Structural Insights into c-Myc Interacting Zinc Finger Protein-1 (Miz-1) Delineate Domains Required for DNA Scanning and Sequence-specific Binding

Mikaël Bédard, Vincent Roy, Martin Montagne and Pierre Lavigne

Département de Biochimie; Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, J1H 5N4, Canada

PROTEO; Regroupement Stratégique sur la Fonction, la Structure et l’Ingénierie des Protéines, Université Laval, Québec, G1V 0A6, Canada

GRASP; Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Québec, H3G 0B1, Canada

Running title: Structure and DNA binding of Miz-1 Zinc Fingers 1 to 4

To whom correspondence should be addressed: Pierre Lavigne, Institut de Pharmacologie de Sherbrooke, 3001 12ème Avenue Nord, Université de Sherbrooke, Campus de la santé, Sherbrooke, Qc, Canada, J1H 5N4, Telephone: 1 (819) 820-6868 #75462; Fax: 1 (819) 564-5400; E-mail: pierre.lavigne@usherbrooke.ca

Keywords: Structural biology, nuclear magnetic resonance, protein dynamic, fluorescence anisotropy, transcription factor, DNA-protein interaction, protein-protein interaction, zinc finger

ABSTRACT

c-Myc interacting zinc finger protein-1 (Miz-1) is a poly–Cys2His2 zinc finger (ZF) transcriptional regulator of many cell cycle genes. A Miz-1 DNA sequence consensus has recently been identified and has also unveiled Miz-1 functions in other cellular processes, underscoring its importance in the cell. Miz-1 contains 13 ZFs, but it is unknown why Miz-1 has so many ZFs and whether they recognize and bind DNA sequences in a typical fashion. Here, we used NMR to deduce the role of Miz-1 ZFs 1 to 4 in detecting the Miz-1 consensus sequence and preventing non-specific DNA binding. In the construct containing the first 4 ZFs, we observed that ZFs 3 and 4 form an unusual compact and stable structure that restricts their motions. Disruption of this compact structure by an electrostatically mismatched A86K mutation profoundly affected the DNA binding properties of the WT construct. On the one hand, Miz1-4WT was found to bind the Miz-1 DNA consensus sequence weakly and through ZFs 1 to 3 only. On the other hand, the four ZFs in the structurally destabilized Miz1-4A86K mutant bound to the DNA consensus with a 30-fold increase in affinity (100 nM). The formation of such a thermodynamically stable but non-specific complex is expected to slow down the rate of DNA scanning by Miz-1 along the search for its consensus sequence. Interestingly, we found that the motif stabilizing the compact structure between ZFs 3 and 4 is conserved and enriched in other long poly-ZF proteins. As discussed in detail, our findings support a general role of compact inter-ZF structures in minimizing the formation of off-target DNA complexes.

Miz-1 (c-Myc interacting Zinc Finger protein-1) is a 88 kDa protein that contains a BTB-POZ (POZ) domain at its N-terminus followed by 13 ZFs. It was first identified as a direct interactor of the oncogenic protein c-Myc by yeast two-hybrid screening (1). Miz-1 is an activator of cell cycle regulator genes such as the cyclin-dependent kinase inhibitors p15\(^{INK4A}\) (p15), p21\(^{CIP1}\) (p21) and p57\(^{KIP2}\) (p57) (2-5). Miz-1 activates the transcription of those genes by recruiting different co-activators such as the histone acetyltransferase p300 and the nucleophosmin (3,6). Moreover, it was shown that in response to TGF-β, Miz-1 forms a complex with the Smad 2/3/4 proteins to activate the expression of p15. This interaction was shown to involve a region located within the first 4 ZFs of Miz-1 and the MH1 domain of Smad...
3 (7). Whilst the role of Miz-1 in cell cycle regulation is well established, recent studies have underlined its implication in other cell cycle-independent processes such as in the autophagy, the endocytosis, the vesicular trafficking, the inflammation and the DNA repair (8-11). Moreover, some cytoplasmic functions of Miz-1, such as its implication in the regulation of the Wnt pathway, are emerging, revealing the multifunctional nature of this transcription factor (12).

c-Myc can directly bind Miz-1 and repress the expression of p15, p21 and p57, presumably by abolishing the interaction between Miz-1 and its co-activators (2,3,6). On the one hand, numerous studies carried out in different cancer cell lines have shown that the transcriptional repression of Miz-1 by c-Myc is relevant in many different stages of the carcinogenesis process (13). Interestingly, on the other hand, another recent study showed that high levels of Miz-1 cause the repression of c-Myc transcriptional transactivation (14). These results have led to the interesting hypothesis that the c-Myc/Miz-1 balance can dictate cell fate by controlling the transcription of gene networks (15).

The specific DNA binding of Miz-1 is mediated by its ZF motifs (16). ZFs are small domains of approximately 30 amino acids that share the following consensus sequence: (F/Y)-X-C-X2-5-C-X3-(F/Y)-X5-L-X2-H-X3-4-H, where X is any residues. These motifs are among the most abundant DNA-binding domain in eukaryotes and possess a ββα fold that is stabilized by the coordination of a Zn(II) atom by two conserved Cys and two conserved His side-chains (17). Classically, the recognition between ZFs and DNA is mediated by specific H-bonds between side-chains of residues -1, 2, 3 and 6 (position relative to the beginning of the α-helix) and DNA bases in the Hoogsteen edge (17). Typically, series of ZFs are connected by highly conserved TGEKP sequence linkers and bind in sets of two or more in the major groove of the DNA with each ZF contacting three DNA bases. These linkers are important to allow for consecutive motifs to optimally fit in the major groove of DNA (18,19). Variations in the consensus sequence can significantly reduce binding affinity (18,19). Although not infallible, recognition codes and statistical potentials have been derived to predict the DNA sequence bound by ZF tandems from the nature of the residues at position -1, 2, 3 and 6 of their recognition helix (17,20,21). Miz-1 specific DNA binding has been mainly associated to regions of the proximal and core promoters of p15 and p21 (2). Although one of the regions of p15 promoter bound by Miz-1 contains an initiator element (INR), no other specific or consensus sequences have emerged until recently. Indeed, two groups recently and independently unveiled similar Miz-1 consensus DNA sequences by genome-wide ChIP-seq and Bind-n-Seq methods, respectively (8,16). However, like many other transcription factors, Miz-1 is found to bind elsewhere on the genome especially when it is stabilized or overexpressed. In fact, in cancer cells, Miz-1 is found to co-localize with c-Myc at many transcription start sites (TSS) where INR sequences are present. Most interestingly, Miz-1 can inhibit c-Myc transactivation of genes involved in tumorigenic programs (14,22). Despite such a critical role in the normal and oncogenic biology of the cell, it is not known if all the ZFs or only subsets bind and recognize the Miz-1 consensus sequence, the INR element or other non-specific DNA sequences.

In this context, we have initiated the determination of the solution structure and DNA binding specificity of different constructs of Miz-1 ZF tandems. To date, the structures of Miz-1 ZFs 5-10 have been reported (23,24). While the ZFs 7-10 possess stable Cys2-His2 folds and the usual inter-domain dynamics, ZF 6 has been shown to be undergoing conformational exchange on the µsec-msec timescale. Moreover, we showed that the non-canonical DTDKE linker that connects ZFs 5-6 is rather unlikely for classical DNA binding since it will cause electrostatic repulsions with the DNA backbone according to the classical ZF recognition mode (24).

Here, we continue with the structural and dynamical characterization as well as the DNA binding properties of Miz-1 with a construct consisting of Miz-1 ZFs 1-4 (Miz1-4). While the 3D structure of the ZF 2, 3 and 4 of Miz1-4 present the typical ββα fold, we were not able to determine the structure of the ZF 1 as this motif also undergoes conformational exchange on the µsec-msec timescale. Also, unexpectedly, we discovered that the ZFs 3 and 4 make many inter-domain contacts allowing them to form a compact...
structure that maintains them in a stable orientation unlikely to provide them with typical DNA binding properties.

As can be rationalized from the dynamical and structural characterization of Miz1-4, the construct fails to bind specifically different Miz-1 DNA targets. The motif involved in the stable inter-domain interactions between ZF 3 and 4 was mutated and led to the disruption of the compact structure. This impacted drastically the binding of the Miz1-4 construct to the DNA consensus sequence. Whereas the DNA binding of the WT Miz1-4 construct is mediated by only ZF 1 to 3, reintroducing conformational freedom to ZF4 led to the formation of a complex with all four ZFs bound. Whereas this could suggest a role in the recognition of the consensus by Miz1-4, we show that the actual Miz-1 consensus sequence can be predicted using the identity of the residues in the recognition helices of ZF 7 to 12, hence suggesting that recognition of the consensus is accomplished by the C-terminal ZFs. Thus, we rather propose that Miz-1 ZFs 1 to 3 are involved in scanning DNA and that the compact structure prevents the formation of stable but non-specific and off-target complexes. In accordance with this view, we find that the motif leading to the formation of the compact structure between ZF3 and 4 is conserved and enriched in long poly-ZF (containing 14 ± 6 ZFs).

RESULTS

Folding of Miz1-4 and Resonance Assignments—Circular dichroism was used to characterize and monitor the folding of the Miz1-4 construct. Folding of ZFs is pH and zinc dependent since conserved Cys side-chains need to be in their deprotonated form to coordinate the Zn(II) atom. At pH 6.5, the addition of Zn(II) led to a transition from a CD spectrum typical of a random coil to an α-helix-like spectrum with a plateau reached at four molar equivalents of Zn(II), suggesting that under these conditions, the four ZFs of Miz1-4 are well folded (Fig. 1B). Moreover, at five equivalents of Zn(II), increasing the pH from 6.5 to 7.5 did not lead to any change of the Miz1-4 CD spectrum suggesting that the protein is already optimally folded at pH 6.5. Based on this CD characterization, all NMR experiments were carried out at pH 6.5 and with five equivalents of Zn(II). As anticipated from the CD study, the cross-peaks on the [1H-15N]-HSQC spectrum of Miz1-4 are well-dispersed indicating the presence of stable tertiary structures (Fig. 1C).

The dataset recorded for Miz1-4 allowed for the assignment of 96/107 (90 %) of the 1H, 96/112 (86 %) of the 15N, 91/112 (81 %) of the 13Cα, 102/112 (91 %) of the 13Cβ, and 94/103 (91 %) of the 13Cγ. Interestingly, many cross-peaks of ZF 1 are very broad (weak) or broadened beyond detection preventing us to assign nine of its 23 residues. This observation for ZF 1 suggests that this motif could experience some µsec-msec motions (discussed below). Therefore, excluding the ZF 1, 84/85 (99 %) of 1H, 84/89 (94 %) of 15N, 79/89 (89 %) of 13Cα, 88/89 (99 %) or 13Cβ and 81/82 (99 %) of 13Cγ were assigned for backbone atoms resonances of residues 24-112. Secondary chemical shift (Δδ(Cα - Cβ)) and DANGLE secondary structure prediction obtained for Miz1-4 are shown in Fig. 1D. The four expected α-helices of Miz1-4 ZFs are predicted by DANGLE (based on φ and ψ angles) and present positive Δδ(Cα - Cβ) values. On the other hand, even if β-strands are not all predicted by DANGLE, mostly negative Δδ(Cα - Cβ) values are observed for these secondary structures. Altogether, CD and NMR data show that the four ZFs of Miz1-4 are folded in the selected conditions.

Miz-1 ZF 1 Undergoes µsec-msec Conformational Exchange—Conformational exchange has previously been detected by our group for the ZF 6 of Miz-1 (24). It is worth noting that both ZF 1 and 6 contain an His at position 1 of the motif instead of a conserved Phe or Tyr (Fig. 1A). In order to verify if the weak signal of Miz-1 ZF 1 in the [1H-15N]-HSQC is caused by conformational exchange, we recorded a set of CPMG relaxation dispersion experiments. One can notice that R2eff values of many ZF 1 amides decrease as the applied refocusing pulse frequency (νCPMG) is increased (Fig. 2A). This observation clearly indicates that the ZF 1 undergoes some conformational exchange on the µsec-msec timescale. The program NESSY was used to fit the dispersion curves according to the protocol described by Bieri and Gooley (25). All the residues presenting a relaxation dispersion were best fit by the Carver-Richard equations which is valid for all timescale (slow to fast conformational exchange limits) and considering a
two-state model (26). Fig. 2B shows all the residues manifesting relaxation dispersion curves. Interestingly, conformational exchange at the C-terminus of the α-helix of ZF 1, 2 and 4 is also observed. While such motions at the end of ZF α-helices have been suggested to be frequent for C2H2 ZFs (24), cases of conformational exchange affecting the core of the α-helix and the first β-strand are rather unusual. It is worth mentioning that resonances of nine consecutive amides invisible on the α-β-strand and in the beginning of the α-helix, do not reappear even at the highest VCPMG used. This suggest the presence of conformational exchange, but on a faster timescale, i.e. towards the µsec limit not covered by CPMG but in the range of the rotating frame relaxation dispersion experiments (T1ρ) (27). Such a widespread exchange broadening for ZF 1 supports the notion that an His at position 1 promotes motions that affect the local environment of almost all the amides of the motif.

Solution Structure of Miz-1 ZF 2 and ZFs 3-4—Because of the ZF 1 extensive conformational exchange, we were not able solve its 3D structure. However, we were able to solve the structures of ZF 2, 3 and 4 and to characterize their linkers. Tandems of ZFs connected by classical TGEKP linkers are relatively independent from one another, but quasi-ordered in absence of DNA (28,29). Indeed, these linkers are moderately flexible with 15N-{1H} NOE values significantly lower than for the ZF core motif (usually around 0.5 for the linkers and 0.65 for the motifs). In accordance, no long-range NOE involving the TGEKP linkers and consecutive ZFs are usually detected in absence of DNA (23). However, extensive medium and long-range NOE involving residues from the non-canonical SGEAR linker and ZFs 3 and 4 are observed (Fig. 3). This clearly indicates that they are not independent from one another. On the other hand, no long-range NOE was observed for the non-canonical linker between ZFs 2 and 3. For these reasons, we decided to calculate the structure of the ZF 2 alone and ZFs 3-4 together.

The NOE restraints, dihedral angles and hydrogen bonds used for structure calculations of each ZF are summarized in Table 1. The superposition of the 20 lowest energy conformers onto their geometric averages demonstrates that all three ZFs are well defined with backbone RMSD of 0.42 ± 0.07, 0.27 ± 0.07 and 0.19 ± 0.05 Å for ZF 2, 3 and 4 respectively (Fig. 4A). Moreover, their structures reveal that they all present the classical ββα topology. The highest backbone RMSD observed for the ZF 2 is most probably due to the presence of a Cys at position 4 of the α-helix (Cys47, Fig. 4B) instead of a conserved Leu in the motif hydrophobic core. Indeed, relatively few long range NOE were detected for this motif. This can be either caused by a less stable tertiary structure and/or by the fact that a Cys side chains has a lesser density of 1H and hence generated less NOE. The 15N-{1H} NOEs recorded for Miz1-4 argues in favor of this last hypothesis and suggest that the amides of ZF2 are as rigid as those of ZF 3 and 4 on the psec-nsec timescale (see below).

The superposition of the 20 lowest energy conformers for ZFs 3 and 4 together shows that they form a well-defined compact structure with a backbone RMSD of 0.92 ± 0.36 Å (Fig. 4C). Based on an alignment of 2435 human ZFs realized by Schmidt and Durrett (30), the Ala86, Arg87 and Leu96 have low probabilities to be at their specific position (0 %, 1.6 % and 1.5 % respectively according to this database). While the Ala86 and the Leu96 participate to the formation of a hydrophobic core between ZFs 3 and 4 with the aliphatic portions of the Lys79 and Lys80 side-chains, the Arg87 engages solvent exposed electrostatic interactions with the conserved Glu15 of the linker (Fig. 4C). Typically, in the DNA bound state, the conserved Glu forms electrostatic interactions with a conserved basic residue at the position of Lys80. Interestingly, the non-conserved Arg87 appears to compensate for this interaction in the free state. One can also notice that the conserved Lys instead of the Ala86 in the linker would cause electrostatic repulsion with the conserved basic residue at position of Lys80 and destabilize the compact structure. This observation provides an explanation as to why this fold is not observed for ZF tandems connected by classical TGEKP linkers. Finally, the non-conserved Ala86, Arg87 and Leu96 stand as the key residues allowing the formation of a cryptic hydrophobic core stabilizing ZFs 3 and 4 in this stable inter-ZF structure.

15N-spin Relaxation Data of Miz1-4 Support the Compact Structure of Miz-1 ZFs 3-4—In order to complement the structure
determination of the individual ZF, we recurred to 15N-spin relaxation and measured Miz1-4 backbone amide T_1, T_2 and 15N-{¹H} NOEs to characterize the fluctuations in the linkers and the effect of the compact structure on the overall tumbling of Miz1-4 compared to other constructs of 4 ZFs.

15N-{¹H} NOEs give information about local motions of the backbone amides in the psec-nsec timescale. For a completely rigid amide (S^2=1), a maximum 15N-{¹H} NOE value of 0.87 is expected (at 600 MHz) whereas highly mobile amides (S^2 tends toward 0) are expected to have 15N-{¹H} NOE that tend toward zero and negative values. In agreement with the existing literature, most of the residues of ZF 2, 3 and 4 have 15N-{¹H} NOE values > 0.6 with average values of 0.64 ± 0.12, 0.65 ± 0.09 and 0.66 ± 0.13 respectively (Fig. 5). However, eight out of the 13 residues, for which 15N-{¹H} NOE could be recorded for ZF1, have values lower than 0.6 despite an average of 0.62 ± 0.11. Those results further validate the dynamical nature of the structure of ZF 1 with important fluctuations on both the µsec-msec and the psec-nsec timescales. The three linkers display average 15N-{¹H} NOE values lower than those of ZF core motifs (linker 1: 0.52 ± 0.08, linker 2: 0.35 ± 0.02 and linker 3: 0.39 ± 0.23). This suggests that the three linkers undergo more frequent local motions than the 4 ZFs. Hence, the compact structure adopted by ZFs 3 and 4 does not seem to contribute to rigidify the linker that connects these motifs as compared to what is normally observed for classical linkers in absence of DNA. That is consistent with the moderately high RMSD observed for ZFs 3 and 4. Those results suggest that residual inter-domain motions promote fluctuations of the amide bonds of the linker in that timescale.

The 15N-spin relaxation parameters T_1, T_2 and T_1/T_2 measured for Miz1-4 are presented in Fig. 5. The average values of T_1, T_2 and T_1/T_2 are 541.95 ± 70.82 ms, 99.82 ± 30.67 ms and 5.75 ± 1.52, respectively. Compared to previous studies of tandems of four ZFs, the average T_1/T_2 value measured for Miz1-4 is smaller than those of MTF-1 ZFs 1-4 (8.07) and Miz-1 ZFs 5-8 (10.69) (24,29). For macromolecules, 15N-T_1 and T_2 respectively increase and decrease as their effective correlation time (τ_{ef}) increases. Hence the smaller T_1/T_2 ratios observed for Miz1-4 indicates that it tumbles faster than the other two constructs. As described in detail in supplementary material (rotational diffusion analysis of Miz1-4) and depicted in Fig. 6, this is mainly caused by the compact structure which orients the N-H vectors of ZF4 perpendicular to the largest component of Miz1-4 rotational diffusion tensor (D_{par}). This leads to a faster effective tumbling for the N-H vectors of this ZF compared to the others. This will result in a decrease in T_1 and an increase in T_2 for those backbone amides with the net result of decreasing the average T_1/T_2 ratio (Fig. 5). The details of the simulations presented in Fig. 6 can be found in the supplementary material and a summary of the simulated parameters is given in Table 2.

The mutation Ala 86 to Lys Destabilizes the Compact Structure Adopted by Miz-1 ZFs 3 and 4—As described above, we hypothesized that in the compact structure fold, the conserved Lys usually present in TGEKPYP linkers should cause electrostatic repulsions with the conserved basic residue at position of Miz1-4 Lys and destabilize it. Hence, to verify this assertion and to destabilize the compact fold, we mutated the Ala86 to a Lys and prepared the Miz1-4^{A86K} mutant. Interestingly, while most of the amide cross-peaks on the mutant [¹H,15N]-HSQC spectrum are at similar chemical shifts than in the wild type (Fig. 7A), some peaks, mostly residues located in the linker between ZFs 3 and 4 and at the interface of those ZFs, are significantly perturbed (Fig. 7B and C). This suggests that these amides experience changes in their chemical environment either because of the Ala to Lys substitution or because the Lys side-chain prevents the formation of the compact structure as hypothesized. Accordingly, the inspection of a 15N-edited NOESY-HSQC spectrum recorded with the mutant reveals that many NOEs characteristic of the ZF 3-4 compact structure are lost. For instance, we noted that NOEs detected in Miz1-4 between Arg⁸⁷ HN and Leu⁹⁷ Hδ^a, Phe⁹⁷ HN and Thr⁹⁸ Hα (Fig. 7C) are absent in the spectrum of the mutant.

To further validate the loss of the compact structure for the mutant, we measured its amide 15N-spin T_1 and T_2 (Fig. S1). As described in supplementary material, if it is disrupted, ZF4 should realign with the other ZF and slow down the overall tumbling of the tandem. Accordingly, the T_1 and T_2 values of the mutant are...
systematically and respectively higher and lower leading to T_1/T_2 values that are systematically lower with an average of 7.26 ± 2.03. Such a ratio corresponds to an effective τ_m of 7.9 ns (Fig. 7D), a value larger than wild type Miz1-4 (6.9 ns) and more consistent with those reported for tandems of four ZFs devoid of stable compact structure (e.g. 8.4 ns for MTF-1 ZFs 1-4) (29). Using the T_1/T_2 values of the same residues as those used with the wild type construct, we characterized the rotational diffusion analysis of ZFs 2, 3 and 4 of the mutant. The parameters obtained from the analysis are presented in Table 3. As expected, the rotational diffusion of the three ZFs is significantly best simulated using the axially-symmetric model (at the 90% confidence interval) with their α-helices preferentially aligned with D_{par} (Fig. 7E). Collectively, these results further validate that ZF3 and 4 are no longer perpendicular to each other and that the compact structure is not stable in the Miz1-4$_{A86K}$ mutant. Moreover, the D_{iso} values of the three ZFs have significantly decreased in the mutant compared to the wild type, in agreement with a more anisotropic overall rotational diffusion for this protein construct. In fact, the D_{iso} values calculated for Miz1-4$_{A86K}$ ZFs 2, 3 and 4 (1.99, 1.96 and 2.48 x 10^7 s$^{-1}$, respectively) are similar to those calculated by Potter et al. (29) for the ZFs 2, 3 and 4 of MTF-1 ZF 1-4 (1.70, 1.93 and 2.43 x 10^7 s$^{-1}$, respectively). Altogether, these results clearly show that the mutation of the Ala 86 to a Lys prevents the formation of the compact structure adopted by Miz-1 ZFs 3-4 and validate the role of the non-canonical SGEOAR linker in the formation of such a structure.

Role of Miz-1 ZF 3-4 Compact Structure on the DNA Binding—The structure alignment of the ZF 4 of Miz1-4 with the second ZF of Zif 268 bound classically to its target DNA is shown in Fig. 8A (31). One can notice that the compact structure adopted by Miz-1 ZFs 3-4 is unlikely to favor the classical DNA binding of the 4 ZFs. Indeed, if Miz-1 ZF 4 was to bind to the major groove of DNA, ZF 3 would reorient ZFs 1 and 2 away from DNA. Conversely, despite the conformational exchange in ZF1 and the fact that the ZFs 2 and 3 mostly bear hydrophobic residues in their recognition helices (Fig. 4A and 8A), if ZFs 1 to 3 were to bind DNA, they would also orient ZF4 away from DNA.

Fluorescence anisotropy was used to determine the apparent DNA binding affinity of Miz1-4 to the sequences of the p15 promoter identified by Seoane et al. to be engaged by Miz-1 (region -155 to -140 and -2 to +14 that contains an INR element) and to the consensus sequence recently identified by Wolf et al. (Fig. S2) (2,8). As shown in Fig. 8B, the Miz1-4 construct binds to all the sequences tested, including two unrelated and non-specific sequences, with a similar low apparent affinity in the µM range. Reported affinities for series of three ZFs to non-specific DNA sequences normally lie in the low µM range, whereas their specific binding rather lie in the nM-pM range (17,32-34). Hence, our data clearly demonstrate that Miz-1 ZFs 1-4 bind DNA with an affinity and a specificity that is not sufficient to promote specific molecular recognition of the consensus DNA or the p15 core promoter regions by this transcription factor. In order to identify which ZFs are involved in the weak and non-specific binding, we recorded [$^{1}H-^{15}N$]-HSQC spectra of Miz1-4 in the presence of one molar equivalent of the consensus DNA (Fig. 8C and S3). Strikingly, all the resonances of the ZFs 1, 2 and 3 become invisible upon DNA addition while most of the amide cross-peaks of the ZF 4, even if significantly less intense, still are visible and at similar chemical shifts. This result clearly supports the notion that ZFs 1 to 3 are more affected by the presence of DNA than ZF4 and that they are involved in non-specific and weak interactions. Indeed, a weak binding of DNA by ZFs 1 to 3 could lead to chemical exchange (and extreme line-broadening) on the µs-ms timescale through sliding and/or hopping mechanisms as already described for some proteins in complexes with non-specific DNA (35,36). However, we ran relaxation dispersion experiments on the complex and were not able to recover any of the cross-peak intensities (data not shown). When a 15N amide is experiencing a conformational exchange (T_2 increased by R_{ex}^{-1}), it leads to line broadening. However, the evolution of the chemical exchange process leading to the line broadening can be refocused during the CPMG pulse train in the course of a relaxation dispersion experiment. The extent of refocusing can be such that the contribution of the R_{ex}^{-1} can be completely removed at high field strength or high refocusing frequencies with the result that vanishing peak...
intensities of broadened resonances can be recovered (37). Hence, the fact that we could not recover the cross-peak intensities of ZF1-3 argues against the presence of an active conformational exchange process during the CPMG experiments on the µsec-msec timescale as reported by others (40,41). However, it is possible that a conformational exchange, caused by the scanning of DNA, occurs on a faster timescale than the one covered by the CPMG experiment. Alternately, our results can be explained by the fact that ZFs 1 to 3 bind at multiple and non-interchanging sites on the consensus sequence (Fig. 8C). Indeed, based on the recognition code proposed by the group of Pabo (17) and on statistical potentials (21), four different sites could be bound by Miz-1 ZF 1-3 with six or seven predicted contacts considering residues at position -1, 3 and 6 of the ZF recognition helices (Fig. 8C). It is noteworthy that these four sites would allow the Arg at position 6 of the ZF1 to contact a guanine, which is generally one of the strongest and more stringent interactions found for specific ZF DNA binding (17). Assuming that all these sites are bound with comparable affinities by the construct, it is likely that the backbone amides of ZFs 1 to 3 experience different static chemical shifts in the different complexes. It should be noted that although the apparent binding constant lies in the µM range, at the concentration used in the experiments, all the protein constructs are expected to be bound to DNA. Coupled to the increase of Miz1-4 apparent molecular weight in the complex, this could lead to the disappearance of the cross-peaks. However, because ZF 4 does not contact DNA, it resides in a more chemically isotropic environment independently of where ZFs 1 to 3 bind on DNA. This can rationalize the fact that the intensity of its cross-peaks are reduced because of the increase in the molecular weight but not decrease beyond detection nor perturbed by different chemical environments. But, once again, we cannot rule out the contribution of a conformational exchange caused by a sliding of Miz1-4 on DNA on a faster timescale than the one covered by CPMG experiments.

We show on Fig. 8D the $[^1\text{H},^{15}\text{N}]-\text{HSQC}$ of Miz1-4A86K in the presence of one equivalent of the consensus DNA. One can notice that the amide resonances of the four ZFs are present on the spectrum and that most of them are perturbed by the presence of DNA (Fig. 8D and S3). This strongly suggests that the disruption of the compact structure allows for the four ZFs to engage DNA to form one well defined and stable complex. To further validate this, we have measured the apparent affinity of the Miz1-4A86K for the consensus DNA (Fig. 8B). Accordingly, we found that the affinity of the mutant for the consensus is increased by 30-fold with an apparent K_a of 0.11 µM. As shown in Fig. 8D, only two positions on the consensus can satisfy the strong and specific Arg/guanine interactions defined by the Arg at position 6 of the α-helices of ZF 1 and 4 (Fig. 8D). However, according to the prediction tools (17,21), the site 1 depicted in Fig. 8D would allow for four additional favorable and observed contacts compared to the binding site 2 suggesting that it is probably the site preferentially bound by Miz1-4A86K. Whereas the structure of the complex would need to be solved to conclude on the exact nature of this complex, the results presented in this section confirm that the compact structure does not allow for the recognition of the consensus and lead to weak DNA binding, while the re-establishment of the freedom of ZF4 leads to much stronger DNA binding.

Miz1-4 Does Not Interact directly with the MH1 of Smad3—Based on the model presented in Fig. 8A, we reasoned that Miz1-4 could also be involved in protein-protein interactions. Indeed, the three Ala and Leu (Ala 45, 46, 49 and Leu 71, 74, 77) present on Miz-1 ZFs 2 and 3, at position normally involved in DNA binding, could constitute a suitable hydrophobic surface for protein-protein interactions if solvent-exposed. In a series of co-immunoprecipitation experiments, Seoane and colleagues reported strong evidences for the implication of Miz-1 ZFs 1-4 in the formation of a protein complex containing Miz-1 and the Smad 2/3/4 in response to the activation of the TGF-β pathway. Moreover, the authors performed GST pull-down experiments and observed a direct interaction between purified Miz-1 and the Smad 3 MH1 (7). For the sake of completeness in our quest to characterize the structural biology of Miz1-4, we cloned, expressed and purified the MH1 domain of Smad 3 (residues 1-145) and tried to validate the interaction at the atomic level. The CD spectrum and the thermal denaturation of the Smad 3 MH1 obtained are similar to what have already been published for
the folded protein (Fig. S4A) (38). To detect the interaction between Miz1-4 and the Smad 3 MH1, [\(^{1}H^{15}N\)]-HSQC spectra of \(^{15}N\)-labeled Miz1-4 were recorded in absence or in presence of one equivalent of unlabeled Smad 3 MH1. Surprisingly, no resonance from Miz1-4 was perturbed by the addition of Smad 3 MH1 domain suggesting that there is no interaction between the two folded domains (Fig. S4B). No protein precipitation was observed upon the addition of the MH1 domain and both proteins were intact and in the right ratio as shown by the SDS-PAGE gel presented in Fig. S4B. Moreover, no interaction was observed between these proteins by CD and by fluorescence anisotropy (Fig. S4C-E). Our results demonstrate that there is no direct interaction between Miz-1 ZFs 1-4 and the Smad 3 MH1 domain. As the folding of both the MH1 domain of Smad 3 and the ZFs 1-4 of Miz-1 depend on the coordination of zinc atoms, we hypothesize that the utilization of EDTA and the absence of a reducing agent in the buffer used by Seoane et al. in their pull-down experiments could have led to the formation of non-specific intermolecular disulfide bonds between Smad3 MH1 and Miz-1 in vitro. More investigation will be necessary to identify the protein(s) that bridge(s) Miz-1 to Smad 2/3/4 through its first four ZF motifs.

Towards the Understanding of Miz-1 Specific DNA Binding to its Consensus sequence—Our results suggest that Miz1-4 is most likely not involved in the formation of the native and specific complex between Miz-1 and its cognate sequence. We can also cast doubt on the possibility that ZFs 5 and 6 participate in Miz-1 DNA binding. Indeed, we have previously shown that the Asp and Glu residues in the DTDKE linker between these ZFs would clash with the DNA phosphates. In addition, like shown here for ZF 1, ZF 6 also undergoes extensive conformational exchange indicating that its binding competent conformation is probably not always present (24) and this will further contribute to weaken DNA binding. On the other hand, Miz-1 ZFs 7-10 all present stable canonical ZF structures and no unusual dynamical properties or compact folds that could prevent them to bind DNA classically (23,24). Indeed, these ZFs are linked by classical or quasi-classical (S/T)GEKP linkers (Fig. 1A). In order to identify potential Miz-1 ZF series that could recognize Miz-1 target DNA consensus sequence derived by Wolf et al. (8), we have used the code proposed by the group of Pabo (17). It is important to remember that the second conserved region of the sequence identified by Wolf et al. (Fig. 9B) has a high homology with the two consensus sequences recently identified by Barrilleaux et al. (16). Strikingly, the best fit obtained involves ZFs 7-12 with 12 interactions unambiguously predicted by the code. Remarkably, the most conserved regions of the consensus are matched to the strongest and most specific canonical side chain-DNA base interactions, i.e. involving either an Asp with a C or an Arg or a Lys with a G (Fig. 9B). In addition, we have used the approach proposed by Persikov et al. (21), based on statistical potentials derived from a database of structural and thermodynamical data, to predict the DNA sequence bound by Miz-1 ZFs 7-12 (Fig. 9C). This approach also predicts almost perfectly (one mismatch) the second and third most conserved sequences of the consensus. Also according to the recognition code of Pabo, we found that the least conserved region of the consensus, though almost identical to the second, could alternately be bound by ZFs 7-8 (Fig. 9D). Perhaps this degenerated cluster of binding sites is important to favor a high local concentration as a step into the mechanism of specific recognition. It is worth mentioning that two other recognition modes for Miz-1 ZFs along the consensus DNA sequence fit well with nine interactions predicted by the code in both cases (Fig. S5B). However, because those recognition modes involve ZFs 1-6 and that the matches did not correlate well with the conserved regions, we believe that these binding modes, while less stable, could serve in the DNA scanning. In this regard, Zandarashvili and coworkers recently published studies demonstrating the importance of the presence of a lower affinity DNA binding ZF for optimal target search efficiency by a protein containing three ZFs (34,36). Analogously, we propose that ZFs 1-6 serve a similar purpose for the efficient recognition of the consensus by subsets of ZFs 7-12.

DISCUSSION

Miz-1 is a transcription factor that contains 12 consecutive ZFs. Despite its crucial role in many decisive aspects of cell biology, the
precise identity and role of its ZFs in the recognition of cognate DNA sequences remains unknown. In this study, we report the structural and dynamical characterization of the ZFs 1 to 4 of Miz-1 by solution state NMR as well as their DNA binding properties. Our structural and dynamical analysis revealed that ZF 1 undergoes peculiar conformational exchange and the existence of an unusual compact fold involving the ZFs 3 and 4. Similar conformational exchange has been reported by us for ZF 6 (24) and those two ZFs represent, to the best of our knowledge, the only reported cases so far. As discussed below, the compact structure we have unveiled has rarely been discussed or seen so far but it could be conserved in other poly-ZF proteins yet to be studied.

Our results and previous works from our laboratory enable us to propose that the first six ZFs of Miz-1 are involved in DNA scanning in the search for specific DNA binding through ZFs 7 to 12 (Fig. 9). Indeed, ZFs 1-4 binds to non-specific DNA with the same marginal affinity than cognate DNA sequences (p15 core promoter (2) and the newly identified consensus (8)). Moreover, the unusual flexibility of the ZF 1 and the compact fold of ZFs 3-4 coupled to already published evidences on ZFs 5 and 6 render canonical DNA binding improbable for those ZFs. Interestingly, this region of Miz-1, more specifically ZFs 1 to 4, has been reported to bind to the MH1 domain of Smad 3 and to play a role in the TGF-β dependent activation of p15 (7). Unfortunately, using biophysical approaches and the purified constructs, we were unable to validate a direct interaction. More investigations will be necessary to identify the protein(s) that bridge(s) Miz-1 to the Smad proteins.

Of more general interest, while specific DNA recognition by poly-ZFs generally involves series of 3-5 ZFs, the number of ZFs per poly-ZF protein have increased throughout the evolution with an average of eight ZFs and an upper limit of around 40 ZFs for human (17,30). This observation suggests that these ubiquitous motifs are implicated in other biological functions than DNA binding. Accordingly, there is an increasing number of reported cases of ZFs involved in protein and RNA interactions (39,40). Some groups even suggested that the potential of ZFs for protein interactions is likely to be greater than for DNA interaction (41). However, as discussed elsewhere, the structural and dynamical characteristics dictating the functional role of ZFs is poorly understood (40). Tandems of ZFs are generally separated by highly conserved TGEKP sequence linkers that have been shown to be important for optimal DNA binding (18,19,42,43). Accordingly, different groups proposed that the nature of ZF tandem linkers could enable the prediction of their functions (18,19,44). While many studies addressed the functional impact of linker variations on DNA binding by ZFs, little is known about the structural impact of such variations. Here we report that the SGEAR linker between Miz-1 ZFs 3 and 4 participates in the formation of a compact structure that maintains those ZFs in an orientation unlikely for typical DNA binding. To assess the recurrence of similar compact structures potentially adopted by ZF tandems among poly-ZF proteins, we searched for other reported cases in the literature and tried to find rules that could allow identifying them.

To the best of our knowledge, there is only one other reported case of consecutive ZFs separated by a five residue linker that adopt a compact structure in absence of DNA. Indeed, the linker between the ZFs 5 and 6 of MBP-1 is involved in inter-finger residue contacts that maintain them in a conformation different from what is usually observed for classical DNA binding (PDB 1BBO, Fig. S6A) (45). Interestingly, while MBP-1 ZF 5-6 and Miz1-4 ZF 3-4 conformations are quite different, in both cases, the presence of a long side chain amino acid at the position of Miz1-4 Leu 96 (Lys 40 for MBP-1) instead of a conserved small residue is involved (probability of 74.41 % for a Ala, a Ser or a Gly at that position according to Schmidt and Durrett (30)). In both cases, this residue participates to the formation of a hydrophobic core at the finger interface with a non-conserved hydrophobic residue in the linker (MBP-1 Val27 and Miz-1 Ala86) (Fig. S6B and C) and a residue from the preceding ZF. The observation of the structure of INSM1 ZFs 4-5, deposited in the PDB under the code 2D9H (unpublished), shows that these motifs also adopt a compact structure unlikely fit for classical DNA binding (Fig. S6A). Incidentally, these ZFs do not participate in the specific DNA binding of INSM1 (46). Strikingly, the residues of INSM1 involved in hydrophobic interaction that
maintain INSM1 ZFs 4-5 in a fixed orientation (Leu 48, Val 56 and Thr 65) are at the same position than the one responsible for the compact structure adopted by Miz1-4 ZFs 3-4 (Lys 80, Ala 86 and Leu 96) (Fig. S6C). However, it should be noted that those ZFs are connected by a shorter linker (4 residues instead of 5) that could also contribute to fix their orientation. Another ZF tandem linked by a non-classical four residue linker (KKIK) with restrained ZF flexibility was recently identified for ZFAT ZFs 4-5 (PDB 2RV7) (47). Once again, an hydrophobic residue of the linker (ZFAT Ile 63) is involved in hydrophobic interactions that stabilize the orientation of those ZFs. However, in this case, the linker hydrophobic residue does not interact with the residue present at the position of Miz1-4 Leu 96, but rather interacts with the ZF 4 Tyr 41 (Fig. S6E). Interestingly, this residue also has a low probability of 0.53 % to be at its specific position based on the Schmidt and Durrett alignment (30). This last example suggests that many different scenarios can cause the restriction of ZF orientations. Finally, the inspection of the structure of TFIIIA bound to RNA shows that its ZFs 4 and 5 adopt a non-classical orientation necessary for the specific RNA binding of this poly-ZF (48,49). Strikingly, once again, hydrophobic interactions between a long side chain residue at position of Miz1-4 Leu 96 (Arg 145) and two hydrophobic residues at position of Miz1-4 Lys 80 and Ala 86 (TFIIIA Phe 127 and Leu 133) are observed in this unusual fold (Fig. S6F). Interestingly, the particular orientation of ZFs 4-5 is also observed in the crystal structure of TFIIIA bound to DNA and prevents the ZF 4 to contact DNA bases (50). In this case, the ZF 4 is acting as a spacer element between the ZFs 1-3 and 5 that mediate the specific DNA recognition (Fig. S6F). This example of TFIIIA ZF 4-5 illustrates that a better understanding of ZF tandems structural biology could help to predict their functions.

Based on the structural information described above, we ran a PHI-BLAST search against the Swiss-Prot data bank to identify ZF tandems that could form similar compact structures as the one observed for Miz-1 ZFs 3-4, MBP-1 ZFs 5-6, INSM1 ZFs 4-5 and TFIIIA ZFs 4-5. We found 170 ZF tandems containing a hydrophobic residue at position 3 or 4 of the linker and a non-conserved hydrophobic residue (all except Ala) or a long side chain residue (Arg or Lys) at the position of Miz1-4 Leu 96 (the PHI-BLAST pattern used is shown in Fig. S7). Interestingly, an average of 14 ± 6 ZFs per poly-ZF is observed for the 66 human proteins identified in the blast. This suggests an enrichment of unusual tandem fold for poly-ZFs containing more than the average ZFs in human (average of eight ZF per poly-ZF in human). In another PHI-BLAST, we identified 37 proteins in the databank that contains a long hydrophobic side chains at position of ZFAT Tyr 42 and Ile 63. It is worth mentioning that the residue numbering used here is the one provided in the different PDB files.

The above observations suggest that compact structures similar to the one observed between Miz-1 ZF 3-4 are probably not uncommon among poly-ZFs and may possess a conserved role. Based on our results, one possible role could be to limit the number of consecutive ZFs binding in a canonical fashion and consequently fine-tune the DNA affinity of poly-ZFs proteins allowing for an optimal DNA scanning speed in the search for specific sequences. Indeed, it can be anticipated that too many ZFs binding in a concerted fashion to non-specific DNA could lead to the formation of stable non-specific complexes that slow down or even halt the DNA scanning process. Another role for ZF tandem compact structures could be to prevent DNA binding of ZF subsets so they can serve as platforms to engage other proteins or RNA.

To conclude, the results presented in this study not only contribute to deepen our knowledge on Miz-1 structural biology, but also provide key elements essential to our understanding of Miz-1 specific DNA binding. The structural, dynamical and functional results presented here for Miz-1 ZFs 1-4 together with previous structural studies provide strong evidences for the implication of Miz-1 ZFs 1 to 6 in the scanning of DNA and ZFs 7 to 12 in specific DNA binding. Moreover, the analysis of the unusual compact structure adopted by Miz-1 ZFs 3-4 suggests that other ZF tandems could form such structures and contribute to expand our understanding of these ubiquitous and versatile motifs.

EXPERIMENTAL PROCEDURES

Preparation of the Miz1-4 and Miz1-4A86K Constructs—The cDNA of ZFs 1 to 4 of Miz-1
(Miz1-4, residues 304-414) was generated by PCR from the complete cDNA of Miz1 using primers F (5'-CAT ATG GTC ATC CAC AAG TGC GAG GAC TGT GG-3') and R (5'-GGA TCC CTA GCC GCT GTG CAC CAG CTG GTG-3'). The PCR product was inserted into pDrive (Qiagen), digested by NdeI and BamHI and inserted in pET-3a (Novagen) by the same restriction sites. The construct was transformed in BL21 star (DE3) competent cells (Invitrogen). Bacteria were grown in M9 medium containing ^15NH4Cl and ^13C-glucose to an O.D. of 0.6 at 600 nm, were induced for 15 h at 37 °C with 0.5 mM IPTG and harvested by centrifugation. The cell pellet was resuspended in a lysis buffer (700 mM NaCl, 50 mM KH2PO4 (pH 4.5)), frozen at -80 °C for at least 1 hour, thawed in hot water and then sonicated. The lysate was treated with 100 mM DTT and DNase I for an hour at 37 °C and was centrifuged at 17 500 RCF for 30 min. The soluble fraction was diluted five times in buffer A (0.12 M citric acid-Na2HPO4 (pH 3), 8 M urea) and purified by FPLC with a HiTrap SP HP column (GE Healthcare). After an extensive wash with buffer B (0.12 M citric acid-Na2HPO4 (pH 3)), Miz1-4 was eluted by a gradient of NaCl.

Ultracentrifugation (Amicon Ultra-15, Millipore) measurements were realized with a Jasco J-810 spectropolarimeter equipped with a Jasco Peltier-type thermostat. The CD spectra were recorded with a 1 mm path length quartz cell at 20°C and were averaged over ten scans with a wavelength step of 0.2 nm. The spectra were smoothed using Spectra Manager (JASCO Corporation). Miz1-4 spectra were recorded at 25 µM in a solution containing 10 mM acetic acid, 10 mM cacodylate, 2 mM TCEP and the indicated ZnCl2 concentrations. Smad 3 MH1 spectrum was recorded at 15 µM in a buffer containing 10 mM Tris (pH 8), 50 mM KCl and 2.5 mM β-Mercaptoethanol. Data were converted from CD signal to mean residue ellipticity using the following equation [θ] = (δ ∙ MRW) / (10 ∙ c ∙ l), where δ is the ellipticity in degrees, MRW is the mean residue weight, c is the concentration of the sample (g ∙ ml^-1) and l is the path length (cm). Thermal denaturation of Smad 3 MH1 was realized by following the CD signal at 222 nm as a function of the temperature at a rate of 1 °C/min.

NMR Spectroscopy—All NMR experiments were recorded at 25 °C on a Varian (Agilent) Unity INOVA operating at ^1H frequency of 600 MHz equipped with an indirect detection H/C/N room temperature probe with a Z-axis pulsed-field gradient capacity. Samples were prepared at a final concentration of 0.7-1.0 mM of Miz1-4 in the NMR buffer (10 mM acetic acid, 10 mM Bis-Tris (pH 6.5), 50 mM KCl, 2 mM TCEP, five equivalents of ZnCl2 and 10 % D2O). Miz1-4 backbone and side-chain assignments were obtained from standard triple resonance experiments. 2D [^1H-^15N]-HSQC, and 3D HNCA, HNCACB, and CBCA(CO)NH spectra were used for the ^1H, ^13N, and ^13C assignments of the protein backbone. Side-chain ^1H and ^13C assignments were obtained using 2D [^1H-^13C]-HSQC, and 3D H(CC.CO)NH, (H)CC(CO)NH and HCCH-TOCSY spectra. The ^1H and ^13C resonance assignments of the aromatic rings of Phe, Tyr and His were realized using 3D aliphatic and aromatic ^13C-edited NOESY-HSQC and ^15N-edited NOESY-HSQC. 3D NOESY spectra were recorded with mixing time of 50 and 150 ms. All the pulse sequences used were taken from the Biopack repertoire.

NMR [^1H-^15N]-HSQC experiments run to verify the interaction between Miz1-4 (or Miz1-4^AB6K) to the Miz-1 consensus DNA have been recorded with 250 µM of both the protein and the DNA (see Fig. 8B for the DNA sequence) at 25 °C in a solution containing 20 mM Bis-Tris (pH 7), 150 mM KCl, 1.25 mM ZnCl2, 2 mM TCEP and 10 % D2O.

Structure Calculations—All NOEs were assigned manually and converted into distance restraints using CcpNmr Analysis (51). The program DANGLE was used to obtain φ and ψ dihedral angles based on the backbone and ^13Cβ chemical shift values (52). Structures were calculated using the program ARIA2.2 in conjunction with CNS (53,54). Calculations for
Miz1-4 ZF 2 and ZFs 3-4 were first carried out without zinc atom and zinc coordination restraints. For all three ZFs, the conserved cysteines and histidines were positioned correctly to allow coordination of zinc. In the following calculations, a Zn(II) ion was added and zinc coordination distance restraints were specified to ARIA (2.3 Å for Zn(II)-S, and 2.0 Å for Zn(II)-N). The 20 lowest-energy conformers out of 300 for the final iteration of the calculation were refined in water and submitted to PROCHECK-NMR for initial validation of the structural quality of our models. The final structure ensembles of ZF 2 (residues 30-58) and ZFs 3-4 (residues 58-112) were deposited in the protein databank (PDB) under identification codes 2N25 and 2N26 respectively. A full report of the structural quality assessment can be found on the PDB with the access codes. NMR resonance assignments for Miz1-4 were deposited in the BMRB under accession number 25587.

15N-Spin Relaxation—15N-T1, T2 and 15N-{1H} NOE experiments were recorded using previously described pulse sequences available in the Biopack repertoire (55). Delays of 0, 10, 30, 90, 120, 150, 250, 350, 450, 550, 650, 800 and 1000 ms and of 0, 10, 30, 50, 70, 90, 110, 130, 150, 170, 190, 210 and 250 ms were used to obtain T1 and T2 respectively. 15N-{1H} NOE measurements were done by comparing $[^{1}$H-15N]-HSQC spectra with and without a 6-second proton saturation. 15N backbone CPMG relaxation dispersion profiles were acquired in a constant time (60 ms) and interleaved manner using a modified version of the pulse sequence from the Biopack repertoire based on the work of Palmer et al. and Mulder et al. (56,57). The field strengths ($\nu_{\text{CPMG}} = 1/4\tau_{\text{CPMG}}$) used were 28.57, 57.14, 85.71, 114.29, 142.86, 171.43, 200, 228.57, 285.71, 371.43, 428.57, 514.29, 542.86, 571.43, 657.14, 714.29, 771.43 and 800 Hz. Experiments with ν_{CPMG} of 28.57, 57.14, 85.71, 228.57 and 571.43 Hz were repeated twice to estimate the extent of the experimental error. CPMG data (R$_{2,\text{eff}}$) were fitted with the program NESSY according to the protocol described by Bieri and Gooley (25). R$_{2,\text{eff}}$ were calculated using the equation $R_{2,\text{eff}}(\nu_{\text{CPMG}}) = 1/T \cdot \ln \cdot (I(\nu_{\text{CPMG}}) / I_0)$ where T is the total and constant duration of the CPMG period (60 ms), I(\nu_{\text{CPMG}}) and I$_0$ are the resonance intensities of the 15N and 1H$_2$N correlations in presence and absence of a refocusing pulse, respectively.

Rotational Diffusion Analysis—The programs pdbinertia and R2R1_diffusion (AG Palmer: http://www.palmer.hs.columbia.edu/software/diffusion.html) was used to characterize the rotational diffusion of the different ZFs as described elsewhere by Tjandra et al. (58). Briefly, for the isotropic case, τ_m (or 1/6 D$_{iso}$) was determined by calculating T$_1$/T_2 and comparing it to the experimental value to optimize with R2_R1_diffusion the following error function:

$$
\chi^2 = \sum_i \left[\left(\frac{T_{1i}^{exp}}{T_{1i}^{calc}} - \left(\frac{T_{2i}^{calc}}{T_{2i}^{calc}} \right) \right) / \sigma_i \right]^2
$$

where σ is the experimental uncertainty. As described elsewhere (59), 15N-T$_1$/T_2 ratios are independent of S^2 (order parameter of the backbone amide vector) and τ_m (internal correlation time of the backbone amide vector) for rigid amides (high S^2 values) and fast internal ps motions (τ_c). For the axially-symmetric diffusion case, the molecular reference frames of the pdb files of the geometric averages of ZF2 (2n25), ZF3, ZF4 and ZF3-4 (2n26) were rotated into their inertia frames with the program pdbinertia. Then a local τ_m is determined by optimizing the χ^2 function. The local τ_m is a function of cosine angles α (the angle between the amide vectors and the unique axis of the inertia tensor), D$_{per}$ and D$_{par}$ (the rotational diffusion coefficients perpendicular and parallel to the unique axis of the inertia and diffusion tensors). Hence during the minimization of the error function, it is in fact D$_{per}$, D$_{par}$ and the unique axis of the diffusion tensor that are optimized. An effective correlation time ($\tau_{m,\text{eff}}$) is also obtained and is given by 1/6D$_{iso}$, where D$_{iso}$ is equal to (2D$_{per}$+D$_{par}$) with an anisotropy or D$_{ratio}$ given by D$_{par}$/D$_{per}$. Finally, F-statistics test (F) is run within R2R1_diffusion. Confidence in the isotropic or the axially-symmetric diffusion model was evaluated by comparing the F values to the critical F values determined by the R2R1_diffusion program at the 90% confidence interval following 500 Monte Carlo simulations as described elsewhere (60). A large F value
indicates that the improvement in χ^2 by using more parameters (axially symmetric vs. isotropic) is statistically significant or not obtained by chance. As suggested elsewhere (61), the data (residues) used for the calculations were filtered to exclude residues with T_1/T_2 ratios higher than the average plus 1.5 standard deviation (considering ZFs individually) and those with the lowest 15N-1H NOE. The former residues are likely to undergo conformational exchange and have T_2 values artificially lowered (or T_1/T_2 ratios artificially increased) by R_{ex} and the latter are likely to be unfolded (low order parameter) and undergo concurrent motions in addition to rotational diffusion. Moreover, residues presenting resonance overlap or having T_1 or T_2 values with more than 10 % of uncertainty were removed in order to use only good quality data for the analysis. A total of 9, 11, 10 and 21 residues were retained for ZF 2, ZF 3, ZF 4 and ZFs 3-4 respectively. T_1/T_2 values of the selected amides presenting uncertainties lower than 5 % (generally comprised between 0.5 – 2.5 %) were set to 5 % in the calculation in order to account for the inherent deviations of individual 15N chemical shift anisotropy (29). Once the calculations have been completed, all the conformers of the ensemble of structure deposited on the pdb were aligned onto their corresponding average structures in the final diffusional reference frame and α angles were extracted for all the conformers. Using the diffusion parameters estimated, the α angles and T_1/T_2 ratios were back-calculated with an in-house written program using the S^2-τ_e spectral density function (with S^2=1 and τ_e=0) (62) with an axially symmetric diffusion (58) for all the conformers of the ensemble of structures deposited on the pdb in order to estimate uncertainties on the calculated α and T_1/T_2 ratios. In order to simulate the effect of slow ns motions of ZF4 relative to ZF3 on its T_1/T_2 ratios, we used its α values, D_{per} and D_{iso} determined as described above and minimized the difference between the calculated and experimental ratio by manually changing S^2 and τ_e (in the ns time scale) with our in-house written program. Note that we neglected the effect of ps motions in this simulation.

Fluorescence

Anisotropy—Oligonucleotides were purchase from IDT. The different lyophilized fluorescein-dT labeled oligonucleotides were resuspended in water at 100 µM and were mixed to a 1:1 ratio with the non-labeled complementary strand. The mixtures were then incubated at 95 ºC and slowly cooled down to room temperature to form the duplex. The double-stranded probes were diluted to 15 nM in a solution containing, 100 mM Tris (pH 7.5), 50 mM KCl, 1 mM TCEP and 500 µM ZnCl$_2$ and were added to a 1 cm path length quartz cell. Data were recorded on a HITACHI F-2000 spectrofluorimeter mounted in the L-shape configuration with the excitation and emission wavelength set to 490 and 520 nm respectively and both slits set to 10 nm. Miz1-4 protein was gradually added from a stock at 450 µM. An equilibration of 5 min was allowed before the acquisition of each point. The anisotropy was calculated according to the following equation where r is the anisotropy, I_\parallel is the fluorescence intensity when the polarizers are parallel and I_\perp the fluorescence intensity when they are perpendicular:

$$r = \frac{I_\parallel - I_\perp}{I_\parallel + 2I_\perp}$$

The dissociation constants were obtained assuming a two-state binding using the following and classical equation:

$$\frac{\Delta r_{obs} - (K_d + (1+R)[DNA]_0)}{\Delta r_{max} - (K_d + (1+R)[DNA]_0)^2 - 4[DNA]_0^2 R}$$

$$\Delta r_{max} = \frac{(K_d + (1+R)[DNA]_0)^2 - 4[DNA]_0^2 R}{2[DNA]_0}$$

where Δr_{obs} is the observed anisotropy change at a particular protein/DNA ratio, Δr_{max} is maximum anisotropy change at binding saturation, R is the protein/DNA ratio and $[DNA]_0$ is the total concentration of the double-stranded oligonucleotide.

Acknowledgments: The authors thank Dr. Frank Hänel (Hans-Knöll-Institut für Naturstoff-Forschung e.V, Germany) for kindly providing us with the Miz-1 cDNA, Dr. Yves L. Dory (Université de Sherbrooke, Canada) for giving access and advice to use his HPLC system. Finally, we thank Prof. Jim...
Omichinski (U. de Montréal) for his help with the refolding protocol of Zinc Fingers. This work was supported by the Natural Science and Engineering Research Council (NSERC) of Canada [grant to P.L. and studentships to M.B.] and by the Regroupement stratégique sur la fonction, la structure et l’ingénierie des protéines (PROTEO). M.B. also acknowledges the Groupe de Recherche Axé sur la Structure des Protéines (GRASP) for the award of graduate studentship.

Conflict of interest: The authors declare that they have no conflicts of interest with the contents of this article.

Author contributions: PL and MB designed the study and wrote the paper. MB constructed the vector for the expression of Miz1-4WT and purified the protein. VR and MM constructed the vector for the expression of Miz1-4A86K and purified the protein. MB realized all the NMR, CD and fluorescence experiments and analyzed the data with PL. All authors approved the final version of the manuscript.

REFERENCES

1. Peukert, K., Staller, P., Schneider, A., Carmichael, G., Hanel, F., and Eilers, M. (1997) An alternative pathway for gene regulation by Myc. EMBO J 16, 5672-5686
2. Seoane, J., Le, H. V., and Massague, J. (2002) Myc suppression of the p21(Cip1) Cdk inhibitor influences the outcome of the p53 response to DNA damage. Nature 419, 729-734
3. Staller, P., Peukert, K., Kiermaier, A., Seoane, J., Lukas, J., Karsunky, H., Moroy, T., Bartek, J., Massague, J., Hanel, F., and Eilers, M. (2001) Repression of p15INK4b expression by Myc through association with Miz-1. Nat Cell Biol 3, 392-399
4. Adhikary, S., Peukert, K., Karsunky, H., Beuger, V., Lutz, W., Elsasser, H. P., Moroy, T., and Eilers, M. (2003) Miz1 is required for early embryonic development during gastrulation. Mol Cell Biol 23, 7648-7657
5. van Riggelen, J., Muller, J., Otto, T., Beuger, V., Yetil, A., Choi, P. S., Kosan, C., Moroy, T., Felsher, D. W., and Eilers, M. (2010) The interaction between Myc and Miz1 is required to antagonize TGFbeta-dependent autocrine signaling during lymphoma formation and maintenance. Genes Dev 24, 1281-1294
6. Wanzel, M., Russ, A. C., Kleine-Kohlbrecher, D., Colombo, E., Pelicci, P. G., and Eilers, M. (2008) A ribosomal protein L23-nucleophosmin circuit coordinates Mizl function with cell growth. Nat Cell Biol 10, 1051-1061
7. Seoane, J., Pouponnot, C., Staller, P., Schader, M., Eilers, M., and Massague, J. (2001) TGFbeta influences Myc, Miz-1 and Smad to control the CDK inhibitor p15INK4b. Nat Cell Biol 3, 400-408
8. Wolf, E., Gebhardt, A., Kawachi, D., Walz, S., von Eyss, B., Wagner, N., Renninger, C., Krohne, G., Asan, E., Roussel, M. F., and Eilers, M. (2013) Miz1 is required to maintain autophagic flux. Nat Commun 4, 2535
9. Do-Umehara, H. C., Chen, C., Urich, D., Zhou, L., Qiu, J., Jang, S., Zander, A., Baker, M. A., Eilers, M., Sporn, P. H., Ridge, K. M., Sznajder, J. I., Budinger, G. R., Mutlu, G. M., Lin, A., and Liu, J. (2013) Suppression of inflammation and acute lung injury by Miz1 via repression of C/EBP-delta. Nat Immunol 14, 461-469
10. Rashkovan, M., Vadnais, C., Ross, J., Gigoux, M., Suh, W. K., Gu, W., Kosan, C., and Moroy, T. (2014) Miz-1 regulates translation of Trp53 via ribosomal protein L22 in cells undergoing V(D)J recombination. Proc Natl Acad Sci U S A 111, E5411-5419
11. Chen, P., Wang, W., Zhang, Y., Yuan, Y., and Wu, Y. (2015) Decreased MIZ1 Expression in Severe Experimental Acute Pancreatitis: A Rat Study. *Dig Dis Sci*

12. Huang, Y., Wang, P., Chen, H., Ding, Y., and Chen, Y. G. (2015) Myc-interacting zinc-finger protein 1 positively regulates Wnt signalling by protecting Dishevelled from Dapper1-mediated degradation. *Biochem J* 466, 499-509

13. Wiese, K. E., Walz, S., von Eyss, B., Wolf, E., Athineos, D., Sansom, O., and Eilers, M. (2013) The role of MIZ-1 in MYC-dependent tumorigenesis. *Cold Spring Harb Perspect Med* 3, a014290

14. Peter, S., Bultinck, J., Myant, K., Jaenicke, L. A., Walz, S., Muller, J., Gmachl, M., Treu, M., Boehmelt, G., Ade, C. P., Schmitz, W., Wiegering, A., Otto, C., Popov, N., Sansom, O., Kraut, N., and Eilers, M. (2014) Tumor cell-specific inhibition of MYC function using small molecule inhibitors of the HUWE1 ubiquitin ligase. *EMBO Mol Med* 6, 1525-1541

15. Schaub, F. X., and Cleveland, J. L. (2014) Tipping the MYC–MIZ1 balance: targeting the HUWE1 ubiquitin ligase selectively blocks MYC-activated genes. *EMBO Molecular Medicine* 6, 1509-1511

16. Barrilleaux, B. L., Burow, D., Lockwood, S. H., Yu, A., Segal, D. J., and Knoepfler, P. S. (2014) Miz-1 activates gene expression via a novel consensus DNA binding motif. *PLoS One* 9, e101151

17. Wolfe, S. A., Nekludova, L., and Pabo, C. O. (2000) DNA recognition by Cys2His2 zinc finger proteins. *Annu Rev Biophys Biomol Struct* 29, 183-212

18. Choo, Y., and Klug, A. (1993) A role in DNA binding for the linker sequences of the first three zinc fingers of TFIIIA. *Nucleic Acids Research* 21, 3341-3346

19. Ryan, R. F., and Darby, M. K. (1998) The role of zinc finger linkers in p43 and TFIIIA binding to 5S rRNA and DNA. *Nucleic Acids Research* 26, 703-709

20. Kaplan, T., Friedman, N., and Margalit, H. (2005) Ab initio prediction of transcription factor targets using structural knowledge. *PLoS Comput Biol* 1, e1

21. Persikov, A. V., and Singh, M. (2014) De novo prediction of DNA-binding specificities for Cys2His2 zinc finger proteins. *Nucleic Acids Res* 42, 97-108

22. Walz, S., Lorenzin, F., Morton, J., Wiese, K. E., Eyss, B. v., Herold, S., Rycak, L., Dumay-Odelot, H., Karim, S., Bartkuhn, M., Roels, F., Wüstefeld, T., Fischer, M., Teichmann, M., Zender, L., Wei, C.-L., Sansom, O., Wolf, E., and Eilers, M. (2014) Activation and repression by oncogenic MYC shape tumour-specific gene expression profiles. *Nature* 511, 483

23. Bedard, M., Maltais, L., Beaulieu, M. E., Bilodeau, J., Bernard, D., and Lavigne, P. (2012) NMR structure note: solution structure of human Miz-1 zinc fingers 8 to 10. *J Biomol NMR* 54, 317-323

24. Bernard, D., Bedard, M., Bilodeau, J., and Lavigne, P. (2013) Structural and dynamical characterization of the Miz-1 zinc fingers 5-8 by solution-state NMR. *J Biomol NMR* 57, 103-116

25. Bieri, M., and Gooley, P. R. (2011) Automated NMR relaxation dispersion data analysis using NESSY. *BMC Bioinformatics* 12, 421

26. Carver, J. P., and Richards, R. E. (1972) General 2-site solution for chemical exchange produced dependence of t2 upon Carr–Purcell pulse separation. *Journal of Magnetic Resonance*, 89

27. Kleckner, I. R., and Foster, M. P. (2011) An introduction to NMR-based approaches for measuring protein dynamics. *Biochim Biophys Acta* 1814, 942-968

28. Bruschweiler, R., Liao, X., and Wright, P. E. (1995) Long-range motional restrictions in a multidomain zinc-finger protein from anisotropic tumbling. *Science* 268, 886-889

29. Potter, B. M., Feng, L. S., Parasuram, P., Matskevich, V. A., Wilson, J. A., Andrews, G. K., and Laity, J. H. (2005) The six zinc fingers of metal-responsive element binding transcription factor-1 form stable and quasi-ordered structures with relatively small differences in zinc affinities. *J Biol Chem* 280, 28529-28540

30. Schmidt, D., and Durrett, R. (2004) Adaptive evolution drives the diversification of zinc-finger binding domains. *Mol Biol Evol* 21, 2326-2339
31. Elrod-Erickson, M., Rould, M. A., Nekludova, L., and Pabo, C. O. (1996) Zif268 protein–DNA complex refined at 1.6Å: a model system for understanding zinc finger–DNA interactions. *Structure* 4, 1171-1180
32. Greisman, H. A., and Pabo, C. O. (1997) A General Strategy for Selecting High-Affinity Zinc Finger Proteins for Diverse DNA Target Sites. *Science* 275, 657-661
33. Wolfe, S. A., Greisman, H. A., Ramm, E. I., and Pabo, C. O. (1999) Analysis of zinc fingers optimized via phage display: evaluating the utility of a recognition code. *Journal Of Molecular Biology* 285, 1917-1934
34. Zandarashvili, L., Esadze, A., Vuzman, D., Kemme, C. A., Levy, Y., and Iwahara, J. (2015) Balancing between affinity and speed in target DNA search by zinc-finger proteins via modulation of dynamic conformational ensemble. *Proceedings of the National Academy of Sciences* 112, E5142-E5149
35. Friedman, J. I., Majumdar, A., and Stivers, J. T. (2009) Nontarget DNA binding shapes the dynamic landscape for enzymatic recognition of DNA damage. *Nucleic acids research* 37, 3493-3500
36. Zandarashvili, L., Vuzman, D., Esadze, A., Takayama, Y., Sahu, D., Levy, Y., and Iwahara, J. (2012) Asymmetrical roles of zinc fingers in dynamic DNA-scanning process by the inducible transcription factor Egr-1. *Proc Natl Acad Sci U S A* 109, E1724-1732
37. Mittermaier, A. K., and Kay, L. E. Observing biological dynamics at atomic resolution using NMR. *Trends in Biochemical Sciences* 34, 601-611
38. BabuRajendran, N., Palasingam, P., Narasimhan, K., Sun, W., Prabhakar, S., Jauch, R., and Kolatkar, P. R. (2010) Structure of Smad1 MH1/DNA complex reveals distinctive rearrangements of BMP and TGF-beta effectors. *Nucleic Acids Res* 38, 3477-3488
39. Brown, R. S. (2005) Zinc finger proteins: getting a grip on RNA. *Current Opinion in Structural Biology* 15, 94-98
40. Brayer, K. J., and Segal, D. J. (2008) Keep Your Fingers Off My DNA: Protein–Protein Interactions Mediated by C2H2 Zinc Finger Domains. *Cell Biochemistry and Biophysics* 50, 111-131
41. Brayer, K. J., Kulshreshtha, S., and Segal, D. J. (2008) The protein-binding potential of C2H2 zinc finger domains. *Cell Biochem Biophys* 51, 9-19
42. Thukral, S. K., Morrison, M. L., and Young, E. T. (1991) Alanine Scanning Site-Directed Mutagenesis of the Zinc Fingers of Transcription Factor ADR1: Residues that Contact DNA and that Transactivate. *Proceedings of the National Academy of Sciences of the United States of America* 88, 9188-9192
43. Clemens, K. R., Zhang, P., Liao, X., McBryant, S. J., Wright, P. E., and Gottesfeld, J. M. (1994) Relative Contributions of the Zinc Fingers of Transcription Factor IIIA to the Energetics of DNA Binding. *Journal of Molecular Biology* 244, 23-25
44. Laity, J. H., Dyson, H. J., and Wright, P. E. (2000) DNA-induced alpha-helix capping in conserved linker sequences is a determinant of binding affinity in Cys(2)-His(2) zinc fingers. *Journal of molecular biology* 295, 719
45. Omichinski, J. G., Clore, G. M., Robien, M., Sakaguchi, K., Appella, E., and Gronenborn, A. M. (1992) High-resolution solution structure of the double Cys2His2 zinc finger from the human enhancer binding protein MBP-1. *Biochemistry* 31, 3907-3917
46. Breslin, M. B., Zhu, M., Notkins, A. L., and Lan, M. S. (2002) Neuroendocrine differentiation factor, IA-1, is a transcriptional repressor and contains a specific DNA-binding domain: identification of consensus IA-1 binding sequence. *Nucleic acids research* 30, 1038-1045
47. Tochio, N., Umehara, T., Nakabayashi, K., Yoneyama, M., Tsuda, K., Shirozhu, M., Koshiba, S., Watanabe, S., Kigawa, T., Sasazuki, T., Shirasawa, S., and Yokoyama, S. (2015) Solution structures
of the DNA-binding domains of immune-related zinc-finger protein ZFAT. *Journal of Structural and Functional Genomics* **16**, 55-65

48. Alexandra Searles, M., Lu, D., and Klug, A. (2003) Crystal structure of a zinc-finger-RNA complex reveals two modes of molecular recognition. *Nature* **426**, 96-100

49. Lee, B. M., Xu, J., Clarkson, B. K., Martinez-Yamout, M. A., Dyson, H. J., Case, D. A., Gottesfeld, J. M., and Wright, P. E. (2006) Induced fit and "lock and key" recognition of SS RNA by zinc fingers of transcription factor IIIA. *Journal of molecular biology* **357**, 275-291

50. Nolte, R. T., Conlin, R. M., Harrison, S. C., and Brown, R. S. (1998) Differing Roles for Zinc Fingers in DNA Recognition: Structure of a Six-Finger Transcription Factor IIIA Complex. *Proceedings of the National Academy of Sciences of the United States of America* **95**, 2938-2943

51. Vranken, W. F., Boucher, W., Stevens, T. J., Fogh, R. H., Pajon, A., Llinas, M., Ulrich, E. L., Markley, J. L., Ionides, J., and Laue, E. D. (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. *Proteins* **59**, 687-696

52. Cheung, M.-S., Maguire, M. L., Stevens, T. J., and Broadhurst, R. W. (2010) DANGLE: A Bayesian inferential method for predicting protein backbone dihedral angles and secondary structure. *Journal of Magnetic Resonance* **202**, 223-233

53. Brünger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P., Grosse-Kunstleve, R. W., Jiang, J. S., Kuszewski, J., Nilges, M., Pannu, N. S., Read, R. J., Rice, L. M., Simonson, T., and Warren, G. L. (1998) Crystallography & NMR system: A new software suite for macromolecular structure determination. *Acta crystallographica. Section D, Biological crystallography* **54**, 905-921

54. Rieping, W., Habeck, M., Bardiaux, B., Bernard, A., Malliavin, T. E., and Nilges, M. (2007) ARIA2: Automated NOE assignment and data integration in NMR structure calculation. *Bioinformatics* **23**, 381-382

55. Mulder, F. A., Skrynnikov, N. R., Hon, B., Dahlquist, F. W., and Kay, L. E. (2001) Measurement of slow (micros-ms) time scale dynamics in protein side chains by (15)N relaxation dispersion NMR spectroscopy: application to Asn and Gln residues in a cavity mutant of T4 lysozyme. *J Am Chem Soc* **123**, 967-975

56. Kay, L. E., Torchia, D. A., and Bax, A. (1989) Backbone dynamics of proteins as studied by nitrogen-15 inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease. *Biochemistry* **28**, 8972-8979

57. Mandel, A. M., Akke, M., and Palmer, I. I. I. A. G. (1995) Backbone Dynamics of Escherichia coli Ribonuclease HI: Correlations with Structure and Function in an Active Enzyme. *Journal of Molecular Biology* **246**, 144-163

58. Baber, J. L., Tjandra, N., Pastor, R. W., and Bax, A. (1995) Rotational diffusion anisotropy of human ubiquitin from 15N NMR relaxation. *Journal of the American Chemical Society* **117**, 12562-12566

59. Kay, L. E., Torchia, D. A., and Bax, A. (1989) Backbone dynamics of proteins as studied by nitrogen-15 inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease. *Biochemistry* **28**, 8972-8979

60. Mandel, A. M., Akke, M., and Palmer, I. I. I. A. G. (1995) Backbone Dynamics of Escherichia coli Ribonuclease HI: Correlations with Structure and Function in an Active Enzyme. *Journal of Molecular Biology* **246**, 144-163

61. Baber, J. L., Tjandra, N., and Pastob, R. W., and Bax, A. (1995) Rotational diffusion anisotropy of human ubiquitin from 15N NMR relaxation. *Journal of the American Chemical Society* **117**, 12562-12566

62. Lipari, G., and Szabo, A. (1982) Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 2. Analysis of experimental results. *Journal of the American Chemical Society* **104**, 4559-4570
63. Gagné, S. M., Tsuda, S., Spyracopoulos, L., Kay, L. E., and Sykes, B. D. (1998) Backbone and methyl dynamics of the regulatory domain of troponin C: anisotropic rotational diffusion and contribution of conformational entropy to calcium affinity. *Journal of Molecular Biology* **278**, 667-686

FOOTNOTES

The abbreviations used are: BTB, Broad-complex, Tramtrack and Bric-abric; CD, circular dichroism; ChIP, chromatin immunoprecipitation; CPMG, Car-Purcell-Meiboom-Gill; HSQC, heteronuclear single quantum coherence; INR, initiator element; NMR, nuclear magnetic resonance; NOE, nuclear Overhauser effect; POZ, poxvirus and zinc finger; RMSD, root-mean-square deviation; TSS, transcription start site; ZF, Cys2-His2 zinc finger.
TABLES

Table 1. Structural statistics for Miz1-4 ZF2 and ZF 3-4

Restraints for final structure calculations	ZF 2	ZF 3-4		
NOE distance restraints				
Intraresidue (i - j	= 0)	246	801
Sequential (i - j	= 1)	115	345
Medium range (1 <	i - j	< 5)	70	290
Long range (i - j	≥ 5)	55	291
Ambiguous NOE	7	40		
Total NOE distance restraints	493	1767		
Hydrogen bonds	10 x 2	21 x 2		
Zinc ligands	4 x 2	8 x 2		
Dihedral angle restraints				
Φ and ψ angles	48	96		
χ angles	3	10		
Structure statistics (20 structures)				
Number of NOE violations > 0.5 Å	0	0		
Number of dihedral angle violations > 5°	0	0		
RMS deviations from experimental data				
Average distance restraint violation (Å)	0.028 ± 0.005	0.045 ± 0.001		
Average dihedral restraint violation (°)	0.41 ± 0.19	0.36 ± 0.10		
RMS deviation to mean coordinates				
Backbone heavy atoms (Å)	0.67 ± 0.19	0.92 ± 0.36		
All heavy atoms (Å)	1.34 ± 0.28	1.30 ± 0.30		
For ZF consensus sequences	ZF3	ZF4		
Backbone heavy atoms (Å)	0.42 ± 0.07	0.27 ± 0.07	0.19 ± 0.05	
All heavy atoms (Å)	1.06 ± 0.15	0.90 ± 0.12	0.71 ± 0.11	
Ramachandran plot statistics				
Residues in most favored regions	86	84.7		
Residues in additionally allowed regions	14	14.7		
Residues in generously allowed regions	0	0.7		
Residues in disallowed regions	0	0		

*Φ and ψ angles were derived from the program DANGLE.

ZF consensus sequences comprise residues 32-54 for ZF 2, 60-82 for ZF 3 and 88-110 for ZF 4.

Ramachandran plot statistics were generated using PROCHECK_NMR.
Table 2. Rotational diffusion analysis of Miz1-4

ZF analyzed	Isotropic model	Axially symmetric model	# T1/T2 valuesd	Fg			
	D_{iso}(10^{-7} \text{ s}^{-1})^a	\chi^2b	D_{iso}(10^{-7} \text{ s}^{-1})c	D_{par}/D_{per}	\chi^2		
ZF 2	2.19 ± 0.02	63.15	2.28 ± 0.04	1.66 ± 0.12	5.13	9	18.4
ZF 3	2.19 ± 0.02	134.49	2.31 ± 0.03	1.68 ± 0.08	9.31	11	31.3
ZF 4	2.89 ± 0.02	8.71	2.87 ± 0.05	1.29 ± 0.18	4.46	10	1.9
ZF 3-4e	X	X	2.31 ± 0.03	1.68 ± 0.08	529.55	21	
ZF 3-4f	X	X	2.31 ± 0.03	1.68 ± 0.08	33.82	21	125h

^a For the isotropic model, the correlation time (\(\tau_m\)) is given by \(1/6D_{iso}\) where \(D_{iso}\) is the isotropic diffusion coefficient.

^b \(\chi\) is an error function given the sum of squared difference between the experimental and calculated \(T_1/T_2\) values divided by the estimated experimental error. See Experimental Procedures.

^c For the axially the effective correlation time (\(\tau_{m,eff}\)) is given by \(1/6D_{iso}\), where \(D_{iso}\) is equal to \((2D_{perp}+D_{par})/3\).

^d This column displays the number of \(T_1/T_2\) values that were used to calculate the rotational diffusion coefficients of the different ZFs.

^e Simulations of ZF 3-4 \(T_1/T_2\) values were realized keeping ZF 3 in the same molecular and diffusional reference frame than the one obtained from the analysis of ZF 3 alone without considering wobbling motions for the ZF 4 (S^2 = 0 and a \(\tau_e = 0\) ns).

^f Simulations of ZF 3-4 \(T_1/T_2\) values were realized keeping ZF 3 in the same molecular and diffusional reference frame than the one obtained from the analysis of ZF 3 alone considering wobbling motions for the ZF 4 (S^2 = 0.75 and a \(\tau_e = 1.7\) ns). See Experimental Procedures.

^g Results of the F-statistics analysis provided by the R2_R1_Diffusion program.

^h The F parameter was calculated as described by Gagné et al. (63).
Table 3. Rotational diffusion analysis of Miz1-4^{A86K}

ZF analyzed	Isotropic model	Axially symmetric model					
	D_{iso} (10^7 s⁻¹)	χ^2	D_{iso} (10^7 s⁻¹)	D_{par}/D_{per}	χ^2	# T_1/T_2 values	F
ZF 2	1.96 ± 0.02	41.66	1.99 ± 0.03	1.58 ± 0.13	2.41	8	21.7
ZF 3	2.50 ± 0.04	705.11	1.96 ± 0.02	1.81 ± 0.11	4.18	11	391.7
ZF 4	2.44 ± 0.02	25.18	2.48 ± 0.04	1.40 ± 0.18	7.53	10	4.7
FIGURES LEGENDS

FIGURE 1. Folding and secondary structure content of Miz1-4. (A) Alignment of the primary structures of the 13 ZFs of Miz1. (B) Far-UV CD spectra of Miz1-4 at different pH and Zn(II) concentrations demonstrating that the secondary structure content is optimal at pH 6.5 and 4 equivalents of Zn(II). (C) [1H,15N]-HSQC of Miz1-4. Many resonances of ZF 1 (residues 4-26) are weak or broadened beyond detection. (D) The expected secondary structures for the consensus ZF motifs and the secondary structures determined from the chemical shifts of the backbone atoms and the program DANGLE are shown to the top. Secondary chemical shift values for the Cα and Cβ (Δδ (Cα - Cβ)) along with NOE connectivities are displayed and support the presence of the expected secondary structures for Miz1-4 ZFs.

FIGURE 2. Conformational exchange of Miz1-4 probed by 15N relaxation dispersion experiments. (A) Representative CPMG dispersion curves are shown for some residues of the first ZF 1. The R2eff values for Lys 20, Ile 23, Ile 25 and His 29 decrease as a function of the \(\gamma_{\text{CPMG}} \) demonstrating the presence of \(\mu \text{sec-msec} \) motions in contrast to Glu 29 that shows no dispersion. (B) Miz1-4 residues having a Rα contribution are colored in orange and residues invisible on the [1H-15N]-HSQC spectrum are shown in red.

FIGURE 3. Stacked bar chart of the NOE used for the calculation of the Miz1-4 structure. Intra-residue, sequential, medium-range and long-range NOE are colored in light grey, grey, dark grey and black respectively. Note the many long-range NOE involve residues from the linker between ZFs 3 and 4 (linkers are highlighted in light grey).

FIGURE 4. Solution structures of Miz1 ZF 2 and ZFs 3-4. (A) The 20 lowest energy conformers of individual ZFs aligned onto the geometric average structure backbone atoms. (B) Cartoon representations of the lowest energy structures. Residues potentially involved in DNA binding based on classical DNA recognition are shown as magenta sticks. Residues involved in Zn(II) coordination are in green and conserved hydrophobic residues are shown in blue. Zn(II) atoms are displayed as grey balls. (C) The 20 lowest energy conformers of ZFs 3 and 4 aligned onto the geometric average structure is shown to the left. A cartoon representation of the lowest energy structure is shown to the right. Key residues at ZFs 3-4 interface that stabilize the compact structure are shown as green spheres. Residues normally involved in DNA binding based on classical DNA recognition are shown as magenta sticks. (D) Attribution of some resonances of Ala86 and Leu96 side chains are shown on the aliphatic region of the [1H,13C]-HSQC to the top. To the bottom, a strip of the 13C-edited NOESY-HSQC on the Ala Cβ plane (18.5 ppm) shows some NOE observed between the Ala Hβ and many Leu96 side chain protons that dictate the compact structure of Miz1 ZFs 3-4.

FIGURE 5. Backbone 15N-spin relaxation measurements for Miz1-4. Bar plots of \(\{1H\}-15N \) NOE, T1, T2 and T1/T2 values are shown as a function of Miz1-4 primary structure. Secondary structures expected for the consensus ZF fold are shown to the top and are highlighted in grey on the plots.

FIGURE 6. 15N-spin relaxation indicates that Miz1-4 ZFs undergo axially symmetric rotational diffusion in solution and confirms the compact fold of ZFs 3-4. Orientations of ZF 2 (A) and ZF 3 (B) in the axially symmetric diffusional reference frame. \(D_{\text{par}} \) is the rotational diffusion constant parallel to the unique axis (along Z) of the diffusion tensor. \(D_{\text{per}} \) rotational diffusion constants are perpendicular to the unique axis and aligned along x and y. Both \(D_{\text{par}} \) values are equal and smaller than \(D_{\text{per}} \). The amide bonds used for all analyses are shown as spheres. Experimental (black) and simulated values (red) values of the amide bonds used for analysis shown as a function of the position in the primary structure (C) and (D) and their \(\alpha \)-angles values (E) and (F) for ZFs 2 and 3 respectively. \(\alpha \)-angles are the angles between the direction of the bond vectors and \(D_{\text{par}} \). (G) ZF 3-4 compact structure aligned in the axially symmetric diffusion tensor (ZF 3 is shown in the same diffusional and molecular frame than in B). Experimental (black) and simulated values (red; for completely rigid amides and green; for amides with a \(\tau_e = 1.7 \) ns and a \(S^2 = 0.75 \)
for ZF 4 amides) as a function of their position in the primary structure (H) and their α-angles values (I). ZF 4 T1/T2 values are best described considering internal motions (τr = 1.7 ns, S² = 0.75) suggesting a collective wobbling motion of ZF 4 relative to ZF 3. (J) The 20 conformers of the final ensemble of ZFs 3-4 are aligned for ZF 3 backbone atoms illustrating the wobbling motions of the ZF 4. The average structure is in magenta. A cone with a semi angle of 25° illustrating the wobbling motion of the ZF 4 domain motion amplitude considering a common S² of 0.75 is shown.

FIGURE 7. The mutation Ala 86 to Lys destabilizes the compact structure adopted by Miz-1 ZFs 3 and 4. (A) Overlay of Miz1-4 and Miz1-4A86K [¹H-¹⁵N]-HSQC spectra. (B) The chemical shifts displacements (CSD; Δδ=[(δH)-δH]² + (δN-δN)²)²) are displayed as a function of Miz1-4 primary structure. The residues presenting CSD greater than the average + 0.5 of the standard deviations (i.e. 0.06 ppm) are labeled with asterisks and their amides are shown as spheres on the Miz-1 ZF 3-4 structure in (C). The amide at position 86 is labeled in magenta. Red dashed lines represent examples of some NOEs diagnostic of the compact structure involving the Arg 87 HN that were lost upon the A86K mutation. (D) [¹⁵N- T1/T2 values of Miz1-4A86K are shown as black bars while the values recorded for the wild type are shown as red dots. (E) Orientations of ZFs 2, 3 and 4 of Miz1-4A86K in the axially symmetric diffusional reference frame.

FIGURE 8. Miz1-4 is not involved in the recognition of Miz-1 DNA cognate sequences. (A) ZF 4 is aligned onto the ZF 2 of Zf 268 bound to its DNA target in a classical fashion (pdb 1AAY). Due to the compact structure, the ZFs 1-3 are projected away from DNA demonstrating that the fold adopted by ZF 3-4 is unlikely for classical DNA binding by these motifs. The DNA backbone is depicted as a magenta ribbon. (B) Binding curves obtained from fluorescence anisotropy experiments following the addition of Miz1-4 to the fluorescein-dT labeled DNA. The apparent Kd values were determined as described in the experimental procedures section and resulted from two biological replicates and three technical replicates. The binding curves of Miz1-4A86K to the consensus DNA is shown as a dashed line. (C) Close-up of the [¹H-¹⁵N]-HSQC spectra of Miz1-4 before and after the addition of one molar equivalent of the Miz-1 consensus DNA. The amide cross-peaks of the ZFs 1-3 (residues 4-82) disappear upon DNA addition while most of the ZF 4 (residues 88-110, bold labels) cross-peaks still visible and at similar chemical shifts. The four potential binding site of Miz1-4 (considering ZF 1-3 binding) are depicted. The residues at position -1, 3 and 6 of the Miz1-4 ZF recognition helices are shown and predicted contacts are in bold characters in the consensus sequence. Arg residues at position 6 of the ZF 1 and 4 are displayed in green. (D) The sequence logo predicted to be bound by Miz-1 ZFs 7-12 (reverse complement), according to the statistical approach developed by Persikov et al. (21). Note the striking similarity with the consensus sequence. DNA bases predicted to be specifically bound are labeled with asterisks. (D) Model depicting the recognition mode of Miz-1 ZFs for the binding of the first conserved DNA region of the consensus sequence.
A

\[R_{2,\text{eff}} (\text{Hz}) \]

\[\nu_{\text{CPMG}} (\text{Hz}) \]

- Lys 20
- Ile 23
- Ile 25
- His 26
- Glu 29

B

Consensus

ZF1 4-HKCEDCGKEFTHTGKNFRHRIHTGEKP-31
ZF2 32-FSCRECSKAFSDPAACKAHEKTHSPLKP-59
ZF3 60-YGCEECGKSYRLISLLNLHKKRHSGEAR-87
ZF4 88-YRCEDCGKLFTTSGNLKRHQLVHSG -112

Fig. 2
Fig. 6

A

ZF 2

B

ZF 3

C

D

E

F

G

H

I

J

Experimental ZF 3

Simulated (τ_e = 0, S^2 = 1)

Simulated (τ_e = 1.7 nsec, S^2 = 0.75)

Experimental ZF 4

Simulated (τ_e = 0, S^2 = 1)

Simulated (τ_e = 1.7 nsec, S^2 = 0.75)
Fig. 7
Fig. 8

A

B

C

D

ratio Miz1-4/DNA

Anisotropy change

Consensus
K_d = 3.40 ± 0.47 μM

NS-1
K_d = 3.26 ± 0.21 μM

p15: -2 to +14
K_d = 5.44 ± 0.31 μM

p15: -155 to -140
K_d = 9.68 ± 0.98 μM

NS-2
K_d = 8.21 ± 0.73 μM

Consensus (A86K)
K_d = 0.11 ± 0.02 μM

DNA / Miz1-4A86K ratio:

0 200 400 600 800

0.00 0.02 0.04 0.06 0.08 0.10

0 200 400 600 800

0.00 0.02 0.04 0.06 0.08 0.10

5'-TCGGC

GATC

GAT

TA

G

TCATGCCTGTAG-3'

3'-AGCCGCTAGCTAATCAGTACGGACATC-5'

RNT

ZF 4

LLL

ZF 3

AAD

ZF 2

RNH

6 3 -1

6 3 -1

5'-TCGGCGATCGATTA

G

TCATGCCT

G

TAG-3'

3'-AGCCGCTAGCTAATCAGTACGGACATC-5'

RNT

ZF 4

LLL

ZF 3

AAD

ZF 2

RNH

6 3 -1

5'-TCGGCGAT

CGATTAGTCATG

CCTGT

A

G

-3'

3'-AGCCGCTAGCTAATCAGTACGGACATC-5'

RNT

ZF 4

LLL

ZF 3

AAD

ZF 2

RNH

6 3 -1

5'-TCG

GGCGAT

C

GA

TCGAT

T

AGTCATGCCTGTAG-3'

3'-AGCCGCTAGCTAATCAGTACGGACATC-5'

RNT

ZF 4

LLL

ZF 3

AAD

ZF 2

RNH

6 3 -1

6 3 -1
Hydrophobic residues at positions -1, 2, 3 and 6 of the α-helix

Super-tertiary structure unlikely for typical DNA binding

ZF 7-12 potentially involved in DNA binding

DTDKE linker causes repulsion with DNA

Fig. 9
Structural Insights into c-Myc Interacting Zinc Finger Protein-1 (Miz-1) Delineate Domains Required for DNA Scanning and Sequence-specific Binding
Mikaël Bédard, Vincent Roy, Martin Montagne and Pierre Lavigne

J. Biol. Chem. published online December 29, 2016

Access the most updated version of this article at doi: 10.1074/jbc.M116.748699

Alerts:
 - When this article is cited
 - When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

Supplemental material:
http://www.jbc.org/content/suppl/2016/12/29/M116.748699.DC1