アンフィファインとN-WASPのダイナミックな
相互作用は、アクチン重合を制御する

山田浩司a*, Sergi Padilla-Parrab, 朴 宣徳c,d, 伊藤俊樹e, Mathilde Chaineaub,f, Ilaria Monaldi9, Ottavio Cremonah, Fabio Benfenati9, Pietro De Camilli9, Maïté Coppey-Moisanb, Marc Tramiere, Thierry Gallib,f, 竹村孝二

a岡山大学医学部医学研究科 生化学, bジャックモノ研究所，神戸大学医学部医学研究科 生化学， c膜生化学， d膜生化学，

キーワード：アンフィファイン，細胞骨格，シナプス，エンドサイトーシス，アンフィファイン

Dynamic interaction of amphiphysin with N-WASP regulates actin assembly

Hiroshi Yamadaa*, Sergi Padilla-Parrab, Sun Joo Parkc,d, Toshiki Itoeb,c, Mathilde Chaineaub,f, Ilaria Monaldi9, Ottavio Cremonah, Fabio Benfenati9, Pietro De Camilli9, Maïté Coppey-Moisanb, Marc Tramiere, Thierry Gallib,f, Kohji Takeda

aDepartment of Neuroscience, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, bInstitut Jacques Monod, Université Paris-Diderot and Université Pierre et Marie Curie, cDivisions of Liquid Biochemistry, dMembrane Biology, Kobe University Graduate School of Medicine, eDepartment of Chemistry, Pukyong National University, fMembrane Traffic in Neuronal and Epithelial Morphogenesis, INSERM, fDepartment of Neuroscience and Brain Technologies, The Italian Institute of Technology, Genova and Department of Experimental Medicine, University of Genova and Istituto Nazionale di Neuroscienze, fMIRC Institute of Molecular Oncology (IFOM), Universita' Vita-Salute San Raffaele and Istituto Nazionale di Neuroscienze (INN), gDepartment of Cell Biology and Neurobiology, Howard Hughes Medical Institute, Yale University School of Medicine

縁　言

細胞骨格を形成するアクチンのダイナミクスは、細胞の形態変化、細胞移動や細胞内膜輸送を含む細胞機能に非常に重要である1)。アクチン重合反応は、様々なアクチン制御タンパクによって促進されている。主にWASPファミリーに属するタンパクが活性化し、この活性化したタンパクがArp 2/3複合体を活性化し、アクチン重合核形成を促進する2)。N-WASPは自身の分子内結合によりArp 2/3の結合部位であるVCA ドメインをマスクし不活性化しているが、N-WASPに他のタンパクが結合すると、その分子内結合が開放される。その結果、VCA ドメインとArp 2/3の相互作用が可能になる。この活性化は、N-WASPのPRDドメインにSH3ドメインを持つ多くのタンパクが結合することによって起こる。

我々は、最近になり、SH3ドメインを持つタンパクであるAmphiphysin 1 (Amph 1) が精巣セリトマ細胞の食作用の際のアクチン重合を促進することを発見した。その促進効果には、Amph 1のSH3ドメインが必須である3)。Amph 1は、エンドサイトーシスに働く

平成22年12月受理

〒700-8558 岡山市北区鹿田町 2-5-1
電話：086-235-7125 FAX: 086-235-7126
E-mail：hiroyama.md.okayama-u.ac.jp

山田 浩司
昭和42年4月20日生
平成 3年 3月 大阪大学工学部卒業
平成 5年 3月 大阪大学大学院工学研究科博士前期課程修了
平成 9年 3月 広島大学大学院理学研究科博士後期課程修了（理学博士）
平成 9年 4月 サンスター株式会社 研究員
平成 9年 4月 日本術振興会博士研究員（PD）大阪大学産業科学研究所
平成11年 4月 岡山大学大学院自然科学研究科 研究生
平成11年11月 岡山大学大学院自然科学研究科 非常勤講師
平成12年 5月 岡山大学医学部助手（化学講座）
平成13年 4月 岡山大学大学院医学部総合研究科 助手
平成17年 4月 岡山大学大学院医学部総合研究科 助手
平成18年 9月 岡山大学大学院医学部総合研究科 講師
現在に至る

プロフィール
アダプタータンパクとして知られており、神経シナプス及び精巣セリトリ細胞に高発現している3,4。Amph1は、GTPaseであるダイナミン及びホスホイソシチド脱リン酸化酵素であるシナプトジェーニンと結合するC未に存在するSH3ドメイン6に加えて、N末端にBARドメインを持っている。このドメインは曲がった構造をしている。Amph1は、この性質により脂質二重膜に結合するとBARドメインの曲がり方により脂質膜を曲げる性質を持つ。また、BARドメインは脂質膜の曲がり方（曲率）を認識するセンサーとしても働く7-8。他にもクラリシン及びAP-2が結合するCLAPドメインがある9。従って、Amph1は、主にエンドサイトーシスのクラリシン被覆ピットに集まって、細胞膜が陥入してきた頸部をダイナミンと共に巻き付いて小胞化する過程に働くタンパクとして研究されてきた10,11。これまでに、Amph1のアクチン制御に関わる可能性が、神経の成長円錐12、Amph1の酵母のホモロジーであるRvs167の研究より示唆されていた13,15。我々は、Amph1がどのような機構でアクチン雲化を促進するかについて調べた。その結果、Amph1は、N-WASPに直接結合し、N-WASPを活性化することを見いだした。また、この活性化が生細胞で起こることを実証した。

材料と方法

1. 動物と細胞培養

本研究に使用した抗体、試薬は市販品の生化学用グレードを用いた。野生型のマウスは、清水実験動物より購入した。Amph1パックアウトマウスは、胚幹細胞をジーンターゲッティングすることにより作成した16。ラットセルトリ細胞株（Ser-W3）の培養は、以前の我々の方法に準じた17。

2. タンパク精製

N-WASPは、昆虫細胞発現系を用いて発現精製を行った17,18。Arp2/3は脳の脳から精製した19。Actinは、うさぎ骨格筋より精製した。以上は、朴らの方法に従った。Amph1の変異体、1-306アミノ酸（N-BAR-PRS）、1-626アミノ酸（ΔSH3）、226-695アミノ酸（ΔN-BAR）、248-601アミノ酸欠損（N-BAR-SH3）はPCRにて増幅後、pGEX-6pにクローニングした。SH3ドメインはpGEX-2Tにクローニングした8。これらの遺伝子配列はシーケンシングにより確認した。GST融合タンパクの発現精製は、以前の我々の方法に準じた8,9。

3. 発現用cDNAコンストラクトの構築

EcoRIとBamHIの制限酵素認識配列を含む全長Amph1、1-626アミノ酸（ΔSH3）断片をPCRにて増幅後、pEGFP-C1もしくはmCherry-C1にクローニングした。mCherry-C1は、Dr.Tsien（Howard Hughes Medical Institute, University of California, San Diego)より供与を受けた。XhoI及びEcoRIを含むAmph1をPCRにて増幅後、mCherry-N1にクローニングした。pEF-BOS-myc-N-WASP及びpEGFP-N-WASPは、朴らが作成した20。XhoI及びEcoRI制限酵素認識配列を含む全長のN-WASP及び265-391アミノ酸（PRDドメイン）をPCRにて増幅し、mCherry-C1にクローニングした。これらの遺伝子配列はシーケンシングにより確認した。発現用プラスミドは、lipofectamine 2000を用いて細胞に導入した。遺伝子を細胞に導入後、24から48時間後に、実験に使用した。

4. リボソームの作成

Ser-W3を刺激しラップル膜形成を誘導する場合に用いたリボソームは、70%PC/30%PSを含む脂質混合液をクロロホルムに溶解し、前に我々が行った方法に準じて調製した3。アクチン重合反応を刺激する場合に用いたリボソームは、以下に調製した。50%PS/50%PC、50%phosphatidylethanolamine/50%PC、50%PI/50%PC、50%phosphatid acid/50%PC、10%PI(4, 5)P_2/90%PCを含む脂質混合液をクロロホルムに溶解し、以前に我々が用いた方法に準じて、直径100nmのリボソームを調製した21。

5. ラップル膜形成の定量化

カバーガラス上で培養したSer-W3（1×10^4 cells/coverslip）に、血清を含まないDMEM液に希釈した0.25mMのPS-リボソームを加え、37℃、10分間刺激した。刺激した細胞は、4%パラホルムアルデヒドで固定後、蛍光ラベルしたファイオジンを用いアクチン線維を染色した。ラップル膜形成は、細胞膜辺縁部でアクチン線維の集積している特徴的な膜構造体であることを利用し同定した30。細胞に、ラップル膜が一つ以上あれば、ラップル膜を形成した細胞と見なし、計測した細胞の中で、ラップル膜を形成した細胞の割合を％にて示した。異なった領域で、100個以上の細胞を計測してグラフ化した。以上的方法は、以前の我々の方法に準じた31。
6. 蛍光顕微鏡観察
4%パラホルムアルデヒドにて固定したSer-W3を
定型に従い、細胞膜の透過処理後、蛍光間接抗体法を
行った。サンプルは、共焦点レーザー顕微鏡を用いて
観察した22)。
7. 脳細胞質、シナプトソームの調製
脳細胞質は、Lebensohnらの方法に準じて調整し
た23)。シナプトソームは、Dunkleyらの方法に従って
調製した24)。
8. シナプトソームにおけるアクチン綫維、単体アク
チンの定量
単体アクチン/アクチン綫維の形成サイクルの測
定法は、Bernsteinらの方法に従った25)。
9. In vitroアクチン重合測定
脳細胞質を用いたアクチン重合測定は、Maらの方
法に準じた26)。N-WASP依存性のArp 2 / 3の活性化
は、Parkらの方法に準じた26)。
10. FRET-FLIM法(Fluorescent Energy Transfer-
Fluorescent Life Time Imaging Microscopy)
FRET-FLIM法は、Padilla-Parraらの方法に準じ
た27)。GFAP-Amph1のみを発現させたSer-W3におけ
る GFAPの蛍光寿命をネガティブコントロールとした。
この値を基準に、GFAP-Amph1とAmph1-mCherryも
しくは、mCherry-N-WASPを発現させた細胞におけ
る GFAPの蛍光寿命を測定し、基準と比較して減少の
度合いが大きいときにFRETを起こしているとした。

結果
1. Amphisphin 1は、N-WASP依存性のアクチン
重合に関与する
脳細胞質に ATP存在下、PSを含んだリポソーム
(PS-リポソーム)を加えるとアクチン重合を惹起で
きる。この重合量は、ピレンラベルしたアクチンを反
応系に共存させておくと、ピレンの蛍光強度変化を指
標として定量可能である27,29). N-WASPの阻害剤であ
るWiskostatin29)はアクチン重合を強く阻害した(図1
A)。Amph1のノックアウトマウス(Amph1−/−)の
脳細胞質では、PS-リポソームで惹起されるアクチン
綫維形成量が野生型の約40%(剝離後1,000秒後)に減
少していた。この減少は、Amph1タンパクをAmph1
−/−脳細胞質に添加することにより、野生型のそれ
と同程度に回復した(図1B)。これらの結果は、
Amph1がPS-リポソーム依存性のアクチン重合に関
与し、N-WASPもこの経路に関与することを示唆して
いる。Amph1とN-WASPはシナプスに高濃度に存在
するため30,31)。Amph1の欠失によりシナプスのアク
チン綫維形成に変化があるかどうかを調べた。野生
型とAmph1−/−の脳細胞質中の単体アクチン量
は同じであったが、Amph1−/−のシナプトソーム画
分の単体アクチン量が減少していた(図1C)。ま
た、Amph1−/−のシナプトソームの脱分極刺激によ
る単体アクチン/アクチン綫維形成サイクルは、野生
型と同じであった(図1D)。これらの結果は、Amph1
がシナプスのアクチンダイナミクスに関与することを
強く示唆している。
2. Amphisphin 1は、直接N-WASP依存性Arp2
/ 3アクチン重合核形成を促進する
Amph1は、N-WASPとSH3ドメインを介して直接に
結合した(図2)。さらに、Amph1は、N-WASP及
びArp2 / 3依存性のアクチン重合を濃度依存的に促
進し、この作用には、Amph1のBARドメインとSH3
ドメインの両方が必要であった(図3)。
3. Amphisphin 1とN-WASPの相互作用は細胞辺
縁部で起こる
Amph1がN-WASPと細胞内で結合するかどうか
か調べるために、内在性にAmph1を発現している
Ser-W3を用いた。アクチン重合は、ラッフル膜を形
成する際に活発に起こる。Ser-W3は、PS刺激により
PS受容体依存的にラッフル膜を形成する。その際に
Amph1はラッフル膜に局在する31)。N-WASPの阻害
剤Wiskostatinは、ラッフル膜の形成を顕著に阻害し
た(図4A)。さらに、mCherryと融合したN-WASPの
PRDドメインをSer-W3に強制発現させ、Amph1と
N-WASPの結合を阻害したところ、ラッフル膜形成が50%以下に低下した(図4B)。同様な効果は、
Amph1のSH3ドメインを強制発現させた細胞におい
ても観察された(図4C)。以上の結果から、Amph1
とN-WASPは少なくとも一部はPS依存性のラッフ
ル膜形成に関与していると考えられた。

続いて、ラッフル膜を形成する際にAmph1と
N-WASPが実際に結合することを実証するために
FRET-FLIM法を用いた32,33)。まず、FRET-FLIM法
がAmph1とN-WASPの結合検出に適用可能なか
どうかを確認した。これまでに in vitroでホモダイマーの形成が報告されているAmph1
33)について、そのダイマー形成をFRET-FLIM法に

アンフィファイシンによるアクチン制御：山田浩司，他12名

3
図1 Amph1 (−/−) のシナプスは脳細胞質ではアクチンダイナミクスが低下している
A：Wiskostatin は、PS 依存性アクチン重合活性を阻害する。
B：Amph1 (−/−) 脳細胞質の PS 依存性アクチン重合活性は低下している。Amph1 (−/−) 脳細胞質における PS 依存性アクチン重合は、野生型に比べて約40％に低下している。この細胞質に精製した Amph1 タンパクを加えると PS 依存性アクチン重合活性が野生型と同程度まで回復する。
C：Amph1 (−/−) シナプトソームでは、単量体アクチン量が減少している。Amph1 (−/−) 脳細胞質の単量体アクチン量は減少していないが、シナプトソーム画分の単量体アクチン量が減少している。コントロールである Synaptophysin 及び Dynamin I 量の変化はない。
D：Amph1 (−/−) シナプトソームの脱分極刺激によるアクチン重合脱重合サイクルは、野生型のそれと比較して変化はない。
図2 Amph1は直接N-WASPと結合する
A：セルトリ細胞に発現させたN-WASP-mycをGST-Amph（WT）、GST-Amph（ΔSH3）、GST-Amph（SH3）、GST-Amph（ΔN-BAR）、GSTを用いてプルダウンした。Amph1は、Dynamin 2と共存N-WASPとも結合する。
B：Amph1とHis-N-WASPの両精製タンパクは、直接結合する。

図3 Amph1は、N-WASP及びArp2/3依存性のアクチン重合を促進する
A：Amph1は濃度依存的にN-WASP及びArp2/3依存性アクチン重合を促進する。100nM GST-VCAは、ポジティブコントロールである。
B：実験Cで用いたAmph1の変異体
N-BAR：N-terminal amphipathic helix preceding the consensus BAR (BIN/amphiphysin/Rvs) domain, PRS: proline-rich stretch, CLAP: clathrin-AP2-binding domain, SH3: src-homology 3.
C：Amph1によるN-WASP及びArp2/3依存性アクチン重合の促進には、N-BARとSH3ドメインの両方が必要である。
A

B

C

図 4 Amph 1-N-WASP 複合体は、PS 依存性ラッフル膜形成に関与する
A : N-WASP 阻害剤 Wiskostatin の PS 依存性ラッフル膜形成阻害
B : N-WASP の PRD ドメインの強制発現による PS 依存性ラッフル膜形成阻害
C : Amph 1 ΔN-BAR の強制発現による PS 依存性ラッフル膜形成阻害

て調べた。Ser-W3にGFP-Amph1及びAmph1-mCherryを共発現させ、PS刺激の後、FRET-FLIM解析を行った。両タンパクを強制発現させた場合、GFPの蛍光寿命が2.48±0.01nsから2.40±0.03ns（n＝14）に減少した（図5）。従って、FRET-FLIM法により、細胞内でAmph1のホモダイマーの形成が検出可能であることを確認した。

GFP-Amph1とmCherry-N-WASPを共発現させたSer-W3を用いてFRET-FLIM法を行った。GFP-Amph1とAmph1とは結合しないmCherryを共発現させた細胞のGFPの蛍光寿命は、2.47±0.01nsであり、非特異的にFRETが起こらないことを確認した。GFP-Amph1とmCherry-N-WASPを共発現させたSer-W3において、刺激なしでは、25%の細胞がFRETを示していたのに対し、PS刺激により89%の細胞がFRETを示した（図6）。さらに、GFP-Amph1とmCherry-N-WASPの結合を経時的に観察した。

GFP-Amph1とmCherry-N-WASPは、PS刺激後1分以内で、最初に結合し、その結合は細胞辺縁部で観察された。経時とともにその結合は減少するが、3分後に再度結合した（図6C, D）。これらの結果は、我々が以前に発見したAmph1（-/-）のセルトリネ細胞では、食作用とラッフル形態が著しく低下するという作用機序を説明するものである。

考 察

本研究以前に、Amph1とアクチンとの機能的な関与が報告されていたが、その作用機序は不明であっ

12-15。我々は、SH3ドメインを持つタンパクAmph1が、N-WASPの活性化分子として働くことを明らかにした。他の間接的にアクチンに働く分子も関与している可能性がある。これまでは、Amph1を含むBARドメインを持つスーパーファミリーの中で、SH3ドメインを持ついくつかのタンパクが、in vitroでN-WASPを活性化しArp 2/3経由でアクチンの重合を促進することが報告されている14, 33, 37。さらに、我々はFRET-FLIM法を用いてAmph1とN-WASPの結合が外部刺激に応じて形成されるラッフル膜近傍であることを実証した。N-WASPの活性化を制御する因子は多くその等同した状態で働くのだろう。本研究で示したシナプトソームとセルトリ細胞の解析では、Amph1による高いアクチン重合核形成活性が観察されている。おそらく、この現象は、これら細胞におけるAmph1の発現量を反映していると考えられる。Amph1（-/-）マウスは、空間認識力が不足している16。アクチンを制御するタンパクの中で、BARと

6
図5 FRET-FLIM法によるSer-W3におけるAmpl 1のダイマー化の検出
A：GFP-Ampl 1のみを発現させた細胞をコントロールとした（図上）。GFP-Ampl 1とAmpl 1-mCherry（図下）を共発現させた細胞では、GFPの蛍光寿命の減少が画像解析より判明した（矢印）。スケールバー：10μm
B：m6p（結合量の指標）の細胞内3D分布図。GFP-Ampl 1とAmpl 1-mCherryを共発現させた細胞では、m6pは0から0.11に増加し、細胞の全体でその結合が観察される（図下）。
図6 Amph1とN-WASPの時空間的な結合
A：GFP-Amph1のみを発現させた細胞をコントロールとした（図上）、GFP-Amph1とmCherry-N-WASP（図下）を共発現させた細胞では、GFPの蛻光寿命の減少が画像解析より判明した（矢印）、スケールバー：10μm
B：mfn（銅合量の指標）の細胞内3D分布図、GFP-Amph1とmCherry-N-WASPを共発現させた細胞では、mfnは0.09に増加し、細胞辺縁部でその結合が観察された（図下）、
C：GFP-Amph1とmCherry-N-WASPの結合の時間変化、
D：Cにおけるmfn值の時間変化、12秒間隔で、丸で囲まれている部分のmfn値の平均をグラフ化した。

SH3ドメインをもつタンパクの変異はどのような表現型を示すのか興味深い、例えば、人での遺伝性精神遅滞に関与するoligophreninタンパクの変異である7,8,9、驚いたことに、N-WASP依存性のアクチン重合の活性化には、Amph1のSH3ドメインだけでなくN-BARドメインも必要である。BARドメインは、Amphのホモあるいはヘテロオリゴマー形成10および細胞膜への結合と活性化する。これらの結果は、BARドメインが細胞膜への結合ではなく、ダイマー化に必要であり、このダイマー化がN-WASPの活性化に重要であることを強く示している。Amph1のダイマー化は、後に続くクラスター化とN-WASPのダイマー化を促進する。最近の研究では、N-WASPが完全に活性化するためには、N-WASPがダイマー化し、そのダイマー化に続いて、SH3ドメインを持つタンパクの結合による分子内抑制の解除が起こるという活性化機構が示唆されている。そして、ダイマー化したタンパクのSH3ドメインはモノマーよりもさらに強くN-WASPを活性化する11。この場合においても、完全なN-WASPの活性化には、細胞膜のPIP2にN-WASPが結合することが必要である。
図7 細胞内でのアクチン重合におけるAmph1とN-WASPの働き
N-WASPはダイマー化したAmph1が結合することにより活性化される。その後Arp 2/3を介してアクチン重合が促進される。これら相互作用は、細胞膜の直近でおこり、重合したアクチン線維は、Dynamin 依存性のエンドサイトーシスやラッフル膜の形成を助ける。簡略化するために、他のアクチン関連タンパクやエンドサイトーシス被覆タンパクは、略している。

文 献

1) Pollard TD, Borisy GG: Cellular motility driven by assembly and disassembly of actin filaments. Cell (2003) 112, 453–465.
2) Takenawa T, Suetsugu S: The WASP-WAVE protein network: connecting the membrane to the cytoskeleton. Nat Rev Mol Cell Biol (2007) 8, 37–48.
3) Yamada H, Ohashi E, Abe T, Kusumi N, Li SA, Yoshida Y, Watanabe M, Tomizawa K, Kashiwakura Y, Kumon H, Matsui H, Takei K: Amphiphysin I is important for actin polymerization during phagocytosis. Mol Biol Cell (2007) 18, 4669–4680.
4) De Camilli P, Thomas A, Cofrell R, Folli F, Lichte B, Piccolo G, Meinck HM, Austoni M, Fassett G, Bottazzo G, Bates D, Cartlidge N, Solimena M, Killmann MW: The synaptic vesicle-associated protein amphiphysin is the 128-kD autoantigen of Stiff-Man syndrome with breast cancer. J Exp Med (1993) 178, 2219–2223.
5) Watanabe M, Tsutsui K, Hosoya O, Tsutsui K, Kumon H, Tokunaga A: Expression of amphiphysin I in Sertoli cells and its implication in spermatogenesis. Biochem Biophys Res Commun (2001) 287, 739–745.
6) Cestra G, Castagnoli L, Dente L, Minenkova O, Petrelli A, Migone N, Hofmüller U, Schneider-Mergener J, Cesareni G: The SH3 domains of endophilin and amphiphysin bind to the proline-rich region of synaptojanin I at distinct sites that display an unconventional binding specificity. J Biol Chem (1999) 274, 32001–32007.
7) Peter BJ, Kent HM, Mills IG, Vallis Y, Butler PJ, Evans PR, McMahon HT: BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science (2004) 303, 495–499.
8) Yoshida Y, Kinuta M, Abe T, Liang S, Araki K, Cremona O, Di Paolo G, Moriyama Y, Yasuda T, De Camilli P, Takei K: The stimulatory action of amphiphysin on dynamin function is dependent on lipid bilayer curvature. EMBO J (2004) 23, 3483–3491.
9) Slepnev VI, Ochoa GC, Butler MH, De Camilli P: Tandem arrangement of the clathrin and AP-2 binding domains in amphiphysin I and disruption of clathrin coat function by amphiphysin fragments comprising these sites. J Biol Chem (2000) 275, 17583–17589.
10) Schmid SL, McNiven MA, De Camilli P: Dynamin and its partners: a progress report. Curr Opin Cell Biol (1998) 10, 504–512.
11) Takei K, Slepnev VI, Haucke V, De Camilli P: Functional partnership between amphiphysin and dynamin in clathrin-mediated endocytosis. Nat Cell Biol (1999) 1,
12. Mundigl O, Ochoa GC, David C, Slepnev VI, Kabanov A, De Camilli P: Amphiphysin I antisense oligonucleotides inhibit neurite outgrowth in cultured hippocampal neurons. J Neurosci (1998) 18, 93–103.

13. Sivadon P, Bauer F, Aigle M, Crouzet M: Actin cytoskeleton and budding pattern are altered in the yeast rvs161 mutant: the Rvs161 protein shares common domains with the brain protein amphiphysin. Mol Gen Genet (1995) 246, 485–495.

14. Munn AL, Stevenson BJ, Gelli MI, Riezman H: end5, end6, and end7: mutations that cause actin delocalization and block the internalization step of endocytosis in Saccharomyces cerevisiae. Mol Biol Cell (1995) 6, 1721–1742.

15. Kaksmonen M, Toret CP, Drubin DG: A modular design for the clathrin- and actin-mediated endocytosis machinery. Cell (2005) 123, 305–320.

16. Di Paolo G, Sankaranarayanan S, Wenk MR, Daniell L, Perucco E, Caldarone BJ, Flavell R, Picciotto MR, Ryan TA, Cremona O, De Camilli P: Decreased synaptic vesicle recycling efficiency and cognitive deficits in amphiphysin I knockout mice. Neuron (2002) 33, 789–804.

17. Miki H, Miura K, Takenawa T: N-WASP, a novel actin-depolymerizing protein, regulates the cortical cytoskeletal rearrangement in a PIP2-dependent manner downstream of tyrosine kinases. EMBO J (1996) 15, 5326–5335.

18. Suetsugu S, Miki H, Takenawa T: The essential role of profilin in the assembly of actin for microspike formation. EMBO J (1998) 17, 6516–6526.

19. Egile C, Loisel TP, Laurent V, Li R, Pantaloni D, Sansonetti PJ, Cartier MF: Activation of the CDC42 effector N-WASP by the Shigella flexneri IcsA protein promotes actin nucleation by Arp2/3 complex and bacterial actin-based motility. J Cell Biol (1999) 146, 1319–1332.

20. Park SJ, Suetsugu S, Takenawa T: Interaction of HSP90 to N-WASP leads to activation and protection from proteasome-dependent degradation. EMBO J (2005) 24, 1557–1570.

21. Kinuta M, Yamada H, Abe T, Watanabe M, Li SA, Kamitani A, Yasuda T, Matsukawa T, Kumon H, Takei K: Phosphatidylinositol 4,5-bisphosphate stimulates vesicle formation from liposomes by brain cytosol. Proc Natl Acad Sci USA (2002) 99, 2842–2847.

22. Kamitani A, Yamada H, Kinuta M, Watanabe M, Li SA, Matsukawa T, McNiven MA, Kumon H, Takei K: Distribution of dynamins in testis and their possible relation to spermatogenesis. Biochem Biophys Res Commun (2002) 294, 261–267.

23. Lebensohn AM, Ma L, Ho HY, Kirschner MW: Cdc42 and PIP(4,5)P2-induced actin assembly in Xenopus egg extracts. Methods Enzymol (2006) 406, 156–173.

24. Dunkley PR, Heath JW, Harrison SM, Jarvie PE, Glenfield PJ, Rostas JA: A rapid Percoll gradient procedure for isolation of synaptosomes directly from an S1 fraction: homogeneity and morphology of subcellular fractions. Brain Res (1988) 441, 59–71.

25. Bernstein BW, Bamburg JR: Cycling of actin assembly in synaptosomes and neurotransmitter release. Neuron (1989) 3, 257–265.

26. Ma LE, Cantley LC, Janney PA, Kirschner MW: Coregulation of specific phosphoinositides and small GTP-binding protein Cdc42 in inducing actin assembly in Xenopus egg extracts. J Cell Biol (1998) 140, 1125–1136.

27. Padilla-Parra S, Audugé N, Coppey-Moisan M, Tramier M: Quantitative FRET analysis by fast acquisition time domain FLIM at high spatial resolution in living cells. Biophys J (2008) 95, 2976–2988.

28. Ho HY, Rohatgi R, Lebensohn AM, Ma LE, Li J, Gygi SP, Kirschner MW: Toca-1 mediates Cdc42-dependent actin nucleation by activating the N-WASP-WIP complex. Cell (2004) 118, 203–216.

29. Peterson JR, Bickford LC, Morgan D, Kim AS, Ouerfell O, Kirschner MW, Rosen MK: Chemical inhibition of N-WASP by stabilization of a native autoinhibited conformation. Nat Struct Mol Biol (2004) 11, 747–755.

30. Bauerfeind R, Takei K, De Camilli P: Amphiphysin I is associated with coated endocytic intermediates and undergoes stimulation-dependent dephosphorylation in nerve terminals. J Biol Chem (1997) 272, 30984–30992.

31. Wegner AM, Nebhan CA, Hu L, Majumdar D, Meier KM, Weaver AM, Webb DJ: N-wasp and the arp2/3 complex are critical regulators of actin in the development of dendritic spines and synapses. J Biol Chem (2008) 283, 15912–15920.

32. Tramier M, Gautier I, Piolot T, Ravalet S, Kemnitz K, Coppey J, Durieux C, Mignotte V, Coppey-Moisan M: Pico-second-hetero-FRET microscopy to probe protein-protein interactions in live cells. Biophys J (2002) 83, 3570–3577.

33. Wigge P, Kohler K, Vallis Y, Doyle CA, Owen D, Hunt SP, McMahon HT: Amphiphysin heterodimers: potential role in clathrin-mediated endocytosis. Mol Biol Cell (1997) 8, 2003–2015.

34. Otsuki M, Ito T, Takenawa T: Neural Wiskott-Aldrich syndrome protein is recruited to rafts and associates with endophilin A in response to epidermal growth factor. J Biol Chem (2003) 278, 6461–6469.

35. Kessels MM, Qualmann B: The syndapin protein family: linking membrane trafficking with the cytoskeleton. J Cell Sci (2004) 117, 3077–3086.

36. Yarar D, Waterman-Storer CM, Schmid SL: SNX9 couples actin assembly to phosphoinositide signals and is
required for membrane remodeling during endocytosis. Dev Cell (2007) 13, 43–56.
37) Takano K, Toyooka K, Suetsugu S: EFC/F-BAR proteins and the N-WASP-WIP complex induce membrane curvature-dependent actin polymerization. EMBO J (2008) 27, 2817–2828.
38) Billuart P, Bienvenu T, Ronce N, des Portes V, Vinet MC, Zemni R, Roest Crollius H, Carrié A, Fauchereau F, Cherry M, Briault S, Hamel B, Fryns JP, Beldjord C, Kahn A, Moraine C, Chelly J: Oligophrenin-1 encodes a rhoGAP protein involved in X-linked mental retardation. Nature (1998) 392, 923–926.
39) Itoh T, De Camilli P: BAR, F-BAR (EFC) and ENTH/ ANTH domains in the regulation of membrane-cytosol interfaces and membrane curvature. Biochim Biophys Acta (2006) 1761, 897–912.
40) Padrick SB, Cheng HC, Ismail AM, Panchal SC, Doolittle LK, Kim S, Skehan BM, Umetani J, Brautigam CA, Leong JM, Rosen MK: Hierarchical regulation of WASP/ WAVE proteins. Mol Cell (2008) 32, 426–438.
41) Merrifield CJ, Perrais D, Zenisek D: Coupling between clathrin-coated-pit invagination, cortactin recruitment, and membrane scission observed in live cells. Cell (2005) 121, 593–606.
42) Gold ES, Morrissette NS, Underhill DM, Guo J, Bassetti M, Aderem A: Amphiphysin IIm, a novel amphiphysin II isoform, is required for macrophage phagocytosis. Immunity (2000) 12, 285–292.
43) Lee E, Marcucci M, Daniell L, Pypaert M, Weisz OA, Ochoa GC, Farsad K, Wenk MR, De Camilli P: Amphiphysin 2 (Bin1) and T-tubule biogenesis in muscle. Science (2002) 297, 1193–1196.
44) Rohatgi R, Ma L, Miki H, Lopez M, Kirchhausen T, Takenawa T, Kirschner MW: The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell (1999) 97, 221–231.