AQP0 is a novel surface marker for deciphering abnormal erythropoiesis

Tso-Fu Wang
Hualien Tzu Chi Hospital

Guan-Ling Lin
Tzu Chi University

Sung-Chao Chu
Hualien Tzu Chi Hospital

Chang-Chi Chen
Hualien Tzu Chi Hospital

Yu-Shan Liou
Tzu Chi University

Hsin-Hou Chang
Tzu Chi University

Der-Shan Sun (✉ dssun@mail.tcu.edu.tw)
Tzu Chi University https://orcid.org/0000-0002-1994-7355

Research

Keywords: aquaporin 0 (AQP0), erythropoiesis, dyserythropoiesis, hematopoiesis, bone marrow, flow cytometry, biomarker

Posted Date: October 22nd, 2020

DOI: https://doi.org/10.21203/rs.3.rs-95002/v1

License: Creative Commons Attribution 4.0 International License. Read Full License

Version of Record: A version of this preprint was published at Stem Cell Research & Therapy on May 6th, 2021. See the published version at https://doi.org/10.1186/s13287-021-02343-4.
Abstract

Background

Hematopoiesis occurs in the bone marrow, producing whole spectrum of blood cells to maintain homeostasis. In addition to light microscopy, chromosome analysis, and polymerase chain reaction, flow cytometry is a feasible, fast, and quantitative analysis method to examine hematological diseases. However, because the lack of sufficient specific cell markers, dyserythropoiesis diseases are not easy to be identified by flow cytometry.

Methods: Bone marrow samples from C57BL/B6 mice and one healthy donor were analyzed using traditional 2-marker (CD71 and glycophorin A) flow cytometry analysis. After cell sorting, gene expression of membrane proteins in early and late erythropoiesis precursors and in non-erythroid cells were characterized using microarray analysis.

Results

Among characterized gene candidates, aquaporin 0 (AQP0) expresses as a surface protein in early and late stage erythropoiesis precursors and is not expressed on non-erythroid cells. In this present study, with assistant of AQP0 staining, we can define up to 5 stages of erythropoiesis in both mice and human bone marrow using flow cytometry. In addition, because patients with dyserythropoiesis generally displayed a reduced population of APQ0 high cells as compared to the normal subjects, analyses results also suggested that the levels of APQ0 high cells in the early erythropoiesis may serve as novel biomarker to distinguish normal versus dysregulated erythropoiesis.

Conclusions

AQP0 was successfully demonstrated as an erythroid differentiation marker. The expression levels of AQP0 are down-regulated in patients with dyserythropoiesis, implicating a critical and functional role of AQP0 in erythropoiesis. Accordingly, the levels of AQP0 high population in early erythroid precursor cells may serve as a reference parameter for diagnosing diseases associating with dyserythropoiesis.

Full Text

This preprint is available for download as a PDF.

Figures
Figure 1

Idicroarray analysis of sorted erythroid differentiation stages from human a. mice bone marrow. Maar, analysis of sorted erythroid differentiation stages from human bone marrow (Al Human bone marrow cells were isolated a. stained with anti-C.5 antiloches conjugated with FerCP, anti-C1371 antibodies conjugated with FE, a. ant-C.35a antibodies coml... cm, rac. A on a 0,45. caca acca-caorma ca= ams..asc. ° cells were gated ad analyzed maca ani.s..— C1,71../0132353.. were coda ac nrly stage =a late stage of erythropoiesis, xespectively The numbers 3913 and 4377 .g am gene numbers specifically expressed on early and late erythroid differentiation stages compared to non-erythroid cells>30number 4580 indica. 0e gene number specifically expressed on late erythroid differentiation stage compared to early erythroid differentiation stage. 'Me numbers 1751, 3404, and 1726 indicate the gene numbers shared with ea. 2-goup (earlynon-erythroid vs late/non-erybroul, latehon-ayffriod vs latdearly, and lke/early vs. earlyMony-erythroid). Pm number 1110 indicates Me BOO numter shred with all 3 goups (earynon-erythroid, lateMony-erythroid, and latele,y). Idicroarray anal, of sorted erythroid differentiation stag Rom mice hone marrow (B). Ivlice bone marrow cells were isolated a. gamed with ann-CD71 antibodies conjugated with Mir and conjoga. apc. acrar'd-rmms...us wffe s.t. as non-erythroid celts..V.ramms.. .Re Prratns. were sor. as early
rage 2.1re stage of erythropoiesis, respectively. The numbers 1430 and 4.0 indicate the gene numbers specifically expressed in orly and age erythroid differentiation stages compared to non-erythroid number 4567 indicates Me gene number specifically expre.sed 0010,c erythroid differentiation stage compared to early erythroid differentiation stage. The numbers 819 3709, and 788 indicate tlix gene numbers shared lAta each 2-group Marynon-erythroid vs. lateJnon-erythroid, latdnon-erythroid vs. We/early and latdearly vs. early,non-erythroid). The number 711 indicates the gene number shared with all 3 groups (earlyMon-erythroid, lateMon-erythroid, 2201re/early).

Figure 2

Charactematron f mace eryripymesm stages usmg 3 mrface markers (Can, .12119, and Amk) Flow crometry avalyms of mace eryriporems (A) Mace hone marrow cells were Isolated and slamm wed antr-C1371 antbodres conjugated me. RTC, antbodres conjugated with PriCy7, and antr-Arm0 antbodres conjugal. with Mom Fluor b1.7 C11714../FER119°.1s were gat. as nonbywrow errs CD70.rratns.—,
can. vram00,0370-frmul9.*, and CDn-fram.(w.: reaea as region I Oiil), region 2 (II2), region 3 (II3), and region 4 (M), respectively F3 was gated and analyzed the relations], between FSC (cell sere) and A)) expresmon. The percentages f Aqp0 ell m each populaton were analyzed and gum.. (B) [Mare representahve of 4 Independent expenments and reported as meal, standard demahon (SD)

Figure 3

Relative raRNA expression of erythroid speafic transcription factors in each erythroid ...lawn stage Mace bone narrow cells were isolated and sorted as RI, RZ R3/Aqp0-, 123./.41e, R4, and Non-erythroid populations based on the fluorescence sten., a 3 erythroid speafic cell surface naarkes (CD71., TERIIO and Aqp0) The noRNA expression kvel of each gene ni RI region wss normalzed tome RIO Relative folds of IERNA expression of KM (A), 05e2 (B), and Gfilb (C) in each Cdl population conapared In RI were analyzed using quantnahve reverse polymerase ohm reachon (gRT-PGR) assay Data are representative of 3 independent experiments and reported as naean SD , < 0 05 and `, < 0 01 compared with RI groups
Figure 4

Characterization of human erythropoiesis stages using 3 surface markers (CD71, CD235a, and AQPO). Flow cytometry analyses of human erythropoiesis (A) Human bone marrow cells were isolated a. slam. with ant-CD71 antrabes conyrgated wIth. P&Cy7, any-CD235a antbahes conplgated Coh FITC, antr-AQPO arythodres conrygated wrth Alaa 617 CD714../C1/235.a. cells were gated as non-erythrod cells cral../cnBsa., CD710/C13235.a0, CD71.7.2353... crarrcre35....vffe defined as repson I (M) region 2. (02). region 3 (R3), and region 4 OM), respectwely CI was gated and analyzed the relatronshop between FSC (cell sue) and AQK 0presston the percentages of AQPO.° cells each popul.on were analyzed a. gu.ffiied (B) The percen.ges of AQPO.° and AQ40 050 002 were shown (C) D02 are representalwe of 3 Independent expenments and reported as meal, SD
Figure 5

Charactematroa f ea-Ampex. errata. us, 3 surface markers (CD71, CO2353, and AQPO) The clmcal co.lete blood co. (CBC) values of 3 pa.. (A) lire bone marrow cells from 3 pa.. were Isolated. slam. with ant-C1371 coup gated wfla PEcy7, aauh-C132353 ant.d. caugated MTV, and anta-AQP0 conyugated wfla Ale. Fluor 647 C1371-.../CD235a. cells were gat. as ...-mramo. cells C071./.C132353., CD71../.1235P, C071`./C132353., and C0711032353.fr were dem ®I (ID), region 2. (62), region 3 (R3), and reglon 4 (124), respecavely as was gated and analyzed we r.tooslpurvrem ESC (cell sue) and AQ30 expression 113e percentages of NPO.m cells a ean populahon were amlyzed CI gum.. m patient 1 (B), pada. 2 (C), andpat. 3 (O) Data are represeutawte of I depend. experuo.