Identification of landslide-prone zones using a GIS-based multi-criteria decision analysis and region-growing algorithm in uncertain conditions

Sara Beheshtifar

Received: 28 November 2021 / Accepted: 1 September 2022 / Published online: 7 October 2022
© The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract
Landslides are considered to be one of the most significant natural hazards. Detection of landslide-prone zones is an important phase in landslide hazard assessment and mitigation of landslide-related losses. AHP as one of the most effective methods for GIS-based multi-criteria decision analysis is increasingly being used in susceptibility mapping. However, its weights have some degree of uncertainty that interval comparison matrix (ICM) method can be used to deal with this problem. The importance of this study is to propose an interval number distance-based region-growing (IDRG) method based on ICM for the identification of landslide-prone zones in the Urmia lake basin, Iran. To assess the capability of the proposed IDRG method, a landslide susceptibility map was produced using common AHP, too. To generate the maps, the weights of nine conditioning factors were determined using both traditional pairwise comparison matrices of the AHP method and ICM. The accuracy of the produced maps was assessed through ROC (receiver operating curve) and using a dataset of known landslide occurrences. The results indicate an improvement in accuracy of about 11% by identifying the landslide-prone zones using the IDRG method. This improvement was achieved by minimizing the uncertainty associated with criteria ranking/weighting in a traditional AHP and identifying the prone zones as areas instead of pixels. Finally, the robustness of the proposed method was demonstrated by sensitivity analysis.

Keywords Landslide-prone zones mapping · Interval comparison matrix (ICM) · Analytical hierarchy process (AHP) · Interval number distance-based region growing (IDRG) method · Urmia lake basin
1 Introduction

Landslide is known as a natural hazard that often occurs in mountainous and hilly areas all over the world (Akgun and Erkan 2016). This geological phenomenon is a type of mass movement, and it is the rapid fall of the large volume of rocks and soils from upslope to downslope (Chorley 1985; Malamud et al. 2004). Landslides commonly lead to loss of human life and property, as well as causing critical damage to natural resources (Feizizadeh and Blaschke 2013). Risk of landslide can be reduced to a certain level by producing hazard zonation maps (Chen and Chen 2021). Such maps would facilitate the discovery of susceptible areas and manage regional land use (Mohammady et al. 2012). So far, landslide susceptibility has been analyzed utilizing geographical information system (GIS) together with diverse models like frequency ratio (FR) (Aditian et al. 2018; Ding et al. 2017; Khan et al. 2019; Kumar and Anbalagan 2015; Zhang et al. 2016), analytical hierarchical process (AHP) (Althuwaynee et al. 2014; Bahrami et al. 2021; He et al. 2019; Myronidis et al. 2016; Shahabi et al. 2014), analytical network process (ANP) (Gheshlaghi and Feizizadeh 2017; Alizadeh et al. 2018), support vector machine (SVM) (Ada and San 2018; Huang and Zhao 2018; Pham et al. 2019; Wang and Brenning 2021; Xing et al. 2021), random forest (RF) (Nhu et al. 2020; Sun et al. 2020), evidence belief function (EBF) (Althuwaynee et al. 2014; Chen et al. 2020; Ding et al. 2017; Feby et al. 2020; Zhang et al. 2016), Dempster–Shafer (Chen et al. 2017; Feizizadeh and Blaschke 2014; Feizizadeh et al. 2014a, b; Gudiyanagada Nachappa et al. 2019; Milaghardan et al. 2020; Mezaal et al. 2018; Mohammady et al. 2012; Pourghasemi et al. 2013; Shirani et al. 2018), decision tree (Wang et al. 2016; Pham et al., 2019, Wu et al. 2020), logistic regression (LR) (Aditian et al. 2018; Althuwaynee et al. 2014; Felícísimo et al. 2013; Pradhan et al. 2008; Wang et al. 2016), fuzzy logic (Feizizadeh et al. 2014a, b, Kumar and Anbalagan 2015, Gheshlaghi and Feizizadeh 2017, Bahrami et al. 2021), artificial neural networks (Gorsevski et al. 2016; Wang et al. 2016; Aditian et al. 2018), and deep learning algorithms (Bui et al. 2020, Van Dao et al. 2020, Huang et al., 2018, Nhu et al. 2020, Ngo et al. 2021). All the methods have their particular advantages and disadvantages, and each model’s functioning varies based on the input data, the structure of the model, and the accuracy of the model (Nachappa et al. 2020). However, there is no suggestion that a particular model must be utilized for a specific situation or study area (Khosravi et al. 2018). The analytical hierarchy process (AHP) with the aim of GIS is one of the most effective methods for assessing the landslide susceptibility of the area (Althuwaynee et al. 2014; Shahabi et al. 2014; Myronidis et al. 2016; He et al. 2019; Bahrami et al. 2021). The conventional AHP method uses exact experts judgments structured in a pairwise comparison matrix (PCM) by applying Saaty’s scale of importance amounts (scale of 1–9) (Boroushaki and Malczewski 2008; Saaty 2008). The relative importance of different conditioning factors is determined as crisp values based on the PCM (Lan et al. 2009). Despite the advantages of the AHP, the uncertainty of weights lies in the subjective expert judgment may have meaningful impacts on the results, which may sometimes lead to inaccurate outcomes (Chen et al. 2011; Feizizadeh et al. 2014a, b; Lan et al. 2009). Several methods have been applied to reduce the amount of uncertainty associated with the AHP method, such as the application of fuzzy logic, interval comparisons, and spatial sensitivity analysis (Boroushaki and Malczewski 2008; Chen et al. 2013; Feizizadeh and Blaschke 2014; Feizizadeh et al. 2014a, b). Due to the complexity involved in real-world decision problems, it is easier for a decision-maker to provide an interval comparison matrix and derive the interval weights than crisp ones (Cabrera-Barona and Ghorbanzadeh 2018; Entani and Tanaka 2007; Feizizadeh and Ghorbanzadeh 2017; Lan
et al. 2009). On the other hand, most of the previous researches applied the pixel-based classification to produce the final susceptibility landslide map (Feby et al. 2020; Feizizadeh and Blaschke 2013; Feizizadeh et al. 2013). Using this method may lead to the classification of a single pixel in a particular class (e.g., very high risk) which is surrounded by the pixels of the other classes, whereas in reality this rarely happens. In this study, a region-based method is applied to determine landslide-prone zones, instead of a pixel-based method. The region-based classification includes the segmentation of neighboring pixels into homogenous units or objects. Object-oriented methods have become more popular for image classification in recent years (Trang et al. 2016), but they haven’t been applied for the classification of susceptibility maps.

The main objective of this study was to develop a new approach to determine landslide-prone zones as regions based on the concept of interval numbers for tackling uncertainty within the weights of criteria in the AHP method. The second objective was to produce landslide susceptibility maps for Urmia lake basin, Iran, as the study area. The third objective was to compare the accuracy of the proposed model with the common AHP method. The fourth objective was to investigate the robustness of the developed method using sensitivity analysis. In following these objectives, we developed a new interval number distance-based region-growing (IDRG) method. This new technique was tested for landslide susceptibility mapping (LSM) in the Urmia lake basin, Iran.

2 Study area and data

The study area is the Urmia lake basin, which is located in the northwest of Iran (see Fig. 1). The size of the study area is 19,913 km², and its elevation is between 1260 and 3710 m above sea level. The climate of this area is semi-arid, and the annual precipitation is about 300 mm. The complexity of the geological structure in the related lithological units in the Urmia lake basin has played an important role in the occurrence of numerous landslides in the region (Feizizadeh and Blaschke 2013). A landslide inventory database for the East Azerbaijan Province lists 132 known landslide events. In this study, based on fieldwork and expert knowledge, nine conditioning factors were selected including aspect, distance to roads, elevation, distance to stream, distance to faults, slope, land-use,
precipitation, and lithology. After that, all datasets were prepared and arranged in ArcGIS software as raster maps with a resolution of 100 m for further analysis.

3 Methodology

In this study, a region-growing method is proposed based on interval number distance to determine the landslide-prone zones. The input map includes pixels with interval values which are determined using ICM based on the AHP method. The results were compared with the common AHP method (see Fig. 2).

3.1 Region growing

The seeded region growing (SRG) is a segmentation method that checks adjacent pixels of initial seed points and determines whether the pixel neighbors should be added to the region depending on a similarity criterion (Adams and Bischof 1994; Huang et al. 2018). Seed points are usually selected based on some user criterion such as pixels in a certain intensity or grayscale range.

3.2 Interval analytic hierarchy process (IAHP)

The analytic hierarchy process (AHP) is a popular method for solving multi-criteria decision-making problems. The conventional AHP needs exact judgments and forms crisp comparison matrices to explicit the preference information (Wei et al. 2008). However, the inherent subjective nature of expert judgments is a source of significant uncertainty in the AHP method. To overcome this problem, it is better to arrange an interval comparison matrix for deriving the weights (Feizizadeh and Ghorbanzadeh 2017). In this method, the decision-maker offers his interval judgments $x_{ij} = [l_{ij}, u_{ij}]$, instead of a crisp number, where x_{ij} indicates that the alternative x_i is between l_{ij} and u_{ij} times as important as the alternative x_j, and then an interval comparison matrix (ICM) A can be structured as (Lan et al. 2009):

$$A = \begin{bmatrix}
1 & [l_{12}, u_{12}] & \cdots & [l_{1n}, u_{1n}] \\
\vdots & \ddots & \ddots & \vdots \\
[l_{n1}, u_{n1}] & \cdots & 1
\end{bmatrix}$$

(1)

$l_{ij} \leq u_{ij}, \forall i, j = 1, 2, \ldots, n$ and $l_{ij} \geq 0, u_{ij} \geq 0, \forall i, j = 1, 2, \ldots, n$

This matrix is a reciprocal matrix as well as a definite comparison matrix. It is defined as:

$$1_{ij} = \frac{1}{u_{ji}}, \ldots u_{ij} = \frac{1}{l_{ji}}, \quad \forall i, j = 1, 2, \ldots, n$$

(2)

The approach of generating this matrix and deriving the interval weights is explained in detail by Liu (2009) and Ghorbanzadeh et al. (2018). The ICM of this study was compiled by the combination of opinions of 5 experts with proper expertise and scientific knowledge of the study area including geology, MCDM, and GIS (Table 1).

The final interval weight matrix W was calculated according to the ICM using the method proposed by Liu (2009) and then normalized (Table 2).
Landslide conditioning factors
- Aspect
- Distance to road
- Elevation
- Distance to stream
- Distance to fault
- Slope
- Land use
- Precipitation
- Lithology

Criteria weighting
- ICM
- PCM

Model implementation
- IDRG
- AHP

Resulted maps
- Landslide-prone zone map
- Landslide susceptibility map

Accuracy assessment
- Landslide inventory data
- ROC

Fig. 2 The methodological framework
In this study, unlike the previous studies, the interval weights were calculated for sub-criteria, too (Table 3).

According to Table 3, for each of the conditioning factors, two maps were generated: The first map was produced based on the lower bound of the interval weight, and the second one was made by the upper bound of the interval weight (Fig. 3).

After that, the weight of all conditioning factors (criteria) was multiplied by the related map concerning the definition of the binary operations for interval numbers as follows:

Let \(x = [x, \bar{x}] \) and \(y = [y, \bar{y}] \) be real intervals. The binary operations addition (+), subtraction (−), multiplication (\(\cdot\)), and division (/) are then defined on \(\mathbb{R}\) as follows:

\[
\begin{align*}
 x + y &= [x + y, \bar{x} + \bar{y}] \\
 x - y &= [x + \bar{y}, \bar{x} - y] \\
 x \cdot y &= \min\{xy, x\bar{y}, x\bar{y}, \bar{x}y, \bar{x}\bar{y}\}, \max\{xy, x\bar{y}, x\bar{y}, \bar{x}y, \bar{x}\bar{y}\} \\
 \frac{x}{y} &= x'y', \text{ where } y' = \left[\frac{1}{\bar{y}}^{-1}\right] \text{ and } y \not\equiv 0
\end{align*}
\]

In this step, all the conditioning factor maps were added together concerning the definition of the sum operator for interval numbers. Now we have a susceptibility map in which each pixel includes an interval value.
3.3 Interval value distance

Let \(\bar{a} = [a^-, a^+] \) and \(\bar{b} = [b^-, b^+] \) be two interval numbers. Bao et al. (2013) proposed an IND\(^1\) definition based on the median and width of the interval number (Guo et al. 2018, Bao et al. 2013).

\[
\tilde{d}_{EW}(\bar{a}, \bar{b}) = \sqrt[p]{\left| E(\bar{a}) - E(\bar{b}) \right|^p + \frac{1}{3} \left| W(\bar{a}) - W(\bar{b}) \right|^p}, \quad p \geq 1
\]

where \(E(\bar{a}) = \frac{a^- + a^+}{2} \) is the median of \(\bar{a} \) and \(W(\bar{a}) = \frac{a^- - a^+}{2} \) is the width of \(\bar{a} \).

\(^1\) Interval number distance.
Fig. 3 Landslide conditioning factors based on upper bound (left) and lower bound (right) of sub-criteria:
a aspect, b elevation, c land use, d lithology, landslide conditioning factors based on upper bound (left) and
lower bound (right) of sub-criteria: e distance to faults, f precipitation, g distance to roads, h slope, Land-
slide conditioning factors based on upper bound (left) and lower bound (right) of sub-criteria: (i) distance to
streams

© Springer
Fig. 3 (continued)
3.4 Interval number distance based region growing (IDRG) (A novel approach)

In this study, a new method was proposed to identify homogenous regions using interval values: interval number distance based region growing (IDRG). The algorithm classifies each pixel of the map as regions (e.g., high-risk zones) or backgrounds. In the proposed algorithm, it is assumed that the values of pixels in the input map are represented by interval numbers, in which the width of interval numbers is related to the uncertainty of the values (the lower interval width for a pixel value shows the lower uncertainty).

Two main concerns should be dealt with when executing a region-growing algorithm: where to place the initial seeds and which similarity criterion should be assumed to characterize the regions (Huang et al. 2018). The most common way is to select some pixels as seed points based on simple criteria (e.g., color, intensity, or texture). In the input map, the value and the position of pixels by higher median and lower width can be determined. In IDRG, it is proposed to select them as seed points to avoid false detections and to focus on the segmentation itself.

The similarity criterion was defined to identify regions within which there is similarity and uniformity in both quantity and uncertainty. To specify the similarity criterion, the interval distance between the region’s mean and a new neighbor pixel is calculated based on the IND definition proposed by Bao et al. (2013). At the first step, each seed is considered as a region, and IND is calculated between seed points and their neighbors. In cases that the smallest IND between the mean of the region and the new pixel becomes lower than a certain threshold (t), the pixel joins to the region, and the region is iteratively grown. At the next steps, the region’s mean is calculated according to all pixels of the segmented region. In the end, the pixels that have three or four adjacent pixels belong to one region, joining the same region. The proposed IDRG is as follows (this code is executed for each of seed points):

Fig. 4 Seeds on produced maps by median (left) and width (right) of internal numbers
Algorithm: Interval number Distance based Region Growing procedure

\(E: \) Map of Median (Calculated using interval pixel values)
\(W: \) Map of Width (Calculated using interval pixel values)
\(R: \) logical map of regions
\(X, Y: \) the position of the seed points (determined based on \(E \) and \(W \))
\(t: \) maximum interval number distance (IND)

Input: \(E, W, X, Y, t \)

Output: \(R \)

1. \(R= \) seed point
2. \(\text{Reg_mean}=E(X, Y) \)
3. \(\text{Reg_width}=W(X, Y) \)
4. \(N_i= \) Neighbor of \(R \)
5. If \(\text{IND}(R(\text{Reg_mean}, \text{Reg_width}), N_i(E, W)) < t \) then
 - \(R=R \cup N_i \)
 - \(\text{Reg_mean} = \text{mean}(R(E)) \)
 - \(\text{Reg_width} = \text{mean}(R(W)) \)
6. Endif
7. Repeat (from step 4)

4 Landslide-prone zone map generation using IDRG algorithm

In this case study, after initial processes, the weightings derived from ICM were used for data aggregation within a GIS environment. Two aggregated maps were generated: The first one indicates the lower bound, and the second one shows the upper bound. The first map was produced using the lower bound map of the conditioning factors (Fig. 3. Left) and lower weight of the criteria. The second map was generated using the upper bound map of the conditioning factors (Fig. 3. Right) and upper weight of the criteria. These maps were imported into the Matlab environment, and a new map was produced by interval numbers in which the width of interval numbers is related to the weights of IAHP. This map was considered as the input of IDRG. Moreover, according to the interval value of pixels, median map (\(E \)) and width map (\(W \)) were produced (Fig. 4). The value and the position of pixels that are related to the highest risk (higher median) and least uncertainty (lower width) can be determined. These pixels were selected as seed points for IDRG (Fig. 4).

Then, landslide-prone regions were identified for each seed according to the similarity criteria using the IDRG procedure. In this work, 4-connected neighborhoods for seed pixels were checked to determine whether the pixel neighbors should be added to the region. The region is iteratively grown by comparing unallocated neighboring pixels to the region. The pixel with the smallest IND measured this way is allocated to the respective region. This process stops when the IND between the mean of the region and the new pixel becomes larger than a certain threshold (\(t \)). After that, in our proposed method, to create homogenous regions, if three or four neighbors of a pixel belonging to a region, that pixel itself joins that region. These regions were then exported from the MATLAB programming environment into the ArcGIS 10.3 software. Then, the regions were converted into a landslide-prone zone map.
To compare the results of the proposed IDRG method with the conventional AHP, a landslide susceptibility map was produced using the same conditioning factors and AHP. The weights of criteria and sub-criteria were calculated based on eigenvalues using a conventional pairwise comparison matrix (PCM) proposed by Saaty (2008). The weights are presented in Table 4 (Feizizadeh and Blaschke 2013).

5 Landslide susceptibility map generation using conventional AHP method

To compare the results of the proposed IDRG method with the conventional AHP, a landslide susceptibility map was produced using the same conditioning factors and AHP. The weights of criteria and sub-criteria were calculated based on eigenvalues using a conventional pairwise comparison matrix (PCM) proposed by Saaty (2008). The weights are presented in Table 4 (Feizizadeh and Blaschke 2013).

6 Results and validation

Determined regions using the IDRG method in Matlab environment were converted into landslide-prone zone map in ArcGIS which is shown in Fig. 5. After that, the area of each region was calculated (Table 5). The landslide susceptibility map generated using the conventional AHP method was classified into five classes of susceptibility using the natural breaks classification (Jenks optimization), which is an effective method for categorizing the susceptibility maps (see Fig. 6).

The accuracy of maps was evaluated based on the locations of known landslides within the study area. The validation process is a fundamental step to assess the ability of the developed approach for the identification of landslide-prone zones. The locations of observed landslides are represented on the landslide-prone zone map generated by the

Table 4 Weights of criteria and sub-criteria in conventional AHP

Criteria	Weight	Criteria	Weight	Criteria	Weight
Distance to road (m)	0.036	Slope (%)	0.141	Elevation	0.02
0–100	0.269	0–10	0.09	1260–1400	0.076
100–200	0.255	10.1–20	0.18	1401–1800	0.239
200–300	0.249	20.1–30	0.47	1801–2500	0.393
300–500	0.135	30.1–40	0.15	2501–3000	0.173
> 500	0.092	> 40.1	0.11	3001–3680	0.119
Distance to stream (m)	0.112	Aspect	0.025	Precipitation	0.172
0–50	0.51	Flat	0.046	< 250	0.17
51–100	0.21	North	0.059	251–300	0.32
101–150	0.11	East	0.109	301–350	0.51
151–200	0.091	West	0.269	Lithology	0.21
> 200	0.079	Sought	0.517	Altered zone	0.09
Distance to fault (m)	0.124	Land use	0.16	Metamorphic-plutonic	0.12
0–1000	0.515	Settlement	0.053	Plutonic	0.18
1001–2000	0.224	Orchard and croplands	0.067	Volcanic	0.27
2001–3000	0.126	Dry-farming & pasture lands	0.235	Metamorphic-volcanic	0.34
3001–4000	0.085	Bare soil	0.325		
> 4000	0.05	Rock bodies	0.32		
The area of each region determined by the IDRG method and the number of observed landslide events are presented in Table 5.

To compare the accuracy of IDRG and conventional AHP method, the area of each category using AHP and the number of observed landslide events were determined and are represented in Table 6.

According to Table 6, 39.19 percent of the study area is covered by "high"-risk and "very-high"-risk classes (9.47% + 29.72%) in the susceptibility map obtained by the conventional AHP method and 79.55% of the observed landslides were located in these classes. However, the identified regions using IDRG cover 39.79% of the study area, and 97.73% of the known landslides were located inside the determined regions which shows the ability of the proposed method in determining the landslide-prone zones. For a more detailed assessment of the results, a part of the region 2 (adjusting pixels of seed point no. 2 in IDRG) is represented in Fig. 8. Classification of the susceptibility map based on

Table 5
Area of each region (in IDRG method) and the number of observed landslide events

Region	Area (km²)	Percent of study area (%)	Observed landslides	Observed landslides (%)
1	261.11	5.66	5	3.78
2	701.63	15.19	109	82.57
3	235.56	5.09	1	0.75
4	252.16	5.46	6	4.54
5	205.92	4.46	0	0
6	181.51	3.93	8	6.06
Sum		39.79	129	97.73
Remained	2781.74	60.21	3	2.27
Fig. 6 Landslide susceptibility map generated by conventional AHP method

Fig. 7 Observed landslides on landslide-prone zone map generated by IDRG method
pixels in conventional AHP may cause a single-pixel belonging to a particular class to be surrounded by pixels belonging to another class, while in reality this rarely happens. For example, as shown in Fig. 8, some "medium"-risk class pixels are surrounded by the "very high" and "high"-class pixels. Some of the occurred landslides are observed in this area. This can be due to both considering the crisp weights for criteria and sub-criteria in the conventional AHP method and the pixel-based classification. In the proposed method, the sensitivity to the threshold value between two classes of classification is reduced and the pixels that are close in terms of value and uncertainty are assigned to one region so that the whole area shown in Fig. 8 is inside region no. 2 in the IDRG method. Furthermore, in the proposed method, the pixels that are surrounded by pixels of a region will be joined to the region. Although it has not yet occurred any landslide in region no. 5 on the IDRG map, it is one of the high-risk areas that should be considered in decision making. In this research, the accuracies of the landslide-prone zones map produced by the IDRG method and the landslide susceptibility map generated by the conventional AHP method were evaluated by calculating relative operating characteristics (ROCs) and verifying the number of observed landslides in the various categories of the derived maps. The ROC curve is a plot of the probability of having a truly positive response (a correctly predicted event) versus the probability of a false-positive response (an incorrectly predicted event), for different probability cutoffs (Feizizadeh et al. 2014a, b; Gorsevski et al. 2016). A landslide inventory database for the study area includes 132 observed landslide events which were used to validate the results. In the ROC curve, the ideal model is denoted by a value close to 1.0 (Fawcett 2006; Nandi and Shakoor 2010). The results obtained from the ROC for the map derived from the IDRG method indicated an accuracy of 97% and for the map produced by conventional AHP, and the accuracy was about 87% (Fig. 9). The accuracy was improved by about 10% which shows the advantage of the IDRG method and considering the interval weights for both criteria and sub-criteria.

To complete the examination, a sensitivity analysis was performed for investigation of the dependency of model output on the weights of input factors. A common approach for executing sensitivity analysis is to vary input factors one-at-a-time (OAT) (Ilia and Tsangaratos 2016). This study used a 10 percent change from an original criterion interval weight value to perform sensitivity analysis. Either a lower bound change (e.g., plus or minus 10%) or an upper bound change can be applied to all criteria. Therefore, four cases were considered for each criterion, as shown in Fig. 10, where:

(a) Increase the lower bound (+ 10%) \equiv \text{Low } I \\
(b) Decrease the lower bound (− 10%) \equiv \text{Low } D \\
(c) Decrease the upper bound (− 10%) \equiv \text{High } D \\
(d) Increase the upper bound (+ 10%) \equiv \text{High } I

Area of each category using conventional AHP and the number of observed landslide events	Area (km²)	Percent of study area (%)	Observed landslides	Observed landslides (%)
Very low	340.14	37.31	0	0
Low	791.24	13.71	3	2.27
Medium	1419.29	9.79	24	18.18
High	1343.81	9.47	67	50.76
Very high	722.52	29.72	38	28.79

Table 6

To complete the examination, a sensitivity analysis was performed for investigation of the dependency of model output on the weights of input factors. A common approach for executing sensitivity analysis is to vary input factors one-at-a-time (OAT) (Ilia and Tsangaratos 2016). This study used a 10 percent change from an original criterion interval weight value to perform sensitivity analysis. Either a lower bound change (e.g., plus or minus 10%) or an upper bound change can be applied to all criteria. Therefore, four cases were considered for each criterion, as shown in Fig. 10, where:

(a) Increase the lower bound (+ 10%) \equiv \text{Low } I \\
(b) Decrease the lower bound (− 10%) \equiv \text{Low } D \\
(c) Decrease the upper bound (− 10%) \equiv \text{High } D \\
(d) Increase the upper bound (+ 10%) \equiv \text{High } I
Fig. 8 Neighbor pixels of seed number 2
To execute the sensitivity analysis, 36 (4 case for 9 criteria) simulations were performed to identify landslide-prone zones where only one bound value of each criterion interval weight was altered at a time (Table 7). The other weight values remained same as values in Table 2 for each simulation.

Fig. 9 Results of ROC plots for the susceptibility maps produced by IDR G and AHP methods

Fig. 10 Decrease and increase of lower bound and upper bound of an interval weight (original interval number was shown in green color). As can be seen, in a, c simulations, the range of interval value is decreased, whereas in b, d simulations are vice versa

Table 7 Changes in lower or upper bound of interval weight (%)

No.	Criterion	LB (− 10%)	LB (+ 10%)	UB (− 10%)	UB (+ 10%)
1	Aspect	0.0477	0.0583	0.0663	0.0811
2	Road	0.0596	0.0728	0.0779	0.0953
3	Elevation	0.0452	0.0552	0.0493	0.0603
4	Stream	0.0878	0.1073	0.0916	0.1120
5	Fault	0.0978	0.1196	0.1032	0.1262
6	Slope	0.2498	0.3054	0.2565	0.3135
7	Land use	0.2590	0.3166	0.3221	0.3937
8	Precipitation	0.4112	0.5026	0.5142	0.6284
9	Lithology	0.7319	0.8945	0.9000	1.1000

LB Lower bound, UB Upper bound
Then, similar to the original performance, for each of the simulation runs, two aggregated maps (lower bound map and upper bound map) were produced and imported into the Matlab environment. After that, the median map (E) and width map (W) were produced. Finally, landslide-prone zones were identified using the IDRG procedure. Simulated maps were compared with the original map. Changes in the area of landslide-prone zones are presented in Table 8 and Fig. 11.

The average of changes in landslide-prone zone area in a (Low I) and c (High D) simulations, in which both lower and upper bound values are within the original interval weight (Fig. 10), is lower than in two other simulations (Table 8). In these simulations, the area of landslide-prone zones was decreased in comparison with the original map, while in b and d simulations the area was increased.

The results show that the average change in the area of the prone regions from 36 simulations to 0.1% of the area, so the proposed method can be considered relatively robust.

No.	Criterion	Low I (a)	Low D (b)	High D (c)	High I (d)	Min	Max	Mean
1	Aspect	-0.04	$+0.06$	-0.07	$+0.06$	0.04	0.07	0.06
2	Road	-0.05	$+0.04$	-0.07	$+0.03$	0.03	0.07	0.05
3	Elevation	-0.04	$+0.09$	-0.06	$+0.09$	0.04	0.10	0.07
4	Stream	-0.04	$+0.04$	-0.04	$+0.04$	0.03	0.05	0.04
5	Fault	-0.05	$+0.14$	-0.06	$+0.15$	0.05	0.15	0.10
6	Slope	-0.04	$+0.03$	-0.01	$+0.02$	0.01	0.04	0.03
7	Land use	-0.07	$+0.08$	-0.15	$+0.17$	0.07	0.17	0.12
8	Precipitation	-0.05	$+0.10$	-0.19	$+0.09$	0.05	0.2	0.11
9	Lithology	-0.20	$+0.41$	-0.20	$+0.52$	0.20	0.52	0.33

Min (abs) 0.04 0.03 0.01 0.02 0.01
Max (abs) 0.20 0.41 0.20 0.52 0.52
Mean (abs) 0.06 0.11 0.09 0.13 0.1
Lithology with the highest weight among the other criteria is the most sensitive criterion, which causes 0.52% modification in the area of landslide-prone zones when its upper interval weight change is +10%. As it was mentioned, the results are more stable when the changed values are within the original interval weights.

7 Conclusion and future work

In this paper, we proposed a new approach that integrates the region-growing algorithm with a kind of interval number distance as a measure of similarity (IDRG) to determine the landslide-prone zones in the Urmia lake basin, Iran. Using the conventional classification methods to produce landslide susceptibility maps, some sole pixels are surrounded by the pixels of the other classes, which is rarely happening in the real world. It is better to determine the landslide-prone zones instead of high-risk pixels, as identified by the proposed IDRG method. Furthermore, the inherent uncertainty of the weights of criteria and sub-criteria determined by the experts may affect the results. Therefore, the IDRG method is proposed based on the ICM to define the weights. Using the IDRG method, 6 regions were identified as landslide-prone zones which cover 39.79% of the study area and 97.73% of the observed landslides were located inside them. To compare the results, a susceptibility map was produced using the conventional AHP. In this map, high and very high landslide susceptibility was detected for 39.19% of the study area. The results achieved from the ROC, using the landslide inventory, indicated an accuracy of 97%, 87% for IDRG and conventional AHP, respectively.

By applying the proposed IDRG method to reduce the uncertainties of weights for both criteria and sub-criteria and determining the landslide-prone zones instead of high-risk pixels, the accuracy was improved by about 10%.

To complete the investigation, a GIS-based sensitivity analysis was implemented for analyzing interval weight sensitivity in landslide-prone zone mapping. Using the proposed method, the amount of changes in the model output due to variations in interval weights of the criteria was quantified. According to the results of the sensitivity analysis, the lithology was the most sensitive as it had the highest change in the area of landslide-prone zones. Since the results showed that the average change in the area of prone zones, according to 36 simulations, is 0.1% of the area, the proposed method can be considered relatively robust.

The proposed method can be applied to determine safe areas for decision-making in land-use planning. Furthermore, in this research to develop an interval-value-based region-growing method, a binary decision map was created. However, a multi-class interval-based region-growing method would be developed to support a landslide susceptibility map with multiple risk regions.

Acknowledgements I appreciate Dr. Bakhtiar Feizizadeh for permission to use the data set used in this manuscript.

Author contributions A region-growing method was proposed based on interval number distance to determine the landslide-prone zones. The input map of the algorithm was produced using an interval comparison matrix and the AHP method in which the pixels include interval numbers. The similarity measure was defined considering both the value and uncertainty of the input pixels to specify the homogenous regions.

Funding There is no funding source for this research.
Declarations

Conflict of interest I have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Consent to participate The raw data in shp file format was provided by Dr. Bakhtiar Feizizadeh, which was previously used in the following paper: (Feizizadeh and Blaschke (2013). GIS-multi-criteria decision analysis for landslide susceptibility mapping: comparing three methods for the Urmia lake basin, Iran. Natural Hazards, 65(3), 2105–2128.)

Consent for publication I, the undersigned, give my consent for the publication of identifiable details, which can include figures and/or details within the text ("Material") to be published in the above journal and article.

References

Abedi Gheshlaghi H, Feizizadeh B (2017) An integrated approach of analytical network process and fuzzy based spatial decision making systems applied to landslide risk mapping. J Afr Earth Sci 133:15–24. https://doi.org/10.1016/j.jafreasct.2017.05.007
Ada M, San BT (2018) Comparison of machine-learning techniques for landslide susceptibility mapping using two-level random sampling (2LRS) in Alakir catchment area, Antalya, Turkey. Nat Hazards 90(1):237–263. https://doi.org/10.1007/s11069-017-3043-8
Aditian A, Kubota T, Shinohara Y (2018) Comparison of GIS-based landslide susceptibility models using frequency ratio, logistic regression, and artificial neural network in a tertiary region of Ambon, Indonesia. Geomorphology 318:101–111. https://doi.org/10.1016/j.geomorph.2018.06.006
Akgun A, Erkan O (2016) Landslide susceptibility mapping by geographical information system-based multivariate statistical and deterministic models: in an artificial reservoir area at Northern Turkey. Arab J Geosci 9(2):165. https://doi.org/10.1007/s12517-015-2142-7
Alizadeh M, Ngah I, Hashim M, Pradhan B, Pour AB (2018) A hybrid analytic network process and artificial neural network (ANP-ANN) model for urban earthquake vulnerability assessment. Remote Sen 10(6):975
Althuwaynee OF, Pradhan B, Park H-J, Lee JH (2014) A novel ensemble bivariate statistical evidential belief function with knowledge-based analytical hierarchy process and multivariate statistical logistic regression for landslide susceptibility mapping. CATENA 114:21–36. https://doi.org/10.1016/j.catena.2013.10.011
Bahrami Y, Hassani H, Maghsoudi A (2021) Landslide susceptibility mapping using AHP and fuzzy methods in the Gilan province, Iran. Geoj 86(4):1797–1816. https://doi.org/10.1007/s10708-020-10162-y
Bao Y, Peng X, Zhao B (2013) The interval number distance and completeness based on the expectation and with. Fuzzy Syst Math 27(6):133–139
Boroushaki S, Malczewski J (2008) Implementing an extension of the analytical hierarchy process using ordered weighted averaging operators with fuzzy quantifiers in ArcGIS. Comput Geosci 34(4):399–410. https://doi.org/10.1016/j.cageo.2007.04.003
Bui DT, Tsangaratos P, Nguyen VT, Van Liem N, Trinh PT (2020) Comparing the prediction performance of a Deep Learning Neural Network model with conventional machine learning models in landslide susceptibility assessment. Catena 188:104426
Cabrera-Barona P, Ghorbanzadeh O (2018) Comparing classic and interval analytical hierarchy process methodologies for measuring area-level deprivation to analyze health inequalities. Inter J Environ Res Pub Health 15(1):140
Chen X, Chen W (2021) GIS-based landslide susceptibility assessment using optimized hybrid machine learning methods. CATENA 196:104833. https://doi.org/10.1016/j.catena.2020.104833
Chen H, Wood MD, Linstead C, Maltby E (2011) Uncertainty analysis in a GIS-based multi-criteria analysis tool for river catchment management. Environ Modell Softw 26(4):395–405. https://doi.org/10.1016/j.envsoft.2010.09.005
Chen Y, Yu J, Khan S (2013) The spatial framework for weight sensitivity analysis in AHP-based multi-criteria decision making. Environ Modell Softw 48:129–140. https://doi.org/10.1016/j.envsoft.2013.06.010

Chen W, Pourghasemi HR, Zhao Z (2017) A GIS-based comparative study of Dempster-Shafer, logistic regression and artificial neural network models for landslide susceptibility mapping. Geocarto Intern 32(4):367–385. https://doi.org/10.1080/10106049.2016.1140824

Chen Z, Liang S, Ke Y, Yang Z, Zhao H (2020) Landslide susceptibility assessment using different slope units based on the evidential belief function model. Geocarto Intern 35(15):1641–1664. https://doi.org/10.1080/10106049.2019.1582716

Chorley RJ, Schumm SA, Sugden DE (1985) Geomorphology. Methuen, London

Ding Q, Chen W, Hong H (2017) Application of frequency ratio, weights of evidence and evidential belief function models in landslide susceptibility mapping. Geocarto Intern 32(6):619–639. https://doi.org/10.1080/10106049.2016.1165294

Entani T, Tanaka H (2007) Interval estimations of global weights in AHP by upper approximation. Fuzzy Sets Syst 158(17):1913–1921. https://doi.org/10.1016/j.fss.2007.04.007

Fawcett T (2006) An introduction to ROC analysis. Pattern Recognit Lett 27(8):861–874. https://doi.org/10.1016/j.patrec.2005.10.010

Febly A, Achu AL, Jimnisha K, Ayisha VA, Reghunath R (2020) Landslide susceptibility modelling using integrated evidential belief function based logistic regression method: a study from Southern Western Ghats, India. Remote Sens Appl Soc Environ 20:100411. https://doi.org/10.1016/j.rsa.2020.100411

Feizizadeh B, Blaschke T (2013) GIS-multicriteria decision analysis for landslide susceptibility mapping: comparing three methods for the Urmia lake basin Iran. Nat Hazards 65(3):2105–2128. https://doi.org/10.1007/s11069-012-0463-3

Feizizadeh B, Blaschke T (2014) An uncertainty and sensitivity analysis approach for GIS-based multicriteria landslide susceptibility mapping. Intern J Geogra Inf Sci IJGIS 28(3):610–638. https://doi.org/10.1080/13658816.2013.869821

Feizizadeh B, Ghorbanzadeh O (2017) GIS-based interval pairwise comparison matrices as a novel approach for optimizing an analytical hierarchy process and multiple criteria weighting. Gi_forum 1:27–35. https://doi.org/10.1553/giscience2017.01_s27

Feizizadeh B, Blaschke T, Nazmfar H, Rezaei Moghaddam MH (2013) Landslide susceptibility mapping for the Urmia Lake basin, Iran: a multi-criteria evaluation approach using GIS. Intern J Environ Res 7(2):319–336. https://doi.org/10.22059/ijer.2013.610

Feizizadeh B, Jankowski P, Blaschke T (2014a) A GIS based spatially-explicit sensitivity and uncertainty analysis approach for multi-criteria decision analysis. Comput Geosci 64:81–95. https://doi.org/10.1016/j.cageo.2013.11.009

Feizizadeh B, Shadman Roodposhti M, Jankowski P, Blaschke T (2014b) A GIS-based extended fuzzy multi-criteria evaluation for landslide susceptibility mapping. Comput Geosci 73:208–221. https://doi.org/10.1016/j.cageo.2014.08.001

Felícísimó ÁM, Cuartero A, Remondo J, Quirós E (2013) Mapping landslide susceptibility with logistic regression, multiple adaptive regression splines, classification and regression trees, and maximum entropy methods: a comparative study. Landslides 10(2):175–189. https://doi.org/10.1007/s10346-012-0320-1

Gorsevski PV, Brown MK, Panter K, Onasch CM, Simic A, Snyder J (2016) Landslide detection and susceptibility mapping using LiDAR and an artificial neural network approach: a case study in the Cuyahoga Valley National Park. Ohio Landslides 13(3):467–484. https://doi.org/10.1034-015-0587-0

Gudiyangada Nachappa T, Tavakkoli Pirailou S, Ghorbanzadeh O, Shahabi H, Blaschke T (2019) Landslide susceptibility mapping for Austria using geons and optimization with the Dempster-Shafer theory. Appl Sci 9(24):5393

Guo J, Huo H, Peng G (2018) An interval number distance-and-ranking-based method for remotely sensed image fuzzy clustering. Int J Remote Sens 39(23):8591–8614

He H, Di H, Sun Q, Zhu L, Liu Y (2019) A landslide susceptibility assessment method based on GIS technology and an AHP-weighted information content method: a case study of Southern Anhui, China. ISPRS Int J Geo-Inf 8(6):266. https://doi.org/10.3390/ijgi8060266

Hosseinpoor Milaghardan A, Ali Abbaspour R, Khalesian M (2020) Evaluation of the effects of uncertainty on the predictions of landslide occurrences using the Shannon entropy theory and Dempster-Shafer theory. Nat Hazards 100(1):49–67. https://doi.org/10.1007/s11069-019-03798-8

Huang Z, Wang X, Wang J, Liu W, Wang J (2018) Weakly-supervised semantic segmentation network with deep seeded region growing. In: Paper presented at the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition pp 7014–7023
Huang Y, Zhao L (2018) Review on landslide susceptibility mapping using support vector machines. CATENA 165:520–529. https://doi.org/10.1016/j.catena.2018.03.003

Ilia I, Tsagararatos P (2016) Applying weight of evidence method and sensitivity analysis to produce a landslide susceptibility map. Landslides 13(2):379–397

Khan H, Shafique M, Khan MA, Bacha MA, Shah SU, Calligaris C (2019) Landslide susceptibility assessment using frequency ratio, a case study of northern Pakistan. Egyptian J Remote Sens Space Sci 22(1):11–24. https://doi.org/10.1016/j.jers.2018.03.004

Khosravi K, Panahi M, Tien Bui D (2018) Spatial prediction of groundwater spring potential mapping based on an adaptive neuro-fuzzy inference system and metaheuristic optimization. Hydrol Earth Syst Sci 22(9):4771–4792

Kumar R, Anbalagan R (2015) Landslide susceptibility zonation in part of Tehri reservoir region using frequency ratio, fuzzy logic and GIS. J Earth Syst Sci 124(2):431–448. https://doi.org/10.1007/s12040-015-0536-2

Lan J, Lin J, Cao L (2009) An information mining method for deriving weights from an interval comparison matrix. Math Comput Model 50(3):393–400. https://doi.org/10.1016/j.mcm.2009.04.015

Malamud BD, Turcotte DL, Guzzetti F, Reichenbach P (2004) Landslide inventories and their statistical properties. Earth Surf Process Landf 29(6):687–711. https://doi.org/10.1002/esp.1064

Mezaal MR, Pradhan B, Rizeei HM (2018) improving landslide detection from airborne laser scanning data using optimized Dempster-Shafer. Remote Sen 10(7):1029

Mohammady M, Pourghasemi HR, Pradhan B (2012) Landslide susceptibility mapping at Golestan Province, Iran: a comparison between frequency ratio, Dempster-Shafer, and weights-of-evidence models. J Asian Earth Sci 61:221–236. https://doi.org/10.1016/j.jseaes.2012.10.005

Myronidis D, Papageorgiou C, Theophanous S (2016) Landslide susceptibility mapping based on landslide history and analytic hierarchy process (AHP). Nat Hazards 81(1):245–263. https://doi.org/10.1007/s11069-016-1939-7

Nachappa TG, Ghorbanzadeh O, Gholamnia K, Blaschke T (2020) Multi-Hazard exposure mapping using machine learning for the State of Salzburg, Austria. Remote Sens 12(17):2757

Nandi A, Shakoor A (2010) A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses. Eng Geol 110(1):11–20. https://doi.org/10.1016/j.enggeo.2009.10.001

Ngo PT, Panahi M, Khosravi K, Ghorbanzadeh O, Karimnejad N, Cerda A, Lee S (2021) Evaluation of deep learning algorithms for national scale landslide susceptibility mapping of Iran. Geosci Front 12(2):505–519. https://doi.org/10.1016/j.gsf.2020.06.013

Nhu V-H, Shirzadi A, Shahabi H, Chen W, Clague JJ, Geertsema M, Lee S (2020) Shallow landslide susceptibility mapping by random forest base classifier and its ensembles in a semi-arid region of Iran. Forests 11(4):421

Pham BT, Jaafari A, Prakash I, Bui DT (2019) A novel hybrid intelligent model of support vector machines and the multiboostr ensemble for landslide susceptibility modeling. Bull Eng Geol Environ 78(4):2865–2886. https://doi.org/10.1007/s10064-018-1281-y

Pourghasemi H, Pradhan B, Gokceoglu C, Moezzi KD (2013) A comparative assessment of prediction capabilities of Dempster-Shafer and Weights-of-evidence models in landslide susceptibility mapping using GIS, Geomat Nat Hazards Risk 4(2):93–118. https://doi.org/10.1080/19475705.2012.662915

Pradhan B, Lee S, Mansor S, Buchroithner M, Jamaluddin N, Khujaimah Z (2008) Utilization of optical remote sensing data and geographic information system tools for regional landslide hazard analysis by using binomial logistic regression model. J Appl Remote Sens 2(1):023542

Saaty TL (2008) Decision making with the analytic hierarchy process. Inter J Serv Sci 1(1):83–98

Shahabi H, Khezri S, Ahmad BB, Hashim M (2014) RETRACTED: landslide susceptibility mapping at central Zag basin, Iran: a comparison between analytical hierarchy process, frequency ratio and logistic regression models. CATENA 115:55–70. https://doi.org/10.1016/j.catena.2013.11.014

Shirani K, Pasandi M, Arabameri A (2018) Landslide susceptibility assessment by Dempster-Shafer and index of Entropy models, Sarkhoun basin, Southwestern Iran. Nat Hazards 93(3):1379–1418. https://doi.org/10.1007/s11069-018-3356-2

Sun D, Wen H, Wang D, Xu J (2020) A random forest model of landslide susceptibility mapping based on hyperparameter optimization using Bayes algorithm. Geomorphology 362:10720110. https://doi.org/10.1016/j.geomorph.2020.107201

Trang NTQ, Ai TTH, Giang NV, Hoa PV (2016) Object-based vs. pixel-based classification of mangrove forest mapping in Vien An Dong Commune, Ngoc Hien District, Ca Mau Province using VNRED-Sat-1 images. Adv Remote Sens 5(4):284–295

Van Dao D, Jaafari A, Bayat M, Mafi-Gholami D, Qi C, Moayedi H, Pham BT (2020) A spatially explicit deep learning neural network model for the prediction of landslide susceptibility. Catena 188:104451
Wang Z, Brenning A (2021) Active-learning approaches for landslide mapping using support vector machines. Remote Sens 13(13):2588
Wang L-J, Guo M, Sawada K, Lin J, Zhang J (2016) A comparative study of landslide susceptibility maps using logistic regression, frequency ratio, decision tree, weights of evidence and artificial neural network. Geosci J 20(1):117–136. https://doi.org/10.1007/s12303-015-0026-1
Wei C, Huang Q, Zhang Y (2008) A new method to derive interval weights from an interval comparison matrix. Paper presented at the 2008 7th world congress on intelligent control and automation
Wu Y, Ke Y, Chen Z, Liang S, Zhao H, Hong H (2020) Application of alternating decision tree with AdaBoost and bagging ensembles for landslide susceptibility mapping. Catena 187:104396
Xing Y, Yue J, Chen C, Cai D, Hu J, Xiang Y (2021) Prediction interval estimation of landslide displacement using adaptive chicken swarm optimization-tuned support vector machines. Appl Intel 51(11):8466–8483. https://doi.org/10.1007/s10489-021-02337-y
Zhang Z, Yang F, Chen H, Wu Y, Li T, Li W, Liu P (2016) GIS-based landslide susceptibility analysis using frequency ratio and evidential belief function models. Environ Earth Sci 75(11):948. https://doi.org/10.1007/s12665-016-5732

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.