The Diagnostic and Conceptual Inconsistencies of ADHD Leading to False Positives

Abstract
Attention-deficit hyperactivity disorder (ADHD) is one of the most common disorders of childhood and yet the diagnosis remains controversial. There are no specific cognitive, metabolic, neurological markers or medical tests for ADHD. Comorbidity is also extremely high, leading to doubt on the specificity of the diagnosis. Another commonly cited shortcoming of the ADHD construct is that none of the symptoms are uniquely diagnostic of ADHD and more often than not, each symptom can also be explained by other disorders. Specifically, children with anxiety disorders, autism spectrun, or cognitive disorders secondary to medical conditions share many common characteristics with developmental ADHD. Because the behaviorally defined DSM diagnostic system is not neuroanatomically defined, the diverse range of ADHD symptoms cannot be precisely mapped to any particular anatomic structure. In fact, imaging studies of ADHD suggests countless areas of possible dysfunction. This makes ADHD less likely to have a single etiology. Despite these multitudes of issues, ADHD has been maintained in the DSM-V with only small diagnostic modifications. Healthcare providers are encouraged to stay abreast of ongoing diagnostic research, but potentially confusing diagnosis.

Keywords
Attention-deficit hyperactivity disorder; Developmental disorder; Misdiagnosis

Abbreviations
ADHD: Attention-Deficit Hyperactivity Disorder; DSM: Diagnostic and Statistical Manual of Mental Disorders; CDC: Centers for Disease Control; ADD: Attention-Deficit Disorder

Introduction
Attention-deficit hyperactivity disorder (ADHD) is one of the most common disorders of childhood [1] and has become quite controversial within the clinical field of psychology, academia, and throughout society, both conceptually and neuroanatomically. The CDC has suggested that in the US, 9.5% of children ages 3 to 17 years, have ADHD [2]. This prevalence of ADHD has risen above many other childhood disorders, leading to the question of possible over diagnosis and the validity of diagnostic criteria. Currently, ADHD is defined on the basis of observable or reportable behaviors within multiple environments/settings. As such, the diagnostic validity weighs solely on asking a series of questions of caregivers and teachers in the child’s life regarding their daily activity. “Does the child often...,” and “Does this lead to functional impairment?” Scoring enough “yes” responses suggests the clinical diagnosis of ADHD. However, this process has become highly dependent on subjective information regarding developmentally appropriate behavior from people often not clinically trained. This process should warrant diagnostic caution given the risk of making a lifelong misdiagnosis. In discussing this challenge among colleagues, all too often you may hear a clinician state: “I undiagnose ADHD as often as I diagnose it.”

ADHD: Are Symptoms Too Diverse
There are no specific cognitive, metabolic or neurological markers or medical tests for ADHD. Comorbidity is also extremely high, undermining the specificity of the diagnosis [3]. To make sense of the ADHD diagnosis, it is essential to understand its true definition. ADHD is a behaviorally defined diagnosis that is based on observable behaviors, not an etiologically or medically defined diagnosis. Unfortunately the behaviors are so diverse that multiple brain systems can be involved and differ for each individual. Essentially, the diverse range of potentially diagnostic symptoms results in patients being diagnosed with ADHD, yet presenting very different from one another.

ADHD is characterized by dysfunctional levels of inattentiveness, impulsivity, and hyperactivity. The Diagnostic and Statistical Manual of Mental Disorders (DSM) lists 10 possible behavioral symptoms for diagnosing the condition [4]. 9 observations that concern inattention, 6 symptoms concerning hyperactivity, and 3 behavioral symptoms pertaining to impulsivity. This categorical system allows for the classification of three behavioral subtypes of ADHD: Inattentive, Hyperactive-Impulsive, or Combined. Regardless of subtype, this is a highly heterogeneous population because the potential 18 symptoms can be “combined” in a variety of ways. According to reports, approximately 50% of those classified as ADHD meet the criteria for Inattentive-type, while only 20% are found to exhibit Hyperactive-Impulsive Type and 30% as Combined Type.

Even more confusing is the frequently changing terms of this diagnosis. Often parents will sit across clinicians in the interview or feedback adamantly rejecting a descriptor of ADHD when their child meets the criteria for ADHD – Inattentive type. In their understanding, their child then has ADD, not ADHD. Again the dramatic difference in presentation between subtypes causes
Discuss and educate parents about all evidenced based.

Do a thorough clinical interview to establish the course of.

Administer multiple cognitive measures focusing on.

Administer standardized parent/teacher report.

Review DSM diagnostic criteria with clients.

or more different neural mechanisms, possibly occurring as the

ADHD in any given individual stems from dysfunction within one

can actually be the manifestation of very different underlying

behavioral triad (inattentiveness, impulsivity, & hyperactivity)

diagnosed with ADHD and how the aforementioned ADHD

ADHD by pointing out the many brain systems which can account

processes in the brain. These symptoms call upon a wide range

attention is supported by a network of complex functional

ADHD less likely to have a single etiology, and less diagnosable

countless areas of possible dysfunction. This fact also makes

symptoms cannot be mapped to any particular anatomic structure.

not neuroanatomically organized, the diverse range of ADHD

individual diagnosis [7].

Symptoms Not Unique To ADHD

Another commonly cited shortcoming of the ADHD construct

is that none of the symptoms are uniquely diagnostic of ADHD

and each symptom can also be explained by other diagnoses.

Specifically, children with anxiety disorders, autism spectrum

disorders, sleep disorders, and various medical conditions can

exhibit many symptoms/behaviors which could appear to be

ADHD. Empirical research also suggests a variety of pre- and

postnatal pathological processes which can cause symptoms

similar to ADHD. Even such common condition as low birth

weight has been shown to be associated with the development of

ADHD symptoms [5].

Symptoms in various DSM categories overlap to such a

high degree that differential diagnosis becomes extremely

problematic, even when clinicians are trained to eliminate

variables or differentiate between specific etiologies. For

example, the significant overlap of symptoms present between

individuals with ADHD and / or autism [6]. According to the DSM,

ADHD should be determined as a differential diagnosis instead

of a comorbidity of autism; as the symptoms of inattention or

impulsivity are also present in those with autism. Moreover,

many studies of ADHD are by necessity conducted in clinic-

referred samples, where comorbidity has become the rule and

not the exception increasing the challenge of researching an

individual diagnosis [7].

ADHD and Neuroanatomy

Because the behaviorally defined DSM diagnostic system is

not neuroanatomically organized, the diverse range of ADHD

symptoms cannot be mapped to any particular anatomic structure.

In fact, the multitude of imaging studies of ADHD suggests

countless areas of possible dysfunction. This fact also makes

ADHD less likely to have a single etiology, and less diagnosable

by any neuropsychological test [8], though frequently having the

co-occurrence of executive dysfunction [9,10].

One of the biggest challenges of understanding the

neuropathology in ADHD is the fact that the capacity to deploy

attention is supported by a network of complex functional

processes in the brain. These symptoms call upon a wide range

circuits which are not only found in multiple areas of brain, but

also leave the potential for many possibilities etiologies leading
to dysregulation in the attention systems of the brain [11-15]. In

fact, recently, Bernstein [16] critiqued the diagnostic construct of

ADHD by pointing out the many brain systems which can account

for the diverse range of diagnostic symptoms found in individuals
diagnosed with ADHD and how the aforementioned ADHD

behavioral triad (inattentiveness, impulsivity, & hyperactivity)
can actually be the manifestation of very different underlying

neuroanatomical processes. Koziol and Stevens [8] added that

ADHD in any given individual stems from dysfunction within one

or more different neural mechanisms, possibly occurring as the

result of several distinct etiological influences. So consistent with
the diverse clinical presentation, there appears to be evidence and
expert opinions that the neuropathology is far more complex then
“checking-off” observable symptoms.

Conclusion

ADHD was recently maintained in the DSM-V and only

received small modifications to the diagnostic criteria, so it

seems clear there is a consensus on the validity and utility of this
diagnosis. Based on the current clinical literature the following

are suggestions prior to diagnosing:

i. Do a thorough clinical interview to establish the course of
diagnostic symptoms and rule out alternative explanations
and factors that may be exacerbating symptoms.

ii. Review DSM diagnostic criteria with clients.

iii. Seek information from multiple informants across settings
(classroom observation by a clinician is very helpful).

iv. Administer standardized parent/teacher report
instruments (such as the Behavioral Assessment System
for Children- BASC, Child Behavior Checklist-CBCL) as a
way to get age based comparisons to assess severity of
symptoms.

v. Administer multiple cognitive measures focusing on
attention compared to aged norms.

vi. Gather information on the parents/ guardians
understanding of the diagnosis and need for appropriate
education and support.

vii. Discuss and educate parents about all evidenced based
treatment options.

References

1. Angold A, Erkanli A, Silberg J, Eaves L, Costello EJ (2002) Depression
scale scores in 8-17-year-olds: effects of age and gender. J Child
Psychol Psychiatry 43(8): 1052-1063.

2. Centers for Disease Control (2014) Attention Deficit Hyperactivity
Disorder.

3. Taimini S, Taylor E (2004) ADHD is best understood as a cultural
construct Br J Psychiatry 184: 8-9.

4. American Psychiatric Association (2000) Diagnostic and Statistical
Manual of Mental Disorders- IV (DSM-IV).

5. Pettersson E, Sjolander A, Almquist C, Anckarater H, Lichtenstein
P, et al. (2014) Birth weight as an independent predictor of ADHD
symptoms: a within-twin pair analysis. J Child Psychol Psychiatry doi:
10.1111/jcpp.12299.

6. Mayes SD, Calhoun SL, Mayes RD, Molitoris S (2012) Autism and
ADHD: Overlapping and discriminating symptoms. Research in
Autism Spectrum Disorders 6(1): 277-285.

7. Pritchard AE, Ngo RO, Jacobson LA, Mahone EM (2012) The role of
neuropsychological assessment in the functional outcomes of children
with ADHD. Neuropsychol Rev 22(1): 54-68.

8. Koziol LF, Stevens MC (2012) Neuropsychological Assessment and
The Paradox of ADHD. Appl Neuropsychol Child 1(2): 79-89.

Citation: Perna RB, Loughan AR (2014) The Diagnostic and Conceptual Inconsistencies of ADHD Leading to False Positives. J Pediatr Neonatal Care 1(5): 00031. DOI: 10.15406/jpncc.2014.01.00031
9. Biederman J, Monuteaux MC, Doyle AE, Seidman LJ, Wilens TE, et al. (2004) Impact of executive function deficits and attention-deficit/hyperactivity disorder (ADHD) on academic outcomes in children. J Consult Clin Psychol 72(5): 757-766.

10. Brown TE, Reichel PC, Quinlan DM (2009) Executive function impairments in high IQ adults with ADHD. J Atten Disord 13(2): 161-167.

11. Ashtari M, Kumra S, Bhaskar SL, Clarke T, Thaden E, et al. (2005) Attention-deficit hyperactivity disorder: A preliminary diffusion tensor imaging study. Biol Psychiatry 57(5): 448-455.

12. Casey BJ, Nigg JT, Durston S (2007) New potential leads in the biology and treatment of attention deficit-hyperactivity disorder. Curr Opin Neurol 20(2): 119-124.

13. Castellanos FX, Proal E (2012) Large-scale brain systems in ADHD: Beyond the prefrontal-striatal model. Trends Cogn Sci 16(1): 17-26.

14. Filley CM (2002) The neuroanatomy of attention. Semin Speech Lang 23(2): 89-98.

15. Shipp S (2004) The brain circuitry of attention. Trends Cogn Sci 8(5): 223-230.

16. Bernstein JH (2012) Clinical Encounters of the ADHD Kind: The Unique Role of Neuropsychology. Appl Neuropsychol Child 1(2): 105-111.