Serum Immunoglobulin G Antibody Responses to *Bordetella pertussis* Lipooligosaccharide and *B. parapertussis* Lipopolysaccharide in Children with Pertussis and Parapertussis

BIRGER TROLLFORS,1,* TERESA LAGERGÅRD,2 JOHN TARANGER,1 ELISABET BERGFORS,1 RACHEL SCHNEERSON,3 AND JOHN B. ROBBINS3

The Göteborg Pertussis Vaccine Study, The Göteborg Primary Health Care System,1 and the Department of Medical Microbiology and Immunology, Göteborg University,2 Göteborg, Sweden, and the National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 208923

Received 2 February 2001/Returned for modification 27 March 2001/Accepted 21 May 2001

Serum immunoglobulin G (IgG) antibodies against the lipooligosaccharide (LOS) of *Bordetella pertussis* and the lipopolysaccharide (LPS) of *Bordetella parapertussis* were measured by enzyme-linked immunosorbent assay in paired sera from 40 children with pertussis and 14 with parapertussis. Wide differences in the individual responses were noted. Both anti-LOS and -LPS IgG levels increased significantly in the children with pertussis, as did anti-LPS but not anti-LOS in those with parapertussis.

Bordetella pertussis and *Bordetella parapertussis* are closely related species and share many virulence factors, including the pertussis toxin gene. The former organism expresses pertussis toxin, while the latter does not (1, 14). The two organisms have pertussis toxin gene. The former organism expresses pertussis related species and share many virulence factors, including the lipopolysaccharide of *B. parapertussis* (H9251).

Characterization of the serum antibody responses against the lipopolysaccharides of these two *Bordetella* species is of interest for two reasons. First, serum antibodies against the lipopolysaccharides of gram-negative organisms can be protective (6). Second, serum antibody responses to *B. pertussis* LOS can be used to diagnose pertussis (8, 9). This is of particular interest in recipients of acellular pertussis vaccines in which LOS is only a trace contaminant.

In the present work, the serum immunoglobulin G (IgG) antibodies against the lipooligosaccharide (LOS) of *B. pertussis* and the lipopolysaccharide (LPS) of *B. parapertussis* were assayed in all study participants (n = 12) and all siblings (n = 2) in the vaccine efficacy trial (19) with laboratory-verified parapertussis for whom paired sera were available. The age of the 14 children (nine male, five female) ranged between 6 months and 7 years (median, 4 years). The time from onset of symptoms until the first serum was obtained ranged between 5 and 14 days (median, 8 days).

Children with pertussis. Serum IgG antibodies were assayed in all study participants (n = 12) and all siblings (n = 2) in the vaccine efficacy trial (19) with laboratory-verified pertussis for whom paired sera were available. The age of the 14 children (nine male, five female) ranged between 6 months and 7 years (median, 1 year). The diagnosis of pertussis was verified by isolation of the organism from 10 children. For three children, parapertussis DNA was detected in nasopharyngeal secretion by PCR (13). *B. parapertussis* was isolated from a sibling of one child. In addition, all 14 children had significant increases in antibodies against filamentous hemagglutinin but not against pertussis toxin. The interval between onset of symptoms and the first serum sample ranged between 7 and 16 days (median, 13 days).

Serology. Serum IgG was determined by ELISA. Lipopolysaccharides were prepared from *B. pertussis* (strain Tohama; Culture Collection of Göteborg University no. 15069) and from *B. parapertussis* (American Type Culture Collection strain 15989) by hot phenol-water extraction (21). The crude lipopolysaccharides were treated with RNase and DNase followed by proteinase K (Sigma Chemical Co., St. Louis, Mo.) and then ultracentrifuged. The protein and nucleic acid content of the two preparations was <1%.

Microtiter plates were coated at 23°C with LOS or LPS at 2 μg/ml, diluted in phosphate-buffered saline (PBS) containing 10 mM MgCl2. The plates were washed twice with PBS and blocked with 0.1% bovine serum albumin (BSA) in PBS (0.1% BSA–PBS) for 1 h at 23°C. The plates were then washed three
times with 0.05% Tween 20. The acute- and convalescent-phase sera were diluted 1:50, and tested on the same plate in eight threefold dilutions. The plates were incubated overnight, and after washing, alkaline phosphatase-coupled anti-human IgG (Jackson ImmunoResearch Lab) diluted in 0.1% BSA-PBS was added. The plates were incubated at 23°C for 5 h. After washing, the plates were developed with nitrophenyl phosphate substrate at 1 mg/ml (Sigma) in 1 M Tris-HCl buffer, pH 9.8, with 3 mM MgCl2 and read at 460 nm (Titertek Multiscan; Flow Laboratories). The optimal concentrations of the reagents were tested by checkerboard titrations with each serum tested in duplicate. Wells containing all reagents but the reagents were tested by checkerboard titrations with each reagent.

Statistical analysis. Comparisons between acute- and convalescent-phase sera were performed with a paired r test after logarithmic and rank transformation of data. All P values are two-tailed.

Serum IgG in patients with pertussis. Table 1 shows that there was approximately an eightfold rise in the GMT of anti-LOS IgG from *B. pertussis* between the acute- and convalescent-phase sera in the children with pertussis (*P* < 0.0001 for logistically and rank-transformed data). The range of increases varied widely: 10 had no detectable anti-LOS IgG in their convalescent-phase sera, 5 had titers between 50 and 100, 8 had titers between 100 and 1,000, and the remaining 16 had titers between 1,000 and 12,045.

With the *B. parapertussis* LPS antigen, there was also an approximately eightfold rise in the GMT of anti-LPS IgG in the children with pertussis (*P* < 0.0001 for logistically and rank-transformed data). Most children with anti-LOS IgG increases also had increases in anti-LPS IgG, but some exceptions were noted. One child had an increase from 73 to 10,147 against LOS, while anti-LPS IgG was <50 in both sera. Three children had increases from levels of less than 100 to more than 5,000 against LPS, while anti-LOS IgG was below 100 in both acute- and convalescent-phase sera. In these three children, the diagnosis of pertussis was verified by both isolation of the organism and significant increases in pertussis toxin IgG.

Serum IgG in patients with parapertussis. Table 1 shows that IgG antibodies to the LPS of *B. parapertussis* increased significantly (~10-fold) in the children with parapertussis (*P* < 0.0001 for rank-transformed and *P* < 0.0003 for logarithmically transformed data). Only one child with parapertussis had non-detectable anti-LPS IgG in the convalescent-phase serum, and two had titers of 50 to 100.

In contrast to the heterologous anti-LPS IgG response of the patients with pertussis, none of the 14 patients with parapertussis had a rise in anti-LOS IgG.

Comments. This study shows that the IgG response following parapertussis is directed only to the LPS of *B. parapertussis*, while infection with *B. pertussis* elicits antibodies reactive with the liposaccharides of both *Bordetella* species. Our explanation for these different responses is based upon the structures of the two surface liposaccharides. The core region of the LPS of *B. parapertussis* is “covered” by the O-specific polysaccharide region, while antibodies to the shared core region, elicited by *B. pertussis*, are reactive both with the LOS of this organism and with the purified *B. parapertussis* LPS, as shown in vitro (11, 17). An LOS IgG response in patients with pertussis has been documented previously (8, 16). There seems to be no difference in the overall immunogenicity of these two pathogens in patients, as the serum IgG responses to the filamentous hemagglutinin and pertactin were similar in both patient groups (2).

We have no explanation for the finding that three pertussis patients developed *B. parapertussis* anti-LPS but not *B. pertussis* anti-LOS IgG. Possibly, they had a mixed infection with both pathogens.

Although the LOS of *B. pertussis* and the LPS of *B. parapertussis* have structural and biological properties similar to those of other respiratory and enteric gram-negative pathogens, including pyrogenticity (20), fever is not seen in *Bordetella* infections. Accordingly, it is unlikely that these surface lipopolysaccharides exert a major pathogenic role in the coughing of pertussis or parapertussis.

Serum antibodies to the lipopolysaccharides of bordetellae are found in many individuals without a recent history of a severe cough (8, 16). These so-called “natural” antibodies were probably stimulated by cross-reacting antigens. The presence of LOS antibodies in patients who later develop pertussis argues against their protective role against *B. pertussis*. Although they induce an in vitro bacteriolysis of *B. pertussis* in the presence of diluted complement, the failure of anti-LOS IgG to protect against pertussis may be due to the inaccessibility of this comparatively small surface antigen (4, 5, 7, 10, 17).

Similar to the LPS of other gram-negative bacteria and in contrast to the LOS of *B. pertussis*, the O-specific polysaccharide region of the LPS shields *B. parapertussis* against the cidal action of complement alone (3, 14, 15, 18). Accordingly, the LPS region may confer virulence on *B. parapertussis*.

In summary, serum IgG increases against LOS of *B. pertussis* and LPS of *B. parapertussis* are common but not constant findings in patients with pertussis and parapertussis, respec-
mass vaccination with acellular pertussis vaccines. In populations in which pertussis has become eradicated due to pertussis vaccines and for studying parapertussis epidemiology in populations in which pertussis has become eradicated due to mass vaccination with acellular pertussis vaccines.

REFERENCES
1. Arico, B., and R. Rappuoli. 1987. Borrelia parapertussis and Bordetella bronchiseptica contain transcriptionally silent pertussis toxin genes. J. Bacteriol. 169:2847–2853.
2. Bergfors, E., B. Trollfors, J. Taranger, T. Lagergård, V. Sundh, and G. Zackrisson. 1999. Parapertussis and pertussis: differences and similarities in incidence, clinical course, and antibody responses. Int. J. Infect. Dis. 3:140–146.
3. Brodeur, B. R., J. Hamei, D. Martin, and R. Rondeau. 1991. Biological activity of a human monoclonal antibody to Bordetella pertussis lipooligosaccharide. Hum. Antib. Hybrid. 5:194–198.
4. Byrd, D. W., R. M. Roop, H. P. Veit, and G. G. Schurig. 1984. Characterization of the common lipopolysaccharide O-chains produced by Bordetella bronchiseptica and Bordetella parapertussis. Infect. Immun. 43:55–59.
5. Caroff, M., R. Chaby, D. Karibian, J. Perry, C. Deprun, and L. Szabo. 1980. Variations in the carbohydrate regions of Bordetella pertussis lipopolysaccharides: electrophoretic, serological, and structural features. J. Bacteriol. 172:1121–1128.
6. Cohen, D., S. Ashkenazi, M. S. Green, M. Gdalevich, G. Robin, R. Slepov, M. Yavzori, N. Orr, C. Block, I. Ashkenazi, J. Shemer, D. N. Taylor, T. L. Hale, J. C. Sadof, D. Pavlikova, R. Schnerson, and J. B. Robbins. 1997. Double-blind vaccine-controlled randomized efficacy trial of an investigational Shigella sonnei conjugate vaccine in young adults. Lancet 349:155–159.
7. DiFabio, J. L., M. Caroff, D. Karibian, J. C. Richards, and M. B. Perry. 1992. Characterization of the common lipopolysaccharide O-chains produced by Bordetella bronchiseptica and Bordetella parapertussis. FEMS Microbiol. Lett. 97:275–282.
8. Granström, G., M. Granström, M. Anderson, U. Lindquist, K. Leontein, S. B. Svensson, and B. Wretlind. 1990. Bordetella pertussis lipopolysaccharide as antigen in ELISA for serological diagnosis of whooping cough. Serodiagn. Immunother. Infect. Dis. 4:151–158.
9. Granström, M., and G. Granström. 1993. Serological correlates in whooping cough. Vaccine 11:445–448.
10. Harvil, E. T., A. Preston, P. A. Cotter, A. G. Allen, D. J. Maskell, and J. F. Miller. 2000. Multiple roles for Bordetella lipopolysaccharide molecules during respiratory tract infection. Infect. Immun. 68:6720–6728.
11. Khelef, N., B. Danve, M.-J. Quentin-Millet, and N. Guiso. 1993. Bordetella pertussis and Bordetella parapertussis: two immunologically distinct species. Infect. Immun. 61:486–490.
12. LeDura, A., M. Caroff, R. Chaby, and L. Szabo. 1978. A novel type of endotoxin structure present in Bordetella pertussis. Eur. J. Biochem. 84:579–589.
13. Lind-Brandberg, L., C. Welinder-Olsen, T. Lagergård, J. Taranger, B. Trollfors, and G. Zackrisson. 1998. Evaluation of PCR for diagnosis of Bordetella pertussis and Bordetella parapertussis infections. J. Clin. Microbiol. 36:679–683.
14. Marchitto, K. S., S. G. Smith, C. Locht, and J. M. Keith. 1987. Nucleotide sequence homology to pertussis toxin gene in Bordetella bronchiseptica and Bordetella parapertussis. Infect. Immun. 55:497–501.
15. Mountzouros, K. T., A. Kimura, and J. L. Cowell. 1992. A bactericidal monoclonal antibody specific for the lipopolysaccharide of Bordetella pertussis reduces colonization of the respiratory tract of mice after aerosol infection with B. pertussis. Infect. Immun. 60:5316–5318.
16. Novotny, P., M. E. Macauley, T. C. Hart, and F. Skvaril. 1990. Analysis of antibody profiles in children with whooping cough. Symposium on Pertussis: Evaluation and Research on Acellular Pertussis Vaccines. Shizuoka, Japan, 1990. Dev. Biol. Stand. 73:267–273.
17. Peppler, M. S. 1984. Two physically and serologically distinct lipopolysaccharide profiles in strains of Bordetella pertussis and their phenotypic variants. Infect. Immun. 43:224–232.
18. Shubin, R. D., J. Hamel, M. F. Leef, and B. R. Brodeur. 1994. Analysis of protective and nonprotective monoclonal antibodies specific for Bordetella pertussis lipopolysaccharide. Infect. Immun. 62:722–725.
19. Trollfors, B., J. Taranger, T. Lagergård, L. Lind, V. Sundh, G. Zackrisson, W. Blackwelder, C. U. Lowe, and J. B. Robbins. 1995. A placebo-controlled trial of a pertussis toxoid vaccine. N. Engl. J. Med. 333:1045–1050.
20. Wantanabe, M., H. Takimoto, Y. Kumazawam, and K. Amano. 1990. Biological properties of lipopolysaccharides from Bordetella pertussis. J. Gen. Microbiol. 136:889–903.
21. Westphal, O., and K. Jann. 1965. Bacterial polysaccharide: extraction with phenol-water and further applications of the procedure, p. 83–91. In R. L. Whisler (ed.), Methods in carbohydrate chemistry, vol. 5. Academic Press, New York, NY.