Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Ovarian Tumor Domain-Containing Viral Proteases Evade Ubiquitin- and ISG15-Dependent Innate Immune Responses

Natalia Frias-Staheli,1,12 Nadia V. Giannakopoulos,4,12 Marjolein Kikkert,6 Shannon L. Taylor,7 Anne Bridgen,6 Jason Paragas,9 Juergen A. Richt,10 Raymond R. Rowland,11 Connie S. Schmaljohn,7 Deborah J. Lenschow,4,5 Eric J. Snijder,6 Adolfo Garcia-Sastre,1,2,3,* and Herbert Whiting Virgin IV4,*

1Department of Microbiology
2Department of Medicine, Division of Infectious Diseases
3Emerging Pathogens Institute
Mount Sinai School of Medicine, New York, NY 10029, USA
4Department of Pathology and Immunology, Department of Molecular Microbiology
5Department of Medicine
Washington University School of Medicine, St. Louis, MO 63110, USA
6Molecular Virology Laboratory, Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, LUMC, P.O. Box 9600, 2300 RC Leiden, The Netherlands
7United States Army Medical Research Institute for Infectious Diseases, Fort Detrick, MD 21702, USA
8Department of Biomedical Sciences, University of Ulster, Cromore Road, Coleraine BT52 1SA, UK
9Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
10National Animal Disease Center-ARS-USDA, Ames, IA 50010, USA
11Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS 66506, USA
12These authors contributed equally to this work.
*Correspondence: adolfo.garcia-sastre@mssm.edu (A.G.-S.), virgin@wustl.edu (H.W.V.)
DOI 10.1016/j.chom.2007.09.014

SUMMARY

Ubiquitin (Ub) and interferon-stimulated gene product 15 (ISG15) reversibly conjugate to proteins and mediate important innate antiviral responses. The ovarian tumor (OTU) domain represents a superfamily of predicted proteases found in eukaryotic, bacterial, and viral proteins, some of which have Ub-deconjugating activity. We show that the OTU domain-containing proteases from nairoviruses and arteriviruses, two unrelated groups of RNA viruses, hydrolyze Ub and ISG15 from cellular target proteins. This broad activity contrasts with the target specificity of known mammalian OTU domain-containing proteins. Expression of a viral OTU domain-containing protein antagonizes the antiviral effects of ISG15 and enhances susceptibility to Sindbis virus infection in vivo. We also show that viral OTU domain-containing proteases inhibit NF-κB-dependent signaling. Thus, the deconjugating activity of viral OTU proteases represents a unique viral strategy to inhibit Ub- and ISG15-dependent antiviral pathways.

INTRODUCTION

Viruses have evolved a panoply of different mechanisms to subvert cellular processes to their own advantage. In particular, viruses must overcome the potent antiviral and inflammatory effects of innate immune cytokines such as type I interferon (IFNα/β) and tumor necrosis factor alpha (TNFα). The induction and activity of these antiviral cytokines is controlled by, among other factors, Ub and Ub-like (UBL) molecules (Karin and Ben-Neriah, 2000). NF-κB is sequestered in the cytoplasm of unstimulated cells through binding to IκB. TNFα binding to its receptor induces IκB phosphorylation followed by K48-linked poly-ubiquitination targeting IκB for proteasomal degradation. This releases NF-κB dimers for translocation to the nucleus, where they regulate transcription. NF-κB-induced genes include type I IFN and other cytokines, hence this Ub-controlled pathway plays a vital role in innate and adaptive immunity, as well as in inflammation (Tergaonkar, 2006). In addition to ubiquitination of IκB, K63- and K48-linked ubiquitination regulates other molecules involved in this signaling pathway (Chen, 2005).

ISG15 is an interferon-induced UBL molecule with important antiviral activity against Sindbis, herpes simplex, influenza A, and influenza B viruses (Lenschow et al., 2007). ISG15, like Ub, is covalently conjugated to target proteins via a C-terminal LRLRGG sequence (Haas et al., 1987; Loeb and Haas, 1992; Narasimhan et al., 1996). Although conjugation is critical for the antiviral activity of ISG15 (Lenschow et al., 2005, 2007), the mechanism by which ISG15 mediates its antiviral function is not completely understood.
Ub and ISG15 are synthesized as inactive precursors with C-terminal extensions that undergo cleavage to reveal the motif required for conjugation. Coordinated activities of an enzymatic cascade comprising an activating enzyme (E1), a conjugating enzyme (E2) and a ligase (E3) result in the conjugation of Ub or ISG15 to the ε-amino group of a lysine residue present in the target protein. Both Ub and ISG15 conjugation can be reversed by the activity of deconjugating enzymes.

Deubiquitinating (DUB) proteolytic enzymes are also involved in processing of Ub precursors. Five classes of DUBs have been described (Nijman et al., 2005); one of the most recently identified is the ovarian tumor (OTU) domain family. This family comprises a group of putative cysteine proteases, homologous to the OTU protein in Drosophila, and includes more than a hundred proteins from eukaryotes, bacteria, and viruses (Makarova et al., 2000). Several OTU domain-containing mammalian proteins, such as Cezanne (Evans et al., 2003), Otubain 1 and 2 (Balakirev et al., 2003), and A20 (Evans et al., 2004) have been identified as proteases that participate in substrate-specific deubiquitinating processes. For example, A20 is an important downregulator of TNFα signaling via its deubiquitination of RIP (Wertz et al., 2004). These activities are mediated by its N-terminal OTU domain and its C-terminal zinc finger domain, respectively. However, the substrate specificity and physiologic role of most OTU domain-containing proteins remains unknown.

As protein ubiquitination and ISGylation are both important for innate immunity, rely on terminal LRLRGG sequences, and share a common mechanism of conjugation, we tested the hypothesis that viral OTU domain-containing proteases regulate Ub- and ISG15-dependent innate immunity via deconjugating protease activity. We found that two unrelated families of RNA viruses express OTU domain-containing proteases with the capacity to decrease Ub and ISG15 conjugation.

RESULTS

OTU Domains in Viral and Mammalian Proteins

Sequencing of the L gene of the highly pathogenic human virus CCHFV (NFS and AGS, data not shown) (Honig et al., 2004; Kinsella et al., 2004) led to the identification of an OTU domain within the nonstructural protein 2 (ns2p), which is also involved in viral replicate polyprotein processing (Snijder et al., 1995). We found that these viral OTU domains, in contrast to known mammalian OTU proteases, display a broad deconjugating activity toward ubiquitinated and ISGylated products and consequently inhibit innate immunity pathways that are dependent on Ub and ISG15. Thus, the deconjugating activity of viral OTU domains represents a unique strategy used by nairoviruses and arteriviruses to evade the host antiviral response, probably by targeting a common biochemical structure in Ub and the UBL protein ISG15.
An alignment of the OTU domains present in nairoviruses, arteriviruses, and mammalian proteins A20, Cezanne, VCIP135, Otubain 1, and Otubain 2 revealed limited identity; however, a strong conservation of D37, G38, N39, C40, W71, H151, and an aromatic amino acid at position 152 (numbering based on the CCHFV-L sequence) was observed (Figure 1, black boxes). Among these amino acids, C40 and H151 (Figure 1, black arrows) were predicted to be the catalytic residues present in the putative protease active site (Balakirev et al., 2003; Makarova et al., 2000; Nanao et al., 2004; Snijder et al., 1995).

Impact of CCHFV-L Expression on Protein Ubiquitination and ISGylation

Given that host OTU domain proteins have deubiquitinating activity (Nijman et al., 2005), we tested the hypothesis that the L protein of CCHFV (CCHFV-L) has deubiquitinating and deISGylating activity (Figure 2). Transfection of
cells with plasmids expressing CCHFV-L slightly decreased the overall expression of Ub-conjugated proteins (Figure 2B, lanes 1 and 2, panel A; Figure 2C, lanes 1, 4, and 5, panel A). To test the effect of CCHFV-L expression on protein ISGylation, ISG15 conjugates were generated by transfecting plasmids expressing ISG15 and its specific E1 (UBE1L) (Yuan and Krug, 2001) and E2 (UbcM8) (Kim et al., 2004; Zhao et al., 2004) enzymes, since endogenous levels of ISGylated proteins are low in the absence of IFN stimulation. Cotransfection of CCHFV-L resulted in a clear decrease in the levels of ISGylated proteins (Figure 2B, lanes 1 and 2, panel B; Figure 2C, lanes 1, 4, and 5, panel B). This decrease was also observed when CCHFV-L was untagged (data not shown). The decrease in total ISGylation was comparable to the effect of UBP43, a known ISG15 deconjugating enzyme (Figure 2B, lane 9, panel B). Expression of CCHFV-L did not affect levels of expression of UBE1L or UbcM8 (Figure 2B, lane 2, panels C and D; Figure 2C, lanes 4 and 5, panel C), consistent with CCHFV-L acting via inhibition of ubiquitination and ISGylation reactions or by directly deubiquitinating or delISGylating proteins.

The OTU Domain of CCHFV-L Decreases the Levels of Ubiquitinated and ISGylated Proteins

To determine the region of the L protein responsible for decreasing ubiquitinated and ISGylated proteins, plasmids expressing three portions of the L protein were constructed (Figure 2A). Expression of the OTU domain-containing N-terminal portion, L(1–1325), resulted in the greatest decrease of Ub and ISG15 conjugates (Figure 2B, lane 3, panels A and B). To further map this region, truncation mutants of the L protein expressing only the first 354, L(1–354), or 169 amino acids, L(1–169), were tested. The results indicated that the region responsible for the decreased levels of Ub and ISG15 conjugates mapped to the OTU domain, L(1–169) (Figure 2B, lanes 6 and 7, panels A and B; Figure 2C, lane 2, panels A and B).

The Predicted Protease Active Site of the CCHFV-L OTU Domain Is Required for Reducing Ub and ISG15 Conjugates

To test whether the amino acids C40 and H151 (Figure 1, black arrows) were critical for the observed reduction in ubiquitinated and ISGylated proteins by the CCHFV-L OTU domain, we expressed a full-length L protein with only the first 354, L(1–354), or 169 amino acids, L(1–169), were tested. The results indicated that the region responsible for the decreased levels of Ub and ISG15 conjugates mapped to the OTU domain, L(1–169) (Figure 2B, lanes 6 and 7, panels A and B; Figure 2C, lanes 3, 6, and 7, panels A and B), strongly suggesting that the OTU domain contains a cysteine protease activity that mediates the decrease in ubiquitinated and ISGylated proteins.

The OTU Domain of CCHFV-L Is a Deconjugating Enzyme with Specificity for Poly-Ub Conjugates and ISG15

To determine whether the CCHFV-L OTU domain directly deconjugates Ub and ISG15 from target proteins, we expressed and purified L(1–169) and a catalytic C40 to A40 mutant, L(1–169)1A, for in vitro deconjugation assays (Figure 3A). Recombinant L(1–169) cleaved both K48- and K63-linked poly-Ub chains into monomers (Figure 3B, lanes 2 to 5), similarly to isopeptidase T, a known DUB enzyme (Figure 3B, lane 10). This activity was markedly decreased by mutating the amino acid C40 (Figure 3B, lanes 6 to 9), indicating that this residue is required for optimal protease activity. The small amount of deconjugation observed with L(1–169)1A is not unexpected, as mutation of Cezanne’s catalytic cysteine yielded similar data where most, but not all, catalytic activity was impaired (Evans et al., 2003). This result shows that the OTU domain of CCHFV-L has bona fide DUB activity in the absence of other cellular proteins.

We next determined whether L(1–169) can deconjugate ISGylated proteins. For this, we generated cell lysates from IFNβ-treated Ubp43−/− murine embryonic fibroblasts (MEFs) that are rich in ISG15 conjugates (Malakhov et al., 2003). Incubation of these lysates with recombinant L(1–169) protein, but not L(1–169)1A, appreciably decreased ISGylated proteins (Figure 3C, top panel) in a L(1–169) concentration-dependent manner. This result suggests that the CCHFV OTU domain has C40-dependent ISG15 deconjugating activity but does not exclude the possibility that the protease activity of the viral OTU domain was activating another delISGylating enzyme present in cell lysates. To address this possibility, we enriched 6xHisISG15 conjugates using affinity chromatography. Incubation of ISG15 conjugates with increasing amounts of L(1–169) resulted in ISG15 deconjugation (Figure 3C, lanes 2 to 5, bottom panel). No deconjugation was detected with the mutant L(1–169)1A protein (Figure 3C, lanes 6 to 9, bottom panel). In addition, L(1–169) processed a pro-ISG15 protein into its mature form (Figure 3E, lane 2, panel A). These data suggest that the CCHFV-L OTU domain directly deconjugates ISGylated proteins through its predicted cysteine protease activity.

To gain further insights on the specificity of the OTU domain, we assessed the ability of L(1–169) and L(1–169)1A to hydrolyze poly-SUMO-2 (Figure 3D, top panel) and poly-SUMO-3 chains (Figure 3D, bottom panel), pro-SUMO-1 (Figure 3E, panel C), and pro-Nedd8 (Figure 3E, panel B). While the catalytic domain of SENP2 (SENP2cd), a SUMO-specific protease, could hydrolyze SUMO chains to monomers (Figure 3D, lane 10) and process pro-SUMO-1 (Figure 3E, lane 5, panel C), neither L(1–169) nor L(1–169)1A was able to cleave SUMO chains or a pro-SUMO-1 precursor. However, similar to its ability to process pro-ISG15 (Figure 3E, lane 2, panel A), L(1–169) hydrolyzed pro-Nedd8 into a mature form (Figure 3E, lane 2, panel B). In summary, the OTU domain of CCHFV-L hydrolyzes Ub and ISG15, but not SUMO-2 or SUMO-3.
from conjugates in vitro, suggesting that viral OTU domains have the unique ability to recognize Ub and specific UBL molecules.

Additional Viral OTU Domains Mediate Deubiquitination and DeISGylation

In addition to CCHFV, viral OTU domains are found in the L proteins of other nairoviruses and in the nsp2 proteins of arteriviruses such as EAV and PRRSV (Figure 1). The arterivirus nsp2 cysteine protease cleaves the nsp2/nsp3 site within the large viral polyprotein during replicase maturation. In the case of EAV, this process is known to be mediated by the 166 N-terminal residues of nsp2, which contains the OTU domain (Snijder et al., 1995). In our study, a slightly larger N-terminal EAV-nsp2 domain (175 amino acids; nsp2N) was used in addition to the full-length protein. The OTU domain of the L protein of DUGV, a nairovirus related to CCHFV, as well as EAV-nsp2, EAV-nsp2N, and PRRSV-nsp2, decreased Ub and ISG15 conjugates when expressed in 293T cells (Figure 4A, lanes 3–6), indicating that deconjugation may be an immune evasion strategy shared by diverse viral families.

Previous studies have demonstrated that the OTU domain-containing mammalian proteins Otubain 1, Otubain 2, Cezanne, VCIP135, and A20 cleave poly-Ub chains in vitro (Balakirev et al., 2003; Evans et al., 2003, 2004; Wang et al., 2004). In contrast, only overexpression of Otubain 1 and Cezanne moderately decreased cellular global Ub conjugate levels, while expression of A20 or Otubain 2 had no effect on total levels of ubiquitinated proteins (Balakirev et al., 2003; Evans et al., 2003, 2004). To date, there have been no published studies investigating the effects of these proteins on ISG15 conjugates. We therefore tested Otubain 1, Otubain 2, Cezanne, VCIP135, and A20 for their
ability to decrease overall protein ubiquitination and ISGylation in transfected cells (Figure 4B). Expression of Otubain 1 resulted in a significant decrease in Ub conjugate levels, while Otubain 2 and Cezanne had a lesser effect (Figure 4B, lanes 2–4, panel 1). Consistent with their specificity for particular ubiquitinated substrates, expression of VCIP135 and A20 did not result in a decrease in overall ubiquitination. None of the OTU-containing mammalian proteins tested decreased global levels of ISG15 conjugates (Figure 4B, lanes 2–6, panel 2). Similar results were obtained when truncation mutants expressing the OTU domains of Otubain 1, Otubain 2, Cezanne, and A20 were tested (data not shown). In addition, the OTU-containing catalytic domain of A20 (A20CD) was unable to process either ISG15 or Nedd8 (Figure 3E, lane 4, panels A and B), even though it cleaved K48-linked Ub chains (Figure 3F, lane 4). By contrast, overexpression of the mammalian deISGylating enzyme UBP43 decreased overall levels of ISG15 conjugates but not Ub conjugates (Figure 4B, lane 7). Thus, viral OTU proteases appear to be unique in their ability to target both ISG15 and Ub conjugates.

Transgenic Mice Expressing CCHFV-L(1–1325) Have Increased Susceptibility to Sindbis Virus Infection

To assess the effect of expressing an OTU domain during viral infection, we generated transgenic mice expressing the CCHFV-L(1–1325) OTU domain-containing protein, which exhibits DUB and deISGylating activities (Figure 2B, lane 3). We obtained germline transgene transmission in three lines designated 1836, 1854, and 2929, and we evaluated L(1–1325) expression in both MEFs and brain lysates from these transgenic lines. MEF cells and brain tissue from 1836 transgenic mice contained detectable L(1–1325) protein, while protein expression from the 1854 and 2929 lines was either undetectable or very low (Figures 5A and 5B). We next evaluated the
sensitivity of L(1–1325) transgenic mice to infection with the virulent Sindbis virus strain AR86, an alphavirus that causes lethal encephalitis in young mice and is sensitive to ISG15-mediated antiviral effects (Lenschow et al., 2005). Susceptibility to Sindbis virus infection tracked with expression of the L(1–1325) protein (Figure 5C). Thirty-five percent of mice from the 1836 transgenic line survived infection compared to ≥80% survival in C57/BL6 littermate controls or transgenic mice expressing low or undetectable levels of transgene-encoded protein. The decreased survival of line 1836 transgenic mice following AR86 infection suggests that CCHFV-L OTU domain functions as a DUB enzyme when expressed in deconjugation of ISGylated proteins. When cells were transfected with the E1, E2, and E3 enzymes but that this is only seen in the presence of a catalytically inactive form of the coexpressed L(1–169) (169GG) or enzymatically inactive L(1–169)2A (MTGG). We also generated a CCHFV-L OTU domain (MTGG) survival, consistent with previous observations that expression of ISG15 protects mice from lethality following Sindbis virus infection (Lenschow et al., 2005). In contrast, only 20% of mice infected with a virus expressing ISG15 and the mutant OTU domain (MTGG) survived, consistent with our in vitro data demonstrating that L(1–169), but not L(1–169)2A, can deISGylate proteins following infection (Figure 6B). Mice infected with 169 or MT died with similar kinetics, demonstrating that the expression of L(1–169) did not increase the virulence of dsTE12Q in the absence of the IFN-mediated antiviral response. The slight increase in survival between 169GG and 169 (p < 0.0001) or MT (p = 0.0032) suggests that we infected from within the Sindbis virus genome to delSGylate and deubiquitinate proteins by infecting BHK-21 cells (Figure 6B). Infection with 169GG or 169, but not MTGG or MT, reduced the amount of Ub conjugates detected in cells (Figure 6B, right panel), indicating that the viral OTU domain functions as a DUB enzyme when expressed from a Sindbis virus. Following transfection with ISG15 and its E1, E2, and E3 enzymes, ISGylated proteins can be detected in BHK-21 cells (Figure 6B, lane 1, middle panel). Infection with 169GG or 169 greatly reduced ISG15 conjugates, confirming that OTU expression results in deconjugation of ISGylated proteins. When cells were transfected with the E1, E2, and E3 enzymes but not ISG15, ISG15 conjugates were observed only following MTGG infection (Figure 6B, left panel). This shows that ISG15 expressed from dsTE12Q is capable of ISGylating proteins in the presence of the relevant conjugating enzymes but that this is only seen in the presence of a catalytically inactive form of the coexpressed L(1–169) protein (Figure 6B, lane 3, left panel).

We then determined whether OTU expression could counter ISG15’s in vivo antiviral effect. In order to exclude effects due to IFNβ-stimulated genes other than ISG15, we infected IFNβR−/− mice (Figure 6C). Seventy percent of mice infected with a virus expressing ISG15 and the mutant OTU domain (MTGG) survived, consistent with previous observations that expression of ISG15 protects mice from lethality following Sindbis virus infection (Lenschow et al., 2005). In contrast, only 20% of mice infected with a virus expressing ISG15 and a functional OTU domain (169GG) survived infection (p = 0.0015). These data also correlate with our in vitro data demonstrating that L(1–169), but not L(1–169)2A, can delSGylate proteins following infection (Figure 6B). Mice infected with 169 or MT died with similar kinetics, demonstrating that the expression of L(1–169) did not increase the virulence of dsTE12Q in the absence of the IFN-mediated antiviral response. The slight increase in survival between 169GG and 169 (p < 0.0001) or MT (p = 0.0032) suggests that
expression of the CCHFV OTU domain cannot completely antagonize the effects of ISG15 in this system. Nevertheless, these data show that expression of a catalytically active viral OTU domain can antagonize the antiviral effects of ISG15 in vivo.

Negative Regulation of the NF-κB Pathway by Viral OTU Domains

While the data above indicate that a viral OTU domain protease can counter the antiviral activities of ISG15, they do not address the possibility that the DUB activity of these proteins might also play a role in immune evasion. To address this hypothesis, we evaluated the effects of the CCHFV-L and EAV-nsp2 OTU domains on the NF-κB signaling pathway. Expression of the OTU domains of CCHFV-L and of EAV-nsp2 decreased in a dose-dependent manner the activation of an NF-κB-responsive promoter (Fujita et al., 1992) after TNFα treatment. This inhibition was similar to that mediated by A20, an OTU domain-containing inhibitor of the NF-κB pathway (Figure 7A). Inhibition was about 10-fold greater in the presence of the L(1–169) domain than the L(1–169)2A mutant, indicating a role for the OTU domain protease activity. These results were further confirmed by the ability of CCHFV-L(1–169) to inhibit NF-κB activation as measured by the inhibition of endogenous p65 nuclear translocation upon TNFα treatment (Figures 7B and 7C). The slight inhibition of NF-κB activity by the L(1–169)2A protein could be caused by some residual binding of this mutant to ubiquitinated substrates or by the presence of some other regulatory motifs within this protein. Nevertheless, the p65 nuclear translocation inhibition by the L(1–169) protein was significantly higher when compared to its mutant counterpart (p = 0.0044). Overall, these results demonstrate the ability of viral OTU domains to affect immune pathways that are regulated by ubiquitination.

DISCUSSION

Here we show that viral OTU domain-containing proteins are proteases that hydrolyze Ub and ISG15 from conjugated proteins. This dual deconjugating activity provide an elegant example of the economy of viral evolution, since both Ub and ISG15 rely on a conserved conjugation motif. Furthermore, the protease activity by the viral OTU domains has the physiologic capacity to evade two different cytokine pathways, IFNα and TNFα, that are fundamentally important for antiviral immunity.
Viral DUB and DeISGylating Enzymes: A Unique Strategy for Immune Evasion?

Biochemical and genetic evidence supports the concept that protein ubiquitination plays a critical role in the induction of both the innate and the adaptive cellular immune system (Liu et al., 2005). For example, in addition to NF-κB signaling, Ub regulates several aspects of antiviral immunity, such as MHC class I and II antigen presentation (Loureiro and Ploegh, 2006; Shin et al., 2006), TLR/IL1 signaling (Chen, 2005), and induction of type I IFN by the cellular viral sensor RIGI (Gack et al., 2007). Inhibition of protein ubiquitination might also affect other cellular processes that can be subverted by viruses for their own advantage, such as the proteasome-mediated protein degradation system, multiple signal transduction events, or cell cycle progression. Given the effects that we observed on NF-κB signaling, it seems likely that viral OTU domain-containing proteases may be able to target these and other Ub-dependent pathways.

While the biochemical effects of ISGylation have been studied far less extensively than those of Ub, ISG15 is an important antiviral protein (Lenschow et al., 2005, 2007; Okumura et al., 2006). Thus, it is not surprising that viruses may use multiple strategies to counter the antiviral effects of ISG15. The work presented here provides a viral strategy for decreasing expression of bona fide ISG15 conjugates in cells. The first such strategy reported is the direct association of the NS1 protein of influenza B virus with ISG15. This association inhibits protein ISGylation by blocking the ISG15-UBE1L interaction (Yuan et al., 2002; Yuan

Figure 7. CCHFV-L and EAV-nsp2 OTU Domains Inhibit TNFα-Mediated NF-κB Activation

(A) NF-κB reporter assay in 293T cells transfected with OTU domains and treated with TNFα. Results shown are an average of three independent experiments. The western blot indicates expression of viral OTU proteins as detected with anti-HA [CCHFV-L(1–169) and CCHFV-L(1–169)2A] or anti-Flag antibodies (EAV-nsp2N). E, empty plasmid. (B) A549 cells were transfected with indicated plasmids, stimulated with TNFα, and stained for p65 (red) and L(1–169) or L(1–169)2A (green). Nuclei were stained with DAPI (blue). The result shown is a representative of three independent experiments. (C) L(1–169) or L(1–169)2A transfected cells in (B) were scored according to subcellular distribution of p65. Differences in p65 nuclear accumulation in TNFα-treated cells were analyzed by Student’s t test: E and L(1–169) (p < 0.0001), E and L(1–169)2A (p = 0.0007), and L(1–169) and L(1–169)2A (p = 0.0045). E, empty plasmid. The result shown is a representative of three independent experiments.

Viral DUB and DeISGylating Enzymes: A Unique Strategy for Immune Evasion?

Biochemical and genetic evidence supports the concept that protein ubiquitination plays a critical role in the induction of both the innate and the adaptive cellular immune system (Liu et al., 2005). For example, in addition to NF-κB signaling, Ub regulates several aspects of antiviral immunity, such as MHC class I and II antigen presentation (Loueiro and Ploegh, 2006; Shin et al., 2006), TLR/IL1 signaling (Chen, 2005), and induction of type I IFN by the cellular viral sensor RIGI (Gack et al., 2007). Inhibition of protein ubiquitination might also affect other cellular processes that can be subverted by viruses for their own advantage, such as the proteasome-mediated protein degradation system, multiple signal transduction events, or cell cycle progression. Given the effects that we observed on NF-κB signaling, it seems likely that viral OTU domain-containing proteases may be able to target these and other Ub-dependent pathways.

While the biochemical effects of ISGylation have been studied far less extensively than those of Ub, ISG15 is an important antiviral protein (Lenschow et al., 2005, 2007; Okumura et al., 2006). Thus, it is not surprising that viruses may use multiple strategies to counter the antiviral effects of ISG15. The work presented here provides a viral strategy for decreasing expression of bona fide ISG15 conjugates in cells. The first such strategy reported is the direct association of the NS1 protein of influenza B virus with ISG15. This association inhibits protein ISGylation by blocking the ISG15-UBE1L interaction (Yuan et al., 2002; Yuan

412 Cell Host & Microbe 2, 404–416, December 2007 ©2007 Elsevier Inc.
Evasion of Ubiquitin- and ISG15-Dependent Immunity

and Krug, 2001), while the viral OTU domain proteases analyzed here accomplish a similar effect via deconjugation. The Ub and ISG15 deconjugation activities by the viral OTU domains contrast with the specific Ub deconjugation activity by the OTU domain-containing cellular proteins tested in this study. We speculate that other viral proteases, perhaps including some that do not have OTU domains, will be found to target both Ub- and ISG15-dependent processes. To date, viral DUB activities and in vitro cleavage of ISG15 fusion proteins have been demonstrated for the adenoviral protease adenain (Balakirev et al., 2002) and the papain-like proteases from the severe acute respiratory syndrome coronavirus (SARS-CoV) (Barretto et al., 2005; Lindner et al., 2005; Ratia et al., 2006).

OTU Domain Specificity and Deconjugating Activity, a Target for Antiviral Drug Development?

We found that the CCHFV-L OTU domain processed Ub and ISG15 conjugates and pro-ISG15 and pro-Nedd8 in vitro but did not have activity against any SUMO isoforms. Ub, ISG15, and Nedd8 differ from SUMO in their exposed C-terminal motifs: LRLRGG for Ub and ISG15 and LALRGG for Nedd8 versus QQQTGG for SUMO-2 and SUMO-3. This raises the interesting possibility that sequences similar to the LRLRGG motif may play an important role in substrate recognition and specific cleavage by CCHFV-L OTU and perhaps other viral proteases. Interestingly, the nsp2 of arteriviruses cleaves the nsp2/3 junction at FRLIGG (EAV) or GRLLGG (PRRSV) (Allende et al., 1999; Snijder et al., 1996; Ziebuhr et al., 2000), sequences similar to the LRLRGG motif. Thus, arterivirus OTU proteases have dual functions: performing essential viral polyprotein processing and targeting host substrates to modulate the antiviral response. This is analogous to the hepatitis C virus NS3-4A protease, which is involved both in viral polyprotein processing and in cleaving the cellular antiviral proteins TRIF and IPS-1 (Li et al., 2005; Lin et al., 2006).

The characterization of the CCHFV-L OTU domain and the development of in vitro assays for its enzymatic activities as described in this study will make it feasible to screen for potential inhibitors specific for CCHFV-L and other OTU domain-containing viral proteins. High-throughput screening of chemical compound libraries has proven to be a valuable tool in the identification of small-molecule inhibitors that do not have OTU domains, will be found to target both Ub- and ISG15-dependent processes during viral infection. We were limited in performing the obvious experiment of assessing the role of viral OTU domain protease activity during infection by two things. First, CCHFV is a biosafety level 4 pathogen lacking a good animal model and whose molecular biology is not well enough developed to allow generation of mutant viruses. Second, the viral OTU domain proteases evaluated here either have, or are likely to have, important effects on processing of viral polyproteins (see above). Given this, we felt that it would be difficult to prove that these proteases have effects during infection that are solely attributable to their DUB and deISGylating activities. However, in transgenic mice, recombinant chimeric Sindbis viruses, and transfected cells, we found that viral OTU domain-containing proteases have significant effects on Ub- and ISG15-dependent host processes of known importance for innate immunity. We therefore conclude that these proteins have bona fide immune evasion properties. It will be interesting to further investigate the activities of these and other viral proteases that target Ub- and ISG15-dependent processes during viral infection.

EXPERIMENTAL PROCEDURES

Expression Plasmids

Plasmids pCAGGS-6HismISG15, pCAGGS-HUBE1L-HA, pFLAGCMV2-UbcM8, and pcDNA3.1-UbcM8 were provided by Dong-Er Zhang (Scripps Research Institute, La Jolla, CA) (Giannakopoulos et al., 2005). HerC6 was provided by Motoaki Ohtsubo (Kurume University, Fukuoka, Japan). pcDNA 3.1’-HA-Ub was provided by Dr. Domenico Tortorella (Mount Sinai School of Medicine, NY) (Treier et al., 1994). Peak10-Flag-A20 plasmid was provided by Dr. Adrian Ting (Mount Sinai School of Medicine). The construction of all other plasmids is described in the Supplemental Experimental Procedures.

Antibodies

Antibodies against Flag (M2 and rabbit polyclonal, Sigma, St. Louis, MO), HA (HA.7 [Sigma] HA.11 [Covance Research, Berkeley, CA]), Ub (P4D1, Cell Signaling, Danvers, MA) NF-κB p65 (F-6, Santa Cruz Biotech, Santa Cruz, CA), and actin (AC-74, Sigma) were used following manufacturer’s protocol. Anti-mouse ISG15 monoclonal (3C2 and KDK102) and polyclonal antibodies (Lenschow et al., 2005) and antiserum recognizing EAV-nsp2 (Snijder et al., 1994) have been previously described.

Purification of CCHFV L(1–169) from E. coli

BL-21 cells (Stratagene, La Jolla, CA) were transformed with pGEX-L(1–169) or pGEX-L(1–169)A CCHFV, cultured to an OD600 of 0.6 in 2xYT medium and induced for 6 hr at 30°C with 0.1 mM IPTG. Bacteria were resuspended in lysis buffer (50 mM Tris-HCl, 5 mM EDTA, 1 mM DTT, 200 mM NaCl, and 0.1% NP-40), and purification of the GST fusion proteins was performed using GL-Sepharose resin (Amersham) according to the manufacturer’s protocol. GST was cleaved using PreScission Protease (Pharmacia, Uppsala, Sweden) in cleavage buffer (50 mM Tris-HCl, pH 7.6, 150 mM NaCl, 1 mM EDTA, and 1 mM DTT).

Assays for DeISGylation in Cultured Cells

Initially, 293T cells cultured in 12-well dishes were cotransfected with 0.4 μg of pCAGGS-6HismISG15, 0.4 μg of pCAGGS-HUBE1L-HA, and 0.2 μg of pFLAGCMV2-UbcM8 along with OTU domain expression plasmids or empty pCAGGS plasmid using Lipofectamine 2000. In
subsequent experiments testing eukaryotic and viral OTU constructs, 293T cells in 12-well dishes were cotransfected with OTU domain expression plasmids and 0.5 μg pCAGGS-6His mISG15, 0.5 μg pCAGGS-mUBEL1-HA, 0.5 μg of plasmid encoding Herc5, and 0.2 μg pFLAGCMV2 UbcM8 or pCDNA3.1-UbcM8. Twenty-four hours posttransfection, cells were lysed in Laemmlli sample buffer, boiled, and analyzed by immunoblot using anti-ISG15 mAb 3C2 as previously described (Lenschow et al., 2005). Each transfection experiment was performed a minimum of three times.

Assay for Deubiquitination in Cultured Cells

293T cells cultured in 12-well dishes were cotransfected with 0.5 μg of pcDNA3.1-HA-Ub and various OTU domain expression plasmids or empty pCAGGS plasmid using Lipofectamine 2000. Twenty-four hours posttransfection, the cells were lysed in Laemmlli sample buffer, and immunoblotted with anti-HA antibody. Each transfection experiment was performed a minimum of three times.

Generation of ISG15 Conjugates

Fourteen 10 cm dishes of 293T cells were transfected with 6 μg pCAGGS-6HismISG15, 3 μg pCAGGS-UBEL1-HA, and 3 μg pFLAGCMV2-UbcM8. Twenty-four hours later, cells were harvested, resuspended in 20 mM Tris-HCl (pH 8.0) with 300 mM NaCl, and lysed by three cycles of freeze-thaw. Lysates were centrifuged for 15 min at 14,000 rpm. His-tagged ISG15 conjugates were purified over a His-Select Spin Column (Sigma) following the manufacturer’s directions. Column-bound conjugates were washed extensively with washing buffer (20 mM Tris-HCl [pH 8.0], 300 mM NaCl, and 5 mM imidazole) and eluted with 20 mM Tris-HCl (pH 8.0), 300 mM NaCl, and 250 mM imidazole. Protein concentration was measured by Bradford assay (Bio-Rad).

In Vitro Deconjugation Assays

K48Ub2–7, K63Ub3–7, SUMO-22–8, SUMO-32–8, pro-ISG15, pro-Nedd8, or empty plasmid along with the firefly luciferase gene construct under the control of the NF-κB-binding sites (Wang et al., 2000) and pRL-TK (Renilla luciferase; Promega, WI). The total amount of transfected DNA was kept constant by adding the pCAGGS empty vector. Twenty-four hours posttransfection, the cells were harvested, washed extensively with PBS, and stained with anti-p65 and anti-Flag antibodies. Following PBS washes, cells were stained with anti-mouse (p65) or anti-rabbit (Flag) and secondary antibodies, and then mounted in medium containing an antifade reagent. Nuclear localization of p65 was scored in 100 to 400 transfected cells for each experimental condition.

Immunoﬂuorescence

Two hundred nanograms of empty plasmid or Flag-tagged L(1–169) and L(1–169)2A were transfected into A549 cells. Twenty-four hours later, cells were stimulated with 10 ng/ml TNFx for 2 hr. Cells were fixed and permeabilized for 30 min at room temperature with 2.5% formaldehyde and 0.5% Triton X-100, washed extensively with PBS, and stained with anti-p65 and anti-Flag antibodies. Following PBS washes, cells were stained with anti-mouse (p65) or anti-rabbit (Flag) and secondary antibodies, and then mounted in medium containing an antifade reagent. Nuclear localization of p65 was scored in 100 to 400 transfected cells for each experimental condition.

Mouse Studies

IFNαβR−/− mice on the 129/SV/Pas background were initially obtained from M. Aguett, Swiss Institute of Experimental Cancer Research (Epingles, Switzerland) (Behr et al., 2001; Dunn et al., 2005). CHHV-L(1–1325) transgenic mice were generated at the WUSM Pathology Microinjection Core by microinjecting a linearized construct derived from pCAGGS-HA-L(1–1325) into B6 oocytes. Oocytes were implanted into pseudopregnant mice, and resulting litters were genotyped using PCR (primer sequences available upon request). Individual embryo MEFS from transgenic lines 1836, 1854, and 2929 were generated as described previously (Weck et al., 1999). Uninfected transgenic brain was homogenized in 1 ml of DMEM with protease inhibitors using 100 μl 1.0 mm diameter zirconia-silica beads in a MagNA Lyser (Roche, Indianapolis, IN). To assess transgene expression, 4 × 106 MEFS or 12 μl of brain homogenate were immunoblotted with HA.11 and anti-actin antibodies. Eight- to ten-week-old male IFNαβR−/− mice were infected subcutaneously (s.c.) in the left hind footpad with 5 × 106 PFU of virus diluted in 50 μl of Hank’s balanced salt solution (HBSS). Four- to five-week old L(1–1325) transgenic mice were infected s.c. in the left hind footpad with 5000 PFU of Sindbis virus AR86 diluted in 50 μl of HBSS. Mice were bred and maintained at Washington University School of Medicine in accordance with all federal and university guidelines.

Statistical Analysis

All data were analyzed by Prism software (GraphPad, San Diego, CA). Survival data were analyzed by the log-rank (Mantel-Haenzsel) test, with death as the primary variable. Single-step growth curves were analyzed by one-way analysis of variance (ANOVA).

Supplemental Data

The Supplemental Data include Supplemental Experimental Procedures and two supplemental ﬁgures and can be found with this article online at http://www.cellhostandmicrobe.com/cgi/content/full/2/6/.

ACKNOWLEDGMENTS

We thank Richard Cadagan, Caroline Lai, and Lindsay Drot for technical assistance; Dr. Domenico Tortorella for helpful discussions; and Drs. Dong-Er Zhang, Motoaki Ohtsubo, Adrian Ting, and Dianne Griffin for providing reagents. This work was partially supported by DoD grants W81XWH-04-1-0876 and W81XWH-07-2-0028, and by a NIAID-funded Center to Investigate Virus Immunity and Antagonism (CIVIA) U19 AI62623 (to A.G.-S.), and by NIAID grants U54 AI057158 Projects 6 and 10 (to H.W.V.) and U54 AI057160 Projects (to A.G.-S.).

Received: May 4, 2007
Revised: July 23, 2007
Accepted: September 21, 2007
Published: December 12, 2007
Evasion of Ubiquitin- and ISG15-Dependent Immunity

REFERENCES

Allende, R., Lewis, T.L., Lu, Z., Rock, D.L., Kutish, G.F., Ali, A., Doster, A.R., and Osorio, F.A. (1999). North American and European porcine reproductive and respiratory syndrome viruses differ in non-structural protein coding regions. J. Gen. Virol. 80, 307–315.

Balakirev, M.Y., Jaquinod, M., Haas, A.L., and Chroboczek, J. (2002). Deubiquitinating function of adenosine proteinase J. Virol. 76, 6323–6331.

Balakirev, M.Y., Tcherniuk, S.O., Jaquinod, M., and Chroboczek, J. (2003). Otubains: A new family of cysteine proteases in the ubiquitin pathway. EMBO Rep. 4, 517–522.

Barratet, N., Jukeliene, D., Ratia, K., Chen, Z., Mesecar, A.D., and Baker, S.C. (2005). The papain-like protease of severe acute respiratory syndrome coronavirus has deubiquitinating activity. J. Virol. 79, 15189–15196.

Behr, M., Schieferdecker, K., Buhr, P., Buter, M., Petsopoulosakul, W., Sirirungsi, W., Redmann-Muller, I., Muller, U., Prempracha, N., and Jungwirth, C. (2001). Interferon-stimulated response element (ISRE)-binding protein complex DRAF1 is activated in Sindbis virus (HSV)-infected cells. J. Interferon Cytokine Res. 21, 981–990.

Blanchard, J.E., Elowe, N.H., Hultema, C., Fortin, P.D., Cechetto, J.D., Ellis, L.D., and Brown, E.D. (2004). High-throughput screening identifies inhibitors of the SARS coronavirus main proteinase. Chem. Biol. 11, 1445–1453.

Boone, D.L., Turer, E.E., Lee, E.G., Ahmad, R.C., Wheeler, M.T., Taul, C., Hurley, P., Chien, M., Chai, S., Hitotsumatsu, O., et al. (2004). The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nat. Immunol. 5, 1052–1060.

Chen, Z.J. (2005). Ubiquitin signalling in the NF-κB pathway. Nat. Cell Biol. 7, 758–765.

Dunn, G.P., Bruce, A.T., Sheehan, K.C., Shankaran, V., Uppaluri, R., Bui, J.D., Diamond, M.S., Koebel, C.M., Arthur, C., White, J.M., and Schreiber, R.D. (2005). A critical function for type I interferons in cancer immunoeediting. Nat. Immunol. 6, 722–729.

Evans, P.C., Smith, T.S., Lai, M.J., Williams, M.G., Burke, D.F., Heyninck, K., Kreike, M.M., Beyaert, R., Blundell, T.L., and Kishlaw, P.J. (2003). A novel type of deubiquitinating enzyme. J. Biol. Chem. 278, 23180–23186.

Evans, P.C., Ovaa, H., Hamon, M., Klishaw, P.J., Hamm, S., Bauer, S., Ploegh, H.L., and Smith, T.S. (2004). Zinc-finger protein A20, a regulator of inflammation and cell survival, has de-ubiquitinating activity. Biochem. J. 378, 727–734.

Fujita, T., Nolan, G.P., Ghosh, S., and Baltimore, D. (1992). Independent modes of transcriptional activation by the p50 and p65 subunits of NF-κB. Genes Dev. 6, 775–787.

Gack, M.U., Shin, Y.C., Joo, C.H., Urano, T., Liang, C., Sun, L., Takeuchi, O., Akira, S., Chen, Z., Inoue, S., and Jung, J.U. (2007). TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 446, 916–920.

Giannakopoulos, N.V., Luo, J.K., Papov, V., Zou, W., Lenschow, D.J., Jacobs, B.S., Borden, E.C., Li, J., Virgin, H.W., and Zhang, D.E. (2005). Proteomic identification of proteins conjugated to ISG15 in mouse and human cells. Biochem. Biophys. Res. Commun. 336, 496–506.

Haas, A.L., Ahrens, P., Bright, P.M., and Ankel, H. (1987). Interferon induces a 15-kilodalton protein exhibiting marked homology to ubiquitin. J. Biol. Chem. 262, 11315–11323.

Heise, M.T., Simpson, D.A., and Johnston, R.E. (2000). A single amino acid change in nsP1 attenuates neurovirulence of the Sindbis-group alphavirus S.A.AR86. J. Virol. 74, 4207–4213.

Honig, J.E., Osborne, J.C., and Nichol, S.T. (2004). Crimean-Congo hemorrhagic fever virus genome L RNA segment and encoded protein. Virology 321, 29–35.

Karin, M., and Ben-Neriah, Y. (2000). Phosphorylation meets ubiquitination: The control of NF-κB activity. Annu. Rev. Immunol. 18, 611–663.

Kim, K.I., Giannakopoulos, N.V., Virgin, H.W., and Zhang, D.E. (2004). Interferon-inducible ubiquitin E2. Ubc8, is a conjugating enzyme for protein ISGylation. Mol. Cell. Biol. 24, 9592–9600.

Kinsella, E., Martin, S.G., Grolla, A., Czub, M., Feldmann, H., and Flick, R. (2004). Sequence determination of the Crimean-Congo hemorrhagic fever virus L segment. Virology 327, 23–28.

Kirkin, V., and Dikic, I. (2007). Role of ubiquitin- and Ub-binding proteins in cell signaling. Curr. Opin. Cell Biol. 19, 199–205.

Lenschow, D.J., Giannakopoulos, N.V., Gunn, L.J., Johnston, C., O’Guin, A.K., Schmidt, R.E., Levine, B., and Virgin, H.W. (2005). Identification of interferon-stimulated gene 15 as an antiviral molecule during Sindbis virus infection in vivo. J. Virol. 79, 13974–13983.

Lenschow, D.J., Lai, C., Frias-Staheli, N., Giannakopoulos, N.V., Lutz, A., Wolff, T., Osiak, A., Levine, B., Schmidt, R.E., Garcia-Sastre, A., et al. (2007). IFN-stimulated gene 15 functions as a critical antiviral molecule against influenza, herpes, and Sindbis viruses. Proc. Natl. Acad. Sci. USA 104, 1371–1376.

Levine, B., Goldman, J.E., Jiang, H.H., Griffin, D.E., and Hardwick, J.M. (1996). Bc1-2 protects mice against fatal alphavirus encephalitis. Proc. Natl. Acad. Sci. USA 93, 4810–4815.

Li, K., Foy, E., Ferreone, J.C., Nakamura, M., Ferreone, A.C., Ikeda, M., Ray, S.C., Gale, M., Jr., and Lemos, S.M. (2005). Immune evasion by hepatitis C virus NS3/4A protease-measured cleavage of the Toll-like receptor 3 adaptor protein TRIF. Proc. Natl. Acad. Sci. USA 102, 2992–2997.

Lin, R., Lacoste, J., Nakhaei, P., Sun, Q., Yang, L., Paz, S., Wilkinson, P., Julkunen, I., Vitour, D., Meurs, E., and Hiscott, J. (2006). Dissociation of a MAVS/IPS-1/VISA/Cardif-IKKepsilon protein complex from the mitochondrial outer membrane by hepatitis C virus NS3-4A proteolytic cleavage. J. Virol. 80, 6072–6083.

Lindner, H.A., Fotouhi-Ardakani, N., Lytyn, V., Lachance, P., Sulea, T., and Menard, R. (2005). The papain-like protease from the severe acute respiratory syndrome coronavirus is a deubiquitinating enzyme. J. Virol. 79, 15199–15208.

Liu, Y.C., Penninger, J., and Karin, M. (2005). Immunity by ubiquitylation: A reversible process of modification. Nat. Rev. Immunol. 5, 941–952.

Loeb, K.R., and Haas, A.L. (1992). The interferon-inducible 15-kDa ubiquitin homolog conjugates to intracellular proteins. J. Biol. Chem. 267, 7806–7813.

Loureiro, J., and Ploegh, H.L. (2006). Antigen presentation and the ubiquitin-proteasome system in host-pathogen interactions. Adv. Immunol. 92, 225–305.

Makarova, K.S., Aravind, L., and Koonin, E.V. (2000). A novel superfamily of predicted cysteine proteases from eukaryotes, viruses and Chlamydia pneumoniae. Trends Biochem. Sci. 25, 50–52.

Malakovich, M.P., Kim, K.I., Malakhova, O.A., Jacobs, B.S., Borden, E.C., and Zhang, D.E. (2003). High-throughput immunoblotting Ubiquitin-like protein ISG15 modifies key regulators of signal transduction. J. Biol. Chem. 278, 16608–16613.

Nanoo, M.H., Tcherniuk, S.O., Chroboczek, J., Dideberg, O., Dessen, A., and Balakirev, M.Y. (2004). Crystal structure of human otubain 2. EMBO Rep. 5, 783–788.

Narasimhan, J., Potter, J.L., and Haas, A.L. (1996). Conjugation of the 15-kDa interferon-induced ubiquitin homolog is distinct from that of ubiquitin. J. Biol. Chem. 271, 324–330.

Nijman, S.M., Luna-Vargas, M.P., Velds, A., Brummelkamp, T.R., Dirac, A.M., Sixma, T.K., and Bernards, R. (2005). A genomic and functional inventory of deubiquitinating enzymes. Cell 123, 773–786.
Okumura, A., Lu, G., Pitha-Rowe, I., and Pitha, P.M. (2006). Innate antiviral response targets HIV-1 release by the induction of ubiquitin-like protein ISG15. Proc. Natl. Acad. Sci. USA 103, 1440–1445.

Ratia, K., Saikatendu, K.S., Santarsiero, B.D., Barretto, N., Baker, S.C., Stevens, R.C., and Mesecar, A.D. (2006). Severe acute respiratory syndrome coronavirus papain-like protease: Structure of a viral deubiquitinating enzyme. Proc. Natl. Acad. Sci. USA 103, 5717–5722.

Shin, J.S., Ebersold, M., Pypaert, M., Delamarre, L., Hartley, A., and Mellman, I. (2006). Surface expression of MHC class II in dendritic cells is controlled by regulated ubiquitination. Nature 444, 115–118.

Snijder, E.J., Wassenaar, A.L., and Spaan, W.J. (1994). Proteolytic processing of the replicase ORF1a protein of equine arteritis virus. J. Virol. 68, 5755–5764.

Snijder, E.J., Wassenaar, A.L., Spaan, W.J., and Gorbalenya, A.E. (1995). The arterivirus Nap2 protease. An unusual cysteine protease with primary structure similarities to both papain-like and chymotrypsin-like proteases. J. Biol. Chem. 270, 16671–16676.

Snijder, E.J., Wassenaar, A.L., van Dinten, L.C., Spaan, W.J., and Gorbalenya, A.E. (1996). The arterivirus nsp4 protease is the prototype of a novel group of chymotrypsin-like enzymes, the 3C-like serine proteases. J. Biol. Chem. 271, 4864–4871.

Sudo, K., Yamaji, K., Kawamura, K., Nishijima, T., Kojima, N., Aibe, K., Shimotohno, K., and Shimizu, Y. (2005). High-throughput screening of low molecular weight NS3-NS4A protease inhibitors using a fluorescence resonance energy transfer substrate. Antivir. Chem. Chemother. 16, 385–392.

Tergaonkar, V. (2006). NF-κB pathway: A good signaling paradigm and therapeutic target. Int. J. Biochem. Cell Biol. 38, 1647–1653.

Treier, M., Staszewski, L.M., and Bohmann, D. (1994). Ubiquitin-dependent c-Jun degradation in vivo is mediated by the delta domain. Cell 78, 787–798.

Wang, X., Li, M., Zheng, H., Muster, T., Palese, P., Beg, A.A., and Garcia-Sastre, A. (2000). Influenza A virus NS1 protein prevents activation of NF-κB and induction of alpha/beta interferon. J. Virol. 74, 11566–11573.

Wang, Y., Satoh, A., Warren, G., and Meyer, H.H. (2004). VCP is a deubiquitinating enzyme during p97-p47-mediated reassembly of mitotic Golgi fragments. J. Cell Biol. 164, 973–978.

Weck, K.E., Kim, S.S., Virgin, H.I., and Speck, S.H. (1999). B cells regulate murine gammaherpesvirus 68 latency. J. Virol. 73, 4651–4661.

Wertz, I.E., O’Rourke, K.M., Zhou, H., Eby, M., Aravind, L., Seshagiri, S., Wu, P., Wiesmann, C., Baker, R., Boone, D.L., et al. (2004). Deubiquitination and ubiquitin ligase domains of A20 downregulate NF-κB signalling. Nature 430, 694–699.

Whitehouse, C.A. (2004). Crimean-Congo hemorrhagic fever. Antiviral Res. 64, 145–160.

Yuan, W., and Krug, R.M. (2001). Influenza B virus NS1 protein inhibits conjugation of the interferon (IFN)-induced ubiquitin-like ISG15 protein. EMBO J. 20, 362–371.

Yuan, W., Aramini, J.M., Montelione, G.T., and Krug, R.M. (2002). Structural basis for ubiquitin-like ISG 15 protein binding to the NS1 protein of influenza B virus: A protein-protein interaction function that is not shared by the corresponding N-terminal domain of the NS1 protein of influenza A virus. Virology 304, 291–301.

Zhao, C., Beaudenon, S.L., Kelley, M.L., Waddell, M.B., Yuan, W., Schulman, B.A., Hulbregts, J.M., and Krug, R.M. (2004). The UbcH8 ubiquitin E2 enzyme is also the E2 enzyme for ISG15, an IFN-alpha/beta-induced ubiquitin-like protein. Proc. Natl. Acad. Sci. USA 101, 7578–7582.

Ziebuhr, J., Snijder, E.J., and Gorbalenya, A.E. (2000). Virus-encoded proteinases and proteolytic processing in the Nidovirales. J. Gen. Virol. 81, 853–879.