Metagrammars: a new implementation for FTAG

Sébastien Barrier, Nicolas Barrier
Laboratoire de linguistique formelle
Case Postale 7031
2, place Jussieu 75251 Paris Cedex 05, France
{sebastien, nicolas}.barrier@linguist.jussieu.fr

Abstract

This paper describes work on creating elementary trees for adjective and predicative noun families (Barrier, 2002; Barrier and Barrier, 2003) using Metagrammars, for the FTAG grammar (Abeillé, 1991; Abeillé, 2002). Based on the Candito’s work on Metagrammars (Candito, 1996; Candito, 1999a), it adds a fourth dimension, specially designed for word order specification.

1 The metagrammar compiler

Metagrammars represent a TAG as a multiple inheritance network, whose classes specify syntactic properties. An important aspect of classes is that they are all related to one another. Inheritance enables classes that are logically related to one another to share the behaviors and attributes that they have in common.

Our metagrammar imposes an overall organization for syntactic data and formalizes the well-formedness conditions on elementary tree sketches (Vijay-Shanker and Schabes, 1992; Rogers and Vijay-Shanker, 1994).

Each syntactic property of the hand-written inheritance network – the hierarchy – is declared as a complete syntactic set of partial descriptions. Those partial descriptions can be seen as syntactic constraints (dominance, linear precedence, ...) which may leave underspecified the relation between two nodes – the relation can be further explained by adding constraints in sub-classes of the network.

In concrete terms, data are defined as global variables augmented with specific meta-features, constraining for instance the possible part of speech of a node, or function for argument ones.

Structures sharing the same initial subcategorization frame may only differ in the surface realization of the final syntactic function of the arguments nodes, according to their redistribution.

The hand-written hierarchy was initially divided into 3 dimensions, and has been more recently extended to 4 dimensions (Barrier and Barrier, 2003):

- Dimension 1: initial subcategorization.
- Dimension 2: redistribution of functions.
- Dimension 3: Surface realizations of syntactic functions.
- Dimension 4: word order specification of surface realizations of syntactic functions.

Contrary to (Vijay-Shanker and Schabes, 1992), we do not have explicit lexical rules: diathesis alternations are represented by classes of dimension 2, whereas marked and unmarked cases are represented by classes of dimension 3. Dimension 4 allows to express word order in a directly readable and not confusing way: classes of dimension 1 and 2 were clearly inappropriate (word order has nothing to deal with declaration of grammatical functions), whereas classes of dimension 3 couldn’t predict the existence or the lack of another argument.

In order to automatically generate elementary trees, the compiler creates additional classes, named "crossing-classes". Each crossing class inherits from one class of dimension 1, then inherits from one class of dimension 2, and lastly inherits from classes of dimension 3, representing the realizations of every function of the final subcategorization. Classes of dimension 4 are not crossed automatically: all the crossings are declared manually by the metagrammar’s writer so that he can only express the crossings, which are necessary. Crossings are accordingly only done when all the relevant classes are involved.

Finally each crossing class is translated into one or more elementary trees, satisfying all inherited constraints.
Table 1: Verbal hierarchy for di-transitive verbs
An inheritance hierarchy such as the one shown in Table 1, allows to represent the relevant tree sketch for the English sentence *Max gives a book to Peter*. It will be compiled out of an initial subcategorization with subject, direct object and indirect object (dimension 1), an active canonical redistribution (dimension 2), canonical realizations of subject, direct object and indirect object (dimension 3), and a special word order, specifying indirect object follows direct object (dimension 4).

The compiler will automatically cross (DI-TRANS), (NO-REDIS), (SUBJ-CAN), (OBJ-CAN) and (IND-OBJ-CAN) classes. As (OBJ-CAN) and (IND-OBJ-CAN) are crossed, (OBJ<IO) will also be crossed with the other classes. The resulting tree sketch will be the conjunction of all quasi-tree descriptions contained in each class. The nodes with same variables will unify; the variables with same function will also unify.

![Elementary tree for Mary gives a book to Peter](image)

Note that the metagrammar compiler makes use of variables as global variables. There is no way to use local variables. Linear precedence can’t be expressed without reference to dominance.

The Metagrammar compiler we use was first developed by (Candito, 1999a) in Lucid Common Lisp and has been in part reimplemented in CLISP by (Barrier, 2002). It generates tree sketches in both XTAG or TAGML2 format with t-feature structures (see below).

2 Choices and implementation

2.1 Linguistics principles and general choices

As mentioned in (Abeillé et al., 2000), FTAG elementary trees respect the following well-formedness principles:

- **Strict lexicalization:** all elementary trees are anchored by at least one lexical element (the empty string cannot anchor a tree by itself)
- **Semantic minimality:** elementary trees correspond to no more than one semantic unit
- **Predicate argument cooccurrence principle:** an elementary tree is the minimal syntactic structure that includes a leaf node for each realized semantic argument of the anchor(s)

Semantic minimality and consistency imply that function words appear as co-anchors.

Most of the linguistic analyses follow those of (Abeillé, 1991; Abeillé, 2002) (except that clitic arguments are substituted and not adjoined), complemented by (Candito, 1999a). We dispense with most empty categories, especially in the case of extraction. Semantically void (or non autonomous) elements, such as complementizers, argument marking prepositions or idiom chunks are co-anchors in the elementary tree of their governing predicate.

Passive is characterized by a particular morphology, with a substitution node for the auxiliary verb. Causative constructions are analyzed as complex predicates, with a flat structure, with a substitution node for the causative verb.

For oblique complements, we distinguish between a-objects, de-objects, locatives and other prep-objects, depending on the pronominal realization of the complement.

2.2 New families for FTAG

We have chosen not to reuse Candito’s verbal hierarchy because of inconsistencies: it was not fully documented and hard to understand. Some classes of dimension 3 inherit from classes of dimension 1 or 2, which is normally not allowed by the metagrammar concept. Furthermore, this verbal hierarchy contains some empty classes.

We developed 34 new families: 16 adjectival families allow us to create 2690 tree sketches, whereas 18 support verb families allow us to create over 10,000 tree sketches.

2.2.1 Adjectival families

We regard the adjective as the local head of the adjectival predicate, and consider object predicate’s constructions as an alternative of causative constructions. An unique family provides tree sketches for both predicative and attributive adjectives, so that we can encode relative clauses or clitics for different kind of adjective complements. We describe the concept of subject as the category modified by the adjective. No object function can be found: all the complements of the adjectival predicate are always indirect ones.

Our grammar covers the following types of redistribution:

- **Predicative adjective:** Jean est barbu
Causative: Sarah Vaughan rend les gens heureux
Passive causative: Des gens sont rendus heureux
Impersonal causative passive: Il est rendu impossible de faire cela
Impersonal: Il est inacceptable de dormir ici
Attributive adjective: Un homme heureux

The syntactic realizations covered are canonical position, extraction (cleft and relativized), clitic or non-realized.

2.2.2 Predicative noun families
The lexical head is only the predicative noun, whereas the support verb is substituted into the tree associated with the noun. This differs from the light verb families from XTAG (and also from the previous versions of FTAG) where the verb and the noun both anchor the tree. An unique family provides tree sketches for support verb constructions and nominal phrases.

Our grammar covers the following types of redistribution:

- Active: Max commet un crime contre Luc
- Passive: Un crime est commis par Max contre Luc
- Middle: Un crime se commet contre Luc en 5 minutes
- Causative: Léa fait commettre une crime à Max contre Luc
- Passive Impersonal: Il est commis un crime par Max contre Luc
- Impersonal Middle: il se commet un crime toutes les 5 minutes
- Nominal phrase: le crime de Max contre Luc

The syntactic realizations covered are canonical position, extraction (cleft, relativized and questionned), clitic and non-realized.

Datasheet for adjective and predicative noun hierarchies can be found at the end of this article. Each page represents Dimension 1, 2 and 3. Dimension 4 is not shown since it is not particular to these hierarchies. It is specially used for clitic word order.

2.3 Main difficulties
A typical error consists in encoding more than a class expects. One may de facto limit the syntactic properties sharing. Metagrammars do not exempt from studying syntactic phenomena but force ones to understand what classes share with in terms of syntactic properties.

Since arguments are realized as independent functions the metagrammar’s writer not only has to find a way to arrange them correctly inside the tree but has to encode his classes so that they can be reused for another category.

Another place metagrammars and inheritance networks go wild is in making very deep hierarchy. It can be very tedious to look many levels up to the tree to find out what a particular inherited variable is supposed to be: it is easy to create complex hierarchy that is hard to understand, even for the metagrammer’s writer who created it. Inheritance, just like many other elements of OOP is just a tool. If the problem calls for it, it seems interesting to use it, but one doesn’t see it as a solution to all problems. With proper usage, metagrammars will save the writer from retyping and will show him that different linguistic objects are related.

3 Current and future work
To take advantage of the hierarchical representation of tree sketches within our metagrammar, we characterize tree sketches as feature structures we call t-feature structures (Abeillé et al., 1999).

Figure 2: Tree sketch for a causative construction used for an adjectival predicate

While the automatic generation of the grammar insures consistency, errors may still propagate but on a larger scale, with dramatic effects if it remains undetected. These feature-structures keep track of the successive mapping steps that are performed during the genera-
Table 2: Some elementary trees taken from $n0A(den1)$ family

Tree	Sentence	Tree	Sentence
![Tree1](image1.png)	Un homme fier de sa fille Max qui est fier de sa fille	![Tree2](image2.png)	C'est de sa fille qu'est fier Max

Tree	Sentence	Tree	Sentence
![Tree3](image3.png)	Max commet un crime contre Luc	![Tree4](image4.png)	Un crime est commis par Max contre Luc

Tree	Sentence	Tree	Sentence
![Tree5](image5.png)	Un crime contre Luc est commis par Max	![Tree6](image6.png)	Le crime de Max contre Luc

Table 3: Some elementary trees taken from the $n0vN(pn1)$ family
tion process.

Characterizing tree sketches as a combination of features allows us to refer to a set of tree sketches simply by under specifying a feature structure.

It could also be interesting to merge all the hierarchies into one. But this will probably be a hard task\(^1\). Each Metagrammar’s writer has indeed his own view of specific problems.

We hope to evaluate our grammar in few weeks by using treebank ‘Le Monde’ developed at Paris 7 University (Abeillé et al., 2003).

References

Anne Abeillé and Owen Rambow. 2000. Tree Adjoining grammars. CSLI Publications.

Anne Abeillé, Marie-Hélène Candito, and Alexandra Kinyon. 1999. Ftag: current status and parsing scheme. In Vextal’99.

Anne Abeillé, Marie-Hélène Candito, and Alexandra Kinyon. 2000. The current status of FTAG. In Proceedings of TAG+5.

Anne Abeillé, Nicolas Barrier, and Sébastien Barrier. 2001. FTAG, une grammaire LTAG du français. Technical Report 1.0.

Anne Abeillé. 1991. Une grammaire lexicalisée d’arbres adjoints pour le français. Ph.D. thesis, Université Paris 7.

Anne Abeillé. 2002. Une grammaire électronique du français. CNRS Editions.

Anne Abeillé, Lionel Clément, and François Toussenel. 2003. Building a treebank for French. In A. Abeillé, editor, Treebanks: building and using parsed corpora, pages 165–188. Kluwer academic publishers.

Sébastien Barrier and Nicolas Barrier. 2003. Une métagrammaire pour les noms prédicatifs du français. In TALN 2003.

Nicolas Barrier. 2002. Une métagrammaire pour les adjetifs du français. In TALN 2002.

Davy Boonen. 2001. Le prédicat adjectival en ftag. Master’s thesis, Université Paris 7.

Marie-Hélène Candito. 1996. A principle-based hierarchical representation of itag. In Proceedings 15th COLING.

Marie-Hélène Candito. 1999a. Représentation modulaire et paramétrable de grammaires électroniques lexicalisées, application au français et à l’italien. Ph.D. thesis, Université Paris 7.

Marie-Hélène Candito. 1999b. Un outil multilingue de construction semi-automatique de grammaire d’arbres adjoints. In TAL, volume 40.

Laurence Danlos. 1992. Support verb constructions. In Journal of French Linguistic Study.

Laurence Danlos. 1998. GTAG, un formalisme lexicalisé pour la génération inspiré de TAG. In TAL, volume 39.2.

Bertrand Gaiffe, Benoît Crabbé, and Azim Roussanaly. 2002. A new metagrammar compiler. In Proceedings of TAG+6.

Kim Gerdes. 2002. Topologie et grammaires formelles de l’allemand. Ph.D. thesis, Université Paris 7.

Jacqueline Giry-Schneider. 1978. Les nominalisations en français. Droz. Genève-Paris.

Jacqueline Giry-Schneider. 1987. Les prédicats nominaux en français. Droz. Genève-Paris.

Jan Goes. 1999. L’adjectif entre nom et verbe. Duculot.

Maurice Gross. 1981. Les bases empiriques de la notion de prédicat sémantique. In Languages, volume 63.

Zellig Harris. 1968. Mathematical structures of language. Wiley-Interscience.

Alexandra Kinyon. 2000. Even better than supertags: introducing hypertags. In Proceedings of TAG+5.

Michèle Noailly. 1990. Le substantif épithète. PUF. Paris.

Michèle Noailly. 1999. L’adjectif en français. OPHRYS. Paris.

J. Rogers and K. Vijay-Shanker. 1994. Obtaining trees from their descriptions, an application to tree adjoining grammar. In Computational intelligence, volume 10.4.

K. Vijay-Shanker and Y. Schabes. 1992. Structure sharing in lexicalized tree adjoining grammar. In Proceedings of COLING-92.

\(^1\)Of course, it does not mean all the new tree sketches cannot be combined into one grammar.
Annexe A - Datasheet for Adjectives

Family	Example	Family	Example
n0A	Jean est barbu	n0A(as1)	Jean est attentif à ne blesser personne
	John is bearded		John is cautious not to hurt anyone
n0A(pn1)	Jean est fort en histoire	n0A(des1)	Jean est certain qu’ils viendront
	John is good at history		John is convinced they will come
n0A(an1)	Jean est sourd à cette proposition	n0A(an1)(des2)	Jean est reconnaissant à Marie de faire ses devoirs
	John is deaf to this proposal		John thanks Mary for doing his homework
n0A(den1)	Jean est amoureux de Marie	s0A	Prendre le thé sur la pelouse est inacceptable
	John is in love with Mary		Having tea out on the lawn is unacceptable
n0A(an1)(pn2)	Jean est supérieur à Marie en histoire	s0A(pn1)	Prendre le thé est bon pour la santé
	John is higher than Mary at history		Having tea is good for health
n01(an1)(den2)	Jean est redevable de 10€ à Marie	s0A(ps1)	Faire du sport est bon pour prévenir les crises cardiaques
	John owes Mary 10€		Doing sport is good to prevent heart attacks
n0A(den1)(pn2)	Jean est quitte de ses dettes envers la société	s0A(an1)	Prendre le thé est nécessaire aux hommes
	John has paid his debt to society		Having tea is necessary to men
n0A(pn1)	Boire du thé est bon pour le mal de tête	s0A(den1)	Faire du sport est indépendant de vos autres activités
	Having tea is good for headaches		Doing sport is independant from your other activities

Table 4: Adjectival families

Construction	Initial subject	Redistribution	Example
Predicative adjective	+ + +	No redistribution	Jean est barbu
Causative	+ + -	Subject > Object	Sarah Vaughan rend les gens heureux
		Causer > Subject	
Passive causative	+ + +	Causer > Par_obj	Des gens sont rendus heureux (par Sarah)
		Object > Subject	
Impersonal causative passive	+ + +	Causer > empty	Il est rendu impossible de faire cela
		Impersonnal > Subject	
Attributive adjective	+ - -	Subject > Subject	Un homme heureux
Impersonal	- - +	Subject > Sentencial	Il est inacceptable de commettre des erreurs
		indirect compl	
		Impersonnal > Subject	

Table 5: Redistribution frame for adjectives

Surface realizations	Nominal	Clitic	Cleft	Sentencial	Relativized	Non-realized	
Subject	Canonical	Inverted	X	Nominal	Cleft	Sentencial	qui
Prep-obj	X	Nominal	Sentencial	X	X	X	
A-obj	X	X	Nominal	Sentencial	X	X	X
De-obj	X	X	Nominal	Sentencial	X	dont	X
Prep-obj2	X	Nominal	X	X			
De-obj2	X	Nominal	X	dont	X		
Indirect Sentencial compl	X						
Predicative object	Anteposed	Postposed	X				
Par-Obj	X	X					

Table 6: Surface realization of syntactic functions for adjectives
Annexe B - Datasheet for Predicative Nouns

Family	Example	Family	Example
n0vN	Max prend un bain	n0vPN(as1)	Max a de la peine a dormir
	Max takes a bath		Max has difficulty in sleeping
n0vN(an1)	Max fait du chantage à Luc	s0vN	Prendre le thé sur la pelouse fait scandale
	Max blackmails Luc		Having tea out on the lawn scandalized people
n0vN(den1)	Max fait la censure de cette page	s0vN(den1)	Prendre le thé sur la pelouse fait la joie de Luc
	Max censors this page		Having tea out on the lawn gives great pleasure to Luc
n0vN(loc1)	Max fait un pèlerinage à Lourdes	s0vPN(den1)	Faire du sport est à l’avantage de Max
	Max goes on a pilgrimage to Lourdes		Doing sport gives an advantage to Max
n0vN(pn1)	Max commet un crime contre Luc	n0vN(den1)(an2)	Max fait le récit de son histoire à Luc
	Max commits a crime against Luc		Max gives an account of his story to Luc
n0vN(den1)(an2)	Max fait la division de 4 par 2		Max divides 4 by 2
n0vN(den1)(pn1)	Max est en colère contre Luc	n0vN(den1)(pn2)	Max fait une expédition de livres en Somalie
	Max is angry with Lux		Max send books in Somalia
n0vN(den1)(pn1)(pn2)	Max est en colère contre Luc	n0vN(pn1)(pn2)	Max fait une plaisanterie sur Luc avec Léa
	Max is angry with Lux		Max makes a joke with Léa on Luc
n0vN(den1)(an1)(des2)	Max est dans l’ignorance de cet incident	n0vN(an1)(des2)	Max a donné l’ordre à Luc de partir
	Max is unaware of this event		Max has ordered Luc to go

Table 7: Predicative nouns families

Construction	Redistribution	Example
Passive	object > subject	Un crime est commis par Max contre Luc
	subject > par object	Un crime contre Luc est commis par Max
Middle	subject > object	Un crime se commet contre Luc en 5 minutes
	empty > subject	Un crime contre Luc se commet en 5 minutes
Causative-A	subject > empty	Léa fait commettre un crime à Max contre Luc
	causer > subject	Max makes an account of his story to Max
Impersonal M	subject > empty	Il se commet un crime toutes les 5 minutes
	Impers > subject	Max is unaware of this event
Impersonal P	subject > par object	Il est commis un crime par Max contre Luc
	impers > subject	Il est commis un crime contre Luc par Max
Nominal phrase	object > empty	Le crime de Max contre Luc
	prep object > cdn	Max has ordered Luc to go

Table 8: Redistribution frame for predicative nouns

Subject	Nominal	Clitic	Cleft				
	Canonical	X	Nominal				
Predicative Noun	Inverted	X	Nominal				
Prep Obj	X	Nominal	X	X	X	X	
A-Obj	X	X	Nominal	X	X	X	X
De-obj	X	X	Nominal	X	X	X	X
Prep-Obj2	X	Nominal	X	X	X	X	
A-Obj2	X	X	Nominal	X	X	X	X
Indirect	sentential cmpl		X				
Par-Obj	X	Nominal	X	X	X	X	

Table 9: Surface realization of syntactic functions for predicative nouns