Study on Exploding Wire Compression for Evaluating Electrical Conductivity in Warm-Dense Diamond-Like-Carbon

Toru Sasaki¹, Kazumasa Takahashi¹, Takahiro Kudo¹, Takashi Kikuchi¹,², Tsukasa Aso¹, Nob. Harada¹, Shinsuke Fujioka³, and Kazuhiko Horioka⁴

¹ Department of Electrical Engineering, Nagaoka University of Technology, Kamitomioka 1603-1, Nagaoka, Niigata, Japan
² Department of Nuclear Safety System Engineering, Nagaoka University of Technology, Kamitomioka 1603-1, Nagaoka, Niigata, Japan
³ Institute of Laser Engineering, Osaka University, Yamadaoka 2-6, Suita, Osaka, Japan
⁴ Department of Energy Sciences, Tokyo Institute of Technology, Nagatsuta 4259, Yokohama, Kanagawa, Japan

E-mail: sasakit@vos.nagaokaut.ac.jp

Abstract. To improve a coupling efficiency for the fast ignition scheme of the inertial confinement fusion, fast electron behaviors as a function of an electrical conductivity are required. To evaluate the electrical conductivity for low-Z materials as a diamond-like-carbon (DLC), we have proposed a concept to investigate the properties of warm dense matter (WDM) by using pulsed-power discharges. The concept of the evaluation of DLC for WDM is a shock compression driven by an exploding wire discharge with confined by a rigid capillary. The qualitatively evaluation of the electrical conductivity for the WDM DLC requires a small electrical conductivity of the exploding wire. To analyze the electrical conductivity of exploding wire, we have demonstrated an exploding wire discharge in water for gold. The results indicated that the electrical conductivity of WDM gold for 5000 K of temperature has an insulator regime. It means that the shock compression driven by the exploding wire discharge with confined by the rigid capillary is applied for the evaluation of electrical conductivity for WDM DLC.

1. Introduction

Critical to fast ignition [1] is the transport of the laser-generated fast electrons and their associated heating of compressed DT fuel. The coupling efficiency of laser energy to these fast electrons and the energy deposited in the fuel should be improved the cone materials. Improving coupling efficiency, we should consider the behaviors of unstoppable, un-ejected, and diverging fast electrons. From the numerical results, the low-Z cone is expected to be the improvement of coupling efficiency, because the fast electrons are scattered by the large Coulomb potential of highly charged ions in high-Z cone wall [2]. On the other hand, the transport of fast electrons in the cone depends on the electrical conductivity in warm dense matter (WDM) state [3].

From above evaluations, the diamond-like-carbon (DLC)[4] cone, which is one of the low-Z cone, is promised to increase the coupling efficiency due to the reduction of stopping power in cone compared to the high-Z cone. The properties of DLC respects the diamond and the
graphite, however, materials in WDM state are in a complex area. The DLC is also made by the plasma-enhanced chemical vapor deposition on the substrate. Therefore, the properties of vapor DLC is difficult to obtain the conventional method.

To evaluate the electrical conductivity in DLC WDM, we propose a concept to investigate the WDM properties of insulator by using pulsed-power discharges. The concept of the evaluation of electrical conductivity for WDM DLC is a shock compression driven by an exploding wire discharge with confined by a rigid capillary. The qualitatively evaluation of the electrical conductivity for the WDM DLC requires a small electrical conductivity of the exploding wire. To analyze the electrical conductivity of exploding wire, we have demonstrated an exploding wire discharge in water for gold.

2. Proposed method
The WDM generation by using pulsed-power discharge is qualitatively evaluation of the electrical conductivity and the other plasma parameters. However, the pulsed-power discharge is difficult to make the WDM for insulator. To evaluate the electrical conductivity for DLC WDM, the shock compression driven by an exploding wire discharge with confined by a rigid capillary is considered as shown in Fig. 1. The exploding wire has a huge ablation pressure approximately a few GPa. Thus, the pressure of exploding wire drives the shock heating for the insulator as the DLC membrane which is coated on the wire. The heated DLC membrane state is observed by the ruby fluorescence for the pressure and the emission spectrum for the temperature. As shown in Fig. 1 (b), we can fabricate the DLC membrane coated on the wire for gold.

The electrical conductivity is measured by the time evolution of voltage-current waveforms. Therefore, the electrical conductivity for the exploding wire should be small compared to that for DLC WDM. The electrical conductivity with the heated diamond at solid density have been reported to be over 10^4 S/m with 1 eV of temperature [3]. It means that the exploding wire should be less than 10^4 S/m. To confirm the electrical conductivity of the exploding wire, we have evaluated the electrical conductivity of WDM.

Figure 1. Proposal images for shock compression driven by an exploding wire discharge with confined by a rigid capillary. (a) Side view of experimental setup, (b) DLC coated on the gold wire, (c) Ruby tube as a rigid capillary.
3. Experimental results and Discussions

To evaluate the electrical conductivity for the exploding wire as the function of density and temperature, we have demonstrated by the exploding wire in water. We used thin gold wires with 50 - 100 μm in diameter and 18 - 38 mm in length as the load [5, 6, 7]. From previous results as Ref. [5], we have found the high resistance for copper and silver in warm dense regime. Therefore, the smaller electrical conductivity in the exploding wire should be confirmed to the several materials.

Figure 2 shows typical time evolutions of the voltage-current waveform, the input energy, the temperature, the resistance, and the hydrodynamic behavior for gold wire with 100 μm in diameter and 18 mm in length. The wire/plasma boundary and its temperature strongly depend on the input energy history. We can see that the resistance of wire/plasma respected by the voltage-current waveforms is estimated to be 10^3 Ω from the beginning of discharge to 20 μs. The resistance of wire/plasma constitutes the resistance of water. The density of wire/plasma is proportional to the wire/plasma radius. Thus, the exploding wire of gold in dense regime has a highly resistance.

Figure 3 shows the electrical conductivities as a function of density at temperature of 5000 K for gold. Theoretical conductivities based on the models of Spitzer [8], Lee-More [9], and Ichimaru [10] at 5000 K are also shown in Fig. 3. From the previous section, we discuss that the electrical conductivity for the exploding wire should be small compared to that for DLC WDM. The results indicated that the electrical conductivity for observing DLC WDM is possible to measure the exploding wire for gold with well-defined density control, in which ranges from 0.1ρ_s to 0.001ρ_s. It means that the shock compression driven by the exploding wire discharge with confined by the rigid capillary is applied for the evaluation of electrical conductivity for WDM DLC.
4. Concluding Remarks

To evaluate the electrical conductivity for low-Z materials as a DLC, we have proposed a concept to investigate the properties of WDM by using pulsed-power discharges. The concept of the evaluation of DLC for WDM is a shock compression driven by an exploding wire discharge with confined by a rigid capillary. The qualitatively evaluation of the electrical conductivity for the WDM DLC requires a small electrical conductivity of the exploding wire. To analyze the electrical conductivity of exploding wire, we have demonstrated an exploding wire discharge in water for gold. The results indicated that the electrical conductivity of WDM gold for 5000 K of temperature has an insulator regime. It means that the shock compression driven by the exploding wire discharge with confined by the rigid capillary is applied for the evaluation of electrical conductivity for WDM DLC.

Acknowledgements

This work was partly supported by the NIFS Collaboration Research programs (NIFS13KUGK073).

References

[1] Kodama R, et. al., 2001 Nature 412 798
[2] Johzaki T, et. al., 2011 Nuclear Fusion 51 073022
[3] McKenna P, et. al., 2011 Physical Review Letters 106 185004
[4] Fujioka S, et. al., 2012 Plasma Physics and Controlled Fusion 54 124042
[5] Sasaki T, et. al., 2006 Laser and Particle Beams 24 371
[6] Sasaki T, et. al., 2008 Journal of Physics: Conference Series 112 042026
[7] Sasaki T, et. al., 2010 Physics of Plasmas 17 084501
[8] Spitzer Jr L and Härm R 1953 Physical Review 89 977
[9] Lee Y T and More R M 1984 Physics of Fluids 27 1273
[10] Kitamura H and Ichimaru S 1995 Physical Review E 51 6004