HIF-1α Activation by Intermittent Hypoxia Requires NADPH Oxidase Stimulation by Xanthine Oxidase

Jayasri Nanduri1*, Damodara Reddy Vaddi1, Shakil A. Khan1, Ning Wang1, Vladislav Makarenko1, Gregg L. Semenza2, Nanduri R. Prabhakar1

1 Institute for Integrative Physiology and Center for Systems Biology of O2 Sensing, Biological Sciences Division, University of Chicago, Chicago, Illinois, United States of America, 2 Vascular Program, Institute for Cell Engineering; Department of Pediatrics, Medicine, Oncology, Radiation Oncology and Biological Chemistry; and McKusick-Nathans Institute of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America

Abstract

Hypoxia-inducible factor 1 (HIF-1) mediates many of the systemic and cellular responses to intermittent hypoxia (IH), which is an experimental model that simulates O2 saturation profiles occurring with recurrent apnea. IH-evoked HIF-1α synthesis and stability are due to increased reactive oxygen species (ROS) generated by NADPH oxidases, especially Nox2. However, the mechanisms by which IH activates Nox2 are not known. We recently reported that IH activates xanthine oxidase (XO) and the resulting increase in ROS elevates intracellular calcium levels. Since Nox2 activation requires increased intracellular calcium levels, we hypothesized XO-mediated calcium signaling contributes to Nox activation by IH. We tested this possibility in rat pheochromocytoma PC12 cells subjected to IH consisting alternating cycles of hypoxia (1.5% O2 for 30 sec) and normoxia (21% O2 for 5 min). Kinetic analysis revealed that IH-induced XO preceded Nox activation. Inhibition of XO activity either by allopurinol or by siRNA prevented IH-induced Nox activation, translocation of the cytosolic subunits p47phox and p67phox to the plasma membrane and their interaction with gp91phox. ROS generated by XO also contribute to IH-evoked Nox activation via calcium-dependent protein kinase C stimulation. More importantly, silencing XO blocked IH-induced upregulation of HIF-1α demonstrating that HIF-1α activation by IH requires Nox2 activation by XO.

Introduction

Sleep disordered breathing with recurrent apnea is characterized by transient (~10–15 sec in adults) repetitive cessations of breathing, resulting in periodic decreases in arterial blood O2 or intermittent hypoxia (IH). Patients with recurrent apnea develop several co-morbidities including hypertension and breathing abnormalities [1, 2]. Hypoxia-inducible factor-1 (HIF-1) is the master transcriptional activator that regulates gene expression during hypoxia [3]. IH

* jnanduri@uchicago.edu
activates HIF-1 mediated transcription in cell cultures and rodents [4–6]. Mice with heterozygous deficiency of HIF-1α exhibit remarkable absence of IH-induced hypertension, and breathing abnormalities [5, 6], suggesting that activation of HIF-1 contributes to the cardio-respiratory abnormalities caused by IH. Analysis of the mechanisms underlying HIF-1 activation showed that IH activates NADPH oxidase (Nox), especially Nox2 [7]. Disruption of Nox2 function, prevents HIF-1 activation by IH in cell cultures and in mice [4, 8], suggesting that Nox2 is critical for HIF-1 activation by IH. However, the mechanism by which IH activates Nox2 has not been examined.

Nox2 is a multi-enzyme protein complex consisting of a membrane-bound gp91phox and cytosolic p67phox and p47phox subunits [9–11]. Nox2 activation requires phosphorylation of cytosolic subunits by Ca2+-activated protein kinase C (PKC) and translocation to the membrane to form a complex with gp91phox [12]. We recently reported that IH activates xanthine oxidase (XO), which is a major cellular source of reactive oxygen species (ROS) [13]. IH-induced XO activation leads to ROS-dependent elevation of intracellular calcium ([Ca2+]i). Given that Nox2 activation critically depends on Ca2+-activated PKC [14], we hypothesized that [Ca2+]i elevation by XO mediates IH-induced Nox2 activation and subsequent stimulation of HIF-1. We examined this possibility in rat pheochromocytoma 12 (PC12) cell cultures exposed to IH.

Materials and Methods

Exposure of cell cultures to IH

PC12 cells (original clone from Dr. Lloyd Greene, Columbia University Medical Center, New York) [15] were cultured in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% horse serum, 5% fetal bovine serum (FBS), penicillin (100 U/ml), and streptomycin (100 μg/ml) under 10% CO2 and 90% air (20% O2) at 37°C [16]. Experiments were performed on cells serum starved for 16 h in antibiotic free medium. In the experiments involving treatment with drugs, cells were pre-incubated for 30 min with either drug or vehicle. Cell cultures were exposed to IH (1.5% O2 for 30 sec followed by 20% O2 for 5 min at 37°C) as described [16]. Ambient O2 levels in the IH chamber were monitored by an O2 analyzer (Alpha Omega Instruments).

Studies with short interfering RNA (siRNA)

PC12 cells (5x10⁵) were plated on culture dishes coated with type IV collagen (BD Biosciences, Bedford, MA) and transfected with siRNA (Santa Cruz) targeted to XDH, gp91phox (Nox2), or a scrambled sequence at a concentration of 100 pmol/mL using DharmaFECT 2 (Dharmacon Research). Transfected cells were cultured in complete medium for 48 h before being exposed to IH.

Measurement of XO activity

Amplex Red Xanthine/Xanthine oxidase assay kit (Molecular Probes) was used to monitor to XO activity as described [13]. Cell lysates were incubated with a reaction mixture containing hypoxanthine, horseradish peroxidase (HRP) and Amplex Red. H2O2 reacts with Amplex Red in the presence of HRP to generate the red fluorescent oxidation product resorufin. Fluorescence was measured by excitation at 530 nm and emission at 590 nm. The concentration of XO in samples was determined from a standard curve and expressed as XO mU/mg protein.
Measurement of NADPH oxidase activity

NADPH oxidase activity in the membrane-enriched protein fractions was measured by superoxide dismutase-inhibitable rate of cytochrome c reduction as described [17]. Briefly, the assay medium contained 100 μg membrane protein, 150 μm cytochrome c and 100 μm NADPH in 25 mM HEPES buffer (pH 7.0). The assay was performed in the presence and absence of superoxide dismutase (200 units/ml) at 37°C for 30 min. Cytochrome c reduction was measured by reading the absorbance at 550 nm. NADPH oxidase activity was calculated based on extinction coefficient [21mmol/(L) cm] per cm and expressed as nmol/min/mg protein.

Immunoprecipitation and Immunoblot assays

Membrane enriched fractions from PC12 cells were isolated using a plasma membrane protein extraction kit (Abcam). Briefly, cells were homogenized in the buffer mix provided and centrifuged at 700 g for 10 min at 4°C. The supernatant was further centrifuged at 10,000 g for 30 minutes at 4°C. The pellet contained the plasma membrane and cellular organelle membrane proteins. The purified membrane enriched proteins were resuspended in lysis buffer and fractionated by polyacrylamide-SDS gel electrophoresis and immunoblotted with gp91phox (sc-7663), p67phox (sc-7660) or p47phox (sc-3678) antibodies (Santa Cruz Biotechnology Inc, Dallas, USA). Antibody binding was detected using HRP-conjugated secondary antibodies followed by enhanced chemiluminescence detection system (Bio-Rad). Immunoprecipitation experiments were performed using protein A/G magnetic beads (Millipore). To detect phosphorylated p47phox and p67phox, total cell lysates were incubated with p47phox and p67phox antibodies and immune complexes were isolated using protein A/G magnetic beads. Phosphorylation of p47phox and p67phox was analyzed by immunoblots with an anti-phosphoserine antibody at a 1:500 dilution.

Measurement of PKC activity

The PKC activity was determined using an ELISA kit (Enzo Life sciences, Farmingdale, NY, USA), according to the manufacturer’s instructions. Briefly, lysates from control or IH exposed cells were added to a microplate that was precoated with a PKC substrate, followed by the addition of ATP to initiate the reaction. PKC activity was determined by adding a phospho-specific substrate antibody conjugated to peroxidase and tetramethylbenzidine as a substrate. Color development, which is proportional to PKC activity was measured at 450-nm absorbance.

Measurement of [Ca2+]i

Intracellular calcium levels were monitored in PC12 cells using Fura-2-AM as described previously [18]. Background fluorescence was subtracted from signals. Image intensity at 340 nm was divided by 380-nm image intensity to obtain the ratiometric image. Ratios were converted to free [Ca2+]i, using calibration curves constructed in vitro by adding Fura-2 (50 μM, free acid) to solutions containing known concentrations of Ca2+ (0–2000 nM).

Statistical analysis

Data were expressed as mean ± S.E.M from 3–5 independent experiments with each performed in triplicate. Statistical analysis was performed by analysis of variance (ANOVA) and p values < 0.05 were considered significant.
Results

XO mediates IH-induced Nox activation

PC12 cells were exposed to increasing cycles of IH with each cycle consisting of 30 sec of hypoxia followed by 5 min of normoxia. Analysis of the time course revealed that XO activity increased progressively with increasing number of IH cycles with a significant activation after 5 cycles, whereas Nox activation required a minimum of 10 cycles of IH (Fig. 1A). Because XO activation by IH precedes that of Nox, we hypothesized that it triggers Nox activation. To test this possibility, PC12 cells were treated with 10 μM allopurinol (ALLO), an inhibitor of XO and then were exposed to IH. ALLO blocked Nox activation in cells exposed to either IH10 or IH60 (Fig. 1B). Conversely, treating control cells with Xanthine/XO, (250 μM/0.01 U/mL), stimulated Nox activity and ALLO blocked this effect (Fig. 1C).

To further establish the role of XO, PC12 cells were transfected with small interfering RNA (siRNA) targeted to xanthine dehydrogenase (XDH), which is the precursor of XO. IH-induced XO and Nox activation were absent in cells transfected with XDH siRNA as compared with cells treated with scrambled siRNA (Fig. 2A-B).

Ca\(^{2+}\) dependent PKC activation by IH requires XO

The mechanism(s) underlying XO-dependent Nox2 activation by IH were determined. Nox2 activation requires Ca\(^{2+}\)-dependent PKC activation [14, 19]. Cells exposed to IH10 exhibited two-fold elevation in [Ca\(^{2+}\)], levels and this effect was blocked by ALLO (Fig. 3A). We next determined whether IH10 elevated calcium levels activate PKC. In response to IH10, PKC activity increased 2.5 fold compared to control cells (P < 0.01), and this effect was prevented by either ALLO, an inhibitor of XO; BAPTA-AM (10μM), a calcium chelator; or bisindolylmaleimide (Bis-1; 10 μM), a pan PKC isoform inhibitor (Fig. 3B).

XO mediates IH-evoked phosphorylation and translocation of p47\(^{phox}\) and p67\(^{phox}\)

Nox2 activation requires PKC-dependent phosphorylation and subsequent translocation of the cytosolic p47\(^{phox}\) and p67\(^{phox}\) subunits [9] to the membrane. As shown in Fig. 3C, IH-exposed

*Fig 1. XO activation is required for increased Nox activity in response to IH. A) Time course of IH on XO and Nox activity. Squares represent significant increase in XO and Nox activity at 5 and 10 cycles of IH respectively. B) Effect of XO inhibitor, Allopurinol (ALLO; 10 μM) on Nox activity in PC12 cells exposed to 10 cycles (IH10) and 60 cycles (IH60) of IH or normoxia (N). C) Effect of Xanthine/XO (250 μM/0.01 U/mL) treatment on Nox activity under normoxic conditions with and without ALLO. Data is presented as mean ± S.E.M from four independent experiments. ** p<0.01; * p< 0.05; ns: not significant.*

doi:10.1371/journal.pone.0119762.g001
cells exhibited increased levels of phosphorylated p47_{phox} and p67_{phox} levels. Treating cells with either BAPTA-AM or Bis-1 prevented IH-induced phosphorylation of cytosolic subunits (Fig. 3C) as well as Nox activation (Fig. 3D).

To demonstrate the translocation of the cytosolic subunits to the plasma membrane, the distribution of p67_{phox} and p47_{phox} proteins was analyzed in cytosolic and plasma membrane fractions of PC12 cells exposed to normoxia or IH along with gp91_{phox}. The cytosol and membrane fractions were confirmed with the relative abundance of α-tubulin and pan-cadherin proteins, respectively (Fig. 4A). In normoxic cells, gp91_{phox} was localized predominantly in the membrane fraction, whereas p67_{phox} and p47_{phox} were abundant in the cytosolic fraction (Fig. 4A). While IH had no effect on gp91_{phox}, it increased p67_{phox} and p47_{phox} levels in the membrane fraction with concomitant reduction in the cytosolic fraction (Fig. 4A-B). Pre-treatment with ALLO prevented the effects of IH on the distribution of p67_{phox} and p47_{phox} proteins to the membrane (Fig. 4A-B).

Nox2 complex formation by IH requires XO

The effect of IH on Nox2 complex formation was determined. To this end, p67_{phox} and p47_{phox} were immunoprecipitated and immunoblot assays were performed with anti-gp91_{phox}, p67_{phox} and p47_{phox} antibodies. As shown in Fig. 5, amount of gp91_{phox} co-immunoprecipitated with p67_{phox} and p47_{phox} increased in IH-exposed cells as compared to cells exposed to normoxia, indicating formation of the active Nox2 complex. Likewise, p67_{phox} was detected in p47_{phox} immunoprecipitates and vice versa demonstrating the association of all three subunits. Treatment with ALLO completely abolished Nox2 complex formation in cells subjected to IH (Fig. 5).

XO contributes to HIF-1α upregulation by IH

Our previous studies showed that Nox2 is required for HIF-1α activation by IH [4]. The results described above demonstrate that XO mediates IH-evoked Nox activation. Therefore, we tested...
the effects of silencing XO activation on HIF-1α activation by IH. Since significant HIF-1α activation was seen with IH$_{60}$ but not IH$_{10}$, HIF-1α protein expression was analyzed in IH$_{60}$ exposed cells transfected with siRNAs targeted to either XDH or gp91phox. IH-evoked HIF-1α activation was completely prevented in cells treated with XDH or gp91phox siRNA (Fig. 6A-B).

Discussion

In the present study, we delineated the signaling mechanisms underlying Nox2 activation by IH. The following findings demonstrate that XO activation is the initial trigger for Nox2 activation by IH: first, IH-induced XO activation precedes Nox2; second, pharmacological blockade
or genetic silencing of XO abolished Nox2 activation by IH; and third, XO activation increased Nox activity under normoxia, mimicking the effects of IH.

Our results provide insight into how XO stimulates Nox activity. In both vascular endothelial and smooth muscle cells, Nox2 activation requires translocation of the cytosolic...
subunits to the membrane via $[\text{Ca}^{2+}]_{i}$-activated PKC [19, 20]. Consistent with this possibility, we found that IH increases Ca^{2+}-dependent PKC activation in PC12 cells and this effect was prevented by blockade of XO activity. More importantly, our results further demonstrated robust PKC-dependent phosphorylation of p47pox and p67pox, and translocation to the plasma membrane in IH-exposed cells. Co-immunoprecipitation experiments provided direct evidence for Nox2 complex formation during IH, which was dependent on XO activation. PKCα, β, δ, and ζ are all known to phosphorylate p47pox (14), whereas only PKCζ is known to target p67pox [21]. Further studies are necessary to delineate the relative contribution of PKC isoforms to the phosphorylation of Nox2 cytosolic subunits during IH. Interestingly, IH$_{10}$ not only increased phosphorylation of p67pox and p47pox but also increased their relative expression. One possible explanation could be that complexing with gp91pox at the membrane or changing the phosphorylation states of the individual components may increase their stability as previously proposed [20]. Pharmacological treatments that inhibited the subunits from translocating to the membrane also prevented their increased expression, supporting the proposed hypothesis. Further investigation is required to confirm this model. An important finding of this study is that IH-induced XO activity also contributes to increased levels of HIF-1α. We previously reported that IH-evoked HIF-2α degradation is mediated by Ca^{2+}-dependent calpain activation via XO-generated ROS [13]. Current results demonstrate that the same Ca^{2+} signaling triggered by XO also mediates IH-evoked HIF-1α activation by stimulating Nox2. XO activation by IH is mediated by proteolytic conversion of XDH to XO which is blocked by inhibiting proteolysis with a trypsin inhibitor [13]. These findings are reminiscent of an early study showing that XDH can be converted to XO within minutes in response to ischemia [22] and suggests that similar rapid proteolytic conversion
of XDH to XO during the initial cycles of the IH paradigm may play a regulatory role in triggering Nox2 activation. Previous studies with ischemia-reperfusion models showed that XO gets activated during the re-oxygenation phase rather than during ischemia. Similar to ischemia-reperfusion, IH is associated with alternating cycles of hypoxia and re-oxygenation. Since such re-oxygenation periods are absent during sustained hypoxia, we believe XO-NOX-HIF-α pathway is selective to IH.

It was proposed that increased generation of ROS mediates the pathological effects of IH [23]. Indeed, ROS levels were elevated in the carotid body [24], adrenal medulla [5, 25, 26] and central nervous system [27, 28] of rats and mice exposed to chronic IH. Remarkably, the effects of IH on catecholamine secretion, blood pressure elevation, long-term facilitation of respiratory motor activity, and sensory long-term facilitation in the carotid body can all be blocked by treating rodents with a ROS scavenger [29–33]. Obstructive sleep apnea patients exhibit elevated ROS levels [34–36] with impaired vasodilation, and antioxidant treatment restores the vascular responses [37]. These studies suggest that ROS play a critical role in mediating the cardiovascular pathology associated with IH. We previously reported that IH increases HIF-1α and decreases HIF-2α protein levels [25]. HIF-1 mediates transcriptional activation of Nox2, a pro-oxidant, whereas HIF-2 is a potent activator of genes encoding anti-oxidants including...
superoxide dismutase-2 [38]. Taken together, results from the current and previous studies, it is likely that XO-dependent ROS mediates imbalance between HIF-1 and HIF-2 via Nox2 and calpain activation, which leads to further long-lasting oxidative stress during IH that results in autonomic morbidities as summarized in Fig. 7.

Fig 7. Schematic representation of feed-forward ROS-induced ROS mechanism by XO during IH. Exposing PC12 cells to IH activates XO, which triggers a series of events that lead to more persistent ROS production by increasing NOX and calpain activity and causes an imbalance in the HIFs that favors transactivation of pro-oxidant enzymes over anti-oxidant ones. Increased ROS levels lead to breathing abnormalities and hypertension.

doi:10.1371/journal.pone.0119762.g007
Author Contributions

Conceived and designed the experiments: JN NRP GLS. Performed the experiments: DRV SAK NW VM. Analyzed the data: JN DRV SAK VM. Wrote the paper: JN NRP GLS.

References

1. Nieto FJ, Young TB, Lind BK, Shahar E, Samet JM, Redline S, et al. Association of sleep-disordered breathing, sleep apnea, and hypertension in a large community-based study. Sleep Heart Health Study. JAMA. 2000; 283(14):1829–1836. PMID: 10770144

2. Young T, Finn L, Peppard PE, Szklaco-Coxe M, Austin D, Nieto FJ, et al. Sleep disordered breathing and mortality: eighteen-year follow-up of the Wisconsin sleep cohort. Sleep. 2008; 31(8):1071–1078. PMID: 18714778

3. Prabhakar NR, Semenza GL. Adaptive and maladaptive cardiorespiratory responses to continuous and intermittent hypoxia mediated by hypoxia-inducible factors 1 and 2. Physiol Rev. 2012; 92(3):967–1003. doi: 10.1152/physrev.00030.2011 PMID: 22811423

4. Yuan G, Nanduri J, Khan SA, Semenza GL, Prabhakar NR. Induction of HIF-1alpha expression by intermittent hypoxia: involvement of NADPH oxidase, Ca2+ signaling, prolyl hydroxylases, and mTOR. J Cell Physiol. 2008; 217(3):674–685. doi: 10.1002/jcp.21537 PMID: 18651560

5. Peng YJ, Yuan G, Ramakrishnan D, Sharma SD, Bosch-Marce M, Kumar GK, et al. Heterozygous HIF-1alpha deficiency impairs carotid body-mediated systemic responses and reactive oxygen species generation in mice exposed to intermittent hypoxia. J Physiol. 2006; 577(Pt 2):705–716. PMID: 16973705

6. Prabhakar NR, Kumar GK, Nanduri J. Intermittent hypoxia augments acute hypoxic sensing via HIF-mediated ROS. Respir Physiol Neurobiol. 2010; 174(3):230–234. doi: 10.1016/j.resp.2010.08.022 PMID: 20904864

7. Yuan G, Khan SA, Luo W, Nanduri J, Semenza GL, Prabhakar NR. Hypoxia-inducible factor 1 mediates increased expression of NADPH oxidase-2 in response to intermittent hypoxia. J Cell Physiol. 2011; 226(11):2925–2933. doi: 10.1002/jcp.22640 PMID: 21435706

8. Peng YJ, Yuan G, Wang N, Deneris E, Pendyala S, et al. NADPH oxidase is required for the sensory plasticity of the carotid body by chronic intermittent hypoxia. J Physiol. 2006; 577(Pt 2):705–716. doi: 10.1523/JNEUROSCI.4768-08.2009 PMID: 18651560

9. Block K, Gorin Y. Aiding and abetting roles of NOX oxidases in cellular transformation. Nat Rev Cancer. 2012; 12(9):627–637. doi: 10.1038/nrc3339 PMID: 22918415

10. Leto TL, Morand S, Hurt D, Ueyama T. Targeting and regulation of reactive oxygen species generation by Nox family NADPH oxidases. Antioxid Redox Signal. 2009; 11(10):2607–2619. doi: 10.1089/ARS.2009.2637 PMID: 19438290

11. Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev. 2007; 87(1):245–313. PMID: 17237347

12. Rotrosen D, Leto TL. Phosphorylation of neutrophil 47-kDa cytosolic oxidase factor. Translocation to membrane is associated with distinct phosphorylation events. J Biol Chem. 1990; 265(32):19910–19915. PMID: 22462684

13. Nanduri J, Vaddi DR, Khan SA, Wang N, Makerenko V, Prabhakar NR. Xanthine oxidase mediates hypoxia-inducible factor-2α degradation by intermittent hypoxia. PLoS One. 2013; 8(10):e75838. doi: 10.1371/journal.pone.0075838 PMID: 24124516

14. Fontayne A, Dang PM, Gougerot-Pocidalo MA, El-Benna J. Phosphorylation of p47phox sites by PKC alpha, beta II, delta, and zeta: effect on binding to p22phox and on NADPH oxidase activation. Biochemistry. 2002; 41(24):7743–7750. PMID: 12056906

15. Yuan G, Adhikary G, McCormick AA, Holcroft JJ, Kumar GK, Prabhakar NR. Role of oxidative stress in intermittent hypoxia-induced immediate early gene activation in rat PC12 cells. J Physiol. 2004; 557(Pt 3):773–783. PMID: 15107478

16. Yuan G, Nanduri J, Bhasker CR, Semenza GL, Prabhakar NR. Ca2+calmodulin kinase-dependent activation of hypoxia inducible factor 1 transcriptional activity in cells subjected to intermittent hypoxia. J Biol Chem. 2005; 280(6):4321–4326. PMID: 15569687

17. Khan SA, Nanduri J, Yuan G, Kinsman B, Kumar GK, Joseph J, et al. NADPH oxidase 2 mediates intermittent hypoxia-induced mitochondrial complex I inhibition: relevance to blood pressure changes in rats. Antioxid Redox Signal. 2011; 14(4):533–542. doi: 10.1089/ars.2010.3213 PMID: 20618070

18. Makerenko VV, Nanduri J, Raghuraman G, Fox AP, Gadalla MM, Kumar GK, et al. Endogenous H2S is required for Hypoxic Sensing by Carotid Body Glomus Cells. Am J Physiol Cell Physiol. 2012; 301(9):C916–923. doi: 10.1152/ajpcell.00100.2012 PMID: 22744066
19. Cosentino-Gomes D, Rocco-Machado N, Meyer-Fernandes JR. Cell Signaling through Protein Kinase C Oxidation and Activation. Int J Mol Sci. 2012; 13(9):10697–10721. doi: 10.3390/ijms130910697 PMID: 23109817

20. Li JM, Shah AM. Intracellular localization and preassembly of the NADPH oxidase complex in cultured endothelial cells. J Biol Chem. 2002; 277(22):19952–19960. PMID: 11893732

21. Zhao X, Xu B, Bhattacharjee A, Oldfield CM, Wientjes FB, Feldman GM, et al. Protein kinase Cdelta regulates pH7phox phosphorylation in human monocytes. J Leukoc Biol. 2005; 77(3):414–420. PMID: 15591124

22. Parks DA, Granger DN, Bulkley GB, Shah AK. Soybean trypsin inhibitor attenuates ischemic injury to the feline small intestine. Gastroenterology. 1985; 89(1):6–12. PMID: 4007413

23. Prabhakar NR, Kumar GK, Nanduri J, Semenza GL. ROS signaling in systemic and cellular responses to chronic intermittent hypoxia. Antioxid Redox Signal. 2007; 9(9):1397–1403. PMID: 17627465

24. Prabhakar NR, Peng YJ, Kumar GK. Altered carotid body function by intermittent hypoxia in neonates and adults: relevance to recurrent apneas. Respir Physiol Neurobiol. 2007; 157(1):148–153. PMID: 17173393

25. Nanduri J, Wang N, Yuan G, Khan SA, Souvannakitti D, Peng YJ, et al. Intermittent hypoxia degrades HIF-2α via calpains resulting in oxidative stress: implications for recurrent apnea-induced morbidities. Proc Natl Acad Sci U S A. 2009; 106(4):1199–1204. doi: 10.1073/pnas.0811018106 PMID: 19147445

26. Kumar GK, Rai V, Sharma SD, Ramakrishnan DP, Peng YJ, Souvannakitti D, et al. Chronic intermittent hypoxia induces hypoxia-evoked catecholamine efflux in adult rat adrenal medulla via oxidative stress. J Physiol. 2006; 575(Pt 1):229–239. PMID: 16777938

27. Raghuraman G, Rai V, Peng YJ, Prabhakar NR, Kumar GK. Pattern-specific sustained activation of tyrosine hydroxylase by intermittent hypoxia: role of reactive oxygen species-dependent downregulation of protein phosphatase 2A and upregulation of protein kinases. Antioxid Redox Signal. 2009; 11(8):1777–1789. doi: 10.1089/ARS.2008.2368 PMID: 19335094

28. Sharma SD, Raghuraman G, Lee MS, Prabhakar NR, Kumar GK. Intermittent hypoxia activates peptidylglycine alpha-amidating monoxygenase in rat brain stem via reactive oxygen species-mediated proteolytic processing. J Appl Physiol. 2009; 106(1):12–9. doi: 10.1152/japphysiol.90702.2008 PMID: 18818385

29. Troncoso Brindeiro CM, da Silva AQ, Allahdadi KJ, Youngblood V, Kanagy NL. Reactive oxygen species contribute to sleep apnea-induced hypertension in rats. Am J Physiol Heart Circ Physiol. 2007; 293(5):H2971–2976. PMID: 17766485

30. Peng YJ, Prabhakar NR. Reactive oxygen species in the plasticity of respiratory behavior elicited by chronic intermittent hypoxia. J Appl Physiol. 2003; 94(6):2342–2349. PMID: 12533494

31. Prabhakar NR, Peng YJ, Yuan G, Kumar GK. Reactive oxygen species facilitate oxygen sensing. Novartis Found Symp. 2006; 272:95–9; discussion 100–5, 31–40. PMID: 16686431

32. Kuri BA, Khan SA, Chan SA, Prabhakar NR, Smith CB. Increased secretory capacity of mouse adrenal chromaffin cells by chronic intermittent hypoxia: involvement of protein kinase C. J Physiol. 2007; 584(1):313–319.

33. Souvannakitti D, Kumar GK, Fox A, Prabhakar NR. Neonatal intermittent hypoxia leads to long-lasting facilitation of acute hypoxia-evoked catecholamine secretion from rat chromaffin cells. J Neurophysiol. 2009; 101(6):2837–2846. doi: 10.1152/jn.00036.2009 PMID: 19339466

34. Duyugoguska L, Lavie P, Lavie L. Increased adhesion molecules expression and production of reactive oxygen species in leukocytes of sleep apnea patients. Am J Respir Crit Care Med. 2002; 165(7):934–939. PMID: 11934717

35. Christou K, Markoulis N, Moulas AN, Pastaka C, Gourgouliakis KJ. Reactive oxygen metabolites (ROMs) as an index of oxidative stress in obstructive sleep apnea patients. Sleep Breath. 2003; 7(3):105–110. PMID: 14569521

36. Suzuki YJ, Jain V, Park AM, Day RM. Oxidative stress and oxidant signaling in obstructive sleep apnea and associated cardiovascular diseases. Free Radic Biol Med. 2006; 40(10):1683–1692. PMID: 16678006

37. Grebe M, Eisele HJ, Weissmann N, Schaefer C, Tillmanns H, Seeger W, et al. Antioxidant vitamin C improves endothelial function in obstructive sleep apnea. Am J Respir Crit Care Med. 2006; 173(8):897–901. PMID: 16439717

38. Yuan G, Peng YJ, Reddy VD, Makarenko VV, Nanduri J, Khan SA, et al. Mutual antagonism between hypoxia-inducible factors 1α and 2α regulates oxygen sensing and cardio-respiratory homeostasis. Proc Natl Acad Sci U S A. 2013; 110(19):E1788–1796. doi: 10.1073/pnas.1305961110 PMID: 23610397