Tratamento das Dislipidemias com Estatinas e Exercícios Físicos: Evidências Recentes das Respostas Musculares

Treatment of Dyslipidemia with Statins and Physical Exercises: Recent Findings of Skeletal Muscle Responses

Mariana Rotta Bonfim1, Acary Souza Bulle Oliveira2, Sandra Lia do Amaral3, Henrique Luiz Monteiro1

Programa de Pós-Graduação em Ciências da Motricidade, Instituto de Biociências, Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP)1, Rio Claro, SP; Setor de Doenças Neuromusculares, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP)2, São Paulo, SP; Departamento de Educação Física, Faculdade de Ciências, UNESP3, Bauru, SP – Brasil

Resumo

A associação do tratamento medicamentoso por estatinas com a prática de exercícios físicos pode reduzir substancialmente o risco de mortalidade cardiovascular de indivíduos dislipídicos, porém sua realização vem sendo associada à exacerbação de quadros miopáticos. O presente trabalho teve como objetivo apresentar os resultados mais recentes da literatura específica sobre os efeitos da associação de estatinas ao exercício físico na musculatura esquelética. Para tanto, realizou-se levantamento da literatura nas bases de dados PubMed e SciELO, utilizando a combinação dos unitermos: “estatina/estatinas” AND “exercício” AND “músculo” (“statin” AND “exercise” AND “muscle”), sendo selecionados apenas artigos originais publicados entre janeiro de 1990 e novembro de 2013. Foram analisados 16 artigos que avaliaram o efeito da associação das estatinas com exercício agudo ou crônico na musculatura esquelética. Os resultados dos estudos apontaram que atletas podem experimentar efeitos deletérios na musculatura esquelética quando do uso de estatinas, visto que os quadros de exacerbação da lesão muscular pelo exercício foram mais frequentes com treinamento intenso ou exercícios agudos excêntricos e extenuantes. O treinamento físico moderado, por sua vez, quando associado às estatinas, não aumenta os relatos de dor nem os níveis de creatina quinase, além de acarretar ganhos nas funções musculares e metabólicas advindas do treinamento. Sugere-se, portanto, que pacientes dislipídicos em tratamento com estatinas sejam expostos ao treinamento físico aeróbio combinado a exercícios resistentes, de intensidade moderada, em três sessões semanais, sendo que a oferta do treinamento físico previamente à administração do tratamento medicamentoso, quando possível, faz-se recomendável.

Palavras-chave
Dislipidemias / terapia; Inibidores de Hidroximetilglutaril-CoA Redutases; Exercício; Músculo Esquelético.

Correspondência: Mariana Rotta Bonfim
Avenida Engenheiro Luiz Edmundo Carrijo Coube, 14-01, Vargem Limpa. CEP 17033-360, Bauru, SP – Brasil.
E-mail: mrb.unesp@yahoo.com.br
Artigo recebido em 30/4/2014; revisado em 10/10/2014; aceito em 13/10/2014.

DOI: 10.5935/abc.20150005

Introdução

O excesso de lipídios séricos é reconhecido como um dos mais significantes fatores de risco para doenças cardiovasculares. Isoladamente, as alterações lipídicas são responsáveis por 56% das doenças cardíacas e 18% dos casos de infarto, sendo ainda associadas a um terço dos casos de mortalidade no mundo5. Devido à magnitude de seus efeitos, grandes esforços têm sido realizados pela comunidade médica para prevenir e controlar esse quadro metabólico, sendo que as estratégias terapêuticas recomendadas pela Sociedade Brasileira de Cardiologia (SBC) e adotadas pelos especialistas da área englobam o estímulo à adoção de uma alimentação saudável, o aumento da prática de exercícios físicos e a prescrição de medicamentos6-8.

Especificamente sobre a terapêutica medicamentosa, os inibidores da enzima 3-Hidroxi-3-Metilglutaril Coenzima A redutase (HMG-CoA redutase), também conhecidos como estatinas, são a classe de medicamentos mais efetiva para o tratamento das alterações lipídicas6-8. Evidências recentes indicam que a associação do tratamento medicamentoso com a prática de exercícios físicos pode reduzir substancialmente o risco de mortalidade cardiovascular de indivíduos dislipídicos quando comparados a ambos os tratamentos separadamente, sugerindo que o tratamento com estatinas, associado com nível de aptidão física de moderado a alto, oferece proteção adicional contra a morte cardiovascular prematura6.

Todavia, o uso das estatinas está associado à ocorrência de efeitos musculares indesejáveis, como dores, cãibras e/ou rigidez muscular7-8, além de redução da força muscular em idosos6. A prática de exercícios físicos, por sua vez, está relacionada à exacerbação desses desconfortos, estando diretamente associada à intensidade dos esforços realizados7-8. Claramente, essa realidade se apresenta como um paradoxo, uma vez que não é desejável que a inatividade física seja um pré-requisito para o tratamento com estatinas sem complicações. Faz-se, desse modo, necessário um maior aprofundamento sobre as evidências dessa relação, bem como o esclarecimento acerca dos mecanismos pelos quais esses efeitos são mediados. Face ao exposto, o objetivo do presente trabalho foi apresentar resultados recentes da literatura técnica específica sobre os efeitos da associação de estatinas ao exercício físico na musculatura esquelética.

Métodos

O levantamento dos trabalhos foi realizado nas bases de dados PubMed e Scientific Electronic Library Online (SciELO), utilizando a combinação dos unitermos “estatina/estatinas” AND “exercício” AND “músculo”.
AND “exercício” AND “músculo” (“statin” AND “exercise” AND “muscle”). Foram selecionados, para esta atualização, apenas artigos originais, em língua inglesa ou portuguesa, publicados entre janeiro de 1990 e novembro de 2019, que visavam avaliar o efeito da associação das estatinas com exercício agudo ou crônico na musculatura esquelética. Trabalhos de revisão, editoriais, correspondências e consensos não foram incluídos. Foram encontrados 109 artigos na busca pelo PubMed, dos quais 15 artigos originais contemplaram os critérios estabelecidos; a busca na SciELO, por sua vez, resultou em um artigo original, totalizando 16 artigos analisados.

Foram extraídos dos artigos os dados referentes à amostra (tamanho amostral, sexo, idade e grupos de estudo), às especificidades da terapêutica medicamentosa (tipo e dose da estatina), ao protocolo de exercício físico (teto e intensidade do exercício, e tempo de intervenção), além dos resultados encontrados e das conclusões dos estudos.

Resultados e Discussão

Os resultados do presente trabalho são descritos no corpo do texto e sistematizados no quadro 1. Uma vez que o entendimento da ação das estatinas na musculatura esquelética é fundamental para a compreensão dos efeitos de sua associação ao exercício, considerou-se relevante contextualizar o leitor sobre tais aspectos e, portanto, os resultados são apresentados em dois tópicos.

Estatinas e a musculatura esquelética

As estatinas agem inibindo a atividade da enzima HMG-CoA redutase, não permitindo formação de mevalonato (Figura 1), o que acarreta a redução na síntese hepática do colesterol e, como consequência, aumento da síntese dos receptores de Lipoproteínas de Baixa Densidade (LDL, sigla do inglês Low Density Lipoprotein) nos hepatócitos, aumentando, assim, sua captação da circulação para repor o colesterol intracelular. Apesar de bem tolerada pela maioria dos pacientes, a estatina está relacionada à ocorrência de efeitos tóxicos musculares, os quais podem ser leves ou graves, variando desde a mialgia à rabdomiólise, e atingir 5 a 10% dos pacientes.

Segundo Parker e Thompson, a identificação da real incidência das alterações musculares pelo uso de estatinas pode ser considerada praticamente impossível, uma vez que tais problemas geralmente não são avaliados em ensaios clínicos financiados por indústrias farmacêuticas. Eles ressaltam, porém, que relatos clínicos têm confirmado que tais problemas geralmente não são avaliados em regiões médicas e, portanto, os resultados são apresentados em dois tópicos.

Ensaio clínico randomizado para uso de atorvastatina (80 mg/dia) ou placebo por 6 meses em design duplo-cego verificou maior incidência de mialgia entre os indivíduos tratados, sendo que apenas os sintomáticos apresentaram redução nos valores de força/resistência musculares, não sendo observadas relações entre os aumentos de Creatina Quinase (CK) e a função muscular, indicando que os níveis desse marcador de lesão não são preditivos de sintomas musculares associados às estatinas. Essas evidências indicam que as estatinas podem causar danos musculares aos seus usuários, porém a inconsistência sobre a forma de identificação de tais alterações limita a definição de sua incidência.

As teorias mais disseminadas quanto aos mecanismos de lesão muscular por estatinas estão relacionadas à inibição da formação de mevalonato pelo medicamento que, por sua vez, limita a formação de vários compostos intermediários da biossíntese do colesterol, como a ubiquinona (coenzima Q10), um dos intermediários da cadeia de transporte de elétrons mitocondrial. Apesar de haver evidências quanto à disfunção mitocondrial, devido à deficiência de coenzima Q10, esse mecanismo de lesão muscular por estatinas é bastante controverso na literatura, visto que a suplementação com ubiquinona não tem demonstrado melhorar a função muscular, sugerindo possíveis efeitos diretos do medicamento na musculatura.

Estudo do músculo Extensor Longo dos Dedos (EDL) de ratos (n = 32) indicou que o tratamento medicamentoso com hipolipemiantes altera a expressão de proteínas envolvidas na defesa celular contra o estresse oxidativo, sendo ainda observada redução significante da expressão de enzimas lipoxigenas e glicolíticas, demonstrando também uma tendência da terapêutica em modificar proteínas associadas aos sistemas de fornecimento energético. De maneira semelhante, Bouitbir e cols. verificaram que baixas doses de atorvastatina podem aumentar a produção e a concentração de Espécies Reativas de Oxicarbono (EROs), além de reduzir a respiração mitocondrial máxima, o conteúdo de glicogênio muscular e o conteúdo de DNA mitocondrial da musculatura esquelética de ratos, indicando que a estatina pode induzir ao estresse oxidativo na musculatura esquelética e, consequentemente, provocar disfunção mitocondrial por redução de sua biogênese.

Resultados semelhantes vêm sendo encontrados em pesquisas com humanos. No estudo de Stringer e cols., verificou-se que a musculatura esquelética de pacientes sintomáticos apresentou menor conteúdo de DNA mitocondrial que a de assintomáticos, sugerindo que as estatinas podem induzir à depleção do DNA mitocondrial. Ademais, Larsen e cols. verificaram que indivíduos tratados com simvastatina apresentaram reduzido conteúdo de CoQ10, de proteínas antioxidantes, de compostos oxidativos e glicolíticos, demonstrando também uma tendência da terapêutica em modificar proteínas associadas aos sistemas de fornecimento energético.

Todavia, as alterações mitocondriais parecem representar a fase inicial da cascata de mecanismos deletérios induzidos pelas estatinas. Segundo Sirvent e cols., as alterações na cadeia respiratória mitocondrial resultaram em uma despolariização da membrana interna da mitocôndria, acarretando a extrusão de cálcio e a ativação da quinase, de maneira semelhante, Bouitbir e cols.
sarcoplasmáticas, bem como sobrecarregar o retículo sarcoplasmático, resultando nas denominadas “ondas de cálcio” e na consequente miototoxicidade induzida pela estatina. Apesar de os efeitos isolados das estatinas na homeostase de cálcio terem sido relatados na musculatura de ratos e de indivíduos tanto sintomáticos como assintomáticos, aparentemente desregulação é, de fato, consequência das lesões mitocondriais.

Em estudo recente, Sirvent e cols. observaram que a musculatura esquelética de indivíduos em tratamento com estatinas, sintomáticos ou não, apresentou alterações no complexo I da cadeia de transporte de elétrons, as quais modificaram a função mitocondrial e desregularam a homeostase de cálcio, confirmando os resultados previamente encontrados por eles nos experimentos in vitro. Resultados semelhantes foram encontrados no ensaio clínico randomizado duplo-cego desenvolvido por Caltier e cols., os quais verificaram que a toxicidade muscular induzida pela atorvastatina estava associada a um mecanismo fisiopatológico, cujas alterações na respiração mitocondrial decorrentes do medicamento resultaram em homeostase irregular de cálcio.

Analisadas em conjunto, essas evidências explicam, em grande parte, a miototoxicidade induzida pelas estatinas: as alterações mitocondriais e da homeostase de cálcio estão associadas às modificações na produção de proteínas ativadas pelo cálcio, como as caspases e calpainas, as quais, por sua vez, têm relação direta com os processos apoptóticos, degradação proteica e remodelação muscular; ademais, esse quadro pode modificar o acoplamento excitação-contração das fibras, acarretando episódios de fraqueza muscular, dores e cãibras.

Ação das estatinas e dos exercícios físicos na musculatura esquelética

Os efeitos negativos das estatinas na musculatura esquelética, bem como a relatada redução da capacidade de esforço com o uso do medicamento, culminam numa crescente disseminação da teoria de exacerbação dessas lesões pela associação da estatina aos exercícios físicos, o que pode ser caracterizado como fator limitador da recomendação da prática de atividade física nos quadros de dislipidemia. Na tentativa de esclarecer essas relações, as informações do levantamento bibliográfico são apresentadas em subtópicos, que contemplam os efeitos das estatinas em atletas, e as respostas aos exercícios agudos e crônicos, bem como os mecanismos responsáveis pelas respostas musculares a essa interação.

Uso de estatinas em atletas

Em se tratando de exercícios físicos, faz-se relevante compreender quais os efeitos das estatinas na musculatura de atletas. A esse respeito, Sinzinger e O’Grade avaliaram 22 atletas profissionais de diferentes modalidades, todos diagnosticados com hipercolesterolemia familiar, os quais foram acompanhados por 8 anos, sendo administradas diferentes classes de estatinas. Dos atletas avaliados, 78% não toleraram nenhum dos compostos administrados; os sintomas experimentados foram similares entre atletas e tipos de estatinas utilizadas, e se apresentaram como dores, cãibras e fraqueza. Após a cessação do uso do medicamento, os sintomas desapareceram em todos os atletas por volta de 3 semanas.

Em estudo mais recente, Parker e cols. avaliaram 37 atletas usuários de estatinas há mais de 6 meses e 43 indivíduos controles, antes e após uma prova de maratona. Os resultados apontaram que os corredores de maratona usuários de estatinas apresentaram aumentos mais significantes nos valores de CK após 24 horas do término da prova quando comparados aos não usuários. Conclui-se que atletas podem experimentar efeitos deletérios na musculatura esquelética quando do uso das estatinas, visto que estas podem exacerbar o dano muscular associado ao exercício físico intenso e extenuante, tanto realizado agudamente ou como parte do treinamento (Quadro 1).

Estatinas e exercícios físicos agudos

Os estudos pioneiros, que visavam identificar a exacerbação da lesão muscular pelo exercício, foram ensaios clínicos randomizados duplo-cegos para uso de lovastatina (40 mg/dia) ou placebo, realizados em homens adultos (n = 59, 18 a 65 anos) ou jovens (n = 10, 27 a 28 anos), os quais verificaram que a oferta aguda do esforço excêntrico e extenuante de caminhada em descida, após tratamento de 4 semanas com lovastatina (40 mg/dia), poderia aumentar os valores de CK sérica. Estudo mais recente reproduziu o protocolo de pesquisa acima, no qual homens adultos (n = 79, > 40 anos) foram randomicamente expostos a doses de 10 ou 80 mg de atorvastatina por 4 semanas, sendo então submetidos a uma sessão de exercício excêntrico agudo e extenuante de caminhada em descida. Verificou-se que a exposição ao esforço após o uso do medicamento aumentou os níveis de CK e os relatos de dor em ambos os grupos, não sendo identificadas diferenças significativas entre os tratamentos com baixa ou alta dose. Em conjunto, os resultados apresentados indicaram um possível efeito exacerbador da lesão muscular em resposta a essas associações.

Em contrapartida, estudo transversal, que investigou os efeitos de sessões agudas de exercícios excêntricos isocinéticos dos extensores de joelho (cinco séries de oito repetições voluntárias máximas) na função muscular de homens idosos (n = 28, > 65 anos) em tratamento com atorvastatina (10 a 80 mg/dia) há mais de 1 ano, verificou ausência de diferenças na função muscular, em ambos os momentos, pré e pós-esforço, comparados aos pacientes do grupo controle. Esses resultados indicaram que o exercício excêntrico proposto não impactou negativamente o torque, a amplitude de movimento e a sensação de dor durante agachamento e caminhada nos usuários de estatinas.

Nessa mesma direção, no ensaio randomizado duplo-cego para o uso de atorvastatina (80 mg/dia) ou placebo por 4 semanas em homens saudáveis (n = 8, 18 a 30 anos), no qual Urso e cols. ofertaram exercício agudo extenuante, caracterizado por 300 contrações excêntricas de membros inferiores, antes e após o tratamento medicamentoso, não foram encontrados aumentos significantes nos níveis de CK com a associação do medicamento ao esforço. No entanto, verificou-se que essa interação aumentou a expressão de genes envolvidos no catabolismo proteico e na via de ubiquitina proteassoma (UPS), alterando o balanço entre...
Quadro 1 – Descrição dos estudos que investigaram o efeito das estatinas e dos exercícios físicos sobre a musculatura esquelética

Referência	Amostra	Terapêutica medicamentosa	Protocolo de exercício físico	Resultados
Uso de estatinas em atletas				
Parker e cols.³⁷	n = 80 indivíduos (59♂ e 21♀)	Tipo e doses variados de estatinas (n = 37)	Corrida de uma maratona	Aumento da CK após 24 horas no grupo estatina
Estatinas e exercícios físicos agudos				
Thompson, e cols.²⁵	n = 59 homens (18-65 anos) Ensaio randomizado duplo-cego	Lovastatina (40 mg/dia; n = 22) ou Placebo (n = 27) por 5 semanas	Esteira rolante (45°: 15% inclinação; 65% FCM)	Aumento da CK após 24 e 48 horas da caminhada no grupo lovastatina
Reust e cols.³⁰	n = 10 homens (27-28 anos) Ensaio randomizado duplo-cego cruzado	Lovastatina (40 mg/dia; n = 5) ou Placebo (n = 5) por 30 dias	Esteira rolante (60°: 14% inclinação; 3 km/h)	Manutenção da CK após lovastatina comparada com placebo
Kears e cols.⁴³	n = 79 homens Ensaio randomizado	Atorvastatina (10 mg/dia; n = 42; ou 80 mg/dia; n = 37) por 5 semanas	Esteira rolante (3x15°: 15% inclinação; 65% FCM)	↑ CK total, CK-MB e dor muscular após exercício
Panayiotou e cols.⁴¹	n = 28 homens sedentários (> 65 anos)	Atorvastatina (10-80 mg/dia; n = 14) há 1 ano	Extensão de joelho (5x8 CE máximas; 2 sessões)	Função muscular semelhante entre grupos
Urso e cols.⁴⁷	n = 8 homens sedentários (18-30 anos)	Atorvastatina (80 mg/dia; n = 4) ou Placebo (n = 4) por 4 semanas	Extensão de joelho (300 CE) antes e após tratamento	Diferente expressão de genes da via UPS, de catabolismo e de apoptose
Estatinas e exercícios físicos crônicos				
Accioly e cols.⁴²	n = 80 ratos machos (dieta hiperlipídica, n = 60; dieta padrão, n = 20)	Simvastatina (20 mg, n = 20), fluvastatina (10 mg, n = 20) ou Placebo (n = 20)	Esteira rolante (60°; 9,75 m/min) 5x/semana por 8 semanas	Maior frequência de alterações morfológicas após estatina, com ou sem exercício
Seachrist e cols.⁴⁸	n = 48 ratas fêmeas divididas em 8 grupos	Cerivastatina (0,1; 0,5; 1,0 mg/kg/dia) ou Placebo por 14 dias	Cicloergômetro (30°; 55% CM) 2x semana e 8 exercícios resistidos (3x6 repetições; 55 e 75%) 1x/semana, 12 semanas	Exacerbação da degeneração muscular; envolvimento mitocondrial
Meex e cols.⁴⁵	n = 38 homens idosos sedentários	Tipo e doses variados de estatinas (n = 14)	Cícloergômetro (30°; 55% CM) 2x semana e 8 exercícios resistidos	Aumento da CM, força muscular, densidade e função mitocondrial muscular em ambos os grupos
Mikus e cols.⁴⁶	n = 37 indivíduos sedentários com fator de risco para SM (13; 3 e 24; 25-59 anos)	Simvastatina (40 mg/dia) (n = 19)	Esteira rolante (45°; 60-75% FCM) 5x/semana por 12 semanas	Aumento da MM e diminuição na atividade do citrato síntese muscular
Coen e cols.⁴⁷	n = 31 indivíduos sedentários (15; 6 e 16; 40-65 anos) Ensaio randomizado	Rosuvastatina (10 mg/dia) por 20 semanas	Esteira rolante (20°; 60-70% FCR) 8 exercícios resistidos (70-80% 1RM), 3x/semana por 10 semanas	Aumento da CK após 48 horas da 1ª sessão; ausência de relatos de dor/fadiga

Mecanismos das respostas musculares às estatinas e aos exercícios físicos

Referência	Amostra	Terapêutica medicamentosa	Protocolo de exercício físico	Resultados
Boulbirt e cols.²⁸	n = 34 ratos machos divididos em 4 grupos	Atorvastatina (10 mg/kg/dia; n = 18) ou Placebo por 2 semanas	Esteira rolante (40°; 40 cm/s com aumento de 5 cm/s até exaustão; 1 sessão)	Aumento de EROS e diminuição de respiração mitocondrial
Wu e cols.⁴⁹	n = 10 sujeitos (5; 5 e 5; 35-69 anos)	Tipo e doses variados de estatinas por 4 semanas	Flexões plantares (40% CM) por 7° até exaustão	Aumento do tempo de recuperação metabólica e manutenção da CK
Hubal e cols.⁴⁰	n = 14 usuários de estatinas (n = 9 sintomáticos; n = 6 assimotantes)	Simvastatina ou atorvastatina (10-60 mg) até miálgia (2 semanas a 4 meses)	Sentar e levantar de uma cadeira por 300 vezes ou até exaustão	Diminuição da expressão de genes na fosforilação oxidativa e de proteínas mitocondrais nos sintomáticos
Meador e Huey⁵⁰	n = 59 camundongos divididos em 6 grupos	Cerivastatina (1 mg/kg/dia) ou solução salina (dias 15-28)	Roda de corrida voluntária (adaptados: dias 1-28; não adaptados: dias 15-28)	Adaptação ao exercício preveniu perda de força e aumento da fadiga associados à estatina
Boulbirt e cols.²⁸	n = 20 ratos machos (treinados, n = 10; sedentários, n = 10)	Aplicação de atorvastatina (4, 10, 40, 100, 200 e 400 μM) no músculo plantar	Esteira rolante (30°; 40 cm/s; 15% inclinação) por 10 dias	Aumento da tolerância mitocondrial ao medicamento e diminuição da produção de radicais livres

CK: creatina quinase; FC: frequência cardíaca máxima; RM: força máxima; CM: carga máxima; SM: síndrome metabólica; UPS: ubiquitina proteassomática; CM: carga máxima; SM: síndrome metabólica; FC: frequência cardíaca de repouso; MM: massa magra; RM: repetição máxima; EROS: Espécies Reativas de Oxigênio.

Arq Bras Cardiol. 2014; [online].ahead print, PP.0-0
degradação e reparo proteico muscular, indicando que ausência de modificações no CK pode não refletir as respostas do tecido muscular.

De maneira geral, os estudos apresentados fazem crer que homens em uso de diferentes classes de estatinas, em doses baixas ou altas, apresentam alterações na função e nos marcadores de lesão muscular quando expostos a sessões agudas de exercícios físicos excêntricos e extenuantes de caminhada em descida, mas não de exercícios excêntricos de membros inferiores isoladamente. Alertam, contudo, que essa realidade não descarta a ocorrência de possíveis alterações estruturais e metabólicas no tecido muscular. Ressalta-se, ainda, que a heterogeneidade dos protocolos metodológicos, bem como a ausência de estudos em mulheres, limita, de maneira significante, essas conclusões, indicando a necessidade de novos estudos para se estabelecer satisfatoriamente essa relação.

Estatinas e exercícios físicos crônicos

Considerando as adaptações do organismo decorrentes do treinamento, pode-se supor que as respostas musculares aos exercícios crônicos sejam distintas das aquelas observadas nos exercícios agudos. Estudo experimental com animais, o qual avaliou os efeitos de 60 minutos de atividade física aeróbia moderada (9,75 m/minuto) em esteira rolante, realizada cinco vezes por semana durante 2 meses, concomitante ao tratamento com sinvastatina (20 mg/kg) e fluvastatina (20 mg/kg) em ratos Wistar, demonstrou que o uso do medicamento provocou alterações musculares de leve a grave no músculo sóleo, as quais foram mais frequentes quando houve associação do medicamento com o exercício.

Nessa mesma direção, no estudo em cobaias realizado por Seachrist e cols.\(^4\), elevadas doses de cerivastatina foram administradas concomitante à prática de exercício físico intenso em esteira por 14 dias. Resultados apontaram que essa associação aumentou os níveis de CK e exacerbou a degeneração das mitocôndrias e de outras organelas da musculatura esquelética. As evidências dos estudos com animais indicam que o treinamento físico, tanto de alta como de moderada intensidade, quando associado ao tratamento com estatinas em doses baixas ou potencialmente lesivas, acarreta lesões musculares. Em contrapartida, pesquisas realizadas em humanos têm apresentado resultados distintos.

No estudo realizado por Meex e cols.\(^4\), homens idosos, usuários ou não de estatinas, foram expostos a protocolo de treinamento de 12 semanas, caracterizado pela prática de exercício aeróbio moderado em cicloergómetro e exercícios resíduos três vezes por semana, sendo avaliadas: oxidação de substratos, recuperação de fosfocreatina (PCr) e expressão de proteínas dos complexos da cadeia de transporte de elétrons mitocondrial da musculatura esquelética. Os resultados deste estudo mostraram que o tratamento com estatinas (atorvastatina, rosuvastatina, pravastatina e sinvastatina) em várias doses não limitou a prática de exercícios físicos nem os ganhos decorrentes do treinamento na massa muscular e na qualidade mitocondrial dos praticantes, indicando que as associações propostas foram seguras.

Ao comparar indivíduos adultos previamente sedentários e com fatores de risco para síndrome metabólica (n = 37, 25 a 59 anos), expostos a 12 semanas de exercício físico moderado em esteira rolante, realizado 5 dias na semana, de forma isolada (n = 19) ou associado ao uso de sinvastatina (40 mg/dia, n = 18), Mikus e cols.\(^4\) verificaram que, apesar da associação ter causado reduções mais significantes no colesterol total (CT) e LDL, os aumentos na aptidão cardiorrespiratória e na atividade da enzima citrato sintase
do músculo vasto lateral, em resposta ao exercício, foram atenuados nos indivíduos tratados com estatina, indicando que o medicamento pode inibir algumas respostas adaptativas do organismo ao exercício físico. Apesar de relevantes, esses resultados foram obtidos com ausência de um grupo somente em uso de estatinas, o que limita consideravelmente o avanço no conhecimento acerca da exacerbação dos efeitos deletérios da estatina pelo exercício físico.

A esse respeito, o presente levantamento na literatura encontrou apenas um trabalho que avaliou o efeito da adição do exercício físico crônico moderado ao tratamento regular com rosuvastatina (10 mg/dia) em indivíduos adultos dislipêmicos de ambos os sexos (n = 31, 40 a 65 anos). Nesse ensaio clínico randomizado, verificou-se que tanto o tratamento medicamentoso, quanto sua associação a 12 semanas de treinamento moderado em esteira rolante e exercícios resistidos, ofertados três vezes por semana, acarretaram reduções significantes no perfil lipídico dos participantes, sendo a redução na LDL oxidada mais efetiva nos indivíduos exercitados17. Os usuários de estatina que praticaram exercícios físicos tiveram aumento no consumo máximo de oxigênio comparado aos seus pares sedentários, o mesmo ocorrendo para as variáveis de força, sem aumento nos níveis de CK ou na quantidade de relatos de dor, o que demonstra que tal associação resulta em melhorias nas variáveis de saúde de seus praticantes, sem danos adicionais na musculatura17.

Em síntese, observa-se que o tratamento com estatinas, tanto em homens idosos como para a população adulta em geral, quando associado a 12 semanas de treinamento moderado com exercícios aeróbicos e resistidos, não aumenta os relatos de dor e nem os níveis de CK, além de acarretar ganhos nas funções musculares e metabólicas advindas do treinamento. Apesar do reduzido número de evidências e da necessidade de estudos mais longos, com diferentes modalidades e intensidades de treinamento, e com a exploração das alterações do tecido muscular, esses resultados apontam que a realização de exercícios físicos moderados, durante tratamento com estatinas, é segura e mais benéfica do que se manter sedentário.

Mecanismos das respostas musculares às estatinas e exercícios físicos

Até o presente momento, as evidências das pesquisas apontam que o treinamento intenso realizado por atletas, bem como a prática de exercícios físicos excêntricos e extenuantes, podem exacerbar os danos musculares da administração de estatinas. A esse respeito, Meador e Huey18 propuseram, em seu estudo de revisão, alguns dos mecanismos pelos quais o exercício físico exacerbaria as lesões musculares por estatinas. Segundo os autores, os danos mitocondriais ocasionados pelas estatinas, associados ao aumento do fluxo energético e à depleção de glicogênio em decorrência do exercício, poderiam ser um fator de exacerbação; no entanto, acrescentam outras possibilidades, como a ativação da via das proteínas quinas sinalizadas pelos isopenoides e estimuladas pela contração muscular, bem como por aumentos na atividade da via de UPS mediados tanto pelas estatinas como pelo exercício físico. Apesar desse modelo teórico-explativo sobre os possíveis mecanismos de exacerbação das lesões musculares, as evidências científicas que comprovam tais hipóteses ainda são escassas. O aumento na expressão de genes envolvidos no catabolismo proteico e na via de UPS foi identificado apenas na pesquisa de Urso e cols.42, ao passo que os danos mitocondriais e os distúrbios no fornecimento energético são mais explorados, tendo sido verificados tanto no estudo de Seachrist e cols.44, como em estudos mais recentes.

A esse respeito, Bouitir e cols.45 verificaram que ratos tratados com atorvastatina (10 mg/kg/dia) apresentaram prejuízo na função mitocondrial do músculo plantar. A exposição desses animais a um teste de esforço exaustivo em esteira rolante produziu 226% mais EROs que o grupo placebo, sendo ainda observada redução na respiração máxima mitocondrial (-39%), a qual se relacionou de forma significante com a menor distância percorrida no teste (r = 0,62; p < 0,01). As EROs são geradas na mitocôndria como resultado do metabolismo energético, e o aumento de sua produção pode causar danos aos lipídios, proteínas e DNA celular, alterando a função mitocondrial e desencadeando efeitos deletérios às musculatura. Esses resultados indicam que o exercício exaustivo, associado ao prejuízo mitocondrial decorrente do tratamento com estatinas, de fato, exacerba as perturbações metabólicas na musculatura esquelética, produzindo um estado mais oxidante nessa estrutura e, consequentemente, reduzindo a capacidade de esforço dos animais.

Essa perturbação no sistema de fornecimento energético muscular pelo uso das estatinas também vem sendo encontrada em humanos, como no trabalho de Wu e cols.46, os quais caracterizaram a cinética de recuperação da PCR após esforço de panturrilha em sujeitos de ambos os sexos (n = 10, 35 a 69 anos) tratados com estatinas por 4 semanas. A taxa de recuperação metabólica da PCR muscular é um parâmetro utilizado como índice da capacidade oxidativa muscular in vivo, sendo que maior tempo de recuperação reflete prejuízo na fosforilação oxidativa e/ou na síntese de ATP mitocondrial. Os resultados apontaram que a exposição à estatina não alterou os níveis de CK, porém acarretou aumento significante do tempo de recuperação metabólica após esforço (de 28,1 para 55,4 segundos; p = 0,02), sugerindo que esse medicamento pode prejudicar a função oxidativa mitocondrial, o que poderia explicar os possíveis acometimentos musculares decorrentes de sua associação ao esforço.

Apesar das evidências indicarem prejuízo mitocondrial não seletivo na musculatura dos usuários de estatina, indivíduos sintomáticos aparentemente são mais predispostos e apresentam prejuízo mais acentuado. A esse respeito, Hubal e cols.47 avaliaram o padrão da expressão global de genes na musculatura esquelética de indivíduos de ambos os sexos usuários de estatinas miálgicos, (n = 9) ou não (n = 5), em resposta ao exercício excêntrico. Após 4 meses de tratamento medicamentoso, verificou-se que os pacientes que manifestavam sinais e sintomas clássicos de mialgia apresentaram redução na expressão de nicotinamida adenina dinucleotído (NADH) do complexo I da cadeia de transporte de elétrons, bem como de succinato desidrogenase no complexo II, citocromo c oxidase no complexo IV e
de ATP4B no complexo V, indicando que deficiências preexistentes na produção energética poderiam contribuir para o desenvolvimento de sintomas desencadeados pelo esforço durante terapia com estatinas.

Entretanto, as informações sobre a associação de estatinas aos exercícios crônicos moderados sugerem que podem ocorrer outras respostas, além da exacerbação da lesão muscular. Segundo Meador e Huey31, as adaptações musculares decorrentes do treinamento, como o aumento de proteínas protetoras antioqueiro (relacionadas à redução do estresse oxidativo, inibição de apoptose e atenuação do dano muscular), supressão direta de fatores apoptóticos e aumento na biogênese mitocondrial, podem acarretar a atenuação da lesão muscular. Para testar essa hipótese, os mesmos autores submeteram camundongos a 14 dias de tratamento conjunto de exercícios físicos e estatina, após prévia adaptação de 14 dias ao exercício ou sedentarismo, e verificaram que o medicamento reduziu a força muscular e a resistência à adaptação, sendo comparados aos sedentários, indicando que adaptação ao exercício protege a musculatura esquelética contra os efeitos deletérios das estatinas.

De maneira semelhante, Bouitbir e cols.32 verificaram que o treinamento por 10 dias em esteira rolante melhorou a capacidade antioxidativa e antioqueiro do músculo plantar de ratos Wistar comparados aos sedentários, e que a exposição in vitro da musculatura dos sedentários à atorvastatina reduziu a capacidade antioxidativa de forma dose-dependente. No entanto, demonstraram que o prejuízo da função mitocondrial, decorrente da exposição ao medicamento, foi menor na musculatura dos animais treinados, indicando efeito protetor do exercício físico relacionado à melhora da respiração mitocondrial e capacidade antioxidante, visando à atenuação do estresse oxidativo induzido pela estatina.

A extrapolação desses resultados para seres humanos parece sugerir que indivíduos fisicamente ativos previamente ao tratamento com estatinas podem estar protegidos dos efeitos deletérios do medicamento, indicando que a prescrição do treinamento físico, antes da terapêutica medicamentosa com estatinas, pode representar uma medida preventiva aos efeitos musculares. Apesar das evidências, Bonfim e cols.31 verificaram recentemente que muitos dos pacientes com dislipidemia em tratamento com estatinas são sedentários e, portanto, não estariam previamente protegidos caso optassem por mudanças em seu estilo de vida.

Contribuições práticas

Em estudo de revisão recente, Opie32 explorou sucintamente as controvérsias entre os efeitos benéficos cardíacos e os efeitos colaterais miopáticos da associação de estatinas e exercícios físicos, delimitando algumas orientações práticas para essa realidade. Baseado nos achados de Kokinos e cols., os quais verificaram que o tratamento com estatinas associado a um nível de aptidão física de moderado a alto oferece proteção adicional contra a morte cardiovascular prematura, e de uma metanálise de estudos prospectivos, que verificaram a relação de dose-resposta entre intensidade de esforço e proteção cardiovascular, o autor recomenda a prática de caminhada rápida por pelo menos 3 horas semanais para manutenção da proteção cardiovascular, porém não apresenta mais especificações quanto à intensidade.

Atentando para os efeitos colaterais musculares, o autor propõe que os indivíduos dislipidêmicos em uso de estatinas, que tenham a corrida limitada por conta da dor muscular isolada, optem pela realização de caminhadas rápidas ou corridas leves; todavia, ressalta que a falta de evidências na literatura para lidar com casos em que a dor seja acompanhada de aumento dos níveis de CK permite que tanto a cessação ou redução da dose do medicamento, como a redução da intensidade do esforço sejam medidas terapêuticas possíveis, alertando para a urgente necessidade de realização de novas pesquisas para se encontrar o equilíbrio entre sintomas musculares e níveis de proteção cardiovascular.

Em síntese, considerando o estado atual da arte, observa-se que os quadros de lesão muscular pelas estatinas podem ser exacerbados pelos treinamentos físicos de alta intensidade e por exercícios agudos excêntricos e extenuantes, ao passo que a prática crônica de exercícios com intensidade moderada, tanto previamente quanto concomitantemente ao tratamento com estatinas, pode atenuar os quadros lesivos e até melhorar a função muscular de seus praticantes (Figura 2). Nesse sentido, sugere-se que pacientes dislipidêmicos em tratamento com estatinas sejam expostos ao treinamento físico aeróbico combinado a exercícios resistentes, de intensidade moderada, em três sessões semanais. A oferta do treinamento físico previamente à administração do tratamento medicamentosos se faz desejável, porém, nos casos em que essa realidade seja impraticável, sugere-se cautela na prescrição das atividades físicas durante as primeiras semanas, quando exercícios extenuantes e excêntricos devem ser evitados.

Conclusão

As evidências das pesquisas apontam que o treinamento intenso realizado por atletas, bem como a prática de exercícios físicos excêntricos e extenuantes, pode exacerbar os danos musculares resultantes da administração de estatinas. Em contrapartida, exercícios crônicos de intensidade moderada, realizados tanto previamente quanto concomitantemente ao tratamento com estatinas, podem atenuar os efeitos lesivos e melhorar a função muscular de seus praticantes.

Contribuição dos autores

Concepção e desenho da pesquisa: Bonfim MR. Obtenção de dados: Bonfim MR. Análise e interpretação dos dados: Bonfim MR. Redação do manuscrito: Bonfim MR, Oliveira ASB, Amaral SL, Monteiro HL. Revisão crítica do manuscrito quanto ao conteúdo intelectual importante: Oliveira ASB, Amaral SL, Monteiro HL.
Figura 2 – Respostas musculares da associação de estatinas com exercícios físicos.
Exercício extenuante caracterizado por exercícios agudos exócrinos, testes de capacidade máxima e/ou atividades competitivas; exercício moderado caracterizado pelo treinamento aeróbio, associado ou não ao treinamento resistido, realizado geralmente em três sessões semanais por 12 semanas. UP: ubiquitina proteassoma.

Potencial conflito de interesse
Declaro não haver conflito de interesses pertinentes.

Fontes de financiamento
O presente estudo não teve fontes de financiamento externas.

Referências

1. World Health Organization (WHO). The World Health Report 2002. Reducing risks, promoting healthy life. Geneva; 2002.

2. Xavier HT, Izar MC, Faria Neto JR, Assad MH, Rocha VZ, Sposito AC; Sociedade Brasileira de Cardiologia. V Diretriz brasileira de dislipidemias e prevenção da aterosclerose. Arq Bras Cardiol. 2013;101(4 supl 1):1-22.

3. Sposito AC, Caramelli B, Fonseca FA, Bertolami MC, Afúane Neto A, Souza AD, et al.; Sociedade Brasileira de Cardiologia. IV Diretriz brasileira sobre dislipidemias e prevenção da aterosclerose. Arq Bras Cardiol. 2007;88(supl 1):1-18.

4. National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III) final report. Circulation. 2002;106(25):3143-421.

5. Kokkinos PF, Faselis C, Myers J, Panagiotakos D, Doumas M. Interactive effects of fitness and statin treatment on mortality risk in veterans with dyslipidemia: a cohort study. Lancet. 2013;381(9864):394-9.

6. Joy TR, Hegele RA. Narrative review: statin-related myopathy. Ann Intern Med. 2009;150(12):858-68.

7. Thompson PD, Clarkson PM, Rosenson RS; National Lipid Association Statin Safety Task Force Muscle Safety Expert Panel. An assessment of statin safety by muscle experts. Am J Cardiol. 2006;97(8A):69C-76C.

8. Bruckert E, Hayem G, Dejager S, Yau C, B’Egaud B. Mild to moderate muscular symptoms with high-dosage statin therapy in hyperlipidemic patients: the PRIMO study. Cardiovasc Drugs Ther. 2005;19(6):403-14.

9. Krishnan GM, Thompson PD. The effects of statins on skeletal muscle strength and exercise performance. Curr Opin Lipidol. 2010;21(4):324-8.

10. Veillard NR, Mach F. Statins: the new aspirin? Cell Mol Life Sci. 2002;59(11):1771-86.

11. Brown WJ. Safety of statins. Curr Opin Lipidol. 2008;19(6):558-62.

12. Thompson PD, Clarkson P, Karas RH. Statin-associated myopathy. JAMA. 2003;289(13):1681-90.

13. Parker BA, Thompson PD. Effect of statin on skeletal muscle: exercise, myopathy and muscle outcomes. Exerc Sport Sci Rev. 2012;40(4):188-94. Eratun in: Exerc Sport Sci Rev. 2013;41(1):71.

14. Mansi I, Freil CR, Pugh MJ, Makris U, Mortensen EM. Statins and musculoskeletal conditions, arthropathies, and injuries. JAMA Intern Med. 2013;173(14):1-10. Eratun in: JAMA Intern Med. 2013;173(15):1477.
15. Hoffman KB, Kraus C, Dimbil M, Golomb BA. A survey of the FDA’s AERS database regarding muscle and tendon adverse events linked to the statin drug class. PloS One. 2012;7(8):e42866.

16. Thompson PD, Parker BA, Clarkson PM, Pescatello LS, White CM, Grimaldi AS, et al. A randomized clinical trial to assess the effects of statins on skeletal muscle function and performance: rationale and study design. Prev Cardiol. 2010;13(3):104-11.

17. Parker BA, Capizzi JA, Grimaldi AS, Clarkson PM, Cole SM, Keadle J, et al. Effect of statin on skeletal muscle function. Circulation. 2013;127(1):96-103.

18. Ballard KD, Parker BA, Capizzi JA, Grimaldi AS, Clarkson PM, Cole SM, et al. Increases in creatine kinase with atorvastatin treatment are not associated with decreases in muscular performance. Atherosclerosis. 2013;230(1):121-4.

19. Sirvent P, Mercier J, Lacampagne A. New insights into mechanisms of statin-associated myotoxicity. Curr Opin Pharmacol. 2008;8(3):333-8.

20. Deichmann R, Lavie C, Andrews S. Coenzyme Q10 and statin-induced mitochondrial dysfunction. Mitochondrion. 2009;9(4):225-31.

21. Sirvent P, Mercier J, Lacampagne A. New insights into mechanisms of statin-associated myotoxicity. Curr Opin Pharmacol. 2008;8(3):333-8.

22. Muraki A, Miyashita K, Mitsuishi M, Tamushi M, Tanaka K, Ioh H. Coenzyme Q10 reduces mitochondrial dysfunction in atorvastatin-treated mice and increases exercise endurance. J Appl Physiol (1985). 2012;113(3):479-86.

23. Thompson PD, Zmuda JM, Domalik LJ, Zimet RJ, Staggers J, Guyton JR. Lovastatin increases exercised-induced skeletal muscle injury. Metabolism. 1997;46(10):1206-10.

24. Seachrist JL, Loi C, Augeri AL, Capizzi JA, Ballard KD, Troyanos C, Gallagher AL, et al. Association between statin-associated myopathy and skeletal muscle damage. J Am Coll Cardiol. 2010;90(10):1530-42.

25. Hoffman KB, Kraus C, Dimbil M, Golomb BA. A survey of the FDA’s AERS database regarding muscle and tendon adverse events linked to the statin drug class. PloS One. 2012;7(8):e42866.

26. Thompson PD, Zmuda JM, Domalik LJ, Zimet RJ, Staggers J, Guyton JR. Lovastatin increases exercised-induced skeletal muscle injury. Metabolism. 1997;46(10):1206-10.

27. Reusl E, Curry SC, Guindry JR. Lovastatin use and muscle damage in healthy volunteers undergoing eccentric muscle exercise. West J Med. 1991;154(2):198-200.

28. Kears AK, Billie CL, Clarkson PM, White CM, Sewright KA, O’Fallon KS, et al. The creatine kinase response to eccentric exercise with atorvastatin 10 mg or 80 mg. Atherosclerosis. 2008;200(1):121-5.

29. Thromb Thromb Vasc Biol. 2008;25(12):2560-6.

30. Aciliey ME, Camargo Filho JC, Padula SAT, Lima ALZ, Bonfim MR, Carro EM, et al. Effects of statin therapy on skeletal muscle performance and calcium signaling in healthy volunteers. Toxicol Appl Pharmacol. 2013;27(6):569-72.

31. Coen PM, Flynn MG, Markifski MM, Pence BD, Hannemann RE. Adding exercise training to rosuvastatin treatment: influence on serum lipids and health-related parameters in the elderly: an exercise study. Scand J Med Sci Sports. 2013;23(5):556-67.

32. Meeks RC, Phielix E, Schrauwenzu-Hinderling VB, Moenzen Korns P, Schaart G, Grauw F, et al. The use of statins potentiates the insulin-sensitizing effect of exercise training in obese males with and without type 2 diabetes. Clin Sci. 2010;119(7):293-301.

33. Minkus CR, Boyle L, Borengasser SJ, Oberlin DJ, Naples SP, Fletcher J, et al. Simvastatin impairs exercise training adaptations. J Am Coll Cardiol. 2013;62(8):709-14.

34. Cohn PM,Flynn MG, Markifski MM, Pence BD, Hannemann RE. Adding exercise training to rosuvastatin treatment: influence on serum lipids and biomarkers of muscle and liver damage. Metabolism. 2009;58(7):1030-8.

35. Wu JS, Buettner C, Smithline H, Ngo LH, Greenman RL. Evaluation of skeletal muscle during calf exercise by 31-phosphorus magnetic resonance spectroscopy in patients on statin medications. Muscle Nerve. 2011;43(3):393-401.

36. Hubal MJ, Reich KA, Biase A, Billie C, Clarkson PM, Hofman EP, et al. Transcriptional deficits in oxidative phosphorylation with statin myopathy. Toxicol Sci. 2005;88(2):551-61.

37. Coen PM, Flynn MG, Markifski MM, Pence BD, Hannemann RE. Adding exercise training to rosuvastatin treatment: influence on serum lipids and health-related parameters in the elderly: an exercise study. Scand J Med Sci Sports. 2013;23(5):556-67.

38. Seachrist JL, Loi C, Evans MG, Criswell KA, O’Fallon KS, et al. The creatine kinase response to eccentric exercise with atorvastatin 10 mg or 80 mg. Atherosclerosis. 2008;200(1):121-5.