Antibacterial Effect of Zinc Oxide Nanoparticles on Standard Strains and Isolates of *Pseudomonas Aeruginosa* and *Staphylococcus Aureus*

Shima Naddafi¹, Alireza Partoazar², Zahra Dargahi¹, *Mohammad Mehdi Soltan Dallal¹,³

1. Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
2. Experimental Medicine Research Center, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
3. Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran.

Background: Studies have shown that metal nanoparticles are highly active and exhibit remarkable bactericidal activity against a wide range of bacteria.

Objective: The aim of this study was to examine the antibacterial activity of zinc oxide nanoparticles against standard strains of *Pseudomonas aeruginosa* and *Staphylococcus aureus* and their isolates in food products.

Method: This experimental study was conducted on the two pathogenic bacteria and their two standard strains. Zinc oxide nanoparticles were prepared from zeolite and their amount was determined using the XRF analyzer. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) were measured using the disk diffusion method.

Findings: The MIC value of zinc oxide nanoparticles was 4 mg/mL for standard strain and isolate of *Pseudomonas aeruginosa* and 2 mg/mL for standard strain and isolate of *Staphylococcus aureus*. The MBC values for standard strain and isolate of *Pseudomonas aeruginosa* were 16 and 8 mg/mL, respectively, while for the standard strain and isolate of *Staphylococcus aureus* it was reported 8 mg/mL.

Conclusion: *Staphylococcus aureus* is more sensitive to zinc oxide nanoparticles than *Pseudomonas aeruginosa*.
wall and destroying the membrane; but its mechanism of action is still unclear [7-9].

In the study by Azam et al., the antibacterial effect of several nanoparticles on gram-positive and gram-negative bacteria was investigated. Their results showed that nanoparticles of ZnO had a better effect on both groups of bacteria [11]. In a study by Liu et al., ZnO nanoparticles could potentially be used as an effective antibacterial agent to protect the agriculture and food safety [13]. Due to a daily need for food in humans, any change in the food quality and quantity can have a significant impact on the community health. Removal of microbial contamination from food is important at any stages of food production, storage, and supply [16]. The aim of this study was to compare the antibacterial effect of ZnO nanoparticles on standard strains of P. aeruginosa and S. aureus isolated from food.

2. Materials and Methods

This experimental study was performed on two pathogenic and spoilage bacteria in meat and vegetable foods along with two standard strains of the same bacteria. In order to use the collected isolates, they were stored in a tryptic soy broth containing 15% of cultured glycerol at -70°C. The standard strains of P. aeruginosa (ATCC 27853) and S. aureus (ATCC 25923) used in this study were purchased from Zistroyesh Company in a freeze-dried form. In order to prepare the bacterial suspension for daily tests, McFarland suspension (1-1.5×10⁸ mL) was prepared. To ensure the correct turbidity of the McFarland suspension, its absorption was measured by a spectrophotometer at a wavelength range of 620 nm [17].

First, 100 g of zeolite with 70 g of zinc acetate was poured into 500-m beaker and, then, 400 mL of deionized water was added to them. This beaker was then placed on a magnetic stirring device. After 30 minutes, the beaker content was filtered using Whatman cellulose filter paper (Grade 40) and a white filter band (S&S 589/2: 12-25 μm, Germany) and washed by 500 mL of deionized water. Both filtered contents were then transferred to a glass plate and dried for 24 hours at room temperature. On the second day, the plate was incubated for 80 hours at 80°C and then was placed in a 120°C oven for 2 hours. The 400°C furnace was then used for calcinations of the obtained material for 2 hours [18]. Finally, to measure the amount of ZnO, the XRF analyzer (PW 2404, Philips Co., Holland) was used available at the laboratory of Tarbiat Modares University.

The lowest concentration of nanoparticle suspension that did not show turbidity in the tube was determined as the Minimum Inhibitory Concentration (MIC) of nanoparticle growth. In tubes with no growth, Minimum Bactericidal Concentrations (MBC) was determined by performing a re-culture on Müller-Hinton agar medium. These assessments were repeated three times [19]. All mediums used in this study were prepared from Merck Company in Germany. The antibacterial effect of ZnO nanoparticles on standard strains of P. aeruginosa and S. aureus isolated from food was evaluated by macrodilution method which includes the determination of MBC and MIC values and disk diffusion.

3. Results

Using the XRF analyzer, different percentages of elements in non-nano ZnO suspension and ZnO nanoparticle suspension were determined. The amount of ZnO non-nano ZnO suspension was obtained 8.358 and the amount of ZnO nanoparticle suspension was 25.149. The MIC of ZnO nanoparticle growth was reported 4 mg/mL for the standard strain and isolate of P. aeruginosa and 2 mg/mL for the standard strain and isolate of S. aureus. The MBC of ZnO nanoparticle suspension for the standard strain and P. aeruginosa was obtained 16 and 8 mg/mL, respectively, and for the standard strain and isolate of S. aureus was 8 mg/mL.

4. Conclusion

The results of this study showed that ZnO nanoparticle suspension had better antimicrobial effects on all bacteria compared to zeolite (non-nano ZnO) . During this study, antibacterial activity increased with the increase in the concentration of the nanoparticle solution. Reddy et al. examined the antimicrobial effects of ZnO nanoparticles on S. aureus and Escherichia coli and found that gram-positive S. aureus was more sensitive to ZnO nanoparticles than gram-negative Escherichia coli, which is consistent with the results of our study [24]. Ramani et al. synthesized ZnO nanoparticles with different structures and examined its antibacterial properties on 4 strains of gram-positive bacteria and 4 strains of gram-negative bacteria, and observed that spherical ZnO nanoparticles had better antibacterial properties [24]. Seil et al. synthesized a composite of polyvinyl chloride and ZnO nanoparticles and studied its antibacterial effect on S. aureus and showed that ZnO improves the antibacterial properties of the study composite [25]. According to the results of the present study, it can be found that S. aureus was more sensitive to ZnO nanoparticles than P. aeruginosa.

It can be concluded that ZnO nanoparticles can be used in food packaging and storage as deterrents to pathogenic bacteria and food spoilage, leading to reduced consumption of raw materials and less waste in the packaging industry. The isolates of bacteria were more sensitive than the standard...
strains. Standard strains were clinical samples and become resistant over time due to the use of antibiotics.

Ethical Considerations

Compliance with ethical guidelines

This study obtained its ethical approval from the Ethics Committee of Tehran University of Medical Sciences (Code: IR.TUMS.VCR.REC.1397.484).

Funding

This study was extracted from the master thesis of first author, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences (Code: 39078).

Authors’ contributions

Data collection, experiments, editing & review: Shima Naddafi, Zahra Dargahi; Data analysis and interpretation: Mohammad Mehdi Soltan Dallal, Alireza Partoazar; Initial draft preparation: Shima Naddafi.

Conflicts of interest

The authors declare no conflicts of interest.
مقایسه فعالیت ضدبакتریایی نانوذره اکسید روی پوسته‌های استاندارد و جدایه‌پسودوموناس آئروژینوزا و استافیلوکوک اورئوس از مواد غذایی

شیما تاناکی*، غیرنا پروتآزت، زهرا درگاهی، محمدعلی سلطان دلال

1. گروه پاتوبیولوژی، دانشکده مهندسی تهران، تهران، ایران.
2. مرکز تحقیقات طب جعفری، دانشکده زیست‌شناسی، دانشگاه علم پزشکی تهران، تهران، ایران.
3. مرکز تحقیقات میکروبیولوژی مواد غذایی، دانشگاه علم پزشکی تهران، تهران، ایران.

مقدمه

باکتری‌های پسودوموناس در خاک، آب، سطح گیاهان و گل‌های مختلف، انواع مواد غذایی و محیط‌های مرطوب و سطح خشکی بیماری‌های انفلام‌زا و ناپایداری آنها را باعث می‌شود. این باکتری‌ها غیرتخمیری اند و به‌طور گسترده‌ای در طبیعت پراکندگی دارند. پسودوموناس آئروژینوزا عامل عفونت‌های حاد و ناهنجاری‌های پوستی و بدنی در افراد مشاهده شده است.

کلیدواژه‌ها:
پسودوموناس آئروژینوزا، استافیلوکوک اورئوس، فعالیت

کیکیه

مطالعه محتوای مقداری از نانوذره اکسید روی بسیار فعال بوده و در مقابل طیف گسترده‌ای از باکتری‌ها، فعالیت باکتری‌کشی زمینه فوقاله‌ای نشان می‌دهند.

مطالعه حاضر با هدف مقایسه فعالیت ضدبакتریایی نانوذره اکسید روی بر سویه‌های استاندارد و جدایه‌پسودوموناس آئروژینوزا و استافیلوکوک اورئوس از مواد غذایی و بررسی تفاوت این دو باهم انجام شد.

این مطالعه تجربی بر روی دو باکتری عامل بیماری‌زا در کنار دو سویه استاندارد از همان باکتری‌ها انجام شد. نانوذره مواد و روش‌های تعیین شد. اثر ضدبакتریایی نانوذره اکسید ((XRF)، X-Ray Fluorescence) اکسید روی از زئولیت تهیه شد و مقدار آن با میزان چرب شدن شیمی‌بافت‌های نانوذره اکسید افزایش یافت. نانوذره اکسید روی بر سویه‌های استاندارد و جدایه‌پسودوموناس آئروژینوزا و استافیلوکوک اورئوس از مواد غذایی با روش ماکرودایلوشن و تعیین میزان مقدار مانند Minimum Bactericidal Concentration (MBC) و میکروبیون Minimum Inhibitory Concentration (MIC).

یافته‌ها

نانوذره اکسید روی بر سویه استاندارد و جدایه‌پسودوموناس آئروژینوزا و سویه استاندارد استافیلوکوک اورئوس MBC مقداری را به ترتیب با میلی گرم بر میلی لیتر محاسبه شد. مقادیر MBC برای نانوذره اکسید روی بر سویه استاندارد و جدایه‌پسودوموناس آئروژینوزا و سویه استاندارد استافیلوکوک اورئوس به ترتیب 2 و 4 میلی گرم بر میلی لیتر و برای جدایه استافیلوکوک اورئوس به ترتیب 8 و 16 میلی گرم بر میلی لیتر محاسبه شد و مورد ارزیابی قرار گرفت.

نتیجه‌گیری

با توجه به نتایج، می‌توان دریافت که باکتری استافیلوکوک اورئوس حساسیت بیشتری نسبت به پسودوموناس آئروژینوزا در مقایسه با نانوذره اکسید روی دارد.

کلیدواژه‌ها:
پسودوموناس آئروژینوزا، استافیلوکوک اورئوس، نانوذره اکسید روی

نویسنده مسئول:
*محمدمهدی سلطان دلال

نشانی:
+98 (912) 1452646
msoltandallal@gmail.com

پسودوموناس آورئوس، استافیلوکوک اورئوس، نانوذره اکسید روی، مقایسه، فعالیت

مقدمه

باکتری پسودوموناس آئروژینوزا از تیره پسودوموناس در خاک، آب، سطح گیاهان و گل‌های مختلف و سطح خشکی بیماری‌های انفلام‌زا و ناپایداری آنها را باعث می‌شود. این باکتری غیرتخمیری و به‌طور گسترده‌ای در طبیعت پراکندگی دارند. این باکتری به‌طور وسیع در طبیعت وجود داشته و به‌طور شایع از محیط‌های مرطوب بیمارستانی جدا شده است.
به دلیل همه چیز زیاد، حسین خانی و همکاران. مقایسه فعالیت ضد باکتریایی نانوذره اکسید روی بر سویه های استاندارد و جدایه پسودوموناس آئروژینوزا و استافیلوکوک اورئوس از مواد غذایی

برای تهیه سوسپانسیون باکتریایی جهت انجام آزمایشات ساعت کشت تریپتیک سوی آگار کشت داده شد و بعد از آن روی محیط خشک نگهداری شده بودند. ابتدا سویه ها در محیط از شرکت تعاونی دانش بنیان زیست رویش که به صورت فریز استفاده شده در این پژوهش و درجه سانتی‌گراد نگهداری شدند. در مرحله بعدی به منظور استفاده از جدایه ها در محیط قبلی جدا شده بود در کنار دو سویه استاندارد از همان باکتری این مطالعه از نوع تجربی روی دو باکتری بیماری زایی و عامل استافیلوکوک استفاده شد.

با توجه به اینکه، به دلیل کاهش آلودگی های میکروبی از مواد غذایی، امنیت غذایی و بهداشت جامعه خواهد داشت. گونالان و همکاران. مقایسه فعالیت ضد باکتریایی نانوذره اکسید روی بر سویه های استاندارد و جدایه پسودوموناس آئروژینوزا و استافیلوکوک اورئوس از مواد غذایی

به عنوان مثال، می‌تواند به مایع‌های NHSB در بیمارستان‌ها و برنامه‌های پیشگیری در جامعه اعمال گردد. در حالی که در جامعه معمولی تاکنون مطالعه‌ای در مورد تفاوت سویه‌ها در هریک از مراحل تولید، نگهداری و عرضه مواد غذایی قابل مطالعه خواهد داشت. زدودن آلودگی‌های میکروبی از مواد غذایی تأثیر بسزایی در بهداشت و سلامت جامعه بوده و استافیلوکوک اورئوس از نظر

به همین ترتیب، به همین ترتیب، بررسی و بررسی تفاوت این دو باهم انجام گرفت. Clinoptilolite گونالان و همکاران. مقایسه فعالیت ضد باکتریایی نانوذره اکسید روی بر سویه های استاندارد و جدایه پسودوموناس آئروژینوزا و استافیلوکوک اورئوس از مواد غذایی

ænd 4. Wang 5. Gunalan 6. Clinoptilolite
به منظور تجزیه و تحلیل داده‌ها از نرم‌افزار آماری 3. شماره 24 میلی گرم بر میلی لیتر و مقادیر حداقل غلظت بازدارنده رشد استات روی برای سویه استاندارد و جدایه پسودوموناس آئروژینوزا که مقدار اکسید روی در سوسپانسیون غیرنانو مورد تجزیه و تحلیل قرار گرفت. سطح پسودوموناس آئروژینوزا و استافیلوکوک اوئرس از مواد غذایی ضدباکتریای نانوذره اکسید روی بر سویه های استاندارد و جدایه تهیه شده قرار گرفت. تعدادی دیسک در استات روی و آب مقطر. تمام محیط های مورد تعیین نشان نداد، به عنوان حداقل غلظت ممانعت کننده رشد نانوذره نانوذره. در کپسول یا عدم رشد در نظر گرفته و به این ترتیب میزان MBC.

Graph One-way ANOVA

مقدار 100 گرم زلوپتای با 70 گرم استاندروی در داخل یک 100 میلیلیتری ریخته شد و 20 گرمی میلیلیتر آب دیده شد. این آزمایشات با ویژگی‌های pH میزان pH شد.

7. Magnet

ساعت استفاده 30-45 دقیقه به درجه سانتی‌گراد، سوختن و حل شدن ورتکس شد و به مدت 358.80 میلی لیتر آب دیونیزه شست وشو داده شد و به مدت 500 میلی‌لیتر، مقدار استاندارد تهیه شده شد.

8. One-way ANOVA

داهنده شد و به مدت یک هفته داده شد و به مدت 400 میلی‌لیتر محیط داده شد و به مدت 70 مولار اضافه. باید به تدریج به ساختار مورد نظر سود گرفت.
Histopathological study on the hepatic system, liver, and skeletal muscle in rats with high levels of arsenic through gavage in the long term.

Background: Arsenic is a naturally occurring toxic metal that is found in the earth's crust, water, and air. It is also a by-product of mining and industrial processes. Acute and chronic arsenic poisoning can cause various health problems, including cancer, cardiovascular disease, and neurotoxic effects.

Objective: To investigate the histopathological changes in rats exposed to high levels of arsenic through long-term gavage.

Materials and Methods: A total of 40 rats were divided into 5 groups: control, low, medium, high, and very high exposure groups. The rats in the exposure groups were fed a diet containing 0, 1, 3, 5, and 7 mg arsenic/kg body weight, respectively, for 12 weeks. At the end of the experiment, the rats were sacrificed, and their liver, kidneys, and skeletal muscle were collected for histopathological examination.

Results: The histopathological examination of the liver, kidneys, and skeletal muscle showed significant changes in the rats exposed to high levels of arsenic. The liver showed severe necrosis, inflammation, and fibrosis, while the kidneys showed tubular necrosis, interstitial fibrosis, and glomerular hyperplasia. The skeletal muscle showed muscle fiber necrosis and inflammation.

Conclusion: The results of this study indicate that high levels of arsenic exposure through gavage can cause significant histopathological changes in the liver, kidneys, and skeletal muscle of rats.

Keywords: Arsenic, Histopathology, Rats, Toxicity,
بحث و نتیجه‌گیری
نتایج این مطالعه نشان داد که سوسپانسیون نانوذرات اکسید روی بر همه باکتری‌ها اثرات ضد میکروبی بهتری نسبت به سوسپانسیون کامپوزیت غیر نانو اکسید روی، زئولیت دارد. در طی این بررسی، با افزایش غلظت محلول نانوذرات، فعالیت ضدباکتریایی افزایش یافت. و همکاران با بررسی اثر ضدمیکروبی پودرهای اکسید 11 ساوای را بر مس و منیزیم گزارش کردند که این سه اکسید فلزی قدرت ضد میکروبی خوبی در برابر طیف وسیعی از میکروارگانیسم‌ها دارند.

کتابچی و همکاران در ارزیابی فعالیت مهارکننده نانوذرات اکسید روی بر سویه‌های استاندارد و ایزوله اشریشیا کلی و استافیلوکوکوس اورئوس جداشده از مواد غذایی با مقادیر حداقل غلظت بازداری و باکتری‌کشی نانوذرات اکسید روی 11 شیما ندافی و همکاران. مقایسه فعالیت ضدباکتریایی نانوذرات اکسید روی بر سویه استاندارد کاندیدا آلبالی با روش میکرو براثرلیون در مقایسه با داروی فلوکونازول نشان دادند که استفاده از نانوذرات اکسید روی به عنوان گزینه مناسب ضدمیکروبی می‌باشد.

پژوهش پایه‌ای
در پژوهش پایه‌ای، اثرات میکروارگانیسم‌های حساس به کمیت در محدوده 1/25-2500 میلی گرم بر میلی لیتر و 78/12 لیتری از نانو ذرات اکسید روی بر روی باکتری‌های حساس به اکسید و همکاران اثر ضد قارچی نانوذره اکسید روی را بر مهار رشد سویه استاندارد کاندیدا آلبالی با روش میکرو براثرلیون در مقایسه با داروی فلوکونازول نشان دادند که استفاده از نانوذرات اکسید روی به عنوان گزینه مناسب ضدمیکروبی می‌باشد.

جدول 2. تأثیر غلظت‌های مختلف نانوذرات اکسید روی بر روی باکتری‌های پسدرموناس اکروژینوزا و استافیلوکوک اورئوس، بر اساس شاخص عدم رشد

غلظت	باکتری	دیسک آغشته	میلی گرم بر میلی لیتر
0.5	Pseudomonas aeruginosa	10	DW
1	Pseudomonas aeruginosa	10	ZnO Nano 5
2	Pseudomonas aeruginosa	10	ZnO Nano 10
4	Pseudomonas aeruginosa	10	ZnO Nano 16
8	Pseudomonas aeruginosa	10	ZnO Nano 25
16	Pseudomonas aeruginosa	10	ZnO Nano 50
32	Pseudomonas aeruginosa	10	ZnO Nano 100
64	Pseudomonas aeruginosa	10	ZnO Nano 200

نتایج
در پژوهش پایه‌ای، اثرات میکروارگانیسم‌های حساس به کمیت در محدوده 1/25-2500 میلی گرم بر میلی لیتر و 78/12 لیتری از نانو ذرات اکسید روی بر روی باکتری‌های حساس به اکسید و همکاران اثر ضد قارچی نانوذره اکسید روی را بر مهار رشد سویه استاندارد کاندیدا آلبالی با روش میکرو براثرلیون در مقایسه با داروی فلوکونازول نشان دادند که استفاده از نانوذرات اکسید روی به عنوان گزینه مناسب ضدمیکروبی می‌باشد.

11. Sawai
در این مطالعه، به مطالعات قبلی زبانگ و چن [20] و باکتری‌های مثبت و منفی با میکروب‌های بی‌کارپاتیک در شرایط غلظت تاریک بررسی شد. نتایج نشان داد که باکتری‌های مثبت و منفی با میکروب‌های بی‌کارپاتیک در شرایط غلظت تاریک شرایط محیط و نور مرئی برای فعالیت ضد میکروبی اکسید روی کافی است، در حالی که این فعالیت در شرایط باکتری‌ها در نور با قدرت کمتری انجام می‌شود.

روی شناسایی باکتری‌های استافیلوکوکوس و اشریشیا کلی بررسی و مشاهده شد که باکتری استافیلوکوکوس اورئوس در مقایسه با بکتری‌های اشریشیا کلی حساسیت بیشتری نسبت به نانو ذرات اکسید روی دارد که با نتایج این بررسی مطابقت دارد.

روی بهبود عملکرد خاصیت ضد باکتریایی نانو ذرات اکسید روی می‌تواند با افزایش شرایط محیطی موجب بهبود عملکرد مقاومت باکتری‌ها شود و در جهت بهبود صفت ضد باکتریایی میکروکوبیونهای بیماری‌زای موثر باشد. مطالعات کامپوزیت از پلی وینیل کلرید و مسیلا [17] نشان داد که دارای خواص ضد باکتریایی بهتری را نسبت به سویه های استاندارد دارند. نتایج نشان داد که سویه های استاندارد از نمونه‌های بالینی هستند و به مصرف آنتی‌بیوتیک‌ها نیاز دارند.

ملاحظات اخلاقی

کمپوزیت‌های نانو ذرات اکسید روی برای مقاومت بیماری‌زا و ضد باکتریایی جهت بهبود صنعت بسته بندی منجر به کاهش مصرف مواد اولیه و ضایعات کمتر شوند. نتایج نشان داد که سویه‌های جدایه نسبت به سویه‌های استاندارد حساسیت بیشتری نسبت به نانو ذرات اکسید روی دارد که با توجه به نتایج قبلی، ناحیه مشابه نیازمند به تحقیق بیشتر دارد.

ملاحظات اخلاقی

کمپوزیت‌های نانو ذرات اکسید روی برای مقاومت بیماری‌زا و ضد باکتریایی جهت بهبود صنعت بسته بندی منجر به کاهش مصرف مواد اولیه و ضایعات کمتر شوند. نتایج نشان داد که سویه‌های جدایه نسبت به سویه‌های استاندارد حساسیت بیشتری نسبت به نانو ذرات اکسید روی دارد که با توجه به نتایج قبلی، ناحیه مشابه نیازمند به تحقیق بیشتر دارد.
از شیما ندافی و همکاران. مقایسه فعالیت ضدباکتریایی نانوذره اکسید روی بر سویه های استاندارد و جدایه پسودوموناس آئروژینوزا و استافیلوکوک اورئوس از مواد غذایی
References

[1] Raposo A, Pérez E, de Faria CT, Ferrús MA, Carrascosa C. Food Spoilage by Pseudomonas spp. An Overview. In: Singh OV, editor. Food-borne pathogens and antibiotic resistance. 1st edition. New Jersey: John Wiley & Sons; Inc; 2017. [DOI:10.1002/9781119139188.ch3]

[2] Japooni A, Alborzi A, Orafa F, Rasouli M, Farshad S. Distribution patterns of methicillin resistance genes (mecA) in staphylococcus aureus isolates from clinical specimens. Iran Biomed J. 2004; 8(4):173-8. [DOI:10.1016/j_ijfoodmicro.2005.07.008] [PMID]

[3] Rahimi F, Bouzari M, Katouli M, Pourshafie MR. Antibiotic resistance pattern of methicillin resistant and methicillin sensitive Staphylococcus aureus isolates in Tehran. Iran. Jundishapur J Microbiol. 2013; 6(2):144-9. [DOI:10.5812/jjm.4896]

[4] Boerema JA, Clemente R, Brightwell G. Evaluation of molecular methods to determine enterotoxigenic status and molecular genotype of bovine, ovine, human and food isolates of staphylococcus aureus. Int J Food Microbiol. 2006; 107(2):192-21. [DOI:10.1016/j_ijfoodmicro.2005.08.007] [PMID]

[5] Pereira V, Lopes C, Castro A, Silva J, Gibbs P, Teixeira P. Characterization for enterotoxin production, Virulence factors, and antibiotic susceptibility of staphylococcus aureus isolates from various foods in Portugal. Food Microbiol 2009; 26(3):278-82. [DOI:10.1016/j.fm.2008.12.008] [PMID]

[6] Emami-Karvani Z, Chehrazi P. Antibacterial activity of ZnO nanoparticles on gram positive and gram-negative bacteria. Afr J Microbiol Res. 2011; 5(12):1368-73. [DOI:10.5897/AJMR10.159]

[7] Dutta RK, Nenavathu BP, Gangishetty MK, Reddy AV. Studies on antibacterial activity of ZnO nanoparticles by ROS induced lipid peroxidation. Colloids Surf B Biointerfaces, 2012; 94:143-50.

[8] Xie Y, He Y, Irwin PL, Jin T, Shi X. Antibacterial activity and mechanism of action of zinc oxide nanoparticles. J of Appl Environ Microbiol. 2011; 77(7):2325-31. [DOI:10.1128/AEM.02149-10] [PMID] [PMCID]

[9] Ravikumar S, Gokulakrishnan R, Boomi P. In vitro antibacterial activity of the metal oxide nanoparticles against urinary tract infectious bacterial pathogens. Asian Pac J Trop Dis. 2012; 2(2):85-9. [DOI:10.1016/S2222-1808(12)60022-X]

[10] Kolodziejczak-Radzimska A, Jesionowski T. Zinc oxide-from synthesis to application: A review. Materials (Basel). 2014; 7(4):2833-81. [DOI:10.3390/ma7042833] [PMID] [PMCID]

[11] Azam A, Ahmed AS, Oves M, Khan MS, Habib SS, Memic A. Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: A comparative study. Int J Nanomedicine. 2012; 7:6003-9. [DOI:10.2147/IJN.S35347] [PMID] [PMCID]

[12] Hosseinikhani P, Zand AM, Imani S, Rezayi M, Rezaei Zarchi S. Determining the antibacterial effect of ZnO nanoparticle against the pathogenic bacterium, Shigella dysenteriae (type 1). Int J Nano Dim. 2011; 1(4):279-85. [DOI:10.7508/ijnj.2010.04.006]

[13] Liu Y, He L, Mustapha A, Li H, Hu Z, Lin M. Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157: H7. J App Microbiol. 2009; 107(4):1193-201. [DOI:10.1111/j.1365-2672.2009.04303.x] [PMID]

[14] Wang C, Liu L-L, Zhang A-T, Xie P, Lu J-J, Zou X-T. Antibacterial effects of zinc oxide nanoparticles on Escherichia coli K 88. Afr J Biotechnol. 2012; 11(44):10248-54. [DOI:10.5897/AJB11.3703]

[15] Gunalan S, Sivaraj R, Rajendran V. Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Pro Nat Sci Mater. 2012; 22(6):695-702. [DOI:10.1016/j.pnsc.2012.11.015]

[16] Alswat AA, Ahmad MB, Saleh TA, Hussein MZB, Ibrahim NA. Effect of zinc oxide amounts on the properties and antibacterial activities of zeolite/zinc oxide nanocomposite. Mater Sci Eng C Mater Biol Appl. 2016; 68:505-11. [DOI:10.1016/j.msec.2016.06.028] [PMID]

[17] Ketabchi M, Iessazadeh KH, Massiah A. Evaluate the inhibitory activity of ZnO nanoparticles against standard strains and isolates of Staphylococcus aureus and Escherichia coli isolated from food samples. J Food Microbiol. 2017; 4(1):63-74. [In Persian] http://jffm.iau-shahr.ac.ir/article_654466_Bb3349bbce43296f42d8999ba4a3e05c.pdf

[18] Sawai J, Yoshikawa T. Quantitative evaluation of antifungal activity of metallic oxide powders (MgO, CaO and ZnO) by an indirect conductimetric assay. J Appl Microbiol. 2004; 96(4):803-9. [DOI:10.1111/j.1365-2672.2004.02234.x] [PMID]

[19] Adams LK, Lyon DY, Alvarez PJ. Comparative ecotoxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res. 2006; 40(19):3527-32. [DOI:10.1016/j.watres.2006.08.004] [PMID]

[20] Hosseini SS, Joshtagani HR, Eskandari M. Colorimetric MTT assessment of antifungal activity of ZnO nanowires against candida dubliniensis biofilm. Jundishapur J Health Sci. 2013; 12(1):69-80. [In Persian] http://pdfarchive.ir/pack-5/Do_52513928205.pdf

[21] Zhang H, Chen G. Potent antibacterial activities of Ag/TiO2 nanocomposite powders synthesized by a one-pot sol–gel method. Environ Sci Technol. 2009; 43(8):2905-10. [DOI:10.1021/es803450f] [PMID]

[22] Sinha R, Karan R, Sinha A, Khare SK. Interaction and nanotoxic effect of ZnO and Ag nanoparticles on mesophilic and halophilic bacterial cells. Bioresour Technol. 2011; 102(2):1516-20. [DOI:10.1016/j.biortech.2010.07.117] [PMID]

[23] Reddy KM, Feris K, Bell J, Wingett DG, Hanley C, Punnoose A. Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl Phys Lett. 2007; 90(21):1-3. [DOI:10.1063/1.2742324] [PMID] [PMCID]

[24] Ramani M, Ponnusamy S, Muthamizhchelvan C. From zinc oxide nanoparticles to microflowers: A study of growth kinetics and biocidal activity. Mater Sci Eng. 2012; 32(8):2381-9. [DOI:10.1016/j.msec.2012.07.011]

[25] Seil JT, Webster TJ. Reduced Staphylococcus aureus proliferation and biofilm formation on zinc oxide, nanoparticle PVC composite surfaces. Acta Biomater. 2011; 7(6):2579-84. [DOI:10.1016/j.actbio.2011.03.018] [PMID]

[26] Ma J, Liu J, Bao Y, Zhu Z, Wang X, Zhang J. Synthesis of large-scale uniform mulberry-like ZnO particles with microwave hydrothermal method and its antibacterial property. Ceram Int. 2013; 39(3):2803-10. [DOI:10.1016/j.ceramint.2012.09.049]
