Comparison of Two New Robust Parameter Estimation Methods for the Power Function Distribution

Muhammad Shakeel1, Muhammad Ahsan ul Haq2, Ijaz Hussain3*, Alaa Mohamd Abdulhamid4, Muhammad Faisal5

1 Department of Statistics, Government Degree College for Boys Hujra Shah Muqeem, Okara, Pakistan, 2 College of Statistical and Actuarial Sciences, University of the Punjab, Lahore, Pakistan, 3 Department of Statistics, Quaid-i-Azam University, Islamabad, Pakistan, 4 Arriyadh Community College, King Saud University, Riyadh, Saudi Arabia, 5 Bradford Institute for Health Research, Bradford Teaching Hospitals, NHS Foundation Trust, Bradford, United Kingdom

* ijaz@qau.edu.pk

Abstract

Estimation of any probability distribution parameters is vital because imprecise and biased estimates can be misleading. In this study, we investigate a flexible power function distribution and introduced new two methods such as, probability weighted moments, and generalized probability weighted methods for its parameters. We compare their results with L-moments, trimmed L-moments by a simulation study and a real data example based on performance measures such as, mean square error and total deviation. We concluded that all the methods perform well in the case of large sample size (n>30), however, the generalized probability weighted moment method performs better for small sample size.

Introduction

Power function distribution is a flexible and simple distribution that may helpful for modeling the failure data. It is often used in the assessment of semiconductor devices and electrical component reliability [1]. Zarrin et al. [2] applied power function distribution to assess component failure of semi-conductor device data by using both the maximum likelihood and Bayesian estimation methods. A brief discussion about this distribution and its various properties are described in [3]. Theoretically, power function distribution has an inverse relationship with the standard Pareto distribution, and it is also a special case of Pearson type I distribution [3]. The moments of the power function distribution are simply the negative moments of the Pareto distribution [4]. Moments of order statistics for power function distribution are calculated by [5]. Athar and Faizan [6] derived the explicit expressions for single and product moments. They also showed the recurrence relationship for single and product moments of lower generalized order statistics of power distribution function. Chang [7] described the characterizations of the power function distribution by means of the independence of record values. Saran and Pandey [8] considered the kth record value for the parameter estimation of the power function distribution. Omar and Low [9] developed the Bayesian estimate for the shape parameter of the generalized...
power function distribution by considering both the informative and non-informative priors under mean square error loss function. Moreover, Sultan et al. [10] estimated the scale parameter of the power function distribution by using Bayesian method with three double types of priors and three single types of priors’ distributions. Bhatt [11] showed the characterization of power function distribution through expectation of non-constant function of a random variable. Lutful-Kabir and Ahsanullah [12] estimated the parameter of a Power function distribution by using linear function of the order statistics. Further, Haq et al. [13] developed the generalized form of Power function distribution that known as Transmuted Power Function distribution. Haq et al. [14] also commented on Kumaraswamy Power Function and suggested its suitable applications.

Zaka et al. [15] presented the modification of maximum likelihood, moments and percentile estimators of the two parameters power function distribution. Saleem et al. [16] derived the finite mixture density of power function distribution and they also derived the Bayesian estimators for censored and complete sample. Recently, Shahzad et al. [17] found that the L-moments method performs better than Trim L-moments method in case of power function distribution.

In this paper, we introduced two new parameter estimation methods such as, probability weighted moments and generalized probability weighted moments for two parameter power function distribution. We derive the expressions for parameter estimation of them. We compare the performance of these methods with the L moments and TL-moments methods by a simulation study and a real data example based on performance measures such as, mean square error and total deviation.

The Power Function Distribution

We consider the probability density function (pdf) and cumulative distribution function (cdf) of the power function distribution:

\[
f(x) = \frac{x^{\alpha-1}}{\theta^\alpha} 0 < x < \theta, \theta > 0
\]

\[
F(x) = \left(\frac{x}{\theta}\right)^\alpha 0 < x < \theta, \theta > 0
\]

Where \(\alpha\) is shape parameter and \(\theta\) is the scale parameter.

L-Moments

The L-moments as an analogy to the conventional moments [18] and it can be defined as any random variable whose mean exists [19]. L-moments are estimated by linear combination of order statistics. They are robust to the outliers and the influence of sample variation [20]. L-moments are commonly considered as more efficient parameter estimation method than the maximum likelihood method particularly for small sample size.

If \(X\) is a continuous random variable with distribution function \(F(x)\) and \(Q(x)\) as a quantile function, then the L-moments of \(r^{th}\) order random variable are defined as:

\[
\lambda_r = \frac{1}{r} \sum_{j=0}^{r-1} (-1)^j \binom{r-1}{j} E(X_{r-j}) ; \quad r = 1, 2, 3 \ldots . \ldots
\]

and the expected value of \(r^{th}\) order statistics of a random sample of size \(n\) has the form

\[
E(X_{r-j}) = \frac{n!}{(r-1)!(n-r)!} \int_0^1 Q(F)F^{r-1}(1-F)^{n-r} dF
\]
Let $x_1, x_2, x_3, \ldots, x_n$ be a sample and $x_{(1)} \leq x_{(2)} \leq \ldots \leq x_{(n)}$ an ordered sample, then the r^{th} unbiased empirical L-moments are defined by Asquith [21] and can be written as:

$$l_r = \frac{1}{r} \sum_{i=1}^{n} \left[\frac{\sum_{j=0}^{r-1} (-1)^j \binom{r-1}{j} \binom{i-1}{j} \binom{n-i}{j}}{\binom{n}{r}} \right] x_{(i)}$$

(5)

L-moments of the power function distribution can be derived from Eq (3) i.e.

$$\lambda_1 = \frac{z \theta}{z + 1}$$

$$\lambda_2 = \frac{z \theta}{(z + 1)(2z + 1)}$$

The estimators of the power function parameters are α and θ. In order to obtain L-moments in terms of l_1 and l_2 by equating the λ_1 to l_1 and λ_2 to l_2, we get:

$$\tilde{z} = \frac{l_1 - l_2}{2l_2} \quad \text{and} \quad \tilde{\theta} = \frac{l_1(l_1 + l_2)}{l_1 - l_2}$$

Trimmed L-moments

Elamir and Seheult [22] derived Trimmed L-moments (TL-moments) that is a natural generalization of L-moments because it does not need the mean of the underlying distribution to exist e.g., Cauchy distribution [23]. Initially, TL-moments were developed as supplement for other methods particularly when dealing with outliers in the data [24]. In fact, the expected value of order statistics $E(X_{r-j}+t)$ is replaced by $E(X_{r+t-j-r+t+1})$ for large samples in L-moments where the increased size is the total amount of trimming. Thus the r^{th} order TL-moments are denoted as $\lambda_r^{(t_1,t_2)}$.

$$\lambda_r^{(t_1,t_2)} = \frac{1}{r} \sum_{j=0}^{r-1} (-1)^j \binom{r-1}{j} E(X_{r-t+r+t+j}) = \frac{1}{r} \sum_{j=0}^{r-1} (-1)^j \binom{r-1}{j} E(X_{r+t-j-r+t+1})$$

(6)

TL-moments reduce to L-moments, if we put $t_1 = t_2 = 0$ in Eq (6). Here, symmetric case of TL-moments is considered i.e., $t_1 = t_2 = t$. For the symmetric case Eq (6) can be rewritten as:

$$\lambda_r^{(t)} = \frac{1}{r} \sum_{j=0}^{r-1} (-1)^j \binom{r-1}{j} E(X_{r+t-j-r+2t})$$

(7)

The unbiased TL-moments where sampled TL-moments equivalent to population TL-moments are defined by Asquith [21] as following:

$$l_r^{(t)} = \frac{1}{r} \sum_{i=r+t}^{n-t} \left[\frac{\sum_{j=0}^{r-1} (-1)^j \binom{r-1}{j} \binom{i-1}{j} \binom{n-i}{j}}{\binom{n}{r+2t}} \right] x_{(i)}$$

(8)
The TL-moments of the power function distribution for $t = 1$ are:

$$
\lambda_1^{(1)} = \frac{6z^2\theta}{(2z + 1)(3z + 1)}
$$

$$
\lambda_2^{(1)} = \frac{6z^2\theta}{(2z + 1)(3z + 1)(4z + 1)}
$$

The estimators of the power function parameters α and θ by means of TL-moments can be obtained in terms of $l_1^{(1)}$ and $l_2^{(1)}$ by equating the $\lambda_1^{(1)}$ to $f_1^{(1)}$ and $\lambda_2^{(1)}$ to $f_2^{(1)}$:

$$
\hat{\alpha} = \frac{l_1^{(1)} - l_2^{(1)}}{4l_2^{(1)}}
$$

$$
\hat{\theta} = \frac{l_1^{(1)}(3l_1^{(1)} + l_2^{(1)})(l_1^{(1)} + l_2^{(1)})}{3(l_1^{(1)} - l_2^{(1)})^2}
$$

Probability Weighted Moments

Greenwood et al. [25] proposed probability weighted moments (PWMs), that is the generalization of usual moments of the probability distribution. It is unbiased, stable and particularly attractive when the cumulative distribution function $F_X(x)$ of a distribution has a closed form [26]. It is commonly used for estimating the parameters of the distributions that are analytically expressible in quantile form such as, Wakeby and Tukey’s Lambda distribution [27]. If X is the random variable with cdf $F_X(x)$, then the PWM are expressed as:

$$
M_{p,u,v} = E[X^p(F_X(x))^{u}((1 - F_X(x)))^v]	ag{9}
$$

where p,u,v are integer numbers. If the inverse distribution function $Q(F)$ can be written in closed form, then an alternative form of the PWM is devised as:

$$
M_{p,u,v} = \int_0^1 Q(F)^p F^u(1 - F)^v dF.	ag{10}
$$

If $u = v = 0$ and p is non-negative then $M_{p,0,0}$ are the non-central conventional moments. Particularly useful special cases of PWM are $\alpha_u = M_{1,0,u}$ and $\beta_u = M_{1,u,0}$.

Let $x_{(1)}$, $x_{(2)}$, $x_{(3)}$, ..., $x_{(n)}$ be a random sample of size n from the distribution function $F(x)$ and $x_{(1)} < x_{(2)} < x_{(3)}$, ..., $< x_{(n)}$ be the corresponding ordered sample. Landwehr et al. [28] proposed an unbiased estimator of PWM as:

$$
\hat{\beta}_u = \frac{n}{n-1} \frac{(j-1)(j-2)\ldots(j-u)}{n-1(n-2)\ldots(n-u)} X_{(j)}
$$

The general expression of PWM is given in Eq (10).

The PWM for the power function distribution is derived as follow by using Eq (10):

$$
\beta_0 = M_{1,0,0} = \frac{z\theta}{z + 1} \quad \text{and} \quad \beta_1 = M_{1,1,0} = \frac{z\theta}{2z + 1}
$$
The estimators of the power function parameters α and θ by means of PWM are obtained in terms of $\hat{M}_{1,0,0}$ and $\hat{M}_{1,1,0}$ by equating the $M_{1,0,0}$ to $\hat{M}_{1,0,0}$ and $M_{1,1,0}$ to $\hat{M}_{1,1,0}$:

$$\hat{\alpha} = \frac{\hat{M}_{1,0,0} - \hat{M}_{1,1,0}}{2\hat{M}_{1,1,0} - M_{1,0,0}}$$

$$\hat{\theta} = \frac{\hat{M}_{1,0,0}\hat{M}_{1,1,0}}{M_{1,0,0} - M_{1,1,0}}$$

Generalized Probability Weighted Moments

Rasmussen [29] proposed generalized probability weighted moments (GPWM) as an extension of PWM. It is used to estimate the parameters of such probability distributions that can be expressed in inverse form. The PWM only considers the non-negative integers on the exponent while GPWM method is unrestricted to the smallest non-negative integers on the exponent [30].

The common practice of GPWM of order $p = 1$ and $v = 0$ takes the following form

$$M_{1,u,0} = E[X^u \{F_X(x)\}^v]$$

The PWm involves consideration of $u = 0$ and $u = 1$ in the above equation for a two parametric distribution while GPWM method considers $u = u_1$ and $u = u_2$ where u_1 and u_2 are either to be small or non-negative integers. The empirical estimate of GPWM proposed by Hosking [31] is given as: $\hat{M}_{1,u,0} = \frac{1}{n} \sum_{i=1}^{n} x_i \left(\frac{i-0.5}{n}\right)^u$.

The estimated GPWM estimates for the power function distribution can be obtained as:

$$M_{1,u_1,0} = \frac{\alpha \theta}{\alpha + zu_1 + 1}$$

$$M_{1,u_2,0} = \frac{\alpha \theta}{\alpha + zu_2 + 1}$$

$$\hat{\alpha} = \frac{\hat{M}_{1,u_1,0} - \hat{M}_{1,u_2,0}}{\hat{M}_{1,u_2,0}(1 + u_2) - \hat{M}_{1,u_1,0}(1 + u_1)}$$

$$\hat{\theta} = \frac{\hat{M}_{1,u_1,0}\hat{M}_{1,u_2,0}(u_2 - u_1)}{\hat{M}_{1,u_1,0} - \hat{M}_{1,u_2,0}}$$

A Simulation Study

Monte Carlo simulation is designed to investigate the sampling behaviour of the L-moments (LM), Trimmed L-moments (TLM), probability weighted moments (PWMs) and generalized probability weighted moments (GPWMs) estimators. This comparison is carried out by taking the sample of sizes ($n = 10, 25, 50, 100, 150, 250$, and 500). The accuracy of the estimates is compared by using following performance measures mean square error (MSE) and total deviation (TD). The lmomco package in R software by Asquith [32] is used for this analysis.

The results of our simulation study are presented in the Tables 1–4. We can assess the accuracy of these estimators in terms of bias, means square errors (MSE), and total deviation (TD).
The results show that GPWM is relatively better (smaller MSE and TD) than LM, TLM, and PWM for small sample size and for all parameters values of α and θ. However, the bias of GPWM is slightly more than LM, TLM, and PWM for small sample size. Moreover, bias decreases as the sample size increases. The MSE for α and θ rise for higher parameters values.

As the sample size increases, the estimates of α and θ generally approach to their true values. The bias is negligible for larger sample sizes, but it is slightly more for smaller sample sizes. Overall, the bias decreases as the sample size increases for all the parameter settings.

Therefore, all the methods show identical performance for estimating the shape and scale parameters of Power function distribution unless the sample size is small. However, the generalized probability weighted moments performs better for smaller sample sizes than other robust methods considered here such as, L-moments, trimmed L-moments, and probability weighted moments.

Application

We also compare all the estimation methods on a real data—device failure times. The data set refers to failure times of 30 devices given by Meeker and Escobar [33]. The data are: 275, 13, 147, 23, 181, 30, 56, 10, 300, 173, 106, 300, 300, 212, 300, 300, 2, 261, 293, 88, 247, 28, 143, 300, 300, 80, 245, and 266.

Table 5 shows the estimators of the shape and scale parameters of the power function distribution on the basis of histogram and density plots. The plot also confirms that GPWM provides better fit because its curve is relatively close to the empirical density curve.

n	Mean a_{LM}	Mean \hat{a}_{LM}	Mean a_{TLM}	Mean \hat{a}_{TLM}	Mean a_{PWM}	Mean \hat{a}_{PWM}	Mean a_{GPWM}	Mean \hat{a}_{GPWM}
10	0.60936	2.62931	0.64342	2.72773	0.61560	2.61683	0.63338	2.52208
MSE	0.07474	0.29290	0.12522	0.87980	0.06977	0.28055	0.06396	0.19446
T.D	0.067324	0.16346	0.07273	0.06447				
25	0.60168	2.53893	0.60769	2.57847	0.60087	2.53823	0.61112	2.51155
MSE	0.02194	0.08229	0.02777	0.19562	0.02169	0.08199	0.02182	0.06449
T.D	0.01838	0.04419	0.01675	0.02315				
50	0.60023	2.51947	0.60157	2.53020	0.60118	2.51832	0.60406	2.50839
MSE	0.00994	0.03657	0.01202	0.08170	0.00999	0.03770	0.01056	0.03014
T.D	0.00817	0.01469	0.00930	0.01012				
100	0.60048	2.51157	0.60107	2.51476	0.59829	2.50882	0.60214	2.50452
MSE	0.00486	0.01775	0.00566	0.03812	0.00487	0.01714	0.00509	0.01454
T.D	0.00543	0.00769	0.00567	0.00536				
150	0.60019	2.50639	0.60118	2.50916	0.59984	2.50549	0.60144	2.50384
MSE	0.00321	0.01167	0.00382	0.02631	0.00308	0.01171	0.00336	0.00952
T.D	0.00287	0.00564	0.00193	0.00393				
250	0.59986	2.50355	0.59973	2.50758	0.60008	2.50436	0.60109	2.50127
MSE	0.00193	0.00689	0.00224	0.01523	0.00192	0.00684	0.00205	0.00565
T.D	0.00119	0.00258	0.00187	0.00233				
500	0.60022	2.50169	0.59919	2.50359	0.59975	2.50225	0.59945	2.50130
MSE	0.00094	0.00342	0.00109	0.00734	0.01093	0.00342	0.01090	0.00274
T.D	0.00103	0.00008	0.00048	0.00040				
Table 2. Comparison of the estimation methods for \((\alpha = 0.7, \theta = 3) \).

n	\(\hat{\alpha}_{LM} \)	\(\hat{\theta}_{LM} \)	\(\hat{\alpha}_{TLM} \)	\(\hat{\theta}_{TLM} \)	\(\hat{\alpha}_{PWM} \)	\(\hat{\theta}_{PWM} \)	\(\hat{\alpha}_{GPWM} \)	\(\hat{\theta}_{GPWM} \)
10	Mean 0.72263 3.11949 0.75321 3.22605 0.72133 3.1235 0.72462 3.04562	MSE 0.10206 0.30453 0.15670 0.97342 0.09903 0.31992 0.07690 0.22856	T.D 0.07216 0.15136 0.07164 0.05038					
25	Mean 0.70500 3.04684 0.71679 3.06086 0.70314 3.04925 0.70824 3.02145	MSE 0.02852 0.09460 0.03898 0.21583 0.02840 0.09249 0.02857 0.07499	T.D 0.02276 0.21954 0.02090 0.01892					
50	Mean 0.70350 3.01898 0.70525 3.03297 0.70099 3.02094 0.70200 3.01320	MSE 0.01322 0.04319 0.01628 0.09559 0.01336 0.04331 0.01308 0.03492	T.D 0.01133 0.09668 0.00839 0.003492					
100	Mean 0.70081 3.00383 0.70217 3.01333 0.70066 3.00700 0.70070 3.00641	MSE 0.00629 0.02077 0.00763 0.00650 0.02157 0.00670 0.01695	T.D 0.00395 0.04409 0.003492					
150	Mean 0.70171 3.00534 0.70086 3.01065 0.69991 3.00821 0.70138 3.00332	MSE 0.00433 0.01331 0.00500 0.00431 0.01351 0.00447 0.01082	T.D 0.00202 0.02890 0.00261 0.00308					
250	Mean 0.90017 3.00445 0.70138 3.06687 0.70115 3.00158 0.70124 3.00201	MSE 0.00259 0.00811 0.00296 0.01776 0.00251 0.00793 0.00268 0.00671	T.D 0.00327 0.01781 0.00217 0.00243					
500	Mean 0.90030 2.99999 0.70038 3.00269 0.70049 3.00269 0.7019 3.00121	MSE 0.00121 0.00408 0.00144 0.00851 0.00126 0.00400 0.00133 0.00327	T.D 0.00042 0.00851 0.00128 0.00067					

Table 3. Comparison of the estimation methods for \((\alpha = 0.9, \theta = 5) \).

n	\(\hat{\alpha}_{LM} \)	\(\hat{\theta}_{LM} \)	\(\hat{\alpha}_{TLM} \)	\(\hat{\theta}_{TLM} \)	\(\hat{\alpha}_{PWM} \)	\(\hat{\theta}_{PWM} \)	\(\hat{\alpha}_{GPWM} \)	\(\hat{\theta}_{GPWM} \)
10	Mean 0.93823 5.13723 0.98192 5.26256 0.93675 5.15027 0.91941 5.11158	MSE 0.15876 0.57927 0.06993 0.14353 0.07089 0.44208	T.D 0.06993 0.14353 0.04388					
25	Mean 0.91092 5.04928 0.91687 5.08435 0.91004 5.04835 0.90874 5.05122	MSE 0.04695 0.18460 0.05998 0.39833 0.04605 0.18454 0.04420 0.14228	T.D 0.02199 0.03544 0.02082 0.01995					
50	Mean 0.90484 5.02623 0.91066 5.03618 0.90564 5.02239 0.89972 5.02691	MSE 0.02164 0.08289 0.02621 0.17282 0.02141 0.08247 0.02064 0.06723	T.D 0.01063 0.01908 0.01074 0.00507					
100	Mean 0.90284 5.00993 0.90475 5.01530 0.90198 5.01544 0.9064 5.01154	MSE 0.01012 0.03879 0.01232 0.08128 0.01032 0.04105 0.01048 0.03199	T.D 0.00514 0.00833 0.00529 0.00302					
150	Mean 0.90106 5.00664 0.90294 5.00881 0.90196 5.00621 0.89962 5.00980	MSE 0.00661 0.02684 0.00814 0.05599 0.00676 0.02680 0.00708 0.02126	T.D 0.00250 0.00503 0.00342 0.00153					
250	Mean 0.90050 5.00348 0.90037 5.00845 0.90014 5.00531 0.90042 5.00569	MSE 0.00403 0.01515 0.00476 0.03186 0.00397 0.01578 0.00421 0.01238	T.D 0.00125 0.00210 0.00122 0.00160					
500	Mean 0.90077 5.00247 0.90023 5.00331 0.90046 5.00218 0.90011 5.00321	MSE 0.00195 0.00783 0.00234 0.01581 0.00202 0.00780 0.00213 0.00614	T.D 0.00135 0.00092 0.00095 0.00076					

doi:10.1371/journal.pone.0160692.t002
doi:10.1371/journal.pone.0160692.t003
In this study, we introduce two new parameter estimation methods such as, probability weighted moments and generalized probability moments for power function distribution. It is a flexible and simple distribution that may helpful for modeling the failure data. Mathematical expressions of the estimators are derived for the L-moments, TL-moments, PWM, and GPWM. We compare the performance of these methods for power function distribution through a simulation study and read data. Therefore, it is concluded from both simulated and real data that all the methods show identical performance for estimating the shape and scale parameters of Power function distribution unless the sample size is small. However, the generalized probability weighted moments performs better for smaller sample sizes than other robust methods considered here such as, L-moments, trimmed L-moments, and probability weighted moments.

Table 4. Comparison of the estimation methods for (α = 2, θ = 1).

n	\bar{a}_{LM}	$\hat{\theta}_{LM}$	\bar{a}_{TLM}	$\hat{\theta}_{TLM}$	\bar{a}_{PWM}	$\hat{\theta}_{PWM}$	\bar{a}_{GPWM}	$\hat{\theta}_{GPWM}$
10	2.19286	1.00917	2.29136	1.01476	2.17680	1.00898	1.90477	1.03939
MSE	0.91882	0.00668	1.39339	0.01403	0.88814	0.00644	0.43085	0.00629
T.D	0.10560	0.16044	0.09738	0.00823				
25	2.05348	1.00314	2.08292	1.00417	2.06034	1.00248	1.94897	1.01678
MSE	0.22583	0.00212	0.29108	0.00386	0.23642	0.00211	0.18125	0.00186
T.D	0.02988	0.04563	0.03265	0.00873				
50	2.02212	1.00181	2.03330	1.00335	2.02675	1.00126	1.97213	1.00823
MSE	0.10626	0.00102	0.12468	0.00173	0.10579	0.00102	0.09320	0.00078
T.D	0.01287	0.02000	0.01463	0.00571				
100	2.00907	1.00071	2.01471	1.00129	2.01594	1.00128	1.98011	1.00451
MSE	0.04898	0.00048	0.05799	0.00084	0.05091	0.00048	0.04704	0.00037
T.D	0.00524	0.00864	0.00925	0.00544				
150	2.01030	1.00045	2.01430	1.00074	2.00690	1.00059	1.99235	1.00285
MSE	0.03232	0.00033	0.03868	0.00056	0.03282	0.00031	0.03117	0.00023
T.D	0.00560	0.00789	0.00404	0.00098				
250	2.00772	1.00023	2.00506	1.00069	2.00525	1.00044	1.99295	1.00193
MSE	0.01949	0.00019	0.02307	0.00033	0.01930	0.00019	0.01900	0.00013
T.D	0.00409	0.00322	0.00306	0.00159				
500	2.00311	1.00021	2.00401	1.00007	2.00201	0.99999	1.99660	1.00093
MSE	0.00950	0.00010	0.01115	0.00016	0.00934	0.00009	0.00937	0.00007
T.D	0.00176	0.00207	0.00100	0.00077				

doi:10.1371/journal.pone.0160692.t004

Table 5. Kolmogorov-Smirnov (KS) and Anderson-Darling (AD) test on real data set.

Method	α	θ	KS	AD
L-moments	0.852064	384.804	0.1911 (0.2231)	1.2003 (0.2671)
Trimmed L-moments	0.785252	432.257	0.2493 (0.0479)	1.3900 (0.21)
Probability Weighted Moments	0.852064	384.804	0.1911 (0.2231)	1.2003 (0.2671)
Generalized Probability Weighted Moments	0.938654	370.1152	0.1789 (0.2920)	1.3241 (0.2245)

Note: P-values of the KS test statistic and AD test statistic are given in parentheses.

doi:10.1371/journal.pone.0160692.t005

Conclusion

In this study, we introduce two new parameter estimation methods such as, probability weighted moments and generalized probability moments for power function distribution. It is a flexible and simple distribution that may helpful for modeling the failure data. Mathematical expressions of the estimators are derived for the L-moments, TL-moments, PWM, and GPWM. We compare the performance of these methods for power function distribution through a simulation study and read data. Therefore, it is concluded from both simulated and real data that all the methods show identical performance for estimating the shape and scale parameters of Power function distribution unless the sample size is small. However, the generalized probability weighted moments performs better for smaller sample sizes than other robust methods considered here such as, L-moments, trimmed L-moments, and probability weighted moments.

Table 5. Kolmogorov-Smirnov (KS) and Anderson-Darling (AD) test on real data set.

Method	α	θ	KS	AD
L-moments	0.852064	384.804	0.1911 (0.2231)	1.2003 (0.2671)
Trimmed L-moments	0.785252	432.257	0.2493 (0.0479)	1.3900 (0.21)
Probability Weighted Moments	0.852064	384.804	0.1911 (0.2231)	1.2003 (0.2671)
Generalized Probability Weighted Moments	0.938654	370.1152	0.1789 (0.2920)	1.3241 (0.2245)

Note: P-values of the KS test statistic and AD test statistic are given in parentheses.

doi:10.1371/journal.pone.0160692.t005
Acknowledgments

The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through research group no RG-1437-027.

Author Contributions

Conceptualization: MS.
Data curation: AuH.
Formal analysis: AuH.
Investigation: MS AuH.
Methodology: MS.
Resources: MS AuH AMA.
Software: MS AuH.
Validation: MS AuH.
Visualization: MS AMA.
Writing - original draft: IH MF.
Writing - review & editing: IH MF.

References
1. Sultan K, Childs A, Balakrishnan N. Higher order moments of order statistics from the power function distribution and Edgeworth approximate inference. Advances in Stochastic Simulation Methods. Springer. 2000; 245–282.
2. Zarrin S, Saxena S, Kamal M. Reliability computation and Bayesian Analysis of system reliability of Power function distribution. International Journal of Advance in Engineering, Science and Technology. 2013; 2(4): 76–86.
3. Kleiber C, Kotz S. Statistical size distributions in economics and actuarial sciences: John Wiley & Sons; 2003.
4. Johnson NL, Kotz S. Distributions in Statistics: Continuous Univariate Distributions: Vol 1. John Wiley & Sons; 1970.
5. Malik HJ. Exact moments of order statistics from a power-function distribution. Scandinavian Actuarial Journal, 1967; 64–69.
6. Athar H, Faizan M. Moments of lower generalized order statistics from power function distribution and its characterization. International Journal of Statistical Science. 2011; 11: 125–134.
7. Chang S. Characterizations of the power function distribution by the independence of record values. Journal of the Chungcheong Mathematical Society. 2007; 20(2): 139–146.
8. Saran J, Pandey A. Estimation of parameters of a power function distribution and its characterization by k-th record values. Statistica. 2004; 64(3): 523–536
9. Omar AA, Low HC. Bayesian Estimate for Shape Parameter from Generalized Power Function Distribution. Mathematical Theory and Modeling, 2012; 2(12), 1–7.
10. Sultan R, Sultan H, Ahmad S. Bayesian Analysis of Power Function Distribution under Double Priors. Journal of Statistics Applications and Probability, 2014; 3(2): 239–249.
11. Bhatt MB. Characterization of Power-Function Distribution through Expectation. Open Journal of Statistics. 2013; 3(06): 441–443.
12. Lutful KA, Ahsanullah M. Estimation of the location and scale parameters of a power-function distribution by linear functions of order statistics. Communications in Statistics-Theory and Methods, 1974; 3(5): 463–467.
13. Haq MA, Usman RM, Fateh AA, Butt NS. Transmuted Power Function distribution. Accepted in Gazi University Journal of Science 2016.
14. Haq MA, Usman RM, Fateh AA. A Study on Kumaraswamy Power Function Distribution. Submitted to Kuwait Journal of Science 2016.
15. Zaka A, Feroze N, Akther AS. A note on Modified Estimators for the Parameters of the Power Function Distribution. International Journal of Advanced Science and Technology. 2013; 59: 71–84.
16. Saleem M, Aslam M, Economou P. On the Bayesian analysis of the mixture of power function distribution using the complete and the censored sample. Journal of Applied Statistics, 2010; 37(1): 25–40.
17. Shahzad MN, Asghar Z, Shehzad F, Shahzadi M. Parameter Estimation of Power Function Distribution with TL-moments. Revista Colombiana de Estadística, 2015; 38(2): 321–334.
18. Hosking JRM. L-Moments: Analysis and Estimation of Distributions Using Linear Combinations of Order Statistics. Journal of the Royal Statistical Society. Series B (Methodological). 1990; 52(1):105–124.
19. Hosking J. Some theory and practical uses of trimmed L-moments. Journal of Statistical Planning and Inference. 2007; 137(9): 3024–3039.
20. Abdul-Moniem I, Selim YM. TL-moments and L-moments estimation for the generalized Pareto distribution. Applied Mathematical Sciences. 2009; 3(1): 43–52.
21. Asquith WH. L-Moments and TL-Moments of the Generalized Lambda Distribution. Computational Statistics & Data Analysis. 2007; 51(9): 4484–4496.
22. Elamir EA, Seheult AH. Trimmed L-moments. Computational Statistics & Data Analysis, 2003; 43(3): 299–314.
23. Hosking J. Some theory and practical uses of trimmed L-moments. Journal of Statistical Planning and Inference. 2007; 137(9): 3024–3039.
24. El-Magd NAA. TL-Moments of the exponentiated generalized extreme value distribution. Journal of Advanced Research. 2010; 1(4): 351–359.

25. Greenwood JA, Landwehr JM, Matalas NC, Wallis JR. Probability weighted moments: definition and relation to parameters of several distributions expressable in inverse form. Water Resources Research. 1979; 15(5): 1049–1054.

26. Munir R, Saleem M, Aslam M, Ali S. Comparison of different methods of parameters estimation for Pareto Model. Caspian Journal of Applied Sciences Research, 2013; 2(1):45–56.

27. Elsherpieny E, Hassan AS, ElHaroun NM. Application of generalized probability weighted moments for skew normal distribution. Asian Journal of Applied Sciences. 2014; 2(1) 45–53

28. Landwehr JM, Matalas N, Wallis J. Probability weighted moments compared with some traditional techniques in estimating Gumbel parameters and quantiles. Water Resources Research, 1979; 15(5): 1055–1064.

29. Rasmussen PF. Generalized probability weighted moments: application to the generalized Pareto distribution. Water Resources Research, 2001; 37(6): 1745–1751.

30. Abd-Effatah AM, Alharbey AH. Estimation of Lomax Parameters Based on Generalized Probability Weighted Moment. Journal of King Abdulaziz University: Science. 2010; 22(2): 171–184.

31. Hosking JRM. The theory of probability weighted moments, Research Report RC 12210, IBM Research Division, Yorktown Heights, NY. 1986.

32. Asquith WH. lmomco: L-moments, Trimmed L-moments, L-comoments, and Many Distributions. 2015; R package version 2.1.4

33. Meeker W, Escobar L. Statistical methods for reliability data Wiley. New York; 1998.