ENHANCED KAUFFMAN BRACKET

ZHIQING YANG

Abstract. S. Nelson, M. Orrison, V. Rivera [1] modified Kauffman’s construction of bracket. Their invariant \(\Phi^d_X \) takes value in a finite ring \(\mathbb{Z}_2[t]/(1 + t + t^3) \). In this paper, the author generalizes this invariant. The new invariant takes value in a polynomial ring. Furthermore, for a tricolorable link diagram, the author gives a bracket invariant which gives lower bound on number of crossings with different (same) colors.

1. Introduction

Polynomial invariants of links have a long history. In 1928, J.W. Alexander [?] discovered the famous Alexander polynomial. It has many connections with other topological invariants. In 1984 Vaughan Jones [3] discovered the Jones polynomial. Later, Louis Kauffman in 1987 [2] introduced Kauffman bracket. It satisfies \(< \times > = A < \times > + A^{-1} < \times > \).

The Kauffman bracket can be calculated in two ways. First, it can be calculated inductively. In this point of view, \(\times, \check{\times}, \times \) are regarded as three link diagrams which are identical except in a small disk. Then the calculation of \(< \times > \) reduces to the calculation of \(< \check{\times} > \) and \(< \times > \).

Second, the Kauffman bracket satisfies the following state sum formula.

\[
< L > = \sum_S A^{a(S)} A^{-b(S)} (-A^2 - A^{-2})^{|S| - 1}
\]

One can simultaneously apply \(< \times > = A < \times > + A^{-1} < \times > \) to all crossing points and get \(2^n \) states. The righthand side is a summation over all states.

This construction can be modified. For example, S. Nelson, M. Orrison, V. Rivera [1] introduced the following way to enhance the bracket polynomial. A link diagram can bicolored as follows. Choose two colors, say, solid and dotted. The crossing points divide any link component into even number of segments. Pick one segment and assign one color to it. Then change to another color whenever pass one crossing point. Do this to each component, we get a bicolor link diagram. If the link has \(k \) components, then there are \(2^k \) different ways of colorings. Letters \(E, S, W, N \) mean the east, south, west and north directions as in usual maps, + means positive crossing, − means negative crossing. Now a crossing point may have one of the four types: \(N_+, N_-, S_+, S_- \). See Fig. [1] If this is a virtual link diagram, then there may have four more types: \(E_+, E_-, W_+, W_- \). For example, \(S_+ \) means that the crossing is of positive type, and the two dotted arcs are divided by the ray from the crossing point to south.

For a bicolor link diagram, one can [1] use the following skein relations.
Figure 1. Local crossings.

\[N_+ = H + tV, \quad N_- = H + (1 + t^2)V, \]
\[S_+ = H + tV, \quad S_- = H + (1 + t^2)V, \]
\[E_+ = (1 + t)H + (t + t^2)V, \quad E_- = tH + V, \]
\[W_+ = (1 + t^2)H + V, \quad W_- = (t + t^2)H + (1 + t)V, \]
\[< D \quad \square \quad \odot > = (1 + t + t^2) < D > . \]

S. Nelson, M. Orrison, V. Rivera [1] modified Kauffman’s construction of bracket. Their invariant \(\Phi^\beta_X \) takes value in \(\mathbb{Z}_2/t\). It can distinguish some pair of knots which the HOMFLY polynomial cannot distinguish. For example, \(\Phi^\beta_X(10_{132}) = 2t + t^2 \neq 2 + t + t^2 = \Phi^\beta_X(5_1) \).

2. Enhanced Bracket

Given any link diagram, we choose two colors, say, solid and dotted. Then the link diagram can be colored. For a bicolor link diagram, we define the following skein relations.

\[
\begin{aligned}
N_+ &= a_n H + b_n V, \quad N_- = a'_n H + b'_n V, \\
S_+ &= a_s H + b_s V, \quad S_- = a'_s H + b'_s V, \\
E_+ &= a_e H + b_e V, \quad E_- = a'_e H + b'_e V, \\
W_+ &= a_w H + b_w V, \quad W_- = a'_w H + b'_w V.
\end{aligned}
\]
(1)

When we apply a skein relation to a crossing, say \(N_+ \), we shall get two smoothings, \(H \) and \(V \). We will say that \(H \) is the result of type \(A \) smoothing, \(V \) is the result of type \(B \) smoothing.

As mentioned before, the Kauffman bracket can be calculated in two ways. First, it can be calculated inductively. In this point of view, the calculation of \(< L > \) reduces to the calculation of \(< \triangle > \) and \(< \bigcirc > \). Second, the Kauffman bracket satisfies the following state sum formula.

\[
< L > = \sum_S A^{a(S)} A^{-b(S)} (-A^2 - A^{-2})^{|S|-1}
\]
One can simultaneously apply $<\otimes> = A <\times> + A^{-1} <\check{\times}>$ to all crossing points and get 2^n states. The righthand side is a summation over all states.

Strictly speaking, we should not use “$=$” in skein relations (1)-(5). “\rightarrow” is more appropriate, since the bracket we defined will not satisfy $<\otimes> = a_n <\times> + b_n <\check{\times}>$ even for the first case. This is because that the three link diagrams \otimes, $\check{\otimes}$ and $\check{\times}$ do not have a canonical matched coloring. At any other crossing, since the colorings are different, one will apply different skein relations to the three links. Hence $<\otimes> = a_n <\times> + b_n <\check{\times}>$ does not hold. This is why we cannot calculate the invariant inductively.

For our construction, one can only use the second way. Namely, first step, choose a orientation of the link and one way to color the link diagram. Second, apply the above skein relations to each crossing and get 2^n states. Then take summation over all states. One cannot calculate the invariant inductively since $<\otimes>$ and $<\check{\otimes}>$ do not preserve the coloring of $<\times>$.

There are some relations among those coefficients to guarantee Reidemeister move invariance. We shall discuss them one by one.

2.1. **Reidemeister move II.** Given two link diagrams L_1, L_2. Outside of the disks D_1, D_2, their diagrams are the same. Inside of the disks D_1, D_2, they are as in Fig 2.

![Figure 2. Reidemeister move II](image)

When we consider orientations, their are 6 cases for the diagram inside D_1. See Fig 3.

![Figure 3. Oriented Reidemeister move II](image)

To apply skein relations (1), we also need to color the link diagram. For each of the X_i or X'_i, each of the two segments a, b can be colored in 2 ways. So there are 4 cases. Let’s first consider the case that they are both dotted. Then for link diagrams L_1, L_2, we use skein relations to all...
crossings outside the disks D_1, D_2. Let Λ be the set of all possible smoothings outside D_i, let Λ'_i be the set of all possible smoothings inside D_i. Then we have the following result.

$$< L_i > = \sum_{S \in \Lambda} f(S) \sum_{S' \in \Lambda'_i} g(S, S')$$

Since there skein relations smooth the crossings, Λ is a disjoint union of two sets. $\Lambda = \Lambda(1) \cup \Lambda(2)$, where $\Lambda(1)$ consists of all smoothings of pattern \widehat{X}_i and \widehat{Y} in figure 4. $\Lambda(2)$ consists of all smoothings of pattern X_i and Y in figure 4.

![Figure 4. Outside smoothing patterns](image)

So we have

$$< L_1 > = \sum_{S \in \Lambda(1)} f(S) \sum_{S' \in \Lambda'_1} g(S, S') + \sum_{S \in \Lambda(2)} f(S) \sum_{S' \in \Lambda'_i} g(S, S') = f_1 < \overline{X}_i > + f_2 < \widehat{X}_i >$$

$$< L_2 > = \sum_{S \in \Lambda(1)} f(S) \sum_{S' \in \Lambda'_2} g(S, S') + \sum_{S \in \Lambda(2)} f(S) \sum_{S' \in \Lambda'_2} g(S, S') = f_1 < \overline{Y} > + f_2 < \widehat{Y} >$$

Notice that the coefficients of $< \overline{X}_i >$ and $< \overline{Y} >$ are the same. Hence to have $< L_1 > = < L_2 >$, it is sufficient to have $< \overline{X}_i > = < \overline{Y} >$ and $< \widehat{X}_i > = < \widehat{Y} >$.

In figure 4 if the color of arcs a, b are dotted, then we have

$$< \overline{X}_1 > = (a_w a'_c) d^2 + (a_w b'_e + b_w a'_e + b_w b'_c) d$$

$$< \overline{Y} > = d^2$$

So we have $(a_w a'_c) d + (a_w b'_e + b_w a'_e + b_w b'_c) d = d$. Similarly,

$$< \widehat{X}_1 > = (a_w a'_c) d + (a_w b'_e + b_w a'_e + b_w b'_c) d^2$$

$$< \widehat{Y} > = d$$

So we have $(a_w a'_c) + (a_w b'_e + b_w a'_e + b_w b'_c) d = 1$. Similarly,

In summary, for X_1, we have:

$(a_w a'_c) d + (a_w b'_e + b_w a'_e + b_w b'_c) d = d$ and $(a_w a'_c) + (a_w b'_e + b_w a'_e + b_w b'_c) d = 1$.

In summary, for X_1, we have:
For the linear system of equations \(x^d + y = d, x + y^d = 1 \), one can get solutions

\[
\begin{align*}
\{ x = 1, y = 0 \}, \{ d = 1, x + y = 1 \}, \{ d = -1, x - y = 1 \}.
\end{align*}
\]

For simplicity, we just consider the case \(\{ x = 1, y = 0 \} \) here. Hence we have

\[
a_w a'_c = 1, a_w b'_c + b_w a'_c + b_w b'_c d = 0.
\]

If we change the colors of \(a, b \) to solid, then we will get

\[
a_c a'_w = 1, a_c b'_w + b_c a'_w + b_c b'_w d = 0.
\]

If \(a \) is dotted, \(b \) is solid, then we will get

\[
a_s a'_s = 1, a_s b'_s + b_s a'_s + b_s b'_s d = 0.
\]

If \(b \) is dotted, \(a \) is solid, then we will get

\[
a_n a'_n = 1, a_n b'_n + b_n a'_n + b_n b'_n d = 0.
\]

Similarly, for \(X_2, X'_2 \), we will get the following set of equations.

\[
\begin{align*}
b_w b'_w &= 1, b_w a'_w + a_w b'_w + a_w a'_w d = 0 \\
b_v b'_v &= 1, b_v a'_v + a_v b'_v + a_v a'_v d = 0 \\
b_u b'_u &= 1, b_u a'_u + a_u b'_u + a_u a'_u d = 0 \\
b_s b'_s &= 1, b_s a'_s + a_s b'_s + a_s a'_s d = 0.
\end{align*}
\]

For \(X_3, X'_3 \), we will get the same set of equations as \(X_2, X'_2 \).

In summary, for Reidemeister move II, we get the following equations.

\[
\begin{align*}
a_w a'_c &= 1, a_w b'_c + b_w a'_c + b_w b'_c d = 0 \\
a_c a'_w &= 1, a_c b'_w + b_c a'_w + b_c b'_w d = 0 \\
a_s a'_s &= 1, a_s b'_s + b_s a'_s + b_s b'_s d = 0 \\
a_n a'_n &= 1, a_n b'_n + b_n a'_n + b_n b'_n d = 0 \\
b_w b'_w &= 1, b_w a'_w + a_w b'_w + a_w a'_w d = 0 \\
b_v b'_v &= 1, b_v a'_v + a_v b'_v + a_v a'_v d = 0 \\
b_u b'_u &= 1, b_u a'_u + a_u b'_u + a_u a'_u d = 0 \\
b_s b'_s &= 1, b_s a'_s + a_s b'_s + a_s a'_s d = 0.
\end{align*}
\]

(2)

2.2. Reidemeister move III. Given two link diagrams \(L, L' \). Outside of the disks \(D, D' \), their diagrams are the same. Inside of the disks \(D, D' \), they are as in Fig 5.

![Figure 5. Reidemeister move three.](image-url)
Out(1) – Out(5) as in figure 6.

Let D_i be the diagram that inside a disk it is the same as L in D, outside the disk it is the same as $\text{Out}(i)$. Let D'_i be the diagram that inside a disk it is the same as L' in D', outside the disk it is the same as $\text{Out}(i)$. If we smooth all outside crossings, we will have the following result.

$$<L> = \sum_{i=1}^{5} f_i <D_i>, \quad <L'> = \sum_{i=1}^{5} f_i <D'_i>.$$

Hence $<D_i> = <D'_i>$ for all i implies that $<L> = <L'>$.

When we use skein relations to all crossings inside the disks D, D', there are seven patterns A–G as in figure 7.

When we consider orientations, there are 8 cases for the diagram inside D_i. When we consider coloring, each case has eight subcases. There will be too many cases. Fortunately, according to [6], we just need to consider one case Ω_3a. See figure 8.

To apply skein relations (1) to Ω_3a, we also need to color the link diagram. For each of the D or D', each of the three segments a, b, c can be colored in 2 ways. So there are 8 cases. Let’s first
consider the case that they are all dotted. Then for \(L \), crossings 1, 2, 3 are of type \(S_+, S_-, S_+ \).
Then for \(L' \), crossings 1, 2, 3 are of type \(N_+, N_-, N_+ \).

Now apply the skein relations to the diagrams. There are three crossings denoted by 1, 2, 3 respectively. We get the following table (1).

Table 1. Smooth inside crossings.

	\(a_1a_2a_3 \)	\(a_1a_2b_3 \)	\(a_1b_2a_3 \)	\(a_1b_2b_3 \)	\(b_1a_2a_3 \)	\(b_1a_2b_3 \)	\(b_1b_2a_3 \)	\(b_1b_2b_3 \)
\(L \)	4/2	3/1	3/1	2/2	3/1	2/2	2/2	1/3
\(L' \)	2/4	1/3	1/3	2/2	1/3	2/2	2/2	3/1
\(Out(1) \)	3/3	2/2	2/2	3/3	2/2	1/1	1/1	2/2
\(Out(2) \)	3/3	2/2	2/2	1/1	2/2	1/1	3/3	2/2
\(Out(3) \)	3/3	2/2	1/1	2/2	3/3	1/1	2/2	2/2

The table (1) means the following. For example, the second row the third column is the result of \(A \)-type smoothing for crossings 1 of \(L \) inside \(D \). \(a_2 \) means that the second crossing uses \(A \) type smoothing. \(b_3 \) will mean that the 3rd crossing uses \(B \) type smoothing. This will be called using \(a_1a_2b_3 \)-type smoothing.

Let \(D_i \) be the diagram that inside a disk it is the same as \(L \) in \(D \), outside the disk it is the same as \(Out(i) \). Let \(D'_i \) be the diagram that inside a disk it is the same as \(L' \) in \(D' \), outside the disk it is the same as \(Out(i) \). If we smooth all outside crossings, we will have the following result. We have the following table (2).

Table 2. Number of components of smoothings of \(D_i \) and \(D'_i \).

\(D'_i/D_i \)	\(a_1a_2a_3 \)	\(a_1a_2b_3 \)	\(a_1b_2a_3 \)	\(a_1b_2b_3 \)	\(b_1a_2a_3 \)	\(b_1a_2b_3 \)	\(b_1b_2a_3 \)	\(b_1b_2b_3 \)
\(Out(1) \)	4/2	3/1	3/1	2/2	3/1	2/2	2/2	1/3
\(Out(2) \)	2/4	1/3	1/3	2/2	1/3	2/2	2/2	3/1
\(Out(3) \)	3/3	2/2	2/2	3/3	2/2	1/1	1/1	2/2
\(Out(4) \)	3/3	2/2	1/1	2/2	1/1	3/3	2/2	2/2
\(Out(5) \)	3/3	2/2	1/1	2/2	3/3	1/1	2/2	2/2

This is the table (2) of number of components for smoothings of \(D_i \) and \(D'_i \). For example, the second row the second column is the result of \(A \)-type smoothing to all crossings of \(D_1 \). 4 means there are 4 disjoint circles. 2 means that if one applies \(A \)-type smoothing to all crossings of \(D'_1 \), there are 2 disjoint circles. For example, the third row the fourth column is 1/3. This means that if one applies \(a_1b_2a_3 \)-type smoothing to all crossings of \(D_1 \), there are 4 disjoint circles. 2 means that if one apply \(a_1b_2a_3 \)-type smoothing to all crossings of \(D'_1 \), there are 2 disjoint circles.
To get $< D_i > = < D_i^′ >$, the second row of table (2) gives the following equation.

$$a_n a_n a_n a_n d^4 + a_n b_n a_n d^3 + a_n b_n a_n d^2 + a_n b_n a_n d + a_n b_n a_n d^3 + b_n a_n b_n a_n d^2 + b_n b_n a_n d + b_n b_n a_n d = a_n a_n a_n d^2 + a_n b_n a_n d + a_n b_n a_n d^2 + b_n a_n b_n a_n d^2 + b_n b_n a_n d + b_n b_n a_n d^3.$$

The above is the equation from $Out(1)$. Denote $x_1 = a_n a_n', a_n, x_2 = a_n a_n' b_n, \ldots, x_8 = b_n b_n' a_n, y_1 = a_n a_n a_n, \ldots, y_8 = b_n b_n' b_n$, we get a linear equation for variables x_1, \ldots, y_8. The following is the coefficient matrix/table of the system of equations from $Out(1) - Out(5)$.

Table 3. Coefficient matrix of the system of equations

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	y_1	y_2	y_3	y_4	y_5	y_6	y_7	y_8
$Out(1)$	d^4	d^3	d^2	d	d^2	d	d	d^2	d	d	d^2	d^2	d^3			
$Out(2)$	d^4	d^3	d^2	d	d^2	d	d	d^2	d	d	d^2	d^2	d^3			
$Out(3)$	d^3	d^2	d^2	d	d^2	d	d	d^2	d	d	d^2	d^2	d^3			
$Out(4)$	d^3	d^2	d^2	d	d^2	d	d	d^2	d	d	d^2	d^2	d^3			
$Out(5)$	d^4	d^3	d^2	d	d^2	d	d	d^2	d	d	d^2	d^2	d^3			

Notice that the coefficients of y_1, \ldots, y_8 should have a $-$ sign. We do not put the negative sign there, one can regard this as that y_1, \ldots, y_8 and their coefficients are on the righthand side of the equation.

Let E_q, denote the equation corresponding to $Out(i)$. Then from $E_q - E_q$ and E_q we get $x_6 - x_7 = y_6 - y_7 = \alpha$. From $E_q - E_q$ and E_q we get $x_4 - x_7 = y_4 - y_7 = \beta$. From $E_q - E_q$ and E_q we get $dy_7 + y_8 = dx_1 + x_2 + x_3 + x_5 + dx_7 = \delta$. Plug those into E_q, we get $(2 - d^2)(x_7 - y_7) = 0$. If we take the solution $x_7 = y_7$, then $x_6 = y_6$ and $x_4 = y_4$, $x_8 = dy_1 + y_2 + y_3 + y_5, y_8 = dx_1 + x_2 + x_3 + x_5$.

In other words, we have the following.

$$\begin{align*}
& b_n b_n' a_n = b_n b_n' a_s, \\
& b_n a_n' b_n = b_n a_n' b_s, \\
& a_n b_n' b_n = a_n b_n' b_s
\end{align*}$$

(3)

For each of the D or $D′'$, if we change the color of the three segments a, b, c, we shall get the following results. In table (3) line 1, $a_1 b_2 c_1$ means that segment a choose color 1 (solid), segment b choose color 2 (dotted), segment c choose color 1 (solid). In that column, $N_c W - E_+$ means that the three crossings 1, 2, 3 of L are of type N_+, W, E_+ respectively, and the three crossings 1, 2, 3 of L' are of type $S_+, E-, W_+$ respectively.

Table 4. Number of components of smoothings of D_i and $D′_i$

	$a_1 b_1 c_1$	$a_1 b_1 c_2$	$a_1 b_2 c_1$	$a_1 b_2 c_2$	$a_2 b_1 c_1$	$a_2 b_1 c_2$	$a_2 b_2 c_1$	$a_2 b_2 c_2$
L	$N_+ N_+ N_+$	$N_+ N_+ E_+$	$N_+ W - E_+$	$E_+ N_+ W$	$S_+ E_+ W$	$E_+ W - S_+$	$N_+ W - E_+$	$E_+ W - S_+$
L'	$S_+ S_+ S_+$	$E_+ W - S_+$	$S_+ E_+ W$	$E_+ N_+ W$	$W - S_+ E_+$	$N_+ W - E_+$	$W - S_+ E_+$	$N_+ N_+ N_+$

If we change the color of a, b, c to $a_1 b_2 c_1$, then the above discuss is almost the same except we need to change the subscripts in (3) to n, w', c and s, c', w.

$$\begin{align*}
& b_n b_n' a_n = b_n b_n' a_c, \\
& b_n a_n' b_c = b_n a_n' b_w, \\
& a_n b_n' b_c = a_n b_n' b_w
\end{align*}$$

(4)

$$\begin{align*}
& b_n b_n' b_n = b_n a_n' a_n + a_n a_n' b_n + a_n b_n' a_n \\
& b_n b_n' b_n = b_n a_n' a_n + a_n a_n' b_n + a_n b_n' a_n
\end{align*}$$
Now, we go over all cases in Table 4, we will get the following equations from Ω_{3a}.

\[
\begin{align*}
& b_n b'_n a_n = b_s b'_s a_s, \quad b_n a'_n b_n = b_s a'_s b_s, \quad a_n b'_n b_n = a_s b'_s b_s \\
& b_n b'_n a_n = da_s a'_s a_s + a_s a'_s b_s + a_s b'_s a_s + b_s a'_s a_s \\
& b_n b'_n b_n = da_n a'_n a_n + a_n a'_n b_n + a_n b'_n a_n + b_n a'_n a_n \\
& b_n b'_n a_e = b_s b'_s a_w, \quad b_n a'_n b_w = b_s a'_s b_w, \quad a_n b'_n b_c = a_s b'_s b_w \\
& b_n b'_n b_e = da_s a'_s a_w + a_s a'_s b_w + a_s b'_s a_w + b_s a'_s a_w \\
& b_n b'_n b_w = da_n a'_n a_e + a_n a'_n b_w + a_n b'_n a_e + b_n a'_n a_e \\
& b_n b'_n b_e = da_a a'_a a_w + a_a a'_a b_w + a_a b'_a a_w + b_a a'_a a_w \\
& b_n b'_n b_w = da_a a'_a a_e + a_a a'_a b_w + a_a b'_a a_e + b_a a'_a a_e \\
& b_n b'_n b_a = da_a a'_a a_n + a_a a'_a b_a + a_a b'_a a_a + b_a a'_a a_a \\
& b_n b'_n b_s = da_a a'_a a_n + a_a a'_a b_s + a_a b'_a a_s + b_a a'_a a_s \\
& b_n b'_n b_n = da_a a'_a a_n + a_a a'_a b_n + a_a b'_a a_n + b_a a'_a a_n
\end{align*}
\]

(5)

2.3. Simplifications. The equations from Reidemeister II can be simplified to get the following equations.

\[
\begin{align*}
& a'_e = a_w^{-1}, a'_w = a_e^{-1}, a'_s = a_s^{-1}, a'_n = a_n^{-1} \\
& b'_e = b_w^{-1}, b'_w = b_e^{-1}, b'_s = b_s^{-1}, b'_n = b_n^{-1} \\
& -d = \frac{a_w}{b_w} + \frac{b_w}{a_w} = \frac{a_e}{b_e} + \frac{b_e}{a_e} = \frac{a_s}{b_s} + \frac{b_s}{a_s} = \frac{a_n}{b_n} + \frac{b_n}{a_n}
\end{align*}
\]

(6)

One solution is to introduce new variables e, w, n, s, a, b and let

\[a_n = na, b_n = nb, a_s = sa, b_s = sb, a_w = wa, b_w = wb, a_e = ea, b_e = eb, d = \frac{a}{b} + \frac{b}{a} \]

Then

\[-d = \frac{a_w}{b_w} + \frac{b_w}{a_w} = \frac{a_e}{b_e} + \frac{b_e}{a_e} = \frac{a_s}{b_s} + \frac{b_s}{a_s} = \frac{a_n}{b_n} + \frac{b_n}{a_n} \]

is satisfied. Then

\[a'_e = \frac{1}{wa}, a'_w = \frac{1}{ea}, a'_s = \frac{1}{sa}, a'_n = \frac{1}{na}, b'_e = \frac{1}{wb}, b'_w = \frac{1}{eb}, b'_s = \frac{1}{sb}, b'_n = \frac{1}{nb} \]

Plug those into equation , we get one extra equation: $n = s$. Then all equations are satisfied. In summary, we have free variables w, e, n, a, b. The other variables can be derived from them.

\[
\begin{align*}
& a_n = a_s = na, b_n = b_s = nb, a_w = wa, b_w = wb, a_e = ea, b_e = eb, \\
& a'_n = a'_s = \frac{1}{na}, b'_n = b'_s = \frac{1}{nb}, a'_w = \frac{1}{ea}, b'_w = \frac{1}{eb}, a'_e = \frac{1}{ea}, b'_e = \frac{1}{wb} \\
& d = -\frac{a}{b} - \frac{b}{a}
\end{align*}
\]

(7)
If we consider Reidemeister move I (Figure 10), choose one color for the arc a, say, dotted, then the crossing type of D_1 is $N_−$. We have

\[
<D_1> = (da_n^+ + b_n^+) < D > = \left(-\left(\frac{a}{b} + \frac{b}{a}\right) \frac{1}{na} + \frac{1}{nb}\right) < D > = -\frac{b}{na^2} < D > .
\]

The crossing type of D_2 is S_+. We have

\[
<D_1> = (da_n + b_n) < D > = \left(-\left(\frac{a}{b} + \frac{b}{a}\right) na + nb\right) < D > = -\frac{na^2}{b} < D > .
\]

If we choose one color for the arc a, say, solid, then the crossing type of D_1 is $S_−$. We have

\[
<D_1> = (da_n^+ + b_n^+) < D > = \left(-\left(\frac{a}{b} + \frac{b}{a}\right) \frac{1}{na} + \frac{1}{nb}\right) < D > = -\frac{b}{na^2} < D > .
\]

The crossing type of D_2 is N_+. We have

\[
<D_1> = (da_n + b_n) < D > = \left(-\left(\frac{a}{b} + \frac{b}{a}\right) na + nb\right) < D > = -\frac{na^2}{b} < D > .
\]

Let $W(D)$ denote the writhe of the diagram D. Like the construction of Kauffman bracket, let $F(D) = (-\frac{b}{na})^{W(D)} < D >$. Then $F(D)$ is invariant under Reidemeister moves. However, it depend on coloring of the link diagram. For a knot diagram, there are only two different colorings. If we change the coloring, we shall get $\overline{F}(D)$. It can be obtained from $F(D)$ as follows. Define $\overline{w}, \overline{\overline{w}} = \overline{w}$. Then we have

\[
\overline{w} = -\frac{a}{b} - \frac{b}{a} \tag{8}
\]

. If we change each variable x to \overline{x}, $F(D)$ becomes $\overline{F}(D)$.

In general, For a link L, choose one link diagram D, let Λ be the set of all colorings. If one choose one coloring $\lambda \in \Lambda$, one will get $F(D, \lambda)$. Now we have the following theorem.

Theorem 2.1. Using the skein relations (1), if the variables satisfies equation (7), then $\{F(D), \overline{F}(D)\}$ is a knot invariant.

For a link L, choose one link diagram D, then $F(L) = \{F(D, \lambda) \mid \lambda \in \Lambda\}$ is a multiple-valued link invariant.

The invariant $F(L)$ is also an virtual knot invariant. Given an virtual link diagram, we can also color it as follows. Choose two colors, say, solid and dotted. The crossing points divide any link component into even number of segments. Pick one segment and assign one color to it.
Then change to another color whenever pass one crossing point. But the color does not change when pass one virtual crossing point. Do this to each component, we get a bicolor link diagram. For crossings in a virtual link diagram, we also use the skein relations (1), but we do not apply skein relations to virtual crossings. For a diagram \(D \) contains only virtual crossings, if it has \(n \) link component, let \(< D > = d^n\). The the above theorem is valid.

Example: A one variable invariant.

S. Nelson, M. Orrison, V. Rivera [1] modified Kauffman’s construction of bracket. Their invariant \(\Phi_X^N \) takes value in a finite ring \(\mathbb{Z}_2[t]/(1 + t + t^3) \). Their choice of the coefficients are as follows.

\[
\begin{align*}
 a_n &= a_s = 1, b_n = b_s = t, a_w = 1 + t^2, b_w = 1, a_e = 1 + t, b_e = t + t^2, \\
 a'_n &= a'_s = 1, b'_n = b'_s = 1 + t^2, a'_w = t + t^2, b'_w = 1 + t, a'_e = t, b'_e = 1 \\
 d &= 1 + t + t^2
\end{align*}
\]

The coefficients lie in \(\mathbb{Z}_2[t]/(1 + t + t^3) \). We can lift them to \(\mathbb{Z}[t, t^{-1}] \) as follows.

\[
\begin{align*}
 a_n &= a_s = 1, b_n = b_s = t, a_w = 1 + t^2, b_w = t(1 + t^2), a_e = 1 + t, b_e = t(1 + t), \\
 a'_n &= a'_s = 1, b'_n = b'_s = 1/t, a'_w = \frac{1}{1 + t}, b'_w = \frac{1}{t(1 + t)}, a'_e = \frac{1}{1 + t^2}, b'_e = \frac{1}{t(1 + t^2)} \\
 d &= -t - \frac{1}{t}
\end{align*}
\]

For this choice, \(a = 1, b = t, w = 1 + t^2, e = 1 + t, n = s = 1 \).

\[
\begin{align*}
 N_+ &= H + tV, & N_- &= H + (1 + t^2)V, \\
 S_+ &= H + tV, & S_- &= H + (1 + t^2)V, \\
 E_+ &= (1 + t)H + (t + t^2)V, & E_- &= tH + V, \\
 W_+ &= (1 + t^2)H + V, & W_- &= (t + t^2)H + (1 + t)V, \\
 < \cup^n \mathcal{O} > &= (1 + t + t^2)^n.
\end{align*}
\]

This invariant, however, does not gives new results for classical knots. One can easily find out that for any knot diagram, using bicolor, one can only get \(N_+, N_-, S_+, S_- \) type crossings. If one extend to virtual knots, this invariant turns out to give more information than the Jones polynomial.

3. **Tricoloring invariant**

If we use three colors, we will get a nontrivial results for knots.

Pick up three colors, say, red, blue and green. A link diagram can be colored with the following rules: At each crossing, either all three colors are present or only one color is present. If one uses only one color we say that it is a trivial tricoloring. The number of different tricolorings (trivial cloring is allowed) is denoted by \(\text{tri}(D) \).

Lemma 3.1. [6] \(\text{tri}(L) \) is always a power of 3.

Theorem 3.2. [6] (a) \(\text{tri}(L) = 3|V_L^2(e^{2\pi i/6})| \)

(b) \(\text{tri}(L) = 3|FL(1, -1)| \)
Here V_L is the Jones polynomial, FL is the two-variable Kauffman polynomial. For example, Figure eight knot only has trivial tricoloring, then $tri(L) = 3$. $V(7_4) = t - 2 * t^2 + 3 * t^3 - 2 * t^4 + 3 * t^5 - 2 * t^6 + t^7 - t^8$, then $tri(7_4) = 9$. This means that 7_4 has only one nontrivial coloring up to permutation of the colors.

For tricolored link diagram, we can define the following skein relations. See Fig. [1] If the the three arcs have same color

$$< L_+ > = x < H > + x^{-1} < V >, < L_- > = x^{-1} < H > + x < V >.$$

Otherwise,

$$< L_+ > = y < H > + y^{-1} < V >, < L_- > = y^{-1} < H > + y < V >.$$

$$< D \boxtimes \bigcirc >= (-x^2 - x^{-2}) < D >$$

One can easily check that this bracket is invariant under Reidemeister moves II and III. For Reidemeister moves I, the three arcs always have same color. Hence if we let $V(D) = (-x^3)^{-w(D)} < D >$, we shall get a knot invariant.

Theorem 3.3. $V(D) = (-x^3)^{-w(D)} < D >$ is a two variable knot invariant.

Example: the 7_4 knot.

As showed before, $tri(7_4) = 9$. Hence 7_4 has only one nontrivial coloring up to permutation of the colors. If one take any 7 crossing diagram of 7_4 and color it, then one will find that there is one crossing with three arcs having same color, the other six crossings with three arcs having different color.

On the other hand, 7_4 is alternating, hence the bracket is “faithful”. Therefor, for any diagram, any nontrivial tricoloring, there exists one crossing with same color, and at least 6 crossings with different colors.

Acknowledgements

The author would like to thank Ruifeng Qiu, Jiajun Wang, Ying Zhang, Xuezhi Zhao for helpful discussions.

REFERENCES

[1] Sam Nelson, Michael E. Orrison, Veronica Rivera, *Quantum Enhancements and Biquandle Brackets*, arXiv:1508.06573.

[2] L. Kauffman, *State models and the Jones polynomial*, Topology 26 (1987), 395-407.

[3] V. F. R. Jones, *Hecke algebra representations of braid groups and link polynomials*, Ann. of Math. (2) 126 (1987), 335-388.

[4] M. Polyak, *Minimal generating sets of Reidemeister moves*, Quantum Topology, vol. 1,Issue 4, (2010), 399C411.

[5] C.C. Adams, *The Knot Book*, W.H. Freeman and Company (1999).

[6] J. H. Przytycki, *3-coloring and other elementary invariants of knots*, Banach Center Publications, Vol. 42, “Knot Theory”, Warszawa, 1998, 275-295.

E-mail address: yangzhq@dlut.edu.cn