STABILITY OF POSITIVE SOLUTIONS TO BIHARMONIC EQUATIONS ON HEISENBERG GROUP

G. DWIVEDI, J. TYAGI

Abstract. In this note, we establish the stability of positive solution to the following problem

\[
\begin{align*}
\Delta_{H^n}^2 u &= a(\xi)u - f(\xi, u) \quad \text{in } \Omega \\
|u|_{\partial\Omega} &= 0 = \Delta_{H^n} u|_{\partial\Omega},
\end{align*}
\]

on Heisenberg group.

1. Introduction

The aim of this note is to establish the stability of positive solution to the following biharmonic problem on Heisenberg group:

\[
\begin{align*}
\Delta_{H^n}^2 u &= a(\xi)u - f(\xi, u) \quad \text{in } \Omega \\
u > 0 & \quad \text{in } \Omega \\
u = 0 &= \Delta u \quad \text{on } \partial\Omega,
\end{align*}
\]

where \(\Omega \subset \mathbb{H}^n \) is an open, smooth and bounded subset, \(a \in L^\infty(\Omega) \) and \(f \in C(\Omega \times \mathbb{R}, \mathbb{R}) \). The nonlinearities of the type

\[a(x)u - f(x, u) \]

are known as logistic nonlinearity, see for instance [1, 7, 14, 17, 22, 23] and references therein.

This work is motivated by the recent works on polyharmonic equations, see for instance [2, 10, 16, 19, 24], where the authors obtained stability properties of solution to polyharmonic equation with exponential nonlinearity, see [10, 19] and stability results to biharmonic equation, see [2, 10] and Liouville theorems for stable radial solution for the biharmonic operators, see [24].

To the best of our knowledge there are no results on the stability of positive solution for the biharmonic operator in the Heisenberg group. For the existence of positive solution to problems similar to (1.1) in \(\mathbb{R}^n \), we refer to [3, 9, 11, 12, 13, 21, 27, 28] and the references therein. For existence of positive solution for Kohn-Laplace operator on Heisenberg group, we refer to [6, 29] and references cited therein. For the existence of positive solution for biharmonic equation on Heisenberg group, we refer to [20].

We make the following hypotheses on the nonlinearity \(f \) and weight \(a \):

(H1) Let \(f \in C(\Omega \times \mathbb{R}, \mathbb{R}) \) and \(C^1 \) in the \(y \) variable and satisfies

\[f_y(\xi, y) \geq \frac{f(\xi, y)}{y}, \quad \forall \ 0 < y \in \mathbb{R}, \ \forall \ \xi \in \Omega. \]

2010 Mathematics Subject Classification. Primary 35B35; Secondary 35B09, 35J91, 35R03.

Key words and phrases. bi-Laplacian; Stability; Positive solution; Heisenberg group.
(H2) \(a(\xi)s - f(\xi, s) \geq 0 \), for a.e. \(\xi \in \Omega \) and for all \(s \in \mathbb{R} \).

The functional associated with (1.1) is

\[E : D^2(\Omega) \cap D^1_0(\Omega) \to \mathbb{R} \]

defined by

\[E(u) = \frac{1}{2} \int_{\Omega} |\Delta_H u|^2 d\xi - \frac{1}{2} \int_{\Omega} a(\xi)u^2 d\xi + \int_{\Omega} F(\xi, u) d\xi, \]

where

\[F(\xi, s) = \int_0^s f(\xi, t) dt. \]

The weak formulation of (1.1) is the following:

\[\int_{\Omega} \Delta_H u \Delta_H \phi d\xi = \int_{\Omega} a(\xi)u\phi d\xi - \int_{\Omega} f(\xi,u)\phi d\xi, \quad \forall \phi \in C^2_c(\Omega), \]

where \(C^2_c(\Omega) \) is the space of \(C^2 \) functions in \(\Omega \) having compact support in \(\Omega \). The linearized operator \(L_u \) associated with (1.1) at a given solution \(u \) is defined by following duality:

\[L_u : v \in D^2(\Omega) \cap D^1_0(\Omega) \to L_u(v) \in (D^2(\Omega) \cap D^1_0(\Omega))^{'}, \]

where

\[L_u(v) : \psi \in D^2(\Omega) \cap D^1_0(\Omega) \to L_u(v, \psi) \]

and

\[L_u(v, \psi) = \int_{\Omega} \Delta_H v \Delta_H \psi d\xi - \int_{\Omega} a(\xi)v\psi d\xi + \int_{\Omega} f_u(\xi,u)v\psi d\xi. \]

It is easy to see that \(L_u \) is well-defined and the first eigenvalue of \(L_u \) is given by

\[\lambda_1 = \inf_{v \in D^2(\Omega) \cap D^1_0(\Omega), v \neq 0} \frac{\int_{\Omega} (L_u(v, v) d\xi)}{\int_{\Omega} v^2 d\xi}. \]

We say that the solution \(u \) of (1.1) is stable if

\[\int_{\Omega} |\Delta_H v|^2 d\xi - \int_{\Omega} a(\xi)v^2 d\xi + \int_{\Omega} f_u(\xi,u)v^2 d\xi \geq 0 \]

for every \(v \in C^2_c(\Omega) \), see [25] for the definition of stability of solutions to biharmonic problems. Actually, (1.4) implies that the principal eigenvalue of the linearized equation associated with (1.1) is positive and hence the solution \(u \) of (1.1) is stable.

Throughout the article, the space \(D^2(\Omega) \cap D^1_0(\Omega) \) is denoted by \(D \).

The main result of this paper is as follows, which we will prove in the last section.

Theorem 1.1. Let (H1)-(H3) hold. Let \(u \) be a positive solution of (1.1). Then \(u \) is stable.

Section 2 deals with some preliminaries on the Heisenberg group. In Section 3, we give the proof of Theorem 1.1.
left-invariant vector fields

where \(x, y, x' \in \mathbb{H}^n \) results which are used in order to prove the main results. The Heisenberg group \(\mathbb{H}^n = (\mathbb{R}^{2n+1}, \cdot) \) is the space \(\mathbb{R}^{2n+1} \) with the non-commutative law of product

\[
 (x, y, t) \cdot (x', y', t') = (x + x', y + y', t + t' + 2((y, x') - (x, y'))),
\]

where \(x, y, x', y' \in \mathbb{R}^n \), \(t, t' \in \mathbb{R} \) and \(\langle \cdot, \cdot \rangle \) denotes the standard inner product in \(\mathbb{R}^n \). The homogeneous dimension of \(\mathbb{H}^n \) is \(Q = 2n + 2 \). This operation endows \(\mathbb{H}^n \) with the structure of a Lie group. The Lie algebra of \(\mathbb{H}^n \) is generated by the left-invariant vector fields

\[
 T = \frac{\partial}{\partial t}, \quad X_i = \frac{\partial}{\partial x_i} + 2y_i \frac{\partial}{\partial t}, \quad Y_i = \frac{\partial}{\partial y_i} - 2x_i \frac{\partial}{\partial t}, \quad i = 1, 2, \ldots, n.
\]

These generators satisfy the non-commutative formula

\[
 [X_i, Y_j] = -4\delta_{ij}T, \quad [X_i, X_j] = [Y_i, Y_j] = [X_i, T] = [Y_i, T] = 0.
\]

Let \(z = (x, y) \in \mathbb{R}^{2n} \), \(\xi = (z, t) \in \mathbb{H}^n \). The parabolic dilation

\[
 \delta_\lambda \xi = (\lambda x, \lambda y, \lambda^2 t)
\]

satisfies

\[
 \delta_\lambda (\xi_0, \xi) = \delta_\lambda \xi, \delta_\lambda \xi_0
\]

and

\[
 \|\xi\|_{\mathbb{H}^n} = (|z|^4 + t^2)^{\frac{1}{2}} = ((x^2 + y^2)^2 + t^2)^{\frac{1}{2}}
\]

is a norm with respect to the parabolic dilation which is known as Korányi gauge norm \(N(z, t) \). In other words, \(\rho(\xi) = (|z|^4 + t^2)^{\frac{1}{2}} \) denotes the Heisenberg distance between \(\xi \) and the origin. Similarly, one can define the distance between \((z, t)\) and \((z', t')\) on \(\mathbb{H}^n \) as follows:

\[
 \rho(z, t; z', t') = \rho((z', t')^{-1} \cdot (z, t)).
\]

It is clear that the vector fields \(X_i, Y_i, i = 1, 2, \ldots, n \) are homogeneous of degree 1 under the norm \(\|\cdot\|_{\mathbb{H}^n} \) and \(T \) is homogeneous of degree 2. The Korányi ball of center \(\xi_0 \) and radius \(r \) is defined by

\[
 B_{\mathbb{H}^n}(\xi_0, r) = \{\xi : \|\xi^{-1} \xi_0\| \leq r\}
\]

and it satisfies

\[
 |B_{\mathbb{H}^n}(\xi_0, r)| = |B_{\mathbb{H}^n}(0, r)| = r^d |B_{\mathbb{H}^n}(0, 1)|,
\]

where \(|\cdot| \) is the \((2n + 1)\)-dimensional Lebesgue measure on \(\mathbb{H}^n \) and \(d = 2n + 2 \) is the so-called homogeneous dimension of Heisenberg group \(\mathbb{H}^n \). The Heisenberg gradient and Heisenberg Laplacian or the Laplacian-Kohn operator on \(\mathbb{H}^n \) are given by

\[
 \nabla_{\mathbb{H}^n} = (X_1, X_2, \ldots, X_n, Y_1, Y_2, \ldots, Y_n)
\]

and

\[
 \Delta_{\mathbb{H}^n} = \sum_{i=1}^n X_i^2 + Y_i^2 = \sum_{i=1}^n \left(\frac{\partial^2}{\partial x_i^2} + \frac{\partial^2}{\partial y_i^2} + 4y_i \frac{\partial^2}{\partial x_i \partial t} - 4x_i \frac{\partial^2}{\partial y_i \partial t} + 4(x_i^2 + y_i^2) \frac{\partial^2}{\partial z^2} \right).
\]
Definition 2.1 ($D^{1,p} (\Omega)$ and $D^{1,p}_0 (\Omega)$ Space). Let $\Omega \subseteq \mathbb{H}^n$ be open and $1 < p < \infty$. Then we define

$$D^{1,p} (\Omega) = \{ u : \Omega \to \mathbb{R} \text{ such that } u, |\nabla_{\mathbb{H}^n} u| \in L^p(\Omega) \}.$$

$D^{1,p} (\Omega)$ is equipped with the norm

$$\|u\|_{D^{1,p} (\Omega)} = \left(\|u\|_{L^p(\Omega)} + \|\nabla_{\mathbb{H}^n} u\|_{L^p(\Omega)} \right)^{\frac{1}{p}}.$$

$D^{1,p}_0 (\Omega)$ is the closure of $C^\infty_0 (\Omega)$ with respect to the norm

$$\|u\|_{D^{1,p}_0 (\Omega)} = \left(\int_{\Omega} |\nabla_{\mathbb{H}^n} u|^p dz dt \right)^{\frac{1}{p}}.$$

Definition 2.2 ($D^{2,p} (\Omega)$ and $D^{2,p}_0 (\Omega)$ Space). Let $\Omega \subseteq \mathbb{H}^n$ be open and $1 < p < \infty$. Then we define

$$D^{2,p} (\Omega) = \{ u : \Omega \to \mathbb{R} \text{ such that } u, |\nabla_{\mathbb{H}^n} u|, |\Delta_{\mathbb{H}^n} u| \in L^p(\Omega) \}.$$

$D^{2,p} (\Omega)$ is equipped with the norm

$$\|u\|_{D^{2,p} (\Omega)} = \left(\|u\|_{L^p(\Omega)} + \|\nabla_{\mathbb{H}^n} u\|_{L^p(\Omega)} + \|\Delta_{\mathbb{H}^n} u\|_{L^p(\Omega)} \right)^{\frac{1}{p}}.$$

$D^{2,p}_0 (\Omega)$ is the closure of $C^\infty_0 (\Omega)$ with respect to the norm

$$\|u\|_{D^{2,p}_0 (\Omega)} = \left(\int_{\Omega} |\Delta_{\mathbb{H}^n} u|^p dz dt \right)^{\frac{1}{p}}.$$

3. Proof of Theorem 1.1

In order to prove Theorem 1.1, first, we prove the following lemma:

Lemma 3.1. Let $u \in D^{2}(\Omega) \cap D^{1}_0 (\Omega)$ be a nonnegative weak solution (not identically zero) of

$$(3.1) \quad \Delta_{\mathbb{H}^n}^2 u = a(\xi)u - f(\xi,u) \quad \text{in } \Omega, \quad u = \Delta_{\mathbb{H}^n} u = 0 \quad \text{on } \partial \Omega,$$

where a and f satisfy (H2) then $-\Delta_{\mathbb{H}^n} u > 0$ in Ω and $u > 0$ in Ω.

Proof. Let $-\Delta_{\mathbb{H}^n} u = v$. Then writing (3.1) into system form, we get

$$(3.2) \begin{cases} -\Delta_{\mathbb{H}^n} u = v \quad \text{in } \Omega, \\ -\Delta_{\mathbb{H}^n} v = a(\xi)u - f(\xi,u) \quad \text{in } \Omega, \\ u = 0 = v \quad \text{on } \partial \Omega. \end{cases}$$

Since $a(\xi)u - f(\xi,u) \geq 0$ in Ω, so by maximum principle [5], we get $v \geq 0$. By strong maximum principle, either $v > 0$ or $v \equiv 0$ in Ω. If $v \equiv 0$, then we have

$$-\Delta_{\mathbb{H}^n} u = 0 \quad \text{in } \Omega; \quad v = 0 \quad \text{on } \partial \Omega.$$

Again by maximum principle, we get $u \equiv 0$, which is a contradiction and therefore $v > 0$ in Ω and hence

$$-\Delta_{\mathbb{H}^n} u > 0 \quad \text{in } \Omega.$$

Again, since $-\Delta_{\mathbb{H}^n} u > 0$ in Ω, by strong maximum principle, we get

$$u > 0 \quad \text{in } \Omega.$$

□
Remark 3.2. Let \(-\Delta_{H^n} u = v \). Then writing (3.1) into system form, we get

\[
\begin{align*}
-\Delta_{H^n} u &= v \text{ in } \Omega, \\
-\Delta_{H^n} v &= a(\xi) u - f(\xi, u) \text{ in } \Omega, \\
u &= 0 = v \text{ on } \partial\Omega.
\end{align*}
\]

Now, by using Theorem 3.35 [8] for second equation in (3.3), we conclude that \(v \in C^\alpha(\Omega) \) for some \(0 < \alpha < 1 \). Then by using Theorem 3.9 [26], we get that \(u \in C^{2,\alpha}(\Omega) \). Again applying Theorem 3.35 [8] and Theorem 3.9 [26] for \(u \in C^{2,\alpha}(\Omega) \), we conclude that \(u \in C^{4,\alpha}(\Omega) \).

Proof of Theorem 1.1: Since \(u \in D \cap L^\infty(\Omega) \) be a positive solution of (1.1) so by Remark 3.2 \(u \in C^{4,\alpha}(\Omega) \). Now for any \(v \in C^2(\Omega) \), we choose

\[
\phi = \frac{v^2}{u}
\]

as a test function in (1.2). Since

\[
\nabla_{H^n} \phi = \frac{2uv\nabla_{H^n} v - v^2\nabla_{H^n} u}{u^2},
\]

and

\[
\Delta_{H^n} \phi = \frac{2u^3|\nabla_{H^n} v|^2 - 4vu^2\nabla_{H^n} u, \nabla_{H^n} v + 2u^2v|\nabla_{H^n} u|^2 + 2v^3\Delta_{H^n} v - v^2u^2\Delta_{H^n} u}{u^4}
\]

so from (1.2), we get

\[
\int_\Omega \Delta_{H^n} u \left[\frac{2u^3|\nabla_{H^n} v|^2 - 4vu^2\nabla_{H^n} u, \nabla_{H^n} v + 2u^2v|\nabla_{H^n} u|^2 + 2v^3\Delta_{H^n} v - v^2u^2\Delta_{H^n} u}{u^4} \right] d\xi = \int_\Omega a(\xi)v^2 d\xi - \int_\Omega \frac{f(\xi, u)v^2}{u} d\xi.
\]

This yields that

\[
\int_\Omega \frac{-4v}{u^2}\Delta_{H^n} u \nabla_{H^n} u, \nabla_{H^n} v d\xi + \int_\Omega \frac{2v}{u}\Delta_{H^n} u \Delta_{H^n} v d\xi + \int_\Omega \frac{2}{u}\nabla_{H^n} v|^2\Delta_{H^n} u d\xi - \int_\Omega \frac{v^2}{u^2}|\nabla_{H^n} u|^2 d\xi + \int_\Omega \frac{2v^2}{u^3}|\nabla_{H^n} v|^2 \Delta_{H^n} u d\xi - \int_\Omega a(\xi)v^2 d\xi + \int_\Omega f(\xi, u)v^2 d\xi + \int_\Omega |\Delta_{H^n} v|^2 d\xi - \int_\Omega |\Delta_{H^n} v|^2 d\xi = 0.
\]

On rearranging the terms, we get

\[
\int_\Omega |\Delta_{H^n} v|^2 d\xi - \int_\Omega a(\xi)v^2 d\xi + \int_\Omega \frac{f(\xi, u)}{u}v^2 d\xi = \int_\Omega \left[|\Delta_{H^n} v|^2 + \frac{4v}{u^2}\Delta_{H^n} u \nabla_{H^n} u, \nabla_{H^n} v - \frac{2v}{u}\Delta_{H^n} u \Delta_{H^n} v - \frac{2v}{u}\nabla_{H^n} v|^2 \Delta_{H^n} u \right] d\xi
\]

\[
= \int_\Omega \left[\Delta_{H^n} v - \frac{v}{u}\Delta_{H^n} u \right]^2 + \frac{4v}{u^2}\Delta_{H^n} u \nabla_{H^n} u, \nabla_{H^n} v - \frac{2v}{u}\nabla_{H^n} v|^2 \Delta_{H^n} u \right] d\xi
\]

\[
- \frac{2v^2}{u^3}|\nabla_{H^n} v|^2 \Delta_{H^n} u \right] d\xi.
\]

This implies that

\[
\int_\Omega |\Delta_{H^n} v|^2 d\xi = \int_\Omega a(\xi)v^2 d\xi + \int_\Omega \frac{f(\xi, u)}{u}v^2 d\xi
\]
≥ \int_{\Omega} \left[\frac{4v}{u} \Delta_{H^n} u \nabla_{H^n} u \nabla_{H^n} v - \frac{2}{u} |\nabla_{H^n} v|^2 \Delta_{H^n} u - \frac{2v^2}{u^3} |\nabla_{H^n} u|^2 \Delta_{H^n} u \right] d\xi \\
= \int_{\Omega} \left[- \frac{2}{u} \Delta_{H^n} u \left(|\nabla_{H^n} v|^2 + \frac{v^2}{u^2} |\nabla_{H^n} u|^2 - \frac{2v \nabla_{H^n} u \nabla_{H^n} v}{u} \right) \right] d\xi \\
= \int_{\Omega} \left(- \frac{2}{u} \Delta_{H^n} u \left(\nabla_{H^n} v - \frac{v}{u} \nabla_{H^n} u \right) \right)^2 d\xi \\
≥ 0.

By Lemma 3.1 we have

\[-\Delta_{H^n} u > 0 \text{ in } \Omega\]

and this implies that

\[\int_{\Omega} |\Delta_{H^n} v|^2 d\xi - \int_{\Omega} a(\xi)v^2 d\xi + \int_{\Omega} \frac{f(\xi, u)}{u} v^2 d\xi ≥ 0.\]

Now, using Hypothesis (H1), we obtain

\[\int_{\Omega} |\Delta_{H^n} v|^2 d\xi - \int_{\Omega} a(\xi)v^2 d\xi + \int_{\Omega} f_u(x, u)v^2 d\xi ≥ 0\]

and therefore \(u\) is stable. This completes the proof of this theorem. \(\square\)

The following remark is in order:

Remark 3.3. Let us consider the following problem

\[\begin{align*}
\Delta^2 u &= a(\xi)u - f(\xi, u) \quad \text{in } B, \\
u &= 0 = \frac{\partial u}{\partial \nu} \quad \text{on } \partial B,
\end{align*}\]

where \(B\) denotes unit ball in \(\mathbb{H}^n\), \(a \in L^\infty(B)\) and \(f \in C(\overline{B} \times \mathbb{R}, \mathbb{R})\). Let (H1)-(H2) hold. Then, using the similar lines of proof as in Theorem 1.1, one can prove that \(u\) is stable. For the sake of brevity, we skip the details.

REFERENCES

[1] G.A. Afrouzi, K. J. Brown, On a diffusive logistic equation, Journal of mathematical analysis and applications, 225(1), (1998), 326–339.

[2] E. Berchio, A. Farina, A. Ferrero, F. Gazzola, Existence and stability of entire solutions to a semilinear fourth order elliptic problem, J. Diff. Equations 252, (2012), 2596–2616.

[3] F. Bernis, J. García Azorero, I. Peral, Existence and multiplicity of nontrivial solutions in semilinear critical problems of fourth order, Advances in Differential Equations, 1(2), (1996), 219–240.

[4] A. Bonfiglioli, E. Lanconelli, F. Uguzzoni, Stratified Lie groups and potential theory for their sub-Laplacians, Springer Science & Business Media, 2007.

[5] J.M. Bony, Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés, Annales de l’institut Fourier, 19(1), 1969, 277–304.

[6] L. Brandolini, M. Rigoli, A. Setti, On the existence of positive solutions of Yamabe-type equations on the Heisenberg group, Electronic Research Announcements of the American Mathematical Society, 2(3), (1996), 101–107.

[7] A. Cañada, J. L. Gámez, J. A. Montero, Study of an optimal control problem for diffusive nonlinear elliptic equations of logistic type, SIAM journal on control and optimization, 36(4) (1998), 1171–1189.

[8] L. Capogna, D. Danielli, and N. Garofalo, An embedding theorem and the Harnack inequality for nonlinear subelliptic equations, Communications in Partial Differential Equations 18(9-10), (1993), 1765–1794.

[9] R. Dalmasso, Positive radial solutions for semilinear biharmonic equations in annular domains, Revista matemática de la Universidad Complutense de Madrid, 6(2), (1993), 279–294.

[10] J. Dávila, L. Dupaigne, I. Guerra, M. Montenegro, Stable solutions for the bilaplace with exponential nonlinearity, SIAM Journal of Mathematical Analysis, 39(2), (2007), 565–592.
[11] J. Dávila, I. Flores, I. Guerra, Multiplicity of solution for a fourth order problem with exponential nonlinearity, Journal of Differential Equations, 247, (2009), 3136–3162.

[12] J. Dávila, I. Flores, I. Guerra, Multiplicity of solution for a fourth order equation with power type nonlinearity, 348, (2010), 143–193.

[13] P. Drábek, J. Milota, Methods of nonlinear analysis: applications to differential equations, Springer Science & Business Media, 2013.

[14] Y. Du, L. Ma, Positive solutions of an elliptic partial differential equation on \mathbb{R}^n, Journal of mathematical analysis and applications, 271(2), (2002), 409–425.

[15] F. Ebobisse, M. O. Ahmedou, On a nonlinear fourth-order elliptic equation involving the critical Sobolev exponent, Nonlinear Analysis: Theory, Methods & Applications, 52(5), (2003), 1535–1552.

[16] A. Farina, A. Ferrero, Existence and stability properties of entire solutions to the polyharmonic equation $(-\Delta)^m u = e^u$ for any $m \geq 1$, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 33(2), (2016). 495–528.

[17] H. Gao, S. Fu, Nonlinear Instability for a Volume-Filling Chemotaxis Model with Logistic Growth, Abstract and Applied Analysis, 2014, 2014.

[18] F. Gazzola, H. Grunau and G. Sweers, Polyharmonic boundary value problems, A monograph on positivity preserving and nonlinear higher order elliptic equations in bounded domain, Springer, 1991.

[19] X. Huang, D. Ye, Existence of stable solutions of $(-\Delta)^m u = e^u$ in \mathbb{R}^N with $m \geq 3$ and $N > 2m$, Journal of Differential Equations, 260, (2016), 6493–6503.

[20] J.H. Jihui and L. Xuebo, Existence results for the positive solutions of a fourth order nonlinear equations on the Heisenberg group, Journal of Partial Differential Equations, 13(2), (2000), 123–132.

[21] T. Sato, T. Watanabe, Singular positive solutions for a fourth order elliptic problem in \mathbb{R}^N, Commun. Pure Appl. Anal. 10(1), (2011). 245–268.

[22] S. Takeuchi, Positive solutions of a degenerate elliptic equation with logistic reaction, Proceedings of the American Mathematical Society, 129(2), (2001). 433–441.

[23] S. Takeuchi, Multiplicity result for a degenerate elliptic equation with logistic reaction, Journal of Differential Equations, 173(1), (2001). 138–144.

[24] G. Warnault, Liouville theorems for stable radial solutions for the biharmonic operator, Asymptot. Anal., 69, (2010) 87–98.

[25] J. Wei, D. Ye, Liouville theorems for stable solutions of biharmonic problem, Math. Ann. 356(4), (2013). 1599–1612.

[26] C.J. Xu, Regularity for quasilinear secondorder subelliptic equations, Communications on pure and applied mathematics 45(1), (1992). 77–96.

[27] Y. Zhang, Positive solutions of semilinear biharmonic equations with critical Sobolev exponents, Nonlinear Analysis: Theory, Methods & Applications, 75(1), (2012). 55–67.

[28] Y. Zhang, Y. Liu, N. Wang, Existence of Positive Solutions of Semilinear Biharmonic Equations, Abstract and Applied Analysis, 2014, 2014.

[29] J.H. Zhang and P. Niu, Existence results for the positive solutions of semilinear equations on the Heisenberg group, Nonlinear Analysis: Theory, Methods & Applications 31(1), (1998): 181–189.

G. DWIVEDI
Indian Institute of Technology Gandhinagar
Palaj, Gandhinagar
Gujarat, India - 382355
E-mail address: dwivedi_gaurav@iitgn.ac.in

J. TYAGI
Indian Institute of Technology Gandhinagar
Palaj, Gandhinagar
Gujarat, India - 382355
E-mail address: jtyagi@iitgn.ac.in, jtyagi1@gmail.com