Various Methods for Controlling the *Bakanae* Disease in Rice

Li Fang Jing¹ and Haruhisa Suga²*

¹ The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
² Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan

ABSTRACT

Bakanae disease, caused by *Fusarium fujikuroi*, is a serious problem in rice production. This disease is widespread across the world and leads to substantial yield losses. *F. fujikuroi* is known to produce various secondary metabolites, including the plant hormone gibberellin, which induces typical *bakanae* symptoms. In this article, authors overviewed the methods for controlling *bakanae* disease, including the use of host resistance, chemical compounds, biocontrol agents, natural products, and physical methods. Although various strategies have been applied to control *bakanae* disease, the disease is not yet completely prevented. Authors discuss the advantages and disadvantages of these various methods. In addition, the mode of action of major fungicides and the resistance mechanisms to these fungicides were outlined. These information contribute to the development of more effective methods for controlling *bakanae* disease.

Keywords

bakanae disease, biological control, fungicide resistance, *Fusarium fujikuroi*, host resistance

1. Introduction

Bakanae is one of the most serious disease in rice. Diseased plants exhibit leaf discoloration, abnormal stem elongation and seedling rot. In addition, infected rice is infertile and produces fewer grains [1]. *Bakanae* disease was first described in 1898 in Japan [2] and currently occurs in most rice-producing regions worldwide. In addition to Asia, this disease has emerged in European and American countries, such as Italy [3], Macedonia [4], Russia [5], and America [6]. Substantial yield losses caused by *bakanae* disease pose a threat to staple food supply. It has been reported that *bakanae* disease can cause yield losses of 3.0–95.4%, depending on the rice cultivars and geographic regions [7].

Fusarium moniliforme was formerly known as the pathogen of rice *bakanae* disease [8]. However, it was subsequently revealed that *F. moniliforme* included some distinct species and *F. moniliforme* was thus renamed as the *Fusarium fujikuroi* species complex (FFSC), with other species in the section *Liseola* [9]. FFSC members cause diverse diseases in many agricultural crops, including rice, maize, pitch, fig, sugarcane, and mango. Morphological, phylogenetical, and biological species concepts have been applied in the taxonomy of the FFSC [10]. According to the phylogenetic analyses, the FFSC includes at least 50 distinct species and is delineated into three clades: the Asian, African, and American clades [11]. Of these, 34 morphospecies and 12 biological species, mating populations (i.e. MP-A to MP-L), were recognized in the FFSC [10, 12].

The FFSC members are also well known as phytohormone producers: gibberellins (GAs) [13], cytokinin [14], and auxins [14]. GAs contribute to the development of the typical symptoms of *bakanae* disease in rice [15].
Mycotoxins produced by the FFSC members include fumonisin (FUM) [16], fusarins [17], fusaric acid [18], moniliformin [19], and beauvericin [20]. These pose health risk to mankind and animals [21].

Among the members of the Asian clade, *F. fujikuroi* has been intensively studied as the causal agent of rice *bakanae* disease. *F. fujikuroi* has been subclassified into gibberellin (G)-group/*bakanae* type and fumonisin (F)-group/stunt type [22, 23]. G-group/*bakanae* type strains produce GAs but no or low FUM, while F-group/stunt type strains produce FUM but no or low levels of GAs [22, 23]. Interestingly, different sensitivities to the fungicides thiophanate-methyl [22] and ipconazole [24] were observed between the G-group and F-group strains. Despite the development of management strategies, *F. fujikuroi* still causes *bakanae* disease worldwide. In this article, we review the various methods for controlling *bakanae* disease.

2. Host resistance

Application of resistant host plants is an environmentally friendly and cost-effective method. Screening is important to find practical resistant cultivars. Khan et al. [25] and Iqbal et al. [26] conducted field screening to identify *bakanae* resistant cultivars from Pakistan rice varieties and found that DM-15-1-95, DR-82, DR-83, KS-133, KS-282, IR-6, and IR-8 have the resistance. Hur et al. [27] inoculated *F. fujikuroi* conidia by tissue embedding method and selected the resistant varieties Hawn, Gwangmyeongbyeo, Erguailai, and Wonseadaesoo. Matić et al. [28] identified Slelnio and Dorella as *bakanae* resistant and sensitive cultivars, respectively, by comparative transcriptome analyses.

Identification of resistance genes is necessary in understanding the resistance mechanisms and for marker-assisted rice breeding. Quantitative trait loci (QTL) associated with *bakanae* disease resistance in rice have been reported. Based on the genetic map and bioassay, *qB1* and *qFfR1* on chromosome 1 [29, 30], *qB4* on chromosome 4 [31], and *qB10* on chromosome 10 [29] were detected as QTL conferring resistance to *bakanae* disease. Hur et al. [32] identified *qBK1* as a major QTL by crossing the sensitive *japonica* variety Ilpum and the resistant *indica* variety Shingwang. Subsequently, Fiyaz et al. [33] identified *qBK1.1*, *qBK1.2*, and *qBK1.3* as QTL for *bakanae* disease resistance. However, *qBK1.1* and *qBK1* might be the same, as they were detected in the same genomic region [33]. Furthermore, *qBK1WD* in the *japonica* variety Wonseadaesoo [34] and *qBK1Z* of the Zenith variety [35] were identified to confer resistance to *bakanae* disease. Recently, a late maturing cultivar MY299BK which is *bakanae* resistant was developed by introducing the *qBK1* gene from Shingwang [36].

3. Chemical control

3.1 Benzimidazoles

Currently, application of chemical compounds is the most common method to control *bakanae* disease. Benzimidazoles, broad-spectrum fungicides, have been used to control *bakanae* disease for decades [37] (Table 1). Benzimidazoles disrupt mitosis and meiosis in fungal cells and impair cellular processes, such as cytoskeleton formation, cell division, and intracellular trafficking [38]. The representative benzimidazole fungicides are benomyl, carbendazim, thiophanate-methyl, thiabendazole, and fuberidazole. Seed treatment with a 0.3% suspension of fungicides, including 50% carbendazim or 80% thiophanate-methyl reduced the *bakanae* incidence by *in vitro* tests [39], while soaking the infected seeds in 10 g L⁻¹ benomyl for 10 min completely inhibited *bakanae* disease [40]. Effective control of *bakanae* disease was also achieved by seed treatment with thiabendazole [41].

However, resistant strains to benzimidazoles have been detected in *F. fujikuroi* under excessive use of the benzimidazole fungicide. Possible resistance mechanisms in fungi to fungicides are summarized in Fig. 1, including (I) change in the cell wall structure, (II) alterations of the fungicide target molecule, (III) overproduction of the
fungicide target molecule, (IV) fungicide excretion, (V) fungicide degradation, and (VI) synthesis of a complementary molecule of the fungicide target. The D50Y mutation in β-tubulin was reported to confer benomyl resistance in *F. moniliforme* [42] (Table 1). Subsequently, Chen *et al.* [43] reported that the E198V and the F200Y mutations in β2-tubulin caused carbendazim resistance in Chinese *F. fujikuroi* (Table 1).

![Figure 1: Possible mechanisms underlying the resistance of fungi to fungicides.](image)

Figure 1: Possible mechanisms underlying the resistance of fungi to fungicides. The solid line indicates the normal way for the fungicide bind to the target molecule essential for fungal growth. The dotted line indicates a possible way to prevent fungicide action. (I) The fungal cell wall structure is changed, and the entry of the fungicide is prevented. (II) The structure of the fungicide target molecule is altered, and thus, the fungicide is unable to bind to it. (III) The fungicide cannot completely inhibit the function of the target molecule due to overproduction of the target molecule. (IV) The fungicide is degraded so that the fungicide loses its function. (V) The fungicide is excreted from the fungal cell by efflux pumps. (VI) The function of the fungicide target molecule is complemented by an alternative molecule.

3.2 Sterol demethylase inhibitors

Sterol demethylase inhibitors (DMIs), which are site-specific fungicides, have been used as a substitute of benzimidazoles to control of *bakanae* disease (Table 1). The target of DMIs is a cytochrome P450 sterol 14α-demethylase (CYP51 enzyme). This enzyme is required for biosynthesis of ergosterol, a component of the fungal cell membrane that is essential for fungal growth. *F. fujikuroi* has three *CYP51* genes (*CYP51A, B*, and *C*) [44]. DMIs include chemical classes such as imidazole, piperazine, pyridine, pyrimidine, and triazole. Hossain *et al.* [45] showed the antifungal activity of triazole fungicides (viz. 2.5% difenoconazole emulsifiable concentrate (EC), 25% propiconazole EC, and 25% tebuconazole EC) against *F. moniliforme*. Effective inhibition of the growth of *F. moniliforme* was demonstrated by the triazole fungicides ipconazole [46, 47], propiconazole [48], and imidazole fungicide prochloraz [49]. Seed dipping in a 200-fold diluted solution of 6% ipconazole wettable powder (WP) for
24 h [46], or in 0.0472 μg mL\(^{-1}\) ipconazole [47] were highly effective for control of \textit{bakanae} disease. Seedling treatment with 0.05% propiconazole EC was also effective at controlling \textit{bakanae} disease, although phytotoxicity was observed, along with reductions in plant height and grain yield [48]. Park \textit{et al.} [49] reported that 10 μg mL\(^{-1}\) prochloraz completely inhibited mycelial growth of \textit{F. fujikuroi}. Suzuki \textit{et al.} [50] indicated that seed treatment with triflumizole EC showed a higher efficacy to control \textit{bakanae} disease than triflumizole WP. Seed treatment with imidazole fungicide pefurazoxide at 500 μg mL\(^{-1}\) resulted in a 90% disease reduction [51]. Difenoconazole and penconazole showed high effectiveness against \textit{F. moniliforme} by \textit{in vitro} evaluation [52]. Furthermore, soil drenching with difenoconazole were also effective at managing \textit{bakanae} disease in greenhouse tests [52].

Strains resistant to DMIs have been detected in \textit{F. fujikuroi} under wide use of DMI fungicides. These resistance mechanisms are summarized in Table 1. Kim \textit{et al.} [53] found that degradation of prochloraz in Korean \textit{F. fujikuroi} strain CF245 was resistant to prochloraz. Subsequently, it was reported that an efflux transporter was also involved in the prochloraz resistance of this strain [54]. Furthermore, in case of another Korean strain CF337, structure changes in the fungal cell wall and an ATP binding cassette (ABC) transporter were reported to confer prochloraz resistance [55]. Whereas, Zhang \textit{et al.} [44] reported that the S312T mutation in CYP51B and overexpression of the \textit{CYP51A/CYP51B} genes caused prochloraz resistance in Chinese \textit{F. fujikuroi}. Choi \textit{et al.} [56] found an association between survival factor 1 and F-box/WD-repeat protein with prochloraz sensitivity of \textit{F. fujikuroi}. Gene disruption of survival factor 1 decreased prochloraz resistance while gene disruption of F-box/WD-repeat protein increased prochloraz resistance [56].

3.3 Other chemical compounds

Chemical compounds other than benzimidazoles and DMIs have also been used as fungicides for \textit{bakanae} disease control (Table 1). Phenamcaril, former experimental code JS399-19, is a novel cyanoacrylate fungicide; this drug inhibits the ATPase activity of class I myosin [57] and 0.1544 μg mL\(^{-1}\) phenamacril effectively reduced the growth of \textit{F. fujikuroi} [47]. However, resistant strains to phenamacril were found in Chinese \textit{F. fujikuroi} [58]. It has been reported that the S219P, S219L and K218T mutations in myosin-5 were correlated with high resistance to phenamacril in \textit{F. fujikuroi} [58, 59] (Table 1). Fluazinam classified in arylaminopyridine [60], and a novel succinate dehydrogenase inhibitor pydiflumetofen [61] showed significant antifungal activity against \textit{F. fujikuroi}. Seed treatment with 0.1 or 0.2 g available ingredient/kg pydiflumetofen resulted in a 90% reduction in \textit{bakanae} disease [61]. Chelating agents, ethylenediaminetetraacetic acid and chitosan oligosaccharides, exhibited strong antifungal activities against \textit{F. fujikuroi} [62]. Furthermore, the efficacy of combined use of fungicides has also been investigated. Hossain \textit{et al.} [63] reported that 12% carbendazim + 63% mancozeb, 55% metiram + 5% pyraclostrobin, 2.5% fludioxonil + 2.5% celest extra 5 EC, and 200 g L\(^{-1}\) tebuconazole + 100 g L\(^{-1}\) trifloxystrobin completely inhibited the growth of \textit{F. moniliforme in vitro}.

![Table 1: Chemical compounds used for control of rice \textit{bakanae} disease](image)
Pefurazoate (Healthied) [51] -
Penconazole (Topas) [52] -
Prochloraz degradation [53], Efflux transport [54], Mutation S312T in CYP51B and overexpression of CYP51A/CYP51B [44], Changes of cell wall [55]
Prochloraz (Sportak) [49] -
Propiconazole (Protaf) [45] -
Tebuconazole (Folicur) [45] -
Triflumizole (Trifmine) [50] -
Chitosan oligosaccharides [62] -
Ethylenediaminetetraacetic acid [62] -
Fluazinam [60] -
Fludioxonil (Cannonball WG) [63] -
Mancozeb (Dithan) [63] -
Others
Metiram (Arbatene) [63] -
Phenamacril [47] Mutations S219P, S219L, and K218T in Myosin-5 [58, 59]
Pydiflumetofen [61] -
Pyraclostrobin [63] -
Trifloxystrobin (Flint fungicide) [63] -
a) The brand name of chemical compounds is indicated in brackets.
b) Resistance mechanism revealed in Fusarium fujikuroi. "-" indicates that report was not found.

4. Biological control
4.1 Bacterial agents
Biocontrol agents for bakanae disease are summarized in Table 2. A growth reduction in F. moniliforme was observed with the Pseudomonas fluorescens strains PF-2, PF-9, and PF-13 [64]. Zhang et al. [65] further demonstrated that the antagonistic endophytic bacterium Paenibacillus polymyxia inhibited the growth of F. moniliforme. Strains of Bacillus spp., such as B. cereus [66], B. megaterium [67], B. subtilis [64], B. circulans [68], and B. oryzicola [69] antagonised the growth of F. fujikuroi. Kumar et al. [64] showed that the B. subtilis strain B-44 was effective at reducing bakanae incidence in greenhouse experiments. B. subtilis strain QST 713 which has been commercialized as Serenade is a biofungicide for control bakanae disease [70]. Hossain et al. [69] demonstrated that treatment with the B. oryzicola strain YC7007 reduced bakanae severity to 46–78% in pots and nursery box tests.

4.2 Fungal agents
Trichoderma spp. previously reported as biocontrol agents for bakanae are shown in Table 2. Parasitic activity on phytopathogenic fungus has been observed in Trichoderma spp. T. asperellum strain SKT-1, which has been commercialized as Eco-hope, was confirmed to penetrate the hyphae and cause cell wall degradation of F. fujikuroi [71]. Application of T. harzianum or T. virens reduced bakanae disease, although their efficacies were lower than that with thiophanate-methyl 80% WP at 2 g L⁻¹ [68]. Bakanae disease incidence was significantly reduced by the application of Trichoderma sp. strains selected by Ng et al. [72].
The antagonistic yeasts Metschnikowia pulcherrima, Pichia guilliermondii, and Sporidiobolus pararoseus decreased bakanae disease severity under greenhouse conditions [70]. M. pulcherrima strain R23 or P. guilliermondii strain R9 reduced the disease index less than 5% by combinational use with rice seed thermotherapy at 60 °C for 10 min [70]. Penicillium chrysogenum, Penicillium thomii, and Stachybotrys atra were reported to be antagonistic to F. moniliforme [73]. Furthermore, endophytic fungi Chaetomium globosum strains NR-R688 and NR-SH321, Penicillium sp. strain NR-L243, and Fusarium sp. strain NR-L645 reduced bakanae disease incidence to 2–6% [74]. Recently, a non-pathogenic Fusarium commune strain W5 was reported as an effective biocontrol agent for bakanae disease [75]. Hyphal extension of F. fujikuroi was inhibited on/in rice seedlings and flowers by spray application of strain W5, which survived on/in rice seeds for at least 6 months [75].

Table 2: Biocontrol agents for rice bakanae disease

Species	Reference
Bacterial agent	
Bacillus cereus	[66]
Bacillus circulans	[68]
Bacillus megaterium	[67]
Bacillus oryzaicola	[69]
Bacillus subtilis (strain QST 713: Serenade) a)	[64]
Paenibacillus polymyxa	[65]
Pseudomonas fluorescens	[64]
Metschnikowia pulcherrima b)	[70]
Pichia guilliermondii b)	[70]
Sporidiobolus pararoseus	[70]
Chaetomium globosum	[74]
Fusarium commune	[75]
Fusarium sp. (strain NR-L645)	[74]
Fungal agent	
Penicillium chrysogenum	[73]
Penicillium thomii	[73]
Penicillium sp. (strain NR-L243)	[74]
Stachybotrys atrata	[73]
Trichoderma asperellum (strain SKT-1: Eco-hope) a)	[71]
Trichoderma harzianum	[68]
Trichoderma virens	[68]

a) The strain and its brand name are indicated in brackets.

b) The agent was tested by alone or combinational use with thermotherapy of rice seeds at 60°C for 10 min.

5. Natural products

Extracts from microbes and plants are also potential substances for disease control. It has been found that surfactin A extracted from *Bacillus* sp. reduced the biomass of *F. moniliforme* to 16% at 2000 μg mL⁻¹ [76]. In addition, crude protein extracts from *Paenibacillus polymyxa* inhibited mycelial growth and spore germination of *F. moniliforme* [65]. Distortion and tumescence of germinated spores were observed following treatment with the crude protein extract [65]. Extracts of *Eucalyptus globulus*, *Artemisia judaica*, *Ammi visnaga*, and *Coriandrum sativum* decreased the growth of *F. fujikuroi* [77]. Baruah et al. [78] demonstrated that essential oils of *Eucalyptus citriodora*, *Cinnamomum tamala*, *Mentha piperita*, and *Cymbopogon martini* var. *motia* were effective at inhibiting the growth of *F. moniliforme*, among which the oil of *C. martini* var. *motia* had the highest antifungal activity. Control methods
are generally conducted before the disease occurrence. However, in case of silica nanoparticles produced from rice husk, foliar application after the appearance of *bakanae* symptoms significantly reduced disease incidence [79].

6. Physical control

6.1 Seed treatments

Use of clean (non-infected) rice seeds is especially important to prevent *bakanae* disease as *bakanae* is a seed borne disease. The hot water immersion method has been used for seed disinfection; immersion of infected seeds in hot water at 58 °C or 60 °C for 10 to 20 min showed a similar disinfection efficacy to the conventional chemical treatment [80]. However, it is known that successful disinfection by hot water requires precise control of water temperature. Healthy rice seeds can be selected using salt water [81]. Hot water immersion and seed selection with salt water allow reductions in the use of chemical fungicides, although it may be difficult to achieve complete elimination of infected seeds with these methods. Recently, Ochi et al. [82] demonstrated that irradiation with atmospheric plasma was effective for rice seed disinfection. *Bakanae* disease severity index of infected seeds with irradiation was decreased to 18.1% compared with that of non-irradiation control.

6.2 Agronomic practices

Conventional agronomic practices are environmentally-friendly methods. Agronomic practices, such as the use of organic fertilizer, crop rotation, reasonable cultivation practices can help to control of *bakanae* disease. Burning the infected plants and crop residues can reduce the infection source [83]. A support vector machine classifier was developed to distinguish the healthy and infected seedlings to avoid *bakanae* disease [84]. Bagga et al. [85] reported that late planting of rice seedlings minimized the incidence of *bakanae* disease. In Australia, rotating rice cultivation with pasture grass and postponing the sowing date from December to late January are recommended to avoid *bakanae* disease in early maturing varieties [86].

7. Overview

Bakanae is a major rice disease widely distributed across the world. Considerable progress has been made in the research on management of this disease in the past. Various resistant genotypes in the host have been screened and some agronomic practices were proposed to control *bakanae* disease. However, satisfactory resistant cultivars are rare and agronomic practices are only partly successful, largely because they are highly dependent on environmental conditions. Seed treatment with fungicides is an effective method to control *bakanae* disease, although continuous use of the same fungicide raises the risk of developing resistant *F. fujikuroi* strains. Biological control is a sustainable method to control *bakanae* disease. However, it is generally inefficient compared to fungicide control. In addition, the efficacy of biological control might be unstable, because most agents are living microorganisms which are more sensitive to environmental conditions such as soil, humidity, temperature, and so on. Although various effective biocontrol agents were found under greenhouse or *in vitro* tests so far, agents effective under field conditions are rare. In addition, the phytotoxicity of chemical compounds and the environmental safety of application of biocontrol agents need to be considered before starting use. Research on the elucidation of molecular mechanisms of disease resistance in rice plant and pathogenesis of *F. fujikuroi* can contribute to develop *bakanae* control method. Recently, RNA interference was demonstrated as a potential control method for barley scab (*Hordeum vulgare*), caused by *Fusarium graminearum* [87]. However, more efficient and sustainable control would probably be difficult to attain with a single control method, and therefore, integrated disease management based on various studies is important for control of *bakanae* disease.
REFERENCES

[1] Sun SK and Snyder WC (1981) The bakanae disease of rice plant. In: Fusarium Disease, Biology, and Taxonomy (Nelson PE, Toussoun TA and Cook RJ, ed.). pp. 104–113. The Pennsylvania State University Press.

[2] Hori S (1898) Researches on bakanae disease of the rice plant. Nojishikenjyo Senseki, 12: 110–119. (In Japanese)

[3] Matic S, Gullino ML and Spadaro D (2017) The puzzle of bakanae disease through interactions between Fusarium fujikuroi and rice. Front. Biosci., 9(2): 333–344.

[4] Karov I, Mitrev S and Arsov E (2009) Gibberella fujikuroi (Wollenweber) the new parasitical fungus on rice in the Republic of Macedonia. Proc. Nat. Sci. Matica Srpska Novi Sad, 116: 175–182.

[5] Jeon YA, Yu SH, Lee YY, Park HJ, Lee S, Sung JS, Kim YG and Lee HS (2013) Incidence, molecular characteristics and pathogenicity of Gibberella fujikuroi species complex associated with rice seeds from Asian countries. Mycobiology, 41(4): 225–233.

[6] Carter LL, Leslie JF and Webster RK (2008) Population structure of Fusarium fujikuroi from California rice and water grass. Phytopathology, 98(9): 992–998.

[7] Gupta AK, Solanki IS, Bashyal BM, Singh Y and Srivastava K (2015) Bakanae of rice – an emerging disease in Asia. J. Anim. Plant Sci., 25(6): 1499–1514.

[8] Ou, S. H. (1985) Rice disease. pp.380. Commonwealth Mycological Institute, Kew, UK.

[9] Aoki T, O’Donnell K and Geiser DM (2014) Systematics of key phytopathogenic Fusarium species: current status and future challenges. J. Gen. Plant Pathol., 80: 189–201.

[10] Kvas M, Marasas WFO, Wingfield BD, Wingfield MJ and Steenkamp ET (2009) Diversity and evolution of Fusarium species in the Gibberella fujikuroi complex. Fungal Divers., 34: 1–21.

[11] O’Donnell K, Cigelnik E and Nirenberg HI (1998) Molecular systematics and phylogeography of the Gibberella fujikuroi species complex. Mycologia, 90(3): 465–493.

[12] Lima CS, Pfenning LH, Costa SS, Abreu LM and Leslie JF (2012) Fusarium tufiense sp. nov., a member of the Gibberella fujikuroi complex that causes mango malformation in Brazil. Mycologia, 104(6): 1408–1419.

[13] Ito S and Shimada S (1931) On the nature of the growth promoting substance excreted by the “bakanae” fungus. Jpn. J. Phytopathol., 2(4): 322–338.

[14] Niehaus E-M, Munsterkotter M, Proctor RH, Brown DW, Sharon A, Idan Y, Oren-Young L, Sieber CM, Novak O, Pencik A, Tarkowska D, Kristyna H, Freeman S, Maymon M, Elazar M, Youssef SA, El-Shabrawy ESM, Shalaby ABA, Houterman P, Brock NL, Burkhardt I, Tsavkelova EA, Dickshat JS, Galuszka P, Goulden U and Tuzdyski B (2016) Comparative “Oomics” of the Fusarium fujikuroi species complex highlights differences in genetic potential and metabolite synthesis. Genome Biol. Evol., 8(11): 3574–3599.

[15] Cerdá-Olmedo E, Fernández-Martin R and Ávalos J (1994) Genetics and gibberellin production in Gibberella fujikuroi. Anton. Leeuw. Int. J. G., 65: 217–225.

[16] Abbas HK, Tanaka T, Duke SO, Porter JK, Wray EM, Hodges L, Sessions AE, Wang E, Merrill AH and Riley RT (1994) Fumonisin-and AAL-toxin-induced disruption of sphingolipid metabolism with accumulation of free sphingoid bases. Plant Physiol., 106(3): 1085–1093.

[17] Barrero AF, Sánchez JF, Oltra JE, Tamayo N, Cerdá-Olmedo E, Candau R and Ávalos J (1991) Fusaric acid and 8Z-fusaric acid from Gibberella fujikuroi. Phytochemistry, 30(7): 2259–2263.

[18] Bacon CW, Porter JK, Norred WP and Leslie JF (1996) Production of fusicuric acid by Fusarium species. Appl. Environ. Microbiol., 62(11): 4039–4043.

[19] Rabie CJ, Marasas WFO, Thiel PG, Lubben A and Vleggaar R (1982) Moniliformin production and toxicity of different Fusarium species from southern Africa. Appl. Environ. Microbiol., 43(3): 517–521.

[20] Logrieco A, Moretti A, Castella G, Kostecki M, Golinski P, Rittien A and Chelkowski J (1998) Beauvericin production by Fusarium species. Appl. Environ. Microbiol., 64(8): 3084–3088.

[21] Morgavi DP and Riley RT (2007) An historical overview of field disease outbreaks known or suspected to be caused by consumption of feeds contaminated with Fusarium toxins. Anim. Feed Sci. Technol., 137(3–4): 201–212.

[22] Suga H, Arai M, Fukasawa E, Motohashi K, Nakagawa H, Tateishi H, Fuji S, Shimizu M, Kageyama K and Hyakumachi M (2019) Genetic differentiation associated with fumonisin and gibberellin production in Japanese Fusarium fujikuroi. Appl. Environ. Microbiol., 85(1): e02414–18.
[23] Niehaus E-M, Kim H-K, Münsterkötter M, Janevska S, Arndt B, Kalinina SA, Houterman PA, Ahn II-P, Alberti I, Tonti S, Kim D-W, Sieber CMK, Humph H-U, Yun S-H, Gülde U and Tudzynski B (2017) Comparative genomics of geographically distant Fusarium fujikuroi isolates revealed two distinct pathotypes correlating with secondary metabolite profiles. PLoS Pathog., 13(10): e1006670.

[24] Tateishi H, Miyake T and Suga H (2019) Polymorphism and expression level of CYP51 (cytochrome P450) and sensitivity to ipconazole in Fusarium fujikuroi isolates. J. Pestic. Sci., 44(1): 25–32.

[25] Khan JA, Jamil FF and Gill MA (2000) Screening of rice varieties/lines against bakanae and bacterial leaf blight (BLB). Pak. J. Phytopathol., 12(1): 6–11.

[26] Iqbal M, Javed N, Sahi ST and Cheema NM (2011) Genetic management of bakanae disease of rice and evaluation of various fungicides against Fusarium moniliforme in vitro. Pakistan J. Phytopathol., 23(2): 103–107.

[27] Hur YJ, Lee SB, Shin DJ, Kim TH, Cho JH, Han S, Oh SH, Lee JY, Son YB, Lee JH, Kwon TM, Park KB, Kim SY, Song YC, Nam MH, Kwon YU and Park DS (2016) Screening of rice germplasm for bakanae disease resistance in rice. Korean J. Breed. Sci., 48(1): 22–28.

[28] Matic S, Bagnarelli P, Biselli C, Ortu’ L, Amaral Carneiro G, Siciliano L, Valè G, Gullino Lodovica M and Siciliano I (2016) Comparative transcriptome profiling of resistant and susceptible rice genotypes in response to the seedborne pathogen Fusarium fujikuroi. BMC Genomics, 17: 608.

[29] Yang CD, Guo LB, Li XM, Ji ZJ, Ma LY and Qian Q (2006) Analysis of QTLs for resistance to rice bakanae disease. Chin. J. Rice Sci., 6: 657–659. (In Chinese)

[30] Ji H, Kim TH, Lee GS, Kang HJ, Lee SB, Suh SC, Kim SL, Choi I, Baek J, and Kim KH (2018) Mapping of a major quantitative trait locus for bakanae disease resistance in rice by genome resequencing. Mol. Genet. Cenom., 293(9): 579–586.

[31] Volante A, Tondelli A, Aragona M, Valente MT, Biselli C, Desiderio F, Bagnarelli P, Matic S, Gullino ML, Infantino A, Spadaro D, and Valè G (2017) Identification of bakanae disease resistance loci in japonica rice through genome wide association study. Rice, 10: 29.

[32] Hur YJ, Lee SB, Kim TH, Kwon T, Lee JH, Shin DJ, Park SK, Hwang UH, Cho JH, Yoon YN, Yeo US, Song YC, Kwak DY, Nam MH and Park DS (2015) Mapping of qBK1, a major QTL for bakanae disease resistance in rice. Mol. Breeding, 35(2): 78.

[33] Fiyaz RA, Yadav AK, Krishnan SG, Ellur RK, Ashnil BK, Grover N, Bhowmik PK, Nagarajan M, Vinod KK, Prabhuh KV and Singheh AK (2016) Mapping quantitative trait loci responsible for resistance to bakanae disease in rice. Rice, 9: 45.

[34] Lee SB, Hur YJ, Cho JH, Lee JH, Kim TH, Cho SM, Song YC, Seo YS, Lee J, Kim TS, Park YJ, Oh MK and Park DS (2018) Molecular mapping of qBK1^{WPL}, a major QTL for bakanae disease resistance in rice. Rice, 11: 3.

[35] Lee SB, Kim N, Jo S, Hur YJ, Lee JY, Cho JH, Lee JH, Kang JW, Song YC, Bombay M, Kim SR, Lee J, Seo YS, Ko JM and Park DS (2021) Mapping of a major QTL, qBK^{K1}, for bakanae disease resistance in rice. Plants, 10(3): 434.

[36] Lee SB, Hur YJ, Lee JY, Cho JH, Park NB, Shin DJ, Lee JH, Sohn YB, Han SI, Oh SH, Song YC and Park DS (2020) Development of ‘MY299BK’, a cultivar resistant to bakanae disease harboring qBK1 gene derived from a ‘Tong-li’ type rice ‘Shingwang’. Korean J. Breed. Sci., 52(2): 172–178.

[37] Ogawa K and Takeda S (1988) Occurrence of benomyl resistant strains of bakanae disease fungus of rice Gibberella fujikuroi and its control methods. Bull. Iwate-ken Agric. Exp. Stn., 27: 52–67. (In Japanese)

[38] Davidsen LC (1986) Benizimidazole fungicides: mechanism of action and biological impact. Ann. Rev. Phytopathol., 24: 43–65.

[39] Latif MA, Uddin MB, Rashid MM, Hossain M, Akter S, Jahan QSA, Hossain MS, Ali MA and Hossain MA (2021) Rice bakanae disease: yield loss and management issues in Bangladesh. Food Sci. Technol., 9(1): 7–16.

[40] Sasaki T (1989) Epidemiology and control of rice bakanae disease. J. Agric. Sci., 42(12): 543–548. (In Japanese)

[41] Iqbal M, Javed N, Yasin SL, Sahi ST and Wakil W (2013) Studies on chemical control of bakanae disease (Fusarium moniliforme) of rice in Pakistan. Pak. J. Phytopathol., 25(2): 146–154.

[42] Yan K and Dickman MB (1996). Isolation of a beta-tubulin gene from Fusarium moniliforme that confers cold-sensitive benomyl resistance. Appl. Environ. Microbiol., 62(8): 3053–3056.

[43] Chen Z., Gao T, Liang SP, Liu KX, Zhou MG and Chen CJ (2014) Molecular mechanism of resistance to DMIs fungicide prochloraz in Fusarium fujikuroi. Pest Manag. Sci., 77(2): 824–833.
[45] Hossain KS, Mia M and Bashar MA (2015) Management of bakanae disease of rice. Bangladesh J. Bot., 44(2): 277–283.

[46] Tateishi H and Chida T (2000) Sensitivity of *Fusarium moniliforme* isolates to ipconazole. J. Gen. Plant Pathol., 66: 353–359.

[47] Li MX, Li T, Duan YB, Yang Y, Wu J, Zhao DL, Xiao XM, Pan XY, Chen WW, Wang JX, Chen CJ and Zhou MG (2018) Evaluation of phenamacril and ipconazole for control of rice bakanae disease caused by *Fusarium fujikuroi*. Plant Dis., 102(7): 1234–1239.

[48] Bagga PS and Sharma VK (2006) Evaluation of fungicides as seedling treatment for controlling bakanae/food-rot (*Fusarium moniliforme*) disease in basmati rice. J. Mycol. Pl. Pathol., 59(3): 305–308.

[49] Park WS, Choi HW, Han SS, Shin DB, Shim HK, Lee SW, Lim CK and Lee YH (2009) Control of bakanae disease of rice by seed soaking into the mixed solution of prochloraz and fluudioxonil. Res. Plant Dis., 15(2): 94–100. (In Korean with English abstract)

[50] Suzuki M, Hamamura H and Iwamori M (1994) Relationship between formulations of triflumizole and their efficacy to bakanae disease in rice seed treatment. J. Pest. Sci., 19(4): 251–256.

[51] Wada T, Kuzuma S and Takenaka M (1990) Sensitivity of *Fusarium moniliforme* isolates to pefurazoate. Ann. Phytopath. Soc. Japan, 56(4): 449–456.

[52] Ilyas MB and Ifitkhar K (1997) Screening of rice germplasm and fungitoxicants against bakanae disease of rice. Pak. J. Phytopathol., 9(1): 67–73.

[53] Kim SH, Park MR, Kim YC, Lee SW, Choi BR, Lee SW and Kim IS (2010) Degradation of prochloraz by rice bakanae disease pathogen *Fusarium fujikuroi* with differing sensitivity: a possible explanation for resistance mechanism. J. Korean Soc. Appl. Biol. Chem., 53(4): 433–439.

[54] Yang YR, Kim YC, Lee SW, Lee SW, An GG and Kim IS (2012) Involvement of an efflux transporter in prochloraz resistance of *Fusarium fujikuroi* CF245 causing rice bakanae disease. J. Korean Soc. Appl. Biol. Chem., 55: 571–574.

[55] Yang YR, Lee SW, Lee SW and Kim IS (2012) Morphological changes of fungal cell wall and ABC transporter as resistance responses of rice bakanae disease pathogen *Fusarium fujikuroi* CF337 to prochloraz. Korean J. Environ. Agric., 31(1): 30–36.

[56] Choi Y, Jung B, Li T and Lee J (2017) Identification of genes related to fungicide resistance in *Fusarium fujikuroi*. Microbiol., 45(2): 101–104.

[57] Wollenberg RD, Taft MH, Giese S, Giese H and Manstein DJ (2019) Phenamacril is a reversible and noncompetitive inhibitor of *Fusarium* class I myosin. J. Biol. Chem., 294(2): 1328–1337.

[58] Hou YP, Qu XP, Mao XW, Kuang J, Duan YB, Song XS, Wang JX, Chen CJ and Zhou MG (2018) Resistance mechanism of *Fusarium fujikuroi* to phenamacril in the field. Pest Manag. Sci., 74(3): 607–616.

[59] Wu JY, Sun YN, Zhou XJ, and Zhang CQ (2020) A new mutation genotype of K218T in myosin-5 confers resistance to phenamacril in rice bakanae disease in field. Plant Dis., 104(4): 1151–1157.

[60] Qu XP, Li JS, Wang JX, Wu LY, Wang YF, Chen CJ, Zhou MG and Hou YP (2018) Effects of the dinitroaniline fungicide fluazinam on *Fusarium fujikuroi* and rice. Pestic. Biochem. Phys., 152(12): 98–105.

[61] Bai Y, Gu CY, Pan R, Abid M, Zang HY, Yang X, Tan G and Chen Y (2021) Activity of a novel succinate dehydrogenase inhibitor fungicide pydiflumetofen against *Fusarium fujikuroi* causing rice bakanae disease. Plant Dis., In press (https://doi.org/10.1094/PDIS-10-20-2274-RE.)

[62] Kim SW, Park JK, Lee CH, Hahn BS and Koo JC (2016) Comparison of the antimicrobial properties of chitosan oligosaccharides (COS) and EDTA against *Fusarium fujikuroi* causing rise bakanae disease. Curr. Microbiol., 72(4): 496–502.

[63] Hossain MS, Ali MA, Mollah M, Khan MAI and Sajadul Islam AKM (2015) Evaluation of fungicides for the control of bakanae disease of rice caused by *Fusarium moniliforme* (Sheldom). Bangladesh Rice J., 19(1): 49–55.

[64] Kumar MN, Laha GS and Reddy CS (2007) Role of antagonistic bacteria in suppression of bakanae disease of rice caused by *Fusarium moniliforme* Sheld. Pestic. Sci., 72(3): 467–472.

[65] Zhang SM, Sha CQ, Zhao XY, Wang YX, Zhang XC, Li J, Meng LQ and Yu DS (2010). Identification of an endophytic *Paenibacillus polymyxa* strain producing antifungal protein and the inhibition to *Fusarium moniliforme* causing rice bakanae disease. China Biotechnol., 30(2): 84–88.

[66] Kazempour MN and Elahinia SA (2007) Biological control of *Fusarium fujikuroi*, the causal agent of bakanae disease by rice associated antagonistic bacteria. Bulg. J. Agric. Sci., 13(4): 393–408.

[67] Luo J, Guan L, Bin L, Luo Y, Li HZ, Xiao W, Bo L and Wen L (2005) Gram positive bacteria associated with rice in China and their antagonists against the pathogens of sheath blight and bakanae disease in rice. Rice Sci., 12(3): 213–218.
[68] Dehkaei FP, Jajaei SM and Rouhani H (2004) Effects of paddy soil antagonistic microorganisms of Guilan on the causal agent of rice bakanae disease. J. Sci. Technol. Agric., 8(1): 213–22.

[69] Hossain MT, Khan A, Chung EJ, Rashid MH and Chung YR (2016) Biological control of rice bakanae by an endophytic Bacillus oryzicola YC7007. Plant Pathol. J., 32(3): 228–241.

[70] Matić S, Spadaro D, Garibaldi A and Gullino ML (2014) Antagonistic yeasts and thermotherapy as seed treatments to control Fusarium fujikuroi on rice. Biol. Control., 73(6): 59–67.

[71] Watanabe S, Kumakura K, Izawa N, Nagayama K, Mitachi T, Kanamori M, Teraoka T and Arie T (2007) Mode of action of Trichoderma asperellum SKT-1, a biocontrol agent against Gibberella fujikuroi. J. Pestic. Sci., 32(3): 222–228.

[72] Ramesh NK, Naeimi S, Rezaee S and Berdi Fotouhifar KH (2020) Biological control of rice bakanae disease caused Fusarium fujikuroi using some endophytic fungi. Appl. Entomol. Phytopathol., 87(2): 281–296.

[73] Mangiarolti A, Frate GD, Picco AM and Caretta G (1987) Antagonistic activity “in vitro” of some saprophytic fungi occurring on the phylloplane of rice, wheat and maize. Boletín Mycológico, 3(3): 183–189.

[74] Hayasaka T, Ishiguro K, Shinutani K and Namai T (2001) Seed disinfection using hot water immersion to control several seed-borne diseases of rice plants. JPN. J. Phytopathol., 67(1): 26–32.

[75] Ochi A, Konishi H, Ando S, Sato K, Yokoyama K, Taka T, Shino T, Yoshida S, Morikawa T, Kaneko T and Takahashi H (2016) Management of bakanae and bacterial seedling blight diseases in nurseries by irradiating rice seeds with atmospheric plasma. Appl. Environ. Microbiol., 87(2): e01959–20.

[76] Bagga PS, Sharma VK and Pannu PPS (2007) Effect of transplanting dates and chemical seed treatments on foot rot disease of basmati rice caused by Fusarium moniliforme. J. Essent. Oil Res., 8(4): 411–412.

[77] Cother E and Lanoiselet V (2002) Crop nutrition. In: Production of quality rice in South-Eastern Australia (Keaky LM and Clampett WS ed.). p.10. Kingston, ACT, Australia.

[78] Ochiai H, Ambrose C, Taka T, Sato K, Taka T, Kaneko T and Takahashi H (2016) Management of bakanae and bacterial seedling blight diseases in nurseries by irradiating rice seeds with atmospheric plasma. Plant Pathol., 66 (1): 67–76.

[79] Burgess LW, Backhouse D, Swan LJ and Esdaile RJ (1996) Control of Fusarium crown rot of wheat by late stubble burning and rotation with sorghum. Aust. Pl. Pathol., 25: 229–233.