How I Do It: Myelomeningocele in Bolivia
Como Lo Hago Yo: Mielomeningocele En Bolivia

Carlos F. Dabdoub, Carlos B. Dabdoub, Ramiro Villavicencio¹, Germán Quevedo²

Neurosurgical Division, Japanese University Hospital, ¹Hospital Caja Petrolera de Salud, ²Pediatric Urological Division. Japanese University Hospital. Santa Cruz de la Sierra, Bolivia

E-mail: Carlos F. Dabdoub - cdabdoub45@hotmail.com; *Carlos B. Dabdoub - carlosdabdoub@hotmail.com; Ramiro Villavicencio - ramvillavicencio@hotmail.com; Germán Quevedo - gquevedop@cotas.com.bo

*Corresponding author

Received: 25 January 14 Accepted: 25 January 14 Published: 10 March 14

This article may be cited as:
Dabdoub CF, Dabdoub CB, Villavicencio R, Quevedo G. How I Do It: Myelomeningocele in Bolivia. Surg Neurol Int 2014;5:S39-48.
Available FREE in open access from: http://www.surgicalneurologyint.com/text.asp?2014/5/2/39/128466

Abstract

Introduction: Neural Tube Defects (NTD) are the second congenital malformation, second only to cardiac malformations. Myelomeningocele (MMCL) is the most frequent NTD and the more complex. In Bolivia, like in many countries in South America, the low socio economical level of the population increases its incidences and complicates its management.

Materials and Methods: Retrospective study of 70 cases of MMC at Hospital Universitario Japonés (HUJ), Santa Cruz de la Sierra, between 2008-2011. Sixty had surgery.

Results: Prenatal care in 27 women (38.6%), positive diagnosis for spinal disraphism in 2 (7.4%). The child arrived after 24 hours of birth (65.5%). Lumbosacral lesion (64.3%). Of those 67.2% were open, with 32.9% evidencing partial motor lesion in contrast with 47.1% who were paraplegic bellow the level of the lesion. Three children were not operated because they had complex and severe malformations associated to the MMCL. The most common surgical complications were; wound dehiscence or infection (16.6%), CSF fistula (10%) CNS infection (11.7%). Mortality and specifically postoperative mortality were 7.1% y 3.3%, respectively. Hydrocephalus was evident in 80% of the patients who were operated, they received a VP shunt medium pressure. Nine patients who had long term follow up presented with tethered cord.

Conclusions: A characteristic, delayed referral. No gender predominance. Majority of cases were lumbar or lumbar sacral. Mortality similar to what is reported in the literature. Few patients came for follow up. MMCL is a pathology that requires concentrated attention by the national authorities. A multi center and multi national study will improve our management of these patients.

Key Words: Myelomeningocele, newborn, spina bifida, fetal surgery, hydrocephalus

Resumen

Introducción: Las malformaciones del tubo neural (MTN) representan la segunda causa más frecuente de anomalías congénitas, luego de las cardiopatías. En este grupo se destaca el mielomeningocele (MMC) por su mayor incidencia, y por ser...
INTRODUCTION

In the world between 300,000 to 500,000 of children are born with NTD every year.[9,16] Most of them in developing nations. There is a difference in treatment criteria according to the economic status of the countries where the children are born.

For long a passive approach was accepted. Haimburger and Haimburger[7] have documented this trend. After the studies by Chambers and Hamburger[4,6] the wave was to favor early intervention.

Almost 30 years ago Ausman[1] pointed out that the treatment of MMCL was not a matter of surgical technique but depended on a series of cultural and social factors.[8] The quality of life of children with MMCL also has improved thus questioning the validity of opinions such as expressed by Lorber[10] or the Groningen protocol.[15]

A BRIEF GLANCE AT SOUTH AMERICA

South America occupies a surface of almost 18,000,000 km² with a population of about 390 million people in 12 countries, two of which have a very high Human Development Index (HDI), six with high and four medium [Table 1].

Argentina 2.791.508 42,100,000 0,811 (45) (MA)
Perú 1.285.240 31,300,000 0,741 (77) (A)
Colombia 1.141.748 48,700,000 0,719 (91) (A)
Bolivia 1.098.581 10,400,000 0,675 (108) (M)
Venezuela 916.445 30,900,000 0,748 (71) (A)
Chile 756.948 17,500,000 0,819 (40) (MA)
Paraguay 406.755 6,800,000 0,669 (111) (M)
Ecuador 283.560 15,400,000 0,724 (89) (A)
Guyana 215.096 700,000 0,636 (118) (M)
Uruguay 189.928 3,400,000 0,792 (51) (A)
Surinam 163.458 500,000 0,684 (105) (M)

*Human Development Report 2013.

Countries. Surface. Population. IDH Ranking. MA = very high A = high, M = medium

Cooperative Latin American Study of congenital malformations
This program studies the risk factors for developing congenital malformations in Latin America[3]. It began its activities in 1967, limited to Buenos Aires, then gradually expanded to include 10 countries and Costa Rica and the Dominican Republic. The hospital network attends at 200,000 live births per year. All the malformations diagnosed in children with a weight above 500 grams are registered according to protocol.

Between 1995-2008 there were 2,209,407 live births in the participating countries, 2.7% were malformed. Bolivia had an incidence of 2.2% [Table 2]. Between 1998-2005 there was a significant reduction of anencephaly and spina bifida in Argentina and Chile. In the other countries there was an increase in cases.[13] The study has determined that 8.2 per 10,000 is the median for spina bifida in the region.[13]

International Tethered Cord Partnership

This is an initiative that is worth praising. It included 7 countries (Argentina, China, Guatemala, Mexico, Nicaragua, Nigeria and Panama). The objective is to determine the impact of early intervention on clinical evolution of the patients when diagnosed after birth and when presenting symptoms of tethered cord. An web centered data base was created for the participants to download their cases.[12]

Folic Acid in South America

Supplementing flour with folic acid became a reality in 1990. It is considered an important factor in the reduction of spina bifida cases.[14] By supplementing wheat flour levels the access of the population to the nutrient bridging over economical inequalities.[16]

Chile began fortifying flour in 2001 and until 2007 had a significant decrease ($P<0.02$) of close to 60% [Table 3]. The data for Argentina, Brasil and Chile are summarized there.

Declaration of Santa Cruz de la Sierra

At the first Latin American Congress of Pediatric Neurosurgery that took place in Santa Cruz de la Sierra (Bolivia) representatives from Argentina, Bolivia, Brasil, Chile, Colombia, Ecuador, EL Salvador, Honduras, México, Panamá, Perú and Venezuela signed in April 29 2006 a pronouncement about neural tube defects stating that;

1. The high number of patients with myelomeningocele is a social problem
2. There is evidence about the efficacy of prevention through folic acid fortification
3. Recommended the governments of the region to support plans prevention before conception.
4. Recommended considering environmental factors that could be responsible for NTD such as soil fertilizers.

Today other countries of Latin America and the Caribbean have adhered to this plan and there are national regulations

Table 2: Geographical breakdown of total births, live births, stillbirths, total malformed malformed living, malformed stillbirths. Rates per 100[13]

País	Total nac	NV	NM	%	Total MF	%	MFV	%	MFM	%
Argentina	815.454	805.455	9.999	1.2*	17.995	2.2*	17.344	2.2	651	6.5
Bolivia	107.284	104.917	2.367	2.2*	1.902	1.8*	1.756	1.7	146	6.2
Brasil	517.842	510.402	7.440	1.4*	21.557	4.2**	20.455	4.0	1.102	14.8*
Colombia	68.150	66.989	1.161	1.7*	1.290	1.9*	1.209	1.9	120	10.3
Chile	374.640	371.914	2.726	0.7*	11.666	3.1*	11.350	3.1	316	11.6
Ecuador	136.147	134.399	1.748	1.3*	1.852	1.4**	1.812	1.4	40	2.3
Paraguay	26.805	26.331	1.474	1.8*	0.581	2.2*	0.566	2.2	15	3.2*
Uruguay	94.499	93.462	1.037	1.1*	2.302	2.4*	2.223	2.4	79	7.6
Venezuela	236.193	232.028	4.165	1.8*	5.559	2.4*	5.359	2.4	200	4.8

| Total ELCAM | 2,409.407 | 2,381.592 | 31.516 | 1.3* | 65.581 | 2.7* | 62.865 | 2.6 | 2,716 | 8.6 |

* $p<0.0001$; **$p<0.00001$.

Table 3: Birth prevalence rates of neural tube defects (isolated and total) in pre- and post-fortification of flour with folic acid in 3 South American countries periods[13]

Diagnóstico	CHILE	ARGENTINA	BRASIL									
	Pre-fort.	Post-fort.	Pre-fort.	Post-fort.	Pre-fort.	Post-fort.						
	Total	Total	Aislado	Total								
Anencefalia	0.63	0.63	0.26	0.26	0.37*	0.37*	0.69	0.69	0.29	0.29	0.37*	0.37*
Esplia bifida	0.73	0.73	0.14	0.14	0.46*	0.46*	0.62	0.62	0.33	0.33	0.66*	0.66*
Cefalocele	0.26	0.26	0.09	0.09	0.18*	0.18*	0.21	0.21	0.10	0.10	0.20*	0.20*

*p<0.02.

Periodo	1998-2000	2001-2003	2002-2004	2005-2007	2003-06.2005	2005.07.2007
Nacimientos observados	69.666	243.624	193.509	147.853	102.751	92.843
Nacimientos por año	244.000	685.000	3.000.000			
mandating the fortification of flour with micronutrients as recommended by the WHO.[5]

MYELOMENINGOCELE IN SANTA CRUZ DE LA SIERRA

Results

Seventy patients with MMCL seen by a multidisciplinary team at Hospital Universitario Japones (HUJ) between 2008 and 2011. The mothers were from a low and middle economic level.

1. From rural area 23 (33%), urban area 47 (67%)
2. Age: <18 years: 10 (14.2%); 18-25: 50 (42.8%); 25-35 years: 20 (28.5%). >35 years: 10 (14.2%)
3. Gestational age: <30 weeks: 1 (1.4%); 30-35 w: 6 (8.6%); 36-40 w: 63 (90%)
4. Gestation: 15 (21.4%) first pregnancy
5. Prenatal control: 27 women (38.6%). Diagnosed intra utero: 2/27 (7.4%)
6. Only 21 (30%) took vitamins during pregnancy and only 1 (1.4%) folic acid at the beginning of pregnancy
7. Hospital delivery: 53 (75.7%), home delivery: 17 (24.3%)
8. Gender of the newborn: 35 male (50%) y 35 female (50%)
9. Age at admission at HUJ: 0 a 12 hours: 16 (22.8%) (All born at HUJ); 12-24 hours: 8 (11.4%); 24-48 hours: 6 (8.5%), older than 48 hours: 40 (57.1%)
10. Occipital-cervical: 3 (4.5%); Dorsal (T8 a T12): 12 (17.1%); Lumbar: 32 (45.7%) (L1-L2: 18); L3-L4: 14); Sacral (S2 a S4): 13 (18.6%)
11. Closed: 23 (32.8%), open: 47 (67.2%)
12. 14 (20%) without evident deficit; 23 (32.9%) partial neurological impairment and 33 (47.1%) paraplegia bellow the lesion
13. Mortality within 30 days: 7 (10%) (4 post op and 3 did not have surgery)
 Of the 70 MMC, three (4.3%) were not operated due to clinical condition (severe cardiopathy, extreme prematurity and hidranencephaly); five (7.1%) were transferred to another hospital due to lack of beds at HUJ, in 2 (2.86%), the parents requested discharge.
 Over 60 patients that were operated
14. Time delay since birth till surgery: Less than 24 hours: 16 (26.7%); 24-48 hours 12 (20%); more than 48 hours: 32 (53.3%)
15. Closure: Five layers (arachnoid, dura, fascia, subcutaneous tissue and skin): 4 (6.7%); Four layers: 47 (78.3%) Three layers: 9 (15%)
16. Length of stay: 1-7 days: 20 (28.5%); 7-15 days: 20 (28.5%); 15-30 days: 30 (42.8%)
17. Complications within 30 days of surgery: Wound infection or dehiscence 10 (16.6%); CNS infection: 7 (11.7%); CSF fistula 6 (10%)
18. Mortality within 30 days of surgery: 4 (6.7%)
19. Hydrocephalus within 30 days of surgery: 48 (80%)

Comparative analysis

Our data was similar to that of La Paz. Santa Cruz is at 1370 feet above the sea level and La Paz at 11,900 feet.

The parameters compared in Table 4 are: Primiparous/Multiparous. Prenatal control. Rural/Urban. Admission at less than 24 hours. Admission older than 24 hours. Gender Male/Female. Lumbar-Sacral. Open/closed. Paraplegia. General mortality 30 days. Postoperative mortality.

Fetal Surgery

One in 2013. At Hospital Caja Petrolera de Salud in Santa Cruz de la Sierra. Mother, 26 years. Defect, L5-S1 at 26 weeks. Delivery at 33 weeks. Excellent wound healing. At birth head circumference 35 centimeters (+SD) and normal soft spot. Lower muscle tone in lower limbs. Adequate sensory response [Figure 1].

Norms at HUJ

1. Parents are informed that the surgery will not correct the deficit. They have ample opportunities for asking questions. We explain that we choose not to treat children who have associated conditions that endanger their lives.

Table 4: Data on two series of MMC in Bolivia
Santa Cruz de la Sierra

% (70 casos)
Primiparas/Multiparas
Control prenatal
Procedencia (campo/ciudad)
Ingreso menor a 24 horas
Ingreso mayor a 24 horas
Sexo Masculino/Femenino
Localización lumbo sacra
Tipo de MMC (roto/abierto)
Paraplejia
Mortalidad general (30 días)
Mortalidad postoperatoria (30 días)

Figure 1: Clockwise. (a) 3D echography. (b) Operative field. (c) Dura patch (Gore-Tex). (d) Surgical scar at birth.
2. We aim at intervening as soon as possible without risking the chance of the child developing a CNS infection that will risk his/her more important capital, IQ. This considering that little can be done regarding the already present sensory and motor deficit.

3. In children older than 48 hours with open MMCL we perform at least 2 laboratory test of their CSF. If there are signs of infection we treat it accordingly.

4. We first treat the MMCL and then the hydrocephalus. We shunt with a medium pressure valve donated by an NGO (Fundacion Sonrisa Feliz) because they are not covered by insurance.

5. ATB treatment in case of meningitis.

6. If the child does not have hydrocephalus at the moment of discharge we schedule appointments for 3, 6 and 12 months after. In our experience Hydrocephalus manifest within 1 year.

7. If the child presents with swallowing or breathing difficulties secondary to Chiari II we intubate him/her and then treat the associated hydrocephalus. If this does not help we consider cervical laminectomy and or occipital craniectomy.

CONCLUSIONS

1. In Bolivia as in the rest of Latin America socio economical factors weight on the prevention and treatment of MMCL. We do not have statistical data but it seems that in Bolivia we have a lower incidence of NTD than in Nicaragua and Guatemala where they see 10-15 cases per month in Nicaragua and 15-20 in Guatemala.\[12\]

2. Preventive use of folic acid is not fully complied in Bolivia. In South America in a study of 2810 women it was observed that only 14.8% ingested vitamin supplements with folic acid during pregnancy, and only 1% did it correctly.\[9\]

3. Even though since 2001 the Seguro Materno Infantil (SUMI) covers for prenatal testing, only 39% of women take advantage of it. Lack of adequate equipment and personnel is a factor but also the program is not widely advertised in rural areas.

4. The referral system to tertiary care hospital is deficient. The number of home deliveries is high (24.3%) but lower that in the last census (32.7%).

5. Due to lack of advanced imaging there is no adequate assessment of long-term consequences of MMCL such as Chiari II, syringomyelia and tethered cord.

6. There is poor follow up of patients from rural areas.

7. Only 9 (15%) of the patients who were operated had 3 years of follow up. MRI was requested in those who tethered cord was suspected (motor weakness, sphincter dysfunction, pain, scoliosis).\[8\] Tethered cord was diagnosed in 3 of the 9 children for whom surgery was performed.

8. Parents and Neurosurgeons and the health care team, physicians, nurses, physical therapists, are fully aware about the phenomenal challenges represented by each one of the children born with Myelomeningocele.

Read this article in Spanish

INTRODUCCIÓN

Anualmente nacen en el mundo entre 300.000 y 500.000 niños con alguna malformación del tubo neural (MTN),\[9,16\] siendo que en los países en vías de desarrollo su incidencia aumenta dos o tres veces más, diferencia que guardaría relación con su nivel socio‑económico. Del mismo modo, la evolución de estos enfermos varía notoriamente de acuerdo al país donde nacen. Entre las MTN, destaca el mielomeningocele (MMC) por su mayor frecuencia y por ser la causa más incapacitante entre todas. Según Heimburger y Heimburger,\[7\] la tendencia en su tratamiento ha ido cambiando. Hace poco más de medio siglo, la conducta quirúrgica era expectante hasta los 6 meses de edad, pero después de conocer los resultados de Chambers y Heimburger,\[4,6\] este enfoque fue modificándose hasta ser hoy la reparación del MMC lo más precoz posible la decisión más generalizada.

Hace casi 30 años, Ausman\[1\] afirmaba que el tratamiento del MMC no era simplemente una decisión técnica, que dependía de factores culturales, religiosos, niveles educativos y socioeconómicos de la sociedad, así como de otros aspectos de carácter legal, médico y ético.\[2\] Como estas razones continúan siendo vigentes, el tratamiento del MMC aún es controversial. Al mismo tiempo, la calidad de vida de estos niños ha mejorado notoriamente en las últimas décadas, poniendo en entredicho algunas opiniones, como las de Lorber\[10\] o del conocido protocolo de Groningen.\[15\]

UNA MIRADA BREVE A SUDAMÉRICA

América del Sur ocupa una superficie de casi 18,000,000 km² y tiene una población cercana a los 390 millones de habitantes. Incluye actualmente 12 países, dos de los cuales tienen un Índice de Desarrollo humano (IDH) muy alto, seis poseen un IDH alto y cuatro alcanzan un IDH medio [Tabla 1].
Estudio Colaborativo Latino Americano de Malformaciones Congénitas

Es un programa de investigación clínica y epidemiológica sobre los factores de riesgo en defectos congénitos detectados en una red de hospitales de América Latina.[1] ECLAMC comenzó sus actividades en 1967, primero limitado a la ciudad de Buenos Aires, Argentina, expandiéndose gradualmente a otros 10 países de Sudamérica, incluyendo a Costa Rica y República Dominicana. La red de hospitales de maternidad de ECLAMC examina alrededor de 200,000 nacimientos por año. Todas las malformaciones, mayores y menores, que son diagnosticadas al nacer en niños con un peso de 500 gramos o más, se registran de acuerdo con un manual de procedimientos. En el periodo 1995-2008 hubo 2,409,407 nacimientos en los países participantes y la tasa global de malformaciones congénitas en esta muestra fue de 2,7%.[2] En el caso de Bolivia, alcanzó al 2,2% [Tabla 2]. En el periodo 1995-2008, hubo una reducción significativa en las tasas de anencefalía y la espina bífida en Chile y Argentina. Sin embargo, en el resto de los países, las tasas globales de malformaciones aumentaron.[3] En años recientes, el ECLAMC ha calculado en 8.2 por 10.000 la tasa media de espina bífida en la región.[4]

Tabla 1: Países que componen América del Sur (elaboración propia)

Países	Superficie (km²)	Población	IDH/Ranking*
Brasil	8.547.406	206,500,000	0,730 (85) (A)
Argentina	2.791.508[]	42,100,000	0,811 (45) (MA)
Perú	1.285.240	31,300,000	0,741 (77) (A)
Colombia	1.141.748	48,700,000	0,719 (91) (A)
Bolivia	1.098.581	10,400,000	0,675 (108) (M)
Venezuela	916.445[]	30,900,000	0,748 (71) (A)
Chile	756.948[]	17,500,000	0,819 (40) (MA)
Paraguay	406.755	6,800,000	0,869 (111) (M)
Ecuador	283.560	15,400,000	0,734 (89) (A)
Guyana	215.096	700,000	0,636 (118) (M)
Uruguay	189.928	3,400,000	0,792 (51) (A)
Surinam	163.458	500,000	0,684 (105) (M)

*Human Development Report 2013. IDH: Índice de Desarrollo Humano Muy Alto (MA), Alto (A) y Medio (M)

Tabla 2: Distribución por país del total de nacimientos, nacidos vivos, mortinatos, total de malformados, malformados vivos, malformados mortinatos. Tasas por 100.[13] Geographical breakdown of total births, live births, stillbirths, total malformed malformed living, malformed stillbirths. Rates per 100[13]

País	Total nac	NV	NM	NM %	Total MF	%	MFV	%	MFM	%
Argentina	815.454	805.455	9.999	1,2*	17.959	2,2*	17.344	2,2	651	6,5
Bolivia	107.284	104.917	2.367	2,2*	1.902	1,8*	1.756	1,7	146	6,2
Brasil	517.842	510.402	7.440	1,4*	21.557	4,2**	20.455	4,0	1.102	14,8*
Colombia	68.150	66.989	1.161	1,7*	1.290	1,9	1.290	1,9	120	10,3
Chile	374.640	371.914	2.726	0,7*	11.666	3,1	11.350	3,1	316	11,6
Ecuador	136.147	134.399	1.748	1,4*	1.852	1,4**	1.812	1,4	40	2,3
Paraguay	26.805	26.331	474	1,8*	2.592	2,0*	2.223	2,4	79	7,8
Uruguay	94.499	93.462	1.037	1,1*	5.818	2,0*	5.359	2,4	270	8,6
Venezuela	236.193	232.028	4.165	1,8*	2.302	2,4*	2.223	2,4	79	7,6
Total ECLAMC	2.409.407	2.377.891	31.516	2,7*	65.581	2,7*	62.865	2,7*	2.99	8,6

*p< 0,0001; **p< 0,00001.
universal y que a diferencia de la suplementación farmacológica, no implica desigualdades según los distintos sectores sociales.\[16]\]

En Sudamérica, un estudio reveló que las tasas de defectos de cierre del tubo neural cayeron de forma drástica. Chile comenzó a fortificar la harina en 2001, y hasta 2007, se había logrado una disminución global significativa \((P < 0.02)\) de cerca de 60% [Tabla 3]. La frecuencia de la espina bífida disminuyó en 54%, el cefalocele en 47% y la anencefalia en un 29%. Argentina comenzó a fortificar la harina de trigo en 2004, logrando una reducción global de 44%, espina bífida, 50,3% y en la anencefalia, un 59,5%. Brasil comenzó a fortificar la harina a fines de 2005 y ha logrado una disminución, aún no significativa (23,5% en espina bífida y 54,5% en el caso de la anencefalia), seguramente porque al momento de procesar estos datos, el programa sólo llevaba menos de dos años.

Declaración de Santa Cruz de la Sierra

En el I Congreso Latinoamericano de Neurocirugía Pediátrica realizado en Santa Cruz de la Sierra, representantes de Argentina, Bolivia, Brasil, Chile, Colombia, Ecuador, EL Salvador, Honduras, México, Panamá, Perú y Venezuela, firmaron el 29 de abril de 2006 un pronunciamiento con relación al problema no resuelto de la disrafia espinal, siendo que “la mayor expresión de esta malformación –la disrafia abierta o mielomeningocele–”, determina un elevado número de pacientes minusválidos, generando graves limitantes sociales y discriminaciones de por vida.”

Al haber “suficiente evidencia científica y experiencias nacionales que demuestran que el uso preventivo preconcepcional del ácido fólico en mujeres en edad fértil reduce significativamente la incidencia de esta malformación, y que esta es una terapia de bajo costo, sin efectos colaterales y fácilmente aplicable”, esta declaración recomendó “a los distintos gobiernos y a sus autoridades de nuestra América a considerar en forma urgente su adhesión a esta campaña preventiva de la disrafia, generando el marco legal para adicionar el ácido fólico a los alimentos de uso más popular….”

Además, esta declaración hizo “un llamado a los gobernantes a revisa sus políticas medioambientales, pues también hay evidencia de la influencia en la aparición de estas malformaciones de distintos contaminantes químicos industriales y fertilizantes, que aparecen como cofactores etiopatogénicos en zona frutícolas o de alta industrialización”. Finalmente, el Capítulo Latinoamericano de Neurocirugía Pediátrica exhortó “a los gobiernos a asumir esta responsabilidad sanitaria en beneficios de sus pueblos y de los niños que son nuestro futuro.”

Actualmente, los países firmantes de esta declaración así como otros países de América Latina y el Caribe, han dictado regulaciones nacionales para enriquecer las harinas de trigo y maíz con los micronutrientes recomendados por la OMS.\[8]\]

MIELOMENINGOCELE EN SANTA CRUZ DE LA SIERRA

Resultados

Se recopilaron los datos de 70 pacientes con diagnóstico de MMC atendidos entre 2008 y 2011 por un equipo multidisciplinario (obstetra, pediatra, neurocirujano, urólogo, ortopedista, radiólogo, psicólogo y fisiatra) del Hospital Universitario Japonés (HUJ). Por tratarse de un centro sanitario de atención pública de tercer nivel, las madres eran de nivel socioeconómico y educativo bajo o medio bajo.

Los resultados fueron los siguientes:

1. Del área rural provenían 23 (33%) y 47 (67%) vivían en la ciudad.
2. Edad de las madres: Menor a 18 años: 10 (14.2%); 18 a 25 años: 30 pacientes (42.8%); 25 a 35 años: 20 pacientes (28.5%). Mayor de 35 años: 10 pacientes (14.2%).
3. Edad gestacional: menos de 30 semanas: 1 (1.4%); 30

Diagnósticos	CHILE	ARGENTINA	BRASIL									
	Pre-fortif.	Post-fortif.	Pre-fortif.	Post-fortif.	Pre-fortif.	Post-fortif.						
	Aislado	Total										
Anencefalia	0,52	0,63	0,26	0,37*	0,69	0,86	0,29	0,37*	0,90	1,12	0,45	0,69*
Espina bífida	0,73	1,02	0,24	0,46*	0,82	1,27	0,33	0,66*	0,86	1,45	0,69	1,42
Cefalocele	0,26	0,33	0,09	0,18*	0,21	0,32	0,10	0,20*	0,31	0,57	0,12	0,32*

\(^*P<0.02\)

Período: 1998-2000; 2001-2003; 2002-2004; 2005-2007; 2003-06.2005; 2005.07-2007

Nacimientos observados: 69.666; 243.624; 193.509; 147.853; 102.751; 92.843

Nacimientos por año: 244.000; 685.000; 3.000.000
a 35 semanas: 6 (8.6%); 36 a 40 semanas: 63 (90%).
4. Número de parto: 15 (21.4%) fueron primíparas y 45 (78.6%) eran multíparas.
5. Control prenatal: 27 mujeres (38.6%). Diagnóstico de disrafia espinal: 2/27 (7.4%).
6. Sólo 21 mujeres (30%) ingirieron complejos vitamínicos durante el parto y apenas una (1.4%) usó ácido fólico al inicio del embarazo.
7. Sitio del parto: hospitalario: 53 (75.7%); partos domiciliarios: 17 (24.3%).
8. Sexo de los pacientes: 35 varones (50%) y 35 mujeres (50%).
9. Edad de ingreso del MMC al HUJ: 0 a 12 horas: 16 (22.8%) (todos nacidos en el HUJ); 12 a 24 horas: 8 (11.4%); 24 a 48 horas: 6 (8.5%); mayor de 48 horas: 40 (57.1%).
10. Localización del MMC: Occípito-cervical: 3 casos (4.3%); Dorsal (T8 a T12): 12 casos (17.1%); Lumbar: 32 (45.7%) (L1-L2: 18); L3-L4: 14); Sacra (S2 a S4): 13 casos (18.6%);
11. Tipo de MMC: cerrado: 23 (32.8%); abierto: 47 (67.2%).
12. Cuadro clínico: 14 (20%) niños sin déficit neurológico evidente; 23 (32.9%) con daño neurológico parcial y 33 (47.1%) con paraplejia por debajo de la lesión.
13. Mortalidad general a los 30 días: 7 casos (10%) (4 operados y 3 no operados).
14. Tiempo medio de reparación del MMC desde su nacimiento hasta la cirugía: Menos de 24 horas: 16 (26.7%); de 24 a 48 horas: 12 (20%); mayor a 48 horas: 32 (53.3%).
15. Modalidad del cierre: En cinco planos (aracnoídes, duramadre, fascia, tejido subcutáneo y piel): 4 casos (6,7%); en cuatro planos: 47 (78.3%) y en tres planos: 9 (15%).
16. Días de estadía en el hospital: De 1 a 7 días: 20 (28.5%); de 7 a 15 días: 20 (28.5%); de 15 a 30 días: 30 (42.8%); 17. Complicaciones postquirúrgicas más comunes a los 30 días: Infección o dehiscencia de la sutura: 10 casos (16.6%); infección del SNC: 7 (11.7%); fistula de líquido LCR: 6 (10%);
18. Mortalidad postoperatoria a los 30 días: 4 (6.7%).
19. Hidrocefalia a los 30 días de vida: 48 pacientes (80%)

Análisis comparativo
En aquellos parámetros que podían compararse, los resultados alcanzados en Santa Cruz de la Sierra (416 ms. sobre el nivel del mar) fueron similares a los encontrados en un hospital de La Paz, situado en la zona montañosa de Bolivia (3.640 ms. sobre el nivel del mar), excepto en cuanto a control prenatal, localización más frecuente del MMC, paraplejia, mortalidad general y postoperatoria [Tabla 4].

Cirugía fetal
En Santa Cruz de la Sierra (Hospital Caja Petrolera de Salud) se realizó por primera vez en 2013 una cirugía fetal de un MMC a cielo abierto, acompañado de una malformación de Chiari tipo II y sin hidrocefalia. La madre tenía 26 años de edad. Se realizó el cierre hermético del defecto neural (L1-L5) en la semana 26° del embarazo. El nacimiento de la niña se produjo a las 33 semanas, sin ninguna intercurrencia. La herida quirúrgica estaba cerrada por completo, con excelente epitelización de los bordes. El PC media 35 cms. (+2DS)

| Tabla 4: Datos estadísticas de dos series de MMC en Bolivia |
|-------------------|-------------------|
| Santa Cruz de la Sierra % (70 casos) | La Paz % (55 casos) |
| Primíparas/Multíparas | 21.4/78.6 | 15/73 |
| Control prenatal | 39.0 | 55.0 |
| Procedencia (campo/ciudad) | 33/67 | 27/73 |
| Ingreso menor a 24 horas | 34.3 | 33.0 |
| Ingreso mayor a 24 horas | 65.7 | 67.0 |
| Sexo Masculino/Femenino | 50/50 | 49/51 |
| Localización lumbo sacra | 64.9 | 85.5 |
| Tipo de MMC (roto/abierto) | 67/23 | 71/19 |
| Paraplejia | 47.1 | 12.4 |
| Mortalidad general (30 días) | 10.0 | 27.0 |
| Mortalidad postoperatoria (30 días) | 6.7 | 8.7 |
y fontanela normotenSA. Al examen, presentaba hipotonía de los miembros inferiores, siendo positiva la estimulación nociceptiva [Figura 1].

Algunas pautas en el HUI
1. Previa a la cirugía reparadora, se informa detenidamente a los padres el objetivo del procedimiento y beneficios que se esperan alcanzar; en qué consiste la operación y cómo es el postoperatorio habitual, además de los riesgos, complicaciones y secuelas posibles. Además, insistimos que la cirugía es correctora y no curativa. Una vez que los progenitores están conscientes de la situación pueden firmar el consentimiento respectivo. Esta es una medida de cumplimiento legal obligatorio.
2. Si bien el tratamiento quirúrgico del MMC es una urgencia y no una emergencia, en lo posible intentamos intervenir de manera temprana, tratando de impedir sobre todo las infecciones del SNC, que suelen ser las causas más comunes del deterioro de sus funciones cognitivas (IQ), pues los otros daños neurológicos (paraplejia, disturbios esfinterianos, etc.), casi siempre son definitivos.
3. En caso que el MMC abierto tenga más de 48 horas, realizamos al menos dos análisis de LCR. Si los resultados son normales, se hace la corrección del MMC. De lo contrario, se inicia antibioticoterapia, hasta verificar que el examen del LCR sea estéril. En dos niños puncionamos el saco del MMC, siendo hasta verificar que el examen del LCR sea estéril. MMC. De lo contrario, se inicia antibioticoterapia, resultando ser normales, se hace la corrección del LCR en ambos casos.
4. Cuando hay hidrocefalia concomitante y MMC cerrado, primero atendemos la disrafia espinal. Para disminuir el riesgo de infección del shunt, alrededor del décimo día del postoperatorio, preferimos colocar una DVP, generalmente de presión media. Las válvulas son donadas por una ONG (Fundación Sonrisa Feliz), habida cuenta que no las ofrece el seguro materno-infantil (SUMI).
5. En presencia de meningitis o sepsis e hidrocefalia concomitante, se inicia el tratamiento con los antibióticos recomendados. Una vez que el LCR es estéril (demostrado por cultivos seriados) se coloca el shunt.
6. Si el paciente con MMC no presenta hidrocefalia al momento del alta hospitalaria, el niño retorna al mes, 3, 6 y 12 meses para su control médico, porque en nuestra experiencia, la hidrocefalia suele manifestarse generalmente antes del año de edad.
7. Cuando la malformación de Chiari asociada al MMC presenta disfunción de la deglución y amenaza con obstrucción de las vías aéreas, se considera la intubación endotraqueal. Si hay una hidrocefalia asociada, se trata primero ésta, ya que con el shunt suele mejorar el cuadro clínico. De lo contrario, puede recurrirse a una cirugía descompresiva a nivel de fosa posterior con laminectomía cervical alta, según sea el caso.

CONCLUSIONES
1. En Bolivia, igual que otros países sudamericanos con IDH medio, un mayor porcentaje de familias con nivel socio-económico y cultural bajo tienen hijos con MMC, lo que apoya la hipótesis que factores nutricionales y la falta de prevención, juegan un rol importante en el desarrollo de la MTN. Aunque no contamos con datos estadísticos confiables, parece que nuestra incidencia es menor que en otros países latinoamericanos. Por ejemplo, estudios realizados en Nicaragua y Guatemala, llegan a reportar mensualmente entre 10-15 enfermos y 15-20 casos de espina bífida, respectivamente.[12]
2. El uso preventivo del ácido fólico en edad fértil no se cumple en Bolivia como lo establece una norma legal desde 1996. Faltan más control y difusión en la población sobre las ventajas que ofrece la fortificación de la harina y cereales con ácido fólico. Un amplio estudio realizado en 30 hospitales de Sudamérica (2810 mujeres postparto), demostró que sólo 14.8% de mujeres habían ingerido suplemento vitamínico conteniendo ácido fólico para evitar una MTN, mientras que apenas un 1% habían cumplido de manera adecuada su prevención,[9] cifra que coincide con nuestros hallazgos.
3. Pese a contar desde 2001 con el SUMI, que permite a la mujer embarazada realizar controles prenatales cada mes, observamos en nuestra serie que apenas un 39% lo realizó, demostrándose que se desconoce este programa social, sobre todo en el área rural y zona periférica. Además, muchos de los centros de salud no cuentan con el equipamiento apropiado y profesionales capacitados, para realizar el diagnóstico prenatal de esta malformación.
4. Aún no funciona adecuadamente el sistema de referencia y contra-referencia que permita trasladar al paciente de manera oportuna a centros de tercer nivel, razón por la cual mucho de los pacientes con MMC son atendidos después de las 48 horas de vida. Asimismo, los partos domiciliarios todavía muestran una alta incidencia (24.5%); sin embargo, este porcentaje es inferior a la registrada en el último Censo nacional de 2012 (32.7%).[7]
5. Debido a la falta de acceso en la mayoría de los casos a resonancia magnética nuclear (RMN) y/o tomografía axial computadorizada (TAC), no se puede valorar adecuadamente algunas complicaciones, generalmente...
añadidas al MMC (malformación de Chiari, médula anclada, síringomielia, etc.).

6. Hay dificultad en el acompañamiento adecuado a estos enfermos, sobre todo quienes viven en el área rural, lo que impide realizar sus controles, así como el tratamiento con otras especialidades médicas y su rehabilitación.

7. Sólo 9 (15%) de los MMC intervenidos tuvieron por lo menos 3 años de seguimiento. Se indicó RMN en quienes presentaban sospecha de médula anclada (mayor debilidad muscular, empeoramiento de la marcha, distúrbios esfinterianos, dolor, deformidades ortopédicas o escoliosis), demostrándose esta patología en 3/9 (33.3%), por lo que fueron operados.

8. La sociedad civil, los padres de hijos con MMC, los neurocirujanos y el equipo profesional que atienden a estos pacientes, saben que un recién nacido con esta malformación es un gran desafío para el sistema de salud de cualquier país.

BIBLIOGRAFÍA

1. Ausman JI. Editorial. Surg Neurol 43: 1, 1995.
2. Akar Z. Myelomeningocele Surg Neurol 43: 113-118, 1995.
3. Castilla EE, Orioli IM. ECLAMC: The Latin-American collaborative study of congenital malformations. Community Genet 7 (2-3): 76-94, 2004.
4. Chambers WR. Technic for the early operation of myelocoele and meningoymelocoele; with a report of 10 consecutive cases. Am J Surg 80: 386-93, 1950.
5. David JL. Wheat flour fortification in Latin American and the Caribbean Region. [Article in Spanish]. Rev chil. nutr. [online]. 2004, 31: 336-347.http://dx.doi.org/10.3984/jchr.2004.0810.[Last accessed on 2013 Apr 30].
6. Heimburger RF. Early repair of myelomeningocele (spina bifida cystica). J Neurosurg 37: 594-600, 1972.
7. Heimburger RF, Heimburger DC. Reflections on a career in neurosurgery. Surg Neurol Int 4: 89, 2013.
8. Hudgins RJ, Gilreath CL. Tethered spinal cord following repair of myelomeningocele. Neurosurg Focus 16(2): 1-4, 2004.
9. Lazareff JA. Neural Tube Defects. Myelomeningocele. World Scientific Publishing, Co. Pre. Ltd. 29-91, 2011.
10. Lorber J. Results of treatment of myelomeningocele. An analysis of 524 unselected cases, with special reference to possible selection for treatment. Develop Med Child Neurol 13: 201-204, 1971.
11. Ludueña MP, Mazzi Gonzales de Prada E. Clinic characteristics of myelomeningocele in newborns admitted to the Hospital del Niño “Dr. Ovidio Aliaga Uria” 1993-2002 [Article in Spanish]. Rev Bol Ped 42 (3): 160-165, 2003.
12. Mulholland CB, Aranda G, Arredondo LA, Calgua E, Contreras F, Espinoza DM, et al. The International Tethered Cord Partnership: Beginnings, process, and status. Surg Neurol Int 2: 38, 2011.
13. Nazer HJ, Cifuentes O L. Congenital malformations in Latin America in the period 1995-2008. [Article in Spanish]. Rev Med Chil 139 (1): 72-8, 2011.
14. U.S. Public Health Service: Recommendation for the use of folic acid to reduce the number of cases of spina bifida and other neural tube defects. MMWR 41: 1-7, 1992.
15. Verhagen E, Sauer P. The Groningen Protocol — Euthanasia in Severely Ill Newborns. N Engl J Med 352: 959-962, 2005.
16. Zabala R, Waisman I, Corelli M, Tobler B. Folic acid for neural tube defects prevention: consumption and information in fettile-age women in Centro Cuyo Region. [Article in Spanish]. Arch Argent Pediatr 106: 295-301, 2008.