attack rate from children to household members was estimated to be only 0.5% (7). Reduced transmission from children in households was also reported in Switzerland and China and in educational settings in Australia (8–10).

This study is limited by its small sample size, which limits the ability to generalize its results. Moreover, we did not assess the patients’ viral load, which could indirectly reflect the infectivity of the children, nor did we assess patient serology, which could further ascertain their infection status. Despite these limitations, our study provides information on SARS-CoV-2 transmission from children to guardians in isolation rooms. Additional assessments of the transmissibility of SARS-CoV-2 by children and the role of PPE in preventing infection could provide guidance during the ongoing pandemic. Nonetheless, our study adds to growing evidence that young children are less likely to contribute to the spread of COVID-19 among their adult guardians.

About the Author

Dr. E.J. Lee is a pediatrician at the Seongnam Citizens Medical Center, Seongnam, Korea. Her clinical expertise is in the field of pediatric gastroenterology, and her primary research focuses on gut microbiome in children.

References

1. Han MS, Choi EH, Chang SH, Jin B-L, Lee EJ, Kim BN, et al. Clinical characteristics and viral RNA detection in children with COVID-19 in the Republic of Korea. JAMA Pediatr. 2020 Aug 28 [Epub ahead of print]. https://doi.org/10.1001/jamapediatrics.2020.3988
2. Furukawa NW, Brooks JT, Sobel J. Evidence supporting transmission of severe acute respiratory syndrome coronavirus 2 while presymptomatic or asymptomatic. Emerg Infect Dis. 2020 May 4 [Epub ahead of print]. https://doi.org/10.3201/eid2607.201595
3. Leung NHL, Chu DKW, Shiu EYC, Chan KH, McDevitt JJ, Hau BPJ, et al. Respiratory virus shedding in exhaled breath and efficacy of face masks. Nat Med. 2020;26:676–80. https://doi.org/10.1038/s41591-020-0843-2
4. Chu DK, Akl EA, Duda S, Solo K, Yaacoub S, Schünemann HJ, et al.; COVID-19 Systematic Urgent Review Group Effort (SURGE) study authors. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis. Lancet. 2020;395:1973–87. https://doi.org/10.1016/S0140-6736(20)31142-9
5. Lee B, Raszka WV Jr. COVID-19 transmission and children: the child is not to blame. Pediatrics. 2020;146:e202004879. https://doi.org/10.1542/peds.2020-04879
6. Park YJ, Choe YJ, Park O, Park SY, Kim YM, Kim J, et al.; COVID-19 National Emergency Response Center, Epidemiology and Case Management Team. Contact tracing during coronavirus disease outbreak, South Korea, 2020. Emerg Infect Dis. 2020;26:2465–8. https://doi.org/10.3201/eid2610.201315
7. Kim J, Choe YJ, Lee J, Park YJ, Park O, Han MS, et al. Role of children in household transmission of COVID-19. Arch Dis Child. 2020 [Epub ahead of print]. https://doi.org/10.1136/archdischild-2020-319910
8. Posfay-Barbe KM, Wagner N, Gauthey M, Moussaoui D, Loeyv N, Diana A, et al. COVID-19 in children and the dynamics of infection in families. Pediatrics. 2020;146:e20201576. https://doi.org/10.1542/peds.2020-1576
9. Jiehao C, Jin X, Diaoqiong L, Zhi Y, Lei X, Zhenghai Q, et al. A case series of children with 2019 novel coronavirus infection: clinical and epidemiological features. Clin Infect Dis. 2020;71:1547–51. https://doi.org/10.1093/cid/ciaa198
10. Macartney K, Quinn HE, Pillsbury AJ, Koirala A, Deng L, Winkler N, et al.; NSW COVID-19 Schools Study Team. Transmission of SARS-CoV-2 in Australian educational settings: a prospective cohort study. Lancet Child Adolesc Health. 2020;4:807–16. https://doi.org/10.1016/S2352-4642(20)30251-0

Address for correspondence: Mi Seon Han, Department of Pediatrics, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, 20 Boramae-ro 5-gil, Dongjak-gu, Seoul 07061, South Korea; email: msh0827@snu.ac.kr

Superspreading Event of SARS-CoV-2 Infection at a Bar, Ho Chi Minh City, Vietnam

Nguyen Van Vinh Chau, Nguyen Thi Thu Hong, Nghiem My Ngoc, Tran Tan Thanh, Phan Nguyen Quoc Khanh, Lam Anh Nguyet, Le Nguyen Truc Nhu, Nguyen Thi Han Ny, Dinh Nguyen Huy Man, Vu Thi Ty Hang, Nguyen Thanh Phong, Nguyen Thi Hong Que, Pham Thi Tuyen, Tran Nguyen Hoang Tu, Tran Tinh Hien, Ngo Ngoc Quang Minh, Le Manh Hung, Nguyen Thanh Truong, Lam Minh Yen, H. Rogier van Doorn, Nguyen Thanh Dung, Guy Thwaites, Nguyen Tri Dung, Le Van Tan, for the OUCRU COVID-19 research group

1 Members of the group are listed in the Appendix (https://wwwnc.cdc.gov/EID/article/27/1/20-3480-App1.pdf).
We report a superspreading event of severe acute respiratory syndrome coronavirus 2 infection initiated at a bar in Vietnam with evidence of symptomatic and asymptomatic transmission, based on ministry of health reports, patient interviews, and whole-genome sequence analysis. Crowds in enclosed indoor settings with poor ventilation may be considered at high risk for transmission.

Superspreading events occur when a few persons infect a larger number of secondary persons with whom they have contact (1,2). For severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), an Rₚ of 2–3 with 6–8 secondary cases has been suggested to constitute a superspreading event (3).

Although SARS-CoV-2 is known to be transmitted through droplets and fomites, there has been growing evidence of airborne transmission (4,5). Better understanding of specific transmission in which superspreading events are facilitated remains critical to inform the development and implementation of control measures to avoid future waves of the pandemic (5).

On March 18, 2020, a 43-year-old man, patient 1, sought treatment at the Hospital for Tropical Diseases in Ho Chi Minh City, Vietnam, for fever, cough, muscle aches, fatigue, and headache. A sample from a nasopharyngeal throat swab specimen taken at admission tested positive for SARS-CoV-2 by reverse transcription PCR.

During the 14 days before the onset of his symptoms on March 17, he had traveled to Thailand and within Vietnam, between Hanoi and Ho Chi Minh City. From 10:00 PM on March 14 until 2:30 AM of the next day, he participated in a St. Patrick’s Day celebration at bar X in Ho Chi Minh City. The bar had 2 indoor areas for clients, an ≈300-m² area downstairs and an ≈50-m² area upstairs, with no mechanical ventilation. During open hours, the left and right entrances were typically kept closed to facilitate cooling with air conditioners that recycle indoor air; the middle entrance was kept open. The bar also has naturally ventilated outdoor spaces (Appendix, https://wwwnc.cdc.gov/EID/article/27/1/20-3480-App1.pdf). Patient 1 was inside the bar during the party.

After the confirmed diagnosis of COVID-19 in patient 1, we used contact tracing and testing to...
detect 18 additional PCR-confirmed cases. Of these, 12 (patients 2–13) were at bar X during the evening of March 14; the other 6 (patients 14–19) were contacts (Table; Appendix Figure). Of the patients with confirmed cases attending the celebration, 4 were in close contact with patient 1: patients 2–4 went to the celebration with patient 1 and patient 6 worked as a waiter in the bar. Patients 2 and 3, who were roommates, had traveled to Malaysia and returned to Vietnam, patient 2 on March 13 and patient 3 on March 19.

Figure. Time-scale phylogenetic tree illustrating the relatedness between whole-genome sequences of severe acute respiratory syndrome coronavirus 2 obtained from patients with confirmed cases of the cluster associated with a bar in Ho Chi Minh City, Vietnam, 2020, and reference sequences. Sequences from the cluster patients are in red; sequences from coronavirus disease patients in Ho Chi Minh City, not related to the cluster, are in blue. For those sequences, we obtained 21 genomes from the remaining 35 patients reported in Ho Chi Minh City as of April 24, 2020, for the purpose of the analysis; subsequently, we used 14 nonidentical sequences for the analysis. Representative sequences from patients not in Vietnam are in black. Posterior probabilities ≥75% are indicated at all nodes. The analysis was carried out using BEAST version 1.8.3 (https://beast.community). For time-scale analysis, only 1 representative of sequences that were 100% identical to each other was included. Whole-genome sequences were generated using ARTIC primers version 3 (ARTIC Network, https://artic.network/ncov-2019).
March 6. The other patients, except for patient 1, had no recent history of travel outside of HCMC (Table).

By exploring the epidemiologic links discovered from in-depth interviews, we identified 3 possible transmission chains involving patients who attended the March 14 celebration (Table; Figure; Appendix Figure). Of these, 2 or 3 patients (patients 5, 10, and possibly 14) were asymptomatic but transmitted SARS-CoV-2 to their contacts (Table; Figure). None of the 19 patients with confirmed cases reported that they had respiratory signs or symptoms on March 14–15. However, in addition to patient 1, a total of 5 others developed mild respiratory symptoms (patient 4 on March 16, patient 6 on March 21, patient 9 on March 25, patient 13 on March 26, and patient 17 on March 27), suggesting an incubation period of 2–12 days. Follow-up data were available for 12 patients who participated in our clinical study (Appendix). Six remained asymptomatic during follow-up (Appendix Table 1).

A total of 11 whole-genome sequences of SARS-CoV-2 were obtained from the patients in the cluster. The obtained sequences were either 100% identical or different from each other by only 1–2 nt (Appendix Table 2). Phylogenetically, they clustered together tightly but were different from sequences obtained from other cases in Ho Chi Minh City during the same period.

As of September 15, 2020, only 30 cases of locally acquired infection had been reported in Ho Chi Minh City (6), but this cluster represents the only documented superspreading event (6,7). Together with data from previous reports (3,8,9), these data suggest that closed settings are facilitators of community transmission of SARS-CoV-2. The mechanism by which infected people without symptoms spread SARS-CoV-2 to others, especially in closed settings, warrants further research, including on transmission through aerosols, which has been suggested (4,10).

The high level of genome sequence similarity between the SARS-CoV-2 genomes obtained from the patients and the tight clustering on the phylogenetic tree strengthen the epidemiologic link between the PCR-confirmed cases from this cluster. Together with contact history, these data also support transmission chains involving asymptomatic carriers (patients 5 and 14) as the sources of the ongoing infection. However, the identity of the patient in the index case from the bar could not be confirmed, in part because in-depth interview data were available from only 8 of 13 patients with confirmed cases who consented to participate in the study. In conclusion, our results emphasize that persons in crowded indoor settings with poor ventilation may be considered to be at high risk for SARS-CoV-2 transmission.

Acknowledgments
We are indebted to Nguyen Thanh Ngoc, Le Kim Thanh, and the OUCRU IT/CTU/Lab management departments, especially Ho Van Hien, Dang Minh Hoang, and Nguyen Than Ha Quyen, for their support. We thank Maia Rabaa at OUCRU for her initial discussion about the analysis, and Leigh Jones at OUCRU for her input with some of the epidemiological data. Finally, we thank the patients for their participation in this study and the doctors and nurses of the Hospital for Tropical Diseases, who cared for the patients and provided the logistic support with the study.

This study was funded by the Wellcome Trust of Great Britain (106680/B/14/Z and 204904/Z/16/Z).

About the Author
Dr. Chau is the director of the Hospital for Tropical Diseases in Ho Chi Minh City, Vietnam. He is a frontline healthcare worker in the COVID-19 pandemic.

References
1. Wang SX, Li YM, Sun BC, Zhang SW, Zhao WH, Wei MT, et al. The SARS outbreak in a general hospital in Tianjin, China – the case of super-spreader. Epidemiol Infect. 2006;134:786–91. https://doi.org/10.1017/S095026880500556X
2. Cho SY, Kang J-M, Ha YE, Park GE, Lee JY, Ko J-H, et al. MERS-CoV outbreak following a single patient exposure in an emergency room in South Korea: an epidemiological outbreak study. Lancet. 2016;388:994–1001. https://doi.org/10.1016/S0140-6736(16)30623-7
3. Adam DC, Wu P, Wong JY, Lau EHY, Tsang TK, Cauchemez S, et al. Clustering and superspreading potential of SARS-CoV-2 infections in Hong Kong. Nat Med. 2020 Sep 17 [Epub ahead of print].
4. Morawska L, Milton DK. It is time to address airborne transmission of COVID-19. Clin Infect Dis. 2020;ciaa939. https://doi.org/10.1093/cid/ciaa939
5. World Health Organization. Transmission of SARS-CoV-2: implications for infection prevention precautions. 2020. [cited on 2020 Jul 24] https://www.who.int/news-room/commentaries/detail/transmission-of-sars-cov-2-implications-for-infection-prevention-precautions
6. Ministry of Health of Vietnam. Updated information about COVID-19 pandemic. Official page on acute respiratory infections COVID-19 [cited 2020 Sep 5]. http://ncov.moh.gov.vn
7. Thanh NN, Van TN, Thu HNT, Van BN, Thanh BD, Thu HPT, et al. Outbreak investigation for COVID-19 in northern Vietnam. Lancet Infect Dis. 2020;20:535–6. https://doi.org/10.1016/S1473-3099(20)30159-6
8. Pung R, Chiew CJ, Young BE, Chin S, Chen MIC, Clapham HE, et al.; Singapore 2019 Novel Coronavirus Outbreak Research Team. Investigation of three clusters of COVID-19 in Singapore: implications for surveillance and response measures. Lancet. 2020;395:1039–46. https://doi.org/10.1016/S0140-6736(20)30528-6
Racial and Workplace Disparities in Seroprevalence of SARS-CoV-2, Baton Rouge, Louisiana, USA

Amy K. Feehan, Cruz Velasco, Daniel Fort, Jeffrey H. Burton, Eboni G. Price-Haywood, Peter T. Katzmarzyk, Julia Garcia-Diaz, Leonardo Seoane

Author affiliations: Ochsner Clinic Foundation, New Orleans, Louisiana, USA (A.K. Feehan, C. Velasco, D. Fort, J.H. Burton, E.G. Price-Haywood, J. Garcia-Diaz, L. Seoane); The University of Queensland Faculty of Medicine, Ochsner Clinical School, New Orleans (A.K. Feehan, E.G. Price-Haywood, J. Garcia-Diaz, L. Seoane); Pennington Louisiana State University, Baton Rouge, Louisiana, USA (P.T. Katzmarzyk); Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, USA (L. Seoane)

DOI: https://doi.org/10.3201/eid2701.203808

By using paired molecular and antibody testing for severe acute respiratory syndrome coronavirus 2 infection, we determined point prevalence and seroprevalence in Louisiana, USA, during the second phase of reopening. Infections were highly variable by race and ethnicity, work environment, and ZIP code. Census-weighted seroprevalence was 3.6%, and point prevalence was 3.0%.

We previously reported results from a seroprevalence study conducted in New Orleans, Louisiana, USA, which was hit hard early in the coronavirus disease (COVID-19) pandemic (1). Baton Rouge is a large metropolitan area roughly 80 miles northwest of New Orleans; at the time of this study, it was in the second phase of reopening after a stay-at-home order. Although the seroprevalence in New Orleans (6.9%) (1) was similar to prevalence recorded in Spain (5%), São Paulo, Brazil (4.7%), and New York, USA (6.9%) (2,3; B.H. Tess, unpub. data, https://doi.org/10.1101/2020.06.29.20142331), Baton Rouge had only 3,427 more cases as of August 2, 2020 (17,093 cases), than New Orleans did by May 16, 2020 (13,666 cases) (4). This latest study estimated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in the greater Baton Rouge area (Ascension, East Baton Rouge, Livingston, and West Baton Rouge Parishes), with additional information on potential workplace exposures.

The protocol was approved by the Ochsner institutional review board and was designed to enroll and test ≤2,500 participants at 13 sites throughout Baton Rouge during July 15–31. Recruitment targeted a representative sample by using a method developed by Public Democracy (https://www.publicdemocracy.io) and described elsewhere (1,5). In contrast to the New Orleans study, in which persons tested were under a stay-at-home order, Baton Rouge was in phase 2 of reopening. A randomized subset of 500,000 Baton Rouge residents were targeted with digital ads for recruitment. Of those, 3,687 volunteers were recruited and reclassified according to census designations; 2,309 were invited to participate, 2,179 enrolled and completed testing, and 2,138 were included in our final analysis. A total of 38 persons were excluded because they lived in ineligible ZIP codes, and 3 withdrew consent (Appendix Figure 1, https://wwwnc.cdc.gov/EID/article/27/1/20-3808-App1.pdf). All study materials were provided in English, Spanish, and Vietnamese. Participants were offered free transportation. Research staff verbally obtained consent from participants and electronically documented consent and survey responses. We then procured blood samples and nasopharyngeal swab specimens from participants.

We used US Food and Drug Administration Emergency Use Authorization–approved tests. Real-time reverse transcription PCR of nasopharyngeal swab specimens was performed by using the Abbott m2000 RealTime system (Abbott, https://www.abbott.com). Qualitative IgG blood tests were performed by using the ARCHITECT i2000SR (Abbott). The IgG test meets criteria established by the Centers for Disease Control and Prevention to yield high positive predictive value, which was validated by Ochsner Health laboratory and others (6,7). Study participants who tested positive on either or both tests were...
Superspreading Event of SARS-CoV-2 Infection at a Bar, Ho Chi Minh City, Vietnam

Appendix

The Study

Since the beginning of March 2020, a COVID-19 research program aimed at unraveling the natural history of SARS-CoV-2 infection has been conducted at the Hospital for Tropical Diseases (HTD) and at 1 of its 2 designated COVID-19 centers, Cu Chi Hospital in Ho Chi Minh City, Vietnam (1, 2). These are the largest COVID-19 treatment centers in the southern region, which has a population of >40 million people.

We tested patients admitted to HTD or Cu Chi Hospital using real-time reverse-transcriptase-PCR (rRT-PCR) to confirm SARS-CoV-2 infection. At enrollment, we collected nasopharyngeal throat swabs (NTS) from each participant, and combined them in 1 tube containing 1mL of viral transport medium. We also collected clinical and laboratory data, a travel history, and contact information from each study participant using a case record form developed by the International Severe Acute Respiratory and Emerging Infection Consortium (ISARIC, https://isaric.tghn.org/). The collected NTS sample was placed in storage at 4°C at the study sites within 4 hours and then transferred to the clinical laboratory at HTD for analysis. SARS-CoV-2 detection was carried out using WHO-recommended rRT-PCR assays (3).

The clinical studies received approvals from the Institutional Review Board of the HTD and the Oxford Tropical Research Ethics Committee of the University of Oxford. Additionally, we retrieved epidemiologic data from an official COVID-19 website of the Vietnamese Ministry of Health (4), and diagnostic results from the HTD database system.
COVID-19 Containment Approach in Vietnam

Since January 2020, various control measures, including isolation of confirmed cases, contact tracing, airport quarantine, and social distancing have been implemented in Vietnam with increasing stringency as the pandemic progressed worldwide (1). Accordingly, anyone known to have been in contact with a confirmed COVID-19 case or having traveled to Vietnam from a COVID-19–affected country, were isolated for ≥14 days at a designated isolation center.

From the second week of March 2020, all isolated persons were subject to serial SARS-CoV-2 NTS screening by rRT-PCR at least 2X (day 1 and day 14 of the quarantine) (1). A confirmed case was established if 2 independent RT-PCR assays (E gene and RdRP RT-PCR assays) were positive.

In response to escalation of COVID-19 cases in Vietnam, on April 1, 2020 the government issued Directive #16, requiring mass masking, was applied throughout Ho Chi Minh City. This directive was lifted on April 23, 2020.

Description of bar X

The bar has both indoor and outdoor spaces. The majority of the bar space, ≈350 m², is indoors. The ground floor has an indoor space ≈300 m² and outdoor spaces of ≈100 m² at the front with limited seating. At the back of the bar is a small outdoor smoking section of ≈20 m². The upstairs area is divided into an indoor area and a balcony. The former is ≈50 m², with a pool table, a small bar, and some seating; the latter is ≈20 m².

When the bar is open, the front is partly open, allowing some natural ventilation, but has air conditioners that recycle indoor air throughout. The other two entrances to the bar are kept closed to retain cool air. Except for some of the bar staff, none of the >200 participants was wearing masks on the night of the celebration.

OUCRU COVID-19 Research Group

Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam: Nguyen Van Vinh Chau, Nguyen Thanh Dung, Le Manh Hung, Huynh Thi Loan, Nguyen Thanh Truong, Nguyen Thanh Phong, Dinh Nguyen Huy Man, Nguyen Van Hao, Duong Bich Thuy, Nghiem My Ngoc, Nguyen Phu Huong Lan, Pham Thi Ngoc Thoa, Tran Nguyen Phuong Thao, Tran Thi Lan Phuong, Le Thi Tam Uyen, Tran Thi Thanh Tam, Bui Thi Ton That, Huynh
Kim Nhung, Ngo Tan Tai, Tran Nguyen Hoang Tu, Vo Trong Vuong, Dinh Thi Bich Ty, Le Thi Dung, Thai Lam Uyen, Nguyen Thi My Tien, Ho Thi Thu Thao, Nguyen Ngoc Thao, Huynh Ngoc Thien Vuong, Pham Ngoc Phuong Thao, Phan Minh Phuong

Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam: Dong Thi Hoai Tam, Evelyne Kestelyn, Donovan Joseph, Ronald Geskus, Guy Thwaites, H. Rogier van Doorn, Ho Van Hien, Huynh Le Anh Huy, Huynh Ngan Ha, Huynh Xuan Yen, Jennifer Van Nuil, Jeremy Day, Joseph Donovan, Katrina Lawson, Lam Anh Nguyen, Lam Minh Yen, Le Nguyen Truc Nhu, Le Thanh Hoang Nhat, Le Van Tan, Sonia Lewycka Odette, Louise Thwaites, Maia Rabaa, Marc Choisy, Mary Chambers, Motiur Rahman, Ngo Thi Hoa, Nguyen Thanh Thuy Nhien, Nguyen Thi Han Ny, Nguyen Thi Kim Tuyen, Nguyen Thi Phuong Dung, Nguyen Thi Thu Hong, Nguyen Xuan Truong, Phan Nguyen Quoc Khanh, Phung Le Kim Yen, Sophie Yacoub, Thomas Kesteman, Nguyen Thuy Thuong Thuong, Tran Tan Thanh, Tran Tinh Hien, Vu Thi Ty Hang

References

1. Chau NVV, Thanh Lam V, Thanh Dung N, Yen LM, Minh NNQ, Hung LM, et al.; OUCRU COVID-19 research group. The natural history and transmission potential of asymptomatic SARS-CoV-2 infection. Clin Infect Dis. 2020;ciaa711. PubMed https://doi.org/10.1093/cid/ciaa711

2. Van Tan L, Thi Thu Hong N, My Ngoc N, Tan Thanh T, Thanh Lam V, Anh Nguyet L, et al.; for OUCRU COVID-19 research group. SARS-CoV-2 and co-infections detection in nasopharyngeal throat swabs of COVID-19 patients by metagenomics. J Infect. 2020;81:e175–7. PubMed https://doi.org/10.1016/j.jinf.2020.06.033

3. Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DK, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. 2020;25. PubMed https://doi.org/10.2807/1560-7917.ES.2020.25.3.2000045

4. Ministry of Health of Vietnam. Updated information about COVID-19 pandemic. Official page on acute respiratory infections COVID-19 [cited 2020 Sep 5]. http://ncov.moh.gov.vn
Appendix Table 1. Demographics and admission clinical and laboratory data of the study participants

Demographics	(N = 19)
Age in years, median (range)	33 (22–51)
Gender (female/male), n/n	9/10
Nationality	n (%)
Vietnamese	5 (26)
Others	14 (74)

Admission clinical and laboratory data	N = 12*
Days from confirmed diagnosis to enrolment, median (range)	2 (1–4)
Days from admission to enrolment, median (range)	1 (0–2)

Laboratory results	Median (range)/normal range
White-cell count (*×10⁹/µL)	5.5 (3.2–6.9)/(4–11)
Lymphocyte counts (*×10⁹/µL)	1.8 (0.5–2.6)/(1.5–4)
Hemoglobin (g/dl)	14.8 (10–17.3)/(13–18)
Hematocrit (%)	39.5 (29–43.4)/(37–52)
Platelet count (per µL)	243 (166–327)/(150–450)
Glucose (mg/liter)	89.7 (64–340)/(70–130)
Creatinine (mg/dl)	1.0 (0.9–1.5)/(0.5–1.2)
Aspartate aminotransferase (U/L)	24.2 (17–56.8)/(<40)
Alanine aminotransferase (U/L)	25.4 (11.5–44.9)/(<37)
Clinical signs/symptoms	n (%)
Fever,	3 (25)
Cough, n (%)	10 (33)
Rhinorrhea, n (%)	4 (33)
Fatigue, n (%)	2 (17)
Diarrhea, n (%)	0
Muscle pain, n (%)	1 (8)
Sore throat, n (%)	2 (17)
Headache, n (%)	2 (17)
Abdominal pain, n (%)	0
Lost sense of smell, n (%)	0
Baseline comorbidity, n (%)	4 (33)†

*Only available from patients participating in the aforementioned study
†Obesity (n = 2), diabetes without complication (n = 1), and kidney associated problem with 85% reduction of kidney function (n = 1)

Appendix Table 2: The number of nucleotides different among the obtained genome sequences of the cluster

Patient*	17	18	5†	1†	16	3†	6†	14	4†	8†	2†
17	NA	0	0	0	0	0	0	0	1	1	1
18	0	NA	0	0	0	0	0	0	1	1	1
5†	0	0	NA	0	0	0	0	1	1	1	1
1†	0	0	0	NA	0	0	0	1	1	1	1
16	0	0	0	0	NA	0	0	1	1	1	1
3†	0	0	0	0	0	NA	0	1	1	1	1
6†	0	0	0	0	0	NA	0	1	1	1	1
14	1	1	1	1	1	NA	2	2	2	NA	
4†	1	1	1	1	1	1	2	NA	2	2	
8†	1	1	1	1	1	1	2	NA	2	NA	2
2†	1	1	1	1	1	1	2	2	2	NA	2

NA, not applicable
*Patient numbers correspond to those in Figure 1 and in the text
†Attended celebration on March 14, 2020
Appendix Figure. Illustration of timeline of the investigation and potential contacts occurring between SARS-CoV-2 positive cases. Details about travel history and contacts between cases, and types of workplace are shown in the Table in the main text. Dates shown are when a confirmed diagnosis was established. Patients 2, 3, 7, 8, 11, 16, and 19 did not consent to participate in the clinical study. Patients 2, 3, 7, 8, 11, 11, and 19 were asymptomatic at diagnosis. Patients in blue boxes were all asymptomatic during the course of quarantine. Clinical status of patient 16 was unknown. Patients from the initial bar cluster (1–13) are underlined.