Clinical cholera surveillance sensitivity in Bangladesh and implications for large-scale disease control

Sonia T. Hegdea*, Elizabeth C. Leea*, Ashraful Islam Khanb, Stephen A. Lauera, Md. Taufiquul Islamb, Taufiquur Rahman Bhuiyanb, Justin Lesslera, Andrew S. Azmana, Firdausi Qadrib, Emily S. Gurleya

a Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
b Infectious Disease Division, icddr,b, Dhaka, Bangladesh

* denotes equal contribution

Running title
Clinical cholera surveillance in Bangladesh

Abstract word count
195 words

Text word count
2,862 words

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Conflict of interest statement

We declare no conflicts of interest.

Funding

This work was supported by the Bill & Melinda Gates Foundation (OPP1191944 to ASA; and OPP1171700 to ASA and JL). The serological fieldwork used in this study was funded by the US Centers for Disease Control and Prevention (CDC) under a cooperative grant to icddr,b (no 5U01GH001207-02). The serological analysis was funded by the US National Institutes for Health (NIH; R01 AI135115 to ASA).

Meetings where information has previously been presented

Asian Conference on Diarrhoeal Disease and Nutrition (ASCODD), January 2020, Dhaka, Bangladesh

Corresponding author

Dr. Sonia Hegde
shegde@jhu.edu
Department of Epidemiology
Johns Hopkins Bloomberg School of Public Health
615 North Wolfe Street Rm E6038
Baltimore, MD 21205
Abstract

Introduction

A surveillance system that is sensitive to detecting high burden areas is critical for achieving widespread disease control. In 2014, Bangladesh established a nationwide, facility-based cholera surveillance system for *Vibrio cholerae* infection. We sought to measure the sensitivity of this surveillance system to detect cases to assess whether cholera elimination targets outlined by the Bangladesh national control plan can be adequately measured.

Methods

We overlaid maps of nationally-representative annual *V. cholerae* sero-incidence onto maps of the catchment areas of facilities where confirmatory laboratory testing for cholera was conducted, and identified its spatial complement as surveillance greyspots, areas where cases likely occur but go undetected. We assessed surveillance system sensitivity and changes to sensitivity given alternate surveillance site selection strategies.

Results

We estimated that 69% of Bangladeshis (111.7 million individuals) live in surveillance greyspots, and that 23% (25.5 million) of these individuals live in areas with the highest *V. cholerae* infection rates.

Conclusions

The cholera surveillance system in Bangladesh has the ability to monitor progress towards cholera elimination goals among 31% of the country's population, which may be insufficient for accurately measuring progress. Increasing surveillance coverage, particularly in the highest risk areas, should be considered.

Keywords

Surveillance, Bangladesh, Cholera, Disease control, Elimination
Introduction

Bangladesh has among the highest national rates of *Vibrio cholerae* infection in the world [1]; a nationally-representative serosurvey estimated that roughly 17% (95% CI: 11-24%) of the 165 million people living in Bangladesh experienced infection in 2015 [2]. In 2014, the International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b) and the Institute of Epidemiology Disease Control And Research (IEDCR) established a nationwide sentinel surveillance system with the goal of monitoring the seasonality and geographic trends in acute cases and identifying geographic areas with a high burden of laboratory-confirmed clinical cholera [3]. The participating 22 sentinel hospital sites and the icddr,b Dhaka hospital are the only healthcare facilities that regularly perform laboratory confirmation of *V. cholerae* in the country [3].

The government of Bangladesh proposed their first national cholera control plan in 2019, with the ambitious goals of reducing morbidity and mortality by 50% by 2025 and 90% by 2030 and achieving cholera elimination [4]. Few comparative, nationally representative data exist in Bangladesh, however, with which to compare and measure the reduction in morbidity and mortality. While vaccination campaigns, water, sanitation, and hygiene interventions, and improved case management are the primary tools to achieve these elimination targets, a cholera surveillance system with widespread geographical coverage is necessary to target interventions to the highest burden areas and monitor progress from endemic transmission to elimination.

The US Centers for Disease Control and Prevention (CDC) has a standardized framework for evaluating public health surveillance systems, which may be applied flexibly to systems with varying goals [5,6]. The public health goal of widespread disease control and elimination, like that for cholera in Bangladesh, requires the identification and monitoring of areas with high case counts and high relative risk across the population in a timely manner. However, quantitative evaluations of sensitivity are hard to obtain when the surveillance system
is the sole source of data on the occurrence of disease; external data are needed to evaluate
the proportion of cases or outbreaks that are identified by the surveillance system [7,8].

Our objective was to determine how the geographic coverage of Bangladesh’s national
cholera sentinel surveillance system compares to the distribution of *V. cholerae* infection risk to
gauge how well the surveillance system is able to monitor progress towards national cholera
control. We also examined how alternate sentinel site selection might improve the sensitivity of
the surveillance system to detect high burden areas.

Methods

Cholera sentinel surveillance data

There are 23 healthcare facilities known to routinely perform laboratory confirmation of
V. cholerae among suspected cholera cases in Bangladesh, which includes the 22 sentinel
hospital sites in the national cholera surveillance system (in operation since 2016) and the
icddr,b Dhaka hospital (Supplementary Table 1). In the absence of specific data on healthcare
utilization for cholera at these sites, we assumed that the catchment areas of the different
healthcare facility types were as follows: subdistrict (10km), district (20km), tertiary care (30km),
and the icddr,b Dhaka hospital (30km) (Figure 1). We refer to the joint set of buffers around all
23 hospitals as the *cholera surveillance zone*, an estimate of the area where suspected cholera
cases may be tested and reported.

System sensitivity to detect high cholera case-burden

We used previously published maps of the estimated *V. cholerae* O1 seroincidence from
2015 as the presumed ground truth estimates of burden. These maps include national estimates
of the risk of *V. cholerae* O1 infection rates and relative infection risk (compared to the
population-weighted mean) across a 5 km x 5 km grid of Bangladesh [2,9] (Supplementary
Figure 1A).
We defined the relative and absolute magnitudes of the infection risk and defined thresholds for *high*, *moderate*, and *low* relative and absolute risk across 25 km² grid cells. We used the 25th and 75th percentiles of the mean grid cell-level risk (relative or absolute) to define cutoffs for moderate and high risk areas.

1. **Relative risk**: This is the seroincidence relative to the population-weighted mean seroincidence across Bangladesh. The moderate and high risk thresholds were 0.81 and 0.91, respectively, where 1 indicates a grid-cell risk equal to the population-weighted mean.

2. **Absolute infections**: This is the estimated number of *V. cholerae* O1 infections in each grid cell in the last year, calculated as the product of the median annual seroincidence and the 2015 population estimates in each grid cell according to WorldPop [10]. The moderate and high risk thresholds were 1,514 and 4,815 infections, respectively.

We define *system sensitivity* with two metrics – the proportion of the population and the proportion of infected individuals living in the cholera surveillance zone. Uncertainty in system sensitivity is reported with the 2.5th and 97.5th percentiles of 1000 posterior draws of the previously published gridded seroincidence estimates [2].

Examining alternative sentinel site selection with a simulation-based approach

We sought to determine whether system sensitivity could be improved with an alternate selection of sentinel surveillance sites. First, we successfully geocoded 491 of 504 large public hospitals in the Bangladesh Ministry of Health and Family Welfare Facility Registry using the R package tidygeocoder [11] (See details in Supplementary Methods). The geocoded healthcare facilities were then used to examine eight hypothetical strategies of sentinel site selection. The total number of sites (23) and the distribution of facility types (i.e., 4 tertiary care facilities, 12 district-level facilities, and 6 upazila-level facilities) matched that of the current cholera surveillance system across all strategies; we assumed that the system size would remain constant. Only 22 new sites were selected for each set, as the icddr,b cholera hospital in Dhaka
remained fixed as a site across all strategies. Twenty simulations (different sets of sites) were drawn per strategy based on a crude estimate of the possible number of unique sets of sentinel sites (491 total facilities/23 sites performing laboratory confirmation). We also estimated the sensitivity of a hypothetical surveillance system that would include all 491 large public hospitals.

One strategy selected the 22 sites randomly from all facilities (Random), while another selected sites to match the current allocation of sentinel sites by Division (first level administrative units). The remaining six strategies weighted site selection by risk in an attempt to prioritize high-risk areas (See details in Supplementary Methods). For each strategy, we estimated the total population and the annual number of infected people in the proposed cholera surveillance zone. We ran three linear regression models to partition sources of variability for each selection strategy across surveillance zone infections with a random effect across (1000) posterior draws for seroincidence risk and a random effect across (20) simulations in a given strategy. The magnitude of the intraclass correlation coefficient (ICC) for the individual random effect models indicates the relative variability explained by each factor. We reported confidence intervals of system sensitivity as the 2.5th and 97.5th percentiles of the joint distribution of the 20 simulations and 1000 posterior seroincidence draws.

Code and reproducibility

All analyses were performed in R. Data and source code to reproduce analyses are available at https://github.com/HopkinsIDD/bgd_cholera_greyspots with additional details provided in the supplemental appendix. The underlying seroincidence estimates are available at https://github.com/HopkinsIDD/Bangladesh-Cholera-Serosurvey.

Results

Surveillance system sensitivity

In the year preceding the 2015/16 serosurvey, 16% (95% CI: 13-23%) or 8 million (95% CI: 4.6-11.9) of the 51 million people living in the cholera surveillance zone had been infected
clinically or subclinically) with *V. cholerae* O1 (Figure 1). The infections occurring in the cholera surveillance zone accounted for 29% (95% CI: 27-35) of the 22.5 million *V. cholerae* O1 infections estimated for Bangladesh during the same period [2].

We estimated that 111.7 million (69%) people in Bangladesh live in surveillance greyspots, the geographic area outside of the cholera surveillance zone where suspected cholera is unlikely to be confirmed (Figure 1). The cholera surveillance zone captured 3.4 million (95% CI: 1.8-6.0) annual infected individuals living in high relative risk areas in Bangladesh; 74% (95% CI: 62-78%) of the at-risk population living in high relative risk areas in Bangladesh lived in surveillance greyspots (Table S2). The cholera surveillance zone captured 3.6 million (95% CI: 1.6-6.0) annual infected individuals living in moderate relative risk areas in Bangladesh; 70% (95% CI: 63-73%) of the at-risk population living in moderate relative risk areas in Bangladesh lived in surveillance greyspots. Individuals living in the districts of Rajshahi, Kurigram, and Khulna had high relative infection risk but were unlikely to be captured by the cholera sentinel surveillance system (Figure 2).

Using the absolute risk metric to define risk areas, the cholera surveillance zone captured 6.2 million (95% CI: 3.5-9.2) annual infected individuals living in high absolute risk areas in Bangladesh; 58% (95% CI: 54-59%) of the population living in high absolute risk areas in Bangladesh lived in surveillance greyspots (Table S2). The cholera surveillance zone captured 1.8 million (95% CI: 0.76-2.8) infected individuals living in moderate absolute risk areas in Bangladesh; 78% (95% CI: 74-80%) of the at-risk population living in moderate absolute risk areas in Bangladesh lived in surveillance greyspots.

Alternative sentinel site selection

Alternative sentinel site selection strategies employing the *Random* or *Division* selection strategy captured a similar percentage of infected individuals in their cholera surveillance zones (16%, 95% CI: 9-23% and 16%, 95% CI: 9-24%, respectively) as the current surveillance system and more directed strategies such as the *Relative Risk Equity* and *Absolute Risk Equity*.
(18%, 95% CI: 10-25% and 17%, 95% CI: 10-24%, respectively). While percentage differences were small, the mean number of infections captured varied by up to 1 million between some pairs of strategies (Full results in Table S3). If all 491 public facilities were used in the surveillance system, 97% (95% CI: 96.6-97.5%) of infections would be captured (27 million, 95% CI: 16.6 – 37.9).

An examination of the ICC across multiple models of infections in the cholera surveillance zone revealed that there was substantially greater uncertainty in the underlying seroincidence risk estimates than in simulations for the same strategy. The ICC ranged from 0.84 to 0.97 for models with random effects on seroincidence posterior draws, while it ranged only from 0.01 to 0.1 for models with random effects on simulations (full results in Table S4). There were no major differences between strategies.

Discussion

The cholera sentinel surveillance system in Bangladesh is the only data source available to monitor progress towards national disease control by 2030. Our study described the characteristics of cholera surveillance greyspots, geographic areas where cases are unlikely to be detected because they reside outside the catchment areas of sentinel surveillance sites. We estimated that roughly 111.7 million individuals (69% of Bangladesh’s population) live in greyspots, and that 23% of these individuals (25.5 million people) live in areas with extremely high risk of cholera infection (where the mean annual seroincidence rate is 22%) (Figure 3). The alternative methods for selecting sentinel sites that we explored produced only minor improvements in the capture of cholera infections, although more optimized strategies could be devised. Without changes to the surveillance system, it will be impossible to monitor high cholera burden areas in much of the country, which is a substantive impediment to measuring progress on elimination.

The original stated goals for Bangladesh’s national cholera sentinel surveillance system were to monitor cholera seasonality and epidemiology while also tracking the burden of disease.
in areas believed to have high prevalence; the objectives may not have had the disease elimination goal in mind. Sentinel surveillance systems that are sensitive to capturing high risk areas are critical to disease elimination efforts to measure disease burden, identify at-risk populations, and monitor the health impacts of interventions in target populations. For cholera control specifically, the drivers of disease transmission are highly local (i.e., fecal-contaminated water and food), with great variation even between households, and campaigns against waterborne diseases must be targeted effectively to high risk areas to achieve success. Depending on whether risk is defined in relative or absolute terms, 58-74% of individuals living in high risk areas were not captured within the cholera surveillance zone. While it is often difficult to quantify the performance of a sentinel system to monitor high risk populations, future work may use our framework to assess how multiple, simulated sentinel selection site strategies may be better suited to achieving different system goals. For example, choosing sites according to population density may best monitor geographic areas with high absolute risk, while choosing sites that are dispersed across geographic divisions may create a sentinel surveillance system that is most representative of national population-level disease trends.

Selecting a strategy to increase overall surveillance sensitivity should consider both cost and feasibility. For example, expanding the number of sites performing laboratory confirmation would expand surveillance system sensitivity, but it may be too costly to be feasible. Furthermore, including all public healthcare facilities in Bangladesh in as sentinel sites would not result in 100% capture of all infections. Future analyses may instead consider the impact of one or more creative solutions, such as the placement of testing sites in select locations that are hard-to-reach and that have high estimated infection risk, or widespread use of cholera rapid diagnostic tests (RDTs). Although RDTs may have lower diagnostic specificity than other laboratory confirmation methods (e.g., 96.5% specificity with Cholkit vs 99.9% with culture) [12], their relatively low cost (2 USD vs 6-8 USD with culture per unit, [13]) and ease of implementation make them prime candidates for expanded use in settings with limited
laboratory capacity where the prime purpose for testing is surveillance, not clinical care

decisions. Though field evaluations in Bangladesh have demonstrated moderate sensitivity of
RDTs relative to culture (e.g., Crystal VC: 72% (95% CI: 51-88%) and Cholkit: 76% (95% CI:
55-91%) [13]), culture tests are known to have a higher false negative rate when antibiotics
have been previously taken by the patient and are sensitive to transport conditions when testing
is centralized, so sensitivity of RDTs is likely higher than what has been reported [13]. If such
tests can be distributed nationally, as stated in the national cholera control plan, the
decentralization of testing by use of RDTs may lead to similar if not better performance, real-
time tests, and nationwide monitoring for widespread disease control may be feasible when
paired with other forms of surveillance.

Our approach has several limitations. We assumed that hospital catchment areas could
be defined with simple radial buffers, similar to previous work [14]. A more accurate approach to
estimating hospital catchment areas would use patient demographic, symptom, and home
address data, and account for barriers to healthcare seeking [15,16]; in reality, the cholera
surveillance zone is likely smaller than what we assumed resulting in overestimates of system
sensitivity. Conversely, the functional coverage of the cholera surveillance zone may be more
expansive than our stated assumptions if private clinics and facilities outside of the national
sentinel surveillance system use RDTs or culture to confirm suspected cholera cases, and
event-based surveillance systems like media surveillance and hotlines routinely detect disease
outbreaks, though samples still have to be processed and confirmed in a lab [17]. Discussions
with experts suggest that testing outside of the sentinel surveillance system is low, however,
and unlikely to change our results substantially. Finally, while clinical cholera incidence is almost
certainly lower than seroincidence, their geographic distributions of burden are likely to be
similar and our results should serve as a reasonable proxy for system sensitivity for clinical
cholera detection.

The surveillance evaluation framework proposed here, which aims to quantify
surveillance system sensitivity to monitoring large-scale reductions in cholera morbidity, may
nonetheless prove useful in the context of nationwide control or elimination efforts for other
vaccine preventable diseases, like typhoid or Japanese encephalitis [18,19]. By comparing
surveillance data to an external validation instrument like a population-representative
serosurvey, it is possible to quantify surveillance system sensitivity and perform targeting of
interventions that can contribute to an effective elimination strategy. Beyond providing
surveillance metrics, an external validation instrument like cross-sectional serology can be used
to motivate specific system improvements such as the selection of alternate sentinel sites to
increase system sensitivity or even a more cost-effective surveillance system to capture the risk
of both asymptomatic and symptomatic infection. Further, by applying multiple definitions of
disease risk (e.g., relative versus absolute risk), we can identify surveillance greyspots that are
robust to multiple dimensions of information. For example, though the relative risk of \(V. \text{cholerae} \)
infection may be considered low in an urban area, the estimated absolute number of infections
could be high; we would not want sentinel surveillance sites to be concentrated only in high
relative risk areas. Monitoring changes in relative and absolute risk over time, and in rural
versus urban areas is important, especially as access to care changes.

Ultimately, the goal of public health surveillance systems are to generate data for action
towards improving public health, but if significant gaps in the surveillance system exist such
goals may never be met. In Bangladesh, the goal of cholera elimination will likely be hindered by
the lack of geographic or population coverage if changes to the system are not made; any
documented reductions in morbidity and mortality to quantitate progress will only be among 31%
of the country's population. For any disease, a strong elimination plan should demand high
quality surveillance data and using more rigorous and cost-effective methods to evaluate
surveillance data is an imperative first step.
Tables & Figures

Figure 1. A map of the cholera greyspots in Bangladesh. Populations living in the coral pink areas are inside the cholera surveillance zone. The grey areas are places where we have little information on clinical cases of cholera as they are not captured by the national cholera surveillance system in Bangladesh.
Figure 2. Cholera risk map as categorized by the risk of seroincidence relative to a population-weighted mean by 5 km x 5 km grid cell (Panel A). The map illustrates grid cells of High-Moderate-Low risk and the which grid cells are captured by the cholera surveillance zone (10-20-30-30km for subdistrict, district, and tertiary care, and icddr,b hospitals), indicated by the transparent buffers.

Cholera risk map as categorized by the estimated number of *V. cholerae* infections by 5 km x 5 km grid cell (Panel B). The black marks indicate sentinel hospital locations and the transparent buffers overlayed represent the cholera surveillance zone.
Figure 3. A. The number of people living in high-moderate-low risk areas as defined by the relative and absolute risk metrics across Bangladesh and captured in the cholera surveillance zone (shown in different shades as the geographic frame). The percentages in each bar represent the percentage of the people living in high-moderate-low risk areas across Bangladesh that are captured in the cholera surveillance zone. B. The number of people infected with *V. cholerae* living in high-moderate-low risk areas as defined by the relative and absolute risk metrics across Bangladesh and captured in the cholera surveillance zone (shown in different shades as the geographic frame). The percentages in each bar represent the percentage of infected people living in high-moderate-low risk areas across Bangladesh that are captured in the cholera surveillance zone.
Acknowledgements

This study was funded by the Bill & Melinda Gates Foundation, National Institutes of Health, and US Centers for Disease Control and Prevention. We thank study staff and participants across Bangladesh for their support.
References

1. Ali M, Lopez AL, You YA, et al. The global burden of cholera. Bull World Health Organ. 2012; 90(3):209–218A.

2. Azman AS, Lauer S, Taufiqur Rahman Bhuiyan M, et al. Vibrio Cholerae O1 Transmission in Bangladesh: Insights from a Nationally-Representative Serosurvey [Internet]. Available from: http://dx.doi.org/10.1101/2020.03.13.20035352

3. Khan AI, Rashid MM, Islam MT, et al. Epidemiology of Cholera in Bangladesh: Findings From Nationwide Hospital-based Surveillance, 2014-2018. Clin Infect Dis [Internet]. 2019; . Available from: http://dx.doi.org/10.1093/cid/ciz1075

4. DGHS, MOHFW, Government of Bangladesh. Practical approach to controlling cholera in Bangladesh through dual interventions of OCV & WaSH [Internet]. Global Task Force on Cholera Control. 2019 [cited 2021 May 10]. Available from: https://www.gtfcc.org/wp-content/uploads/2020/08/6th-annual-meeting-gtfcc-bangladesh.pdf

5. Centers for Disease Control (CDC). Guidelines for evaluating surveillance systems. MMWR Suppl. 1988; 37(5):1–18.

6. German RR, Lee LM, Horan JM, et al. Updated guidelines for evaluating public health surveillance systems: recommendations from the Guidelines Working Group. MMWR Recomm Rep. 2001; 50(RR-13):1–35; quiz CE1–7.

7. Nikolay B, Salje H, Sturm-Ramirez K, et al. Evaluating Hospital-Based Surveillance for Outbreak Detection in Bangladesh: Analysis of Healthcare Utilization Data. PLoS Med. 2017; 14(1):e1002218.

8. Hegde ST, Salje H, Sazzad HMS, et al. Using healthcare-seeking behaviour to estimate the number of Nipah outbreaks missed by hospital-based surveillance in Bangladesh. Int J Epidemiol. 2019; 48(4):1219–1227.
9. Azman AS, Lessler J, Luquero FJ, et al. Estimating cholera incidence with cross-sectional serology. Sci Transl Med [Internet]. 2019; 11(480). Available from: http://dx.doi.org/10.1126/scitranslmed.aau6242

10. Tatem AJ. WorldPop, open data for spatial demography. Sci Data. 2017; 4:170004.

11. Government of Bangladesh. Facility Registry [Internet]. [cited 2021 May 13]. Available from: http://facilityregistry.dghs.gov.bd/index.php

12. Sayeed MA, Islam K, Hossain M, et al. Development of a new dipstick (Cholkit) for rapid detection of Vibrio cholerae O1 in acute watery diarrheal stools. PLoS Negl Trop Dis. 2018; 12(3):e0006286.

13. Islam MT, Khan AI, Sayeed MA, et al. Field evaluation of a locally produced rapid diagnostic test for early detection of cholera in Bangladesh. PLoS Negl Trop Dis. 2019; 13(1):e0007124.

14. Government of the People’s Republic of Bangladesh Ministry of Health and Family Welfare. Secondary and Tertiary Healthcare. Health Bull. 2012; :53–60.

15. Hierink F, Okiro EA, Flahault A, Ray N. The winding road to health: A systematic scoping review on the effect of geographical accessibility to health care on infectious diseases in low- and middle-income countries [Internet]. PLOS ONE. 2021. p. e0244921. Available from: http://dx.doi.org/10.1371/journal.pone.0244921

16. Mannan MA. Access to Public Health Facilities in Bangladesh: A Study on Facility Utilisation and Burden of Treatment. Bangladesh Dev Stud. Bangladesh Institute of Development Studies; 2013; 36(4):25–80.

17. Husain M, Rahman M, Alamgir A, Salim Uzzaman M, Flora MS. Disease Surveillance System of Bangladesh: Combating Public Health Emergencies. Online J Public Health Inform [Internet]. University of Illinois at Chicago Library; 2019 [cited 2021 May 2]; 11(1).
18. Paul KK, Sazzad HMS, Rahman M, et al. Hospital-based surveillance for Japanese encephalitis in Bangladesh, 2007–2016: Implications for introduction of immunization. Int J Infect Dis. 2020; 99:69–74.

19. Heffelfinger JD, Li X, Batmunkh N, et al. Japanese Encephalitis Surveillance and Immunization - Asia and Western Pacific Regions, 2016. MMWR Morb Mortal Wkly Rep. 2017; 66(22):579–583.