Heat transfer and axisymmetric stagnation point flow due to a shrinking vertical plate in a nanofluid with slip effects

M A Kardri¹,², N Bachok², N M Arifin² and F M Ali²

¹Faculty of Computer & Mathematical Sciences, Universiti Teknologi MARA, Perak Branch, Tapah Campus, 35400 Tapah Road, Perak, Malaysia
²Department of Mathematics and Institute for Mathematical Research, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

E-mail: mahan702@perak.uitm.edu.my

Abstract. The problem on steady axisymmetric stagnation point flow with velocity slip due to a shrinking vertical plate in a nanofluid was studied. This problem was focussing on the first-order and second-order velocity slip effects on the governing parameters, such as mixed convection parameter \(\sigma \) and nanoparticle volume fraction \(\phi \). Three types of nanofluids were considered in this study which known as Copper (Cu), Alumina (Al₂O₃) and Titania (TiO₂) with the Prandtl number, \(Pr = 6.2 \). In order to solve the problem, solver bvp4c in Matlab has been applied to solve the numerical part. Before the numerical phase, the governing system of partial differential equations was transformed first into ordinary differential equations by similarity transformation. Then, the observation was done to study the effects of first and second order velocity slip parameter, \(\Lambda \) and \(\Lambda \), mixed convection parameter \(\sigma \) and nanoparticle volume fraction \(\phi \) on heat transfer and fluid flow. Dual solutions exist for a certain range of mixed convection parameter \(\sigma \). It is observed that when the nanoparticle volume fraction increase, the shear stress on the shrinking sheet also increase, same goes for heat transfer rate regarding the first-order and the second-order velocity slip parameters, \(\Lambda \) and \(\Lambda \). The rate of heat transfer can be raised when the magnitude of the first-order and the second-order velocity slip parameter, \(\Lambda \) and \(\Lambda \), decrease.

1. Introduction

Industries nowadays always searching for findings that can give an improvement to their research and development. One of the beneficial study that may contribute to raise the efficiency in production industries is on axisymmetric stagnation point flow problem involving the process on extrusion of plastic sheets, continuous stretching of plastic films and artificial fibres, polymer extrusion and the cooling of metallic plate [1].

Hiemenz [2] was the first researcher who pointed out the problem of steady two-dimensional stagnation point flow and obtained its exact solution. Homann [3] then analysed the axisymmetric problem as an extension to the problem by Hiemenz [2]. Both considered the situation where no-slip condition were applied on the solid surface but in this study, we are interested to examine the slip effects on mixed convection parameter and nanoparticle volume fraction.

In recent years, the problem of slip effect of different flows is widely getting attention by researchers. One of them is Wang [4] who solved the first-order velocity slip case on stagnation point
flows problem. From his observations, the high slip parameter value will influence the flow characteristics. He was also interested to study the moving plate case [5] where the slip is highly affected the changes on velocity profiles and surface resistances.

A new second-order velocity slip model from kinetic theory was found by Wu [6] with the results almost similar to the numerical solution of linearized Boltzmann equation in Knudsen number. Wang [7] then extended the problem to shrinking sheet case with axisymmetric stagnation flow. He found that in two-dimensional case, the solutions are non-unique and no solution for higher shrinking rates. After his pioneering work, considerable attention has been given by researchers to the flow field over a stagnation point flow towards stretching/shrinking sheet. Wang and Ng [8] continued the study by considering the first-order velocity slip on a heated vertical plate. Similar to the problem studied by Wang and Ng [8], Roșca and Pop [9] investigated the mixed convection stagnation point flow past a vertical flat plate with enhancement to the second-order velocity slip.

In the last five years, we can see that the study on axisymmetric stagnation point flow is rising among researchers. Among them that we can highlight here is on cylinder case [10-12], moving plate [13-14], Magnetohydrodynamic [11], rotational case [15-16] and slip effects [17-19]. Other than that, the problem on unaxisymmetric stagnation point flow also started to gain attention from researchers for the problem on cylinder [20-21] and Magnetohydrodynamic [20].

The objective of the present study is to obtain the solution to the problem of second-order velocity slip for axisymmetric stagnation point flow on vertical plate over a shrinking sheet, with slip effect. The results are then compared with Wang and Ng [8] and Soid et al. [17] for validity. The problem in this present study considers the nanofluid model proposed by Tiwari and Das [22]. The numerical results obtained from nanoparticle volume fraction \(\phi \), mixed convection parameter \(\sigma \) and slip parameters, on the fluid velocity component, temperature distribution, skin friction coefficient and local Nusselt number were discussed in detail from their respecting graphs. Recently, Kardri et al. [19] studied similar problem related to stretching sheet but to date, there is still no attempt has been made to study the problem on shrinking sheet in nanofluid.

2. Mathematical analysis

Three-dimensional axisymmetric stagnation point flow was considered in this study on a vertical plate over a shrinking surface with slip effects. The inclusion of nanofluid was highlighted in this study to observe their effects on the heat transfer and fluid flow. Figure 1 portrayed the symmetrical stagnation point flow about the \(z \)-axis and the \(x \)-axis located in the opposite direction to the gravity.

![Figure 1. Shrinking case flow.](image)

The shrinking parameter \(\lambda \) used in this study is \(\lambda < 0 \) for shrinking case. The velocities on the surface in the \(x \) and \(y \) directions represent by \(\lambda u_0(x) \) and \(\lambda v_0(y) \). Far from the plate, the velocity distributions are \(u_0(x) = ax \), \(v_0(y) = ay \) and \(w_0(z) = -2az \), where \(a > 0 \) is the flow strength as \(z \to \infty \). The surface temperature is \(T_\infty(x) = T_0 + T_\infty x \), where wall temperature is \(T_0 \) and \(T_\infty \) is ambient
temperature. The governing equations written are as follows (refer to Wang and Ng [8] and Roşca and Pop [9])

\[
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0, \tag{1}
\]

\[
\frac{1}{\rho} \frac{\partial p}{\partial x} + \frac{\mu_{nf}}{\rho_{nf}} \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) + \beta g (T - T_\infty), \tag{2}
\]

\[
\frac{1}{\rho} \frac{\partial p}{\partial y} + \frac{\mu_{nf}}{\rho_{nf}} \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2} \right), \tag{3}
\]

\[
\frac{1}{\rho} \frac{\partial p}{\partial z} + \frac{\mu_{nf}}{\rho_{nf}} \left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial z^2} \right), \tag{4}
\]

\[
\frac{\partial T}{\partial x} + \frac{\partial T}{\partial y} + \frac{\partial T}{\partial z} = \alpha_{nf} \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right), \tag{5}
\]

subject to the boundary conditions

\[
u = \lambda \nu_u(x) + \nu_{slip}(y), \quad T = T_w(x) + T_{slip}(z) \text{ on } z = 0, \tag{6}
\]

\[
\frac{u}{\alpha}, \quad \frac{v}{\alpha}, \quad \frac{w}{\alpha} \rightarrow -2\alpha, \quad T \rightarrow T_\infty \text{ as } z \rightarrow \infty,
\]

where \(T_{slip} = C \partial T/\partial z\) and \(C\) is the temperature jump coefficient. The velocity components \(u = a\eta f(\eta), \quad v = a\eta f'(\eta)\) and \(w = -2\alpha \eta f'(\eta)\) has been identical proved to satisfy the equation (1) from derivation. Modification of equation (4) is needed to find the pressure \(p\), from \(p - p_\infty = \mu \partial w/\partial z - \rho w^2/2\). The slip velocities at the shrinking surface denoted by \(u_{slip}\) and \(v_{slip}\) (refer to Wu [6]) are defined as

\[
u_{slip}(y) = A \frac{\partial v}{\partial z} + B \frac{\partial^2 v}{\partial z^2}, \quad v_{slip}(y) = A \frac{\partial v}{\partial z} + B \frac{\partial^2 v}{\partial z^2}, \tag{7}
\]

where \(A\) and \(B\) are constants where \((B < 0)\) (Soid et al. [17]).

By employing the transformation technique, the following ordinary differential equations were obtained from equations (2), (3) and (5) such that

\[
\frac{1}{(1 - \phi)^{2.5}} \left[(1 - \phi) + \phi \rho_{nf} / \rho_f \right] f''' + 2 f'' + 1 - f'^2 + \sigma \theta = 0, \tag{8}
\]

\[
\frac{k_{nf} / k_f}{(1 - \phi) + \phi (\rho \rho_C p)} \left[\rho C_p \right] f' + Pr (2 f' f' - f'') \theta = 0, \tag{9}
\]

subject to boundary conditions (6), we obtain

\[
f(0) = 0, \quad f'(0) = \lambda + \Delta f''(0) + \Lambda f'''(0), \quad \theta(0) = 1 + K \phi(0), \quad \theta(\eta) \rightarrow 0, \quad \nu(\eta) \rightarrow 0, \quad \text{as } \eta \rightarrow \infty \tag{10}
\]

where \(\alpha_{sf}\) is the thermal diffusivity of the nanofluid, \(\mu_{sf}\) is the dynamic viscosity of the nanofluid, \(\rho\) and \(\rho_{sf}\) are the density of the fluid and nanofluid, respectively, \(T\) is the temperature of the nanofluid, \(g\) is the gravitational acceleration, \(\beta\) is the thermal expansion coefficient, \(Pr = \nu/\alpha\) is the Prandtl number, \(\Delta = A \sqrt{a/n} \) where \(\Delta > 0\) is the first-order velocity slip parameter, \(\Lambda = B \alpha / \nu < 0\).
where $\Lambda < 0$ is the second-order velocity slip parameter, $K = C\sqrt{|a|/v}$ where $K > 0$ is the temperature parameter and σ is the mixed convection parameter, $\sigma = g\beta T_0/\alpha^2$.

The similarity transformation approach has been used

$$\eta = z\sqrt{|a|/v}, \quad T - T_\infty = \Delta T \theta(\eta).$$

where η is the similarity variable, $\Delta T = T_0 - T_\infty$ is the characteristic temperature and $\theta(\eta)$ is the dimensionless parameter.

The skin friction coefficients C_f and the local Nusselt number Nu_x are the two physical components that are really important in this study which defined as

$$C_f = \frac{\tau_w}{\rho_f u_c^2} f''(0), \quad Nu_x = \frac{xq_w}{k_f(T_w - T_\infty)},$$

where τ_w is the skin friction coefficient, and q_w is the heat flux from the surface of the plate given by

$$\tau_w = \mu(\frac{\partial u}{\partial z})_{z=0}, \quad q_w = -k_{nf}(\frac{\partial T}{\partial z})_{z=0}.$$

The similarity transformation are by substituting equation (11) into equations (12) and (13), we obtain

$$C_f \ Re_x^{1/2} = \frac{1}{(1-\varphi)^{1/2}} f''(0), \quad Nu_x \ Re_x^{-1/2} = \frac{k_{nf}}{k_f} \theta'(0),$$

where $Re_x = u_c x/\nu_f$ is the local Reynolds number.

3. Results and Discussion

This study aims to observe the characteristics of heat transfer and fluid flow, as well as the effect of slip parameters to the governing parameters. The partial differential equations were reduced to non-linear ordinary differential equations using similarity transformation. Then, the non-linear ordinary differential equations are solved numerically through numerical computations using Matlab bvp4c function. The parameters involved are nanoparticle volume fraction φ, mixed convection parameter σ, first-order velocity slip parameter Δ and second-order velocity slip parameter Λ. The nanoparticle volume fraction φ used is ranging from 0 to 0.2 where $\varphi = 0$ is for a regular (Newtonian) fluid. The thermophysical properties of water and three nanoparticles namely, Copper (Cu), Titania (TiO$_2$) and Alumina (Al$_2$O$_3$) were taken from Oztop and Abu-Nada [23] with Prandtl number of $Pr = 6.2$ (for water). The results obtained from this study were compared to Wang and Ng [8] and Soid et al. [17] for regular Newtonian fluid case. Favorable agreement was achieved from results validation as shown in Table 1 and the results was presented graphically.

Δ	Wang and Ng [8]	Soid et al. [17]	Present results	
	$f''(0)$	$-\theta'(0)$	$f''(0)$	$-\theta'(0)$
0	1.31194	0.45110655	1.3119377	0.45110655
0.1	1.21009	0.46867805	1.2100866	0.46867805
1	0.61730	0.52304734	0.6172996	0.52304734
5	0.17928	0.54568595	0.1792836	0.54568595
Figures 2-3 demonstrate the effect of mixed convection parameter σ for a shrinking case $\lambda = -1$. In Figure 2 shows the variations of $f''(0)$ and $-\theta'(0)$ for the first-order velocity slip parameter Δ with the mixed convection parameter σ in a Copper-water nanofluid. We found that, the range of solution for mixed convection parameter σ increases with the increase of the first-order velocity slip parameter Δ. The existence of the critical value for mixed convection parameter $\sigma_c < 0$ and the values of σ_c decrease in the shrinking case as the first-order velocity slip Δ increases. Dual solutions exist from the saddle-node bifurcation at σ_c where the first solution branch seems leading to larger values of σ and the second solution branch terminating as the mixed convection parameter σ approaches zero.

![Figure 2](image1.png)

Figure 2. Variation of $f''(0)$ and $-\theta'(0)$ for the first-order velocity slip parameter $\Delta=0.1,1,5$ with σ when $\Lambda = -0.3$, $K = 0.2$, $\varphi = 0.1$ and $\lambda = -1$ for Copper.

![Figure 3](image2.png)

Figure 3. Variation of $f''(0)$ and $-\theta'(0)$ for the second-order velocity slip parameter $\Lambda = -0.1, -1, -5$ with σ when $\Lambda = 5$, $K = 0.2$, $\varphi = 0.1$ and $\lambda = -1$ for Alumina.

Figure 3 illustrates the variations of $f''(0)$ and $-\theta'(0)$ with σ for second-order velocity slip Λ examined on Alumina. This behaviour indicating that when the magnitude of the second-order parameter Λ increases, the solution range for both figures decrease. As reported by Soid et al. [17], for a similar problem, an interesting behaviour has been found in Figure 3(a) such that the pattern of each curve is significantly differ when $\Lambda = -0.1$, the curve is forming a parabolic shape and for $\Lambda = -5$, the curve tends form an ellipse. However, when $\Lambda = -1$, the curve seems to form a straight line. The first solution of $\Lambda = -0.1$ and $\Lambda = -1$ give the larger value of $f''(0)$ compared to the second solution as predicted, but it totally differs for $\Lambda = -5$.

Figure 4. Different nanoparticles with $\sigma = -0.5, \Delta = 5, \Lambda = -0.3, K = 0.2$ and $\lambda = -1$ for variation of skin friction coefficient and local Nusselt number.

Figure 5. Alumina with different values of first-order velocity slip parameter Δ when $\sigma = -0.5$ and $\Lambda = -0.3$ for variation of skin friction coefficient and local Nusselt number.

Figure 6. Alumina with different values of second-order velocity slip parameter Λ when $\sigma = -0.5$ and $\Delta = 0.3$ for variation of skin friction coefficient and local Nusselt number.

Figure 4 exhibits the skin friction coefficient and local Nusselt number for different nanoparticles and figures 5-6 illustrate the different values of first and second order velocity slip, Δ and Λ, respectively for Alumina. Based on figures 4-5, we can see that when the nanoparticle volume fraction ϕ increases, the skin friction coefficient and local Nusselt number will increase as well. In figure 4(a), Copper gives the highest value of skin friction coefficient, compared to Titania and Alumina that are slightly differ to each other. Copper also gives the highest heat transfer rate compared to the other two nanoparticles as seen in figure 4(b) and Titania shows the lowest result for heat transfer rate due to the
conduction mode domination. This situation proved that Titania has the lowest thermal conductivity compared to Copper and Alumina.

From Figure 5, we found that the decrease of the first-order velocity slip Λ will increase the skin friction coefficient and heat transfer rate. Figure 6 pictures that increasing the second-order velocity slip Λ, will increase the heat transfer rate and decrease the skin friction coefficient.

![Figure 7](image1)

Figure 7. Alumina with effect of the nanoparticle volume fraction φ when $\Delta = 5, \Lambda = -0.3, \sigma = -2, K = 0.2$ and $\lambda = -1$ on the velocity profile $f'(\eta)$ and temperature profile $\theta(\eta)$.

![Figure 8](image2)

Figure 8. Titania with effect of the mixed convection parameter σ when $\Delta = 5, \Lambda = -0.3, K = 0.2, \varphi = 0.1$ and $\lambda = -1$ on the velocity profile $f'(\eta)$ and temperature profile $\theta(\eta)$.

An analysis has been made to observe the velocity and temperature profiles, $f'(\eta)$ and $\theta(\eta)$, respectively for three different nanofluids towards the parameters φ, σ and Λ. Figures 7-9 portray that the boundary layer thickness of the second solution is larger than the first solution using different values of nanoparticle volume fraction φ, mixed convection parameter σ (in opposing flow) and second-order velocity slip parameter Λ.

Figure 8(a) describes that decreasing the mixed convection parameter σ, will decrease the first solution and increasing the second solution for the velocity profile. However, opposite results were obtained for temperature profile as shown in figure 8(b). The dual velocity profile of figure 8(a) and 9(a) depict the velocity increases with increases of σ and Λ corresponding to a faster mixed convection parameter σ and second-order slip parameter Λ velocity for the first solution and vice-versa for the second solution. The velocity and temperature profiles satisfy the far field boundary conditions in equation (10) asymptotically; thus supporting the validity of the numerical results obtained and the existence of the dual solutions displayed in figures 2-3.
Figure 9. Copper-water with effect of the second-order velocity slip Λ when $\sigma = -2$, $\Delta = 5$, $K = 0.2$, $\varphi = 0.1$ and $\lambda = -1$ on the velocity profile $f'(\eta)$ and temperature profile $\theta(\eta)$.

4. Conclusion

A study has been conducted to solve the problem of axisymmetric stagnation point flow with slip effects for shrinking case due to a vertical plate with the existence of three types of nanofluid particles Copper (Cu), Titania (TiO$_2$) and Alumina (Al$_2$O$_3$). The heat transfer and fluid flow behavior were observed and the following results are derived:

- mixed convection parameter σ for a certain range of solution gives dual solutions,
- increases of $f''(0)$ and $-\theta'(0)$ for the first-order velocity slip parameter Δ will increase their range of solutions but decreases their critical values σ_c,
- increases of second-order velocity slip parameter Λ magnitude will decrease the range of solution for $f''(0)$ and $-\theta'(0)$ but increases their critical values σ_c,
- increases of the nanoparticle volume fraction φ, will enhance the shear stress on the shrinking sheet for both slip parameters and increase the heat transfer rate,
- inclusion of Copper into the base water fluid gives the best result to the skin friction and heat transfer coefficients compared to Alumina and Titania,
- the rate of heat transfer can be raised when the magnitude of the first-order and second-order velocity slip, Δ and Λ, decreases.

Acknowledgments

We thank the anonymous reviewers for their valuable comments. This work is funded by Universiti Putra Malaysia under the Putra Grant (Project code: GP-IPS/2016/9513000).

References

[1] Das K 2012 Slip effects on MHD mixed convection stagnation point flow of a micropolar fluid towards a shrinking vertical sheet Computers & Mathematics with Applications 63(1) 255-67
[2] Hiemenz K 1911 Die Grenzschicht an einem in den gleichformigen Flussigkeitsstrom eingetauchten geraden Kreiszylinder Dinglers J. 326 321-4
[3] Homann F 1936 Der Einfluss grosser Zähigkeit 0bei der Strömung um den Zylinder und um dKugel Z. Angew. Math. Mech. 16(3) 153-64
[4] Wang C Y 2003 Stagnation flows with slip: exact solutions of the Navier-Stokes equations Z. Angew. Math. Phys. 54(1) 184-9
[5] Wang C Y 2006 Stagnation slip flow and heat transfer on a moving plate Chem. Eng. Sci. 61(23) 7668-72
[6] Wu L 2008 A slip model for rarefied gas flows at arbitrary Knudsen number Appl. Phys. Lett. 93(25) 253103
[7] Wang C Y 2008 Stagnation flow towards a shrinking sheet. International Journal of Non-Linear Mechanics 43(5) 377-82.
[8] Wang C Y and Ng C O 2013 Stagnation flow on a heated vertical plate with surface slip J. Heat Transf. 135(7) 074505
[9] Roşca N C and Pop I 2013 Mixed convection stagnation point flow past a vertical flat plate with a second order slip: heat flux case Int. J. Heat Mass Transf. 65 102-9
[10] Mohammadiun H, Rahimi A B and Kianifar A 2013 Axisymmetric stagnation-point flow and heat transfer of a viscous, compressible fluid on a cylinder with constant heat flux Sci. Iran. 20(1) 185-94
[11] Awais M, Malik M Y, Bilal S, Salahuddin T and Hussain A 2017 Magnetohydrodynamic (MHD) flow of Sisko fluid near the axisymmetric stagnation point towards a stretching cylinder Results in Physics 7 49-56
[12] Dinarvand S, Hosseini R and Pop I 2017 Axisymmetric mixed convective stagnation-point flow of a nano-fluid over a vertical permeable cylinder by Tiwari-Das nanofluid model Powder Technol. 311 147-56
[13] Ja’fari M and Rahimi A B 2013 Axisymmetric stagnation-point flow and heat transfer of a viscous fluid on a moving plate with time-dependent axial velocity and uniform transpiration Sci. Iran. 20(1) 152-61
[14] Roşca A V, Roşca N C and Pop I 2014 Axisymmetric stagnation point flow and heat transfer towards a permeable moving flat plate with surface slip condition Appl. Math. Comput. 233 139-51
[15] Weidman P 2016 Axisymmetric rotational stagnation point flow impinging on a flat liquid surface European Journal of Mechanics-B/Fluids 56 188-191.
[16] Weidman P 2016 Axisymmetric rotational stagnation point flow impinging on a radially stretching sheet International Journal of Non-Linear Mechanics 82 1-5.
[17] Soid S K, Merkin J, Ishak A and Pop I 2017 Axisymmetric stagnation-point flow and heat transfer due to a stretching/shrinking vertical plate with surface second-order velocity slip Meccanica 52(1-2) 139-51
[18] Al-Balushi L M, Rahman M M and Pop I 2017 Three-dimensional axisymmetric stagnation-point flow and heat transfer in a nanofluid with anisotropic slip over a stratified surface in the presence of various thermal conditions and nanoparticle volume fractions Therm. Sci. Eng. Prog. 2 26-42
[19] Kardri M A, Bachok N, Arifin N M and Ali F M 2017 Second-order velocity slip with axisymmetric stagnation point flow and heat transfer due to a stretching vertical plate in a Copper-water nanofluid In Journal of Physics: Conference Series 890(1) 012022
[20] Alizadeh R, Rahimi A B and Najafi M 2016 Magnetohydrodynamic unaxisymmetric stagnation-point flow and heat transfer of a viscous fluid on a stationary cylinder Alexandria Engineering Journal 55(1) 37-49
[21] Alizadeh R, Rahimi A B, Arjmandzadeh R, Najafi M and Alizadeh A 2016 Unaxisymmetric stagnation-point flow and heat transfer of a viscous fluid with variable viscosity on a cylinder in constant heat flux Alexandria Engineering Journal 55(2) 1271-1283
[22] Tiwari R J and Das M K 2007 Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids Int. J. Heat Mass Transf. 50 2002-18
[23] Oztop H F and Abu-Nada E 2008 Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids Int. J. Heat Fluid Flow 29(5) 1326-36