ON A CONJECTURE OF DAO-KURANO

MICHAEL K. BROWN

ABSTRACT. We prove a special case of a conjecture of Dao-Kurano concerning the vanishing of Hochster’s theta pairing. The proof uses Adams operations on both topological K-theory and perfect complexes with support.

CONTENTS

1. Introduction
2. Adams operations on topological K-theory
 2.1. Cyclic Adams operations
 2.2. Variant for relative K-theory
3. Adams operations on perfect complexes with support
4. Compatibility of Adams operations
 4.1. The Milnor fibration
 4.2. Matrix factorizations
 4.3. Compatibility
5. Proof of Theorem 1.3

References

1. Introduction

Let A be a local hypersurface ring with maximal ideal η. Assume A has an isolated singularity; that is, assume A_p is a regular local ring for all $p \in \text{Spec}(A) \setminus \{\eta\}$. If M and N are finitely generated A-modules, $l(\text{Tor}_i^A(M,N)) < \infty$ for $i \gg 0$, where $l(-)$ denotes length as an A-module. Further, since minimal free resolutions of finitely generated A-modules are eventually 2-periodic, $\text{Tor}_i^A(M,N) = \text{Tor}_{i+2}^A(M,N)$ for $i \gg 0$. This motivates the following definition:

Definition 1.1. Let M and N be finitely generated A-modules. The *Hochster theta pairing* applied to M and N is given by

$$\theta(M,N) = l(\text{Tor}_{2i}^A(M,N)) - l(\text{Tor}_{2i+1}^A(M,N)), \quad i \gg 0.$$

The Hochster theta pairing was introduced by Hochster in [Hoc81]. Various conjectures concerning the vanishing of θ have received a good deal of attention lately: see, for instance, work of Buchweitz-van Straten ([BvS12]), Dao ([Dao13]), Moore-Piepmeyer-Spiroff-Walker ([MPSW11]), and Polishchuk-Vaintrob ([PV12]). For a more detailed history of the Hochster theta pairing, we refer the reader to Section 3 of Dao-Kurano’s article [DK14].

Conjecture 3.1 of [DK14] lists several open questions regarding the vanishing of θ. In particular, Dao-Kurano conjecture the following:

Date: August 7, 2017

1
Conjecture 1.2 (Dao-Kurano, [DK14] Conjecture 3.1 (3)). Let A be a local hypersurface of Krull dimension d with isolated singularity, and let M and N be finitely generated A-modules. If $\dim(M) \leq \frac{d}{2}$, $\theta(M, N) = 0$.

Dao-Kurano themselves prove Conjecture 1.2 in the following cases:

- $A = S_\eta$, where S is a positively graded algebra over a field k such that $\text{Proj}(S)$ is smooth over k, and η is the homogeneous maximal ideal of S
- A is excellent, A contains a field of characteristic 0, and $d \leq 6$

The goal of this paper is to prove Conjecture 1.2 in the following additional special case:

Theorem 1.3. Let $Q := \mathbb{C}[x_1, \ldots , x_n]$, let m denote the maximal ideal $(x_1, \ldots , x_n) \subseteq Q$, let $f \in m$, and let $R := Q/(f)$. Assume the local hypersurface R_m has an isolated singularity. Let M and N be finitely generated R_m-modules. If $\dim(M) \leq \frac{n-1}{2}$, $\theta(M, N) = 0$.

Remark 1.4. When n is odd, Theorem 1.3 follows immediately from a theorem of Buchweitz-van Straten which implies that $\theta(M, N) = 0$ for all finitely generated R_m-modules M, N (see the Main Theorem on page 245 of [BvS12]).

Our proof of the theorem uses Adams operations on both topological K-theory and perfect complexes with support in $V(f)$; the latter are introduced by Gillet-Soulé in [GS87]. It is convenient here to use constructions of Adams operations involving tensor powers of complexes of vector bundles and Q-modules, respectively. In topology, this approach is due to Atiyah in [Ati66], and in [BMTW16], the authors use Atiyah’s ideas to carry out a similar construction in the setting of perfect complexes with support; see also Hautoj’s Ph.D. thesis [Hau09].

In Sections 2 and 3, we discuss Adams operations on topological K-theory and perfect complexes with support, respectively. In Section 4, we discuss a sense in which these operations are compatible; see Proposition 4.3 for the precise statement. In Section 5, we prove Theorem 1.3.

Acknowledgements. I thank Claudia Miller, Peder Thompson, and Mark Walker for many conversations concerning Adams operations on perfect complexes with support. I also thank the Hausdorff Center for Mathematics, where most of this work was completed.

2. Adams operations on topological K-theory

We review some facts concerning Adams operations on topological K-theory. Everything in this section is classical and can be found in [Ati66], Chapter 3 of [Ati67], or [Seg68].

2.1. Cyclic Adams operations.

Let G be a topological group. If Y is a compact Hausdorff G-space, let $\text{Vect}_G(Y)$ denote the exact category of complex equivariant vector bundles on Y, and let $\text{KU}_G(Y)$ denote the Grothendieck group of $\text{Vect}_G(Y)$. $\text{KU}_G(Y)$ is the **complex equivariant K-theory group** of Y.

When $G = \{\ast\}$, we write $\text{KU}(Y) := \text{KU}_G(Y)$.

Fix a connected compact Hausdorff space X that is homotopy equivalent to a finite CW complex. The **Adams operations** on $\text{KU}(X)$ are functions $\psi^k : \text{KU}(X) \to \text{KU}(X)$ for $k \geq 0$ with the following properties:

- The ψ^k are additive
- The ψ^k are natural with respect to pullback along continuous maps
- If l is a line bundle on X, $\psi^k[l] = [l^\otimes k]$

These properties determine the operations ψ^k uniquely, by the splitting principle. The eigenvalues of ψ^k on $\text{KU}(X) \otimes \mathbb{Q}$ are all of the form k^i for some $i \geq 0$; let $\text{KU}(X)^{(i)}$ denote the eigenspace corresponding to the eigenvalue k^i in $\text{KU}(X) \otimes \mathbb{Q}$. The Chern character determines an isomorphism of graded \mathbb{Q}-vector spaces

$$\text{ch} : \bigoplus_i \text{KU}(X)^{(i)} \overset{\cong}{\to} \bigoplus_i H^{2i}(X; \mathbb{Q}).$$
Let $\widetilde{KU}(X)$ denote the reduced topological K-theory of X, defined to be the cokernel of the map $KU(*) \to KU(X)$ induced by pullback along $X \to *$. Let $[n]$ denote the class in $KU(X)$ represented by the trivial bundle of rank n. A splitting of the short exact sequence

$$0 \to KU(*) \to KU(X) \xrightarrow{i} \widetilde{KU}(X) \to 0$$

is given by the map $i: \widetilde{KU}(X) \to KU(X)$ defined by $[V] \mapsto [V] - [\text{rank}(V)]$. We define operations on $\widetilde{KU}(X)$ by $\pi \circ \psi^k \circ i$, and we denote them also by ψ^k.

Let p be a prime. We recall a construction of $\psi^p: KU(X) \to KU(X)$ due to Atiyah in [Ati66]. Given a vector bundle V over X, the p-th tensor power $V^\otimes p$ of V may be equipped with a canonical action of the symmetric group on p letters, and hence determines a class in $KU_{\Sigma_p}(X)$ (where X is equipped with the trivial action of Σ_p). By Proposition 2.2 of [Ati66], there exists a map $KU(X) \to KU_{\Sigma_p}(X)$ sending a class $[V]$ represented by a bundle V to $[V^\otimes p]$. Let C_p denote the cyclic subgroup of Σ_p generated by $\sigma_p := (12\ldots p)$; the inclusion $C_p \hookrightarrow \Sigma_p$ determines a map $KU_{\Sigma_p}(X) \to KU_{C_p}(X)$. Let $t^p: KU(X) \to KU_{C_p}(X)$ denote the composition of these two maps.

Since C_p acts trivially on X, one has a canonical isomorphism

$$KU_{C_p}(X) \xrightarrow{\cong} KU(X) \otimes R(C_p),$$

where $R(C_p)$ denotes the representation ring of C_p ([Seg68] Proposition 2.2). On classes of the form $[V]$, where V is a vector bundle, the isomorphism is given by

$$[V] \mapsto \sum_{j=0}^{p-1} \text{Hom}_{C_p}(M_j, V) \otimes W_j,$$

where W_j is the irreducible representation of C_p corresponding to the character $\sigma_p \mapsto e^{2\pi ij/p}$, and M_j is the C_p-bundle $W_j \times X$. By line (2.7) of [Ati66], if V is a vector bundle on X, then

$$\psi^p([V]) = \text{Hom}_{C_p}(M_0, t^p[V]) - \text{Hom}_{C_p}(M_1, t^p[V]).$$

2.2. Variant for relative K-theory.

Let X be a connected compact Hausdorff space, and let Y be a closed subspace of X such that (X, Y) is homotopy equivalent to a finite CW pair. Let G be a topological group, suppose X is equipped with an action of G, and suppose Y is a G-subspace of X. Let $C_G(X, Y)$ denote the exact category of bounded complexes of complex equivariant vector bundles on X whose restrictions to Y are exact.

Definition 2.1. Objects C_0, C_1 of $C_G(X, Y)$ are said to be homotopic if there exists an object C of $C_G(X \times [0, 1], Y \times [0, 1])$ such that the restriction of C to $X \times \{i\}$ is isomorphic to C_i for $i = 0, 1$.

Set $\text{Iso}(C(X, Y))$ to be the monoid of isomorphism classes in $C_G(X, Y)$ with operation \oplus. If $[C_0], [C_1] \in \text{Iso}(C(X, Y))$, we say $[C_0] \sim [C_1]$ if and only if there exist exact complexes $E_0, E_1 \in C_G(X, Y)$ such that $C_0 \oplus E_0$ is homotopic to $C_1 \oplus E_1$. Define $L_G(X, Y)$ to be the monoid $\text{Iso}(C(X, Y))/\sim$.

Let $KU(G, X, Y)$ denote the relative equivariant K-theory group of the pair (X, Y) ([Seg68] Definition 2.8).

Theorem 2.2 ([Seg68] Section 3). There exists a natural isomorphism

$$\chi: L_G(X, Y) \xrightarrow{\cong} KU_G(X, Y).$$

In particular, $L_G(X, Y)$ is a group.

When $Y = \emptyset$, χ is given by the Euler characteristic. Note that $L_G(X, Y)$ has a product operation \otimes induced by tensor product of complexes, giving it the structure of a non-unital ring, and $\chi(C_0 \otimes C_1) = \chi(C_0) \otimes \chi(C_1)$, where the product on the right-hand side is induced by tensor product of G-bundles.
If $G = \{ * \}$, we write $L(X,Y) := L_G(X,Y)$ and $KU(X,Y) := KU_G(X,Y)$. By definition, $KU(X,Y) = KU(X/Y)$. Fix a prime p. We now wish to provide an alternative construction, via χ, of the operations ψ^p on $KU(X,Y)$ defined above.

By Section 3 of [Ati66], the p-th tensor power of complexes induces a homomorphism

$$L(X,Y) \to L_{\Sigma_p}(X,Y),$$

where, in the target, X is equipped with the trivial action of Σ_p. Restricting along the inclusion $C_p \hookrightarrow \Sigma_p$, we obtain a map

$$t^p : L(X,Y) \to L_{C_p}(X,Y).$$

Given complexes C, C' of C_p-bundles on X, let $\text{Hom}_{C_p}(C,C')$ denote the morphism complex in the category of complexes of C_p-bundles on X. Let M_0, \ldots, M_{p-1} be as defined above, considered as complexes of C_p-bundles concentrated in degree 0. For each j, $\text{Hom}_{C_p}(M_j, -)$ yields an exact functor $C_{C_p}(X,Y) \to \mathcal{C}(X,Y)$, and it preserves homotopy; thus, $\text{Hom}_{C_p}(M_j, -)$ induces a map $L_{C_p}(X,Y) \to L(X,Y)$. Define

$$\psi^p : L(X,Y) \to L(X,Y)$$

to be given by

$$\psi^p([C]) = [\text{Hom}_{C_p}(M_0, t^p[C])] - [\text{Hom}_{C_p}(M_1, t^p[C])],$$

Since χ is multiplicative, it is not hard to check that one has a commutative square

$$\begin{array}{ccc}
L(X,Y) & \longrightarrow & KU(X,Y) \\
\downarrow \psi^p & & \downarrow \psi^p \\
L(X,Y) & \longrightarrow & KU(X,Y)
\end{array}$$

3. Adams operations on perfect complexes with support

Let Q be a commutative Noetherian \mathbb{C}-algebra, let $Z \subseteq \text{Spec}(Q)$ be a closed subset, and let G be a finite group. Let $\mathcal{P}^Z(Q;G)$ denote the category of bounded complexes of finitely generated projective Q-modules with support in Z and equipped with a left G-action (with G acting via chain maps). Let $K^Z_0(Q;G)$ denote the Grothendieck group of $\mathcal{P}^Z(Q;G)$, defined to be the group generated by isomorphism classes of objects modulo the relations

$$[X] = [X'] + [X''].$$

if there exists an (equivariant) short exact sequence $0 \to X' \to X \to X''$, and

$$[X] = [Y]$$

if there exists an (equivariant) quasi-isomorphism joining X and Y; the group operation is given by direct sum. When $G = \{ * \}$, we write $K^Z_0(Q) := K^Z_0(Q;G)$.

In this section, we recall a construction of Adams operations on $K^Z_0(Q)$ involving cyclic actions on tensor powers of complexes, following Section 3 of [BMTW16]; see also Hau’ton’s Ph.D. thesis [Hau99] for a similar discussion. The construction is inspired by the cyclic Adams operations on topological K-theory, due to Atiyah, which we discuss in the previous section.

Adams operations on $K^Z_0(Q)$ were introduced by Gillet-Soulé in [GSS77] for the purpose of proving Serre’s Vanishing Conjecture. By Corollary 6.14 of [BMTW16], the operations we discuss here agree, in our setting, with those constructed by Gillet-Soulé.

Let p be a prime. If X is an object of $\mathcal{P}^Z(Q)$, the p-th tensor power $X^{\otimes p}$ has a canonical signed left action of Σ_p. By Theorem 2.2 of [BMTW16], there exists a map $K^Z_0(Q) \to K^Z_0(Q;\Sigma_p)$ that sends a class $[X]$ represented by an object X in $\mathcal{P}^Z(Q)$ to $[X^{\otimes p}]$. Restricting along the inclusion $C_p \hookrightarrow \Sigma_p$ yields a map

$$t^p : K^Z_0(Q) \to K^Z_0(Q;C_p).$$
For $0 \leq j \leq p-1$, let Q_j denote the projective $Q[C_p]$-module Q with action $\sigma_p q = e^{2\pi i j/p} q$ (recall that $\sigma_p = (12\ldots p)$). Define the p-th Adams operation $\psi^p : K^Z_0(Q) \rightarrow K^Z_0(Q)$ by

$$Y \mapsto [\text{Hom}_{Q[C_p]}(Q_0, t^p(Y))] - [\text{Hom}_{Q[C_p]}(Q_1, t^p(Y))].$$

By Theorem 3.7 of [BMTW16], ψ^p is a group endomorphism. We refer the reader to [BMTW16] for a thorough discussion of the properties of the Adams operations ψ^p. One such property we will need later on is:

Theorem 3.1 (BMTW16 Corollary 3.12). If p is prime, Q is regular of Krull dimension d, and Z has codimension c in $\text{Spec}(Q)$, there exists a direct sum decomposition

$$K^Z_0(Q) \otimes Q = \bigoplus_{i=0}^{d} K^Z_0(Q)^{(i)}(Q)$$

where $K^Z_0(Q)^{(i)}$ is the eigenspace of ψ^p in $K^Z_0(Q) \otimes Q$ corresponding to the eigenvalue p^i. Moreover, if M is a finitely generated Q-module supported on Z, and X is a finite projective resolution of M, one has

$[X] \in \bigoplus_{i=\text{codim}_Q M}^{d} K^Z_0(Q)^{(i)}.$

Remark 3.2. The idea of the proof of this theorem is essentially due to Gillet-Soulé in [GS87]. They show that the above theorem holds for any family of operations on K-theory with supports satisfying conditions A1) through A4) in Section 4.11 of [GS87]. Thus, the authors of [BMTW16] need only show that the operations ψ^k defined above satisfy these conditions, and they prove this in Theorem 3.7 of [BMTW16] (note that Theorem 3.7 of [BMTW16] is proven only in the setting of affine schemes, but this is enough to conclude the above theorem; see Remark 3.8 of [BMTW16]).

4. Compatibility of Adams operations

Let $Q := \mathbb{C}[x_1, \ldots, x_n]$, let $m := (x_1, \ldots, x_n)$, and let $f \in m \smallsetminus \{0\}$. The goal of this section is to exhibit a precise sense in which the Adams operations on $K^Y_0(f)(Q)$ are compatible with Adams operations on topological K-theory.

4.1. The Milnor fibration. By well-known theorems of Lê and Milnor ([Lê76], [Mil68]), there exist $\epsilon > 0$ and $0 < \delta' \ll \epsilon$ such that, if

- $B \subseteq \mathbb{C}^n$ denotes the closed ball centered at the origin of radius ϵ', where $0 < \epsilon' < \epsilon$, and
- $D^* \subseteq \mathbb{C}$ denotes the open disk of radius δ' centered at the origin with the origin removed, where $0 < \delta' < \delta$,

the map $\psi : B \cap f^{-1}(D^*) \rightarrow D^*$ given by $x \mapsto f(x)$ is a fibration, called the Milnor fibration of f. Choose such ϵ' and δ', choose $t \in D^*$, and set $F := \psi^{-1}(t)$. F is called the Milnor fiber of f. F is independent of the choices of ϵ', δ', and t up to homotopy equivalence.

We refer the reader to Chapter 3 of Dimca’s text [Dim12] for a detailed discussion of the Milnor fibration. We point out a key property of the Milnor fiber which we will use later on. Set

$$\mu := \dim_{\mathbb{C}} \mathbb{C}[x_1, \ldots, x_n]_m \frac{\partial f}{\partial x_1} \ldots \frac{\partial f}{\partial x_n},$$

the Milnor number of f at the origin. The following is a famous theorem of Milnor:

Theorem 4.1 (Mil68 Theorem 6.5). If $\mu < \infty$, F is homotopy equivalent to a wedge sum of μ copies of S^{n-1}.
4.2. Matrix factorizations. We recall some background on matrix factorizations in commutative algebra. Let S be a commutative ring, and let $w \in S$.

Definition 4.2. A *matrix factorization of w over S* is a pair of finitely generated projective S-modules F_0, F_1 equipped with maps $$d_0 : F_0 \to F_1, \quad d_1 : F_1 \to F_0$$ such that $d_1 d_0 = w \cdot \text{id}_{F_0}$ and $d_0 d_1 = w \cdot \text{id}_{F_1}$. We denote matrix factorizations by (F_0, F_1, d_0, d_1).

One may form the *homotopy category of matrix factorizations* $\mathcal{MF}(S, w)$ with objects given by matrix factorizations of w over S; see Definition 2.1 of [Dyc11] for the definition of $\mathcal{MF}(S, w)$.

Assume S is regular of finite Krull dimension and w is a non-unit, non-zero-divisor of S. In this case, $\mathcal{MF}(S, w)$ may be equipped with a canonical triangulated structure; see Section 3.1 of [Orl03] for details. In fact, setting $T := S/(w)$, there exists an equivalence of triangulated categories $$\mathcal{MF}(S, w) \xrightarrow{\cong} D^b(T)/\text{Perf}(T),$$ where the right-hand side is the Verdier quotient of the bounded derived category of T by the triangulated subcategory consisting of perfect complexes ([Orl03] Theorem 3.9). The equivalence sends a matrix factorization (F_0, F_1, d_0, d_1) to the complex with $\text{coker}(d_1)$ concentrated in degree 0.

4.3. Compatibility. Set $R := Q/(f)$, where Q, f are as in the beginning of this section. Our next goal is to define a group homomorphism $$\gamma : K_0^{V(f)}(Q) \to L(B, F),$$ that is compatible with Adams operations, where B, F are as defined in Section 4.1. We proceed as follows:

- By Lemma 1.9 of [GS87], there exists an isomorphism $r : G_0(R) \xrightarrow{\cong} K_0^{V(f)}(Q)$ that sends a class represented by a module M to the class represented by a finite Q-free resolution of M.
- We recall that the Grothendieck group of a triangulated category \mathcal{T} is the free abelian group on isomorphism classes of objects in \mathcal{T} modulo relations given by exact triangles. Let $K_0[\mathcal{MF}(Q, f)]$ denote the Grothendieck group of the triangulated category $[\mathcal{MF}(Q, f)]$. The equivalence $[\mathcal{MF}(Q, f)] \xrightarrow{\cong} D^b(R)/\text{Perf}(R)$ discussed in Section 4.2 yields an isomorphism $K_0[\mathcal{MF}(Q, f)] \xrightarrow{\cong} G_0(R)/\text{im}(K_0(R) \to G_0(R))$. In particular, we have a surjection $$s : G_0(R) \to K_0[\mathcal{MF}(Q, f)].$$
- Let $E = (F_0, F_1, d_0, d_1)$ be a matrix factorization of f over Q. The following construction, introduced by Buchweitz-van Straten in [BvST12], associates a class in $L(B, F)$ to the matrix factorization E.

Denote by $C(B)$ the ring of \mathbb{C}-valued continuous functions on B. Applying extension of scalars along the inclusion $$Q \hookrightarrow C(B),$$ we obtain a map $$F_1 \otimes_Q C(B) \xrightarrow{d_1 \otimes \text{id}} F_0 \otimes_Q C(B)$$ of finitely generated free $C(B)$-modules. The category of complex vector bundles over B is equivalent to the category of finitely generated free $C(B)$-modules; on objects, the equivalence sends a bundle to its space of sections. Let $$V_1 \xrightarrow{d_1} V_0$$
be a map of vector bundles over B corresponding to the above map $d_1 \otimes \text{id}$ under this equivalence. Recall that $t \in \mathbb{C}$ is the value over which we defined the Milnor fiber F. Since $d_1 \circ d_0 = f \cdot \text{id}_F$, and $d_0 \circ d_1 = f \cdot \text{id}_F$, and since the restriction of the polynomial f, thought of as a map $\mathbb{C}^n \to \mathbb{C}$, to $F = B \cap f^{-1}(t)$ is constant with value $t \neq 0$, $d_1 \vert_F$ is an isomorphism of vector bundles on F. Its inverse is the restriction to F of the map $V_0 \to V_1$ determined by

$$F_0 \otimes \mathbb{Q} C(B) \xrightarrow{\frac{1}{d_0} \cdot \text{id}} F_1 \otimes \mathbb{Q} C(B).$$

Define $\Phi(E)$ to be the class in $L(B, F)$ represented by the complex $0 \to V_1 \xrightarrow{d_1} V_0 \to 0$. By (the complex version of) Proposition 3.19 of [Bro15], Buchweitz-van Straten’s construction $E \mapsto \Phi(E)$ induces a group homomorphism

$$\phi : K_0[\text{MF}(Q, f)] \to L(B, F).$$

Finally, we define $\gamma : K_0^{(f)}(Q) \to L(B, F)$ to be the composition

$$K_0^{(f)}(Q) \xrightarrow{r^{-1}} G_0(R) \xrightarrow{\phi} K_0[\text{MF}(Q, f)] \xrightarrow{\phi} L(B, F).$$

Now, suppose $0 \to F_1 \xrightarrow{d_1} F_0 \to 0$ is a Q-projective resolution of an R-module M. Then $r^{-1}(0 \to F_1 \xrightarrow{d_1} F_0 \to 0) = [M]$, and $s([M])$ is of the form $[F_1, F_0, d_1, d_0]$ for some map $d_0 : F_0 \to F_1$. Let $V_1 \xrightarrow{d_1} V_0$ be a map of vector bundles over B corresponding to the map

$$F_1 \otimes \mathbb{Q} C(B) \xrightarrow{d_1 \otimes \text{id}} F_0 \otimes \mathbb{Q} C(B)$$

of free $C(B)$-modules, as in the third bullet above. Then one has

$$\gamma([0 \to F_1 \xrightarrow{d_1} F_0 \to 0]) = [0 \to V_1 \xrightarrow{d_1} V_0 \to 0].$$

Using the isomorphisms

$$r : G_0(R) \xrightarrow{\cong} K_0^{(f)}(Q), \quad K_0[\text{MF}(Q, f)] \xrightarrow{\cong} G_0(R) / \text{im}(K_0(R) \to G_0(R)),$$

it is easy to see that classes of the form $[P]$, where P is a two-term Q-free resolution of an R-module M, generate $K_0^{(f)}(Q)$ as an abelian group. Thus, the following is immediate from the constructions of the Adams operations on $K_0^{(f)}(Q)$ and $L(B, F)$ discussed above:

Proposition 4.3. If p is prime and $X \in K_0^{(f)}(Q)$, $\gamma(\psi^p(X)) = \psi^p(\gamma(X))$.

Remark 4.4. Let g be an element of Q such that $g \notin \mathfrak{m}$. Suppose that, in the construction of the Milnor fiber, ϵ' is chosen to be so small that $B \cap g^{-1}(0) = \emptyset$. Then one may define maps

$$r_g : G_0(R_g) \xrightarrow{\cong} K_0^{(f)}(Q_g), \quad s_g : G_0(R_g) \to K_0[\text{MF}(Q_g, f)], \quad \phi_g : K_0[\text{MF}(Q_g, f)] \to L_1(B, F)$$

in exactly the same way as in the three bullets above. Set $\gamma_g := \phi_g s_g r_g^{-1}$. If p is prime, one has $\gamma_g \psi^p = \psi^p \gamma_g$, by the same reasoning as above.

5. **Proof of Theorem 1.3**

Proof of Theorem 1.3 Choose $g \notin \mathfrak{m}$ such that R_g has an isolated singularity only at \mathfrak{m}; that is, such that $(R_g)_g$ is regular for all $p \in \text{Spec}(Q_g) \setminus \mathfrak{m}$. Without loss of generality, assume that, in the construction of the Milnor fiber F in Section 4.1, ϵ' is chosen to be so small that $B \cap g^{-1}(0) = \emptyset$. Let r_g, s_g, ϕ_g, and γ_g be defined as in Remark 4.4. Also, let $s_m : G_0(R_m) \to K_0[\text{MF}(Q_m, f)]$ denote the surjection defined in the same way as the map s in the second bullet of Section 4.3.

By Theorem 4.11 of [Dye11], the functor $[\text{MF}(Q_g, f)] \to [\text{MF}(Q_m, f)]$ induced by extension of scalars along the localization map $Q_g \to Q_m$ is an equivalence; let $l : K_0[\text{MF}(Q_g, f)] \xrightarrow{\cong} K_0[\text{MF}(Q_m, f)]$ denote the induced isomorphism on Grothendieck groups. By Propositions 4.1
and 4.2 of [BvS12], if \(\phi_g \circ l^{-1} \circ s_m \)(\([M]\)) = 0, then \(\theta(M, N) = 0 \). Let \(M' \) be an \(R_g \)-module such that \(s_g([M']) = (l^{-1} \circ s_m)([M]) \), and let \(P \) be a finite \(Q_g \)-free resolution of \(M' \). It suffices to show \(\gamma_g([P]) = 0 \).

Let \(p \) be a prime. Define

\[
m = \begin{cases}
\frac{n}{2} + 1 & \text{if } n \text{ is even} \\
\frac{n+1}{2} & \text{if } n \text{ is odd}
\end{cases}
\]

By Theorem 3.1, \([P] \in \bigoplus_{i=m}^{n} K_0^V(Q_g)^{(i)} \). Thus, Remark 4.4 and the commutativity of diagram (2.3) imply

\[
(ch \circ \chi \circ \gamma_g)([P]) \in \bigoplus_{i=m}^{n} H^{2i}(B/F; \mathbb{Q}) \cong \bigoplus_{i=m}^{n} H^{2i}((\Sigma F); \mathbb{Q}),
\]

where \(\Sigma F \) denotes the suspension of \(F \). By Theorem 4.1, \(H^i(\Sigma F; \mathbb{Q}) = 0 \) when \(i > n \); thus, \((ch \circ \chi \circ \gamma_g)([P]) = 0 \), and so \(\gamma_g([P]) = 0 \).

\[\square\]

References

[Ati66] Michael Francis Atiyah, *Power operations in K-theory*, The Quarterly Journal of Mathematics 17 (1966), no. 1, 165–193.

[Ati67] MF Atiyah, *K-theory*, vol. 2, WA Benjamin New York, 1967.

[BMTW16] Michael K Brown, Claudia Miller, Peder Thompson, and Mark E Walker, *Cyclic Adams operations*, arXiv preprint arXiv:1601.05072 (2016).

[Bro15] Michael K Brown, *Knörrer periodicity and Bott periodicity*, arXiv preprint arXiv:1507.03329 (2015).

[BvS12] Ragnar-Olaf Buchweitz and Duco van Straten, *An index theorem for modules on a hypersurface singularity*, Mosc. Math. J 12 (2012), no. 2, 237–259.

.Dao13] Hailong Dao, *Decent intersection and Tor-rigidity for modules over local hypersurfaces*, Transactions of the American Mathematical Society 365 (2013), no. 6, 2803–2821.

[Dim12] Alexandru Dimca, *Singularities and topology of hypersurfaces*, Springer Science & Business Media, 2012.

[DK14] Hailong Dao and Kazuhiko Kurano, *Hochster’s theta pairing and numerical equivalence*, Journal of K-theory: K-theory and its Applications to Algebra, Geometry, and Topology 14 (2014), no. 03, 495–525.

[Dyc11] Tobias Dyckerhoff, *Compact generators in categories of matrix factorizations*, Duke Mathematical Journal 159 (2011), no. 2, 223–274.

[GS87] H. Gillet and C. Soulé, *Intersection theory using Adams operations*, Inventiones Mathematicae 90 (1987), 243–277.

[Hau09] Olivier Haution, *Steenrod operations and quadratic forms*, Ph.D. thesis, 2009.

[Hoc81] Melvin Hochster, *The dimension of an intersection in an ambient hypersurface*, Algebraic geometry, Springer, 1981, pp. 93–106.

[Lê76] Đặng Tráng Lê, *Some remarks on relative monodromy*, Centre de mathématiques de l’École polytechnique, 1976.

[Mil68] John Willard Milnor, *Singular points of complex hypersurfaces*, no. 61, Princeton University Press, 1968.

[MPSW11] W Frank Moore, Greg Piepmeyer, Sandra Spiroff, and Mark E Walker, *Hochster’s theta invariant and the Hodge–Riemann bilinear relations*, Advances in Mathematics 226 (2011), no. 2, 1692–1714.

[Ori03] Dmitri Orlov, *Triangulated categories of singularities and D-branes in Landau-Ginzburg models*, arXiv preprint math/0302304 (2003).

[PV12] Alexander Polishchuk and Arkady Vaintrob, *Chern characters and Hirzebruch–Riemann–Roch formula for matrix factorizations*, Duke Mathematical Journal 161 (2012), no. 10, 1863–1926.

[Seg68] Graeme Segal, *Equivariant K-theory*, Publications Mathématiques de l’IHÉS 34 (1968), 129–151.