SPECTROPHOTOMETRIC DETERMINATION OF ESCITALOPRAM IN PHARMACEUTICALS

Khairia M. Al-Ahmary
Chemistry Department, Sciences Faculty for Girls, King Abdul-Aziz University – Jeddah - Kingdom of Saudi Arabia
Corresponding author*: khairiaalahmary@yahoo.com
This article is available online at www.ssjournals.com

ABSTRACT:
A new, simple, fast and sensitive two spectrophotometric methods has been developed for determination of Escitalopram in bulk and tablet dosage forms. The method A is based on the oxidation of Escitalopram by a known excess of bromate-bromide mixture in hydrochloric acid medium, reduction of the residual oxidant by a fixed amount of iron(II) and the formation of iron(III)-thiocyanate-complex which is measured at 480 nm. In the method B, 1,10-phenanthroline is used as a complexing agent and the formation of iron(II)-1,10-phenanthroline, which is measured at 510 nm. The methods obeys Beer’s law in the concentration range of 0.5 - 8.0 µg mL⁻¹ and 0.5-6.5 µg mL⁻¹ of Escitalopram for method A and B respectively. No interference observed from common pharmaceutical adjutants. Both methods are equally precise as shown by the relative standard deviation values less than 2%. The apparent molar absorptivities and Sandell’s sensitivity for method A and B are found to be $1.4 \times 10^4 \text{ L mol}^{-1} \text{ cm}^{-1}$, 0.013 µg cm⁻², $6.8 \times 10^4 \text{ L mol}^{-1} \text{ cm}^{-1}$ and 4.2×10^{-3} µg cm⁻², respectively. The methods have been successfully applied to the determination of Escitalopram in pure and dosage forms.

Keyword: determination, escitalopram, spectrophotometry, thiocyanate, 1, 10-phenanthroline.

1. Introduction
Escitalopram (Figure 1) is a pure S-enantiomer of the recemic, bicyclic phthalane derivative of citalopram. It is freely soluble in methanol and Dimethylsulfoxide (DMSO). Escitalopram is a (S)-1-[3-(dimethylamino) propyl]-1-(4-fluorophenyl)-1, 3-dihydroisobenzofuran-5-carbonitrile¹, ². The antidepressant and antiobsessive-compulsive actions of Escitalopram are presumed to be linked to its inhibition of CNS neuronal uptake of serotonin. Escitalopram blocks the reuptake of serotonin at the serotonin reuptake pump of the neuronal membrane, enhancing the actions of serotonin on 5HT1A auto receptors³.

Literature survey reveals several spectroscopic⁴,⁵,⁶, HPLC⁷ and HPTLC⁸, ⁹, ¹⁰, ¹¹, ¹², ¹³, ¹⁴, ¹⁵, ¹⁶ methods for estimation of Escitalopram oxalate individually as well as combination with other drugs. All the reported HPLC methods used buffer in the mobile phase and long retention time. The present study was aimed to develop a simple, rapid, precise, and accurate spectroscopy method for estimation of Escitalopram in bulk and dosage forms.

The development of new method for determining drug concentration in pharmaceutical formulations is important. The low cost and ease of operation make the spectrophotometric method highly desirable alternative for the assay of Escitalopram. The methods rely on the use of simple, cheap chemicals and techniques but provide sensitivity comparable to that achieved by sophisticated and expensive technique like HPLC. Statistical analysis of the results indicates that the method yields exact values. Hence the proposed method has been successfully applied to the determination of Escitalopram in pharmaceutical samples.

Figure 1: Structure of Escitalopram
2. Experimental
2.1 Apparatus: A Shimadzu UV-1650 UV-VIS Spectrophotometer with 1 cm matched quartz cells were used for the absorbance measurements.

2.2 Reagents and Solutions: All reagents used were of analytical reagent grade and distilled water was used for the preparation of all solutions. Escitalopram hydrobromide was prepared as method which reported by Robert Dancer et al. A 1000 µg mL⁻¹ standard drug solution of Escitalopram hydrobromide was prepared in 50% ethanol and made up to the mark with distilled water and the stock solution was diluted appropriately to get the working concentration. Bromate-bromide mixture (30 and 50 µg mL⁻¹ in KBrO₃), ferrous ammonium sulphate (400 and 350 mg mL⁻¹), 1,10 phenanthroline (0.3%), ammonia (1:1), thiocyanate (1M) were used.

2.3 Spectrophotometric Methods: Method A: aliquots containing 0.5-8.0 µg mL⁻¹ of Escitalopram hydrobromide were transferred into a series of 10 mL standard flasks using a micro burette. To this, 1 mL of 5 mol L⁻¹ HCl and bromate-bromide mixture (30 µg mL⁻¹ in KBrO₃) were added. The contents were shaken well and were set aside for 5 min with occasional shaking. Then, 1 mL of 400 µg mL⁻¹ ferrous ammonium sulphate was added and again the flask let stand for 15 min with occasional shaking followed by 3.5 mL of ammonium thiocyanate was added and diluted to the mark with distilled water, the absorbance of each solution was measured at 480 nm against the reagent blank.

Method B: aliquots containing 0.5-6.5 µg mL⁻¹ of Escitalopram hydrobromide were transferred into a series of 10 mL standard flasks using a micro burette. To this, 1 mL of 5 mol L⁻¹ HCl and bromate-bromide mixture (50 µg mL⁻¹ in KBrO₃) were added. The contents were shaken well and were set aside for 5 min with occasional shaking. Then, 1 mL of 350 µg mL⁻¹ ferrous ammonium sulphate was added and again the flask let stand for 15 min with occasional shaking followed by 1 mL each of 0.3% 1,10 phenanthroline and 1:1 NH₃ solution were added and diluted to the mark with distilled water, and the absorbance of each solution was measured at 510 nm against the reagent blank.

2.4 Sample preparation: To determine the content of Escitalopram in conventional tablets (Escitalopram (Ethics) 20 mg film-coated tablets), the sample stock solution was prepared by taking five tablets of Escitalopram equivalent to 100 mg were powdered using a mortar and pestle and transferring to a 100 mL volumetric flask by washing with ethanol. The solution was shaken for 30 min and filtered through Whatman no.1 filter paper and the clear solution was made up to 100 mL. Pipetted out (2 mL for method A and 0.6 mL for method B) in to a 10 mL calibrated flasks, subjected to analysis by the proposed methods. The results are listed in table 2.

3 Results and Discussion
3.1 Spectroscopy methods: In this method bromate in acid medium acts as an oxidizing agent and there is the formation of nascent oxygen. The formed nascent oxygen oxidizes bromide to bromine and the in situ generated bromine oxidizes the drug. The unreacted bromine is determined by two different schemes. The reduction of residual oxidant by iron (II) resulting in the formation of iron(III). In method A, resulting iron(III) is complexed with thiocyanate and measured at 480 nm.

\[\text{Fe}^{3+} + 6\text{SCN}^- \rightarrow [\text{Fe(SCN)}_6]^{3-} \]

In method B, unreacted bromine is treated with a measured excess of iron(II) and remaining iron(II) is complexed with 1,10 phenanthroline and measured at 510 nm.

Preliminary experiments were performed to fix the reagent concentration. In the present method all parameters influencing the color development were investigated and are incorporated in the recommended procedure. In method A, Escitalopram when added in increasing concentration to a fixed concentration of bromate-bromide mixture, there was a decrease in the concentration of bromatebromide mixture.
When known volume of Fe(II) was added to the same mixture, unreacted oxidant was reduced by a fixed amount of iron(II) and it showed a proportional decrease in the concentration of iron(III). The result could be observed by decrease in the absorbance with the increase in the concentration of Escitalopram at the respective λ_{max}. In method B, Escitalopram when added in increasing concentration to a fixed concentration of bromate-bromide mixture, there was a decrease in the concentration of bromate-bromide mixture. When the decreasing amount of oxidant are reacted with a fixed amount of iron(II), it showed a proportional increase in the concentration of iron(II). As a result there is a proportional increase in the absorbance with the increasing concentration of the drug.

Hydrochloric acid medium was found to be ideal for both the steps in method A and B, addition of excess of acid are not preferable since they would require large quantities of ammonia to raise the pH to 4, required for iron(II)-phenanthroline complex formation.

3.2 Analytical Data:
Adherence to Beer’s law was studied by measuring the absorbance values of solutions varying in drug concentration. The analytical parameters such as molar absorptivity, Sandell’s sensitivity, detection limit, quantitation limit, slope, intercept, correlation coefficients for method A and method B are incorporated in table 1. The calibration graphs are described by the equation: $Y = a + bX$ (where Y is absorbance, $a = \text{intercept}$, $b = \text{slope}$ and $X = \text{concentration in mg ml}^{-1}$) obtained by the method of least squares.

Table 1: Analytical parameters

Analytical Parameters	Method A	Method B
λ_{max} (nm)	480	510
Beer’s law limit (µg mL$^{-1}$)	0.5 – 8.0	0.5 – 6.5
Molar absorptivity (L mol$^{-1}$ cm$^{-1}$)	1.4×10^4	6.8×10^4
Sandell’s sensitivity (µg cm$^{-1}$)	0.0130	0.0042
Limit of detection** (µg mL$^{-1}$)	0.351	0.066
Limit of quantification** (µg mL$^{-1}$)	0.982	0.170
Regression equation* $Y = a + bX$		
Slope(b)	0.002	0.026
Intercept(a)	0.057	0.013
Correlation coefficient(r)	0.9981	0.9952

*Y is the absorbance and X is the concentration in (µg mL$^{-1}$)

** calculated using ICH-Guidelines.

3.3 Applications:
The proposed methods have been applied to the determination of Escitalopram in tablets. The results for the tablets were compared statistically with those of the tabulated value at 95% confidence level. The calculated student’s t-test did not exceed the tabulated value. Table 2 gives the results of the determination from which it is clear that there is close agreement between the results obtained by the proposed methods and label Esc. The parameters showing the sensitivity of the method such as molar absorptivity, Sandell’s sensitivity were found high. The low values of the relative standard deviation in percentages and the error indicated the high accuracy of the two methods.

Table 2. Results of Assay of Formulations by the Proposed methods

Sample	Labeled amount mg.	Amount (Method A) found mg.	Amount (Method B) found mg.
Esc.	20.00	19.985	19.973
	% Label Esc.\pm SDa	% Label Esc.\pm SDa	% Label Esc.\pm SDa
	99.925 \pm 0.05	99.865 \pm 0.07	99.725 \pm 0.12
t-testb = 1.46	t-testb = 1.12	t-testb = 1.12	

a- Average of five determinations, b-Tabulated t-value at 95% confidence level is 2.31.

3.4 Accuracy and Precision:
The accuracy and precision of the method was established by analyzing the pure drug solution at 4 different levels (within working limits). The results are summarized in tables 3 and 4.

3.5 Interference Study:
In pharmaceutical analysis, it is important to test the selectivity towards the excipients added to the pharmaceutical preparations. Commonly encountered excipients such as glucose, starch, talc, lactose, sucrose did not interfere in the determination of Escitalopram.
Table 3. Evaluation of Accuracy and Precision - Esc. (Method A).

Amount taken (µg mL⁻¹)	Amount found (µg mL⁻¹)	Recovery (%)	SD (%)	RSD
1	0.97	97.00	0.06	1.19
3	2.98	99.33	0.04	0.83
5	5.01	100.20	0.02	0.97
7	6.96	99.43	0.03	1.25

a- Average of five determinations, SD- standard deviation

Table 4. Evaluation of Accuracy and Precision - Esc. (Method B).

Amount taken (µg mL⁻¹)	Amount found (µg mL⁻¹)	Recovery (%)	SD (%)	RSD
1	1.01	101.00	0.01	1.42
2	1.99	99.50	0.03	1.11
3	2.98	99.33	0.02	1.09
4	3.99	99.75	0.02	1.63

a- Average of five determinations, SD- standard deviation

Conclusions

Simple, sensitive and selective spectrophotometric methods for the determination of Escitalopram have been developed and validated according to ICH guidelines. The methods are easy to perform and do not contain any stringent experimental variables which effect the reliability of the results. There is no interference from common additives and excipients. The methods thus can be used in the determination of Escitalopram in pure and dosage forms.

References

1. United States Pharmacopoeia 32 National Formulary 27, The Official Compedia of Standards, Vol-I, Twinbrook Parkway, Rockville, 2009; 1869-1870.
2. Charde M.S., Bhavsar N. and Chakole R.D., Determination of Escitalopram Oxalate in Pharmaceutical Formulation by High Performance Liquid Chromatography, International Journal of Pharmaceutical Chemistry, 2012; 2(1):23-26.
3. Sanjay S., Himanshu R., Chandrashekhar S., Peeyush S. and Anil B., Simultaneous Spectrophotometric Determination of Escitalopram Oxalate and Clonazepam Using Multi-Component Mode of Analysis, Journal of Pharmacy Research, 2010; 3(9):2303-2305.
4. Singh S.S., Shah H., Gupta S., Jain M., Sharma K., Thakkar P. and Shah R., Liquid Chromatography–Electrospray Ionization Mass Spectrometry Method for the Determination of Escitalopram in Human Plasma and its Application in Bioequivalence Study, J.Chromatogr. B, 2004; 811:209-215.
5. Christine G., Christoph H., Wolfgang B. and Ekkehard H., Determination of Citalopram and Escitalopram Together With Their Active Main Metabolites Desmethyl(citalopram in Human Serum by Columnswitching High Performance Liquid Chromatography (HPLC) and Spectrophotometric detection, J. Chromatogr. B, 2007; 848:391–394.
6. Gandhi S.V., Dhavale N.D., Jadhav V.Y. and Sabnis S.S., Spectrophotometric and Reversed-phase High-performance Liquid Chromatographic Methods for Simultaneous Determination of Escitalopram and Clonazepam in Combined Tablet Dosage Form, J. AOAC International, 2008; 91:33-38.
7. Juan H., Zhiling Z. and Huande L., Simultaneous Determination of Fluoxetine, Citalopram, Paroxetine, Venlafaxine in Plasma by High Performance Liquid Chromatography–Electrospray Ionization Mass Spectrometry (HPLC–MS/ESI), J. Chromatogr. B, 2005; 820:33–39.
8. Mahadik M.V., Dhaneshwar S.R. and Kulkarni M.J., Application of Stability Indicating HPTLC Method for Quantitative Determination of Escitalopram Oxalate in Pharmaceutical Dosage Form, Eurasian J. Anal. Chem., 2007; 2(2):101-117.
9. Johannesson N. and Bergquist J., Rapid online Extraction and Quantification of Escitalopram From Urine Using Sol–gel Columns and Mass Spectrometric Detection, J. Pharm. Biomed. Ana. 2007; 43:1045–1048.
10. Rao R.N. and Raju A.N., Enantiospecific Assay of Citadiol—A Key Intermediate of Escitalopram by Liquid Chromatography on Chiralpak AD-H Column Connected with UV and Polarimetric Detectors in Series, *J. Pharm. Biomed. Ana.* 2007; 43:311–314.

11. Sungthong B., Jac P. and Scriba G.K.E., Development and Validation of A Capillary Electrophoresis Method for the Simultaneous Determination of Impurities of Escitalopram Including the R-Enantiomer, *J. Pharm. Biomed. Ana.* 2008; 46: 959–965.

12. Dhavale N., Gandhi S., Sabnis S. and Bothara K., Simultaneous HPTLC Determination of Escitalopram and Clonazepam in Combined Tablets, *Chromatographia*, 2008; 67:487-490.

13. Kakde R.B. and Satone D.D., Spectrophotometric Method for Simultaneous Estimation of Escitalopram Oxalate and Clonazepam in Tablet Dosage Form, *Indian J Pharm Sci.*, 2009; 71:702–705.

14. Kakde R., Satone D. and Bawane N., HPTLC Method for Simultaneous Analysis of Escitalopram and Clonazepam in Pharmaceutical Preparation, *J. Planar Chromatography*, 2009; 22(6):417-420.

15. Raman B., Sharma B.A., Ghugare P.D., Nandavadekar S., Singh D., Karmuse P.K. and Kumar A., Structural Elucidation of Process Related Impurities in Escitalopram by LC/ESIMS and NMR, *J. Pharm. Biomed. Anal.*, 2010; 53:895-901.

16. Krishnachaitanya K., Samson D., Surekha M.L. and Gowri S., Determination of Escitalopram and its Preservatives in Oral Solution by Using RP-HPLC Method, *Journal of Pharmacy Research*, 2011; 4(11):3953-3954.

17. Robert Dancer, Hans Petersen, Peter Ellegaard and Lawrence Martel, Escitalopram (S-citalopram) in the form of its hydrobromide, methods for the preparation thereof and pharmaceutical compositions thereof. Inventors: Original Assignee: H. Lundbeck A/S, Current U.S. Classification: 514/469; 549/467 International Classification: C07D307/93; A61K031/343, Aug. 26-2004.