Surgical management of Zollinger-Ellison syndrome: Classical considerations and current controversies

Qian-Qian Shao, Bang-Bo Zhao, Liang-Bo Dong, Hong-Tao Cao, Wei-Bin Wang

Abstract

Zollinger-Ellison syndrome (ZES) is characterized by gastric acid hypersecretion causing severe recurrent acid-related peptic disease. Excessive secretion of gastrin can now be effectively controlled with powerful proton pump inhibitors, but surgical management to control gastrinoma itself remains controversial. Based on a thorough literature review, we design a surgical algorithm for ZES and list some significant consensus findings and recommendations: (1) For sporadic ZES, surgery should be routinely undertaken as early as possible not only for patients with a precisely localized diagnosis but also for those with negative imaging findings. The surgical approach for sporadic ZES depends on the lesion location (including the duodenum, pancreas, lymph nodes, hepatobiliary tract, stomach, and some extremely rare sites such as the ovaries, heart, omentum, and jejunum). Intraoperative liver exploration and lymphadenectomy should be routinely performed; (2) For multiple endocrine neoplasia type 1-related ZES (MEN1/ZES), surgery should not be performed routinely except for lesions > 2 cm. An attempt to perform radical resection (pancreaticoduodenectomy followed by lymphadenectomy) can be made. The ameliorating effect of parathyroid surgery should be considered, and parathyroidectomy should be performed first before any abdominal surgery for ZES; and (3) For hepatic metastatic disease, hepatic resection should be routinely performed. Currently, liver transplantation is still considered an investigational therapeutic approach for ZES. Well-designed prospective studies are desperately needed to further verify and modify the current considerations.

Key words: Zollinger-Ellison syndrome; Sporadic gastrinomas; Multiple endocrine neoplasia type 1; Hepatic metastatic disease; Surgical treatment
Core tip: Surgical approach to gastrinoma differs in sporadic Zollinger-Ellison syndrome (ZES) and multiple endocrine neoplasia type 1-related ZES (MEN1/ZES), and the role of surgery in patients with ZES is controversial, especially in those with MEN1. The current article will present classical considerations as well as the controversies that exist today with regard to the surgical management of ZES. We also make a surgical treatment algorithm for ZES based on a thorough literature review and the evidence provided by the current papers. To our best knowledge, this is the first review focusing on the surgical treatment of ZES and giving a detail as well as through discussion on this topic.

INTRODUCTION

Zollinger-Ellison syndrome (ZES) is characterized by severe recurrent peptic disease and hypersecretion of gastric acid resulting from gastrinomas[1]. Approximately 75% of gastrinomas are sporadic, and 25% of patients have multiple endocrine neoplasia type 1 (MEN1)[2]. There are two therapeutic goals in patients with ZES: To control the hypersecretion of gastric acid and to treat the gastrinoma itself. Excessive secretion of gastrin can now be effectively controlled by the administration of powerful proton pump inhibitors, which have significantly decreased the morbidity and mortality resulting from severe ulcer disease[3]. Therefore, the development of gastrinoma is the main determining factor of the long-term prognosis, and the role of surgery for ZES has instead shifted to eradication of the primary tumor and control/prevention of distant metastases[2,4].

The surgical strategy differs in patients with sporadic ZES and MEN1-related ZES (MEN1/ZES), and the role of surgery in patients with ZES is controversial, especially in those with MEN1. Over half of the gastrinomas are poorly differentiated and have a malignant potential, which dramatically decreases survival and worsens the prognosis[5-7]. Therefore, early surgical exploration and excision of primary lesions should be routinely performed to prevent distant spread in patients with ZES. Unfortunately, only half of patients with sporadic ZES and almost no patients with MEN1/ZES could achieve complete surgical resection[8].

Surgical treatment is the only way to cure the disease, and removing all the lesions (primary and metastatic) is still indicated in most cases. However, many aspects of the surgical management of ZES (such as timing of intervention, extent of resection, and surgery for advanced disease) are controversial topics. The current article will present the classical considerations and controversies regarding the surgical management of ZES.

SURGICAL TREATMENT OF SPORADIC ZES

Timing of surgery

Recent guidelines and studies recommended that patients with potentially resectable sporadic gastrinoma should routinely be offered exploratory laparotomy with curative intent, if no contraindications for surgery exist[9-12]. Moreover, after resection of sporadic ZES, 50%-60% of patients were free of disease immediately and the disease-free survival rate at 10 years is 35%-40%[2,13,14]. Surgical resection in ZES patients protects against the possibility of hepatic metastases and increases survival[4,15-17].

Approximately 30% of tumors in patients with sporadic ZES cannot be precisely located by preoperative explorations, including more than 60% of tumors ≤ 1 cm in size[18]. When the location of the gastrinoma is not confirmed by preoperative investigations, the decision to perform surgical exploration is controversial. A careful review of the case should be made before the decision about whether to perform surgery. If surgery is indicated, thorough abdominal exploration through laparotomy, intraoperative ultrasound, duodenotomy with transillumination, and routine
lymphadenectomy should be included[19-21]. A prospective study conducted by Norton et al[22] indicated that in the hands of an experienced surgeon, lesions could be found in 98% of imaging-negative ZES patients, and nearly 50% of them were cured. This rate was similar to that in imaging-positive patients. In this study, for patients in whom the location of the gastrinoma was not confirmed preoperatively, mean delay from the onset of ZES to surgery is 8.9 years[22]. Seven percent of patients with negative imaging findings had liver metastases at the time of surgery, and all disease-related deaths occurred in this group, which may have been caused by the long delay before surgery. Therefore, Norton et al[22] recommended that surgery should be routinely performed as early as possible in sporadic ZES patients despite negative imaging findings. In another prospective study, Bartlett et al[34] found that for patients with radiographic evidence of metastatic disease and occult primary tumors, the primary lesion could be identified in 89% of these patients. This study indicated that surgical management should not be influenced by an inability to localize the primary tumor[34].

Localization of sporadic ZES

Localization is significant for a cure but can be challenging.

Duodenal or pancreatic origin: More than 80% of primary gastrinomas are classically located in the pancreas and duodenum within the gastrinoma triangle, which is an important anatomic mark for localization[16,24-27]. Gastrinomas in the pancreas have a higher malignant potential than those in the duodenum[19]. Moreover, for MEN1/ZES patients, 60%-90% of lesions are located in the duodenum. These tumors are usually small, can hardly be seen on endoscopic ultrasound or preoperative imaging investigations, and can be found only at exploratory laparotomy[35,36-38]. In selected cases, empirical diagnostic surgery with duodenotomy may be considered[39].

Lymph node origin: Although there have been several reported cases of primary gastrinomas of the lymph nodes, the existence of sporadic ZES of lymph node origin is controversial[19,31-33]. These cases have been explained by occult primary microgastrinomas of the pancreas or duodenum resulting in metastases to the liver or lymph nodes[40]. A recent study reported that 28.2% of ZES patients had gastrinomas of the lymph nodes and were less likely to have recurrent or persistent disease than patients with gastrinomas of other origins (9.1% vs 42.9%, \(P = 0.04 \))[41].

Hepatobiliary tract origin: A recent prospective study reported the existence of very unusual ZES originating from the hepatobiliary tract[8,30]. Norton et al[38] found that of 233 sporadic ZES patients who received surgery to excise the lesions, 3.1% had primary gastrinoma from the liver or biliary tract, which ranked as the second most frequent extraduodenopancreatic primary location. Because the rates of survival and long-term cure are high, and the rates of complications are acceptable, aggressive liver or bile duct resection is indicated. In addition, their findings indicated that given that nearly 50% of patients will develop lymph node metastases, lymph nodes in the hepatic portal should be routinely removed.

Gastric origin: The incidence of gastrinomas of gastric origin has increased in the past 50 years[30]. In recent years, an increasing incidence of subclinical gastric gastrinomas has been found by panendoscopic examination. Gastric gastrinomas can be treated by local excision, such as endoscopic submucosal dissection or endoscopic polypectomy, but partial or total gastrectomy may be needed if recurrence occurs[31,33]. Additionally, because of lower grades and less frequent lymph node and hepatic metastases, gastrinomas originating from the stomach were found to have better long-term outcomes than gastrinomas of other origins[38].

Other origins: Other very uncommon primary sites include the ovaries, heart, omentum, and jejunum[40].

Type and extent of surgery

The vast majority of cases of sporadic ZES are associated with single tumors, and the surgical approach depends on the location of the gastrinomas. Sporadic gastrinomas located distant from the pancreatic duct may be amenable to enucleation. Resections are required for tumors that are close to the pancreatic duct (less than 3 mm). Distal pancreatic resection should be performed for pancreatic head tumors, and duodenotomy should be routinely performed to detect small duodenal lesions[8,30]. Distal pancreatectomy (with or without splenectomy) is indicated for sporadic gastrinomas located in the body or tail of the pancreas. Pancreaticoduodenectomy (PD) should be preferred for most patients with gastrinomas located in the head, uncinated process, or neck of the pancreas. PD is also indicated for patients with local
SURGICAL TREATMENT OF MEN1/ZES

Timing of surgery
The timing and place of routine surgical exploration in patients with MEN1/ZES remain controversial[21,22,23]. These patients usually have an unpredictable course and frequently have lymph node metastases, multiple duodenal gastrinomas, and other pancreatic neuroendocrine tumors (pNETs)[5,20,34]. Consequently, local resection or enucleation rarely leads to a long-term cure. In patients diagnosed with MEN1/ZES, operation other than PD is related to recurrence in almost 100% of patients[22,23]. It is generally recommended that surgery to prevent metastatic dissemination should be restricted to patients with tumors > 2 cm, given that MEN1 patients with pancreatic tumors ≤ 2 cm have fine long-term life expectancy[1,15,25,36]. Recent European Neuroendocrine Tumor Society/North American Tumor Society (ENETS/NANETS) guidelines recommended that routine surgery for a possible cure should be reserved for ZES patients with lesions > 2 cm but should not be performed routinely[21,22,23]. Furthermore, as surgery is the only way to prevent or cure malignant transformation[24], others have indicated that early surgical intervention as soon as the diagnosis is made is indicated for all patients with MEN1/ZES[15,20,21].

Type and extent of surgery
The excision of pancreatic head tumors, limited surgical resection with excision of duodenal lesions, and distal pancreatectomy have been proposed as surgical alternatives for the treatment of MEN1/ZES[21]. In some cases, total pancreatectomy is considered the therapeutic choice in an attempt to completely remove all tumor lesions. However, such surgical approaches may be frequently associated with a high recurrence rate and low cure rate. A more radical surgical intervention with PD followed by regional lymphadenectomy is proposed for patients with MEN1/ZES[20,22]. Since a cure can only be achieved by performing PD, others still recommend routine PD in an attempt to achieve a cure[20,34,36,40]. Although several studies have reported potential long-term biochemical remission after PD in MEN1/ZES patients, the long-term consequences of PD remain largely undefined, and the real benefit on long-term survival remains controversial[21,31,32,34]. Each approach has its advocates, but there are no prospective data to provide evidence and guidance. Recent ENETS/NANETS guidelines recommended that PD should not be performed routinely[21,22,23]. However, guidelines from the Polish Network of Neuroendocrine Tumors indicated that an attempt to perform a radical resection can be made if the disease seems to be limited[21,22,23]. Additionally, intraoperative gastrin monitoring may be helpful to improve the capacity for determining the extent of resection[21].
Ameliorating the effects of other MEN1-related diseases
In patients with primary hyperparathyroidism (HPT) and MEN1/ZES, the effect of parathyroidectomy (PTX) on the behavior of the gastrinoma can be evaluated by fasting gastrin levels, basal acid output (BAO), and secretin provocative testing[64]. Some previous studies involving small numbers of MEN1/HPT/ZES patients reported that fasting gastrin levels, BAO, and/or secretin-stimulated gastrin response scan were markedly decreased by PTX[65-74]. In a prospective study including 84 MEN1/HPT/ZES patients, Norton et al[75] convincingly demonstrated that successful PTX had a marked ameliorating effect on these parameters. With surgery to remove only the abnormal parathyroid glands but not directed at the pNET, 20% of patients with MEN1/HPT/ZES no longer had biochemical evidence of ZES. Careful observation is necessary after PTX because primary HPT with hypercalcemia can result in secondary hypergastrinemia, obscuring the diagnosis of patients with MEN1/ZES. Additionally, this finding supports the strategy that before any abdominal surgery is performed for ZES, parathyroid surgery should be performed first.

SURGICAL TREATMENT OF HEPATIC METASTATIC DISEASE

Hepatic resection
For patients with hepatic metastases, several retrospective reports and one recent meta-analysis have demonstrated the benefits of hepatic resection in terms of quality of life and overall survival[76-81]. Previous studies have shown that R0 or R1 resection can result in better long-term survival, and the 5-year survival rates are approximately 60%-80%[76-78]. Liver resection has an acceptable morbidity (approximately 30%) and a low mortality rate (less than 5%). On the other hand, when liver metastases are not resected, the survival rate is about 30%[80,81]. However, considering the retrospective nature of the studies, bias in patient selection (such as less advanced disease and better performance status) may have affected the surgical outcomes. Liver resection for metastases has a therapeutic effect as mass reduction, even if >90%-95% of tumors were resected[84]. Even though a reliable prospective study lacks, some papers recommended aggressive liver resection, not liver transplantation. Intraoperative ultrasound is essential to detect small tumors that were not detected preoperatively and to determine the extent of lesions. Liver function must be assessed precisely, and liver dysfunction should be avoided after the surgery[81].

Orthotopic liver transplantation
Orthotopic liver transplantation has been considered an exploratory option for patients who are not amenable to limited hepatic resection. The 5-year disease-free survival rate was similar (approximately 30%) to that of hepatic resection in the two largest series[80,84]. The heterogeneity of the results was highlighted in a recent systematic review that illustrated the need for well-designed prospective studies[87]. Considering the risks involved, transplantation was considered to be an investigational method in the treatment of ZES. Prospective clinical trials conducted in a defined population of patients are needed to determine the true benefits of orthotopic liver transplantation[84].

CONCLUSION
In conclusion, surgical treatment is the only way to cure ZES, but the role of surgery in patients with ZES (especially in MEN1/ZES) remains controversial. Until now, only two management guidelines for gastroduodenal neuroendocrine neoplasms (including gastrinoma) mentioned therapeutic recommendations for ZES, but not in detail[62,63]. Many aspects of the surgical treatment for ZES lack expert consensus. We thus propose a surgical treatment algorithm for ZES based on a thorough literature review of the evidence provided by the current papers (see Figure 1). Well-designed prospective studies and more optimized therapeutic algorithms for ZES are still desperately needed in the future.
Figure 1 Surgical treatment algorithm for Zollinger-Ellison syndrome. ZES: Zollinger-Ellison syndrome; MEN1: Multiple endocrine neoplasia type 1; MEN1/ZES: Multiple endocrine neoplasia type 1-related Zollinger-Ellison syndrome; MEN1/HPT/ZES: Patients with primary hyperparathyroidism and Multiple endocrine neoplasia type 1-related Zollinger-Ellison syndrome; PTX: Parathyroidectomy.

REFERENCES

1. Roy PK, Venzon DJ, Sahoo-manesh H, Abou-Saif A, Peggini P, Doppman JL, Gibril F, Jensen RT. Zollinger-Ellison syndrome. Clinical presentation in 261 patients. *Medicine (Baltimore)* 2000; 79: 379-411 [PMID: 11144036 DOI: 10.1097/00005792-200011000-00004]

2. Norton JA, Fraker DL, Alexander HR, Venzon DJ, Doppman JL, Serrano J, Goebel SU, Peggini PL, Roy PK, Gibril F, Jensen RT. Surgery to cure the Zollinger-Ellison syndrome. *N Engl J Med* 1999; 341: 635-644 [PMID: 10460814 DOI: 10.1056/NEJM199908263410902]

3. Quatrini M, Castoldi L, Rossi G, Cesana BM, Peracchi M, Bardella MT. A follow-up study of patients with Zollinger-Ellison syndrome in the period 1966-2002: Effects of surgical and medical treatments on long-term survival. *J Clin Gastroenterol* 2005; 39: 376-380 [PMID: 15815204 DOI: 10.1097/01.mcg.0000159221.77913.ac]

4. Norton JA, Fraker DL, Alexander HR, Gibril F, Liewehr DJ, Venzon DJ, Jensen RT. Surgery increases survival in patients with gastrinoma. *Ann Surg* 2006; 244: 410-419 [PMID: 16926567 DOI: 10.1097/01.sla.0000234802.44320.a5]

5. Jensen RT, Niederle B, Mitry E, Ramage JK, Steinmuller T, Lewington V, Scarpa A, Sundin A, Perren A, Gross D, O’Connor JM, Parwenis S, Kloppel G; Frascati Consensus Conference; European Neuroendocrine Tumor Society. Gastrinoma (duodenal and pancreatic). *Neuroendocrinology* 2006; 84: 173-182 [PMID: 17312377 DOI: 10.1159/000098009]

6. Ellison EC, Johnson JA. The Zollinger-Ellison syndrome: A comprehensive review of historical, scientific, and clinical considerations. *Curr Probl Surg* 2009; 46: 13-106 [PMID: 19059523 DOI: 10.1067/j.cpsurg.2008.09.001]

7. Gibril F, Jensen RT. Advances in evaluation and management of gastrinoma in patients with Zollinger-Ellison syndrome. *Curr Gastroenterol Rep* 2005; 7: 114-121 [PMID: 15802099 DOI: 10.1007/s11894-005-0049-2]

8. Epelboym I, Mazeh H. Zollinger-Ellison syndrome: Classical considerations and current controversies. *Oncologist* 2014; 19: 44-50 [PMID: 24319020 DOI: 10.1634/theoncologist.2013-0369]

9. Bartsch DK, Langer P, Rothmund M. Surgical aspects of gastrinoma in multiple endocrine neoplasia type 1. *Wien Klin Wochenschr* 2007; 119: 602-608 [PMID: 17985096 DOI: 10.1007/s00508-007-0883-3]
Gastroenteropancreatic neuroendocrine tumours.
Lancet Oncol 2008; 9: 61-72 [PMID: 18177818 DOI: 10.1016/S1470-2045(07)70410-2]

Kaltsas GA, Krenning EP, Moss SF, Nilsson O, Rindi G, Salazar R, Sauvanet A, Kianmanesh R; Barcelona Consensus Conference participants. ENETS Consensus Guidelines for the management of digestive neuroendocrine neoplasms of non-pancreatic origin. Neuroendocrinology 2012; 95: 98-119 [PMID: 22261919 DOI: 10.1159/000335591]

Norton JA, Alexander HR, Fraker DL, Venzon DJ, Gibril F, Jensen RT. Does the use of routine duodenotomy (DUODX) affect rate of cure, development of liver metastases, or survival in patients with Zollinger-Ellison syndrome? Ann Surg 2004; 239: 617-25; discussion 626 [PMID: 15082965 DOI: 10.1097/01.sla.0000124290.05524.5e]

Morrow EH, Norton JA. Surgical management of Zollinger-Ellison syndrome; state of the art. Surg Clin North Am 2009; 89: 1091-1103 [PMID: 19836486 DOI: 10.1016/j.suc.2009.06.018]

Yu F, Venzon DJ, Serrano J, Goebel SU, Doppman JL, Gibril F, Jensen RT. Prospective study of the clinical course, prognostic factors, causes of death, and survival in patients with long-standing Zollinger-Ellison syndrome. J Clin Oncol 1999; 17: 615-630 [PMID: 10080607 DOI: 10.1200/JCO.1999.17.2.615]

Weber HC, Venzon DJ, Lin JT, Fishbein VA, Orbuch M, Strader DB, Gibril F, Metz DC, Fraker DL, Norton JA. Determinants of metastatic rate and survival in patients with Zollinger-Ellison syndrome: A prospective long-term study. Gastroenterology 1995; 108: 1637-1649 [PMID: 7768367 DOI: 10.1016/0016-5085(95)90124-8]

Fraker DL, Norton JA, Alexander HR, Venzon DJ, Jensen RT. Surgery in Zollinger-Ellison syndrome alters the natural history of gastrinoma. Ann Surg 1994; 220: 320-8; discussion 328-30 [PMID: 7916560 DOI: 10.1097/00000658-199409000-00008]

Alexander HR, Fraker DL, Norton JA, Bartlett DL, Tio L, Benjamin SB, Doppman JL, Goebel SU, Serrano J, Gibril F, Jensen RT. Prospective study of somatostatin receptor scintigraphy and its effect on operative outcome in patients with Zollinger-Ellison syndrome. Ann Surg 1998; 228: 228-238 [PMID: 9712569 DOI: 10.1097/00000658-199808000-00013]

Singh D, Lal SB, Sood A, Gupta R, Kumar R, Vashistha RK, Mittal BR. Management of Primary Lymph Node Gastrinoma With Liver Metastases Resulting in Zollinger-Ellison Syndrome. Clin Nutr Med 2019; 44: c36-e39 [PMID: 30394927 DOI: 10.1016/2019-0000000036]

Norton JA, Jensen RT. Role of surgery in Zollinger-Ellison syndrome. J Am Coll Surg 2007; 205: S34-S37 [PMID: 17916516 DOI: 10.1016/j.jamcollsurg.2007.06.320]

Doi R. Determinants of surgical resection for pancreatic neuroendocrine tumors. J Hepatobiliary Pancreat Sci 2015; 22: 610-617 [PMID: 25737163 DOI: 10.1002/jhbs.22458]

Norton JA, Fraker DL, Alexander HR, Jensen RT. Value of surgery in patients with negative imaging and sporadic Zollinger-Ellison syndrome. Ann Surg 2012; 256: 599-517 [PMID: 2286363 DOI: 10.1097/SLA.0b013e318265f888]

Bartlett EK, Roses RE, Gupta M, Shah PK, Shah KK, Zaheer S, Wachtel H, Kelz RR, Karakousis GC, Fraker DL. Surgery for metastatic neuroendocrine tumors with occult primaries. J Surg Res 2013; 184: 221-227 [PMID: 23643298 DOI: 10.1016/j.jss.2013.04.008]

Stabile BE, Morrow DJ, Passaro E. The gastrinoma triangle: Operative implications. Am J Surg 1984; 147: 25-31 [PMID: 6691547 DOI: 10.1016/0002-9440(84)9029-1]

Zogakis TG, Gibril F, Libutti SK, Norton JA, White DE, Jensen RT, Alexander HR. Management and outcome of patients with sporadic gastrinoma arising in the duodenum. Ann Surg 2003; 238: 42-48 [PMID: 12832964 DOI: 10.1097/01.sla.0000074963.87688.31]

Cisco RM, Norton JA. Surgery for gastrinoma. Adv Surg 2007; 41: 165-176 [PMID: 17972563 DOI: 10.1016/j.asu.2007.05.010]

O’Toole D, Delle Fave G, Jensen RT, Gastric and duodenal neuroendocrine tumours. Best Pract Res Clin Gastroenterol 2012; 26: 719-735 [PMID: 23582915 DOI: 10.1016/j.bpg.2012.07.002]

Thom AK, Norton JA, Axiotis CA, Jensen RT. Location, incidence, and malignant potential of duodenal gastrinomas. Surgery 1991; 110: 1086-91; discussion 1091-3 [PMID: 1745977]

Albers MB, Manoharan J, Bollmann C, Chlosta MP, Holzer K, Bartsch DK. Results of Duodenopancreatic Reoperations in Multiple Endocrine Neoplasia Type 1. World J Surg 2019; 43: 552-558 [PMID: 30288555 DOI: 10.1007/s00268-018-4809-1]

Garbrecht N, Anlauf M, Schmitt A, Henopp T, Sipos B, Raffel A, Eisenberger CF, Knoefel WT, Pavel M, Fottner C, Musholt TJ, Rinke A, Arnold R, Berndt U, Plöckinger U, Wiedenmann B, Moch H, Heitz PU, Komminoth P, Perren A, Klöppel G. Somatostatin-producing neuroendocrine tumors of the duodenum and pancreas: Incidence, types, biological behavior, association with inherited syndromes, and functional activity. Endocr Relat Cancer 2008; 15: 229-241 [PMID: 18310290 DOI: 10.1007/s10637-007-0157-9]

Harper S, Carroll RW, Frilling A, Wickremesekera SK, Bann S. Primary lymph node gastrinoma: 2 cases and a review of the literature. J Gastrointest Surg 2015; 19: 651-655 [PMID: 25623161 DOI: 10.1007/s11605-014-2729-4]

Anlauf M, Enosawa T, Henopp T, Schmitt A, Gimm O, Brauchhoff M, Dralle H, Musi A, Hauptmanns P, Perren A, Klöppel G. Primary lymph node gastrinoma or occult duodenal microgastrinoma with lymph node metastases in a MEN1 patient: The need for a systematic search for the primary tumor. Am J Surg Pathol 2008; 32: 1101-1105 [PMID: 18520436 DOI: 10.1097/PAS.0b013e3181751181]

Nazir Z. Long-term follow-up of a child with primary lymph node gastrinoma and Zollinger-Ellison syndrome. J Pediatr Surg 2011; 46: 969-972 [PMID: 21612603 DOI: 10.1016/j.jpedsurg.2011.02.002]

Chen Y, Deshpande V, Ferrone C, Blaszczowsky LS, Parangi S, Warshaw AL, Lilliomoe KD, Fernandez-Del Castillo C. Primary lymph node gastrinoma: A single institution experience. Surgery 2017; 162: 1088-1094 [PMID: 28705492 DOI: 10.1016/j.surg.2017.05.017]

Norton JA, Foster DS, Blumgart LH, Poultsides GA, Vissell BC, Fraker DL, Alexander HR, Jensen RT. Incidence and Prognosis of Primary Gastrinomas in the Hepatobiliary Tract. JAMA Surg 2018; 153: 175083 [PMID: 29365025 DOI: 10.1001/jamasurg.2017.5083]

Modlin IM, Obreg K, Chung DC, Jensen RT, de Herder WW, Thakker RV, Caplin M, Delle Fave G, Kaltsas GA, Krenning EP, Moss SF, Nilsson O, Rindi G, Salazar R, Ruszniewski P, Sundin A. Gastroenteropancreatic neuroendocrine tumours. Lancet Oncol 2008; 9: 61-72 [PMID: 18177818 DOI: 10.1016/S1470-2045(07)70410-2]
Akerström G, Hellman P. Surgery on neuroendocrine tumours. Best Pract Res Clin Endocrinol Metab 2007; 21: 87-109 [PMID: 17382267 DOI: 10.1016/j.beem.2006.10.006]

Sugg SL, Norton JA, Fraker DL, Metz DC, Pisegna JR, Fishbeyn V, Benya RV, Shawker TH, Doppman JL, Jensen RT. A prospective study of intraoperative methods to diagnose and resect duodenal gastrinomas. Ann Surg 1993; 218: 138-144 [PMID: 8342993 DOI: 10.1097/00000544-199308000-00004]

Krampitz GW, Norton JA, Poultsides GA, Visser BC, Sun L, Jensen RT. Lynph nodes and survival in pancreatic neuroendocrine tumors. Arch Surg 2012; 147: 820-827 [PMID: 22987171 DOI: 10.1001/archsurg.2012.1261]

Ito T, Igarashi H, Jensen RT. Zollinger-Ellison syndrome: Recent advances and controversies. Curr Opin Gastroenterol 2013; 29: 650-661 [PMID: 24100728 DOI: 10.1097/MOG.0b013e328363e81]

Bartsch DK, Waldmann J, Fendrich V, Boninsegna L, Lopez CL, Partelli S, Falconi M. Impact of lymphadenectomy on survival after surgery for sporadic gastrinoma. Br J Surg 2012; 99: 1234-1240 [PMID: 22664882 DOI: 10.1002/bjs.8843]

Tsutsumi K, Ohtsuka T, Mori Y, Fujino M, Yasui T, Aishima S, Takahata S, Nakamura M, Ito T, Tanaka M. Analysis of lymph node metastasis in pancreatic neuroendocrine tumors (PNETs) based on the tumor size and hormonal production. J Gastroenterol 2012; 47: 678-685 [PMID: 22350690 DOI: 10.1007/s00535-012-0540-0]

Giovannazzo F, Butturini G, Monsellato D, Malleo G, Marchegiani G, Bassi C. Lymph nodes metastasis and recurrences justify an aggressive treatment of gastrinoma. Updates Surg 2013; 65: 19-24 [PMID: 23417896 DOI: 10.1007/s13034-013-0201-8]

Fernández-Cruz L, Blanco L, Cosa R, Rendón H. Is laparoscopic resection adequate in patients with neuroendocrine pancreatic tumors? World J Surg 2008; 32: 904-917 [PMID: 18254624 DOI: 10.1007/s00268-006-0946-2]

Haugvik SP, Marangos IP, Rasoli BK, Pomianowska E, Gladhaug IP, Mathisen O, Edwin B. Long-term outcome of laparoscopic surgery for pancreatic neuroendocrine tumors. World J Surg 2013; 37: 582-590 [PMID: 23263686 DOI: 10.1007/s00268-012-1893-5]

Atalar K, Warren OJ, Jacyna M, Iio LR. Laparoscopic resection for primary lymph node gastrinoma. Pancreas 2013; 42: 723-725 [PMID: 23591435 DOI: 10.1097/MPA.0b013e31826dd5d2]

Tonelli F, Fratini G, Nesi G, Tommasi MS, Batignani G, Falchetti A, Brando LL. Pancreatectomy in multiple endocrine neoplasia type 1-related gastrinomas and pancreatic endocrine neoplasias. Ann Surg 2006; 244: 61-70 [PMID: 16784390 DOI: 10.1097/01.sla.0000218073.77254.62]

Fendrich V, Langer P, Waldmann J, Bartsch DK, Rothmund M. Management of sporadic and multiple endocrine neoplasia type 1 gastrinoma. Br J Surg 2007; 94: 1331-1341 [PMID: 17939142 DOI: 10.1002/bjs.5987]

Jensen RT, Bena MJ, Bingham DB, Norton JA. Inherited pancreatic endocrine tumor syndromes: Advances in molecular pathogenesis, diagnosis, management, and controversies. Cancer 2008; 113: 1807-1843 [PMID: 18795844 DOI: 10.1002/cncr.23648]

Norton JA, Alexander HR, Fraker DL, Venzon DJ, Gibril F, Jensen RT. Comparison of surgical results in patients with advanced and limited disease with multiple endocrine neoplasia type 1 and Zollinger-Ellison syndrome. Ann Surg 2001; 234: 495-505; discussion 505-6 [PMID: 11573043 DOI: 10.1097/00000658-200111000-00009]

Norton JA, Jensen RT. Resolved and unresolved controversies in the surgical management of patients with Zollinger-Ellison syndrome. Ann Surg 2004; 240: 757-773 [PMID: 15492550 DOI: 10.1097/01.sla.0000135322.02142.8e]

Norton JA, Fang TD, Jensen RT. Surgery for gastrinoma and insulinoma in multiple endocrine neoplasia type 1. J Natl Compr Canc Netw 2006; 4: 148-153 [PMID: 16451771 DOI: 10.6004/jncn.2006.0015]

Imamura M. Recent standardization of treatment strategy for pancreatic neuroendocrine tumors. World J Gastroenterol 2010; 16: 4519-4525 [PMID: 20857521 DOI: 10.3748/wjg.v16.i34.4519]

Norton JA, Foster DS, Ito T, Jensen RT. Gastrinomas: Medical or Surgical Treatment. Endometriah Clin North Am 2018; 48: 577-601 [PMID: 30098717 DOI: 10.1016/j.ecln.2018.04.009]

Imamura M, Komoto I, Ota S, Hiratsuka T, Kosugi S, Doi R, Awane M, Inoue N. Biochemically curative surgery for gastrinoma in multiple endocrine neoplasia type 1 patients. World J Gastroenterol 2011; 17: 1343-1353 [PMID: 21455335 DOI: 10.3748/wjg.v17.i10.1343]

Lopez CL, Falconi M, Waldmann J, Boninsegna L, Fendrich V, Goretzki PK, Langer P, Kann PH, Partelli S, Bartsch DK. Partial pancreatectoduodenectomy can provide cure for gastrinoma associated with multiple endocrine neoplasia type 1. Ann Surg 2013; 257: 308-314 [PMID: 22580937 DOI: 10.1097/SLA.0b013e3182563639]

Norton JA, Krampitz GW, Poultsides GA, Visser BC, Fraker DL, Alexander HR, Jensen RT. Prospective Evaluation of Results of Resection in Zollinger-Ellison Syndrome. Ann Surg 2018; 267: 782-788 [PMID: 29517261 DOI: 10.1097/SLA.0000000000002125]

Rydzewska G, Cichocki A, Ćwikła JB, Foltyn W, Hubalewska-Dydejczyk A, Kamiński G, Lewczuk A, Nasioreewska-Guttmejer A, Nowakowska-Duława E, Pilch-Kowalczyk J, Sowa-Staszczak A, Kos-Kudła B, Consensus Conference; Polish Network of Neuroendocrine Tumours. Gastroenterol 2013; 64: 444-458 [PMID: 24431117 DOI: 10.5630/ep.2013.0030]

Lipiński M, Rydzeewska G, Foltyn W, Andrysia-Mamos E, Baldys-Walgórska A, Bednarczuk T, Blicharz-Dorniak J, Bolanowski M, Boratyń-Nowicka A, Borowska M, Cichocki A, Ćwikła JB, Falconi M, Handkiewicz-Junak D, Hubalewska-Dydejczyk A, Jarząb B, Junak R, Kajdanuik D, Kamiński G, Kolaśinska-Ćwikła A, Kowalska A, Król R, Królęcki Ł, Kunikowska J, Kuśnierz K, Lampe P, Lange D, Spiewak A, Bartoszek M, Rutkowska A, Sadowska K, Włodarczyk M, Wozniak S. Analysis of lymph node metastasis in pancreatic neuroendocrine tumors (PNETs) based on the tumor size and hormonal production. J Gastroenterol 2012; 47: 678-685 [PMID: 22350690 DOI: 10.1007/s00535-012-0540-0]
Lewczuk-Mysiłka A, Lewiński A, Londzin-Olesik M, Marek B, Nasirowska-Gutmejer A, Nowakowska-Duława E, Pilek-Kołaczyk J, Poczajak K, Rosiek V, Ruchala M, Siemińska L, Sowa-Staszczak A, Starzyńska T, Steinhol-Radwiańska K, Strzaleczky J, Sworczak K, Syryńce A, Szawłowski A, Szczepkowski M, Wachula E, Zajęcki W, Zemaczek A, Zgliczyński W, Kos-Kudla B, Gastrointestinal neuroendocrine neoplasms, including gastrinoma - management guidelines (recommended by the Polish Network of Neuroendocrine Tumours). Endokrynol Pol 2017; 68: 138-153 [PMID: 28540972 DOI: 10.5063/EP.2017.0016]

Gogel HK, Buckman MT, Cadiuex D, McCarthy DM. Gastric secretion and hormonal interactions in multiple endocrine neoplasia type I. Arch Intern Med 1985; 145: 855-859 [PMID: 2859482 DOI: 10.1001/archinte.145.5.855]

Norton JA, Cornelius MJ, Doppman JL, Maton PN, Gardner JD, Jensen RT. Effect of parathyroidectomy in patients with hyperparathyroidism, Zollinger-Ellison syndrome, and multiple endocrine neoplasia type I: A prospective study. Surgery 1987; 102: 958-966 [PMID: 2891212]

Trudeau WL, McGuigan JE. Effects of calcium on serum gastrin levels in the zollinger-Ellison syndrome. N Engl J Med 1969; 281: 862-866 [PMID: 5812234 DOI: 10.1056/NEJM196910162811620]

McCarthy DM, Peikin SR, Lopatin RN, Long BW, Spiegel A, Mars S, Brennan M. Hyperparathyroidism—a reversible cause of cinetidine-resistant gastric hypersecretion. Br Med J 1979; 1: 1765-1766 [PMID: 466215 DOI: 10.1136/bmj.1.6180.1765]

Öberg K. Management of functional neuroendocrine tumors of the pancreas. Gland Surg 2018; 7: 20-27 [PMID: 29629316 DOI: 10.21037/gs.2017.10.08]

Kerr GD, Smith R. Hypercalcaemia and gastric hypersecretion in the familial adenomatous polyp syndrome. Lancet 1967; 1: 1074-1077 [PMID: 5416770 DOI: 10.1016/S0140-6736(67)92649-9]

Turvey WA, Passaro E. Hyperparathyroidism in the Zollinger-Ellison-Sipple Syndrome. Influence of hypercalcemia on clinical course. Arch Surg 1972; 105: 62-66 [PMID: 4338010 DOI: 10.1001/archsurg.1972.040070006050012]

Dutta P, Wallace MR, Wrong OM, Taylor S, Welleborn RB. Familial multiple endocrine adenopathy (primary hyperparathyroidism and Zollinger-Ellison syndrome) in two siblings. Proc R Soc Med 1968; 61: 658-660 [PMID: 2298253]

Christiansen J, Aagaard P. Parathyroid adenoma and gastric acid secretion. Scand J Gastroenterol 1972; 7: 445-449 [PMID: 5070499 DOI: 10.3109/0300793720891768]

Lamers CB, Van Tongeren JH. Serum gastrin response to acute and chronic hypercalcemia in man: Studies on the value of calcium stimulated serum gastrin levels in the diagnosis of Zollinger-Ellison syndrome. Eur J Clin Invest 1977; 7: 315-317 [PMID: 408152 DOI: 10.1111/j.1365-2362.1977.tb01613.x]

Wilson SD, Singh RB, Kalkhoff RK. Does hyperparathyroidism cause hypergastrinemia? Surgery 1976; 80: 231-237 [PMID: 941095]

Norton JA, Venzon DJ, Berna MJ, Alexander HR, Fraker DL, Libutti SK, Mars SJ, Gibril F, Jensen RT. Prospective study of surgery for primary hyperparathyroidism (HPT) in multiple endocrine neoplasia type 1 and Zollinger-Ellison syndrome: Long-term outcome of a more virulent form of HPT. Ann Surg 2008; 247: 501-510 [PMID: 18376196 DOI: 10.1097/SLA.0b013e3181eada5]

Chen H, Hardacre JM, Uzar A, Cameron JL, Choti MA. Isolated liver metastases from neuroendocrine tumors: Does resection prolong survival? J Am Coll Surg 1998; 187: 88-92; discussion 92-3 [PMID: 9660030 DOI: 10.1016/S1072-7515(98)00099-4]

Chambers LL, Canes D, Brown KT, Saltz L, Jarnagin W, Fong Y, Blumgart LH. Hepatic neuroendocrine metastases: Does intervention alter outcomes? J Am Coll Surg 2001; 130: 677-82; discussion 682-5 [PMID: 11602899 DOI: 10.1016/S1072-7515(00)00222-2]

Touzios JG, Kiely JM, Pitt SC, Rilling WS, Quebbeman EJ, Wilson SD, Pitt HA. Neuroendocrine hepatic metastases: Does aggressive management improve survival? J Am Coll Surg 2013; 216: 776-83; discussion 783-5 [PMID: 23562041 DOI: 10.1016/j.jamcollsurg.2013.01.003]

Gedaly R, McHugh PP, Koch A, Angulo P, Hundley JC. Liver transplantation for the treatment of liver metastases from neuroendocrine tumors: An analysis of the UNOS database. Arch Surg 2011; 146: 953-958 [PMID: 21844416 DOI: 10.1001/archsurg.2011.258]

Le Tetre VP, Gregoire E, Klempnauer J, Belghiti J, Jouve E, Lerut J, Caetano D, Soubranne O, Boillot O, Manton G, Homayounfar K, Bustamante M, Azoulay D, Wolf P, Krawczyk M, Pascher A, Suci B, Chiche L, de Urbina JO, Mejzlik V, Pascual M, Lodge JP, Gruttadauria S, Pe y F, Pruvot FR, Thorban S, Foss A, Adam R, For ELITA. Liver transplantation for neuroendocrine tumors in Europe-results and trends in patient selection: A 213-case European liver transplant registry study. Ann Surg 2013; 257: 807-815 [PMID: 23532105 DOI: 10.1097/SLA.0b013e31822ee17c]

Rossi RE, Burroughs AK, Caplin ME. Liver transplantation for unresectable neuroendocrine tumor liver metastases. Ann Surg Oncol 2014; 21: 2398-2405 [PMID: 24562931 DOI: 10.1245/s10434-014-3523-y]
