Abstract

This study collected data on various format of writing date in English language and investigated the process underlying their translation into Yoruba language text. It formulates a date referencing model for the translation process, implements the model and evaluates the system with a view to developing a system that translate date to Yoruba language. The Yoruba language date translation process was achieved by identifying and extracting a date phrase in English language using regular expressions, the extracted date phrase is then converted to the British pattern of date referencing which is the DD/MM/YYYY. It is this pattern of date referencing that is then translated to Yoruba language textual format. A Context-Free Grammar (CFG) that capture the various patterns of date referencing in English Language was specified. The CFG to capture the English language date phrase was modeled using the Push-Down Automata (PDA) and the software for the translation of the English language date phrase to the corresponding Yoruba language phrase was implemented with the Python programming language with the PyQt5 Graphical User Interface (GUI) module. The evaluation of the system was carried out using the Mean Opinion Score (MOS). The MOS was done using 45
questionnaires administered to some Linguistics students and staff of the News department, Orisun FM, (Radio station) Oke Itase, Ile-Ife, Osun state, Nigeria, to elicit their knowledge of the translation of the selected date phrases. The responses were compared with the output of the system. A desktop application for the translation process was deployed for windows operating system. The results of the system's evaluation showed that the application was able to translate the English language date phrases to Yoruba language text and produce 100 percent accuracy relative to a Yoruba language Expert translation.

The result of the respondents to the questionnaires shows that most of the respondents are not familiar with the orthography of the Yoruba language, which means that a large percentage of Yoruba language native speakers cannot tone mark their responses correctly. Another observation was that most of the respondents could not translate the year numbers to Yoruba language as they are not familiar with translation of large numbers. In conclusion, this study has shown that date referencing translation process can be computationally analyzed using the modern knowledge of computing.

References

1. O.A. Agbeyangi, and S.I. Eludiora and O.A. Popoola , Web-Based Yoruba Numeral Translation System, IAES International Journal of Artificial Intelligence (IJ-AI) 5 (4) (2016) 127(134 (2016). doi:10.1016/S0031-8914(53)80099-6.

2. S. Tripathi, J. K. Sarkhel, Approaches to Machine Translation, Journal of Scientific and Industrial Research 57 (4) (2010) 388(393 (2010).

3. Y. Al-Onaizan, J. Curin, M. Jahr, K. Knight, J. La_erty, D. Melamed, F.-J. Och, D. Purdy, N. A. Smith, D. Yarowsky, Statistical machine translation, in: Final Report, JHU Summer Workshop, Vol. 30, 1999 (1999).

4. W. Weaver, Translation, Machine translation of languages 14 (1955) 15{23 (1955).

5. S. I. Eludiora, Development of an English to Yoruba Machine Translation System, Unpublished PhD Thesis, Obafemi Awolowo University, Ile-Ife.(2014).

6. M. Osborne, Machine Translation History and Rule-Based Systems, School of Informatics, University of Edinburgh 16 (6) (2012) 109(129 (2012).

7. McGraw-Hill, McGraw-Hill concise encyclopedia of physics, McGraw-Hill Companies, New York, United States, 2005 (2005).

8. V. G. Chivaura, Understanding Nanotechnology from an African Worldview, International Open and Distance Learning Journal 1 (1) (2015) 59|63 (2015).

9. A. Longsta_, Calendars from Around the World, Greenwich: National Maritime Museum 25 (55) (2005) 42|49 (2005).

10. C. Handelman, Calendar: Humanity's Epic Struggle to Determine a True and Accurate Year, Comitatus: A Journal of Medieval and Renaissance Studies 30 (1) (1999).

11. W. Gleissberg, Astronomical Cycles: An Unexpected Anomaly in the Annual Distribution of the Maxima of the 11-year Sunspot Cycle, Taylor and Francis, 1975 (1975).

12. D. H. Clark, J. H. Parkinson, F. R. Stephenson, An Astronomical ReAppraisal of the Star of Bethlehem-A Nova in 5 BC, Quarterly Journal of the Royal Astronomical Society 18 (2) (1977) 443|449 (1977).

13. M. R. Salzman, the Representation of April in the Calendar of 354, American Journal of Archaeology 6 (5) (1984) 43|50 (1984).
14. S. I. Eludiora, A. F. Agboola, O. A. Odejobi, T. V. Abijo, Indigenous Calendar System for Time and Date Reckoning: Computational Analysis and Software Development in LINGUISTICS AND THE GLOCALISATION OF AFRICAN LANGUAGES FOR SUSTAINABLE DEVELOPMENT,

15. UNIVERSAL AKADA BOOKS NIGERIA LIMITED, IBADAN, 2013 (2013).

16. H. Aslaksen, The Mathematics of the Chinese Calendar,

17. http://www.xirugu.com/CHI500/Dates, Time/Chinesecalender.pdf, Accessed on 19th December, 2017 (2003).

18. J. Murray, Oxford English Dictionary, Oxford University Press, Oxford, United Kingdom, 2008 (2008).

19. D. Macmillan, Thesaurus: Free English Dictionary Online, :http://www.macmillandictionary.com (accessed on 4th July, 2017) (2016).

20. W. M. O'Neil, Time and the Calendars, Manchester University Press, 1976 (1976).

Index Terms

Computer Science

Artificial Intelligence

Keywords

Keywords: Translation process, Date, Calendar, number, Yoruba Language, Year, knowledge