Mastication in health-related quality of life in patients treated for oral cancer: A systematic review

Jorine A. Vermaire¹ | Abbergayle S. K. Partoredjo²,³ | Reilly J. de Groot² | Henk S. Brand³ | Caroline M. Speksnijder²,⁴

Abstract

Introduction: Treatment for oral cancer can impair oral functions such as mastication, which may negatively affect quality of life (QoL). In this review, an overview is provided of masticatory ability in patients treated for oral cancer.

Methods: The PubMed (MEDLINE), Embase and Cochrane databases were systematically searched for scientific literature on masticatory ability in relation to QoL in patients treated for oral cancer. Studies were included when oral cancer treatment was provided, and the University of Washington Quality of Life (UW-QoL) questionnaire was used. Risk of bias (MINORS) was independently assessed by two authors.

Results: The PubMed (MEDLINE), Embase and Cochrane search yielded 575 unique records of which 111 were assessed full text, and 27 studies were included. The UW-QoL mastication scores ranged from 31.9 to 97.4. There was a wide variety in methodology, patient groups, tumour site, treatment and assessment moment, to such a degree that outcome scores are difficult to compare.

Conclusion: The wide variety in studies exploring health-related QoL in relation to mastication in oral cancer patients prevents the identification of possible relations between treatment, masticatory ability and QoL. Our findings underline the limitations in currently available literature and indicate the necessity for more comparable research.

KEYWORDS
health-related quality of life, masticatory ability, MINORS, oral cancer, review, University of Washington quality of life questionnaire

INTRODUCTION

Oral cancer is currently in the top 10 most common cancers worldwide (Rivera, 2015). More insight into oral cancer and advancement in procedures have contributed to a more effective treatment. However, tumour eradication is not the only outcome that should be included in the evaluation of treatment success. Quality of life (QoL) of patients after cancer treatment has become more significant in the past decade (Haraldstad et al., 2019). A patient’s self-reported health-related QoL (HR-QoL) contributes to a better understanding of the range of health challenges patients with cancer may encounter (Valdez & Brennan, 2018). Those issues may continue long after initial curative treatment and can be easily overlooked without adequate follow-up and assessment of HR-QoL.

Primary curative treatment for oral cancer is mostly surgical ablation of the tumour, which can be followed by (chemo)radiotherapy,
depending on affected regional lymph nodes (N-stage), extent of radical resection and tumour specific growth factors (Deng et al., 2011; Kerawala et al., 2016). The sequelae of curative treatment can temporarily or permanently impair oral functions, because treatment may affect vital structures for mastication, such as dentition, musculature and nerves (Kirsch, 2007; Valdez & Brennan, 2018). This is one of the considerations for the multidisciplinary team regarding cancer treatment (Chandu et al., 2006; Taberna et al., 2020).

Masticatory performance depends on maximum bite force, tongue function, maximum mouth opening and dental status (Buurman et al., 2020; de Groot et al., 2019). Ideally, to prevent loss of masticatory function, early identification of a lesion and referral to a head and neck cancer (HNC) specialist for further examination is preferred. Early stage oral cancers with a relative small affected area are less likely to drastically impact oral function after treatment. However, treatment of advanced tumours will include a larger area and more likely involve multiple structures, thus having a higher risk of impacting speech, mastication and swallowing (de Groot et al., 2020; Petrovic et al., 2018). Post-surgery deformities may occur, depending on resection procedure. Aesthetics can be (partially) restored by reconstructing the affected site. Unfortunately, reconstruction has its limitations. For example, soft tissue reconstruction following a glossectomy can replace the missing part of the tongue with a free flap such as the radial forearm flap (Vincent et al., 2019). Although the result can be aesthetically acceptable, this is not necessarily equivalent to adequate oral function. Tongue function will mostly depend on the remaining tongue structures after resection (Ji et al., 2017; Vincent et al., 2019). After segmental mandibulectomy, loss of vital structures is linked to the location and extent of the resection (Petrovic et al., 2018). Nonetheless, fibula reconstruction in combination with implant rehabilitation in larger resections can give adequate oral function, provided that there is no tongue impairment, resulting in less impact on masticatory functioning (Kumar & Srinivasan, 2018). In addition, (chemo)radiotherapy may be indicated during treatment with concomitant oral complications such as trismus, xerostomia, mucositis, dyspessa and increased risk of infectious disease (Carneiro-Neto et al., 2017; Mosel et al., 2011; Wetzel et al., 2014).

Although the importance and value of HR-QoL studies is widely acknowledged, there is little standardisation in these studies (Haraldstad et al., 2019). Use of different HR-QoL questionnaires makes it difficult to compare obtained data. One of the most frequently used questionnaires that specifically focuses on mastication is the University of Washington quality of life (UW-QoL) questionnaire (Valdez & Brennan, 2018). The UW-QoL is a brief and self-administered multi-factorial questionnaire, with questions specific to HNC, and reflects the QoL as indicated by the patient (Hassan & Weymuller, 1993). The mastication question of the UW-QoL has three response options: ‘I can chew as well as ever’, ‘I can eat soft solids but cannot chew some foods’ and ‘I cannot even chew soft solids’ which gives good insight in the masticatory ability of patients with oral cancer. The European Organisation for Research and Treatment of Cancer Head and Neck Cancer Module (EORTC QLQ-HN35) has also a mastication related question; however, there are only the following answer options for chewing problems: ‘not at all', ‘a bit’, ‘quite a bit’ and ‘very much’ which gives unfortunately no insight in the hardness of food which can be masticated (Yuan et al., 2016). To our knowledge, no overview is available regarding UW-QoL outcomes in patients treated for oral cancer with an emphasis on masticatory ability related to the hardness of food. Therefore, this systematic review was conducted, to provide an overview of the available scientific literature on masticatory ability in relation to QoL in patients treated for oral cancer. This will provide insight in the effect of masticatory ability on HR-QoL in oral cancer patients after primary curative treatment.

2 | METHODS

2.1 | Protocol and registration

This systematic review was conducted according to the preferred reporting item for systematic reviews and meta-analyses (PRISMA) guidelines (Liberati et al., 2009).

2.2 | Eligibility criteria

Studies that were eligible were full-text articles focusing on HR-QoL and masticatory ability (the lower the score the worse) in oral cancer patients after primary curative treatment using the validated UW-QoL (Hassan & Weymuller, 1993; Rogers et al., 2002; Valdez & Brennan, 2018). There were no restrictions in year of publication or use of a translated version of the UW-QoL. Exclusion criteria were (1) studies that did not differentiate between different types of HNC, (2) inclusion of the oropharynx, (3) inclusion of the base of the tongue, (4) ameloblastoma or other benign tumours, (5) case reports, reviews, comments or ongoing trials and (6) studies written in a language other than English.

2.3 | Information sources

Studies were retrieved by searching the following electronic databases: PubMed, Embase and Cochrane. No limits were applied in the search. The final search was conducted on 2 November 2021.

2.4 | Search

The search strategies terms were synonyms, variations and associated terms with regard to the following keywords: ‘head and neck neoplasms’, ‘mastication’ and ‘quality of life’. In PubMed, combinations of MeSH Terms and title/abstract were used. Embase and Cochrane had adapted search strategies based on the PubMed search strategy. Grey literature was not included. The full strategies for each database are presented in Appendix S1.
2.5 | Study selection

All records were imported in reference manager Endnote X9 (Clarivate Analytics 2013). After manual removal of duplicates, the eligibility assessment based on title and abstract was independently conducted by two authors (JV and AP). Afterwards, disagreements between reviewers were resolved by discussion. Full-text articles were obtained and independently assessed on inclusion and exclusion criteria. Conflicts between reviewers were resolved in all cases. If needed, a third author (CMS) was available to resolve any disagreements.

2.6 | Data collection process, data items and summary measures

A data extraction sheet was used, which included clinical and demographic characteristics of patients as well as study related details relevant to our review. One author (AP) extracted the data from included studies and the other author (JV) verified the extracted data. Any seemingly incorrect data were discussed. If needed, a third author (CS) was available to resolve any disagreements. The following information was extracted from each included study: (1) study characteristics (study design and number of included patients), (2) patients characteristics (sex, age, tumour site and tumour stage), (3) type of cancer treatment, (4) assessment (evaluation frequency, assessment moment and follow-up) and (5) UW-QoL outcome regarding masticatory ability (mean with standard deviation [SD] or standard error [SE]). When authors clearly defined different subgroups in their study, composed data and specified data were extracted.

2.7 | Risk of bias in individual studies

The risk of bias was evaluated with the validated methodological index for non-randomised studies (MINORS) (Slim et al., 2003). This instrument contains eight items for non-comparative studies and four additional items for comparative studies. The grading of each item is done by appointing one of three grades: not reported (0), reported but inaccurate (1) and reported and adequate (2). The studies were independently assessed by two authors (JV and AP). Criteria for scoring each item were discussed by the two reviewers before as well as during the assessment of the publications. Any disagreements were resolved by discussion. A third author (CS) was consulted in case of doubt. The ideal score for non-comparative studies is 16 and 24 for comparative studies.

2.8 | Synthesis of results and additional analyses

The ability of MINORS to differentiate between poor or excellent quality studies has not been validated (Slim et al., 2003). Thus, rating the methodological quality as ‘poor’ or ‘excellent’ based on MINOR scores cannot be done. However, the scores can be displayed as a fraction of the ideal score and corresponding percentage.

3 | RESULTS

3.1 | Study selection

The search of PubMed (n = 336), Embase (n = 474) and Cochrane (n = 53) provided a total of 863 records. After duplicate deletion, 575 unique records remained. After title and abstract were screened and consensus was reached between authors on all records, 484 studies were discarded. Of the 111 records that were read full text, a total of 27 studies were identified for inclusion in the review. No best evidence synthesis or meta-analysis was performed in this study. An overview of the study selection process is shown in Figure 1.
3.2 Study characteristics

The studies selected for this review were 20 cross-sectional studies and seven longitudinal studies, of which 11 were prospective, 10 were retrospective and six did not report prospective or retrospective data collection. The included studies involved a total of 1849 oral cancer patients of which at least 1308 were male, as one study did not report sex of patients (Vakil et al., 2012). Eleven studies only reported mean or median age with SD and did not mention range (Agarwal et al., 2014; Bekiroglu et al., 2011; Gu et al., 2021; Hoene et al., 2021; Larson et al., 2021; Rogers et al., 2004; Rogers & Lowe, 2020; Seferin et al., 2022; Soares et al., 2018; Wu et al., 2020; Zhang et al., 2020). One study did not mention age of patients (Vakil et al., 2012) and three studies categorised patients in age groups without further details about mean and SD (Rogers & Lowe, 2020; Yue et al., 2018; Zhang et al., 2020). Studies were mainly conducted in China (Fang et al., 2014; Fang et al., 2013; Gu et al., 2021; Li et al., 2013; X. Li, Sun, & Guo, 2016; W. Li, Zhang et al., 2016; Wu et al., 2020; Yan et al., 2017; Yang et al., 2014; Yuan et al., 2016; Yue et al., 2018; Zhang et al., 2020; Zhang et al., 2013), followed by India (Agarwal et al., 2014; Ghai et al., 2021; Sakthivel et al., 2017; Vora et al., 2017), the United Kingdom (Bekiroglu et al., 2011; Devine et al., 2001; Rogers et al., 2004; Rogers & Lowe, 2020), Brazil (Seferin et al., 2022; Soares et al., 2018), the United States (Larson et al., 2021; Ochoa et al., 2021), Germany (Hoene et al., 2021) and Pakistan (Vakil et al., 2012).

Tumour sites included tongue, buccal mucosa, gingiva, floor of mouth (FOM), palate, retromolar region, lip, alveolar process and gum. Tumour stage was reported in all studies, except one (Devine et al., 2004). The follow-up time between treatment and assessment of HR-QoL varied from 1 month (Yue et al., 2013) to 10 years (Rogers & Lowe, 2020). Characteristics and assessment details are presented in Table 1.

3.3 Risk of bias within studies

The methodological quality of all studies was assessed and is presented in Table 2. The MINORS quality scores of non-comparative studies ranged from 44% (Vakil et al., 2012) to 69% (Fang et al., 2013; Vora et al., 2017; Zhang et al., 2020), with an average of 60%. The MINORS quality scores of comparative studies ranged from 54% (Ochoa et al., 2021; Sakthivel et al., 2017) to 75% (Ghai et al., 2021; Gu et al., 2021; Wu et al., 2020; Yan et al., 2017; Zhang et al., 2013; Zhang et al., 2020), with an average of 67%.

3.4 Synthesis of results and additional analyses

Due to the heterogeneity of the found studies, it was unfortunately not possible to synthesise the chewing results of these studies.

3.5 Results of individual studies

Detailed outcome scores of each study are presented in Table 1. HR-QoL masticatory ability scores clustered by time are presented in Figure 2.

Vakil et al. (2012) did not report any specific data to compare with other studies included in the present review. Agarwal et al. (2014) showed that the ability to chew solid food at baseline reduced to only semisolids and liquids post-treatment. Li et al. followed 47 hemiglossectomy patients and reported that only seven patients complained about a negative effect on chewing ability (X. Li et al., 2016). Rogers et al. (2004) stated that chewing scores were maintained over time. An 8-year longitudinal study by Yan et al. (2017) showed the worst QoL scores for mastication 3 months post-treatment. The scores improved at the 1-year assessment and remained the same at the 8-year assessment. Nonetheless, overall, the problems with chewing significantly worsened between time of diagnosis and 8 years after treatment. Rogers and Lowe (2020) showed an improvement from 2 to 10 years post-treatment. Bekiroglu et al. (2011) reported a mean decline in chewing of 25 points after
Table 1: Demographic, tumour and treatment related details of reviewed studies

Author	Country	Subgroups	Number of participants (\% male)	Age in years (mean)	Tumour site (n)
1. Agarwal et al. (2014)	India	-	\(n = 39\) (87\%)	51.62 (SD 21.23)	Tongue: \(n = 39\)
2. Bekiroglu et al. (2011)	United Kingdom	I: no radiotherapy	\(n = 69\) (38\%)	\(n = 61\) (SD 11)	Buccal: \(n = 23\)
		II: radiotherapy	\(n = 60\) (43\%)	\(n = 60\) (SD 12)	Floor of the mouth: \(n = 40\)
					Gingiva: \(n = 24\)
					Tongue: \(n = 29\)
					Other tumour site: \(n = 13\)
3. Devine et al. (2001)	United Kingdom	I: lip-split mandibulectomy	\(n = 20\) (70\%)	55.6 (range 43–72)	Anterior floor of mouth: \(n = 5\)
		II: visor/mandibular lingual release	\(n = 10\) (70\%)	\(n = 59.3\) (range 45–72)	Buccal: \(n = 4\)
			\(n = 10\) (70\%)	\(n = 51.9\) (range 43–65)	Buccal and floor of mouth and gingiva and tongue: \(n = 5\)
					Lip: \(n = 6\)
					Tongue: \(n = 5\)
					\(n = 5\)
4. Fang et al. (2013)	China	-	\(n = 21\) (100\%)	53.1 (range 41–69)	Floor of mouth: \(n = 8\)
					Tongue: \(n = 13\)
5. Fang et al. (2014)	China	I: free flap reconstruction	\(n = 49\) (78\%)	\(n = 73.8\) (range 70–83)	Buccal: \(n = 2\)
		II: no free flap reconstruction	\(n = 20\) (75\%)	\(n = 73.5\) (range 70–89)	\(n = 4\)
			\(n = 29\) (79\%)		Floor of mouth: \(n = 4\)
					Gingiva: \(n = 8\)
					Lip: \(n = 6\)
					Tongue: \(n = 5\)
6. Ghai et al. (2021)	India	I: T1 without radiotherapy	\(n = 54\) (87\%)	44 (SD 11; range 18–70)	Buccal: \(n = 54\)
		II: T2 without radiotherapy	\(n = 26\)		
		III: T1–T2 with radiotherapy	\(n = 15\)		
			\(n = 13\)		
7. Gu et al. (2021)	China	I: neck dissection with submandibular gland preservation	\(n = 36\) (63.9\%)	\(n = 48.6\)	Buccal: \(n = 9\)
		II: conventional neck dissection	\(n = 131\) (76.3\%)	\(n = 53.4\)	\(n = 35\)
					Floor of mouth: \(n = 5\)
					Gingiva: \(n = 22\)
					\(n = 7\)
Author	Country	Subgroups	Number of participants (% male)	Age in years (mean)	Tumour site (n)
-----------------	-----------------------	--	--------------------------------	---------------------	--------------------------------------
8. Hoene et al. (2021)	Germany		$n = 15$ (66%)	60 (SD 13.2; range 46 – 94)	Alveolus: $n = 4$
					Buccal: $n = 2$
					Floor of mouth: $n = 4$
					Lip: $n = 1$
					Palate: $n = 1$
					Tongue: $n = 3$
9. Larson et al. (2021)	United States of America	I: lateral floor of mouth			
II: anterior floor of mouth					
III: alveolar ridge with floor of mouth					
IV: No radiotherapy					
V: radiotherapy	$n = 24$ (66%) I: $n = 17$ (35%) II: $n = 4$ (50%) III: $n = 3$ (100%) IV: $n = 16$ V: $n = 8$	66.8 I: 65.7 II: 65.8 III: 74.3	Lateral floor of mouth I: $n = 17$		
Anterior floor of mouth II: $n = 4$					
Alveolar ridge with floor of mouth III: $n = 3$					
10. Li et al. (2013)	China		$n = 51$ (80%)	55 (median; range 22–75)	Buccal: $n = 3$
11. Li et al. (2016)	China	I: pectoralis major myocutaneous flap			
II: radial forearm free flap	$n = 41$ (83%) I: $n = 17$ (100%) II: $n = 24$ (71%)	53.6 (median; range 22–65)	Floor of mouth I: $n = 5$		
II: $n = 6$					
III: $n = 12$					
IV: $n = 18$					
12. Li et al. (2016)	China	I: radiotherapy pre-treatment			
II: radiotherapy post-treatment					
III: radiotherapy pre- and post-treatment					
IV: no radiotherapy	$n = 47$ (72%) I: $n = 5$ II: $n = 24$ III: $n = 9$ IV: $n = 9$	58.4 (range 44–72)	Tongue: $n = 47$		
13. Ochoa et al. (2021)	United States of America		$n = 39$ (54%)	64.4 (range 32–78)	Tongue: $n = 39$
14. Rogers et al. (2004)	United Kingdom	I: no resection			
II: rim resection					
III: segment resection	$n = 224$ (66%) I: $n = 123$ (63%) II: $n = 44$ (68%) III: $n = 57$ (68%)	61 (SD 13)	Alveolus I: $n = 7$		
II: $n = 22$					
III: $n = 14$					
Buccal I: $n = 27$					
II: $n = 8$					
III: $n = 14$					
Author	Country	Subgroups	Number of participants (% male)	Age in years (mean)	Tumour site (n)
-------------------------------	------------------	------------------------------------	--------------------------------	---------------------	-----------------
15. Rogers and Lowe (2020)	United Kingdom	-	n = 230 (60%)	50% <55	Floor of mouth
				40% 55–64	tongue: n = 33
				28% 65–74	tongue: n = 17
				13% 75+	tongue: n = 1
16. Sakthivel et al. (2017)	India	I: surgery	n = 36 (78%)	43 (median; range 24–66)	tongue: n = 36
		II: adjuvant therapy	n = 10	tip	
			n = 26	Lateral border	
				n = 10	
				n = 8	
				Tip with lateral border	
				n = 2	
				n = 10	
				Lateral border with floor of mouth	
				n = 1	
				n = 6	
17. Seferin et al. (2022)	Brazil	I: sentinel lymph node biopsy	n = 15 (67%)	I: 62.6 (SD 10)	Floor of mouth
		II: cervical neck dissection levels I–III	n = 9 (100%)	II: 62.2 (SD 9.3)	tongue: n = 4
					Hard palate
					Lip
					Tongue
					Retromolar trigone
18. Soares et al. (2018)	Brazil	-	n = 47 (83%)	61.8 (SD 8.4)	Floor of mouth: n = 23
					Gingiva: n = 16
					Other: n = 8
Author	Country	Subgroups	Number of participants (% male)	Age in years (mean)	Tumour site (n)
-----------------	-----------	--	---------------------------------	---------------------	-----------------
19. Vakil et al. (2012)	Pakistan	-	n = 30	-	-
20. Vora et al. (2017)	India	-	n = 65 (85%)	50.5 (range 30–60)	Alveolus: n = 12
					Buccal: n = 42
					Retromolar trigone: n = 4
					Tongue: n = 7
21. Wu et al. (2020)	China	I: classic anterolateral thigh perforator free flap			
II: chimeric anterolateral thigh perforator free flap	I: n = 27 (96%)				
II: n = 21 (95%)	I: 46.9 (SD 9.2)				
II: 47.4 (SD 9.8)	Buccal				
I: n = 27					
II: n = 21					
22. Yan et al. (2017)	China	I: long-term survivors (8 years)			
II: non-survivors (<8 years)	I: n = 30 (57%)				
II: n = 25 (56%)	I: 57.7 (35–81)				
II: 59.5 (35–90)	Gingiva				
I: n = 13					
II: n = 8					
Tongue					
I: n = 7					
II: n = 13					
Other					
I: n = 10					
II: n = 4					
23. Yang et al. (2014)	China	-	n = 34 (74%)	53.4 (median; range 28–65)	Alveolus: n = 13
Buccal: n = 7					
Floor of mouth: n = 9					
Tongue: n = 5					
24. Yuan et al. (2016)	China	I: Radial forearm free flap			
II: Anterolateral thigh perforator free flap	n = 67 (67%)				
I: n = 46 (72%)					
II: n = 21 (76%)	56.2 (median; range 33–74)	Tongue: n = 67			
25. Yue et al. (2018)	China	I: Tongue			
II: Other					
III: No reconstruction					
IV: Reconstruction	n = 139 (65%)				
I: n = 68 (63%)					
II: n = 71 (66%)					
T2					
III: n = 53 (57%)					
IV: n = 39 (67%)					
T3–T4					
III: n = 24 (79%)					
IV: n = 23 (65%)	% under 70: 24%				
I: 28%					
II: 20%					
T2					
III: 85%					
IV: 90%					
T3–T4					
III: 88%					
IV: 83%	Buccal, floor of mouth, retromolar trigone, palate: n = 71				
Tongue: n = 68					
26. Zhang et al. (2013)	China	I: ≤40 years			
II: ≥40 years	I: n = 21 (43%)				
II: n = 42 (43%)	I: 34.0 years (5.2 SD, range 22–40)				
II: 58.9 years (SD 7.4, range 42–74)	Tongue: n = 63				
27. Zhang et al. (2020)	China	-	n = 65 (86)	49 years (median, range 25–70)	Tongue: n = 65

Abbreviations: IQR: inter quartile range, SD: standard deviation, SE: standard error, –: information is not given.
Author	Tumour stage (T of TNM)	Involved lymph nodes (N of TNM)	Oncological treatment	Mean assessment moment	Chewing outcome (mean)
1. Agarwal et al. (2014)	T1–T2: n = 39	NO; n = 39	Hemiglossectomy, selective neck dissection Radiotherapy	Baseline and at 12 months follow-up	Pre-treatment: 76.9 (SD 25.3) Post-treatment: 52.6 (SD 16.0) p < 0.001
2. Bekiroglu et al. (2011)	T3–T4: I: n = 44 II: n = 38	NO: I: n = 53 II: n = 41 N1: I: n = 10 II: n = 9 N2+: I: n = 6 II: n = 10	Selective neck dissection Soft free flap I: n = 39 II: n = 32 Composite free flap I: n = 25 II: n = 23 Adjuvant radiotherapy	I: 16 months follow-up (IQR 12–23) and 28 months follow-up (IQR 23–35) II: 15 months follow-up (IQR 12–20) and 26 months follow-up (IQR 22–33)	±1 year follow-up I: 62 (SE 5) II: n = 44 (SE 6) p = 0.01 ±2 years follow-up I: 59 (SE 5) II: 43 (SE 5) p = 0.03
3. Devine et al. (2001)	-	-	Mandible resection I: n = 3 II: n = 3 Functional preserving neck dissection and radial forearm free flap: n = 20 Adjuvant radiotherapy I: n = 4 II: n = 5	I: 40.6 months follow-up (range 10–60) II: 27.9 months follow-up (range 8–54)	I: 65 (SD 24.2) II: 40 (SD 21.1) p = 0.024
4. Fang et al. (2013)	T2: n = 5 T3: n = 5 T4: n = 11	-	Partial mandible resection: n = 10 Segmental mandible resection: n = 1 Partial glossectomy, limited floor of mouth resection: n = 12 Subtotal glossectomy, total floor of mouth excision: n = 9 Unilateral or bilateral neck dissection Selective neck dissection: n = 18 Modified radical neck dissection: n = 3 Adjuvant radiotherapy: n = 6	64.3 months follow-up (range 20–93)	57.1 (SD 17.9)
5. Fang et al. (2014)	T2 I: n = 1 II: n = 4 T3 I: n = 7 II: n = 12	-	No or marginal mandibulectomy I: n = 18 II: n = 19 Segmental mandibulectomy I: n = 2 II: n = 10	±12 months follow-up	I: 69 (SD 18.3) II: 57 (SD 19.3) p = 0.039
Author	Tumour stage (T of TNM)	Involved lymph nodes (N of TNM)	Oncological treatment	Mean assessment moment	Chewing outcome (mean)
--------	--------------------------	---------------------------------	----------------------	------------------------	------------------------
T4	I: n = 12		Adjuvant radiotherapy		
	II: n = 13				
6. Ghai et al. (2021)	T1: n = 29	N0: n = 54	Resection, supraomohyoid neck dissection; Local flap, free flap/pectoralis major myocutaneous flap, free fibula bone graft	8.5 months follow-up (IQR 4–13.5)	75 (SD 32)
	T2: n = 25		Adjuvant radiotherapy: n = 13		
7. Gu et al. (2021)	T1	N0	Resection with or without submandibular gland preservation, flap reconstruction	12 months follow-up	I: 86.1 (SD 22.7)
	I: n = 14	k: n = 36			II: 71.0 (SD 24.8)
	II: n = 56	k: n = 131			p = 0.001
	T2				
	I: n = 22	k: n = 2			
	II: n = 75	k: n = 12			
8. Hoene et al. (2021)	T1is: n = 1	N0	Resection with reconstruction by: local flap: n = 7 free flap: n = 8	One day preoperatively and 1/2, 1, 3, 6, 9 and 12 month(s) follow-up	Post-operative: 31.9 (SD 26.9)
	T1: n = 6				
	T2: n = 4				
	T4: n = 4				
9. Larson et al. (2021)	T1	N0	Resection floor of mouth, partial glossectomy, marginal mandibulectomy, neck dissection, reconstruction with thigh split-thickness skin graft	41.1 months follow-up (range 6–88)	79.2 (SD 25.2)
	I: n = 12	k: n = 8			I: 85.3
	II: n = 3	k: n = 3			II: 50.0
	III: n = 3	k: n = 1			p = 0.01
	T2	N1			IV: 81 (SD 25)
	I: n = 5	k: n = 2			V: 75 (SD 27)
	II: n = 1	k: n = 2			p = 0.58
	II: n = 1	k: n = 1	Adjuvant radiotherapy (IV)		
10. Li et al. (2013)	T1: n = 3	N0: n = 38	Resection, anterolateral thigh perforator free flap reconstruction	Range 12–84 months follow-up	42.7 (SD 1.1)
	T2: n = 16	N1: n = 8			
	T3: n = 24	N2: n = 4			
	T4: n = 8	N3: n = 1			
11. Li et al. (2016)	T1–T2	N0: n = 38	Resection, reconstruction Adjuvant (chemo)radiotherapy: n = 33	Range 13–108 months follow-up	I: 43.4 (SD 12.4)
	I: n = 8	k: n = 8			II: 42.5 (SD 6.2)
	II: n = 10	k: n = 8			p = 0.817
	T3–T4	k: n = 14			
	I: n = 9	k: n = 14			
	II: n = 14	k: n = 14			
Author	Tumour stage (T of TNM)	Involved lymph nodes (N of TNM)	Oncological treatment	Mean assessment moment	Chewing outcome (mean)
--------	------------------------	---------------------------------	----------------------	-----------------------	-----------------------
12. Li et al. (2016)	T2: n = 13				
T3: n = 23					
T4: n = 11	-	Hemiglossectomy, radial forearm			
free flap reconstruction					
Marginal mandible resection: n = 9					
Selective neck dissection: n = 43					
Modified radical neck dissection:					
n = 4					
Adjuvant radiotherapy					
l: n = 5					
l: n = 24					
l: n = 9	24 months follow-up	Post-treatment: 92.6			
(SD 18)					
l: 90					
l: 94					
l: 94					
l: 89					
p > 0.05					
13. Ochoa et al. (2021)	Tis: n = 11				
T1: n = 24					
T2: n = 4	Unknown: n = 11				
N0: n = 26					
N1: n = 1					
N2: n = 1	Resection				
Neck dissection: n = 14	28.7 months follow-up (range 6–80.4)	97.4 (SD 11.2)			
14. Rogers et al. (2004)	T1–T4: n = 224	-	Mandibular resection		
l: n 44
l: n = 57
Soft tissue free flap
l: n = 74
l: n = 37
Composite free flap reconstruction
l: n = 57
Adjuvant radiotherapy
l: n = 35
l: n = 16
l: n = 29 | 6 months follow-up (range 4.5–9.0)
12 months follow-up (range 9.0–18.0)
>18 months follow-up | 72 (SE 2)
l: 79 (SE 3)
l: 79 (SE 5)
l: 59 (SE 5)
Kruskal–Wallis test:
p = 0.002
Mann–Whitney U test
p = 0.11 |
| 15. Rogers and Lowe (2020) | - | - | Resection: n = 166
Resection with radiotherapy: n = 59
Reconstruction with:
composite free flap: n = 45
Soft free flap: n = 103
Radiotherapy only: n = 5 | 25 months follow-up (median, IQR
20–28)
121 months follow-up (median, IQR
117–124) | 2 years follow-up: 66.2
(SE 2.8)
10 years follow-up: 71.2
(SE 2.8)
p = 0.08 |
| 16. Sakthivel et al. (2017) | T1
l: n = 6
l: n = 4
T2
l: n = 4
l: n = 22 | N0
l: n = 9
l: n = 8
N1
l: n = 1
l: n = 10
N2
l: n = 0
l: n = 8 | Unilateral extended supraomohyoid
neck dissection
l: n = 3
l: n = 7
Bilateral extended supraomohyoid
l: n = 12
Functional preserving neck
dissection
l: n = 1
l: n = 7
Adjuvant radiotherapy: n = 26 | 45 months follow-up (range 14–65)
34 months follow-up (median) | l: 79 (SE 7.3)
l: 43.5 (SE 4.8)
p < 0.001 |
| Author | Tumour stage (T of TNM) | Involved lymph nodes (N of TNM) | Oncological treatment | Mean assessment moment | Chewing outcome (mean) |
|--------|-------------------------|--------------------------------|----------------------|------------------------|------------------------|
| 17. Seferin et al. (2022) | T1 | N0 | Sentinel lymph node biopsy | I: 31.7 months follow-up (SD 7.8) | I: 86.7 (SD 22.9) |
| | | | | | p = 0.041 |
| | I: n = 14 | I: n = 15 | II: n = 4 | II: 38.0 months follow-up (SD 5.9) | II: 56.7 (SD 30.0) |
| | T2 | N1 | | II: n = 9 | |
| | | | | | |
| | II: n = 2 | II: n = 5 | | | |
| | T3 | N2 | | | |
| | | | | | |
| | II: n = 1 | | | | |
| | T4 | N3 | | | |
| | | | | | |
| | II: n = 1 | | | | |
| 18. Soares et al. (2018) | T3: n = 8 | N0: n = 26 | Segmental mandibulectomy | 41.5 months follow-up | - |
| | T4: n = 39 | N1: n = 9 | Myocutaneous flap: (72%) | | |
| | | N2: n = 10 | Free flap: 28% | | |
| | | N3: n = 2 | Adjuvant radiotherapy: n = 42 | | |
| | | | Adjuvant chemoradiotherapy: n = 3 | | |
| 19. Vakil et al. (2012) | - | - | - | - | - |
| 20. Vora et al. (2017) | T1: n = 14 | N0: n = 48 | Mandibular resection | 30 months follow-up (range 3–24) | 46.2 (SD 22.2) |
| | T2: n = 35 | N1: n = 5 | Pectoralis major myocutaneous flap | | |
| | T3: n = 3 | N2: n = 12 | Adjuvant radiotherapy: n = 46 | | |
| | T4: n = 13 | | Adjuvant chemoradiotherapy: n = 19 | | |
| 21. Wu et al. (2020) | T1 | N0 | Resection with modified radical neck dissection, reconstruction with classical anterolateral thigh perforator flap | 6 months follow-up | I: 68.6 (SD 13.6) |
| | I: n = 8 | I: n = 18 | I: n = 27 | II: 70.7 (SD 15.4) | |
| | II: n = 9 | II: n = 13 | | p = 0.624 |
| | T2 | N1 | | | |
| | | I: n = 5 | | | |
| | T3 | N2 | | | |
| | | I: n = 6 | | | |
| | II: n = 10 | II: n = 6 | | | |
| | T4 | N3 | | | |
| | | I: n = 4 | | | |
| | II: n = 1 | II: n = 2 | | | |
| | III: n = 1 | | | | |
| 22. Yan et al. (2017) | T1-T2 | - | Free flap reconstruction | 3, 12 and 96 months follow-up | At diagnosis |
| | I: n = 22 | I: n = 14 | | I: 83.3 (SD 30.3) | |
| | II: n = 12 | II: n = 18 | | II: 78.0 (SD 29.1) | |
| | T3-T4 | | Neck dissection | | At 3 months follow-up |
| | I: n = 8 | I: n = 20 | | I: n = 53.4 (SD 18.6) | |
| | II: n = 13 | II: n = 25 | | 12 years follow-up: | |
| | | | | I: 69.0 (24.7) | |
| | | | | II: 46.6 (29.1) | |
| | | | | 8 years: | |
| | | | | I: 66.7 (24.0) | |
| Author | Tumour stage (T of TNM) | Involved lymph nodes (N of TNM) | Oncological treatment | Mean assessment moment | Chewing outcome (mean) |
|------------------------|-------------------------|---------------------------------|--|----------------------------------|------------------------|
| 23. Yang et al. (2014) | T1–T2: n = 10 | - | Mandible resection, fibula free flap reconstruction | 27.6 months follow-up (range 12–48) | 33.1 (SD 16.1) |
| | T3–T4: n = 23 | | 1–3 years: n = 24 | | |
| | | | >3 years: n = 10 | | |
| 24. Yuan et al. (2016) | T1–T2 | - | Partial glossectomy | 6 and 12 months follow-up | 6 months |
| | I: n = 25 | | I: n = 46 | | |
| | II: n = 13 | | II: n = 5 | | |
| | T3–T4 | | Total glossectomy | | |
| | I: n = 21 | | I: n = 16 | | |
| | II: n = 8 | | Reconstruction | | |
| | | | I: n = 46 | | |
| | | | II: n = 21 | | |
| | | | Adjuvant (chemo)radiotherapy | | |
| | | | I: n = 17 | | |
| | | | II: n = 6 | | |
| 25. Yue et al. (2018) | T2 | - | Maxillectomy or mandiblectomy | >12 months follow-up | 67.3 (SD 16.9) |
| | I: n = 53 | | I: n = 30 | | |
| | II: n = 39 | | II: n = 42 | | |
| | T3–T4 | | III: n = 36 | | |
| | I: n = 15 | | IV: n = 49 | | |
| | II: n = 32 | | Neck dissection | | |
| | | | I: n = 48 | | |
| | | | II: n = 71 | | |
| | | | III: n = 77 | | |
| | | | IV: n = 62 | | |
| | | | Anterolateral thigh flap: n = 9 | | |
| | | | Fibular osteomyocutaneous flap: n = 5 | | |
| | | | Radial forearm free flap: n = 48 | | |
| | | | Adjuvant radiotherapy | | |
| | | | I: n = 12 | | |
| | | | II: n = 12 | | |
| | | | III: n = 6 | | |
| | | | IV: n = 18 | | |
| | | | Neo-adjuvant chemoradiotherapy: n = 47 | | |
1 year for patients treated with a combination of surgery and RT and a mean decline of 7 points for those treated with surgery without RT.

The percentage of patients considering chewing as one of the three most important domains of the UW-QoL differed between 33.3% (second rank) (Fang et al., 2013) and 94.1% (first rank) (Li et al., 2013). Other studies only reported the rank of the chewing domain: first rank (Li et al., 2016; Vora et al., 2017; Yue et al., 2018), second rank (Sakthivel et al., 2017) and third rank (Sakthivel et al., 2017). Soares et al. (2018) used an alternative way to present outcomes. At 41.5 months, patients scored as follows: cannot chew anything (n = 26), chews light food (n = 20) and chews light food and solids (n = 1). There were no significant associations between chewing scores and demographic or clinical variables. Ochoa et al. (2021) reported patients’ scores as follows: I cannot even chew soft solids (n = 0), I can eat soft solids but cannot chew some foods (n = 2) and I can chew as well as ever (n = 37). Chewing was one of the worst scoring domains in this study. Vakil et al. also presented their findings in a slightly different manner. A score from 1 to 3 was used, where 1 indicated no change in chewing function and 3 indicated that patients could not chew soft food. In this study, the most frequently occurring value was 2 with a standard deviation of 0.7 (Vakil et al., 2012).

4 | DISCUSSION

HR-QoL is often impaired in patients with oral cancer (Lalla et al., 2017), and these patients face challenges in masticatory function caused by the tumour itself or oncological treatment (Namaki et al., 2004). Therefore, this review described the HR-QoL mastication scores in patients treated for oral cancer, as measured with the UW-QoL questionnaire. The UW-QoL mastication scores ranged from 31.9 to 97.4 (Hoene et al., 2021; Ochoa et al., 2021). However, there was a wide variety in methodology (e.g., patient groups, treatment and assessment moment), making it impossible to compare outcome scores.

In Figure 1, a deterioration of masticatory ability can be seen ±1 year after treatment. After that, the masticatory ability mostly recovered up to baseline level. Besides tissue recovery after the oral oncological treatment, the dentist, mostly the maxillofacial prosthodontist, has an important role in optimising the dental and/or prosthetic status of these patients. When musculoskeletal deficits of the masticatory system appear, also an orofacial physiotherapist can be consulted to optimise the masticatory system.

In a longitudinal study with oral cancer patients, the same pattern of deterioration and recovery was found by measuring the masticatory function objectively. However, in this study, the recovery increased above the level of masticatory function at baseline (de Groot et al., 2019). The improvement above baseline level was not seen in the included papers of this review. This can probably be explained by a response shift due to a change in the patient’s internal standard related to masticatory function (Vanier et al., 2021). Another explanation could be a ceiling effect of the UW-QoL mastication question,
because the highest possible outcome was ‘I can chew as well as ever’, while the used mastication test measures the quality of mixing food (de Groot et al., 2019).

4.1 Strengths and limitations

This review is strengthened by the fact that the PRISMA guidelines were followed. Another strength of this review is the use of the UW-QoL questionnaire. This questionnaire has been extensively researched, developed and validated and is available in several languages ("UW-QOL v4 Translations.", 2009). Studies utilising the UW-QoL questionnaire have been selected in an attempt to obtain standardised outcome measures. However, our review shows that there is a wide variety in the way the outcomes of the UW-QoL questionnaire are reported, making it difficult to compare data.

Another limitation of this review is the overall quality of the included studies. None of the studies had a prospective calculation of the sample size. In addition, some studies had a small number of patients or did not include all eligible patients in their study. Therefore, we cannot exclude a possible bias introduced by differences in patients that participated in the studies. In addition, there was a large heterogeneity between and within studies, both in demographic, tumour and treatment details and in reported outcomes. Tumour site was too heterogeneous for adequate comparison between studies, despite our restriction to oral cancer. Eight studies were restricted to tongue cancer (Agarwal et al., 2014; Li et al., 2016; Ochoa et al., 2021; Sakthivel et al., 2017; Yuan et al., 2016; Zhang et al., 2018; Zhang et al., 2020). Other studies included several tumour sites within the

Author	1	2	3	4	5	6	7	8	9	10	11	12	Total	%
1. Agarwal et al. (2014)	2	2	2	0	2	0	1	0	N/A	N/A	N/A	N/A	10/16	63
2. Bekiroglu et al. (2011)	1	2	2	0	1	0	1	1	1	1	2	15/24	63	
3. Devine et al. (2001)	2	1	1	2	0	2	1	0	N/A	N/A	N/A	N/A	9/16	56
4. Fang et al. (2013)	2	1	0	2	0	2	1	0	1	2	1	2	14/24	58
5. Fang et al. (2014)	2	2	2	0	2	1	0	N/A	N/A	N/A	N/A	11/16	69	
6. Ghi et al. (2021)	2	2	2	0	2	0	1	2	1	2	1	2	18/24	75
7. Gu et al. (2021)	2	2	0	2	0	2	0	2	2	2	2	2	18/24	75
8. Hoene et al. (2021)	2	1	0	2	0	2	0	N/A	N/A	N/A	N/A	9/16	56	
9. Larson et al. (2021)	2	2	1	2	0	2	1	0	1	2	1	2	16/24	67
10. Li et al. (2013)	2	2	0	2	0	2	1	0	N/A	N/A	N/A	N/A	9/16	56
11. Li et al. (2016)	2	2	2	2	0	2	1	0	1	2	1	2	17/24	71
12. Li et al. (2016)	1	2	2	2	0	2	1	0	N/A	N/A	N/A	N/A	10/16	63
13. Ochoa et al. (2021)	1	2	2	2	0	2	1	0	1	0	0	2	13/24	54
14. Rogers et al. (2004)	2	2	2	2	0	2	1	0	1	2	1	2	17/24	71
15. Rogers and Lowe (2020)	2	2	1	2	0	2	1	0	N/A	N/A	N/A	N/A	10/16	63
16. Sakthivel et al. (2017)	1	1	0	2	0	2	1	0	1	2	1	2	13/24	54
17. Seferin et al. (2022)	2	1	2	2	0	2	1	0	1	2	1	2	16/24	67
18. Soares et al. (2018)	2	1	2	1	0	2	1	0	N/A	N/A	N/A	N/A	9/16	56
19. Vakil et al. (2012)	2	1	1	1	0	2	0	N/A	N/A	N/A	N/A	N/A	7/16	44
20. Vora et al. (2017)	2	2	2	2	0	1	2	0	N/A	N/A	N/A	N/A	11/16	69
21. Wu et al. (2020)	2	2	0	2	0	2	2	0	2	2	2	18/24	75	
22. Yan et al. (2017)	2	2	1	2	0	2	2	0	2	2	2	18/24	75	
23. Yang et al. (2014)	2	1	0	2	0	2	2	0	N/A	N/A	N/A	N/A	9/16	56
24. Yuan et al. (2016)	2	2	2	2	0	2	1	0	1	2	1	2	15/24	63
25. Yue et al. (2018)	2	2	1	2	0	2	0	0	1	2	2	2	16/24	67
26. Zhang et al. (2013)	2	2	2	2	0	2	1	0	1	2	2	2	18/24	75
27. Zhang et al. (2020)	2	2	1	2	0	2	1	0	N/A	N/A	N/A	N/A	10/16	63

Note: Items: 1. A clearly stated aim. 2. Inclusion of consecutive patients. 3. Prospective collection of data. 4. Endpoints appropriate to the aim of the study. 5. Unbiased assessment of the study endpoint. 6. Follow-up period appropriate to the aim of the study. 7. Loss to follow-up less than 5%. 8. Prospective calculation of the study size. Additional criteria in case of comparative study: 9. An adequate control group. 10. Contemporary groups. 11. Baseline equivalence of groups. 12. Adequate statistical analyses. The items are scored 0 (not reported), 1 (reported but inadequate) or 2 (reported and adequate). The global ideal score being 16 for non-comparative studies and 24 for comparative studies. N/A = not applicable.
oral cavity. Due to this heterogeneity, the variation in reported outcomes and the heterogeneous subgroups between studies, it was impossible to perform a best evidence synthesis and/or meta-analysis. Therefore, only a descriptive analysis of the results is provided. In addition, underreporting study details was common across studies, contributing to the inability to compare findings. To quantify this underreporting, the MINORS assessment tool was used (Slim et al., 2003). This is the best suitable tool to assess methodological quality of non-randomised surgical studies. However, the combined scores as measured with the MINORS assessment tool did not identify the underreporting in studies as such, despite the noticeable flaws. One problem of the assessment tool is that the scores for each item range from 0 to 2, were a score of 1 indicates that something is reported but inaccurate. When all items are reported but inaccurate, this will therefore lead to a total score of 50%. One improvement could be to further specify missing items, to get a more detailed image of methodological shortcomings.

Another focus of attention is the survey follow-up time. Twenty of the 27 studies had patients complete the questionnaire only once, making it impossible to evaluate changes in chewing capacity (Devine et al., 2001; Fang et al., 2014; Fang et al., 2013; Ghaï et al., 2021; Gu et al., 2021; Larson et al., 2021; Li et al., 2013; Li et al., 2016; Li et al., 2016; Ochoda et al., 2021; Sakhivel et al., 2017; Seifer et al., 2022; Soares et al., 2018; Vakil et al., 2012; Vora et al., 2017; Wu et al., 2020; Yang et al., 2014; Yue et al., 2018; Zhang et al., 2018; Zhang et al., 2020). Three of these studies had an assessment range of 1 year or less (Gu et al., 2021; Vakil et al., 2012; Wu et al., 2020). Patients were asked to complete the questionnaire at baseline in five studies (Agarwal et al., 2014; Hoene et al., 2021; Li et al., 2016; Rogers et al., 2004; Yan et al., 2017). However, one study failed to report the data at baseline (Li et al., 2016), and another study did not report follow-up data in a table (Rogers et al., 2004). Rogers and Lowe (2020) included 230 patients; however, only 111 of them filled in the questionnaires 2 and 10 years after treatment.

FIGURE 2 UW-QoL chewing scores clustered by time period. QoL chewing scores (mean ± SD) clustered by time (baseline, ±1 year, ±1 year, 2–4 years, 8–10 years). In case SE instead of SD was provided, SD scores were calculated as $SD = SE \times \sqrt{N}$, where N is the number of participants. Subgroups of studies: 2 = Bekiroglu et al. (2011) (I: no RT, II: RT); 3 = Devine et al. (2001) (I: LSM, II: V/MLR); 5 = Fang et al. (2014) (I: FF rec., II: no FF rec.); 6 = Ghaï et al. (2021) (I: T1 without RT, II: T2 without RT, III: T1 and T2 with RT); 7 = Gu et al. (2021) (I: ND with submandibular gland preservation, II: conventional ND); 9 = Larson et al. (2021) (I: lateral FOM, II: anterior FOM, III: alveolar ridge with FOM); 11 = Li et al. 2016 (I: PMMF, II: RFFF); 12 = Li et al. 2016 (I: RT pre-Tx, II: RT post-Tx, III: RT pre- and post-Tx, IV: no RT); 14 = Rogers et al. (2004) (I: nil, II: rim res., III: segment res.); 16 = Sakthivel et al. (2017) (I: surgery, II: adjuvant therapy); 17 = Seifer et al. (2022) (I: sentinel lymph node biopsy, II: cervical ND levels I–III); 21 = Wu et al. (2020) (I: classic ALTFF, II: chimeric ALTFF); 22 = Yan et al. (2017) (I: long-term survivors, II: non-survivors); 24 = Yuan et al. (2016) (I: RFFF, II: ALTFF); 25 = Yue et al. (2018) (I: tongue, II: other, III: no rec., IV: rec.); 26 = Zhang et al. (2013) (I: ≤40 years, II: ≥40 years). ALTFF, anterolateral thigh perforator free flap; FF, free flap; FOM, floor of mouth; LSM, lip-split mandibulotomy; ND, neck dissection; nil, no resection; PMMF, pectoralis major myocutaneous flap; rec, reconstruction; RFFF, radial forearm free flap; res, resection; RT, radiotherapy; SD, standard deviation; SE, standard error; Tx, treatment; V/MLR, visor or mandibular lingual release.
As stated in Section 2, our literature search for this review was limited by publication language and eligibility criteria, and therefore, selection bias might have occurred. Moreover, reporting bias may have occurred as statistically significant studies in general have a higher likelihood of publication.

Based on the methodological flaws in the included studies, it is not possible to give plausible clinical implications related masticatory function in patients with oral cancer.

4.2 | Future research

There is a need for standardised methodology across studies, enabling comparison of data. For review and comparison purposes, criteria should be narrowed down and limited to a specific type of (oral) cancer. Ideally, HR-QoL questionnaires should be an integrated part of cancer treatment, because they are a non-invasive way to obtain information about the effect of treatment on patients’ HR-QoL. In addition, a baseline assessment followed by multiple assessments over time is favoured to avoid misinterpretation of HR-QoL by a single outcome measure and to be able to identify changes in HR-QoL over time. Finally, we recommend a combination of (a) HR-QoL questionnaire(s) with an objective measurement of chewing function in patients treated for oral cancer in future research. This can contribute to a better understanding of differences between objective findings and the patients’ subjective perception.

5 | CONCLUSION

The results of this review provide insight in the available literature regarding HR-QoL in patients treated for oral cancer with an emphasis on masticatory ability by the UW-QoL after primary curative treatment. Currently, there is a lack of comparable UW-QoL studies regarding mastication in oral cancer patients. This prevents identifying possible relations between oral cancer treatment, masticatory ability and QoL. Our findings underline the flaws in the available literature and highlight the necessity for improvement in future HR-QoL research.

CONFLICT OF INTEREST

No conflicts of interest are reported.

DATA AVAILABILITY STATEMENT

Data sharing is not applicable to this article as no new data were created or analysed in this study.

ORCID

Caroline M. Speksnijder <https://orcid.org/0000-0003-0540-3741>

REFERENCES

Agarwal, S. K., Munjal, M., Koul, R., & Agarwal, R. (2014). Prospective evaluation of the quality of life of oral tongue cancer patients before and after the treatment. Annals of Palliative Medicine, 3(4), 238–243. <https://doi.org/10.3978/j.issn.2224-5820.2014.03.02>

Bekiroglu, F., Ghazali, N., Laycock, R., Katre, C., Lowe, D., & Rogers, S. N. (2011). Adjuvant radiotherapy and health-related quality of life of patients at intermediate risk of recurrence following primary surgery for oral squamous cell carcinoma. Oral Oncology, 47(10), 967–973. <https://doi.org/10.1016/j.oraloncology.2011.07.003>

Buurman, D. J. M., Speksnijder, C. M., Engelen, B., & Kessler, P. (2020). Masticatory performance and oral health-related quality of life in edentulous maxillectomy patients: A cross-sectional study to compare implant-supported obturators and conventional obturators. Clinical Oral Implants Research, 31(5), 405–416. <https://doi.org/10.1111/cotr.13577>

Carneiro-Neto, J. N., de Menezes, J. D., Moura, L. B., Massucato, E. M., & de Andrade, C. R. (2017). Protocols for management of oral complications of chemotherapy and/or radiotherapy for oral cancer: Systematic review and meta-analysis current. Medicina Oral, Patología Oral y Cirugía Bucal, 22(1), e15–e23. <https://doi.org/10.4317/moral.21314>

Chandu, A., Smith, A. C., & Rogers, S. N. (2006). Health-related quality of life in oral cancer: A review. Journal of Oral and Maxillofacial Surgery, 64(3), 495–502. <https://doi.org/10.1016/j.joms.2005.11.028>

de Groot, R. J., Merkx, M. A. W., Hamann, M. N. S., Brand, H. S., de Haan, A. F. J., Rosenberg, A., & Speksnijder, C. M. (2020). Tongue function and its influence on masticatory performance in patients treated for oral cancer: A five-year prospective study. Supportive Care in Cancer, 28(3), 1491–1501. <https://doi.org/10.1007/s00520-019-04913-y>

de Groot, R. J., Wetzels, J. W., Merkx, M. A. W., Rosenberg, A., de Haan, A. F. J., van der Bilt, A., Abbkink, J. H., & Speksnijder, C. M. (2019). Masticatory function and related factors after oral oncological treatment: A 5-year prospective study. Head & Neck, 41(1), 216–224. <https://doi.org/10.1002/hed.25445>

Deng, H., Sambrook, P. J., & Logan, R. M. (2011). The treatment of oral cancer: an overview for dental professionals. Australian Dental Journal, 56(3), 244–252. <https://doi.org/10.1111/j.1834-7819.2011.01349.x>

Devine, J. C., Rogers, S. N., McNally, D., Brown, J. S., & Vaughan, E. D. (2001). A comparison of aesthetic, functional and patient subjective outcomes following lip-split mandibulotomy and mandibular lingual releasing access procedures. International Journal of Oral and Maxillofacial Surgery, 30(3), 199–204. <https://doi.org/10.1054/ijom.2000.0038>

Fang, Q. G., Shi, S., Li, M., Zhang, X., Liu, F. Y., & Sun, C. F. (2014). Free flap reconstruction versus non-free flap reconstruction in treating elderly patients with advanced oral cancer. Journal of Oral and Maxillofacial Surgery, 72(7), 1420–1424. <https://doi.org/10.1016/j.joms.2014.01.010>

Fang, Q. G., Shi, S., Zhang, X., Li, Z. N., Liu, F. Y., & Sun, C. F. (2013). Assessment of the quality of life of patients with oral cancer after pectoralis major myocutaneous flap reconstruction with a focus on speech. Journal of Oral and Maxillofacial Surgery, 71(11), 2004.e2001–2004.e2005. <https://doi.org/10.1054/joms.2013.07.011>

Ghai, S., Pillai, A., Sharma, Y., Singh, R., Jain, N., & Sharma, S. (2021). In spite of successful curative surgery for buccal mucosa carcinoma the health-related quality-of-life continues to remain poor. Oral and Maxillofacial Surgery, 26, 53–62. <https://doi.org/10.1016/j.oms.2021.09.009>

Gu, H., Xuan, G., Zhou, Y., Li, M., Chen, M., & Wang, Y. (2021). Functional outcomes after submandibular gland-sparing neck dissection in patients with oral squamous cell carcinoma. International Journal of Oral and Maxillofacial Surgery, 51(8), 981–986. <https://doi.org/10.1016/j.ijom.2021.09.009>

Haraldstad, K., Wahl, A., Andenes, R., Andersen, J. R., Andersen, M. H., Beisland, E., Borge, C. R., Engebretsen, E., Eissmann, M., Halvorsrud, L., & Hanssen, T. A. (2019). A systematic review of quality
of life research in medicine and health sciences. Quality of Life Research, 28(10), 2641–2650. https://doi.org/10.1007/s11136-019-02214-9
Hassan, S. J., & Weymuller, E. A. Jr. (1993). Assessment of quality of life in head and neck cancer patients. Head & Neck, 15(6), 485–496. https://doi.org/10.1002/hed.2880150603
Hoene, G., Gruber, R. M., Leonhard, J. J., Wicheens, B., Schminke, B., Kauffmann, P., Schlepheide, H., & Brockmeyer, P. (2021). Combined quality of life and posttraumatic growth evaluation during follow-up care of patients suffering from oral squamous cell carcinoma. Molecular and Clinical Oncology, 13(3), 189. https://doi.org/10.3892/mco.2021.2351
Ji, Y. B., Cho, Y. H., Song, C. M., Kim, Y. H., Kim, J. T., Ahn, H. C., & Tae, K. (2017). Long-term functional outcomes after resection of tongue cancer: Determining the optimal reconstruction method. European Archives of Oto-Rhino-Laryngology, 274(10), 3751–3756. https://doi.org/10.1007/s00405-017-6468-8
Kerawala, C., Roques, T., Jeannon, J. P., & Bisase, B. (2016). Oral cavity and lip cancer: United Kingdom National Multidisciplinary Guidelines. The Journal of Laryngology and Otology, 130(52), S83–S89. https://doi.org/10.1017/S0022215116000499
Kirsch, C. (2007). Oral cavity cancer. Topics in Magnetic Resonance Imaging, 18(4), 269–280. http://doi.org/10.1097/RMR.0b013e3181572ca
Kumar, V. V., & Srinivasan, M. (2018). Masticatory efficiency of implant-supported removable partial dental prostheses in patients with free fibula flap reconstructed mandibulotomies: A split-mouth, observational study. Clinical Oral Implants Research, 29(8), 855–863. https://doi.org/10.1111/cir.13304
Lalla, R. V., Treister, N., Sollecito, T., Schmidt, B., Patton, L. L., Mohammed, K., Hodges, J. S., & Brennan, M. T. (2017). Oral complications at 6 months after radiation therapy for head and neck cancer. Oral Diseases, 23(8), 1134–1143. https://doi.org/10.1111/odi.12710
Larson, A. R., Han, M., Webb, K. L., Ochoa, E., Stanford-Moore, G., El-Sayed, I. H., George, J. R., Ha, P. K., Heaton, C. M., & Ryan, W. R. (2021). Patient-reported quality of life after resection with primary closure for oral tongue carcinoma. Laryngoscope, 131(2), 312–318. https://doi.org/10.1002/lary.28723
Petrovic, I., Rosen, E. B., Matros, E., Huryn, J. M., & Shah, J. P. (2018). Oral rehabilitation of the cancer patient: A formidable challenge. Journal of Surgical Oncology, 117(8), 1729–1735. https://doi.org/10.1002/jso.25075
Rivera, C. (2015). Essentials of oral cancer. International Journal of Clinical and Experimental Pathology, 8(9), 11884–11894.
Rogers, S. N., Devine, J., Lowe, D., Shokar, P., Brown, J. S., & Vaugman, E. D. (2004). Longitudinal health-related quality of life after mandibular resection for oral cancer: A comparison between rim and segment. Head & Neck, 26(1), 54–62. https://doi.org/10.1002/hed.10351
Rogers, S. N., Gwanne, S., Lowe, D., Humphris, G., Yueh, B., & Weymuller, E. A. Jr. (2002). The addition of mood and anxiety domains to the University of Washington quality of life scale. Head & Neck, 24(6), 521–529. https://doi.org/10.1002/hed.10106
Rogers, S. N., & Lowe, D. (2020). Health-related quality of life after oral cancer treatment: 10-year outcomes. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, 130(2), 144–149. https://doi.org/10.1016/j.ooorm.2020.02.018
Sakthivel, P., Irugu, D. V. K., Singh, C. A., Venma, H., Yogal, R., Jat, B., Chadran, A., Sikk, K., Thakar, A., & Sharma, S. C. (2017). Quality of life outcome measures using University of Washington questionnaire version 4 in early T1/T2 anterior tongue cancers with and without radiotherapy: A cross-sectional study. Indian Journal of Cancer, 54(2), 447–452. https://doi.org/10.4103/jic.ijc.236_17
Seferin, M. R., Pinto, F. R., Leite, A. K. N., Dedivitis, R. A., Kulcsar, M. A. V., Cernea, C. R., & Matos, L. L. (2022). The impact of sentinel lymph node biopsy on the quality of life in patients with oral cavity squamous cell carcinoma. Brazilian Journal of Otorhinolaryngology, 88(3), 434–438. https://doi.org/10.1016/j.bjorl.2020.11.015
Slim, K., Nini, E., Foretiero, D., Kwiatkowski, F., Panis, Y., & Chipponi, J. (2003). Methodological index for non-randomized studies (minors): Development and validation of a new instrument. ANZ Journal of Surgery, 73(9), 712–716. https://doi.org/10.1111/j.1445-2197.2003.02748.x
Soares, J. R. N., Dias, F. L., Lima, R., Toscano, U. B., Pontes, A. C. P., Bozinelly, R. D., Souza, F. G. R., Araújo Filho, V. A., Matos, L. L., & Cernea, C. R. (2018). Assessment of quality of life in patients with advanced oral cancer who underwent mandibulotomy with or without bone reconstruction. Revista da Associação Médica Brasileira (1922), 64(8), 710–716. https://doi.org/10.1590/1806-9282.64.08.710
Taberna, M., Gil Moncayo, F., Jane-Salas, E., Antonio, M., Arribas, L., Vilajosana, E., Peralves Torres, E., & Mesia, R. (2020). The multidisciplinary team (MDT) approach and quality of care. Frontiers in Oncology, 10, 85. https://doi.org/10.3389/fonc.2020.00085
UW-QOL v4 Translations. (2009). Retrieved from http://www.hancsupport.com/professionals/quality-life/qol-questionnaires/uw-qol/uw-qol-v4-translations
Vakil, M., Ali, A., & Shakir, M. M. (2012). Life quality assessment of oral cavity patients with oral tongue cancer: Comparison of quality of life among patients with and without bone resection. Surgical Oncology, 21, 2650. https://doi.org/10.1016/j.suronc.2011.07.001
Valdez, J. A., & Brennan, M. T. (2018). Impact of oral cancer on quality of life. Oral Diseases, 24(6), 143–154. https://doi.org/10.1111/odi.12710
Valdez, J. A., & Brennan, M. T. (2018). Impact of oral cancer on quality of life. Dental Clinics of North America, 62(1), 143–154. https://doi.org/10.1016/j.dcl.2017.09.001
Vanier, A., Oort, F. J., Mcclimans, L., Ow, N., Gulek, B. G., Böhneke, J. R., Spranger, M., Sébille, V., Mayo, N., & the Response Shift—in Working Group. (2021). Response shift in patient-reported outcomes: definition, theory, and a revised model. Quality of Life Research, 30(12), 3309–3322. https://doi.org/10.1007/s11136-021-02846-w
Vincent, A., Kohlert, S., Lee, T. S., Inman, J., & Ducic, Y. (2019). Free-flap reconstruction of the tongue. *Seminars in Plastic Surgery, 33*(1), 38–45. https://doi.org/10.1055/s-0039-1677789

Vora, D., Shah, J., & Maharaja, B. (2017). Quality of life assessment of oral cancer patients after mandibular resections using the University of Washington Quality of Life (Version 4) questionnaire: Reconstruction with pectoralis major myocutaneous flap. *Clinical Cancer Investigation Journal, 6*(2), 123–127. https://doi.org/10.4103/2278-0513.213013

Wetzels, J. W., Merkx, M. A., de Haan, A. F., Koole, R., & Speksnijder, C. M. (2014). Maximum mouth opening and trismus in 143 patients treated for oral cancer: A 1-year prospective study. *Head & Neck, 36*(12), 1754–1762. https://doi.org/10.1002/hed.23534

Wu, X., Yang, R., Yuan, Y., Xiong, Y., Su, T., Jiang, C., Jian, X., & Guo, F. (2020). Application of a chimeric ALT perforator flap with vastus lateralis muscle mass in the reconstruction of the defects after radical resection of a buccal carcinoma: A retrospective clinical study. *Journal of Surgical Oncology, 122*(4), 632–638. https://doi.org/10.1002/jso.25926

Yan, Y. B., Meng, L., Liu, Z. Q., Xu, J. B., Liu, H., Shen, J., Zhang, X. W., Peng, X., & Mao, C. (2017). Quality of life in long-term oral cancer survivors: an 8-year prospective study in China. *Oral Medicine, Oral Pathology, Oral Radiology, 123*(1), 67–75. https://doi.org/10.1016/j.oompo.2016.09.006

Yang, W., Zhao, S., Liu, F., & Sun, M. (2014). Health-related quality of life after mandibular resection for oral cancer: reconstruction with free fibula flap. *Medicina Oral, Patología Oral y Cirugía Bucal, 19*(4), e414–e418. https://doi.org/10.4317/medoral.19399

Yuan, Y., Zhang, P., He, W., & Li, W. (2016). Comparison of oral function: Free anterolateral thigh perforator flaps versus vascularized free forearm flap for reconstruction in patients undergoing glossectomy. *Journal of Oral and Maxillofacial Surgery, 74*(7), 1500.e1501–1500.e1506. https://doi.org/10.1016/j.joms.2016.03.039

Yue, J., Zhuo, S., Zhang, H., Liu, X., & Zhang, W. (2018). Long-term quality of life measured by the University of Washington QoL questionnaire (version 4) in patients with oral cancer treated with or without reconstruction with a microvascular free flap. *British Journal of Oral and Maxillofacial Surgery, 56*(6), 475–481. https://doi.org/10.1016/j.bjoms.2017.12.017

Zhang, X., Fang, Q. G., Li, Z. N., Li, W. L., Liu, F. Y., & Sun, C. F. (2013). Quality of life in patients younger than 40 years treated for anterior tongue squamous cell carcinoma. *The Journal of Craniofacial Surgery, 24*(6), e558–e561. https://doi.org/10.1097/SCS.0b013e31829ac8fb

Zhang, P. P., Meng, L., Shen, J., Liu, H., Zhang, J., Xiang, X., & Yan, Y. B. (2018). Free radial forearm flap and anterolateral thigh flap for reconstruction of hemiglossectomy defects: A comparison of quality of life. *The Journal of Craniofacial Surgery, 46*(12), 2157–2163. https://doi.org/10.1016/j.jcms.2018.10.006

Zhang, S., Wu, S., Liu, L., Zhu, D., Zhu, Q., & Li, W. (2020). Assessment of quality of life of free anterolateral thigh flap for reconstruction of tissue defects of total or near-total glossectomy. *Journal of Oncology, 2020, 2920418*. https://doi.org/10.1155/2020/2920418

SUPPORTING INFORMATION

Additional supporting information can be found online in the Supporting Information section at the end of this article.

How to cite this article: Vermaire, J. A., Partoredjo, A. S. K., de Groot, R. J., Brand, H. S., & Speksnijder, C. M. (2022). Mastication in health-related quality of life in patients treated for oral cancer: A systematic review. *European Journal of Cancer Care, 31*(6), e13744. https://doi.org/10.1111/ecc.13744