BOUNDS ON SOME EDGE FOLKMAN NUMBERS *

May 31, 2011

Nikolay R. Kolev

Abstract

The edge Folkman numbers are defined by the equality

\[F_e(a_1, \ldots, a_r; q) = \min \{|V(G)| : G \not\rightarrow (a_1, \ldots, a_r; q) \text{ and } cl(G) < q \}. \]

Lin proved that if \(R(a_1, a_2) = R(a_1-1, a_2) + R(a_1, a_2-1) \) then \(F_e(a_1, a_2; R(a_1, a_2)) = R(a_1, a_2) + 2 \), where \(R(a_1, a_2) \) is the Ramsey number showing that \(K_{R(a_1, a_2) - 3 + C_5} \rightarrow (a_1, a_2) \) where \(C_5 \) is the simple cycle on 5 vertices. We prove some upper bounds on edge Folkman numbers for which \(R(a_1, a_2) < R(a_1-1, a_2) + R(a_1, a_2-1) \) and we cite some lower bounds.

1 1. Introduction

Only finite non-oriented graphs without multiple edges and loops are considered. We call a \(p \)-clique of the graph \(G \) a set of \(p \) vertices each two of which are adjacent. The largest positive integer \(p \) such that \(G \) contains a \(p \)-clique is denoted by \(cl(G) \). A set of vertices of the graph \(G \) none two of which are adjacent is called an independent set. The largest positive integer \(p \) such that \(G \) contains an independent set on \(p \) vertices is called the independence number of the graph \(G \) and is denoted by \(\alpha(G) \). In this paper we shall also use the following notations:

- \(V(G) \) is the vertex set of the graph \(G \);
- \(E(G) \) is the edge set of the graph \(G \);
- \(N(v), v \in V(G) \) is the set of all vertices of \(G \) adjacent to \(v \);
- \(G[V], V \subseteq V(G) \) is the subgraph of \(G \) induced by \(V \);
- \(K_n \) is the complete graph on \(n \) vertices;
- \(\overline{G} \) is the complementary graph of \(G \).

*Partially supported by the scientific research fund of St. Kl. Ohridski Sofia University under contract No 75/2009
Let G_1 and G_2 be two graphs without common vertices. We denote by $G_1 + G_2$ the graph G for which $V(G) = V(G_1) \cup V(G_2)$ and $E(G) = E(G_1) \cup E(G_2) \cup E'$ where $E' = \{ xy : x \in V(G_1), y \in V(G_2) \}$. It is clear that
\[
cl(G_1 + G_2) = cl(G_1) + cl(G_2). \tag{1}
\]

Definition 1. Let a_1, \ldots, a_r be positive integers. The symbol $G \not \rightarrow (a_1, \ldots, a_r)$ means that in every r-coloring of $V(G)$ there is a monochromatic a_i-clique in the i-th color for some $i \in \{1, \ldots, r\}$.

Definition 2. Let a_1, \ldots, a_r be positive integers. We say that an r-coloring of $E(G)$ is (a_1, \ldots, a_r)-free if for each $i = 1, \ldots, r$ there is no monochromatic a_i-clique in the i-th color. The symbol $G \not \rightarrow (a_1, \ldots, a_r)$ means that there is no (a_1, \ldots, a_r)-free coloring of $E(G)$.

The smallest positive integer n for which $K_n \not \rightarrow (a_1, \ldots, a_r)$ is called a Ramsey number and is denoted by $R(a_1, a_2)$. Let us denote $R(1, a_2)$ as $R(a_2)$. Note that the Ramsey number $R(a_1, a_2)$ can be interpreted as the smallest positive integer n such that for every n-vertex graph G either $cl(G) \geq a_1$ or $\alpha(G) \geq a_2$. The existence of such numbers was proved by Ramsey in [18]. We shall use only the values $R(3, 3) = 6$ and $R(3, 4) = 9$, [3].

The edge Folkman numbers are defined by the equality
\[
F_e(a_1, \ldots, a_r; q) = \min \{|V(G)| : G \not \rightarrow (a_1, \ldots, a_r) \text{ and } cl(G) < q\}.
\]
It is clear that $G \not \rightarrow (a_1, \ldots, a_r)$ implies $cl(G) \geq \max\{a_1, \ldots, a_r\}$. There exists a graph G such that $G \not \rightarrow (a_1, \ldots, a_r)$ and $cl(G) = \max\{a_1, \ldots, a_r\}$. In the case $r = 2$ this was proved in [1] and in the general case in [16]. Therefore
\[
F_e(a_1, \ldots, a_r; q) \text{ exists if and only if } q > \max\{a_1, \ldots, a_r\}.
\]
It follows from the definition of $R(a_1, \ldots, a_r)$ that
\[
F_e(a_1, \ldots, a_r; q) = R(a_1, \ldots, a_r) \text{ if } q > R(a_1, \ldots, a_r).
\]

The smaller the value of q in comparison to $R(a_1, \ldots, a_r)$ the more difficult the problem of computing the number $F_e(a_1, \ldots, a_r; q)$. Only ten edge Folkman numbers that are not Ramsey numbers are known. For the results see the papers: [2], [4], [6], [7], [9], [10], [11], [13].

2 Upper bounds on the edge Folkman numbers

We obtained the following result:

Theorem 1 Let a and α be nonnegative integers. Let us denote $R = R(3, a)$. Let $R = R(3, a - 1) + a - \alpha$ and $R - 3a + \alpha + 5 \geq R(3, a - 2)$, $a \geq 4$. If there exists a graph U with the properties
\[
cl(U) = a - 1
\]
\[
U \not \rightarrow (a - 1, a - 2)
\]
\[
U \not \rightarrow (a - 3, \ldots, a - 3, 3) \text{ times}
\]
\[
1 \text{ times}
\]
Then

\[F_\epsilon(3, a; R - a + \alpha + 4) \leq R - 2a + \alpha + 4 + |V(U)|. \]

Proof Consider the graph \(G = K_{R - 2a + \alpha + 4} + U \) where \(U \) is the graph from the statement of the theorem. We will prove that \(G \sim (3, a) \) and thus the theorem will be proved (here we use (1) to compute that \(cl(G) = R - 2a + \alpha + 4 + cl(U) = R - a + \alpha + 3 \).

Assume the opposite: that there exists a \((3, a)\)-free 2-coloring of \(E(G) \)

\[E(G) = E_1 \cup E_2, \quad E_1 \cap E_2 = \emptyset. \]

(2)

We shall call the edges in \(E_1 \) blue and the edges in \(E_2 \) red.

We define for an arbitrary vertex \(v \in V(G) \) and index \(i = 1, 2 \):

\[N_i(v) = \{ x \in N(v) \mid [v, x] \in E_i \}, \]

\[G_i(v) = G[N_i(v)] \]

\[A_i(v) = N_i(v) \cap V(U) \]

Let \(H \) be a subgraph of \(G \). We say that \(H \) is a monochromatic subgraph in the blue-red coloring (2) if \(E(H) \subseteq E_1 \) or \(E(H) \subseteq E_2 \). If \(E(H) \subseteq E_1 \) we say that \(H \) is a blue subgraph and if \(E(H) \subseteq E_2 \) we say that \(H \) is a red subgraph.

It follows from the assumption that the coloring (2) is \((3, a)\)-free that

\[cl(G_1(v)) \leq a - 1 \text{ and } cl(G_2(v)) \leq R(3, a - 1) - 1 \text{ for each } v \in V(G) \]

(3)

Indeed, assume that \(cl(G_1(v)) \geq a \). Then there must be no blue edge connecting any two of the vertices in \(G_1(v) \) because otherwise this blue edge together with the vertex \(v \) would give a blue triangle. As we assumed \(cl(G_1(v)) \geq a \) then we have a red \(a \)-clique. Analogously assume \(cl(G_2(v)) \geq R(3, a - 1) \). Then we have either a blue \(3 \)-clique or a red \((a - 1)\)-clique in \(G_2(v) \). If we have a blue \(3 \)-clique in \(G_2(v) \) then we are through. If we have a red \((a - 1)\)-clique then this \((a - 1)\)-clique together with the vertex \(v \) gives a \(a \)-clique. Thus (3) is proved.

We shall prove that

\[cl(G[A_1(v)]) + cl(G[A_2(v)]) \leq 2a - 5 \text{ for each } v \in V(K_{R - 2a + \alpha + 4}) \]

(4)

Assume that (4) is not true, i.e. that there exists a vertex \(v \in V(K_{R - 2a + \alpha + 4}) \) such that

\[cl(G[A_1(v)]) + cl(G[A_2(v)]) \geq 2a - 4. \]

Then as there are \(R - 2a + \alpha + 3 \) more vertices in \(V(K_{R - 2a + \alpha + 4}) \) with the exception of \(v \), it follows that

\[cl(G_1(v)) + cl(G_2(v)) \geq R - 2a + \alpha + 3 + 2a - 4 = R + \alpha - 1 = R(3, a - 1) + a - 1 \]

(here we use the statement of the theorem that \(R(3, a) = R(3, a - 1) + a - \alpha \).)

This contradicts (3). Thus (4) is proved.

Now we shall prove that

\[cl(G[A_1(v)]) = a - 1 \text{ or } cl(G[A_2(v)]) = a - 1 \text{ for each } v \in V(K_{R - 2a + \alpha + 4}) \]

(5)

Assume that (5) is not true. Then we obtain from \(cl(U) = a - 1 \) that

\[cl(G[A_1(v)]) \leq a - 2 \text{ and } cl(G[A_2(v)]) \leq a - 2 \text{ for some } v \in V(K_{R - 2a + \alpha + 4}). \]

(6)
It follows from the statement of the theorem that $U \rightarrow (a-1, a-2)$ that in every 2-coloring of $V(U)$, in which there are no $(a-1)$-cliques in none of the two colors then there are $(a-2)$-cliques in the both colors. Hence $A_1(v)$ and $A_2(v)$ contain $(a-2)$-clique. Therefore the inequalities in (6) are in fact equalities, which contradicts (4). Thus (5) is proved. Let us note that it follows from (5) and (4) that for each $v \in V(K_{R−2a+α+4})$

$$\text{cl}(G[A_2(v)]) = a−1 \text{ then } \text{cl}(G[A_1(v)]) \leq a−4.$$

(7)

If we assume that there are a vertices v in $V(K_{R−2a+α+4})$ with the property $\text{cl}(G[A_1(v)]) = a−1$ then it follows from (3) that there are only red edges between these a vertices and hence this is a red a-clique. Therefore having in mind the statement of the theorem there are at least $R−2a + α + 4 − (a−1) \geq R(3, a−2)$ vertices v in $V(K_{R−2a+α+4})$ with the property $\text{cl}(G[A_1(v)]) \leq a−2$. Let us denote the set of these vertices by S. It follows by (5) that $\text{cl}(G[A_2(v)]) = a−1$ for each $v \in S$. Then we obtain from (7) that

$$\text{cl}(G[A_1(v)]) \leq a−4 \text{ for each } v \in S.$$

(8)

As there are no blue 3-cliques among the vertices in S there is a red $(a−2)$-clique among them. Let us denote the vertices of this $(a−2)$-clique by $w_1, w_2, \ldots, w_{a−2}$. Let us partition the vertices of U in $a−1$ colors in the following way:

$$V_1 = A_1(w_1)$$

and for $j ∈ 2, \ldots, a−2$

$$V_j = A_1(w_j) \setminus V_1 \cup \ldots \cup V_{j−1}$$

$$V_{a−1} = V(U) \setminus V_1 \cup \ldots \cup V_{a−2}.$$

According to (8) it is impossible V_j, $j ∈ 1, \ldots, a−2$ to contain a $(a−3)$-clique because according to its definition V_j is a subset of $A_1(w_j)$. But we know from the statement of the theorem that $U \rightarrow (a−3, \ldots, a−3, 3)$. Hence $V_{a−1}$ contains a 3-

$a-2$ times

clique. Then this 3-clique must contain a red edge (otherwise it is a blue 3-clique and we are through). But it follows from the definition of $V_{a−1}$ that all the edges between the vertices in $V_{a−1}$ and the vertices $w_1, \ldots, w_{a−2}$ are red. Then the red edge in $V_{a−1}$ and the red $(a−2)$-clique $w_1, \ldots, w_{a−2}$ form a red a-clique. Thus the theorem is proved.

If we put $α = 0$, $a = 5$, $U = Q$, where Q denotes the graph whose complementary is the graph given here we obtain the following Kolev’s result

$$F_ε(3; 5; 13) \leq 21, [5].$$

What is novel in this result is that for the first time the graph Q is used in the theory of edge Folkman numbers.

We also prove the following result which unfortunately is not a particular case of

Theorem 1:

Theorem 2 $F_ε(4; 4; 17) \leq 25$.

Proof: Consider the graph $G = K_{12} + Q$ and we shall show that $G \rightarrow (4, 4)$. Assume the opposite: that there exists a $(4, 4)$-free 2-coloring of $E(G)$

$$E(G) = E_1 \cup E_2, \quad E_1 \cap E_2 = \emptyset.$$

(9)
We shall call the edges in E_1 blue and the edges in E_2 red.

We define for an arbitrary vertex $v \in V(G)$ and index $i = 1, 2$:

$$N_i(v) = \{ x \in N(v) \mid [v, x] \in E_i \},$$

$$G_i(v) = G[N_i(v)],$$

$$A_i(v) = N_i(v) \cap V(Q).$$

We say that H is a monochromatic subgraph in the blue-red coloring (9) if $E(H) \subseteq E_1$ or $E(H) \subseteq E_2$. If $E(H) \subseteq E_1$ we say that H is a blue subgraph and if $E(H) \subseteq E_2$ we say that H is a red subgraph.

It follows from the assumption that the coloring (9) is $(4,4)$-free and $R(3,4) = 9$ that

$$\text{cl}(G_1(v)) \leq 8 \text{ and } \text{cl}(G_2(v)) \leq 8 \text{ for each } v \in V(G) \quad (10)$$

Assume $\text{cl}(G_2(v)) \geq 9$. Since $R(3,4) = 9$, then we have either a blue 3-clique or a red 4-clique in $G_1(v)$. If we have a blue 3-clique in $G_1(v)$ then this blue 3-clique together with the vertex v forms a blue 4-clique. If we have a red 4-clique then we are through. Analogously we disprove $\text{cl}(G_1(v)) \geq 9$. Thus (10) is proved.

We shall prove that

$$\text{cl}(G[A_1(v)]) + \text{cl}(G[A_2(v)]) \leq 5 \text{ for each } v \in V(K_{12}) \quad (11)$$

Assume that (11) is not true, i.e. that there exists a vertex $v \in V(K_{12})$ such that

$$\text{cl}(G[A_1(v)]) + \text{cl}(G[A_2(v)]) \geq 6.$$

Then as there are eleven more vertices in $V(K_{12})$ with the exception of v, it follows that

$$\text{cl}(G_1(v)) + \text{cl}(G_2(v)) \geq 17.$$

It follows from the pigeonhole principle that either $\text{cl}(G_1(v)) \geq 9$ or $\text{cl}(G_2(v)) \geq 9$, which contradicts (10). Thus (11) is proved.
It is clear from the definition of V.

It follows from (11) and (12) that

if $cl(G[A_1(v)]) = 4$ then $cl(G[A_2(v)]) \leq 1$ for each $v \in V(K_{12})$.

Assume that there are two vertices $a, b \in V(K_{12})$ such that the edge ab is blue and $cl(G[A_1(a)]) = cl(G[A_1(b)]) = 4$. Then it follows from (13) that $cl(G[A_2(a)]) \leq 1$ and $cl(G[A_2(b)]) \leq 1$. Let us consider the following 3-coloring of $V(Q)$:

$$V_1 = A_2(a)$$
$$V_2 = A_2(b) \setminus A_1(a)$$
$$V_3 = V(Q) \setminus (V_1 \cup V_2).$$

It is clear from the definition of V_1, V_2, V_3 that V_3 consists of such vertices that are connected with both a and b with blue edges. It is clear from $cl(G[A_2(a)]) \leq 1$ and $cl(G[A_2(b)]) \leq 1$ that V_1 and V_2 contain no 2-cliques. But we know from [8] that $Q \not\rightarrow (2, 2, 4)$ and hence V_3 contains a 4-clique. If this 4-clique has a blue edge then this blue edge together with the edge ab is a blue 4-clique. If this 4-clique does not have a blue edge then it is a red 4-clique- a contradiction. Thus we obtained that

if $cl(G[A_1(a)]) = cl(G[A_1(b)]) = 4$ then the edge ab is not blue, $a, b \in K_{12}$.

(14)

Analogously we obtain

if $cl(G[A_2(a)]) = cl(G[A_2(b)]) = 4$ then the edge ab is not red, $a, b \in K_{12}$.

(15)

We have from (12) that $cl(G[A_1(v)]) = 4$ or $cl(G[A_2(v)]) = 4$ for each $v \in K_{12}$. For a fixed $v \in K_{12}$ we may assume without loss of generality that $cl(G[A_1(v)]) = 4$. Assume that for this v there exist three distinct vertices $b_1, b_2, b_3 \in K_{12}$ such that the edges $vb_i, i \in \{1, 2, 3\}$ are blue. Now it follows from (13), (14), (15) and the fact that the edges $vb_i, i \in \{1, 2, 3\}$ are blue that

$$cl(G[A_2(b_i)]) = 4 \text{ and } cl(G[A_1(b_i)]) \leq 1$$

(16)

for $i \in \{1, 2, 3\}$. Now it follows from (15) that the edges b_ib_j are blue for $i, j \in \{1, 2, 3\}$. Hence $vb_1b_2b_3$ is a blue 4-clique and the theorem is proved.

Thus we obtained that there are no more than two blue edges from the vertex v. Therefore there are at least 9 vertices connected to v with red edges which contradicts (10). We proved that $G \not\rightarrow (4, 4)$. As $cl(G) = 4$ then we obtain that $F_v(4, 4; 17) \leq 25$, which we wanted to prove.

Remark So far it was known by [1] that $F_v(4, 4; 17) < \infty$.

The last known lower bound of the edge Foklman number $F_v(4, 4; 17)$ is $F_v(4, 4; 17) \geq 22$ - see [15].
3 References

[1] Folkman, J. Graphs with monochromatic complete subgraphs in every edge coloring. *SIAM J. Appl. Math.* 18, 1970, 19–24.
[2] Graham R.L. On edgewise 2-colored graphs with monochromatic triangles containing no complete hexagon. *J. Comb. theory* 4, 1968, 300.
[3] Greenwood, R., A. Gleason. Combinatorial relation and chromatic graphs. *Canad. J. Math.*, 7, 1955, 1–7.
[4] Lin S. On Ramsey numbers and K_r-coloring of graphs. *J. Comb. theory Ser B* 12, 1972, 82-92.
[5] Kolev N. New upper bound for the edge Folkman number $F_e(3, 5; 13)$. *Serdica math. J.*, 34, 2008, 783-790.
[6] Kolev, N., N. Nenov. An example of 16-vertex Folkman edge $(3,4)$-graph without 8-cliques. *Annuaire Univ. Sofia Fac. Math. Inform.*, 98, 2008 101-126, see http://arxiv.org/PS_cache/math/pdf/0602/0602249v1.pdf.
[7] Kolev N., N. Nenov. The Folkman number $F_e(3,4; 8)$ is equal to 16. *Compt. rend. Acad. bulg. Sci.*, 59, No 1, 2006, 25-30.
[8] Nenov N. On the vertex Folkman number $F(3,4)$. *Compt. rend. Acad. bulg. Sci.*, 54, 2, 2001, 23-26.
[9] Nenov N. On an assumption of Lin about Ramsey-Graham-Spencer numbers. (Russian) *Compt. rend. Acad. bulg. Sci.*, 33, 9, 1980, 1171-1174.
[10] Nenov N. Generalization of a certain theorem of Greenwood and Gleason on three-color colorings of the edges of a complete graph with 17 vertices. (Russian) *Compt. rend. Acad. bulg. Sci.*, 34, 1981, 1209-1212.
[11] Nenov N. Lower estimates for some constants related to Ramsey graphs. (Russian) *Annuaire Univ. Sofia Fac. Math. Inform.*, 75, 1984, 27-38.
[12] Nenov N. On the $(3,4)$-Ramsey graphs without 9-cliques. (Russian) *Univ. Sofia Fac. Math. Inform.*, 85, 1991, 71-81.
[13] Nenov N. An example of 15-vertex Ramsey $(3,3)$-graph with clique number 4. (Russian) *Compt. rend. Acad. bulg. Sci.*, 34, 1981, 1487-1489.
[14] Nenov N. On the Zykov numbers and some of its applications to Ramsey theory. (Russian) *Compt. rend. Acad. bulg Serdica Bulg. math. Publ.*, 9, 1983, 161-167.
[15] Nenov N. On the vertex Folkman numbers $F_v(2,\ldots, 2; q)$. *Serdica Math. J.*, 35, 2009 251-272.
[16] Nesetril J, Rodl V. The Ramsey property for graphs with forbidden complete subgraphs. *J. Comb Th.* B20, 1976, 243-249.
[17] Piwakowski K., Radziszowski S., Urbanski S. Computation of the Folkman number $F_e(3,3; 5)$. *J. Graph theory* 32, 1999, 41-49.
[18] Ramsey P. On a problem of formal logic. *Proc. London Math. Soc.*, 30, 1930, 264-286.

Faculty of mathematics and informatics
Sofia University
Sofia 1164, BULGARIA
E-MAIL: nickyxy@fmi.uni-sofia.bg

Received xx.xx.199x
This figure "01.jpg" is available in "jpg" format from:

http://arxiv.org/ps/1001.1905v2