Abstract. Let \(C \) be an irreducible smooth projective curve, of genus at least two, defined over an algebraically closed field of characteristic zero. For a fixed line bundle \(L \) on \(C \), let \(M_C(r, L) \) be the coarse moduli space of semistable vector bundles \(E \) over \(C \) of rank \(r \) with \(\wedge^r E = L \). We show that the Brauer group of any desingularization of \(M_C(r, L) \) is trivial.

1. Introduction

Let \(k \) be an algebraically closed field of characteristic zero. Let \(C/k \) be an irreducible smooth projective curve of genus \(g \), with \(g \geq 2 \). Let \(L \in \text{Pic}(C) \) be a line bundle on \(C \) of degree \(d \); fix an integer \(r \geq 2 \). Let \(M = M_C(r, L) \) denote the moduli space of semistable vector bundles on \(C \) of rank \(r \) and determinant \(L \). It is known that \(M \) is a unirational normal projective variety. Up to isomorphism \(M \) depends only on the class of \(d \) modulo \(r \) and not on the actual line bundle \(L \). This variety \(M \) is known to be rational if \(r \) is coprime to \(d \) [KS, p. 520, Theorem 1.2]; except for the only case of \(g = r = d = 2 \) when \(M \) is known to be \(\mathbb{P}^3_k \), in all other cases, where \(r \) is not coprime to \(d \), it is unknown whether \(M \) is stably rational.

For any projective variety \(X/k \) to be rational (or even stably rational), it is necessary for the Brauer group \(\text{Br}(\tilde{X}) \) to vanish, where \(\tilde{X} \to X \) is a desingularization. This motivated us to study the Brauer group of the desingularization of \(M \).

The following result is proved here:

Theorem 1. Let \(\tilde{M} \to M_C(r, L) \) be any desingularization of \(M_C(r, L) \). Then \(\text{Br}(\tilde{M}) \) is trivial.

We now give a brief idea of the proof of it. For any possible nonzero class \(\alpha \in \text{Br}(\tilde{M}) \setminus \{0\} \), we show that there exists a discrete valued field \(K \), and a morphism \(\varphi : \text{Spec}(K) \to \tilde{M} \), such that \(\varphi^*\alpha \in \text{Br}(K) \) is ramified. This morphism \(\varphi \) is constructed explicitly out of a suitable family of vector bundles on \(C \) parameterized by a \(\mathbb{G}_m \)-gerbe over \(\text{Spec}(K) \). On the other hand, since \(\tilde{M} \) is a proper variety, for any \(\xi \in \text{Br}(\tilde{M}) \), the pullback \(\varphi^*\xi \in \text{Br}(K) \) must
be unramified (this is because the morphism \(\text{Spec}(K) \to M \) extends to the discrete valuation ring). Thus \(\alpha \) must be zero.

Theorem 1 was proved earlier in [Ni] under the assumption that \(r = 2 \) (see [Ni, p. 309, Theorem 1]); this theorem of Nitsure was also proved later in [Ba]. When \(r = 2 \), explicit desingularizations of \(M \) are available; these desingularizations are crucially used in [Ni], [Ba].

Acknowledgement. We thank the referee for pointing out an incorrect statement in an earlier version and for helpful comments. We thank Najmuddin Fakhruddin and the referee for independently pointing out that an argument in an earlier version involving resolution of singularities of stacks could be avoided altogether.

2. THE STABLE LOCUS

We continue with the notation of the introduction.

Let \(\mathcal{M} = \mathcal{M}_{c,(r,\mathcal{L})} \) be the moduli stack of semistable vector bundles over \(C \) of rank \(r \) and determinant \(\mathcal{L} \). Let

\[
p : \mathcal{M} \to M
\]

be the natural morphism to the earlier defined moduli space \(M \); this \(M \) is a good moduli space for \(\mathcal{M} \) in the sense of [Ja, p. 10, Definition 4.1].

The following notation and comments will be used.

1. The degree of \(\mathcal{L} \) will be denoted by \(d \), and \(\gcd(r, d) \) will be denoted by \(n \).
2. Let \(M_0 \subseteq M \) (respectively, \(\mathcal{M}_0 \subseteq \mathcal{M} \)) be the Zariski open subset (respectively, sub-stack) parameterizing stable bundles. We note that \(M_0 \) is contained in the smooth locus of \(M \). In fact \(M_0 \) coincides with the smooth locus of \(M \) except for the only case of \(g = r = d = 2 \) (in this case \(M \) is known to be smooth).
3. There is a natural inclusion of \(\mathbb{G}_m \) as a normal subgroup in the isotropy group of any point of \(\mathcal{M} \) corresponding to action of \(\mathbb{G}_m \) on vector bundles given by scalar multiplications. For stable vector bundles, the isotropy group coincides \(\mathbb{G}_m \). Let

\[
F : \mathcal{M} \to \mathcal{N}
\]

be a 1-morphism obtained by rigidifying \(\mathbb{G}_m \) (see [ACV] pp. 3572–3573, Theorem 5.1.5]), meaning \(F \) a 1-morphism defining a \(\mathbb{G}_m \)-gerbe such that for every point \(z \) of \(\mathcal{M} \), the kernel of the homomorphism induced between the isotropy groups at \(z \) and \(F(z) \) is precisely \(\mathbb{G}_m \). \(\mathcal{N} \) is a smooth stack which is generically a scheme.

4. Choose a stable vector bundle \(W \) of rank \(r/n \) and degree \(d/n \) on \(C \). Let \(z'_0 \) be the \(k \)-point of \(\mathcal{N} \) which corresponds to the vector bundle

\[
E_0 = W^\oplus n.
\]

We let \(z_0 \) be the image of \(z'_0 \) in \(M \); this \(z_0 \) is also a \(k \)-point.
(5) Let \(\pi : \tilde{M} \to M \) be a desingularization which is an isomorphism outside the singular locus of \(M \); in particular, it is an isomorphism over \(M_0 \). We thus have the following diagram.

\[
\begin{array}{ccc}
M & \to & N \\
\downarrow & & \downarrow \theta \\
\tilde{M} & \xrightarrow{\pi} & M
\end{array}
\]

Remark 2. Since the Brauer group is a birational invariant for smooth projective varieties, proving Theorem 1 for one particular desingularization of \(M \) is equivalent to proving it for all desingularizations of \(M \). Thus it is enough to prove Theorem 1 for the desingularization \(\tilde{M} \) chosen in (5).

Lemma 3. Given any \(K \)-point \(x_0 \in N(K) \), where \(K/k \) is a field extension, there exists a smooth curve \(Y/K \), a \(K \)-point \(y_0 \in Y(K) \), and a map \(\psi : Y \to N \), such that \(\psi(y_0) = x_0 \) and \(\psi(Y) \cap M_0 \neq \emptyset \).

Proof. By [LM, p. 49, Théorème 6.3], we can choose an atlas \(\pi : U \to N \) such that \(x_0 \) lifts to a \(K \)-point \(\tilde{x}_0 \) of \(U \). Since \(N/k \) is smooth, so is \(U/k \). Thus, a general complete intersection curve in \(U/k \) passing through \(\tilde{x}_0 \) satisfies the conditions. \(\square \)

Lemma 4. Fix any integer \(n \geq 2 \). There exists a field extension \(K/k \), a \(k \)-discrete valuation \(v \) on \(K \), and a central division algebra \(D/K \) of index \(n \), such that for any integer \(\ell \), the class \(\ell \cdot [D] \in \text{Br}(K) \) is unramified at \(v \) if and only if \(\ell \) is divisible by \(n \). (Here \([D] \) denotes the class in \(\text{Br}(K) \) defined by \(D \).)

Proof. Set \(K = k(x,y) \) to be the purely transcendental extension. Let \(v \) be the valuation given by the height one prime ideal

\[(x) \subset k[x,y]\]

and let \(L = k(y) \) denote the residue field of \(K \) at \(v \). Set \(D \) to be the cyclic algebra \((x,y)_\zeta \), where \(\zeta \) is any chosen primitive \(n \)-th root of unity. The obstruction for an \(n \)-torsion class in \(\text{Br}(K) \) to be unramified is measured by the tame symbol

\[H^2(K, \mu_n) \to H^1(L, \mathbb{Z}/n) \cong L^*/(L^*)^n.\]

Here we identify \(H^2(K, \mu_n) \) with the \(n \)-torsion subgroup of \(\text{Br}(K) \). Note that the isomorphism \(H^1(L, \mathbb{Z}/n) \cong L^*/L^{*n} \) depends on the choice of \(\zeta \). The image of \([D]\) in \(L^*/L^{*n} \) is the class defined by \(y^{-1} \) (see [GS, Example 7.1.5 and Corollary 7.5.3]) which has order \(n \). Hence \(\ell \cdot [D] \) is unramified at \(v \) if and only if \(\ell \) is
divisible by \(n \). Moreover, since the order of \([D]\) is equal to its index, \(D \) is a division algebra. \(\square\)

Lemma 5. There is a natural inclusion \(\text{Br}(\widetilde{\mathcal{M}}) \hookrightarrow \text{Br}(M_0) \), where \(M_0 \) is defined in (2).

Proof. Since \(\widetilde{\mathcal{M}} \) is smooth, the homomorphism \(\text{Br}(\widetilde{\mathcal{M}}) \rightarrow \text{Br}(\pi^{-1}(M_0)) \) induced by the open embedding \(\pi^{-1}(M_0) \hookrightarrow \widetilde{\mathcal{M}} \) is injective. Now the lemma follows immediately from the assumption that the morphism

\[
\pi|_{\pi^{-1}(M_0)} : \pi^{-1}(M_0) \rightarrow M_0
\]

is an isomorphism. \(\square\)

3. Proof of Theorem 1

If \(g = 2 = r \), and \(d \) is even, then \(M = \mathbb{P}^d_k \) [NR, pp. 33–34, Theorem 2]; hence Theorem 1 holds in this case. If \(g = 2 = r \), and \(d \) is odd, then \(M \) is a smooth projective rational variety as \(n = 1 \) (see (1) of Section 2), so Theorem 1 holds in this case also. Hence we assume that \(g \geq 3 \) if \(r = 2 \).

Consider the \(\mathbb{G}_m \)-gerbe \(\mathcal{M} \rightarrow \mathcal{N} \) in (3) of Section 2. Let

\[
\alpha \in \text{Br}(\mathcal{N})
\]

be the class defined by it. Since \(\theta : \mathcal{N} \rightarrow M \) is an isomorphism over \(M_0 \), we consider \(M_0 \) also as an open subset of \(\mathcal{N} \). Thus

\[
(3.1) \quad \alpha' := \alpha|_{M_0}
\]

defines an element of \(\text{Br}(M_0) \). This class \(\alpha' \in \text{Br}(M_0) \) generates \(\text{Br}(M_0) \), and its order is precisely \(n \) [BBGN, p. 267, Theorem 1.8].

Since \(M_0 \) can also be identified with an open subset of \(\widetilde{\mathcal{M}} \) (see (5) of Section 2), it makes sense to ask whether a class in \(\text{Br}(M_0) \) extends to a class in \(\text{Br}(\widetilde{\mathcal{M}}) \).

In view of Lemma 5 and the above description of \(\text{Br}(M_0) \), in order to prove Theorem 1 it suffices to show the following:

Statement A. For a given integer \(\ell \), the class \(\ell \alpha' \) extends to an element of \(\text{Br}(\widetilde{\mathcal{M}}) \) only if \(\ell \) is a multiple of \(n \) (or equivalently if \(\ell \alpha' \) vanishes).

We will prove Statement A in three steps.

Step 1: Let \(K/k \) be a field extension, and let \(D/K \) be a central division algebra of index \(n \), given by Lemma 4. Let \(X \rightarrow \text{Spec}(K) \) be the \(\mathbb{G}_m \)-gerbe defined by the class \([D] \in H^2(K, \mathbb{G}_m)\). Then there exists a twisted bundle \(V \) of rank \(n \) on \(X \) such that \(\mathcal{E}nd_{\mathcal{O}_X}(V) \) descends to the coherent sheaf on \(\text{Spec}(K) \) corresponding to \(D \). Consider the vector bundle

\[
F := V \otimes W
\]
on $X \times_k C$, where W is the vector bundle in (4) of Section 2. This F can be thought of as a family of semistable vector bundles on C parameterized by X. Hence we get a morphism

$$f : X \rightarrow \mathcal{M}$$

representing this family. This morphism f induces a morphism

(3.2) \hspace{1cm} x_0 : \text{Spec}(K) \rightarrow \mathcal{N}.

By the construction of x_0, it has the following properties:

1. $x_0^*\alpha = [D]$, and
2. the image of x_0 is equivalent to the point z'_0 that corresponds to E_0 in (4) of Section 2.

Step 2: Using Lemma 3 we find a smooth curve Y/K, a 1-morphism $\psi : Y \rightarrow \mathcal{N}$ and $y_0 \in Y(K)$, such that

$$\psi(y_0) = x_0.$$

Consider the map from $Y \rightarrow M$ given by the composition $Y \rightarrow \mathcal{N} \xrightarrow{\theta} M$. By Lemma 3, the generic point of Y maps into $M_0 \subset M$ and hence lifts to \widetilde{M}. Since

$$\pi : \widetilde{M} \rightarrow M$$

is proper, by using the valuative criterion of properness we see that the map $Y \rightarrow M$ factors through \widetilde{M}.

We thus have a commutative diagram

$$
\begin{array}{ccc}
Y & \xrightarrow{\psi} & \mathcal{N} \\
\downarrow{h} & & \downarrow{\theta} \\
\widetilde{M} & \xrightarrow{\pi} & M
\end{array}
$$

Step 3: Now suppose for some integer ℓ, the class $\ell \cdot \alpha' \in \text{Br}(M_0)$ (see 3.1) extends to a class β on entire \widetilde{M}. The two classes $\ell \cdot \alpha \in \text{Br}(\mathcal{N})$ and $\beta \in \text{Br}(\widetilde{M})$ coincide when restricted to M_0, which is canonically identified with an open subset of \mathcal{N} as well as of \widetilde{M}.

We claim that

(3.3) \hspace{1cm} \psi^*(\ell \cdot \alpha) = h^*\beta \in \text{Br}(Y).

The claim follows since Y is a regular integral scheme and the above Brauer classes coincide on the dense open subset $h^{-1}(M_0)$ of Y.

Thus, restricting the above classes in $Br(Y)$ to the K-point $y_0 : \text{Spec}(K) \rightarrow Y$, and using $\psi \circ y_0 = x_0$, we get that

$$x_0^*(\ell \cdot \alpha) = y_0^*(h^*\beta) \in \text{Br}(K).$$
However, \tilde{M} being a proper variety, the morphism

$$y_0 \circ h : \text{Spec} (K) \to \tilde{M}$$

extends to a morphism

$$\text{Spec} (R) \to \tilde{M},$$

where R is the discrete valuation ring corresponding to the valuation v on K. Thus the class $y_0^*(h^*\beta) \in \text{Br}(K)$ is unramified at v. But by construction of x_0 in Step 1, the class $x_0^*(\ell \cdot \alpha)$ coincides with $\ell \cdot [D]$, which, by Lemma 4, is ramified at v unless ℓ is divisible by n. This implies that ℓ is divisible by n. This proves Statement A, and hence the proof of Theorem 1 is complete.

Remark 6. Since the moduli space M is locally factorial, it follows that the natural homomorphism $\text{Br}(M) \to \text{Br}(M_0)$ is injective. From Statement A we know that no nonzero class $\ell \alpha' \in \text{Br}(M_0)$ extends to $\text{Br}(\tilde{M})$, hence such a class cannot extend to $\text{Br}(M)$. Consequently, the Brauer group of the moduli space M vanishes.

References

[ACV] D. Abramovich, A. Corti and A. Vistoli: Twisted bundles and admissible covers.
Comm. Algebra 31 (2003), 3547–3618.

[Ba] V. Balaji: Cohomology of certain moduli spaces of vector bundles. Proc. Indian Acad.
Sci. Math. Sci. 98 (1988), 1–24.

[BBGN] V. Balaji, I. Biswas, O. Gabber and D. S. Nagaraj: Brauer obstruction for a universal
vector bundle. Comp. Ren. Math. Acad. Sci. Paris 345 (2007), 265–268.

[GS] P. Gille and T. Szamuely: Central simple algebras and Galois cohomology. Cambridge
Studies in Advanced Mathematics, 101. Cambridge University Press, Cambridge,
2006.

[Ja] A. Jarod: Good moduli spaces for Artin stacks. Ph.D. Thesis, Stanford University,
2008.

[KS] A. King and A. Schofield: Rationality of the moduli of vector bundles on curves. Indag.
Math. 10 (1999), 519–535.

[LM] G. Laumon and L. Moret-Bailly: Champs algébriques. Ergebnisse der Mathematik und
ihrer Grenzgebiete. 3. Folge. 39. Springer-Verlag, Berlin, 2000.

[NR] M. S. Narasimhan and S. Ramanan: Moduli of vector bundles on a compact Riemann
surface. Ann. of Math. 89 (1969), 14–51.

[Ni] N. Nitsure: Cohomology of desingularization of moduli space of vector bundles. Compos.
Math. 69 (1989), 309–339.
School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India

E-mail address: indranil@math.tifr.res.in

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India

E-mail address: amit@math.tifr.res.in

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India

E-mail address: yogi@math.tifr.res.in