RESEARCH

Co-administration of hyaluronic acid with local anaesthetics shows lower cytotoxicity than local anaesthetic treatment alone in bovine articular chondrocytes

T. S. Onur, C. S. Sitron, A. Dang

From UCSF Department of Orthopaedic Surgery, University of California, San Francisco (UCSF), and San Francisco VA Medical Center, San Francisco, California, United States

Objective
To study the effect of hyaluronic acid (HA) on local anaesthetic chondrotoxicity in vitro.

Methods
Chondrocytes were harvested from bovine femoral condyle cartilage and isolated using collagenase-containing media. At 24 hours after seeding 15 000 cells per well onto a 96-well plate, chondrocytes were treated with media (DMEM/F12 + ITS), PBS, 1:1 lidocaine (2%):PBS, 1:1 bupivacaine (0.5%):PBS, 1:1 lidocaine (2%):HA, 1:1 bupivacaine (0.5%):HA, or 1:1 HA:PBS for one hour. Following treatment, groups had conditions removed and 24-hour incubation. Cell viability was assessed using PrestoBlue and confirmed visually using fluorescence microscopy.

Results
Media-treated groups had a mean of 1.55×10^4 cells/well (SEM 783). All treated cells showed statistically significant reduced viability when compared with media alone (all $p < 0.003$). Cells treated with bupivacaine + HA (6.70×10^3 cells/well (SEM 1.10×10^3)) survived significantly more than bupivacaine (2.44×10^3 cells/well (SEM 830)) ($p < 0.001$). Lidocaine + HA (1.45×10^3 cells/well (SEM 596)) was not significantly more cytotoxic than lidocaine (2.24×10^3 cells/well (SEM 341)) ($p = 0.999$). There was no statistical difference between the chondrotoxicities of PBS (8.49×10^3 cells/well (SEM 730) cells/well) and HA (4.75×10^3 cells/well (SEM 886)) ($p = 0.294$).

Conclusions
HA co-administration reduced anaesthetic cytotoxicity with bupivacaine but not lidocaine, suggesting different mechanisms of injury between the two. Co-administered intra-articular injections of HA with bupivacaine, but not lidocaine, may protect articular chondrocytes from local anaesthetic-associated death.

Cite this article: Bone Joint Res 2013;2:270–5.

Keywords: Hyaluronic acid, Local anaesthetic, Osteoarthritis, Intra-articular injections, Chondrocytes

Article focus
- To confirm whether or not co-treatments of local anaesthetics and hyaluronic acid viscosupplements are toxic to chondrocytes in monolayer
- Reiterate the risks of using local anaesthetics intra-articularly with regards to the health of chondrocytes

Key messages
- Co-treatment of local anaesthetics in hyaluronic acid significantly improves chondrocyte viability when treated with bupivacaine, but not with lidocaine
- Co-treating local anaesthetics with hyaluronic acid improves chondrocyte viability to a point that it is not significantly different than treating chondrocytes with media alone

Strengths and limitations
- Two measures of chondrocyte viability (Strength)
- Used clinically used commercial products (Strength)
- This study used bovine chondrocytes in monolayer (Limitation)
Introduction

Osteoarthritis (OA) is a debilitating and widespread disease, affecting 80% of individuals over the age of 75 years. Clinical consequences of OA include loss of mobility and pain. Local anaesthetics, such as lidocaine and bupivacaine, are commonly used intra-articularly for therapeutic purposes and post-operatively in pain management for OA. Unfortunately, local anaesthetics have been found to be cytotoxic in a variety of cell types, including chondrocytes. As such, local anaesthetics delivered intra-articularly could worsen the severity of osteoarthritis.

Recently, hyaluronic acid (HA) supplementation has been suggested as a symptomatic treatment for osteoarthritis. HA is a synthetic glycosaminoglycan normally present in healthy synovial fluid. While HA supplementation has only been approved for use in the knee, similar HA treatments have been used in the treatment of OA in joints other than the knee, such as the ankle and shoulder.

Injecting HA locally into the joint is one option for maintaining normal biomechanics in the joint. Furthermore, the literature has suggested that intra-articular injections of HA in osteo-arthritis patients make the local environment of the knee joint closer in composition to healthy knees and may aid in normal biomechanics. Beyond the lubrication effect of HA, there is basic scientific evidence suggesting a direct effect on chondrocytes through the CD44 receptor. There is data to support that HA suppresses matrix metalloproteinases (MMP) and a Disintegrin And Metalloproteinase with Thrombospondin MotifS (ADAMTS). HA supplementation, however, has not been shown to be able to change the natural history of osteoarthritis.

Clinically, local anaesthetics can be co-injected during HA treatment to manage the pain associated with these injections. The literature has not previously looked at the effect of HA in combination with local anaesthetics on articular chondrocytes. The goal of our study was to assess the effect of co-treating articular chondrocytes with a single-dose of HA and local anaesthetics. We hypothesise that the addition of HA to local anaesthetics will reduce their toxicity in chondrocytes compared with treatment with only local anaesthetics. In this study, bovine articular chondrocytes in monolayer received treatments of 1% lidocaine and 0.25% bupivacaine, shown to be cytotoxic, co-incubated with the commercially available viscosupplement Supartz (Smith & Nephew, London, United Kingdom).

Materials and Methods

Chondrocyte harvest. Articular chondrocytes were harvested from weight-bearing portions of bovine femoral condyles (Rancho Veal, Petaluma, California). Cartilage was minced into 3-mm³ cubes and washed in sterile phosphate buffered saline (PBS; Hyclone, Logan, Utah) treated with 250 μg/ml Amphotericin B (MP Biomedicals, Solon, Ohio) and Penicillin-Streptomycin-Glutamine antibiotic (Pen-Strep; Hyclone). Chondrocytes were isolated by digesting cartilage in digestion media consisting of 500 ml 1:1 Dulbecco’s Modified Eagle Media (DMEM):F-12 (Hyclone), 50 ml Fetal Bovine Serum (FBS) (Axenia BioLogix, Sacramento, California), and 100 mg collagenase-P (Roche, Mannheim, Germany). The digested cartilage was filtered and the remaining chondrocytes in suspension were centrifuged at 500 g for 10 minutes. After discarding the supernatant and re-suspending the chondrocytes in a mixture of 10% FBS Media (500 ml 1:1 DMEM:F12, 50 ml FBS, 5 ml 100×Amphotericin B, 5 ml Pen-Strep), cells were counted using a haemacytometer.

Chondrocytes were then plated on flat-bottomed clear 75-cm² flasks at a concentration of 7.5×10⁵ cells/ml and allowed to grow to confluence. At 24 hours following plating, cells were treated with insulin transferrin selenium (ITS)-supplemented media until use. ITS media was prepared by combining 500 ml 1:1 DMEM:F12, 25 mg L-ascorbic acid 2-phosphate sesquimagnesium salt hydrate (Sigma-Aldrich, St. Louis, Missouri), 5 ml 100×Pen-Strep antibiotic, 5 ml Amphotericin B, 500 mg bovine serum albumin (BSA) (Sigma Aldrich), 5 ml 10 mg/ml sodium pyruvate (Mediatech, Manassas, Virginia), 5 ml 1M HEPES Buffer (University of California, San Francisco Cell Culture Facility, San Francisco, California), and 5 ml of ITS premix (BD Biosciences, San Jose, California).

Seeding. Chondrocytes were removed from flasks, counted, and transferred to 96-well plates for treatment. A plate was seeded with 15 000 chondrocytes in each well. Each plate consisted of five conditions, described below, in replicates of six and a standard curve. The standard curve was prepared by serial dilution, starting with a density of 30 000 chondrocytes per well. The appropriate volume for each was calculated using the concentration found by methods described in the previous section. Additional ITS Media was added to each of the occupied wells to bring their total volume to 100 μl. Each plate was incubated at 37°C in standard cell culture conditions for 48 hours to allow the cells to rest and adhere to the wells.

Treatment. After 48 hours, the media was removed from the wells and the chondrocytes were treated with 70 μl of one of the seven following conditions: 1) ITS media; 2) PBS; 3) 1% lidocaine diluted from 2% stock solution (20 mg/ml lidocaine HCl, 6 mg/ml sodium chloride; APP Pharmaceuticals, Schaumburg, Illinois) and PBS; 4) 0.25% bupivacaine diluted from 0.5% stock (5 mg/ml bupivacaine HCl, 8.1 mg/ml sodium chloride; Hospira Inc., Lake Forest, Illinois) and PBS; 5) 1:1 2% Lidocaine and Supartz (Smith & Nephew); 6) 1:1 0.5% bupivacaine and Supartz; or 7) 1:1 Supartz and PBS. Following treatment, the conditions were removed from the wells and replaced with 70 μl of ITS media. Chondrocytes were allowed to recover by incubating for 24 hours at 37°C.

BONE & JOINT RESEARCH
alised using a 5× and 10× objective under a fluorescein
Employing fluorescence microscopy, live cells were visu-
temperature and protected from light for 35 minutes.
added to each well and allowed to incubate at room tem-
1 to 10 ml of 1× PBS. 100 μl of the LIVE/DEAD stain was
5 μl calcein AM and 20 μl ethidium bromide homodimer-
orescence microscopy. The stain was prepared by adding
chondrocytes under each treatment were taken using flu-
qualitatively assess chondrocyte viability. Following stain-
PrestoBlue staining, chondrocytes were visualised to
PrestoBlue (Invitrogen, Frederick, Maryland) in 10% FBS
from all wells and replaced with 50 μl of a 1:10 solution of
reduce nicotinamide adenine dinucleotide (NAD+). Fol-
reagent measures viability by testing the cell’s ability to
Amphotecerin B, 5 ml Pen-Strep). Briefly, PrestoBlue is a
media (500 ml 1:1 DMEM:F12, 50 ml FBS, 5 ml 100×
chondrocytes using the standard curve.
Fig. 1
Bar chart showing the mean chondrocyte viability by treatment group. The
error bars denote the standard error of the mean (SEM). All treatments
showed significantly reduced viability compared with media-only controls
(all < 0.005). †, statistically significant difference between the bupivacaine-
only and bupivacaine and hyaluronic acid (HA) groups (p = 0.027) (PBS,
phosphate buffered saline).

Quantification. After 24 hours, media was removed with
from all wells and replaced with 50 μl of a 1:10 solution of
PrestoBlue (Invitrogen, Frederick, Maryland) in 10% FBS
media (500 ml 1:1 DMEM:F12, 50 ml FBS, 5 ml 100×
Amphotecerin B, 5 ml Pen-Strep). Briefly, PrestoBlue is a
non-cytotoxic cell viability fluorescence assay. The
reagent measures viability by testing the cell’s ability to
reduce nicotinamide adenine dinucleotide (NAD\(^+\)).
Following ten minutes of incubation at 37°C, the plate was
read on the Synergy2 plate reader machine (BioTek Instru-
ments Inc., Winooski, Virginia) with an excitation fre-
quency of 535 nm and emission frequency of 595 nm,
producing a fluorescence intensity read out in arbitrary
units. The mean of the blank well readouts on each plate
was calculated and subtracted from each experimental
well. Fluorescence values were converted number of
chondrocytes using the standard curve.
LIVE/DEAD stain. In order to confirm the results from the
PrestoBlue staining, chondrocytes were visualised to
qualitatively assess chondrocyte viability. Following stain-
ing with LIVE/DEAD Viability/Cytotoxicity Kit for Mamma-
lian Cells (Invitrogen), representative images of
chondrocytes under each treatment were taken using flu-
orescence microscopy. The stain was prepared by adding
5 μl calcein AM and 20 μl ethidium bromide homodimer-
1 to 10 ml of 1× PBS. 100 μl of the LIVE/DEAD stain was
added to each well and allowed to incubate at room tem-
perature and protected from light for 35 minutes.
Employing fluorescence microscopy, live cells were visu-
alised using a 5× and 10× objective under a fluorescein

isothiocyanate (FITC) filter (approximately 494 nm) and
dead cells were visualised under a rhodamine filter
(approximately 517 nm).

Statistical analysis. Statistical analysis was conducted
using the computer software R (The R Foundation for Sta-
tistical Computing; University of Vienna, Vienna, Austria).
Data were analysed for statistically significant differences
between all conditions using analysis of variance
(ANOVA). A post-hoc Tukey’s Honestly Significant Differ-
ence (HSD) test was conducted to make pair-wise com-
parisons between conditions in order to find statistical
significance, indicated by p-values < 0.05.

Results

Fluorescence assay for cell viability. The fluorescence
using the PrestoBlue reagent was converted to number of
chondrocytes using a standard curve. Combining results
from the two experiments, the mean number of cells for
each condition is given in Table I and Figure 1.

ANCOVA comparison of all conditions against one
another indicated a statistically significant difference
within the data (p < 0.001). A post-hoc Tukey’s HSD test
was conducted to test pair-wise differences in compari-
on with the media-only controls. All conditions resulted
in significantly lower viability compared with the media-
only controls.

Treating chondrocytes with bupivacaine and HA signif-
ificantly increased cell viability when compared with bupi-
vacaine only (p = 0.027). The lidocaine and HA treatment
did not significantly increase chondrocyte viability com-
pared with the lidocaine-only treatment (p = 0.999).

LIVE/DEAD staining and visualisation. Chondrocyte vi-
ability was also assessed microscopically by LIVE/DEAD
staining. Representative pictures of LIVE-stained chondrocytes at
both 5× and 10× magnification are shown in Figure 2.

At 5× magnification, the media only, PBS and HA
groups show high, even live cell distribution and low
dead signal. 1% lidocaine and 0.25% bupivacaine show
lower live cell density, while also showing increased dead
signal. 1% lidocaine and 0.25% bupivacaine show

Number of cells (×10³)

Treatment	Mean (SEM) number of cells (×10³)	p-value (vs media only)†
Media only	15.3 (0.594)	-
PBS	9.91 (0.826)	0.0028522
0.25% bupivacaine	4.23 (2.74)	< 0.0000001
1% lidocaine	6.39 (1.81)	< 0.0000001
Bupivacaine:HA	11.4 (2.2)	< 0.0001237
Lidocaine:HA	9.26 (3.69)	< 0.0000001
HA:PBS (1:1)	9.16 (2.00)	0.0000036

† post-hoc Tukey’s Honestly Significant Difference test

Table I. Number of cells for each treatment

VOL. 2, No. 12, DECEMBER 2013
As observed on microscopy, bupivacaine and HA co-treated groups show an increase in live stained chondrocytes at 5×. However, there is still a high density of dead staining chondrocytes as well, especially compared with the control groups. Comparing the LIVE/DEAD pictures from the 1% lidocaine treated and the lidocaine-HA co-treated chondrocytes, there does not appear to be a change in the number of LIVE/DEAD cells or in the shape of these cells.

Discussion
This study investigated the effect of co-treating bovine articular chondrocytes in monolayer with a combination of HA and local anesthetics. Clinically, HA injections can alleviate the symptoms of osteoarthritis in some patients. Intra-articular local anesthetics are commonly used in the clinic and post-operatively. However, literature supports the toxic effects of local anesthetics on articular cartilage.4,10-16 Chu et al10 showed that bupivacaine was toxic to bovine articular chondrocytes in monolayer. Miziyaki et al14 showed that treating bovine articular chondrocytes in monolayer with lidocaine caused high cell death.

Intra-articular HA injections have been shown to be a safe treatment both in basic science research and clinically.5,7 In our study, chondrocytes co-treated with HA and bupivacaine were significantly more viable than those treated with bupivacaine alone (p = 0.027). However, the lidocaine-HA co-treatment group does not appear to be significantly different than lidocaine alone. This suggests that the mechanism by which cytotoxicity is caused by lidocaine and bupivacaine may be different from one another.

The exact mechanism underlying chondrocyte death following treatment with local anesthetics remains largely unknown. Our experiments confirmed that 24 hours after treatment and with incubation at 37°C, 1% lidocaine and 0.25% bupivacaine caused a significant reduction in chondrocyte viability (both p < 0.001). The data from this study does not allow us to make any conclusions in regard to the mechanism responsible for following local anesthetic treatment. Several authors have proposed mechanisms by which local anesthetic cytotoxicity can occur. Miyazaki et al14 observed decreased glycosaminoglycan production with increasing concentration of lidocaine using a dimethyl blue assay. However, these authors did not propose how lidocaine modulated normal cellular function in a way that caused proteoglycan production to decrease.14 Dragoo et al12 suggested that preservatives and lower pH caused by drug formulations containing epinephrine led to chondrocyte death following treatment with lidocaine.

Fig. 2
Representative LIVE staining at 5× and 10× magnification of chondrocytes treated with each condition, stained using 4 mM Calcein AM and visualised using fluorescence microscopy under a fluorescein isothiocyanate (FITC) filter. Chondrocytes co-treated with bupivacaine and hyaluronic acid (HA) showed improved density when compared with bupivacaine-only treated chondrocytes. There was no noticeable increase in cell density between cells treated with lidocaine and cells co-treated with lidocaine and HA (PBS, phosphate buffered saline).
and bupivacaine. Bogatch et al15 suggested from their study that chemical incompatibility between local anaesthetics and cell culture media or synovial fluid was responsible for a decrease in chondrocyte viability. Grishko et al16 correlated chondrocyte death with mitochondrial dysfunction in a dose dependent manner, especially 120 hours after treatment. None of these proposed mechanisms address why HA co-treatment would mitigate the effect of local anaesthetics.

There have also been investigations into the role that molecular weight plays in the efficacy and biological activity of HA in the joint. Intra-articular HA injections are categorised as either low- or high-molecular-weight formulations. There is variation in the literature as to the ranges that qualify a particular molecular weight as being high or low. Supartz (Smith & Nephew), the HA product used in this study, is considered to be high-molecular-weight, and contains HA with molecular weights ranging from about 0.6 million Daltons (Da) to 1.2 million Da.17 A clinical double-blind study has demonstrated that high-molecular-weight formulations of HA have a moderate improvement in efficacy over time compared with low-molecular-weight.18 The basic scientific literature might support this finding, as it has been suggested that high-molecular-weight HA has anti-inflammatory effects and more favourable viscoelastic properties.18 Wang et al19 were able to demonstrate that high-molecular-weight HA reduced the inflammatory activity of fibroblast synoviocytes derived from patients with early-stage osteoarthritis. Masuko et al18 suggested that HA does have anti-inflammatory activity through the CD44 receptor. HA has been shown not to interfere with the analgesic effects of bupivacaine, extending bupivacaine’s effects rather than neutralising or eliminating the drug.20 More work needs to be done to understand the mechanism of local anaesthetic toxicity, before trying to explain how the biological activity of HA can rescue chondrocytes during treatment. Because this study used one formulation, it remains unclear what effect, if any, molecular weight of HA would have on mitigating local anaesthetic cytotoxicity.

Our study shows that co-treating articular chondrocytes in monolayer with HA and local anaesthetics does not reduce the viability of these chondrocytes, and may help mitigate bupivacaine toxicity. Additionally, the differing responses to HA co-treatment between bupivacaine and lidocaine suggest that their respective cytotoxicity can potentially be attributed to different mechanisms. Future studies should confirm these results in different cell sources, ideally from osteo-arthritic human patients, and for chondrocytes still in vivo.

Conclusions. Despite the scientific evidence that HA does have a positive effect on chondrocytes, there are no studies that have shown a clinical effect when used for osteoarthritis. More broadly, it is our hope that clinicians will consider more carefully non-surgical treatment and diagnosis. It may be that HA is better suited as an acute treatment following injury or inflammation. At the same time, clinical evidence of local anaesthetic toxicity is limited, suggesting that the *in vivo* effects of anaesthetics are missed or tempered by the normal articular environment. In clinical practice, the presence of normal synovial fluid, which is rich in HA, may mitigate some of this anaesthetic toxicity. In applying our growing foundation of knowledge to clinical practice, the risks and benefits of all our treatments must be weighted among individual patient factors. Understanding situations in which the normal joint environment is compromised, such as after haemarthrosis or injury, will help us to guide treatments to maximise benefit while minimising risks.

References

1. Arden N, Nevitt M. Osteoarthritis: epidemiology. *Best Pract Res Clin Rheumatol* 2006;20:3–25.
2. Piper SL, Kramer JD, Kim HT, Feeley BT. Effects of local anaesthetics on articular cartilage. *Am J Sports Med* 2011;39:2245–2253.
3. Rahnama R, Wang M, Dang AC, Kim HT, Kuo AC. Cytoxicity of local anesthetics on human mesenchymal stem cells. *J Bone Joint Surg [Am]* 2013;95-A:132–137.
4. Piper SL, Kim HT. Comparison of ropivacaine and bupivacaine toxicity in human articular chondrocytes. *J Bone Joint Surg [Am]* 2008;90-A:988–991.
5. Allman RD. Status of hyaluronan supplementation therapy in osteoarthritis. *Curr Rheumatol Rep* 2003;5:7–14.
6. Doral MN, Bilge O, Batmaz G, et al. Treatment of osteochondral lesions of the talus with microfracture technique and postoperative hyaluronan injection. *Knee Surg Sports Traumatol Arthrosc* 2011;19:1388–1403.
7. Eriani JC, Eriani CJ, Wright MB, Rydlewicz JA. Efficacy of intraarticular hyaluronic acid injections in knee osteoarthritis. *Clin Orthop Relat Res* 2001;390:173–181.
8. Masuko K, Murata M, Yudoh K, Kato T, Nakamura H. Anti-inflammatory effects of hyaluronan in arthritis therapy: not just for viscosity. *Int J Gen Med* 2009;2:77–81.
9. Campo GM, Avenoso A, D’Ascola A, et al. Hyaluronan in part mediates IL-1beta-induced inflammation in mouse chondrocytes by up-regulating CD44 receptors. *Gene* 2012;494:24–35.
10. Chu CR, Izzo NJ, Papas NE, Fu FH. In vitro exposure to 0.5% bupivacaine is cytoxic to bovine articular chondrocytes. *Arthroscopy* 2006;22:693–699.
11. Dragoo JL, Braun HJ, Kim HJ, Phan HD, Golish SR. The in vitro chondrotoxicity of single-dose local anesthetics. *Am J Sports Med* 2012;40:794–799.
12. Dragoo JL, Korotkova T, Kim HJ, Jagadish A. Chondrotoxicity of low pH, epi- nephrine, and preservatives found in local anesthetics containing epinephrine. *Am J Sports Med* 2010;38:1154–1159.
13. Braun HJ, Wilcox-Fogel N, Kim HJ, et al. The effect of local anesthetic and cor- ticosteroid combinations on chondrocyte viability. *Knee Surg Sports Traumatol Arthrosc* 2011;19:1689–1695.
14. Miyazaki T, Kobayashi S, Takeno K, et al. Lidocaine cytotoxicity to the bovine articular chondrocytes in vitro: changes in cell viability and proteoglycan metabolism. *Knee Surg Sports Traumatol Arthrosc* 2011;19:1198–1205.
15. Bogatch MT, Ferachi DG, Kyle B, et al. The effect of local anesthetic and corticosteroid combinations on chondrocyte viability. *Knee Surg Sports Traumatol Arthrosc* 2011;19:1689–1695.
16. Chang H, Wilcox-Fogel N, Kim HJ, et al. The effect of local anesthetic and corticosteroid combinations on chondrocyte viability. *Knee Surg Sports Traumatol Arthrosc* 2011;19:1689–1695.
17. Arden N, Nevitt M. Osteoarthritis: epidemiology. *Best Pract Res Clin Rheumatol* 2006;20:3–25.
18. Piper SL, Kramer JD, Kim HT, Feeley BT. Effects of local anaesthetics on articular cartilage. *Am J Sports Med* 2011;39:2245–2253.
19. Rahnama R, Wang M, Dang AC, Kim HT, Kuo AC. Cytoxicity of local anesthetics on human mesenchymal stem cells. *J Bone Joint Surg [Am]* 2013;95-A:132–137.
20. Piper SL, Kim HT. Comparison of ropivacaine and bupivacaine toxicity in human articular chondrocytes. *J Bone Joint Surg [Am]* 2008;90-A:988–991.
Funding statement:
- The authors would like to acknowledge Smith & Nephew for providing the Supartz® used in this study. The authors would also like to thank the following funding sources for their support of this project: UCSF Department of Orthopaedic Surgery, Northern California Institute of Research and Education.

Author contributions:
- T. S. Onur: Data collection, Data analysis, Performed experiments, Wrote paper
- C. S. Sitron: Data collection, Data analysis, Performed experiments, Wrote paper
- A. Dang: Writing and editing the paper

ICMJE Conflict of Interest:
- None declared

©2013 The British Editorial Society of Bone & Joint Surgery. This is an open-access article distributed under the terms of the Creative Commons Attributions licence, which permits unrestricted use, distribution, and reproduction in any medium, but not for commercial gain, provided the original author and source are credited.