Supplemental information

SMN controls neuromuscular junction integrity through U7 snRNP

Sarah Tisdale, Meaghan Van Alstyne, Christian M. Simon, George Z. Mentis, and Livio Pellizzoni
Figure S1. Co-expression of Lsm10 and Lsm11 enhances U7 snRNP assembly, related to Figure 1.

(A) Schematic representation of the lentiviral constructs used to generate stable NIH3T3 cell lines with mouse Lsm10 and/or Lsm11 overexpression.

(B) RT-qPCR analysis of Lsm10 and Lsm11 mRNA levels in NIH3T3-SmN RNAi cells with and without (control) overexpression of Lsm10 and Lsm11 either individually or in combination. Data are mean and SEM (n=3 independent experiments) normalized to Gapdh mRNA and expressed relative to control NIH3T3-SmN RNAi cells set as 1. Statistics were performed with one-way ANOVA with Tukey’s post hoc test. ****P<0.0001; ***P<0.001; **P<0.01.
(C) Northern blot analysis of U1 and U7 snRNAs immunoprecipitated with the indicated antibodies from extracts of NIH3T3-Smnrna cell lines with and without overexpression of Lsm10 and Lsm11 either individually or in combination.

(D) Schematic representation of the vector expressing both Lsm10 and Lsm11 with an intervening 2A self-cleaving peptide.

(E) Western blot analysis with anti-FLAG antibodies of HEK293T cells with or without transient transfection of the Lsm10-2A-Lsm11 vector depicted in (D).

(F) In vitro snRNP assembly for U7 and U1 snRNAs (top panels) and Western blot analysis of SMN levels (bottom panels) using the same extracts as in (E). Quantification of snRNP assembly for each snRNA is shown as a percentage of control at the bottom of the corresponding panel.
Figure S2. Co-expression of Lsm10 and Lsm11 does not increase SMN expression and enhances U7 snRNP biogenesis in SMA mice, related to Figure 2.

(A) Schematic representation of the AAV9 viral vector and workflow to achieve Lsm10 and Lsm11 co-expression in vivo.

(B) In vitro snRNP assembly of U1 and U7 snRNAs in brain extracts from uninjected and AAV9-Lsm10-2A-Lsm11 injected WT mice at P11. Quantification of snRNP assembly for each snRNA is shown as a percentage of control at the bottom of the corresponding panel.

(C) Western blot analysis of SMN levels in brain extracts from the same samples used in (B).

(D) RT-qPCR analysis of Lsm10 (left), Lsm11 (middle), and full-length human SMN2 (right) mRNA levels in the spinal cord of uninjected WT mice and SMA mice injected with AAV9-GFP or AAV9-Lsm10/11 at P11. Data are mean and SEM (n=6 mice) normalized to Gapdh mRNA and expressed relative to WT set as 1. Statistics were performed with the Kruskal-Wallis test followed by Dunn’s multiple comparisons test. ***P<0.001; **P<0.01; ns = not significant.

(E) Western blot analysis of SMN levels in spinal cord and liver from the same groups as in (D). Flag-Lsm10 and Flag-Lsm11 could only be detected with anti-FLAG antibodies from liver but not spinal cord of SMA mice injected with AAV9-Lsm10/11. In the Lsm11 panel, asterisks mark non-specific bands detected with anti-FLAG antibodies.

(F) In vitro U7 snRNP assembly (top panel) and Western blot analysis (bottom panels) of brain extracts from uninjected WT mice and SMA mice injected with AAV9-GFP or AAV9-Lsm10/11 at P11.

(G) Percentage of U7 snRNP assembly relative to uninjected WT mice from the experiment in (F). Data are mean and SEM (n=3 mice). Statistics were performed with two-tailed Student’s t test. **P<0.01.

(H) Northern blot analysis of U7 snRNA and 5S rRNA in spinal cord (top panels) and liver (bottom panels) from the same groups as in (F).

(I) Percentage of U7 snRNA levels relative to uninjected WT mice from the experiment in (H). Data are mean and SEM (n=3 mice). Statistics were performed with two-tailed Student’s t test. **P<0.01; ns = not significant.

(J) Immunostaining of L1 spinal cord, cerebellum, and liver from P11 SMA mice injected with AAV9-GFP using GFP, DAPI, and ChAT (spinal cord only). Scale bars=100µm.

(K) Quantification of the percentage of GFP+ motor neurons (MNs) from the L1 spinal cord of P11 SMA mice injected with AAV9-GFP as in (J). Data are mean and SEM (n=5 mice).
Figure S3. Co-expression of Lsm10 and Lsm11 improves histone mRNA processing, but not U7-independent RNA processing defects induced by SMN deficiency, related to Figure 2.

(A) RT-qPCR analysis of the ratio of 3'-extended and total histone mRNA levels in NIH3T3-SmnRNAi and NIH3T3-Lsm10/11/SmnRNAi cells. Schematic representation of a histone pre-mRNA and the 3'-end cleavage is shown at the top. For each cell line, fold change values of the ratio of 3'-extended (pre) and total (tot) histone mRNAs in Dox treated cells relative to untreated cells set as 1 are shown. Data are mean and SEM (n=3 independent experiments). Statistics were performed with two-tailed Student’s t test. *P<0.05; **P<0.01.

(B) RT-qPCR analysis of aberrant U12 splicing and U12 intron retention in the Stasimon (Stas) mRNA induced by SMN deficiency in the same cell lines as in (A). Schematic representation of the monitored RNA processing events is shown at the top. For each cell line, fold change values in Dox treated cells relative to untreated cells set as 1 are shown. Data are mean and SEM (n=3 independent experiments) normalized to Gapdh mRNA. Statistics were performed with two-tailed Student’s t test. ns = not significant.

(C) RT-qPCR analysis of exon skipping and U12 intron retention in the Clcn7 mRNA in the same cell lines as in (A). Schematic representation of the monitored RNA processing events is shown at the top. Data are mean and SEM (n=3 independent experiments) normalized to Gapdh mRNA. Statistics were performed with two-tailed Student’s t test. ns = not significant.

(D) RT-qPCR analysis of Cdkn1a mRNA levels in the same cell lines as in (A). Data are mean and SEM (n=3 independent experiments) normalized to Gapdh mRNA. Statistics were performed with two-tailed Student’s t test. ns = not significant.

(E) RT-qPCR analysis of 3'-extended histone mRNAs in liver from uninjected WT mice and SMA mice injected with AAV9-GFP or AAV9-Lsm10/11 at P11. Schematic representation of a histone pre-mRNA and the 3'-end cleavage is shown at the top. Data are mean and SEM (n=3 mice for WT and SMA+GFP; n=6 mice for SMA+Lsm10/11) normalized to Gapdh mRNA. Statistics were performed with one-way ANOVA with Tukey’s post hoc test. **P<0.01.

(F-H), RT-qPCR analysis of aberrant U12 splicing of Stas mRNA (F) as well as Chodl (G) and Cdkn1a (H) total mRNA levels in spinal cord from the same groups as in (E). Schematic representation of the monitored RNA processing events is shown at the top. Data are mean and SEM (n=6 mice) normalized to Gapdh mRNA. Statistics were performed with one-way ANOVA with Tukey’s post hoc test. ***P<0.001; ns = not significant.
Figure S4. Co-expression of Lsm10 and Lsm11 does not correct cell proliferation defects in SMN-deficient mammalian cells, related to Figure 2.

(A-B) Analysis of cell proliferation in NIH3T3-SmnRNAi (A) and NIH3T3-Lsm10/11/SmnRNAi (B) cell lines. Equal numbers of each cell line were cultured with or without Dox for the indicated number of days and cell number was determined at each time point.

(C) Western blot analysis of histone protein levels in spinal cord from WT and SMA mice at P11. A two-fold serial dilution of WT extract is shown on the left.
Figure S5. Co-expression of Lsm10 and Lsm11 improves motor function and skeletal muscle atrophy in SMA mice, related to Figure 3.

(A-B) Righting time (A) and body weight (B) of WT mice either uninjected or injected with AAV9-Lsm10/11 and SMA mice injected with AAV9-GFP, AAV9-Lsm10/11 or AAV9-SMN. Data are mean and SEM from the following number of mice per group (n=16 for WT, SMA+GFP, SMA+SMN, and SMA+Lsm10/11; n=10 for WT+Lsm10/11).

(C) Kaplan-Meier plot of mouse survival from the same treatment groups and number of mice as in (A-B).

(D) Frequency distribution of myofiber sizes in the triceps muscle from uninjected WT mice and SMA mice injected with AAV9-GFP, AAV9-Lsm10/11 or AAV9-SMN at P11. Data are mean and SEM (n=5 mice for WT, SMA+Lsm10/11 and SMA+SMN; n=6 mice for SMA+GFP).
Figure S6. Loss of SV2B expression at vulnerable NMJs in SMA mice is not U7-dependent, related to Figure 5.

(A) NMJ immunostaining with SV2B, Synaptophysin (SYP) and α-bungarotoxin (BTX) of quadratus lumborum muscles from untreated WT mice and SMA mice injected with AAV9-GFP, AAV9-Lsm10/11 or AAV9-SMN at P11. Denervated NMJs lacking pre-synaptic SYP staining are indicated by arrowheads and SYP staining is only shown for one representative innervated NMJ (dotted box) in the bottom insets. Scale bar=20µm.

(B) NMJ immunostaining with SV2B, Synaptophysin (SYP) and α-bungarotoxin (BTX) of tibialis anterior muscles from untreated WT mice and SMA mice injected with AAV9-GFP at P11. SYP staining is only shown for one representative innervated NMJ (dotted box) in the bottom insets. Scale bar=20µm.

(C) Percentage of innervated NMJs that are SV2B+ from experiments as in (A). Data are mean and SEM (n=3 mice). Statistics were performed with one-way ANOVA with Tukey’s post hoc test. **P<0.01; ***P<0.001; ns = not significant.

(D) Percentage of innervated NMJs that are SV2B+ from experiments as in (B). Data are mean and SEM (n=3 mice). Statistics were performed with two-sided Student’s t test. ns = not significant.
Table S1. List of primers and probes used in this study, related to Figure 1 and STAR Methods.

Northern blot probes

Name	Reference	Sense Sequence (5’ to 3’)
mouse U7	Tisdale et al., 2013	GCAGGTTTTCTGACTCCGGTGGAA
mouse U1	Tisdale et al., 2013	AATTGTGAGTGGGGACACTGGGT
mouse U12	Tisdale et al., 2013	AATAACGATGGGGTGACGCCGA
mouse 5S	Tisdale et al., 2013	CCGCCCATACACCCTGAAGCAGGCCC
mouse 5.8S	Tisdale et al., 2013	GGTGGATCAGCGTCGTC

PCR primers for mouse genotyping

Name	Reference	Forward Sequence (5’ to 3’)	Reverse Sequence (5’ to 3’)
SmnWT	Simon et al., 2019	GATGATTCTGACATTTGGGATG	TGGCTTATCTGAAGTTCAGA
SmnKO	Simon et al., 2019	GATGATTCTGACATTTGGGATG	GAGTAACAGCGGGTCGGATCC

qPCR primers for AAV titration

Name	Reference	Forward Sequence (5’ to 3’)	Reverse Sequence (5’ to 3’)
AAV-5’	Simon et al., 2019	GTGCTTTTTATTCTACGCTGAGGAGT	TCGGCCCCAACCGGCGTGGGAT

RT-qPCR primers

Name	Reference	Forward Sequence (5’ to 3’)	Reverse Sequence (5’ to 3’)
mouse H1c-pre	Tisdale et al., 2013	GAGCCACCACTCCCATGAGGAG	GATGTGCTTCTACGCCATC
mouse H2Ac-pre	Tisdale et al., 2013	GAGCCACCACTCCCATGAGGAG	GATGTGCTTCTACGCCATC
mouse H2Bepre	Tisdale et al., 2013	CTCACACTCTAAGCCAAAGGC	CCAATAGGTTGTACTGCCC
mouse H3-pre	Tisdale et al., 2013	CCTACTCGTAAATACAGAAAAGCT	CATGATAGATGTTGAGACCAGA
mouse H4c-pre	Tisdale et al., 2013	GATTTCCACTGTCAAGAAGAGG	CACCTAAACTACTAGCAGAGC
mouse H1c-tot	Tisdale et al., 2013	GCCGGGCTAAAGGGAGCGAAAG	CCTTGGATTTTAAATACCGAGGAG
mouse H2Ac-tot	Tisdale et al., 2013	CACCGAGCAGAGGAGCCACACAGAAG	GAAGTTTCCGAGATTCTGCTG
mouse H2Be-tot	Tisdale et al., 2013	GCTGTCACCAGTACAGCAGCA	GCCCTTGTTGAGGAGTCTGA
mouse H3-tot	Tisdale et al., 2013	CAAGGCGTGCAACATCATG	GAAGCTTCTTGTATTAACAGGAGGAG
mouse H4c-tot	Tisdale et al., 2013	CAAGGCCAAGGAGCCGTCA	CCTTTGTTGAGCAGGAAATTCA
mouse Gapdh	Ruggeri et al., 2012	AATGTGCTGCTGCTGGGATCTQA	GAAGCTGCTTCTACGAGCCATC
mouse Smm	Ruggeri et al., 2012	TGCTGCCTGACCCGCAATTCTTTT	TGGCTTCTTGTGGGCATCTGA
human SMN2 FL	Ruggeri et al., 2012	CACCACTCTCCTATGCTGCAATG	GAATGTGACAGCCTTCTCTTTT
mouse Lsm10	This paper	CCAATGCTACCTATACCGACC	GTGACGATGATGCTGACCAT
mouse Lsm11	This paper	GCTCCAGAGAGGGGCCACACACAGAAG	ACCGATGAGAGGCGCACATC
mouse Cdkn1a	Ruggiu et al., 2012	GACATTTGAGGAGCAGGAGGCC	GAGGCGGATGACACGGCAAAGC
mouse Chodl	Van Alstyne et al., 2018	CCAATTTCTACGAGGAGCAGA	TGGTGGCCTCTGAGGAGGTGATGG
mouse Stas U12 intron	Lotti et al., 2012	GTCAACTTTACCTCTGATAGGGAAG	GAGGAAGATGCGAAGCCGGTGAGC
mouse Stas aberrant	Lotti et al., 2012	TGAAGATGAGAGGCAAGTTGGGAAA	CCAAGTGCCGGAGACTATGACATTAAGAG
mouse Clcn7 exon skipping	Lotti et al., 2012	ATACACACACCACTATGCTG	ATCTCCACCACTGAGGAGACAGC
mouse Clcn7 U12 intron	Lotti et al., 2012	CACCAAGGACAGATCCTGCAAGACAGAC	GCTGTCGTTCTTACTAGCCTGACT
mouse Agrin TOT	This paper	CGTGGTGGATGCTTCTGGC	CATGACGCTACACTCAGT
mouse Agrin ΔZ	This paper	TGCTGCTGGGCGCTCTCTG	TGCAGGGCGGTCTGACTCAGG
Table S2. List of antibodies used in this study, related to Figure 1.

Name	Source	Cat #	Host	Application	Dilution
SMN (clone 8)	BD Transduction Lab	610646	Mouse	WB	1:10,000
Tubulin (DM1A)	Sigma	T9026	Mouse	WB	1:10,000
H2A	Millipore	07-146	Rabbit	WB	1:2,000
H2AX	Cell Signaling	7631S	Rabbit	WB / IHC	1:1,000 / 1:200
H2B	Abcam	ab1790	Rabbit	WB	1:40,000
Histones (pan)	Millipore	MAB052	Mouse	WB	1:10,000
SmB (18F6)	Custom made	N/A	Mouse	IP	N/A
FLAG M2	Sigma	F3165	Mouse	WB / IP	1:2,000
ChAT	Millipore	AB144P	Goat	IHC	1:100
Neurofilament M	Millipore	AB1987	Rabbit	IHC	1:500
VGlut1	Custom made	N/A	Guinea pig	IHC	1:5,000
Synaptophysin	Synaptic Systems	101-004	Guinea pig	IHC	1:500
GFP	Sigma	G1544	Rabbit	WB	1:5,000
GFP	Aves	GFP-1020	Chicken	IHC	1:500
Agrin	Custom made	N/A	Rabbit	IHC	1:1,000
SV2B	Synaptic Systems	119-102	Rabbit	IHC	1:200
Mouse immunoglobulin (IgG)	Sigma	I8765	Mouse	IP	N/A
Alexa-Fluor 488 donkey anti-rabbit	Jackson	711-545-152	Donkey	IHC	1:250
Alexa-Fluor 488 donkey anti-goat	Jackson	705-545-147	Donkey	IHC	1:250
Alexa-Fluor 488 donkey anti-chicken	Jackson	703-545-155	Donkey	IHC	1:250
Cy3 donkey anti-rabbit	Jackson	711-165-152	Donkey	IHC	1:250
Cy3 donkey anti-mouse	Jackson	715-165-150	Donkey	IHC	1:250
Cy3 donkey anti-goat	Jackson	705-165-147	Donkey	IHC	1:250
Cy5 donkey anti-goat	Jackson	705-175-147	Donkey	IHC	1:250
Cy5 donkey anti-guinea pig	Jackson	706-175-148	Donkey	IHC	1:250
HRP goat anti-mouse	Jackson	115-035-044	Goat	WB	1:10,000
HRP goat anti-rabbit	Jackson	111-035-003	Goat	WB	1:10,000