The Association between PON1 (Q192R and L55M) Gene Polymorphisms and Risk of Cancer: A Meta-Analysis Based on 43 Studies

Xiaolan Pan,1 Lei Huang,1 Meiqin Li,1 Dan Mo,2 Yihua Liang,1 Zhiming Liu,1 Zhaodong Huang,1 Lingsha Huang,1 Jinfeng Liu,1 and Bo Zhu1

1Department of Clinical Laboratory, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021 Guangxi, China
2Department of Surgery, Maternal and Child Health Hospital of the Guangxi Zhuang Autonomous Region, Nanning, China

Correspondence should be addressed to Lingsha Huang; huanglinshagx@126.com, Jinfeng Liu; rainbowgxnn@yeah.net, and Bo Zhu; zhubogxnn@126.com

Received 25 February 2019; Revised 16 June 2019; Accepted 1 July 2019; Published 28 July 2019

Academic Editor: Giandomenico Roviello

Copyright © 2019 Xiaolan Pan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Q192R and L55M polymorphism were considered to be associated with the development of multiple cancers. Nevertheless, the results of these researches were inconclusive and controversial. Therefore, we conducted a meta-analysis of all eligible case-control studies to assess the association between PON1 (Q192R and L55M) gene polymorphisms and risk of cancer. With the STATA 14.0 software, we evaluated the strength of the association by using the odds ratios (ORs) and 95% confidence intervals (CIs). A total of 43 case-control publications 19887 cases and 23842 controls were employed in our study. In all genetic models, a significant association between PON1-L55M polymorphisms and overall cancer risk was observed. Moreover, in the stratified analyses by cancer type, polymorphism of PON1-L55M played a risk factor in the occurrence of breast cancer, hematologic cancer, and prostate cancer. Similarly, an increased risk was observed in the Caucasian and Asian population as well as hospital-based group and population-based group. For PON1-Q192R polymorphisms, in the stratified analyses by cancer type, PON1-Q192R allele was associated with reduced cancer risks in breast cancer. Furthermore, for racial stratification, there was a reduced risk of cancer in recession model in Caucasian population. Similarly, in the stratification analysis of control source, the overall risk of cancer was reduced in the heterozygote comparison and dominant model in the population-based group. In conclusion, PON1-Q192R allele decreased the cancer risk especially breast cancer; there was an association between PON1-L55M allele and increased overall cancer risk. However, we need a larger sample size, well-designed in future and at protein levels to confirm these findings.

1. Introduction

Cancer is one of the diseases caused by a combination of genetic and environmental factors [1]. The PON1 gene, located on the long arm of chromosome 7q21.3, is an antioxidant enzyme that has strong lipophilic antioxidant properties, which can maintain the balance of antioxidant-oxidant [2, 3]. Simultaneously, PON1 is also an esterase involved in scavenging reactive oxygen species by binding to high-density lipoprotein (HDL). Studies have shown that oxidative stress may participate in the process of cell proliferation and malignant transformation and damage DNA as well as other biological molecules, resulting in the occurrence of tumors [4]. The ability of PON1 detoxification of carcinogenic oxidative stress products makes it possible for researchers to predict PON1 gene polymorphism in cancer susceptibility [5].

At present, with the deep development of genetic studies of PON1, studies have found that PON1-Q192R and PON1-L55M, the two most common functional genetic polymorphisms in PON1, were identified at positions 192 and 55 [6]. PON1-Q192R polymorphism (rs662A > G) was caused by the glutamine (Q genotype) substituted for the arginine (R genotype) 192 of the gene 6 exon of the PON 1 gene [7]. PON1-L55M (rs854560) was originated from the replacement of 55 leucines (L genotype) by methionine (M genotype) at
third exon 55[8]. In addition, it has been shown that the two functional SNP Q192R and L55M, were associated with the risk of multiple tumors [9, 10], such as oral cancer [11], lung cancer [12], and embryonal tumors [13].

According to the important role of PON1 in the development of tumor and the correlation between genotype and phenotype, we speculate that the variation of PON1 gene Q192 R and L55M may be related to tumor susceptibility. However, the data of many studies are contradictory and uncertain at present. Therefore, a comprehensive meta-analysis should be conducted to determine the relationship between Q192R and L55M polymorphism and cancer risk.

2. Materials and Methods

2.1. Search Strategy. We conducted a systematic literature search in the PubMed, Embase, and Web of Science for all related studies before June 10, 2019 via utilizing the following terms: “polymorphism OR paraoxonase 1 OR PONI” AND “tumor OR malignancy OR cancer OR carcinoma OR neoplasm”. In addition, we extracted the reference of the original articles on this issue to carry out a hand search for extra studies. The results deduced from these articles were limited to humans. When the publication referred to more than one cancer type or ethnicity, we deleted with data respectively. Besides, if different authors published articles based on the same population or one author used similar data in an article, we picked out the report with the latest study and largest sample size.

2.1.1. Inclusion Criteria and Exclusion Criteria. The enrolled studies must contain the following inclusion criteria: (1) publication that evaluated the association between PON1-L55M, or PON1-Q192R polymorphism and the risk of cancer. (2) The genotype frequency may be obtainable from cases and controls, or we could gain it via computing. In addition, studies were excluded when they would meet these exclusion criteria: (1) reviews, case reports, or case-only studies; (2) studies with deficient genotype frequency data; (3) animals reports; and (4) replicate studies.

2.2. Data Extraction. The authors were able to excerpt relevant data from these qualified studies independently, and the following information would be seized: first author's last name, publishing year, the ethnicity of each population, the genotyping methods, the control of source, cancer types, number of cases and controls, and P value of Hardy–Weinberg equilibrium. When encountering divergences, we analyzed the report and reached a consistent agreement lastly.

2.3. Statistical Analysis. 95% confidence interval (CI) and odds ratio (OR) were utilized to estimate the relation between PON1-Q192R, or PON1-L55M polymorphism and the risk of cancer with five genetic models: heterozygote comparison (ML versus LL; RR versus QQ), allele contrast (M versus L; R versus Q), homozygote (MM versus LL; RR versus QQ), recessive (MM versus ML+LL; RR versus RQ+QQ), and dominant (ML+MM versus LL; RR+RQ versus QQ). Besides, stratified analyses were conducted via ethnicity, cancer type, control source, and genotyping method. However, when any cancer type is less than two studies, we would segment it into the “other cancers” group. In addition, \(\chi^2 \)-test-based Q-statistic test [14] was taken to assess the research heterogeneity while \(I^2 \) values and \(P \) values [15] were used for quantifying. When \(I^2 < 50\% \) and \(P>0.10 \), it indicates that there was no significant heterogeneity, and ORs could be pooled by a fixed-effects model. Otherwise, the random effects model would be adopted [16]. Furthermore, sensitivity analysis, from the qualified removing a single research study and revealing the individual data set to merge OR influence, was applied to estimate the stability of these data. (\(P<0.05 \) was regarded as statistically significant [17].) Finally, potential publication bias was estimated by symmetry of funnel plot of Begg’s test as well as Egger’s test [15, 18], and being statistically significant was considered when \(P<0.05 \). All statistical tests were performed with STATA Software (version 14.0, state Corp), and \(P<0.05 \) for any genetic models or tests was identified as statistically significant.

3. Result

3.1. Publication Characteristics. According to the inclusion criteria after detailed examination, a total of 43 case-control publications including 19977 cases and 23932 controls were employed in our study [11–13, 19–59]. The flow chart of the study screening process was summarized in Figure 1. Moreover, there were 43 studies with 14142 cases and 13936 controls for PON1-Q192R polymorphism (Table 1), and, for PON1 L55M polymorphism, 28 studies involved a total of 8565 cases and 9996 controls (Table 2). For PON1 Q192R polymorphism, a total of 8 cancer types were processed, including breast cancer [21, 27, 31, 32, 37, 39, 50], prostate cancer [22, 23, 40, 41], gastrointestinal cancer [19, 20, 48, 59, 60], hematologic tumor [25, 29, 33, 44], lung cancer [11, 12, 54], brain tumors [30, 35, 38, 45, 56, 57], ovarian cancer [34, 43] and other cancers [13, 26, 28, 42, 53, 58] (uterine leiomyoma, childhood embryonal tumors, metastatic gastric cancer, bladder cancer,
Table 1: Characteristics of qualified case-control studies included in the meta-analysis of PON1-Q192R.

Author	Year	Ethnicity	Genotyping Method	Control of source	Cancer Type	Case	Control	pHWE	
Stevens et al.	2006	Caucasian	PCR-RFLP	P-B	Breast Cancer	259	42	0.38	0.54 Y
Gallicchio et al.	2007	Caucasian	PCR-RFLP	P-B	Breast Cancer	38	15	1.93	0.19 Y
Antognelli et al.	2009	Caucasian	PCR-RFLP	P-B	Breast Cancer	484	13	2.71	0.00 N
Hussein et al.	2011	Caucasian	PCR-RFLP	P-B	Breast Cancer	51	8	0.25	0.62 Y
Naidu et al.	2010	Asian	PCR-RFLP	H-B	Breast Cancer	200	29	0.81	0.37 Y
Tang et al.	2017	Asian	TaqMan	P-B	Prostate Cancer	24	8	0.06	0.80 Y
Ulici et al.	2017	Asian	PCR-RFLP	H-B	Breast Cancer	155	54	3.42	0.06 Y
Kaya et al.	2016	Caucasian	TaqMan	H-B	Breast Cancer	10	11	0.88	0.35 Y
Tomatir et al.	2015	Caucasian	PCR-RFLP	P-B	Hematologic Cancer	36	20	0.07	0.79 Y
Tomatir et al.	2015	Caucasian	PCR-RFLP	H-B	Hematologic Cancer	33	21	0.07	0.08 Y
Attar et al.	2015	Caucasian	PCR-RFLP	H-B	Uterine Leiomyoma	60	8	1.39	0.24 Y
Eom et al.	2015	Asian	PCR-RFLP	H-B	Lung Cancer	37	109	0.01	0.92 Y
Ahmed et al.	2015	Asian	PCR-RFLP	P-B	Colorectal Cancer	30	4	0.76	0.38 Y
Akkiz et al.	2013	Caucasian	PCR-RFLP	P-B	Hepatocellular Carcinoma	109	13	0.27	0.60 Y
Vasconcelos et al.	2014	Mixed	TaqMan	H-B	Embryonal Tumors	83	33	0.51	0.48 Y
Conesa-Zamora et al.	2013	Caucasian	TaqMan	H-B	Lymphomas	161	52	0.59	0.44 Y
Zha et al.	2012	Asian	TaqMan	H-B	Glioma	158	52	0.59	0.44 Y
De Aguiar Goncalves et al.	2012	Caucasian	TaqMan	H-B	Hematologic Tumor	102	40	1.79	0.180 Y
Kokouva et al.	2012	Caucasian	PCR-RFLP	H-B	Hematologic Tumor	213	88	0.04	0.83 Y
Aksoy-Sagirli et al.	2011	Caucasian	PCR-RFLP	H-B	Lung Cancer	93	11	0.13	0.72 Y
Uyar et al.	2011	Caucasian	PCR-RFLP	H-B	Renal Cell Cancer	38	21	0.04	0.84 Y
Lurie et al.	2008	Mixed	TaqMAN	P-B	Ovarian Cancer	120	86	1.07	0.30 Y
Ergen et al.	2010	Caucasian	PCR-RFLP	H-B	Osteosarcoma	27	21	0.06	0.80 Y
Martinez et al.	2010	Caucasian	TaqMan	H-B	Brain Tumor	31	33	0.37	0.54 Y
Ozurtk et al.	2009	Caucasian	PCR-RFLP	H-B	Bladder Cancer	53	15	0.10	<0.001 N
Gold et al.	2009	Mixed	PCR-RFLP	P-B	Multiple Myeloma	19	13	0.91	0.91 Y
Arpac et al.	2009	Caucasian	PCR-RFLP	P-B	Ovarian Cancer	38	6	1.46	0.23 Y
Rajaraman et al.	2008	Mixed	TaqMan	H-B	Brain Tumor	266	207	4.10	0.04 N
Searies Nielsen et al.	2005	Mixed	TaqMan	P-B	Brain Tumor	32	8	6.04	0.23 Y
Van der Logt et al.	2005	Caucasian	PCR-RFLP	P-B	Colorectal Cancer	180	24	0.87	0.35 Y
Lincz et al.	2004	Caucasian	PCR-RFLP	P-B	Multiple Myeloma	41	16	2.35	0.13 Y
Kerridge et al.	2002	Caucasian	PCR-RFLP	P-B	Lymphoma	73	30	2.35	0.13 Y
Antognelli et al.	2005	Caucasian	PCR-RFLP	H-B	Prostate Cancer	197	120	67.85 <0.001 N	
Herrera et al.	2015	Mixed	TaqMan	H-B	Brain Tumor	15	20	0.64	0.42 Y
Kafadar et al.	2006	Caucasian	PCR-RFLP	P-B	Brain Tumor	43	15	1.96	0.16 Y
J De Roos et al.	2006	Mixed	TaqMan	P-B	Hematologic Cancer	540	137	1.53	0.22 Y
Stevens et al.	2005	Mixed	TaqMan	P-B	Prostate Cancer	624	95	4.74	0.03 Y
Antognelli et al.	2013	Caucasian	PCR-RFLP	H-B	Prostate Cancer	291	30	2.44	<0.001 N
Wang et al.	2012	Asian	PCR-RFLP	P-B	Lung Cancer	36	17	0.93	0.33 Y
Lee et al.	2005	Asian	TaqMan	P-B	Lung Cancer	24	73	4.99	0.025 N
Agachan et al.	2006	Caucasian	PCR-RFLP	P-B	Breast Cancer	17	4	1.46	0.230 Y
Hemati et al.	2019	Asian	PCR-RFLP	H-B	Gastric Cancer	39	10	0.03	0.87 Y

Abbreviations: PCR-RFLP, polymerase chain reaction-restriction fragment length polymorphism; HWE, Hardy–Weinberg equilibrium; Y, polymorphisms conforming to HWE in the control group; N, polymorphisms not conforming to HWE in the control group; H-B, hospital based; P-B, population based.
Table 2: Characteristics of qualified case-control studies included in the meta-analysis of PON1-L55M.

Author	Year	Ethnicity	Genotyping Method	Control of source	Cancer Type	Case Control	Cancer Type	Case Control	HWE	p	p(HWE)			
Stevens et al.	2006	Caucasian	PCR-RFLP	P-B	Breast Cancer	176	230	77	202	233	58	0.88	0.77	Y
Antognelli et al.	2009	Caucasian	PCR-RFLP	P-B	Breast Cancer	107	115	325	188	125	231	157.2	0.0001	N
Hussein et al.	2011	Caucasian	PCR-RFLP	P-B	Breast Cancer	19	21	60	35	23	6	0.58	0.44	Y
Naidu et al.	2010	Asian	PCR-RFLP	P-B	Breast Cancer	159	178	50	126	109	17	1.04	0.308	Y
Tang et al.	2017	Asian	TaqMan	P-B	Esophagogastric Cancer	971	69	1	1573	99	2	0.12	0.73	Y
Uluocak et al.	2017	Caucasian	PCR-RFLP	H-B	Prostate Cancer	19	24	6	43	45	10	0.13	0.72	Y
Wu et al.	2017	Asian	TaqMan	H-B	Breast Cancer	284	72	9	346	30	2	3.24	0.064	Y
Akkiz et al.	2013	Caucasian	PCR-RFLP	P-B	Hepatocellular Carcinoma	105	81	31	101	89	27	1.12	0.29	Y
Geng et al.	2014	Asian	TaqMan	H-B	Metastatic Gastric Cancer	11	7	0	82	7	0	0.15	0.7	Y
Vasconcelos et al.	2012	Mixed	TaqMan	H-B	Embryonal Tumors	85	56	15	177	134	25	0.032	0.95	Y
Metin et al.	2013	Caucasian	PCR-RFLP	H-B	Ovarian Cancer	33	22	0	33	19	2	0.13	0.72	Y
Vecka et al.	2012	Caucasian	PCR-RFLP	H-B	Pancreatic Cancer	24	39	10	28	37	8	0.67	0.41	Y
De Aguiar Goncalves et al.	2012	Mixed	TaqMan	H-B	Acute Leukemia	104	99	34	131	75	19	2.91	0.09	Y
Kokouva et al.	2012	Caucasian	PCR-RFLP	H-B	Hematologic Cancer	117	139	60	142	159	50	0.26	0.61	Y
Aksoy-Sagirli et al.	2011	Caucasian	PCR-RFLP	H-B	Lung Cancer	119	94	10	118	102	14	1.75	0.39	Y
Uyar et al.	2011	Caucasian	PCR-RFLP	P-B	Renal Cell Cancer	29	25	6	21	29	10	4.96	0.998	Y
Lurie et al.	2008	Mixed	TaqMan	P-B	Ovarian Cancer	14	65	192	24	145	276	0.74	0.39	Y
Ergen et al.	2010	Caucasian	PCR-RFLP	H-B	Osteosarcoma	24	23	3	21	20	9	1.14	0.29	Y
Martinez et al.	2010	Caucasian	TaqMan	H-B	Brain Tumor	11	32	30	38	94	88	2.15	0.14	Y
Arpac et al.	2009	Caucasian	PCR-RFLP	H-B	Ovarian Cancer	27	19	5	25	27	2	2.65	0.103	Y
Van der Logt et al.	2005	Caucasian	PCR-RFLP	P-B	Colorectal Cancer	139	166	59	140	162	50	0.08	0.78	Y
Antognelli et al.	2005	Caucasian	PCR-RFLP	H-B	Prostate Cancer	120	197	67	148	169	43	0.65	0.35	Y
Herrera et al.	2015	Mixed	TaqMan	H-B	Brain Tumor	46	17	4	42	14	2	0.37	0.56	Y
J. De Roos et al.	2006	Mixed	TaqMan	P-B	Hematologic Cancer	299	307	100	282	260	69	0.59	0.44	Y
Stevens et al.	2008	Mixed	TaqMan	P-B	Prostate Cancer	481	609	165	498	575	189	1.18	0.28	Y
Wang et al.	2012	Asian	PCR-RFLP	P-B	Lung Cancer	307	47	2	166	18	0	0.49	0.49	Y
Antognelli et al.	2013	Caucasian	PCR-RFLP	H-B	Prostate Cancer	180	291	100	497	540	131	0.75	0.39	Y
Hemati et al.	2019	Asian	PCR-RFLP	H-B	Gastric Cancer	41	40	9	34	49	7	0.027	0.87	Y

Abbreviations: PCR-RFLP, polymerase chain reaction-restriction fragment length polymorphism; HWE, Hardy–Weinberg equilibrium; Y, polymorphisms conforming to HWE in the control group; N, polymorphisms not conforming to HWE in the control group; H-B, hospital based; P-B, population based.
and renal cell cancer). Besides, we disposed a total of 7 cancer types when dealing with PON1-L55M polymorphism nearly like PON1 Q192R polymorphism. In addition, For PON1 Q192R polymorphism, 9 publications were conducted in Asians, 9 in mixed group, and 25 publications in Caucasians. Besides, there were 15 studies divided by TaqMan assay, while 28 studies conducted by PCR-RFLP. Moreover, the majority of control groups in the case group are gender and age matching, including 23 hospital based and 20 population based. For PON1 L55M polymorphism, we also conducted 6, 6, and 16 studies in Asian, mixed group, Caucasians, respectively. Moreover, 10 studies were divided by TaqMan assay as well as 18 studies conducted by PCR-RFLP.

3.2. Meta-Analysis

3.2.1. Association between PON1-Q192R and Cancer Susceptibility. In summary, in allele contrast model, we have found that there were not association between PON1-Q192R allele and reduced overall cancer risk (Table 3). In the subgroup analysis of cancer type, we identified a decreased risk in breast cancer (R versus Q: OR=0.643, 95%CI=0.440-0.942; RR versus QQ: OR=0.542, 95%CI=0.331-0.886; RQ versus QQ: OR=0.529, 95%CI=0.325-0.861; and RR+RQ versus QQ: OR=0.534, 95%CI=0.330-0.865). Nevertheless, an increased risk was confirmed in prostate cancer in the dominant model (RR+RQ versus QQ: OR=0.744, 95%CI=0.557-0.993) among Caucasian population. Similarly, in the stratification analysis of control source, the overall risk of cancer is reduced in the heterozygote comparison and dominant model (RR versus QQ: OR=0.793, 95%CI=0.638-0.984; RR+RQ versus QQ: OR=0.789, 95%CI=0.630-0.988) in the population-based group. In addition, we did not observe any risk factor by stratified analysis using genotyping method. Figure 2 showed the meta-analysis of the association between PON1-Q192R polymorphism and cancer risk (R versus Q)

3.2.2. Association between PON1-L55M and Cancer Susceptibility. Our study had uncovered that the PON1-L55M polymorphism was significantly associated with an increased risk of the overall cancers under all the genetic models (Table 4) (M versus L: OR=1.277, 95% CI=1.127-1.448; MM versus LL: OR=1.507, 95% CI=1.205-1.885; ML versus LL: OR=1.192, 95%CI =1.064-1.337; MM versus ML+LL: OR=1.288, 95%CI=0.557-0.993) in the population-based group. In addition, we did not observe any risk factor by stratified analysis using genotyping method. Figure 3 showed the meta-analysis of the association between PON1-Q192R and cancer risk (R versus Q)

3.2.3. Publication Bias and Sensitivity Analysis. A sensitivity analysis was carried out to detect the impact of individual papers on whole data by getting rid of one report at a time from the pooled analysis. And no individual report has been significantly affected by the pooled OR. Figure 4 showed the plot of the sensitivity analysis for evaluating the association between PON1-Q192R and cancer risk (RR versus QQ). Besides, we perform Egger’s test and Begg’s funnel plot to evaluate publication bias (Figure 5). And the results of Egger’s test and Begg’s funnel plot did not uncover publication bias in PON1 (Q192R and L55M) gene polymorphisms (PON1 Q192R: R versus Q: Begg’s test: z=2.034; ML versus LL: OR=1.222, 95%CI=1.122-1.331). In addition, we identified an increased risk by stratified analysis using genotyping method.

4. Discussion

Several studies have indicated that PON1, which is one of xenobiotic metabolising enzymes, plays a crucial role in the detoxification of carcinogenic compounds and decreases oxidative stress. Genetic polymorphisms can influence the enzyme and modify its activity, resulting in an impact on individual sensitivity to certain pathologies [61]. Indeed, a great deal of researches have showed that polymorphisms
Study ID	OR (95% CI)	Weight
Breast cancer		
Stevens et al (2006)	0.88 (0.72, 1.07)	2.79
Gallicchio et al (2007)	0.69 (0.44, 1.08)	2.08
Antognelli et al (2009)	0.24 (0.18, 0.32)	2.60
Hussain et al (2011)	0.81 (0.53, 1.24)	2.16
Naidu et al (2010)	0.84 (0.66, 1.07)	2.67
Wu et al (2017)	1.04 (0.84, 1.29)	2.75
Loyo et al (2016)	0.52 (0.26, 1.05)	1.45
Agachan et al (2006)	0.48 (0.26, 0.90)	1.62
Subtotal (I-squared = 91.4%, p = 0.000)	0.64 (0.44, 0.94)	18.13
Gastrointestinal cancer		
Tang et al (2017)	1.05 (0.94, 1.18)	2.95
Lyrer et al (2015)	0.29 (0.16, 0.50)	1.80
Akkör et al (2013)	1.06 (0.79, 1.43)	2.53
Van Der Logt et al (2005)	1.10 (0.86, 1.41)	2.67
Hemati et al (2019)	2.56 (1.56, 4.22)	1.95
Subtotal (I-squared = 89.2%, p = 0.000)	1.01 (0.70, 1.45)	11.90
Prostate cancer		
Ulusak et al (2017)	1.05 (0.63, 1.75)	1.91
Antognelli et al (2005)	0.88 (0.71, 1.11)	2.72
Stevens et al (2006)	1.01 (0.89, 1.14)	2.93
Antognelli et al (2013)	0.94 (0.80, 1.10)	2.87
Subtotal (I-squared = 0.0%, p = 0.748)	0.97 (0.89, 1.05)	10.44
Hematologic tumor		
Tomatir et al (2015)	1.52 (0.85, 2.73)	1.72
Tomatir et al (2015)	1.90 (1.07, 3.33)	1.76
Conesa-Zamora et al (2013)	1.53 (1.15, 2.03)	2.57
De Aguiar Goncalves et al (2012)	0.73 (0.57, 0.95)	2.64
Kokouva et al (2012)	0.58 (0.45, 0.75)	2.64
Guld et al (2009)	0.80 (0.45, 1.52)	1.75
Lince et al (2004)	1.62 (1.02, 2.43)	2.33
Kerridge et al (2002)	1.55 (1.14, 2.11)	2.50
De Reus et al (2006)	0.89 (0.78, 1.02)	2.99
Subtotal (I-squared = 85.5%, p = 0.000)	1.11 (0.85, 1.45)	20.82
Other cancers		
Attar et al (2015)	0.47 (0.27, 0.79)	1.87
Vasconcelos et al (2014)	1.29 (0.99, 1.68)	2.62
Lüer et al (2011)	0.49 (0.27, 0.89)	1.70
Ergen et al (2010)	0.57 (0.31, 1.04)	1.66
Ozturk et al (2009)	1.70 (1.14, 2.53)	2.23
Subtotal (I-squared = 85.1%, p = 0.000)	0.81 (0.48, 1.36)	10.08
Lung Cancer		
Eom et al (2015)	1.25 (1.02, 1.54)	2.77
Aksoy-Sagrit et al (2011)	1.26 (0.95, 1.67)	2.58
Wang et al (2012)	1.43 (1.11, 1.85)	2.64
Lee et al (2005)	0.81 (0.59, 1.10)	2.49
Subtotal (I-squared = 63.8%, p = 0.040)	1.18 (0.95, 1.46)	10.48
Brain tumor		
Zhao et al (2012)	0.98 (0.79, 1.21)	2.76
Martinez et al (2010)	0.23 (0.16, 0.35)	2.25
Rajaraman et al. (2008)	1.00 (0.82, 1.21)	2.78
Sevles Nielsen et al (2005)	0.79 (0.52, 1.20)	2.19
Herrera et al (2015)	1.08 (0.66, 1.78)	1.95
Kafadar et al (2006)	0.97 (0.58, 1.64)	1.88
Subtotal (I-squared = 89.2%, p = 0.000)	0.76 (0.51, 1.14)	13.81
Ovarian Cancer		
Lurie et al. (2008)	1.22 (0.98, 1.51)	2.75
Arpaci et al. (2009)	0.34 (0.18, 0.64)	1.58
Subtotal (I-squared = 92.7%, p = 0.000)	0.67 (0.19, 2.34)	4.33
Overall (I-squared = 86.8%, p = 0.000)	0.90 (0.80, 1.01)	100.00

NOTE: Weights are from random effects analysis.

Figure 2: Meta-analysis of the association between PON1-Q192R polymorphism and cancer risk (R versus Q). Abbreviations: ID, identification; CI, confidence interval; NA, not available; OR, odds ratio; weights come from random effects analysis.
Table 3: Results of meta-analysis for PON1-Q192R polymorphism and cancer risk.

Variables	Case/control	R vs. Q	RR vs. QQ	RQ vs. QQ	RR+RQ vs. QQ	RR vs. RQ+QQ	RR vs. QQ+QQ									
	OR(95% CI)	p	OR(95% CI)	p	OR(95% CI)	p	OR(95% CI)									
Total	0.897(0.798-1.008)	0 86.8	0.855(0.683-1.075)	0 81.1	0.861(0.724-1.023)	0 86.7	0.857(0.730-1.008)	0 86.7								
Breast cancer	2005/2748	0.643(0.440-0.942)	0 91.4	0.542(0.331-0.886)	0 74	0.529(0.325-0.861)	0 89.1	0.534(0.330-0.865)	0 90.6							
Gastrointestinal cancer	1752/2356	1.008(0.700-1.450)	0 88.1	0.969(0.463-2.025)	0.000	80.2	1.079(0.748-1.529)	0.002	75.7	1.038(0.682-1.580)	0.000	83.0	0.968(0.547-1.711)	0.013	68.5	
Prostate cancer	2261/2891	0.967(0.886-1.055)	0 74.8	0.563(0.313-1.015)	0.001	83	1.544(0.969-2.458)	0.009	90.9	1.249(1.030-1.514)	0.083	55	0.498(0.235-1.053)	0 90.3		
Hematologic tumor	2303/2355	1.13(0.852-1.453)	0 85.5	1.38(0.787-2.34)	0 82	0.94(0.740-1.202)	0 80.7	1.04(0.774-1.397)	0 78.2							
Lung cancer	1172/1011	1.17(0.949-1.464)	0.04	63.8	1.24(0.665-2.326)	0.005	76.6	1.24(0.704-2.094)	0.004	77.5	1.26(0.741-2.149)	0.003	78.6			
Brain tumor	1173/1395	0.759(0.505-1.140)	0 89.2	0.576(0.266-1.248)	0 85.9	0.778(0.339-1.124)	0.016	69	0.696(0.431-1.123)	0 84.4	0.698(0.388-1.256)	0 79.4				
Ovarian cancer	322/496	0.665(0.189-2.337)	0 92.7	0.94(0.314-2.813)	0.087	65.8	0.528(0.030-3.572)	0 94.6	0.44(0.060-3.283)	0 94.5	1.359(0.985-1.875)	0 65.8				
Other cancers	424/684	0.809(0.481-1.362)	0 85.1	1.26(0.353-3.77)	0.022	65	0.67(0.250-1.790)	0 89.4	0.74(0.299-1.030)	0 89.1	1.352(0.797-2.94)	0 20.9				
Ethnicities																
Caucasian	442/6292	0.85(0.658-1.101)	0 90.1	0.78(0.516-1.193)	0 84.5	0.73(0.528-1.010)	0 91.1	0.74(0.557-0.993)	0 90.3	0.89(0.608-1.31)	0 83.5					
Asian	3253/3629	0.84(0.840-1.244)	0 89.9	1.01(0.689-1.506)	0 78.5	1.02(0.779-1.337)	0 76.3	1.02(0.758-1.377)	0 83.0	1.05(0.850-1.303)	0 025	54.4				
Mixed	3735/4015	0.98(0.877-1.098)	0.035	51.6	0.91(0.727-1.145)	0.062	46.2	1.02(0.873-1.174)	0.019	38.8	0.99(0.831-1.153)	0.057	47	0.92(0.770-1.119)	0.035	38.1
Control source																
Population based	6871/8354	0.89(0.717-1.104)	0 88.8	0.80(0.641-1.065)	0 79.1	0.79(0.638-0.988)	0 85	0.79(0.630-0.988)	0 87.9	0.92(0.749-1.130)	0 70.3					
Hospital based	4309/5667	0.89(0.798-1.018)	0 85.1	0.94(0.655-1.754)	0 83.2	0.92(0.704-1.22)	0 87.3	0.92(0.726-1.175)	0 85.5	0.96(0.696-1.342)	0 83.3					
Genotype method																
PCR-RFLP	5445/6900	0.88(0.735-1.064)	0 88.4	0.88(0.735-1.064)	0 88.4	0.81(0.650-1.094)	0 90.4	0.83(0.646-1.091)	0 89.4	0.93(0.692-1.27)	0 80.5					
TaqMan	5967/7036	0.92(0.801-1.060)	0 83	0.83(0.662-1.071)	0 81.4	0.95(0.824-1.099)	0.008	61.1	0.90(0.762-1.078)	0 76.7	0.91(0.736-1.139)	0 73.5				

Notes: ∗statistically significant (P<0.05); P value: P value of Q test for heterogeneity test; I²: 0%–25% means no heterogeneity, 25%–50% means modest heterogeneity, and 50% means high heterogeneity. Abbreviations: CI, confidence interval; OR, odds ratio; PCR-RFLP, polymerase chain reaction-restriction fragment length polymorphism.
Table 4: Results of meta-analysis for PON1-L55M polymorphism and cancer risk.

Variables	Case/control	M vs. L (OR(95% CI))	p²	I² (%)	MM vs. LL (OR(95% CI))	p²	I² (%)	ML vs. LL (OR(95% CI))	p²	I² (%)	ML+MM vs. LL (OR(95% CI))	p²	I² (%)	MM vs. ML+LL (OR(95% CI))	p²	I² (%)
Total	Total	1.277 (1.126-1.448)*	0	81.6	1.192 (1.064-1.333)*	0	90.6	1.288 (1.120-1.480)*	0	70.9	1.417 (1.176-1.708)*	0	64.2			
Breast cancer	2.186 (1.438-3.323)*	0	92.5	3.215 (1.756-5.886)*	0	81.8	1.579 (1.145-2.177)*	0	69.9	2.110 (1.397-3.188)*	0	81.9				
Gastrointestinal cancer	1.111 (0.898-1.375)	0.071	50.7	1.165 (0.848-1.601)	0.988	0	1.097 (0.794-1.515)	0.023	61.5	1.120 (0.829-1.512)	0.032	59.0	1.185 (0.881-1.594)	0.996	0	
Prostate cancer	2.129 (1.071-2.557)*	0	95.1	1.507 (1.205-1.885)*	0	85.3	1.192 (1.064-1.333)*	0	90.6	1.288 (1.120-1.480)*	0	70.9				
Hematologic tumor	1.214 (1.031-1.428)	0.012	69.9	1.057 (0.851-1.314)	0.848	0	1.133 (0.922-1.401)	0.190	62.5	1.192 (1.064-1.333)*	0	90.6				
Lung cancer	1.074 (0.711-1.622)	0.194	41.5	1.070 (0.711-1.622)	0.215	31	0.907 (0.682-1.206)	0.801	0	0.910 (0.696-1.190)	0.025	47.5				
Other cancers	0.932 (0.763-1.155)	0.333	12.6	0.884 (0.905-1.548)	0.215	31	0.907 (0.682-1.206)	0.801	0	0.910 (0.696-1.190)	0.025	47.5				
Ethnicities																
Caucasian	1.231 (1.028-1.474)*	0	85.8	1.737 (1.509-1.986)*	0	72	1.170 (1.034-1.324)*	0.199	22.4	1.334 (1.125-1.545)*	0	70.7	1.407 (1.092-1.813)*	0	678	
Asian	1.604 (1.049-2.363)*	0	80.7	2.093 (1.295-3.381)	0.441	0	1.550 (0.995-2.417)	0.000	79.7	1.624 (1.041-2.353)*	0	80.8	1.967 (1.238-3.125)*	0	65.6	
Mixed	1.177 (1.004-1.379)	0.019	63.1	1.137 (0.953-1.364)	0.088	47.8	1.112 (0.953-1.297)	0.268	22.1	1.126 (1.006-1.261)*	0.165	36.3	1.262 (1.057-1.505)	0.034	58.4	
Control source																
Population based	1.325 (1.085-1.618)	0	88.7	1.568 (1.091-2.233)	0	81.9	1.275 (1.051-1.548)	0.401	4.5	1.275 (1.051-1.548)	0	75.7	1.503 (1.100-2.034)*	0	80.5	
Hospital based	1.240 (1.056-1.456)*	0	68.9	1.531 (1.199-1.955)	0.132	29.8	1.255 (1.020-1.543)	0.000	62.3	1.288 (1.120-1.480)*	0	66.7	1.411 (1.173-1.698)	0.324	11.6	
Genotype method	1.243 (1.053-1.466)*	0	82.2	1.571 (1.183-2.047)	0	70.1	1.164 (1.033-1.311)	0.145	26.5	1.246 (1.045-1.487)	0	69.3	1.483 (1.167-1.884)*	0	62.7	
TaqMan	1.330 (1.091-1.622)*	0	79.5	1.309 (0.988-1.735)	0.091	41.4	1.307 (1.026-1.665)	0.014	71.5	1.370 (1.073-1.748)	0	74.7	1.264 (0.986-1.620)	0.05	48.5	

Notes: * statistically significant (P<0.05); P value a: P value of Q test for heterogeneity test; I²: 0%–25% means no heterogeneity, 25%–50% means modest heterogeneity, and 50% means high heterogeneity.
Abbreviations: CI, confidence interval; OR, odds ratio; PCR-RFLP, polymerase chain reaction-restriction fragment length polymorphism.
encoding the gene of these enzymes have been linked to the progression of cancer [49, 62]. Furthermore, several variants of PON1, including Q192R and L55M, have been found to be a biologically reasonable candidate which has an obvious influence on cancer. PON1 (Q192R and L55M) gene polymorphisms were related to many types of cancer, such as breast, prostate, and hepatocellular carcinoma [20, 50, 63]. For instance, PON1-L55M polymorphism may increase the risk in multiple cancer types, such as prostate and breast cancers but decrease renal cell carcinoma and ovarian cancer risk. As for PON1-Q192R, it has been revealed to suppress expression in lung [64] and pancreatic cancer [65] and reduce the risk of breast and prostate cancers. And the results of these researches were inconclusive and controversial.

In our work, in all genetic models we have identified the significant association between PON1-L55M polymorphism...
and overall cancer risk, while PON1-Q192R allele was not associated with reduced overall cancer risks. In the stratified analysis, we observed an increased risk in the Caucasian population and the Asian population, as well as the hospital-based group and population-based group under all the five genetic models in the PON1-L55M polymorphism. Similarly, a significantly increased risk of the overall cancers under the homozygote, allele contrast, recessive, and dominant models was uncovered in hematological tumor in the PON1-L55M polymorphism. Nevertheless, in the PON1-Q192R polymorphism, we also observe a reduced risk of the overall cancers in the allele contrast and dominant models. Meanwhile, we could obtain an interesting phenomenon that PON1-L55M polymorphism acts as a risk factor in all the five genetic models and there was an association between Q192R polymorphism and a reduced risk for cancer progression (except recessive model) after stratified analyses by cancer type, especially breast cancer. Thus, we can obtain that PON1

Figure 4: Sensitivity analysis of PON1-Q192R in overall OR coefficients (RR versus QQ). Abbreviations: OR, odds ratio CI, confidence interval. Sequentially calculated results of each study are omitted. Both ends of the broken line represent 95% of the CI.

Figure 5: Funnel figure of PON1-Q192R in overall OR coefficients (RR versus QQ). Abbreviations: OR, odds ratio.
(Q192R and L55M) gene polymorphisms play a vital role in the development of breast cancer, whose mechanism may be as follows: there was a critical association between L allele and higher PON1 serum concentrations while M variant decreased the stability of this enzyme. Therefore, the blood concentration of PON1 was reduced in this way; then, the activity of the enzyme was influenced, which may increase the vulnerability to genomic damage by reducing the inflammatory oxidant and the detoxifying ability of dietary carcinogens, thereby increasing the risk of breast cancer [5]. Furthermore, breast cancer becomes more susceptible to genomic damage as a result of lower levels of PON1 which could decrease the ability to detoxify inflammatory oxidants and dietary carcinogens [5]. Similarly, the exchange of Q and R could produce an enzyme which has a higher detoxification activity when there were potential carcinogenic products of oxidative stress and lipid peroxidation [66, 67]. In addition, not only genetic factors but also other contributors including nutrition and lifestyle can significantly affect PON1 enzyme activity, thereby reducing the risk of breast cancer [68]. To sum up, PON1, as a member of lipid peroxidation scavenging systems, may have an impact on malignant transformation and cell proliferation in the progression of breast cancer [69]. In the ethnographic analysis, we found ethnic groups having different results, which may be due to ethnic living habits, living environment, and genetic factors.

Previous meta-analysis also reported the association of PON1 polymorphism with cancer risk [10, 70]. As far as we know, we are the first of the typical functional polymorphism of the PON1 gene including all the published and defined case-control studies that have been conducted in a comprehensive meta-analysis. Compared with previous researches, our report was more persuasive and we have carried out a more detailed analysis to demonstrate our results. First and most obviously, the data we collected in our study was up-to-date, and we could keep up with the research front. Secondly, we included more qualified studies and larger sample size, which indicates that we are relatively more accurate in assessing that association between the PON1 gene SNPs and the risk of cancer.

Despite the association between PON1 (Q192R and L55M) gene polymorphism and cancer risk which has been studied in detail, we should note some limitations at the same time. First of all, the quantity of publications collected in our study was limited and there was a relatively small sample size of the report. What is more, Caucasian accounted for the most of the registered publications and there were no Africans. Furthermore, some of publications would only publish positive results, which could make the meta-analysis less credible. Lastly, our results were based on the estimates of single-factor, which could lead to serious confusion and bias due to the lack of raw data, and there is a need to adjust the effect size with possible confounders related to lifestyle risk factors, such as age, obesity, alcohol consumption, and smoking.

In conclusion, our study has demonstrated that PON1-Q192R can significantly reduce the risk of cancer and the polymorphism of PON1-L55M is a risk factor leading to cancer, especially breast cancer. Next, we need a larger sample size at protein levels to confirm whether PON1 polymorphisms may be potential genetic markers of tumor prognosis and identify its role in the risk of women developing breast cancer.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Authors’ Contributions

Bo Zhu, Lingsha Huang, and Jinfeng Liu conceived and designed the experiments; Xiaolan Pan, Lei Huang, and Meiqin Li conducted literature review and data abstraction; Xiaolan Pan and Bo Zhu analyzed data; and Dan Mo, Yihua Liang, and Zhaodong Huang conducted a hand search for extra studies. Xiaolan Pan, Bo Zhu, Lingsha Huang, and Meiqin Li wrote the manuscript. All authors reviewed and approved the manuscript. Xiaolan Pan, Lei Huang, and Meiqin Li have contributed equally to this work.

Acknowledgments

This work was supported by grants from National Science Foundation of China (81760530) and National Science Foundation of Guangxi (2017GXNSFBA198047).

References

[1] A. Bredberg, “Cancer: more of polygenic disease and less of multiple mutations? A quantitative viewpoint,” Cancer, vol. 117, no. 3, pp. 440–445, 2011.
[2] J. Ivišević, J. Kotur-Stevuljvić, A. Stefanović et al., “Association of paraoxonase 1 and oxidative stress with acute kidney injury in premature asphyxiated neonates,” Chemico-Biological Interactions, vol. 272, pp. 47–52, 2017.
[3] R. Assis, C. Arcao, V. Gutierrezs et al., “Combined effects of curcumin and lycopene or bixin in yoghurt on inhibition of LDL oxidation and increases in HDL and paraoxonase levels in streptozotocin-diabetic rats,” International Journal of Molecular Sciences, vol. 18, no. 4, 2017.
[4] F. Farinati, M. Piciocchi, E. Lavezzeno, M. Bortolamino, and R. Cardin, “Oxidative stress and inducible nitric oxide synthase induction in carcinogenesis,” Digestive Diseases, vol. 28, no. 4-5, pp. 579–584, 2010.
[5] Y. M. Hussein, A. F. Gharib, R. L. Etewa, and W. H. ElSawy, “Association of L55M and Q192R polymorphisms in paraoxonase 1 (PON1) gene with breast cancer risk and their clinical significance,” Molecular and Cellular Biochemistry, vol. 351, no. 1-2, pp. 117–123, 2011.
[6] M. Eroglu, N. Yilmaz, S. Yalcinkaya, N. Ay, O. Aydin, and C. Sezer, “Enhanced HDL-cholesterol-associated anti-oxidant PON-1 activity in prostate cancer patients,” Kaohsiung Journal of Medical Sciences, vol. 29, no. 7, pp. 368–373, 2013.
[7] V. H. Brophy, R. L. Jamps, J. B. Clendenning, L. A. McKinstry, G. P. Jarvik, and C. E. Furlong, “Effects of 5′ regulatory-region polymorphisms on paraoxonase-gene (PON1) expression,” American Journal of Human Genetics, vol. 68, no. 6, Article ID 6053, pp. 1428–1436, 2001.
[8] M. Aviram, E. Hardak, J. Vaya et al., “Human serum paraoxonases (PON1) Q and R selectively decrease lipid peroxides in human coronary and carotid atherosclerotic lesions: PON1 esterase and peroxidase-like activities,” Circulation, vol. 101, no. 21, pp. 2501–2517, 2000.

[9] L. Chen, W. Lu, L. Fang et al., “Association between L55M polymorphism in Paraoxonase 1 and cancer risk: a meta-analysis based on 21 studies,” Oncotargets and Therapy, vol. 9, pp. 1151–1158, 2016.

[10] M. Zhang, H. Xiong, L. Fang et al., “Paraoxonase 1 (PON1) Q192R polymorphism and cancer risk: a meta-analysis based on 30 publications,” Asian Pacific Journal of Cancer Prevention, vol. 16, no. 10, pp. 4457–4463, 2015.

[11] S. Eom, D. Yim, C. Lee et al., “Interactions between paraoxonase 1 genetic polymorphisms and smoking and their effects on oxidative stress and lung cancer risk in a korean population,” Plos One, vol. 10, no. 3, Article ID e019100, 2015.

[12] H. Wang, L. Li, L. Ding, Z. Zhang, and C. Pu, “Association of genetic polymorphisms in the paraoxonase 1 gene with the risk and prognosis of non-small cell lung cancer in Chinese Han population,” Journal of Investigative Medicine, vol. 60, no. 3, pp. 592–597, 2012.

[13] G. M. Vasconcelos, B. Aguilar Alves Gonçalves, R. Montalvão-de-Azevedo et al., “PON1 Q192R polymorphism (rs662) is associated with childhood embryonal tumors,” Molecular Biology Reports, vol. 41, no. 9, pp. 6111–6115, 2014.

[14] J. Lau, J. P. A. Ioannidis, and C. H. Schmid, “Quantifying heterogeneity in the relation between black smoke and total mortality. A sensitivity analysis,” in Controlled Clinical Trials, vol. 7, no. 3, pp. 177–188, 1986.

[15] A. Tobias and M. J. Campbell, “Modelling influenza epidemics in the relation between black smoke and total mortality: A sensitivity analysis,” Journal of Epidemiology & Community Health, vol. 53, no. 9, pp. 583–584, 1999.

[16] C. B. Begg and M. Mazumdar, “Operating characteristics of a rank correlation test for publication bias,” Biometrics, vol. 50, no. 4, pp. 1088–1101, 1994.

[17] N. S. Ahmed, N. M. Shafik, O. A. Elraheem, and S. A. AbouElnoeman, “Association of paraoxonase-1(Q192R and L55M) gene polymorphisms and activity with colorectal cancer and effect of surgical intervention,” Asian Pacific Journal of Cancer Prevention, vol. 16, no. 2, pp. 803–809, 2015.

[18] H. Akkuz, S. Kuran, E. Akgölü et al., “Effect of PON1 gene polymorphisms in Turkish patients with hepaticcellular carcinoma,” Meta Gene, vol. 1, pp. 93–101, 2013.

[19] C. Antognelli, C. Del Buono, V. Ludovini et al., “CYP17, GSTP1, PONI and GLO1 gene polymorphisms as risk factors for breast cancer: an Italian case-control study,” BMC Cancer, vol. 9, article no. 115, 2009.

[20] C. Antognelli, L. Mearini, V. N. Talesa, A. Giannantoni, and E. Mearini, “Association of CYP17, GSTP1, and PONI polymorphisms with the risk of prostate cancer,” The Prostate, vol. 63, no. 3, pp. 240–251, 2005.

[21] C. Antognelli, A. Mezzasoma, E. Mearini, and V. N. Talesa, “Glyoxalase I-419C–a variant is associated with oxidative stress: implications in prostate cancer progression,” Plos One, vol. 8, no. 9, Article ID e74014, 2013.

[22] T. D. Cheng, K. W. Makar, M. L. Neuhouser et al., “Folate-mediated one-carbon metabolism genes and interactions with nutritional factors on colorectal cancer risk: Women’s Health Initiative Observational Study,” Cancer, vol. 121, no. 20, pp. 3684–3691, 2015.

[23] A. J. De Roos, “Metabolic gene variants and risk of non-hodgkin’s lymphoma,” Cancer Epidemiology Biomarkers & Prevention, vol. 15, no. 9, pp. 1647–1653, 2006.

[24] A. Ergen, O. Kılıcoglu, H. Ozger, B. Agachan, and T. Isbir, “Paraoxonase 1 192 and 55 polymorphisms in osteosarcoma,” Molecular Biology Reports, vol. 38, no. 6, pp. 4181–4184, 2011.

[25] L. Gallicchio, M. A. McSorley, C. J. Newschaffer et al., “Body mass, polymorphisms in obesity-related genes, and the risk of developing breast cancer among women with benign breast disease,” Cancer Detection and Prevention, vol. 31, no. 2, pp. 95–101, 2007.

[26] R. Geng, Z. Chen, X. Zhao et al., “Oxidative stress-related genetic polymorphisms are associated with the prognosis of metastatic gastric cancer patients treated with epirubicin, oxaliplatin and 5-fluorouracil combination chemotherapy,” Plos One, vol. 9, no. 12, Article ID e166027, 2014.

[27] L. S. Gold, A. J. De Roos, E. E. Brown et al., “Associations of common variants in genes involved in metabolism and response to exogenous chemicals with risk of multiple myeloma,” Cancer Epidemiology, vol. 33, no. 3–4, pp. 276–280, 2009.

[28] L. Gonzalez-Herrera, P. A. Gamas-Trujillo, G. Medina-Escobedo et al., “The paraoxonase 1 Gene c.108C>T SNP in the promoter is associated with risk for glioma in mexican patients, but not the p.L55M or p.Q192R polymorphisms in the coding region,” Genetic Testing and Molecular Biomarkers, vol. 19, no. 9, pp. 494–499, 2015.

[29] Y. M. Hussein, A. F. Gharib, R. L. Etewa, and W. H. ElSawy, “Association of L55M and Q192R polymorphisms in paraoxonase 1 (PON1) gene with breast cancer risk and their clinical significance,” Molecular and Cellular Biochemistry, vol. 351, no. 1-2, pp. 117–123, 2011.

[30] M. O. Kaya, S. Sinan, Ö. Ö. Güler, and O. Arslan, “Is there a relation between genetic susceptibility with cancer? A study about paraoxonase (PONI) enzyme activity in breast cancer cases,” Journal of Enzyme Inhibition and Medicinal Chemistry, vol. 31, no. 6, pp. 1549–1555, 2015.

[31] M. Kokouva, M. Kourias, E. Dardiotis et al., “Relationship between the paraoxonase 1 (PONI) M55L and Q192R polymorphisms and lymphohaematopoietic cancers in a Greek agricultural population,” Toxicology, vol. 307, pp. 12–16, 2013.

[32] G. Lurie, L. R. Wilkens, P. J. Thompson et al., “Genetic polymorphisms in the paraoxonase 1 gene and risk of ovarian epithelial carcinoma,” Cancer Epidemiology Biomarkers & Prevention, vol. 17, no. 8, pp. 2070–2077, 2008.

[33] C. Martinez, J. A. Molina, H. Alonso-Navarro, F. J. Jiménez-Jiménez, J. A. Agúndez, and E. García-Martín, “Two common nonsynonymous paraoxonase 1 (PON1) gene polymorphisms and brain astrocytoma and meningioma,” BMC Neurology, vol. 10, article no. 71, 2010.

[34] Z. B. Metin, S. Aydin, M. Unur et al., “Oral squamous cell carcinoma and serum paraoxonase 1,” The Journal of Laryngology & Otology, vol. 127, no. 12, pp. 1208–1213, 2013.

[35] R. Naidu, Y. C. Har, and N. A. M. Taib, “Genetic polymorphisms of paraoxonase 1 (PON1) gene: Association between L55M or Q192R with breast cancer risk and clinico-pathological parameters,” Pathology & Oncology Research, vol. 16, no. 4, pp. 533–540, 2010.
A. G. Tomatir, S. Pehlivan, H. H. Sahin, S. O. Balci, E. M. van der Logt, C. H. J. M. Janssen, Z. van Hooidonk, J. Wu, M. Fang, X. Zhou, B. Zhu, and Z. Yang, "Paraoxonase activity in high grade gliomas and meningiomas," *Cell Biochemistry & Function*, vol. 23, no. 11, pp. 1811–1819, 2005.

E. M. J. Van Der Logt, C. H. J. M. Janssen, Z. Van Hooijdonk et al., "No association between genetic polymorphisms in NAD(P)H oxidase p22 phox and paraoxonase 1 and colorectal cancer risk," *Anticancer Research*, vol. 25, no. 2 B, pp. 1465–1470, 2005.

I. Kerridge, L. Lincz, F. Scorgie, D. Hickey, N. Granter, and A. Spencer, "Association between xenobiotic gene polymorphisms and non-Hodgkin's lymphoma risk," *British Journal of Haematology*, vol. 118, no. 2, pp. 477–481, 2002.

J. Wu, M. Fang, X. Zhou, B. Zhu, and Z. Yang, "Paraoxonase 1 gene polymorphisms are associated with an increased risk of breast cancer in a population of Chinese women," *Oncotarget*, vol. 8, no. 15, pp. 25362–25371, 2017.

L. F. Lincz, I. Kerridge, F. E. Scorgie, M. Bailey, A. Enno, and A. Spencer, "Xenobiotic gene polymorphisms and susceptibility to multiple myeloma," *Haematologica*, vol. 89, no. 5, pp. 628–629, 2004.

M. Vecka, M. Jachymova, L. Vavrova, J. Kodylkova, J. Macasek, and M. Urbanek, "Paraoxonase-1 (PON1) status in pancreatic cancer: relation to clinical parameters," *Folia Biologica*, vol. 58, no. 6, pp. 231–237, 2012.

O. Öztürk, Ö. F. Kağnici, T. Öztürk et al., "192R allele of paraoxonase 1 (PON1) gene as a new marker for susceptibility to bladder cancer," *Anticancer Research*, vol. 29, no. 10, pp. 4041–4046, 2009.

P. Aksos-Sagirli, B. Cakmakoglu, T. Isbir et al., "Paraoxonase-1 192/55 polymorphisms and the risk of lung cancer in a Turkish population," *Anticancer Research*, vol. 31, no. 6, pp. 2225–2229, 2011.

P. Conesa-Zamora, J. Ruiz-Cosano, D. Torres-Moreno et al., "Polymorphisms in xenobiotic metabolizing genes (EPHX1, NQO1 and PON1) in lymphoma susceptibility: a case control study," *BMJ Cancer*, vol. 13, no. 228, pp. 402–416, 2003.

P. Rajaraman, A. Hutchinson, N. Rothman et al., "Oxidative response gene polymorphisms and risk of adult brain tumors," *Neuro-Oncology*, vol. 10, no. 5, pp. 709–715, 2008.

P. Zhao, L. Zhao, P. Zou et al., "Genetic oxidative stress variants and glioma risk in a Chinese population: a hospital-based case–control study," *BMJ Cancer*, vol. 12, no. 671, pp. 1471–1472, 2012.

R. Attar, H. Atasoy, G. Inal-Gültekin et al., "The effects of PON1 gene Q192R variant on the development of uterine leiomyoma in Turkish patients," *In Vivo*, vol. 29, no. 2, pp. 243–246, 2015.

W. Tang, J. Liu, Y. Wang et al., "Association between Paraoxonase 1 polymorphisms and risk of esophagogastric junction adenocarcinoma: A case-control study involving 2,740 subjects," *Oncotarget*, vol. 8, no. 60, pp. 101095–101102, 2017.

M. Hemati, A. H. Mansourabadi, M. K. Bafghi, and A. Moradi, "Association between paraoxonase-1 gene Q192R and L55M polymorphisms and risk of gastric cancer: a case-control study from Iran," *Nucleosides, Nucleotides and Nucleic Acids*, vol. 38, no. 7, pp. 521–532, 2019.

S. Ouerhani, I. Ben Bahri, K. Rouissi, and L. Cherni, "Distribution of xenobiotic metabolising enzyme genotypes in different Tunisian populations," *Annals of Human Biology*, vol. 44, no. 4, pp. 366–372, 2017.

A. J. De Roos, L. S. Gold, S. Wang et al., "Metabolic gene variants and risk of non-hodgkin's lymphoma," *Cancer Epidemiology Biomarkers & Prevention*, vol. 15, no. 9, pp. 1647–1653, 2006.

N. Uluocak, D. Atilgan, B. S. Parlaktas, F. Erdemir, and O. Ates, "A pilot study assessing the association between paraoxonase 1 gene polymorphisms and serum paraoxonase activity in cancer patients," *BMC Cancer*, vol. 9, no. 6, pp. 222–229, 2009.
developing breast cancer among women with benign breast disease,” *Cancer Epidemiology*, vol. 31, no. 2, pp. 95–101, 2007.

[68] N. Ferrè, J. Camps, J. Fernández-Ballart et al., "Regulation of serum paraoxonase activity by genetic, nutritional, and lifestyle factors in the general population," *Clinical Chemistry*, vol. 49, no. 9, pp. 1491–1497, 2003.

[69] I. Delimaris, E. Faviou, G. Antonakos, E. Stathopoulou, A. Zachari, and A. Dionyssiou-Asteriou, "Oxidized LDL, serum oxidizability and serum lipid levels in patients with breast or ovarian cancer," *Clinical Biochemistry*, vol. 40, no. 15, pp. 1129–1134, 2007.

[70] W. Lu, L. Fang, H. Xiong et al., "Association between L55M polymorphism in Paraoxonase 1 and cancer risk: a meta-analysis based on 21 studies," *OncoTargets and Therapy*, p. 1151, 2016.