The opacity of spiral galaxy disks. VIII. Structure of the cold ISM.

Benne W. Holwerda
University of Louisville

B. Draine
Princeton University

K. D. Gordon
University of Arizona

R. A. Gonzalez
Universidad Nacional Autonoma de Mexico

D. Calzetti
University of Massachusetts - Amherst

See next page for additional authors

Follow this and additional works at: https://ir.library.louisville.edu/faculty

Part of the Astrophysics and Astronomy Commons

Original Publication Information
Holwerda, B. W., et al. "The Opacity of Spiral Galaxy Disks. VIII. Structure of the Cold ISM." The Astronomical Journal 134(6): 2226-2235.

This Article is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional Repository. It has been accepted for inclusion in Faculty Scholarship by an authorized administrator of ThinkIR: The University of Louisville's Institutional Repository. For more information, please contact thinkir@louisville.edu.
THE OPAQUITY OF SPIRAL GALAXY DISKS. VIII. STRUCTURE OF THE COLD ISM

B. W. Holwerda,1 B. Drain,2 K. D. Gordon,3 R. A. González,4 D. Calzetti,5 M. Thornley,5 B. Buckalew,7 Ronald J. Allen,1 and P. C. van der Kruit8

Received 2007 March 23; accepted 2007 July 24

ABSTRACT

The quantity of dust in a spiral disk can be estimated using the dust’s typical emission or the extinction of a known source. In this paper we compare two techniques, one based on emission and one on absorption, applied to sections of 14 disk galaxies. The two measurements reflect, respectively, the average and apparent optical depth of a disk section. Hence, they depend differently on the average number and optical depth of ISM structures in the disk. The small-scale geometry of the cold ISM is critical for accurate models of the overall energy budget of spiral disks. ISM geometry, relative contributions of different stellar populations, and dust emissivity are all free parameters in galaxy spectral energy distribution (SED) models; they are also sometimes degenerate, depending on wavelength coverage. Our aim is to constrain the typical ISM geometry. The apparent optical depth measurement comes from the number of distant galaxies seen in Hubble Space Telescope (HST) images through the foreground disk, calibrated with the synthetic field method (SFM). We discuss what can be learned from the SFM measurement alone regarding ISM geometry. We measure the IR flux in images from the Spitzer Infrared Nearby Galaxy Survey in the same section of the disk that was covered by HST. A physical model of the dust is fit to the SED to estimate the dust surface density, mean temperature, and brightness in these disk sections. The surface density is subsequently converted into the average optical depth estimate. The two measurements generally agree, and the SED model finds mostly cold dust ($T < 25$ K). The ratios between the measured average and apparent optical depths of the disk sections imply optically thin ($\tau_e = 0.4$) clouds in these disks. Optically thick disks are likely to have more than a single cloud along the line of sight.

Key words: dust, extinction — galaxies: ISM — galaxies: spiral — infrared: galaxies — infrared: ISM — ISM: structure

1. INTRODUCTION

The dust content of a spiral galaxy disk can be mapped either by the characteristic dust emission in the far-infrared (FIR) and submillimeter regimes, or by using the attenuation of known background sources. Both techniques have seen recent significant improvements in accuracy and sensitivity, with complementary results shedding light on the dusty interstellar medium in spiral disks.

The emission from the interstellar dust in the disks of spiral galaxies has been characterized with increasing accuracy by several infrared space missions (IRAS, ISO, and recently Spitzer), as well as by the submillimeter observations of SCUBA on the James Clerk Maxwell Telescope (JCMT). The improvements in spatial resolution and wavelength coverage have led to significant insight into the temperature components of the dust in spiral disks, and into the relation between dusty clouds and star formation. The FIR emission from spiral galaxies has revealed that the dust can be described by two dominant thermal components: warm (25 K $< T < 100$ K) and cold ($T < 25$ K). Both the warm and cold components can be found in spiral arms, and there is a smooth disk of cold dust between these arms. Most of the dust mass in the spiral disk is cold (see the review articles by Genzel & Cesarsky 2000; Tuffs & Popescu 2005; Popescu & Tuffs 2005).

FIR and submillimeter observations of galaxies find indications (e.g., Trewella et al. 2000; Alton et al. 1998) or direct evidence of cold dust disks extending beyond the stellar disk (Nelson et al. 1998; Davies et al. 1999; Popescu & Tuffs 2003). The studies of edge-on spirals by Radovich et al. (2001) and Xilouris et al. (1999) quantified the radial profile, showing a scale length for the dust that is 40% larger than that for the starlight. The contribution of the cold ISM ($T < 25$ K) to the overall emission of spiral disks has been difficult to constrain because of the degeneracy between dust temperature and mass. Hence, the cold ISM’s relation to H I and their relative distribution remain unknown.

Spitzer observations, mostly from the Spitzer Infrared Nearby Galaxy Survey (SINGS; Kennicutt et al. 2003), have already contributed greatly to the understanding of spiral disks. The relations between the tracers of cold dust (70 and 160 μm emission) and star formation, both obscured (24 μm) and unobscured (UV and Hα emission), have already been studied with this multiwavelength survey in several canonical galaxies and their substructure: the starburst M51 (Calzetti et al. 2005; Thornley et al. 2006), the grand-design spiral M81 (Gordon et al. 2004; Pérez-González et al. 2006), the rings of NGC 7331 (Regan et al. 2004) and M31 (Gordon et al. 2006), the superwind in M82 (Engelbracht et al. 2006), and the dwarf NGC 55 (Engelbracht et al. 2004). Dale et al. (2005, 2007) discuss the SED of all SINGS galaxies over all available wavelengths. Draine et al. (2007) find ample evidence for dust in all the SINGS galaxies, with the gas-to-dust ratio related to the metallicity. They find no evidence for very cold ($T < 10$ K) dust, however.

These studies find ample evidence of cold dust throughout the optical disks of spirals but, interestingly, also outside them in various places: on the edge of the optical disk (Thornley et al. 2006;
Parallel to these investigations of dust emission has gone an observational effort to quantify the absorption by dust in spiral disks using known background sources. White & Keel (1992) proposed using occulting galaxy pairs for this purpose. Nearby occulting galaxy pairs were initially investigated with ground-based data, both images (Andredakis & van der Kruit 1992; Berlind et al. 1997; Domingue et al. 1999; White et al. 2000) and spectra (Domingue et al. 2000). Subsequently, with the Hubble Space Telescope (HST), a more detailed picture of dust in these nearby disks emerged (Keel & White 2001a, 2001b; Elmegreen et al. 2001). The results of these studies are that extinction is gray9 when measured over disk sections greater than 100 pc, but resembles the Galactic extinction law at smaller scales: those that can only be resolved with HST. Arms are found to be more opaque than the general disk, and some evidence suggests that the dust disk is a fractal, similar to the H i disk.

González et al. (1998) investigated the use of the calibrated number of distant galaxies seen through a foreground disk in HST images. The calibrated counts of distant galaxies have been explored further in the previous papers in this series (González et al. 1998, 2003; Holwerda et al. 2005a, 2005b, 2005c, 2005d, 2005e, 2008). Both the occulting galaxy technique and counts of distant objects yield very similar opacities for disks and spiral arms (Holwerda et al. 2005b).

In recent years, models have been developed to explain the spectral energy distribution (SED) of edge-on spirals spanning wavelengths ranging from the UV to the FIR (e.g., Popescu et al. 2000; Misiriotis et al. 2001; Tuffs et al. 2004; Boissier et al. 2004; Dasyra et al. 2005; Calzetti et al. 2005; Dopita et al. 2006a, 2006b; Draine & Li 2007; Draine et al. 2007). Three scenarios have been proposed to explain the discrepancy between the apparent absorption in UV and optical wavelengths and the emission of dust in the FIR and submillimeter regimes:

1. A young stellar population embedded in the dense plane of the disk. This was proposed by Popescu et al. (2000) and corroborated by Driver et al. (2007). The embedded young stars pump the FIR emission radiated by the dust plane.
2. A strongly clumped dusty medium. The clumping would lead to an underestimation of the dust mass from optical extinction in edge-on systems (Bianchi et al. 2000b; Witt & Gordon 2000; Misiriotis & Bianchi 2002); the dust mass would also be underestimated by a UV-to-FIR SED (Bianchi et al. 2000a).
3. A different emissivity of the cold dust grains—higher than canonical—in the FIR and submillimeter. A change of emissivity has been proposed for denser ISM regions (Alton et al. 2004; Dasyra et al. 2005) or, alternatively, for the lower density regions of the disk (Bendo et al. 2006).

In all three of these scenarios, the clumpiness of the dusty ISM is an important factor.

While in some models the large-scale structure of the dusty ISM has been somewhat constrained (e.g., Xilouris et al. 1999; Seth et al. 2005; Bianchi 2007; Kamphuis et al. 2007), the small-scale geometry (“clumpiness”) of the cold ISM remains unknown. Therefore, an estimate of the prevalent dusty cloud size for spiral disks would provide a constraint for the SED models of spiral disks.

Given that SED and extinction techniques are sensitive to different characteristics of the dusty clouds in the spiral disk, a comparison between the optical depth derived from these two methods has the potential to reveal the structure of the dusty ISM. Here, we compare the I-band optical depths for a section of the spiral disk, one derived from an SED model of the Spitzer fluxes (“average”) and one determined from the number of distant galaxies found in an HST image (“apparent”). The term “average” refers to what the optical depth proportional to the dust mass would be, uniformly distributed over the disk section. The term “apparent” means the effective optical depth of the disk section based on a background uniform light source (original definitions from Natta & Panagia 1984). The term “opacity” is used throughout our previous papers for the apparent optical depth measured over a section of the disk for its whole height.

This paper is structured as follows: § 2 discusses the Spitzer and HST data used. In § 3 the two different methods to derive optical depths are presented. We discuss the relation between dust geometry and galaxy counts in § 4. In § 5 we present the derived optical depths; § 6 presents a simple geometric model to interpret the results, and § 7 lists our conclusions and future work.

2. DATA

The data for this paper come from two archives, the HST archive and the fourth data release (SINGS team 2006) of SINGS (Kennicutt et al. 2003).10 There is an overlap of 14 galaxies between the SINGS sample and that of Holwerda et al. (2005b). Two of these, NGC 3621 and NGC 5194, have two WFPC2 exposures analyzed in Holwerda et al. (2005b). The HST WFPC2 data reduction is described in Holwerda et al. (2005a). The reasoning behind the HST sample selection from the archive is explained in § 3.1.

The overlap between the HST and Spitzer data is illustrated in Figure 1, with the WFPC2 footprint projected on the 24 μm Spitzer images. Only the solid angle covered by the WF chips is used for further analysis (the PC chip is excluded).

The Infrared Array Camera (IRAC) mosaic is made with the custom SINGSdrizzle script, by M. Regan, that combines the scans images into a single mosaic using the drrizzle algorithm (SINGS team 2006). The Multiband Imaging Photometer for Spitzer (MIPS) data products are calibrated, sky-subtracted mosaics in all three bands, reduced as described in Gordon et al. (2005), Bendo et al. (2006), and the SINGS team (2006). The basic instrument parameters, pixel scale, and adopted PSF FWHM for the seven main Spitzer imaging modes are summarized in Table 1.

3. ANALYSIS

Two parallel estimates of the optical depth of disks are used in this paper: first, the apparent optical depth of the spiral disks is determined from the number of distant galaxies identified in the HST WFPC2 images, calibrated with the synthetic field method (SFM). Second, the optical depth of the same section of the spiral disks is derived from the dust surface density, which is a result of the SED model fit to the Spitzer fluxes using the model from Draine & Li (2007).

3.1. Galaxy Counts: Synthetic Field Method

In principle, the number of distant galaxies seen through a spiral disk is a function of the dust extinction, as well as the

9 Gray extinction is equal attenuation at all wavelengths: there is no relation between color and measured optical depth. A color measurement is dominated by the lines of sight with the least extinction, while the independent extinction measure is dominated by those with the most extinction. In cases where many lines of sight are mixed, gray extinction is mimicked.

10 See http://sings.stsci.edu.
crowding and confusion from the foreground disk. Initial applications of using the number of distant galaxies as an extinction tracer were done for the Magellanic Clouds (Shapley 1951; Wesselink 1961; Hodge 1974; MacGillivray 1975), but they lacked accuracy. The SFM was developed by González et al. (1998) to correct an extinction measurement based on the number of distant galaxies in an HST image for the effects of crowding and confusion from the foreground spiral disk.

The SFM follows a series of steps. First, the number of distant galaxies in an HST science field is determined. Second, a series of simulated (synthetic) fields are made. In each of these fields, a typical background (e.g., the Hubble Deep Field) is first dimmed by a gray screen and then added to the science field. Third, the added distant objects are identified in these synthetic fields. The fourth step is to measure the relationship between the number of these identified synthetic distant galaxies and background dimming. From this relation and the original number of actual distant galaxies found in the science field, an average opacity can be found. It is important to remake the synthetic fields for each science field because the crowding and confusion issues are unique in each case.

An additional uncertainty in the resulting average extinction measurement is the cosmic variance in the intrinsic number of distant galaxies behind the foreground disk. The uncertainty due to cosmic variance can be estimated from the two-point correlation function of distant galaxies and folded into the Poissonian error. The cosmic variance uncertainty is of the same order as the Poisson statistical error for small numbers. (For a complete discussion on the uncertainties of the SFM, see Holwerda et al. 2005a.) Therefore, single-field SFM measurements remain uncertain, but

TABLE 1

Instrument	Band	Pixel Scale (arcsec)	PSF (FWHM) (arcsec)	Aperture Correction
IRAC........	3.6	0.75	2.5	0.9
	4.5	0.75	2.5	0.9
	5.8	0.75	2.5	0.7
	8.0	0.75	2.5	0.75
MIPS........	24	1.5	6.0	1.16
	70	4.5	18.0	1.2
	160	9.0	40.0	1.4

Notes.— Shown are the IRAC and MIPS pixel scales, the PSF FWHM, and the aperture corrections (the factor by which the fluxes are multiplied).

\(a\) The pixel scales were set by the SINGS team.

\(b\) The FWHM values for IRAC are conservative estimates. The actual FWHM values are better than 2.5\(\arcsec\).

\(c\) The IRAC values are the initial results from T. Jarrett (2005, private communication), but they do not differ substantially from the final results.
a meaningful conclusion can be drawn from a combined set of science fields.

We have applied this method successfully to archival WFPC2 data. Holwerda et al. (2005b) present the average radial opacity profile of spiral disks and the effect of spiral arms. The spiral arms are more opaque and show a strong radial dependence, while the more transparent disk shows a flat profile. Holwerda et al. (2005c) compare H I radial profiles to the opacity profiles and conclude that no good relation between disk opacity and H I surface density radial profiles can be found. However, Holwerda et al. (2005c) find that the submillimeter profile from Meijerink et al. (2005) generally agrees with their opacity measurements of M51. Holwerda et al. (2005e) compare the relation between surface brightness and disk opacity; this relation is strong in the spiral arms, but weak in the rest of the disk.

González et al. (2003) predicted, based on simulated data, that the optimum distance for the application of the SFM with current HST instruments is approximately that of Virgo. The identification of background galaxies suffers in closer disks, as the stellar disk becomes more resolved, complicating confusion. This optimum distance, combined with the availability of deep HST WFPC2 images from the Cepheid Extragalactic Distance Scale Key Project, resulted in the sample presented in Holwerda et al. (2005b). Holwerda et al. (2005d) confirmed the results from González et al. (2003) using this sample, with foreground disks spanning distances between 3.5 and 35 Mpc. A selection effect of the Key Project is that the majority of the HST science fields are concentrated on spiral arms and exclude the centers of the galaxies.

Here, we present average extinction values for the whole WFPC2 field of view, minimizing the uncertainties to the extent possible. In our initial papers we did not apply an inclination correction to the optical depths because the correction depends strongly on the dust geometry (see the discussion in Holwerda et al. 2005b). However, in this paper we assume a simple dust model in § 6. The appropriate inclination correction (cos i) has been applied to the points in Figures 4 and 5, and in Table 4. The uncertainties in the tables and figures reflect the 1σ confidence levels produced by the combination of the Poisson error and the cosmic variance of background galaxies.

3.2. SED Optical Depth Estimate

The average disk optical depth is derived from Spitzer observations. First, the surface brightnesses within the WF chips’ footprints are measured (see Fig. 1). Second, these are converted into a dust surface density using an SED model. Third, this surface density is translated into an I-band optical depth.

All the IRAC and MIPS data are convolved to the poorest resolution of the 160 μm observations (see Table 1), and the pixel scale is set to 9′. This is done with the gauss, wcsmap, and geotran tasks, under IRAF. Subsequently, the overall flux is measured in the WFPC2 field of view (Fig. 1). Because the L-shaped aperture is a highly unusual one, the aperture correction remains uncertain, but not negligible, since the FWHM at 160 μm (40.0′) is on the order of the aperture diameter (3 × 1.3′ × 1.3′ in an L-shape).

Published aperture corrections for the IRAC instruments (Hora et al. 2004) overestimate the correction for extended objects. Here we use the aperture corrections for extended sources from J. Jarrett for the IRAC fluxes, and from Muzerolle et al. (2005) for the MIPS fluxes (see also Table 1). Table 2 gives the average surface brightnesses for the seven Spitzer channels in the field of view of the three WF chips of the WFPC2 array. The uncertainties are derived from the variance in the sky. Generally, the surface brightnesses agree with the results presented by Dale et al. (2005) for the entire disks.

The second step is to convert these surface brightnesses to a dust surface density. Initially, we fitted only the MIPS fluxes with two blackbodies and derived surface densities from these (Holwerda et al. 2008). However, a more rigorous treatment of the IR fluxes can be done with an SED model, such as the one presented in Li & Draine (2001). This model uses the physics of grain heating and reradiation, and a model distribution of grain sizes and types. The updated version from Draine & Li (2007) has been fit to the data, and Table 4 gives the average surface brightnesses, dust surface density, and mean temperature.
are presented in Table 3. Dust surface densities are between 0.1 and 1.4 \times 10^6 M_\odot kpc^{-2}, with mean temperatures between 14.6 and 17.8 K.

The mean dust temperatures are obtained from the mean radiation scaling, \(\bar{U} \), in the Draine & Li (2007) model (\(T_2 \) in their eq. [18]). The model uses a distribution of temperatures and grain sizes. Therefore, the mean temperature is an indication of the thermal equilibrium point of the bulk of the dust. Most of the dust is cold (\(T < 25 \) K).

These results are an obvious improvement over a simple single-temperature fit, but the model parameters in Table 3 are still not fully constrained; disagreement between data and the model at the PAH peak at 8 \(\mu \)m could be an effect of metallicity or of the presence of a bright H II region. The 70 and 160 \(\mu \)m fluxes hint at colder or more dust in the disk (Fig. 2). There are three caveats to the fits: (1) a lack of submillimeter data, (2) the single-color interstellar radiation field (ISRF) used, and (3) averaging over different types of emission regions, i.e., H II regions and the general disk.

Additional submillimeter data of comparable quality, needed to better constrain the model and especially the cold dust emission, will not be available until SCUBA2 starts operations on the JCMT and the launch of Herschel.\(^{15}\) At present, comparable-quality submillimeter maps are available only for NGC 5194 (Meijerink

\[^{14}\] The Draine & Li (2007) model uses a distribution of scaling values (\(U \)) of the local interstellar radiation field to calculate the irradiation that the grains see; \(\bar{U} \) is the average of this scaling distribution.

\[^{15}\] Herschel data will be especially valuable, as they will not suffer from night sky structure, which is of similar angular size to these disks.
et al. 2005) and NGC 7331 (Regan et al. 2004). Draine et al. (2007) discuss SED models with and without submillimeter data.

The second caveat in the derivation of dust mass is the assumption of a constant color for the ISRF illuminating the emitting dust. In reality, dust grains deeper in a dust structure will encounter a radiation field that is not only dimmed but also reddened, and hence will contribute less flux to the FIR emission. Locally, the ISRF will also depend on the age of the nearby stellar population. Due to the reddening of the ISRF deeper in the cloud, dense clouds could contain more dust mass in their centers than inferred from just the FIR emission. Additional submillimeter observations will help resolve this uncertainty in the SED optical depth. Draine et al. (2007) discuss fits of the model to the total fluxes of the SINGS galaxies with and without additional submillimeter data. They find that the FIR estimate underestimates the dust mass by a factor of 1.5 more often (5 out of 17 cases, notably NGC 3627 and 7331 of our sample) than it overestimates it (only 3 out of 17 cases).

The third caveat is that the model values are an average over many different types of ISM regions, each with a different heating mechanism, dust structure, and composition (e.g., photodissociation regions, cirrus, and star-forming regions in spiral arms). The Draine & Li (2007) model’s assumptions hold better for some regions than for others, but we use the results as “typical” for these disks. The relative contribution of PAH emission to the SED is a function of ISM geometry, as well as of irradiation and composition (e.g., Silva et al. 1998; Piovan et al. 2006). Together with a better constrained FIR/submillimeter SED, one could constrain ISM geometry solely from the relative contributions to the SED. Draine et al. (2007) discuss the application of the Draine & Li (2007) model to whole disks of the SINGS galaxies.

The dust surface density is translated into an average optical depth using the absorption cross section per unit dust mass, \(\kappa_{\text{abs}}(\lambda) \) and grain albedo from Draine (2003) for the Johnson I band (865.5 Å):

\[
\tau_m = \kappa_{\text{abs}}(1 - \text{albedo})M_{\text{dust}}/\text{area}.
\]

These optical depth values are presented in Table 4.

4. CLOUD SIZE AND THE SFM

It continues to be difficult to constrain dusty cloud geometry from models of either extinction or emission. In this section we review what can be learned, solely from the SFM measurements, about the geometry of the extincting medium.

In Holwerda et al. (2005b) two indications that the dust disk is clumpy are identified: (1) the average color of the distant galaxies is independent of the disk opacity implied by their number, and (2) the measurement of disk opacity is independent of inclination. The lack of a relation between the average opacity of the disk and the average color of the detected galaxies can be explained by two scenarios: (1) some of the background galaxies are completely blocked by large clouds, and some are not. The color measurement is done on background objects that do not suffer from extinction and, hence, reddening. Alternatively, (2) all background galaxies are dimmed by clouds smaller than the projected distant galaxies.

Table 3

Model Output

Galaxy Name	\(L_{\text{dust}}/\text{area} \) (10^0 \(L_\odot \) kpc^2)	\(L_{\text{dust}}/\text{area} \) (10^0 \(L_\odot \) kpc^2)	\(M_{\text{dust}}/\text{area} \) (10^6 \(M_\odot \) kpc^2)	\(T \) (K)	\(\chi^2 \)	\(U_{\text{min}} \) (10^0)	\(\bar{U} \) (10^{-5})	Model Name	
NGC 0925...........	0.8	0.2	0.2	15.7	2.8	0.70	0.8	5.8	U0.70..ye...
NGC 2841...........	1.8	0.3	0.5	14.6	4.15	0.70	0.8	1.0	U0.70..ye...
NGC 3031...........	2.7	0.2	0.3	16.0	2.32	0.50	1.0	0.5	U0.50..ye...
NGC 3198...........	0.6	0.2	0.3	15.0	3.73	0.50	1.0	0.6	U0.50..ye...
NGC 3351...........	2.7	0.5	0.4	16.2	2.45	0.50	1.0	2.6	U0.50..ye...
NGC 3621-2........	1.4	1.1	1.0	16.0	1.91	0.60	1.0	1.9	U0.50..ye...
NGC 3621-1........	0.7	0.2	0.4	16.9	10.91	1.20	1.0	1.3	U0.50..ye...
NGC 3198...........	0.6	0.2	0.2	15.7	3.73	0.50	1.0	0.6	U0.50..ye...
NGC 3031...........	2.7	0.5	1.1	14.6	2.32	0.50	1.0	0.5	U0.50..ye...
NGC 2841...........	1.8	0.3	0.5	14.6	4.15	0.70	1.0	0.8	U0.50..ye...
NGC 0925...........	0.8	0.2	0.2	15.7	2.8	0.70	0.8	5.8	U0.70..ye...

Notes.—Shown are stellar and dust surface brightness, dust surface density, dust mean temperature (\(T_\text{d} \) in Draine & Li 2007), fit quality, and the parameters of stellar irradiation: minimum and maximum of the distribution, mean irradiative field, and fraction of dust exposed to more than \(U_{\text{min}} \). Models can be found at http://www.astro.princeton.edu/~draine/dust/rem.html.

Table 4

Apparent and Average Optical Depths in the I Band

Galaxy	\(\tau \) (SFM)	\(\tau_{\cos i} \)	\(\tau_{\text{SED}} \)	\(\tau_{\cos i} \)	\(\tau \) /\(\tau_{\cos i} \)
NGC 0925.....	-0.4 ^0.1	-0.2	0.6	0.3	-0.63
NGC 2841.....	0.7 ^0.1	0.4	1.4	0.7	0.53
NGC 3031.....	0.8 ^0.1	0.4	0.9	0.5	0.88
NGC 3198.....	0.7 ^0.1	0.3	0.7	0.4	0.97
NGC 3351.....	1.1 ^0.1	1.1	1.0	1.0	1.06
NGC 3621-1...	2.0 ^0.1	1.1	1.0	0.5	2.05
NGC 3621-2...	1.0 ^0.1	0.5	0.7	0.4	1.38
NGC 3627.....	1.9 ^0.1	1.0	3.1	1.7	0.61
NGC 4321.....	2.2 ^0.1	1.7	2.8	2.2	0.76
NGC 4536.....	0.8 ^0.1	0.4	0.3	0.1	2.58
NGC 4559.....	0.1 ^0.1	0.1	0.3	0.1	0.39
NGC 4725.....	0.7 ^0.1	0.5	0.5	0.4	1.38
NGC 5194-1...	-0.4 ^0.1	-0.4	3.3	3.0	-0.12
NGC 5194-1...	1.3 ^0.1	1.2	3.9	3.5	0.34
NGC 6946.....	1.0 ^0.1	0.8	1.3	1.0	0.76
NGC 7331.....	0.5 ^0.1	0.2	0.5	0.3	0.62

Notes.—Measured in the WFCPC2 field (three WFs of 1.3' × 1.3'), both uncorrected and corrected for inclination.
Consequently, some of the distant galaxies are dimmed enough to drop below the detection threshold. Any detected galaxy’s color is, however, measured from mostly unreddened flux. However, we note that a relation between the reddening and derived extinction from the distant galaxies is difficult to detect because (1) the spread in colors of distant galaxies is substantial and (2) color is measured from the detected galaxies—automatically the least dimmed—whereas opacity is measured from the missing galaxies.

The inclination effect on the apparent optical depth of the number of distant galaxies is minimal (see Holwerda et al. 2005b, their § 5.1 and Fig. 3). Assuming a thin layer of optically thick clouds, the apparent optical depth of the disk, measured from the number of distant galaxies, is dominated by the apparent filling factor of clouds. The projected filling factor does not change much with inclination: a flat cloud covering 40% of a certain disk section still covers 40% of the inclined section. Only when the height of the cloud becomes important—when the inclination is closer to edge-on—does the apparent filling factor change. This explanation for the lack of an inclination effect in the opacity profiles does not depend on the size of the clouds. It could be a single, large cloud or many small ones in the plane of the disk. However, the optical depth values in Holwerda et al. (2005b) are from different sections of the disks, although generally centered on a spiral arm, and the effect of small inclination differences could well have been masked by comparing different regions in the disks. In Holwerda et al. (2005b) we did not apply an inclination correction because it depends on the assumed dust geometry. In this paper we do assume a dust geometry, and hence make an inclination correction (§ 6).

The simulations in the SFM assume a gray screen, a uniform unclumped dust layer with equal opacity in the V and I bands. The SFM opacity measurements in this paper are based on such simulations. In Holwerda (2005) we ran a series of simulations on NGC 1365 to characterize the effect of average cloud cross section on the number of distant galaxies observable through a disk.

Figure 3 shows the effect of cloud size, expressed in pixels, on the simulated relation between average opacity and number of distant objects. In each simulation we fix a cloud size and vary their number to increase disk opacity. An ensemble of unresolved clouds is effectively the gray screen. For clouds resolved with HST, more than 2 pixels, the relation between opacity (cloud filling factor) and the number of distant objects becomes much shallower. The same number of distant galaxies observed would then imply a much higher opacity of the disk. The SFM (calibrated with a gray screen) generally agrees well with measurements from overlapping galaxies (Holwerda et al. 2005b), it seems unlikely that the disk’s opacity is predominantly due to large, resolved clouds. A pixel of 0.05’ at the distance of NGC 1365 (18 Mpc) is 4 pc in linear size. It is therefore implied that the structure of the ISM responsible for the disk opacity measured with the SFM varies in optical depth on scales of ~10 pc or less.

From the SFM measurements alone, the cloud geometry is impossible to determine. Only when additional information is used, e.g., the general agreement with the occulting galaxy technique, does it favor small (unresolved) scales for the clouds. Therefore, to constrain cloud geometry, information from two different techniques needs to be combined.

5. OPTICAL DEPTHS

Table 4 presents the optical depth estimates from the SFM and the SED model (Draine 2003; Draine & Li 2007) for the WFPC2 field of view. The optical depths range between 0.1 and 3.5 mag in the I band. The measurements are for different parts of different spiral disks (Fig. 1), explaining in part the range in values.

The optical depth estimates presented here may appear high for the Johnson I band compared with other extinction estimates (e.g., those from inclination effects or reddening), but these are (1) for the entire height of the disk and (2) generally centered on a spiral arm. Typical extinction values in the I band are several tenths of a magnitude for a dust screen in front of the stellar spiral disk (e.g., M. Meyer et al. 2007, in preparation). Two of the derived SFM opacities are negative, possibly the effect of an overdensity of distant galaxies behind the target galaxy. The discrepancy in NGC 5194-1 may be due to misidentification of background galaxies, as they are difficult to identify in this field.

Figures 4 and 5 show the values of disk opacity by both methods, over the same section of the disk. Both methods generally agree within the uncertainties of the measurements. The agreement is better than our initial estimate from a blackbody fit to the MIPS fluxes in Holwerda et al. (2008). The general agreement and the near mean temperature of the dust (Table 3) imply that most of a disk’s opacity is due to the cold dust in the disk.

6. MODEL OF CLOUD GEOMETRY

The relation between the apparent and average I-band optical depth measurements—the first from the number of distant galaxies...
in HST images and the second derived from the Spitzer SED—could reveal the nature of the prevalent structure in the ISM. The a priori assumptions are that (1) all dust structure is transparent to the FIR emission from which the dust surface density is estimated in the SED model, and (2) the entire volume of the cloud emits in the FIR. We adopt model C from Natta & Panagia (1984), in which a randomly distributed series of clumps covers the area. These authors define two optical depths: (1) the typical optical depth if a uniform layer covered the area, and hence corresponds to \(\tau_c \); and (2) the apparent optical depth averaged over the area, and hence corresponds to \(\tilde{\tau} \). These two optical depths need not be the same, and their relation is an indication of how clumped the medium is.

Our two measurements of optical depth, SED and SFM, correspond to these two optical depths, average and apparent. An optical depth based on the SED depends on the dust mass within the area, and hence corresponds to \(\tau_m \). The SFM optical depth is the apparent optical depth averaged over the area, and hence corresponds to \(\tilde{\tau} \). These two optical depths need not be the same, and their relation is an indication of how clumped the medium is.

Let us assume a number of small dust structures with a height \(h \), an average grain cross section \(\sigma \), and a grain emissivity \(Q \). The grain number density in the clouds is denoted by \(n_d \), and the average number of clouds in a line of sight is \(n \). We assume all clumps have the same optical depth \(\tau_c \):

\[
\tau_c = n_d \sigma Q. \tag{1}
\]

The average optical depth \(\tau_m \) is then

\[
\tau_m = n \tau_c, \tag{2}
\]

and the apparent optical depth can be derived if one assumes a Gaussian distribution of the number of clouds along the possible lines of sight and sums the contributions of all clouds (see eqs. [15] and [17]–[19] in Natta & Panagia 1984):

\[
\tilde{\tau} = n (1 - e^{-\tau_c}). \tag{3}
\]

The ratio of the apparent over the average optical depth is

\[
\frac{\tilde{\tau}}{\tau_m} = 1 - e^{-\tau_c}, \tag{4}
\]

leaving only the optical depth of the clouds \(\tau_c \), and hence the grain density \(n_d \) and the cloud size \(h \), as the variables. Our fit to the relation between SFM and SED optical depth estimates only has \(\tau_c \) as the variable (Fig. 4).

We can now use equation (6) to derive \(\tau_c \) from a fit to the optical depths from the SED \(\tau_m \) and from the number of distant galaxies \(\tilde{\tau} \). We want to answer three questions: Are the clouds in the disks typically optically thin or thick? If all disks are equal, what is the implied cloud optical depth? How many clouds typically lie along a given line of sight?

6.1. Optically Thick or Thin Clouds?

Optically thin clouds \((\tau_c \ll 1)\) result in a ratio of optical depths close to unity:

\[
\frac{\tilde{\tau}}{\tau_m} = \frac{1 - e^{-\tau_c}}{\tau_c} \approx 1 - (1 - \tau_c) = 1; \tag{7}
\]

optically thick clouds \((\tau_c \gg 1)\) result in a ratio of

\[
\frac{\tilde{\tau}}{\tau_m} = \frac{1 - e^{-\tau_c}}{\tau_c} < 1. \tag{8}
\]
Figures 4 and 5 show how a majority of the data exhibit a ratio of order unity. The cold dust mass in the SED model could be better constrained with additional submillimeter information (Draine et al. 2007). However, the ratios are, within the errors, consistent with optically thin clouds in most of the disks.

6.2. Cloud Size

Figure 4 shows the fit to the ratios of apparent to average optical depths, with τ_c as the single fit parameter, as per equation (6). For simplicity, we assume here that all disks are made up of similar clouds and that there is no difference between arm and disk regions. The negative SFM measurements are excluded from the fit. The best fit is for a cloud optical depth of $\tau_c = 0.4$ with, on average, 2.6 clouds along the line of sight (if the two negative points are included, the values change, respectively, to $\tau_c = 0.56$ and $n = 1.9$). The inferred value of τ_c is likely to be a mean between higher values in spiral arms and much lower values in the disk. Optically thick disks have more clouds along the line of sight, while optically thin disks harbor a single cloud.

Reasonable values for the parameters in equation (1) are $n_d \approx 5 \times 10^{-3}$ grains m$^{-3}$, $\sigma = 0.03 \mu$m2, and

$$Q = \frac{3}{1300} \left(\frac{125}{160} \right)^\beta = 1.5 \times 10^{-3},$$

with $\beta = 2$ (Hildebrand 1983). The value of 0.4 for τ_c implies a cloud height h of ~ 60 pc! Much larger clouds could be resolved in extinction maps of these disks based on stellar reddening. In the case of NGC 3627, NGC 5194, NGC 6946, and NGC 7331, there is a clear spiral arm in the reddening map (M. Meyer et al. 2007, in preparation; Holwerda et al. 2007); the other reddening distributions could be used in SFM measurements in the future.

A more likely scenario is that there is an inverse relation between the cloud density n_d and scale h. Such a relation can be seen in giant molecular clouds (GMCs) of our own Galaxy (e.g., Solomon et al. 1987). In this case, the single optically thin cloud can be replaced by smaller optically thick ones. We note that the largest GMCs are on the order of 60 pc.

The value of 60 pc clouds appears in contradiction to the implied size in the SFM calibration (~ 10 pc). However, the typical cloud size can be 60 pc, and the disk opacity can still change over smaller scales if several partially overlapping clouds are seen in projection. The inverse relation between scale and density would also help make the two scales compatible.

Our data are consistent with optically thin clouds ($\tau_c = 0.4$), and their average opacity value implies a typical cloud size that is unresolved with Spitzer in our galaxies.

6.3. Cloud Numbers

The above fit to the relation between $\tilde{\tau}$ and τ_m indicates that, on average, more than one cloud is needed along the line of sight in most disks ($\tilde{n} = 2.6$). However, the assumption was that τ_c had a single value for all the disks. In § 6.1 we argued that the ratio between $\tilde{\tau}$ and τ_m implied that τ_c is optically thin. It logically follows that optically thick disks must have more than a single cloud along the line of sight.

Figure 5 illustrates the effect of the number of clouds along the line of sight (n) on the relation between $\tilde{\tau}$ and τ_m, when τ_c is freely increased from 0 to τ_m/n (the lines have been drawn according to eqs. [2] and [3]). We note that all disks are consistent with many clouds along the line of sight, including the optically thin ones, because they lie in the optically thin cloud regime ($\tilde{\tau}/\tau_m \sim 1$, $\tau_c < 0.4$).

6.4. Potential Improvements

There are many refinements to be made to the simple model presented here. Some improvements for future comparisons between these two measurements of optical depth are as follows:

1. A distribution of cloud sizes can be used for both the SFM calibration and in the model explaining the ratio between the SFM and SED optical depths. A model distribution can be taken from observations of GMCs in our own Galaxy and nearby ones (Heyer et al. 2001; Rosolowsky 2005). The cross section distribution could be used in SFM measurements in the future.

A cross section distribution can only be applied if the foreground disk is at a single, fixed distance; only counts though a single foreground galaxy are used. There are three face-on spirals with enough solid angle in HST imaging, as well as additional Spitzer data, to have this applied: M51, M81, and M101. (2) The SED model can be much better constrained with additional submillimeter observations, the opportunities for which will expand dramatically in the near future (SCUBA2 on the JCMT and the Herschel satellite). (3) The effects of grand-design spiral arms and galactic radius could be identified in a single disk; the comparison SFM and SED would not be made for different sections of the disks combined. (4) Future SED models can take into account the reddening of the ISRF as it penetrates the ISM. This would require a comprehensive treatment of the ISM structure in addition to its temperature, composition, and irradiation.

7. CONCLUSIONS

To constrain models of a spiral disk’s energy budget with typical values for the size of dusty clouds in the ISM, we compare two techniques to extract the average and apparent optical depths of a section of spiral disk. From the comparison between SFM and SED results, we conclude the following:

1. The SFM’s calibration alone implies projected cloud scales predominantly unresolved by HST (on the order of 10 pc in NGC 1365; see § 4 and Fig. 3).
2. The dust responsible for the disk’s opacity is predominantly cold ($T < 25$ K; Table 3).
3. The average and apparent optical depths of these disk sections, measured from the SED and SFM, respectively, generally agree (Figs. 4 and 5). This implies generally optically thin clouds ($\tau_c < 1$; § 6.1).
4. The fit to the ratio between apparent and average optical depth measurements, $\tilde{\tau}/\tau_m$, indicates a cloud optical depth τ_c of 0.4, more than a single cloud along the line of sight, and a cloud size of ~ 60 pc. If several partially overlapping clouds are seen in projection through the disk, the disk’s opacity will change over smaller scales, consistent with conclusion 1.
5. Optically thick disks appear to have more than a single cloud along the line of sight (Fig. 5), and optically thin disks may have several clouds as well.

Future work using counts of distant galaxies through a foreground disk could be used to find cold dust structures at larger galactic radii, provided a sufficiently large solid angle has been imaged with HST ACS’s superb resolution.\(^{20}\) Notably, the ACS

\(^{19}\) There is substantial discussion in the literature about the value of β (e.g., Bendo et al. 2003); β was fixed at 2 in the Draine & Li (2007) models.

\(^{20}\) See Holwerda et al. (2005d) for selection criteria of suitable data.
data on M51, M81, and M101 are very promising for such an analysis. Spitzer observations of these nearby disks are also available, making a similar comparison between SED and apparent optical depth possible for portions of these disks. The typical cloud scale for spiral arms or disk sections, or as a function of galactic radius, could then be found. The SCUBA2 instrument has recently been installed on the James Clerk Maxwell Telescope. A project with SCUBA2 to map the SINGS galaxies in two submillimeter bands will improve future SED modeling of these spiral disks significantly over the SED models presented here.

21 The closer disks are slightly less well suited for the SFM because their stellar disk is resolved, but the loss in accuracy is offset by the larger available solid angle.

REFERENCES

Alton, P. B., Bianchi, S., Rand, R. J., Xilouris, E. M., Davies, J. I., & Trew attractive, M. 2004, A&A, 425, 109
Andredakis, Y. C., & van der Kruit, P. C. 1992, A&A, 265, 396
Bendo, G. J., et al. 2003, AJ, 125, 2361
———. 2006, ApJ, 652, 283
Berlind, A. A., Quillen, A. C., Poggie, R. W., & Sellgren, K. 1997, AJ, 114, 107
Bianchi, S. 2007, A&A, 471, 765
Bianchi, S., Davies, J. I., & Alton, P. B. 2000a, A&A, 359, 65
Bianchi, S., Ferrara, A., J., & Alton, P. B. 2000b, MNRAS, 311, 601
Boissier, S., Boselli, A., Buat, V., Donas, J., & Milliard, B. 2004, A&A, 424, 465
Calzetti, D., et al. 2005, ApJ, 633, 871
Dale, D. A., et al. 2005, ApJ, 633, 857
———. 2007, ApJ, 655, 863
Dasyra, K. M., Xilouris, E. M., Misiriotis, A., & Kylafis, N. D. 2005, A&A, 437, 447
Davies, J. I., Alton, P., Trew attractive, M., Evans, R., & Bianchi, S. 1999, MNRAS, 304, 495
Domiguel, D. L., Keel, W. C., Ryder, S. D., & White, R. E. 1999, AJ, 118, 1542
Domiguel, D. L., Keel, W. C., & White, R. E. 2000, ApJ, 545, 171
Dopita, M. A., et al. 2005a, ApJ, 647, 244
———. 2006b, ApJS, 167, 177
Draine, B. T. 2003, ARA&A, 41, 241
Draine, B. T., & Li, A. 2007, ApJ, 657, 810
Draine, B. T., et al. 2007, ApJ, 663, 866
Driver, S. P.,Popescu, C. C., Tuffs, R. J., Liske, J., Graham, A. W., Allen, P. D., & De Propris, R. 2007, MNRAS, 379, 1022
Elmegreen, D. M., Kaufman, M., Elmegreen, B. G., Brinks, E., Struck, C., Kla ric, M., & Thomasson, M. 2001, AJ, 121, 182
Engelbracht, C. W., et al. 2004, ApJS, 154, 248
———. 2006, ApJ, 642, L127
Genzel, R., & Cesarsky, C. J. 2000, ARA&A, 38, 761
González, R. A., Allen, R. J., Dirsch, B., Ferguson, H. C., Calzetti, D., & Panagia, N. 1998, ApJ, 506, 152
González, R. A., Loinard, L., Allen, R. J., & Muller, S. 2003, AJ, 125, 1182
Gordon, K. D., et al. 2004, ApJS, 154, 215
———. 2005, PASP, 117, 503
Haller, M., Carpenter, J. M., & Snell, R. L. 2001, ApJ, 551, 852
Hildebrand, R. H. 1983, QJRAS, 24, 267
Hinz, J. L., Misselt, K., Rieke, M. J., Rieke, G. H., Smith, P. S., Blaylock, M., & Gordon, K. D. 2006, ApJ, 651, 874
Hodge, P. W. 1974, ApJ, 192, 21
Holwerda, B. W. 2005, Ph.D. thesis, Kapteyn Astron. Inst.
Holwerda, B. W., González, R. A., Allen, R. J., & van der Kruit, P. C. 2005a, AJ, 129, 1381
———. 2005b, AJ, 129, 1396
———. 2005c, A&A, 444, 101
———. 2005d, A&A, 444, 319
Holwerda, B. W., González, R. A., van der Kruit, P. C., & Allen, R. J. 2005c, A&A, 444, 109

This work is based in part on archival data obtained with the Spitzer Space Telescope, which is operated by JPL, California Institute of Technology, under a contract with NASA. This work is also based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. The authors would like to thank T. Jarrett, for making his aperture corrections of extended sources available to us at an early stage, and Erik Rosolowsky, for useful discussions on Local Group cloud sizes. We would like to thank Maarten Baes for discussion of the motivation. We would also like to thank George Bendo, Erik Hollenback, and Kristen Keener for their comments on earlier drafts of this paper.