Non-contact friction between nanostructures

A.I.Volokitin1,2 and B.N.J.Persson1

1Institut für Festkörperforschung, Forschungszentrum Jülich, D-52425, Germany
2Samara State Technical University, 443100 Samara, Russia

March 23, 2022

Abstract

We calculate the van der Waals friction between two semi-infinite solids in normal relative motion and find a drastic difference in comparison with the parallel relative motion. The case of the good conductors is investigated in details both within the local optic approximation, and using a non-local optic dielectric approach. We show that the friction may increase by many order of magnitude when the surfaces are covered by adsorbates, or can support low-frequency surface plasmons. In this case the friction is determined by resonant photon tunneling between adsorbate vibrational modes, or surface plasmon modes. The theory is compared to atomic force microscope experimental data.

1 Introduction

A great deal of attention has been devoted to non-contact friction between nanostructures, including, for example, the frictional drag force between two-dimensional quantum wells \cite{1,2,3}, and the friction force between an atomic force microscope tip and a substrate \cite{4,5,6,7,8}.

In non-contact friction the bodies are separated by a potential barrier thick enough to prevent electrons or other particles with a finite rest mass
from tunneling across it, but allowing interaction via the long-range electromagnetic field, which is always present in the gap between bodies. The presence of inhomogeneous tip-sample electric fields is difficult to avoid, even under the best experimental conditions. For example, even if both the tip and the sample were metallic single crystals, the tip would still have corners present and more than one crystallographic plane exposed. The presence of atomic steps, adsorbates, and other defects will also contribute to the inhomogeneous electric field. The electric field can be easily changed by applying a voltage between the tip and the sample.

The electromagnetic field can also be created by the fluctuating current density, due to thermal and quantum fluctuations inside the solids. This fluctuating electromagnetic field is always present close to the surface of any body, and consist partly of traveling waves and partly of evanescent waves which decay exponentially with the distance away from the surface of the body. The fluctuating electromagnetic field originating from the fluctuating current density inside the bodies gives rise to the well-known long-range attractive van der Waals interaction between two bodies. If the bodies are in relative motion, the same fluctuating electromagnetic field will give rise to a friction which is frequently named as the van der Waals friction. Van der Waals friction can be considered as mediated by photon exchange between the bodies: One body emit a photon, and the other absorbs it, thus transferring momentum between the bodies, resulting in a friction force. At large distances between the bodies, the main contribution to friction comes from photon exchange, corresponding to the propagating electromagnetic waves. However this contribution is very small because the photons corresponding to propagating waves carry very small momentum, no larger than $k_B T / c \bar{h}$. The photons, corresponding to the evanescent electromagnetic waves, carry the momentum $q \sim d^{-1}$. Thus for distances d between two bodies smaller characteristic distance $d_T = h c / k_B T$, which depends on temperature (at room temperature $d_T \sim 10^5 \, \text{Å}$), the main contribution to friction comes from the evanescent electromagnetic field. In analogy with electron tunneling, this mechanism of momentum transfer can be considered as associated with the photon tunneling.

Although the dissipation of energy connected with the non-contact friction always is of electromagnetic origin, the detailed mechanism is not totally clear, since there are several different mechanisms of energy dissipation connected with the electromagnetic interaction between bodies. First, the electromagnetic field from one body will penetrate into the other body, and
induce an electric current. In this case friction is due to Ohmic losses inside the bodies. The fluctuating electromagnetic field can also excite the vibrations of the adsorbates or other surface localized modes, e.g. surface plasmons and polaritons. In this case friction is due to energy relaxation of the surface modes. Another contribution to friction from the electromagnetic field is associated with the time-dependent stress acting on the surface of the bodies. This stress can excite acoustic waves, or induce time-dependent deformations which may result in a temperature gradient. It can also induce motion of defects either in the bulk, or on the surface of the bodies. The contribution to friction due to non-adiabatic heat flow, or motion of defects, is usually denoted as internal friction.

It is very worthwhile to get a better understanding of different mechanisms of non-contact friction because of its practical importance for ultrasensitive force detection experiments. This is because the ability to detect small forces is inextricably linked to friction via the fluctuation-dissipation theorem. For example, the detection of single spins by magnetic resonance force microscopy, which has been proposed for three-dimensional atomic imaging [14] and quantum computation [15], will require force fluctuations to be reduced to unprecedented levels. In addition, the search for quantum gravitation effects at short length scale [16] and future measurements of the dynamical Casimir forces [17] may eventually be limited by non-contact friction effects.

Recently Gotsmann and Fuchs [5] observed long-range non-contact friction between an aluminum tip and a gold (111) surface. The friction force F acting on the tip is proportional to the velocity v, $F = \Gamma v$. For motion of the tip normal to the surface the friction coefficient $\Gamma(d) = b \cdot d^{-3}$, where d is the tip-sample spacing and $b = (8.0^{+5.5}_{-4.5}) \times 10^{-35}$ N s m2 [5]. Later Stipe et al. [6] observed non-contact friction effect between a gold surface and a gold-coated cantilever as a function of tip-sample spacing d, the temperature T, and the bias voltage V. For vibration of the tip parallel to the surface they found $\Gamma(d) = \alpha(T)(V^2 + V_0^2)/d^n$, where $n = 1.3 \pm 0.2$, and $V_0 \sim 0.2$ V. At 295K, for the spacing $d = 100$ Å they found $\Gamma = 1.5 \times 10^{-13}$ kgs$^{-1}$, which is ~ 500 times smaller that reported in Ref. [5] at the same distance using a parallel cantilever configuration.

In a recent Letter, Dorofeev et al. [4] claim that a the non-contact friction effect observed in [4, 5] is due to Ohmic losses mediated by the fluctuating electromagnetic field. This result is controversial, however, since the van der Waals friction has been shown [10, 11, 12, 13] to be many orders of magnitude smaller.

...
smaller than the friction observed by Dorofeev et al. Presently, the origin of the difference in magnitude and distance dependence of the long-range non-contact friction effect observed in [5] and [6] is not well understood.

In order to improve the basic understanding of non-contact friction, we present new results for van der Waals friction. In [10] we developed a theory of van der Waals friction for surfaces in parallel relative motion. Here we generalize the theory to include also the case when the surfaces are in normal relative motion, and we show that there is a drastic difference between these two cases. Thus, for normal relative motion of clean good conductor surfaces, the friction is many orders of magnitude larger than for parallel relative motion, but still smaller than observed experimentally. Another enhancement mechanism of the non-contact friction can be connected with resonant photon tunneling between states localized on the different surfaces. Recently it was discovered that resonant photon tunneling between surface plasmon modes give rise to extraordinary enhancement of the optical transmission through sub-wavelength hole arrays [18]. The same surface modes enhancement can be expected for van der Waals friction if the frequency of these modes is sufficiently low to be excited by thermal radiation. At room temperature only the modes with frequencies below \(\sim 10^{13}\text{s}^{-1} \) can be excited. For normal metals surface plasmons have much too high frequencies; at thermal frequencies the dielectric function of normal metals becomes nearly purely imaginary, which exclude surface plasmon enhancement of the van der Waals friction for good conductors. However surface plasmons for semiconductors are characterized by much smaller frequencies and damping constants, and they can give an important contribution to van der Waals friction. Other surface modes which can be excited by thermal radiation are adsorbate vibrational modes. Especially for parallel vibrations these modes may have very low frequencies.

All information about the long-range electromagnetic interaction between two non-contacting bodies is, in principle, contained in the reflection factors of the electromagnetic field. At present time very little is known about the reflection factors for large wave vectors and for extremely small frequencies. In the calculations of the reflection factors one must take into account the non-local response of the electron gas on the external electromagnetic field. There are two correlation length which determine this non-local response. First is the skin depth, which determines the long-range length scale of the nonlocality in the volume, and the second is the screening length. The latter length scale determines the short range correlation length for non-local
response in the surface region. In our previous calculations of the Van der Waals friction \[10, 11, 12, 13\] we mostly considered good conductors. In this case it was shown that the important contribution comes from the non-local optic effects in the surface region. However it was shown that the Van der Waals friction becomes much larger for high resistivity material, for which the volume contribution from non-local effects is also important. It is easy to see that within local optic approximation the Van der Waals friction diverge when the conductivity of materials tend to zero. This means that the local optic approximation breaks down for high-resistivity materials. This situation is completely different from the heat transfer between bodies via photon tunneling [19, 12], where the heat flux is maximal at conductivities corresponding to semi-metals. In order to clarify the situation we study the dependence of the van der Waals friction on the dielectric properties of the materials within the non-local dielectric approach, which was proposed some years ago for the investigation of the anomalous skin effects [20].

2 Calculation of the fluctuating electromagnetic field

We consider two semi-infinite metals 1 and 2 having parallel flat surfaces. We introduce a coordinate system with \(xy\) plane in the surface of body 1, and the \(z\) axis along the upward normal. The surface of body 2 is located at \(z = d\), performing small amplitude vibrations along the \(z\) axes with displacement coordinate \(u_z(t) = u_0 e^{-i\omega_0 t}\). Since the system is translation invariant in the \(x = (x, y)\) plane, the electromagnetic field can be represented by the Fourier integral

\[
E(x, z) = \int \frac{d^2q}{(2\pi)^2} e^{i\mathbf{q} \cdot \mathbf{x}} E(q, z),
\]

\[
B(x, z) = \int \frac{d^2q}{(2\pi)^2} e^{i\mathbf{q} \cdot \mathbf{x}} B(q, z),
\]

where \(E\) and \(B\) are the electric and magnetic induction field, and \(q\) is the two-dimensional wave vector in \((x, y)\) plane. After the Fourier transformation it is convenient to choose the coordinate axis in the \((x,y)\) plane along the vectors \(\mathbf{q}\) and \(\mathbf{n} = [\hat{z} \times \mathbf{q}]\). In the vacuum gap between the bodies the electric field \(E(q, \omega, z)\), and the magnetic induction field \(B(q, \omega, z)\), can, to the linear
order in the vibrational coordinate, be written in the form

\[E(q, \omega, z) = \left((w_0 e^{ipz} + v_0 e^{-ipz}) + (w_1 e^{ip^+z} + v_1 e^{-ip^+z}) e^{-i\omega_0 t} \right) e^{-i\omega t} \] (3)

\[B(q, \omega, z) = c \left[\frac{1}{\omega} \left([k^- \times v_0] e^{-ipz} + [k^+ \times w_0] e^{ipz} \right) + \frac{1}{c} \left([k^-_1 \times v_1] e^{-ip^+z} + [k^+_1 \times w_1] e^{ip^+z} \right) e^{-i\omega_0 t} \right] e^{-i\omega t} \] (4)

where \(k^\pm = q \pm \hat{z}p, p = (\omega/c)^2 - q^2 \) \(1/2 \), \(p^+ = p(\omega + \omega_0), k^+_1 = k^+(\omega + \omega_0), k^-_1 = k^-(\omega + \omega_0) \). At the surfaces of the bodies the amplitude of the outgoing electromagnetic wave must be equal to the amplitude of the reflected wave plus the amplitude of the radiated wave. It is convenient to decompose the electromagnetic field into the \(p \)- and \(s \)-polarized electromagnetic waves. For \(p \)-polarized electromagnetic waves the electric field is in the incident plane determined by the vectors \(q \) and \(n \), and for \(s \)-polarized electromagnetic waves the electric field is normal to the incident Thus the boundary conditions for the electromagnetic field at \(z = 0 \) can be written in the form

\[w_{0z(y)} = R_{1p(s)}(\omega) v_{0z(y)} + E^f_{1z(y)}(\omega) \] (5)

\[w_{1z(y)} = R_{1p(s)}(\omega + \omega_0) v_{1z(y)} \] (6)

where \(R_{1p(s)}(\omega) \) is the reflection factor for surface 1 for \(p(s) \)-polarized electromagnetic field, and where \(E^f_{1z(y)}(\omega) \) are the components of the fluctuating electric field outside the surface 1 in the absence of the body 2. The boundary condition at the surface of the body 2 must be written in the reference frame where the body 2 is at rest. The electric field in this reference frame is determined by a Lorentz transformation. Performing a Lorentz transformation of the electric field to linear order in \(\omega_0 \) gives

\[E' = E - \frac{i \omega_0 u(t) [\hat{e}_z \times B]}{c} \] (7)

For the \(p \)-polarized electromagnetic waves the second term in (7) is of the order of magnitude \(\omega_0 u_0 \omega/pc^2 \) relative to the first one and can be neglected for the most practical cases. However, for the \(s \)-polarized electromagnetic waves the second term is of the order of magnitude \(\omega_0 u_0 p/\omega \) and can be of the same order of magnitude as the first term. In the rest frame of body 2
there is also mixture of s- and p- polarized electromagnetic waves. In [10] it was shown that this gives contribution of the order \((\omega_0u_0/c)^2\) and thus can be neglected. After performing Lorentz transformation to linear order in \(\omega_0\) and \(u_0\) we get \(v'_0 = v_0, w'_0 = w_0\)

\[
v'_{1z}(x) = v_{1z}(x) - ip_0v_0z(x); \quad w'_{1z}(x) = w_{1z}(x) + ip_0w_0z(x);
\]

\[
w'_{1y} = w_{1y} + \frac{\omega + \omega_0}{\omega}ip_0w_0y; \quad v'_{1y} = v_{1y} - \frac{\omega + \omega_0}{\omega}ip_0v_0y
\]

The boundary conditions for the electromagnetic field at \(z = d + u(t)\) in the rest frame of body 2 can be written in the form

\[
v_{0z}(y) = e^{2ipd} R_{2p(s)}(\omega)w_{0z}(y) + e^{ipd} E_{2z(y)}^f(\omega)
\]

\[
v_{1z} - ip_0v_{0z} = e^{2ip+2d} R_{2p}^+(w_{1z} + ip_0w_0z)
\]

\[
v_{1y} - ip_0\left(\frac{\omega + \omega_0}{\omega}v_0y\right) = e^{2ipd} R_{2s}^+(w_{1y} + ip_0(\omega + \omega_0)v_0y)
\]

where \(R_{2p(s)}(\omega)\) is the reflection factor for surface 2 for \(p(s)\) - polarized electromagnetic field, and where \(E_{2z(y)}^f(\omega)\) are the components of the fluctuating electric field outside the surface 1 in the absence of the body 1. From [5,6] and [8,10] we get

\[
w_{0z}(y) = \frac{R_{1p(s)}E_{2z(y)}^f e^{ipd} + E_{1z(y)}^f}{\Delta}
\]

\[
v_{0z}(y) = \frac{e^{2ipd} R_{2p(s)}E_{1z(y)}^f + E_{2z(y)}^f e^{ipd}}{\Delta}
\]

\[
v_{1z} = ip_0\left(\frac{e^{2ipd} R_{2p}^f + e^{2ip+2d} R_{2p}^+ E_{1z}^f}{\Delta p} + (1 + e^{2ip+2d} R_{2p}^+ R_{1p})E_{2z}^f e^{ipd}\right)
\]

\[
v_{1y} = ip_0\left(\frac{\omega + \omega_0}{\omega}e^{2ipd} R_{2s} + e^{2ip+2d} R_{2s}^+ E_{1y}^f + (1 + e^{2ip+2d} R_{2s}^+ R_{1s})E_{2y}^f e^{ipd}\right)
\]

\[
w_{1z}(y) = R_{1p(s)}^+ v_{1z}(y)
\]

where \(R_{p(s)}^+ = R_{p(s)}(\omega + \omega_0), \Delta p(s) = 1 - e^{2ipd} R_{2p(s)} R_{1p(s)}, \text{and } \Delta p(s) = \Delta p(s)(\omega + \omega_0).\) Other components of the fluctuating electromagnetic field can be found from the transversality conditions

\[
qw_x + pw_z = 0, \quad qv_x - pv_z = 0
\]
The fundamental characteristic of the fluctuating electromagnetic field is the correlation function, determining the average product of components $E^f(q, \omega)$. Accordingly to the general theory of the fluctuating electromagnetic field (see for example [12]) these correlation function are given by

$$\langle |E^f_y(q, \omega)|^2 \rangle = \frac{\hbar \omega^2}{2c^2|p|^2} \left(n(\omega) + \frac{1}{2}\right) [(p + p^*)(1 - |R_s|^2) + (p - p^*)(R_s^* - R_s)]$$

(17)

$$\langle |E^f_z(q, \omega)|^2 \rangle = \frac{\hbar q^2}{|p|^2} \left(n(\omega) + \frac{1}{2}\right) [(p + p^*)(1 - |R_p|^2) + (p - p^*)(R_p^* - R_p)]$$

(18)

where $\langle ... \rangle$ denote statistical average over the random field, and where the Bose-Einstein factor

$$n(\omega) = \frac{1}{e^{\hbar \omega/k_B T} - 1}$$

We note that p is real for $q < \omega/c$ (propagating waves), and purely imaginary for $q > \omega/c$ (evanescent waves). Thus for $q < \omega/c$ and $q > \omega/c$ the correlation functions are determined by the first and the second terms in Eqs. (17) and (18), respectively.

3 Calculation of the friction force between two semi-infinite bodies in normal relative motion

The frictional stress σ which act on the surfaces of the two bodies can be obtained from $zz-$ component of the Maxwell stress tensor σ_{ij}, evaluated at $z = 0$:

$$\sigma_{zz} = \frac{1}{4\pi} \int_0^\infty d\omega \int \frac{d^2q}{(2\pi)^2} \left[\langle |E_z(q, \omega, z)|^2 \rangle + \langle |B_z(q, \omega, z)|^2 \rangle
ight.$$

$$- \langle |E_z(q, \omega, z)|^2 \rangle - \langle |E_y(q, \omega, z)|^2 \rangle$$

$$- \langle |B_x(q, \omega, z)|^2 \rangle - \langle |B_y(q, \omega, z)|^2 \rangle \right]_{z=0}$$

(19)

To linear order in the vibrational coordinate $u(t)$ and the frequency ω_0, the stress acting on the surface 1 can be written in the form

$$\sigma_{zz} = \sigma_{0zz}(d) + u(t) \frac{\partial}{\partial d} \sigma_{0zz}(d) + i\omega_0 \gamma_{\perp} u(t)$$

(20)
Here the first term determines the conservative van der Waals stress and the second term is the adiabatic change of the conservative van der Waals stress during vibration. The last term determines the frictional stress with friction coefficient \(\gamma_{\perp} \). For normal relative motion (see Appendix A) we obtain the friction coefficient \(\gamma_{\perp} = \gamma_{\perp}^{\text{rad}} + \gamma_{\perp}^{\text{evan}} \), where the contribution to the friction coefficient from the propagating electromagnetic waves is given by

\[
\gamma_{\perp}^{\text{rad}} = \frac{\hbar}{4\pi^2} \int_0^\infty d\omega \left(-\frac{\partial n}{\partial \omega} \right) \int_0^{\omega/c} dq q p^2 \times \left[(1 - |R_{1p}R_{2p}|^2)^2 + (1 - |R_{1p}|^2) R_{2p} e^{ipd} \right] + (1 - |R_{2p}|^2) R_{1p}^* e^{-ipd} \left[\frac{1}{|1 - e^{2ipd} R_{1p} R_{2p}|^2} \right] + \left[p \rightarrow s \right],
\]

and where the contribution to the friction from the evanescent electromagnetic waves is given by

\[
\gamma_{\perp}^{\text{evan}} = \frac{\hbar}{\pi^2} \int_{\omega/c}^\infty d\omega \left(-\frac{\partial n}{\partial \omega} \right) \int_{\omega/c}^{\infty} dq q k^2 e^{-2kd} \times \left[(\text{Im} R_{1p} + e^{-2kd} |R_{1p}|^2 \text{Im} R_{2p})(\text{Im} R_{2p} + e^{-2kd} |R_{2p}|^2 \text{Im} R_{1p}) \right] + e^{-2kd}(\text{Im}(R_{1p} R_{2p}))^2 \left[\frac{1}{1 - e^{-2kd} R_{1p} R_{2p}} \right] + \left[p \rightarrow s \right],
\]

where \(k = |p| \). The symbol \([p \rightarrow s] \) in Eqs. (21) and (22) denotes the term which is obtained from the first one by replacement of the reflection factors \(R_p(\omega) \), for \(p \)-polarized waves, by the reflection factors \(R_s(\omega) \) for \(s \)-polarized waves. The friction coefficient for two flat surfaces in parallel relative motion was obtained by us before, [10] and can be written as \(\gamma_\parallel = \gamma_\parallel^{\text{rad}} + \gamma_\parallel^{\text{evan}} \), where the contribution to the friction coefficient from the propagating electromagnetic waves is given by

\[
\gamma_{\parallel}^{\text{rad}} = \frac{\hbar}{8\pi^2} \int_0^\infty d\omega \left(-\frac{\partial n}{\partial \omega} \right) \int_0^{\omega/c} dq q^3 \times \left[(1 - |R_{1p}|^2)(1 - |R_{2p}|^2) \right] + \left[p \rightarrow s \right],
\]

\[
\gamma_{\parallel}^{\text{evan}} = \frac{\hbar}{\pi^2} \int_{\omega/c}^\infty d\omega \left(-\frac{\partial n}{\partial \omega} \right) \int_{\omega/c}^{\infty} dq q^2 e^{-2kd} \times \left[(\text{Im} R_{1p} + e^{-2kd} |R_{1p}|^2 \text{Im} R_{2p})(\text{Im} R_{2p} + e^{-2kd} |R_{2p}|^2 \text{Im} R_{1p}) \right] + e^{-2kd}(\text{Im}(R_{1p} R_{2p}))^2 \left[\frac{1}{1 - e^{-2kd} R_{1p} R_{2p}} \right] + \left[p \rightarrow s \right],
\]
and where the contribution to the friction from the evanescent electromagnetic waves is given by

\[
\gamma_{\parallel}^{\text{rad}} = \frac{\hbar}{2\pi^2} \int_0^\infty d\omega \left(-\frac{\partial n}{\partial \omega} \right) \int_{\omega/c}^\infty dq q^3 e^{-2kd} \times \text{Im}R_{1p} \text{Im}R_{2p} \frac{1}{\left| 1 - e^{-2kd}R_{1p}R_{2p} \right|^2} + [p \to s].
\] (24)

There is a principal difference between the friction coefficient for normal and parallel relative motion, related to the denominator in the formulas for the friction coefficient. The resonant condition corresponds to the case when the denominator of the integrand in Eqs. (21-24), which is due to multiple scattering of the evanescent electromagnetic waves from the opposite surfaces, is small. For two identical surfaces and \(R_i << 1 \leq R_r \), where \(R_i \) and \(R_r \) are the imaginary and real part, respectively, this corresponds to the resonant condition \(R_r^2 \exp(-2kd) \approx 1 \). At resonance the integrand in Eqs. (23) and (24) has a large factor \(\sim 1/R_i^2 \), in sharp contrast to the case of parallel relative motion, where there is no such enhancement factor. The resonance condition can be fulfilled even for the case when \(\exp(-2kd) << 1 \) because for evanescent electromagnetic waves there is no restriction on the magnitude of the real part or the modulus of \(R_r \). This opens up the possibility of resonant denominators for \(R_r^2 >> 1 \).

To estimate the friction coefficient \(\Gamma \) for an atomic force microscope tip we can use an approximate formula [21, 22]

\[
\Gamma = 2\pi \int_0^\infty d\rho \rho \gamma(z(\rho))
\] (25)

where it is assumed that the tip has cylinder symmetry. Here \(z(\rho) \) denotes the tip - surface distance as a function of the distance \(\rho \) from the tip symmetry axis, and the friction coefficient \(\gamma(z(\rho)) \) is determined by the expressions for the flat surfaces. This scheme was proposed in [21] for the calculation of the conservative van der Waals interaction. The error of these scheme is not larger than 5-10% in practice in an atomic force microscopy experiment, and 25% in a worst case saturation [22]. Although this scheme was proposed for the conservative van der Waals interaction, we assume that the same scheme is also valid for the calculation of the van der Waals friction. We assume that the tip has a paraboloid shape given [in cylindrical coordinates \((z, \rho)\)] by the formula: \(z = d + \rho^2/2R \), where \(d \) is the distance between the tip and the flat...
surface, and where R is the radius of curvature of the tip. In the case of the power dependence

$$\gamma(\rho) = \frac{C}{(d + \frac{\rho^2}{2R})^n}$$

we get

$$\Gamma = \frac{2\pi R}{n-1} \frac{C}{d^{n-1}} = \frac{2\pi Rd}{n-1} \gamma(d)$$

In a more general case one must use numerical integration.

In the local optic approximation, where the dielectric function is assumed to depend only on the frequency ω, the reflection factors R_p and R_s for flat surfaces, covered by an adsorbate layer, are given by [26]:

$$R_p = \frac{p - s/\epsilon - 4\pi in_a q [s\alpha_\parallel/\epsilon - q\alpha_\perp]}{p + s/\epsilon - 4\pi in_a q [s\alpha_\parallel/\epsilon + q\alpha_\perp]}, \quad (26)$$

$$R_s = \frac{p - s - 4\pi in_a (\omega/c)^2 \alpha_\parallel}{p + s + 4\pi in_a (\omega/c)^2 \alpha_\parallel}, \quad (27)$$

where

$$s = \sqrt{\left(\frac{\omega}{c}\right)^2 \epsilon - q^2}, \quad (28)$$

and where α_\parallel and α_\perp are the polarizabilities of adsorbates in a direction parallel and normal to the surface, respectively. Here $\epsilon = \epsilon(\omega)$ is the bulk dielectric function and n_a is the concentration of adsorbates. For clean surfaces $n_a = 0$, and in this case formulas (26,27) reduce to the well-known Fresnel formula.

At $d < l$, v_F/ω and $k_F \sim 1$, where l is the electron mean free path, and where v_F and k_F are the Fermi velocity and Fermi wave number, respectively, the system will be characterized by non-local dielectric function $\epsilon(q, \omega)$. In this paper we use the non-local optic dielectric approach, proposed some years ago for the investigations of the optical properties of a semi-infinite electron gas [20].

Accordingly to [20], the reflection factor for p-polarized electromagnetic field, incident on the flat surface, is determined by [20]

$$R_p = \frac{p - Z_p}{q + Z_p}, \quad (29)$$
where the surface impedance Z_p is given by

$$Z_p = \frac{2i}{\pi} \int_0^\infty \frac{dq_z}{Q^2} \left(\frac{q^2}{\epsilon_l(\omega, Q)} + \frac{(\omega/c)^2 q_z^2}{(\omega/c)^2 \epsilon_l(\omega, Q) - Q^2} \right),$$ \hspace{1cm} (30)

where ϵ_l is the finite-life-time generalization of the longitudinal Lindhard dielectric function which accordingly to [23] can be written as:

$$\epsilon_l(\omega, Q) = 1 + \frac{(1 + i/\omega \tau)(\epsilon_l^0(\omega + i/\tau, Q) - 1)}{1 + (i/\omega \tau)(\epsilon_l^0(\omega + i/\tau, Q) - 1)/(\epsilon_l^0(0, Q) - 1)},$$ \hspace{1cm} (31)

$$\epsilon_l^0(\omega, Q) = 1 + \frac{3\omega_p^2}{Q^2 v_F^2} f_t,$$ \hspace{1cm} (32)

$$f_t = \frac{1}{2} + \frac{1}{8z} \left([1 - (z - u)^2] \ln \frac{z - u + 1}{z - u - 1} + [1 - (z + u)^2] \ln \frac{z + u + 1}{z + u - 1} \right),$$ \hspace{1cm} (33)

where $Q^2 = q^2 + q_z^2, z = Q/2k_F, u = \omega/(Qv_F)$, ω_p is the plasma frequency, τ is the Drude relaxation time, and where v_F and k_F are the Fermi velocity and wave vector, respectively. For $s-$ polarization the reflection factor is determined by

$$R_s = \frac{1 - Z_s p}{1 + Z_s p}$$ \hspace{1cm} (34)

where

$$Z_s = \frac{2i}{\pi} \int_0^\infty dq_z \frac{(\omega/c)^2 \epsilon_l(\omega, Q) - Q^2}{(\omega/c)^2 \epsilon_l(\omega, Q) - Q^2},$$ \hspace{1cm} (35)

$$\epsilon_l(\omega, Q) = 1 - \frac{\omega_p^2}{\omega(\omega + i\gamma)} f_t,$$ \hspace{1cm} (36)

$$f_t = \frac{3}{8} (z^2 + 3u^2 + 1) - \frac{3}{32z} \left([1 - (z - u')^2] \ln \frac{z - u' + 1}{z - u' - 1} \right)$$

$$+ [1 - (z + u')^2] \ln \frac{z + u' + 1}{z + u' - 1}$$ \hspace{1cm} (37)

with $u' = (\omega + i\tau^{-1})/(Qv_F)$. We show in Sec.4 that the maximum of the electromagnetic friction is reached for small electron densities, where the electron gas becomes non-degenerate (the electro gas is degenerate for $k_B T << \varepsilon_F$.
and non-degenerate for $k_B T \geq \varepsilon_F$, where ε_F is the Fermi energy. For non-degenerate electron gas we use the following classical expressions for dielectric functions \[24\]

$$
\varepsilon^0_l(\omega, Q) = 1 + \left(\frac{\omega_p}{Qv_T}\right)^2 \left[1 + F\left(\frac{\omega}{\sqrt{2}Qv_T}\right)\right]
$$

$$
\varepsilon_t(\omega, Q) = 1 + \frac{\omega_p^2}{\omega(\omega + i\gamma)} F\left(\frac{\omega + i\gamma}{\sqrt{2}Qv_T}\right)
$$

where the function $F(x)$ is defined by the integral

$$
F(x) = \frac{x}{\sqrt{\pi}} \int_{-\infty}^{+\infty} dz \frac{e^{-z^2}}{z - x - i0}
$$

and $v_T = \sqrt{k_B T/m}$, where m is the electron mass.

4 The case of the good conductors

By a well-conducting metal we mean one whose dielectric function $\varepsilon = 1 - 4\pi i\sigma/\omega$ (σ is the conductivity) has an absolute value much larger than unity. For good conductors at thermal frequencies $R_{pi} << 1$ and $R_{pr} \approx 1$. Thus an enhancement in friction is possible only for very small $q << 1/d$.

It is convenient to write the friction coefficient for the two flat surfaces in the form

$$
\gamma = h \int_0^\infty d\omega \left(-\frac{\partial n}{\partial \omega}\right) (I_p + I_s)
$$

Taking into account that $qdq = kd$, from Eq. \[22\] for normal relative motion of clean surfaces within local optic approximation we get contribution to friction from evanescent p- and s-polarized electromagnetic waves

$$
I_{\perp p}^{\text{evan}} = \int_0^\infty \frac{dk}{\pi^2} k^5 [\text{Re}(s/\varepsilon)]^2 \left[\left(k^2 + |s/\varepsilon|^2\right)\coshkd + 2k\text{Im}(s/\varepsilon)\sinhk]d\right]^2
$$

$$
+ (k^2 - |s/\varepsilon|^2)^2 \frac{1}{\left|\left((s/\varepsilon)^2 - k^2\right)\sinhk + 2k(s/\varepsilon)\coshkd\right|^4}
$$

$$
I_{\perp s}^{\text{evan}} = \int_0^\infty \frac{dk}{\pi^2} k^5 [\text{Re}s]^2 \left[\left(k^2 + |s|^2\right)\coshkd + 2k\text{Im}(s)\sinhk\right]^2
$$

$$
+ (k^2 - |s|^2)^2 \frac{1}{\left|\left((s^2 - k^2)\coshkd + 2k(s)\coshkd\right)\right|^4}
$$

$$
\gamma = \int_0^\infty \frac{dk}{\pi^2} k^5 [\text{Re}(s/\varepsilon)]^2 \left[\left(k^2 + |s/\varepsilon|^2\right)\coshkd + 2k\text{Im}(s/\varepsilon)\sinhk]d\right]^2
$$

$$
+ (k^2 - |s/\varepsilon|^2)^2 \frac{1}{\left|\left((s/\varepsilon)^2 - k^2\right)\coshkd + 2k(s/\varepsilon)\coshkd\right|^4}
$$

$$
\gamma = \int_0^\infty \frac{dk}{\pi^2} k^5 [\text{Re}s]^2 \left[\left(k^2 + |s|^2\right)\coshkd + 2k\text{Im}(s)\sinhk\right]^2
$$

$$
+ (k^2 - |s|^2)^2 \frac{1}{\left|\left((s^2 - k^2)\coshkd + 2k(s)\coshkd\right)\right|^4}
$$
\[+ (k^2 - |s|^2)^2 \frac{1}{|(s^2 - k^2)\sinh kd + 2ik\cosh kd|^4} \]
(43)

As \(k \to 0 \), there is no singularity in \(I_{\perp s}^{\text{evan}} \), and for \(I_{\perp p}^{\text{evan}} \), for \((c/\omega)|\varepsilon|^{-3/2} < d < (c/\omega)|\varepsilon|^{1/2}\), than taking into account that in this limit \(\sinh kd \approx kd \) and \(\cosh kd \approx 1 \), we get

\[
I_{\perp p}^{\text{evan}} = 2(\omega/c)^2\zeta' \int_0^\infty \frac{dk}{\pi^2} \frac{k^5}{|k^2 d - 2i(\omega/c)(\zeta)|^4}
= \frac{\omega\zeta'}{\pi^2 cd^3} \left(\frac{\pi}{2} + \arctan \frac{\eta''}{\eta'} - \frac{\eta''/\eta'}{1 + (\eta''/\eta')^2} \right).
\]
(44)

where the surface impedance \(\zeta = \varepsilon^{-1/2} = \zeta' - i\zeta'' \). For \(d < (c/\omega)|\varepsilon|^{1/2} \), \(I_s \) becomes slowly dependent on \(d \):

\[
I_{\perp s} \approx \frac{1}{8\pi^2} (\omega/c)^4 |\varepsilon|^2 (1.22 - \ln(2d|\varepsilon|^{1/2}\omega/c))
\]
(45)

For \(d > (c/\omega)|\varepsilon|^{1/2} \) we get

\[
I_{\perp s} \approx (c/\omega)^2 \zeta'^2 d^{-6}
\]
(46)

For the propagating electromagnetic waves, taking into account that \(qdq = -dpd \), we get

\[
I_{\perp p}^{\text{rad}} = (\omega/c)^2\zeta'^2 \int_0^{\omega/c} \frac{dp}{\pi^2} \frac{p^5}{|p \sin pd + 2i(\omega/c)\zeta \cos pd|^4},
\]
(47)

\[
I_{\perp s}^{\text{rad}} = (\omega/c)^2\zeta'^2 \int_0^{\omega/c} \frac{dp}{\pi^2} \frac{p^5}{|\omega/c \sin pd + 2i\zeta \cos pd|^4}
\]
(48)

For \(d < (c/\omega)|\varepsilon|^{-1/2} \) the contribution to friction from propagating wave is negligibly small in the comparison with the contribution from the evanescent waves. For \(d > (c/\omega)|\varepsilon|^{-1/2} \) as \(p \to 0 \), the integral \(I_{\perp s}^{\text{rad}} \) has no singularity, and we get for \(I_{\perp p}^{\text{rad}} \)

\[
I_{\perp p}^{\text{rad}} \approx \frac{\omega\zeta'}{4\pi^2 cd^3} \left(\frac{\pi}{2} - \arctan \frac{\eta''}{\eta'} + \frac{\eta''/\eta'}{1 + (\eta''/\eta')^2} \right).
\]
(49)
In addition, I_{rad} has singularities at the other zeroes of $\sin pl$, i.e., near the values $p_n = n\pi/d < \omega/c$ (n is an integer). In the vicinity of p_n, putting $p = p_n + p'$, we have $\sin pd \approx (-1)^n$ and $\cos pd \approx (-1)^n$,

$$I_{rad} \approx 2(\omega/c)^2 \zeta^2 \int \frac{dp'}{\pi^2} \frac{1}{|p_n p' d + 2i(\omega/c)\zeta|^4}$$

$$\approx \frac{p_n^4 c}{8\pi^2 \omega d \zeta^2} \left(\frac{\pi}{2} - \arctan \frac{\zeta''/\zeta'}{1 + (\zeta''/\zeta')^2} \right)$$

(50)

The number m of such contribution is obviously equal to the integer part of the quantity $y = \omega d/\pi c$ ($m = \lfloor y \rfloor$), so that all p_n (with the exception of $p = 0$) make a summary contribution

$$\frac{\pi^2 c}{8\omega d \zeta^7} \left(\frac{\pi}{2} - \arctan \frac{\zeta''/\zeta'}{1 + (\zeta''/\zeta')^2} \right) \sum_{n=1}^{m} n^4 = \frac{\pi^2 c}{8\omega d \zeta^7} \left(\frac{\pi}{2} - \arctan \frac{\zeta''/\zeta'}{1 + (\zeta''/\zeta')^2} \right) \times \left[\frac{(m+1)^5}{5} - \frac{(m+1)^4}{2} + \frac{(m+1)^3}{3} - \frac{m}{30} - \frac{1}{30} \right]$$

(51)

In the integral I_{rad}^s, the contribution from the vicinity of the point p_n is

$$2(\omega/c)^2 \zeta^2 \int_0^{\omega/c dp'} \frac{p_n^5}{\pi^2 |(\omega/c)p'd + 2ip_n\zeta|^4} =$$

$$= \frac{\omega n^2}{8cd^3 \zeta^2} \left(\frac{\pi}{2} - \arctan \frac{\zeta''/\zeta'}{1 + (\zeta''/\zeta')^2} \right)$$

and consequently

$$I_{rad}^s = \frac{\omega}{8cd^3 \zeta^2} \left(\frac{\pi}{2} - \arctan \frac{\zeta''/\zeta'}{1 + (\zeta''/\zeta')^2} \right) \sum_{n=1}^{m} n^2 =$$

$$\frac{\omega}{48cd^3 \zeta^2} \left(\frac{\pi}{2} - \arctan \frac{\zeta''/\zeta'}{1 + (\zeta''/\zeta')^2} \right) m(m+1)(2m+1)$$

(52)

At $m \gg 1$, when we can assume $m \approx \pi\omega/cd$, the $s-$ and $p-$ wave contribution are approximately equal, and for the total contribution from propagating electromagnetic waves in this limit we get

$$I_{rad} = I_{rad}^p + I_{rad}^s \approx \frac{11\omega^4}{240\pi^3 c^4 \zeta^4}$$

(53)
The above formulas in this Section were obtained from the general Eqs. (21-24) assuming absence of spatial dispersion of the dielectric function. But these formulas contain only surface impedance \(\zeta \) that describe the ratio of the tangential components of the electric and magnetic fields on the boundary of the body. Thus, the results in this section remain in force also in the presence of spatial dispersion, provided only that the surface impedance of the medium is small enough. We would have arrived at the same formulas also if we were to assume from the very beginning that the Leontovich boundary condition \(\mathbf{E} = \zeta \mathbf{H} \times \mathbf{n} \) is satisfied on the surface of the metal.

At not too low temperatures, the impedances of metals are given by the formula for normal skin effect

\[
\zeta' = \zeta'' = (\omega/8\pi\sigma)^{1/2}
\]

(54)

where \(\sigma \) is the conductivity. In the local optic approximation it is assuming that there is no dependence of \(\sigma \) on \(q \). In the Wien region of frequencies it is also good approximation to neglect the frequency dependence of \(\sigma \). In this approximation using (44) for \(\lambda_W(4\pi\hbar\sigma/nk_BT)^{1/2} < d < \lambda_W(4\pi\hbar\sigma/(k_BT)^{1/2}) \) \((\lambda_W = c\hbar/(k_BT)) \) we get

\[
\gamma_{\text{evan}} \approx \frac{\hbar}{3\lambda_W^3} \left(\frac{4\pi\hbar\sigma}{k_BT} \right)^{3/2} \approx 0.13 \left(\frac{4\pi\hbar\sigma}{k_BT} \right)^{1/2} \quad (55)
\]

For the comparison the \(p \)-wave contribution for parallel relative motion for \(d < \lambda_c \), \((\lambda_c = c/(4\pi\sigma k_BT)^{1/2}) \) is given by (10, 12)

\[
\gamma_{\| p} \approx 0.3 \frac{\hbar}{d^4} \left(\frac{k_BT}{4\pi\hbar\sigma} \right)^2 \quad (56)
\]

It is interesting to note that for normal relative motion in contrast to the parallel relative motion practically for all \(d > 0 \) the main contribution to friction comes from retardation effects because Eqs. (55) in contrast to Eq. (45) contains the light velocity.

From Eq. (45) we get \(s \)-wave contribution to friction for \(d < \lambda_c \)

\[
\gamma_{\perp s} \approx 10^{-2} \frac{\hbar}{\lambda_c^2} (3 - 5\ln(2d/\lambda_c)) \quad (57)
\]

For parallel relative motion the \(s \)-wave contribution is in two times smaller.
For \(d > \lambda_c \), taking into account that Eq. (46) is valid only for \(\omega > c^2/4\pi \sigma d^2 \), we get

\[
\gamma_{\text{evan}} \approx \frac{\pi k_B T \sigma}{d^2 c^2}
\]

From Eq. (53) we get distance independent contribution to friction from propagating electromagnetic waves for \(d > \lambda_W \)

\[
\gamma_{\text{rad}} \approx 1.9 \cdot 10^{-2} \frac{\hbar}{\lambda^3 W \lambda_c}
\]

Figures 1-2 show the calculated contribution to the friction coefficient \(\gamma \) from evanescent electromagnetic waves for two semi-infinite solids, with parameters chosen to correspond to copper \((\tau^{-1} = 2.5 \cdot 10^{13} \text{s}^{-1}, \omega_p = 1.6 \cdot 10^{16} \text{s}^{-1}) \) at \(T = 273 \text{K} \), for parallel (Fig.1) and normal (Fig.2) relative motion. Results are shown separately for both the \(s- \) and \(p- \) wave contribution. The dashed line show the result when the local (long-wavelength) dielectric function \(\epsilon(\omega) = \epsilon_l = \epsilon_i \) is used, where

\[
\epsilon(\omega) = 1 - \frac{\omega_p^2}{\omega(\omega + i\tau^{-1})}
\]

In this case the integration in (30) and (35) can be performed analytically and we get Fresnel formulas. Fig. 1 shows that the non-local optic effects become important for parallel relative motion for the \(p- \) wave contribution for sufficiently small separations \((d < 1000 \text{Å}) \). However, for the \(s- \) wave contribution for both parallel and normal motion the non-local optic effects are negligibly small for practically all separations. For normal relative motion for \(p- \) wave contribution the non-local optic effects are less important than for the parallel relative motion. In the present calculations we use the non-local dielectric approach which take into account the non-local optic effects on the length scale of the skin-depth. There are also the short range non-local optic effects coming from the non-local nature of the screening response near the surface. This gives the surface non-local contribution which we investigated in our previous publications [11, 12]. Comparing our previous calculations with the present one, we find that for \(d > 10 \text{Å} \) the volume contribution from the non-local effects is of the same importance as the surface contribution. For \(d > 10 \text{Å} \) the main contribution to the friction coefficient \(\gamma \) comes from \(s- \) polarized waves. In particularly, at \(d = 100 \text{ Å} \) the \(s- \) wave contribution \(\gamma_s \approx 10^{-5} kgs^{-1} m^{-2} \), so that with the surface area \(A \approx \)
10^{-14} m^{-2} (typical for probe scanning microscopy), the friction coefficient is
\(\Gamma \approx \gamma_s A \sim 10^{-19} kgs^{-1} \). The \(s \)-wave contribution is characterized by weak
distance dependence for \(d < 100 \AA \), and \(\gamma \sim d^{-2} \) for \(d > 100 \AA \). For good
conductors like copper, even for very short distances, the main contribution
to the friction coefficient comes from the \(s \)-polarized electromagnetic waves.
This difference between \(p \)- and \(s \)-polarized waves results from screening
effects: Good conductors are good reflectors for \(p \)-polarized field, which
implies that they are ineffective in the emission and absorption of evanescent
\(p \)-polarized waves. However these screening effects are less important for
\(s \)-polarized waves.

As pointed out in [10, 12, 13, 25], the \(p \)-wave contribution increase and
the \(s \)-wave contribution decrease when the free electron density decrease.
Within the local optic approximation the force of friction diverges when one
go to the limit of zero conductivity. This situation is different from the radiative
heat transfer, where, even in the case of local optics, a maximum in the
heat transfer occurs for conductivities corresponding to semi-metals. Fig.3
shows the dependence of coefficient of friction on the electron density. When
the electron density decreases there is transition from a degenerate electron
gas to a non-degenerate electron gas at the density \(n_F \sim (k_B T m)^{3/2}/\pi^2 \hbar^3 \).
At \(T = 273 \) K the transition density \(n_F \sim 10^{25} m^{-3} \). For \(n > n_F \) we use
the (non-local) dielectric function appropriate for a degenerate electron gas,
while for \(n < n_F \) we use an expression corresponding to a non-degenerate
electron gas. In the calculations we used the electron mean free path
\(l \approx 600 \AA \). At \(d = 100 \AA \) the maximum value \(\gamma_{max} \sim 10^{-4} kg \cdot s^{-1} \) is obtained
for \(n_{max} \sim 10^{22} m^{-3} \), corresponding to the DC conductivity \(\sigma \sim 1(\Omega \cdot m)^{-1} \).

5 Photon tunneling enhancement of the van
der Waals friction

We rewrite the denominator in Eq. (22) in the form
\[
|1 - e^{-2kd}R|^4 = [(1 - e^{-kd}R_r)^2 + e^{-2kd} R_i^2]^2 \\
\times [(1 + e^{-kd}R_r)^2 + e^{-2kd} R_i^2]^2 \tag{61}
\]
where \(R_r \) and \(R_i \) are real and imaginary part of \(R \), respectively (\(R = R_r + iR_i \)). Let us suppose that \(|R_r| >> R_i \). In this case resonant conditions are
determined by equation
\[R_r(\omega_{\pm}) = \pm e^{qd} \] (62)

Close to resonance we can write
\[
[(1 \pm e^{-qd} R_r)^2 \pm e^{-2qd} R_i^2]
\approx e^{-2qd} R_r^2(\omega_{\pm})[(\omega - \omega_{\pm})^2 + (R_i(\omega_{\pm})/R_r(\omega_{\pm}))^2]
\] (63)

where
\[R'_r(\omega_{\pm}) = \left. \frac{dR'_r(\omega)}{d\omega} \right|_{\omega=\omega_{\pm}} \]

which leads to the following contribution to the friction coefficient:
\[\gamma_{\pm} \approx \frac{\hbar^2}{16k_B T} \int_0^{q_c} dk k^2 \frac{e^{2kd}}{[|R'_r(\omega_{\pm})| R_i(\omega_{\pm}) \sinh^2 \frac{h \omega_{\pm}}{2k_B T}]} \] (64)

The parameter \(q_c \) in this expression defines the value of \(q \) where the two poles approximation is valid. To proceed further let us make the following simplifications. Close to the poles we can use approximation
\[R = \frac{a}{\omega - \omega_0 - i\eta} \] (65)

where \(a \) is a constant. Then from resonant condition (62) we get
\[\omega_{\pm} = \omega_0 \pm ae^{-qd} \]

For the two poles approximation to be valid the difference \(\Delta \omega = |\omega_+ - \omega_-| \) must be greater than the width of the resonance \(\eta \). From this condition we get \(q_c \leq \ln(2a/\eta)/d \). For the short distances the parameter \(q_c \) defines the value of \(q \) where the solution of Eq. (62) ceases to exit.

For \(\omega_0 > a \) and \(q_c d > 1 \) from Eq. (64) we get
\[\gamma_{\pm} = \frac{3}{128} \frac{\hbar^2 a^2}{d^4 k_B T \eta \sinh^2 (h \omega_0/2k_B T)} \] (66)

For the parallel relative motion using the same approximation we get
\[\gamma_{\|} = \frac{\hbar^2 \eta q_c^4}{128\pi k_B T \sinh^2 (h \omega_0/2k_B T)} \] (67)
Interesting, the explicit d dependence has dropped out of Eq. (67). However, γ_{\parallel} is still d dependent, through the d dependence of q_c. For the small distances one can expect that q_c is determined by the dielectric properties of the material and does not depend on d. In this case the friction will be also distance independent. Probably, the weak distance dependence observed in [6] can be explained by the resonant photon tunneling.

Resonant photon tunneling enhancement of the van der Waals friction is possible for two semiconductor surfaces which can support low-frequency surface plasmon modes. As an example we consider two clean surfaces of silicon carbide (SiC). The optical properties of this material can be described using an oscillator model [28]

$$
\varepsilon(\omega) = \varepsilon_\infty \left(1 + \frac{\omega_T^2 - \omega_\perp^2}{\omega_T^2 - \omega^2 - i\Gamma\omega}\right)
$$

(68)

with $\varepsilon_\infty = 6.7$, $\omega_L = 1.8 \cdot 10^{14}s^{-1}$, $\omega_T = 1.49 \cdot 10^{14}s^{-1}$, and $\Gamma = 8.9 \cdot 10^{11}s^{-1}$. The frequency of surface plasmons is determined by condition $\varepsilon_r(\omega_p) = -1$ and from [5] we get $\omega_p = 1.78 \cdot 10^{14}s^{-1}$. In Fig.2 we plot the friction coefficient $\gamma(d)$: note that the friction between the two semiconductor surfaces is several order of magnitude larger than between two clean good conductor surfaces.

Another enhancement mechanism is connected with resonant photon tunneling between adsorbate vibrational modes localized on different surfaces. As an example, let us consider ions with charge e^\ast adsorbed on metal surfaces. The polarizability for ion vibration normal to the surface is given by

$$
\alpha_{\perp} = \frac{e^2}{M(\omega_\perp^2 - \omega^2 - i\eta_\perp\omega)}
$$

(69)

where ω_\perp is the frequency of the normal adsorbate vibration, and η_\perp is the damping constant. In Eq. (26) the contribution from parallel vibrations is reduced by the small factor $1/\varepsilon$. However, the contribution of parallel vibrations to the van der Waals friction can nevertheless be important due to the indirect interaction of parallel adsorbate vibration with the electric field, via the metal conduction electron [27]. Thus, the small parallel component of the electric field will induce a strong electric current in the metal. The drag force between the electron flow and adsorbates can induce adsorbate vibrations parallel to the surface. This gives the polarizability:

$$
\alpha_{\parallel} = \frac{\epsilon - 1}{n} \frac{e^\ast}{\varepsilon - 1} \frac{\omega_\parallel}{\varepsilon(\omega_\parallel^2 - \omega^2 - i\eta_\parallel\omega)}
$$

(70)
where \(n \) is the conduction electron concentration. As an illustration, in Fig.3 we show coefficient of friction for the two Cu(001) surfaces covered by a low concentration of potassium atoms (\(n_a = 10^{18} \text{m}^{-2} \)). In the \(q \)-integral in Eqs. (22,24) we used the cut off \(q_c \sim \pi/a \) (where \(a \approx 1 \text{nm} \) is the inter-adsorbate distance) because our microscopic approach is applicable only when the wave length of the electromagnetic field is larger than double average distance between the adsorbates. In comparison, the friction between two clean surface at separation \(d = 1 \text{nm} \) is seven order of magnitude smaller. At \(d = 1 \text{nm} \) the friction coefficient \(\Gamma \) for an atomic force microscope tip with \(R \sim 1 \mu \text{m} \) is \(\sim 10^{-12} \text{kgs}^{-1} \) (\(\gamma \sim 10^3 \text{kgs}^{-1} \text{m}^{-2} \), see Fig.2); this is of the same order of magnitude as the observed friction [6].

6 Summary and conclusion

We have calculated the van der Waals friction between two flat surfaces for normal relative motion and found a drastic difference in the comparison with parallel relative motion. This difference is connected with resonance produced by the multiple scattering of the electromagnetic waves from the opposite surfaces. In the case of sharp resonance it gives much larger contribution to friction in the case of normal relative motion than for parallel relative motion.

We have studied in the detail the friction between two good conductors and have found that for normal relative motion even for very small distances the main contribution to friction comes from the retardation effects. The non-local optic effects are very important for \(p \)-wave contribution to friction for parallel relative and much less important for normal relative motion. For \(s \)-wave contribution the non-local optic effects are unimportant for both direction of relative motion.

In the case of van der Waals friction we have found that for distances between bodies \(\sim 100 \text{Å} \), for good conductors with a high free electrons concentration, the main contribution to friction is associated with the \(s \)-polarized electromagnetic waves. For \(d < 100 \text{Å} \) this mechanism gives a friction coefficient per unit area \(\gamma \sim 10^{-5} \text{kgs}^{-1} \text{m}^{-2} \), nearly independent of the distance \(d \), while for \(d > 100 \text{Å} \) the friction coefficient \(\gamma \) depends on distance as \(d^{-2} \). For an atomic force microscope tip with the near substrate area \(A \sim 10^{-14} \text{m}^2 \), we got the friction coefficient \(\Gamma \sim \gamma A \sim 10^{-19} \text{kgs}^{-1} \) for \(d < 100 \text{Å} \). When the concentration of electrons decreases, the \(s \)-contribution
to the friction decreases while the $p-$ contribution increases. At $d = 100\,\text{Å}$ and with the electron lifetime $\tau = 4 \cdot 10^{-14}\text{s}$, the $p-$ contribution reaches maximum $\gamma_{\text{max}} \sim 10^{-4}\text{kgs}^{-1}\text{m}^{-2}$ at the electron concentration $n \sim 10^{22}\text{m}^{-3}$, which corresponds to the conductivity $\sigma \sim 1\,\text{(Ωm)}^{-1}$.

We have shown that the van der Waals friction can be enhanced by several orders of magnitude in the case of resonant photon tunneling between low-frequency surface plasmon modes and adsorbate vibrational modes. In the case of friction for two Cu(100) surfaces covered by a low concentration of potassium atoms at $d = 10\,\text{Å}$ we have found friction of the same order of magnitude as it was observed in experiment [6]. However, the distance dependence in this case is more stronger than it was observed in [6]. Further experiments with simple and well defined composition of the tip and sample must be performed to elucidate different energy dissipation mechanisms in the non-contact friction.

The obtained results should have broad application in non-contact friction microscopy, and in design of new tools for studying adsorbate vibrational dynamics and optical properties of the surface plasmons.

Acknowledgment

A.I.V acknowledges financial support from DFG and the Russian Foundation for Basic Research (Project No. 01-02-16202) B.N.J. P acknowledges financial support from BMBF. We thank R.O. Jones for help in the numerical calculations.

After substituting (3) and (4) into formula (19) to linear order in vibrational coordinate u_0 and frequency ω_0 we get

$$
\sigma_{zz} = \frac{1}{4\pi} \int_0^\infty \int \frac{d^2q}{(2\pi)^2} \frac{p}{q^2} \left[(p + p^*)(< |w_{0z}|^2 + < |v_{0z}|^2 >) \\
+ (p - p^*)(< w_{0z}v_{0z}^* > + c.c.) \right] \\
+ \left(\frac{c}{\omega} \right)^2 p \left[(p + p^*)(< |w_{0y}|^2 > + < |v_{0y}|^2 >) \\
+ (p - p^*)(< w_{0y}v_{0y}^* > + c.c.) \right] \\
+ \left(\frac{p^+}{q^2} \right) \left[(p + p^*)(< w_{1z}w_{0z}^* > + < v_{1z}v_{0z}^* > + c.c.) \right]
$$

22
\((p-p^*)(< w_{1z}v_{0z}^* > + < v_{1z}w_{0z}^* > + c.c.) \) + \(\frac{c^2}{\omega(\omega + \omega_0)} p^+ [(p+p^*)(< w_{1y}w_{0y}^* > + < v_{1y}w_{0y}^* > + c.c.)] e^{-i\omega_0 t} \) \((71) \)

From Eqs. (20) and (71) it follow that the friction coefficient is determined by the formula

\[\gamma_\perp = \frac{1}{4\pi u_0i} \int_0^\infty d\omega_0 \int \frac{d^2q}{(2\pi)^2} \left(\frac{\partial}{\partial \omega_0} \left(\frac{p^-}{q^2} \right) \left(\frac{1 + (p-p^*)(< w_{1z}v_{0z}^* > + < v_{1z}v_{0z}^* > - c.c.)}{\omega(\omega + \omega_0)} \right) \right) \]

(72)

Using Eqs. (11,15,17,18) we get

\[\left(p^- p^+ \right)(< w_{1z}v_{0z}^* > + < v_{1z}w_{0z}^* > - c.c.) \] \(\times \frac{\partial}{\partial \omega} p^2 \left(\frac{(1 - |R_1^p R_2^p|^2)^2 + |(1 - |R_1^p|^2) R_2^p e^{ipd} + (1 - |R_2^p|^2) R_1^p e^{-ipd}||^2}{|\Delta_p|^4} \right) \]

(73)

\[\frac{1}{q^2} \frac{\partial}{\partial \omega_0} \left(p^+ (p-p^*)(< w_{1z}v_{0z}^* > + < v_{1z}w_{0z}^* > - c.c.) \right) = 8iu_0 \left(n(\omega) + \frac{1}{2} \right) \]

(74)

Other similar expressions for the s-wave contribution can be obtained from Eqs. (73) and (74) by replacement of the reflection factors \(R^p \) for \(p \)-polarized wave by the reflection factors \(R_s \) for \(s \)-polarized wave. After substituting Eqs. (73) and (74), and similar expression for \(s \)-polarized waves in Eq. (72) we get the friction coefficient for normal relative motion which is determined by formulas (24-22).

FIGURE CAPTIONS
Fig. 1. The friction coefficient for two flat surfaces in parallel relative motion as a function of separation d at $T = 273\,\text{K}$ with parameter chosen to correspond to copper ($\tau^{-1} = 2.5 \cdot 10^{13}\,\text{s}^{-1}, \omega_p = 1.6 \cdot 10^{16}\,\text{s}^{-1}$). The contributions from the s– and p–polarized electromagnetic field are shown separately. The full curves represent the results obtained within the non-local optic dielectric formalism, and the dashed curves represent the result obtained within local optic approximation. (The log-function is with basis 10)

Fig. 2. The friction coefficient for two flat surfaces in normal relative motion as a function of separation d at $T = 273\,\text{K}$ with parameter chosen to correspond to copper ($\tau^{-1} = 2.5 \cdot 10^{13}\,\text{s}^{-1}, \omega_p = 1.6 \cdot 10^{16}\,\text{s}^{-1}$). The contributions from the s– and p–polarized electromagnetic field are shown separately. The full curves represent the results obtained within the non-local optic dielectric formalism, and the dashed curves represent the result obtained within local optic approximation. (The log-function is with basis 10)

Fig. 3. The friction coefficient for two flat surface as a function of the free electron density n at $T = 273\,\text{K}$. The full curve was obtained by interpolation between the result (dashed lines) obtained within the non-local optic dielectric approach, with dielectric functions corresponding to a degenerate electron gas for $n > n_F \sim 10^{25}\,\text{m}^{-3}$, and to a non-degenerate electron gas for $n < n_F$. The calculation were performed with the damping constant $\tau^{-1} = 2.5 \cdot 10^{13}\,\text{s}^{-1}$, separation $d = 100\,\text{Å}$ and $n_0 = 8.6 \cdot 10^{28}\,\text{m}^{-3}$. (The log-function is with basis 10)

Fig. 4. The friction coefficient for two clean semiconductor surfaces in (a) normal and (b) parallel relative motion, as a function of the separation d. $T = 300\,\text{K}$ and with parameters chosen to correspond to surfaces of silicon carbide (SiC) (see text for explanation) (The log-function is with basis 10)

Fig. 5. The friction coefficient for two surface covered by adsorbates in (a) normal and (b) parallel relative motion, as a function of the separation d. $T = 273\,\text{K}$ and with parameters chosen to correspond to $\text{K}/\text{Cu}(001)$ ($\omega_{\perp} = 1.9 \cdot 10^{13}\,\text{s}^{-1}, \omega_{\parallel} = 4.5 \cdot 10^{12}\,\text{s}^{-1}, \eta_{\parallel} = 2.8 \cdot 10^{10}\,\text{s}^{-1}, \eta_{\perp} = 1.6 \cdot 10^{12}\,\text{s}^{-1}, e^* = 0.88e$) (The log-function is with basis 10)
References

[1] T.J. Gramila, J.P. Eisenstein, A.H. Macdonald, L.N. Pfeiffer, and K.W. West, Phys. Rev. Lett. 66, 1216 (1991); Surf. Sci. 263, 446 (1992).

[2] T.J. Gramila, J.P. Eisenstein, A.H. Macdonald, L.N. Pfeiffer, and K.W. West, Phys. Rev. B 47, 12 957 (1993); Physica B 197, 442 (1994).

[3] U. Sivan, P.M. Solomon, and H. Shrikman, Phys. Rev. Lett. 68, 1196 (1992).

[4] I. Dorofeev, H. Fuchs, G. Wenning, and B. Gostmann, Phys. Rev. Lett. 83, 2402 (1999).

[5] B. Gostmann and H. Fuchs, Phys. Rev. Lett. 86, 2597 (2001).

[6] B.C. Stipe, H.J. Mamin, T.D. Stowe, T.W. Kenny, and D. Rugar, Phys. Rev. Lett. 87, 096801 (2001).

[7] H.J. Mamin and D. Rugar, Phys. Rev. Appl. Phys. Lett. 79, 3358 (2001)

[8] P.M. Hoffmann, S. Jeffery, J.B. Pethica, H. Özyür Özer and A. Oral, Phys. Rev. Lett. 87, 265502 (2001).

[9] I.E. Dzyaloshinskii, E.M. Lifshitz and L.P. Pitaevskii, Adv. Phys., 10, 165 (1961)

[10] A. I. Volokitin and B. N. J. Persson, J. Phys.: Condens. Matter 11, 345 (1999); ibid. Phys. Low-Dim. Struct. 7/8, 17 (1998).

[11] B. N. J. Persson and A. I. Volokitin, Phys. Rev. Lett. 84, 3504 (2000).

[12] A. I. Volokitin and B. N. J. Persson, Phys. Rev. B 63, 205404 (2001); Phys. Low-Dim. Struct. 5/6, 151 (2001)

[13] A. I. Volokitin and B. N. J. Persson, Phys. Rev. B 65, 115419 (2002)

[14] J.A. Sidles et. al., Rev. Mod. Phys. 67, 249 (1995)

[15] G.P. Berman, et. al., Phys. Rev. B 61, 14694 (2000)

[16] N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, Phys. Lett. B 429, 263 (1998); Sci. Am. 283, 62 (2000)
[17] U.Mohideen and A.Roy, Phys. Rev. Lett. 81, 4549 (1998)

[18] A.Krishnan, et. al., Opt.Commun. 200,1 (2001)

[19] J.B.Pendry, J.Phys.:Condens.Matter 11, 6621 (1999).

[20] K.L.Kliever and R.Fuchs, Phys. Rev. 172, 607 (1968); R.Fuchs and K.L.Kliever, Phys. Rev. 186, 905 (1969)

[21] U.Hartmann, Phys.Rev. B 42, 1541 (1990); B 43,2404 (1991)

[22] P.Johansson and P.Apell, Phys.Rev. B 56, 4159 (1997)

[23] N.D.Mermin, Phys. Rev. B 1, 2362 (1970)

[24] E.M.Lifshitz and L.P.Pitaevskii, Physical kinetic (Pergamon Press, 1981)

[25] A. I. Volokitin and B. N. J. Persson, J.Phys.: Condens. Matter 13, 859 (2001)

[26] D.C.Langreth, Phys. Rev. B 39, 10020(1989)

[27] B.N.J.Persson and A.I.Volokitin, Surf. Sci., 310, 314 (1994)

[28] E.D.Palik, Handbook of Optical Constants of Solids (Academic, San Diego, CA, 1985)

[29] P.Senet, et. al., Chem.Phys.Lett. 299,389 (1999)
log \left(\frac{\gamma}{1 \text{kg s}^{-1} \text{m}^{-2}} \right) = \log \left(\frac{\gamma}{1 \text{kg s}^{-1} \text{m}^{-2}} \right) - 18 \\log (d / 1\text{Å})
\[\log \left(\frac{\gamma}{1 \text{kgs}^{-1} \text{m}^{-2}} \right) \]

\[\log (d/1 \text{Å}) \]

- p-local
- s-local
- s-nonlocal
- p-nonlocal
\[\log \left(\frac{\gamma}{1 \text{ kgs} \cdot 1^{-2}} \right) \]

\[\log \left(\frac{\gamma}{1 \text{ Å}} \right) \]

\[\log \left(\frac{d}{1 \text{ Å}} \right) \]

Graph showing two curves labeled 'a' and 'b'.