Isolated pancreatic granulocytic sarcoma: A case report and review of the literature

Xin-Ping Li, Wen-Fang Liu, Shu-Rong Ji, She-Hua Wu, Jian-Jun Sun, Yue-Zu Fan

Xin-Ping Li, Wen-Fang Liu, Shu-Rong Ji, She-Hua Wu, Jian-Jun Sun, Yue-Zu Fan, Department of Surgery, Tongji Hospital of Tongji University, Shanghai 200065, China

Author contributions: Li XP and Liu WF contributed equally to this work; Li XP and Liu WF collected the data and wrote the article; Li XP, Ji SR and Wu SH analyzed the data; Liu WF, Sun JJ and Fan YZ designed the study.

Correspondence to: Dr. Wen-Fang Liu, Department of Surgery, Tongji Hospital of Tongji University, Shanghai 200065, China. lwf112@163.com

Received: August 19, 2010 Revised: November 25, 2010
Accepted: December 1, 2010
Published online: January 28, 2011

Abstract

Granulocytic sarcoma (GS) is an extramedullary tumor mass consisting of immature myeloid cells. Isolated pancreatic granulocyte sarcoma is extremely rare. We report a very unusual pancreatic granulocytic sarcoma in a patient without acute myeloid leukemia. The patient presented with acute epigastric pain because of splenic infarction due to a mass consisting of myeloblasts in the pancreatic tail. The patients underwent splenectomy and distal pancreatectomy. Pathology and immunohistochemistry suggested a GS. Despite local surgery, an isolated tumor recurred 2 mo after operation and the patient died 3 mo after removal of the tumor. Only 7 reported cases of pancreatic GS were identified in the literature and the mass was located in the pancreatic head. This is the first report of GS in the pancreatic tail with splenic infarction.

© 2011 Baishideng. All rights reserved.

Key words: Granulocytic sarcoma; Pancreatic mass

Peer reviewer: Claudio Sorio, MD, PhD, Department of Pathology, Assistant Professor, University of Verona School of Medicine, General Pathology Section, Strada Le Grazie, 8, 37134 Verona, Italy

INTRODUCTION

Granulocyte sarcoma (GS), also known as chloroma, is a localized malignant tumor composed of myeloid cells, and is difficult to establish its diagnosis. GS may precede or occur concurrently with acute or chronic myeloid leukemia or less often with polycythemia vera and primary myelofibrosis. It was reported that GS occurs in a variety of tissues but presents as an abdominal mass, and infiltration of the pancreas is particularly rare[1]. In this paper, we report an unusual case of pancreatic GS in a patient without acute myeloid leukemia.

CASE REPORT

The patient was a 48-year-old woman with no significant past medical history. She was referred because of acute abdomen with no history of abdominal trauma. She complained of persistent severe epigastric pain accompanying a high fever for three days, but not of vomiting, diarrhea or shortness of breath. On physical examination, the patient appeared to be in acute distress with pale complexion. Her abdomen was slightly distended with tenderness. No mass was palpable and bowel movements were decreased. Laboratory test showed 79 g/L hemoglobin, 6400/mm³ white blood cells, 60 × 10³/mm³ platelets, 128 U/L aspartate aminotransferase (AST), 270 U/L alanine aminotransferase (ALT), 1365 U/L lactate dehydrogenase (LDH), and 17.4 U/L carbohydrate antigen 19-9 (CA19-9). Computed tomography scan revealed a 4.5 cm × 4.0 cm fuzzy mass at the pancreatic tail with splenic infarction (Figure 1). Bone marrow infiltration was assessed and no evidence of acute myeloid leukemia (AML) was
found. Barium meal examination was negative. Exploratory laparotomy was performed because of persistent severe abdominal pain probably due to pancreatic mass and splenic infarction. An invasive tumor was detected in the pancreatic tail with lymphadenectomy around the hilus of spleen. Consequently, the patient underwent splenectomy and distal pancreatectomy. Histological examination revealed diffusely infiltrating mono-morphous immature blast-like cells (Figure 2A), which were round to oval in shape with mild-moderate basophilic cytoplasm but without granules. Paraffin-embedded sections were examined with immunohistochemical staining. The tumor cells reacted to myeloperoxidase (MPO) antibodies (Figure 2B) but not to CD20 monoclonal antibodies. Therefore, a diagnosis of GS was made and intensive AML-type chemotherapy was recommended. Unfortunately, the patient refused further chemotherapy and was discharged from hospital. Follow-up showed an isolated tumor recurred 2 mo after operation and the patient died 3 mo after operation.

DISCUSSION

GS, also known as chloroma for their green appearance, occurs in association with different hematological diseases, especially FAB M1 and M2 AML\(^{[2,3]}\). Translocation \(t\) (8; 21) is the most common cytogenetic abnormality found in leukemia patients with GS, which is associated with a relatively good prognosis when treated with chemotherapy\(^{[4]}\). GS is often confused with non-Hodgkin lymphoma of the lymphoblastic type, Burkitt lymphoma, large-cell lymphoma and small round cell tumor\(^{[5]}\). It is more difficult to isolate pancreatic GS than to diagnose GS during the course of AML. Immunohistochemical methods are essential to obtain the correct diagnosis. GS cells often react to MPO, CD43, CD68 antibodies, but not to lymphoid antigens such as CD20 and CD30 monoclonal antibodies\(^{[6,7]}\).

Isolated pancreatic GS is most commonly located in periosteum, soft tissue, bone, lymph nodes and skin\(^{[8,9]}\). However, it is extremely uncommon. Only 7 cases of isolated pancreatic GS, located in the pancreatic head, are available in the literature\(^{[10,11]}\) (Table 1). Consequently, the symptoms of these patients were jaundice and epigastric pain. This is the first report of isolated pancreatic GS located in the pancreatic tail accompanying splenic infarction. The isolated pancreatic GS in the present case invaded the splenic vessels, leading to splenomegaly and splenic infarction and finally severe epigastric pain.

Although isolated pancreatic GS can be treated with radiotherapy or surgical resection, it would recur if not treated with intensive AML-type chemotherapy\(^{[12]}\). Different strategies are available for improving the disease-free interval of patients with isolated pancreatic GS\(^{[10,11]}\). All the reported
cases of isolated pancreatic GS responded well to chemotherapy. However, our patient refused advice of further chemotherapy and died of relapse 3 mo after operation.

REFERENCES

1. Schäfer HS, Becker H, Schmitt-Gräff A, Lübbert M. Granulocytic sarcoma of Core-binding Factor (CBF) acute myeloid leukemia mimicking pancreatic cancer. Leuk Res 2008; 32: 1472-1475
2. King A. A case of chloroma. Monthly J Med 1853; 17: 97
3. Liu PI, Ishimaru T, McGregor DH, Okada H, Steer A. Autopsy study of granulocytic sarcoma (chloroma) in patients with myelogenous leukemia, Hiroshima-Nagasaki 1949-1969. Cancer 1973; 31: 948-955
4. Martinelli G, Ottaviani E, Testoni N, Visani G, Pagliani G, Tura S. Molecular analysis of granulocytic sarcoma: a single center experience. Haematologica 1999; 84: 380-382
5. Xavier SG, Fagundes EM, Hassan R, Bacchi C, Conchon M, Tabak DG, Spector N, Zalcberg IR. Granulocytic sarcoma of the small intestine with CBFbeta/MYH11 fusion gene: report of an aleukaemic case and review of the literature. Leuk Res 2008; 32: 1472-1475
6. Ravandi-Kashani F, Estey E, Cortes J, Medeiros LJ, Giles FJ. Granulocytic sarcoma of the pancreas: a report of two cases and literature review. Clin Lab Haematol 1999; 21: 219-224
7. Traweek ST, Arber DA, Rappaport H, Brynes RK. Extra-medullary myeloid cell tumors. An immunohistochemical and morphologic study of 28 cases. Am J Surg Pathol 1993; 17: 1011-1019
8. Neiman RS, Barcos M, Berard C, Bonner H, Mann R, Rydell RE, Bennett JM. Granulocytic sarcoma: a clinicopathologic study of 61 biopsied cases. Cancer 1981; 48: 1426-1437
9. Paydas S, Zorliudemir S, Ergin M. Granulocytic sarcoma: 32 cases and review of the literature. Leuk Lymphoma 2006; 47: 2527-2541
10. Servin-Abad L, Caldera H, Cardenas R, Casillas J. Granulocytic sarcoma of the pancreas: a report of one case and review of the literature. Acta Haematol 2006; 116: 102-106
11. Schäfer HS, Becker H, Schmitt-Gräff A, Lübbert M. Granulocytic sarcoma of Core-binding Factor (CBF) acute myeloid leukemia mimicking pancreatic cancer. Leuk Res 2008; 32: 1472-1475
12. King DJ, Ewen SW, Sewell HF, Dawson AA. Obstructive jaundice. An unusual presentation of granulocytic sarcoma. Cancer 1987; 60: 114-117
13. Neiman RS, Barcos M, Berard C, Bonner H, Mann R, Rydell RE, Bennett JM. Granulocytic sarcoma: a clinicopathologic study of 61 biopsied cases. Cancer 1981; 48: 1426-1437
14. Moreau P, Milpied N, Thomas O, Fiche M, Parys V, Painev J, Dutin JP, Harousseau JL. [Primary granulocytic sarcoma of the pancreas: efficacy of early treatment with intensive chemotherapy]. Rev Med Interne 1996; 17: 675-679
15. Marcos HB, Sempelka RC, Wooley JT. Abdominal granulocytic sarcomas: demonstration by MRI. Magn Reson Imaging 1997; 15: 873-876

Table 1 Clinical and laboratory features of patients with isolated pancreatic granulocytic sarcoma

Author	Sex/age	Symptoms	Mass sites	Bone marrow	Therapy	Response
King et al[1]	F/36	Jaundice	Head of pancreas	Normal	Chemotherapy	CR
Moreau et al[2]	F/37	Jaundice	Head of pancreas	AML with 60% blasts	Not available	Unknown
Marcos et al[3]	M/32	Right upper guardant epigastric pain	Head of pancreas	Normal	Whipple surgery	CR
Ravandi-Kashani et al[4]	M/31	Jaundice	Head of pancreas	AML with 6% blasts	Chemotherapy	CR
Ravandi-Kashani et al[4]	F/61	Epigastric pain	Head of pancreas	AML with 78% blasts	Chemotherapy	CR
Servin-Abad et al[5]	M/64	Jaundice	Head of pancreas	Normal	Chemotherapy	CR
Rong et al[6]	M/40	Jaundice	Head of pancreas	Normal	Whipple surgery	CR
Our case	F/48	Severe left upper guardant epigastric pain	Tail of pancreas	Normal	Splenectomy Distal pancreatectomy	Died of relapse 3 mo later

CR: Complete remission; AML: Myeloid leukemia.