Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin

Morgan D Fullerton1,2,9, Sandra Galic3,9, Katarina Marincenko1,2, Sarah Sikka1,2, Thomas Pulinilkunnil4, Zhi-Ping Chen3, Hayley M O’Neill1,2,5, Rebecca J Ford1,2, Rengasamy Palanivel1,2, Matthew O’Brien3,5, D Graham Hardie6, S Lance Macaulay7, Jonathan D Schertzer1,2,8, Jason R B Dyck4, Bryce J van Denderen3, Bruce E Kemp3,5 & Gregory R Steinberg1–3

The obesity epidemic has led to an increased incidence of nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes. AMP-activated protein kinase (Ampk) regulates energy homeostasis and is activated by cellular stress, hormones and the widely prescribed type 2 diabetes drug metformin1-2. Ampk phosphorylates mouse acetyl-CoA carboxylase 1 (Acc1; refs. 3, 4) at Ser79 and Acc2 at Ser212, inhibiting the conversion of acetyl-CoA to malonyl-CoA. The latter metabolite is a precursor in fatty acid synthesis3 and an allosteric inhibitor of fatty acid transport into mitochondria for oxidation5. To test the physiological impact of these phosphorylation events, we generated mice with alanine knock-in mutations in both Acc1 (at Ser79) and Acc2 (at Ser212) (Acc double knock-in, AccDKI). Compared to wild-type mice, these mice have elevated lipogenesis and lower fatty acid oxidation, which contribute to the progression of insulin resistance, glucose intolerance and NAFLD, but not obesity. Notably, AccDKI mice made obese by high-fat feeding are refractory to the lipid-lowering and insulin-sensitizing effects of metformin. These findings establish that inhibitory phosphorylation of Acc by Ampk is essential for the control of lipid metabolism and, in the setting of obesity, for metformin-induced improvements in insulin action.

Genetic disruption of Acc1 (refs. 7, 8) or Acc2 (refs. 9–12) has yielded conflicting results as to the role of these enzymes in controlling fatty acid metabolism. The Ampk-mediated phosphorylation of Acc1 at Ser79 (Acc1 Ser79, equivalent to Acc2 Ser212) inhibits catalytic activity in cell-free systems3,6. To test the importance of Ampk signaling to Acc in vivo, we generated Acc1-S79A and Acc2-S212A knock-in mice and intercrossed these strains to generate AccDKI mice (Supplementary Fig. 1a, b). We examined Ampk-mediated phosphorylation of liver Acc1 Ser79 and Acc2 Ser212 by mass spectrometry and confirmed the absence of phosphorylation at these sites in the AccDKI but not the wild-type (WT) mice (Fig. 1a and Supplementary Fig. 1c). We observed no change in baseline Ampk Thr172 phosphorylation in livers from all three lines (Supplementary Fig. 2b, d–f). We examined Ampk-mediated phosphorylation of liver Acc1 Ser79 and Acc2 Ser212 by mass spectrometry and confirmed the absence of phosphorylation at these sites in the AccDKI but not the wild-type (WT) mice (Fig. 1a and Supplementary Fig. 1c). We observed no change in baseline Ampk Thr172 phosphorylation in livers from all three lines and no change in the expression of either Acc isoform (Fig. 1a). The activities of Acc1 and Acc2 were elevated in AccDKI mice (Fig. 1b, c) compared to WT controls, consistent with Ampk phosphorylation negatively regulating Acc1 and Acc2 enzyme activity in vivo. Furthermore, dephosphorylation of liver Acc1 using lambda phosphatase increased enzyme activity in liver from WT but not AccDKI mice (Supplementary Fig. 2a, b), indicating that Ser79 is the main regulatory site for Acc1 activity. Both WT and AccDKI enzymes remained sensitive to citrate activation, confirming that other mechanisms of Acc regulation remained intact in the AccDKI livers.

Liver malonyl-CoA content is dependent on Acc activity for synthesis and on malonyl-CoA decarboxylase activity for degradation. AccDKI mice had elevated liver malonyl-CoA in the fed state compared to WT control mice (Fig. 1d, e) compared to WT controls. Consistent with this, AccDKI mice also had higher hepatic de novo lipogenesis in vivo (Supplementary Fig. 2c) than WT mice. In contrast, single mutations in Acc1 or Acc2 had minimal changes in these parameters, indicating the specificity of the effects on the regulation of Acc isoforms (Supplementary Fig. 2d–f), which is consistent with a previous siRNA knockdown study4.

Received 20 February; accepted 11 September; published online 3 November 2013; doi:10.1038/nm.3372

1Department of Medicine, Division of Endocrinology and Metabolism, McMaster University, Hamilton, Ontario, Canada. 2Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada. 3St. Vincent’s Institute of Medical Research, Fitzroy, Victoria, Australia. 4Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada. 5Department of Medicine, University of Melbourne, Fitzroy, Victoria, Australia. 6Division of Cell Signaling and Immunology, College of Life Sciences, University of Dundee, Dundee, Scotland, UK. 7Commonwealth Scientific and Industrial Research Organisation Preventative Health Flagship, Materials Science and Engineering, Parkville, Victoria, Australia. 8Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada. 9These authors contributed equally to this work. Correspondence should be addressed to G.R.S. (gsteinberg@mcmaster.ca).
Skeletal muscle is the major tissue contributing to the basal metabolic rate, and Acc2 and malonyl-CoA have been shown to be important in regulating skeletal muscle fatty acid oxidation in some9,11, but not all10,12 studies. We found that relative to WT controls, malonyl-CoA was higher in skeletal muscle of AccDKI mice (Supplementary Fig. 2g), whereas fatty acid oxidation was slightly lower (Supplementary Fig. 2h). These data indicate that liver and skeletal muscle malonyl-CoA content and fatty acid metabolism are sensitive to the regulatory phosphorylation of Acc1 at Ser79 and Acc2 at Ser212.

We examined the phenotype of AccDKI mice fed a standard chow diet. Growth curves (data not shown) and adiposity were similar (Fig. 1g), but liver (Fig. 1h) and skeletal muscle (Supplementary Fig. 2i) diacylglycerol (DAG) and triacylglycerol (TAG) levels were elevated in AccDKI compared to WT mice. There were no differences in ceramide content in either tissue (data not shown). Elevated hepatic lipid content in AccDKI mice was associated with clinical signs of NALFD, including an increased level of fibrosis (Fig. 1i) and a slightly elevated serum ratio of alanine aminotransferase to aspartate aminotransferase (Supplementary Fig. 2j) compared to WT controls. Pathological accumulation of DAG has been shown to activate atypical isoforms of protein kinase C (Pkc)15, specifically Pkc-ε and Pkc-δ in liver16, and Pkc-θ in skeletal muscle17, which have been shown to interfere with canonical insulin signaling. Consistent with this, AccDKI mice had greater amounts of membrane-associated (Fig. 1j) and phosphorylated Pkc-ε (Supplementary Fig. 3a) in liver and Pkc-θ in skeletal muscle (Supplementary Fig. 3b) compared to control animals, whereas amounts of membrane-associated Pkc-δ did not differ between AccDKI and WT mice (data not shown). These results demonstrate that Acc Ser79 and Ser212 phosphorylation play an essential part in preventing ectopic lipid accumulation independent of body mass or adiposity.

The storage of excess lipid in insulin-sensitive organs such as liver and skeletal muscle is strongly associated with insulin resistance15,18. We found that AccDKI mice were hyperglycemic (Fig. 2a), hyperinsulinemic (Fig. 2b) and also glucose (Fig. 2c) and insulin intolerant (Fig. 2d) compared to WT controls. Hyperinsulinemic-euglycemic clamp experiments (Supplementary Fig. 3c) revealed that AccDKI mice had a lower glucose infusion rate (GIR) (Fig. 2e), a lower glucose disposal rate (GDR) (Fig. 2e), elevated hepatic glucose production (HGP) (Fig. 2f) and a lower suppression of HGP by insulin (Fig. 2g) compared to WT controls. Further, livers from AccDKI mice had reduced Akt kinase (Ser473) and FoxO1 transcription factor (Ser253) phosphorylation (Fig. 2h,i) and higher gluconeogenic gene expression at the completion of the clamp (Fig. 2j) compared to WT controls. In addition, we found that c-Jun N-terminal kinase (Jnk), which also inhibits canonical insulin signaling19, was unchanged in livers from Chow-fed AccDKI mice (Supplementary Fig. 3d). We observed a trend toward decreased 2-deoxyglucose (2-DG) uptake into skeletal muscle of AccDKI mice during the clamp (Supplementary Fig. 3e) and a marked reduction in muscle Akt (Ser473) and FoxO1 (Ser253) phosphorylation (Supplementary Fig. 3f,g) at the completion of the clamp.
clamp compared to WT control mice. Furthermore, insulin resistance in AccDKI mice was independent of changes in liver or adipose tissue macrophage accumulation, inflammatory cytokine gene expression or protein content (Supplementary Fig. 4a–c) or differences in circulating free fatty acids (Supplementary Fig. 4d). These results indicate that Acc phosphorylation is required to maintain insulin sensitivity in lean healthy mice. Notably, mice with complete deletions of Ampk isoforms in skeletal muscle20 or liver21 have normal lipid levels and insulin sensitivity, suggesting that in these models, there may be alterations in compensatory pathways that are important for controlling fatty acid metabolism.

Over 120 million people are prescribed metformin for the management of type 2 diabetes22. As metformin indirectly activates Ampk, it was initially thought that Ampk mediates metformin’s therapeutic actions23. However, acute inhibition of gluconeogenesis by metformin is independent of Ampk21 and involves inhibition of glucagon signaling through protein kinase A (Pka)24. Nevertheless, the ability of metformin to lower blood glucose in obese individuals with type 2 diabetes involves chronic enhancement in insulin sensitivity25–29. We found that acute metformin treatment activated hepatic Ampk in both genotypes, but this was only associated with increased Acc phosphorylation (Fig. 3a) and reduced malonyl-CoA levels (Fig. 3b) in WT mice. Metformin reduced de novo lipogenesis in hepatocytes from WT mice, and this suppressive effect was equivalent to that caused by Ampk-β1–deficient hepatocytes (Fig. 3c). However, unlike A-769662, metformin did not increase fatty acid oxidation in either genotype (Supplementary Fig. 4e). These data demonstrate that the effects of metformin on lipogenesis are specific to Ampk and indicate that although Ampk may inhibit multiple targets in this pathway, including sterol regulatory element binding protein-1c (ref. 31) and expression of fatty acid synthase32, the primary regulation of lipogenesis is dependent on the phosphorylation of both Acc1 and Acc2. In contrast, lipogenesis was inhibited by metformin in hepatocytes from both WT and Acc1 knock-in (Acc1KI) mice (Supplementary Fig. 4f), and in vivo, a lipid-lowering effect was demonstrated in high-fat diet (HFD)-fed WT and Acc1KI animals treated with metformin (Supplementary Fig. 4g).

In humans, therapeutic doses of metformin (0.5–3 g per day)27 result in plasma concentrations ranging from 10 to 25 µM (refs. 33,34). In rodents, the administration of 50 mg per kg body weight of metformin has been shown to elicit plasma concentrations of 29 µM (ref. 35). We therefore treated HFD-fed WT and AccDKI mice with a daily dose of metformin at 50 mg per kg body weight for 6 weeks. In contrast to Chow-fed mice, HFD-fed AccDKI mice showed no differences in any metabolic parameters compared to HFD-fed WT animals (Fig. 3 and Supplementary Figs. 5–7). This indicates that diet-induced obesity overwhelms the effect of signaling by endogenous Ampk to Acc unless an external Ampk stimulus is provided.

Metformin has been shown to have positive effects on fatty liver in some but not all clinical trials25. However, rodent studies with metformin have demonstrated a clear lipid-lowering effect23,30, which suggests the need for more robust analyses or the development of more reliable biomarkers in human studies25,36. Notably, in vivo
lipogenesis was similar between HFD-fed WT and AccDKI mice (Fig. 3d), and an acute dose of metformin (50 mg per kg body weight) suppressed lipogenesis in vivo by ~35% in WT livers yet was completely ineffective in AccDKI mice (Fig. 3d). We next assessed the metabolic effects of chronic metformin treatment and found that, independent of change in weight or adiposity (Supplementary Fig. 5e), hepatic lipid content was reduced in WT mice, an effect achieved completely in AccDKI mice (Fig. 3e–g). Reductions in hepatic DAG were accompanied by decreased membrane-associated (Supplementary Fig. 5h) and lower Jnk activation (Supplementary Fig. 5e) in metformin-treated WT but not AccDKI mice.

In addition to reducing hepatic lipid content, chronic metformin treatment of HFD-fed WT but not AccDKI mice was associated with lowered fasting blood glucose (Fig. 4a), a trend toward lowered serum insulin levels (Supplementary Fig. 5f) and improved glucose tolerance (Supplementary Fig. 5g) and insulin sensitivity (Fig. 4b). Metformin-induced suppression of cAMP and glucagon-dependent hepatic glucose output is independent of Ampk21,24, and in hepatocytes from WT, AccDKI and Ampk-B1-deficient mice, metformin was effective at suppressing cAMP-stimulated glucose production (Supplementary Fig. 5h). Metformin was also able to acutely lower circulating glucose levels in both chow-fed and obese HFD-fed WT and AccDKI mice, as shown by metformin tolerance tests (200 mg per kg body weight13) (Supplementary Fig. 5i). However, at the dose that was used for our chronic treatments (50 mg per kg body weight), glucose levels were unaltered (Supplementary Fig. 5j), strongly suggesting that metabolic differences following chronic metformin treatment between AccDKI and WT mice were primarily the result of differential regulation of insulin sensitivity rather than acute effects on glucose lowering.

In hyperinsulinemic-euglycemic clamp experiments, chronic metformin treatment improved GDR (Supplementary Fig. 6a) and skeletal muscle 2-DG uptake in both WT and AccDKI mice (Supplementary Fig. 6b,c). This is consistent with an Ampk-Pkc-dependent pathway controlling metformin-induced skeletal muscle glucose uptake28. In contrast, chronic metformin treatment increased GIR (Supplementary Fig. 6d–g), decreased HGP (Fig. 4c) and increased suppression of HGP by insulin (Fig. 4d) in WT but not AccDKI mice. Enhanced Akt (Ser473) and FoxO1 (Ser253) phosphorylation (Supplementary Fig. 7a,b) and reduced gluconeogenic gene expression (Supplementary Fig. 7c) at the completion of the clamp in WT but not in AccDKI mice provides further evidence of metformin-induced improvements in hepatic insulin sensitivity. We demonstrated that metformin improved insulin sensitivity in a liver cell-autonomous manner in a cellular model of palmitate-induced insulin resistance. In particular, hepatocytes made insulin resistant by chronic treatment (18 h) with the saturated fatty acid palmitate were treated with metformin, which improved insulin-stimulated phosphorylation of Akt Ser473 and FoxO1 Ser253 (Fig. 4e), insulin-induced suppression of gluconeogenic gene expression (Fig. 4f) and insulin-induced suppression of hepatic glucose production (Fig. 4g) in hepatocytes from WT but not AccDKI mice. Notably, the beneficial metabolic effects of specific Ampk activation by A-769662 were completely abrogated in AccDKI hepatocytes and in vivo (Supplementary Fig. 8a–d), which corroborates the fundamental importance of Ampk-Acc signaling for hepatic lipid metabolism and insulin sensitivity.

Metformin remains the primary therapeutic option for the treatment of type 2 diabetes, although the precise mechanisms by which it confers its beneficial effects are incompletely understood. Glucagon-driven hepatic gluconeogenesis maintains glycemia during states of fasting, and this is poorly regulated in patients with type 2 diabetes. Recently, it has been shown that metformin counters this program by inhibiting glucagon-stimulated CAMP production, thereby reducing Pka activity and glucagon-stimulated glucose output from
the liver. We confirmed that this mechanism also operates in both WT and AccDKI mice in response to high concentrations of metformin (Supplementary Fig. 8e). An important distinction between this previous work and our current study is their focus on the fasting, or glucagon-specific, actions of metformin, which occur in the absence of insulin stimulation. The ability of insulin to suppress hepatic gluconeogenesis and to promote the efficient uptake of glucose in the periphery is fundamentally different in insulin resistance and type 2 diabetes.

The insulin-sensitizing effects of metformin have been well documented, but mechanistic insight has been lacking. Our data provide evidence for a parallel mechanism, whereby chronic metformin treatment (at a clinical dose) reduces hepatic insulin resistance and type 2 diabetes.

The insulin-sensitizing effects of metformin have been well documented, but mechanistic insight has been lacking. Our data provide evidence for a parallel mechanism, whereby chronic metformin treatment (at a clinical dose) reduces hepatic insulin resistance and type 2 diabetes. The insulin-sensitizing effects of metformin have been well documented, but mechanistic insight has been lacking. Our data provide evidence for a parallel mechanism, whereby chronic metformin treatment (at a clinical dose) reduces hepatic insulin resistance and type 2 diabetes. The insulin-sensitizing effects of metformin have been well documented, but mechanistic insight has been lacking. Our data provide evidence for a parallel mechanism, whereby chronic metformin treatment (at a clinical dose) reduces hepatic insulin resistance and type 2 diabetes. The insulin-sensitizing effects of metformin have been well documented, but mechanistic insight has been lacking. Our data provide evidence for a parallel mechanism, whereby chronic metformin treatment (at a clinical dose) reduces hepatic insulin resistance and type 2 diabetes. The insulin-sensitizing effects of metformin have been well documented, but mechanistic insight has been lacking. Our data provide evidence for a parallel mechanism, whereby chronic metformin treatment (at a clinical dose) reduces hepatic insulin resistance and type 2 diabetes.
regarding the manuscript. B.J.v.D., S.L.M., B.E.K. and G.R.S. were involved in generating the knock-in mice. M.D.F. and G.R.S. wrote the manuscript.

COMPETING FINANCIAL INTERESTS
The authors declare no competing financial interests.

Reprints and permissions information is available online at http://www.nature.com/reprints/index.html.

1. Kahn, B.B., Alquier, T., Carling, D. & Hardie, D.G. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 1, 15–25 (2005).
2. Long, Y.C. & Zierath, J.R. AMP-activated protein kinase signaling in metabolic regulation. J. Clin. Invest. 116, 1776–1783 (2006).
3. Carlson, C.A. & Kim, K.H. Regulation of hepatic acetyl coenzyme A carboxylase by phosphorylation and dephosphorylation. J. Biol. Chem. 248, 378–380 (1973).
4. Carling, D., Zammit, V.A. & Hardie, D.G. A common bicyclic protein kinase cascade inactivates the regulatory enzymes of fatty acid and cholesterol biosynthesis. FEBS Lett. 223, 217–222 (1987).
5. Waki, S.J., Stoops, J.K. & Joshi, V.C. Fatty acid synthesis and its regulation. Annu. Rev. Biochem. 52, 537–579 (1983).
6. McGarry, J.D., Leatherman, G.F. & Foster, D.W. Carnitine palmitoyltransferase I: the ancient energy gauge provides clues to modern understanding of metabolism. Cell 253, 4128–4136 (1978).
7. Harada, N. et al. Hepatic de novo lipogenesis is present in liver-specific ACC1-deficient mice. Mol. Cell Biol. 27, 1881–1888 (2007).
8. Mao, J. et al. Liver-specific deletion of acetyl-CoA carboxylase 1 reduces hepatic triglyceride accumulation without affecting glucose homeostasis. Proc. Natl. Acad. Sci. USA 103, 8552–8557 (2006).
9. Abu-Elheiga, L., Matzuk, M.M., Abo-Hashema, K.A. & Wakil, S.J. Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2. Science 291, 2613–2616 (2001).
10. Hoehn, K.L. et al. Acute or chronic upregulation of mitochondrial fatty acid oxidation has no net effect on whole-body energy expenditure or adiposity. Cell Metab. 11, 70–76 (2010).
11. Olson, D.P., Puliniikkunni, T., Cline, G.W., Shulman, G.I. & Lowell, B.B. Gene knockout of Acc2 increases the effect on body weight, fat mass, or food intake. Proc. Natl. Acad. Sci. USA 107, 7598–7603 (2010).
12. Choi, C.S. et al. Continuous fat oxidation in acetyl-CoA carboxylase 2 knockout mice increases total energy expenditure, reduces fat mass, and improves insulin sensitivity. Proc. Natl. Acad. Sci. USA 104, 16480–16485 (2007).
13. Munday, M.R., Campbell, D.G., Carling, D. & Hardie, D.G. Identification by amino acid sequencing of three major regulatory phosphorylation sites on rat acetyl-CoA carboxylase 2. Eur. J. Biochem. 175, 331–338 (1988).
14. Savage, D.B. et al. Reversal of diet-induced hepatic steatosis and hepatic insulin resistance by antisense oligonucleotides of acetyl-CoA carboxylase. J. Clin. Investig. 99, 15–25 (1992).
15. Eron, D.M. & Shulman, G.I. Diacylglycerol-mediated insulin resistance. Nat. Med. 16, 400–402 (2010).
16. Samuel, V.T. et al. Inhibition of protein kinase Cepsilon prevents hepatic insulin resistance in nonalcoholic fatty liver disease. J. Clin. Investig. 117, 739–749 (2007).
17. Yu, C. et al. Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. J. Biol. Chem. 277, 50230–50236 (2002).
18. Chibalina, A.V. et al. Downregulation of diacylglycerol kinase δ contributes to hyperglycemia-induced insulin resistance. Cell 132, 375–386 (2008).
19. Hirosumi, J. et al. A central role for JNK in obesity and insulin resistance. Nature 420, 333–336 (2002).
20. O’Neill, H.M. et al. AMP-activated protein kinase (AMPK) β1β2 muscle null mice reveal an essential role for AMPK in maintaining mitochondrial content and glucose uptake during exercise. Proc. Natl. Acad. Sci. USA 108, 16092–16097 (2011).
21. Foretz, M. et al. Metformin inhibits hepatic glucoseogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J. Clin. Investig. 120, 2355–2369 (2010).
22. Voelkel, B. et al. Cellular and molecular mechanisms of metformin: an overview. Clin. Sci. (Lond.) 122, 253–270 (2012).
23. Zhou, G. et al. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Investig. 108, 1167–1174 (2001).
24. Miller, R.A. et al. Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP. Nature 494, 256–260 (2013).
25. Musso, G., Cassidy, M., Rosina, F. & Gambino, R. Impact of current treatments on liver disease, glucose metabolism and cardiovascular risk in non-alcoholic fatty liver disease (NAFLD): a systematic review and meta-analysis of randomised trials. Diabetologia 55, 885–904 (2012).
26. Bailey, C.J. & Mynett, K.J. Insulin requirement for the antihyperglycaemic effect of metformin. Br. J. Pharmacol. 111, 793–796 (1994).
27. Bailey, C.J. & Turner, R.C. Metformin. N. Engl. J. Med. 334, 574–579 (1996).
28. Gómez-Sámano, M.Á. et al. Metformin and improvement of the hepatic insulin resistance index independent of anthropometric changes. Endocr. Pract. 18, 8–16 (2012).
29. Natali, A. & Ferrannini, E. Effects of metformin and thiazolidinediones on suppression of hepatic glucose production and stimulation of glucose uptake in type 2 diabetes: a systematic review. Diabetologia 49, 434–441 (2006).
30. Cool, B. et al. Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Proc. Natl. Acad. Sci. USA 103, 403–416 (2006).
31. Li, Y. et al. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab. 13, 376–388 (2011).
32. Foretz, M., Carling, D., Guichard, C., Ferre, P. & Foufelle, F. AMP-activated protein kinase inhibits the glucose-activated expression of fatty acid synthase gene in rat hepatocytes. J. Biol. Chem. 273, 14767–14771 (1998).
33. Lalau, J.D., Lemaire-Hurtel, A.S. & Lacroix, C. Establishment of a database of anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Xenobiotica 30, 1043–1050 (2000).
34. Wilcock, C. & Bailey, C.J. Accumulation of metformin by tissues of the normal and diabetic mouse. Xenobiotica 24, 49–57 (1994).
35. Clark, J.M., Brancati, F.L. & Dhiel, A.M. Nonalcoholic fatty liver disease. Gastroenterology 122, 1649–1657 (2002).
36. He, L. et al. Metformin and insulin suppress hepatic gluconeogenesis through phosphorylation of CREB binding protein. Cell 137, 635–646 (2009).
37. Turban, S. et al. Defining the contribution of AMP-activated protein kinase (AMPK) and protein kinase C (PKC) in regulation of glucose uptake by metformin in skeletal muscle cells. J. Biol. Chem. 287, 20088–20099 (2012).

© 2013 Nature America, Inc. All rights reserved.
ONLINE METHODS

Animals. Both Acc1-S79A KI and Acc2-S212A KI mice were generated by OzGene Pty (Perth, Australia). The targeting strategy is summarized in **Supplementary Figure 1**. The generation of Ampk-β1–deficient and Ampk-β2–deficient mice has previously been described. All mice used in the study were bred on a C57BL/6 background and from heterozygous intercrosses. Male mice were used for all studies and housed in specific-pathogen–free microisolators and maintained on a 12-h light-dark cycle with lights on at 7:00 a.m. Mice were maintained on either a chow diet (17% kcal from fat; Diet 8640, Harlan Teklad, Madison, WI) or HFD (45% kcal from fat; D12451, Research Diets; New Brunswick, NJ) starting at 6 weeks of age for 12 weeks. For HFD-metformin experiments, mice received 6 weeks of daily intraperitoneal injections of metformin (50 mg per kg body weight) starting after 6 weeks of the HFD. Fasting and fed blood samples were collected for serum analyses through submandibular bleeding. The McMaster University (Hamilton, Canada) Animal Ethics Research Board and St. Vincent’s Hospital (Melbourne, Australia) Animal Ethics Committee approved all experimental protocols.

Enzymatic activity assays. Acc activity in liver was measured by 14CO2 fixation into acid-stable products. Accl or Acc2 protein was immunoprecipitated from 2 mg of tissue homogenates using Acc1- or Acc2-specific antibodies. Acc1- and Acc2-specific antibodies were generated by immunizing sheep with synthetic peptides coupled to keyhole limpet hemocyanin (CDEPSFLAKTLNLQ (rat Acc1 (1–15 Cys)) and CEDKKQAPKRLMT (rat Acc2 (145–159 Cys))).

Mass spectrometry analyses. Acc isoforms from WT and AccDKI livers were affinity-purified by streptavidin. Proteins were eluted from beads, reduced and alkylated with iodoacetamide and then precipitated with NaHCO3 and 16.7 µCi/ml [14C]NaHCO3 with the indicated concentrations of citrate. The reactions were terminated by addition of HCl and dried overnight at 37 °C. Water was added to the dried sample and radioactivity measured by liquid scintillation counting. Purified Acc1 proteins from WT and AccKI livers were subjected to λ phosphatase (400 U in a 60-µl reaction) treatment for 25 min at 30 °C. After a wash removal of the phosphatase, a small aliquot was used for determination of Acc1 Ser79 phosphorylation by western blot analysis. The majority of the protein that remained was used to assess Acc activity, as described above.

Histological analyses. Tissues were fixed in formalin for at least 48 h, embedded in paraffin and H&E stained. After staining, each sample was imaged in triplicate. For determination of hepatic fibrosis, trichrome staining was used to visualize collagen. This was then quantified using the color segmentation function of ImageJ software (National Institutes of Health).

Western blotting, inflammation and RT-PCR. Tissues were dissected rapidly, snap-frozen in liquid nitrogen and stored at −80 °C until subsequent analyses. All primary antibodies were used at a dilution of 1:1,000. Blotting for total and phosphorylated Akt, Jnk, Ampk and Acc (antibodies all from Cell Signaling: Akt #9272, pAkt Ser473 #4058, Jnk #9252, pJnk #9251, AMPK-α #2532, pAMPK-α Thr172 #2531, Acc #3679, pAcc Ser79 #3661 and β-actin #5125) were performed as previously described. Phosphorylated FoxO1 Ser253 was normalized to Gapdh (Cell Signaling #2118). For Pkc-ε phosphorylation, an antibody directed against Ser729 was used (Abcam ab134031). For membrane-associated Pkc activation, tissues were homogenized in 300 µl of buffer I (20 mM Tris-HCl, pH 7.4, 1 mM EDTA, 0.25 mM EGTA, 250 mM sucrose and protease inhibitor mixture) and centrifuged at 100,000 × g for 1 h (4 °C). The supernatants containing the cytosolic fraction were removed to new tubes. Pellets were then resuspended in 300 µl of buffer II (250 mM Tris-HCl, pH 7.4, 1 mM EDTA, 0.25 mM EGTA, 2% Triton X-100 and protease inhibitor mixture) and centrifuged at 100,000 × g for 1 h (4 °C) to obtain the plasma membrane fraction. Gapdh and caveolin-1 were used as markers of the cytosolic and membrane preparation purity, respectively. Pkc-ε, Pkc-θ and Pkc-δ activation (Cell signaling Pkc-ε #2683, Pkc-θ #2059 and Pkc-δ #2058) was expressed as a ratio of membrane (normalized to caveolin-1 (BD Biosciences #C37120)) to cytosolic (normalized to Gapdh) localization, which was assessed from the same membrane to eliminate exposure bias. Hepatic tissues were prepared as previously described and proinflammatory cytokines were determined using commercially available kits. Total RNA isolation, cDNA synthesis and quantitative RT-PCR were performed as described previously.

Metabolic studies. For glucose, insulin and metformin tolerance tests, mice were injected with d-glucose (2 g per kg body weight and 1 g per kg body weight for chow and HFD, respectively), human insulin (0.6 U per kg body weight and 1 U per kg body weight for chow and HFD, respectively) or 50 and 200 mg per kg body weight metformin through intraperitoneal injection and glucose monitored at the indicated times by a small cut in the tail vein. Whole-body adiposity was assessed by computed tomography, and respiratory exchange ratio was determined using Columbus Laboratory Animal Monitoring System as previously described. Hyperinsulinemic-euglycemic clampings were performed as previously described. Briefly, 5 d after cannulation, only mice that lost <8% of their weight were clamped. Mice fasted 6 h were infused with a basal infusion containing d-[3-3H]glucose (7.5 µCi/h, 0.12 ml/h) for 1 h to determine basal glucose disposal. An insulin infusion (10 mU insulin per kg body weight per min in 0.9% saline) containing d-[3-3H]glucose (7.5 µCi/h, 0.12 ml/h) was then initiated and blood glucose monitored and titrated with 50% dextrose infused at a variable rate to achieve and maintain euglycemia. For rates of glucose uptake, [14C]2-DG (10 µCi) was infused during the clamped state and tissues excised after 30 min. The rates of glucose disposal in the basal and clamped states and hepatic glucose output were calculated using the Steele equation for steady-state conditions. Insulin was measured by ELISA kit, alamine aminotransferase and aspartate aminotransferase were determined using commercially available kits and TAG levels were determined by glycerol assay following saponification of the TAG fraction separated using thin-layer chromatography. Total levels of tissue DAG and ceramides were quantified using DAG kinase assay as previously described. De novo lipogenesis was determined in vivo by the incorporation of 1Hacetate into hepatic lipids after metformin (50 mg per kg body weight) or A-796692 (30 mg per kg body weight) injection, where saline and 5% DMSO in PBS served as vehicles, respectively. Skeletal muscle fatty acid oxidation was assessed in isolated extensor digitorum longus muscle as previously described. For metformin-stimulated glucose uptake, isolated extensor digitorum longus muscle was incubated with vehicle (60 min), metformin (1 mM for 60 min), submaximal insulin (2.0 µM for 30 min) or metformin (1 mM for 60 min) plus insulin (2.0 µM for 30 min). 2-DG uptake was then measured over 20 min in the presence of insulin (2 µM) or metformin (1 mM). To measure hepatic CAMP, WT and AccDKI mice in the fed condition were
injected with vehicle, 200 or 400 mg per kg body weight metformin. After 1 h, mice received a vehicle or glucagon injection (2 mg per kg body weight). Livers were collected after 5 min and rapidly freeze-clamped. Hepatic cAMP measurements were performed using an EIA from Cayman Chemicals per the manufactures instructions.

Cell culture experiments. Primary hepatocytes were isolated by collagenase perfusion. [3H]acetate lipogenesis and [14C]palmitate oxidation was performed as described previously. Briefly, for lipogenesis, [3H]acetate (5 µCi/ml) was in the presence of 0.5 mM sodium acetate for 4 h. Medium was then removed and cells washed with PBS before lipid extraction for determination of incorporation into lipid fractions. For fatty acid oxidation, [14C]palmitate (2 µCi/ml) was in the presence of 0.5 mM palmitate (conjugated to 2% BSA) for 4 h. Medium was removed and acidified with equal volume of 1 M acetic acid in an airtight vial. [14C]CO2 was trapped in 400 µl of 1 M benzethonium hydroxide and radioactivity determined. Cellular lipids were extracted after a PBS wash, and radioactivity of the acid soluble intermediates was determined. Total oxidation was then calculated as a function of both [14C]CO2–produced and incomplete oxidation products. For insulin signaling experiments in hepatocytes, cells were incubated in the presence or absence of 0.5 mM palmitate (conjugated to 2% BSA) and 0.5 mM metformin for 18 h (with 0.1% FBS). Cells were then stimulated with 10 nM insulin; gluconeogenic gene expression was assessed after 6 h of insulin treatment, and insulin signaling was assessed after 5 min of insulin stimulation. Hepatic glucose production was determined as previously described. Briefly, cells were cultured as above in the presence of 100 nM dexamethasone. Cells were washed once with PBS and incubated in glucose-free DMEM (100 nM dexamethasone, 10 mM lactate and 1 mM pyruvate) with or without Bt2-cAMP (100 µM) and with or without indicated doses of metformin or A-769662. For chronic treatments, palmitate-, metformin- and A-769662–supplemented medium was removed after 18 h, cells were washed and glucose-free DMEM was added to measure glucose output in the presence or absence of insulin (10 nM). Glucose in the medium after 4 h was assessed by glucose oxidase kit.

Statistical analyses. All results shown are mean ± s.e.m. Results were analyzed using a two-tailed Student’s t-test or two-way ANOVA, where appropriate, using GraphPad Prism software. A Bonferonni post hoc test was used to test for significant differences revealed by the ANOVA. Significance was accepted at \(P \leq 0.05 \).

39. Dzamko, N. et al. AMPK β1 deletion reduces appetite, preventing obesity and hepatic insulin resistance. *J. Biol. Chem.* 285, 115–122 (2010).
40. Steinberg, G.R. et al. Whole body deletion of AMP-activated protein kinase β2 reduces muscle AMPK activity and exercise capacity. *J. Biol. Chem.* 285, 37198–37209 (2010).
41. Ussher, J.R. et al. Stimulation of glucose oxidation protects against acute myocardial infarction and reperfusion injury. *Cardiovasc. Res.* 94, 359–369 (2012).
42. Galic, S. et al. Hematopoietic AMPK β1 reduces mouse adipose tissue macrophage inflammation and insulin resistance in obesity. *J. Clin. Invest.* 121, 4903–4915 (2011).
43. Schertzer, J.D. et al. NOD1 activators link innate immunity to insulin resistance. *Diabetes* 60, 2206–2215 (2011).
44. Steele, R. Influences of glucose loading and of injected insulin on hepatic glucose output. *Ann. NY Acad. Sci.* 82, 420–430 (1959).
45. Preiss, J. et al. Quantitative measurement of sn-1,2-diacylglycerols present in platelets, hepatocytes, and ras- and sis-transformed normal rat kidney cells. *J. Biol. Chem.* 261, 8597–8600 (1986).