Distributed implementation of standard oracle operators

Anthony Chefles

Quantum Information Processing Group, Hewlett-Packard Laboratories, Filton Road, Stoke Gifford, Bristol BS34 8QZ UK

The rapidly developing field of quantum information science has yielded many new concepts in communications and computation, which have led to major applications such as quantum cryptography and fast quantum algorithms [1]. In quantum, as in classical information processing, situations involving spatially separated parties are of particular interest. It is therefore necessary to develop the theory of distributed quantum information processing [2, 3, 4, 5, 6, 7, 8, 9].

Concerning the capacities, it is important to have knowledge of these quantities in circumstances where we are able to perform this operation and wish to use it to create entangled states or transmit classical information.

The main result of this Letter is that for an arbitrary function \(f \), all six minimum implementation resources and capacities are equal to \(\log_2(n_f) \) bits/ebits, where \(n_f \) is the number of different values this function can take. In the course of this investigation, we provide optimal protocols for entanglement creation and classical communication using an arbitrary standard oracle operator, indeed also for bidirectional classical communication when the function \(f \) is a permutation. We also give an optimal protocol for the distributed implementation of an arbitrary standard oracle operator.

Let us set the scene by reviewing the main properties of standard oracle operators. Let \(M, N \) be arbitrary finite integers \(\geq 1 \). Consider \(F_{MN} \), the set of functions from \(\mathbb{Z}_M \to \mathbb{Z}_N \). Let \(A \) and \(B \) be quantum systems with \(M \) - and \(N \)-dimensional Hilbert spaces \(\mathcal{H}_M \) and \(\mathcal{H}_N \). These systems are taken to be spatially separated and in the possession of corresponding parties Alice and Bob. To each \(f \in F_{MN} \) there corresponds a unitary standard oracle operator on \(\mathcal{H}_M \otimes \mathcal{H}_N \):

\[
U_f |x\rangle_A \otimes |y\rangle_B = |x\rangle_A \otimes |y \oplus f(x)\rangle_B.
\]

(1)

A and \(B \) may be referred to as the control and target systems respectively. In Eq. (1), \(\oplus \) denotes addition modulo \(N \). Also, \(x \in \mathbb{Z}_M, y \in \mathbb{Z}_N \) and \(\{|x\}\} \) is an orthonormal basis set for \(\mathcal{H}_M \), likewise with \(\{|y\}\} \) and \(\mathcal{H}_N \). These are the computational basis sets for both systems. There are \(N^M \) functions in \(F_{MN} \), so there are \(N^M \) associated standard oracle operators \(U_f \).

To proceed, let us partition \(\mathbb{Z}_M \) into subsets corresponding to different values of \(f(x) \). Let \(n_f \) be the number of different values that \(f(x) \) can take. Clearly, \(n_f \leq M, N \). Let \(f_j \), where \(j \in \{0, \ldots, n_f - 1\} \), be the possible values of \(f(x) \). We also define \(S_j \subset \mathbb{Z}_M \) to be the set of values of \(x \) for which \(f(x) = j \).

The main result of this Letter is that for an arbitrary function \(f \), all six minimum implementation resources and capacities are equal to \(\log_2(n_f) \) bits/ebits, where \(n_f \) is the number of different values this function can take. In the course of this investigation, we provide optimal protocols for entanglement creation and classical communication using an arbitrary standard oracle operator, indeed also for bidirectional classical communication when the function \(f \) is a permutation. We also give an optimal protocol for the distributed implementation of an arbitrary standard oracle operator.

The standard oracle operator corresponding to a function \(f \) is a unitary operator that computes this function coherently, i.e. it maintains superpositions. This operator acts on a bipartite system, where the subsystems are the input and output registers. In distributed quantum computation, these subsystems may be spatially separated, in which case we will be interested in its classical and entangling capacities. For an arbitrary function \(f \), we show that the unidirectional classical and entangling capacities of this operator are \(\log_2(n_f) \) bits/ebits, where \(n_f \) is the number of different values this function can take. An optimal procedure for bidirectional classical communication with a standard oracle operator corresponding to a permutation on \(\mathbb{Z}_M \) is given. The bidirectional classical capacity of such an operator is found to be \(2 \log_2(M) \) bits. The proofs of these capacities are facilitated by an optimal distributed protocol for the implementation of an arbitrary standard oracle operator.
There is a further capacity to consider, the bidirectional clas-
s their associated directions, we have
ceed the amount of the corresponding resource that must be
operation corresponding to this resource. The entangling
ervation can be used to send in that direction.

is the maximum amount of classical information that the op-
ment is the maximum amount of entanglement that the op-
ction of $\{\ket{y}\}$.

We can readily verify that

$$e^{-i\Phi_N}|y\rangle = |y+1\rangle \quad \forall \ y \in \mathbb{Z}_N. \quad (4)$$

We note that Eq. (2) gives an operator Schmidt decomposition of U_f, where the related Schmidt operator sets are $\{P_j/\sqrt{K_j}\}$ and $\{e^{-i\Phi_N}/\sqrt{N}\}$. These are orthonormal sets with respect to the Hilbert-Schmidt inner product $\langle A, B \rangle = \text{Tr}(A^\dagger B)$. The Schmidt coefficients are $\sqrt{N K_j}$ and the Schmidt rank of U_f, denoted by $\text{Sch}(U_f)$, is equal to n_f.

In a distributed setting, any type of non-local resource that can be created by a quantum operation must also be consumed in order to perform the operation. For a bipartite quantum operation, there are three such resources: shared entan-
le E and classical communication in the Alice—Bob and Bob—Alice directions, which we shall denote by C_- and C_+ respectively. We shall use the subscripts R and C to denote, respectively, the minimum of the corresponding resource re-
quired to perform a quantum operation and the capacity of the operation corresponding to this resource. The entangling capacity is the maximum amount of entanglement that the op-
ration can create. The classical capacity, in a given direction, is the maximum amount of classical information that the op-
ration can be used to send in that direction.

A fundamental result in quantum information theory is that, for any bipartite unitary operator U, each capacity cannot ex-
ceed the amount of the corresponding resource that must be consumed [4]. We therefore have the following inequalities:

$$E_R(U) \geq E_C(U), \quad (5)$$

$$C_{R-}(U) \geq C_{C-}(U), \quad (6)$$

$$C_{R-}(U) \geq C_{C-}(U). \quad (7)$$

There is a further capacity to consider, the bidirectional clas-
ical capacity $C_{C-}(U)$. This is the maximum total amount of classical information that Alice and Bob can send to each other with one use of the quantum operation. Since the unidi-
rectional classical capacities are optimised for transmission in their associated directions, we have

$$C_{C-}(U) \leq C_{C-}(U) + C_{C-}(U). \quad (8)$$

We shall now obtain, for an arbitrary standard oracle operator U_f, lower bounds on the entangling and unidirectional clas-
capacities $E_C(U_f)$, $C_{C-}(U_f)$ and $C_{C-}(U_f)$. We begin by examining entanglement creation. Consider some arbitrary but fixed $x_j \in S_j$, for each $j \in \{0, \ldots, n_f - 1\}$. Suppose that A and B are initially prepared in the product state

$$|\chi\rangle = \left(\frac{1}{\sqrt{n_f}} \sum_{j=0}^{n_f-1} |x_j\rangle_A\right) \otimes |0\rangle_B. \quad (9)$$

where $|0\rangle$ is the zeroth computational basis state in \mathcal{H}_N. Act-
ing upon this state with U_f gives

$$U_f|\chi\rangle = \frac{1}{\sqrt{n_f}} \sum_{j=0}^{n_f-1} |x_j\rangle_A \otimes |f_j\rangle_B. \quad (10)$$

This is a maximally entangled state with Schmidt rank n_f, having $\log_2(n_f)$ ebits of entanglement. We conclude that

$$E_C(U_f) \geq \log_2(n_f). \quad (11)$$

Let us now show that Alice and Bob can send each other $\log_2(n_f)$ classical bits using U_f. That Alice can send Bob $\log_2(n_f)$ bits is almost trivially demonstrated. Let $r \in \{0, \ldots, n_f - 1\}$ be the classical message she wishes to send to Bob. She prepares A in the state $|x_r\rangle$. Meanwhile, Bob pre-
ares B in the state $|0\rangle$. The oracle operator U_f then acts on these systems, giving rise to the state $|x_r\rangle_A \otimes |f_r\rangle_B$. Bob can subsequently perform a computational basis measurement to reveal f_r and hence r, Alice’s $\log_2(n_f)$ bit message.

For Bob to send the same amount of classical information to Alice, the two parties can use the following entangled state:

$$|\psi\rangle = \frac{1}{\sqrt{n_f}} \sum_{j=0}^{n_f-1} |x_j\rangle_A \otimes |N \otimes f_j\rangle_B. \quad (12)$$

where \otimes denotes subtraction modulo N. Bob wishes to send the value of $s \in \{0, \ldots, n_f - 1\}$ to Alice. To encode his chosen value of s in the above state, he makes use of a unitary phase shift operator G acting on \mathcal{H}_N which is defined through

$$G|N \otimes f_j\rangle = e^{\frac{2\pi}{n_f}} |N \otimes f_j\rangle. \quad (13)$$

His encoding of s is performed through the transformation $|\psi\rangle \rightarrow |\psi_s\rangle = (I_N \otimes G_s^E)|\psi\rangle$, giving

$$|\psi_s\rangle = \frac{1}{\sqrt{n_f}} \sum_{j=0}^{n_f-1} e^{\frac{2\pi i s j}{n_f}} |x_j\rangle_A \otimes |N \otimes f_j\rangle_B. \quad (14)$$

The oracle operator U_f is then applied, resulting in the state

$$U_f|\psi_s\rangle = \left(\frac{1}{\sqrt{n_f}} \sum_{j=0}^{n_f-1} e^{\frac{2\pi i s j}{n_f}} |x_j\rangle_A\right) \otimes |N\rangle_B. \quad (15)$$

The states inside the parentheses, indexed by s, are orthonor-
mal and can be perfectly discriminated by Alice. Doing so
enables her to read Bob’s $\log_2(n_f)$ bit message s. The existence of these classical communication protocols implies that

$$C_{C\rightarrow}(U_f), C_{C\rightarrow}(U_f) \geq \log_2(n_f). \quad (16)$$

Let us now consider simultaneous, bidirectional classical communication. Here we will see that, when f is permutation from $\mathbb{Z}_M \rightarrow \mathbb{Z}_M$, the above protocol can be modified to enable Alice and Bob to send to each other $\log_2(n_f) = \log_2(M)$ classical bits simultaneously. Let $f : \mathbb{Z}_M \rightarrow \mathbb{Z}_M$ be a permutation of degree M. We begin with the state

$$|\Psi\rangle = \frac{1}{\sqrt{M}} \sum_{x \in \mathbb{Z}_M} |x\rangle_A \otimes |M \oplus x\rangle_B, \quad (17)$$

which resembles the state $|\psi\rangle$ in Eq. (12). Here, \oplus/\ominus denotes addition/substraction modulo M. Alice encodes her message $r \in \mathbb{Z}_M$ with the unitary transformation $|x\rangle \rightarrow |f^{-1}(x+r)\rangle$ on A. Again, Bob encodes his message s with a unitary phase shift on B, here $|M \oplus x\rangle \rightarrow e^{2\pi i s/m} |M \oplus x\rangle$ where $s \in \mathbb{Z}_M$. The total state transformation is $|\Psi\rangle \rightarrow |\Psi_{rs}\rangle$, where

$$|\Psi_{rs}\rangle = \frac{1}{\sqrt{M}} \sum_{x \in \mathbb{Z}_M} e^{2\pi ix/s} |f^{-1}(x+r)\rangle_A \otimes |M \oplus x\rangle_B. \quad (18)$$

The corresponding standard oracle operator U_f is then applied, which results in the transformation

$$U_f|\Psi_{rs}\rangle = \frac{1}{\sqrt{M}} \sum_{x \in \mathbb{Z}_M} e^{2\pi ix/s} |f^{-1}(x+r)\rangle_A \otimes |M \oplus x\rangle_B. \quad (19)$$

Alice and Bob are now able to read each other’s messages. For the sake of clarity, let Alice now invert her earlier unitary transformation on A and Bob perform the unitary transformation $\sum_{r' \in \mathbb{Z}_M} |r'\rangle \langle r'|_B$ on B. This results in the state

$$\left(\frac{1}{\sqrt{M}} \sum_{x \in \mathbb{Z}_M} e^{2\pi ix/s} |x\rangle \otimes |r\rangle_B\right). \quad (20)$$

The states of A are the orthonormal eigenstates of Φ_M indexed by s. These states are perfectly distinguishable by Alice, as are the states $|r\rangle$ by Bob. Discrimination among these states enables Alice and Bob to read each other’s $\log_2(M)$ bit messages. We therefore conclude, for a standard oracle operator corresponding to a permutation of degree M, that the bidirectional classical capacity satisfies

$$C_{C\rightarrow}(U_f) \geq 2 \log_2(M). \quad (21)$$

Having obtained lower bounds on the entangling and classical capacities for a standard oracle operator, we now obtain upper bounds on the corresponding minimum resources for its distributed implementation. We will now show that

$$E_R(U_f), C_{R\rightarrow}(U_f), C_{R\rightarrow}(U_f) \leq \log_2(n_f), \quad (22)$$

by describing an explicit protocol that uses $\log_2(n_f)$ bits of entanglement and the same number of classical bits in each direction to perform the distributed implementation of a standard oracle operator. We begin with an arbitrary initial state of systems A and B, which may be written in the form

$$|\Psi\rangle = \sum_{m \in \mathbb{Z}_M \cap \mathbb{N}} \sum_{n \in \mathbb{N}} c_{mn} |m\rangle_A \otimes |n\rangle_B. \quad (23)$$

In addition to A and B, Alice and Bob have respective ancillas a and b. Their Hilbert spaces can be described in the following way. Let us define \mathcal{H}_f as the n_f-dimensional subspace of \mathcal{H}_M spanned by the states $|x_j\rangle$ for $j \in \{0,\ldots,n_f-1\}$. Then the Hilbert spaces of a and b are copies of \mathcal{H}_f. The two ancillas are initially prepared in the maximally entangled state $\frac{1}{n_f^{1/2}} \sum_{j=0}^{n_f-1} |x_j\rangle_a \otimes |x_j\rangle_b$, which has $\log_2(n_f)$ bits of entanglement. The total initial state is therefore

$$|\Phi_0\rangle = \frac{1}{\sqrt{n_f}} \sum_{j=0}^{n_f-1} \sum_{m \in \mathbb{Z}_M \cap \mathbb{N}} \sum_{n \in \mathbb{N}} c_{mn} |m\rangle_A \otimes |x_j\rangle_a \otimes |n\rangle_B \otimes |x_j\rangle_b. \quad (24)$$

Our protocol can be described in the following way:

Step 1: Alice applies the following unitary operator to Aa:

$$\Omega = \sum_{k=0}^{n_f-1} P_k \otimes V_k. \quad (25)$$

Here, V_k is a unitary operator on \mathcal{H}_f which acts as $V_k|x_j\rangle = |x_j \oplus k\rangle$, where throughout, \oplus/\ominus denotes addition/substraction modulo n_f. The state transformation effected by this operator is $|\Phi_0\rangle \rightarrow |\Phi_1\rangle$, where

$$|\Phi_1\rangle = \frac{1}{\sqrt{n_f}} \sum_{j,k=0}^{n_f-1} \sum_{m \in \mathbb{Z}_M \cap \mathbb{N}} \sum_{n \in \mathbb{N}} c_{mn} |m\rangle_A \otimes |x_j \oplus k\rangle_a \otimes |n\rangle_B \otimes |x_j\rangle_b. \quad (26)$$

Step 2: Alice performs a computational basis measurement on a, getting result x_r for some $r \in \{0,\ldots,n_f-1\}$. This results in the state transformation $|\Phi_1\rangle \rightarrow |\Phi_{2r}\rangle$ where

$$|\Phi_{2r}\rangle = \sum_{k=0}^{n_f-1} \sum_{m \in \mathbb{Z}_M \cap \mathbb{N}} \sum_{n \in \mathbb{N}} c_{mn} |m\rangle_A \otimes |x_r\rangle_a \otimes |n\rangle_B \otimes |x_r \oplus k\rangle_b. \quad (27)$$

Step 3: Alice communicates the value of r to Bob, thus sending him $\log_2(n_f)$ classical bits. With his knowledge of r, Bob performs the unitary transformation $|x_r \oplus k\rangle \rightarrow |x_k\rangle$ on b, resulting in the total state transformation $|\Phi_{2r}\rangle \rightarrow |\Phi_{3r}\rangle$ where

$$|\Phi_{3r}\rangle = \sum_{k=0}^{n_f-1} \sum_{m \in \mathbb{Z}_M \cap \mathbb{N}} \sum_{n \in \mathbb{N}} c_{mn} |m\rangle_A \otimes |x_r\rangle_a \otimes |n\rangle_B \otimes |x_k\rangle_b. \quad (28)$$

Step 4: Bob now performs the unitary transformation

$$|n\rangle_B \otimes |x_k\rangle_b \rightarrow |n\oplus f_k\rangle_B \otimes |x_k\rangle_b, \quad (29)$$
where \oplus denotes addition modulo N. This transformation is effectively the oracle operator U_f, with b and B being the control and target systems respectively and the state of the control system is restricted to the subspace \mathcal{H}_f of \mathcal{H}_M. The gives $|\Phi_{4r}\rangle\rightarrow|\Phi_{4r}\rangle$ where

$$|\Phi_{4r}\rangle = \frac{1}{\sqrt{n_f}} \sum_{k=0}^{n_f-1} \sum_{m \in \mathcal{S}_N} \sum_{n \in \mathcal{S}_N} c_{mn} |m\rangle_A \otimes |x_r\rangle_A \otimes |n \oplus f_k\rangle_B \otimes |x_k\rangle_b.$$

Step 5: Bob performs a discrete Fourier transform on the b system whose effect is $|x_k\rangle \rightarrow \frac{1}{\sqrt{n_f}} \sum_{s=0}^{n_f-1} e^{2\pi i ks/n_f} |x_s\rangle$, resulting in the total state transformation $|\Phi_{5r}\rangle \rightarrow |\Phi_{5r}\rangle$, where

$$|\Phi_{5r}\rangle = \frac{1}{\sqrt{n_f}} \sum_{k,s=0}^{n_f-1} \sum_{m \in \mathcal{S}_N} \sum_{n \in \mathcal{S}_N} c_{mn} e^{2\pi i ks/n_f} |m\rangle_A \otimes |x_r\rangle_a \otimes |n \oplus f_k\rangle_B \otimes |x_s\rangle_b.$$

Step 6: Bob now performs a computational basis measurement on b. On obtaining the result x_s, where $s \in \{0, \ldots, n_f - 1\}$, the total state is transformed as

$$|\Phi_{6rs}\rangle \rightarrow |\Phi_{6rs}\rangle = \frac{n_f}{\sqrt{n_f}} \sum_{k=0}^{n_f-1} \sum_{m \in \mathcal{S}_N} \sum_{n \in \mathcal{S}_N} c_{mn} e^{2\pi i ks/n_f} |m\rangle_A \otimes |x_r\rangle_a \otimes |n \oplus f_k\rangle_B \otimes |x_s\rangle_b,$$

and he communicates the value of s to Alice. This requires him to send her $\log_2(n_f)$ bits of classical information.

Step 7: Alice now uses the degenerate but unitary phase shift operator $T = \sum_{k=0}^{n_f-1} e^{2\pi i ks/n_f} P_k$. Knowing s, she applies the operator T^s to A. This results in the transformation $|\Phi_{6rs}\rangle \rightarrow |\Phi_{7rs}\rangle$, where

$$|\Phi_{7rs}\rangle = \frac{n_f}{\sqrt{n_f}} \sum_{k=0}^{n_f-1} \sum_{m \in \mathcal{S}_N} \sum_{n \in \mathcal{S}_N} c_{mn} |m\rangle_A \otimes |x_r\rangle_a \otimes |n \oplus f_k\rangle_B \otimes |x_s\rangle_b = (U_f |\Phi_{s}\rangle)_{AB} \otimes |x_r\rangle_a \otimes |x_s\rangle_b,$$

which is the desired transformation of the state of AB. The existence of this protocol for the distributed implementation of the standard oracle operator U_f, with the specified resources together with the lower capacity bounds in [11, 10] and inequalities [9, 6] and [7], establishes that all six quantities in these latter inequalities are equal to $\log_2(n_f)$. We also see from [8] that when f is a permutation of degree M, the bidirectional classical capacity $C_{\text{bid}}(U_f)$ is equal to $2\log_2(n_f)$ bits and that the bidirectional classical communication protocol we described is optimal.

There are several points to be made about this distributed protocol. Firstly, it generalises earlier work on the distributed implementation of the CNOT gate [2, 4, 5]. In fact, this unitary gate is the standard oracle operator corresponding to the one-bit identity function. Our protocol has interesting security properties. The actual classical data that Alice and Bob send to each other consists of random measurement results. It follows that if they wish to use U_f to send classical information to each other, this will be concealed from an eavesdropper listening to their classical transmissions. Also, we see that in step 4, Bob effectively implements the oracle locally. Only this step makes reference to the details of the function f, which even Alice doesn’t have to know for the successful implementation of U_f. The details of f will also be concealed from a potential eavesdropper on the classical transmissions.

We also point out that this protocol simplifies when f is a permutation on \mathbb{Z}_M. When this is so, $M = N = n_f$ and all four quantum systems have identical Hilbert spaces. The projectors P_k have rank-one and project onto all of the computational basis states in \mathcal{H}_M. One further curious property of permutations is the ease with which their standard oracle operators can be seen to be locally equivalent. Kashefi et al. [10] noted that for any permutation f on \mathbb{Z}_M, one can define the unitary minimal oracle operator $Q_f = \sum_{x \in \mathbb{Z}_M} |f(x)\rangle \langle x|$, which is related to U_f through $U_f = (Q_f^T \otimes 1_M) U_{1D} (Q_f \otimes 1_M)$. Here, U_{1D} is the standard oracle operator corresponding to the $\mathbb{Z}_M \rightarrow \mathbb{Z}_M$ identity function. All standard oracle operators for permutations of degree M are therefore interconvertible with local unitary operations. It follows that the minimum non-local resources to implement these operators and their corresponding capacities are equal.

To conclude, we have studied numerous aspects of the distributed implementation of standard oracle operators. These arise frequently in the context of quantum algorithms and the results presented here will be useful in relation to distributed quantum computation. It is also to be expected that the methods used to establish the minimum non-local implementation resources and capacities of standard oracle operators will be useful in a more general context. In particular, the optimal distributed protocol for standard oracle operators has the potential to be modified for more general unitary operators.

Acknowledgements: I would like to thank Timothy Spiller and Bill Munro for helpful discussions and comments on this manuscript and also Martin Plenio for many enjoyable conversations about this topic. Part of this work was carried out at NICT, Tokyo and I would like to thank Masahide Sasaki and his group for their hospitality. This work was supported by the EU project QAP.

[1] M. A. Nielsen and I. L. Chuang, *Quantum Computation and Quantum Information* (Cambridge 2000).
[2] D. Gottesman and I. L. Chuang, *Nature* 402 390 (1999).
[3] A. Chefles, C. R. Gilson and S. M. Barnett, *Phys. Rev. A* 63, 032314 (2001).
[4] J. Eisert, K. Jacobs, P. Papadopoulos and M. B. Plenio, *Phys. Rev. A* 62 052317 (2000).
[5] D. Collins, N. Linden and S. Popescu, *Phys. Rev. A* 64, 032302 (2001).
[6] B. Kraus and J. I. Cirac, Phys. Rev. A 63 062309 (2001).
[7] C. H. Bennett, A. W. Harrow, D. W. Leung and J. A. Smolin, IEEE Trans. Inf. Theory 49 1895 (2003).
[8] M. S. Leifer, L. Henderson and N. Linden, Phys. Rev. A 67 012306 (2003).
[9] R. Van Meter, K. Nemoto and W. J. Munro, ‘Communication Links for Distributed Quantum Computation’. ArXiv eprint quant-ph/0701043 (2007).
[10] E. Kashefi, A. Kent, V. Vedral and K. Banaszek, Phys. Rev. A 65 050304(R) (2002).
[11] A. Chefles, A. Kitagawa, M. Takeoka, M. Sasaki and J. Twamley, ‘Unambiguous discrimination among oracle operators’. ArXiv eprint quant-ph/0702243 (2007). To appear in J. Phys. A: Math. Theor..
[12] D. T. Pegg and S. M. Barnett, Phys. Rev. A. 39 1665 (1989).
[13] It is noteworthy that the entangling capacity $E_C(U_f)$ can also be deduced from the general inequality $E_C(U) \leq \log_2(\text{Sch}(U))$ obtaining by Bennett et al. for an arbitrary bipartite unitary operator U, together with our entanglement creation protocol and our observation that $\text{Sch}(U_f) = n_f$.