Enhancing the existing 3 ton electrical overhead travelling crane rope drum by adopting reverse engineering

Jayakiran Reddy E¹, Bala Raju A¹ and Bhanodaya Kiran Babu N¹

Department of Mechanical Engineering, Sreenidhi Institute of Science and Technology, Hyderabad, India.

Email: ejkiran@gmail.com

Abstract. In the process of improving the performance of the electrical overhead travelling crane drum, industries adopt various approaches. Reverse engineering approach is one of them. This approach was adopted to enhance the performance of the electrical overhead travelling crane drum shaft. The shape and size of the shaft were modified to meet the industry requirements. To improve the shaft loading capacity, life and efficiency, the proposed shaft is modified by replacing the spline with modified spline.

1. Introduction

Cranes are industrial machines that are primarily used for transportation of various materials in industrial environment. In most of the industries, electrical overhead travelling (EOT) or bridge crane are widely used. “Figure 1” shows a 3 ton EOT crane which works on single girder. These cranes are electrically operated by control pendant, remote pendant or from an operator cabin. It mainly works with the principle of hoist mechanism. Hoist is a device used for lifting or lowering a load by means of drum which mainly consists of Motor, Electro-Magnetic Brake / Thruster brake, Gear box, Drum, Rope. ‘Figure 2’ shows various parts in a single girder EOT crane.

Figure 1. Single girder 3 ton EOT crane. [Courtesy: www.Indiamart.com]
2. Literature review

EOT is commonly used overhead crane which consists of parallel runways. In order to enhance the EOT crane performance, various researchers have debated and research on different failures of EOT crane. One of them is Qiyu Li [1] who analysed the stability of crane lifting drum and conclude that theirs is an accurate approach as it is close to the actual stresses and it could be used while designing the crane drum. Similarly, Jun Shu [2] carried out buckling analysis on crane drum using Ansys software and proposed an approach to carry out the analysis using the software. Sarang Mangalekar [3] proposed the new design for reducing the weight of the crane drum by replacing the side disc with arm type structure. In the process of examining the dynamics of the crane's overhead, Marijonas [4] analyses the overhead of the crane while it is under operation and were able to obtain the real dynamics and their behaviour are attained. Similarly, various researchers' tried to develop an automatic design system to obtain the better design. Among them, the design improvement of various mechanical components like Universal Coupling [5], Spur Gear [6, 7], Industrial battery Stack [8], IC Engine Connecting Rod [9, 10], different nuts, bolts and bearings [11, 12], were presented. In the same way, the generic process of improving the existing design is presented in various research papers [13-17].

Along these lines, many researches tried to improve the existing components of the crane drum but, as per the industry norms, the cost for the same is very high. Hence, in this paper, the authors tried to modify the existing crane drum components as it leads to less in cost as well. One of the primary causes for the breakdown of crane is the failure of the shaft or its interconnected components. But, on observation, it was found that failure of the shaft is the main reason for the breakdown. Hence, this paper concentrated on enhancing the existing 3 ton EOT crane drum shaft. In this paper, author modified the design of shaft which connects the rope drum and the gear box without affecting the internal and external diameter of drum and gear box.

‘Figure 3’ shows the existing spline shaft in an EOT crane in a steel manufacturing plant and its dimensions are shown in ‘figure 4’. ‘Figure 5’ shows the detailed dimensions of the break drum. But, with the existing design the problem is that it is getting failed when it is fully loaded ie. 3 ton. Hence, there is a need in the industry to do the modifications for the existing shaft.

Figure 3. Existing spline shaft [Courtesy: Rashtriya Ispat Nigam, Visakhapatnam].
3. Design and modelling:
In the process of enhancing the design of the shaft the authors considered following two cases.

Case 1: The spline shaft design is modified by replacing the spline with key way.
Case 2: The spline shaft design is modified by replacing the spline with modified spline.

Further, it is also taken into consideration that these modifications should not affect the interrelated components of the shaft.

3.1. Case 1
By considering the working condition of the shaft in the crane, the spline shaft is replaced with key way which is shown in ‘figure 6’. This replacement was carried out by considering the industry requirements along with the available recourses in the industry. The shaft dimensions are modified from ø 42mm to ø 45mm. Similarly, the length of shaft is modified from 60 mm to 93 mm keeping the material same. ‘Figure 7’ shows the detailed dimensions of shaft with keyway. ‘Figure 8’ and ‘figure 9’ shows the details about the key. The remaining parts of the assembly like Hub and sleeve are shown in the ‘figure 10’ to ‘figure 13’ along with their detailed dimensions. The assembled rope drum with the modifications is shown in ‘figure 14’. Its cross section and its details are shown in ‘figure 15’ and ‘figure 16’ respectively. The maximum load that can be applied on the modified crane is 3 Ton, but, the advantage with this modification is improved life of it.
Figure 7. Detail drawing of modified shaft with key way

Figure 8. Key

Figure 9. Detail drawing of Key

Figure 10. Hub

Figure 11. Detail drawing of Hub

Figure 12. Sleeve

Figure 13. Detail drawing of Sleeve
In the ‘figure 16’, part 1 is Drum, part 2 is Sleeve, part 3 is Hub, part 4 is Plate, part 5 is Rear Hub, part 6 is Plate, part 7 is Rib and part 8 is Shaft. Among these parts only drum, sleeve and hub are modified as the other parts not allowed the authors to modify because of the constraints in the industry environment.

3.2. Case 2
In this case, the spline shaft is replaced with modified spline. The shaft dimensions are modified from Ø 42mm to Ø 45mm. Similarily, the length of shaft is modified from 60 mm to 93 mm keeping the material same. ‘Figure 17’ shows the modified spline shaft and its dimensional details are shown in ‘figure 18’. This spline shaft is fit into hub which is connected to rope drum. The ‘figure 19’ shows the hub and ‘figure 20’ gives its dimensional details. The assembled rope drum with the modifications as per case 2 is shown in ‘figure 21’. Its cross section and its details are shown in ‘figure 22’ and ‘figure 23’ respectively.
Figure 17. modified spline shaft

Figure 18. Detail drawing of modified spline shaft

Figure 19. Hub

Figure 20. Detail drawing of Hub

Figure 21. Assembly of modified rope drum

Figure 22. Cross section view of modified rope drum
In the ‘figure 23’, part 1 is Drum, part 2 is Hub, part 3 is Plate, part 4 is Rear Hub, part 5 is Plate, part 6 is Rib and part 7 is Shaft.

4. Results and evaluation
The modified shaft in the two cases is analysed using Ansys 18.1 software. The considered load applied on the drum is 3 ton and which is the standard load as per the industry. The screenshots of the analysis part in the considered two cases are given below in this section and they can be seen in the ‘figure 24’ to ‘figure 28’. The shear stresses obtained in these two cases are given below.

4.1. Case 1

Figure 24. Screenshot of finite element meshing of modified shaft in case 1.

Figure 25. Screenshot of load analysis on assembly in case 1.
On analysis, it is observed that, the minimum shear stress is 1.0866e-07 MPa and the maximum shear stress is 0.017398 MPa.

4.2. Case 2

On analysis, it is observed that, the minimum shear stress is 1.6998e-007 MPa and the maximum shear stress is 0.0022206 MPa. On compression, it is observed that the design in case 2 is better than the design in case 1 as the shear stress is low.

5. Conclusion

On analysis it is observed that, all the two proposed alternatives are found to be good, but it is observed that the shaft in case 2 is appeared to be better than the shaft in case 1 as the shear stress is less. Therefore, it can be concluded that the shaft in case 2 can suit better for the industrial applications. Hence, it can be understood that the shaft in case 2 is less prone to failure. Therefore, the proposed shaft in the case 2 can provide better efficiency under the given and industrial loads. As a whole, it can be concluded that the reverse engineering technique increased the lifespan of the shaft.
References

[1] Qiyu Li, Yixiao Qin, Ming Yang, 2016 "Stability of Crane’s Lifting Drum with Euler Distribution Forces", *International Journal of Mechanical Engineering and Applications*, 4, issue 5, pp: 176-181.

[2] Jun Shu, Chao Xu, 2014 "Eigen value Buckling Analysis of Drum on Crane Based on ANSYS", *Design & Calculation*, 7.

[3] Sarang Mangalekar, Vaibhav Bankar, Pratik Chaphale, 2016 "Design and Analysis of Central Drum in Mine Hoist", *International Research Journal of Engineering and Technology*, 3, issue 6, pp. 1111-1114.

[4] Marijonas Bogdevičius, Aleksandr Vika, 2005 "Investigation of the dynamics of an overhead crane lifting process in a vertical plane", *Transport*, 20, issue 5 pp: 176-180.

[5] Jayakiran Reddy Esanakula, Gaddi Nikhil Raju and Gottapu Anudeep Sai, 2020 "Development of a preliminary system for automatic generation of CAD model of the universal coupling", *International Journal of Mechanical and Production Engineering Research and Development*, 10, issue 3, pp. 8701-8710.

[6] Jayakiran Reddy E, Rajendra D & Venkatesu Naik J, 2020 "Developing an automation system for generating the CAD model of spur gear", *International Journal of Mechanical and Production Engineering Research and Development*, 10, issue 3, pp. 8479-8488.

[7] E Jayakiran Reddy, V Pandu Rangadu, 2018 "Development of Knowledge Based Parametric CAD Modeling system for Spur Gear: An Approach", *Alexandria Engineering Journal*, 57, pp. 3139-3149.

[8] Jayakiran Reddy E, Sridhar C N V, Pandu Rangadu V, 2016 "Development of KBS for CAD modeling of Industrial Battery Stack and its Configuration: An approach", *Advances in Intelligent Systems and Computing*, 530, pp. 607-618.

[9] Jayakiran Reddy E, Sridhar C N V, Pandu Rangadu V, 2016 "Development of KBS for CAD modeling of a two wheeler IC Engine Connecting Rod: An approach", *Advances in Intelligent Systems and Computing*, 530, pp. 597-606.

[10] E. Jayakiran Reddy, R. Rama Chandra, 2017 "Development of an Intelligent System for the Design of a Two Wheeler IC Engine Connecting Rod", International Journal of Engineering Science Invention, 6, pp. 67-74.

[11] Jayakiran Reddy E, Sridhar C N V, Pandu Rangadu V 2016, "Research and Development of Knowledge Based Intelligent Design System for Bearings Library Construction Using SolidWorks API", *Advances in Intelligent Systems and Computing*, 385, pp. 311-319.

[12] E Jayakiran Reddy, C N V Sridhar, V Pandu Rangadu, 2015 "Knowledge – Based Parametric Modeling for Bolts, Nuts and Bearings using SolidWorks", *International Journal of Applied Engineering Research*, 10, pp. 16111-16120.

[13] E Jayakiran Reddy, N Venkatachalapathi, V Pandu Rangadu, 2018 "Development of an approach for Knowledge-Based System for CAD modelling", *Materials Today: Proceedings*, 5, pp. 13375–13382.

[14] E Jayakiran Reddy, C N V Sridhar, V Pandu Rangadu, 2015 "Knowledge Based Engineering: Notion, Approaches and Future Trends", *American Journal of Intelligent Systems*, 5, pp. 1-17.

[15] E Jayakiran Reddy, V Pandu Rangadu, R Ramachandra, V Naga Prasad Naidu, 2018 "Development of a constraint-based approach for Knowledge-Based System for CAD modeling", *Advanced Science, Engineering and Medicine*, 10, pp. 357-361.
[16] E Jayakiran Reddy, J Venkatesu Naik, D Rajendra, V Pandu Rangadu, 2020 "Online Knowledge-Based System for CAD modeling and Manufacturing - An Approach", *Advances in Intelligent Systems and Computing*, 910, pp. 259-268.

[17] E Jayakiran Reddy, CNV Sridhar, V Pandu Rangadu, 2018 "Development of web-based knowledge-based system for CAD modeling and manufacturing", *Materials Today: Proceedings*, 5, pp. 27241-27247.