Journal of Threatened Taxa

Building evidence for conservation globally

www.threatenedtaxa.org

ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print)

COMMUNICATION

ECOLOGICAL NICHE MODELLING PREDICTS SIGNIFICANT IMPACTS OF FUTURE CLIMATE CHANGE ON TWO ENDEMIC RODENTS IN EASTERN AFRICA

Aditya Srinivasulu, Alembrhan Assefa & Chelmala Srinivasulu

26 April 2021 | Vol. 13 | No. 5 | Pages: 18164–18176

DOI: 10.11609/jott.6715.13.5.18164-18176

The opinions expressed by the authors do not reflect the views of the Journal of Threatened Taxa, Wildlife Information Liaison Development Society, Zoo Outreach Organization, or any of the partners. The journal, the publisher, the host, and the partners are not responsible for the accuracy of the political boundaries shown in the maps by the authors.
Ecological niche modelling predicts significant impacts of future climate change on two endemic rodents in eastern Africa

Aditya Srinivasulu, Alembrhan Assefa & Chelmala Srinivasulu

1Wildlife Information and Liaison Development (WILD) Society, No. 12, Thiruvannamalai Nagar, Saravanampatti - Kalapatti Road, Saravanampatti, Coimbatore, Tamil Nadu 641035, India.
2Department of Biology, College of Natural and Computational Science, Adigrat University, P.O. Box: 50, Adigrat, Ethiopia.
3Natural History Museum & Wildlife Biology and Taxonomy Lab, Department of Zoology, University College of Science, Osmania University, Hyderabad, Telangana 500007, India.

Abstract: The impact of climate change on rodents is well studied, however, many of these studies are restricted to the Americas. Small- to medium-sized rodents, especially murids, are restricted in their home range and microclimatic niche breadth, and are known to be more sensitive to changes in bioclimatic conditions over time. We analyzed the effect of future climatic scenarios in the near and distant future, using two global climate models (CanESM5 and MIROC-ES2L) for two shared socio-economic pathways (SSP2-4.5 and SSP5-8.5), on two eastern Africa endemic small-bodied mice: Stenocephalemys albipes and Mastomys awashensis. Our results indicate that while S. albipes showed increases in area of climatic suitability in the future, M. awashensis is predicted to suffer severe decline in the area of its fundamental niche.

Keywords: Awash Multimammate Mouse, Ethiopian White-footed Mouse, decline, microclimate, MaxEnt.

Citation: Srinivasulu, A., A. Assefa & C. Srinivasulu (2021). Ecological niche modelling predicts significant impacts of future climate change on two endemic rodents in eastern Africa. Journal of Threatened Taxa 13(5): 18164–18176. https://doi.org/10.11609/jott.6715.13.5.18164-18176

Copyright: © Srinivasulu et al. 2021. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

Funding: The major funding for carrying out this research was granted by the Government of Ethiopia and Adigrat University, Ethiopia.

Competing interests: The authors declare no competing interests.

Author details: ADITYA SRINIVASULU is an independent researcher associated with the Wildlife Information and Liaison Development (WILD) Society, India, and is working on the application and integration of modern techniques with systematics, biogeography, and conservation biology of South Asian tetrapods. ALEMBRHAN ASEFA was PhD student at Department of Zoology, Osmania University, India and worked on diversity and ecology of small mammals in Kafta-Sheraro National Park, Tigray region, Ethiopia. He is currently working in Department of Biology, Adigrat University, Ethiopia. CHELMALA SRINIVASULU is the head of Wildlife Biology and Taxonomy Laboratory, Department of Zoology, Osmania University, India and is working on diversity and taxonomy of vertebrates in South Asia.

Author contribution: All authors contributed equally to the study, analysis, and writing the manuscript.

Acknowledgements: We thank the head, Department of Zoology, Osmania University, India and head, Department of Biology, Adigrat University, Ethiopia for the facilities, and the Ethiopian Government for Research Fellowship to AA.
INTRODUCTION

Rodents are the most diverse and abundant groups of mammals, accounting for approximately 2,200 species (Monadjem et al. 2015), distributed across the world on every continent except Antarctica (Nowak 1999). They occur in a wide range of terrestrial habitats, and serve the purpose of ecosystem engineers (Zhang et al. 2003) and keystone species in an ecosystem. Africa supports a large diversity of rodent species, with at least 463 known species (Monadjem et al. 2015), and new species described regularly; however, the ranges and habitats of some rodent species in Africa are not clearly known, due to many reasons ranging from inaccessible localities to insufficient data or resources (Kingdon 1997; Habtamu & Bekele 2008; Takele et al. 2011). This is of especial concern as rodents are not only diverse, but are an integral part of the ecosystem’s functioning and health, contributing essential services (Fischer 2017). They are also of biogeographic, systematic, and conservation interest and priority (Happold 2013; Monadjem et al. 2015).

Rodents distributed in xerothermic habitats have been known to benefit from climate change towards a warmer, drier climate scenario, most likely due to their thermo-xerophilia being supported by the climatic conditions (Cameron & Scheel 2001). Climate change towards warmer and drier conditions has also resulted in an increase in species diversity in rodents in warm regions (Szpunar 2008). It is also possible that due to the effect of changing climate scenarios, migrations and emigrations take place, resulting in new regional populations being seeded and established in order to occupy the fundamental niche (Royer et al. 2016). As an extension of the conclusions drawn by Millien & Damuth (2004), treating fragmented populations as islands, it may be inferred that there is a possible slowing of the evolutionary rate of rodents as a result of climate change.

Hutchinson (1957) proposed the concept of the ‘ecological niche’ – an abstract representation of the biotic and abiotic factors deciding and limiting the distribution and abundance of a species. Identifying the ideal environmental niche of a species by accounting for certain limiting factors is one of the aims of ecological niche modelling (ENM) – this ideal niche is referred to as the fundamental niche (Griesemer 1994). The fundamental niche does not represent the real distribution of the species; in fact, it is usually larger than the realised distribution of the species (Soberón & Arroyo-Peña 2017). Ecological niche modelling uses presence-only or presence-absence occurrence data of a species and analyses it against a set of spatial covariates—most often, bioclimatic variables are used as the covariates in a climate change ENM study. Many diverse algorithms may be used for ENM, including generalised linear models (GLM), multivariate adaptive regression splines (MARS), and random forests (RF). MaxEnt (Phillips et al. 2006), however, is by far the most widely used algorithm due to its use of presence-only data, ease of access, customizability, and robustness (Ortega-Huerta & Peterson 2008; Elith et al. 2011; Merow et al. 2013; Radosavljevic & Anderson 2014).

The present study analyses the effect of current and future climate scenarios on the predicted fundamental niche of two Ethiopian-endemic rodents, the Awash Multimammate Mouse *Mastomys awashensis* (Lavrenchenko et al. 1998) and the Ethiopian White-footed Mouse *Stenocephalemys albipes* (Rüppell, 1842) (Image 1). It aims to predict the impact of future climate change pathways (SSP2-4.5 and SSP5-8.5) on the niches of these species using maximum entropy (MaxEnt) modelling.
MATERIALS AND METHODS

Study area
This study is based in Ethiopia and Eritrea, as both *Mastomys awashensis* and *Stenocephalemys albipes* are endemic to this region (Image 2). *M. awashensis* is distributed in the scrublands of the Awash River bank, which primarily comprises small Acacia and Commiphora trees and thorny scrubs, and is also found in agricultural fields and wild areas of the northern highlands (Lavrenchenko et al. 1998; Meheretu et al. 2014). *S. albipes* occur in moist montane forests, scrublands at high altitudes, and agricultural fields (Yalden & Largen 1992; Tilaye 2005; Kassa & Bekele 2008) (Image 2). The study region varies widely in altitude, geography, and climatic conditions, resulting in a high diversity of biological resources and high levels of endemism. The altitude of the region varies from 115m below sea level to 4,620m above sea level, and it can be classified into three climatic zones – tropical, subtropical, and cool. The mean annual temperature ranges 16–27 °C, and the annual precipitation ranges 510–1,280 mm. While the study is restricted to Ethiopia and Eritrea, the ecological niche modelling (ENM) was conducted on the entirety of continental Africa to account for ecological niche data outside the political borders of these countries; final models were then cropped to Ethiopia and Eritrea’s national boundaries.

Data collection
Occurrence data of the two study species were collected from Ethiopia and border regions in Eritrea. A total of 101 presence records were collected (34 for *M. awashensis* and 67 for *S. albipes*) from published literature (Lavrenchenko et al. 1998; Habtamu & Bekele 2008; Colangelo et al. 2010; Assefa & Srinivasulu 2019) and from GBIF (accessed August 2020) (Image 2; Appendix 1). Occurrence data of each species were spatially thinned using the package spThin (Aiello-Lammens et al. 2015) in R such that points within a 2km² area of each other were treated as duplicates and removed to account for spatial bias and autocorrelation.
in sample collection.

Nineteen bioclimatic environmental variables were acquired at a resolution of 2.5 arc-minutes from the Worldclim 2 database for the current time period (Fick & Hijmans 2017). For future scenarios, 2.5 arc-minute resolution data from the Coupled Model Intercomparison Project 6 (CMIP6) were acquired for two shared socioeconomic pathways - SSP2 representing a middle-of-the-road scenario (Fricko et al. 2017) and SSP5 representing fossil-fuelled development in the future (Kriegler et al. 2017). Two global climate models were used to account for inter-model disparities in projection (Porfrio et al. 2014) - MIROC-ES2L (Tachiiri et al. 2019a,b) and CanESM5 (Swart et al. 2019a,b). Data were acquired for the 2041–2060 (near future) and 2061–2080 (distant future) time periods.

An analysis of multicollinearity conducted using the package Virtualspecies (Leroy et al. 2015) in R version 4.0.2 (R Core Team 2020) was used to select relatively uncorrelated variables for the modelling. Variables with an absolute value of Pearson’s r >0.75 were subjected to pairwise comparisons of perceived ecological importance based on our understanding of the ecology and biology of the two species. All climate data were initially cropped to the extent of continental Africa; islands surrounding Africa including Madagascar were included, but southern Europe, the Middle East, and the Arabian Peninsula were not used.

Ecological niche modelling

A presence-only approach was used to model species distributions, using MaxEnt version 3.4.1 (Phillips et al. 2006); however, careful consideration of biases and selection of parameters is an essential step in order to maximise the robustness and reliability of niche models generated using MaxEnt (Derville et al. 2018). Hence, parameterisation was done according to the processes outlined in Merow et al. (2013) and Feng et al. (2019). To account for spatial bias, a Gaussian kernel density bias file of bandwidth 0.5 was created using the package SpatialEco (Evans 2020) in R, in order to weight the generation of background (pseudo absence) points for the analysis.

The model was parameterised for feature classes and regularisation multipliers using the package ENMEval (Muscarella et al. 2014). We tested a set of five regularisation multipliers: 0.5, 1, 2, 3, and 5, and six feature classes: Linear, Linear+Quadratic, Hinge, Hinge+Quadratic, Linear+Quadratic+Product, and Hinge+Quadratic+Product. Five-fold cross-validation was used and model performance was assessed using the area under the receiver operating characteristic curve (AUC) and the true skill statistic (TSS).

The continuous models for each scenario and each time period, as output by MaxEnt, were reclassified according to the maximum test sensitivity+specificity (MSS) threshold into binary models – the positive cells represented the fundamental niche of the species for each scenario and time period according to bioclimatic data. Finally, the binary models were cropped to Ethiopia and Eritrea’s national boundaries. Area of climatic suitability was calculated as a percentage based on the ratio of positive to zero cells in the final binary models.

RESULTS

Ecological niche modelling

For the modelling of both Mastomys awashensis and Stenocephalemys albipes, 12 bioclimatic layers were selected based on multicollinearity analysis (Appendix 2): BIO1 (Annual mean temperature), BIO2 (Mean diurnal range), BIO4 (Temperature seasonality), BIO5 (Maximum temperature of warmest month), BIO6 (Minimum temperature of coldest month), BIO8 (Mean temperature of wettest quarter), BIO9 (Mean temperature of driest quarter), BIO10 (Precipitation of driest month), BIO15 (Precipitation seasonality), BIO16 (Precipitation of wettest quarter), BIO18 (Precipitation of warmest quarter), and BIO19 (Precipitation of coldest quarter). After data cleaning and spatial thinning, 10 occurrence points were used for M. awashensis and 65 occurrence points were used for S. albipes. Models with the lowest Δ AICc values were selected as the final models for ENM analyses of each species – for M. awashensis this was Linear features with RM= 0.5 (Δ AICc= 0), and for S. albipes this was Linear+Quadratic features with RM= 0.5 (Δ AICc= 0). The models for M. awashensis and S. albipes returned AUC values of 0.974 ± 0.009 and 0.977 ± 0.011, respectively, and TSS values of 0.735 and 0.801, indicating robust performance for both species. Mean diurnal range and temperature seasonality had high contribution to the models of both species (Table 1).

Stenocephalemys albipes ENM

The ecological niche model for S. albipes (MSS threshold 0.525) showed that 20.704% of the study area is climatically suitable in the current time period (Image 3; Table 2). In both future time periods, scenarios, and GCMs, there was significant increase, with an average increase of 18.437% to 39.141 ± 3.695 % in 2041–2060,
and a further increase of 1.373% to 40.514 ± 5.035 % in 2061–2080. There was little difference in the percentage area of future climatic suitability between SSP2-4.5 and SSP5-8.5 (Image 3; Table 2), indicating that different future climate scenarios have little impact on the overall effect of climate change on this species.

The variables with the highest percentage contribution and permutation importance for this species were temperature seasonality (BIO4; 28% contribution, 38.8% p. imp.) and mean diurnal range (BIO2; 15.4% contribution, 12.8% p. imp.) (Table 1). Additionally, annual mean temperature (BIO1) had the highest percentage contribution to the model (41.2%), but showed 0 permutation importance, and similarly, mean temperature of the wettest quarter (BIO8) showed the highest permutation importance (44.2%), but had a very low percentage contribution to the model (0.9%).

In the current scenario, highest environmental suitability (>75%) according to climate was seen at a mean diurnal range (BIO2) of 14.901 ± 1.556 O°C, and a mean temperature seasonality (BIO4) of 114.903 ± 28.698 O°C. In SSP2-4.5, representing a middle-of-the-road scenario, BIO2 underwent a slight decrease to a mean value of 14.137 ± 1.139 O°C in the 2041–2060 time period, and further to 14.065 ± 1.185 O°C in 2061–2080; BIO4, however, increased to a mean value of 116.249 ± 33.281 O°C in 2041–2060, and further to 123.561 ± 39.416 O°C in 2061–2080 (Table 3).

Mastomys awashensis ENM

The ecological niche model for *M. awashensis* (MSS threshold 0.777) showed that 46.077% of the study area is climatically suitable in the current time period (Image 4; Table 2). In both future time periods, scenarios, and

Table 1. Variable contributions of each bioclimatic layer used in the analysis, for both species.

Variable	Name	Stenocephalemys albipes	Mastomys awashensis	Stenocephalemys albipes	Mastomys awashensis
BIO1	Annual mean temperature	41.2	0	0	0
BIO2	Mean diurnal range	15.4	27.7	12.8	18.2
BIO4	Temperature seasonality	28	47.6	38.8	74.2
BIO5	Max temperature of warmest month	0.1	0	0	0
BIO6	Min temperature of coldest month	0.1	3.8	0.6	1.1
BIO8	Mean temperature of wettest quarter	0.9	12.1	44.2	3
BIO9	Mean temperature of driest quarter	2	0.2	0.4	0.5
BIO14	Precipitation of driest month	0.5	1.9	0.4	2
BIO15	Precipitation seasonality	0.6	1	1.4	0.9
BIO16	Precipitation of wettest quarter	0.5	0.6	0.6	0.6
BIO18	Precipitation of warmest quarter	0.8	2.6	0.8	0.3
BIO19	Precipitation of coldest quarter	9.9	2.4	0	0.1

Table 2. Changes in climatically suitable areas of both species (in percentage values).

Scenario	Time Period	CanESM5	MIROC-ES2L	Scenario	Time Period	CanESM5	MIROC-ES2L
SSP2-4.5	2041–2060	0%	0%	SSP2-4.5	2041–2060	39.982	34.527
SSP2-4.5	2061–2080	0%	0%	SSP2-4.5	2061–2080	40.113	35.353
SSP5-8.5	2041–2060	0%	0%	SSP5-8.5	2041–2060	43.462	38.594
SSP5-8.5	2061–2080	0%	0%	SSP5-8.5	2061–2080	47.407	39.186
Ecological niche modelling of two African rodents

Srinivasulu et al.

Journal of Threatened Taxa | www.threatenedtaxa.org | 26 April 2021 | 13(5): 18164–18176

18169

GCMs however, there was complete and total decline, resulting in 0% of the study area being climatically suitable by 2041–2060 and into the future (Image 4). This indicates that *M. awashensis* is extremely sensitive to climate change scenarios, and due to the effect of climate change alone, will lose all of its fundamental niche in the near future.

For this species, temperature seasonality (BIO4; 47.6% contribution, 74.2% p. imp.) and mean diurnal range (BIO2; 27.7% contribution, 18.2% p. imp.) were the highest contributors (Table 1). All the other variables had significantly lower percentage contribution and permutation importance.

In the current scenario, highest environmental suitability (>75%) according to climate was seen at a mean diurnal range (BIO2) of 15.986 ± 1.075 °C, and a mean temperature seasonality (BIO4) of 136.481 ± 33.077 °C (Table 3).

Stenocephalemys albipes	Scenario	Time Period	BIO2	BIO4
Current	14.901 ± 1.556	114.903 ± 28.698		
SSP2-4.5	2041–2060	14.137 ± 1.139	109.902 ± 30.14	
SSP5-8.5	2041–2060	109.902 ± 30.14	14.065 ± 1.185	
SSP2-4.5	2041–2060	14.065 ± 1.185	111.027 ± 32.032	
SSP5-8.5	2041–2060	111.027 ± 32.032	14 ± 1.171	
SSP2-4.5	2061–2080	14 ± 1.171	116.249 ± 33.281	
SSP5-8.5	2061–2080	116.249 ± 33.281	13.572 ± 1.258	
SSP2-4.5	2061–2080	13.572 ± 1.258	123.561 ± 39.416	
SSP5-8.5	2061–2080	123.561 ± 39.416	14.935 ± 1.318	

Mastomys awashensis	Scenario	Time Period	BIO2	BIO4
Current	15.986 ± 1.075	136.481 ± 33.077		
DISCUSSION

Ecological niche models have often been used to model and project rodent distributions and niches, but a large proportion of these studies are restricted to species found in the Americas (Martínez-Salazar et al. 2012; Bean et al. 2014; Kubiak et al. 2017; Flores-Zamarripa & Fernández 2018; Urbina-Cardona et al. 2019; Pardi et al. 2020). African rodents have also been studied using ENM techniques; Taylor et al. (2015) showed that trends in the distribution of Afromontane rodents reflect changes in biomes predicted by past, present, and future climate scenarios. McDonough et al. (2015) showed in a hindcasting-based study on the Bushveld Gerbil (Gerbilliscus leucogaster) in Zambesi, that it is significantly impacted by changing climatic scenarios, but this was not explored in terms of future climate change. A general ecological niche model fitted by Martinov et al. (2020) created an estimation of the current predicted distribution of Mastomys species, including *M. awashensis*, however this analysis did not estimate the fundamental niche through binary modelling, and there was no projection to future climate scenarios.

Our results are in agreement with the findings of Martinov et al. (2020), where the current distributions show high likelihood (>0.8) in areas included under our predicted current fundamental niche. Our results also emphasise the importance of ecological niche modelling and future projection of ENM analyses, due to the severity of the impact of climate change on *M. awashensis* (Ortega-Huerta & Peterson 2008).

The two species in our study—*Mastomys awashensis* and *Stenocephalemys albipes*—show significant changes as a result of changing climate scenarios. The result of our study for *S. albipes* shows a percentage area of current climatic suitability of 20.704%, with an increase of 18.437% in the near future (2041–2060), and a further increase of 1.373% in the distant future (2061–2080) in both climatic scenarios. Despite the different perspectives SSP2-4.5 and SSP5-8.5 take in terms of socioeconomic scenarios, emissions, and concentrations of greenhouse gases, there was negligible difference between the two in the future predictions of the fundamental niche of this species, suggesting that while climate change positively impacts this species, there is little impact of specific climate pathways. This result is in line with conclusions drawn by McDonough et al. (2015), where it was shown that rodent niches expanded from the last glacial maximum (approximately 200,000 years BP) through the last interglacial period (approx. 130,000 to 118,000 years BP), to the present day, most likely due to increasing temperatures across the year. The decrease in predicted future mean diurnal range most suitable for this species when compared to the current time period shows that in both shared socioeconomic pathway scenarios, this species will favour slightly colder climates. This effect is very small, however, as the largest change in mean diurnal range is from current to the 2061–2080 time period, with a 1.329 ± 0.298 °C decrease.

In the case of *M. awashensis*, the current niche is relatively large, with 46.077% appearing to be climatically suitable for this species; however, it appears to be incredibly sensitive to climate change events, as in all future scenarios and time periods, none of the study area (and also the rest of Africa) appeared to be climatically suitable. This is a massive and drastic change, which reflects the high sensitivity of this species to climate change. Seasonal variation in temperature and mean diurnal range of temperature are the most important predicting factors for this species, which leads to the inference that this species is likely to be most affected by temperatures getting generally warmer and less seasonally varied, which happens in both scenarios.

According to the MaxEnt model, both species had relatively wide areas of climatic suitability (Images 3, 4). For both species, the northern regions of Ethiopia and parts of southern Eritrea were climatically suitable—this included highland, some lowland regions of the Great Rift Valley, and some scattered sites in southeastern Ethiopia. *S. albipes* had climatically suitable regions in the highlands of northern, western, and central Ethiopia, including Tigray, Amhara, northern Oromia, Southern Nations, Nationalities, & Peoples’ (SNNP), Addis Ababa, and eastern Benishangul-Gumuz regions. There are also some scattered suitable sites near Harari in Ethiopia, and Debub and Gash-Barka regions in Eritrea. In all future scenarios and time periods, this species’ fundamental niche was seen to expand and move westward in Ethiopia and Eritrea, occupying the Tigray, Amhara, Benishangul-Gumuz, Oromia, Addis Ababa, Gambela, and SNNP regions in Ethiopia & Gash-Barka and Debub regions in Eritrea. Some scattered areas of suitability were also seen in the Eritrean & Ethiopian highlands and in the highlands south of Dire Dawa. *M. awashensis* showed climatic suitability in Tigray, Amhara, eastern Benishangul-Gumuz, Oromia, SNNP, Addis Ababa, Harari, and some parts of northern Somali regions. In Eritrea, it showed high climatic suitability in Gash-Barka and Debub. For both species, the Eritrean and Ethiopian highlands formed a distinct geographical
barrier, and no areas of climatic suitability were present east of the hill range. Earlier studies of both species have shown them to be restricted to highland habitats (Corti et al. 2005; Mohammed et al. 2010; Meheretu et al. 2014), however, some later studies reported them to occur from lowlands as well (Habtamu & Bekele 2008; Lavrenchenko et al. 2010). Our study corroborates these with our current predicted niche expanding to lowland regions as well as highlands.

The results of the present study show the efficacy of ecological niche modelling in offering important insights into the potential geographic distributions of African rodents. Although M. awashensis is present and has areas of climatic suitability in protected areas, it is likely that there are no species-specific conservation measures in place. The eventual increase in anthropogenic impact on the natural areas will only decrease the chances of the species’ survival in the future, as the impact of climate change alone is very large. It is important to plan ground-truthing of the sites shown as part of the fundamental niche of both this study’s species in order to ascertain their true distribution, range, and realised niche, as this will help create better conservation strategies. It is imperative that species-specific conservation measures are set in place based on the results of said ground-truthing, including in situ conservation management, captive breeding, and planned reintroductions.

REFERENCES

Assefa, A. & C. Srinivasulu (2019). Comparison of rodent community between natural and modified habitats in Kafeto-Sheraro National Park and its adjoining villages, Ethiopia: implication for conservation. Journal of Basic and Applied Zoology 80, Article number: 59. https://doi.org/10.1111/j.baz.12422

Aiello-Lammens, M.E., R.A. Boria, A. Radosavljevic, B. Vilela & R.P. Anderson (2015). Sphen: An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38(5): 541–545. https://doi.org/10.1111/ecog.01132

Bean, W.T., L.R. Prugh, R. Stafford, H.S. Butterfield, M. Westphal & J.S. Brashares (2014). Species distribution models of an endangered rodent offer conflicting measures of habitat quality at multiple scales. Journal of Applied Ecology 51(4): 1116–1125. https://doi.org/10.1111/j.1365-2664.12281

Cameron, G.N. & D. Scheel (2001). Getting Warmer: Effect of Global Climate Change on Distribution of Rodents in Texas. Journal of Mammalogy 82(3): 652–680. https://doi.org/10.1644/1545-1542(2001)82[0652:GWEDEC2.0.CO;2]

Corti, M., R. Castiglia, P. Colangelo, E. Capanna, F. Beolchini, A. Bekele, N. Oguge, R. Makundi, S. Sichilima, H. Leirs, V. Verheyen, V. & R. Verhagen (2005). Cytotaxonomy of rodent species from Ethiopia, Kenya, Tanzania and Zambia. Belgian Journal of Zoology 135: 197–216.

Elith, J., C.H. Graham, R.P. Anderson, M. Dudik, S. Ferrier, A. Guisan, R.J. Hijmans, F. Huettmann, J.R. Leathwick, A. Lehmann, J. Li, L.G. Lohmann, B.A. Loiselle, G. Manion, C. Moritz, M. Nakamura, Y. Nakazawa, J.M.M. Overton, A.T. Peterson, S.J. Phillips, K. Richardson, R. Scachetti-Pereira, R.E. Schapire, J. Soberón, S. Williams, M.S. Wist & N.E. Zimmermann (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29(2): 129–151. https://doi.org/10.1111/1365-2664.12281

Evans, J.S. (2020). spatialEco [R package] (Version 1.3-1)

Feng, X., D.S. Park, C. Walker, A.T. Peterson, C. Merow & M. Papeš (2019). A checklist for maximizing reproducibility of ecological niche models. Nature Ecology & Evolution 3(10): 1382–1395. https://doi.org/10.1038/s41559-019-0972-5

Fick, S.E. & R.J. Hijmans (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37(12): 4302–4315. https://doi.org/10.1002/joc.5086

Fischer, C., C. Gayer, K. Kurucz, F. Riesch, T. Tschamtko & P. Batáry (2018). Ecosystem services and disservices provided by small rodents in arable fields: Effects of local and landscape management. Journal of Applied Ecology 55(2): 548–558. https://doi.org/10.1111/1365-2664.13016

Flores-Zamarripa, F.J. & J.A. Fernández (2018). Predictive species distribution model of two endemic kangaroo rats from Mexico: Dipodomys ornatus and D. phillipsii (Rodentia: Heteromyidae). Therya 9(3): 237–246. https://doi.org/10.12933/therya-18-605

Fricko, O., P. Havlík, J. Rogelj, Z. Klimont, M. Gusti, N. Johnson, P. Kolp, M. Strubegger, H. Valin, M. Aman, T. Ermolieva, N. Forsell, M. Herrera, C. Heyes, G. Kindermann, V. Krey, D.L. McCollum, M. Obersteiner, S. Pachauri, S. Rao, E. Schmid, W. Schöpp & K. Riahi (2017). The marker quantification of the Shared Socioeconomic Pathway 2: A middle-of-the-road scenario for the 21st century. Global Environmental Change 42: 251–267. https://doi.org/10.1016/j.gloenvcha.2016.06.004

Habtamu, T. & A. Bekele (2008). Habitat association of insectivores and rodents of Alatish National Park, northwestern Ethiopia. Tropical Ecology 49(1): 1–11.

Happold, D.C.D. & J. Kingdon (eds.) (2013). Mammals of Africa. Vol. 3: Rodents, Hares and Rabbits. London, 784pp.

Hutchinson, G.E. (1957). Concluding Remarks. Cold Spring Harbor Symposia on Quantitative Biology 22(0): 415–427. https://doi.org/10.1101/sQB.1957.022.01.039

Kassa, D. & A. Bekele (2008). Species composition, abundance, distribution and habitat association of rodents of Wondo Genet, Ethiopia. SINET. Ethiopian Journal of Science 31(2): 141–146. https://doi.org/10.4314/sinet.v31i2.66637

Kassa, M., A. Bekele & G. Hemson (2010). Species composition, abundance and habitat association of rodents and insectivores from Chikalal-Galama Mountain range, Arsi, Ethiopia: Small mammals of Chikalal-Galama Mountains. African Journal of Ecology 48(4): 1105–1114. https://doi.org/10.1111/j.1365-2028.2010.01222.x

Keller, E.F. & E.A. Lloyd (eds.) (1999). Keywords in Evolutionary Biology. Harvard University Press, Cambridge, Mass., 414pp.

Kingdon, J. (1997). The Kingdon Field Guide to African Mammals. Academic Press, San Diego, London, Boston, 459pp.

Kriegler, E., N. Bauer, A. Popp, F. Humpenöder, M. Leimbach, J. Strefler, L. Baumstark, B.L. Bodirsky, J. Hilaire, D. Klein, I. Mouratiadou, I. Weindl, C. Bertram, J.-P. Dietrich, G. Luderer, M. Pehl, R. Pietzcker, F. Piontek, H. Lotze-Campen, A. Biewald, M. Bonsch, A. Giannousakis, U. Kreidenweis, C. Müller, S. Rolinski, A. Schultes, J. Schwantitz, M. Stevanovic, K. Calvin, J. Emmerling, S. Fujimori, S. & O. Edenhofer (2017). Fossil fuel development (SSP5): An energy and resource intensive scenario for the 21st century. Global Environmental Change 42: 297–315. https://doi.org/10.1016/j.gloenvcha.2016.05.015

Kubiak, B.B., E.E. Gütiérrez, D. Galiano, R. Maestri & T.R.O. de Freitas (2017). Can niche modeling and geometric morphometrics document competitive exclusion in a pair of subterranean rodents (Genus Ctenomys) with tiny parapatric distributions? Scientific Reports 7(1): 1–13. https://doi.org/10.1038/s41598-017-16243-2

Lavrenchenko, L.A., O.P. Likhovik, M.I. Baskevich & A. Bekele (1998). Systematics and distribution of Mastomys (Muridae, Rodentia)
from Ethiopia, with the description of a new species. Zeitschrift F"ur S"augertierkunde 63: 37–51.
Leroy, B., C.N. Meynard, C. Bellard & F. Courchamp (2016). Virtual species, an R package to generate virtual species distributions. *Ecography* 39(6): 599–607. https://doi.org/10.1111/ecog.01388
Martinez-Salazar, E.A., T. Escalante, M. Lina"uje & J. Falc"on-Ordez (2013). The potential distribution of *Vexillata*. (Nematoda: Ornithostrongylidae) and its hosts (Mammalia: Rodentia) within America. *Journal of Helminthology* 87(4): 400–408. https://doi.org/10.1007/s00224-1912000612
Martynov, A.A., J. Bryja, Y. Meheretu & L.A. Lavrenchenko (2020). Multimammate mice of the genus *Mastomys* (Rodentia: Muridae) in Ethiopia – diversity and distribution assessed by genetic approaches and environmental niche modelling. *Journal of Vertebrate Biology* 69(2): 1–16. https://doi.org/10.2527/jvb.2020.6
McDonough, M.M., R. Šumbera, V. Mazoch, A.M. Ferguson, C.D. Phillips & J. Bryja (2015). Multilocus phylogeography of a widespread savanna-woodland-adapted rodent reveals the influence of Pleistocene geomorphology and climate change in Africa’s Zambezí region. *Molecular Ecology* 24(20): 5248–5266. https://doi.org/10.1111/mec.13374
Meheretu, Y., V. Slaydys, K. Welegerima, H. Bauer, M. Teferi, G. Yirga, L. Mulungu, M. Haile, J. Nyssen, J. Deckers, R. Makundi & H. Leirs (2014). Rodent abundance, stone bund density and its effects on crop damage in the Tigray highlands, Ethiopia. *Crop Protection* 55: 61–67. https://doi.org/10.1016/j.cropro.2013.10.016
Merow, C., M.I. Smith & J.A. Silander (2013). A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. *Ecology* 36(10): 1058–1069. https://doi.org/10.1111/j.1600-0587.2013.07872.x
Millen, V. & J. Damuth (2004). Climate change and size evolution in an island rodent species: new perspectives on the island rule. *Evolution* 58(6): 1353–1361. https://doi.org/10.1554/03-727
Monadjem, A. (2015). Rodents of Sub-Saharan Africa: A Biogeographic and Taxonomic Synthesizer. Walter de Gruyter GmbH & Co. KG, Berlin, Bostom, 1,092pp.
Muscarella, R., P.J. Galante, M. Soley-Guardia, R.A. Boria, J.M. Kass, M. Uriarte & R.P. Anderson (2014). ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for MaxEnt ecological niche models. *Methods in Ecology and Evolution* 5(11): 1198–1205. https://doi.org/10.1111/2041-1210.12261
Nowak, R.M. (1999). *Walker’s Mammals of the World, 5th edition*. The Johns Hopkins University Press, Baltimore, 2pp.
Ortega-Huerta, M.A. & A.T. Peterson (2008). Nowak, R.M. (1999). Introduction to MaxEnt modeling of species geographic distributions. *Ecological Modelling* 190(3–4): 231–239. https://doi.org/10.1016/j.ecolmodel.2005.03.026
Porfirio, L. L., R.M.B. Harris, E.C. Lefroy, S. Hugh, S.F. Gould, G. Lee, N.L. Bindoff & B. Mackey (2014). Improving the use of Species Distribution Models in Conservation Planning and Management under Climate Change. *PLoS ONE* 9(11): e113749. https://doi.org/10.1371/journal.pone.0113749
R Core Team (2020). R: A language and environment for statistical computing. (Version 4.0.1). R Foundation for Statistical Computing, Vienna, Austria.
Appendix 1. Localities used in ENM analysis of *Stenocephalemys albipes* and *Mastomys awashensis*.

Name	Latitude	Longitude	Locality	Reference
Stenocephalemys albipes	5.800	39.200	Kebre Mengist, Ethiopia	GBIF
	6.217	37.667	Dega Done, Gemu-Gofa, SNNP, Ethiopia	Demeke et al. 2007
Stenocephalemys albipes	6.233	37.567	Mt Dorse, Chenckia, Gemu-Gofa, SNNP, Ethiopia	GBIF
Stenocephalemys albipes	6.383	38.583	Kebre Mengist, Sidamo, Ethiopia	GBIF
Stenocephalemys albipes	6.833	40.550	Jebo Samo, Bale, Ethiopia	GBIF
Stenocephalemys albipes	6.917	39.167	Gedeb Mts., Ethiopia	GBIF
Stenocephalemys albipes	6.983	40.020	7 km SE of Goga, Bale, Ethiopia	GBIF
Stenocephalemys albipes	7.050	39.167	Webi river, north of Dodola, Arsi, Ethiopia	GBIF
Stenocephalemys albipes	7.100	39.767	Webi river, W of Dinshu, Bale, Ethiopia	Zerihun et al. 2012
Stenocephalemys albipes	7.117	39.733	5 km W of Dinshu, Bale, Ethiopia	GBIF
Stenocephalemys albipes	7.133	39.717	Mount Gaysay, Bale, Ethiopia	GBIF
Stenocephalemys albipes	7.134	36.954	Gorka Bera, Chebera-Churchura NP, Ethiopia	Demeke & Afework 2014
Stenocephalemys albipes	7.433	35.000	Godare forest, Tepi, Ethiopia	Lavrenchenko 2017
Stenocephalemys albipes	7.580	38.000	Seka, 3 Km N Of, Horo, Ethiopia	GBIF
Stenocephalemys albipes	7.600	38.450	Alage, Ethiopia	Agerie & Afework 2015
Stenocephalemys albipes	7.620	36.770	Buyo Kechema, Ethiopia	GBIF
Stenocephalemys albipes	7.650	36.800	Jiren Farm, Jimma, Ethiopia	Fadesse & Afework 2012
Stenocephalemys albipes	7.667	39.333	Albasso forest, Ethiopia	GBIF
Stenocephalemys albipes	7.750	36.730	Atro, Agaro, Ethiopia	GBIF
Stenocephalemys albipes	7.820	36.680	Agaro, 14 km by road SE of Mejo, Ethiopia	GBIF
Stenocephalemys albipes	7.833	39.333	Wodajo, Ethiopia	GBIF
Stenocephalemys albipes	7.917	39.283	Jawi Chilalo, Galama mtn, Arsi, Ethiopia	Mohammed et al. 2010
Stenocephalemys albipes	7.917	39.450	Mt Albasso, Camp Wodajo, Ethiopia	GBIF
Stenocephalemys albipes	8.155	35.525	Illubabor, W of Gore, Ethiopia	GBIF
Stenocephalemys albipes	8.183	35.367	Lemen, Ethiopia	GBIF
Stenocephalemys albipes	8.250	36.167	Yemenigist Den Yebaja Chaka, Ethiopia	GBIF
Stenocephalemys albipes	8.280	36.900	Atenago, Ethiopia	GBIF
Stenocephalemys albipes	8.367	35.817	Wabo, 5 km of W of Scechhi river, Ethiopia	GBIF
Stenocephalemys albipes	8.500	34.775	Addo, 7km SW of Dembidolo, Ethiopia	GBIF
Stenocephalemys albipes	8.517	39.200	Wonji Sugarcane, Qoboluto Tumsa, Ethiopia	Serekebirhan et al. 2011
Stenocephalemys albipes	8.917	38.583	Dima Goranda, Ethiopia	GBIF
Stenocephalemys albipes	9.017	35.250	Sido Were Wele, Ethiopia	GBIF
Stenocephalemys albipes	9.050	38.520	Berfeta Lemefa, near Holetta, Ethiopia	GBIF
Stenocephalemys albipes	9.067	38.650	Mersagesha forest, Shoa, Ethiopia	Afework 1996
Stenocephalemys albipes	9.117	37.050	Bako, Shoa, Ethiopia	GBIF
Stenocephalemys albipes	9.517	38.217	Subagajo, Ethiopia	GBIF
Stenocephalemys albipes	10.333	37.833	Debra Markos, Gojam, Amhara, Ethiopia	Ejigu & Afework 2013
Stenocephalemys albipes	10.494	39.611	Yetere forest, Ethiopia	Gezahegn et al. 2016
Stenocephalemys albipes	10.667	37.917	Nazret M Alem, Ethiopia	GBIF
Stenocephalemys albipes	10.739	36.800	Ardity forest, Awi zone, Ethiopia	Gstachow & Afework 2015
Stenocephalemys albipes	10.846	38.675	Borena-Sayint NP, Ethiopia	Meseret & Solomon 2014
Stenocephalemys albipes	11.117	37.317	Amedamit Mount, Amhara, Ethiopia	GBIF
Stenocephalemys albipes	11.167	36.250	Pawe area, B. Gumuz, Ethiopia	Tilahun et al. 2012
Name	Latitude	Longitude	Locality	Reference
-----------------------------	----------	-----------	------------------------------------	------------------------------------
Stenocephalemys albipes	11.267	36.833	Dangila, Amhara, Ethiopia	GBIF
Stenocephalemys albipes	11.417	37.967	Shime, Ethiopia	GBIF
Stenocephalemys albipes	11.583	37.417	Bihar-Dar, Amhara, Ethiopia	GBIF
Stenocephalemys albipes	11.717	37.917	Mahdere Marayam, Gondar, Amhara, Ethiopia	GBIF
Stenocephalemys albipes	12.350	35.783	Alatish NP, Ethiopia	Tadesse & Aferwork 2008
Stenocephalemys albipes	12.617	37.483	Gondar, Amhara, Ethiopia	GBIF
Stenocephalemys albipes	12.633	37.500	NE of Angereb Dam, Gondar, Amhara, Ethiopia	GBIF
Stenocephalemys albipes	12.750	37.700	Yerer mountain forest, Shoa, Ethiopia	Yonas & Fikresilasie 2015
Stenocephalemys albipes	13.133	37.917	Debark, NE Gondar, Amhara, Ethiopia	GBIF
Stenocephalemys albipes	13.133	37.917	Semien Mts, Amhara, Ethiopia	GBIF
Stenocephalemys albipes	13.192	37.933	Debir, Ethiopia	GBIF
Stenocephalemys albipes	13.232	38.038	Semien NP, Ethiopia	GBIF
Stenocephalemys albipes	13.650	39.172	Hagereselam, Ethiopia	Meheretu et al. 2012
Stenocephalemys albipes	14.166	37.309	Habesha Adi Goshu, Ethiopia	GBIF
Stenocephalemys albipes	14.183	37.305	Kunama Adi Goshu, Ethiopia	GBIF
Stenocephalemys albipes	14.210	36.766	Adebayetown, Ethiopia	GBIF
Stenocephalemys albipes	14.251	37.270	Kunama Adi Goshu, Ethiopia	GBIF
Stenocephalemys albipes	14.284	36.688	Kafta-Sheraro NP, Tigray, Ethiopia	Alembrhan & Srinivasulu 2019
Stenocephalemys albipes	14.291	36.677	Helet Coka, Ethiopia	GBIF
Stenocephalemys albipes	14.950	38.270	Mt. Kullu, Shambiko, Eritrea	GBIF
Stenocephalemys albipes	15.332	39.064	Nefasit, Eritrea	GBIF
Stenocephalemys albipes	11.083	36.850	Aquatimo forest, Gojjam, Ethiopia	GBIF
Mastomys awashensis	9.000	40.167	Awash, Ethiopia	GBIF
Mastomys awashensis	7.833	38.717	S of Zway Lake, Ethiopia	GBIF
Mastomys awashensis	8.383	39.150	E of Koka Lake, Bati Qelo, Ethiopia	GBIF
Mastomys awashensis	9.065	42.275	Nigaya Bobasa, Babile Sanctuary, Ethiopia	GBIF
Mastomys awashensis	13.668	39.175	Hagereselam, Ethiopia	GBIF
Mastomys awashensis	12.600	39.517	N of Lake Hashenge, Ethiopia	MBG & Dessalegn 2015
Mastomys awashensis	14.210	36.766	Near Adebaye Town, Kafta Sheraro National Park, Ethiopia	Alembrhan & Srinivasulu 2019
Mastomys awashensis	14.251	37.270	Kunama Adi Goshu, Kafta Sheraro National Park, Ethiopia	Alembrhan & Srinivasulu 2019
Mastomys awashensis	14.284	36.688	Helet Coka, Ethiopia	GBIF
Mastomys awashensis	14.287	36.679	Adebaye Geter, E of Himora, Ethiopia	GBIF
Mastomys awashensis	14.184	37.305	NW of Birkuta, Ethiopia	GBIF
Mastomys awashensis	14.168	37.310	Habesha Adi Goshu, Ethiopia	GBIF
Mastomys awashensis	7.2545	36.798	Gojob River, Ethiopia	GBIF
Mastomys awashensis	14.213	37.322	Shebe, Ethiopia	GBIF
Mastomys awashensis	7.6011	36.500	Gibe National Park, Ethiopia	GBIF
Mastomys awashensis	8.2334	37.5823	Gibe National Park, Ethiopia	GBIF
Mastomys awashensis	8.4657	39.1606	Lake Koka, Bati Qelo, Ethiopia	GBIF
Mastomys awashensis	8.6943	36.149	Didessa River, Ethiopia	GBIF
Mastomys awashensis	8.8453	40.0119	Awash National Park, Ethiopia	GBIF
Mastomys awashensis	9.0586	42.2796	Babile Elephant Sanctuary, Ethiopia	GBIF
Mastomys awashensis	9.1478	42.2624	Babile Elephant Sanctuary, Ethiopia	GBIF
Mastomys awashensis	9.2249	34.8662	Dhati-Welel National Park, Ethiopia	GBIF
Name	Latitude	Longitude	Locality	Reference
-----------------------	----------	-----------	-----------------------------------	-------------------------
Mastomys awashensis	9.2393	34.8653	Dhati-Welel National Park, Ethiopia	Martynov et al. 2020
Mastomys awashensis	9.2449	34.8644	Dhati-Welel National Park, Ethiopia	Martynov et al. 2020
Mastomys awashensis	9.5548	39.7818	Ankober, Ethiopia	Martynov et al. 2020
Mastomys awashensis	9.5554	39.7657	Ankober, Ethiopia	Martynov et al. 2020
Mastomys awashensis	11.0526	39.6481	Kombolcha, Ethiopia	Martynov et al. 2020
Mastomys awashensis	11.7525	37.9068	Gumara River, Ethiopia	Martynov et al. 2020
Mastomys awashensis	11.7797	37.7313	Gumara River, Ethiopia	Martynov et al. 2020
Mastomys awashensis	12.5492	39.6431	Adi Mancarre, Ethiopia	Martynov et al. 2020
Mastomys awashensis	12.6393	39.5383	Adi Aba Musa, Ethiopia	Martynov et al. 2020
Mastomys awashensis	12.6551	39.5816	Kube, Ethiopia	Martynov et al. 2020
Mastomys awashensis	13.1858	37.9671	Simien Mts National Park, Ethiopia	Martynov et al. 2020
Mastomys awashensis	14.0945	37.4575	Mai-Temen, Ethiopia	Martynov et al. 2020
Appendix 2. Correlation matrix resulting from the spatial multicollinearity test of the 19 bioclimatic variables used in the analysis.

Layer	BIO1	BIO2	BIO3	BIO4	BIO5	BIO6	BIO7	BIO8	BIO9	BIO10	BIO11	BIO12	BIO13	BIO14	BIO15	BIO16	BIO17	BIO18	BIO19			
BIO1	1.000																					
BIO2	-0.031	1.000																				
BIO3	0.141	-0.489	1.000																			
BIO4	-0.116	0.567	-0.951	1.000																		
BIO5	0.633	0.554	-0.604	0.666	1.000																	
BIO6	0.681	-0.599	0.745	-0.766	-0.123	1.000																
BIO7	-0.120	0.769	-0.906	0.958	0.688	-0.805	1.000															
BIO8	0.744	0.128	0.134	-0.128	0.471	0.486	-0.074	1.000														
BIO9	0.516	-0.258	-0.074	0.116	0.405	0.330	-0.053	1.000														
BIO10	0.754	0.312	-0.501	0.556	0.957	0.077	0.516	0.496	0.561	1.000												
BIO11	0.775	-0.399	0.701	-0.713	0.022	0.969	-0.695	0.578	0.326	0.186	1.000											
BIO12	-0.051	-0.627	0.767	-0.776	-0.660	0.555	-0.800	-0.076	-0.051	-0.534	0.464	1.000										
BIO13	0.042	-0.513	0.718	-0.769	-0.565	0.574	0.758	-0.002	-0.055	0.452	0.527	0.920	1.000									
BIO14	-0.079	-0.478	0.463	-0.377	-0.400	0.303	-0.461	-0.063	-0.002	-0.303	0.185	0.571	0.334	1.000								
BIO15	0.425	0.282	0.092	-0.180	0.246	0.274	-0.053	0.490	-0.064	0.210	0.393	-0.154	-0.111	-0.402	1.000							
BIO16	0.004	-0.501	0.716	-0.762	-0.585	0.543	-0.747	-0.029	-0.075	0.479	0.496	0.937	0.991	0.352	0.070	1.000						
BIO17	-0.077	-0.530	0.507	-0.421	-0.436	0.342	0.510	-0.072	0.017	0.329	0.215	0.626	0.378	0.984	-0.428	0.394	1.000					
BIO18	-0.170	-0.513	0.610	-0.637	-0.633	0.376	0.653	-0.035	-0.244	0.571	0.272	0.805	0.713	0.536	-0.150	0.728	0.577	1.000				
BIO19	0.070	-0.461	0.456	-0.417	-0.338	0.404	0.486	-0.074	0.185	-0.383	0.335	0.631	0.547	0.418	-0.208	0.562	0.454	0.279	1.000			
