ABSTRACT

Objective: Adolescent idiopathic scoliosis (AIS) is a spinal deformity that can cause cardiorespiratory dysfunction, contributing to decreases in tolerance for aerobic exercise (TAE) and in functionality. The objective is to assess the TAE and lung capacity of patients who underwent corrective AIS surgery in the pre- (PRE) and postoperative (POST) periods. Methods: Sixty individuals, PRE (n=30, age: 18.5±2.4 years) and POST (n=30, age: 24.5±4.5 years), participated in the study. The forced vital capacity (FVC), the forced expiratory volume in the first second (FEV1) and the FEV1/FVC ratio, as well as the maximum inspiratory and expiratory pressure were verified. The TAE was assessed by the distance travelled in the 6-minute walk test (6MWTT), together with blood pressure, heart rate, respiratory rate and peripheral oxygen saturation measured at the beginning and at the end of the test. Results: A mild restrictive pattern in lung function and reduced expiratory muscle strength were observed in both groups, but with no difference between the PRE and POST groups. No difference was found between the PRE (534±67.1 m) and POST (541±69.5 m) groups for the distance travelled in the 6MWT, though both were below the predicted percentage (82.8±10.0% and 84.8±10.9%, respectively). Hemodynamic and respiratory changes caused by the 6MWT were observed, except for the peripheral oxygen saturation. Conclusion: The results suggest that even after surgical correction, patients with AIS continue to have low TAE. Level of evidence III; Therapeutics Study - Investigation of Treatment Results / Case-control study.

Keywords: Scoliosis; Exercise Tolerance; Respiratory Function Tests; 6-Minute Walk Test.

RESUMO

Objetivo: A escoliose idiopática do adolescente (EIA) é uma deformidade da coluna que pode ocasionar disfunções cardiorespiratórias, contribuindo para a diminuição da tolerância ao exercício aeróbio (TEA) e da funcionalidade. O objetivo é avaliar a TEA e a capacidade pulmonar em pacientes no pré (PRE) e pós-operatório (PÓS) de correção da EIA. Métodos: Participaram 60 indivíduos PRÉ (n = 30, idade: 18,5 ± 2,4 anos) e PÓS (n = 30, idade: 24,5 ± 4,5 anos). A capacidade vital forçada (CVF), o volume expiratório forçado no primeiro segundo (VEF1) e a razão VEF1/CVF, assim como as pressões inspiratória e expiratória máximas, foram verificados. A TEA foi avaliada pela distância percorrida no teste de caminhada de 6 minutos (TC6), acompanhado de medidas de pressão arterial, frequência cardíaca, frequência respiratória e saturação periférica de oxigênio no início e no final do teste. Resultados: Um padrão restritivo leve na função pulmonar e força da musculatura expiratória reduzida foram observados em ambos os grupos, mas sem diferença entre PRE e PÓS. Não foi encontrada diferença entre PRÉ (534 ± 67,1 m) e PÓS (541 ± 69,5 m) para a distância percorrida no TC6, abaixo do predito para ambos os grupos (82,8 ± 10,0% e 84,8 ± 10,9%, respectivamente). Foram observadas alterações hemodinâmicas e respiratórias provocadas pelo TC6, exceto para a saturação periférica de oxigênio. Conclusão: Os resultados sugerem que mesmo após a correção cirúrgica os pacientes com EIA continuam apresentando baixa TEA. Nível de evidência III; Estudos terapêuticos - Investigação dos Resultados do Tratamento / Estudo de caso-controle.

Descritores: Escoliose; Tolerância ao Exercício; Testes de Função Respiratória; Teste de Caminhada de 6 Minutos.

RESUMEN

Objetivo: La escoliosis idiopática del adolescente (EIA) es una deformidad de la columna que puede causar disfunciones cardiorespiratorias, contribuyendo para la disminución de la tolerancia al ejercicio aeróbico (TEA) y de la funcionalidad. El objetivo es evaluar la TEA y la capacidad pulmonar en pacientes en el pre (PRE) y postoperatorio (POS) de corrección de la EIA. Métodos: Participaron 60 individuos.
PRE (n=30, edad: 18,5±2,4 años) y POS (n=30, edad: 24,5±4,5 años). Fueron verificadas la capacidad vital forzada (CVF), el volumen espiratorio forzado en el primer segundo (VEF1) y la razón VEF1/CVF, así como las presiones inspiratoria y espiratoria máximas. La TEA fue evaluada por la distancia recorrida en el test de caminata de 6 minutos (TC6), acompañado de mediciones de presión arterial, frecuencia cardíaca, frecuencia respiratoria y saturación de oxígeno al inicio y al final del test. Resultados: Fueron observados un patrón restrictivo leve y fuerza muscular respiratoria reducida en ambos grupos, pero sin diferencia entre PRE y POS. No fue encontrada diferencia entre PRE (534 ± 67,1 m) y POS (541 ± 69,5 m) para la distancia recorrida en el TC6, por debajo de los predicho para ambos grupos (82,8 ± 10,0% y 84,8 ± 10,9%, respectivamente). Se observaron alteraciones hemodinámicas y respiratorias provocadas por el TC6, excepto para la saturación periférica de oxígeno. Conclusiones: Los resultados sugieren que incluso después de la corrección quirúrgica, los pacientes con EIA continúan presentando baja TEA. Nivel de evidencia III; Estudios Terapéuticos - Investigación de los Resultados del Tratamiento / Estudio de caso-control.

Introducción

La escoliosis es una deformidad esquelética de la columna vertebral, definida como un desvío de la línea media de la columna vertebral con un ángulo mayor de 10°, que es observable en la postura de pie. En la medida que la escoliosis progrese, puede haber consecuencias funcionales y posturales. En este estudio, se evaluaron las características de la función respiratoria y la tolerancia al ejercicio en pacientes con escoliosis en un estudio transversal, con el objetivo de verificar la tolerancia para el ejercicio aeróbico en pacientes con escoliosis, en un estudio transversal, por medio de pruebas pre y postoperatorias 6MWT, y su relación con la función pulmonar.

Métodos

Participants

Un total de 60 voluntarios de ambos sexos, edades entre 15 y 35 años, fueron seleccionados para el estudio, ya que la mayoría de los pacientes diagnosticados con AIS fueron incluidos en el área de tratamiento ambulatorio del Instituto Nacional de Traumatología e Ortopedia (INTO). Se realizó un test de caminata de 6 minutos (6MWT) para evaluar la distancia recorrida, acompañado de mediciones de presión arterial, frecuencia cardíaca, frecuencia respiratoria y saturación de oxígeno al inicio y al final del test. Resultados: Se observaron alteraciones hemodinámicas y respiratorias provocadas por el TC6, excepto para la saturación periférica de oxígeno. Conclusiones: Los resultados sugieren que incluso después de la corrección quirúrgica, los pacientes con EIA continúan presentando baja TEA. Nivel de evidencia III; Estudios Terapéuticos - Investigación de los Resultados del Tratamiento / Estudio de caso-control.

Deshoradores: Escoliosis; Tolerancia al Ejercicio; Pruebas de Función Respiratoria; Prueba de Paso de 6 Minutos.

INTRODUCCIÓN

La escoliosis es una deformidad esquelética de la columna vertebral, definida como un desvío de la línea media de la columna vertebral con un ángulo mayor de 10°, que es observable en la postura de pie. En la medida que la escoliosis progrese, puede haber consecuencias funcionales y posturales. En este estudio, se evaluaron las características de la función respiratoria y la tolerancia al ejercicio en pacientes con escoliosis en un estudio transversal, con el objetivo de verificar la tolerancia para el ejercicio aeróbico en pacientes con escoliosis, en un estudio transversal, por medio de pruebas pre y postoperatorias 6MWT, y su relación con la función pulmonar.

MÉTODOS

Participants

Un total de 60 voluntarios de ambos sexos, edades entre 15 y 35 años, fueron seleccionados para el estudio, ya que la mayoría de los pacientes diagnosticados con AIS fueron incluidos en el área de tratamiento ambulatorio del Instituto Nacional de Traumatología e Ortopedia (INTO). Se realizó un test de caminata de 6 minutos (6MWT) para evaluar la distancia recorrida, acompañado de mediciones de presión arterial, frecuencia cardíaca, frecuencia respiratoria y saturación de oxígeno al inicio y al final del test. Resultados: Se observaron alteraciones hemodinámicas y respiratorias provocadas por el TC6, excepto para la saturación periférica de oxígeno. Conclusiones: Los resultados sugieren que incluso después de la corrección quirúrgica, los pacientes con EIA continúan presentando baja TEA. Nivel de evidencia III; Estudios Terapéuticos - Investigación de los Resultados del Tratamiento / Estudio de caso-control.

Deshoradores: Escoliosis; Tolerancia al Ejercicio; Pruebas de Función Respiratoria; Prueba de Paso de 6 Minutos.

INTRODUCCIÓN

La escoliosis es una deformidad esquelética de la columna vertebral, definida como un desvío de la línea media de la columna vertebral con un ángulo mayor de 10°, que es observable en la postura de pie. En la medida que la escoliosis progrese, puede haber consecuencias funcionales y posturales. En este estudio, se evaluaron las características de la función respiratoria y la tolerancia al ejercicio en pacientes con escoliosis en un estudio transversal, con el objetivo de verificar la tolerancia para el ejercicio aeróbico en pacientes con escoliosis, en un estudio transversal, por medio de pruebas pre y postoperatorias 6MWT, y su relación con la función pulmonar.

MÉTODOS

Participants

Un total de 60 voluntarios de ambos sexos, edades entre 15 y 35 años, fueron seleccionados para el estudio, ya que la mayoría de los pacientes diagnosticados con AIS fueron incluidos en el área de tratamiento ambulatorio del Instituto Nacional de Traumatología e Ortopedia (INTO). Se realizó un test de caminata de 6 minutos (6MWT) para evaluar la distancia recorrida, acompañado de mediciones de presión arterial, frecuencia cardíaca, frecuencia respiratoria y saturación de oxígeno al inicio y al final del test. Resultados: Se observaron alteraciones hemodinámicas y respiratorias provocadas por el TC6, excepto para la saturación periférica de oxígeno. Conclusiones: Los resultados sugieren que incluso después de la corrección quirúrgica, los pacientes con EIA continúan presentando baja TEA. Nivel de evidencia III; Estudios Terapéuticos - Investigación de los Resultados del Tratamiento / Estudio de caso-control.

Deshoradores: Escoliosis; Tolerancia al Ejercicio; Pruebas de Función Respiratoria; Prueba de Paso de 6 Minutos.
anthropometry from Ghrum Polar Manufacture Instruments® (Geneva, Switzerland). The half-arm span was measured using a Sanny® anthropometric measuring tape (São Paulo, Brazil). Both height and arm span could be affected, depending on the degree of vertebral deformity of the patients. To minimize the effect of deformity on the arm span, we used the half-arm-span measurement multiplied by two to calculate the arm span. Height was estimated by dividing the arm span 1.03 for the women and by 1.06 for the men.27 To assess body composition, a tetrapolar biop impedance device, model 312 from Byodimetrics Corp® (Shoreline, USA) was used. The fat percentage and lean body mass values were obtained using an equation provided by the equipment. The body mass index (BMI) was calculated by dividing body mass by height squared.

Measurement of hemodynamic and respiratory variables

Blood pressure (BP) was measured using digital apparatus, model HEM-7113 – ORON® (Kyoto, Japan). HR was obtained using Polar monitor, model FT1 – Polar Electro Oy® (Keppeme, Finland). SpO2 was measured using pulse oximeter, model AT101 – Bioland® (Alvital Technology Corporation, Taiwan). RR was measured for 60 seconds, counting complete breath cycles (inhalation and exhalation).

Lung function test (Spirometry)

A Fleisch-type pneumotachometer, model KoKo Sx1000 – nSpiresHealth® (Longmont, USA), was used to perform spirometry as per the ATS/ERS recommendations.28 The following parameters were measured and expressed as percentages of the predicted values: forced vital capacity (FVC), forced expiratory volume in one second (FEV1) and the FEV1/FVC ratio. The theoretical values predicted by Knudson et al. were used.29

Respiratory muscle strength (Manovacuometry)

Maximum static respiratory pressure measurements were also taken according to the Brazilian Society of Pneumology guidelines,30 using an analog manovacuometer – Wika® (São Paulo, Brazil), with a scale between -150 and +150 cmH2O to measure maximum inspiratory pressure (MIP) and maximum expiratory pressure (MEP). The results were expressed as a percentage of the predicted values for the adult Brazilian population.31

6-minute walk test (6MWT)

For the 6MWT, the participant was encouraged to walk as fast as possible for 6 minutes along a straight and level 30-meter corridor with a hard surface, marked at 3-meter intervals. The procedure for performing the test followed ATS recommendations.21 The theoretical values predicted for the Brazilian population were used as a reference for the distances covered.32

Radiographs

Panoramic spinal radiographs were performed in AP and P planes with the patient in orthostasis, using X-ray equipment, model RADspeed MF – Shimadzu do Brasil® (São Paulo, Brazil). As all the radiological images used in the study were included in each patient’s medical file, it was not necessary to expose the volunteers to radiation during the project. Cobb angles were measured by a single orthopedic surgeon (JDA).

Analysis of the results

Descriptive statistics (mean ± SD) were used. The sample distribution was verified by the Shapiro-Wilk test. Separate independent-measures t-tests or Mann-Whitney U tests were used to compare the anthropometric variables, the preoperative Cobb angle, lung function and the 6MWT distance covered of the groups. Differences in physical activity levels between the groups were compared with the Chi-squared test. To verify differences in the hemodynamic and respiratory variables between the beginning and the end of the 6MWT, a mixed model ANOVA was used, in which the group (PRE and POST) was used as an independent factor and the initial and final measurements (INITIAL and FINAL) of the hemodynamic and respiratory variables were used as dependent factors. When necessary, the Bonferroni post hoc test was used and the level of statistical significance adopted was p ≤ 0.05.

RESULTS

Table 1 shows demographic and anthropometric data and radiological findings. A total of 24 women and 6 men participated in each of the PRE and POST study groups. Significant differences were observed between the groups only for age (p < 0.001) and preoperative Cobb angle (p = 0.004). No significant differences were observed in the other study variables. (Table 1) No significant differences were observed (p = 0.74) in the level of physical activity between the groups (IPAQ – PRE: 3 low, 19 moderate and 8 high subjects and POST: 5 low, 17 moderate and 8 high subjects).

The spirometry and respiratory pressure variables are shown in Table 2. Both groups demonstrated a mild restrictive pattern in lung function. The evaluation of respiratory pressures showed a reduction in the strength of the expiratory muscles as compared to the predicted reference values. No significant differences between the PRE and POST groups were identified for any of the study variables. (Table 2)

Variable	PRE	POST	p-value
Sample [female (%)]	24 (80)	24 (80)	< 0.001
Age (years)	18.5 ± 2.4*	24.5 ± 4.5	0.83
Height (cm)	162.3 ± 7.6	160.5 ± 7.9	0.12
Total body mass (kg)	54.1 ± 11.0	59.4 ± 14.8	0.14
Lean body mass (kg)	38.5 ± 9.3	42.3 ± 10.2	0.14
Body fat (%)	29.0 ± 6.6	28.1 ± 8.8	0.14
BMI (kg/m²)	69.2 ± 17.3	76.8 ± 19.4	0.14
Cobb AP (°)	13.6 ± 7.1*	19.5 ± 10.7	0.004*
Cobb P T5-T12 (°)	10.9 ± 29	10.8 ± 29	0.10*

Table 2. Spirometry and respiratory pressures of the patients with adolescent idiopathic scoliosis.

Variables	PRE	POST	p-value
FVC (%)	78.6 ± 14.2	73.3 ± 18.2	0.20
FEV1 (%)	73.9 ± 14.9	69.2 ± 17.3	0.26
FEV1/FVC (%)	94.8 ± 7.9	95.8 ± 11.6	0.72
Respiratory pressures			
Pmax (cmH2O)	90.6 ± 30.2	101.8 ± 29.4	0.10*
PEmax (cmH2O)	76.8 ± 19.4	85.6 ± 25.4	0.12*

Table 1. Demographic, anthropometric and preoperative radiological data of the patients with adolescent idiopathic scoliosis.

No significant differences between the PRE and POST groups were observed either in the distance covered (PRE 534 ± 67.1 m; POST 541 ± 69.5 m; p = 0.07 – Figure 1) or in the predicted percentage of the distance covered (PRE 82.8 ± 10.0%; POST 84.8 ± 10.9%; p = 0.47), with both groups below the predicted value. This trend was also observed in the Borg CR10 at the end of the 6MWT (PRE 3.0 ± 1.1; POST 2.8 ± 0.8; p = 0.71).

Figure 2 illustrates the hemodynamic and respiratory variable values of both groups, before and immediately after the 6MWT. Significant effects were observed for the 6MWT moments for HR and respiratory pressures (MIP and MEP). The following parameters were measured and expressed as percentages of the predicted values: forced expiratory volume (FVC), forced expiratory volume in one second (FEV1) and the FEV1/FVC ratio. The theoretical values predicted by Knudson et al. were used.29
Hemodynamic and respiratory variables at the initial and final correction surgery, the POST group did not demonstrate results variables. The main finding was that, even having undergone AIS evative conditions, associated with spirometric and respiratory pressure in individuals of both sexes with AIS under both pre- and postoperative effect on the hemodynamic and respiratory variables as the criteria, the 6-minute walk test, using the distance covered in meters and its (group: p = 0.42; moment: p < 0.001; interaction: p = 0.98). Only for \(\text{SpO}_2 \) (group: p = 0.15; moment: p = 0.91; interaction: p = 0.33) were no differences shown for either the group or the moment.

![Distance covered in the 6MWT by the preoperative and postoperative groups.](image)

Figure 1. Distance covered in the 6MWT by the preoperative and postoperative groups.

![Hemodynamic and respiratory variables at the initial and final moments of the 6MWT in both groups.](image)

Figure 2. Hemodynamic and respiratory variables at the initial and final moments of the 6MWT in both groups.

DISCUSSION

This study investigated tolerance for aerobic exercise through the 6-minute walk test, using the distance covered in meters and its effect on the hemodynamic and respiratory variables as the criteria, in individuals of both sexes with AIS under both pre- and postoperative conditions, associated with spirometric and respiratory pressure variables. The main finding was that, even having undergone AIS correction surgery, the POST group did not demonstrate results superior to those of the PRE group for any of the variables studied.

It has been observed that morbidity and mortality are associated with impaired lung function in individuals with AIS and both evolve together with spinal deformity.\(^{3,25}\) Thus, evaluating the cardiopulmonary efficiency and tolerance for aerobic exercise of individuals with AIS while walking become extremely important for a better understanding of the effects of the disease and surgical treatment. Both groups had a mild restrictive ventilatory pattern (FVC > 70%) which was expected, since the curves in both groups were around 60-70\(^{\circ}\), although curves > 70\(^{\circ}\) cause greater impact on lung function.\(^ {33} \) Additionally, low MEP values were found, indicating a decrease in expiratory muscle strength, corroborating the findings of Martínez-Llorens et al.,\(^ {34} \) who observed a decrease in both MEP and MIP and attributed the decrease in tolerance for exercise in AIS patients to generalized muscle dysfunction. However, we did not observe any significant differences between the groups in distance covered or in the hemodynamic and respiratory variables during execution of the 6MWT. However, we observed a difference in the hemodynamic and respiratory variables between the moments (INITIAL and FINAL) for both groups, (Figure 2) which was expected, given that in the FINAL moment the participants were affected by the metabolic stress caused by the exercise, regardless of their physical conditioning. Unlike the other variables analyzed, no significant difference in \(\text{SpO}_2 \) was observed, either between the groups or the moments (Figure 2E) and we believe that this \(\text{SpO}_2 \) response may be justified by the intensity of the activity performed (sub-maximum test) and by the fact that the groups did not present severe impairment of lung function (FEV\(_1\) less than 50% of the predicted value).\(^ {28} \)

The IPAQ aims to verify the amount of physical activity performed by an individual in a week, classifying their physical activity level as low, moderate or high.\(^ {28} \) Interestingly, no significant difference in physical activity level was observed between the groups. One might expect that the POST group would be more active, having already been submitted to a surgical procedure, which in theory would guarantee them more autonomy and ease in practicing physical activities. However, data presented leads us to speculate that perhaps the protective habits acquired in the preoperative period, the lack of opportunities for the practice of physical activities and/or even sedentary behavior may have contributed to the results found. Unfortunately, we did not find any study in the literature that had used the IPAQ in a population similar to ours for possible comparisons or that could help explain our findings.

Seeking to understand the pre- and postoperative tolerance of individuals with AIS for aerobic exercise, it was possible to verify only three studies in the literature.\(^ {18,20} \) These studies did not report improved tolerance for exercise following AIS deformity correction surgery during two years of postoperative follow-up, and for this analysis the authors used the cardiopulmonary exercise test to measure the maximum oxygen consumption (\(\text{VO}_{2\text{max}} \)) of the participants. The research that most resembles our study was developed by Araujo et al.,\(^ {36} \) in which the authors evaluated tolerance for exercise in AIS patients in the postoperative period with a control group of healthy adolescents, using the incremental shuttle walk test (ISWT). In their findings, the AIS patients presented a significant reduction in postoperative exercise capacity associated with reduced lung function, residual spinal curvature and lack of cardiovascular conditioning. There are few studies dedicated to understanding the effect of surgery on the aerobic condition of individuals with AIS. It is worth mentioning that none of the works published to date studied groups in the pre- and postoperative periods in the same experiment using a simple walk test that mimics daily functional needs, combined with the easy to obtain hemodynamic and respiratory variables. Thus, these data can be of great value to both the preoperative care of AIS patients and clinical follow-up in a postoperative rehabilitation program, focused on better utilization of the benefits of this intervention in improving the aerobic condition, essential to the execution and autonomy of daily activities.

The cross-functional study design has its limitations by restricting the conclusions we can reach about our results, due to the fact that we are evaluating groups with similar characteristics. (Table 1) but made up of different individuals, thus limiting direct evidence of the effects of...
correction surgery. However, it is an excellent opportunity to advance knowledge about a topic like the influence of vertebral arthrodensis on the aerobic condition of individuals with AIS, which is in the very early stages of information gathering. Another limitation of this study was the fact that we did not perform an analysis of collected gases (O₂ and CO₂) during the 6MWT (ergospirometry), which could have contributed to the discussion about the response of hemodynamic and respiratory variables during the test. However, the data here presented do not offer a new perspective for the achievement of longitudinal studies enhanced by metabolic analysis of the expired gases together with the assessment of the hemodynamic and respiratory variables.

CONCLUSION

No difference was observed between the two study groups in the tolerance for exercise during the 6-minute walk test, suggesting that, even after surgical correction, patients with AIS continue to have low tolerance for aerobic exercise. We believe that to improve lung function and functional capacity, encouraging exercises with aerobic activities is perhaps a useful strategy for better preoperative preparation in both groups. In addition, it will enhance the benefits that corrective surgery can bring, increasing the autonomy and functionality of these patients.

ACKNOWLEDGEMENTS

Our thanks to all the patients who volunteered to participate in the study. To interns Ana Paula Oliveira de Souza and Larissa Oliveira Soares, who assisted during data collection. To the clinical research team at INTO, who assisted with scheduling logistics and physical support for receiving the participants.

All authors declare no potential conflict of interest related to this article.

REFERENCES

1. Negri S, Gorzelzi S, Aulisa AG, Gazprzok D, Schreiber S, de Mauroy SC, et al. 2016 SOSTAR guidelines: orthopaedic and rehabilitation treatment of idiopathic scoliosis during growth, Scoliosis Spine Disord. 2018;13:13. doi: 10.1186/s13313-017-0145-8.

2. Stokes IA. Three-dimensional terminology of spinal deformity. A report presented to the Scoliosis Research Society by the Scoliosis Research Society Working Group on 3-D terminology of spinal deformity. Spine (Phil Pa 1976). 1994;19:236–48.

3. Riserborough EJ. The effects of scoliotic deformities on pulmonary function. J R Soc Med. 1973;9:787–90.

4. Moasser MJ. Infantile idiopathic scoliosis: can it be prevented? J Bone Joint Surg Br. 1983;65:6512–2. doi: 10.1002/3d0x6656.66543567.

5. Newton PO, Faro FD, Gollogly S, Betz RR, Lenke LG, Lowe TG. Results of preoperative pulmonary function testing of adolescents with idiopathic scoliosis. A study of six hundred and thirty-one patients. J Bone Joint Surg Am. 2005;87(1):195–102. doi: 10.2106/JBJS.D.02029.

6. Johnston CE, Richards BS, Suwato DJ, Bridwell KH, Lenke LG, Eckerson M, et al. Correlation of preoperative deformity magnitude and pulmonary function tests in adolescent idiopathic scoliosis. Spine (Phil Pa 1976). 2011;36(14):1096–102. doi: 10.1097/BRS.0b013e3182b0c351.

7. Weinstein SL, Dolan LA, Spratt KF, Peterson KK, Soares, who assisted during data collection. T o the clinical research team at INTO, who assisted with scheduling logistics and physical support for receiving the participants.

All authors declare no potential conflict of interest related to this article.

CONTRIBUTION OF THE AUTHORS: All authors made significant individual contributions to this manuscript. RRV: Project, writing, intellectual concept, data collection and review; VRAC: Project, writing, intellectual concept, data collection and review; JDA: Project, writing, intellectual concept, data collection and review; AGCB: Project, writing, intellectual concept, data collection and review; SCS: Project, writing, intellectual concept, data collection and review; UFG: Project, writing, intellectual concept, data collection and review; SCS: Project, writing, intellectual concept, data collection and review; LMS: Project, writing, intellectual concept, data collection and review; LEC: Project, writing, physician responsible for the surgeries; ECF: Project, writing; RSPM: Project, physician responsible for the surgeries; CTL: Project, data collection and review; LMS: Project, data collection and review; SCS: Project, writing, physician responsible for the surgeries; CEF: Project, writing; RSPM: Project, physician responsible for the surgeries; UFG: Project, data collection and review; SCS: Project, writing, intellectual concept, data collection and review.

REFERENCES

1. Negri S, Gorzelzi S, Aulisa AG, Gazprzok D, Schreiber S, de Mauroy SC, et al. 2016 SOSTAR guidelines: orthopaedic and rehabilitation treatment of idiopathic scoliosis during growth, Scoliosis Spine Disord. 2018;13:13. doi: 10.1186/s13313-017-0145-8.

2. Stokes IA. Three-dimensional terminology of spinal deformity. A report presented to the Scoliosis Research Society by the Scoliosis Research Society Working Group on 3-D terminology of spinal deformity. Spine (Phil Pa 1976). 1994;19:236–48.

3. Riserborough EJ. The effects of scoliotic deformities on pulmonary function. J R Soc Med. 1973;9:787–90.

4. Moasser MJ. Infantile idiopathic scoliosis: can it be prevented? J Bone Joint Surg Br. 1983;65:6512–2. doi: 10.1002/3d0x6656.66543567.

5. Newton PO, Faro FD, Gollogly S, Betz RR, Lenke LG, Lowe TG. Results of preoperative pulmonary function testing of adolescents with idiopathic scoliosis. A study of six hundred and thirty-one patients. J Bone Joint Surg Am. 2005;87(1):195–102. doi: 10.2106/JBJS.D.02029.

6. Johnston CE, Richards BS, Suwato DJ, Bridwell KH, Lenke LG, Eckerson M, et al. Correlation of preoperative deformity magnitude and pulmonary function tests in adolescent idiopathic scoliosis. Spine (Phil Pa 1976). 2011;36(14):1096–102. doi: 10.1097/BRS.0b013e3182b0c351.

7. Weinstein SL, Dolan LA, Spratt KF, Peterson KK, Soares, who assisted during data collection. T o the clinical research team at INTO, who assisted with scheduling logistics and physical support for receiving the participants.

All authors declare no potential conflict of interest related to this article.

CONTRIBUTION OF THE AUTHORS: All authors made significant individual contributions to this manuscript. RRV: Project, writing, intellectual concept, data collection and review; VRAC: Project, writing, intellectual concept, data collection and review; JDA: Project, writing, intellectual concept, data collection and review; AGCB: Project, writing, intellectual concept, data collection and review; SCS: Project, writing, intellectual concept, data collection and review; UFG: Project, writing, intellectual concept, data collection and review; SCS: Project, writing, intellectual concept, data collection and review; LMS: Project, writing, intellectual concept, data collection and review; LEC: Project, writing, physician responsible for the surgeries; ECF: Project, writing; RSPM: Project, physician responsible for the surgeries; CTL: Project, data collection and review; LMS: Project, data collection and review; SCS: Project, writing, intellectual concept, data collection and review.