Synthesis of Novel pyrimido[4,5-b]quinoline-4-one Derivatives and Assessment as Antimicrobial and Antioxidant Agents

Usama Fathy1,*, Rasha S. Gouhar2, Ahmed Younis3, Dina H. El-Ghonemy4

ABSTRACT

Objective: Antimicrobial resistance has emerged as one of the serious global health problems of the 21st century that threatens the efficient treatment and prevention of an ever-increasing range of infections caused by bacteria, viruses, and fungi. Therefore, it would be favorable to find promising agents with antioxidant and antimicrobial activity combined in one molecule. Key findings: Pyrimido[4,5-b] quinolines are biologically active compounds that are known to rely primarily on the functional group’s existence and location. Quinolinobenzono[1,3]oxazin-4-one (3) was prepared and played as electrophilic interface/mediator for the synthesis of many compounds, such as pyrimido[4,5-b]quinoline, quinoline-carboxamide and oxoquinazolin-acetamide by reacting with nucleophilic reagent. Summary: Results revealed that pyrimido[4,5-b] quinoline derivatives (17b, 9d and 9c) are the most potent compounds that displayed significant antimicrobial activity along with compounds 17a, 29b, 5, 19, 23b, and 25b that appeared to be more promising as antioxidant agents than ascorbic acid. Key words: Quinoline, Benzoazinones, Pyrimidoquinolin, Antimicrobial agent, Antioxidant agent.

INTRODUCTION

The compounds based on scaffold of quinolines have been reported to possess a wide range of pharmaceutical properties1-7. Several structures based on quinoline have proved effective inhibitors of important proteins from microbial pathogens8. The modified classes of compounds based on quinolines have been studied recently for their antimicrobial9-10. Quinoline-carboxamide I, II, III were reported as the most potent EGFR inhibitors with IC50 2.6, 0.49 and 1.73 mM, respectively11. Iminosugar/Azasugars fused benzo [1,3]thiazin-4-one exhibited significant HIV-RT inhibitory activities12-13 (Figure 1).

Pyrimido[4,5-b]quinolin-4-ones were reported as analgesic, anti-inflammatory, and antimicrobial14 antioxidantmitotic agents and cytotoxic activity15. Pyrrolidine-2,5-dione showed antioxidant, antidiabetic activity16 analgesic and antialdolysmic activity17.

Benzoazinones which are widely used in pharmaceutics have a wide range of pharmaceutical activities for example, niphlogistic, anti fungal, antibacterial18, anti-human coronavirus19, inhibitor of human leucocyte elastase, anti-cathespin G, complement protein receptor blocker20 and chymotrypsin antagonist21. Benzo[1,3]oxazin-4-ones (IV) showed high significant against DNA-PK, PI3K, PDE3A enzymes and platelet aggregation22. Benzoazinones IV have showed antioxidant and anticancer activity23. Based on that, we decided to complete the work on pyrimido[4,5-b]quinoline and synthesis of benzo[d][1,3]oxazin-4-one as stating material for new compounds and evaluating their antioxidant and antimicrobial activity.

MATERIALS AND METHODS

 Equipments

All melting points are uncorrected and were taken on open capillary tubes using electropherical apparatus 9100. Elemental micro analyses were carried out at microanalytical unit, Central Services Laboratory, National Research Centre, Dokki, Cairo-Egypt, using Vario Elementar and were found within + or -0.3% of the theoretical values. Infrared spectra were recorded on a Jasco FT/IR-6100, Fourier Transform Infrared Spectrometer at cm-1 scale using KBr disc technique at the Central Services Lab. NRC, Dokki, Cairo, Egypt. 1HNMR spectra were determined by using a JEOL EX-270 NMR Spectrometer.

Chemistry synthesis

Synthesis of 2-(10-cyclohexyl-5-(3,4-dimethoxyphenyl)-4-oxo-3,4,5,6,7,8,9,10-octahydro pyrimido[4,5-b]quinolin-2-yl)-4H-benzo[d][1,3] oxazin-4-one (3)

To a solution of anthranilic acid (1.371 g, 0.01 mole) in dry pyridine (30 mL), 10-cyclohexyl-5-(3,4-dimethoxyphenyl)-4-oxo-3,4,5,6,7,8,9,10-
octahydropyrimido[4,5-b]quinoline-2-carbonyl chloride (1) (0.02 mole) was added portion wise with stirring at room temperature for 12 hrs. The reaction mixture was poured onto cold water (100 mL) and the precipitated solid was filtered off, washed with cold water, dried and recrystallized from ethanol to give benzod[1,3]azin-4-one derivative 3.

Yellow crystals; Yield 60%; m.p. 123–124 °C; IR (KBr, cm⁻¹): 3450 (NH), 1745 (C=O), 1715 (C=O), 1654, 1680 (C=N), 1243 (aryl ethers); 1 H-NMR (500 MHz, DMSO-d⁶, δ ppm): (relative abundance, %)): 566 (M + , 30); Anal. Calcd. for C₃₉ H₄₁ N₆ O₅: C, 70.07; H, 6.24; N, 19.8; Found: C, 69.42; H, 6.27; N, 12.45; S, 5.5.

Synthesis of N-(2-((2-aminophenyl)carbamoyl)phenyl)-10-cyclohexyl-5-(3,4-dimethoxyphenyl)-4-oxo-3,4,5,6,7,8,9,10-octahydropyrimido[4,5-b]quinolin-4(3H)-one (5)

A mixture of benzoxazinone 3 (3.93 g, 0.01 mole) and CH₃ COONH₄ (2.68 g, 0.01 mole) was fused in an oil bath. The reaction mixture was left to cool, washed with water several times, filtered off, dried and recrystallized from ethanol to give 5.

Yellow crystals; Yield 45%; m.p. 114–115 °C; IR (KBr, cm⁻¹): 3440, 3337 (NH), 1729, 1715 (C=O), 1637, 1624 (C=N), 1290 (OMe); 1 H-NMR (500 MHz, DMSO-d⁶, δ ppm): 1.45 (m, 2H, CH₂), 1.75-2.20 (q, 4H, 2CH₂), 1.82 (m, 2H, CH₂), 2.50 (m, 1H, CH), 3.72 (s, 3H, OCH₃), 3.80 (s, 3H, OCH₃), 4.40 (s, 1H, CH), 6.61-6.85 (m, 3H, Ar-H), 7.21-8.42 (d, 4H, Ar-H), 10.50 (s, 1H, NH); MS (m/z, relative abundance, %)): 566 (M⁺, 30); Anal. Calcld. for CₙH₁ₙN₂O₅: C, 69.95; H, 6.05; N, 9.89; Found: C, 69.79; H, 6.02; N, 12.38.

Synthesis of 10-cyclohexyl-5-(3,4-dimethoxyphenyl)-2-(4-thioxo-4H-dihydroquinazolin-2-yl)-5,6,7,8,9,10-hexahydropyrimido[4,5-b]quinolin-4(3H)-one (6)

A mixture of benzoxazinone 3 (3.93 g, 0.01 mole) and P₂S₅ (8.9 g, 0.02 mole) in dry xylene (40 mL) was refluxed for 8 h. The reaction mixture was filtered off while hot, concentrated and the solid that separated on cooling was washed with petroleum ether (b.p. 80-100°), then recrystallized from ethanol to give 6.

Yellow crystals; Yield: 53%; m.p. 146–148 °C; IR (KBr, cm⁻¹): 3398 (NH), 1725 (C=O), 1646, 1633 (C=NH), 1121 (OMe), 1150 (C=S); 1 H-NMR (500 MHz, DMSO-d⁶, δ ppm): 1.45 (m, 2H, CH₂), 1.50-1.81 (m, 4H, 2CH₂), 1.52 (t, 2H, CH₂), 2.50 (m, 1H, CH), 3.78 (s, 3H, OCH₃), 3.80 (s, 3H, OCH₃), 4.20 (s, 1H, NH), 4.40 (s, 1H, CH), 5.50 (s, 1H, NH), 6.61-7.89 (m, 11H, Ar-H), 9.30 (s, 1H, NH), 10.10 (s, 1H, NH), 11.05 (s, 1H, NH); MS (m/z, relative abundance, %)): 674 (M⁺, 35); Anal. Calcld. for CₙH₁₅N₂O₅: C, 69.42; H, 6.27; N, 12.45; Found: C, 69.20; H, 5.79; N, 12.28.

Synthesis of 10-cyclohexyl-5-(3,4-dimethoxyphenyl)-2-(4-oxo-3,4-
Synthesis of compounds 9a-d

A solution of benzoazinone 2 (3.93 g, 0.01 mole) and amine derivatives namely, hydrazine hydrate, p-aminophenidine, 4-bromoaniline, or 4-aminoacetophenone (0.02 mole) in absolute EtOH (30 mL) was refluxed for 6 hours. The solid product that separated on cooling was filtered off, dried and recrystallized from ethanol to afford the quinazolinone derivative 9a-d.

2-(3-amino-4-oxo-3,4-dihydroquinazolin-2-yl)-10-cyclohexyl-5-(3,4-dimethoxyphenyl)-10-hexahydropyrimido[4,5-b]quinolin-4(3H)-one (9a)

Yellow crystals; Yield 63%; m.p. 109-110 °C; IR (KBr, cm⁻¹): 3500, 3477, 1748, 1728 (C=O), 1630, 1615 (C=N), 1220 (OMe); ¹H-NMR (500 MHz, DMSO-d₆, δ / ppm): 1.45 (m, 2H, CH₂), 1.50-1.81 (m, 4H, 2 CH₂), 1.52 (t, 2H, CH₃), 1.65 (m, 2H, CH₂), 1.74 (m, 2H, CH₂), 1.75-2.20 (q, 4H, 2CH₂), 1.82 (t, 2H, CH), 2.50 (m, 1H, CH), 3.78 (s, 3H, OCH₃), 3.80 (s, 3H, OCH₃), 4.40 (s, 1H, CH), 5.50 (s, 2H, NH), 6.61-7.70 (m, 7H, Ar-H), 11.30 (s, 1H, NH); MS (m/z, relative abundance, %): 580 (M⁺, 65); Anal. Calcd. for C₃₈H₃₈N₆O₄: C, 71.01; H, 5.96; N, 13.08; Found: C, 71.23; H, 5.98; N, 13.41.

Synthesis of 10-cyclohexyl-5-(3,4-dimethoxyphenyl)-2-(4-oxo-3-(pyridin-3-yl)-3,4-dihydro-quinazolin-2-yl)-5,6,7,8,9,10-hexahydropyrimido[4,5-b]quinolin-4(3H)-one (13)

Yellow crystals; Yield 38%; m.p. 136-137 °C; IR (KBr, cm⁻¹): 3477 (NH), 1740, 1733 (C=O), 1690, 1683, 1665 (C=N), 1258 (OMe); ¹H-NMR (500 MHz, DMSO-d₆, δ / ppm): 1.45 (m, 2H, CH₂), 1.50-1.81 (m, 4H, 2 CH₂), 1.52 (t, 2H, CH), 1.65 (m, 2H, CH₂), 1.74 (m, 2H, CH₂), 1.75-2.20 (q, 4H, 2CH₂), 1.82 (t, 2H, CH), 2.50 (m, 1H, CH), 3.78 (s, 3H, OCH₃), 3.81 (s, 3H, OCH₃), 4.20 (s, 1H, CH), 6.61-8.30 (m, 11H, Ar-H), 11.20 (s, 1H, NH); MS (m/z, relative abundance, %): 642 (M⁺, 55); Anal. Calcd. for C₃₈H₃₈N₆O₄: C, 71.01; H, 5.96; N, 13.08; Found: C, 71.23; H, 5.98; N, 13.41.

Synthesis of compounds 17a-d

To a solution of benzoazinone 3 (2.35 g, 0.006 mole) in EtOH (30 mL), NH₂OH.HCl (0.417 g, 0.006 mole) and CH₃COONa (0.49 g, 0.006 mole) dissolved in the least amount of water. The reaction mixture was refluxed for 8 h, cooled and then concentrated. The solid product was filtered off and recrystallized from ethanol to give 15b.

Yellowish brown crystals; Yield 65%; m.p. 122-123 °C; IR (KBr, cm⁻¹): 3633 (OH), 3392 (NH), 1738, 1725 (C=O), 1630, 1612 (C=N), 1251 (OMe); ¹H-NMR (500 MHz, DMSO-d₆, δ / ppm): 1.45 (m, 2H, CH₂), 1.50-1.81 (m, 4H, 2 CH₂), 1.52 (t, 2H, CH), 1.65 (m, 2H, CH₂), 1.74 (m, 2H, CH₂), 1.75-2.20 (q, 4H, 2CH₂), 1.82 (t, 2H, CH), 2.50 (m, 1H, CH), 3.78 (s, 3H, OCH₃), 3.81 (s, 3H, OCH₃), 4.20 (s, 1H, CH), 6.10 (s, 1H, OH), 7.90-8.50 (m, 7H, Ar-H), 10.89 (s, 1H, NH); MS (m/z, relative abundance, %): 581 (M⁺, 20); Anal. Calcd. for C₂₃H₁₈N₄O₂: C, 75.57; H, 5.37; N, 16.66; Found: C, 75.70; H, 5.46; N, 16.51.

To a solution of benzoazinone 3 (3.93 g, 0.01 mole) in absolute EtOH (30 mL) containing few drops of piperidine, appropriate aldehydes namely, p-methoxybenzaldehyde, p-fluorobenzaldehyde, p-nitrobenzaldehyde, or 2-thiophenecarboxaldehyde (0.01 mole) was added. The reaction mixture was refluxed for 5 h, concentrated and left to cool. The precipitated product was filtered off and recrystallized from ethanol to give 17a-d.

10-cyclohexyl-5-(3,4-dimethoxyphenyl)-2-(3-hydroxy-4-oxo-3,4-dihydro-quinazolin-2-yl)-5,6,7,8,9,10-hexahydropyrimido[4,5-b]quinolin-4(3H)-one (15)

To a solution of benzoazinone 3 (3.93 g, 0.01 mole) in absolute EtOH (30 mL) containing few drops of piperidine, appropriate aldehydes namely, p-methoxybenzaldehyde, p-fluorobenzaldehyde, p-nitrobenzaldehyde, or 2-thiophenecarboxaldehyde (0.01 mole) was added. The reaction mixture was refluxed for 5 h, concentrated and left to cool. The precipitated product was filtered off and recrystallized from ethanol to give 17a-d.
10-cyclohexyl-5-(3,4-dimethoxyphenyl)-2-(3-(4-fluorobenzylidene)amino)-4-oxo-3,4-dihydroquinazolin-2-yl)-5,6,7,8,9,10-hexahydropyrimidin-4(5H)-yl)amino)-4,4-dimethylpyrimidin-2(1H)-one (17b)

Yellow crystals; Yield 65%; m.p. 169-170 ºC; IR (KBr, cm⁻¹): 3501 (NH), 1730, 1721, 1718 (C=O), 1635, 1631 (C=N), 1225 (OMe); ¹H-NMR (500 MHz, DMSO-d₆, δ / ppm): 1.45 (m, 2H, CH₂), 1.50-1.81 (m, 4H, 2 CH₂), 1.52 (t, 2H, CH), 1.65 (2m, 2H, CH), 1.74 (m, 2H, CH), 1.75-2.20 (q, 4H, 2CH₂), 1.82 (t, 2H, CH), 2.50 (m, 1H, CH), 3.77 (s, 3H, OCH₃), 3.80 (s, 3H, OCH₃), 4.11 (s, 1H, CH=N), 4.40 (s, 1H, CH), 7.20-7.75 (m, 11H, Ar-H), 11.20 (s, 1H, NH); MS (m/z, relative abundance, %): 686 (M⁺, 45); Anal. Calcd. for C₄₁H₄₂N₆O₅: C, 70.69; H, 6.56; N, 10.54; Found: C, 71.83; H, 5.30; N, 10.54.

4-chloro-N-(4-chlorobenzoyl)-N-(4-(2-(10-cyclohexyl-5-(3,4-dimethoxyphenyl)-4-oxo-3,4,5,6,7,8,9,10-octahydropyrimido[4,5-b]quinolin-2-yl)-4-oxoquinazolin-3(4H)-yl)benzamide (21b)

Yellow crystals; Yield 50%; m.p. 129-130 ºC; IR (KBr, cm⁻¹): 3501 (NH), 1744, 1727, 1720, 1718 (C=O), 1650, 1635 (C=N), 1225 (OMe), 750 (C-Cl); ¹H-NMR (500 MHz, DMSO-d₆, δ / ppm): 1.45 (m, 2H, CH₂), 1.50-1.81 (m, 4H, 2 CH₂), 1.52 (t, 2H, CH), 1.65 (2m, 2H, CH), 1.74 (m, 2H, CH), 1.75-2.20 (q, 4H, 2CH₂), 1.82 (t, 2H, CH), 2.50 (m, 1H, CH), 3.76 (s, 3H, OCH₃), 3.80 (s, 3H, OCH₃), 4.40 (s, 1H, CH), 6.61-8.20 (m, 17H, Ar-H), 11.20 (s, 1H, NH); MS (m/z, relative abundance, %): 857 (M⁺, 20); Anal. Calcd. for C₄₇H₄₄Cl₂N₆O₆: C, 71.56; H, 5.62; N, 10.65; Found: C, 71.83; H, 5.30; N, 10.54.

Synthesis of 23a,b

A mixture of quinazolinone 7a (0.01 mole) and maleic anhydride or phthalic anhydride (0.01 mole) was fused in an oil bath at 6 hrs. The reaction mixture was triturated with ice/HCl. The solid product was filtered off, washed with water several times, dried and then recrystallized from ethanol affording 23a,b.

1-(2-(10-cyclohexyl-5-(3,4-dimethoxyphenyl)-4-oxo-3,4,5,6,7,8,9,10-octahydropyrimido[4,5-b]quinolin-2-yl)-4-oxoquinazolin-3(4H)-yl)pyrrole-2,5-dione (23a)

Yellow crystals; Yield 52%; m.p. 143-145 ºC; IR (KBr, cm⁻¹): 3444 (NH), 1745, 1730, 1722, 1715 (C=O), 1630, 1617 (C=N), 1217 (OMe); ¹H-NMR (500 MHz, DMSO-d₆, δ / ppm): 1.45 (m, 2H, CH₂), 1.50-1.81 (m, 4H, 2 CH₂), 1.52 (t, 2H, CH), 1.65 (2m, 2H, CH), 1.74 (m, 2H, CH), 1.75-2.20 (q, 4H, 2CH₂), 1.82 (t, 2H, CH), 2.50 (m, 1H, CH), 3.77 (s, 3H, OCH₃), 3.80 (s, 3H, OCH₃), 4.40 (s, 1H, CH), 5.30 (dd, 2H, CH=CH), 6.61-7.90 (m, 7H, Ar-H), 11.20 (s, 1H, NH); MS (m/z, relative abundance, %): 660 (M⁺, 60); Anal. Calcd. for C₄₇H₄₆N₆O₆: C, 70.69; H, 5.49; N, 12.72; Found: C, 70.56; H, 5.30; N, 12.91.

2-(2-(10-cyclohexyl-5-(3,4-dimethoxyphenyl)-4-oxo-3,4,5,6,7,8,9,10-octahydropyrimido[4,5-b]quinolin-2-yl)-4-oxoquinazolin-3(4H)-yl)isodoline-1,3-dione (23b)

Yellow crystals; Yield 65%; m.p. 162-163 ºC; IR (KBr, cm⁻¹): 3443 (NH), 1739, 1725, 1720, 1710 (C=O), 1650, 1644 (C=N), 1217 (OMe); ¹H-NMR (500 MHz, DMSO-d₆, δ / ppm): 1.45 (m, 2H, CH₂), 1.50-1.81 (m, 4H, 2 CH₂), 1.52 (t, 2H, CH), 1.65 (2m, 2H, CH), 1.74 (m, 2H, CH), 1.75-2.20 (q, 4H, 2CH₂), 1.82 (t, 2H, CH), 2.50 (m, 1H, CH), 3.77 (s, 3H, OCH₃), 3.80 (s, 3H, OCH₃), 4.40 (s, 1H, CH), 5.70-7.90 (m, 11H, Ar-H), 11.05 (s, 1H, NH); MS (m/z, relative abundance, %): 710 (M⁺, 55); Anal. Calcd. for C₄₇H₄₆N₆O₆: C, 70.28; H, 5.39; N, 11.82; Found: C, 69.46; H, 5.71; N, 11.38.
Synthesis of compound 25a,b

A mixture of 17a,b (0.01 mole), chloroacetyl chloride (1.13 g, 0.01 mole) and triethyl amine (5 drops) in dry dioxane (30 mL) was heated under reflux for 8 hours. The solid product that separated on cooling was filtered off, dried and recrystallized from ethanol to give 25a,b.

2-(3-(3-chloro-2-(4-fluorophenyl)-4-oxoazetidin-1-yl)-4-oxo-3,4-dihydro-quinazolin-2-yl)-10-cyclohexyl-5-(3,4-dimethoxyphenyl)-5,6,7,8,9,10-hexahydropyrimido[4,5-b]quinolin-4(3H)-one (25a)

Yellow crystals; Yield 60%; m.p. 156-158 °C; IR (KBr, cm⁻¹): 3444 (NH), 1750, 1738, 1720 (C=O), 1644, 1620 (C=N), 1521 (CH, thiazole), 10.98 (s, 1H, NH); MS (m/z, (relative abundance, %)): 760 (M⁺, 35); Anal. Calcd. for C₄₂ H₄₁F N₆ O₅ S: C, 66.30; H, 5.43; N, 11.05; Found: C, 66.16; H, 5.46; N, 11.28.

2-(3-(2-(10-cyclohexyl-5-(3,4-dimethoxyphenyl)-4-oxo-3,4,5,6,7,8,9,10-octahydro-pyrimido[4,5-b]quinolin-2-yl)-4-oxoquinazolin-3(4H)-yl)-2-(4-fluorophenyl)-2H-benzo[e][1,3]thiazin-4(3H)-one (29a)

Yellow brown crystals; Yield 68%; m.p. 150-151 °C; IR (KBr, cm⁻¹): 3396 (NH), 1740, 1735, 1720 (C=O), 1690, 1650 (C=N), 1219 (O=O); 1'H-NMR (500 MHz, DMSO-d₆, δ / ppm): 1.45 (m, 2H, CH₂), 1.50-1.81 (m, 4H, 2 CH₂), 1.75-2.20 (q, 4H, 2 CH₂), 1.82 (t, 2H, CH₂), 2.50 (m, 1H, CH), 2.72 (s, 3H, OCH₃), 2.90 (d, 1H, CH), 3.50 (s, 1H, CH-Cl), 4.10 (s, 6H, 2 OCH₃), 4.40 (s, 1H, CH₂), 6.20 (s, 1H, NH), 6.98-7.90 (m, 11H, Ar-H); MS (m/z, (relative abundance, %)): 777 (M⁺, 15); Anal. Calcd. for C₂₃H₂₃ClFN₃O₅: C, 66.31; H, 5.59; N, 10.84; Found: C, 66.34; H, 5.37; N, 10.85.

Synthesis of 27a,b and 29a,b

A mixture of compound 17a,b (4.95 g, 0.01 mole) and thioglycolic acid (28) (0.01 mole) in dry benzene (20mL) was added drop wise with stirring at room temperature for 1 hour. The reaction mixture was heated under reflux for 6 hours, cooled and the precipitated product was filtered off and recrystallized from ethanol to give the desired products 27a,b and 29a,b respectively.

2-(3-(10-cyclohexyl-5-(3,4-dimethoxyphenyl)-4-oxo-3,4,5,6,7,8,9,10-octahydro-pyrimido[4,5-b]quinolin-2-yl)-4-oxoquinazolin-3(4H)-yl)-2-(4-fluorophenyl)-2H-benzo[e][1,3]thiazin-4(3H)-one (29b)

Yellow crystals; Yield 53%; m.p. 115-116 °C; IR (KBr, cm⁻¹): 3396 (NH), 1740, 1735, 1720 (C=O), 1690, 1650 (C=N), 1219 (O=O); 1'H-NMR (500 MHz, DMSO-d₆, δ / ppm): 1.45 (m, 2H, CH₂), 1.50-1.81 (m, 4H, 2 CH₂), 1.75-2.20 (q, 4H, 2 CH₂), 1.82 (t, 2H, CH₂), 2.50 (m, 1H, CH), 2.90 (d, 1H, CH), 3.50 (d, 1H, CH-Cl), 3.78 (s, 3H, OCH₃), 3.80 (s, 3H, OCH₃), 3.82 (s, 3H, OCH₃), 4.40 (s, 1H, CH₂), 6.98-7.90 (m, 11H, Ar-H), 10.95 (s, 1H, NH); MS (m/z, (relative abundance, %)): 763 (M⁺, 40); Anal. Calcd. for C₂₃H₂₃FN₃O₅: C, 68.60; H, 5.27; N, 10.21; Found: C, 68.10; H, 5.23; N, 10.02.

Biological activity

Test microorganisms

Standard strains used to evaluate antimicrobial activity; Gram positive bacteria; (Bacillus subtilis ATCC 6633 and Staphylococcus aureus ATCC 6538-P), Gram negative bacteria (Pseudomonas aeruginosa ATCC 27853 and Bordetella pertussis 6538-P), Gram negative bacteria (Escherichia coli); and fungi (Aspergillus niger NRRL A-326 and Trichoderma viride ATCC 9797). Yeasts; (Saccharomyces cervesiae ATCC 10231 and Candida albicans ATCC 10231 and Saccharomyces cerevisiae) and fungii (Aspergillus niger NRRL A-326 and Trichoderma viride NRC 314) were obtained from culture collection stocks maintained in the Department of Microbial Chemistry, National Research Centre, Egypt. Bacteria were maintained at 4 °C on nutrient agar slants containing (g/L): beef extract, 3; peptone, 5; and agar (SDA) and Potato dextrose agar (PDA) media, respectively.

Antimicrobial activity

The antimicrobial activity of each chemical compound was investigated in vitro by the Department of Microbial Chemistry, National Research Centre using the agar well diffusion method (WDM) recommended by the Clinical and Laboratories Standards Institute (CLSI) to measure the in vitro susceptibility of bacteria to antimicrobial agents used in clinical settings. The accuracy of this test depends on the maintenance of standard procedures. In the present study, a stock solution containing 20 mg/mL in DMSO is prepared for each chemical compound. Dispense nutrient agar seeded with 1.5 x 10⁶ CFU/mL of each bacterial strain, DSA seeded with 2.0 x 10⁶ CFU/mL of each yeast and PDA seeded with 2.0 x 10⁶ CFU/mL for each fungal strain (cooled below 45 °C) into sterile Petri dishes, give a depth of 4 mm (~20 mL in Petri dish of 85 mm in diameter). Allow the agar to set before moving the plates. Agar
wells of diameter 8 mm were made in the agar plates with the help of a sterilized cork borer. Wells were loaded with 100 μL (20 mg/mL) of tested compound solutions and controls under aseptic condition. These plates were sealed with parafilm and kept in the refrigerator for 4 h at 5 °C for the complete diffusion of antimicrobial compounds, if any.

Thereafter, the sealed plates were incubated upright at 35 °C for 18-24 h for bacteria and yeasts, and 48-72 h at 28 °C for fungi. Positive control experiments were conducted under similar conditions using cefoxime (20 mg/mL), Ketonazole (20 mg/mL) and cyclosporine (10 mg/mL) as standard drugs for antibacterial and antifungal activity, respectively. Similarly, 10 μL DMSO was used as a negative control.

After the incubation period, antimicrobial activity was evaluated by measuring the diameter of inhibition zone in millimeters (mm) and compared to that of the standard (Positive controls). Inhibition zones with a diameter ≥ 16 mm were considered to have antimicrobial activity for further quantitative tests of their activity. The experiment was performed in triplicate and the average inhibition zone was calculated.

Determination of minimal inhibitory concentration (MIC)

In microbiology, the minimum inhibitory concentration (MIC) endpoints were defined as the lowest concentration of the assayed antimicrobial agent, which resulted in a 100% reduction in growth compared to the antimicrobial agent-free growth control test.23 The bacteriostatic activity of the active chemical compounds (with inhibition zones ≥ 16 mm) was evaluated using a two-fold serial dilution technique. Two-fold serial dilutions of the tested compound solutions were prepared using the proper nutrient broth. The final concentrations of the solutions were 25, 50, 75, 100, 150, 200 and 300 μg/mL. Each 5.0 mL received 0.1 mL of inoculums and incubated at 37 °C for 24 h for bacteria and yeasts, and 48 h at 28 °C for fungi. Tests were performed in triplicate and the average inhibition zone was calculated.

Antioxidant activity of chemical compounds

Evaluation of antioxidant activity using the DPPH radical scavenging method

The percentage of antioxidant activity of each chemical compound was measured by the Department of Microbial Chemistry, National Research Centre using the 1,1-Diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay. This assay is based on the measurement of the ability of antioxidants to reduce DPPH by measuring the decrease in its absorption wavelength at 515–520 nm. DPPH reacts with hydrogen/electron donor compounds and has a maximum UV–Vis absorption of 515–517 nm. Each 10 μL of freshly prepared DPPH radical solution (0.5 mM in ethanol). The reaction mixture consisted of 50 μL of each chemical compound dissolved in dimethyl sulfoxide (DMSO), as well as the reference standard ascorbic acid and the volume was made uniform to 150 μL using ethanol, 3 mL of absolute ethanol and 150 μL of freshly prepared DPPH radical solution (0.5 mM in ethanol). The mixtures were shaken vigorously and left to stand in the dark for 30 min at room temperature, and the absorbance was measured at 517 nm in Cary-100 UV–Vis spectrophotometer (Agilent Technologies, Frankfurt, Germany) using ethanol as a blank. Control reactions were performed without the test sample (i.e. 150 μL of DPPH + 3.0 mL ethanol). The experiment was carried out in triplicate for each chemical compound. Radical scavenging capacity was expressed as a percentage (%) and was calculated using the following formula:

\[
\text{Radical scavenging activity (\%)} = \frac{(\text{Abs control} - \text{Abs sample}) \times 100}{\text{Abs control}}
\]

The antioxidant activity of each chemical compound and ascorbic acid was expressed as EC50, (the effective micromolar concentration required to scavenge 50% of DPPH radicals) is a typically employed parameter to express the antioxidant capacity and to compare the activity of different compounds (Table 1). It is worth note that EDTA was added to prevent ascorbic acid oxidation.

RESULTS AND DISCUSSION

Chemistry

Compound 1 was synthesized previously by the author.24 In scheme 1, anthranilic acid (2) reacted with excess of acid chloride derivatives (1) in presence of dry pyridine to afford quinolin-oxazin-4-one derivative (3). IR spectrum of compound 3 demonstrated two bands of C=O and NH at 1715, 1745 and 3450 cm⁻¹, respectively (Scheme 1). 1H-NMR of 3 showed singlet tow OCH3 and NH signals occurring at 3.72, 8.30 and 10.5 ppm, respectively. Compound 3 play as electrophilic intermediate key for the synthesis of interest pharmaceutical derivatives.

In scheme 2, also, the compound 3 refluxed with compound 4 in absolute EtOH to afford carboxamidine compounds (5). IR of compound 5 revealed 3 groups C=O at 1770, 1750, 1745 and two NH, and only one NH. (Scheme 2). 1H-NMR of 5 revealed NH at 5.5 ppm. Moreover, compound 3 refluxed with CH3COONH4 afford quinazolin-4(3H)-one (6). Moreover, in dry xylene/toluene compound 3 refluxed with P2S5 to afford thiazin-4-one (7). Where elemental analysis of 7 revealed S 4.48%.

In scheme 3, compound 3 allowed to react with a series of primary heterocyclic amines and hydrazine hydrate (8a-d) to afford potent antifungal activity against Trichoderma viride that produced the most potent inhibitory activity against the growth of the strains tested. The MIC of compound 17b was equivalent to that of all heterocyclic amines and hydrazine hydrate (8a-d) to afford potent antifungal activity (Table 1). In scheme 4, The nucleophilic amino group of compound 9a condensed with series of aldehydes (16a-d) in presence of piperidine to afford benzylidene-quinazoline (17a-d). Also, 9a refluxed in dry pyridine with CH3COCl or phCOCl to afford 19, 21a, b, respectively (Scheme 4). In addition to, 9a fused with succinic anhydride and phthalic anhydride (22a, b) to yield the corresponding compounds 23a, b.

In last scheme 5, hexahydropyrimidine[4,5-b]quinolin was prepared by refluxing of compound 17a, b with CH3COCl in EtOH in presence of Et3N to afford compounds 25a, b. In addition to, compound 17a, b refluxed with thioglycolic acid or thiosalicic acid in dry benzene to yield new thiazolin-4-one 27a, b and thiazin-one 29a, b, respectively.

Biological activity

In vitro antimicrobial Screening

The newly synthesized compounds were evaluated as antimicrobial agents. It was observed that from Table 1 and 2, the compound 17b produced the most potent inhibitory activity against the growth of the strains tested. The MIC of compound 17b was equivalent to that of all standard drugs used (25-50 μg/mL). Interestingly, the compound 17b produced potent antifungal activity against Trichoderma viride that is greater than the Cyclosporine reference drug (MIC Cyclosporine: 50μg/mL, MIC compound 17b; 25μg/mL).
Table 1: Antimicrobial activity of based on well diffusion method (100 µL = 2000 µg).

Compound	Staphylococcus aureus ATCC 6538-P	Bacillus subtilis ATCC 6633	Pseudomonas aeruginosa ATCC 27853	Bordetella pertussis	Candida albicans ATCC- 10231	Saccharomyces cerevisiae	Aspergillus niger NRRL A-326	Trichoderma viride NRC 314
3	R	R	R	R	R	R	R	R
5	R	R	R	R	R	R	R	R
6	R	R	R	20	18	R	R	R
7	R	R	R	13	14	R	R	R
9a	R	R	R	21	20	R	R	R
9b	R	R	R	22	25	R	R	R
9c	23	25	18	16	25	26	R	R
9d	31	33	32	30	27	30	28	31
11	R	R	R	R	R	R	R	R
13	R	R	R	12	25	20	R	R
15	R	16	22	25	27	25	24	30
17a	R	R	R	21	20	R	R	R
17b	36	35	33	37	29	33	34	35
17c	23	30	14	16	20	16	R	R
17d	R	R	R	R	R	R	R	R
19	20	23	16	18	20	17	R	R
21a	R	R	R	15	12	R	R	R
21b	R	12	R	R	13	R	R	R
23a	11	15	22	24	20	20	R	R
23b	R	14	15	22	20	20	R	R
25a	R	R	R	20	17	R	R	R
25b	R	12	18	20	22	20	R	R
27a	R	R	R	20	16	16	R	R
27b	R	R	R	12	16	16	R	R
29a	12	13	12	24	20	20	R	R
29b	16	14	17	19	31	26	R	R
Negative Control	R	R	R	R	R	R	R	R
Cefaxone	38	36	34	39	NT	NT	NT	NT
Ketoconazole	NT	NT	NT	NT	NT	NT	NT	NT

R = Resistant. NT = Not tested.

Scheme 1: Synthesis of quinoline-oxazin-4-one derivative.
Scheme 2: Synthesis of quinazoline-carboxamide and thiazine derivatives.

Scheme 3: Synthesis of pyridine-quinazolin and hydroxyquinazolin.
Scheme 4: Synthesis of 4-oxoquinazolin derivatives.

Scheme 5: Synthesis of thiazolidin and thiazin derivatives.
Table 2: MIC (µg/mL) against the pathological strains based on two folds serial dilution technique.

Compound	Staphylococcus aureus ATCC 6538-P	Bacillus subtilis ATCC 6633	Pseudomonas aeruginosa ATCC 27853	Bordetella pertussis ATCC 9797	Candida albicans ATCC 10231	Saccharomyces cerevisiae	Aspergillus niger NRRL A-326	Trichoderma viride NRC 314
3	NT	NT	NT	NT	NT	NT	NT	NT
5	NT	NT	NT	NT	NT	NT	NT	NT
6	NT	NT	NT	NT	100	150	NT	NT
7	NT	NT	NT	NT	NT	NT	NT	NT
9a	NT	NT	NT	NT	NT	NT	NT	NT
9b	NT	NT	NT	NT	100	NT	NT	NT
9c	75	75	200	300	75	50	NT	NT
9d	50	50	50	50	50	50	75	50
11	NT	NT	NT	NT	NT	NT	NT	NT
13	NT	NT	NT	NT	100	150	NT	NT
15	NT	NT	NT	NT	100	150	NT	NT
17a	NT	NT	NT	NT	100	150	NT	NT
17b	50	25	25	50	25	25	25	25
17c	NT	NT	NT	NT	NT	NT	NT	NT
17d	NT	NT	NT	NT	NT	NT	NT	NT
19	100	75	300	200	150	200	NT	NT
21a	NT	NT	NT	NT	NT	NT	NT	NT
21b	NT	NT	NT	NT	NT	NT	NT	NT
23a	NT	NT	100	200	200	200	NT	NT
23b	NT	NT	NT	NT	100	200	NT	NT
25a	NT	NT	NT	NT	200	300	NT	NT
25b	NT	NT	200	100	100	200	NT	NT
27a	NT	NT	NT	NT	200	NT	NT	NT
27b	NT	NT	NT	NT	200	NT	NT	NT
29a	NT	NT	NT	NT	75	200	NT	NT
29b	300	NT	300	200	50	75	NT	NT
Cefaxone	25	25	25	25	NT	NT	NT	NT
Ketoconazole	NT	NT	NT	NT	50	25	NT	NT
Cyclosporine	NT	NT	NT	NT	NT	NT	25	50

NT = Not tested.

Figure 2: EC50 (µg/mL) of the synthesized compounds.
Table 3: EC₅₀ for DPPH inhibition of chemical compounds.

Chemical compound	EC₅₀ (µg/mL)
3	100
5	15
6	60
7	75
9a	45
9b	25
9c	90
9d	45
11	25
13	70
15	35
17a	10
17b	70
17c	40
17d	35
19	15
21a	40
21b	NA
23a	NA
23b	20
25a	45
25b	20
27a	35
27b	25
29a	35
29b	10
Ascorbic acid (Control)	55

NA= Not active.

Antioxidant activity

The compounds were evaluated as antioxidant agents and compared with reference drug (ascorbic acid) (Table 3). The obtained potency was as follows: 17a = 29b = 10 µg/mL > 5 = 19 = 15µg/mL > 23b = 25b = 20 µg/mL > 9b = 11 = 27b = 25 µg/mL > 15 = 17d = 27a = 29a = 35 µg/mL > 17c = 21a = 40 µg/mL > 9a = 9d = 25a = 45 µg/mL > Ascorbic acid (EC₅₀ 55 µg/mL) > 6 = 60 µg/mL > 13 = 17b (EC₅₀ 70 µg/mL). The remaining derivative compounds (7, 8c, 3, 21b, 23a) exhibited moderate to non-antioxidant activity.

CONCLUSION

A new series of pyrimido[4,5-b] quinoline and benzoxazinones derivatives were synthesized and tested to antioxidant and antimicrobial activity. Results revealed that some of these novel compounds displayed significant biological activity. The compounds 17b, 9d and 9c, showed high promising antimicrobial activity along with several compounds, in addition to, the compounds 17a = 29b = 10 µg/mL showed the most potent antioxidant agents than ascorbic acid.

In the study of the relationship SARs, very good antimicrobial activity was found at the compounds pyrimido[4,5-b] quinoline derivatives (17b, 9d and 9c) against the test microorganisms. Also, pyrimido[4,5-b]quinoline derivatives and oxoquinazolin-benzo[1,3]thiazin (17a = 29b = 10 µg/mL) possess high antioxidant than ascorbic acid.

REFERENCES

1. Bava S, Kumar S, Drabu S, Kumar R. Structural modifications of quinoline-based antimalarial agents: recent developments. J. Pharm. Bioallied Sci. 2010;2:64-71.
2. Teng P, Li C, Peng Z, Marie VA, Nimmagadda A, Su M, et al. Facilely accessible quinoline derivatives as potent antibacterial agents. Bioorg. Med. Chem. 2018;26:3573-9.
3. Keri RS, Patil SA, Quinoline: a promising antibiotic target. Biomed. Pharmacother, 2014;68:1161-75.
4. Fang YM, Zhang RR, Shen ZH, Wu HK, Tan CX, Weng QJ, et al. Synthesis, antifungal activity, and SAR study of some new 6-perfluoropropanyl quinoline derivatives, J. Heterocycl. Chem. 2018;55:240-5.
5. Liang X, Wu Q, Luan S, Yin Z, He C, Yin L, et al. A comprehensive review of topoisomerase inhibitors as anticancer agents in the past decade, Eur. J. Med. Chem. 2019;171:129-68.
6. Upadhyay A, Kushwaha P Gupta S, Dodda RR Ramalingam K, Kant R. Synthesis and evaluation of novel triazolyl quinoline derivatives as potential antileishmanial agents. Eur. J. Med. Chem. 2018;154:172-81.
7. Chaiban I, Rizk OH, Ibrahim TM, Henn S, El-Khawass ES, Bayad AE, et al. Synthesis, anti-inflammatory screening, molecular docking, and COX-1,2/S-LOX inhibition profile of some novel quinoline derivatives, Bioorg. Chem. 2018;78:220-35.
8. Sharma A, Gupta VK, Pathania R. Efflux pump inhibitors for bacterial pathogens: From bench to bedside. Indian J. Med. Res. 2019;149:129-45.
9. Puskuullu MO, Celik I, Erol M, Fatullayev H, Uzunhasirci A Kuyucuklu G. Antimicrobial and antioxidant activity of some new quinoline-3-carbaldehyde hydrazones derivatives. Bioorg. Chem. 2020;101:104014-24.
10. Katarya KD, Shah SR, Reddy D. Anticancer, antimicrobial activities of quinoline based hydrazone analogues: Synthesis, characterization and molecular docking, Bioorganic Chemistry. 2010;94:103406-19.
11. Aly RM, Serya RA, El-Motwally AM, Alsat A, Abbas A, Abou El Ella DA. Novel quinoline-3-carboxamides (Part 2): Design, optimization and synthesis of quinoline based scaffold as EGFR inhibitors with potent anticancer activity. Bioorg. Chem. 2017;75:368-92.
12. Shao J, Zhu M, Gao L, Chen H, Li X. Synthesis of tetracyclic azasugars fused benzo[e][1,3]thiazin-4-one by the tandem Staudinger/aza-Wittig cyclization and their HIV-RT inhibitory activity. Carbohydrate Research. 2018;456:45-52.
13. Yin Z, Zhu M, Wei S, Shao J, Hou Y, Chen H, Li X. Synthesis of tetracyclic iminosugars fused benzo[e][1,3]thiazin-4-one and their HIV-RT inhibitory activity. Bioorg. Med. Chem. Lett. 2016;26:17384-41.
14. El-Gazzar AR, El-Enany MM, Mahmoud MN. Synthesis, analgesic, anti-inflammatory, and antimicrobial activity of some novel pyrimidino[4,5-b] quinoline-4-ones, Bioorg. and Med. Chem. 2008;16:3261-73.
15. Metwally K, Pratinis H, Kletasas D. Pyrimidino[4,5-b]quinolin-112H-ones as a novel class of antimitotic agents: Synthesis and in vitro cytotoxic activity. Euro. J. of Med. Chem. 2007;42:344-50.
16. Hussain F, Khan Z, Jan MS, Ahmad S, Ahmad R, Rashid U, et al. Synthesis, in vitro α-glucosidase inhibition, antioxidant, in vivo antidiabetic and molecular docking studies of pyrrolidine-2,5-dione and thiazolidine-2,4-dione derivatives. Bioorg. Chem. 2019;91:103128-49.
17. Rapacz A, Rybka S, Obniaska J, Jodłowska A, Góra M, Koczurkiewicz P, et al. Analgesic and anti-inflammatory activity of novel anticonvulsant agents derived from 3-benzhydryl-pyrrolidine-2,5-dione in mouse models of nociceptive and neuropathic pain. Euro. J. of Pharma. 2020;869:172890-7.
18. Shariat M, Abdollahi S., Synthesis of benzoxazoline derivatives: a new route to 2-(N-phthaloylmethyl)-4H-3,1-benzoxazin-4-one, Molecules, 2004;9:705-12.
19. Hsieh PW, Chang FR, Chang CH, Cheng PW, Chiang LC, Zeng FL, et al. 2-substituted benzoxazinone analogues as anti-human coronavirus (anti-HCoV) and ICAM-1 expression inhibition agents, Bioorg. Med. Chem. Lett., 2004;14:4751-4.
20. Bari A, Khan ZA, Shahzad SA, Naqvi S, Khan SA, Amjad H, et al. Design and syntheses of 7-nitro-2-aryl-4H-benzo[1,3]oxazin-4-ones as potent anticancer and antioxidant agents. J. of Molecular Structure. 2020;1214:126252-62.
21. Marasini BP, Rahim F, Perveen S, Karim A, Khan KM, Choudhary MI. Synthesis, structure-activity relationships studies of benzoxazinone derivatives as α-chymotrypsin inhibitors, Bioorg. Chem. 2017;70:210-21.

22. Md. Saifuzzaman, R. Morrison, Z. Zheng, S. Orive, J.Hamilton, P. E. Thompson, J. M. Alrawi, Synthesis and biological evaluation of 8-aryl-2-morpholino-7-Osubstituted benzoxazin-4-ones against DNA-PK, PI3K, PDE3A enzymes and platelet aggregation. Bioorg. Med. Chem. 2017;25:5531-6.

23. Kaya O., Akçam, F.Z., Yayl. G., Investigation of the in vitro activities of various antibiotics against Brucella melitensis strains. Turk. J. Med. Sci., 2012;42:145-8.

24. Andrews J.M. Determination of minimum inhibitory concentrations. J. of Antimicrobial Chemotherapy 2001;48:5-16.

25. Krishnaiah D, Sarbatly R, Nithyanandam R. A review of the antioxidant potential of medicinal plant species. Food and Bioproducts Processing. 2011;89:217-33.

26. Prior RL, Wu X, Schaich K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. of Agric. and Food Chem. 2005;53:4290-302.

27. Gil MI, Tomás-Barberán FA, Hess-Pierce B, Holcroft DM, Kader AA. Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing. J. of Agric. and Food Chem. 2000;48:4581-9.

28. Chen Z, Bertin R, Froldi G., EC50 estimation of antioxidant activity in DPPH assay using several statistical programs. Food Chem. 2013;138:414-20.

29. Gouhar RS, Abou-Elmagd WS, El-Zahar MI, Kamel MM, El-Ghonamy DH. Synthesis of novel 5,6,7,8,9,10-hexahydropyrimido[4,5-b] quinoline derivatives for antimicrobial and anti-oxidant evaluation. Res Chem Intermed. 2017;43:1301-27.

30. Habib OM, Hassan HM, El-Mekabaty A. Studies on Some Benzoxazine-4-one Derivatives with Potential Biological Activity. American J. of Org. Chem. 2012;2:45-51.
ABOUT AUTHORS

- Usama Fathy: Ass. Professor, Applied Organic Chemistry Department, National Research Centre, 33 El Bohouth st. (former EL Tahrir st.)-Dokki-Giza-Egypt-PO.12622.
- Rasha S. Gouhar: Professor, Therapeutic Chemistry Department, National Research Centre, 33 El Bohouth st. (former EL Tahrir st.)-Dokki-Giza-Egypt-PO.12622.
- Ahmed Younis: Ass. Professor, Green Chemistry Department, National Research Centre, 33 El Bohouth st. (former EL Tahrir st.)-Dokki-Giza-Egypt-PO.12622.
- Dina H. El-Ghonemy: Ass. Professor, Microbial Chemistry Department, Genetic Engineering and Biotechnology Division, National Research Centre, 33 El Buhouth St., Dokki, Cairo, Egypt, P. C. 12622.

Cite this article: Fathy U, Gouhar RS, Younis A, El-Ghonemy DH. Synthesis of Novel pyrimido[4,5-b]quinoline-4-one Derivatives and Assessment as Antimicrobial and Antioxidant Agents. Pharmacog J. 2021;13(2): 550-62.