An approach to the management of unintentional weight loss in elderly people

Shabbir M.H. Alibhai, Carol Greenwood, Hélène Payette

Abstract

Unintentional weight loss, or the involuntary decline in total body weight over time, is common among elderly people who live at home. Weight loss in elderly people can have a deleterious effect on the ability to function and on quality of life and is associated with an increase in mortality over a 12-month period. A variety of physical, psychological and social conditions, along with age-related changes, can lead to weight loss, but there may be no identifiable cause in up to one-quarter of patients. We review the incidence and prevalence of weight loss in elderly patients, its impact on morbidity and mortality, the common causes of unintentional weight loss and a clinical approach to diagnosis. Screening tools to detect malnutrition are highlighted, and nonpharmacologic and pharmacologic strategies to minimize or reverse weight loss in older adults are discussed.

CMAJ 2005;172(6):773-80

Unintentional weight loss is the involuntary decline in total body weight over time. In clinical practice, it is encountered in up to 8% of all adult outpatients1 and 27% of frail people 65 years and older.2 Weight loss is an important risk factor in elderly patients. It is associated with increased mortality and morbidity, the common causes of unintentional weight loss and a clinical approach to diagnosis. Screening tools to detect malnutrition are highlighted, and nonpharmacologic and pharmacologic strategies to minimize or reverse weight loss in older adults are discussed.

How common is weight loss?

Prevalence estimates of weight loss among elderly people vary tremendously. The results of epidemiologic studies have shown that most elderly patients maintain weight over a reasonably long period of 5–10 years.1,10,21 Nevertheless, about 15%–20% experience weight loss — defined in these studies as a loss of either 5 kg or more or 5% of usual body weight over 5–10 years — with little difference between sexes.5,13,15,20 This prevalence estimate rises to 27% in high-risk populations, such as free-living frail elderly people receiving community services.7 Increasing age,13,22 disability,7,13 coexisting medical illnesses,19,22 previous admission to hospital,13 low education level,22 presence of cognitive impairment,13 smoking,11,19,22 loss of a spouse13,22 and low baseline body weight22 have been associated with a higher likelihood of weight loss. The proportion of elderly people who experience rapid (within 6 months), severe (≥7.5% of baseline body weight) and unexplained weight loss is only 0.45%.24

The incidence of unintentional weight loss in clinical studies involving adults seeking health care varies from 1.3% to 8%, depending on the setting and definition of weight loss.1,3,4,22 There is also a difference in rates between clinical and epidemiologic studies, probably because most patients with weight loss present within a year of onset of their clinical symptoms.

Causes and mechanisms

In general, causes of weight loss in elderly people are similar to those in middle-aged people and can be classified as organic (e.g., neoplastic, nonneoplastic and age-related changes), psychological (e.g., depression, dementia, anxiety disorders) or nonmedical (e.g., socioeconomic conditions) (Box 1). Up to one-quarter of all cases have no identifiable
cause, despite extensive investigation. People with no known cause of weight loss generally have a better prognosis than people with known causes, particularly when the cause is neoplastic.

Often a combination of factors will lead to weight loss in elderly people, particularly frail people 75 years or older. Many of these factors are not traditional medical diseases (Box 2). For example, patients with dementia or late-life psychotic disorders may become paranoid and suspicious that the food being served to them is poisoned. Elderly people with dementia and habitual wandering expend significant energy in pacing. As well, some common illnesses may cause weight loss (e.g., gallstones may lead to chronic nausea and decreased appetite or avoidance of high-energy, fatty foods).

Several important age-associated physiologic changes predispose the elderly person to weight loss, such as declining chemosensory function (smell and taste), reduced efficiency of chewing, slowed gastric emptying and alterations to the neuroendocrine axis (including changes in levels of leptin, cholecystokinin, neuropeptide Y and other hormones and peptides). These changes are associated with early satiety and a decline in both appetite and the hedonic appreciation of food, and collectively they contribute to the “anorexia of aging.” Other evidence also suggests that, compared with healthy younger adults, elderly people are less able to adapt to periods of over- and undereating and less likely to return to their usual body weight after such periods, which makes them more susceptible to weight change. The importance of medications in contributing to weight loss cannot be overstated, since many elderly people take medications, mostly for chronic conditions (Table 2).

Various mechanisms have been suggested to explain the association between weight loss and adverse outcomes. Weight loss exacerbates the loss of fat-free mass (sarcopenia) associated with aging, which leads to functional decline and fractures. Many elderly patients with unintentional weight loss are experiencing concomitant malnutrition and thereby have cachexia. Cachexia is associated with a disproportionate loss of skeletal muscle rather than body fat and is generally defined as a profound and marked state of constitutional disorder, general ill health and malnutrition. A decline of even 10% of skeletal muscle mass may be associated with a decline in physical function (e.g., decreased exercise tolerance or difficulty performing activities of daily living). In addition, cachexia is associated with a systemic inflammatory response, increased cytokine concentrations and impaired immunity, all of which are thought to contribute to adverse outcomes, including early death.

Optimal clinical approach to weight loss

It is important to establish up front the presence of weight loss. A significant proportion of elderly people with documented weight loss may not complain about losing weight or, less commonly, may mistakenly attribute weight loss to successful diet or lifestyle modifications. Furthermore, disturbed eating behaviours and body image (e.g., anorexia targeive) among some elderly people may lead them to regard weight loss as desirable and therefore nonreportable. Conversely, up to half of people who claim to have lost weight have no documented evidence of weight loss. If it is not pos-

Study	Country	Study design	No. of patients	Definition of weight loss	Outcomes	Relative risk (95% CI)
Cernoni-Huntley et al, 1991	United States	National multiphase surveys	14407	> 10% over 10 yr	Increased mortality risk	Men: 1.5 (1.2–2.0)
						Women: 1.8 (1.4–2.5)
Deeg et al, 1990	The Netherlands	Prospective cohort	512	≥ 10% over 5 yr	Increased mortality risk, worsening overall health	Not reported
Losonczy et al, 1995	United States	Prospective cohort	6387	> 10% after age 50	Increased mortality risk	Men: 1.69 (1.45–1.97)
						Women: 1.62 (1.38–1.90)
Wallace et al, 1995	United States	Prospective cohort	247	≥ 4% over 1 yr	Increased mortality	2.43 (1.34–4.41)

Note: CI = confidence interval.
possible to measure weight directly, a change in clothing size, corroboration of weight loss by a relative or friend, or a numerical estimate of weight loss provided by the patient are suggestive enough of true weight loss. A careful history may elicit localizing symptoms (e.g., changes in defecation frequently imply involvement of the gastrointestinal tract) that may guide further investigations in almost half of patients. All elderly patients with weight loss should undergo screening for dementia and depression by using instruments such as the Mini-Mental Status Examination and the Geriatric Depression Scale respectively. Specific features on physical examination, such as cachexia, lymphadenopathy or palpable masses, may suggest a physical cause of weight loss (e.g., malignant disease). However, the diagnostic utility of the medical history and physical examination in identifying the cause of weight loss have not been adequately evaluated.

Although few studies have systematically evaluated the utility of screening investigations for weight loss, the most useful non-invasive procedures appear to include a complete blood count, tests of liver enzyme levels (including alkaline phosphatase and bilirubin), measurement of lactate dehydrogenase level, and chest radiography. Patients with iron-deficiency anemia or symptoms likely to originate in the gastrointestinal tract, and patients with elevated liver enzyme levels on initial screening, should undergo investigation of their gastrointestinal tract (either endoscopy or upper gastrointestinal series) or an abdominal ultrasound, respectively.

Three scoring systems have been developed to help clinicians identify which patient with weight loss is likely to have a physical or malignant cause as opposed to a psychological or unknown cause. None of these scoring systems has been validated in independent populations presenting with weight loss.

When weight loss is apparent in the elderly patient with no evidence of an organic disorder, primary malnutrition (i.e., resulting from inadequate food intake) must be considered as a contributor. In general, elderly people are at increased risk of malnutrition because of insufficient food intake (quantity) rather than inappropriate selection of food (quality). Two screening tools, ENS52,53 and SCREEN54,55 (www.dietitians.ca/seniors/content/other/clsc_overview.asp) and SCREEN54,55 (www.dietitians.ca/seniors/index.asp), have been developed and validated in Canada to identify community-dwelling elderly people who are at risk of malnutrition. Two other assessment tools, the Mini Nutritional Assessment (www.mna-elderly.com) and the Nutrition Screen-

Table 2: Side effects of drugs and supplements that can contribute to weight loss

Side effect	Drug or supplement
Anorexia	Amantadine, amphetamines, antibiotics (e.g., atovaquone), anticonvulsants, benzodiazepines, decongestants, digoxin, gold, levodopa, metformin, neuroleptics, nicotine, opiates, SSRI, theophylline
Dry mouth	Anticholinergics, antihistamines, clonidine, loop diuretics
Dysgeusia or dysosmia or both	Acetazolamide, alcohol, allopurinol, amphetamines, ACE inhibitors, antibiotics (e.g., atovaquone, ciprofloxacin, clarithromycin, doxycycline, ethambutol, griseofulvin, metronidazole, oxfoxacin, pentamidine, rifabutin, tetracycline), anticholinergics, antihistamines, calcium-channel blockers, carbamazepine, chemotherapy agents, chloral hydrate, cocaine, etidronate, gold, hydralazine, hydrochlorothiazide, iron, levodopa, lithium, methimazole, metformin, nasal vasoconstrictors, nitroglycerin, opiates, penicillamine, pergolide, phenytoin, propranolol, selegeline, sodium cromoglycate, spironolactone, statins, terbinafine, tobacco products, triazolam, tricyclines
Dysphagia	Alendronate, antibiotics (e.g., doxycycline), anticholinergics, bisphosphonates, chemotherapeutic agents, corticosteroids, gold, iron, levodopa, NSAIDs, potassium, quinidine, theophylline
Nausea or vomiting or both	Amantadine, antibiotics, bisphosphonates, digoxin, dopamine agonists, hormone replacement therapy, iron, levodopa, metformin, metronidazole, nitroglycerin, opiates, phenytoin, potassium, SSRI, statins, theophylline, tricyclics

Note: SSRI = serotonin-specific reuptake inhibitor, ACE = angiotensin-converting enzyme, NSAID = nonsteroidal anti-inflammatory drug.
Inadequate dietary intake

Assess patient for physiological and psychosocial factors
Consider consultation with a dietitian or a social worker or both

Investigate physiological causes
- diminished smell, taste
- nausea, constipation
- appetite, satiation
- oral health
- functional capacities

Investigate psychosocial causes
- social isolation
- access to food
- poverty
- dementia, depression (consider screening tools such as the Mini-Mental Status Examination and the Geriatric Depression Scale)

Review medications (Table 2)

Increase oral intake, community support services, nutritional supplements, high-energy snacks, physical activity (Table 3)
Decrease dietary restrictions

Adequate dietary intake

Assess dietary intake or screen for malnutrition

Search for underlying disease:
- careful history-taking (e.g., change in activities, cough, nausea, smoking)
- physical examination (e.g., cachexia, lymphadenopathy, breast or thyroid abnormalities, hepatosplenomegaly, palpable masses)
- laboratory testing (blood and urine tests, chest radiography)

Determine whether cause is
- organic (malignant disease, gastrointestinal disease, age-related changes)
- psychological (depression, dementia)
- nonmedical (poverty)

If cause is unknown, review medications (Table 2)

Treat underlying cause
Correct vitamin and mineral deficiencies
Consider nonpharmacologic interventions to optimize absorption and metabolism (Table 3)

Reassess weight in 3 months

Weight gain
Continue to monitor

No weight gain
Reassess cause
Reassess energy intake
Consider drug therapy (Table 3)

Fig. 1: Strategies for treating weight loss in elderly patients.

How should weight loss be managed?

The first priority in managing weight loss is to systematically identify and treat the underlying causes (Fig. 1). Treatment of unintentional weight loss often requires enabling access to good nutrition, and several important nonpharmacologic strategies can be implemented to prevent or treat malnutrition and enhance food intake (Table 3). Factors such as poverty, poor dental health, difficulty in chewing or swallowing, vision or hearing loss, arthritis, stress (e.g., illness or death of a loved one) and unhappiness, which are associated with poor diet quality, should be targeted.52,80 It is therefore prudent to involve a dietitian and a social worker to assist with assessment and management, particularly in cases where an obvious organic cause has not been identified. A physiotherapist may help patients increase their amount of exercise, to thereby stimulate appetite and increase energy intake and muscle mass.68,74–76

The use of oral nutritional supplements, such as high-energy drinks, as a means of reversing weight loss and increasing food intake may sometimes, but not always, reverse weight loss.66,69,81,82 Counselling and encouraging patients to consume supplements in addition to their usual food intake rather than as a replacement of that intake is essential, since weight gain is confined to those who actually increase their energy intake.69,82 Advising patients to consume supplements between meals, rather than with the meal, may help minimize appetite suppression and facilitate increased overall intake.71 Although supplement use has been associated with short-term weight gain and improvements in biochemical, anthropometric and quality-of-life parameters in a number of trials, long-term beneficial effects on health, ability to function and survival in undernourished elderly people are yet to be consistently demonstrated.66,83 A systematic review showed a reduction in mortality among el-
older patients who received protein-energy supplements, irrespective of whether they had weight loss. They may be at high risk of weight loss because of compensation decreased intake of foods; many older adults need assistance with taking their meals because of physical or cognitive disabilities. Intake of most enhanced foods was increased and immune function and grip strength improved;72 hunger increased and energy intake and weight gain improved;72 studies were not restricted to patients with weight loss.

Many elderly people consume too little food to meet their nutritional needs,84,85 which puts them at risk of vitamin and mineral deficiency. A broad-spectrum vitamin and mineral supplement should be considered for people at risk of malnutrition or where improvements in food intake are not observed.85

Table 3: Nonpharmacologic interventions and recommendations that may reverse unintentional weight loss in older adults

Intervention or recommendation	Rationale	Evidence
Minimize dietary restrictions	Restricted diets are often energy-poor, have poor palatability and are not always medically indicated	Elderly people whose diets are restricted are at increased risk of weight loss.1,17,14 Many elderly people consume most of their daily energy intake at breakfast.40 Eating favourite foods led to reversal of malnutrition and return of appetite among severely anorectic, malnourished elderly patients.11 Providing finger foods increased food consumption and led to cessation of weight loss in patients with dementia.12
Optimize energy intake by:	May increase total daily energy intake by minimizing gastric distension seen with large meals and increasing the amount of food consumed	In a study involving patients with dementia, altering food texture according to observed patient preferences led to increased food intake and weight maintenance; diversity of food texture was highly valued by adults with congenital anosmia, who may be at high risk of weight loss.14
• maximizing intake with high-energy foods at the best meal of the day10,36	Enhancing chewing and palatability of foods may stimulate positive feedback to eat more and minimizes fatigue associated with chewing	
• eating smaller meals more often		
• eating favourite foods and snacks		
• providing finger foods		
Optimize and vary dietary texture33		
Avoid gas-producing foods41	May lead to gastric distension with air and earlier satiety	Improved ability to detect sweet and salty tastes was found after professional oral hygiene therapy 3 times weekly for 5 wk.62
Ensure adequate oral health47,54	Poor oral hygiene and dry mouth are risk factors for decreased oral intake through altered taste sensation and difficulty in chewing and swallowing	Daily energy intake and weight gain significantly increased within 3–6 wk in malnourished elderly patients66 and number of falls decreased;77 oral supplements were associated with lower mortality and shorter length of hospital stay but not lower risk of complications;89 studies were not restricted to elderly patients with weight loss.
Take high-energy and nutritionally dense supplements or add fats or oils to usual foods	Increased energy intake may increase weight; nutrient-dense food (more energy per gram) may avoid satiety-related limitations in intake	Providing liquid supplements at least 60 min before a meal was associated with less appetite suppression and greater overall energy intake than when supplements were provided immediately before a meal in healthy older subjects.11
Take supplements between meals	May minimize appetite suppression and compensatory decreased intake of foods	
Eat in company or with assistance44,45	May lead to enhanced enjoyment of meals and increased energy intake; many older adults need assistance with taking their meals because of physical or cognitive disabilities	Intake of most enhanced foods was increased and immune function and grip strength improved;72 hunger increased and energy intake and weight gain improved;72 studies were not restricted to patients with weight loss.
Use flavour enhancers	May counteract age-related increase in smell and taste thresholds (components of anorexia of aging)	Equivocal evidence showed association between multivitamin supplementation and reduced infections.77
Participate in regular exercise	Promotes muscle hypertrophy and gain in lean-body mass and may stimulate appetite	Improvements were seen in strength and muscle volume, especially with resistance exercises;74 increased energy intake or weight gain or both occurred13,57,58
Take a multiple vitamin supplement daily47	Most older patients with weight loss have 1 or more nutritional deficiencies	Meals-on-Wheels programs improved dietary intake of older recipients.9
Use community nutritional support services47,54	Functional limitations related to supply, preparation and consumption of food greatly reduce the capacity of elderly people to have access to sufficient food of good quality	
Pharmacologic therapy to reverse weight loss

In our experience, the evidence supporting any pharmacologic agent for the treatment of weight loss is limited to mostly small, uncontrolled studies, and benefits are generally restricted to a small gain in weight without evidence of decreased morbidity and mortality or improved function and quality of life. Most of these agents have significant side effects, particularly in frail elderly people, which limits their usefulness. Various pharmacologic agents, including orexigenic (appetite-stimulating) and anabolic medications, have been used to improve appetite or cause weight gain in subjects with weight loss. Only 4 have been studied in randomized trials (Table 4).

The synthetic progestational agent megestrol acetate is best associated with weight gain in well-designed, randomized trials in populations of patients with malignant disease or HIV infection. Evidence for its use with elderly people is limited.87,89–93 Ornithine oxoglutarate led to weight gain in one randomized trial but has not been studied in other trials.94 There are no randomized trials of either cyproheptadine or dronabinol in elderly people with weight loss, although dronabinol has been studied in one trial involving patients with dementia who were refusing food.95 Both medications are associated with significant side effects, particularly central nervous system toxicity.96–98

Among anabolic agents, a 4-week randomized trial of human growth hormone in 20 undernourished elderly people demonstrated slightly faster weight gain and improved walking time in those receiving the hormone. After 4 weeks, between-group differences in weight were no longer statistically significant. Use of human growth hormone in other settings has been associated with increased mortality.99 Several small clinical studies or cross-over trials of androgenic agents have not shown that they lead to weight gain.95 Other pharmacologic approaches, such as anticytokine therapies, appetite-stimulating and anti-inflammatory medications, are being investigated.95–98

Conclusion

Unintentional weight loss is common in elderly people and is associated with significant adverse health outcomes, increased mortality and progressive disability. The differential diagnosis is broad, ranging from reduced food intake to organic causes to psychological disorders. Medications may also contribute to weight loss, as may social or economic factors. Up to 1 in 4 elderly people with unintentional weight loss will have no obvious medical cause. In others, a limited set of initial symptom-oriented investigations may reveal the underlying causes. A variety of nonpharmacologic interventions may improve energy intake and lead to weight gain, whereas the role for pharmacotherapy remains limited.

Table 4: Results of randomized double-blind placebo-controlled trials of pharmacologic interventions to treat weight loss in elderly patients

Trial	No. of patients	Patient characteristics	Intervention	Outcome measures	Patient weight change*	p value	Comments
Brocker et al93	185	Independent-living, > 65 yr, recovering from acute illness or surgery; weight loss not necessary	Ornithine oxoglutarate† 10 g twice daily for 2 mo	Weight	1.7 ± 0.5	< 0.001	Improvements in quality of life, appetite and activities of daily living; therapy well tolerated
Chu et al97	20	> 70 yr, BMI < 19 kg/m², low albumin level	Recombinant human growth hormone 0.09 IU/kg 3 times weekly for 4 wk	Lean body mass, 5-m walking time	1.4	NS	56% refusal rate; therapy used for short duration; therapy was costly; no serious adverse effects; associated with better walking time
Volicer et al94	15	Mean age 73, with Alzheimer’s disease, refusing food	Dronabinol 2.5 mg twice daily for 6 wk	Weight gain, agitation	7.0 ± 1.5 lb in first 6 wk, 4.6 ± 1.3 lb in first 6 wk	NS	Only 11 subjects completed study; numerous central nervous system side effects
Yeh et al95	51	> 55 yr, living in nursing home, with ≥ 5% loss of body weight in previous 3 mo or 20% below ideal body weight	Megestrol acetate 800 mg daily for 12 wk	Weight gain, improvement in appetite at 12 and 25 wk	1.05 ± 1.0 at 12 wk; 2.95 ± 1.4 at 25 wk, 0.91 ± 0.7 at 12 wk; -0.45 ± 0.9 at 25 wk > 0.2 at 12 wk; 0.043 at 25 wk	NS	Not an intention-to-treat analysis; 18 patients dropped out; appetite and weight continued to increase after 12 wk of therapy; no change in depression scores; no impact on survival

Note: BMI = body mass index, NS = not significant.
*Weight is measured in kilograms unless otherwise indicated.
†Not licensed as a drug in Canada but available in health food stores.

This article has been peer reviewed.

From the Division of General Internal Medicine and Clinical Epidemiology, University Health Network, the Geriatric Program, Toronto Rehabilitation Institute, and the Departments of Medicine and of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ont. (Alibhai); the Department of Nutri-
tional Sciences, University of Toronto, the Kunin Lunenfeld Applied Research Unit and the Department of Food and Nutrition Services, Baycrest Centre for Geriatric Care, Toronto, Ont. (Greenwood), and the Faculty of Medicine, University of Sherbrooke, Sherbrooke Geriatric University Institute, Sherbrooke, Que. (Payette)

Competing interests None declared.

Contributors: Shabib Alhdbid contributed to the article design, performed the primary systematic literature review, summarized the key studies, drafted significant portions of the paper and critically revised the article for important intellectual content. All of the authors approved the final version of the paper.

References

1. Marton Kl, Sox HC, Jr., Krupp JR. Unintentional weight loss: diagnostic and prognostic significance. Am J Med 1981;95(5):568-74.

2. Payette H, Couble C, Boutier V, Gray-Donald K. Nutrition risk factors for institutionalization in a free-living functionally dependent elderly population. J Clin Epidemiol 2000;53(6):579-87.

3. Rahimov M, Polk SD, Letter M, Garty M, Rosenfeld JR. Unintentional weight loss. A retrospective analysis of 154 cases. Arch Intern Med 1986;146(1):186-7.

4. Bilbao-Garay J, Barba R, Losa-Garcia E, Martin H, Garcia de Casasola G, Cazals V. Assessing the medical probability of organic disease in patients with unintentional weight loss: a simple score. Eur J Intern Med 2002;13(4):240-5.

5. Payette H, Couble C, Boutier V, Gray-Donald K. Weight loss and mortality among free-living frail elders: a prospective study. J Gerontol A Biol Sci Med Sci 1999;54(8):M440-5.

6. Cornoni-Huntley JC, Harris TB, Everett DF, Albanes D, Micocci MS, Miles TP, et al. An overview of body weight of older persons, including the impact on mortality. The National Health and Nutrition Examination Survey I — Epidemiologic follow-up study. J Clin Epidemiol 1991;44(6):741-53.

7. Simes GW, Kritevsky SB, Shorr RI, Pahor M, Applegate WB. Body mass index, weight change, and death in older adults: the systolic hypertension in the elderly program. Am J Epidemiol 2002;156(2):112-8.

8. Satish S, Winograd CH, Chavez C, Bloch DA. Geriatric targeting criteria as predictors of survival and health care utilization. J Am Geriatr Soc 1996;44(8):914-21.

9. Verdeny R, Levy K, Roberts N, Howell W. Natural history of failure to thrive, weight loss, and functional disability in elderly people after hospitalization. Age Ageing 1996;27(2):70-4.

10. Seltzer MH, Slocomb BA, Cataldi-Betcher EL, Fileti C, Gerson N. Instant nutritional assessment: absolute weight loss and surgical mortality. JPN J Parenter Enteral Nutr 1982;6(5):218-21.

11. Sullivan DH, Patch GA, Walls RC, Lipschitz DA. Impact of nutrition status on morbidity and mortality in a select population of geriatric rehabilitation patients. Am J Clin Nutr 1990;51(5):749-58.

12. Lawrence LJ, D’Amour CL, Madill GA. Body mass index, weight change, and risk of mobility disability in middle-aged and older women. The epidemiologic follow-up study of NHANES I. JAMA 1994;271(14):1093-8.

13. Newman AB, Yancey D, Harris T, Duxbury A, Enright PL, Fried LP. Weight change in old age and its association with mortality. J Am Geriatr Soc 2001;49(10):1109-18.

14. Fine JT, Golditz EA, Coakley EH, Moseley G, Manson JE, Willett WC, et al. A prospective study of weight change and health-related quality of life in women. JAMA 1999;282(22):2116-22.

15. Deeg DJ, Miles TP, Van Zonneveld RJ, Cubert JD. Weight change, survival time and cause of death in Dutch elderly. Arch Gerontol Geriatr 1990;10(1):97-111.

16. Lononczy KG, Harris TB, Cornoni-Huntley J, Simonsick EM, Wallace RB, Cook NR, et al. Does weight loss from middle age to old age explain the inverse weighted mortality relation in old age? Am J Epidemiol 1995;141(4):312-21.

17. Wallace JL, Schwartz RS, LaCroix AZ, Umlauf RF, Pearlman RA. Unintentional weight loss in older outpatients: incidence and clinical significance. J Am Geriatr Soc 1995;43(4):329-37.

18. Tully CL, Snowdon DA. Weight change and physical function in older women: findings from the Nun Study. J Am Geriatr Soc 1993;41(12):1394-7.

19. Ensrud KE, Ewing SK, Stone KL, Cauley JA, Bowman PJ, Cummings SR. Intentional and unintentional weight loss increase bone loss and hip fracture risk in older women. J Am Geriatr Soc 2003;51(4):740-5.

20. De Groot CP, Perdigao AL, Deurenberg P. Longitudinal changes in anthropometric characteristics of elderly Europeans. SENeca Investigators. Eur J Clin Nutr 1996;50(Suppl 2):S9-15.

21. Skatsteinen B, Kergoat MJ, Naidon S. Weight change, nutritional risk and its determination among cognitively intact and demented elderly Canadians. Can J Public Health 2001;92(2):141-9.

22. Melzer AA, Everhart JE. Unintentional weight loss in the United States. Am J Epidemiol 1995;142(10):1039-46.

23. Barrett-Connor E, Edelstein SL, Carey-Bloom J, Wiedenhold WC. Weight loss predicts dementia in community-dwelling older adults. J Am Geriatr Soc 1996;44(10):1147-52.

24. Thompson MP, Morris LK. Unexplained weight loss in the alcoholic elderly. J Am Geriatr Soc 1991;39(5):497-500.

25. Lankisch P, Gerzmann M, Gerzmann JF, Lehnick D. Unintentional weight loss: diagnosis and prognosis. The first prospective follow-up study from a secondary referral centre. J Intern Med 2001;249(1):61-6.

26. Huerta G, Vineis L. Unintentional weight loss as a clinical problem. Rev Intern Med 1989;41(1):5-9.

27. Levine MA. Unintentional weight loss in the ambulatory setting: etiologies and outcomes [abstract]. Clin Res 1991;39(2):580A.

28. Lin HW, Li CM, Lee YC, Lee LT, Leung KK. Differences in diagnostic approach between family physicians and other specialists in patients with unintentional body weight loss. Fam Pract 1999;16(6):586-90.

29. Hernandez JL, Riancho JA, Matorras P, Gonzalez-Macias J. Clinical evaluation for cancer in patients with unintentional weight loss without specific symptoms. Am J Med 2003;114(6):631-7.

30. Huffman GB. Evaluating and treating unintentional weight loss in the elderly. Am Fam Physician 2002;65(4):640-50.

31. Morley JE, Silver AJ. Nutritional issues in nursing home care. Am Intern Med 1993;121(11):850-9.

32. Morley JE. Anorexia in older patients: its meaning and management. Geriatrics 1990;45(12):65-6.

33. Schiffman SS. Taste and smell in disease (first of two parts). N Engl J Med 1994;331(8):551-4.

34. Fay K, Ship JA. The importance of oral health in the older patient. J Am Geriatr Soc 1995;43(12):1414-22.

35. Ship JA, Duffy V, Jones JA, Langmore S. Geriatric oral health and its impact on eating. J Am Geriatr Soc 1996;44(4):456-64.

36. Clarkston WK, Pantamo MM, Morley JE, Horowitz M, Littlefield JM, Burton FR. Evidence for the anorexia of aging: gastrointestinal transit and hunger in healthy elderly vs. young adults. Am J Physiol Endocrinol Metab 2000;279(1Pt2):E243-8.

37. Schwartz MW, Sleeley RE. Serotonin in medicine of the Beth Israel Deaconess Medical Center. Neuroendocrine responses to starvation and weight loss. N Engl J Med 1997;336(25):1802-11.

38. Morley JE. Decreased food intake with aging. J Gerontol A Biol Sci Med Sci 2001;56 Spec No 2:81-8.

39. Roberts SB, Fuss P, Heyman MB, Evans WJ, Tsay R, Rasmussen H, et al. Control of food intake in older men. JAMA 1994;272(20):1601-6.

40. Carr-Lopez SM, Phillips SL. The role of medications in geriatric failure to thrive. Drugs Aging 1996;9(4):221-5.

41. Ackerman BH, Kasbekar N. Disturbances of taste and smell induced by drugs. Pharmacotherapy 1997;17(3):482-96.

42. Payette H, Rouboenoff R, Jacques PF, Dinarello CA, Wilson PW, Abad LW, et al. A placebo-like growth factor 1 and interleukin 6 predict sarcopenia in very old community-living men and women: the Framingham Heart Study. J Am Geriatr Soc 2003;51(9):1237-43.

43. Baumgardner RN, Kochler KM, Gallagher D, Romero L, Heysmefield SB, Rafferty RR, et al. Epidemiology of sarcopenia among the elderly in New Mexico. J Am Geriatr Soc 1998;46(7):755-65.

44. Melton LJ 3rd, Black SA, Kiel DP, Cawthon P, Meunier PJ, Seeman T, et al. The role of age and gender on bone density and structure: a cross-sectional study in a large community study of US men and women. J Bone Miner Res 2000;15(12):2350-6.

45. Fink RL, Kiel DP, Heymsfield SB, Khazam N. Nutritional and metabolic determinants among cognitively intact and demented elderly Canadians. Can J Public Health 2001;92(2):141-9.
54. Keller HH, Hedley MR, Wong Brownlee S. The Development of Seniors in the Community: Risk Evaluation for Eating and Nutrition (SCREEN). Can J Diet Pract Res 2000;61(2):67-72.

55. Keller HH, McKenzie JD, Goy RE. Construct validation and test-retest reliability of the seniors in the community: risk evaluation for eating and nutrition questionnaire. J Gerontol A Biol Sci Med Sci 2001;56(9):M512-8.

56. Bouras EP, Lange SM, Scolapio JS. Rational approach to patients with unintentional weight loss. Mayo Clin Proc 2001;76(9):923-9.

57. Buckler DA, Kelber ST, Goodwin JS. The use of dietary restrictions in malnourished nursing home patients. J Am Geriatr Soc 1994;42(10):1100-2.

58. Kayser-Jones J, Schell ES, Porter C, Barbaccia JC, Steinbach C, Bird WF, et al. A prospective study of the use of liquid oral dietary supplements in nursing homes. J Am Geriatr Soc 1998;46(11):1378-86.

59. Young KW, Binns MA, Greenwood CE. Meal delivery practices do not meet needs of Alzheimer patients with increased cognitive and behavioral difficulties in a long-term care facility. J Gerontol A Biol Sci Med Sci 2001;56(11):M700-6.

60. Winograd GR, Brown EM. Aggressive oral refeeding in hospitalized patients. Am J Clin Nutr 1990;52(6):967-8.

61. Soltesz KS, Dayton JH. The effects of menu modification to increase dietary intake and maintain the weight of Alzheimer residents. Am J Alzheimer's Dis 1995;10:20-3.

62. Boyston E, Ryan C, Brown C, Westfall B. Increasing oral intake in dementia patients by altering food texture. Am J Alzheimer's Dis 1995;10:37-9.

63. Dey R. Food preference ratings of congenitally amonous humans. In: Kare M, Maller O, eds. Chemical senses and nutrition. New York: Academic Press; 1977. p. 315-25.

64. Langan MJ, Yeartick ES. The effects of improved oral hygiene on taste perception and nutrition of the elderly. J Gerontol 1977;32(4):413-8.

65. Gray-Donald K, Payette H, Boutier V. Randomized clinical trial of nutritional supplementations on energy intake in the elderly. J Am Coll Nutr 1994;13(3):277-84.

66. Wendland BE, Greenwood CE, Weinberg I, Young KW. Malnutrition in institutionalized seniors: the iatrogenic component. J Am Geriatr Soc 2003;51(1):85-90.

67. Brocker P, Vellas B, Albarède JL, Poynard T. A two-centre, randomized, double-blind trial of orthonine oxoglutarate in 141 elderly, ambulatory, ambulatory-subjects. Age Aging 1994;21(4):103-6.

68. Ku LJ, Lam KS, Tam SC, Hu WJ, Hui SL, Chiu A, et al. A randomized controlled trial of low-dose recombinant human growth hormone in the treatment of malnourished elderly medical patients. J Clin Endocrinol Metab 2001;86(5):1911-20.

69. Volicer L, Stelly M, Morris J, McLaughlin J, Volcer BJ. Effects of dronabinol on anorexia and disturbed behavior in patients with Alzheimer's disease. J Geriatr Psychiatry 1997;10(9):913-9.

70. Yeh SS, Wu SY, Lee TP, Olson JS, Stevens MR, Dixon T, et al. Improvement in quality-of-life measures and stimulation of weight gain after treatment with megestrol acetate oral suspension in geriatric cachexia: results of a double-blind, placebo-controlled study. J Am Geriatr Soc 2000;48(3):485-92.

71. Ottery FD, Walsh D, Strawford A. Pharmacologic management of anorexia/cachexia. Semin Oncol 1998;25(Suppl 6):1-9.

72. Karcie F, Philpot C, Morley JE. Treating malnutrition with megestrol acetate: literature review and review of our experience. J Nutr Health Aging 2002;6(3):191-200.

73. Castle S, Nguyen C, Joaquin A, Coyne B, Heuston C, Chan A, et al. Megestrol acetate suspension therapy in the treatment of geriatric anorexia/cachexia in nursing home patients. J Am Geriatr Soc 1995;43(7):835-6.

74. Jackobs MK. Megestrol acetate: a medical nutrition therapy tool to affect positive weight outcomes in the elderly [abstract]. J Am Diet Assoc 1999;99(Suppl 9):A-119.

75. Kardinal CG, Loprinzi CL, Schaid DJ, Hass AC, Dose AM, Aumann LM, et al. A controlled trial of cyproheptadine in cancer patients with anorexia and/or cachexia. Cancer 1990;65(12):2657-62.

76. Morley JE. Orexigenic and anabolic agents. Clin Geriatr Med 2002;18(4):853-66.

77. Olin AO, Osterberg P, Hadell K, Arner M, Jerstrom S, Ljungqvist O. Energy-enriched hospital food to improve energy intake in elderly patients. JPEN J Parenter Enteral Nutr 1996;20(2):93-7.

78. Miller AO, Ovander P, Hadel K, Arney M, Jerstrom S, Ljungqvist O. Energy-enriched hospital food to improve energy intake in elderly patients. JPEN J Parenter Enteral Nutr 1996;20(2):93-7.

79. De Jong N, Chin APMJ, de Graaf C, van Staveren WA. Effect of dietary supplements and physical exercise on sensory perception, appetite, dietary intake and body weight in frail elderly subjects. Br J Nutr 2000;83(5):805-13.

80. Payette H, Boutier V, Coulombe C, Gray-Donald K. Benefits of nutritional supplementation in free-living, frail, undernourished elderly people: a prospective randomized community trial. J Am Diet Assoc 2002;102(8):1088-95.

81. Milne AC, Potter J, Avenell A. Protein and energy supplementation in elderly people at risk from malnutrition [Cochrane review]. In: The Cochrane Library. Issue 3, 2002. Oxford: Update Software.

82. Wilson MM, Purnsbotham R, Morley JE. Effect of liquid dietary supplements on energy intake in the elderly. Am J Clin Nutr 2002;75(5):947-7.

83. Schiffman SS, Warwick JC. Effect of flavor enhancement of foods for the elderly on nutritional status: food intake, biochemical indices, and anthropometric measures. Physiol Behav 1991;51(2):391-402.

84. Mathey MF, Siebeneck E, de Graaf C, Van Staveren WA. Flavor enhancement of food improves dietary intake and nutritional status of elderly nursing home residents. J Gerontol A Biol Sci Med Sci 2001;56(4):M200-5.

85. Borst SE. Interventions for sarcopenia and muscle weakness in older people. Age Ageing 2000;33(6):488-55.

86. Meredith CN, Frontera WR, O'Reilly KP, Evans WJ. Body composition in elderly men: effect of dietary modification during strength training. J Am Geriatr Soc 1992;40(2):151-62.

87. Fiatarone MA, O'Neill EF, Ryan ND, et al. Exercise training and nutritional supplementation for physical frailty in very elderly people. N Engl J Med 1994;330(25):1769-75.

88. Dangour AD, Sibson VL, Fletcher AE. Micronutrient supplementation in later life: limited evidence for benefit. J Gerontol A Biol Sci Med Sci 2004;59(7):659-73.

Position of the American Dietetic Association: nutrition, aging, and the continuum of care. J Am Diet Assoc 2000;100(5):580-95.

Roy MA, Payette H. Meals-on-Wheels improves energy and nutrient intake in a frail free-living elderly population. J Nutr Health Aging. In press.

Keller HH, Osbye T, Bright-See E. Predictors of dietary intake in Ontario seniors. Can J Public Health 1997;88(5):305-9.

Lipschitz DA, Mitchell CO, Steele RW, Milton KY. Nutritional evaluation and supplementation of elderly subjects participating in a “meals on wheels” program. JPEN J Parenter Enteral Nutr 1985;9(5):341-7.

 Kronell M, Coleman PH, Bradley CL, Lau D, Ryan N. Subjectively healthy elderly consuming a liquid nutrition supplement maintained body mass index and improved some nutritional parameters and perceived well-being. J Am Diet Assoc 1999;99(12):1542-8.

 Volkert D, Hubsch S, Oster P, Schlief G. Nutritional support and functional status in undernourished geriatric patients during hospitalization and 6-month follow-up. Aging (Milano) 1996;8(6):386-95.

Gray-Donald K, Payette H, Boutier V, Page S. Evaluation of the dietary intake of homebound elderly and the feasibility of dietary supplementation. J Am Coll Nutr 1994;13(3):277-84.

Wendland BE, Greenwood CE, Weinberg I, Young KW. Malnutrition in institutionalized seniors: the iatrogenic component. J Am Geriatr Soc 2003;51(1):85-90.

Fiatarone MA, O'Neill EF, Ryan ND, et al. Exercise training and nutritional supplementation for physical frailty in very elderly people. N Engl J Med 1994;330(25):1769-75.

Dangour AD, Sibson VL, Fletcher AE. Micronutrient supplementation in later life: limited evidence for benefit. J Gerontol A Biol Sci Med Sci 2004;59(7):659-73.

89. Correspondence to: Dr. Shabbir M.H. Alibhai, University Health Network, Rm. ES 9-407, 200 Elizabeth St., Toronto ON M5G 2C4; fax 416 595-5826; shabbir@uhn.on.ca

780 JAMC • 15 MARS 2005; 172 (6)