Hidden Treasures: Microbial Natural Product Biosynthesis off the Beaten Path

Friederike Biermann,a,b ©Eric J. N. Helfricha,b

aInstitute for Molecular Bio Science, Goethe University Frankfurt, Frankfurt, Germany
bLOEWE Center for Translational Biodiversity Genomics (TBG), Frankfurt, Germany

ABSTRACT Microbes produce structurally diverse natural products to interact with their environment. Many of the biosynthetic products involved in this “metabolic small talk” have been exploited for the treatment of various diseases. As an alternative to the traditional bioactivity-guided workflow, genome mining has been introduced for targeted natural product discovery based on genome sequence information. In this commentary, we will discuss the evolution of genome mining, as well as its current limitations. The Helfrich laboratory aims to play a leading role in overcoming these limitations with the development of computational strategies to identify noncanonical biosynthetic pathways and to decipher the principles that govern the production of the associated metabolites. We will use these insights to develop algorithms for the prediction of natural product scaffolds. These studies will pave the way toward a more comprehensive understanding of the full biosynthetic repertoire encoded in microbial genomes and provide access to novel metabolites.

KEYWORDS bioinformatics, biosynthesis, biosynthetic gene cluster, genome mining, natural products, peptides, polyketides, terpenes

Natural products, traditionally isolated by bioactivity-guided fractionation, have been exploited as drugs, agrochemicals, and additives in the food and cosmetic industry, and have served as inspiration for many generations of chemists. In recent years, genome mining has revolutionized microbial natural product discovery. Driven by the advancements in genome sequencing technologies, the pool of microbial sequence information is increasing at a rapid pace. Genes responsible for the biosynthesis of a natural product are typically clustered in microbial genomes. Biosynthetic studies on model natural product pathways resulted in the identification of universal biosynthetic principles for the most commonly studied classes of natural products (1–3). Even though the biosynthetic products within a natural products class are highly diverse, their production follows common reactions catalyzed by core biosynthetic enzymes. The genes encoding these enzymes exhibit a certain degree of homology based on which they can be identified in genome sequences. Genome mining, i.e., the screening of genome sequences for their natural product biosynthetic potential, has revealed that we have vastly underestimated the biosynthetic repertoire of microbes as previously extrapolated from traditional bioactivity-guided fractionation efforts (4). These revelations have resulted in the development of more and more sophisticated bioinformatic platforms for the identification, annotation, prioritization, and massive parallel analysis of natural product biosynthetic gene clusters (BGCs).

THE EVOLUTION OF GENOME MINING

An excellent example for the evolution of genome mining is trans-acyl transferase polyketide synthases (trans-AT PKSs). Trans-AT PKSs are arguably the most complex
bacterial natural product assembly lines known today. They are responsible for the production of a wealth of structurally diverse polyketides with a remarkable array of bioactivities. Trans-AT PKSs form giant enzymatic assembly lines that can be subdivided into individual modules that are responsible for the incorporation of a building block and/or the modification to the growing polyketide chain (5). Due to their overall architectural similarity to textbook polyketide synthases (cis-AT PKSs), genome mining pipelines were capable of identifying trans-AT PKS BGCs from early on, even though their biosynthetic blueprints were poorly understood (6). This lack of biosynthetic understanding can be attributed to numerous enzymatic peculiarities in the trans-AT PKS systems (5, 7). Therefore, a new set of biosynthetic rules that govern trans-AT PKS biosynthesis had to be established (8). It took until 2008 for the biosynthetic blueprints of trans-AT PKSs to be deciphered (9). Due to the small data set of characterized trans-AT PKS BGCs at the time, the resolution of the predicted monomers was still relatively low and resulted in a certain level of uncertainty in the predicted polyketide structures (9). In addition, the manual prediction of trans-AT PKS products was time-consuming and required a well-curated data set and extensive phylogenetic analysis.

The integration of extensive biochemical (10), knockout (11), and bioinformatic studies (8) resulted in a significantly improved biosynthetic understanding. These deeper biosynthetic insights were used for the development of transATor, an algorithm for the automated prediction of trans-AT PKS-derived polyketide core structures (8) (Fig. 1). The predicted structures can be used for in silico dereplication studies, to prioritize trans-AT PKS BGCs, and to guide the isolation and structure elucidation process (8). To study the origins of chemical diversity encoded in the blueprints of all sequenced trans-AT PKS systems, the trans-AT PKS Annotation and Comparison Tool (TransPACT) was subsequently developed in close collaboration with the Medema and Piel groups for the massive parallel analysis of all trans-AT PKS BGCs identified in genomes deposited in GenBank (12). The analysis of more than 1,700 BGCs revealed that trans-AT PKSs evolve through extensive recombination of conserved arrangements of consecutive module series (12). In addition to these evolutionary insights, TransPACT can be used to probe the biosynthetic space of trans-AT PKSs and to prioritize and dereplicate trans-AT PKS BGCs (12). TransPACT and features of transATor are currently being integrated into antiSMASH, the most comprehensive and widely used genome mining pipeline (13), to visualize evolutionary relationships between trans-AT PKS BGCs and predict the structures of the associated metabolites.
POSSIBILITIES AND LIMITATIONS OF CURRENT GENOME MINING PIPELINES

State-of-the-art genome mining algorithms, as exemplified by the trans-AT PKS genome mining tools, show great potential for the identification, dereplication, and prioritization of canonical biosynthetic pathways. They are, however, limited in the sense that they frequently overlook pathways that differ significantly from the seemingly universal biosynthetic principles established for the different natural product classes. BGC-metabolite pairs can be conceptually grouped into four categories (Fig. 2a) as follows: (i) known metabolite and known BGC; (ii) known metabolite and unknown BGC; (iii) unknown metabolite and known BGC; and (iv) unknown metabolite and unknown BGC. Only two of the groups are reliably covered by current genome mining pipelines that are based on hard-coded biosynthetic rules: First, there are the known BGCs that are linked to known metabolites (known knowns). Recent examples include the characterization of new members of the spliceostatin family of splicing inhibitors from a plant pathogen (12) or the identification of a cultured source of a pederin-type polyketide [1] (14). The second category represents the classical genome mining workflow, i.e.,
the targeted identification of a metabolite that is associated with an orphan BGC (known unknowns). A recent example includes the identification of the narrow-spectrum antibiotic macrobrevin [2] from a member of the Arabidopsis thaliana leaf microbiome (15). Furthermore, there are cases in which a metabolite is characterized but the corresponding BGC has not been identified (unknown known). Sesbanimide [3] is a recent example of a small trans-AT PKS-derived antitumor compound that was initially isolated from Sesbania drummondii plant seeds almost 40 years ago (16) and that was only recently identified as a truncated, bacterial polyketide biosynthesized by a large trans-AT PKS (17). The fourth category comprises the real hidden biosynthetic treasures: noncanonical biosynthetic pathways that are currently overlooked by state-of-the-art bioinformatic platforms. Categorized as the unknown unknowns, neither the BGC is identified by profile hidden Markovm-based approaches, nor is the corresponding compound characterized. One recent example from the world of trans-AT PKSs is toblerol [4] (18). Toblerol is the product of an unusual trans-AT PKS-like assembly line that was overlooked even by the most sophisticated bioinformatic platforms because it follows as-of-yet poorly understood biosynthetic principles that are “somewhat off the beaten trans-AT PKS biosynthetic path” (18). To open the treasure chest of these noncanonical biosynthetic pathways, machine learning-based approaches are currently being developed to identify BGCs based on pattern recognition rather than hardcoded biosynthetic principles.

SYSTEMATIC IDENTIFICATION OF NONCANONICAL BIOSYNTHETIC PATHWAYS

Motivated by the accidental encounter of multiple category three and four BGCs, we have recently started wandering off the beaten biosynthetic tracks in pursuit of the targeted and systematic identification of biosynthetic pathways that do not follow canonical biosynthetic principles. To do so, we are employing two conceptually orthologous strategies. In many cases, unprecedented metabolites that do not seem to be biosynthesized by canonical pathways have been reported in the literature. The first step toward identifying the associated BGC is the retrobiosynthetic analysis of the metabolite of interest. This analysis usually results in one or multiple alternative biosynthetic hypotheses that are subsequently validated in the laboratory. The insights gained from these studies are then employed for the development of machine learning-based algorithms for the identification of BGCs that employ similar biosynthetic principles. One example from our own research deals with the unusual family of atropopeptides that are characterized by complex and highly rigid three-dimensional shapes (19). First annotated as a nonribosomally synthesized peptide (20), we have recently identified tryptorubin A [5], the first representative of the atropopeptides, as a product of a ribosomally synthesized and posttranslationally modified peptide (RiPP) BGC (19). We have developed a machine learning-based algorithm that uses the characteristic atropopeptide tailoring enzyme as bait for the discovery of distantly related RiPP BGCs that encode similar tailoring enzymes and to predict the core structures of the associated peptides (Fig. 2b) (Biermann et al., unpublished). Similar bait-based approaches have been developed for other RiPP families (e.g., RODEO [21] and RIPPER [22]).

An orthologous, structure-independent approach involves the identification of alternative biosynthetic strategies for conserved key reactions within a natural product class. These include BGCs in which seemingly essential biosynthetic genes that are used for the identification of a biosynthetic pathway are replaced by genes of other gene families that have evolved to fulfill said function. A recent example for this hypothesis-driven approach from our laboratory includes the machine learning-based discovery of noncanonical terpene BGCs (Fig. 2c; Biermann et al., unpublished). Terpene biosynthesis can be conceptually divided into two phases. First, isoprene units are polymerized to a linear oligoprenyl precursor that is then transformed into one or multiple complex hydrocarbon backbones by a terpene cyclase. In a second phase, the hydrocarbon backbone is heavily modified by tailoring enzymes to yield a variety of different terpenes (23). The enzymes responsible for these tailoring
outlook

Genome mining has evolved from manual analyses of genome sequences over stand-alone tools for single natural product classes and comprehensive pipelines for the analysis of single genome sequences toward programs for the comparative analysis of massive data sets comprising hundreds or thousands of genome sequences (Fig. 1). Only recently, AI-based technologies have been introduced into genome mining where they serve to overcome current limitations when it comes to the identification of overlooked biosynthetic pathways or the deciphering of biosynthetic principles that can be used for the structure prediction of natural product scaffolds. These developments will not only pave the way toward a more comprehensive understanding of the full biosynthetic repertoire encoded in microbial genome sequences, but will likely also result in the discovery of novel bioactive metabolites and the identification of unprecedented biochemical transformation that can be exploited or mimicked by organic chemists.

Acknowledgments
E.J.N.H. gratefully acknowledges funding by the LOEWE Center for Translational Biodiversity Genomics (LOEWE TBG). F.B. is supported by a scholarship of the German Academic Scholarship Foundation (Studienstiftung des deutschen Volkes). Moreover, we thank Michael Rust and Roy Meoded for inspiring and stimulating discussions and for their feedback on this commentary.

References
1. Singh M, Chaudhary S, Sareen D. 2017. Non-ribosomal peptide synthetases: identifying the cryptic gene clusters and decoding the natural product. J Biosci 42:175–187. https://doi.org/10.1007/s12038-017-9663-z
2. Hertweck C. 2009. The biosynthetic logic of polyketide diversity. Angew Chem Int Ed Engl 48:4688–4716. https://doi.org/10.1002/anie.200806121
3. Montalban-Lopez M, Scott TA, Ramesh S, Rahman IR, van Heel AJ, Viel JH, Bandarian V, Dittmann E, Genilloud O, Goto Y, Grande Burgos MJ, Hill C, Kim S, Koehnke J, Latham JA, Link AJ, Martinez B, Nair SK, Nicolet Y, Rebuffat S, Sahi HG, Sareen D, Schmidt EW, Schmitt L, Severinov K, Sussmuth RD, Truman AW, Wang H, Weng JK, van Wezel GP, Zhang Q, Zhong J, Piel J, Mitchell DA, Kuipers OP, van der Donk WA. 2021. New developments in RIPP discovery, enzymology and engineering. Nat Prod Rep 38:130–239. https://doi.org/10.1039/d0np00027b
4. Ziemert N, Alnany J, Weber T. 2016. The evolution of genome mining in microb—a review. Nat Prod Rep 33:988–1005. https://doi.org/10.1039/c6np00025h
5. Hellfrich EJN, Piel J. 2016. Biosynthesis of polyketides by trans-AT polyketide synthetases. Nat Prod Rep 33:231–316. https://doi.org/10.1039/c5np00125k
6. Medema MH, Blin K, Cimermanic P, de Jager V, Zakrzewski P, Fischbach MA, Weber T, Takano E, Breitling R. 2011. antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res 39:W339–46. https://doi.org/10.1093/nar/gkr446
7. Piel J. 2010. Biosynthesis of polyketides by trans-AT polyketide synthetases. Nat Prod Rep 27:996–1047. https://doi.org/10.1039/b816430b
8. Hellfrich EJN, Ueoka R, Dolev A, Rust M, Meoded RA, Bhushan A, Califano G, Costa R, Gugger M, Steinbeck C, Moreno P, Piel J. 2019. Automated structure prediction of trans-acyltransferase polyketide synthase products. Nat Chem Biol 15:813–821. https://doi.org/10.1038/s41589-019-0313-7
9. Nguyen T, Ishida K, Jenke-Kodama H, Dittmann E, Gurgui C, Hochmuth T, Taudien S, Platzer M, Hertweck C, Piel J. 2008. Exploiting the mosaic structure of trans-acyltransferase polyketide synthases for natural product discovery and pathway dissection. Nat Biotechnol 26:225–233. https://doi.org/10.1038/nbt1379
10. Jenner M, Afonso JP, Bailey HR, Frank S, Kampa A, Piel J, Oldham NJ. 2015. Acyl-chain elongation drives ketosynthase substrate selectivity in trans-acyltransferase polyketide synthases. Angew Chem Int Ed Engl 54:1817–1821. https://doi.org/10.1002/anie.201410219
11. Moldenhauer J, Chen X-H, Borris R, Piel J. 2007. Biosynthesis of the antibiotic bacillaeana, the product of a giant polyketide synthetase complex of the trans-AT family. Angew Chem Int Ed Engl 46:8195–8197. https://doi.org/10.1002/anie.200703386
12. Hellfrich EJN, Ueoka R, Chevette MG, Hammerling F, Lu X, Leopold-Messer S, Minas HA, Burch AY, Lindow SE, Piel J, Medema MH. 2021. Evolution of combinatorial diversity in trans-acyltransferase polyketide synthase assembly lines across bacteria. Nature Commun 12:1422. https://doi.org/10.1038/s41467-021-21163-x
13. Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP, Medema MH, Weber T. 2021. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res 49:W29–W35. https://doi.org/10.1093/nar/gkab335
14. Schlesinzer C, Canedo LM, Rodriguez P, Crespo C, Zúñiga P, Peñalver A, La Calle F, Cuevas C. 2017. Bacterial production of a pederin analogue by a free-living marine alphaproteobacterium. J Nat Prod 80:2170–2173. https://doi.org/10.1021/acs.jnatprod.7b00408
15. Helfrich EJN, Vogel CM, Ueoka R, Schafer M, Ryffel F, Muller DB, Probst S, Kreuzer M, Piel J, Vorholt JA. 2018. Bipartite interactions, antibiotic production and biosynthetic potential of the Arabidopsis leaf microbiome. Nat Microbiol 3:909–919. https://doi.org/10.1038/s41564-018-0200-0.

16. Powell RG, Smith CR, Weisleder D, Matsumoto G, Clardy J, Koziolowski J. 1983. Sesbanimide, a potent antitumor substance from Sesbania drummondii seed. J Am Chem Soc 105:3739–3741. https://doi.org/10.1021/ja00349a081.

17. Kacar D, Cañedo LM, Rodríguez P, González EG, Galán B, Schleissner C, Leopold-Messer S, Piel J, Cuevas C, La Calle F, García JL. 2021. Identification of trans-AT polyketide clusters in two marine bacteria reveals cryptic similarities between distinct symbiosis factors. Environ Microbiol 23: 2509–2521. https://doi.org/10.1111/1462-2920.15470.

18. Ueoka R, Bortfeld-Miller M, Morinaka BI, Vorholt JA, Piel J. 2018. Toblerols: cyclopropanol-containing polyketide modulators of antibiosis in methylobacteria. Angew Chem 130:989–993. https://doi.org/10.1002/ange.201709056.

19. Reisberg SH, Gao Y, Walker AS, Helfrich EJN, Clardy J, Baran PS. 2020. Total synthesis reveals atypical atropisomerism in a small-molecule natural product, tryptorubin A. Science 367:458–463. https://doi.org/10.1126/science.aay9981.

20. Wyche TP, Ruzzini AC, Schwab L, Currie CR, Clardy J. 2017. Tryptorubin A: a polycyclic peptide from a fungus-derived streptomyctete. J Am Chem Soc 139:12899–12902. https://doi.org/10.1021/jacs.7b06176.

21. Tietz JI, Schwalen CJ, Patel PS, Maxton T, Blair PM, Tai HC, Zakai UJ, Mitchell DA. 2017. A new genome-mining tool redefines the lasso peptide biosynthetic landscape. Nat Chem Biol 13:470–478. https://doi.org/10.1038/nchembio.2319.

22. Santos-Aberturas J, Chandra G, Frattaruolo L, Lacret R, Pham TH, Vior NM, Eyles TH, Truman AW. 2019. Uncovering the unexplored diversity of thioamidated ribosomal peptides in Actinobacteria using the RiPPER genome mining tool. Nucleic Acids Res 47:4624–4637. https://doi.org/10.1093/nar/gkz192.

23. Helfrich EJN, Lin G-M, Voigt CA, Clardy J. 2019. Bacterial terpene biosynthesis: challenges and opportunities for pathway engineering. Bielstein J Org Chem 15:2889–2906. https://doi.org/10.3762/bjoc.15.283.

24. Hannigan GD, Prihoda D, Palicka A, Soukup J, Klempir O, Rampula L, Durcak J, Wurst M, Kotowski J, Chang D, Wang R, Pilizzi G, Temesi G, Hazuda DJ, Woelk CH, Bitton DA. 2019. A deep learning genome-mining strategy for biosynthetic gene cluster prediction. Nucleic Acids Res 47: e110. https://doi.org/10.1093/nar/gkz654.

25. Cimermancic P, Medema MH, Claesen J, Kurita K, Wieland Brown LC, Mavrommatis K, Pati A, Godfrey PA, Koehrsen M, Clardy J, Birren BW, Takano E, Sali A, Linington RG, Fischbach MA. 2014. Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters. Cell 158:412–421. https://doi.org/10.1016/j.cell.2014.06.034.