

Research Article

On a Diophantine Inequality with s Primes

Xiaofei Yan and Lu Zhang

School of Mathematics and Statistics, Shandong Normal University, Jinan 250358, Shandong, China

Correspondence should be addressed to Lu Zhang; zhang_lu@stu.sdnu.edu.cn

Received 23 September 2021; Revised 27 October 2021; Accepted 2 November 2021; Published 24 November 2021

Academic Editor: Wenpeng Zhang

Copyright © 2021 Xiaofei Yan and Lu Zhang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Let $2 < c < \delta$. In this study, for prime numbers p_1, \ldots, p_s and a sufficiently large real number N, we prove the Diophantine inequality:

$$|p_1^s + \cdots + p_s^s - N| < N^{-\frac{294}{123}s/\left((\delta/5)^{s/2}\right)}$$

(1)

for any $s \geq 5$. When $s = 5$, this result improves a previous result.

1. Introduction

Suppose that $k \geq 1$ is an integer and $c > 1$ is not an integer. Let ϵ be a small positive number. The Waring–Goldbach problem is to study the solvability of the Diophantine equality:

$$N = p_1^k + \cdots + p_s^k,$$

(1)

in prime numbers p_1, \ldots, p_s. In [1], the author studied the analog of the Waring–Goldbach problem. For any sufficiently large real number N, let $H(c)$ denote the smallest natural number s such that the Diophantine inequality,

$$|p_1^s + \cdots + p_s^s - N| < \epsilon,$$

(2)

is solvable in prime numbers p_1, \ldots, p_s. In [1], the author proved that

$$\limsup_{c \to \infty} \frac{H(c)}{c \log c} \leq 4.$$

(3)

In [1], the author also obtained that $H(c) \leq 5$, for $1 < c < (3/2)$. Later, the result was improved in [2–6]. Now, the best result for $H(c) \leq 5$ is $2 < c < (52/25)$ by Li and Cai [3].

In [4], the authors first proved that $H(c) \leq 4$, for $1 < c < (81/68)$. Later, the result was improved in [7]. Now, the best result for $H(c) \leq 4$ is $1 < c < (1193/889)$ by Zhang and Li [8]. When $s = 3$ in inequality (2), Tolev [9] obtained the result $1 < c < (27/26)$. Afterwards, the range of c was enlarged by several authors in [10–16]. Now, the best result for $s = 3$ is $1 < c < (43/36)$ by Cai [12]. When $s = 2$, in inequality (2), Laporta obtained $1 < c < (15/14)$ in [17]. Laporta’s result was improved by some authors in [4, 18, 19]. Now, the best result for $r = 2$ is $1 < c < (59/44)$ by Li and Cai [19].

In this paper, we focus on the Diophantine inequality (2) and prove the following result.

Theorem 1. Let $2 < c < \delta$. For any sufficiently large real number N, let $\epsilon = N^{-\frac{294}{123}s/\left((\delta/5)^{s/2}\right)}$ and let $B_0(N, s)$ denote the number of solutions of the Diophantine inequality:

$$|p_1^s + \cdots + p_s^s - N| < \epsilon,$$

(4)

in prime numbers p_1, p_2, \ldots, p_s, where $\delta = (294 - 210s)/(123 - 97s)$ and $s \geq 5$. We can obtain

$$B_0(N, s) \gg \frac{cN^{(s/\log c)^{1/2}}}{\log N},$$

(5)

For $s = 5$ in Theorem 1, we can get better result than Li and Cai [3].

Corollary 2. Under the notations of Theorem 1, for $2 < c < (378/181)$, we have
Lemma 3. We have
\[
\int_{-\infty}^{\infty} f^\dagger(x)e(-xN)\Phi(x)dx \gg \varepsilon x^{1-c}. \tag{12}
\]
Proof. Similar to Lemma 6 of [16], we have

Let \(\Lambda(n) \) denote von Mangoldt’s function. We write \(\omega \sim \Omega \) if the range of \(\omega \) is \(\Omega < \omega \leq 2\Omega \). \(a(\omega) \ll b(\omega) \) means that \(a(\omega) = O(b(\omega)) \).

2. Some Lemmas

In order to prove our theorem, we need the following lemmas.

Lemma 1. Let \(r \) be a positive integer. There exists a function \(\phi(y) \) which is \(r = [\log X] \) times continuously differentiable and satisfies

\[
\phi(y) = 1, \quad \text{for } |y| \leq a - b,
\]

\[
0 < \phi(y) < 1, \quad \text{for } a - b < |y| < a + b,
\]

and its Fourier transformation,

\[
\Phi(x) = \int_{-\infty}^{\infty} e(-xy)\phi(y)dy,
\]

satisfies

\[
|\Phi(x)| \leq \min\left(2a, \frac{1}{\pi|y|}, \frac{1}{\pi|y|} \left(\frac{r}{2\pi|y|b}\right)^r\right). \tag{10}
\]

Proof. This can be found in Piatetski-Shapiro [1]. \(\square \)

Lemma 2. Let \(a(l) \) be a sequence of complex numbers; then, for \(L, Q \geq 1 \), we have

\[
\left| \sum_{L \leq l \leq 2L} a(l) \right|^2 \leq \left(2 + \frac{L}{Q}\right) \sum_{|l| < Q} \left(1 - \frac{|l|}{Q}\right) \sum_{L \leq \mu l + \nu - 2L} a(l + q)a(l - q). \tag{11}
\]

where \(\overline{z} \) denotes the conjugate of the complex number \(z \).

Proof. This is Lemma 2 of Fouvry and Iwaniec [20]. \(\square \)

Proof. Similar to Lemma 6 of [16], we have

\[
H = \int_{-\infty}^{\infty} f^\dagger(x)e(-xN)\Phi(x)dx
\]

\[
= \sum_{X/2}^{X} \prod_{X/2}^{X} e(x(t_1^* + \cdots + t_s^* - N))\Phi(x)dxdt_1\cdots dt_s
\]

\[
\geq \sum_{X/2}^{X} \prod_{X/2}^{X} e(x(t_1^* + \cdots + t_s^* - N))\Phi(x)dxdt_1\cdots dt_s
\]

\[
\geq \sum_{X/2}^{X} \prod_{X/2}^{X} e(x(t_1^* + \cdots + t_s^* - N))\Phi(x)dxdt_1\cdots dt_s
\]

\[
\geq \sum_{X/2}^{X} \prod_{X/2}^{X} e(x(t_1^* + \cdots + t_s^* - N))\Phi(x)dxdt_1\cdots dt_s
\]

\[
\geq \sum_{X/2}^{X} \prod_{X/2}^{X} e(x(t_1^* + \cdots + t_s^* - N))\Phi(x)dxdt_1\cdots dt_s
\]

where * means that \(|t_1^* + \cdots + t_s^* - N| < (4\varepsilon/5) \), and \(\lambda \) and \(\mu \) satisfy

For comparison, \(2 < c < (378/181) = 2.0837977, \ldots, (52/25) = 2.08 \).

Notation 1. In this paper, let \(\delta = (294 - 210s)/(123 - 97s) \) and \(\delta_1 = (131 - 97s)/(123 - 97s), s \geq 5 \). We also assume

\[
2 < c < \delta,
\]

\[
X = \left(\frac{3N}{10} \right)^{1/c},
\]

\[
\eta = \frac{1}{1000}(\delta - c),
\]

\[
\kappa = X^{1-c-\eta},
\]

\[
\epsilon = N^{-(9/10c)(\delta - c)},
\]

\[
\chi = X^{\delta - c},
\]

\[
a = \frac{9\epsilon}{10},
\]

\[
b = \frac{\epsilon}{10},
\]

\[
S(x) = \sum_{(X/2) < p \leq X} e(xp^c)\log p,
\]

\[
I(x) = \int_{X/2}^{X} e(xt^c)dt.
\]
\[
\left(\frac{1}{2}\right)^{1/c} < \mu < \lambda < \left(\frac{1}{2} \left(2 - \frac{1}{2c}\right)\right)^{1/c} < 1,
\]

\[
\mathcal{M} = \left[\frac{X}{2}, X\right] \cap \left[\left(N - \frac{4e}{5} - t_1 - \cdots - t_{s-1}\right)^{1/c}, \left(N + \frac{4e}{5} - t_1 - \cdots - t_{s-1}\right)^{1/c}\right],
\]

where \(t_i \) are defined in Lemma 7 of [16].

Lemma 7.\(\) For \(\kappa < \lambda \), we can obtain by the mean-value theorem, where \(\mathcal{M} \) is Lemma 3 of Li and Cai [3].

Proof.\(\) This is Theorem 7 of Tolev [16].

Lemma 5.\(\) Let \(0 \leq k \leq (1/2) \leq l \leq 1 \) and let \(|B| > 0 \). For any exponent pair \((k, l)\) and \(\Omega \leq \Omega' \leq 10\Omega \), we have

\[
\sum_{\Omega \leq \omega \leq \Omega'} e(B\omega^k) \ll (|B|\Omega')^{-k} \Omega^{l-k} + \frac{\Omega}{|B|\Omega^{c}}.
\]

Proof.\(\) This is Lemma 3 of Li and Cai [3].

Lemma 6.\(\) For \(|x| < \kappa \), we have

\[
S(x) = I(x) + O\left(\exp\left(-\log^{(1/5)} X\right)\right).
\]

Proof.\(\) This is Lemma 14 of Tolev [16].

Lemma 7.\(\) For \(\kappa < |x| < \chi \), we have

\[
\int_{|\omega| |x| < \chi} |S(x)| |\Phi(x)| \, dx \ll (X^{4c-\epsilon} + X^2)X^{3\eta}.
\]

Proof.\(\) This is (50) of Zhai and Cao [5].

Lemma 8.\(\) Let \(a \) and \(\beta \) be real numbers such that \(a \neq 0, 1, 2 \) and \(\beta \neq 0, 1, 2, 3 \). Set

\[
T(\Omega, \Gamma) = \sum_{\Omega \leq \omega \leq 2\Omega} \sum_{1 \leq l \leq 2l} a(\omega)b(\gamma)e\left(\frac{F\omega^\alpha\gamma^\beta}{\Omega^\alpha\Gamma^\beta}\right),
\]

where \(F \gg \Omega^2, \Gamma \geq \Omega, \) and \(|a(\omega)|, |b(\gamma)| \leq 1 \). Then, we have

\[
T(\Omega, \Gamma) \ll \left(F^{-1}1^{1/4} \Omega^{7/10}1^{13/16} + F^{1/2}\Omega^{93/104}1^{23/26}
\right) + F^{1/4}1^{1/128}\Omega^{57/60}1^{65/64}
\]

\[
\left.O^{65/62}\Gamma\right)(\Omega^\alpha\Gamma^\beta),
\]

\[
\text{Proof.}\quad \text{This is Theorem 1 of Baker and Weingartner [6].}\]

Lemma 9.\(\) Let \(3 < Q < K < W < X \). Suppose that \(W - (1/2) \in \mathbb{N}, X \geq 64W^2UQ, W \geq 4Q^2, K^3 \geq 32X \). Assume further that \(F(n) \) is a complex-valued function such that \(|F(n)| \leq 1 \). Then, the sum

\[
\sum_{X/\log^{K/2}X} \Lambda(n)F(n),
\]

can be written in \(O(\log^{10} X) \) sums.

Proof.\(\) This is Lemma 3 of Heath-Brown [21].

3. The Estimate of \(S(x) \)

In this section, we draw our attention to the estimate of exponential sums, which also has lots of applications (e.g., see [22–35]). Suppose that \(|a(\omega)| \ll \omega^a \) and \(|b(\gamma)| \ll \gamma^a \); then, we estimate the exponential sums in the following two forms. Type I:

\[
\sum_{\omega \in \Omega, \gamma \in \Gamma} \sum_{x \in X} a(\omega)b(\gamma)F(x^\alpha\gamma^\beta),
\]

and Type II:

\[
\sum_{\omega \in \Omega, \gamma \in \Gamma} \sum_{x \in X} a(\omega)b(\gamma)F(x^\alpha\gamma^\beta).
\]

Lemma 10.\(\) For complex number sequences \(a(\omega) \) and \(b(\gamma) \), suppose that \(|a(\omega)| \ll 1, |b(\eta)| \ll 1, \kappa \leq |x| \leq \chi, X^{36} \ll T \ll X^{(438 \sim 1788)/369 \sim 291}, \Omega^\alpha=G \); then, we have

\[
S_{\Omega^\alpha} = \sum_{x=\Omega^\alpha \gamma \in \Gamma} a(\omega)b(\gamma)e\left(x^\alpha(\gamma\gamma)^\beta\right) \ll X^{\delta_\alpha, \gamma}.\]

Proof.\(\) By Cauchy’s inequality and Lemma 2 with \(M = \Omega^{(36) \sim (291 \sim 1788)/369} \), we obtain
Suppose that we choose the exponent pair $(\frac{5}{3}, \frac{4}{3})$. Let
\[
\lambda^\ast \ll \frac{\Omega}{M} \sum_{\gamma \sim \Gamma} \sum_{\gamma^m \leq m} \left(1 - \frac{m}{M} \right)
\]
\[
\times \sum_{\omega \sim \Omega} a(\omega + m) a(\omega - m) e \left(\frac{(y + m)^c - (y - m)^c}{\gamma} \right)
\]
where
\[
S^\ast = \sum_{\gamma \sim \Gamma} \sum_{\gamma^m \leq m} \sum_{\omega \sim \Omega} e \left(f(\omega, \gamma, m) \right)
\]
with $f(\omega, \gamma, m) = x a^c (y + m)^c - (y - m)^c$. By Lemma 5, we choose the exponent pair $((1/4), (11/14))$. Then, we can obtain
\[
S^\ast \ll \sum_{1 \leq m \leq M} \sum_{\gamma \sim \Gamma} \left(\left(\frac{m}{\gamma} \right)^{1/4} \left(\frac{1}{\gamma} \right)^{11/14} \right) + \frac{1}{\gamma} \sum_{\gamma \sim \Gamma} \frac{1}{\gamma} \log M
\]
\[
\ll \Omega M^{15/14} \chi^{1/4} X^{(c-1)/4} X^{11/14} \Gamma^{-1/4} \Gamma + \Gamma \chi^{1-c} \log M
\]
\[
\ll \chi. \tag{28}
\]
Now, Lemma 10 follows from (26) and (28).

Lemma 11. Let $a(\omega)$ be a sequence of complex numbers. Suppose that $|a(\omega)| \ll 1$, $\kappa \leq |x| \leq \chi$, and $\Omega \ll X^{(6029-22313)/3075-24250}$, then, we have
\[
S_I = \sum_{\omega \sim \Omega} \sum_{\gamma \sim \Gamma} a(\omega) e(\omega x)^c \ll X^{\delta_1 + \gamma}. \tag{29}
\]

Proof. If $\Omega \ll X^{(41-273)/123-973}$, by Lemma 5, we choose the exponent pair $((1/6), (2/3))$. Then, we obtain
\[
|S_{II}|^2 \ll \sum_{\gamma \sim \Gamma} \Omega \sum_{\gamma^m \leq m} \left(1 - \frac{m}{M} \right)
\]
\[
\times \sum_{\omega \sim \Omega} a(\omega + m) a(\omega - m) e \left(\frac{(y + m)^c - (y - m)^c}{\gamma} \right)
\]
\[
\ll \Omega \sum_{\gamma \sim \Gamma} \left(\Omega^{c} \gamma + \sum_{\gamma^m \leq m} \left(1 - \frac{m}{M} \right) \right)
\]
\[
\times \sum_{\omega \sim \Omega} a(\omega + m) a(\omega - m) e \left(\frac{(y + m)^c - (y - m)^c}{\gamma} \right)
\]
\[
\ll \frac{X^2}{M} + \frac{X}{M} |S^\ast|, \tag{26}
\]
where
\[
S^\ast = \sum_{1 \leq m \leq M} \sum_{\gamma \sim \Gamma} \sum_{\omega \sim \Omega} e \left(f(\omega, \gamma, m) \right), \tag{27}
\]
with $f(\omega, \gamma, m) = x a^c (y + m)^c - (y - m)^c$. By Lemma 9, we reduce the estimation of S^\ast to the estimations of type I sums:
\[
\sum_{\omega \sim \Omega} \sum_{\gamma \sim \Gamma} a(\omega) F(\omega \gamma), \quad \Gamma > W, \tag{36}
\]
and type II sums:
\[
\sum_{\omega \sim \Omega} \sum_{\gamma \sim \Gamma} a(\omega) F(\omega \gamma), \quad Q < \Gamma < W, \tag{37}
\]
and estimate (34) follows from Lemmas 10 and 11.

4. Proof of the theorem

Let
\[
B(N) = \sum_{\gamma \sim \Gamma} \sum_{\gamma^m \leq m} \left(\log p_\gamma \right)^c \phi \left(p_\gamma + \ldots + p_\gamma^c - N \right), \tag{38}
\]
and
\[
B_\gamma(N) = \sum_{\gamma \sim \Gamma} \sum_{\gamma^m \leq m} \left(\log p_\gamma \right)^c \phi \left(p_\gamma^c - N \right).
\]
By the definition of \(\phi(y) \) in Lemma 1, we have
\[
B(N, s) \geq B_1(N, s). \tag{39}
\]

By the inverse Fourier transformation formula, we obtain
\[
B_1(N, s) = \int_{-\infty}^{\infty} S'(x) e(-xN)\Phi(x)dx = D_1(N) + D_2(N) + D_3(N), \tag{40}
\]
where
\[
D_1(N) = \int_{-\infty}^{\infty} S'(x) e(-xN)\Phi(x)dx,
D_2(N) = \int_{|x| \leq X} S'(x) e(-xN)\Phi(x)dx, \tag{41}
D_3(N) = \int_{|x| > X} S'(x) e(-xN)\Phi(x)dx.
\]

Let
\[
H_1(N) = \int_{-\infty}^{\infty} I'(x) e(-xN)\Phi(x)dx, \tag{42}
H(N) = \int_{-\infty}^{\infty} I'(x) e(-xN)\Phi(x)dx.
\]

Then, we have
\[
D_1(N) = H(N) + (H_1(N) - H(N)) + (D_1(N) - H_1(N)). \tag{43}
\]

From Lemma 10 in [36], we have \(I(x) \ll X^{-\varepsilon} |x|^{-1} \).

Thus, by Lemma 1, we have
\[
|H_1(N) - H(N)| \ll \int_{|x| > X} |I(x)||\Phi(x)|dx
\ll X^{2-\varepsilon} \int_{|x| > X} |\Phi(x)||x|^{-1}dx
\ll \varepsilon X^{2-\varepsilon} \kappa^{-s+1}
\ll \varepsilon X^{2-\varepsilon} \log X.
\]

It follows from Lemmas 1, 4, and 6 that
\[
U(x) = \sum_{X/2 \leq n \leq X} e(xn^\varepsilon). \tag{47}
\]

We have
\[
D_1(N) \gg \varepsilon X^{2-\varepsilon}. \tag{46}
\]

Let
\[
|D_2(N)| = \left| \sum_{X/2 \leq p \leq X} (\log p) \int_{|x| \leq X} e(xp^\varepsilon)S^\varepsilon(x)\Phi(x)e(-xN)dx \right|
\leq \sum_{X/2 \leq p \leq X} (\log p) \int_{|x| \leq X} e(xp^\varepsilon)S^\varepsilon(x)\Phi(x)e(-xN)dx \tag{48}
\leq (\log X) \sum_{X/2 \leq n \leq X} \int_{|x| \leq X} e(xn^\varepsilon)S^\varepsilon(x)\Phi(x)e(-xN)dx.
\]

It follows from (48) and Cauchy’s inequality that
By Lemma 5 with the exponent pair \(((13/84), (55/84))\) (see in [37]), we obtain

\[
U(x) \ll \min \left(\left| x \right| X^{c/2} X^{1/2} + \frac{X}{|x|X^{c}X} \right). \tag{50}
\]

\[
\int_{|x| \geq \chi} |S(x)|^4 |\Phi(x)| |U(x - y)| \, dx \\
\ll \int_{|x| \leq \chi} |S(x)|^4 |\Phi(x)| |U(x - y)| \, dx \\
|X^c < |x - y| \leq 2\chi \\
+ \int_{|x| \leq \chi} |S(x)|^4 |\Phi(x)| \left(|x - y| X^{c/2} X^{1/2} + \frac{X}{|x - y| X} \right) \, dx \\
X^c < |x - y| \leq 2\chi \\
\ll \epsilon X^{((647 - 485s)/(123 - 97s)) + 16\eta} \int_{|x - y| \leq X^{c}} dx + (X^c)^{13/84} X^{1/2} \int_{|x| \leq \chi} |S(x)|^4 |\Phi(x)| \, dx \\
+ \epsilon X^{((647 - 485s)/(123 - 97s)) - c + 16\eta} \int_{X^c < |x - y| \leq 2\chi} \frac{1}{|x - y|} \, dx \\
\ll \epsilon X^{((647 - 485s)/(123 - 97s)) - c + 7\eta} + X^{(107 - 81\eta)/(123 - 97s)} \int_{|x| \leq \chi} |S(x)|^4 |\Phi(x)| \, dx,
\]

where Lemma 12 is used.

Now, by (49) and (51), we obtain
where Lemma 7 is used. From (52), we obtain

\[
D_2(N) \ll \varepsilon^{1/2} X (\frac{-972^2+228s-147}{2(123-97s)}+c/2)+10\eta
\]

\[
+ X(\frac{-972^3+333s-294}{2(123-97s)}+2\eta) \ll \frac{\varepsilon X^{s-c}}{\log X}
\]

(53)

It follows from Lemma 1 that

\[
D_3(N) \ll \int_{|x|<X} |S'(x)| \Phi(x)|dx \ll X^s
\]

\[
\ll X^s \left(\frac{r}{2\pi|x|b} \right)^r \ll 1.
\]

(54)

By (40), (46), (53), and (54),

\[
B_1(N,s) \gg \varepsilon X^{s-c}.
\]

(55)

It follows from (39) and (55) that

\[
B_0(N,s) \geq \frac{B(N,s)}{\log X} \geq \frac{B_1(N,s)}{\log X} \gg \varepsilon N^{(s-c-1)/2}
\]

(56)

Now, by (56), the proof of the theorem is completed.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] I. I. Piatetski-Shapiro, "On a variant of the Waring–Goldbach problem," Matematicheskii Sbornik, vol. 30, no. 1, pp. 105–120, 1952, in Russian.

[2] M. Z. Garaev, "On the Waring–Goldbach problem with small non-integer exponent," Acta Arithmetica, vol. 108, no. 3, pp. 297–302, 2003.

[3] S. Li and Y. Cai, "On a Diophantine inequality involving prime numbers," The Ramanujan Journal, vol. 52, no. 1, pp. 163–174, 2020.

[4] W. G. Zhai and X. D. Cao, "On a Diophantine inequality over primes," Advances in Mathematics, vol. 32, no. 1, pp. 63–73, 2003.

[5] W. Zhai and X. Cao, "On a diophantine inequality over primes (II)," Monatshefte für Mathematik, vol. 150, no. 2, pp. 173–179, 2007.

[6] R. Baker and A. Weingartner, "Some applications of the double large sieve," Monatshefte für Mathematik, vol. 170, no. 3–4, pp. 261–304, 2013.

[7] Q. W. Mu, "On a Diophantine inequality over primes," Advances in Mathematics, vol. 44, no. 4, pp. 621–637, 2015.

[8] M. Zhang and J. J. Li, "A Diophantine inequality with four prime variables," International Journal of Number Theory, vol. 15, no. 9, pp. 1759–1770, 2019.

[9] D. Tolev, Diophantine inequalities involving prime numbers, Ph.D. thesis, Moscow University, Moscow, Russia, 1999.

[10] Y. C. Cai, "On a Diophantine inequality involving prime numbers," Acta Mathematica Sinica, vol. 39, no. 6, pp. 733–742, 1996.

[11] Y. Cai, "On a diophantine inequality involving prime numbers (III)," Acta Mathematica Sinica, vol. 15, no. 3, pp. 387–394, 1999.

[12] Y. C. Cai, "A ternary Diophantine inequality involving primes," International Journal of Number Theory, vol. 14, no. 8, pp. 2257–2268, 2018.

[13] X. D. Cao and W. G. Zhai, "A Diophantine inequality with prime numbers," Acta Mathematica Sinica, vol. 45, no. 2, pp. 361–370, 2002.

[14] A. Kumchev, "A Diophantine inequality involving prime powers," Acta Arithmetica, vol. 89, no. 4, pp. 311–330, 1999.

[15] A. Kumchev and T. Nedeva, "On an equation with prime numbers," Acta Arithmetica, vol. 83, no. 2, pp. 117–126, 1998.

[16] D. Tolev, "On a Diophantine inequality involving prime numbers," Acta Arithmetica, vol. 61, no. 3, pp. 289–306, 1992.

[17] M. B. S. Laporta, "On a binary Diophantine inequality involving prime numbers," Acta Mathematica Hungarica, vol. 83, no. 3, pp. 179–187, 1999.

[18] A. Kumchev and M. B. S. Laporta, "On a binary Diophantine inequality involving prime powers," in Number Theory for the Millennium II, pp. 307–329, Wellesley: A K Peters, Urbana, IL, USA, 2002.

[19] S. H. Li and Y. C. Cai, "On a binary Diophantine inequality involving prime numbers," The Ramanujan Journal, vol. 54, no. 3, pp. 574–589, 2021.

[20] E. Fouvey and H. Iwaniec, "Exponential sums with monomials," Journal of Number Theory, vol. 33, no. 3, pp. 311–333, 1989.
[21] D. R. Heath-Brown, “The Piatetski-Shapiro prime number theorem,” *Journal of Number Theory*, vol. 16, no. 2, pp. 242–266, 1983.

[22] X. Han, H. Liu, and D. Zhang, “A system of two Diophantine inequalities with primes,” *Journal of Mathematics*, vol. 2021, no. 1, pp. 1–12, 2021.

[23] X. Han, X. F. Yan, and D. Y. Zhang, “On Fourier coefficients of the symmetric Square L-function at Piatetski-Shapiro prime twins,” *Mathematics*, vol. 9, no. 11, Article ID 1254, 2021.

[24] J. Huang, W. G. Zhai, W. Zhai, and D. Zhang, “Ω Result for the index of composition of an integral ideal,” *AIMS Mathematics*, vol. 6, no. 5, pp. 4979–4988, 2021.

[25] T. Li and H. Liu, “Diophantine approximation over Piatetski-Shapiro primes,” *Journal of Number Theory*, vol. 211, no. 72, pp. 184–198, 2020.

[26] H. Liu, “Diophantine approximation with one prime, two squares of primes and powers of two,” *The Ramanujan Journal*, vol. 51, no. 1, pp. 85–97, 2020.

[27] H. F. Liu and J. Huang, “Diophantine approximation with mixed powers of primes,” *Taiwanese Journal of Mathematics*, vol. 23, no. 5, pp. 1073–1090, 2019.

[28] P. Song, W. Zhai, and D. Zhang, “Power moments of Hecke eigenvalues for congruence group,” *Journal of Number Theory*, vol. 198, pp. 139–158, 2019.

[29] Y. K. Sui, W. G. Zhai, and D. Y. Zhang, “Ω Result for the index of composition of an integer,” *International Journal of Number Theory*, vol. 14, no. 2, pp. 339–348, 2018.

[30] Q. Sun and D. Zhang, “Sums of the triple divisor function over values of a ternary quadratic form,” *Journal of Number Theory*, vol. 168, pp. 215–246, 2016.

[31] D. Y. Zhang and W. G. Zhai, “On the mean value of the index of composition of an integer II,” *International Journal of Number Theory*, vol. 9, no. 2, pp. 431–445, 2013.

[32] D. Zhang and Y. Wang, “Higher-power moments of Fourier coefficients of holomorphic cusp forms for the congruence subgroup $\Gamma_0(N)$,” *The Ramanujan Journal*, vol. 47, no. 3, pp. 685–700, 2018.

[33] D. Zhang and Y. Wang, “Ternary quadratic form with prime variables attached to Fourier coefficients of primitive holomorphic cusp form,” *Journal of Number Theory*, vol. 176, pp. 211–225, 2017.

[34] D. Y. Zhang and W. G. Zhai, “On the Waring-Goldbach problem in thin sets of primes (II),” *Acta Mathematica Sinica*, vol. 48, no. 4, pp. 809–816, 2005.

[35] D. Zhang and W. Zhai, “On the mean value of the index of composition of an integral ideal (II),” *Journal of Number Theory*, vol. 133, no. 4, pp. 1086–1110, 2013.

[36] S. W. Graham and G. Kolesnik, *Van der Corput’s Method of Exponential Sums*, Cambridge University Press, Cambridge, England, 1991.

[37] R. Holowinsky and R. Munshi, “Beyond the Weyl barrier for $GL(2)$ exponential sums,” 2021, https://arxiv.org/pdf/2104.05157.