Supersymmetry and B_s, DO, and Aleph i

Gordon Chalmers
e-mail: gordon_as_number@yahoo.com

Abstract

Current results from the D0 exp indicate the presence of an oscillation not explained by the currently accepted theory. An explanation is offered based on a combination of low-energy 'string'^{1/n} and 'particle' dynamics. The dynamics are described by extremely accurate nuclear mass data (unpublished 2006 and [1]) in accord with substringy dynamics (in progress, primary). An event is analyzed with emphasis on particle Iding, their dynamics and interactions, with implications for/by graviton(ino) with low-energy phenomenology. Analysis is provided towards enhancing the experimental apparatus, in computation and hardware, and should be numerically simulated for further safety before implementation.
The recent claim of the B_s oscillations has sparked interest in a possible explanation due to low-energy phenomenology. These peaks are explained in rough numbers using phenomenology and bound states of particles, called sub-string modes, together with quantum trapping of the excited modes. The masses of these quantum states and the couplings between these modes can be interpreted in terms of these bound states and their wavefunction binding between them, such as wavefunction coherence.

The purpose of this short letter is to show how low energy string phenomenology are responsible for the distribution of bumps in the data presented in figure 4 in [2]. Furthermore, due to the presence of two gravitational modes, a graviton and gravitino, the gravity is a loop effect while symmetry is broken at tree level in accord with the mass patterns presented in [1],[3]. This event is apparently a supersymmetric form to subnuclear and impingement on high grade plutonium [4].

Background

The data analyzed in [1] is accurate in finding the masses to over nine digits. The probable explanation is a quark preon plasma\(^1\). Having sub-string modes available they can form, with a mass of 1 MeV or 1 KeV for the supersub-string mode pair (in accord with the mass formula [3]), a bound state together with its resonant modes in and around the nucleus can be formed between matter (a Lagrangian form and the bound state formalism is contained within [3]) and its shadow together with the specific preon matter that is stable against decay called resonant phenomena and is contained in the extended version [1] with mass calculations of the proton, deuterium, hyperion, etc up to eleven places or more in accuracy. This bound state is stable given that the shell model is reformulated with the sub-string matter, with multiple photons upon target emitted upon agitation which enhance the phase space and the stability against nuclear bombardment. A shower of energetic but unstable photons would follow from a(n) anti-neutrino(s), but whose dynamics might leave room for bound states or shell with half as many free photinos in the shell model, that occurs at what seems to be 1 TeV due to a beam at energy what seems to be 300 GeV amplified by the coherence effect; this is in contradistinction to neutrinos whose dynamics produce

\(^1\)Following historical precedence this word is used here as a sub-stringy string mode, and it implies particle whose thickness appears in the sub-stringy stringy, when multiple scales are included in the string such as TeV and Planck scale on the same particle mode, quantization of the speed of light in air for example which can be used to measure a nanometer structure to its dimension; even less now to sub-nanometer if the particles speed is measured in the presence of additional matter. The quantization of these string\(^{1/2}\) modes and strings could be incorporated in the recent exactly solvable string models [11].
photons with the same lateral direction. An example to consider is the decay of hyperion which is anomalously slow; the sub-string bound states in the core nucleus may swap glue, or actually anti-matter due to the bound state structure, and cause a resonant phenomena leading to a shorter half-life.

The sub-string matter binds to the matter or anti-matter and produces the mass of the particles (references having to do with the preon or anything having to do with subatomic physics omitted due to a sensitive nature but are available per request). Some of these masses can be read off the recent B_s data. The particle states found in the recent B_s data indicate line of fire into the detector or from a direction which is not straight on. The bumps in the data indicate this by either short or long pulses. These pulses indicate in a clear manner the presence of additional energy located within certain regimes; the bumps may be interpreted as zitterberwung (zbg), from wavefunction coherence between matter and matter. As such, in addition to the actual pulse, which can be used to find the energy, and not mass, of the particle mode, the bumps on the pulses can be used to find the energy of the associated binding modes; in addition, the location of the energy of the bumps on the zbg can be used to deduce fast transitions between one particle and the other, and can be used to deduce further properties in the bending of the particle and its propagation velocity. The location of the total pulse can be used, if the mass is known, the speed of propagation. In all, the geometry of the pulse can be used to find the energy, the bare mass, its interactions with close neighboring particles, its excited mode, and possibly its stage of decay or rather interaction with another particle. An event and its geometry of energy can be used to deduce particle types, including anti-matter, and presumably quantum numbers, through the net dispersion of energy; even more interesting is that the energy distribution of the measured energy can be used with fine enough timing the stage of interaction between the particles as well as the spatial-temporal history of each one of them.

Consider the event described in [2, 6] consisting of an energy distribution between 1 picosecond and 25 picoseconds. An FFT or a bimodal, or even tri-modal modal, FFT could be used to make the picture more clear by similarizing certain the pulses. An FFT could be used to transform a line of sight zbg trajectory into one coming in from a angle in space, as well as a bent one in the wavefunction sense. Some of the particle modes in figure 5 in [6] could arrive at angle, and with even finer measurement, how they are bent, with their interactions with other modes that could also curve their trajectory. More events than the one in figure 5 are required to correlate their form, for example, with head on to the scintillator detection.

The event in [6] is used to deduce particle types of its individual constituents. In
addition, the rest energy is found, and its redshift is pointed out. The beginning and end of the pulses, together with the number of additional bumps on them, are used to determine the event. The additional structure of the zbg’s are not used to determine further phenomena, including angle of coincidence.

The event considered is semi-leptonic decay of a gauge boson into three partners, which is both standard and uniform in susy gauge theories. Consider a neutrino decaying into a susy pair of a slepton and a sneutrino. These decay into both a anti-neutrino with a charged leptino and a pair consisting of a higgs and higgsino. These decay further into a pair of gaugino and slepton with number two and half; two for pair number and half for multiplet number one. The dominant mode for a tau and stau pair has additional coupling without a gravitational mode; due to the additional coupling the gravinametric lensing should widen the two as in flight they separate, much more than an even with a slepton pair and two couplings. This happens in $N = 1$ with matter.

The slepton is undiscovered. The gaugino and slepton in the second pair are localized nearby. Furthermore, the pair of anti-neutrino and charged leptino are time displaced by 4 picoseconds as in the particle data group [7]. The Higgs and Higgsino are found by examining the charged leptino and time displacing by 4 units each in the forward and backward direction; however, an offset of 8 units is provided by an unknown particle. The data is accumulated in Table 1. The conversion of picoseconds to time displacement is generated by multiplying the time by one nanosecond for each picosecond and collecting the mass shift into units of MeV in accord with the standard [7]. There is an ambiguity in the detection of around 1 picosecond due to an experimental uncertainty of 1 mm due to possibly misplaced bolts in the apparatus which is clear in the data by dips at 2.04 mm etc; this uncertainty is clearly a result of bad coherence as described in the next section.

The mass shifts can be read off of the data by examining the particle data group booklet and reading the time displacement in sequence, 1 nanosecond means 1 KeV, 1 picosecond 1 MeV, 1 terasecond 1×10^3 MeV, etc. This seems opposite to conventional thinking of mass shifts, however the numbers are backwards to an inversion in the relation

$$m = \frac{2\pi h}{2\pi hc_0} \frac{2\pi hc_0 \Delta m}{2\pi h} c_0,$$

where Δm is measured in time units of a picosecond. The value c_0 is the speed of light in pure vacuum not counting the wave functions of ambient particles and quantum
foam of possible sub-strings and/or unattached wavefunctions, and that of \(c \) is the speed of gravity in this ether. The speed of light and gravity are not taken to be the same, however, their difference is inconsequential as the speed of gravity is normalized to one in pico-second units in accord with the particle data group \([7]\); in the units here, the speed of gravity is 1 picosecond per time differential of 1 meter per second per nanometer; this pertains to the speed in vacuum and not the speed in atmosphere which is ten times slower \([7]\).

According to lore in beam physics 2 units are added to each particle in sequence to their occurance, leading to,

\[
\begin{pmatrix}
\text{anti – neutrino} & .3 \\
\text{kaino} & .3 \\
\text{keino} & 1.5 \\
\text{gravitino} & 3.5 - 14.2 \\
\text{charged slepton} & 9.3 + 3.4 = 12.7 \\
\text{higgsino} & 9.4 + 3.4 + 4.9 = 17.7 \\
\text{higgs} & 9.4 + 3.4 + 4.9 + 4.4 = 21.1 \\
\text{higgs2} & 9.4 + 3.4 + 4.9 + 4.4 + 1.5 = 23.6 \\
\text{higgs3} & 9.4 + 3.4 + 4.9 + 4.4 + 1.5 + .8 = 24.3
\end{pmatrix}
\tag{2}
\]

where the last two bumps are found from the gravinmetric data in the yellow shading, which means the data are temporally displaced. There is a time dilation factor of 1.3 due to the comparison between the speed of light in air and in vacuum; the listed data could be normalized with the last higgs points which are gravinametrically displaced. As the particle type and their speed are of interest the renormalization is not included. Their speeds can be checked by comparing to \([8]\) and are given in the above list.

Introducing a time lag of 2 units on each time difference between particle occurrence, with 9.3 labeling the bump on the long pulse,
\[
\begin{pmatrix}
\text{anti-neutrino} & .3 \\
\text{kaino} & .3 \\
\text{keino} & 1.5 \\
\text{gravitino} & 3.5 - 14.2 \\
\text{chargedlepton} & 9.3 + 5.4 = 14.7 \\
\text{higgsino} & 9.4 + 5.4 + 6.9 = 21.3 \\
\text{higgs} & 9.4 + 5.4 + 6.9 + 6.4 = 27.7 \\
\text{higgs2} & 9.4 + 5.4 + 6.9 + 6.4 + 1.5 = 29.2 \\
\text{higgs3} & 9.4 + 5.4 + 6.9 + 6.4 + 1.5 + 1.5 = 30.7
\end{pmatrix}
\]

This time lag represents wavefunction from the beam impinging on the particles and also from local neighbors. The time lag appears to be two particles cohering, one a photon and the other in the event. Coherence likes anti-temporal time displacement or time lag, and is modeled by the propagation of particle amplitude but with time displaced source, and with propagator \(\Delta = \partial_0 \bar{\psi} \psi + \psi \partial_0 \bar{\psi} \); the path integral is relevant for general quantum scattering and its details including higher derivative terms are still being worked out. The coherence models wavefunction spread from a particle to another. In our case, the photon and a charged particle is the strongest source of coherence in and around the beryllium and beam. The time lag suggests temporal displaced photons near the beryllium and the beam in a manner so that 4 and 1.5 are obtained. Wavefunction impingement from two sources a micron apart (1.5 ps is 15 \(\mu m \)) is required to correlate an anti-particle between two higgs or a higgs and higgsino so as to make it coher like a stable particle wavefunction, or a donut. Another wavefunction, preferably a photon, is required to stabilize the third event which has a measured charged lepton. Detailed study of their particle showers should indicate whether these photons came from the beam or from the primary photon.

On the microscopic level and evaluating the information in table 2, the time lag separates into 4 and 1.5 picoseconds systematically at 40 \(\mu m \) and 15 \(\mu m \); this suggests the occurrence of not one but two gamma radiative decays with two time lags, very remotely there is a chance for three decays. Two photons are frowned upon as this is the origin for multiple bremstahlung, and there appear to have energies of \(x, y \mu m \) with an allowed set of numbers between 1 and 5 due to temporal coherence in the latter and the data of 1.5 and 4. There appear to be more than one photon due to the four sets of ordered time lags in the data with two spatial centers of the time lags.

The particles could in principle could have different time lapses and between each other depending on particle type. In addition, the small differences in the coherence, such as from those dips, could nonlinear
Particle Identification

Due to the presence of more than one gamma there should be either a neutrino or sneutrino to conserve lepton number. According to the work in [3] the mass of the neutrino could follow \(\frac{1}{m^2} \); considerations based on renormalization were used to deduce the canonical Poincaré invariant relativity allows for mass to be also a series in the coupling constant and velocity with multiple RG coupling prescriptions [9]. We find a small mass of .1 nanoseconds time shifted by .3 nanoseconds; this means a mass of 10 eV by converting time to mass-energy and using \(E = mc^2 \). \(c_0 \) is the speed of gravity in vacuum. A time shift of .3 ns translates into the velocity squared of .9 which corresponds to an alteration in the mass-energy relation. This alteration can be interpreted as a speed differential to \(v = .9c_0 \). An alteration this much in the rest mass would cause the particle to possibly collapse slowly as the pressure increases against the vacuum; the phenomenological effect could cause large gravitational lensing because a graviton propagating around the particle would have its wavefunction hop in focus with the compressed ether. This focusing effect be noticeable if the effect was near an interstellar object with gravity like a double star or a particle traversing around a mini- or supermassive black hole; in the latter of which could cause bending not in accord with string theory or its deformations by adding certain transfinite representations [11], and in the former the model of a particle by gravitational energy might test the transfinite representation of the exactly solvable superstring model. Considerations of the energy of a particle as gravitational energy could also be modeled by a mini-black hole. These three limits have never been explored in particle detectors.

There is a kino/kaanio pair located at \(\Delta m = 5 \) ps. This is found by interpreting the wavefunction a distance 2 ns apart in accord with the rule of Goldhaber; the particles are traveling backwards in time because the two appear to be in a bound state with the zbg on the opposite side of one and are correlated so that the Kino is traveling forward. The Kaana is one half as long as the Kino suggesting sub-criticality with a forward time displacement depending on its bare mass, which is assumed to be 200 eV; the Kino is assumed to be at 5 MeV and is lateral in the detector. Due to the lack of information in backwards in time propagation the relativistic guess for the Kaana is not available. The Kino appears to be moving .9 the speed of gravity and its zbg is time displaced by 1 from the left end. It also does not have marked points on either side of the pulse.

The next particle is a gravitino; due to its pulse and waveform it appears to be acting gravitational. The invariant mass is \(m_1/m_2m_3 \) in time units of ps translated by
insertion of two factors of c_0 in the numerator and one factor of \hbar in the numerator to obtain 17 MeV; the invariant mass is computed for the two laterally correlated particles at mass shift 5 and 15 ps. This indicates gravity as the ps is 16 units away from the new string scale of 10^{28} as indicated in [12], with low-energy breaking Λ at 10^{12} and quantization $(\Lambda/m_{pl})^{1/16}$ with those quantum numbers connected to the conformal de Sitter group. Due to the coupling laterally between a Kino and a charged sleptino it is inferred to be a gravitino with rest mass of 10 MeV. 10 MeV is in the middle offset to the left a bit which seems less of a choice than 5 MeV; however, a fast time it takes to measure a particle could be on the order of a few picoseconds depending on its speed, e.g. 5 ps. It moves backwards in time due to the bump in the zbg on the right hand side signalling that it traversed the beam on the way in and not the way out. The gravitino travels 0.8 the speed of gravity; the speed of light is twice that of gravity due to the normalization of α. The background number of gravitons is four the number of photons from cosmological redshift data such as COBE or WMAP; the interactions that slow down the particle propagation from its theoretical maximum to what is observed is caused by the wavefunction interfering with its neighbors, and as the ratio is 4 to 1 in probability the speed of the particle is 2 to 1; this argument depends on the wavefunction smearing on the adjacent particles before capture and the type and number of them. The event presented here can be slowed down and rotated, by adding parallel photons in quantity x and $x+1$ on each side of where the line of sight particles are detected. The particles coming in at an angle can presumably be modulated by adjusting the magnet and another magnet before the beam phase alters the event.

Due to the (multiple) beta event there should be a charged leptino in addition to the neutrino, due to the Kino and Kaanio pair. Its mass is 13 MeV with a speed of travel 0.9 the speed of gravity. If the time to measure is 1 ns then the mass changes to 12 MeV, or as the moment of inertia increases from nil to 1 from zero speed to some speed v. 13 MeV is, in accordance with the mass formula in [3], either 2^23 or $10+2+1$ MeV. A correction of this magnitude is not unusual for the quarks or leptons. The shape of the particle event has a hump with no saddle suggesting a pair of coalescing charged sleptinos, or a particle that is positioning to decay through its wavefunction changing in response to nearby particles so that it may propagate at the theoretical maximum speed of light; the bump appears symmetric precluding cohering with other particles not seen and indicates that this is two slepton state. One behind the other with an offset of 2 ns to the left seems probable as the zitterberwurung has a tail. Some coherence/decoherence can be used to split the particles in the event away from eachother, including resolving the sleptinos; this can be achieved in many ways, such
a spatial temporal location of the grounding required to replete the virtual electron
anti-electron pairs required for coherence; a spatial grounding can resolve the electrons
to one nm and a temporal grounding to maybe .1 nm if a superconducting magnet
is attached to the apparatus and charges the material leading to phase coherence
bipolametrically with possible switching at point of entries. A continuous nano-
scale realignment of the event could require continuous numerical simulations which
includes the quantum aspect of supercoherence, and this is available by the author,
uncited.

There are several naive choices for the remaining 5 bumps in the data, and several
methods to deduce the bump identification, and only MSSM like without regards $N =
1, 2, 4, 8$. There are four bumps signalling particles with a bending of their placing
due to an observed graviton. The bumps are located at $3^22 - 1.7$ and $52^2 - 1 - nx$ for
$n = 0, 1, 2$, with linear a best fit. The masses 3^22 and 52^2 suggest the same particle
statistics, but with a dyslexic exponent, that is 2 and 3; this could distinguish a
boson versus a fermion. In a similar fashion, $10 + 7 - .3$ and $10 + 9$ with a non 2 and
5, and suggests that this 10^m number doesn’t label as in the work in [3] and is not
considered. Two fermions or two bosons of the same kind will gravinometrically coher
with a graviton and will be noticed by a time shift of the order 9 or 3 roughly; this is
clear from the gravitational force. The gravinometry is affected by swapping of two
photons dihedrally with an exchange with flip of the photon wavefunction explaining
the two numbers probabilistically. The order of magnitude follows from a back of the
envelope calculation of the gravitational force between a graviton winged between the
pair a nanometer in both directions temporally and an angstrom in space. The mass
shift as seen in the data precludes corrections a time unit or more as appears in due
to unitarity, i.e. one loop propagator correction containing $\ln(k^2 \mp m^2)$, and speeds
restricted to .7 or more. The graviton can be clearly seen at 17 ns, and is 4.3 and 7.9
time units from the remaining two observable peaks. If the two particles have statistics
$1/2, 1$ versus $0, 1/2$ the gravinometric lensing should be half versus none due to the
spin of the combined state using a standard superselection J-rule which tells that
the intermediate wavefunction should transfer twice as more, and furthermore it is
connected by a $J = 3/2$ spin graviton state. The Wigner-Eckart-Zweig transition rule
is 26 to 1, and for a proper comparison the speed of the particles should be included
in the wavefunction overlap and the event number should multiply the result; this
approach to particle idling is potentially faster than searching a database containing
10^6 modes, especially when used to convert 4 bytes of data into 2 long bytes instead
of 6 into 4 [12]. This leaves two alternatives, the standard model like Higgsino and
Higgs and $N > 1$ Higgs anti-Higgs; the latter is disallowed as former in the pair
would travel 5 times the speed of light with the Higgs at .4 times the speed of light. This disparity appears atypical between particle and anti-particle and is not favored; gravinametric lensing is not found in the the bumps, which is discussed next.

The Higgsino and Higgs are found at 13.1 and 13.3 time shifted by 5.2 and 4.1; these are deduced by the relativistic Lamb shift caused by a stiffening of the vacuum, i.e. the Higgs wavefunction interacts with many wavefunctions hopping in the ambient distribution of the vacuum in the presence of distributed matter, describing different types of matter in various modes of excitations. This could cause a translucent effect as the particle moves faster than the local gravitons making the interactions different. An analogy of the stiffening would be a particle traversing a cylinder with an aether that is spatially dependent and perhaps in an excited mode. Stiffening causes the matter to change its velocity on a sub-string scale, i.e. orders of magnitude of the size of its wavefunction or on the size of an exchange of wavefunction between two matter modes; the effective action evaluated on-shell can provide time displacement by using the mass renormalization without infinity to alter the form of the gravitational force for a 6 MeV graviton by a factor of 6, and 10 MeV photon by a factor of 3 (another guess is 3 by a 5 and 5 by a 3 and so forth), which can be absorbed into a new string scale α; the speed of light is then 3 times a 10^8 m/s in vacuum with 8 related to the size of the matter mode. The speed of gravity is then twice the speed of light to to one loop. A full calculation would be using the two-particle inclusive cross-section beyond the one-particle zero-momentum form at tree- and one-loop up to a box, and to higher orders so that the accuracy up to the known digits is obtained. The gravitational force can be computed by tracking the Higgs on the right of the pair through three time steps, which increment by 1.5 ns in each step. The Higgsino is impinging at an angle of arrival which appears to be opposite to the charged lepton and/or charged leptino and at an angle which adjusts for the gravitational lens. The 1.5 ns per time step increases the mass by 20 percent on average and indicates the particle is speeding up from a bare mass of .85 the speed of gravity until equilibrium with the vacuum is attained. This is possibly explained by too much coherence or additional matter nearby which slows down too much the Higgs boson.

Engineering

There appears to be four issues with systematic error in the experiment, with dips at 2.04 mm, 1.48 mm, 1.59 mm, and 2.43 mm. The coherence in equipment can rely on quantum effects, with regards to a photon and virtual electron-photon pair; the electrons have to be placed back in the parts which are not grounded. For
example, if screws or bolts are used and covered in material to avoid coherence, then they either be periodically be electrified or continuously electrified. This pertains to bolts and screws close to the beam, which could be cohered without danger to man and equipment, and not those outside the coherence length of the beam; screws and bolts which are not grounded have a higher coherence length with the beam if there is a path of conductance; in this case teflon coating for example could be used as protective coating against electrification against a non-cohered experiment after the experiment is grounded first; this could take days or a month after restarting the beam which has been cohered with by the apparatus. Photons in the beam could be scattered off the wall into the emitter leading to an unwanted somewhat coherent beam, which could be a large amount of coherence. If the bolts are correct this could provide better beam agility because their type and placement may be sensitive to particle production, and in conjunction with other modifications.

Consider a beam with two bars one and below the beam placed vertically. A temporally cohered beam with spatial resolution to the picosecond can be configured by wrapping each beam with wire a nanometer thick in density of m wires per meter, $m-2$ wires per meter, etc, until 1 wire is obtained which hits the ground. This configuration of wires can be charged with a nanosecond or picosecond current to temporally coher the beam, with spatial resolution in the detector. A pulse timed so that upon wrapping once around the beam it conflagrates or is precisely timed with a small delay, should coher along the entire beam. The spatiality is with two or more small pulses interacting uniformly along the axis of the beam. A magnet is used to decoher the unwanted interactions in the event between the target and detector, such as the gravitino and its cousins in the event explored here. Good coherence can be obtained by using two coadjoined wires, one split and one not, with opposite coadjoining at the ends as could be used in the magnets of the Large Hadron Collider. Last, pulses are used to distinguish the mode and particle enhancement, which may not be chirp but rather a step or a step with multiple notches resembling a zbg.

Coherence prefers a temporal displaced pair of particles with one before the other in space. This can be achieved in the wire configuration by applying two laser beams of the order of 10^9 Hz to coher by an exponent of three, with a nanosecond pulse. Coherence of 10^{12} is considered unphysical, and the timing can be adjusted if beyond this number for varying pulsewave forms, such as two saddles with a hump back to back, for maximal coherence without danger depending on the actual beam. Having the variabiliy in the wavepacket should generate enough room for a varied set of decay channels apart from the graviton and might allow the interesting exploration of higher dimensions; of the order of 120 measurements with 5-6 digits each is required.
to specify the higher dimensional spacetime for example with a saddle with bump left, anti-bump right, and bump in the almost middle back to back with a saddle with no hump.

The noise in the detector can be reduced with a simple move. A diffractive hole can be placed between the scatterer and the detector. This plate has a hole opened on both sides in a butterfly; the particle in a lateral or anti-lateral position cohers with a phase rotation so that the particle rotates back to its original winged shape. With the two-sided hole, which is essentially two separate holes back to back, the winged particle should have energy to rotate 180 degrees before a coher traversing is obtained, but with the symmetric unfolding of the rotated original lateral or anti-lateral position; the latter cohers more. To avoid the frog (a collapsed wing on a butterfly wavefunction) put coher gum on the wall opposite to entry a nanometer thick and maybe on the entry wall; this should unfold to a pimple (an almost diametrically opposite wing on a butterfly wavefunction) and should coher naturally. In principle without any flatness between the two bores, the cohering of the outgoing particle will be faster due to less dimpliness if the length of the holes are chosen right so that proper phase rotation is obtained. The flatness is chosen right so that the squeezed donut shape of the particle wavefunction which is to the right or the left depending upon entering or leaving the double-bored hole so that it propagates exactly antipodally as it exits. This pertains to a graviton, a gravitino, or a set of distributed lateral particles. The effects of wavefunction projection from one particle to another and the bending of the particle zbg are subsidiary if the hole has greater diameter than the particle zbg. This is not to say that anti-lateral particles are admitted, but rather that the gamma radiation from the source to detector are diminished, possibly to factor of 10^n or more depending on the gamma radiation. This is suited to straight on graviton or gravitino beam formation.

Coherence is very geometric especially with photons and electrons. Light means a noncohere amount of electromagnetic radiation, without coherence to other sources including matter so that only a quantum coherence between adjacent photons could matter\(^2\). In regards to the wire configuration, special temporal retardation may be lossy due to unexpected light; in dark, light can be added uniformly with a flash synchronized with the current to enhance the bipolarimetric mingling of light and wire current with regards to the detector. Light is bipolarimetric due to its form and content, and wire is too with regards to duration and timing of pulse when inundated by light; the final result is bipolarimetric lensing and possibly gravitational lensing in

\(^2\)Unpublished. The quantization of the previous action and descendents are available upon request.
an experimental apparatus. A laser diode of magnitude MeV will should mesh with the wire, given ambiguity in the uncalculated magnitude of the emitted light flash. Numerical simulation is advised, and the macroscopic coherence of light could cohere as a result long range in the tens of meters. Numerical simulation is advised but due to the long range coherence and low intensity there is no more danger with the previous coherence than turning on the room light but focused, which most likely has happened without measurable effect and is safe to try; neighboring beams at the CERN laboratory could get a noticeable gain in certain beams, even by sequencing them in a fraction of a second distinguished by the photoemitter type, and noticeable safety by not turning them on and off in a haphazard manner in the remaining beams with contiguity.
References

[1] Gordon Chalmers, “Masses and Interactions in Quantum Chromodynamics,” physics/0503110.
[2] V. Abazov et al, (D0), hep-ex/0603029.
[3] Gordon Chalmers, “Mass Patterns in the Fermion Spectrum,” physics/0508221.
[4] 2 Authors Unpublished.
[5] E. Witten, J. Diff. Geom. 17, 661 (1982).
[6] Sheldon Stone, “Experimental Status of B Physics,” hep-ph/0604006.
[7] S. Eidelman et al. [Particle Data Group], Phys. Lett. B 592, 1 (2004).
[8] M. A. Goldhaber, Interactions and Dynamics of Preons (in subnuclear climate), Dover Press, ed 4, c.2 (1981).
[9] Gordon Chalmers, “Integrability in String Theories,” physics/0604016.
[10] Gordon Chalmers, “Modification of Special Relativity,” in press.
[11] Gordon Chalmers, “Quantum Gravity with the Standard Model,” hep-th/0209072.
[12] Gordon Chalmers, “A Novel Data Compression,” physics/0510148.