Research on rapid qualitative detection of lead in pyrotechnic powder used for fireworks and firecrackers

Junyi Wu

1 Beihai Customs Comprehensive Technology Service Center, Beihai, Guangxi, China

*Corresponding author and e-mail: johnny2000@vip.qq.com

Abstract. This study discloses a method for qualitatively quick detecting the leading element for fireworks and firecrackers based on energy dispersive X-ray fluorescence spectrometer (EDXRF), including the following steps: preparation of samples, establishment of detection methods, determination of the characteristic line fluorescence intensity values of Sb element in samples. The method of the study has the advantages like that: (1) the method is simple to operate, and the method can be repeatedly called for testing. Only one new test method needs to be built before the sample test. After the method is established, the test can be repeated at different times without re-establishing the test method for each test. After the first establishment of the new test method, the entire test process only includes three steps: sample preparation, sample loading into the sample cup and on-board testing. (2) The detection period is extremely short. After the sample is prepared, the entire measurement process takes only about 2 minutes. (3) Labor intensity is very low and the requirements for operators are not high. (4) The method has good stability, good repeatability and high credibility.

1. Introduction

According to the literature report, the qualitative detection method of lead in pyrotechnics for fireworks and firecrackers is based on traditional chemical analysis methods. The currently used method standard is “Rules for the inspection of export fireworks and firecracker-Part 4: Safety performance test” (SN/T 0306.4-2006) Such standard methods have many disadvantages such as cumbersome operation steps, low detection efficiency, high use of reagents, large environmental pollution, and large influence of human factors such as coloring reaction determination endpoints. In the electronic product testing standard, there is a standard method for analyzing heavy metals in electronic products. And the commonly used method standard is “Rapid screening of lead, cadmium, chromium, lead and bromine of regulated substances in electrical and electronic equipment-X-ray fluorescence spectrometry (GB/Z 21277-2007). The analytical instrument used in this standard method is a wavelength dispersive X-ray fluorescence spectrometer, the basic principle of which is completely different from the principle described in the present invention.

The methods currently developed by energy dispersive X-ray fluorescence spectrometers (EDXRF) are mostly used for nondestructive qualitative analysis of samples. For semi-quantitative and quantitative elemental detection of solid samples, most samples are directly determined by powder tableting and melting. Because pyrotechnics for fireworks and firecrackers are flammable and explosive, it is impossible to use the powder tableting method and the melting method for sample processing. So far, there has not been a publicly reported on a method for rapidly and qualitatively...
detecting lead element in pyrotechnics for fireworks and firecrackers based on energy dispersive X-ray fluorescence spectroscopy.

2. Theory
As we know, the fluorescence intensity of lead element of the sample powder depends on the content of lead in pyrotechnic based on energy dispersive X-ray fluorescence spectroscopy. After the sample is excited by X-rays, different elements in the sample emit different characteristic lines, which are fingerprint information of identifying the target elements in the sample. According to the characteristics of the chemical composition of lead used for fireworks and firecrackers, a special mathematical model is established. Optimize the various factors which directly affect the results of the measurement, including: the type of method used to establish the analytical method and the voltage of the energy dispersive X-ray fluorescence spectrometer, the current, filter, peak spectrum observation line selection, analysis time, count rate, gas environment, energy range and the thickness of the sample in the sample cup and etc. Based on the assumption that the content of lead in the powder sample is positively correlated with the fluorescence intensity of the lead characteristic line and the ratio of the content of the lead element to the fluorescence intensity of the characteristic line of the lead element is a fluctuation within a certain range, it can conclude that the lead content in the sample can be detected qualitatively by detecting the fluorescence intensity of the characteristic line of the lead element in the sample.

3. Experimental section

3.1. Instrument and apparatus
Oven with accuracy to ±2℃. Analytical balance with accuracy to 0.1 mg. Energy dispersive X-ray fluorescence spectrometer (EDXRF): United States Thermo Fisher (former Thermo Electron Corporation) Company QUANT’X series.

3.2. Operation step
(1) 5 to 10 g of the 40-100 mesh sieve sample powder is thoroughly mixed, placed in an oven, dried, placed in a desiccator and cooled to room temperature, and ready to be used.
(2) Weigh the sample of about 1 g, make sure the thickness of the powder sample in the sample cup is ≥3mm.
(3) Gently tamper the sample cup 3 times on the hard ground and put the cup in the testing tank.
(4) Set the parameters of the EDXRF instrument as shown in Table 1.

Filter	Thick Pd
Collimator	8.8mm
Voltage	28v
Electric current	Auto
Analysis time	30s
Count rate	Medium
Atmosphere	Air
Matrix effects	Not considered
Energy range	0~40kev
Analysis technique	Intensity correction
Sample thickness	≥3mm

(4) Sample determination: determine the fluorescence intensity of the target element of the sample under the best analysis condition and read the values of it.
4. Results and Discussion

4.1. Sample size and particle size
In the method, 5 to 10 g of the 40-100 mesh sieve sample powder is thoroughly mixed, placed in an oven, dried, placed in a desiccator and cooled to room temperature, and ready to be used. The reason why the particle size of the sample is set to 5 ~ 10g is that in the actual production process, the quality of the pyrotechnics for fireworks and firecrackers is uneven and the density of the pyrotechnic composition is high, if the sample size is too small, the sample would not be representative and would be difficult to meet the requirements of the sample thickness in the sample cup which is required over 3mm thickness, and it will directly affect the accuracy of the test results. If the sample size is too large, it will affect the efficiency of the sample preparation.

There are two main reasons why the sample must be passed through a 40-100 mesh sieve: Firstly, The energy dispersive X-ray fluorescence spectrometer analyzes the surface of the sample to get the fluorescence intensity of the characteristic line of lead element, if the sample with uneven particle size is likely to have a large particle size effect which would seriously affect the accuracy of the test results. So it must be sure to make the particle size of the sieved sample not to be too big to avoid increasing unevenness of particle size of the sample. A large amount of experimental data indicates that the particle size of the sieved sample is less than 40 mesh would cause little particle size effects. Secondly, if the powder sample passes through a sieve of more than 100 mesh, the particle size will become very small, and which will not only affect the screening efficiency of the sample but also increase the dust concentration in the environment due to the too small powder particles after the screening. It is also a certain health hazard to the sample preparation personnel. Another important reason is that the pyrotechnic sample powder with a particle size of less than 100 mesh has flammability and is easily ignited in the air.

4.2. Rules for Judgment
Different countries have different regulations on the use of prohibited substances in fireworks and firecrackers. For example, the relevant standards in the American Pyrotechnics Association stipulate that substances within 0.25% by mass of pyrotechnics are recognized as impurities. China's national standard "Safety and Quality of Fireworks and Firecracker" (GB 10631-2013) stipulates that the substance within the concentration of 0.1% by mass of pyrotechnics is recognized as an impurity, and the Netherlands found that the lead content of a certain kind of fireworks from China exceeds 120mg/kg in the results of an imported fireworks sampling test and Announced it. In combination with the actual situation of pyrotechnics for fireworks and firecrackers in China and the characteristics of energy dispersive X-ray fluorescence spectrometers, in order to effectively solve the practical problems of qualitative detection of heavy metals in fireworks and firecrackers, this method is based on the relevant content of National Standard (GB 10631-2013) to define the effective detection limit of lead element is 1000 mg/kg (0.1% by mass).

4.3. Advantages
The method is based on the energy dispersive X-ray fluorescence spectroscopy technology for quickly qualitatively detecting the lead element for fireworks and firecrackers, and the advantages thereof are as follows: (1) The method is simple to operate, and the method can be repeatedly called for testing. Only one new test method needs to be built before the sample test, and after the method is established, the test can be repeated at different times without re-establishing the test method for each test. After the establishment of the new test method, the entire test process only includes three steps: sample preparation, sample loading into the sample cup and on-board testing. (2) The detection period of the method is extremely short, and after the preparation of the sample, the entire measurement process only takes about 2 minutes. (3) The method has low labor intensity and is not demanding to the operator. (4) The accuracy is good, the precision is high, and the false positive rate is low.
4.4. Method for Validation Test
Because the standard of pyrotechnics with a certain amount of lead content can not be found in the market, and the physical form of black powder is similar to that of pyrotechnics, the reference material for the different lead content of black powder as the matrix configured with the standard material of lead oxide can be tested as the samples. By comparing the correspondence between the lead content of different pyrotechnic reference materials and their corresponding characteristic fluorescence intensity values, the general correspondence between the lead content in the pyrotechnic composition and its corresponding characteristic fluorescence intensity would be inferred. The numerical relationship between the fluorescence intensity value and the content value of the lead element in the samples can be seen in Table 2.

Table 2. The numerical relationship between the fluorescence intensity value and the content value of the lead element

P content (mg/kg)	0	200	400	600	800	1000	1200	1400	1600
P Fluorescence intensity values(cps/mA)	0	9	17	26	36	45	57	59	73

It can be seen from Table 2 that: When the content of lead is in the range of 0 to 1600 mg/kg, the fluorescence intensity value of the characteristic line of lead element increases with the increase of lead oxide content, which is positively correlated. And when the content of lead is in the range of 0 to 1200 mg/kg, it is substantially proportional. In particular, when the content of lead is 1400 mg/kg, the fluorescence intensity value of the lead element characteristic line (59 cps/mA) is only 2 cps/mA higher than the fluorescence intensity value at 1200 mg/kg content (57 cps/mA). Obviously, the increase of the fluorescence intensity value is not proportional to the lead content. The main reason is that with the increase of lead content in the sample, each element in the sample has an increasingly obvious matrix effects on the lead element and this matrix effects will increase the fluorescence intensity value of the lead element characteristic line randomly, sometimes the increasing amount will reduce or even be negative growth. However, when the content of lead is ≥0.1%, the fluorescence intensity value of the characteristic line of the lead element is always ≥45 cps/mA. Therefore, it can be used as the basis for detecting whether the sample contains the lead element content above 0.1% or not that the fluorescence intensity value of the characteristic line of lead element is above 45 cps/mA.

5. Conclusions
This method discloses a method for quickly qualitatively detecting the lead element for fireworks and firecrackers based on EDXRF with high accuracy, good repeatability, simple operation and high efficiency. It can effectively meet the rapid detection of lead in pyrotechnic samples by manufacturers, regulatory authorities and third-party laboratories.

References
[1] Leif, H. C.; Allan, A. Determination of sulfur and heavy metals in crude oil and petroleum products by energy-dispersive x-ray fluorescence spectrometry and fundamental parameter approach. Anal. Chem., 53(12), pp.1788-1792, 1981.
[2] Fei, H; Pierre, J. V. E. General approach for quantitative energy dispersive x-ray fluorescence analysis based on fundamental parameters. Anal. Chem., 63(20), pp.2237-2244, 1991.
[3] Standard test method for determination of lead in paint layers and similar coatings or in substrates and homogenous materials by energy dispersive x-ray fluorescence spectrometry using multiple monochromatic excitation beams, ASTM F2853, American Society for Testing and Materials Publications, 2010.
[4] Standard test method for analysis of uranium and thorium in soils by energy dispersive x-ray fluorescence spectroscopy, ASTM C1255, American Society for Testing and Materials Publications, 2011.
[5] Duan Tiyu, Li Suqing, et al. Jewellery, Determination of precious metal content - Method using
x-ray fluorescence spectrometry. China National Recommended Standard: GB/T 18043-2013, China Standard Press: Beijing, 2014.

[6] Leoni, L, Saitta, M, X-ray fluorescence analysis of powder pellets utilizing a small quantity of material, X-ray Spectrom, 3, pp.74-77, 1974.