Neuropharmacological profile of ethanolic dried seed extract of *Persea americana* in mice

Idris Ajayi Oyemitan\(^1,2,*\), Emmanuel Ojo\(^1\) and Adebola Omowumi Oyedeji\(^2\)

\(^1\)Department of Pharmacology, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Osun State, 220005, Nigeria.
\(^2\)Department of Chemistry, Walter Sisulu University, Nelson Mandela Drive Campus, Mthatha, 5117, South Africa.

*Corresponding author. E-mail: oyemix@yahoo.com, ioyemitan@wsu.ac.za or oyemitan@oauife.edu.ng. Tel: +234 80 38171360 or +27 617073161. Fax: +234 80 38171360.

Received 19 April, 2016; Accepted 9 June, 2016

Persea americana Mill (Lauraceae) is a medicinal plant used traditionally in Nigeria to treat several diseases including malaria, hypertension and febrile convulsions among others. Some of these indications are related to central activity but have not been systematically evaluated. This study investigated the neuropharmacological effects and the acute toxicity profile of the ethanolic dried seed extract of *P. americana* in mice. Fresh dried grounded seed of *P. americana* was extracted with 70% ethanol. Acute toxicity (LD\(_{50}\)) profile of the ethanolic extract of *P. americana* (EEPA) at 10 to 5000 mg/kg was determined orally (p.o.) and intraperitoneally (i.p.) in mice. The EEPA was further tested for behavioral, anxiolytic, hypnotic, sedative, anticonvulsant, and anti-nociceptive activities. The LD\(_{50}\) of EEPA was determined to be ≥5000 mg/kg, p.o., and 2250 mg/kg, i.p. The extract at 250 to 1000 mg/kg dose-dependently caused significant (p<0.01 to 0.001) reduction in rearing and locomotor activity, signifying central nervous system (CNS) depression; significantly (p<0.01) lowered normal rectal temperature showing hypothermic effect; shortened onset and increased total sleeping time of ketamine (100 mg/kg, i.p.), suggesting sedative activity; reduced mortality due to pentylentetrazole, picrotoxin and strychnine, and blocked hind limb tonic extension on the electro-shock, conveying evidence of anticonvulsant activity; increased reaction time on the hot plate and inhibited acetic acid-induced writhings, indicating analgesic potential. This study reveals significant depressant effect of ethanolic extract of *P. americana* on the CNS; and manifested hypnotic, sedative, anticonvulsant and anti-nociceptive effects in mice, thus justifying its ethnomedicinal use which can also serve as a lead in drug discovery.

Key words: Avocado, behavioral, hypnotis, anticonvulsant, nociception.

INTRODUCTION

The use of plants in form of concoction, infusion, decoction, etc., was the order of the day until the development of scientific means of extraction and purification which have paved the way for the identification of the precise compound(s) that is/are responsible for the observed pharmacological responses (Newman and Craig, 2012).
In recent years, secondary plant metabolites previously with unknown pharmacological activities have been extensively investigated as sources of medicinal agents. Leads can be obtained in many ways among which are the screening of natural products from plants, animals, minerals and microorganism (Fabricant and Farnsworth, 2001). Of these, plants are the most abundant, diversified and constitutive. Although the modern synthetic methods of drug discovery have revolutionized drug production, plants remain a valuable source of drugs as many important drugs used in medicine today can be traced to plants (Balunas and Kinghorn, 2005).

Persea americana (Lauraceae) commonly known as avocado, has been cultivated for its highly nutritious values since about 8000 BC, and there is evidence that it was eaten as wild fruits before then. It is believed to have originated in Mexico and Central America including the Pacific coasts of Guatemala, El Salvador, Nicaragua, Costa Rica, and Panama (Chen et al., 2008). Avocado is now widely cultivated in large quantities in Indonesia, Brazil, South Africa, Israel, USA (California and Florida) and Australia. Different species of avocado is presently found in several tropical and sub-tropical countries including Nigeria where the fruits are in high demand. In Southwest Nigeria, avocado grows wild in the forests or is planted in selected locations for various purposes including commercial, protection against wind-storms, as shade and other uses.

P. americana leaf or fruit is a popular medicinal plant used traditionally in the management of several diseases in many southwestern states of Nigeria where it is indicated for treating malaria, hypertension, rheumatism, febrile convulsions and diabetes among other uses (Owalabi et al., 2005; Anita et al., 2005; Ezuruike and Prieto, 2014). Traditional herbal practitioners recommend taking the seed (fresh or dried) to treat various ailments most importantly, diabetes, hypertension and arthritis.

Pharmacological activities reported for the leaf extract of P. americana include acute toxicity and anti-diarrheal effect of the chloroform-methanol extract of the leaf has been reported (Odo et al., 2014), anticonvulsant (Ojewole and Amabeoku, 2006), analgesic, anti-inflammatory and hypotensive (Adewumi et al., 2002; Imafiodion and Amechina, 2010), and vaso-relaxant (Owolabi et al., 2005). The seed has been reported to possess antiulcer (Ukwu and Nwafor, 2005), wound healing (Nayak et al., 2008), antioxidant (Matsusaka et al., 2003; Asaolu et al., 2010; Wang et al., 2010) and hypoglycaemic activities (Okonta et al., 2007; Edem et al., 2009; Nwaogu et al., 2008; Koffi et al., 2009; Jiménez-Arellanes et al., 2013), antiprotozoal and antimycobacterial activities (Jiménez-Arellanes et al., 2013). Acute toxicity and genotoxic activity of the seed ethanolic extract was reported (Padilla-Camberos et al., 2013). Phenolics from the seed of the plant showed significant activities in vitro antioxidant and antimicrobial assays in addition to inhibition of lipid and protein oxidation in porcine patties (Rodríguez-Carpena et al., 2011). Combination of the leaf of P. americana, stem and leaf of Cymbopogon citratus and fruit of Citrus medical as well as honey in ethanol and sucrose experimental model has been shown to exhibit antihypertensive potential (Dzeufiet et al., 2014).

Phytochemical studies on avocado seeds indicate various groups of secondary metabolites including phytoestrogens, triterpenes, fatty acids, furanoic acids, flavonol, proanthocyanidins, saponins, amino acids, polyphenols and ascorbic acids (Nwaogu et al., 2008; Leite et al., 2009), catechins, epicatechin, hydroxybenzoic acids, hydroxycinnamic acids and procyanidins (Rodríguez-Carpena et al., 2011). Lipids, triacylglycerol, monoenoic acids and oleic acid (regarded as an especially important functional component of avocado) were reported to account for approximately 50% of the monounsaturated fatty acids obtained from a Japanese species (Takenaga et al., 2008).

Various bioactivities of this plant seed have been reported, however, considering the rate and manner of its use in folkloric medicine, there is a need to explore other effects and presently there is no comprehensive study relating these ethnomedicinal claims to central effects. It therefore becomes imperative to investigate its possible effect on the central nervous system (CNS) as a preliminary screening step in our quest for identifying CNS-acting agents from natural products and to provide scientific basis for the various folkloric claims. In this study we set out to assess some central nervous system activities and determine the acute toxicity profile of the ethanolic dried seed of this Nigerian species.

MATERIALS AND METHODS

Plant collection, identification, authentication and preparation

Matured fruits of P. americana were purchased in June 2013 from the central market in Ondo Town, Ondo State, Southwest, Nigeria. Mr. Bernard Omonoh, the herbarium officer of Botany Department, Faculty of Sciences, Obafemi Awolowo University, Ile-Ife, identified and authenticated the plant. The herbarium specimen sample of the fruit and leaf was prepared and deposited with reference number IFE 17374. The fruits were allowed to ripen in the laboratory after which their seeds were removed, sliced into smaller pieces and sun-dried for 1 week before powdered into coarse sizes. The powdered seed was macerated with 70% ethanol in a mechanical shaker for 72 h. The mixture was filtered and the filtrate concentrated in vacuo using the rotary evaporator. The semisolid extract obtained was further freeze-dried to yield 11.60 g (2.9%/w) ethanolic dried seed extract of P. americana (EEPA) and stored in the refrigerator until use. The hydro-alcoholic (ethanolic) extract of the seed was used in this study in order to maximize the extraction process, namely, both polar and non-polar compounds present in the dried seed would be extracted.

Preliminary phytochemical screening

The EEPA was dissolved in water and screened for the presence of secondary metabolites such as terpenes, alkaloids, flavonoids,
tannins, saponins, sterols and glycosides (Mir et al., 2013).

Liquid chromatography-mass spectrometry (LC-MS) analysis of the EEPA

The LC-MS analysis of the EEPA was carried out to obtain the fingerprints of the crude extract and the sample of EEPA was analyzed at Central Analytical Facilities, Stellenbosch University, Stellenbosch, South Africa. The analysis was performed on Waters Synapt G2 Waters UPLC with PDA, detection source was by electrospray positive, Capillary voltage 3 kV, Cone Voltage 15 V and Lock mass was Leucine encephalin.

Laboratory materials

Drugs

The following drugs were used: diazepam (Valium® Roche, Switzerland), pentylenetetrazole (PTZ) (Sigma, USA), strychnine (Sigma, Switzerland, MSDS), picrotoxin , phenytoin sodium (Epanutin® Pharma-deko), acetic acid (BDH Chemical Ltd, Poole, England), diclofenac potassium (Diclogesic® Supreme), ketamine (Ketalar® Pfizer), moripne (Sigma, St. Louis, USA), normal saline (JUHEL Pharm., Nigeria).

Laboratory animals

Adult male and female albino mice (Vom strain) weighing between 18 and 25 g were obtained from the Animal House, Department of Pharmacology, Obafemi Awolowo University (OAU), Ile-Ife. The mice were caged sex-wise separately to prevent mating and pregnancy. The animals were supplied with regular food and water throughout the period of study except during experiment. Each mice was used only once for the entire period of study. The animal experiments were conducted within the period of 10.00 a.m. and 4.00 p.m. daily at ambient temperature of 30 ± 2°C. The Postgraduate Research Committee, Faculty of Pharmacy, OAU approved the study with reference number: PHA/2008/075. Guidelines on the care and use of experimental animals published by the National Institute of Health (NIH, 1985), as being implemented by the University Research Committee of OAU was complied with.

Acute toxicity studies

Acute toxicity effect of EEPA was assessed in mice using both intraperitoneal (i.p) and oral (p.o.) routes according to Lorke’s method (Lorke, 1983). The method involves using thirteen animals on the whole for a rapid and economic LD₅₀ estimation. For each route, the procedure was divided into 2 phases. The first phase consists of three groups (n=3) at the dose levels of 10, 100, and 1000 mg/kg. The second phase also involve four groups (n=1) at the dose levels of 1000, 1600, 2900, and 5000 mg/kg, respectively. Immediately after treatment, each mouse was placed inside the Plexiglas cage and observed for immediate effects up to 30 min and thereafter for 24 h for lethal effects culminating into death. The LD₅₀ of EEPA was estimated as the geometric mean of the lowest dose causing death and the highest dose causing no death according to the formula below:

\[\text{LD}_{50} = \sqrt[5]{(A \cdot B)} \text{ or } (A \times B)^{1/5} \]

where A is the maximum dose producing 0% death and B is the dose producing 100% death (Lorke, 1983).

The choice of route of administration

The oral route has been reported to be unpredictable due to effect of many factors including bioavailability of active components, poor bioavailability, effect of food substances etc. (Pond and Tozer, 1984; Castel-Branco et al., 2009; Gavhane and Yadav, 2012). The choice of i.p. route for neuropharmacological evaluation was also supported in previous study (de Carvalho et al., 2001), hence, the i.p. route was chosen in this study. The working doses used in this study were 250, 500 and 1000 mg/kg, i.p. which were lower than half of the LD₅₀ value estimated to be 2250 mg/kg, i.p.

Novelty-induced behavior (NIB): Rearing and locomotion

Novelty-induced behavior was assessed as described by Onigbog et al. (2000), which were further modified in this study. Five groups (n=5) were randomly selected. Group I was administered the vehicle (5% Tween 80, 10 ml/kg, i.p.). Groups II to IV were injected the EEPA (250, 500 and 1000 mg/kg, i.p., respectively). Group V was injected diazepam (1 mg/kg, i.p.) as positive control (Gonzalez- Trujano et al., 2006). Mice in all the groups were pretreated 30 min prior to test. Each animal was placed inside the observation cage and assessed for rearing (number of times the animal stand on its hind-limbs with fore limbs in the air or against the wall) for 20 min, and locomotion (the number of lines crossed with all limbs) for the first 10 min.

Effect of EEPA on anxiolytic test

Effect of EEPA on the elevated plus-maze

Mice were randomly distributed as described in previous sections. After 30 min pretreatment, each mouse was placed in the central intersection of the elevated plus maze (EPM). The time spent in the open and closed arms as well as the number of times the animal enter each arm was recorded for 5 min (Pellow et al., 1985). The results obtained were analyzed and compared among the groups. Diazepam (1 mg/kg) was used as the positive control drug (Adeyemi et al., 2010).

Effect of EEPA on the hole board

Mice were randomly distributed as described in above section. After 30 min pretreatment, each mouse was placed in the center of the hole board. The number of head-poking demonstrated by each mouse in 5 min was recorded. The results were analyzed and compared among the groups. Diazepam (1 mg/kg) was used as the positive control drug (Takeda et al., 1998; Yadav et al., 2008).

Effect of EEPA on normal rectal temperature of mice

Five different groups (n=5) of mice were randomly selected. Group I received vehicle, groups II to IV were administered the extract (250, 500 and 1000 mg/kg, i.p., respectively), while group V was injected diazepam (1 mg/kg, i.p.) as the positive control drug (Vale et al., 1999). Rectal temperatures were initially taken before pretreatment and at 30, 60, 90 and 120 min post treatment. All rectal temperatures were measured with digital thermometer (thermoprobe) inserted 2 cm into the anus of the mouse (Al-Nagger et al., 2003; Oyemitan et al., 2008).
Effect of EEPA on ketamine-induced hypnosis

Ketamine (100 mg/kg, i.p.) was used to induce sleep in mice (Mimura et al., 1990). Mice in different groups (n=5) were pretreated with vehicle, extract (250, 500 and 1000 mg/kg, i.p., respectively) and diazepam (1 mg/kg, i.p.) as positive control drug (Adeyemi et al., 2010) 30 min prior to the administration of ketamine. Each animal was observed for sleep latency (SL) or the onset of sleep (time from injection to time of loss of righting reflex); and the duration of sleep or total sleeping time (TST), that is, time from loss and recovery of consciousness.

Effect of EEPA on chemical and maximal electroshock seizure (MES) convulsion tests

Effect of EEPA on pentylenetetrazole (PTZ)-induced convulsion: Pentylenetetrazole (85 mg/kg, i.p.) was used to induce tonic-clonic convulsion (Swinyard et al., 1989). Five different groups (n=5) of mice were randomly selected. Group I received vehicle, groups II to IV were administered the extract (250, 500 and 1000 mg/kg, i.p., respectively) and group V was injected diazepam (1 mg/kg, i.p.) as positive control drug (Gonzalez-Trujano et al., 2006). The anticonvulsant activity assessment was carried out 30 min prior to injection of PTZ (85 mg/kg, i.p.) and observed for the onset of convulsion, time of death and mortality. Animal that survived beyond 30 min post PTZ injection is assumed to be protected in this model (de Sarro et al., 1999).

Effect of EEPA on picrotoxin-induced convulsion: The experiment described in section (a) was repeated using picrotoxin (10 mg/kg, i.p) as the convulsant agent and diazepam (2 mg/kg, i.p) as positive control. The manifestation of tonic-clonic convulsion was then assessed as earlier discussed (de Sarro et al., 1999).

Effect of EEPA on strychnine-induced convulsion: The experiment described in section (b) was repeated using strychnine (4 mg/kg, i.p) as the convulsant agent, and diazepam (5 mg/kg, i.p) as positive control (Shenoy et al., 1982). The manifestation of tonic-clonic convulsion was then assessed as earlier discussed (Swinyard et al., 1989). Each animal was observed for tonic-clonic convulsions and mortality. Animals that survived beyond 30 min were regarded as protected.

Effect of EEPA on MES-induced convulsion: Electroconvulsive shock was used to induce hind limb tonic extension (HLTE). The electrical stimulus (50 mA, 50 Hz, 0.2 s duration) was applied through the ear lobes by electrode clamp (transauricular-ear-clips), using an Electro-Convulsometer. Group I was administered the vehicle, groups II to IV were injected the extract (250, 500 and 1000 mg/kg, i.p., respectively), while Group V was injected phenytoin sodium (25 mg/kg, i.p.) as the positive control drug (Sousa et al., 2009). After 30 min pretreatment, each mouse was submitted to MES test. Protection against HLTE was taken as positive result (Pourgholami et al., 1999).

Effect of EEPA on thermal and chemical noiception in mice

Effect of EEPA on the hot plate test: Mice were randomly allocated to five groups (n=5). Mice in group I were injected vehicle; groups II to IV with EEPA (250, 500 and 1000 mg/kg respectively), and group V with morphine (10 mg/kg) as the positive control drug (Viana et al., 2003). Each mouse was dropped gently on the hot plate maintained at 55°C and the time taken for the mouse to lick the fore or hind paw or jump up on the plate was taken as reaction time. The test was carried out at 30, 60, 90 and 120 min post-treatment. The cut off time was set at 30 s (Silva et al., 2003).

Effect of EEPA on acetic acid-induced writhings: Five different groups (n=5) of mice were randomly selected. Group I received vehicle, groups II-IV were administered EEPA (250, 500 and 1000 mg/kg, i.p. respectively), while group V was injected diclofenac (100 mg/kg, i.p.) as positive control drug (Gonzalez-Trujano et al., 2006). Thirty minutes after treatment, each mouse was intraperitoneally injected 1% acetic acid (10 ml/kg) and allowed 5 min delay before assessment for up to 20 min inside the Plexiglas’s cage. The number of writhings or abdominal constrictions displayed by each mouse was counted and recorded (Viana et al., 2003; Silva et al., 2003).

Statistical analysis

The results were expressed as mean±standard error of mean (SEM) and analyzed using one-way analysis of variance (ANOVA) followed by post hoc test using Dunnett’s test for comparison between the treated groups and control. The anticonvulsant results were presented in percentage by comparing the % protection/ mortality in treatment groups versus the negative control group. GraphPad Instat 3 (UK) and GraphPad Prism 5 (@1990-2003, GraphPad Software, Inc.) were used for the analysis of the results.

RESULTS

Preliminary phytochemical test

Results of the preliminary phytochemical screening confirmed the presence of alkaloids, phenols, flavonoids, saponins, terpenes, steroids, and glycosides; however, phytosterols was not detected in the EEPA sample.

LC-MS analysis of the EEPA

The fingerprints of the crude EEPA performed on the LC-MS showed the presence of numerous compounds which can be used as a reference fingerprint for other EEPA crude extract (Figure 1).

Acute toxicity studies

In the oral route, doses of EEPA up to 5000 mg/kg produce no mortality in the mice, and in the intraperitoneal route, there was mortality at 2900 mg/kg but none at 1600 mg/kg; according to Lorke (1983) the LD₅₀ values were calculated to be ≥5000 and 2154 mg/kg for the oral and intraperitoneal routes, respectively.

Effect of EEPA on novelty-induced behavior

The EEPA (250, 500 and 1000 mg/kg, i.p.) caused significant [p<0.01; F(4, 20)=98] and dose-dependent decrease in the number of rearings. Diazepam (1 mg/kg, i.p) also produced significant (p<0.01) decrease in rearings (Figure 2A). The EEPA (250, 500, and 1000 mg/kg, i.p.) and diazepam caused significant [p<0.01; F(4,
Figure 1. Chromatogram of LC-MS of the EEPA indicating numerous compounds.

Effect of EEPA on anxiety

The EEPA at 250 mg/kg, i.p. caused significant \([p<0.01; F_{(4, 20)=47}] \) increase in the number of head pokes compared to the vehicle. At the doses of 500 and 1000 mg/kg, i.p. it showed a significant (\(p<0.05 \) to 0.01) decrease in the number of head pokes similarly to diazepam (1 mg/kg, i.p.) which also showed significant (\(p<0.01 \)) decrease in the exploratory activity (Figure 3). On the EPM, EEPA at all doses did not cause a significant increase in the percentage number of entries into either of the closed or open arms when compared to the control group, showing a lack of anxiolytic effect at these doses (result not shown).

Effect of EEPA on ketamine-induced hypnosis

The EEPA (250, 500 and 1000 mg/kg, i.p.) significantly \([p<0.01; F_{(4, 20)=23}] \) reduced SL in a dose dependent manner compared to vehicle. The EEPA at 250 mg/kg i.p. significantly \((p<0.05) \) prolonged the TST induced by ketamine (100 mg/kg, i.p.), and at 500 and 1000 mg/kg, caused significant \([p<0.01; F_{(4, 20)=61}] \) increase in TST compared to the vehicle. The standard drug, diazepam 1 mg/kg, i.p. significantly \((p<0.01) \) reduced SL and also significantly \((p<0.05) \) prolonged the TST compared to vehicle (Figure 5A and B).

Effect of EEPA on chemical and electric shock convulsion tests

The results of chemo-and electro-convulsion tests are summarized in Table 1. Mice in the vehicle group were not protected in all the models. The EEPA (250, 500 and 1000 mg/kg, i.p.) completely protected the mice against mortality and offered 100% protection against PTZ-induced convulsion. In the picrotoxin-induced convulsion test, mice in all the treated groups showed severe convulsions including tonic-clonic. However, EEPA at 500
and 1000 mg/kg, *i.p.*, offered 60 and 80% protections respectively, compared to diazepam (2 mg/kg, *i.p.*) which provided 80%. Strychnine induced convulsion with severe tonic-clonic convulsion. Only EEPA at 1000 mg/kg, *i.p.* and diazepam (5 mg/kg, *i.p.*) offered 60 and 40% protections respectively. In the MES test, EEPA (500 to 1000 mg/kg, *i.p.*) and phenytoin sodium (25 mg/kg, *i.p.*) offered 100% protections against HLTE with zero mortality.

Effect of EEPA on thermal and chemical nociception

The EEPA (250, 500 and 1000 mg/kg, *i.p.*) induced significant [p<0.01; F(4, 20)=32] increase in reaction time to thermal stimulation in mice on the hot plate test. At 1000 mg/kg, *i.p.*, EEPA increased the reaction time significantly [p<0.01; F(4,20)=10-22] throughout the 120 min test duration. Prolongation of reaction time was significant (p<0.01) up to 90 min for 500 mg/kg, and up to 60 min at 250 mg/kg respectively. The standard drug, morphine induced significant [p<0.01; F(4,20)=10-22] increase in reaction time compared to control up to 90 min (Table 2). The result of acetic acid-induced writhings showed that the EEPA (250, 500, and 1000 mg/kg, *i.p.*) significantly [p<0.01; F(4,20)=63] reduced the number of acetic acid-induced writhes and offered 33, 54 and 85% analgesia compared with diclofenac (100 mg/kg, *i.p.*), which

Figure 2. Effect of EEPA on rearing (panel A) and locomotor activity (panel B) in mice. Each bar represents Mean±SEM. VEH, EEPA and DZP represent vehicle, ethanolic extract of *P. americana* and diazepam respectively. **p<0.01, statistically lower than vehicle (ANOVA, Dunnett’s test).**
produced 85% analgesia (Table 3).

DISCUSSION

In this study, we investigated the effect of the ethanolic extract of the dried seed of *P. americana* (EEPA) on novelty induced behaviour (NIB), anxiety, rectal temperature, sedation, convulsion and nociception in mice. The acute toxicity profile (LD₅₀) of the extract was also determined orally and intraperitoneally. The major effect of the extract was found to cause depression of the central nervous system.

Preliminary phytochemical screening of the EEPA confirmed the presence of alkaloids, phenols, terpenes, flavonoids, saponins, steroids and glycosides similar to report by Arukwe et al. (2012), suggesting that the species used in this and the other studies were the same although they were from different southern states of Nigeria. The EEPA was analysed with liquid chromatography and mass spectroscopy (LC-MS) and the chromatogram obtained showed the presence of several compounds (Figure 1) which serves as the fingerprints of the EEPA in this study.

The LD₅₀ values obtained in the acute toxicity study of the ethanolic extract of the dried seed of *P. americana* were found to be ≥ 5000 mg/kg, p.o., and 2154 mg/kg, i.p., which indicates that it is non-toxic and moderately toxic through the oral and intraperitoneal routes respectively (Lorke, 1983). However, the values obtained here for the oral route contrasted sharply from that obtained in another study on ethanolic seed extract of a Mexican species, which caused a mortality of 20, 60 and 80% at doses of 500, 1000 and 2000 mg/kg, p.o., respectively (Padilla-Camberos et al., 2013). This could be due to differences in the chemical composition of the extracts occasioned by geographical and species variation (Guo et al., 2013).

This non-toxic effect per oral of this extract may be used to justify the use of this plant in ethnomedicine for managing various ailments. The effect of EEPA on novelty-induced behaviour is suppression of rearing and locomotor activities (Figure 2). Locomotion and rearing are considered horizontal and vertical locomotor activities respectively, thus an increase in these activities signifies excitatory while a decrease indicates inhibitory or sedative effect (Zapata-Sudo et al., 2010). The results obtained here are similar to that reported for ethyl acetate extract of * Ipomoea stans*, which significantly reduced spontaneous motor activity, protected against PTZ-induced convulsion and enhanced the hypnotic effect of pentobarbital in mice (Herrera et al., 2007). The EEPA induced a motor depressant effect, indicating a possible skeletal muscle relaxant and sedative effect (Adeyemi et al., 2006). Inhibitory effect in the CNS is caused either by the augmentation of GABA inhibitory effect by binding to the GABA_{A} receptor like the benzodiazepines (e.g. diazepam), or antagonizing the effect of glutamate by blocking glutamate receptors such as NMDA (e.g. felbamate), AMPA (e.g. topiramate), kainite, glycine, or the metabotropic receptors (Rang et al., 2007).

The elevated plus-maze (EPM) has been adequately demonstrated to be a satisfactory model for testing anxiolytic effect of drugs even when the agent does not act via the benzodiazepine receptors (Söderpalm et al., 1989). The EEPA at all doses used did not show anxiolytic effect on EPM model because there was no significance (p>0.05) increase in the time spent in the open arms and number of entries which could be due to the sedative effect of the extract at the doses used in this study. Previous report revealed that high doses of sedatives cause depression of all activities including exploratory activity (Hellion-Ibarrola et al., 1999). A further anxiolytic test of the extract on the hole-board model (Figure 3) reveals a positive anxiolytic effect at the lowest dose (250 mg/kg, i.p.) as it increased the level of exploratory activity (number of head dips) when compared to the control group. However, EEPA at 500-1000 mg/kg, i.p., and diazepam (1 mg/kg, i.p.) caused significant reduction in head-dips in this study possibly due to their sedative effect. Sedative agents have been variously reported to decrease exploratory activities on the EPM and on the hole board, but did not preclude them from exhibiting anxiolytic activity (Parka et al., 2005).

The extract (1000 mg/kg, i.p.) significantly (p<0.01) reduced the rectal temperature throughout the 120 min time interval compared to the control (Figure 4). The hypothalamus has been reported to regulate body temperature, and CNS-depressants such as hypnotics, general anaesthesia and benzodiazepines normally lower body temperature at relatively low doses (Vale et al., 1999). The result obtained in this study suggests that the extract may be causing reduction in body temperature mainly through the hypothalamus which has been widely linked to body temperature regulation (Bhattacharya et al., 2003; Nagashima, 2006).

The EEPA at all doses significantly (p<0.05-0.01) decreased SL and increased TST induced by ketamine in a dose dependent manner (Figure 5A and B) comparable to diazepam (1 mg/kg, i.p.). Reduction in SL and prolongation of TST indicate sedative effect (Hellion-Ibarrola et al., 1999), which may involve enhancement of neurotransmission of GABA in the CNS (Sivam et al., 2004) by potentiating the inhibitory influence of GABA. Sedatives are known to induce deep rest in humans and it has been shown that when patients have sufficient sleep, circadian variation in blood pressure and heart rate is significantly decreased (Rowlands et al., 1980) and by inference may contribute to its hypotensive activity.

Adverse effects of available anticonvulsant drugs make treatment difficult hence the demand for new anticonvulsants is increasingly necessitated and one of the approaches to searching for new antiepileptic drugs is
the investigation of naturally occurring compounds, thus we evaluated the effect of EEPA on seizures induced by PTZ, picrotoxin, strychnine and maximal electroshock (MES) in mice (Table 1). The results indicate that the EEPA produced significant anticonvulsant effect against PTZ, strychnine, picrotoxin and MES induced seizures. In
the PTZ model, EEPA (250, and 1000 mg/kg, *i.p.*) delayed the onset of clonic convulsions, decreased the duration of tonic convulsions and protected the mice from death comparable to the standard anticonvulsant agent, diazepam (1 mg/kg, *i.p.*). The extract at all doses used and diazepam in this study offered 100% protection, signifying the involvement of GABA_A benzodiazepine pathway in the mediation of this activity (Olatokunboh et al., 2009). PTZ-induced seizure is analogous to petit-mal type of seizures and human generalized seizures (Lösch and Schmidt, 1988). The mechanism by which PTZ is believed to exert its action is by acting as an antagonist at the GABA_A receptor complex (Ramanjaneyulu et al., 1984). On the other hand, drugs that reduce T-type Ca²⁺ currents, such as ethosuximide can prevent seizures induced by PTZ (Karunakar et al., 2009). Drugs that are effective against petit-mal seizures reduce T-type calcium currents, and drugs that enhance GABAA-BZD receptor mediated neurotransmission such as benzodiazepines and phenobarbitone (McDonald and Kelly, 1995) can prevent these types of seizures. Studies have shown that activation of N-methyl-D-aspartate receptor (NMDA) is also involved in the initiation and generalization of PTZ-induced seizures (Nevis and Arnold, 1989). The EEPA at 500 and 1000 mg/kg, *i.p.* offered 60% and 80% protections, respectively while diazepam (2 mg/kg, *i.p.*) offered 80% protection. Picrotoxin is a potent antagonist of the GABA_A receptor, and it binds at the β₂/<β₃ subunits of the receptor to effectively block the chloride channel, resulting in a postsynaptic neuron that is more easily excitable and prone to hyper-excitability (McDonald and Kelly, 1995). The extract profoundly delayed the onset and inhibited strychnine-induced seizures in a dose-dependent manner. The only dose of the extract that offered protection in this model provided 60% protection compared to diazepam (5
mg/kg, *i.p.*, which offered 40% protection. Strychnine has been shown to act by directly antagonizing glycine at spinal cord and brainstem, thus increasing spinal reflexes (Olatokunboh et al., 2009). It could be suggested that EEPA may be exerting its anticonvulsant effect through augmentation of glycine transmission in the spinal cord and brain stem. The EEPA at 500 and 1000 mg/kg, *i.p.* successfully blocked the HLTE induced by the MES which was comparable to the standard drug (phenytoin sodium, 25 mg/kg, *i.p.*) suggesting potential antiepileptic activity against generalized tonic-clonic and partial seizures which might be acting probably through blockade of Ca**2+** or Na**+** or both (Hegde et al., 2009). Anticonvulsant activity of the aqueous leaf extract of *P. americana* from Nigeria has been reported earlier (Ojewole and Amabeoku, 2006), suggesting that the active component(s) may be present in the leaf and seed of the plant.

The extract at all doses used significantly (*p*<0.01) prolonged the reaction to thermal stimulation on the hot plate test, which was comparable to morphine (10 mg/kg, *i.p.*), a standard opioid agonist (Table 2). Our findings demonstrated significant (*p*<0.01) activity of EEPA in the hot-plate model in a dose dependent manner which has been linked to central mediation. The pain inhibition effect of the extract, at the highest dose (1000 mg/kg, *i.p.*), was significant (*p*<0.01) throughout the period of observation (120 min), whereas the standard drug, morphine (10 mg/kg, *i.p.*) reached its peak effect at 90 min after which its effect became negligible. Acetic acid-induced writhing test was used to confirm the peripheral analgesic activity of the EEPA. The EEPA at all doses used significantly (*p*<0.01) inhibited acetic acid-induced writhes in mice (Table 3). The extract at 250, 500 and 1000 mg/kg, *i.p.* offered 33, 55 and 86% analgesia respectively compared to diclofenac’s 86%, signifying peripheral analgesic activity (Silva et al., 2003). The analgesic result obtained here corroborates earlier report on the analgesic activity of the leaf extract (Adeyemi et al., 2002). Prostaglandins induce abdominal constriction by activating and sensitizing the peripheral chemo-sensitive nociceptors which are mostly responsible for causing inflammatory pain (Delevallee et al., 1980). The results obtained from the hot plate and acetic acid-induced writhings suggested that the EEPA may mediate these anti-nociceptive activities centrally and peripherally, thus providing rationale for the ethnomedicinal use of the seed of this plant in the management of pain and rheumatism.

Further studies to isolate the active principles in this plant is imperative which can lead to discovery of novel

Table 1. Effect of EEPA on chemically-induced and MES convulsion tests.

Treatments (i.p.) [n = 5]	Effect of EEPA on the % protection against:	Effect of EEPA on MES-induced HLTE		
	PTZ (85 mg/kg)	Picrotoxin (10 mg/kg)	Strychnine (4 mg/kg)	MES
Vehicle	0	0	0	NP
EEPA 250 mg/kg	100	0	0	NP
EEPA 500 mg/kg	100	60	0	Protected
EEPA 1000 mg/kg	100	80	60	Protected
Diazepam 1 mg/kg	100	0	0	NT
Diazepam 2 mg/kg	NT	80	0	NT
Diazepam 5 mg/kg	NT	NT	40	NT
Sodium phenytoin 25 mg/kg	NT	NT	NT	Protected

Each value represents percentage of animals that survived beyond 30 min post injection of convulsant agent. EEPA: Ethanolic dried seed extract of *P. americana*; NT: not tested; NP: not protected; PTZ: pentylene tetrazol; MES: maximal electric shock; and HLTE: hind limb tonic extension.

Table 2. Effect of EEPA on the reaction time of mice on the hot plate.

Treatment (i.p.) [n=5]	Reaction time (s), Mean±SEM after			
	30 min	60 min	90 min	120 min
Vehicle	5.68±0.22	9.70±1.09	10.10±0.38	10.72±0.47
EEPA 250 mg/kg	13.26±0.37**	15.44±2.16*	12.34±0.95	9.460 ± 1.13
EEPA 500 mg/kg	16.4±1.32**	18.94±1.27**	16.38±2.92*	13.2±1.95
EEPA 1000 mg/kg	23.94±1.09**	26.72±0.84**	23.94±0.69**	18.74±0.86**
Morphine 10 mg/kg	16.40±2.18**	21.20±0.94**	25.20±1.16**	13.60±0.37

Vehicle is 5% Tween 80 and EEPA is the ethanolic extract of dried seed of *Persea americana* respectively. The reaction time is the time it takes the mouse to lick its paws. *p*<0.05; **p<0.01, statistically different from vehicle (ANOVA, Dunnett’s test).
Table 3. Effect of EEPA on acetic acid-induced writhings in mice.

Treatment (i.p.), n=5	Number of writhes (Mean±SEM) in 30 min	% Analgesia
Vehicle	84.20±6.8	0.00
EEPA 250 mg/kg	56.40±4.11**	33.02
EEPA 500 mg/kg	38.00±2.81**	54.87
EEPA 1000 mg/kg	12.00±1.14**	85.75
Diclofenac 100 mg/kg	12.20±1.77**	85.51

Vehicle is 5% Tween 80, EEPA is ethanolic extract of *Persea americana* respectively. **p < 0.01, statistically lower than vehicle (ANOVA, Dunnett's test).

and potent drugs that will be invaluable in mitigating myriads of diseases ravaging mankind.

Conclusion

It is concluded that major effect of the ethanolic dried seed extract of *P. americana* is depression of the central nervous system which also manifested significant hypothermic, sedative, anticonvulsant and analgesic activities in mice; thus, providing scientific basis and justification for the ethnomedical uses of the plant in addition to serving as a clue in the discovery of novel and useful therapeutic agent.

Conflict of interests

The authors have not declared any conflict of interest.

ACKNOWLEDGEMENTS

The authors are grateful to Obafemi Awolowo University, Ile-Ife, Nigeria; Walter Sisulu University, Mthatha; and NRF, South Africa for supporting this research.

REFERENCES

Adeyemi OO, Akindele AJ, Yemitan OK, Aigbe FR, Fagbo FI (2010). Anticonvulsant, anxiolytic and sedative activities of the aqueous root extract of *Securidaca longepedunculata* Fresen. J. Ethnopharmacol. 130(2):191-195.

Adeyemi OO, Yemitan OK, Taiwo AE (2006). Neurosedative and muscle-relaxant activities of ethyl acetate extract of *Baphia nitida* AFZEL. J. Ethnopharmacol. 106(3):312-316.

Adeyemi OO, Okpo SO, Ogunti OO (2002). Analgesic and anti-inflammatory effects of the aqueous extract of leaves of *Persea americana* Mill (Lauraceae). Fitoterapia, 73(5):375-380.

Al-Naggar TB, Gomez-Serranillos MP, Carretero ME, Villar AM (2003). Neuropharmacological activity of *Nigella sativa* L. extracts. J. Ethnopharmacol. 88(1):63-75.

Olatokunboh AO, Kayode YO, Adeola OK (2009). Anticonvulsant activity of *Rauvolfia vomitoria* (Afzel). Afr. J. Pharm. Pharmacol. 3(6):319-322.

Antia BS, Okokon JE, Okon PA (2005). Hypoglycemic activity of aqueous leaf extract of *Persea americana* Mill. Indian J. Pharmacol. 37(5):325.

Arukwe U, Amadi BA, Duru MKC, Agomuo EN, Adindu EA, Odika PC, Anudike J(2012). Chemical composition of *Persea americana* leaf, fruit and seed. Jurr. 11(2):346-349.

Asoalu MF, Asoalu S2, Falunka JB, Emman-Onkon BO, Ajayi EO, Togun RA (2010). Evaluation of in-vitro antioxidant activities of methanol extracts of *Persea americana* and *Cnidococcus aconitifolius*. Pak. J. Nutr. 9(11):1074-1077.

Balunas MJ, Kinghorn AD (2005). Drug discovery from medicinal plants. Life Sci. 78(5):431-441.

Bhattacharya PK, Bhattacharya L, Jain RK, Agarwal RC (2003). Post anaesthesia shivering (PAS): A review. Indian J. Anaesth. 47(2):88-93.

Castel-Branco MM, Alves GL, Figueiredo IV, Falcão A, Caramona MM (2009). The maximal electroshock seizure (MES) model in the preclinical assessment of potential new antiepileptic drugs. Methods Find. Exp. Clin. Pharmacol. 31(2):101-106.

Chen H, Morrell PL, Ashworth VE, de la Cruz M, Clegg MT (2009). Tracing the geographic origins of major avocado cultivars. J. Heredity 100(1):56-65.

de Carvalho RSM, Duarte FS, de Lima TCM (2011). Involvement of GABAergic non-benzodiazepine sites in the anxiolytic-like and sedative effects of the flavonoid baicalin in mice. Behav. Brain Res. 221(1):75-82.

De Sarro A, Cecchetti V, Fravolini V, Naccari F, Tabarrini O, De Sarro G (1999). Effects of novel 6-desfluoroquinolones and classic quinolones on pentyleneetetrazole-induced seizures in mice. Antimicrob. Agents Chemother. 43(7):1729-1736.

Sousa DP, Nóbrega FF, de Morais LC, Almeida RND (2009). Evaluation of the anticonvulsant activity of terpinen-4-ol. Z. Naturforsch. C. 64(1-2):1-5.

Dzeufiet PD, Mogueu A, Bilanda DC, Aboubakar BF, Tédong L, Dimo T, Kamthouing P (2014). Antihypertensive potential of the aqueous extract which combine leaf of *Persea americana* Mill. (Lauraceae), stems and leaf of *Cymbopogon citratus* (D.C) Stapf. (Poaceae), fruits of *Citrus medical L.* (Rutaceae) as well as honey in ethanol and sucrose experimental model. BMC Complement. Altern. Med. 14:507.

Edem D1, Ekanem I, Ebong P (2009). Effect of aqueous extracts of *alligator pear seed (Persea americana Mill.*) on blood glucose and histopathology of pancreas in alloxan-induced diabetic rats. Pak. J. Pharm. Sci. 22(3):272-86.

Edem D1, Ekanem I, Ebong P (2009). Effect of aqueous extracts of alligator pear seed (Persea americana Mill.) on blood glucose and histopathology of pancreas in alloxan-induced diabetic rats. Pak. J. Pharm. Sci. 22(3):272-86.

Chen H, Morrell PL, Ashworth VE, de la Cruz M, Clegg MT (2009). Tracing the geographic origins of major avocado cultivars. J. Heredity 100(1):56-65.

de Carvalho RSM, Duarte FS, de Lima TCM (2011). Involvement of GABAergic non-benzodiazepine sites in the anxiolytic-like and sedative effects of the flavonoid baicalin in mice. Behav. Brain Res. 221(1):75-82.

De Sarro A, Cecchetti V, Fravolini V, Naccari F, Tabarrini O, De Sarro G (1999). Effects of novel 6-desfluoroquinolones and classic quinolones on pentyleneetetrazole-induced seizures in mice. Antimicrob. Agents Chemother. 43(7):1729-1736.

Sousa DP, Nóbrega FF, de Morais LC, Almeida RND (2009). Evaluation of the anticonvulsant activity of terpinen-4-ol. Z. Naturforsch. C. 64(1-2):1-5.

Dzeufiet PD, Mogueu A, Bilanda DC, Aboubakar BF, Tédong L, Dimo T, Kamthouing P (2014). Antihypertensive potential of the aqueous extract which combine leaf of *Persea americana* Mill. (Lauraceae), stems and leaf of *Cymbopogon citratus* (D.C) Stapf. (Poaceae), fruits of *Citrus medical L.* (Rutaceae) as well as honey in ethanol and sucrose experimental model. BMC Complement. Altern. Med. 14:507.

Edem D1, Ekanem I, Ebong P (2009). Effect of aqueous extracts of alligator pear seed (Persea americana Mill.) on blood glucose and histopathology of pancreas in alloxan-induced diabetic rats. Pak. J. Pharm. Sci. 22(3):272-86.

Edem D1, Ekanem I, Ebong P (2009). Effect of aqueous extracts of alligator pear seed (Persea americana Mill.) on blood glucose and histopathology of pancreas in alloxan-induced diabetic rats. Pak. J. Pharm. Sci. 22(3):272-86.

Gonzalez Trujano ME, Carrera D, Ventura W, Carrasquillo N (2005). Anticonvulsant activity of *Ruta chalepensis L.* in mice. J. Ethnopharmacol. 20(4):331-335.

Ezuruike UF, Prieto JM (2014). The use of plants in the traditional management of diabetes in Nigeria:Pharmacological and toxicological considerations. J. Ethnopharmacol. 155(2):857-924.

Fabricant DS, Farnsworth NR (2001). The value of plants used in traditional medicine for drug discovery. Environ. Health Perspect. 109(1):69-75.

Gavriance YN, Yadav AV (2012). Loss of orally administered drugs in GI tract. Saudi Pharm. J. 20(4):331-44.

Gonzalez-Trujano ME, Carrera D, Ventura-Martinez R, Cedillo-Portugal E, Navarrete A (2006). Neuropharmacological profile of an ethanol extract of *Ruta chalepensis* L. in mice. J. Ethnopharmacol. 106(1):129-135.

Guo L, Wang S, Zhang J, Yang G, Zhao M, Ma W, Huang L (2013). Effects of ecological factors on secondary metabolites and inorganic elements of *Scutellaria baicalensis* and analysis of geoherblism. Sci. China Life Sci. 56(11):1047-1056.
Hegde K, Thakker SP, Joshi AB, Shastry CS, Chandrashekar KS (2009). Anticonvulsant activity of Carissa carandas Linn. root extract in experimental mice. Trop. J. Pharm. Res. 8(2).

Hellör H, Söllner MA, Ferrolia DA, Montalbetti Y, Villalba D, Heinichen O, Ferro EA (1999). Acute toxicity and general pharmacological effect on central nervous system of the crude rhizome extract of Kyllinga brevifolia Rottb. J. Ethnopharmacol. 66(3):271-276.

Herrera-Ruíz M, Gutiérrez C, Jiménez-Ferrera JE, Tortoriello J, Mórón G, León I (2007). Central nervous system depressant activity of an ethyl acetate extract from Ipomoea stans roots. J. Ethnopharmacol. 112(2):244-247.

Imafidon KE, Amaechina FC (2010). Effects of aqueous seed extract of Persea americana Mill.(avocado) on blood pressure and lipid profile in hypertensive rats. Adv. Biol. Res. 4(2):116-121.

Jiménez-Arellanes A, Luna-Herrera J, Ruiz-Nicolás R, Cornejo-Garrido J, Tapia A, Yépez-Mulia L (2013). Antiprotozoal and antimycobacterial activities of Persea americana seeds. BMC Complement. Altern. Med. 13:109.

Deraedt R, Jouquey S, Delevallée F, Flahaut M (1980). Release of prostaglandins E and F in an algogenic reaction and its inhibition. Eur. J. Pharmacol. 61(1):17-24.

Hegde K, Thakker SP, Joshi AB, Shastry CS, Chandrashekar KS (2009). Anticonvulsant activity of Carissa carandas Linn. root extract in experimental mice. Trop. J. Pharma. Res. 8(2).

Kofii N, Kouakou EA, Dodimon S (2009). Effect of aqueous extract of Persea americana seeds on the glycemia of diabetic rats. Eur. J. Sci. Res. 26(3):76-385.

Leite JGG, Brito ÉHS, Cordeiro RA, Brilhante RS, Sidrim JJC, Bertini L M, Rocha MFG (2009). Chemical composition, toxicity and larvicidal and antifungal activities of Persea americana (avocado) seed extracts. Rev. Soc. Bras. Toxicol. 50(11):550-552.

Matussaka Y, Kawabata J, Kasai T (2003). Antioxidative constituents in avocado (Persea americana Mill.) seeds. J. Jpn. Soc. Food Sci. Technol. 50(11):550-552.

Mimura M, Namiki A, Kishi R, Ikeda T, Miyake H (1990). Antagonistic effect of phystostigmine on ketamine-induced anaesthesia. Psychopharmacology (Berl). 102(3):399-403.

Mir AM, Sawhney SS, Jassal MMS (2013). Qualitative and quantitative analysis of phytochemicals of Taraxacum officinale. Wudpecker J. Sci. Res. 26(3):76-90.

Nagashima K (2006). Central Mechanisms for Thermoregulation in a Rat. Neurosci. 36(2):S2-12.

Nakay BA, Raju SS, Chalapathi Rao AV. (2008). Wound healing activity of Persea americana (avocado) fruit: A preclinical study on rats. J. Wound Care 17(3):123-6.

Nevins ME, Arnold, SM (1989). A comparison of the anticonvulsant effects of competitive and non-competitive antagonist of the N-methyl-D-aspartate receptor. Brain Res. 503(1):1-4

Newman DJ, Cragg GM (2012). Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Natural Prod. 75(3):311-335.

Nwaogu LA, Alisi CS, Ojiako OA (2009). Studies on the nutritional and phytochemical properties of Persea americana seed. Bio-Res. 6(1):320-322.

Odo CE, Nwodo OF, Joshua PE, Ugwu OP, Okonkwo CC (2013). Acute toxicity investigation and anti-diarrhoeal effect of the chloroform–methanol extract of the seeds of Persea americana in albino rats. Iran J. Pharm. Res. 13(2):651-658.

Ojewole JA, Amabeoku, GJ (2006). Anticonvulsant effect of Persea americana Mill (Lauraceae) (Avocado) leaf aqueous extract in mice. Phytother Res. 20(6):696-700.

Okonta M, Okonta O, Anyanwu CN (2007). Blood glucose lowering activities of seeds of Persea americana on alloxan induced diabetic rats. Nigerian J. Nat. Prod. Med. 11:26-28.

Onigbog O, Ajayi AA, Ukponmwon OE (2000). Mechanisms of chloroquine-induced body scratching behaviour in rats; Evidence of involvement of endogenous opioid peptides. Pharmacol. Biochem. Behav. 65(2):333-337.

Owolabi MA, Jaja SI, Coker HA (2005). Vasorelaxant action of aqueous extract of the leaves of Persea americana on isolated thoracic rat aorta. Fitoterapia. 76(6):567-573.

Oyemitan IA, Iwalawo EO, Akannu MA, Ologbade TA (2008). Sedative, Hypothermic and Muscle Relaxant Effects of the Essential Oil of Dennettia tripetala G. Baker (Annonaceae) in Mice. Ife J. Sci. 10(1):1-9.

Pardilla-Camberos E, Martínez-Velázquez M, Flores-Fernández JM, Villanueva-Rodríguez S (2013). Acute toxicity and genotoxic activity of avocado seed extract (Persea americana Mill cv Hass). Available at: http://dx.doi.org/10.1155/2013/245828.

Park JH, Cha HY, Seo JJ, Hong JT, Han K, Oh KW (2005). Anxiolytic-like effects of ginseng in the elevated plus-maze model: comparison of red ginseng and sun ginseng. Progress in Neuro-Psychopharmacol. Biol. Psychiatri. 29(6):895-900.

Phenev, O, Chopin P, Briley M (1985). Validation of open: closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. Neurosci. Methods 14(3):149-167.

Pond SM, Tozer TN (1984). First-pass elimination. Basic concepts and clinical consequences. Clin. Pharmacokinet. 9(1):1-25.

Pourgholami MH, Kamalinejad M, Javadi M, Mazjoob S, Saryyah M (1999). Evaluation of the anticonvulsant activity of the essential oil of Eugenia caryophyllata in male mice. J. Ethnopharmacol. 64(2):167-171.

Ranjanmajeyyala R, Ticku MK (1984). Interactions of pentylenetetrazol and tetrazole analogues with the picrotoxin site of the benzodiazepine-GABA receptor ionophore complex. Eur. J. Pharmacol. 98:337-345.

Rang HP, Dale MM, Ritter JM, Moore PK (2007). Pharmacology, 6th ed. Churchill Livingstone, Edinburgh. pp. 557-587.

Rodríguez-Carpena JG, Mercuende D, Andrade MJ et al. (2011). Avocado (Persea americana Mill.) Phenolics, in vitro antioxidant and antimicrobial activities, and inhibition of lipid and protein oxidation in porcine patties. J. Agric. Food Chem. 59(10):5625-5635.

Rowlands DB, Stallard TJ, Watson RDS et al. (1980). The influence of physical activity on arterial pressure during ambulatory recordings in man. Clin. Sci. 58:116-117.

Shenov, AK, Miyahara JT, Swanid EA, Kupferberg HJ (1982). Comparative anticonvulsant activity and neurotoxicity of cllobazam, diazepam, phenobarbital, and valproate in mice and rats. Epilepsia 23(4):399-408.

Silva J, Abebe W, Sousa SM, Duarte VG, Machado ML, Matos FJA (2003). Analgesic and anti-inflammatory effects of essential oil of Eucalyptus grandis. J. Ethnopharmacol. 89(2):277-283.

Sivas SP, Nabeshima T, Ho IK (2004). Acute and chronic effects of pentobarbital in relation to postsynaptic GABAA receptors: A study with muscimol. J. Neurosci. 7(1):37-47.

Söderpalm B, Hjorth S, Engel JA (1989). Effects of 5-HT1A receptor agonists and L-5-HTP in Montgomery's conflict test. Pharmacol. Biochem. Behav. 32(1):259-265.

Swainid EA, Woodhead JH, White HS, Franklin MR (1989). Experimental selection, quantification and evaluation of anticonvulsants. In: Levy R, Mattson R, Meldrum BS, Penny JK, Dreifuss FE. (Eds), Antiepileptic Drugs, 3rd ed., Raven Press New York. pp 85-102.

Takeda H, Tsuji M, Matsumiya T (1998). Changes in head-dipping behaviour in the hole-board test reflect the anxiogenic and/or anxiolytic state in mice. Eur. J. Pharmacol. 350(1):21-29.

Takenaga F., Matsuyama K, Abe S, Toriy I, Itoh S (2008). Lipid and fatty acid composition of mesocarp and seed of avocado fruits harvested at northern range in Japan. J. Oleo. Sci. 57(11):591-597.

Ukwe CV, Nwafor SV (2005). Antiulcer activity of aqueous leaf extract of Persea americana (family-Lauraceae). Nig. J. Pharm. Res. 3(1):91-95.

Vale TG, Matos FJA, De Lima TCM, Viana GSB (1999). Behavioural effects of essential oils from Lippia alba (Mill) N.E. Brown Chemotypes. J. Ethnopharmacol. 167(2):127-133.

Viana GS, Bandeira MA, Matos FJ. (2003). Analgesic and anti-inflammatory effects of chalcones isolated from Myracrodruon
Wang W, Bostic TR, Gu L (2010). Antioxidant capacities, procyanidins and pigments in avocados of different strains and cultivars. Food Chem. 122(4):1193-1198.

Yadav AV, Kawale LA, Nade VS (2008). Effect of Morus alba L. (mulberry) leaves on anxiety in mice. Indian J. Pharmacol. 40(1):32-6.

Zapata-Sudo G, Mendes TC, Kartnaller MA, Fortes TO, Freitas NF, Kaplan MA, Sudo RT (2010). Sedative and anticonvulsant activities of methanol extract of Dorstenia arifolia in mice. J. Ethnopharmacol. 130(1):9-12.