Steroids from The Stem Bark of *Dysoxylum nutans* (Meliaceae) and Their Cytotoxic Effect Against MCF-7 Breast Cancer Cell Lines

Tri Mayanti*, Nur Insani Amir1, Dewa Gede Katja2, Sofia Fajriah3, Ahmad Darmawan3, Unang Supratman1,4, Khalijah Awang5, Yoshihito Shiono6

1Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Sumedang, Indonesia
2Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Kampus Kleak, Manado, 95115, North Sulawesi, Indonesia
3Research Central for Chemistry, Indonesian Science Institute, PUSPITEK, Serpong, 15320, Tangerang, Indonesia
4Central Laboratory of Universitas Padjadjaran, Jatinangor 45363, Sumedang, Indonesia
5Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 59100, Malaysia
6Department of Food, Life, and Environmental Science, Faculty of Agriculture, Yamagata University, Tsuruoka, Yamagata 997-8555, Japan

*Corresponding author: t.mayanti@unpad.ac.id

Received: June 2020; Revision: June 2020; Accepted: August 2020; Available online: December 2020

Abstract

Three steroids, 3α-hydroxystigmast-5(6), 22-diene-7-one (1), stigmasterol (2) and 3-hydroxy-7β-methoxystigmast-5(6)-ene (3), were isolated from the stem bark of *Dysoxylum nutans*. The chemical structures were identified by spectroscopic data, which includes IR, 1D-NMR, 2D-NMR, and HR-TOFMS as well as by comparing previously reported spectral data. Compounds 1-3 were tested for cytotoxic effect against MCF-7 breast cancer cell lines and compound 1 showed the strongest cytotoxic activity with an IC₅₀ value of 20.13 ± 0.06 μM.

Keywords: Cytotoxic activity, *Dysoxylum nutans*, MCF-7 breast cancer cells, Meliaceae, stigmastane-type steroids.

DOI: https://doi.org/10.15408/jkv.v6i2.15976

1. INTRODUCTION

The genus *Dysoxylum* belongs to the Meliaceae family, which consists of over 80 species (Hu et al., 2014a), that are widely distributed in India, China, Malaysia, Indonesia, Australia, and New Zealand (Luo et al., 2002; Cao et al., 2013). In addition, it is rich in limonoids (Zhou et al., 2015; Han et al., 2015), tirucallane-type triterpenoids (Hu et al., 2014a; Luo et al., 2002; Huang et al., 2011), lanostane-type triterpenoids (Jiang et al., 2015; Zou et al., 2017; Tang et al., 2012), dammarane-type triterpenoids (Cao et al., 2013; Yan et al., 2014a), and steroids (Yan et al., 2014a; Wah et al., 2013, Govindachari et al., 1999).

Previous investigation reported that compounds isolated from the genus *Dysoxylum* exhibit diverse biological activities, which includes antitumor (Cao et al., 2013), antimicrobial (Gopalakrishnan et al., 2015), antibacterial (Hu et al., 2014b), antiparasitic (Lakshmi et al., 2007), post-coital contraceptive (Das et al., 2013), and cytotoxic (Han et al., 2015; Ragasa et al., 2014; Kurimoto et al., 2011; Zhang et al., 2010; Ismail et al., 2009; Farabi et al., 2017).

As part of our investigation for anticancer substances from Indonesian *Dysoxylum* plants, methanol extract from *Dysoxylum* nutans showed strong cytotoxic activity against MCF-7 breast cancer cell lines *in vitro*. *D. nutans*, which is a high plant and widely distributed in South East Asia (Luo et al., 2002; Cao et al., 2013). The plant is used in Indonesian for traditional medicine for fevers, infected wounds and skin diseases (Heyne, 1982). Although secondary
metabolites of other Dysoxylum species have already been investigated, the phytochemical investigation of D. nutans has not yet been reported. The isolation, structure determination and cytotoxic effect of these isolated compounds are described.

2. MATERIALS AND METHODS

General Experimental Procedure

Melting points were measured using an IA9000 electrothermal melting point apparatus (Bibby Scientific Limited, Staffordshire, UK). The optical rotations were recorded on a Perkin-Elmer 341 polarimeter (Waltham, MA, USA). The UV spectra were obtained using a TECAN Infinite M200 pro, with methanol (Switzerland). The IR was recorded on a SHIMADZU IR Prestige-21 in KBr (Kyoto, Japan). Mass spectra were measured using a Water QTOF HR-MS XEV™ mass spectrometer (Waters, Milford, MA, USA). The NMR data were recorded on Bruker 600 MHz (Billerica, MA, USA) and JEOL ECZ-600 spectrometer (Kyoto, Japan) at 600 MHz for 1H and 150 MHz using tetramethylsilane as an internal standard. Column chromatography was conducted on silica gel 60 (70-230 mesh and 230-400 Mesh) (Merck, Darmstadt, Germany). TLC plates were precoated with silica gel GF254 (Merck, Darmstadt, Germany 0.25 mm) and evidence was obtained by spraying with 10% sulphuric acid in ethanol, followed by heating.

Plant Material

The stem bark of D. nutans was obtained in Bogor Botanical Garden, West Java Province, Indonesia in August 2017. The plant specimen was deposited at Herbarium with collection number, III. F. 98.

Extraction and Isolation

The dried grounded stem bark (900.0 g) was extracted using methanol exhaustively (10 L) at room temperature for 5 days. Removal of the solvent on a rotary evaporator gives an extract of concentrated methanol (111.6 g). The concentrated methanol extract was first suspended in water and sequentially separated using n-hexane and ethyl acetate, and directly evaporated to give n-hexane (20.5 g) and ethyl acetate (10.5 g), respectively. The n-hexane soluble fraction (20.0 g) was fractionated by vacuum liquid chromatography (VLC) on silica gel using a gradient n-hexane-ethyl acetate to give 8 fractions (A–H). Fraction E (3.9 g) was separated by column chromatography on silica gel using 3% mixtures of n-hexane-ethyl acetate as eluting solvents (100:0–70:30) to give 8 sub-fractions (E1-E8). Sub-fraction E5 (1.1 g) was further separated by column chromatography on silica gel, with n-hexane-ethyl acetate (2% stepwise) as solvent system to give 7 sub-fractions (E5a-E5g). Similarly, sub-fraction E5e (0.1 g) was separated by column chromatography on silica gel, with n-hexane: ethyl acetate (8:1) as a solvent to give 2 (3.0 mg).

The ethyl acetate extract (10.5 g) was separated by vacuum liquid chromatography with 10% mixture of n-hexane-ethyl acetate-methanol (10:0-7:3) as a solvent to give 4 fractions (A-D). Fraction D (4.6 g) was separated by column chromatographed on silica gel with chloroform-ethyl acetat (9:1) as a solvent system to give 3 (2.0 mg).

Bioassays of Cytotoxic Activity (Skehan et al., 1990)

MCF-7 cells were grown in 96-well plates with initial cell densities of approximately 3 x 10^4 cm^-3. After 24 hours of incubation for cell growth, various concentrations of the sample were added. Furthermore, the sample was first dissolved in DMSO at the required concentration. The next six desired concentrations were prepared using PBS (phosphorus buffer solution, pH = 7.30 - 7.65). The control wells only accept DMSO, and the test was stopped after an incubation period of 48 hours by adding PretoBlue™ Cell Viability Reagent and the incubation was further continued for 1-2 hours until the color change is observed. Optical density was read using a micro plate reader at 570 nm. IC_{50} values were taken from cell charts of the percentage life plotted compared to the control (%), and the concentration of the tested compounds (µM). An IC_{50} value is the concentration needed to inhibit 50% growth. Each test and analysis was carried out in triplicate and average.

3. RESULTS AND DISCUSSION

The concentrated methanol extract from the dried stem bark of D. nutans was extracted with n-hexane and ethyl acetate. The n-hexane extract was separated by vacuum-liquid chromatography (VLC) on silica gel 60 by
gradient elution. The VLC fraction was separated by column chromatography on silica gel to give compounds 1-2. The ethyl acetate was prepared as described for compounds 1-2 and give compound 3 (Figure 1).

3a-hydroxystigmast-5(6),22-diene-7-one (1)

White crystal; m.p. 138-140 °C; [α]D28.4 0.67° (c 0.3, CHCl3); IR (KBr) vmax 3423, 2926, 1736, 1462, 1040 cm⁻¹; NMR (CDCl3, 600 MHz for 1H-NMR and 150 MHz for 13C-NMR) see Table 1; HR-TOFMS m/z 449.3553 [M+Na]⁺ (Calcd. for C26H46O2, m/z 426.355). The detail structure of 1 with those of 4,22-diene-7-one, isolated from Hedyotis diffusa (Meliaceae) was supported (Cayme & Ragasa, 2004). The 1H-NMR spectrum showed the presence of 6 methyl groups, which consists of 2 protons resonating at δH 0.55 (Me-18) and 1.05 (Me-19) as singlet, 3 methyl at δH 0.71 (3H, d, J = 3.6 Hz, Me-21), 0.70 (3H, d, J = 6.5 Hz, Me-26), 0.88 (3H, d, J = 6.5 Hz, Me-27) as doublet and one at δH 0.90 (3H, d, J = 3.6, Me-29), as triplet. Three olefinic protons at δH 5.55 (1H, d, J = 1.6, H-6), 5.11 (1H, dd, J = 15.2 Hz, H-22) and 4.89 (1H, dd, J = 8.6, 15.2 Hz, H-23) as well as an oxymethylene proton at δH 3.54 (br.s, H-7) were also observed in the 1H-NMR spectrum. The 13C-NMR together with DEPT spectra showed twenty nine carbon signals, which includes six methyls, eight methylenes, eight methines (including one oxygenated sp² carbons at δC 70.5), three sp³ methines (δC 126.1, 138.0, 129.4), two sp² quaternary carbons, one sp² quaternary carbons (δC 165.7) and 1 carbonyl at δC 202.3. These unsaturation were calculated for eight out of the total seven degrees of unsaturation. All four degrees of unsaturation were consistent with the structure of tetracyclic stigmastane with additional carbonyl and olefin groups (Huang et al., 2009; Yan et al., 2014b).

Compound 1 was obtained as a white crystal with m.p. 138-140 °C and [α]D28.4 0.67° (c 0.3; CHCl3). Its molecular composition was determined as C26H46O2 by HR-TOFMS spectrum m/z 449.3553 [M+Na]⁺ along with NMR data (Table 1), which indicates seven degrees of unsaturation. The UV spectrum shows no conjugated double bonds with maximum absorption above 200 nm. The IR spectrum showed absorption band corresponding to the hydroxyl (3423 cm⁻¹), aliphatic (2926 cm⁻¹), carbonyl (1736 cm⁻¹), olefinic (1468 cm⁻¹), and C-O bond from alcohol (1040 cm⁻¹). The 1H-NMR spectrum showed the presence of 6 methyl groups, which consists of 2 protons resonating at δH 0.55 (Me-18) and 1.05 (Me-19) as singlet, 3 methyl at δH 0.71 (3H, d, J = 3.6 Hz, Me-21), 0.70 (3H, d, J = 6.5 Hz, Me-26), 0.88 (3H, d, J = 6.5 Hz, Me-27) as doublet and one at δH 0.90 (3H, d, J = 3.6, Me-29), as triplet. Three olefinic protons at δH 5.55 (1H, d, J = 1.6, H-6), 5.11 (1H, dd, J = 15.2 Hz, H-22) and 4.89 (1H, dd, J = 8.6, 15.2 Hz, H-23) as well as an oxymethylene proton at δH 3.54 (br.s, H-7) were also observed in the 1H-NMR spectrum. The 13C-NMR together with DEPT spectra showed twenty nine carbon signals, which includes six methyls, eight methylenes, eight methines (including one oxygenated sp² carbons at δC 70.5), three sp³ methines (δC 126.1, 138.0, 129.4), two sp² quaternary carbons, one sp² quaternary carbons (δC 165.7) and 1 carbonyl at δC 202.3. These unsaturation were calculated for eight out of the total seven degrees of unsaturation. All four degrees of unsaturation were consistent with the structure of tetracyclic stigmastane with additional carbonyl and olefin groups (Huang et al., 2009; Yan et al., 2014b).

Figure 1. Structures of Compounds 1-3.

Figure 2. Selected HMBC and 1H-1H COSY correlations for 1.

A detailed comparison of the NMR data of 1 with those of 3-hydroxystigmast-4,22-diene-7-one, isolated from *Hedyotis diffusa* (Cayme & Ragasa, 2004), exhibited that the structures of the two compounds are very similar. The detail structure of 1 was supported from the 1H-1H COSY and HMBC experiments (Figure 2). The 1H-1H COSY spectrum of
compound 1 showed correlations in H₁-H₂, H₆-H₇-H₈-H₉-H₁₁-H₁₂, H₁₄-H₁₅-H₁₆-H₁₇-H₂₀-H₂₂-H₂₃-H₂₄-H₂₅-H₂₆, supporting the presence of stigmastane structure in compound 1. In the HMBC spectrum, the correlation of methyl protons to their neighboring carbons can influence the six methyls at C-10, C-13, C-20, C-25 (2 ×), and C-29, respectively. The HMBC cross peak of the methylene protons at H-2 (δ_H 1.48 and 1.80) and H-4 (δ_H 2.10 and 2.13) on an oxygenated carbon at δ_C 70.5 (C-3), indicated the hydroxyl group is located at C-3. Correlation from methine proton δ_H 1.91 (H-8) and 1.20 (H-9) as well as an olefinic proton at δ_H 5.55 to δ_C 202.3 (C-7) were used to assign a carbonyl group located at C-7.

Table 1. NMR data for 1 (600 MHz for ¹H and 150 MHz for ¹³C in CDCl₃).

No	¹H-NMR	¹C-NMR	HMBC	COSY	¹H-NMR	¹C-NMR
1	1.00 m	38.5	2	36.9	1.00 m	1.90
2	1.48 m	31.1	3	31.8	1.80 m	1.54
3	0.54 brs	70.5	2	41.5	2.10 d (2.34)	2.33 d (2.35)
4	5.55 d (1.56)	166.5	7	126.8	6.8	200.8
5	2.19 m	126.1	6.8	126.8	0.91	1.61
6	5.13 d (2.34)	26.0	5.13	1.63		
7	1.85 m	15.17	11	1.83 d (3.03 & 2.28)	2.05 d (3.03 & 2.28)	
8	1.02 m	14.16	11	2.05 d (3.03 & 2.28)	1.24 m	
9	8.11	14.16	11	3.54	8.11	50.3
10	8.09	50.3	11	5.86	8.09	1.37
11	1.20 m	16.20	11	2.05 d (3.03 & 2.28)	1.27 m	
12	1.05 s	12.13,14,17	11	12.5	1.05 s	1.02 s
13	0.89	8.15	12.5	1.81	0.55 s	1.02 s
14	0.97	17.21	12.5	1.81	0.55 s	1.02 s
15	0.71 d (3.6)	20.21,23,24	12.5	1.81	0.55 s	1.02 s
16	1.16	20.21,23,24	12.5	1.81	0.55 s	1.02 s
17	1.59	13.88	12.5	1.81	0.55 s	1.02 s
18	2.58	20.21,23,24	12.5	1.81	0.55 s	1.02 s
19	2.58	20.21,23,24	12.5	1.81	0.55 s	1.02 s
20	2.58	20.21,23,24	12.5	1.81	0.55 s	1.02 s
21	2.58	20.21,23,24	12.5	1.81	0.55 s	1.02 s
22	2.58	20.21,23,24	12.5	1.81	0.55 s	1.02 s
23	2.58	20.21,23,24	12.5	1.81	0.55 s	1.02 s
24	2.58	20.21,23,24	12.5	1.81	0.55 s	1.02 s
25	2.58	20.21,23,24	12.5	1.81	0.55 s	1.02 s
26	2.58	20.21,23,24	12.5	1.81	0.55 s	1.02 s
27	2.58	20.21,23,24	12.5	1.81	0.55 s	1.02 s
28	2.58	20.21,23,24	12.5	1.81	0.55 s	1.02 s
29	2.58	20.21,23,24	12.5	1.81	0.55 s	1.02 s
The stereochemistry of 1 was identified by a NOESY experiment (Figure 3), in which the NOESY correlations between Me-19 and H-3 indicated that the C-3 hydroxyl group is α-oriented. Similar to the NOESY observations, the cross peak between Me-18 and H-20, indicated that Me-21 was α-oriented. Furthermore, the NOESY cross peak, which was also observed between Me-21 / H-17, showed that the side chain at C-17 was β-oriented. In addition, the correlation between H-24 and H-17, indicated that an ethyl chain was β-oriented. Therefore, the structure of compound 1 was determined to be 3α-hydroxystigmast-5(6),22-diene-7-one.

The known compounds stigmasterol (2) (Ragasa et al., 2014) and 3-hydroxystigmast-7β-metoxy-5(6)-en (3) (Pettit et al., 2000) were identified by comparison with spectroscopic data with reported value. The presence of three steroids suggested that *Dysoxylum* genus can produce the steroid as one of the chemical markers.

![Figure 3. Selected NOESY correlations for 1.](image)

The cytotoxic effect of the three isolated compounds 1-3 were conducted against MCF-7 breast cancer cells according to a modified method previously described (Skehan et al., 1990), using Cisplatin as a positive control, IC₅₀ 3.20 mg/mL (Supratman et al., 2019; Hadisaputri et al., 2012). Furthermore, compound 1-3, showed cytotoxic activity with IC₅₀ values of 20.13±0.06, 100.28±0.06 and 26.35±0.04 µM respectively. The presence of carbonyl or methoxy group at the C-7 position increases the cytotoxic activity, replacing 7-OH on compound 1 with 7-OMe on compound 3 slightly reduces reactivity (Simon et al., 1998).

4. CONCLUSIONS

Three steroids, 3α-Hydroxystigmast-5 (6), 22-Dien-7-en (1), as well as two well-known steroids, Stigmasterol (2) and 3-Hydroxy-7β-methoxystigmast-5 (6)-one (3) was isolated from the stem back of *D. nutans*. Compound 1 showed the strongest cytotoxic activity with an IC₅₀ value of of 20.13 ± 0.06 µM.

ACKNOWLEDGEMENTS

The work was partially funded by Universitas Padjadjaran (Academic Leadership Grant, ALG, 2020 by Unang Supratman). The author express profound gratitude to Mr. Ismail, the staff of the Bogoriense Herbarium, Bogor, Indonesia for plant identification, Ms. Mia Kusmiati Sukmana and Mr. Kansy Haikal at Central Laboratory, Universitas Padjadjaran, Jatinangor, Indonesia for cytotoxic assay and HR-TOFMS measurements.

REFERENCES

Cao P, Liang G, Gao X, Wang X, Li Z. 2013. Three new nor-dammarane triterpenoids from *Dysoxylum hainunense* with particular cytotoxicity against glioma cell line. *Archives of Pharmacal Research*. 36(3): 322-326.

Cayme JM, Ragasa CY. 2004. Structure elucidation of β-stigmasterol and β-sitosterol from *Sesbania grandiflora* [Linn.] Pers. and β-carotene from *Heliotropium indicum* Linn. by NMR spectroscopy. *Kimika*. 20(1): 5-12.

Das M, Saikia PJ, Sarma HN. 2013. Crude bark extract of *Dysoxylum alliarium* induces alteration in histological structures and VEGF-C expression in uterus during days 4–7 of gestation in albino rat. *Reproductive Medicine and Biology*. 12(3): 85-98.

Farabi K, Harneti D, Nurlelasari MR, Hidayat AC, Supratman U, Awang K, Shiono Y. 2017. Cytotoxic steroids from the bark of *Aglaia argentea* (Meliaeeae). *CMU Journal of Natural Sciences*. 16(4): 293-306.

Gopalakrishnan S, Lakshmi SYS, Banu F. 2015. Comparison of antimicrobial activities of silver nanoparticles synthesized from *Dysoxylum parasiticum*. *Indian Journal of Medicine and Healthcare*. 4(2): 1–5.

Govindachari TR, Suresh G, Kumari K, Rajamannar T, Partho PD. 1999. *Nymania-3*: a bioactive triterpenoid from *Dysoxylum malabaricum*. *Fitoterapia* (Milano). 70(1): 83-86.

Hadisaputri YE, Miyazaki T, Suzuki S, Yokobori T, Kobayashi T, Tanaka N, Inose T, Sohda M, etc.
Kuwano H. 2012. TNFAIP8 overexpression: clinical relevance to esophageal squamous cell carcinoma. *Annals of surgical oncology*. 19(3): 589-96.

Han ML, Zhao JX, Liu HC, Ni G, Ding J, Yang SP, Yue JM. 2015. Limonoids and Triterpenoids from *Dysoxylum mollissimum* var. *glaberrimum*. *Journal of Natural Products*. 78(4): 754-761.

Heyne, K. 1982. “The Useful Indonesian Plants”, Research and Development Agency, Ministry of Forestry, Jakarta, Indonesia, 729-740.

Hu J, Song Y, Li H., Yang B, Mao X, Zhao Y, Shi X. 2014a. Cytotoxic and anti-inflammation trirucalane triterpenoids from *Dysoxylum binectariferum*. *Fitoterapia*. 99: 86-91.

Hu J, Song Y, Li H, Mao X, Zhao Y, Shi X, Yang B. 2014b. Antibacterial and cytotoxic triterpenoids from the ethanol extract of *Dysoxylum densiflorum* (Blume) Miq. *Phytochemistry Letters*. 10: 219-223.

Huang HL., Wang CM, Wang ZH, Yao MJ, Han GT, Yuan JC, Gao K, Yuan CS. 2011. Tirucallane-type triterpenoids from *Dysoxylum lenticellatum*. *Journal of Natural Products*. 74(10): 2235-2242.

Huang W, Li Y, Jiang J. 2009. Chemical constituents from *Hedyotis diffusa*. *China Journal of Chinese Materia Medica*. 34(6): 712-4.

Ismail IS, Nagakura Y, Hirasawa Y, Hosoya T, Lazim MIM, Lajis NH, Morita H. 2009. Acutaxylines A and B, two novel triterpenes from *Dysoxylum acutangulum*. *Tetrahedron Letters*. 50(34): 4830-4832.

Jiang K, Chen LL, Wang SF, Wang Y, Li Y, Gao K. 2015. Anti-inflammatory triterpenoids from the leaves and twigs of *Dysoxylum gotadhora*. *Journal of Natural Products*. 78(5): 1037-1044.

Kurimoto SI, Kashiwada Y, Lee KH, Takaishi Y. 2011. Triterpenes and a triterpene glucoside from *Dysoxylum cunningianum*. *Phytochemistry*. 72(17): 2205-2211.

Luo XD, Wu SH, Wu DG, Ma YB, Qi SH. 2002. Novel antifeeding limonoids from *Dysoxylum hainanense*. *Tetrahedron*. 58(39): 7797-7804.

Lakshmi V, Pandey K, Kapil A, Singh N, Samant M, Dube A. 2007. *In vitro* and *in vivo* leishmanicidal activity of *Dysoxylum binectariferum* and its fractions against *Leishmania donovani*. *Phytomedicine*. 14(1): 36-42.

Petit GR, Numata A, Cragg GM, Herald DL, Takada T, Iwamoto C, Ries F, Schmidt JM, Doubek DL, Goswami A. 2000. Isolation and structures of schleicherastatins 1–7 and schleicheols 1 and 2 from the teak forest medicinal tree *Schleichera oleosa*. *Journal of Natural Products*. 63(1): 72-8.

Ragas CY, Ng VAS, De Los Reyes MM, Mandia EH, Oyong GG, Shen CC. 2014. Chemical constituents and cytotoxicity of the leaves of *Dysoxylum gaicheaudianum* (A. Juss.) Miq. *Der Pharma Chemica*. 6(5): 182-187.

Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, Warren JT, Bokesch H, Kenney S, Boyd MR. 1990. New colorimetric cytotoxicity assay for anticancer drug screening. *JNCI: Journal of the National Cancer Institute*. 82(13): 1107-1112.

Simon A, Allaiis DP, Duroux JL, Basly JP, Durand-Fontanier S, Delage. 1998. Inhibitory effect of curcuminoinds on MCF-7 cell proliferation and structure–activity relationships. *Cancer Letters*. 129(1): 111-116.

Supratman U, Naibaho W, Salam S, Maharani R, Hidayat AT, Hameti D, Nurlelasari, Shiono Y. 2019. Cytotoxic triterpenoids from the bark of *Chisocheton patens* Blume (Meliaceae). *Phytochemistry Letters*. 30: 81-7.

Tang T, Liao SG, Na Z, Li Y, Xu YK. 2012. Dysoxylentin A, the first 21-nortriterpenoid bearing a 2-(propan-2-ylidenyl) furan-3 (2H)-one, from *Dysoxylum lenticellatum*. *Tetrahedron Letters*. 53(9): 1183-1185.

Wah LK, Abas F, Cordell GA, Ito H, Ismail IS. 2013. Steroids from *Dysoxylum grande* (Meliaceae) leaves. *Steroids*. 78(2): 210-219.

Yan HJ, Wang JS, Kong LY. 2014. Cytotoxic dammarane-type triterpenoids from the stem bark of *Dysoxylum binectariferum*. *Journal of Natural Products*. 77(2): 234-242.

Yan HJ, Wang JS, Kong LY. 2014. Cytotoxic steroids from the leaves of *Dysoxylum binectariferum*. *Steroids*. 86: 26-31.
Zhang XY, Li Y, Wang YY, Cai XH, Feng T, Luo XD. 2010. Tirisallane-type alkaloids from the bark of Dysoxylum laxiracemosum. Journal of Natural Products. 73(8): 1385-1388.

Zhou B, Shen Y, Wu Y, Leng Y, Yue JM. 2015. Limonoids with 11β-Hydroxysteroid Dehydrogenase Type 1 Inhibitory Activities from Dysoxylum mollissimum. Journal of Natural Products. 78(8): 2116-2122.

Zou YH, Liu WT, Zhang JX, Xiang DC. 2017. Triterpenoids from the bark of Dysoxylum hainanense and their anti-inflammatory and radical scavenging activity. Fitoterapia. 121: 159-163.