Supplementary Figure S1

**Figure S1. Consistency of amplicon sequencing method in different trials.** Reads from targeted amplicons of three individual test samples in Trial 2 were subsampled to same depth as reads in Trial 1. Pearson correlation coefficients are shown in the diagram.
Supplementary Figure S2

Figure S2. Consistency of amplicon sequencing method in different trials using upper quartile (UQ) normalization. Reads from targeted amplicons of three individual test samples in Trial 2 were subsampled to same depth as reads in Trail 1. Pearson correlation coefficients are shown in the diagram.
**Supplementary Figure S3**

Figure S3. (a) Reads (normalized by upper quartile) mapping to the detected genes between MetaSeq and AmpliSeq. Genes only screened by AmpliSeq are showed in initial values of the abscissa axis. (b) Abundance of ARGs in AmpliSeq and MetaSeq. ARGs were classified into ten families (Sul: sulphonamides, AGly: aminoglycosides, Tet: tetracyclines, Bla: β-lactams, Cap: chloramphenicol, MLSB: macrolide-lincosamide-streptogramin B, Multi: multi-drug, PP: polypeptide, Fos: Fosfomycin, Qui: quinolone). Upper quartile (UQ) was used to normalized read counts and log-transformed to produce the heatmap.
Supplementary Figure S4

Figure S4. Application of designed method in ATOPlex platform. (a) Assessment of the consistency of ATOPlex method in different trials (normalized by UQ). (b) Assessment of the consistency of ATOPlex method in different trials (normalized by RPKM). (c) Comparison of AmpliSeq and ATOPlex methods in diversity of target genes. (d) Application of designed approach using AmpliSeq and ATOPlex platforms. UQ was used to normalized read counts and log-transformed to produce the heat map.
| Gene  | Classification | AMR Gene Family                                                                 | Resistance Mechanism                  | Accession number |
|-------|----------------|--------------------------------------------------------------------------------|---------------------------------------|------------------|
| gyrA  | Quinilone      | fluoroquinolone resistant gyrA                                                | antibiotic target alteration          | MG995190         |
| qepA  | Quinilone      | fluoroquinolone efflux MFS transporter QepA gene family                      | antibiotic efflux                     | AB263754         |
| qnrA1 | Quinilone      | quinolone resistance protein (qnr)                                            | antibiotic target protection          | AY070235         |
| qnrB1 | Quinilone      | quinolone resistance protein (qnr)                                            | antibiotic target protection          | EF682133         |
| qnrB4 | Quinilone      | quinolone resistance protein (qnr)                                            | antibiotic target protection          | DQ303921         |
| qnrB8 | Quinilone      | quinolone resistance protein (qnr)                                            | antibiotic target protection          | EU043312         |
| qnrC  | Quinilone      | quinolone resistance protein (qnr)                                            | antibiotic target protection          | EU917444         |
| qnrD  | Quinilone      | quinolone resistance protein (qnr)                                            | antibiotic target protection          | FJ228229         |
| qnrS1 | Quinilone      | quinolone resistance protein (qnr)                                            | antibiotic target protection          | AB187515         |
| qnrS2 | Quinilone      | quinolone resistance protein (qnr)                                            | antibiotic target protection          | JF261185         |
| qnrVC1| Quinilone      | quinolone resistance protein (qnr)                                            | antibiotic target protection          | EU436855         |
| optrA | Chloramphenicol| ATP-binding cassette (ABC) antibiotic efflux pump                             | antibiotic efflux                     | NG_048023        |
| catA1 | Chloramphenicol| chloramphenicol acetyltransferase (CAT)                                      | antibiotic inactivation               | V00622           |
| catB3 | Chloramphenicol| chloramphenicol acetyltransferase (CAT)                                      | antibiotic inactivation               | AJ009818         |
| catB8 | Chloramphenicol| chloramphenicol acetyltransferase (CAT)                                      | antibiotic inactivation               | AF227506         |
| cmlA1 | Chloramphenicol| major facilitator superfamily (MFS) antibiotic efflux pump                   | antibiotic efflux                     | M64556           |
| fexA  | Chloramphenicol| major facilitator superfamily (MFS) antibiotic efflux pump                   | antibiotic efflux                     | AJ549214         |
| floR  | Chloramphenicol| major facilitator superfamily (MFS) antibiotic efflux pump                   | antibiotic efflux                     | AF071555         |
| pexA  | Chloramphenicol| major facilitator superfamily (MFS) antibiotic efflux pump                   | antibiotic efflux                     | NG_048035        |
| fabK  | Chloramphenicol| Others                                                                         | antibiotic inactivation               | FJ390165         |
| cfr   | Chloramphenicol| Cfr 23S ribosomal RNA methyltransferase                                     | antibiotic target alteration          | AM408573         |
| Gene     | Type                   | Function                                      | Accession |
|----------|------------------------|-----------------------------------------------|-----------|
| cmx      | Chloramphenicol        | major facilitator superfamily (MFS) antibiotic efflux pump | U85507    |
| aac6-II  | Aminoglycoside         | AAC(6') antibiotic efflux pump               | L12710    |
| aac6-la  | Aminoglycoside         | AAC(6') antibiotic inactivation              | M18967    |
| aac6-lb  | Aminoglycoside         | AAC(6') antibiotic inactivation              | JN108884  |
| aac6-ly  | Aminoglycoside         | AAC(6') antibiotic inactivation              | AF144880  |
| aacA_aphD| Aminoglycoside         | APH(2''), AAC(6') antibiotic inactivation    | GU565967  |
| aacC1    | Aminoglycoside         | AAC(3) antibiotic inactivation                | U04610    |
| aacC2    | Aminoglycoside         | AAC(3) antibiotic inactivation                | AY138987  |
| aac      | Aminoglycoside         | AAC(6') antibiotic inactivation              | AJ628983  |
| aadA1    | Aminoglycoside         | ANT(3'') antibiotic inactivation              | KT175895  |
| aadA2    | Aminoglycoside         | ANT(3'') antibiotic inactivation              | JQ364967  |
| aadA5    | Aminoglycoside         | ANT(3'') antibiotic inactivation              | AJ420072  |
| aadA9    | Aminoglycoside         | ANT(3'') antibiotic inactivation              | MH257908  |
| aadA    | Aminoglycoside         | ANT(3'') antibiotic inactivation              | AF181950  |
| aadD-1   | Aminoglycoside         | ANT(4') antibiotic inactivation               | AB699882  |
| aadE     | Aminoglycoside         | ANT(6) antibiotic inactivation                | AF016483  |
| aph2-Id  | Aminoglycoside         | APH(2'') antibiotic inactivation              | AY971801  |
| aph6-la  | Aminoglycoside         | APH(6) antibiotic inactivation                | HM146784  |
| aphA1    | Aminoglycoside         | APH(3') antibiotic inactivation               | AY220558  |
| armA     | Aminoglycoside         | 16S rRNA methyltransferase (G1405)            | AB120321  |
| rmtA     | Aminoglycoside         | 16S rRNA methyltransferase (G1405)            | JN968578  |
| rmtB2    | Aminoglycoside         | 16S rRNA methyltransferase (G1405)            | AB194779  |
| rmtD     | Aminoglycoside         | 16S rRNA methyltransferase (G1405)            | DQ914960  |
| rmtE     | Aminoglycoside         | 16S rRNA methyltransferase (G1405)            | GU201947  |
| rmtG     | Aminoglycoside         | 16S rRNA methyltransferase (G1405)            | KJ004567  |
| Gene   | Type                  | Function                          | Accession Number |
|--------|-----------------------|-----------------------------------|------------------|
| rmtH   | Aminoglycoside        | 16S rRNA methyltransferase (G1405) | KC544262         |
| rmtf   | Aminoglycoside        | 16S rRNA methyltransferase (G1405) | JQ808129         |
| spcN   | Aminoglycoside        | spectinomycin phosphotransferase   | AF170704         |
| strA   | Aminoglycoside        | APH(3")                          | M96392           |
| strB   | Aminoglycoside        | Aminoglycoside                    | EF493834         |
| npmA   | Aminoglycoside        | 16S rRNA methyltransferase (A1408) | AB261016         |
| strA   | Aminoglycoside        | Aminoglycoside                    | AF367983         |
| strB   | Aminoglycoside        | Aminoglycoside                    | X92946           |
| npmA   | Aminoglycoside        | 16S rRNA methyltransferase (A1408) | AN170704         |
| strA   | Aminoglycoside        | Aminoglycoside                    | AF367983         |
| strB   | Aminoglycoside        | Aminoglycoside                    | X92946           |
| str    | Aminoglycoside        | Aminoglycoside                    | AF367983         |
| str    | Aminoglycoside        | Aminoglycoside                    | X92946           |
| npmA   | Aminoglycoside        | 16S rRNA methyltransferase (A1408) | AB261016         |
| strA   | Aminoglycoside        | Aminoglycoside                    | AF367983         |
| strB   | Aminoglycoside        | Aminoglycoside                    | X92946           |
| npmA   | Aminoglycoside        | 16S rRNA methyltransferase (A1408) | AB261016         |
| strA   | Aminoglycoside        | Aminoglycoside                    | AF367983         |
| strB   | Aminoglycoside        | Aminoglycoside                    | X92946           |
| str    | Aminoglycoside        | Aminoglycoside                    | AF367983         |
| str    | Aminoglycoside        | Aminoglycoside                    | X92946           |
| npmA   | Aminoglycoside        | 16S rRNA methyltransferase (A1408) | AB261016         |
| strA   | Aminoglycoside        | Aminoglycoside                    | AF367983         |
| strB   | Aminoglycoside        | Aminoglycoside                    | X92946           |
| str    | Aminoglycoside        | Aminoglycoside                    | AF367983         |
| str    | Aminoglycoside        | Aminoglycoside                    | X92946           |
| npmA   | Aminoglycoside        | 16S rRNA methyltransferase (A1408) | AB261016         |
| strA   | Aminoglycoside        | Aminoglycoside                    | AF367983         |
| strB   | Aminoglycoside        | Aminoglycoside                    | X92946           |
| str    | Aminoglycoside        | Aminoglycoside                    | AF367983         |
| str    | Aminoglycoside        | Aminoglycoside                    | X92946           |
| npmA   | Aminoglycoside        | 16S rRNA methyltransferase (A1408) | AB261016         |
| strA   | Aminoglycoside        | Aminoglycoside                    | AF367983         |
| strB   | Aminoglycoside        | Aminoglycoside                    | X92946           |
| str    | Aminoglycoside        | Aminoglycoside                    | AF367983         |
| str    | Aminoglycoside        | Aminoglycoside                    | X92946           |
| npmA   | Aminoglycoside        | 16S rRNA methyltransferase (A1408) | AB261016         |
| strA   | Aminoglycoside        | Aminoglycoside                    | AF367983         |
| strB   | Aminoglycoside        | Aminoglycoside                    | X92946           |
| str    | Aminoglycoside        | Aminoglycoside                    | AF367983         |
| str    | Aminoglycoside        | Aminoglycoside                    | X92946           |
| npmA   | Aminoglycoside        | 16S rRNA methyltransferase (A1408) | AB261016         |
| strA   | Aminoglycoside        | Aminoglycoside                    | AF367983         |
| strB   | Aminoglycoside        | Aminoglycoside                    | X92946           |
| str    | Aminoglycoside        | Aminoglycoside                    | AF367983         |
| str    | Aminoglycoside        | Aminoglycoside                    | X92946           |
| npmA   | Aminoglycoside        | 16S rRNA methyltransferase (A1408) | AB261016         |
| strA   | Aminoglycoside        | Aminoglycoside                    | AF367983         |
| strB   | Aminoglycoside        | Aminoglycoside                    | X92946           |
| str    | Aminoglycoside        | Aminoglycoside                    | AF367983         |
| Gene   | Enzyme     | Class  | Function                               | Accession  |
|--------|------------|--------|----------------------------------------|------------|
| blaOXA-51  | OXA beta-lactamase, class D | antibiotic inactivation | AJ309734  |
| blaOXA-58  | OXA beta-lactamase, class D | antibiotic inactivation | AY665723  |
| blaOXY-1   | OXY beta-lactamase, class A | antibiotic inactivation | Z30177    |
| blaPAO-1   | PDC beta-lactamase, class C | antibiotic inactivation | AY083595  |
| blaPER-1   | PER beta-lactamase, class A | antibiotic inactivation | GU944725  |
| blaPER-2   | PER beta-lactamase, class A | antibiotic inactivation | X93314    |
| blaPSE-1   | CARB beta-lactamase, class A | antibiotic inactivation | M69058    |
| blaROB-1   | ROB beta-lactamase, class A | antibiotic inactivation | DQ840517  |
| blaSFO-1   | FONA beta-lactamase, class A | antibiotic inactivation | AB003148  |
| blaSHV-1   | SHV beta-lactamase, class A | antibiotic inactivation | AF148850  |
| blaSIM-1   | SIM beta-lactamase, class B | antibiotic inactivation | JF731030  |
| blaSPM-1   | SPM beta-lactamase, class B | antibiotic inactivation | AY341249  |
| blaTEM-1A  | TEM beta-lactamase, class A | antibiotic inactivation | HM749966  |
| blaTLA-1   | TLA beta-lactamase, class A | antibiotic inactivation | AF148067  |
| blaVEB-1   | VEB beta-lactamase, class A | antibiotic inactivation | HM370393  |
| blaVIM-2   | VIM beta-lactamase, class B | antibiotic inactivation | KC907378  |
| blaZ-32    | blaZ beta-lactamase, class A | antibiotic inactivation | AP004832  |
| cepA       | cepA beta-lactamase         | antibiotic inactivation | L13472    |
| mecA       | peptidoglycan synthesis     | antibiotic inactivation | NC_000913 |
| carB-1     | PSE family                 | antibiotic inactivation | HQ616211  |
| pbp1a      | penicillin-binding protein  | antibiotic target protection | AF446215 |
| pbp2a      | penicillin-binding protein  | antibiotic target protection | AF101780 |
| pbp3       | penicillin-binding protein  | antibiotic target protection | AJ243120 |
| pbp5       | penicillin-binding protein  | antibiotic target protection | AF375986 |
| tet32      | tetracycline-resistant ribosomal protection protein | antibiotic target protection | EU722333 |
| tet34      | tetracycline-resistant ribosomal protection protein | antibiotic target protection | AB061440 |
| Gene  | Description                                                                 | Accession   |
|-------|-----------------------------------------------------------------------------|-------------|
| tet35 | Tetracycline-resistant ribosomal protection protein                         | AF353562    |
| tet36 | Tetracycline-resistant ribosomal protection protein                         | AJ514254    |
| tet37 | Tetracycline-resistant ribosomal protection protein                         | AF540889    |
| tetAP | Tetracycline major facilitator superfamily (MFS) antibiotic efflux pump     | AB054980    |
| tetA  | Tetracycline major facilitator superfamily (MFS) antibiotic efflux pump     | X00006      |
| tetBP | Tetracycline-resistant ribosomal protection protein                         | NC_010937   |
| tetB  | Tetracycline major facilitator superfamily (MFS) antibiotic efflux pump     | AP000342    |
| tetC  | Tetracycline major facilitator superfamily (MFS) antibiotic efflux pump     | NC_003123   |
| tetD  | Tetracycline major facilitator superfamily (MFS) antibiotic efflux pump     | AF467077    |
| tetE  | Tetracycline major facilitator superfamily (MFS) antibiotic efflux pump     | L06940      |
| tetG  | Tetracycline major facilitator superfamily (MFS) antibiotic efflux pump     | S52437      |
| tetH  | Tetracycline major facilitator superfamily (MFS) antibiotic efflux pump     | Y16103      |
| tetJ-1| Tetracycline major facilitator superfamily (MFS) antibiotic efflux pump     | ACLE01000065|
| tetK  | Tetracycline major facilitator superfamily (MFS) antibiotic efflux pump     | U38428      |
| tetL  | Tetracycline major facilitator superfamily (MFS) antibiotic efflux pump     | HM235948    |
| tetM  | Tetracycline-resistant ribosomal protection protein                         | X92947      |
| tetO  | Tetracycline-resistant ribosomal protection protein                         | M18896      |
| tetQ-3| Tetracycline-resistant ribosomal protection protein                         | U73497      |
| tetR  | Tetracycline major facilitator superfamily (MFS) antibiotic efflux pump     | KF697108    |
| tetS-3| Tetracycline-resistant ribosomal protection protein                         | X92946      |
| tetT  | Tetracycline-resistant ribosomal protection protein                         | L42544      |
| tetU  | Tetracycline major facilitator superfamily (MFS) antibiotic efflux pump     | U01917      |
| tetV  | Tetracycline major facilitator superfamily (MFS) antibiotic efflux pump     | AF030344    |
| tetW  | Tetracycline-resistant ribosomal protection protein                         | DQ060146    |
| tetX  | Tetracycline tetracycline inactivation enzyme                               | MT022428    |
tetX3  |  Tetracycline  |  tetracycline inactivation enzyme  |  antibiotic inactivation  |  MK134375  

tetX4  |  Tetracycline  |  tetracycline inactivation enzyme  |  antibiotic inactivation  |  MK134376  

vanA   |  Polypeptide  |  glycopeptide resistance gene cluster, van ligase  |  antibiotic target alteration  |  FJ866609  

vanB   |  Polypeptide  |  glycopeptide resistance gene cluster, van ligase  |  antibiotic target alteration  |  AF192329  

vanC   |  Polypeptide  |  glycopeptide resistance gene cluster, van ligase  |  antibiotic target alteration  |  EU151752  

vanG-1 |  Polypeptide  |  glycopeptide resistance gene cluster, van ligase  |  antibiotic target alteration  |  AY271782  

vanHB-1|  Polypeptide  |  vanH, glycopeptide resistance gene cluster  |  antibiotic target alteration  |  AF192329  

vanHD-1|  Polypeptide  |  vanH, glycopeptide resistance gene cluster  |  antibiotic target alteration  |  AB242319  

vanM   |  Polypeptide  |  glycopeptide resistance gene cluster, van ligase  |  antibiotic target alteration  |  AF288163  

vanRA  |  Polypeptide  |  glycopeptide resistance gene cluster, vanR  |  antibiotic target alteration  |  FJ866609  

vanRB  |  Polypeptide  |  glycopeptide resistance gene cluster, vanR  |  antibiotic target alteration  |  AF192329  

vanRC-1|  Polypeptide  |  glycopeptide resistance gene cluster, vanR  |  antibiotic target alteration  |  AF162694  

vanRD-1|  Polypeptide  |  glycopeptide resistance gene cluster, vanR  |  antibiotic target alteration  |  AB242319  

vanSB-1|  Polypeptide  |  vanS, glycopeptide resistance gene cluster  |  antibiotic target alteration  |  AF192329  

vanTC  |  Polypeptide  |  glycopeptide resistance gene cluster, vanT  |  antibiotic target alteration  |  AF162694  

vanTG-1|  Polypeptide  |  glycopeptide resistance gene cluster, vanT  |  antibiotic target alteration  |  AY271782  

vanWB  |  Polypeptide  |  vanW, glycopeptide resistance gene cluster  |  antibiotic target alteration  |  AF192329  

vanWG  |  Polypeptide  |  vanW, glycopeptide resistance gene cluster  |  antibiotic target alteration  |  AY271782  

vanXA-1|  Polypeptide  |  vanX, glycopeptide resistance gene cluster  |  antibiotic target alteration  |  FJ866609  

vanXB-1|  Polypeptide  |  vanX, glycopeptide resistance gene cluster  |  antibiotic target alteration  |  AF192329  

vanXD-1|  Polypeptide  |  vanX, glycopeptide resistance gene cluster  |  antibiotic target alteration  |  AB242319  

vanYB-1|  Polypeptide  |  vanY, glycopeptide resistance gene cluster  |  antibiotic target alteration  |  AF192329  

vanYD-1|  Polypeptide  |  vanY, glycopeptide resistance gene cluster  |  antibiotic target alteration  |  AB242319  

vanRC  |  Polypeptide  |  glycopeptide resistance gene cluster, vanR  |  antibiotic target alteration  |  EU151753  

vanSA  |  Polypeptide  |  vanS, glycopeptide resistance gene cluster  |  antibiotic target alteration  |  M97297  

vanSC  |  Polypeptide  |  vanS, glycopeptide resistance gene cluster  |  antibiotic target alteration  |  AF162694
| Gene | Type          | Description                                           | Mechanism                              | Accession Number |
|------|---------------|-------------------------------------------------------|----------------------------------------|------------------|
| vanSE| Polypeptide   | vanS, glycopeptide resistance gene cluster            | antibiotic target alteration          | AY700375         |
| vanTE| Polypeptide   | glycopeptide resistance gene cluster, vanT            | antibiotic target alteration          | FJ872411         |
| mcr-1| Polypeptide   | MCR phosphoethanolamine transferase                    | antibiotic target alteration          | KY853650         |
| mcr-2| Polypeptide   | MCR phosphoethanolamine transferase                    | antibiotic target alteration          | LT598652         |
| mcr-3-17| Polypeptide | MCR phosphoethanolamine transferase                    | antibiotic target alteration          | MH332767         |
| mcr-3-1| Polypeptide   | MCR phosphoethanolamine transferase                    | antibiotic target alteration          | KY924928         |
| mcr-4| Polypeptide   | MCR phosphoethanolamine transferase                    | antibiotic target alteration          | MF543359         |
| mcr-5| Polypeptide   | MCR phosphoethanolamine transferase                    | antibiotic target alteration          | KY807921         |
| mcr-6| Polypeptide   | MCR phosphoethanolamine transferase                    | antibiotic target alteration          | MF176240         |
| mcr-7| Polypeptide   | MCR phosphoethanolamine transferase                    | antibiotic target alteration          | MG267386         |
| mcr-8| Polypeptide   | MCR phosphoethanolamine transferase                    | antibiotic target alteration          | MG736312         |
| mcr-9| Polypeptide   | MCR phosphoethanolamine transferase                    | antibiotic target alteration          | MK791138         |
| dfrA1| Sulfonamides  | trimethoprim resistant dihydrofolate reductase dfr     | antibiotic target replacement         | MH574896         |
| dfrA | Sulfonamides  | trimethoprim resistant dihydrofolate reductase dfr     | antibiotic target replacement         | GU565967         |
| dfrK | Sulfonamides  | trimethoprim resistant dihydrofolate reductase dfr     | antibiotic target replacement         | FN390947         |
| dfra12| Sulfonamides | trimethoprim resistant dihydrofolate reductase dfr     | antibiotic target replacement         | JN108892         |
| folA | Sulfonamides  | ATP-binding cassette (ABC) antibiotic efflux pump      | antibiotic efflux                      | EU871432         |
| sul1 | Sulfonamides  | sulfonamide resistant sul                              | antibiotic target replacement         | EF667294         |
| sul2 | Sulfonamides  | sulfonamide resistant sul                              | antibiotic target replacement         | DQ464881         |
| sulA | Sulfonamides  | sulfonamide resistant sul                              | antibiotic inactivation               | KJ831060         |
| fosA3| Fosfomycin    | glutathione S-transferase                              | antibiotic inactivation               | KX245440         |
| fosA | Fosfomycin    | glutathione S-transferase                              | antibiotic inactivation               | M85195           |
| fosB | Fosfomycin    | fosfomycin thiol transferase                           | antibiotic inactivation               | X89875           |
| fosXCC| Fosfomycin   | fosfomycin thiol transferase                           | antibiotic inactivation               | KC876749         |
| fosX | Fosfomycin    | fosfomycin thiol transferase                           | antibiotic inactivation               | NG_047899        |
| vatA | MLSB          | streptogramin vat acetyltransferase                    | antibiotic inactivation               | L07778           |
| Gene   | MLSB    | Function                                                                 | Accession Number |
|--------|---------|--------------------------------------------------------------------------|------------------|
| vatB   | MLSB    | streptogramin vat acetyltransferase                                        | U19459           |
| vatC   | MLSB    | streptogramin vat acetyltransferase                                        | AF015628         |
| vatE   | MLSB    | streptogramin vat acetyltransferase                                        | AF242872         |
| vgaA   | MLSB    | ATP-binding cassette (ABC) antibiotic efflux pump                         | M90056           |
| vgaA-V | MLSB    | ATP-binding cassette (ABC) antibiotic efflux pump                         | AF186237         |
| vgaB   | MLSB    | ATP-binding cassette (ABC) antibiotic efflux pump                         | U82085           |
| vgaC   | MLSB    | ATP-binding cassette (ABC) antibiotic efflux pump                         | NG_048559        |
| vgaE   | MLSB    | ATP-binding cassette (ABC) antibiotic efflux pump                         | FR772051         |
| vgbB   | MLSB    | streptogramin vgb lyase                                                  |                  |
| lnuA   | MLSB    | lincosamide nucleotidyltransferase (LNU)                                  | M14039           |
| lnuB   | MLSB    | lincosamide nucleotidyltransferase (LNU)                                  | AJ238249         |
| lnuC   | MLSB    | lincosamide nucleotidyltransferase (LNU)                                  | AY928180         |
| lmrA   | MLSB    | lmrAB opero                                                               |                  |
| lsaB   | MLSB    | ATP-binding cassette (ABC) antibiotic efflux pump                         | NG_047933        |
| lsaE   | MLSB    | ATP-binding cassette (ABC) antibiotic efflux pump                         | JX560992         |
| speA   | MLSB    | other/efflux                                                              | KY594413         |
| ereA-2 | MLSB    | macrolide esterase                                                        |                  |
| ereB   | MLSB    | macrolide esterase                                                        |                  |
| mefB   | MLSB    | major facilitator superfamily (MFS) antibiotic efflux pump                | FJ196385         |
| mphA   | MLSB    | macrolide phosphotransferase (MPH)                                        |                  |
| mphB   | MLSB    | macrolide phosphotransferase (MPH)                                        |                  |
| mphC   | MLSB    | macrolide phosphotransferase (MPH)                                        |                  |
| mefA   | MLSB    | major facilitator superfamily (MFS) antibiotic efflux pump                |                  |
| msrD   | MLSB    | ATP-binding cassette (ABC) antibiotic efflux pump                         |                  |
| msrA   | MLSB    | ATP-binding cassette (ABC) antibiotic efflux pump                         |                  |
| msrC   | MLSB    | ATP-binding cassette (ABC) antibiotic efflux pump                         |                  |
| Gene   | Type     | Description                                      | Accession Number |
|--------|----------|--------------------------------------------------|------------------|
| erm34  | MLSB     | Erm 23S ribosomal RNA methyltransferase          | AY234334         |
| erm35  | MLSB     | Erm 23S ribosomal RNA methyltransferase          | AF319779         |
| erm36  | MLSB     | Erm 23S ribosomal RNA methyltransferase          | AF462611         |
| ermA   | MLSB     | Erm 23S ribosomal RNA methyltransferase          | X03216           |
| ermB-18| MLSB     | Erm 23S ribosomal RNA methyltransferase          | X66468           |
| ermC   | MLSB     | Erm 23S ribosomal RNA methyltransferase          | V01278           |
| ermD   | MLSB     | Erm 23S ribosomal RNA methyltransferase          | M29832           |
| ermE   | MLSB     | Erm 23S ribosomal RNA methyltransferase          | X51891           |
| ermF   | MLSB     | Erm 23S ribosomal RNA methyltransferase          | M17124           |
| ermG   | MLSB     | Erm 23S ribosomal RNA methyltransferase          | M15332           |
| ermK   | MLSB     | Erm 23S ribosomal RNA methyltransferase          | M77505           |
| ermT   | MLSB     | Erm 23S ribosomal RNA methyltransferase          | M64090           |
| ermX   | MLSB     | Erm 23S ribosomal RNA methyltransferase          | M36726           |
| ermY   | MLSB     | Erm 23S ribosomal RNA methyltransferase          | AB014481         |
| mel    | MLSB     | ATP-binding cassette (ABC) antibiotic efflux pump| KU984333         |
| oleC   | MLSB     | ATP-binding cassette (ABC) antibiotic efflux pump| L06249           |
| oqxA   | Multidrug| resistance-nodulation-cell division (RND) antibiotic efflux pump | EU370913 |
| oqxB   | Multidrug| resistance-nodulation-cell division (RND) antibiotic efflux pump | EU370913 |
| cmeA   | Multidrug| resistance-nodulation-cell division (RND) antibiotic efflux pump | AB894099 |
| cmeB   | Multidrug| resistance-nodulation-cell division (RND) antibiotic efflux pump | AB894099 |
| cmeC   | Multidrug| resistance-nodulation-cell division (RND) antibiotic efflux pump | AB894099 |
| RE-cmeA| Multidrug| resistance-nodulation-cell division (RND) antibiotic efflux pump | KT778507 |
| RE-cmeB| Multidrug| resistance-nodulation-cell division (RND) antibiotic efflux pump | KT778507 |
| RE-cmeC| Multidrug| resistance-nodulation-cell division (RND) antibiotic efflux pump | KT778507 |
| tolC   | Multidrug| resistance-nodulation-cell division (RND) antibiotic efflux pump | FJ68952 |
| mepA   | Multidrug| multidrug and toxic compound extrusion (MATE) transporter | AY661734 |
ceoA  Multidrug  resistance-nodulation-cell division (RND) antibiotic efflux pump  antibiotic efflux  U97042
adeA  Multidrug  resistance-nodulation-cell division (RND) antibiotic efflux pump  antibiotic efflux  KX154813
cmr  Multidrug  major facilitator superfamily (MFS) antibiotic efflux pump  antibiotic efflux  U44900
mdetl1  Multidrug  major facilitator superfamily (MFS) antibiotic efflux pump  antibiotic inactivation  AJ012115
mdtE  Multidrug  resistance-nodulation-cell division (RND) antibiotic efflux pump  antibiotic inactivation  NC_000913
pikR1  Multidrug  erm_methylase  antibiotic inactivation  AF079138
pikR2  Multidrug  erm_methyltransferase  antibiotic inactivation  AF079138
mtrC  Multidrug  resistance-nodulation-cell division (RND) antibiotic efflux pump  antibiotic efflux  HQ712081
mtrD  Multidrug  resistance-nodulation-cell division (RND) antibiotic efflux pump  antibiotic efflux  HQ706341
qacH  Multidrug  small multidrug resistanc (SMR) efflux pump  antibiotic efflux  AY816216
qac  Multidrug  small multidrug resistanc (SMR) efflux pump  antibiotic efflux  U81980
rarD  Multidrug  major facilitator superfamily (MFS) antibiotic efflux pump  antibiotic efflux  L02122
sdeB  Multidrug  resistance-nodulation-cell division (RND) antibiotic efflux pump  antibiotic efflux  CP033162
ttgA  Multidrug  resistance-nodulation-cell division (RND) antibiotic efflux pump  antibiotic efflux  AF031417
ttgB  Multidrug  resistance-nodulation-cell division (RND) antibiotic efflux pump  antibiotic efflux  AF031417
qacA  Multidrug  small multidrug resistanc (SMR) efflux pump  antibiotic efflux  NG_061385
qacE  Multidrug  small multidrug resistanc (SMR) efflux pump  antibiotic efflux  FJ663011
nisB  Multidrug  resistance-nodulation-cell division (RND) antibiotic efflux pump  antibiotic efflux  X68307
bacA  Bacitracin  undecaprenol kinase  antibiotic inactivation  AF169967
bcrB  Bacitracin  ATP-binding cassette (ABC) efflux pump  antibiotic efflux  KX772240
bcrR  Bacitracin  ATP-binding cassette (ABC) efflux pump  antibiotic efflux  KX772240
nimE  Nitroimidazoles  pyridoxamine 5’-phosphate oxidase protein  antibiotic inactivation  NG_048015
pncA  Antituberculosis  Other/efflux  antibiotic inactivation  KY659393
sat  Others  Transposase  transposase  AB699882
IS613  Others  Transposase  transposase  MH025900
ISAPI11  Others  Transposase  transposase  MF175187
| ID      | Others | Gene   | Function                                      | Reference     |
|---------|--------|--------|-----------------------------------------------|---------------|
| ISAba125| Others | Transposase | transposase                              | NC_022740     |
| Tn21    | Others | Transposase | transposase                              | KY913897      |
| Tp614   | Others | Transposase | transposase                              | DQ831146      |
| tnpA    | Others | Transposase | transposase                              | JX570731      |
| intI    | Others | Integron integrase | integron                              | NZ_CP039294   |
| merA    | Hg     | mercury(II) reductase | metal ions reduction                        | AB024961      |
| merB    | Hg     | Organomercurial lyase | organometallics reduction                  | HQ144191      |
| pbrD    | Pb     | Lead binding protein | metal ions binding                        | X71400        |
| cadB    | Cd     | Cadmium binding protein | metal ions binding                       | M67452        |
| cadD    | Cd     | Cadmium binding protein | metal ions binding                       | AF134905      |
| copA    | Co     | P-type ATPases | metal accumulation                        | AF187849      |
| copB    | Co     | P-type ATPases | metal accumulation                        | AF187849      |
| cueO    | Co     | Copper detoxification | metal ions oxidation                     | NC_000913     |
| cusF    | Co     | Copper accumulation | metal binding                            | KC146966      |
| chrA    | Cr     | Chromate reductase | metal ions binding                       | NC_000964     |
| NiCotT  | Ni     | Nickel cobalt transferase | metal accumulation                     | FUGF01000049  |
| yfeA    | Zn     | Periplasmic-binding protein; ABC transporter system | metal transport | U50597       |
| zntA    | Zn     | Zn(II)-export protein | metal transport                          | NC_000913     |
| zntB    | Zn     | Zn(II)-export protein | metal transport                          | NC_000913     |
| ceuE    | Fe     | Siderophore transport protein | metal transport                        | FN555004      |
| czcA    | Co/Zn/Cd | resistance-nodulation-cell division (RND) antibiotic efflux pump | metal transport | D67044       |
| czcC    | Co/Zn/Cd | Outer membrane protein | target protection                        | D67044        |
| arsA    | As     | ATPase arsA | metal transport                          | KY271405      |
| arsB    | As     | A membrane pump that functions alone or with ATPase arsA | metal transport | AB004659     |
Table S2. 92 unique genes identified by AmpliSeq compared with MetaSeq.

| Classification | Resistance gene | Mechanism                        | Accession number |
|----------------|-----------------|----------------------------------|------------------|
| Quinilone      | qnrA1           | antibiotic target protection     | AY070235         |
|                | qnrC            | antibiotic target protection     | EU917444         |
|                | aac6-ll         | antibiotic inactivation          | L12710           |
|                | aac6-ly         | antibiotic inactivation          | AF144880         |
|                | aadA            | antibiotic inactivation          | MH257908         |
|                | aadD-1          | antibiotic inactivation          | AF181950         |
| Aminoglycoside | aph2-ld         | antibiotic inactivation          | AF016483         |
|                | armA            | antibiotic target alteration     | AY220558         |
|                | rmtf             | antibiotic target alteration     | JQ808129         |
|                | spcN             | antibiotic inactivation          | AF170704         |
|                | strB             | antibiotic inactivation          | EF493834         |
|                | npmA             | antibiotic target alteration     | AB261016         |
|                | bla1             | antibiotic inactivation          | AF367983         |
|                | blaCMY           | antibiotic inactivation          | X92508           |
|                | blaOHA           | antibiotic inactivation          | Y16410           |
| β-Lactamase    | blaGES-1        | antibiotic inactivation          | HQ170511         |
|                | blaKPC-1        | antibiotic inactivation          | AF297554         |
|                | blaOCH           | antibiotic inactivation          | LT840075         |
|                | blaOKP           | antibiotic inactivation          | NG_049360        |
|                | blaOXA-23       | antibiotic inactivation          | FJ959346         |
| Gene     | Function                        | Accession Number |
|----------|---------------------------------|------------------|
| bla_{OXA-51} | antibiotic inactivation | AJ309734 |
| bla_{OXA-58} | antibiotic inactivation | AY665723 |
| bla_{OXY-1}  | antibiotic inactivation | Z30177 |
| bla_{PAO-1}  | antibiotic inactivation | AY083595 |
| bla_{PER-1}  | antibiotic inactivation | GU944725 |
| bla_{PER-2}  | antibiotic inactivation | X93314 |
| bla_{PSE-1}  | antibiotic inactivation | M69058 |
| bla_{ROB-1}  | antibiotic inactivation | DQ840517 |
| bla_{SHV-1}  | antibiotic inactivation | AF148850 |
| bla_{SPM-1}  | antibiotic inactivation | AY341249 |
| bla_{VM-2}   | antibiotic inactivation | KC907378 |
| cepA        | antibiotic inactivation       | L13472 |
| pbp2a       | antibiotic target protection  | AF101780 |
| pbp5        | antibiotic target protection  | AF375986 |
| tet{32}     | antibiotic target protection  | EU722333 |
| tetB        | antibiotic efflux             | AP000342 |
| tetD        | antibiotic efflux             | AF467077 |
| tetE        | antibiotic efflux             | L06940 |
| tet{H}      | antibiotic efflux             | Y16103 |
| tet{J-1}    | antibiotic efflux             | ACLE01000065 |
| tet{S-3}    | antibiotic target protection  | X92946 |
| tetU        | antibiotic efflux             | U01917 |
| vanA        | antibiotic target alteration  | FJ866609 |

**Tetracycline**

**Polypeptide**
| Gene   | Type                          | Accession Number |
|--------|-------------------------------|------------------|
| vanB   | antibiotic target alteration  | AF192329         |
| vanC   | antibiotic target alteration  | EU151752         |
| vanHB-1| antibiotic target alteration  | AF192329         |
| vanRA  | antibiotic target alteration  | FJ866609         |
| vanRB  | antibiotic target alteration  | AF192329         |
| vanSB-1| antibiotic target alteration  | AF192329         |
| vanTC  | antibiotic target alteration  | AF162694         |
| vanTG-1| antibiotic target alteration  | AY271782         |
| vanXA-1| antibiotic target alteration  | FJ866609         |
| vanRC  | antibiotic target alteration  | EU151753         |
| vanSA  | antibiotic target alteration  | M97297           |
| vanSC  | antibiotic target alteration  | AF162694         |
| mcr-2  | antibiotic target alteration  | LT598652         |
| mcr-4  | antibiotic target alteration  | MF543359         |
| mcr-5  | antibiotic target alteration  | KY807921         |
| mcr-6  | antibiotic target alteration  | MF176240         |
| mcr-7  | antibiotic target alteration  | MG267386         |
| mcr-8  | antibiotic target alteration  | MG736312         |
| Sulfonamides |                         |                  |
| dfrA1  | antibiotic target replacement | MH574896        |
| MLSB   |                              |                  |
| vatA   | antibiotic inactivation       | L07778           |
| vatC   | antibiotic inactivation       | AF015628         |
| vgaA   | antibiotic efflux             | M90056           |
| vgaA-V | antibiotic efflux             | AF186237         |
| vgaC   | antibiotic efflux             | NG_048559        |
| Gene | Function                        | Accession |
|------|---------------------------------|-----------|
| vgaE | antibiotic efflux               | FR772051  |
| vgbB | antibiotic inactivation         | AF015628  |
| InuC | antibiotic inactivation         | AY928180  |
| lmrA | antibiotic target protection    | X59926    |
| IsaB | antibiotic efflux               | NG_047933 |
| ereA-2 | antibiotic inactivation | AF099140 |
| ereB | antibiotic inactivation         | X03988    |
| mphB | antibiotic inactivation         | D85892    |
| msrA | antibiotic efflux               | X52085    |
| msrC | antibiotic efflux               | AY004350  |
| erm34 | antibiotic target alteration    | AY234334  |
| erm35 | antibiotic target alteration    | AF319779  |
| ermD | antibiotic target alteration    | M29832    |
| ermK | antibiotic target alteration    | M77505    |
| cmeB | antibiotic efflux               | AB894099  |
| RE-cmeA | antibiotic efflux           | KT778507  |
| RE-cmeB | antibiotic efflux             | KT778507  |
| RE-cmeC | antibiotic efflux           | KT778507  |
| adeA | antibiotic efflux               | KX154813  |
| mdetl1 | antibiotic inactivation        | AJ012115  |
| pikR1 | antibiotic inactivation         | AF079138  |
| pikR2 | antibiotic inactivation         | AF079138  |
| Classification | Resistance gene | Mechanism | Poultry (20 samples) | Swine (16 samples) | Cow (12 samples) | Human (16 samples) | Total  |
|----------------|-----------------|-----------|----------------------|-------------------|------------------|-------------------|-------|
| Tetracycline   | tetA            |           | 100%                 | 93.75%            | 100%             | 93.75%            | 96.88%|
|                | tetAP           |           | 70.00%               | 93.75%            | 100%             | 50.00%            | 76.56%|
|                | tetB            |           | 100%                 | 75.00%            | 83.33%           | 43.75%            | 76.56%|
|                | tetBP           |           | 85.00%               | 93.75%            | 100%             | 75.00%            | 87.50%|
|                | tetD            |           | 45.00%               |                   | 41.67%           | 18.75%            | 26.56%|
|                | tetE            |           | 30.00%               | 6.25%             | 16.67%           |                   | 14.06%|
|                | tetG            |           | 100%                 | 81.25%            | 100%             | 6.25%             | 71.88%|
|                | tetH            |           | 85.00%               | 75.00%            | 66.67%           |                   | 57.81%|
|                | tetK            |           | 85.00%               | 18.75%            | 75.00%           |                   | 45.31%|
|                | tetL            |           | 100%                 | 75.00%            | 100%             |                   | 68.75%|
|                | tetU            |           | —                    | —                 | —                | 6.25%             | 1.56% |
|                | tetV            |           | 10.00%               | —                 | 25.00%           |                   | 7.81% |
| Chloramphenicol | optrA           | ABCb      | 100%                 | 43.75%            | 100%             |                   | 60.94%|
|                | cmIA1           | MFSc      | 100%                 | 93.75%            | 100%             | 87.50%            | 95.31%|
|                | cmx             |           | 100%                 | 93.75%            | 100%             | 6.25%             | 75.00%|
| Gene  | MLSB<sup>a</sup> | Bacitracin | Multidrug |
|-------|-----------------|------------|-----------|
| fexA  | 100% 62.50% 100% 12.50% 68.75% |             |           |
| floR  | 100% 100% 100% 100% 100% |             |           |
| IsaB  | 50.00% 18.75% 58.33% — 31.25% |             |           |
| IsaE  | 95.00% 100% 100% 18.75% 78.13% |             |           |
| mel   | 100% 93.75% 91.67% 6.25% 73.44% |             |           |
| msrA  | 50.00% 6.25% 41.67% — 25.00% |             |           |
| msrC  | 35.00% 18.75% — 31.25% 23.44% |             |           |
| msrD  | 90.00% 93.75% 100% 93.75% 93.75% |             |           |
| mefB  | 95.00% 93.75% 100% 93.75% 95.31% |             |           |
| vgaA  | 15.00% — — — 4.69% |             |           |
| vgaAV | 20.00% — 8.33% — 7.81% |             |           |
| vgaC  | 75.00% — 8.33% — 25.00% |             |           |
| vgaE  | 90.00% 6.25% 66.67% — 42.19% |             |           |
| mefA  | 95.00% 93.75% 100% 93.75% 95.31% |             |           |
| mefB  | 85.00% 50.00% 100% 18.75% 62.50% |             |           |
| oleC  | 30.00% 18.75% 50.00% — 23.44% |             |           |
| bcrB  | 100% 12.50% 100% 75.00% 71.88% |             |           |
| bcrR  | 90.00% 12.50% 100% — 50.00% |             |           |
| cmr   | 95.00% 93.75% 91.67% 93.75% 93.75% |             |           |
| rarD  | 90.00% 87.50% 91.67% 93.75% 90.63% |             |           |
| adeA  | 5.00% — — — 1.56% |             |           |
| ceoA  | 15.00% — — — 4.69% |             |           |
| cmeA  | 15.00% — — — 4.69% |             |           |
| cmeB  | 20.00% — — — 6.25% |             |           |
| Gene   | MLSB% | ABC% | MFS% | RND% | SMR% |
|--------|-------|------|------|------|------|
| cmeC   | 10.00%| —    | —    | —    | 3.13%|
| mdtE   | 100%  | 93.75%| 91.67%| 87.50%| 93.75%|
| mtrD   | —     | —    | 16.67%| —    | 3.13%|
| nisB   | 5.00% | 6.25%| —    | —    | 3.13%|
| oqxA   | 95.00%| 56.25%| 66.67%| 93.75%| 79.69%|
| oqxB   | 100%  | 87.50%| 91.67%| 93.75%| 93.75%|
| RE-cmeA| 20.00%| —    | —    | —    | 4.69%|
| RE-cmeB| 20.00%| —    | —    | —    | 6.25%|
| RE-cmeC| 20.00%| —    | —    | —    | 6.25%|
| sdeB   | 60.00%| 31.25%| 50.00%| 37.50%| 45.31%|
| tolC   | 100%  | 93.75%| 91.67%| 100%  | 96.88%|
| ttgA   | 25.00%| 6.25%| 41.67%| —    | 17.19%|
| ttgB   | 35.00%| 18.75%| 58.33%| —    | 26.56%|
| qac    | 5.00% | —    | —    | —    | 1.56%|
| qacA   | 5.00% | —    | 8.33%| —    | 3.13%|
| qacE   | 10.00%| 31.25%| 25.00%| —    | 17.19%|
| qacH   | 100%  | 56.25%| 91.67%| 12.50%| 65.63%|

a: MLSB: Macrolide-lincosamide-streptogramin B; b: ABC: ATP-binding cassette antibiotic efflux pump; c: MFS: major facilitator superfamily antibiotic efflux pump; d: RND: resistance-nodulation-cell division antibiotic efflux pump; e: SMR: major facilitator superfamily antibiotic efflux pump.
Table S4. Comparison of amplicon sequencing in AmpliSeq and ATOPlex technology

| Sample | AmpliSeq | ATOPlex | Gain<sup>a</sup> |
|--------|----------|---------|-----------------|
|        | No. of raw reads | No. of aligned reads | Percent (%) | No. of raw reads | No. of aligned reads | Percent (%) |
| N1     | 441,462 | 332,059 | 75.22 | 10,566,235 | 9,304,330 | 88.06 | 1.17 |
| N2     | 887,932 | 781,502 | 88.01 | 4,963,350 | 4,352,514 | 87.69 | 1.00 |
| N3     | 662,783 | 517,486 | 78.08 | 18,731,004 | 14,626,298 | 78.09 | 1.00 |
| N4     | 1,085,548 | 988,067 | 91.02 | 5,295,532 | 4,497,448 | 84.93 | 0.93 |
| Average | 769,431 | 654,779 | 85.10 | 9,889,030 | 8195147.5 | 82.87 | 0.97 |

<sup>a</sup>: The results of dividing on-target percentage of AmpliSeq by ATOPlex.

Table S5. The information of amplicon sequences

| Target gene   | Start | End         | Pool    |
|---------------|-------|-------------|---------|
| IS613_MH025900 | 32    | 215 AMPL3931677 | Pool=1  |
| IS613_MH025900 | 204   | 429 AMPL3931678 | Pool=2  |
| IS613_MH025900 | 418   | 638 AMPL3931679 | Pool=1  |
| IS613_MH025900 | 627   | 846 AMPL3931680 | Pool=2  |
| IS613_MH025900 | 835   | 1057 AMPL3931681 | Pool=1  |
| IS613_MH025900 | 1046  | 1247 AMPL3931682 | Pool=2  |
| ISAPI1_MF175187 | 24    | 233 AMPL3931683 | Pool=1  |
| ISAPI1_MF175187 | 222   | 426 AMPL3931684 | Pool=2  |
| ISAPI1_MF175187 | 415   | 555 AMPL3931685 | Pool=1  |
ISAPI1_MF175187  544  662AMPL3931686  Pool=2
ISAPI1_MF175187  651  873AMPL3931687  Pool=1
ISAba125_NC_022740  51  155AMPL3932028  Pool=1
ISAba125_NC_022740  144  364AMPL3932029  Pool=2
ISAba125_NC_022740  353  568AMPL3932030  Pool=1
ISAba125_NC_022740  557  767AMPL3932031  Pool=2
ISAba125_NC_022740  756  950AMPL3932032  Pool=1
QnrA1_1_AY070235  42  249AMPL3931106  Pool=1
QnrA1_1_AY070235  238  454AMPL3931107  Pool=2
QnrA1_1_AY070235  443  625AMPL3931108  Pool=1
QnrB1_1_EF682133  54  182AMPL3931109  Pool=1
QnrB1_1_EF682133  171  393AMPL3931110  Pool=2
QnrB1_1_EF682133  382  605AMPL3931111  Pool=1
QnrB4_1_DQ303921  58  154AMPL3931112  Pool=1
QnrB4_1_DQ303921  143  365AMPL3931113  Pool=2
QnrB4_1_DQ303921  354  582AMPL3931114  Pool=1
QnrB8_1_EU043312  25  160AMPL3931115  Pool=2
QnrB8_1_EU043312  149  373AMPL3931116  Pool=1
QnrB8_1_EU043312  362  580AMPL3931117  Pool=2
QnrC_1_EU917444  63  212AMPL3931118  Pool=1
QnrC_1_EU917444  201  377AMPL3931119  Pool=2
QnrC_1_EU917444  366  594AMPL3931120  Pool=1
QnrD_1_FJ228229  36  223AMPL3931121  Pool=2
QnrD_1_FJ228229  212  420AMPL3931122  Pool=1
QnrD_1_FJ228229  409  575AMPL3931123  Pool=2
QnrS1_1_AB187515  35  187AMPL3931124  Pool=1
| Gene          | Start | End   | Accession  | Pool |
|--------------|-------|-------|------------|------|
| QnrS1_1_AB187515 | 176   | 375   | AMPL3931125 | 2    |
| QnrS1_1_AB187515 | 364   | 587   | AMPL3931126 | 1    |
| QnrS2_1_JF261185 | 22    | 225   | AMPL3931127 | 2    |
| QnrS2_1_JF261185 | 214   | 374   | AMPL3931128 | 1    |
| QnrS2_1_JF261185 | 363   | 587   | AMPL3931129 | 2    |
| QnrVC1_1_EU436855 | 52    | 189   | AMPL3931130 | 1    |
| QnrVC1_1_EU436855 | 178   | 380   | AMPL3931131 | 2    |
| QnrVC1_1_EU436855 | 369   | 587   | AMPL3931132 | 1    |
| RE_cmeA_KT778507 | 55    | 191   | AMPL3931590 | 2    |
| RE_cmeA_KT778507 | 180   | 390   | AMPL3931591 | 1    |
| RE_cmeA_KT778507 | 373   | 558   | AMPL3931592 | 2    |
| RE_cmeA_KT778507 | 544   | 733   | AMPL3931593 | 1    |
| RE_cmeA_KT778507 | 804   | 888   | AMPL3931595 | 2    |
| RE_cmeA_KT778507 | 862   | 1072  | AMPL3931596 | 1    |
| RE_cmeB_KT778507 | 50    | 125   | AMPL3931597 | 2    |
| RE_cmeB_KT778507 | 114   | 326   | AMPL3931598 | 1    |
| RE_cmeB_KT778507 | 315   | 521   | AMPL3931599 | 2    |
| RE_cmeB_KT778507 | 519   | 686   | AMPL3931600 | 1    |
| RE_cmeB_KT778507 | 675   | 880   | AMPL3931601 | 2    |
| RE_cmeB_KT778507 | 869   | 1032  | AMPL3931602 | 1    |
| RE_cmeB_KT778507 | 1070  | 1214  | AMPL3931604 | 2    |
| RE_cmeB_KT778507 | 1200  | 1344  | AMPL3931605 | 1    |
| RE_cmeB_KT778507 | 1333  | 1546  | AMPL3931606 | 2    |
| RE_cmeB_KT778507 | 1512  | 1704  | AMPL3931607 | 1    |
| RE_cmeB_KT778507 | 1693  | 1883  | AMPL3931608 | 2    |
| RE_cmeB_KT778507 | 1872  | 2083  | AMPL3931609 | 1    |
| Sequence         | Start | End   | AMPLID        | Pool |
|------------------|-------|-------|---------------|------|
| RE_cmeB_KT778507 | 2072  | 2258  | AMPL3931610   | 2    |
| RE_cmeB_KT778507 | 2237  | 2440  | AMPL3931611   | 1    |
| RE_cmeB_KT778507 | 2429  | 2515  | AMPL3931612   | 2    |
| RE_cmeB_KT778507 | 2504  | 2725  | AMPL3931613   | 1    |
| RE_cmeB_KT778507 | 2714  | 2939  | AMPL3931614   | 2    |
| RE_cmeC_KT778507 | 44    | 159   | AMPL3929745   | 1    |
| RE_cmeC_KT778507 | 148   | 298   | AMPL3931619   | 2    |
| RE_cmeC_KT778507 | 287   | 472   | AMPL3931620   | 1    |
| RE_cmeC_KT778507 | 461   | 671   | AMPL3931621   | 2    |
| RE_cmeC_KT778507 | 660   | 859   | AMPL3931622   | 1    |
| RE_cmeC_KT778507 | 848   | 1045  | AMPL3931623   | 2    |
| RE_cmeC_KT778507 | 1034  | 1247  | AMPL3931624   | 1    |
| RE_cmeC_KT778507 | 1236  | 1446  | AMPL3931625   | 2    |
| Tn21_KY913897    | 50    | 253   | AMPL3931688   | 1    |
| Tn21_KY913897    | 85    | 311   | AMPL3931689   | 2    |
| Tp614_DQ831146   | 46    | 260   | AMPL3931706   | 1    |
| Tp614_DQ831146   | 248   | 469   | AMPL3931707   | 2    |
| Tp614_DQ831146   | 458   | 687   | AMPL3931708   | 1    |
| Tp614_DQ831146   | 678   | 856   | AMPL3931709   | 2    |
| Tp614_DQ831146   | 845   | 1071  | AMPL3931710   | 1    |
| Tp614_DQ831146   | 1060  | 1254  | AMPL3931711   | 2    |
| VanB_1_AF192329  | 59    | 255   | AMPL3931269   | 1    |
| VanB_1_AF192329  | 244   | 382   | AMPL3931270   | 2    |
| VanB_1_AF192329  | 371   | 574   | AMPL3931271   | 1    |
| VanB_1_AF192329  | 563   | 786   | AMPL3931272   | 2    |
| VanB_1_AF192329  | 775   | 986   | AMPL3931273   | 1    |
| Accession     | Lane | Base    | Pool  |
|--------------|------|---------|-------|
| VanC_3_EU151752 | 44   | 268     | 2     |
| VanC_3_EU151752 | 257  | 478     | 1     |
| VanC_3_EU151752 | 467  | 589     | 2     |
| VanC_3_EU151752 | 578  | 802     | 1     |
| VanC_3_EU151752 | 791  | 1005    | 2     |
| VanG_1_AY271782  | 41   | 235     | 1     |
| VanG_1_AY271782  | 224  | 411     | 2     |
| VanG_1_AY271782  | 400  | 619     | 1     |
| VanG_1_AY271782  | 608  | 826     | 2     |
| VanG_1_AY271782  | 815  | 980     | 1     |
| VanHB_1_AF192329 | 47   | 273     | 1     |
| VanHB_1_AF192329 | 262  | 437     | 2     |
| VanHB_1_AF192329 | 420  | 630     | 1     |
| VanHB_1_AF192329 | 608  | 810     | 2     |
| VanHB_1_AF192329 | 799  | 924     | 1     |
| VanHD_1_AB242319 | 38   | 238     | 2     |
| VanHD_1_AB242319 | 227  | 365     | 1     |
| VanHD_1_AB242319 | 354  | 568     | 2     |
| VanHD_1_AB242319 | 557  | 700     | 1     |
| VanHD_1_AB242319 | 689  | 907     | 2     |
| VanM_AF288163    | 50   | 241     | 1     |
| VanM_AF288163    | 230  | 417     | 2     |
| VanM_AF288163    | 406  | 583     | 1     |
| VanM_AF288163    | 572  | 794     | 2     |
| VanM_AF288163    | 783  | 1000    | 1     |
| VanM_AF288163    | 989  | 1158    | 2     |
| Sample ID          | Batch | Read Length | Accession | Pool |
|-------------------|-------|-------------|-----------|------|
| VanRA_1_FJ866609  | 45    | 257         | AMPL3931298 | 1    |
| VanRA_1_FJ866609  | 246   | 416         | AMPL3931299 | 2    |
| VanRA_1_FJ866609  | 405   | 625         | AMPL3931300 | 1    |
| VanRB_1_AF192329  | 26    | 249         | AMPL3931301 | 1    |
| VanRB_1_AF192329  | 238   | 449         | AMPL3931302 | 1    |
| VanRB_1_AF192329  | 438   | 604         | AMPL3931303 | 1    |
| VanRC_1_AF162694  | 44    | 251         | AMPL3931304 | 2    |
| VanRC_1_AF162694  | 240   | 406         | AMPL3931305 | 1    |
| VanRC_1_AF162694  | 395   | 624         | AMPL3931306 | 1    |
| VanRD_1_AB242319  | 38    | 208         | AMPL3931310 | 1    |
| VanRD_1_AB242319  | 197   | 423         | AMPL3931311 | 2    |
| VanRD_1_AB242319  | 412   | 627         | AMPL3931312 | 1    |
| VanSA_M97297      | 53    | 177         | AMPL3932009 | 2    |
| VanSA_M97297      | 166   | 300         | AMPL3932010 | 1    |
| VanSA_M97297      | 289   | 507         | AMPL3932011 | 2    |
| VanSA_M97297      | 496   | 721         | AMPL3932012 | 2    |
| VanSA_M97297      | 710   | 932         | AMPL3932013 | 2    |
| VanSA_M97297      | 921   | 1100        | AMPL3932014 | 1    |
| VanSB_1_AF192329  | 30    | 242         | AMPL3931313 | 2    |
| VanSB_1_AF192329  | 231   | 414         | AMPL3931314 | 1    |
| VanSB_1_AF192329  | 403   | 605         | AMPL3931315 | 1    |
| VanSB_1_AF192329  | 594   | 761         | AMPL3931316 | 1    |
| VanSB_1_AF192329  | 750   | 966         | AMPL3931317 | 2    |
| VanSB_1_AF192329  | 955   | 1122        | AMPL3931318 | 1    |
| VanSB_1_AF192329  | 1111  | 1297        | AMPL3931319 | 2    |
| VanTC_1_AF162694  | 70    | 274         | AMPL3931329 | 1    |
| Sample Code   | Start   | End     | AMPL3931330 | Pool |
|--------------|---------|---------|-------------|------|
| VanTC_1_AF162694 | 263     | 486     | AMPL3931330 | 2    |
| VanTC_1_AF162694 | 475     | 628     | AMPL3931331 | 1    |
| VanTC_1_AF162694 | 617     | 838     | AMPL3931332 | 2    |
| VanTC_1_AF162694 | 827     | 1052    | AMPL3931333 | 1    |
| VanTC_1_AF162694 | 1041    | 1238    | AMPL3931334 | 2    |
| VanTC_1_AF162694 | 1227    | 1416    | AMPL3931335 | 1    |
| VanTC_1_AF162694 | 1405    | 1624    | AMPL3931336 | 2    |
| VanTC_1_AF162694 | 1613    | 1831    | AMPL3931337 | 1    |
| VanTC_1_AF162694 | 1823    | 2033    | AMPL3931338 | 2    |
| VanTG_1_AY271782 | 69      | 288     | AMPL3931350 | 1    |
| VanTG_1_AY271782 | 277     | 395     | AMPL3931351 | 2    |
| VanTG_1_AY271782 | 384     | 590     | AMPL3931352 | 1    |
| VanTG_1_AY271782 | 572     | 771     | AMPL3931353 | 2    |
| VanTG_1_AY271782 | 760     | 955     | AMPL3931354 | 1    |
| VanTG_1_AY271782 | 944     | 1163    | AMPL3931355 | 2    |
| VanTG_1_AY271782 | 1152    | 1376    | AMPL3931356 | 1    |
| VanTG_1_AY271782 | 1365    | 1565    | AMPL3931357 | 2    |
| VanTG_1_AY271782 | 1554    | 1779    | AMPL3931358 | 1    |
| VanTG_1_AY271782 | 1768    | 1858    | AMPL3931359 | 2    |
| VanTG_1_AY271782 | 1847    | 2069    | AMPL3931360 | 1    |
| VanWB_1_AF192329 | 28      | 169     | AMPL3931361 | 1    |
| VanWB_1_AF192329 | 158     | 378     | AMPL3931362 | 2    |
| VanWB_1_AF192329 | 367     | 559     | AMPL3931363 | 1    |
| VanWB_1_AF192329 | 548     | 759     | AMPL3931364 | 2    |
| VanWG_1_AY271782 | 53      | 271     | AMPL3931365 | 1    |
| VanWG_1_AY271782 | 260     | 446     | AMPL3931366 | 2    |
| Sample Code | Source ID | Seq Start | Seq End | Accession | Pool |
|-------------|-----------|-----------|---------|-----------|------|
| VanWG_1_AY271782 | 431 | 597 | AMPL3931367 | Pool=1 |
| VanWG_1_AY271782 | 586 | 779 | AMPL3931368 | Pool=2 |
| VanXA_1_FJ866609 | 49 | 147 | AMPL3929264 | Pool=1 |
| VanXA_1_FJ866609 | 136 | 359 | AMPL3931369 | Pool=2 |
| VanXA_1_FJ866609 | 348 | 540 | AMPL3931370 | Pool=1 |
| VanXB_1_AF192329 | 44 | 214 | AMPL3931371 | Pool=1 |
| VanXB_1_AF192329 | 203 | 355 | AMPL3931372 | Pool=2 |
| VanXB_1_AF192329 | 344 | 539 | AMPL3931373 | Pool=1 |
| VanXD_1_AB242319 | 36 | 257 | AMPL3931374 | Pool=1 |
| VanXD_1_AB242319 | 246 | 414 | AMPL3931375 | Pool=2 |
| VanXB_1_AF192329 | 33 | 199 | AMPL3931377 | Pool=2 |
| VanXB_1_AF192329 | 188 | 372 | AMPL3931378 | Pool=1 |
| VanXB_1_AF192329 | 361 | 588 | AMPL3931379 | Pool=2 |
| VanXB_1_AF192329 | 577 | 749 | AMPL3931380 | Pool=1 |
| VanYD_1_AB242319 | 28 | 194 | AMPL3931381 | Pool=2 |
| VanYD_1_AB242319 | 183 | 408 | AMPL3931382 | Pool=1 |
| VanYD_1_AB242319 | 397 | 582 | AMPL3931383 | Pool=2 |
| VanYD_1_AB242319 | 571 | 788 | AMPL3931384 | Pool=1 |
| VanYD_1_AB242319 | 777 | 1004 | AMPL3931385 | Pool=2 |
| aac6_II_L12710 | 67 | 278 | AMPL3931489 | Pool=1 |
| aac6_II_L12710 | 267 | 492 | AMPL3931490 | Pool=2 |
| aac6_la_1_M18967 | 34 | 103 | AMPL3930982 | Pool=1 |
| aac6_la_1_M18967 | 92 | 286 | AMPL3930983 | Pool=2 |
| aac6_la_1_M18967 | 275 | 490 | AMPL3930984 | Pool=1 |
| aac6_ib_JN108884 | 66 | 291 | AMPL3931470 | Pool=1 |
| Gene        | Start | End   | Accession   | Pool |
|-------------|-------|-------|-------------|------|
| aac6_lb_JN108884 | 280   | 501   | AMPL3931471 | 2    |
| aac6_ly_AF144880  | 25    | 223   | AMPL3931487 | 1    |
| aac6_ly_AF144880  | 212   | 368   | AMPL3931488 | 2    |
| aacA_aphD_GU565967 | 87    | 190   | AMPL3929480 | 1    |
| aacA_aphD_GU565967 | 179   | 381   | AMPL3931472 | 2    |
| aacA_aphD_GU565967 | 342   | 421   | AMPL3931473 | 1    |
| aacA_aphD_GU565967 | 646   | 848   | AMPL3931475 | 2    |
| aacA_aphD_GU565967 | 656   | 868   | AMPL3931476 | 1    |
| aacA_aphD_GU565967 | 1082  | 1235  | AMPL3931478 | 2    |
| aacA_aphD_GU565967 | 1195  | 1384  | AMPL3931479 | 1    |
| aacC1_U04610     | 59    | 192   | AMPL3931402 | 2    |
| aacC1_U04610     | 181   | 409   | AMPL3931403 | 1    |
| aacC1_U04610     | 398   | 482   | AMPL3929333 | 2    |
| aacC2_AY138987   | 26    | 188   | AMPL3931492 | 1    |
| aacC2_AY138987   | 174   | 375   | AMPL3931493 | 2    |
| aacC2_AY138987   | 309   | 536   | AMPL3931494 | 1    |
| aacC2_AY138987   | 507   | 617   | AMPL3931495 | 2    |
| aacC2_AY138987   | 606   | 839   | AMPL3931496 | 1    |
| aac_1_AJ628983   | 70    | 286   | AMPL3930980 | 1    |
| aac_1_AJ628983   | 275   | 503   | AMPL3931491 | 2    |
| aadA1_KR610434   | 59    | 283   | AMPL3931503 | 1    |
| aadA1_KR610434   | 272   | 482   | AMPL3931504 | 2    |
| aadA1_KR610434   | 471   | 685   | AMPL3931505 | 1    |
| aadA1_KR610434   | 674   | 759   | AMPL3929539 | 2    |
| aadA2_2_JQ364967 | 28    | 154   | AMPL3928543 | 1    |
| aadA2_2_JQ364967 | 143   | 346   | AMPL3930988 | 2    |
| Gene     | Accession | Start | Length | Accession | Pool |
|----------|-----------|-------|--------|-----------|------|
| aadA2_2_JQ364967 | 335 | 498 | AMPL3930989 | Pool=1 |
| aadA2_2_JQ364967 | 487 | 685 | AMPL3930990 | Pool=2 |
| aadA2_2_JQ364967 | 674 | 752 | AMPL3928550 | Pool=1 |
| aadA5_KT175895  | 24  | 194 | AMPL3931506 | Pool=2 |
| aadA5_KT175895  | 152 | 376 | AMPL3931507 | Pool=1 |
| aadA5_KT175895  | 365 | 591 | AMPL3931508 | Pool=2 |
| aadA5_KT175895  | 580 | 743 | AMPL3931509 | Pool=1 |
| aadA9_1_AJ420072 | 26  | 227 | AMPL3930991 | Pool=2 |
| aadA9_1_AJ420072 | 216 | 417 | AMPL3930992 | Pool=1 |
| aadA9_1_AJ420072 | 406 | 559 | AMPL3930993 | Pool=2 |
| aadA9_1_AJ420072 | 548 | 772 | AMPL3930994 | Pool=1 |
| aadA_MH257908   | 68  | 277 | AMPL3931497 | Pool=1 |
| aadA_MH257908   | 265 | 411 | AMPL3931498 | Pool=2 |
| aadA_MH257908   | 400 | 607 | AMPL3931499 | Pool=1 |
| aadA_MH257908   | 596 | 734 | AMPL3931500 | Pool=2 |
| aadD_1_AF181950 | 61  | 270 | AMPL3930995 | Pool=1 |
| aadD_1_AF181950 | 259 | 481 | AMPL3930996 | Pool=2 |
| aadD_1_AF181950 | 473 | 701 | AMPL3930997 | Pool=1 |
| aadE_AB699882   | 53  | 210 | AMPL3931510 | Pool=2 |
| aadE_AB699882   | 199 | 421 | AMPL3931511 | Pool=1 |
| aadE_AB699882   | 410 | 484 | AMPL3931512 | Pool=2 |
| aadE_AB699882   | 473 | 689 | AMPL3931513 | Pool=1 |
| aadE_AB699882   | 678 | 863 | AMPL3931514 | Pool=2 |
| adeA_KX154813   | 29  | 149 | AMPL3931515 | Pool=1 |
| adeA_KX154813   | 138 | 343 | AMPL3931516 | Pool=2 |
| adeA_KX154813   | 332 | 538 | AMPL3931517 | Pool=1 |
| Gene          | Start | End   | Accession      | Pool |
|--------------|-------|-------|----------------|------|
| adeA_KX154813 | 527   | 734   | AMPL3931518    | 2    |
| adeA_KX154813 | 723   | 943   | AMPL3931519    | 1    |
| adeA_KX154813 | 932   | 1143  | AMPL3931520    | 1    |
| aph2_Id_1_AF016483 | 32    | 252   | AMPL3930998    | 1    |
| aph2_Id_1_AF016483 | 241   | 317   | AMPL3930999    | 2    |
| aph2_Id_1_AF016483 | 306   | 507   | AMPL3931000    | 1    |
| aph2_Id_1_AF016483 | 502   | 694   | AMPL3931001    | 2    |
| aph2_Id_1_AF016483 | 683   | 844   | AMPL3931002    | 1    |
| aph6_la_1_AY971801 | 19    | 211   | AMPL3931003    | 1    |
| aph6_la_1_AY971801 | 140   | 330   | AMPL3931004    | 2    |
| aph6_la_1_AY971801 | 314   | 497   | AMPL3931005    | 1    |
| aph6_la_1_AY971801 | 486   | 723   | AMPL3931006    | 2    |
| aph6_la_1_AY971801 | 719   | 889   | AMPL3931007    | 1    |
| aphA1_HM146784  | 25    | 204   | AMPL3931521    | 2    |
| aphA1_HM146784  | 193   | 420   | AMPL3931522    | 1    |
| aphA1_HM146784  | 409   | 569   | AMPL3931523    | 2    |
| aphA1_HM146784  | 558   | 772   | AMPL3931524    | 1    |
| armA_1_AY220558 | 33    | 230   | AMPL3931011    | 2    |
| armA_1_AY220558 | 189   | 397   | AMPL3931012    | 1    |
| armA_1_AY220558 | 376   | 573   | AMPL3931013    | 2    |
| armA_1_AY220558 | 562   | 717   | AMPL3931014    | 1    |
| bacA_D85752     | 78    | 286   | AMPL3931714    | 2    |
| bcrB_KX772240   | 63    | 230   | AMPL3931880    | 1    |
| bcrB_KX772240   | 219   | 433   | AMPL3931881    | 2    |
| bcrB_KX772240   | 422   | 645   | AMPL3931882    | 1    |
| bcrR_KX772240   | 53    | 274   | AMPL3931712    | 1    |
| Gene          | ID     | Start | End   | Accession  | Pool |
|--------------|--------|-------|-------|------------|------|
| bcrR_KX772240 | 263    | 489   | AMPL3931713 | Pool=2 |
| bla1_AF367983 | 57     | 196   | AMPL3930712 | Pool=1 |
| bla1_AF367983 | 185    | 399   | AMPL3930713 | Pool=2 |
| bla1_AF367983 | 388    | 549   | AMPL3930714 | Pool=1 |
| bla1_AF367983 | 515    | 702   | AMPL3930715 | Pool=2 |
| bla1_AF367983 | 691    | 807   | AMPL3930716 | Pool=1 |
| bla1_AF367983 | 796    | 1016  | AMPL3930717 | Pool=2 |
| bla1_AF367983 | 1005   | 1184  | AMPL3930718 | Pool=1 |
| bla1_AF367983 | 1173   | 1379  | AMPL3930719 | Pool=2 |
| bla1_AF367983 | 1368   | 1580  | AMPL3930720 | Pool=1 |
| blaACC_1_NG_048588 | 34     | 136   | AMPL3930453 | Pool=2 |
| blaACC_1_NG_048588 | 125   | 351   | AMPL3931999 | Pool=1 |
| blaACC_1_NG_048588 | 340   | 568   | AMPL3932000 | Pool=2 |
| blaACC_1_NG_048588 | 557   | 730   | AMPL3932001 | Pool=1 |
| blaACC_1_NG_048588 | 719   | 941   | AMPL3932002 | Pool=2 |
| blaACC_1_NG_048588 | 930   | 1132  | AMPL3932003 | Pool=1 |
| blaAIM_1_AM998375 | 425   | 577   | AMPL3930721 | Pool=1 |
| blaAIM_1_AM998375 | 591   | 823   | AMPL3930722 | Pool=2 |
| blaAIM_1_AM998375 | 832   | 1071  | AMPL3930723 | Pool=1 |
| blaAIM_1_AM998375 | 1060  | 1146  | AMPL3930724 | Pool=2 |
| blaAIM_1_AM998375 | 1135  | 1308  | AMPL3930725 | Pool=1 |
| blaAIM_1_AM998375 | 1297  | 1514  | AMPL3930726 | Pool=2 |
| blaAIM_1_AM998375 | 1500  | 1604  | AMPL3930727 | Pool=1 |
| blaAIM_1_AM998375 | 1576  | 1802  | AMPL3930728 | Pool=2 |
| blaAIM_1_AM998375 | 1791  | 1969  | AMPL3930729 | Pool=1 |
| blaAIM_1_AM998375 | 1909  | 2077  | AMPL3930730 | Pool=2 |
| Gene          | Start Position | End Position | Accession Number | Pool |
|--------------|----------------|--------------|------------------|------|
| blaAIM_1_AM998375 | 2094           | 2248         | AMPL3930732      | Pool=1|
| blaBIC_GQ260093   | 23             | 145          | AMPL3930740      | Pool=2|
| blaBIC_GQ260093   | 134            | 299          | AMPL3930741      | Pool=1|
| blaBIC_GQ260093   | 288            | 488          | AMPL3930742      | Pool=2|
| blaBIC_GQ260093   | 477            | 631          | AMPL3930743      | Pool=1|
| blaBIC_GQ260093   | 706            | 822          | AMPL3928060      | Pool=2|
| blaCMY_1_X92508   | 23             | 246          | AMPL3931896      | Pool=1|
| blaCMY_1_X92508   | 203            | 358          | AMPL3931897      | Pool=2|
| blaCMY_1_X92508   | 336            | 442          | AMPL3931898      | Pool=1|
| blaCMY_1_X92508   | 461            | 662          | AMPL3931900      | Pool=2|
| blaCMY_1_X92508   | 650            | 768          | AMPL3931901      | Pool=1|
| blaCMY_1_X92508   | 751            | 926          | AMPL3931902      | Pool=2|
| blaCMY_1_X92508   | 915            | 1122         | AMPL3931903      | Pool=1|
| blaCTX_M_1_6_DQ915955 | 69         | 276          | AMPL3930745      | Pool=1|
| blaCTX_M_1_6_DQ915955 | 265       | 416          | AMPL3930746      | Pool=2|
| blaCTX_M_1_6_DQ915955 | 406       | 628          | AMPL3930747      | Pool=1|
| blaCTX_M_1_6_DQ915955 | 605       | 820          | AMPL3930748      | Pool=2|
| blaCTX_M_9_HM569735 | 62           | 291          | AMPL3930749      | Pool=1|
| blaCTX_M_9_HM569735 | 275          | 479          | AMPL3930750      | Pool=2|
| blaCTX_M_9_HM569735 | 457          | 673          | AMPL3930751      | Pool=1|
| blaCTX_M_9_HM569735 | 663          | 887          | AMPL3930752      | Pool=2|
| blaCTX_M_9_HM569735 | 876          | 1101         | AMPL3930753      | Pool=1|
| blaCTX_M_9_HM569735 | 1090         | 1313         | AMPL3930754      | Pool=2|
| blaCTX_M_9_HM569735 | 1302         | 1424         | AMPL3928083      | Pool=1|
| blaCTX_M_9_HM569735 | 1413         | 1627         | AMPL3930755      | Pool=2|
| blaCTX_M_9_HM569735 | 1621         | 1846         | AMPL3930756      | Pool=1|
| Gene                | Start | End   | Accession    | Pool |
|---------------------|-------|-------|--------------|------|
| blaCTX_M_9_HM569735 | 1828  | 1979  | AMPL3930757  | 2    |
| blaDHA_1_Y16410     | 33    | 184   | AMPL3931906  | 1    |
| blaDHA_1_Y16410     | 173   | 364   | AMPL3931907  | 2    |
| blaDHA_1_Y16410     | 319   | 525   | AMPL3931908  | 1    |
| blaDHA_1_Y16410     | 514   | 733   | AMPL3931909  | 2    |
| blaDHA_1_Y16410     | 721   | 893   | AMPL3931910  | 1    |
| blaDHA_1_Y16410     | 882   | 1060  | AMPL3931911  | 2    |
| blaGES_1_HQ170511   | 24    | 217   | AMPL3931912  | 1    |
| blaGES_1_HQ170511   | 206   | 419   | AMPL3931913  | 2    |
| blaGES_1_HQ170511   | 408   | 538   | AMPL3931914  | 1    |
| blaGES_1_HQ170511   | 527   | 676   | AMPL3931915  | 2    |
| blaGES_1_HQ170511   | 665   | 792   | AMPL3930308  | 1    |
| blaGIM_1_JF414726   | 64    | 285   | AMPL3931916  | 1    |
| blaGIM_1_JF414726   | 274   | 491   | AMPL3931917  | 2    |
| blaGIM_1_JF414726   | 480   | 701   | AMPL3931918  | 1    |
| blaIMP_1_DQ522237   | 65    | 285   | AMPL3931919  | 2    |
| blaIMP_1_DQ522237   | 275   | 495   | AMPL3931920  | 1    |
| blaIMP_1_DQ522237   | 487   | 671   | AMPL3931921  | 2    |
| blaKPC_1_AF297554   | 23    | 205   | AMPL3931922  | 1    |
| blaKPC_1_AF297554   | 178   | 402   | AMPL3931923  | 2    |
| blaKPC_1_AF297554   | 393   | 610   | AMPL3931924  | 1    |
| blaKPC_1_AF297554   | 582   | 715   | AMPL3931925  | 2    |
| blaKPC_1_AF297554   | 702   | 860   | AMPL3931926  | 1    |
| blaL1_3_EF126059    | 48    | 281   | AMPL3930758  | 1    |
| blaL1_3_EF126059    | 267   | 470   | AMPL3930759  | 2    |
| blaL1_3_EF126059    | 451   | 630   | AMPL3930760  | 1    |
| Gene          | Start | End   | AMPL  | Pool |
|--------------|-------|-------|-------|------|
| blaL1_3_EF126059 | 574   | 744   | AMPL3930761 | 2    |
| blaL1_3_EF126059 | 677   | 819   | AMPL3930762 | 1    |
| blaOCH_LT840075  | 30    | 253   | AMPL3930766 | 2    |
| blaOCH_LT840075  | 242   | 445   | AMPL3930767 | 1    |
| blaOCH_LT840075  | 434   | 602   | AMPL3930768 | 2    |
| blaOCH_LT840075  | 591   | 751   | AMPL3930769 | 1    |
| blaOCH_LT840075  | 740   | 873   | AMPL3930770 | 2    |
| blaOCH_LT840075  | 862   | 1085  | AMPL3930771 | 1    |
| blaOKP_NG_049360 | 25    | 121   | AMPL3928115 | 2    |
| blaOKP_NG_049360 | 107   | 286   | AMPL3930772 | 1    |
| blaOKP_NG_049360 | 257   | 455   | AMPL3930773 | 2    |
| blaOKP_NG_049360 | 444   | 671   | AMPL3930774 | 1    |
| blaOKP_NG_049360 | 636   | 805   | AMPL3930775 | 2    |
| blaOXA_10_EU708817 | 31    | 215   | AMPL3931386 | 1    |
| blaOXA_10_EU708817 | 204   | 402   | AMPL3931387 | 2    |
| blaOXA_10_EU708817 | 391   | 589   | AMPL3931388 | 1    |
| blaOXA_10_EU708817 | 578   | 742   | AMPL3931389 | 1    |
| blaOXA_23_FJ959346 | 23    | 236   | AMPL3930776 | 1    |
| blaOXA_23_FJ959346 | 229   | 371   | AMPL3930777 | 2    |
| blaOXA_23_FJ959346 | 360   | 526   | AMPL3930778 | 1    |
| blaOXA_23_FJ959346 | 515   | 716   | AMPL3930779 | 2    |
| blaOXA_23_FJ959346 | 705   | 920   | AMPL3930780 | 1    |
| blaOXA_23_FJ959346 | 909   | 1111  | AMPL3930781 | 2    |
| blaOXA_48_2_AY236073 | 29    | 214   | AMPL3930782 | 1    |
| blaOXA_48_2_AY236073 | 203   | 428   | AMPL3930783 | 2    |
| blaOXA_48_2_AY236073 | 417   | 592   | AMPL3930784 | 1    |
| Gene                  | Start | End   | Accession   | Pool |
|-----------------------|-------|-------|-------------|------|
| blaOXA_48_2_AY236073  | 581   | 751   | AMPL3930785 | Pool=2|
| blaOXA_51_AJ309734    | 61    | 170   | AMPL3929334 | Pool=1|
| blaOXA_51_AJ309734    | 159   | 363   | AMPL3931404 | Pool=2|
| blaOXA_51_AJ309734    | 352   | 559   | AMPL3931405 | Pool=1|
| blaOXA_51_AJ309734    | 548   | 754   | AMPL3931406 | Pool=2|
| blaOXA_58_1_AY665723  | 69    | 196   | AMPL3928143 | Pool=1|
| blaOXA_58_1_AY665723  | 185   | 381   | AMPL3930786 | Pool=2|
| blaOXA_58_1_AY665723  | 370   | 580   | AMPL3930787 | Pool=1|
| blaOXA_58_1_AY665723  | 569   | 779   | AMPL3930788 | Pool=2|
| blaOXY_1_Z30177       | 23    | 195   | AMPL3931927 | Pool=1|
| blaOXY_1_Z30177       | 180   | 276   | AMPL3931928 | Pool=2|
| blaOXY_1_Z30177       | 265   | 477   | AMPL3931929 | Pool=1|
| blaOXY_1_Z30177       | 450   | 625   | AMPL3931930 | Pool=2|
| blaOXY_1_Z30177       | 644   | 818   | AMPL3931932 | Pool=1|
| blaPAO_1_AY083595     | 56    | 275   | AMPL3930789 | Pool=1|
| blaPAO_1_AY083595     | 264   | 454   | AMPL3930790 | Pool=2|
| blaPAO_1_AY083595     | 442   | 631   | AMPL3930791 | Pool=1|
| blaPAO_1_AY083595     | 618   | 780   | AMPL3930792 | Pool=2|
| blaPAO_1_AY083595     | 801   | 1015  | AMPL3930794 | Pool=1|
| blaPAO_1_AY083595     | 859   | 1085  | AMPL3930795 | Pool=2|
| blaPER_1_GU944725     | 44    | 265   | AMPL3931933 | Pool=1|
| blaPER_1_GU944725     | 254   | 479   | AMPL3931934 | Pool=2|
| blaPER_1_GU944725     | 468   | 697   | AMPL3931935 | Pool=1|
| blaPER_1_GU944725     | 686   | 868   | AMPL3931936 | Pool=2|
| blaPER_2_X93314       | 58    | 273   | AMPL3931937 | Pool=1|
| blaPER_2_X93314       | 260   | 484   | AMPL3931938 | Pool=2|
| Gene      | Accession | Start | End   | Pool |
|-----------|-----------|-------|-------|------|
| blaPER_2_X93314 | 473       | 700   | AMPL3931939 | Pool=1 |
| blaPER_2_X93314 | 689       | 898   | AMPL3931940 | Pool=2 |
| blaPSE_1_M69058  | 28        | 211   | AMPL3930797 | Pool=1 |
| blaPSE_1_M69058  | 200       | 423   | AMPL3930798 | Pool=2 |
| blaPSE_1_M69058  | 412       | 630   | AMPL3930799 | Pool=1 |
| blaPSE_1_M69058  | 619       | 753   | AMPL3930800 | Pool=2 |
| blaPSE_1_M69058  | 742       | 894   | AMPL3930801 | Pool=1 |
| blaPSE_1_M69058  | 883       | 1049  | AMPL3930802 | Pool=2 |
| blaROB_1_DQ840517 | 70       | 292   | AMPL3931941 | Pool=1 |
| blaROB_1_DQ840517 | 276      | 474   | AMPL3931942 | Pool=2 |
| blaROB_1_DQ840517 | 463      | 652   | AMPL3931943 | Pool=1 |
| blaROB_1_DQ840517 | 641      | 859   | AMPL3931944 | Pool=2 |
| blaSFO_1_AB003148 | 38       | 171   | AMPL3931390 | Pool=1 |
| blaSFO_1_AB003148 | 160      | 380   | AMPL3931391 | Pool=2 |
| blaSFO_1_AB003148 | 369      | 578   | AMPL3931392 | Pool=1 |
| blaSFO_1_AB003148 | 567      | 781   | AMPL3931393 | Pool=2 |
| blaSFO_1_AB003148 | 770      | 847   | AMPL3929310 | Pool=1 |
| blaSHV_1_AF148850 | 27       | 205   | AMPL3930803 | Pool=1 |
| blaSHV_1_AF148850 | 196      | 429   | AMPL3930804 | Pool=2 |
| blaSHV_1_AF148850 | 391      | 488   | AMPL3930805 | Pool=1 |
| blaSHV_1_AF148850 | 471      | 676   | AMPL3930806 | Pool=2 |
| blaSHV_1_AF148850 | 635      | 807   | AMPL3930807 | Pool=1 |
| blaSIM_1_JF731030 | 51       | 159   | AMPL3931945 | Pool=1 |
| blaSIM_1_JF731030 | 148      | 376   | AMPL3931946 | Pool=2 |
| blaSIM_1_JF731030 | 365      | 560   | AMPL3931947 | Pool=1 |
| blaSIM_1_JF731030 | 549      | 676   | AMPL3931948 | Pool=2 |
| Gene Name       | Accession | Start | End   | Amplification | Pool |
|-----------------|-----------|-------|-------|---------------|------|
| blaSPM_1_AY341249 | 36        | 213   | AMPL3931949 | Pool=1        |
| blaSPM_1_AY341249 | 202       | 412   | AMPL3931950 | Pool=2        |
| blaSPM_1_AY341249 | 401       | 589   | AMPL3931951 | Pool=1        |
| blaTEM_1A_4_HM749966 | 33      | 182   | AMPL3930808 | Pool=1        |
| blaTEM_1A_4_HM749966 | 171      | 398   | AMPL3930809 | Pool=2        |
| blaTEM_1A_4_HM749966 | 387      | 604   | AMPL3930810 | Pool=1        |
| blaTEM_1A_4_HM749966 | 593      | 791   | AMPL3930811 | Pool=2        |
| blaTLA_1_AF148067 | 73        | 201   | AMPL3931952 | Pool=1        |
| blaTLA_1_AF148067 | 190       | 365   | AMPL3931953 | Pool=2        |
| blaTLA_1_AF148067 | 354       | 528   | AMPL3931954 | Pool=1        |
| blaTLA_1_AF148067 | 517       | 723   | AMPL3931955 | Pool=2        |
| blaTLA_1_AF148067 | 712       | 875   | AMPL3931956 | Pool=1        |
| blaVEB_1_HM370393 | 72        | 164   | AMPL3930383 | Pool=1        |
| blaVEB_1_HM370393 | 153       | 323   | AMPL3931959 | Pool=2        |
| blaVEB_1_HM370393 | 312       | 513   | AMPL3931960 | Pool=1        |
| blaVEB_1_HM370393 | 502       | 687   | AMPL3931961 | Pool=2        |
| blaVEB_1_HM370393 | 676       | 852   | AMPL3931962 | Pool=1        |
| blaVIM_2_KC907378 | 47        | 229   | AMPL3931394 | Pool=2        |
| blaVIM_2_KC907378 | 218       | 444   | AMPL3931395 | Pool=1        |
| blaVIM_2_KC907378 | 307       | 535   | AMPL3931396 | Pool=2        |
| blaVIM_2_KC907378 | 524       | 750   | AMPL3931397 | Pool=1        |
| blaZ_32_AP004832  | 68        | 159   | AMPL3928189 | Pool=2        |
| blaZ_32_AP004832  | 148       | 314   | AMPL3930812 | Pool=1        |
| blaZ_32_AP004832  | 298       | 410   | AMPL3930813 | Pool=2        |
| blaZ_32_AP004832  | 531       | 616   | AMPL3928196 | Pool=1        |
| carB_HQ616211     | 104       | 291   | AMPL3931989 | Pool=2        |
| Sample ID         | Read 1 | Read 2 | Pool  | Sample ID         | Read 1 | Read 2 | Pool  |
|-------------------|--------|--------|-------|-------------------|--------|--------|-------|
| carB_HQ616211     | 280    | 499    | 1     | carB_HQ616211     | 488    | 626    | 2     |
| carB_HQ616211     | 615    | 826    | 1     | carB_HQ616211     | 815    | 1005   | 2     |
| carB_HQ616211     | 994    | 1186   | 1     | carB_HQ616211     | 1175   | 1338   | 2     |
| carB_HQ616211     | 1327   | 1510   | 1     | catA1_1_V00622    | 35     | 244    | 1     |
| catA1_1_V00622    | 233    | 381    | 2     | catA1_1_V00622    | 370    | 594    | 1     |
| catB3_1_AJ009818  | 44     | 271    | 2     | catB3_1_AJ009818  | 260    | 465    | 1     |
| catB3_1_AJ009818  | 454    | 573    | 2     | catB8_1_AF227506  | 29     | 209    | 1     |
| catB8_1_AF227506  | 198    | 406    | 2     | catB8_1_AF227506  | 395    | 581    | 1     |
| ceoA_U97042       | 32     | 255    | 2     | ceoA_U97042       | 218    | 445    | 1     |
| ceoA_U97042       | 434    | 658    | 2     | ceoA_U97042       | 647    | 781    | 1     |
| ceoA_U97042       | 761    | 998    | 2     | ceoA_U97042       | 987    | 1198   | 1     |
| cepA_1_L13472     | 64     | 255    | 2     | cepA_1_L13472     | 244    | 463    | 1     |
| cepA_1_L13472     | 452    | 661    | 2     | cepA_1_L13472     | 649    | 833    | 1     |
| Sequence   | Position | Length | Accession     | Pool |
|------------|----------|--------|---------------|------|
| cfr_1_AM408573 | 68       | 173    | AMPL3928971   | 1    |
| cfr_1_AM408573 | 162      | 289    | AMPL3931217   | 2    |
| cfr_1_AM408573 | 278      | 489    | AMPL3931218   | 1    |
| cfr_1_AM408573 | 478      | 599    | AMPL3931219   | 2    |
| cfr_1_AM408573 | 576      | 796    | AMPL3931220   | 1    |
| cfr_1_AM408573 | 785      | 865    | AMPL3928979   | 2    |
| cmeA_AB894099  | 55       | 183    | AMPL3931626   | 1    |
| cmeA_AB894099  | 174      | 368    | AMPL3931627   | 2    |
| cmeA_AB894099  | 357      | 559    | AMPL3931628   | 1    |
| cmeA_AB894099  | 544      | 734    | AMPL3931629   | 2    |
| cmeA_AB894099  | 789      | 886    | AMPL3931631   | 1    |
| cmeA_AB894099  | 861      | 1069   | AMPL3931632   | 2    |
| cmeB_AB894099  | 42       | 173    | AMPL3931633   | 1    |
| cmeB_AB894099  | 162      | 374    | AMPL3931634   | 2    |
| cmeB_AB894099  | 363      | 547    | AMPL3931635   | 1    |
| cmeB_AB894099  | 536      | 700    | AMPL3931636   | 2    |
| cmeB_AB894099  | 689      | 909    | AMPL3931637   | 1    |
| cmeB_AB894099  | 898      | 1114   | AMPL3931638   | 2    |
| cmeB_AB894099  | 1103     | 1291   | AMPL3931639   | 1    |
| cmeB_AB894099  | 1280     | 1494   | AMPL3931640   | 2    |
| cmeB_AB894099  | 1483     | 1703   | AMPL3931641   | 1    |
| cmeB_AB894099  | 1692     | 1887   | AMPL3931642   | 2    |
| cmeB_AB894099  | 1876     | 2069   | AMPL3931643   | 1    |
| cmeB_AB894099  | 2058     | 2273   | AMPL3931644   | 2    |
| cmeB_AB894099  | 2257     | 2399   | AMPL3931645   | 1    |
| cmeB_AB894099  | 2388     | 2600   | AMPL3931646   | 2    |
| Gene          | Start | End   | Accession       | Pool |
|--------------|-------|-------|----------------|------|
| cmeB_AB894099| 2592  | 2807  | AMPL3931647    | 1    |
| cmeB_AB894099| 2796  | 2942  | AMPL3931648    | 2    |
| cmeC_AB894099| 54    | 267   | AMPL3931652    | 1    |
| cmeC_AB894099| 263   | 480   | AMPL3931653    | 2    |
| cmeC_AB894099| 469   | 668   | AMPL3931654    | 1    |
| cmeC_AB894099| 657   | 868   | AMPL3931655    | 2    |
| cmeC_AB894099| 857   | 994   | AMPL3931656    | 1    |
| cmeC_AB894099| 983   | 1202  | AMPL3931657    | 2    |
| cmeC_AB894099| 1191  | 1402  | AMPL3931658    | 1    |
| cmlA1_1_M64556| 36   | 198   | AMPL3931221    | 1    |
| cmlA1_1_M64556| 190  | 419   | AMPL3931222    | 2    |
| cmlA1_1_M64556| 416  | 647   | AMPL3931223    | 1    |
| cmlA1_1_M64556| 646  | 867   | AMPL3931224    | 2    |
| cmlA1_1_M64556| 856  | 1054  | AMPL3931225    | 1    |
| cmlA1_1_M64556| 1024 | 1220  | AMPL3931226    | 2    |
| cmr_U44900    | 54    | 196   | AMPL3931723    | 1    |
| cmr_U44900    | 185   | 346   | AMPL3931724    | 2    |
| cmr_U44900    | 332   | 549   | AMPL3931725    | 1    |
| cmr_U44900    | 539   | 754   | AMPL3931726    | 2    |
| cmr_U44900    | 743   | 882   | AMPL3931727    | 1    |
| cmr_U44900    | 871   | 1033  | AMPL3931728    | 2    |
| cmr_U44900    | 1022  | 1199  | AMPL3931729    | 1    |
| cmx_1_U85507  | 58    | 257   | AMPL3931227    | 1    |
| cmx_1_U85507  | 234   | 320   | AMPL3931228    | 2    |
| cmx_1_U85507  | 314   | 514   | AMPL3931229    | 1    |
| cmx_1_U85507  | 503   | 738   | AMPL3931230    | 2    |
| Gene         | Start | End   | Pool | Accession     |
|--------------|-------|-------|------|---------------|
| cmx_1_U85507| 678   | 901   | Pool=1| AMPL3931231   |
| cmx_1_U85507| 890   | 1115  | Pool=2| AMPL3931232   |
| dfrA1_MH574896| 39    | 201   | Pool=1| AMPL3932021   |
| dfrA1_MH574896| 190   | 416   | Pool=2| AMPL3932022   |
| dfrA_GU565967| 30    | 131   | Pool=1| AMPL3931536   |
| dfrA_GU565967| 120   | 298   | Pool=2| AMPL3931537   |
| dfrA_GU565967| 287   | 439   | Pool=1| AMPL3931538   |
| dfrK_FN390947| 39    | 260   | Pool=1| AMPL3931539   |
| dfrK_FN390947| 249   | 462   | Pool=2| AMPL3931540   |
| dfrA12_JN108892| 22    | 236   | Pool=1| AMPL3931663   |
| dfrA12_JN108892| 223   | 442   | Pool=2| AMPL3931664   |
| ereA_2_AF099140| 67    | 292   | Pool=1| AMPL3930830   |
| ereA_2_AF099140| 281   | 508   | Pool=2| AMPL3930831   |
| ereA_2_AF099140| 497   | 641   | Pool=1| AMPL3930832   |
| ereA_2_AF099140| 630   | 809   | Pool=2| AMPL3930833   |
| ereA_2_AF099140| 798   | 1023  | Pool=1| AMPL3930834   |
| ereA_2_AF099140| 1012  | 1156  | Pool=2| AMPL3930835   |
| ereB_2_X03988| 22    | 226   | Pool=1| AMPL3930836   |
| ereB_2_X03988| 215   | 425   | Pool=2| AMPL3930837   |
| ereB_2_X03988| 414   | 603   | Pool=1| AMPL3930838   |
| ereB_2_X03988| 592   | 814   | Pool=2| AMPL3930839   |
| ereB_2_X03988| 803   | 1022  | Pool=1| AMPL3930840   |
| ereB_2_X03988| 1011  | 1190  | Pool=2| AMPL3930841   |
| erm34_AY234334| 54    | 270   | Pool=1| AMPL3931407   |
| erm34_AY234334| 259   | 471   | Pool=2| AMPL3931408   |
| erm34_AY234334| 460   | 637   | Pool=1| AMPL3931409   |
| Gene    | Accession | Position 1 | Position 2 | Pool |
|---------|-----------|------------|------------|------|
| erm34   | AY234334  | 626        | 798        | 2    |
| erm35   | AF319779  | 54         | 217        | 1    |
| erm35   | AF319779  | 206        | 421        | 2    |
| erm35   | AF319779  | 411        | 614        | 1    |
| erm35   | AF319779  | 531        | 753        | 2    |
| erm36   | AF462611  | 60         | 221        | 1    |
| erm36   | AF462611  | 196        | 419        | 2    |
| erm36   | AF462611  | 375        | 494        | 1    |
| erm36   | AF462611  | 483        | 642        | 2    |
| erm36   | AF462611  | 628        | 786        | 1    |
| erm36   | AF462611  | 775        | 963        | 2    |
| erm36   | AF462611  | 952        | 1118       | 1    |
| ermA_1  | X03216    | 34         | 161        | 1    |
| ermA_1  | X03216    | 150        | 372        | 2    |
| ermA_1  | X03216    | 361        | 437        | 1    |
| ermA_1  | X03216    | 426        | 642        | 2    |
| ermB_18 | X66468    | 29         | 139        | 1    |
| ermB_18 | X66468    | 128        | 316        | 2    |
| ermB_18 | X66468    | 305        | 500        | 1    |
| ermB_18 | X66468    | 489        | 692        | 2    |
| ermC_1  | V01278    | 31         | 207        | 1    |
| ermC_1  | V01278    | 196        | 408        | 2    |
| ermC_1  | V01278    | 397        | 497        | 1    |
| ermC_1  | V01278    | 494        | 681        | 2    |
| ermD_1  | M29832    | 69         | 250        | 1    |
| ermD_1  | M29832    | 239        | 380        | 2    |
| Gene          | Start | End   | Accession | Pool |
|--------------|-------|-------|-----------|------|
| ermD_1_M29832 | 388   | 601   | AMPL3930856 | 1    |
| ermD_1_M29832 | 623   | 795   | AMPL3930858 | 2    |
| ermE_1_X51891 | 20    | 250   | AMPL3930861 | 1    |
| ermE_1_X51891 | 236   | 324   | AMPL3928291 | 2    |
| ermE_1_X51891 | 312   | 546   | AMPL3930862 | 1    |
| ermE_1_X51891 | 538   | 714   | AMPL3930863 | 2    |
| ermE_1_X51891 | 700   | 850   | AMPL3930864 | 1    |
| ermE_1_X51891 | 839   | 1025  | AMPL3930865 | 2    |
| ermF_2_M17124 | 54    | 262   | AMPL3930985 | 1    |
| ermF_2_M17124 | 251   | 465   | AMPL3930986 | 2    |
| ermF_2_M17124 | 454   | 673   | AMPL3930987 | 1    |
| ermF_2_M17124 | 665   | 753   | AMPL3928542 | 2    |
| ermG_1_M15332 | 117   | 296   | AMPL3930867 | 1    |
| ermG_1_M15332 | 285   | 483   | AMPL3930868 | 2    |
| ermG_1_M15332 | 472   | 670   | AMPL3930869 | 1    |
| ermK_M77505   | 69    | 179   | AMPL3929320 | 1    |
| ermK_M77505   | 168   | 380   | AMPL3931398 | 2    |
| ermK_M77505   | 373   | 596   | AMPL3931399 | 1    |
| ermK_M77505   | 619   | 813   | AMPL3931401 | 2    |
| ermT_1_M64090 | 50    | 205   | AMPL3930871 | 1    |
| ermT_1_M64090 | 195   | 376   | AMPL3930872 | 2    |
| ermT_1_M64090 | 365   | 531   | AMPL3930873 | 1    |
| ermT_1_M64090 | 520   | 672   | AMPL3930874 | 2    |
| ermX_1_M36726 | 44    | 207   | AMPL3930875 | 1    |
| ermX_1_M36726 | 196   | 369   | AMPL3930876 | 2    |
| ermX_1_M36726 | 348   | 550   | AMPL3930877 | 1    |
| Gene          | Start | End   | Accession | Pool |
|--------------|-------|-------|-----------|------|
| ermX_1_M36726 | 468   | 670   | AMPL3930878 | Pool=2 |
| ermX_1_M36726 | 661   | 790   | AMPL3928327 | Pool=1 |
| ermY_1_AB014481 | 125   | 317   | AMPL3930879 | Pool=1 |
| ermY_1_AB014481 | 300   | 469   | AMPL3930880 | Pool=2 |
| ermY_1_AB014481 | 453   | 662   | AMPL3930881 | Pool=1 |
| fabK_FJ390165  | 27    | 179   | AMPL3931730 | Pool=1 |
| fabK_FJ390165  | 168   | 391   | AMPL3931731 | Pool=2 |
| fexA_1_AJ549214 | 73    | 155   | AMPL3931233 | Pool=1 |
| fexA_1_AJ549214 | 144   | 366   | AMPL3931234 | Pool=2 |
| fexA_1_AJ549214 | 355   | 550   | AMPL3931235 | Pool=1 |
| fexA_1_AJ549214 | 539   | 764   | AMPL3931236 | Pool=2 |
| fexA_1_AJ549214 | 753   | 974   | AMPL3931237 | Pool=1 |
| fexA_1_AJ549214 | 963   | 1183  | AMPL3931238 | Pool=2 |
| fexA_1_AJ549214 | 1172  | 1377  | AMPL3931239 | Pool=1 |
| floR_1_AF071555 | 66    | 194   | AMPL3931241 | Pool=2 |
| floR_1_AF071555 | 183   | 410   | AMPL3931242 | Pool=1 |
| floR_1_AF071555 | 332   | 544   | AMPL3931243 | Pool=2 |
| floR_1_AF071555 | 533   | 638   | AMPL3931244 | Pool=1 |
| floR_1_AF071555 | 627   | 797   | AMPL3931245 | Pool=2 |
| floR_1_AF071555 | 786   | 956   | AMPL3931246 | Pool=1 |
| floR_1_AF071555 | 945   | 1054  | AMPL3931247 | Pool=2 |
| floR_1_AF071555 | 1043  | 1195  | AMPL3931248 | Pool=1 |
| folA_EU871432  | 61    | 271   | AMPL3931665 | Pool=1 |
| folA_EU871432  | 260   | 451   | AMPL3931666 | Pool=2 |
| fosA3_KX245440  | 23    | 179   | AMPL3931541 | Pool=1 |
| fosA3_KX245440  | 164   | 351   | AMPL3931542 | Pool=2 |
| Gene          | Start | End   | Amplification | Pool |
|---------------|-------|-------|---------------|------|
| fosA_M85195   | 22    | 225   | AMPL3931544   | 1    |
| fosA_M85195   | 212   | 398   | AMPL3931545   | 2    |
| fosB_X89875   | 103   | 242   | AMPL3931546   | 1    |
| fosB_X89875   | 232   | 374   | AMPL3931547   | 2    |
| fosX_CC_KC876749 | 33   | 153   | AMPL3931551   | 1    |
| fosX_CC_KC876749 | 142 | 346   | AMPL3931552   | 2    |
| fosX_CC_KC876749 | 321 | 395   | AMPL3931553   | 1    |
| fosX_NG_047899 | 57    | 281   | AMPL3931550   | 2    |
| gyrA_MG995190 | 59    | 268   | AMPL3931576   | 1    |
| gyrA_MG995190 | 254   | 444   | AMPL3931577   | 2    |
| gyrA_MG995190 | 433   | 574   | AMPL3931578   | 1    |
| gyrA_MG995190 | 565   | 763   | AMPL3931579   | 2    |
| gyrA_MG995190 | 740   | 930   | AMPL3931580   | 1    |
| gyrA_MG995190 | 919   | 1102  | AMPL3931581   | 2    |
| gyrA_MG995190 | 1093  | 1300  | AMPL3931582   | 1    |
| gyrA_MG995190 | 1289  | 1389  | AMPL3931583   | 2    |
| gyrA_MG995190 | 1377  | 1584  | AMPL3931584   | 1    |
| gyrA_MG995190 | 1573  | 1703  | AMPL3929684   | 2    |
| gyrA_MG995190 | 1700  | 1915  | AMPL3931585   | 1    |
| gyrA_MG995190 | 1904  | 2106  | AMPL3931586   | 2    |
| gyrA_MG995190 | 2126  | 2293  | AMPL3931588   | 2    |
| gyrA_MG995190 | 2267  | 2469  | AMPL3931589   | 1    |
| imiR_KR057494 | 25    | 139   | AMPL3931732   | 1    |
| imiR_KR057494 | 128   | 329   | AMPL3931733   | 2    |
| imiR_KR057494 | 318   | 548   | AMPL3931734   | 1    |
| imiR_KR057494 | 537   | 676   | AMPL3931735   | 2    |
| Gene            | Start | End   | Accession | Pool |
|-----------------|-------|-------|-----------|------|
| imiR_KR057494   | 665   | 837   | AMPL3931736 | 1    |
| intI1_NZ_CP039294 | 53    | 217   | AMPL3932033 | 1    |
| intI1_NZ_CP039294 | 199   | 300   | AMPL3930518 | 2    |
| intI1_NZ_CP039294 | 275   | 468   | AMPL3932034 | 1    |
| intI1_NZ_CP039294 | 458   | 686   | AMPL3932035 | 2    |
| intI1_NZ_CP039294 | 551   | 779   | AMPL3932036 | 1    |
| intI1_NZ_CP039294 | 768   | 965   | AMPL3932037 | 2    |
| lmrA_1_X59926    | 34    | 211   | AMPL3930886 | 1    |
| lmrA_1_X59926    | 201   | 351   | AMPL3930887 | 2    |
| lmrA_1_X59926    | 442   | 552   | AMPL3930889 | 1    |
| lmrA_1_X59926    | 542   | 688   | AMPL3930890 | 2    |
| lmrA_1_X59926    | 617   | 826   | AMPL3930891 | 1    |
| lmrA_1_X59926    | 908   | 1143  | AMPL3930893 | 2    |
| lmrA_1_X59926    | 1132  | 1338  | AMPL3930894 | 1    |
| lnuA_1_M14039     | 86    | 243   | AMPL3930898 | 1    |
| lnuA_1_M14039     | 232   | 424   | AMPL3930899 | 2    |
| lnuB_1_AJ238249   | 51    | 213   | AMPL3930902 | 1    |
| lnuB_1_AJ238249   | 202   | 344   | AMPL3930903 | 2    |
| lnuB_1_AJ238249   | 333   | 543   | AMPL3930904 | 1    |
| lnuB_1_AJ238249   | 532   | 740   | AMPL3930905 | 2    |
| lnuC_1_AY928180   | 43    | 259   | AMPL3930906 | 1    |
| lnuC_1_AY928180   | 248   | 425   | AMPL3930907 | 2    |
| lsaB_NG_047933    | 54    | 121   | AMPL3929441 | 1    |
| lsaB_NG_047933    | 108   | 301   | AMPL3931455 | 2    |
| lsaB_NG_047933    | 290   | 503   | AMPL3931456 | 1    |
| lsaB_NG_047933    | 491   | 709   | AMPL3931457 | 2    |
| Query          | Start | End   | Accession   | Pool |
|---------------|-------|-------|-------------|------|
| lsaB_NG_047933 | 698   | 914 AMPL3931458 | Pool=1 |
| lsaB_NG_047933 | 903   | 1061 AMPL3931459 | Pool=2 |
| lsaB_NG_047933 | 1050  | 1222 AMPL3931460 | Pool=1 |
| lsaB_NG_047933 | 1211  | 1409 AMPL3931461 | Pool=2 |
| lsxE_JX560992  | 48    | 200 AMPL3931462 | Pool=1 |
| lsxE_JX560992  | 189   | 407 AMPL3931463 | Pool=2 |
| lsxE_JX560992  | 396   | 616 AMPL3931464 | Pool=1 |
| lsxE_JX560992  | 605   | 824 AMPL3931465 | Pool=2 |
| lsxE_JX560992  | 813   | 1028 AMPL3931466 | Pool=1 |
| lsxE_JX560992  | 1018  | 1233 AMPL3931467 | Pool=2 |
| lsxE_JX560992  | 1110  | 1285 AMPL3931468 | Pool=1 |
| mcR_1_1_1_KY853650 | 23    | 221 AMPL3931133 | Pool=1 |
| mcR_1_1_1_KY853650 | 210   | 375 AMPL3931134 | Pool=2 |
| mcR_1_1_1_KY853650 | 364   | 574 AMPL3931135 | Pool=1 |
| mcR_1_1_1_KY853650 | 563   | 783 AMPL3931136 | Pool=2 |
| mcR_1_1_1_KY853650 | 772   | 926 AMPL3931137 | Pool=1 |
| mcR_1_1_1_KY853650 | 915   | 1141 AMPL3931138 | Pool=2 |
| mcR_1_1_1_KY853650 | 1130  | 1357 AMPL3931139 | Pool=1 |
| mcR_1_1_1_KY853650 | 1346  | 1561 AMPL3931140 | Pool=2 |
| mcR_2_1_1_LT598652  | 26    | 171 AMPL3931141 | Pool=1 |
| mcR_2_1_1_LT598652  | 160   | 369 AMPL3931142 | Pool=2 |
| mcR_2_1_1_LT598652  | 361   | 579 AMPL3931143 | Pool=1 |
| mcR_2_1_1_LT598652  | 568   | 789 AMPL3931144 | Pool=2 |
| mcR_2_1_1_LT598652  | 769   | 953 AMPL3931145 | Pool=1 |
| mcR_2_1_1_LT598652  | 942   | 1129 AMPL3931146 | Pool=2 |
| mcR_2_1_1_LT598652  | 1118  | 1337 AMPL3931147 | Pool=1 |
| Sample ID                  | Start Position | End Position | AMPL3931148 | Pool |
|---------------------------|----------------|--------------|-------------|------|
| mcr_2_1_1_LT598652        | 1326           | 1549         |             | 2    |
| mcr_3_17_1_MH332767       | 64             | 241          |             | 1    |
| mcr_3_17_1_MH332767       | 230            | 451          |             | 2    |
| mcr_3_17_1_MH332767       | 440            | 602          |             | 1    |
| mcr_3_17_1_MH332767       | 595            | 805          |             | 2    |
| mcr_3_17_1_MH332767       | 794            | 1015         |             | 1    |
| mcr_3_17_1_MH332767       | 1004           | 1226         |             | 2    |
| mcr_3_17_1_MH332767       | 1215           | 1429         |             | 1    |
| mcr_3_17_1_MH332767       | 1419           | 1560         |             | 2    |
| mcr_3_1_1_KY924928        | 50             | 220          |             | 1    |
| mcr_3_1_1_KY924928        | 205            | 417          |             | 2    |
| mcr_3_1_1_KY924928        | 406            | 598          |             | 1    |
| mcr_3_1_1_KY924928        | 587            | 807          |             | 2    |
| mcr_3_1_1_KY924928        | 796            | 1012         |             | 1    |
| mcr_3_1_1_KY924928        | 1001           | 1223         |             | 2    |
| mcr_3_1_1_KY924928        | 1212           | 1367         |             | 1    |
| mcr_3_1_1_KY924928        | 1356           | 1560         |             | 2    |
| mcr_4_1_1_MF543359        | 42             | 226          |             | 1    |
| mcr_4_1_1_MF543359        | 215            | 405          |             | 2    |
| mcr_4_1_1_MF543359        | 394            | 584          |             | 1    |
| mcr_4_1_1_MF543359        | 573            | 794          |             | 2    |
| mcr_4_1_1_MF543359        | 783            | 998          |             | 1    |
| mcr_4_1_1_MF543359        | 987            | 1207         |             | 2    |
| mcr_4_1_1_MF543359        | 1196           | 1350         |             | 1    |
| mcr_4_1_1_MF543359        | 1339           | 1556         |             | 2    |
| mcr_5_1_1_KY807921        | 63             | 280          |             | 1    |
| Sample ID         | Amplification | Pool | Description       |
|------------------|---------------|------|-------------------|
| mcr_5_1_1_KY807921 | 269           | Pool=2 | 426 AMPL3931174  |
| mcr_5_1_1_KY807921 | 415           | Pool=1 | 614 AMPL3931175  |
| mcr_5_1_1_KY807921 | 603           | Pool=2 | 814 AMPL3931176  |
| mcr_5_1_1_KY807921 | 845           | Pool=1 | 980 AMPL3931178  |
| mcr_5_1_1_KY807921 | 969           | Pool=2 | 1106 AMPL3931179 |
| mcr_5_1_1_KY807921 | 1095          | Pool=1 | 1285 AMPL3931180 |
| mcr_5_1_1_KY807921 | 1274          | Pool=2 | 1476 AMPL3931181 |
| mcr_5_1_1_KY807921 | 1465          | Pool=1 | 1609 AMPL3931182 |
| mcr_6_1_1_MF176240 | 22            | Pool=1 | 211 AMPL3931183  |
| mcr_6_1_1_MF176240 | 200           | Pool=2 | 424 AMPL3931184  |
| mcr_6_1_1_MF176240 | 413           | Pool=1 | 639 AMPL3931185  |
| mcr_6_1_1_MF176240 | 628           | Pool=2 | 851 AMPL3931186  |
| mcr_6_1_1_MF176240 | 837           | Pool=1 | 1019 AMPL3931187 |
| mcr_6_1_1_MF176240 | 1008          | Pool=2 | 1149 AMPL3931188 |
| mcr_6_1_1_MF176240 | 1138          | Pool=1 | 1338 AMPL3931189 |
| mcr_6_1_1_MF176240 | 1327          | Pool=2 | 1550 AMPL3931190 |
| mcr_7_1_1_MG267386 | 55            | Pool=1 | 283 AMPL3931191  |
| mcr_7_1_1_MG267386 | 272           | Pool=2 | 498 AMPL3931192  |
| mcr_7_1_1_MG267386 | 437           | Pool=1 | 568 AMPL3931193  |
| mcr_7_1_1_MG267386 | 697           | Pool=2 | 783 AMPL3928928  |
| mcr_7_1_1_MG267386 | 759           | Pool=1 | 931 AMPL3931195  |
| mcr_7_1_1_MG267386 | 883           | Pool=2 | 1051 AMPL3931196 |
| mcr_7_1_1_MG267386 | 1040          | Pool=1 | 1256 AMPL3931197 |
| mcr_7_1_1_MG267386 | 1245          | Pool=2 | 1324 AMPL3931198 |
| mcr_7_1_1_MG267386 | 1307          | Pool=1 | 1501 AMPL3931199 |
| mcr_8_1_MG736312  | 42            | Pool=1 | 220 AMPL3931201  |
| Gene             | Start | End   | Accession   | Pool |
|------------------|-------|-------|-------------|------|
| mcr_8_1_MG736312 | 209   | 420   | AMPL3931202 | Pool=2 |
| mcr_8_1_MG736312 | 409   | 627   | AMPL3931203 | Pool=1 |
| mcr_8_1_MG736312 | 616   | 842   | AMPL3931204 | Pool=2 |
| mcr_8_1_MG736312 | 831   | 1046  | AMPL3931205 | Pool=1 |
| mcr_8_1_MG736312 | 1028  | 1231  | AMPL3931206 | Pool=2 |
| mcr_8_1_MG736312 | 1220  | 1435  | AMPL3931207 | Pool=1 |
| mcr_8_1_MG736312 | 1424  | 1633  | AMPL3931208 | Pool=2 |
| mcr_8_1_MG736312 | 49    | 146   | AMPL3929969 | Pool=1 |
| mcr_8_1_MG736312 | 135   | 307   | AMPL3931737 | Pool=2 |
| mcr_8_1_MG736312 | 296   | 372   | AMPL3931738 | Pool=1 |
| mcr_8_1_MG736312 | 361   | 579   | AMPL3931739 | Pool=2 |
| mcr_8_1_MG736312 | 568   | 766   | AMPL3931740 | Pool=1 |
| mcr_8_1_MG736312 | 755   | 959   | AMPL3931741 | Pool=2 |
| mcr_8_1_MG736312 | 948   | 1128  | AMPL3931742 | Pool=1 |
| mcr_8_1_MG736312 | 42    | 263   | AMPL3931743 | Pool=1 |
| mcr_8_1_MG736312 | 254   | 477   | AMPL3931744 | Pool=2 |
| mcr_8_1_MG736312 | 461   | 685   | AMPL3931745 | Pool=1 |
| mcr_8_1_MG736312 | 674   | 893   | AMPL3931746 | Pool=2 |
| mcr_8_1_MG736312 | 882   | 1111  | AMPL3931747 | Pool=1 |
| mcr_8_1_MG736312 | 1053  | 1269  | AMPL3930825 | Pool=1 |
| Gene    | Start | End   | Accession     | Pool |
|---------|-------|-------|---------------|------|
| mecA_10_AB512767 | 1257  | 1453  | AMPL3930826   | 2    |
| mecA_10_AB512767 | 1442  | 1610  | AMPL3930827   | 1    |
| mecA_10_AB512767 | 1599  | 1812  | AMPL3930828   | 2    |
| mecA_10_AB512767 | 1801  | 1953  | AMPL3930829   | 1    |
| mefA_3_AF227521  | 66    | 159   | AMPL3930908   | 1    |
| mefA_3_AF227521  | 148   | 369   | AMPL3930909   | 2    |
| mefA_3_AF227521  | 358   | 551   | AMPL3930910   | 1    |
| mefA_3_AF227521  | 540   | 755   | AMPL3930911   | 2    |
| mefA_3_AF227521  | 744   | 962   | AMPL3930912   | 1    |
| mefA_3_AF227521  | 951   | 1151  | AMPL3930913   | 2    |
| mefB_1_FJ196385  | 59    | 168   | AMPL3930914   | 1    |
| mefB_1_FJ196385  | 157   | 385   | AMPL3930915   | 2    |
| mefB_1_FJ196385  | 372   | 572   | AMPL3930916   | 1    |
| mefB_1_FJ196385  | 561   | 785   | AMPL3930917   | 2    |
| mefB_1_FJ196385  | 774   | 993   | AMPL3930918   | 1    |
| mefB_1_FJ196385  | 982   | 1165  | AMPL3930919   | 2    |
| mel_KU984333     | 38    | 198   | AMPL3931569   | 1    |
| mel_KU984333     | 187   | 410   | AMPL3931570   | 2    |
| mel_KU984333     | 399   | 590   | AMPL3931571   | 1    |
| mel_KU984333     | 579   | 799   | AMPL3931572   | 2    |
| mel_KU984333     | 788   | 1007  | AMPL3931573   | 1    |
| mel_KU984333     | 996   | 1221  | AMPL3931574   | 2    |
| mel_KU984333     | 1210  | 1425  | AMPL3931575   | 1    |
| mepA_AY661734    | 52    | 173   | AMPL3931748   | 1    |
| mepA_AY661734    | 162   | 335   | AMPL3931749   | 2    |
| mepA_AY661734    | 324   | 501   | AMPL3931750   | 1    |
| Gene    | Start | End   | Pool  | Accession       |
|---------|-------|-------|-------|-----------------|
| mepA_AY661734 | 488   | 710   | Pool=2 | AMPL3931751     |
| mepA_AY661734 | 696   | 908   | Pool=1 | AMPL3931752     |
| mepA_AY661734 | 897   | 1105  | Pool=2 | AMPL3931753     |
| mepA_AY661734 | 1093  | 1305  | Pool=1 | AMPL3931754     |
| mphA_1_D16251 | 53    | 182   | Pool=1 | AMPL3928402     |
| mphA_1_D16251 | 171   | 325   | Pool=2 | AMPL3930920     |
| mphA_1_D16251 | 314   | 538   | Pool=1 | AMPL3930921     |
| mphA_1_D16251 | 468   | 679   | Pool=2 | AMPL3930922     |
| mphA_1_D16251 | 635   | 861   | Pool=1 | AMPL3930923     |
| mphB_1_D85892 | 69    | 220   | Pool=2 | AMPL3930924     |
| mphB_1_D85892 | 209   | 431   | Pool=1 | AMPL3930925     |
| mphB_1_D85892 | 420   | 627   | Pool=2 | AMPL3930926     |
| mphB_1_D85892 | 616   | 839   | Pool=1 | AMPL3930927     |
| mphC_1_AB013298 | 60    | 157   | Pool=2 | AMPL3930928     |
| mphC_1_AB013298 | 146   | 365   | Pool=1 | AMPL3930929     |
| mphC_1_AB013298 | 354   | 544   | Pool=2 | AMPL3930930     |
| mphC_1_AB013298 | 533   | 628   | Pool=1 | AMPL3928424     |
| mphC_1_AB013298 | 617   | 830   | Pool=2 | AMPL3930931     |
| msrA_1_X52085  | 67    | 196   | Pool=1 | AMPL3930932     |
| msrA_1_X52085  | 185   | 292   | Pool=2 | AMPL3930933     |
| msrA_1_X52085  | 281   | 502   | Pool=1 | AMPL3930934     |
| msrA_1_X52085  | 491   | 714   | Pool=2 | AMPL3930935     |
| msrA_1_X52085  | 703   | 927   | Pool=1 | AMPL3930936     |
| msrA_1_X52085  | 920   | 1070  | Pool=2 | AMPL3930937     |
| msrA_1_X52085  | 1059  | 1275  | Pool=1 | AMPL3930938     |
| msrA_1_X52085  | 1264  | 1423  | Pool=2 | AMPL3930939     |
| Gene         | Accession | Start | End   | AMPL | Pool |
|--------------|-----------|-------|-------|------|------|
| msrC_1_AY004350 | 50        | 193   | AMPL3930940 | Pool=1 |
| msrC_1_AY004350 | 182       | 403   | AMPL3930941 | Pool=2 |
| msrC_1_AY004350 | 392       | 594   | AMPL3930942 | Pool=1 |
| msrC_1_AY004350 | 583       | 803   | AMPL3930943 | Pool=2 |
| msrC_1_AY004350 | 792       | 1004  | AMPL3930944 | Pool=1 |
| msrC_1_AY004350 | 993       | 1211  | AMPL3930945 | Pool=2 |
| msrD_2_AF274302  | 42        | 170   | AMPL3930947 | Pool=1 |
| msrD_2_AF274302  | 159       | 382   | AMPL3930948 | Pool=2 |
| msrD_2_AF274302  | 371       | 591   | AMPL3930949 | Pool=1 |
| msrD_2_AF274302  | 580       | 804   | AMPL3930950 | Pool=2 |
| msrD_2_AF274302  | 793       | 1015  | AMPL3930951 | Pool=1 |
| msrD_2_AF274302  | 1004      | 1225  | AMPL3930952 | Pool=2 |
| msrD_2_AF274302  | 1214      | 1394  | AMPL3930953 | Pool=1 |
| mtrC_HQ712081    | 30        | 246   | AMPL3931755 | Pool=1 |
| mtrC_HQ712081    | 232       | 460   | AMPL3931756 | Pool=2 |
| mtrC_HQ712081    | 449       | 670   | AMPL3931757 | Pool=1 |
| mtrC_HQ712081    | 658       | 877   | AMPL3931758 | Pool=2 |
| mtrC_HQ712081    | 867       | 1087  | AMPL3931759 | Pool=1 |
| mtrC_HQ712081    | 1076      | 1266  | AMPL3931760 | Pool=2 |
| mtrD_HQ706341    | 18        | 233   | AMPL3931761 | Pool=1 |
| nimE_NG_048015   | 46        | 274   | AMPL3931763 | Pool=2 |
| nimE_NG_048015   | 263       | 479   | AMPL3931764 | Pool=1 |
| nisB_X68307      | 35        | 169   | AMPL3931765 | Pool=2 |
| nisB_X68307      | 157       | 346   | AMPL3931766 | Pool=1 |
| nisB_X68307      | 335       | 445   | AMPL3931767 | Pool=2 |
| Gene          | Start | End   | Accession  | Pool |
|--------------|-------|-------|------------|------|
| nisB_X68307  | 404   | 616   | AMPL3931768 | 1    |
| nisB_X68307  | 605   | 809   | AMPL3931769 | 2    |
| nisB_X68307  | 717   | 932   | AMPL3931770 | 1    |
| nisB_X68307  | 877   | 1068  | AMPL3931771 | 2    |
| nisB_X68307  | 985   | 1175  | AMPL3931772 | 1    |
| nisB_X68307  | 1164  | 1389  | AMPL3931773 | 2    |
| nisB_X68307  | 1378  | 1569  | AMPL3931774 | 1    |
| nisB_X68307  | 1558  | 1744  | AMPL3931775 | 2    |
| nisB_X68307  | 1651  | 1829  | AMPL3931776 | 1    |
| nisB_X68307  | 1797  | 1955  | AMPL3931777 | 2    |
| nisB_X68307  | 1927  | 2118  | AMPL3931778 | 1    |
| nisB_X68307  | 2107  | 2327  | AMPL3931779 | 2    |
| nisB_X68307  | 2316  | 2479  | AMPL3931780 | 1    |
| nisB_X68307  | 2443  | 2575  | AMPL3931781 | 2    |
| nisB_X68307  | 2552  | 2731  | AMPL3931782 | 1    |
| nisB_X68307  | 2652  | 2867  | AMPL3931783 | 2    |
| nisB_X68307  | 2856  | 2931  | AMPL3931784 | 1    |
| npmA_1_AB261016 | 29   | 197   | AMPL3931015 | 1    |
| npmA_1_AB261016 | 186  | 388   | AMPL3931016 | 2    |
| npmA_1_AB261016 | 377  | 592   | AMPL3931017 | 1    |
| oleC_1_L06249 | 30   | 183   | AMPL3930954 | 2    |
| oleC_1_L06249 | 151  | 274   | AMPL3930955 | 1    |
| oleC_1_L06249 | 263  | 501   | AMPL3930956 | 2    |
| oleC_1_L06249 | 470  | 593   | AMPL3930957 | 1    |
| oleC_1_L06249 | 575  | 801   | AMPL3930958 | 2    |
| oleC_1_L06249 | 777  | 959   | AMPL3930959 | 1    |
| Sample ID       | Size (bp) | Accession          | Pool |
|-----------------|-----------|--------------------|------|
| optrA_NG_048023_1 | 64        | 282 AMPL3931966    | 1    |
| optrA_NG_048023_1 | 269       | 479 AMPL3931967    | 2    |
| optrA_NG_048023_1 | 468       | 593 AMPL3931968    | 1    |
| optrA_NG_048023_1 | 582       | 778 AMPL3931969    | 2    |
| optrA_NG_048023_1 | 758       | 823 AMPL3931970    | 1    |
| optrA_NG_048023_1 | 994       | 1162 AMPL3931972   | 2    |
| oqxA_1_EU370913  | 66        | 283 AMPL3931060    | 1    |
| oqxA_1_EU370913  | 272       | 389 AMPL3931061    | 2    |
| oqxA_1_EU370913  | 403       | 632 AMPL3931063    | 1    |
| oqxA_1_EU370913  | 529       | 666 AMPL3931064    | 2    |
| oqxA_1_EU370913  | 823       | 980 AMPL3931066    | 1    |
| oqxA_1_EU370913  | 969       | 1121 AMPL3931067   | 2    |
| oqxB_1_EU370913  | 40        | 231 AMPL3931068    | 1    |
| oqxB_1_EU370913  | 227       | 446 AMPL3931069    | 2    |
| oqxB_1_EU370913  | 435       | 571 AMPL3931070    | 1    |
| oqxB_1_EU370913  | 557       | 725 AMPL3931071    | 2    |
| oqxB_1_EU370913  | 714       | 899 AMPL3931072    | 1    |
| oqxB_1_EU370913  | 891       | 1100 AMPL3931073   | 2    |
| oqxB_1_EU370913  | 1085      | 1249 AMPL3931074   | 1    |
| oqxB_1_EU370913  | 1223      | 1441 AMPL3931075   | 2    |
| oqxB_1_EU370913  | 1417      | 1601 AMPL3931076   | 1    |
| oqxB_1_EU370913  | 1587      | 1799 AMPL3931077   | 2    |
| oqxB_1_EU370913  | 1730      | 1948 AMPL3931078   | 1    |
| oqxB_1_EU370913  | 1910      | 2022 AMPL3931079   | 2    |
| oqxB_1_EU370913  | 1988      | 2152 AMPL3931080   | 1    |
| oqxB_1_EU370913  | 2073      | 2265 AMPL3931081   | 2    |
| Gene      | Accession | Start | End   | Pool |
|-----------|-----------|-------|-------|------|
| oqxB_1_EU370913 | 2253      | 2388  | AMPL3931082 | 1    |
| oqxB_1_EU370913 | 2377      | 2579  | AMPL3931083 | 2    |
| oqxB_1_EU370913 | 2568      | 2780  | AMPL3931084 | 1    |
| oqxB_1_EU370913 | 2747      | 2941  | AMPL3931085 | 2    |
| oqxB_1_EU370913 | 2862      | 3085  | AMPL3931086 | 1    |
| pbp1a_AF446215   | 31        | 139   | AMPL3931854 | 1    |
| pbp1a_AF446215   | 128       | 352   | AMPL3931855 | 2    |
| pbp1a_AF446215   | 341       | 539   | AMPL3931856 | 1    |
| pbp1a_AF446215   | 528       | 731   | AMPL3931857 | 2    |
| pbp1a_AF446215   | 720       | 938   | AMPL3931858 | 1    |
| pbp1a_AF446215   | 927       | 1139  | AMPL3931859 | 2    |
| pbp1a_AF446215   | 1128      | 1349  | AMPL3931860 | 1    |
| pbp1a_AF446215   | 1338      | 1555  | AMPL3931861 | 2    |
| pbp1a_AF446215   | 1544      | 1723  | AMPL3931862 | 1    |
| pbp2a_AF101780   | 70        | 167   | AMPL3930257 | 1    |
| pbp2a_AF101780   | 156       | 377   | AMPL3931886 | 2    |
| pbp2a_AF101780   | 366       | 583   | AMPL3931887 | 1    |
| pbp2a_AF101780   | 572       | 790   | AMPL3931888 | 2    |
| pbp2a_AF101780   | 779       | 965   | AMPL3931889 | 1    |
| pbp2a_AF101780   | 954       | 1181  | AMPL3931890 | 2    |
| pbp2a_AF101780   | 1170      | 1343  | AMPL3931891 | 1    |
| pbp2a(AF101780)  | 1332      | 1553  | AMPL3931892 | 2    |
| pbp2a(AF101780)  | 1542      | 1747  | AMPL3931893 | 1    |
| pbp2a(AF101780)  | 1736      | 1937  | AMPL3931894 | 2    |
| pbp2a(AF101780)  | 1926      | 2145  | AMPL3931895 | 1    |
| pbp3_AJ243120    | 89        | 218   | AMPL3931863 | 2    |
| Accession      | Start | End   | AMPL Cluster | Pool |
|---------------|-------|-------|--------------|------|
| pbp3_AJ243120 | 207   | 403   | 3931864      | 1    |
| pbp3_AJ243120 | 392   | 599   | 3931865      | 2    |
| pbp3_AJ243120 | 588   | 667   | 3931866      | 1    |
| pbp3_AJ243120 | 656   | 874   | 3931867      | 2    |
| pbp3_AJ243120 | 863   | 1054  | 3931868      | 1    |
| pbp3_AJ243120 | 1043  | 1255  | 3931869      | 2    |
| pbp3_AJ243120 | 1244  | 1456  | 3931870      | 1    |
| pbp3_AJ243120 | 1445  | 1667  | 3931871      | 2    |
| pbp3_AJ243120 | 1656  | 1824  | 3931872      | 1    |
| pbp3_AJ243120 | 1813  | 2009  | 3931873      | 2    |
| pbp5_AF375986 | 64    | 260   | 3931877      | 1    |
| pbp5_AF375986 | 249   | 443   | 3931878      | 2    |
| pbp5_AF375986 | 432   | 618   | 3931879      | 1    |
| pexA_NG_048035| 24    | 171   | 3931087      | 1    |
| pexA_NG_048035| 160   | 360   | 3931088      | 2    |
| pexA_NG_048035| 349   | 561   | 3931089      | 1    |
| pexA_NG_048035| 550   | 752   | 3931090      | 2    |
| pexA_NG_048035| 741   | 967   | 3931091      | 1    |
| pexA_NG_048035| 956   | 1183  | 3931092      | 2    |
| pexA_NG_048035| 1172  | 1397  | 3931093      | 1    |
| pikR1_AF079138| 21    | 186   | 3931556      | 2    |
| pikR1_AF079138| 179   | 399   | 3931557      | 1    |
| pikR1_AF079138| 385   | 605   | 3931558      | 2    |
| pikR1_AF079138| 567   | 759   | 3931559      | 1    |
| pikR1_AF079138| 748   | 976   | 3931560      | 2    |
| pikR2_AF079138| 44    | 229   | 3931561      | 1    |
| Gene          | Start | Stop  | Accession     | Pool  |
|---------------|-------|-------|---------------|-------|
| pikR2_AF079138 | 71    | 308   | AMPL3931562   | Pool=2 |
| pikR2_AF079138 | 266   | 452   | AMPL3931563   | Pool=1 |
| pikR2_AF079138 | 534   | 768   | AMPL3931565   | Pool=2 |
| pikR2_AF079138 | 755   | 905   | AMPL3931566   | Pool=1 |
| pncA_KY659393 | 32    | 185   | AMPL3931785   | Pool=1 |
| pncA_KY659393 | 154   | 346   | AMPL3931786   | Pool=2 |
| pncA_KY659393 | 335   | 538   | AMPL3931787   | Pool=1 |
| pncA_KY659393 | 74    | 255   | AMPL3931789   | Pool=2 |
| qacA_NG_061385 | 244   | 448   | AMPL3931790   | Pool=2 |
| qacA_NG_061385 | 437   | 639   | AMPL3931791   | Pool=2 |
| qacA_NG_061385 | 628   | 818   | AMPL3931792   | Pool=1 |
| qacA_NG_061385 | 807   | 935   | AMPL3931793   | Pool=2 |
| qacA_NG_061385 | 924   | 1145  | AMPL3931794   | Pool=1 |
| qacA_NG_061385 | 1134  | 1345  | AMPL3931795   | Pool=2 |
| qacA_NG_061385 | 1334  | 1494  | AMPL3931796   | Pool=1 |
| qacE_FJ663011  | 67    | 285   | AMPL3931799   | Pool=2 |
| qacH_AY816216  | 25    | 200   | AMPL3931800   | Pool=1 |
| qacH_AY816216  | 189   | 273   | AMPL3931801   | Pool=2 |
| qac_U81980     | 52    | 138   | AMPL3930070   | Pool=1 |
| qac_U81980     | 127   | 283   | AMPL3931788   | Pool=2 |
| qepA_1_AB263754 | 20    | 252   | AMPL3931094   | Pool=1 |
| qepA_1_AB263754 | 110   | 282   | AMPL3931095   | Pool=2 |
| qepA_1_AB263754 | 432   | 653   | AMPL3931097   | Pool=1 |
| qepA_1_AB263754 | 642   | 863   | AMPL3931098   | Pool=2 |
| qepA_1_AB263754 | 857   | 1013  | AMPL3931099   | Pool=1 |
| qepA_1_AB263754 | 997   | 1116  | AMPL3931100   | Pool=2 |
| Gene     | Start | End   | Accession   | Pool |
|----------|-------|-------|-------------|------|
| qepA_1   | 1130  | 1330  | AMPL3931102 | 1    |
| rarD_L02122 | 52     | 282   | AMPL3931802 | 1    |
| rarD_L02122 | 271    | 439   | AMPL3931803 | 2    |
| rarD_L02122 | 428    | 657   | AMPL3931804 | 1    |
| rarD_L02122 | 646    | 840   | AMPL3931805 | 2    |
| rmtA_1   | 40    | 266   | AMPL3931018 | 1    |
| rmtA_1   | 229   | 312   | AMPL3931019 | 2    |
| rmtA_1   | 482   | 686   | AMPL3931021 | 1    |
| rmtB2_1  | 42    | 251   | AMPL3931022 | 1    |
| rmtB2_1  | 243   | 452   | AMPL3931023 | 2    |
| rmtB2_1  | 447   | 598   | AMPL3931024 | 1    |
| rmtC_1   | 49    | 226   | AMPL3931026 | 1    |
| rmtC_1   | 215   | 420   | AMPL3931027 | 2    |
| rmtC_1   | 409   | 611   | AMPL3931028 | 1    |
| rmtC_1   | 600   | 776   | AMPL3931029 | 2    |
| rmtD_1   | 24    | 174   | AMPL3931030 | 1    |
| rmtD_1   | 102   | 279   | AMPL3931031 | 2    |
| rmtD_1   | 300   | 452   | AMPL3931033 | 1    |
| rmtD_1   | 436   | 632   | AMPL3931034 | 2    |
| rmtD_1   | 601   | 707   | AMPL3931035 | 1    |
| rmtE_1   | 30    | 175   | AMPL3931036 | 1    |
| rmtE_1   | 164   | 363   | AMPL3931037 | 2    |
| rmtE_1   | 352   | 572   | AMPL3931038 | 1    |
| rmtE_1   | 564   | 777   | AMPL3931039 | 2    |
| Genotype   | Start | End   | Reference     | Pool |
|------------|-------|-------|---------------|------|
| rmtG_1_KJ004567 | 51    | 267   | AMPL3931044   | 1    |
| rmtG_1_KJ004567 | 242   | 384   | AMPL3931045   | 2    |
| rmtG_1_KJ004567 | 373   | 514   | AMPL3931046   | 1    |
| rmtG_1_KJ004567 | 512   | 725   | AMPL3931047   | 2    |
| rmtH_1_KC544262 | 40    | 181   | AMPL3931048   | 1    |
| rmtH_1_KC544262 | 170   | 316   | AMPL3931049   | 2    |
| rmtH_1_KC544262 | 305   | 530   | AMPL3931050   | 1    |
| rmtH_1_KC544262 | 519   | 689   | AMPL3931051   | 2    |
| rmtf_1_JQ808129 | 63    | 295   | AMPL3931040   | 1    |
| rmtf_1_JQ808129 | 239   | 437   | AMPL3931041   | 2    |
| rmtf_1_JQ808129 | 426   | 536   | AMPL3931042   | 1    |
| rmtf_1_JQ808129 | 514   | 730   | AMPL3931043   | 2    |
| sat4_AB699882   | 22    | 123   | AMPL3931554   | 1    |
| sat4_AB699882   | 112   | 328   | AMPL3931555   | 2    |
| sat4_AB699882   | 317   | 416   | AMPL3929630   | 1    |
| sdeB_CP033162   | 32    | 242   | AMPL3931806   | 1    |
| sdeB_CP033162   | 200   | 400   | AMPL3931807   | 2    |
| sdeB_CP033162   | 353   | 575   | AMPL3931808   | 1    |
| sdeB_CP033162   | 564   | 735   | AMPL3931809   | 2    |
| sdeB_CP033162   | 628   | 857   | AMPL3931810   | 1    |
| sdeB_CP033162   | 857   | 1068  | AMPL3931811   | 2    |
| sdeB_CP033162   | 1043  | 1258  | AMPL3931812   | 1    |
| sdeB_CP033162   | 1246  | 1399  | AMPL3931813   | 2    |
| sdeB_CP033162   | 1311  | 1535  | AMPL3931814   | 1    |
| sdeB_CP033162   | 1501  | 1726  | AMPL3931815   | 2    |
| sdeB_CP033162   | 1720  | 1946  | AMPL3931816   | 1    |
| Reference   | Start | End   | Accession       | Pool |
|-------------|-------|-------|-----------------|------|
| sdeB_CP033162 | 1899  | 2125  | AMPL3931817     | 2    |
| sdeB_CP033162 | 2115  | 2256  | AMPL3931818     | 1    |
| sdeB_CP033162 | 2245  | 2430  | AMPL3931819     | 2    |
| sdeB_CP033162 | 2414  | 2601  | AMPL3931820     | 1    |
| sdeB_CP033162 | 2581  | 2737  | AMPL3931821     | 2    |
| sdeB_CP033162 | 2704  | 2914  | AMPL3931822     | 1    |
| sdeB_CP033162 | 2913  | 3104  | AMPL3931823     | 2    |
| spcN_AF170704  | 25    | 169   | AMPL3932004     | 1    |
| spcN_AF170704  | 160   | 333   | AMPL3932005     | 2    |
| spcN_AF170704  | 629   | 721   | AMPL3932006     | 1    |
| spcN_AF170704  | 710   | 941   | AMPL3932007     | 2    |
| speA_KY594413  | 64    | 231   | AMPL3931883     | 1    |
| speA_KY594413  | 220   | 435   | AMPL3931884     | 2    |
| speA_KY594413  | 416   | 615   | AMPL3931885     | 1    |
| strA_1_M96392  | 44    | 271   | AMPL3931052     | 1    |
| strA_1_M96392  | 256   | 468   | AMPL3931053     | 2    |
| strA_1_M96392  | 457   | 563   | AMPL3928669     | 1    |
| strA_1_M96392  | 552   | 762   | AMPL3931054     | 2    |
| strB_EF493834  | 33    | 220   | AMPL3931055     | 1    |
| strB_EF493834  | 209   | 334   | AMPL3931056     | 2    |
| strB_EF493834  | 323   | 521   | AMPL3931057     | 1    |
| strB_EF493834  | 506   | 719   | AMPL3931058     | 2    |
| strB_EF493834  | 705   | 852   | AMPL3931059     | 1    |
| str_X92946     | 58    | 212   | AMPL3931525     | 1    |
| str_X92946     | 190   | 394   | AMPL3931526     | 2    |
| str_X92946     | 428   | 577   | AMPL3931528     | 1    |
| Gene       | Accession | Length | GenBank Accession | Pool |
|------------|-----------|--------|------------------|------|
| str_X92946 | 534       | 713    | AMPL3931529      | 2    |
| sul1_EF667294 | 29       | 219    | AMPL3931667      | 1    |
| sul1_EF667294 | 197      | 364    | AMPL3931668      | 2    |
| sul1_EF667294 | 351      | 571    | AMPL3931669      | 1    |
| sul1_EF667294 | 457      | 660    | AMPL3931670      | 2    |
| sul1_EF667294 | 646      | 791    | AMPL3931671      | 1    |
| sul2_DQ464881 | 28       | 223    | AMPL3931672      | 2    |
| sul2_DQ464881 | 204      | 432    | AMPL3931673      | 1    |
| sul2_DQ464881 | 398      | 616    | AMPL3931674      | 2    |
| sul2_DQ464881 | 507      | 727    | AMPL3931675      | 1    |
| sulA_KJ831060 | 29       | 168    | AMPL3932023      | 1    |
| sulA_KJ831060 | 157      | 367    | AMPL3932024      | 2    |
| sulA_KJ831060 | 356      | 576    | AMPL3932025      | 1    |
| sulA_KJ831060 | 565      | 782    | AMPL3932026      | 2    |
| sulA_KJ831060 | 771      | 902    | AMPL3932027      | 1    |
| tet32_1_EU722333 | 59    | 280    | AMPL3930531      | 2    |
| tet32_1_EU722333 | 269    | 482    | AMPL3930532      | 1    |
| tet32_1_EU722333 | 467    | 657    | AMPL3930533      | 2    |
| tet32_1_EU722333 | 646    | 868    | AMPL3930534      | 1    |
| tet32_1_EU722333 | 856    | 1066   | AMPL3930535      | 2    |
| tet32_1_EU722333 | 1052  | 1278   | AMPL3930536      | 1    |
| tet32_1_EU722333 | 1267  | 1478   | AMPL3930537      | 2    |
| tet32_1_EU722333 | 1467  | 1661   | AMPL3930538      | 1    |
| tet32_1_EU722333 | 1650  | 1872   | AMPL3930539      | 2    |
| tet34_1_AB061440 | 44    | 178    | AMPL3930540      | 1    |
| tet34_1_AB061440 | 167    | 395    | AMPL3930541      | 2    |
| Sample ID         | Start | End   | Pool  | Accession   |
|------------------|-------|-------|-------|-------------|
| tet35_1_AF353562 | 25    | 218   | Pool=1 | AMPL3930542 |
| tet35_1_AF353562 | 207   | 431   | Pool=2 | AMPL3930543 |
| tet35_1_AF353562 | 420   | 618   | Pool=1 | AMPL3930544 |
| tet35_1_AF353562 | 607   | 832   | Pool=2 | AMPL3930545 |
| tet35_1_AF353562 | 821   | 1040  | Pool=1 | AMPL3930546 |
| tet36_1_AJ514254 | 45    | 254   | Pool=1 | AMPL3930547 |
| tet36_1_AJ514254 | 243   | 450   | Pool=2 | AMPL3930548 |
| tet36_1_AJ514254 | 424   | 601   | Pool=1 | AMPL3930549 |
| tet36_1_AJ514254 | 590   | 769   | Pool=2 | AMPL3930550 |
| tet36_1_AJ514254 | 758   | 942   | Pool=1 | AMPL3930551 |
| tet36_1_AJ514254 | 931   | 1149  | Pool=2 | AMPL3930552 |
| tet36_1_AJ514254 | 1138  | 1265  | Pool=1 | AMPL3930553 |
| tet36_1_AJ514254 | 1254  | 1454  | Pool=2 | AMPL3930554 |
| tet36_1_AJ514254 | 1443  | 1665  | Pool=1 | AMPL3930555 |
| tet36_1_AJ514254 | 1654  | 1854  | Pool=2 | AMPL3930556 |
| tet37_1_AF540889  | 54    | 273   | Pool=1 | AMPL3930557 |
| tetAP_1_AB054980  | 66    | 173   | Pool=2 | AMPL3927682 |
| tetAP_1_AB054980  | 162   | 352   | Pool=1 | AMPL3930558 |
| tetAP_1_AB054980  | 341   | 541   | Pool=2 | AMPL3930559 |
| tetAP_1_AB054980  | 503   | 690   | Pool=1 | AMPL3930560 |
| tetAP_1_AB054980  | 720   | 806   | Pool=2 | AMPL3927698 |
| tetAP_1_AB054980  | 795   | 988   | Pool=1 | AMPL3930562 |
| tetAP_1_AB054980  | 1017  | 1207  | Pool=2 | AMPL3930564 |
| tetA_2_X00006     | 39    | 249   | Pool=1 | AMPL3930577 |
| tetA_2_X00006     | 169   | 401   | Pool=2 | AMPL3930578 |
| tetA_2_X00006     | 383   | 533   | Pool=1 | AMPL3930579 |
| gene          | start | stop  | sample     | pool |
|--------------|-------|-------|------------|------|
| tetA_2_X00006 | 524   | 660   | AMPL3930580 | 2    |
| tetA_2_X00006 | 660   | 869   | AMPL3930581 | 1    |
| tetA_2_X00006 | 857   | 1084  | AMPL3930582 | 2    |
| tetA_2_X00006 | 1073  | 1182  | AMPL3927738 | 1    |
| tetBP_3_NC_010937 | 53    | 260   | AMPL3930565 | 1    |
| tetBP_3_NC_010937 | 252   | 467   | AMPL3930566 | 2    |
| tetBP_3_NC_010937 | 433   | 630   | AMPL3930567 | 1    |
| tetBP_3_NC_010937 | 580   | 735   | AMPL3930568 | 2    |
| tetBP_3_NC_010937 | 715   | 928   | AMPL3930569 | 1    |
| tetBP_3_NC_010937 | 958   | 1049  | AMPL3930571 | 2    |
| tetBP_3_NC_010937 | 1025  | 1184  | AMPL3930572 | 1    |
| tetBP_3_NC_010937 | 1173  | 1327  | AMPL3930573 | 2    |
| tetBP_3_NC_010937 | 1316  | 1471  | AMPL3930574 | 1    |
| tetBP_3_NC_010937 | 1460  | 1655  | AMPL3930575 | 2    |
| tetBP_3_NC_010937 | 1644  | 1842  | AMPL3930576 | 1    |
| tetBP_3_NC_010937 | 1831  | 1927  | AMPL3927725 | 2    |
| tetB_3_AP000342  | 27    | 246   | AMPL3930583 | 1    |
| tetB_3_AP000342  | 235   | 437   | AMPL3930584 | 2    |
| tetB_3_AP000342  | 426   | 554   | AMPL3930585 | 1    |
| tetB_3_AP000342  | 543   | 754   | AMPL3930586 | 2    |
| tetB_3_AP000342  | 743   | 965   | AMPL3930587 | 1    |
| tetB_3_AP000342  | 954   | 1136  | AMPL3930588 | 2    |
| tetC_2_NC_003123  | 28    | 149   | AMPL3927750 | 1    |
| tetC_2_NC_003123  | 122   | 351   | AMPL3930589 | 2    |
| tetC_2_NC_003123  | 254   | 467   | AMPL3930590 | 1    |
| tetC_2_NC_003123  | 431   | 656   | AMPL3930591 | 2    |
| Gene        | Start | Stop  | Accession       | Pool |
|------------|-------|-------|-----------------|------|
| tetC_2_NC_003123 | 645   | 785   | AMPL3930592     | 1    |
| tetC_2_NC_003123 | 774   | 1001  | AMPL3930593     | 2    |
| tetC_2_NC_003123 | 990   | 1127  | AMPL3930594     | 1    |
| tetD_1_AF467077  | 70    | 300   | AMPL3930597     | 1    |
| tetD_1_AF467077  | 290   | 478   | AMPL3930598     | 2    |
| tetD_1_AF467077  | 530   | 678   | AMPL3930600     | 1    |
| tetD_1_AF467077  | 647   | 855   | AMPL3930601     | 2    |
| tetD_1_AF467077  | 833   | 978   | AMPL3930602     | 1    |
| tetD_1_AF467077  | 965   | 1132  | AMPL3930603     | 2    |
| tetE_3_L06940    | 32    | 241   | AMPL3930604     | 1    |
| tetE_3_L06940    | 230   | 390   | AMPL3930605     | 2    |
| tetE_3_L06940    | 379   | 591   | AMPL3930606     | 1    |
| tetE_3_L06940    | 580   | 798   | AMPL3930607     | 2    |
| tetE_3_L06940    | 787   | 954   | AMPL3930608     | 1    |
| tetE_3_L06940    | 943   | 1148  | AMPL3930609     | 2    |
| tetG_3_S52437    | 32    | 144   | AMPL3930610     | 1    |
| tetG_3_S52437    | 133   | 335   | AMPL3930611     | 2    |
| tetG_3_S52437    | 299   | 520   | AMPL3930612     | 1    |
| tetG_3_S52437    | 475   | 687   | AMPL3930613     | 2    |
| tetG_3_S52437    | 670   | 893   | AMPL3930614     | 1    |
| tetG_3_S52437    | 882   | 997   | AMPL3927797     | 2    |
| tetG_3_S52437    | 986   | 1126  | AMPL3930615     | 1    |
| tetH_1_Y16103    | 49    | 275   | AMPL3930616     | 1    |
| tetH_1_Y16103    | 264   | 484   | AMPL3930617     | 2    |
| tetH_1_Y16103    | 473   | 690   | AMPL3930618     | 1    |
| tetH_1_Y16103    | 679   | 894   | AMPL3930619     | 2    |
| Gene       | Percent | AMPL | Pool  |
|------------|---------|------|-------|
| tetH_1_Y16103 | 883     | 977  | Pool=1|
| tetH_1_Y16103 | 966     | 1133 | Pool=2|
| tetJ_1_ACLE01000065 | 47      | 265  | Pool=1|
| tetJ_1_ACLE01000065 | 254     | 447  | Pool=2|
| tetJ_1_ACLE01000065 | 435     | 620  | Pool=1|
| tetJ_1_ACLE01000065 | 606     | 829  | Pool=2|
| tetJ_1_ACLE01000065 | 818     | 968  | Pool=1|
| tetJ_1_ACLE01000065 | 957     | 1129 | Pool=2|
| tetK_4_U38428   | 56      | 173  | Pool=1|
| tetK_4_U38428   | 162     | 355  | Pool=2|
| tetK_4_U38428   | 344     | 549  | Pool=1|
| tetK_4_U38428   | 531     | 719  | Pool=2|
| tetK_4_U38428   | 774     | 887  | Pool=1|
| tetK_4_U38428   | 876     | 1024 | Pool=2|
| tetK_4_U38428   | 942     | 1151 | Pool=1|
| tetK_4_U38428   | 1149    | 1348 | Pool=2|
| tetL_1_HM235948 | 37      | 179  | Pool=1|
| tetL_1_HM235948 | 168     | 304  | Pool=2|
| tetL_1_HM235948 | 293     | 511  | Pool=1|
| tetL_1_HM235948 | 500     | 718  | Pool=2|
| tetL_1_HM235948 | 704     | 906  | Pool=1|
| tetL_1_HM235948 | 895     | 1116 | Pool=2|
| tetL_1_HM235948 | 1105    | 1313 | Pool=1|
| tetM_1_X92947   | 42      | 125  | Pool=1|
| tetM_1_X92947   | 114     | 315  | Pool=2|
| tetM_1_X92947   | 304     | 432  | Pool=1|
| Gene      | Start | End   | Closest AMPL3930645 | Pool |
|-----------|-------|-------|---------------------|------|
| tetM_1_X92947 | 421   | 616   | AMPL3930645         | Pool=2|
| tetM_1_X92947 | 605   | 824   | AMPL3930646         | Pool=2|
| tetM_1_X92947 | 813   | 1011  | AMPL3930647         | Pool=2|
| tetM_1_X92947 | 1000  | 1072  | AMPL3930648         | Pool=2|
| tetM_1_X92947 | 1061  | 1280  | AMPL3930649         | Pool=2|
| tetM_1_X92947 | 1269  | 1453  | AMPL3930650         | Pool=1|
| tetM_1_X92947 | 1442  | 1659  | AMPL3930651         | Pool=2|
| tetM_1_X92947 | 1648  | 1865  | AMPL3930652         | Pool=1|
| tetO_1_M18896  | 50    | 250   | AMPL3930653         | Pool=1|
| tetO_1_M18896  | 239   | 436   | AMPL3930654         | Pool=2|
| tetO_1_M18896  | 425   | 607   | AMPL3930655         | Pool=1|
| tetO_1_M18896  | 596   | 816   | AMPL3930656         | Pool=2|
| tetO_1_M18896  | 808   | 1020  | AMPL3930657         | Pool=1|
| tetO_1_M18896  | 1009  | 1206  | AMPL3930658         | Pool=2|
| tetO_1_M18896  | 1195  | 1401  | AMPL3930659         | Pool=1|
| tetO_1_M18896  | 1390  | 1595  | AMPL3930660         | Pool=2|
| tetO_1_M18896  | 1584  | 1660  | AMPL3927892         | Pool=1|
| tetO_1_M18896  | 1649  | 1871  | AMPL3930661         | Pool=2|
| tetQ_3_U73497  | 22    | 154   | AMPL3930662         | Pool=1|
| tetQ_3_U73497  | 143   | 360   | AMPL3930663         | Pool=2|
| tetQ_3_U73497  | 349   | 571   | AMPL3930664         | Pool=1|
| tetQ_3_U73497  | 560   | 773   | AMPL3930665         | Pool=2|
| tetQ_3_U73497  | 762   | 985   | AMPL3930666         | Pool=1|
| tetQ_3_U73497  | 974   | 1044  | AMPL3927905         | Pool=2|
| tetQ_3_U73497  | 1227  | 1441  | AMPL3930668         | Pool=1|
| tetQ_3_U73497  | 1430  | 1579  | AMPL3930669         | Pool=2|
tetQ_3_U73497  1568  1771 AMPL3930670  Pool=1
tetQ_3_U73497  1760  1952 AMPL3930671  Pool=2
tetR_KF697108  31   190 AMPL3930672  Pool=1
tetR_KF697108  179   396 AMPL3930673  Pool=2
tetR_KF697108  385   580 AMPL3930674  Pool=1
tetS_3_X92946  56   129 AMPL3930675  Pool=1
tetS_3_X92946  118   308 AMPL3930676  Pool=2
tetS_3_X92946  297   519 AMPL3930677  Pool=1
tetS_3_X92946  508   715 AMPL3930678  Pool=2
tetS_3_X92946  696   900 AMPL3930679  Pool=1
tetS_3_X92946  876  1078 AMPL3930680  Pool=2
tetS_3_X92946 1067  1190 AMPL3930681  Pool=1
tetS_3_X92946 1179  1358 AMPL3930682  Pool=2
tetS_3_X92946 1347  1574 AMPL3930683  Pool=1
tetS_3_X92946 1563  1785 AMPL3930684  Pool=2
tetS_3_X92946 1774  1873 AMPL3927940  Pool=1
tetT_1_L42544  46   123 AMPL3927941  Pool=1
tetT_1_L42544  112   292 AMPL3930685  Pool=2
tetT_1_L42544  281   487 AMPL3930686  Pool=1
tetT_1_L42544  415   586 AMPL3930687  Pool=2
tetT_1_L42544  721   914 AMPL3930689  Pool=1
tetT_1_L42544  903  1116 AMPL3930690  Pool=2
tetT_1_L42544 1105  1322 AMPL3930691  Pool=1
tetT_1_L42544 1311  1480 AMPL3930692  Pool=2
tetT_1_L42544 1469  1685 AMPL3930693  Pool=1
tetT_1_L42544 1674  1889 AMPL3930694  Pool=2
| Gene  | Start | End   | Accession | Pool  |
|-------|-------|-------|-----------|-------|
| tetU_1_U01917 | 57    | 268   | AMPL3930695 | 1     |
| tetV_1_AF030344 | 62    | 279   | AMPL3930696 | 1     |
| tetV_1_AF030344 | 272   | 508   | AMPL3930697 | 2     |
| tetV_1_AF030344 | 491   | 674   | AMPL3930698 | 1     |
| tetV_1_AF030344 | 663   | 830   | AMPL3930699 | 2     |
| tetV_1_AF030344 | 819   | 930   | AMPL3930700 | 1     |
| tetV_1_AF030344 | 911   | 1100  | AMPL3930701 | 2     |
| tetV_1_AF030344 | 1089  | 1223  | AMPL3930702 | 1     |
| tetV_1_AF030344 | 39    | 158   | AMPL3927986 | 2     |
| tetV_1_AF030344 | 147   | 353   | AMPL3930703 | 1     |
| tetV_1_AF030344 | 342   | 555   | AMPL3930704 | 2     |
| tetV_1_AF030344 | 544   | 677   | AMPL3930705 | 1     |
| tetV_1_AF030344 | 669   | 900   | AMPL3930706 | 2     |
| tetV_1_AF030344 | 891   | 1118  | AMPL3930707 | 1     |
| tetV_1_AF030344 | 1111  | 1319  | AMPL3930708 | 2     |
| tetV_1_AF030344 | 1305  | 1504  | AMPL3930709 | 1     |
| tetV_1_AF030344 | 1493  | 1676  | AMPL3930710 | 2     |
| tetV_1_AF030344 | 1665  | 1881  | AMPL3930711 | 1     |
| tetX    | 507   | 678   | AMPL3931973 | 1     |
| tetX    | 667   | 840   | AMPL3931974 | 2     |
| tetX    | 829   | 1044  | AMPL3931975 | 1     |
| tetX3_MK134375 | 507   | 696   | AMPL3931257 | 2     |
| tetX3_MK134375 | 685   | 894   | AMPL3931258 | 1     |
| tetX3_MK134375 | 883   | 1110  | AMPL3931259 | 2     |
| tetX4_MK134376 | 118   | 291   | AMPL3931249 | 1     |
| tetX4_MK134376 | 280   | 500   | AMPL3931250 | 2     |
| Gene       | Start | End   | Accession | Pool |
|------------|-------|-------|-----------|------|
| tetX4_MK134376 | 489   | 680   | AMPL3931251 | 1    |
| tnpA_JX570731  | 77    | 220   | AMPL3931691 | 2    |
| tnpA_JX570731  | 209   | 349   | AMPL3931692 | 1    |
| tnpA_JX570731  | 294   | 489   | AMPL3931693 | 2    |
| tnpA_JX570731  | 451   | 613   | AMPL3931694 | 1    |
| tnpA_JX570731  | 601   | 761   | AMPL3931695 | 2    |
| tnpA_JX570731  | 1053  | 1212  | AMPL3931696 | 1    |
| tnpA_JX570731  | 1220  | 1451  | AMPL3931697 | 2    |
| tolC_FJ768952  | 46    | 138   | AMPL3930136 | 1    |
| tolC_FJ768952  | 127   | 302   | AMPL3931824 | 2    |
| tolC_FJ768952  | 291   | 497   | AMPL3931825 | 1    |
| tolC_FJ768952  | 486   | 706   | AMPL3931826 | 2    |
| tolC_FJ768952  | 692   | 914   | AMPL3931827 | 1    |
| tolC_FJ768952  | 903   | 1084  | AMPL3931828 | 2    |
| tolC_FJ768952  | 1073  | 1261  | AMPL3931829 | 1    |
| tolC_FJ768952  | 1250  | 1449  | AMPL3931830 | 2    |
| ttgA_AF031417  | 22    | 232   | AMPL3931831 | 1    |
| ttgA_AF031417  | 221   | 382   | AMPL3931832 | 2    |
| ttgA_AF031417  | 371   | 585   | AMPL3931833 | 1    |
| ttgA_AF031417  | 583   | 735   | AMPL3931834 | 2    |
| ttgA_AF031417  | 723   | 946   | AMPL3931835 | 1    |
| ttgA_AF031417  | 941   | 1130  | AMPL3931836 | 2    |
| ttgB_AF031417  | 57    | 260   | AMPL3931837 | 1    |
| ttgB_AF031417  | 249   | 416   | AMPL3931838 | 2    |
| ttgB_AF031417  | 405   | 572   | AMPL3931839 | 1    |
| ttgB_AF031417  | 560   | 761   | AMPL3931840 | 2    |
| ID          | Start | End   | Sequence   | Pool |
|-------------|-------|-------|------------|------|
| ttgB_AF031417 | 750   | 969   | AMPL3931841 | 1    |
| ttgB_AF031417 | 950   | 1095  | AMPL3931842 | 2    |
| ttgB_AF031417 | 1084  | 1299  | AMPL3931843 | 1    |
| ttgB_AF031417 | 1274  | 1484  | AMPL3931844 | 2    |
| ttgB_AF031417 | 1467  | 1686  | AMPL3931845 | 1    |
| ttgB_AF031417 | 1660  | 1809  | AMPL3931846 | 2    |
| ttgB_AF031417 | 1798  | 1903  | AMPL3931847 | 1    |
| ttgB_AF031417 | 1892  | 2094  | AMPL3931848 | 2    |
| ttgB_AF031417 | 2084  | 2296  | AMPL3931849 | 1    |
| ttgB_AF031417 | 2285  | 2491  | AMPL3931850 | 2    |
| ttgB_AF031417 | 2478  | 2664  | AMPL3931851 | 1    |
| ttgB_AF031417 | 2653  | 2817  | AMPL3931852 | 2    |
| ttgB_AF031417 | 2805  | 3018  | AMPL3931853 | 1    |
| ttgB_AF031417 | 3006  | 3120  | AMPL3930194 | 2    |
| vanA_1_FJ866609 | 59   | 176   | AMPL3931264 | 1    |
| vanA_1_FJ866609 | 165  | 385   | AMPL3931265 | 2    |
| vanA_1_FJ866609 | 374  | 595   | AMPL3931266 | 1    |
| vanA_1_FJ866609 | 584  | 766   | AMPL3931267 | 2    |
| vanA_1_FJ866609 | 754  | 973   | AMPL3931268 | 1    |
| vanRC_4_EU151753 | 50  | 224   | AMPL3931307 | 1    |
| vanRC_4_EU151753 | 213  | 435   | AMPL3931308 | 2    |
| vanRC_4_EU151753 | 424  | 641   | AMPL3931309 | 1    |
| vanSC_1_AF162694 | 32  | 200   | AMPL3931320 | 1    |
| vanSC_1_AF162694 | 189  | 408   | AMPL3931321 | 2    |
| vanSC_1_AF162694 | 397  | 586   | AMPL3931322 | 1    |
| vanSC_1_AF162694 | 575  | 801   | AMPL3931323 | 2    |
| Sample ID          | Start | End   | Accession | Pool |
|-------------------|-------|-------|-----------|------|
| vanSC_1_AF162694  | 790   | 1016  | AMPL3931324 | 1    |
| vanSC_AY700375    | 33    | 102   | AMPL3929173 | 1    |
| vanSC_AY700375    | 91    | 306   | AMPL3931325 | 2    |
| vanSC_AY700375    | 295   | 413   | AMPL3931326 | 1    |
| vanSC_AY700375    | 402   | 586   | AMPL3931327 | 2    |
| vanSC_AY700375    | 575   | 786   | AMPL3931328 | 1    |
| vanSC_AY700375    | 57    | 273   | AMPL3931339 | 2    |
| vanSC_AY700375    | 148   | 372   | AMPL3931340 | 1    |
| vanSC_AY700375    | 364   | 507   | AMPL3931341 | 2    |
| vanSC_AY700375    | 493   | 593   | AMPL3929205 | 1    |
| vanSC_AY700375    | 582   | 793   | AMPL3931342 | 2    |
| vanSC_AY700375    | 781   | 965   | AMPL3931343 | 1    |
| vanSC_AY700375    | 956   | 1174  | AMPL3931344 | 2    |
| vanSC_AY700375    | 1163  | 1364  | AMPL3931345 | 1    |
| vanSC_AY700375    | 1353  | 1512  | AMPL3931346 | 2    |
| vanSC_AY700375    | 1501  | 1634  | AMPL3931347 | 1    |
| vanSC_AY700375    | 1623  | 1837  | AMPL3931348 | 2    |
| vanSC_AY700375    | 1826  | 2044  | AMPL3931349 | 1    |
| vatA_1_L07778     | 30    | 253   | AMPL3930960 | 1    |
| vatA_1_L07778     | 242   | 460   | AMPL3930961 | 2    |
| vatA_1_L07778     | 449   | 605   | AMPL3930962 | 1    |
| vatB_1_U19459     | 27    | 234   | AMPL3930963 | 2    |
| vatB_1_U19459     | 223   | 379   | AMPL3930964 | 1    |
| vatB_1_U19459     | 368   | 584   | AMPL3930965 | 2    |
| vatC_1_AF015628   | 53    | 252   | AMPL3930966 | 1    |
| vatC_1_AF015628   | 241   | 378   | AMPL3930967 | 2    |
| Sequence     | alignment | Pool | AMPL   |
|--------------|-----------|------|--------|
| vatC_1_AF015628 | 367      | 583   | AMPL3930968 |
| vatE_AF242872 | 24        | 164   | AMPL3932038 |
| vatE_AF242872 | 153       | 376   | AMPL3932039 |
| vatE_AF242872 | 365       | 575   | AMPL3932040 |
| vgaA_1_M90056 | 61        | 233   | AMPL3930969 |
| vgaA_1_M90056 | 222       | 421   | AMPL3930970 |
| vgaA_1_M90056 | 404       | 618   | AMPL3930971 |
| vgaA_1_M90056 | 613       | 807   | AMPL3930972 |
| vgaA_1_M90056 | 790       | 987   | AMPL3930973 |
| vgaA_1_M90056 | 979       | 1200  | AMPL3930974 |
| vgaA_1_M90056 | 1189      | 1291  | AMPL3928513 |
| vgaA_1_M90056 | 1280      | 1499  | AMPL3930975 |
| vgaA_V_AF186237 | 69     | 286   | AMPL3931422 |
| vgaA_V_AF186237 | 275   | 492   | AMPL3931423 |
| vgaA_V_AF186237 | 481   | 666   | AMPL3931424 |
| vgaA_V_AF186237 | 655   | 878   | AMPL3931425 |
| vgaA_V_AF186237 | 867   | 1089  | AMPL3931426 |
| vgaA_V_AF186237 | 1078  | 1298  | AMPL3931427 |
| vgaA_V_AF186237 | 1287  | 1504  | AMPL3931428 |
| vgaB_U82085   | 30        | 144   | AMPL3931429 |
| vgaB_U82085   | 133       | 359   | AMPL3931430 |
| vgaB_U82085   | 353       | 552   | AMPL3931431 |
| vgaB_U82085   | 594       | 742   | AMPL3931432 |
| vgaB_U82085   | 731       | 947   | AMPL3931433 |
| vgaB_U82085   | 936       | 1112  | AMPL3931435 |
| vgaB_U82085   | 1090      | 1195  | AMPL3929397 |
| Gene       | Start | End   | AMPL   | Pool |
|------------|-------|-------|--------|------|
| vgaB_U82085 | 1184  | 1378  | AMPL3931436 | 2    |
| vgaB_U82085 | 1367  | 1557  | AMPL3931437 | 1    |
| vgaC_NG_048559 | 32    | 217   | AMPL3931439 | 1    |
| vgaC_NG_048559 | 206   | 419   | AMPL3931440 | 2    |
| vgaC_NG_048559 | 408   | 631   | AMPL3931441 | 1    |
| vgaC_NG_048559 | 620   | 794   | AMPL3931442 | 2    |
| vgaC_NG_048559 | 783   | 953   | AMPL3931443 | 1    |
| vgaC_NG_048559 | 942   | 1115  | AMPL3931444 | 2    |
| vgaC_NG_048559 | 1104  | 1309  | AMPL3931445 | 1    |
| vgaC_NG_048559 | 1298  | 1501  | AMPL3931446 | 2    |
| vgaE_FR772051 | 92    | 306   | AMPL3931447 | 1    |
| vgaE_FR772051 | 295   | 509   | AMPL3931448 | 2    |
| vgaE_FR772051 | 498   | 694   | AMPL3931449 | 1    |
| vgaE_FR772051 | 683   | 889   | AMPL3931450 | 2    |
| vgaE_FR772051 | 877   | 1094  | AMPL3931451 | 1    |
| vgaE_FR772051 | 1083  | 1304  | AMPL3931452 | 2    |
| vgaE_FR772051 | 1293  | 1504  | AMPL3931453 | 1    |
| vgbB_1_AF015628 | 42    | 200   | AMPL3930976 | 2    |
| vgbB_1_AF015628 | 189   | 402   | AMPL3930977 | 1    |
| vgbB_1_AF015628 | 391   | 613   | AMPL3930978 | 2    |
| vgbB_1_AF015628 | 602   | 818   | AMPL3930979 | 1    |