Holographic p-wave superconductors in quasi-topological gravity

Xiao-Mei Kuang, Wei-Jia Li and Yi Ling

1 Department of Physics, Center for Relativistic Astrophysics and High Energy Physics, Nanchang University, 330031, People’s Republic of China
2 Department of Physics, Beijing Normal University, Beijing 100875, People’s Republic of China

E-mail: xmeikuang@gmail.com, li831415@163.com and yling@ncu.edu.cn

Received 7 February 2012
Published 2 April 2012
Online at stacks.iop.org/CQG/29/085015

Abstract
We construct a holographic p-wave superconductor model in the framework of quasi-topological gravity in the probe limit. The relation between the critical temperature and the coupling parameters of higher curvature terms is investigated. The numerical results for conductivity are presented as well. It turns out that our data fit the Drude model very well in the low-frequency limit, and the values of dc conductivity as well as the relaxation time are obtained numerically.

PACS numbers: 04.70.Bw, 11.25.Hf, 74.20.-z

(Some figures may appear in colour only in the online journal)

1. Introduction

Recently, the gauge/gravity duality [1–3] has been widely applied to the study of condensed matter physics. In particular, some critical phenomena in strongly coupled systems can be described by the dynamics of geometry as well as matter fields in a semi-classical region (for recent reviews we refer to [4–7]). One remarkable example is building holographic superconductor models based on the Abelian Higgs mechanism, through which an asymptotical anti-de Sitter black hole can break the \(U(1) \) gauge symmetry spontaneously [8]. In these models, when the effective mass of a scalar field in the bulk is below the Breitenlohner–Freedman bound [9], a hairy solution to the scalar field can be obtained, characterized by its condensation around the horizon of the black hole. According to AdS/CFT correspondence, the creation of charged condensation strongly implies that a second-order phase transition could occur in the dual CFT [10–13]. Furthermore, these sorts of holographic superconductors contain more interesting features [14–25]. For instance, the energy gap is much larger than the predictions of the conventional BCS theory but quite similar to the high-\(T_c \) superconductors as found in experiments [26].
In addition to various holographic s-wave superconductor models with scalar fields, one can also construct p-wave superconductor models with vector fields, implemented by introducing a SU(2) Yang–Mills gauge field [27–32]. Correspondingly, the dual CFT has a global SU(2) symmetry and hence a conserved current J_μ. In the AdS black hole background, it is found that the $U(1)$ gauge symmetry (a subgroup of SU(2)) is possibly spontaneously broken such that the value of $\langle J_1 \rangle$ is not vanishing. This corresponds to a phase transition between a non-superconducting state at high temperature and a superconducting state below the critical temperature. However, different from the s-wave model, here the order parameter is a current and the conductivity is anisotropic since the condensation of vector field breaks the rotational symmetry as well. As a result, the conductivity has two independent components; the one perpendicular to the direction of the condensation behaves like that in s-wave superconductors, while the other, parallel to it, performs a much different behavior. In particular, this component agrees well with the Drude model in the low-frequency limit.

Recently, a gravity theory with nontrivial curvature-cubed terms in five-dimensional spacetime, usually called quasi-topological gravity, has been proposed in [33–37]. This theory can be viewed as a generalization of Gauss–Bonnet gravity. Besides the GB term in the action, it also involves in higher derivative corrections, thereby corresponding to CFTs with more couplings between operators as discussed in [38, 39]. As a matter of fact, the holographic study of the quasi-topological gravity has been carried out in many references [39–43] and its dual CFTs display much richer structures and novel features. Especially, in this theory two central charges relating to the conformal anomaly can be unequal, which brings in a non-zero but much lower bound of the ratio of shear viscosity to density entropy and hence violation of the Kovtun–Son–Starinets (KSS) bound [39]. In this paper, we intend to continue our previous investigation on holographic s-wave superconductors in [41] and construct a holographic p-wave model in the framework of quasi-topological gravity. We are specially concerned with the anisotropic behavior of the gauge fields and intend to compare our results with other p-wave models in Einstein’s and Gauss–Bonnet gravity. We will also discuss the charge transport using a linear response theory, with a special interest in its behavior in the low-frequency limit.

We organize our paper as follows. In section 2, we present the holographic setup for a p-wave superconductor in quasi-topological gravity, and then study the superconducting phase transition in the probe limit, focusing on the variation of the critical temperature with the coupling parameters. Section 3 contributes to the numerical evaluation of the anisotropic conductivity. Based on the data obtained we mainly discuss the following two issues. One is the change of the ratio of the frequency gap to the critical temperature with the frequency and the other is the low-frequency behavior of the conductivity. Discussions and conclusions are given in section 4.

2. Quasi-topological holographic p-wave superconductors

We start with the five-dimensional quasi-topological gravity with an SU(2) Yang–Mills gauge field. The bulk action is given as

$$S_{\text{bulk}} = \int d^5x \sqrt{-g} \left\{ -\frac{1}{16\pi G_5} \left(R + \frac{12}{L^2} + \frac{\alpha L^2}{2} \lambda_4 + \frac{7\beta L^4}{8} Z_5 - \frac{1}{4 g_{\text{YM}}^2} (F_{\mu\nu}^2) \right) \right\} \tag{1}$$

where G_5 is the Newton constant in five-dimensional theory, and α, β and g_{YM} are Gauss–Bonnet coupling parameter, curvature-cubed interaction parameter and Yang–Mills coupling
parameter, respectively, $F^i_{\mu\nu}$ is the field strength of Yang--Mills gauge field with $SU(2)$ gauge symmetry and i is the internal index. Here \mathcal{X}_3 is the Gauss--Bonnet term

$$\mathcal{X}_3 = R_{\mu\nu\rho\sigma} R^{\mu\nu\rho\sigma} - 4 R_{\mu\nu} R^{\mu\nu} + R^2,$$

and \mathcal{Z}_5 is a curvature-cubed term with the form

$$\mathcal{Z}_5 = R_{\mu\nu\rho\sigma} R_{\rho\sigma} u^\mu R_{\nu} - \frac{1}{14} (21 R_{\mu\nu\rho\sigma} R_{\nu} R - 120 R_{\mu\nu\rho\sigma} R_{\rho\sigma} R - 144 R_{\mu\nu\rho\sigma} R_{\nu} R + 128 R_{\mu\nu} R_{\nu} - 108 R_{\mu\nu} R_{\nu} R + 11 R^3).$$

It is worthy to point out that in contrast to higher order terms in Lovelock gravity [44], the cubed terms above are not just topological but have contributions to equations of motion for bulk fields. Through this paper, we will only take account of the probe limit of the theory. Namely, we will neglect the back reaction of the Yang--Mills field on the background metric in the large N_c limit, where N_c is the number of degrees of freedom per point in the dual free field theory.

In this limit, stable AdS black hole solutions in five-dimensional spacetime have been found in [33] and they can be described as

$$\begin{align*}
\text{d}x^2 &= \frac{r^2}{L^2} \left(-N(r)^2 f(r) \, \text{d}t^2 + \text{d}x^2 + \text{d}y^2 + \text{d}z^2 \right) + \frac{L^2}{r^2 f(r)} \, \text{d}r^2,
\end{align*}$$

where $f(r)$ has three different solutions for different regions in parameter space

$$\begin{align*}
f_1(r) &= u + v - \frac{\alpha}{3\beta}, \\
f_2(r) &= -\frac{1}{2} (u + v) + \frac{\sqrt{3}}{2} (u - v) - \frac{\alpha}{3\beta}, \\
f_3(r) &= -\frac{1}{2} (u + v) - \frac{\sqrt{3}}{2} (u - v) - \frac{\alpha}{3\beta},
\end{align*}$$

with

$$\begin{align*}
u &= (q + \sqrt{q^2 - p^2})^{1/3}, \\
u &= (q - \sqrt{q^2 - p^2})^{1/3}, \\
p &= \frac{3\beta + \alpha^2}{9\beta^2}, \\
q &= -\frac{2\alpha^3 + 9\alpha\beta + 27\beta^2 (1 - \frac{\alpha}{3\beta})}{54\beta^3}.
\end{align*}$$

L is the AdS radius and $N(r) = N = 1/\sqrt{f(r)}_{r=\infty}$ is the lapse function. Now it is straightforward to obtain the Hawking temperature of these black holes, which is

$$\begin{align*}
T &= \frac{N}{4\pi f'(r)_{r=\infty}} = \frac{N_{H}}{\pi L^2}.
\end{align*}$$

It will also be viewed as the temperature of the dual CFT on the boundary.

Now we turn to construct the holographic p-wave superconductors. Firstly, we need to solve the Yang--Mills equations in a fixed black hole background. Following the strategy presented in [8], we take the ansatz as follows:

$$A_{\mu} = A_{\mu}^i \tau^i \, \text{d}x^i = \hat{\phi}(r) \tau^3 \, \text{d}u_{\alpha} + \hat{\psi}(r) \tau^1 \, \text{d}x_{\alpha},$$

where $\tau^i = \sigma^i/2i$ ($i = 1, 2, 3$) with commutation relations $[\tau^i, \tau^j] = i\epsilon^{ijk} \tau^k$ are $SU(2)$ generators. In (10), the nonvanishing $\hat{\psi}(r)$ breaks the $U(1)_3$ gauge symmetry generated by

\text{3} The large N_c limit implies $G_5 \sim N_c^{-2} \to 0$, leading to a decoupling between the matter field with a finite gYM and the gravity in the action S_{bulk}.

\text{4} In order to get a normalized velocity of light on the boundary, the lapse function N usually should not be set to unit. This gauge is different from that in [32] and some discrepancy of our results for GB gravity with those in [32] can be ascribed to this different gauge. Moreover, the argument that $N(r)$ is a constant can be seen in [33].
We may interpret it as the p-wave superconducting phase transition from the side of CFT on the boundary, since in the dual field theory the global $U(1)_3$ symmetry is broken and superconducting charges can be created from the new vacuum which corresponds to the formation of the Cooper pairs. For convenience, we absorb the gauge couplings into the rescaling of the gauge fields

$$\phi = gYM L^2 \tilde{\phi}, \quad \psi = gYM L^2 \tilde{\psi}. \quad (11)$$

Moreover, we redefine the coordinate $z = \frac{rH}{r} = \frac{1}{r}$ such that the position of the horizon is fixed at $z = 1$, while the boundary $z \to 0$. Then with the ansatz in equation (10), the equations for Yang–Mills field reduce to the following form:

$$\phi'' - \frac{\phi'}{z} - \frac{L^2 \psi^2}{z^2 g} \phi = 0, \quad (12)$$

$$\psi'' + \left(\frac{g' g}{g} + \frac{1}{z}\right) \psi' + \frac{\phi^2}{N^2 g^2 z^4} \psi = 0, \quad (13)$$

where $g = \frac{r^2 f(r)}{L^2}$ and the prime denotes a derivative with respect to z. Before solving these two equations, we give the boundary conditions near the horizon and near the AdS boundary as follows.

- The regularity condition at the horizon ($z = 1$) requires that the gauge fields should be expanded as

$$\psi = \psi^{(0)}_H + \psi^{(2)}_H (1 - z)^2 + \cdots$$
$$\phi = \phi^{(1)}_H (1 - z) + \cdots \quad (14)$$

- Near the AdS boundary ($z \to 0$), the asymptotical behavior of fields is like

$$\psi = \psi^{(0)} + \psi^{(2)} z^2 + \cdots$$
$$\phi = \mu + \rho z^2 + \cdots \quad (15)$$

In AdS/CFT dictionary, μ is the chemical potential on the boundary, while $\rho_t = 2 \rho$ and $\rho_n = \rho^{(1)}_H$ are understood as the total charge density and the charge density in the normal state, respectively. So the p-wave superconducting charge density is $\rho_s = \rho_t - \rho_n$. A nonzero $\psi^{(0)}$ and a nonzero $\psi^{(2)}$ correspond to a source and the expectation value of vacuum, respectively, for the current operator J^1_1 that is dual to the gauge field $A^1_1 = \psi$, so we have

$$\langle J^1_1 \rangle = \psi^{(2)}. \quad (16)$$

For normalizable modes, the expectation value of vacuum can be obtained by setting $\psi^{(0)} = 0$.

Before doing the numerical analysis, we present some remarks on the allowed range of the values of the coupling parameters α and β. First of all, to obtain the stable black hole solutions without ghost modes or naked singularity, one finds that the allowed parameter range is constrained in the region as illustrated in the left plot of figure 1 [33]. On the other hand, to ensure the positivity of central charges, energy flux and a well-defined causality for the dual CFT, α and β, are further severely confined to a small region as dictated in the right plot of figure 1, which has originally been presented in [39]. Thus in our paper we will investigate the holographic superconductivity with parameter values restricted to this small region. However, in this region the coupling constant β is severely restricted to a narrow interval, roughly from $\beta = -0.001$ to $\beta = 0.001$. Graphically, when one changes the value of β in this region, the
Figure 1. The allowed range of the values of coupling parameters α and β: in the left plot, the yellow shaded region is for the stable solution and the different regions divided by the color lines correspond to different stable black hole solutions given by (5)–(7) (see [33] for details); in the right plot, the blue shaded region is the valid parameter range restricted by consistency of the dual CFT, and the red horizontal line corresponds to $\beta = 0$, i.e. the constraint of α in Gauss–Bonnet gravity (see online journal for colour figures).

plotting is probably not sensitive enough to illustrate the changes of the physical quantities with different values of the coupling constants. Thus we take two actions in our plotting. One is to enlarge a local region in figures to demonstrate the shifting tendency of the curves with the values of coupling parameters. Secondly, we also take some value for β from the region in the left plot of figure 1 for comparison, for instance $\beta = 0$.1. In the probe limit we are allowed to do this since the back reaction of the perturbations is not taken into account and we may still obtain the stable phase in dual field theory, but it is warned that the curves obtained for these values are potentially instable for a system when the back reaction of the perturbations is considered, thus should not be trusted seriously.

Now to explore the p-wave superconducting phase, we need to find nonzero solutions for ψ by numerical analysis. In our program, we set $L = 1$ and find the numerical solutions to the differential EOMS from the horizon to the AdS boundary, namely, from $z \rightarrow 1$ to $z \rightarrow 0$. In figure 2, we illustrate the condensation of J_1^z as the function of the temperature with different values of coupling parameters α and β. Note that different from the case of s-wave superconductor, here we plot the dimensionless quantity $\sqrt{\frac{\lambda}{T}}$ with respect to $\frac{T}{T_c}$ since the conformal dimension of J_1^z is 3 rather than 1 for T_c. figure 2 indicates that the order parameter has the behavior $\langle J_1^z \rangle \propto \left(1 - \frac{T}{T_c}\right)^{1/2}$ near the critical temperature, and the value of $\frac{\sqrt{T}}{\sqrt{T_c}}$ increases with both the Gauss–Bonnet coupling parameter α and the curvature-cubed coupling parameter β, which is similar to the phenomenon obtained in the s-wave superconductor in quasi-topological gravity [41], as well as the p-wave superconductors in Gauss–Bonnet gravity [32].

In figure 3, we plot ρ_s/ρ_t versus $\frac{T}{\sqrt{T_c}}$ by changing either of the coupling parameters α and β. The critical temperatures for different coupling parameters can be read off from the intersects with the horizontal axis and their values are listed in table 1. We can see that the critical temperature decreases when either α or β increases, implying that with the increase of the curvature-cubed term or the Gauss–Bonnet term the occurrence of condensation should become harder. This tendency is the same as those in the previous papers [41, 32].
Figure 2. The condensate as a function of the temperature with different values of coupling parameters. Left: the Gauss–Bonnet parameter α is fixed at 0.06. Right: β is fixed at 0.001. In both cases the condensation tends to increase with the coupling parameters.

Figure 3. The ratio of the superconducting charge density to the total charge density versus the temperature with different values of coupling parameters.

Table 1. The change of the critical temperature with the coupling parameters α and β. The critical temperatures corresponding to the parameter values in figure 3 are listed.

α	β	T_c
0.06	-0.0008	0.1924$\rho^{1/3}$
0.06	0.000001	0.1923$\rho^{1/3}$
0.06	0.001	0.1921$\rho^{1/3}$
0.06	0.1	0.1667$\rho^{1/3}$
-0.2	0.001	0.2218$\rho^{1/3}$
-0.1	0.001	0.2120$\rho^{1/3}$
0.0001	0.001	0.2004$\rho^{1/3}$
0.1	0.001	0.1858$\rho^{1/3}$

For explicitness, we demonstrate the dependence of the critical temperature on either of the coupling parameters in figure 4. Moreover, in [39] we know that the conformal field dual to the quasi-topological gravity is characterized by central charges, c and α, and flux parameters,
t_2$ and t_4. Explicitly, these parameters can be related to the coupling parameters in the bulk as follows:

$$\delta = \frac{c - a}{c} = \frac{4f_\infty (\alpha - 3\beta f_\infty)}{1 - 2\alpha f_\infty - 3\beta f_\infty^2},$$

(17)

$$t_2 = \frac{24f_\infty (\alpha - 87f_\infty\beta)}{1 - 2\alpha f_\infty - 3\beta f_\infty^2},$$

(18)

$$t_4 = \frac{3780f_\infty^2\beta}{1 - 2\alpha f_\infty - 3\beta f_\infty^2},$$

(19)

where f_∞ satisfies $1 - f_\infty + \alpha f_\infty^2 + \beta f_\infty^3 = 0$. Among these parameters any two of them are enough to describe the correlations in the dual CFT. For example, we can calculate δ and t_4 as the free parameters and show how T_c changes with the changing of δ and t_4, respectively. However, as discussed in [41], a clear rule from the CFT side is still missing; thus we will not show the fitting plot of the critical temperature versus δ or t_4 in our current paper.

In the following section, we turn to investigate the conductivity and find its new characters compared with the s-wave superconductors.

3. Conductivity

In this section, we will study the charge transport and linear response of the boundary system. In the linear response theory, a central quantity is the retarded Green function. According to the AdS/CFT dictionary, if we want to know the retarded Green function of the $U(1)$ current, we just need to study the propagation of the linear perturbation of the gauge field in the bulk in the probe limit. So, in the following, we are interested in the linear response of the τ_3 component of the Yang–Mills gauge field. As discussed in [8], we can consider an alternating current (ac) on the boundary by introducing a time-dependent perturbation for the gauge field

$$A \rightarrow A + \delta A,$$

(20)

where

$$\delta A = e^{-i\omega t} \left[\left(a_1^z(r) \tau^1 + a_2^z(r) \tau^2 \right) dx + a_3^z(r) \tau^3 dx + a_3^y(r) \tau^3 dy \right].$$

(21)

Although the condensation of ψ breaks the rotational $SO(3)$ symmetry associated with the x direction, the system still has an $SO(2)$ symmetry in the y–w plane. Hereafter, we neglect the perturbation along the w-axis and only consider the electrical conductivities σ_{xx} and σ_{yy}.

Figure 4. The relations between T_c and the coupling parameters α and β, respectively. In the left panel the line is for $\alpha = 0.06$, while in the right panel the line is for $\beta = 0.001$.

Substituting the ansatz in (21) into the Yang–Mills equations, we obtain the equation of motion for a_{y}^{3}:

$$a_{y}^{3''} + \left(\frac{g'}{g} + \frac{1}{z} \right) a_{y}^{3'} + \left(\frac{\omega^{2}}{N^{2}g^{2}z} - \frac{L_{g}^{2}g'}{z^{2}g} \right) a_{y}^{3} = 0,$$ \(22\)

where the prime is relative to $z = 1/r$. In general, different modes of the perturbations are mixed; however, from the equation above we note that a_{y}^{3} is actually decoupled from other components. In addition, the equation is similar to that for s-wave superconductors [32, 41], so we can obtain the conductivity σ_{yy} in a parallel way. Specifically, we choose the ingoing wave condition for a_{y}^{3} near the horizon, and then we have

$$a_{y}^{3} = (1 - z) \frac{d}{dz} \left[1 + a_{y}^{3(1)} (1 - z) + a_{y}^{3(2)} (1 - z)^{2} + \cdots \right].$$ \(23\)

Moreover, the behavior of a_{y}^{3} in the asymptotical AdS boundary ($z \rightarrow 0$) is

$$a_{y}^{3} = a_{y}^{3(0)} + a_{y}^{3(2)} z^{2} + \frac{a_{y}^{3(0)} \omega^{2} N^{4}}{2} (\log \Lambda/z)^{2},$$ \(24\)

where $a_{y}^{3(0)}$, $a_{y}^{3(2)}$, and Λ are integration constants. The last term in (24) will lead to a divergence when one calculates the Green function; however, such a logarithmic divergence can be canceled with a boundary counterterm in the renormalization procedure [45]. Thanks to the standard AdS/CFT dictionary, the conductivity can be expressed through the retarded Green function [46]:

$$\sigma(\omega) = \frac{1}{i \omega} G^{R}(\omega) \bigg|_{k = \theta} = -\frac{1}{i \omega} \lim_{r \rightarrow \infty} \frac{N g(r) r a_{y}^{3(2)}}{(\log \Lambda/z)^{2}}.$$ \(25\)

Thus we find that the conductivity σ_{yy} is

$$\sigma_{yy} = \frac{2 a_{y}^{3(2)}}{i \omega N^{4} a_{y}^{3(0)}} - i \omega N \ln N + \frac{i N \omega}{2}.$$ \(26\)

Given the boundary conditions (23) and (24), we numerically solve equation (22) to obtain $a_{y}^{3(0)}$ and $a_{y}^{3(2)}$. As a result, the dependent relation between σ_{yy} and ω for different coupling parameters β and σ is shown in figures 5 and 6, respectively. From these two figures, it is clear that when the frequency ω is large enough, the real part of σ_{yy} always increases while the imaginary part becomes linear due to the dominant term $\omega N \ln N + \frac{i N \omega}{2}$. In addition, from the imaginary part of conductivity one finds that the ratio ω_{g}/T_{c} increases either with α or β. This behavior is much similar to that of σ in the s-wave case [41], while it is interesting to note that for the p-wave superconductor the values of the real part of conductivity increase with the coupling parameters. Since this quantity corresponds to the imaginary part of the Green function which characterizes the dissipation of the charge transport, this phenomenon is analogous to what happens in holographic hydrodynamics as described in figure 2 in [39].

3.2. σ_{xx} component

Now we intend to study the component σ_{xx}, which can be obtained by solving the equation of motion for a_{x}^{3} in the bulk. In contrast to a_{y}^{3}, since the component a_{x}^{3} couples with the fields a_{i}^{1}

5 As pointed out in [47], the term $-i \omega N \ln N$ should not be neglected. Although we take a different gauge here, the asymptotic analysis near the boundary is similar and a direct calculation shows that the result is the same.
and a_2^2 in the linearized Yang–Mills equations, besides three second-order coupling equations of motion

\[
\begin{align*}
a''_x + \left(\frac{1}{z} + \frac{g'}{g} \right) a'_x + \frac{\omega^2}{g^2 N^2 z^2} a^3_1 - \frac{i \omega a^3_1 + a^4_1 \phi}{g^3 N^2 z^4} \psi &= 0, \\
a''_1 - \frac{1}{z} a'_1 + \frac{L^2 a^4_2 \phi \psi}{z^2 g} &= 0, \\
a''_2 - \frac{1}{z} a'_2 + \frac{L^2 \psi^2}{z^2 g} a_1^4 = \frac{i L^2 \omega a^3_1 \psi}{z^2 g} &= 0,
\end{align*}
\]
(27)

we need to solve another two first-order equations together

\[
\begin{align*}
-i \omega a''_1 - \phi a'_1 + a^2_1 \phi' &= 0, \\
\phi a''_1 - i \omega a'_1 + L^2 N^2 g \psi a_1^3 \psi z^2 - a_1^4 \phi' - L^2 a^3_1 N^2 g \psi z^2 &= 0.
\end{align*}
\]
(28)

Again using the ingoing wave condition near the horizon, we have the following asymptotical behavior of a_1^3, a_1^4 and a_2^2.

Figure 5. The conductivity σ_{yy} for the p-wave superconductors with a fixed Gauss–Bonnet parameter $\alpha = 0.06$. The left figure is for the real part of σ_{yy}, while the right one is for the imaginary part of σ_{yy}.

Figure 6. The conductivity σ_{yy} for the p-wave superconductors with a fixed curvature-cubed parameter $\beta = 0.001$. Similarly, the left figure is for the real part of σ_{yy}, while the right one is for the imaginary part of σ_{yy}.
Near the horizon \(z \to 1 \):

\[
a^3_x = (1 - z)^{\frac{2}{N}} [1 + A_x^{(1)} (1 - z) + A_x^{(2)} (1 - z)^2 + \cdots].
\]

\[
a^1_x = (1 - z)^{\frac{2}{N}} [A_x^{(1)} (1 - z)^2 + A_x^{(2)} (1 - z)^3 + \cdots].
\]

\[
a^2_x = (1 - z)^{\frac{2}{N}} [A_x^{(1)} (1 - z) + A_x^{(2)} (1 - z)^2 + \cdots].
\]

Near the boundary of the AdS bulk \(z \to 0 \):

\[
a^3_x = a_x^{(0)} + a_x^{(2)} \xi^2 + \frac{a_x^{(0)} \omega^2 L^4 \log(A/z) \xi^2}{2} + \cdots,
\]

\[
a^1_x = a_x^{(0)} + a_x^{(2)} \xi^2 + \cdots,
\]

\[
a^2_x = a_x^{(0)} + a_x^{(2)} \xi^2 + \cdots.
\]

All the coefficients can be determined numerically. However, these quantities are gauge dependent since we have not done any gauge fixing to these components. As discussed in [8], in order to obtain the conductivity \(\sigma_x \) we need to define a gauge invariant quantity as follows:

\[
\tilde{a}_x^3 = a_x^3 + \frac{i \alpha^2 L^2 a_x^1 + \phi a_x^1}{\phi^2 - \omega^2 L^4} \psi.
\]

Then we have the asymptotical behavior of \(\tilde{a}_x^3 \) near the AdS boundary

\[
\tilde{a}_x^3 = a_x^{(0)} + a_x^{(2)} \xi^2 + \frac{a_x^{(0)} \omega^2 L^4 \log(A/z) \xi^2}{2} + \frac{i \alpha^2 L^2 a_x^{(0)} + \mu a_x^{(0)}}{\mu^2 - \omega^2 L^4} \psi^{(2)} \xi^2.
\]

where we have defined

\[
\tilde{a}_x^{(2)} = a_x^{(2)} + \frac{i \alpha^2 L^2 a_x^{(0)} + \mu a_x^{(0)}}{\mu^2 - \omega^2 L^4} \psi^{(2)}.
\]

As a result, the conductivity \(\sigma_x \) has the form

\[
\sigma_x = \frac{1}{i \omega} G^2(\omega) |_{\omega=0} = -\frac{2i \alpha^2 L^2 a_x^{(0)} \omega N N^3}{a_x^{(0)} \omega N^3} - i \omega N \ln N + \frac{1}{2} i \omega N.
\]

In order to understand the behavior of \(\sigma_x \), we simultaneously solve the equation groups (12), (13), (27) as well as (28). The numerical results of \(\sigma_x \) are shown in figures 7 and 8.

In these two figures, we find that the point of phase transition will also change when we choose different couplings. However, for the component \(\sigma_x \), the real part is different from that of component \(\sigma_y \). Comparing with \(\sigma_y \), the real part of \(\sigma_x \) ascends much more slowly. In the high-frequency limit, the imaginary part has a suppression effect with the increase of the coupling parameters. On the other hand, in the low-frequency limit, \(\sigma_x \) behaves quite like that in the Drude model, and this analogy was firstly observed by Gubser in [8]. The Drude model is conventionally used to describe the classical electron system, in which the real part of the conductivity is featured by the relation

\[
\text{Re}(\sigma) = \frac{\sigma_0}{1 + \omega^2 \tau^2}.
\]
where $\sigma_0 = n e^2 \tau / m$ is the dc conductivity, n, e, m and τ are the electron density, charge, mass and the relaxation time respectively. Based on the Drude relation, we can fit our numerical results to evaluate σ_0 and τ in figures 9 and 10. All the fittings are done under the condition that the condensation is stable, namely, the value of $T / \rho^{1/3}$ is small enough. We show the fitting results of σ_0 and τ and their dependence on coupling parameters α and β in table 2. From the table, we find that both of σ_0 and τ depend on the coupling parameters.

4. Discussions and conclusions

In this paper, we have constructed a p-wave holographic superconductor model in quasi-topological gravity in the probe limit. Firstly, we find that the superconducting condensation becomes harder with the increase of the GB coupling and curvature-cubed coupling. This is very similar to the case of the s-wave model. Secondly, both anisotropic conductivities σ_{xx} and σ_{yy} are studied. The numerical results indicate that the behavior of σ_{yy} at the low temperature is quite similar to that in the s-wave model. More precisely, with the increase of

![Figure 7](image-url)

Figure 7. The conductivity σ_{xx} for the p-wave superconductors with a fixed α. The left panel is for the real part of σ_{xx}, while the right one is for the imaginary part of σ_{xx}.

![Figure 8](image-url)

Figure 8. The conductivity σ_{xx} for the p-wave superconductors with a fixed curvature-cubed parameter $\beta = 0.001$. Similarly, the left panel is for the real part of σ_{xx}, while the right one is for the imaginary part of σ_{xx}.
Figure 9. The relations between $\log_{10}[\text{Re}(\sigma/T_c)]$ and $\log_{10}(\omega/\rho^{1/3})$ for fixed $\alpha = 0.06$. The blue and black lines are for σ_{yy} and σ_{xx} respectively, while the red ones are the fitting lines of σ_{xx} when ω is low enough.

Table 2. The evaluation of σ_0 and τ and their dependence on the values of coupling parameters.

α	β	σ_0/T	τT
0.06	-0.0008	1.0213×10^9	1.8304×10^6
0.06	0.0000001	7.5091×10^8	1.3064×10^6
0.06	0.001	6.4602×10^8	1.1072×10^6
0.06	0.1	5.6827×10^8	6.38×10^5
-0.2	0.001	3.735×10^9	8.804×10^6
-0.1	0.001	2.5534×10^9	5.588×10^6
0.0001	0.001	1.5959×10^9	3.2288×10^6
0.1	0.001	8.7646×10^8	1.6036×10^6

coupling parameters α and β, the ratio $\omega_g/T_c \approx 8$ becomes unstable and increases as well. However, the conductivity σ_{xx} behaves differently. Its real part grows more slowly with the frequency, while its imaginary part contains a spike. For both components, the imaginary part is always suppressed by the increase in couplings in the large-frequency limit. While in the low-frequency limit, our data for σ_{xx} fit the Drude model very well, but the values of dc conductivity as well as the relaxation time depend on the coupling parameters.

It is worth pointing out that due to the presence of higher curvature corrections in quasi-topological gravity, besides the ghost modes and naked singularity, one should also be cautious of other potential instabilities, such as the dynamical instability as discussed in
Figure 10. The relations between $\log_{10}[\text{Re}(\sigma/T_c)]$ and $\log_{10}[\omega/\rho^{1/3}]$ for fixed $\beta = 0.001$. The blue and black lines are for σ_{yy} and σ_{xx} respectively, while the red ones are the fitting lines of σ_{xx} when ω is low enough.

[48] for Lovelock gravity and the plasma instability as discussed in [39, 49]. Those potential instabilities may further restrict the valid values of the coupling parameters [39, 48, 49]. We leave this open issue for further investigation in future.

At the end of this paper, we remark that it should be worth investigating p-wave superconductors when the back reactions are taken into account in our model. It is expected that both the condensation and the charge transport would be corrected by the effects of back reactions [13, 30, 32, 43, 50]. Moreover, inspired by recent progress on the holographic non-fermion liquid and strange metals [51–56], it might be possible to explore the fermion system with a finite charge density in the framework of the quasi-topological gravity. In these systems, the fermion part near the horizon has a loop contribution to the total two-point correlator of the current; however, such an $O(N^0)$ contribution dominates the dissipation of the transport [57]. Since in quasi-topological gravity the bulk of spacetime may exhibit a richer structure of geometry due to the higher order couplings, we propose that the dual CFTs would show different behavior at low-energy limit. This is expected to be done in future work.

Acknowledgments

We are grateful to Jian–Pin Wu, Hai–Qing Zhang and Hongbao Zhang for reply and useful discussions. XMK and YL are partly supported by NSFC (nos 10663001,10875057), JiangXi SF (nos 0612036, 0612038), Fok Ying Tung Education Foundation (no 111008), the key project of Chinese Ministry of Education (no 208072) and Jiangxi young scientists (JingGang
Star) program. WJL is partly supported by NSFC (no 10975016). We also acknowledge the support by the Program for Innovative Research Team of Nanchang University.

References

[1] Maldacena J M 1998 The large N limit of superconformal field theories and supergravity Adv. Theor. Math. Phys. 2 231
[2] Witten E 1998 Anti-de Sitter space and holography Adv. Theor. Math. Phys. 2 253–91
[3] Aharony O, Gubser S S, Maldacena J M, Ooguri H and Oz Y 2000 Large N field theories, string theory and gravity Phys. Rep. 323 183–386
[4] Hartnoll S A 2009 Lectures on holographic methods for condensed matte physics Class. Quantum Grav. 26 224002
[5] McGreevy J 2009 Holographic duality with a view toward many-body physics arXiv:0909.0518
[6] Sachdev S 2010 Condensed matter and AdS/CFT arXiv:1002.2947v1
[7] Horowitz Gary T 2011 Surprising connections between general relativity and condensed matter Class. Quantum Grav. 28 114008
[8] Gubser S S 2008 Breaking an Abelian gauge symmetry near a black hole horizon Phys. Rev. D 78 065034
[9] Breitenlohner P and Freedman D Z 1982 Positive energy in anti-de sitter backgrounds and gauged extended supergravity Phys. Lett. B 115 197
[10] Hartnoll S A, Herzog C P and Horowitz G T 2008 Building a Holographic superconductor Phys. Rev. Lett. 101 031601
[11] Hartnoll S A, Herzog C P and Horowitz G T 2008 Holographic superconductors J. High Energy Phys. JHEP12(2008)015
[12] Herzog C P 2009 Lectures on holographic superfluidity and superconductivity J. Phys. A: Math. Theor. 42 343001
[13] Horowitz Gary T 2010 Introduction to holographic superconductors arXiv:1002.1722v2
[14] Pan Q, Wang B, Papantonopoulos E, Oliveria J and Pavan A B 2010 Holographic superconductors with various condensates in Einstein–Gauss–Bonnet gravity Phys. Rev. D 81 106007
[15] He X, Wang B, Cai R-G and Lin C-Y 2010 Signature of the black hole phase transition in quasinormal modes Phys. Lett. B 688 230
[16] Xian-Hui G, Wang B, Shao-Feng W and Yang G-H 2010 Analytical study on holographic superconductors in external magnetic field J. High Energy Phys. JHEP08(2010)108
[17] Pan Q and Wang B 2010 General holographic superconductor models with Gauss–Bonnet corrections Phys. Lett. B 693 159
[18] Gao X and Zhang H 2010 Refractive index in holographic superconductors J. High Energy Phys. JHEP09(2010)075
[19] Jian-Pin W, Cao Y, Kuang X-M and Wei-Jia L 2011 The 3+1 holographic superconductors with Weyl corrections Phys. Lett. B 697 153–8
[20] Pan Q, Wang B and Wang G 2011 Various types of phase transitions in the AdS soliton background Phys. Lett. B 699 383–7
[21] Pan Q, Wang B and Wang G 2011 Analytical investigation of the phase transition between holographic insulator and superconductor in Gauss–Bonnet gravity J. High Energy Phys. JHEP11(2011)088
[22] Gregory R, Kanno S and Soda J 2009 Holographic superconductors with higher curvature corrections arXiv:0907.3203v3
[23] Gomes K K, Pasupathy A N, Pushp A, Ono S, Ando Y and Yazdani A 2007 Visualizing pair formation on the atomic scale in the high-temperature superconductor Bi2Sr2CaCu2O8+δ Nature 447 569
[24] Gubser S S 2008 Colorful horizons with charge in anti-de Sitter space Phys. Rev. Lett. 101 191601
[28] Gubser S S and Pufu S S 2008 The gravity dual of a p-wave superconductor J. High Energy Phys. JHEP11(2008)033 (arXiv:0805.2960v2 [hep-th])

[29] Cai R G, Nie Z Y and Zhang H Q 2010 Holographic p-wave superconductors from Gauss–Bonnet gravity Phys. Rev. D 82 066007 (arXiv:1007.3321 [hep-th])

[30] Ammon M, Erdmenger J, Grass V, Kerner P and O’Bannon A 2010 On holographic p-wave superfluids with back-reaction Phys. Lett. B 686 192–8 arXiv:0912.3515v2 [hep-th]

Ammon M, Erdmenger J, Kaminski M and O’Bannon A 2010 Fermionic operator mixing in holographic p-wave superfluids J. High Energy Phys. JHEP05(2010)053 (arXiv:1003.1134v2 [hep-th])

[31] Zeng H B, Fan Z Y and Zong H S 2010 Holographic p-wave superconductors with Gauss–Bonnet gravity with back-reaction Phys. Rev. D 83 066013 (arXiv:1012.5559v2 [hep-th])

[32] Myers R C and Robinson B 2010 Black holes in Quasi-topological gravity J. High Energy Phys. JHEP 08(2010)067 arXiv:1003.5357v2

[33] Myers R C and Robinson B 2010 Fermionic operator mixing in holographic p-wave superfluids J. High Energy Phys. JHEP05(2010)053 (arXiv:1003.1134v2 [hep-th])

[34] Oliva J and Ray S 2010 A new cubic theory of gravity in five dimensions: Black hole, Birkhoff’s theorem and C-function Class. Quantum Grav. 27 225002 (arXiv:1003.4773 [gr-qc])

[35] Oliva J and Ray S 2010 A classification of six derivative Lagrangians of gravity and static spherically symmetric solutions Phys. Rev. D 82 124030 (arXiv:1004.2055v2 [hep-th])

[36] Sinha A 2010 On the new massive gravity and AdS/CFT J. High Energy Phys. JHEP06(2010)061 (arXiv:1003.0683 [hep-th])

[37] Sinha A 2011 On higher derivative gravity, c-theorems and cosmology Class. Quantum Grav. 28 085002 (arXiv:1008.4315 [hep-th])

[38] Hofman D M 2009 Higher derivative gravity, causality and positivity of energy in a UV complete QFT Nucl. Phys. B 823 174 (arXiv:0907.1625 [hep-th])

[39] Myers R C, Paulos M F and Sinha A 2010 Holographic studies of quasi-topological gravity J. High Energy Phys. JHEP08(2010)035 (arXiv:1004.2055v2 [hep-th])

[40] Amsel A J and Gorbonos D 2010 The weak gravity conjecture and the viscosity bound with six-derivative corrections J. High Energy Phys. JHEP11(2010)033 (arXiv:1005.4718v2 [hep-th])

[41] Kang X M, Li W J and Ling Y 2010 Holographic superconductors in quasi-topological gravity J. High Energy Phys. JHEP12(2010)069 (arXiv:1008.4066 [hep-th])

[42] Fadafan K B 2011 Heavy quarks in the quasi-topological gravity arXiv: 1102.2289v1 [hep-th]

[43] Siani M 2010 Holographic superconductors and higher curvature corrections J. High Energy Phys. JHEP12(2010)069 (arXiv:1008.4066 [hep-th])

[44] Lovelock D 1971 J. Math. Phys. 12 498

Gross D J and Sloan J H 1987 Nucl. Phys. B 291 41

Metsaev R R and Tseytlin A A 1987 Nucl. Phys. B 293 385

[45] Robinson M T 2000 arXiv: hep-th/0002125

[46] Son D T and Starinets A O 2002 Minkowski-space correlators in AdS/CFT correspondence: recipe and applications J. High Energy Phys. JHEP09(2002)042 (arXiv:hep-th/0205051)

[47] Barclay L, Gregory R, Kanno S and Sutcliffe P 2010 Gauss–Bonnet holographic superconductors J. High Energy Phys. JHEP12(2010)035 (arXiv:1009.1991 [hep-th])

[48] Takahashi T and Soda J 2011 arXiv:1108.5043 [hep-th]

[49] Camanho X O, Edelstein J D and Paulos M F 2011 J. High Energy Phys. JHEP05(2011)127 (arXiv:1010.1682 [hep-th])

[50] Hartnoll S A, Polchinski J, Silverstein E and Tong D 2010 Towards strange metallic holography J. High Energy Phys. JHEP04(2010)120 (arXiv:0912.1061v2 [hep-th])

Faulkner T and Polchinski J 2010 Semi-holographic Fermi liquids arXiv:1001.5049v2 [hep-th]

Jensen K, Kachru S, Karch A, Polchinski J and Silverstein E 2011 Towards a holographic marginal Fermi liquid arXiv:1105.1772v1 [hep-th]
[54] Cubrovic M, Zaanen J and Schalm K 2009 Science 325 439 (arXiv:0904.1993 [hep-th])
[55] Sachdev S 2010 Strange metals and the AdS/CFT correspondence J. Stat. Mech. 1011 P11022
(arXiv:1010.0682v3 [cond-mat.str-el])
[56] Wu J P 2011 Holographic fermions in charged Gauss–Bonnet black hole J. High Energy Phys. JHEP07(2011)106
(arXiv:1103.3982v2 [hep-th])
[57] Faulkner T, Iqbal N, Liu H, McGreevy J and Vegh D 2010 Strange metal transport realized by gauge/gravity
duality Science 329 1043