Existe espaço para a microcirurgia na cirurgia robótica?

Is There Room for Microsurgery in Robotic Surgery?

Jefferson Braga Silva1,2, Catarina Vellinho Busnello1, Matheus Ribeiro Cesarino1, Luiza Fernandes Xavier1, Leandro Totti Cavazzola3

1 Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brasil
2 Departamento de Cirurgia da Mão e Microcirurgia Reconstrutiva, Hospital São Lucas, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brasil
3 Departamento de Cirurgia da Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brasil

Endereço para correspondência Prof. Dr. Jefferson Braga Silva, MD, PhD, Avenida Ipiranga, 6.690, Centro Clínico PUCRS, conj. 216, Jardim Botânico, Porto Alegre, 90610-000, RS, Brasil (e-mail: jeffmao@terra.com.br; jeffmao@pucrs.br).

Rev Bras Ortop 2022;57(5):709–717.

Resumo

A cirurgia robótica abriu uma nova era de procedimentos minimamente invasivos, por meio da sua precisão, da eliminação dos tremores, e dos maiores graus de liberdade e demais aspectos facilitadores. O campo da microcirurgia robótica apresentou grande crescimento nos últimos anos em especial, uma vez que a robótica oferece uma configuração potencialmente ideal para realização das manipulações delicadas exigidas na microcirurgia. Assim, conduzimos uma revisão sistemática com o objetivo de avaliar os benefícios da cirurgia robótica e sua contribuição para a microcirurgia, comparando-a com as demais técnicas cirúrgicas utilizadas em pacientes de todas as faixas etárias. Foram analisados 25 artigos encontrados nas bases de dados PubMed e Cochrane utilizando os descritores robotic surgery AND microsurgery com filtro para os últimos cinco anos, e estudos realizados em humanos e publicados em inglês ou português. Concluímos que existe grande espaço para a cirurgia robótica na microcirurgia, como em procedimentos primários de infertilidade masculina, microcirurgia neurológica, cirurgias oculares e otológicas, cirurgia transoral, hepatobiliar, microvascular, e cirurgia plástica e reconstrutiva.

Palavras-chave

► procedimentos cirúrgicos robóticos
► microcirurgia
► procedimentos cirúrgicos minimamente invasivos

Abstract

Robotic surgery opened a new era of minimally-invasive procedures, through its improved precision, elimination of tremors, greater degrees of freedom, and other facilitating aspects. The field of robotic microsurgery showed great growth in recent years in particular, since robotics offers a potentially-ideal configuration to perform the sensitive manipulations required in microsurgery. We conducted a systematic review to assess the benefits of robotic surgery and its contributions to microsurgery, comparing it with other surgical techniques used in patients of all age groups. We...
Introdução

O conceito de cirurgia assistida por robótica foi proposto por médicos militares durante a Segunda Guerra Mundial, e visa a criação de um sistema de controle remoto de cirurgias. Entretanto, foi apenas em 1994 que Phil Green projetou um sistema operacional de cirurgia remota, o qual consistia em um console e um braço de controle sem fio.1 Acerca dos dias atuais, na última década, a cirurgia robótica tornou-se padrão em algumas especialidades para execução de cirurgias minimamente invasivas.2

A cirurgia robótica abriu uma nova era de procedimentos minimamente invasivos, com sua precisão e resolução aprimoradas, maiores graus de liberdade (degrees of freedom, DOFs, em inglês), melhor visualização tridimensional (3D), e eliminação de tremores.3 As cirurgias urológica, gastrointestinal, endócrina, cardíaca e plástica são alguns dos exemplos de áreas nas quais a robótica está mais estabelecida.4

O sistema robótico mais amplamente utilizado é o Da Vinci Surgical System (Intuitive Surgical, Inc., Sunnyvale, CA, Estados Unidos), que atualmente utiliza ampliação 3D de alta definição (high definition, HD, em inglês) com sete DOFs.5 O robô Da Vinci consiste em três elementos: o console do cirurgião, o carrinho do paciente, com seus braços articulados e giratórios, e a torre de imagens.6 Desse modo, esse sistema tem como vantagens a visualização estereoscópica tridimensional; maior destreza, em que os movimentos dos instrumentos são facilitados por pulsos articulados que permitem sete graus de liberdade; maior precisão; e domínio mais rápido da endoscopia.6 Entretanto, o sistema tem limitações, como o tamanho, , pois os componentes do robô ocupam considerável espaço, o tempo de instalação, e o alto custo.7

Uma das maiores aplicações da robótica é na microcirurgia, campo único que requer os maiores níveis de precisão para ótimos resultados e taxas altas de sucesso.8 Nesse viés, existem aplicações iniciais como: cirurgia reconstructiva transoral assistida por robô,8 mastectomia preservadora de mamilo (nipple-sparing mastectomy, NSM, em inglês) com reconstrução imediata de mama (immediate breast reconstruction, IBR, em inglês) com próteses,10,11 coleta mini-invasiva de retalhos musculares pediculados ou microcirúrgicos,12-14 e microcirurgia assistida por robô.3,15

Recentemente, foi desenvolvida a primeira plataforma robótica dedicada a (super) microcirurgia, chamada MUSA (MicroSure, Eindhoven, Holanda). O robô MUSA atua na estabilização de movimentos, filtra tremores, e é facilmente manobrável. Os testes pré-clínicos do MUSA confirmaram sua segurança e viabilidade na realização de anastomoses microcirúrgicas.16,17 É inegável que a cirurgia robótica tem protagonismo na atualidade, e há perspectivas de seu uso na cirurgia plástica, por exemplo, em que robôs têm um sistema de leitura 3D que pode escanear rostos humanos e outras partes do corpo e gerar rapidamente modelos precisos.18 Também demonstrou-se19 que, em um centro em que a curva de aprendizado já havia sido superada, a cirurgia robótica tornou-se mais barata do que a cirurgia aberta equivalente para o tratamento do câncer de endométrio.

A maior desvantagem é o custo de compra e manutenção do equipamento, fato que poderá mudar no futuro, com o aumento do número de procedimentos assistidos por robô realizados e a consequente redução do custo unitário de operação.20

A necessidade de acelerar a compreensão acerca da cirurgia robótica e da microcirurgia é de extrema importância hoje em dia.

O presente trabalho irá analisar a literatura sobre esse tema, a fim de contribuir para a escolha da microcirurgia em procedimentos cabíveis. Ademais, nossas conclusões podem colaborar para a nova era da Medicina, na qual os aparelhos robóticos são considerados grandes aliados, tendo como objetivos verificar a eficácia dos resultados do uso do robô nas microcirurgias, para respaldar o investimento feito neles em hospitais, bem como avaliar os métodos mininamente invasivos nas diferentes áreas cirúrgicas reconstrutivas.

Neste artigo, realiza-se uma revisão sistemática e avalia-se os benefícios da cirurgia robótica e sua contribuição para a microcirurgia, em comparação com as demais técnicas cirúrgicas utilizadas em pacientes de todas as faixas etárias.

Metodologia

Por meio das bases de dados PubMed e Cochrane, foi realizada uma revisão sistemática da literatura sobre a cirurgia robótica e a microcirurgia, tendo como base as diretrizes da declaração de Itens Preferidos nos Relatos de Revisões Sistêmicas e Metanálises (Preferred Reporting Items for Systematic Reviews and Meta-Analyses, PRISMA, em inglês). Os termos utilizados na busca foram ‘robotic surgery AND microsurgery’, e aplicamos filtro para estudos publicados nos últimos 5 anos (2015 a 2020) em inglês ou português, e estudos realizados em humanos. Ademais, incluímos estudos de revisão da literatura, revisões sistemáticas, metanálises, estudos clínicos, ensaios clínicos, estudos comparativos, ensaios clínicos controlados ou randomizados, estudos multicêntricos, observacionais, relatos de casos.
e estudos de série de casos. Estudos pré-clínicos e inacabados foram excluídos da revisão.

A questão de pesquisa foi baseada no modelo Paciente, Intervenção, Comparação, Desfecho (Patient, Intervention, Comparison, Outcome, PICO, em inglês). Incluímos pacientes de todas as faixas etárias. A intervenção analisada foi a utilização da robótica para a realização de microcirurgia, que foi comparada com os demais métodos. Por fim, o desfecho de interesse foram os benefícios da cirurgia robótica e sua contribuição para a microcirurgia.

A busca nas bases de dados foi realizada de forma independente e em dupla, assim como a seleção dos artigos por título, resumo, e a leitura completa. Todas as decisões foram comparadas, e as divergências surgidas foram resolvidas por um terceiro autor. Os resultados foram registrados em um documento compartilhado do Excel, e todas as duplicatas foram excluídas.

A busca, finalizada em janeiro de 2021, resultou em 90 artigos encontrados nas bases de dados selecionadas, sendo que 2 foram excluídos por serem duplicatas. Após a análise dos títulos, resumos, e da leitura integral do texto, 25 artigos foram selecionados para a nossa revisão. O fluxograma da seleção de artigos pode ser visto na Figura 1.

Resultados

Goto et al.\(^1\) conduziram um estudo observacional para avaliar os benefícios do iArmS, um sistema de robótico de apoio para o braço do cirurgião utilizado na microcirurgia neurológica. Os parâmetros de avaliação foram o nível de fadiga do cirurgião, o grau de tremor, e a facilidade para realizar o procedimento. Os autores aprovaram o sistema nas três avaliações, e afirmaram que ele possibilita a execução de uma técnica precisa e de qualidade para a microneurocirurgia. Ibrahim et al.\(^3\) também ressaltaram a aplicabilidade da robótica na neurocirurgia com o robô canadense NeuroArm, o qual auxilia na execução de técnicas padronizadas, tais como biópsia e microdissecação.

Smith et al.,\(^2\) em sua revisão sobre a evolução e a aplicação da robótica na neurocirurgia, concluíram que esta tecnologia trouxe diversos benefícios. Segundo os autores,\(^2\) a robótica pode ser utilizada para o tratamento de tumores cerebrais, lesões medulares, e para a estimulação cerebral e biópsias. Além disso, o uso do robô associado com métodos de imagem conferiu ainda mais precisão cirúrgica. Os autores\(^2\) sugerem que a tecnologia tende a se desenvolver cada vez mais, o que permitirá a execução de
procedimentos inviáveis por cirurgia convencional, assim como sugeriram Roizenblatt et al. Kavouris comparou reversão de vasectomia realizada por cirurgia robótica e por microcirurgia. Seu estudo não demonstrou diferença estatisticamente significativa entre os dois métodos em termos da eficácia do procedimento. Entretanto, o autor sugere que a cirurgia robótica é promissora, sendo um método de extrema eficácia na reversão de vasectomia, assim como afirmaram Ibrahim et al. Nesse sentido, Darves-Bornoz et al. fizeram uma revisão acerca da aplicação da cirurgia robótica a cada um dos quatro procedimentos primários de infertilidade masculina: reversão de vasectomia, varicocelectomia, extração de esperma testicular, e derenalção do cordão espermático. Para esses autores, embora a plataforma robótica tenha sido rapidamente adotada por outras subspecialidades urológicas, ainda não é comum entre urologistas reprodutivos, pois os dados relativos à abordagem são escassos, e nenhum estudo tentou conferir os resultados rigorosamente. Embora o uso dos robôs tenha potenciais benefícios no tratamento da infertilidade masculina, ensaios clínicos rigorosos ainda são necessários.

Edwards et al. realizaram um ensaio clínico randomizado com o objetivo de comparar a cirurgia intraocular de retirada de membrana de retina por técnica assistida por robô versus cirurgia manual. O estudo demonstrou que a cirurgia assistida por robô resultou em maior tempo cirúrgico, mas obteve menos lesões iatrogênicas e maior precisão anatômica. Assim sendo, os autores sugeriram que a robótica é uma tecnologia promissora para cirurgia oftalmológica, assim como Ibrahim et al. Os estudos de Bourcier et al. e de Roizenblatt et al. também chegaram a esta conclusão, e os autores enfatizam que a cirurgia robótica consegue driblar uma das principais limitações da cirurgia manual: o tremor de mão do cirurgião. Roizenblatt et al. afirmam que a garantia da destreza é de extrema importância para a cirurgia ocular, uma vez que mínimos movimentos errôneos podem resultar em sequelas permanentes, como a cegueira ao lesionar a retina.

O estudo de Roizenblatt et al. também ressaltou outras possibilidades de aplicação da robótica na cirurgia ocular, como no tratamento de lesão da mácula, retinopatia diabética, e canalização de veias da retina. Ademais, Bourcier et al. relataram o primeiro caso de remoção de pterígio cirúrgico assistida por robô. A cirurgia robótica transoral (transoral robotic surgery, TORS) é considerada uma das maiores limitações da cirurgia manual: a tremulação de mão do cirurgião. Roizenblatt et al. afirmaram que, além de cancelar o tremor, o robô é capaz de controlar o movimento do cirurgião, garantindo ainda mais precisão.

Gonzalez-Cicarelli et al. falaram sobre a abordagem robótica para a cirurgia hepatobiliar, cuja vantagem é de que há potencial para superar as limitações técnicas da laparoscopia. O robô permite preparações complexas de hilo e dissecções hepatoovais, bem como transecções parenquimatosas com perda mínima de sangue. Ressecções hepáticas assistidas por robô permitem reconstruções complexas de anastomoses vasculares e biliares, e preservam o parênquima do fígado em lesões localizadas nos segmentos posteriores superiores, o que evita grandes hepatectomias. Hepatectomias menores e extensas também podem ser realizadas, com excelentes resultados em mãos experientes. As limitações incluem grandes lesões, ressecções de segmentos posterossuperiores e resultados que não são generalizáveis em mãos inexperientes. No entanto, é uma técnica promissora, que pode ampliar as indicações para cirurgia hepatobiliar minimamente invasiva.

Gundlapalli et al. relataram um caso de uma paciente submetida a mastectomia direita, sendo o robô Da Vinci utilizado para a reconstrução da mama, mais precisamente, para a dissecção intra-abdominal dos vasos epigastricos inferiores profundos. Essa técnica conferiu uma precisão considerável ao procedimento cirúrgico, além de não haver complicações pós-operatórias. Porém, são necessários mais estudos comparativos para avaliar os resultados no longo prazo e o custo-benefício.

Fiorelli et al. compararam o uso do tradicional de laser de CO2 por endoscopia no tratamento de estenose subglótica com o sistema de laser AcuBlade, realizado por microcirurgia robótica. Este último mostrou-se superior em diminuir as chances de edema e os riscos de recorrência, uma vez que evita a lesão de tecidos próximos por dissipação do laser, o que é comum nas outras técnicas, e é capaz de realizar uma incisão mais precisa.

Fu et al. fizeram uma revisão sobre o papel da cirurgia robótica transoral (transoral robotic surgery, TORS, em inglês), microcirurgia transoral a laser (transoral laser microsurgery, TLM, em inglês) e tonsillectomia lingual na identificação de carcinoma de células escamosas do pescoço e da cabeça. O estudo apoiou o uso de TORS e TLM para auxiliar na identificação desse tumor, pois observaram-se taxas de detecção superiores em comparação com os do diagnóstico tradicional. Os autores também demonstraram que o acréscimo de tonsillectomia lingual formal usando TORS ou TLM é uma opção segura e eficaz que pode aumentar o rendimento da localização de um tumor oculto primário.

Kwong et al. e Lórinicz et al. também escreveram sobre a TORS em câncer de cabeça e pescoço, e afirmaram que esta garante melhora na visualização, instrumentação e ergonomia nas ressecções transorais, e rende bons resultados, além de exercer o papel de uma equipe multidisciplinar nesta área.

Além disso, Castellano e Sharma, em uma revisão sistemática, analisaram os efeitos da TORS na qualidade de vida do paciente após o tratamento e na função de deglutição do paciente com câncer de cabeça e pescoço. Concluiu-se que, ao comparar os pacientes que submeteram à TORS com os pacientes submetidos à cirurgia aberta, os primeiros tiveram uma maior pontuação nos questionários de qualidade de vida, e apresentaram melhora na sua função de deglutição. Todavia, os autores constataram que os resultados dependem de alguns fatores, tais como a função de linha de base, o estágio T, e status do tratamento adjuvante. Outro ponto importante sobre a TORS foi destacado por Chalmers et al.
em seu estudo que discute o papel da reconstrução em defeitos pós-TORS, além do papel da reconstrução robótica na prática médica.

Do mesmo modo, Li et al.36 analisaram a National Cancer Database, a base de dados de câncer dos Estados Unidos, para comparar os resultados em longo prazo de pacientes com carcinomas na orofaringe tratados com TORS, TLM e cirurgia não robótica. O estudo36 avaliou a potencial queda do risco de margens positivas e a necessidade de quimiorradioterapia coadjuvante. Entretanto, os resultados mostraram que a taxa de sobrevida foi equivalente entre os dois pacientes. Por conta disso, concluiu-se que a modalidade cirúrgica TORS pode ser considerada primária no manejo de carcinomas na orofaringe.36

Além disso, Hanna et al.,37 em sua revisão, questionaram se a cirurgia robótica é uma opção para o câncer de laringe no estágio T inicial, compararam a TORS com a TLM e a cirurgia aberta parcial quanto à obtenção de margens negativas, com radiação adjacente. Não foi observada diferença entre as taxas de margem positiva da TORS e da TLM, o que sugere que a TORS é uma opção de tratamento específico para o câncer. Já Akst et al.38 discorreram sobre a fonocirurgia microlaringea robótica, em que um novo sistema de microcirurgia otorrinolaringológica robótica (Robotic Ear, Nose, and Throat [ENT] Microsurgery System, REMS) foi desenvolvido, e enfatizaram o controle cooperativo, em vez de um controle remoto. Essa tecnologia possibilita uma melhora na precisão cirúrgica, sendo subjetivamente de fácil uso, mas futuros testes ainda são necessários para o uso clínico.

McGuire et al.39 relataram uma série de casos, e concluíram que há potencial para a realização da cirurgia robótica microlaringea (\textit{robotic microlaryngeal surgery}, RMLS) utilizando o aparelho Modular Oral Retractor (MOR), que reduz a necessidade de sutura lingual de retração, proporciona exposição adequada da comissura anterior, e permite acesso de 360° à lesão e elimina a visão estreita do laringoscópio tradicional. Entretanto, uma pesquisa prospectiva para comparar a RMLS e a cirurgia microlaringea tradicional é necessária para determinar os resultados de cada método.

Kim et al.40 relataram os casos de duas pacientes diagnosticadas com tumores com invasão mandibular, nos quais foi utilizado um programa de simulação 3D. Nesse sentido, o planejamento cirúrgico virtual (PCV) está emergindo como essencial para a reconstrução mandibular, por conta do campo cirúrgico limitado na incisão de\textit{face-lift} modificada, usada para a disseção robótica do pescoço em casos de câncer de cavidade oral. Os autores40 concluíram que há o PCV tem um grande papel a desempenhar na era da cirurgia robótica, mesmo que ainda limitado.

Saleh et al.2 abordaram a microcirurgia robótica plástica e reconstrutiva, e concluíram que os robôs não irão substituir os cirurgiões: serão apenas instrumentos sofisticados utilizados por eles. O grande foco na plástica robótica tem sido a cirurgia microvascular; contudo, a cirurgia robótica pode ser aplicada a todos os aspectos da prática reconstrutiva. Cirurgia neurocirúrgica, coleta e inserção de retalhos, disseção de vasos doadores e receptores, e a coleta de enxerto nervoso ou vascular podem ser realizadas com morbididade significativamente reduzida, o que melhora os resultados do paciente.

No entanto, os resultados atuais da cirurgia robótica estão no mínimo a par com os métodos tradicionais, com a evidência acessível limitada.

Dahroug et al.41 fizeram uma revisão sobre a cirurgia otologística de colesteatoma assistida por microrrobôs, e concluíram que ainda não há um sistema robótico capaz de realizar essa cirurgia, mas diversas áreas interdisciplinares visam a implementação eficiente desse sistema robótico no futuro. Os empecilhos são muitos, como a engenharia para criar um aparelho muito pequeno, ergonomico, e com a precisão necessária. Ibrahim et al.3 também sugeriram a possibilidade de implementação futura da robótica nesta área.

Van Mulken et al.42 realizaram um estudo-piloto randomizado em que compararam a supermicrocirurgia de anastomose linfático-venosa robótica e a não robótica no tratamento de linfedema relacionado ao câncer de mama. Foram constatado resultados melhores nos pacientes submetidos à cirurgia robótica, além de uma redução no tempo de realização da anastomose. Ibrahim et al.3 também citaram a cirurgia robótica de linfedema, e salientaram que se trata de um nicho microcirúrgico que requer muita precisão.

Ibrahim et al.3 também mostraram as aplicações clínicas da microcirurgia robótica. Segundo seu estudo,3 o robô auxilia na precisão e na melhor visualização da artéria facial na cirurgia microvascular, assim como é capaz de realizar a reconstrução do nervo periférico na cirurgia microneural, devido a sua acurácia e firmeza.

A maioria dos estudos2,3,21–27,30,38 afirmaram que a microcirurgia robótica tem a capacidade de diminuir o tremor e aprimorar a precisão do cirurgião, e resulta em uma técnica segura e promissora. Entretanto, concordaram que é um método de alto custo, sendo esta uma das poucas desvantagens. Segundo Fiorelli et al.,30 a possibilidade de utilização da cirurgia microlaringea no plano cirúrgico, assim como as maxilofaciais e otorrinolaringológicas, justifica o custo elevado. Além disso, Edwards et al.,26 Bourcier et al.,27 e Kavoussi24 relataram um maior tempo cirúrgico com a técnica robótica quando comparada com a cirurgia convencional, mas a segurança e eficácia do método pareceu compensar este ponto. Segundo Bourcier et al.,27 o maior tempo pode ser justificado pela inexperience dos cirurgiões com a técnica robótica. Já Ibrahim et al.2 afirmaram que outra limitação da técnica é a pequena quantidade de feedback táctil quando o cirurgião utiliza um robô, e concluíram que um treinamento nas técnicas complexas da microcirurgia robótica é fundamental para os profissionais da saúde que forem utilizá-la, assim como concluíram Doulgeris et al.43 sobre a robótica na neurocirurgia.

A \textit{Tabela 1} sintetiza as aplicações da cirurgia robótica estudadas.

Discussão

É notório que o advento da cirurgia robótica e de seus recursos exclusivos ofereceu aos microcirurgiões grandes níveis de precisão. Além disso, com sua ótica 3D de alta...
Título do artigo	Autor (ano)	Desenho do estudo	Aplicação da cirurgia robótica
Intelligent Surgeon’s Arm Supporting System iArmS in Microscopic Neurosurgery Utilizing Robotic Technology	Goto et al.21 (2018)	Estudo observacional prospectivo	Microneurocirurgia
30 Years of Neurosurgical Robots: Review and Trends for Manipulators and Associated Navigational Systems	Smith et al.22 (2016)	Revisão da literatura	Neurocirurgia
Robotics in Neurosurgery: Evolution, Current Challenges, and Compromises	Doulgeris et al.43 (2015)	Revisão da literatura	Neurocirurgia
Validation of robot-assisted vasectomy reversal	Kavoussi24 (2015)	Estudo intervencional prospectivo	Reversão de vasectomia
Robotic Surgery for Male Infertility	Darves-Bornoz et al.25 (2021)	Revisão da literatura	Cirurgia para infertilidade masculina
First-in-human study of the safety and viability of intraocular robotic surgery	Edwards et al.26 (2018)	Ensaio clínico randomizado	Cirurgia intraocular de retirada de membrana de retina
Robot-assisted tremor control for performance enhancement of retinal microsurgeons	Roizenblatt et al.23 (2019)	Revisão da literatura	Cirurgia ocular
Robotically Assisted Pterygium Surgery: First Human Case	Bourcier et al.27 (2015)	Relato de caso	Remoção de pterígio
Robotic approach to hepatobiliary surgery	Gonzalez-Ciccarelli et al.28 (2017)	Revisão sistemática	Cirurgia hepatobiliar
Endoscopic treatment of idiopathic subglottic stenosis with digital AcuBlade robotic microsurgery system	Fiorelli et al.30 (2018)	Relato de caso e revisão	Tratamento de estenose subglótica
Improved Glottic Exposure for Robotic Microlaryngeal Surgery: A Case Series	McGuire et al.39 (2017)	Série de casos	Cirurgia microlaringea robótica
Robotic microlaryngeal phonosurgery: Testing of a “steady-hand” microsurgery platform	Akst et al.38 (2018)	Ensaio clínico randomizado	Fonocirurgia microlaringea
The role of transoral robotic surgery, transoral laser microsurgery, and lingual tonsillectomy in the identification of head and neck squamous cell carcinoma of unknown primary origin: a systematic review	Fu et al.31 (2016)	Revisão sistemática	Cirurgia transoral robótica
Is robotic surgery an option for early T-stage laryngeal cancer? Early nationwide results	Hanna et al.37 (2020)	Estudo observacional retrospectivo	Câncer de laringe em estágio T inicial
Transoral robotic surgery in head neck cancer management	Kwong et al.32 (2015)	Revisão	Cirurgia transoral robótica
Systematic Review of Validated Quality of Life and Swallow Outcomes after Transoral Robotic Surgery	Castellano e Sharma34 (2019)	Revisão sistemática	Cirurgia transoral robótica
Clinical value of transoral robotic surgery: Nationwide results from the first 5 years of adoption	Li et al.36 (2019)	Estudo observacional retrospectivo	Cirurgia robótica transoral, microcirurgia transoral a laser, e cirurgia não robótica
First-in-human robotic supermicrosurgery using a dedicated microsurgical robot for treating breast cancer-related lymphedema: a randomized pilot trial	Van Mulken et al.42 (2020)	Estudo piloto randomizado	Anastomoses linfático-venosa robótica e não robótica no linfedema
Decision management in transoral robotic surgery: Indications, individual patient selection, and role in the multidisciplinary	Lörincz et al.33 (2016)	Revisão da literatura	Cirurgia transoral robótica
definição e grande ampliação, a robótica oferece uma configuração potencialmente ideal para a realização das manipulações delicadas exigidas na microcirurgia. Essas possibilidades minimamente invasivas também permitem que os microcirurgiões operem em espaços delimitados, o que evita, assim, a necessidade de abordagens abertas, que, por sua vez, podem melhorar os resultados funcionais.

A respeito da cirurgia robótica microvascular, a precisão aprimorada do robô permite que anastomoses em espaços confinados, como a artéria facial, sejam realizadas com mais facilidade, o que limita incisões adicionais. Além disso, a microcirurgia robótica plástica e reconstrutiva também parece se beneficiar da nova tecnologia, sendo a cirurgia microvascular o grande foco nesta área. Partindo desta vantagem, a microcirurgia robótica também parece ganhar espaço na cirurgia hepatobiliar, superando as abordagens laparoscópicas.

As características únicas da cirurgia robótica estão atualmente sendo expandidas para o campo da supermicrocirurgia, especificamente para a cirurgia de linfedema. Estes são procedimentos extremamente desafiadores do ponto de vista técnico, e podem exceder, em certos casos, os limites de precisão humana, sendo benéfico o uso do robô nesse cenário. Estudos incluídos nesta revisão sistemática corroboram esta afirmação, pois relatam casos de eficácia da cirurgia robótica no tratamento de linfedema. Dessa forma, com a utilização da cirurgia robótica, permite-se uma melhor identificação da insuficiência linfática e dos gradientes de pressão, fundamentais para a cirurgia do linfedema, e se atingem resultados promissores.

Na urologia, a microcirurgia robótica tem sido utilizada na vasoespididimostomia, na varicocelectomia subinguinal, na denervação do cordão espermático, na vasosavastomia, na reanastomose da artéria testicular, e na reversão de vasectomia. Estudos afirmam que a robótica é uma técnica promissora e eficaz nesta área, pois gera resultados satisfatórios e superiores aos da cirurgia convencional.

Já no campo da microneurocirurgia, a University of Calgary, no Canadá, construiu uma nova plataforma robótica citada anteriormente, e chamada de NeuroArm, que fornece feedback visual, auditivo e tático, e cria um ambiente imersivo para o neurocirurgião. O NeuroArm foi desenvolvido para executar técnicas padronizadas (bíopsia, microdissecção, termocoagulação, sutura fina), e, assim, permite a realização de procedimentos como lesionectomia e clipeagem de aneurisma, com repercussões positivas. Além disso, estudos demonstram que há possibilidade de utilização da microcirurgia robótica no manejo de tumores cerebrais, lesões medulares, e estimulação cerebral.

As microcirurgias robóticas oftalmológica e otológica também têm grande potencial. Recentemente, o sistema cirúrgico robótico DaVinci Si HD foi testado, e mostrou-se viável para a microcirurgia da superfície ocular. A cirurgia de retirada de membrana de retina, assim como para o tratamento de pterígio, de lesão da mácula, de retinopatia diabética, e de canalização de veias da retina também mostraram beneficiar-se da robótica. Quanto à cirurgia otológica, notou-se que a microcirurgia robótica parece ser um método promissor. Entretanto, ainda são necessárias evoluções técnicas para garantir a precisão necessária nesses procedimentos.
Houve um grande crescimento do uso de robôs na microcirurgia reconstrutiva transoral, o que diminuiu a morbidade associada à excisão de tumores orofaringeos, antes acessíveis apenas por abordagens agressivas. As possibilidades atuais para a TORS dizem respeito à reconstrução de defeitos pós-operatórios, e ao tratamento de carcinomas da orofaringe, câncer de laringe, além do tratamento de outros tipos de câncer de cabeça e pescoço e de estenose glótica. Portanto, observa-se a ampla gama de aplicações da TORS, assim como seus benefícios em relação à cirurgia manual. De acordo com diversos autores, a robótica assegura melhor precisão e ergonomia nesta área, e possibilita o advento de técnicas inovadoras.

O cancelamento do tremor de mão parece ser uma das principais vantagens da cirurgia robótica em relação às técnicas convencionais, sabendo que este é o maior desafio dos cirurgiões na microcirurgia. Ademais, a técnica é reconhecida por garantir maior acuidade visual e precisão cirúrgica, e resulta em uma cirurgia segura e muitas vezes mais eficaz do que a manual. Entre os prejuízos da robótica, estudos ressaltam principalmente o alto custo e o maior tempo cirúrgico em muitos procedimentos. Esta última desvantagem parece ser uma consequência da falta de experiência dos cirurgiões com a nova tecnologia, o que pode ser revertido futuramente com o adequado treinamento e prática dos profissionais.

Conclusão

A partir desta revisão sistemática, conclui-se que existe grande espaço para a robótica na microcirurgia. Os estudos selecionados apontam grande perspectiva de crescimento dessas práticas, que se pautam no uso da robótica para os mais variados campos, como microcirurgia, biópsia e microdissecação, procedimentos primários de infertilidade masculina, e cirurgias oculares e otológicas. Outro ramo com crescimento exponencial é a cirurgia transoral, e se trata de uma opção segura e eficaz para a identificação e tratamento de diversos tumores de cabeça e pescoço. Além disso, outras abordagens, como cirurgia hepatobiliar e cirurgia para tratamento de linfedema, podem ser realizadas com o uso de robôs; portanto, esta nova tecnologia é promissora. A garantia da destreza, acuidade visual e precisão cirúrgica é tornada uma técnica segura e auspiciosa, aplicável a diferentes áreas da microcirurgia.

Suporte Financeiro
O presente estudo não contou com financiamento de fontes públicas, comerciais, ou sem fins lucrativos.

Conflito de Interesses
Os autores declaram não haver conflito de interesses.

Agradecimentos
Gostaríamos de agradecer a Valentina de Souza Stanham e Gabriela Agne Magnus, que ajudaram na redação do projeto do trabalho.

Referências

1. Marino MV, Shabat G, Gulotta G, Komorowski AL. From illusion to reality: a brief history of robotic surgery. Surg Innov 2018;25(03):291–296
2. Saleh DB, Syed M, Kulendren D, Ramakrishnan V, Liverneaux PA. Plastic and reconstructive robotic microsurgery—a review of current practices. Ann Chin Plast Esthet 2015;60(04):305–312
3. Ibrahim AE, Sarhane KA, Selber JC. New Frontiers in Robotic-Assisted Microsurgical Reconstruction. Clin Plast Surg 2017;44(02):415–423
4. Da Vinci Surgical System. 2005 Available from: http://www.intuitivesurgical.com/products/davinci_surgicalsystem/index.aspx
5. Struk S, Qasmeyar Q, Leymarie N, et al. The ongoing emergence of robotics in plastic and reconstructive surgery. Ann Chin Plast Esthet 2018;63(02):105–112
6. Guillonneau B. What robotics in urology? A current point of view. Eur Urol 2003;43(02):103–105
7. Lee N. Robotic surgery: where are we now? Lancet 2014;384(9952):1417
8. Selber JC. Transoral robotic reconstruction of oopharyngeal defects: a case series. Plast Reconstr Surg 2010;126(06):1978–1987
9. Longfield EA, Holsinger FC, Selber JC. Reconstruction after robotic head and neck surgery: when and why. J Reconstr Microsurg 2012;28(07):445–450
10. Toesa A, Peradze N, Galimberti V, et al. Robotic Nipple-sparing Mastectomy and Immediate Breast Reconstruction With Implant: First Report of Surgical Technique. Ann Surg 2017;266(02):e28–e30
11. Toesa A, Peradze N, Manconi A, et al. Robotic nipple-sparing mastectomy for the treatment of breast cancer: Feasibility and safety study. Breast 2017;31:51–56
12. Pedersen J, Song DH, Selber JC. Robotic, intraperitoneal harvest of the rectus abdominis muscle. Plast Reconstr Surg 2014;134(05):1057–1063
13. Clemens MW, Kronowitz S, Selber JC. Robotic-assisted latissimus dorsi harvest in delayed-immediate breast reconstruction. Semin Plast Surg 2014;28(01):20–25
14. Selber JC, Baumann DP, Holsinger CF. Robotic harvest of the latissimus dorsi muscle: laboratory and clinical experience. J Reconstr Microsurg 2012;28(07):457–464
15. Selber JC. Can I make robotic surgery make sense in my practice? Plast Reconstr Surg 2017;139(03):781e–792e
16. van Mulken TJM, Boymans CAEM, Schols RM, et al. Preclinical Experience Using a New Robotic System Created for Microsurgery. Plast Reconstr Surg 2018;142(05):1367–1376
17. van Mulken TJM, Schols RM, Qiou SS, et al. Robotic (super) microsurgery: Feasibility of a new master-slave platform in an vivo animal model and future directions. J Surg Oncol 2018;118(05):826–831
18. Wang P, Su YJ, Jia CY. Current surgical practices of robotic-assisted tissue repair and reconstruction. Chin J Traumatol 2019;22(02):88–92
19. Ind TE, Marshall C, Hacking M, et al. Introducing robotic surgery into an endometrial cancer service—A prospective evaluation of clinical and economic outcomes in a UK institution. Int J Med Robot 2016;12(01):137–144
20. Rudnik L, An W, Livingstone D, et al. Making a case for high-volume robotic surgery centers: A cost-effectiveness analysis of transoral robotic surgery. J Surg Oncol 2015;112(02):155–163
21. Goto T, Hongo K, Ogawa T, et al. Intelligent Surgeon’s Arm Supporting System ArmS in Microscopic Neurosurgery Utilizing Robotic Technology. World Neurosurg 2018;119:e661–e665
22. Smith JA, Jivraj R, Wong R, Yang Y. 30 Years of Neurosurgical Robots: Review and Trends for Manipulators and Associated Navigational Systems. Ann Biomed Eng 2016;44(04):836–846
Roizenblatt M, Grupenmacher AT, Belfort Junior R, Maia M, Gehlbach PL. Robot-assisted tremor control for performance enhancement of retinal microsurgeons. Br J Ophthalmol 2019; 103(08):1195–1200

Kavoussi PK. Validation of robot-assisted vasectomy reversal. Asian J Androl 2015;17(02):245–247

Darves-Bornoz A, Panken E, Brannigan RE, Halpern JA. Robotic Surgery for Male Infertility. Urol Clin North Am 2021;48(01):127–135

Edwards TL, Xue K, Meenink HCM, et al. First-in-human study of the safety and viability of intraocular robotic surgery. Nat Biomed Eng 2018;2:649–656

Bourcier T, Chammas J, Becmeur PH, et al. Robotically Assisted Pterygium Surgery: First Human Case. Cornea 2015;34(10):1329–1330

Gonzalez-Ciccarelli LF, Quadri P, Daskalaki D, Milone L, Gangemi A, Giulianotti PC. Robotic approach to hepatobiliary surgery. Chirurg 2017;88(Suppl 1):19–28

Gundlapalli VS, Ogunleye AA, Scott K, et al. Robotic-assisted deep inferior epigastric artery perforator flap abdominal harvest for breast reconstruction: A case report. Microsurgery 2018;38(06):702–705

Fiorelli A, Mazzone S, Costa G, Santini M. Endoscopic treatment of idiopathic subglottic stenosis with digital AcuBlade robotic microsurgery system. Clin Respir J 2018;12(02):802–805

Fu TS, Foreman A, Goldstein DP, de Almeida JR. The role of transoral robotic surgery, transoral laser microsurgery, and lingual tonsillectomy in the identification of head and neck squamous cell carcinoma of unknown primary origin: a systematic review. J Otolaryngol Head Neck Surg 2016;45(01):28

Kwong FN, Puvanendran M, Paleri V. Transoral robotic surgery in head neck cancer management. B-ENT 2015(Suppl 24):7–13

Lörincz BB, Jowett N, Knecht R. Decision management in transoral robotic surgery: Indications, individual patient selection, and role in the multidisciplinary treatment for head and neck cancer from a European perspective. Head Neck 2016;38(Suppl 1):E2190–E2196

Castellano A, Sharma A. Systematic Review of Validated Quality of Life and Swallow Outcomes after Transoral Robotic Surgery. Otalaryngol Head Neck Surg 2019;161(04):561–567

Chalmers R, Schlabe J, Yeung E, Kerawala C, Cascarinli L, Paleri V. Robot-Assisted Reconstruction in Head and Neck Surgical Oncology: The Evolving Role of the Reconstructive Microsurgeon. ORL J Otorhinolaryngol Relat Spec 2018;80(3-4):178–185

Li H, Torabi SJ, Park HS, et al. Clinical value of transoral robotic surgery: Nationwide results from the first 5 years of adoption. Laryngoscope 2019;129(08):1844–1855

Hanna J, Brauer PR, Morse E, Judson B, Mehra S. Is robotic surgery an option for early T-stage laryngeal cancer? Early nationwide results. Laryngoscope 2020;130(05):1195–1201

Akst LM, Olds KC, Balicki M, Chalasani P, Taylor RH. Robotic microlyraingeal phonosurgery: Testing of a “steady-hand” microsurgery platform. Laryngoscope 2018;128(01):126–132

McGuire DA, Rodney JP, Vasan NR. Improved Glottic Exposure for Robotic Microlyraingeal Surgery: A Case Series. J Voice 2017;31(05):628–633

Kim JY, Kim WS, Choi EC, Nam W. The Role of Virtual Surgical Planning in the Era of Robotic Surgery. Yonsei Med J 2016;57(01):265–268

Dahroug B, Tamadazte B, Weber S, Tavener L, Andreff N. Review on Otological Robotic Systems: Toward Microrobot-Assisted Cholesteatoma Surgery. IEEE Rev Biomed Eng 2018;11:125–142

van Mulken TJM, Schols RM, Scharmga AMJ, et al; MicroSurgical Robot Research Group. First-in-human robotic supermicrosurgery using a dedicated microsurgical robot for treating breast cancer-related lymphedema: a randomized pilot trial. Nat Commun 2020;11(01):757

Doulgeris JJ, Gonzalez-Blohm SA, Filis AK, Shea TM, Aghayev K, Vrionis FD. Robotics in Neurosurgery: Evolution, Current Challenges, and Compromises. Cancer Contr 2015;22(03):352–359

Chang DW. Lymphaticovenular bypass for lymphedema management in breast cancer patients: a prospective study. Plast Reconstr Surg 2010;126(03):752–758

McBeth PB, Louw DF, Rizun PR, Sutherland GR. Robotics in neurosurgery. Am J Surg 2004;188(4A, Suppl)685–755