Measurement of Time-Dependent CP-Violating Asymmetries in B^0 Meson Decays to $\eta'K^0$

The BABAR Collaboration

March 25, 2022

Abstract

We present a preliminary measurement of CP-violating parameters S and C from fits of the time-dependence of B^0 meson decays to $\eta'K^0$. The data were recorded with the BABAR detector at PEP-II and correspond to $227 \times 10^6 B\overline{B}$ pairs produced in e^+e^- annihilation through the $\Upsilon(4S)$ resonance. From a maximum likelihood fit we measure the CP-violation parameters $S = 0.27 \pm 0.14$ (stat) ± 0.03 (syst) and $C = -0.21 \pm 0.10$ (stat) ± 0.03 (syst).

Submitted to the 32nd International Conference on High-Energy Physics, ICHEP 04, 16 August—22 August 2004, Beijing, China

Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309

Work supported in part by Department of Energy contract DE-AC03-76SF00515.
The BABAR Collaboration,

B. Aubert, R. Barate, D. Boutigny, F. Coudenc, J.-M. Gaillard, A. Hicheur, Y. Karyotakis, J. P. Lees, V. Tisserand, A. Zghiche

Laboratoire de Physique des Particules, F-74941 Annecy-le-Vieux, France

A. Palano, A. Pompili

Università di Bari, Dipartimento di Fisica and INFN, I-70126 Bari, Italy

J. C. Chen, N. D. Qi, G. Rong, P. Wang, Y. S. Zhu

Institute of High Energy Physics, Beijing 100039, China

G. Eigen, I. Ofte, B. Stugu

University of Bergen, Inst. of Physics, N-5007 Bergen, Norway

G. S. Abrams, A. W. Borgland, A. B. Breon, D. N. Brown, J. Button-Shafer, R. N. Cahn, E. Charles, C. T. Day, M. S. Gill, A. V. Gritsan, Y. Groysman, R. G. Jacobsen, R. W. Kadel, J. Kadyk, L. T. Kerth, Yu. G. Kolomensky, G. Kukartsev, G. Lynch, L. M. Mir, P. J. Oddone, T. J. Orimoto, M. Pripstein, N. A. Roe, M. T. Ronan, V. G. Shchekov, W. A. Wenzel

Lawrence Berkeley National Laboratory and University of California, Berkeley, CA 94720, USA

M. Barrett, K. E. Ford, T. J. Harrison, A. J. Hart, C. M. Hawkes, S. E. Morgan, A. T. Watson

University of Birmingham, Birmingham, B15 2TT, United Kingdom

M. Fritsch, K. Goetzen, T. Held, H. Koch, B. Lewandowski, M. Pelizaeus, M. Steinke

Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany

J. T. Boyd, N. Chevalier, W. N. Cottingham, M. P. Kelly, T. E. Latham, F. F. Wilson

University of Bristol, Bristol BS8 1TL, United Kingdom

T. Cuhadar-Donszelmann, C. Hearty, N. S. Knecht, T. S. Mattison, J. A. McKenna, D. Thiessen

University of British Columbia, Vancouver, BC, Canada V6T 1Z1

A. Khan, P. Kyberd, L. Teodorescu

Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom

A. E. Blinov, V. E. Blinov, V. P. Druzhinin, V. B. Golubev, V. N. Ivanchenkov, E. A. Kravchenko, A. P. Onuchin, S. I. Serednyakov, Yu. I. Skovpen, E. P. Solodov, A. N. Yushkov

Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia

D. Best, M. Bruinsma, M. Chao, I. Eschrich, D. Kirkby, A. J. Lankford, M. Mandelkern, R. K. Mommsen, W. Roethel, D. P. Stoker

University of California at Irvine, Irvine, CA 92697, USA

C. Buchanan, B. L. Hartfiel

University of California at Los Angeles, Los Angeles, CA 90024, USA

S. D. Foulkes, J. W. Gary, B. C. Shen, K. Wang

University of California at Riverside, Riverside, CA 92521, USA
D. del Re, H. K. Hadavand, E. J. Hill, D. B. MacFarlane, H. P. Paar, Sh. Rahatlou, V. Sharma

University of California at San Diego, La Jolla, CA 92093, USA

J. W. Berryhill, C. Campagnari, B. Dahmes, O. Long, A. Lu, M. A. Mazur, J. D. Richman, W. Verkerke

University of California at Santa Barbara, Santa Barbara, CA 93106, USA

T. W. Beck, A. M. Eisner, C. A. Heusch, J. Kroseberg, W. S. Lockman, G. Nesom, T. Schalk, B. A. Schumm, A. Seiden, P. Spradlin, D. C. Williams, M. G. Wilson

University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, CA 95064, USA

J. Albert, E. Chen, G. P. Dubois-Felsmann, A. Dvoretskii, D. G. Hitlin, I. NarSky, T. Piatenko, F. C. Porter, A. Ryd, A. Samuel, S. Yang

California Institute of Technology, Pasadena, CA 91125, USA

S. Jayatilleke, G. Mancinelli, B. T. Meadows, M. D. Sokoloff

University of Cincinnati, Cincinnati, OH 45221, USA

T. Abe, F. Blanc, P. Bloom, S. Chen, W. T. Ford, U. Nauenberg, A. Olivas, P. Rankin, J. G. Smith, J. Zhang, L. Zhang

University of Colorado, Boulder, CO 80309, USA

A. Chen, J. L. Harton, A. Soffer, W. H. Toki, R. J. Wilson, Q. Zeng

Colorado State University, Fort Collins, CO 80523, USA

D. Altenburg, T. Brandt, J. Brose, M. Dickopp, E. Feltresi, A. Hauke, H. M. Lackr, R. Müller-Pfefferkorn, R. Nogowski, S. Otto, A. Petzold, J. Schubert, K. R. Schubert, R. Schwierz, B. Spaan, J. E. Sundermann

Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany

D. Bernard, G. R. Bonneaud, F. Brochard, P. Grenier, S. Schrenk, Ch. Thieaux, G. Vasileiadis, M. Verderi

Ecole Polytechnique, LLR, F-91128 Palaiseau, France

D. J. Bard, P. J. Clark, D. Lavin, F. Muheim, S. Player, Y. Xie

University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom

M. Andreotti, V. Azzolini, D. Bettoni, C. Bozzi, R. Calabrese, G. Cibinetto, E. Luppi, M. Negrini, L. Piemontese, A. Sarti

Università di Ferrara, Dipartimento di Fisica and INFN, I-44100 Ferrara, Italy

E. Treadwell

Florida A&M University, Tallahassee, FL 32307, USA

F. Anulli, R. Baldini-Ferroli, A. Calceterra, R. de Sangro, G. Finocchiaro, P. Patteri, I. M. Peruzzi, M. Piccolo, A. Zallo

Laboratori Nazionali di Frascati dell’INFN, I-00044 Frascati, Italy

A. Buzzo, R. Capra, R. Contri, G. Crosetti, M. Lo Vetere, M. Macri, M. R. Monge, S. Passaggio, C. Patrignani, E. Robutti, A. Santroni, S. Tosi

Università di Genova, Dipartimento di Fisica and INFN, I-16146 Genova, Italy

S. Bailey, G. Brandenburg, K. S. Chaisanguanthum, M. Morii, E. Won

Harvard University, Cambridge, MA 02138, USA
P. K. Behera, L. Gladney, Q. H. Guo, J. Panetta

University of Pennsylvania, Philadelphia, PA 19104, USA

C. Angelini, G. Batignani, S. Bettarini, M. Bondioli, F. Bucci, G. Calderini, M. Carpinelli, F. Forti, M. A. Giorgi, A. Lusiani, G. Marchiori, F. Martinez-Vidal, M. Morganti, N. Neri, E. Paoloni, M. Rama, G. Rizzo, F. Sandrelli, J. Walsh

Università di Pisa, Dipartimento di Fisica, Scuola Normale Superiore and INFN, I-56127 Pisa, Italy

M. Haire, D. Judd, K. Paick, D. E. Wagoner

Prairie View A&M University, Prairie View, TX 77446, USA

N. Danielson, P. Elmer, Y. P. Lau, C. Lu, V. Miftakov, J. Olsen, A. J. S. Smith, A. V. Telnov

Princeton University, Princeton, NJ 08544, USA

F. Bellini, G. Cavoto, R. Faccini, F. Ferrarotto, F. Ferroni, M. Gaspero, L. Li Gioi, M. A. Mazzoni, S. Morganti, M. Pierini, G. Piredda, F. Safai Tehrani, C. Voena

Università di Roma La Sapienza, Dipartimento di Fisica and INFN, I-00185 Roma, Italy

S. Christ, G. Wagner, R. Waldi

Universität Rostock, D-18051 Rostock, Germany

T. Adye, N. De Groot, B. Franek, N. I. Geddes, G. P. Gopal, E. O. Olaiya

Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX 11 0QX, United Kingdom

R. Aleksan, S. Emery, A. Gaidot, S. F. Ganzhur, P.-F. Giraud, G. Hamel de Monchenault, W. Kozanecki, M. Legendre, G. W. London, B. Mayer, G. Schott, G. Vasseur, Ch. Yèche, M. Zito

DSM/Dapnia, CEA/Saclay, F-91191 Gif-sur-Yvette, France

M. V. Purohit, A. W. Weidemann, J. R. Wilson, F. X. Yumiceva

University of South Carolina, Columbia, SC 29208, USA

D. Aston, R. Bartoldus, N. Berger, A. M. Boyarski, O. L. Buchmueller, R. Claus, M. R. Convery, M. Cristinziani, G. De Nardo, D. Dong, J. Dorfan, D. Dujmic, W. Dunwoodie, E. E. Elsen, S. Fan, R. C. Field, T. Glanzman, S. J. Gowdy, T. Hadig, V. Halyo, C. Hast, T. Hryn’ova, W. R. Innes, M. H. Kelsey, P. Kim, M. L. Kocian, D. W. G. S. Leith, J. Libby, S. Luitt, V. Luth, H. L. Lynch, H. Marsiske, R. Messner, D. R. Muller, C. P. O’Grady, V. E. Ozcan, A. Perazzo, M. Perl, S. Petrak, B. N. Ratcliff, A. Roodman, A. A. Salnikov, R. H. Schindler, J. Schwiening, G. Simi, A. Snyder, A. Soha, J. Stelzer, D. Su, M. K. Sullivan, J. Va’vra, S. R. Wagner, M. Weaver, A. J. R. Weinstein, W. J. Wisniewski, M. Wittgen, D. H. Wright, A. K. Yarritu, C. C. Young

Stanford Linear Accelerator Center, Stanford, CA 94309, USA

P. R. Burchat, A. J. Edwards, T. I. Meyer, B. A. Petersen, C. Roat

Stanford University, Stanford, CA 94305-4060, USA

S. Ahmed, M. S. Alam, J. A. Ernst, M. A. Saeed, M. Saleem, F. R. Wappler

State University of New York, Albany, NY 12222, USA

3 Also with IFIC, Instituto de Física Corpuscular, CSIC-Universidad de Valencia, Valencia, Spain

4 Also with Princeton University, Princeton, USA
1 Introduction

Measurements of time-dependent \(CP \) asymmetries in \(B^0 \) meson decays through a Cabibbo-Kobayashi-Maskawa (CKM) favored \(b \to c \bar{c}s \) amplitude \cite{1} have provided a crucial test of the CKM mechanism of \(CP \) violation in the Standard Model (SM) \cite{2}. Such decays to a charmonium state plus a \(K^0 \) meson are dominated by a single weak phase. Decays of \(B^0 \) mesons to charmless hadronic final states, such as \(\phi K^0, \eta' K^0, K^+ K^- K^0, K^0 \pi^0 \) and \(f_0(980)K^0 \), are expected to be dominated by penguin diagrams. If we neglect CKM-suppressed amplitudes, these decay modes have the same weak phase as the charmonium \(K^0 \) decays in the SM. Thus the time-dependent asymmetry measurement for these decays should yield an alternative measurement of \(\sin 2\beta \) \cite{3}.

The processes shown in Fig. 1(b)-(d) are relevant for the decay \(B^0 \to \eta' K^0 \), and there are similar diagrams for \(B^+ \to \eta' K^+ \).

All of the amplitudes for these processes have CKM suppression, but the tree diagram for \(B^0 \) shown in Fig. 1(b) is expected to be smaller \cite{4, 5} since there is additional CKM suppression and color suppression. For the charged mode the corresponding tree diagram is external and not color suppressed.

![Feynman diagrams](image)

Figure 1: Feynman diagrams describing (a) \(B - \bar{B} \) mixing; the decay \(B^0 \to \eta' K^0 \) via (b) color-suppressed tree, (c, d) internal gluonic penguin.

Additional higher-order amplitudes carrying different weak phases would lead to deviations, \(\Delta S \), between the measurements of the time-dependent \(CP \) violating parameter in these rare decay modes and in the charmonium \(K^0 \) decays. Theoretical bounds for these deviations have been calculated with an SU(3) analysis \cite{6, 7}. Such bounds have been improved by recent measurements of \(B^0 \) decays to a pair of neutral charmless light pseudoscalar mesons \cite{8}. From this and other recent experimental measurements, improved model-independent correlated bounds in the \((S, C)\) plane for the decay \(B^0 \to \eta' K^0 \) have been derived \cite{9}, with the conclusion that \(\Delta S \) is expected to be less
than 0.10 (with a theoretical uncertainty up to ~30% due to the assumptions in the calculation). Specific model calculations conclude that ΔS is even smaller; for instance a recent calculation [10] finds ΔS = 0.011 ± 0.009 ± 0.010, where the first error is due to theoretical uncertainties for B0 → γγ and the second is for uncertainties in the charmonium-K0s system. A significantly larger value of ΔS could arise from phases from non-SM amplitudes [3].

The CP-violating asymmetry in the decay B0 → γγ has been measured previously by the BABAR [11] and Belle [12] experiments. The measurement presented in this paper is an update of the previous BABAR measurement. In the present analysis the measurements of time-dependent CP violating parameters in B+ → γγ are used as a null control sample for the corresponding measurements in B0 → γγ.

2 The BABAR Detector and Dataset

The results presented in this paper are based on data collected in 1999–2004 with the BABAR detector [13] at the PEP-II asymmetric e+e− collider [14] located at the Stanford Linear Accelerator Center. An integrated luminosity of 205 fb−1, corresponding to about 227 million B ¯B pairs, was recorded at the Y(4S) resonance (“on-resonance”, center-of-mass energy √s = 10.58 GeV).

The asymmetric beam configuration in the laboratory frame provides a boost of βγ = 0.56 to the Y(4S). Charged particles are detected and their momenta measured by the combination of a silicon vertex tracker (SVT), consisting of five layers of double-sided detectors, and a 40-layer central drift chamber, both operating in the 1.5 T magnetic field of a solenoid. The tracking system covers 92% of the solid angle in the center-of-mass (CM) frame.

Charged-particle identification (PID) is provided by the average energy loss (dE/dx) in the tracking devices and by an internally reflecting ring-imaging Cherenkov detector (DIRC) covering the central region. A K/π separation of better than four standard deviations (σ) is achieved for momenta below 3 GeV/c, decreasing to 2.5 σ at the highest momenta in the B decay final states. Photons and electrons are detected by a CsI(Tl) electromagnetic calorimeter (EMC). The EMC provides good energy and angular resolutions for detection of photons in the range from 30 MeV to 4 GeV. The energy and angular resolutions are 3% and 4 mrad, respectively, for a 1 GeV photon.

The flux return for the solenoid is composed of multiple layers of iron and resistive plate chambers for the identification of muons and long-lived neutral hadrons.

3 Event Selection and Analysis Method

Monte Carlo (MC) simulations of the signal decay modes, B ¯B backgrounds, and detector response are used to establish the event selection criteria.

We reconstruct B meson candidates by combining a K0s or a K+ with an η′ meson. We select K0s → π+π− decays by requiring the invariant π+π− to be within a mass window of 12 MeV around the nominal K0s mass and requesting a flight length > 3 σ. We select K0s → π0π0 decays requiring the invariant π0π0 to be within a mass window of 30 MeV around the nominal K0s mass and a fit of the two π0 mesons to a common decay vertex. We reconstruct η′ mesons through the decays η′ → ρ0γ and η′ → ηπ+π− with η → γγ or η → π+π−π0. The photon energy Eγ must be greater than 50 (30) MeV for η (π0) candidates, and greater than 100 MeV in η′ → ρ0γ. We make the following requirements on the invariant mass (in MeV): 490 < mγγ < 600 for ηγγ, 120 < mγγ < 150 for π0 (100 < mγγ < 155 in K0s → π0π0), 510 < mππ < 1000 for ρ0, 520 < mπππ < 570 for η3π, 945 < mη′ < 970 for η′ → ηπ+π−, and 930 < mη′ < 980 for η′ → ρ0γ.
We make several particle identification requirements to ensure the identity of the signal pions. In charged B decays for the K^+ track we require an associated DIRC Cherenkov angle between -5σ and $+2\sigma$ from the expected value for a kaon.

A B meson candidate is characterized kinematically by the energy-substituted mass $m_{ES} \equiv \sqrt{(\frac{1}{2} s + p_0 \cdot p_B)^2 - p_B^2}$ and the energy difference $\Delta E \equiv E_B^* - \frac{1}{2} \sqrt{s}$, where the subscripts 0 and B refer to the initial $\Upsilon(4S)$ and to the B candidate, respectively, and the asterisk denotes the $\Upsilon(4S)$ frame. We require $|\Delta E| \leq 0.2$ GeV and $5.25 \leq m_{ES} \leq 5.29$ GeV.

To reject background in continuum $e^+e^- \rightarrow q\bar{q}$ events ($q = u, d, s, c$), we make use of the angle θ_T between the thrust axis of the B candidate and that of the rest of the tracks and neutral clusters in the event, calculated in the center-of-mass frame. The distribution of $\cos \theta_T$ is sharply peaked near ± 1 for combinations drawn from jet-like $q\bar{q}$ pairs and is nearly uniform for the isotropic B meson decays; we require $|\cos \theta_T| < 0.9$. The remaining continuum background dominates the samples and is modeled from sideband data for the maximum likelihood fits.

We use Monte Carlo simulations of $B^0\bar{B}^0$ and B^+B^- pair production and decay to look for $B\bar{B}$ backgrounds. From these studies we find evidence for a small $B\bar{B}$ background component for the channels with $\eta' \rightarrow \rho^0\gamma$, and we have added a single $B\bar{B}$ component to the fit.

From a $B\bar{B}$ pair we reconstruct a B^0 decaying into the final state $f = \eta/K^0_S (B_{CP})$. We also reconstruct the vertex of the other B meson (B_{tag}) and identify its flavor. The time difference $\Delta t \equiv t_{CP} - t_{tag}$, where t_{CP} and t_{tag} are the proper decay times of the CP and tagged B mesons, respectively, is obtained from the measured distance between the B_{CP} and B_{tag} decay vertices and from the boost ($\beta \gamma = 0.56$) of the e^+e^- beam system. The distribution of Δt is:

$$F(\Delta t) = \frac{e^{-|\Delta t|/\tau}}{4\tau} \{ 1 + \Delta \omega \pm (1 - 2\omega) [S_f \sin(\Delta m_d \Delta t) - C_f \cos(\Delta m_d \Delta t)] \},$$

where the upper (lower) sign denotes a decay accompanied by a B^0 (\bar{B}^0) tag, τ is the mean B^0 lifetime, Δm_d is the mixing frequency, and the mistag parameters ω and $\Delta \omega$ are the average and difference, respectively, of the probabilities that a true B^0 (\bar{B}^0) meson is tagged as \bar{B}^0 (B^0). The tagging algorithm, based on six tagging categories, is an improved version of what was used in the previous BABAR publication [11]. Separate neural networks are trained to identify primary leptons, kaons, soft pions from D^* decays, and high-momentum charged particles from B decays. Each event is assigned to one of the six mutually exclusive tagging categories based on the estimated mistag probability and on the source of tagging information.

4 Maximum Likelihood Fit

We use an unbinned, multivariate maximum-likelihood fit to extract signal yields and CP violating parameters. We indicate with j the species of event: signal, continuum background, or $B\bar{B}$ background ($\eta' \rightarrow \rho^0\gamma$). We use four discriminating variables: m_{ES}, ΔE, Δt, and a Fisher discriminant \mathcal{F}. The Fisher discriminant combines five variables: the angles with respect to the beam axis of the B momentum and B thrust axis in the $\Upsilon(4S)$ frame, the zeroth and second angular moments of the energy flow excluding the B candidate around the B thrust axis, and the tagging category. For each species j and each tagging category c, we define a total probability density function (PDF) for event i as

$$p_{j,c}^i \equiv P_j(m_{ES}) \cdot P_j(\Delta E) \cdot P_j(F) \cdot P_j(\Delta t, \sigma_{j\Delta t}^i, c),$$

where $\sigma_{j\Delta t}^i$ is the error on Δt for the event i. With n_j defined to be the number of events of the species j and $f_{j,c}$ the fraction of events of species j for each category c, we write the extended
likelihood function for all events belonging to category c as

$$L_c = e^{-N_c} \frac{N_c}{N_c!} \prod_i (n_{\text{sig}_i,c} P_{\text{sig}_i} + n_{\text{qf}_i,c} P_{\text{qf}_i} + n_{\text{BB}_i,c} P_{\text{BB}_i}),$$ \hspace{1cm} (3)$$

where N_c is the total number of input events in category c. In the last term of this formula we have assumed $f_{\text{sig}_i,c} = f_{\text{BB}_i,c}$. The total likelihood function for all categories is given as the product over the seven tagging categories (including a category for untagged events for yield determinations). The product is extended to additional sub-decays by multiplying the above product likelihoods for each decay.

We maximize the likelihood function while varying a set of free parameters: S, C, three background F PDF parameters, and, for each sub-decay, signal and background yields, ΔE and m_{ES} background parameters, and six parameters representing the background Δt shape.

5 Results

The results of the fits to the neutral modes are shown in Table 1. We combine the five sub-decay modes shown in Table 1. The decay mode $B^0 \rightarrow \eta' \pi \pi K^0_0$ has not been reconstructed because of its expected low signal yield. The results for the three charged modes, used as a crosscheck, are presented in Table 2; the values of S and C are consistent with zero, as expected. The first two columns in each table represent the primary modes that we reported on in our previous analysis. The last three columns of Table 1 and the last column of Table 2 are for decay modes that we have not reported on previously. The efficiency of the selection after all cuts is about 25% for the four primary decay modes and 15% for the four new decay channels.

Table 1: Results from fits to sub-decay modes of $B^0 \rightarrow \eta' K^0_0$

	$\eta'_{\pi \pi} K^0_0(\pi^+\pi^-)$	$\eta'_{\rho} K^0_0(\pi^+\pi^-)$	$\eta''_{\pi \pi} K^0_0(\pi^+\pi^-)$	$\eta''_{\rho \rho} K^0_0(\pi^0\pi^0)$	$\eta''_{\rho \rho} K^0_0(\pi^0\pi^0)$
Signal yield	192 ± 15	438 ± 27	55 ± 9	50 ± 9	86 ± 20
$B\bar{B}$ yield	-	93 ± 33	-	-	78 ± 23
S	0.05 ± 0.28	0.41 ± 0.19	0.53 ± 0.49	-0.18 ± 0.50	-0.26 ± 0.61
C	-0.12 ± 0.18	-0.29 ± 0.13	0.18 ± 0.38	-0.69 ± 0.40	0.19 ± 0.44
Combined fit	819 ± 38				
S	0.27 ± 0.14				
C	-0.21 ± 0.10				

In Fig. 2 we show projections onto m_{ES} and ΔE of a subset of the data of the primary decay modes for which the signal likelihood (computed without the plotted variable) exceeds a mode-dependent threshold that optimizes the sensitivity. In Fig. 3 we show the same projections onto m_{ES} and ΔE for the new decay modes considered in the present analysis.

We show in Fig. 4 the Δt projections and asymmetry of all combined neutral modes for events selected as for Fig. 2 and Fig. 3. In Fig. 5 we show the $-2 \ln L$ scans for S and C. The best fit value for S is 3.0 standard deviations from the $B\bar{B}$ value of $\sin 2\beta$ in charmonium decays [15].
Table 2: Results of fits to sub-decay modes $B^+ \to \eta'/K^+$.

	$\eta'_{\pi\pi}K^+$	$\eta'_{\rho\gamma}K^+$	$\eta'_{\eta(3n)\pi\pi}K^+$
Signal yield	585 ± 26	1322 ± 48	221 ± 17
$B\bar{B}$ yield	-	774 ± 75	-
S	-0.13 ± 0.13	-0.05 ± 0.10	-0.31 ± 0.23
C	0.00 ± 0.10	-0.10 ± 0.08	-0.06 ± 0.16

Combined fit

Signal Yield	2124 ± 57
S	-0.10 ± 0.07
C	-0.05 ± 0.06

Figure 2: The B candidate m_{ES} and ΔE projections for $B^+ \to \eta'/K^+$ (a, b) and $B^0 \to \eta'/K^0$ (c, d) in main decay modes. Points with errors represent the data, solid curves the full fit functions, and dashed curves the background functions; the shaded histogram represents the $\eta'_{\eta(3n)\pi\pi}K$ subset.
Figure 3: B candidate m_{ES} and ΔE projections for $\eta'K^0(\rightarrow \pi^0\pi^0)$ (a, b), $B^0 \rightarrow \eta'_{(3\pi)\pi\pi}K^0(\rightarrow \pi^+\pi^-)$ (c, d), and $B^+ \rightarrow \eta'_{(3\pi)\pi\pi}K^+$ (e, f). Points with errors represent the data, solid curves the full fit functions, and dashed curves the background functions. The shaded histogram in (a, b) represents the $\eta'_{(\gamma\gamma)\pi\pi}K^0_S$ subset.

6 Systematic Uncertainties and Crosschecks

The contributions to the systematic uncertainties in S and C are summarized in Table 3. We evaluate the uncertainties associated with the PDF shapes by variation of the parameters describing each discriminating variable. Systematic errors associated with signal parameters (Δt resolution function, tagging fractions, and dilutions) are determined by varying their values within their errors. Uncertainties due to Δm_d and τ_B are obtained by varying these parameters by the uncertainty in their world average values [16]. All changes are combined in quadrature obtaining an error of 0.01 for both S and C.

We vary the SVT alignment parameters in the signal Monte Carlo events by the size of misalignments found in the real data, and assign the resulting shift in the fit results as the systematic error.

The systematic errors due to interference between the CKM-suppressed $\bar{b} \rightarrow \bar{u}c\bar{d}$ amplitude and the favored $b \rightarrow c\bar{u}d$ for some tag-side B decays is found to be negligible for S and gives a contribution to the C uncertainty of about 0.012. The effect of $B\bar{B}$ background is estimated to be negligible, but we assign an uncertainty of 0.01 in S due to statistical limitations of this statement. An uncertainty of 0.02 is assigned to account for limitations of Monte Carlo statistics and modeling of the signal. We assign an uncertainty of 0.01 to account for the uncertainty in the position and size of the beam spot, determined from variation of these quantities in signal MC. The total systematic error is obtained by summing individual errors in quadrature.

We have also performed a number of checks of our results. We divide the sample into two sub-samples — the previously published sample and the data collected in 2003/2004. We find consistency with our previous results and between the two sub-samples. When we fit with the value for C fixed to zero, we find $S = 0.29 \pm 0.14$. We produce samples of pseudo-experiments...
Figure 4: Projections onto Δt for $B^0 \to \eta'K^0_S$, showing the data (points with errors), fit function (solid line), and background function (dashed line), for (a) B^0 and (b) \bar{B}^0 tagged events and (c) the asymmetry between B^0 and \bar{B}^0 tags.
Figure 5: $-2 \ln \mathcal{L}$ scan for S (left) and C (right) parameters. The solid blue line refers to all combined neutral sub-decays, the dotted line to the $B^0 \rightarrow \eta'_{0,\pi^+}\pi^0 K^0_S$ sub-decay and the dashed line to the $B^0 \rightarrow \eta'_{\rho\gamma} K^0_S$ sub-decay. The shaded band shows the BABAR value of $\sin 2\beta$ in charmonium decays \cite{15}.

Table 3: Estimates of systematic errors.

Source of error	$\sigma(S)$	$\sigma(C)$
PDF Shapes	0.01	0.01
SVT alignment	0.01	0.01
Tag-side interference	0.00	0.01
$B\bar{B}$ Background	0.01	0.00
MC statistics/modeling	0.02	0.02
Beam spot	0.01	0.01
Total	**0.03**	**0.03**
generated with events produced to match the PDF distributions. From these samples, we verify that the fit bias on S and C is negligible and that there is a good agreement between expected and observed errors.

7 Conclusion

We have reconstructed $2124 \pm 57 \; B^+ \rightarrow \eta' K^+$ events and $819 \pm 38 \; B^0 \rightarrow \eta' K^0_S$ events, about two-thirds of which have a flavor tag. We have used the latter sample to measure the time-dependent CP-violating parameters for $B^0 \rightarrow \eta' K^0_S$. We find $S = 0.27 \pm 0.14 \text{(stat)} \pm 0.03 \text{(syst)}$ and $C = -0.21 \pm 0.10 \text{(stat)} \pm 0.03 \text{(syst)}$.

The measured value of S is 3.0 standard deviations from the the BABAR measurement of $\sin 2\beta$, $0.722 \pm 0.040 \pm 0.023$, from $B \rightarrow$ charmonium K^0_S decays [15]. The observed deviation ΔS is large compared with the expected theoretical uncertainty.

8 Acknowledgments

We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), Institute of High Energy Physics (China), the Commissariat à l’Energie Atomique and Institut National de Physique Nucléaire et de Physique des Particules (France), the Bundesministerium für Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Science and Technology of the Russian Federation, and the Particle Physics and Astronomy Research Council (United Kingdom). Individuals have received support from CONACyT (Mexico), the A. P. Sloan Foundation, the Research Corporation, and the Alexander von Humboldt Foundation.

References

[1] BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 89, 201802 (2002); Belle Collaboration, K. Abe et al., Phys. Rev. D 66, 071102(R) (2002).

[2] N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963); M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).

[3] D. London and A. Soni, Phys. Lett. B 407, 61 (1997).

[4] D. Atwood and A. Soni, Phys. Lett. B 405, 150 (1997).

[5] M. Beneke and M. Neubert, Nucl. Phys. B 651, 225 (2003).

[6] Y. Grossman et al., Phys. Rev. D 68, 015004 (2003).

[7] C.-W. Chiang, M. Gronau and J. L. Rosner, Phys. Rev. D 68, 074012 (2003).
[8] BABAR Collaboration, B. Aubert et al., hep-ex/0403046, submitted to Phys. Rev. Lett.

[9] M. Gronau, J. L. Rosner and J. Zupan, Phys. Lett. B 596, 107 (2004); M. Gronau, hep-ph/0407316.

[10] M. Beneke and M. Neubert, Nucl. Phys. B 675, 333 (2003).

[11] BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 91, 161801 (2003).

[12] Belle Collaboration, K. Abe et al., Phys. Rev. Lett. 91, 261602 (2003).

[13] BABAR Collaboration, B. Aubert et al., Nucl. Instr. Meth. A 479, 1 (2002).

[14] PEP-II Conceptual Design Report, SLAC-R-418 (1993).

[15] BABAR Collaboration, B. Aubert et al., BABAR-CONF-04/38 (2004).

[16] Particle Data Group, S. Eidelman et al., Phys. Lett. B 592, 1 (2004).