Impact of prostaglandin glaucoma drops on platelet-activating factor action: an in vitro study

Marilta M Moschos1
Eirini Nitoda1
Irini P Chatziralli1
Georgios D Panos2
Constantinos A Demopoulos3

11st Department of Ophthalmology, Medical School, National and Kapodistrian University of Athens, Athens, Greece; 2Department of Ophthalmology, Geneva University Hospitals (HUG), University of Geneva, Geneva, Switzerland; 3Laboratory of Biochemistry, National and Kapodistrian University of Athens, Athens, Greece

Aim: The aim of this study was to investigate the effect of different prostaglandin analogs on platelet-activating factor (PAF) levels.

Methods: Three prostaglandin analogs were selected: bimatoprost 0.3 mg/mL, latanoprost 50 μg/mL, and tafluprost 15 μg/mL. Each drug sample was tested for its ability to cause platelet aggregation, which was measured as PAF-induced aggregation, before and after the addition of various concentrations of the examined sample, creating a linear curve of percentage inhibition (ranging from 0% to 100%) versus different concentrations of the sample. The concentration of the sample that inhibited 50% PAF-induced aggregation was calculated based on this curve, and this value was defined as IC50. In addition, the effect of eye drops on PAF metabolism was examined, through an in vitro analysis on PAF basic metabolic enzymes (PAF-cholinephosphotransferase, PAF-acetyl-CoA:1-O-alkyl-sn-glycero-3-phosphocholine acetyltransferase, and PAF-acetylhydrolase).

Results: The IC50 values for Lumigan UD® (bimatoprost 0.3 mg/mL), Monoprost® (latanoprost 50 μg/mL), and Saflutan (tafluprost 15 μg/mL) were 8.7, 0.28, and 1.4 μg/mL, respectively.

Discussion: All three prostaglandin analogs suspended PAF, but bimatoprost induced the most potent inhibition, compared to tafluprost and to the weak effect of latanoprost.

Keywords: glaucoma, platelet-activating factor, prostaglandin analogs, treatment, platelet aggregation

Introduction

Glaucoma is estimated to be the second leading cause of severe vision loss and blindness worldwide, affecting ~60.5 million people and accounting for 2.65% of the population aged >40 years in 2010.1,2 The medical treatment for glaucoma includes prostaglandin analogs, which are approved as the first-line treatment for glaucoma in the European Glaucoma Society guidelines, carbonic anhydrase inhibitors, β-receptor antagonists, adrenergic agonists, and parasympathomimetics.3,4 Prostaglandins are a family of lipid compounds that are derived enzymatically from essential fatty acids, with each containing 20 carbon atoms, including a 5-carbon ring.5 In eye, they are synthesized by the trabecular endothelial and the ciliary muscle cells from membrane phospholipids and arachidonic acid, exhibiting anti-inflammatory action.6,7 They seem to alter both the function and structure of the uveoscleral pathways, inducing extracellular matrix remodeling, widening of the intermuscular spaces, and dissolution of collagens types I and III.5 Besides prostaglandin E2, various inflammatory molecules, including cytokines, cyclooxygenase 2, tumor necrosis factor-alpha, interleukins, platelet-activating factor (PAF), vascular endothelial growth factor, and C-reactive protein have been implicated in the mechanisms of glaucoma, highlighting the role of inflammation in the pathogenesis of the disease.8,9

References:

1. World Health Organization. Global report on visual impairment. World Health Organization; 2012.
2. World Health Organization. Global report on visual impairment: 2010. World Health Organization; 2012.
3. European Glaucoma Society. Guidelines for the medical treatment of primary open-angle glaucoma. Available from: http://www.glaucoma-europe.org/
4. European Glaucoma Society. Guidelines for the medical treatment of primary open-angle glaucoma. Available from: http://www.glaucoma-europe.org/
5. Demopoulos CA, Panos GD, Chatziralli IP, et al. Prostaglandin analogs and the glaucoma treatment paradigm. In: Demopoulos CA, Panos GD, Chatziralli IP, et al., eds. Prostaglandin analogs in the treatment of glaucoma. New York: Nova Science; 2010.
6. Demopoulos CA, Panos GD, Chatziralli IP, et al. Prostaglandin analogs in the treatment of glaucoma. New York: Nova Science; 2010.
7. Demopoulos CA, Panos GD, Chatziralli IP, et al. Prostaglandin analogs in the treatment of glaucoma. New York: Nova Science; 2010.
8. Demopoulos CA, Panos GD, Chatziralli IP, et al. Prostaglandin analogs in the treatment of glaucoma. New York: Nova Science; 2010.
9. Demopoulos CA, Panos GD, Chatziralli IP, et al. Prostaglandin analogs in the treatment of glaucoma. New York: Nova Science; 2010.
10. Demopoulos CA, Panos GD, Chatziralli IP, et al. Prostaglandin analogs in the treatment of glaucoma. New York: Nova Science; 2010.

Correspondence: Marilta M Moschos
1st Department of Ophthalmology, Medical School, National and Kapodistrian University of Athens, 6, Ikaria Street, Ekali, Athens 14578, Greece
Tel +30 69 4488 7319
Fax +30 21 0412 2319
Email moschosmarilta@yahoo.fr

Drug Design, Development and Therapy 2016:10 3977–3981

© 2016 Moschos et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).
PAF (1-0-alkyl-2-acetyl-sn-gluceryl-3phosphorylcholine) is a low-molecular phospholipid mediator that is involved in inflammatory processes acting on various types of cells through specific receptors. Two metabolic pathways are responsible for PAF secretion: 1) de novo synthesis, where PAF is produced by a lipid intermediate (1-0-alkyl-2-acetyl-sn-glycero), through the action of the enzyme cholinephosphotransferase (PAF-CPT), converting cytidine diphosphate-choline (CDP-choline) to cytidine monophosphate; and 2) remodeling pathway, which is activated under inflammatory conditions and results in the secretion of PAF from preexisting membrane-bound ether-linked phospholipids through the enzyme acetyl-CoA:1-O-alkyl-sn-glycero-3-phosphocholine acetyltransferase (lyso-PAF-AT), which transfers an acetyl group in the sn-2 position of lyso-PAF. In the remodeling pathway, when cytosolic phospholipase A2 is activated, it becomes membrane-associated and hydrolyzes the fatty acyl moiety esterified at the sn-2 position of membrane phospholipids. The subsequent release of 2-lyso-phospholipids (1-1-dadsylglycero-3-phosphocholine or lyso-choline-containing membrane phospholipids) serves as substrates for the activation of PAF-acetylhydrolase (PAF-AH). The latter represents a heterogeneous group of PLA2 that removes sn-2 acetyl group, without affecting normal membrane phospholipids; they are responsible for the hydrolysis, the inactivation, and the concentrations of PAF in plasma and tissues.

The activation of PAF requires its coupling with its receptor, which is a 7-transmembrane-G-protein-coupled receptor, located in a great variety of cells, including monocytes, lymphocytes, vascular endothelial and smooth muscle cells, renal and mesangial cells, hepatocytes, keratinocytes, and osteoclasts. The range of cell responses to PAF explains its role in both physiological processes, such as platelet aggregation and secretion, activation of neutrophils and macrophages, and pathological mechanisms, resulting in asthma, systemic or cardiac anaphylaxis, endotoxin-induced shocks, thrombosis, and gastrointestinal ulceration. The detection of PAF in ocular tissues, such as iris, ciliary body, retina, and vascular endothelium, confirms its implication in ocular inflammation and blood flow.

Regarding the inflammatory background of glaucoma and the implication of PAF in the ocular inflammation and in the glaucomatous neuronal damage, the effect of different prostaglandin analogs on PAF levels was investigated.

Materials and methods

Equipment and solutions

The following equipment was used in the present study:

1. Heraeus® Labofuge® 400R for centrifugations
2. Suprasonic Bandelin Sonopuls HD 2070 sonicator (Heinrichstrasse 3–4, Berlin, Germany) for homogenizations (30% of the power)
3. 1209 Rackbeta (Pharmacia, Wallac, Finland) as liquid scintillation counter
4. Chrono-Log model 400 VS aggregometer (Havertown, PA, USA) to study platelet aggregation.

The eye drops tested in the present study were as follows: Lumigan® (bimatoprost 0.3 mg/mL; Allergan Pharmaceuticals Ltd., Westport, Ireland), Monoprost® (latanoprost 50 μg/mL; Laboratoires Thea, Clermont-Ferrand, France), and Saflutan (taluprost 15 μg/mL; Vianex S.A., Athens, Greece).

Calculation of the inhibitory effects of sample on PAF-induced aggregation

This is an in vitro study, where no human or animal subjects are included, but blood samples were required. The ethics committee of the General Hospital of Athens G. Gennimatas approved the protocol. Because the study was an in vitro one, no patient informed consent was needed. A total of 9 mL of blood was collected from the marginal ear vein of a New Zealand White rabbit and added in 1 mL of an anticoagulant solution of sodium citrate/citric acid. The sample was centrifuged at 630×g for 13 min at 25°C, and the supernatant was subsequently centrifuged at 1,400×g for 20 min at 25°C in order to obtain plasma (rich in platelets). The isolation of plasma and leukocytes from blood samples and the biological assay on washed rabbit platelets were carried out according to the methods described by Moschos et al. The leukocytes were isolated after the sedimentation of the erythrocytes using 3.4 mL of dextran solution (3% dextran in 0.15 M NaCl) for 1 h at room temperature. The homogenates of leukocytes were aliquoted and stored at −80°C after protein determination by using Bradford method.

Briefly, PAF and the examined drug samples were dissolved in 12.5 mg of bovine serum albumin (BSA) per 1 mL of saline. The ability of each selected drug to cause platelet aggregation was estimated by adding various concentrations of each sample into the platelet suspension. The PAF-induced aggregation was calculated at baseline (0% inhibition) and after the addition of the examined samples (in a variety of concentrations), and a linear curve of the percentage inhibition to the concentrations of each sample was created. The concentration of the sample that inhibited 50% of the PAF-induced aggregation was defined as IC50.

Determination of PAF and biosynthetic enzymes activities

The extraction, purification, and determination of PAF were transacted according to the methods described previously.
PAF was extracted according to the Bligh–Dyer method and was separated by a thin-layer chromatography (TLC) on silica gel G-coated plates with a development system consisting of chloroform/methanol/acetic acid/water (100:57:16:8, v/v/v/v). The specific activities of PAF-CPT and lyso-PAF-AT were expressed as pmol of produced PAF/min/mg of sample protein present in each assay. The homogenate of leukocytes, isolated from New Zealand white rabbits, was used to perform the PAF-CPT and lyso PAF-AT activity assays, as described previously. The PAF-CPT activity assay was carried out at 37°C for 20 min in a final volume of 200 μL, started by the addition of CDP-choline and stopped by the addition of 0.5 mL of cold methanol after 20 min. The reaction of lyso PAF-AT was carried out at 37°C for 30 min in a final volume of 200 mL, started with the addition of 0.5 mL of cold methanol after 30 min. Plasma PAF-AH was determined in plasma isolated from New Zealand white rabbits by the trichloroacetic acid precipitation method by using [H]PAF as a substrate. Protein concentrations were measured based on BSA as the protein standard (method of Bradford).

Statistical analysis
The Statistical Package for the Social Sciences Version 17.0 (SPSS Inc., Chicago, IL, USA) was used for the analysis. The IC₅₀ values were expressed as mean.

Results
The concentration of the bioactive compound that inhibited 50% of the PAF-induced aggregation in the aggregometer cuvette was defined as IC₅₀ and expressed in μg/mL. The IC₅₀ of the tested eye drops indicated that the present substances are considered good inhibitors for PAF, acting in the range of μM. The IC₅₀ values for bimatoprost 0.3 mg/mL, latanoprost 50 μg/mL, and tafluprost 15 μg/mL were 8.7, 0.28, and 1.4 μg/mL, respectively. These values indicated that all tested substances achieved to inhibit PAF.

Discussion
The effect of the three prostaglandins, bimatoprost, latanoprost, and tafluprost, on PAF activity was investigated, evaluating the aggregation of platelets. It was noted that all the three prostaglandins suspended PAF, but bimatoprost induced the most potent inhibition (IC₅₀ =8.7 μg/mL) compared to tafluprost (IC₅₀ =1.4 μg/mL) and to the weak effect of latanoprost (IC₅₀ =0.28 μg/mL). Latanoprost was launched in 1996 and was the first of the currently available topical PGF₂α analogs for glaucoma treatment. It is an esterified prodrug of PGF₂α and, as such, is more lipophilic than the parent compound. Bimatoprost is a synthetic structural prostaglandin F₂α analog, where the carboxylic acid is replaced by a neutral ethylamide, but it has low direct effect on prostaglandin F₂α receptors. Comparative studies revealed that bimatoprost has a greater hypotonic effect compared to latanoprost, whereas Noecker et al revealed only statistical but not clinical significance of bimatoprost versus latanoprost. Tafluprost, which is the first preservative-free prostaglandin medication developed for the treatment of glaucoma, is a prodrug of synthetic analog of prostaglandin F₂α. It exhibits high affinity and selectivity with prostaglandin F prostanoïd receptors, while it also binds to the prostanoïd EP3 receptor, amplifying its hypotonic action. Kurashima et al supported that tafluprost limits ciliary artery contraction, inducing a superior hypotensive effect compared to latanoprost. Yamada et al noted that bimatoprost induced greater expression of metalloproteinase 2 (MMP-2) and metalloproteinase 3 (MMP-3) than latanoprost and tafluprost, whereas tafluprost and latanoprost increased the expression MMP-1 and MMP-9, respectively, more than bimatoprost. In a previous study, it was found that latanoprost (IC₅₀ =0.29 μM) was found to be the most potent in inhibiting PAF compared to single travoprost (IC₅₀ =0 μM) or to the combination of the latter with timolol (IC₅₀ =0.11 μM).

Acknowledgment
No financial support was offered for the present study.

Author contributions
All authors contributed toward data analysis, drafting and revising the paper and agree to be accountable for all aspects of the work.
Disclosure
The authors report no conflicts of interest in this work.

References
1. Resnikoff S, Pascolini D, Etya’ale D, et al. Global data on visual impairment in the year 2020. Bull World Health Organ. 2004;82:844–851.
2. Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol. 2006;90:262–267.
3. Schmidt D, Schmetterer L, Garhöfer G, Papa-Cherecheanu A. Pharmacotherapy of glaucoma. J Ocul Pharmacol Ther. 2015;31(2):63–77.
4. European Glaucoma Society. Terminology and Guidelines for Glaucoma. 3rd ed. Savona: Dogma; 2008.
5. Komoto J, Yamada T, Watanabe K, Woodward DF, Takusagawa F. Prostaglandin F2alpha formation from prostaglandin H2 by prostaglandin F synthase (PGFS): crystal structure of PGFS containing bimatoprost. Biochemistry. 2006;45(7):1987–1996.
6. Polansky JR, Kurtz RM, Alvarado JA, Weinreb RN, Mitchell MD. Eicosanoid production and glucocorticoid regulatory mechanisms in cultured human trabecular meshwork cells. Prog Clin Biol Res. 1989;312:113–138.
7. Matsumoto S, Yorio T, Magnino PE, DeSantis L, Pang IH. Endothelin-induced changes of second messengers in cultured human ciliary muscle cells. Invest Ophthalmol Vis Sci. 1996;37(6):1058–1066.
8. Lütjen-Drecoll E, Tamm E. Morphological study of the anterior segment of cynomolgus monkey eyes following treatment with prostaglandin F2alpha. Exp Eye Res. 1988;47(5):761–769.
9. Vohra R, Tsai JC, Kolko M. The role of inflammation in the pathogenesis of glaucoma. Surv Ophthalmol. 2013;58(4):311–320.
10. Bazan NG, Allan G. Signal transduction and gene expression in the eye: a contemporary view of the pro-inflammatory, anti-inflammatory and modulatory roles of prostaglandins and other bioactive lipids. Surv Ophthalmol. 1997;41(Suppl 2):S23–S34.
11. Chao W, Olson MS. Platelet-activating factor: receptors and signal transduction. Biochem J. 1993;292:617–629.
12. Fragopoulou E, Iatrou C, Demopoulos CA. Characterization of acetyl-CoA: lyso-PAF acetyltransferase of human mesangial cells. Mediators Inflamm. 2005;2005(5):263–272.
13. McManus LM, Pinckard RN. PAF, a putative mediator of oral inflammation. Crit Rev Oral Biol Med. 2000;11(2):240–258.
14. Derewenda ZS, Derewenda U. The structure and function of platelet-activating factor acetylhydrolases. Cell Mol Life Sci. 1998;54:446–455.
15. Rosenbaum JT, Boney RS, Samples JR, Valone FH. Synthesis of platelet activating factor by ovarian tissue from inflamed eyes. Arch Ophthalmol. 1991;109(3):410–413.
16. Tsoupras AB, Chini M, Mangafas N, et al. Platelet activating factor and its basic metabolic enzymes in blood of naive HIV-infected patients. Angiology. 2012;63:343–352.
17. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–254.
18. Antonopoulou S, Fragopoulou E, Karantonis HC, et al. Effect of traditional Greek Mediterranean meals on platelet aggregation in normal subjects and in patients with type 2 diabetes mellitus. J Med Food. 2006;9:356–362.
19. Moschos MM, Chatziralli IP, Stamatakis G, Papakonstantinou VD, Tsatsos M, Demopoulos CA. In vitro effects of anti-glucomatous eye drops on platelet activating factor and its metabolism. Semin Ophthalmol. Epub 2015 Aug 13.
20. Tsoupras AB, Fragopoulou E, Nomikos T, Iatrou C, Antonopoulou S, Demopoulos CA. Characterization of the de novo biosynthetic enzyme of platelet activating factor, DDT insensitive cholinephosphotransferase, of human mesangial cells. Mediators Inflamm. 2007;2007:27683.
21. Tsoupras AB, Chini M, Tsogas N, et al. Anti-platelet activating factor effects of highly active antiretroviral therapy (HAART): a new insight in the drug therapy of HIV infection? AIDS Rev Hum Retroviruses. 2008;24:1079–1086.
22. Gimenez R, Aguilar J. Cytidine (5’) diphosphocholine induced decrease in cerebral platelet activating factor is due to inactivation of its synthesizing enzyme cholinephosphotransferase in aged rats. Neurosci Lett. 2001;299:209–212.
23. Antonopoulou S, Demopoulos CA, Iatrou C, Moustaekas G, Zirogiannis P. Platelet activating factor acetylhydrolase (PAF-AH) in human kidney. Int J Biochem. 1994;26:1157–1162.
24. Ota T, Aihara M, Narumiya S, Arije M. The effects of prostaglandin analogues on IOP in prostanoid FP-receptor-deficient mice. Invest Ophthalmol Vis Sci. 2005;46:4159–4163.
25. Woodward DF, Krauss AH, Chen J, et al. Pharmacological characterization of a novel antiglaucoma agent, Bimatoprost (AGN 192024). J Pharmacol Exp Ther. 2003;305(2):772–785.
26. Gandolfi S, Simmons ST, Sturm R, Chen K, VanDenburgh AM. Bimatoprost Study Group 3. Three-month comparison of bimatoprost and latanoprost in patients with glaucoma and ocular hypertension. Adv Ther. 2001;18(3):110–121.
27. Konstas AG, Katsimbris JM, Lallos N, Boukara GP, Jenkins JN, Stewart WC. Latanoprost 0.005% versus bimatoprost 0.03% in primary open-angle glaucoma patients. Ophthalmology. 2005;112(2):262–266.
28. Neecker RS, Dirks MS, Chaplin NT, Bernstein P, Batosangil AH, Whitcup SM; Bimatoprost/Latanoprost Study Group. A six-month randomized clinical trial comparing the intraocular pressure-lowering efficacy of bimatoprost and latanoprost in patients with ocular hypertension or glaucoma. Am J Ophthalmol. 2003;135(1):55–63.
29. Uusitalo H, Egorov E, Kaarimanta K, Astakhov Y, Ropo A. Benefits of switching from latanoprost to preservative-free tafluprost eye drops: a meta-analysis of two Phase IIIb clinical trials. Clin Ophthalmol. 2016;10:445–454.
30. Ota T, Aihara M, Saeki T, Narumiya S, Arije M. The IOP-lowering effects and mechanism of action of tafluprost in prostanoid receptor-deficient mice. Br J Ophthalmol. 2007;91(5):673–676.
31. Kurashima H, Watabe H, Sato N, Abe S, Ishida N, Yoshihomi T. Effects of prostaglandin F(2alpha) analogues on endothelin-1-induced impairment of rabbit ocular blood flow: comparison among tafluprost, travoprost, and latanoprost. Exp Eye Res. 2010;91(6):853–859.
32. Yamada H, Yoneda M, Gosho M, Kato T, Zako M. Bimatoprost, latanoprost, and tafluprost induce differential expression of matrix metalloproteinases and tissue inhibitor of metalloproteinases. BMC Ophthalmol. 2016;16:26.
33. Jager GV, van Delft JL, van Haeringen MJ, Verbeij NL, Braquet P. Antagonist of platelet-activating factor prevents prostaglandin E2 induced ocular hypertension in rabbits. Prostaglandins. 1993;45(1):97–105.
34. Shukla SD. Platelet-activating factor receptor and signal transduction mechanisms. FASEB J. 1992;6:2296–2301.
35. Bazan H, Ottino P. The role of platelet-activating factor in the cornal response to injury. Prog Retin Eye Res. 2002;21:449–464.
36. Zhou X, Li F, Kong L, Tomita H, Li C, Cao W. Involvement of inflammation, degradation, and apoptosis in a mouse model of glaucoma. J Biol Chem. 2005;280(35):31240–31248.
