Review
Synthesis and Reactivity of Cyclic Oxonium Derivatives of nido-Carborane: A Review

Marina Yu. Stogniy * and Igor B. Sivaev ©

A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 119991 Moscow, Russia; larina@ineos.ac.ru
* Correspondence: stogniy@ineos.ac.ru

Abstract: Nucleophilic ring-opening reactions of cyclic oxonium derivatives of anionic boron hydrides are a convenient method of their modification which opens practically unlimited prospects for their incorporation into various macro- and biomolecules. This contribution provides an overview of the synthesis and reactivity of cyclic oxonium derivatives of nido-carborane as well as half-sandwich complexes based on it.

Keywords: nido-carborane; half-sandwich complexes; oxonium derivatives; ring-opening reactions; functionalization

1. Introduction

The 7,8-Dicarba-nido-undecaborane anion [7,8-C$_2$B$_9$H$_{12}$]$^-$ (nido-carborane) belongs to a family of polyhedral boron compounds, the discovery of which in the middle of the last century became one of the most significant events in the history of modern inorganic chemistry [1]. This anionic boron cluster with an open pentagonal face was synthesized for the first time by M. F. Hawthorne more than 50 years ago by deboronation of 1,2-dicarba-closo-dodecaborane (ortho-carborane) with potassium hydroxide in methanol [2,3]. Later various milder deboronating agents including amines [4–7] and fluoride ion [8–11] were proposed. Deprotonation of nido-carborane with strong bases results in the dicarbollide dianion [7,8-C$_2$B$_9$H$_{11}$]$^{2-}$, which was recognized as an isolobal analogue of the cyclopentadienyl anion [12]. Due to this, the dicarbollide dianion is considered as an unusual three-dimensional π-ligand for the synthesis of metal complexes [13–15], which can be used as catalysts in a variety of chemical processes [16,17]. Another important area of use for nido-carborane derivatives as water-solubilizing boron moieties is the design of potential drugs for boron neutron capture therapy of cancer [18–23]. In addition, based on nido-carborane derivatives, it is possible to obtain reagents for radioimaging of tumors [24–28], new optical and luminescent materials [29–37], ionic liquids [38,39], etc. Thus, the development of convenient approaches to the modification of the nido-carborane cluster remains highly relevant.

Currently the main approach to the synthesis of nido-carborane derivatives is based on the deboronation of the corresponding ortho-carborane derivatives. This approach is widely used for the synthesis of C-substituted derivatives of nido-carborane, as well as derivatives containing substituents at the lower belt of the nido-carborane cage [40]. There are several general methods for the synthesis of B-substituted derivatives with substituents in the upper belt of the nido-carborane cage; however, most of them are used to obtain asymmetrically substituted derivatives [9-X-7,8-C$_2$B$_9$H$_{11}$]$^-$ [41–49].

Several approaches to the synthesis of symmetrically substituted derivatives of nido-carborane [10-X-7,8-C$_2$B$_9$H$_{11}$]$^-$ with boron–sulfur [50,51] and boron–nitrogen [52–55] bonds have also been developed recently; however, the greatest interest is the functionalization of nido-carborane via its cyclic oxonium derivatives. Previously, this approach was successfully used for the synthesis of numerous derivatives of closo-decaborate and...
Reactions 2022, 3

173
closo-dodecaborate anions [56,57], as well as sandwich bis(dicarbollide) transition metal complexes [58]. In this contribution synthesis and properties of cyclic oxonium derivatives of nido-carborane as well as half-sandwich complexes based on it will be reviewed.

2. Synthesis of Oxonium Derivatives of nido-Carborane

To date, oxonium derivatives of nido-carborane have been synthesized with all cyclic ethers used as common solvents, including tetrahydrofuran, 1,4-dioxane, and tetrahydropyran. The first oxonium derivative was obtained as early as 1969 by the reaction of the potassium salt of nido-carborane with FeCl$_3$ in a mixture of benzene and tetrahydrofuran. The reaction gave a mixture of asymmetric 9-(CH$_2$)$_4$O-7,8-C$_2$B$_9$H$_{11}$ and symmetric 10-(CH$_2$)$_4$O-7,8-C$_2$B$_9$H$_{11}$ which were separated by column chromatography in benzene.

Similar mixture of isomers was obtained for the C,C-dimethyl derivative of nido-carborane as well [59] (Scheme 1).

The proposed mechanism of this reaction includes the initial abstraction of hydrogen hydride from position 9 by iron(III) chloride as a Lewis acid with the formation of a quasi-borinium cation. In the absence of strong nucleophiles, this intermediate can be isomerized to a more stable symmetric form with a quasi-electrophilic center at position 10, which is then attacked by an ether solvent molecule as a weak but most accessible nucleophile. As a result, a mixture of 9- and 10-substituted isomers is formed [60]. This mechanism is known as electrophile-induced nucleophilic substitution (EINS) and is considered as one of the main mechanisms of substitution of hydrogen atoms in polyhedral boron hydrides.

Later, it was found that the reaction of nido-carborane with HgCl$_2$ in tetrahydrofuran leads to the selective formation of the symmetrically substituted product 10-(CH$_2$)$_4$O-7,8-C$_2$B$_9$H$_{11}$ [60,61]. In a similar way, the derivatives with 1,4-dioxane 10-O(CH$_2$CH$_2$)$_2$O-7,8-C$_2$B$_9$H$_{11}$ [60] and tetrahydropyran 10-(CH$_2$)$_5$O-7,8-C$_2$B$_9$H$_{11}$ [62,63] were synthesized.

It is assumed that the selectivity of the reactions in these cases is determined by the fact that the endo-polyhedral hydrogen atom of nido-carborane cage is replaced at the first stage of the reaction by a mercury atom with the formation of $\eta^1$-metallacarborane, in which mercury is bound to the B(10) atom of the dicarbollide ligand [64–67]. Heating of this complex results in elimination of mercury and generation of quasi-electrophilic center at position 10 followed by its attack by the nucleophile [60].

Another convenient method for the synthesis of 1,4-dioxane derivative of nido-carborane is to heat in 1,4-dioxane the protonated form of nido-carborane 7,8-C$_2$B$_9$H$_{13}$, which is formed by treating a suspension of the triethylammonium salt of nido-carborane with concentrated sulfuric acid in toluene [68].

The symmetrically substituted tetrahydrofuran derivative 10-(CH$_2$)$_4$O-7,8-C$_2$B$_9$H$_{11}$ can be obtained by the reaction of tetramethylammonium salt of nido-carborane with AlCl$_3$ in a mixture of tetrahydrofuran and acetone [69]. The symmetrically substituted tetrahydrofuran and 1,4-dioxane derivatives of nido-carborane were also synthesized by the reactions of nido-carborane with the corresponding ethers in the presence of acetaldehyde or formaldehyde and hydrochloric acid in a mixture of water and toluene [70]. The
methods of synthesis of symmetrically substituted oxonium derivatives of \textit{nido}-carborane are summarized in Scheme 2.

\begin{scheme}
\begin{align}
&X = \cdot : \text{HgCl}_2, \text{THF}, \text{benzene, reflux} [60, 61]; \\
&\text{AlCl}_3, \text{acetone, THF, reflux} [69]; \\
&\text{HC(O)H or MeC(O)H, HCl, THF, toluene, \textit{r.t.}} [70]
\end{align}

\begin{align}
&X=\text{O}: \text{HgCl}_2, 1,4\text{-dioxane, benzene, reflux} [60]; \\
&\text{H}_2\text{SO}_4, \text{toluene, \textit{r.t.}; 1,4\text{-dioxane, reflux}} [68]; \\
&\text{HC(O)H, HCl, 1,4\text{-dioxane, toluene, \textit{r.t.}} [70]
\end{align}

\begin{align}
&X=\text{CH}_2: \text{HgCl}_2, \text{THP, benzene, reflux} [62, 63]
\end{align}
\end{scheme}

The different synthetic pathways to the 10-(CH$_2$)$_4$O-7,8-C$_2$B$_9$H$_{11}$, 10-O(CH$_2$CH$_2$)$_2$O-7,8-C$_2$B$_9$H$_{11}$ and 10-(CH$_2$)$_3$O-7,8-C$_2$B$_9$H$_{11}$ derivatives are known as well.

The molecular structure of the 1,4-dioxane derivative of \textit{nido}-carborane was determined by single crystal X-ray diffraction [71] (Figure 1).

\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{Figure1.png}
\caption{The molecular structure of 10-O(CH$_2$CH$_2$)$_2$O-7,8-C$_2$B$_9$H$_{11}$.}
\end{figure}

It should be noted that, in addition to cyclic oxonium derivatives of \textit{nido}-carborane, some acyclic oxonium derivatives such as the dimethyloxonium 9-Me$_2$O-7,8-C$_2$B$_9$H$_{11}$ and 10-Me$_2$O-7,8-C$_2$B$_9$H$_{11}$ [72] and the diethyloxonium 9-Et$_2$O-7,8-C$_2$B$_9$H$_{11}$ [73] and 10-Et$_2$O-7,8-C$_2$B$_9$H$_{11}$ [70, 73, 74] derivatives are known as well. The molecular structure of the 10-diethyloxonium derivative of \textit{nido}-carborane was determined by single crystal X-ray diffraction [73] (Figure 2). The formation of the 1,2-dimethoxyethane derivatives 9-MeOCH$_2$CH$_2$(Me)O-7,8-C$_2$B$_9$H$_{11}$ and 10-MeOCH$_2$CH$_2$(Me)O-7,8-C$_2$B$_9$H$_{11}$ was also reported, however they have low stability and easily lose the methyl group, giving the corresponding alkoxy derivatives [75].
3. Properties of Oxonium Derivatives of nido-Carborane. Reactions with Nucleophiles

The use of ring opening reactions of cyclic oxonium derivatives of polyhedral boron hydrides under the action of nucleophiles for the preparation of their various derivatives is well known [56–58]. In the case of nido-carborane, this method has several advantages. First of all, the substituent is symmetrically located at position 10 of the boron cluster. This avoids the formation of racemic and diastereomeric mixtures of products and greatly facilitates the identification of compounds by NMR, which is one of the main methods for characterization of this type of compounds. Another advantage is that the yield of the target product is in most cases very high or nearly quantitative. In addition, the variety of oxonium derivatives makes it possible to obtain products with different lengths of the spacer between the nido-carborane cage and the substituent.

Thus, by the ring-opening reactions of tetrahydrofuran and 1,4-dioxane derivatives of nido-carborane with phenolates a series of nido-carborane-based carboxylic acids with different spacer lengths between nido-carborane cage and functional group was prepared. Phenolates were generated by the treatment of hydroxybenzoic acids with K₂CO₃ in acetonitrile [60] (Scheme 3). The reaction of the 1,4-dioxane derivative of nido-carborane with methyl ether of p-hydroxybenzoate in the same conditions led to the corresponding K[10-(4-CH₃OOCC₆H₄O)-CH₂CH₂OCH₂CH₂O-7,8-C₂B₉H₁₁] [76].

Scheme 3. The synthesis of nido-carborane derivatives with terminal carboxylic group.

The obtaining of 10-substituted derivatives of nido-carborane in the case of oxonium derivatives and products of their ring-opening reactions leaves free the positions 9 and 11 of nido-carborane cage. This can be used for the following substitution, such as, for example, the halogenation, which was carried out for K[10-(4-HOOCC₆H₄O)-C₄H₈O-7,8-C₂B₉H₁₁], K[10-(4-HOOCC₆H₄O)-CH₂CH₂OCH₂CH₂O-7,8-C₂B₉H₁₁] and K[10-(4-CH₃OOCC₆H₄O)-CH₂CH₂OCH₂CH₂O-7,8-C₂B₉H₁₁] [76] (Scheme 4). The obtained halogenated compounds can find application in the design of drugs for radionuclide imaging and boron neutron capture therapy of cancer.
Scheme 4. The halogenation of K[10-(4-HOOCC₆H₄O)-C₄H₆O-7,8-C₂B₉H₁₁], K[10-(4-HOOCC₆H₄O)-CH₂CH₂OCH₂CH₂O-7,8-C₂B₉H₁₁] and K[10-(4-CH₃OOC₆H₄O)-CH₂CH₂OCH₂CH₂O-7,8-C₂B₉H₁₁]. The ring-opening reaction of 1,4-dioxane derivative of nido-carborane with 2-methoxyphenol in the presence of K₂CO₃ resulted in the compound with a terminal guaiacol group K[10-(2-CH₃OC₆H₄O)-CH₂CH₂OCH₂CH₂O-7,8-C₂B₉H₁₁] [71] (Scheme 5). The boron-containing calixarene [4-t-Bu-calix[4]arene]-1,3-(10-CH₂CH₂OCH₂CH₂O-7,8-C₂B₉H₁₁)]²⁻ was prepared in similar conditions by the treatment of 1,4-dioxane derivative of nido-carborane with 4-t-Bu-calix[4]arene [71].

Scheme 5. The synthesis of the nido-carborane derivative with the terminal guaiacol group.

The ring-opening reactions of 1,4-dioxane and tetrahydropyran derivatives of nido-carborane with 7-diethyl-4-hydroxycoumarin led to the water-soluble conjugates of the nido-carborane cluster with coumarin [77] (Scheme 6). The measurement of the distribution coefficients (log D₇,₄) of the obtained compounds showed their appropriate lipophilicity for medicinal applications [77].

Scheme 6. The synthesis of nido-carborane conjugates with coumarin.

The reactions of two equivalents of 1,4-dioxane derivative of nido-carborane with 1,2-O,O'- and 1,2-S,S'-dinucleophiles (1,2-dihydroxybenzene [78], 1,2-dimercaptoethane, 1,2-dimercaptobenzene [79], 1,2-dihydroxy-closo-carborane, 1,2-dimercapto-closo-carborane[79]) in the presence of K₂CO₃ in acetonitrile makes it possible to obtain nido-carborane-based podands related to acyclic crown ether 18-crown-6 [78,79] (Scheme 7).
Scheme 7. The synthesis of nido-carborane-based podands.

The reaction of two equivalents of 1,4-dioxane derivative of nido-carborane with resorcinol proceeds in a similar way, resulting in K₂[1,3-(10-OC₂H₄OC₂H₄O-7,8-C₂B₉H₁₁)₂C₆H₄], whereas the reaction with hydroquinone leads to two products K₂[1,4-(10-OC₂H₄OC₂H₄O-7,8-C₂B₉H₁₁)₂C₆H₄] and K[10-(4′-KOC₆H₄O)-CH₂CH₂OCH₂CH₂O-7,8-C₂B₉H₁₁] [78] (Scheme 8).

Scheme 8. The reactions of the 1,4-dioxane derivative of nido-carborane with resorcinol and hydroquinone.

The reaction of two equivalents of 10-O(CH₂CH₂)₂O-7,8-C₂B₉H₁₁ with ethylene glycol in the presence of K₂CO₃ leads to the formation of carboranyl triethylene glycol ether
[10-HO(CH₂CH₂O)₃-7,8-C₂B₉H₁₁]⁻ along with a certain amount of carboranyl diethylene glycol formate [10-HC(O)O(CH₂CH₂O)₂-7,8-C₂B₉H₁₁]⁻ [78] (Scheme 9).

Scheme 9. The reaction of 1,4-dioxane derivative of nido-carborane with ethylene glycol.

The reaction of a 1,4-dioxane derivative of nido-carborane with thiourea leads to the formation of a thiouronium salt 10-(NH₂)₂CSCH₂CH₂OCH₂CH₂O-7,8-C₂B₉H₁₁, the subsequent hydrolysis of which gives the corresponding thiol [10-HSCH₂CH₂OCH₂CH₂O-7,8-C₂B₉H₁₁]⁻. The formed thiol was reacted with one equivalent of 1,4-dioxane derivative of nido-carborane to give a podand [(10-CH₂CH₂OCH₂CH₂O-7,8-C₂B₉H₁₁)₂S]²⁻ related to acyclic crown ether 15-crown-5 [79] (Scheme 10).

Scheme 10. The reaction of 1,4-dioxane derivative of nido-carborane with thiourea.

The nido-carborane thiol [10-HSCH₂CH₂OCH₂CH₂O-7,8-C₂B₉H₁₁]⁻ can also be obtained directly by the reaction of 10-O(CH₂CH₂)₂O-7,8-C₂B₉H₁₁ with excess of aqueous sodium hydrosulfide in tetrahydrofuran. The by-product of this reaction is a thioether [(10-CH₂CH₂OCH₂CH₂O-7,8-C₂B₉H₁₁)₂S]²⁻ [71].

Two nido-carborane-based podands [(10-CH₂CH₂OCH₂CH₂O-7,8-C₂B₉H₁₁)₂S]²⁻ and [1,2-(10-SCH₂CH₂OCH₂CH₂O-7,8-C₂B₉H₁₁)₂C₆H₄]²⁻ were used for the synthesis of crown ethers with the cobalt bis(dicarbollide) fragment incorporated in heteromacrocycle [79] (Scheme 11).
Scheme 11. Synthesis of crown ethers with the incorporated cobalt bis(dicarbollide) fragment.

The crystal structure of sodium salt of \[8,8'-(OCH_2CH_2OCH_2CH_2S)S-o-C_6H_4-3,3'-Co(1,2-C_2B_9H_9)_2\] \(^-\), which was obtained during the drying of the solution of parent potassium salt in diethyl ether over \(\text{Na}_2\text{SO}_4\), was determined by X-ray analysis \([79]\) (Figure 3).

Figure 3. The molecular structure of \(\text{Na}[8,8'-(OCH_2CH_2OCH_2CH_2S)S-o-C_6H_4-3,3'-Co(1,2-C_2B_9H_9)_2]\).

By the ring-opening reactions of tetrahydrofuran and 1,4-dioxane derivatives of nido-carborane with sodium azide a series of nido-carborane-based azides with different spacer lengths between the nido-carborane cage and functional group was synthesized \([60,80,81]\) (Scheme 12).
Scheme 12. The synthesis of nido-carborane derivatives with terminal azido group.

The obtained azides can be used for medical application due to the possibility of their conjugation with biomolecules by standard methods of bioorganic chemistry such as, for example, Cu(I)-catalyzed reaction of 1,3-dipolar [3 + 2] -cycloaddition of terminal azido group with alkynes (“click” reaction) [44,82–86]. Thus, several conjugates with nucleosides were prepared by Cu(I)-catalyzed click reaction of 10-N\textsubscript{3}CH\textsubscript{2}CH\textsubscript{2}OCH\textsubscript{2}CH\textsubscript{2}O-7,8-C\textsubscript{2}B\textsubscript{9}H\textsubscript{11} with modified derivatives of 2’-deoxyadenosine [80], uridine and thymidine [81], containing terminal alkyne group (Scheme 13).

Scheme 13. The synthesis of nido-carborane-based conjugates with nucleosides.

The reactions of 1,4-dioxane [63,71] and tetrahydropyran [63] derivatives of nido-carborane with ammonia in tetrahydrofuran led to the corresponding ammonium derivatives of nido-carborane. The obtained compounds were used for the conjugation with 3-nitro-1,8-naphthalic anhydride in the presence of Et\textsubscript{3}N to give water-soluble boron containing 3-nitro-1,8-naphthalimides, which are potential interesting agents for boron neutron capture therapy [63] (Scheme 14).

Scheme 14. The synthesis of ammonium derivatives of nido-carborane and their conjugates with 3-nitro-1,8-naphthalic anhydride.
The molecular structure of 10-NH$_3$CH$_2$CH$_2$OCH$_2$CH$_2$O-7,8-C$_2$B$_9$H$_{11}$ was determined by single crystal X-ray diffraction [71] (Figure 4).

![Figure 4. The molecular structure of 10-NH$_3$CH$_2$CH$_2$OCH$_2$CH$_2$O-7,8-C$_2$B$_9$H$_{11}$.](image)

The charge-compensated nido-carborane-based conjugates with mitonafide were prepared in mild conditions by the ring-opening reactions of 1,4-dioxane and tetrahydropyran derivatives of nido-carborane with dimethylamino group of mitonafide [63] (Scheme 15).

![Scheme 15. The synthesis of nido-carborane-based conjugates with mitonafide.](image)

The reactions of 1,4-dioxane derivative of nido-carborane with 4-aminophenol in tetrahydrofuran in mild conditions led to the formation of the corresponding ammonium derivative 10-(4-OH-C$_6$H$_4$)-NH$_2$CH$_2$CH$_2$OCH$_2$CH$_2$O-7,8-C$_2$B$_9$H$_{11}$, whereas the treatment of 10-O(CH$_2$CH$_2$)$_2$O-7,8-C$_2$B$_9$H$_{11}$ with 2-amino-1,3-propanediol resulted in a mixture of 10-(HOCH$_2$)$_2$CHNH$_2$CH$_2$OCH$_2$CH$_2$O-7,8-C$_2$B$_9$H$_{11}$ and [(HOCH$_2$)$_2$CHNH-N,N-(10,10'-CH$_2$CH$_2$OCH$_2$CH$_2$O-7,8-C$_2$B$_9$H$_{11}$)$_2$]$^-$ [71]. At the same time the reaction with n-butylamine led only to [n-C$_4$H$_9$NH-(10-CH$_2$CH$_2$OCH$_2$CH$_2$O-7,8-C$_2$B$_9$H$_{11}$)$_2$]$^-$ [68] (Scheme 16).

The treatment of 1,4-dioxane derivative of nido-carborane with 4-aminophenol in the presence of K$_2$CO$_3$ in acetonitrile under reflux conditions gave the product of ring-opening both by amino and hydroxyl groups [7,8-C$_2$B$_9$H$_{11}$-10-CH$_2$CH$_2$OCH$_2$CH$_2$O-H$_2$N-C$_6$H$_4$-O-10'-CH$_2$CH$_2$OCH$_2$CH$_2$O-7,8-C$_2$B$_9$H$_{11}$]$^-$ [71] (Scheme 17).
Scheme 16. The ring-open reactions of 1,4-dioxane derivative of nido-carborane with primary amines.

Scheme 17. The reaction of 1,4-dioxane derivative of nido-carborane with 4-aminophenol in the presence of K₂CO₃.

The reactions of 1,4-dioxane derivative of nido-carborane with halide ions from tetrabutylammonium salts Bu₄NX in diethyl ether at room temperature led to the ring-opening of the cycle with the formation of the corresponding halogen derivatives [10-X-CH₂CH₂OCH₂CH₂O-7,8-C₂B₉H₁₁]⁻ (X = Cl, Br, I) [71] (Scheme 18).

Scheme 18. The reactions of 1,4-dioxane derivative of nido-carborane with halide ions.

The ring-opening reaction of 1,4-dioxane derivative of nido-carborane with KOH under mild conditions in biphasic system of diethyl ether and 2,5M aqueous KOH proceeded with the formation of [10-HO-CH₂CH₂OCH₂CH₂O-7,8-C₂B₉H₁₁]⁻, whereas the heating of 10-O(CH₂CH₂)₂O-7,8-C₂B₉H₁₁ in 2,5M aqueous KOH through deprotonation of bridge hydrogen led to the substitution of the ether by hydroxyl group [10-HO-7,8-C₂B₉H₁₁]⁻ [71] (Scheme 19).
The ring-opening reactions of 1,4-dioxane derivative of \textit{nido}-carborane with KOH.

The ring-opening reactions of 1,4-dioxane derivative of \textit{nido}-carborane with dimethyl sulfide or triphenylphosphine gave the corresponding sulfonium and phosphonium derivatives 10-L-CH$_2$CH$_2$OCH$_2$CH$_2$O-7,8-C$_2$B$_9$H$_{11}$ (L = SMe$_2$, PPh$_3$). Subsequent treatment of these compounds with a base such as potassium tert-butoxide in both cases led to a side chain shortening product [10-HOCH$_2$CH$_2$O-7,8-C$_2$B$_9$H$_{11}$]$^-$ [87] (Scheme 20).

![Scheme 20](image)

Scheme 20. The synthetic route to [10-HOCH$_2$CH$_2$O-7,8-C$_2$B$_9$H$_{11}$]$^-$ through the contraction of disclosed 1,4-dioxane ring.

The molecular structure of 10-Me$_2$SCH$_2$CH$_2$OCH$_2$CH$_2$O-7,8-C$_2$B$_9$H$_{11}$ was determined by single crystal X-ray diffraction [88] (Figure 5).

![Figure 5](image)

Figure 5. The molecular structure of 10-Me$_2$SCH$_2$CH$_2$OCH$_2$CH$_2$O-7,8-C$_2$B$_9$H$_{11}$.
The dimethyl- and diethyloxonium derivatives of nido-carborane are also easily reacted with nucleophiles with the loss of the methyl or ethyl group, respectively, and can be used as alkylating agents [72,73].

4. Synthesis and Properties of Oxonium Derivatives of nido-carborane-Based Half-Sandwich Complexes

At the moment, for nido-carborane-based half-sandwich complexes only derivatives with tetrahydrofuran are known. With rare exceptions, they were obtained randomly, due to the fact that reactions involving metallacarboranes are most often carried out in dry tetrahydrofuran.

Thus, the reaction of protonated nido-carborane 7,8-nido-C\textsubscript{2}B\textsubscript{9}H\textsubscript{13} with [(CO)\textsubscript{3}MnX] (X = Me, Et or BF\textsubscript{4}) in tetrahydrofuran results in [3,3,3-(CO)\textsubscript{3}-3-Mn(8-(CH\textsubscript{2})\textsubscript{4}O-1,2-C\textsubscript{2}B\textsubscript{9}H\textsubscript{10})] [89] (Scheme 21). The molecular structure of this complex was determined by X-ray diffraction [89] (Figure 6).

![Scheme 21](image1)

**Scheme 21.** The synthesis of [3,3,3-(CO)\textsubscript{3}-3-Mn(8-(CH\textsubscript{2})\textsubscript{4}O-1,2-C\textsubscript{2}B\textsubscript{9}H\textsubscript{10})].

![Figure 6](image2)

**Figure 6.** The molecular structure of [3,3,3-(CO)\textsubscript{3}-3-Mn(8-(CH\textsubscript{2})\textsubscript{4}O-1,2-C\textsubscript{2}B\textsubscript{9}H\textsubscript{10})].

The THF derivatives of the same tricarbonyl manganese(I) complex [3,3,3-(CO)\textsubscript{3}-3-Mn(8-(CH\textsubscript{2})\textsubscript{4}O-1,2-C\textsubscript{2}B\textsubscript{9}H\textsubscript{10})], as well as its C,C′-dimethyl derivative [3,3,3-(CO)\textsubscript{3}-3-Mn(8-(CH\textsubscript{2})\textsubscript{4}O-1,2-Me\textsubscript{2}-1,2-C\textsubscript{2}B\textsubscript{9}H\textsubscript{8})], can also be prepared directly from the parent metallacarboranes with tetrahydrofuran in the presence of methyl triflate [90] (Scheme 22).
Scheme 22. The synthetic route to [3,3,3-(CO)₃-3-Mn(8-(CH₂)₄O-1,2-C₂B₉H₁₀)] and [3,3,3-(CO)₃-3-Mn(8-(CH₂)₄O-1,2-Me₂-1,2-C₂B₉H₈)].

It was shown that the reaction of tetrahydrofuran derivative of the tricarbonyl manganese complex [3,3,3-(CO)₃-3-Mn(8-(CH₂)₄O-1,2-C₂B₉H₁₀)] with NEt₄I in THF under reflux conditions resulted in the opening of the tetrahydrofuran cycle with the formation of [3,3,3-(CO)₃-3-Mn(8-I-CH₂(CH₂)₃O-1,2-C₂B₉H₁₀)]⁻ [89] (Scheme 23).

Scheme 23. The reaction of [3,3,3-(CO)₃-3-Mn(8-(CH₂)₄O-1,2-C₂B₉H₁₀)] with NEt₄I.

The treatment of [3,3,3-(CO)₃-3-Mn(8-(CH₂)₄O-1,2-C₂B₉H₁₀)] with donor molecules such as PPh₃, NEt₃ and 4-methylpyridine in THF at room temperature gave the corresponding charge-compensated complexes [3,3,3-(CO)₃-3-Mn(8-L-CH₂(CH₂)₃O-1,2-C₂B₉H₁₀)]⁻ (L = PPh₃, NEt₃, 4-Me-C₅H₄N) [89] (Scheme 24).

Scheme 24. The reaction of [3,3,3-(CO)₃-3-Mn(8-(CH₂)₄O-1,2-C₂B₉H₁₀)] with PPh₃, NEt₃ and 4-methylpyridine.

The ruthenium(II) complex [3-Cp*-3-Ru(8-(CH₂)₄O-1,2-µ-O(CH₂)₂-1,2-C₂B₉H₉)] was prepared by the reaction of thallium salt of parent [3-Cp*-3-Ru(1,2-µ-O(CH₂)₂-1,2-C₂B₉H₉)]⁻ with [Cp*RuCl]₄ in tetrahydrofuran [91] (Scheme 25). It should be noted that, in the absence of the CH₂OCH₂ bridge between carbon atoms, this reaction leads to the 13-vertex dimetallacarborane [Cp*Ru(C₂B₉H₁₁)RuCp*] [91].
Scheme 25. The synthetic route to [3-Cp*-3-Ru(8-(CH₂)₄O-1,2-µ-O(CH₂)₂-1,2-C₂B₉H₈)].

The allyl dicarbonyl molybdenum complex with THF [3-(η³-C₃H₅)-3-(CO)₂-3-Mo(8-(CH₂)₄O-1,2-Me₂-1,2-C₂B₉H₈)] can be synthesized by the reaction of parent metallacarborane with tetrahydrofuran in the presence of [Ph₃C][BF₄] [92] (Scheme 26).

Scheme 26. The synthetic route to [3-(η³-C₃H₅)-3-(CO)₂-3-Mo(8-(CH₂)₄O-1,2-Me₂-1,2-C₂B₉H₈)].

In similar conditions, but in the presence of Et₂O, the acyclic oxonium complexes of molybdenum and tungsten were prepared [92] (Scheme 27).

Scheme 27. The synthetic route to acyclic diethyloxonium nido-carborane-based complexes with molybdenum and tungsten.

The molecular structure of [3-(η³-C₃H₅)-3-(CO)₂-3-Mo(8-Et₂O-1,2-Me₂-1,2-C₂B₉H₈)] was determined by X-ray diffraction [92] (Figure 7).
The reaction of a tetrahydrofuran derivative of the allyl dicarbonyl molybdenum complex $[3-(\eta^3-C_3H_5)-3-(CO)_2-3-Mo(8-(CH_2)_4O-1,2-Me_2-1,2-C_2B_9H_8)]$ with NEt$_4$F or NBu$_4$F in THF at room temperature led to the corresponding ammonium salts of $[3-(\eta^3-C_3H_5)-3-(CO)_2-3-Mo(8-F-CH_2(CH_2)_3O-1,2-Me_2-1,2-C_2B_9H_8)]^−$. The treatment of tetraethylammonium salt of the obtained complex with HBF$_4$·OEt$_2$ under an atmosphere of CO gave the charge-compensated tetracarbonyl molybdenum complex $[3-(CO)_4-3-Mo(8-F-CH_2(CH_2)_3O-1,2-Me_2-1,2-C_2B_9H_8)]$ [92] (Scheme 28).

In summary, the oxonium derivatives of nido-carborane offer a convenient and simple method for modifying the nido-carborane cluster, which allows both the introduction of necessary functional groups into the side substituent and the direct preparation of conjugates with the required molecules. The resulting products of their ring-opening reactions are symmetric derivatives free from enantiomeric and diasteriomeric mixtures.
Author Contributions: Conceptualization and writing M.Y.S.; review and editing, I.B.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This work was supported by the Ministry of Science and Higher Education of the Russian Federation.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. McCleverty, J.A. Highlights in inorganic chemistry over the last 100 years. Annu. Rep. Prog. Chem. Sect. A 2004, 100, 3–13. [CrossRef]
2. Wiesboeck, R.A.; Hawthorne, M.F. Dicarbaundecaborane(13) and Derivatives. J. Am. Chem. Soc. 1964, 86, 1642–1643. [CrossRef]
3. Hawthorne, M.F.; Young, D.C.; Garrett, P.M.; Owen, D.A.; Schwerin, S.G.; Tebbe, F.N.; Wegner, P.A. Preparation and characterization of the (3)-1,2- and (3)-1,7-dicarbadodecahydrododecaborate(1-) ions. J. Am. Chem. Soc. 1968, 90, 862–868. [CrossRef]
4. Zakharkin, L.I.; Kalinin, V.I. On the reaction of amines with barenes. Angew. Chem. Int. Ed. Engl. 1965, 4, 1675. [CrossRef]
5. Pulay, P. The role of chemistry in the development of boron neutron capture therapy of cancer. Angew. Chem. Int. Ed. Engl. 1998, 37, 3422–3423. [CrossRef]
6. Davidson, M.G.; Fox, M.A.; Hibbert, T.G.; Howard, J.A.K.; Mackinnon, A.; Neretin, I.S.; Wade, K. Deboronation of ortho-carborane by an iminophosphorane: Crystal structures of the novel carborane adduct nido-C8B10H12-HPN(Me)2 and the borenium salt ([Me3N]2P(NBp(NMe2)2)2]+O2- (C8B10H12-). Chem. Commun. 1999, 1649–1650. [CrossRef]
7. Wise, S.D.; Au, W.; Getman, T.D. The effect of varying the solvent system on the rate of the deboration of o-carborane by n-butyl amine. Main Group Met. Chem. 2002, 25, 411–413. [CrossRef]
8. Tomita, H.; Luu, H.; Onak, T. Cage opening of parent closo cage carboranes with fluoride ion: Formation of 5-fluoro-hexahydro-nido-2,4-dicarbahexaborate(1-) ([5-F-nido-2,4-C2B4H6]-). Inorg. Chem. 1991, 30, 812–815. [CrossRef]
9. Fox, M.A.; Gill, W.R.; Herbertson, P.L.; MacBride, J.A.H.; Wade, K.; Colquhoun, H.M. Deboronation of C-substituted ortho- and meta-closo-carboranes using “wet” fluoride ion solutions. Polyhedron 1996, 15, 565–571. [CrossRef]
10. Getman, T.D. Investigation of potassium fluoride supported on alumina in the deboronation of o-carborane. Inorg. Chem. 1998, 37, 3422–3423. [CrossRef]
11. Yoo, J.; Hwang, J.-W.; Do, Y. Facile and mild deboronation of o-carboranes using cesium fluoride. Inorg. Chem. 2001, 40, 568–570. [CrossRef] [PubMed]
12. Hawthorne, M.F.; Young, D.C.; Andrews, T.D.; Howe, D.V.; Pilling, R.L.; Pitts, A.D.; Reintjer, M.; Warren, L.F.; Wegner, P.A. π-Dicarboryl derivatives of the transition metals. Metallocene analogs. J. Am. Chem. Soc. 1968, 90, 879–896. [CrossRef]
13. Grimes, R.N. Transitional metal metallacarbaboranes. In Comprehensive Organometallic Chemistry II; Elsevier: Oxford, UK, 1995; Volume 1, pp. 373–430.
14. Grimes, R.N. Metallacarbaboranes in the new millennium. Co-ord. Chem. Rev. 2000, 200, 773–811. [CrossRef]
15. Hosmane, N.S.; Maguire, J.A. Metallacarbaboranes of d- and f-block metals. In Comprehensive Organometallic Chemistry III; Elsevier: Oxford, UK, 2007; Volume 3, pp. 175–264.
16. Gozzi, M.; Schwarze, B.; Hey-Hawkins, E. Half- and mixed-sandwich metallacarbaboranes in catalysis. In Handbook of Boron Chemistry with Applications in Organometallics, Catalysis, Materials and Medicine. Boron in Catalysis; Hosmane, N.S., Egling, R., Eds.; World Scientific Publishing Europe Ltd.: London, UK, 2019; Volume 2, pp. 27–80. [CrossRef]
17. Zhu, Y.; Hosmane, N.S. Carborane-based catalysts for polymerization of olefins. In Handbook of Boron Chemistry with Applications in Organometallics, Catalysis, Materials and Medicine. Boron in Catalysis; Hosmane, N.S., Egling, R., Eds.; World Scientific Publishing Europe Ltd.: London, UK, 2019; Volume 2, pp. 117–134. [CrossRef]
18. Hawthorne, M.F. The role of chemistry in the development of boron neutron capture therapy of cancer. Angew. Chem. Int. Ed. Engl. 1993, 32, 950–984. [CrossRef]
19. Soloway, A.H.; Tjarks, W.; Barnum, B.A.; Rong, F.-G.; Barth, R.F.; Codogni, I.M.; Wilson, J.G. The chemistry of neutron capture therapy. Chem. Rev. 1998, 98, 1515–1562. [CrossRef] [PubMed]
20. Valliant, J.E.; Guenther, K.J.; King, A.S.; Morel, P.; Schaffier, P.; Sogbein, O.O.; Stephenson, K.A. The medicinal chemistry of carboranes. Co-ord. Chem. Rev. 2002, 232, 173–230. [CrossRef]
21. Armstrong, A.F.; Valliant, J.E. The biologic and medicinal chemistry of carboranes: From new drug discovery to molecular imaging and therapy. Dalton Trans. 2007, 4240–4251. [CrossRef]
22. Lee, W.; Sarkar, S.; Ahn, H.; Kim, J.Y.; Lee, Y.J.; Chang, Y.; Yoo, J. PEGylated liposome encapsulating nido-carborane showed significant tumor suppression in boron neutron capture therapy (BNCT). Biochem. Biophys. Res. Commun. 2020, 522, 669–675. [CrossRef]
23. Varaksin, M.V.; Smyshliaeva, L.A.; Rusinov, V.L.; Makeev, O.G.; Melekhin, V.V.; Baldanshireva, A.D.; Gubina, O.G.; Charushin, V.N.; Chupakhin, O.N. Synthesis, characterization, and in vitro assessment of cytotoxicity for novel aza-heterocyclic nido-carboranes—Candidates in agents for boron neutron capture therapy (BNCT) of cancer. *Tetrahedron* 2021, 102, 132525. [CrossRef]

24. Tolmachev, V.V.; Sjöberg, S. Polyhedral boron compounds as potential linkers for attachment of radiohalogens to targeting proteins and peptides. A review. *Collect. Czech. Chem. Commun.* 2002, 67, 913–935. [CrossRef]

25. Wilbur, D.S.; Chyan, M.-C.; Hamlin, D.K.; Vessella, R.L.; Wedge, T.J.; Hawthorne, M.F. Reagents for de-astatination of biomolecules. 2. Conjugation of anionic boron cage pendant groups to a protein provides a method for direct labeling that is stable to in vivo deastatination. *Bioconjugate Chem.* 2007, 18, 1226–1240. [CrossRef]

26. Green, A.E.C.; Harrington, L.E.; Valliant, J.F. Carborane-carbohydrate derivatives—Versatile platforms for developing targeted radiopharmaceuticals. *Can. J. Chem.* 2008, 86, 1063–1069. [CrossRef]

27. Armstrong, A.F.; Lebert, J.M.; Brennan, J.D.; Valliant, J.F. Functionalized carborane complexes of the \([\text{M(CO)}_4]^2^+\) core (M = \(^{99}\text{Tc, Re}\)): A new class of organometallic probes for correlated in vitro and in vivo imaging. *Organometallics* 2009, 28, 2986–2992. [CrossRef]

28. El-Zaria, M.E.; Janzen, N.; Valliant, J.F. Room-temperature synthesis of Re(I) and Tc(I) metallocarboranes. *Organometallics* 2012, 31, 5940–5949. [CrossRef]

29. Visbal, R.; Ospino, I.; López-de-Luzuriaga, J.M.; Laguna, A.; Gimeno, M.C. N-Heterocyclic carbene ligands as modulators of luminescence in three-coordinate gold(I) complexes with spectacular quantum yields. *J. Am. Chem. Soc.* 2013, 135, 4712–4715. [CrossRef] [PubMed]

30. Axtell, J.C.; Kirlikovali, K.O.; Djurovich, P.I.; Jung, D.; Nguyen, V.T.; Munekiyo, B.; Royappa, A.T.; Rheingold, A.L.; Spokoyny, N. nido-Carboranes—Candidates in agents for boron neutron capture therapy (BNCT) of cancer. *Tetrahedron* 2021, 102, 132525. [CrossRef]

31. Shafikov, M.Z.; Suleymanova, A.F.; Czerwieniec, R.; Yersin, H. Design strategy for Ag(I)-based thermally activated delayed fluorescence reaching an efficiency breakthrough. *Chem. Mater.* 2017, 29, 1708–1715. [CrossRef]

32. Nghia, N.V.; Jana, S.; Sujith, S.; Ryu, J.Y.; Lee, J.; Lee, S.U.; Lee, M.H. nido-Carboranes: Donors for thermally activated delayed fluorescence. *Angew. Chem. Int. Ed.* 2018, 57, 12483–12488. [CrossRef]

33. Nghia, N.V.; Oh, J.; Sujith, S.; Jung, J.; Lee, M.H. Tuning the photophysical properties of carboranyle luminophores by closo- to nido-carborane conversion and application to OFF–ON fluoride sensing. *Dalton Trans.* 2018, 47, 17441–17449. [CrossRef]

34. He, T.-F.; Ren, A.-M.; Chen, Y.-N.; Hao, X.-L.; Shen, L.; Zhang, B.-H.; Wu, T.-S.; Zhang, H.-X.; Zou, L.-Y. Molecular-level insight of Cu(I) complexes with the 7,8-bis(diphenylphosphino)-7,8-dicarbano-nido-undecaborate ligand as a thermally activated delayed fluorescence emitter: Luminescent mechanism and design strategy. *Inorg. Chem. Phys.* 2021, 59, 12039–12053. [CrossRef]

35. Li, Q.; Shi, C.; Huang, M.; Zhang, X.; Sun, F.; Zheng, Y.; Yan, H.; Yang, C.; Yuan, A. Three types of charged ligand-based neutral phosphorescent iridium(III) complexes featuring nido-carborane–fluorene and nido-carborane–8-hydroxyquinoline emitters. *Inorg. Chem.* 2021, 60, 16304–16310. [CrossRef]

36. Alconchel, A.A.; Crespo, O.; García-Ordúñia, P.; Gimeno, M.C. close- or nido-carborane pincer complexes and pincer half-sandwich complexes featuring nido-carborane diphosphane as responsible for strong thermochromism or time activated delayed fluorescence (TADF) in [Cu(N N)(P P)]<sup>+</sup>. *Inorg. Chem.* 2021, 60, 18521–18528. [CrossRef] [PubMed]

37. Lerouge, F.; Ferrer-Ugalde, A.; Viñas, C.; Teixidor, F.; Sillanpää, R.; Abreu, A.; Xochitiotzi, E.; Farfán, N.; Santillan, R.; Núñez, R. Synthesis and fluorescence emission of neutral and anionic di- and tetra-carboranyl compounds. *Dalton Trans.* 2011, 40, 7541–7550. [CrossRef] [PubMed]

38. Zhu, Y.; Hosmane, N.S. Ionic liquids: Recent advances and applications in boron chemistry. *Eur. J. Inorg. Chem.* 2017, 38-39, 4369–4377. [CrossRef]

39. Sivaev, I.B. Nitrogen heterocyclic salts of polyhedral borane anions: From ionic liquids to energetic materials. *Chem. Heterocycl. Compd.* 2017, 53, 638–658. [CrossRef]

40. Grimes, R.N. Carboranes, 3rd ed.; Academic Press: London, UK, 2016; pp. 179–257. [CrossRef]

41. Zakharova, M.V.; Sivaev, I.B.; Anufriev, S.A.; Timofeev, S.V.; Suponitsky, K.Y.; Godovikov, I.A.; Bregadze, V.I. A new approach to the synthesis of functional derivatives of nido-carborane: Alkylation of [9-MeS-nido-7,8-C<sub>2</sub>B<sub>11</sub>H<sub>11</sub>]<sup>-</sup>. *Dalton Trans.* 2014, 43, 5044–5053. [CrossRef]

42. Anufriev, S.A.; Zakharova, M.V.; Sivaev, I.B.; Bregadze, V.I. New carborane-containing acids and amines. *Russ. Chem. Bull.* 2017, 66, 1643–1649. [CrossRef]

43. Timofeev, S.V.; Zhidkova, O.B.; Prikaznova, E.A.; Sivaev, I.B.; Semioshkin, A.; Godovikov, I.A.; Stariкова, Z.A.; Bregadze, V.I. Direct synthesis of nido-carborane derivatives with pendant functional groups with copper-promoted reactions with dimethylalkylamines. *J. Organomet. Chem.* 2014, 757, 21–27. [CrossRef]

44. Druzhina, A.A.; Zhidkova, O.B.; Dudarova, N.V.; Kosenko, I.D.; Ananyev, I.V.; Timofeev, S.V.; Bregadze, V.I. Synthesis and structure of nido-carboranoyl azide and its “click” reactions. *Molecules* 2021, 26, 530. [CrossRef]

45. Druzhina, A.A.; Zhidkova, O.B.; Dudarova, N.V.; Nekrasova, N.A.; Suponitsky, K.Y.; Timofeev, S.V.; Bregadze, V.I. Synthesis of zwitter-ionic conjugate of nido-carborane with cholesterol. *Molecules* 2021, 26, 6687. [CrossRef]

46. Yang, Z.; Zhao, W.; Liu, W.; Wei, X.; Chen, M.; Zhang, X.; Zhang, X.; Liang, Y.; Lu, C.; Yan, H. Metal-free oxidative B-N coupling of nido-carborane with N-heterocycles. *Angew. Chem. Int. Ed.* 2019, 58, 11886–11892. [CrossRef] [PubMed]
47. Yang, L.; Jei, B.B.; Scheremetjew, A.; Kuniyil, R.; Ackermann, L. Electrochemical B-H nitroge
nation: Access to amino acids and BODIPY-labeled nido-carboranes. Angew. Chem. Int. Ed. 2021, 60, 1482–1487. [CrossRef]
48. Chen, M.; Zhao, D.; Xu, J.; Li, C.; Lu, C.; Yan, H. Electrooxidative B-H functionalization of nido-carboranes. Angew. Chem. Int. Ed. 2021, 60, 7838–7844. [CrossRef] [PubMed]
49. Huang, R.; Zhao, W.; Xu, S.; Xu, J.; Li, C.; Lu, C.; Yan, H. Photoedox B-H functionalization to selective B-N(sp³) coupling of nido-carborane with primary and secondary amines. Chem. Commun. 2021, 57, 8580–8583. [CrossRef] [PubMed]
50. Anufriev, S.A.; Sivaev, I.B.; Suponitsky, K.Y.; Godovikov, I.A.; Bregadze, V.I. Synthesis of 10-methylsulfide and 10-
alkylmethylsulfonium nido-carborane derivatives: B–H π interactions between the B–H–B hydrogen atom and alkylene group in 10-RC≡CH2S(Me)–7,8-C2B11H11. Eur. J. Inorg. Chem. 2017, 2017, 4436–4443. [CrossRef]
51. Erokhina, S.A.; Stogniy, M.Y.; Suponitsky, K.Y.; Kosenko, I.D.; Sivaev, I.B.; Bregadze, V.I. Synthesis of new nido-carborane based carboxylic acids and amines. Polyhedron 2018, 153, 145–151. [CrossRef]
52. Stogniy, M.Y.; Erokhina, S.A.; Suponitsky, K.Y.; Anisimov, A.A.; Sivaev, I.B.; Bregadze, V.I. Nucleophilic addition reactions to the ethyniltrimium derivative of nido-carborane 10-EC≡N-7,8-C2B9H11. New J. Chem. 2018, 42, 17958–17967. [CrossRef]
53. Stogniy, M.Y.; Erokhina, S.A.; Anisimov, A.A.; Suponitsky, K.Y.; Sivaev, I.B.; Bregadze, V.I. 10-NCCH2CH2OCH2CH2C≡N-7,8-
C2B9H11: Synthesis and reactions with various nucleophiles. Polyhedron 2019, 174, 114170. [CrossRef]
54. Stogniy, M.Y.; Erokhina, S.A.; Suponitsky, K.Y.; Anisimov, A.A.; Godovikov, I.A.; Sivaev, I.B.; Bregadze, V.I. Synthesis of novel carboranyl amidines. J. Organomet. Chem. 2020, 909, 121111. [CrossRef]
55. Stogniy, M.Y.; Erokhina, S.A.; Suponitsky, K.Y.; Markov, V.Y.; Sivaev, I.B. Synthesis and crystal structures of nickel(II) and palladium(II) complexes with o-carboranyl amide ligands. Dalton Trans. 2021, 50, 4967–4975. [CrossRef]
56. Semioshkin, A.A.; Sivaev, I.B.; Bregadze, V.I. Cyclic oxonium derivatives of polyhedral boron hydrides and their synthetic applications. Dalton Trans. 2008, 977–992. [CrossRef]
57. Sivaev, I.B.; Bregadze, V.I. Cyclic oxonium derivatives as an efficient synthetic tool for the modification of polyhedral boron hydrides. In Boron Science: New Technologies and Applications; Hosmane, N.S., Ed.; CRC Press: Boca Raton, FL, USA, 2012; pp. 623–637.
58. Druzina, A.A.; Shmalko, A.V.; Sivaev, I.B.; Bregadze, V.I. Cyclic oxonium derivatives of cobalt and iron bis(dicarbollide)s and their use in organic synthesis. Russ. Chem. Rev. 2021, 90, 785–830. [CrossRef]
59. Young, D.C.; Howe, D.V.; Hawthorne, M.F. Ligand derivatives of (3)-1,2-dicarbadodecahydrodencarborate(-1). J. Am. Chem. Soc. 1969, 91, 859–862. [CrossRef]
60. Stogniy, M.Y.; Abramova, E.N.; Lobanova, I.A.; Sivaev, I.B.; Bragin, V.I.; Petrovskii, P.V.; Tsupreva, V.V.; Sorokina, O.V.; Bregadze, V.I. Synthesis of functional derivatives of 7,8-dicarba-nido-undecaborate anion by ring-opening of its cyclic oxonium derivatives. Collect. Czech. Chem. Commun. 2007, 72, 1676–1688. [CrossRef]
61. Zakharink, L.I.; Kalinin, V.N.; Zhigareva, G.G. Oxidation of dicarbadoxahydridoundecaborate anions by mercury chloride in tetrahydrofurane and pyridine. Bull. Acad. Sci. USSR Div. Chem. Sci. 1979, 28, 2198–2199. [CrossRef]
62. Stogniy, M.Y.; Sivaev, I.B.; Malysheva, Y.B.; Bregadze, V.I. Synthesis of tetrahydropropan oxonium derivative of 7,8-dicarba-nido-
undecaborane anion [10-(CH2)2O-7,8-C2B11H11]. Vestnik N. I. Lobachevskiy Nizhegorod Univ. 2013, 4, 115–117. Available online: http://www.unn.ru/pages/e-library/vestnik/99999999_West_2013_4(1)/19.pdf (accessed on 30 December 2021).
63. Laskova, J.; Kosenko, I.; Serdyukov, A.; Sivaev, I.; Bregadze, V.I. Synthesis of naphthalimide derivatives of closo-dodecarbaborane and nido-carborane. J. Organomet. Chem. 2022, 959, 122186. [CrossRef]
64. Sivaev, I.B.; Stogniy, M.Y. Mercury derivatives of polyhedral boranes, carboranes, and metallacarboranes. Russ. Chem. Bull. 2019, 68, 217–253. [CrossRef]
65. Colquhoun, H.M.; Greenough, T.J.; Wallbridge, M.G.H. Carbaborane derivatives of the late- and post-transition elements. Part 2. Dicarbadoxahyridoundecaboranyl compounds of copper(I), gold(I), and mercury(II) the crystal and molecular structure of 3-triphenylphosphine-3-mercuro-1,2-dicarbadoxahyridoundecaborane(II), a pseudo-α-bonded metallacarbaborane. J. Chem. Soc. Dalton Trans. 1979, 619–628. [CrossRef]
66. Teixidor, F.; Ayllon, J.A.; Viñas, C.; Kivekäs, R.; Sillanpää, R.; Casabo, J. Mercury coordination to Exo-dithio-7,8-dicarba-nido-
undecaborane derivatives. J. Organomet. Chem. 1994, 483, 153–157. [CrossRef]
67. Shaw, K.F.; Reid, B.D.; Welch, A.J. Synthesis and characterisation of metal complexes of ether carboranes. Molecular structures of d8 ML3, d8 ML2 and d10 ML complexes of mono- and di-ether C2B9 carborane ligands, showing the progressive importance of secondary M...O bonding. J. Organomet. Chem. 1994, 482, 207–220. [CrossRef]
68. Režácevá, P.; Pokorná, J.; Brynda, J.; Kožišek, M.; Cigler, P.; Lepš, M.; Fanfrlík, J.; Řezáč, J.; Šašková, K.G.; Siegllová, I.; et al. Design of HIV protease inhibitors based on inorganic polyhedral metallacarboranes. J. Med. Chem. 2009, 52, 7132–7141. [PubMed]
69. Frank, R.; Auer, H.; Hey-Hawkins, E. Functionalization of the nido-dicarbaborane anion nido-7,8-C2B12H12− by hydride abstraction. J. Organomet. Chem. 2013, 747, 217–224. [CrossRef]
70. Plešek, J.; Jelínek, T.; Mareš, F.; Heřmánek, S. Unique dialkylsulfoniomethylolation of the 7,8-C2B12H12− ion to the 9-R-S=CH2-7,8-
C2B11H11 zwitterions by formaldehyde and dialkyl sulfides. General synthesis of the compounds 10-R=7,8-C2B11H11 (E = O, S). Collect. Czech. Chem. Commun. 1993, 58, 1534–1547. [CrossRef]
71. Bakardjiev, M.; Eln Anwar, S.; Bavad, D.; Růžičková, Z.; Grüner, B. Focus on chemistry of the 10-dioxane-nido-7,8-dicarba-
undecahydridro undecaborate zwitterion; exceptionally easy abstraction of hydrogen bridge and double-action pathways observed in ring cleavage reactions with OH− as nucleophile. Molecules 2020, 25, 814. [PubMed]
72. Stogni, M.Y.; Erokhina, S.A.; Kosenko, I.D.; Semioshkin, A.A.; Sivaev, I.B. Dimethyloxonium and methoxy derivatives of nido-carborane and metal complexes thereof. Inorganics 2019, 7, 46. [CrossRef]

73. Shmal’ko, A.V.; Anufriev, S.A.; Anisimov, A.A.; Stogni, M.Y.; Sivaev, I.B.; Bregadze, V.I. Synthesis of cobalt and nickel 6,6’-diphenylbis(dicarbollides). Russ. Chem. Bull. 2019, 68, 1299–1247. [CrossRef]

74. Stogni, M.Y.; Anufriev, S.A.; Bogdanova, E.V.; Sivaev, I.B.; Bregadze, V.I. Mercury(II) chloride in the synthesis of nido-carborane derivatives with B-N, B-O and B-S bonds. Russ. Chem. Bull. 2022, 71, 91–101.

75. Stogni, M.Y.; Anufriev, S.A.; Shmal’ko, A.V.; Antropov, S.M.; Anisimov, A.A.; Suponitsky, K.Y.; Filippov, O.A.; Sivaev, I.B. The unexpected reactivity of 9-iodo-nido-carborane: From nucleophilic substitution reactions to the synthesis of tricobalt tris(dicarbollide) Na[4,4′,4″-(MeOCH₂CH₂O₂)-3,3′,3″-Co₃(μ³-O)(μ³-S)(1,2-C₂B₉H₁₀)]₃. Dalton Trans. 2021, 50, 2671–2688. [CrossRef]

76. Shmal’ko, A.V.; Stogni, M.Y.; Sivaev, I.B.; Petrovskii, P.V.; Bregadze, V.I. Halogenation of the 7,8-dicarba-nido-undecaborate anion derivatives [10-RO-7,8-C₂B₉H₁₁]⁻. Russ. Chem. Bull. 2012, 62, 91–94. [CrossRef]

77. Serdyukov, A.; Kosenko, I.; Druzinia, A.; Grin, M.; Mironov, A.F.; Bregadze, V.I.; Laskova, J. Anionic polyhedral boron clusters with boron clusters. Cryst. Growth Des. 2015, 15, 3819–3827. [CrossRef]

78. Stogni, M.Y.; Kazakov, G.S.; Sivaev, I.B.; Bregadze, V.I. Synthesis of podands with nido-carboranyl groups as a basis for construction of crown ethers with an incorporated metallacarborane moiety. Russ. Chem. Bull. 2013, 63, 699–704. [CrossRef]

79. Kazakov, G.S.; Stogni, M.Y.; Sivaev, I.B.; Suponitsky, K.Y.; Kirilin, A.D.; Bregadze, V.I. Synthesis of crown ethers with the incorporated cobalt bis(dicarbollide) fragment. J. Organomet. Chem. 2015, 798, 196–203. [CrossRef]

80. Olejniczak, A.; Wojtczak, B.; Grüner, B.; Lesnikowski, Z.J. “Chemical ligation”: A versatile method for nucleoside modification with boron clusters. Chem. Eur. J. 2008, 14, 10675–10682. [CrossRef] [PubMed]

81. Lesnikowski, Z.; Wojtczak, B.A.; Andrysiak, A.; Grüner, B.; Lesnikowski, Z. “Chemical ligation”: A versatile method for nucleoside modification with boron clusters. Chem. Eur. J. 2011, 17, 153–162. [CrossRef] [PubMed]

82. Stogni, M.Y.; Erokhina, S.A.; Kosenko, I.D.; Semioshkin, A.A.; Sivaev, I.B. Dimethyloxonium and methoxy derivatives of nido-carborane and metal complexes thereof. Inorganics 2019, 7, 46. [CrossRef]

83. Liang, L.; Astruc, D. The copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) “click” reaction and its applications. An overview. Coord. Chem. Rev. 2011, 255, 2933–2945. [CrossRef]

84. Jiang, Z.; He, H.; Liu, H.; Thayumanavan, S. Azide-terminated RAFT polymers for biological applications. Curr. Protoc. Chem. Biol. 2020, 12, e85. [CrossRef]

85. Shmal’ko, A.V.; Stogni, M.Y.; Sivaev, I.B.; Suponitsky, K.Y.; Kirilin, A.D.; Bregadze, V.I. Synthesis of crown ethers with the incorporated cobalt bis(dicarbollide) fragment. J. Organomet. Chem. 2015, 798, 196–203. [CrossRef]

86. Olejniczak, A.; Wojtczak, B.; Grüner, B.; Lesnikowski, Z.J. “Chemical ligation”: A versatile method for nucleoside modification with boron clusters. Chem. Eur. J. 2008, 14, 10675–10682. [CrossRef] [PubMed]

87. Shmal’ko, A.V.; Kazakov, G.S.; Sivaev, I.B.; Bregadze, V.I. Synthesis of podands with nido-carboranyl groups as a basis for construction of crown ethers with an incorporated metallacarborane moiety. Russ. Chem. Bull. 2013, 63, 699–704. [CrossRef]

88. Shmal’ko, A.V.; Stogni, M.Y.; Kazakov, G.S.; Anufriev, S.A.; Sivaev, I.B.; Kovalenko, L.V.; Bregadze, V.I. Cyanide free contraction of disclosed 1,4-dioxane ring as a route to cobalt bis(dicarbollide) derivatives with short spacer between the boron cage and terminal functional group. Dalton Trans. 2015, 44, 9860–9878. [CrossRef] [PubMed]

89. Shmal’ko, A.V.; Stogni, M.Y.; Kazakov, G.S.; Anufriev, S.A.; Sivaev, I.B.; Kovalenko, L.V.; Bregadze, V.I. Cyanide free contraction of disclosed 1,4-dioxane ring as a route to cobalt bis(dicarbollide) derivatives with short spacer between the boron cage and terminal functional group. Dalton Trans. 2015, 44, 9860–9878. [CrossRef] [PubMed]

90. Shmal’ko, A.V.; Stogni, M.Y.; Kazakov, G.S.; Anufriev, S.A.; Sivaev, I.B.; Kovalenko, L.V.; Bregadze, V.I. Cyanide free contraction of disclosed 1,4-dioxane ring as a route to cobalt bis(dicarbollide) derivatives with short spacer between the boron cage and terminal functional group. Dalton Trans. 2015, 44, 9860–9878. [CrossRef] [PubMed]

91. Shmal’ko, A.V.; Stogni, M.Y.; Kazakov, G.S.; Anufriev, S.A.; Sivaev, I.B.; Kovalenko, L.V.; Bregadze, V.I. Cyanide free contraction of disclosed 1,4-dioxane ring as a route to cobalt bis(dicarbollide) derivatives with short spacer between the boron cage and terminal functional group. Dalton Trans. 2015, 44, 9860–9878. [CrossRef] [PubMed]

92. Shmal’ko, A.V.; Stogni, M.Y.; Kazakov, G.S.; Anufriev, S.A.; Sivaev, I.B.; Kovalenko, L.V.; Bregadze, V.I. Cyanide free contraction of disclosed 1,4-dioxane ring as a route to cobalt bis(dicarbollide) derivatives with short spacer between the boron cage and terminal functional group. Dalton Trans. 2015, 44, 9860–9878. [CrossRef] [PubMed]

93. Shmal’ko, A.V.; Stogni, M.Y.; Kazakov, G.S.; Anufriev, S.A.; Sivaev, I.B.; Kovalenko, L.V.; Bregadze, V.I. Cyanide free contraction of disclosed 1,4-dioxane ring as a route to cobalt bis(dicarbollide) derivatives with short spacer between the boron cage and terminal functional group. Dalton Trans. 2015, 44, 9860–9878. [CrossRef] [PubMed]

94. Shmal’ko, A.V.; Stogni, M.Y.; Kazakov, G.S.; Anufriev, S.A.; Sivaev, I.B.; Kovalenko, L.V.; Bregadze, V.I. Cyanide free contraction of disclosed 1,4-dioxane ring as a route to cobalt bis(dicarbollide) derivatives with short spacer between the boron cage and terminal functional group. Dalton Trans. 2015, 44, 9860–9878. [CrossRef] [PubMed]

95. Shmal’ko, A.V.; Stogni, M.Y.; Kazakov, G.S.; Anufriev, S.A.; Sivaev, I.B.; Kovalenko, L.V.; Bregadze, V.I. Cyanide free contraction of disclosed 1,4-dioxane ring as a route to cobalt bis(dicarbollide) derivatives with short spacer between the boron cage and terminal functional group. Dalton Trans. 2015, 44, 9860–9878. [CrossRef] [PubMed]

96. Shmal’ko, A.V.; Stogni, M.Y.; Kazakov, G.S.; Anufriev, S.A.; Sivaev, I.B.; Kovalenko, L.V.; Bregadze, V.I. Cyanide free contraction of disclosed 1,4-dioxane ring as a route to cobalt bis(dicarbollide) derivatives with short spacer between the boron cage and terminal functional group. Dalton Trans. 2015, 44, 9860–9878. [CrossRef] [PubMed]

97. Shmal’ko, A.V.; Stogni, M.Y.; Kazakov, G.S.; Anufriev, S.A.; Sivaev, I.B.; Kovalenko, L.V.; Bregadze, V.I. Cyanide free contraction of disclosed 1,4-dioxane ring as a route to cobalt bis(dicarbollide) derivatives with short spacer between the boron cage and terminal functional group. Dalton Trans. 2015, 44, 9860–9878. [CrossRef] [PubMed]

98. Shmal’ko, A.V.; Stogni, M.Y.; Kazakov, G.S.; Anufriev, S.A.; Sivaev, I.B.; Kovalenko, L.V.; Bregadze, V.I. Cyanide free contraction of disclosed 1,4-dioxane ring as a route to cobalt bis(dicarbollide) derivatives with short spacer between the boron cage and terminal functional group. Dalton Trans. 2015, 44, 9860–9878. [CrossRef] [PubMed]