Observational Study

Inter-ethnic marriages and severity of coronary artery disease: A multicenter study of Arabian Gulf States

Amin Daoulah, Salem Al-kaabi, Amir Lotfi, Mushabab Al-Murayeh, S Ali Nasseri, Waleed Ahmed, Salah N Al-Otaibi, Mohamed N Alama, Osama E Elkhateeb, Amy J Plotkin, Majed M Malak, Khalid Alshali, Mohamed Hamzi, Saleh Al Khunein, Mohammed Abufayyah, Alawi A Alsheikh-Ali

Amin Daoulah, Cardiovascular Department, King Faisal Specialist Hospital and Research Center, Jeddah 21499, Kingdom of Saudi Arabia

Salem Al-kaabi, Cardiology Department, Zayed Military Hospital, Abu Dhabi 3740, United Arab Emirates

Amir Lotfi, Division of Cardiology, Baystate Medical Center, Tufts University School of Medicine, Springfield, MA 01199, United States

Mushabab Al-Murayeh, Cardiovascular Department, Armed Forces Hospital Southern Region, Khamis Mushayt 61961, Kingdom of Saudi Arabia

S Ali Nasseri, Politecnico di Torino, 10126 Torino, Italy

Waleed Ahmed, Mohamed Hamzi, Mohammed Abufayyah, Internal Medicine Department, King Faisal Specialist Hospital and Research Center, Jeddah 21499, Kingdom of Saudi Arabia

Salah N Al-Otaibi, Cardiac Anesthesiology, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Kingdom of Saudi Arabia

Mohamed N Alama, Cardiology Department, King Abdul Aziz University Hospital, Jeddah 21589, Kingdom of Saudi Arabia

Osama E Elkhateeb, Cardiology Department, King Abdullah Medical City in Holy Capital, Makkah 24241, Kingdom of Saudi Arabia

Amy J Plotkin, Department of Pathology, Johns Hopkins University, Baltimore, MD 21287, United States

Majed M Malak, Khalid Alshali, Internal Medicine Department, King Abdul Aziz University Hospital, Jeddah 21589, Kingdom of Saudi Arabia

Saleh Al Khunein, Anesthesia Department, Prince Sultan Military Medical City, Riyadh 11159, Kingdom of Saudi Arabia

Alawi A Alsheikh-Ali, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates

Alawi A Alsheikh-Ali, Institute of Cardiac Sciences, Sheikh Khalifa Medical City, Abu Dhabi 51900, United Arab Emirates

Author contributions: Daoulah A participated in study design; acquisition, interpretation of the data, and drafted the initial manuscript; Alsheikh-Ali AA participated in analysis and interpretation of the data; all other authors participated equally in data collection, and reviewing the article critically for important intellectual content.

Institutional review board statement: The study was approved by King Faisal Specialist Hospital and Research Center Institutional Review Board, and reviewed for waiver by the institutional review board of each of the participating hospitals.

Informed consent statement: Consent to participate in this study was not required due to the design of our study and no follow up. However, an invitation letter was given to all participants who affirmed verbal consent prior to their enrollment.

Conflict-of-interest statement: There are no conflicts of interest to report.

Data sharing statement: No additional data are available.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Unsolicited manuscript
Core tip: One thousand and sixty-eight enrolled patients underwent coronary angiography for clinical indications. Ethnicities of spouses were available for only male patients. Of the 771 males, 687 were married. Seventy percent of them were in intra-ethnic marriages and 30% in inter-ethnic marriages. After adjusting for baseline differences, inter-ethnic marriage was associated with lower odds of having significant coronary artery disease (CAD) or multi-vessel disease (MVD). The adjusted association with left main disease showed a similar trend, but was not statistically significant. The association between inter-ethnic marriage and the presence of significant CAD and MVD was not modified by number of concurrent wives.

INTRODUCTION

Coronary artery disease (CAD) is a major cause of death throughout the world. The high prevalence and mortality have led to great importance in understanding the risk factors associated with CAD[1-3]. Traditional risk factors comprise the majority of the increase for cardiovascular events[4]. Additional factors such as physiological, psychological, emotional, social, and stress, both acute and chronic, have been studied[5-23]. The interactions between risk factors also have great consequences[24]. Studies investigating the association between marital status and CAD have predominantly been performed in developed countries, and none examined the role of spousal ethnicities and CAD[25-32]. Selecting a spouse is often influenced by social norms, and cultural practices typically prefer marriages between persons of the same ethnic background. However, inter-ethnic marriages are increasingly common as societal attitudes and demographic patterns change. Studies from Western societies demonstrated that such marriages are associated with increased stress and lower relationship quality[33-35]. Due to these findings, we examined the relationship between inter-ethnic marriages and severity of CAD in two Gulf States.

MATERIALS AND METHODS

Study population and data collection

The details regarding the design, methods, and endpoints of this multicenter, observational study came from the Polygamy and Risk of Coronary Artery Disease...
in Men Undergoing Angiography\cite{36}. In the current study the data were collected prospectively from five hospitals in two Gulf Regions (the Kingdom of Saudi Arabia and the United Arab Emirates), during the period of April 1st, 2013 to March 30th, 2014. The study was approved by King Faisal Specialist Hospital and Research Center Institutional Review Board, and an invitation letter was given to all participants who affirmed verbal consent prior to their enrollment. For each patient undergoing coronary angiography for clinical indication, two separate data forms, one general and one angiographic, were filled out by the research assistant and assigned cardiologist, respectively. Both forms were completed before the patients were discharged from hospital. All data forms were reviewed by the assigned cardiologist then sent online to the principle investigator, who also checked the forms prior to submission for analysis. All patients undergoing coronary angiography were recruited for the study. There was no exclusion criteria.

Contents of personal data form

Demographic data: Age, ethnic background; Physiologic status: Hypertension, diabetes, dyslipidemia, BMI; Life style: Smoking history; Past medical history: CAD, percutaneous coronary intervention, coronary artery bypass surgery, cerebral vascular disease, peripheral arterial disease, congestive heart failure, atrial fibrillation, chronic kidney disease. Socioeconomic data: Occupation (unemployed, private sector, government sector, self-employed), living in rural or urban area, highest level of education completed (illiterate, secondary school, university, masters, PhD), monthly income (< 1300, 1300 to 2600, 2600 to 5300, 5300 to 7900, 7900 to 10600, > 10600 USD); Number of wives: Single or multiple concurrent wives; Ethnicity of spouse (Arabic Gulf region, Arabs non-Gulf region, non-Arabic).

Contents of angiographic data form

Reason for coronary angiography: Elective or urgent/emergent; Number of vessels involved (severity); Treatment: Medical or revascularization.

Definitions

Significant CAD was defined as \(\geq 70\% \) luminal stenosis in a major epicardial vessel or \(\geq 50\% \) stenosis in the left main coronary artery. Multi-vessel disease (MVD) was defined as having more than one significant CAD; Inter-ethnic marriage was defined as Arab men from the Gulf region marrying Arab women from a non-Gulf region or non-Arab women; Intra-ethnic marriage was defined as Arab men from the Gulf region marrying Arab women from the same region.

Statistical analysis

Standard summary statistics were used to describe the cohort. Continuous variables are presented as mean \(\pm \) SD and were compared across multiple groups using the analysis of variance test. Categorical variables are presented as percentages and compared using the \(\chi^2 \) test. The associations between inter-ethnic or intra-ethnic marriage and CAD, MVD and left main disease (LMD) were assessed using logistic regression models and quantified with odds ratios. Adjusted regression models included the following explanatory variables: Age, community setting (urban vs rural), employment, income level, education level, number of concurrent wives, and additional variables that differed by ethnicity of spouse in univariate comparisons (\(P < 0.1 \)). All statistical tests were two-tailed and significance was defined as \(P < 0.05 \). No adjustments for multiple comparisons were made.

RESULTS

Overall characteristics of patients and coronary angiogram findings

A detailed description can be found in Polygamy and Risk of Coronary Artery Disease in Men Undergoing Angiography\cite{36}.

Patients characteristics stratified by ethnicity of spouse

We enrolled 1068 patients in the current study. Ethnicities of spouses were available for only male patients, so the analysis excludes female patients. Of the 771 males, 685 were married; however, spouse ethnicity was not available for two of these men. Married men were categorized according to number of wives: The majority had one wife (68%), while some had a history of two wives (19%), three wives (10%) or four wives (3%). Most were in intra-ethnic marriages 481 (70%), as opposed to inter-ethnic marriages 204 (30%), Table 1. The majority of inter-ethnic marriages were between Gulf nationals and non-Gulf Arab women (65%). Men in inter-ethnic marriages were more likely to have a history of hypertension and CABG, to live in rural communities, and to be in polygamous marriages. In univariate analyses, there was a significant association between inter-ethnic marriage and presence of LMD therefore the rate of CABG was higher in these subjects when compared with those in intra-ethnic marriages, who had undergone more PCI (Table 1). In multivariate logistic regressions adjusting for baseline differences, inter-ethnic marriage was associated with lower odds of having significant CAD [adjusted odds ratio 0.52 (95%CI: 0.33, 0.81)] or MVD [adjusted odds ratio 0.57 (95%CI: 0.37, 0.86)]. The adjusted association with LMD showed a similar trend, but was not statistically significant [adjusted odds ratio 0.74 (95%CI: 0.41, 1.32)] (Figure 1). The association between inter-ethnic marriage and the presence of significant CAD or MVD was not modified by number of concurrent wives (\(P \) interaction > 0.05 for both) (Figure 2).

DISCUSSION

Previous literature from non-Gulf regions demonstrated that inter-ethnic marriages were found to have lower income and education level and poor level of family
Table 1 Overall patient characteristic stratified by by ethnicity of spouse

	All (n = 685)	Intra-ethnic (n = 481)	Inter-ethnic (n = 204)	P value
Age (yr)	59 ± 12	58 ± 13	60 ± 12	0.0879
BMI (kg/m²)	28 ± 6	28 ± 6	27 ± 5	0.4009
Rural, n (%)	27	25	34	0.0148
DM, n (%)	56	57	54	0.5226
Hypertension, n (%)	57	54	64	0.0209
Smoking, n (%)	54	53	57	0.1428
Dyslipidemia, n (%)	66	65	68	0.4734
Past history, n (%)				
CAD	45	45	45	0.9648
PCI	24	23	26	0.3263
CABG	6	5	9	0.0329
Atrial fibrillation	5	4	5	0.3990
CHF	13	13	11	0.5102
CVA	4	4	5	0.4388
CKD	14	14	13	0.7020
Depression	8	8	8	0.8363
PAD	2	2	3	0.1453
Ethnicity, n (%)				0.3597
Arabic gulf region	87	87	88	
Arabic non-gulf	6	7	4	
Non Arabic	7	6	8	
No. of wives, n (%)				< 0.0001
1	68	81	38	
2	19	13	32	
3	10	5	22	
4	3	1	8	
Monthly income, n (%)				0.1760
$ < 1300	50	50	52	
$ 1300-2600	29	30	27	
$ 2600-5300	13	14	10	
$ 5300 to 7900	4	4	5	
$ 7900 to 10600	2	1	3	
$ > 10600	2	1	3	
Job category, n (%)				0.6824
Jobless	21	21	23	
Private sector	18	18	16	
Government sector	43	42	45	
Self employs	18	19	16	
Education level, n (%)				0.0403
Illiterate	42	42	40	
Secondary school	38	37	40	
Post graduate	16	18	12	
Master	3	2	7	
PhD	1	1	1	
Indication for CAG, n (%)	48	48	47	0.1483
Elective	48	44	50	
NSTEACS	46	44	50	
STEMI	6	8	3	
Findings on CAG, n (%)				< 0.001
No CAD	28	29	27	
Single vessel	24	25	21	
Double vessel	26	29	19	
Triple vessel	22	17	34	
Multi-vessel	48	46	53	0.1020
Left main	12	10	17	0.0175
Intervention, n (%)				< 0.0001
Medical therapy	36	33	43	
PCI	47	54	31	
CABG	17	13	26	

DM: Diabetes mellitus; CAD: Coronary artery disease; CHF: Congestive heart failure; CVA: Cerebrovascular accident; CKD: Chronic kidney disease; PAD: Peripheral arterial disease; $: United States dollars; PhD: A doctor of philosophy; STEMI: ST segment elevation myocardial infarction; NSTEACS: Non-ST-segment elevation acute coronary syndromes; CAG: Coronary angiography; PCI: Percutaneous coronary intervention; CABG: Coronary artery bypass grafting.

acceptance and support when compared to intra-ethnic marriages. In addition, inter-ethnic couples reported lower
relationship satisfaction, and increased conflict within the relationship over such issues as money and spending time together. These factors are associated with increased stress and lower relationship quality[33-35]. Furthermore, it is known that acute and chronic stress is associated with the development of CAD[17,18]. However, the impact of inter-ethnic marriage on the severity of CAD is unknown. Our study is the first to analyze the association between inter-ethnic vs intra-ethnic marriage and severity of CAD among men using coronary angiography, the gold standard for identifying CAD. After adjusting for baseline characteristics, we observed that inter-ethnic marriage was associated with lower odds of having significant CAD or MVD. The adjusted association with LMD showed a similar trend, but was not statistically significant. Studies from western societies reported an increase in stress within inter-ethnic marriages; however, our study found lower odds of CAD in inter-ethnic vs intra-ethnic marriage, which may suggest lower levels of stress in these marriages. A number of factors may contribute to our results. First, in the current study, 80% of the patients reported income levels of 32000 USD or less annually. Although there is family and societal pressure to marry within the same region, the overall cost of getting married and maintaining the relationship within the Gulf region is high, which may impact men from this region leading them to select a spouse from elsewhere. The high cost of marriage in the Gulf is associated with complex family interactions, which possibly creates unrealistic expectations when anticipating a marital lifestyle. This may be a source of significant stress in and of itself. Second, almost 80% of the patients in our study had low level of education. In the Gulf region, there are increased opportunities for educated men to marry, which may necessitate less educated men to select a spouse from outside the region. Additionally, the conservative social and cultural practices in the Gulf region may play a role in stress levels when compared to non-Gulf regions. Men from Gulf region who marry women from outside the region may be more health conscious than men who marry women from inside the Gulf. Classically, women from the Gulf region tend to prepare dishes rich in fat, which are atherogenic, whereas wives from elsewhere may favor dishes that are more healthy, notably those from the Arab Mediterranean region[37-39]. Non-Gulf wives may encourage their husbands to be healthy and maintain fitness, as their literacy and health awareness may be superior to that of Gulf-native women.

Strengths of this study

This study is the first to look at the association between inter-ethnic vs intra-ethnic marriages and severity of CAD using coronary angiography in men from Arabian Gulf States.

Contributions of the study

The study provides additional knowledge on the risks associated with inter-ethnic vs intra-ethnic marriages. This information will be useful for personalizing care and preventing CAD. Not only will it provide patients information concerning social risk factors, it will also help providers identify and treat adults who are at increased risk of CAD. Further studies are required to confirm our findings and to investigate the mechanism underlying these findings in order to identify possible interventions to reduce these risks. In future studies, assessment of the local culture, social and medical practices, and attitudes toward inter-ethnic marriage should be performed.

Study limitations

Limitations of the study include a small sample size and the lack of documentation of the length of marriages prior to cardiac catheterization; this interval may influence the findings. Our study population was selected to undergo coronary angiography if clinically indicated, and as such, cannot be generalized to all married men in the Gulf region. Additionally, 42% of the patients were illiterate and 80% reported income levels of 32000 USD or less.

Figure 1 Adjusted association between type of marriage (inter-ethnic vs intra-ethnic) and presence of any coronary artery disease, multi-vessel disease and left main disease. CAD: Coronary artery disease; MVD: Multi-vessel disease.

Figure 2 The proportion of patients with any coronary artery disease, multi-vessel disease or left main disease stratified by type of marriage (inter- or intra-ethnic and polygamous vs monogamous). CAD: Coronary artery disease; MVD: Multi-vessel disease; LMD: Left main disease.
annually; indicating that the results may not be applicable to women with higher incomes or higher levels of education.

We did not look at unmeasured confounding variables such as dietary habits, physical activity, inflammatory or stress markers, or additional variables that may have played a role.

ACKNOWLEDGMENTS

We would like to sincerely thank all patients who agreed to participate in this study.

COMMENTS

Background

Selecting a spouse is often influenced by social norms, and societies typically prefer marriages of the same ethnic background. However, inter-ethnic marriages are increasingly common as societal attitudes and demographic patterns change. Studies from Western societies have demonstrated that inter-ethnic marriages are associated with increased stress and lower relationship quality. The majority of these studies have examined the association between marital status and coronary artery disease (CAD), but none have examined the role of spousal ethnicity and CAD.

Research frontiers

It is unknown whether such marriages have an impact on the severity of CAD.

Innovations and breakthroughs

This study is the first to look at the association between inter-ethnic vs intra-ethnic marriages and severity of CAD using coronary angiography in men from Arabian Gulf States.

Applications

The data in this study suggest that among married men undergoing coronary angiography, inter-ethnic marriage is associated with lower odds of significant CAD and multi-vessel disease (MVD). Further studies are required to confirm these findings and to investigate the mechanism underlying these findings in order to identify possible interventions to reduce these risks. In future studies, assessment of the local culture, social and medical practices, and attitudes toward inter-ethnic marriage should be performed.

Terminology

Significant coronary artery disease (CAD) was defined as ≥70% luminal stenosis in a major epicardial vessel or ≥50% stenosis in the left main coronary artery. MVD was defined as having more than one significant CAD. Inter-ethnic marriage was defined as Arab men from the Gulf region marrying Arab women from a non-Gulf region or non-Arab women. Intra-ethnic marriage is associated with lower odds of significant CAD. Further studies are required to confirm this finding.

Peer-review

The data is interesting.

REFERENCES

1 Heron M. Deaths: Leading Causes for 2012. Natl Vital Stat Rep 2015; 64: 1-93 [PMID: 26759854]
2 Jacobs-Wingo JL, Espey DK, Groom AV, Phillips LE, Havercamp DS, Stanley SL. Causes and Disparities in Death Rates Among Urban American Indian and Alaska Native Populations, 1999-2009. Am J Public Health 2016; 106: 906-914 [PMID: 26890168 DOI: 10.2105/AJPH.2015.303033]
3 Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, de Ferranti S, Després JP, Fullerton HJ, Howard VJ, Huffman MD, Judd SE, Kissela BM, Lackland DT, Lichtman JH, Lisabeth LD, Liu S, Mackey RH, Matchar DB, McGuire DK, Mohler ER, Moy CS, Munter P, Mussolino ME, Nasir K, Neumar RW, Nichol G, Palaniappan L, Pandey DK, Reeves MJ, Rodriguez CJ, Sorlie PD, Stein J, Towfighi A, Tunan TN, Virani SS, Willey JW, Woo D, Yeh RW, Turner MB. Heart disease and stroke statistics—2015 update: a report from the American Heart Association. Circulation 2015; 131: e29-322 [PMID: 25520374 DOI: 10.1161/CIR.0000000000000152]
4 Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F, McQueen MJ, Badjatia N, Pais P, Varigos J, Lisheng L. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet 2004; 364: 937-952 [PMID: 15364185 DOI: 10.1016/S0140-6736(04)17018-9]
5 Hemingway H, Marmot M. Evidence based cardiology: psychosocial factors in the aetiology and prognosis of coronary heart disease. Systematic review of prospective cohort studies. BMJ 1999; 318: 1460-1467 [PMID: 10346775 DOI: 10.1136/bmj.318.7196.1460]
6 Rozanski A, Blumenthal JA, Kaplan I. Impact of psychological factors on the pathogenesis of cardiovascular disease and implications for therapy. Circulation 1999; 99: 2192-2217 [PMID: 10217662 DOI: 10.1161/01.CIR.99.16.2192]
7 Krantz DS, Sheps DS, Carney RM, Navelson BH. Effects of mental stress in patients with coronary artery disease: evidence and clinical implications. JAMA 2000; 283: 1800-1802 [PMID: 10770129 DOI: 10.1001/jama.283.14.1800]
8 Krantz DS, McCreery MK. Effects of psychological and social factors on organic disease: a critical assessment of research on coronary heart disease. Annu Rev Psychol 2002; 53: 341-369 [PMID: 11752489 DOI: 10.1146/annurev.psych.53.100901.135208]
9 Lee S, Colditz GA, Berkman LF, Kawachi I. Caregiving and risk of coronary heart disease in U.S. women: a prospective study. Am J Prev Med 2003; 24: 113-119 [PMID: 12568816 DOI: 10.1016/S0749-3797(02)00582-2]
10 Strike PC, Steptoe A. Psychosocial factors in the development of coronary artery disease. Prog Cardiovasc Dis 2004; 46: 337-347 [PMID: 14961456 DOI: 10.1016/j.pcad.2003.09.001]
11 Kuper H, Marmot M, Hemingway H. Systematic review of prospective cohort studies of psychosocial factors in the etiology and prognosis of coronary heart disease. Semin Vasc Med 2002; 2: 267-314 [PMID: 16222620 DOI: 10.1055/s-2002-35401]
12 Kuha L, Lisitsyna L, Kuha S, Kuha H. The epidemiology, pathophysiology, and management of psychosocial risk factors in cardiac practice: the emerging field of behavioral cardiology. J Am Coll Cardiol 2005; 45: 637-651 [PMID: 15734605 DOI: 10.1016/j.jacc.2004.12.005]
13 Holmes SD, Krantz DS, Rogers H, Gottidiener J, Condrada R. Mental stress and coronary artery disease: a multidisciplinary guide. Prog Cardiovasc Dis 2006; 49: 106-122 [PMID: 17046346 DOI: 10.1016/j.pcad.2006.08.013]
14 Bhattacharyya MR, Steptoe A. Emotional triggers of acute coronary syndromes: strength of evidence, biological processes, and clinical implications. Prog Cardiovasc Dis 2007; 49: 353-365 [PMID: 17329181 DOI: 10.1016/j.pcd.2006.11.002]
15 Davidson KW, Rosenman RH, Branch LG, McGavock J, Williams GD, Wisniewski RJ. Behavioral syndromes and coronary heart disease: a 21-year follow-up. JAMA 1979; 242: 2259-2265 [PMID: 505825]
16 Davidson KW, Rozanski A, Blumenthal JA, Kaplan I. The clinical impact of negative psychological states: expanding the spectrum of risk for coronary artery disease. Psychosom Med 2005; 67 Suppl 1: S10-S14 [PMID: 15953792 DOI: 10.1016/j.psc.2004.12.004]
17 Rozanski A, Blumenthal JA, Davidson KW, Saab PG, Kubzansky L. The epidemiology, pathophysiology, and management of psychosocial risk factors in cardiac practice: the emerging field of behavioral cardiology. J Am Coll Cardiol 2005; 45: 637-651 [PMID: 15734605 DOI: 10.1016/j.jacc.2004.12.005]
18 Holmes SD, Krantz DS, Rogers H, Gottidiener J, Condrada R. Mental stress and coronary artery disease: a multidisciplinary guide. Prog Cardiovasc Dis 2006; 49: 106-122 [PMID: 17046346 DOI: 10.1016/j.pcd.2006.08.013]
19 Bhattacharyya MR, Steptoe A. Emotional triggers of acute coronary syndromes: strength of evidence, biological processes, and clinical implications. Prog Cardiovasc Dis 2007; 49: 353-365 [PMID: 17329181 DOI: 10.1016/j.pcd.2006.11.002]
20 Davidson KW. Emotional predictors and behavioral triggers of acute coronary syndrome. Clev Clin J Med 2008; 75 Suppl 2: S15-S19 [PMID: 18504140 DOI: 10.3944/ccjm.75.Suppl_2.515]
21 Steptoe A, Kivimäki M. Stress and cardiovascular disease. Nat Rev Cardiol 2012; 9: 360-370 [PMID: 22473079 DOI: 10.1038/nrcardio.2012.45]
22 Orth-Gomér K, Wamala SP, Horsten M, Schenck-Gustafsson K, Schneideman N, Mittleman MA. Marital stress worsens prognosis in women with coronary heart disease: The Stockholm Female Coronary Risk Study. JAMA 2000; 284: 3008-3014 [PMID: 10821742 DOI: 10.1001/jama.284.22.3008]
19 Dimsdale JE. Psychological stress and cardiovascular disease. *J Am Coll Cardiol* 2008; 51: 1237-1246 [PMID: 18371552 DOI: 10.1016/j.jacc.2007.12.024]

20 Phillips JE, Klein WM. Socioeconomic Status and Coronary Heart Disease Risk: The Role of Social Cognitive Factors. *Soc Person Psychol Compass* 2010; 4: 704-727 [PMID: 21785652 DOI: 10.1111/j.1751-0100.2010.00295.x]

21 Bajekal M, Scholes S, Love H, Hawkins N, O’Flaherty M, Raine R, Capewell S. Analysing recent socioeconomic trends in coronary heart disease mortality in England, 2000-2007: a population modelling study. *PLoS Med* 2012; 9: e1001237 [PMID: 22719232 DOI: 10.1371/journal.pmed.1001237]

22 Kivimäki M, Nyberg ST, Batty GD, Fransson El, Heikilä K, Alfredsson L, Björner JB, Borritz M, Burr H, Casini A, Clays E, De Bacquer D, Dragoan N, Ferrie JE, Geuskens GA, Goldberg M, Hamer M, Hootman WE, Houtman IL, Joensuu M, Jokela M, Kittel F, Knutsen A, Koskenvuo M, Koskinen A, Kouvonen A, Kumari M, Madsen IE, Marmot MG, Nielsen ML, Nordin M, Oksanen T, Pentti J, Ruggulies R, Salo P, Siegrist J, Singh-Manoux A, Suominen SB, Väänänen A, Vahtera J, Virtanen M, Westerholm PJ, Westerlund H, Zins M, Steptoe A, Theorell T. Job strain as a risk factor for coronary heart disease: a collaborative meta-analysis of individual participant data. *Lancet* 2012; 380: 1491-1497 [PMID: 22981903 DOI: 10.1016/S0140-6736(12)60994-5]

23 Franks P, Winters PC, Tanceridi DJ, Fiscella KA. Do changes in traditional coronary heart disease risk factors over time explain the association between socio-economic status and coronary heart disease? *BMC Cardiovasc Disord* 2011; 11: 28 [PMID: 21639906 DOI: 10.1186/1471-2261-11-28]

24 Kivimäki M, Nyberg ST, Fransson El, Heikilä K, Alfredsson L, Casini A, Clays E, De Bacquer D, Dragoan N, Ferrie JE, Goldberg M, Hamer M, Jokela M, Karasek R, Kittel F, Knutsen A, Koskenvuo M, Nordin M, Oksanen T, Pentti J, Ruggulies R, Salo P, Siegrist J, Suominen SB, Väänänen A, Vahtera J, Virtanen M, Westerholm PJ, Westerlund H, Zins M, Steptoe A, Theorell T. Job strain as a risk factor for coronary heart disease: a collaborative meta-analysis of individual participant data. *Lancet* 2012; 380: 1491-1497 [PMID: 22981903 DOI: 10.1016/S0140-6736(12)60994-5]

25 Farr W. The influence of marriage on the mortality of the French people. In: Hastings GW, ed. Transactions of the National Association for the Promotion of Social Science 1858. London: John W. Parker & Sons, 1858: 504-513

26 March L. Some researches concerning the factors of mortality. *J Roy Stat Soc* 1912; 75: 505-538 [DOI: 10.2307/2340112]

27 Ben-Shlomo Y, Smith GD, Shipley M, Marmot MG. Magnitude and causes of mortality differences between married and unmarried men. *J Epidemiol Community Health* 1993; 47: 200-205 [PMID: 8350032 DOI: 10.1136/jech.47.3.200]

28 Bureau of the Census. Mortality by marital status, by age race and sex, urban and rural, United States, 1940. *Vital Rep 1945;* 23: 43

29 Venter M, Jacobs DR, Pirie P, Luepker RV, Folsom AR, Gillum RF. Marital status and cardiovascular risk: the Minnesota Heart Survey and the Minnesota Heart Health Program. *Prev Med* 1986; 15: 591-605 [PMID: 2973991 DOI: 10.1016/0091-7435(86)90064-2]

30 Molloy GJ, Stamatakis E, Randall G, Hamer M. Marital status, gender and cardiovascular mortality: behavioural, psychological distress and metabolic explanations. *Soc Sci Med* 2009; 69: 223-228 [PMID: 19501442 DOI: 10.1016/j.socscimed.2009.05.010]

31 Blom M, Georgiades A, László KD, Alimaghizadeh H, Janszky I, Ahnve S. Work and marital status in relation to depressive symptoms and social support among women with coronary artery disease. *J Womens Health (Larchmt)* 2007; 16: 1305-1316 [PMID: 18001187 DOI: 10.1089/jwh.2006.0191]

32 Lindegård B, Langman MJ. Marital state, alcohol consumption, and liability to myocardial infarction, stroke, diabetes mellitus, or hypertension in men from Gothenburg. *Br Med J (Clin Res Ed)* 1985; 291: 1529-1533 [PMID: 3933737 DOI: 10.1136/bmj.291.6508.1529]

33 Bratter JL, Eschbach K. What about the couple? Intercultural marriage and psychological distress. *Social Science Research* 2006; 35: 1025-1047 [DOI: 10.1016/j.ssresearch.2005.09.001]

34 Donovan S. Stress and coping techniques in successful intercultural marriages. USA: Virginia Polytechnic Institute and State University, 2004

35 Hohmann-Marriott BE, Amato P. Relationship Quality in Intercultural Marriages and Cohabitations. *Social Forces* 2008; 87: 825-855 [DOI: 10.1353/sof.0.0151]

36 Daoualah A, Lotfi A, Al-Murayeh M, Al-kaabi S, Al-Faihi SM, EIklateeb OE, Alama MN, Hersi AW, Dixon CM, Ahmed W, Al-Shetri M, Yousef A, Eligam AM, Abougalambou AS, Murad W, Alsheikh-Ali AA. Polygamy and Risk of Coronary Artery Disease in Men Undergoing Angiography: An Observational Study. *International Journal of Vascular Medicine* 2017; 2017: 1925176 [DOI: 10.1155/2017/1925176]

37 Mayor S. Mediterranean diet reduces cardiovascular events in people with heart disease, study shows. *BMJ* 2016; 353: i2348 [PMID: 27114668 DOI: 10.1136/bmj.i2348]

38 Stewart RA, Wallentin L, Benatar J, Danchin N, Hagström E, Held C, Husted S, Lonn E, Stubbins A, Chiswell K, Vedin O, Watson D, White HD. Dietary patterns and the risk of major adverse cardiovascular events in a global study of high-risk patients with stable coronary heart disease. *Eur Heart J* 2016; 37: 1993-2001 [PMID: 27190584 DOI: 10.1093/eurheartj/ehw125]

39 Grosso G, Marventano S, Yang J, Micek A, Pajak A, Scalfi L, Galvano F, Kales SN. A Comprehensive Meta-analysis on Evidence of Mediterranean Diet and Cardiovascular Disease: Are Individual Components Equal? *Crit Rev Food Sci Nutr* 2015; Epub ahead of print [PMID: 26528631 DOI: 10.1080/10408398.2015.1107021]
