Supplemental Materials

Supplemental Tables:

Table S1: Summary of baseline demographics for OM-Rosuvastatin clinical drug interaction study

Table S2: Predicted effect of BCRP inhibition on rosuvastatin exposure upon administration of 50 mg OM (BID)

Table S3: Parameters For The Rosuvastatin Compound File

Table S4: Validation Of Rosuvastatin PBPK Model

Supplemental Figures:

Figure S1: Study design of OM-Rosuvastatin clinical drug interaction study

Figure S2: Graphical presentation of the validation of the PBPK model

Figure S3: Model-predicted (solid lines) and observed (solid circles) OM plasma concentration-time profiles in healthy subjects (shown in linear and log-linear scale) (A). 50 mg single dose (Study 1, control group; n = 14) (B). 25 mg BID dose for 7 days (Study 2; n =13). The dotted and dashed lines denote upper and lower extremes of the 95% confidence interval; error bars represent standard deviation

Figure S4: Model-predicted (solid lines) and observed (solid circles) OM plasma concentration-time profiles in healthy subjects (shown in linear and log-linear scale); a. 25 mg BID (Study 4, control group; n = 14) b. 50 mg BID (Study 3; n =13); The dotted and dashed lines denote 95th and 5th percentiles, respectively; error bars represent standard deviation

Figure S5: Simulated And Observed Rosuvastatin Plasma Concentration-Time Profiles (Validation)

Figure S6: Model-predicted* (solid and dotted lines) and observed (closed and open circles) rosuvastatin plasma concentration-time profiles in healthy subjects in the presence and absence of OM (shown in linear and log-linear scale). *10 mg rosuvastatin was co-administered with 50 mg (black) OM orally; the dotted and dashed lines denote 95th and 5th percentiles, respectively; error bars represent standard deviation

Figure S7: Impact of BCRP Ki of OM on rosuvastatin AUC ratio and Cmax ratio

Supplemental Experimental Methodology

1. Overview of PBPK Modeling Strategy
2. Development of the OM Compound File in Healthy Population
3. Development and validation of the rosuvastatin PBPK model
Table S1: Summary of baseline demographics for OM-Rosuvastatin clinical drug interaction study

Parameter	Rosuvastatin Study
Age, mean (SD), y	34.1 (9.71)
Male, n (%)	6 (42.9%)
Female, n (%)	8 (57.1%)
BMI, mean (SD), kg/m²	25.1 (2.75)
Height, mean (SD), cm	167 (9.49)
Weight, mean (SD), kg	70.4 (13.1)
Ethnicity, n (%)	
Hispanic or Latino	10 (71.4%)
Not Hispanic or Latino	4 (28.6%)
Race, n (%)	
Black	3 (21.4%)
White	10 (71.4%)
Multiple	1 (7.1%)

BMI body mass index, SD standard deviation.
Table S2. Predicted effect of BCRP inhibition on rosuvastatin exposure upon administration of 50 mg OM (BID)

	BCRP Kᵢ 0.05 µM
AUC ratio^a	1.18 (1.16, 1.20)^c
C_{max} ratio^b	2.04 (1.99, 2.10)^c

Rosuvastatin administered on day 10 with or without 50 mg OM administered orally bid for 14 days;
^aRatio of rosuvastatin AUC in the presence of 50 mg BID OM to that in the absence of OM;
^bRatio of rosuvastatin C_{max} in the presence of 50 mg BID OM to that in the absence of OM;
^cGeometric mean (90% confidence interval)
Table S3. Parameters for the Rosuvastatin Compound File

Parameter	Value	Method/ Reference
Molecular Weight	481.54	PubChem
LogP	2.4	(Ahmad et al, 2008)
pKa	4.27	"Avdeef, A. Absorption and Drug Development, Second Edition. Wiley-Interscience, Hoboken, 2012." as cited in Wiki-pKa. http://www.inadme.com/ (Jones et al, 2012)
Fraction unbound (fu) in plasma	0.625	(Jones et al, 2012)
Red blood cell partitioning	0.107	(Jones et al, 2012)
fu,gut	1	Assumed
P_{et,man} (10^{-4} cm/s)	0.85	Predicted
Permeability assay	Caco2	(Li et al, 2012)
Apical: Basolateral pH	7.4:7.4 (Passive)	
PappA-B (10^{-6} cm/s)	3.395	
Reference compound	Propranolol	
Reference compound	20	
Scalar	2.15	
Transporter	BCRP	
CL_{int} (µL/min/million hepatocytes)	24	Fitted to recover the t_{max} for the 10mg dose (Cooper et al, 2003)
Distribution	Minimal PBPK model	
V_{ss} (L/kg)	0.81	Predicted by Rodger’s and Rowland’s Method with predicted lipid binding scalar 2337
CL_{int}, HLM (µL/min/mg protein)	17	Liver CL_{int} has been estimated from CLiv and CLrenal using the retrograde model knowing a 10% metabolic contribution (Martin et al, 2003; Martin et al, 2000)
CL,renal (L/h)	17	Meta analysis (Keskitalo J et al, 2009; Keskitalo JE et al, 2009; Martin et al, 2003)
Permeability limited liver model		
CL_{H0} (mL/min/million hepatocytes)	0.0025	(Kotani et al, 2011)
fu_IW	0.967	Predicted
fu_NEW	0.187	Predicted
Transporter	Liver sinusoidal uptake	
CL_{H0,T} (µL/min/million hepatocytes)	139	Optimized, See text for details
Transporter	BCRP (biliary efflux)	
CL_{H0,T} (µL/min/million hepatocytes)	1.23	Biliary CL_{int} determined in sandwich-cultured human hepatocytes (Abe et al, 2009) was scaled using a liver weight (25g/kg body weight) and an HPGL of 107 million cells/g liver
Table S4. Validation of Rosuvastatin PBPK Model

Study	Dose (mg)	t_{max} (hours)	C_{max} (ng/mL)	AUC_{inf} (ng/mL.h)						
		Observed	Simulated	Observed	Simulated	Simulated/	Observed	Simulated	Simulated/	
			Simulated/Observed			Observed	Simulated/Observed		Observed	Simulated/Observed
Rosuvastatin PK										
Pasanen et al 2007	10	5 (1 to 5)	4.2 (2.2 - 7.9)	0.84	4.2 ± 2.41	4.3 ± 1.4	1.02	35 ± 18.1	51.6 ± 15.6	1.47
Allred et al 2011\(^1\)	10	Not available	-	-	3.7	4.1	1.11	41.6	49.3	1.19
Polli et al 2003\(^1\)	10	4 (1 to 6)	4.2 (2.2 - 7.9)	1.05	2.6	4.1	1.58	35.3	49.3	1.40
Cooper et al 2003	10	5 (3 to 5)	4.2 (2.2 - 7.9)	0.84	8.7 ± 4.5	4.3 ± 1.4	0.49	84.7 ± 20.2	51.6 ± 15.6	0.61
Lee et al 2005\(^1,2\)	40	4.14 1.51	4.2 (2.2 - 7.9)	1.01	25	16.3	0.65	216	196.7	0.91
Schneck et al 2004\(^2,3\)	80	4 (0.5 to 5)	4.2 (2.2 - 7.9)	1.05	49.5	34.2	0.69	410	380.5	0.93
Cooper et al 2002\(^1,2\)	80	5 (2 - 6)	4.2 (2.2 - 7.9)	0.84	41.4	34.2	0.83	325	393.5	1.21
Keskimino et al (c.421AA genotype)	20	4 (2 - 5)	1.8 (1.0 - 2.8)	0.45	16.3	18.6	1.14	152.2	121.1	0.80

\(^1\) Geometric mean C_{max} and AUC

\(^2\) AUC 72h

\(^3\) AUC 30h
Figure S1: Study design of OM-Rosuvastatin clinical drug interaction study

- **Screening Period:** Days -21 to -2
- **Day 1:** Rosuvastatin 10 mg
- **Day 6:** Rosuvastatin 10 mg + Omecamtiv Mecarbil 50 mg
- **Day 10:** End of Study (EOS)
Figure S2. Graphical presentation of the validation of the PBPK model

1. Develop PBPK model for OM
 - Step 1: Estimate distribution related parameters from iv study (35 mg)

2. Verify OM PBPK model using studies 3 and 4
 - Step 2: Estimate $\text{Cl}_{\text{pGp}}, \text{Ka}$ from studies 1 (50 mg single dose) and 2 (25 mg BID)

3. Use clinical data from rosuvastatin-OM single dosing DDI study to optimize OM BCRP K_i

4. Predict BCRP DDI upon 50 mg BID OM dosing
Figure S3. Model-predicted (solid lines) and observed (solid circles) OM plasma concentration-time profiles in healthy subjects (shown in linear and log-linear scale) (A). 50 mg single dose (Study 1, control group; n = 14) (B). 25 mg BID dose for 7 days (Study 2; n =13). The dotted and dashed lines denote upper and lower extremes of the 95% confidence interval; error bars represent standard deviation.
Figure S4. Model-predicted (solid lines) and observed (solid circles) OM plasma concentration-time profiles in healthy subjects (shown in linear and log-linear scale); a. 25 mg BID (Study 4, control group; n = 14) b. 50 mg BID (Study 3; n = 13); The dotted and dashed lines denote 95th and 5th percentiles, respectively; error bars represent standard deviation.
Figure S5. Simulated And Observed Rosuvastatin Plasma Concentration-Time Profiles (Validation)

A.

![Graph for 10 mg dosing](image)

Black lines denote simulated and the circles, triangles, diamonds and squares denote observed concentrations after an oral dose of A. 10mg (Polli et al, 2013; Allred et al, 2011; Pasanen et al, 2007; Cooper et al, 2003) B. 40mg (Lee et al, 2005) C. 80mg (Schneck et al, 2004; Cooper et al, 2002). The black lines represent mean of individual trials (10 trials x 10 subjects; 18-65 years; 50% female). The dotted and dashed lines represent the 95th and 5th percentile, respectively.
Figure S6. Model-predicted* (solid and dotted lines) and observed (closed and open circles) rosvastatin plasma concentration-time profiles in healthy subjects in the presence and absence of OM (shown in linear and log-linear scale). *10 mg rosvastatin was co-administered with 50 mg (black) OM orally; the dotted and dashed lines denote 95th and 5th percentiles, respectively; error bars represent standard deviation
Figure S7. Impact of BCRP Ki of OM on rosuvastatin AUC ratio and Cmax ratio
Supplemental experimental methodology

1. Overview of PBPK Modeling Strategy

Simcyp Simulator (Simcyp LTD, Version 17.1, Sheffield, UK) was used for PBPK modeling. All simulations. The steps followed are listed below:

1) OM Model development: The distribution of OM was parameterized from clinical PK generated upon 35 mg intravenous administration. With fixed distribution parameters, the apparent oral clearance (CL_{po}) and the first order absorption rate constant (K_a) were parameterized from clinical PK data generated upon administration of single 50 mg dose of OM and twice daily dosing of 25 mg OM for 7 days.

2) OM model verification: The OM PBPK model was verified by comparison of model predicted PK parameters to the observed PK parameters. The model was considered verified if the predicted C_{max}, t_{max} and AUC fell within 2-fold of the observations.

3) Model application: The verified model was used for BCRP inhibition mediated clinical DDI prediction.

2. Development of the OM Compound File in Healthy Population

Clinical PK upon administration of single 50 mg dose of OM (Study 4, control group) along with twice daily dosing of 25 mg OM for 7 days (Study 1) was used in combination to obtain parameter estimates of CL_{po} and K_a that reasonably predict plasma concentration-time profiles upon both single and multiple oral dosing. The ‘maximum likelihood’ objective function was used along with the ‘expectation maximization’ minimization method.

The optimized parameters were used to simulate plasma concentration-time profiles in virtual populations mimicking the respective designs of studies 4 and Study 2 with respect to the administered dose, dosing regimen, age range, number of subjects in the study and the proportion of females in each study. Table 1 summarizes the virtual study design for each clinical study. The simulated C_{max}, t_{max} and AUC were compared to the observed values and deemed acceptable if they fell within 2-fold of observations which is the commonly acceptable criteria (Shebley et al, 2018).
3. Development and validation of the rosuvastatin PBPK model

The input parameters for rosuvastatin PBPK model are summarized in Supplemental Table 3. All input parameters were taken from the rosuvastatin Simcyp (V17) library file with the exception of liver sinusoidal uptake intrinsic clearance and intestinal BCRP intrinsic clearance. First, the parameter estimation module in Simcyp was used to obtain the liver sinusoidal uptake intrinsic clearance. For this purpose, the liver metabolic intrinsic clearance and biliary BCRP intrinsic clearance were fixed (HLM CL\text{int} \ 17 \ \mu L/min/mg protein, BCRP CL\text{int,T} \ 1.23 \ \mu L/min/million hepatocytes), and the PK data generated upon iv rosuvastatin administration was used (Martin et al, 2003). Next, the intestinal BCRP CL\text{int,T} was parameterized from PK data generated upon oral administration of 10mg rosuvastatin (Cooper et al, 2003). Although BCRP in the kidney may be responsible for rosuvastatin active tubular secretion, no significant impact of BCRP polymorphism was observed on rosuvastatin renal clearance (Keskitalo J et al, 2009) possibly due to compensatory effect of other efflux transporters like MRP2 since rosuvastatin is also a substrate for MRP2 (Ellis et al, 2013). Hence, explicit transporter mediated renal excretion was not modeled for rosuvastatin.

The ability of the PBPK model to predict rosuvastatin PK from multiple independent studies was evaluated. The results from the validation are summarized in Supplemental Figure 5 and Supplemental Table 4. The C\text{max}, t\text{max} and AUC for rosuvastatin were predicted within 2-fold by the PBPK model.

BCRP polymorphisms are known to result in reduced transport of certain BCRP substrates associated with decreased BCRP expression or decreased ATPase activity of BCRP (Morisaki et al, 2005; Kondo et al, 2004). The most significant impact of BCRP on rosuvastatin PK has been observed in subjects with c.421AA genotype (Keskitalo J et al, 2009). The ability of the model to predict the impact of BCRP on rosuvastatin PK was assessed by simulating the plasma concentration-time profile when BCRP intrinsic clearance in the intestine and liver was set to 0, and comparing the simulated data with PK from subjects with c.421AA genotype (Keskitalo J et al, 2009). The C\text{max} and AUC were predicted within 2-fold by the model. The results from the validation are summarized in Supplemental Table 4.

The rosuvastatin PBPK model was thus considered verified and used for DDI prediction in presence of OM.
Supplemental References

Allred AJ, Bowen CJ, Park JW, et al. Eltrombopag increases plasma rosuvastatin exposure in healthy volunteers. 2011;72:321-329.

Cooper K, Martin P, Dane A, Warwick M, Schneck D, Cantarini M. The effect of fluconazole on the pharmacokinetics of rosuvastatin. 2002;58:527-531.

Cooper KJ, Martin PD, Dane AL, et al. Effect of itraconazole on the pharmacokinetics of rosuvastatin. 2003;73:322-329.

Ellis LC, Hawksworth GM, Weaver RJJ, Pharmacology A. ATP-dependent transport of statins by human and rat MRP2/Mrp2. 2013;269:187-194.

Jones HM, Barton HA, Lai Y, et al. Mechanistic pharmacokinetic modeling for the prediction of transporter-mediated disposition in humans from sandwich culture human hepatocyte data. 2012;40:1007-1017.

Keskitalo J, Zolk O, Fromm MF, et al. ABCG2 polymorphism markedly affects the pharmacokinetics of atorvastatin and rosuvastatin. 2009;86:197-203.

Keskitalo JE, Kurkinen KJ, Neuvonen M, Backman JT, Neuvonen PJ, Niemi MJ. No significant effect of ABCB1 haplotypes on the pharmacokinetics of fluvastatin, pravastatin, lovastatin, and rosuvastatin. 2009;68:207-213.

Kondo C, Suzuki H, Itoda M, et al. Functional analysis of SNPs variants of BCRP/ABCG2. 2004;21:1895-1903.

Kotani N, Maeda K, Watanabe T, et al. Culture period-dependent changes in the uptake of transporter substrates in sandwich-cultured rat and human hepatocytes. 2011;39:1503-1510.

Lee E, Ryan S, Birmingham B, et al. Rosuvastatin pharmacokinetics and pharmacogenetics in white and Asian subjects residing in the same environment. 2005;78:330-341.

Li J, Wang Y, Zhang W, et al. The role of a basolateral transporter in rosuvastatin transport and its interplay with apical breast cancer resistance protein in polarized cell monolayer systems. 2012;40:2102-2108.

Martin P, Dane A, Schneck D, Warwick MJ. Disposition of new HMG-CoA reductase inhibitor ZD4522 following dosing in healthy subjects. 2000;40:1056.

Martin PD, Warwick MJ, Dane AL, Brindley C, Short TJ. Absolute oral bioavailability of rosuvastatin in healthy white adult male volunteers. 2003;25:2553-2563.

Morisaki K, Robey RW, Özvegy-Laczka C, et al. Single nucleotide polymorphisms modify the transporter activity of ABCG2. 2005;56:161-172.
Pasanen MK, Fredrikson H, Neuvonen PJ, Niemi MJCP, Therapeutics. Different effects of SLCO1B1 polymorphism on the pharmacokinetics of atorvastatin and rosuvastatin. 2007;82:726-733.

Polli JW, Hussey E, Bush M, et al. Evaluation of drug interactions of GSK1292263 (a GPR119 agonist) with statins: from in vitro data to clinical study design. 2013;43:498-508.

Schneck DW, Birmingham BK, Zalikowski JA, et al. The effect of gemfibrozil on the pharmacokinetics of rosuvastatin. 2004;75:455-463.

Shebley M, Sandhu P, Emami Riedmaier A, et al. Physiologically based pharmacokinetic model qualification and reporting procedures for regulatory submissions: a consortium perspective. 2018;104:88-110.