Development of an ASIC for Dual Mirror Telescopes of the Cherenkov Telescope Array

JUSTIN VANDENBROUCKE1, KEITH BECHTOL1, STEFAN FUNK1, AKIRA OKUMURA2,1, HIRO TAJIMA3, GARY VARNER4, FOR THE CTA CONSORTIUM

1W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305, USA
2Institute of Space and Astronautical Science, JAXA, Sagamihara, Kanagawa 252-5210, Japan
3Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya 464-8601, Japan
4Department of Physics and Astronomy, University of Hawaii, Honolulu HI 96822, USA
justinv@stanford.edu (Justin Vandenbroucke)

Abstract: We have developed an application-specific integrated circuit (ASIC) for photomultiplier tube (PMT) waveform digitization which is well-suited for the Schwarzschild-Couder optical system under development for the Cherenkov Telescope Array (CTA) project. The key feature of the “TARGET” ASIC is the ability to read 16 channels in parallel at a sampling speed of 1 GSa/s or faster. In combination with a focal plane instrumented with 64-channel multi-anode PMTs (MAPMTs), TARGET digitizers will enable CTA to achieve a wider field of view than the current Cherenkov telescopes and significantly reduce the cost per channel of the camera and readout electronics. We have also developed a prototype camera module, consisting of 4 TARGET ASICs and a 64-channel MAPMT. We report results from performance testing of the camera module and of the TARGET ASIC itself.

Keywords: ASIC, Instrumentation, CTA, MAPMT, TARGET

1 Introduction

The Cherenkov Telescope Array (CTA) experiment is a next-generation very-high-energy gamma-ray observatory featuring an array of imaging atmospheric Cherenkov telescopes (IACTs) that will be an order of magnitude more sensitive than the current generation of instruments [1]. The energy band covered by CTA will range from a few tens of GeV to beyond 100 TeV. To achieve the highest gamma-ray sensitivity ever with this wide energy coverage, CTA will be an array of \(\sim 100\) telescopes consisting of a mix of a few different telescope designs.

One candidate of telescope designs is Schwarzschild-Couder midium-size telescope (SC-MST) which is being developed to realize a wide field of view (FOV) (\(\sim 8^\circ\) in diameter) and high angular resolution (\(\sim <0.1^\circ\)) at the same time by using dual mirrors in the optical system [2]. The focal-plane camera of the SC optical system consists of an array of 64-channel multi-anode photomultiplier tubes (MAPMTs), because the f-ratio of the SC optics is a few times larger than those of normal IACTs, and thus the pixel size of the camera is required to be smaller than regular PMTs with diameters of \(\sim 25\) mm.

In order to read Cherenkov signals from an MAPMT array, a compact and modular readout system running at a sampling speed of \(\sim 1\) GSa/s (giga-samples per second) is required. In addition, the cost per channel of the readout system is required to be as low as possible because a large number of telescopes are to be built.

2 TARGET

We have developed an application-specific integrated circuit (ASIC) which was designed to match the requirements of the SC-MST. The first generation of this ASIC, TeV Array Readout with GSa/s sampling and Event Trigger (TARGET 1), has self-trigger functionality, 16-channel parallel input, and a 4096-sample buffer for each channel [3]. The total cost per channel including front-end and back-end electronics is expected to be \(\sim 20\) not including photo detectors.

Figure [1] illustrates a schematic diagram of the TARGET 1 ASIC which has an array of 4096 capacitors divided into 256 blocks aligned in 32 columns by 8 rows, where each block consists of 16 capacitors. The sampling speed of the array can be adjusted between 0.7 GSa/s and 2.3 GSa/s by changing an external voltage input, but it is typically driven at 1.0 GSa/s. Therefore, each capacitor and the total buffer depth correspond to 1 ns and 4096 ns, respectively. By reading three blocks upon each trigger, the waveform length becomes 48 ns, while the length can be changed through a field-programmable gate array (FPGA).
of 64-channels waveforms from two camera modules at a rate of an FPGA. The fiber optic interface enables us to acquire the waveform length to 48 or 64 ns in testing.

The storage capacitor voltage is digitized by Wilkinson-type analog-to-digital converters (ADC) equipped in TARGET 1. The voltage is measured by a gray-code counter which starts at the beginning of the Wilkinson ramp voltage, and stops when the ramp voltages equals the capacitor voltage. In the TARGET 1 evaluation board and camera module prototype to be explained in Section 3, the ADC resolution is 10 bits and 9 bits, respectively.

Table 2 is a summary of the specifications of TARGET 1. The same parameters for the 2nd version of TARGET (TARGET 2) are also listed. TARGET 2 chips have been designed and fabricated, and will be tested in 2011.

3 The TARGET 1 Camera Module Prototype

We have also developed the TARGET 1 evaluation board and the TARGET 1 camera module prototype as shown in Figure 2 and 3. Since the evaluation board was fabricated to study the basic characteristics of a TARGET 1 chip, it consists of a minimum set of components to operate a single ASIC. The camera module was designed to validate the concept of a combination of a 64-channel MAPMT and 4 TARGET 1 chips (16 channels by 4 ASICs). ~ 200 camera modules will be installed on the focal-plane camera of a single SC telescope in the future, where each ~ 36 modules will be controlled separately by a backplane board.

The camera module prototype has an MAPMT, a high-voltage (HV) power unit, a universal serial bus (USB) interface, a fiber optic interface, 4 separate ASIC boards, and an FPGA. The fiber optic interface enables us to acquire 64-channels waveforms from two camera modules at a rate of > 3.3 kHz in the current design, while the speed of the USB interface is only ~ 40 Hz. The USB interface is used in initial testing at low trigger rate. When multiple camera modules are operated by a subfield board at higher trigger rate, the fiber interface is used instead.

4 Performance Tests

Many tests have been done using the evaluation board and the camera module, details of which are fully covered elsewhere [3] (hereafter TARGET 1 paper). Figure 4 is

1. Hamamatsu Photonics HR8500D-03 is currently used. It can be replaced with an array of multi-pixel photon counters (MPPCs) in the future.
2. Negative HV for an MAPMT and positive for an MPPC array
Table 1: Performance parameters of TARGET 1 and TARGET 2. The sampling frequency, bandwidth, and cross talk of TARGET 1 are based on actual laboratory measurements, while those of TARGET 2 are simulated.

Parameter	TARGET 1	TARGET 2
Channels	16	16
Dynamic range (bits)	9 or 10	up to 12
Sampling frequency (GSa/s)	0.7 − 2.3	0.2 − 1.8
3 dB analog bandwidth (MHz)	150	> 380
Cross talk at 3 dB frequency	< 4%	1%
Buffer depth (cells per channel)	4,096	16,384
Wilkinson ADC counter speed (MHz)	445	700
Samples per digitization (block size)	16	32
Digitization time per block (μs)	1 (9-bit) or 2 (10-bit)	0.7 (9-bit) or 1.5 (10-bit)
Number of cells digitized simultaneously	16 cells × 2 channels	32 cells × 16 channels
Clock speed for serial data transfer (Mbps)	–	100
Channels for simultaneous data transfer	–	16
Dead time for 48 samples × 16 ch (μs)	24 + 0 (9-bit) or 48 + 0 (10-bit)	1.5 + 7.2 (9-bit) or 2.9 + 7.2 (10-bit)
(Digitization time + readout time)		
Trigger outputs	1 (OR of 16 channels)	4 (each is analog sum of 4 channels)

Figures 3 and 4 show an example of waveform and single photoelectron distribution of the MAPMT, respectively, which were digitized using the camera module. The self-trigger functionality, waveform digitization, and data-stream chain from MAPMT to an external data-acquisition computer have been validated.

Since the design of the backplane board is not completed yet, we are testing the fiber interface using another project’s board temporarily which uses the same data transfer protocol as the module. In the current configuration, the board is able to receive waveforms from two camera modules simultaneously. Using the temporary board, we achieved an event rate of 3.3 kHz when taking in total, 64×2 waveforms from two camera modules. The speed can be improved to be faster with a faster optic interface and firmware upgrade.

5 Conclusion and Prospects

The TARGET 1 chip and the camera module prototype have been fabricated and their performance has been well evaluated. We found that most performance characteristics meet our requirements for a SC-MST. However, a couple
of problems, such as low bandwidth and AC-linearity saturation against high-frequency signals (> 50 MHz), are known as reported in the TARGET 1 paper. Digitization noise in the camera module, which is not negligible, is also known, but it is not an intrinsic problem of TARGET 1. Those problems are to be removed in TARGET 2 and the second version of the camera module to be developed. The new system will be tested in 2011 and 2012.

In addition to the TARGET development, SC telescopes, subfield boards, back-end electronics, MAPMTs, and full Monte Carlo simulations are also being studied and developed in the CTA collaboration.

6 Acknowledgments

We gratefully acknowledge support from the agencies and organisations listed in this page: http://www.cta-observatory.org/?q=node/22

References

[1] The CTA Consortium, arXiv 1008.3703, 2010
[2] V. Vassiliev, S. Fegan, and P. Brousseau, Astropart. Phys., 2007, 28, 10–27
[3] K. Bechtol et al., arXiv 1105.1832, 2011