UNIMODAL SEQUENCES SHOW LAMBERT W IS BERNSTEIN

G. A. KALUGIN AND D. J. JEFFREY

Abstract. We consider a sequence of polynomials appearing in expressions for the derivatives of the Lambert W function. The coefficients of each polynomial are shown to form a positive sequence that is log-concave and unimodal. This property implies that the positive real branch of the Lambert W function is a Bernstein function.

1. Introduction

The Lambert W function was defined and studied in [5]. It is a multivalued function having branches $W_k(z)$, each of which obeys $W_k \exp(W_k) = z$. The principal branch W_0 maps the set of positive reals to itself, and is the only branch considered here. Therefore we omit the subscript 0 for brevity. The nth derivative of W is given implicitly by

$$
\frac{d^nW(x)}{dx^n} = \frac{\exp(-nW(x))p_n(W(x))}{(1 + W(x))^{2n-1}} \quad \text{for } n \geq 1,
$$

where the polynomials $p_n(w)$ satisfy $p_1(w) = 1$, and the recurrence relation

$$
p_{n+1}(w) = -(nw + 3n - 1)p_n(w) + (1 + w)p'_n(w) \quad \text{for } n \geq 1.
$$

In [6], the first 5 polynomials were printed explicitly:

$$
p_1(w) = 1, \quad p_2(w) = -2 - w, \quad p_3(w) = 9 + 8w + 2w^2, \quad p_4(w) = -64 - 79w - 36w^2 - 6w^3, \quad p_5(w) = 625 + 974w + 622w^2 + 192w^3 + 24w^4.
$$

These initial cases suggest the conjecture that each polynomial $(-1)^{n-1}p_n(w)$ has all positive coefficients, and if this is true, then $dW(x)/dx$ is a completely monotonic function [11]. We here prove the conjecture and prove in addition that the coefficients are unimodal and log-concave.

2. Formulae for the coefficients

In view of the conjecture, we write

$$
p_n(w) = (-1)^{n-1} \sum_{k=0}^{n-1} \beta_{n,k}w^k.
$$

We now give several theorems regarding the coefficients.

1991 Mathematics Subject Classification. Primary 11B83, Secondary 33E99.

Key words and phrases. unimodal sequence, Bernstein function, completely monotonic function.
Theorem 2.1. The coefficients $\beta_{n,k}$ defined in (2.1) obey the recurrence relations

\begin{align}
\beta_{n,0} &= n^{n-1}, \quad \beta_{n,1} = 3n^n - (n + 1)^n - n^{n-1} , \\
\beta_{n,n-1} &= (n - 1)! , \quad \beta_{n,n-2} = (2n - 2)(n - 1)! , \\
\beta_{n+1,k} &= (3n - k - 1)\beta_{n,k} + n\beta_{n,k-1} - (k + 1)\beta_{n,k+1} , \quad 2 \leq k \leq n - 3 .
\end{align}

Proof. By substituting (2.1) into (1.2) and equating coefficients. \hfill \Box

Theorem 2.2. An explicit expression for the coefficients $\beta_{n,k}$ is

\begin{equation}
\beta_{n,k} = \sum_{m=0}^{k} \frac{1}{m!} \binom{2n - 1}{k - m} \sum_{q=0}^{m} \binom{m}{q} (-1)^q (q + n)^{m+n-1} .
\end{equation}

Proof. We rewrite (1.1) in the form

\begin{equation}
p_n(W(x)) = (1 + W(x))^{2n-1} e^{nW(x)} \frac{d^n W(x)}{dx^n} .
\end{equation}

From the Taylor series of $W(x)$ around $x = 0$, given in [5], we obtain

\begin{equation}
\frac{d^n W(x)}{dx^n} = \sum_{m=0}^{\infty} \frac{(-m)^{m-1}}{(m-n)!} x^{m-n} .
\end{equation}

Substituting this into the expression of p_n, using $x = We^W$ and changing the index of summation, we obtain the equation

\begin{equation}
p_n(w) = (1 + w)^{2n-1} \sum_{s=0}^{\infty} (-1)^{n+s-1} (n+s)^{n+s-1} \frac{w^s}{s!} e^{(n+s)w} .
\end{equation}

We expand the right side around $w = 0$ and equate coefficients of w. \hfill \Box

Remark 2.3. The polynomials $p_n(w)$ can be expressed in terms of the diagonal Poisson transform $D_n[f_s; z]$ defined in [10], namely, by (2.6)

\begin{equation}
p_n(w) = (-1)^{n-1} (1 + w)^{2(n-1)} D_n[(n+s)^{n-1}; -w] .
\end{equation}

Theorem 2.4. The coefficients can equivalently be expressed either in terms of shifted r-Stirling numbers of the second kind $\{n+r\}_{m+r}$ defined in [3],

\begin{equation}
\beta_{n,k} = \sum_{m=0}^{k} (-1)^m \binom{2n - 1}{k - m} \binom{2n - 1 + m}{n + m} ,
\end{equation}

or in terms of Bernoulli polynomials of higher order $B_n^{(z)}(\lambda)$ defined in [9],

\begin{equation}
\beta_{n,k} = \sum_{m=0}^{k} (-1)^m \binom{2n - 1}{k - m} \binom{m + n - 1}{n - 1} B_n^{(-m)}(n) ,
\end{equation}

or in terms of the forward difference operator Δ [7] p. 188,

\begin{equation}
\beta_{n,k} = \sum_{m=0}^{k} \binom{2n - 1}{k - m} \frac{(-1)^m}{m!} \Delta^m n^{m+n-1} .
\end{equation}
Proof. We convert (2.5) using identities found in [3] and [8] respectively.

\[
\binom{n+r}{m+r} = \frac{1}{m!} \sum_{q=0}^{m} (-1)^{m-q} \binom{m}{q} (q+r)^n
\]

and

\[
B_{n}^{(-m)}(r) = \frac{n!}{(m+n)!} \sum_{q=0}^{m} (-1)^{m-q} \binom{m}{q} (q+r)^{m+n}.
\]

\[\square\]

3. Properties of the coefficients

We now give theorems regarding the properties of the \(\beta_{n,k}\). We recall the following definitions [12]. A sequence \(c_0, c_1, \ldots, c_n\) of real numbers is said to be unimodal if for some \(0 \leq j \leq n\) we have \(c_0 \leq c_1 \leq \cdots \leq c_j \geq c_{j+1} \geq \cdots \geq c_n\), and it is said to be logarithmically concave (or log-concave for short) if \(c_{k-1}c_{k+1} \leq c_k^2\) for all \(1 \leq k \leq n-1\). We prove that for each fixed \(n\), the \(\beta_{n,k}\) are unimodal and log-concave with respect to \(k\). Since a log-concave sequence of positive terms is unimodal [15], it is convenient to start with the log-concavity property.

Theorem 3.1. For fixed \(n \geq 3\) the sequence \(\{k!\beta_{n,k}\}_{k=n}^{n-1}\) is log-concave.

Proof. Using (2.5) we can write

\[
k!\beta_{n,k} = (2n-1)! \sum_{m=0}^{k} \binom{k}{m} x_m y_{k-m},
\]

where

\[
x_m = \sum_{j=0}^{m} \binom{m}{j} a_j, \quad a_j = (-1)^j (n+j)^{m+n-1},
\]

and \(y_m = 1/(2n-1-m)!\). Since the binomial convolution preserves the log-concavity property [13 14], it is sufficient to show that the sequences \(\{x_m\}\) and \(\{y_m\}\) are log-concave. We have

\[
a_{j-1}a_{j+1} = (-1)^{j-1}(n+j-1)^{m+n-1}a_j + (-1)^{j+1}(n+j)^{m+n-1}a_j
\]

\[
= (-1)^{2j}(n+j)^2 - 1 < (-1)^{2j}(n+j)^2(m+n-1) = a_j^2.
\]

Thus the sequence \(\{a_j\}\) is log-concave and so is \(\{x_m\}\) due to (3.1) and the aforementioned property of the binomial convolution. The sequence \(\{y_m\}\) is log-concave because

\[
y_{m-1}y_{m+1} = \frac{1}{(2n-1-m)!} \frac{1}{(2n-1-m-1)!} - \frac{1}{2n-1-m} \frac{1}{(2n-1-m)!} \frac{1}{(2n-1-m)!} < y_m^2.
\]

\[\square\]

Now we prove that the coefficients \(\beta_{n,k}\) are positive. The following two lemmas are useful.

Lemma 3.2. If a positive sequence \(\{k!c_k\}_{k=0}^{\infty}\) is log-concave, then

(i) \(\{(k+1)c_{k+1}/c_k\}\) is non-increasing;
(ii) \(\{ c_k \} \) is log-concave;
(iii) the terms \(c_k \) satisfy

\[
c_k c_m \geq \binom{k + m}{k} c_0 c_{k+m} \quad (0 \leq m \leq k+1).
\]

Proof. The statements (i) and (ii) are obvious. To prove (iii) we apply a method used in \[1\]. Specifically, by (i) we have for \(0 \leq p \leq k \)

\[
\frac{c_{p+1}}{c_p} \geq \frac{k + p + 1}{p + 1} \frac{c_{k+p+1}}{c_{k}}.
\]

Apply the last inequality for \(p = 0, 1, 2, \ldots, m \) with \(m \leq k+1 \), and form the products of all left-hand and right-hand sides. As a result, after the cancellation we obtain

\[
c_m \geq \frac{k + 1 + 2}{1} \frac{k + m}{2} \frac{c_k}{c_0} \frac{\cdots}{m} \frac{c_{k+m}}{c_k},
\]

which is equivalent to (3.2).

Lemma 3.3. If the coefficients \(\beta_{n,k} \) are positive, then for fixed \(n \geq 3 \) they satisfy

\[
\frac{(k+1)\beta_{n,k+1}}{\beta_{n,k}} < n-1.
\]

Proof. By Theorem 3.1 and under the assumption of lemma, for fixed \(n \geq 3 \) the sequence \(\{ k!\beta_{n,k} \}_{k=0}^{n-1} \) meet the conditions of Lemma 3.2. Applying the inequality (3.2) with \(m = 1 \) to this sequence gives \((k+1)\beta_{n,k+1}/\beta_{n,k} \leq \beta_{n,1}/\beta_{n,0} \). Then the lemma follows as due to (2.2)

\[
\beta_{n,1} = 3n - (n + 1)^n - n^{n-1} = 3n - n \left(1 + \frac{1}{n} \right)^n - 1 < 3n - 2n - 1 = n - 1.
\]

Theorem 3.4. The coefficients \(\beta_{n,k} \) are positive.

Proof. We prove the statement by induction on \(n \). It is true for \(n \leq 5 \) (see §1). Assume that for some fixed \(n \) all the members of the sequence \(\{ \beta_{n,k} \}_{k=0}^{n-1} \) are positive. Since \(\beta_{n+1,0} = (n+1)^n > 0 \) and \(\beta_{n+1,n} = n! > 0 \) by (2.2) and (2.3), we only need to consider \(k = 1, 2, \ldots, n-1 \).

Substituting inequalities \(\beta_{n,k+1} < (n-1)\beta_{n,k}/(k+1) \) and \(\beta_{n,k-1} > k\beta_{n,k}/(n-1) \), which follow from (3.3), in the recurrence (2.4) immediately gives the result

\[
\beta_{n,k} > \frac{3n-k-1}{n-1} \beta_{n,k} + n \frac{k}{n-1} \beta_{n,k-1} = \left(2n + \frac{k}{n-1} \right) \beta_{n,k} > 0.
\]

Thus the proof by induction is complete.

Corollary 3.5. The sequence \(\{ \beta_{n,k} \}_{k=0}^{n-1} \) is unimodal for \(n \geq 3 \).

Proof. By Theorem 3.4 the sequence \(\{ \beta_{n,k} \}_{k=0}^{n-1} \) is positive, therefore by Theorem 3.1 and Lemma 3.2(i) it is log-concave and, hence, unimodal.
4. Relation to Carlitz’s numbers

There is a relation between the coefficients $\beta_{n,k}$ and numbers $B(\kappa, j, \lambda)$ introduced by Carlitz in [3]. Comparing the formulae (2.8) and (2.9) with the corresponding [4] eq.(6.3) and [4] eq.(2.9), taking into account that he uses the notation $R(n, m, r) = \binom{n+r}{m+r}$, we find

$$\beta_{n,k} = (-1)^k B(n-1, n-1-k, n).$$

(4.1)

It follows that for $n \geq 3$, the sequence $\{B(n-1, k, n)\}_{k=0}^{n-1}$ is log-concave together with $\{\beta_{n,k}\}_{k=0}^{n-1}$.

Using the property [4] eq.(2.7) that $\sum_{j=0}^{n} B(\kappa, j, \lambda) = (2\kappa-1)!!$, we can compute $p_n(w)$ at the singular point where $W = -1$ (cf. (1.1)). Thus, substituting $w = -1$ in (2.4) gives $p_n(-1) = (2^{-n+1}(2n-3))!$. Thus $w = -1$ is not a zero of $p_n(w)$.

We also note that the numbers $B(\kappa, j, \lambda)$ are polynomials of λ and satisfy a three-term recurrence [4] eq. (2.4)]

$$B(\kappa, j, \lambda) = (\kappa + j - \lambda)B(\kappa - 1, j, \lambda) + (\kappa - j + \lambda)B(\kappa - 1, j - 1, \lambda)$$

(4.2)

with $B(\kappa, 0, \lambda) = (1 - \lambda)^k$, $B(0, j, \lambda) = \delta_{j,0}$. This gives one more way to compute the coefficients $\beta_{n,k}$, specifically, for given n and k we find a polynomial $B(n-1, n-1-k, \lambda)$ using (4.2) and then set $\lambda = n$ to use (4.1).

5. Concluding remarks

It has been established that the coefficients of the polynomials $(-1)^{n-1}p_n(w)$ are positive, unimodal and log-concave. These properties imply an important property of W. In particular, it follows from formula (1.1) and Theorem 3.3 that $(-1)^{n-1}(dW/dx)^{(n-1)} > 0$ for $n \geq 1$. Since $W(x)$ is positive for all positive x, this means that the derivative W' is completely monotonic and W itself is a Bernstein function [2].

Some additional identities can be obtained from the results above. For example, computing $\beta_{n,n-1}$ by (2.8) and comparing with (2.9) gives

$$\sum_{m=0}^{n-1} (-1)^{m} \binom{2n-1}{n-m} \binom{2n-1+m}{n+m} = (n-1)!.$$

A relation between $\binom{2n-1+m}{n+m}$ and $B^{(-m)}_n(n)$ can be obtained from (2.8) and (2.9), but this is a special case of [4] eq. (7.5)]. It is finally interesting to note that (2.8) and (2.9) can be inverted. Indeed, in these formulae for fixed n, the sequence $(-1)^k \beta_{n,k}$ is a convolution of two sequences and the corresponding relation between their generating functions is $G(w) = (1-w)^{2n-1}F(w)$. Since $F(w) = G(w)(1-w)^{-(2n-1)} = G(w) \sum_{k \geq 0} \binom{2n-2+k}{2n-2}w^k$, the inverse of, for example, (2.8) is

$$\sum_{k=0}^{n-1} (-1)^k \beta_{n,k} \binom{2n-2+m-k}{2n-2}.$$

(5.1)

Acknowledgements. We thank Prof. Alan Sokal for sending us his conjecture and for his interest and encouragement. The work was supported by a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada.
References

[1] N. Asai, I. Kubo, and H.-H. Kuo. Bell numbers, Log-Concavity, and Log-Convexity. Acta
Appl. Math., 63: 79–87, 2000.
[2] C. Berg. Stieltjes-Pick-Bernstein-Schoenberg and their connection to complete monotonic-
ty. In: Positive Definite Functions: From Schoenberg to Space-Time Challenges, pp. 15–45,
Castellon, Spain, 2008.
[3] Andrei Z. Broder. The r-Stirling numbers. Discrete Math., 49(3): 241–259, 1984.
[4] L. Carlitz. Weighted Stirling numbers of the first and second kind II. Fibonacci Quart.,
18: 242–257, 1980.
[5] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth. On the Lambert
W function. Adv. Comp. Math., 5(4): 329–359, 1996.
[6] Robert M. Corless, David J. Jeffrey, and Donald E. Knuth. A sequence of series for the
Lambert W function. In: ISSAC ’97: Proceedings of the 1997 International Symposium on
Symbolic and Algebraic Computation, pp. 197–204, New York, NY, USA, 1997. ACM press.
[7] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics: A Foundation for
Computer Science. Addison-Wesley, 1989.
[8] J.L. López and N.M. Temme. Large degree asymptotics of generalized Bernoulli and Euler
polynomials. J. Math. Anal. Appl., 363(1): 197–208, 2010.
[9] N.E. Nörlund. Vorlesungen über Differenzenrechnung. Springer-Verlag, Berlin, 1924.
[10] Patricio V. Poblete, Alfredo Viola, and J. Jan Munro. The diagonal Poisson transform and
its application to the analysis of a hashing scheme. Random Struct. Algorithms, 10: 221–255,
1997.
[11] Alan D. Sokal. Another question about the Lambert W. Private email, October 2008.
[12] R. P. Stanley. Log-concave and unimodal sequences in algebra, combinatorics, and geometry.
Ann. New York Acad. Sci., 576: 500–535, 1989.
[13] David W. Walkup. Pólya sequences, binomial convolution, and the union of random sets. J.
Appl. Prob., 13(1): 76–85, 1976.
[14] Y. Wang and Y.-N. Yeh. Log-concavity and LC-positivity. J. Combin. Theory, 2007.
[15] Herbert S. Wilf. Generatingfunctionology. A. K. Peters, 3rd edition, 2005.

Department of Applied Mathematics, The University of Western Ontario, London,
Ontario, Canada N6A 5B7
E-mail address: gkalugin@uwo.ca, djeffrey@uwo.ca