Application of copolymerization in preparation of superhydrophobic surfaces

Jinsheng Ma 1,a, Xiaoning Wang 1,b*, Rui Wang 1,c
1 School of Mechanical Engineering and Automation, Beijing University of Aeronautics and Astronautics, Beijing, China
aE-mail: mjs99@126.com, b*E-mail: wangxiaoning97@buaa.edu.cn
cE-mail: tch_wangr@buaa.edu.cn

Abstract. Superhydrophobicity refers to a wetting phenomenon in which the contact angle with water is greater than 150° and the sliding angle is less than 10°. Superhydrophobic surfaces have been extensively studied due to its self-cleaning, corrosion resistance, anti-icing, oil-water separation and other characteristics. Among the studies, copolymerization is one of the important methods in the preparation of superhydrophobic surfaces. In this paper, the mechanism of superhydrophobicity and the models are introduced. Then, in view of the three ways to obtain superhydrophobic surfaces through copolymerization - modification, directly synthesis of superhydrophobic Copolymer, preparation of superhydrophobic coatings or coatings - the methods are summarized, and the related applications are briefly described. Finally, possible future researching directions are summarized and prospected to provide reference for the application of copolymerization in preparation of superhydrophobic surfaces.

1. Introduction

Wettability is an important characteristic which is commonly described with hydrophobic and hydrophilic surface [1]. The hydrophobicity is often measured by the numerical values of the contact angle (CA) and sliding angle (SA) between the surface and water. Superhydrophobicity is a special surface wetting phenomenon whose contact angle is greater than 150° and sliding angle is less than 10° with water [2, 3]. This kind of surface is considered to have a wide application prospect due to its self-cleaning, corrosion resistance, anti-icing, oil-water separation [3-5] and other characteristics. The construction of superhydrophobic surfaces often requires two conditions: first, to reduce the free energy of the material surfaces; second, to construct a rough microstructure on the material surfaces [1, 6, 7]. The following summarizes the wettability models of superhydrophobicity surfaces and introduces the development of superhydrophobic theories.

1.1. Young’s equation - ideal surface

The Young's equation is mainly applicable to the calculation of the contact angle of water droplets dripping on an ideal homogeneous smooth surface [8], in which the contact angle is expressed by θ_y:

$$\cos \theta_y = \frac{y_{st} - y_{stl}}{y_{stl}}$$

in (1), y_{st}, y_{stl}, y_{stl} are the interfacial tensions of solid-gas, solid-liquid, and liquid-gas interfaces, respectively. It can be found that he surface is hydrophilic when the contact angle is less than 90°, and hydrophobic when the contact angle is greater than 90°.
1.2. Wenzel model and Cassie-Baxter model - rough surface

For real material surfaces, roughness is inevitable. Therefore, it is necessary to introduce the concept of sliding angle, or contact angle lag \[5, 9\].

The sliding angle refers to the tilt angle of the droplet when it happens to roll on an inclined solid surface, which is numerically equal to the difference between the forward angle \(\theta_f \) and the retreat angle \(\theta_r \). The forward angle refers to the contact angle at the moment when the solid-liquid contact area is about to increase, while the retreat angle refers to that at the moment when it is about to decrease \[6\]. The smaller the sliding angle, the smaller the viscous force of the droplet to the surface, and otherwise, the easier it is to adhere to the surface.

Wenzel model proposed that:

\[
\cos \theta_w = r \cdot \cos \theta_y \tag{2}
\]

In (2), \(\theta_w \) refers to the apparent contact angle, \(\theta_y \) refers to the intrinsic contact angle of the ideal smooth surface, and \(r \) refers to the surface roughness. When the surface roughness increases, the hydrophobicity of a hydrophobic surface or the hydrophilicity of a hydrophilic surface also increases. Because the Wenzel model is only suitable for the case of complete infiltration of droplets on the surface.

The Cassie-Baxter model considers the presence of air when the droplet contacts the solid surface \[10\], and proposed based on the Wenzel model that:

\[
\cos \theta_c = f \cdot \cos \theta_y + f - 1 \tag{3}
\]

In (3), \(\theta_c \) is the apparent contact angle, \(\theta_y \) is the intrinsic contact angle of the surface, \(f \) is the percentage of the solid-liquid interface area to the total area \[11\]. Therefore, reducing the solid-liquid interface area (increasing the solid-gas interface area) will increase the surface hydrophobicity.

The illustration of the three models is shown in Figure 1.

![Figure 1](image.png)

2. Preparation of superhydrophobic surfaces by copolymerization

Copolymerization refers to the polymerization of two or more compounds into a substance under certain conditions. Generally, there are three situations in which a superhydrophobic surface is obtained by copolymerization - modification, directly synthesis of superhydrophobic Copolymer, and preparation of superhydrophobic coatings or coatings.
2.1. Surface modification
There are about two methods for superhydrophobic modification of surfaces. One is to copolymerize the materials with low surface free energy on the rough surfaces, the other is to construct rough micro-nanostructures on the surfaces of hydrophobic materials. In modification, it is often achieved by free radical graft copolymerization on the surfaces.

Table.1 Surface modification

Name	Method	Raw Materials	Result
Zhao Li et al. [12]	copolymerization	α-methylstyrene (AMS), butyl methacrylate (BMA), multi-walled carbon nanotubes (MWCNT)	AMS-co-BMA (PAB) contact angle = 165°
			sliding angle < 3°
Wang Meishu et al. [13]	copolymerization	polydimethylsiloxane (VPDMS), Octavinyl-T8-silsesquioxane (VPOSS), Polysiloxane, cotton fiber	contact angle = 164°
			microstructure observed by SEM
Taijun He et al. [14]	micro-nanostructure	trifluoro ethyl methacrylate, divinylbenzene, PET saturated polyester fabric	Stable superhydrophobic property
			contact angle = 161°
			sliding angle = 8°
Wang Qingjun et al. [15]	radiation-induced	hexafluoro propene / ethyl methacrylate (HFP/EMA)	contact angle = 153°
	copolymerization		

2.2. Copolymer synthesis
In addition to modification, superhydrophobic surfaces can also be obtained by direct preparation of superhydrophobic copolymers, in which the emulsion and solution polymerization method are often used, getting required superhydrophobic copolymers through repeated washing, filtration and precipitation. Among the studies, the preparation of fluorinated acrylate copolymers is the most common.

Table.2 Copolymer synthesis

Name	Method	Raw Materials	Result
Wei Haiyang et al. [16]	microemulsion	perfluoroalkyl ethyl acrylate, methyl methacrylate	contact angle = 151°-160°
	polymerization		
Gao Chen et al. [17]	microemulsion	methyl methacrylate (MMA), butyl acrylate (BA), 7.6% fluorinated acrylate	contact angle = 158°
	polymerization		
Xianqian Shang et al. [20]	microemulsion	Vinyl functional SiO2 particles (Vinyl−SiO2), styrene (St), And tridecafluoroctyl methacrylate (FOMA)	contact angle = 171° (highest in the current studies)
	polymerization		
Xiaoyan Li et al. [18]	solution polymerization	methacrylic acid, methyl methacrylate, perfluoroalkyl ethyl methacrylate	contact angle = 157°
	polymerization		
Wang Jing [19]	solution polymerization	2-acrylamide-2-methylpropanesulfonic acid (AMPS) with sulfonic group, fluorine-containing monomer hexafluoro butyl acrylate (F6BA), functional monomer γ-glycidyl methacrylate (GMA) with epoxy group/ long-chain alkyl monomer octadecyl acrylate (SA), Polyaniline (PANI)	contact angle = 163.4°
	polymerization		

2.3. Preparation of superhydrophobic coatings and paints
The preparation of superhydrophobic coatings and paints reduces the cost of superhydrophobic properties, which works simply by attaching the coating to the surfaces of the material that has the need for waterproofing. AhmedMeskini et al. [21] had obtained cyanide containing fluorovinyl ether by free radical homopolymerization, realizing the preparation of superhydrophobic coatings.
Table 3: Preparation of superhydrophobic coatings and paints

Name	Method	Raw Materials	Result
Ozbay et al. [22]	fluorinated organics	hydrophilic and hydrophobic fumed silica powder, perfluoroalkyl ethyl acrylate	contact angle = 162°
		(Zonyl TA-N), styrene-butadiene rubber (SBR)	
Yanan Xing et al. [23]	fluorinated organics	perfluoroalkyl ethyl acrylate, 3-(trimethoxy methyl silyl) propyl methacrylate	contact angle = 152°
		, cotton fabric	
Lifen Hao et al. [24]	fluorinated organics	nano-SiO2 comb-like fluorosilicone copolymer (FPFAS-SiO2)	contact angle = 163.5°, sliding angle = 7°, micro-nano composite structure
Benfeng Zhu et al. [25]	surface microstructure	acrylate monomer, vinyl trimethoxysilane (VTMS), silanized polyacrylate (PSA),	contact angle = 155.7°, sliding angle = 4°
		hydroxyl-terminated polydimethylsiloxane (HTPDM), silanized polyacrylate (CPA)	
Zhang Jing et al. [26]	superhydrophobic coating	epoxy resin (EP), hydroxyl-terminated polymethylphenylsiloxane (HT-PMPS), SiO2	contact angle = 154°, sliding angle = 5° (After soaking for 15 h, contact angle = 151°; after soaking for 50 h, contact angle = 132°)
	copolymerization	particles, MWCNTs	
Zhengguang Sun et al. [27]	superhydrophobic coatings	fumed silica, phenyltrimethoxysilane (PhTMS)-(2,3-propylene oxide) propyltrimethoxysilane (EPTMS)	contact angle = 156.1°, sliding angle = 3°
Yifan Si et al. [28]	mussel adhesion	trimethylsilyl group	an environmentally-friendly superhydrophobic coating

3. Preparation of superhydrophobic surfaces by copolymerization and its application

The application of superhydrophobic surfaces prepared by copolymerization mainly depends on its characteristics of waterproofing and oil-water separation. Due to limitations, the applications in corrosion resistance and anti-icing are relatively rare [4].

Name	Method	Raw Materials	Result
Hongyan Zhai et al. [29]	free radical copolymerization	methyl acrylate, hydroxyethyl methacrylate, dodecyl heptyl methacrylate,	excellent waterproof performance, light weight and good transparency
		vinyl trimethoxysilane, benzoyl peroxide	
Shouying Huang [30]	one-step copolymerization of mussel adhesion	polyurethane	superhydrophobicity and oil absorption
Qian Wei et al. [31]	in-situ polymerization	graphene (GE), FMS sponge	superhydrophobicity and superlipophilicity, contact angle = 158.9°
Iman Noshadi et al. [32]	copolymerization	divinylbenzene (DVB), sodium p-styrene sulfonate	mesoporous polymer solid acid catalyst (p-PDVB-SO3H) which showed superhydrophobicity and lipophilicity to triolein and methanol
Qi Sun et al. [33]	copolymerization	Nmurp-styrene sulfonyl-1-diphenyl ethylenediamine (V-TsDPEN), divinylbenzene	highly efficient trimethylbenzene (TsDPEN-Ru)

4. Summary and prospect of preparing superhydrophobic surfaces by copolymerization

The preparation process of superhydrophobic surfaces by copolymerization is relatively mature. In addition to the improvement of hydrophobicity, it also involves the stability and tolerance of superhydrophobic surfaces, the applicability of modification methods and even the environmental protection. In addition, in terms of the hydrophobic forms, asymmetric and switchable superhydrophobic surfaces also have great research significance.
4.1. Development of asymmetric superhydrophobic surfaces

In the process of material development, asymmetric surfaces have significant research value due to broadening the scope of materials’ application. Its preparation mainly depends on polymer coating, interfacial condensation, plasma polymerization, dynamic formation or surface modification to make an extremely thin layer attached to different supporting layers. The methods of obtaining superhydrophobic surfaces by polymer coating has been introduced detailedly in the “2.3. preparation of superhydrophobic coatings and paints”, but the researches on other methods to develop asymmetric surfaces are relatively lacking.

Table 5 Asymmetric superhydrophobic surfaces

Name	Method	Raw Materials	Result
Guanghui Xi et al.	copolymerization	methacrylic acid 2, 2, trifluoroethyl ester, 2-trifluoroethyl methacrylate(TFMA), 2-isocyanate ethyl ester (IEM), divinylbenzene (DVB), cotton fabric	Superhydrophobicity contact angle = 151°
Yuan Gao et al.	Graft copolymerization	water-soluble polyvinyl alcohol (PVA), perfluoro-2-dimethyl-3-dimethyl-3-dioxononoyl fluoride	PVA asymmetric membrane contact angle = 126°

4.2. Development of switchable superhydrophobic surfaces

The switchable superhydrophobic surfaces makes the hydrophobicity of the material surfaces reversible under certain conditions. This kind of surfaces broadens the application range of superhydrophobic surfaces and superhydrophobic materials due to its higher flexibility.

Table 6 Switchable superhydrophobic surfaces

Name	Method	Raw Materials	Result
Thierry Darmanin et al.	copolymerization	EDOT monomer containing carboxyl group (EDOT-COOH), EDOT monomer containing dodecyl chain (EDOT-O-H12)	reversible superhydrophobic surface
Gabriela Ramos Chagas et al.	pH treatment	carboxyl groups, Py-COOH, Py-nF6	reversible superhydrophobicity
Sabri Taleb et al.	electrochemical	3,4-ethylenedioxyppyrole (EDOP) derivatives, fluorinated chains, pyridinium groups	reversible hydrophobic surface
Haiguang Zhu et al.	Free radical	melamine-formaldehyde, methacrylate monomer	SP-MF sponge contact angle = 155.5°

In summary, there is a large research space for process and technical means in the developing for asymmetric superhydrophobicity. Finding suitable materials and developing asymmetric superhydrophobic surfaces are elements in current researches. For switchable superhydrophobic surfaces, the hydrophobicity of the current surfaces varies due to the differences in acid-base, voltage, radiation etc. Reducing the switching threshold of hydrophobicity is an issue requiring in-depth studies.

References
[1] X B Li, et al. Control and preparation technology of material surface wettability [J]. Materials Engineering, 2008.
[2] R Hou, et al. Application of polymer phase separation technology in the preparation of superhydrophobic surfaces [J]. Progress in Chemical Industry, 2020.
[3] Hoooda A, et al. A review on fundamentals, constraints and fabrication techniques of superhydrophobic coatings[J]. Progress in Organic Coatings, 2020.
[4] W Tong, et al. Development and application of biomimetic superhydrophobic surface [J]. Journal of Inorganic Materials, 2019.
[5] Y D Ding, et al. Progress in preparation and mechanical durability of superhydrophobic surfaces on metal substrates [J]. Surface Technology,.
[6] R Ma, et al. Superhydrophobic material constructed by inorganic special surface structure [J]. Progress in Chemical Industry, 2019.
[7] Ma M L., et al. Superhydrophobic surfaces[J]. Current Opinion in Colloid & Interface Science, 2006, 11(4): 193-202.
[8] Maghsoudi K, et al. Advances in the Fabrication of Superhydrophobic Polymeric Surfaces by Polymer Molding Processes[J]. Industrial & Engineering Chemistry Research, 2020.
[9] X Liu. Research progress on the application of superhydrophobic structure to textiles [J]. Printing and dyeing auxiliaries, 2019.
[10] Bayer I S. Superhydrophobic Coatings from Ecofriendly Materials and Processes: A Review[J]. Advanced Materials Interfaces, 2020.
[11] LX Wang, et al. Research and analysis of biomimetic prototype preparation technology for superhydrophobic surface [J]. Journal of Hebei University of Science and Technology, 2020.
[12] L Zhao, et al. Preparation of superhydrophobic surface of carbon nanotubes grafted with α-methylstyrene copolymer [J]. Polymer Bulletin, 2013.
[13] MS Wang, et al. Super hydrophobic cotton fabric was prepared by organosilicon graft polymerization [J]. Fine Chemical, 2020.
[14] T J He, et al. Fabrication of durable superhydrophobic surfaces of polyester fabrics via fluorination-induced grafting copolymerization[J]. Applied Surface Science, 2020.
[15] Q J Wang, et al. Preparation of super water-repellent membrane by radiation-induced copolymerization[J]. Surface & Coatings Technology, 2006.
[16] H Y Wei, et al. Superhydrophobic films were prepared from fluorinated acrylate random copolymers [J]. Journal of Polymers, 2008.
[17] C Gao, et al. Superhydrophobic acrylate copolymer was prepared by microemulsion copolymerization [J]. Journal of Sichuan Institute of Technology (Natural Science Edition), 2019.
[18] X Y Li, et al. Preparation and superhydrophobicity of fluorinated acrylate copolymers with carboxyl groups [J]. Journal of Chemistry, 2011.
[19] J Wang. Preparation and anticorrosion of superhydrophobic Polyamine micro / nanostructures modified by self-made copolymers [D]. Shaanxi University of Science and Technology, 2019.
[20] Q Q Shang, et al. Preparation and characterization of superhydrophobic SiO2/ fluoropolymer composites [J]. Polymer Materials Science and Engineering, 2014.
[21] Meskini A, et al. Unexpected Alternated Radical Copolymerization of Vinylidene Cyanide with a Fluorinated Vinyl Ether for Superhydrophobic and Highly Oleophobic Films[J]. Macromolecules, 2009.
[22] Ozbay S, et al. Superhydrophobic and oleophobic surfaces obtained by graft copolymerization of perfluoroalkyl ethyl acrylate onto SBR rubber[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2015.
[23] Yanan Xing, et al. Preparation and properties of super-hydrophobic super-hydrophobic coating [J]. Journal of Qilu University of Technology, 2018.
[24] L F Hao, et al. Synthesis and properties of nano-SiO2 hybrid comb-like fluorosilicon copolymers [J]. Printing and dyeing auxiliaries, 2015.
[25] B F Zhu, et al. Superhydrophobic coating with multiscale structure based on crosslinked silanized polyacrylate and nanoparticles[J]. Surface & Coatings Technology, 2017.
[26] J Zhang, et al. MWCNTs modified superhydrophobic composite coating and its chemical resistance [J]. Journal of Materials Science and Engineering, 2020.
[27] Z G Sun, et al. Facile fabrication of superhydrophobic coating based on polysiloxane emulsion[J]. Progress in Organic Coatings, 2017.
[28] Y F Si, et al. A multifunctional transparent superhydrophobic gel nanocoating with self-healing properties[J]. Chemical Communications, 2015.
[29] H Y Zhai, et al. Study on new fluorosilicon composites and their application in the field of electronic waterproofing [J]. Plastics Industry, 2019.
[30] S Y Huang. Mussel-Inspired One-Step Copolymerization to Engineer Hierarchically Structured
Surface with Superhydrophobic Properties for Removing Oil from Water [J]. Acs Applied Materials & Interfaces, 2014.

[31] Q Wei, et al. Preparation of superhydrophobic graphene / formaldehyde-melamine-sodium bisulfite copolymer sponge and its application in oil-water separation [J]. Journal of Composite Materials, 2019, 36 (7): 1728-1736.

[32] Noshadi I, et al. Transesterification Catalyzed by Superhydrophobic-Oleophilic Mesoporous Polymeric Solid Acids: An Efficient Route for Production of Biodiesel [J]. Catalysis Letters, 2013.

[33] Q Sun, et al. Superhydrophobic, chiral, and mesoporous TsDPEN copolymer coordinated to ruthenium species as an efficient catalyst for asymmetric transfer hydrogenation [J]. Nano Today, 2013.

[34] G H Xi, et al. Fabrication of asymmetrically superhydrophobic cotton fabrics via mist copolymerization of 2,2,2-trifluoroethyl methacrylate [J]. Journal of Polymer Science Part a-Polymer Chemistry, 2015.

[35] Y Gao, et al. Preparation and properties of fluorinated polyvinyl alcohol film on asymmetric surface [J]. Membrane Science and Technology, 2012.

[36] Darmanin T, et al. pH- and Voltage-Switchable Superhydrophobic Surfaces by Electro-Copolymerization of EDOT Derivatives Containing Carboxylic Acids and Long Alkyl Chains [J]. Chemschem, 2013.

[37] Chagas G R, et al. pH-Driven Wetting Switchability of Electrodeposited Superhydrophobic Copolymers of Pyrene Bearing Acid Functions and Fluorinated Chains [J]. Chemschem, 2017.

[38] Taleb S, et al. Superoleophobic/superhydrophobic PEDOP conducting copolymers with dual-responsivity by voltage and ion exchange [J]. Materials Today Communications, 2016.

[39] H G Zhu, et al. A Robust Absorbent Material Based on Light-Responsive Superhydrophobic Melamine Sponge for Oil Recovery [J]. Advanced Materials Interfaces, 2016.