Physicochemical treatment of waste water from complex organic substances

B S Ksenofontov¹,* , R A Taranov¹, M S Vinogradov¹ and E V Senik¹

¹Department of Ecology and Industrial Safety, Bauman Moscow State Technical University, 5/1, 2ya Baumanskaya st., Moscow, 105005, Russia

*Kbsflot@mail.ru

Abstract. This paper considers with the issues of extracting polycyclic hydrocarbons from wastewaters by using physicochemical technology, including the use of flotation, settling, filtration, adsorption, ozonation. The usage of this technology could significantly reduce the concentration of such hazardous substances as benzopyrene in the treated wastewaters. Under certain regimes of wastewaters treatment using physicochemical technology, the concentration of benzopyrene does not exceed the standard values. The prospects for the usage of bioflotation harvesters for the treatment of wastewaters, which contains complex organic substances are indicated.

Polycyclic aromatic hydrocarbons (PAHs) are the most common substances in nature, inter alia, in the atmosphere, water, soil, plants, food, powerplant emissions, ferrous and non-ferrous metallurgy, chemistry and petrochemistry, etc. PAHs are supertoxic organic substances, some of which are carcinogenic. Wastewaters, which contains such substances, must be rendered harmless from such contaminants.

Many developers have shown that adapted bacteriocoenosis is in position to utilizing oil and petroleum products to safe substances, PAHs - benzopyrene, naphthalene, phenanthrene, biphenyl, phenol and its derivatives, cyanides [1-17]. The efficiency of using traditional biological treatment facilities for the removal of organic pollutants for these purposes is directly related to the possibility of adaptation of the activated sludge bacteriocoenosis. At biological treatment plants, autoselection of bacteriocoenosis occurs under the influence of incoming effluents. There are many examples of microbial biocoenosis adaptation to organic pollutants. This process could take a long time. So, the time of adaptation to different concentrations of phenol of bacteriocoenosis of activated sludge on treatment facilities, which received phenol-containing industrial wastewaters, was about 60 - 75 days or even more. In this regard, the task of changing the composition of the bacterial community during the oxidation of xenobiotics becomes an important scientific and practical task, since it allows predicting the possibilities of their biooxidation.

The development of biochemical research methods has led to the emergence of new directions in the study of the processes of decomposition of xenobiotics in biological treatment systems. In particular, works have appeared on laboratory modelling of the decomposition of xenobiotics using activated sludge [17].

The analysis carried out according to the sources of scientific, technical and patent literature [1-18] showed that PAHs, incl. benzopyrene, trichloromethane, carbon tetrachloride, naphthalene, etc., are resistant to oxidation substances in the process of biological wastewaters treatment. The data noted in...
the literature [13] show that the oxidation rate, for example, of benzopyrene, is about 60%, using special selective strains of microorganisms. It should be noted that the usage of bio-flotation harvesters is very promising for the biological oxidation of PAHs [19, 20].

Thus, the results of studies have shown that the microflora of wastewaters, which are contaminated with PAHs, is capable of destroying PAHs, including benzopyrene. Consequently, in nature, processes of destruction of aromatic compounds are constantly going on in wastewaters. The destruction of PAHs by the microflora of wastewater can be enhanced by adding a culture of microorganisms that actively oxidize PAHs. However, the results of biological treatment do not always give a guaranteed result. In this regard, the problem of finding alternative ways of extracting complex organic pollutants from water arises. One could use other methods, for example, ozonation, exposure to ultraviolet light. In this case, the oxidation efficiency reaches about 90% [12]. In the course of our experimental studies, it was found that physicochemical methods are the effective methods for extracting of complex organic pollutants from water.

On the basis of the researches carried out, we proposed an original technological scheme for the treatment of wastewaters, which contain complex organic substances.

Figure 1 shows us an apparatus and technological scheme for the treatment of wastewaters, which contain PAHs.

![Figure 1. Apparatus and technological scheme of the plant for treatment of wastewaters, which contain PAHs.](image)

The principle of operation of the plant (Figure 1) is as per below given. The original wastewater enters the receiving tank 1, from which it is pumped out into the flotation harvester 4 with the help of the pump 3. Then the water enters the intermediate collector 7, from which, by means of the pump 8, it is sequentially supplied to the mechanical filter 9 and then to the adsorption filter 11 and is accumulated in the collector of clean water 13. This also uses the stage of water treatment with ozone using the device 10 and ultraviolet using the device 12.

Removal of sediment from the receiving tank 1 is carried out using the pump 2, and removal from the flotation harvester - using the filter 5 with a perforated surface. In this case, the filtered water is accumulated in the collector 6.

The results of control tests analyses are shown in Table 1. (in the column “actual concentrations”, the values of the source (contaminated) water / purified water are sequentially indicated).

Analysis, being represented in data Table 1, shows that for all the considered indicators, the standard values are achieved. This testifies to the effectiveness of the proposed wastewater treatment technology.
Table 1. Results of experimental tests of physical and chemical wastewater treatment.

Substance	Concentration above which discharge is prohibited	Actual concentrations, mg/l
HYDROGEN ION CONCENTRATION (pH), units	less 4.5 or over 12	7.94/8.55
NITROBENZENE, mg/dm³	0.04	0.06/-0.0002
ANILINE (AMINOBENZENE, PHENYLAMINE), mg/dm³	0.0004	0.0009/-0.0002
BENZOPYRENE, mg/dm³	0.00002	0.011/-0.00002
NAPHTHALENE, mg/dm³	0.016	0.19/-0.01
TETRACHLOROETHYLENE (PERCHLOROETHYLENE), mg/dm³	0.02	0.07/-0.001
1,2-DICHLOROPROPANE, mg/dm³	0.08	0.12/-0.01
1,2-DICHLOROETHANE, mg/dm³	0.012	0.11/-0.01
BROMODICHLOOROMETHANE, mg/dm³	0.12	0.18/-0.001
TETRACHLOROMETHANE (TETRACHLORIDE CARBON), mg/dm³	0.004	0.021/-0.0002
TRICHLOROETHYLENE, mg/dm³	0.02	0.16/-0.001
CIS- 1,3-DICHLOROPROPENE, TRANS-1,3- DICHLOROPROPENE, mg/dm³	0.02	0.17/-0.0001
TRICHLOROBENZENE (SUM OF ISOMERS), mg/dm³	0.004	0.22/-0.0002

Purification of such wastewaters from especially toxic substances leads to rather high technological results. Above data indicate the high efficiency of the use of physicochemical methods placed into the technological scheme developed by ourselves (Figure 1).

The represented data allow us to recommend the developed technological scheme for wastewaters treatment for the widespread use in the industrial practice.

References
[1] Gallard H and De Laat J 2000 Kinetic modelling of Fe(III)/H₂O₂ oxidation reactions in dilute aqueous solution using atrazine as a model organic compound Water Research 34(12) 3107-16
[2] Aleksandrov A et al. 2018 Effect of geometric parameters of working channel of hydrodynamic filter with protective baffle on medium flow structure Herald of the Bauman Moscow State Technical University, Series Natural Sciences 2(77) 23-38
[3] Peternel I T, Koprivnanac N, Lončarić Božić A M and Kušić H M 2007 Comparative study of UV/TiO₂, UV/ZnO and photo-Fenton processes for the organic reactive dye degradation in aqueous solution Journal of Hazardous Materials 148(1-2) 477-84
[4] Tryba B, Morawski A W, Inagaki M and Toyoda M 2006 The kinetics of phenol decomposition under UV irradiation with and without H₂O₂ on TiO₂, Fe–TiO₂ and Fe–C–TiO₂ photocatalysts Applied Catalysis B: Environmental 63(3-4) 215-21
[5] Aleksandrov A et al. 2020 Numerical investigation of fluid flow between rotating permeable cylindrical surfaces Herald of the Bauman Moscow State Technical University, Series Natural Sciences 88 32-45
[6] Fazullin D D et al. 2018 Investigation of the treatment from IONS of heavy metals whith wastewater of pulp production technology from husk of grain varieties Journal of Advanced Research in Dynamical and Control Systems 10(13) Special Issue 547-52
[7] Smyatskay Y A et al. 2019 Wastewater Treatment of Iron(III) Ions with Residual Biomass of Microalgae Chlorella Sorokiniana Ecology and Industry of Russia 23(6) 22-7
[8] Smyatskaya Y A et al. 2019 The Use and Utilization of Chitosan Sorbents–the Residual Biomass of Microalgae Chlorella Sorokiniana Ecology and Industry of Russia 23(9) 18-23
[9] Ivanova O, Aleksandrov A and Revetria R 2019 Modelling of Impact Caused by Flood after Water Flow Optimization at Volga-Kama River Basin Engineering Letters 27(4)
[10] Ksenofontov B S 2018 Water treatment and sewerage (Moscow: Publishing House "Forum": Infra-M) 298
[11] Zainullin A M and Yunusova G V 2020 Research of biological wastewater treatment at urban wastewater treatment plants Chemistry and Engineering Ecology XX 28-30
[12] Ilnitskiy A P 1973 Carcinogenic hydrocarbon benz(a)pyrene in freshwater reservoirs Abstract of the doctoral dissertation for the degree of Doctor of Medical Sciences (Moscow, Institute of expert. and clinical oncology) 40
[13] Poglazova M N et al. About the destruction of benzo(a)pyrene by microorganisms in wastewaters Reports of the USSR Academy of Sciences vol. 204 no. 1 222-5
[14] Ksenofontov B S 2015 Fundamentals of Microbiology and Environmental Technology. (Moscow: Publishing House "Forum": Infra-M) 224
[15] Morozov N V 2018 Innovative biotechnology for the treatment of hydrocarbon-containing wastewater from small sewerage enterprises Bulletin of the Technological University 21(2) 180-5
[16] Smola V I 2013 PAHs in the environment: problems and solutions [Text]: in 2 parts (Moscow: Polygraph service) 407
[17] Shchegolkova N M et al. 2016 Laboratory modelling of the transformation of organic pollutants by activated sludge of different types of treatment facilities Water: chemistry and ecology 11 24-36
[18] Ksenofontov B S 2016 Environmental protection: biotechnological foundations (Moscow: Publishing House "Forum": Infra-M) 200 p
[19] Ksenofontov B S 2015 Wastewater treatment: flotation harvesters and flotation kinetics (Moscow: Publishing House "Forum": Infra-M) 256 p
[20] Bio- flotation harvester: RF patent for a useful model No. 192973 / Ksenofontov B S; declared 06/18/2019, publ. 8.10.2019. Bul. No. 28, P. 3.