Pharmacogenomics-Bias - Systematic distortion of study results by genetic heterogeneity

Abstract

Background

Decision analyses of drug treatments in chronic diseases require modeling the progression of disease and treatment response beyond the time horizon of clinical or epidemiological studies. In many such models, progression and drug effect have been applied uniformly to all patients; heterogeneity in progression, including pharmacogenomic effects, has been ignored.

Objective

We sought to systematically evaluate the existence, direction and relative magnitude of a pharmacogenomics bias (PGX-Bias) resulting from failure to adjust for genetic heterogeneity in both treatment response (HT) and heterogeneity in progression of disease (HP) in decision-analytic studies based on clinical study data.

Methods

We performed a systematic literature search in electronic databases for studies regarding the effect of genetic heterogeneity on the validity of study results. Included studies have been summarized in evidence tables.

In the case of lacking evidence from published studies we sought to perform our own simulation considering both HT and HP. We constructed two simple Markov models with three basic health states (early-stage disease, late-stage disease, dead), one adjusting and the other not adjusting for genetic heterogeneity. Adjustment was done by creating different disease states for presence (G+) and absence (G-) of a dichotomous genetic factor. We compared the life expectancy gains attributable to treatment resulting from both models and defined pharmacogenomics bias as percent deviation of treatment-related life expectancy gains in the unadjusted model from those in the adjusted model. We calculated the bias as a function of underlying model parameters to create generic results.

We then applied our model to lipid-lowering therapy with pravastatin in patients with coronary atherosclerosis, incorporating the influence of two TaqIB polymorphism variants (B1 and B2) on progression and drug efficacy as reported in the DNA substudy of the REGRESS trial.

Results

We found four studies that systematically evaluated heterogeneity bias. All of them indicated that there is a potential of heterogeneity bias. However, none of these studies explicitly investigated the effect of genetic heterogeneity. Therefore, we performed our own simulation study.
Our generic simulation showed that a purely HT-related bias is negative (conservative) and a purely HP-related bias is positive (liberal). For many typical scenarios, the absolute bias is smaller than 10%. In case of joint HP and HT, the overall bias is likely triggered by the HP component and reaches positive values >100% if fractions of „fast progressors“ and „strong treatment responders“ are low.

In the clinical example with pravastatin therapy, the unadjusted model overestimated the true life-years gained (LYG) by 5.5% (1.07 LYG vs. 0.99 LYG for 56-year-old men).

Conclusions

We have been able to predict the pharmacogenomics bias jointly caused by heterogeneity in progression of disease and heterogeneity in treatment response as a function of characteristics of patients, chronic disease, and treatment. In the case of joint presence of both types of heterogeneity, models ignoring this heterogeneity may generate results that overestimate the treatment benefit.

Zusammenfassung

Hintergrund

Pharmakogenomik ist die Wissenschaft, die sich mit germlinalen genetischen Variationen und mit deren Einfluss auf das Antwortverhalten auf pharmakologische Substanzen beschäftigt. In Entscheidungsanalysen zu Arzneimitteltherapien chronischer Erkrankungen müssen die Krankheitsprogression und Behandlungsresponse über den Zeithorizont klinischer oder epidemiologischer Studien hinaus modelliert werden. In vielen dieser Modelle wurde die Progression und Arzneimittelwirkung uniform für alle Patienten angesetzt und eine Heterogenität in der Progression und pharmakogenomische Effekte wurden häufig nicht berücksichtigt.

Ziel

Ziel dieses HTA-Berichts ist eine systematische Evaluation des Pharmacogenomics-Bias (PGX-Bias). Insbesondere sollen Existenz, Richtung und Größe einer Verzerrung in entscheidungsanalytischen Modellierungen basierend auf klinischen Studien bewertet werden.

Methoden

Es wurde eine systematische Literaturrecherche in den einschlägigen Datenbanken zum Einfluss genetischer Heterogenität auf die Validität von Studienergebnissen bzw. das Vorliegen eines PGX-Bias durchgeführt. Die eingeschlossenen Studien wurden in systematischen Kurzbeschreibungen und Evidenztabellen zusammengefasst. Zur validen Untersuchung eines PGX-Bias sollte bei Mangel an publizierten Studienergebnissen eine eigene entscheidungsanalytische Simulation durchgeführt werden, die sowohl die genetisch bedingte Heterogenität in der natürlichen Krankheitsprogression (HP) als auch die genetisch bedingte Heterogenität in der Behandlungswirksamkeit (HW) untersucht. Es wurden zwei einfache Markov-Modelle entwickelt, von denen eines für die genetische Heterogenität adjustiert und das andere nicht. Der PGX-Bias wurde als prozentuale Abweichung der behandlungsbedingten zusätzlichen Lebensjahre (LYG) im nicht-adjustierten Modell vom adjustierten Modell definiert. In einem klinischen Beispiel wurde der PGX-Bias für die lipidsenkende Therapie mit Pravastin bei Patienten mit koronarer Atherosklerose er-
mittelt und dazu der Einfluss des TaqIB-Polymorphismus auf die Progression und Behandlungswahrscheinlichkeit basierend auf den Ergebnissen der REGRESS-DNA-Substudie ins Modell integriert.

Ergebnisse

Es wurden vier publizierte Studien identifiziert, die sich系统isch mit einem Heterogenitätsbias beschäftigen. Alle vier Studien deuten übereinstimmend auf das Potenzial eines Heterogenitätsbias hin, jedoch untersuchte keine dieser Studien explizit den Effekt von genetischer Heterogenität. Aus diesem Grund erfolgte eine eigene Simulationsstudie für diese Fragestellung.

Die im Rahmen dieses HTA-Berichts eigens durchgeführte Simulation zeigt, dass ein rein HW-basierter Bias negativ (konservativ) ist und ein rein HP-basierter Bias positiv (liberal) ist. Für viele typische Szenarien ist der PGX-Bias kleiner als 10%. Im Fall einer kombinierten Heterogenität (HP und HW), ist es wahrscheinlich, dass der Gesamtbias durch die HP-Komponente bestimmt wird. Der PGX-Bias erreicht positive Werte von über 100%, wenn der Anteil der schnell progredierenden Patienten und starken Behandlungsrespondern niedrig ist.

Im klinischen KHK-Beispiel (KHK = Koronare Herzkrankheit) mit Pravastatinbehandlung überschätzte das nicht-adjustierte Modell den wahren Effekt der Pravastatinbehandlung in gewonnenen Lebensjahren um + 5,5% (1,07 LYG vs. 0,99 LYG für 56 Jahre alte Männer).

Schlussfolgerungen

In diesem HTA-Bericht konnte der PGX-Bias, der durch die Heterogenität in der Behandlungswahrscheinlichkeit und die Heterogenität in der Progression verursacht ist, als Funktion der Charakteristika von Patienten, chronischer Krankheit und Therapie dargestellt werden. Liegen beide Heterogenitätskomponenten vor, was in den meisten realistischen Situationen der Fall sein wird, so führt die Nichtberücksichtigung dieser Heterogenität zur Überschätzung des Behandlungseffekts.
Executive Summary

1. Background

Decision analyses of drug treatments in chronic diseases require modeling the progression of disease and treatment response beyond the time horizon of clinical or epidemiological studies. In many such models, progression and drug effect have been applied uniformly to all patients; heterogeneity in progression, including pharmacogenomic effects, has been ignored.

2. Objective

We sought to systematically evaluate the existence, direction and relative magnitude of a pharmacogenomics bias (PGX-Bias) resulting from failure to adjust for genetic heterogeneity in both treatment response (HT) and heterogeneity in progression of disease (HP) in decision-analytic studies based on clinical study data.

3. Methods

We performed a systematic literature search in electronic databases for studies regarding the effect of genetic heterogeneity on the validity of study results. Included studies have been summarized in evidence tables. In the case of lacking evidence from published studies we sought to perform our own simulation considering both HT and HP. We constructed two simple Markov models with three basic health states (early-stage disease, late-stage disease, dead), one adjusting and the other not adjusting for genetic heterogeneity. Adjustment was done by creating different disease states for presence (G+) and absence (G-) of a dichotomous genetic factor. We compared the life expectancy gains attributable to treatment resulting from both models and defined pharmacogenomics bias as percent deviation of treatment-related life expectancy gains in the unadjusted model from those in the adjusted model. We calculated the bias as a function of underlying model parameters to create generic results. We then applied our model to lipid-lowering therapy with pravastatin in patients with coronary atherosclerosis, incorporating the influence of two TaqIB polymorphism variants (B1 and B2) on progression and drug efficacy as reported in the DNA substudy of the REGRESS trial.

4. Results

We found four studies that systematically evaluated heterogeneity bias. All of them indicated that there is a potential of heterogeneity bias. However, none of these studies explicitly investigated the effect of genetic heterogeneity. Therefore we performed our own simulation study. Our generic simulation showed that a purely HT-related bias is negative (conservative) and a purely HP-related bias is positive (liberal). For many typical scenarios, the absolute bias is smaller than 10%. In case of joint HP and HT, the overall bias is likely triggered by the HP component and reaches positive values >100% if fractions of „fast progressors” and „strong treatment responders” are low. In the clinical example with pravastatin therapy, the unadjusted model overestimated the true life-years gained (LYG) by 5.5% (1.07 LYG vs. 0.99 LYG for 56-year-old men).

5. Conclusions

We have been able to predict the pharmacogenomics bias jointly caused by heterogeneity in progression of disease and heterogeneity in treatment response as a function of characteristics of patients, chronic disease, and treatment. In the case of joint presence of both types of heterogeneity, models ignoring this heterogeneity may generate results that overestimate the treatment benefit.
Kurzfassung

1. Hintergrund

Die Reaktion von Personen auf Medikamente ist ein komplexes Phänomen, das durch viele verschiedene Gene beeinflusst wird. Pharmakogenomik ist die Wissenschaft, die sich mit germlinalen genetischen Variationen und mit deren Einfluss auf das Antwortverhalten auf pharmakologische Substanzen beschäftigt. Zur Schätzung der Langzeiteffektivität einer medikamentösen Behandlung während der Lebenszeit der Patienten werden im Rahmen von HTA üblicherweise entscheidungsanalytische Modelle herangezogen, bei chronischen Erkrankungen meistens Markov-Modelle. Diese dienen u. a. dazu, in sinnvoller und plausibler Weise die Behandlungseffekte, die in klinischen Studien mit kurzem Zeithorizont beobachtet wurden, über den Zeithorizont der klinischen Studien hinaus zu extrapolieren. Dabei werden sowohl Erkrankungsinzidenz und -progression, als auch Mortalität betrachtet. In vielen dieser Modelle wird die Wirksamkeit der pharmakologischen Substanzen über die relative Risikoreduktion (RRR), bezüglich Mortalität oder Erkrankungspersistenz modelliert. Diese Langzeiteffekte werden häufig aus klinischen Studien mit kurzem Zeithorizont geschätzt und auf den Langzeithorizont übertragen. Die Übergangswahrscheinlichkeiten der verschiedenen Zustände in entscheidungsanalytischen Modellen hängen von individuellen genetischen und klinischen Charakteristika, dem Verhaltensprofil, dem aktuellen Gesundheitszustand und der Behandlung des Patienten ab. Die genetischen Faktoren sind jedoch in den meisten Fällen unbekannt und Hinweise auf pharmakogenetische Effekte sind sehr limitiert. Daher war es bislang nur selten möglich, genetische Heterogenität in diese Modelle zu integrieren. Stattdessen wird mangels Evidenz klassischerweise eine einheitliche (uniforme) Wirksamkeit der Medikamente (z. B. auf Krankheitsprogression oder Mortalität) für alle behandelten Patienten angenommen; eine mögliche Heterogenität in der Behandlungseffektivität in Abhängigkeit von der genetischen Ausstattung wird meist ignoriert. Oft nehmen diese Modellierungen sogar explizit an, dass alle Personen in einem bestimmten Gesundheitszustand homogen in Bezug auf ihre absoluten oder relativen klinischen Vorteile oder Risiken sind, die durch die Behandlung entstehen. Neueste Untersuchungen in der Pharmakogenomik zweifeln diese Annahme der uniformen Risikoreduktion bei unterschiedlichen Patienten an. Es konnte gezeigt werden, dass bei vielen Erkrankungen genetische Faktoren – ob bekannt oder unbekannt – die Wirksamkeit der Medikamente und/oder die Wahrscheinlichkeit für Nebenwirkungen beeinflussen. Wenn also Modelle ignorieren, dass die genetische Heterogenität einen Einfluss auf die Behandlungsantwort ausübt, dann kann dies zu einem verzerrten Ergebnis führen. Die Richtung und Größe dieses Pharmacogenomics-Bias (PGX-Bias) ist von vielen Parametern abhängig, die den Krankheitsprozess beeinflussen.

Ziel dieses HTA-Berichts ist deshalb eine systematische Evaluation des PGX-Bias. Insbesondere sollen Existenz, Richtung und Größe einer Verzerrung in entscheidungsanalytischen Modellierungen basierend auf klinischen Studien bewertet werden.

2. Fragestellung

Dieser HTA-Bericht befasst sich mit der übergreifenden Fragestellung:

- Welche Rolle spielen genetische Heterogenität und PGX-Bias bei der Beurteilung systematischer Verzerrungen von Ergebnissen im Rahmen von HTA?

Im Folgenden werden die konkreten Forschungsfragen des vorliegenden HTA-Berichts formuliert und abgegrenzt.

- Welchen Einfluss hat ein PGX-Bias bei der Beurteilung von Studienergebnissen (aus klinischen Studien und entscheidungsanalytischen Simulationen)?
- Führt die genetische Heterogenität zu systematischen Verzerrungen von Studienergebnissen?
- Wie sind Richtung und Größe einer Verzerrung in entscheidungsanalytischen Modellierungen basierend auf klinischen Studien zu bewerten?
- Welche Simulationsmodelle liegen zu der Fragestellung vor?

Die Untersuchungen beziehen sich auf chronische und progressive Erkrankungen, bei denen ein genetischer Faktor (genetische Ausstattung) die Erkrankungsprogression, die Behandlungs-wirksamkeit oder beides beeinflussen kann. Die theoretischen Überlegungen und Simulationen sollen anhand eines konkreten klinischen Beispiels veranschaulicht und überprüft werden.

3. Methoden

Es wurde eine systematische Literaturrecherche in den einschlägigen Datenbanken zu klinischen Studien, HTA-Berichten und klinischen und/oder gesundheitsökonomischen entscheidungsanalytischen Modellierungsstudien durchgeführt, die den Aspekt des Einflusses genetischer Heterogenität auf die Validität von Studienergebnissen bzw. das Vorliegen eines PGX-Bias verursacht durch Nichtberücksichtigung der genetischen Heterogenität der Studienpopulation untersuchten. Es erfolgte eine systematische und standardisierte Kurzbeschreibung der wesentlichen Inhalte der eingeschlossenen Studien. Dabei werden die folgenden Aspekte betrachtet: Fragestellung/Zielsetzung der Studie, Heterogenität faktor/Modellparameter, Definition des Bias, verwendete Modelle, klinische Beispiele, Ergebnisse und Schlussfolgerungen der Autoren. Die wichtigsten Daten der medizinischen, ökonomischen und methodischen Dokumente wurden systematisch extrahiert und in Anlehnung an die DIMDI-Instrumente in zwei Evidenztabellen systematisch zusammengestellt.
Die Kategorien der Evidenztabelle Methoden sind Autor, Jahr, Fragestellung/Zielsetzung, Kontext, Analysetechnik, Heterogenitätsfaktor, Definition des Bias, Modelltyp und klinische Anwendung. Die Kategorien der Evidenztabelle Ergebnisse sind: Autor, Jahr, Existenz, Richtung und Größe des Bias, Autorenschlussfolgerungen sowie eigener Kommentar.

Zur validen Untersuchung eines PGX-Bias sollte bei Mangel an publizierten Studienergebnissen eine eigene entscheidungsanalytische Simulation durchgeführt werden, die sowohl die genetisch bedingte Heterogenität in der Krankheitsprogression als auch die genetische bedingte Heterogenität in der Behandlungswirksamkeit untersucht.

Es werden zwei einfache Markov-Modelle mit drei Gesundheitszuständen (frühes Stadium, spätes Stadium, Tod) entwickelt, von denen eines für die genetische Heterogenität adjustiert und das andere nicht. Die Adjustment erfolgte über den Einsatz verschiedener Krankheitszustände, für das Vorliegen (G+) und das Fehlen (G-) eines dichotomen genetischen Faktors. Die durch eine Intervention entstehenden Gewinne an Lebenserwartung, die die beiden Modelle liefern, werden dann miteinander verglichen. Die relative Abweichung der Ergebnisse des nicht-adjustierten Modells von den Ergebnissen des adjustierten wird als PGX-Bias definiert.

Als klinisches Beispiel zur Anwendung des einfachen Modells zur Schätzung der Richtung und der Größe des PGX-Bias wird die lipidsenkende Therapie mit Pravastatin bei Patienten mit koronarer Atherosklerose herangezogen. Dabei wird der Einfluss des TaqIB-Polymorphismus auf die Progression und Behandlungswahrscheinlichkeit basierend auf den Ergebnissen der REGRESS-DNA-Substudie ins Modell integriert. Zur Vereinfachung wird dabei nicht die vollständige genetische (teils unbekannte) Ausstattung betrachtet, sondern ausschließlich ein dichotomer genetischer Faktor angenommen. Schließlich wird der Behandlungseffekt von Pravastatin untersucht, indem bei einem Modell für den genetischen Faktor adjustiert wird, während im zweiten Modell dieser genetische Faktor nicht berücksichtigt wird.

4. Ergebnisse

4.1 Publizierte Studien

Basierend auf der systematischen Literaturrecherche und den Einschlusskriterien konnten vier Studien eingeschlossen werden, die sich systematisch mit einem Heterogenitätsbias beschäftigen. Darunter sind drei Studien (Kuntz & Goldie 2002 [1], Goldie & Kuntz 2003 [2], Zarić 2003 [3]) die als Originalartikel publiziert wurden und eine Studie, die nur als „Letter“ publiziert wurde (Steyerberg & Eijkemans 2004 [4]).

In keiner der vier Studien wurde explizit eine genetische Heterogenität untersucht, jedoch wurde in allen vier Studien der Bias durch nicht berücksichtigte zeitlich konstante Heterogenitätsfaktoren in Modellen evaluiert, so dass die Ergebnisse zumindest zum Teil auf einen PGX-Bias übertragen werden können. Die Untersuchung der Heterogenität umfasste Heterogenität im Risiko für Erkrankungen und deren Vorstufen, Heterogenität in der Krankheitsprogression und Heterogenität in der Behandlungswirksamkeit. Alle vier Studien deuten übereinstimmend auf das Potenzial eines Heterogenitätsbias hin, jedoch untersuchte keine dieser Studien explizit den Effekt von genetischer Heterogenität noch wurden in den publizierten Studien beide Komponenten (Heterogenität in der Erkrankungsprogression und Heterogenität in der Behandlungswirksamkeit) eines PGX-Bias gleichzeitig untersucht. Aus diesem Grund erfolgte eine eigene Simulationsstudie für diese Fragestellung.

Ein systematischer HTA-Bericht des Swiss Centre for Technology Assessment (TA-SWISS) zum Thema Pharmacogenetik und Pharmakogenomik von 2004 enthielt keine spezifischen Aussagen zu der Frage welche Rolle genetische oder anderweitige Heterogenität und PGX-Bias bei der Beurteilung von systematischen Verzerrungen von Ergebnissen im Rahmen von HTA spielt und ob dazu Simulationsergebnisse vorliegen. Aus diesem Grund wurde dieser Bericht von der weiteren Bewertung ausgeschlossen.

4.2 Generische Simulationsstudie

Die im Rahmen dieses HTA-Berichts eigens durchgeführte Simulation zeigt, dass ein rein HW-basierter Bias negativ (konservativ) und ein rein HP-basierter Bias positiv (liberal) ist. Für viele typische Szenarien ist der PGX-Bias kleiner als 10%. Im Fall einer kombinierten Heterogenität (HP und HW), ist es wahrscheinlich, dass der Gesamtabschlag durch die HP-Komponente bestimmt wird. Der PGX-Bias erreicht positive Werte von über 100%, wenn der Anteil der schnell progredienten Patienten und starken Behandlungsresponder niedrig ist.

4.3 Klinisches Beispiel

Im klinischen KHK-Beispiel mit Pravastinbehandlung überschätzte das nicht-adjustierte Modell den wahren Effekt der Pravastatinbehandlung in gewonnenen Lebensjahren (LYG). Basierend auf der Markov-Modellierung beträgt der PGX-Bias für das KHK-Beispiel +5,5%. Obwohl das Modelldesign der KHK aus Gründen der klinischen Plausibilität etwas vom einfachen allgemeinen Simulationsmodell abweicht, sind diese Ergebnisse im Einklang mit den Ergebnissen der gemeinsamen Simulation von Heterogenität in Progression und Behandlungswirksamkeit.

5. Schlussfolgerungen und Empfehlungen

- Es liegen nur wenige publizierte Studien zur Untersuchung von Heterogenitätseffekten bei der Bewertung von medizinischen Interventionen vor. Diese Studien deuten übereinstimmend auf das Potenzial eines Heterogenitätsbias hin, jedoch untersuchte keine dieser
Studien explizit den Effekt von genetischer Heterogenität noch wurden in den publizierten Studien beide Komponenten (Progression und Behandlungswirksamkeit) eines PGX-Bias gleichzeitig untersucht.

- In diesem HTA-Bericht wurde ein eigenes generisches Modell für die systematische Untersuchung eines PGX-Bias im Rahmen der Bewertung medizinischer Interventionen bei chronischen progredienten Erkrankungen entwickelt.
- Die Simulationsergebnisse zeigen, dass die Ergebnisse von entscheidungsanalytischen Modellierungen verzerrt sein können, wenn eine Heterogenität in der Behandlungswirksamkeit oder eine Heterogenität in der Progression oder eine Kombination aus beidem vorliegt und in den Modellen nicht adäquat für diese Heterogenitätskomponenten adjustiert wird.
- In plausiblen Szenarien ist der PGX-Bias bei reiner Heterogenität in der Behandlungswirksamkeit negativ, d. h. in nicht-adjustierten Modellen wird die wahre Behandlungswirksamkeit unterschätzt.
- Im Gegensatz dazu ist der PGX-Bias bei reiner Heterogenität in der Progression positiv, d. h. in nicht-adjustierten Modellen wird die wahre Behandlungswirksamkeit überschätzt.
- Wenn eine Heterogenität sowohl in der Behandlungswirksamkeit als auch in der Progression vorliegt, dann wird der gesamte Bias vermutlich durch die Komponenten der Heterogenität in der Progression bestimmt.
- Für viele plausible Szenarien und Parameterwerte ist der PGX-Bias kleiner als 10%. Für die üblicherweise angetroffenen Situationen, in denen der mit der schnelleren Progression assoziierte Genotyp auch mit einem stärkeren Behandlungsgewinn assoziiert ist, gilt das Folgende: wenn sowohl Heterogenität in der Behandlungswirksamkeit als auch Heterogenität in der Progression vorliegen und wenn zudem die initiale Prävalenz von schwachen Respondern hoch ist, dann ist mit einem substantiellen PGX-Bias zu rechnen, d. h. nicht-adjustierte Modelle überschätzen sehr wahrscheinlich die durch die Behandlung LYG.
- Es sei abschließend darauf hingewiesen, dass entscheidungsanalytische Modellierungen basierend auf klinischen Studien mit kurzen Zeithorizonten lediglich evidenzbasierte Hinweise über den Langzeiteffekt von Interventionen liefern können bis diese durch rando-

misierte klinische Studien mit langen Zeithorizonten bestätigt oder widerlegt werden.

Literatur

1. Kuntz KM, Goldie SJ. Assessing the sensitivity of decision-analytic results to unobserved markers of risk: defining the effects of heterogeneity bias. Medical Decision Making. 2002; 22(3):218-27.
2. Goldie SJ, Kuntz KM. A potential error in evaluating cancer screening: a comparison of 2 approaches for modeling underlying disease progression. Medical Decision Making. 2003; 23(3):232-41.
3. Zaric GS. The impact of ignoring population heterogeneity when Markov models are used in cost-effectiveness analysis. Medical Decision Making. 2003; 23(5):379-96.
4. Steyerberg EW, Eijkemans MJ. Heterogeneity bias: the difference between adjusted and unadjusted effects [comment]. Medical Decision Making. 2004; 24(1):102-4.

Korrespondenzadresse:
Prof. Dr. Uwe Siebert
Department of Public Health, Medical Decision Making and Health Technology Assessment, UMIT - University for Health Sciences, Medical Informatics and Technology, Eduard Wallnoefer Center I, A-6060 Hall i.T., Tel.: +43-50-8648-3930
uwe.siebert@umit.at

Bitte zitieren als: Siebert U, Sroczynski G, Zietemann V. Pharmacogenomics-Bias - Systematische Verzerrungen in Studienergebnissen durch genetische Heterogenität. GMS Health Technol Assess. 2008;4:Doc03.

Artikel online frei zugänglich unter
http://www.egms.de/en/journals/hta/2008-4/hta000052.shtml

Der vollständige HTA-Bericht steht zum kostenlosen Download zur Verfügung unter:
http://gripsdb.dimdi.de/de/hta/hta_berichte/hta194_bericht_de.pdf

Copyright
©2008 Siebert et al. Dieser Artikel ist ein Open Access-Artikel und steht unter den Creative Commons Lizenzbedingungen (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.de). Er darf vervielfältigt, verbreitet und öffentlich zugänglich gemacht werden, vorausgesetzt dass Autor und Quelle genannt werden.