Isentropes of spin-1 bosons in an optical lattice

K. W. Mahmoud, G. G. Batrouni, R. T. Scalettar

1Physics Department, University of California, Davis, California 95616, USA
2INLN, Université de Nice–Sophia Antipolis, CNRS; 1361 route des Lucioles, 06560 Valbonne, France

We analyze the effects of adiabatic ramping of optical lattices on the temperature of spin-1 bosons in a homogeneous lattice. Using mean-field theory, we present the isentropes in the temperature-interaction strength (T, U_0) plane for ferromagnetic, antiferromagnetic, and zero spin couplings. Following the isentropic lines, temperature changes can be determined during adiabatic loading of current experiments. We show that the heating-cooling separatrix lies on the superfluid-Mott phase boundary with cooling occurring within the superfluid and heating in the Mott insulator, and quantify the effects of spin coupling on the heating rate. We find that the mean-field isentropes for low initial entropy terminate at the superfluid-Mott insulator phase boundary.

I. INTRODUCTION

Ultra-cold atoms in optical lattices offer the possibility of realizing various fundamental models of strongly correlated bosons and fermions [1, 2]. A crucial aspect of the optical lattice system is its flexibility in controlling different lattice parameters and particle interactions, thereby facilitating progress towards the creation of quantum emulators. After the observation of the superfluid to Mott insulator transition with spin-0 bosons [1], steady progress has been made towards trapping spinful atoms. These models, along with a precise knowledge and tunability of the microscopic Hamiltonian, can potentially lead to a better understanding of quantum magnetism, and related phenomena. Unlike magnetic traps which freeze the F_z component of spin, optical traps can confine 23Na, 39K, and 87Rb with hyperfine spin $F = 1$. Several theoretical studies have focused on spinor condensates in an optical lattice [3, 4] and how the spin degree of freedom modifies the phase diagram and the nature of superfluid-Mott insulator transition. Experiments have also explored the properties of spinful bosons in harmonic traps [5, 6] and, recently, in a double well optical superlattice [7].

The technological breakthrough in cooling to ultra-cold temperatures paved the way for the realization of Bose-Einstein condensation and optical lattice experiments. The temperature of a bosonic gas in a trap can be measured accurately. However, no established temperature measurement exists for optical lattice systems, although several proposals have been made [10, 11]. This makes it difficult to obtain a quantitative description of the various low temperature phases and thermal and quantum phase transitions between them [12].

In current experiments, ultra-cold atoms are first loaded in a harmonic trap, and then an external sinusoidal potential created by interfering lasers are slowly ramped up to create the optical lattice. For gradual enough ramping, there is no heat exchange with the environment, and this process can be considered adiabatic (constant entropy) [11, 12]. It is of great interest to the experimentalists to know how the system cools down or heats up during the adiabatic process. The change in temperature with adiabatic ramp-up of optical lattice for the spinless Bose-Hubbard model and the Fermi Hubbard model has been studied by several authors [14, 15].

In this paper, we present the isentropes for spin-1 bosons in a homogeneous optical lattice for both ferromagnetic and antiferromagnetic spin couplings. We investigate the effects of adiabatic ramping on temperature within the mean-field approximation, and show that for spinor bosons cooling occurs in the superfluid phase and heating occurs in the Mott insulator or normal phase. We find that the heating-cooling separatrix lies along the superfluid-Mott phase boundary. As the magnitude of spin coupling increases, the rate of temperature change decreases in the Mott regime, and can both increase and decrease in the superfluid regime depending on the value of the spin coupling. We find that the mean-field isentropes for low initial entropy terminate at the superfluid-Mott insulator phase boundary and argue that this is a consequence of the absence of breaking of the degeneracy of the ground state in the mean field approximation.

The paper is organized as follows. We discuss the spin-1 Bose-Hubbard model and the details of the mean-field theory in section II. In section III, we investigate the entropy for this model, and present our results for the isentropes and temperature changes for different couplings. A summary is contained in section IV.

II. SPIN-1 BOSE-HUBBARD MODEL AND MEAN-FIELD THEORY

The Hamiltonian for spin-1 bosons in an optical lattice is given by

$$H = -t \sum_{\langle i,j \rangle, \sigma} \left(a_{i\sigma}^\dagger a_{j\sigma} + a_{j\sigma}^\dagger a_{i\sigma} \right) + \frac{U_0}{2} \sum_i \tilde{n}_i (\tilde{n}_i - 1) + \frac{U_2}{2} \sum_i \left(\tilde{F}_i^2 - 2\tilde{n}_i \right) - \sum_i \mu_i \tilde{n}_i, \quad (1)$$
\[\hat{\rho} = \sum_{\sigma} \hat{a}_{\sigma}^\dagger \hat{a}_{\sigma} \] counts the total number of bosons on site \(i \). In the third term, \(U_2 \) is the spin dependent interaction which can be zero, positive or negative, and \(\hat{F}_i = \sum_{\sigma,\sigma'} \hat{a}_{\sigma}^\dagger \hat{F}_{\sigma\sigma'} \hat{a}_{\sigma'} \) is the total spin on site \(i \), where \(\hat{F}_{\sigma\sigma'} \) are the standard spin-1 matrices.

The spin dependent interaction, \(U_2 \), for the spin-1 model greatly modifies its physics compared to that of spin-0 bosons. From the symmetry of the bosonic wavefunction, scattering with total spin \(F = 1 \) is prohibited. The difference in scattering lengths in the \(F = 0 \) (\(a_0 \)) and \(F = 2 \) (\(a_2 \)) channels is responsible for the spin dependent coupling. The interactions can be expressed as \(U_0 = 4\pi \hbar^2 (a_0 + 2a_2)/3M \) and \(U_2 = 4\pi \hbar^2 (a_2 - a_0)/3M \), \(M \) being the mass of the atom. The spin dependent interaction is ferromagnetic when \(U_2 < 0 \) (\(a_2 < a_0 \)) and antiferromagnetic when \(U_2 > 0 \) (\(a_2 > a_0 \)). \(^{23}\)Na atoms are ferromagnetic and \(^{87}\)Rb antiferromagnetic. Our study in this paper considers both signs of the interaction. The coupling constants obey the constraint \(-1 < U_2/U_0 < 1/2\).

The zero-temperature phase diagram for the spin one model has been calculated with numerical methods such as QMC, DMRG, and also within the mean-field approximation. As for the spin-0 case, mean-field theory for the spin-1 Bose-Hubbard model captures the essential physics of this system. A finite temperature extension of the mean-field analysis was presented in [7], revealing the rich phase diagram that includes both first and second order transitions. The spinor Bose-Hubbard model, with filling of one boson per site and for small hopping, can be mapped onto the \(F = 1 \) bilinear biquadratic Heisenberg model, which has been studied by many authors to gain an understanding of different Mott phases. Here, we will extend the mean-field calculation presented in [7] to obtain the entropy.

In the mean-field approximation, the hopping term is decoupled as

\[a_{\sigma}^\dagger a_{\sigma} \simeq \langle a_{\sigma}^\dagger \rangle a_{\sigma} + \langle a_{\sigma}^\dagger \rangle \langle a_{\sigma} \rangle - \langle a_{\sigma}^\dagger \rangle \langle a_{\sigma} \rangle, \]

neglecting fluctuations around the equilibrium value. Here, we define \(\psi_{\sigma} = \langle a_{\sigma}^\dagger \rangle = \langle a_{\sigma} \rangle \), for \(\sigma = 1, 0, -1 \) to be the superfluid order parameter. The use of Eq. (2) allows us to rewrite Eq. (1) as a sum of independent single site Hamiltonians, \(H = \sum_i H_i^{\text{mf}} \) where

\[H_i^{\text{mf}} = \frac{U_0}{2} \hat{n}_i (\hat{n}_i - 1) + \frac{U_2}{2} \left(\hat{F}_i^2 - 2\hat{n}_i \right) - \mu \hat{n}_i - \sum_{\sigma} \psi_{\sigma} (\hat{a}_{\sigma}^\dagger + \hat{a}_{\sigma}) + \sum_{\sigma} |\psi_{\sigma}|^2. \]

Here we set \(zt = 1 \), where \(z \) is the number of nearest neighbors. To perform the mean field calculations, we write the matrix elements of the Hamiltonian \(H_i^{\text{mf}} \) in the occupation number basis \(|n_{i-1}, n_i, 0, n_{i+1}, \rangle \), and truncate the onsite Hilbert space \(H_i \) by allowing a maximum number of particles per site, \(N_{\text{max}} = 4 \), for which the

\[\text{FIG. 1: (color online).} \]

Entropy and filling as functions of chemical potential at zero temperature for \(U_0 = 12zt \) (we set \(zt = 1 \) in our calculation) and (a) \(U_2 = 0 \), (b) \(U_2 = -0.1U_0 \) and (c) \(U_2 = 0.1U_0 \). For \(U_2 = 0 \), the entropy is \(\ln(3) \) at \(\rho = 1 \), \(\ln(6) \) at \(\rho = 2 \), and zero elsewhere. This can be understood in terms of the degeneracy of spin-1 (three component) bosons and total spin at each site. For \(U_2 < 0 \), the energy is minimized with maximum total spin \(F = 2 \), and hence the entropy at \(\rho = 2 \) changes to \(\ln(5) \). Similarly, for \(U_2 > 0 \), the ground state has lowest total spin, \(F = 0 \), and hence the system has zero entropy for \(\rho = 2 \).

Here \(a_{\sigma}^\dagger, a_{\sigma} \) are boson creation (destruction) operators at site \(i \) with spin component \(\sigma \) (\(\sigma = 1, 0, -1 \)). The first term in Eq. (1) describes the spin dependent hopping between near neighboring sites. In the second term,
We set $k_B = 1$ throughout our calculation. For given μ, U_0, U_2 and T, the superfluid order parameters ψ_σ are obtained by minimizing the free energy, i.e. by solving $\partial F / \partial \psi_\sigma = 0$ for $\sigma = 1, 0, -1$. Solving for the extrema of the free energy is equivalent to the self-consistency condition for ψ_σ.

After determining the values of the superfluid order parameters $\psi^c_+\psi^c_-$ and ψ^s_1 that minimize the free energy, other physical quantities can be obtained easily from the resulting global minimum of free energy, F^{eq}, and eigenvalues (E^{eq}_α) and eigenstates (ϕ^{eq}_α) at the global minimum. The superfluid density is given by,

$$\rho_s = \sum_\sigma |\psi^{eq}_\sigma|^2$$

and the number density is,

$$\rho = -\partial F / \partial \mu = \frac{1}{2T} \sum_\alpha e^{-E^{eq}_\alpha / T} \langle \phi^{eq}_\alpha | \hat{n} | \phi^{eq}_\alpha \rangle.$$

Finally, the entropy is calculated from

$$S = -\partial F / \partial T = \ln Z + \frac{1}{2T} \sum_\alpha E^{eq}_\alpha e^{-E^{eq}_\alpha / T}.$$

Pai et al. [7] give a detailed analysis of the superfluid order parameters ψ_1, ψ_0, ψ_-1 for different phases and show that in the antiferromagnetic (polar) superfluid, the possibilities are $\psi_1 = \psi_-1 > 0$, $\psi_0 = 0$ and $\psi_1 = \psi_-1 = 0$, $\psi_0 > 0$. For the ferromagnetic superfluid, $\psi_1 = \psi_-1$, $\psi_0 = \sqrt{2} \psi_1$.

We use the superfluid density to determine the phase diagram in the (T, U_0) plane. $\rho_s > 0$ corresponds to the ferromagnetic or polar superfluid, and $\rho_s = 0$ corresponds to the Mott insulator phase. At finite temperature, there is a crossover from the Mott phase to the normal phase depending on the value of the compressibility.

III. ENTROPY AND ISENTROPIC CURVES

Figure 2(a) shows the entropy (S) and density (ρ) at zero temperature for $U_2 = 0, U_0 = 12zt$ (we set the energy scale $zt = 1$ throughout our calculation) for increasing chemical potential along a vertical cross section in the (μ, U_0) phase diagram. This trajectory traverses the superfluid regions with non-integer ρ as well as Mott plateau with density fixed at integral values $\rho = 1$ and 2. We observe that at $T = 0$, although the entropy (S) is zero in the superfluid (SF) region, it is nonzero in the Mott insulator (MI) lobes. For $\rho = 1$, the entropy is $\ln(3)$, and for $\rho = 2$ the entropy $S = \ln(6)$. This nonzero ground state entropy can be understood as follows. In the mean-field treatment, the system Hamiltonian is a sum of single site Hamiltonians and in the MI phase for one particle per site, three degenerate spin components $\sigma = -1, 0, 1$ contribute to $S = \ln(3)$. For the $\rho = 2$ Mott phase, the two spin-1 bosons on a single site have total spin $F = 0, 2$, with $F = 1$ eliminated by the symmetry constraint on the spin functions. The number of degenerate components is therefore 5 due to $F = 2$, and 1 due to the spin singlet $F = 0$, so that $S = \ln(6)$.

The entropy for the ferromagnetic case $U_2 < 0$, $U_2 = -0.1U_0, U_0 = 12$ at $T = 0$ is shown in Fig. 2(b). A negative value of the spin coupling, U_2, favors maximal total spin. Hence, $F = 2$ for $\rho = 2$, and $S = \ln(5)$ is reduced from its $U_0 = 0$ value. For $\rho = 1$, i.e. the first
states as boundary can be understood by the absence of low entropy in the superfluid regime. Antiferonetic values, $Mott lobe$, the entropy is still $ln(3)$ as before, and zero in the superfluid regime. Antiferonetic values, $U_2 > 0$, favor the $F = 0$ singlet phase for $\rho = 2$ and, therefore, $S = 0$ for the second Mott lobe. Fig. (c) shows the entropy for $U_2 = 0.1U_0$, $U_0 = 12$ at $T = 0$. As in the earlier cases, the entropy is zero in the SF phase, and $ln(3)$ in the first MI lobe. The presence of finite entropy for the MI phase in mean-field theory even at $T = 0$, influences the topology of the isentropic curves, as we shall discuss.

In contrast to spin-0 bosons, spin-1 bosons in a lattice exhibit both first and second order phase transitions at finite temperature. Here we examine the entropy across these different phase boundaries. In Fig. (a), discontinuities in entropy, density, and superfluid density are evident across a first order phase boundary in the (μ, T) plane at a constant $T = 0.1$, and $U_0 = 12, U_2 = 0$. Such first order finite temperature phase transitions should follow the Clausius-Clapeyron equation from thermodynamics which relates the discontinuity in the entropy and other parameters to the slope of the phase boundary. We have verified that our results indeed satisfy this identity. For example, in Fig. (a), we find $\Delta S/\Delta \rho = 3.10$ which equals the slope $d\mu/dT$ in the (μ, T) plane.

As we increase the temperature, the entropy jump decreases, and finally vanishes at the tricritical point. The entropy is continuous afterwards across a second order phase transition as we show in Fig. (b) for $T = 0.2$.

To investigate further the effect of adiabatic ramping of the optical lattice, we calculate the entropy at different couplings (fixed U_2 and many U_0) and temperatures, and construct the isentropic curves in the (T, U_0) plane. Fig. (a) shows the isentropic curves for $U_2 = 0$ for fixed occupation number $\rho = 1$. Isentropic curves are overlaid on the finite temperature phase diagram where the boundary separates $\rho_s > 0$ (SF phase) and $\rho_s = 0$ (MI/Normal phase). During adiabatic ramping of the lattice, the system heats or cools following one of these isentropic lines. For entropy 1.13 at $U_0 = 0$ the temperature starts at $T = 0.43$ but decreases along the isentrope as U_0 rises. At the SF boundary, T begins to rise again. In fact, all the mean-field isentropes that we obtain show this pattern - there is cooling in the SF regime and heating in the MI regime with the heating-cooling separatrix exactly on the phase boundary.

The occurrence of cooling in the SF phase and heating in the Mott phase, and the location of the heating-cooling separatrix exactly on the phase boundary can be

![FIG. 3: (color online). (a) Isentropic curves overlaid on the finite temperature phase diagram for $U_2 = 0$ and density, $\rho = 1$. During adiabatic ramping of the lattice, the system cools along the isentropic lines in the superfluid region, and heats in the Mott region. In our mean field analysis, the separatrix of cooling and heating lies on the superfluid-Mott phase boundary in the (T, U_0) plane. (b) Shows entropy as a function of U_0 at constant temperatures for intervals of $T = 0.02$. The termination of the isentropic lines at the phase boundary can be understood by the absence of low entropy states as U_0 increases into the Mott regime.](image1)

![FIG. 4: (color online). Isentropic curves for a noninteger filling, $\rho = 0.7$ and $U_2 = 0$. As in the commensurate filling case, the heating-cooling separatrix lies on the phase boundary. However, the low temperature isentropes do not terminate, and remain under the phase boundary.](image2)
FIG. 5: (color online). Isentropes overlaid on the finite temperature phase diagram for ferromagnetic ($U_2 < 0$) and antiferromagnetic ($U_2 > 0$) interactions. The chemical potential μ is chosen so that density $\rho = 1$. For small values of U_2, (a) $U_2 = -0.1U_0$ and (c) $U_2 = 0.1U_0$, the isentropes are not much different from each other and from $U_2 = 0$ (Fig. 3). For larger values of U_2, (b) $U_2 = -0.4U_0$ and (d) $U_2 = 0.4U_0$, the difference is more visible. Along an isentropic line, first we have cooling followed by heating for large U_0. The cooling and heating separatrix again lies on the superfluid-Mott phase boundary.

understood with the following physical argument - moving away from the phase boundary towards higher U_0, one enters the Mott phase with reduced number fluctuations and an integer number of atoms per site. So, as U_0 increases at constant T, the entropy is reduced. Therefore, if we want to keep the entropy constant as U_0 increases, the temperature must rise, and there is heating in the Mott phase. Similarly, moving away from the phase boundary towards the SF regime by decreasing U_0, more and more particles enter the condensate, reducing the quantum depletion. More particles entering the condensate means entropy is decreasing since the condensate carries no entropy. So, to keep S constant as U_0 decreases in the SF, there must again be heating in the system.

The fact that within mean field theory phase boundaries also demark the switch between cooling and heating isentropes is a phenomenon that has also been observed in studies of classical models of nuclear magnetism [27]. Recently, it has also been shown that the spin-one Blume-Capel model exhibits this same behavior[28]. In both cases, it is found that in exact Monte Carlo calculations for the same models the heating/cooling separatrix continues to track the phase boundary qualitatively, but increasingly breaks away as the temperature increases.

Another feature of the isentropic lines is that for low initial entropy (which is also at low temperature) they
terminate at the SF-MI phase boundary without ever entering the MI phase. Fig. 1 showed that within site-decoupled mean-field theory, the entropy in the Mott regime with \(\rho = 1 \) is \(\ln(3) = 1.0986 \) even at \(T = 0 \). As a consequence, if we follow an isentrope with initial entropy less than \(\ln(3) \) in the SF phase, as \(U_0 \) increases beyond the critical value, the isentrope cannot reach the MI phase because of its high ground state spin entropy.

As the rate decreases as we move away from \(E_a \), two adjacent sites with the same \(\sigma \). Two adjacent sites with the same \(\sigma \).

Thus while mean-field theory successfully captures the zero temperature phase diagram as has been verified with QMC, and predicts many qualitatively correct results for the finite temperature phase diagram, it cannot capture the low temperature entropy curves in the Mott region.

Next we examine the isentropes at a non-commensurate filling. Fig. 3 shows the isentropic curves for \(\rho = 0.7 \) overlaid on the finite temperature phase diagram. As in the commensurate filling case, here we also find that the heating-cooling separatrix is on the SF-Normal phase boundary. However, the low temperature isentropes here do not terminate at the phase boundary. Since the phase boundary for noninteger fillings never touches the \(T = 0 \) line, the isentropes can remain under the phase boundary for arbitrary \(U_0 \).

We present isentropes for \(U_2 \neq 0 \) at commensurate filling \(\rho = 1 \) in Fig. 6 which shows the isentropic curves for both ferromagnetic and antiferromagnetic cases for two different spin couplings. We also show the SF-MI phase boundaries on the same plot. The central observations are that the isentropes here have the same general property as for \(U_2 = 0 \) - there is cooling in the SF phase and heating in the MI phase, the phase boundary coincides with the heating-cooling separatrix, and the low entropy lines do not enter the Mott phase. For \(U_2 = -0.1U_0 \) and \(U_2 = 0.1U_0 \), the isentropes are not much different from each other and from the \(U_2 = 0 \) case. However for larger magnetic coupling, \(U_2 = -0.4U_0 \) (Fig 6(b)), we find that adiabatic ramping results in a slower rate of cooling and heating. Starting with the same initial temperature, and ending up at the same final optical lattice depth in the MI phase, the temperature is lower for \(U_2 = -0.4U_0 \) than for \(U_2 = -0.1U_0 \). This is also true for the polar phase \(U_2 = 0.4U_0 \) in Fig 6(d).

In Fig. 6 we show the slope of the isentropes \(dT/dU_0 \), i.e., the heating rate in the Mott and SF phases, as a function of \(U_2 \). We show results for two isentropes, \(S = 1.6 \) and \(S = 1.2 \) in the MI and SF regime. We see that the heating rate in the MI regime continually decreases as the magnitude of \(U_2 \) increases. In the SF region, the rate is negative denoting cooling. For the two isentropes we show, the characteristics of the rates differ based on whether we are in a low or higher entropy curve. For the species of atoms used in current experiments, \(^{23}\text{Na} \) and \(^{87}\text{Rb} \), \(|U_2| \) is on the order of 0.03. Our mean-field study indicates that the effect of magnetic couplings of this magnitude on the adiabatic heating and cooling rates is small.

From Fig. 6 we see that the rate of heating in the first Mott lobe is maximum at \(U_2 = 0 \), and slowly decreases as magnetic coupling is turned on for both ferromagnetic and anti-ferromagnetic case. As noted earlier, increasing \(U_0 \) in the Mott region reduces fluctuations, creating order and thereby reducing entropy. Thus the system must heat as \(U_0 \) is increased to keep the entropy constant. Now if \(U_2 \neq 0 \), \(U_2 \) will be trying to establish another kind of order. For example, in the first Mott lobe, \(U_2 > 0 \) tries to establish a bond order in one dimension, and \(U_2 < 0 \), a ferromagnetic order. These other orders compete with the simple Mott insulator, slow down the reduction of fluctuations as \(U_0 \) is increased, and result in a slower heating rate.

In the spinless Bose-Hubbard model, the SF-MI transition in the \(\rho = 1 \) and \(\rho = 2 \) Mott lobes are qualitatively similar as they are both a second order transition.
FIG. 7: (color online). Isentropes overlaid on the finite temperature phase diagram for ferromagnetic ($U_2 < 0$) and antiferromagnetic ($U_2 > 0$) interactions for density $\rho = 2$. The same values of U_2, $U_2 = -0.1U_0$ and $U_2 = 0.1U_0$ were used as in the $\rho = 1$ results in Fig. 4. There are several differences from the case of unit filling. Here, the sign of dT/dU_0 can change within the superfluid. The isentropes no longer exhibit pure cooling. In addition, the antiferromagnetic isentropes in (c) have no terminations on the phase boundary.

The presence of magnetic coupling in the spin-1 model changes this scenario. For $U_2 > 0$, the SF-MI transition in the $\rho = 2$ Mott lobe becomes a first order transition. Phase boundaries for the even and odd Mott lobes also change as a function of U_3.

Our final results address the isentropes for density $\rho = 2$. In Fig. 4(b) we choose $U_2 = 0$, $U_2 = -0.1U_0$, and $U_2 = 0.1U_0$. Here also we see cooling in the SF and heating in the Mott regime. Turning on the ferromagnetic coupling in Fig. 4(b) does not have a huge impact on the isentropes. However, for antiferromagnetic coupling $U_3 = 0.1U_0$ in Fig. 4(c), we see that the isentropes are visibly different as is the shape of the phase boundary. Inside the SF, the system cools down very slowly.

FIG. 8: (color online). The effect of spin coupling U_2 on the rate of temperature change in the second Mott lobe ($\rho = 2$). Here we show the heating rate for two isentropes $S=2.5$ and $S=1.85$. Unlike the $\rho = 1$ case, the heating rate is not maximum at $U_2 = 0$, and increases for $U_2 > 0$.

FIG. 8: (color online). The effect of spin coupling U_2 on the rate of temperature change in the second Mott lobe ($\rho = 2$). Here we show the heating rate for two isentropes $S=2.5$ and $S=1.85$. Unlike the $\rho = 1$ case, the heating rate is not maximum at $U_2 = 0$, and increases for $U_2 > 0$.

IV. CONCLUSION

In this paper we have extended previous mean field theory treatments of the spin-1 Bose Hubbard model to compute the isentropic lines. These quantities are of considerable experimental importance to understand thermometry in ultra-cold atomic gases in an optical lattice. We presented the isentropes in the temperature-interaction strength (T,U_0) plane for ferromagnetic, antiferromagnetic, and zero spin couplings. Following these isentropic lines, temperature changes can be determined during adiabatic loading of spin-1 bosonic atoms in an optical lattice. The isentropes have a number of interesting features. First, they exhibit pure cooling within the SF and heating in the normal/Mott phase. The phase boundary precisely corresponds to the location of the change in sign of dT/dU_0, i.e. the heating-cooling separatrix lies on the SF-MI phase boundary. This can be un-
derstood in the symmetric view of heating as one moves away in U_0 from the phase boundary in either direction of SF/Mott. The system gets more ordered with reduced entropy. And therefore, temperature must increase to keep the entropy constant. Second, the low entropy (low temperature) isentropes terminate on the phase boundary because of the nonzero ground state entropy which mean field theory gives for the Mott phase. For noncommensurate fillings, the isentropes show similar characteristics except that the low entropy lines do not terminate at the phase boundary.

The effect of ferromagnetic and antiferromagnetic couplings on isentropes has been examined, and we quantify the rate of heating as U_2 changes. We find that in the experimentally relevant regime of $|U_2| = 0.03$ for 23Na and 87Rb, the changes in heating-cooling rate is not very different from the $U_2 = 0$ case. It would be interesting to extend QMC simulations of the magnetic and superfluid properties on the spinor Bose-Hubbard model to study these thermodynamic properties as well.

Acknowledgments

We thank Dave Cone and Rajiv Singh for fruitful discussions, and the referee for useful observations on our calculation. This work was supported under ARO Grant No. W911NF0710576 with funds from DARPA OLE program. GGB is supported by the CNRS (France) PICS 3659.

[1] M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch and I. Bloch, Nature 415, 39 (2002).
[2] M. Lewenstein, A. Sanpera, V. Ahufinger, B. Damski, A. Sen, and U. Sen, Advances in Physics 56, 243 (2007).
[3] E. Demler and F. Zhou, Phys. Rev. Lett. 88, 163001 (2002).
[4] M. Snoek and F. Zhou, Phys. Rev. B 69, 094410 (2004).
[5] T. L. Ho, Phys. Rev. Lett 81, 742 (1998); S. Mukerjee, C. Xu, and J. E. Moore, Phys. Rev. Lett. 97, 120406 (2006).
[6] G. G. Batrouni, V. G. Rousseau, and R. T. Scalettar, Phys. Rev. Lett 102, 140402 (2009).
[7] R. V. Pai, K. Sheshadri, and R. Pandit, Phys. Rev. B 77, 014503 (2008).
[8] D. M. Stamper-Kurn, M. R. Andrews, A. P. Chikkatur, S. Inouye, H.-J. Miesner, J. Stenger, and W. Ketterle, Phys. Rev. Lett 80, 2027 (1998).
[9] S. Trotzky, P. Cheinet, S. Flling, M. Feld, U. Schnorberger, A. M. Rey, A. Polkovnikov, E. A. Demler, M. D. Lukin, and I. Bloch, Science 319, 295 (2007).
[10] Q. Zhou and T.-L. Ho, arXiv:0908.3015.
[11] Q. Zhou, Y. Kato, N. Kawashima, and N. Trivedi, arXiv:0901.0606.
[12] R. B. Diener, Q. Zhou, H. Zhai, and T. -L. Ho, Phys. Rev. Lett. 98, 180404 (2007), W. Yi, G. -D. Lin, and L. -M. Duan, Phys. Rev. A 76, 031602(R) (2007).
[13] I. B. Spielman, W. D. Phillips, and J. V. Porto, Phys. Rev. Lett. 98, 080404 (2007).
[14] A. M. Rey, G. Pupillo, and J. V. Porto, Phys. Rev. A 73, 023608 (2006).
[15] S. Yoshimura, S. Konabe, and T. Nikuni, Phys. Rev. A 78, 015602 (2008).
[16] L. Pollet, C. Kollath, K. Van Houcke, and M. Troyer, New J. Phys. 10, 065001 (2008).
[17] F. Werner, O. Parcollet, A. Georges, and S. R. Hassan, Phys. Rev. Lett. 95, 056401 (2005).
[18] T. Paiva, R. T. Scalettar, M. Randeria, and N. Trivedi, arXiv:0906.2111.
[19] V. Apaja and O. F. Syljuasen, Phys. Rev. A 74, 035601 (2006).
[20] M. Rizzi, D. Rossini, G. DeChiara, S. Montangero, and R. Fazio, Phys. Rev. Lett 95, 240404 (2005); S. Bergkvist, I. P. McCulloch and A. Rosengren, Phys. Rev. A 74 053419 (2006).
[21] K. Sheshadri, H. R. Krishnamurthy, R. Pandit, and T. V. Ramakrishnan, Europhys. Lett. 22, 257 (1993).
[22] K. V. Krutitsky and R. Graham, Phys. Rev. A 70, 063610 (2004); K. V. Krutitsky, M. Timmer, and R. Graham, Phys. Rev. A 71, 033623 (2005).
[23] T. Kimura, S. Tsuchiya, and S. Kurihara, Phys. Rev. Lett. 94, 110403 (2005); S. Tsuchiya, S. Kurihara, and T. Kimura, Phys. Rev. A 70, 043628 (2004).
[24] M. C. Chung and S.-K. Yip, arXiv:0904.4110. M. C. Chung and S.-K. Yip, arXiv:0811.2054.
[25] A. V. Chubukov, Phys. Rev. B 43, 3337 (1991).
[26] A. Imambekov, M. Lukin, and E. Demler, Phys. Rev. A 68, 063602 (2003); Phys. Rev. Lett. 93, 120405 (2004).
[27] P.-A. Lindgard, H. E. Viertio, and O. G. Mouritsen, Phys. Rev. B 38, 6798 (1988).
[28] D. Cone and R. T. Scalettar, unpublished.