Comparison of forced expiratory spirometric flow changes following intrathecal bupivacaine and bupivacaine with fentanyl

Selvaraju KN
b Sharma SY
Department of Cardiothoracic and Vascular Anaesthesia, Sri Ramachandra Medical College and Hospital, Chennai, Tamilnadu, India
Department of Anaesthesia, Kasturba Medical College, Attavara, Mangalore, India

Correspondence to: Dr SN Selvaraju, e-mail: nsknaidu1979@hotmail.com

ABSTRACT

Background: Higher dermatomal block following spinal anaesthesia impairs inspiratory capacity and decreases forced expiratory flow rates. This decrease in forced expiratory flows can in turn decrease the efficiency of cough. Intrathecal opioids are important adjuncts to intrathecal local anaesthetics. The objective of our study was to compare the decrease in forced expiratory flows from the baseline values after subarachnoid block with bupivacaine and bupivacaine with fentanyl.

Methods: Institutional ethics committee approval was obtained. Forty ASA I and II adult males, scheduled for elective surgery were included in the study. Informed written consent was obtained from all patients who were randomly allocated into two groups. Group B received intrathecal anaesthesia 15 mgs of bupivacaine with 0.5 ml of normal saline and Group BF received 15 mgs of bupivacaine with 0.5 ml of fentanyl (25 μg) intrathecally. The patients were instructed about the performance of the spirometry on the previous evening of the surgery. Forced vital capacity, forced expiratory volume in one second, peak expiratory flow rate and maximum expiratory pressure (Forced expiratory flows) were measured in supine position before intrathecal block and at 10, 60 and 120 minutes, following the establishment of the block. Highest dermatomal level of sensory blockade was noted.

Results: There was no statistically significant difference in the baseline values of FVC (Group B: 4.188 ± 0.821, Group BF: 4.186 ± 0.575, p = 0.127), FEV1 (Group B: 3.301 ± 0.846, Group BF: 3.276 ± 0.825, p = 0.260), PEFR (Group B: 458.6 ± 43.024, Group BF: 452.6 ± 41.056, p = 0.991) and PEmax (Group B: 52.64 ± 4.029, Group BF: 53 ± 3.102, p = 0.119) between the two groups. There was highly significant reduction in the values of FVC, PEFR and PEmax when compared to the baseline in both the groups at all three study periods. There was an acute reduction in the values of FVC, FEV1, PEFR and PEmax at 10 minutes. The graphs then achieve a plateau from 10 minutes to 60 minutes. From 60 to 120 minutes there was a gradual upslope in the graph. With regards to FEV1, though at 10 and 60 minutes there were statistically significant reductions when compared to the baseline values in both the groups, at 120 minutes the reductions were not significant. At all three time periods there was no difference in the reductions in FVC, FEV1, PEFR and PEmax values among the two groups. None of the patients in both the groups had PEFR and PEmax values below the critical value.

Conclusion: The addition of 25 μg of fentanyl to intrathecal bupivacaine did not have any adverse effect on forced expiratory flows. There was a decrease in forced expiratory flows in both groups, but the decrease in PEFR and PEmax were never below the critical values. It is unlikely that a combination of intrathecal local anaesthetic and opioids will impair the normal patient’s ability to cough effectively.

Introduction

The addition of fentanyl to intrathecially administered bupivacaine improves intraoperative and early postoperative quality of analgesia.1 But respiratory depression, both early and late, is an undesirable side effect of intrathecal opioids.2 Also, previous studies have shown that spinal blockade with local anaesthetics reduced expiratory flow rates.3,4 Fentanyl administered intrathecally with bupivacaine may have a synergistic effect on forced expiratory flow rates. In this prospective randomised study, the researchers compared forced expiratory spirometric flow rate changes following intrathecal hyperbaric bupivacaine with a combination of intrathecal hyperbaric bupivacaine and fentanyl.

Methods

Approval for the study was obtained from the ethics committee of the Department of Anaesthesia and Intensive Care, Kasturba Medical College, Manipal Academy of Higher Education. Written, informed consent was obtained from all patients. Forty ASA I and II adult males, aged 27–70 years scheduled for elective lower abdominal surgery and endoscopic urologic surgery of 40 to 60 minutes duration were selected. The exclusion criteria included patients on concurrent systemic opioids, known history of drug abuse, abnormal prothrombin time (International Normalised Ratio > 1.5), clinically significant valvular heart disease, a history of cardiovascular or respiratory disease, a raised intracranial pressure, allergy to opioids or local anaesthetics and peripheral/autonomic neuropathy.5 All patients were evaluated preoperatively and relevant investigations were obtained. All patients were trained to perform forced expiratory manoeuvres in the supine position. Patients were fasted overnight, received oral diazepam 0.2 mg kg1 both on the night prior to surgery and two hours preceding the intrathecal block. All patients were
preloaded with 10–15 ml/kg of lactated Ringer’s solution before administration of the intrathecal block. Monitoring consisted of peripheral saturation, intermittent automated non-invasive blood pressure and electrocardiogram lead II and V5. Baseline forced expiratory flows were measured in the supine position. The highest of the three measurements was recorded. Forced vital capacity (FVC), Forced expiratory volume in one second (FEV1), Peak expiratory flow rate (PEFR) (modified Wright’s Peak Flow meter) and maximum expiratory pressure (PEmax) (mercury sphygmomanometer) were measured. Patients were randomised, on the basis of pre-sealed envelopes, to receive either 3.0 ml (15 mgs) of bupivacaine 0.5% with 0.5 ml of normal saline (n = 20, Group-B) or 3.0 ml (15 mgs) of bupivacaine 0.5% with 0.5 ml of fentanyl (25 μg) (n = 20, Group-BF) intrathecally. The level of sensory blockade was assessed by cold sensation at 10, 60 and 120 minutes. The highest dermatomal level of sensory blockade was noted. The forced expiratory flows were measured in the supine position 10, 60 and 120 minutes following the blockade. Side effects, including nausea, vomiting, pruritus, headache and dizziness, if any, were noted. Urinary retention was not evaluated as most of the patients had indwelling urinary catheters. No systemic narcotics were administered during the study period.

Data was statistically analysed using Student’s t test and Chi-Square test, with p < 0.05 being considered statistically significant.

Results

Twenty-five consecutive patients were enrolled in each group. One patient in Group B and 2 patients in group BF were excluded from the study, as they received general anaesthesia. There were no statistically significant differences between the two groups with respect to age, weight and height (Table I). The levels of sensory block at 10, 60 and 120 minutes after intrathecal administration of drugs are shown in Table II.

In both groups, the highest sensory blockade was T5. There was no statistically significant difference in the height of sensory blockade achieved in both groups at 10 minutes (p = 0.659) and 60 minutes (p = 0.202). However, at 120 minutes the height of sensory blockade in Group BF was significantly greater (p < 0.021) than in Group B. Fifteen patients in Group BF had sensory blockade of T5–T6; at 120 minutes whereas in Group B only six patients had sensory blockade of T5–T6. Regression of anaesthesia to the T5 dermatome took a longer time in Group BF.

Tables III and IV show the mean values of FVC, FEV1, PEFR and PEmax at baseline, 10 minutes, 60 minutes and 120 minutes and the difference from baseline at the three time periods in Group B and Group BF respectively.

There was no statistically significant difference in the baseline values of FVC (Group B: 4.186 ± 0.821, Group BF: 4.186 ± 0.575, p > 0.127), FEV1 (Group B: 3.276 ± 0.825, p = 0.240), PEFR (Group B: 346.6 ± 41.036, p = 0.119) and PEmax (Group B: 52.64 ± 4.186, Group BF: 52.64 ± 4.1036, p = 0.119) between the two groups. There was a highly significant reduction in the values of FVC, FEV1, PEFR and PEmax when compared to the baseline in both groups at all three study periods. With regard to FEV1, though at 10 and 60 minutes there were statistically significant reductions when compared to the baseline values in both groups, at 120 minutes the reductions were not significant.

Tables V, VI and VII compare the mean percentage reduction in forced expiratory flows between group B and group BF at 10 minutes, 60 minutes and 120 minutes respectively. At all three time periods there was no difference in the reductions in FVC, FEV1, PEFR and PEmax values between the two groups.
Table III: Mean values of FVC, FEV₁, PEFR and Pₑmax at baseline, 10 minutes, 60 minutes and 120 minutes and the difference from baseline in Group B

	Baseline	10 minutes	60 minutes	120 minutes						
	Mean ± S.D	D ± S.D	p value	Mean ± S.D	D ± S.D	p value	Mean ± S.D	D ± S.D	p value	
FVC (litres)	4.188 ± 0.821	3.474 ± 0.746	0.714 ± 0.554	0.001*	3.710 ± 0.751	0.677 ± 0.544	0.001*	4.031 ± 0.819	0.256 ± 0.516	0.001*
FEV₁ (litres)	3.301 ± 0.846	3.012 ± 0.764	0.569 ± 0.567	0.001*	2.863 ± 0.721	0.418 ± 0.598	0.001*	3.348 ± 0.848	0.253 ± 0.512	0.062†
PEFR (L/min)	458.6 ± 43.024	378.4 ± 38.722	80.2 ± 16.613	0.0003*	370.2 ± 37.872	78.4 ± 30.981	0.0001*	428.4 ± 37.650	30.2 ± 16.232	0.0001*
Pₑmax (mm Hg)	52.64 ± 0.029	37.84 ± 4.102	14.8 ± 4.434	0.001*	37.22 ± 4.102	14.7 ± 4.962	0.001*	47.00 ± 3.547	5.64 ± 2.447	0.001*

* – significant, † – not significant, D – Difference from baseline

Table IV: Mean values of FVC, FEV₁, PEFR and Pₑmax at baseline, 10 minutes, 60 minutes and 120 minutes and the difference from baseline in Group BF

	Baseline	10 minutes	60 minutes	120 minutes						
	Mean ± S.D	D ± S.D	p value	Mean ± S.D	D ± S.D	p value	Mean ± S.D	D ± S.D	p value	
FVC (litres)	4.186 ± 0.575	3.516 ± 0.577	0.669 ± 0.304	0.001*	3.569 ± 0.596	0.616 ± 0.348	0.001*	3.932 ± 0.578	0.254 ± 0.251	0.001*
FEV₁ (litres)	3.276 ± 0.825	2.755 ± 0.704	0.421 ± 0.465	0.001*	2.587 ± 0.713	0.319 ± 0.438	0.001*	3.437 ± 0.759	0.138 ± 0.346	0.057†
PEFR (L/min)	452.6 ± 41.036	381.6 ± 38.479	74 ± 13.844	0.0001*	358.2 ± 38.591	67.4 ± 18.092	0.0002*	431.4 ± 43.72	24.2 ± 14.838	0.0001*
Pₑmax (mm Hg)	53 ± 3.162	57.56 ± 2.346	12.44 ± 3.215	0.001*	37.6 ± 2.886	12.4 ± 3.316	0.001*	45.2 ± 2.945	4.80 ± 2.516	0.001*

* – significant, † – not significant, D – Difference from baseline

Table V: Comparison of mean reduction and mean percentage reduction in forced expiratory flows between Group B and Group BF at 10 minutes

	Mean reduction ± S.D	p value	Mean % reduction ± S.D	p value
FVC (litres)	Group B 0.6675 ± 0.5770	0.865*	15.062 ± 7.94	0.574*
	Group BF 0.6875 ± 0.549		16.481 ± 7.890	
FEV₁ (litres)	Group B 0.5305 ± 0.629	0.422*	14.453 ± 7.316	0.549*
	Group BF 0.483 ± 0.512		12.234 ± 16.29	
PEFR (L/min)	Group B 79.25 ± 17.492	0.178*	16.952 ± 3.241	0.712*
	Group BF 72.5 ± 13.32		17.344 ± 3.41	
Pₑmax (mm Hg)	Group B 13.60 ± 2.722	0.21*	26.621 ± 4.911	0.303*
	Group BF 12.45 ± 2.981		24.917 ± 5.425	

* – not significant
Table VI: Comparison of mean reduction and mean percentage reduction in forced expiratory flows between Group B and Group BF at 60 minutes

	Mean reduction ± S.D	p value	Mean % reduction ± S.D	p value
FVC (litres)				
Group B	0.6360 ± 0.3656	0.818*	14.37 ± 7.791	0.563*
Group BF	0.6625 ± 0.3569		15.845 ± 8.126	
FEV₁ (litres)				
Group B	0.3215 ± 0.579	0.506*	12.861 ± 22.62	0.283*
Group BF	0.3620 ± 0.7355		14.87 ± 34.36	
PEFR (L/min)				
Group B	79.25 ± 34.192	0.205*	16.790 ± 6.652	0.756*
Group BF	73.80 ± 18.73		16.229 ± 4.50	
Pₑmax (mmHg)				
Group B	15.50 ± 3.425	0.288*	26.458 ± 6.645	0.418*
Group BF	12.40 ± 3.015		24.859 ± 5.656	

* = non significant

Table VII: Comparison of mean reduction and mean % reduction in forced expiratory flows between Group B and Group BF at 120 minutes

	Mean reduction ± S.D	p value	Mean % reduction ± S.D	p value
FVC (litres)				
Group B	0.2600 ± 0.3508	0.877*	5.775 ± 6.710	0.96*
Group BF	0.2445 ± 0.2717		5.88 ± 6.507	
FEV₁ (litres)				
Group B	0.258 ± 0.5668	0.351*	6.566 ± 14.697	0.374*
Group BF	0.213 ± 0.3869		5.688 ± 12.455	
PEFR (L/min)				
Group B	27.90 ± 17.814	0.128*	6.542 ± 3.55	0.372*
Group BF	22.75 ± 15.59		5.491 ± 3.794	
Pₑmax (mmHg)				
Group B	4.20 ± 3.019	0.835*	8.110 ± 5.902	0.718*
Group BF	4.40 ± 2.945		8.796 ± 5.797	

* = non significant

Figures 1, 2, 3 and 4 graphically represent the forced expiratory flows at baseline, 10, 60 and 120 minutes. There was an acute reduction in the values of FVC, FEV₁, PEFR and Pₑmax at 10 minutes. The graphs then achieve a plateau from 10 minutes to 60 minutes. From 60 to 120 minutes there was a gradual upslope in the graph.

Figure 1: Comparison of FVC at baseline, 10, 60 and 120 minutes in group B and group BF

Figure 2: Comparison of FEV₁ at baseline, 10, 60 and 120 minutes in group B and group BF
Discussion

Spinal blockade with sensory levels at or above the level of T3 impair forced expiratory flow rates and jeopardise patients with excessive sputum production. The researchers could demonstrate a significant reduction in forced expiratory flow rates in both groups even after 120 minutes of blockade. The abdominal muscles are the most important muscles of forced expiration and coughing. Paralysis of abdominal musculature would reduce the ability to exhale forcibly, thus impairing forced expiratory manoeuvres like FVC, FEV1, PEFR and Pmax. The study demonstrates the important fact that there is no significant difference in the forced expiratory flows after addition of fentanyl intrathecally, which has not been shown until now. This is despite the fact that in the fentanyl group sensory levels were higher at 120 minutes. This shows that intrathecal fentanyl, as an adjuvant, does not affect expiratory muscle function. The performance of forced expiratory flow measurements requires initial inspiration to total lung capacity (TLC). The high levels of spinal blockade up to T1 can cause paralyss of fifth to ninth intercostal muscles and affect the inspiratory capacity. Electromyographic techniques have demonstrated that the diaphragm and the fifth to ninth external intercostal muscles are the principal muscles of inspiration. The lack of initial forced inspiration is an important factor in the reduction of forced expiratory flows observed in the study. The reduction in forced expiratory flows is concordant with the findings of Von Ungern and Sternberg and others. Among the forced expiratory flows, FEV1 approached pre-block values in 120 minutes in our study (Group B – p 0.062, Group BF – p 0.057), in contrast to a previous study. FEV1 is a sensitive indicator of the expiratory capacity when compared to FVC. This could be the reason for the return of the FEV1 values close to the baseline earlier than the FVC values.

Pmax is one of the sensitive indicators of the power of expiratory muscles. This reduction could be due to the blockade produced by the spinal anaesthesia, confirming the fact that there is significant reduction in the power of the muscles that aid coughing. Very highly significant decreases (p value = 0.001) were seen in Pmax compared to pre-block values, in both groups. Again the magnitude of the decrease was similar in both groups and was not statistically significant at any of the measured times. The percentage reduction in Pmax was greater when compared to other forced expiratory flows, with a maximum reduction of 24.917% (p = 0.001) and 26.621% (p = 0.001) at 10 minutes, in Group BF and Group B respectively. This is consistent with the study of Harrop-Griffiths and others. The decrease in both PEFR and Pmax was never below the critical values of 200 L/min and 30 mmHg respectively. These critical values have been described to be essential for effective cough. These findings are consistent with findings of earlier studies of Walsh and others. The addition of neuraxial opioids augments the analgesia produced by local anaesthetics through direct binding with the specific spinal receptors and improves the intraoperative and early postoperative quality of subarachnoid block. In this study, the highest sensory blockade achieved in both groups was T3. However at 120 minutes, the sensory blockade in Group B had receded to lower dermatomal levels, faster than in Group BF, showing that fentanyl had prolonged the sensory blockade.

Conclusion

The addition of 25 μg of fentanyl to intrathecal bupivacaine did not have any adverse effect on forced expiratory flows. There was a decrease in forced expiratory flows in both groups, but the decrease in PEFR and Pmax was never below previously described critical values. It is unlikely that the combination of intrathecal local anaesthetic and opioids will impair a normal patient’s ability to cough effectively, despite sensory segmental levels up to T4–T5. An amount of 25 μg of fentanyl can safely be added to intrathecal bupivacaine to improve the quality of analgesia in ASA I and II patients.

References

1. Cathrine OR, Stephen N, Amela MB et al. Perioperative analgesia with subarachnoid fentanyl - hyporaxic for cesarean delivery. Anaesthesiology 1999; 10: 535–540. 2. Verhas G, Gellino D, Cappella G et al. Ventilatory effects of subarachnoid fentanyl in the elderly. Anaesthesia 1992; 47: 506–502. 3. Slinked P, Theodore K, Theodore MS et al. The effect of spinal anaesthesia on the pulmonary function of patients with chronic obstructive pulmonary disease. Ann of surgery 1969; 169: 809–815. 4. Aldrete JA, Scott TW, Lee HT. Influence of cigarette smoking on the changes produced by spinal anesthesia on respiratory function and flow rates. Anaesth Analg 1979; 58: 609–615. 5. Walsh KB, Stanely C, Johnson G et al. Comparison of the effects of two intrathecal anesthetic technique for transurethral prostatectomy on haemodynamic and pulmonary function. European journal of anaesthesiology 2005; 20: 560–1. 6. Harrop-Griffiths WR, Raval A, Broome DA et al. Regional anaesthesia and cough effectiveness. Anaesthesia 1991; 46: 11–5. 7. Moor D. Ventilatory function during epidural analgesia. BJA 1965; 35: 5–7. 8. Campbell EM, Ans electromyographic examination of the role of the intercostals muscles in breathing in man. J Physiol (Lond) 1959; 129: 12. 9. Green B, Howell B, Burton P. Correlation of respiratory flow using a pneumotach, with intercostal muscle activity. J Physiol (Lond) 1959; 130: 55. 10. Von Ungern-Sternberg BS, Lefi T, Rech A et al. Comparison of peroperative spinal anaesthesia with fentanylxia in normal – weight and overweight gynaecological patients. Acta Anaesthesiol Scand 2005; 49: 940–48. 11. Von Ungern-Sternberg BS, Lefi T, Rech A et al. Impact of spinal anaesthesia and obesity on maternal respiratory function during elective Caesarean section. Anaesthesia 2004; 59: 743–9. 12. Scott M, Kestia GM et al. Pulmonary evaluation of surgical patients. JAMA 1981; 765: 1962. 13. Thomas K, Pulmonary function testing. In: Donald B, ed. Miller’s Anaesthesia. Philadelphia: W.B. Saunders Company, 1992. 14. 15. Edmondson J, Coopet GM and Yamada MB. The influence of intrathecal fentanyl on the characteristics of subarachnoid block for Caesarean section. Anaesthesia 1998; 53: 702–710. 16. Kandali B, et al. Comparison of two subarachnoid solutions in a needle threading needle technique for elective caesarean section. British Journal of Anaesthesia 1991; 67: 514–518.