Semi-supervised classification method of SAR images using spectral clustering in contourlet domain

Kaiwen Jiang1,2, Degan Zhang1,2, Haixia Xu3

1,2Key Laboratory of Computer Vision and System (Tianjin University of Technology), Ministry of Education, 300384, China

1,2Tianjin Key Lab of Intelligent Computing & Novel software Technology, Tianjin University of Technology, Tianjin, China

3School of Electronic and Information Engineering, Tianjin Vocational Institute, Tianjin 300410, China

Correspondence: 2428370322@QQ.com

Abstract: A new based on Semi-supervised classification theory for SAR images in contourlet domain is proposed, in this paper. Attempting to get better and faster performance, the PSO algorithm (Particle swarm optimization algorithm) and contourlet domain is proposed to instead of traditional k-means algorithm. PSO is used to find the global optimum by performing a global search in the whole solution space. And then, contourlet is applied in front of construct the similarity matrix to extract more effective eigenvalues. In section five, the proposed algorithm got better classification results than the traditional k-means algorithm which is proved by experimental results show that in terms of running time, classification accuracy and Kappa coefficient.

1. Introduction
Clustering analysis1 is an important data mining method, image recognition, in essence is a process of image classification or division2. Spectral clustering$^{3-5}$ is a popular clustering method which is used widely in computer vision6, image understanding7, speech separation8 and pattern recognition9. To divide the data easily, we decomposed Laplacian matrix to obtain a simpler data space firstly. By adopting some grouping method, clustering result is achieved, secondly, such as k-means method10 to get a discrete solution from eigenvectors.

2. Principle of our algorithm
Contourlet were developed as an improvement over wavelets in terms of the inefficiency in presenting geometrical smoothness. The resulting transform has the multiscale and time-frequency-localization properties of wavelets, but also offers a high degree of directionality and anisotropy. It employs a double filter bank structure. First of all, the Laplacian pyramid (LP) is used to generate a multiscale representation of an image to capture the point discontinuities. Subsequently, subband images from the multiscale decomposition are processed by a directional filter bank (DFB) to link point discontinuities into linear structures at each specific scale level. Due to this cascade structure, multiscale and directional decomposition stages in the contourlet transform are independent of each other. One can decompose each scale into any arbitrary power of two’s number of directions, and different scales can be decomposed into different numbers of directions. Also, its basis functions have elongated supports.
rather than square supports as with 2-D wavelets, which make it more efficient in describing curvature details along smooth contours. The contourlet transform is illustrated in Figure 1.

Figure 2 shows an example of the contourlet relationships which are happened by the interaction.

Hence, we use the feature vectors to instead of pixels which is proposed to increase the accurateness, when the similarity matrix structure. Mean that, advanced features is used to alternative low-level features make more accurate segmentation. PSO algorithm makes operations and convergences easier and faster; it also processes multiple particles simultaneously. The search region is much bigger than traditional k-means algorithm, because particle’s movement in PSO algorithm is random. The local and global search capacity is regulated, in order to achieve the global optimum solution. And then, semi-supervised theory is proposed to apply find the initial clustering centers, because the initial particles are randomly which make false initial clustering centers.

3. Semi-supervised Spectral Clustering Algorithm in Contourlet Domain
We use the feature vectors to instead of pixels which are proposed to increase the accurateness. When the similarity matrix structure, advanced features is used to alternative low-level features make more accurate. So all of the pixels \(X = \{ x_1, x_2, \ldots, x_n \} \in \mathbb{R}^m \) in a SAR image are instead by the feature vectors as \(X = \{ X_1, X_2, \ldots, X_n \} \in \mathbb{R}^n \) clustered into \(K \), one feature vectors correspond to one particle. And the ith particle is expressed as location \(X^i = (x_{1i}, x_{2i}, \ldots, x_{ni}) \) and \(v^i = (v_{1i}, v_{2i}, \ldots, v_{ni}) \) velocity, we assume that \(i = 1, 2, \ldots, n \).

\[
\begin{align*}
v_{id}^{k+1} &= \omega v_{id}^k + c_1 r_1 (I_{best} - X_{id}^k) + c_2 r_2 (g_{best} - X_{id}^k) \\
X_{id}^{k+1} &= X_{id}^k + v_{id}^{k+1}
\end{align*}
\]

Hence, \(X_{id}^k \) is the current location. \(v_{id}^k \) is the velocity of the ith particle. \(X_{id}^{k+1} \) is the next location. \(v_{id}^{k+1} \) is the velocity of the ith particle. \(I_{best} \) is the current optimal location of the ith particle.
In the d dimensional search space, we assume g_{best}^d is the current optimal location of the swarm. ω is the inertia weight. The influence of the former velocity to the latter velocity is controlled by ω. r_1 and r_2 are assumed to be the random numbers which are distributed uniformly in the range of (0,1),

$$\omega = \omega_{\text{max}} - \frac{\omega_{\text{max}} - \omega_{\text{min}}}{\text{Maxiter}} \times \text{iter}$$ \hspace{1cm} (3)

So, ω_{min} and ω_{max} is the maximum value and the minimum value respectively. iter is the current iteration number. Maxiter is the maximum iteration number.

Semi-supervised strategy is applied to get the initial clustering centers, by using a small amount of labeled data as supervised information. Then, the small amount of labeled data is treated as a seed which set S. It is assumed that each class contains at least one labeled sample in this paper. Then the set is divided to get accurate clustering centers by make sure that each class already gets one clustering center. The flow chart is shown in figure 1. The steps are shown as follows:

1) All of the pixels $X = \{x_1, x_2, ..., x_n\} \in \mathbb{R}^n$ are instead by the feature vectors as $X = \{X_1, X_2, ..., X_n\} \in \mathbb{R}^n$ clustered into K.

2) The similarity of all pixels is calculated, which $A \in \mathbb{R}^{n \times n}$:

$$A_{ij} = \begin{cases} f(X_i, X_j), & i \neq j \\ 0, & i = j \end{cases}$$ \hspace{1cm} (4)

And, $f(X_i, X_j)$ is the similarity function,

$$f(X_i, X_j) = \exp(-\|X_i - X_j\|^2 / 2\sigma^2)$$ \hspace{1cm} (5)

$\|\|$ is the Euclidean distance, σ is the scale parameter;

3) Construct the Laplacian matrix

$$L = D^{-1/2} A D^{-1/2}$$ \hspace{1cm} (6)

Where, D defined as

$$D_{ii} = \sum_{j=1}^{n} A_{ij}$$ \hspace{1cm} (7)

which is a diagonal matrix.

4) The k biggest eigenvalue $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_k$ are corresponding eigenvectors in matrix L.

$$F = [f_1, f_2, \ldots, f_k] \in \mathbb{R}^{n \times k}$$ \hspace{1cm} (8)

Where, k is the group number. To get \bar{F} as follow:

$$\bar{F}_{ij} = f_i / (\sum_{j=1}^{k} f_j^2)^{1/2}$$ \hspace{1cm} (9)

5) Repeat the following steps until convergence; Compute the final clustering centers by the distance between each point in \bar{F}. Figure 2 shows the flow chart of the proposed algorithm.
4. Experimental Results and Comparison Analysis

Matlab software development tool in operating system of Windows 7 is the software experimental platform. PC is Lenovo of Intel I3 CPU, and memory is 4.00GB.

Where, we use the same data sets in the proposed algorithm and the traditional k-means algorithm respectively for experiment. In this paper, the value 2 is assumed to c_1 and c_2. The value 0.5 and 0.7 are assumed to parameters r_1 and r_2 respectively for the proposed algorithm.

4.1 Real SAR image experiment

Fig. 4. (a) original image 1; (b) results of spectral clustering with k-means; (c) results of the proposed algorithm

Fig. 5. (a) original image 2; (b) results of spectral clustering with k-means; (c) results of the proposed algorithm

Fig. 6. (a) original image 3; (b) results of spectral clustering with k-means; (c) results of the proposed algorithm
Table 1 Comparison of spectral clustering with k-means and the proposed algorithm

SAR image	Figure 4 (a) 219x220	Figure 5 (a) 256x256	Figure 6 (a) 256x256
Spectral clustering algorithm with k-means			
Running time (s)	23.923	33.939	34.919
Number of error	6154	7956	5798
Total accuracy (%)	83.56	83.94	92.02
Kappa	0.7693	0.7937	0.8337
The proposed algorithm			
Running time (s)	19.326	30.131	30.094
Number of error	5325	6002	4293
Total accuracy (%)	90.15	90.84	93.46
Kappa	0.8192	0.8356	0.8871

4.2 Comparison analysis

Fig. 7. Total accuracy of the proposed algorithm under different sampling rate

Fig. 8. The run time of the proposed algorithm under different sampling rate

The figure 7 and figure 8 show that, in the case of the less known classification pixels, the higher classification accuracy of proposed algorithm. And the running time of the algorithm does not increase significantly along with the number of known classification pixels increase.

5. Conclusion

At the end, by several experiments, the results of classification by the proposed algorithm were compared with the traditional k-means algorithm. The proposed algorithm is better than the traditional k-means algorithm not only by the running time but also by classification accuracy.

References

[1] Degan Zhang, Xiang Wang, Xiaodong Song. A Novel Approach to Mapped Correlation of ID for RFID Anti-collision. IEEE Transactions on Services Computing, 2014,7(4):741-748
[2] Degan Zhang, Xiang Wang, Xiaodong Song. A Novel Approach to Mapped Correlation of ID for RFID Anti-collision. IEEE Transactions on Services Computing, 2014,7(4):741-7480
[3] Biao Huang, Peng Yang. A Modified Spectral Clustering Algorithm Based on NJW [C]. IEEE International Symposium on Knowledge Acquisition and Modeling Workshop, 2008: p.381-384.
[4] Li-Feng Liu, Yan-Yun Qu, et.al. Multi-class spectral clustering based on particle swarm optimization [C]. Asia-Pacific Conference on Computational Intelligence and Industrial Applications, 2009: p.211-190.
[5] Gaoxia Liu, Wang Xili. Adaptive semi-supervised spectral clustering based on Nystrom method
[C]. 2010 3rd International Congress on Image and Signal Processing, 2010: p.524-528.

[6] J. Metzler. Appearance-Based Re-identification of Humans in Low-Resolution Videos Using Means of Covariance Descriptors [C]. 2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance, 2012: p.191-196.

[7] Ying Duan, Tao Guan, Lei Liu. Self-Organizing Map Based Multiscale Spectral Clustering for Image Segmentation [C]. 2012 International Conference on Computer Science and Electronics Engineering, 2012: p.329-333.

[8] Schutz, D. Slock. Blind audio source separation using short + long term AR source models and spectrum matching [J]. 2011 IEEE Digital Signal Processing Workshop and IEEE Signal Processing Education Workshop, 2011: p.112-115.

[9] Wang Zhan, Qiuqi Ruan. Facial expression recognition based orthogonal supervised spectral discriminant analysis [C]. 2010 IEEE 10th International Conference on Signal Processing, 2010: p.1056-1059.

[10] Kumar, R. Kannan. Clustering with Spectral Norm and the k-Means Algorithm [C]. 2010 51st Annual IEEE Symposium on Foundations of Computer Sciences, 2010: p.299-308.