The Evolution of Diagenetic Fluids and Accumulation Characteristics of Tight Sandstone Reservoir in Upper Paleozoic, Southwestern Ordos Basin

Ruijing Zhu,1,2 Rongxi Li,1 Xiaoli Wu,1 Xiaoli Qin,1 Bangsheng Zhao,1 and Futian Liu1

1School of Earth Science and Resources, Chang’an University, Xi’an, Shaanxi 710054, China
2Shanxi Institute of Engineering Technology, Yangquan, Shanxi 045000, China

Correspondence should be addressed to Rongxi Li; rongxi99@163.com

Received 19 January 2021; Accepted 4 May 2021; Published 15 June 2021

Academic Editor: Basim Abu-Jdayil

Copyright © 2021 Ruijing Zhu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The Upper Paleozoic in the southwestern Ordos Basin has significant potential for natural gas exploration. This study investigated the diagenetic fluid evolution and hydrocarbon accumulation characteristics of He 8 section from Permian Lower Shihezi formation and Shan 1 section from Shanxi formation tight sandstone reservoirs by petrographic observation, scanning electron microscope imaging, fluid inclusion study, and laser Raman spectrum analysis. The results show that He 8 section and Shan 1 section reservoirs are mainly composed of quartz sandstone, subordinate arkose quartz sandstone, and lithic quartz sandstone, with minor lithic sandstone and lithic arkose sandstone. The major pores are intergranular dissolved pores. The main diagenetic minerals include quartz overgrowth, siliceous cement, carbonate cement, illite, montmorillonite, and mixed-layer clay minerals. The overall diagenetic features show strong compaction, multistage siliceous and calcareous cements, and abundant clay minerals, strong dissolution, and well-developed fractures. Two stages of fluid inclusions developed in the He 8 and Shan 1 sections recorded the migration and accumulation of the early-stage and late-stage natural gas, respectively. The reservoir in the study area experienced early and late diagenetic stages, and its formation was simultaneous with or after its densification. The diagenetic environment changed from alkaline to acidic and again into alkaline. There are two stages of fluid activities in the study area, namely, the early diagenetic stage corresponding to hydrocarbon generation and migration and the late diagenetic stage corresponding to hydrocarbon accumulation. This study suggests that Upper Paleozoic natural gas migrated into the reservoir in Weibei Uplift, Yishan Slope, and Tianhuan Depression tectonic units during 220–197 Ma, and the large-scale migration and accumulation occurred in these tectonic units at different times. No natural gas was generated in the west margin of the basin because the temperatures of the hydrocarbon source rocks in the Upper Paleozoic were below the gas window.

1. Introduction

Fluid-rock interaction, throughout the basin formation and evolution, generally controls the diagenesis and mineralization in the basin and is closely related to hydrocarbon accumulation and occurrence [1]. Fluid inclusions are independent closed systems formed by fluids sealed in crystallographic defects of minerals [2], and they commonly record plenty of information on temperature, salinity, pressure, and composition related to the oil and gas migration processes and geological events [3–9]. Therefore, the study of fluid inclusions can be used to reverse the formation and evolution history of oil and gas reservoirs [10–13], and it has become an important and mature method for hydrocarbon accumulation research.

Exploration practice has revealed that the Upper Paleozoic of the Ordos Basin gas field is rich in oil and gas resources, with several large and medium-sized gas fields discovered successively in Yulin, Sulige, Wushenqi, Shenmu, Daniudi, and Zizhou have been proved successively in Upper Paleozoic [14–23]. Previous studies have been mainly focused in the central, western, northern, eastern, and southeastern parts of the basin. Recently, in the southwest of the basin, some exploration wells have obtained industrial gas
flow [24], such as the open airflow of 6.62×10^4 m3/d from Qingtan 1 well in the Shanxi formation, indicating a good prospect for natural gas exploration in the Upper Paleozoic in the southwestern basin. However, the study on the Upper Paleozoic in the southwestern basin is limited with controversial opinions. Zhang et al. [24] believed that the late Cretaceous oil and gas filling in this area was around the paleostructure of the Shan 1 section in the late Jurassic, and it is a near-source or in situ accumulation, whereas Cao et al. [25] suggested that the migration and accumulation of natural gas in the Upper Paleozoic in the southwest part of the basin was a relatively long and continuous process, with the main filling period during the Early Cretaceous ($155-100$ Ma). Liao et al. [26] argued that a primary natural gas charging occurred in the northern part of this area and the filling and accumulation lasted from late Jurassic to early Cretaceous ($J_2-\text{K}_1$). Hu et al. [27] believed that the hydrocarbon generation started from the Late Triassic (T_3) and ended at the end of the Early Cretaceous (K_1). Moreover, the properties of the gas reservoirs in the southwestern basin are strongly disputed, such as the timing of natural gas accumulation, the types and stages of diagenesis, the processes of gas migration and accumulation, and the diagenetic fluids.

This study investigated core samples from the exploration wells by petrographic examinations, scanning electron microscope imaging, measurement of fluid inclusion homogenization temperature, and laser Raman spectroscopy analysis. The findings will not only better characterize the reservoirs and the fluid inclusions, but also help reveal the diagenetic setting and evolution and the timing of gas accumulation and reservoir densification.

2. Geological Setting

The Ordos Basin, the second-largest petroliferous basin in China, is one of the most important basins abundant in oil and gases in China [28, 29]. It consists of six secondary structural units, namely, the Yimeng Uplift, the Yishan Slope, the Tianhuan Depression, the Weiwei Uplift, the Jin-West Knitbelt, and the Xiyuan Thrust belt (Figure 1). The study area, with an area of 3.8×10^4 km2, situates in the southwestern part of the basin (Figure 1) involving four tectonic units [30], i.e., the Yishan Slope, Weiwei Uplift, Tianhuan Depression, and Western Thrust belt. The strata are generally flat with small-scale faults developed in the Xiyuan Thrust belt.

As a large sedimentary basin in the west of the North China block, the Ordos Basin has experienced multistage tectonic evolution, including the Middle-Late Proterozoic Craton valley stage, the Early Paleozoic submarine platform, Late Paleozoic coastal plain, Mesozoic foreland basin, and Cenozoic peripheral fault-depression [31–33]. The main target strata of this study are the He 8 section of Xiashihezi Formation and Shan 1 section of Shanxi Group. The basin was an inland lake setting during the sedimentation of the He 8
section, while it changed to offshore plain swamp and delta setting during the sedimentation of the Shan 1 sections (Figure 2).

The strata in the Ordos Basin, from bottom to top, include the Proterozoic, Paleozoic, Mesozoic, and Cenozoic sandstone, mudstone, limestone, and siltstone, with the absence of the Silurian and Devonian [32]. The basement is composed of Archean and Early Proterozoic metamorphic rocks. Due to the Caledonian Orogeny, the Upper Paleozoic strata in the studied area were subjected to uplift and erosion and then began to sink as a whole during the Middle-Late Carboniferous. These strata include the Carboniferous Benxi Group, the Permian Taiyuan, Shanxi, Upper Shihezi, Lower Shihezi, and Shiqianfeng formations [34]. The coal and dark mudstone of the Lower Shihezi formation in the He 8 section and the Shanxi formation in the Shan 1 section are the main source rocks for the Upper Paleozoic gas deposits. The sandstone in these two formations can be reservoirs, and the overlying marine limestone of the Taiyuan Formation, the argillaceous rocks of the Shiqianfeng, and the Upper Shihezi formations can be stable cap layers [17, 35]. These strata form a favorable source-reservoir-cap system in the Upper Paleozoic. The He 8 section distributes as north-south strips with multiphase superposition in the longitudinal direction [36–38]. The sand body of the He 8 section has a thickness of 10-30 m, up to 60 m locally, and width of 10-30 km and extends up to more than 200 km. Sand and mudstone are interbedded in the He 8 section and Shan 1 section. Various sedimentary structures are developed in sandstone sections, such as parallel bedding and cross-bedding. The strong interlayer heterogeneity and the above characteristics are favorable conditions for the formation of tight sandstone with low porosity and low permeability.

3. Samples and Experiments

In this study, more than 50 sandstone core samples of the He 8 section and Shan 1 section were collected from 12 exploratory wells in the southwest of the Ordos Basin. Among the samples, 30 chip samples were selected for petrographic observation from different depths of the Xiang 1 well, Qingshen 2 well, He 3 well, Zitan 1 well, Ling 1 well, and Lian 1 well. Some thin sections were impregnated with red-dyed resin to identify diagenetic minerals and analyze their
Figure 3: Continued.
The Upper Paleozoic clastic rocks of the Xiashihezi Formation in the study area mainly comprise quartz sandstone, arkose quartz sandstone, lithic quartz sandstone, and lithic arkose sandstone, with minor lithic arkose sandstone and arkose sandstone. The debris grains show close contact dominated by linear and concave-convex boundaries. These sandstones are subangular to subrounded and were selected for microscope petrographic observation. We observed the color, size, and occurrence of inclusions under transmitted light and fluorescence and identified different types and stages of inclusions. All analyses were performed at the Xi'an Institute of Geology and Mineral Resources, China. Compositional analyses were conducted on 15 samples by ramnour-U1000 laser Raman molecular microprobe (Jobin-Yvon Instrumentation, France) under the conditions of 22°C and 65% humidity. The laser was operated at a wavelength of 514 nm with a laser exposure time of 15 s, a laser-beam spot size of approximately 1 μm, a spectral resolution of 0.14 cm⁻¹, and output power of 22 mW. The fluid inclusion homogenization temperatures of these 15 samples were determined by THMS600 heating and cooling stage (Linkam Scientific Instruments, UK), calibrated by standards to obtain an error of 0.1°C for temperatures below 100°C and no higher than 0.5°C for temperatures above 100°C [39].

4. Results

4.1. Reservoir Characteristics

4.1.1. Reservoir Rock Types. The Upper Paleozoic clastic rocks of the Xiashihezi Formation in the study area mainly comprise quartz sandstone, arkose quartz sandstone, lithic quartz sandstone, and lithic arkose sandstone, with minor lithic arkose sandstone and arkose sandstone. The debris grains show close contact dominated by linear and concave-convex boundaries. These sandstones are subangular to subrounded and were selected for microscope petrographic observation. We observed the color, size, and occurrence of inclusions under transmitted light and fluorescence and identified different types and stages of inclusions. All analyses were performed at the Xi'an Institute of Geology and Mineral Resources, China. Compositional analyses were conducted on 15 samples by ramnour-U1000 laser Raman molecular microprobe (Jobin-Yvon Instrumentation, France) under the conditions of 22°C and 65% humidity. The laser was operated at a wavelength of 514 nm with a laser exposure time of 15 s, a laser-beam spot size of approximately 1 μm, a spectral resolution of 0.14 cm⁻¹, and output power of 22 mW. The fluid inclusion homogenization temperatures of these 15 samples were determined by THMS600 heating and cooling stage (Linkam Scientific Instruments, UK), calibrated by standards to obtain an error of 0.1°C for temperatures below 100°C and no higher than 0.5°C for temperatures above 100°C [39].

4.1.2. Diagenesis. Diagenesis has been regarded as the controlling factor of reservoir densification [40–49]. Based on comprehensive analyses through petrographic observation, SEM analysis, cathodoluminescence imaging, XRD analysis, and EPMA, the Upper Paleozoic in the southwestern Ordos Basin has undergone compaction, cementation, metasomatism, dissolution, and fracturing [50], of which compaction and cementation are important factors to form a dense reservoir in the study area [51–55]. Under a microscope, compaction is represented by bent plastic grains such as mica, broken rigid grains, linear or concave-convex interparticle contacts, and “pressure cracks” in quartz (Figures 3(a)–3(d)). Cerments
include multistage siliceous and calcareous cements, illite, kaolinite, and mixed-clay minerals (Figures 3(e)–3(o)). Metasomatism and dissolution can improve the physical properties of reservoirs [56–59]. The metasomatism of quartz, feldspar, and lithics by carbonate and clay minerals and the dissolution of volcanic materials, clastic particles, and cements (Figures 3(p)–3(t)) formed illite, kaolinite, and secondary overgrowth of quartz [60]. In summary, the tight reservoir in the study area is strongly compacted with multistage siliceous and calcareous cements, a large number of clay minerals, strong dissolution, and well-developed fractures and fissures (Figures 3(a)–3(d)).

4.1.3. Diagenetic Mineral Characteristics. Diagenetic minerals mainly include siliceous cements, carbonate cements, authigenic illite, kaolinite, and mixed-layer clay minerals. The siliceous cements include mainly different forms of siliceous cements among the particles, secondary quartz overgrowth around particles, and authigenic microcrystalline quartz (Figures 3(e) and 3(f)). Under a microscope, the secondary quartz overgrowths are clean and transparent with few inclusions, and it can be divided into early and late diagenetic stages. Clay films/rings are common at the rims of the overgrowths.

Carbonate cementation is another main cementation in the reservoir, and it can block the pores of sandstone. Early carbonate cementation weakens or prevents compaction, providing favorable conditions for later dissolution to form secondary pores. Later, after carbonate corrosion, the reservoir’s physical properties become better. In this study, two stages of calcareous cementation have been observed in this study under the microscope (Figures 3(k) and 3(l)): The early stage was dominated by micrite and iron-bearing calcite, most of which are irregular fine grains and micrite. Due to dissolution, they are in patchy shapes and filled the pores. The calcite content is relatively low and less than 3%. The late stage was dominated by sparry calcite, with a relatively high calcite content of 8% on average, which distributed in intergranular pores in forms of granular or poikilitic cementation. Based on EPMA and XRD data (Tables 1 and 2), iron-bearing dolomite is also a calcareous cement in this study area.

Illite is the most abundant clay mineral in the study area. Under the microscope, illite is mainly an altered product or cement in various forms such as fish scales, hairs, fibers, and flakes (Figure 3(g)). Under SEM, most illite appears as pore liners and fillings forms of network or bridge, while honeycomb aggregates occur as flakes or filamentous growth.

![Lithologic triangle map of Upper Paleozoic in the study area.](image)

![Characteristics of pore types in the Upper Paleozoic Erathem sandstone of the study area.](image)
on particle surface or in the pores (Figure 3(h)). Illite in this area is either authigenic or altered products formed by the dissolution of feldspar and volcanic materials. Generally, the transition of diagenetic fluid from acid to neutral is favorable for the formation of illite.

Kaolinite is a common clay mineral in the study area. It occurs in vermicular and leaf-like shapes under SEM (Figure 3(j)), and some appear as microcrystalline aggregates under a microscope (Figure 3(i)). Kaolinite is usually formed by feldspar corrosion during water-rock interaction in an acid environment, and it also has a positive correlation with the secondary porosity. Thus kaolinite with well-developed intracrystalline pores as important reservoir space can indicate the formation of favorable reservoirs [61–64].

The mixed-layer/clay minerals in the study area are mainly illite-smectite, which is the middle product of the transformation of montmorillonite to illite. This transformation could only occur when the temperature reaches 60-100°C in an alkaline fluid environment with a large number of K⁺ and Al³⁺. Mixed-layer clay mineral contents in this area are not high, second to illite and kaolinite.

4.2. Fluid Inclusions

4.2.1. Inclusion Types

Through the microscopic observation of fluid inclusion distribution and occurrence, combined with diagenetic characteristics of the research area, fluid inclusions can be divided into two phases. The early phase inclusions are distributed in the pores and fissures and were produced by dissolution and fracturing, consisting mainly of gas-liquid organic inclusions and brine inclusions (Figures 6(a)–6(c)). The early cracks, where organic inclusions distributed along the fissures as a string of beads, did not cut the overgrowths of detrital particles. Single inclusions are nearly circular or elliptic. Inclusions in the fissures are generally larger, and their long axes are consistent with the orientation of the fissures (Figures 6(b)–6(d)). Under the fluorescence microscope, liquid hydrocarbon in the early organic inclusions emitted weak bright yellow fluorescence (Figures 6(e)–6(h)) but gaseous hydrocarbon did not fluoresce, suggesting liquid and gaseous hydrocarbon have occurred in the early diagenetic stage, and the gas/liquid ratios of early organic inclusions were 10% or so. Oil and

Table 1: Whole-rock X-ray diffraction analysis of sandstone and clay in the Upper Paleozoic of the study area.

Well number	Depth (m)	Stratum	Sample number	Whole-rock X-ray diffraction analysis of mineral relative content (%)	Clay mineral relative content (%)							
				Amount of clay	Quartz	Ankerite	Graphite	Siderite	Anatase	Not detected	Illite	Kaolinite
Xiang 1 well	2554.77	Zhifang Formation	1	31	52	11	5	1	0	61.06	38.94	
Qingtan 2 well	4731.5	Shan 1	2	26	65	5	2	1	1	67.00	33.00	
He 3 well	4146.62	Shan 2	3	15	61	18	1	2	2	1	87.89	12.11
Zitan 1 well	3742.50	He 8	4	21	49	23	5	1	1	58.41	41.59	
Ling 1 well	3697.14	Shan 1	5	37	44	14	2	1	2	66.55	33.45	
Lian 1 well	3470.03	Shan 1	6	39	54	2	2	2	1	56.08	43.92	
Average				28.3	54.2	12.2	3.0	1.3	1.0	66.17	33.83	

Table 2: Electron probe microanalysis of the compositions of sandstone cements in the Upper Paleozoic Erathem in the southwest of study area.

Well number	Depth (m)	Stratum	Sample number	Na₂O	P₂O₅	MnO	MgO	K₂O	Cr₂O₃	Al₂O₃	CaO	TiO₂	SiO₂	FeO	NiO	Mineral type
Qingtan 2 well	4731.5	Shan 1	1	0.023	0.535	20.66	0.02	0.088	49.84	0.071	28.75	0.002	Ankerite			
He 3 well	4146.62	Shan 2	2	0.004	0.032	0.024	0.002	99.89	0.044	Quartz						
Zitan 1 well	3742.50	He 8	3	0.014	0.012	0.026	99.87	0.012	0.058	Quartz						
Ling 1 well	3697.14	Shan 1	4	0.026	0.018	0.038	0.011	99.87	0.028	Quartz						
Lian 1 well	3470.03	Shan 1	5	0.11	3.14	3.3	33.6	0.19	45.7	11.4	Mixed-layer clay					
Qingtan 2 well	4731.5	Shan 1	6	0.015	0.42	37.4	0.066	0.142	48.46	Kaolinite						
He 3 well	4146.62	Shan 2	7	0.057	3.98	33.74	0.062	50.29	1.163	Kaolinite						
gas filling strength was weak and distributed and migrated along the dissolution pores and fissures.

The late inclusions are distributed in dissolution pores and fissures and formed in the late diagenetic stage. Most late inclusions are gas-liquid inclusions with a few pure gas-phase inclusions. They are elongated and distributed along the crack extension or as a string of beads along the fissure (Figures 6(i)–6(l)). The gas/liquid ratios of gas-liquid organic inclusions were generally greater than 20%, suggesting that the strength of the gas filling was high and reached the hydrocarbon generation peak. A large amount of natural gas has migrated and accumulated in favorable locations.

4.2.2. Inclusions Composition. Laser Raman microprobe analyses of inclusions from the Xiashihezi and Shanxi Groups in the southwestern Ordos Basin have revealed both organic and inorganic components (Figure 7). In the different phases of inclusions (Tables 3 and 4), gas-phase inclusions have...
Figure 7: Continued.
major organic ingredients of CH₄ and inorganic components of CO₂ in addition to H₂S and N₂, with H₂O contents varying in a wide range. In liquid phase inclusions, H₂O content is greater than 95% but CO₂ content is less than 2%, whereas CH₄ is the only organic component. However, in this area, no hydrocarbon gas components such as C₂H₄, C₂H₆, H₂S, C₃H₆, and C₄H₆ were detected in the organic inclusions, indicating that the natural gas had a high degree of thermal evolution in the hydrocarbon generation, reflecting the feature of “dry gas” [65].

Comparing the early and late organic inclusions of sandstone reservoirs in Upper Paleozoic in the study area (Figure 8), the CO₂ and CH₄ contents of gas-phase organic inclusions were higher than those of liquid-phase inclusions, whereas the individual contents of CO₂ and CH₄ were a trade-off. Thus, the early inclusions were rich in CO₂ and low in CH₄ but the late inclusions were rich in CH₄ and low in CO₂. Different stages of inclusions captured in the same sample have different CO₂ and CH₄ contents, indicating that the degree of thermal evolution of the hydrocarbon gas was relatively low in the early diagenetic stage but higher in the late diagenetic stage.

The homogenization temperatures of inclusions in the early stage of the He 8 and Shan 1 sections vary from 80°C to 200°C in distinct ranges (Figure 9). In the He 8 section, the homogenization temperatures of the early inclusions range from 80°C to 140°C with the peak from 120°C to 130°C. In the Shan 1 section, the homogenization temperatures of late inclusions range from 110°C to 200°C with the peak from 150°C to 160°C. The uniform continuous distribution of the homogenization temperature of the two stages of fluid inclusions in the He 8 and Shan 1 sections indicates that the oil and gas generation, migration, and accumulation was a continuous filling process. The early inclusions recorded the natural gas generation and migration into the reservoir, while the late inclusions witnessed the accumulation in the reservoir. Based on the freezing temperature, the salinity of the fluid inclusions was calculated. The results show consistent salinity distribution of fluid inclusions in the He 8 and Shan 1 sections between 0 and 17 wt%. The peaks of 4 wt% NaCl and 8 wt% NaCl in the two major peak ranges correspond to the homogenization temperature analysis, confirming the existence of two stages of fluid inclusions. Besides, the salinity of the early inclusions is relatively higher than that of the late inclusions, indicating that the reservoir had better sealing during the formation of the early inclusions as opposed to the formation of late inclusions.

5. Discussion

5.1. Diagenetic Events and Characteristics. On the basis of authigenic minerals, the relationship of metasomatism and dissolution-filling of different cements, features of fluid inclusions, and uniform homogenization temperature distribution, the He 8 section and Shan 1 section experienced early and late diagenetic stages and are currently in the late diagenetic stage. Combined with burial history from the study area and its adjacent regions [22, 66–68], the diagenetic evolution of reservoirs in the He 8 and Shan 1 sections has been further studied. During the burial process, the diagenesis in the study area was dominated by mechanical compaction due to the increased burial depth and overlying sediments. Clastic particle contacts are close, and plastic minerals were squeezed due to deformation while rigid minerals were dissolved and ruptured (Figures 3(b) and 3(c)). The compression of mudstone released Ca²⁺ and HCO₃⁻ in the early stage, forming alkaline diagenetic fluids that were favorable for the formation of early siliceous and calcareous cements [67]. With the increase of burial depth, temperature, and pressure increased, when mica reacted with pore water [69], potassium ions were released and entered the pore solution. Hydrolysis of volcanic tuffaceous resulted in the release of alkali metal ions such as Na⁺ and K⁺. All of those led to increased pH values of the pore fluids, promoting a more alkaline diagenetic environment [41], in which authigenic illite gradually precipitated (Figures 3(g) and 3(h)). At this time, organic matter was immature and the temperature
Table 3: Results of laser Raman analysis of gas phase composition of Paleozoic inclusions in southwestern Ordos Basin (molar relative content %).

Well number	Sample number	Description	Depth (m)	Stratum/lithology	Gas phases%																			
					CO₂	H₂S	CH₄	SO₂	H₂O	Cl₂	O₂	CO	F₂	N₂	H₂	C₂H₂	C₂H₄	C₂H₆	C₂H₈	C₃H₆	C₃H₈	C₄H₆	C₆H₆	Total
Qingtan 2 well	5-1	Late stage	4722.8	Shanxi formation/purplish red medium-coarse quartz sandstone	18.9	63.9	17.2														100.0			
	5-2	Early stage			65.0	35.0																100.0		
	29	Early stage	4728.1	Shanxi formation/gray-white medium-coarse quartz sandstone	72.6	27.4															100.0			
Meizhoudayi well	35-1	Early stage	4729.4	Shanxi formation/gray-white pebbled medium-coarse quartz sandstone	67.5	17.8															100.0			
	35-2	Late stage			57.8	42.2															100.0			
	47	Late stage	4732.0	Shanxi formation/gray-white pebbled medium-coarse quartz sandstone	69.4	30.6															100.0			
Lian 1 well	Li98-1	Early stage	3467.7	Shanxi formation/gray-white medium-coarse quartz sandstone	19.2	3.7	75.3													1.8				
	Li98-2	Late stage			1.3	96.4														1.4				
	Li93-1	Late stage	3423.3	Shanxi formation/gray-white pebbled medium-coarse quartz sandstone	1.3	96.4															1.4			
	Li93-2	Late stage			1.3	96.4															1.4			
Zitan 1 well	TZ1,116-2	Early stage	3736.2	Shihezi group/gray-white medium-fine sandstone	83.8	8.5	7.7													100.0				
	TZ1,136-2	Early stage	3740.5		89.9	10.1														100.0				
	132-1	Late stage	4073.1	Shihezi group/gray-white medium-fine lithic sandstone	57.4	42.6															100.0			
He 3 well	138-1	Early stage	4081.7		99.3	0.1														0.3				
	132-2	Early stage	4073.1		99.3	0.1															0.3			
	132-1	Late stage			99.3	0.1															0.3			
	132-2	Early stage	4073.1		99.3	0.1															0.3			
	132-1	Late stage			99.3	0.1															0.3			
	132-2	Early stage	4073.1		99.3	0.1															0.3			
	132-1	Late stage			99.3	0.1															0.3			
	132-2	Early stage	4073.1		99.3	0.1															0.3			
	132-1	Late stage			99.3	0.1															0.3			
	132-2	Early stage	4073.1		99.3	0.1															0.3			
	132-1	Late stage			99.3	0.1															0.3			
	132-2	Early stage	4073.1		99.3	0.1															0.3			
	132-1	Late stage			99.3	0.1															0.3			
	132-2	Early stage	4073.1		99.3	0.1															0.3			
	132-1	Late stage			99.3	0.1															0.3			
	132-2	Early stage	4073.1		99.3	0.1															0.3			
	132-1	Late stage			99.3	0.1															0.3			
	132-2	Early stage	4073.1		99.3	0.1															0.3			
	132-1	Late stage			99.3	0.1															0.3			
	132-2	Early stage	4073.1		99.3	0.1															0.3			
	132-1	Late stage			99.3	0.1															0.3			
	132-2	Early stage	4073.1		99.3	0.1															0.3			
Table 4: Results of laser Raman analysis of liquid phase composition of Paleozoic inclusions in southwestern Ordos Basin (molar relative content %).

Well number	Sample number	Description	Depth (m)	Stratum/lithology	Gas phases%
Qingtan 2 well					
5-1	Late stage	4722.8		Shanxi formation/magenta medium-coarse quartz sandstone	0.04 99.96 100.0
5-2	Early stage	4722.8		Shanxi formation/gray-white medium-coarse quartz sandstone	0.07 99.93 100.0
29	Early stage	4728.1		Shanxi formation/gray-white medium-coarse quartz sandstone	0.12 99.88 100.0
35-1	Early stage	4729.4		Shanxi formation/gray-white medium-coarse quartz sandstone	0.12 99.88 100.0
35-2	Late stage	4729.4		Shanxi formation/grayish-white gravel medium-coarse quartz sandstone	0.04 99.96 100.0
47	Late stage	4732.0		Shanxi formation/grayish-white gravel medium-coarse quartz sandstone	0.04 99.96 100.0
Lian 1 well					
Li98-1	Early stage	3467.7		Shanxi formation/gray-black fine sandstone	0.07 99.93 100.0
Li98-2	Late stage	3423.3		Shanxi formation/gray-white medium-fine-grained sandstone	2.03 1.37 96.60 100.0
Li93-1	Late stage	3423.3		Shanxi formation/gray-white medium-fine-grained sandstone	2.03 1.37 96.60 100.0
Li93-2	Late stage	3423.3		Dark single gas phase	100.0
Zitan 1 well					
TZ1, 116-2	Early stage	3736.2		Shihezi Group/gray-white fine sandstone	0.17 0.02 99.80 100.0
He 3 well					
132-1	Late stage	4073.1		Shihezi Group/gray-white medium-fine-grained sandstone	0.17 0.02 99.80 100.0
132-2	Early stage	4073.1		Dark single gas phase	100.0
138-1	Early stage	4081.7			0.06 99.94 100.0
was less than 80°C, further confirming that the diagenetic fluid was alkaline [67].

In the late period of the early diagenetic stage, organic matter matured and gas production began, resulting the fluid environment gradually became less alkaline but more acidic. The acidic fluids led to metasomatism of feldspar, lithic, volcanic, and calcareous cements as well as the dissolution of feldspar (Figure 3(n)) and volcanic materials, forming kaolinite and quartz secondary overgrowth. The dissolution pores of feldspar were filled with organic inclusions (Figures 6(a) and 6(b)), indicating that the acid dissolution was ahead of early oil and gas filling. Under appropriate conditions, SiO₂ dissolved from feldspar in an acidic environment formed quartz secondary overgrowth around debris particles. The pure gas phase of the second phase inclusions (Figures 6(k) and 6(l)) and the laser Raman spectroscopy analysis results, as well as the vitrinite reflectance (Ro) greater than 1.0% in Permian mudstone, all together
suggest a high degree of thermal evolution (Figure 7). In the study area, micritic calcite and sparry calcite replaced/metasomatized quartz, feldspar, and other debris particles (Figures 3(n)–3(p)), some of which were early phase quartz overgrowth and dissolved feldspar. This relationship suggests that calcite cementation was after feldspar dissolution and quartz overgrowth and also later than oil and gas filling. The fissures with late inclusions cut quartz edge but not the late cements that formed at the late diagenetic stage without inclusions, suggesting that large-scale migration and accumulation of gas happened before reservoir cementation. In Upper Paleozoic, gas accumulation time was not later than the time of reservoir densification, meaning that the gas was accumulated simultaneously with or after the reservoir densification.

In conclusion, the reservoir diagenetic evolution sequence can be summarized in the following order: (1) compaction/early siliceous and calcareous cement; (2) formation of authigenic clay minerals and organic acid; (3) start of natural gas filling; (4) early dissolution and metasomatism including dissolution of carbonate, particle, feldspar, and volcanic debris and formation of illite and kaolinite and quartz secondary overgrowth; (5) a large amount of natural gas filling; (6) dissolution of late-stage feldspar and calcareous cement; (7) late-stage calcite metasomatizing clay minerals, quartz, and feldspar (Figure 10).

5.2. Evolutionary Sequence of Diagenetic Fluids

5.2.1. Fluid Evolution of Early Diagenetic Stage. Based on Petromod 1D and related simulation parameters of The Ordos Basin [70], the tectonic burial history of the Qingtan 1 well was established (Figure 10). The early Permian strata underwent early burial diagenesis until the late Jurassic period (145 Ma) which belonged to the early diagenetic stage (288 Ma–211 Ma). During this period, compaction was predominant and the intergranular contacts vary from linear to concave-convex. Some early siliceous and calcareous cements began, reducing the pore space greatly. The organicms of mudstone were immature in the alkaline diagenetic fluid environment. As the strata continued subsiding with the rise of temperature and pressure, the pore fluid gradually changed from alkaline to acidic. When buried depth was over 2500 m, the strata entered the late diagenesis stage (211 Ma–145 Ma). At this time, the thermal evolution of strata reached a mature stage and began to produce gas. Oil and gas began filling and migrating, and the organic acids and methane gas made the pore fluid acidic. During this stage, diagenesis was given priority to dissolution and metasomatism. The dissolution of feldspar and rock debris, volcanic materials, and early carbonate cements produced secondary porosity such as dissolution pores, which consequently improved the reservoir’s physical properties. The formation of illite and kaolinite and quartz overgrowth at particle edges reduced the porosity of the reservoir, leading to the reservoir densification.

5.2.2. Fluid Evolution of Late Diagenetic Stage. The early Cretaceous late diagenetic stage (145 Ma–48 Ma) can be further divided into two phases, 145 Ma–95 Ma and 95 Ma–48 Ma. From Late Jurassic to Early Cretaceous, a regional thermal anomaly event occurred in the Ordos Basin [71–73], resulting the Upper Paleozoic source rocks reached the highest degree of thermal evolution. The source rocks reached the peak of gas generation while oil and gas filling continued and accumulated in the reservoir. The concurrent diagenetic environment was acidic, and the diagenesis was characterized by the dissolution of feldspar and calcareous cements, which increased the secondary porosity. The second phase from 95 Ma to 48 Ma was dominated by strata uplift and erosion caused by the Yanshanian movement, during which the geothermal gradient and strata temperature decreased. The burial depth of gas source rocks became shallow and the organic became less acidic. The release of internal pressure produced fractures and cracks, which may become the channels of gas migration and places of accumulation. The diagenetic environment during this phase was weak alkaline. The main diagenesis included cementation and metasomatism, which severely lowered the reservoir’s physical properties, and thus, the reservoir was further densified.

In Paleogene from 48 Ma to 30 Ma, the strata were uplifted due to the Himalayan movement, and the hydrocarbon generation gradually weakened. The concurrent diagenetic environment was alkaline. During this period, quartz and feldspar particles were metasomatized by late calcite, leading to the reduction of reservoir pore flow channels and worse physical properties, and hence further densified reservoir.

Based on the diagenesis and accumulation characteristics of different periods in the study area, the diagenetic environment was transitional from alkaline to acidic and then to alkaline. This corresponds well with the diagenetic evolution sequence concluded above.

5.3. Investigation of Fluid Characteristics. Fluid plays an important role in the formation of sedimentary basins and the formation, migration, and accumulation of hydrocarbon gases. It participates in diagenesis and improves reservoir performance. Through the analyses of fluid inclusions, diagenetic fluid evolution, and diagenesis, we can further understand the fluid properties and the characteristics of active stage. The results indicate the two generations of paleo-fluid flows corresponding to the early and late diagenetic stages. The first generation of paleo-fluid flows is represented by fluid inclusions filling in the pores and fractures of the early diagenetic sandstone, recording the generation and migration of early oil and gas. The second generation of paleo-fluid flows filled in the late diagenetic sandstone pores and fractures, recording the late hydrocarbon accumulation.

Fluid inclusion analysis shows their homogenization temperatures (80–200°C) and salinities (0–17 wt%) are continuously distributed over wide ranges. The homogenization temperature peak of the early fluid is 120–130°C, and the salinity peak is 4 wt% NaCl. The homogenization temperature peak of the late fluid is 150–160°C, and the salinity peak is 8 wt% NaCl. These data suggest the diagenetic fluid is in the range of medium-low temperature and moderate-low salinity [39], which is dominated by strata water. According to the initial melting temperature of the inclusions, the
paleo-fluid properties recorded by the Upper Paleozoic fluid inclusions can be determined. There are four types of brine systems in the southwestern part of the basin: (1) CaCl₂-H₂O system, (2) CaCl₂-NaCl-H₂O system, (3) CaCl₂-MgCl₂-H₂O system, and (4) MgCl₂-NaCl-H₂O system, of which the CaCl₂-H₂O and MgCl₂-NaCl-H₂O systems are dominant. It is considered that the formation environment and migration and storage conditions of Upper Paleozoic
natural gas in the study area are medium. Based on the analysis of diagenesis and diagenetic fluid evolution in different periods of the study area, the diagenetic environment of the study area has experienced the transition from alkaline through acidic to alkaline.

5.4. Accumulation Time. Accumulation stages can be determined through the study of natural gas inclusions, which are the key evidence for the process of oil and gas migration or accumulation [74]. In this study, based on the diagenesis and inclusion petrography, the natural gas accumulation in the study area is divided into natural gas formation and migration stage and massive accumulation stage.

The specific time of natural gas migration and accumulation represented by inclusions can be determined by comparing the inclusion homogenization temperatures (Tt) against the burial history curves of exploratory wells in different secondary tectonic units across the Ordos basin. In detail, the Xuntan 1 well represents the Weibei Uplift, the Ningtan 1 well and Hetan 1 well represent the Yishan Slope, the Huan 14 well represents the Xiyuan Thrust belt, and the Zhentan 2 well represents the Tianhuan Depression (Figure 11).

According to the results of inclusion homogenization temperatures, the low temperature (120°C - 130°C) inclusions are the first-stage inclusions, which are distributed in the early fissures or dissolution pores. They belong to hydrocarbon inclusions in the initial gas migration to the reservoir, and some inclusions have fluorescence. The high-temperature inclusions (150°C - 160°C) are the second-stage inclusions, belonging to the non-fluorescent natural gas inclusions formed during the massive gas migration and accumulation in the tectonic uplift stage. Considering the gas “window” is Ro = 1.30% for the Upper Paleozoic source rocks in the southwest of Ordos Basin, large-scale gas generation could only occur when the paleogeothermal temperature was higher than 170°C. However, the paleogeothermal temperature of the Upper Paleozoic in the Huan 14 well did not reach this temperature (Figure 11(a)), so the thermal evolution of the Upper Paleozoic in the Huan 14 well did not enter the gas production stage. In other tectonic units, the paleogeothermal temperatures all reached the hydrocarbon generation windows, and hence, the intersections of early inclusion homogenization temperatures and the burial curves represent the formation time of hydrocarbon source rocks in the Upper Paleozoic.
The intersection of the late inclusion homogenization temperature curve and the uplift section of the well burial history curve (rather than the descending stage) represent the formation time of the inclusion/hydrocarbon source rocks. Following the same principle, natural gas in the Weibei uplift migrated into the reservoir at 205 Ma (late Triassic) and accumulated during 170–136 Ma as represented by the Xuntan 1 well (Figure 11(c)). The gas migration time within the Yishan Slope (Hetan 2 well and Ningtan 1 well) was 220–210 Ma (Figure 11(d)), and the accumulation time was during 170–142 Ma. Natural gas in the Tianhuan Depression (Zhentan 2 well) migrated into the reservoir at 197 Ma and accumulated during 164–152 Ma (Figure 11(b)). In conclusion, the gas migration time of the Upper Paleozoic reservoir in Weibei Uplift, Yishan Slope, and Tianhuan Depression tectonic units were 220–197 Ma, but the large-scale migration and accumulation time in these tectonic units varied.

6. Conclusion

(1) In the southwest of the Ordos Basin, the He 8 section and Shan 1 section of the Upper Paleozoic reservoir consist mainly of quartz sandstone, arkose quartz sandstone, and lithic quartz sandstone. The diagenesis includes compaction, cementation, metasomatism and dissolution, and fissure, among which compaction and cementation are important factors for reservoir densification. The diagenetic process of the reservoir is featured by strong compaction, development of multistage siliceous and calcareous cements and abundant clay minerals, strong dissolution, and relatively well-developed fractures and fissures.

(2) The He 8 and Shan 1 sections of reservoirs both have two stages of inclusions. Both early and late inclusions of the He 8 section and Shan 1 section show similar peak temperatures that are between 120-130°C and 150-160°C, respectively. The early inclusions recorded the natural gas generation and migration into the reservoir, while the late inclusions witnessed the accumulation in the reservoir. The salinity of fluid inclusions in He 8 and Shan 1 sections ranged from 0 to 17 wt%, with the two main peak values of 4 wt% NaCl and 8 wt% NaCl.

(3) Diagenetic evolution of the He 8 and Shan 1 sections of the reservoir has gone through early and late diagenetic stages and is currently in the late diagenetic stage. The reservoir diagenetic evolution sequence can be summarized in order as follows: (1) compaction/early siliceous and calcareous cement; (2) formation of authigenic clay minerals and organic acid; (3) start of natural gas filling; (4) early dissolution and metasomatization including dissolution of carbonate, particle, feldspar, and volcanic debris and formation of illite and kaolinite and quartz secondary overgrowth; (5) a large amount of natural gas filling; (6) dissolution of late-stage feldspar and calcareous cement; (7) late-stage calcite metasomatizing clay minerals, quartz, and feldspar. The diagenetic environment was transitional from alkaline through acidic and then to alkaline.

(4) Two periods of oil and gas filling occurred in the reservoir in the study area. The densification of the reservoir was simultaneous with or after the reservoir densification. There are two stages of fluid activity in the study area, namely, early diagenetic stage corresponding to hydrocarbon generation and migration and late diagenetic stage corresponding to hydrocarbon accumulation.

(5) The natural gas accumulation in the study area is divided into natural gas formation and migration stage and massive accumulation stage. The gas migration time of the Upper Paleozoic reservoir in Yishan Slope, Weibei Uplift, and Tianhuan Depression tectonic units was during 220–197 Ma, but the gas accumulation time in different tectonic units varied. However, in the western margin of the basin, no natural gas was generated because the hydrocarbon source rocks of the Upper Paleozoic in the western margin of the basin did not reach the gas “window.”

Data Availability

The X-ray diffraction (XRD) analyses, electron probe microanalysis (EPMA), fluid inclusion homogenization temperature, etc. data, and laser Raman spectroscopy analysis data used to support the findings of this study are included within the article.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This study was funded by the National Natural Science Foundation of China (number: 41772118) and the Fundamental Research Funds for the Central Universities, Chang’an University (No. 300102279106).

References

[1] K. X. Sun, X. Q. Li, Q. Wei et al., “Study on Paleo-fluid earth characteristics of tight sandstone reservoirs Cretaceous in Keshen gas field of Kuche Depression,” Geoscience, vol. 33, no. 6, pp. 1220–1228, 2019.
[2] R. H. Goldstein, T. J. Reynolds, and R. James, Fluid Inclusions in Metallogenic Minerals, Petroleum Industry Press, Beijing, 2015.
[3] D. H. Liu, H. Z. Lu, and X. M. Xiao, Oil and gas inclusions and their applications in petroleum exploration and development, Guangdong Science and Technology Press, Guangzhou, 2007.
[4] D. Middleton, J. Parnell, P. Carey, and G. Xu, "Reconstruction of fluid migration history in Northwest Ireland using fluid inclusion studies," Journal of Geochemical Exploration, vol. 69–70, pp. 673–677, 2000.
[5] J. Kelly, J. Parnell, and H. H. Chen, "Application of fluid inclusions to studies of fractured sandstone reservoirs,"
Journal of Geochemical Exploration, vol. 69-70, pp. 705–709, 2000.

[6] J. Parnell, “Potential of palaeofluid analysis for understanding oil charge history,” Geoﬂuids, vol. 10, no. 1, p. 82, 2010.

[7] R. K. McImans, “The application of fluid inclusions to migration of oil and diagenesis in petroleum reservoirs (in Geochemistry of Waters in Deep Sedimentary Basins: Selected contributions from the Penrose conference),” Applied Geochemistry, vol. 2, no. 5-6, pp. 585–603, 1987.

[8] S. D. Burley, J. Mullis, and A. Matter, “Timing diagenesis in the Tartan Reservoir (UK North Sea): constraints from combined cathodoluminescence microscopy and ﬂuid inclusion studies,” Marine and Petroleum Geology, vol. 6, no. 2, pp. 98–120, 1989.

[9] A. C. Aplin, S. R. Larter, M. A. Bigg, G. Macleod, R. E. Swarbrick, and D. Grunberger, “PVTX history of the North Sea’s Judy Oilfield,” Journal of Geochemical Exploration, vol. 69-70, pp. 641–644, 2000.

[10] I. A. Munz, “Petroleum inclusions in sedimentary basins: systematics, analytical methods and applications,” Lithos, vol. 55, no. 1-4, pp. 195–212, 2001.

[11] P. John, M. David, H. H. Chen, and H. Don, “The use of integrated ﬂuid inclusion studies in constraining oil charge history and reservoir compartmentation: examples from the Jeanne d’Arc Basin, offshore Newfoundland,” Marine and Petroleum Geology, vol. 43, no. 3, pp. 175–159, 2002.

[12] J. Bourdet, J. Pironon, G. Levresse, and J. Tritlla, “Petroleum type determination through homogenization temperature and vapour volume fraction measurements in ﬂuid inclusions,” Geoﬂuids, vol. 8, no. 1, p. 59, 2008.

[13] H. H. Chen, C. Q. Li, X. M. Zhang, H. C. Chen, and Z. M. Lin, “Determination of hydrocarbon accumulation stages and main hydrocarbon accumulation stages in Tahe oilﬁeld by ﬂuid inclusion,” Earth Science Frontiers, vol. 10, no. 1, p. 190, 2003.

[14] L. Zhao, X. Y. Xia, J. X. Dai, and F. Hong, “Major controlling factors of natural gas enrichment in upper Paleozoic in Ordos basin,” Experimental Petroleum Geology, vol. 22, no. 2, pp. 136–139, 2000.

[15] Q. Min, J. H. Fu, S. L. Xi et al., “Characteristics of migration and accumulation of natural gas in upper Paleozoic in Ordos basin,” Petroleum Exploration and Development, vol. 27, no. 4, pp. 26–29, 2000.

[16] X. Q. Li, G. Y. Hu, J. Li, B. Xiong, J. K. Mi, and Y. J. T, “Fluid inclusion characteristics of Ordovician carbonate reservoirs in the central Ordos Basin and its signiﬁcance to natural gas accumulation,” Natural Gas Geoscience, vol. 15, no. 2, pp. 120–124, 2004.

[17] J. H. Fu, X. S. Wei, J. F. Ren, and H. S. Zhou, “The situation and development prospect of natural gas exploration in Ordos basin,” Acta Petrolei Sinica, vol. 27, no. 6, pp. 1–4, 2006.

[18] H. Yang, J. H. Fu, X. S. Liu, and L. Y. Fan, “Formation conditions and exploration techniques of Sulige large tight sandstone gas reservoir,” Acta Geologica Sinica, vol. 33, no. 1, pp. 27–36, 2012.

[19] S. M. Hao, K. Y. Hui, and L. Li, “Reservoir forming characteristics and exploration and development technology of Danludi large low permeability gas ﬁeld in Ordos Basin,” Oil and Gas Geology, vol. 27, no. 6, pp. 2–9, 2006.

[20] J. Z. Zhao, W. Z. Zhang, J. Li, Q. Cao, and Y. F. Fan, “Genesis of tight sand gas in the Ordos Basin, China,” Organic Geochemistry, vol. 74, pp. 76–84, 2014.

[21] Y. Li, J. Yang, Z. Pan, S. Meng, K. Wang, and X. Niu, “Unconventional natural gas accumulations in stacked deposits: a discussion of Upper Paleozoic coal-bearing strata in the east margin of the Ordos Basin, China,” Acta Geologica Sinica (English Edition), vol. 93, no. 1, pp. 111–129, 2019.

[22] Y. Li, X. D. Gao, S. Z. Meng et al., “Diagenetic sequences of continuously deposited tight sandstones in various environments: a case study from upper Paleozoic sandstones in the Liming area, eastern Ordos basin, China,” AAPG Bulletin, vol. 103, no. 11, pp. 2757–2783, 2019.

[23] Y. Li, W. K. Xu, P. Wu, and S. Z. Meng, “Dissolution versus cementation and its role in determining tight sandstone quality: a case study from the Upper Paleozoic in northeastern Ordos Basin, China,” Journal of Natural Gas Science and Engineering, vol. 78, no. 2020, p. 103324, 2020.

[24] Y. H. Zhang, J. Z. Zhao, Y. W. Wang, T. Liu, W. Q. Wang, and W. Tang, “Paleotectonic characteristics of the ﬁrst member of the Shanxi Formation of the Upper Paleozoic in the southwest of Ordos Basin and its controlling effect on oil and gas,” Petroleum and Gas Geology, vol. 39, no. 1, pp. 54–65, 2018.

[25] Q. Cao, J. M. Gao, L. Y. Fan, C. X. Pang, and J. Z. Yu, “Characteristics and signiﬁcance of ﬂuid inclusions in the upper Paleozoic in the southwest of Ordos basin,” Natural Gas Geoscience, vol. 26, no. 12, pp. 2245–2253, 2015.

[26] M. G. Liao, X. W. Xiao, J. L. Yao, J. J. Liao, J. X. Nan, and D. Lin, “Study on ﬂuid inclusion characteristics and accumulation period of He 8 section in Longdong area,” Geological Journal of China Universities, vol. 23, no. 2, pp. 315–323, 2017.

[27] W. Q. Hu, J. Z. Zhao, J. Li, L. Li, J. Zheng, and X. H. Jing, “Characteristics of hydrocarbon source rocks in the upper Paleozoic in the southwest of Ordos Basin and their control on the formation and distribution of natural gas reservoirs,” Natural Gas Geoscience, vol. 26, no. 6, pp. 1068–1075, 2016.

[28] Z. X. He, J. H. Fu, S. L. Xi, S. T. Fu, and H. P. Bao, “Geologic features of reservoir formation Sulige Gas Field,” Acta Petrolei Sinica, vol. 24, no. 2, pp. 6–12, 2003.

[29] Y. T. Yang, W. Li, and L. Ma, “Tectonic and stratigraphic controls of hydrocarbon systems in the Ordos Basin: a multicycle craton basin in central China,” American Association of Petroleum Geologists Bulletin, vol. 89, no. 2, pp. 255–269, 2005.

[30] R. J. Zhu, Study on the Characteristics of Upper Paleozoic Natural Gas Reservoirs in the Southwest of Ordos Basin, [M.S. thesis], Chang’an University, 2014.

[31] S. M. Wang, “Tectonic evolution and tectonic coal control in the Ordos Basin,” Geological Bulletin of China, vol. 30, no. 4, pp. 544–552, 2011.

[32] S. Z. Yang, W. H. Jin, and Z. H. Li, “Formation and evolution of the Ordos polycyclic superposition basin,” Natural Gas Geoscience, vol. 17, no. 4, pp. 494–498, 2006.

[33] J. Yan and X. Pei, Geology of Natural Gas in China, v. 4 (Ordos Basin), Petroleum Industry Press (in Chinese), 1996.

[34] J. L. Liu, K. Y. Liu, and X. Huang, “Effect of sedimentary heterogeneities on hydrocarbon accumulations in the Permian Shanxi Formation, Ordos Basin, China: insight from an integrated stratigraphic forward and petroleum system modeling,” Marine and Petroleum Geology, vol. 76, pp. 412–431, 2016.

[35] Z. D. Li, S. M. Hao, and L. Li, “Pressure storage tank and natural gas enrichment law of Upper Paleozoic in Ordos Basin,” Oil and Gas Geology, vol. 28, no. 4, pp. 466–472, 2007.
[36] C. L. Zhang, J. Li, and R. E. Liu, “Microscopic characteristics and formation mechanism of tight sandstone gas reservoirs in He 8 section of Ordos basin,” China Petroleum Exploration, vol. 24, no. 4, pp. 476–484, 2019.

[37] J. C. Tian, Q. Wu, F. Wang, X. B. Lin, J. Q. Zhang, and T. S. Cao, “The reservoir sand body developmental control factors and sedimentary models of He 8 of lower Shihzi formation in Ordos Basin,” Acta Petrologica Sinica, vol. 27, no. 8, pp. 2403–2412, 2011.

[38] W. H. Wang, J. C. Tian, and J. Q. Zhang, “The sedimentary characteristics study of Permian He 8 section in Ordos Basin,” Journal of Chengdu University of Technology (Science & Technology Edition), vol. 43, no. 2, pp. 224–232, 2016.

[39] L. Li, H. M. Tang, X. Wang et al., “Evolution of diagenetic fluid of ultra-deep Cretaceous Bashijiquake Formation in Kuqa depression,” Journal of Central South University, vol. 25, no. 10, pp. 2472–2495, 2018.

[40] H. Li, Y. Q. Liu, and L. Y. Liu, “Diagenesis of Yanchang section cháng 8 low permeability reservoir in Xifeng Oilfield, Ordos Basin,” Oil and Gas Geology, vol. 27, no. 2, pp. 209–217, 2006.

[41] D. K. Zhong, L. J. Zhou, H. T. Sun, J. L. Yao, S. Y. Ma, and H. H. Zhu, “Effects of petrological characteristics of reservoirs on diagenesis and pore development: a case study of the Triassic Yanchang Formation in Longdong area, Ordos Basin,” Oil and Gas Geology, vol. 33, no. 6, pp. 890–899, 2012.

[42] C. B. Che, Y. S. Zhu, X. J. Chen et al., “Sedimentary diagenesis of Yan Chang formation cháng 8 reservoir in Jiyuan area, Ordos Basin,” Oil and Gas Geology, vol. 34, no. 5, pp. 685–693, 2013.

[43] F. Wang, R. Chen, J. C. Tian, M. R. Li, H. R. Zhang, and X. Liu, “Diagenesis and diagenetic facies of tight sandstone reservoirs in the Chang 8 oil formation in Longdong area, Ordos Basin,” Oil and Gas Geology, vol. 35, no. 2, pp. 199–206, 2014.

[44] X. Gong, X. Y. Hu, W. H. Li, and W. X. Shen, “The difference and quantitative expression of the influence of diagenesis on reservoir densification – a case study of tight sandstone in Su 77 block of Sulige Gas Field,” Acta Sedimentologica Sinica, vol. 38, no. 6, pp. 1–13, 2020.

[45] R. C. Yang, Z. Z. Han, Z. X. Li, A. P. Fan, and Z. Z. han, “Base-level cycles and episodic coal accumulation – case study of Dongsheng Coalfield in Ordos Basin,” Journal of China University of Mining and Technology, vol. 16, no. 4, pp. 439–442, 2006.

[46] A. Fan, R. Yang, J. Li, Z. Zhao, and A. J. T. van Loon, “Siliceous cementation of chlorite coated grains in the Permian sandstone gas reservoirs, Ordos basin,” Acta Geologica Sinica (English Edition), vol. 91, no. 3, pp. 1147–1148, 2017.

[47] Z. D. Li, K. Y. Hui, L. Li, W. Zhou, and M. Guo, “Analysis of characteristics of gas migration and reservoir forming in the upper Paleozoic of northern Ordos basin,” Mineralogy and Petrology, vol. 28, pp. 77–83, 2008.

[48] S. J. Huang, K. K. Huang, W. L. Feng, H. P. Tong, L. H. Liu, and X. H. Zhang, “Mass exchanges among feldspar, kaolinite and illite and their influences on secondary porosity formation in clastic diagenesis — a case study on the Upper paleozoic, Ordos basin and Xujiahe formation, Western Sichuan depression,” Geochemica, vol. 38, no. 5, pp. 498–506, 2009.

[49] R. Yang, A. Fan, A. J. van Loon, Z. Han, and X. Wang, “Depositional and diagenetic controls on sandstone reservoirs with low porosity and low permeability in the eastern Sulige gas field, China,” Acta Geologica Sinica (English Edition), vol. 88, no. 5, pp. 1513–1534, 2014.

[50] J. L. Luo, X. S. Liu, X. Y. Fu, M. Li, R. Kang, and Y. N. Jia, “Effects of petrological composition and diagenetic evolution on quality and productivity of tight sandstone reservoirs: a case study of upper Paleozoic He 8 section natural gas reservoir in Ordos Basin,” Earth Science, vol. 39, no. 5, pp. 537–545, 2014.

[51] D. W. Houseknecht, “Assessing the relative importance of compaction processes and cementation to reduction of porosity in sandstones,” International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, vol. 25, no. 2, pp. 79–86, 1988.

[52] J. Glayas and C. A. Cade, “Prediction of Porosity in Compacted Sands,” in Reservoir Quality Prediction in Sandstones and Carbonates, J. A. Kupcz, J. Glayas, and S. Bloch, Eds., vol. 69, pp. 19–27, AAPG, 1997.

[53] J. Shou, H. Zhang, C. Si, X. Wang, Z. Chen, and S. Wang, Sandstone Dynamic Diagenesis, Petroleum Industry Press (in Chinese), 2005.

[54] S. Strickler, S. J. Jones, and N. T. Grant, “Importance of vertical effective stress for reservoir quality in the Skagerrak formation, central Graben, North Sea,” Marine and Petroleum Geology, vol. 78, pp. 895–909, 2016.

[55] K. L. Xi, Y. C. Cao, K. Y. Liu et al., “Diagenesis of tight sandstone reservoirs in the upper Triassic Yanchang formation, southwestern Ordos Basin, China,” Marine and Petroleum Geology, vol. 99, pp. 548–562, 2019.

[56] M. C. Hou, W. T. Dou, H. D. Chen, and G. Y. Dong, “Study on diagenesis of the He 8 member and Shan 1 member in north of the Sulige gas field, Ordos Basin,” Mineralogy and Petrology, vol. 29, no. 4, pp. 66–74, 2009.

[57] F. Wang, J. C. Tian, F. J. Li, J. X. Zhao, and M. R. Li, “Diagenesis of reservoirs in the Upper Paleozoic member 8 formation in the Sulige area,” Journal of Lanzhou University (Natural Sciences), vol. 45, no. 4, pp. 18–29, 2005.

[58] M. L. Zhang, S. P. Da, and T. S. Chen, “Diageneses and pore evolution of P, h 8 reservoir in Sulige gas field,” Natural Gas Industry, vol. 22, no. 6, pp. 13–16, 2002.

[59] X. M. Zhu, C. Sun, C. L. Liu, D. K. Zhong, and Q. T. Yan, “Reservoir diagenesis and fluid-rock interaction simulation of the Sulige gas field in the Ordos Basin,” Geology in China, vol. 34, no. 2, pp. 276–282, 2007.

[60] J. Shi, W. H. Huang, Y. Z. Wang, Y. T. Wang, and C. Lu, “Characteristics and genesis of secondary porosity of sandstone in the western part of Ordos Basin from He 8 - Shan 1 section,” Journal of Coal Science, vol. 43, no. 12, pp. 3461–3470, 2008.

[61] L. Xu, X. H. Yu, Y. Yang, S. L. Li, Q. Q. Tian, and Y. Zhou, “Diagenesis and diagenetic facies division of tight sandstone reservoirs in He 8 section in the southern Sulige area,” Natural Gas Industry, vol. 32, no. 7, pp. 15–20, 2012.

[62] L. W. Qiu, S. J. Mu, H. Li, J. Zhang, Y. P. Qiao, and S. B. Zhou, “The influence of diagenesis on pore development of tight sandstone reservoirs in lower Shihzei formation in Hangjinqi area,” Petroleum Geology and Recovery Efficiency, vol. 26, no. 2, pp. 42–50, 2019.

[63] M. M. Cui, J. B. Li, Z. X. Wang et al., “Characteristics of tight sandstone reservoirs in the leading edge of Braided-shaped River Delta and factors controlling high-quality reservoirs – a case study of He 8 formation in Shihzi section in the southwest of Sulige Gas Field,” Acta Petrolei Sinica, vol. 40, no. 3, pp. 279–293, 2019.
[64] S. C. Haddad, R. H. Worden, D. J. Prior, and P. C. Smalley, "Quartz cement in the Fontainebleau sandstone, Paris Basin, France: crystallography and implications for mechanisms of cement growth," *Journal of Sedimentary Research*, vol. 76, no. 2, pp. 244–256, 2006.

[65] W. Q. Hu, *Geochemical Characteristics of Upper Paleozoic Natural Gas Reservoirs in the Southwest of Ordos Basin, [M.S. thesis]*, Xi’an Petroleum University, 2015.

[66] T. He, F. Wang, and H. H. Song, "Reservoir diagenesis and pore evolution in He.8 reservoir in southern Suliage gas field," *Journal of Oil and Gas Technology*, vol. 35, no. 2, pp. 31–35, 2013.

[67] H. M. Tang, M. Wang, F. Zhao, S. Liu, H. G. Guo, and S. Xu, "Quantitative analysis of main controlling factors of reservoir compaction in Shan 2 member of eastern section, Suliage gas field," *Reservoir Evaluation and Development*, vol. 7, no. 3, pp. 7–14, 2017.

[68] N. L. Sun, J. H. Zhong, S. G. Liu et al., "Diagenesis and physical evolution of tight reservoirs with gravity flow in the Yanchang Formation in the southern Ordos Basin," *Earth Science*, vol. 42, no. 10, pp. 1802–1816, 2017.

[69] H. H. Zhu, D. K. Zhong, J. L. Yao et al., "Diagenesis in alkaline environment and its effect on reservoir pores - a case study of tight sandstone in Chang 7 member of Ordos Basin," *Petroleum Exploration and Development*, vol. 42, no. 1, pp. 51–59, 2015.

[70] Q. Yu, Z. L. Ren, Z. W. Zhu, N. Tao, B. J. Wang, and C. C. Li, "Exhumation, cooling and erosion history of Triassic oil shale since Late Cretaceous, Binxian-Tongchuan area of Ordos Basin," *Earth Science*, vol. 43, no. 6, pp. 1839–1849, 2018.

[71] Z. L. Ren, S. Zhang, S. L. Gao, J. P. Cui, and X. S. Liu, "Discussion on the distribution area and formation period of thermal evolution degree anomaly in the Ordos Basin," *Acta Geologica Sinica*, vol. 80, no. 5, pp. 674–684, 2006.

[72] Q. Yu, Z. Ren, R. Li et al., "Meso-Cenozoic tectonothermal history of Permian strata, Southwestern Weibei Uplift: insights from thermochronology and geothermometry," *Acta Geologica Sinica (English Edition)*, vol. 93, no. 6, pp. 1647–1661, 2019.

[73] Q. Yu, Z. L. Ren, R. X. Li, B. J. Wang, X. L. Qin, and N. Tao, "Paleogeotemperature and maturity evolutionary history of the source rocks in the Ordos Basin," *Geological Journal*, vol. 52, no. S1, pp. 97–118, 2017.

[74] X. M. Xiao, Z. F. Liu, D. H. Liu, J. K. Mi, J. G. Shen, and Z. G. Song, "Application of reservoir fluid inclusion information to study the formation time of natural gas reservoirs," *Chinese Science Bulletin*, vol. 47, no. 12, pp. 957–960, 2002.