok Y, Albert D, Klaus S, Yuen K, Osterhaus A. The severe acute respiratory syndrome. N Engl J Med 2003;349:2431–41.
11 - Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72,314 cases from the Chinese Center for Disease Control and Prevention. JAMA 2020; 323(13):1239-1242.
12 - Huang C, Wang Y, Li X, Ren L, Zhao J, Chaolin H, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet. 2020; 395: 497-506.
13 - Huang C., Wang Y., Li X, Ren L, Zhao j, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 395 (2020), pp. 497-506
14 - Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost 2020 Apr; 18(4): 844-847.
15 - Goh K, Choong M, Cheong E, Kalimuddin S, Wen S, CheePhua G, et al. Rapid progression to acute respiratory distress syndrome: review of current understanding of critical illness from COVID-19 infection. Ann Acad Med Singap, 49 (2020), pp. 108-118
16 - Sethuraman N, Sundararaj Stanleyraj J, Ryo A. Interpreting diagnostic tests for SARS-CoV-2. JAMA2020doi:10.1001/jama.2020.8259.CrossRefGoogle Scholar
17 - Wölfel R, Corman VM, Guggemos W, Seifmaier M, Zange S, Müller M, et al. Virological assessment of hospitalized patients with COVID-2019. Nature2020. doi:10.1038/s41586-020-2196-x. pnnid:32235945
18 - WHO. Clinical management of severe acute respiratory infection when Novel coronavirus (nCoV) infection is suspected: interim guidance. Jan 11, 2020.
19 - World Health Organization. Coronavirus disease (COVID-19) Dynamic Infographic Dashboard for Iraq. August 17, 2020
20 - Ali H, Risala H, Raghdan H, Maha H, Ali J,Mustafa Y. Evaluating of the association between ABO blood groups and coronavirus disease 2019 (COVID-19) in Iraqi patients. Egyptian Journal of Medical Human Genetics (2020);21:1-6
21 - Dawei W, Bo Hu, Chang Hu, Fangfang Z., Xing L ., Jing Z et al. Clinical Characteristics of 138 Hospitalized Patients with 2019 Novel Coronavirus–Infected Pneumonia in Wuhan, China. JAMA.2020;323(11):1061-1069
22 - Omran S, Abbas K, Alaa H, Nihad Q. Epidemiological Features of COVID-19 Epidemic in Basrah Province-Southern Iraq-First Report. The Medical Journal of Basrah University Epidemiology of COVID19 Infection (2020);38(1): 7-18
23 - Xiao-Wei X, Xiao-Xin W, Xian-Gao J, Kai-Jin X, Ling-Jun Y, Chun-Lian M et al. Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-CoV-2) outside of Wuhan, China: retrospective case series. BMJ 2020;368: 1-7.
24 - Burke RM, Midgley CM, Dratch A, Fenstersheib M, Haup t T, Holshue M, et al. Active monitoring of persons exposed to patients with confirmed COVID-19—United States, January–February 2020. MMWR Morb Mortal Wkly Rep. 2020;69(9):245-6
25 - Chan J, Yuan S, Kok KH, To KK, Chu H, Yang J, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet. 2020;395(10223);514-23.
26 - Huang R, Xia J, Chen Y, Shan C, Wu C. A family cluster of SARS-CoV-2 infection involving 11 patients in Nanjing, China. Lancet Infect Dis. 2020;20(5):534-5
27 - Tong Z-D, Tang A, Li K-F, Li P, Wang H-L, Yi J-P, et al. Potential presymptomatic transmission of
السمات السريرية للمصابين بمرض كوفيد 19 في مجموعة من المرضى العراقيين: مراجعة البيانات

المقدمة: أجريت هذه الدراسة بمعالجة البيانات إلى 200 من المرضى المصابين بمرض كوفيد 19 في مجموعتين طبية في مدينة وهران، في الصين، لكن الملاحظة عن السمات السريرية للمصابين المصابين مختلفٌ من دولة إلى أخرى. وتحديد السمات السريرية للمصابين بمرض كوفيد 19، من مزج السمات السريرية، قد يكون من المفيد لدراسة التقييم المستمر للمستقبل الموجب في مجموعة من المرضى العراقيين.

المنهجية: اجريت هذه الدراسة بمعالجة البيانات ل 200 من المرضى المصابين بمرض كوفيد 19 في مجموعتين طبية في مدينة وهران، في الصين.

النتائج: عدّت هذه الدراسة 200 مريض، 133 (66.5%) من الذكور و 67 (33.5%) من الإناث. تراوحت أعمارهم بين 14-89 سنة، مع متوسط العمر 46.4 سنة. كانت نسبة المصابين بحالات كوفيد 19، 46.4%، المصابين بفيروس كوفيد 19، 17%، المصابين بمرض مزمن، 17%، المصابين بداء السكري، 18%، اللقاحات العلاجية، 14.9%, الإصابات، 38.3%. وعند إضافة هذه الوعود إلى الأعراض الوراثية، 9.5%، الإصابة، 14.9%, الإصابات، 38.3%.

الاستنتاجات: هذه الدراسة كانت الحمي والتحول الأعراض الأكثر شيوعًا في مرضى COVID. يمكن أن تتأثر السمات السريرية لمرض COVID من المصابين بمرض كوفيد 19، المرضى العراقيين.

References:
1. Althunayyan, A. et al. Clinical features of patients with COVID-19 in a group of Iraqi patients: A record review. Journal of Infection and Public Health. 2020; 13, Issue 7: 920-925
2. Zunyou M, Yi H, Chaolin H, Yeming W, Xingwang L, Nitesh G, Sumita A, Pranav I. Clinical characteristics of COVID-19 patients: A national retrospective study. Journal of Infectious Diseases. 2020; 2020; 21(10), 1663–1672.
3. Barnaby E, Sean Wei X, Shirin K, Jenny G, Seow Y, JiaShen L, et al. Epidemiological Features and Clinical Course of Patients Infected With SARSCoV-2 in Singapore. JAMA. 2020; 323(15):1488-1494.
4. Kim G, Kim M, Ra S, Lee J, Bae S, Jung J, et al. Clinical characteristics of asymptomatic and symptomatic patients with mild COVID-19. Clinical Microbiology and Infection. 2020, Vol. 26, Issue 7, p948.e1–948.e3
5. Liu Y, Miao B, Liang S, Yang J, Hu L, Chain Y, et al. Association between age and clinical characteristics and outcomes of COVID-19. Eur Respir J 2020; 55: 2001112 [https://doi.org/10.1183/13993003.01112-2020].
6. Nicholas G, Petra K, Yang L., Kiesha P, Mark J. Age-dependent effects in the transmission and control of COVID-19 epidemics. 2020;26 :1205–1211
7. Fan W, Su Z, Bin Y, Yan-Mei C, Wen W, Zhi-Gang S, et al. A new coronavirus associated with human respiratory disease in China. Nature, 2020. 579(7798); p. 265-269.
8. Klein, S. L. & Flanagan, K. L. Sex differences in immune responses. Nat Rev Immunol. (2016) 16(10), 626-638.