NEWS FROM THE UNIVERSITIES

8th SCIENTIFIC PRIZE EM. PROF. DR A.L. BAERT

Op 4 december 2012 vond, in aanwezigheid van rector Prof. Dr. M. Waer, meerdere ere-rectoren en talrijke andere hoogleraren o.m. van de KU Leuven, de U Antwerpen, de U Gent, de U Liège en de VU Brussel de inhuldiging plaats van het “Fonds em. Prof. Dr. A.L. Baert” in de rectorale salons van de Universiteitshallen.

Dit fonds wordt nu beheerd door het Leuvens Universiteitsfonds en zal de “Wetenschappelijke Prijs em. Prof. Dr. A.L. Baert”, opgericht in 1997, verderzetten.

De laureaten van deze Prijs zijn: Robert Hermans, Marc Lemmerling en Lieven Van Hoe (1998), Johan Van Goethem (2000), Michel De Maeseneer (2002), Steven Dymarkowski (2004), Mireille Van Goethem (2006), Geert Maleux (2008) en Chantal Van Ongeval (2010).

De doelstelling van het fonds blijft de ondersteuning en bevordering van wetenschappelijk onderzoek in de radiologie. Daartoe zal er ook in de toekomst een tweejaarlijkse prijs toegekend worden aan een radioloog, opgeleid aan één van de vier Nederlandstalige universiteiten in België, op basis van een met goed gevolg verdedigde doctoraatsthesis.

Dit jaar is Bert De Foer de laureaat van de 8ste Prijs. Hij behaalde zijn diploma van doctor in de genees-, heel- en verloskunde aan de KU Leuven en in 1995 werd hij erkend als geneesheer-specialist in röntgendiagnose aan de KU Leuven (onder leiding van Prof. Dr. A.L. Baert). Daarna volgde hij nog een bijkomende opleiding magnetische resonantie aan de Universiteit Antwerpen (onder leiding van Prof. Dr. P. Parizel) en was hij als radiologie actief in het regionaal ziekenhuis Zeeuws-Vlaanderen in Terneuzen. Sedert 1997 is hij staflid radiologie in het Sint-Augustinusziekenhuis in Antwerpen. Hij is er ook verantwoordelijk voor de hoofd- en kalsradiologie. In 2011 behaalde hij de graad van doctor in de Biomedische Wetenschappen aan de KU Leuven met een proefschrift getiteld: “The value of magnetic resonance imaging in the preoperative evaluation and the postoperative follow-up of middle ear cholesteatoma”.

De KU Leuven en de oprichters van het “Fonds em. Prof. Dr. A.L. Baert” willen de talrijke schenkers van harte danken voor hun gift, zonder de welke dit initiatief niet mogelijk zou geweest zijn. Dankzij de financiële steun van vele Vlaamse radiologen en oud-assistenten enerzijds en de sponsoring van meerdere ondernemingen anderzijds zal het fonds in de komende jaren de Vlaamse radiologie verder op het voorplan kunnen brengen door wetenschappelijk onderzoek te stimuleren.

Mocht u nog wensen een bijdrage te doen, kan u uw gift storten op de volgende rekening van de KU Leuven BE48 5583 9126 0027 met als mededeling OF0-KAP006-P3367

Namens de oprichters van het Fonds em. Prof. Dr. A. Baert,

Prof. Dr. Ph. Demaerel
Beheerder
Fonds em. Prof. Dr. A. Baert

Em. Prof. Dr. A.L. Baert
Voorzitter van de Jury

Prof. Dr. Ph. Demaerel
Secretaris van de Jury
Dienst radiologie, UZ Leuven

ANNOUNCEMENT

De 9ste Wetenschappelijke Prijs van het Fonds em. Professor Dr A.L. Baert zal uitgereikt worden in 2014. Kandidaten moeten hun werk samen met hun curriculum vitae indienen in 6 gedrukte exemplaren bij de secretaris en 1gedrukt exemplaar bij Prof. Dr. A.L. Baert, uiterlijk op 30 september 2014. Slechts werken die minder dan 2 jaar oud zijn op de datum van hun indiening kunnen in aanmerking genomen worden. Het werk moet opgesteld zijn in het Nederlands of in het Engels, met in beide gevallen, een uitgebreide samenvatting van minstens 15 bladzijden in het Nederlands (ca. 47 regels per blz.).
Fig. 2. — Bert De Foer, laureaat van de 8ste Prijs em. Prof. Dr. A.L. Baert, ontvangt de Prijs uit handen van em. Prof. Dr. A.L. Baert.
THE VALUE OF MAGNETIC RESONANCE IMAGING IN THE PREOPERATIVE EVALUATION AND THE POSTOPERATIVE FOLLOW-UP OF MIDDLE EAR CHOLESTEATOMA

B. De Foer

The purpose of this thesis was to evaluate the role of Magnetic Resonance (MR) imaging, especially Diffusion-Weighted (DW) MR imaging in the preoperative evaluation of cholesteatoma patients and the postoperative follow-up of cholesteatoma patients. Regarding the use of DW MR imaging, difference should be made between Echo Planar (EP) DW sequences and non-EP DW sequences.

The conclusion of this first (EP DW) imaging phase is that the combination of standard MR sequences before and after intravenous administration of gadolinium and EP DW sequences appears to have the highest sensitivity in detecting middle ear cholesteatoma and the size limit for detection of cholesteatoma using EP DW sequences is 5 mm. This makes EP DW sequences useless for the evaluation of the usually very small pre-second-look residual cholesteatoma in patients after CWU tympanoplasty and after PBOT (1). EP DW sequences can be used to evaluate patients prior to first-stage surgery taking into account that lesions smaller than 5 mm will be missed and that empty or evacuated retraction pockets display no high signal on DW sequences (1). These conclusions have been confirmed in several other papers in peer-reviewed journals (2, 3).

In the second stage phase, the combined protocol was changed. The standard sequences have been adjusted to delayed gadolinium-enhanced T1-weighted imaging, based upon the work of Marc Williams and Denis Ayache (4). This means that imaging is performed 45 minutes after the intravenous administration of gadolinium. Immediate scanning after intravenous administration of gadolinium might result in EP DW sequences useless for evaluating the presence of cholesteatoma. This sequence has a thinner slice thickness, a higher resolution and a complete lack of air-bone interface artefacts in the temporal bone resulting in a possible capability of detecting smaller cholesteatoma (5). Fifty-seven patients clinically suspected of having an acquired cholesteatoma and 63 patients prior to second-look surgery were included.

It was concluded that there was no statistical significant difference between the non-EP DW sequence alone and the combination of non-EP DW imaging sequence and delayed gadolinium-enhanced T1-weighted sequences.

MR imaging in patients suspected of having middle ear cholesteatoma can be applied by using only a non-EP DW imaging sequence, avoiding the need for further contrast agent administration. Also non-EP DW imaging sequences have significantly higher sensitivity, specificity, PPV, and NPV than delayed gadolinium-enhanced T1-weighted sequences, and results are less dependent on the observer’s experience (6).

The imaging approach of middle ear cholesteatoma has changed significantly during the last decade (7). Whereas at the onset, CT scan was regarded as the only valid imaging tool for the evaluation of middle ear cholesteatoma (8), MRI has conquered its place in the evaluation of patients presenting with middle ear cholesteatoma (7).

In patients prior to first-stage surgery presenting with a clinically evident cholesteatoma, CT scan has its place in the evaluation of ossicular erosion and tegmen integrity. It will also highlight temporal bone anatomy such as degree of aeration and position of facial nerve and possible dehiscence (7, 8).

However in patients with an unclear clinical history and a doubtful micro-otoscopy, MRI using non-EP DW sequences can be used as a screening tool to evaluate the presence of cholesteatoma. In those cases, MRI using non-EP DW sequences should be preferred as the primary imaging tool (7).

In case of an infected cholesteatoma or a cholesteatoma with clinical suspicion of associated complication MR imaging, using the combination of non-EP DW sequence and delayed gadolinium-enhanced T1-weighted sequences, is required in order to evaluate the middle ear, inner ear and middle fossa.

In both last subgroups, CT scan is reserved for the immediate pre-operative setting to evaluate all anatomical detail (7).

The role of MR imaging and non-EP DW sequences more specifically has gained even more importance in the evaluation of patients prior to second-look evaluating the presence of residual cholesteatoma or in the evaluation of patients looking for recurrent cholesteatoma (9). It is clear that EP DW sequences have been abandoned and that non-EP DW sequences are to be preferred due to their higher imaging matrix, thinner slices and complete lack of susceptibility artefacts (5, 7, 9).

ADC maps also seem to have an advantage in differentiating cholesteatoma from post-operative tissue, scar tissue, inflammation and/or cholesterol granuloma as cholesteatoma is the only entity with a clear signal drop on ADC maps (10).

CT can no longer be used as the primary imaging tool of patients in a pre-second look setting. Moreover, second-look surgery should preferably be replaced by MRI using non-EP DW sequences. CT scan should be reserved for the immediate pre-operative evaluation of these patients and selection of second-look should be performed based upon MRI using non-EP DW sequences (6, 7).

By doing so, the number of unnecessary second-look interventions can be reduced as well as the high number of useless CT scans prior to
ABSTRACT OF THE PAPER

1. Vercruysse J.P., De Foer B., Pouillon M., Somers T., Casselman J., Offeciers E.: The value of diffusion-weighted MR imaging in the diagnosis of primary acquired and residual cholesteatoma: a surgical verified study of 100 patients. Euro Radiol, 2006, 16: 1461-1467.

2. Jeunen G., Desloovere C., Hermans R., Vandevoorde V.: The value of magnetic resonance imaging in the diagnosis of residual or recurrent acquired cholesteatoma after canal wall-up mastoidectomy. Otol Neurotol, 2008, 29: 16-18.

3. Jindal M., Doshi J., Srivastav M., Wilcock D., Irving R., De R.: Diffusion-weighted magnetic resonance imaging in the management of cholesteatoma. Eur Arch Otorhinolaryngol, 2010, 267: 181-185.

4. Williams M.T., Ayache D., Alberti C., Heran F., Lafitte F., Elmaleh-Berges M., Piekar斯基 J.D.: Detection of postoperative residual cholesteatoma with delayed contrast-enhanced MR imaging: initial findings. Euro Radiol, 2003, 13: 169-174.

5. De Foer B., Vercruysse J.P., Pilet B., Michiels J., Verriest R., Pouillon M., Somers T., Casselman J.W., Offeciers E.: Single-shot, turbo spin-echo, diffusion-weighted imaging versus spin-echo-planar diffusion-weighted imaging in the detection of acquired middle ear cholesteatoma. Am J Neuroradiol, 2006, 27: 1480-1482.

6. De Foer B., Vercruysse J.P., Bernaerts A., Meerschaert J., Kenis C., Pouillon M., De Beuckeleer L., Michiels J., Bogaerts K., Deckers F., Somers T., Hermans R., Offeciers E., Casselman J.W.: Middle ear cholesteatoma: non-echo-planar diffusion-weighted MR imaging versus delayed gadolinium-enhanced T1-weighted MR imaging: value in detection. Radiology, 2010, 255: 866-872.

7. De Foer B., Vercruysse J.P., Spaepen M., Somers T., Pouillon M., Offeciers E., Casselman J.W.: Diffusion-weighted magnetic resonance imaging of the temporal bone. Neuroradiology, 2010, 52: 785-797.

8. Lemmerling M., De Foer B.: Imaging of cholesteatomatous and non-cholesteatomatous middle ear disease. In: Lemmerling M., Kollia S.S. (eds). Radiology of the Petrous bone. 2001, Springer Verlag, New York, pp 31-47.

9. De Foer B., Vercruysse J.P., Bernaerts A., Deckers F., Pouillon M., Somers T., Casselman J., Offeciers E.: Detection of postoperative residual cholesteatoma with non-echo-planar diffusion-weighted magnetic resonance imaging. Otol Neurotol, 2008, 29: 513-517.

10. Khemani S., Singh A., Lingam R.K., Kalan A.: Imaging of postoperative middle ear cholesteatoma. Clin Radiol, 2011 Apr 23 (Epub ahead of print).