Opacity and Washability Properties of Emulsion Paint with Natural Rubber Latex/Polyvinyl Acetat e Blend Binder

Bahrudin1, Zuchra Helwani1, Ivan Fadhilla1, Rayya1, Rumi1, Arya Wiranata1, Joni Miharyono2

1Chemical Engineering Department, University of Riau, Pekanbaru 28293, Indonesia
2PT. Warna Indah Tirta Asia (WITA), Pekanbaru 28291, Indonesia
bahrudin@lecturer.unri.ac.id

Abstract. Polyvinyl acetate (PVAc) has long been known as a binder material to improve the washability, opacity (hiding power), and viscosity of commercial emulsion paints. This study aims to study the properties of opacity (hiding power), washability resistance, and viscosity of emulsion paint added with a binder from a mixture of natural rubber latex (NRL) and PVAc. Emulsion paint samples were made with a binder content of 4, 6, and 8% w/w. The binder was made from a mixture of NRL and PVAc with various NRL levels of 0%, 15%, 25%, 35%, 50%, and 100% w/w. Testing of paint samples includes washability using a digital BGD 526 Wet Abrasion Scrub Tester and viscosity testing using a HAAKE 6R digital viscometer. At the same time, the opacity test uses the Indonesian Standard (SNI 3564:2009). The results showed that the opacity met the standard emulsion paint for all binder levels, except for the composition of NRL 100% w/w at all binder levels. The higher the NRL content in the binder causes the washability resistance and paint viscosity to decrease and become unstable. The best washability resistance and viscosity properties were obtained at NRL in a binder of 15% w/w and a binder content of 8% w/w, with washability resistance properties of 50 times and a viscosity of 3300 cp.

1. Introduction
Riau Province is the third-largest natural rubber producer of the Havea Brasiliensis type in Indonesia. Natural rubber has been used in various needs, such as household rubber, safety equipment, and the final product (consumption). Tires and piping are the most widely used rubber products [1]. One type of upstream product from natural rubber plantations that can also be produced is natural rubber latex. Natural rubber latex consists of colloidal rubber particles suspended in serum (water). The latex's dry rubber content (DRC) is around 30-40% [2].

The utilization of natural rubber into commercial products requires engineering or modification so that the product is resistant to ozone, heat, oxidation, weather, or oil [3]. Physical modification of the structure can be done by blending natural rubber with synthetic rubber. In contrast, chemical modification can be done by reacting to certain chemicals to change the molecular structure of natural rubber, such as epoxidation, hydrogenation, chemical degradation, chlorination, grafting, and cyclization of natural rubber [4].

The characteristics of natural rubber can be improved by the grafting method with polystyrene [5]. The styrene graft copolymerization process at 150 °C resulted in changes in the mechanical properties...
of DPNR-graft-ps, which was initiated by increasing the thermoplastic properties of natural rubber (TPNR). The chemical depolymerization method can modify natural rubber latex into liquid natural rubber (LNR) [6]. The resulting product has a low molecular weight and is liquid at room temperature. The resulting LNR has better characteristics than natural rubber latex due to its structure and bonding between particles [7].

The nature of natural rubber latex is very strong, elastic, and flexible, allowing NRL to be modified or mixed into a binder in emulsion paints. Previous research has been carried out by comparing the results between pure methylol urea (MU) and a mixture of methylol urea/natural rubber (MU/NR) in the emulsion paint formula [8]. The addition of a mixture of MU/NR to emulsion paint can produce characteristics that are more water-resistant and have better viscosity, flexibility, hardness, stickiness, dry time, gloss, and storage time than using MU alone. The mixture of natural rubber latex (NRL) with polyvinyl acetate (PVAc) as a binder in emulsion paints showed that the binder mixed with a ratio of NR/PVAc 25/75 had better characteristics in emulsion paints than other binder mixtures [9]. The resulting paint is also able to protect the exterior and interior walls. Natural rubber latex serves to increase water resistance and fluidity, while PVAc serves to strengthen the film layer on the paint. NRL/PVAc binder mixture (w/w); NRL is prevulcanized before blending. High tensile and elasticity values are found in the binder with an NRL/PVAc ratio of 30/70. The scrub value and elasticity decreased when the NRL content was higher than PVAc [10].

The most important characteristics of emulsion paints are scrubbing power, covering power, and paint life. Emulsion paints are environmentally friendly and have features similar to oil paints, such as strong adhesion and fast drying time. The characteristics of emulsion paints depend on pigments, solvents, extenders, binders, and other paint additives [11]. This study used a mixture of NRL and PVAc as a binder for emulsion paint and studied how it affects the scrubbing properties and viscosity of the emulsion paint.

2. Methodology

2.1. Materials
The natural rubber latex used comes from rubber plantations in Kampar Regency, Riau, Indonesia. Polyvinyl acetate (PVAc) comes from PT Duta Karisma Persada, North Jakarta, Indonesia. The reagents used are from the emulsion paint industry, PT. Warna Indah Tirta Asia, Pekanbaru, Indonesia.

2.2. NRL Preparation
The NRL pretreatment process begins with an anticoagulation process that aims to maintain and prevent bacterial growth, and the anticoagulant used is ammonia [12-14]. Furthermore, the NRL concentration (evaporation) process increases the DRC from NRL to 63%. There are four methods of NRL concentration, namely evaporation, electrocantation, centrifugation, and creaming. Evaporation is a method of concentrating NRL from DRC of 30% to 80% [15]. The evaporation process is also effective for removing ammonia, indicating that there is no ammonia smell in the NRL sample. NRL was added with 30% ammonia as much as 6% (w/w latex) as anticoagulation. NRL mixed with a small amount of concentrated ammonia is called low ammonia natural rubber (LATZ, pH 9.8). The LATZ was then evaporated to obtain 63% DRC to obtain NRL with 0% ammonia. Furthermore, the NRL/PVAc blends were made as the binders with NRL content of 0%, 15%, 25%, 35%, 50%, and 100% w/w.

2.3. Paint Production
The formulation for making emulsion paints follows the organization of Indonesian paint industry standards with a modified binder (Table 1). At first, the water, hydroxyethyl cellulose, ultramarine blue, and pH solution were mixed into the tank and stirred evenly. Next, 1-carboxyethylene, alkyl phenol ethoxylate, and fatty alcohol were added to the mixture. When stirring, the mixture was added
dehydroxylated aluminum, CaO, CaCO₃, and polyacrylic acid. After 20 minutes, the modified binder made previously was added, with varying levels of 4%, 6%, and 8% (w/w paint). The last step is adding perfume to the emulsion paint mixture. Then, the washing ability resistance was tested with the BGD 526 Wet Abrasion Scrub Tester and the viscosity with the HAAKE 6R digital viscometer. At the same time, the opacity test uses the Indonesian Standard (SNI 3564:2009).

Table 1. Emulsion Paint Formulation

Material	Mass (g) Paint Emulsion 1	Mass (g) Paint Emulsion 6
Water	300	300
Hydroxyethyl Cellulose	1.8	1.8
Ultra Marine Blue	0.4	0.4
PH Solution	1.3	1.3
1-Butynylethylene	1.8	1.8
Akyl Phenol Ethoxylate	0.2	0.2
Fatty Alcohol	3.5	3.5
Dehydroxylated Aluminium	1.8	1.8
CaO	20	20
CaCO₃	140	140
Polyacrylic Acid	1.5	1.5
PVAc (Binder 1)	40; 60; 80	0
NRL (Binder 2)	0	40; 60; 80
Perfume	0.2	0.2

3. Results and Discussion

3.1. Opacity (Hiding Power)

Opacity is the ability of paint to cover the entire surface of a particular medium. Emulsion paint binder serves to glue the paint particles to protect the media evenly. The stronger the bonding power of the binder, the more evenly the surface of the media covered with paint will be. Based on the test data, as shown in Table 2, Table 3, and Table 4, it can be seen that almost all emulsion paint samples were declared successful through the hiding power test, except for paint sample 6, which failed the opacity (hiding power) test. Paint sample 6 failed the hiding power test because the paint with a 100% NRL binder could not cover the media evenly, indicated by the difference in color that was more faded than the standard paint sample. This may be due to protein content in the NRL, which inhibits the paint gluing process. Protein functions as a protective agent and stabilizer of latex in the liquid phase. As a result, latex is difficult to dry quickly [16]. The paint sample 6 at a binder content of 8% w/w also did not pass the hiding power test, mainly because the NRL was not well homogenized with the paint material. It is characterized by the formation of clumps (coagulants) on the paint surface.

3.2. Viscosity

Viscosity is the resistance of a fluid to the velocity of the fluid flow. Natural rubber latex with 38% DRC has a viscosity of 4.6 times greater than the viscosity of water [17]. The viscosity of the paint is affected by the binder, so the quality of the binder is an important parameter of the paint. In addition, paint viscosity can affect other paint characteristics, such as density, adhesion, drying time, and hiding power. The results of the paint viscosity test can be seen in Table 2, Table 3, and Table 4. It can be seen that the viscosity value of each emulsion paint has fluctuated changes. Paint sample 2 with a binder content of 4% and a binder composition of NRL/PVAc 15/85% w/w has a viscosity value of 5400 cp, which is similar to the viscosity of commercial paint (that is, with a binder of 100% PVAc) of 5500 cp. These results are not much different from the paint products of previous studies [9,10,12]. The lowest paint viscosity value is 2200 cp, namely the viscosity of emulsion paint with a binder of
4% (NRL/PVAc 35/65% w/w). Based on previous research, the viscosity of the paint will decrease with the addition of NRL levels in the binder, but in this study, the viscosity value fluctuated. This may be caused by the mixture of NRL binder with PVAc, which was not completely homogenized [11]. The binder with a high NRL composition will form 2 phases, resulting in unstable viscosity and adhesion [10].

Table 2. Characteristics of Emulsion Paint Samples with 4% Binder Content

Parameter	Emulsion Paint					
	1	2	3	4	5	6
Opacity	P	P	P	P	P	F
Viscosity (cp)	5500	5400	3600	2200	3400	2700
Washing Ability (times)	10	8	5	4	3	2

Table 3. Characteristics of Emulsion Paint Samples with 6% Binder Content

Parameter	Emulsion Paint					
	1	2	3	4	5	6
Opacity	P	P	P	P	P	P
Viscosity (cp)	4800	3800	3500	3100	2800	2600
Washing Ability (times)	45	41	26	18	13	3

Table 4. Characteristics of Emulsion Paint Samples with 8% Binder Content

Parameter	Emulsion Paint					
	1	2	3	4	5	6
Opacity	P	P	P	P	P	F
Viscosity (Cp)	3500	3300	2600	3000	2300	3700
Washing Ability (times)	58	50	34	27	19	4

Key: P and F indicate pass and fail of emulsion paint products, Paint 1: 0% NRL; Paint 2: 15% NRL; Paint 3: 25% NRL; Paint 4: 35%; Paint 5: 50% and Paint 6: 100% NRL.

3.3. Washability Resistance

Washability resistance is the ability of paint to resist scratches due to water splashes [9]. Figure 1 shows the effect of NRL on the washing resistance of emulsion paint. It is seen that the paint with 14/85% w/w NRL/PVAc binder has a wash resistance of 8 times, which is similar to the adhesion of commercial paints (i.e., with 100% PVAc binder). A significant decrease in washability occurred when the NRL/PVAc binder composition was 25/75% w/w. The binder content of 8% has the best resistance to washing. This is because the higher the binder content of the paint, the greater its resistance to washing.

The decrease in washability resistance may be due to impurities (i.e., protein) and polymer chain length of the NRL. The protein in NRL functions as a stabilizer. As a result, the elasticity and adhesion characteristics of NRL are reduced. The proteins contained in the paint cause the decay process to be fast and reduce the quality of the paint [10]. People with protein allergies cannot use paints containing protein because they can cause skin irritation [18]. In addition, the shorter polymer chain of the NRL can cause the greater the adhesion and elasticity [19].
Fig 1. Effect of NRL contents in PVAc on Washability Resistance of Emulsion Paint.

4. Conclusion
The study results concluded that the opacity met the standard for emulsion paint for all binder levels, except for the composition of NRL 100% w/w at all levels of the binder. The higher the NRL content in the binder causes the washability resistance and paint viscosity to decrease and become unstable. The best washability resistance and viscosity properties were obtained at the composition of NRL in the binder of 15% w/w and the binder content of 8% w/w, with washability resistance properties of 50 times and viscosity of 3300 cp. It is still possible to improve the opacity and washability resistance of emulsion paint with NRL binder or a mixture of NRL and PVAc by modifying the natural rubber polymer (NRL) molecule so that the adhesive characteristics of NRL are further improved.

Acknowledgement
The author thanks the DRPM Kemdikbudristek, the Government of the Republic of Indonesia, for funding this research. The author also thanks PT. Warna Indah Tirta Asia (WITA), Pekanbaru, Indonesia, for providing the materials for the experiments.

References
[1] Vijetha P, Prasanna Kumar Y, Kumarswamy K, Kumari A, Singham P & Satyasree N 2014 Comparative studies of natural and synthetic rubber Research Journal of Pharmaceutical, Biological and Chemical Sciences 5(5) 851–857
[2] Button D W 1957 Building a natural rubber latex compound
[3] Ndibe H C, Iyasele J U, Imanah E O, Okpara G E & Eriamiaoe I 2021 Utilization of Binary Blends of Liquid Natural Rubber and Polyvinyl Acetate in Emulsion Paint Journal of Chemical Society of Nigeria 46(1) 72–78
[4] Juliet O I, Dilim I C, Okpara O C & Ejike O M 2018 Natural Rubber Based Adhesive Modified with Starch and Reinforcer AASCIT Journal of Chemistry 4(1) 1–6
[5] Suksawad P, Yamamoto Y & Kawahara S 2011 Preparation of thermoplastic elastomer from natural rubber grafted with polystyrene European Polymer Journal 47(3) 330–337
[6] Bahruddin, Fadhillah I, Septian, Wiranata A & Zahrina I 2020 Molar Weight of Liquid Natural Rubber (LNR) Product from the Chemical Depolymerization Process of High Molecular Weight Narutal Rubber Latex Journal of Physics: Conference Series 1655(1)
[7] Ibrahim S, Mustafa A and Tan K 2016 Chemical Degradation of Natural Rubber Latex in Acidic Medium Catalysed by CoCl2 and (NH4) Fe-2 (SO4)(2) Journal of Rubber Research 18(2) 61–71
[8] Osemeahon S, Nkafamiya I & Fai F 2010 Application of methyol urea/natural rubber copolymer composite for emulsion paint formulation International Journal of Biological
and Chemical Sciences 3(6) 1491–1498

[9] Ochigbo S S and Suleiman M A T 2014 Formulation and Characterization of Waterborne Paints from the Blends of Natural Rubber (NR) Latex and Polyvinyl acetate (PVAc) Emulsion International Journal of Sciences 3(5) 1–5

[10] Worlee A, Homdong N & Hayeemasae N 2020 Application of polymer blend based on natural rubber latex and acrylic resin as a binder for wall paints. IOP Conference Series: Materials Science and Engineering 773(1)

[11] Ndibe H C, Iyasele J U, Imanah E O, Okpara G E & Eriamiatoe I 2021 Utilization of Binary Blends of Liquid Natural Rubber and Polyvinyl Acetate in Emulsion Paint Journal of Chemical Society of Nigeria 46(1) 72–78

[12] Suksup R, Imkaew C & Smithipong W 2017 Cream concentrated latex for foam rubber products. IOP Conference Series: Materials Science and Engineering 272(1)

[13] Sekaran K C and Edward J 1956 United States Patent Office, Process of preserving freshly harvested rubber latex 1956 2,932,678

[14] Santipanusopon S and Riyajan S A 2009 Effect of field natural rubber latex with different ammonia contents and storage period on physical properties of latex concentrate, stability of skim latex and dipped film. Physics Procedia 2(1) 127-134

[15] Ochigbo S S, Lafia-Araga R A & Suleiman M A T 2011 Comparison of two creaming methods for preparation of natural rubber latex concentrates from field latex. African Journal of Agricultural Research 6(12) 2916–2919

[16] Khan I & Poh B T 2011 Natural Rubber-Based Pressure-Sensitive Adhesives: A Review. Journal of Polymers and the Environment 19(3) 793–811.

[17] Bachle O 1937 The viscosity of latex and of latex mixtures. Rubber Chemistry and Technology 10(4) 675-687

[18] Ndibe H C, Iyasele J U, Imanah E O, Okpara G E & Eriamiatoe I 2021 Utilization of Binary Blends of Liquid Natural Rubber and Polyvinyl Acetate in Emulsion Paint. Journal of Chemical Society of Nigeria 46(1) 72–78

[19] Moonprasith N, Poonsrisawat A, Champreda V, Kongkaew C, Loykulnant S & Suchiva K 2017 Deproteinization of Nonammonia and Ammonia Natural Rubber Latices by Ethylenediaminetetraacetic Acid. Advances in Materials Science and Engineering