Sandra Barros, Ana Sofia da Silva, Eunice Marcia Bacela, Ana Luise Sampaio

Introduction

Plants have acquired effective defense mechanisms that ensure their survival under adverse conditions. These defenses may be physical such as thorns, but the most common protections are the chemical compounds. In fact, seeds, leaves, bark, and flowers contain several active ingredients that have been used medicinally for many centuries. In particular, plant extracts and/or essential oils are used in food preservation, as sources of pharmaceuticals and in alternative medicine (Deans and Titchie, 1987). The increasing resistance to the conventional antimicrobial agents is of utmost concern making the search for new biologically active metabolites in plants that are traditionally used for the microbial control, one of the most promising areas in the research of alternatives to antibiotics (Ghannoum et al., 1999; Alonso et al., 1995). The extracts of numerous traditional Australian medicinal plants, including the genera Acacia and Eucalyptus, revealed a great number of compounds with anti-microbial properties (Semple et al., 1998; Cock, 2008).

The majority of wattles (Acacia spp.) and eucalyptus (Eucalyptus spp.) are native from Australia, Tasmania and neighboring islands. In Europe all the Acacia and Eucalyptus species are exotic, and in Portugal these species were introduced in the 19th century. Firstly used as ornamental plants, their importance increased, as they were used for dune stabilization, furniture, tanning, pulp and paper industries, and as biomass sources for energy (Santos et al., 2006; Lourenço et al. 2008; Lorenzo et al. 2010). Many of the wattles species are considered invasive, competing with the natural flora (Expert workshop 1999; Lorenzo et al. 2010) due to their exceptional high growth rates when planted outside of their natural habitats. Their ability to adapt to low fertile soils and resistance to wind and fire, imposed the necessity to control them in protected sites such as coastal dunes, natural parks and reserves (Lorenzo et al. 2010). The intensive use of eucalyptus trees for pulp industry and the biological control of Acacia spp., generate high quantities of biomass, 5 to 10 t ha-1 year-1 for Eucalyptus and Acacia, respectively (Bernhard- Reversat 1993). This biomass, documented as rich in secondary metabolites (Seigler, 2003) is mainly constituted by leaves and currently left in the fields, affecting litter decomposition and the Nitrogen cycle (Castro-Diez et al. 2012). Due the high concentration of secondary metabolites, these plant species have been used in the traditional Australian and African medicines to treat cold and cough, heal hounds and treat fungal infections (Palombo and Semple, 2001; Takahashi et al., 2004; Mutai et al., 2009; Mulaudzi et al. 2011), and their extracts contain large amounts of compounds with anti-microbial activity (compounds with anti-microbial activity (Ghisalberti 1996; Semple et al. 1998; Seigler 2003; Cock 2008). The main goal of this work is to test the effect of crude foliar extracts, obtained by maceration with three different solvents, from the wattles Acacia baileyana (Cootamundra wattle), Acacia dealbata (silver wattle) and Acacia melanoxylon (black wattle) and the Eucalyptus nicholii (narrow-leaved black peppermint) against bacteria and yeast species.

Materials and Methods

Preparation of Leaf Crude Extracts

Leaves from Acacia baileyana F. Muell, Acacia dealbata Link., Acacia melanoxylon R. Br. and Eucalyptus nicholii Maiden & Blakely were collected in March 2009, in the University Campus, located in Vila Real, Northeast Portugal. Plants identification was done by Eunice Bacela and confirmed by the staff of the Botanical Garden of UTAD (http://jb.utad.pt/). The collected leaves were clean, oven dried at 45 °C and milled. For extract preparation, the milled leaves were suspended in the solvent (20 % w/v): water, ethanol (95 %) and methanol (95 %). For ethanolic and methanolic extracts, the suspensions were placed at 20°C for 24 hours, according to the methodology of Silva et al. 2007 and for the aqueous extraction, the leaves were macerated for 24 hours at room temperature and then filtered using Whatman filter paper n.42. The crude extracts were stored at 4°C, prior to the antimicrobial activity test.
Bacillus cereus and Escherichia coli ATCC 90028 and Acacia catechu E. coli extracts and was weakly exhibited by the Candida albicans C. albicans and Acacia robusta. In a study conducted by Hamza and colleagues on the effect of extracts of 56 plant species, among them Eucalyptus globulus, the bacteria were isolated in our laboratory from soil and water samples, respectively, while the yeasts were purchased. These species are common either as food contaminants or as natural biota of mucosa. The microorganisms were incubated overnight, at 36 ºC, in fresh media: (i) for bacteria in Luria-Bertani agar (LB) g.L⁻¹: tryptone, 10; yeast extract, 5; NaCl, 5; and glucose, 5 and agar–agar, 15; or (ii) for yeasts, yeast malt extract agar (YMA) g.L⁻¹: glucose, 10; casein peptone, 5; yeast extract, 3, malt extract, 3 and agar-agar, 20.

Susceptibility Testing

The antimicrobial potential of the extracts was evaluated by disc diffusion (DD) method. For that, Petri plates (90 mm diameter) containing Mueller-Hinton (MH) agar (Difco Laboratories) were inoculated with overnight microbial cultures, previously suspended in a sterilized saline solution (0.85 %). For yeast cells, the MH agar were supplemented with 2% glucose. The microbial suspensions were spread on Petri dishes with a turbidity of 1.0 or 0.5 McFarland, respectively, for bacteria and yeast. For the susceptibility test, sterile disks in blank (6-mm diameter) embedded with 15 μL extract were allowed to dry, and placed on inoculated Petri dishes with MH. The plates were incubated at 36 ± 1ºC for 24–48 h, and the inhibitory diameter zone (DZ) measured. For all experiments three independent replicas were taken.

Negative (15 μL of DMSO) and positive (antibiotic standard) controls were included in all experiments: gentamicin (10 μg per disc) for bacteria and fluconazole (25 μg per disc) for yeasts. The interpretative criteria, according to CLSI guidelines (CLSI 2004; CLSI 2007) were: (i) for gentamicin, susceptible (S) ≥ 15 mm; intermediate (I) 14-13 mm and resistant (R) ≤ 12 mm and (ii) for fluconazole, susceptible (S) ≥ 19 mm; susceptible dose dependent (SDD) 18-15 mm and resistant (R) ≤ 14 mm. Because there are no CLSI standards for susceptibility testing against B. cereus, we followed the breakpoints for Staphylococcus aureus.

Statistical Analysis

To test the effect of the foliar extracts against bacteria and yeast, we tested the data for normal distribution (Kolmogorov-Smirnov test). Both the raw and the transformed data (square root, logarithm) failed to follow the normal distribution. For that reason, we performed the non-parametric Kruskal-Wallis test, followed by multiple comparisons of mean ranks groups (microorganism or solvent). All data analyses were performed using STATISTICA version 9.1 (StatSoft 2010).

Results and Discussion

The DZ obtained by the DD method for the four plant crude extracts are shown in Fig. 1. Among the bacteria, E. coli was less susceptible than B. cereus. Cock (2008) tested the methanolic extracts of 25 Australian native species against four bacteria (two Gram-positive and two Gram-negative) by the DD technique and observed that B. cereus was the most susceptible bacteria for 54 % of the tested extracts. Also, Acacia aneura and Eucalyptus regnans leaf extracts were among the extracts with good anti-bacterial activity. By contrast, others (Egwaikhide et al. 2008) have tested the methanolic extract from Eucalyptus globulus leaves against several bacterial species and reported that E. coli (DZ = 17 mm) was more susceptible to the extract than B. cereus (DZ = 14 mm). Voravuthikunchai et al. (2004) tested 38 medicinal plant species commonly used in Thailand, both its aqueous and ethanolic extracts, against different strains of E. coli. Among the plant extracts tested was Acacia catechu, with DZ ranged from 9 to 11 mm, results very similar to ours. The other works have also reported high susceptibility of the Gram-positive bacteria to plant extracts, when compared to Gram-negative bacteria (Palombo and Semple, 2001; Taguri et al. 2006).

The susceptibility differences between these two bacterial groups may be due to cell wall structural differences, with the outer membrane of the Gram-negative cell wall, acting as a barrier to many compounds, including antibiotics (Russel 1995). Nevertheless, C. albicans, whose cell wall displays a parallel structure to the Gram-positive bacteria, had a similar susceptibility to E. coli. The growth of these organisms has not been inhibited by any of A. melanoxylon extracts and was weakly exhibited by the ethanolic extract of A. dealbata. Also, C. albicans was less susceptible to foliar extracts than C. parapsilosis, a trend also found by others. In a study conducted by Hamza and colleagues on the effect of extracts of 56 plant species, among them Acacia nilotica and Acacia robusta, against yeasts species, C. parapsilosis was more susceptible than C. albicans (Hamza et al. 2006). Also, C. parapsilosis ATCC 22019 was, in general, more susceptible to essential oils, than the isolates of C. albicans (Carvalhinho et al. 2012).
inhibition of microbial control, with the exception of ethanolic extract from leaves of A. dealbata, against B. cereus. By contrast, Taguri and collaborators related that A. dealbata extracts had weak potency against B. cereus and B. subtilis (Taguri et al. 2006). Nevertheless, the extract was obtained from fruits using water as the solvent. The aqueous extract from this species also had a weak effect against the organisms tested in this work.

The non-parametric test Kruskal-Wallis showed differences among the plant species ($H_{3, 144} = 49.79; P < 0.0001$) and among microbial species ($H_{3, 144} = 34.01; P < 0.0001$). Multiple comparisons revealed that plant extracts efficacy, in decreasing order of importance, was (A. baileyana = E. nicholii) > (A. dealbata = A. melanoxylon). The effect of solvent and microbial species was analyzed within each plant species (Table 1). Regarding the solvent, ethanol was superior to water only in A. baileyana ($P<0.05$) and A. dealbata ($P<0.0001$). Despite the high DZ values obtained with E. nicholii ethanolic extracts, the differences between extracts were not significant. On average, the extraction with ethanol seems to be the most effective, except for A. melonoxylon, against C.

Figure 1: Antimicrobial activity, expressed by the average DZ (mm) and standard deviation (SD), of four crude foliar extracts against E. coli, B. cereus, C. albicans and C. parapsilosis. Doted lines indicate the susceptible (S) antibiotic breakpoint for gentamicin (bacteria) or fluconazole (yeasts).

parapsilosis and E. nicholii against E. coli, where the methanolic extract clearly had the highest performance (Fig.1). Our findings are supported by others. Three solvents (water, hexane and ethanol) were used to prepare extracts from 82 plant species, which were tested against five bacteria. The results indicated that the ethanolic extracts showed a superior activity to the extracts obtained with the other two solvents (Ahmad et al. 1998).

Plant species	Group variable	H (d.f., n)	P-value
A. baileyana	Solvent	6.86 (2, 36)	<0.05
	Microbial species	15.59 (3, 36)	<0.01
E. nicholii	Solvent extract	0.87 (2, 36)	n.s.
	Microbial species	26.56 (3, 36)	<0.0001
A. dealbata	Solvent extract	20.76 (2, 36)	<0.0001
	Microbial species	5.46 (3, 36)	n.s.
A. melanoxylon	Solvent extract	0.21 (2, 36)	n.s.
	Microbial species	12.48 (3, 36)	n.s.

Table 1: Non parametric Kruskal-Wallis test, followed by multiple comparisons of mean ranks. d.f. - degree of freedom; n - number of observations; n.s. – not significant ($P > 0.05$).
The differences among foliar extracts may be due to the distinct chemistry of plant species, namely in the phenolic fraction and in the polarity of the solvents used to obtain the extracts. In a work on four extract-types (ethanolic, hydro-alcoholic, methanolic and acetone) from *A. melanoxylon* and *A. dealbata* aerial parts (Luís et al. 2012), regardless of the solvent used, the extracts of *A. dealbata* had higher antioxidant activity than that of *A. melanoxylon*. The methanolic extracts of *A. melanoxylon* and *A. dealbata* differed in the content of phenolics (syringic, *p*-coumaric, ferulic and ellagic acids), which may explain the distinct activities against the tested micro-organisms obtained in the present work. Phenolic acids may inhibit ergosterol biosynthesis and compromise the integrity of fungal cytoplasmic membrane (Li et al., 2015). Also, gallic and ferulic acids led to irreversible changes in bacterial membranes (Borges et al., 2013).

When we compared the antimicrobial efficacy of leaf extracts with those obtained with gentamicin and fluconazole (Table 2), it was clear that the most efficient extracts were the ethanolic and aqueous extracts of *A. baileyana* and *E. nichollii*, followed by the ethanolic extracts of *A. dealbata*. Contrary, the extracts of *A. melanoxylon* were the least effective.

Table 2: Classification of crude foliar extracts for their antimicrobial activity, relative to gentamicin (bacteria) and fluconazole (yeasts). Non-effective (-) for inhibition halo = 0; moderate efficacy (+) for 0 < inhibition halo < two-fold AIH and good efficacy (++) for AIH < inhibition halo < two-fold AIH.

Foliar Extracts	Microorganism	Solvent	*A. baileyana*	*A. dealbata*	*A. melanoxylon*	*E. nichollii*
B. cereus	Water	++	+	+	++	++
	Ethanol	++	++	+	++	++
	Methanol	+	-	-	+	
E. coli	Water	+	-	-	+	
	Ethanol	+	+	-	-	
	Methanol	+	-	-	+	
C. albicans	Ethanol	+	+	-	+	
	Methanol	+	-	-	+	
C. parapsilosis	Water	+	-	-	+	
	Ethanol	+	+	-	+	
	Methanol	+	+	+	+	

e. *B. cereus* was the most susceptible microorganism followed by *C. parapsilosis* and *C. albicans*. All the foliar extracts were ineffective, or moderately effective, against *E. coli* and *C. albicans*.

In conclusion, our results may prove useful to forest producers or those involved in plant invasive control programs, in using the leaf biomasses of *A. baileyana*, *E. nichollii* and *A. dealbata*, to obtain alternative substances to conventional antimicrobials.

Acknowledgments

The authors wish to thank Fernando Ferreira for his support during assistance in the preparation of the plant extracts.

Conflict of interest

The authors declare that they have no conflict of interest.

References

1. Ahmad I, Mehmood Z, Mohammad F (1998). Screening of some Indian medicinal plants for their antimicrobial properties. J Ethnopharmacol 62:183–193. doi:10.1016/S0378-8741(98)00055-5.
2. Aires A, Mota VR, Saavedra MJ Monteiro AA, Simões M, Rosa EA, Bennett RN (2009). pathogenic bacteria. J Appl Microbiol 106:2096–2105. doi: 10.1111/j.1365-2672.2009.04181.x.
3. Bernhard-Reversat F (1993). Dynamics of litter and organic matter at soil-litter (2009) Initial in vitro evaluations of the antibacterial activities of glucosinolate enzymatic hydrolysis products against plant interface in fast-growing tree plantations on sandy ferrallitic soils (Congo). Acta Ecol 14:179–195.
4. Borges A, Ferreira C, Saavedra MJ, Simões M (2013). Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microb Drug Resist 19:256–265. doi: 10.1089/mdr.2012.0244.
Carvalhinho S, Costa AM, Coelho AC Martins E, Sampaio A. (2012). Susceptibilities of *Candida albicans* mouth isolates to antifungal agents, essential oils and mouth rinses. Mycopathologia 174: 69–76. doi: 10.1007/s11046-012-9520-4

Castro-Diez P, Fierro-Brunnenmeister N, Gonzalez-Munoz N Gallardo A. (2012). Effects of exotic and native tree leaf litter on soil properties of two contrasting sites in the Iberian Peninsula. Plant Soil 350:179–191. doi:10.1007/s11104-011-0893-9

CLSI (2004). Method for antifungal disk diffusion susceptibility testing for yeasts. National Committee for Clinical Laboratory Standards. In: M44-A. A.G.N.D. (Ed.), Pennsylvania.

CLSI (2007). Performance standards for antimicrobial susceptibility testing. 17th informational supplement M100-S16. Clinical and Laboratory Standards Institute, Wayne, PA.

Cock IE (2008). Antibacterial activity of selected Australian native plant extracts. Internet J Microbiol 4:1–8.

Deans SG, Ritchie G (1987). Antibacterial properties of plant essential oils. Int J Food Microbiol 5:165–180. doi:10.1016/0168-1605(87)90034-1

Egwaikhide PA, Okeniyi SO, Akporhonor EE, Emua SO (2008). Studies on bioactive metabolites constituents and antimicrobial evaluation of leaf extracts of *Eucalyptus globulus*. Agric J 3:42–45. doi:aj.2008.42.45.

Expert Workshop (1999). Comprehensive Regional Assessment World Heritage Sub-theme: Eucalypt-dominated Vegetation: Report of the Expert Workshop. Expert workshop report: world heritage eucalypt theme. Govt. Print., Canberra, Australia. 1–107.

Ghannoum MA, Rice LB (1999). Antifungal agents: mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clin Microbiol Rev 12:501–517.

Ghisalberti EL (1996). Bioactive acylphloroglucinol derivatives from *Eucalyptus* species. Phytochemistry 41:7–22. doi:10.1016/0031-9422(95)00484-X.

Hamza OJ, van den Bout-van den Beukel CJ, Matee MIN, Moshi, MJ, Mikx FHM, Selemani HO, Mbwambo ZH, Van der Link Eucalyptus. Alonso EP, Paz EA, Cerdeiras MP, Fernandez J, Ferreira F, Moyna P, Soubes M, Vázquez A, Vero S, Zunino L (1995). *Acacia melanoxylon* and alkaloids estimation. Int J Pharm Pharm Sci 4:225–233.

Voravuthikunchai S, Lortheeranuwat A, Jeeju W, Sririrak T, Phongpaichit S, Supawita T (2004). Effective medicinal plants against Escherichia coli O157:H7. J Ethnopharmacol 94:49–54. doi:10.1016/j.ajep.2004.03.036.