MECHANICAL ENGINEERING | SHORT COMMUNICATION

Effect of natural additives on concrete mechanical properties

Rocio R. Gallegos-Villela¹, Fabian D. Larrea-Zambrano², Clara E. Goyes-Lopez², Josue F. Perez-Sanchez¹, Edgardo J. Suarez-Dominguez¹ and Arturo Palacio-Perez³

Abstract: The construction industry commonly uses steel-reinforced concrete despite the high levels of pollution in its production process. In this research, it was studied the dosing effect of nopal mucilage and Ixte fiber as additives for the enhancement of concrete’s mechanical properties: compression strength, flexural strength, heat transfer coefficient, ultrasonic pulse rate, ED-XRF, and roughness by fractal dimension analysis. It was found a remarkable improvement in mechanical properties when both natural additives are used. It was observed an increase of potassium and calcium ions concentration after additive dosing. This behavior determines the suitability of the blend for its application in the engineering and construction industry to reduce cement or steel use.

Subjects: Stress Analysis; Technology; Concrete & Cement

Keywords: concrete with organic compounds; nopal mucilage and Ixte fiber; thermal analysis; flexural and compressive strengths

1. Introduction

Concrete is the primary construction material used worldwide due to its versatility and durability (Carrillo et al., 2017; León-Martínez et al., 2014). Nowadays, the pursuit of environmental impact reduction due to its production and usage leads to applying sustainable solutions. The use of recycled polymers as concrete aggregate has shown an increase of tenacity, a property that implies the higher energy absorption capacity before the material failure (Behera et al., 2014; Gunasekar et al., 2019; Liguori et al., 2014; Verdelotti et al., 2014; Zhang et al., 2019). Properties like diffusion and penetration coefficients are related to material durability (Binić & Aksogan, 2018). Therefore, adding fine aggregates or mineral compounds increases the abrasion resistance and strength (McNeil & Kang, 2013; Tosun & Şahin, 2015).

Other works have proposed methods to improve concrete performance: avoiding the entrance of chlorine ions, increasing the failure strength, or reducing the shaping time. Among these methods, organic components’ addition to the mixture is one of the most recently studied. One of the

PUBLIC INTEREST STATEMENT

The construction industry constitutes one of the significant sources of pollution. Nowadays, plenty of research has been conducted to obtain eco-friendly materials that achieve the same characteristics as standard materials. One of the main topics is the addition of organic compounds into concrete to reduce cement quantities used in constructive elements. This research studied the dosing effect of nopal mucilage and Ixte fiber as additives for enhancing concrete’s mechanical properties. The combination resulted in a 96% increase of the flexural-compressive strength and conferred to the materials the capacity of retard heat transfer without compromise the mechanical properties. The nopal mucilage increases calcium and potassium ion concentration, accelerating the crystallization processes for the best mechanical properties. This behavior determines the blend’s suitability for its application in the engineering and construction industry to reduce cement or steel use.
applied materials is mucilage extracted from different cacti sources, as nopal (Alpizar-Reyes et al., 2017; Hernández et al., 2016).

Nopal (Opuntia ficus Indica) is a plant cultivated for commercial and consumption purposes in Chile, Argentina, Morocco, Italy, and the USA; and it is, along with corn, a staple food in Mexico (Arreola-Nava et al., 2017; López-León et al., 2019; Martínez et al., 2018). Different nopal species have been studied to determine their chemical composition to understand its properties and applications (Aquilina et al., 2018; Carrillo et al., 2017; González-Sandoval et al., 2019; Madera-Santana et al., 2018).

The addition of nopal mucilage improves the electrical resistivity, effective porosity, and chloride permeability for different contents of the extract substituting the water in the concrete blend (Aquilina et al., 2018; Blanco et al., 2019; Torres-Acosta & Díaz-Cruz, 2020). However, compressive strength needs more extended periods to be positive, and the average time is seven days until the compressive strength is equal to the blend with no extract and 28 days to reach at least 20% more.

Besides, not only the water is substituted, but also the cement powder. In these cases, almost an increase of 75% of the compressive strength is achieved for an average substitution of 2%. However, the cladode’s powders’ obtention is more expensive than the obtention process of the mucilage extract, which could not be profitable for industrial applications (Aquilina et al., 2018; El Azizi et al., 2019; Madera-Santana et al., 2018).

Nowadays, the combination of ancient construction technics has re-evolved for a widespread application of natural materials. For example, in earth-based construction, natural fibers are used to prevent shrinkage or wall cracking, improving their binding force with positive effects on the tensile and compressive strength of the final material (Giada et al., 2019; Ortega-Lerma et al., 2016).

This research proposes the dosing effect of Nopal mucilage and Ixtle fiber as additives for concrete, studying the generation of green materials for the construction industry. Besides the following of the compressive and flexural strength behavior, it was considered the natural aggregates’ effect on the heat transfer coefficient.

2. Materials and methods

The materials were analyzed from twenty specimens (ten beams and ten cylinders) of three different blends: a blank conformed by the conventional elements of concrete (CB), a blend whit nopal mucilage substituting water (CM), and a mixture of CM and Ixtle fiber (CMI). Regular Portland cement was used (CPC-30, Holcim Company), and the sand was river type with granulometry #4. For the obtention of nopal mucilage, 20 kg of nopal were cleaned and blended to get 8 kg of the organic material. Sodium benzoate was added at five g/L as an antioxidant. The mucilage was aged for 48 h and then used in the tests (Figure 1(a,b)). Ixtle fiber was hand-extracted from Agave Lechuguilla Torrey, applying rural techniques (Figure 1(c,d)). After mechanical treatment, the fibers were set to a 2 mm average thickness to promote concrete strength enhancement (Suárez-Domínguez, Aranda-Jiménez, Fuentes-Pérez et al. 2017a; Suarez-Domínguez, Aranda-Jiménez, Zuñiga-Leaf et al., 2017b). It is worth mentioning that all of the plants were produced within the university campus facilities.

Figure 1. Representative specimens of the plants for the obtention of natural additives: Nopal plant (a), obtention of mucilage (b), Agave Lechuguilla torrey plant (c), and Ixtle fibers (d).
In similar works, the authors have estimated that concrete gets its best properties around ninety days after fabrication (Aquilina et al., 2018; Hernández et al., 2016; Torres-Acosta & Díaz-Cruz, 2020). The mixtures were added with an accelerator (8 ml/kg of cement) to perform tests after fourteen days of curing (Sika Set accelerator). The accelerator did not influence the natural additive’s behavior, and it is also useful to streamline the unmolding process. Table 1 shows the specifications of the sample conformations.

Figure 2 shows the samples and molds used in this work for beams (2a) and cylinders (2b). The compression tests followed the ASTM-C93 method (under the Mexican Standard NMX-C-083-ONNCCE, 2010) with cylinder dimensions of 10 cm in diameter and 20 cm in height. The flexural strength test was performed for beams of 15 cm x 15 cm x 60 cm with a Controls E-48 Universal Machine under the ASTM-C293 Standard (Mexican Standard NMX-C-303-ONNCCE, 2010).

The heat transfer test followed the procedure described in ASTM-C177-19 with a KD2 Thermal Analyzer. The samples’ porosity was determined from the ultrasonic analysis (UPV) following the ASTM-C597 (NMX-C-275-ONNCCE, 2004). For the UPV analysis, 7.5 x 7.5 x 15 cm prisms were cut from the beam probes. Finally, for the surface roughness analysis, a set of pictures was taken with a 10x digital microscope, and ImageJ software was used to analyze the samples’ surfaces. The Energy dispersive X-ray fluorescence analysis (ED-XRF) was performed to determine the natural aggregates’ presence in the samples. After compression tests, remained pieces of the cylinders and beams were tested in an ED-XRF Analyzer (Xenemetrix, P-Metrix) at 50 kV/10 W/400 μA with Rh anode and Ti filter for 300 counts/min. All of the experiments were performed in triplicate with a mean average error of 5%.

3. Results and discussion
Table 2 shows the results of the flexural and compression strength experiments. The CMI had a flexural strength of 2,62 ± 0.131 MPa (72.36% higher than CB) and compression strength of 20,75 ± 1,038 MPa (96.5% higher than CB). This behavior is a clear indication of the positive effect of the mucilage-fiber combination. The effect of these materials can be abided from two points of view. The first one is related to the water retention capacity of the nopal

Table 1. Mixture fabrication ratios (CB = blank, CM = concrete with mucilage, and CMI = concrete with mucilage and Ixtle fiber)
Cement (%)
Gravel (%)
Sand (%)
Mucilage (%)
Water (%)
Fiber (ppm)
Accelerator (ppm)

Figure 2. Examples of molds and samples for beams (a) and cylinders (b).
mucilage, which results in a better watering effect that enhances the setting process and reduces the water-to-cement ratio, achieving higher strength values (Aquilina et al., 2018; El Azizi et al., 2019; Madera-Santana et al., 2018; Torres-Acosta & Diaz-Cruz, 2020). Moreover, the porosity and total void content are related to excess water or air trapping during the fabrication and setting process. Ixtle fiber works as a filler material that promotes the homogeneity of the materials and reduces the zones of weakness in the final structures (Giada et al., 2019; Marie, 2016; Ortega-Lerma et al., 2016).

The results of the compression test showed a direct relation to the physical changes of the samples. The control sample CB (Figure 3(a)), water-based cylinders, had a characteristic behavior compared to the natural-modified samples. It showed a linear failure distribution due to the possible low homogeneity of the mixture. The opposite effect is observed for CM and CMI samples (Figure 3(b,c)).

Surface image analysis was applied to study the rugosity of the samples. Figure 4 shows pictures in which the roughness profile is very similar for all samples, and Table 3 shows the fractal dimension analysis results. The values obtained indicate that the addition of natural additives did not compromise the surface morphology.

Typically, for higher density values, better mechanical properties are obtained. Therefore, the high compression and flexural strengths are related to this property, as well as the thermal conductivity (K). The K results are shown in Table 3, and it is observed a reduction of about 50% when Ixtle fiber is added, which indicates the proportional relation of these variables. These results agree with the natural fibers’ filler function because it is a poor heat conductor and as a replacement of air in the pores reduces the heat transport within the materials (Asadi et al., 2018; Maneewan et al., 2019; Suarez-Dominguez et al., 2017b).

Table 3 also shows the UPV analysis of the samples. For the mucilage and mucilage-fiber mixtures, the UPV remains in good quality concrete level, as indicated in the reference standard: high quality 3001< UPV<4000, durable UPV>4000 (ASTM-C597, NMX-C-275-ONNCCE; Nogueira & Rens, 2018). These values are higher than the CB mixture and indicate

Table 2. Compression and flexure results after 14 days of curing
Beams

CB
CM
CMI
To identify the presence of mucilage, it was carried out an ED-XRF analysis. Results are shown in Figure 5, where it is possible to appreciate an increase of potassium and calcium ions that are characteristic of nopal mucilage (Aquilina et al., 2018; El Azizi et al., 2019; Carrillo et al., 2017; Madera-Santana et al., 2018).

Calcium and Potassium accelerate the hydration rate of freshly paced concrete and decrease its free water content faster (Jianming et al., 2019); this change may favor the crystallization of concrete and bonds between components.

4. Conclusions
This research aimed to analyze the effect of dosing nopal mucilage and Ixtle fiber on concrete’s mechanical properties. It was found that the addition of nopal mucilage in concrete...
mixtures generate a remarkable increase of the flexural and compressive strength in comparison with a typical concrete mix. On the other hand, it can be concluded so far that the Ixtle fiber improves the nopal mucilage effect (72 and 96% increase of the flexural and compressive strength, respectively) and confers to the materials the capacity of retard heat transfer without compromising the mechanical properties. It was found that nopal mucilage addition increases organic calcium and potassium ion concentration. This could promote the crystallization processes, potentializing the mechanical properties on shorter setting periods.

The materials and mixtures proposed in this work can be used as sustainable materials in the construction industry. Along with the anticorrosion functionality studied by other authors, it is now possible to increase the mechanical and physicochemical properties of concrete structures.

Acknowledgements

The authors want to acknowledge the DELFIN Program (XXIII Summer of Scientific and Technological Research of the Pacific), UAT PROFEXCE Program, and PRODEP 2018 Program for NPTC 2019. EJD thanks CONACYT National Problems CONACYT-PN 2017-01-5975. Finally, the authors acknowledge the lab specialist Pedro Flores and lab assistant Bladimir Garcia for their collaboration.

Funding

This work was supported by CONACYT National Problems CONACYT-PN 2017-01-5975 and PRODEP 2019 [APOYO 2018 NPTC].

Author details

Rocio R. Gallegos-Villela
E-mail: rafaela.gallegos@uat.edu.mx

Fabian D. Lorrea-Zambrano
E-mail: fabian.lorrea@uai.edu.co

Claire E. Gayes-Lopez
Josue F. Perez-Sanchez
ORCID ID: http://orcid.org/0000-0001-9828-3456

Edgardo J. Suarez-Dominguez
E-mail: edgardo.suarez@docentes.uat.edu.mx

ORCID ID: http://orcid.org/0000-0002-1342-5732

Arturo Palacio-Perez
E-mail: apalaciop@ci.unam.mx

1 Centro Universitario Sur, Universidad Autónoma de Tamaulipas, Av. Universidad S/N, Tampico, Tamaulipas 89000, México.

2 Facultad de Ingeniería, Universidad Autónoma de Occidente, C. 25 #115-85 Km 2 Via Cali-Jamundi, Cali, Valle del Cauca 760030, Colombia.

3 Instituto de Ingeniería UNAM, Circuito Interior S/N Ciudad Universitaria, Ciudad de México, México.

Author statement

This research was developed as part of the Latin-American internship program DELFIN (XXIII Summer of Scientific and Technological Research of the Pacific) and is related to the disciplinary group Mechanical-Structural Design and Analysis (FADU-UAT). The project impacts the social development in the Huasteca zone (Tamaulipas, Mexico) through technologies that can be reproduced at the field level with an excellent scientific background. Also, it is part of a series of studies focused on developing local communities under sustainable terms. This article reinforces the multidisciplinary and interinstitutional nets created to extend the frontiers of science and technology along with the Mexican and Latin-American communities.
Citation information
Cite this article as: Effect of natural additives on concrete mechanical properties, Rocio R. Gallegos-Villela, Fabio D. Larrea-Zambrano, Clara E. Goyes-Lopez, Josue F. Perez-Sanchez, Edgard J. Suarez-Dominguez & Arturo Palacio-Perez, Cogent Engineering (2021), 8: 1870790.

References
Alpizar-Reyes, E., Carrillo-Nava, H., Romero-Romero, R., Varela-Guerrero, V., Álvarez-Ramírez, J. & Pérez-Alonso, C. (2017). Thermodynamic sorption properties and glass transition temperature of tamarind seed mucilage (Tamarindus indica L.). Food and Bioproducts Processing, 101, 166–176. https://doi.org/10.1016/j.fbp.2016.11.006

Aquíllin, A., Borg, R. P., & Buhagiar, J. (2018, November). The application of natural organic additives in concrete: Opuntia ficus-indica. In IOP Conference Series: Materials Science and Engineering (Vol. 442, No. 1, p. 012016). Malta: IOP Publishing.

Arreola-Nava, H. J., Cuevas-Guzmán, R., Guzmán-Hernández, L., & González-Durán, A. (2017). Opuntia setacorca, una especie nueva de nopal del occidente de México. Revista mexicana de biodiversidad, 88(4), 792–797. https://doi.org/10.1016/j.rmb.2017.10.028

Asadi, I., Shofigh, P., Hassan, Z. F. B. A., & Mahyuddin, N. B. (2018). Thermal conductivity of concrete-A review. Journal of Building Engineering, 20, 81–93. https://doi.org/10.1016/j.jobe.2018.07.002

ASTM C177-19. Standard test method for steady-state heat flux measurements and thermal transmission properties by means of the guarded-hot-plate apparatus.American Society for Testing and Materials, Subcommittee C16.30 on Thermal Measurement.

Behera, M., Bhattacharyya, S. K., Minocha, A. K., Deoliya, R., & Maiti, S. (2014). Recycled aggregate from G&D waste & its use in concrete—A breakthrough towards sustainability in construction sector: A review. Construction and Building Materials, 68, 501–516. https://doi.org/10.1016/j.conbuildmat.2014.07.003

Binici, H., & Aksogan, D. (2018). Durability of concrete made with natural granular granite, silica sand and powder of waste marble and basalt as fine aggregate. Journal of Building Engineering, 19, 109–121. https://doi.org/10.1016/j.jobe.2018.04.022

Blanco, V. D., Campos, E. C. M., Valdés, C. I. R., & Olavarria, J. U. (2019). Natural additive (nopal mucilage) on the electrochemical properties of concrete reinforcing steel. Revista ALCOPAT, 9(3), 260–276. https://doi.org/10.21041/rva.913429

Carrillo, C. H., Gómez-Cuaspud, J. A., & Suárez, C. M. (2017). Compositional, thermal and microstructural characterization of the Nopal (opuntia ficus indica), for addition in concrete cement mixtures. In Journal of Physics: Conference Series (Vol. 935, No. 1, p. 012045). Santa Marta, Colombia: IOP Publishing.

El Aziz, C., Hammi, H., Chaouch, M. A., Majdoub, H., & Mnif, A. (2019). Use of Tunisian opuntia ficus-indica cladoles as a low cost renewable admixture in cement mortar preparations. Chemistry Africa, 24(1), 135–142. https://doi.org/10.1007/s42500-019-00040-7

Giada, G., Caponnetto, R., & Nocera, F. (2019). Hygrothermal properties of raw earth materials: A literature review. Sustainability, 11(19), 5342. https://doi.org/10.3390/su11193342

González-Sandoval, D. C., Luna-Sosa, B., Martínez-Aviló, G. C. G., Rodríguez-Fuentes, H., Avenado-Abarca, V. H., & Rojas, R. (2019). Formulation and characterization of edible films based on organic mucilage from Mexican opuntia ficus-indica. Coatings, 9(8), 506. https://doi.org/10.3390/coatings9080506

Gunasekar, S., Ramesh, N., & Shivani, G. (2019). Effective utilization of construction and demolition waste (Cdw) as recycled aggregate in concrete construction—a critical review. International Research Journal of Multidisciplinary Technovation, 1(6), 465–469. https://www.mapletreereview.com/index.php/irjmt/article/view/319

Hernández, E. F., Cano-Barrita, P. D. J., & Torres-Acosta, A. A. (2018). Influence of cactus mucilage and marial brown algae extract on the compressive strength and durability of concrete. Materiales de Construcción, 66(321), 074.

Hernández, E. F., Cano-Barrita, P. D. J., & Torres-Acosta, A. A. (2018). Influence of cactus mucilage and marine brown algae extract on the compressive strength and durability of concrete. Materiales de Construcción, 66(321), 074. https://doi.org/10.3989/mc.2016.07514

Jianning, Y., Luming, W., & Jie, Z. (2019). Experimental study on the deformation characteristics of magnesium potassium phosphate cement paste at early hydration stages. Cement and Concrete Composites, 103, 175–182. https://doi.org/10.1016/j.cemconcomp.2019.05.003

León-Martínez, F. M., Cano-Barrita, P. D. J., Laguna-Rivera, L., & Medina-Torres, L. (2016). Study of nopal mucilage and marine brown algae extract as viscosity-enhancing admixtures for cement-based materials. Construction and Building Materials, 53, 190–202. https://doi.org/10.1016/j.conbuildmat.2013.11.068

Ligouri, B., Lucolano, F., Capasso, I., Lavorgna, M., & Verdolotti, L. (2014). The effect of recycled plastic aggregate on chemico-physical and functional properties of composite mortars. Materials & Design, 57, 578–584. https://doi.org/10.1016/j.matdes.2014.01.006

López-León, L. D., Jüdrez-Islas, M. A., Bassam, A., Pérez-Calejas, A. D., & Castaneda-Robles, I. E. (2019). Electrochemical behavior of a cactus mucilage-based corrosion-resistant coating. International Journal of Electrochemical Science, 14 (11), 10016–10031. https://doi.org/10.20964/2019.11.17

Madra-Santana, T. J., Vargas-Rodriguez, L., Núñez-Colin, C., Covarrubias, G., Pehoa-Caballero, V., Núñez-Gastélum, J. A., Gallegos-Vázquez, C., & Rodríguez-Núñez, J. R. (2018). Mucilage from cladoles of Opuntia (opuntia ficus indica) for use as a water-reducing admixture in concrete. BioResources, 13(3), 8215–8230. https://doi.org/10.15376/biores.13.3.8215-8230

Maneewas, S., Janyaosuk, K., Hoy-yen, C., & Thongtha, A. (2019). Incorporating block dust into autoclaved aerated concrete wall for heat transfer reduction. Journal of Metals Materials and Minerals, 29(3), 82–87. http://jmmm.matlab.chula.ac.th/index.php/jmmm/article/view/494

Marie, J. (2016). Zones of weakness of rubberized concrete behavior using the UPV. Journal of Cleaner Production, 116, 217–222. https://doi.org/10.1016/j.jclepro.2015.12.096

Martínez, C. J., Liliana, A. B., Alfredo, M. C., & Gloria, D. O. (2016). NOPAL (Opuntia spp.) MUCILAGE: A REVIEW. Transylvanian Review, 26(27), 7309–7317.

McNeil, K., & Kong, T. H. K. (2013). Recycled concrete aggregates: A review. International Journal of Concrete Structures and Materials, 7(1), 61–69. https://doi.org/10.1007/s40069-013-0032-5
NMX-C-083-ONNCCE. (2010). Norma Mexicana, Determinación de la resistencia a la compresión de especímenes. Organismo Nacional de Normalización y Certificación de la Construcción y Edificación, S.C.

Mohammed, T. U., & Mahmood, A. H. (2016). Effects of maximum aggregate size on UPV of brick aggregate concrete. Ultrasonics, 69, 129–136. https://doi.org/10.1016/j.ultras.2016.04.006

NMX-C-275-ONNCCE. (2004). Norma Mexicana, Determinación de la velocidad de pulso a través del concreto. Organismo Nacional de Normalización y Certificación de la Construcción y Edificación, S.C.

NMX-C-303-ONNCCE. (2010). Norma Mexicana, Determinación de la resistencia a la flexión usando una viga simple con carga en el centro del claro. Organismo Nacional de Normalización y Certificación de la Construcción y Edificación, S.C.

Nogueira, C. L., & Rens, K. L. (2018). Ultrasonic wave propagation in EPS lightweight concrete and effective elastic properties. Construction and Building Materials, 184, 634–642. https://doi.org/10.1016/j.conbuildmat.2018.07.026

Ortega-Lerma, M., Aranda-Jiménez, Y. G., Zúñiga-Leal, C., Sánchez-Medrano, M. T., & Gallegos-Villela, R. R. (2016). Mechanical Analysis of an Ixte Based Cable for Its Use in Architecture. IOSR Journal of Mechanical and Civil Engineering (IOSRJME), 14(1), 36–38. https://doi.org/10.9790/1684-1401053638

Suárez-Domínguez, E. J., Aranda-Jiménez, Y. G., Zúñiga-Leal, C., & De Leon-Ramirez, A. (2017b). Technology effect of the addition of cactus mucilage and fibers to samples of poured earth. International Journal of Engineering Sciences & Research Technology, 6(35), 131–137

Suárez-Domínguez, E. J., Aranda-Jiménez, Y. G., Fuentes-Pérez, C., & Zúñiga-Leal, C. (2017a). Behavior of the heat capacity and ultrasonic characterization for poured earth. Journal of Mechanical and Civil Engineering, 14(6), 18–22.

Torres-Acosta, A. A., & Díaz-Cruz, L. A. (2020). Concrete durability enhancement from nopal (Opuntia ficus-indica) additions. Construction and Building Materials, 243, 118170. https://doi.org/10.1016/j.conbuildmat.2020.118170

Tosun, Y., & Şahin, R. (2015). Compressive strength and capillary water absorption of concrete containing recycled aggregate. International Journal of Civil, Environmental, Structural, Construction and Architectural Engineering, 9(8), 987–991.

Verdolotti, L., Iucolano, F., Capasso, I., Lavorgna, M., Iannace, S., & Liguori, B. (2014). Recycling and recovery of PE-PP-PET-based fiber polymeric wastes as aggregate replacement in lightweight mortar: Evaluation of environmental friendly application. Environmental Progress & Sustainable Energy, 33(4), 1445–1451. https://doi.org/10.1002/ep.11921

Zhang, L. W., Sojabi, A. O., Kodur, V. K. R., & Liew, K. M. (2019). Effective utilization and recycling of mixed recycled aggregates for a greener environment. Journal of Cleaner Production, 236, 117600. https://doi.org/10.1016/j.jclepro.2019.07.075

© 2021 The Author(s). This open access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license.

You are free to:
- Share — copy and redistribute the material in any medium or format.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made.
- No additional restrictions

You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.

Cogent Engineering (ISSN: 2331-1916) is published by Cogent OA, part of Taylor & Francis Group.

Publishing with Cogent OA ensures:
- Immediate, universal access to your article on publication
- High visibility and discoverability via the Cogent OA website as well as Taylor & Francis Online
- Download and citation statistics for your article
- Rapid online publication
- Input from, and dialog with, expert editors and editorial boards
- Retention of full copyright of your article
- Guaranteed legacy preservation of your article
- Discounts and waivers for authors in developing regions

Submit your manuscript to a Cogent OA journal at www.CogentOA.com