저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

- 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

- 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건을 명확하게 나타내야 합니다.
- 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer
Relation between F-18 FDG Uptake of PET/CT and \textit{BRAFV600E} Mutation in Papillary Thyroid Cancer

by

Seokho Yoon

Major in Medicine
Department of Medical Sciences
The Graduate School, Ajou University
Relation between F-18 FDG Uptake of PET/CT and \textit{BRAF}V600E Mutation in Papillary Thyroid Cancer

by
Seokho Yoon

A Dissertation Submitted to The Graduate School of Ajou University in Partial Fulfillment of The Requirements for The Degree of Ph.D. in Medicine

Supervised by
Joon-Kee Yoon, M.D., Ph.D.

Major in Medicine
Department of Medical Sciences
The Graduate School, Ajou University
August, 2016
This certifies that the dissertation of Seokho Yoon is approved.

SUPERVISORY COMMITTEE

__________________________
Jung Mi Park

__________________________
Joon-Kee Yoon

__________________________
Jang-Hee Kim

__________________________
Young-Sil An

__________________________
Su Jin Lee

The Graduate School, Ajou University
June 21st, 2016
- Abstract -

**Relation between F-18 FDG Uptake of PET/CT and BRAFV600E Mutation in Papillary Thyroid Cancer**

*Purpose:* BRAFV600E mutation and F-18 fluorodeoxyglucose (FDG) uptake are potential prognostic factors of papillary thyroid cancer (PTC). This study was performed to investigate the relationship between the BRAFV600E mutation and F-18 FDG uptake in PTC.

*Materials and Methods:* We retrospectively included 169 PTC patients who underwent F-18 FDG positron emission tomography/computed tomography (PET/CT) before thyroidectomy from May 2009 to August 2012. Subjects were classified into overt PTC (> 1 cm, n = 76) and papillary thyroid microcarcinoma (PTMC, n = 93) groups. Univariate and multivariate analyses were performed to assess the relationship between maximum standardized uptake value (SUV$_\text{max}$) of the primary tumor and clinicopathologic variables.

*Results:* The BRAFV600E mutation was detected in 82.2% (139/169). In all subjects, the BRAFV600E mutation and tumor size were independently related to SUV$_\text{max}$ by multivariate analysis ($P = 0.048$ and $P < 0.001$, respectively). SUV$_\text{max}$ was significantly higher in tumors with the BRAFV600E mutation than in those with wild-type BRAF (9.4 ± 10.9 vs. 5.0 ± 4.1, $P < 0.001$). Similarly, in overt PTC group, the BRAFV600E mutation and tumor size were independently correlated with SUV$_\text{max}$ ($P = 0.032$ and $P = 0.001$, respectively). By contrast, in PTMC group, only tumor size was significantly associated with SUV$_\text{max}$ ($P = 0.010$).

*Conclusions:* The presence of the BRAFV600E mutation is independently associated with high F-18 FDG uptake on preoperative PET/CT in patients with overt PTC, but this relationship was not evident in PTMC. This study provides a better understanding of the relationship between F-18 FDG uptake and BRAFV600E mutation in patients with PTC.

*Key words:* papillary thyroid cancer; BRAFV600E mutation; F-18 FDG; PET/CT; SUVmax
# TABLE OF CONTENTS

ABSTRACT ..................................................................................................................... i

TABLE OF CONTENTS ................................................................................................ ii

LIST OF FIGURES ......................................................................................................... iii

LIST OF TABLES ............................................................................................................ iv

I. INTRODUCTION ....................................................................................................... 1

II. MATERIALS AND METHODS .................................................................................. 3
   A. Patients .................................................................................................................... 3
   B. F-18 FDG PET/CT and Image Analysis ................................................................. 3
   C. BRAFV600E Mutation Analysis ............................................................................ 4
   D. Statistical Analysis ............................................................................................... 5

III. RESULTS ................................................................................................................. 6
   A. Patients’ Characteristics ...................................................................................... 6
   B. Relationships between $SUV_{\text{max}}$ and Clinicopathologic Variables in All Patients with PTC ................................................................. 6
   C. Relationships between $SUV_{\text{max}}$ and Clinicopathologic Variables in All Patients with Overt PTC ............................................................................. 7
   D. Relationships between $SUV_{\text{max}}$ and Clinicopathologic Variables in All Patients with PTMC ........................................................................... 8

IV. DISCUSSION ........................................................................................................... 13

V. CONCLUSION ......................................................................................................... 17

REFERENCES .............................................................................................................. 18

국문요약 .................................................................................................................... 23
List of Figures

Fig. 1. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) to analyze the presence of BRAFV600E mutation in papillary thyroid cancer ............................ 5

Fig. 2. Representative cases for the relationship between BRAFV600E mutation and F-18 fluorodeoxyglucose (FDG) uptake on positron emission tomography/computed tomography (PET/CT) ........................................................................................................................................................................ 7
List of Tables

TABLE 1. Clinicopathologic Characteristics of the Patients .............................................. 9

TABLE 2. Relationships between SUV$_{\text{max}}$ and Clinicopathologic Variables in All Patients with Papillary Thyroid Carcinoma ........................................................................................................ 10

TABLE 2. Relationships between SUV$_{\text{max}}$ and Clinicopathologic Variables in All Patients with Overt Papillary Thyroid Carcinoma ........................................................................................................ 11

TABLE 2. Relationships between SUV$_{\text{max}}$ and Clinicopathologic Variables in All Patients with Papillary Thyroid Microcarcinoma ........................................................................................................ 12
I. Introduction

Papillary thyroid cancer (PTC) is the most common histological type of thyroid cancer, accounting for more than 80% of all thyroid malignancies. By virtue of surgical removal of the tumor and radioiodine ablation therapy, well-differentiated PTC has a favorable prognosis, with an overall 5-year survival rate of 95-97% (Xing, 2007; Howlader et al., 2013). However, PTCs with aggressive behavior develop in some patients, often becoming the cause of mortality through tumor recurrence and refractoriness to radioiodine therapy (Sturgeon and Angelos, 2006). For this reason, risk stratification and prognostic evaluation have been the focus of much effort by researchers (Ortiz et al., 2001; Siironen et al., 2005; Tanaka et al., 2005).

Positron emission tomography/computed tomography (PET/CT) with F-18 fluorodeoxyglucose (FDG) is a non-invasive diagnostic tool useful for the evaluation of a variety of malignant tumors (Hustinx et al., 2002; Endo et al., 2006). F-18 FDG PET has been used to locate recurrent thyroid cancers, particularly in cases of elevated serum thyroglobulin concentrations and negative I-131 whole body scintigraphy, because the coincidence of losing radioiodine avidity and gaining the ability to concentrate glucose (the “flip-flop” phenomenon) is observed frequently in differentiated thyroid cancer patients (Feine et al., 1996; Mian et al., 2008). In addition, F-18 FDG PET provides prognostic information. The size of the primary tumor, perithyroidal invasion, lymphovascular invasion and cervical lymph node metastasis are associated with F-18 FDG uptake (Yun et al., 2010; Choi et al., 2011; Kaida et al., 2011; Kim et al., 2012), and larger tumor size is more likely to be associated with higher F-18 FDG uptake (Kim et al., 2012).

The BRAF mutations have been found in various cancers including melanoma, colon cancer and thyroid cancer (Davies et al., 2002; Garnett and Marais, 2004). Among the BRAF mutations, the BRAFV600E mutation, a T1799A point mutation in the B-type Raf kinase gene, is the most common genetic alteration in PTC (Xing, 2007). Similar to F-18 FDG uptake, the BRAFV600E mutation has received attention as a potential prognostic factor in PTC (Xing et al., 2005; Riesco-Eizaguirre et al., 2006; Xing et al., 2013).

In recent studies, the possible relationship between the BRAFV600E mutation and F-18 FDG uptake has been demonstrated. The BRAFV600E mutation was associated with increased
GLUT-1 expression in both primary and metastatic PTCs (Mian et al., 2008). **BRAF** was the most frequently mutated gene in F-18 FDG positive recurrent/metastatic thyroid cancers (Ricarte-Filho et al., 2009). Despite these reports, the relationship between F-18 FDG uptake and the **BRAF**V600E mutation in PTC is still poorly recognized. Therefore, in the present study, we retrospectively evaluated the relationship between the **BRAF**V600E mutation and F-18 FDG uptake of the primary tumor on preoperative PET/CT by analyzing potential clinicopathologic factors affecting F-18 FDG uptake in patients with PTC. Our hypothesis was that PTCs with **BRAF**V600E mutation show more increased F-18 FDG uptake than those with wild-type **BRAF**, and that even small-sized PTCs with the mutation are associated with higher F-18 FDG uptake.
II. Materials and methods

A. Patients

Study subjects were recruited through a medical record review from May 2009 to August 2012. During this period, a total of 177 consecutive patients underwent F-18 FDG PET/CT before total thyroidectomy. Of these patients, 1 patient with a final diagnosis of hyalinizing trabecular tumor and 7 patients with the interval from PET/CT to thyroidectomy longer than 7 month were excluded. Ultimately, 169 patients (male:female = 37:132) were included in this retrospective study. Most patients (n = 150) were referred for metastatic workup of thyroid cancers diagnosed by fine needle aspiration, ultrasonography or CT. The rest of the cases (n=19) were incidentalomas detected on PET/CT during the follow-up of other malignancies.

Information on the characteristics of the patients was collected retrospectively by medical record review. Tumor, Node, Metastasis (TNM) stage was determined using the 7th edition of the American Joint Committee on Cancer’s Cancer Staging Manual. Tall cell and diffuse sclerosing variants were classified as aggressive histologic types (American Thyroid Association Guidelines Taskforce on Thyroid et al., 2009). A thyroglobulin concentration of 40 ng/mL was used as the cutoff value based on the normal range of a commercial radioimmunoassay kit (Radim, Milan, Italy). Patients were divided into 2 groups according to tumor size: overt PTC (> 1 cm) and papillary thyroid microcarcinoma (≤ 1 cm, PTMC). Clinicopathologic factors affecting F-18 FDG uptake by primary tumors were analyzed with respect to age, sex, tumor size, histologic type, N-M stage, accompanying thyroid disorders affecting the ipsilateral thyroid and preoperative thyroglobulin concentration. Analysis was first performed in all patients with PTC, and then in those with overt PTC or PTMC.

All procedures were in accordance with the ethical standards of our institutional review board on human experimentation (approval no. AJIRB-MED-MDB-12-316). The requirement to obtain informed consent from the patients was waived by our institutional review board.

B. F-18 FDG PET/CT and Image Analysis

Patients were fasted for 6 hours before scanning. The blood glucose concentration was measured to ensure a level below 150 mg/dL. After an intravenous injection of 370 MBq of F-
18 FDG, all patients were instructed to rest comfortably for 60 minutes. Emission PET data were acquired from the base of the skull to the upper thigh in 3-D mode using a Discovery ST scanner (GE Healthcare, Milwaukee, WI / USA), and then they were reconstructed with noncontrast CT (tube rotation time 1 second/revolution, 120 kV, 60 mA, 7.5 mm/rotation, acquisition time 60.9 seconds, scan length 867 mm) by iterative reconstruction (ordered-subsets expectation maximization with 2 iterations and 30 subsets, field of view = 600 mm, slice thickness = 3.27 mm).

For the semi-quantitative analysis, polygonal regions of interest (ROIs) were first drawn on CT images and then copied to attenuation-corrected PET images using the Advantage Workstation (version 4.4, GE Healthcare, Milwaukee, WI / USA). For tumors with a hypermetabolic lesion, ROIs were placed at every transaxial plane of CT images that contained the hypermetabolic lesion. Meanwhile, for those without visually discernible F-18 FDG uptake, ROIs were drawn to cover the whole tumor. In cases of multiple malignant nodules, a ROI was drawn on the largest one. Maximum standardized uptake value ($SUV_{max}$) was calculated with the injected dose and patient’s body weight.

**C. BRAFV600E Mutation Analysis**

DNA was extracted from paraffin-embedded PTC tissue obtained during thyroidectomy. Tumor areas were transferred to an Eppendorf tube and digested with proteinase K (Promega, Madison, WI / USA) at 56°C for 60 minutes. DNA was isolated using a protein precipitation solution (Qiagen, Hilden / Germany) and isopropanol. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was performed using a forward (5'-ATAGGTGATTTTGGTCTAGCTCCGG-3') and reverse primer (5'-GATTTTTGTGAATACTGGGAACT-3'). After amplification and purification, the PCR products were electrophoresed on a 3% TBE-Agarose SFR gel (Amresco, Solon, OH / USA). The gels were photographed under UV trans-illumination using the Gel Doc XR+ System (Bio-Rad, Hercules, CA / USA). 1 band of 189 base pair or two bands of 189/210 base pair was interpreted as the mutation, and 1 band of 210 base pair as the wild-type (Fig. 1). Results were reported within a few days of surgery.
Fig. 1. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) to analyze the presence of BRAFV600E mutation in papillary thyroid cancer (PTC). Case 1-3 shows 2 bands of 189 and 210 base pair, indicating mutated BRAF. Case 4 with 1 band of 210 base pair is wild-type (M: Marker [100-2000 base pair]; 1-4 :DNA extracted from PTC; NC: negative control; PC: positive control).

D. Statistical analysis

All values are presented as the means ± SD. Student’s t test, the Mann–Whitney test, the Kruskal–Wallis test or one-way ANOVA was used for univariate analysis depending on the types of variables. Logistic regression analysis was used for multivariate analysis of factors associated with SUV\text{max}. All statistical analyses were performed using SPSS software (version 22.0; SPSS, Inc., Chicago, IL / USA). A P value of less than 0.05 was considered statistically significant.
III. Results

A. Patients’ Characteristics

The BRAFV600E mutation was present in 82.2% of all patients (Table 1). The most common histologic variants were classical and follicular (164/169, 97.0%). The histopathologic examination of surgical specimens detected accompanying thyroid disorders which may increase F-18 FDG uptake in 84 patients (49.7%). All younger patients (≤ 45 years) had TNM stage I disease, whereas the most frequent stage in older patients (> 45 years) was stage III. Average tumor size and SUV_max were 1.4 cm and 8.8 g/mL, respectively. Preoperative thyroglobulin was measured in 159 patients and its mean value was 87.9 ng/mL.

B. Relationships between SUV_max and Clinicopathologic Variables in All Patients with PTC

The results of univariate and multivariate analyses of clinicopathologic variables that potentially affect F-18 FDG uptake in the whole PTC population are shown in Table 2. The BRAFV600E mutation, tumor size, N stage and preoperative thyroglobulin concentration were significantly associated with SUV_max. SUV_max was significantly higher in the mutated group than in the wild-type group (9.4 ± 10.9 vs. 5.0 ± 4.1, P < 0.001, Fig. 2). A pairwise comparison revealed that SUV_max was significantly higher in patients with larger tumors (> 2 cm, 20.5 ± 15.2, n = 32) than in those with smaller tumors (< 1 cm, 4.5 ± 4.2, P < 0.001; 1-2 cm, 8.6 ± 7.9, P < 0.001). Greater extent of lymph node metastasis was also related to a higher SUV_max (P = 0.026). Patients with increased preoperative thyroglobulin concentrations had higher SUV_max values than those with normal thyroglobulin concentrations (P < 0.001). On the other hand, age, sex, histological variant, accompanying thyroid disorder and M stage were not significantly associated with SUV_max.

A multivariate analysis with all variables included revealed that the BRAFV600E mutation (P = 0.048) and tumor size (P < 0.001) were independent variables affecting F-18 FDG uptake on preoperative PET/CT in patients with PTC.
Fig. 2. Representative cases for the relationship between BRAFV600E mutation and F-18 fluorodeoxyglucose (FDG) uptake on positron emission tomography/computed tomography (PET/CT). (A) 68-year-old female, SUV$_{\text{max}}$ = 20.8, BRAF (+), classical type, T3N1aM0, tumor size = 1.7 cm, thyroglobulin = 90.6 ng/mL, no associated thyroid disease. (B) 60-year-old female, SUV$_{\text{max}}$ = 2.2, BRAF(-), classical type, T1bN1aM0, tumor size = 1.7 cm, thyroglobulin = 1.1 ng/mL, thyroiditis. Arrows: thyroid nodules. SUV$_{\text{max}}$ = maximum standardized uptake value

C. Relationships between SUV$_{\text{max}}$ and Clinicopathologic Variables in Patients with Overt PTC

Similar to the whole PTC population, the BRAFV600E mutation was significantly associated with F-18 FDG uptake in overt PTC (Table 3). SUV$_{\text{max}}$ was significantly higher in the mutated group than in the wild-type group (15.0 ± 13.6 vs. 6.8 ± 5.3, $P = 0.040$). There were also significant differences in SUV$_{\text{max}}$ depending on the tumor size ($p < 0.001$) and preoperative thyroglobulin concentration ($P = 0.039$) in this subpopulation. Age, sex, histological variant, accompanying thyroid disorder, N stage and M stage were not associated with SUV$_{\text{max}}$.

Multivariate analysis revealed that the BRAFV600E mutation ($P = 0.032$) and tumor size ($P$
= 0.001) were independent variables affecting F-18 FDG uptake on preoperative PET/CT in patients with overt PTC.

**D. Relationships between SUV\textsubscript{max} and Clinicopathologic variables in Patients with PTMC**

To analyze the relationship between clinicopathologic variables and SUV\textsubscript{max} in PTMCs, we further categorized by tumor size: ≤ 0.5 and > 0.5 cm. Unlike for the whole PTC and overt PTC populations, the \textit{BRAF}V600E mutation was not significantly associated with SUV\textsubscript{max} (4.7 ± 4.5 for the mutated group and 3.7 ± 2.5 for the wild-type group, \(P = 0.784\), Table 4). Only tumor size was significantly related to SUV\textsubscript{max} in both univariate (\(P = 0.001\)) and multivariate analyses (\(P = 0.010\)). SUV\textsubscript{max} was higher for PTMCs with a diameter of 5-10 mm than for those with a diameter of 0-5 mm (5.5 ± 4.7 for PTMCs with a diameter of 5-10 mm and 2.5 ± 1.2 for PTMCs with a diameter of 0-5 mm). The other variables, including N stage and preoperative thyroglobulin concentration, were not associated with SUV\textsubscript{max}. 

- 8 -
TABLE 1. Clinicopathologic Characteristics of the Patients

| Variables                                      | Variables                        |
|-----------------------------------------------|----------------------------------|
| Number of patients                            | 169                              |
| Age, yr                                       | 52 ± 12 (28-81)                  |
| Sex, M/F                                      | 37/132                           |
| *BRAF*V600E mutation, mutated/wild            | 139/30                           |
| Interval from PET/CT to thyroidectomy, d      | 42 ± 40 (1-203)                  |
| Histologic variants, n                        |                                  |
| Classical                                     | 150                              |
| Follicular                                    | 14                               |
| Tall cell                                     | 2                                |
| Oncocytic                                     | 2                                |
| Diffuse sclerosing                            | 1                                |
| Accompanying thyroid disorders, n             |                                  |
| Nodular goiter                                | 51                               |
| Thyroiditis                                   | 22                               |
| Adenomatous hyperplasia                       | 3                                |
| Nodular goiter with thyroiditis               | 7                                |
| Adenomatous hyperplasia with thyroiditis      | 1                                |
| TNM stage, n                                  |                                  |
| Age < 45 yr                                   | 51                               |
| Age ≥ 45 yr                                   |                                  |
| I                                             | 25                               |
| II                                            | 1                                |
| III                                           | 64                               |
| IVA                                           | 25                               |
| IVC                                           | 3                                |
| Tumor size, cm                                | 1.4 ± 1.2 (0.1-8.6)              |
| Preoperative thyroglobulin, ng/mL             | 87.9 ± 631.1 (0.1-7900.0)*       |
| *SUV*$_{max}$, g/mL                           | 8.6 ± 10.2 (1.2-46.5)            |

Data are presented as mean ± SD (range) or number of patients.

PET/CT = positron emission tomography/computed tomography; *SUV*$_{max}$ = maximum standardized uptake value.

*$_{n}$ = 159.
### TABLE 2. Relationships between SUV\(_{\text{max}}\) and Clinicopathologic Variables in All Patients with Papillary Thyroid Carcinoma

| Variables                          | n   | SUV\(_{\text{max}}\)  | Univariate \(P\) value | Multivariate \(P\) value |
|-----------------------------------|-----|------------------------|-------------------------|--------------------------|
| **Age, yr**                       |     |                        |                         |                          |
| ≤ 45                              | 51  | 9.3 ± 11.6             | 0.569                   | 0.630                    |
| > 45                              | 118 | 8.3 ± 9.6              |                         |                          |
| **Sex**                           |     |                        |                         |                          |
| Male                              | 37  | 10.9 ± 13.0            | 0.211                   | 0.568                    |
| Female                            | 132 | 8.0 ± 9.2              |                         |                          |
| **BRAF V600E mutation**           |     |                        |                         |                          |
| Mutated                           | 139 | 9.4 ± 10.9             | < 0.001                 | 0.048                    |
| Wild-type                         | 30  | 5.0 ± 4.1              |                         |                          |
| **Histology**                     |     |                        |                         |                          |
| Non-aggressive                    | 166 | 8.4 ± 9.8              | 0.229                   | 0.054                    |
| Aggressive                        | 3   | 22.1 ± 22.0            |                         |                          |
| **Accompanying thyroid disease**  |     |                        |                         |                          |
| Present                           | 84  | 7.3 ± 9.0              | 0.085                   | 0.282                    |
| Absent                            | 85  | 10.0 ± 11.2            |                         |                          |
| **Tumor size, cm**                |     |                        |                         |                          |
| ≤ 1                               | 93  | 4.5 ± 4.2              |                         |                          |
| 1-2                               | 44  | 8.6 ± 7.9              | < 0.001                 | < 0.001                  |
| 2-4                               | 29  | 20.3 ± 15.0            |                         |                          |
| > 4                               | 3   | 22.4 ± 20.9            |                         |                          |
| **N stage**                       |     |                        |                         |                          |
| 0                                 | 82  | 6.5 ± 8.0              | 0.026                   | 0.929                    |
| 1a                                | 44  | 9.0 ± 9.1              |                         |                          |
| 1b                                | 43  | 12.3 ± 13.6            |                         |                          |
| **M stage**                       |     |                        |                         |                          |
| 0                                 | 166 | 8.4 ± 9.9              | 0.120                   | 0.200                    |
| 1                                 | 3   | 20.7 ± 22.2            |                         |                          |
| **Preoperative thyroglobulin, ng/mL** |  |                        |                         |                          |
| ≤ 40                              | 130 | 7.2 ± 8.4              | < 0.001                 | 0.366                    |
| > 40                              | 29  | 16.2 ± 14.8            |                         |                          |

SUV\(_{\text{max}}\) = maximum standardized uptake value.
| Variables                                     | n  | \( \text{SUV}_{\text{max}} \)     | Univariate P value | Multivariate P value |
|---------------------------------------------|----|----------------------------------|--------------------|----------------------|
| **Age, yr**                                 |    |                                  |                    |                      |
| \( \leq 45 \)                               | 21 | 16.4 ± 14.7                      | 0.387              | 0.724                |
| \( > 45 \)                                  | 55 | 12.5 ± 12.1                      |                    |                      |
| **Sex**                                     |    |                                  |                    |                      |
| Male                                        | 18 | 17.2 ± 15.6                      | 0.282              | 0.914                |
| Female                                      | 58 | 12.5 ± 11.9                      |                    |                      |
| **BRAFV600E mutation**                      |    |                                  |                    |                      |
| Mutated                                     | 63 | 15.0 ± 13.6                      | 0.040              | 0.032                |
| Wild-type                                   | 13 | 6.8 ± 5.3                        |                    |                      |
| **Histology**                               |    |                                  |                    |                      |
| Non-aggressive                              | 73 | 13.3 ± 12.5                      | 0.542              | 0.148                |
| Aggressive                                  | 3  | 22.1 ± 22.0                      |                    |                      |
| **Accompanying thyroid disease**             |    |                                  |                    |                      |
| Present                                     | 33 | 11.5 ± 12.6                      | 0.205              | 0.278                |
| Absent                                      | 43 | 15.3 ± 13.0                      |                    |                      |
| **Tumor size, cm**                          |    |                                  |                    |                      |
| 1-2                                         | 44 | 8.6 ± 7.9                        |                    |                      |
| 2-4                                         | 29 | 20.3 ± 15.0                      | \(< 0.001\)        | 0.001                |
| \( > 4 \)                                   | 3  | 22.4 ± 20.9                      |                    |                      |
| **N stage**                                 |    |                                  |                    |                      |
| 0                                           | 24 | 11.7 ± 11.9                      |                    |                      |
| 1a                                          | 21 | 13.3 ± 11.1                      | 0.662              | 0.841                |
| 1b                                          | 1  | 15.3 ± 14.8                      |                    |                      |
| **M stage**                                 |    |                                  |                    |                      |
| 0                                           | 73 | 13.3 ± 12.5                      | 0.491              | 0.822                |
| 1                                           | 3  | 20.7 ± 22.2                      |                    |                      |
| **Preoperative thyroglobulin, ng/mL**        |    |                                  |                    |                      |
| \( \leq 40 \)                               | 49 | 11.5 ± 11.4                      | 0.039              | 0.403                |
| \( > 40 \)                                  | 25 | 18.3 ± 15.0                      |                    |                      |

\( \text{SUV}_{\text{max}} \) = \text{maximum standardized uptake value.}
TABLE 4. Relationships between SUV\textsubscript{max} and Clinicopathologic Variables in Patients with Papillary Thyroid Microcarcinoma

| Variables                              | n  | SUV\textsubscript{max} | Univariate P value | Multivariate P value |
|----------------------------------------|----|-------------------------|--------------------|----------------------|
| Age, yr                                |    |                         |                    |                      |
| ≤ 45                                   | 30 | 4.3 ± 4.3               | 0.740              | 0.980                |
| > 45                                   | 63 | 4.6 ± 4.1               |                    |                      |
| Sex                                    |    |                         |                    |                      |
| Male                                   | 19 | 4.9 ± 5.4               | 0.396              | 0.877                |
| Female                                 | 74 | 4.5 ± 3.9               |                    |                      |
| BRAFV600E mutation                     |    |                         |                    |                      |
| Mutated                                | 76 | 4.7 ± 4.5               | 0.784              | 0.568                |
| Wild-type                              | 17 | 3.7 ± 2.5               |                    |                      |
| Histology                              |    |                         |                    |                      |
| Non-aggressive                         | 93 | 4.5 ± 4.2               |                    |                      |
| Aggressive                             |  0 |                         |                    |                      |
| Accompanying thyroid disease           |    |                         |                    |                      |
| Present                                | 51 | 4.5 ± 3.7               | 0.997              | 0.907                |
| Absent                                 | 42 | 4.5 ± 4.8               |                    |                      |
| Tumor size, cm                         |    |                         |                    |                      |
| ≤ 0.5                                  | 29 | 2.5 ± 1.2               | 0.001              | 0.010                |
| > 0.5                                  | 64 | 5.5 ± 4.7               |                    |                      |
| N stage                                |    |                         |                    |                      |
| 0                                      | 58 | 4.3 ± 4.2               | 0.198              | 0.680                |
| 1a                                     | 23 | 5.1 ± 4.1               |                    |                      |
| 1b                                     | 13 | 5.2 ± 5.1               |                    |                      |
| M stage                                |    |                         |                    |                      |
| 0                                      | 93 | 4.5 ± 4.2               |                    |                      |
| 1                                      |  0 |                         |                    |                      |
| Preoperative thyroglobulin, ng/mL      |    |                         |                    |                      |
| ≤ 40                                   | 81 | 4.6 ± 4.3               | 0.682              | 0.935                |
| > 40                                   |  4 | 5.1 ± 4.6               |                    |                      |

SUV\textsubscript{max} = maximum standardized
IV. Discussion

This study was performed to investigate the relationship between the \textit{BRAFV600E} mutation and F-18 FDG uptake on preoperative PET/CT in patients with PTC. The \textit{BRAFV600E} mutation was independently related to SUV\textsubscript{max} in a multivariate analysis that included various clinicopathologic factors. In subgroup analyses, this relationship persisted in overt PTC, but not in PTMC. These results indicate that 2 potential prognostic factors, the \textit{BRAFV600E} mutation and F-18 FDG uptake by the primary tumor, are closely related in patients with overt PTC.

Many studies have demonstrated that the \textit{BRAFV600E} mutation is related to tumor aggressiveness and poor prognosis in PTC (Xing et al., 2005; Riesco-Eizaguirre et al., 2006; Xing et al., 2013). The \textit{BRAFV600E} mutation was independently related to known prognostic factors such as extrathyroidal invasion, lymph node metastasis, advanced tumor stage (III/IV) and aggressive subtypes. The presence of the \textit{BRAFV600E} mutation was associated with the recurrence of PTC, even in a low-risk group (Xing et al., 2005). In a retrospective multicenter study, \textit{BRAFV600E} mutation-positive patients experienced more deaths per 1,000 person-years than their wild-type counterparts (11.80 vs. 2.25, Hazards Ratio = 3.53) (Xing et al., 2013).

Like the \textit{BRAFV600E} mutation, F-18 FDG uptake is also accepted as a potential prognostic factor in thyroid cancer. F-18 FDG positivity, SUV\textsubscript{max} (> 10 g/mL) and metabolic tumor volume (> 125 mL) were significantly correlated with survival regardless of radioiodine avidity (Wang et al., 2000). Survival of stage I-III patients with positive F-18 FDG uptake was as poor as that of stage IV thyroid cancer patients (Robbins et al., 2006).

Besides the role as a prognostic factor, there is a similarity between F-18 FDG uptake and the \textit{BRAFV600E} mutation regarding the loss of radioiodine avidity. Similar to the “flip-flop” phenomenon of F-18 FDG uptake, in recurrent thyroid cancers, most (79%) of the I-131 negative group had the \textit{BRAFV600E} mutation, while most (82%) of the I-131 positive group was wild-type (Barollo et al., 2010). Similarly, in patients with metastatic PTC, the I-131 negative group had a higher rate of \textit{BRAFV600E} mutation (77%) than did the I-131 positive group (43%) (Mian et al., 2008). From the perspective of molecular changes, the \textit{BRAFV600E}
mutation in PTC is related to the silencing of thyroid iodide-metabolizing genes (Durante et al., 2007; Mian et al., 2008), and also impairs the targeting of sodium/iodide symporter to the cell membrane (Riesco-Eizaguirre et al., 2006). Considering those previous reports, it is reasonable that in the present study the \textit{BRAF}V600E mutation was associated with F-18 FDG uptake on preoperative PET/CT in PTC.

F-18 FDG uptake is based on enhanced aerobic glycolysis in cancer cells, known as Warburg effect (Warburg, 1956). There are some experimental evidence that \textit{BRAF} mutation is involved in increased glycolysis in PTC. Mitochondrial localization of \textit{BRAF}V600E led to the reduction of mitochondrial \text{O}_2 consumption and increased glucose uptake in PTC (Lee et al., 2011). The expression of the M2 isoform of pyruvate kinase, which is the rate-limiting step of glycolysis, was also significantly higher in PTCs harboring \textit{BRAF}V600E (Christofk et al., 2008; Feng et al., 2013). Meanwhile, GLUT1, GLUT3 and hexokinase II play an important role in the trapping of F-18 FDG by cancer cells (Pauwels et al., 1998). At the transcriptional level, hypoxia-inducible factor (HIF)-1 exerts influence on glycolytic shift in cancer cells by targeting GLUT1, GLUT3 and hexokinase II (Denko, 2008; Bensinger and Christofk, 2012). Several studies demonstrated that GLUT1 expression and HIF-1\alpha level were significantly higher in \textit{BRAF}-mutated PTC compared to \textit{BRAF}-wild type PTC (Durante et al., 2007; Mian et al., 2008; Zerilli et al., 2010; Grabellus et al., 2012). HIF-1 can be upregulated via mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway to increase glycolysis (Munoz-Pinedo et al., 2012; Xing, 2013). This Ras-Raf-MEK-ERK pathway is aberrantly activated by the mutation of \textit{BRAF} gene (Davies et al., 2002; Garnett and Marais, 2004) and has an important role in the tumorigenesis in PTC (Xing, 2013). Therefore, the induction of MAPK pathway by \textit{BRAF} mutation and the subsequent activation of HIF-1 resulting in increased glycolysis may explain the mechanism behind the association between F-18 FDG uptake and \textit{BRAF}V600E mutation.

Clinicopathologic factors influencing F-18 FDG positivity of PTC on preoperative PET/CT have been previously evaluated by other researchers (Kim et al., 2012). Univariate analysis revealed that size, cervical lymph node metastasis and TNM stage were significantly correlated with F-18 FDG positivity. A multivariate analysis revealed that size and cervical lymph node metastasis were independent predictors of F-18 FDG positivity. Compared with this previous report, our study provided additional insight into the relationship between the
From a clinical perspective, PTMC is noteworthy in that most cases are detected incidentally, and aggressive behavior is not uncommon (Lee et al., 2006). In the present study, an analysis with the PTMC subpopulation (93/169, 55%) showed that tumor size was significantly associated with SUV\textsubscript{max}. This result was in accordance with a few previous reports. Jeong et al. performed a prospective study evaluating 44 PTMC patients; SUV from PET imaging was correlated with tumor size only among various clinicopathologic factors (Jeong et al., 2006). Hwang et al. showed that visually identifiable F-18 FDG uptake was dependent on tumor size and the presence of Hashimoto thyroiditis (Hwang et al., 2014). Yun et al. also found a moderate dependency of SUV on tumor size of PTMC (Yun et al., 2010). Other than the size dependency of tumor metabolism itself, there is another contributing factor: the “partial volume effect” in PET/CT imaging. The partial volume effect leads to underestimation of the F-18 FDG uptake in small tumors (Soret et al., 2007), and it may have influenced the significant positive correlation between SUV\textsubscript{max} and tumor size in the present study.

In contrast to tumor size, the BRAF\textsubscript{V600E} mutation, in the present study, was not correlated with SUV\textsubscript{max} in PTMC. According to the literatures, there is a controversy over the clinical significance of the BRAF\textsubscript{V600E} mutation in PTMC. Lee et al. reported that the prevalence of BRAF\textsubscript{V600E} mutation was significantly higher in aggressive PTMC than in nonaggressive tumors (Lee et al., 2009). Virk et al. found that the BRAF\textsubscript{V600E} mutation occurred during an early stage of carcinogenesis and was associated with extrathyroidal invasion and lymph node metastasis (Virk et al., 2013). On the contrary, Zheng et al. found that the BRAF\textsubscript{V600E} mutation was not associated with tumor recurrence in PTMC (Zheng et al., 2013), and a study by Walczyk et al. demonstrated no correlation between the BRAF\textsubscript{V600E} mutation and tumor aggressiveness or recurrence in PTMC after a 12-year clinical follow-up (Walczyk et al., 2014). In a couple of studies with Korean population, which has a high prevalence of BRAF\textsubscript{V600E} mutation, no significant relationships were found between the BRAF\textsubscript{V600E} mutation and clinicopathologic factors (Kim et al., 2005; Choi et al., 2013). Therefore, the role of the BRAF\textsubscript{V600E} mutation as a prognostic factor in PTMC is still uncertain, and our result in PTMC supports those negative results.

There were a few limitations in this work. We retrospectively analyzed PTC patients who had undergone preoperative F-18 FDG PET/CT and subsequent thyroidectomy. We set the
maximum interval between PET/CT and surgery to 7 months. Although PTCs are typically slow-growing, there can be a change in F-18 FDG uptake in some tumors. In addition, as we mentioned above, the partial volume effect may have influenced F-18 FDG uptake in PTMC. However, we were not able to perform partial volume correction, because the necessary in-house software has not been developed yet. Therefore, a further analysis implementing partial volume correction is required for the PTMC subpopulation to clarify the association between \textit{BRAFV600E} mutation and F-18 FDG uptake in PTC.
V. Conclusion

2 potential prognostic factors of PTC, the *BRAF*V600E mutation and F-18 FDG uptake, are closely related in overt PTC, but not in PTMC. The present study affords a better understanding of the relationship between the *BRAF*V600E mutation and F-18 FDG uptake in PTC. In addition, clinicians should notice that the clinical significance of F-18 FDG in PTC can be different between overt PTC and PTMC because of the technical limitation of PET/CT.
References

1. American Thyroid Association Guidelines Taskforce on Thyroid Nodules and Differentiated Thyroid Cancer, Cooper DS, Doherty GM, Haugen BR, Kloos RT, Lee SL, Mandel SJ, Mazzaferri EL, McIver B, Pacini F, Schlumberger M, Sherman SI, Steward DL, Tuttle RM: Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. *Thyroid* 19: 1167-1214, 2009

2. Barollo S, Pennelli G, Vianello F, Watutantrige Fernando S, Negro I, Merante Boschin I, Pelizzo MR, Rugge M, Mantero F, Nacamulli D, Girelli ME, Busnardo B, Mian C: BRAF in primary and recurrent papillary thyroid cancers: the relationship with ([131]I and 2-[(18)F]fluoro-2-deoxy-D-glucose uptake ability. *Eur J Endocrinol* 163: 659-663, 2010

3. Bensinger SJ, Christofk HR: New aspects of the Warburg effect in cancer cell biology. *Semin Cell Dev Biol* 23: 352-361, 2012

4. Choi JW, Yoon YH, Yoon YH, Kim SM, Koo BS: Characteristics of primary papillary thyroid carcinoma with false-negative findings on initial (18)F-FDG PET/CT. *Ann Surg Oncol* 18: 1306-1311, 2011

5. Choi SY, Park H, Kang MK, Lee DK, Lee KD, Lee HS, Kim SW, Lee EN, Hong JC: The relationship between the BRAF(V600E) mutation in papillary thyroid microcarcinoma and clinicopathologic factors. *World J Surg Oncol* 11: 291, 2013

6. Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R, Fleming MD, Schreiber SL, Cantley LC: The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. *Nature* 452: 230-233, 2008

7. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, Davis N, Dicks E, Ewing R, Floyd Y, Gray K, Hall S, Hawes R, Hughes J, Kosmidou V, Menzies A, Mould C, Parker A, Stevens C, Watt S, Hooper S, Wilson R, Jayatilake H, Gusterson BA, Cooper C, Shipley J, Hargrave D, Pritchard-Jones K, Maitland N, Chenevix-Trench G, Riggins GJ, Bignier DD, Palmieri G, Cossu A, Flanagan A, Nicholson A, Ho JW, Leung SY, Yuen ST, Weber BL, Seigler HF, Darrow TL, Paterson H, Marais R, Marshall CJ, Wooster R, Stratton MR, Futreal PA: Mutations of the BRAF gene in human cancer. *Nature* 417: 949-954, 2002
8. Denko NC: Hypoxia, HIF1 and glucose metabolism in the solid tumour. *Nat Rev Cancer* 8: 705-713, 2008

9. Durante C, Puxeddu E, Ferretti E, Morisi R, Moretti S, Bruno R, Barbi F, Avenia N, Scipioni A, Verrienti A, Tosi E, Cavaliere A, Gulino A, Filetti S, Russo D: BRAF mutations in papillary thyroid carcinomas inhibit genes involved in iodine metabolism. *J Clin Endocrinol Metab* 92: 2840-2843, 2007

10. Endo K, Oriuchi N, Higuchi T, Iida Y, Hanaoka H, Miyakubo M, Ishikita T, Koyama K: PET and PET/CT using 18F-FDG in the diagnosis and management of cancer patients. *Int J Clin Oncol* 11: 286-296, 2006

11. Feine U, Lietzenmayer R, Hanke JP, Held J, Wohrle H, Muller-Schauenburg W: Fluorine-18-FDG and iodine-131-iodide uptake in thyroid cancer. *J Nucl Med* 37: 1468-1472, 1996

12. Feng C, Gao Y, Wang C, Yu X, Zhang W, Guan H, Shan Z, Teng W: Aberrant overexpression of pyruvate kinase M2 is associated with aggressive tumor features and the BRAF mutation in papillary thyroid cancer. *J Clin Endocrinol Metab* 98: E1524-1533, 2013

13. Garnett MJ, Marais R: Guilty as charged: B-RAF is a human oncogene. *Cancer Cell* 6: 313-319, 2004

14. Grabellus F, Worm K, Schmid KW, Sheu SY: The BRAF V600E mutation in papillary thyroid carcinoma is associated with glucose transporter 1 overexpression. *Thyroid* 22: 377-382, 2012

15. Howlader N, Noone AM, Krapcho M, Garshell J, Neyman N, Altekruse SF, Kosary CL, Yu M, Ruhl J, Tatalovich Z, Cho H, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA (2013). SEER Cancer Statistics Review, 1975-2010 (Bethesda, MD, National Cancer Institute).

16. Hustinx R, Benard F, Alavi A: Whole-body FDG-PET imaging in the management of patients with cancer. *Semin Nucl Med* 32: 35-46, 2002

17. Hwang SO, Lee SW, Kang JK, Choi HH, Kim WW, Park HY, Jung JH: Clinical Value of Visually Identifiable 18F-fluorodeoxyglucose Uptake in Primary Papillary Thyroid Microcarcinoma. *Otolaryngol Head Neck Surg*, 2014

18. Jeong HS, Chung M, Baek CH, Ko YH, Choi JY, Son YI: Can [18F]-fluorodeoxyglucose standardized uptake values of PET imaging predict pathologic extrathyroid invasion of
thryoid papillary microcarcinomas? *Laryngoscope* 116: 2133-2137, 2006

19. Kaida H, Hiromatsu Y, Kurata S, Kawahara A, Hattori S, Taira T, Kobayashi M, Uchida M, Yamada K, Mihashi H, Umeno H, Kage M, Nakashima T, Hayabuchi N, Ishibashi M: Relationship between clinicopathological factors and fluorine-18-fluorodeoxyglucose uptake in patients with papillary thyroid cancer. *Nucl Med Commun* 32: 690-698, 2011

20. Kim BS, Kim SJ, Kim JJ, Pak K, Kim K: Factors associated with positive F-18 fluorodeoxyglucose positron emission tomography before thyroidectomy in patients with papillary thyroid carcinoma. *Thyroid* 22: 725-729, 2012

21. Kim TY, Kim WB, Song JY, Rhee YS, Gong G, Cho YM, Kim SY, Kim SC, Hong SJ, Shong YK: The BRAF mutation is not associated with poor prognostic factors in Korean patients with conventional papillary thyroid microcarcinoma. *Clin Endocrinol (Oxf)* 63: 588-593, 2005

22. Lee J, Rhee Y, Lee S, Ahn CW, Cha BS, Kim KR, Lee HC, Kim SI, Park CS, Lim SK: Frequent, aggressive behaviors of thyroid microcarcinomas in korean patients. *Endocr J* 53: 627-632, 2006

23. Lee MH, Lee SE, Kim DW, Ryu MJ, Kim SJ, Kim SJ, Kim YK, Park JH, Kweon GR, Kim JM, Lee JU, De Falco V, Jo YS, Shong M: Mitochondrial localization and regulation of BRAFV600E in thyroid cancer: a clinically used RAF inhibitor is unable to block the mitochondrial activities of BRAFV600E. *J Clin Endocrinol Metab* 96: E19-30, 2011

24. Lee X, Gao M, Ji Y, Yu Y, Feng Y, Li Y, Zhang Y, Cheng W, Zhao W: Analysis of differential BRAF(V600E) mutational status in high aggressive papillary thyroid microcarcinoma. *Ann Surg Oncol* 16: 240-245, 2009

25. Mian C, Barollo S, Pennelli G, Pavan N, Rugge M, Pelizzo MR, Mazzarotto R, Casara D, Nacamulli D, Mantero F, Opocher G, Busnardo B, Girelli ME: Molecular characteristics in papillary thyroid cancers (PTCs) with no 131I uptake. *Clin Endocrinol (Oxf)* 68: 108-116, 2008

26. Munoz-Pinedo C, El Mjiyad N, Ricci JE: Cancer metabolism: current perspectives and future directions. *Cell Death Dis* 3: e248, 2012

27. Ortiz S, Rodriguez JM, Parrilla P, Perez D, Moreno-Gallego A, Rios A, Soria T: Recurrent papillary thyroid cancer: analysis of prognostic factors including the histological variant. *Eur J Surg* 167: 406-412, 2001
28. Pauwels EK, Ribeiro MJ, Stoot JH, McCready VR, Bourguignon M, Maziere B: FDG accumulation and tumor biology. *Nucl Med Biol* 25: 317-322, 1998

29. Ricarte-Filho JC, Ryder M, Chitale DA, Rivera M, Heguy A, Ladanyi M, Janakiraman M, Solit D, Knauf JA, Tuttle RM, Ghossein RA, Fagin JA: Mutational profile of advanced primary and metastatic radioactive iodine-refractory thyroid cancers reveals distinct pathogenetic roles for BRAF, PIK3CA, and AKT1. *Cancer Res* 69: 4885-4893, 2009

30. Riesco-Eizaguirre G, Gutierrez-Martinez P, Garcia-Cabezas MA, Nistal M, Santisteban P: The oncogene BRAF V600E is associated with a high risk of recurrence and less differentiated papillary thyroid carcinoma due to the impairment of Na+/I- targeting to the membrane. *Endocr Relat Cancer* 13: 257-269, 2006

31. Robbins RJ, Wan Q, Grewal RK, Reibke R, Gonen M, Strauss HW, Tuttle RM, Drucker W, Larson SM: Real-time prognosis for metastatic thyroid carcinoma based on 2-[18F]fluoro-2-deoxy-D-glucose-positron emission tomography scanning. *J Clin Endocrinol Metab* 91: 498-505, 2006

32. Siironen P, Louhimo J, Nordling S, Ristimaki A, Maenpaa H, Haapiainen R, Haglund C: Prognostic factors in papillary thyroid cancer: an evaluation of 601 consecutive patients. *Tumour Biol* 26: 57-64, 2005

33. Soret M, Bacharach SL, Buvat I: Partial-volume effect in PET tumor imaging. *J Nucl Med* 48: 932-945, 2007

34. Sturgeon C, Angelos P: Identification and treatment of aggressive thyroid cancers, Part 2: risk assessment and treatment. *Oncology (Williston Park)* 20: 397-404; discussion 404, 407-398, 2006

35. Tanaka K, Sonoo H, Hirono M, Ohkubo S, Nomura T, Ikeda M, Nakajima K, Kurebayashi J: Retrospective analysis of predictive factors for recurrence after curatively resected papillary thyroid carcinoma. *Surg Today* 35: 714-719, 2005

36. Virk RK, Van Dyke AL, Finkelstein A, Prasad A, Gibson J, Hui P, Theoharis CG, Carling T, Roman SA, Sosa JA, Udelsman R, Prasad ML: BRAFV600E mutation in papillary thyroid microcarcinoma: a genotype-phenotype correlation. *Mod Pathol* 26: 62-70, 2013

37. Walczyk A, Kowalska A, Kowalik A, Sygut J, Wypiorkiewicz E, Chodurska R, Pieciak L, Gozdz S: The BRAF(V600E) mutation in papillary thyroid microcarcinoma: does the mutation have an impact on clinical outcome? *Clin Endocrinol (Oxf)* 80: 899-904, 2014
38. Wang W, Larson SM, Fazzari M, Tickoo SK, Kolbert K, Sgouros G, Yeung H, Macapinlac H, Rosai J, Robbins RJ: Prognostic value of [18F]fluorodeoxyglucose positron emission tomographic scanning in patients with thyroid cancer. J Clin Endocrinol Metab 85: 1107-1113, 2000

39. Warburg O: On the origin of cancer cells. Science 123: 309-314, 1956

40. Xing M: BRAF mutation in papillary thyroid cancer: pathogenic role, molecular bases, and clinical implications. Endocr Rev 28: 742-762, 2007

41. Xing M: Molecular pathogenesis and mechanisms of thyroid cancer. Nat Rev Cancer 13: 184-199, 2013

42. Xing M, Alzahrani AS, Carson KA, Viola D, Elisei R, Bendlova B, Yip L, Mian C, Vianello F, Tuttle RM, Robenshtok E, Fagin JA, Puxeddu E, Fugazzola L, Czarniecka A, Jarzab B, O'Neill CJ, Sywak MS, Lam AK, Riesco-Eizaguirre G, Santisteban P, Nakayama H, Tufano RP, Pai SI, Zeiger MA, Westra WH, Clark DP, Clifton-Bligh R, Sidransky D, Ladenson PW, Sykorova V: Association between BRAF V600E mutation and mortality in patients with papillary thyroid cancer. JAMA 309: 1493-1501, 2013

43. Xing M, Westra WH, Tufano RP, Cohen Y, Rosenbaum E, Rhoden KJ, Carson KA, Vasko V, Larin A, Tallini G, Tolaney S, Holt EH, Hui P, Umbricht CB, Basaria S, Ewertz M, Tufaro AP, Califano JA, Ringel MD, Zeiger MA, Sidransky D, Ladenson PW: BRAF mutation predicts a poorer clinical prognosis for papillary thyroid cancer. J Clin Endocrinol Metab 90: 6373-6379, 2005

44. Yun M, Noh TW, Cho A, Choi YJ, Hong SW, Park CS, Lee JD, Kim CK: Visually discernible [18F]fluorodeoxyglucose uptake in papillary thyroid microcarcinoma: a potential new risk factor. J Clin Endocrinol Metab 95: 3182-3188, 2010

45. Zerilli M, Zito G, Martorana A, Pitrone M, Cabibi D, Cappello F, Giordano C, Rodolico V: BRAF(V600E) mutation influences hypoxia-inducible factor-Ialpha expression levels in papillary thyroid cancer. Mod Pathol 23: 1052-1060, 2010

46. Zheng X, Wei S, Han Y, Li Y, Yu Y, Yun X, Ren X, Gao M: Papillary microcarcinoma of the thyroid: clinical characteristics and BRAF(V600E) mutational status of 977 cases. Ann Surg Oncol 20: 2266-2273, 2013
유두상 감상선암에서 PET/CT의 F-18 FDG 섭취와  
BRAFV600E mutation의 연관성

아주대학교 대학원 의학과  
윤석호  
(지도교수 : 윤준기)

목적: BRAFV600E mutation과 F-18 fluorodeoxyglucose (FDG) 섭취는 유두상 감상선암 (papillary thyroid cancer, PTC)의 잠재적인 예후인자이다. 본 연구는 유두상 감상선암에서 BRAFV600E mutation과 F-18 FDG 섭취의 연관성을 조사하기 위하여 시행되었다.

방법: 2009년 9월부터 2012년 8월까지 감상선 전절체술을 받기 전에 positron emission tomography/computed tomography (PET/CT)를 시행받은 169명의 감상선 유두상암 환자를 대상으로 후향적인 연구를 시행하였다. 대상자는 over PTC (> 1 cm, n = 76)와 papillary thyroid microcarcinoma (PTMC, n = 93)의 두 집단으로 분류하였다. 원발성 종양의 maximum standardized uptake value (SUV_{max})와 임상적, 병리학적 변수들의 관계를 조사하기 위하여 단변량 분석과 다변량 분석을 시행하였다.

결과: BRAFV600E mutation은 82.2% (139/169)의 환자에서 발견되었다. 다변량 분석상 모든 대상자들에서 BRAFV600E mutation (P = 0.048)과 종양 크기 (P < 0.001)는 독립적으로 SUV_{max}와 유의한 연관성을 보였다. SUV_{max}는 wild-type BRAF인 종양에서보다 BRAFV600E mutation인 종양에서 유의하게 높았다 (9.4 ± 10.9 vs. 5.0 ± 4.1, P < 0.001). Overt PTC 집단에서 BRAFV600E mutation (P = 0.032)과 종양 크기 (P = 0.001)는 독립적으로 SUV_{max}와 유의한 연관성을 보였다. 그러나 PTMC 집단에서는 종양 크기만이
SUV\textsubscript{max}와 유의한 연관성을 보였다 (\(P = 0.010\)).

결론: 크기가 1 cm보다 큰 유두상 갑상선암에서 \textit{BRAFV600E mutation}의 존재는 수술 전 PET/CT상 높은 \textit{F-18 FDG} 섭취와 독립적으로 유의한 연관성을 보였으나, 1 cm보다 작은 유두상 갑상선암에서는 유의한 연관성을 보이지 않았다. 본 연구는 유두상 갑상선암 환자에서 \textit{BRAFV600E mutation}과 \textit{F-18 FDG} 섭취의 연관에 대한 증거를 제시하였다.

핵심어: 유두상 갑상선암; \textit{BRAFV600E mutation}; \textit{F-18 FDG}; PET/CT; SUV\textsubscript{max}