Joint Factors and Rank Estimation for the Canonical Polyadic Decomposition Based on Convex Optimization

OUFAE KARMOUDA, (Student Member, IEEE), JEREMIE BOULANGER, AND REMY BOYER, (Senior Member, IEEE)
CRIStAL, CNRS, University of Lille, 59655 Lille, France
Corresponding author: Ouafae Karmouda (ouafae.karmouda@univ-lille.fr)

ABSTRACT
Estimating the minimal number of rank-1 tensors in the Canonical Polyadic Decomposition (CPD), known as the canonical rank, is a challenging area of research. To address this problem, we propose a method based on convex optimization to jointly estimate the CP factors and the canonical rank called FARAC for joint FActors and RAnk canonical estimation for the PolyadiC Decomposition. We formulate the FARAC method as a convex optimization problem in which a sparse promoting constraint is added to the superdiagonal of the core tensor of the CPD, whereas the Frobenius norm of the offdiagonal terms is constrained to be bounded. We propose an alternated minimization strategy for the Lagrangien to solve the optimization problem. The FARAC method has been validated on synthetic data with varying levels of noise, as well as on three real data sets. Compared to state-of-the-art methods, FARAC exhibits very good performance in terms of rank estimation accuracy for a large range of SNR values. Additionally, FARAC can handle the case in which the canonical rank exceeds one of the dimensions of the input tensor.

INDEX TERMS
Rank and factors estimation, canonical polyadic decomposition, convex optimization.

I. INTRODUCTION
Large amounts of data are usually generated by sensor networks, massive experiment, simulations, etc. In a very wide range of applications, data need more than two dimensions for efficient description [2], [10], [28], [41]. To represent such data, multidimensional arrays (a.k.a. tensors) are suitable in order to capture complex interactions among input features of data. Tensors can be seen as a generalization of vectors (1st order tensors) and matrices (2nd order tensors). The order of a tensor is its number of dimensions.

Various tensor decompositions exist to mitigate the curse of dimensionality i.e. to avoid the exponential growth of storage cost [3], [12], [18], [22], [29].

The most popular tensor decomposition is the Canonical Polyadic Decomposition (CPD) [37]. The CPD is widely used in different fields such as chemometrics, telecommunications, blind source separation [16], [24], [26], [27], [39]. CPD is particularly attractive owing to its uniqueness property [1], [14]. However, the CPD requires knowledge of the rank. Unfortunately, the problem of determining the canonical rank is NP-hard [4].

In the present study, we propose estimating both the canonical rank and the CP factors from noisy observations. We give a formulation of the problem of interest as a convex optimization problem. The reminder of the paper is organised as follows:

First, we introduce some notations and preliminaries in multilinear algebra in section II. We then review some existing works for the estimation of the canonical rank III. In section IV, we describe our proposed approach and our algorithm for solving the problem. As a final step, we do a number of numerical experiments in section VI to evaluate and compare our proposed approach with CORCONDIA (CORe CONsistency DIAgnostic) method.

II. NOTATIONS AND ALGEBRAIC BACKGROUND
In this section, we recall some algebraic definitions on tensor algebra from [37]:
Definition 1: (Inner product) The inner product of two N-order tensors $\mathbf{X}, \mathbf{Y} \in \mathbb{R}^{I_1 \times \cdots \times I_N}$ is defined as:

$$\langle \mathbf{X}, \mathbf{Y} \rangle = \sum_{i_1=1}^{I_1} \sum_{i_2=1}^{I_2} \cdots \sum_{i_N=1}^{I_N} X(i_1, \ldots, i_N) Y(i_1, \ldots, i_N).$$

Definition 2: (Tensor Frobenius Norm) The norm of a tensor \mathbf{X} is defined as:

$$||\mathbf{X}||_F = \sqrt{\sum_{i_1} \sum_{i_2} \cdots \sum_{i_N} \mathbf{X}^2(i_1, \ldots, i_N)}.$$

Definition 3: (n-mode product) The n-mode product of a tensor $\mathbf{X} \in \mathbb{R}^{I_1 \times \cdots \times I_N}$ with a matrix $\mathbf{U} \in \mathbb{R}^{J \times I_k}$ is a tensor of order N and size $I_1 \times \cdots \times I_{k-1} \times J \times \cdots \times I_N$ as shown by:

$$(\mathbf{X} \times_k \mathbf{U})(i_1, \ldots, i_{k-1}, i, i_{k+1}, \ldots, i_N) = \sum_{i_k=1}^{I_k} \mathbf{X}(i_1, \ldots, i_N) U(i, i_k).$$

Definition 4: (Diagonal tensor) A tensor $\mathbf{X} \in \mathbb{R}^{I_1 \times \cdots \times I_N}$ is diagonal if all of its entries are zero except those in its superdiagonal, that is: $\mathbf{X}(i_1, \ldots, i_N) \neq 0$ only if $i_1 = i_2 = \cdots = i_N$.

Definition 5: (Rank-one tensor) A tensor $\mathbf{X} \in \mathbb{R}^{I_1 \times \cdots \times I_N}$ of order N is rank one if it can be written as the outer product of N vectors:

$$\mathbf{X} = u_1 \circ \cdots \circ u_N := \bigodot_{n=1}^{N} u_n, \quad (1)$$

where $u_n \in \mathbb{R}^{I_n}$ with $1 \leq n \leq N$.

Definition 6: (Unfolding) The n-mode unfolding of a tensor \mathbf{X} is a matrix denoted by $\mathcal{X}(n)$ whose columns are the n-mode fibers of \mathbf{X}.

Definition 7: (Tucker model) The Tucker decomposition transforms a tensor $\mathbf{X} \in \mathbb{R}^{I_1 \times \cdots \times I_N}$ of multilinear ranks (R_1, \ldots, R_N) using N factors $\mathbf{U}_n \in \mathbb{R}^{I_n \times R_n}$ by a core tensor $\mathcal{G} \in \mathbb{R}^{R_1 \times \cdots \times R_N}$ as follows:

$$\mathbf{X} = \mathcal{G} \times_1 \mathbf{U}_1 \times_2 \cdots \times_N \mathbf{U}_N := \bigotimes_{n=1}^{N} \mathbf{U}_n$$

$$= \sum_{r_1}^{R_1} \cdots \sum_{r_N}^{R_N} \mathcal{G}(r_1, \ldots, r_N) u_{1,r_1} \circ \cdots \circ u_{N,r_N},$$

where $u_{n,r} \in \mathbb{R}^{I_n}$ is the r-th column of the n-th factor matrix \mathbf{U}_n with $1 \leq n \leq N$.

Definition 8: (CANDECOMP Decomposition (CPD)) A tensor of order N and canonical rank R follows a CPD if it admits a factorization as a sum of R rank-one tensors. The CPD of a tensor $\mathbf{X} \in \mathbb{R}^{I_1 \times \cdots \times I_N}$ is given by:

$$\mathbf{X} = \sum_{r=1}^{R} u_{1,r} \circ \cdots \circ u_{N,r} = \bigodot_{r=1}^{R} \bigodot_{n=1}^{N} u_{n,r}. \quad (2)$$

CPD is a special case of the Tucker model where the core tensor is diagonal and the multilinear ranks are all equal to R. Hence, CPD in eq. (2) can be written in the Tucker format as follows:

$$\mathbf{X} = \sum_{n=1}^{N} U_{n},$$

Definition 9: (Tensor rank) The rank R of a tensor is defined as the smallest number of components in an exact CPD.

We have the following upper bound on the maximum rank (the largest attainable rank) for a 3-order tensor $\mathbf{X} \in \mathbb{R}^{I_1 \times I_2 \times I_3}$ [14]:

$$R \leq \min[I_1 I_2, I_1 I_3, I_2 I_3].$$

III. RELATED WORKS

Existing approaches for the canonical rank detection include:

- **CORe Consistency Diagnostic (CORCONDIA) [33]** is a heuristic method for detecting the number of components of the CP model. It measures the similarity between the estimated core tensor from the ideal identity core (called core consistency) for different CP models. By analyzing the gap between the core consistency of different CP models, it determines the correct number of components. Taking the last model (starting with the one-component model), whose core array is still similar to the ideal diagonal tensor, gives the proper number of components to use. CORCONDIA is intuitive and has a simple approach. However, its computation is prohibitive even for small tensors [8]. In addition, the CORCONDIA method cannot handle the case when the canonical rank exceeds one of the dimensions of the input tensor.

- A fast version of CORCONDIA was presented in [8]. It suggests an efficient way to compute the CORCONDIA diagnostic that takes advantage of sparse data and works well as the tensor size grows. In cases where either the tensor or the factors or both are sparse [8], their algorithm significantly outperforms the state-of-the-art baselines and scales well when the tensor size increases. In the fully dense scenario, their proposed algorithm is as good as the state of the art (The CORCONDIA method) for rank estimation.

- **Automatic Relevance Determination (ARD) [23]** is a Bayesian approach applied to the Tucker and CP models. In ARD, entries of CP factors are assigned a Gaussian prior. The objective is to find the rank and the CP factors by solving an l_2--regularized CP decomposition. By assigning priors to model hyperparameters and learning the hyperparameters of these priors, ARD reduces the excess of components and simplifies the core structure.

- **Detection of the number of components in CANDECOMP models via minimum description length (N-D MDL) [17]** is an extension of the minimum description length (MDL) to the multilinear case for detecting the number of components in a CP model.
using the generalized unfolding of the observation tensor. Under the condition that the tensor rank is smaller than the size of the most squared unfolded matrix, the generalized N-D MDL criterion estimates the number of components of the CPD. The drawback of the multilinear MDL algorithm is that it fails to work when the tensor rank is larger than the size of the most squared unfolded matrix [17].

- Using a Bayesian approach, [20] integrates the tensor rank determination into the CPD. A scalable algorithm is developed that processes mini batch data at a time by incorporating stochastic optimization into the probabilistic tensor CPD.

- Automatic tensor rank estimation for nonnegative tensor CPD is proposed in [19]. By interpreting the nonnegative tensor CPD using probability density functions, the problem is formulated as a statistical inference.

- The Gaussian-gamma prior was introduced in [21] within a Bayesian framework in the context of probabilistic CPD modeling for automatic rank determination.

- The GSL-CP method proposed in [40] estimates the rank as well as the loading matrices of the decomposed tensor. Without knowing the expected rank, the CPD is computed by promoting group sparsity of the loading matrix in orthonormal subspace.

- The canonical rank of a tensor is estimated in [6] using an improved version of MDL (iMDL).

- Tensor learning models for regression are proposed in [38]. In their regularization process, they employ the group-sparsity norm, which promotes a low-rank decomposition of the CP core as well as automatic selection of the rank during the learning procedure.

- Using orthogonal CPD, [30] views the superdiagonal of the CP core as analogous to the vector of singular values. To determine the rank of an incomplete tensor, they integrate a regularization with the CP-based tensor nuclear norm.

- The method proposed in [25] is based on convolutional neural networks (CNN) with a pre-decomposition using CPD providing rank-one components to the CNN.

In short, state-of-the-art methods use either Bayesian approaches, propose rank estimation within a learning framework, or use too restricting constraints like factor orthogonality. In contrast to existing methods, the proposed method belongs to the family of deterministic parameter estimators.

IV. PROPOSED METHOD (FARAC)

The purpose of this section is to present the method FARAC for estimating the canonical rank and the CP factors simultaneously. This is accomplished by minimizing the super-diagonal of the core tensor using the l_0 norm as an objective function, as well as adding a constraint on the reconstruction error and another one on the offdiagonal terms by allowing them to be non-zero but bounded. Our goal is to find a CP core tensor structured as shown in Fig. 1. The canonical rank is the number of strictly positive and ordered values of the tensors’ superdiagonal.\(^1\)

In the following, \mathcal{G} denotes the CP core tensor, λ its superdiagonal and $\tilde{\mathcal{G}}$ is defined according to:

$$\mathcal{G} = \text{diag}(\lambda) + \tilde{\mathcal{G}},$$

where $\text{diag}(\lambda)$ is a diagonal tensor whose superdiagonal is λ. Our optimization problem can then be expressed mathematically as follows:

\[
\begin{align*}
\text{minimize} & \quad ||\lambda||_0, \\
\text{subject to} & \quad \frac{1}{2} \left| \left| X - \mathcal{G} \times_n U_n \right| \right|_F^2 \leq \epsilon_1, \\
& \quad \frac{1}{2} \left| \left| \tilde{\mathcal{G}} \right| \right|_F^2 \leq \epsilon_2.
\end{align*}
\]

(3)

where ϵ_1 and ϵ_2 are small positive constants. Unlike existing methods that estimate the canonical rank, we do not constrain the CP factors to be orthogonal [11], [13]. However, since minimizing the l_0 norm is NP-hard [5], we minimize the l_1 norm of λ. Eq. (3) becomes:

\[
\begin{align*}
\text{minimize} & \quad \gamma_1 ||\lambda||_1, \\
\text{subject to} & \quad \frac{1}{2} \left| \left| X - \mathcal{G} \times_n U_n \right| \right|_F^2 \leq \epsilon_1, \\
& \quad \frac{1}{2} \left| \left| \tilde{\mathcal{G}} \right| \right|_F^2 \leq \epsilon_2.
\end{align*}
\]

(4)

where γ_1 is a strictly positive hyper-parameter.

A. DERIVATION OF OUR APPROACH (FARAC)

In this section, we present the proposed approach for solving the optimization problem with constraints in eq. (4). Recall

\(^1\)The sign of the superdiagonal entries can always be absorbed into the factors.
that the Lagrangien function is the augmented objective function by the constraint equations using the Lagrangien multipliers. Following this, the Lagrangien function of the problem in eq. (4) is given by:

$$
\mathcal{L}_{G,(U_n)} = \gamma_1 \|\lambda\|_1 + \frac{\gamma_2}{2} \left(\left\| X - \mathcal{G} N \times_n U_n \right\|_F^2 - \epsilon_1 \right) + \frac{\gamma_3}{2} \left(\left\| \tilde{\mathcal{G}} \right\|_F^2 - \epsilon_2 \right), \tag{5}
$$

where γ_2 and γ_3 are two strictly positive Lagrange multipliers. According to the Lagrangien method [35], $\mathcal{L}_{G,(U_n)}$ is minimized with respect to $\{U_n\}_n$, \mathcal{G} and λ. To do that, we will proceed iteratively. We first minimize $\mathcal{L}_{G,(U_n)}$ w.r.t the n-th CP factor U_n at each iteration, assuming the remaining factors and \mathcal{G} are known. This is a classical linear regression problem. Following that, we minimize $\mathcal{L}_{G,(U_n)}$ w.r.t $\tilde{\mathcal{G}}$ using the factors $\{U_n\}_n$ from the previous step. The convexity w.r.t $\tilde{\mathcal{G}}$ is demonstrated in Appendix B. Then, we update the Adam optimizer [7]. Finally, we minimize $\mathcal{L}_{G,(U_n)}$ w.r.t λ, which is also a convex optimization problem as shown in Appendix B. Its solution is given by the soft thresholding operator [34] defined as

$$
\mathcal{S}_\mu(x) = \begin{cases}
 x - \mu & \text{if } x > \mu \\
 0 & \text{if } |x| \leq \mu \\
 x + \mu & \text{if } x < -\mu
\end{cases} \tag{9}
$$

Algorithm 1 Joint FAectors and RAnk Canonical Estimation for the Polyadic Decomposition (FARAC)

Input: $X \in \mathbb{R}^{I_1 \times I_2 \times \cdots \times I_N}$; CP Tensor, R_0: Upper bound of the rank of X.

Require: α: Stepsize; $\beta_1, \beta_2 \in [0, 1]$: Exponential decay rates; T: Maximum number of iterations; $\epsilon = 10^{-8}$: Parameter to avoid numerical instability.

Initialize: For $1 \leq n \leq N$:

1. Compute $U_n^{(i)}$ from eq. (6).
2. Compute the gradients of $\mathcal{L}_{G,(U_n)}$ w.r.t $\tilde{\mathcal{G}}$ using (7).
3. Update biased first moment estimate of the offdiagonals:

 $$
 \widehat{m}_{\tilde{\mathcal{G}}}^{(i)} \leftarrow \beta_1 m_{\tilde{\mathcal{G}}}^{(i-1)} + (1 - \beta_1) \nabla_{\tilde{\mathcal{G}}} \mathcal{L}_{G,(U_n)}(\mathcal{G})_{(i)}.
 $$

4. Update biased second raw moment estimate of the offdiagonals:

 $$
 \widehat{v}_{\tilde{\mathcal{G}}}^{(i)} \leftarrow \beta_2 v_{\tilde{\mathcal{G}}}^{(i-1)} + (1 - \beta_2) \nabla_{\tilde{\mathcal{G}}}^2 \mathcal{L}_{G,(U_n)}(\mathcal{G})_{(i)}.
 $$

5. Compute bias-corrected first and second moment estimates of the offdiagonals:

 $$
 m_{\tilde{\mathcal{G}}}^{(i)} \leftarrow \frac{m_{\tilde{\mathcal{G}}}^{(i)}}{1 - \beta_1}, \quad v_{\tilde{\mathcal{G}}}^{(i)} \leftarrow \frac{v_{\tilde{\mathcal{G}}}^{(i)}}{1 - \beta_2}.
 $$

6. Update \mathcal{G}:

 $$
 \mathcal{G}^{(i)} \leftarrow \mathcal{G}^{(i-1)} - \alpha \frac{\nabla_{\tilde{\mathcal{G}}} \mathcal{L}_{G,(U_n)}(\mathcal{G})_{(i)}}{\sqrt{v_{\tilde{\mathcal{G}}}^{(i)}} + \epsilon}.
 $$

7. Update the superdiagonal of \mathcal{G} using (8):

 $$
 \lambda_i^{(i)} \leftarrow \frac{S_{\lambda_i}^{(i)}}{R_{0}} \left(- \sum_{n=1}^{N} \mathcal{G}^T U_n \times_n U_n \right) + \left(X - \mathcal{G} N \times_n U_n \right) R_{0} - \mathcal{G} N \times_n U_n,
 $$

where $S_{\lambda_i}^{(i)}$ is defined in eq. (9).

end for

CP-rank: Number of non-zero values of the superdiagonal of \mathcal{G}.

CP factors: Columns of $U_n^{(i)}$ with values of the superdiagonal of \mathcal{G}.

Returns: [CP-rank, CP factors]

The whole algorithm of our derived approach is described in Algorithm I.

V. COMPLEXITY ANALYSIS

- We evaluate the complexity of Algorithm IV-A by taking into consideration the SVDs in the initialization and
O. Karmouda et al.: Joint Factors and Rank Estimation for the CPD Based on Convex Optimization

FIGURE 2. Accuracy of rank estimation of a tensor of size $5 \times 5 \times 5$ w.r.t the threshold parameter. The true rank is $R = 2$ and $R_0 = 5$.

TABLE 1. Accuracy of FARAC w.r.t SNR for a tensor of a noisy tensor X_{noise} of size $5 \times 5 \times 5$. The true rank is $R = 6$ and $R_0 = 7$.

SNR [db]	Accuracy [%]
15	72
20	77
25	87
30	91
35	96
40	100

the main parts of the algorithm, as the computations of the different gradients and the shrinkage operator. The complexity is evaluated as follows:

$$
O\left(\sum_{n=1}^{N} I_n R_0^2 + T \left[N + \left(\sum_{n=1}^{N} I_n \right) R_0 \\
+ \left(\prod_{n=1}^{N} I_n \right) \left(N + R_0 + NR_0^{N-1} \right) \right]\right),
$$

(10)

where T is the number of iterations.

- If $I = \max(I_1, \ldots, I_N)$, then the complexity in eq. (10) becomes:

$$
O\left(IR_0^2 + T \left(N + IR_0 + I(N + R_0 + NR_0^{N-1}) \right) \right).
$$

VI. NUMERICAL EXPERIMENTS

All the experiments are conducted on a computer with an Intel Core i7 9th generation 2.6 GHz processor and 32 Go RAM memory running Windows 10.

It should be noted that the gradients’ computations are automatically done on the Tensorflow framework [9]. The learning rate and the exponential decay rates used in the Adam optimizer are all equal to their default values ($\alpha = 0.001, \beta_1 = 0.09, \beta_2 = 0.0999$).

A. NUMERICAL SIMULATIONS

1) SYNTHETIC DATA

We create a synthetic rank-R real valued tensor \mathcal{X} of order N using the CP model. The CP factors are derived from a single realization of the normal standard distribution. B is a zero mean, unit variance and white noise. Our noisy data tensor is given by:

$$
\mathcal{X}_{\text{noise}} = \mathcal{X}' + \sigma B',
$$

(11)

where $\mathcal{X}' = \frac{\mathcal{X}}{\|\mathcal{X}\|_F}$ and $B' = \frac{B}{\|B\|_F}$. Hence, the SNR will be calculated using the following formula:

$$
SNR = -10 \log_{10} \sigma^2 \in [0 \, \text{db}, 40 \, \text{db}].
$$

FARAC has been run on a rank-2 tensor \mathcal{X} with size $I \times I \times I$ where $R_0 = I = 5$. Experiments are conducted on a tensor with these parameters until other settings are indicated. Similar results are obtained for tensors with other orders and sizes. By using \mathcal{X} and eq. (11), we generate 100 noisy realisations of the input tensor. Accuracy is defined as the proportion of realizations where the estimated rank is accurate.
2) REAL DATASETS

- Amino acid fluorescence: As described in [31], the data set includes the excitation and emission spectra of five samples of different concentrations of tyrosine, tryptophane and phenylalanine, forming a tensor of 5 (samples) × 51 (excitation) × 201 (emission). This dataset can be described by a rank-3 CP model.

- Sugar process data [32]: The dataset contains 265 samples that can be arranged in an IJK three-order tensor of size 265 × 571 × 7. The first mode relates to samples, the second to emission wavelengths, and the third to excitation wavelengths. The (ijk)-th element of this tensor, \(X(i, j, k) \), represents the measured emission intensity from sample \(i \), excited at wavelength \(k \), and measured at wavelength \(j \). This dataset is modeled by a rank-4 CP model.

- Dorrit fluorescence data [15]: Fluorescence spectrometer was used to measure 27 synthetic samples containing different concentrations of four analytes (hydroquinone, tryptophan, phenylalanine and dopa). Each fluorescence landscape corresponds to 233 emission wavelengths and 24 excitation wavelengths. A rank-4 CP model is used to model this dataset, which is represented as a tensor of size \(27 \times 233 \times 24 \).
B. RESULTS

1) SYNTHETIC DATA

- Accuracy of estimated ranks using the proposed approach is illustrated in Fig. 2. We can clearly see that the FARAC approach can estimate the exact canonical rank while being robust to the choice of the threshold parameter.
- Fig. 3 depicts the convergence curves of the proposed method in terms of the Reconstruction Square Error (RSE) at each iteration t, which is given by:

$$\frac{||X_{\text{noise}} - \hat{X}^{(t)}||_F}{||X_{\text{noise}}||_F}.$$

We can see that the reconstruction error quickly decreases to zero w.r.t iterations.
- The recovery of the CP factors is shown in Fig. 4 by checking the subspace error. This can be done by computing the principal angle [36] between the true subspaces and the estimated ones at each iteration t:

$$\theta^{(t)} = \arcsin\left(\sqrt{2}||U_nU_n^\dagger - \hat{U}_n^{(t)}\hat{U}_n^{(t)\dagger}||_F\right),$$

where U_n and $\hat{U}_n^{(t)}$ are the exact and the estimated factors at iteration t, respectively. We see that the principal angle between the subspaces of the three CP factors converges to a low value with respect to iterations.
- In Fig. 5, we compare the FARAC method with CORCONDIA with respect to SNR values. We can see that FARAC clearly outperforms the state-of-the-art method for large range values of SNRs.

- In Table 1, we show the accuracy of the rank estimation using FARAC when the true rank exceeds one of the dimensions of the input tensor. As we can see, FARAC can handle this difficult scenario for a large range of SNR values. The CORCONDIA approach, on the other hand, is ineffective in that situation [17].
- According to Fig. 6, at very low SNR, FARAC tends to overestimate the true rank. In contrast, rank estimation using the CORCONDIA method becomes a very difficult task at low SNR according to Fig. 7.

2) REAL DATASETS

- In Fig. 8 and 9, we present the convergence loss of FARAC, as well as the rank estimation over iterations on the amino acid fluorescence, the dorrit fluorescence and the sugar process datasets. As shown in these figures, the rank is well estimated for the three real datasets. The threshold parameter is selected so that the curve of the reconstruction loss exhibits good convergence properties. Based on the noise level, one can use a grid search over the range of values $[0.1, 0.01, 0.001]$. It is important to note that the FARAC method is robust to the choice of the threshold as shown in Fig. 2. For the amino and dorrit fluorescence datasets, the threshold parameter used is equal to 0.01; for the sugar process dataset, it is equal to 0.001.

VII. CONCLUSION

We have addressed in this work the challenging problem of the canonical rank estimation by defining it as a convex optimization problem. The proposed method, called FARAC, jointly estimates the canonical rank and the CP factors. We have compared FARAC to the well-known CORCONDIA method and found that FARAC is much more accurate. We have also shown that FARAC shows strong robustness to the choice of the threshold parameter and can handle the difficult case when the rank exceeds one of the dimensions of the tensor, unlike the CORCONDIA method. Last but not least, we illustrate the efficiency of the FARAC method on real datasets.

A. DETAIL COMPUTATIONS FOR THE DERIVATION OF FARAC

Let us recall the Lagrangian of the problem (4) that we want to minimize w.r.t $(U_n)_{n=1}^N$, G and λ:

$$L_{\mathcal{G},U_n} = \gamma_1||\lambda||_1 + \frac{\gamma_2}{2} \left(||X - G x_n U_n||_F^2 - \epsilon_1\right)$$

$$+ \frac{\gamma_3}{2} \left(||G||_F^2 - \epsilon_2\right),$$

where X is the input tensor.
We denote by \mathcal{L}_{U_n}, the part of $\mathcal{L}_{G,(U_n)}$ which depends only on U_n.
\[
\mathcal{L}_{U_n} = \frac{\gamma_2}{2} \left\| \mathcal{A} - \mathcal{G} \times_n U_n \right\|_F^2
\]
(12)

The matricized form of eq. (12) is given by:
\[
\mathcal{L}_{U_n} = \left\| X(n) - U_n G_n \left(\bigotimes_{i=1}^n U_i^T \right) \right\|_F^2,
\]

In contrast to the derivation of a classical CPD, G_n (i.e., G_l) is not the identity matrix.

The gradient of \mathcal{L}_{U_n} w.r.t U_n can be calculated as in a traditional matrix linear regression problem:
\[
\nabla U_n(\mathcal{L}_{G,(U_n)}) = \gamma_2 \left(-X(n) \left(\bigotimes_{i=1}^n U_i^T \right) G_n \left(\bigotimes_{i=1}^n U_i^T \right) \right).
\]

We set $\nabla U_n(\mathcal{L}_{G,(U_n)})$ to 0 and get the exact formula of U_n:
\[
U_n = X(n) \left(\bigotimes_{i=1}^n U_i^T \right) G_n \left(\bigotimes_{i=1}^n U_i^T \right)^{-1}.
\]

The part of $\mathcal{L}_{G,(U_n)}$ that depends only on \tilde{G} is denoted by $\mathcal{L}_{\tilde{G}}$:
\[
\mathcal{L}_{\tilde{G}} = \frac{\gamma_2}{2} \times \sum_{i_1, \ldots, i_N} \left(\mathcal{A}(i_1, \ldots, i_N) - \left(\mathcal{G} \times_n U_n \right)(i_1, \ldots, i_N) \right)^2
\]
\[
+ \frac{\gamma_3}{2} \sum_{r_1, \ldots, r_N} \tilde{G}^2(r_1, \ldots, r_N).
\]

Let us derive $\mathcal{L}_{\tilde{G}}$ with respect to $\tilde{G}(r_1, \ldots, r_N)$ such that $r_1 \neq r_2$ or \ldots or $r_{N-1} \neq r_N$ (diagonal elements are excluded since they are equal to 0):
\[
[\nabla \tilde{G} \mathcal{L}_{\tilde{G}}](r_1, \ldots, r_N) = -\gamma_2 \sum_{i_1, \ldots, i_N} \mathcal{A}(i_1, \ldots, i_N) \left(\prod_{n=1}^N U_n(i_n, r_n) \right)
\]
\[
+ \frac{\gamma_3}{2} \tilde{G}(r_1, \ldots, r_N).
\]

We want to derive $\mathcal{L}_{G,(U_n)}$ w.r.t λ. Let us first rewrite it as follows:
\[
\mathcal{L}_{G,(U_n)} = \gamma_1 \left\| \mathcal{A} - \tilde{G} + \text{diag}(\lambda) \right\|_F^2
\]
\[
+ \frac{\gamma_3}{2} \left(\tilde{G}^2 \right)_F + \gamma_1 \left\| \mathcal{A} - \tilde{G} \right\|_F^2 + \frac{\gamma_2}{2} \left\| \mathcal{A} - \tilde{G} \right\|_F^2.
\]

We denote by \mathcal{L}_λ, the part of $\mathcal{L}_{G,(U_n)}$ which depends only on λ. \mathcal{L}_λ is given as follows:
\[
\mathcal{L}_\lambda = \gamma_1 \left\| \lambda \right\|_1 + \frac{\gamma_2}{2} \left(\left\| \sum_{r=1}^{R_0} \lambda_r \bigotimes_{n=1}^N u_{n,r} \right\|_F \right)^2
\]
\[
+ \left(\mathcal{A} - \tilde{G} \right)_F^2 + \gamma_1 \left\| \mathcal{A} - \tilde{G} \right\|_F^2.
\]
Since \(u_{n,l} \) are unit vectors, we have \(\left\| \sum_{n=1}^{N} u_{n,l} \right\| ^{2} = 1 \).

Hence we find the following:

\[
\lambda_{l} + \frac{\gamma_{1}}{\gamma_{2}} \frac{\partial |\lambda_{l}|}{\partial \lambda_{l}} = -\sum_{n=1}^{N} \left(\sum_{r=1}^{R_{l}} \lambda_{r} u_{n,r} \right) + \langle \mathcal{X} - \mathcal{G} \times_{n} U_{n}, u_{n,l} \rangle
\]

As a result, the value of \(\lambda_{l} \) can be computed using the soft thresholding operator \(S_{\gamma_{2}} \):

\[
\lambda_{l} = S_{\gamma_{2}} \left(-\sum_{n=1}^{N} \left(\sum_{r=1}^{R_{l}} \lambda_{r} u_{n,r} \right) + \langle \mathcal{X} - \mathcal{G} \times_{n} U_{n}, u_{n,l} \rangle \right)
\]

B. CONVEXITY

In this section, we will demonstrate that the Lagrangian in eq. (14) is convex w.r.t to \(\lambda \) and \(\mathcal{G} \) so that the global minimum will be reached. To do that, we will show that the hessian w.r.t \(\lambda \) and \(\mathcal{G} \) is positive semi-definite matrices.

- Convexity w.r.t \(\lambda \):

Let \(H_{\mathcal{G}} \) be the hessian of \(\mathcal{L}_{\mathcal{G}, \{U_{n}\}} \) w.r.t \(\lambda \). Using the gradient computed in eq. (15), we have:

\[
H_{\mathcal{G}}(s, l) = \frac{\partial^{2} \mathcal{L}_{\mathcal{G}, \{U_{n}\}}}{\partial \lambda_{s} \partial \lambda_{l}} = \gamma_{2} \left(\sum_{n=1}^{N} \left(u_{n,l}^{T} u_{n,s} \right) \right)
\]

Let \(x \in \mathbb{R}^{R_{0}} \),

\[
x^{T} H_{\mathcal{G}} x = \gamma_{2} \sum_{i=1}^{N} \sum_{s=1}^{N} x_{i} x_{s} \left(\sum_{n=1}^{N} u_{n,l}^{T} u_{n,s} \right)
\]

\[
= \gamma_{2} \sum_{i=1}^{N} \sum_{s=1}^{N} x_{i} x_{s} \left(\sum_{n=1}^{N} u_{n,l}^{T} u_{n,s} \right)
\]

\[
= \gamma_{2} \left(\left(\sum_{i=1}^{N} x_{i} u_{n,l} \right)^{T} \left(\sum_{s=1}^{N} x_{s} u_{n,s} \right) \right) \geq 0,
\]

since \(\gamma_{2} \) is a positive Lagrange multiplier.

- Convexity w.r.t \(\mathcal{G} \):

We first place the elements \(\mathcal{G}(r_{1}, \ldots, r_{N}) \) in a vector \(x \in \mathbb{R}^{R_{0}N-R_{0}} \) and use the same method as for \(\lambda \).

Let \(H_{\mathcal{G}} \) be the hessian of \(\mathcal{L}_{\mathcal{G}, \{U_{n}\}} \) w.r.t \(\mathcal{G} \). Using (13), we compute the second derivatives of \(\mathcal{L}_{\mathcal{G}, \{U_{n}\}} \). The following derivatives are done only on the offdiagonals of \(\mathcal{G} \) since its diagonal is zero.

\[
H_{\mathcal{G}}(r_{1}, \ldots, r_{N}, r'_{1}, \ldots, r'_{N}) := \frac{\partial^{2} \mathcal{L}_{\mathcal{G}, \{U_{n}\}}}{\partial \mathcal{G}(r_{1}, \ldots, R_{N}) \partial \mathcal{G}(r'_{1}, \ldots, r'_{N})}
\]

\[
= \gamma_{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \left(\sum_{n=1}^{N} U_{n}(i_{n}, r_{n}) \right) \left(\sum_{n=1}^{N} U_{n}(i_{n}, r_{n}) \right) + \gamma_{3}.
\]

Let \(x \in \mathbb{R}^{R_{0}N-R_{0}} \),

\[
x^{T} H_{\mathcal{G}} x = \gamma_{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \left(\sum_{n=1}^{N} U_{n}(i_{n}, r_{n}) \right) \left(\sum_{n=1}^{N} U_{n}(i_{n}, r_{n}) \right) + \gamma_{3}.
\]

since \(\gamma_{2} \) and \(\gamma_{3} \) are strictly positive values.

REFERENCES

[1] A. Bhaskara, M. Charikar, and A. Vijayaraghavan, “Uniqueness of tensor decompositions with applications to polynomial identifiability,” in Proc. Conf. Learn. Theory, 2014, pp. 742–778.

[2] A. Cichocki, D. Mandic, L. D. Lathauwer, G. Zhou, Q. Zhao, C. Caiafa, and H. Phan, “Tensor decompositions for signal processing applications: From two-way to multiway component analysis,” IEEE Signal Process. Mag., vol. 32, no. 2, pp. 145–163, Mar. 2015.

[3] A. Cichocki, N. Lee, I. Oseledets, A.-H. Phan, Q. Zhao, and D. P. Mandic, “Tensor networks for dimensionality reduction and large-scale optimization: Part I low-rank tensor decompositions,” Found. Trends Mach. Learn., vol. 9, nos. 4–5, pp. 249–429, 2016.

[4] C. J. Hillar and L.-H. Lim, “Most tensor problems are NP-hard,” J. ACM, vol. 60, no. 6, pp. 1–39, Nov. 2013.

[5] J. B. Kruskal, “Three-way arrays: Rank and uniqueness of trilinear decompositions with applications to polynomial identifiability,” in Proc. Conf. Learn. Theory, 2014, pp. 742–778.
OUFAE KARMOUDA (Student Member, IEEE) received the master’s degree in applied mathematics from the Faculty of Science and Technologies of Fes, Morocco, in 2018, and the master’s degree in data science from Aix-Marseille University, in 2019. She is currently pursuing the Ph.D. degree. Her research interest includes developing/improving machine learning algorithms for multidimensional data (tensors). She is particularly interested in kernel methods and deep learning techniques for high-dimensional data.

JEREMIE BOULANGER received the Ph.D. degree from the Laboratory Gipsa, Grenoble, France, and the University of Melbourne, Melbourne, Australia, in 2013. From 2013 to 2015, he was a Postdoctoral Researcher at the Laboratory CETAPS, Rouen, France. He is currently an Assistant Professor with the Laboratory Cristal, University of Lille, Lille, France.

REMY BOYER (Senior Member, IEEE) received the M.Sc. and Ph.D. degrees in statistical signal processing from the École Nationale Supérieure des Télécommunications (ENST-Paris or Télécom ParisTech), in 1999 and 2002, respectively, and the Habilitation à Diriger des Recherches (HDR) degree from Université Paris-Sud, in December 2012. From 2002 to 2003, he was a Postdoctoral Fellow at Sherbrooke University, Canada, for six months. From 2003 to 2018, he was an Associate Professor at the Laboratory of Signals and Systems (L2S), Université Paris-Sud. From 2011 to 2012, he was a Visiting Researcher at the SATIE Laboratory (École Normale Supérieure de Cachan) and the University of Aalborg, Denmark. He is currently a Full Professor with the Laboratory CRISTAL, Department of Computer Science, Faculty of Sciences and Technologies, University of Lille. He has published over 180 peer-reviewed articles. His research interests include mathematical methods for signal processing (Bayesian signal processing, tensor-based signal processing, and machine learning). He is a member of the IEEE TC Sensor Array and Multichannel (SAM) in charge of the subcommittee SAP, EURASIP TAC Signal Processing for Multisensor Systems (SPMuS), and EURASIP TAC Theoretical and Methodological Trends in Signal Processing (TMTPS). He is an Elected Secretary of the French Chapter of the IEEE Signal Processing Society. He is an Associate Editor of the Signal Processing (ELSEVIER) and a Senior Area Editor for IEEE TRANSACTIONS ON SIGNAL PROCESSING.