Computing the Real Isolated Points of an Algebraic Hypersurface

Huu Phuoc Le
Sorbonne Université, CNRS,
Laboratoire d’Informatique de Paris 6, LIP6,
Équipe PolSys
F-75252, Paris Cedex 05, France
huu-phuoc.le@lip6.fr

Mohab Safey El Din
Sorbonne Université, CNRS,
Laboratoire d’Informatique de Paris 6, LIP6,
Équipe PolSys
F-75252, Paris Cedex 05, France
mohab.safey@lip6.fr

Timo de Wolff
Technische Universität Braunschweig,
Institut für Analysis und Algebra, AG Algebra
Universitätsplatz 2
38106 Braunschweig, Germany
t.de-wolff@tu-braunschweig.de

August 25, 2020

Abstract

Let \mathbb{R} be the field of real numbers. We consider the problem of computing the real isolated points of a real algebraic set in \mathbb{R}^n given as the vanishing set of a polynomial system. This problem plays an important role for studying rigidity properties of mechanism in material designs. In this paper, we design an algorithm which solves this problem. It is based on the computations of critical points as well as roadmaps for answering connectivity queries in real algebraic sets. This leads to a probabilistic algorithm of complexity $O(nd^{O(n \log(n))})$ for computing the real isolated points of real algebraic hypersurfaces of degree d. It allows us to solve in practice instances which are out of reach of the state-of-the-art.

Keywords
Semi-algebraic sets · Critical point method · Real algebraic geometry · Auxetics · Rigidity

Mohab Safey El Din and Huu Phuoc Le are supported by the ANR grants ANR-18-CE33-0011 SESAME, and ANR-19-CE40-0018 DE RERUM NATURA, the joint ANR-FWF ANR-19-CE48-0015 ECARP project, the PGMO grant CAMISADO and the European Union’s Horizon 2020 research and innovative training network programme under the Marie Skłodowska-Curie grant agreement N° 813211 (POEMA). Timo de Wolff is supported by the DFG grant WO 2206/1-1.

1 Introduction

Let \mathbb{Q}, \mathbb{R} and \mathbb{C} be respectively the fields of rational, real and complex numbers. For $x \in \mathbb{R}^n$ and $r \in \mathbb{R}$, we denote by $B(x, r) \subset \mathbb{R}^n$ the open ball centered at x of radius r.

Let $f \in \mathbb{Q}[x_1, \ldots, x_n]$ and $H \subset \mathbb{C}^n$ be the hypersurface defined by $f = 0$. We aim at computing the isolated points of $H \cap \mathbb{R}^n$, i.e. the set of points $x \in H \cap \mathbb{R}^n$ s.t. for some positive r, $B(x, r) \cap H = \{x\}$. We shall denote this set of isolated real points by $\mathcal{Z}(H)$.

Motivation
We consider here a particular instance of the more general problem of computing the isolated points of a semi-algebraic set. Such problems arise naturally and frequently in the design of rigid mechanism in material design. Those are modeled canonically with semi-algebraic constraints, and isolated points to the semi-algebraic set under consideration are related to mobility/rigidity properties of the mechanism. A particular example is the study of auxetic materials, i.e., materials that shrink in all directions under compression. These materials appear in nature (first discovered in [20]) e.g., in foams, bones or propylene; see
e.g. [32], and have various potential applications. They are an active field of research, not only on the practical side, e.g., [16] [11], but also with respect to mathematical foundations; see e.g. [5] [6]. On the constructive side, these materials are closely related to tensegrity frameworks, e.g., [21] [3], which can possess various sorts of rigidity properties.

Hence, we aim to provide a practical algorithm for computing these real isolated points in the particular case of real traces of complex hypersurfaces first. This simplification allows us to significantly improve the state-of-the-art complexity for this problem and to establish a new algorithmic framework for such computations.

State-of-the-art As far as we know, there is no established algorithm dedicated to the problem under consideration here. However, effective real algebraic geometry provides subroutines from which such a computation could be done. Let \(\mathcal{H} \) be a hypersurface defined by \(f = 0 \) with \(f \in \mathbb{Q}[x_1, \ldots, x_n] \) of degree \(d \).

A first approach would be to compute a cylindrical algebraic decomposition adapted to \(\mathcal{H} \cap \mathbb{R}^n \) [7]. It partitions \(\mathcal{H} \cap \mathbb{R}^d \) into connected cells, i.e., subsets which are homeomorphic to \([0,1]^i\) for some \(1 \leq i \leq n \). Next, one needs to identify cells which correspond to isolated points using adjacency information (see e.g. [11]). Such a procedure is at least doubly exponential in \(n \) and polynomial in \(d \).

A better alternative is to encode real isolated points with quantified formula over the reals. Using e.g. [2, Algorithm 14.21], one can compute isolated points of \(\mathcal{H} \cap \mathbb{R}^n \) in time \(d^O(n^5) \). Note also that [31] allows to compute isolated points in time \(d^O(n^3) \).

A third alternative (suggested by the reviewers) is to use [2, Algorithm 12.16] to compute sample points in each connected component of \(\mathcal{H} \cap \mathbb{R}^n \) and then decide whether spheres, centered at these points, of infinitesimal radius, meet \(\mathcal{H} \cap \mathbb{R}^n \). Note that these points are encoded with parametrizations of degree \(d^O(n^3) \) (their coordinates are evaluations of polynomials at the roots of a univariate polynomial with infinitesimal coefficients). Applying [2, Alg. 12.16] on this last real root decision problem would lead to a complexity \(d^O(n^3) \) since the input polynomials would have degree \(d^O(n^3) \). Another approach would be to run [2, Alg. 12.16] modulo the algebraic extension used to define the sample points. That would lead to a complexity \(d^O(n^3) \) but this research direction requires modifications of [2, Alg. 12.16] since it assumes the input coefficients to lie in an integral domain, which is not satisfied in our case. Besides, we report on practical experiments showing that using [2, Alg. 12.16] to compute only sample points in \(\mathcal{H} \cap \mathbb{R}^n \) does not allow us to solve instances of moderate size.

The topological nature of our problem is related to connectedness. Computing isolated points of \(\mathcal{H} \cap \mathbb{R}^n \) is equivalent to computing those connected components of \(\mathcal{H} \cap \mathbb{R}^n \) which are reduced to a single point (see Lemma 1). Hence, one considers computing roadmaps: these are algebraic curves contained in \(\mathcal{H} \) which have a non-empty and connected intersection with all connected components of the real set under study. Once such a roadmap is computed, it suffices to compute the isolated points of a semi-algebraic set in \(\mathbb{R}^n \). This latter step is not trivial; as many of the algorithms computing roadmaps output either curve segments (see e.g., [4]) or algebraic curves (see e.g., [28]). Such curves are encoded through rational parametrizations, i.e., as the Zariski closure of the projection of the \((x_1, \ldots, x_n)\)-space of the solution set to

\[
 w(t,s) = 0, \quad x_i = v_i(t,s)/\partial w(t,s), \quad 1 \leq i \leq n
\]

where \(w \in \mathbb{Q}[t,s] \) is square-free and \(v_i \)'s lie in \(\mathbb{Q}[t,s] \) (see e.g., [28]). As far as we know, there is no published algorithm for computing isolated points from such an encoding.

Computing roadmaps started with Canny’s (probabilistic) algorithm running in time \(d^O(n^2) \) on real algebraic sets. Later on, [27] introduced new types of connectivity results enabling more freedom in the design of roadmap algorithms. This led to [27] [4] for computing roadmaps in time \((nd)^{O(n^{1.5})} \). More recently, [3], still using these new types of connectivity results, provide a roadmap algorithm running in time \(d^O(n \log^2 n)n^{O(n \log n)} \) for general real algebraic sets (at the cost of introducing a number of infinitesimals). This is improved in [28], for smooth bounded real algebraic sets, with a probabilistic algorithm running in time \(O((nd)^{12n \log^2 n}) \). These results makes plausible to obtain a full algorithm running in time \((nd)^{O(n \log n)} \) to compute the isolated points of \(\mathcal{H} \cap \mathbb{R}^n \).

Main result We provide a probabilistic algorithm which takes as input \(f \) and computes the set of real isolated points \(\mathcal{Z}(\mathcal{H}) \) of \(\mathcal{H} \cap \mathbb{R}^n \). A few remarks on the output data-structure are in order. Any finite algebraic set \(Z \subset \mathbb{C}^n \) defined over \(\mathbb{Q} \) can be represented as the projection of the \((x_1, \ldots, x_n)\)-space of the solution set to

\[
 w(t) = 0, \quad x_i = v_i(t), \quad 1 \leq i \leq n
\]

where \(w \in \mathbb{Q}[t] \) is square-free and \(v_i \)'s lie in \(\mathbb{Q}[t] \). The sequence of polynomials \((w, v_1, \ldots, v_n)\) is called a zero-dimensional parametrization; such a representation goes back to Kronecker [19]. Such representations (and their variants with denominators) are widely used in computer algebra (see e.g. [12] [13] [14]). For a zero-dimensional parametrization \(\mathcal{Q} \), \(Z(\mathcal{Q}) \subset \mathbb{C}^n \) denotes the finite set represented by \(\mathcal{Q} \). Observe that considering additionally isolating boxes, one can encode \(Z(\mathcal{Q}) \cap \mathbb{R}^n \). Our main result is as follows.

Theorem 1. Let \(f \in \mathbb{Q}[x_1, \ldots, x_n] \) of degree \(d \) and \(\mathcal{H} \subset \mathbb{C}^n \) be the algebraic set defined by \(f = 0 \). There exists a probabilistic algorithm which, on an input \(f \) of degree \(d \), computes a zero-dimensional parametrization \(\mathcal{P} \) and isolating boxes which encode \(\mathcal{Z}(\mathcal{H}) \) using \((nd)^{O(n \log(n))}\) arithmetic operations in \(\mathbb{Q} \).

In Section 5 we report on practical experiments showing that it already allows us to solve non-trivial problems which are actually out of reach of [2, Alg. 12.16] to compute sample points in \(\mathcal{H} \cap \mathbb{R}^n \) only. We sketch now the geometric ingredients which allow...
us to obtain such an algorithm. Assume that f is non-negative over R^n (if this is not the case, just replace it by its square) and let $x \in \mathcal{Z}(H)$. Since x is isolated and f is non-negative over R^n, the intuition is that for $c > 0$ small enough, the real solution set to $f = c$ looks like a ball around x, hence a bounded and closed connected component C_a. Then the restriction of every projection on the x_i-axis to the algebraic set $\mathcal{H} \cap C^0$ defined by $f = e$ intersects C_a. When e tends to 0, these critical points in C_a “tend to x”. This first process allows us to compute a superset of candidate points in $\mathcal{H} \cap R^n$ containing $\mathcal{Z}(H)$. Of course, one would like that this superset is finite and this will be the case up to some generic linear change of coordinates, using e.g. [25]. All in all, at this stage we have “candidate points” that may lie in $\mathcal{Z}(H)$. Writing a quantified formula to decide if there exists a ball around these points which does not meet $\mathcal{H} \cap R^n$ raises complexity issues (those points are encoded by zero-dimensional parametrizations of degree $d^{O(e)}$, given as input to a decision procedure).

Hence we need new ingredients. Note that our “candidate points” lie on “curves of critical points” which are obtained by letting c vary in the polynomial systems defining the aforementioned critical points. Assume now that $\mathcal{H} \cap R^n$ is bounded, hence contained in a ball B. Then, for $e' < e$ small enough, the real algebraic set defined by $f = e'$ is “approximated” by the union of the connected components of the real set defined by $f = e'$ which are contained in B. Besides, these “curves of critical points”, that we just mentioned, hit these connected components when one fixes e'. We actually prove that two distinct points of our set of “candidate points” are connected through these “curves of critical points” and those connected components defined by $f = e'$ in B if and only if they do not lie in $\mathcal{Z}(H)$. Hence, we use computations of roadmaps of the real set defined by $f = e'$ to answer those connectivity queries. Then, advanced algorithms for roadmaps and polynomial system solving allows us to achieve the announced complexity bound.

Many details are hidden in this description. In particular, we use infinitesimal deformations and techniques of semi-algebraic geometry. While infinitesimals are needed for proofs, they may be difficult to use in practice. On the algorithmic side, we go further exploiting the geometry of the problem to avoid using infinitesimals.

Structure of the paper In Section 2, we study the geometry of our problem and prove a series of auxiliary results (in particular Proposition 7, which coins the theoretical ingredient we need). Section 3 is devoted to describe the algorithm. Section 4 is devoted to the complexity analysis and Section 5 reports on the practical performances of our algorithm.

Acknowledgments. We thank the reviewers for their helpful comments.

2 The geometry of the problem

2.1 Candidates for isolated points

As above, let $f \in Q[x_1, \ldots, x_n]$ and $\mathcal{H} \subset C^n$ be the hypersurface defined by $f = 0$. Let f be a subset of $C[x_1, \ldots, x_n]$, we denote by $V(f)$ the simultaneous vanishing locus in C^n. Let f be this minimum value. We deduce that any ball centered at x contains a point y such that $\gamma(t) = \gamma(1) = y$ and $\gamma(t)$ is non-negative over R^n. Then the restriction of every projection $\mathcal{H} \cap R^n$ is bounded, hence contained in a ball B. Then, for $e' < e$ small enough, the real solution set $f = e'$ is “approximated” by the union of the connected components of the real set defined by $f = e'$ which are contained in B. Besides, these “curves of critical points”, that we just mentioned, hit these connected components when one fixes e'. We actually prove that two distinct points of our set of “candidate points” are connected through these “curves of critical points” and those connected components defined by $f = e'$ in B if and only if they do not lie in $\mathcal{Z}(H)$. Hence, we use computations of roadmaps of the real set defined by $f = e'$ to answer those connectivity queries. Then, advanced algorithms for roadmaps and polynomial system solving allows us to achieve the announced complexity bound.

Lemma 1.

The set $\mathcal{Z}(H)$ is the (finite) union of the semi-algebraically connected components of $\mathcal{H} \cap R^n$ which are a singleton.

Proof. Recall that real algebraic sets have a finite number of semi-algebraically connected components [2, Theorem 5.21]. Let C be a semi-algebraically connected component of $\mathcal{H} \cap R^n$. Assume that C is not a singleton and take x and y in C with $x \neq y$. Then, there exists a semi-algebraic continuous map $\gamma : [0, 1] \rightarrow C$ s.t. $\gamma(0) = x$ and $\gamma(1) = y$; besides, since $x \neq y$, there exist $t \in (0, 1)$ such that $\gamma(t) \neq x$. By continuity of γ and the norm function, any ball B centered at x contains a point $\gamma(t) \neq x$. Now assume that $C = \{x\}$. Observe that $\mathcal{H} \cap R^n - \{x\}$ is closed (since semi-algebraically connected components of real algebraic sets are closed). Since $\mathcal{H} \cap R^n$ is bounded, we deduce that $\mathcal{H} \cap R^n - \{x\}$ is closed and bounded. Then, the map $y \rightarrow ||y - x||^2$ reaches a minimum over $\mathcal{H} \cap R^n - \{x\}$. Let e be this minimum value. We deduce that any ball centered at x of radius less than e does not meet $\mathcal{H} \cap R^n - \{x\}$.

To compute those connected components of $\mathcal{H} \cap R^n$ which are singletons, we use classical objects of optimization and Morse theory which are mainly polynomial varieties. Let K be an algebraically closed field, let $\phi \in K[x_1, \ldots, x_n]$ which defines the polynomial mapping $(x_1, \ldots, x_n) \mapsto \phi(x_1, \ldots, x_n)$ and $V \subset C^n$ be a smooth equidimensional algebraic set. We denote by $W(\phi, V)$ the set of critical points of the restriction of ϕ to V. If c is the co-dimension of V and (g_1, \ldots, g_s) generates the vanishing ideal associated to V, then $W(\phi, V)$ is the subset of V at which the Jacobian matrix associated to (g_1, \ldots, g_s, ϕ) has rank less than or equal to c (see e.g. [28] Subsection 3.1).

In particular, the case where ϕ is replaced by the canonical projection on the i-th coordinate

$$\pi_i : (x_1, \ldots, x_n) \mapsto x_i,$$

is excessively used throughout our paper.

In our context, we do not assume that \mathcal{H} is smooth. Hence, to exploit strong topological properties of polar varieties, we retrieve a smooth situation using deformation techniques. We consider an infinitesimal ε, i.e., a transcendental element over R such that $0 < \varepsilon < r$ for any positive element $r \in R$, and the field of Puiseux series over R, denoted by

$$R(\varepsilon) = \left\{ \sum_{i \geq i_0} a_i \varepsilon^{i/q} \mid i \in \mathbb{N}, i_0 \in \mathbb{Z}, q \in \mathbb{N} - \{0\}, a_i \in R \right\}.$$
Recall that $R(e)$ is a real closed field [2, Theorem 2.9]. One defines $C(e)$ as for $R(e)$ but taking the coefficients of the series in C. Recall that $C(e)$ is an algebraic closure of $R(e)$ [2, Theorem 2.17]. Consider $\pi = \sum_{i:50} a_i e^{i/q} \in R(e)$ with $a_i \neq 0$. Then, a_i is called the valuation of a_i. When $i_0 \geq 0$, π is said to be bounded over R and the set of bounded elements of $R(e)$ is denoted by $R(e)b$. One defines the function $\lim_{e} : R(e)b \to R$ that maps a_i to a_0 (which is 0 when $i_0 > 0$) and writes $\lim_{e} \pi = a_0$; note that \lim_{e} is a ring homomorphism from $R(e)b$ to R. All these definitions extend to $R(e)^n$ componentwise. For a semi-algebraic set $S \subset R(e)^n$, we naturally define the limit of S as $\lim_{e} S = \{\lim_{e} x \mid x \in S \text{ and } x \text{ is bounded over } R\}$.

Let $S \subset R^n$ be a semi-algebraic set defined by a semi-algebraic formula Φ. We denote by $\text{est}(S, R(e))$ the semi-algebraic set of points which are solutions of Φ in $R(e)^n$. We refer to [3, Chap. 2] for more details on infinitesimals and real Puiseux series.

By e.g., [2, Lemma 3.5], H_c and H_{-c} respectively defined by $f = e$ and $f = -e$ are two disjoint smooth algebraic sets in $C(e)^n$.

Lemma 2. For any x lying in a bounded connected component of $H \cap R^n$, there exists a point $x_0 \in (H_c \cup H_{-c}) \cap R(e)^n$ such that $\lim_{e} x_0 = x$. For such a point x, let $C_x \subset \lim_{e}(H_c \cup H_{-c}) \cap R(e)^n$ containing x. Then, C_x is bounded over R.

Proof. See [2, Lemma 3.6] for the first claim. The second part can be deduced following the proof of [2, Proposition 12.51].

Proposition 3. Assume that $\mathcal{H}(H)$ is not empty and let $x \in \mathcal{H}(H)$. There exists a semi-algebraically connected component C_x that is bounded over R of $H_c \cup H_{-c}$ such that $\lim_{e} C_x = \{x\}$.

Consequently, for $1 \leq i \leq n$, there exists $x_i \in (W(\pi, H_c) \cup W(\pi, H_{-c})) \cap C_x$ such that $\lim_{e} x_i = x$. Hence we have that $\mathcal{H}(H) \subset \cap_{i=1}^n \lim_{e}(W(\pi, H_c) \cup W(\pi, H_{-c})) \cap R(e)^n$.

Proof. By Lemma 2 there exists $x_0 \in (H_c \cup H_{-c}) \cap R(e)^n$ such that $\lim_{e} x_0 = x$. Assume that $x_0 \in H_c$ and let C_x be the connected component of $H_c \cap R(e)^n$ containing x_0. Again, by Lemma 2 C_x is bounded over R. We prove that $\lim_{e} C_x = \{x\}$ by contradiction. The case $x_0 \in H_{-c}$ is done similarly.

Assume that there exists a point $y_0 \in C_x$ such that $\lim_{e} y_0 = y \neq x$. Since C_x is semi-algebraically connected, there exists a semi-algebraically connected function $\gamma : \text{ext}(\{0\}, R(e)) \to C_x$ such that $\gamma(0) = x_0$ and $\gamma(1) = y_0$. By [2, Proposition 12.49], $\lim_{e} \text{Im} (\gamma) = \lim_{e} f(\text{Im} (\gamma))$ is connected and contains x and y. As \lim_{e} is a ring homomorphism, $f(\text{Im} (\gamma))$ is contained in $H \cap R^n$. This contradicts the isolatedness of x, then we conclude that $\lim_{e} C_x = \{x\}$.

Since C_x is a semi-algebraically connected component of the real algebraic set $H_c \cap R(e)^n$, it is closed. Also, C_x is bounded over R. Hence, for any $1 \leq i \leq n$, the projection π_i reaches its extrema over C_x [2, Proposition 7.6], which implies that $C_x \cap W(\pi_i, H_c)$ is non-empty. Take $x_i \in W(\pi_i, H_c) \cap C_x$, then x_i is bounded over R and its limit is x. Thus, $\mathcal{H}(H) \subset \lim_{e}(W(\pi_i, H_c) \cap R(e)^n)$ for any $1 \leq i \leq n$, which implies $\mathcal{H}(H) \subset \cap_{i=1}^n \lim_{e}(W(\pi_i, H_c) \cap R(e)^n)$.

2.2 Simplification

We introduce in this subsection a method to reduce our problem to the case where $H \cap R^n$ is bounded for all $x \in R^n$. Such assumptions are required to prove the results in Subsection 2.3. Our technique is inspired by [2, Section 12.6]. The idea is to associate to the possibly unbounded algebraic set $H \cap R^n$ a bounded real algebraic set whose isolated points are strongly related to $\mathcal{H}(H)$. The construction of such an algebraic set is as follows.

Let x_{n+1} be a new variable and $0 < \rho \in R$ such that ρ is greater than the Euclidean norm $\| \cdot \|$ of every isolated point of $H \cap R^n$. Note that such a ρ can be obtained from a finite set of points containing the isolated points of $H \cap R^n$. We explain in Subsection 2.3 how to compute such a finite set.

We consider the algebraic set V defined by the system

$$f = 0, \quad x_1^2 + \ldots + x_n^2 + x_{n+1}^2 - \rho^2 = 0.$$

Let π_{x_1} be the projection $(x_1, \ldots, x_n, x_{n+1}) \mapsto (x_1, \ldots, x_n)$.

The real counterpart of H is the intersection of H lifted to R^{n+1} with the sphere of center 0 and radius ρ. Therefore, V is a bounded real algebraic set in R^{n+1}. Moreover, the restriction of π_{x_1} to $V \cap R^{n+1}$ is exactly $H \cap B(0, \rho)$. By the definition of ρ, this image contains all the real isolated points of H. Lemma 4 below relates $\mathcal{H}(V)$ to the isolated points of $V \cap R^{n+1}$.

Lemma 4. Let V and π_{x_1} as above. We denote by $\mathcal{H}(V) \subset R^{n+1}$ the set of real isolated points of V with non-zero x_{n+1} coordinate. Then, $\pi_{x_1}(\mathcal{H}(V)) = \mathcal{H}(H)$.

Proof. Note that $\pi_{x_1}(V \cap R^{n+1}) = (H \cap R^n) \cap B(0, \rho)$. We consider a real isolated point $x' = (x_{1}, \ldots, x_n, x_{n+1}) \in V$ with $x_{n+1} \neq 0$ and $x = \pi_{x_1}(x') = (x_{1}, \ldots, x_n)$. Assume by contradiction that $x \notin \mathcal{H}(V)$, we will prove that $x' \notin \mathcal{H}(V)$, i.e., for any $r > 0$, there exists $y' \in (\mathcal{B}(\beta_1, \ldots, \beta_n, \beta_{n+1}) \cap V \cap R^{n+1}$ such that $\|y' - x'\| < r$. Since x is not isolated, there exists a point $y \neq x$ such that $\|y - x\| < \frac{\rho}{\alpha_{n+1} / \rho}$ and $\|y - x\| < \frac{\rho}{\alpha_{n+1} / \rho}$. Let $y' \in \pi_{x_1}(y)$ such that $\alpha_{n+1} / \rho \geq 0$. We have that $\|y'\|^2 + \alpha_{n+1} = \|y\|^2 + \alpha_{n+1} = \rho^2$. Now we estimate

$$\|y'\|^2 - \|x\|^2 = (\|y\| + \|y\|) \cdot \|y\| - \|x\| \leq 2 \rho \cdot \|y - x\|.$$
Thus, we conclude that contradiction. Therefore, there exists a semi-algebraically connected component of \(R \) enumerated them as \(C \).

By Proposition 3, the real points of \(x \) with non-zero coordinate by assumption, there exists a sequence of points \(\langle x_\epsilon \mid \epsilon \rangle \subset \mathbb{R}^n \) such that \(\langle x_\epsilon \mid \epsilon \rangle \) is not an isolated point of \(\mathbb{R}^n \). Note that if \(|x_\epsilon| \leq |x| \cdot |x_{\epsilon'}| \) for some semi-algebraically connected component \(C \), bounded over \(R \), such that \(\{x\} \subseteq \lim_{\epsilon} C \).

Lemma 5. Let \(x \in \mathbb{R}^n \) such that its \(x_{\epsilon+1} \) coordinate is non-zero. Then, \(x \) is not an isolated point of \(\mathbb{R}^n \) if and only if there exists a semi-algebraically connected component \(C \) of \((\mathbb{R}^n \setminus \mathbb{R}) \cap R(\mathbb{R})^n \), bounded over \(R \), such that \(\{x\} \subseteq \lim_{\epsilon} C \).

Proof. Let \(x = (\alpha_1, \ldots, \alpha_n) \in \mathbb{R}^n \) such that \(\alpha_{n+1} \neq 0 \). As \(f(\alpha_1, \ldots, \alpha_n) = 0 \), by Lemma 2, there exists a point \((\beta_1, \ldots, \beta_n) \in \mathbb{R}^n \) such that \(x_{\beta} \) is not an isolated point of \(\mathbb{R}^n \). We use the same \(g = x_1^2 + \ldots + x_{n+1}^2 - \rho^2 \) and \(\mathcal{V} = \mathcal{V}(f, g) \subset C \) as in Subsection 2.2. Let \(\mathcal{V} = \mathcal{V}(f, \epsilon, g) \) and \(\mathcal{V}_{\epsilon+1} = \mathcal{V}(f, \epsilon + g) \) such that \(\mathcal{V}_{\epsilon} \cap \mathcal{V}_{\epsilon+1} \cap \mathcal{V}_{\epsilon+2} = 0 \). Therefore, for any \(x \) as above, there exists \(x_{\epsilon} \in (\mathcal{V} \cap \mathcal{V}_{\epsilon}) \cap R(\mathbb{R})^n \) such that \(\lim_{\epsilon} x_{\epsilon} = x \).

Since \((\mathcal{V} \cap \mathcal{V}_{\epsilon}) \cap R(\mathbb{R})^n \) lies on the sphere (in \(R(\mathbb{R})^n \)) defined by \(g = 0 \), every connected component of \((\mathcal{V} \cap \mathcal{V}_{\epsilon}) \cap R(\mathbb{R})^n \) is bounded over \(R \). Hence, the points of \(\mathcal{V} \cap \mathcal{V}_{\epsilon} \) whose \(x_{\epsilon+1} \) coordinates are not zero are contained in \(\lim_{\epsilon} (\mathcal{V} \cap \mathcal{V}_{\epsilon}) \cap R(\mathbb{R})^n \).

Let \(x \) be a non-isolated point of \(\mathcal{V} \cap \mathcal{V}_{\epsilon} \) whose \(x_{\epsilon+1} \) coordinate is not zero. We assume by contradiction that for any semi-algebraically connected component \(C \) of \((\mathcal{V} \cap \mathcal{V}_{\epsilon}) \cap R(\mathbb{R})^n \) (which is bounded over \(R \) by above), then it happens that either \(\lim_{\epsilon} C \neq \{x\} \) or \(\lim_{\epsilon} C \neq C \).

Since \((\mathcal{V} \cap \mathcal{V}_{\epsilon}) \cap R(\mathbb{R})^n \) has finitely many connected components, the number of connected components of the second type is also finite. Since \(\mathcal{V} \cap \mathcal{V}_{\epsilon} \) is not a singleton (by the existence of \(x \)), the connected components of the second type exist. So, we enumerate them as \(C_1, \ldots, C_k \) and \(x \notin \lim_{\epsilon} C_i \) for \(1 \leq j \leq k \).

As \(x \) is not isolated in \(\mathcal{V} \cap \mathcal{V}_{\epsilon} \) with non-zero \(x_{\epsilon+1} \) coordinate by assumption, there exists a sequence of points \(\langle x_{\epsilon} \rangle \geq 0 \) in \(\mathcal{V} \cap \mathcal{V}_{\epsilon} \) of non-zero \(x_{\epsilon+1} \) coordinates that converges to \(x \). Since there are finitely many \(C_i \), there exists an index \(j \) such that \(\lim_{\epsilon} C_j \) contains a sub-sequence of \(\langle x_{\epsilon} \rangle \geq 0 \). By Proposition 4 (BPR), the limit of the semi-algebraically connected component \(C_j \) (which is bounded over \(R \)) is a closed and connected semi-algebraic set. It follows that \(x \in \lim_{\epsilon} C_j \), which is a contradiction. Therefore, there exists a semi-algebraically connected component of \((\mathcal{V} \cap \mathcal{V}_{\epsilon}) \cap R(\mathbb{R})^n \), bounded over \(R \), such that \(\{x\} \subseteq \lim_{\epsilon} C \).

It remains to prove the reverse implication. Assume that \(\{x\} \subseteq \lim_{\epsilon} C \), for some semi-algebraically connected component \(C \) of \((\mathcal{V} \cap \mathcal{V}_{\epsilon}) \cap R(\mathbb{R})^n \) that is bounded over \(R \). As \(\lim_{\epsilon} C \) is connected, we finish the proof.

Lemma 6. Let \(x \in \mathbb{R}^n \) such that its \(x_{\epsilon+1} \) coordinate is non-zero. Assume that \(x \) is not an isolated point of \(\mathbb{R}^n \) if and only if there exists a semi-algebraically connected component \(C \) of \((\mathcal{V} \cap \mathcal{V}_{\epsilon}) \cap R(\mathbb{R})^n \), bounded over \(R \), such that \(\{x\} \subseteq \lim_{\epsilon} C \), there exists \(1 \leq i \leq n \) such that \(C_i \cap (\mathcal{V} \cap \mathcal{V}_{\epsilon}) \cap R(\mathbb{R})^n \) contains a point \(x_{\epsilon} \) which satisfies \(|x_{\epsilon}| \neq x \).

Proof. Let \(C \) be semi-algebraically connected component of \((\mathcal{V} \cap \mathcal{V}_{\epsilon}) \cap R(\mathbb{R})^n \), bounded over \(R \), such that \(\{x\} \subseteq \lim_{\epsilon} C \). Lemma 5 ensures the existence of such a connected component \(C \).

Now let \(x \) and \(y \) be two points contained in \(C \) such that \(\lim_{\epsilon} x_{\epsilon} = x \), \(\lim_{\epsilon} y_{\epsilon} = y \) and \(y \neq y \). Let \(x = (\alpha_1, \ldots, \alpha_n) \) and \(y = (\beta_1, \ldots, \beta_n) \). Since \(x \neq y \), there exists \(1 \leq i \leq n+1 \) such that \(\alpha_i \neq \beta_i \). Note that if \((\alpha_1, \ldots, \alpha_n) = (\beta_1, \ldots, \beta_n) \) for any \(y \in \lim_{\epsilon} C \), then \(\lim_{\epsilon} C \) contains at most two points (by the constraint \(g = 0 \)). However, since \(\lim_{\epsilon} C \) is connected and contains at least two points, it must be an infinite set. So, we can choose \(y \) such that have that \(1 \leq i \leq n \).
As C_x is closed in $R(\varepsilon)^{n+1}$ (as a connected component of an algebraic set) and bounded over R by definition, its projection on the x_i coordinate is a closed interval $[a, b] \subset R(\varepsilon)$ (see [2] Theorem 3.23), which is bounded over R (because C_x is). Also, since $[a, b]$ is closed, there exist x'_e and x'_r in $R(\varepsilon)^{n+1}$ such that $x'_e \in \pi^{-1}_i(a) \cap C_x \cap (W(\pi_1, \mathcal{V}_c) \cup W(\pi_1, \mathcal{V}_{-c}))$ and $x'_r \in \pi^{-1}_i(b) \cap C_x \cap (W(\pi_1, \mathcal{V}_c) \cup W(\pi_1, \mathcal{V}_{-c}))$. Since $a_i \neq b_i$, both lying in R, $[a_i, b_i] \subset [\lim_x a_i, \lim_x b_i]$ implies that $\lim_x a_i \neq \lim_x b_i$.

It follows that $\lim_x x'_e \neq \lim_x x'_r$. Thus, at least one point among $\lim_x x'_e$ and $\lim_x x'_r$ does not coincide with x. Hence, there exists a point x'_x in $C_x \cap (W(\pi_1, \mathcal{V}_c) \cup W(\pi_1, \mathcal{V}_{-c}))$ such that $\lim_x x'_x \neq x$.

We can easily deduce from Lemma 5 and Lemma 6 the following proposition, which is the main ingredient of our algorithm.

Proposition 7. Let $x \in \cap_{\varepsilon=1}^n \lim_x W(\pi_1, \mathcal{V}_c) \cup W(\pi_1, \mathcal{V}_{-c})$ whose x_{n+1} coordinate is non-zero. Then, x is not an isolated point of $\mathcal{V} \cap R(\varepsilon)^{n+1}$ if and only if there exist $1 \leq i \leq n$ and a connected component C_x of $\mathcal{V}_c \cap R(\varepsilon)^{n+1}$, which is bounded over R, such that $C_x \cap W(\pi_1, \mathcal{H}_c)$ contains x, x'_x satisfying $x = \lim_x x'_x \neq \lim_x x'_r$.

3 Algorithm

3.1 General description

The algorithm takes as input a polynomial $f \in R[x_1, \ldots, x_n]$.

The first step consists in computing a parametrization \mathcal{P} encoding a finite set of points which contains $\mathcal{Z}(\mathcal{H})$. Let \mathcal{H}_c and \mathcal{H}_{-c} be the algebraic subsets of $C(\varepsilon)^n$ respectively defined by $f = \varepsilon$ and $f = -\varepsilon$. By Proposition 3, the set $\cap_{\varepsilon=1}^n \lim_x W(\pi_1, \mathcal{H}_c) \cup W(\pi_1, \mathcal{H}_{-c})$ contains the real isolated points of \mathcal{H}_c. To ensure that this set is finite, we use generically chosen linear change of coordinates.

Given a matrix $A \in GL_n(Q)$, a polynomial $p \in Q[x_1, \ldots, x_n]$ and an algebraic set $S \subset C^n$, we denote by p^A the polynomial $p(A \cdot x)$ obtained by applying the change of variables A to p and $S^A = \{A^{-1} \cdot x \mid x \in S\}$. Then, we have that $V(p^A) = V(p^A)$. In [25], it is proved that, with A outside a prescribed proper Zariski closed subset of $GL_n(Q)$, $W(\pi_1, \mathcal{H}_c \cap R(\varepsilon)^{n+1})$ is finite for $1 \leq i \leq n$. Additionally, since A is assumed to be generically chosen, (24) shows that the ideal $\langle \ell \cdot \frac{\partial f^A}{\partial x_i} - 1, \frac{\partial f^A}{\partial x_j} \rangle$ for all $j \neq i$ defines either an empty set or a one-equidimensional algebraic set, where ℓ is a new variable. Those extra assumptions are required in our subroutine Candidates (see the next subsection). Note that, for any matrix A, the real isolated points of \mathcal{H}_c^A is the image of $\mathcal{Z}(\mathcal{H})$ by the linear mapping associated to A^{-1}. Thus, in practice, we will choose randomly a $A \in GL_{n+1}(Q)$, compute the real isolated points of \mathcal{H}_c^A, and then go back to $\mathcal{Z}(\mathcal{H})$ by applying the change of coordinates induced by A^T. This random choice of A makes our algorithm probabilistic.

The next step consists of identifying those of the candidates which are isolated in $\mathcal{H}_c^A \cap R^n$; this step relies on Proposition 7. To reduce our problem to the context where Proposition 7 can be applied, we use Lemma 4. One needs to compute $\rho \in R$, such that ρ is larger than the maximum norm of the real isolated points we want to compute. This value of ρ can be easily obtained by isolating the real roots of the zero-dimensional parametrization encoding the candidates. Further, we call GetNormBound a subroutine which takes as input \mathcal{P} and returns ρ as we just sketched. We let $g = x_1^\rho + \ldots + x_n^\rho + x_{n+1}^\rho - \rho^\rho$. By Lemma 3, $\mathcal{Z}(\mathcal{H})$ is the projection of the set of real isolated points of the algebraic set \mathcal{V} defined by $f = g = 0$ at which $x_{n+1} \neq 0$. Let \mathcal{X} be the set of points of \mathcal{V} projecting to the candidates encoded by \mathcal{P}.

Proposition 7 would lead us to compute $W(\pi_1, \mathcal{V}_c^A) \cup W(\pi_1, \mathcal{V}_{-c}^A)$ as well as a roadmap of $\mathcal{V}_c^A \cup \mathcal{V}_{-c}^A$. As explained in the introduction, this induces computations over the ground field $R(\varepsilon)$ which we want to avoid. We bypass this computational difficulty as follows. We compute a roadmap \mathcal{R}_x for $\mathcal{V}_c^A \cup \mathcal{V}_{-c}^A \cap R^{n+1}$ (defined by $\{f^A = e, g = 0\}$ and $\{f^A = -e, g = 0\}$ respectively) for e small enough (see Subsection 3.3) and define a semi-algebraic curve \mathcal{K} containing \mathcal{X} such that $x \in \mathcal{X}$ is isolated in $\mathcal{V}_c^A \cap R^{n+1}$ if and only if it is not connected to any other $x' \in \mathcal{X}$ by \mathcal{K}. We call Isolated the subroutine that takes as input \mathcal{P}, f^A and g and returns \mathcal{P} with isolating boxes B of the real points of defined by \mathcal{P} which are isolated in $\mathcal{V}_c^A \cap R^{n+1}$.

Once the real isolated points of \mathcal{V} is computed, we remove the boxes corresponding to points at which $x_{n+1} = 0$ and project the remaining points on the (x_1, \ldots, x_n)-space to obtain the isolated points of \mathcal{H}_c^A. This whole step uses a subroutine which we call Remove (see [25] Appendix J). Finally, we reverse the change of variable by applying A^{-1} to get $\mathcal{Z}(\mathcal{H})$.

We summarize our discussion in Algorithm 3 below.

3.2 Computation of candidates

Further, we let \mathcal{H}_c^A (resp. \mathcal{H}_{-c}^A) be the algebraic set associated to $f^A = e$ (resp. $f^A = -e$). To avoid to overload notation, we omit the change of variables A as upper script. Let f be a new variable. For $1 \leq i \leq n$, I_i denotes the ideal of $Q[\ell, x_1, \ldots, x_n]$ generated by the set of polynomials $\{\ell \cdot \frac{\partial f^A}{\partial x_i} - 1, \frac{\partial f^A}{\partial x_j} \}$ for all $j \neq i$.

Following the discussion in Subsection 3.1, the algebraic set associated to I_i is either empty or one-equidimensional and $W(\pi_1, \mathcal{H}_c^A) \cup W(\pi_1, \mathcal{H}_{-c}^A)$ is finite. Hence, [24] Theorem 1 shows that the algebraic set associated to the ideal $(f) + (I_i \cap Q[x_1, \ldots, x_n])$ is zero-dimensional and contains $\lim_x W(\pi_1, \mathcal{H}_c^A) \cup W(\pi_1, \mathcal{H}_{-c}^A)$.

We can compute the algebraic set on the right-hand side as follows:

1. For each $1 \leq i \leq n$, compute a set G_i of generators of the ideal $I_i \cap Q[x_1, \ldots, x_n]$.

2. Compute a zero-dimensional parametrization Ψ of the set of polynomials $\{f\} \cup G_1 \cup \ldots \cup G_n$.

Such computations mimic those in [24]. The complexity of this algorithm of course depends on the algebraic elimination procedure we use. For the complexity analysis in Section 4 we employ the geometric resolution [14]. It basically consists in computing a one-dimensional parametrization of the curve defined by I, and next computes a zero-dimensional parametrization of the finite set obtained by intersecting this curve with the hypersurface defined by $f = 0$. We call ParametricCurve a subroutine that, taking the polynomial f and $1 \leq i \leq n$, computes a one-dimensional parametrization Θ_i of the curve defined above. Also, let IntersectCurve be a subroutine that, given a one-dimensional rational parametrization Θ_i and f, outputs a zero-dimensional parametrization Ψ_i of their intersection. Finally, we use a subroutine Intersection that, from the parametrizations Ψ_i’s, computes a zero-dimensional parametrization of $\cap_{i=1}^n Z(\Psi_i)$.

Algorithm 2: Algorithm Candidates

Input: The polynomial $f \in Q[x_1, \ldots, x_n]$
Output: A zero-dimensional parametrization Ψ

1. for $1 \leq i \leq n$
 2. $\Theta_i \leftarrow$ ParametricCurve(g, i)
 3. $\Psi_i \leftarrow$ IntersectCurve(Θ_i, f)

4. end
5. $\Psi \leftarrow$ Intersection(Ψ_1, \ldots, Ψ_n)
6. return Ψ

3.3 Description of Isolated

This subsection is devoted to the subroutine Isolated that identifies isolated points of $H^A \cap R^n$ among the candidates $Z(\Psi) \cap R^n$ computed in the previous subsection. We keep using f to address f^A. Let P be the set $(x = (x_1, \ldots, x_{n+1}) \in R^{n+1} \mid (x_1, \ldots, x_n) \in Z(\Psi), g(x) = 0, x_{n+1} \neq 0)$. For $e \in R$, $V_e \in C^{n+1}$ denotes the algebraic set defined by $f = e$ and $g = 0$. We follow the idea mentioned in the end of Subsection 3.1 that is to replace the infinitesimal e by a sufficiently small $e \in R$ then adapt the results of Subsection 3.1 to V_e.

By definition, $V_e \cap R^{n+1}$ is bounded for any $e \in R$. Let t be a new variable, $\pi_x : (x, t) \mapsto x$ and $\pi_t : (x, t) \mapsto t$. For a semi-algebraic set $S \subset R^{n+1} \times R$ in the coordinate (x, t) and a subset I of R, the notation $S_{\{I\}}$ stands for the fiber $\pi^{-1}(I) \cap S$. Let $V_e = \{(x, t) \in R^{n+1} \times R \mid f(x) = t, g(x) = 0\}$. Note that V_e is smooth. Recall that the set of critical values of the restriction of π_t to V_e is finite by the algebraic Sard’s theorem (see e.g., [28], Proposition B.2).

Since for $e \in R$, the set $V_e \cap R^{n+1}$ is compact, the restriction of π_t to V_e is proper. Then, by Thom’s isotopy lemma [29], π_t realizes a locally trivial fibration over any open connected subset of R which does not intersect the set of critical values of the restriction of π_t to V_e. Let $\eta \in R$ such that the open set $]-\eta, 0[\cup[0, \eta]$ does not contain any critical value of the restriction of π_t to the algebraic set V_e. Hence, V_e is nonsingular for $e \in]-\eta, 0[\cup[0, \eta]$. We have $V_e \cap R^{n+1} \times]-\eta, 0[\cup[0, \eta]$ is diffeomorphic to $V_{e, \eta}$. The set $V_{e, \eta}$ is a compact subset of R^{n+1}.
We need to mention that $W(\pi_i, \mathcal{H}_i)$ corresponds to the critical points of π_i restricted to \mathcal{V}_i with non-zero x_{n+1} coordinate. Further, we use $W(\pi_i, \mathcal{V}_i)$ to address those latter critical points.

Now, for $1 \leq i \leq n$, we define \mathcal{W}_i as the closure of

$$\left\{ (x, t) \in \mathbb{R}^{n+2} \mid \frac{\partial f}{\partial x_j}(x) \neq 0, \frac{\partial f}{\partial x_j}(x) = 0 \text{ for } j \neq i, x_{n+1} \neq 0 \right\} \cap \mathcal{V}_i.$$

Since A is assumed to be generically chosen, \mathcal{W}_i is either empty or one-equidimensional (because $(\ell : \frac{\partial f}{\partial x_i} - 1, \frac{\partial f}{\partial x_j})$ for $j \neq i$) either defines an empty set or a one-equidimensional algebraic set by (24). This implies that the set of singular points of \mathcal{W}_i is finite.

By [13], the set of non-properness of the restriction of π_i to \mathcal{W}_i is finite (this is the set of points y such that for any closed interval U containing y, $\pi_i^{-1}(U) \cap \mathcal{W}_i$ is not bounded). Using again [13], the restriction of π_i to \mathcal{W}_i realizes a locally trivial fibration over any connected open subset which does not meet the union of the images by π_i of the singular points of \mathcal{W}_i, the set of non-properness, and the set of critical values of the restriction of π_i to \mathcal{W}_i. We let η_i be the minimum of the absolute values of the points in this union.

We choose now $0 < \varepsilon_0 < \min(\eta, \eta_1', \ldots, \eta_n')$. We call SpecializationValue a subroutine that takes as input f and g and returns such a rational number e_0. Note that SpecializationValue is easily obtained from elimination algorithms solving polynomial systems (from which we can compute critical values) and from [26] to compute the set of non-properness of some map.

With e_0 as above, we denote $\mathcal{I} = \{ -\varepsilon_0, 0, \varepsilon_0 \}$. Let $\mathcal{W}_i, \mathcal{I}$ be semi-algebraically diffeomorphic to $\mathcal{W}_i, \mathcal{I}$ for every $i \in \mathcal{I}$. As \mathcal{V}_i is nonsingular, the critical locus $W(\pi_i, \mathcal{V}_i)$ is guaranteed to be finite by the genericity of the change of variables A (hence \mathcal{W}_i is) and that $W(\pi_i, \mathcal{V}_i) \cap \mathbb{R}^{n+1}$ coincides with $\pi_i(\mathcal{W}_i, \mathcal{V}_i)$. Thus, the above diffeomorphism implies that, for any connected component C of $\mathcal{W}_i, \mathcal{I}$, C is diffeomorphic to an open interval in \mathcal{R}. Moreover, if C is bounded, then $\mathcal{C} \setminus C$ contains exactly two points which satisfy respectively $f = 0$ and $f^2 = \varepsilon_0^2$. We now consider

$$L_i = \left\{ x \in \mathbb{R}^{n+1} \mid 0 < f < \varepsilon_0, g = 0, \frac{\partial f}{\partial x_j} = 0 \text{ for } j \neq i, x_{n+1} \neq 0 \right\}.$$

It is the intersection of the Zariski closure K_i of the solution set to $\left\{ \frac{\partial f}{\partial x_j} \neq 0, \frac{\partial f}{\partial x_j} = 0 \text{ for } j \neq i, x_{n+1} \neq 0 \right\}$ with the semi-algebraic set defined by $0 < f < \varepsilon_0$. Note that K_i is either empty or one-equidimensional. As \mathcal{V}_i is nonsingular for $e \in \mathcal{I}$, L_i and L_i' are disjoint for $i \neq j$. Since the restriction of π_e to \mathcal{V}_i is an isomorphism between the algebraic sets \mathcal{V}_i and \mathbb{R}^{n+1} with the inverse map $x \mapsto (x, f(x))$, the properties of L_i mentioned above are transferred to its image \mathcal{L}_i by the projection π_e.

Further, we consider a subroutine ParametricCurve which takes as input f and $i \in [1, n]$ and returns a rational parametrization \mathcal{R}_i of \mathcal{K}_i. Also, let \mathcal{R} be a subroutine that takes a family of rational parametrizations $\mathcal{R}_1, \ldots, \mathcal{R}_n$ to compute a rational parametrization encoding the union of the algebraic curves defined by the \mathcal{R}_i's. We denote by \mathcal{R} the output of \mathcal{R}; it encodes $\mathcal{K} = \bigcup_{i=1}^n \mathcal{K}_i$. We refer to [28] Appendix J.2.1 for these two subroutines.

Lemma below establishes a well-defined notion of limit for a point $x_e \in W(\pi_i, \mathcal{V}_i) \cup W(\pi_i, \mathcal{V}_i)$ when e tends to 0.

Lemma 8. Let e_0 and L_i be as above. For $e \in [0, e_0]$ and $x_e \in (W(\pi_i, \mathcal{V}_i) \cup W(\pi_i, \mathcal{V}_i)) \cap \mathbb{R}^{n+1}$, there exists a (unique) connected component C of L_i containing x_e. If C is bounded, let x be the only point in \mathcal{C} satisfying $f(x) = 0$, then $x \in \lim_{e \to 0} (W(\pi_i, \mathcal{V}_i) \cup W(\pi_i, \mathcal{V}_i)) \cap \mathbb{R}^{n+1}$. Thus, we set $\lim_{e \to 0} x_e = x$.

Moreover, the extension $\text{ext}(C, R(e))$ contains exactly one point x_e such that $f(x_e)^2 = e^2$ and $\lim_{e \to 0} x_e = x$.

Proof. Since $x_e \in (W(\pi_i, \mathcal{V}_i) \cup W(\pi_i, \mathcal{V}_i)) \cap \mathbb{R}^{n+1}$ and $0 < e < e_0$, we have $x_e \in L_i$, the existence of C follows naturally. Let x be the unique point of \mathcal{C} satisfying $f = 0$. Then, the notion $\lim_{e \to 0}$ is well-defined. From the proof of [28] Theorem 12.43], we have that

$$\lim_{e \to 0} W(\pi_i, \mathcal{V}_i) \cup W(\pi_i, \mathcal{V}_i) \cap R(e)^{n+1} = \pi_x \left(W(\mathcal{V}_i) \cap V(t) \right).$$

As $\pi_x \left(W(\mathcal{V}_i) \cap V(t) \right)$ is the set of points corresponding to $f = 0$ of \mathcal{L}_i, we deduce that $x \in \lim_{e \to 0} (W(\pi_i, \mathcal{V}_i) \cup W(\pi_i, \mathcal{V}_i)) \cap \mathbb{R}^{n+1}$.

Since the extension $\text{ext}(C, R(e))$ is a connected component of $\text{ext}(L_i, R(e))$ and homeomorphic to an open interval in $R(e)$, there exists $x_e \in \text{ext}(C, R(e))$ such that $f(x_e)^2 = e^2$. Moreover, since $0 = \lim_{e \to 0} f(x_e)^2 = f(\lim_{e \to 0} x_e)^2$ and x is the only point in \mathcal{C} satisfying $f = 0$, we conclude that $\lim_{e \to 0} x_e = x$.

Now, let \mathcal{R}_e be a roadmap associated to the algebraic set $\mathcal{V}_e \cup \mathcal{V}_e$, i.e. \mathcal{R}_e is contained in $(\mathcal{V}_e \cup \mathcal{V}_e) \cap \mathbb{R}^{n+1}$, of at most dimension one and has non-empty intersection with every connected component of $(\mathcal{V}_e \cup \mathcal{V}_e) \cap \mathbb{R}^{n+1}$. We also require that \mathcal{R}_e contains $\bigcup_{i=1}^n (W(\pi_i, \mathcal{V}_i) \cup W(\pi_i, \mathcal{V}_i)) \cap \mathbb{R}^{n+1}$.

The proposition below is the key to describe isolated.

Proposition 9. Given $e \in [0, e_0]$ and $\mathcal{I} = -e_0, 0, e_0]$ as above. Let $\mathcal{L} = \bigcup_{i=1}^n \mathcal{L}_i$ and $x \in \mathcal{P}$. Then x is not isolated in $\mathcal{V} \cap \mathbb{R}^{n+1}$ if and only if there exists $x' \in \mathcal{P}$ such that x and x' are connected in $\mathcal{P} \cap $.
lin } x_i'. By the choice of e_0, there exist a diffeomorphism $\theta : V_{t, x} \rightarrow V_e \times I$ such that $\theta(V_{t, x}) = \theta(V_{t, e}) \times I$. Using Exercise 3.2], $ext(\theta, R(\varepsilon))$ is a diffeomorphism between:

\[
\begin{align*}
\text{ext}(V_{t, x}, R(\varepsilon)) & \cong \text{ext}(V_e, R(\varepsilon)) \times \text{ext}(I, R(\varepsilon)), \\
\text{ext}(V_{t, x}, R(\varepsilon)) & \cong \text{ext}(V_e, R(\varepsilon)) \times \text{ext}(I, R(\varepsilon)).
\end{align*}
\]

As π_ε is an isomorphism from V_e to R^{n+1}, there exists a (unique) bounded connected component C_n of $V_e \cap R^{n+1}$ s.t. C_n is diffeomorphic to $\text{ext}(C_n, R(\varepsilon))$. Moreover, let L and L' be the connected components of $\text{ext}(C_n, R(\varepsilon))$ containing x_e and x_e' respectively and x_e and x_e' (in $\text{ext}(C_n, R(\varepsilon))$) be the intersections of $\text{ext}(C_n, R(\varepsilon))$ with L and L' respectively. Then, $\lim x_e$ (lim x_e' connects x_e, lim x_e' to $x(x')$. As lim x_e and lim x_e' are connected in C_n, we conclude that x_e and x_e' are also connected in $P \cup L \cup R_n$. The reverse implication is immediate using the above techniques.

From Lemma 8 and Proposition 9 any e lying in the interval $[0, e_0]$ defined above can be used to replace the infinitesimal ε. So, we simply take $e = e_0/2$. For $1 \leq i \leq n$, we use a subroutine ZeroDimSolve which takes as input $\{ f - \varepsilon_0/2, g, \frac{\partial f}{\partial x_j} \text{ for all } j \neq i \}$ to compute a zero-dimensional parametrization Ω_i such that $W(\pi_i, V_e) = \{ x \in Z(\Omega_i) | x_{n+1} \neq 0 \}$.

To use Proposition 9, we need to compute $R_{e_0/2}$, which we refer to the algorithm Roadmap in [33]. This algorithm allows us to compute roadmaps for smooth and bounded real algebraic sets, which is indeed the case of $(V_{e_0/2} \cup V_{-e_0/2}) \cap R^{n+1}$. First, we call (another) Union that, on the zero-dimensional parametrizations Ω_i, it computes a zero-dimensional parametrization Ω encoding $\{ (e_0/2, Z(\Omega_i)) \}$. Given the polynomials f, g, the value $e_0/2$ and the parametrization Ω, a combination of Union and Roadmap returns a one-dimensional parametrization $\tilde{\Omega}$ reparametrizing $R_{e_0/2}$.

Deciding connectivity over $P \cup L \cup R_n$ is done as follows. We use Union to compute a rational parametrization $\tilde{\Omega}$ encoding $K \cup R_n$. Then, with input $\tilde{\Omega}, V_n, x_{n+1} \neq 0$ and the inequalities $0 < f < e_0$, we use Newton-Puiseux expansions and cylindrical algebraic decomposition (see [10] [20]) following [27], taking advantage of the fact that polynomials involved in rational parametrizations of algebraic curves are bivariate. We denote by ConnectivityQuery the subroutine that takes those inputs and returns $\tilde{\Omega}$ and isolating boxes of the points defined by $\tilde{\Omega}$ which are not connected to other points of $\tilde{\Omega}$.

\textbf{Algorithm 3: IsIsolated}

\textbf{Input:} The polynomials $f^A \in Q[x_1, \ldots, x_n]$ and $g \in Q[x_1, \ldots, x_{n+1}]$ and the zero-dimensional parametrization $\tilde{\Omega}$.

\textbf{Output:} $\tilde{\Omega}$ with isolating boxes of the isolated points of $V^A \cap R^{n+1}$

\begin{enumerate}
\item $e_0 \leftarrow \text{SpecializationValue}(f^A, g)$
\item \text{for} $1 \leq i \leq n$ \text{do}
\item $\Omega_i \leftarrow \text{ZeroDimSolve}\left(\{ f^A - e_0/2, g, \frac{\partial f^A}{\partial x_j} \text{ for all } j \neq i \}\right)$
\item $\tilde{\Omega}_i \leftarrow \text{ParametricCurve}(f^A, i)$
\item \text{end}
\item $\tilde{\Omega} \leftarrow \text{Union}(\tilde{\Omega}_1, \ldots, \tilde{\Omega}_n)$
\item $\tilde{\Omega} \leftarrow \text{Union}(\Omega_1, \ldots, \Omega_n)$
\item $\tilde{\Omega} \leftarrow \text{Union}(\text{RoadMap}(f^A - e_0/2, g, \Omega), \text{RoadMap}(f^A + e_0/2, g, \Omega))$
\item $\tilde{\Omega} \leftarrow \text{Union}(\tilde{\Omega}, \tilde{\Omega})$
\item $B \leftarrow \text{ConnectivityQuery}(\tilde{\Omega}, \tilde{\Omega}, x_{n+1} \neq 0, 0 < f^A < e_0)$
\item \text{return} $(\tilde{\Omega}, B)$
\end{enumerate}

4 Complexity analysis

All complexity results are given in the number of arithmetic operations in Q. Hereafter, we assume that a generic enough matrix A is found from a random choice. In order to end the proof of Theorem 11, we now estimate the arithmetic runtime of the calls to Candidates and IsIsolated.

\textbf{Complexity of Algorithm} [2] Since $W(\pi_i, H^A)$ is the finite algebraic set associated to $\langle f^A - e_0/2, g, \frac{\partial f^A}{\partial x_j} \text{ for all } j \neq i \rangle$, its degree is bounded by $d(d-1)^n$ [17]. Consequently, the degree of the output zero-dimensional parametrization lies in $dO(n)$. Using Theorem 6 (which is based on the geometric resolution algorithm in [14]), it is computed within $dO(n^2)$ arithmetic operations in Q. The last step which takes intersections is done using the algorithm in [28] Appendix J.1; it does not change the asymptotic complexity.

We have seen that GetNormBound reduces to isolate the real roots of a zero-dimensional parametrization of degree $dO(n)$. This can be done within $dO(n)$ operations by Uspensky’s algorithm [23].
We also implemented [2, Alg. 12.16] using the FLINT library. We report on practical performances of our algorithm. Computations were done on an Intel(R) Xeon(R) CPU E3-1505M v6 @ 3.00GHz with 32GB of RAM. We take sums of squares of \(n \) random dense quadrics in \(n \) variables (with a non-empty intersection over \(R \)); we obtain dense quartics defining a finite set of points. Timings are given in seconds (s.), minutes (m.), hours (h.) and days (d.).

We used Faugère’s FGB library for computing Gröbner bases in order to perform algebraic elimination in Algorithms [1] [2] and [3]. We also used our C implementation for bivariate polynomial system solving (based on resultant computations) which we need to analyze connectivity queries in roadmaps. Timings for Algorithm [2] are given in the column CAND below. Timings for the computation of the roadmaps are given in the column RMP and timings for the analysis of connectivity queries are given in the column QRI below.

Roadmaps are obtained as the union of critical loci of some maps in slices of the input variety [23]. We report on the highest degree of these critical loci in the column SRMP. The column SQRI reports on the maximum degree of the bivariate zero-dimensional system we need to study to analyze connectivity queries on the roadmap.

None of the examples we considered could be tackled using the implementations of Cylindrical Algebraic Decomposition algorithms in Maple and Mathematica.

We also implemented [2] Alg. 12.16] using the FLINT C library with evaluation/interpolation techniques instead to tackle coefficients involving infinitesimals. This algorithm only computes sample points per connected components. That implementation was not able to compute sample points of the input quartics for any of our examples. We then report in the column [BPR] on the degree of the zero-dimensional system which is expected to be solved by [2] BPR. This is to be compared with columns SRMP and SQRI.

\(n \)	CAND	RMP	QRI	total	SRMP	SQRI	[BPR]
4	2 s.	15 s.	33 s.	30 s.	36	359	7290
5	10 min.	2 h.	6 h.	508	4644	65610	
6	12 h.	2 d.	18 d.	20 d.	308	47952	590490

5 Experimental results

We report on practical performances of our algorithm. Computations were done on an Intel(R) Xeon(R) CPU E3-1505M v6 @ 3.00GHz with 32GB of RAM. We take sums of squares of \(n \) random dense quadrics in \(n \) variables (with a non-empty intersection over \(R \)); we obtain dense quartics defining a finite set of points. Timings are given in seconds (s.), minutes (m.), hours (h.) and days (d.).

We used Faugère’s FGB library for computing Gröbner bases in order to perform algebraic elimination in Algorithms [1] [2] and [3]. We also used our C implementation for bivariate polynomial system solving (based on resultant computations) which we need to analyze connectivity queries in roadmaps. Timings for Algorithm [2] are given in the column CAND below. Timings for the computation of the roadmaps are given in the column RMP and timings for the analysis of connectivity queries are given in the column QRI below.

Roadmaps are obtained as the union of critical loci of some maps in slices of the input variety [23]. We report on the highest degree of these critical loci in the column SRMP. The column SQRI reports on the maximum degree of the bivariate zero-dimensional system we need to study to analyze connectivity queries on the roadmap.

\(n \)	CAND	RMP	QRI	total	SRMP	SQRI	[BPR]
4	2 s.	15 s.	33 s.	30 s.	36	359	7290
5	10 min.	2 h.	6 h.	508	4644	65610	
6	12 h.	2 d.	18 d.	20 d.	308	47952	590490

References

[1] ARNON, D. S. A cluster-based cylindrical algebraic decomposition algorithm. J. Symb. Comput. 5, 1/2 (1988), 189–212.
[2] BASU, S., POLLACK, R., AND ROY, M.-F. Algorithms in Real Algebraic Geometry (Algorithms and Computation in Mathematics). Springer-Verlag, 2006.
[3] BASU, S., AND ROY, M. Divide and conquer roadmap for algebraic sets. Discrete & Computational Geometry 52, 2 (2014), 278–343.
[4] BASU, S., ROY, M., SAFEY EL DIN, M., AND SCHOST, É. A baby step-giant step roadmap algorithm for general algebraic sets. Foundations of Computational Mathematics 14, 6 (2014), 1117–1172.
[5] Borcea, C., AND STREINU, I. Geometric auxetics. Proc. R. Soc. Lond., A, Math. Phys. Eng. Sci. 471, 2184 (2015), 24.
[6] Borcea, C. S., AND STREINU, I. Periodic auxetics: structure and design. Q. J. Mech. Appl. Math. 71, 2 (2018), 125–138.
[7] Collins, G. E. Quantifier elimination for real closed fields by cylindrical algebraic decomposition: a synopsis. ACM SIGSAM Bulletin 10, 1 (1976), 10–12.
[8] Connelly, R., AND Whiteley, W. The stability of tensegrity frameworks. International Journal of Space Structures 7, 2 (1992), 153–163.
[9] Coste, M., AND Shiota, M. Thom’s first isotopy lemma: a semialgebraic version, with uniform bounds. RIMS Kokyuroku 815 (1992), 176–189.
[10] Duval, D. Rational puiseux expansions. Compositio Mathematica 70, 2 (1989), 119–154.
[11] Gaspar, N., Ren, X., Smith, C., Grima, J., AND Evans, K. Novel honeycombs with auxetic behaviour. Acta Materialia 53, 8 (2005), 2439 – 2445.
[12] GIANNI, P. M., AND MORA, T. Algebraic solution of systems of polynomial equations using Gröbner bases. In Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, 5th International Conference, AAECC-5, Menorca, Spain, Proceedings (1987), pp. 247–257.

[13] GIUSTI, M., HEINTZ, J., MORAIS, J. E., AND PARDO, L. M. When polynomial equation systems can be “solved” fast? In Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, 11th International Symposium, AAECC-11, Paris, France, Proceedings (1995), pp. 205–231.

[14] GIUSTI, M., LECERF, G., AND SALvy, B. A Gröbner free alternative for polynomial system solving. Journal of Complexity 17, 1 (2001), 154–211.

[15] GIUSTI, M., HEINZ, J., MORAS, J. E., AND PAROD, L. M. Probabilistic algorithm for polynomial optimization over a real algebraic set. SIAM Journal on Optimization 24, 3 (2014).

[16] GIUSTI, M., LECHF, G., AND SAVY, B. A Gröbner free alternative for polynomial system solving. SIAM Journal on Optimization 24, 3 (2014).

[17] GIUSTI, M., HEINTZ, J., MORAS, J. E., AND PAROD, L. M. Properness defects of projections and computation of at least one point in each connected component of a real algebraic set. Discrete & Computational Geometry 45, 1 (2011), 181–220.

[18] GIUSTI, M., LECERF, G., AND SALVY, B. A Gröbner free alternative for polynomial system solving. Journal of Complexity 17, 1 (2001), 154–211.

[19] KRONECKER, L. Grundzüge einer arithmetischen theorie der algebraischen grössen. Journal für die reine und angewandte Mathematik 92 (1882), 1–122.

[20] LAKES, R. Foam structures with a negative poisson’s ratio. Science 235, 4792 (1987), 1038–1040.

[21] ROSE, B., AND WITELEY, W. Tensegrity frameworks. Trans. Am. Math. Soc. 265 (1981), 419–446.

[22] ROUILLER, F., ROY, M., AND SAFETY EL DIN, M. Finding at least one point in each connected component of a real algebraic set defined by a single equation. J. Complexity 16, 4 (2000), 716–750.

[23] ROUILLER, F., AND ZIMMERMANN, P. Efficient isolation of polynomial’s real roots. Journal of Computational and Applied Mathematics 162, 1 (2004), 33–50.

[24] SAFETY EL DIN, M. Computing Sampling Points on a Singular Real Hypersurface using Lagrange’s System. Research Report RR-5464, INRIA, 2005.

[25] SAFETY EL DIN, M., AND SCHOST, É. Computing parametric geometric resolutions. Applicable Algebra in Engineering, Communication and Computing 13, 5 (2003), 349–393.

[26] SAFETY EL DIN, M., AND SCHOST, É. A nearly optimal algorithm for deciding connectivity queries in smooth and bounded real algebraic sets. J. ACM 63, 6 (Jan. 2017), 48:1–48:37.

[27] SCHOST, É. Computing parametric geometric resolutions. Applicable Algebra in Engineering, Communication and Computing 13, 5 (2003), 349–393.

[28] SCHWARTZ, J. T., AND SHARIR, M. On the “piano movers” problem. II. general techniques for computing topological properties of real algebraic manifolds. Advances in Applied Mathematics 4, 3 (1983), 298–351.

[29] VOROBIOV, N. Complexity of computing the local dimension of a semialgebraic set. Journal of Symbolic Computation 27, 6 (1999), 565–579.

[30] YANG, W., LI, Z.-M., SHI, W., AND XIE, B.-H. Review on auxetic materials. Journal of Materials Science 39 (2004), 3269–3279.