On graded P-compactly packed modules

Abstract: Let G be a group with identity e. Let R be a G-graded commutative ring and M a graded R-module. In this paper, we introduce the concept of graded P-compactly packed modules and we give a number of results concerning such graded modules. In fact, our objective is to investigate graded P-compactly packed modules and examine in particular when graded R-modules are P-compactly packed. Finally, we introduce the concept of graded finitely P-compactly packed modules and give a number of its properties.

Keywords: Graded primary submodules, Graded P-compactly packed modules, Graded finitely P-compactly packed modules

MSC: 13A02, 16W50
Let \(M = \bigoplus_{g \in G} M_g \) be a graded \(R \)-module and \(N \) a submodule of \(M \). Then \(N \) is called a graded submodule of \(M \) if \(N = \bigoplus_{g \in G} N_g \) where \(N_g = N \cap M_g \) for \(g \in G \). In this case, \(N_g \) is called the \(g \)-component of \(N \) (see [6].)

Let \(R \) be a \(G \)-graded ring and \(M \) a graded \(R \)-module. The graded radical of a graded ideal \(I \), denoted by \(Gr(I) \), is the set of all \(x = \sum_{g \in G} x_g \in R \) such that for each \(g \in G \) there exists \(n_g > 0 \) with \(x_g^{n_g} \in I \). Note that, if \(r \) is a homogeneous element, then \(r \in Gr(I) \) if and only if \(r^n \in I \) for some \(n \in \mathbb{N} \). A proper graded ideal \(P \) of \(R \) is said to be graded primary ideal if whenever \(r, s \in h(R) \) with \(rs \in P \), then either \(r \in P \) or \(s \in Gr(P) \) (see [8]). A proper graded submodule \(N \) of a graded \(R \)-module \(M \) is said to be graded prime submodule if whenever \(r \in h(R) \) and \(m \in h(M) \) with \(rm \in N \), then either \(r \in (N :_RM) = \{ r \in R : rM \subseteq N \} \) or \(m \in N \). A proper graded submodule \(N \) of a graded \(R \)-module \(M \) is said to be graded submodule if whenever \(r \in h(R) \) and \(m \in h(M) \) with \(rm \in N \), then either \(m \in N \) or \(r \in Gr((N :_RM)) \) (see [7]).

The graded primary and prime submodules are different concepts (see [8, Example 1.6].) The graded radical of a graded submodule \(N \) of a graded \(R \)-module \(M \), denoted by \(Gr_M(N) \), is defined to be the intersection of all graded prime submodules of \(M \) containing \(N \). If \(N \) is not contained in any graded primary submodule of \(M \), then \(Gr_M(N) = N \) (see [7].) A graded \(R \)-module \(M \) is called graded finitely generated if there exist \(x_{g_1}, x_{g_2}, \ldots, x_{g_n} \in h(M) \) such that \(M = Rx_{g_1} + \cdots + Rx_{g_n} \). A graded \(R \)-module \(M \) is called graded cyclic if \(M = Rm_g \) where \(m_g \in h(M) \).

2 Graded \(P \)-compactly packed modules

In this section, we define the graded \(P \)-compactly packed modules and give a number of its properties. We also find the necessary and sufficient conditions for any graded \(R \)-module \(M \) to be graded \(P \)-compactly packed.

Definition 2.1. Let \(R \) be a \(G \)-graded ring, \(M \) a graded \(R \)-module and \(N \) a proper graded submodule of \(M \). \(N \) is called graded \(P \)-compactly packed if whenever \(N \) is contained in the union of a family of graded primary submodules of \(M \), \(N \) is contained in one of the graded primary submodules of the family. \(M \) is called graded \(P \)-compactly packed if every proper graded submodule of \(M \) is graded \(P \)-compactly packed.

Lemma 2.2 ([4, Lemma 2.1]). Let \(R \) be a \(G \)-graded ring and \(M \) a graded \(R \)-module. Then the following hold:

(i) If \(I \) and \(J \) are graded ideals of \(R \), then \(I + J \) and \(I \cap J \) are graded ideals.

(ii) If \(N \) is a graded submodule of \(M \), \(r \in h(R) \), \(x \in h(M) \) and \(I \) is a graded ideal of \(R \), then \(Rx, IN \) and \(rN \) are graded submodules of \(M \).

(iii) If \(N \) and \(K \) are graded submodules of \(M \), then \(N + K \) and \(N \cap K \) are also graded submodules of \(M \) and \((N :_RM) = \{ r \in R : rM \subseteq N \} \) is a graded ideal of \(R \).

(iv) Let \(\{N_\lambda\} \) be a collection of graded submodules of \(M \). Then \(\sum_\lambda N_\lambda \) and \(\cap_\lambda N_\lambda \) are graded submodules of \(M \).

The graded primary radical of a graded submodule \(N \) of a graded \(R \)-module \(M \), denoted by \(P-Gr_M(N) \), is defined to be the intersection of all graded primary submodules of \(M \) containing \(N \). Should there be no graded primary submodule of \(M \) containing \(N \), then we put \(P-Gr_M(N) = M \). It is easy to see that \(P-Gr_M(N) \) is a graded submodule of \(M \) containing \(N \). We say \(N \) is a graded primary radical submodule if \(P-Gr_M(N) = N \) (see [1, Definition 2.2].)

Theorem 2.3. Let \(R \) be a \(G \)-graded ring and \(M \) a graded \(R \)-module. Then the following statements are equivalent:

(i) \(M \) is a graded \(P \)-compactly packed.

(ii) For each proper graded submodule \(N \) of \(M \), there exists \(n_g \in N \cap h(M) \) such that \(P-Gr_M(N) = P-Gr_M(Rn_g) \).

(iii) For each proper graded submodule \(N \) of \(M \), if \(\{P_\alpha\}_{\alpha \in \Delta} \) is a family of graded submodules of \(M \) and \(N \subseteq \cup_{\alpha \in \Delta} P_\alpha \), then \(N \subseteq P-Gr_M(P_\beta) \) for some \(\beta \in \Delta \).

(iv) For each proper graded submodule \(N \) of \(M \), if \(\{P_\alpha\}_{\alpha \in \Delta} \) is a family of graded primary radical submodules of \(M \) and \(N \subseteq \cup_{\alpha \in \Delta} P_\alpha \), then \(N \subseteq P_\beta \) for some \(\beta \in \Delta \).
Proof. (i)⇒(ii) Assume (i) holds and let N be a proper graded submodule of M. By [1, Theorem 2.4], $P_{Gr_M}(Rn_g) \subseteq P_{Gr_M}(N)$ for each $n_g \in N \cap h(M)$. Now, suppose that $P_{Gr_M}(N) \not\subseteq P_{Gr_M}(Rn_g)$ for each $n_g \in N \cap h(M)$. Then for each $n_g \in N \cap h(M)$ there exists a graded primary submodule P_{n_g} for which $Rn_g \subseteq P_{n_g}$ and $N \not\subseteq P_{n_g}$. But $N = \cup_{n_g \in N} Rn_g \subseteq \cup_{n_g \in N} P_{n_g}$, that is M is not P-compactly packed, a contradiction.

(ii)⇒(iii) Assume (ii) holds. Let N be a proper graded submodule of M and let $\{P_\alpha\}_{\alpha \in \Delta}$ be a family of graded submodules of M such that $N \subseteq \cup_{\alpha \in \Delta} P_\alpha$ by (ii) there exists $n_g \in N \cap h(M)$ such that $P_{Gr_M}(N) = P_{Gr_M}(Rn_g)$. Hence $n_g \in \cup_{\alpha \in \Delta} P_\alpha$ and so $n_g \in P_\beta$ for some $\beta \in \Delta$. Hence $Rn_g \subseteq P_\beta$ and by [1, Theorem 2.4], we conclude that $N \subseteq P_{Gr_M}(N) = P_{Gr_M}(Rn_g) \subseteq P_{Gr_M}(P_\beta)$.

(iii)⇒(iv) Assume (iii) holds. Let N be a proper graded submodule of M and let $\{P_\alpha\}_{\alpha \in \Delta}$ be a family of graded primary radical submodules of M such that $N \subseteq \cup_{\alpha \in \Delta} P_\alpha$ by (iii) there exists $\beta \in \Delta$ such that $N \subseteq P_{Gr_M}(P_\beta)$. Since P_β is graded primary radical submodule, $P_\beta = P_{Gr_M}(P_\beta)$. Thus $N \subseteq P_\beta$.

(iv)⇒(i) Assume (iv) holds. Let N be a proper graded submodule of M and let $\{P_\alpha\}_{\alpha \in \Delta}$ be a family of graded primary radical submodules of M such that $N \subseteq \cup_{\alpha \in \Delta} P_\alpha$. Since P_α is graded primary for each $\alpha \in \Delta$, we have $P_\beta = P_{Gr_M}(P_\beta)$. Hence $N \subseteq \cup_{\alpha \in \Delta} P_\alpha = \cup_{\alpha \in \Delta} P_{Gr_M}(P_\beta)$. By (iv), there exists $\beta \in \Delta$ such that $N \subseteq P_{Gr_M}(P_\beta) = P_\beta$. Therefore, M is graded P-compactly packed.

Lemma 2.4. Let R be a G-graded ring and M a graded R-module. If every proper graded submodule of M is graded cyclic, then M is graded P-compactly packed.

Proof. Let N be a proper graded submodule of M and let $\{P_\alpha\}_{\alpha \in \Delta}$ be a family of graded primary submodules of M such that $N \subseteq \cup_{\alpha \in \Delta} P_\alpha$. Since N is a graded cyclic, $N = Rn_G$ for some $n_G \in N \cap h(M)$. Since $n_G \in N \subseteq \cup_{\alpha \in \Delta} P_\alpha$, $n_G \in P_\beta$ for some $\beta \in \Delta$ it follows that $N = Rn_G \subseteq P_\beta$. Therefore M is graded P-compactly packed.

A graded R-module M is said to be with graded primary decomposition if each of its proper graded submodules is an intersection, possibly infinite, of graded primary submodules of M.

Lemma 2.5. Let R be a G-graded ring and M a graded R-module. M is a graded module with graded primary decomposition if and only if $P_{Gr_M}(N) = N$ for all graded submodules N of M.

Proof. Let N be a proper graded submodule of M, then N has a graded primary decomposition $N = \cap_{\alpha \in \Delta} P_\alpha$. Each of P_α is containing N. Since $P_{Gr_M}(N)$ is the intersection of all graded primary submodules containing N, $P_{Gr_M}(N) \subseteq N$ and it is clear that $N \subseteq P_{Gr_M}(N)$. Thus $P_{Gr_M}(N) = N$. Conversely, assume that $P_{Gr_M}(N) = N$ for all graded submodules N of M. Then every proper graded submodule of M is an intersection of graded primary submodules of M. Hence M is a graded module with graded primary decomposition.

Theorem 2.6. Let R be a G-graded ring and M a graded R-module with graded primary decomposition. Then the following statements are equivalent:

(i) M is a graded P-compactly packed.

(ii) Every proper graded submodule of M is graded cyclic.

Proof. (i)⇒(ii) Assume (i) holds and let N be a proper graded submodule of M. By Theorem 2.3, there exists $n_g \in N \cap h(M)$ such that $P_{Gr}(N) = P_{Gr}(Rn_g)$ but M is graded module with graded primary decomposition, then by previous Lemma $N = Rn_g$. Thus N is graded cyclic.

(ii)⇒(i) Lemma 2.4.

Recall that a proper graded submodule N of a graded R-module M is said to be graded maximal submodule if there is no graded submodule K of M such that $N \subsetneq K \subsetneq M$ (see [2].)

Theorem 2.7. Let R be a G-graded ring and M a graded R-module. If M is graded P-compactly packed which has at least one graded maximal submodule, then M satisfies the ascending chain condition on graded primary radical submodules.
Proof. Let $P_1 \subseteq P_2 \subseteq P_3 \subseteq \cdots$ be an ascending chain of graded primary radical submodules of M. If $P_k = M$ for some k, then the result follows immediately, so assume that none of P_k’s is M and let $P = \bigcup_{i=1}^{\infty} P_i$. We claim that P is a proper graded submodule of M. Assume on contrary that $P = M$ and let L be a graded maximal submodule of M. Then $L \subseteq \bigcup_{i=1}^{\infty} P_i$. Since M is graded P-compactly packed, by Theorem 2.3 $L \subseteq P_k$ for some k. Hence $L = P_k$ and so P_k is graded maximal. Hence $P_k = P_i$ for all $i \geq k$ it follows that $P_k = \bigcup_{i=1}^{\infty} P_i = M$, which is impossible. Thus P is a proper graded submodule of M. Since M is graded P-compactly packed, by Theorem 2.3 $P \subseteq P_s$ for some s and hence $P_s = P_i$ for all $i \geq s$. Therefore the ascending chain condition is satisfied on graded primary radical submodules.

By [2, Lemma 2.7], every graded finitely generated module over graded ring has a graded proper maximal submodule. Then we have the following Corollary.

Corollary 2.8. Let R be a G-graded ring and M a graded finitely generated R-module. If M is graded P-compactly packed, then M satisfies the ascending chain condition on graded primary radical submodules.

Lemma 2.9. Let R be a G-graded ring and M a graded R-module. If M satisfies the ascending chain condition on graded primary radical submodules, then every graded primary radical submodule is the graded primary radical of a graded finitely generated submodule.

Proof. Assume that there exists a graded primary radical P which is not graded primary radical of a graded finitely generated submodule. Let $n_1 \in P \cap h(M)$ and let $P_1 = P \cdot \text{Gr}_M(Rn_1)$. Then $P_1 \subsetneq P$. Hence there exists $n_2 \in (P \cap h(M)) - P_1$. Let $P_2 = P \cdot \text{Gr}_M(Rn_1 - Rn_2)$. Then $P_1 \subsetneq P_2 \subsetneq P$ and hence there exists $n_3 \in (P \cap h(M)) - P_2$ etc. This gives an ascending chain of graded primary radical submodules $P_1 \subsetneq P_2 \subsetneq P_3 \subsetneq \cdots$ which is a contradiction.

Theorem 2.10. Let R be a G-graded ring and M a graded R-module such that every graded finitely generated submodule of M is graded cyclic. If M satisfies the ascending chain condition on graded primary radical submodules, then M is a graded P-compactly packed.

Proof. Let N be a proper graded submodule of M. By Lemma 2.9, there exists a graded finitely generated submodule P of M such that $P \cdot \text{Gr}_M(N) = P \cdot \text{Gr}_M(P)$. By our assumption we conclude that P is a graded cyclic, it follows that there exists $n_\ell \in N \cap h(M)$ such that $P = Rn_\ell$. By Theorem 2.3, M is a graded P-compactly packed.

Let M and M' be two graded R-modules. A homomorphism of graded R-modules $\varphi : M \rightarrow M'$ is a homomorphism of R-modules verifying $\varphi(M_\ell) \subseteq M'_\ell$ for every $g \in G$.

Lemma 2.11. Let R be a G-graded ring and M, M' be two graded R-modules and $\varphi : M \rightarrow M'$ be an epimorphism of graded modules. If M is a graded P-compactly packed, then so is M'.

Proof. Assume that M is a graded P-compactly packed. Let N' be a proper graded submodule of M' and let $\{P'_\alpha\}_{\alpha \in \Delta}$ be a family of graded primary submodules of M' such that $N' \subseteq \bigcup_{\alpha \in \Delta} P'_\alpha$. Since φ is an epimorphism of graded modules, $\varphi^{-1}(N') \subseteq \bigcup_{\alpha \in \Delta} \varphi^{-1}(P'_\alpha)$. Hence $\varphi^{-1}(N') \subseteq \bigcup_{\alpha \in \Delta} \varphi^{-1}(P'_\alpha)$. By [1, Lemma 2.14], $\varphi^{-1}(P'_\alpha)$ is a graded primary submodule of M for each $\alpha \in \Delta$. Since M is a graded P-compactly packed, there exists $\beta \in \Delta$ such that $\varphi^{-1}(N') \subseteq \varphi^{-1}(P'_\beta)$. Thus $N' \subseteq P'_\beta$ for some $\beta \in \Delta$. Therefore M' is a graded P-compactly packed.

Theorem 2.12. Let R be a G-graded ring and M, M' be two graded R-modules and $\varphi : M \rightarrow M'$ be an epimorphism of graded modules such that $\text{Ker}(\varphi) \subseteq P \cdot \text{Gr}_M(\{0\})$. Then M is a graded P-compactly packed if and only if M' is a graded P-compactly packed.

Proof. (\Rightarrow) Lemma 2.11.

(\Leftarrow) Assume that M' is a graded P-compactly packed. Let N be a proper graded submodule of M and let $\{P_\alpha\}_{\alpha \in \Delta}$ be a family of graded primary submodules of M such that $N \subseteq \bigcup_{\alpha \in \Delta} P_\alpha$. Then $\varphi(N) \subseteq \varphi(\bigcup_{\alpha \in \Delta} P_\alpha)$
and hence \(\varphi(N) \subseteq \bigcup_{\alpha \in \Delta} \varphi(P_{\alpha}). \) Since \(\text{Ker}(\varphi) \subseteq P_{\alpha} \) for each \(\alpha \in \Delta, \) by [1, Lemma 2.15], \(\varphi(P_{\alpha}) \) is a graded primary submodule of \(M'. \) Since \(M' \) is a graded \(P \)-compactly packed, \(\varphi(N) \subseteq \varphi(P_{\beta}) \) for some \(\beta \in \Delta. \) Now, we show that \(N \subseteq P_{\beta}. \) Let \(n = \sum_{g \in G} n_{g} \in N. \) For \(g \in G, n_{g} \in N \) and so \(\varphi(n_{g}) \in \varphi(N) \subseteq \varphi(P_{\beta}). \) Hence there exists \(t \in P_{\beta} \cap h(M) \) such that \(\varphi(n_{g}) = \varphi(t). \) Hence \(n_{g} - t \in \text{Ker}(\varphi) \subseteq P_{\beta}, \) it follows that \(n_{g} \in P_{\beta}. \) So \(N \subseteq P_{\beta}. \) Therefore \(M \) is a graded \(P \)-compactly packed.

Let \(R \) be a \(G \)-graded ring and \(M \) a graded \(R \)-module and \(S \subseteq h(R) \) a multiplicatively closed subset of \(R. \) A non empty subset \(S^* \) of \(h(M) \) is said to be graded \(S \)-closed if \(\forall s \in S \) and \(e \in S^* \) (see [4, Definition 2.11]).

Lemma 2.13. Let \(S \subseteq h(R) \) be a multiplicatively closed subset of graded ring \(R \) and \(S^* \subseteq h(M) \) be a graded \(S \)-closed of a graded \(R \)-module \(M. \) If \(N \) is a graded submodule of \(M \) contained in \(M - S^*, \) then \(\text{Gr}((N : R M)) \cap S = \emptyset. \)

Proof. Assume that \(\text{Gr}((N : R M)) \cap S \neq \emptyset \) and let \(r_{g} \in \text{Gr}((N : R M)) \cap S. \) Then \(r_{g}^{k} M \subseteq \text{N} \) for some \(k \in \mathbb{N} \) and for any \(e \in S^*, r_{g}^{k} e \in S^* \cap \text{N}, \) which is contradiction with \(N \subseteq M - S^*. \)

Recall that a graded \(R \)-module \(M \) is called graded multiplication if for each graded submodule \(N \) of \(M, N = IM \) for some graded ideal \(I \) of \(R. \) One can easily show that if \(N \) is a graded submodule of a graded multiplication module \(M, \) then \(N = (N : R M), \) (see [7, Definition 2.]) Also, a proper graded ideal \(P \) of a \(G \)-graded ring \(R \) is graded \(P \)-compactly packed if whenever \(P \) is contained in the union of a family of graded primary ideals of \(R, \) \(P \) is contained in one of the graded primary ideals of the family. A graded ring \(R \) is said to be graded \(P \)-compactly packed if every proper graded ideals of \(R \) is graded \(P \)-compactly packed.

Theorem 2.14. Let \(R \) be a \(G \)-graded ring, \(M \) a graded multiplication \(R \)-module such that \(\text{Gr}_{M}(N) = N \) for all graded submodules \(N \) of \(M. \) If \(R \) is a graded \(P \)-compactly packed and \(M \neq \bigcup_{\alpha \in \Delta} P \) for each family \(\{P_{\alpha}\}_{\alpha \in \Delta} \) of graded primary submodules of \(M, \) then \(M \) is graded \(P \)-compactly packed.

Proof. Let \(N \) be a proper graded submodule of \(M \) and let \(\{P_{\alpha}\}_{\alpha \in \Delta} \) be a family of graded primary radical submodules of \(M \) such that \(N \subseteq \bigcup_{\alpha \in \Delta} P_{\alpha}. \) Put \(S^* = h(M) - \bigcup_{\alpha \in \Delta} P_{\alpha}. \) Then \(S^* \) is graded \(S \)-closed of \(M \) where \(S = h(R) - \bigcup_{\alpha \in \Delta} \text{Gr}((P_{\alpha} : R M)). \) Since \(\emptyset \cap S^* = \emptyset, \) by Lemma 2.13 \(\text{Gr}((N : R M)) \cap S = \emptyset. \) Hence \(\text{Gr}((N : R M)) \subseteq \bigcup_{\alpha \in \Delta} \text{Gr}((P_{\alpha} : R M)). \) By [1, Lemma 2.7], \(\text{Gr}((P_{\alpha} : R M)) \) is graded primary ideals of \(R \) for all \(\alpha. \) Since \(R \) is a graded \(P \)-compactly packed, \(\text{Gr}((N : R M)) \subseteq \text{Gr}((P_{\beta} : R M)) \) for some \(\beta. \) Therefore, \(M \) is graded \(P \)-compactly packed.

3 Graded finitely \(P \)-compactly packed modules

In this section, we define the graded finitely \(P \)-compactly packed modules and give a number of its properties. Also, we find the conditions that make graded finitely \(P \)-compactly packed modules graded \(P \)-compactly packed.

Definition 3.1. Let \(R \) be a \(G \)-graded ring and \(M \) a graded \(R \)-module. A proper graded submodule \(N \) of \(M \) is called graded finitely \(\bigcup_{\alpha \in \Delta} P_{\alpha} \) of graded primary submodules of \(M \) with \(N \subseteq \bigcup_{\alpha \in \Delta} P_{\alpha}, \) there exist \(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in \Delta \) such that \(N \subseteq \bigcup_{i=1}^{n} P_{\alpha_{i}}. \) A graded module \(M \) is called graded finitely \(P \)-compactly packed if every proper graded submodule of \(M \) is graded finitely \(P \)-compactly packed.

It is clear that if \(M \) is graded \(P \)-compactly packed, then \(M \) is graded finitely \(P \)-compactly packed.

Theorem 3.2. Let \(R \) be a \(G \)-graded ring and \(M \) a graded \(R \)-module in which every finite family of graded primary submodules of \(M \) is totally ordered by inclusion. If \(M \) is graded finitely \(P \)-compactly packed, then \(M \) is graded \(P \)-compactly packed.
Theorem 3.3. Let R be a G-graded ring and M a graded multiplication R-module such that $Gr_M(N) = N$ for all graded submodules N of M. If M is graded finitely P-compactly packed, then M is graded P-compactly packed.

Proof. Let N be a proper graded submodule of M and let $\{P_\alpha\}_{\alpha \in \Delta}$ be a family of graded primary submodules of M such that $N \subseteq \bigcup_{\alpha \in \Delta} P_\alpha$. Since M is graded finitely P-compactly packed, there exist $\alpha_1, \alpha_2, \ldots, \alpha_n \in \Delta$ such that $N \subseteq \bigcup_{i=1}^n P_{\alpha_i}$. Since $\{P_{\alpha_i}\}_{i=1}^n$ is totally ordered by inclusion, there exists $\beta \in \{\alpha_1, \alpha_2, \ldots, \alpha_n\}$ such that $\bigcup_{i=1}^n P_{\alpha_i} = P_\beta$. Thus M is graded P-compactly packed.

Let N_1, N_2, \ldots, N_n be graded submodules of a graded R-module M. We call a covering $N \subseteq N_1 \cup N_2 \cup \cdots \cup N_n$ efficient if N is not contained in the union of any $n - 1$ of the graded submodules N_1, N_2, \ldots, N_n. Any covering of a union of graded submodules can be reduced to an efficient one, called an efficient reduction, by deleting any unnecessary terms, (see [3].)

Acknowledgement: The authors wish to thank sincerely the referees for their valuable comments and suggestions.

References

[1] Al-Zoubi K., The graded primary radical of a graded submodules, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.), (in press).
[2] Atani S.E., Farzalipour F., Notes on the graded prime submodules, Int. Math. Forum, 2006, 1(38), 1871-1880.
[3] Atani S.E., Tekir U., On the graded primary avoidance theorem, Chiang Mai J. Sci., 2007, 34(2), 161-164.
[4] Farzalipour F., Ghiasvand P., On the union of graded prime Submodules, Thai J. Math., 2011, 9(1), 49-55.
[5] Lu C.P., Unions of prime submodules, Houston J. Math., 1997, 23, 203-213.
[6] Nastasescu C., Van Oystaeyen F., Graded Ring Theory, North Holland, Amesterdam: 1982.
[7] Oral K.H, Tekir U., Agargun A.G., On Graded prime and primary submodules, Turk. J. Math., 2011, 35, 159-167.
[8] Refai M., Al-Zoubi K., On graded primary ideals, Turk. J. Math., 2004, 28, 217-229.