Highly Efficient Removal of Silver-Containing Nanoparticles in Waters by Aged Iron Oxide Magnetic Particles

Xiao-xia Zhou,†‡ Ying-jie Li,†§ and Jing-fu Liu*†§

†State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085, China
‡University of Chinese Academy of Sciences, Beijing 100049, China
§College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China

ABSTRACT: Methods for the removal of silver nanoparticles (AgNPs) and their transformation products, silver-containing nanoparticles (AgCNPs), are important, because of their potential risks to the general population and the environment. In this study, aged iron oxide magnetic particles (IOMPs) were synthesized by a simple solvothermal reaction and used for the removal of AgCNPs. The prepared IOMPs exhibit a high adsorption capacity toward AgCNPs in aqueous medium. Kinetic studies indicated that the adsorption of AgCNPs is a pseudo-second-order process. The experimental data for the adsorption of AgCNPs follow the Langmuir isotherm model, and their maximum adsorption capacities were 19.9−62.8 mg/g at pH 6.2 and 298 K. The sorption mean free energy calculated by the Dubinin−Radushkevich isotherm was 4.09−5.17 kJ/mol, indicating the occurrence of physisorption, which was mainly due to the electrostatic interactions. The IOMP adsorbents maintained high removal efficiencies after four cycles of adsorption−desorption, suggesting good reusability of the developed IOMPs. Moreover, good removal efficiencies (63.3%−99.9%) and recoveries (67.1%−99.9%) were obtained from the real samples spiked with AgCNPs at levels of 10 μg/L, showing that the aged IOMPs could be used as efficient and low-cost adsorbents for the removal and recovery of AgCNPs from real waters.

KEYWORDS: Aged iron oxide magnetic particles, Adsorption, Silver-containing nanoparticles, Removal, Waters

INTRODUCTION

Because of the excellent electro-optical, antimicrobial, and catalytic properties, silver nanoparticles (AgNPs) have many applications in sensing,† catalysts, antimicrobial products,§ and water treatment.‡ However, the growing use of consumer products incorporated with AgNPs leads to their increasing release into the environment.§−† Since AgNPs are far from being chemically inert, once they entered the environment, they have been shown to react with Ag-complexing ligands (i.e., organic matter, sulfur, chlorine) to form various Ag-containing NPs (AgCNPs), such as AgCl NPs and Ag2S NPs.§−† There are many studies on toxicity and environmental safety of AgCNPs to various aquatic organisms in different trophic levels, such as microorganisms,††−†‡ algae,†† macrophytes,††,§§ and fisher.††† In vitro studies demonstrated that AgCNPs can damage mammalian cells and their DNA.†§ Also, in vivo studies with AgCNPs showed their bioaccumulation in important body organs, including the lungs, liver, kidneys, and brain, which has adverse impacts and hazards on mammals.†‖ Moreover, several studies have demonstrated the transfer and biomagnification of AgCNPs in a food chain.‖‖−‖‡ At present, AgCNPs have been considered as one of the most important pollutants, and the related researches are becoming hotspots in the field of environmental science.‖‖,‖‡ Thus, the issue of environmental remediation of AgCNPs must be urgently addressed.

A variety of approaches have been available for the removal of NPs, including chemical coagulation,‖‖ membrane filtration,‖‖,‖‡ biological processes,‖‖ and cloud point extraction.‖ A design of a method for the removal of AgNPs would be expected to be both effective and cost-competitive.‡‡ Adsorption is a very promising method for the removal of NPs from environmental waters, because of its simplicity and cost-effective nature. However, limited adsorbents including polymers,‖§,‖‖ carbon spheres,‖‖ hybrid material,‖ and metal oxides,‖ have been proposed for the removal of AgNPs from various water samples. Magnetic particles are excellent adsorbents for the removal of pollutants from waters, because they can be easily separated after binding and require little energy.§§ Iron oxide magnetic particles (IOMP) have been widely used in the purification, because of their cost-effective preparation, large surface area, good biocompatibility, and low toxicity.‖‖,‖‡ However, the use of IOMPs for the removal of AgNPs has not been reported.
In our previous work, aged IOMPs (Fe₃O₄ magnetic particles) were used for speciation analysis of Ag₂S NPs in environmental waters. The optimum conditions for AgCNP extraction were obtained by investigating the factors, including pH, extraction time, amount of humic acid, the coatings, and sizes of the AgCNPs. While pristine IOMPs can also effectively extract AgCNPs from water, the stability and oxidation capability of the adsorbents was significantly increased after aging. Meanwhile, the high saturation magnetization ensured their separation within ~1 min after extraction. Therefore, the aged IOMPs show promise as a potential new adsorbent for the removal of AgCNPs. However, whether the aged IOMPs can serve as an adsorbent for the removal of AgCNPs in practical applications is still determined by the adsorption performance in engineering point of view, including the adsorption capacity and adsorption rate, which are crucial factors for designing adsorption reactors, and controlling the cycle period of a fixed bed adsorption process, as well as optimizing working conditions. In addition, to cut the costs during practical wastewater treatment, high desorption ability after adsorption and good reuse performance are required for an excellent adsorbent. In our previous work, the key issues of the sorption kinetics, adsorption isotherm, and regeneration of the adsorbents have not been studied yet. Moreover, the applicability in removal of AgCNPs from real waters with complex matrices remains to be verified.

The objective of this work is to study the use of aged IOMPs for the removal of AgCNPs from waters. Using the four most predominant AgCNPs in the environment (AgNPs, Ag₂S NPs, AgCl NPs, and Ag@Ag₂S NPs) as models, the sorption kinetics were analyzed using pseudo-first-order, pseudo-second-order, intraparticle diffusion, and Elovich models, while the adsorption isotherm was identified using Langmuir, Freundlich, and Dubinin−Radushkevich isotherms. The reusability and applicability of the aged IOMPs in real waters were also investigated.

EXPERIMENTAL SECTION

Chemicals and Materials

Aqueous dispersions of AgNPs with unknown coating were obtained from Shanghai Huzhen Nano-technology Co. Ltd. (Shanghai, China). A series of citrate-coated and poly(vinylpyrrolidone) (PVP)-coated AgNPs with nominal sizes of 10 (±2), 30 (±3), 40 (±4), 60 (±4) nm, respectively, were obtained from nanoComposix (San Diego, CA). NiO (<30 nm) and ZnO NPs (30 nm) with unknown coatings were purchased from Sigma−Aldrich (St. Louis, MO) and Aladdin Chemistry Co., Ltd. (Shanghai, China), respectively. Their zeta potentials measured by dynamic light scattering (DLS) were 34.3 mV (ZnO NPs) and 32.6 mV (NiO NPs), respectively (Table S1 in the Supporting Information). Silver nitrate and bis(p-sulfonatophenyl)phenylphosphane dehydride dipotassium salt (BSPP) were obtained from Sinopharm Chemical Reagent Co., Ltd. (Beijing, China). Thiourea was obtained from Sigma−Aldrich (St. Louis, MO). All other chemicals were obtained from Beijing Chemicals (Beijing, China). All chemicals were used as received without additional purification. Ultrapure water (18.2 MQ) from a Milli-Q Gradient System (Millipore, Bedford) was used in the entire experimental process.

Ag₂S NPs (transformed from AgNPs with S²⁻, containing mostly Ag₂S NPs and some Ag@Ag₂S NPs with a Ag core and Ag₂S shell), Ag₅S NPs, and AgCl NPs, were prepared according to the details described in the Supporting Information.

Synthesis of IOMPs

The IOMPs were prepared through a solvothermal reaction with minor modification. Briefly, 2.7 g of FeCl₃·6H₂O was vigorously stirred in 100 mL of ethylene glycol to form a clear solution. Then, 7.2 g of sodium acetate was all added at once and stirred at 1500 rpm for 20 min. The obtained solution was transferred into a Teflon-lined stainless-steel autoclave, sealed, and heated at 200 °C for 10 h. The products were collected using a permanent magnet and washed sequentially with ethanol and ultrapure water several times to remove nonmagnetic byproducts, and the clean products were dried under vacuum at 60 °C for 6 h. Finally, the dried microspheres were aged at 90 °C overnight. Note that, although the solvothermal reaction must be carried out under high temperature and high pressure, it has been widely applied in the large-scale industrial production of various functional nanoparticles, such as TiO₂ NPs and graphene.

TEM Characterization

Transmission electron microscopy (TEM) was conducted using a TEM system (Model H-7500, Hitachi, Japan) with a magnification of 900,000. TEM images and size distribution were obtained by investigating the factors, including extraction were obtained by investigating the factors, including pH, extraction time, amount of humic acid, the coatings, and sizes of the AgCNPs. While pristine IOMPs can also effectively extract AgCNPs from water, the stability and oxidation capability of the adsorbents was significantly increased after aging. Meanwhile, the high saturation magnetization ensured their separation within ~1 min after extraction. Therefore, the aged IOMPs show promise as a potential new adsorbent for the removal of AgCNPs. However, whether the aged IOMPs can serve as an adsorbent for the removal of AgCNPs in practical applications is still determined by the adsorption performance in engineering point of view, including the adsorption capacity and adsorption rate, which are crucial factors for designing adsorption reactors, and controlling the cycle period of a fixed bed adsorption process, as well as optimizing working conditions. In addition, to cut the costs during practical wastewater treatment, high desorption ability after adsorption and good reuse performance are required for an excellent adsorbent. In our previous work, the key issues of the sorption kinetics, adsorption isotherm, and regeneration of the adsorbents have not been studied yet. Moreover, the applicability in removal of AgCNPs from real waters with complex matrices remains to be verified.

The objective of this work is to study the use of aged IOMPs for the removal of AgCNPs from waters. Using the four most predominant AgCNPs in the environment (AgNPs, Ag₂S NPs, AgCl NPs, and Ag@Ag₂S NPs) as models, the sorption kinetics were analyzed using pseudo-first-order, pseudo-second-order, intraparticle diffusion, and Elovich models, while the adsorption isotherm was identified using Langmuir, Freundlich, and Dubinin−Radushkevich isotherms. The reusability and applicability of the aged IOMPs in real waters were also investigated.

Adsorption Kinetic Study

Kinetic studies were conducted by adding 20 mg of the as-prepared aged IOMPs (0.2 mL of 100 mg/mL aqueous dispersions) into 100 mL of 20 mg/L AgCNP solution. At scheduled time (5−90 min), 0.2 mL of water sample was collected for the determination of the residual AgCNP concentration. The adsorption capacity at time ti, Qe, (mg/g), was calculated by

\[
Q_e = \frac{(C_0 - C_t)V_0 - \sum_{i=1}^{n} C_i V_i}{m}
\]

where \(C_o\) (mg/L) is the initial AgCNP concentration, \(C_t\) (mg/L) is the AgCNP concentration at time \(t\), \(V_0\) (L), and \(V_i\) (L) are the respective volume of the AgCNP solution and the AgCNP solution collected for analysis, and \(m\) (g) is the mass of the aged IOMPs.

Adsorption Isotherm Study

AgCNP working solutions (100 mL) with initial concentrations in the range of 0.01−15 mg/L were prepared by serial dilution of a stock solution. The pH then was adjusted to 6.2 with HAc/NaAc buffer solution (1M) and the Ca²⁺ concentration was adjusted to 10 mM with 1 M Ca(NO₃)₂. Finally, 20 mg of the as-prepared aged IOMPs (0.2 mL of 100 mg/mL aqueous dispersions) was added. Experiments were carried out at room temperature in covered polyethylene terephthalate (PET) bottles and shaken using a platform shaker (IKA KS501) at 300 rpm for 20 min. The aged IOMPs were then separated from the AgCNP solution using a permanent magnet. The concentration of silver in supernatant was determined by inductively coupled plasma− mass spectrometry (ICP-MS) (Model 7700cs, Agilent). The adsorption capacity (\(Q_e\), mg/g) can be expressed as eq 2:

\[
Q_e = \frac{(C_0 - C_t)V}{m}
\]
where C_0 is the initial Ag concentration (mg/L), and C_e is the equilibrium Ag concentration (mg/L), V is the volume of the AgCNP solution (L), and m is the mass of the aged IOMPs (g).

Desorption and Reuse of Aged IOMPs. The reuse of IOMPs as adsorbents was evaluated by testing the adsorbents over four adsorption-desorption cycles. For each adsorption cycle, 20 mg of aged IOMPs was used per 100 mL of 1 mg/L AgCNP solution and the mixture were shaken at 300 rpm for 20 min. For desorption, the IOMPs were then shaken in 1 mL of an aqueous solution containing 10 mM thiourea and 2% HAc at 300 rpm for 30 min. The removal efficiency (Removal, %) and recovery (Recovery, %) were calculated by

$$\text{Removal (\%)} = \frac{C_0 - C_e}{C_0} \times 100$$

(3)

and

$$\text{Recovery (\%)} = \frac{C_d V_d}{C_0 V_0} \times 100$$

(4)

where C_0 is the initial Ag concentration (mg/L), C_e is the equilibrium Ag concentration (mg/L), C_d is the equilibrium Ag concentration of the desorption solution (mg/L), V_d is the volume of the desorption solution (L), and V_0 is the volume of the AgCNP solution (L).

RESULTS AND DISCUSSION

Characterization of AgCNPs. As observed under TEM, the size distribution of all the studied AgCNPs were in the range of 2–48 nm in diameter (Figure S1 in the Supporting Information). The hydrodynamic size, polydispersity index (PDI), and the zeta potential values of the AgCNPs were determined by DLS (Table S2 in the Supporting Information). All NP samples had a polydispersity index (PDI) range of 0.167–0.387, indicating that the AgCNPs were well-dispersed. The zeta potentials of the AgCNPs indicated that all samples were negatively charged.

Effect of Metal Oxide NPs on Removal of AgCNPs. Model dispersions of AgNPs, ZnO NPs, and NiO NPs in real waters were prepared as follows: 0.5 mL of AgNPs (20 mg/L), ZnO NPs (100 mg/L) and NiO NPs (100 mg/L) were spiked into 98.5 mL of lake water and wastewater treatment plant (WWTP) influent, and then shaken at 300 rpm for 1 h. The removal and desorption process then were performed following the above-mentioned procedures.
Research Article

Table 1. Adsorption Kinetic Parameters of Various Models for the Adsorption of AgCNPs by aged IOMPs

AgCNPs	Q_{exp}^{eq} (mg/g)	k_1 (x 10^{-3} min$^{-1}$)	Q_{cal}^{eq} (mg/g)	R^2
AgNPs	47.4	86.7	43.3	0.9856
Ag&AgS NPs	67.9	80.3	13.3	0.5472
AgS NPs	21.5	90.7	6.25	0.8473
AgCl NPs	42.2	65.5	6.73	0.6924

AgCNPs	Q_{exp}^{eq} (mg/g)	k_2 (x 10^{-3} g mg$^{-1}$ min$^{-1}$)	Q_{cal}^{eq} (mg/g)	R^2
AgNPs	47.4	3.15	51.6	0.9987
Ag&AgS NPs	67.9	12.0	68.5	0.9996
AgS NPs	21.5	71.5	21.3	0.9997
AgCl NPs	42.2	21.4	44.6	0.9999

AgCNPs	k_{p1} (mg g$^{-1}$ min$^{-0.5}$)	R^2	k_{p2}	R^2	k_{p3} (mg g$^{-1}$ min$^{-0.5}$)	R^2
AgNPs	8.42	0.9852	1.88	0.9932	0.20	
Ag&AgS NPs	9.70	0.9925	0.95			
AgS NPs	2.80	0.9411	0.85			
AgCl NPs	4.77	0.9936	0.89			

AgCNPs	α (mg g$^{-1}$ min$^{-1}$)	β (mg g$^{-1}$ min$^{-1}$)	R^2
AgNPs	22.87	0.105	0.9396
Ag&AgS NPs	2289	0.144	0.8008
AgS NPs	109199	0.719	0.8043
AgCl NPs	33113	0.313	0.7883

*Experimental Q_e; bCalculated Q_e.

ranges from 150 nm to 330 nm in diameter, and that the aged IOMPs were well dispersed and had a rough surface (Figure 1). Furthermore, the structure of as-synthesized pristine and aged IOMPs was characterized by XRD (Figure 1C). Six characteristic peaks at 30.1°, 35.4°, 43.1°, 53.4°, 56.9°, and 62.5°, corresponding to planes (220), (311), (400), (422), (511), and (440) of magnetite (JCPDS File No. 19-0629), respectively, were observed for both pristine and aged IOMPs. This result revealed that the IOMPs are polycrystalline with a short-range mesoscopic ordering structure, and no phase change of Fe$_3$O$_4$ was observed, even though the IOMPs are aged.

Adsorption Kinetics. The solute uptake rate governs the equilibrium of the sorption reaction at the solid/solution interface. The AgCNP adsorption by the aged IOMPs was studied by determining the variation of the AgCNP concentration (mg/L) in aqueous phase at pH 6.2 from 5 to 90 min. A significant color fading with time was observed in the optical image of AgNP dispersion (Figure S2 in the Supporting Information). The AgCNP adsorption occurs rapidly during the first 15 min (Figure S3 in the Supporting Information), which may be ascribed to the abundant amount of available active sites on the aged IOMPs. Then, the active sites in the system gradually decreased and the adsorption equilibrium was reached.

To examine the adsorption mechanisms, the pseudo-first-order model, pseudo-second-order model, and intraparticle diffusion model were used to analyze the adsorption data, respectively. The fitting precision between the experimental data and model-predicted value was evaluated with the correlation coefficient R^2.

The pseudo-first-order and pseudo-second-order models are linearly expressed as eqs 5 and 6, respectively:

$$\ln(Q_e - Q_t) = \ln Q_e - k_1t$$ \hspace{1cm} (5)

$$\frac{t}{Q_t} = \frac{1}{k_2Q_e^2} + \frac{1}{Q_e}$$ \hspace{1cm} (6)

where Q_e (mg/g) and Q_t (mg/g) are the respective amount of AgCNPs adsorbed per unit weight of aged IOMPs at equilibrium and at time t (min), and k_1 (min$^{-1}$) and k_2 (g mg$^{-1}$ min$^{-1}$) are the respective rate constants for the pseudo-first-order model and pseudo-second-order model. Figures 2A and 2B showed the fitting of the experimental data to the two models, and the obtained kinetic parameters are shown in Table 1. The calculated Q_e from the pseudo-second-order model agreed with the experimental value. In addition, significantly higher correlation coefficients were observed for the pseudo-second-order model (0.9987–0.9999) than the pseudo-first-order model (0.5472–0.9856). These results indicated that the adsorption of AgCNPs onto aged IOMPs agrees well to the pseudo-second-order model and the adsorption process may be controlled by intraparticle diffusion and weak interactions.

Intraparticle diffusion model was used to interpret the movement of the species from the surface of the adsorbents to the inner pores. The model is linearly expressed as

$$Q_t = k_d t^{1/2} + C$$ \hspace{1cm} (7)

where k_d (mg g$^{-1}$ min$^{-1/2}$) is the intraparticle diffusion rate constant or rate factor, and C (mg/g) is the intraparticle diffusion rate constant, which is related to the boundary layer thickness. As shown in Figure 2C, the plots of Q_t vs $t^{1/2}$ are nonlinear over the studied time range, indicating a multistage adsorption process. A close examination revealed the existence of three regions for the AgNPs. In stage I, the
external diffusion and adsorption was rapid at the surface. In stage II, a slow intraparticle diffusion occurs. Finally, in stage III, a much slower intraparticle diffusion occurs toward the final part of the adsorption process. However, only two regions were observed for the Ag&Ag2S, Ag2S NPs, and AgCl NPs. The first stage is defined by rapid external diffusion and adsorption at the surface, and the second stage has a slow intraparticle diffusion that occurs toward the final part of the adsorption process.

The multistage adsorption process was further verified by the presence of three respective diffusion rate constants k_{p1}, k_{p2}, k_{p3} for regions I, II, and III (Table 1). Among all of the AgCNPs, the maximum k_{p1} value indicated that the AgCNPs transferred fastest from the aqueous solution to the aged IOMP surface. Interestingly, k_{p1} for the Ag&Ag2S NPs was higher than that for the AgNPs, suggesting the sulfidation of AgNPs increases the intraparticle diffusion rate, and then results in a positive effect on AgCNP adsorption. This can be due to the reduction of stability caused by the change in physicochemical properties, such as the zeta potential (Table S2 in the Supporting Information).

The Elovich equation is typically used to describe the kinetics of chemisorption on highly heterogeneous sorbents, which can be linearly expressed as:

$$Q_t = \frac{\ln(\alpha t)}{\beta} + \frac{\ln t}{\beta}$$ \hspace{1cm} (8)

where Q_t (mg/g) is the adsorption capacity for the AgCNPs at time t, α (mg g$^{-1}$ min$^{-1}$) is the initial adsorption rate, and β (mg g$^{-1}$ min$^{-1}$) is the desorption rate. A weak linear relationship between Q_t and $\ln t$ was observed for all of the AgCNPs (Figure 2D). In addition, the values for the α calculated from the slope deviate significantly with the experimental Q_e (shown in Table 1), especially for AgS NPs (1.09 × 108 mg g$^{-1}$ min$^{-1}$) and AgCl NPs (3.13 × 107 mg g$^{-1}$ min$^{-1}$). These results suggested that the adsorption processes are not controlled by chemisorption.

Adsorption Isotherms. Adsorption isotherms and the equilibrium adsorption capacity (Q_e), as a function of equilibrium concentration (C_e) at constant temperature, were studied. The parameters obtained from the different models reflect the surface characteristics of the adsorbents. The equilibrium data were fit with the Langmuir, Freundlich, and Dubinin–Radushkevich isotherm models, respectively. Figure 3 presents the Langmuir and Freundlich plots for the removal of various AgCNPs at room temperature.

The Langmuir model assumes that the adsorption occurs at specific homogeneous sites on the adsorbents, and has been successfully applied in monolayer adsorption process. The equation can be linearly expressed as:

$$\frac{C_e}{Q_e} = \frac{C_0}{Q_m} + \frac{1}{Q_m K_L}$$ \hspace{1cm} (9)

where C_e (mg/L) is the equilibrium AgCNP concentration in the water sample, Q_e the equilibrium adsorption capacity of the AgCNPs, Q_m (mg/g) the maximum adsorption capacity for the AgCNPs, and K_L (L mg$^{-1}$) the Langmuir isotherm constant. The maximum adsorption capacities of the aged IOMPs for different AgCNPs are shown in Table 2.

In addition, a nondimensional constant (R_L), known as the equilibrium parameter, was used to predict the type of adsorption process, and is expressed as:

$$R_L = \frac{1}{1 + K_L C_0}$$ \hspace{1cm} (10)

where C_0 is the initial AgCNP concentration (mg/L). When the isotherm is linear or irreversible, R_L is 1 or 0, respectively. Furthermore, the isotherm is favorable when $0 < R_L < 1$ and unfavorable when $R_L > 1$. The parameters derived from the Langmuir isotherm are shown in Table 2.

The Freundlich isotherm assumes a heterogeneous adsorption of pollutants onto the adsorbent, and the equation is expressed as:

The adsorption isotherms and the equilibrium adsorption capacity (Q_e), as a function of equilibrium concentration (C_e) at constant temperature, were studied. The parameters obtained from the different models reflect the surface characteristics of the adsorbents. The equilibrium data were fit with the Langmuir, Freundlich, and Dubinin–Radushkevich isotherm models, respectively. Figure 3 presents the Langmuir and Freundlich plots for the removal of various AgCNPs at room temperature.

The Langmuir model assumes that the adsorption occurs at specific homogeneous sites on the adsorbents, and has been successfully applied in monolayer adsorption process. The equation can be linearly expressed as:

$$\frac{C_e}{Q_e} = \frac{C_0}{Q_m} + \frac{1}{Q_m K_L}$$ \hspace{1cm} (9)

where C_e (mg/L) is the equilibrium AgCNP concentration in the water sample, Q_e the equilibrium adsorption capacity of the AgCNPs, Q_m (mg/g) the maximum adsorption capacity for the AgCNPs, and K_L (L mg$^{-1}$) the Langmuir isotherm constant. The maximum adsorption capacities of the aged IOMPs for different AgCNPs are shown in Table 2.

In addition, a nondimensional constant (R_L), known as the equilibrium parameter, was used to predict the type of adsorption process, and is expressed as:

$$R_L = \frac{1}{1 + K_L C_0}$$ \hspace{1cm} (10)

where C_0 is the initial AgCNP concentration (mg/L). When the isotherm is linear or irreversible, R_L is 1 or 0, respectively. Furthermore, the isotherm is favorable when $0 < R_L < 1$ and unfavorable when $R_L > 1$. The parameters derived from the Langmuir isotherm are shown in Table 2.

The Freundlich isotherm assumes a heterogeneous adsorption of pollutants onto the adsorbent, and the equation is expressed as:

$$ Q_e = K_F C_e^{1/n} $$ \hspace{1cm} (12)

where K_F is the Freundlich constant (mg/g) and n the empirical parameter of the Freundlich isotherm model.
The process is chemical adsorption when 8 kJ/mol < E < 16 kJ/mol, and physical adsorption dominates when E < 8 kJ/mol.54 The parameters derived from the Dubinin–Radushkevich equation and E are shown in Table 2. The values of E (4.09–5.17 kJ/mol) indicate that the adsorption of AgCNPs by aged IOMPs is a physisorption process. This agrees well with that obtained in our previous study, where electrostatic interactions between positively charged aged IOMPs and negatively charged AgCNPs at pH 6.2 play key roles in the adsorption.55

Desorption and Reuse of Aged IOMPs. Cost should be taken into consideration for new adsorbents used in water treatment. To this end, the reusability of the aged IOMPs was evaluated by subjecting the adsorbents to four consecutive adsorption–desorption processes. The desorption of the AgCNPs from the aged IOMPs were performed in 10 mM thiourea in 2% (v/v) HAc, followed by shaking at 300 rpm for 30 min, which is a procedure that was verified in our previous study.38 Figure 5 indicates that the aged IOMPs exhibited excellent performances of adsorption and desorption throughout the cycles tested, while the recoveries of the AgCNPs decreased by <16.9%, compared to the first cycle, indicating that the aged IOMPs are stable during the desorption and the materials can be reused.

Effect of Metal Oxide NPs on Removal of AgCNPs. Considering the great diversity in the industrial nanowastes and real environmental waters, potential interferences from other particles in the removal of AgCNPs were studied. Metal oxide NPs (MO NPs) as another widely

![Figure 4. Effect of NP sizes and coatings on the adsorption capacities of the aged IOMPs for AgNPs. Initial concentration of AgNPs: ~15 mg/L.](Image 351x610 to 537x749)

Table 2. Langmuir, Freundlich, and Dubinin–Radushkevich Parameters for Various AgCNP Adsorption by Aged IOMPs

AgCNPs	Qm (mg/g)	b (L/mg)	Rl	R²
AgNPs	39.5	11.3	0.0055−0.8831	0.9789
Ag&Ag2S NPs	62.9	8.53	0.0048−0.6311	0.9650
Ag2S NPs	19.9	12.0	0.0052−0.8776	0.9923
AgCl NPs	42.8	6.41	0.0079−0.5059	0.9477

AgCNPs	Kf (mg/L)	1/n	R²
AgNPs	3.16	29.3	0.8429
Ag&Ag2S NPs	3.46	49.3	0.7876
Ag2S NPs	3.68	15.0	0.9004
AgCl NPs	3.37	31.4	0.8580

AgCNPs	Qm (mg/g)	β (mol2 kJ−2)	R²	E (kJ/mol)
AgNPs	47.7	23.9 × 10−3	0.9762	4.57
Ag&Ag2S NPs	59.6	18.7 × 10−3	0.9596	5.17
Ag2S NPs	43.4	22.5 × 10−3	0.9838	4.71
AgCl NPs	43.9	29.9 × 10−3	0.9199	4.09

The correlation parameters (R²) of these two models, the Langmuir isotherm model better describes the adsorption mechanism than the Freundlich isotherm model. Ri values (Table 2) indicate that favorable adsorption occurs between the aged IOMPs and various AgCNPs. The process is chemical adsorption when 8 kJ/mol < E < 16 kJ/mol, and physical adsorption dominates when E < 8 kJ/mol. The parameters derived from the Dubinin–Radushkevich equation and E are shown in Table 2. The values of E (4.09–5.17 kJ/mol) indicate that the adsorption of AgCNPs by aged IOMPs is a physisorption process. This agrees well with that obtained in our previous study, where electrostatic interactions between positively charged aged IOMPs and negatively charged AgCNPs at pH 6.2 play key roles in the extraction of AgCNPs.38

\[
\ln Q_e = \ln Q_m + \frac{\ln C_e}{n} (11)
\]

where Qm is the equilibrium adsorption capacity (mol/L), and Kf (mol2/L1/n g−1) is the Freundlich constant, which is related to the adsorption capacity. n is the adsorption intensity, representing the favorability of adsorption, where n < 1 shows that a favorable adsorption occurs in the concentration range studied, and n > 1 suggests the adsorption is favorable at only high concentrations. The parameters derived from the Freundlich isotherm are shown in Table 2.

According to the correlation parameters (R²) of these two models, the Langmuir isotherm model better describes the adsorption mechanism than the Freundlich isotherm model. Ri values (Table 2) indicate that favorable adsorption occurs between the aged IOMPs and various AgCNPs. In addition, analysis of the Langmuir Qm values of the AgNPs (39.5 mg/g) and Ag&Ag2S NPs (62.9 mg/g) shows that the maximum adsorption capacity can be greatly improved by transforming the AgNPs into Ag2S NPs. It is noteworthy that the physicochemical properties of NPs are dependent on the size and surface coating. Therefore, the maximum adsorption capacities are different for AgCNPs with the same chemical composition but different dimensions and coatings. As shown in Figure 4, a marked increase in the adsorption capacity was observed for both citrate-coated and PVP-coated AgNPs with sizes in the range of 10–60 nm. Meanwhile, it was found that the adsorption capacities for citrate-coated AgNPs were normally higher than those for PVP-coated AgNPs with similar sizes, which is mainly due to the higher negative surface charges of citrate-coated AgNPs (Table S1 in the Supporting Information).

The sorption data was further analyzed using a Dubinin–Radushkevich isotherm model to distinguish between physical and chemical adsorption of the AgCNPs. The equation can be expressed as

\[
\ln Q_e = \ln Q_m - \beta \epsilon^2 (12)
\]

where Qm is the equilibrium adsorption capacity (mol g−1), Qm is the maximum adsorption capacity (mol g−1), β is an activity coefficient related to the mean free energy of adsorption (mol2 kJ−2), and ε is the Polanyi potential, which is expressed as

\[
\epsilon = \frac{RT}{1 + \frac{1}{C_e}} \left(13\right)
\]

where R is the gas constant (R = 8.314 J mol−1 K−1) and T is the temperature (K). C_e (mg/L) is the equilibrium AgCNP concentration in the water sample.

By plotting ln Q_e against ε2, the equilibrium data fit the Dubinin–Radushkevich isotherm model well. Qm and β can be calculated using the intercept and slope of the fit. The mean free energy of adsorption is described as

\[
E = \frac{1}{\sqrt{2\beta}} \left(14\right)
\]
produced NPs, whose isoelectric points (IEPs) were >7.1, were exemplarily selected. Here, ZnO NPs and NiO NPs were used as models. As shown in Figure 6, the removal and recovery efficiencies in lake water and WWTP influent spiked with a 1:5:5 mixture of Ag/ZnO/NiO NPs were >90.4% and >92.3% for AgNPs, respectively, while <15.4% of ZnO NPs and NiO NPs were removed. These results indicated the promise specificity of the aged IOMPs as adsorbents for AgCNPs, even in the WWTP influent with complex matrixes, which is essential for the practical application in removal of AgCNPs from the nanowastes and real environmental waters.

Comparison with Other Adsorbents. As shown in Table 3, the maximum adsorption capacities of the aged IOMPs are comparable to that of other adsorbents for the removal of AgNPs from environmental waters. However, the adsorption time is much less (<20 min) than those reported previously. Furthermore, the aged IOMPs are also effective for the removal of other AgCNPs, such as Ag&Ag2S NPs, Ag2S NPs, and AgCl NPs.

Effect of Real Water Matrix. To evaluate the practical use of aged IOMPs, five real environmental waters spiked with 10 μg/L each of the studied AgCNPs were subjected to the typical NP removal and recovery process. The characterization information for the waters are shown in Table S3 in the Supporting Information, all the samples were weakly alkaline (pH 7.94–8.49), and contained a considerable concentration of common cations (4.6–135.1 mg/L Na+, Mg2+, K+, and Ca2+) and DOM (5.3–46.8 mg C/L). The removal efficiencies and recoveries of the water samples were in the range of 63.3%–99.9% and 67.1%–99.9% (Table S4), respectively, indicating that the matrix has limited influence on the removal of AgCNPs, and therefore the aged IOMPs could be utilized for the removal of AgCNPs from real waters. Note that, although AgCNPs could be removed in a conventional wastewater treatment process,57 most of them entered the activated sludge, resulting in secondary environmental pollution.23 Since the precious metal Ag is horribly difficult to recover, further processing is often needed to recycle Ag in wastewater treatment processes.

In conclusion, aged IOMPs were shown to be promising adsorbents for the removal and recovery of various AgCNPs including AgNPs, Ag&Ag2S NPs, Ag2S NPs, and AgCl NPs. The adsorption kinetics and adsorption isotherm of AgCNPs on aged IOMPs fit well to the pseudo-second-order kinetic model and Langmuir isotherm model, respectively. The agreement to Dubinin–Radushkevich model verified that the AgCNPs were physisorbed onto the aged IOMPs. In comparison to other adsorbents in literatures, IOMPs showed

Table 3. Comparison of the Removal of AgCNP by IOMPs with Other Adsorbents

adsorbents	AgCNPs	maximum adsorption capacity (mg/g)	adsorption equilibrium time	ref
surface-modified electrospun PVA nanofibers	AgNPs	23.8–55.8	3 h	30
cellulose-based nanofibers	AgNPs	13.1	6 h	31
PVA/gluten nanofibers	AgNPs	31.84	2 h	33
biomimetic metal oxides	AgNPs	5.0–54.8	3 h	34
plasma-treated nanofiber membranes	AgNPs	38.62	3 h	56
aged IOMPs	AgNPs, Ag&Ag2S NPs, Ag2S NPs, and AgCl NPs	19.9–62.8	20 min	this study
much shorter adsorption equilibrium time and comparable maximum adsorption capacities. Moreover, the removal and recovery of the AgCNPs remained nearly unchanged after four adsorption–desorption cycles, and the aged IOMPs could reduce 63.3%–99.9% of the AgCNPs from real water samples, demonstrating the applicability of aged IOMPs as renewable and efficient adsorbs for the removal of AgCNPs from polluted waters.

ASSOCIATED CONTENT

1. Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acssuschemeng.7b00797.

Details about synthesis of NPs, water collection and additional references (Figure S1–S3 and Tables S1–S3) (PDF)

AUTHOR INFORMATION

Corresponding Author
Tel.: +86-10-62849192. Fax: +86-10-62849192. E-mail: jqliu@rcees.ac.cn.

ORCID

Jing-fu Liu: 0000-0001-7134-7026

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the National Key Research and Development Program of China (No. 2016YFA0203102), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB14020101), and the National Natural Science Foundation of China (Nos. 21337004, 21507145).

REFERENCES

(1) Alivisatos, P. The use of nanocrystals in biological detection. Nat. Biotechnol. 2004, 22, 47–52.

(2) Tolaymat, T. M.; El Badawy, A. M.; Genaidy, A.; Scheckel, K. G.; Luxton, T. P.; Suidan, M. An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: A systematic review and critical appraisal of peer-reviewed scientific papers. Sci. Total Environ. 2010, 408, 999–1006.

(3) Chaloupka, K.; Malam, Y.; Seifalian, A. M. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol. 2010, 28, 580–588.

(4) Dror-Ehre, A.; Adin, A.; Markovich, G.; Mamane, H. Control of biofilm formation in water using molecularly capped silver nanoparticles. Water Res. 2010, 44, 2601–2609.

(5) Quadros, M. E.; Marr, L. C. Silver nanoparticles and total aerosols emitted by nanotechnology-related consumer spray products. Environ. Sci. Technol. 2011, 45, 10713–10719.

(6) Quadros, M. E.; Pierson, R.; Tulve, N. S.; Willis, R.; Rogers, K.; Thomas, T. A.; Marr, L. C. Release of silver from nanotechnology-based consumer products for children. Environ. Sci. Technol. 2013, 47, 8894–8901.

(7) Pettibone, J. M.; Liu, J. In situ methods for monitoring silver nanoparticle sulfidation in simulated waters. Environ. Sci. Technol. 2016, 50, 11145–11153.

(8) Levard, C.; Hotze, E. M.; Lowery, G. V.; Brown, G. E., Jr. Environmental transformations of silver nanoparticles: Impact on stability and toxicity. Environ. Sci. Technol. 2012, 46, 6900–6914.

(9) Khaskar, M.; Jolley, D. F.; Sekine, R.; Vasilev, K.; Johannessen, B.; Donner, E.; Lombi, E. In situ chemical transformations of silver nanoparticles along the water-sediment continuum. Environ. Sci. Technol. 2015, 49, 318–325.

(10) Leonardo, T.; Farihi, E.; Pouget, S.; Motellier, S.; Boisson, A.-M.; Banerjee, D.; Rebillef, F.; den Auwer, C.; Rivasseau, C. Silver accumulation in the green microalgae coccomyxa actinobiotes: Toxicity, in situ speciation, and localization investigated using synchrotron XAS, XRD, and TEM. Environ. Sci. Technol. 2016, 50, 359–367.

(11) Choi, C.; Deng, K. K.; Kim, N.-J.; Ross, L. J.; Surampalli, R. Y.; Hu, Z. The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res. 2008, 42, 3066–3074.

(12) Dror-Ehre, A.; Mamane, H.; Belenkova, T.; Markovich, G.; Adin, A. Silver nanoparticle–E. coli colloidal interaction in water and effect on E. coli survival. J. Colloid Interface Sci. 2009, 339, 521–526.

(13) Shen, M. H.; Zhou, X. Y.; Yang, X. Y.; Chao, J. B.; Liu, R.; Liu, J. F. Exposure medium: Key in identifying free Ag⁻ as the exclusive species of silver nanoparticles with acute toxicity to Daphnia magna. Sci. Rep. 2015, 5, 9674.

(14) Navarro, E.; Baun, A.; Behra, R.; Hartmann, N. B.; Filzer, J.; Miao, A. J.; Quigg, A.; Santschi, P. H.; Sigg, L. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 2008, 17, 372–386.

(15) Jiang, H. S.; Li, M.; Chang, F. Y.; Li, W.; Yin, L. Y. Physiological analysis of silver nanoparticles and AgNO₃ toxicity to Spirodea polyrrhiza. Environ. Toxicol. Chem. 2012, 31, 1880–1886.

(16) Jiang, H. S.; Qiu, X. N.; Li, G. B.; Li, W.; Yin, L. Y. Silver nanoparticles induced accumulation of reactive oxygen species and alteration of antioxidant systems in the aquatic plant Spirodea polyrrhiza. Environ. Toxicol. Chem. 2014, 33, 1398–1405.

(17) Osborne, O. J.; Lin, S.; Chang, C. H.; Ji, Z.; Yu, X.; Wang, X.; Lin, S.; Xia, T.; Nel, A. E. Organ-specific and size-dependent Ag nanoparticle toxicity in gills and intestines of adult zebrafish. ACS Nano 2015, 9, 9573–9584.

(18) AshaRani, P. V.; Mun, G. L. K.; Hande, M. P.; Vallyaveettil, S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 2009, 3, 279–290.

(19) Ahammad, M.; Alsahi, M. S.; Siddiqui, M. K. J. Silver nanoparticle applications and human health. Clin. Chim. Acta 2010, 411, 1841–1848.

(20) Rico, C. M.; Majumdar, S.; Duarte-Gardea, M.; Peralta-Videa, J. R.; Gardea-Torresdey, J. L. Interaction of nanoparticles with edible plants and their possible implications in the food chain. J. Agric. Food Chem. 2011, 59, 3485–3498.

(21) Yoo-Jam, M.; Chaichana, R.; Satapanajaru, T. Toxicity, bioaccumulation and biomagnification of silver nanoparticles in green algae (Chlorella sp.), water flea (Moina macrocopa), blood worm (Chironomus spp.) and silver bair (Barbounus gonionotus). Chem. Speciation Bioavailability 2014, 26, 257–265.

(22) Ribeiro, F.; Van Gestel, C. A. M.; Pavlaki, M. D.; Azvedo, S.; Soares, A. M. V.; Loureiro, S. Bioaccumulation of silver in Daphnia magna: Waterborne and dietary exposure to nanoparticles and dissolved silver. Sci. Total Environ. 2017, 574, 1633–1639.

(23) Nowack, B.; Ranville, J. F.; Diamond, S.; Gallego-Urrea, J. A.; Metcalfe, C.; Rose, J.; Horne, N.; Koelmans, A. A.; Klaine, S. J. Potential scenarios for nanomaterial release and subsequent alteration in the environment. Environ. Toxicol. Chem. 2012, 31, 50–59.

(24) Yin, Y.; Tan, Z.; Hu, L.; Yu, S.; Liu, J.; Jiang, G. Isotope tracers to study the environmental fate and bioaccumulation of metal-containing engineered nanoparticles: Techniques and applications. Chem. Rev. 2017, 117, 4462–4487.

(25) Chang, M. R.; Lee, D. J.; Lai, Y. Nanoparticles in wastewater from a science-based industrial park—Coagulation using polyaluminum chloride. J. Environ. Manage. 2007, 85, 1009–1014.

(26) Lin, Y. T.; Sung, M.; Sanders, P. F.; Marinucci, A.; Huang, C. P. Separation of nano-sized colloidal particles using cross-flow electrofiltration. Sep. Purif. Technol. 2007, 58, 138–147.

(27) Springer, F.; Laborie, S.; Guigui, C. Removal of SiO₂ nanoparticles from industry wastewaters and subsurface waters by

DOI: 10.1021/acssuschemeng.7b00797

ACS Sustainable Chem. Eng. 2017, 5, 5468–5476
ultrafiltration: Investigation of process efficiency, deposit properties and fouling mechanism. *Sep. Purif. Technol.* 2013, **108**, 6–14.

(28) Ganesh, R.; Smeraldi, J.; Hosseini, T.; Khatib, L.; Olson, B. H.; Rosso, D. Evaluation of nanocopper removal and toxicity in municipal wastewaters. *Environ. Sci. Technol.* 2010, **44**, 7808–7813.

(29) Liu, J.; Sun, J.; Jiang, G. Use of cloud point extraction for removal of nanosized copper oxide from wastewater. *Chin. Sci. Bull.* 2010, **55**, 346–349.

(30) Mahanta, N.; Valiyaveettil, S. Surface modified electros spun poly(vinyl alcohol) membranes for extracting nanoparticles from water. *Nanoscale* 2011, **3**, 4625–4631.

(31) Mahanta, N.; Leong, W. Y.; Valiyaveettil, S. Isolation and characterization of cellulose-based nanofibers for nanoparticle extraction from an aqueous environment. *J. Mater. Chem.* 2012, **22**, 1985–1993.

(32) Kumar, J.; Mallampati, R.; Adin, A.; Valiyaveettil, S. Function alized carbon spheres for extraction of nanoparticles and catalyst support in water. *ACS Sustainable Chem. Eng.* 2014, **2**, 2675–2682.

(33) Dhandayuthapani, B.; Mallampati, R.; Sriramulu, D.; D souza, R. F.; Valiyaveettil, S. PVA/Gluten hybrid nanofibers for removal of nanoparticles from water. *ACS Sustainable Chem. Eng.* 2014, **2**, 1014–1021.

(34) Mallampati, R.; Valiyaveettil, S. Biomimetic metal oxides for the extraction of nanoparticles from water. *Nanoscale* 2013, **5**, 3395–3399.

(35) Zhao, Y.; Chen, H.; Li, J.; Chen, C. Hierarchical MWCNTs/Fe3O4/PANI magnetic composite as adsorbent for methyl orange removal. *J. Colloid Interface Sci.* 2015, **450**, 189–195.

(36) Liu, J. F.; Zhao, Z. S.; Jiang, G. B. Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. *Environ. Sci. Technol.* 2008, **42**, 6949–6954.

(37) Mahmoudi, M.; Sant, S.; Wang, B.; Laurent, S.; Sen, T. Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy. *Adv. Drug Delivery Rev.* 2011, **63**, 24–46.

(38) Zhou, X.; Liu, J.; Yuan, C.; Chen, Y. Speciation analysis of silver sulfide nanoparticles in environmental waters by magnetic solid-phase extraction coupled with ICP-MS. *J. Anal. At. Spectrom.* 2016, **31**, 2285–2292.

(39) Deng, Y.; Qi, D.; Deng, C.; Zhang, X.; Zhao, D. Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. *J. Am. Chem. Soc.* 2008, **130**, 28–29.

(40) Pang, L.; Liu, J. Use of Fe3O4@mSiO2@mSiO2 magnetic mesoporous microspheres for fast determination of the sorption coefficients of polycyclic aromatic hydrocarbons to bovine serum albumin in aqueous phase. *Huaxue Xuebao* 2013, **71**, 339–342.

(41) Al-Hazmi, F. S.; Al-Harbi, G. H.; Beall, G. W.; Al-Ghamdi, A. A.; Obaid, A. Y.; Mahmoud, W. E. Synthesis and structure of high quality graphene prepared via solvothermal exfoliation of intercalated graphite flakes. *Superlattices Microstruct.* 2015, **86**, 270–274.

(42) Jiang, Z.; Zhu, C.; Wan, W.; Qian, K.; Xie, J. Constructing graphite-like carbon nitride modified hierarchical yolk-shell TiO2 spheres for water pollution treatment and hydrogen production. *J. Mater. Chem. A* 2016, **4**, 1806–1818.

(43) Yan, H.; Yang, L.; Yang, Z.; Yang, H.; Li, A.; Cheng, R. Preparation of chitosan/poly(acrylic acid) magnetic composite microspheres and applications in the removal of copper(II) ions from aqueous solutions. *J. Hazard. Mater.* 2012, **229–230**, 371–380.

(44) Lagergren, S. About the theory of so-called adsorption of soluble substances. *K. Sven. Vetenskapskad. Handl.* 1898, **24**, 1–39.

(45) Ho, Y. S.; McKay, G. Pseudo-second order model for sorption processes. *Process Biochem.* 1999, **34**, 451–465.

(46) Srivastava, S. K.; Tyagi, R.; Pant, N. Adsorption of heavy-metal ions on carbonaceous materials developed from the waste supply generated in local fertilizer plants. *Water Res.* 1989, **23**, 1161–1165.

(47) Medina, R. P.; Nadres, E. T.; Ballesteros, F. C., Jr.; Rodrigues, D. F. Incorporation of graphene oxide into a chitosan-poly(acrylic acid) porous polymer nanocomposite for enhanced lead adsorption. *Environ. Sci.: Nano* 2016, **3**, 638–646.