Activating spin-forbidden transitions in molecules by the highly localized plasmonic field

Sai Duan1,2, Zilvinas Rinkevicius2,3 and Yi Luo1,2

1Hefei National Laboratory for Physical Sciences at the Microscale, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, 230026 Anhui, P. R. China.

2Division of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology, S-106 91 Stockholm, Sweden.

3Swedish e-Science Research Centre, KTH Royal Institute of Technology, S-100 44 Stockholm, Sweden.

Optical spectroscopy has been the primary tool to study the electronic structure of molecules. However the strict spin selection rule has severely limited its ability to access states of different spin multiplicities. Here we propose a new strategy to activate spin-forbidden transitions in molecules by introducing spatially highly inhomogeneous plasmonic field. The giant enhancement of the magnetic field strength resulted from the curl of the inhomogeneous vector potential makes the transition between states of different spin multiplicities naturally feasible. The dramatic effect of the inhomogeneity of the plasmonic field on the spin and symmetry selection rules is well illustrated by first principles calculations of C$_{60}$. Remarkably, the intensity of singlet-triplet transitions can even be stronger than that of singlet-singlet transitions when the plasmon spatial distribution is comparable with the molecular size. This
approach offers a powerful means to completely map out all excited states of molecules and to actively control their photochemical processes. The same concept can also be applied to study nano and biological systems.

Optical excitation is the fundamental process that controls molecular properties and their spectroscopies. In spite of great success, the optical excitation with conventional light sources could only access to very limited number of excited states due to the restriction of the intrinsic symmetry and spin selection rules. It was reported recently that the symmetry selection rule for optical excitations could be softened under the plasmonic field, which takes advantage of its near field characteristic. We will demonstrate here that the use of locality of the plasmonic field could not only further weaken the symmetry selection rule, but also remove completely the much stricter spin selection rule.

Within non-relativistic regime, the light-matter interaction is governed by the minimal coupling Hamiltonian, which is adequate even for plasmonic fields. In this context, the light-matter interaction Hamiltonian, \(\hat{H}' \), can be expressed as the summation of the vector potential component \(\hat{H}'_A \) and magnetic component \(\hat{H}'_B \)

\[
\hat{H}' = \hat{H}'_A + \hat{H}'_B
\]

\[
\hat{H}'_A = \sum_k \frac{1}{2} \left[\hat{p}_k \cdot A(r_k, t) + A(r_k, t) \cdot \hat{p}_k \right]
\]

\[
\hat{H}'_B = \sum_k \frac{1}{2} \hat{\sigma}_k \cdot B(r_k, t)
\]

where \(\hat{p}_k \) is the momentum operator of the \(k \)th electron, \(A(r_k, t) \) is the vector potential of the light, \(r_k \) is the position of the \(k \)th electron, \(\hat{\sigma}_k \) is the Pauli matrix for the \(k \)th electron, and \(B(r_k, t) \)
is the magnetic field that can be calculated by the curl of the vector potential, i.e., $B(r_k, t) = \nabla_k \times A(r_k, t)$. Here we neglect the high-order $A^2(r_k, t)$ term. Thus, the light-matter interaction can be determined by the vector potential. In general, vector potential could be expressed as (Figure 1a)

$$A(r, t) = A_0 g(r) e^{i\eta_0 k_0 \cdot r} e^{-i\omega t} \hat{n} + \text{c.c.} \tag{2}$$

where A_0 is the constant field amplitude, $g(r)$ is the amplitude of the spatial distribution function, k_0 is the wave vector in vacuum, η_0 is the confinement factor for the wave vector caused by surrounding dielectric media, ω is the frequency of electromagnetic field, \hat{n} is the norm of the vector potential, and c.c. is the complex conjugate. As a result, we have

$$B(r, t) = [i\eta_0 g(r) k_0 \times \hat{n} + \nabla g(r) \times \hat{n}] e^{i\eta_0 k_0 \cdot r} e^{-i\omega t} + \text{c.c.} \tag{3}$$

According to the Fermi’s golden rule, the absorption cross section between molecular initial state $|i\rangle$ and final state $|f\rangle$ caused by the interaction Hamiltonian reads

$$\sigma_{if} = 2\pi \frac{|\langle i| \hat{H}'| f\rangle|^2}{\mathcal{F}} \tag{4}$$

where \mathcal{F} is the flux of the incident light.

In general, matrix elements of light-matter interaction Hamiltonian in Eq. 4 between arbitrary state of system are non-vanishing, and the magnitude of these matrix elements depends on the nature of vector potential and magnetic field of electromagnetic field entering \hat{H}'. The vector potential component of electromagnetic field governs the behaviour of the first spin-independent term in \hat{H}', and the magnetic field component controls the second spin-dependent term, respectively. This separation in \hat{H}' leads to distinct selection rules for its matrix elements, where the
vector potential component is responsible for selection rules for matrix elements between states of the same multiplicity, while the magnetic field component responsible for selection rules between states of different multiplicities. For instance, for plane wave, \(g(r) = 1 \), the dipole approximation assumes \(e^{i\eta_0 k_0 \cdot r} \approx 1 \). With the help of the quantum mechanical relationship \(\hat{p} = i[\hat{H}_0, \hat{r}] \), where \(\hat{H}_0 \) is the unperturbed molecular Hamiltonian, the absorption between the same multiplicity is proportional to \(|\langle i | \sum_k r_k | f \rangle|^2 \), resulting in the spatial symmetry selection rule (also called as the “dipole selection rule”).\(^{13, 19}\), i.e., only the totally symmetric representation of the direct product of the symmetry irreducible representation of \(r \), initial and final states is allowed. Meanwhile, the involvement of the plan wave (\(g(r) = 1 \)) eliminates the gradient term for the magnetic field (Eq. 3). Moreover, within the dipole approximation, the magnetic field would become zero. As a result, the transitions between different multiplicities are strictly forbidden, i.e. the so-called spin symmetry selection rule. Apparently, there are two ways to break-down the spin symmetry selection rule. One is to go beyond the dipole approximation, while another is to introduce a large confinement factor that can lead to non-zero magnetic field.

It is well established that with the conventional optical excitation sources, none of these two approaches could be utilized. However, the spatially confined plasmon (SCP) generated either by optical excitation or electron current has offered exciting new opportunity. It has been shown that the inhomogeneous plasmonic field can be confined in a nano-cavity.\(^{20, 21}\) With such a highly confined plasmonic field, the inner structure of a porphyrin molecule has been visualised by the tip-enhanced Raman spectroscopy (TERS) with a super high spatial resolution of 0.5 nm.\(^{21}\) Our recent theoretical work has nicely reproduced the experimental Raman images of the molecules by
taking into account the spatial distribution of the SCP in the transition matrix. It was found both theoretically and experimentally that the spatial distribution of the SCP has been confined within the size of 2 nm, which is comparable with the size of many molecules. In principle, the spatial size of the SCP is determined by the Thomas-Fermi screening length, which can be down to, for example, 1 Å for silver and gold. With such a highly localized field, a huge magnetic field is expected to be generated through the curl of its vector potential, as indicated by Eq. In other words, even with vanished spin-orbit coupling, the spin symmetry selection rule can be completely removed. For the sake of the presentation, we name afterwards this new transition as plasmon induced spin transition (PIST).

We will verify the actual magnitude of the effects from the PIST under different confined plasmonic field by calculating the absorption spectrum of a highly symmetric buckminsterfullerene C_{60}. The computational methods are summarized in the Methods section. Due to its very high symmetry I_h, under the dipole approximation, only the {1T_{1u}} excited states of C_{60} are allowed optical transitions, which give rise to only one main absorption band (the C band) above 300 nm in the experimental spectrum. Although the inclusion of the Herzberg-Teller (for singlet) and spin-orbit coupling (for triplet) could break the selection rules, their effects only make very small contribution to the low energy transitions as illustrated in previous experiments (black line in Figure 1b). Without considering both vibronic and spin orbital couplings, our calculated spectrum does well reproduce the experimental one as shown in Figure 1b. The orientation of the molecule is an important fact when it interacts with the highly localized plasmonic field. For the sake of the simplicity, we have adopted the 6-Ring configuration of C_{60} on a spaced substrate (Figure 1a) as
mostly observed in previous experiments2929. The C band is again dominant above 300 nm in the absorption spectrum of C\textsubscript{60} on surface with the 6-Ring configuration with conventional light source shown in Figure 1c. It should be noted that the absorption cross section from single molecules can be experimentally measured through the photoluminescence excitation technique21.

The first consideration is the effects of the going beyond the dipole approximation in wavevector expansion. The SCP is squeezed within a cavity of nanometer size, which is equivalent to the shrinking of the wavelength11. The calculated cross sections as shown in Figure 2a clearly indicate that the shrinking of the wavelength can significantly break the spatial symmetry selection rule, which is consistent with what was proposed by Rivera et al.11 It comes from the multipole contributions in the expansion of $e^{i\eta_0\mathbf{k}\cdot\mathbf{r}}$ (Figure 2b). For instance, two $^1T_{1g}$ states from the electric quadrupole contribution emerge when the wavelength is only shrunk by a factor of 50. When $\eta_0 = 100$, the absorptions of $^1T_{1g}$ bands are even larger than the dipole allowed C band transition. It is noted that, with η_0 less than 100, the breakdown of the spin selection rule shows a very weak sign, resulting in negligible PIST. Again, these observations are consistent with the previous theoretical prediction11. It is interesting to note that the further shrinking of the wavelength by a factor of 300 can generate strong PIST of the triplet $^3T_{1u}$ state caused by the magnetic dipole, which drastically breaks down the spin selection rule. It should be noted that, even when η_0 equals 500, the dipole-forbidden singlet $^1T_{1g}$ state around 600 nm is still the most intense band, although more PISTs, for instance the magnetic quadrupole allowed 3H_g, emerge.

The highly localized plasmonic field can result in a huge gradient of the amplitude distribu-
tion of vector potential that is strongly depended on the spatial distribution of the field, leading to
the generation of a much enhanced magnetic field. Our calculated absorption cross sections of C_{60}
excited by the plasmon of different spatial size without shrinking the wavelength are depicted in
Figure 3a. Here the plasmonic size (Γ) is determined by the full width at half-maximum of field
distribution (see the Methods section). It is found that for the plasmonic size of 20 Å, the absorp-
tion spectrum is almost identical to that from the plan wave excitation except a very weak signal
from the $^3T_{1u}$ state around 427 nm. This is reasonable since the size of the plasmonic field is about
3 times of the size of C_{60} around 7 Å10. When the plasmonic size approaches the molecular size, for
example 10 Å, the PISTs of $^3T_{1u}$ and 3H_g states become significant, nicely illustrating the break-
down of the spin symmetry selection rule. Meanwhile, the appearance of the singlet transitions to
the 1H_g states also indicates that the symmetry selection rule is broken as well. When the molecule
interacts with a highly localized plasmonic field, the symmetry of the whole interactive system is
significantly reduced in comparison with the molecule itself, which results in the breakdown of the
symmetry selection rule. As shown in Figure 3c, the symmetry of the whole interactive system
reduces from I_h to C_{3v}. When the plasmonic size sets to be the same of the C_{60} size (7 Å), the $^3T_{1u}$
state around 427 nm gains huge intensity and becomes the most intense absorption band. Under
this condition, the much enhanced magnetic field induced by the gradient term in Eq. 3 kicks in
(Figure 3b). Due to the same reason, all singlet absorption transitions are suppressed by the intense
PISTs when the plasmonic size is set to 5 Å. It should be stressed that the small shrink of wave-
length, for example setting $\eta_0 = 50$, only gives minor affect for the absorption cross sections when
the inhomogeneity is also taken into account. Further shrinking ($\eta_0 = 100$) could indeed enhance
the singlet transitions but does not much affect PISTs (Figure 4a and Figure S1).

Noteworthy, when different positions of plasmon are adopted, the symmetry of the whole system could be further reduced to even C_1, where all transitions are allowed in principle. Thus, the position-dependent absorption is expected. We depicted the absorption cross sections under a 7 Å plasmon without shrinking the wavelength at different positions in Figure 4b for the most three intense transitions mainly contributed by the transitions from highest occupied molecular orbital (HOMO) to lowest unoccupied molecular orbital (LUMO) of C_{60}. It should be noted that, all three states are near degenerate (Table S2, the maximum energy difference is 0.24 eV, which is less than the experimental resolution of the C band, i.e., 0.3 eV \cite{27}, Figure 1b). It is nice to observe the complementary patterns between different states. Specifically, the 3H_g and 1H_g have a bright triangle and quasi-circular pattern located at the center six-member ring, respectively. On the other hand, the central pattern of the $^1T_{1g}$ state is dark. The bright patterns separated in real space (Figure 4b and Figure S2) reveal that different states could be selectively excited by precisely controlling of the plasmonic position.

In summary, we theoretically demonstrate an efficient spin breaking router by inhomogeneous plasmonic fields from the minimal coupling Hamiltonian in non-relativistic regime. Taking the transitions for singlet and triplet excited states of C_{60} under plasmonic fields as an example, we find that the breakdown of the spin symmetry rule is highly dependent on the size of the plasmons. When the size of plasmon approaches to the molecular size, the transitions to triplet excited states could be largely increased because of the enhanced magnetic field contributed from plasmonic
inhomogeneity. As a result, the absorption cross sections of triplet transitions become comparable to or even larger than that of the conventional dipole allowed singlet transitions. In addition, the plasmonic position dependence of the absorption opens a new pathway to manipulate different molecular quantum states in real space. Our findings could be easily extended to Raman scattering, as well as other linear and nonlinear optical processes, which could have strong impact on different applications in chemistry, material science, physics, and biology.

Methods

Density functional theory calculations A single C\textsubscript{60} was optimized in its ground X1A\textsubscript{g} state by the GAUSSIAN 09 suite of program31 at the first-principles level with the Perdew-Burke-Ernzerhof exchange-correlation functional and the Pople’s 6-31+G(d) basis set. Because we considered physisorption of C\textsubscript{60} (Figure 1a) \textit{i.e.}, weak interaction limit between surface and C\textsubscript{60}, during the optimization, the symmetry of C\textsubscript{60} was constrained to I\textsubscript{h}. The optimized structure is in excellent agreement with the experimental observation in gas phase (Figure S3). Based on the optimized structure, adequate singlet and triplet excited states were calculated by the time-dependent density functional theory method at the same computational level. All calculated vertical excitation energies were shifted by 0.35 eV to eliminate the systematic error of the approximate functional32.

Absorption cross section The vector potential of plasmonic field was considered as a field along z-axis with Gaussian distribution33 for the calculations of the absorption spectra. Specifically, we assume

\[A(\mathbf{r}, t) = A_0 e^{i\mathbf{k}_0 \cdot \mathbf{r}} e^{-i\omega t} \hat{z} + c.c., \]

(5)
where \(g = e^{-\alpha (r-r_D)^2} \) is a Gaussian function located at \(r_D \) with exponent of \(\alpha \) and \(\hat{z} \) is the normal of the substrate surface. For plane wave plasmonic field, we set \(\alpha \) to zero. For localized plasmonic field, the size of plasmon is determined by the full width at half-maximum of the Gaussian function \((\Gamma) \). In practical simulations, we set \(k_0 \) in the \(xy \) plane pointing to the observer and the angle between \(k_0 \) and \(x \)-axis is set to \(45^\circ \). As a result, we have

\[
\nabla \times A = [\eta_0 k_y - 2\alpha (y - y_D)] A_0 g e^{i\eta_0 k_0 \cdot r} e^{-i\omega t} \hat{x} - [\eta_0 k_x - 2\alpha (x - x_D)] A_0 g e^{i\eta_0 k_0 \cdot r} e^{-i\omega t} \hat{y} + \text{c.c.},
\]

(6)

where \(|k_x| = |k_y| = \frac{|k_0|}{\sqrt{2}} \), \(\hat{x} (\hat{y}) \) is the unit vector along the \(x (y) \) direction, and \(x_D (y_D) \) is the \(x (y) \) component of \(r_D \). Thus, according to the Fermi’s golden rule and the Wigner-Eckart theorem\(^{34} \), we could calculate the cross section for singlet to singlet and singlet to triplet by

\[
\sigma_{S \rightarrow S} \propto \frac{A_0^2}{\Delta E_{rg}} \left| \langle \Psi_g | \frac{1}{2} \sum_k (\hat{p}_{k,z} g_k e^{i\eta_0 k_0 \cdot r_k} + g_k e^{i\eta_0 k_0 \cdot r_k} \hat{p}_{k,z}) | \Psi_r^S \rangle \right|^2
\]

\[
\sigma_{S \rightarrow T} \propto \frac{A_0^2 g_e^2}{4\Delta E_{rg}} \left(\left| \langle \Psi_g | \sum_k [\eta_0 k_y - 2\alpha (y_k - y_D)] g_k e^{i\eta_0 k_0 \cdot r_k} \hat{s}_{z,k} | \Psi_r^T \rangle \right|^2 + \left| \langle \Psi_g | \sum_k [\eta_0 k_x - 2\alpha (x_k - x_D)] g_k e^{i\eta_0 k_0 \cdot r_k} \hat{s}_{z,k} | \Psi_r^T \rangle \right|^2 \right),
\]

(7)

where \(|\Psi_g \rangle \) is the \(X^1A_g \) ground state, \(|\Psi_r^S \rangle \) and \(|\Psi_r^T \rangle \) are the singlet and triplet excited states obtained by time-dependent density functional theory calculations, respectively, \(\Delta E_{rg} \) is the vertical energy between ground and excited states, \(\hat{s}_{z,k} \) is the spin operator component along the \(z \)-axis for the \(k \)th electron, and \(g_e \) is the electron \(g \)-factor. In practical calculations, the \(z \) component of \(r_D \) is around 2 Å above the topmost position of \(C_{60} \). All cross sections were calculated by the FASTERS program\(^{35} \).
1. Herzberg, G. *Molecular Spectra and Molecular Structure - Vol I* (Read Books Ltd., 2013).

2. Perkampus, H.-H. *UV-VIS Spectroscopy and Its Applications* (Springer Berlin Heidelberg, Berlin, Heidelberg, 1992).

3. Andersen, M. L., Stobbe, S., Sørensen, A. S. & Lodahl, P. Strongly modified plasmon-matter interaction with mesoscopic quantum emitters. *Nat. Phys.* 7, 215–218 (2011).

4. Filter, R., Mühlig, S., Eichelkraut, T., Rockstuhl, C. & Lederer, F. Controlling the dynamics of quantum mechanical systems sustaining dipole-forbidden transitions via optical nanoantennas. *Phys. Rev. B* 86, 035404 (2012).

5. Jain, P. K., Ghosh, D., Baer, R., Rabani, E. & Alivisatos, A. P. Near-field manipulation of spectroscopic selection rules on the nanoscale. *Proc. Natl Acad. Sci. USA* 109, 8016–8019 (2012).

6. Nobusada, K. Near-field excitation dynamics in molecules: Nonuniform light-matter interaction theory beyond a dipole approximation. In Ohtsu, M. (ed.) *Progress in Nanophotonics 2*, 1–32 (Springer Berlin Heidelberg, Berlin, Heidelberg, 2013).

7. Takase, M. *et al.* Selection-rule breakdown in plasmon-induced electronic excitation of an isolated single-walled carbon nanotube. *Nat. Photon.* 7, 550–554 (2013).

8. Trinh, M. T., Sfeir, M. Y., Choi, J. J., Owen, J. S. & Zhu, X. A hot electron-hole pair breaks the symmetry of a semiconductor quantum dot. *Nano Lett.* 13, 6091–6097 (2013).
9. Yannopapas, V. & Paspalakis, E. Giant enhancement of dipole-forbidden transitions via lattices of plasmonic nanoparticles. *J. Mod. Opt.* **62**, 1435–1441 (2015).

10. Yang, C.-J. & An, J.-H. Resonance fluorescence beyond the dipole approximation of a quantum dot in a plasmonic nanostructure. *Phys. Rev. A* **93**, 053803 (2016).

11. Rivera, N., Kaminer, I., Zhen, B., Joannopoulos, J. D. & Soljačić, M. Shrinking light to allow forbidden transitions on the atomic scale. *Science* **353**, 263–269 (2016).

12. Dirac, P. A. M. The quantum theory of the emission and absorption of radiation. *Proc. Roy. Soc. Lond. A* **114**, 243–265 (1927).

13. Dirac, P. A. M. The quantum theory of dispersion. *Proc. Roy. Soc. Lond. A* **114**, 710–728 (1927).

14. Altewischer, E., van Exter, M. P. & Woerdman, J. P. Plasmon-assisted transmission of entangled photons. *Nature* **418**, 304–306 (2002).

15. Archambault, A., Marquier, F., Greffet, J.-J. & Arnold, C. Quantum theory of spontaneous and stimulated emission of surface plasmons. *Phys. Rev. B* **82**, 035411 (2010).

16. Tame, M. S. *et al.* Quantum plasmonics. *Nat. Phys.* **9**, 329–340 (2013).

17. Tielrooij, K. J. *et al.* Electrical control of optical emitter relaxation pathways enabled by graphene. *Nat. Phys.* **11**, 281–287 (2015).

18. Jackson, J. D. *Classical Electrodynamics* (Wiley, New York, 1998), 3 edn.
19. Zettili, N. *Quantum Mechanics: Concepts and Applications* (Wiley, Chichester New York, 2001), 1 edn.

20. Stöckle, R. M., Suh, Y. D., Deckert, V. & Zenobi, R. Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. *Chem. Phys. Lett.* **318**, 131–136 (2000).

21. Zhang, R. *et al.* Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. *Nature* **498**, 82–86 (2013).

22. Duan, S. *et al.* Theoretical modeling of plasmon-enhanced Raman images of a single molecule with subnanometer resolution. *J. Am. Chem. Soc.* **137**, 9515–9518 (2015).

23. Jiang, S. *et al.* Distinguishing adjacent molecules on a surface using plasmon-enhanced Raman scattering. *Nat. Nanotech.* **10**, 865–869 (2015).

24. Atkin, J. M. & Raschke, M. B. Techniques: Optical spectroscopy goes intramolecular. *Nature* **498**, 44–45 (2013).

25. Kreibig, U. & Vollmer, M. *Optical Properties of Metal Clusters* (Springer, Berlin New York, 1995).

26. Cotton, F. A. *Chemical Applications of Group Theory* (Wiley, New York, 1990).

27. Coheur, P. F., Carleer, M. & Colin, R. The absorption cross sections of C\textsubscript{60} and C\textsubscript{70} in the visible-UV region. *J. Phys. B: At. Mol. Opt. Phys.* **29**, 4987–4995 (1996).

28. Li, H. I. *et al.* Surface geometry of C\textsubscript{60} on Ag(111). *Phys. Rev. Lett.* **103**, 056101 (2009).
29. Berland, K. & Hyldgaard, P. Analysis of van der Waals density functional components: Binding and corrugation of benzene and C\textsubscript{60} on boron nitride and graphene. *Phys. Rev. B* **87**, 205421 (2013).

30. Hedberg, K. *et al.* Bond lengths in free molecules of buckminsterfullerene, C\textsubscript{60}, from gas-phase electron diffraction. *Science* **254**, 410–412 (1991).

31. Frisch, M. J. *et al.* Gaussian 09 Revision D. 01 (2009). Gaussian Inc. Wallingford CT.

32. Bauernschmitt, R., Ahlrichs, R., Hennrich, F. H. & Kappes, M. M. Experiment versus time-dependent density functional theory prediction of fullerene electronic absorption. *J. Am. Chem. Soc.* **120**, 5052–5059 (1998).

33. Sun, M., Zhang, Z., Chen, L., Sheng, S. & Xu, H. Plasmonic gradient effects on high vacuum tip-enhanced Raman spectroscopy. *Adv. Optical Mater.* **2**, 74–80 (2014).

34. McWeeny, R. *Spins in Chemistry* (Dover Publications, Mineola, N.Y, 2004).

35. Duan, S., Tian, G. & Luo, Y. First-principles Approaches for Surface and Tip Enhanced Raman Scattering (FASTERS) Version 1.0 (2016). Royal Institute of Technology, Sweden.

Acknowledgements This work was supported by the National Natural Science Foundation of China (21421063), the “Strategic Priority Research Program” of the Chinese Academy of Sciences (XDB01020200), and Swedish Research Council (VR). The Swedish National Infrastructure for Computing (SNIC) was acknowledged for computer time.
Author contributions Y.L. conceived the idea and supervised the project. S.D. and Z.R. derived formulas. S.D. wrote code and performed calculations. All authors analysed data and wrote the paper.

Additional information Supplementary information is available in the online version of the paper. Reprints and permissions information is available online at www.nature.com/reprints. Correspondence and requests for materials should be addressed to Y.L.

Competing Interests The authors declare that they have no competing financial interests.

Corresponding author Correspondence to: Yi Luo (email: yiluo@ustc.edu.cn).
Figure 1 **Schematic illustration for C\textsubscript{60} model system.**
\textbf{a}, Schematic figure for general vector potential of plasmonic field confined in a nano-cavity formed between the tip and spaced substrate. The insert shows the 6-Ring configuration of C\textsubscript{60} adsorbed on the substrate.
\textbf{b}, Comparison between experimental (black line) and theoretical (red line) absorption cross sections of C\textsubscript{60} in vacuum. The experimental data were obtained after solid-vapour equilibrium under a stable temperature of 858 K by Coheur \textit{et al}[27] The theoretical spectrum was convoluted by the Lorentzian function with a full width at the half-maximum of 0.3 eV. The gray zone indicates the dipole and spin forbidden region for absorption of C\textsubscript{60}.
\textbf{c}, Calculated absorption cross sections of a single C\textsubscript{60} adsorbed on a spaced substrate with the 6-Ring configuration under the dipole approximation, \textit{i.e.}, set the confinement factor (\(\eta_0\)) to zero, meanwhile, the full width at half-maximum of the amplitude distribution function (\(\Gamma\)) to infinity. The red and blue bars on the top of x-axis indicate the triplet and single transition energies, respectively. The symmetry irreducible representations of all triplet and singlet states mainly contributed by the transitions from highest occupied molecular orbital to lowest unoccupied molecular orbital of C\textsubscript{60} are labeled in red and blue fronts, respectively. All calculated cross sections were convoluted by the Lorentzian function with a full width at half-maximum of 0.05 eV. All calculated transition energies in \textbf{b} and \textbf{c} were shifted by 0.35 eV to compare the experimental observations.

Figure 2 **Absorption under the plane wave plasmonic field.**
\textbf{a}, Calculated absorption cross sections of a single C\textsubscript{60} adsorbed on a spaced substrate with the 6-Ring configuration under the plane wave plasmonic field with different confinement factor \(\eta_0\) from 50 to
The red and blue areas in absorption cross sections represent the contributions from triplet and single excited states, respectively. The symmetry irreducible representations of all significant triplet and singlet transitions are labeled in red and blue fronts, respectively. All calculated transition energies were shifted by 0.35 eV and cross sections were convoluted by the Lorentzian function with the full width at half-maximum of 0.05 eV.

Figure 3 Absorption under the localized plasmonic field. a, Calculated absorption cross sections of a single C_{60} adsorbed on a spaced substrate with the 6-Ring configuration under the localized plasmonic field without shrinking wavelength at different plasmonic size from 20 to 5 Å (bottom to top). The plasmons are placed on around 2 Å above the center of the center six-member ring and the size of the plasmon is determined by Γ (the full width at half-maximum of the amplitude distribution function). The red and blue areas in absorption spectra represent the contributions from triplet and single excited states, respectively. The symmetry irreducible representations of all significant triplet and singlet transitions are labeled in red and blue fronts in the spectra, respectively. All calculated transition energies were shifted by 0.35 eV and cross sections were convoluted by the
Lorentzian function with the full width at half-maximum of 0.05 eV.

b, Schematic illustration of vector potential (blue) and corresponding magnetic field (red) for infinite and finite plasmons without shrinking wavelength.

c, Schematic illustration of point group changes of the whole system (including adsorbate and plasmon) from infinite plasmon to finite plasmon. All symmetrical operators for the finite plasmon case are depicted. The reduction of symmetry irreducible representations from infinite plasmon (I_h) to finite plasmon (C_{3v}) is also included. The symmetry irreducible representations for both allowed triplet and singlet final states for infinite plasmon are labeled in magenta fonts, meanwhile, the symmetry irreducible representations for allowed triplet and singlet final states for finite plasmon are labeled in red and blue fonts, respectively.

Figure 4 Absorption under 7 Å plasmon
a, Calculated absorption cross sections of a single C_{60} adsorbed on a spaced substrate with the 6-Ring configuration under a 7 Å plasmon with confinement factor η_0 of 50 (bottom) and 100 (top). In calculated spectra, the red and blue areas represent the contributions from triplet and single excited states, respectively. The symmetry irreducible representations of all significant triplet and singlet transitions are labeled in red and blue fronts, respectively, in the spectra. All calculated transition energies were shifted by 0.35 eV and cross sections were convoluted by the Lorentzian function with the full width at half-maximum of 0.05 eV.

b Calculated absorption images for 1^3H_g, 1^1T_{1g}, and 1^1H_g (from left to right) excited states mainly contributed by the transitions from highest occupied molecular orbital to lowest unoccupied molecular orbital of a single C_{60} adsorbed on a spaced substrate with the 6-Ring configuration under
a 7 Å plasmon without shrinking wavelength. The scanning plane is around 2 Å above the C\textsubscript{60}. The solid lines represent the skeleton of C\textsubscript{60} and the values are the relative maximum absorption with respect to the maximum absorption from 3H\textsubscript{g}.