Revealing Intermolecular Hydrogen Bonding Structure and Dynamics in a Deep Eutectic Pharmaceutical by Magic-Angle Spinning NMR Spectroscopy

Sarah K. Mann, Tran N. Pham, Lisa L. McQueen, Józef R. Lewandowski,* and Steven P. Brown*

ABSTRACT: Liquid forms of pharmaceuticals (ionic liquids and deep eutectic solvents) offer a number of potential advantages over solid-state drugs; a key question is the role of intermolecular hydrogen bonding interactions in enabling membrane transport. Characterization is challenging since high sample viscosities, typical of liquid pharmaceutical formulations, hamper the use of conventional solution NMR at ambient temperature. Here, we report the application of magic-angle spinning (MAS) NMR spectroscopy to the deep eutectic pharmaceutical, lidocaine ibuprofen. Using variable temperature MAS NMR, the neat system, at a fixed molar ratio, can be studied over a wide range of temperatures, characterized by changing mobility, using a single experimental setup. Specific intermolecular hydrogen bonding interactions are identified by two-dimensional 1H–1H NOESY and ROESY MAS NMR experiments. Hydrogen-bonding dynamics are quantitatively determined by following the chemical exchange process between the labile protons by means of line-width analysis of variable temperature 1H MAS NMR spectra.

KEYWORDS: NMR spectroscopy, deep eutectics, ionic liquids, hydrogen bonding

INTRODUCTION

As the pharmaceutical industry continues to look for novel ways to improve drug design and enhance delivery, ionic liquids (ILs) have become a promising growth area that seeks to overcome some of the limitations that can exist with solid active pharmaceutical ingredients (APIs).1,2 Specifically, API-ILs have shown an ability to markedly improve characteristics such as solubility and permeability, as well as exhibiting the potential for more tolerable routes of administration (transdermal or oral versus injection).3–6 In addition to the formation of fully ionized salts, in 2011, Bica et al. demonstrated that hydrogen bonding may drive the “liquefaction” of therapeutics in the form of deep eutectic solvents (DESs), the liquid equivalent of cocrystals.7 The nature of the interaction between species is hypothesized to impact the biological behavior of APIs. For example, the membrane permeability of dissociated ions in salt form is limited due to a lack of sufficient lipophilicity. However, API-ILs forming hydrogen bonded complexes should behave more like neutral complexes and transport faster through model membranes compared to dissociated ionic drugs.8,9 It is thus very important to characterize both the structure and dynamics of key hydrogen bonding interactions in API-ILs.

While the elucidation of molecular-level structure in liquids is routinely performed using NMR spectroscopy, conventional solution-state (static) NMR can be hindered by sample viscosity. In these circumstances, slow tumbling can lead to fast transverse relaxation rates and broad spectral lines. ILs and DESs often exhibit high viscosities, typically more than an order of magnitude higher than that of water, and may therefore be difficult to study by NMR in their neat form. While heating viscous liquid samples may address this problem, there are disadvantages such as the disruption of weak intermolecular interactions or even promoting degradation in heat labile samples. In the case of pharmaceuticals, it is more relevant for characterization to occur at temperatures typical of patient use. Magic-angle spinning (MAS) NMR enables, in principle, the study of ILs and DESs over a wide range of temperatures and their characterization in both liquid and solid state in a single setup. There is a very limited number of previous MAS NMR studies on ILs or DESs; these have focused on solutes dissolved in the IL or DES or interactions of the IL or DES with other materials or biological molecules, rather than directly probing intermolecular interactions between the molecules of the neat ILs or DESs themselves. Rencurosi et al. showed that MAS NMR is an effective tool for...
the study of solutes dissolved in neat IL solvents and for monitoring organic reactions in neat ILs. Other applications of MAS NMR associated with ILs include peptide- and protein-IL interactions and the study of surface-immobilized ILs important for catalysis.

This study considers the prototype deep eutectic “liquid cocrystal” formed between the pain relieving compounds lidocaine and ibuprofen, denoted Lid-Ibu (Figure 1a). The hydrogen bonding interactions and the study of surface-functionalized ILs are important for catalysis.13

Neutral forms of lidocaine and ibuprofen,8,15 denoted Lid-Ibu, are solids at room temperature, with melting points (neutral forms of lidocaine and ibuprofen are solids at room temperature) of 77 °C,16 respectively, while the 1:1 combination, Lid-Ibu, is a pale-yellow liquid at room temperature. Lid-Ibu is a poorly ionized, hydrogen-bonded DES,8 formed between the pain relieving compounds lidocaine and ibuprofen,8,15 denoted Lid-Ibu. This study considers the prototype deep eutectic “liquid cocrystal” formed between the pain relieving compounds lidocaine and ibuprofen, denoted Lid-Ibu (Figure 1a). The hydrogen bonding interactions and the study of surface-functionalized ILs are important for catalysis.13

Neutral forms of lidocaine and ibuprofen are solids at room temperature, with melting points (neutral forms of lidocaine and ibuprofen are solids at room temperature) of 68–69 °C,16 and 75–77 °C,8,10 respectively, while the 1:1 combination, Lid-Ibu, is liquid at room temperature with a glass transition temperature of −27 °C.8 Wang et al. demonstrated via spectroscopic analysis that it is the COO–H···N (tertiary amine) hydrogen bond interaction rather than proton transfer that reduces the T_{mi} of Lid-Ibu compared to the commercial salt forms of lidocaine and ibuprofen,8,15 denoted Lid-Ibu. These studies suggest that strong hydrogen bond interactions between lidocaine and ibuprofen in the deep eutectic cocrystal form might be advantageous for transdermal drug delivery.

With the pharmaceutical application of such complexes in mind, our particular focus is the identification of intermolecular hydrogen bonding interactions and the quantitative characterization of dynamic chemical exchange associated with the making and breaking of hydrogen bonding between the two components. This is enabled by the unique possibility afforded by MAS NMR spectroscopy to characterize a single complex, that is, with a fixed molar ratio, over a wide range of temperatures.

EXPERIMENTAL SECTION

Sample Preparation. Lidocaine and ibuprofen were purchased from Sigma-Aldrich (Gillingham, UK) and used as received. Lidocaine ibuprofen was prepared by stirring an equal molar ratio of lidocaine and ibuprofen together in an oil bath at 100 °C for 1 h. The mixture was then stored in a vacuum oven at 50 °C for 24 h, after which the sample was stored at room temperature. Lid-Ibu is a pale-yellow liquid at room temperature.

MAS NMR. MAS NMR experiments were performed at 1H Larmor frequencies of υ_{0H} = 500 (11.7 T), υ_{0H} = 600 (14.1 T), and υ_{0H} = 850 (20.0 T) MHz using Bruker Avance III (500 and 850 MHz) and II+ (600 MHz) spectrometers. All experiments were performed using either a 4 mm triple-resonance MAS probe operating in double-resonance mode or using a Bruker 4 mm E^{free} probe (υ_{0H} = 500 MHz). The E^{free} probe utilizes a low inductance proton RF coil to minimize RF sample heating by reducing the E-field. In all experiments, the 1H 90° pulse was of duration 2.5 μs (corresponding to a nutation frequency, υ_n = 100 kHz) except experiments run using the E^{free} probe, where the 1H 90° pulse length was 3.5 μs (υ_n = 71 kHz). Except where otherwise stated, a spinning frequency of 10 or 12.5 kHz was used, and reported temperatures are the gas input temperature.

1H One-Pulse MAS NMR. One-dimensional 1H spectra were recorded with a recycle delay of 2 s and 4 coadded transients. We note that the changes observed in the 1H spectra over time (~2 ppm shift for the carboxylic acid proton) only occurred for the sample stored in the MAS rotor, likely due to lower exposure to humidity.

1H–13C CP MAS and 1H–13C Refocused INEPT. In order to collect NMR spectra for the lower natural abundance 13C nuclei, scalar or dipolar coupling based methods to transfer magnetization from 1H to 13C are commonly employed depending on the nature of the sample and the required information. In solution NMR, the INEPT technique using through-bond scalar couplings is used for most heteronuclear correlation experiments. Solid-state NMR of dilute nuclei such as 13C spectra is typically achieved using cross-polarization (CP), which uses through-space dipolar interactions. A very viscous IL or DES can be considered to lie somewhere on a transition between neat ILs (100% IL) and aqueous solutions (0% IL) where there is little or no hydrogen bonding. This is enabled by the unique possibility afforded by MAS NMR spectroscopy to characterize a single complex, that is, with a fixed molar ratio, over a wide range of temperatures.

Figure 1. Variable-temperature MAS (υ_{0H} = 500 MHz, υ_d = 12.5 kHz) NMR spectra of Lid-Ibu, see chemical structures of lidocaine and ibuprofen in panel a: (b) one-pulse 1H, (c, d) 13C with (c) refocused INEPT or (d) CP transfer from 1H.
continuum between liquid and solid. The feasibility of CP or INEPT techniques is likely to depend on its position on this continuum, which dictates dephasing times and the strength of residual dipolar couplings, factors that affect the efficiency of magnetization transfer for these two methods. This can be clearly seen in the variable temperature 1H–13C refocused INEPT and CP 13C MAS NMR spectra presented in this paper.

1H–13C cross-polarization (CP) and refocused INEPT spectra were acquired at $\nu_{\text{CP}} = 500$ MHz and $\nu_r = 12.5$ kHz MAS frequency; 128 transients were coadded, and a recycle delay of 1.5 s was used. Cross-polarization was achieved using a 70% to 100% ramp\(^{19}\) on the 1H channel for a contact time of 500 μs. The 1H and 13C nutation frequencies were 60 and 47.5 kHz, respectively. The refocused INEPT spectra were acquired with a spin–echo ($\frac{\pi}{2} - \pi - \frac{\pi}{2}$) duration of $\tau = 2$ ms. In 13C detected experiments, SPINAL-64\(^{20}\) 1H heteronuclear decoupling was applied during acquisition at a nutation frequency of 88 kHz (CP) or 13 kHz (INEPT) and a pulse duration of 5.4 μs (CP) or 38 μs (INEPT).

1H–1H NOESY and ROESY. NOESY ($\nu_{\text{CP}} = 600$ MHz) and ROESY ($\nu_{\text{CP}} = 500$ MHz) spectra were recorded with 8 transients coadded for each of 512 t_1 FIDs, using the States-TPT\(^{11}\) method to restore sign discrimination in the F_2 dimension with a t_2 increment of 80 μs. NOESY mixing times between 3 and 100 ms and a recycle delay of 4 s were used, corresponding to an experimental time of approximately 4.5 h. A ROESY spectrum was recorded with a mixing time of 10 ms during which a spin lock of ≈ 20 kHz was applied and a recycle delay of 2 s, corresponding to an experimental time of 2.5 h. NOESY ($\nu_{\text{CP}} = 850$ MHz) spectra were recorded with 4 transients coadded for each of 512 t_1 FIDs, using the States-TPT\(^{12}\) method to restore sign discrimination in the F_2 dimension with a t_2 increment of 59 μs and a recycle delay of 3 s, corresponding to an experimental time of 3.5 h. An eight-step nested phase cycle was used in the NOESY experiments ($\nu_{\text{CP}} = 600$ MHz) where the three 1H 90° pulses were cycled through phases (i) $x - x$, (ii) $x - x - x$, and (iii) $x - x - x - x - x - x$. A four-step nested phase cycle was used in the NOESY experiments ($\nu_{\text{CP}} = 850$ MHz) where the three 1H 90° pulses were cycled through phases (i) $x - x$, (ii) $x - x - x$ and the receiver was cycled through phases $x - x - x - x - x - x - x$. An eight-step phase cycle was used in the ROESY experiment where the two 1H 90° pulses before and after the spin-lock were cycled through phases $x - x - x - y - y - y$ and $x - x - y - y - y - y$ and the receiver was cycled through phases $x - x - x - y - y - y$.

1H and 13C chemical shifts are referenced to TMS at 0 ppm using L-alanine as a secondary reference (1.1 ppm for the lower ppm 1H resonance and 177.8 ppm for the higher ppm 13C resonance), corresponding to adamantane at 1.85 ppm (1H)\(^{22}\) and 38.5 ppm (13C)\(^{23}\). For all 1H VT spectra, the chemical shift axis is referenced such that the methyl (H-1′') chemical shift is unchanged from the value at 298 K (1.15 ppm).

RESULTS AND DISCUSSION

1H MAS NMR spectra of neat Lid-Ibu obtained for temperatures between 268 and 328 K are shown in Figure 1b. As with conventional liquids, the viscosity of 1Ls and DESs are expected to be strongly temperature dependent, the effect of which is observed in the broadening of the NMR spectra at lower temperatures. At ambient temperature, 10 kHz MAS is sufficient to resolve all proton resonances of Lid-Ibu, apart from overlap in the aromatic region and for the methyl groups (H-1 and H-1′′) while ensuring that spinning sidebands lie outside the chemical shift range in the 1H spectra (Figure S1). Figure 1c,d compares 13C spectra recorded using refocused INEPT and CP, respectively. The INEPT spectra show increased sensitivity at higher temperatures when the sample is “more liquid”; however at room temperature and below, there is very little signal, attributable to the rapid dephasing of transverse proton magnetization in the higher viscosity sample. While CP is efficient at low temperatures in “solid-like” samples, the efficacy decays upon heating as dipolar couplings are partially averaged by molecular motion. Our observation matches that of Sarkar et al., who reported CP transfers in a high viscosity natural DES (glucose/choline chloride/water in a 1:1:4 ratio) with increasing transfer efficiency upon a decrease in temperature\(^{24}\). Overall, the result is a region...
between liquid and solid phases (between 268 and 288 K for the case of Lid-Ibu) in which the transfer of coherences from the 1H to 13C by either technique is inefficient.

Inspection of the 1D proton spectra as a function of temperature reveals that while the chemical shifts of the CH protons are essentially unchanged, there are changes for the NH and COOH protons, which can be attributed to different interactions and chemical exchange processes. Figure 2a presents the region between 8.0 and 14 ppm of the variable temperature (VT) 1D proton spectra. The carboxylic acid (H-10') and amine (H-5) resonances gradually shift to lower ppm values with increasing temperature, with the effect being more prominent for the COOH proton (Figure 3a). Such temperature dependent changes in 1H chemical shifts have previously been reported for protons participating in hydrogen bonds for both liquids$^{25-29}$ and solids.$^{30-32}$

We also note that the carboxylic acid resonance (H-10') shifted to lower ppm over time (over a period of months) from 12.2 ppm to as low as 10.2 ppm at 298 K (Figures 2a,b and S2). ILs and DESs are generally hygroscopic and readily absorb water from the environment. The shift in the COOH peak can be accounted for by the absorption of a small amount of water in fast exchange with the carboxylic acid proton. In fast chemical exchange between two sites, a single population-

![Graph 1](image1)

Figure 3. Analysis of chemical exchange process between H-10' and H-5 of Lid-Ibu in (a, b, c) a freshly prepared sample and (d, e) a sample stored at room temperature for approximately eight months: The effect of temperature on (a, d) the observed chemical shift and (b, e) the line width (full width at half-maximum height) in 1H one-pulse MAS NMR spectra (Figure 2a,b). In panel a, the best-fit straight lines in the slow exchange regime obtained from a linear regression analysis used to determine the rate of change of the chemical shift with respect to temperature are shown. The dashed lines in panel d show the same temperature dependence of the chemical shift as in panel a for comparison. (c) Arrhenius plots for the proton exchange process. The rate constants, k_f and k_b, were obtained from the line width analysis carried out for the 1D 1H one-pulse VT MAS NMR spectra (Figure 2a; see discussion on chemical exchange in section S5 for further details). The best-fit straight lines obtained from a linear regression analysis are shown. The estimated error in the measured chemical shift (a, d) and line width (b, e) of ±0.05 ppm and 5%, respectively, are not shown if smaller than the symbol height.
The absence of exchange, content can be calculated (assuming the chemical shift in the change in the COOH chemical shift, the approximate water necessarily indicate that the sample is dry. From the observed chemical shift of water (approximately 4.7 ppm) does not important point that the absence of a peak at the expected changes of greater than 2 ppm (Figure 2c). This leads to the observed. Less than 1% water (by mass) could result in dividing by the product of the number of each proton, the NOESY spectra, the cross-peak integrals were corrected for the number of equivalent protons contributing to the observed NOE signal by by dividing the product of the number of each proton, and then normalized to the maximum signal for the H-10' to H-3 cross peak at a mixing time of 10 ms. Lines are included as guides for the eye. The integration error is estimated to be <2% and is smaller than the symbol height.

Weighted average shift (δ̃obs = pCOOHδCOOH + pH2OδH2O) is observed. Less than 1% water (by mass) could result in changes of greater than 2 ppm (Figure 2c). This leads to the important point that the absence of a peak at the expected chemical shift of water (approximately 4 ppm) does not necessarily indicate that the sample is dry. From the observed change in the COOH chemical shift, the approximate water content can be calculated (assuming the chemical shift in the absence of exchange, δCOOH = 12.2 ppm, that is, the chemical shift at 298 K observed directly after preparation and drying of Lid-Ibu, and δH2O = 4.7 ppm) to be 0.74 wt % H2O, corresponding to 1 equiv of H2O per 5.5 Lid-Ibu, after a period of eight months of storage at ambient conditions. The presence of water in API-DESs or -ILs can be expected to in

Figure 4. 1H–1H NOESY MAS (ν = 10 kHz) NMR of Lid-Ibu with input gas at 298 K: (a) An expanded region of a 2D spectrum (νH2O = 600 MHz) with skyline projections for τmix = 10 ms. The base contour level is at 0.03% of the maximum peak intensity. (b) Proposed hydrogen-bonded structure accounting for the strong intermolecular NOEs (H-10' to H-2 and H-3) as shown by arrows. (c) Comparison of NOE build-up curves at νH2O = 600 MHz (solid lines, filled symbols) and νH2O = 850 MHz (dashed lines, open symbols) for the carboxylic acid proton (H-10') to H-3 (blue squares), H-2 (black circles), and H-8' (red triangles). The H-10' to H-8' NOE is an intramolecular contact between protons of ibuprofen (see panel b) and is shown for comparison to the intermolecular contacts between the lidocaine and ibuprofen (H-10' to H-3 and H-2). To interpret the NOESY spectra, the cross-peak integrals were corrected for the number of equivalent protons contributing to the observed NOE signal by dividing the product of the number of each proton, then narrow in the fast exchange limit (Figure 2d). We note that the exchange may also be mediated by a small population of water; this would be expected to show similar line shapes to a direct exchange process.

The changes in chemical shift and line width for the exchanging proton peaks are shown graphically in Figure 3. In the slow exchange regime, kex may be obtained from analysis of the line widths of the exchanging peaks (see section S5 for further details). At temperatures below 298 K, additional line broadening of all resonances was observed due to slower transverse relaxation with increased sample viscosity and an accurate value of the line width in the absence of exchange could not be obtained for the H-10' or H-5 resonances (Figure 3b,e). Since all other peaks not involved in exchange showed comparable line widths, we therefore took the line width of the well resolved methyl peak H-11 as a reference to obtain an approximate value of the line widths in the absence of exchange. The broadening of the exchanging peaks was taken
energies of 30
linear
the inverse temperature is plotted between 303 and 328 K. A
reverse reactions, respectively, from the Arrhenius equation,
fi
with increasing temperature and coalesce at
the chemical exchange therefore appears faster on the chemical
exchange in the intermediate-fast exchange regime.

While the 1H NMR chemical shift is a powerful probe of
intermolecular interactions, particularly hydrogen bonding, 2D
correlation experiments are useful for identifying pairs of nuclei
involved in such interactions. In nuclear Overhauser effect
spectroscopy (NOESY) experiments, magnetization is trans-
ferred through space during the mixing time, permitting the
study of intermolecular interactions. 1H–1H MAS-NOESY
experiments have previously been used to detect intermolecu-
lar hydrogen bonding between solvent molecules and a DES39
and between a drug and polymer excipient in supersaturated solution.40 In addition to MAS-NOESY experi-
ments, a variant where the application of radio frequency-
driven recoupling (RFDR)41 during the NOESY mixing time
reintroduces the homonuclear dipolar couplings under MAS
has been described to enhance the coherent 1H–1H dipolar
coupling-driven transfer and has been applied to investigate
membrane interactions of peptides and proteins.42,43 In liquids,
cross-relaxation (the NOE) induced by modulation of dipolar
couplings by molecular motions is responsible for the transfer
of magnetization between pairs of nuclei spins close in space
(typically within \sim5 Å). In the solid state, the same pulse
sequence is often referred to as a spin diffusion experiment
because the dominant mechanism responsible for the trans-
portation of magnetization is spin diffusion, which is not
related to molecular motion but rather is a coherent effect
originating from an incomplete averaging by MAS of the
1H–1H dipolar interactions.44,45 Note that the term spin
diffusion is used differently in solution NMR and refers to an
incoherent multistep NOE process. To avoid confusion, the
two definitions of spin diffusion will be referred to as coherent
spin diffusion (solids) and incoherent spin diffusion (liquids).
In samples on the continuum from liquid to solid, both the
NOE and coherent spin diffusion are expected to contribute to
the NOESY spectra. In the following discussion, we interpret
the presented NOESY data in terms of the NOE effect for Lid-
Ibu, that is, reflecting a state that lies closer to the liquid regime
at room temperature and above.

A section of a two-dimensional 1H–1H NOESY MAS
spectrum is shown in Figure 4a. All NOEs are the same sign as
the diagonal as expected for viscous liquids with slow molecular
tumbling. Specific interactions between lidocaine and ibuprofen protons were observed particularly from the
carboxylic acid proton (H-10') of ibuprofen. Three strong
cross peaks to lidocaine are observed, which can be attributed
to strong intermolecular contacts (to protons adjacent to the
tertiary nitrogen H-2 and H-3) or chemical exchange (to the
tertiary amine nitrogen as shown in Figure 4b). Selected NOE
build-up curves for H-10' are plotted in Figure 4c. NOE
volumes are shown per proton contributing to the cross peak
and normalized to the maximum NOE volume. As expected, an
intramolecular NOE is also observed to the adjacent proton
(H-8'). While intramolecular NOE signals are known to show
an r^{-6} distance dependence, the intramolecular NOE is much
more complicated and may vary between the typical r^{-6} short-
range behavior to r^{-1} long-range behavior depending on the
spectrometer frequency.46 We therefore performed NOE
experiments at two frequencies (600 and 850 MHz). Build-
up curves of NOEs from the carboxylic acid proton (H-10')
showed the same trends at both magnetic
field strengths (Figure 4c), with the strongest NOEs belonging to H-2 and H-
3 of lidocaine (intramolecular), followed by intramolecular H-
8′, indicating a dominant short-range (r^{-6}) behavior. Note that the rapid build-up and decay of the NOE indicates the need for short mixing times in viscous samples. While mixing times greater than 200 ms are common for acquiring NOESY spectra of small molecules in solution, at mixing times greater than 50 ms in slow-tumbling neat Lid-Ibu all protons show similar contacts to all other protons due to incoherent spin-diffusion.47 In previous liquid-state NMR data published on neat Lid-Ibu performed at 70°C under static conditions, hydrogen-bonding was indirectly evidenced by observing shifts to higher ppm of the protons adjacent to the tertiary nitrogen in lidocaine (H-2, H-3) with increasing ibuprofen content.8 Under MAS, we are able to directly detect this hydrogen bond at ambient temperature in a single sample (the 1:1 molar ratio Lid-Ibu). We note that at the time of recording the NOESY spectra, the sample had absorbed approximately 0.24 wt % H2O (based on the observed COOH chemical shift of 11.4 ppm), corresponding to one equivalent of H2O per 17 Lid-Ibu. While this small amount of water can be expected to participate in hydrogen bonding to the lidocaine and ibuprofen, the dominant hydrogen bond interaction is between the two APIs. Figure 5 shows intermolecular NOE build-up curves recorded at two temperatures (298 and 323 K) for the carboxylic acid proton of ibuprofen (H-10′) to the protons

![Figure 6](https://dx.doi.org/10.1021/acs.molpharmaceut.9b01075)

Figure 6. (a) 1H−1H NOESY MAS NMR spectrum ($\nu_{01} = 600$ MHz, $\nu_r = 10$ kHz, 298 K) and (b) 1H−1H ROESY MAS NMR spectrum ($\nu_{01} = 500$ MHz, $\nu_r = 10$ kHz, 298 K) with skyline projections of neat Lid-Ibu recorded using a mixing time (NOESY) or spin-lock (ROESY) of duration 10 ms. Positively phased peaks are shown in blue, and negative peaks are shown in red. The base contour level is at 0.03% (a) and 0.05% (b) of the maximum peak intensity.
adjacent to the tertiary nitrogen (H-2 and H-3, Figure 5a) and the amide proton (H-5, Figure 5b) of lidocaine. As a sample is heated, it would be expected that reduced NOESY cross peaks would result from faster motion, as the NOE enhancement decreases as it approaches a zero crossing, and may be further reduced by weakening of intermolecular interactions in the sample. In contrast to all other cross peaks to H-10, which showed decreased intensity at higher temperature (Figure 5a), the amide (H-5) to acid cross peak is stronger at 323 K (Figure 5b). This behavior is consistent with the VT 1D spectra (see Figure 2), which indicate exchange between the amide and acid protons, and is confirmed by rotating-frame NOE spectroscopy (ROESY) spectra where the exchange-induced cross peaks appear with opposite intensity compared to cross peaks originating from the NOE mechanism (Figure 6). The increased intensity of the 10 to 5 NOESY cross peak at 323 K (Figure 5b) is consistent with the increase of the chemical exchange rate as the sample is heated (see previous discussion of Figures 2 and 3).

In conclusion, MAS NMR spectroscopy has been applied to probe specific hydrogen interactions and their dynamics via chemical exchange in a DES. A key advantage of utilizing MAS is the ability to study the system over a wide temperature range. This is to be compared with the solution-state NMR analysis of Wang et al. that could only be performed at 70 °C and required an analysis of a series of samples composed of varying molar ratios of lidocaine and ibuprofen to make inferences about the hydrogen bonding interactions.8

Using 10 kHz MAS, the resolution of the carboxylic acid and amide protons is sufficient to allow analysis of dynamic chemical exchange processes and yield 2D NOESY and ROESY spectra that allow the direct probing of the important hydrogen bond interactions. When seeking to develop a molecular pharmaceutical for medical application, a detailed understanding of such interactions between the components of ILs or DESs is a prerequisite for an understanding of the biological behavior. Specifically, for Lid-Ibu, strong hydrogen bond interactions have been hypothesized to account for promising transport rates of the APIs though model membranes.8 With growing interest in ILs and DESs as new formulations for improved therapeutics, we believe that MAS NMR will prove to be indispensable for their characterization, complementing the application of solid-state NMR to conventional solid pharmaceuticals.8,49

ASSOCIATED CONTENT

Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.molpharmaceut.9b01075.

Effect of MAS frequency on 1H NMR spectra, 1H MAS NMR spectra for comparison of changes over time, rows extracted from NOESY spectra, NOESY build up curves for H-10 to all other protons, and analysis of chemical exchange (PDF)

AUTHOR INFORMATION

Corresponding Authors

Józef R. Lewandowski — University of Warwick, Coventry, U.K.; orcid.org/0000-0001-6525-7083; Email: J.R.Lewandowski@warwick.ac.uk

Steven P. Brown — University of Warwick, Coventry, U.K.; orcid.org/0000-0003-2069-8496; Email: S.P.Brown@warwick.ac.uk

Other Authors

Sarah K. Mann — University of Warwick, Coventry, U.K.
Tran N. Pham — GSK R&D, Stevenage, U.K.
Lisa L. McQueen — GSK R&D, Collegeville, Pennsylvania

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.molpharmaceut.9b01075

Notes
The authors declare no competing financial interest.
The data for this study is provided as a supporting data set from WRAP, the Warwick Research Archive Portal at http://wrap.warwick.ac.uk/131708.

ACKNOWLEDGMENTS

This work was partially funded by GSK. S.K.M. is supported by a University of Warwick International Chancellor’s scholarship. The UK 850 MHz solid-state NMR Facility used in this research was funded by EPSRC and BBSRC, as well as the University of Warwick including via partial funding through Birmingham Science City Advanced Materials Projects 1 and 2 supported by Advantage West Midlands and the European Regional Development Fund. We thank Dinu Iuga for experimental assistance. J.R.L. acknowledges funding from ERC Starting Grant 639907 and BBSRC grant BB/R010218/1.

REFERENCES

(1) Shamshina, J. L.; Berton, P.; Wang, H.; Zhou, X.; Gurau, G.; Rogers, R. D. Ionic Liquids in Pharmaceutical Industry. *Green Techniques for Organic Synthesis and Medicinal Chemistry*. Wiley-Blackwell: 2018.

(2) Martins, I. C. B.; Oliveira, M. C.; Diogo, H. P.; Branco, L. C.; Duarte, M. T. MechnanoAPI-ILs: Pharmaceutical Ionic Liquids Obtained through Mechnochemical Synthesis. *ChemSusChem* 2017, 10 (7), 1360–1363.

(3) Hough, W. L.; Rogers, R. D. Ionic Liquids Then and Now: From Solvents to Materials to Active Pharmaceutical Ingredients. *Bull. Chem. Soc. Jpn.* 2007, 80 (12), 2262–2269.

(4) Egorova, K. S.; Gordeev, E. G.; Ananikov, V. P. Biological Activity of Ionic Liquids and Their Application in Pharmaceuticals and Medicine. *Chem. Rev.* 2017, 117 (10), 7132–7189.

(5) Sabbaz, Y.; Williams, H. D.; Nguyen, T.-H.; Saunders, J.; Ford, L.; Charman, S. A.; Scammells, P. J.; Porter, C. J. H. Transformation of Poorly Water-Soluble Drugs into Lipophilic Ionic Liquids Enhances Oral Drug Exposure from Lupid Based Formulations. *Mol. Pharmaceutics* 2015, 12 (6), 1980–1991.

(6) Shamshina, J. L.; Cojocaru, O. A.; Kelley, S. P.; Bica, K.; Wallace, S. P.; Gurau, G.; Rogers, R. D. Acyclovir as an Ionic Liquid Cation or Anion Can Improve Aqueous Solubility. *ACS Omega* 2017, 2 (7), 3483–3493.

(7) Bica, K.; Shamshina, J.; Hough, W. L.; MacFarlane, D. R.; Rogers, R. D. Liquid forms of pharmaceutical co-crystals: exploring the boundaries of salt formation. *Chem. Commun.* 2011, 47 (8), 2267–2269.

(8) Wang, H.; Gurau, G.; Shamshina, J.; Cojocaru, O. A.; Janikowski, J.; MacFarlane, D. R.; Davis, J. H.; Rogers, R. D. Simultaneous membrane transport of two active pharmaceutical ingredients by charge assisted hydrogen bond complex formation. *Chem. Sci.* 2014, 5 (9), 3449–3456.
(49) Chattah, A. K.; Zhang, R.; Mroue, K. H.; Pfund, L. Y.; Longhi, M. R.; Ramamoorthy, A.; Garnero, C. Investigating Albendazole Desmotropes by Solid-State NMR Spectroscopy. *Mol. Pharmaceutics* 2015, 12 (3), 731–741.