The data presented in this article are related to the research article entitled “How is wood-based pellet production affecting forest conditions in the southeastern United States?” (Dale et al., 2017) [1]. This article describes how United States Forest Service (USFS) Forest Inventory and Analysis (FIA) data from multiple state inventories were aggregated and used to extract ten annual timberland variables for trend analysis in two case study bioenergy fuelshed areas. This dataset is made publically available to enable critical or extended analyses of changes in forest conditions, either for the fuelshed areas supplying the ports of Savannah, Georgia and Chesapeake, Virginia, or for other southeastern US forested areas containing these variables.
tributing biomass to the export wood pellet industry.

© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Specifications Table

Subject area	Forestry, Ecology, Renewable energy
More specific subject area	Effect of bioenergy wood pellet production on forest conditions
Type of data	Tables, Figures
How data were acquired	USDA Forest Service (USFS) Forest Inventory and Analysis (FIA) annual inventory data and associated uncertainty values were obtained using the online USFS EVALIDator tool in conjunction with custom queries.
Data format	Raw, Analyzed
Experimental factors	Two Southeastern US case study fuelshed areas were defined and used to test for changes in ten timberland variables derived from annual FIA estimates (2002–2014) extracted and aggregated across multiple state inventories.
Experimental features	A hypothesis of no change was used to evaluate trends in timberland characteristics for each fuelshed pre- and post-2009 pellet production
Data source location	Southeastern United States. Two fuelshed regions centered on ports in Savannah, Georgia, 32°10′ N; 81°7′ W and Norfolk, Virginia, 36°55′ N; 76°12′ W
Data accessibility	The data are available with this article

Value of the data

- The dataset presents ten landscape-scale characteristics of timberland health that can be used by other researchers for multiple purposes.
- The methods used to aggregate FIA data across US state lines for fuelshed-scale change detection can be used to extend the statistical analyses to other locations (e.g., other SE US fuelsheds).
- These data and methods will allow other researchers to extend the statistical analyses into the future as more annual FIA data become available.

1. Data

Annual timberland characteristics and associated uncertainty values derived from USDA Forest Service (USFS) Forest Inventory and Analysis (FIA) annual inventory data [2] for years 2002–2014 are provided for two forested areas supplying bioenergy wood pellets shipped out of the ports of Savannah, Georgia, and Chesapeake, Virginia, in the southeastern United States (SE US). The annual estimates provided for each fuelshed include timberland volume of naturally regenerating stands (‘natural stands’) and plantations (Table 1), timberland area by stand-size class (Table 2), number of standing dead trees per hectare of timberland for natural stands and plantations (Table 3), and millions of metric tons of carbon calculated for three carbon pools (Table 4). A summary of all ten annual timberland variables and outlier values is provided for each fuelshed (Tables 5–7).
2. Experimental design, materials and methods

2.1. Fuelshed delineation

Two SE US case study fuelsheds were defined and used to extract and aggregate the annual FIA data (Tables 1–7). First, the locations of existing export wood pellet mills in the vicinity of the ports of Savannah, Georgia, and Chesapeake, Virginia, were identified by way of data purchased from Forisk Consulting (Table 8). These ten pellet mill locations were then used to identify counties located within a radius of 120 km (75 miles), the industry standard biomass sourcing distance [3]. Finally, the selected counties were used to define two SE US biomass supply areas (Fig. 1) known as the Chesapeake fuelshed (Fig. 2) and the Savannah fuelshed (Fig. 3).
Table 2
Annual estimates (2002–2014) of timberland area by stand-size class for the Chesapeake (a) and Savannah (d) fuelsheds, including the sampling error percent (b, e) and number of plots associated with each value (c, f). The Chesapeake fuelshed estimates for years 2004 and 2008 are not provided due to missing Virginia inventory. Stand-size class (i.e., diameter) definitions are provided in Section 4.2.2.

	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
a. Chesapeake fuelshed area of live trees on timberland (in thousands of hectares)													
Large diameter	554.85	555.71	528.78	426.77	544.58	558.56	603.06	601.64	578.98	617.49	622.16		
Medium diameter	258.86	239.40	194.90	178.75	219.07	259.05	209.04	256.77	249.57	253.23	248.17		
Small diameter	331.48	244.21	124.79	129.39	221.08	221.72	235.51	213.59	153.91	163.70	153.76		
b. Chesapeake fuelshed timberland area: sampling error percent (@ 95% confidence)													
Large diameter	11.6	11.7	11.7	13.3	11.7	11.4	11.1	11.0	11.3	11.3	10.9	10.7	
Medium diameter	17.3	17.7	19.9	20.5	18.6	17.1	18.8	17.3	17.5	17.5	17.2		
Small diameter	15.5	18.0	25.0	24.3	18.6	18.5	18.1	19.0	21.7	21.4	21.9		
c. Chesapeake fuelshed timberland area: number of plots included in estimate													
Large diameter	307	293	272	218	305	318	339	311	326	338			
Medium diameter	144	138	108	101	128	153	130	146	143	146	151		
Small diameter	176	139	73	76	133	135	133	126	99	99	102		
d. Savannah fuelshed area of live trees on timberland (in thousands of hectares)													
Large diameter	292.74	476.60	528.23	560.81	593.69	613.13	585.43	703.90	692.12	642.43	718.35	732.60	720.91
Medium diameter	196.03	326.44	372.98	421.20	498.42	470.11	406.70	414.73	401.98	443.08	492.33	388.06	400.62
Small diameter	194.16	364.49	333.73	379.63	427.22	446.22	317.20	399.83	387.65	397.02	349.67	352.87	372.30
e. Savannah fuelshed timberland area: sampling error percent (@ 95% confidence)													
Large diameter	16.4	12.7	12.1	11.7	11.3	11.2	11.3	10.4	10.3	10.9	10.1	10.0	
Medium diameter	19.9	15.4	14.5	13.3	12.5	12.9	13.8	13.6	13.7	13.2	12.4	13.9	13.7
Small diameter	20.3	14.8	15.1	14.2	13.4	13.3	15.7	13.9	14.0	13.9	14.8	14.6	14.3
f. Savannah fuelshed timberland area: number of plots included in estimate													
Large diameter	151	263	275	294	318	325	317	375	390	342	399	416	419
Medium diameter	107	182	206	245	275	250	225	234	238	250	289	236	243
Small diameter	108	194	193	216	243	247	176	226	217	226	202	202	221
2.2. FIA data queries

Freely available USFS FIA annual inventory data [2] were queried for the two SE US case study fuelshed areas (Figs. 1–3) using the online USFS EVALIDator tool, Version 1.6.0.03 [4]. A list of specific state inventory data evaluation IDs (EVALIDs) and years used to generate the annual estimates (Tables 1–7) is shown in Table 9 and discussed in Sections 2.2.1–2.2.4. When multiple EVALIDs were available for the same year, the estimates with the lowest sampling error percent values were selected.

To facilitate the aggregation and uncertainty analysis of FIA data across multiple state inventories, the following two custom SQL codes (one for each fuelshed area) were provided by USFS Southern Research Station (SRS) IT Specialist Helen Beresford on February 3, 2016:

Port: Chesapeake
Choose the evalid of interest for VA, NC
ADD THIS FILTER in the filter textbox:
and (plot.cty_cn) in (select cty_cn from ANL_SRS_FIA_DATA_REQUESTS.ORNL_FUELSHED_CO
where port='Chesapeake')

Port: Savannah
Choose the evalid of interest for FL, GA, SC
ADD THIS FILTER in the filter textbox:
and (plot.cty_cn) in (select cty_cn from ANL_SRS_FIA_DATA_REQUESTS.ORNL_FUELSHED_CO
where port='Savannah')

Table 3
Annual estimates (2002–2014) of standing-dead tree density for the Chesapeake (a) and Savannah (d) fuelsheds, including the sampling error percent (b, e) and number of plots associated with each value (c, f). The Chesapeake fuelshed estimates for years 2004 and 2008 are not provided due to missing Virginia inventory.

	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
a. Chesapeake fuelshed: number of standing dead trees per hectare of timberland													
Natural Stands	24.35	22.43	24.33	25.57	25.35	25.23	24.00	24.25	25.41	23.17	25.08		
Plantations	9.71	13.24	19.49	12.10	13.92	5.17	9.36	7.74	10.28	11.28	11.33		
b. Chesapeake fuelshed: sampling error percent (@ 95% confidence)													
Natural Stands	13.9	15.8	11.9	15.2	15.2	14.9	12.3	12.5	14.5	13.8	14.5		
Plantations	46.6	36.6	34.2	34.9	41.1	51.5	35.2	42.6	37.7	39.1	38.5		
c. Chesapeake fuelshed: number of plots included in estimate													
Natural Stands	231	215	288	156	214	221	233	232	203	218	230		
Plantations	29	40	55	29	35	21	38	33	39	42	40		
d. Savannah fuelshed: number of standing dead trees per hectare of timberland													
Natural Stands	13.32	12.22	15.44	13.62	14.30	12.67	18.15	16.10	15.27	16.96	16.88	18.63	19.75
Plantations	10.06	7.98	10.66	11.36	11.48	9.64	9.13	8.58	7.76	8.58	7.66	7.36	8.27
e. Savannah fuelshed: sampling error percent (@ 95% confidence)													
Natural Stands	20.0	17.1	16.0	15.1	14.9	15.8	19.7	18.6	15.4	18.1	15.4	22.3	15.5
Plantations	32.7	31.4	28.3	28.5	23.6	23.6	28.8	29.6	27.5	24.9	32.0	25.5	27.4
f. Savannah fuelshed: number of plots included in estimate													
Natural Stands	136	143	163	181	181	176	206	203	199	240	219	255	
Plantations	56	56	67	74	81	89	61	66	66	84	73	75	72
Table 4
Annual estimates (2002–2014) of timberland carbon storage for the Chesapeake (a) and Savannah (d) fuelsheds, including the sampling error percent (b, e) and number of plots associated with each value (c, f). The Chesapeake fuelshed estimates for years 2004 and 2008 are not provided due to missing Virginia inventory. Carbon pool definitions are provided in Section 4.2.4.

	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
a. Chesapeake fuelshed stored carbon (in millions of metric tons)													
Organic Soil & Leaf Litter	89.00	81.12	57.32	49.60	72.86	78.80	79.07	80.31	76.30	78.48	77.56		
Harvestable Material	70.95	70.95	66.35	51.94	68.23	72.90	74.81	78.09	71.64	83.60	82.54		
Non-Harvestable Material	13.70	12.79	10.89	9.13	11.99	13.04	13.01	13.54	12.47	13.65	13.45		

b. Chesapeake fuelshed stored carbon: sampling error percent (@ 95% confidence)													
Organic Soil & Leaf Litter	8.8	9.1	9.8	10.7	9.5	9.1	9.1	8.9	9.3	9.1	9.1		
Harvestable Material	10.1	10.4	10.7	11.8	10.4	9.9	10.0	9.9	10.3	10.0	9.9		
Non-Harvestable Material	8.7	9.2	9.7	10.6	9.3	9.0	9.0	8.9	9.2	8.9	9.0		

c. Chesapeake fuelshed stored carbon: number of plots included in estimate													
Organic Soil & Leaf Litter	554	511	405	349	483	508	508	521	486	506	509		
Harvestable Material	526	483	397	341	470	496	495	510	477	491	498		
Non-Harvestable Material	541	499	400	343	475	500	499	514	480	500	503		

d. Savannah fuelshed stored carbon (in millions of metric tons)													
Organic Soil & Leaf Litter	120.04	122.70	128.53	142.05	159.79	155.09	135.97	156.76	156.00	155.17	160.82	155.81	154.31
Harvestable Material	32.88	59.46	69.16	74.39	83.89	78.67	71.91	85.36	83.02	85.32	88.24	89.19	90.51
Non-Harvestable Material	13.58	13.12	13.92	15.18	17.07	16.96	14.50	16.94	16.34	16.59	17.23	16.66	16.90

e. Savannah fuelshed stored carbon: sampling error percent (@ 95% confidence)													
Organic Soil & Leaf Litter	8.6	8.8	8.5	7.9	7.6	7.6	7.6	7.6	7.6	7.4	7.5	7.5	
Harvestable Material	14.4	10.6	9.9	9.4	9.2	9.1	9.8	8.9	9.0	9.2	8.4	8.8	8.7
Non-Harvestable Material	8.8	9.0	8.7	8.2	7.8	7.7	8.4	7.8	7.8	7.9	7.5	7.8	7.7

f. Savannah fuelshed stored carbon: number of plots included in estimate													
Organic Soil & Leaf Litter	563	556	572	641	711	712	608	700	714	718	757	728	736
Harvestable Material	304	523	548	625	690	684	591	681	687	690	727	699	704
Non-Harvestable Material	549	544	560	627	696	695	595	686	701	702	742	713	723
To input these filters, the option to “Add Filter” was selected during the final step of each EVALIDator query request form found at https://www.fia.fs.fed.us/tools-data/.

The timberland subset of forested land was used for all of queries, and a “stand origin” row variable was sometimes used in order to examine changes separately for naturally regenerating forest stands (‘natural stands’) and plantations (i.e., forest showing "clear evidence of artificial regeneration") [1,2]. Results from multiple EVALIDator queries were aggregated within Excel spreadsheets to

Variable name	Variable description
Vol Nat	Volume of Natural stands (millions of cubic meters)
Vol Plan	Volume of Plantations (millions of cubic meters)
Hectares LD	Area of Large Diameter stands (thousands of ha)
Hectares MD	Area of Medium Diameter stands (thousands of ha)
Hectares SD	Area of Small Diameter stands (thousands of ha)
StDead Nat	Standing Dead trees in Natural stands (#/ha)
StDead Plan	Standing Dead trees in Plantations (#/ha)
Carbon SLL	Carbon in Soil & Leaf Litter (millions of metric tons)
Carbon HM	Carbon in Harvestable (live) woody Material (millions of metric tons)
Carbon NHM	Carbon in NonHarvestable (dead) woody Material (millions of metric tons)

Variable name	Variable description
Year	
Vol Nat	
Vol Plan	
Hectares LD	
Hectares MD	
Hectares SD	
StDead Nat	
StDead Plan	
Carbon SLL	
Carbon HM	
Carbon NHM	

Table 5
Timberland variable abbreviations used in Tables 6 and 7.

Table 6
Summary of ten annual timberland variables and outlier values (highlighted) calculated for the Chesapeake fuelshed. Variable abbreviations are explained in Table 5. Other abbreviations include: St Dev = standard deviation, OT A = outlier threshold using method A (i.e., 2 standard deviations below the mean), OT B = outlier threshold using method B (i.e., 1.5 times the interquartile range).
get annual variable sequences. Because sampling error was provided by the EVALIDator tool at a 67% confidence level, we multiplied each “sampling error percent” by 1.94 to determine the 95% confidence level (Tables 1–4). The number of plots included in each year’s estimate is based on the “Number of non-zero plots in estimate” provided by the EVALIDator tool (Tables 1–4).

2.2.1. Timberland volume estimates

For the timberland volume estimates (Table 1), the FIA estimate called “Net volume of live trees (at least 5 in. d.b.h./d.r.c.), in cubic feet, on timberland” was selected, and no denominator was used.
Evaluation Group A (years 2002 and 2003 only), B, C, and E were picked for the Chesapeake fuelshed, and Groups G, H, and I were used for the Savannah fuelshed (Table 9). The "Page variable" was set to "None", the "Row variable" was set to "Stand origin", and the "Column variable" was set to "Inventory year." Volume estimates were provided by the EVALIdator tool in cubic feet and converted to millions of cubic meters using the standard conversion factor of 0.028 m3 per cubic foot (Table 1a and d).

2.2.2. Timberland area estimates

For the timberland area values (Table 2), the FIA estimate called "Area of timberland, in acres" was selected and no denominator was used. Evaluation groups were then picked according to Groups A (2002 and 2003 only), D, and E (2014 only) for the Chesapeake fuelshed and Groups G, H, and I for the Savannah fuelshed (Table 9). The "Page variable" was set to "Stand-size class", the "Row variable" was set to "Stand origin", and the "Column variable" was set to "Inventory year." The FIA stand-size classes of large, medium, and small diameter trees were used as proxies for the relative ages of each stand. According to the USFS [2], large trees are at least 27.9 cm (11 in.) in diameter for hardwoods and at least 22.8 cm (9 in.) in diameter for softwoods. Medium trees are at least 12.7 cm (5 in.) in diameter for all trees, and smaller than large trees. Small trees are less than 12.7 cm (5 in.) in diameter. EVALIdator area estimates were converted from acres to thousands of hectares by using the standard conversion factor of 1 acre = 0.40468564 ha.
2.2.3. Standing-dead tree estimates

For the standing dead tree estimates (Table 3), the FIA estimate called “Number of standing-dead trees (at least 5 in. d.b.h./d.r.c.), in trees, on timberland” was selected along with a denominator of “Area of timberland, in acres.” Combined state inventory evaluation Groups A (2005), D (2006–2013) and E (2014) were used for the Chesapeake fuelshed, and Groups G, H, and I were used for the Savannah fuelshed (Table 9). The “Page variable” was set to “None”, the “Row variable” was set to “Stand origin”, and the “Column variable” was set to “Inventory year.” EVALIDator estimates were converted from number of trees per acre to number of trees per hectare by dividing the returned values by 0.40468564 ha per acre.

2.2.4. Carbon pool estimates

To calculate timberland carbon storage levels (Table 4), seven EVALIDator queries were combined to assess three primary carbon pools: (1) “Harvestable material” was quantified using the timberland estimate for “Above and belowground carbon in live trees (at least 1 in. d.b.h./d.r.c.).” (2) “Non-harvestable material” was defined as a composite of standing-dead trees, understory, and downed material and required adding together timberland estimates for “Aboveground carbon in live seedlings, shrubs, and bushes,” “Belowground carbon in live seedlings, shrubs, and bushes,” “Above and
belowground carbon in standing-dead trees (at least 1 in. d.b.h./d.r.c.)," and "Carbon in stumps, coarse roots, and coarse woody debris." (3) "Organic soil and leaf litter" was obtained by summing estimates of "Carbon in organic soil" and "Carbon in litter." State inventories from Groups D and F were used for the Chesapeake fuelshed, and EVALIDs from Groups G, H, and I were used for the Savannah fuelshed (Table 9). All carbon estimates were converted from short tons to millions of metric tons using the conversion factor of 0.90718474 metric tons per short ton. In Table 4, the presented sampling error percentages and included plot totals for "Nonharvestable material" are means of the individual estimates that were summed to get the carbon values.
Acknowledgements

This research was supported by the US Department of Energy (DOE) under the Bioenergy Technologies Office (DOE BETO Task # 4.2.2.40 of Agreement # 22601). Oak Ridge National Laboratory (ORNL) is managed by the UT-Battelle, LLC, for DOE under Contract DE-AC05-00OR22725. Special thanks to Helen Beresford, Jeff Turner, Tom Brandeis, and Sam Lambert of the USDA Forest Service Southern Research Station in Knoxville for their help with understanding and querying the Forest Inventory and Analysis (FIA) data. Thanks to Mithun Saha of Northeastern University for gathering the list of pellet mills used to generate the fuelshed areas for this analysis. And last, but not least, thank you to Latha Baskaran of ORNL and an anonymous reviewer for their comments on this manuscript.

Transparency document. Supplementary material

Transparency data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2017.05.048.
References

[1] V.H. Dale, E.E. Parish, K.L. Kline, E. Tobin, How is wood-based pellet production affecting forest conditions in the southeastern United States? For. Ecol. Manag. 396 (2017) 143–149.

[2] B.M. O’Connell, E.B. LaPoint, J.A. Turner, et al., The Forest Inventory and Analysis Database: Database Description and User Guide Version 6.0.1 for Phase 2, U.S. Department of Agriculture, Forest Service, 2014 (748 pages).

[3] P. Stewart, Wood Supply Market Trends in the US South: 1995–2015. Forest2Market, Inc. Report Prepared for the National Alliance of Forest Owners, 2015. (109 pages).

[4] P.D. Miles, Forest Inventory EVALIDator Web-application Version 1.6.0.03, U.S. Department of Agriculture, Forest Service, Northern Research Station, St. Paul, MN, 2016 (Available online at http://apps.fs.fed.us/Evalidator/evalidator.jsp), (Accessed 31 December 2016).