Observation of Tunneling-Assisted Highly Forbidden Single-Photon Transitions in a Ni_4 Single-Molecule Magnet
Yiming Chen, Mohammad D. Ashkezari, Charles A. Collett, Rafael A. Allão Cassaro, Filippo Troiani, Paul M. Lahti, and Jonathan R. Friedman
Phys. Rev. Lett. 117, 187202 — Published 27 October 2016
DOI: 10.1103/PhysRevLett.117.187202
Observation of tunneling-assisted highly forbidden single-photon transitions in a Ni$_4$ single-molecule magnet

Yiming Chen,1,2 Mohammad D. Ashkezari,1,* Charles A. Collett,1 Rafael A. Allão Cassaro,3,1 Filippo Troiani,4 Paul M. Lahti,3 and Jonathan R. Friedman1,†

1Department of Physics and Astronomy, Amherst College, Amherst, MA 01002-5000, USA
2Department of Physics, University of Massachusetts, Amherst, MA 01003, USA
3Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
4S3 Instituto Nanoscienze-CNR, I-41124 Modena, Italy

(Dated: September 29, 2016)

Forbidden transitions between energy levels typically involve violation of selection rules imposed by symmetry and/or conservation laws. A nanomagnet tunneling between up and down states violates angular momentum conservation because of broken rotational symmetry. Here we report observations of highly forbidden transitions between spin states in a Ni$_4$ single-molecule magnet in which a single photon can induce the spin to change by several times \hbar, nearly reversing the direction of the spin. These observations are understood as tunneling-assisted transitions that lift the standard $\Delta m = \pm 1$ selection rule for single-photon transitions. These transitions are observed at low applied fields, where tunneling is dominated by the molecule’s intrinsic anisotropy and the field acts as a perturbation. Such transitions can be exploited to create macroscopic superposition states that are not typically accessible through single-photon $\Delta m = \pm 1$ transitions.

There has been much recent attention to using spin systems as potential qubits [1–4]. Molecular nanomagnets are particularly attractive as spin qubits [4–12] because many of their properties can be chemically engineered. Single-molecule magnets (SMMs) are anisotropic molecular magnets, typically with large total spin, for which the spin is impelled to point along a preferred axis, the “easy” axis [13]. They exhibit remarkable quantum dynamics including tunneling between different orientations [14] and quantum-phase interference [15]. Here we present evidence of highly forbidden transitions in the Ni$_4$ SMM where the transitions are enabled by tunneling, which lifts the requirement of spin angular momentum conservation. We observe transitions in which the absorption of a single photon permits a near reversal of the molecule’s macrospin, grossly violating the standard $\Delta m = \pm 1$ selection rule. The quantum states that can be generated through these forbidden transitions are non-classical, having a substantial “macroscopicity” by a standard measure. Our results imply that the forbidden transitions observed in this system (and similar molecules with strong anisotropy) can be exploited to create highly nonclassical states with single-photon transitions.

From a quantum coherence perspective, forbidden transitions have some distinct advantages: Since the matrix elements for these transitions are small, they tend to have long lifetimes. In addition, they can be less susceptible to magnetic-field fluctuations under certain circumstances, potentially leading to longer coherence times [3, 12, 16]. Forbidden transitions have been seen in SMMs with very strong tunneling produced by strongly broken symmetry [11, 12, 17]. In contrast, in our experiments the transitions are dominated by a modest intrinsic anisotropy with an applied field acting as a perturbation.

We studied the $S = 4$ complex [Ni(hmp)(dmb)Cl]$_4$ (hereafter Ni$_4$), shown in the inset of Fig. 1. The molecule’s large ligands isolate the magnetic centers within a crystal from each other [18]. In addition, there are no solvate molecules in the crystal lattice and 99% (natural abundance) of Ni nuclei have spin $I = 0$. This SMM has been characterized by electron-spin resonance (ESR) spectroscopy [17, 19–24], magnetization measurements [17, 18, 25] and heat capacity measurements [23, 26, 27]. Ni$_4$ can be well described as a single “giant spin” with the Hamiltonian [24]:

$$H = -DS_z^2 - AS_z^4 + C(S_+^4 + S_-^4) - \mu_B \vec{B} \cdot \vec{g} \cdot \vec{S}, \quad (1)$$

where \vec{g} is the molecule’s g tensor, D and A are axial (diagonal) anisotropy parameters that define the “easy” z axis and make the $m = \pm 4$ magnetic sublevels have the lowest energy, producing an energy barrier between those two orientations; C is a transverse (off-diagonal) anisotropy parameter that affects the strength of tunneling through the barrier; and the magnetic field $\vec{B} = B (\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)$ produces a Zeeman interaction. The z component of \vec{B} changes the energies of the magnetic sublevels as illustrated in Fig. 1. When levels approach, the off-diagonal terms in Eq. 1 mix states of different m values, giving rise to anticrossings. Like the transverse anisotropy, the transverse components of \vec{B} are off-diagonal terms in Eq. 1. Since the off-diagonal terms do not commute with S_z, they are responsible for the observed tunneling phenomena in this and other SMMs [13, 14]. The energy splitting at an anticrossing is dubbed the “tunnel splitting”.

We performed reflection ESR spectroscopy using a 3D cylindrical resonant cavity with a TE$_{111}$ mode with resonant frequency ~ 115.54 GHz and a quality factor (Q) of ~ 10000. A static magnetic field \hat{H} was applied along the axis of the cavity. A single crystal of Ni$_4$ (synthesized using published procedures [25]) was mounted on the bottom of the cavity at a position where the rf field was perpendicular to the static field. The easy axis of the crystal was manually tilted at various angles (θ_H) relative to \hat{H}. We measured the reflected power as a
function of frequency and extracted the resonance frequency and \(Q \) value of the cavity at each field \([28]\).

Figure 2 shows ESR spectra (\(Q \) vs. \(H \)) at 1.8 K for a single crystal of NiI at multiple values of \(\theta_H \), the angle between the easy axis and \(\vec{H} \). We typically observe multiple peaks: two large peaks that are each split and, often, small peaks to the right or left of the large peaks. Dispersive spectra show corresponding features (see Fig. 2 in \([28]\)). The large peaks correspond to allowed transitions with \(\Delta m = \pm 1 \). The splitting of these peaks arises from ligand conformational disorder \([26]\).

Additional fine structure that some of these peaks exhibit \([23]\) is not relevant to this study. We focus on the two small peaks (marked \(*\) and \(\dagger\)) in Fig. 2) that correspond roughly to \(m = -4 \rightarrow m = 2 (\ast) \) and \(m = 3 \rightarrow m = -4 (\dagger) \)(cf. Fig. 1, orange arrows). Compared with the allowed transitions, these forbidden transitions have markedly different dependences on \(\theta_H \), confirming their different character.

Figure 3 shows the \(B - \theta \) resonance positions (determined from the spectra in Fig. 2), where \(\theta \) is the angle between the easy axis and the field \(\vec{B} \) experienced by the molecules. Lines show the calculated resonance points for the transitions shown in Fig. 1, obtained by diagonalizing Eq. 1 using the parameters given below. Solid (dashed) curves indicate allowed (forbidden) transitions. The agreement between the calculated \(B - \theta \) resonance positions and the experimental data is very good. In producing Fig. 3, we took into account that both the magnitude and direction of \(\vec{B} \) changes with \(\vec{H} \) due to intermolecular dipolar interactions, so that each spectrum in Fig. 2 produces a range of \(\theta \) values in Fig. 3 \([28]\).

Red and black curves show predicted resonance positions for the two conformational states (isomers) of the molecule, which have somewhat different anisotropy constants, determined by fitting \([28]\): \(D = 15.13 (4) \) GHz, \(A = 0.136 (2) \) GHz and \(C = 5.3 (2) \) MHz (red), and \(D = 15.55 (4) \) GHz, \(A = 0.138 (2) \) MHz, \(C = 6.45 (3) \) MHz (black). \(g \) factors were taken to be the same for both components and found to be \(g_z = 2.157 (7) \) and \(g_y = g_f = 2.220 (3) \). These numbers are in reasonable agreement with those found by others \([19, 20]\).

The forbidden transitions (orange arrows in Fig. 1) are observable because each occurs at a field near an anticrossing, where resonant tunneling takes place. Tunneling effects can be demonstrated by expanding the two energy eigenstates for each forbidden transition in the eigenbasis of \(S_z \): \(|E_j\rangle = \sum_m c_m^{(j)} |m\rangle \).

Figures 4(a) and 4(b) show \(|c_m| \) vs. \(m \) for the initial \((|i\rangle) \) and final \((|f\rangle) \) states involved in the \(\ast \) and \(+ \) transitions, respectively, at \(\theta = 30^\circ \) in the proximity of an anticrossing. For \(\ast, |i\rangle \approx |m = -4\rangle \), while \(|f\rangle \) is a superposition of primarily \(|m = 2\rangle \), \(|m = -3\rangle \), and \(|m = 1\rangle \). It is the proximity of the ESR transition to an anticrossing produces a non-negligible amplitude of \(|m = -3\rangle \) in \(|f\rangle \) and thus a \(\Delta m = 1 \) transition matrix element between \(|i\rangle \) and \(|f\rangle \). The transition between states largely localized in separate wells constitutes a tunneling-assisted forbidden transition. Equivalently, the transition can be viewed as photon-induced tunneling in which
the system transits between wells while absorbing the photon without acquiring enough energy to surmount the barrier. During this forbidden transition, the change of m is nominally 6; indeed, a rigorous calculation yields a change in expectation value $|\Delta \langle S_z \rangle|$ as high as 6, indicating a large change in the spin’s angular momentum with the absorption of a single photon [28].

Similarly, the + transition (Fig. 4(b)), involves $|i\rangle \approx |m = 3\rangle$ and $|f\rangle$, a superposition of mostly $|m = -4\rangle$, $|m = -3\rangle$, and $|m = 2\rangle$ states. This transition’s proximity to an anticrossing here gives rise to a finite amplitude of $|m = 2\rangle$ in $|f\rangle$ and a dipole matrix element with $|i\rangle$. For this transition, we calculate a maximum $|\Delta \langle S_z \rangle|$ of ~7 for experimentally relevant values of B and θ [28].

The forbidden-transition peaks tend to become stronger when very close to allowed transitions (Fig. 2), confirming the delocalization of $|f\rangle$ near the tunneling resonance field. A comparison of the experimental and simulated spectral intensity (Fig. 3 in [28]) shows good agreement, with the intensity growing near anticrossings or at large transverse fields, where tunneling is enhanced.

The peak linewidths for forbidden transitions tend to be significantly smaller than for allowed transitions (Fig. 2). The widths appear to roughly scale as $1/\Delta \langle S_z \rangle$. This suggests that these peaks are homogeneously broadened. Extracting T_2 from the widths, yields values $\approx 0.1 - 1$ ns (Fig. 4 in [28]), comparable to those found previously for Ni$_4$ [17]. Larger T_2 values are needed for realistic quantum information processing. Long T_2 times have been achieved in a variety of molecular magnets via dilution [4, 6, 8] to reduce dipole couplings; indeed, Ni$_4$ can be diluted by cocrystallizing it with the diamagnetic analog Zn$_4$ [29]. T_2 can also be enhanced by making use of “clock transitions”, i.e. operating near an anticrossing, where $\partial f/\partial B = 0$ and decohering field fluctuations can only affect energies quadratically [3, 12, 16, 30]. Nevertheless, the short T_2 we observe may be compensated by the high density of Ni$_4$ molecules in a crystal that can enhance the spin-photon coupling [31].

Independent of issues of coherence, the observed transitions have a distinctly “macroscopic” character, involving states with largely different values of m. Linear superpositions between such states are prototypical examples of macroscopic superposition states (à la Schrödinger’s cat). Here we characterize the observed transitions $|i\rangle \longrightarrow |f\rangle$ in terms of
the linear superposition $|\psi\rangle = (|i\rangle + e^{i\eta}|f\rangle)/\sqrt{2}$ that can be generated through pulsed excitations, where η typically depends on time. The “macroscopicity” of such states can be quantified using suitable measures, such as the quantum Fisher information (QFI) [32]:

$$F_\psi = \max_{X, \eta} \left[\langle \psi | X^2 | \psi \rangle - \langle \psi | X | \psi \rangle^2 \right],$$ \hspace{1cm} (3)$$

Up to a constant (which we omit), QFI equals the variance of the operator $X = \sum_{i=1}^N n_i \cdot s_i$, where the s_i refers to the ith ionic spin of the molecule. F_ψ is maximized over all possible unit vectors n_i and with respect to the phase η. Here we consider states belonging to the maximal-spin multiplet ($S = 4$) of the Ni_4 molecule. One can show that in this case the maximum is always obtained with parallel vectors ($n_i = n, \forall i$).

We also determine the relative Fisher information:

$$D_{RFI} = \frac{F_\psi}{2[F_i + F_f]}$$ \hspace{1cm} (4)$$
in which each F is maximized independently. The above normalization allows one to single out the amount of quantum fluctuations in $|\psi\rangle$ that result from the linear superposition of the states $|i\rangle$ and $|f\rangle$. Figure 5 shows calculated oscillator strength (OS, transition matrix element squared) and D_{RFI} for the + transition of the black component between $|i\rangle = |E_2\rangle \approx |m = 3\rangle$ and $|f\rangle = |E_3\rangle$, the second and third lowest energy eigenstate, respectively, as a function of field. θ is adjusted to maintain the resonance condition between the radiation frequency and the transition, following the right dashed black curve in Fig. 3. At large fields, $|f\rangle \approx |m = 2\rangle$, the transition between these levels is allowed with a large OS and $D_{RFI} \approx 1$. At low fields, $|f\rangle \approx |m = -4\rangle$ and the transition is more macroscopic ($D_{RFI} \approx 3$) and forbidden (OS small). Near the anticrossing, where states with very different values of m hybridize, relatively large values of D_{RFI} can persist, while the oscillator strength remains finite. Interestingly, the behavior of D_{RFI} and $|\Delta\langle S_z \rangle|$ are qualitatively similar [28], indicating that $\Delta\langle S_z \rangle$ is a reasonable proxy for quantifying the macroscopicity of these transitions.

Our work demonstrates the important role tunneling can play in “opening up” forbidden transitions. In Ni_4, the relevant tunnel splittings for the transitions studied are relatively large (on the order of 1 GHz). As a consequence, m is no longer a good quantum number near an anticrossing, enabling forbidden transitions with large $|\Delta\langle S_z \rangle|$ and macroscopicity. In addition, the large tunnel splittings allow tunneling effects to extend beyond the immediate vicinity of an anticrossing. In our experiments, the observed forbidden transitions lie slightly away from anticrossings, permitting direct single-photon transitions between states largely localized in opposite wells. When tunnel splittings are much smaller, one enters the regime of photon-assisted tunneling [33, 34], where an allowed ESR transition is followed sequentially by tunneling between wells. Tunnel splittings can be enhanced by applying large transverse fields [17]. However, a field only acts as a perturbation when the Zeeman energy is small compared to molecule’s anisotropy energy. In the large-field regime, the transitions become allowed and the macroscopicity of superposition states becomes suppressed. Furthermore, going beyond the perturbation regime undermines the advantages afforded by clock transitions. The tunnel splittings found intrinsically in Ni_4 are sufficient to observe forbidden transitions without the need of applying significant transverse fields to enhance tunneling.

We are indebted M. P. Sarachik for useful discussions and comments on the manuscript. We also thank D. I. Schuster and M. Foss-Feig for productive conversations. We are grateful to H. Xu for her assistance in some aspects of the numerical simulations. We thank C. Euvrard (Millitech Corp.) for technical help with some equipment, J. Kubasek for assistance in fabrication of the resonator and N. Page for technical support of measurement equipment. Support for this work was provided by the U. S. National Science Foundation under Grant No. DMR-1310135, by the Italian Ministry of Education and Research through the FIRB project RBFR12RPD1, and by the EU through the FP7 FET project MoQuaS (contract N.610449). J.R.F. acknowledges the support of the Amherst College Senior Sabbatical Fellowship Program, funded in part by the H. Axel Schupf ’57 Fund for Intellectual Life. R.A.A.C. thanks CNPq for the fellowship that enabled his work at the University of Massachusetts Amherst.
[1] D. I. Schuster, A. P. Sears, E. Ginossar, L. DiCarlo, L. Frunzio, J. J. L. Morton, H. Wu, G. A. D. Briggs, B. B. Buckley, D. D. Awschalom, and R. J. Schoelkopf, Phys. Rev. Lett. 105, 140501 (2010).

[2] Y. Kubo, F. R. Ong, P. Bertet, D. Vion, V. Jacques, D. Zheng, A. Dreau, J.-F. Roch, A. Auffeves, F. Jelezko, J. Wrachtrup, M. F. Barthe, P. Bergonzo, and D. Esteve, Phys. Rev. Lett. 105, 140502 (2010).

[3] G. Wolfovicz, A. M. Tyryshkin, R. E. George, H. Riemann, N. V. Abrosimov, P. Becker, H.-J. Pohl, M. L. W. Thewalt, S. A. Lyon, and J. J. L. Morton, Nat. Nanotech. 8, 561 (2013).

[4] K. Bader, D. Dengler, S. Lenz, B. Endeward, S.-D. Jiang, P. Neugebauer, and J. van Slageren, Nat. Commun. 5, 6304 (2014).

[5] M. N. Leuenberger and D. Loss, Nature 410, 789 (2001).

[6] A. Ardavan, O. Rival, J. J. L. Morton, S. J. Blundell, A. M. Tyryshkin, G. A. Timco, and R. E. P. Winpenny, Phys. Rev. Lett. 98, 057201 (2007).

[7] C. J. Wedge, G. A. Timco, E. T. Spielberg, R. E. George, F. Tuna, S. Rigby, E. J. L. McInnes, R. E. P. Winpenny, S. J. Blundell, and A. Ardavan, Phys. Rev. Lett. 108, 107204 (2012).

[8] C. Schlegel, J. van Slageren, M. Manoli, E. K. Brechin, and M. Dressel, Phys. Rev. Lett. 101, 147203 (2008).

[9] L. Bogani and W. Wernsdorfer, Nat. Mater. 7, 179 (2008).

[10] F. Troiani and M. Affronte, Chem. Soc. Rev. 40, 3119 (2011).

[11] S. Ghosh, S. Datta, L. Friend, S. Cardona-Serra, A. Gaita-Ariño, E. Coronado, and S. Hill, Dalton Trans. 41, 13697 (2012).

[12] M. Shiddiq, D. Komijani, Y. Duan, A. Gaita-Ariño, E. Coronado, and S. Hill, Nature 531, 348 (2016).

[13] J. R. Friedman and M. P. Sarachik, Ann. Rev. Cond. Mater. Phys. 1, 109 (2010).

[14] J. R. Friedman, M. P. Sarachik, J. Tejada, and R. Ziolo, Phys. Rev. Lett. 76, 3830 (1996).

[15] W. Wernsdorfer and R. Sensoli, Science 284, 133 (1999).

[16] J. J. Bollinger, J. D. Prestage, W. M. Itano, and D. J. Wineland, Phys. Rev. Lett. 54, 1000 (1985).

[17] E. del Barco, A. D. Kent, E. C. Yang, and D. N. Hendrickson, Phys. Rev. Lett. 93, 157202 (2004).

[18] E.-C. Yang, W. Wernsdorfer, S. Hill, R. S. Edwards, M. Nakano, S. Maccagnano, L. N. Zakharov, A. L. Rheingold, G. Christou, and D. N. Hendrickson, Polyhedron 22, 1727 (2003).

[19] R. S. Edwards, S. Maccagnano, E.-C. Yang, S. Hill, W. Wernsdorfer, D. Hendrickson, and G. Christou, Journal of Applied Physics 93, 7807 (2003).

[20] C. Kirman, J. Lawrence, S. Hill, E.-C. Yang, and D. N. Hendrickson, J. Appl. Phys. 97, 10M501 (2005).

[21] G. de Loubens, G. D. Chaves-O’Flynn, A. D. Kent, C. Ramsey, E. del Barco, C. Beedle, and D. N. Hendrickson, J. Appl. Phys. 101, 09E104 (2007).

[22] G. de Loubens, A. D. Kent, V. Krymov, G. J. Gerfen, C. C. Beedle, and D. N. Hendrickson, J. Appl. Phys. 103, 07B910 (2008).

[23] J. Lawrence, E.-C. Yang, R. Edwards, M. M. Olmstead, C. Ramsey, N. S. Dalal, P. K. Gantzel, S. Hill, and D. N. Hendrickson, Inorg. Chem. 47, 1965 (2008).

[24] J. Lawrence, E.-C. Yang, D. N. Hendrickson, and S. Hill, Phys. Chem. Chem. Phys. 11, 6743 (2009).

[25] E.-C. Yang, W. Wernsdorfer, L. N. Zakharov, Y. Karaki, A. Yamaguchi, R. M. Isidro, G.-D. Lu, S. A. Wilson, A. L. Rheingold, H. Ishimoto, and D. N. Hendrickson, Inorg. Chem. 45, 529 (2006).

[26] D. N. Hendrickson, E.-C. Yang, R. M. Isidro, C. Kirman, J. Lawrence, S. S. Edwards, S. Hill, A. Yamaguchi, H. Ishimoto, W. Wernsdorfer, C. Ramsey, N. Dalal, and M. M. Olmstead, Polyhedron Proceedings of the 9th International Conference on Molecule-based Magnets (ICMM 2004) 9th International Conference on Molecule-based Magnets, 24, 2280 (2005).

[27] C. C. Beedle, J. J. Henderson, P.-C. Ho, T. Sayles, M. Nakano, J. R. O’Brien, K. J. Heroux, E. del Barco, M. B. Maple, and D. N. Hendrickson, Inorg. Chem. 49, 5780 (2010).

[28] See supplemental material at [URL will be inserted], which includes Refs. [25, 29, 35], for experimental methods, additional data and details of data-analysis procedures.

[29] C. A. Collett, R. A. Alloé Cassaro, and J. R. Friedman, submitted (2016).

[30] D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Urbina, D. Esteve, and M. H. Devoret, Science 296, 886 (2002).

[31] A. W. Eddins, C. C. Beedle, D. N. Hendrickson, and J. R. Friedman, Phys. Rev. Lett. 112, 120501 (2014).

[32] F. Troiani and P. Zanardi, Phys. Rev. B 88, 094413 (2013).

[33] L. Sorace, W. Wernsdorfer, C. Thirion, A.-L. Barra, M. Pacchioni, D. Mailly, and B. Barbara, Phys. Rev. B 68, 220407 (2003).

[34] M. Bal, J. R. Friedman, W. Chen, M. T. Tuominen, C. C. Beedle, E. M. Rumberger, and D. N. Hendrickson, EPL 82, 17005 (2008).

[35] S. Stoll and A. Schweiger, Journal of Magnetic Resonance 178, 42 (2006).