Red man syndrome following the use of vancomycin-loaded bone cement in the primary total knee replacement

A case report

Chu-Ting Chen, MD, Khai-Jing Ng, MD, Yu Lin, MD, Ming-Chang Kao, MD, PhD

Abstract

Rationale: Red man syndrome (RMS) is the most common allergic reaction to vancomycin. It generally occurs during rapid infusion of vancomycin; only few cases have been reported as results of local vancomycin administration. We hereby report a rare case where RMS developed after insertion of vancomycin-loaded bone cement in a primary total knee replacement (TKR).

Patient concerns: A 74-year-old woman was admitted for a left TKR due to severe osteoarthritis. Erythematous changes over face, neck, and extremities developed after the use of vancomycin-loaded bone cement.

Diagnoses: According to the clinical manifestations, the patient was diagnosed with vancomycin-induced RMS.

Interventions: She was treated with fluid challenge and intravenous ephedrine, followed by intravenous diphenhydramine and hydrocortisone.

Outcomes: The patient’s symptoms and signs relieved within 1 h after treatment.

Lessons: Vancomycin-induced RMS may occur after the routine use of vancomycin-loaded bone cement in the primary TKR replacement.

Abbreviations: PACU = postanesthesia care unit, RMS = red man syndrome, TKR = total knee replacement.

Keywords: anaphylactoid reaction, perioperative complication, vancomycin hypersensitivity

1. Introduction

Vancomycin is a bactericidal antibiotic with activity against most gram-positive cocci, including methicillin-resistant Staphylococcus aureus.[1] Red man syndrome (RMS) is a common allergic reaction to vancomycin that typically presents with a rash on the face, neck, and upper torso after intravenous administration of vancomycin.[2,3] Less frequently, RMS may be accompanied by hypotension and angioedema. Although RMS is known to be a rapidly infusion-related reaction, it may also occur when infused in a slow rate.[4,5] Only few cases of RMS were reported to be associated with local uses of vancomycin.[6,7] Prophylactic use of antibiotic-loaded bone cement for the primary total knee replacement (TKR) is a common adjunctive treatment to prevent osteomyelitis in clinical setting.[8–10] We hereby reported a rare case where RMS developed after the use of vancomycin-loaded bone cement in a patient receiving a primary TKR. The patient has provided informed consent for publication of the case.

2. Case report

A 74-year-old woman underwent a primary left TKR due to severe knee osteoarthritis. She denied history of previous systemic diseases and had no remarkable findings during preoperative assessment. On arrival to the operating room, the standard monitors were applied and a prophylactic antibiotic cefazolin 1 g was administrated intravenously without noticeable adverse reaction throughout the operation. The operation was performed under spinal anesthesia. During operation, the patient received a knee prosthesis with bone cement loaded with vancomycin 1000 mg during implantation. With the use of tourniquet, there were no subjective complaints noticed and the vital signs remained stable throughout the procedure. The total operation time was 80 min and the tourniquet time was 55 min. The operation was uneventful. The intraoperative blood loss was 50 mL. The patient was sent to postanesthesia care unit (PACU) with stable vital signs. In the PACU, an erythematous rash on face, trunk, and extremities was noted 45 min after release of tourniquet (Fig. 1A and B). In the meantime, she complained of generalized discomfort and itchiness. She remained clear conscious and fine oxygen saturation read around 97%. However, a sudden drop in blood pressure to 47/34 mm Hg ensued. The surgical wound
possible causes. It should be noted that the patient also had an
anaphylactoid reaction caused by degranulation of mast cells and
release of tourniquet might cause transient increases of systemic
hypotension.

In addition to vancomycin, antibiotics such as ciprofloxacin,
amphotericin B, rifampin, and tescoplanin can potentially cause
RMS.[17] More importantly, RMS can be aggravated in patients
receiving opioid analgesics, muscle relaxants, or contrast dye
because these drugs may induce histamine release from mast
cells.[2] Fortunately, most RMS can be treated or prevented by
slowing the medication infusion and administering a histamine-
blocking agent.[18] In our case, vancomycin was the only
potential antibiotic administered to induce RMS. Moreover,
the patient underwent the operation under a pure spinal
anesthesia technique, thus avoided the use of those drugs that
predispose to the aggravated reaction of vancomycin-induced
RMS. Therefore, the patient had a good response to our initial
management without any sequelae.

There are still uncertainties regarding the rate and mechanism
of vancomycin delivery from bone cement. Several factors
including the type of cement used, the amount of vancomycin
loaded, and the method of preparation may influence the delivery
of vancomycin.[7] The use of bone cement is considered to be safe in both animal and clinical studies.[8] The peak
vancomycin concentrations in blood were achieved 6 to 24 h
after implantation and were extremely low. In contrast, the
concentrations of vancomycin in bone remain high throughout
the first 6 months, which is an important characteristic for both
curative and prophylactic treatment. There are very few case
reports of adverse effects after the use of vancomycin-loaded
bone cement. Goh et al[7] reported a 42-year-old army officer
who developed RMS after vancomycin bead’s insertion for
chronic osteomyelitis. The symptoms persisted until the removal
of vancomycin beads. Furthermore, Williams et al[19] reported a
39-year-old man with a history of Stevens-Johnson reaction to
systemic vancomycin developed a painful, blistering rash after
implantation of vancomycin-loaded bone cement for treating
recurrent methicillin-susceptible S. aureus prosthetic knee
infection. In our case, we speculated the cause of RMS might
be attributed to the release of certain amount of vancomycin into
local circulation during but not after implantation and
polymerization process of the bone cement. The subsequent
release of tourniquet might cause transient increases of systemic
vancomycin and histamine levels that led to the development of

3. Discussion

Hypersensitivity reactions to vancomycin include RMS and
anaphylaxis.[2,3] RMS is the most common adverse reaction to
vancomycin,[11] but it is rarely life-threatening. RMS is an
anaphylactoid reaction caused by degranulation of mast cells and
basophils after rapid infusion of vancomycin, resulting in the
release of histamine.[12] It is characterized by flushing, erythema,
and pruritis on face, neck, and trunk. However, more advanced
responses, including fever, agitation, angioedema, tachycardia,
hypotension, and even cardiovascular collapse, may occur in
severe cases.[13] In this case report, the patient presented with
flushing, erythema, and pruritis as well as transient hypotension
following the use of vancomycin-loaded cement. She was thus
diagnosed with vancomycin-induced RMS by excluding other
possible causes. It should be noted that the patient also had an
exaggerated skin reaction on the bilateral lower extremities,
which is less seen in common vancomycin-induced RMS. We
speculated that this exaggerated reaction in response to histamine
could be attributed to the vasodilatory effect following spinal
anesthesia.

The other vancomycin hypersensitivity is an anaphylactic
reaction. Anaphylaxis is an immunologically mediated reaction
involving drug-specific immunoglobulin E (IgE) antibodies and is
independent of the infusion rate. Anaphylaxis in response to
vancomycin administration is believed to be rare, although
reactions involving angioedema, respiratory distress, and bron-
chospasm with evident drug-specific IgE have been described.[14] In
cases of anaphylaxis, antihistamines are not thought to be
useful.[15] Anaphylaxis can be severe, generalized allergic, or
hypersensitivity reaction that is life-threatening; administration of
epinephrine should be considered as rapidly as possible once
anaphylaxis is recognized.[16] Moreover, a prior exposure to
vancomycin is usually prerequisite for developing vancomycin-
induced anaphylactic reaction. On the contrary, RMS is an
anaphylactoid reaction that can occur during the first administra-
tion of vancomycin. Judging from the clinical manifestations as
well as the absence of previous vancomycin exposure, anaphylaxis
was not likely to be the cause in this case report.

It should be noted that the patient also had an
RMS. The good response to our initial treatment also supported our speculations and the removal of the vancomycin-loaded bone cement was thus avoided. Moreover, those previous cases were reported in patients with chronic osteomyelitis. To our knowledge, RMS has not been reported to occur after the routine use of vancomycin-loaded bone cement in the primary TKR in available literature.

4. Conclusion
Vancomycin-loaded bone cement is widely used in joint surgery for preventing or treating osteomyelitis. Although the development of RMS is mostly associated with intravenous administration of vancomycin, there are a few case reports of systemic toxicity and allergy reaction when vancomycin was loaded in bone cement for treating orthopedic-related infections. This case report further highlights the potential risk of RMS induced by the routine use of vancomycin-loaded bone cement in the primary TKR. Early detection and proper management of this potential risk in daily practice can thus prevent the unwanted outcomes.

Author contributions
Conceptualization: Chu-Ting Chen.
Resources: Chu-Ting Chen, Khai-Jing Ng, Yu Lin.
Supervision: Ming-Chang Kao.
Writing – original draft: Chu-Ting Chen.
Writing – review & editing: Chu-Ting Chen, Ming-Chang Kao.

References
[1] Liu C, Bayer A, Cosgrove SE, et al. Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin Infect Dis 2011;52:e18-e55.
[2] Sivagnanam S, Deleu D. Red man syndrome. Crit Care 2002;7:119.
[3] Wazny LD, Daghigh B. Desensitization protocols for vancomycin hypersensitivity. Ann Pharmacother 2001;35:1458-64.
[4] Davis RL, Smith AL, Koup JR. The “red man’s syndrome” and slow infusion of vancomycin. Ann Intern Med 1986;104:285-6.
[5] Pau AK, Khakoo R. Red-neck syndrome” with slow infusion of vancomycin. N Engl J Med 1985;313:756-7.
[6] Nagahama Y, VanBeek MJ, Greenlee JD. Red man syndrome caused by vancomycin powder. J Clin Neurosci 2018;50:149-50.
[7] Goh KL, Mohd Yusof N, Ong CL. Allergic reaction following insertion of vancomycin loaded in bone cement. Int Med J Malays 2014;13:61-4.
[8] Chohfi M, Langlais F, Fourastier J, et al. Pharmacokinetics, uses, and limitations of vancomycin-loaded bone cement. Int Orthop 1998;22:171-7.
[9] Hinarejos P, Guitro P, Puig-Verdie L, et al. Use of antibiotic-loaded cement in total knee arthroplasty. World J Orthop 2015;6:877-85.
[10] Schiavone Panni A, Corona K, Giuliani M, et al. Antibiotic-loaded bone cement reduces risk of infections in primary total knee arthroplasty: A systematic review. Knee Surg Sports Traumatol Arthrosc 2016;24:3168-74.
[11] Wallace MR, Mascola JR, Oldfield EC. Red man syndrome: incidence, etiology, and prophylaxis. J Infect Dis 1991;164:1180-5.
[12] deShazo RD, Kemp SF. Allergic reactions to drugs and biologic agents. JAMA 1997;278:1895-906.
[13] Hepner DL, Castells MC. Anaphylaxis during the perioperative period. Anesth Analg 2003;97:1381-95.
[14] Hassaballa H, Mallick N, Orlovski J. Vancomycin anaphylaxis in a patient with vancomycin-induced red man syndrome. Am J Ther 2000;7:319-20.
[15] Kupstaite R, Baranauskaite A, Pileckyte M, et al. Severe vancomycin-induced anaphylactic reaction. Medicina (Kaunas) 2010;46:30-3.
[16] Song TT, Lieberman P. Epinephrine in anaphylaxis: doubt no more. Curr Opin Allergy Clin Immunol 2015;15:323-8.
[17] Wilson AP. Comparative safety of teicoplanin and vancomycin. Int J Antimicrob Agents 1998;10:143-52.
[18] Sahai J, Healy DP, Garris R, et al. Influence of antihistamine pretreatment on vancomycin-induced red-man syndrome. J Infect Dis 1989;160:876-81.
[19] Williams B, Hanson A, Sha B. Diffuse desquamating rash following exposure to vancomycin-impregnated bone cement. Ann Pharmacother 2014;48:1061-5.