Introduction

An old Chinese fable has it that Peng-Tse discovered the secret for longevity. Similar fables exist in most known cultures. They reflect the desire of many humans to perpetuate themselves in time, prolonging our presence in this world for as long as possible. This debate is being revived in recent years in a more academic setting [1,2]. Immortality for humans might or might not be achievable, but ever longer life spans are a fact of modern life. If humans are to live longer in the future, human society and the human species might feel the effect of such a dramatic change. Some of those effects might be predicted if we use our understanding of the dynamics of evolutionary processes of life history traits in many different animal and plant species. What are the consequences to humanity if longevity is to increase and spread, from the perspective of evolutionary biology? What would be the consequences to humanity if immortality is achieved? Why is it that death exists in the first place? Such questions can be answered with some confidence by modern evolutionary theory and here, I will try to outline some of the basic reasoning behind such answers. Aging or getting old, in physiological terms, has various meanings. Here I will explore three of them

- Active aging: Cells might have inbuilt biochemical processes, triggered by specific genes, that help kill old cells or cells that have completed their physiological function to the organism they serve.
- Passive aging: Cells might get old simply because they accumulate defects and mutations, making it ever more difficult to function properly and thus, they eventually are killed or die.
- Relative aging: Cells might have adapted to combat mutations and biochemical degradation, maintaining themselves pristine over long periods of time, but the environment changes and the surrounding tissue suffers adaptations that make the cells obsolete, making them eventually unable to survive in their ever-changing environment.

These three categories of aging might apply also to organisms in relation to their surrounding environment or the society they belong to. The underlying processes might be just the same ones modulating aging in cells, or additional processes might exist that are working only at the level of the organism. Processes that apply more to populations of organisms than to cells in the tissue forming the organisms include the processes of birth and death. These two are closely related and interdependent in stable populations, modulating biological evolution. Biological evolution is the outcome of variation and natural selection that acts differentially on individuals of a given population favoring individuals with the highest fitness. That is, the highest survival abilities and the highest reproductive output. Variation is achieved through mutations, sex and mate selection. In sexual populations, such as human populations, new combinations of genes in each offspring are achieved. In this way populations are able to explore new phenotypic spaces every time a new human being is born.

Natural selection acts then on these new variants through differential survival. This differential survival is thought to be achieved following strictly the rules of the “Survival of the fittest”. Or, if you allow for chaotic processes and large amounts of stochastic events in complex systems, in addition to natural selection, you might prefer to apply the rules of the “Survival of the luckiest”. Even if you imagine a world where every new born child will survive to old age, evolution still works. This is because mate choice is not completely random and sex modulated by mate selection. In sexual populations, such as human populations, new combinations of genes in each offspring are achieved. These two are closely related and interdependent in stable populations, modulating biological evolution. Biological evolution is the outcome of variation and natural selection that acts differentially on individuals of a given population favoring individuals with the highest fitness. That is, the highest survival abilities and the highest reproductive output. Variation is achieved through mutations, sex and mate selection. In sexual populations, such as human populations, new combinations of genes in each offspring are achieved. In this way populations are able to explore new phenotypic spaces every time a new human being is born.

In this way populations are able to explore new phenotypic spaces every time a new human being is born.
erage is specific for each species or population. In general, larger organisms have longer life spans than smaller organisms. Organisms with long development period have longer life spans than organisms reaching reproductive maturity fast. Organisms producing few offspring have longer life spans than organisms with large number of them (i.e. large clutch sizes).

Computer simulations help us to explore the effect on evolution of adaptive pressures affecting life-span. So far, they have produced no evidence that evolution favors very long life-spans or even immortality. The reader might design and run its own simulation experiments by running the software Biodynamic [6]. Among humans, longer average life spans also correlate with lower fertility, and of course with better health services and in general a with more widespread use of technology. The two last aspects can be estimated through statistical indicators such as infant mortality rates, energy consumption per head, or other indicators of more technology intensive life styles. The data available to us, provided and collected by the United Nations, is presented in (Table 1). The data show that indeed there is a correlation between industrial development and life spans, as industrialized countries in Europe have citizens with longer life spans than poor countries in Africa, for example. The data also shows that as expected, countries with citizens with longer life spans, estimated in the table trough the index “Life expectancy at birth”, also show reduced fertility. Broadly speaking, countries with larger life expectancy have lower fertility rates, i.e. females in these countries produce fewer children. This is evidenced from data in the (Table 1). All counties with life expectancy at birth for the cohort of 2000-2005 above 70 years have fertilities of 3 or less children per women; whereas all countries with life expectancies below 50 years for the same cohort have fertility rates of 3.7 children per women or above.

Interestingly, longer average life spans also correlate with longer differences in life expectancy between males and females. Females, with their higher titer in progesterone and lower titer of testosterone than males, seem to live longer, and this difference increases as other factors that limited live spans are controlled. Several reasons might explain this difference, among them, the difference in hormone levels will affect the metabolism of the organism differently, making it more likely that males are more active, suffer more stress, and live shorter lives. Another reason that might affect the odds of survival might be the related to due to cultural and psychological biases, which produce as a consequence much higher frequency of medical attention received by females. The countries with the largest average life expectancy at birth (the first in the list in Table 1) have also very high gender differences in life expectancy. Only former communist countries (Estonia, Latvia, Belarus, Russia, and Kazakhstan in Table 1), which had much higher life expectancies in the recent past, show larger gender differences in life expectancy than the countries with the largest life expectancy at birth. This might be at least partially explained by the much higher stress suffered by males during periods of economic reces-

Country	(LE) Life Expectancy at birth	Gender difference in LE(Fem-Male)	Expected Change in LE in the last 30 years	childr per female (Fertility)	Change in fertility in the last 30 years
Japan	81.6	7	8.3	1.3	-0.8
Sweden	80.1	5	5.4	1.6	-0.3
Hong Kong	79.9	5.5	7.9	1	-1.9
Iceland	79.8	4.3	5.5	2	-0.8
Canada	79.3	5.3	6.1	1.5	-0.5
Spain	79.3	7	6.4	1.2	-1.7
United States	77.1	5.7	5.6	2.1	0.1
Libya	72.8	4.6	20	3	-4.6
Tunisia	72.8	4	17.2	2	-4.2
Oman	72.4	3.3	20.3	5	-2.2
Estonia	71.7	10.6	1.2	1.2	-1.2
Latvia	71	10.8	0.9	1.1	-0.9
Belarus	70.1	10.7	-1.4	1.2	-1.1
Viet Nam	69.2	4.7	18.9	2.3	-4.4
Maldives	67.4	-1.1	16	5.3	-1.7
Russia	66.8	12.3	-2.9	1.1	-0.9
Kazakhstan	66.3	11.2	1.9	2	-1.5
Bhutan	63.2	2.5	20	5	-0.9
Pakistan	61	-0.3	12	5.1	-1.2
Yemen	60	2.2	20.2	7	-1.4
Nepal	59.9	-0.5	16.6	4.3	-1.5
Mali	48.6	1.1	10.4	7	-0.1
Niger	46.2	0.6	8	8	-0.1
ism produces brood above the level that guarantees replacement of
to have achieved a level of fitness that obviates the need for further
evolutionary pressure to achieve even more longevity. In other words,
organisms can already be considered as "as good as" evolutionarily
possible, at least within the variance of their species. Reproductive
success is not dependent on achieving an advantage over the
competition, hence any increase in life span at the expense of
reproductive success would not be favored by natural selection.

Thus, longevity cannot be achieved through biological evolution. If
humans want to live longer they have to reduce passive and active
aging. Passive aging can be reduced, as successful demographic
policies have shown, by implementing the latest discoveries of modern
departmental care and hygiene to everyday life. Active aging may also be
reduced, as we have evidence that active aging is the outcome of “bad luck”
and is not an adaptive feature, necessary for the survival of the species. But
active aging can be reduced or controlled only if we gain a better understanding of its
working. Research into cancer and cellular control mechanisms will
surely help, but Understanding of aging of whole organisms will
be essential if longevity is to be increased sustainable in the
future. Yet increase in longevity is not the same as immortality.
Can immortality be achieved for humans? Evolutionary biology
cannot answer this question. Certainly, immortal cells exist and
they cause huge damage if they are an integral part of an organism
(for example, the cancer cells). But immortal, complex organisms
living in a changing, chaotic world are less likely to exist. The
examples nature offers on very long-life spans among plants and
animals are rather exceptions than the rule [7]. This last restriction
seems much stronger if viewed in the light of an ever-expanding
universe, which will not tolerate a static mechanism challenging the
second law of thermodynamics indefinitely. But immortal organisms
have been simulated in artificial worlds. Although worlds
made of immortal organisms have little chances of surviving a
changing environment, immortal individuals mixed up and inter-
breeding with plenty of the mortal kind do allow for stable artifi-
cial populations, at least in the short term. Yet, as with immortal
cells, immortal individuals, when they appear, will certainly affect
the health of their society. So, we might now be ready to attempt to
answer the questions posed above, in reverse order, if we view immor-
tality just as an extreme case of longevity, and as a useful way
to explore, in simplified terms, the effects of longevity.

What is the adaptive value of death?

Life, in order to exist, needs death: There is no death within life. In a dynamic system, death is the tool that weeds out the
overhauled, the ancient, the unadapted, the corrupted, and the
old. Death provides space for new life and it is new life that pro-
duces progress [8]. Human ethics shows us that a person with
children will be better prepared to die than a person without children,
the more so if her dead will favor her children. This suggests that
childless person will be keener in achieving longevity that the child
bearing kind. If more and more people remain childless in modern
society, and if this trend is to continue in the future, pressure for
the achievement of longer life spans will increase.

Table 1:
The data presented in the table were selected so that they include the
10 countries which showed the most extreme values (5 counties for
each extreme) for each of the variables presented. Data was taken from the
United Nations Statistical Archive for the period 2000–2005.

Country	Average Life Span	Standard Deviation	Median Life Span	Maximum Life Span
Uganda	46.2	1.5	-0.1	7.1
Guinea	45.3	3.2	8.8	7.1
Chad	44.7	2.2	5.7	6.7
Kenya	44.6	3	-6.3	4
Congo	41.8	2.1	-4	6.7
Angola	40.1	2.8	2.1	7.2
Botswana	39.7	2.7	-16.4	3.7
Lesotho	35.1	6.3	-14.4	3.8
Swaziland	34.4	3.4	-12.9	4.5
Sierra Leone	34.2	2.6	-8.9	6.5
Zimbabwe	33.1	-0.1	-22.9	3.9
Zambia	32.4	0.1	-17.3	5.6

Yet, is there an adaptive advantage to active aging in humans?

Has biological evolution weeded out genes that coded for
long-living individuals because they had low long-term fitness? Are
genes for longevity detrimental to the population or to the chances
of their offspring to be successful in their reproductive life? Or: Is
active aging just a secondary consequence of other evolutionary
forces? Is it just the evolutionary accumulation, by bad luck, of
features that do not favor longevity because they would not have
increased fitness, as they become active long after the reproductive
life of the organism has ended? Theoretical considerations tend to
favor the last two of those answers. When evolution is simulated
in artificial societies, using the computer model biodynamic a, it
can easily have been demonstrated that the dynamics underlying
biological evolution does not consider long life spans as advan-
tageous per se. That is, long life spans are not adaptive. Said in
simpler terms, the evolutionary dynamics do not favor individuals
with longer life spans over individuals that reproduce fast and die
earlier. Adaptive pressure on life span ceases as soon as the organ-
ism produces brood above the level that guarantees replacement of
the old generation. Only if reproductive maturity is delayed does
evolution in these artificial societies favor correspondingly longer
life spans. That is, reproduction and life spans are linked, not only
in artificial worlds but also in the real one, as data from the UN,
mentioned above, showed for human populations.

Thus, longevity cannot be achieved through biological evolve-
lation. If humans want to live longer they have to reduce passive
to active aging. Passive aging can be reduced, as successful
demographic policies have shown, by implementing the latest dis-
covers of modern medicine and hygiene to everyday life. Active
aging may also be reduced, as we have evidence that active aging
is the outcome of “bad luck” and is not an adaptive feature,
necessary for the survival of the species. But active aging can be
reduced or controlled only if we gain a better understanding of its
working. Research into cancer and cellular control mechanisms
will surely help, but Understanding of aging of whole organisms
will be essential if longevity is to be increased sustainable in the
future. Yet increase in longevity is not the same as immortality.
Can immortality be achieved for humans? Evolutionary biology
cannot answer this question. Certainly, immortal cells exist and
they cause huge damage if they are an integral part of an organism
(for example the cancer cells). But immortal, complex organisms
living in a changing, chaotic world are less likely to exist. The
examples nature offers on very long-life spans among plants and
animals are rather exceptions than the rule [7]. This last restriction
seems much stronger if viewed in the light of an ever-expanding
universe, which will not tolerate a static mechanism challenging the
second law of thermodynamics indefinitely. But immortal or-
ganisms have been simulated in artificial worlds. Although worlds
made only of immortal organisms have little chances of surviving a
changing environment, immortal individuals mixed up and inter-
breeding with plenty of the mortal kind do allow for stable artifi-
cial populations, at least in the short term. Yet, as with immortal
cells, immortal individuals, when they appear, will certainly affect
the health of their society. So, we might now be ready to attempt to
answer the questions posed above, in reverse order, if we view immor-
tality just as an extreme case of longevity, and as a useful way
to explore, in simplified terms, the effects of longevity.

What is the adaptive value of death?

Life, in order to exist, needs death: There is no death within
life. In a dynamic system, death is the tool that weeds out the
overhauled, the ancient, the unadapted, the corrupted, and the
old. Death provides space for new life and it is new life that pro-
duces progress [8]. Human ethics shows us that a person with
children will be better prepared to die than a person without children,
the more so if her dead will favor her children. This suggests that
childless person will be keener in achieving longevity that the child
bearing kind. If more and more people remain childless in modern
society, and if this trend is to continue in the future, pressure for
the achievement of longer life spans will increase.
What would be the consequences for humanity if immortality is achieved?

A short answer to this question is that immortality will stop evolution as longer lives without a corresponding reduction in fertility leads to overpopulation. Immortality will thus require fertility rates of zero. In evolutionary terms, immortality will stop biological evolution as it affects its basic inner working: the interplay between variation and natural selection. Yet this is true only for complete immortality or populations were all individuals are immortal. Populations with a few immortal individuals might be sustainable, although immortal organism, in the long term, will be very much disadvantaged in relation to other organisms that continue to evolve, causing them to suffer from relative aging. Continuing the same argument, we might state that longevity will reduce the speed of evolution. This might be a good opportunity, in the long term, to improve the chances for other animal species to shorten the adaptive gap between them and humans.

What are the consequences to humanity of increased life spans?

What we can deduce from our knowledge of the demography in past century is that reproduction (i.e. fertility) will diminish as life expectancy increases and that differentials between male-female life spans will increase. What we can deduce from the results of computer models simulating long living individuals is that human adaptation will be reduced in future, increasing the need for medical treatments and consumption of medications. Evolution will certainly slow down and might even reverse, due to the “Red Queen” effect, whereby viruses, parasites and other living competitors continue to evolve, causing the human race to have ever more difficulties in maintaining a reasonable quality of life, making it necessary that society expends ever greater amounts of resources for the maintenance of the long living.

Calculating the cost of longevity

As is so often stated: There is no free lunch: There is a cost to longevity. As most human decisions are irrational, I do not believe that the human race will be prepared to aim at a “Rationally” calculated optimal life span. As soon as humans have access to technology that will help them to increase their life span, they will use it. Thus, longer lives are a certainty in the future. It seems thus only wise, accepting our “Bounded Rationality” that we start calculating the costs to ourselves and to society of such longer lives. Some of the increased future cost can be easily imagined. Our expenses in health care will certainly increase as longer living people will demand ever higher quality of life at old age. Other costs might be more cryptic and are invisible to our short sighted habitual thoughts. Humanity has no experience with populations containing a reduced number of young people. But such populations are an inescapable consequence of longer and healthier lives. It should be advisable to start calculating the cost for that.

Acknowledgements

To Jose Luis Cordeiro, Santiago Ochoa and José Salgado for showing the world of immortals, and to Sary Levy, Werner Jaffe and Rodolfo Jaffe for critical comments on the manuscript. Hans Holbein (1497 - 1543?).

References

1. Geddes L (2016) Human age limit claim sparks debate, Nature News, Oct 5, 2016
2. Dong X, Milholland B, Vijg J (2016) Evidence for a limit to human lifespan. Nature 538: 257-259.
3. Olshansky SJ, Carnes BA, Cassel C (1990) In search of Methuselah: estimating the upper limits to human longevity. Science 250: 634-640.
4. Schächter F, Faure-Delanef L, Guénot F, Rouger H, Froguel P, et al. (1994) Genetic associations with human longevity at the APOE and ACE loci. Nature genetics 6: 29-32.
5. Herskind AM, McGue M, Holm NV, Sörensen TI, Harvald B, Vaupel JW (1996) The heritability of human longevity: a population-based study of 2872 Danish twin pairs born 1870-1900. Human genetics 97: 319-323.
6. Jaffe K (2016) Biodynamica, a simulation software for realistic biological evolution.
7. Ainsworth C, Lepage M (2007) Evolution's greatest mistakes. New Scientist 195: 36-39.
8. Westendorp RG, Kirkwood TB (1998) Human longevity at the cost of reproductive success. Nature 396: 743-746.