CR Singularities: Another Normal Form

Valentin Burcea

Abstract. Let \((z,w)\) be the coordinates in \(\mathbb{C}^2\). We construct a normal form for a class of real-formal surfaces \(M \subset \mathbb{C}^2\) defined near a degenerate CR singularity \(p = 0\) as follows
\[w = z^2 + \overline{z}^2 + O(3). \]

1. Introduction and Main Result

The study of Real Submanifolds in Complex Space, near a CR singularity goes back to Bishop\[1\]. A point \(p \in M\) is called a CR singularity if it is a jumping discontinuity point for the map \(M \ni q \rightarrow \text{dim} T_q M\) defined near \(p\). Bishop\[1\] considered the case when there exist coordinates \((z,w)\) in \(\mathbb{C}^2\) such that near a CR singularity \(p = 0\), the surface \(M \subset \mathbb{C}^2\) is defined locally by
\[w = z^2 + \lambda (z^2 + \overline{w}^2) + O(3), \]
where \(\lambda \in [0, \infty)\) is a holomorphic invariant called the Bishop invariant. When \(\lambda = \infty\), \(M\) is understood to be defined by the equation \(w = z^2 + \overline{z}^2 + O(3)\). If \(\lambda\) is non-exceptional, Moser-Webster\[9\] proved that there exists a formal transformation that sends \(M\) into the following normal form
\[w = z^2 + (\lambda + \epsilon u^2) (z^2 + \overline{z}^2), \quad \epsilon \in \{0, -1, +1\}, \quad \epsilon \in \mathbb{N}, \]
where \(w = u + iv\). Moser\[10\] constructed when \(\lambda = 0\) the following partial normal form:
\[w = z^2 + 2\Re \left\{ \sum_{j \geq 2} a_j z^j \right\}. \]

Here \(s := \min \{j \in \mathbb{N}; \ a_j \neq 0\}\) is the simplest higher order invariant, known as the Moser invariant. When \(s < \infty\), Huang-Yin\[5\] proved that \[13\] can be formally transformed into the following normal form
\[w = z^2 + 2\Re \left\{ \sum_{j \geq 2} a_j z^j \right\}, \quad a_s = 1, \quad a_j = 0, \quad \text{if} \quad j = 0, 1 \mod s, \quad j > s. \]

In this paper, we continue the study of the C.-R. Singular Real Submanifolds in Complex Spaces considering certain Classes of Real-Submanifolds using motivation from Moser-Webster\[9\]. They\[9\] considered the following class of real-analytic surfaces
\[w = z^2 + \overline{z}^2 + \sum_{m+n \geq 3} a_{m,n} z^m \overline{z}^n, \]
where \((z,w)\) are the coordinates in \(\mathbb{C}^2\).

Regardless of its apparent simplicity, \[13\] defines also a very interesting class of C.-R. Singular Submanifolds in Complex Spaces. In particular, it requires a similar approach depending on the Fischer decomposition\[8\] that has been applied by Zaitsev\[11\], Huang-Yin\[5\],\[12\],\[13\] in other situations, and also by the author recently\[8\]. In order to develop a partial normal form, we define the following Fischer-normalization space:

Before beginning, we introduce by \[8\] the following notation
\[P^r = \sum_{m+n=k_0} p_{m,n} \frac{\partial^{m+n}}{\partial z^m \partial \overline{z}^n}, \quad \text{if} \ P(z, \overline{z}) = \sum_{m+n=k_0} p_{m,n} z^m \overline{w}^n. \]

In particular, we use the following polynomial
\[Q(z, \overline{w}) = z^2 + \overline{w}^2, \]
and in consequence the following differential operator
\[\text{tr} = \frac{\partial^2}{\partial z^2} + \frac{\partial^2}{\partial \overline{z}^2}. \]

Recalling the Fischer Decomposition from Shapiro\[8\], we consider the following Fischer Decompositions
\[z^k = A(z, \overline{w}) Q(z, \overline{w}) + C(z, \overline{w}), \quad \text{where} \ \text{tr} (C(z, \overline{w})) = 0, \forall k > 2 \ \text{natural number.} \]

We define
\[S_p, \quad \text{for all} \ p \geq 3, \]

Keywords: CR Singularity, Equivalence, Real Submanifold.
which consists in real-valued polynomials $P(z, \overline{z})$ of degree $p \geq 1$ in (z, \overline{z}) satisfying the normalizations:

$$P_k^{(p)}(z, \overline{z}) = R_{k+1}^{(p)}(z, \overline{z})Q(z, \overline{z}) + R_{k+2}^{(p)}(z, \overline{z}),$$

for all $k = 0, \ldots, \left\lfloor \frac{p-1}{2} \right\rfloor$ and given $P_0^{(p)}(z, \overline{z}) = P(z, \overline{z}),$

such that

\begin{equation}
R_{k+2}^{(p)}(z, \overline{z}) \in \left(\ker C_k \cap \ker \overline{C}_k \cap \ker \text{tr} \right).
\end{equation}

Furthermore, we assume that

\begin{equation}
W(z, \overline{z}) \neq 0,
\end{equation}

where we have used the following notation

\begin{equation}
\sum_{m+n=3} a_{m,n} z^m \overline{z}^n \mod (C_3, \overline{C}_3) W(z, \overline{z}).
\end{equation}

The main result, of this note, is the following

Theorem 1.1. Let $M \subset \mathbb{C}^2$ be a formal surface defined near $p = 0$ by \eqref{2.1} satisfying the nondegeneracy condition \eqref{1.10}. Then, there exists a unique formal transformation of the following type

\begin{equation}
(z', w') = \left(z + \sum_{k+l \geq 2} f_{k,l} z^k w^l, \quad w + \sum_{k+l \geq 2} g_{k,l} z^k w^l \right),
\end{equation}

that transforms M into the following formal normal form:

\begin{equation}
w' = P(z', \overline{z}') + \sum_{m+n \geq 3} a'_{m,n} z^m \overline{z}^n,
\end{equation}

where the following Fischer normalization conditions are satisfied

\begin{equation}
\text{Im} \left(\sum_{m+n=p} a'_{m,n} z^m \overline{z}^n \right) \in S_{p-1}, \quad \text{Re} \left(\sum_{m+n=p} a'_{m,n} z^m \overline{z}^n \right) \in S_p, \quad \text{for all } p \geq 3,
\end{equation}

where S_p is defined in \eqref{1.12}, and as well the following normalization conditions holds

\begin{equation}
W^* \left(R_{3k}^{(3)}(z, \overline{z}) \right) = 0, \quad \text{for all } k > 2.
\end{equation}

Acknowledgements I acknowledge the importance of the Grant 06/RFP/MAT018, from Science Foundation of Ireland, in my starting development and especially in the support in order to write [2], because I did not see this aspect written in the published version of the main part [2] of my doctoral thesis in Trinity College Dublin. I must emphasize that I did everything which was depending on me in order to improve the writing of the entire components of my doctoral thesis, and also that the imperfections did not depend on me.

I apologize to my (former) supervisor Prof. Dmitri Zaitsev for while I was not able to control myself. I have hopes to meet him again, and also for a long and warm friendship, because he is a wonderful person. I empower any form of funding from Science Foundation of Ireland in Trinity College Dublin. I will not return in Ireland, but I think that Science Foundation of Ireland must continue to support Mathematics in Trinity College Dublin, with special attention on my (doctoral) supervisor.

2. Proof of Theorem \eqref{1.12}

2.1. Notations. Let (z, w) be the holomorphic coordinates in \mathbb{C}^2. Throughout this note, we use the following notations

$$a_{l \geq 1}(z, \overline{z}) = \sum_{m+n=l} a_{m,n} z^m \overline{z}^n, \quad a_1(z, \overline{z}) = \sum_{m+n=1} a_{m,n} z^m \overline{z}^n, \quad \text{for all } l \geq 3.$$

2.2. Transformation Equations. Let $M \subset \mathbb{C}^2$ be the real-formal surface defined near $p = 0$ by

\begin{equation}
w = Q(z, \overline{z}) + \sum_{m+n \geq 3} a_{m,n} z^m \overline{z}^n.
\end{equation}

Let $M' \subset \mathbb{C}^2$ be another real-formal surface defined near $p' = 0$ by

\begin{equation}
w' = Q(z', \overline{z}') + \sum_{m+n \geq 3} a'_{m,n} z^m \overline{z}^n.
\end{equation}

We consider

$$z' = f(z, w), \quad w' = g(z, w),$$

a formal transformation which sends M into M' and that fixes the point $0 \in \mathbb{C}^2$. It follows by \eqref{2.1} that

\begin{equation}
g(z, w) = Q(f(z, w), \overline{f(z, w)}) + \sum_{m+n \geq 3} a'_{m,n} (f(z, w))^m (\overline{f(z, w)})^n,
\end{equation}

where w is defined by \eqref{2.1}. Writing as follows

\begin{equation}
f(z, w) = \sum_{m+n \geq 0} f_{m,n} z^m w^n, \quad g(z, w) = \sum_{m+n \geq 0} g_{m,n} z^m w^n,
\end{equation}

it follows by \eqref{2.1} that
\[
\sum_{m+n \geq 0} g_{m,n} z^m (Q(z, \overline{z}) + a_{\geq 3}(z, \overline{z}))^n = Q \left(\sum_{m+n \geq 0} f_{m,n} z^m (Q(z, \overline{z}) + a_{\geq 3}(z, \overline{z}))^n \right) + a_{\geq 3} \left(\sum_{m+n \geq 0} f_{m,n} z^m (Q(z, \overline{z}) + a_{\geq 3}(z, \overline{z}))^n \right).
\]

(2.4)

Since our map fixes the point \(0 \in \mathbb{C}^2 \), it follows that \(g_{0,0} = 0 \) and \(f_{0,0} = 0 \). Collecting the terms of bidegree \((m, 0)\) in \((z, \overline{z})\) in (2.4), for all \(m < 2 \), it follows that \(g_{m,0} = 0 \), for all \(m < 2 \). Collecting the sums of bidegree \((m, n)\) in \((z, \overline{z})\) with \(m + n = 2 \) in (2.4), it follows that

\[
g_{0,1} Q(z, \overline{z}) = Q \left(f_1, a z, \overline{f_1}, \overline{a z} \right).
\]

Then, (2.5) describes all the possible values of \(g_{0,1} \) and \(f_{1,0} \) and in particular we obtain that \(\text{Im} g_{0,1} = 0 \). By composing with \(n \) linear automorphism of the model manifold \(\text{Re} w = Q(z, \overline{z}) \), we can assume that \(g_{0,1} = 1 \), \(f_{1,0} = 1 \). By a careful analysis of the terms interactions in (2.4), we conclude that in order to put suitable normalization conditions, we have to consider the following terms

\[
g_{m,n} z^m (P(z, \overline{z}))^n, \quad f_{m,n} z^m Q(z, \overline{z}) (Q(z, \overline{z}))^n, \quad f_{m,n} z^m Q(z, \overline{z}) (Q(z, \overline{z}))^n.
\]

Collecting the sum of terms of bidegree \((m, n)\) in \((z, \overline{z})\) with \(T = m + n \) in (2.4), it follows that \(g_T (z, Q(z, \overline{z})) = \text{Re} \left(Q(z, \overline{z}) f_T \left(z, Q(z, \overline{z}) \right) \right) + \ldots \),

where we have used the following notations

\[
g_T(z, w) = \sum_{m+n = T} g_{m,n} z^m w^n, \quad f_T(z, w) = \sum_{m+n = T} f_{m,n} z^m w^n,
\]

and where the terms defined by \(\ldots \), depend on \(f_{k,l} \) with \(k + 2l - 1 < T - 1 \), and as well on \(g_{k,l} \) with \(k + 2l < T \).

References

[1] Bishop, E. — Differentiable manifolds in complex Euclidian space, Duke Math. J. 32 (1965), no. 1, 1–21.
[2] Burcea, V. — A normal form for a real 2-codimensional submanifold \(M \subset \mathbb{C}^{n+1} \) near a CR singularity, Adv. in Math. 243 (2013), 262 – 295.
[3] Burcea, V. — Normal Forms and Degenerate CR Singularities. Complex Variables and Elliptic Equations 61 (2016), 9, 1314 – 1333.
[4] Huang, X.; Yin, W. — A codimension two CR singular submanifold that is formally equivalent to a symmetric quadric, Int. Math. Res. Notices (2009), no. 15, 2769 – 2828.
[5] Huang, X.; Yin, W. — A Bishop surface with vanishing Bishop invariant. Invent. Math. 176 (2010), no. 3, 461 – 520.
[6] Kolar, M. — Normal forms for hypersurfaces of finite type in \(\mathbb{C}^2 \), Math. Res. Lett. 12 (2005), no. 6, 897 – 910.
[7] Kolar, M. — Finite type hypersurfaces with divergent normal form, Math. Annalen. 354 (2012), no. 3, 813 – 825.
[8] Shapiro, H. — Algebraic Theorem of E. Fischer and the holomorphic Goursat problem, Bull. London Math. Soc. 21 (1989), no. 6, 513 – 537.
[9] Moser, J.; Webster, S. — Normal forms for real surfaces in \(\mathbb{C}^2 \) near complex tangents and hyperbolic surface transformations, Acta Math. 150 (1983), 255 – 296.
[10] Moser, J. — Analytic Surfaces in \(\mathbb{C}^2 \) and their local hull of holomorphy, Ann. Acad. Sci. Fenn. Ser. A.I. Math. 10 (1985), 397–410.
[11] Zaitsev, D. — New Normal Forms for Levi-nondegenerate Hypersurfaces, Several Complex Variables and Connections with PDE Theory and Geometry. Complex analysis-Trends in Mathematics, Birkhauser Verlag, (Special Issue: In the Honor of Linda Preiss Rothschild), pp. 321 – 340, Basel/ Switzerland, (2010).
[12] Zaitsev, D. — Normal forms of non-integrable almost CR structures, Amer. J. Math. 134 (2012), no.4, 915 – 947.
[13] Zaitsev, D. — A normal form for all Levi-nondegenerate almost CR structures. Illinois J. Math. 56 (2012), no. 1, 273 – 280.

V. BURCEA: PREFUN shed
Email address: valentin@math.tcd.ie