OSdlbcl: An online consensus survival analysis web server based on gene expression profiles of diffuse large B-cell lymphoma

Huan Dong1 | Qiang Wang1 | Guosen Zhang1 | Ning Li1 | Mengsi Yang1 | Yang An1 | Longxiang Xie1 | Huimin Li1 | Lu Zhang1 | Wan Zhu2 | Shuchun Zhao3 | Haiyu Zhang3 | Xiangqian Guo1

1Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, China
2Department of Anesthesia, Stanford University School of Medicine, Stanford, CA, USA
3Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA

Correspondence
Xiangqian Guo, Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng, China. Email: xqguo@henu.edu.cn

Funding information
National Natural Science Foundation of China, Grant/Award Number: 81602362; Henan University, Grant/Award Number: 2015FBZR048 and B2015151; Yellow River Scholar Program, Grant/Award Number: H2016012; Program for Innovative Talents of Science and Technology in Henan Province, Grant/Award Number: 18HASTIT048; Program for Science and Technology Development in Henan Province, Grant/Award Number:

Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin lymphoma (NHL) and is a clinical, pathological, and molecular heterogeneous disease with highly variable clinical outcomes. Currently, valid prognostic biomarkers in DLBCL are still lacking. To optimize targeted therapy and improve the prognosis of DLBCL, the performance of proposed biomarkers needs to be evaluated in multiple cohorts, and new biomarkers need to be investigated in large datasets. Here, we developed a consensus Online Survival analysis web server for Diffuse Large B-Cell Lymphoma, abbreviated OSdlbcl, to assess the prognostic value of individual gene. To build OSdlbcl, we collected 1100 samples with gene expression profiles and clinical follow-up information from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. In addition, DNA mutation data were also collected from the TCGA database. Overall survival (OS), progression-free survival (PFS), disease-specific survival (DSS), disease-free interval (DFI), and progression-free interval (PFI) are important endpoints to reflect the survival rate in OSdlbcl. Moreover, clinical features were integrated into OSdlbcl to allow data stratifications according to the user’s special needs. By inputting an official gene symbol and selecting desired criteria, the survival analysis results can be graphically presented by the Kaplan-Meier (KM) plot with hazard ratio (HR) and log-rank p value. As a proof-of-concept demonstration, the prognostic value of 23 previously reported survival associated biomarkers, such as transcription factors FOXP1 and BCL2, was evaluated in OSdlbcl and found to be significantly associated with survival as reported (HR = 1.73, P < .01; HR = 1.47, P = .03, respectively). In conclusion, OSdlbcl is a new web server that integrates public gene expression, gene mutation data, and clinical follow-up information to provide prognosis evaluations for biomarker development for DLBCL. The OSdlbcl web server is available at http://bioinfo.henu.edu.cn/DLBCL/DLBCLList.jsp.

Huan Dong, Qiang Wang, and Guosen Zhang contributed equally to this article.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2020 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

Cancer Medicine. 2020;9:1790–1797.
1 | INTRODUCTION

Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin lymphoma (NHL), accounting for 30%-40% of the NHL.1,2 DLBCL is a clinical, pathological, and molecular heterogeneous disease, patients of which have highly variable clinical outcomes.3 The current complex classification of DLBCL is presented in World Health Organization (WHO).4,5 Although this disease is curable, 20%-30% of DLBCL patients still experience relapse or refractory disease.6,7 To assist clinical treatment, prognostic biomarkers are being investigated to optimize targeted therapy and to predict the prognosis of high-risk DLBCL patients.8

So far, some unfavorable prognostic factors for DLBCL have been reported in previous studies, such as high international prognostic index (IPI), MYC rearrangement, double-hit lymphoma, double-express lymphoma, and high p53 and CD5 expression.1,6 However, more reliable biomarkers with high repeatability and predictive power to diagnose high-risk patients are needed to facilitate the development of alternative treatment strategies for DLBCL.9 Using microarray or RNA-Seq technologies, the discovery of prognostic biomarkers at the transcriptional level is one main achievement of cancer genomics.10 Despite the availability of numerous expression data and the corresponding clinical information in the public database to date, a web server or tool that could quickly evaluate the prognostic value of potential DLBCL biomarkers is still lacking.

In this study, we collected the gene expression profiles and clinical information of 1100 DLBCL patients from seven independent cohorts from the TCGA and GEO databases. We developed an online consensus survival analysis web server, named OSdlbcl, to assess the prognostic value of interested genes. This web server will facilitate the development and validation of new prognostic biomarkers in DLBCL.

2 | METHODS AND MATERIALS

2.1 | Dataset collection

RNA expression profiling data and clinical follow-up information of DLBCL patients were downloaded from two major sources, including TCGA (https://portal.gdc.cancer.gov/) and GEO (http://www.ncbi.nlm.nih.gov/geo/). For TCGA data, Level 3 RNAsSeq data (HiSeqV2) with clinical information of DLBCL patients were downloaded. To gather the data in GEO, the searching keywords of “diffuse large B-cell lymphoma” or “DLBCL” and “survival” were used in GEO database. Only datasets that contain ≥ 25 cases with available gene expression profiles and clinical survival information were selected. In addition, DNA mutation data of DLBCL patients with clinical follow-up information were downloaded from TCGA.

2.2 | System implementation and server setup

OSdlbcl was developed as previously described.11-14 The Kaplan-Meier (KM) plot of cumulative survival probability over time is a hallmark of biomedical survival analysis.11 The log-rank test is popularly used to compare survival experience between groups. Thus, the KM plot and log-rank test were used to estimate the risk of the events in OSdlbcl. In short, J2EE (Java 2 Platform Enterprise Edition) architecture and MySQL server were used for integrating gene expression, DNA mutation, and clinical data. The dynamic web interfaces were written in HTML 5.0 and hosted by Tomcat in a Windows server. As the web server is “out-of-the-box,” when users input an official gene symbol, the statistical analyses will be performed by the R package “survival” to produce the KM curves with hazard ratio (HR, 95% confidence interval) and log-rank p value. OSdlbcl is available at http://bioinfo.henu.edu.cn/DLBCL/DLBCList.jsp.

2.3 | Evaluation of previously reported prognostic biomarkers

To evaluate the prognostic power of previously reported prognostic biomarkers, keywords including “Diffuse large B-cell lymphoma” or “DLBCL,” “gene expression,” and “survival” or “prognosis” were used in the PubMed search engine. In total, 23 biomarkers were collected, and the
prognostic values of these reported DLBCL biomarkers were analyzed by OSdlbcl.

3 | RESULTS

3.1 Clinical characteristics of DLBCL datasets used in OSdlbcl

To establish OSdlbcl web server, we downloaded one TCGA cohort and six GEO cohorts with gene expression profiles and clinical follow-up information (Table 1). A total of 1100 unique DLBCL cases were collected, all of which have available gene expression profiling data and clinical follow-up survival information. Overall survival (OS) is the most important endpoint for the clinical outcomes in OSdlbcl. Moreover, we also collected survival terms including progression-free survival (PFS), disease-specific survival (DSS), disease-free interval (DFI), and progression-free interval (PFI) for the “survival” option in OSdlbcl web server. Before survival analysis, users could choose the relevant clinical characterizations, such as Ann Arbor stage, age, ECOG performance status, gender, IPI group, or number of extranodal sites, to narrow the analysis in a subgroup of DLBCL patients. The main clinical characteristics of these cohorts in OSdlbcl are shown in Table 1. DLBCL samples in OSdlbcl were collected from various areas, but most of them were from North America and Europe. Most of the DLBCL patients are male and at an elder age with the median age over sixty. All of the 1100 patients have OS data with a median OS of 28.50 months, while 267 patients from TCGA and 29 patients from GSE21864 also have PFS data. In addition, the 267 patients from TCGA have DSS, DFI, and PFI data as well. The total number of death events is 437, which is 39.72% of the total patients in OSdlbcl (Table 1).

3.2 Application of OSdlbcl web server

To evaluate the prognostic value of genes in OSdlbcl web server, users first input a gene symbol, choose either individual cohort or combined cohorts, select one of the survival outcome types (OS, DSS, DFI, PFI, or PFS), and designate a gene expression cutoff value that will be used to split the DLBCL patients for KM analysis (Figure 1A). Users could also limit survival analysis to focus on a subgroup of DLBCL patients by setting Ann Arbor stage, age, ECOG performance status, gender, IPI group, or number of extranodal sites (Figure 1A). Finally, users could click the “Kaplan-Meier plot” button to run KM analysis. And then, the OS, DSS, DFI, PFI, or PFS of the gene in query is determined and graphically displayed with HR (95% CI) and log-rank p on output web page (Figure 1).
Evaluation of previously reported DLBCL prognostic biomarkers in OSdlbcl

Independent validation across different cohorts is of great importance for biomarker development, and OSdlbcl is a web server that could facilitate the cross-validation of the prognostic value of biomarkers across seven DLBCL cohorts. To determine the prognosis performance of OSdlbcl, we collected 23 previously published DLBCL prognostic factors at the mRNA or protein level and tested their prognostic power in OSdlbcl at the mRNA level (Table 2, Figure 1). The forest plots more effectively presented the comparison results from references and OSdlbcl (Figure S1). Results showed that about 52% (12 out of 23) of biomarkers have significant prognostic values in the combined cohorts, while the remaining biomarkers (11 out of 23) present significant prognostic values in one or more cohorts (Table 2). Among these biomarkers, FOXP1 and BCL2 have been shown to associate with worse prognosis in DLBCL cases. In OSdlbcl, we found the FOXP1...
Gene symbol	OS in OSdbcl HR (95% CI)	P value	Cutoff	Data source	OS in reference HR (95% CI)	P value	Sample (n)	Level	References
PATZ1	3.02 (1.12-8.13)	.03	Upper 25% VS Lower 75%	GSE57611	—	.02	470	mRNA	[26]
MYC	2.06 (1.43-2.97)	<.01	Upper 25% VS Lower 25%	Combined	—	.01	120	Protein	[27]
CFLAR	1.86 (1.10-3.14)	.02	Upper 25% VS Lower 25%	TCGA	—	.03	71	Protein	[28]
FOXP1	1.73 (1.41-2.11)	<.01	Upper 25% VS Lower 75%	Combined	—	.02	35	Protein	[9]
FBXW7	1.72 (1.00-2.97)	<.05	Upper 30% VS Lower 30%	GSE32918	—	<.01	164	mRNA	[29]
RGS1	1.70 (1.10-2.63)	.02	Upper 25% VS Lower 75%	GSE32918	—	.04	240	Protein	[30]
S1PR1	1.63 (1.02-2.60)	.04	Upper 30% VS Lower 30%	Combined	1.12 (1.04-1.20)	.03	68	Protein	[31]
SPN	1.54 (1.01-2.35)	.04	Lower 25% VS Upper 75%	TCGA	3.64 (2.18-6.08)	<.01	160	mRNA	[32]
BCL2	1.47 (1.04-2.07)	.03	Upper 30% VS Lower 30%	Combined	3.13 (1.23-7.97)	.02	79	Protein	[33]
CXCR4	1.34 (1.02-1.75)	.03	Upper 50% VS Lower 50%	Combined	1.79 (1.06-3.02)	.03	233	mRNA	[34]
eIF2B5	1.31 (1.03-1.66)	.03	Upper 30% VS Lower 30%	Combined	—	<.01	58	mRNA	[35]
SLIT2	0.70 (0.49-0.97)	.03	Upper 30% VS Lower 30%	Combined	—	.04	107	Protein	[36]
CXCL9	1.23 (0.85-1.79)	.27	Upper 25% VS Lower 25%	TCGA	—	<.05	95	Protein	[39]
TP53	0.69 (0.49-0.97)	.03	Upper 25% VS Lower 25%	Combined	—	<.01	—	Protein	[2]
SORL1	0.68 (0.46-0.10)	<.05	Upper 25% VS Lower 25%	Combined	—	<.01	133	Serum	[37]
NOTCH3	0.6 (0.45-0.97)	.04	Upper 25% VS Lower 25%	Combined	—	.07	26	mRNA	[38]
TNFRSF8	0.58 (0.40-0.84)	<.01	Upper 25% VS Lower 25%	Combined	0.25 (0.08-0.75)	.01	32	Protein	[40]
IRF8	0.56 (0.34-0.91)	.02	Upper 30% VS Lower 70%	GSE32918	—	.02	67	Protein	[41]
CD5	0.56 (0.33-0.98)	.04	Upper 30% VS Lower 30%	GSE32918	—	.02	123	Protein	[42]
MUM1	0.563 (0.33-0.96)	.03	Upper 30% VS Lower 30%	TCGA	—	.01	71	Protein	[28]
MME	0.55 (0.32-0.96)	.03	Upper 25% VS Lower 25%	TCGA	—	.03	71	Protein	[28]
S1PR2	0.48 (0.33-0.70)	<.01	Upper 25% VS Lower 25%	Combined	—	<.01	233	mRNA	[43]
DNMT1	0.35 (0.19-0.65)	<.01	Upper 25% VS Lower 75%	TCGA	2.40 (2.38-10.02)*	<.01	230	Protein	[44]

*Lower gene expression compared with higher gene expression in the literature data.
(HR = 1.73, P < .01) and BCL2 (HR = 1.47, P = .03) (Table 2, Figure 1) were consistent to be adverse prognostic biomarkers for DLBCL patients.

3.4 Determination of the prognostic value of DNA mutation in OSdlbcl

In addition to gene expression, gene sequence variation is another common type of prognostic factor.47 In order to implement the prognosis analysis based on gene sequence variation, we have collected the DLBCL DNA mutation data from TCGA and implemented them into OSdlbcl web server, by which users could perform the prognosis analysis based on DNA mutation for the input gene. For example, PTEN is a tumor suppressor and mutated in a large number of cancers at high frequency, and PTEN deletion, mutation, and loss of PTEN expression were of clinical significance in de novo DLBCL.48 As a result, we investigated the prognostic performance of PTEN in OSdlbcl at both RNA and DNA levels, and the results showed that PTEN is an independent favorable prognostic factor for OS at the RNA level (HR = 0.67, P < .05) (Figure 2A), while PTEN mutation is the independent prognostic factor for poorer survival in DLBCL (HR = 0.11, P = .04) (Figure 2B). In addition, the gene expression variation between DLBCL cases with wild-type (Wt) and mutation (Mut) gene types can also be investigated in OSdlbcl (Figure 2C).

4 DISCUSSION

DLBCL is a heterogeneous disease with highly variable clinical outcomes.3 Efficient biomarkers can help predicting clinical outcomes and identifying high-risk patients. However, the biomarkers currently used can only reflect a small spectrum of DLBCL patients. Therefore, we developed a user-friendly online survival analysis web server for researchers and clinicians to assess and identify prognostic biomarkers in DLBCL in a big dataset.

Compared to previously published prognostic biomarker tools such as OncoLnc,49 KM plotter,50-52 and UALCAN,53 OSdlbcl has the following advantages. First, OSdlbcl is the first survival analysis web server specifically for DLBCL and contains largest DLBCL sample size (1100 samples) compared to the other databases. Second, the interface of OSdlbcl is very straightforward and easy for the users with no specific bioinformatics training to operate. Also, the survival analysis results can be graphically presented by the KM plot with HR and log-rank p value, which could be used to assess the prognostic value of gene of interest. Third, except for prognosis evaluation at the RNA level, OSdlbcl could also determine the prognosis value of DNA mutation for DLBCL patients. Fourth, OSdlbcl has incorporated the clinical covariates for DLBCL patients including Ann Arbor stage, gender, ECOG performance status, number of extranodal sites, and IPI. Last but not least, 23 previously reported prognostic biomarkers were confirmed in the OSdlbcl web server, which indicated the effectiveness of OSdlbcl, and these previously reported biomarkers may have the potential to be translated into clinical applications. The limitation of OSdlbcl is that the number of DLBCL cases used for DNA mutation survival analysis is too small. However, continuously updating the OSdlbcl database by adding latest gene variation profiles and expression profiles with accurate follow-up information will help to strengthen the performance of OSdlbcl.

In conclusion, OSdlbcl is a user-friendly online consensus survival analysis web server to efficiently identify prognostic biomarkers, and the OSdlbcl database will be regularly updated when new DLBCL data are available. Our web servers will well reveal the critical impact of RNA expression and gene variation on the prognosis of DLBCL and are fundamentally important for the future targeted therapy for improving clinical outcomes.

FIGURE 2 Kaplan-Meier survival estimates according to the gene expression and mutation status of PTEN in OSdlbcl. A-B. The output web page for PTEN prognosis analysis of RNA expression (A) and DNA mutation (B) using the TCGA cohort in OSdlbcl. C. The output web page for analysis PTEN expression according to mutation status in OSdlbcl
ACKNOWLEDGMENTS
This work was supported by the National Natural Science Foundation of China (No. 81602362), supporting grants of Henan University (Nos. 2015YBZ048 and B2015151), Yellow River Scholar Program (No. H2016012), and Program for Innovative Talents of Science and Technology in Henan Province (No. 18HASTIT048), Program for Science and Technology Development in Henan Province (No. 162102310391 and 172102210187), Program for Scientific and Technological Research of Henan Education Department (No. 14B520022), Program for Young Key Teacher of Henan Province (2016GGJS-214), Kaifeng Science and Technology Major Project (18ZD008), and a supporting grant of Bioinformatics Center of Henan University (No. 2018YLJC01).

CONFLICTS OF INTEREST
All authors declare no competing interests.

AUTHOR CONTRIBUTIONS
XG conceived and directed this project. HD, QW, and GZ collected data and developed the web server. HD, NL, MY, YA, LX, HL, and LZ performed data analysis. WZ, SZ, and HZ contributed to data analysis and paper writing. HD wrote the manuscript with the assistance and approval of all authors.

DATA AVAILABILITY STATEMENT
This study analyzed the publicly available datasets. These data are available online at http://bioinfo.henu.edu.cn/DLBCL/DLBCLList.jsp.

ORCID
Huan Dong https://orcid.org/0000-0002-3211-2168

REFERENCES
1. A clinical evaluation of the international lymphoma study group classification of non-Hodgkin’s lymphoma. The Non-Hodgkin’s Lymphoma Classification Project. Blood. 1997;89:3909-3918.
2. Li S, Young KH, Medeiros LJ. Diffuse large B-cell lymphoma. Pathology. 2018;50:74-87.
3. Gisselbrecht C, Glass B, Mounier N, et al. Salvage regimens with autologous transplantation for relapsed large B-cell lymphoma in the rituximab era. J Clin Oncol. 2010;28:4184-4190.
4. Swerdlow SH, Campo E, Pileri SA, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127:2375-2390.
5. Beham-Schmid C. Aggressive lymphoma 2016: revision of the WHO classification. Memo. 2017;10:248-254.
6. Coiffier B, Lepage E, Brière J, et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med. 2002;346:235-242.
7. Pfreundschuh M, Trümper L, Österborg A, et al. CHOP-like chemotherapy plus rituximab versus CHOP-like chemotherapy alone in young patients with good-prognosis diffuse large-B-cell lymphoma: a randomised controlled trial by the MabThera International Trial (MInT) Group. Lancet Oncol. 2006;7:379-391.
8. Jamil MO, Mehta A. Diffuse large B-cell lymphoma: prognostic markers and their impact on therapy. Expert Rev Hematol. 2016;9:471-477.
9. Yu B, Zhou X, Li B, et al. FOXP1 expression and its clinicopathologic significance in nodal and extranodal diffuse B-cell lymphoma. Ann Hematol. 2011;90:701-708.
10. Aguirre-Gamboa R, Gomez-Rueda H, Martinez-Ledesma E, et al. SurvExpress: an online biomarker validation tool and database for cancer gene expression data using survival analysis. PLoS ONE. 2013;8:e74250.
11. Liu J, Lichtenberg T, Hoadley KA, et al. An integrated TCGA pan-cancer clinical data resource to drive high-quality survival outcome analytics. Cell. 2018;173:400-416.
12. Wang Q, Wang F, Lv J, et al. Interactive online consensus survival tool for esophageal squamous cell carcinoma prognosis analysis. Oncol Lett. 2019;18:1199-1206.
13. Wang Q, Xie L, Deng Y, et al. OSllms: a web server to evaluate the prognostic value of genes in leiomysarcoma. Front Oncol. 2019;9:190.
14. Zhang G, Wang Q, Yang M, et al. OSllca: a web server for investigating prognostic biomarkers of bladder cancer patients. Front Oncol. 2019;9:466.
15. Cardesa-Salzmann TM, Colomo L, Gutierrez G, et al. High microvessel density determines a poor outcome in patients with diffuse large B-cell lymphoma treated with rituximab plus chemotherapy. Haematologica. 2011;96:996-1001.
16. Lenz G, Wright G, Dave SS, et al. Stromal gene signatures in large-B-cell lymphomas. N Engl J Med. 2008;27:2313-2323.
17. Scott DW, Wright GW, Williams PM, et al. Determining cell-of-origin subtypes of diffuse large B-cell lymphoma using gene expression in formalin-fixed paraffin-embedded tissue. Blood. 2014;123:1214-1217.
18. Scholtysik R, Kreuz M, Hummel M, et al. Characterization of genomic imbalances in diffuse large B-cell lymphoma by detailed SNP-chip analysis. Int J Cancer. 2015;136:1033-1042.
19. Nakamura A, Osonoi T, Terauchi Y. Relationship between urinary sodium excretion and pioglitazone-induced edema. J Diabetes Investig. 2010;19:208-211.
20. Care MA, Coco M, Laye JP, et al. SPiB and BATF provide alternative determinants of IRF4 occupancy in diffuse large B-cell lymphoma linked to disease heterogeneity. Nucleic Acids Res. 2014;42:7591-7610.
21. Montes-Moreno S, Martinez N, Sanchez-Espiridion B, et al. miRNA expression in diffuse large B-cell lymphoma treated with chemoimmunotherapy. Blood. 2011;118:1034-1040.
22. Monti S, Chapuy B, Takeyama K, et al. Integrative analysis reveals an outcome-associated and targetable pattern of p53 and cell cycle deregulation in diffuse large B cell lymphoma. Cancer Cell. 2012;22:359-372.
23. Chen L, Monti S, Juszczynski P, et al. SYK inhibition modulates distinct PI3K/AKT-dependent survival pathways and cholesterol biosynthesis in diffuse large B cell lymphomas. Cancer Cell. 2013;23:826-838.
24. Xie L, Deng Y, Guo J, et al. High KRT8 expression independently predicts poor prognosis for lung adenocarcinoma patients. Genes (Basel). 2019;10(1):36.
25. Cheson BD, Fisher RI, Barrington SF, et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin
and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol. 2014;32:3059-3068.

26. Franco R, Scognamiglio G, Valentino E, et al. PATZ1 expression correlates positively with BAX and negatively with BCL6 and survival in human diffuse large B cell lymphomas. Oncotarget. 2016;13:59158-59172.

27. Wang W-G, Jiang X-N, Liu Z-B, Zhou X-Y, Li X-Q. MYC protein-positive diffuse large B-Cell lymphoma features an activated B-cell receptor signal pathway. Am J Surg Pathol. 2017;41:541-549.

28. Muris J, Meijer C, Vos W, et al. Immunohistochemical profiling based on Bcl-2, CD10 and MUM1 expression improves risk stratification in patients with primary nodal diffuse large B cell lymphoma. J Pathol. 2006;208:714-723.

29. Yao SU, Xu F, Chen YU, et al. Fbw7 regulates apoptosis in activated B-cell like diffuse large B-cell lymphoma by targeting Stat3 for ubiquitylation and degradation. J Exp Clin Cancer Res. 2017;10:10.

30. Carreras J, Kikuti YY, Beà S, et al. Clinicopathological characteristics and genomic profile of primary sinonasal tract diffuse large B cell lymphoma (DLBCL) reveals gain at 1q31 and RGS1 encoding protein; high RGS1 immunohistochemical expression associates with poor overall survival in DLBCL not otherwise specified (NOS). Histopathology. 2017;70:595-621.

31. Koresawa R, Yamazaki K, Oka D, et al. Sphingosine-1-phosphate receptor 1 as a prognostic biomarker and therapeutic target for patients with primary testicular diffuse large B-cell lymphoma. Br J Haematol. 2016;174:264-274.

32. Ma X-B, Zheng Y, Yuan H-P, Jiang J, Wang Y-P. CD43 expression in diffuse large B-cell lymphoma, not otherwise specified: CD43 is a marker of adverse prognosis. Hum Pathol. 2015;46:593-599.

33. Makino K, Nakamura H, Shinojima N, et al. BCL2 expression is associated with a poor prognosis independent of cellular origin in primary central nervous system diffuse large B-cell lymphoma. J Neurooncol. 2018;140:115-121.

34. Laursen MB, Reinholdtz L, Schönherz AA, et al. CXCR4 expression impairs rituximab response and the prognosis of R-CHOP-treated diffuse large B-cell lymphoma patients. Oncotarget. 2019;22:717-731.

35. Unterluggauer JJ, Prochazka K, Tomazic PV, et al. Expression profile of translation initiation factor eIF2B5 in diffuse large B-cell lymphoma and its correlation to clinical outcome. Blood Cancer J. 2018;8:79.

36. Mohamed G, Talima S, Li L, et al. Low expression and promoter hypermethylation of the tumour suppressor SLIT2, are associated with adverse patient outcomes in diffuse large B-cell lymphoma. Pathol Oncol Res. 2019;25:1223-1231.

37. Ohwada C, Yamazaki A, Kawaguchi T, et al. Serum soluble LR11, a novel tumor derived biomarker associated with the outcome of patients with diffuse large B-cell lymphoma. Leuk Lymphoma. 2015;56:2982-2985.

38. Jespersen DS, Schönherz AA, Due H, Bogsted M, Sondergaard TE, Dybkær K. Expression of NOTCH3 exon 16 differentiates diffuse large B-cell lymphoma into molecular subtypes and is associated with prognosis. Sci Rep. 2019;9:33:335.

39. Ruido C, Ying D, Qiwei W. CXCL9 promotes the progression of diffuse large B-cell lymphoma through up-regulating β-catenin. Biomed Pharmacother. 2018;107:689-695.

40. Vase MØ, Maksten EF, Bendix K, et al. Occurrence and prognostic relevance of CD30 expression in post-transplant lymphoproliferative disorders. Leuk Lymphoma. 2015;56:1677-1685.

41. Zhong W, Xu X, Zhu Z, et al. Increased expression of IRF8 in tumor cells inhibits the generation of Th17 cells and predicts unfavorable survival of diffuse large B cell lymphoma patients. Oncotarget. 2017;25:49757-49772.

42. Tzankov A, Leu N, Muenst S, et al. Multiparameter analysis of homogeneously R-CHOP-treated diffuse large B cell lymphomas identifies CD5 and FOXP1 as relevant prognostic biomarkers: report of the prospective SAKK 38/07 study. J Hematol Oncol. 2015;8:70.

43. Flori M, Schmid CA, Sumrall ET, et al. The hematopoietic oncoprotein FOXP1 promotes tumor cell survival in diffuse large B-cell lymphoma by repressing S1PR2 signaling. Blood. 2016;127:1438-1448.

44. Loo SK, Ch’ng ES, Lawrie CH, et al. DMNT1 is predictive of survival and associated with Ki-67 expression in R-CHOP-treated diffuse large B-cell lymphomas. Pathology. 2017;49:731-739.

45. Chen J, Xu-Monette ZY, Deng L, et al. Dysregulated CXCR4 expression promotes lymphoma cell survival and independently predicts disease progression in germinal center B-cell-like diffuse large B-cell lymphoma. Oncotarget. 2015;6:5397-5614.

46. Johnson NA, Slack GW, Savage KJ, et al. Concurrent expression of MYC and BCL2 in diffuse large B-cell lymphoma treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone. J Clin Oncol. 2012;30:3452-3459.

47. Xu-Monette ZY, Wu L, Visco C, et al. Mutational profile and prognostic significance of TP53 in diffuse large B-cell lymphoma patients treated with R-CHOP: report from an International DLBCL Rituximab-CHOP Program Study. Blood. 2012;120:3986-3996.

48. Wang X, Cao X, Sun R, et al. Clinical significance of PTEN deletion, mutation, and loss of PTEN expression in de novo diffuse large B-Cell lymphoma. Neoplasia. 2018;20:574-593.

49. Anaya J. OncoLnc: linking TCGA survival data to mRNAs, miRNAs, and IncRNAs. PeerJ Computer Science. 2016;2:e67.

50. Szász AM, Lánclzy A, Nagy Á, et al. Cross-validation of survival associated biomarkers in gastric cancer using transcriptomic data of 1,065 patients. Oncotarget. 2016;7:49322-49333.

51. Győrfy B, Surowiak P, Budczies J, Lánclzy A. Online survival analysis software to assess the prognostic value of biomarkers using transcriptomic data in Non-Small-Cell Lung Cancer. PLoS ONE. 2013;8:e82241.

52. Győrfy B, Lánclzy A, Szállási Z, et al. Implementing an online consensus survival analysis tool for genome-wide validation of survival-associated biomarkers in ovarian-cancer using microarray data from 1287 patients. Endocr Relat Cancer. 2012;19:197-208.

53. Chandrashekar DS, Bashel B, Balasubramanya SAH, et al. UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia. 2017;19:649-658.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section.

How to cite this article: Dong H, Wang Q, Zhang G, et al. Osdlbcl: An online consensus survival analysis web server based on gene expression profiles of diffuse large B-cell lymphoma. Cancer Med. 2020;9:1790–1797. https://doi.org/10.1002/cam4.2829