エチレンジアミンを含むアルカリジンケート浴からの
Zn-Ni合金電析挙動

中野 博昭1)・荒川 真吾2)・大上 悟1)・小林 繁夫3)

Electrodeposition Behavior of Zn-Ni alloy from Alkaline Zincate Solution Containing Ethylenediamine

Synopsis : Electrodeposition behavior of Zn-Ni alloys was investigated at current densities of 5-500 A·m$^{-2}$ and a charge of 5×104 C·m$^{-2}$ in an unagitated zincate solution containing ethylenediamine, which forms a stable complex with Ni$^{2+}$ ions at 308 K, and was compared with that from the solution containing triethanolamine. In a solution containing triethanolamine, the Zn-Ni alloy exhibited normal codeposition at low current densities, wherein electrochemically more noble Ni deposited preferentially and it exhibited anomalous codeposition at high current densities, whereas less noble Zn deposited preferentially, while in a solution containing ethylenediamine, it exhibited anomalous codeposition at high current densities, however, even at low current densities, the Ni content in deposit was almost identical with the composition reference line, showing the behavior close to anomalous codeposition. In a solution containing ethylenediamine, Ni deposition and H$_2$ evolution were significantly suppressed in the larger region of current densities, showing the formation of an inhibitor for deposition, which results from Zn$^{2+}$ ions in the cathode layer. The dependence of current efficiency for alloy deposition on the current density was smaller in a solution containing ethylenediamine than triethanolamine. In a solution containing triethanolamine, the underpotential deposition of Zn apparently occurred with Ni, while in a solution containing ethylenediamine, the underpotential deposition of Zn never occurred because Ni deposition was suppressed by the coexistence of Zn$^{2+}$ ions even at low current densities. The throwing power of Zn-Ni alloy was better in a solution containing ethylenediamine than triethanolamine.

Key words: zincate; zinc-nickel alloys; electrodeposition; underpotential deposition; anomalous codeposition; normal codeposition; ethylenediamine; triethanolamine.

1. 緒言

Zn-Ni合金めっきは、Znめっきに比べて耐食性が良いため、自動車、家庭電化製品、建材用部品などにおいて適用されている1-3)。特に、耐熱防食性能が要求される自動車エンジン回りの部品に多く使用されている。Zn-Ni合金めっきは通常、硫酸塩浴、塩化物浴から行われるが、均一電着性の点ではシアン化物浴、ジンケート浴からの方が優れている4,5)。しかし、シアンは有毒物質であるので、本研究では環境問題の観点からジンケート浴からの合金電析を検討した。著者らは前報5,7)にて、Ni$^{2+}$の錯化剤としてトリエタノールアミンを添加したジンケート浴からZn-Niの合金電析を行い、これまでに報告されているジンケート浴8,13)および硫酸塩浴14-18)からの電析挙動と比較した。その結果、低電流密度域では貴なNiが優先析出する正常型共析となり、電流密度が増加すると卑なZnが優先析出する変則型共析となることを示し、変則型共析となる高電流密度域では、Ni電析、H$_2$発生が抑制されることからZnのunderpotential depositionが生じることを報告した6,7)。一方、ジンケート浴からのZn-Ni電析合金の均一電着性に及ぼす添加剤の影響を調べたところ、Ni$^{2+}$の錯化剤としてエチレンジアミンを添加すると均一電着性が改善されることが分かった。これまでのジンケート浴からのZn-Ni合金電析では、Ni$^{2+}$の錯化剤として酒石酸8)、トリエタノールアミン9)、N-[1-(2-pyrrolidonyl) ethyl] methyacrylamideを添加した場合10)については報告されているが、エチレンジアミンを添加した場合には不明な点が多い。そこで本研究では、Ni$^{2+}$の錯化剤としてエチレンジアミンを添加したジンケート浴からZn-Niの合金電析を行い、トリエタノールアミンを添加した浴6,7)からの電析挙動と比較した。
2. 実験方法

Table 1 にジンケート浴の電解組成および電解条件を示す。電解浴は市販の特級試薬を用い、ZnO 0.15mol·dm⁻³、NiSO₄·6H₂O 0.016mol·dm⁻³、NH₄Cl·2H₂O 0.36mol·dm⁻³、NaOH 0.2mol·dm⁻³を純水に溶解させて作製した。一部、Zn、Ni 単独浴での電析を行ったが、その際の浴組成は、上記の浴から NiSO₄·6H₂O 0.016mol·dm⁻³または ZnO 0.15mol·dm⁻³を抜いたものを用いた。電析は、定電流電解法の部分電流密度は、全電流密度にそれぞれの電流効率(%)により、また構造は SEM により電流密度0.015cm²×2cm、陽極にはPt板(1cm × 2cm)、陽極にはPt板(1cm × 2cm)を用いた。得られた電析物は硝酸で溶解し、X線回折装置(X線回折装置)により平均電流密度5.4cm²×200A、通電量35A、電解温度30℃において無撹拌下で行なった。陰極にはCu板(1cm × 2cm)、陽極にはPt板(1cm × 2cm)を用いた。得られた電析物は硝酸で溶解し、X線回折装置により電流密度を測定する際、参照電極としてAg/AgCl電極(飽和KCl、0.199 V vs. NHE、25℃)を使用したが、電位は標準水素電極基準に換算して表示した。また、均一電着性は、ハーバー試験により評価した。ハーバーエッティングは、Table 1 に示す電解浴を用いて、陰極にはCu板(5cm × 9.9cm)、陽極にはZn板(5cm × 5.4cm)を用い平均電流密度200A·m⁻²、浴温35℃において無撹拌下で行なった。50、100A·m⁻²で得られた電析物(膜厚:5μm)の表面形態は走査型電子顕微鏡(SEM)により、また構造はX線回折装置(Co-Kα、管電圧40kV、管電流36mA)により調べた。

3. 結果および考察

3.1 Zn-Ni合金の電析挙動

Fig.1 (a)にエチレンジアミン(EDA)を含む浴からのZn-Ni合金電析における全分極曲線およびZn、Niの部分分極曲線を示す。Fig.1 (b) には比較のため既報⑦のトリエタノールアミン(TEA)を含む浴からの結果も併せて表示した。なお以下のFigにおいても比較のため既報⑦のトリエタノールアミンを含む溶媒からの結果も併せて示す。Fig.1 (a)に示すエチレンジアミンを含む浴では、全電流密度が0.15A·cm⁻²以上になると、電位が急激に卑な方に移行し、電位が約1.27V前後で立ち上がり、電位が約1.27Vより貴な電位域では、Zn、Niの部分分極曲線とも電位が貴な電位域での分極曲線の立ち上がりは見られなかった。一方、トリエタノールアミンを添加した浴の電析挙動を示す。電位が約1.27V前後の立ち上がりは、トリエタノールアミンを添加した浴の電析挙動を示す。電位が約1.27V前後の立ち上がりは、トリエタノールアミンを添加した浴(b)の場合と同様の傾向を示した。なお、純Znが析出すると仮定した場合のZn電析の平衡電位Eₚは-1.27Vである。また、Niイオンにはエチレンジアミンが3配位しており、その錯安定化定数⑨K=1017.53を元に純Niが析出すると仮定した場合に算出されるNi電析の平衡電位Eₚは-0.78Vである。

Fig.2 にZn-Ni合金電析におけるNi含有率、析出金属全体の電流密度に及ぼす電流密度の影響を示す。図中の破線は、Niについてその浴組成と合金組成が等しい場合を示す組成参照線(Composition reference line)である。合金のNi含有率がこの線の上部に位置していれば、電気化学的に貴なNiが優先析出する正常型共析であり、下部に位置していれば卑なZnが優先析出する変則型共析となる。Fig.2 (a)から分かるように、エチレンジアミンを含む溶(b)では、Ni含有率は電流密度にかかわらず組成参照線の近傍にあり、ほとんど変化しなかった。Ni含有率は100A·m⁻²を超えると組成参照線を下回り変則型共析となったが、100A·m⁻²以下の低電流密度域でも組成参照線の近傍にあり、変則型共析に近い挙動を示した。一方、Zn-Ni合金電析の電流効率は、Fig.2 (a) に示す60~20A·m⁻²の電流密度域では50~60％程度であったが、電流密度の増加に伴い減少を示した。

Table 1. Solution compositions and electrolysis conditions.

種類	(mol·dm⁻³)	状態	温度 (℃)	体積電流密度 (A·m⁻²)	電着電荷 (C·m⁻²)
ZnO	0.15		35	5.00×10⁻²	5.00×10⁻²
NiSO₄·6H₂O	0.016		35	5.00×10⁻²	5.00×10⁻²
NH₄Cl·2H₂O	0.26		35	5.00×10⁻²	5.00×10⁻²
NaOH	2.5		35	5.00×10⁻²	5.00×10⁻²

Fig. 1. Polarization curves for Zn-Ni alloy deposition from zincate solutions containing EDA (a) and TEA (b).
80%前後まで増加した。トリエタノールアミンを添加した浴 (b) では、Ni 含有率が 50〜100A・m² 以下では Ni 含有率が 85mass%前後と組成参照線より上部にあり、明らかに正常型共析となるのに対して、100A・m² 以上では組成参照線を下回り変則型共析となった。また、トリエタノールアミンを添加した浴 (b) では、合金電析の電流効率は、正常型共析の領域で 20〜40%程度と低かった。ただし、電流効率の最大値は、トリエタノールアミンを添加した浴の方がエチレンジアミンを添加した浴よりも高くなった。トリエタノールアミンを添加した浴 (b) では、Ni 含有率が 50〜100A・m² 以上では大きく変化し、50A・m² 以下では Ni 含有率は 85mass%前後と組成参照線より上部にあり、明らかに正常型共析となるのに対して、100A・m² 以上では組成参照線を下回り変則型共析となった。また、トリエタノールアミンを添加した浴 (b) では、合金電析の電流効率は、正常型共析の領域で 20〜40%程度と低かった。ただし、電流効率の最大値は、トリエタノールアミンを添加した浴の方がエチレンジアミンを添加した浴よりも高くなった。トリエタノールアミンを添加した浴 (b) では、Ni 含有率が 50〜100A・m² 以上では大きく変化し、50A・m² 以下では Ni 含有率は 85mass%前後と組成参照線より上部にあり、明らかに正常型共析となるのに対して、100A・m² 以上では組成参照線を下回り変則型共析となった。また、トリエタノールアミンを添加した浴 (b) では、合金電析の電流効率は、正常型共析の領域で 20〜40%程度と低かった。ただし、電流効率の最大値は、トリエタノールアミンを添加した浴の方がエチレンジアミンを添加した浴よりも高くなった。トリエタノールアミンを添加した浴 (b) では、Ni 含有率が 50〜100A・m² 以上では大きく変化し、50A・m² 以下では Ni 含有率は 85mass%前後と組成参照線より上部にあり、明らかに正常型共析となるのに対して、100A・m² 以上では組成参照線を下回り変則型共析となった。また、トリエタノールアミンを添加した浴 (b) では、Ni 含有率が 50〜100A・m² 以上では大きく変化し、50A・m² 以下では Ni 含有率は 85mass%前後と組成参照線より上部にあり、明らかに正常型共析となるのに対して、100A・m² 以上では組成参照線を下回り変則型共析となった。また、トリエタノールアミンを添加した浴 (b) では、Ni 含有率が 50〜100A・m² 以上では大きく変化し、50A・m² 以下では Ni 含有率は 85mass%前後と組成参照線より上部にあり、明ら
部分分極曲線を示す。エチレンジアミンを添加した場合 (a) は、全電流密度が 5A・m⁻² 以上になると、Zn イオンが共存することにより H₂ の発生電位が Zn の平衡電位近傍およびそれを越えてから移行し、Ni 単独浴からの場合に比べて大きく分極した。これに対して、トリエタノールアミンを添加した浴 (b) では、Ni 単独浴、Zn-Ni 合金浴ともに H₂ 発生はほぼ同じ電位域で開始し、−1.0V より貴な電位域では Zn イオンの影響をほとんど受けなかった。しかし、全電流密度を更に上昇させると Zn イオンが共存することにより H₂ 発生電位が Zn の平衡電位より卑な電位域およびそれより卑なる電位域において大きく分極した。エチレンジアミン、トリエタノールアミンを添加した Ni 単独浴、Zn-Ni 合金浴からの H₂ 発生は、Fig.4 で述べた Ni 電析とほぼ同様の傾向を示した。すなわち、H₂ 発生、Ni 電析とも Zn イオンが共存することにより大きく抑制された。エチレンジアミン、トリエタノールアミンを添加した場合は、ある電流密度域以上で H₂ 発生、Ni 電析が Zn イオン共存により抑制されているのに対して、エチレンジアミンを添加した場合は、より広い電流密度域において抑制された。

Zn、Ni 電析、H₂ 発生に及ぼすエチレンジアミン添加の影響を明確にするため、それぞれの単独浴において、電析挙動を調査した。Fig.6 に Zn 単独浴からの Zn 電析の部分分極曲線に及ぼすエチレンジアミン、トリエタノールアミン添加の影響を示す。Zn 電析の部分分極曲線は、エチレンジアミンを添加しても無添加の場合とあまり変化していないが、エチレンジアミンが Zn イオンに対してはほとんど配位していないと考えられる。トリエタノールアミンを添加した場合は、エチレンジアミンを添加した場合より僅かに分極しており、Zn 電析を抑制した。

Fig.7 に Ni 単独浴からの Ni 電析の部分分極曲線に及ぼすエチレンジアミン、トリエタノールアミン添加の影響を示す。Ni 電析の部分分極曲線は、エチレンジアミンを添加した方が全電流密度域において、トリエタノールアミンを添加した場合より分極した。Ni イオンにはエチレンジアミンが 3 配位、トリエタノールアミンが 2 配位しており、それぞれの錯安定化定数 K¹⁹,²⁰ は 10¹⁷.₅₃、10⁴.₇₄ とエチレンジアミンが配位した方がより安定な Ni 錯体を形成する。このため、Ni 電析はエチレンジアミンを添加した方がトリエタノールアミンを添加した場合より分極すると考えられる。

Fig.8 に Ni および Zn を含まない浴からの H₂ 発生の部分分極曲線に及ぼすエチレンジアミン、トリエタノールアミン添加の影響を示す。0.5A・m⁻² 以下の低電流密度域では、H₂ 発生はエチレンジアミン、トリエタノールアミンの添加により若干抑制されたが、電流密度が 0.5A・m⁻² 以上になると、エチレンジアミン添加の影響はほとんど見られなくなった。また、2A・m⁻² 以上の電流密度域では、トリエタノールアミン添加により、H₂ 発生は若干抑制されており、Zn 電析に対する抑制効果 (Fig.6) と同様の傾向が認められた。Zn-Ni 合金電析の電流効率の最大値は、トリエタノールアミンを添加した方が高くなっており (Fig.2)、これは、トリエタノールアミンが Zn イオンをより安定に配位するためである。エチレンジアミンは Zn イオンをほとんど配位していないと考えられる。

Fig.5. Partial polarization curves for H₂ evolution from Ni only and Zn-Ni alloy alkaline solutions containing EDA (a) and TEA (b).

Fig.6. Partial polarization curves for Zn deposition from Zn only alkaline solutions containing EDA and TEA.

Fig.7. Partial polarization curves for Ni deposition from Ni only alkaline solutions containing EDA and TEA.
エタノールアミンを添加した方がH₂発生の抑制効果が大きいことに起因していると考えられる。

硫酸塩浴からのZn-Niの合金電析挙動と比較するため、硫酸塩浴において電流密度を変化させた場合の電析合金組成、電流効率の変化をFig.9に示す。硫酸塩水溶液からのZn-Ni合金電析では、低電流密度域では、電気化学的に貴なNiが卑なZnより優先析出する正常型共析となるが、電気化学的に最も貴な水素が優先的に析出し、電流効率がゼロに近い。電流効率の高い実用的な合金が得られる電流密度領域では、電気化学的に卑なZnが貴なNiより優先析出する変則型共析という特異的な挙動を示す14–18。硫酸塩水溶液において変則性が生じる原因としては、1)水和イオンからのNi電析が水酸基を含有した吸着中間体NiOH₃を経由した多段階還元機構により進行し、NiOH₃が吸着できるサイトが制限されている、2)電解中の水素発生に伴う陰極近傍のpH上昇により生成、吸着したZn(OH)₃がNiOH₃の吸着サイトを封鎖し、Ni電析の抑制剤として作用する、水酸化物抑制機構14–18が提唱されている。

本研究のジンケート浴では、トリエタノールアミンを添加した場合はFig.2(b)に示すように低電流密度域では貴なNiが優先析出する正常型共析となり、電流密度が増加すると変則型共析となっており、硫酸塩浴からの場合と類似した挙動を示す。エチレンジアミンを添加した場合は、低い電流密度域から変則型共析に近い挙動を示し[Fig.2(a)]、硫酸塩浴からの場合とは明らかに異なっている。ジンケート浴においてもFig.4に示すように、Znイオン共存によりNi電析、H₂発生が大きく抑制されている。

硫酸塩浴においては、電流密度が轉移電流密度以上になると、電極界面に形成されるZn(OH)₃がNi電析、H₂発生を抑制することが報告されており15–18、ジンケート浴においても、Znイオンに起因するNi電析、H₂発生の抑制剤が形成されることが考えられる。ここで、エチレンジアミン、トリエタノールアミン添加の違いを着目すると、トリエタノールアミン添加の場合、低電流密度域では、Ni電析はZnイオンに起因する抑制剤の影響を受けていないのに対し、エチレンジアミンを添加した場合は、全ての電流密度域でNi電析はZnイオン共存により抑制されている。エチレンジアミンを添加した方がトリエタノールアミンを添加した場合よりも安定なNi錯体を形成するため、元来Ni電析がより抑制されており(Fig.7)、Znイオンに起因する抑制剤の効果をより強く受け易いと考えられる。このため低い電流密度域においてもZnイオン共存によりNi電析は抑制され、変則型共析に近い挙動を示すと考えられる。また、Zn-Ni合金浴における全分極曲線において、電流密度がある値以上になると、電位が急激に卑な方へ移行し、Zn電析の平衡電位に到達している。Fig.1)この電位が急激に移行する電流密度はエチレンジアミン添加浴では5〜10A·m⁻²、トリエタノールアミン添加浴では50〜100A·m⁻²となっており、エチレンジアミン添加浴の方がより低い電流密度で電位が卑方に移行している。この現象もエチレンジアミンを添加した方がトリエタノールアミンを添加した場合よりNi電析がより抑制されることに起因していると考えられる。

トリエタノールアミンを添加した場合、低電流密度域では、Ni電析はZnイオンが共存しても抑制されないので、NiZnₓの金属間化合物が析出せず、Znの平衡電位−1.27Vより約0.4V貴な電位域においてZnの電析が始まることが報告されている8)。Fig.1,3)すなわち、トリエタノールアミン添加したZn-Ni合金浴では、見掛け上Znのunderpotential depositionが生じているが、エチレンジアミンを添加した場合は、低電流密度域においてもZnイオン共存によりNi電析が抑制されるので、NiZnₓの金属間化合物が析出できないため、Fig.1,3に示すようにZnのunderpotential depositionが生じない。すなわち、Znはその平衡電位から析出を開始することになる。
3・2 Zn-Ni電析合金の構造

Fig.10に100A・m⁻²で得られたZn-Ni電析合金のX線回折図形を示す。電析物のNi含有率はエチレンジアミン、トリエタノールアミン添加でそれぞれ、9.8mass%、8.4mass%であった。トリエタノールアミン添加浴から得た電析物(b)には、Zn単相とNi₅Zn₂₁金属間化合物のピークが見られるのに対して、エチレンジアミンを添加した浴からの電析物(a)には、Ni₅Zn₂₁金属間化合物のピークのみが検出された。すなわち、トリエタノールアミンを添加した浴からの電析物はZn単相とNi₅Zn₂₁金属間化合物の2相から構成されており、エチレンジアミン添加した場合には主にNi₅Zn₂₁金属間化合物から構成されていると考えられる。なお、X線回折図形のピーク位置がエチレンジアミン添加浴からのもの(a)がトリエタノールアミン添加浴からのもの(b)に比べ、Cu基板由来のものも含め全体的に若干高角度側にシフトしているが、これは2θの0degree調整が不完全である0点誤差によるものと思われる。

Fig.11に50、100A・m⁻²で得られたZn-Ni電析合金のSEM観察像を示す。電析物のNi含有率は、エチレンジアミン添加の場合には50、100A・m⁻²でそれぞれ、13.8mass%、9.8mass%、トリエタノールアミン添加の場合には50、100A・m⁻²でそれぞれ、79.2mass%、8.4mass%であった。エチレンジアミン添加した浴から50A・m⁻²で得られた電析物(a)は、三角錐状の平滑な面から構成されていた。一方、トリエタノールアミンを添加した浴から50A・m⁻²で得られた電析物(c)は、結晶粒が微細で比較的平滑であったが、100A・m⁻²で得られたもの(d)は板状の塊を呈していた。トリエタノールアミン添加浴での電流密度による表面形態の違いは合金組成に起因するものと考えられる。エチレンジアミン、トリエタノールアミン添加による合金組成がほぼ同一となる100A・m⁻²において、両者を比較すると、エチレンジアミンを添加した方が板状結晶の面がより平滑であり、トリエタノールアミン添加で得られるような板面と板面間の隙間はほとんど見られなかった。

3・3 Zn-Ni合金の均一電着性

Fig.12にハルセル試験によるZn-Ni合金の均一電着性の評価結果を示す。Zn-Ni合金の均一電着性は、エチレンジ
アミンを添加した方がトリエタノールアミンを添加した場合より良好であった。電流密度が高くなるほど電析の電流効率が低下すれば、均一電着性は向上することが報告されている。

本研究では、Fig.2に示すようにエチレンジアミン、トリエタノールアミンを添加した両浴とも、総じて電流密度の高い方が電流効率も高くなっており、均一電着性の点では不利である。エチレンジアミン、トリエタノールアミンを添加した場合の電流効率の電流密度依存性を比較すると、エチレンジアミンを添加した方が電流密度依存性が小さかった。

Zn-Ni合金の均一電着性は、エチレンジアミンを添加した方がより良好であったと考えられる。

4. 結論

Ni²⁺の錯化剤としてエチレンジアミンを添加したジンケート浴からZn-Ni合金電析を行い、トリエタノールアミンを添加した浴からの電析挙動と比較した。トリエタノールアミンを添加した浴では、低電流密度域では貴なNiが優先析出する正常型共析となり、電流密度が増加すると卑なZnイオン共存による変則型共析となるのに対して、エチレンジアミンを添加した浴では、高電流密度域では変則型共析となったが、低電流密度域でも合金組成は組成参照線の近くにあり、変則型共析に近い挙動を示した。エチレンジアミンを添加した場合は、より広い電流密度域においてNi電析、H₂発生が抑制されており、Znイオンに起因する電析抑制剤が陰極面に形成されると考えられる。合金電析の電流効率の電流密度依存性は、エチレンジアミンを添加した方が小さかった。トリエタノールアミンを添加した浴では、見掛け上でZnのunderpotential depositionが生じているが、エチレンジアミンを添加した場合は、低電流密度域においてもZnイオン共存によりNi電析が抑制されるので、Znのunderpotential depositionは生じなかった。Zn-Ni合金の均一電着性は、エチレンジアミンを添加した方がトリエタノールアミンを添加した場合より良好であった。

文 献

1) L.Fellou, R.Frateres, E.Quadrini and G.Roventi: J. Appl. Electrochem., 17(1987), 574.
2) M.F.Mathias and T.W.Chapman: J. Electrochem. Soc., 134(1987), 1408.
3) S.Swathirajan: J. Electroanal. Chem., 221(1987), 211.
4) T.Fujigaya: Electroplating, chemical plating & engineering guide, in Japanese, Nippon Tokin Zairyo Kyodo Kumiai, Tokyo, (2004), 143.
5) M.Kawasaki and H.Enomoto: Meikki Kyohon, in Japanese, Nikkan Kogyo Shinbunsha, Tokyo, (1988), 108.
6) H.Nakano, S.Araikawa, Y.Takada, S.Oue and S.Kobayashi: J. Jpn. Inst. Met., 76(2012), 443.
7) H.Nakano, S.Araikawa, Y.Takada, S.Oue and S.Kobayashi: Mater. Trans., 53(2012), 590.
8) M.G.Hosseini, H.Ashassi-Sorkhabi and H.A.Y.Ghiasvand: Surf. Coat. Technol., 202(2008), 2897.
9) L.S.Tsybulskaya, T.V Gaevskaya, O.G.Purovskaya and T.V.Byk: Surf. Coat. Technol., 203(2008), 234.
10) G.Y.Li, J.S.Lian and Z.H.Jiang: Surf. Coat. Technol., 191(2005), 59.
11) N.R.Short, S.Zhou and J.K.Dennis: Surf. Coat. Technol., 79(1996), 218.
12) C.Muller, M.Sarret and M.Benballa: J. Electroanal. Chem., 519(2002), 85.
13) H.Y.Lee and S.G.Kim: Surf. Coat. Technol., 135(2000), 69.
14) A.Brenner: Electrodeposition of Alloys, Vols.1,2, Academic Press, New York and London, (1963), 221.
15) H.Fukushima, T.Akiyama, J.Lee, M.Yamaguchi and K.Higashi: J. Met. Finish. Soc. Jpn., 33(1982), 574.
16) H.Fukushima, T.Akiyama, M.Yano, T.Ishikawa and R.Kammel: ISIJ Int., 33(1993), 1609.
17) H.Nakano, S.Kobayashi, T.Akiyama, T.Tsuru and H.Fukushima: Tetsu-to-Hagané, 89(2003), 64.
18) H.Nakano, M.Matsuno, S.Oue, M.Yano, S.Kobayashi and H.Fukushima: J. Japan Inst. Metals, 69(2005), 548.
19) Stability Constants of Metal-ion Complexes, Part B ORGANIC COMPOUNDS, PERGAMON PRESS, OXFORD, (1979), 62.
20) Stability Constants of Metal-ion Complexes, Part B ORGANIC COMPOUNDS, PERGAMON PRESS, OXFORD, (1979), 466.
21) M.Kawasaki, S.Konishi, N.Dohi, Y.Nakagawa, T.Hayashi and T.Mitsumura: Zitsuyo Denki Mekki, Nikkan Kogyo Shinbunsha, Tokyo, (1980), 233.