Lifting the Curse of Multilinguality by Pre-training Modular Transformers

Jonas Pfeiffer*1,2,3, Naman Goyal3, Xi Victoria Lin3, Xian Li3, James Cross3, Sebastian Riedel3, Mikel Artetxe3
1New York University, 2TU Darmstadt, 3Meta AI

Abstract

Multilingual pre-trained models are known to suffer from the curse of multilinguality, which causes per-language performance to drop as they cover more languages. We address this issue by introducing language-specific modules, which allows us to grow the total capacity of the model, while keeping the total number of trainable parameters per language constant. In contrast with prior work that learns languagespecific components post-hoc, we pre-train the modules of our Cross-lingual Modular (X-MOD) models from the start. Our experiments on natural language inference, named entity recognition and question answering show that our approach not only mitigates the negative interference between languages, but also enables positive transfer, resulting in improved monolingual and cross-lingual performance. Furthermore, our approach enables adding languages post-hoc with no measurable drop in performance, no longer limiting the model usage to the set of pre-trained languages.

1 Introduction

Recent work on multilingual NLP has focused on pre-training transformer-based models (Vaswani et al., 2017) on concatenated corpora of a large number of languages (Devlin et al., 2019; Conneau et al., 2020). These multilingual models have been shown to work surprisingly well in cross-lingual settings, despite the fact that they do not rely on direct cross-lingual supervision (e.g., parallel data or translation dictionaries; Pires et al., 2019; Wu and Dredze, 2019; Artetxe et al., 2020; Hu et al., 2020; K et al., 2020; Rust et al., 2021).

However, recent work has uncovered fundamental limitations of multilingual transformers. Conneau et al. (2020) observe that pre-training a model with a fixed capacity on an increasing amount of languages only improves its cross-lingual performance up to a certain point, after which performance drops can be measured—a phenomenon known as the curse of multilinguality (Figure 2). As such, prior work had to find a trade-off between supporting more languages and obtaining better performance on a smaller set of languages.

In this work, we address this problem by introducing language-specific, modular components during pre-training (Figure 1). Our Cross-lingual, Modular (X-MOD) language model shares the majority of the transformer parameters between all pre-training languages, while providing each language with individual capacity to learn idiosyncratic information without increasing the total number of trainable parameters per language. While previous adapter-based approaches (Figure 3a) extend pre-trained multilingual language models (LMs) with modular components after pre-training, we add modular components during pre-training, thereby

* Work done while interning at Meta AI.
preparing the model to be extended to new languages post-hoc. Our experiments on natural language inference (NLI), named entity recognition (NER), and question answering (QA) demonstrate that our modular architecture not only is effective at mitigating interference between languages, but also achieves positive transfer, resulting in improved monolingual and cross-lingual performance. In addition, we show that X-MOD can be extended to unseen languages, with no measurable drop in performance, by learning its corresponding modules and leaving the shared parameters frozen. All in all, we propose a multilingual architecture that can scale to a large number of languages without any loss in performance, and can be further extended to new languages after pre-training.\footnote{Code and pre-trained models are available at: https://github.com/pytorch/fairseq/tree/main/examples/xmod.}

2 Background and related work

We provide a background on multilingual and modular language modelling, as well as approaches that extend LMs to new languages.

2.1 Multilingual transformers

Recent LMs (Devlin et al., 2019; Conneau et al., 2020), based on transformer architectures (Vaswani et al., 2017) and pre-trained on massive amounts of multilingual data, have surpassed (static) cross-lingual word embedding spaces (Ruder et al., 2019; Glavas et al., 2019) for cross-lingual transfer in NLP (Pires et al., 2019; Wu and Dredze, 2019; Wu et al., 2020; Hu et al., 2020; K et al., 2020). Transformer-based models are 1) pre-trained on textual corpora using Masked Language Modelling (MLM). They are then 2) fine-tuned on labelled data of a downstream task in a source language and 3) directly applied to perform inference in a target language (Hu et al., 2020).

2.2 Modular language models

Modular approaches have a long standing history in NLP, preceding pre-trained models (Andreas et al., 2016). They have recently re-gained interest for transformer-based models, where mix-
ture of experts (MoE; Shazeer et al., 2017) approaches have enabled training trillion parameters models in a distributed fashion (Fedus et al., 2021). More recently modular MoE approaches have been shown to improve domain-specific pre-training of LMs (Gururangan et al., 2021). In a similar trend, ‘expert’ modules have been added to (non-modular) pre-trained LMs post-hoc, predominantly referred to as adapters (Rebuffi et al., 2017, 2018; Houlsby et al., 2019). Next to being extremely parameter (Houlsby et al., 2019; Mahabadi et al., 2021a; He et al., 2022) and training efficient (Pfeiffer et al., 2020a; Rücklé et al., 2021), these modular approaches allow models to be extended to new data settings (Chen et al., 2019; Rücklé et al., 2020), where newly learned knowledge can be combined (Stickland and Murray, 2019; Wang et al., 2021a; Pfeiffer et al., 2021a; Lauscher et al., 2020a; Mahabadi et al., 2021b; Poth et al., 2021), or stacked for combinatorial cross-lingual (Pfeiffer et al., 2020b, 2021b; Üstün et al., 2020; Vidoni et al., 2020; Ansell et al., 2021b,a; Wang et al., 2021b) as well as NMT scenarios (Bapna and Firat, 2019; Philip et al., 2020; Chronopoulou et al., 2020; Le et al., 2021; Üstün et al., 2021; Stickland et al., 2021; Garcia et al., 2021).

2.3 Weaknesses, improvements, and extensions of language models

Next to the curse of multilinguality, recent works have shown substantially reduced cross-lingual and monolingual abilities of models for low-resource languages with smaller pre-training data (Wu and Dredze, 2020; Hu et al., 2020; Lauscher et al., 2020b; Artetxe et al., 2020; Pfeiffer et al., 2020b, 2021b; Chau et al., 2020b; Ponti et al., 2020).

K et al. (2020); Artetxe et al. (2020) show that a shared vocabulary is not necessary for cross-lingual transfer. Chung et al. (2021) demonstrate that decoupling the input embeddings from the prediction head improves the performance on a number of downstream tasks. Dufter and Schütze (2020) show that the number of parameters and training duration is interlinked with the model’s multilingual capability. Chung et al. (2020); Rust et al. (2021) show that the tokenizer plays an important role in the per-language downstream task performance, which Clark et al. (2022); Xue et al. (2022); Tay et al. (2021) take to the extreme by proposing tokenizer-free approaches.

To extend a monolingual LM to other languages, Artetxe et al. (2020) train a new embedding layer with a corresponding target-language tokenizer, while freezing the pre-trained transformer weights. Tran (2020) extend a monolingual model to new languages using bilingual corpora. Wang et al. (2020); Chau et al. (2020a) extend the vocabulary of multilingual models with a small number of target-language tokens, to improve the performance in the target language. Muller et al. (2021) propose a transliteration based approach, Vernikos and Popescu-Belis (2021) propose subword mappings, and Pfeiffer et al. (2020b, 2021b); Vidoni et al. (2020); Ansell et al. (2021b) propose adapter-based approaches to extend multilingual models to unseen languages.

While these approaches achieve considerable performance gains over unseen languages, they are outperformed by standard full fine-tuning methods for seen languages. One can further argue that, as the pre-trained models have already been cursed by multilinguality, the adapter-based approaches build upon sub-optimal parameter initializations.2 In our work, we consequently aim to 1) modularize the model from the start to prepare the model to be 2) extendable to new languages post-hoc.

3 Proposed approach

We propose X-MOD, a modular multilingual architecture that combines shared and language-specific parameters. In contrast to prior work, we pre-train modular models from the get-go. Our models can be extended to new languages after pre-training, and used for cross-lingual transfer learning in downstream tasks.

Architecture. As illustrated in Figure 1, we extend the transformer-based architecture from mBERT (Devlin et al., 2019) and XLM-R (Conneau et al., 2020) by incorporating language-specific modules—bottleneck feed-forward layers—at every transformer layer. We learn a separate module for each language, whereas the attention and feed-forward components are shared. While the total number of parameters of the model grows linearly with the number of languages, the training and inference cost does not increase (as measured in FLOPs), as only the module in the relevant language is used for each input. Inspired by the adapter3 architecture of Pfeiffer et al. (2021a) we

2 We investigate this claim further in §6.2.

3 The term ‘adapter’ refers to newly introduced layers within a pre-trained (frozen) model. These layers adapt the...
place our ‘modules’ after the LayerNorm of the feed-forward transformer block, and the residual connection is placed after the LayerNorm;4 the LayerNorm before and after the modular component is shared.5

Pre-training procedure. Similar to Conneau et al. (2020), we pre-train our model on MLM on combined monolingual corpora in multiple languages. Examples of each language are passed through the shared embedding matrix as well as the multi-head attention and feed-forward components at each layer. As each layer contains a language-specific modular component, the examples are routed through the respective designated modular bottleneck layer. Given that each example only requires access to a single module, modules can be efficiently stored on only a subset of GPUs in distributed training.

Extending to new languages. The modular design of our model allows us to extend it to new languages after pre-training. To that end, we learn new embeddings and adapter modules for the target language through MLM, while the rest of the components are frozen.6 Consequently, we are able to extend the model to a new language by learning a small number of new parameters, without affecting performance in the set of pre-trained languages. Following Pfeiffer et al. (2021b), we learn a new subword vocabulary for the added languages, and initialize the embeddings of lexically overlapping tokens from the original embedding matrix.

Fine-tuning on downstream tasks. To transfer the models to cross-lingual downstream tasks, we fine-tune the shared weights only on the source language data, while keeping the modular components and the embedding layer frozen. We follow the standard fine-tuning procedure of adding a prediction head on top of the CLS token. We then replace the source language modules (as well as embedding layer for added languages) with the target language parameters, passing the text of the target language through the model.7

4We find that the residual connection proposed by Pfeiffer et al. (2021a) results in training instabilities when trained together with the transformer weights.

5Preliminary results showed that sharing the LayerNorm results in better cross-lingual transfer performance.

6Following Artetxe et al. (2020) we train positional embeddings.

7We initially also experimented with stacking adapters on top of the language modules similar to Pfeiffer et al. (2020b, 2021b). While this approach is considerably more parameter efficient, we find that fine-tuning all shared weights slightly outperformed the adapter-based approach.

8Extending the total number of shared parameters would be unfair as X-MOD and SHARED would not have the same FLOPs nor the same number of trainable parameters when fine-tuning.

9Adapter-based approach such as MAD-X (Pfeiffer et al., 2020b) would be an alternative. However, this would require training on languages twice—once during pre-training, and once when adding adapters—which is not directly comparable to X-MOD. Nonetheless, we report results in §6.2.

4 Experimental design

We detail the baseline and models (§4.1), and their training (§4.2) and evaluation settings (§4.3).

4.1 Model variants

We pre-train separate models for all combinations along the following axes:

X-MOD vs. SHARED. To evaluate the effectiveness of our X-MOD model, we aim to compare ourselves to a conventional non-modular architecture. However, simply removing the modular component would be unfair, as the number of FLOPs and trainable parameters per language would not be the same—both in terms of pre-training, as well as fine-tuning. Consequently, for our baseline model—where all parameters should be fully shared between all languages—we include a single bottleneck layer right after the Feed-Forward component. Effectively, this is the same architecture as our X-MOD model, just with a single module that is shared by all languages. We refer to this as the SHARED model throughout this paper.8 To extend the SHARED model to unseen languages, we follow Artetxe et al. (2020) and only learn a new embedding layer, freezing the transformer parameters. To fine-tune the SHARED model on a downstream task, we freeze the embedding layer, as well as the (single) module, thereby fine-tuning an equal amount of parameters on the downstream task as the X-MOD model.9

13 vs. 30 vs. 60 vs. 75 languages. So as to understand how each approach is affected by the curse of multilinguality, we pre-train the X-MOD and SHARED models on 4 increasing sets of languages. We start with an initial set of 13 typologically diverse languages that we evaluate on, and add additional languages for larger sets of 30, 60, and 75 languages. In addition, we keep a set of 7 held-out languages that we extend the pre-trained models to. Table 1 lists the specific languages in each
Pre-trained languages

Pre-trained languages	13-LANGS	30-LANGS	60-LANGS	75-LANGS
	en, ur, fr, hi, ko, ru, th, vi, ta, id, fi, sw, ka	13-LANGS + cs, eu, hr, hu, hy, it, lt, ml, mn, ms, pl, ro, si, sk, sq, sv, tl	30-LANGS + af, am, be, bn, ca, cy, da, eo, et, fa, ga, gl, gu, ha, is, ku, la, lv, mk, ne, nl, no, ps, pt, sa, sd, sl, so, sr, te	60-LANGS + as, br, bs, fy, gd, jv, kn, mg, mr, om, or, pa, su, xh, yi, zh, bg, de, el, es, fr, it, ur, zh

Added languages

- bg, de, el, es, fr, it, ur, zh

Table 1: Selection of languages. We pre-train different models on 4 sets of languages, and further extend them to a set of held-out languages post-hoc. We evaluate on XNLI (languages in bold), NER (underlined languages) and XQuAD/MLQA (languages in italic). For more details about the language selection, see Appendix C.

Controlling for total vs. per-language updates. Conneau et al. (2020) investigated the effect of adding more languages during pre-training, while training on an equal number of update steps. However, increasing the number of languages while keeping the number of updates constant results in the model seeing less data in each individual language. As such, it remains unclear if the curse of multilinguality happens because of negative interference, or simply because the number of updates for each specific language is smaller. So as to understand this, we compare (1) training on an equal number of update steps and (2) training on an equal number of seen examples per language. We start with the set of 13 languages (Table 1) and train the respective models for 125k update steps. When adding more languages, we compare (1) training models on each set of languages for 125k update steps, and (2) increasing the number of update steps such that the models are trained on the same number of examples in each of the initial 13 languages. For the latter, this amounts to training for 195k, 265k and 269k update steps, respectively.

4.2 Training details

Data and hyperparameters. We sample languages with $\alpha = 0.7$ and train our models with a batch size of 2048 across 64 V100 GPUs on the CC100 dataset (Conneau et al., 2020) using fairseq (Ott et al., 2019). All our models extend the base transformer architecture, with 12 layers and 768 dimensions. Modules are implemented with a bottleneck size of 384. The shared transformer weights account for 270M parameters, whereas each individual module accounts for 7M parameters. We train our models with a linear learning rate decay peaking at $7e^{-4}$ during pre-training and $1e^{-4}$ when adding languages.

Vocabulary. As we aim to identify the impact of modularity on the curse of multilinguality, we control for consistent tokenization across the different axes. We therefore tokenize using the XLM-R vocabulary for all our pre-training experiments. However, for languages added post-hoc, we learn a new SentencePiece tokenizer for each of the target language, as the languages potentially use scripts unseen by the original tokenizer.

4.3 Evaluation

We conduct experiments on NLI, NER, and QA. In all cases, we fine-tune the model on English and measure the zero-shot transfer performance in other languages. For NLI we train on MultiNLI (Williams et al., 2018) and evaluate on XNLI (Conneau et al., 2018). For QA, we train on SQuAD (Rajpurkar et al., 2016) and evaluate on XQuAD (Artetxe et al., 2020) and MLQA (Lewis et al., 2020). For NER, we use WikiANN (Pan et al., 2017; Rahimi et al., 2019). We experiment with learning rates $1e^{-4}$, $3e^{-4}$, and $5e^{-4}$ and train for 3 or 5 epochs for QA and 5 or 10 epochs for NER and NLI. For NER and NLI we take the hyperparameter setting performing best on the development sets, averaged across the pre-trained languages (Table 1). For SQuAD we take the best performing checkpoint evaluated on the English development set, and report the cross-lingual test set results. All results are averaged across 5 random seed runs.

10 Rust et al. (2021) have previously demonstrated the impact of the multilingual tokenizer on the downstream task performance: languages underrepresented in the sub-word vocabulary exhibit considerable performance drops when compared to vocabularies dedicated to the respective language.

11 We train the new tokenizers for a vocabulary size of 30k.
We present results for pre-trained languages in §5.1 and added languages in §5.2.

5 Results and discussion

We present results for pre-trained languages in §5.1 and added languages in §5.2.

5.1 Pre-trained languages

In Figure 4 we plot downstream task results of models pre-trained on different amounts of languages. Table 2 reports the individual language performance for the models trained on 60 languages.

The Curse of Multilinguality. Conneau et al. (2020) showed that multilingual LMs trained on increasing amounts of languages, while maintaining the number of update steps, exhibit drops in downstream task XNLI performance. We reproduce these results, both in terms of language modelling perplexity (Figure 2a), as well as downstream task performance on XNLI and NER (Figure 4a). We further find that the curse of multilinguality does not only happen because the total number of update steps per language decreases, but also when all SHARED models are trained on the same number of examples per language (Figure 4b). This confirms that fully shared architectures suffer from negative interference.

Lifting the Curse. While for the SHARED model we witness negative interference between languages in terms of perplexity, the X-MOD model is able to maintain performance, and even improves for a subset of languages. We observe similar patterns in the downstream task performance: In both our experimental setups—(1) we control for the number of update steps (Figure 4a); (2) we control for the number of per-language seen examples (Figure 4b)—our X-MOD model—in contrast to the SHARED model—is able to maintain, or...
Table 2: Pre-trained language results for the modular and shared model variants, pre-trained on the set of 60 languages for 265k update steps. For NER and MLQA we report F_1, for XNLI accuracy scores. Scores are averaged across all 5 random seeds of the best hyperparameter setting, evaluated on the development set.

Table 3: Results for added languages, for models pre-trained on the set of 60 languages for 265k update steps. We report F_1 and accuracy scores which are averaged across all 5 random seeds of the best hyperparameter setting on the development set.

5.2 Extending to unseen languages

We further evaluate the cross-lingual performance of languages added in the second step; (1) on the architectural side—comparing the SHARED with the X-MOD modelling variant—and (2) by comparing the performance when pre-training on the language, vs. when adding the language post-hoc.

Modular vs Shared. We evaluate if the additional per-language capacity improves the extendability of the X-MOD model. On the right in Figure 4a we plot the results for added languages on XNLI (top) and NER (bottom). Similarly, we plot the results for the models where we control for the number of seen examples per target language in Figure 4b. We find that the X-MOD model consistently outperforms the SHARED model, with a peak performance when pre-training on 60 languages, demonstrating that the language specific capacity is beneficial for adding new languages post-hoc. We report results for the 60 language versions in Table 3, demonstrating the consistent advantage of the X-MOD over the SHARED model.

Pre-training vs Adding Languages. To evaluate if there is a measurable difference on downstream performance for languages that we pre-train on vs. those we add post-hoc, we train 2 models on different initial sets of languages, adding the respectively missing ones in the second step. So as to understand if the typological similarity of languages has impact on the downstream task performance, we split the initial and added languages (Table 1) of our previous experiments into two parts. The first split consists of languages where the model was pre-trained on at least one language of the same language family (e.g. English vs. German). The second split consists of languages that are part of a unique language family, i.e. the model was not pre-trained on either language of the same family.
Table 4: Selection of 2 sets of languages that we either pre-train on, or add post-hoc. The last 6 languages in the list are part of language families which are unique in the total list of languages we pre-train on (Table 1), i.e. none of our models was pre-trained on a language of the same family.

Figure 5: XNLI test set accuracy of X-MOD models pre-trained on different languages in comparison to those added post-hoc (Table 4).

Figure 6: Results on XNLI when pre-training on 13 languages for 125k and 250k update steps.

MOD has the potential to cover all languages of the world, as the model has the capability to be adapted to new languages post-hoc.

6 Further analysis

We further analyze the impact of the number of update steps on X-MOD (§6.1) and compare our method to adapter-based approaches (§6.2).

6.1 The importance of update steps

In Figure 4 we have witnessed a slight edge of the SHARED model over the X-MOD model, when training on only 13 languages and only training for 125k update steps. Dufter and Schütze (2020) found that it requires a large number of update steps for a model pre-trained on multiple languages to become multilingual; with the added per-language capacity we hypothesize that update steps also play an important role for modular models. We compare the downstream task performance of models pre-trained on 13 languages, when training for 125k with 250k update steps in Figure 6. When training for longer we find that the X-MOD model begins to outperform the SHARED model in the source language, while almost closing the gap in the cross-lingual setting. This supports the hypothesis that the X-MOD model requires more update steps when training only on a small number of languages, in order for modularity to “kick-in”.

6.2 X-MOD vs. Adapters

As illustrated in Figure 3, from an architecture perspective X-MOD is similar to previously proposed multilingual Adapter-based methods (MAD-X; Pfeiffer et al., 2020b). MAD-X utilizes a pre-trained massively multilingual transformer-based model and fine-tunes newly introduced adapter weights on languages the model has seen during pre-training, and ones the model has not been pre-trained on a language of the same family (Table 4). Consequently, we pre-train two models on two sets of languages, adding the respective other set post-hoc.15

Our XNLI results (Figure 5) demonstrate that the per-language performance is on par when pre-training vs. when adding the language post-hoc.16 We also find that the family does not have a measurable effect on the performance of the language. Our results therefore suggest that it is sufficient to train X-MOD on only a subset of languages for which sufficient pre-training data exists. Essentially, X-
For a fair comparison in terms of seen examples and number of update steps we train a transformer model without module components (shared_nm) for 100k update steps on the respective languages (Table 1). We subsequently train adapters on each of the target languages for another 25k update steps. We report results in comparison to X-Mod in Figure 7, here results for shared_nm are for a model that was trained for 125k update steps to instantiate a fair comparison.

Our results demonstrate that the additional capacity of adapters added after pre-training is not able to mitigate the curse of multilinguality which has already had a catastrophic impact on the shared transformer weights; the performance of the adapters strongly correlates with the performance of the corresponding fully shared model shared_nm. Consequently, adding language-specific capacity during pre-training is important, as the curse of multilinguality cannot be lifted post-hoc.

7 Conclusions

In this paper, we have evaluated the effectiveness of modular multilingual language modelling across multiple axes. We have demonstrated that by providing additional per-language capacity, while maintaining the total number of trainable parameters per language, we are not only able to mitigate negative interference between languages, but additionally achieve positive transfer. Our results suggest that it is sufficient to train our proposed X-Mod model only on a subset of languages for which sufficient amounts of textual data is available. Unseen languages can be added post-hoc, with no measurable drop in performance on XNLI.

By pre-training the model in a modular fashion, we thus mitigate negative interference of idiosyncratic information, while simultaneously preparing the model to be extendable to unseen languages.

While in this work we have simulated language adding scenarios with a held out set of languages, in future work we aim to evaluate the performance on truly low-resource languages such as MasakhaNER (Adelani et al., 2021) and AmericasNLI (Ebrahimi et al., 2021). We further aim to evaluate the cross-lingual transfer performance from typologically more diverse source languages, besides English.

Acknowledgments

We thank Samuel Broscheit for insightful feedback and suggestions on a draft of this paper, as well as the ARR reviewers and meta-reviewers for their valuable comments.

References

David Ifeoluwa Adelani, Jade Z. Abbott, Graham Neubig, Daniel D’souza, Julia Kreutzer, Constantine Lignos, Chester Palen-Michel, Happy Buzabah, Shruti Rijhwani, Sebastian Ruder, Stephen Mayhew, Israel Abebe Azime, Shamsuddeen Hassan Muhammad, Chris Chinenyem Emezue, Joyce Nakatumba-Nabende, Perez Ogayo, Aremu Anfoluwapo, Catherine Gitau, Derguene Mbaye, Jesujoba O. Alabi, Seid Muhie Yimam, Tajuudeen Gwadabe, Ignatius Ezeani, Rubungo Andre Nyongabo, Jonathan Mukiibi, Verrah Otieno, Iroro Orife, Davis David, Samba Ngom, Tosin P. Adewumi, Paul Rayson, Mofetoluwa Adeyemi, Gerald Muriuki, Emmanuel Anebi, Chiamaka Chukwunekes, Nkiruka Odu, Eric Peter Wairagala, Samuel Oyerinde, Clemens Siro, Tobias Saul Bateesa, Temilola Oloyede, Yvonne Wambui, Victor Akinode, Deborah Nabegereka, Maurice Katusiime, Ayodele Awokoya, Mouhamadane Mboup, Dibora Gebreyohannes, Henok Tilaye, Kelechi Nwaike, Degaga Wolde, Abdoulaye Faye, Blessing Sibanda, Ovevahegne Ahia, Bonaventure F. P. DOSso, Kelechi Ogueji, Thierno Ibrahim Diop, Abdoulaye Diallo, Adewale Akinfaderen, Bendae Marengereke, and Salomey Osei. 2021. MasakhaNER: Named Entity Recognition for African Languages. In Transactions of the Association for Computational Linguistics 2021.

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. 2016. Learning to compose neural networks for question answering. In NAACL HLT 2016, The 2016 Conference of the North American Chapter of the Association for Computational Linguistics:
Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity. arXiv preprint.

Towards continual learning for multilingual machine translation via vocabulary substitution. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 1184–1192, Online. Association for Computational Linguistics.

How to (properly) evaluate cross-lingual word embeddings: On strong baselines, comparative analyses, and some misconceptions. In Proceedings of the 57th Conference of the Association for Computational Linguistics, ACL 2019, Florence, Italy, July 28–August 2, 2019, Volume 1: Long Papers, pages 710–721.

Demix layers: Disentangling domains for modular language modeling. arXiv preprint.

Towards a unified view of parameter-efficient transfer learning. In 10th International Conference on Learning Representations, ICLR 2022, Virtual Conference, April 25 - 29, 2022.

Parameter-efficient transfer learning for NLP. In Proceedings of the 36th International Conference on Machine Learning, ICML 2019, Long Beach, California, USA, pages 2790–2799.

XTREME: A massively multilingual multi-task benchmark for evaluating cross-lingual generalization. In Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 12-18 July 2020, Virtual Conference.

Cross-lingual ability of multilingual BERT: an empirical study. In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.

Common sense or world knowledge? investigating adapter-based knowledge injection into pretrained transformers. In Proceedings of Deep Learning Inside Out (DeeLIO): The First Workshop on Knowledge Extraction and Integration for Deep Learning Architectures, pages 43–49, Online. Association for Computational Linguistics.

From zero to hero: On the limitations of zero-shot language transfer with multilingual Transformers. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 4483–4499, Online.

Lightweight adapter tuning for multilingual speech translation. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, ACL/IJCNLP 2021, (Volume 2: Short Papers), Virtual Event, August 1-6, 2021, pages 817–824. Association for Computational Linguistics.

Compact: Efficient low-rank hypercomplex adapter layers. Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021.

Parameter-efficient multi-task fine-tuning for transformers via shared hypernetworks. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual Event, August 1-6, 2021, pages 565–576. Association for Computational Linguistics.

When being unseen from mBERT is just the beginning: Handling new languages with multilingual language models. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 448–462, Online. Association for Computational Linguistics.

Fairsq: A fast, extensible toolkit for sequence modeling. In Proceedings of...
the 2019 Conference of the North American Chapter of the Association for Computational Linguistics (Demonstrations), pages 48–53, Minneapolis, Minnesota. Association for Computational Linguistics.

Xiaoman Pan, Boliang Zhang, Jonathan May, Joel Nothman, Kevin Knight, and Heng Ji. 2017. Cross-lingual name tagging and linking for 282 languages. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, ACL 2017, Vancouver, Canada, July 30 - August 4, Volume 1: Long Papers, pages 1946–1958.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, Kyunghyun Cho, and Iryna Gurevych. 2020a. AdapterFusion: Non-destructive task composition for transfer learning. In Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pages 487–503, Online. Association for Computational Linguistics.

Jonas Pfeiffer, Andreas Rücklé, Clifton Poth, Aishwarya Kamath, Ivan Vulić, Sebastian Ruder, Kyunghyun Cho, and Iryna Gurevych. 2020b. AdapterHub: A Framework for Adapting Transformers. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (System Demonstrations), EMNLP 2020, Virtual Conference, 2020.

Jonas Pfeiffer, Ivan Vulić, Iryna Gurevych, and Sebastian Ruder. 2020b. MAD-X: An Adapter-Based Framework for Multi-Task Cross-Lingual Transfer. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 7654–7673, Online. Association for Computational Linguistics.

Jonas Pfeiffer, Ivan Vulić, Iryna Gurevych, and Sebastian Ruder. 2021b. UNKs Everywhere: Adapting Multilingual Language Models to New Scripts. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021, Online, November 2021.

Jerin Philip, Alexandre Berard, Matthias Gallé, and Laurent Besacier. 2020. Monolingual adapters for zero-shot neural machine translation. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 4465–4470, Online. Association for Computational Linguistics.

Telmo Pires, Eva Schlinger, and Dan Garrette. 2019. How multilingual is multilingual bert? In Proceedings of the 57th Conference of the Association for Computational Linguistics, ACL 2019, Florence, Italy, July 28–August 2, 2019, Volume 1: Long Papers, pages 4996–5001.

Eduardo Maria Ponti, Goran Glavaš, Olga Majewska, Qianchu Liu, Ivan Vulić, and Anna Korhonen. 2020. XCOPA: A multilingual dataset for causal commonsense reasoning. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 2362–2376, Online. Association for Computational Linguistics.

Clifton Poth, Jonas Pfeiffer, Andreas Rücklé, and Iryna Gurevych. 2021. What to pre-train on? efficient intermediate task selection. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 7-11 November 2021, pages 10585–10605. Association for Computational Linguistics.

Afshin Rahimi, Yuan Li, and Trevor Cohn. 2019. Massively multilingual transfer for NER. In Proceedings of the 57th Conference of the Association for Computational Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers, pages 151–164.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016. SQuAD: 100,000+ Questions for Machine Comprehension of Text. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, EMNLP 2016, Austin, Texas, USA, November 1-4, 2016, pages 2383–2392.

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi. 2017. Learning multiple visual domains with residual adapters. In Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, 4-9 December 2017, Long Beach, CA, USA, pages 506–516.

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi. 2018. Efficient parametrization of multi-domain deep neural networks. In 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018, pages 8119–8127.

Andreas Rücklé, Gregor Geigle, Max Glockner, Tilman Beck, Jonas Pfeiffer, Nils Reimers, and Iryna Gurevych. 2021. Adapterdrop: On the efficiency of adapters in transformers. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 7-11 November 2021, pages 7930–7946. Association for Computational Linguistics.

Andreas Rücklé, Gregor Geigle, Max Glockner, Tilman Beck, Jonas Pfeiffer, Nils Reimers, and Iryna Gurevych. 2020. Multicqa: Zero-shot transfer of self-supervised text matching models on a massive scale. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020, Online, November 16-20, 2020, pages 2471–2486. Association for Computational Linguistics.

Sebastian Ruder, Ivan Vulić, and Anders Søgaard. 2019. A survey of cross-lingual embedding models. Journal of Artificial Intelligence Research, 65:569–631.
Phillip Rust, Jonas Pfeiffer, Ivan Vulić, Sebastian Ruder, and Iryna Gurevych. 2021. How good is your tokenizer? on the monolingual performance of multilingual language models. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 3118–3135, Online. Association for Computational Linguistics.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc V. Le, Geoffrey E. Hinton, and Jeff Dean. 2017. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net.

Asa Cooper Stickland, Alexandre Berard, and Vassilina Nikouline. 2021. Multilingual domain adaptation for NMT: decoupling language and domain information with adapters. In Proceedings of the Sixth Conference on Machine Translation, WMT@EMNLP 2021, Online Event, November 10-11, 2021, pages 578–598. Association for Computational Linguistics.

Asa Cooper Stickland and Iain Murray. 2019. BERT and pals: Projected attention layers for efficient adaptation in multi-task learning. In Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97 of Proceedings of Machine Learning Research, pages 5986–5995. PMLR.

Yi Tay, Vinh Q. Tran, Sebastian Ruder, Jai Prakash Gupta, Hyung Won Chung, Dara Bahri, Zhen Qin, Simon Baumgartner, Cong Yu, and Donald Metzler. 2021. Charformer: Fast character transformers via gradient-based subword tokenization. arXiv preprint.

Ke M. Tran. 2020. From english to foreign languages: Transferring pre-trained language models. arXiv preprint.

Ahmet Üstün, Alexandre Berard, Laurent Besacier, and Matthias Gallé. 2021. Multilingual unsupervised neural machine translation with denoising adapters. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 7-11 November, 2021, pages 6650–6662. Association for Computational Linguistics.

Ahmet Üstün, Arianna Bisazza, Gosse Bouma, and Gertjan van Noord. 2020. UDapter: Language adaptation for truly Universal Dependency parsing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 2302–2315, Online. Association for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention Is All You Need. In Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, 4-9 December 2017, Long Beach, CA, USA, pages 5998–6008.

Giorgos Vernikos and Andrei Popescu-Belis. 2021. Subword mapping and anchoring across languages. In Findings of the Association for Computational Linguistics: EMNLP 2021, pages 2633–2647, Punta Cana, Dominican Republic. Association for Computational Linguistics.

Marko Vidoni, Ivan Vulić, and Goran Glavaš. 2020. Orthogonal language and task adapters in zero-shot cross-lingual transfer. In arXiv preprint.

Ruize Wang, Duyu Tang, Nan Duan, Zhongyu Wei, Xuanjing Huang, Jianshu Ji, Guihong Cao, Daxin Jiang, and Ming Zhou. 2021a. K-adapter: Infusing knowledge into pre-trained models with adapters. In Findings of the Association for Computational Linguistics: ACL/IJCNLP 2021, Online Event, August 1-6, 2021, volume ACL/IJCNLP 2021 of Findings of ACL, pages 1405–1418. Association for Computational Linguistics.

Xinyi Wang, Yulia Tsvetkov, Sebastian Ruder, and Graham Neubig. 2021b. Efficient test time adapter ensembling for low-resource language varieties. In Findings of the Association for Computational Linguistics: EMNLP 2021, pages 730–737, Punta Cana, Dominican Republic. Association for Computational Linguistics.

Zihan Wang, Kirthikeyan K, Stephen Mayhew, and Dan Roth. 2020. Extending multilingual BERT to low-resource languages. In Findings of the Association for Computational Linguistics: EMNLP 2020, pages 2649–2656, Online. Association for Computational Linguistics.

Adina Williams, Nikita Nangia, and Samuel Bowman. 2018. A broad-coverage challenge corpus for sentence understanding through inference. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 1112–1122, New Orleans, Louisiana. Association for Computational Linguistics.

Shijie Wu, Alexis Conneau, Haoran Li, Luke Zettlemoyer, and Veselin Stoyanov. 2020. Emerging cross-lingual structure in pretrained language models. In Proceedings of the 58th Conference of the Association for Computational Linguistics, ACL 2020, Virtual Conference, July 6-8, 2020, pages 6022–6034.

Shijie Wu and Mark Dredze. 2019. Beto, bentz, becas: The surprising cross-lingual effectiveness of BERT. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages
Additional results

We report MLQA and XQuAD results on pre-trained languages in Tables 5 and 6, respectively, and MLQA results on added languages in Table 7. Table 8 report NER results on more languages.

Figures 9, 10 and 11 report per-language results as we increase the amount of languages on language modeling perplexity, XNLI and NER, respectively.

Intermediate checkpoints

Our results in §6.1 suggest that, when the number of languages is small, X-MOD becomes more competitive with SHARED as the number of training steps increases. So as to understand if this behavior also holds for models covering more languages, we evaluate intermediate checkpoints for the 60-LANG model on XNLI. As shown in Figure 8, we find that the X-MOD model continuously outperforms the SHARED model. This suggests that the SHARED model immediately suffers from negative interference between languages, while the added, language-specific components of the X-MOD model are able to mitigate the curse of multilinguality, resulting in considerable performance gains at all evaluated checkpoints.

Language selection

We provide more details about our selection of languages in Table 9.
Table 8: Average F₁ results for pre-trained languages, on the test set of NER for the X-MOD and SHARED model variants, pre-trained on the set of 60 languages. Bold numbers indicate better performance for the respective language.

Language	Pre-trained	SHARED
en	81.4	81.5
af	78.9	74.1
ar	43.5	44.2
bn	63.2	62.4
et	76.2	70.7
eu	62.2	58.1
fa	44.3	40.3
fi	78.6	74.4
fr	77.2	74.7
hi	70.1	64.4
hu	78.3	74.2
id	50.5	51.5
it	78.3	61.5
ka	59.1	46.0
ko	73.4	58.3
ru	51.1	57.2
sw	2.8	52.5
ta	66.2	4.0
th	62.8	63.7
vi	44.3	59.5

Figure 9: Perplexity when training on more languages. Each model has seen the same amount of examples in each individual language. Lower perplexity indicates better performance.
Figure 11: Testset results on NER of pre-trained (top) and added (bottom) languages trained on different numbers of languages. Models trained on more languages are trained for longer → all models have seen the same amount of examples in each individual language. Scores are averaged across all random seeds.
Table 9: List of languages we pre-train ✓ on or add + in the different sets (13, 30, 60, 75). (+) indicates the respectively different pre-training/added languages of models 1 and 2 as described in §5.2 and Table 4. IE stands for Indo-European.