Development and Psychometric Analysis of Supportive Care Needs scale for Pulmonary Tuberculosis Patients

Jing Ren
Health Science Center, Xi’an Jiaotong University

Dongfang Han
First Affiliated Hospital of Xi’an Jiaotong University

Jingjun Zhang
Health Science Center, Xi’an Jiaotong University

Yingli Wang
Fourth Hospital of Inner Mongolia Autonomous Region

Qiaqiao Huang
Fourth Hospital of Inner Mongolia Autonomous Region

Tian Tian
Health Science Center, Xi’an Jiaotong University

Xiaomei Li
Xi’an Jiaotong University
https://orcid.org/0000-0002-7419-5520

Research article

Keywords: needs, tuberculosis, psychometric testing, patient-centred care, supportive care, instrument development

DOI: https://doi.org/10.21203/rs.3.rs-50573/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background

Providing integrated patient-centred care based on the patient's needs has emerged as the first pillar of tuberculosis prevention and control strategies. However, a reliable and valid instrument is still lacking. Hence, the aim of this study was to develop and psychometrically test a new scale for assessing the supportive care needs of patients with pulmonary tuberculosis.

Methods

A methodological study involving item generation and psychometric evaluation was used. Based on the Supportive Care Needs Framework, the item-pool was drafted from a systematic review of the literature, expert consultations and feedback from a pilot study. A convenience sample of 518 patients was recruited from four hospitals in Shaan'xi Province from September 10, 2019, to January 20, 2020. Item reduction and scale validation were assessed for content validity, construct validity, Cronbach's alpha coefficient, half-split reliability, and test-retest reliability.

Results

The final scale encompasses 25 items in five domains: practical, psycho-emotional, social, information and physical. The item level content validity index ranged from 0.80 to 1.00, and the scale level content validity was 0.925. Five factors that explained 80% of the total variance were also identified in exploratory factor analysis and confirmed in confirmatory factor analysis. The CFA model fit indices were $\chi^2/df = 2.229$ ($p < 0.001$), $GFI = 0.853$, $AGFI = 0.820$, $RMSEA = 0.069$. All items had acceptable convergent and discriminant validity. Cronbach's α coefficient, the split-half reliability coefficient and the test-retest reliability coefficient were 0.884, 0.883 and 0.854, respectively.

Conclusions

This newly developed scale demonstrated acceptable reliability and validity, and it could be used to assess the supportive care needs of pulmonary tuberculosis patients in clinical settings.

Background

Pulmonary tuberculosis (PTB) is a significant burden on the health care system worldwide, especially in low- and middle-income countries [1]. Globally, an estimated 10.0 million people were newly infected with tuberculosis in 2018 [1]. Living with PTB often leads to a dramatic change in both lifestyles and habits. PTB patients often have a myriad of unmet needs when they typically experience a long treatment duration [2], adverse effects, psychological trauma [3], financial burdens [4] and overall health-related
quality of life impairment [5]. To provide effective and holistic services to patients with PTB and to enhance patient satisfaction, anticipating and intervening to meet patients’ care needs is of central importance.

Patient-centred care (PCC) is pivotal for providing clinical healthcare services for PTB patients [6]. It also enables PTB patients to complete a full course of the prescribed treatment and empowers health-educated patients [7, 8]. A growing body of evidence indicates that efficient PCC could be evaluated by fulfilling patients’ needs, expectations and preferences with individualized support [9–11]. Hence, providing targeted support care based on their clinical and psychosocial needs, which is grounded in the reality of patients’ lives as they navigate the long pathway from symptoms to cure, becomes a vital component of TB clinical practice [8]. Furthermore, this measurement of patients’ needs could also provide evidence-based guidance that can be used in clinical research [12]. However, despite its importance, a valid and reliable instrument to measure supportive care needs among PTB patients has not yet been developed. Hence, studies to fill this knowledge gap are essential.

Current research on PTB patients’ needs mainly consist of qualitative studies [13–16]. In a few of the quantitative studies, questionnaires about needs were used. In 2014, Suryani and colleagues from Indonesia developed an instrument for assessing the psychosocial needs of patients with PTB [17]. This instrument was developed by modifying the Psychosocial Needs Inventory for patients with cancer. It was tested for content validity and with Cronbach’s alpha reliability. However, it was only tested among 40 patients, and without the use of any construct validity index. Other instruments that have been used to indirectly assess PTB patients’ preferences are satisfaction-related scales for healthcare service, including the QUOTE TB [18], 13-item Patient Healthcare Service Satisfaction questionnaire (PS-13) and the satisfaction with information about medicines scale (SIMS) [19]. Nevertheless, all of these instruments have more closely focused on perceived quality-of-care issues or are not designed with a strong theoretical underpinning. Therefore it is urgent to develop a scale under the guidance of a clear conceptual framework that covers broad aspects of patients’ needs and to conduct a rigorous validity and reliability evaluation.

Supportive care needs (SCN) is a broad term for requirements for care that are related to the management of symptoms and side-effects, the enablement of rehabilitation and coping, optimization of understanding and minimization of functional deficits throughout the disease trajectory [20, 21]. A framework for assessing the SCN was coined by Fitch in 2008, the Supportive Care Need Framework (SCNF) [22]. The SCNF consists of seven domains of needs: practical, spiritual, social, psychological, informational, emotional, and physical needs [23, 30]. Since its development, it has been widely accepted and referred to across numerous studies investigating unmet SCNs of patients with malignant and non-malignant chronic diseases [23, 24]. Evidence has indicated that early identification and management of SCN may help to refer patients to appropriate healthcare resources and reduce the burden on the health system [25, 26]. Furthermore, researchers have also suggested that the SCNF should be revised in accordance with the characteristics of patients with a specific disease [20, 27]. As such, it was thought
the SCNF could be used as a framework to examine the needs of individuals who have been diagnosed with PTB.

Therefore, the aim of this study was to develop a Supportive Care Needs scale for Pulmonary Tuberculosis (SCN-PTB) patients and to investigate its psychometric properties.

Methods

The scale was developed in two phases: a) item generation and b) psychometric evaluation. The ‘Strengthening the Reporting of OBservational studies in Epidemiology’ (STROBE) guidelines for the reporting of observational studies were followed (see Supplementary file 1).

Phase 1: Item generation

1) **Literature review**

In this stage, we searched English and Chinese databases, including PubMed, Web of Science, Embase, Google Scholar, and the Cumulative Index of Nursing and Allied Health Literature (CINAHL), and the Chinese databases of China National Knowledge Infrastructure (CNKI), Wan Fang and VIP, with the keywords ‘tuberculosis’, ‘pulmonary tuberculosis’, ‘supportive care’, ‘healthcare’, ‘practical’, ‘spiritual’, ‘social’, ‘psychological’, ‘informational’, ‘emotional’, ‘physical’, ‘support’ and ‘need’. This review was undertaken to identify existing knowledge regarding the supportive care needs of patients with pulmonary tuberculosis. Items were identified and categorized into one of the domain outlines in the SCNF.

2) **Expert consultation**

We organized a two-round expert consultation to examine the content validity of the SCN-PTB draft. To ensure heterogeneity, 15 experts were recruited from general hospitals, TB prevention and control centres, and universities in Xi’an (n=9), Beijing (n=1), Sichuan (n=1), Shanghai (n=1), Dalian (n=2) and Hunan (n=1). They were asked to rate the feasibility and relevance of each item on the draft scale from 1 (irrelevant) to 5 (highly relevant) [28]. The content validity index (CVI) for an item is the proportion of experts who rated it as 4 or 5. The CVI was calculated for each item and scale. The scale level content validity index (S-CVI) of the last round of the expert consultation was used to evaluate the content validity of the SCN-PTB. The S-CVI should be larger than 0.8, suggesting that the content validity of the scale is good. The experts were also required to evaluate each item’s accuracy and clarity and then provide their specific suggestions regarding the item. Items with a mean score > 3.5, a coefficient of variation (CV) < 0.25, and an item level content validity index (I-CVI) > 0.8 were retained [29].

3) **Pilot study**

The content-validate items were designed as a self-administered scale with a 5-point Likert-type response format for each item. Each item asked patients to consider their level of need for help with the item by
choosing one of the following response options: 1=no need-not applicable; 2=no need-already satisfied; 3=low need; 4=moderate need; or 5=high need. No items needed to be reversed scored, and higher scores reflected a higher level of need.

We conducted the pretest of the scale on 50 patients to evaluate its clarity, understandability, and feasibility. Patients were recruited from Xi’an Chest Hospital using convenience sampling methods based on the following criteria: a) age ≥ 18 years, b) confirmed diagnosed of TB, c) able to read and understand Mandarin and d) willing to participate in this study. Patients who had cognitive deficits, a history of mental illness, or any other severe physical problems or serious organ injuries were excluded.

Phase 2: Psychometric evaluation

Sample and setting

A convenience sampling strategy was used to recruit PTB patients from four institutions (Shaanxi Province Tuberculosis Hospital, Xi’an Chest Hospital, Huashan Hospital, and the designated TB hospitals of the Baqiao District) in Shaanxi Province between 10 September 2019 to 20 January 2020. The inclusion criteria were: a) having a confirmed diagnosis of PTB; b) being 18 years of age or older; c) being conscious and able to answer questions, and d) willing to participate in this study.

The sample size was determined based on the number of items in the developed scale and the sample size requirements of factor analysis. In factor analysis, 5 participants per item are the minimum recommended sample size [30]. Since the initial number of items was 25, 125 participants were required. The exploratory factor analysis (EFA) and confirmatory factor analysis (CFA) samples should be two independent samples, with a size of at least 100 participants and 200 participants, respectively [31, 32], hence the minimum sample size required for factor analysis is 300. Considering the possibility of an invalid questionnaire, there is a need to increase the sample size by 20%, and thus the final sample size is $n \geq 360$. In consideration of the above, the sample size of this study should be no less than 360. Applying the inclusion and exclusion criteria, a sample of 518 participants was recruited.

Data collection

With the assistance of the healthcare providers of the target investigation site, questionnaires were distributed to the patients by two investigators. Potential participants were given a cover letter informing them about the purpose of the study, its voluntary nature, and anonymity concerning participation, along with instructions for completing the questionnaires. Those subjects who agreed to participate were asked to sign an informed consent form and filled out the questionnaires independently, and then the investigator collected them immediately.

Data analysis
Data were analysed using SPSS 25.0 (SPSS Inc., Chicago, IL, USA) for all statistical analyses except for CFA, where we used AMOS software. Continuous variables are presented in mean and standard deviation (SD). Categorical variables are presented as numbers and frequency. The psychometric properties of the SCN-PTB were tested by validity and reliability. Generally, the α level was 0.05.

Item analysis

Item analysis aims to determine whether each item is correlated with the total score. An item was eliminated if it met one or more of the following criteria: a) the mean of the item was extreme or its variance was zero; b) the critical ratio value of an item was found to be insignificant; or c) the item-total correlation coefficient was < 0.30 or > 0.70.

Validity analysis

Content validity

The content validity index (CVI) calculated in the final round of the Delphi survey was used to evaluate the content validity of the scale.

Construct validity

We used EFA and CFA to examine the construct validity of the scale. The total sample was split into two subsamples using the SPSS random-assignment function. The first split half was used for EFA and the second was used for CFA. The cases included in each subsample (n=259) satisfied the requirement for the sample size for EFA and CFA, and their equivalence on demographic characteristics was examined through Mann-Whitney U tests (for continuous variables) and Chi-Square tests (for categorical data).

Exploratory factor analysis

Before conducting EFA, Bartlett’s test of sphericity and the Kaiser-Meyer-Olkin (KMO) test were used to check for the factorability of the data [33]. EFA using principal-components analysis with varimax rotation was performed to explore the underlying factor structure. The number of factors was determined by the eigenvalues and the scree plot. Factors with eigenvalue > 1 were extracted, and the result was considered good when at least 60% of the variance was explained by the identified factors [34]. According to the scree plot, the number of factors is indicated by the point at which the line indicating the slope begins to flatten [35]. Meanwhile, we assessed the best EFA solution based on multiple criteria as primary factor loadings > 0.40 [36], cross-loadings, the threshold for item communality (h^2) was > 0.40 [37], the interpretability of the factors structure and the theoretical sense of the factors [38].

Confirmatory factor analysis

CFA was performed to test whether the data fit the hypothesized measurement model, which was extracted by EFA. The maximum likelihood estimation method was used for CFA. The fit of the CFA model
was assessed using the following fit indices: the normed $\chi^2 (\chi^2/df < 3)$, the root-mean-square error of approximation ($\text{RMSEA} < 0.08$), goodness-of-fit index ($\text{GFI} > 0.90$) and adjusted goodness of fit index ($\text{AGFI} > 0.90$) [39]. Additionally, the average variance extracted (AVE), construct reliability (CR) and the correlation coefficients between factors were calculated to validate the discriminant validity and convergent validity of the sub-factors of the scale. The $\text{AVE} > 0.70$, $\text{CR} > 0.50$ indicated good convergent validity, and the square root of AVE larger than the correlation coefficient between factors, indicated a good discriminant validity [40, 41].

Reliability analysis

Internal consistency reliability was tested using the Cronbach’s alpha coefficients for the overall scale and each domain. The split-half reliability was used to divide the scale items of SCN-PTB into odd-even parts according to the number, and the correlations of the score between the two parts were computed. The Pearson relation coefficient was calculated between the scores of the 50 patients who completed the SCN-PTB twice at a two-week interval to determine the test-retest reliability. A statistically acceptable reliability coefficient of the total scale should be > 0.70, and a statistically acceptable reliability coefficient of a domain should be > 0.60.

Ethical considerations

This study was approved by the Ethics Committee of Xi’an Jiaotong University (No. 2020-1244), and written informed consent was obtained from all participants prior to filling out the survey. The investigation process adhered to the principles of confidentiality, with the questionnaires completed anonymously, and the research data were used only in this research.

Results

Phase 1: Item generation

Using the combined methods, we developed a pool of 49 items at the beginning. The response rate of 15 expert consultations was 100% in all rounds. The experts were mainly women ($N=12; 80.00\%$), with an average age of 50.47 years ($SD\ 7.69$). Considering their work experience, they had an average of 27.93 years ($SD\ 8.91$) of experience. Experts with a title of senior professional post accounted for 93.33%. Seven of them had attained a PhD degree. In the first round, sixteen items were deleted as those all had mean ratings < 3.5 or $\text{CV} > 0.25$. Eight items were merged into three items. Three items associated with spiritual needs were removed. In addition, 93.33% of the experts (14/15) suggested that the original SCN-F should be modified to include only five domains, including practical needs, social needs, informational needs, physical needs, and psycho-emotional needs. Following the second round, a total of 25 items were selected to form the SCN-PTB: five items per domain. In the pilot study, all participants understood each
item and no adjustments had to be made to the survey. It took approximately 10-15 min to complete the questionnaire. A final version of the SCN-PTB was then created to evaluate its validity and reliability.

Phase 2: Psychometric evaluation

Sample characteristic

Thirty-two invalid questionnaires out of the total 550 questionnaires were excluded because of missing data, with an effective rate of 94.18%. The mean age of the included patients was 32.06 years (SD 6.89), and other characteristics of the subjects are shown in Table 1.

Item Analysis

The means of all items ranged from 3.09 to 3.86, and there were no items with a variance of zero. The critical ratio was significant for all items, and the item-total correlation was > 0.30 and < 0.70. There were no items that met the elimination criteria mentioned above, so all 25 items were retained (see Table 2).

Validity Analysis

Content validity

In the final round of expert consultation, the CVI ranged between 0.80 and 1.00 for each item, and the average of the CVI for all items on the scale was 0.925, which indicated that the SCN-PTB has good content validity and was acceptable for further use.

Construct validity

Exploratory Factorial Analysis

The construct validity of the 25 items was analysed using principal components to extract factors. Bartlett’s test of sphericity for appropriate assumptions was significant ($\chi^2=9147.604$, $p<0.001$), and the KMO value was 0.839, which is well above the recommended 0.50, indicating that it is acceptable to perform the EFA.

As a result, five factors were extracted based on eigenvalues ≥ 1, and the scree plot yielded a five-factor solution as well (Figure 1), where the five factors accounted for 80.375% of the total variance. The results showed that the factor loading of each item was above 0.40 and without cross-loadings. As shown in Table 3, based on the factor loading results and the item contents, factor 1 (5 items) was named “physical need”, factor 2 (5 items) was named “psycho-emotional needs”, factor 3 (5 items) was named “information needs”, factor 4 (5 items) was named “social needs” and factor 5 (5 items) was named “practical needs”.
Confirmatory Factorial Analysis

The CFA revealed an acceptable fit of the five-factor model, which was indicated by $x^2/df=2.229$, GFI=0.853, AGFI=0.820, RMSEA=0.069. The parameter estimates of the CFA model are shown in Figure 2. The standardized factor loadings of all items were statistically significant and greater than 0.40. The AVE of the five factors were 0.578, 0.734, 0.704, 0.713, and 0.633, respectively. The CR values of the factors were 0.872, 0.932, 0.921, 0.92, and 0.895, respectively. Additionally, the square root of AVE was greater than the correlation coefficients among the five factors (Table 4).

Reliability

The Cronbach's alpha for the total 25 items was 0.884 and ranged from 0.794 and 0.906 for each of the domains. The split-half coefficient of the SCN-PTB was 0.883 and ranged from 0.712 to 0.877 for each of the domains (see Table 5). The test-retest reliability coefficient of the total scale over a two-week interval for the 50 patients was 0.854 and ranged between 0.820 and 0.900 for each of the domains.

Discussion

Providing necessary supportive interventions to meet PTB patients' care needs are currently an important issue in healthcare settings. This study was designed to develop a scale to evaluate the supportive care needs of patients with PTB, that is, SCN-PTB. The SCN-PTB covers broad aspects of patients' needs, consisting of 25 items in five domains. The main contribution of this study is providing evidence of the validity and reliability of the SCN-PTB.

The SCN-PTB was developed based on a comprehensive literature review, two-round expert consultation, and a pilot study. Instrument development requires a strong theoretical basis [42], and we used the SCNF as conceptual base to guide the development of the item-pool. Domains and items in the SCN-PTB were modified to suit the characteristics of the TB patients.

First, the spiritual-related needs of the SCNF-PTB were deleted in the final framework. Spiritual needs were defined by Fitch as a way of finding meaning in life, a faith or willingness to practice religious belief. Through the in-depth literature review, spiritual-related needs scarcely appeared in the literatures. Recently an integrative review found that an association between whether spiritual-related needs are satisfied and the individual's quality of life was inconsistent. Existing research has concentrated on minority patients from western countries [43, 44], which is quite different from China patients. The differences among the studies might be related to different cultural backgrounds and medical environments [45]. In addition, the majority of experts in this study also suggested that there are few professional groups and limited personnel to provide TB patients with spiritual care in the clinical settings. Hence, in order to improve the content validity of the SCN-PTB, the spiritual needs were discounted based on the above considerations.
Second, emotional needs items and psychological needs items are highly relevant and often used interchangeably [46], and they both describe patients’ feelings during disease treatment [47]. To reduce the irritation of negative psychological-related text to patients and to express clearly what patients need, we decide to merge the emotional needs and psychological items into a psycho-emotional needs domain based on the experts’ recommendations and the research-group discussion. The final version of the SCN-PTB had 25 items with five domains.

In the SCN-PTB, the practical needs are mainly about the requirements for direct assistance to accomplish a task or activity; the social needs are related to family relationships, community acceptance, and involvement in relationships. The informational needs include information needed by the patients to reduce their confusion and anxiety, and to inform the their decision-making. The physical needs reflect the need for physical comfort and freedom from pain, optimum nutrition, and the ability to carry out one's usual daily functions. The psycho-emotional needs concentrate on patients’ requirements for basic psychological functioning and well-being. In this study, the S-CVI was 0.925, and the I-CVI ranged from 0.80 to 1.00. The results met the criteria of acceptability, indicating that the SCN-PTB can accurately measure the true content of the supportive care needs of PTB patients.

The Cronbach’s alpha coefficient and split-half reliability coefficient for the total scale were 0.884 and 0.883, respectively, and for each domain, these values ranged from 0.794 to 0.906 and from 0.712 to 0.877, respectively. The reliability validation results fulfilled the requirement of satisfactory internal consistency. The overall test-retest reliability coefficient was 0.854, and the correlation coefficient of each domain was between 0.841 and 0.900, indicating that the SCN-PTB has acceptable stability over time.

Construct validity was evaluated by EFA and CFA. The EFA generated a clear five-factor solution consistent with the revised conceptual framework. The five factors accounted for 80.38% of the total variance, which was higher than the criterion of 60%, indicating that the common factors extracted were reliable. The factor loading for each item was greater than 0.40 and without cross-loadings, suggesting a tight relationship between the items and factors. In general, these five factors represent the overall structure of the scale.

CFA was performed to confirm the structure of the scale for the other sample. The results revealed that x^2/df was 2.229, which met the criterion of less than 3. The RMSEA was 0.069, which met the criterion of less than 0.08, indicating a reasonable model fit. The GFI and AGFI of this sample were below 0.90 but within the acceptance range, as the GFI and AGFI are known to be affected by sample size [48]. Overall, the CFA showed that the fitting effect of the model was acceptable and the structure of the scale was consistent with the modified conceptual framework. In addition, the AVE and CR values indicate good convergence validity and discriminatory validity according to the criteria of AVE > 0.50, CR > 0.70, and the square root of the AVE > correlation coefficients between factors. Overall, the results showed an acceptable model fit in the tested sample of Chinese TB patients. The results of the EFA and CFA supported the construct validity of the SCN-PTB.
Limitations

This study has some limitations. First, the participants in the study were all recruited from Shaan’xi Province, and further studies need to be conducted in different national settings to determine the generalizability of the SCN-PTB. Second, due to the lack of literature that identifies and explores needs in this population as a primary objective, concurrent validity was not tested, suggesting the need for further validation. Third, since the PTB patients’ expectations and preferences area has already been well explored by using qualitative methods, the items pool was designed without extensive qualitative research. Future studies could use the SCN-PTB to test whether it covers all of the potential needs issues of TB patients.

Application value of the SCN-PTB

The SCN-PTB could be useful in clinical education and research. Based on the needs assessment, healthcare professionals can develop tailored patient-centred interventions and examine the effect of care on various aspects of PTB patients’ needs. In addition, researchers might use the SCN-PTB to empirically correlate PTB patients’ needs with clinical outcomes in clinical care and to explore the mechanism to optimize intervention outcomes. Overall, this study will aid healthcare professionals by providing a clearer direction on where to focus future efforts to improve the delivery of patient-centred supportive care.

Conclusions

The SCN-PTB developed and validated in this study comprises a total of 25 items scored on a 5-point Likert scale. It exhibits good psychometric properties for validity indexes and reliability indexes. This scale can help healthcare professionals identify PTB patients’ needs. The data may be used as the basis to improve TB clinical care.

Abbreviations

PTB: Pulmonary Tuberculosis; PCC: Patient-Centred Care; WHO: World Health Organization; SCN: Supportive Care Need; SCNF: Supportive Care Need Framework; CINAHL: Cumulative Index of Nursing and Allied Health Literature; CNKI: China National Knowledge Infrastructure; CFA: Confirmatory Factor Analysis; CVI: Content Validity Index; S-CVI: Scale-level Content Validity Index; I-CVI: Item-level Content Validity Index; EFA: Exploratory Factor Analysis; KMO: Kaiser-Meyer-Olkin; RMSEA: Root-Meta-Square Error of Approximation; GFI: Goodness-of-Fit Index; AGFI: Adjusted Goodness of Fit Index; AVE: Average Variance Extracted; CR: Construct Reliability; SD: Standard Deviation

Declarations

Acknowledgements
We are grateful to the experts who reviewed this scale, the participants who participated in the study, and the doctors and nurses who helped us recruit patients.

Authors’ contributions

JR conceived and designed the study, created study protocol, implemented the field study, performed the data collection, data analysis and drafts the manuscript. XML supervised the study development, helped to review the manuscript and made critical revision to the paper. JJZ, YLW and QQH performed data collection and helped to review the manuscript. DFH and TT participated in the data coping and analysis. All authors read and approved the final manuscript.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Availability of data and materials

The data will not be shared in order to protect the participants’ anonymity but are available from the corresponding author or reasonable request.

Ethics approval and consent to participate

This study was approved by the Ethics Committee of the Xi’an Jiaotong University and relevant institutions, and it was conducted according to the principles of the Declaration of Helsinki. The written informed consent were obtained from all participants prior to the investigation.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

References

1. World Health Organization. Global tuberculosis report 2019. In. Geneva. Switzerland: World Health Organization; 2019.

2. Yellappa V, Lefevre P, Battaglioli T, Devadasan N, Van der Stuyft P. Patients pathways to tuberculosis diagnosis and treatment in a fragmented health system: a qualitative study from a south Indian district. BMC Public Health. 2017;17(1):635.

3. Sommerland N, Wouters E, Mitchell EMH, Ngicho M, Redwood L, Masquillier C, van Hoorn R, van den Hof S, Van Rie A. Evidence-based interventions to reduce tuberculosis stigma: a systematic review.
4. Jansen-Aaldring N, van de Berg S, van den Hof S. Patient support during treatment for active tuberculosis and for latent tuberculosis infection: Policies and practices in European low-incidence countries. J Adv Nurs. 2018;74(12):2755–65.

5. Brown J, Capocci S, Smith C, Morris S, Abubakar I, Lipman M. Health status and quality of life in tuberculosis. International Journal of Infectious Diseases. 2015;32:68–75.

6. World Health Organization. Guidelines for Treatment of Drug-Susceptible Tuberculosis and Patient Care. 1. st edn. Geneva: WHO press; 2017.

7. Odone A, Roberts B, Dara M, van den Boom M, Kluge H, McKee M. People- and patient-centred care for tuberculosis: models of care for tuberculosis. Int J Tuberc Lung Dis. 2018;22(2):133–8.

8. Pai M, Yadav P, Anupindi R. Tuberculosis control needs a complete and patient-centric solution. The Lancet Global Health. 2014;2(4):e189–90.

9. Jaramillo J, Yadav R, Herrera R. Why every word counts: towards patient- and people-centered tuberculosis care. Int J Tuberc Lung Dis. 2019;23(5):547–51.

10. Quinn F, Min J, Chung C, Jung SS, Park HK, Lee S-S, Lee KM. Understanding illness perception in pulmonary tuberculosis patients: One step towards patient-centered care. Plos One. 2019;14(6):e0218106.

11. Murray M, Alipanah N, Jarlsberg L, Miller C, Linh NN, Falzon D, Jaramillo E, Nahid P. Adherence interventions and outcomes of tuberculosis treatment: A systematic review and meta-analysis of trials and observational studies. PLOS Medicine. 2018;15(7):e1002595.

12. Constand MK, MacDermid JC, Dal Bello-Haas V, Law M. Scoping review of patient-centered care approaches in healthcare. BMC Health Serv Res. 2014;14:271.

13. Hino P, Bertolozzi MR, Takahashi RF, Egry EY. Health needs according to the perception of people with pulmonary tuberculosis. Rev Escola Enferm. 2012;46(6):1438–45.

14. Khanal S, Elsey H, King R, Baral SC, Bhatta BR, Newell JN. Development of a Patient-Centred, Psychosocial Support Intervention for Multi-Drug-Resistant Tuberculosis (MDR-TB) Care in Nepal. PLoS One. 2017;12(1):e0167559.

15. Bieh KL, Weigel R, Smith H. Hospitalized care for MDR-TB in Port Harcourt, Nigeria: A qualitative study. BMC Infect Dis. 2017;17(1):50.

16. Ren J, Li Q, Zhang T, Li X, Zhang S, Wright J, Liu H, Hua Z. Perceptions of engagement in health care among patients with tuberculosis: a qualitative study. Patient Prefer Adherence. 2019;13:107–17.

17. Suryani S, Widianti E, Hernawati T, Sriati A. Psychosocial Need Analysis of Patients with Pulmonary Tuberculosis. Makara Journal of Health Research. 2014;18(3):127–34.

18. Eticha BM, Atomsa A, BirtukanTsehaineh, Berheto TM. Patients’ perspectives of the quality of tuberculosis treatment services in South Ethiopia. American Journal of Nursing Science. 2014;3(4):48–55.
19. Babikako HM, Neuhauser D, Katamba A, Mupere E. Patient satisfaction, feasibility and reliability of satisfaction questionnaire among patients with pulmonary tuberculosis in urban Uganda: a cross-sectional study. Health Research Policy Systems. 2011;9:6.

20. Cramp F, Bennett MI. Development of a generic working definition of ‘supportive care’. BMJ Support Palliat Care. 2013;3(1):53–60.

21. Hui D. Definition of supportive care: does the semantic matter? Curr Opin Oncol. 2014;26(4):372–9.

22. Fitch ML. Supportive care framework. Can Oncol Nurs J. 2008;18(1):6–24.

23. Valery PC, Powell E, Moses N, Volk ML, McPhail SM, Clark PJ, Martin J. Systematic review: unmet supportive care needs in people diagnosed with chronic liver disease. BMJ Open. 2015;5(4):e007451.

24. Nicholson C, Morrow EM, Hicks A, Fitzpatrick J. Supportive care for older people with frailty in hospital: An integrative review. Int J Nurs Stud. 2017;66:60–71.

25. Williams N, Griffin G, Farrell V, Rea A, Murray K, Hauck YL. The supportive care needs of women experiencing gynaecological cancer: a Western Australian cross-sectional study. BMC Cancer. 2018;18:912.

26. So WK, Choi KC, Chen JM, Chan CW, Chair SY, Fung OW, Wan RW, Mak SS, Ling WM, Ng WT, et al. Quality of life in head and neck cancer survivors at 1 year after treatment: the mediating role of unmet supportive care needs. Support Care Cancer. 2014;22(11):2917–26.

27. Pelentsov LJ, Laws TA, Esterman AJ. The supportive care needs of parents caring for a child with a rare disease: A scoping review. Disabil Health J. 2015;8(4):475–91.

28. Mokkink LB, Terwee CB, Patrick DL, Alonso J, Stratford PW, Knol DL, Bouter LM, de Vet HCW. The COSMIN study reached international consensus on taxonomy, terminology, and definitions of measurement properties for health-related patient-reported outcomes. J Clin Epidemiol. 2010;63(7):737–45.

29. Polit DF, Beck CT, Owen SV. Is the CVI an acceptable indicator of content validity? Appraisal and recommendations. Res Nurs Health. 2007;30(4):459–67.

30. Boateng GO, Neilands TB, Frongillo EA, Melgar-Quinonez HR, Young SL. Best Practices for Developing and Validating Scales for Health, Social, and Behavioral Research: A Primer. Front Public Health. 2018;6:149.

31. Iacobucci D. Structural equations modeling: Fit Indices, sample size, and advanced topics. Journal of Consumer Psychology. 2010;20(1):90–8.

32. Gaskin CJ, Happell B. On exploratory factor analysis: a review of recent evidence, an assessment of current practice, and recommendations for future use. Int J Nurs Stud. 2014;51(3):511–21.

33. Kaiser HF. An index of factorial simplicity. Psychometrika. 1974;39(1):31–6.

34. Polit DF, Yang FM: Measurement and the Measurement of Change. Philadelphia, PA; 2016.

35. Yong AG, Pearce S. A Beginner’s Guide to Factor Analysis: Focusing on Exploratory Factor Analysis. Tutorials in Quantitative Methods for Psychology. 2013;9(2):79–94.
36. R.L G: **Exploratory factor analysis: its role in item analysis.** *Journal of Personality Assessment* 1997, 68(3):532–560.

37. Osborne JW. Best Practices in Exploratory Factor Analysis. Scotts Valley:: CreateSpace Independent Publishing; 2014.

38. Lin CC, Wu CC, Anderson RM, Chang CS, Chang SC, Hwang SJ, Chen HC. The chronic kidney disease self-efficacy (CKD-SE) instrument: development and psychometric evaluation. *Nephrol Dial Transplant.* 2012;27(10):3828–34.

39. Schreiber JB, Nora A, Stage FK, Barlow EA, King J. Reporting structural equation modeling and confirmatory factor analysis results: A review. *Journal of Educational Research.* 2006;99(6):323–37.

40. Fornell C, Larcker DF. Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. *J Mark Res.* 1981;18(1):39–50.

41. Henseler J, Ringle CM, Sarstedt M. A new criterion for assessing discriminant validity in variance-based structural equation modeling. *J Acad Mark Sci.* 2014;43(1):115–35.

42. Chen MF, Wang RH, Cheng CP, Chin CC, Stocker J, Tang SM, Chen SW. Diabetes Empowerment Process Scale: development and psychometric testing of the Chinese version. *J Adv Nurs.* 2011;67(1):204–14.

43. Donatus Korbianus Sadipun MD, Andriany M. Effect of spiritual based mindfulness intervention on emotional control in adult patients with pulmonary tuberculosis. *Belitung Nursing Journal.* 2018;4(2):226–31.

44. Kusnanto K, Haryanto J, Sukartini T, Ulfiana E, Putra MM. The Effectiveness of Spiritual Emotional Breathing Towards Respiratory Function and Immune Response of Tuberculosis Patients. *Jurnal Ners.* 2018;13(1):93–7.

45. Gyimah FT, Dako-Gyeke P. Perspectives on TB patients’ care and support: a qualitative study conducted in Accra Metropolis, Ghana. *Global Health.* 2019;15(1):19.

46. Ehrenreich JT, Fairholme CP, Buzzella BA, Ellard KK, Barlow DH. The Role of Emotion in Psychological Therapy. *Clin Psychol (New York).* 2007;14(4):422–8.

47. Craig GM, Daftary A, Engel N, O'Driscoll S, Ioannaki A. Tuberculosis stigma as a social determinant of health: a systematic mapping review of research in low incidence countries. *International Journal of Infectious diseases.* 2017;56:90–100.

48. Mulaik SA, James LR, Vanalstine J, Bennett N, Lind S, Stilwell CD. Evaluation of Goodness-of-Fit Indexes for Structural Equation Models. *Psychol Bull.* 1989;105(3):430–55.

Tables
Variable	Total (n=518)	EFA (n=259)	CFA (n=259)	χ^2 or z	P
	n (%) or mean (SD)	n (%) or mean (SD)	n (%) or mean (SD)		
Sex					
Male	279 (135)	144 (135)		0.629	0.481
Female	239 (124)	115 (124)			
Age (range: 18-60 years)	32.03 (6.89)	31.69 (6.03)		1.498	0.221
Ethnicity					
Han Nationality	478 (235)	243 (235)		1.734	0.188
Others	40 (24)	16 (24)			
Education				8.322	0.080
Primary School or below	106 (46)	60 (46)			
Junior High School	188 (91)	97 (91)			
Senior High School	126 (61)	65 (61)			
Junior College	59 (38)	21 (38)			
Bachelor's degree or above	39 (23)	16 (23)			
Marriage				1.362	0.506
Unmarried	149 (74)	75 (74)			
Married	298 (145)	153 (145)			
Others	71 (40)	31 (40)			
Treatment period				1.887	0.389
< 2 months	264 (125)	139 (125)			
2-6 months	173 (89)	84 (89)			
> 6 months	81 (45)	36 (45)			
Treatment site				2.570	0.109
Hospital	353 (168)	185 (168)			
Home	165 (91)	74 (91)			
Family monthly income				0.804	0.848
Income Level	SD	SD	SD		
-----------------------	-----	-----	-----		
< 1999 yuan	162	77	85		
2000-4999 yuan	235	118	117		
> 5000 yuan	121	64	57		

Abbreviation: SD, standard deviation.
No.	Item	Mean (SD)	Critical Ratio Value	Item-Total Correlation
q1	Help me to have a rational diet and to improve nutrition during illness	3.09(1.16)	19.24*	0.66*
q2	Provide me a comfortable, clean, and ventilated ward environment	3.07(1.18)	16.42*	0.64*
q3	Help me to prevent or manage side effects (e.g., joint pain, decreased hearing, and sight, etc.)	3.19(1.09)	14.98*	0.58*
q4	Teach me to relieve physical discomfort (e.g., fever, cough, night sweat, etc.)	3.30(1.09)	14.11*	0.60*
q5	Remind me to take medicine on time and in the right amount	3.21(1.26)	20.65*	0.70*
q6	Help me to protect privacy during treatment	3.25(1.17)	15.73*	0.65*
q7	Help me to cope with the negative emotions (e.g., anxiety, fear, sadness, etc.) and psychological stress	3.23(1.21)	17.88*	0.70*
q8	Help me to get care and encouragement from healthcare providers	3.23(1.02)	10.38*	0.48*
q9	Help me to build a positive attitude towards future life	3.26(1.22)	17.89*	0.70*
q10	Teach me to cope with sexual-related issues (e.g., getting married and having children, etc.)	3.32(1.17)	16.60*	0.68*
q11	Help me to get information about PTB (e.g., symptoms, transmission routes, etc.)	3.52(1.19)	10.70*	0.53*
q12	Help me to understand my condition and test results for my disease	3.40(1.24)	12.88*	0.58*
q13	Help me to grasp the name of the medication, ways of taking and precautions, etc.	3.40(1.24)	11.17*	0.52*
q14	Help me to get information about the schedule of treatment after discharge (e.g., time and content of regular return visits)	3.39(1.27)	11.38*	0.53*
q15	Help me to know about the treatment protocol and prognosis of the disease	3.37(1.22)	11.95*	0.56*
q16	Help me to communicate with patients who have similar experiences	3.21(1.23)	16.67*	0.64*
q17	Teach me how to obtain understanding and support from family and friends	3.33(1.84)	17.82*	0.67*
q18	Help me to participate in health support groups and related activities	3.27(1.23)	18.75*	0.70*
Q	Question	Mean (SD)	Median	Std. Error
----	--	-----------	--------	------------
q19	Teach me to cope with changes in social interactions after diagnosis	3.23 (1.28)	20.14	0.69
q20	Teach me to take effective isolation and protection measures to protect others from being infected	3.30 (1.28)	19.22	0.67
q21	Help me to get information about the TB policy of treatment fee decrease or waiver	3.84 (1.10)	7.57	0.43
q22	Help me to know the expenses of treatment	3.78 (1.14)	7.90	0.37
q23	Give me timely and professional medical services when I need help	3.47 (0.87)	7.24	0.44
q24	Teach me to get access to follow-up services after discharge	3.77 (1.20)	10.55	0.50
q25	Help me to establish a stable, long-term connection with healthcare providers	3.86 (1.12)	9.32	0.48

Note: *P < 0.001

Abbreviation: SD, standard deviation.
No.	Abbreviate item description	F1	F2	F3	F4	F5	h^2				
q1	Help me to have a rational diet and improve nutrition during illness	0.920	0.236	0.192	0.051	0.165	0.948				
q2	Provide me a comfortable, clean, and ventilated ward environment	0.919	0.206	0.184	0.041	0.163	0.612				
q3	Help me to prevent or manage side effects (e.g., joint pain, decreased hearing, and sight, etc.)	0.916	0.227	0.196	0.059	0.157	0.968				
q4	Teach me to relieve physical discomfort (e.g., fever, cough, night sweat, etc.	0.915	0.225	0.187	0.073	0.161	0.954				
q5	Remind me to take medicine on time and in the right amount	0.552	0.227	0.384	0.258	0.205	0.956				
q6	Help me to protect privacy during treatment	0.193	0.893	0.149	0.093	0.053	0.861				
q7	Help me to cope with the negative emotions (e.g., anxiety, fear, sadness, etc.) and psychological stress	0.214	0.884	0.114	0.110	0.098	0.789				
q8	Help me to get care and encouragement from healthcare providers	0.213	0.878	0.154	0.118	0.036	0.869				
q9	Help me to build a positive attitude towards future life	0.153	0.810	0.196	0.174	0.202	0.855				
q10	Teach me to cope with sexual-related issues (e.g., getting married and having children, etc.)	0.182	0.782	0.195	0.195	0.151	0.744				
q11	Help me to get information about PTB (e.g., symptoms, transmission routes, etc.)	0.225	0.214	0.906	0.008	0.146	0.804				
q12	Help me to understand my condition and the test results for my disease	0.190	0.202	0.895	0.071	0.200	0.901				
q13	Help me to grasp the name of the medication, ways of taking and precautions, etc.	0.188	0.224	0.876	0.072	0.208	0.426				
q14	Help me to get information about the schedule of treatment after discharge (e.g. time and content of regular return visits)	0.275	0.176	0.817	0.073	0.159	0.923				
q15	Help me to know about the	0.046	0.045	0.576	-0.012	0.299	0.939				
Question	Statement	Q16	Q17	Q18	Q19	Q20	Q21	Q22	Q23	Q24	Q25
----------	-----------	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----
q16	Help me to communicate with patients who have similar experiences	0.100	0.100	-0.001	0.946	0.026	0.916				
q17	Teach me how to obtain understanding and support from family and friends	0.115	0.143	0.023	0.916	0.033	0.669				
q18	Help me to participate in health support groups and related activities	0.104	0.103	0.122	0.857	0.078	0.529				
q19	Teach me to cope with changes in social interactions after diagnosis	0.012	0.028	-0.023	0.801	0.160	0.776				
q20	Teach me to take effective isolation and protection measures to protect others from being infected	-0.033	0.235	0.079	0.660	0.175	0.875				
q21	Help me to get information about the TB policy of treatment fee decrease or waiver	0.117	0.136	0.137	0.124	0.910	0.711				
q22	Help me to know the expenses of treatment	0.163	0.212	0.187	0.124	0.864	0.895				
q23	Give me timely and professional medical services when I need help	0.033	0.210	0.162	0.195	0.786	0.577				
q24	Teach me to get access to follow-up services after discharge	0.275	-0.011	0.341	0.067	0.717	0.727				
q25	Help me to establish a stable, long-term connection with healthcare providers	0.306	-0.045	0.329	0.052	0.609	0.869				

Eigenvalue

10.124	3.445	2.694	2.099	1.732		

Percentage of the variance

40.496	13.778	10.777	8.395	6.929

Note: h^2 represents item communalities.

Factor loadings exceeding 0.45 are in boldface.
Table 4 Results of the CFA

Factors	F1	F2	F3	F4	F5
F1	0.76				
F2		0.857*			
F3	0.260	0.076	0.839*		
F4	0.492	0.348	0.097	0.844*	
F5	0.421	0.252	0.138	0.206	0.796*

Note: * Represents the square root of the AVE of five factors, the others represent the correlation coefficients between five factors.

Table 5 Reliability of the SCN-PTB

Domains	Cronbach’s α	Split-Half Reliability	Test-Retest Reliability
Physical needs	0.794	0.712	0.820*
Psycho-emotional	0.882	0.842	0.854*
Informational needs	0.856	0.877	0.841*
Social needs	0.906	0.835	0.900*
Practical needs	0.850	0.794	0.843*
Total	0.884	0.883	0.854*

Note: *Correlation is significant at the 0.001 level (2-tailed)

Figures
Figure 1

Cattell's scree plot (n=259)
Figure 2

The standardized path diagram of the CFA. Note: q1 to q25 represent the items of the SCN-PTB. F1 to F5 represents the five domains of the SCN-PTB.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- renamed0a12d.docx