THERE IS NO MAXIMAL DECIDABLE EXPANSION OF THE \(\langle \mathbb{N}, \{<\} \rangle \) STRUCTURE

SOPRUNOV S.F.

Abstract. We are going to prove that if the theory of a structure \(\mathcal{M} = \langle \mathbb{N}, \Sigma \rangle \) is decidable and the standard order \(<\) on natural numbers \(\mathbb{N} \) is definable in \(\mathcal{M} \), then there is a nontrivial decidable expansion of \(\mathcal{M} \).

In the article [LRR] the authors stated the following

Problem. Does there exist any maximally decidable theory \(T \)?

The first order theory \(T \) of the structure \(\langle \mathbb{N}, \Sigma \rangle \) is called maximally decidable if \(T \) is decidable but the theory of \(\langle \mathbb{N}, \Sigma \cup \{P\} \rangle \) is undecidable for every predicate or function \(P \) on \(\mathbb{N} \) which is not already definable in \(\langle \mathbb{N}, \Sigma \rangle \).

There are few works [SOP1, BC1, BC2, BR1, BR2] with partial negative answers to this question.

Here we are going to show, that if the theory of a structure \(\mathcal{M} = \langle \mathbb{N}, \Sigma \rangle \) is definable in the signature \(\Sigma \) and standard order relation \(<\), then the theory of \(\langle \mathbb{N}, \Sigma \cup \{R\} \rangle \) is decidable as well.

In the next lemma we use definable orders on \(m^k \) and on subsets of \(m^k \) (we identify number \(m \) with the set \(\{0, \ldots, m-1\} \)). The order \(<\) on the set \(\mathbb{N}^k \) we define such that \(\max a > \max b \Rightarrow b < a \), \(\max a = \max b \Rightarrow b < a \Leftrightarrow \) (result of removing from the collection \(a \) one of its maximal item is "bigger" then similar collection, derived from \(b \)).

It is clear that with the such defined order the set \(m^k \) is an initial segment of \((m+1)^k \). The order on subsets of set \(m^k \) will define such that subset \(A \) is less then \(B \) if \(\min (A \triangle B) \in A \). Note that

\((*) \) if \(S \subset 2^{(m+1)^k} \) then \(m^k \cap \min S = \min \{m^k \cap s | s \in S\} \)

1. Lemma. There is such infinite decidable subset \(F \subset \mathbb{N} \) that for any formula \(Q(x, \bar{y}) \) in the signature \(\Sigma \) holds

(1) for any tuple \(\bar{a} \) the set \(\{x \in F | M \models Q(x, \bar{a})\} \) is finite or the set \(\{x \in F | M \models \neg Q(x, \bar{a})\} \) finite. Due to this property we call the set \(F \) filter.

(2) the relation \(P(\bar{y}) = \{x \in F | M \models Q(x, \bar{y})\} \) is finite) as well as the function \(f \) such, that \(P(\bar{y}) = \{x \in F | M \models Q(x, \bar{y})\} \subset [0, f(\bar{y})] \) is definable in \(\mathcal{M} \).

Proof. Construction of the set \(F \) is similar to construction of Morley sequence. Renumber all formulas in the \(\Sigma \) signature: \(Q_1(x, \bar{y}), \ldots, Q_n(x, \bar{y}), \ldots \) and construct the sequence of infinite definable subsets \(\mathbb{N} = F_0 \supset F_1 \supset \cdots \supset F_n \supset \cdots \) such that conditions (i, ii) holds when \(F = F_n, Q(x, \bar{y}) = Q_n(x, y_1, \ldots, y_k) \) Suppose that the set \(F_{n-1} \) is already constructed. For any \(a, m \in \mathbb{N} \) by \(S^m_a \) we denote the set \(\{v \in m^k | M \models Q_n(a, v)\} \) and by \(B_{a,m} = \{a' \in F_{n-1} | S_{a'}^m = S^m_a\} \). Let us take minimal \(S^m_a \), such that \(B_m = \{a' \in A_{n-1} | S_{a'}^m = S^m_a\} \) is infinite. It is easy to note,
that due the property (*) holds $B_{m+1} \subseteq B_m$. And finally let the definable set $\mathcal{F}_n = \{a_0, \ldots, a_m, \ldots\}$ be such that $a_i = \min\{a > i | a \in B_i\}$. Note that $\mathcal{F}_{n-1} \supseteq \mathcal{F}_n$.

Now as the set \mathcal{F} we can choose any such decidable infinite sequence a_0, \ldots, a_n, \ldots, that $i > n \Rightarrow a_i \in \mathcal{F}_n$, and define the function f such that $f(a) = \min\{a > i | a \in B_i\}$, where $i = \max \bar{a}$, and the relation $P(\bar{y}) = \bar{y} \notin B(\max \bar{y})$.

We define by induction on k the standard notion of big set. A set $S \subseteq \mathbb{N}$ is big, if $S \cap \mathcal{F}$ is infinite. A set $S \subseteq \mathbb{N}^k$ is big, if $\{x_1 | \{x_2, \ldots, x_k\} \notin S\}$ is big.

Farther we will use results from works \cite{SOP1, SOP2}.

In the first one claimed

1. **Statement.** If a branching order is definable in the structure with decidable theory, then the structure is not maximal decidable. A partial order \prec on a set S is called branching, if holds the statement

 $$\forall a \in S \exists b, c \in \mathbb{N} \ (b < a \land c < a \land (\{x | x < b\} \cap \{x | x < c\} = \varnothing))$$

 In the second one discussed definable in the structure \mathcal{M} trees. Without loss of generality we suppose that a tree Tr on \mathbb{N} is a family of finite subsets \mathbb{N} such that if $s \in Tr$ then any initial segment of s belongs to Tr as well. There is the order $s \preceq s' \equiv s$ is initial segment of s' on the tree. We say that a relation $Tr(x, y)$ defines the tree, if $\{s_i | s_i = \{x | Tr(x, i)\}\}$ is a tree.

 In particular is this work the notion of rank of a node is introduced:

 By induction we define a rank of nodes: a partial mapping $rk : Tr \rightarrow \mathbb{N}$. We set $rk(s) = 0$ if the subtree $\{s' | s \preceq s'\}$ is locally finite. Suppose that $rk(s) = k$ is defined for $k < n$. We say that a node s is n-regular if

 $$(\exists a) (\forall s' \succ s)(s' \cap (\max(s), a) = \varnothing \rightarrow rk(s') < n)$$

To any n-regular node s we assign the number $r(s) < n$:

 $$r(s) = \max\{k | (\forall a)(\exists s' > s)(s' \cap (\max(s), a) = \varnothing \land rk(s') = k)\}$$

 We set $r(s) = -1$ if $(\exists a)(\forall s' > s)(s' \cap (\max(s), a) = \varnothing)$. Now we set $rk(s) = n$ if (1) all nodes $s' \succeq s$ are n-regular and (2)max $\{r(s') | s' \succeq s\} = n - 1$.

 We say that a node s of finite rank ($rk(s) < \infty$) if $rk(s)$ is defined, otherwise we say that s of infinite rank ($rk(s) = \infty$). We say that a node s is regular if it is k-regular for some k.

 The main lemmas about ranks are stated.

2. **Lemma.** Let a node s has finite rank $rk(s) = n, n > 0$. Then

 (i) if $s_1 \succ s$, then s_1 has finite rank and $rk(s_1) \leq rk(s)$.

 (ii) there are infinitely many $s' \succ s$, such that $rk(s') = n - 1$.

 (iii) $rk(s) > r(s)$

3. **Lemma.** Consider a structure $\mathcal{M} = (\mathbb{N}, \{Tr, <\})$, where the relation $Tr(a, x, y)$ with a parameter a defines a family of trees on \mathbb{N} and $<$ is the usual order on \mathbb{N}. If the elementary theory of \mathcal{M} is decidable, then there is such number k, that $rk(s) < k$ holds for all nodes s of finite rank in all trees $Tr(a, x, y)$.
1. **Consequence.** Let a relation $Tr(y, x)$ defines a tree on \mathbb{N}, and elementary theory of the structure $\mathcal{M} = (\mathbb{N}, \{Tr, <\})$ is decidable. Then
 (i) the relation ”s is a node of finite rank” is definable (in \mathcal{M}).
 (ii) if the set of nodes of infinite rank is not empty, then it contains a definable subtree isomorphic to \mathbb{N}^ω.
 (iii) there is $k \in \mathbb{N}$ such that for any node s of finite rank, $s = \{a_1 < a_2 < \cdots < a_n\}$, holds $k \geq |\{a_i \in s | a_{i+1} > \varphi(a_i)\}|$.

 From the definition of rank and Lemma 2 immediately follows

2. **Consequence.** For any definable tree $Tr(y, x)$ exists such definable mapping $\varphi: \mathbb{N} \to \mathbb{N}$, that for any subsegment $\{a_1 < a_2 < \cdots < a_n\}, a_{i+1} > \varphi(a_i)$ of node s of finite rank holds $Tr, k \geq n$.

 According to items (i) and (ii) Consequence 1 if there is a definable tree with a node of infinite rank, then the branching order is definable in the structure. So hereinafter we consider any node in any tree as a node of finite rank. (So our reasonings are slightly nonconstructive: we claim existence of nontrivial decidable expansion, but can not construct it.)

 Now we start to construct undefinable subset $R \subset \mathbb{N}$ such that theory of the structure $\langle \mathbb{N}, \Sigma \cup \{R\} \rangle$ is decidable. Our construction based, of course, on forcing.

 A condition p is a triple $\langle p^+, p^-, \varphi^p \rangle$, where p^+ – finite subset of \mathbb{N}, p^- – small definable subset of \mathbb{N}, $p^+ \cap p^- = \emptyset$; $\varphi^p: \mathbb{N} \to \mathbb{N}$ – definable mapping.

 The order \leq on conditions is defined such that $(q \leq p) \iff (p^- \subseteq q^-) \land (\varphi^q > \varphi^p) \land ((\forall x \in q^+) \land (x, \varphi^p(x)) \cap q^+ = \emptyset)$

 The notion of forcing $p \Vdash \Phi$ is defined in the standard way: by formula Φ in the signature $\Sigma \cup \{R\}$ induction: $p \Vdash R(a) \iff a \in p^+$, etc.

 Hereinafter exist arbitrary small q, that .. means that for any definable function φ there is such condition $q, \varphi^q > \varphi$, that ... In the same way we define the notion for any small enough condition q, holds...

2. **Statement.** For any formula Φ and any condition p exists definable families $A^+(\bar{a}, x), A^-(\bar{a}, x)$ and such condition $p^' \leq p$ that for any $q \leq p^'$ holds

 $q \Vdash \Phi \iff (\exists \bar{a})(\{x | A^+(\bar{a}, x) \subset q^+\} \land \{x | A^-(\bar{a}, x) \subset q^-\})$

 Proof. Proof by formula Φ induction. It is obvious for a quantifier-free formula as well as for cases \forall, \exists. The complicated case is certainly \neg and this case study will take the rest of the text.

 We will need next

4. **Lemma.** For any condition p and definable family S of finite subsets there is such condition $p^' \leq p$ and subset $S' \subset \mathbb{N}$ such, that for $q \leq p^'$ holds

 $$(\exists s \in S)(s \subset q^+) \iff (q^+ \cap S' \neq \emptyset)$$

 Proof.

 Set $p^+ = p$. Consider the family $S' = \{s \setminus p^+ | s \in S\}$. Due to sequence 2 there are such number n and definable function φ, that if $\varphi^q > \varphi, q \leq p^', s \subset q^+$ for some
\[s \in S \text{ then } |q^+ \setminus p^+| < n. \] So we can count on each element of \(S' \) contains less than \(n \) items. If \(S' \) is the big set then choosing corresponding function \(\varphi^{p'} \) and small set \(p'^{+} \) we may suppose that if \(q \leq p' \) then
\[
(\exists s \in S)(s \subset q^+) \iff (\exists s' \in S')(s' \subset (q^+ \setminus p^+)) \iff (q^+ \cap \{x_1|\{x_2, \ldots x_n\}\}|x_1, \ldots x_n \in S' \})' \neq \emptyset
\]

So we consider the case \(p \models \neg P \) and for the formula \(P \) inductive hypothesis holds i.e. there are corresponding definable families \(A^+(\bar{a}, x), A^- (\bar{a}, x) \) of finite subsets of \(\mathbb{N} \). Adding, if necessary, one more item to each element of \(A^+(\bar{a}, x) \), we may suppose that for any \(\bar{a} \) holds \(\text{max } A^+(\bar{a}, x) > \text{ max } A^- (\bar{a}, x) \) We show that we can limit ourselves to the case the case when \(A^- (\bar{a}, x) \) is empty. Indeed according the lemma \(\Box \) we can count on elements of \(A^+(\bar{a}, x) \) are sigletons. Consider the following condition on triples \(c_1 < c_2 < c_3 \): there exists such \(\bar{a} \) that corresponding \(\{x|A^-(x, \bar{a})\} \subset (c_1, c_2); \{x|A^+(x, \bar{a})\} = \{c_3\} \). Temporary we will call such triple regular. Obviously, that if \(p' \leq p \) small enough and
\[
(*)q \models \Phi \iff (\exists \bar{a})(\{x|A^+(\bar{a}, x)\} \subset q^+) \wedge (\{x|A^- (\bar{a}, x)\} \subset q^-)
\]
for some \(q \leq p' \mid q^+ \setminus p^+ \mid > 3 \), then there is a regular triple in \(q^+ \) and conversely – if there is such triple , then (*) holds.

So we may suppose, that the family \(A^- \) is empty, and the family \(A^+ \) consists from triples or (lemma \(\Box \) once more), singletons. Choose \(p' \) as in the lemma \(\Box \). Choose big enough \(\varphi^{p'} \) so for any \(q \leq p' \) or any triple from \(q^+ \setminus p^+ \) is regular or any triple from \(q^+ \setminus p^+ \) is unregular. Note, that if the set of regular triples is big, then for any \(q \leq p' \) there is \(q' \leq q \), \(q \models \Phi \), so \(q' \models \neg \Phi. \) If the set of regular triples is small then \(q' \leq q \), \(q \models \neg \Phi \) if all such triples (more exactly corresponding singletons) belongs to \(q^- \).

It completes the proof of the statement \(\Box \)

Now we can easily construct the decidable generic sequence \(p_0 \geq p_1 \geq \ldots p_n \geq \ldots \) such that \(R = \bigcup_i p_i^+ \) is undefinable.

\textbf{Acknowledgement}. First of all I would like to thank my friend and colleague Alexei Semenov. Many years ago he acquainted me with Elgot, Rabin problem, and carefully watched all my researches. I would like to thank my physician Polina Tkachenko who extremely kindly treated my mathematical studies in her hospital.

\textbf{References}

\begin{enumerate}
\item [ER] Elgot C. and Rabin M. “Decidability and Undecidability of Extensions of Second (First) Order Theory of (Generalized) Successor”, \textit{Journal Symb. Log. (31) 2} (1966), pp. 169-181.
\item [SOP1] Soprunov S. F. “Decidable expansions of structures”, \textit{Vopr. Kibern. (134)} (1988), pp. 175-179 (in Russian).
\item [BC1] Bés A., and Cégielski P. “Weakly maximal decidable structures”, \textit{RAIRO - Theoretical Informatics and Applications}, \textit{(42.01)} (2008), pp. 137-145.
\item [BC2] Bés A., and Cégielski P. “Nonmaximal decidable structures”, \textit{Journal of Mathematical Sciences}, \textit{(158.5)} (2009), pp. 615-622.
\item [BR1] Bés A., and Rabinovich A. “Decidable expansions of labelled linear orderings”, \textit{Fields of logic and computation}. Springer, Berlin, Heidelberg, 2010, pp. 95-107.
\end{enumerate}
[BR2] Bés A., and Rabinovich A. “On countable chains having decidable monadic theory”, Journal Symb. Log. (77) 2 (2012), pp. 593-608.

[SOP2] Soprunov S. F. An infinite branch in a decidable tree. arXiv preprint arXiv:1801.00423 (2018).

E-mail address: soprunov@mail.ru