BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers’ comments and the authors’ responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (http://bmjopen.bmj.com).

If you have any questions on BMJ Open’s open peer review process please email info.bmjopen@bmj.com
Which patient-reported outcome measures are used following revision knee replacement, and are they validated?

A systematic scoping review of measurement properties and evaluation with the COSMIN checklist

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-046169
Article Type:	Original research
Date Submitted by the Author:	21-Oct-2020
Complete List of Authors:	Sabah, Shiraz; University of Oxford Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, Price Knee Research Group Hedge, Elizabeth; University of Oxford Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, Price Knee Research Group Abram, Simon; University of Oxford Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, Price Knee Research Group Alvand, Abtin; University of Oxford Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, Price Knee Research Group Price, Andrew; University of Oxford, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences Hopewell, Sally; University of Oxford, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences
Keywords:	Knee < ORTHOPAEDIC & TRAUMA SURGERY, Musculoskeletal disorders < ORTHOPAEDIC & TRAUMA SURGERY, Adult orthopaedics < ORTHOPAEDIC & TRAUMA SURGERY
I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd (“BMJ”) its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our licence.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge (“APC”) for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which Creative Commons licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author’s Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.
Which patient-reported outcome measures are used following revision knee replacement, and are they validated?

A systematic review of measurement properties and evaluation with the COSMIN checklist

Authors

1. Shiraz A. Sabah, FRCS(Orth) 1
2. Elizabeth A. Hedge, MRCS 1
3. Simon G. F. Abram, DPhil 1
4. Abtin Alvand, DPhil 1,2
5. Andrew J. Price, DPhil 1,2
6. Sally Hopewell, DPhil 1,3

Author addresses:

1 Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Botnar Research Centre, OX3 7LD
2 Nuffield Orthopaedic Centre, Oxford, OX3 7LD
3 Centre for Statistics in Medicine, University of Oxford, Botnar Research Centre, OX3 7LD

Author titles:

SAS: DPhil student, corresponding author, shiraz.sabah@ndorms.ox.ac.uk
EAH: Orthopaedic Registrar, elizabeth.a.hedge@gmail.com
SGFA: Clinical Lecturer, simon.abram@ndorms.ox.ac.uk
AA: Consultant Orthopaedic Surgeon, abtin.alvand@ndorms.ox.ac.uk
AJP: Professor of Orthopaedics, andrew.price@ndorms.ox.ac.uk
SH: Associate Professor, sally.hopewell@csm.ox.ac.uk

Keywords Knee – Revision – Joint Replacement – Patient reported outcome measures - Outcomes

Word count: 2712 words
Abstract

Objectives
To identify: (i) Patient Reported Outcome Measures (PROMs) used to evaluate symptoms, health status or quality of life following discretionary revision (or re-revision) knee joint replacement, and (ii) validated joint-specific PROMs, their measurement properties and quality of evidence.

Design
(i) Scoping review; (ii) Systematic review following the COnsensus-based Standards for selection of health status Measurement INstruments (COSMIN) checklist.

Data sources
MEDLINE, Embase, AMED and PsycINFO were searched from inception to 1 July 2020 using the Oxford PROM filter unlimited by publication date or language.

Eligibility criteria for selecting studies
Studies reporting on the development, validation or outcome of a joint-specific PROM for revision knee joint replacement were included.

Results
51 studies reported PROM outcomes using 8 joint-specific PROMs. 27 out of 51 studies (52.9%) were published within the last five years. PROM development was inadequate or doubtful for each of the eight PROMs studied. Validation studies were available for only three joint-specific PROMs: Knee Injury and Osteoarthritis Outcome Score (KOOS), Lower Extremity Activity Scale (LEAS), and Western Ontario and McMaster Universities Arthritis Index (WOMAC). 25 out of 27 (92.6%) measurement properties were rated either insufficient, indeterminate, or not assessed. The quality of supporting evidence was mostly low or very low. Each of the validated PROMs was rated ‘B’ (potential for recommendation but require further evaluation).

Conclusion
Joint-specific PROMs are increasingly used to report outcomes following revision knee joint replacement, but these instruments have insufficient evidence for their validity. Future research should be directed toward understanding the measurement properties of these instruments in order to inform clinical trials and observational studies evaluating the outcomes from joint-specific PROMs.
Article Summary

Strengths and limitations of this study

1. This systematic review was motivated by the James Lind Alliance Priority Setting Partnership question: “How should we measure the outcomes following revision knee surgery in a way that is meaningful to patients?”

2. This is the first study to examine current utilisation of patient-reported outcome measures (PROMs) together with quality of PROM development and validation studies in the setting of revision knee joint replacement.

3. This review used a sensitive search strategy based on the Oxford PROM filter to identify relevant articles.

4. PROM development and validation studies were appraised using a validated tool - CONsensus-based Standards for the selection of health status Measurement INstruments (COSMIN) checklist.
Introduction

Primary knee replacement is a successful procedure that improves quality of life for the majority of patients by reducing pain and improving joint function (1). However, approximately 20% of patients are dissatisfied following surgery (2) and 3.5% of primary knee replacements have undergone revision surgery by 10 years (3). Approximately, 6000 revision knee replacement procedures are performed each year in the United Kingdom (UK) (3). 85% of procedures are for discretionary indications, where the goal of surgery is to improve joint function and quality of life. This contrasts to non-discretionary surgery (such as for infection or fracture), which is necessary to prevent catastrophic joint failure or new comorbidity. For discretionary procedures, it is critical that we understand the patient perspective.

Patient-reported outcome measures (PROMs) are widely used for this purpose in lower limb surgery. Many PROMs aim to report quality of life and functional outcomes, whilst others assess sporting performance, activities of daily living or psychological health. However, not all have optimal measurement properties (4,5). For primary knee replacement, many PROMs have good quality evidence for their validity (6,7). This has facilitated utilisation of PROMs to support patient choice and manage health care providers (8–10), with many schemes also including revision procedures. A prominent example is the NHS PROMs programme (8), which has collected data from more than 10,000 patients who have undergone revision knee replacement. However, interpretation of this data has been critically limited by a lack of PROM validation.

Revision knee replacement is one of the most expensive procedures in modern healthcare (11) and high-quality PROM data is important to evaluate cost-effectiveness (12). Whilst generic PROMs can be used to compare patients, they may miss important items in specific populations (13). The COnsensus-based Standards for the selection of health status Measurement INstruments (COSMIN) initiative provides tools to aid systematic reviews and selection of measurement instruments (14). The ideal PROM is developed or subsequently validated in the population of interest, has good measurement properties and is supported by high-quality evidence. PROM instruments meeting these criteria can be selected for a core outcome set in order to standardise outcome measurement. If there are no suitable PROMs, then further validation studies may be required or the development of a new PROM. For revision knee replacement, no systematic review has evaluated PROMs in current use, their measurement properties or the quality of this evidence. This limits meta-analysis of previous research and design of future trials.

The aims of this review were: (i) to scope the literature to identify PROMS in current use for evaluation of symptoms, health status or quality of life following discretionary revision (or re-revision) knee replacement, and (ii) to identify validated joint-specific PROMs, their measurement properties and quality of evidence.
Methods
This section is structured to follow the COSMIN Handbook (14). PROSPERO does not accept registration of scoping reviews.

Patient and Public Involvement
Patients and the public were involved in the design, or conduct, or reporting, or dissemination plans of our research. This article was motivated by the James Lind Alliance Priority Setting Partnership for revision knee replacement (15), particularly the question: “How should we measure the outcomes following revision knee surgery in a way that is meaningful to patients?”

Part A: Aim and literature search
Step 1: Aims (described above)

Step 2: Study eligibility criteria
Randomised and non-randomised studies were eligible for inclusion. Revision knee replacement was defined as any procedure where an arthroplasty component was removed, modified or added. This included isolated liner exchange, secondary patellar resurfacing and re-revision procedures. Studies where the majority of procedures were performed for non-discretionary indications (such as infection or malignancy) were excluded, as well as amputations and arthrodesis procedures. Since 85% of revisions are for discretionary indications, studies where the indication was not specified were deemed eligible for inclusion. PROMs were required to address one of the following domains:
- Pain (e.g. Western Ontario and McMaster Universities Arthritis Index (WOMAC) pain subscale (16)),
- Function (e.g. WOMAC functional limitation subscale),
- Combined pain and function (e.g. Oxford Knee Score (17)),
- Joint-related health status (e.g. Knee Injury and Osteoarthritis Outcome Score [KOOS] quality of life [QOL] (18)), or
- Patient activity (e.g. Lower Extremity Activity Scale [LEAS] (19)).

Collectively, we have termed these ‘joint-specific’ PROMs. The focus of this study was not to examine generic health-related quality of life instruments (e.g. EuroQol 5-dimension score (20)). However, we did report the use of these instruments in conjunction with a joint-specific PROM. Outcome scores not considered to be patient-centred were excluded; for example, surgeon-completed scores such as the Bristol Knee Score (BKS), Hospital for Special Surgery Knee Score, and the Knee Society Score (KSS). Studies with less than fifty patients were excluded as their sample size would be considered inadequate when applying COSMIN rules for rating of measurement properties and evidence quality (7).

Step 3: Search strategy
This is provided in Appendix 1. MEDLINE, Embase, AMED and PsycINFO were searched on 1st July 2020 using the Oxford PROM filter (21). Searches were translated for each database. There were no limitations on language or publication date. The citations of included studies were searched to identify additional articles.

Step 4: Study selection
Two authors (SAS and EAH) independently reviewed title and abstract for all records returned by the search against eligibility criteria. Disagreement was resolved through discussion of the full text publication. Data were extracted on name and type of PROM, geography, journal, year of publication and number of patients.

Part B: Evaluation of measurement properties of the included PROMs

Steps 5, 6 and 7: Content validity, Internal structure, Reliability and Responsiveness

Descriptions of terminology for measurement properties are provided in Appendix 3. Each measurement property was evaluated in three separate sub-steps:

Sub-step 1: Evaluation of methodological quality

Two authors (SAS and SGFA) independently evaluated the measurement properties in each article against the COSMIN Risk of Bias checklist. A priori hypotheses for construct validity and responsiveness were set (Appendix 2 - Table 1). Study quality was assessed separately for each measurement property using a four-point rating system (very good, adequate, doubtful or inadequate). The “worst score counts” principle was used, where the overall rating for each measurement property is given by the lowest rating of any standard in the box (22).

Sub-step 2: Application of criteria for good measurement properties (GMP)

Two authors (SAS and SGFA) independently extracted data on: PROM characteristics (intended construct for measurement, measurement properties, method of administration), study sample (number of patients, patient demographics, diagnosis) and study details (setting, country, language). Disagreement was resolved through discussion. The results from each study on a measurement property were assigned a quality rating as: sufficient (+), insufficient (-) or indeterminate (?).

Sub-step 3: Summary and grading of quality of evidence

This section refers to rating the quality of the PROM as a whole. PROMs were qualitatively summarised and assigned a four-point quality rating. A modified Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach (omitting publication bias) was used to assign evidence quality as high, moderate, low or very low (23).

Part C: Selecting a PROM

Step 8: Description of interpretability and feasibility

Interpretability and feasibility were analysed descriptively as per COSMIN guidance (14).

Step 9: Formulation of recommendations

PROMs were categorised into three categories: (A) Sufficient content validity and at least low-quality evidence for internal consistency; (B) Between ‘A’ and ‘C’; and (C) High-quality evidence for an insufficient measurement property. PROMs rated ‘A’ can be recommended for use. PROMs rated ‘B’ have potential for recommendation but require further evaluation. PROMs rated ‘C’ should not be recommended.

Step 10: Reporting of the systematic review

The PRISMA flow diagram is provided in Figure 1.
Results

Part A

Study selection

1205 unique articles were identified for screening. 66 full text articles were assessed for eligibility. 51 studies were included in the scoping review, reporting on 8 joint-specific PROMs. Four studies met inclusion criteria for PROM validation, describing measurement properties for three PROMs (Figure 1).

Characteristics of studies reporting PROM outcomes for revision knee replacement

Fifty-one studies reported on PROM outcomes (Tables 1 & 2) recruiting a median of 104 (range 51 – 1391) patients. Study designs included 1 (2.0%) randomised controlled trial, 14 (27.5%) prospective cohort studies, 29 (56.9%) retrospective cohort studies, 3 (5.9%) reports from national joint registries, 3 (5.9%) cross-sectional surveys and 1 (2.0%) data analysis of routinely-collected secondary care data. Twenty-five studies (49.0%) were from Europe, 19 (37.3%) from North America, 6 (11.8%) from Asia and 1 (2.0%) from Australasia. The joint-specific PROMs reported were the WOMAC Index (25 studies, 49.0%), OKS (19 studies, 37.3%), KOOS (8 studies, 15.7%), Lower Extremity Activity Scale (LEAS, 4 studies, 7.8%), University of California Los Angeles Activity Score (UCLA, 4 studies, 7.8%), Kujala score (2 studies, 3.9%), Lower Extremity Functional Scale (LEFS, 2 studies, 3.9%), and the Lysholm score (1 study, 2.0%). The majority of studies were published within the past five years (27/51 (52.9%) studies) (Appendix 2 Figure 1).

Part B

Quality of PROM development studies

The PROM development studies for the 8 disease-specific PROMS identified above are summarised in Table 3. The overall rating for each of these studies was either ‘doubtful’ (n=1, 12.5%) or ‘inadequate’ (n=7, 87.5%). Six of these studies were rated ‘inadequate’ as they did not recruit a sample representative of revision knee replacement. In particular, the LEAS study used a surgeon panel in lieu of patients for content validity. Five studies (62.5%) were rated ‘doubtful’ due to a lack of specificity in their descriptions of the construct to be measured. For example, whilst it was clear that the Kujala score was developed to evaluate anterior knee pain, the aspect of pain to be measured was not specified. The origin of the construct was not clear for five studies (62.5%). Concept elicitation used inappropriate methodology in five studies (62.5%, ‘inadequate’ rating), and was survey-based in two (25.0%, ‘doubtful’ rating). However, the OKS used experienced interviewers to collect qualitative data (‘very good’).

Characteristics of PROM validation studies

Four studies (19,24–26) from the scoping review validated three joint-specific PROMs (KOOS, LEAS, WOMAC) (Table 4). The mean age of patients in the included studies ranged from 67 to 77 years. Female patients accounted for 50 to 78% of the study populations. The primary objective of the included articles varied from validation of a PROM, validation of another instrument with the PROM as a comparator, development of a new instrument and reporting of clinical outcome after revision knee replacement. The characteristics of the PROMs included in the validation studies are described in Table 5.
For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Quality of studies on measurement properties

In total, 20 measurement properties for the KOOS, LEAS and WOMAC were evaluated (Table 6). There were 40 additional opportunities to evaluate measurement properties that were not attempted. 2 (10.0%) measurement properties were rated ‘very good’, 5 (25.0%) ‘adequate’, 3 (15.0%) ‘doubtful’ and 10 (50.0%) ‘inadequate’. For structural validity, de Groot’s evaluation for the KOOS was rated ‘inadequate’ due to an insufficient sample size for factor analysis (less than five times the number of participants). Three out of four (75.0%) studies that reported on responsiveness were rated ‘inadequate’ due to their construct approach. For example, Saleh et al (25) used an ‘inadequate’ comparator instrument for development of the LEAS - the measurement properties of the WOMAC are not well enough known for revision. Ghomrawi et al (19) did not set hypotheses for construct validity, and their statistical methodology did not allow these to be evaluated at review. Two studies reported on reliability. These were rated ‘adequate’ as, whilst they chose an appropriate interval, they did not also ensure patients were stable.

Quality of the evidence for measurement properties of the PROMs

The quality of the evidence for measurement properties of the included PROMs is provided in Table 7. 25 out of 27 (92.6%) measurement properties were rated either insufficient, indeterminate, or not assessed. The only measurement property to receive a ‘sufficient’ rating was reliability for both the KOOS and LEAS, supported by ‘low’ and ‘moderate’ quality evidence respectively.

Part C

Data on the interpretability of the studies is summarised in Table 8. The mode of PROM administration was unclear for all studies except de Groot et al (24). Missing responses ranged from 25-60%. No study reported on missing items within a PROM instrument. Floor and ceiling effects were not reported, except by Saleh et al (25). No PROM met criteria either to be recommended or not recommended for use. Each of the validated PROMs (i.e. KOOS, LEAS and WOMAC) were therefore assigned recommendation ‘B’, indicating that further evidence is needed.
Discussion

This review has demonstrated the increasing use of PROMs to evaluate symptoms and functional outcomes following discretionary revision knee replacement. The majority of studies were retrospective and observational, with only one randomised controlled trial.

Eight different joint-specific PROMs were identified, with the WOMAC index (25 studies, 49.0%) and the OKS (19 studies, 37.3%) the most frequent. Only three joint-specific PROMs were supported by a validation study: KOOS, LEAS and WOMAC. Each of these validation studies had ‘low’ or ‘very low’ quality evidence and the majority of measurement properties were either not evaluated or rated ‘inadequate’ or ‘indeterminate’. As such, each of these PROMs requires more evidence in order to be recommended for use.

Secondary findings and relation to other studies

Musculoskeletal disorders account for one-third of all reviews on the COSMIN database (27). At least three reviews have evaluated the measurement properties of PROMs following primary knee replacement, with the Oxford Knee Score (OKS) and WOMAC supported by the best evidence (6,7,28). This is the first review to examine measurement properties of PROMs following revision knee replacement. Revision surgery differs importantly from primary surgery, meaning that evidence from one cannot simply be transferred to the other. For example, whilst primary knee replacement treats predominantly osteoarthritis, revision knee replacement treats many varied disease processes (29). The revision patient population is also more comorbid and may have different expectations and goals from surgery (30).

Strengths and weaknesses

This study has a number of important strengths, including the use of a broad search strategy based on the Oxford PROM filter (21), and the application of latest COSMIN guidelines. The use of a priori hypotheses by our review team to evaluate construct validity and responsiveness is novel and meant these properties could be considered even when not a focus of the original article. This study was motivated by the James Lind Alliance Priority Setting Partnership for revision knee replacement, which generated the question: “How should we measure the outcomes following revision knee surgery in a way that is meaningful to patients?” (31). As such, outcome scores that were not patient completed were excluded. We acknowledge that this has restricted the number of eligible studies from North America, where use of the Knee Society Score (KSS) is prevalent.

Implications for practice

We have not put forward a PROM for recommendation because the quality of the available evidence was low, and data were lacking for many of the measurement properties. However, we can make recommendations to direct future research and to move towards developing a core outcome set for discretionary revision knee replacement. First, we wish to highlight that standards for reporting of psychometric studies have changed considerably over the past twenty years (6). COSMIN tools are not limited to systematic reviews and may be used guide the scope and detail required to develop a new instrument or to evaluate an existing one. Second, this study has highlighted a number of common methodological flaws that result in high risk of bias. For example, when evaluating structural validity, none of the validation studies performed confirmatory factor analysis to understand whether the PROM scores reflected the dimensionality of the construct. For reliability, test conditions were not
recorded with sufficient detail to ensure that not only the repeat interval was appropriate, but also that the patient remained stable. For interpretability, none of the studies calculated a minimal important change (MIC) nor comprehensively assessed floor and ceiling effects. Third, we recommend that future studies planning to use an existing joint-specific PROM to evaluate outcomes after revision surgery do so in conjunction with a validated generic health-related quality of life instrument (such as the Short Form-36 (SF36) (32) or EuroQol 5-dimension score (EQ5D) (20)). Whilst neither the EQ5D or SF36 were developed in patients undergoing revision knee replacement, their measurement properties have been studied extensively and allow generalisability between different conditions. This approach will provide valuable information on construct validity and responsiveness in the future.

Conclusion

In conclusion, joint-specific PROMs are increasingly used to report outcomes following revision knee replacement, but these instruments have insufficient evidence for validity. Future research is needed to target the deficiencies highlighted by this review in order to inform clinical trials and observational studies evaluating these outcomes.
Details of contributors:

SAS: concept, study selection and scoping review, assessment of methodological quality, analysis, writing and editing paper, guarantor.

EAH: study selection and scoping review, critically revising paper

SGFA: assessment of methodological quality, critically revising paper

AA: critically revising paper

AJP: concept, methodology, writing and editing paper

SH: concept, methodology, writing and editing paper

Competing interests: None declared.

Funding statement: This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors

Data sharing statement: All available data is provided in the manuscript and supplementary tables.
References

1. Price AJ, Alvand A, Troelsen A, Katz JN, Hooper G, Gray A, et al. Knee replacement. Lancet. 2018;392(10158):1672–82.
2. Scott CEH, Howie CR, MacDonald D, Biant LC. Predicting dissatisfaction following total knee replacement: a prospective study of 1217 patients. J Bone Joint Surg Br. 2010 Sep;92(9):1253–8.
3. National Joint Registry for England Wales Northern Ireland and the Isle of Man. NJR 16th Annual Report. 2019 [cited 2019 Oct 9];(December 2018). Available from: https://reports.njrcentre.org.uk/
4. Garratt A, Schmidt L, Mackintosh A, Fitzpatrick R. Quality of life measurement: Bibliographic study of patient assessed health outcome measures. Br Med J. 2002 Jun 15;324(7351):1417–9.
5. Abram SG, Middleton R, Beard DJ, Price AJ, Hopewell S. Patient-reported outcome measures for patients with meniscal tears: A systematic review of measurement properties and evaluation with the COSMIN checklist. BMJ Open. 2017;7(10):1–15.
6. Harris K, Dawson J, Gibbons E, Lim C, Beard D, Fitzpatrick R, et al. Systematic review of measurement properties of patient-reported outcome measures used in patients undergoing hip and knee arthroplasty. Patient Relat Outcome Meas. 2016 Jul;Volume 7:101–8.
7. Gagnier JJ, Mullins M, Huang H, Marinac-Dabic D, Ghambaryan A, Eloff B, et al. A Systematic Review of Measurement Properties of Patient-Reported Outcome Measures Used in Patients Undergoing Total Knee Arthroplasty. Vol. 32, Journal of Arthroplasty. Churchill Livingstone Inc.; 2017. p. 1688-1697.e7.
8. NHS Digital. Patient Reported Outcome Measures (PROMs) [Internet]. [cited 2020 Apr 16]. Available from: https://digital.nhs.uk/data-and-information/data-tools-and-services/data-services/patient-reported-outcome-measures-proms
9. National Joint Registry for England, Wales NI and the I of M. NJR Clinician Feedback - Surgeon PROMs Reports [Internet]. [cited 2020 Apr 28]. Available from: https://clinicianfeedback.njrcentre.org.uk/SurgeonPROMsReports.aspx
10. Middleton R, Wilson HA, Alvand A, Abram SG, Bottomley N, Jackson W, et al. Outcome-based commissioning of knee arthroplasty in the NHS: System error in a national monitoring programme and the unintended consequences on achieving the best practice tariff. Bone Jt J. 2018 Dec 1;100B(12):1572–8.
11. Kallala RF, Vanhegan IS, Ibrahim MS, Sarmah S, Haddad FS. Financial analysis of revision knee surgery based on NHS tariffs and hospital costs. Bone Joint J. 2015 Feb 1;97-B(2):197–201.
12. Eibich P, Dakin HA, Price AJ, Beard D, Arden NK, Gray AM. Associations between preoperative Oxford hip and knee scores and costs and quality of life of patients undergoing primary total joint replacement in the NHS England: An observational study. BMJ Open. 2018;8(4):1–13.
13. Brazier JE, Harper R, Munro J, Walters SJ, Snaith ML. Generic and condition-specific outcome measures for people with osteoarthrisis of the knee. Rheumatology. 1999 Sep;38(9):870–7.
14. Prinsen CAC, Mokkink LB, Bouter LM, Alonso J, Patrick DL, de Vet HCW, et al. COSMIN guideline for systematic reviews of studies on measurement properties: A scoring system for the COSMIN. Patient Relat Outcome Meas. 2016 Jul;Volume 7:101–8.
15. Mathews JA, Kalson NS, Tarrant PM, Toms AD. Top ten research priorities for problematic knee arthroplasty. Bone Joint J [Internet]. 2020 Sep 1 [cited 2020 Oct 21];102-B(9):1176–82. Available from: https://online.boneandjoint.org.uk/doi/10.1302/0301-620X.102B9.BJJ-2020-0203.R1
16. Bellamy N, Buchanan WW, Goldsmith CH, Campbell J, Stitt LW. Validation study of WOMAC: a health status instrument for measuring clinically important patient relevant outcomes to antirheumatic drug therapy in patients with osteoarthritis of the hip or knee. J Rheumatol. 1988 Dec;15(12):1833–40.
17. Dawson J, Fitzpatrick R, Murray D, Carr A. Questionnaire on the perceptions of patients about total knee replacement. J Bone Jt Surg Br. 1998 Jan;80(1):63–9.
18. Roos EM, Roos HP, Lohmander LS, Ekdahl C, Beynnon BD. Knee Injury and Osteoarthritis Outcome Score (KOOS) - Development of a self-administered outcome measure. J Orthop Sports Phys Ther [Internet]. 1998 [cited 2020 Aug 20];28(2):88–96. Available from: https://pubmed.ncbi.nlm.nih.gov/9699158/
19. Ghomrawi HMK, Kane RL, Eberly LE, Bershadsky B, Saleh KJ, Bourne R, et al. Patterns of functional improvement after revision knee arthroplasty. J Bone Jt Surg - Ser A. 2009 Dec 1;91(12):2838–45.
20. EuroQol - a new facility for the measurement of health-related quality of life. Health Policy (New York). 1990;16(3):199–208.
21. Oxford PROM Group. Oxford PROM Filter. 2010.
checklist. Vol. 21, Quality of Life Research. 2012, p. 651–7.

23. GRADE Working Group. Handbook for grading the quality of evidence and the strength of recommendations using the GRADE approach. [Internet]. 2013 [cited 2020 Mar 22]. Available from: https://gdt.gradepro.org/app/handbook/handbook.html

24. de Groot IB, Favejee MM, Reijman M, Verhaar JAN, Terwee CB. The Dutch version of the Knee Injury and Osteoarthritis Outcome Score: a validation study. Heal Qual Life Outcomes [Internet]. 2008 Feb 26 [cited 2020 May 18];6:16. Available from: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med7&AN=18302729

25. Saleh KJ, Mulhall KJ, Bershadsky B, Ghomrawi HM, White LE, Buyea CM, et al. Development and validation of a lower-extremity activity scale: Use for patients treated with revision total knee arthroplasty. J Bone Jt Surg - Ser A. 2005 Sep;87(9):1985–94.

26. Ghanem E, Pawasarat I, Lindsay A, May L, Azzam K, Yoshi A, et al. Limitations of the Knee Society score in evaluating outcomes following revision total knee arthroplasty. J Bone Jt Surg - Ser A. 2010 Oct 20;92(14):2445–51.

27. COSMIN Database of Systematic Reviews • COSMIN [Internet]. [cited 2020 Jul 1]. Available from: https://www.cosmin.nl/tools/database-systematic-reviews/

28. Alviar MJ, Olver J, Brand C, Tropea J, Hale T, Pirpiris M, et al. Do patient-reported outcome measures in hip and knee arthroplasty rehabilitation have robust measurement attributes? A systematic review [Internet]. Vol. 43, Journal of Rehabilitation Medicine. J Rehabil Med; 2011 [cited 2020 Jul 1]. p. 572–83. Available from: https://pubmed.ncbi.nlm.nih.gov/21607295/

29. Baker P, Cowling P, Kurtz S, Jameson S, Gregg P, Deehan D. Reason for revision influences early patient outcomes after aseptic knee revision. Clin Orthop Relat Res. 2012 Aug 22;470(8):2244–52.

30. Singh JA, Lewallen DG. Depression in primary TKA and higher medical comorbidities in revision TKA are associated with suboptimal subjective improvement in knee function. BMC Musculoskelet Disord [Internet]. 2014;15:127. Available from: http://www.cosmin.nl/tools/database-systematic-reviews/

31. Revision Knee Replacement Top 10 Priorities J Lind Alliance [Internet]. [cited 2020 Aug 20]. Available from: https://www.jla.nihr.ac.uk/priority-setting-partnerships/Revision-knee-replacement/revision-knee-replacementtop-10-priorities.htm

32. Ware JEJ, Sherbourne CD. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care. 1992 Jun;30(6):473–83.

33. Agarwal S, Neogi DS, Morgan-Jones R. Metaphyseal sleeves in revision total knee arthroplasty: Minimum seven-year follow-up study. Knee [Internet]. 2018;25(6):1299–307. Available from: http://www.elsevier.com/locate/knee

34. Baier C, Lühring C, Schaumberger J, Kück F, Beckmann J, Tingart M, et al. Assessing patient-oriented results after revision total knee arthroplasty. J Orthop Sci [Internet]. 2013 [cited 2020 May 18];18(6):955–61. Available from: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med10&AN=24077758

35. Bin Abd Razak HR, Lee JHM, Tan SM, Chong HC, Lo NN, Yeo SJ. Satisfaction Rates Are Low following Revision Total Knee Arthroplasty in Asians Despite Improvements in Patient-Reported Outcome Measures. J knee surgery [Internet]. 2019;04. Available from: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=emexa&AN=62862148

36. Boelch SP, Arnholdt J, Holzapfel BM, Jakuscheit A, Rudert M, Hoberg M. Revision knee arthroplasty with rotating hinge systems in patients with gross ligament instability. Int Orthop [Internet].
496 2018;42(12):2825–33. Available from:
http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=y&NEWS=N&PAGE=fulltext&D=med&AN=29789904
497 http://oxfordsp.hosted.exlibrisgroup.com/oxford?sid=OVID:medline&i...id=10.1
498 007%2Ffs00264-018-3982-2&issn=0341-2695&isbn=&volume=42&issue=12&spage=2825
499
500 37. Dahm DL, Barnes SA, Harrington JR, Berry DJ. Patient reported activity after revision total knee
501 arthroplasty. J Arthroplasty [Internet]. 2007 Sep [cited 2020 Jan 15];22(Suppl 2):106–10. Available from:
http://www.ncbi.nlm.nih.gov/pubmed/17823027
502
503 38. Eibich P, Dakin HA, Price AJ, Beard D, Arden NK, Gray AM. Associations between preoperative Oxford
504 hip and knee scores and costs and quality of life of patients undergoing primary total joint replacement
505 in the NHS England: an observational study. BMJ Open. 2018;8(4):e019477.
506
507 39. Ghanem E, Restrepo C, Joshi A, Hozack W, Sharkey P, Parvizi J. Periprosthetic infection does not
508 preclude good outcome for revision arthroplasty. Clin Orthop Relat Res [Internet]. 2007;461:54–9.
509 Available from:
http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=y&NEWS=N&PAGE=fulltext&D=med&AN=17572638
510 http://oxfordsp.hosted.exlibrisgroup.com/oxford?sid=OVID:medline&i...id=10.1
511 097%2F8L0.0b01e818073c246&issn=0009-921X&isbn=&volume=461&issue=&spage=54
512
513 40. Gomez-Vallejo J, Albareda-Albareda J, Seral-Garcia B, Blanco-Rubio N, Ezquerra-Herrando L. Revision
514 total knee arthroplasty: hybrid vs standard cemented fixation. J Orthop Traumatol [Internet].
515 2018;19(1):9. Available from:
http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=y&NEWS=N&PAGE=fulltext&D=med&AN=30117007
516 http://oxfordsp.hosted.exlibrisgroup.com/oxford?sid=OVID:medline&i...id=10.1
517 186%2F10195-018-0494-y&issn=1590-9921&isbn=&volume=19&issue=1&spage=98&pag
518
519 41. Grayson CW, Warth LC, Ziemba-Davis MM, Michael Meneghini R. Functional Improvement and
520 Expectations Are Diminished in Total Knee Arthroplasty Patients Revised for Flexion Instability
521 Compared to Aseptic Loosening and Infection. J Arthroplasty [Internet]. 2016;31(10):2241–6. Available from:
http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=y&NEWS=N&PAGE=fulltext&D=med&AN=27067166
522 http://oxfordsp.hosted.exlibrisgroup.com/oxford?sid=OVID:medline&i...id=10.1
523 016%2Fj.arth.2016.03.001&issn=0883-5403&isbn=&volume=31&issue=10&spage=224
524
525 42. Greidanus N V, Peterson RC, Masri BA, Garbuz DS. Quality of life outcomes in revision versus primary
total knee arthroplasty. J Arthroplasty [Internet]. 2011;26(4):615–20. Available from:
http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=y&NEWS=N&PAGE=fulltext&D=med&AN=20541360
526 http://oxfordsp.hosted.exlibrisgroup.com/oxford?sid=OVID:medline&i...id=10.1
527 016%2Fj.arth.2010.04.026&issn=0883-5403&isbn=&volume=26&issue=4&spage=615&p
528
529 43. Hamilton DF, Simpson PM, Patton JT, Howie CR, Burnett R. Aseptic Revision Knee Arthroplasty With
530 Total Stabilizer Prostheses Achieves Similar Functional Outcomes to Primary Total Knee Arthroplasty at
531 2 Years: A Longitudinal Cohort Study. J Arthroplasty [Internet]. 2017;32(4):1234-1240.e1. Available from:
http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=y&NEWS=N&PAGE=fulltext&D=med&AN=27916473
532 http://oxfordsp.hosted.exlibrisgroup.com/oxford?sid=OVID:medline&i...id=10.1
533 016%2Fj.arth.2016.10.028&issn=0883-5403&isbn=&volume=32&issue=10&spage=224
534
535 44. Hanna SA, Aston WJS, De Roeck NJ, Gough-Palmer A, Powles DP. Cementless revision TKA with bone
536 grafting of osseous defects restores bone stock with a low revision rate at 4 to 10 years. Clin Orthop
537 Relat Res [Internet]. 2011 [cited 2020 Aug 21];469(11):3164–71. Available from:
http://www.ncbi.nlm.nih.gov/pubmed/21678098/
538
539 45. Hartley RC, Barton-Hanson NG, Finley R, Parkinson RW. Early patient outcomes after primary and
540 revision total knee arthroplasty. A prospective study. J Bone Jt Surg - Br Vol [Internet]. 2002;84(7):994–
9. Available from:
http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=y&NEWS=N&PAGE=fulltext&D=med&AN=12358393
541 http://oxfordsp.hosted.exlibrisgroup.com/oxford?sid=OVID:medline&i...id=10.1
542 302%2F0301-620x.84b7.12607&issn=0301-620X&isbn=&volume=84&issue=7&spage=994
543
544 46. Hitt K, Bhowmik-Stoker M, Howard M, Mittal Y, Heekin RD, Jacofsky D. Joint line restoration in a
545 contemporary revision knee system. J Knee Surg [Internet]. 2015;28(1):75–82. Available from:
http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=y&NEWS=N&PAGE=fulltext&D=med&AN=24504636
546 http://oxfordsp.hosted.exlibrisgroup.com/oxford?sid=OVID:medline&i...id=10.1
547 055%2Fs-0034-1368144&issn=1538-8506&isbn=&volume=28&issue=1&spage=75&pag
548
549 47. Huang R, Barrazaeta G, Ong A, Orozco F, Jafari M, Coyle C, et al. Revision total knee arthroplasty using
metaphyseal sleeves at short-term follow-up. Orthopedics [Internet]. 2014;37(9):e804-9. Available from:
http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med11&AN=25350623
http://oxfordsfx.hosted.exlibrisgroup.com/oxford?sid=OVID:medline&pid=25350623&id=doi:10.3
928%2F01477447-20140825-57&isn=0147-7447&isbn=&volume=37&issue=9&page=e8

48. Kasmire KE, Rasouli MR, Mortazavi SMJ, Sharkey PF, Parvizi J. Predictors of functional outcome after
revision total knee arthroplasty following aseptic failure. Knee. 2014;

49. Kim YH, Kim JS. Revision total knee arthroplasty with use of a constrained condylar knee prosthesis. J
Bone Jt Surg - Ser A [Internet]. 2009 Jun 1 [cited 2020 Aug 21];91(6):1440–7. Available from:
https://pubmed.ncbi.nlm.nih.gov/19487523/

50. Kim YH, Park JW, Kim JS, Oh HK. Long-Term Clinical Outcomes and Survivorship of Revision Total Knee
Arthroplasty with Use of a Constrained Condylar Knee Prosthesis. J Arthroplasty [Internet].

2015;30(10):1804–9. Available from:
http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med12&AN=25953383

51. Klim SM, Amerstorfer F, Bernhardt GA, Sadoghi P, Hauer G, Leitner L, et al. Excellent mid-term
osseointegration and implant survival using metaphyseal sleeves in revision total knee arthroplasty.
Knee Surgery, Sport Traumatol Arthrosc [Internet]. 2020 [cited 2020 Aug 21]; Available from:
https://pubmed.ncbi.nlm.nih.gov/32006076/

52. Konrads C, Brieske S, Holzer M, Walcher M, Rudert M, Hoberg M. Outcome of isolated polyethylene
tibial insert exchange after primary cemented total knee arthroplasty. Int Orthop [Internet].

2015;39(6):1093–7. Available from:
http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med12&AN=25416121

53. Konrads C, Franz A, Hoberg M, Rudert M. Similar Outcomes of Two-Stage Revisions for Infection and
One-Stage Revisions for Aseptic Revisions of Knee Endoprostheses. J Knee Surg [Internet].

2019;32(9):897–9. Available from:
http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med12&AN=30193387

54. Kurmis AP, Herman A, McIntyre AR, Masri BA, Garbuz DS. Pseudotumors and High-Grade Aseptic
Lymphocyte-Dominated Vasculitis-Associated Lesions Around Total Knee Replacements Identified at
Aseptic Revision Surgery: Findings of a Large-Scale Histologic Review. J Arthroplasty [Internet].

2019;34(10):2434–8. Available from:
http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med12&AN=31178384

55. Larsen JB, Mogensen L, Arendt-Nielsen L, Madeleine P. Interventional, personalized multimodal
rehabilitation in patients with primary or revision total knee arthroplasty: a retrospective cohort study.
BMC Sports Sci Med Rehabil [Internet]. 2020;12:5. Available from:
http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=prem&AN=31938549

56. Lavernia C, Contreras JS, Alcerro JC. The peel in total knee revision: exposure in the difficult knee. Clin
Orthop Relat Res [Internet]. 2011;469(1):146–53. Available from:
http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med8&AN=20574805

57. Leta TH, Lygre SHL, Skredderstuen A, Hallan G, Gjertsen J-E, Rokne B, et al. Outcomes of
Unicompartmental Knee Arthroplasty After Aseptic Revision to Total Knee Arthroplasty: A Comparative
Study of 768 TKAs and 578 UKAs Revised to TKAs from the Norwegian Arthroplasty Register (1994 to
2011). J Bone Joint Surg Am [Internet]. 2016 Mar 16 [cited 2019 Oct 9];98(6):431–40. Available from:
http://insights.ovid.com/crossref?an=00004623-201603160-00001

58. Leta TH, Lygre SH, Skredderstuen A, Hallan G, Gjertsen JE, Rokne B, et al. Secondary patella resurfacing
in painful non-resurfaced total knee arthroplasties: A study of survival and clinical outcome from the
Knee Surg [Internet]. 2007;20(3):199–204. Available from: http://oxfordsfx.hosted.exlibrisgroup.com/oxford?sid=OVID:medline&id=pmid:17665781&id=doi:10.1
68. Mulhall KJ, Ghomrawi HM, Mihalko W, Cui Q, Saleh KJ. Adverse effects of increased body mass index and weight on survivorship of total knee arthroplasty and subsequent outcomes of revision TKA. J
69. Meek RM, Greidanus N V, McGraw RW, Masri BA. The extensile rectus snip exposure in revision of total knee arthroplasty. J Bone Jt Surg - Br Vol [Internet]. 2003;85(8):1120–2. Available from: http://oxfordsfx.hosted.exlibrisgroup.com/oxford?sid=OVID:medline&id=pmid:14653591&id=doi:10.1
70. Lim JBT, Pang HN, Tay KJD, Chia S-L, Lo NN, Yeo SJ. Clinical outcomes and patient satisfaction following revision of failed unicompart mental knee arthroplasty to total knee arthroplasty as good as a primary total knee arthroplasty. Knee [Internet]. 2019 Aug [cited 2019 Oct 9];26(4):847–52. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0968016019300882
71. Luneborg A, Parratte S, Ollivier M, Abdel MP, Argenson J-NA. Are Revisions of Unicompartmental Knee Arthroplasties More Like a Primary or Revision TKA? J Arthroplasty [Internet]. 2015 Nov [cited 2019 Oct 9];30(11):1985–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26100472
72. Luque R, Rizo B, Urda A, Garcia-Crespo R, Moro E, Marco F, et al. Predictive factors for failure after total knee replacement revision. Int Orthop [Internet]. 2014;38(2):429–35. Available from: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med11&AN=24402557
73. Meek RM, Dunlop D, Garbuz DS, McGraw R, Greidanus N V, Masri BA. Patient satisfaction and functional, and satisfaction outcomes after revision total knee arthroplasty. J Arthroplasty [Internet]. 2012;20(10):1994–2001. Available from: http://doi.org/10.1016/j.arth.2012.06.003
74. Meek BA, Meek RMD, Greidanus N V, Garbuz DS. Effect of retaining a patellar prosthesis on pain, functional, and satisfaction outcomes after revision total knee arthroplasty. J Arthroplasty [Internet]. 2006;21(8):1169–74. Available from: http://doi.org/10.1016/j.arth.2005.11.008
75. Mulhall KJ, Ghomrawi HM, Mihalko W, Cui Q, Saleh KJ. Adverse effects of increased body mass index and weight on survivorship of total knee arthroplasty and subsequent outcomes of revision TKA. J
76. Mulhall KJ, Ghomrawi HM, Mihalko W, Cui Q, Saleh KJ. Adverse effects of increased body mass index and weight on survivorship of total knee arthroplasty and subsequent outcomes of revision TKA. J
77. Martin-Hernandez C, Flora-Arnal LJ, Muniesa-Herrero MP, Espallargas-Donate T, Blanco-Llorca JA, Guillen-Soriano M, et al. Mid-term results for metaphyseal sleeves in revision knee surgery. Knee Surgery, Sport Traumatol Arthrosc [Internet]. 2017;25(12):3779–85. Available from: http://doi.org/10.1007/s00167-016-4298-4
78. Meek RM, Dunlop D, Garbuz DS, McGraw R, Greidanus N V, Masri BA. Patient satisfaction and functional, and satisfaction outcomes after revision total knee arthroplasty. J Arthroplasty [Internet]. 2006;21(8):1169–74. Available from: http://doi.org/10.1016/j.arth.2005.11.008
79. Mulhall KJ, Ghomrawi HM, Mihalko W, Cui Q, Saleh KJ. Adverse effects of increased body mass index and weight on survivorship of total knee arthroplasty and subsequent outcomes of revision TKA. J
80. Lim JBT, Pang HN, Tay KJD, Chia SL, Lo NN, Yeo SJ. Clinical outcomes and patient satisfaction following revision of failed unicompart mental knee arthroplasty to total knee arthroplasty as good as a primary total knee arthroplasty. Knee [Internet]. 2019 Aug [cited 2019 Oct 9];26(4):847–52. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0968016019300882
81. Luneborg A, Parratte S, Ollivier M, Abdel MP, Argenson J-NA. Are Revisions of Unicompartmental Knee Arthroplasties More Like a Primary or Revision TKA? J Arthroplasty [Internet]. 2015 Nov [cited 2019 Oct 9];30(11):1985–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26100472
82. Luque R, Rizo B, Urda A, Garcia-Crespo R, Moro E, Marco F, et al. Predictive factors for failure after total knee replacement revision. Int Orthop [Internet]. 2014;38(2):429–35. Available from: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med11&AN=24402557
83. Meek RM, Dunlop D, Garbuz DS, McGraw R, Greidanus N V, Masri BA. Patient satisfaction and functional, and satisfaction outcomes after revision total knee arthroplasty. J Arthroplasty [Internet]. 2006;21(8):1169–74. Available from: http://doi.org/10.1016/j.arth.2005.11.008
84. Meek RM, Dunlop D, Garbuz DS, McGraw R, Greidanus N V, Masri BA. Patient satisfaction and functional, and satisfaction outcomes after revision total knee arthroplasty. J Arthroplasty [Internet]. 2006;21(8):1169–74. Available from: http://doi.org/10.1016/j.arth.2005.11.008
85. Meek RM, Dunlop D, Garbuz DS, McGraw R, Greidanus N V, Masri BA. Patient satisfaction and functional, and satisfaction outcomes after revision total knee arthroplasty. J Arthroplasty [Internet]. 2006;21(8):1169–74. Available from: http://doi.org/10.1016/j.arth.2005.11.008
86. Meek RM, Dunlop D, Garbuz DS, McGraw R, Greidanus N V, Masri BA. Patient satisfaction and functional, and satisfaction outcomes after revision total knee arthroplasty. J Arthroplasty [Internet]. 2006;21(8):1169–74. Available from: http://doi.org/10.1016/j.arth.2005.11.008
87. Meek RM, Dunlop D, Garbuz DS, McGraw R, Greidanus N V, Masri BA. Patient satisfaction and functional, and satisfaction outcomes after revision total knee arthroplasty. J Arthroplasty [Internet]. 2006;21(8):1169–74. Available from: http://doi.org/10.1016/j.arth.2005.11.008
88. Meek RM, Dunlop D, Garbuz DS, McGraw R, Greidanus N V, Masri BA. Patient satisfaction and functional, and satisfaction outcomes after revision total knee arthroplasty. J Arthroplasty [Internet]. 2006;21(8):1169–74. Available from: http://doi.org/10.1016/j.arth.2005.11.008
89. Meek RM, Dunlop D, Garbuz DS, McGraw R, Greidanus N V, Masri BA. Patient satisfaction and functional, and satisfaction outcomes after revision total knee arthroplasty. J Arthroplasty [Internet]. 2006;21(8):1169–74. Available from: http://doi.org/10.1016/j.arth.2005.11.008
90. Meek RM, Dunlop D, Garbuz DS, McGraw R, Greidanus N V, Masri BA. Patient satisfaction and functional, and satisfaction outcomes after revision total knee arthroplasty. J Arthroplasty [Internet]. 2006;21(8):1169–74. Available from: http://doi.org/10.1016/j.arth.2005.11.008

667 69. Oliver G, Jaldin L, Cambru E, Cortés G. Observational Study of Total Knee Arthroplasty in Aseptic
Revision Surgery: Clinical Results. Orthop Surg [Internet]. 2020 Feb 1 [cited 2020 Aug 21];12(1):177-83.
Available from: https://pubmed.ncbi.nlm.nih.gov/31916370/

670 70. Rajagopal A, Panjwani TR, Rao A, Daiya V. Are the Outcomes of Revision Knee Arthroplasty for Flexion
Instability the Same as for Other Major Failure Mechanisms? J Arthroplasty [Internet].
2017;32(10):3093–7. Available from:
http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med14&AN=28579447

675 71. Richards CJ, Garbuz DS, Pugh L, Matsi BA. Revision total knee arthroplasty: clinical outcome
comparison with and without the use of femoral head structural allograft. J Arthroplasty [Internet].
2011;26(8):1299–304. Available from:
http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med18&AN=21296549

680 72. Sandiford NA, Misur P, Garbuz DS, Greidanus N V, Masri BA. No Difference Between Trabecular Metal
Cones and Femoral Head Allografts in Revision TKA: Minimum 5-year Followup. Clin Orthop Relat Res
[Internet]. 2017;475(1):118–24. Available from:
http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med14&AN=27287857

685 73. Scior W, Chanda D, Graichen H. Are Stems Redundant in Times of Metaphyseal Sleeve Fixation? J
Arthroplasty [Internet]. 2019 Oct 1 [cited 2020 Aug 21];34(10):2444–8. Available from:
https://pubmed.ncbi.nlm.nih.gov/31301910/

690 74. Stambough JB, Clohisy JC, Barrack RL, Nunley RM, Keeney JA. Increased risk of failure following revision
knee replacement in patients aged 55 years and younger. Bone Joint J [Internet]. 2014;96-B(12):1657–62. Available from:
http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med11&AN=25452369

695 75. Stockwell KD, Malleck S, Gascoyne TC, Turgeon TR. Clinical and radiographic outcomes of a hybrid
fixation revision total knee arthroplasty system at short to mid-term follow-up. Knee [Internet].
2019;26(1):240–9. Available from:
http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med16&AN=30553608

700 76. Weber M, Renkawitz T, Voellner F, Craiovan B, Greimel F, Worlicek M, et al. Revision Surgery in Total
Joint Replacement Is Cost-Intensive. Biomed Res Int [Internet]. 2018;2018:8987104. Available from:
http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med15&AN=30356391

705 77. Weiss RJ, Thorsell M, Stark A, Nyvang J, Hedstrom M. 2- to 9-year outcome of stemmed total knee
arthroplasty. Similar failure rates in patients when used primary or as a revision. Acta Orthop
[Internet]. 2014;85(6):609–13. Available from:
http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med11&AN=25238436

710 78. Zhamilov V, Karatosun V, Kalkan S, Unver B, Gunal I. Evaluation of Extensor Mechanism in Revision
Knee Arthroplasty. J Arthroplasty [Internet]. 2017 Aug 1 [cited 2020 Aug 21];32(8):2484–6. Available from:
https://pubmed.ncbi.nlm.nih.gov/28413139/
A comparison of total joint and surface replacement arthroplasty. J Bone Jt Surg - Ser A [Internet]. 1984 [cited 2020 Aug 21];66(2):228–41. Available from: https://pubmed.ncbi.nlm.nih.gov/6693450/

82. Ware JE, Kosinski M, Keller SD. A 12-Item Short-Form Health Survey: Construction of Scales and Preliminary Tests of Reliability and Validity. Med Care [Internet]. 1996 [cited 2020 Aug 21];34(3):220–33. Available from: https://pubmed.ncbi.nlm.nih.gov/8628042/

83. Mulhall KJ, Ghomrawi HM, Scully S, Callaghan JJ, Saleh KJ. Current etiologies and modes of failure in total knee arthroplasty revision. Clin Orthop Relat Res [Internet]. 2006;446:45–50. Available from: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med6&AN=16672871

84. De Vet HCW, Terwee CB, Mokkink LB, Knol DL. Measurement in medicine: A practical guide.

85. Mokkink LB, Terwee CB, Patrick DL, Alonso J, Stratford PW, Knol DL, et al. The COSMIN study reached international consensus on taxonomy, terminology, and definitions of measurement properties for health-related patient-reported outcomes. J Clin Epidemiol. 2010 Jul;63(7):737–45.

86. Terwee CB, Prinsen CAC, Chiarotto A, Westerman MJ, Patrick DL, Alonso J, et al. COSMIN methodology for evaluating the content validity of patient-reported outcome measures: a Delphi study. Vol. 27, Quality of Life Research. Springer International Publishing; 2018. p. 1159–70.
Figures and Tables

Figure 1. PRISMA flow diagram. The full search strategy is provided in Appendix 1.

[Flow diagram showing the PRISMA flow process]
Authors	Year	Country	Journal	Study design	No. revision knees	PROM used	Study design	
Agarwal (33)	2018	UK	The Knee	Prospective cohort	104	EQ5D	Y	
Baier (34)	2013	Germany	J Orth Sci	Retrospective cohort	78	KOOS	Y	
Baker (29)	2012	UK	CORR	Joint Registry	797	Kujala	Y	
Bin Abd Razak (35)	2019	Singapore	J Knee Surg	Retrospective cohort	163	LEAS	Y	
Boelch (36)	2018	Germany	Int Orth	RCT	51	LEFS	Y	
Dahm (37)	2007	US	JOA	Cross-section Prospective cohort	335	Lysholm	Y	
de Groot (24)	2008	Netherlands	Health Qual Life	Routine data	54	OKS	Y	
Eibich (38)	2018	UK	BMJ Open	Routine data	1391	SF12	Y	
Ghanem (39)	2007	US	CORR	Prospective cohort	80	SF36	Y	
Ghanem (26)	2010	US	JBJS(Am)	Retrospective cohort	152	UCLA	Y	
Gomez-Vallejo (40)	2018	Spain	J Orth Traum	Retrospective cohort	67	WOMAC	Y	
Grayson (41)	2016	US	JOA	Retrospective cohort	177			
Greidanus (42)	2011	US	JOA	Retrospective cohort	60			
Hamilton (43)	2017	UK	JOA	Prospective cohort	53			
Hanna (44)	2011	UK	CORR	Retrospective cohort	56			
Hartley (45)	2002	UK	BJJ	Prospective cohort	60			
Witt (46)	2015	US	J Knee Surg	Prospective cohort	95			
Huang (47)	2014	US	Orthopedics	Prospective cohort	96			
Kasmire (48)	2014	US	The Knee	Prospective cohort	175			
Kim (49)	2009	South Korea	JBJS(Am)	Retrospective cohort	157			
Kim (50)	2015	South Korea	JOA	Retrospective cohort	228			
Klim (51)	2020	Austria	KSSTA	Retrospective cohort	93			
Konrads (52)	2015	Germany	Int Orth	Retrospective cohort	62			
Konrads (53)	2019	Germany	J Knee Surg	Retrospective cohort	135			
	Kurmis (54)	2019	Australia	JOA	Retrospective cohort	321	Y	Y
---	-------------	------	-----------	-----	----------------------	-----	-----	-----
2	Larsen (55)	2020	Denmark	BMC Sports Sci	Retrospective cohort	51		Y
3	Lavernia (56)	2011	US	CORR	Retrospective cohort	132	Y	Y
5	Leta (57)	2016	Norway	JBJS(Am)	Joint Registry	1346	Y	Y
6	Leta (58)	2016	Norway	Int Orth	Joint Registry	308	Y	Y
7	Lim (59)	2017	Singapore	BJJ	Retrospective cohort	75	Y	Y
8	Lim (60)	2019	Singapore	The Knee	Retrospective cohort	70		Y
9	Lunebourg (61)	2015	France	JOA	Retrospective cohort	54		Y
11	Luque (62)	2014	Spain	Int Orth	Retrospective cohort	125		Y
14	M-Hernandez (63)	2017	Spain	KSSTTA	Prospective cohort	134		Y
15	Malviya (64)	2012	UK	KSSTTA	Prospective cohort	175		Y
17	Masri (65)	2006	Canada	JOA	Retrospective cohort	126	Y	Y
19	Meek (66)	2003	Canada	BJJ	Prospective cohort	107		Y
20	Meek (67)	2004	Canada	JOA	Cross-section	67	Y	Y
21	Mulholl (68)	2007	US	J Knee Surg	Prospective cohort	291	Y	Y
22	Oliver (69)	2020	Spain	Orth Surg	Retrospective cohort	89	Y	Y
25	Rajgopal (70)	2017	India	JOA	Retrospective cohort	98		Y
26	Richards (71)	2011	Canada	JOA	Cross-section	72	Y	Y
27	Saleh (25)	2005	US	JBJS(Am)	Prospective cohort	297	Yes	Y
28	Sandford (72)	2017	Canada	CORR	Retrospective cohort	450	Y	Y
30	Scior (73)	2019	Germany	JOA	Prospective cohort	482		Y
32	Stambough (74)	2014	US	BJJ	Retrospective cohort	81	Y	Y
33	Stockwell (75)	2019	Canada	The Knee	Retrospective cohort	234		Y
35	Weber (76)	2018	Germany	BioMed RI	Retrospective cohort	68		Y
36	Weiss (77)	2014	Sweden	Acta Orthop	Retrospective cohort	65	Y	Y
38	Zhamilov (78)	2017	Turkey	JOA	Retrospective cohort	92	Y	Y

EQSD = EuroQol 5-dimension score, KOOS = Knee injury and osteoarthritis outcome score; LEAS = Lower extremity activity scale; LEFS = Lower extremity functional scale; OKS = Oxford Knee Score; SF = Short Form; UCLA = University of California Los Angeles Activity Score; WOMAC = Western Ontario and McMaster Universities Arthritis Index.
Table 2. Summary characteristics for studies reporting PROMs following revision knee replacement

Number of studies (%)
No. patients
Continent
Europe
North America
Asia
Australasia
Type of study
Randomized controlled trial
Prospective cohort
Retrospective cohort
Joint Registry
Routine data analysis
Cross-sectional survey
Joint-specific PROMs
KOOS
Kujala
LEAS
LEFS
Lysholm
OKS
UCLA
WOMAC
Generic PROMs
EQ5D
SF12
SF36

Number of studies reporting each measure (%), EQ5D = EuroQol 5-dimension score, KOOS = Knee injury and osteoarthritis outcome score; LEAS = Lower extremity activity scale; LEFS = Lower extremity functional scale; OKS = Oxford Knee Score; SF = Short Form; UCLA = University of California Los Angeles Activity Score; WOMAC = Western Ontario and McMaster Universities Arthritis Index
Table 3. Quality of PROM development

PROM	Clear construct	Clear origin of construct	Clear target population for which the PROM was developed	Clear context of use	Concept elicitation\(^1\)	Total PROM design	General design requirements	Cognitive interview (CI) study\(^a\)	Comprehensibility	Comprehensiveness	Total CI study	TOTAL PROM DEVELOPMENT
Joint-specific												
KOOS (18)	D	D	VG	D	I	I	I	Yes				
Kujala (79)	D	D	VG	VG	I	I	I	No				
LEAS (25)	VG	VG	VG	VG	I	I	I	No				
LIFS (80)	VG	VG	VG	D	D	D	D	No				
Lysholm	D	D	VG	VG	I	VG	I	No				
Oxford Knee Score (17)	D	D	VG	VG	I	VG	I	No				
WOMAC (16)	VG	VG	VG	VG	I	D	I	Yes				
UCLA (81)	D	D	VG	VG	I	I	I	No				
Generic												
EuroQol 5D (20)	I	D	VG	VG	I	I	I	I				
SF-36 (32)	VG	VG	VG	VG	I	I	I	I				
SF-12 (82)	VG	VG	VG	VG	I	I	I	I				

KOOS = Knee injury and osteoarthritis outcome score; LEAS = Lower extremity activity scale; SF = Short-Form; UCLA = University of California at Los Angeles; WOMAC = Western Ontario and McMaster Universities Arthritis Index

VG = Very good, A = Adequate, D = Doubtful, I = Inadequate, N = Not assessed

1 Where the PROM was not developed in a sample representing the target population, the concept elicitation was not further rated

2 Empty cells indicate that a CI study (or part of it) was not performed
Study	Instrument(s)	Primary objective	Country (Language)	Population (Inclusion/Exclusion criteria)	Enrolled (n)	LTFU (n)	Final (n)	Age (years)	Female (%)	FU (months)	Indications for revision
de Groot	KOOS	To validate the Dutch translation of KOOS	Netherlands (Dutch)	Inc: Revision TKR Exclusion: Unable to understand Dutch written language.	54	7	47	77	78	NR	NR
(2008)	SF-36	VAS for pain									
Saleh	LEAS	To develop and validate the Lower Extremity Activity Scale	United States (English)	Inc: First revision TKR capable of completing questionnaires in English and >= 18 years Ex: Re-revision, failed UKR, poly. exchange only, bone tumour, reflex sympathetic dystrophy, unfit for revision TKR, neurological deficit of affected limb, referred pain from spine, declined to participate, concern about compliance, inability to consent, progressive muscular condition of quadriceps, infection delay, stiffness not requiring component revision.	297	12	285	68.6	55	6	Instability n=82 (28.8%)
(2005)	WOMAC										Tibial osteolysis n=78 (27.4%)
Ghomrawi	LEAS	To characterise patterns of functional improvement after revision total knee arthroplasty over a two-year period using	United States (English)	As per Saleh et al (2005)	308	87	221	68.7	55	24	Instability 28.9%*
(2009)	SF-36	Lower Extremity Activity Scale									Fem. loosening 14.1%
(19)	WOMAC										Infection 10.4%
Ghanem	WOMAC	To determine validity and responsiveness of the Knee Society Rating System	United States (English)	Inc: Revision TKR Ex: Infection (n=85), Patella or poly. exchange only (n=35); Conversion of UKR or internal fixation (n=15), Non-prosthetic failure (n=4)	165	13	152	67	NR	24	Mechanical failure:
(2010)	KSS										Aseptic loosening 69.7%
(26)	4-point Likert										Knee instability 30.3%
Table 5. Characteristics of the joint-specific PROMs evaluated in validation studies.

Instrument	Year developed	Original language	Target population	Intended construct / Domains	No. questions	Best/worst score
Symptoms and functional status						
KOOS (18)	1998	English & Swedish	Younger and more active subjects at risk of knee osteoarthritis following knee injury	Pain		
Symptoms						
Activities of daily life function	42 questions	100/0				
WOMAC (16)	1982	English	Patients with OA of the hip or knee	Pain		
Stiffness						
Knee-related quality of life						
Function and daily activities	24 questions	0/96				
Activity-level						
LEAS (25)	2005	English	Patients awaiting or had undergone primary or revision lower limb joint replacement	Physical activity	1 question	18/1

KOOS = Knee injury and osteoarthritis outcome score; LEAS = Lower extremity activity scale; SF-36 = Short-Form 36; WOMAC = Western Ontario and McMaster Universities Arthritis Index
PROM	Study	Structural validity	Internal consistency	Cross-cultural validity	Reliability	Measurement error	Criterion validity	Convergent validity	Known groups validity	Comparison with gold standard	Comparison with other instruments	Comparison between subgroups	Comparison before/after intervention
KOOS	de Groot (24)	I	VG	I	A	A	N	D	N	N	N	N	N
LEAS	Saleh (25)	N	N	N	A	A	N	I	N	N	I	N	A
LEAS	Ghomrawi (19)	N	N	N	N	N	N	N	N	N	I	I	I
WOMAC	Ghanem (26)	N	N	N	N	N	D	N	N	N	D	N	VG
WOMAC	Ghomrawi (19)	N	N	N	N	N	N	N	N	N	I	I	I

KOOS = Knee injury and osteoarthritis outcome score; LEAS = Lower extremity activity scale, WOMAC = Western Ontario and McMaster Universities Arthritis Index; VG = Very good, A = Adequate, D = Doubtful, I = Inadequate, N = Not assessed
	KOOS	LEAS	WOMAC
QUALITY OF EVIDENCE			
Overall Rating	+ / - / ?	+ / - / ?	+ / - / ?
Structural validity	-	N	N
Internal consistency	?	N	N
Cross-cultural validity	?	N	N
Measurement invariance	?	N	N
Reliability	+	+	N
Measurement error	?	?	?
Criterion validity	N	N	N
Construct validity	-	-	N
Responsiveness	N	N	N

KOOS = Knee injury and osteoarthritis outcome score; LEAS = Lower extremity activity scale; N = not assessed; WOMAC = Western Ontario and McMaster Universities Arthritis Index, + = sufficient, - = insufficient, ? = indeterminate
Table 8. Interpretability including missing items, response rate and floor/ceiling effects

Instrument and study	Administration	Missing responses (%)	Missing items (%)	Overall % achieving lowest possible total score (floor)	Overall percentage achieving highest possible score (ceiling)	Items Domains with >15% responses with lowest score (floor)	Items Domains with >15% responses with highest score (ceiling)	MIC	
Symptoms and functional status									
KOOS	de Groot (2008) (24)	Postal	25	NR	NR	NR	Sports/ Recreation	Nil	NR
WOMAC									
Ghomrawi (2009) (19)	Unclear	30.5	NR						
Ghanem (2010) (26)	Unclear	NR							
Saleh (2005) (25)	Unclear	NR							
Health-related quality of life									
SF-36	de Groot (2008) (24)	Postal	NR						
Ghomrawi (2009) (19)	Unclear	30.5	NR						
Ghanem (2010) (26)	Unclear	NR							
Activity-level									
LEAS	Ghomrawi (2009) (19)	Unclear	30.5	NR	NR	NR	NR	NR	NR
Saleh (2005) (25)	Unclear	59.6*	NR	0	0	NR	NR	NR	NR

KOOS = Knee injury and osteoarthritis outcome score; LEAS = Lower extremity activity scale; SF-36 = Short-Form 36; WOMAC = Western Ontario and McMaster Universities Arthritis Index; *Reported response rate was 96%. However, histograms have 177 or 178 patients out of a possible 297 (59.6%).
Appendix 1: Search Strategy

This search strategy incorporates the PROM filter from the Oxford PROM group (21).

Databases: MEDLINE, Embase, AMED, PsycInfo

Search strategy for Ovid MEDLINE:
Arthroplasty, Replacement, Knee/
((arthroplast* or replacement* or resurface*) adj3 knee*).ti,ab.
Knee Prosthesis/
((prosthes* or implant*) adj3 knee*).ti,ab.
(tka or tkr or ukr or uka).ti,ab.
1 or 2 or 3 or 4 or 5
revision*.ti,ab.
modular exchange*.ti,ab.
Reoperation/
(reoperation or re-operation or "repeat surg*").ti,ab.
7 or 8 or 9 or 10
6 and 11
(HR-PRO or HRPRO or HRQL or HRQoL or QL or QoL).ti,ab. or quality of life.mp. or (health index* or health indices or health profile*).ti,ab. or health status.mp. or ((patient or self or child or parent or carer or proxy) adj (appraisal* or appraised or report or reported or reporting or rated or rating* or based or assessed or assessment*)).ti,ab. or ((disability or function or functional or functions or subjective or utility or utilities or wellbeing or well being) adj2 (index or indices or instrument or instruments or measure or measures or questionnaire* or profile or profiles or scale or scales or score or scores or status or survey or surveys)).ti,ab.
12 and 13
Appendix 2: Tables & Figures

Appendix 2 Table 1. Generic hypotheses to evaluate construct validity and responsiveness

Hypotheses
1 Correlations with (changes in) instruments measuring similar constructs should be ≥0.50
2 Correlations with (changes in) instruments measuring related, but dissimilar constructs should be lower, i.e. 0.30-0.50.
3 Correlations with (changes in) instruments measuring unrelated constructs should be <0.30.
4 Correlations defined under 1, 2, and 3 should differ by a minimum of 0.10.
5 Meaningful changes between relevant (sub)groups (e.g. patients with expected high vs low levels of the construct of interest)
6 For responsiveness, the area under the curve should be ≥0.70

This table is reproduced from de Vet et al (84) and is included in the COSMIN manual for systematic reviews of PROMS (14).
Appendix 2 Figure 1. Histogram demonstrating increasing numbers of studies reporting on PROMS following revision knee replacement over time.
Appendix 3: Definitions of measurement properties

This manuscript uses COSMIN definitions throughout. A more detailed explanation of the COSMIN taxonomy, domains and definitions can be found within the COSMIN manual for systematic reviews of PROMS (14).

Content validity
Validity is “the degree to which a PROM measures the construct” intended (85). Content validity refers to “the degree to which the content of a PROM is an adequate reflection of the construct to be measured” (14). COSMIN provide a bespoke user manual to evaluate content validity (86).

Internal structure
Structural validity is the degree to which the PROM scores reflect the dimensionality of the construct being measured (85). Construct validity is “the degree to which the scores of a PROM are consistent with hypotheses”, assuming that the PROM is a valid instrument to measure the construct (85). Internal consistency is the “interrelatedness among PROM items” (85). Cross-cultural validity evaluates the performance of an adapted PROM compared to the original version (85).

Reliability
Reliability refers to “the degree to which a measurement is free from measurement error” (85).

Responsiveness
Responsiveness is the ability of a PROM to detect change over time (85).

Interpretability
Interpretability is the degree to which qualitative meaning can be assigned to a PROM score.

Feasibility
Feasibility is the ease of application of a PROM for its context of use. The measurement properties were analysed descriptively as per COSMIN guidance.
PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported on page #
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1
ABSTRACT			
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	2
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known.	4
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	4
METHODS			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	N/A
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	5
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	5
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	5&32
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	5
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	5&6
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	5&6
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	6
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	6
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I²) for each meta-analysis.	6
PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported on page #
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	6
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	N/A
RESULTS			
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	19
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	20/21/24
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	26
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	26
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	27
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	27
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	
DISCUSSION			
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	9
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	9
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	10
FUNDING			
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	11

From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(6): e1000097. doi:10.1371/journal.pmed1000097

For more information, visit: www.prisma-statement.org.
Patient-reported outcome measures following revision knee replacement: A review of PROM instrument utilisation and measurement properties using the COSMIN checklist

Journal	BMJ Open
Manuscript ID	bmjopen-2020-046169.R1
Article Type	Original research
Date Submitted by the Author	29-Jun-2021
Complete List of Authors	Sabah, Shiraz; University of Oxford Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, Price Knee Research Group Hedge, Elizabeth; University of Oxford Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, Price Knee Research Group Abram, Simon; University of Oxford Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, Alvand, Abtin; University of Oxford Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, Price, Andrew; University of Oxford, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences Hopewell, Sally; University of Oxford, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences
Primary Subject Heading	Surgery
Secondary Subject Heading	Surgery
Keywords	Knee < ORTHOPAEDIC & TRAUMA SURGERY, Musculoskeletal disorders < ORTHOPAEDIC & TRAUMA SURGERY, Adult orthopaedics < ORTHOPAEDIC & TRAUMA SURGERY
I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our licence.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which Creative Commons licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author’s Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.
Patient-reported outcome measures following revision knee replacement: A review of PROM instrument utilisation and measurement properties using the COSMIN checklist

Authors
1. Shiraz A. Sabah, FRCS(Orth) 1
2. Elizabeth A. Hedge, MRCS 1
3. Simon G. F. Abram, DPhil 1
4. Abtin Alvand, DPhil 1,2
5. Andrew J. Price, DPhil 1,2
6. Sally Hopewell, DPhil 1,3

Author addresses:
1 Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Botnar Research Centre, OX3 7LD
2 Nuffield Orthopaedic Centre, Oxford, OX3 7LD
3 Centre for Statistics in Medicine, University of Oxford, Botnar Research Centre, OX3 7LD

Author titles:
SAS: DPhil student, corresponding author, shiraz.sabah@ndorms.ox.ac.uk
EAH: Orthopaedic Registrar, elizabeth.a.hedge@gmail.com
SGFA: Clinical Lecturer, simon.abram@ndorms.ox.ac.uk
AA: Consultant Orthopaedic Surgeon, abtin.alvand@ndorms.ox.ac.uk
AJP: Professor of Orthopaedics, andrew.price@ndorms.ox.ac.uk
SH: Associate Professor, sally.hopewell@csm.ox.ac.uk

Keywords Knee – Revision – Joint Replacement – Patient reported outcome measures - Outcomes

Word count: 2712 words
Abstract

Objectives
To identify: (i) Patient Reported Outcome Measures (PROMs) used to evaluate symptoms, health status or quality of life following discretionary revision (or re-revision) knee joint replacement, and (ii) validated joint-specific PROMs, their measurement properties and quality of evidence.

Design
(i) Scoping review; (ii) Systematic review following the COnsensus-based Standards for selection of health status Measurement INstruments (COSMIN) checklist.

Data sources
MEDLINE, Embase, AMED and PsycINFO were searched from inception to 1 July 2020 using the Oxford PROM filter unlimited by publication date or language.

Eligibility criteria for selecting studies
Studies reporting on the development, validation or outcome of a joint-specific PROM for revision knee joint replacement were included.

Results
51 studies reported PROM outcomes using 8 joint-specific PROMs. 27 out of 51 studies (52.9%) were published within the last five years. PROM development was rated 'inadequate' for each of the eight PROMs studied. Validation studies were available for only three joint-specific PROMs: Knee Injury and Osteoarthritis Outcome Score (KOOS), Lower Extremity Activity Scale (LEAS), and Western Ontario and McMaster Universities Arthritis Index (WOMAC). 25 out of 27 (92.6%) measurement properties were rated either insufficient, indeterminate, or not assessed. The quality of supporting evidence was mostly low or very low. Each of the validated PROMs was rated ‘B’ (potential for recommendation but require further evaluation).

Conclusion
Joint-specific PROMs are increasingly used to report outcomes following revision knee joint replacement, but these instruments have insufficient evidence for their validity. Future research should be directed toward understanding the measurement properties of these instruments in order to inform clinical trials and observational studies evaluating the outcomes from joint-specific PROMs.
Article Summary

Strengths and limitations of this study

1. This is the first study to apply the Consensus-based Standards for the selection of health Measurement INstruments (COSMIN) checklist to report the quality of PROM development and validation studies for revision knee joint replacement.
2. Our search strategy was based on the Oxford PROM filter, which has been shown to be a sensitive tool for identifying relevant studies.
3. PROM instruments that were not patient completed were excluded, which maintained a patient-focus, but limited the number of eligible instruments for evaluation.
4. Whilst our study has critically summarised PROM measurement properties, qualitative studies may be needed in the future to provide deeper insights into the outcomes from revision knee replacement that are most important to patients.
Introduction

Primary knee replacement is a successful procedure that improves quality of life for the majority of patients by reducing pain and improving joint function (1). However, approximately 13% of patients are dissatisfied with the outcome from knee replacement (2), with higher rates in younger patients (3) and those with partial thickness cartilage loss (4). Many of these patients are managed with supportive treatment (5). However, at ten years following primary knee replacement, 3.5% of patients will have undergone revision surgery. In total, 6500 revision knee replacement procedures are performed each year in the United Kingdom (UK) (6). The majority of these procedures (~85%) are for discretionary indications, where the goal of surgery is to improve joint function and quality of life (6). These contrast to non-discretionary procedures (such as for infection or fracture), which are necessary to prevent catastrophic joint failure or new comorbidity. To measure the success or otherwise of the outcome from discretionary revision knee replacement, it is important that we understand the patient perspective.

Patient-reported outcome measures (PROMs) are widely used for this purpose in lower limb surgery. Many PROMs aim to report quality of life and functional outcomes, whilst others assess sporting performance, activities of daily living or psychological health. However, not all have optimal measurement properties (7,8). For primary knee replacement, many PROMs have good quality evidence for their validity (9,10). This has facilitated utilisation of PROMs to support patient choice and manage health care providers (2,11,12), with many schemes also including revision procedures. A prominent example is the NHS PROMs programme (2), which has collected data from more than 10,000 patients who have undergone revision knee replacement (13). However, interpretation of this data has been critically limited by a lack of PROM validation.

Revision knee replacement is one of the most expensive procedures in modern healthcare (14) and high-quality PROM data is important to evaluate cost-effectiveness (15). Whilst generic PROMs can be used to compare patients, they may miss important items in specific populations (16). The COnsensus-based Standards for the selection of health status Measurement INstruments (COSMIN) initiative provides tools to aid systematic reviews and selection of measurement instruments (17). The ideal PROM is developed or subsequently validated in the population of interest, has good measurement properties and is supported by high-quality evidence. PROM instruments meeting these criteria can be selected for a core outcome set in order to standardise outcome measurement. If there are no suitable PROMs, then further validation studies may be required or the development of a new PROM. For revision knee replacement, no systematic review has evaluated PROMs in current use, their measurement properties or the quality of this evidence. This limits meta-analysis of previous research and design of future trials.

The aims of this review were: (i) to scope the literature to identify PROMS in current use for evaluation of symptoms, health status or quality of life following discretionary revision (or re-revision) knee replacement, and (ii) to identify validated joint-specific PROMs, their measurement properties and quality of evidence.
Methods

This section is structured to follow the COSMIN Handbook and a figure to illustrate our methods is provided in a Supplementary file, Appendix 1 (17).

Patient and Public Involvement

Patients and the public were involved in the design, or conduct, or reporting, or dissemination plans of our research. This article was motivated by the James Lind Alliance Priority Setting Partnership for revision knee replacement (18), particularly the question: “How should we measure the outcomes following revision knee surgery in a way that is meaningful to patients?”

Part A: Aim and literature search

Step 1: Aims (described above)

Step 2: Study eligibility criteria

Randomised and non-randomised studies were eligible for inclusion. Revision knee replacement was defined as any procedure where an arthroplasty component was removed, modified or added. This included isolated liner exchange, secondary patellar resurfacing and re-revision procedures. Studies where the majority of procedures were performed for non-discretionary indications (such as infection or malignancy) were excluded, as well as amputations and arthrodesis procedures. Since 85% of revisions are for discretionary indications, studies where the indication was not specified were deemed eligible for inclusion. PROMs were required to address one of the following domains:

- Pain (e.g. Western Ontario and McMaster Universities Arthritis Index (WOMAC) pain subscale (19)),
- Function (e.g. WOMAC functional limitation subscale),
- Combined pain and function (e.g. Oxford Knee Score (20)),
- Joint-related health status (e.g. Knee Injury and Osteoarthritis Outcome Score (KOOS) quality of life (QOL) (21)), or
- Patient activity (e.g. Lower Extremity Activity Scale (LEAS (22)).

Collectively, we have termed these ‘joint-specific’ PROMs. The focus of this study was not to examine generic health-related quality of life instruments (e.g. EQ-5D (23)). However, we did report the use of these instruments in conjunction with a joint-specific PROM. Outcome scores not considered to be patient-centred were excluded; for example, surgeon-completed scores such as the Bristol Knee Score (BKS), Hospital for Special Surgery Knee Score, and the Knee Society Score (KSS). Studies with less than fifty patients were excluded as their sample size would be considered inadequate when applying COSMIN rules for rating of measurement properties and evidence quality (10).

Step 3: Search strategy

This is provided in Appendix 2. MEDLINE, Embase, AMED and PsycINFO were searched on 1st July 2020 using the Oxford PROM filter (24). Searches were translated for each database. There were no limitations on language or publication date. The citations of included studies were searched to identify additional articles.

Step 4: Study selection
Two authors (SAS and EAH) independently reviewed title and abstract for all records returned by the search against eligibility criteria. Disagreement was resolved through discussion of the full text publication. Data were extracted using a calibrated form on name and type of PROM, geography, journal, year of publication and number of patients. Data were summarised using counts with percentage frequency for each of the data items collected.

Part B: Evaluation of measurement properties of the included PROMs

Steps 5, 6 and 7: Content validity, Internal structure, Reliability and Responsiveness

Descriptions of terminology for measurement properties are provided in Appendix 3. Each measurement property was evaluated in three separate sub-steps:

Sub-step 1: Evaluation of methodological quality

Two authors (SAS and SGFA) independently evaluated the measurement properties in each article against the COSMIN Risk of Bias checklist. A priori hypotheses for construct validity and responsiveness were set (Appendix 4 - Table 1). Study quality was assessed separately for each measurement property using a four-point rating system (very good, adequate, doubtful or inadequate). The “worst score counts” principle was used, where the overall rating for each measurement property is given by the lowest rating of any standard in the box (25).

Sub-step 2: Application of criteria for good measurement properties (GMP)

Two authors (SAS and SGFA) independently extracted data on: PROM characteristics (intended construct for measurement, measurement properties, method of administration), study sample (number of patients, patient demographics, diagnosis) and study details (setting, country, language). The few disagreements were resolved through discussion. The results from each study on a measurement property were assigned a quality rating as: sufficient (+), insufficient (-) or indeterminate (?).

Sub-step 3: Summary and grading of quality of evidence

This section refers to rating the quality of the PROM as a whole. PROMs were qualitatively summarised and assigned a four-point quality rating. A modified Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach (omitting publication bias) was used to assign evidence quality as high, moderate, low or very low (26).

Part C: Selecting a PROM

Step 8: Description of interpretability and feasibility

Interpretability and feasibility were analysed descriptively as per COSMIN guidance (17).

Step 9: Formulation of recommendations

PROMs were categorised into three categories: (A) Sufficient content validity and at least low-quality evidence for internal consistency; (B) Between ‘A’ and ‘C’; and (C) High-quality evidence for an insufficient measurement property. PROMs rated ‘A’ can be recommended for use. PROMs rated ‘B’ have potential for recommendation but require further evaluation. PROMs rated ‘C’ should not be recommended.
Step 10: Reporting of the systematic review

The PRISMA flow diagram is provided in Figure 1.

Results

Part A

Study selection

1205 unique articles were identified for screening. 66 full text articles were assessed for eligibility. 51 studies were included in the scoping review, reporting on 8 joint-specific PROMs. Four studies met inclusion criteria for PROM validation, describing measurement properties for three PROMs (Figure 1).

Characteristics of studies reporting PROM outcomes for revision knee replacement

Fifty-one studies reported on PROM outcomes (Tables 1 & 2) recruiting a median of 104 (range 51 – 1391) patients. Study designs included 1 (2.0%) randomised controlled trial, 14 (27.5%) prospective cohort studies, 29 (56.9%) retrospective cohort studies, 3 (5.9%) reports from national joint registries, 3 (5.9%) cross-sectional surveys and 1 (2.0%) data analysis of routinely-collected secondary care data. Twenty-five studies (49.0%) were from Europe, 19 (37.3%) from North America, 6 (11.8%) from Asia and 1 (2.0%) from Australasia. The joint-specific PROMs reported were the WOMAC Index (25 studies, 49.0%), OKS (19 studies, 37.3%), KOOS (8 studies, 15.7%), Lower Extremity Activity Scale (LEAS, 4 studies, 7.8%), University of California Los Angeles Activity Score (UCLA, 4 studies, 7.8%), Kujala score (2 studies, 3.9%), Lower Extremity Functional Scale (LEFS, 2 studies, 3.9%), and the Lysholm score (1 study, 2.0%). The majority of studies were published within the past five years (27/51 (52.9%) studies) (Appendix 4 Figure 1).

Part B

Quality of PROM development studies

The quality of PROM development for the 8 disease-specific PROMS identified in Part A is summarised in Table 3. The construct to be measured was clear in two studies (25%), with the remainder rated ‘inadequate’. One example of a study rated ‘inadequate’ was the Kujala study (27). This rating was made because, whilst the score was designed to measure anterior knee symptoms, the specific aspects of these symptoms to be measured were not described (such as pain intensity or pain interference). The Lysholm score (28) was rated ‘very good’ due to a specific description (defining “the lowest activity level needed during walking, running, or jumping to produce giving way or pain and swelling”). The origin of the construct to be measured was clear in only two studies (25.0%). One example of a study rated ‘very good’ for this property was the LEFS study (29), which referenced the World Health Organization’s International Classification of Functioning, Disability and Health (ICF) conceptual framework (30). The context of use was rated ‘very good’ for three studies (37.5%). These studies provided at least one clear description of the intended application of the instrument. For example, the OKS was designed to evaluate patients before and after knee replacement surgery (20). All studies were rated as ‘very good’ for their description of a clear target population. Whilst many studies provided a very broad description (for example, the LEFS described patients “with lower-extremity orthopaedic conditions” (31)), the COSMIN guidance is permissive for rating this property. However, the PROM
development sample was rated ‘inadequate’ for all studies either because the patient sample was not correspondingly broad or, taking a view on the patient sample of interest in this review, did not recruit a sample representative of discretionary revision knee replacement. Whilst the LEAS study did recruit patients with revision knee replacements for some aspects of PROM development, a surgeon panel was used in lieu of patients for content validity, justifying an ‘inadequate’ rating (29). In summary, the total PROM development was rated ‘inadequate’ for all studies based on the “worst score counts” principle recommended by COSMIN. However, this does not reflect positive ratings for some aspects of PROM development as described above.

Characteristics of PROM validation studies

Four studies (22,29,32,33) from the scoping review validated three joint-specific PROMs (KOOS, LEAS, WOMAC) (Table 4). The mean age of patients in the included studies ranged from 67 to 77 years. Female patients accounted for 50 to 78% of the study populations. The primary objective of the included articles varied from validation of a PROM, validation of another instrument with the PROM as a comparator, development of a new instrument and reporting of clinical outcome after revision knee replacement. The characteristics of the PROMs included in the validation studies are described in Table 5.

Quality of studies on measurement properties

In total, 20 measurement properties for the KOOS, LEAS and WOMAC were evaluated (Table 6). There were 40 additional opportunities to evaluate measurement properties that were not attempted. 2 (10.0%) measurement properties were rated ‘very good’, 5 (25.0%) ‘adequate’, 3 (15.0%) ‘doubtful’ and 10 (50.0%) ‘inadequate’. For structural validity, de Groot’s evaluation for the KOOS was rated ‘inadequate’ due to an insufficient sample size for factor analysis (less than five times the number of participants). Three out of four (75.0%) studies that reported on responsiveness were rated ‘inadequate’ due to their construct approach. For example, Saleh et al (29) used an ‘inadequate’ comparator instrument for development of the LEAS - the measurement properties of the WOMAC are not well enough known for revision. Ghomrawi et al (22) did not set hypotheses for construct validity, and their statistical methodology did not allow these to be evaluated at review. Two studies reported on reliability. These were rated ‘adequate’ as, whilst they chose an appropriate interval, they did not also ensure patients were stable.

Quality of the evidence for measurement properties of the PROMs

The quality of the evidence for measurement properties of the included PROMs is provided in Table 7. 25 out of 27 (92.6%) measurement properties were rated either insufficient, indeterminate, or not assessed. The only measurement property to receive a ‘sufficient’ rating was reliability for both the KOOS and LEAS, supported by ‘low’ and ‘moderate’ quality evidence respectively.

Part C

Data on the interpretability of the studies is summarised in Table 8. The mode of PROM administration was unclear for all studies except de Groot et al (32). Missing responses ranged from 25-60%. No study reported on missing items within a PROM instrument. Floor and ceiling effects were not reported, except by Saleh et al (29). No PROM met criteria either to be recommended or not recommended for use. Each of the validated PROMs (i.e.
KOOS, LEAS and WOMAC) were therefore assigned recommendation ‘B’, indicating that further evidence is needed.
Discussion

This review has demonstrated the increasing use of PROMs to evaluate symptoms and functional outcomes following discretionary revision knee replacement. The majority of studies were retrospective and observational, with only one randomised controlled trial.

Eight different joint-specific PROMs were identified, with the WOMAC index (25 studies, 49.0%) and the OKS (19 studies, 37.3%) the most frequent. Only three joint-specific PROMs were supported by a validation study: KOOS, LEAS and WOMAC. Each of these validation studies had ‘low’ or ‘very low’ quality evidence and the majority of measurement properties were either not evaluated or rated ‘inadequate’ or ‘indeterminate’. As such, each of these PROMs requires more evidence in order to be recommended for use.

Secondary findings and relation to other studies

Musculoskeletal disorders account for one-third of all reviews on the COSMIN database (34). At least three reviews have evaluated the measurement properties of PROMs following primary knee replacement (9,10,35). These studies found that many PROM instruments had limited evidence to support their measurement properties, justifying the need for further research. We are not aware of previous reviews that have examined the measurement properties of PROMs following revision knee replacement. Whilst many of the goals from discretionary revision knee replacement are shared with primary knee replacement, there are important differences in the patient populations and disease processes being treated and the surgical interventions themselves. For example, whilst primary knee replacement treats predominantly osteoarthritis, revision knee replacement treats many varied disease processes (36). The revision patient population is also more comorbid and may have different expectations from surgery (37). As such, the evidence for PROMs developed in primary knee replacement cannot necessarily be assumed to be transferrable across.

Strengths and weaknesses

This study has a number of important strengths, including the use of a broad search strategy based on the Oxford PROM filter (24), and the application of latest COSMIN guidelines. The use of a priori hypotheses by our review team to evaluate construct validity and responsiveness is novel and meant these properties could be considered even when not a focus of the original article. This study was motivated by the James Lind Alliance Priority Setting Partnership for revision knee replacement, which generated the question: “How should we measure the outcomes following revision knee surgery in a way that is meaningful to patients?” (38). As such, outcome scores that were not patient completed were excluded. We acknowledge that this has restricted the number of eligible studies from North America, where use of the Knee Society Score (KSS) is prevalent. In the future, qualitative studies to explore patients’ reasons for choosing surgery and to identify the outcomes that are most important to patients may be needed.

Implications for practice

We have not put forward a PROM for recommendation because the quality of the available evidence was low, and data were lacking for many of the measurement properties. However, we can make recommendations to direct future research and to move towards developing a core outcome set for discretionary revision knee replacement. First, we wish to highlight that standards for reporting of psychometric studies have changed considerably over the past twenty years (9). COSMIN tools are not limited to systematic reviews and may
be used guide the scope and detail required to develop a new instrument or to evaluate an existing one. Second, this study has highlighted a number of common methodological flaws that result in high risk of bias. For example, when evaluating structural validity, none of the validation studies performed confirmatory factor analysis to understand whether the PROM scores reflected the dimensionality of the construct. For reliability, test conditions were not recorded with sufficient detail to ensure that not only the repeat interval was appropriate, but also that the patient remained stable. For interpretability, none of the studies calculated a minimal important change (MIC) nor comprehensively assessed floor and ceiling effects.

Third, we recommend that future studies planning to use an existing joint-specific PROM to evaluate outcomes after revision surgery do so in conjunction with a validated generic health-related quality of life instrument (such as the Short Form-36 (SF36) (39) or EQ-5D (23)). Whilst neither the EQ-5D or SF36 were developed in patients undergoing revision knee replacement, their measurement properties have been studied extensively and allow generalisability between different conditions. This approach will provide valuable information on construct validity and responsiveness in the future.

Conclusion

In conclusion, joint-specific PROMs are increasingly used to report outcomes following revision knee replacement, but these instruments have insufficient evidence for validity. Future research is needed to target the deficiencies highlighted by this review in order to inform clinical trials and observational studies evaluating these outcomes.
Details of contributors:
SAS: concept, study selection and scoping review, assessment of methodological quality, analysis, writing and editing paper, guarantor.

EAH: study selection and scoping review, critically revising paper

SGFA: assessment of methodological quality, critically revising paper

AA: critically revising paper

AJP: concept, methodology, writing and editing paper

SH: concept, methodology, writing and editing paper

Competing interests: None declared.

Funding statement: This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors. Mr. Shiraz Sabah has received funding from the Royal College of Surgeons One-Year Fellowship and Rosetrees Trust.

Data sharing statement: All available data is provided in the manuscript and supplementary tables.
Figure legends

Figure 1. PRISMA flow diagram. The full search strategy is provided in Appendix 2 within the Supplementary file.
Authors	Year	Country	Journal	Study design	No. revision knees	Validation Study?	PROM(s) used
Hartley (40)	2002	UK	BJJ	Prospective cohort	60		SF36, WOMAC
Meek (41)	2003	Canada	BJJ	Prospective cohort	107		SF36, WOMAC
Meek (42)	2004	Canada	JOA	Cross-section	67		OKS, SF36, WOMAC
Saleh (29)	2005	US	JBS(Am)	Prospective cohort	297	Yes	LEAS, WOMAC
Masri (43)	2006	Canada	JOA	Retrospective cohort	126		OKS, SF36, WOMAC
Dahm (44)	2007	US	JOA	Cross-section	335		UCLA
Ghanem (45)	2007	US	CORR	Prospective cohort	80		SF36, WOMAC
Mulhalli (46)	2008	Netherlands	Health Qual Life	Prospective cohort	54	Yes	KOOS, SF36
Brem (35)	2009	US	JBS(Am)	Prospective cohort	308	Yes	LEAS, SF36, WOMAC
Kim (47)	2009	South Korea	JBS(Am)	Retrospective cohort	157		WOMAC
Ghanem (43)	2010	US	JBS(Am)	Retrospective cohort	152	Yes	SF36, WOMAC
Greidanus (48)	2011	US	JOA	Retrospective cohort	60		OKS, SF12, WOMAC
Hanna (49)	2011	UK	CORR	Retrospective cohort	56		OKS
Lavermia (50)	2011	US	CORR	Retrospective cohort	132		SF36, WOMAC
Richards (51)	2011	Canada	JOA	Cross-section	72		SF36, UCLA, WOMAC
Baker (36)	2012	UK	CORR	Joint Registry	797		EQ-5D, OKS
Malviya (52)	2012	UK	KSSTA	Prospective cohort	175		SF36, WOMAC
Baier (53)	2012	Germany	J Orth Sci	Retrospective cohort	78		WOMAC
Huang (54)	2014	US	Orthopedics	Prospective cohort	96		SF36, WOMAC
Kasmi (55)	2014	US	The Knee	Retrospective cohort	175		SF36, WOMAC
Luque (56)	2014	Spain	Int Orth	Retrospective cohort	125		OKS
Stambough (57)	2014	US	BJ	Retrospective cohort	81		UCLA
Weiss (58)	2014	Sweden	Acta Orthop	Retrospective cohort	65		EQ-5D, KOOS
Hilt (59)	2015	US	J Knee Surg	Prospective cohort	95		KOOS, LEAS, SF36
Kim (60)	2015	South Korea	JOA	Retrospective cohort	228		WOMAC
Konrads (61)	2015	Germany	Int Orth	Retrospective cohort	62		Kujala, OKS, SF36
Luneburg (62)	2015	France	JOA	Retrospective cohort	54		KOOS
Grayson (63)	2016	UK	JOA	Retrospective cohort	177		UCLA
Leta (64)	2016	Norway	JBS(Am)	Joint Registry	1346		EQ-5D, KOOS
Leta (65)	2016	Norway	Int Orth	Joint Registry	308		EQ-5D, KOOS
Hamilton (66)	2017	UK	JOA	Prospective cohort	53		OKS
Lim (67)	2017	Singapore	BJ	Retrospective cohort	75		OKS, SF36
M-Hernandez (68)	2017	Spain	KSSTA	Prospective cohort	134		SF12, WOMAC
Rajgopal (69)	2017	India	JOA	Retrospective cohort	98		WOMAC
Sandiford (70)	2017	Canada	CORR	Retrospective cohort	450		OKS, SF36, WOMAC
Zhamilov (71)	2017	Turkey	JOA	Retrospective cohort	92		LEFS
Agarwal (72)	2018	UK	The Knee	Prospective cohort	104		EQ-5D, OKS
Boelch (73)	2018	Germany	Int Orth	RCT	51		OKS, SF36
Eibich (74)	2018	UK	BMJ Open	Routine data	1391		EQ-5D, OKS
Gomez Vallejo (75)	2018	Spain	J Orth Traum	Retrospective cohort	67		SF36, WOMAC
Weber (76)	2018	Germany	BioMed RI	Retrospective cohort	68		EQ-5D, WOMAC
Bin Abd Razak (77)	2019	Singapore	J Knee Surg	Retrospective cohort	163		OKS, SF36
Konrads (78)	2019	Germany	J Knee Surg	Retrospective cohort	135		Kujala, OKS, SF36
Kurmis (79)	2019	Australia	JOA	Retrospective cohort	321		OKS, WOMAC
Lim (80)	2019	Singapore	The Knee	Retrospective cohort	70		OKS, SF36
Scior (81)	2019	Germany	JOA	Prospective cohort	482		OKS
Stockwell (82)	2019	Canada	The Knee	Retrospective cohort	234		OKS
Klim (83)	2020	Austria	KSSTA	Retrospective cohort	93		SF36, WOMAC
Larsen (84)	2020	Denmark	BMC Sports Sci	Retrospective cohort	51		KOOS
Oliver (85)	2020	Spain	Orth Surg	Retrospective cohort	89		KOOS, Lysholm

KOOS = Knee injury and osteoarthritis outcome score; LEAS = Lower extremity activity scale; LEFS = Lower extremity functional scale; OKS = Oxford Knee Score; SF = Short Form; UCLA = University of California Los Angeles Activity Score; WOMAC = Western Ontario and McMaster Universities Arthritis Index
Table 1. Summary characteristics for studies reporting PROMs following revision knee replacement

Number of studies (%)	
No. patients	median 104 (range 51 - 1391)
Continent	
Europe	25 (49%)
North America	19 (37.3%)
Asia	6 (11.8%)
Australasia	1 (2%)
Type of study	
Randomized controlled trial	1 (2%)
Prospective cohort	14 (27.5%)
Retrospective cohort	29 (56.9%)
Joint Registry	3 (5.9%)
Routine data analysis	1 (2%)
Cross-sectional survey	3 (5.9%)
Joint-specific PROMs	
KOOS	8 (15.7%)
Kujala	2 (3.9%)
LEAS	4 (7.8%)
LEFS	1 (2%)
Lysholm	1 (2%)
OKS	19 (37.3%)
UCLA	4 (7.8%)
WOMAC	25 (49%)
Generic PROMs	
EQ-5D	7 (13.7%)
SF12	8 (15.7%)
SF36	18 (35.3%)

Number of studies reporting each measure (%), KOOS = Knee injury and osteoarthritis outcome score; LEAS = Lower extremity activity scale; LEFS = Lower extremity functional scale; OKS = Oxford Knee Score; SF = Short Form; UCLA = University of California Los Angeles Activity Score; WOMAC = Western Ontario and McMaster Universities Arthritis Index
Table 3. Quality of PROM development

PROM	Clear construct	Clear origin of construct	Clear target population for which the PROM was developed	Clear context of use	PROM developed in sample representing the target population	Concept elicitation	Total PROM design	CI study performed in sample representing the target population	Comprehensiability	Comprehensiveness	Total CI study	TOTAL PROM DEVELOPMENT
joint-specific												
KOOS (21)	I	D	VG	D	I	I	Yes					1
Kujala (27)	I	D	VG	D	I	I	No					1
LEAS (29)	I	D	VG	VG	I	I	No					1
LEFS (31)	I	VG	VG	VG	I	I	No					1
Lysholm (28)	VG	D	VG	VG	I	I	No					1
Oxford Knee Score (20)	I	D	VG	VG	I	I	No					1
WOMAC (19)	VG	VG	VG	VG	I	I	Yes					1
UCLA (86)	I	D	VG	D	I	I	No					1
generic												
EQ-5D (23)	I	D	VG	VG	I	I						1
SF-36 (39)	VG	VG	VG	VG	I	I						1
SF-12 (87)	VG	VG	VG	VG	I	I						1

KOOS = Knee injury and osteoarthritis outcome score; LEAS = Lower extremity activity scale; SF = Short-Form; UCLA = University of California at Los Angeles; WOMAC = Western Ontario and McMaster Universities Arthritis Index

VG = Very good, A = Adequate, D = Doubtful, I = Inadequate, N = Not assessed

1 Where the PROM was not developed in a sample representing the target population, the concept elicitation was not further rated

2 Empty cells indicate that a CI study (or part of it) was not performed
Study	Instrument(s)	Primary objective	Country (Language)	Population (Inclusion/Exclusion criteria)	Enrolled (n)	LTFU (n)	Final (n)	Age (years)	Female (%)	FU (months)	Indications for revision
de Groot (2008)	KOOS, SF-36	To validate the Dutch translation of KOOS	Netherlands (Dutch)	Inc: Revision TKR Exclusion: Unable to understand Dutch written language.	54	7	47	77 (36-89)	78	NR	NR
Saleh (2005)	LEAS, WOMAC	To develop and validate the Lower-Extremity Activity Scale	United States (English)	Inc: First revision TKR capable of completing questionnaires in English and >= 18 years Ex: Re-revision, failed UKR, poly. exchange only, bone tumour, reflex sympathetic dystrophy, unfit for revision TKR, neurological deficit of affected limb, referred pain from spine, declined to participate, concern about compliance, inability to consent, progressive muscular condition of quadriceps, infection delay, stiffness not requiring component revision.	297	12	285	68.6 (r 34 - 85)	55	6	Instability 28.9%*, Poly. wear 24.5%, Failed poly. insert 18.1%, Malalignment 9.4%, Fem. loosening 14.1%, Fem. lysis 22.5%, Tibial loosening 22.2%, Patella lysis 9.4%
Ghomrawi (2009)	LEAS, SF-36	To characterise patterns of functional improvement after revision total knee arthroplasty over a two-year period using Lower-Extremity Activity Scale	United States (English)	As per Saleh et al (2005)	308	87	221	68.7 (r 34 - 85)	55	24	Instability 28.9%*, Poly. wear 24.5%, Failed poly. insert 18.1%, Malalignment 9.4%, Fem. loosening 14.1%, Fem. lysis 22.5%, Tibial loosening 22.2%, Patella lysis 9.4%
Ghanem (2010)	WOMAC	To determine validity and responsiveness of the Knee Society Rating System	United States (English)	Inc: Revision TKR Ex: Infection (n=85), Patella or poly. exchange only (n=35); Conversion of UCR or internal fixation (n=15), Non-prosthetic failure (n=4)	165	13	152	67 (r 36 - 89)	NR	24	Mechanical failure: Aseptic loosening 69.7%, Knee instability 30.3%

Age = mean (sd) or (r = indicating range); KOOS = Knee injury and osteoarthritis outcome score; KSS = Knee Society Rating system; LEAS = Lower extremity activity scale; Lig. = Ligamentous; LTFU – Lost to follow-up; NR = Not reported; Poly. = polyethylene; SF-36 = Short-Form 36; WOMAC = Western Ontario and McMaster Universities Arthritis Index, * Data for this population are provided in a separate paper by Mulhall et al (88), number of patients not provided only percentages.
Table 5. Characteristics of the joint-specific PROMs evaluated in validation studies.

Instrument	Year developed	Original language	Target population	Intended construct / Domains	No. questions	Best/worst score
Symptoms and functional status						
KOOS (21)	1998	English & Swedish	Younger and more active subjects at risk of knee osteoarthritis following knee injury	Pain, Symptoms, Activities of daily life function	42 questions	100/0
WOMAC (19)	1982	English	Patients with OA of the hip or knee	Pain, Stiffness, Knee-related quality of life, Function and daily activities	24 questions	0/96
Activity-level						
LEAS (29)	2005	English	Patients awaiting or had undergone primary or revision lower limb joint replacement	Physical activity	1 question	18/1

KOOS = Knee injury and osteoarthritis outcome score; LEAS = Lower extremity activity scale; SF-36 = Short-Form 36; WOMAC = Western Ontario and McMaster Universities Arthritis Index.
Table 6. Quality of studies on measurement properties

PROM	Study	Structural validity	Internal consistency	Cross-cultural validity	Reliability	Measurement error	Criterion validity	Construct validity	Responsiveness														
									KOOS	de Groot (32)	I	VG	I	A	A	N	D	N	N	N	N	N	
									LEAS	Saleh (29)	N	N	N	A	A	N	I	N	N	I	N	A	
									LEAS	Ghomrawi (22)	N	N	N	N	N	N	N	N	N	I	N	I	I
WOMAC	Ghanem (33)	N	N	N	N	N	D	N	WOMAC	Ghomrawi (22)	N	N	N	N	N	N	N	N	N	I	I	I	

KOOS = Knee injury and osteoarthritis outcome score; LEAS = Lower extremity activity scale, WOMAC = Western Ontario and McMaster Universities Arthritis Index; VG = Very good, A = Adequate, D = Doubtful, I = Inadequate, N= Not assessed
Table 7. Quality of the evidence for measurement properties of the PROMs

KOOS	OVERALL RATING	QUALITY OF EVIDENCE	LEAS	OVERALL RATING	QUALITY OF EVIDENCE	WOMAC	OVERALL RATING	QUALITY OF EVIDENCE
Structural validity	-	Very low	N	N	N	N	N	N
Internal consistency	?	Moderate	N	N	N	N	N	N
Cross-cultural validity	?	Very low	N	N	N	N	N	N
Measurement invariance	?	Very low	N	N	N	N	N	N
Reliability	+	Low	+	Moderate		N	N	N
Measurement error	?	Low	?	Very low		N	N	N
Criterion validity	N	N	N	N	N	N	N	N
Construct validity	-	Low	-	Very low		?	Very low	
Responsiveness	N	N	?	Very low		?	Very low	

KOOS = Knee injury and osteoarthritis outcome score; LEAS = Lower extremity activity scale; N = not assessed; WOMAC = Western Ontario and McMaster Universities Arthritis Index, + = sufficient, - = insufficient, ? = indeterminate
Table 8. Interpretability including missing items, response rate and floor/ceiling effects

Instrument and study	Administration	Missing responses (%)	Missing items (%)	Overall % achieving lowest possible total score (floor)	Overall percentage achieving highest possible score (ceiling)	Items/Domains with >15% responses with lowest score (floor)	Items/Domains with >15% responses with highest score (ceiling)	MIC
Symptoms and functional status								
KOOS de Groot (2008) (32)	Postal	25	NR	NR	NR	Sports/Recreation	Nil	NR
WOMAC								
Ghomrawi (2009) (22)	Unclear	30.5	NR	NR	NR	NR	NR	NR
Ghanem (2010) (33)	Unclear	NR						
Saleh (2005) (29)	Unclear	NR						
Health-related quality of life								
SF-36 de Groot (2008) (32)	Postal	NR						
Ghomrawi (2009) (22)	Unclear	30.5	NR	NR	NR	NR	NR	NR
Ghanem (2010) (33)	Unclear	NR						
Activity-level								
LEAS								
Ghomrawi (2009) (22)	Unclear	30.5	NR	NR	NR	NR	NR	NR
Saleh (2005) (29)	Unclear	59.6*	NR	0	0	NR	NR	NR

KOOS = Knee injury and osteoarthritis outcome score; LEAS = Lower extremity activity scale; SF-36 = Short-Form 36; WOMAC = Western Ontario and McMaster Universities Arthritis Index; *Reported response rate was 96%. However, histograms have 177 or 178 patients out of a possible 297 (59.6%).
References

1. Price AJ, Alvand A, Troelsen A, Katz JN, Hooper G, Gray A, et al. Knee replacement. Lancet. 2018;392(10158):1672–82.

2. NHS Digital. Patient Reported Outcome Measures (PROMs) [Internet]. [cited 2021 Jun 23]. Available from: https://digital.nhs.uk/data-and-information/data-tools-and-services/data-services/patient-reported-outcome-measures-proms

3. Scott CE, Oliver WM, MacDonald D, Wade FA, Moran M, Breusch SJ. Predicting dissatisfaction following total knee arthroplasty in patients under 55 years of age. Bone Joint J [Internet]. 2016;98-B(12):1625–34. Available from: http://ovidsp.ovid.com/ovidweb.cgi?t=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med13&AN=27909124 http://oxfordspfx.hosted.exlibrisgroup.com/oxford?sid=OVID:medline&id=pmid:27909124&doi=10.1302%2F0301-620X.98B12.BJ2016-0375.R1&issn=2049-4394&isbn=volume=98-B8is

4. TT N, DW M, JP, A P, J L. Unicompartmental knee arthroplasties implanted for osteoarthritis with partial loss of joint space have high re-operation rates. Knee [Internet]. 2011 [cited 2021 Jun 23];18(6). Available from: https://pubmed.ncbi.nlm.nih.gov/21093269/

5. Wylde V, Howells N, Bertram W, Moore AJ, Bruce J, McCabe C, et al. Development of a complex intervention for people with chronic pain after knee replacement: the STAR care pathway. Trials [Internet]. 2018 Dec 23 [cited 2021 Jul 26];19(1):61. Available from: https://trialsjournal.biomedcentral.com/articles/10.1186/s13063-017-2391-8

6. National Joint Registry for England Northern Ireland and the Isle of Man. NJR 17th Annual Report. 2020.(December 2019).

7. Garratt A, Schmidt L, Mockintosh A, Fitzpatrick R. Quality of life measurement: Bibliographic study of patient assessed health outcome measures. Br Med J. 2002 Jun 15;324(7351):1417–9.

8. Abram SG, Middleton R, Beard DJ, Price AJ, Hopewell S. Patient-reported outcome measures for patients with meniscal tears: A systematic review of measurement properties and evaluation with the COSMIN checklist. BMJ Open. 2017;7(10):1–15.

9. Harris K, Dawson J, Gibbons E, Lim C, Beard D, Fitzpatrick R, et al. Systematic review of measurement properties of patient-reported outcome measures used in patients undergoing hip and knee arthroplasty. Patient Relat Outcome Meas. 2016 Jul;Volume 7:101–8.

10. Gagnier JJ, Mullins M, Huang H, Marinac-Dabic D, Ghambaryan A, Elsfie B, et al. A Systematic Review of Measurement Properties of Patient-Reported Outcome Measures Used in Patients Undergoing Total Knee Arthroplasty. Vol. 32, Journal of Arthroplasty. Churchill Livingstone Inc.: 2013. p. 1688-1697.e7.

11. National Joint Registry for England, Wales NI and the I of M. NJR Clinician Feedback – Surgeon PROMS Reports [Internet]. [cited 2020 Apr 28]. Available from: https://clinicianfeedback.njrcentre.org.uk/SurgeonPROMSReports.aspx

12. Middleton R, Wilson HA, Alvand A, Abram SGF, Bottomley N, Jackson W, et al. Outcome-based commissioning of knee arthroplasty in the NHS: System error in a national monitoring programme and the unintended consequences on achieving the best practice tariff. Bone Jt J. 2018 Dec 1;100B(12):1572–8.

13. Sabah SA, Alvand A, Knight R, Beard DJ, Price AJ. Patient-Reported Function and Quality of Life After Revision Total Knee Arthroplasty: An Analysis of 10,727 Patients from the NHS PROMs Program. J Arthroplasty. 2021 Mar 19;82(3):627–32.

14. Kallala RF, Vanhegan IS, Ibrahim MS, Sarmah S, Haddad FS. Financial analysis of revision knee surgery based on NHS tariffs and hospital costs. Bone Jt J. 2015 Feb 1;97-B(2):197–201.

15. Eibich P, Dakin HA, Price AJ, Beard DJ, Arden NK, Gray AM. Associations between preoperative Oxford hip and knee scores and costs and quality of life of patients undergoing primary total joint replacement in the NHS England: An observational study. BMJ Open. 2018;8(4):1–13.

16. Brazier JE, Harper R, Munro J, Walters SJ, Snith ML. Generic and condition-specific outcome measures for people with osteoarthritis of the knee. Rheumatology. 1999 Sep;38(9):870–7.

17. Prinsen CAC, Mokkink LB, Bouter LM, de Vet HCW, et al. COSMIN guideline for systematic reviews of patient-reported outcome measures. Qual Life Res. 2018 May 1;27(5):1147–57.

18. Mathews JA, Kalson NS, Tarrant PM, Toms AD. Top ten research priorities for problematic knee arthroplasty. Bone Joint J [Internet]. 2020 Sep 1;102-B(9):1176–82. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7409611/

19. Bellamy N, Buchanan WW, Goldsmith CH, Campbell J, Stitt LW. Validation study of WOMAC: a health status instrument for measuring clinically important patient relevant outcomes to antirheumatic drug therapy in patients with osteoarthritis of the hip or knee. J Rheumatol. 1988 Dec;15(12):1833–40.

20. Dawson J, Fitzpatrick R, Murray D, Carr A. Questionnaire on the perceptions of patients about total knee replacement. J Bone Jt Surg - Ser A. 2009 Dec 1;91(12):2838–45.

21. Wylde V, Howells N, Bertram W, Moore AJ, Bruce J, McCabe C, et al. Development of a complex intervention for people with chronic pain after knee replacement: the STAR care pathway. Trials [Internet]. 2018 Dec 23 [cited 2021 Jul 26];19(1):61. Available from: https://trialsjournal.biomedcentral.com/articles/10.1186/s13063-017-2391-8

22. Gagnier JJ, Mullins M, Huang H, Marinac-Dabic D, Ghambaryan A, Elsfie B, et al. A Systematic Review of Measurement Properties of Patient-Reported Outcome Measures Used in Patients Undergoing Total Knee Arthroplasty. Vol. 32, Journal of Arthroplasty. Churchill Livingstone Inc.: 2013. p. 1688-1697.e7.

23. National Joint Registry for England Northern Ireland and the Isle of Man. NJR 17th Annual Report. 2020.(December 2019).

24. Garratt A, Schmidt L, Mockintosh A, Fitzpatrick R. Quality of life measurement: Bibliographic study of patient assessed health outcome measures. Br Med J. 2002 Jun 15;324(7351):1417–9.

25. Abram SG, Middleton R, Beard DJ, Price AJ, Hopewell S. Patient-reported outcome measures for patients with meniscal tears: A systematic review of measurement properties and evaluation with the COSMIN checklist. BMJ Open. 2017;7(10):1–15.

26. Harris K, Dawson J, Gibbons E, Lim C, Beard D, Fitzpatrick R, et al. Systematic review of measurement properties of patient-reported outcome measures used in patients undergoing hip and knee arthroplasty. Patient Relat Outcome Meas. 2016 Jul;Volume 7:101–8.

27. Prinsen CAC, Mokkink LB, Bouter LM, de Vet HCW, et al. COSMIN guideline for systematic reviews of patient-reported outcome measures. Qual Life Res. 2018 May 1;27(5):1147–57.
28. Lysholm J, Gillquist J. Evaluation of knee ligament surgery results with special emphasis on use of a scoring scale. Am J Sports Med [Internet]. 1982 [cited 2021 Jun 24];10(3):150–4. Available from: https://pubmed.ncbi.nlm.nih.gov/6896798/

29. Saleh KJ, Mulhall KJ, Berghadsdy B, Ghomrawi HM, White LE, Buyea CM, et al. Development and validation of a lower-extremity activity scale: Use for patients treated with revision total knee arthroplasty. J Bone Jt Surg - Ser A. 2005 Sep;87(9):1985–94.

30. World Health Organisation. International Classification of Functioning, Disability and Health (ICF) [Internet]. [cited 2021 Jun 23]. Available from: https://www.who.int/classifications/icf/

31. Binkley J, Stratford P, Lott S, … DR-P, 1999 undefined. The Lower Extremity Functional Scale (LEFS): scale development, measurement properties, and clinical application. academic.oup.com [Internet]. [cited 2020 Jul 3]; Available from: https://academic.oup.com/jotp/article-abstract/79/4/371/2857730

32. de Groot IB, Favejee MM, Reijman M, Verhaar JAN, Terwee CB. The Dutch version of the Knee Injury and Osteoarthritis Outcome Score: a validation study. Heal Qual Life Outcomes [Internet]. 2008 Feb 26 [cited 2020 May 18];6:16. Available from: http://ovidsp.ovidweb.nlm.nih.gov/ovidweb.cgi?t=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med78a&AN=18302729

33. de Groot IB, Favejee MM, Reijman M, Verhaar JAN, Terwee CB. The Dutch version of the Knee Injury and Osteoarthritis Outcome Score: a validation study. Heal Qual Life Outcomes [Internet]. 2008 Feb 26 [cited 2020 May 18];6:16. Available from: http://ovidsp.ovidweb.nlm.nih.gov/ovidweb.cgi?t=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med78a&AN=18302729

34. Ghanem E, Pawsaras I, Lindsay A, May L, Azzam K, Joshi A, et al. Limitations of the Knee Society score in evaluating outcomes following revision total knee arthroplasty. J Bone Jt Surg - Ser A. 2010 Oct 20;92(14):2445–51.

35. COSMIN Database of Systematic Reviews • COSMIN [Internet]. [cited 2020 Jul 1]. Available from: https://www.cosmin.nl/tools/database-systematic-reviews/

36. Alviar MJ, Oliver J, Brand C, Tropeta I, Hale T, Piripets M, et al. Do patient-reported outcome measures in hip and knee arthroplasty rehabilitation have robust measurement attributes? A systematic review [Internet]. Vol. 43, Journal of Rehabilitation Medicine. J Rehabil Med; 2011 [cited 2020 Jul 1]. p. 572–83. Available from: https://pubmed.ncbi.nlm.nih.gov/21607295/

37. Baker P, Cowlings P, Kurtz S, Jameson S, Gregg P, Deehan D. Reason for revision influences early patient outcomes after aseptic knee revision. Clin Orthop Relat Res. 2012 Aug 22;470(8):2244–52.

38. Singh JA, Lewallen DG. Depression in primary TKA and higher medical comorbidities in revision TKA are associated with suboptimal subjective improvement in knee function. BMC Musculoskelet Disord [Internet]. 2014;15:127.

39. Ware JEJ, Sherbourne CD. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care. 1992 Jun;30(6):473–83.

40. Ghanem E, Peterson RC, Masri BA, Garbuz DS. Quality of life outcomes in revision versus primary total knee arthroplasty. J Arthroplasty [Internet]. 2011;26(4):615–20. Available from: https://pubmed.ncbi.nlm.nih.gov/20451360

41. Harris WH. The use of the Harris hip score in clinical practice. Clin Orthop Relat Res. 2001 Jun;385:6–10. Available from: http://pubmed.ncbi.nlm.nih.gov/11345456/

42. Saleh KJ, Mulhall KJ, Bershadsky B, Ghomrawi HM, White LE, Buyea CM, et al. Development and validation of a lower-extremity activity scale: Use for patients treated with revision total knee arthroplasty. J Bone Jt Surg - Ser A. 2005 Sep;87(9):1985–94.

43. Lysholm J, Gillquist J. Evaluation of knee ligament surgery results with special emphasis on use of a scoring scale. Am J Sports Med [Internet]. 1982 [cited 2021 Jun 24];10(3):150–4. Available from: https://pubmed.ncbi.nlm.nih.gov/6896798/

44. Dahm DL, Barnes SA, Harrington JR, Berry DJ. Patient reported activity after revision total knee arthroplasty. J Arthroplasty [Internet]. 2007 Sep [cited 2020 Jan 15];22(6 Suppl 2):106–10. Available from: https://pubmed.ncbi.nlm.nih.gov/17572638

45. Warden CJ, Shepperd WW, Mears DC. Revision of failed primary total hip arthroplasty: patient satisfaction, function, and morbidity. J Bone Jt Surg - Ser A. 2006;88(5):818–26. Available from: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med6A&AN=15483804

46. Lysholm J, Gillquist J. Evaluation of knee ligament surgery results with special emphasis on use of a scoring scale. Am J Sports Med [Internet]. 1982 [cited 2021 Jun 24];10(3):150–4. Available from: https://pubmed.ncbi.nlm.nih.gov/6896798/

47. Ware JEJ, Sherbourne CD. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care. 1992 Jun;30(6):473–83.

48. Kim YH, Kim JS. Revision total knee arthroplasty with use of a constrained condylar knee prosthesis. J Bone Jt Surg - Ser A [Internet]. 2009 Jun 1 [cited 2020 Aug 21];91(6):1440–7. Available from: https://pubmed.ncbi.nlm.nih.gov/19487523/

49. World Health Organisation. International Classification of Functioning, Disability and Health (ICF) [Internet]. [cited 2021 Jun 23]. Available from: https://www.who.int/classifications/icf/

50. Lane JM, Haldeman N, Rees MG. Treatment satisfaction and knee pain intensity in patients with knee osteoarthritis: comparison of a total knee replacement with a unicompartmental knee prosthesis. J Bone Jt Surg - Ser A. 2005 Sep;87(9):1985–94.

51. Lysholm J, Gillquist J. Evaluation of knee ligament surgery results with special emphasis on use of a scoring scale. Am J Sports Med [Internet]. 1982 [cited 2021 Jun 24];10(3):150–4. Available from: https://pubmed.ncbi.nlm.nih.gov/6896798/
59. Hanna SA, Aston WJS, De Roeck NJ, Gough-Palmer A, Powles DP. Cementless revision TKA with bone grafting of osseous defects restores bone stock with a low revision rate at 4 to 10 years. Clin Orthop Relat Res [Internet]. 2011;469(1):364–71. Available from: https://pubmed.ncbi.nlm.nih.gov/21678098/

60. Lavernia C, Contreras JS, Alacerro JC. The peel in total knee revision: exposure in the difficult knee. Clin Orthop Relat Res [Internet]. 2011;469(1):146–53. Available from: http://ovipdf.sciencedirect.com/pdf/pii/S0002999911600140.pdf

61. Richards CJ, Garbus DS, Pugh L, Masri BA. Revision total knee arthroplasty: clinical outcome comparison with and without the use of femoral head structural allograft. J Arthroplasty [Internet]. 2011;26(8):1299–304. Available from: http://ovipdf.sciencedirect.com/pdf/pii/S0883540311602296.pdf

62. Malviya A, Brewster NT, Bettinson K, Holland JP, Weir DJ, Deehan DJ. Functional outcome following aseptic single-stage revision knee arthroplasty. Knee Surgery, Sport Traumatol Arthros [Internet]. 2012;20(10):1994–2001. Available from: http://ovipdf.sciencedirect.com/pdf/pii/S147773781260108X.pdf
Arthroplasty Register [1994-2011]. Int Orthop [Internet]. 2016;40(4):715–22. Available from: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&C=Y&NEWS=N&PAGE=fulltext&D=medline&AN=26493389

Hamilton DF, Simpson PM, Patton JT, Howeir CR, Burnett R. Aseptic Revision Knee Arthroplasty With Total Stabilizer Prostheses Achieves Similar Functional Outcomes to Primary Total Knee Arthroplasty at 2 Years: A Longitudinal Cohort Study. J Arthroplasty [Internet]. 2017;32(4):1234-1240.e1. Available from: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&C=Y&NEWS=N&PAGE=fulltext&D=medline&AN=27916473

Lim JBT, Chong HC, Pang HN, Tay KD, Chia SL, Lo NN, et al. Revision total knee arthroplasty for failed high tibial osteotomy and unicompartmental knee arthroplasty have similar patient-reported outcome measures in a two-year follow-up study. Bone Joint J [Internet]. 2017 Oct [cited 2019 Oct 9];99-B(10):1320–34. Available from: http://online.boneandjoint.org.uk/doi/10.1302/0301-620X.99B11-2017-0034.R1

Martin-Hernandez C, Flores-Enrile M, Serna-Herrero MP, Espallargas-Donate T, Blanco-Lorca JA, Guillen-Soriao M, et al. Mid-term results for metaphyseal sleeves in revision knee surgery. Knee Surgery, Sport Traumatol Arthrosc [Internet]. 2017;25(12):3779–85. Available from: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&C=Y&NEWS=N&PAGE=fulltext&D=medline&AN=27698397

Rajgopal A, Panjwani TR, Rao A, Daihya V. Are the Outcomes of Revision Knee Arthroplasty for Flexion Instability the Same as for Other Major Failure Mechanisms? J Arthroplasty [Internet]. 2017;32(10):3093–7. Available from: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&C=Y&NEWS=N&PAGE=fulltext&D=medline&AN=27278857

Zhamilov V, Karatosun V, Kalkan S, Unver B, Gunal I. Evaluation of Extensor Mechanism in Revision Knee Arthroplasty. J Arthroplasty [Internet]. 2017 Aug 1 [cited 2020 Aug 21];32(8):2484–6. Available from: https://pubmed.ncbi.nlm.nih.gov/28413139/

Agarwal S, Neogi DS, Morgan-Jones R. Metaphyseal sleeves in revision total knee arthroplasty: Minimum seven-year follow-up study. Knee [Internet]. 2018;25(6):1299–307. Available from: http://www.elsevier.com/locate/knee

Boeckel SP, Arnholdt J, Holzapfel BM, Jakuscheit A, Rudert M, Hobeg M. Revision knee arthroplasty with rotating hinge systems in patients with gross ligament instability. Int Orthop [Internet]. 2018;42(12):2825–33. Available from: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&C=Y&NEWS=N&PAGE=fulltext&D=medline&AN=29789904

Eibich P, Dakin HA, Price AJ, Beard D, Arden NK, Gray AM. Associations between preoperative Oxford hip and knee scores and costs and quality of life of patients undergoing primary total joint replacement in the NHS England: an observational study. BMJ Open. 2018;8(4):e024977.

Gomez-Vallejo J, Abalde-Albareda J, Serio-Garcia R, Blanco-Rubio N, Ezquerri-Herrando L. Revision total knee arthroplasty: hybrid vs standard cemented fixation. J Orthop Traumatol [Internet]. 2018;19(1):[pii]. Available from: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&C=Y&NEWS=N&PAGE=fulltext&D=medline&AN=301195716

Boeckel SP, Arnholdt J, Holzapfel BM, Jakuscheit A, Rudert M, Hobeg M. Revision knee arthroplasty with rotating hinge systems in patients with gross ligament instability. Int Orthop [Internet]. 2018;42(12):2825–33. Available from: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&C=Y&NEWS=N&PAGE=fulltext&D=medline&AN=29789904

Eibich P, Dakin HA, Price AJ, Beard D, Arden NK, Gray AM. Associations between preoperative Oxford hip and knee scores and costs and quality of life of patients undergoing primary total joint replacement in the NHS England: an observational study. BMJ Open. 2018;8(4):e024977.

Gomez-Vallejo J, Abalde-Albareda J, Serio-Garcia R, Blanco-Rubio N, Ezquerri-Herrando L. Revision total knee arthroplasty: hybrid vs standard cemented fixation. J Orthop Traumatol [Internet]. 2018;19(1):[pii]. Available from: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&C=Y&NEWS=N&PAGE=fulltext&D=medline&AN=301195716

Weber M, Renkawitz F, Voelinner F, Craivov B, Greimel F, Worlicek M, et al. Revision Surgery in Total Joint Replacement is Cost-Intensive. Biomed Res Int [Internet]. 2018;2018:8987104. Available from: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&C=Y&NEWS=N&PAGE=fulltext&D=medline&AN=30356391

Bin Abd Razak HR, Lee JHM, Tan SM, Chong HC, Lo NN, Yeoh SJ. Satisfaction Rates Are Low Following Revision Total Knee Arthroplasty in Asians Despite Improvements in Patient-Reported Outcome Measures. J Knee Surgery [Internet]. 2019;32(4):e207. Available from: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&C=Y&NEWS=N&PAGE=fulltext&D=medline&AN=628621485

Konradz C, Franz A, Hoberg M, Rudert M. Similar Outcomes of Two-Stage Revisions for Infection and One-Stage Revisions for Aseptic Revisions of Knee Endoprostheses. J Knee Surg [Internet]. 2019;32(9):897–9. Available from: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&C=Y&NEWS=N&PAGE=fulltext&D=medline&AN=30317007 http://ovidsp.ovid.com/ovidweb.cgi?T=JS&C=Y&NEWS=N&PAGE=fulltext&D=medline&AN=30117007 http://ovidsp.ovid.com/ovidweb.cgi?T=JS&C=Y&NEWS=N&PAGE=fulltext&D=medline&AN=30117007 http://ovidsp.ovid.com/ovidweb.cgi?T=JS&C=Y&NEWS=N&PAGE=fulltext&D=medline&AN=30117007

Kurmis AP, Herman A, McIntyre AR, Masri BA, Garbuz DS. Pseudotumors and High-Grade Aseptic Lymphocyte-Dominated Vasculitis-Associated Lesions Around Total Knee Replacements Identified at Aseptic Revision Surgery: Findings of a Large-Scale Histologic Review. J Arthroplasty [Internet]. 2019;34(10):2434–8. Available from: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&C=Y&NEWS=N&PAGE=fulltext&D=medline&AN=31178384

Lim JBT, Pang HN, Tey KD, Chia SL, Lo NN, Yeoh SJ. Clinical outcomes and patient satisfaction following失效 unicompartimental knee arthroplasty to total knee arthroplasty are as good as a primary total knee arthroplasty. Knee [Internet]. 2019 Aug [cited 2019 Oct 9];26(4):847–52. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0968016019300882

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
83. Klim SM, Amerstorfer F, Bernhardt GA, Sadoghi P, Hauer G, Leitner L, et al. Excellent mid-term osseointegration and implant survival using metaphyseal sleeves in revision total knee arthroplasty. Knee Surgery, Sport Traumatol Arthrosc [Internet]. 2020 [cited 2020 Aug 21]; Available from: https://pubmed.ncbi.nlm.nih.gov/32006076/

84. Larsen JB, Mogensen L, Arendt-Nielsen L, Madeleine P. Intensive, personalized multimodal rehabilitation in patients with primary or revision total knee arthroplasty: a retrospective cohort study. BMC Sports Sci Med Rehabil [Internet]. 2020;12:5. Available from: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=prem&AN=31938549

85. Oliver G, Jaldin L, Camprubi E, Cortés G. Observational Study of Total Knee Arthroplasty in Aseptic Revision Surgery: Clinical Results. Orthop Surg [Internet]. 2020 Feb 1 [cited 2020 Aug 21];12(1):177–83. Available from: https://pubmed.ncbi.nlm.nih.gov/31916370/

86. Amstutz HC, Thomas BJ, Jinnah R, Kim W, Grogan T, Yale C. Treatment of primary osteoarthritis of the hip. A comparison of total joint and surface replacement arthroplasty. J Bone Jt Surg - Ser A [Internet]. 1984 [cited 2020 Aug 21];66(2):228–41. Available from: https://pubmed.ncbi.nlm.nih.gov/6693450/

87. Ware JE, Kosinski M, Keller SD. A 12-Item Short-Form Health Survey: Construction of Scales and Preliminary Tests of Reliability and Validity. Med Care [Internet]. 1996 [cited 2020 Aug 21];34(3):220–33. Available from: https://pubmed.ncbi.nlm.nih.gov/8628042/

88. Mulhall KJ, Ghomrawi HM, Scully S, Callaghan JJ, Saleh KJ. Current etiologies and modes of failure in total knee arthroplasty revision. Clin Orthop Relat Res [Internet]. 2006;446:45–50. Available from: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=med6&AN=16672871

http://oxfordsfx.hosted.exlibrisgroup.com/oxford?sid=OVID:medline&id=pmid:16672871&i=doi:10.1097%2Fj01.blo.0000214421.21712.62&isbn=0009-921X&isbn=&volume=446&issue=&spage

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
Figure 1. PRISMA flow diagram. The full search strategy is provided in Appendix 1 within the Supplementary file.

500x462mm (157 x 157 DPI)
Appendix 1: Search Strategy

This search strategy incorporates the PROM filter from the Oxford PROM group (24).

Databases: MEDLINE, Embase, AMED, PsycInfo

Search strategy for Ovid MEDLINE:

Arthroplasty, Replacement, Knee/
((arthroplast* or replacement* or resurface*) adj3 knee*).ti,ab.
Knee Prosthesis/
((prosthes* or implant*) adj3 knee*).ti,ab.
(tka or tkr or ukr or uka).ti,ab.
1 or 2 or 3 or 4 or 5
revision*.ti,ab.
modular exchange*.ti,ab.
Reoperation/
(reoperation or re-operation or "repeat surg*").ti,ab.
7 or 8 or 9 or 10
6 and 11
(HR-PRO or HRPRO or HRQoL or HRQoL or QL or QoL).ti,ab. or quality of life.mp. or (health index* or health indices or health profile*).ti,ab. or health status.mp. or ((patient or self or child or parent or carer or proxy) adj (appraisal* or appraised or report or reported or reporting or rated or rating* or based or assessed or assessment*).ti,ab. or ((disability or function or functional or functions or subjective or utility or utilities or wellbeing or well being) adj2 (index or indices or instrument or instruments or measure or measures or questionnaire* or profile or profiles or scale or scales or score or scores or status or survey or surveys)).ti,ab.
12 and 13
Appendix 2: Tables & Figures

Appendix 2 Table 1. Generic hypotheses to evaluate construct validity and responsiveness

Hypotheses
1 Correlations with (changes in) instruments measuring similar constructs should be ≥ 0.50
2 Correlations with (changes in) instruments measuring related, but dissimilar constructs should be lower, i.e. 0.30-0.50.
3 Correlations with (changes in) instruments measuring unrelated constructs should be < 0.30.
4 Correlations defined under 1, 2, and 3 should differ by a minimum of 0.10.
5 Meaningful changes between relevant (sub)groups (e.g. patients with expected high vs low levels of the construct of interest)
6 For responsiveness, the area under the curve should be ≥ 0.70.

This table is reproduced from de Vet et al (89) and is included in the COSMIN manual for systematic reviews of PROMS (17).

Appendix 2 Figure 1. Histogram demonstrating increasing numbers of studies reporting on PROMS following revision knee replacement over time.

![Histogram demonstrating increasing numbers of studies reporting on PROMS following revision knee replacement over time.](image)
Appendix 3: Definitions of measurement properties

This manuscript uses COSMIN definitions throughout. A more detailed explanation of the COSMIN taxonomy, domains and definitions can be found within the COSMIN manual for systematic reviews of PROMS (17).

Content validity
Validity is “the degree to which a PROM measures the construct” intended (90). Content validity refers to “the degree to which the content of a PROM is an adequate reflection of the construct to be measured” (17). COSMIN provide a bespoke user manual to evaluate content validity (91).

Internal structure
Structural validity is the degree to which the PROM scores reflect the dimensionality of the construct being measured (90). Construct validity is “the degree to which the scores of a PROM are consistent with hypotheses”, assuming that the PROM is a valid instrument to measure the construct (90). Internal consistency is the “interrelatedness among PROM items” (90). Cross-cultural validity evaluates the performance of an adapted PROM compared to the original version (90).

Reliability
Reliability refers to “the degree to which a measurement is free from measurement error” (90).

Responsiveness
Responsiveness is the ability of a PROM to detect change over time (90).

Interpretability
Interpretability is the degree to which qualitative meaning can be assigned to a PROM score.

Feasibility
Feasibility is the ease of application of a PROM for its context of use. The measurement properties were analysed descriptively as per COSMIN guidance.
Appendix 4: COSMIN methodology for conducting a systematic review of PROM instruments

This diagram is reproduced from the COSMIN manual for systematic reviews of PROMs (17).
Section/topic	#	Checklist item	Reported on page #
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1
ABSTRACT			
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	2
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known.	4
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	4
METHODS			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	N/A
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	5
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	5
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	5&32
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	5
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	5&6
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	5&6
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	6
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	6
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I² for each meta-analysis).	6
PRISMA 2009 Checklist

RESULTS

Section/topic	#	Checklist item	Reported on page #
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	6
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	N/A
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	19
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	20/21/24
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	26
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	26
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	27
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	27
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	

DISCUSSION

Section/topic	#	Checklist item	
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	9
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	9
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	10

FUNDING

Section/topic	#	Checklist item	
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	11

From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(6): e1000097. doi:10.1371/journal.pmed1000097

For more information, visit: www.prisma-statement.org
SECTION	ITEM	PRISMA-ScR CHECKLIST ITEM	REPORTED ON PAGE #
TITLE	1	Identify the report as a scoping review.	1
ABSTRACT	2	Provide a structured summary that includes (as applicable): background, objectives, eligibility criteria, sources of evidence, charting methods, results, and conclusions that relate to the review questions and objectives.	2
INTRODUCTION	3	Describe the rationale for the review in the context of what is already known. Explain why the review questions/objectives lend themselves to a scoping review approach.	4
Objectives	4	Provide an explicit statement of the questions and objectives being addressed with reference to their key elements (e.g., population or participants, concepts, and context) or other relevant key elements used to conceptualize the review questions and/or objectives.	4
METHODS	5	Indicate whether a review protocol exists; state if and where it can be accessed (e.g., a Web address); and if available, provide registration information, including the registration number.	N/A
Protocol and	6	Specify characteristics of the sources of evidence used as eligibility criteria (e.g., years considered, language, and publication status), and provide a rationale.	5
Eligibility criteria	7	Describe all information sources in the search (e.g., databases with dates of coverage and contact with authors to identify additional sources), as well as the date the most recent search was executed.	5
Information sources*	8	Present the full electronic search strategy for at least 1 database, including any limits used, such that it could be repeated.	Appendix 1
Search	9	State the process for selecting sources of evidence (i.e., screening and eligibility) included in the scoping review.	5/6
Selection of	10	Describe the methods of charting data from the included sources of evidence (e.g., calibrated forms or forms that have been tested by the team before their use, and whether data charting was done independently or in duplicate) and any processes for obtaining and confirming data from investigators.	6
sources of evidence†			
Data charting	11	List and define all variables for which data were sought and any assumptions and simplifications made.	6
process‡			
Critical appraisal of	12	If done, provide a rationale for conducting a critical appraisal of included sources of evidence; describe the methods used and how this information was used in any data synthesis (if appropriate).	N/A
individual sources of			
evidence§			
SECTION	ITEM	PRISMA-ScR CHECKLIST ITEM	REPORTED ON PAGE #
---------	------	--------------------------	-------------------
Synthesis of results	13	Describe the methods of handling and summarizing the data that were charted.	6
RESULTS			
Selection of sources of evidence	14	Give numbers of sources of evidence screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally using a flow diagram.	Fig 1
Characteristics of sources of evidence	15	For each source of evidence, present characteristics for which data were charted and provide the citations.	Tables 1 & 2
Critical appraisal within sources of evidence	16	If done, present data on critical appraisal of included sources of evidence (see item 12).	N/A
Results of individual sources of evidence	17	For each included source of evidence, present the relevant data that were charted that relate to the review questions and objectives.	Tables 1 & 2
Synthesis of results	18	Summarize and/or present the charting results as they relate to the review questions and objectives.	Tables 1 & 2
DISCUSSION			
Summary of evidence	19	Summarize the main results (including an overview of concepts, themes, and types of evidence available), link to the review questions and objectives, and consider the relevance to key groups.	10
Limitations	20	Discuss the limitations of the scoping review process.	10
Conclusions	21	Provide a general interpretation of the results with respect to the review questions and objectives, as well as potential implications and/or next steps.	11
FUNDING			
Funding	22	Describe sources of funding for the included sources of evidence, as well as sources of funding for the scoping review. Describe the role of the funders of the scoping review.	12

JBI = Joanna Briggs Institute; PRISMA-ScR = Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews.

* Where sources of evidence (see second footnote) are compiled from, such as bibliographic databases, social media platforms, and Web sites.
† A more inclusive/heterogeneous term used to account for the different types of evidence or data sources (e.g., quantitative and/or qualitative research, expert opinion, and policy documents) that may be eligible in a scoping review as opposed to only studies. This is not to be confused with information sources (see first footnote).
‡ The frameworks by Arksey and O’Malley (6) and Levac and colleagues (7) and the JBI guidance (4, 5) refer to the process of data extraction in a scoping review as data charting.
§ The process of systematically examining research evidence to assess its validity, results, and relevance before using it to inform a decision. This term is used for items 12 and 19 instead of "risk of bias" (which is more applicable to systematic reviews of interventions) to include and acknowledge the various sources of evidence that may be used in a scoping review (e.g., quantitative and/or qualitative research, expert opinion, and policy document).

From: Tricco AC, Lillie E, Zarin W, O'Brien KK, Colquhoun H, Levac D, et al. PRISMA Extension for Scoping Reviews (PRISMAScR): Checklist and Explanation. Ann Intern Med. 2018;169:467–473. doi: 10.7326/M18-0850.