Effects of ground-state correlations on collective excitations of 16O

Mitsuru Tohyama
Kyorin University School of Medicine, Mitaka, Tokyo 181-8611, Japan

The effects of the correlations in the ground state of 16O on the octupole and dipole excitations are studied using the extended random phase approximation (ERPA) derived from the time-dependent density-matrix theory. It is found that the ground-state correlation effects are significant especially in the octupole excitation. It is shown that the first 3^- state calculated in the random phase approximation (RPA) is shifted upward when the self-energy contributions are included in particle - hole pairs. The coupling to the two particle - two hole states plays a role in shifting the first 3^- state down to the right position. It is also found that the dipole strength is fragmented due to the partial occupation of the single-particle states and that the peak position of the giant dipole resonance calculated in ERPA is little changed from that in RPA due to the above-mentioned competing effects: the increase in particle - hole energy and the coupling to two particle - two hole configurations.

PACS numbers: 21.60.Jz, 21.10.Pc, 27.20.+n

The random phase approximation (RPA) based on the Hartree-Fock (HF) ground state has extensively been used to study nuclear collective excitations. It is generally considered that the HF + RPA approach is the most appropriate for double-closed shell nuclei for which the HF theory would give a good description of the ground states. However, recent theoretical studies for 16O indicate that the ground state of 16O is a highly correlated state [1, 2], which indicates the necessity of using beyond RPA theories to study collective excitations of 16O. In this paper we investigate how octupole and dipole excitations of 16O are affected by ground-state correlations, using an extended RPA (ERPA) that has been derived from the time-dependent density-matrix theory (TDDM) [3, 4]. We show that the octupole excitation of 16O is quite sensitive to the ground-state correlation effects.

The TDDM consists of the coupled equations of motion for the one-body density matrix $n_{\alpha\alpha'}$ (the occupation matrix) and the correlated part of the two-body density matrix $C_{\alpha\beta\alpha'\beta'}$ (the correlation matrix). These matrices are defined as:

\[n_{\alpha\alpha'}(t) = \langle \Phi(t) | a_{\alpha}^\dagger a_{\alpha'} | \Phi(t) \rangle, \]

\[C_{\alpha\beta\alpha'\beta'}(t) = \langle \Phi(t) | a_{\alpha}^\dagger a_{\beta}^\dagger a_{\alpha'} a_{\beta'} | \Phi(t) \rangle, \]

where $|\Phi(t)\rangle$ is the time-dependent total wavefunction $|\Phi(t)\rangle = \exp[-iHt]|\Phi(t=0)\rangle$. The equations of motion for reduced density matrices form a chain of coupled equations known as the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy. In TDDM the BBGKY hierarchy is truncated by replacing a three-body density matrix with anti-symmetrized products of the one-body and two-body density matrices. The TDDM equation for $C_{\alpha\beta\alpha'\beta'}$ contains all effects of two-body correlations; particle - particle, hole - hole and particle - hole correlations. The ground state in TDDM is given as a stationary solution of the TDDM equations. The stationary solution can be obtained using the gradient method [1]. This method is also used in the present work. The ERPA equations used here are derived as the small amplitude limit of TDDM and are written in matrix form for the one-body and two-body amplitudes x_μ^α and $X_{\alpha\beta\alpha'\beta'}^\mu$:

\[
\begin{pmatrix}
A & C \\
B & D \\
\end{pmatrix}
\begin{pmatrix}
x_\mu^\alpha \\
X_{\alpha\beta\alpha'\beta'}^\mu \\
\end{pmatrix}
= \omega_\mu
\begin{pmatrix}
S_1 & T_1 \\
T_2 & S_2 \\
\end{pmatrix}
\begin{pmatrix}
x_\mu^\alpha \\
X_{\alpha\beta\alpha'\beta'}^\mu \\
\end{pmatrix}.
\]

(3)

The one-body sector of Eq. (3) $Ax_\mu^\alpha = \omega_\mu S_1 x_\mu^\alpha$ is formally the same as the equation in the self-consistent RPA (SCRPA) [5], which includes the effects of ground-state correlations through $n_{\alpha\alpha'}$ and $C_{\alpha\beta\alpha'\beta'}$. We refer to the approximation $Ax_\mu^\alpha = \omega_\mu S_1 x_\mu^\alpha$ as the modified RPA (mRPA). To explain the role of the correlation matrix in the mRPA equation, we explicitly show the matrices A and S_1:

\[A(\alpha\alpha'; \lambda\lambda') = (\epsilon_{\alpha} - \epsilon_{\alpha'})(n_{\alpha\alpha'} - n_{\alpha\alpha})\delta_{\alpha\lambda}\delta_{\alpha'\lambda'} + (n_{\alpha\alpha'} - n_{\alpha\alpha})(n_{\lambda\lambda} - n_{\lambda\lambda})\langle \alpha\lambda' | v | \alpha'\lambda \rangle A - \delta_{\alpha'\lambda'} \sum_{\gamma\gamma'} \langle \alpha\gamma | v | \gamma'\gamma' \rangle C_{\gamma\gamma'\alpha\lambda} - \delta_{\alpha\lambda} \sum_{\gamma\gamma'} \langle \gamma'\gamma | v | \alpha\gamma' \rangle C_{\gamma\gamma'\alpha\lambda} - \sum_{\gamma\gamma'} \langle \alpha\lambda' | v | \gamma'\gamma' \rangle C_{\gamma\gamma'\alpha\lambda} + \langle \lambda' | v | \alpha\lambda \rangle C_{\lambda\gamma'\alpha\lambda}, \]

\[S_1(\alpha\alpha'; \lambda\lambda') = (n_{\alpha\alpha'} - n_{\alpha\alpha})\delta_{\alpha\lambda}\delta_{\alpha'\lambda'}. \]

(5)

where the subscript A means that the corresponding matrix is antisymmetrized and $n_{\alpha\alpha'}$ is assumed to be diagonal. The first two terms on the right-hand side of Eq. (4) are the same as those in the RPA equation, the next two terms with $C_{\alpha\beta\alpha'\beta'}$ describe the self-energy of the particle - hole (p-h) state due to ground-state correlations [5], and the last four terms with $C_{\alpha\beta\alpha'\beta'}$ may be interpreted as the modification of the p-h interaction caused by ground-state correlations [5]. The difference
between mRPA and SCRPA is in the method to determine $n_{\alpha \alpha}$ and $C_{\alpha \beta \alpha' \beta'}$: in SCRPA these matrices are self-consistently determined using the amplitudes $x^\mu_{\alpha \alpha}$, whereas here we calculate them in TDDM. If the correlated ground state is replaced by the HF ground state, mRPA and ERPA become the same as RPA and the second RPA (SRPA) respectively.

The occupation probability $n_{\alpha \alpha}$ and the correlation matrix $C_{\alpha \beta \alpha' \beta'}$ are calculated within TDDM using the $1p_{3/2}, 1p_{1/2}, 1d_{5/2}$ and $2s_{1/2}$ states for both protons and neutrons. For the calculations of the single-particle states we use the Skyrme III force. To reduce the dimension size, we only consider the two particle - two hole (2p-2h) and 2h-2p elements of $C_{\alpha \beta \alpha' \beta'}$. A simplified interaction which contains only the t_6 and t_3 terms of the Skyrme III force is used as the residual interaction. The spin-orbit force and Coulomb interaction are also omitted from the residual interaction. To avoid a cumbersome treatment of the rearrangement effects of a density-dependent force in extended RPA theories, we use the three-body version of the Skyrme interaction, $v_3 = t_3 \delta^3(r_1 - r_2) \delta^3(r_1 - r_3)$, which gives the following density-dependent two-body residual interaction: $t_3 \rho_3 \delta^3(r - r')$, $t_3 \rho_5 \delta^3(r - r')/2$ and $t_3 \rho_5 \delta^3(r - r')$ for the proton-proton, proton-neutron and neutron-neutron interactions, respectively, where ρ_p, ρ_n and ρ are the proton, neutron and total densities, respectively. In the RPA, mRPA and ERPA calculations the one-body amplitudes $x^\mu_{\alpha \alpha}$ are defined using a large number of single-particle states including those in the continuum. We discretize the continuum states by confining the wavefunctions in a sphere with radius 15 fm and take all the single-particle states with $\epsilon_\alpha \leq 50$ MeV and $j_\alpha \leq 11/2h$. As the residual interaction, we use the same simple force as that used in the ground-state calculation. Since the residual interaction is not consistent with the effective interaction used in the calculation of the single-particle states, it is necessary to reduce the strength of the residual interaction so that the spurious mode corresponding to the center-of-mass motion comes at zero excitation energy in RPA. We found the reduction factor f is 0.62. The p-h interaction in the second term on the right-hand side of Eq. (1) is multiplied with this f. To define the two-body amplitudes $X^\mu_{\alpha \beta \alpha' \beta'}$, we use the small single-particle space consisting of the $1s_{1/2}, 1p_{3/2}, 1p_{1/2}, 1d_{5/2}, 2s_{1/2}, 1d_{3/2}, 2p_{3/2}, 2p_{1/2}$ and $1f_{5/2}$ for both protons and neutrons. To reduce the number of the two-body amplitudes, we consider only the 2p-2h and 2h-2p components of $X^\mu_{\alpha \beta \alpha' \beta'}$, with $|\epsilon_\alpha + \epsilon_\beta - \epsilon_\alpha' - \epsilon_\beta'| \leq 60$ MeV. Since the single-particle space used for $X^\mu_{\alpha \beta \alpha' \beta'}$ is small, we use $f = 1$ for the matrix elements of the residual interaction which couple to $X^\mu_{\alpha \beta \alpha' \beta'}$.

The occupation probabilities calculated in TDDM are shown in Table I. The deviation from the HF values ($n_{\alpha \alpha} = 1$ or 0) is more than 10%, which means that the ground state of 16O is a strongly correlated state. A recent shell-model calculation by Utsuno and Chiba also gives a similar result for the ground state of 16O. The correlation energy E_c in the ground state, which is defined by $E_c = \sum_{\alpha \beta \alpha' \beta'} \langle \alpha \beta | v | \alpha' \beta' \rangle C_{\alpha' \beta' \alpha \beta}/2$, is -23.7 MeV. A large portion of the correlation energy is compensated by the increase in the mean-field energy due to the fractional occupation of the single-particle states. The resulting energy gain due to the ground-state correlations, which is given by the total energy difference between HF and TDDM, is 6.4 MeV, which is much smaller than $|E_c| = 23.7$ MeV.

![FIG. 1. (Color online) Strength functions calculated in RPA (blue), SRPA (red), mRPA (grey) and ERPA (black) for the isovector dipole excitation in 16O. The distributions are smoothed with an artificial width $\Gamma = 0.5$ MeV.](image)

![FIG. 2. (Color online) Strength functions calculated in RPA (blue) and SRPA (red) for the isovector dipole excitation in 16O. The distributions are smoothed with an artificial width $\Gamma = 0.5$ MeV.](image)

ϵ_α [MeV]	$n_{\alpha \alpha}$	$n_{\alpha \alpha}$		
neutron	proton neutron			
1p$_{3/2}$	-18.3	-21.9	0.894	0.894
1p$_{1/2}$	-12.3	-15.7	0.868	0.865
1d$_{5/2}$	-5.8	-7.1	0.108	0.109
2s$_{1/2}$	1.1	-1.6	0.019	0.021

TABLE I. Single-particle energies ϵ_α and occupation probabilities $n_{\alpha \alpha}$ calculated in TDDM.
and ERPA demonstrate that both the ground-state correlations and the coupling to 2p-2h configurations play an important role in describing the properties of the 3^{-} state.

We point out that the 3^{-} state in RPA somewhat depends on the parameters of the Skyrme interactions. For example, it has been reported that the SkM* parameter set [9] gives the 3^{-} state at 6.06 MeV with $B(E3) = 91.1$ e^2fm6 [10] and that a simple Skyrme type interaction with $t_0 = -1048$ MeVfm3, $t_3 = 19150$ MeVfm6 and $v_0 = 95$ MeVfm5 gives the 3^{-} state at 6.05 MeV which exhausts 10.5% of EWSR [11]. We also found that the parameter set of the Skyrme III force with $f = 0.62$, $x_0 = 0$ and $v_0 = 90$ MeVfm5 gives the 3^{-} state at 6.12 MeV with $B(E3) = 211$ e^2fm6 in RPA, which are close to the experimental data 6.13 MeV and 204 ± 6 e^2fm6 [8]. However, this force also induces strong ground state correlations and the 3^{-} state calculated in ERPA comes at 8.26 MeV, which is much higher than the data.

The strength functions for the isovector dipole excitation in 16O. The distributions are smoothed with an artificial width $\Gamma = 0.5$ MeV.

FIG. 3. Strength functions calculated in mRPA (grey) and ERPA (black) for the isovector dipole excitation in 16O. The distributions are smoothed with an artificial width $\Gamma = 0.5$ MeV.
occupied single-particle states including the \(\frac{1}{2} \) for the isovector dipole excitation using the partially occupied single-particle states obtained in TDDM are used in the RPA calculation. The correlation matrix \(C_{\alpha'\beta'\alpha\beta} \) is inserted only to the \(2s_{1/2} - 2p_{3/2} \) and \(2s_{1/2} - 2p_{1/2} \) pairs in the mRPA calculation. The distributions are smoothed with an artificial width \(\Gamma = 0.5 \text{ MeV} \).

Increasing the fragmentation of the dipole strength in low-energy region. However, in the giant dipole resonance (GDR) region it seems that the increase in the energy of the p-h pairs is compensated by a downward shift of the dipole strength due to the coupling to the \(2p-2h \) configurations. The experimental photoabsorption cross section [14] shows a broader GDR distribution than the result in ERPA. More two-body configurations should be included to improve the ERPA result.

As mentioned above, partial occupation of the particle states could cause some unphysical low-lying transitions possible. To show this, we performed an RPA calculation for the isovector dipole excitation using the partially occupied single-particle states including the \(2s_{1/2} \) states. The result is shown in Fig. [4] with the red line. The strength seen below 5 MeV comes from the transitions from the \(2s_{1/2} \) states to the \(2p_{3/2} \) and \(2p_{1/2} \) states. The black line in Fig. [4] shows the result in mRPA where the correlation matrix \(C_{\alpha'\beta'\alpha\beta} \) is included only in the \(2s_{1/2} - 2p_{3/2} \) and \(2s_{1/2} - 2p_{1/2} \) p-h pairs. Since the norm matrix \(S \) given by Eq. (5) for the \(2s_{1/2} - 2p_{3/2} \) and \(2s_{1/2} - 2p_{1/2} \) pairs is quite small (\(\approx 0.02 \), see Table I), the terms in Eq. (4) which contain \(C_{\alpha'\beta'\alpha\beta} \) can drastically shift the energies of these pairs. In fact the inclusion of the correlation matrix eliminates the strength in the low-energy region and slightly increases the strength distribution around 25 MeV, as seen in Fig. [4]. When the coupling of the p-h pairs to \(2p-2h \) configurations is included in ERPA, it becomes difficult to completely eliminate the unphysical low-energy transitions from the partially occupied \(2s_{1/2} \) states. This is the reason why we neglected such transitions in the mRPA and ERPA calculations shown above.

In summary, the effects of the correlations in the ground state of \(^{16}\text{O} \) on the octupole and dipole excitations were studied using the extended RPA. It was found that the ground-state correlation effects on the first \(3^- \) state are significant: the first \(3^- \) state is shifted upward due to the self-energy contributions. It was also found that the coupling to two particle - two hole states plays a role in producing the first \(3^- \) at right excitation energy. In the case of the isovector dipole excitation, the effects of the ground-state correlations were found to increase the fragmentation of the dipole strength in low-energy region. However, the giant dipole resonance calculated in ERPA is little changed from that in RPA due to the competing effects: the increase in particle - hole energy and the coupling to two particle - two hole configurations. The mechanism to eliminate unphysical low-energy transitions originating from partial occupation of the particle states was also discussed. Our results demonstrate that the ground-state correlation effects in \(^{16}\text{O} \) should be properly taken into account in the study of collective excitations. It is interesting to study these effects in other nuclei.

[1] M. Tohyama, Phys. Rev. C 75, 044310 (2007).
[2] Y. Utsuno and S. Chiba, Phys. Rev. C 83, 021301(R) (2011).
[3] S. J. Wang and W. Cassing, Ann. Phys. 159, 328 (1985).
[4] M. Gong and M. Tohyama, Z. Phys. A 335, 153 (1989).
[5] D. Janssen and P. Schuck, Z. Phys. A 339, 43 (1991).
[6] S. Drozdz, S. Nishizaki, J. Speth and J. Wambach, Phys. Rep. 197, 1 (1990).
[7] D. Gambacurta, M. Grasso and F. Catara, J. Phys. G: Nucl. Part. Phys. 38, 035103 (2011).
[8] R. B. Firestone, Table of Isotopes. (John Wiley & Sons, Inc., New York, 1996).
[9] J. Bartel et al., Nucl. Phys. A 386, 79 (1982).
[10] F. Minato and K. Hagino, Phys. Rev. C 85, 024316 (2012).
[11] A. Abada and D. Vautherin, Phys. Rev. C 45, 2205 (1992).
[12] P. Papakonstantinou and R. Roth, Phys. Rev. C 81, 024317 (2010).
[13] D. Gambacurta, M. Grasso, and F. Catara, Phys. Rev. C 81, 054312 (2010).
[14] J. Ahrens et al., Nucl. Phys. A 251, 479 (1975).