Supporting information for

Melodinines Y₁–Y₄, four monoterpenoid indole alkaloids from *Melodinus henryi*

Fa-Lei Zhang, Juan He, Tao Feng*, and Ji-Kai Liu*

School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, People’s Republic of China.

*Corresponding authors: tfeng@mail.scuec.edu.cn (T. Feng); jkliu@mail.kib.ac.cn (J.K. Liu)

Contents

Section S1. Calculational details for 1

Section S2. Calculational details for 3

Section S3. Calculational details for 4

Section S4. NMR, MS, IR, and CD spectra for 1

Section S5. NMR, MS, IR, and CD spectra for 2

Section S6. NMR, MS, IR, and CD spectra for 3

Section S7. NMR, MS, IR, and CD spectra for 4
Section S1. Calculational details for 1

S1.1. Computational details for compound 1 (NMR)

Conformation search based on molecular mechanics with MMFF force fields were performed for 1A and 1B gave 8 and 2 stable conformers with populations higher than 1%, respectively. All these conformers were further optimized by the density functional theory method at the B3LYP/6-31G(d) level by Gaussian 16 program package with g09 default keyword. Gauge Independent Atomic Orbital (GIAO) calculations of their 1H and 13C NMR chemical shifts using density functional theory (DFT) at the mPW1PW91/6-311+G(d,p) level with the PCM model in methanol. The calculated NMR data of these conformers were averaged according to the Boltzmann distribution theory and their relative Gibbs free energy. The 1H and 13C NMR chemical shifts for TMS were also calculated by the same procedures and used as the reference. After calculation, the experimental and calculated data were evaluated by linear correlation coefficients (R^2) and the improved probability DP4+ method.
Table S1. Energy analysis for optimized geometries of dominant conformers 1Aa–1Ah at B3LYP/6-31G(d) level in the gas phase

Species	\(E'=E+ZPE\)	\(E\)	\(H\)	\(G\)	\(\Delta G\)	\(\Delta E\) (kcal/mol)	\(PE\)%
1Aa	-1884.808178	-1884.770215	-1884.769271	-1884.875361	0.002622	1.645330	3.68
1Ab	-1884.809349	-1884.771231	-1884.770287	-1884.876480	0.001503	0.943147	12.06
1Ac	-1884.812073	-1884.774476	-1884.773532	-1884.877983	0	0	59.29
1Ad	-1884.806825	-1884.768842	-1884.767897	-1884.873824	0.004159	2.609812	0.72
1Ae	-1884.806714	-1884.768818	-1884.767874	-1884.873593	0.004390	2.754767	0.57
1Af	-1884.808107	-1884.769971	-1884.769027	-1884.875017	0.002966	1.861193	2.56
1Ag	-1884.810750	-1884.773088	-1884.772144	-1884.877005	0.000978	0.613704	21.03
1Ah	-1884.805382	-1884.767470	-1884.766526	-1884.871942	0.006041	3.790785	0.10

\(E, E', H, G\): total energy, total energy with zero point energy \((ZPE)\), enthalpy, and Gibbs free energy

Figure S1. Main conformers of 1A in NMR and ECD calculations.
Table S2. Energy analysis for optimized geometries of dominant conformers 1Ba–1Bb at B3LYP/6-31G(d) level in the gas phase

Species	$E'=E+ZPE$	E	H	G	ΔG	ΔE (kcal/mol)	PE%
1Ba	-1884.807065	-1884.769150	-1884.768206	-1884.873448	0	0	79.01%
1Bb	-1884.805710	-1884.767744	-1884.766799	-1884.872197	0.001251	0.785014	20.99%

Figure S2. Main conformers of 1B in NMR calculation.

Table S3. Calculated 13C NMR results for 1A

No.	1Aa	1Ab	1Ac	1Ad	1 Ae	1Af	1Ag	1Ah	δ_{Calc}	δ_{Exp}	δ_{Cor}	Relative errors
2	43.8155	43.6622	42.6273	43.3929	44.3148	43.1404	42.1378	43.8331	145.5	131.9	138.1	-6.2
3	141.1333	140.5529	138.7807	142.1730	139.9825	141.7676	139.1767	140.0338	48.9	45.5	47.7	-2.2
5	132.8267	133.1572	133.7171	133.1148	132.3610	133.3152	133.2178	132.4859	54.7	52.0	53.1	-1.1
6	167.4083	167.1311	167.1578	167.3096	167.0873	167.1782	167.1042	167.3670	21.0	17.6	21.6	-4.0
7	76.5263	76.8001	72.0424	76.4946	78.2087	76.7019	72.7938	78.0917	115.0	105.2	109.6	-4.4
8	53.0169	52.8209	51.6815	53.0291	53.6364	52.8697	51.8084	53.7005	136.2	129.3	129.5	-0.2
9	65.8718	65.8850	65.0040	65.8500	65.6984	65.9235	65.1764	65.6922	123.0	119.2	117.1	2.1
10	64.1157	63.9992	61.8716	63.9088	64.2758	63.8765	62.1227	64.5344	125.8	120.7	119.7	1.0
Table S4. Calculated 13C NMR results for 1B

No.	1Ba δ_{exp}	1Bb δ_{exp}	δ_{corr}^b	Relative errorsc		
2	43.1312	43.1532	145.0	131.9	138.6	-6.7
3	142.5085	141.2367	45.9	45.5	45.2	0.3
5	132.9010	133.5056	55.2	52.0	53.9	-1.9
6	167.0130	166.3282	21.3	17.6	22.0	-4.4
7	76.8020	76.6709	111.4	105.2	106.9	-1.7
8	53.1251	52.8565	135.1	129.3	129.2	0.1
9	65.3881	65.2540	122.8	119.2	117.6	1.6
10	63.5722	63.6879	124.6	120.7	119.3	1.4
11	63.2386	63.1275	125.0	121.9	119.7	2.2
12	69.8157	69.5210	118.4	113.1	113.5	-0.4
13	45.5483	45.6453	142.6	137.7	136.3	1.4
14	163.0851	163.2316	25.1	20.6	25.5	-4.9
15	161.4662	155.1986	28.0	24.4	28.3	-3.9
16	133.0036	133.6690	55.0	49.9	53.7	-3.8
17	143.2273	145.6493	44.4	42.7	43.8	-1.1
18	178.7125	177.5026	9.7	7.7	11.0	-3.3
19	154.7919	155.7944	33.2	29.3	33.1	-3.8
20	147.9192	148.7242	40.1	36.4	39.7	-3.3
21	124.5112	129.7295	62.6	61.2	60.9	0.3

aWeighted average from the calculated shifts; bObtained by linear fit δ_{exp} versus δ_{calc}; $^c\Delta\delta = \delta_{exp} - \delta_{corr}$.
	2'	3'	5'	6'	7'	8'	9'	10'	11'	12'	13'	14'	15'	16'	17'	18'	19'	20'	21'	-OCH₃	Population	RMSD																																																																																																								
	144.3497	144.3015	43.8	58.2	43.2	15.0	143.2106	143.2866	45.0	63.6	44.2	19.4	125.1541	125.2281	63.0	64.5	61.3	3.2	155.1687	155.4165	33.0	34.0	32.9	1.1	85.0082	83.8912	103.4	94.3	99.3	-5.0	55.1539	55.7621	132.9	117.4	127.1	-9.7	76.2547	76.0097	112.0	98.3	107.4	-9.1	52.2437	52.5207	135.9	158.5	129.9	28.6	36.3433	36.1454	151.9	122.7	145.0	-22.3	73.7739	73.9181	114.4	124.9	109.7	15.2	30.9768	31.3281	157.1	150.8	150.0	0.8	167.4953	167.3047	20.7	26.3	21.4	4.9	158.8980	158.9796	29.3	26.9	29.5	-2.6	168.5091	168.4037	19.7	20.0	20.4	-0.4	156.6775	156.9392	31.4	33.2	31.5	1.7	177.8028	177.8630	10.4	7.1	11.6	-4.5	158.4859	158.4520	29.7	34.5	29.9	4.6	141.5538	141.6426	46.6	32.8	45.8	-13.0	85.0326	84.3559	103.3	103.7	99.2	4.5	133.5116	133.6287	54.6	53.0	53.4	-0.4	79.01%	20.99%	RMSD	8.47	0.00%	0.00%

a Weighted average from the calculated shifts; b Obtained by linear fit δexp versus δcalc; c Δδ = δexp - δcorr.
Figure S3. 13C NMR calculation results of two possible isomers of 1. (a) Linear correlation plots of predicted versus experimental 13C NMR chemical shifts. (b) Relative errors between the predicted 13C NMR chemical shifts of two potential structures and recorded 13C NMR data.
Table S5. DP4+ analysis results of 1A (Isomer 1) and 1B (Isomer 2)

Nuclei	sp²?	Experimental	Isomer 1	Isomer 2	Isomer 3	Isomer 4	Isomer 5	
C	x	131.9	42.72	43.14				
C		45.5	139.27	142.24				
C		52	133.49	133.93				
C		17.6	187.15	166.87				
C	x	105.3	73.13	76.77				
C	x	129.3	51.95	53.07				
C	x	119.2	65.21	66.56				
C	x	120.7	62.35	63.60				
C	x	121.9	62.25	63.22				
C	x	113.1	69.88	69.75				
C	x	137.7	42.65	45.57				
C		20.6	163.08	163.12				
C		24.4	161.62	160.15				
C		49.9	127.97	133.14				
C		42.7	144.30	143.74				
C		7.7	178.34	178.46				
C		29.3	155.35	155.90				
C		36.4	148.24	148.09				
C		61.2	126.79	125.61				
C		55.2	143.53	144.34				
C		65.6	143.52	143.35				
C		64.5	124.58	125.17				
C		34	156.42	155.32				
C		94.3	84.01	84.77				
C	x	117.4	62.58	55.28				
C	x	124.9	59.05	76.20				
C	x	122.7	57.36	52.50				
C	x	158.5	33.73	36.30				
C	x	98.3	87.62	73.80				
C	x	150.8	33.60	31.05				
C		26.3	167.15	167.46				
C		26.9	159.77	158.92				
---	---	---	---					
47	C	20	167.21	168.49				
48	C	33.2	156.80	156.73				
49	C	7.1	178.59	177.82				
50	C	34.5	158.19	158.48				
51	C	32.8	139.60	141.57				
52	C	103.7	83.73	84.89				
53	C	53	134.67	133.54				
54	H	2.58	23.09	23.28				
55	H	2.8	23.07	23.20				
56	H	3.46	28.51	28.57				
57	H	3.46	28.32	28.41				
58	H	2.82	29.30	29.12				
59	H	3.03	28.59	28.61				
60	H	x	7.41	24.04	23.87			
61	H	x	6.94	24.31	24.37			
62	H	x	6.81	24.48	24.52			
63	H	x	6.63	24.36	24.69			
64	H	1.46	30.27	30.33				
65	H	1.82	30.05	29.90				
66	H	1.15	30.60	30.55				
67	H	1.54	30.45	30.40				
68	H	5.55	26.77	26.15				
69	H	1.67	29.84	30.24				
70	H	2.37	29.74	29.42				
71	H	0.93	30.87	31.00				
72	H	0.93	30.88	30.87				
73	H	0.93	30.99	30.88				
74	H	1.54	30.30	30.41				
75	H	2.09	29.60	29.63				
76	H	4.38	27.65	27.47				
77	H	2.97	28.50	28.84				
78	H	3.26	28.33	28.82				
79	H	2.75	28.75	28.64				
80	H	3.45	28.42	28.60				
81	H	2.91	28.42	28.44				
82	H	3.33	27.75	27.84				
	A	B	C	D	E	F	G	H
-----	---------	---------	---------	---------	---------	---------	---------	---------
84	H	2.39	23.73	23.72				
85	H	2.48	23.63	23.55				
86	H	6.78	24.67	25.55				
87	H	6.48	25.71	25.03				
88	H	1.7	30.14	30.27				
89	H	1.7	28.78	30.68				
90	H	1.91	30.54	30.70				
91	H	2.41	30.28	30.21				
92	H	1.82	30.56	31.11				
93	H	2.3	29.80	30.61				
94	H	1.4	30.40	30.21				
95	H	1.61	28.85	30.63				
96	H	0.89	31.08	30.96				
97	H	0.89	31.07	31.10				
98	H	0.89	30.98	31.12				
99	H	1.34	30.82	30.94				
100	H	1.34	30.50	30.66				
101	H	2.68	28.82	29.20				
102	H	2.68	28.37	28.21				
103	H	2.68	28.15	28.81				

	Functional	Solvent?	Basis Set	Type of Data	H	
1	mPW1PW91	PCM	6-311+G(d,p)	Shielding Tensors		
2	Isomer 1	Isomer 2	Isomer 3	Isomer 4	Isomer 5	Isomer 6
5	sDP4+ (H data)	2.27%	97.73%	-	-	-
6	sDP4+ (C data)	100.00%	0.00%	-	-	-
7	sDP4+ (all data)	100.00%	0.00%	-	-	-
8	uDP4+ (H data)	6.07%	93.93%	-	-	-
9	uDP4+ (C data)	100.00%	0.00%	-	-	-
10	uDP4+ (all data)	100.00%	0.00%	-	-	-
11	DP4+ (H data)	0.15%	99.85%	-	-	-
12	DP4+ (C data)	100.00%	0.00%	-	-	-
13	DP4+ (all data)	100.00%	0.00%	-	-	-
S1.2. Computational details for compound 1 (ECD)

Conformation search based on molecular mechanics with MMFF force fields were performed for 1A gave 8 stable conformers with populations higher than 1%. All these conformers were further optimized by the density functional theory method at the B3LYP/6-311G(2d,p) level by Gaussian 16 program package. The ECD were calculated using density functional theory (TDDFT) at B3LYP/6-311G(d) level in methanol with IEFPCM model. The calculated ECD curves were all generated using SpecDis 1.71 program package ($\sigma = 0.15$ eV, and UV shift -31 nm) and the calculated ECD data of all conformers were Boltzmann averaged by Gibbs free energy.

Figure S4. Comparison of the calculated ECD spectra for with the experimental spectrum of 1 in methanol with PCM model.
Table S6. Energy analysis for optimized geometries of dominant conformers 1Aa–1Ah at B3LYP/6-311G(2d,p) level in the gas phase

Species	\(E' = E + ZPE\)	\(E\)	\(H\)	\(G\)	\(\Delta G\)	\(\Delta E\) (kcal/mol)	\(PE\)%
1Aa	-1885.319891	-1885.281611	-1885.280667	-1885.387417	0.002103	1.319652	4.78%
1Ab	-1885.321033	-1885.282544	-1885.2816	-1885.388853	0.000667	0.418549	21.87%
1Ac	-1885.323068	-1885.285164	-1885.28422	-1885.38952	0	0	44.35%
1Ad	-1885.318432	-1885.280166	-1885.279222	-1885.386149	0.003371	2.115335	1.25%
1Ae	-1885.318432	-1885.280223	-1885.279279	-1885.385334	0.004186	2.626755	0.53%
1Af	-1885.319663	-1885.281107	-1885.280162	-1885.387746	0.001774	1.113202	6.77%
1Ag	-1885.321953	-1885.283946	-1885.283002	-1885.388782	0.000738	0.463102	20.29%
1Ah	-1885.317177	-1885.278892	-1885.277948	-1885.384282	0.005238	3.286895	0.17%

\(E, E', H, G\): total energy, total energy with zero point energy (ZPE), enthalpy, and Gibbs free energy
Section S2. Calculational details for 3

S2.1. Computational details for compound 3 (NMR)

Conformation search based on molecular mechanics with MMFF force fields were performed for 3a, and 3b gave 2, and 1 stable conformers with populations higher than 1%, respectively. All these conformers were further optimized by the density functional theory method at the B3LYP/6-31G(d) level by Gaussian 16 program package with g09 default keyword. Gauge Independent Atomic Orbital (GIAO) calculations of their \(^1\)H and \(^{13}\)C NMR chemical shifts using density functional theory (DFT) at the mPW1PW91/6-311+G(d,p) level with the PCM model in methanol. The calculated NMR data of these conformers were averaged according to the Boltzmann distribution theory and their relative Gibbs free energy. The \(^1\)H and \(^{13}\)C NMR chemical shifts for TMS were also calculated by the same procedures and used as the reference. After calculation, the experimental and calculated data were evaluated by linear correlation coefficients \((R^2)\) and the improved probability DP4+ method.
Table S7. Energy analysis for optimized geometries of dominant conformers 3aA–3aB at B3LYP/6-31G(d) level in the gas phase

Species	$E'=E+ZPE$	E	H	G	ΔG	ΔE(kcal/mol)	PE\%
3aA	-1111.332647	-1111.310645	-1111.309701	-1111.382716	0	0	91.65%
3aB	-1111.330373	-1111.308376	-1111.307431	-1111.380455	0.002261	1.418799	8.35%

Figure S5. Main conformers of 3a in NMR and ECD calculations.

![3aA and 3aB](image)

Table S8. Energy analysis for optimized geometries of dominant conformers 3bA at B3LYP/6-31G(d) level in the gas phase

Species	$E'=E+ZPE$	E	H	G	ΔG	ΔE(kcal/mol)	PE\%
3bA	-1111.331138	-1111.309237	-1111.308293	-1111.380773	0	0	100.00%

Figure S6. Main conformers of 3b in NMR calculation.

![3bA](image)
Table S9. Calculated 13C NMR results for 3a

No.	3aA	3aB	δ_{calcd}^a	δ_{exp}	δ_{corr}^b	Relative errorsc
2	-1.4116	-2.2914	189.67	184.1	181.4	2.7
3	141.9232	142.2114	46.23	46.1	43.0	3.1
5	134.2861	134.4603	53.88	51.7	50.4	1.3
6	151.2742	151.6327	36.88	31.9	34.0	-2.1
7	138.1072	137.8675	50.09	45.2	46.7	-1.5
8	51.3223	51.1203	136.88	130.1	130.4	-0.3
9	56.7021	57.4232	131.42	125.0	125.2	-0.2
10	60.9598	61.0471	127.21	123.2	121.1	2.1
11	55.4534	55.5887	132.72	127.3	126.4	0.9
12	70.1696	67.2080	118.26	114.3	112.5	1.8
13	35.6491	35.4396	152.55	145.8	145.6	0.2
14	154.5225	153.8186	33.72	31.0	30.9	0.1
15	143.5664	140.4704	44.87	35.2	41.7	-6.5
16	121.2378	118.1563	67.20	63.2	63.2	0.0
17	5.2266	6.4705	182.85	172.7	174.8	-2.1
18	172.2769	172.6176	15.88	13.9	13.7	0.2
19	56.2750	57.7685	131.78	121.7	125.5	-3.8
20	42.6596	41.4894	145.62	136.5	138.9	-2.4
21	129.8492	130.3397	58.29	59.6	54.6	5.0
-OCH$_3$	132.9766	132.7825	55.22	53.0	51.7	1.3
Population	91.65%	8.35%			RMSD	2.5

aWeighted average from the calculated shifts; bObtained by linear fit δ_{exp} versus δ_{calcd}; c$\Delta\delta = \delta_{\text{exp}} - \delta_{\text{corr}}$.
Table S10. Calculated 13C NMR results for 3b

No.	3bA	δ_{Calc}^a	δ_{Exp}	δ_{Corr}^b	Relative errorsc
2	-0.2863	188.47	184.1	180.7	3.4
3	136.1902	51.99	46.1	48.7	-2.6
5	134.6476	53.53	51.7	50.2	1.5
6	152.0603	36.12	31.9	33.4	-1.5
7	138.2472	49.93	45.2	46.8	-1.6
8	50.9131	137.27	130.1	131.2	-1.1
9	56.2807	131.90	125.0	126.0	-1.0
10	61.0550	127.13	123.2	121.4	1.8
11	54.0685	134.11	127.3	128.1	-0.8
12	74.0292	114.15	114.3	108.8	5.5
13	34.7420	153.44	145.8	146.8	-1.0
14	156.3956	31.79	31.0	29.2	1.8
15	141.5133	46.67	35.2	43.6	-8.4
16	121.4071	66.77	63.2	63.0	0.2
17	7.8113	180.37	172.7	172.9	-0.2
18	172.1963	15.98	13.9	13.9	0.0
19	56.3919	131.79	121.7	125.9	-4.2
20	42.1198	146.06	136.5	139.7	-3.2
21	135.0487	53.13	59.6	49.9	9.7
-OCH$_3$	133.6053	54.58	53.0	51.2	1.8
Population	100%	RMSD			3.6

aWeighted average from the calculated shifts; bObtained by linear fit δ_{Exp} versus δ_{Calc}; c$\Delta \delta = \delta_{\text{Exp}} - \delta_{\text{Corr}}$.
Figure S7. 13C NMR calculation results of two possible isomers of 3. (a) Linear correlation plots of predicted versus experimental 13C NMR chemical shifts. (b) Relative errors between the predicted 13C NMR chemical shifts of two potential structures and recorded 13C NMR data.
Table S11. DP4+ analysis results of 3a (Isomer 1) and 3b (Isomer 2)

A	B	C	D	E	F	G	H		
1		**Functional**	**Solvent?**	**Basis Set**	**Type of Data**				
		mPW1PW91	PCM	6-311+G(d,p)	Shielding Tensors				
2									
3									
12		**Nuclei**	**sp2?**	**Experimental**	Isomer 1	Isomer 2	Isomer 3	Isomer 4	Isomer 5
15	C	x	184.1	-1.49	-0.20				
16	C		46.1	141.95	136.19				
17	C		51.7	154.30	154.65				
18	C		31.9	151.30	152.06				
19	C		45.2	138.09	138.25				
20	C	x	130.1	51.31	50.91				
21	C	x	125	56.76	56.28				
22	C	x	123.2	60.97	61.06				
23	C	x	127.3	55.46	54.07				
24	C	x	114.3	59.92	74.03				
25	C	x	145.0	35.63	34.74				
26	C		31	154.46	156.40				
27	C		35.2	145.31	141.51				
28	C		63.2	120.98	121.41				
29	C	x	172.7	5.32	7.81				
30	C		13.9	172.31	172.20				
31	C	x	131.7	56.40	56.59				
32	C	x	136.5	42.55	42.12				
33	C		59.6	123.99	135.05				
34	C		53	132.96	133.61				
35									
36	H		1.96	29.77	29.54				
37	H		2.72	29.12	30.39				
38	H		1.94	29.74	29.76				
39	H		2.21	29.35	29.44				
40	H		2.19	29.52	29.55				
41	H		2.55	29.12	29.15				
42	H		3.39	28.31	28.51				
43	H	x	7.27	24.11	24.09				
44	H	x	7.03	24.37	24.31				
45	H	x	7.05	24.52	24.09				
46	H	x	6.68	25.03	24.47				
	Functional	Solvent?	Basis Set	Type of Data					
---	------------	----------	------------	----------------					
	mPW1PW91	PCM	6-311+G(d,p)	Shielding Tensors					

	Isomer 1	Isomer 2	Isomer 3	Isomer 4	Isomer 5	Isomer 6
5	100.00%	0.00%	-	-	-	-
6	100.00%	0.00%	-	-	-	-
7	100.00%	0.00%	-	-	-	-
8	100.00%	0.00%	-	-	-	-
9	99.98%	0.02%	-	-	-	-
10	100.00%	0.00%	-	-	-	-
11	100.00%	0.00%	-	-	-	-
12	100.00%	0.00%	-	-	-	-
13	100.00%	0.00%	-	-	-	-
S2.2. Computational details for compound 3 (ECD)

Conformation search based on molecular mechanics with MMFF force fields were performed for 3a gave 2 stable conformers with populations higher than 1%. All these conformers were further optimized by the density functional theory method at the B3LYP/6-31G(d) level by Gaussian 16 program package with g09 default keyword. The ECD were calculated using density functional theory (TDDFT) at B3LYP/6-31+G(d,p) level in methanol with IEFPCM model. The calculated ECD curves were all generated using SpecDis 1.71 program package (σ = 0.30 eV, and UV shift -22 nm) and the calculated ECD data of all conformers were Boltzmann averaged by Gibbs free energy.

Figure S8. Comparison of the calculated ECD spectra with the experimental spectrum of 3 in methanol with PCM model.
Section S3. Calculation
al
details for 4

S3.1. Computational details for compound 4 (NMR)

Conformation search based on molecular mechanics with MMFF force fields were performed for 4a, 4b, 4c, 4d gave 6, 4, 5, and 4 stable conformers with populations higher than 1%, respectively. All these conformers were further optimized by the density functional theory method at the B3LYP/6-31G(d) level by Gaussian 16 program package with g09 default keyword. Gauge Independent Atomic Orbital (GIAO) calculations of their 1H and 13C NMR chemical shifts using density functional theory (DFT) at the mPW1PW91/6-311+G(d,p) level with the PCM model in methanol. The calculated NMR data of these conformers were averaged according to the Boltzmann distribution theory and their relative Gibbs free energy. The 1H and 13C NMR chemical shifts for TMS were also calculated by the same procedures and used as the reference. After calculation, the experimental and calculated data were evaluated by linear correlation coefficients (R^2) and the improved probability DP4+ method.
Table S12. Energy analysis for optimized geometries of dominant conformers 4aA–4aF at B3LYP/6-31G(d) level in the gas phase

Species	E'=E+ZPE	E	H	G	ΔG	ΔE(kcal/mol)	PE%
4aA	-1186.528244	-1186.506097	-1186.505153	-1186.577142	0	0	59.12%
4aB	-1186.525993	-1186.503870	-1186.502926	-1186.574886	0.002256	1.415661	5.41%
4aC	-1186.526787	-1186.504603	-1186.503659	-1186.575685	0.001457	0.914281	12.62%
4aD	-1186.526534	-1186.504343	-1186.503399	-1186.575567	0.001575	0.983273	11.14%
4aE	-1186.524416	-1186.502260	-1186.501316	-1186.573463	0.003679	2.308607	2.23%
4aF	-1186.526495	-1186.504312	-1186.503368	-1186.575513	0.001629	1.022213	10.52%

Figure S9. Main conformers of 4a in NMR and ECD calculations.

Table S13. Energy analysis for optimized geometries of dominant conformers 4bA–4bD at B3LYP/6-31G(d) level in the gas phase

Species	E'=E+ZPE	E	H	G	ΔG	ΔE(kcal/mol)	PE%
4bA	-1186.534528	-1186.512406	-1186.511462	-1186.583146	0	0	66.88%
4bB	-1186.533465	-1186.511333	-1186.510389	-1186.582148	0.000998	0.626254	23.23%
4bC	-1186.531817	-1186.509571	-1186.508627	-1186.581101	0.002045	1.283257	7.66%
4bD	-1186.531036	-1186.508745	-1186.507801	-1186.579939	0.003207	2.012423	2.23%
Figure S10. Main conformers of 4b in NMR and ECD calculations.

Table S14. Energy analysis for optimized geometries of dominant conformers 4cA–4cE at B3LYP/6-31G(d) level in the gas phase

Species	$E' = E + ZPE$	E	H	G	ΔG	ΔE (kcal/mol)	PE%
4cA	-1186.519276	-1186.497403	-1186.496459	-1186.567421	0	0	35.86%
4cB	-1186.518530	-1186.496628	-1186.495684	-1186.566970	0.000451	0.283007	22.23%
4cC	-1186.518832	-1186.496958	-1186.496013	-1186.566969	0.000452	0.283634	22.21%
4cD	-1186.518146	-1186.496216	-1186.495271	-1186.566439	0.000982	0.616214	12.66%
4cE	-1186.517382	-1186.495455	-1186.494511	-1186.565884	0.001537	0.964482	7.03%

Figure S11. Main conformers of 4c in NMR and ECD calculations.
Table S15. Energy analysis for optimized geometries of dominant conformers 4dA–4dD at B3LYP/6-31G(d) level in the gas phase

Species	$E'=E+ZPE$	E	H	G	ΔG	ΔE(kcal/mol)	PE%
4dA	-1186.510799	-1186.488883	-1186.487939	-1186.559356	0.000782	0.490712	22.61%
4dB	-1186.511231	-1186.489191	-1186.488247	-1186.560138	0	0	51.78%
4dC	-1186.509823	-1186.487913	-1186.486969	-1186.558397	0.001741	1.092494	8.18%
4dD	-1186.510254	-1186.488225	-1186.487281	-1186.559111	0.001027	0.644452	17.44%

Figure S12. Main conformers of 4d in NMR and ECD calculations.
Table S16. Calculated 13C NMR results for 4a

No.	4aA	4aB	4aC	4aD	4aE	4aF	δ_{Calc}^{a}	δ_{Exp}	δ_{Corr}^{b}	Relative errorsc
2	89.0177	89.5332	89.9805	89.3992	89.5428	88.7698	98.99	93.1	95.1	-2.0
3	133.6251	133.5503	133.4514	132.9541	133.5633	133.6545	54.65	55.7	52.7	3.0
5	137.6755	138.2344	137.2596	137.4913	137.3635	150.58	50.3	48.8	1.5	
6	152.1772	152.2745	152.2488	152.0981	152.5340	152.2037	35.99	37.5	34.9	2.6
7	104.3283	104.3076	104.3050	103.9541	104.5018	104.0856	83.92	79.3	80.7	-1.4
8	58.4256	59.4498	57.8696	58.0508	57.8628	56.1965	98.99	93.1	95.1	-2.0
9	56.9562	55.9223	57.2173	57.4222	55.8074	56.6505	131.24	124.0	126.0	-2.0
10	69.2695	69.7522	69.3952	68.8567	78.2474	78.1369	131.24	124.0	126.0	-2.0
11	18.0590	18.7775	18.2972	18.1358	18.3554	17.5278	170.10	161.6	163.2	-1.6
12	86.1268	86.2579	85.6547	85.8326	79.0918	78.6414	131.24	124.0	126.0	-2.0
13	37.2620	37.8712	37.8784	37.6444	38.9139	38.2124	150.65	141.2	144.5	-3.3
14	55.2473	55.5883	58.6018	56.9179	55.6711	55.3142	132.29	125.2	127.0	-1.8
15	49.9002	50.3988	47.2530	50.8275	50.6877	50.2417	138.44	135.4	132.9	2.5
16	9.5194	10.1536	9.3113	9.8039	10.3477	9.8263	178.58	170.2	171.3	-1.1
17	136.6527	136.7124	140.2162	143.0717	136.6333	136.5770	50.37	45.1	48.6	-3.5
18	176.0864	176.1143	177.0339	177.4802	176.4510	176.3818	11.78	9.5	11.7	-2.2
19	147.6877	147.4271	148.4931	148.0706	147.0265	147.3145	40.41	34.0	39.1	-5.1
20	144.9104	145.3587	145.8976	145.9838	145.3559	144.9426	42.99	40.4	41.6	-1.2
21	126.3261	126.5133	129.8561	122.4294	126.1545	125.8239	61.89	61.8	59.6	2.2
-OCH$_3$	132.3480	132.3539	132.1058	132.5203	131.7331	131.7411	55.92	56.0	53.9	2.1

Population | 59.12% | 5.41% | 12.62% | 11.14% | 1.20% | 10.52% | RMSD | 3.1 |

aWeighted average from the calculated shifts; bObtained by linear fit δ_{exp} versus δ_{calcd}; c$\Delta \delta = \delta_{\text{exp}} - \delta_{\text{corr}}$.

S26
Table S17. Calculated \(^1\)C NMR results for 4b

No.	4bA	4bB	4bC	4bD	\(\delta_{\text{Calc}}^a\)	\(\delta_{\text{Exp}}\)	\(\delta_{\text{Corr}}^b\)	Relative errors\(^c\)
2	89.2092	89.1430	89.3242	90.9718	98.94	93.1	94.8	-1.7
3	130.8292	130.8784	130.6541	130.9717	57.35	55.7	54.8	0.9
5	137.2352	136.7294	136.9658	136.7054	51.10	50.3	48.8	1.5
6	149.5743	149.6063	149.8007	148.1514	38.61	37.5	36.9	0.6
7	104.6621	104.7230	104.3950	102.3634	83.58	79.3	80.0	-0.7
8	55.1282	53.4416	54.9969	54.8533	133.46	130.9	127.9	3.0
9	57.1346	56.9793	57.0098	59.8330	131.03	124.0	125.6	-1.6
10	68.4434	77.4543	68.4361	69.3366	117.63	111.3	112.7	-1.4
11	19.8935	20.1358	19.8556	19.5813	168.24	161.6	161.3	0.3
12	82.5999	75.9516	82.4166	82.7730	107.14	106.1	102.6	3.5
13	41.8657	42.3290	42.0452	38.6640	146.27	141.2	140.2	1.0
14	52.8505	52.7511	53.7829	53.2440	135.27	125.2	129.7	-4.5
15	45.3875	45.3915	49.2412	45.3368	142.50	135.4	136.6	-1.2
16	11.7760	11.7412	11.6758	11.8231	176.42	170.2	169.2	1.0
17	139.0748	139.2158	144.5157	139.2289	48.65	45.1	46.5	-1.4
18	176.5640	176.3911	179.3350	176.5019	11.45	9.5	10.8	-1.3
19	151.7688	151.6772	155.5089	152.2258	36.14	34.0	34.5	-0.5
20	142.6134	142.9094	143.2746	143.0104	45.44	40.4	43.4	-3.0
21	127.9784	128.2626	122.0192	123.4066	60.70	61.8	58.1	3.7
-OCH\(_3\)	131.5552	131.6037	131.2107	131.6207	56.64	56.0	54.2	1.8

Population 66.88% 23.23% 7.66% 2.23% RMSD 2.1

\(^a\)Weighted average from the calculated shifts; \(^b\)Obtained by linear fit \(\delta_{\text{Exp}}\) versus \(\delta_{\text{Calc}}\); \(^c\)\(\Delta\delta = \delta_{\text{Exp}} - \delta_{\text{Corr}}\).
No.	4cA	4cB	4cC	4cD	4cE	δ_{calc}^a	δ_{exp}	δ_{corr}^b	Relative errors^c
2	92.4096	92.5280	91.8986	92.0786	92.4535	95.90	93.1	91.9	1.2
3	136.6348	136.4538	137.3523	136.4798	136.5256	51.45	55.7	50.1	5.6
5	135.1209	134.6970	134.9328	135.1732	134.7981	53.21	50.3	51.8	-1.5
6	154.1896	154.3355	154.5519	154.1612	154.3024	33.87	37.5	33.6	3.9
7	105.0537	105.3532	104.8041	105.0590	105.1196	83.11	79.3	79.9	-0.6
8	55.5867	55.6083	55.7197	54.0527	54.1316	132.86	130.9	126.6	4.3
9	55.9566	55.9357	56.1577	55.6199	55.6334	132.24	124.0	126.1	-2.1
10	69.9172	69.8629	69.9018	78.6156	78.5655	116.57	111.3	111.3	0.0
11	18.6166	18.7137	18.6904	18.6499	18.9610	169.50	161.6	161.1	0.5
12	84.9383	85.0306	84.7737	77.2812	77.8188	104.73	106.1	100.2	5.9
13	35.0535	35.1127	35.3381	35.7557	35.8236	152.91	141.2	145.5	-4.3
14	52.0986	53.9120	55.0934	52.2241	53.9534	134.87	125.2	128.5	-3.3
15	48.3921	47.8674	44.3066	48.7933	47.8510	140.80	135.4	134.1	1.3
16	7.8659	8.4225	7.5004	8.1377	8.6616	180.18	170.2	171.1	-0.9
17	136.5053	142.8966	139.7183	136.1307	142.6987	49.15	45.1	48.0	-2.9
18	178.0841	177.9557	177.2136	178.0253	177.7266	10.35	9.5	11.5	-2.0
19	149.3819	147.5538	145.2269	149.1272	147.0171	40.33	34.0	39.7	-5.7
20	143.9726	145.0842	144.4794	143.9453	144.5618	43.81	40.4	43.0	-2.6
21	129.0168	122.6914	127.0535	128.8618	122.2869	61.50	61.8	59.6	2.2
-OCH₃	131.5043	131.8302	131.5289	131.6014	131.7760	56.57	56.0	54.9	1.1
Population	35.86%	22.23%	22.21%	12.66%	7.03%	RMSD	3.1		

^aWeighted average from the calculated shifts; ^bObtained by linear fit δ_{exp} versus δ_{calc}; ^cΔδ = δ_{exp} - δ_{corr}.
No.	4dA	4dB	4dC	4dD	δ\text{Calc}^a	δ\text{Exp}	δ\text{Cor}^b	Relative errors^c				
2	89.6777	89.0505	89.7498	89.0167	98.94	93.1	94.3	-1.2				
3	134.1612	134.3055	133.9316	134.2523	53.95	55.7	52.3	3.4				
5	134.9985	135.1200	135.1446	135.2425	53.07	50.3	51.5	-1.2				
6	158.9561	158.9986	158.6318	158.6779	29.28	37.5	29.3	8.2				
7	101.8580	101.9320	101.8417	101.8671	86.28	79.3	82.5	-3.2				
8	55.6014	55.4457	54.4665	54.2527	132.99	130.9	126.1	4.8				
9	55.9095	55.9498	56.0335	56.0471	134.1612	134.3055	133.9316	134.2523	53.95	55.7	52.3	3.4
10	68.4665	68.4436	77.1029	77.2751	117.48	111.3	111.6	-0.3				
11	19.3492	19.4181	19.2517	19.1955	168.83	161.6	159.5	2.1				
12	79.0999	78.7711	71.0959	70.6026	111.39	106.1	105.9	0.2				
13	33.6100	33.7169	34.3396	34.2427	154.35	141.2	146.0	-4.8				
14	55.5220	53.6686	55.6507	53.7456	133.92	125.2	126.9	-1.7				
15	50.9389	49.2935	50.7199	49.0984	134.43	135.4	131.2	4.2				
16	8.0095	8.4351	8.3766	8.7156	179.80	170.2	169.7	0.5				
17	145.3910	139.9229	145.3395	140.0015	46.57	45.1	45.5	-0.4				
18	178.5562	177.3207	178.1597	177.3726	10.50	9.5	11.8	-2.3				
19	152.0918	152.8630	151.3424	152.8356	35.62	34.0	35.3	-1.3				
20	146.1676	145.5353	145.8422	145.4948	42.48	40.4	41.7	-1.3				
21	113.8386	120.2023	114.0531	120.5280	69.86	61.8	67.2	-5.4				
-OCH\text{3}	131.6204	131.4389	131.6028	131.5975	56.66	56.0	54.9	1.1				
Population	22.61%	51.78%	8.18%	17.44%	RMSD	3.2						

^aWeighted average from the calculated shifts; ^bObtained by linear fit δ\text{Exp} versus δ\text{Calc}; ^cΔδ = δ\text{Exp} − δ\text{Corr}.
Figure S13. 13C NMR calculation results of four possible isomers of 4. (a) Linear correlation plots of predicted versus experimental 13C NMR chemical shifts. (b) Relative errors between the predicted 13C NMR chemical shifts of two potential structures and recorded 13C NMR data.
Table S20. DP4+ analysis results of 4a (Isomer 1), 4b (Isomer 2), 4c (Isomer 3), and 4d (Isomer 4)

	A	B	C	D	R	F	G	H	
1	Functional	mPW1PW91	Solvent?	PCM	Basis Set	6-311+G(d,p)	Type of Data	Shielding Tensors	
2									
3									
4									
5									
6									
7									
8									
9									
10									
11									
12									
13									
14	Nuclei	sp2?	DP4+	EXPERIMENT	Isomer 1	Isomer 2	Isomer 3	Isomer 4	Isomer 5
15	C		93.1	89.19	89.24	92.28	89.24		
16	C		55.7	133.53	138.83	136.73	134.23		
17	C		50.3	137.60	137.99	139.97	135.12		
18	C		37.5	152.19	149.97	154.31	158.90		
19	C		79.3	104.26	104.60	105.07	101.90		
20	C x		130.9	58.13	54.72	55.32	55.19		
21	C x		124	56.94	57.15	56.94	55.96		
22	C x		111.3	70.31	70.56	71.61	70.70		
23	C x		101.6	18.68	19.94	18.68	19.35		
24	C x		108.1	85.17	81.08	83.45	78.79		
25	C x		141.2	37.54	41.92	35.27	33.84		
26	C x		125.2	55.89	52.91	53.31	54.26		
27	C x		135.4	49.74	45.60	47.38	49.75		
28	C x		170.2	9.60	11.78	8.00	8.98		
29	C		45.1	137.61	139.83	139.03	141.62		
30	C		9.5	176.40	176.73	177.83	177.68		
31	C		34	147.77	142.04	147.85	152.56		
32	C		40.4	145.19	142.74	144.37	145.70		
33	C		61.8	126.29	127.49	126.88	118.32		
34	C x		5.6	132.27	131.54	131.61	131.52		
35									
36	H		2.88	28.42	28.60	28.58	28.73		
37	H		3.29	28.41	28.40	28.57	28.37		
38	H		2.59	28.87	29.12	28.95	28.66		
39	H		2.7	28.22	28.96	28.78	29.03		
40	H		1.5	29.39	30.29	29.39	29.49		
41	H		2.01	29.39	29.74	29.61	29.56		
42	H x		7.25	24.10	24.11	24.06	24.04		
43	H x		6.71	24.74	24.80	24.77	24.68		
44	H x		7.65	23.80	23.68	23.85	24.26		
45	H x		5.77	25.52	25.57	25.33	25.49		
46	H x		5.47	25.96	25.92	25.85	25.87		
A	B	C	D	E	F	G	H		
---	---	---	---	---	---	---	---		
	Functional	Solvent?	Basis Set	Type of Data					
	mPW1PW91	PCM	6-311+G(d,p)	Shielding Tensors					
5	sDP4+ (H data)	0.00%	0.00%	0.00%	0.00%	–	–		
6	sDP4+ (C data)	0.00%	0.00%	0.00%	0.00%	–	–		
7	sDP4+ (all data)	0.00%	0.00%	0.00%	0.00%	–	–		
8	uDP4+ (H data)	0.00%	0.00%	0.00%	0.00%	–	–		
9	uDP4+ (C data)	0.00%	0.00%	0.00%	0.00%	–	–		
10	uDP4+ (all data)	0.00%	0.00%	0.00%	0.00%	–	–		
11	DP4+ (H data)	0.00%	0.00%	0.00%	0.00%	–	–		
12	DP4+ (C data)	0.00%	0.00%	0.00%	0.00%	–	–		
13	DP4+ (all data)	0.00%	0.00%	0.00%	0.00%	–	–		
S3.2. Computational details for compound 4 (ECD)

Conformation search based on molecular mechanics with MMFF force fields were performed for 4a, 4b, 4c, 4d gave 6, 4, 5, and 4 stable conformers with populations higher than 1%, respectively. All these conformers were further optimized by the density functional theory method at the B3LYP/6-31G(d) level by Gaussian 16 program package with g09 default keyword. The ECD were calculated using density functional theory (TDDFT) at B3LYP/6-31+G(d,p) level in methanol with IEFPCM model. The calculated ECD curves were all generated using SpecDis 1.71 program package and the calculated ECD data of all conformers were Boltzmann averaged by Gibbs free energy.

Figure S14. Comparison of the calculated ECD spectra with the experimental spectrum of 4 in methanol with PCM model.
Section S4. NMR, MS, IR, and CD spectra for 1

Figure S15. 1H NMR of compound 1 in CD$_3$OD

Figure S16. 13C NMR and DEPT of compound 1 in CD$_3$OD
Figure S17. HSQC of compound 1 in CD$_3$OD

Figure S18. HMBC of compound 1 in CD$_3$OD
Figure S19. 1H-1H COSY of compound 1 in CD$_3$OD

Figure S20. ROESY of compound 1 in CD$_3$OD
Figure S21. HR-ESIMS of compound 1

Figure S22. IR spectra of compound 1
Figure S23. CD spectra of compound 1 in CH$_3$OH
Section S5. NMR, MS, IR, and CD spectra for 2

Figure S24. 1H NMR of compound 2 in CD$_3$OD

Figure S25. 13C NMR and DEPT of compound 2 in CD$_3$OD
Figure S26. HSQC of compound 2 in CD$_3$OD

Figure S27. HMBC of compound 2 in CD$_3$OD
Figure S28. 1H-1H COSY of compound 2 in CD$_3$OD

Figure S29. ROESY of compound 2 in CD$_3$OD
Figure S30. HR-ESIMS of compound 2

Figure S31. IR spectra of compound 2
Figure S32. CD spectra of compound 2 in CH$_3$OH.
Section S6. NMR, MS, IR, and CD spectra for 3

Figure S33. 1H NMR of compound 3 in CD$_3$OD

Figure S34. 13C NMR and DEPT of compound 3 in CD$_3$OD
Figure S35. HSQC of compound 3 in CD$_3$OD

![HSQC spectrum of compound 3 in CD$_3$OD](image)

Figure S36. HMBC of compound 3 in CD$_3$OD

![HMBC spectrum of compound 3 in CD$_3$OD](image)
Figure S37. $^1\text{H}-^1\text{H}$ COSY of compound 3 in CD$_3$OD

Figure S38. ROESY of compound 3 in CD$_3$OD
Figure S39. HR-ESIMS of compound 3

Figure S40. IR spectra of compound 3
Figure S41. CD spectra of compound 3 in CH$_3$OH
Section S7. NMR, MS, IR, and CD spectra for 4

Figure S42. 1H NMR of compound 4 in CD$_3$OD

Figure S43. 13C NMR and DEPT of compound 4 in CD$_3$OD
Figure S44. HSQC of compound 4 in CD$_3$OD

Figure S45. HMBC of compound 4 in CD$_3$OD
Figure S46. 1H-1H COSY of compound 4 in CD$_3$OD

Figure S47. ROESY of compound 4 in CD$_3$OD
Figure S48. HR-ESIMS of compound 4

T: FTMS + p ESI Full ms [150.0000-1100.0000]
357.18948
C_{20}H_{24} Cl_{2}N_{1}
-1.12770 ppm

373.1657
C_{20}H_{24} Br_{2}N_{1} Na
-0.68910 ppm

Figure S49. IR spectra of compound 4
Figure S50. CD spectra of compound 4 in CH$_3$OH