Characterization of curves in $C^{(2)}$

Meritxell Sáez

Abstract

In this paper we characterize the irreducible curves lying in $C^{(2)}$. We prove that a curve B has a degree one morphism to $C^{(2)}$ with image a curve of degree d with irreducible preimage in $C \times C$ if and only if there exists an irreducible smooth curve D and morphisms from D to C and B of degrees d and 2 respectively forming a diagram which does not reduce.

Keywords: Symmetric product, curve, irregular surface, curves in surfaces.

1 Introduction

Given a curve $B \subset C^{(2)}$, we define the degree of B as the integer d such that $C_P \cdot B = d$ where C_P denotes the coordinate curve in $C^{(2)}$ with base point P.

The curves of degree one in $C^{(2)}$ are completely characterized by the two results in [ACGH85, Pg. 310, D-10] and [Cih83], where it is proven that a curve B of degree one in $C^{(2)}$ different from a coordinate curve is smooth and it exists if and only if there exists a degree two morphism $f : C \to B$. Moreover, $B = \{f^{-1}(q) \mid q \in B\} \subset C^{(2)}$.

In [Cha08] a different proof of this result is given. From this proof we remark that considering the curve $B \subset C^{(2)}$ as before, then, the preimage of B by $\pi_C : C \times C \to C^{(2)}$ is isomorphic to C through the projection onto the first factor.

Let \tilde{B} be an irreducible curve in $C^{(2)}$ different from a coordinate divisor. Let B be its normalization and assume that there is no degree two morphism from C to B. Then, since C_P is ample in $C^{(2)}$, from the characterization of degree one curves we deduce that $\tilde{B} \cdot C_P \geq 2$. In this paper we present a characterization of curves with any degree. First of all we need the following definition:

Definition 1.1. We say that a diagram of morphisms of curves

\[
\begin{array}{ccc}
D & \xrightarrow{(e:1)} & B \\
\downarrow{(d:1)} & & \downarrow \\
C & &
\end{array}
\]

The author has been partially supported by the Proyecto de Investigación MTM2012-38122-C03-02.
reduces if there exist curves F and H such that there exists a diagram

\[
\begin{array}{c}
\begin{array}{c}
D \xrightarrow{(d:1)} B \\
\downarrow_{(k:1)} \\
\downarrow_{(k:1)} \\
F \xrightarrow{(e:1)} H \\
\downarrow \\
C
\end{array}
\end{array}
\]

with $k > 1$, the upper square being a commutative diagram and the left vertical arrows giving a factorization of the original degree d morphism.

When $k = d$ we will say that the diagram completes, and we will obtain a commutative diagram

\[
\begin{array}{c}
\begin{array}{c}
D \xrightarrow{(e:1)} B \\
\downarrow_{(d:1)} \\
\downarrow_{(d:1)} \\
C \xrightarrow{(e:1)} H.
\end{array}
\end{array}
\]

Notice that when d is a prime number both definitions are equivalent.

In this paper we prove

Theorem 1.2. Let B be an irreducible smooth curve such that there are no non-trivial morphisms $B \to C$. A morphism of degree one from the curve B to the surface $C^{(2)}$ exists, with image \tilde{B} of degree d if, and only if, there exists a smooth irreducible curve D and a diagram

\[
\begin{array}{c}
\begin{array}{c}
D \xrightarrow{(2:1)} B \\
\downarrow_{(d:1)} \\
C
\end{array}
\end{array}
\]

which does not reduce.

If we consider the case $d = 1$ we recover the results for degree one.

We prove the theorem in two steps, giving a separated proof for each implication (see **Theorem 2.2** and **Theorem 2.3**). First, given a diagram

\[
\begin{array}{c}
\begin{array}{c}
D \xrightarrow{(2:1)} B \\
\downarrow_{(d:1)} \\
C
\end{array}
\end{array}
\]

which does not reduce we find a curve in $C^{(2)}$ defined by it as the image by $g^{(2)}$ of the immersion of B in $D^{(2)}$ given by f. We prove that $g^{(2)}|_{B}$ has degree one, and
hence the curve in \(C^{(2)} \) has normalization \(B \) and the normalization map is precisely \(g(2)|_B \). Second, given a curve lying in \(C^{(2)} \) we find a diagram defined by the curve, its preimage by \(\pi_C \) and the projection on one factor of \(C \times C \). We compute the degrees of the different maps and prove that this diagram does not reduce.

In a following paper we are going to use this result to study and classify curves of degree two and some of degree three.

Notation: We work over the complex numbers. By curve we mean a complex projective reduced algebraic curve. Let \(C \) be a smooth curve of genus \(g \geq 2 \), we put \(C^{(2)} \) for its 2nd symmetric product. We denote by \(\pi_C : C \times C \to C^{(2)} \) the natural map, and \(C_P \subset C^{(2)} \) a coordinate curve with base point \(P \in C \). We put \(\Delta_C \) for the main diagonal in \(C^{(2)} \), and \(\Delta_{C \times C} \) denotes the diagonal of the Cartesian product \(C \times C \).

2 Characterization

We begin with a lemma that will simplify the rest of the exposition.

Lemma 2.1. We consider a diagram of morphisms of smooth irreducible curves

\[
\begin{array}{ccc}
D & \xrightarrow{f} & B \\
\downarrow^{(2:1)} & & \downarrow^{(2:1)} \\
C & \xrightarrow{g} & C
\end{array}
\]

The image of \(B \subset D^{(2)} \) (with the immersion given by the fibers of \(f \)) by the morphism \(g^{(2)} \) is the diagonal \(\Delta_C \subset C^{(2)} \) if and only if the morphism \(g \) factorizes through the curve \(B \) by \(f \).

Proof. Let \(i \) be the involution on \(D \) that defines \(f \), that is, the change of sheet. Since \(B = \{ x + y \mid f(x) = f(y) \} = \{ x + i(x) \} \subset D^{(2)} \), then \(\text{Im}(g^{(2)}|_B) = \{ g(x) + g(i(x)) \} \). It is contained in the diagonal \(\Delta_C \) if and only if \(g(x) = g(i(x)) \) for all \(x \in D \), that is, if and only if \(g \) factorizes through \(B \) by \(f \).

In the following theorem, given a diagram that does not reduce we deduce the existence of a curve in \(C^{(2)} \) naturally attached to it.

Theorem 2.2. Assume that there exists a diagram of morphisms of smooth irreducible curves

\[
\begin{array}{ccc}
D & \xrightarrow{f} & B \\
\downarrow^{(2:1)} & & \downarrow^{(2:1)} \\
C & \xrightarrow{g} & C
\end{array}
\]

which does not reduce and such that the morphism \(g \) does not factorize through \(B \) by \(f \). Then, \(g^{(2)} \) gives a degree one map \(B \to C^{(2)} \) with reduced image a curve \(\tilde{B} \) of degree precisely \(d \).
Proof. Consider a diagram as above and look at the induced morphism $D^{(2)} \xrightarrow{g^{(2)}} C^{(2)}$. As we have seen in the Introduction, we have an immersion $B \subset D^{(2)}$ as the set of pairs of points in D with the same image by f. Then, we consider D inside $D \times D$ as $\pi_D^{-1}(B) \cong D$, that is, ordered pairs of points with the same image by f.

Let $\tilde{B} = g^{(2)}(B)_{\text{red}}$, the reduced image curve in $C^{(2)}$, and consider the map $B \xrightarrow{(k;1)} \tilde{B}$ induced by $g^{(2)}$. We want to see that $k = 1$.

Notice that by Lemma 2.1 we can assume that \tilde{B} is not Δ_C. We know that $B \cdot D_P = 1$, hence,

$$1 = g^{(2)}_*(B \cdot D_P) = g^{(2)}_*(B) \cdot \left(\frac{1}{d}C_P\right) \Rightarrow g^{(2)}_*(B) \cdot C_P = d.$$

In addition, since the map $B \xrightarrow{(k;1)} \tilde{B}$ is $g^{(2)}|_B$, we obtain that $d = (k\tilde{B}) \cdot C_P$, and thus $\tilde{B} \cdot C_P = \frac{d}{k}$, that is, k divides d.

Assume by contradiction that $k > 1$.

Let F be the preimage of \tilde{B} by the morphism $\pi_C : C \times C \to C^{(2)}$. Then $F \to \tilde{B}$ has degree two and thus we obtain a diagram

$$D \times D \xrightarrow{\pi_D} D^{(2)}$$

Observe that the exterior arrows form a commutative diagram, and hence, also the interior arrows give a commutative diagram. Thus, the morphism $D \to F$ has degree k. Now, the restriction to D of $g \times g$ followed by the projection onto one factor of $C \times C$ is precisely $g : D \to C$ by construction. That is, we obtain the diagram

$$D \xrightarrow{(2:1)} B$$

Hence, the original diagram reduces, contradicting our hypothesis.
Consequently, $k = 1$ and thus we deduce that the curve \tilde{B} has normalization B.

Moreover, looking at diagram (1) we deduce that $D \xrightarrow{(1:1)} F$, that is, the preimage of \tilde{B} by π_C has normalization D, and we will denote it by \tilde{D}. So we have:

$$D \times D \xrightarrow{\pi_D} D^{(2)}$$

$$\xrightarrow{D \xrightarrow{f} B}$$

$$\xrightarrow{\tilde{D} \xrightarrow{g} B^{(2)}}$$

$$\xrightarrow{g \times g}$$

$$\xrightarrow{\tilde{D} \times C \xrightarrow{\pi_C} C^{(2)}}$$

$$\xrightarrow{\ell} C$$

where the dashed arrows show the original diagram. \(\square \)

Conversely, we have also a theorem in the opposite direction, from the existence of curves in $C^{(2)}$ we deduce the existence of diagrams which do not reduce.

Theorem 2.3. Given an irreducible curve \tilde{B} lying in $C^{(2)}$ with degree d, let B be its normalization, and assume that there are no non trivial morphisms $B \rightarrow C$. Then, there exists a smooth irreducible curve D and a diagram

$$D \xrightarrow{(2:1)} B$$

$$\xrightarrow{D \xrightarrow{(d:1)} C}$$

which does not reduce.

Proof. First of all, we observe that \tilde{B} is not the diagonal in $C^{(2)}$ because we are assuming that there are no morphisms from B to C.

Let $\tilde{D} = \pi_C^*(\tilde{B}) \in Div(C \times C)$ and D its normalization. We notice that with our hypothesis \tilde{D} is irreducible. Indeed, otherwise, one of its components would have as normalization the curve B, because we have a $(2 : 1)$ morphism from \tilde{D} to B, and since $\tilde{D} \subset C \times C$ we would obtain a non trivial morphism from B to C contradicting our hypothesis.

Now, we are going to compute the degree of $\tilde{D} \rightarrow C$, given by the projection onto one factor:

$$\tilde{D} \cdot (C \times P + P \times C) = \pi_{C^*}(\pi_C^*(\tilde{B}) \cdot \pi_C^*(C_P)) = \tilde{B} \cdot \pi_{C^*}(C_P) = 2\tilde{B} \cdot C_P = 2d.$$
And therefore, since \tilde{D} is symmetric with respect to the involution $(x, y) \rightarrow (y, x)$ by construction, $\tilde{D} \cdot (C \times P) = d$, and so, the degree of the morphism on C is precisely d. In this way, we have a diagram

$$
\begin{array}{c}
\tilde{D} \xrightarrow{(2:1)} \tilde{B} \\
\downarrow^{(d:1)} \\
C
\end{array}
\quad \text{and taking their normalizations}
\quad \begin{array}{c}
\text{we obtain a diagram of} \\
\text{morphisms of smooth curves}
\end{array}
\quad \begin{array}{c}
D \xrightarrow{(2:1)} B \\
\downarrow^{(d:1)} \\
C
\end{array}
$$

We call $f : D \rightarrow B$ the map coming from $\pi_C|_{\tilde{D}}$ and $g : D \rightarrow C$ the map coming from the projection onto one factor of $C \times C$.

Let α be the degree one morphism induced in B by the immersion of \tilde{B} in $C^{(2)}$. Since we have $D \xrightarrow{(2:1)} B$, as we have seen in the Introduction there exists an immersion of B in $D^{(2)}$ as pairs of points with the same image by this morphism.

Since $D \xrightarrow{(1:1)} \tilde{D} \subset C \times C$ we can consider that a general point in D is a pair (x, y) with $x, y \in C$. Moreover, since $D \rightarrow B$ is induced by $\pi_C|_{\tilde{D}}$, a general fiber of $D \rightarrow B$ will be two points (x, y) and (y, x). Hence, we can write a general point of $B \subset D^{(2)}$ as $(x, y) + (y, x)$.

Now, we consider the restriction to $B \subset D^{(2)}$ of $g^{(2)}$. By construction this morphism is precisely α and therefore the image is the original \tilde{B}. In particular, $g^{(2)}|_{B}$ is generically of degree one.

We are going to see that the diagram does not reduce by contradiction: Assume that there exist curves F and H, and a diagram

$$
\begin{array}{c}
D \xrightarrow{f} B \\
\downarrow^{g} \\
F \xrightarrow{s} H \\
\downarrow^{h} \\
C
\end{array}
\quad \begin{array}{c}
\text{as in Definition 1.1. Then, as we have seen in the Introduction, the fibers of} s \text{ give} \\
\text{a curve isomorphic to} H \text{ inside} F^{(2)}. \text{ Hence, we have}
\end{array}
$$

\begin{align*}
\begin{array}{c}
D^{(2)} \xrightarrow{g^{(2)}} C^{(2)} \\
\downarrow^{h^{(2)}} \\
H \xrightarrow{f^{(2)}} \end{array}
\quad \begin{array}{c}
\text{and}
\end{array}
\begin{array}{c}
\tilde{B} \\
\downarrow^{\alpha} \\
B \xleftarrow{\alpha} D^{(2)} \xrightarrow{g^{(2)}} C^{(2)} \\
\downarrow^{h^{(2)}} \\
H \xrightarrow{f^{(2)}} \end{array}
\end{align*}
By definition, the image of \(B \subset D^{(2)} \) by \(h^{(2)} \) is \(H \subset F^{(2)} \), that is, the embedding of \(H \) in \(F^{(2)} \) given by \(s \), and we know that \(l \circ h = g \) so \(l^{(2)} \circ h^{(2)} = g^{(2)} \), hence

\[
g^{(2)}|_B : B \xrightarrow{h^{(2)} = r} H \xrightarrow{(2)} \tilde{B}
\]

thus \(r \), as well as \(h \), have degree one. Consequently, our diagram does not reduce (see Definition 1.1).

We observe that we could change the hypothesis of the non existence of morphisms from \(B \) to \(C \) by assuming that \(\tilde{B} \) is not the diagonal and that \(\pi^{-1}_C(B) \) is irreducible.

Putting these two theorems together we find the characterization of curves in the symmetric square \(C^{(2)} \) previously stated in Theorem 1.2.

References

[ACGH85] E. Arbarello, M. Cornalba, P.A. Griffiths, and J.D. Harris. *Geometry of Algebraic Curves*. Springer-Verlag, New York, 1985.

[Cha08] K. Chan. A characterization of double covers of curves in terms of the ample cone of second symmetric product. *Journal of Pure and Applied Algebra*, 212(12):13, 2008.

[Cil83] C. Ciliberto. On a proof of Torelli’s theorem. In C. Ciliberto, F. Ghione, and F. Orecchia, editors, *Algebraic Geometry - Open Problems*, volume 997 of *Lecture Notes in Mathematics*, pages 113–123. Springer Berlin Heidelberg, 1983.