tRNA methyltransferase homologue gene TRMT10A mutation in young adult-onset diabetes with intellectual disability, microcephaly and epilepsy

Yew, T. W.; McCreight, L.; Colclough, K.; Ellard, S.; Pearson, E. R.

Published in:
Diabetic Medicine

DOI:
10.1111/dme.13024

Publication date:
2016

Licence:
CC BY

Document Version
Publisher's PDF, also known as Version of record

Link to publication in Discovery Research Portal

Citation for published version (APA):
Yew, T. W., McCreight, L., Colclough, K., Ellard, S., & Pearson, E. R. (2016). tRNA methyltransferase homologue gene TRMT10A mutation in young adult-onset diabetes with intellectual disability, microcephaly and epilepsy. Diabetic Medicine, 33(9), e21-e25. https://doi.org/10.1111/dme.13024

General rights
Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Case Report

tRNA methyltransferase homologue gene TRMT10A mutation in young adult-onset diabetes with intellectual disability, microcephaly and epilepsy

T. W. Yew1,2, L. McCreight1, K. Colclough3, S. Ellard3,4 and E. R. Pearson1

1Division of Cardiovascular and Diabetes Medicine, Medical Research Institute, Ninewells Hospital and Medical School, Dundee, UK, 2Department of Medicine, National University Health System, Singapore, 3Department of Molecular Genetics, Royal Devon & Exeter NHS Foundation Trust and 4Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK

Accepted 28 October 2015

Abstract

Background A syndrome of young-onset diabetes mellitus associated with microcephaly, epilepsy and intellectual disability caused by mutations in the tRNA methyltransferase 10 homologue A (TRMT10A) gene has recently been described.

Case report We report two siblings from the fourth family reported to have diabetes mellitus as a result of a TRMT10A mutation. A homozygous nonsense mutation p.Glu27Ter in TRMT10A was identified using targeted next-generation sequencing and confirmed by PCR/Sanger sequencing. Diabetes was diagnosed while the subjects were in their 20s and was characterized by insulin resistance. Epilepsy and intellectual disability were features in common. Mild microcephaly was present at birth but their final head circumferences were normal.

Conclusion Our report provides independent confirmation of the role of TRMT10A mutations in this syndrome and expands its phenotypic description. TRMT10A sequencing should be considered in children or adults with young-onset diabetes who have a history of intellectual disability, microcephaly and epilepsy. This report also shows the advantages of using a targeted panel to identify previously unsuspected monogenic diabetes among young-onset non-insulin-dependent diabetes in the absence of obesity and autoimmunity.

Diabet. Med. 33, e21–e25 (2016)

Introduction

Recently, a novel syndrome of young-onset diabetes mellitus or abnormal glucose homeostasis associated with microcephaly, epilepsy and intellectual disability attributable to homozygous mutations in the tRNA methyltransferase 10 homologue A (TRMT10A) gene was reported in two families [1,2]. In another report, an individual with TRMT10A deletion with failure to thrive, delayed puberty, intellectual disability and diabetes was described [3].

In the present paper, we report two siblings with young adult-onset diabetes, associated with intellectual disability, microcephaly in childhood and epilepsy, as a result of a third homozygous mutation in the TRMT10A gene.

Case report

The proband was the first child born to non-consanguineous white parents (Fig. 1). The pregnancy was uneventful and the child was born at term without postnatal problems. The child’s birth weight was 2700 g (-1.6 SD), length was 47.2 cm (-1.7 SD) and she had mild microcephaly [head circumference 32.5 cm (-2 SD)]. She had mild intellectual disability, first noticed when she attended primary school, but other developmental milestones were normal. She was diagnosed with grand-mal epilepsy at 5 years old. MRI of the brain was normal. Her head circumference was 49 cm (-2 SD) at 6 years 9 months old but improved to 50.3 cm (-1.3 SD) at 9 years 5 months old. Her final head circumference was normal at 53.1 cm (-1.3 SD). Growth in terms of height and weight was normal. Diabetes was diagnosed at 24 years old [plasma glucose 25.1 mmol/l, HbA1c 142 mmol/mol (15.1%), BMI 24.2 kg/m2 (weight 62.8 kg, height 1.61 m)]. She had a buffalo hump but features of familial partial lipodystrophy and Cushing’s syndrome were absent. She did not have ketoacidosis and was negative for antigu glutamic acid antibodies.

Correspondence to: Ewan R. Pearson. E-mail: e.z.pearson@dundee.ac.uk

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2015 The Authors.
Diabetic Medicine published by John Wiley & Sons Ltd on behalf of Diabetes UK.
acid decarboxylase and anti-islet antigen-2 antibodies. She was treated with insulin (1.0–1.2 units/kg/day) and metformin. Her HbA1c ranged from 50 to 85 mmol/mol (6.7 to 9.9%). Fasting C-peptide, measured 8 years after diagnosis, was detectable at 540 pmol/l. She had severe preproliferative retinopathy at 4 months after diagnosis, suggestive of long-standing hyperglycaemia, but has no nephropathy or neuropathy to date.

The proband’s brother was born at 43 weeks gestation. Microcephaly was described at birth but the head circumference was not recorded. His birth weight was 3274 g (-0.7 SD). He started walking at 3 years old and could first speak in phrases at 6 years old. He attended special school because of intellectual disability. Epilepsy was diagnosed at 4 years old and he had delayed puberty. His final head circumference was normal at 54.5 cm (-0.4SD). Diabetes was diagnosed when screened at 28 years using a 75-g oral glucose tolerance test (OGTT; plasma glucose 8.8 mmol/l at 0 min, 19.8 mmol/l at 120 min). His HbA1c level was 60 mmol/mol (7.6%) and his BMI was 28.4 kg/m² (weight 89.0 kg, height 1.77 m). Physical examination was normal. Fasting C-peptide level was 1000 pmol/l. The HbA1c level improved to 43 mmol/mol (6.1%) after 3 months of metformin therapy.

Neither the proband nor her brother had spontaneous hypoglycaemia. Both of them had mildly elevated LDL cholesterol and normal liver function tests. Skeletal surveys showed attenuated frontal skull vaults in both of them, in keeping with the history of microcephaly, but epiphyseal dysplasia was absent. Both their parents had normal heights, head circumferences and BMI, no epilepsy, intellectual disability, diabetes or prediabetes (normal OGTT results). Their maternal grandparents, now deceased, had Type 2 diabetes diagnosed after their 60s; their genotypes are not known.

All subjects provided written informed consent for blood sample collection and studies, as well as for the writing and publication of this report. The proband had participated in the UNITED (Using Pharmacogenetics to Improve Treatment in Early-Onset Diabetes) study when analysis of her HNF1A and HNF4A genes did not identify any mutation. Testing for mutations in all of the known or putative monogenic diabetes genes as part of the study was undertaken using targeted next-generation sequencing as previously described [4]. Sequencing was performed with a HiSeq2000 system (Illumina, San Diego, CA, USA; 48 samples per lane) and 100 bp paired end reads. Mutation confirmation was performed by PCR/Sanger sequencing. Subsequently, samples of the proband’s brother and parents were tested for TRMT10A mutation using PCR/Sanger sequencing. Plasma glucose and insulin was measured in the proband’s brother and parents at 0, 30, 60, 90 and 120 min in the 75-g OGTT. As a comparator, surrogate indices for insulin resistance and β-cell function of the brother were compared with the means of four age- and BMI-matched healthy control subjects.

Results

Metabolic studies

The OGTT results of the proband’s brother are shown in Fig. 2. He was newly diagnosed with diabetes. The findings were suggestive of insulin resistance (Matsuda index 1.46;
Microcephaly was a feature in common to all the reported cases, but the degree of severity appeared to vary. Microcephaly is defined as an occipito-frontal head circumference of >2 SD or >3 SD below the mean for age and sex [9,10]. Similar to those reported by Gillis et al. [2], our patients just met the criteria for mild microcephaly at birth; however, their head circumferences normalized as they grew and achieved normal final head circumferences. This was in contrast to the more marked microcephaly, which persisted to adulthood in the individuals reported by Igoillo-Esteve et al. [1] and Zung et al. [3]. All the individuals had intellectual disability, and epilepsy was common except in the individual reported by Zung et al. Contrary to the previous reports, our patients did not have short stature, although the proband did have a buffalo hump, as described in one patient previously [1].

A homozygous nonsense mutation, p.Glu27Ter, in the TRMT10A gene was identified in our patients. Data from the Exome Aggregation Consortium (ExAC) browser showed that the frequency of heterozygous TRMT10A nonsense mutations is ~1 in 4000, and the p.Glu27Ter mutation found in our family is the most common [11]. The family is unaware of any close common ancestor. In humans, TRMT10A is the orthologue most closely related to yeast TRM10, a protein that has tRNA m1G9 methyltransferase activity [12]. This nonsense mutation in TRMT10A at this location is likely to result in nonsense-mediated decay and reduced protein expression [13]. Reduced TRMT10A
Report [reference]	Individual designation	Parental origin	Consanguinity between parents	TRMT10A mutation	Diabetes mellitus	Age when diabetes diagnosed (years)	Diabetes treatment	Endogenous insulin secretion	Microcephaly at birth	Low birth weight	Short stature	Epilepsy	Intellectual disability	Spontaneous hypoglycaemia	Brain imaging BMI (kg/m²)	Delayed puberty	Other clinical features	
Igoillo-Esteve et al. [1]	Individual 1	Moroccan	Yes	c.379G>A p.Arg127Ter	Yes	22	Insulin	Detectable C-peptide	Unknown	Yes, severe	Yes	No	NR	NR	Normal	NR	Short neck, wide nose, low hairline, buffalo hump, retraction of right 5\(^{th}\) toe, scoliosis, joint laxity	
Gillis et al. [2]	Individual 2	Moroccan	Yes	c.379G>A p.Arg127Ter	Yes	19	Insulin	Detectable C-peptide	NR	No, severe	Yes	Yes	Yes	NR	Normal	NR	No	
Zung et al. [3]	Individual 3	Moroccan	Yes	c.616G>A p.Gly206Arg	Yes	14	Insulin	Detectable C-peptide	Yes, mild	Yes, mild	Yes, mild	Yes, mild	No, severe	NR	26.9	NR	No	
Present report	Individual 4	Jewish	No	c.379G>A p.Arg127Ter	No	9	Diet	–	Yes, mild	Yes, mild	Yes, mild	Yes, mild	NR	21.7	Yes	NR	No	
	Individual 5	Jewish	No	c.616G>A p.Gly206Arg	No	–	–	Present but insufficient relative to insulin sensitivity	Yes, mild	Yes, mild	Yes, mild	Yes, mild	No, severe	NR	20.6	Yes	NR	
	Individual 6	Jewish	No	c.616G>A p.Gly206Arg	No	–	–	Present but insufficient relative to insulin sensitivity	Yes, mild	Yes, mild	Yes, mild	Yes, mild	No, severe	NR	24	Yes	NR	
	Individual 7	Israeli Muslim	Yes	4q23 deletion	Yes	15	Insulin	–	–	–	–	–	Yes, mild	NR	28.4	Yes	NR	No
	Individual 8	Caucasian	No	c.79G>T p.Glu27Ter	Yes	24	Insulin, metformin	Detectable C-peptide	–	–	–	–	NR	NR	Unknown	No	Yes	
	Individual 9	Caucasian	No	c.79G>T p.Glu27Ter	Yes	28	Metformin	–	–	–	–	–	NR	NR	24.2	Yes	No	

NR, not reported. Mutations described in accordance with Human Genome Variation Society (HGVS) guidelines with the A of the ATG initiation codon numbered nucleotide c.1, using reference sequence NM_001134665.1 for TRMT10A.
mRNA expression and TRMT10A protein deficiency was previously shown to be the result of a p.Arg127Ter nonsense mutation [1]. TRMT10A protein is ubiquitously present but more abundant in human brain and pancreatic islets [1]. This was consistent with the selected involvement of brain (microcephaly, intellectual disability and epilepsy) and pancreatic islets (diabetes) in our patients. The robust insulin secretion in our case supported the in vitro findings that TRMT10A silencing did not appear to affect β-cell function but may induce β-cell apoptosis [1]. The mechanism by which the mutation is associated with insulin resistance remains to be investigated.

In summary, the present case report provides independent confirmation of the role of TRMT10A mutations in this newly described syndromic form of monogenic diabetes and expands its phenotypic description. It also highlights the newly described syndromic form of monogenic diabetes and confirmation of the role of \(\text{TRMT10A} \) mutations in young-onset diabetes and primary microcephaly in humans. The authors thank the family for their participation. We thank Prof. Andrew Hattersley from University of Exeter Medical School for critically reviewing the draft manuscript.

References

1. Igoillo-Esteve M, Genin A, Lambert N, Desir J, Pirson I, Abdulkarim B et al. tRNA methyltransferase homolog gene TRMT10A mutation in young onset diabetes and primary microcephaly in humans. PLoS Genet 2013; 9: e1003888.
2. Gillis D, Krishnamohan A, Yaacov B, Shaag A, Jackman JE, Elpeleg O. TRMT10A dysfunction is associated with abnormalities in glucose homeostasis, short stature and microcephaly. J Med Genet 2014; 51: 581–586.
3. Zung A, Kori M, Burundukov E, Ben-Yosef T, Tatooor Y, Granot E. Homozygous deletion of TRMT10A as part of a contiguous gene deletion in a syndrome of failure to thrive, delayed puberty, intellectual disability and diabetes mellitus. Am J Med Genet A 2015; 167A: 1–7.
4. Eirard S, Lango Allen H, De Franco E, Flanagan SE, Hysenaj G, Colclough K et al. Improved genetic testing for monogenic diabetes using targeted next-generation sequencing. Diabetologia 2013; 56: 1958–1963.
5. Matsuda M, DeFronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care 1999; 22: 1462–1470.
6. Kernan WN, Inzucchi SE, Viscoli CM, Brass LM, Bravata DM, Shulman GI et al. Pioglitazone improves insulin sensitivity among nondiabetic patients with a recent transient ischemic attack or ischemic stroke. Stroke 2003; 34: 1431–1436.
7. Levy JC, Matthews DR, Hermans MP. Correct homeostasis model assessment (HOMA) evaluation uses the computer program. Diabetes Care 1998; 21: 2191–2192.
8. Phillips DI, Clark PM, Hales CN, Osmond C. Understanding oral glucose tolerance: comparison of glucose or insulin measurements during the oral glucose tolerance test with specific measurements of insulin resistance and insulin secretion. Diabet Med 1994; 11: 286–292.
9. Opitz JM, Holt MC. Microcephaly: general considerations and aids to nosology. J Craniofac Genet Dev Biol 1990; 10: 175–204.
10. Woods CG, Parker A. Investigating microcephaly. Arch Dis Child 2013; 98: 707–713.
11. Exome Aggregation Consortium (ExAC). Cambridge, MA. Available at http://exac.broadinstitute.org Last accessed 7 April 2105.
12. Jackman JE, Montange RK, Malik HS, Phizicky EM. Identification of the yeast gene encoding the tRNA m1G methyltransferase responsible for modification at position 9. RNA 2003; 9: 574–583.
13. Chang YF, Imam JS, Wilkinson MF. The nonsense-mediated decay RNA surveillance pathway. Annu Rev Biochem 2007; 76: 51–74.