Impact on wind turbine loads from different down regulation control strategies

Galinos, Christos; Larsen, Torben J.; Mirzaei, Mahmood

Publication date: 2018

Document Version
Publisher's PDF, also known as Version of record

Citation (APA):
Galinos, C., Larsen, T. J., & Mirzaei, M. (2018). Impact on wind turbine loads from different down regulation control strategies. Poster session presented at 15th Deep Sea Offshore Wind R&D Conference, Trondheim, Norway.
Power down regulation can be done in different ways by adjusting the rotor speed and blade pitch angle on the individual turbines, which affect the fatigue loads on the turbine components. Until now the main focus was on power optimization [7, 8] and there has been limited documentation on the load variations as a result of different down-regulation strategies on wind turbines under wakes.

Main objective: Load impact for three characteristic derating strategies on the upstream WT to the downstream one:

- **Control strategies are directly linked with the deficit strength of the upstream turbine operation.**
- **The load levels for minRS and minT strategies are almost equal when the WTS are aligned with the wind direction (full wake situation).**
- **Above rated wind speed (8 m/s) the downstream WT blade flap loads are minimized when the upfront WT is derated with the minRS and minT strategy.**

Method

- **High fidelity aerelastic simulations**
 - HAWC2 - Including the Dynamic Wake Meander model (DWM) [3, 4, 5]
 - Generic 2MW Wind Turbine (WT)
 - Two WTs in wind farm configuration
 - Upfront WT-2 is down-regulated, downstream WT-1 normal operation
 - Wind farm derating control strategies
 - minimum/maximum rotor speeds (minRS, maxRS)
 - Minimum thrust (minT)

Results

- **Equivalent fatigue loads on downstream WT-1**
 - Blade root flapwise BM
 - Tower base fore-aft BM
 - Main bearing yaw moment
 - Wind speed (4D)

Conclusions

- **Below rated wind speed (8 m/s) the downstream WT blade flap loads are minimized when the upfront WT is derated with the minRS and minT strategy.**
- **The maxRS mode returns always the highest loads variations.**
- **The load levels for minRS and minT strategies are almost equal when the WTS are aligned with the wind direction (full wake situation).**
- **Above rated wind speed (16 m/s) the tendency is the same as at 8 m/s.**
- **Control strategies are directly linked with the deficit strength of the upstream turbine operation.**

References

1. Gebraad, P. M. O., and Van Wingerden, J. W. Maximum Power-Point Tracking Control for Wind Farms. Wind Energy (2016).
2. Kaner, S. K., Savenije, F. J., and Engels, W. P. Active wake control: An approach to optimise the lifetime operation of wind farms. Wind Energy (2018).
3. Larsen, T. J., Larsen, G. C., Madsen, H. A., & Petersen, S. M. (2015). Wake effects above rated wind speed: An overlooked contributor to high loads in wind farms. Scientific Proceedings. EWEA Annual Conference and Exhibition 2015, 95–99.
4. Larsen, T. J., Larsen, G. C., Madsen, H. A., Thomsen, K., and Markkula, P. S. Comparison of measured and simulated loads for the Siemens SWT 2.3 operating in wake conditions at the Lillgrund Wind Farm using HAWC2 and the dynamic wake meander model. EWEA Annual Conference and Exhibition (2015).
5. Larsen, T. J., Madsen, H. A., Larsen, G. C., & Hansen, K. S. (2013). Validation of the dynamic wake meander model for loads and power production in the Egmond aan Zee wind farm. Wind Energy, 16(4), 605–624.
6. Madsen, H. A., Larsen, G. C., Larsen, T. J., Trulstrup, N., & Mikkelsen, P. E. (2015). Calibration and Validation of the Dynamic Wake Meandering Model for Implementation in an Aerelastic Code. Journal of Solar Energy Engineering, 137(4).
7. Mirzaei, M., Göçmen Bozkurt, T., Giebel, G., Samers, P. E., & Poulsen, N. K. (2015). Turbine Control Strategies for Wind Farm Power Optimization. Proceedings of 2015 American Control Conference, 2015-, 1709–1714.
8. Mirzaei, M., Soltani, M., Poulsen, N. K., & Nielsen, H. H. (2014). Model based active power control of a wind turbine. Proceedings of the American Control Conference, 5027–5042.
9. Park, A. J., Kwon, B. S., and Law, A. K. Wind Farm Power Maximization Based On A Cooperative Static Game Approach. Proceedings of the SPIE Active and Passive Smart Structures and Integrated Systems Conference (2013).
10. Schkaa, P. Heat & Flux - Enabling the Wind Turbine Controller. European Wind Energy Conference and Exhibition (2007), 2, 1134–1140.