Controlled Atmosphere Storage for Pomegranates (Punica granatum L.): Benefits over Regular Air Storage

Harwinder Singh Sidhu1, Juan Carlos Díaz-Pérez2, and Daniel MacLean
Department of Horticulture, University of Georgia, 2360 Rainwater Road, Tifton, GA 31793-3766

Abstract. Controlled atmosphere (CA) storage has been observed to prolong the shelf life of fresh produce. The objective of this study was to determine whether CA storage performed better than regular air (RA) storage in maintaining fruit quality of six pomegranate (Punica granatum) cultivars grown in the state of Georgia. Pomegranate fruit produced in Ty Ty, GA in 2010 and 2011 were stored in CA [5% CO2 + 3% O2, 5°C, 90% to 95% relative humidity (RH)] or RA (5°C, 90% to 95% RH) for 3 months. Pomegranate whole fruit and juice were evaluated for various physical and chemical attributes at the end of storage. Fruit differed by cultivar for rind smoothness, fruit cracking, disease incidence, and chilling injury (CI). Fruit stored in CA had a smoother surface, less shriveled rind, lower CI, fewer disease severity symptoms, and better quality than fruit stored in RA. Fruit rind color, total soluble solids (TSS), titratable acidity (TA), and anthocyanin content in fruit juice were unaffected by storage method. The results showed that pomegranate fruit quality was better sustained under CA compared with RA storage.

Pomegranate (Punica granatum L.), a species of the Punicaceae family, is a fruit plant native to the region extending from Iran to the Himalayas (Holland et al., 2009). It is believed to be among the first fruit tree cultivated by humans in around 4000 BC in the Middle East. Pomegranate fruit are consumed fresh and are used for the production of juice, wine, and syrup. Increased awareness about the health benefits of the pomegranate tree and its products has possibly contributed to the worldwide increase in its production (Basu and Penugonda, 2009). Arils are the edible portion of fruit; they are the juicy pulp around the seeds formed from ovules present in the ovary of fertilized fruit (Shulman et al., 1984). Storing pomegranates adequately postharvest is crucial to maintaining a consistent supply of high-quality fruit in the marketplace.

Fruit quality comprises the physical and chemical attributes of fruit. Fruit physical attributes include fruit weight, rind smoothness, and rind shriveling, and are influenced by the presence of fruit physiologic disorders (e.g., sunscald), fruit diseases, and fruit mechanical damage. Fruit physical attributes may be affected by tree maturity, environmental conditions during fruit development, fruit maturity at time of harvest, and fruit diseases (Considine and Brown, 1981; Elyatem and Kader, 1984; Weerakkody et al., 2010). Fruit chemical attributes such as TSS, TA, and anthocyanin content may also be influenced by the same factors as the physical attributes (Kulkarni and Aradhya, 2005).

Postharvest storage conditions also affect fruit quality. Inadequate storage conditions are responsible for significant economic losses. High rates of fruit weight loss, resulting mainly from fruit water loss, may occur under high temperatures or low RH (Díaz-Pérez, 2019). A 5% fruit weight loss in pomegranate leads to visible fruit rind shriveling (Palou et al., 2007). Decay by pathogens such as Botrytis cinerea, Alternaria spp., and Aspergillus spp. causes significant fruit loss during storage (Kader and Mitcham, 1999). CI, observed as the development of browning in pericarp, arils, and seeds, can happen while storing fruit at less than 5°C under standard refrigerated conditions for more than 2 months. Moreover, chilled fruit become sensitive to fungal decay (Elyatem and Kader, 1984).

CA storage extends the shelf life of many tropical and subtropical fruit (Kader, 2003; Yahia, 2006). In CA, decreased O2 and increased CO2 concentrations, along with low temperatures reduce fruit respiration rate and ethylene production, suppress or delay senescence processes, and ultimately prolong postharvest shelf life (Gómez and Arétés, 2004; Kader and Watkins, 2000). Conditions in CA storage affect both host fruit and any pathogens on it. In CA storage, fruit show reduced decay either because the fruit have improved health that enables them to resist pathogen attacks or because CA conditions reduce pathogen ability to grow and spread (Conway et al., 2007; Lidster et al., 1983; Yackel et al., 1971). Storing pomegranate fruit at 2% to 4% O2 in air at 2 to 6°C has been observed to inhibit CI (Ben-Arie, 1986). Reductions in fruit water loss, CI, and fungal decay have been observed in pomegranate kept in CA storage (Artés et al., 1996; Caleb et al., 2012). Similarly, CA has outperformed modified packaging in preventing fruit decay in loquat (Eriobotrya japonica Lindl.) (Ding et al., 2006).

Recommendations for pomegranate storage have been cultivar specific (Küpper et al., 1995). Although 2 to 6°C is the typical storage temperature for regular pomegranates, storage at 10°C is the minimum safe storage temperature for sweet pomegranates. Storage at 10°C, however, is not effective in reducing fruit fungal decay (Palou et al., 2007). Pomegranates may show high postharvest losses as a result of fruit water loss and decay during storage. Thus, adequate postharvest storage is crucial for a reliable market supply of high-quality pomegranate fruit. There is limited information on postharvest storage of pomegranates grown in the southeastern United States. The objective of this study was to determine the effects of CA storage on the physical and chemical properties of pomegranate fruit of various cultivars grown in the state of Georgia.

Materials and Methods

Pomegranate fruit from six cultivars—Afganski, Crab, Cranberry, Entek-habi-saveh, Kaj-acik-anor, and Salavatski—were harvested on 6 Oct. 2010 (PF2010) and 5 Oct. 2011 (PF2011) from University of Georgia Ponder Farm (PF), Ty Ty, GA. Fruit were brought to the Vidalia Onion Research Laboratory, University of Georgia Tifton Campus. Four fruit from each cultivar, free from physical damage and decay, were kept in either RA storage (5°C, 90% to 95% RH) or CA storage (3% O2, 5% CO2, 5°C, 90% to 95% RH) for 3 months. Four fruit from each cultivar under one storage condition comprised the experimental unit. At the end of storage, fruit were evaluated for physical (whole fruit) and chemical (juice) quality attributes. Rainfall (measured in centimeters) and maximum daily temperature (measured in degrees Celsius) from 1 Apr. to 30 Sept. in both 2010 and 2011 for Tifton, GA, was sourced from Climate Data Online at National Centers for Environmental Information (www.ncdc.noaa.gov).

Fruit quality

After a 3-month storage, fruit were removed to room temperature, then weighed and graded visually. Fruit rind smoothness was graded as 5, high rind smoothness; 4, moderately high; 3, moderate, rind with rashes or patches; 2, moderately low, rough rind with major portion of fruit covered with rashes; and 1, low rind smoothness, very rough rind. Fruit imperfections such as rind shriveling (1, no shriveling; 2, mild shriveling, fruit is marketable; 3, moderate shriveling, fruit is not marketable; 4, severe shriveling, fruit

Received for publication 26 Feb. 2019. Accepted for publication 27 Mar. 2019.

1Graduate student.
2Corresponding author. E-mail: jcdiaz@uga.edu.
is not marketable), fruit cracking (1, no cracking; 2, mild cracking with very thin cracks, possibly superficial, fruit marketable; 3, moderate cracking, small but wide cracks, arils visible, fruit unmarketable; 4, severe cracking, long, wide cracks, fruit unmarketable), sunscald (1, no sunscald; 2, mild sunscald, sunscald damage on less than 25% fruit area, easily visible sunscald damage; 3, moderate sunscald, 25% to 50% fruit area with sunscald; 4, severe sunscald, more than 50% fruit surface area with sunscald damage, unmarketable fruit, sunburn), and Cercospora severity (1, negligible, 0–2 spots; 2, mild, 5–10 spots scattered on fruit surface, fruit marketable; 3, moderate, more than 10 spots, unmarketable fruit; 4, high, more than one fourth of fruit rind covered with spots, unmarketable fruit) were recorded for each fruit. After cutting the fruit open, CI (1, no CI; 2, mild CI, less than 10% fruit arils affected, fruit marketable; 3, moderate CI, 10%–50% fruit arils show CI, fruit unsuitable for marketing; 4, severe CI, more than 50% of arils affected, fruit unmarketable) and decay caused by Botryosphaeria spp. and Alternaria spp. (1, no disease damage, fruit marketable; 2, mild disease damage, less than 25% of fruit affected, disease not visible outside from the rind; 3, moderate disease damage, 25% to 50% of fruit damaged, disease symptoms visible from outside and fruit unmarketable; 4, high disease damage, more than 50% fruit damaged, unmarketable fruit) were graded.

Fruit color. A CR-400 (8-mm aperture, D65 illuminant) handlheld colorimeter (Konica Minolta, Ramsey, NJ) was used to measure fruit rind color. Five color readings were taken per fruit. Color was measured as L*, a*, b*. The value of L* describes the degree of darkness or lightness with L* = 0 being black and L* = 100 being white. The b* value refers to the colors in the range yellow to blue-green. Chroma and hue angle were calculated from the L*, a*, and b* values using Spectra Magic NX 2.03 (Konica Minolta) software. Chroma represents richness of color on a 0 to 60 scale, with 0 being gray and 60 being the true color. Hue angle represents dominant color wavelength.

Fruit chemical attributes.

TSS/TA ratio. A sample of 50 arils per fruit were weighed (in grams per 50 arils) and squeezed in a cheese cloth to extract the juice. Juice was weighed (in grams per 50 arils) to calculate percentage juice content (juice/weight ratio) of arils. TSS was measured using a refractometer (Brix-stix digital handheld refractometer; Cole-Parmer, Livemore, CA), which was calibrated with distilled water. TA was determined using an automatic titrator (DL-15; Mettler Toledo, Columbus, OH) by using 500 μL juice diluted with 25 mL water. The juice sample was titrated to pH 8.2 using 0.1 M NaOH after recording the initial pH. TA was expressed as a percentage of malic acid present in juice.

Anthocyanins. Anthocyanins in pomegranate juice were separated using high-performance liquid chromatography (HPLC) (1200 Series, model g1316; Agilent Technologies, Santa Clara, CA) equipped with a XDB-C18 (Zorbax Eclipse, Agilent Technologies) 3.5-μm column. Juice samples were centrifuged (Allegra 25R centrifuge; Beckman Coulter, Atlanta, GA) at 25,155 g for 30 min at 4 °C. Supernatant of 0.75 mL was added to the HPLC tubes. Flow rate was maintained at 0.4 mL min⁻¹, with solution A as 5% formic acid and solution B as 95% acetonitrile. The gradient used ran from 5% A and 95% B at 2 min; 15% A, 85% B at 19 min; 20% A, 80% B at 20 min; 100% A at 21 min; 100% A at 24 min; 5% A, 95% B at 24.9 min; and 5% A, 95% B at 28 min. The runtime was 28 min per sample. Five anthocyanins were observed at a spectral scan of 520 nm. Anthocyanin concentrations were determined using a standard curve and results are expressed as cyanidin, 3-glucoside equivalent (measured in micrograms per gram in arils).

Statistical design and analysis.

The experiment was a completely randomized design. The treatments consisted of six cultivars x two storage (RA and CA) combinations. Analysis of variance was carried out using SAS Enterprise 9.2 (SAS Institute, Cary, SC) for all response variables. Whenever interactions between main factors were significant, effects of main factors are not discussed separately.

Results.

Physical attributes. All fruit physical attributes varied by cultivar in both 2010 (Table 1) and 2011 (Table 2), except for sunscald, and fruit weight (in 2011 only). Average fruit weight ranged between 177 and 284 g in 2010 (Table 1), and 230 and 291 g in 2011 (Table 2). Fruit from ‘Cranberry’ and ‘Salavatski’ had the greatest CI whereas ‘Afganski’ and ‘Crab’ had the least fruit shriveling (Table 1 and 2). Fruit cracking was greatest in ‘Afganski’, whereas ‘Crab’ had reduced fruit cracking (Table 2). Sunscald severity was similar among cultivars in both years (Tables 1 and 2). In 2010, cultivars Afganski, Entek-habives, and Kaj-akich-anor had the greatest fruit disease severity by Cercospora (Table 1), whereas in 2011, ‘Afganski’ had the greatest disease severity. In 2011, ‘Cranberry’ had the highest severity by Alternaria/ Botryosphaeria whereas ‘Kaj-akich-anor’ and ‘Salavatski’ had the lowest severity by Alternaria/Botryosphaeria. ‘Cranberry’ and ‘Kaj-akich-anor’ had the least CI whereas ‘Afganski’ had the greatest CI after storage (Table 2). Overall, 13% of fruit stored in CA

Table 1. Physical attributes and disease severity of pomegranate fruit of various cultivars immediately after 3 months of storage in either a controlled atmosphere [CA; 5% CO2 and 3% O2, 5 °C, and 90% to 95% relative humidity (RH)] or in regular air (RA; 5 °C and 90% to 95% RH), harvested from Ponder Farm, Ty Ty, GA, in 2011. Rows labeled Cultivar, Storage, and Cultivar x storage include the P values.

Cultivar	Fruit wt (g)	Smoothness	Shriveling	Cracking	Sunscald	CeSev
Afganski	199 B*	2.1 B	3.1 A	1.4 A	2.3 A	3.2 A
Crab	177 B	3.1 AB	2.4 B	1.8 A	2.1 A	2.2 B
Cranberry	296 A	2.7 B	2.1 BC	1.4 AB	2.4 A	2.4 B
Entek-habives	191 B	2.6 B	1.9 BCD	1.1 B	2.1 A	3.0 A
Kaj-akich-anor	244 AB	2.8 B	1.7 CD	1.3 B	1.9 A	3.0 A
Salavatski	284 A	3.8 A	1.4 D	1.1 B	1.8 A	2.4 B

Storage	Fruit wt (g)	Smoothness	Shriveling	Cracking	Sunscald	CeSev
CA	234 A	2.9 A	2.0 B	1.4 A	2.0 A	2.5 B
RA	230 A	2.8 A	2.3 A	1.3 A	2.2 A	2.9 A

Significance	Cultivar	Storage	Cultivar x storage
P	<0.0001	0.0002	0.0006 <0.0001
	0.7716	0.4565	0.0336 0.1895 0.3258
	0.1333	0.0586	0.4882 0.5412 0.9851

a Rind smoothness on a 1 to 4 scale, where 1 = rough and 5 = smooth.

b Rind shriveling on a 1 to 4 scale, where 1 = no shriveling and 4 = severe shriveling, unmarketable.

c Fruit cracking on a 1 to 4 scale, where 1 = no cracking and 4 = severe cracking, fruit split open on one side.

d Sunscald on a 1 to 4 scale, where 1 = no sunscald and 4 = severe sunscald.

e Cercospora severity on a 1 to 4 scale, where 1 = no disease symptoms and 4 = disease symptoms rendering fruit unmarketable.

f Values followed by the same letter within a column are not significantly different at P < 0.05 according to Tukey’s honestly significant difference test.
showed fruit decay, whereas in RA storage, 70% of the fruit had fruit decay. In 2010, fruit stored in CA storage had reduced shriveling and reduced severity by Cercospora (Table 1). In 2011, fruit stored in CA had smoother fruit rind and were less shriveled than fruit stored in RA. Sunscald, disease severity by storage method.

Chemical attributes. Aril juice content was unaffected by cultivar and storage conditions in both years (Table 3), with an average of 78% in 2010 and 76.5% in 2011. Values of TSS were among the highest in ‘Crab’ in both years. TA was similar among cultivars in 2010; TA was greatest in ‘Afganski’ and ‘Kaj-acik-anor’ in 2011. The TSS/TA ratio was greatest in ‘Cranberry’ and ‘Salavatski’ in 2010 and in ‘Crab’ in 2011, although not significantly different from that of ‘Cranberry’. Among cultivars, the juice pH of ‘Entek-habi-saveh’ was the highest in 2010, whereas juice pH of ‘Crab’ and ‘Salavatski’ were the highest in 2011. Juice

Table 2. Physical attributes and disease severity of pomegranate fruit of various cultivars immediately after 3 months of storage in either a controlled atmosphere [CA; 5% CO2, 3% O2, 5 °C, and 90% to 95% relative humidity (RH)] or in regular air (RA; 5 °C and 90% to 95% RH), harvested from Ponder Farm, Ty Ty, GA, in 2011. Rows labeled Cultivar, Storage, and Cultivar × storage include the P values.

Cultivar	Fruit wt (g)	Smoothnessa	Shrivelinga	Crackingx	Sunscaldz	CeSev	FDu	Ci	
		2010	RA	CA	RA	CA	RA	CA	
Afganski	280 A	2.8 C	2.5 A	2.5 A	2.6 A	2.5 A	1.6 AB	2 A	
Crab	255 A	4.1 A	1.9 B	1.3 B	2.1 A	2.0 A	2.3 B	1.5 AB	
Cranberry	230 A	3.3 BC	2.5 A	2.0 AB	2.5 A	2.5 AB	2.7 A	1.2 B	
Kaj-acik-anor	291 A	3.5 AB	2.3 AB	1.1 B	2.4 A	2.0 B	1.3 B	1.1 B	
Nikitski-ranni	279 A	3.1 BC	2.6 A	1.3 B	2.5 A	2.1 AB	1.6 AB	1.6 AB	
Salavatski	259 A	4.1 A	1.9 B	1.8 AB	2.4 A	2.3 B	1.1 B	1.6 AB	
Storage									
CA	272 A	3.9 A	2.0 B	1.5 A	2.2 B	1.9 B	1.3 B	1 B	
RA	263 A	3.1 B	2.5 A	1.8 A	2.7 A	2.6 A	2.2 A	2 A	
Significance		0.4743	<0.0001	0.0291	0.0007	0.395	0.0052	0.0139	0.0008

Table 3. Chemical attributes of pomegranate fruit of various cultivars immediately after 3 months of storage in either a controlled atmosphere [CA; 5% CO2, 3% O2, 5 °C, and 90% to 95% RH] or in regular air (RA; 5 °C and 90% to 95% RH), harvested from Ponder Farm, Ty Ty, GA, in 2010 and 2011. Rows labeled Cultivar, Storage, and Cultivar × storage include the P values.

Cultivar	JC (%)	TSS (%)	TA (% malic acid)	TSS/TA	pH of fruit juice
2010					
Afganski	76 A	14.7 BC	3.0 A	6.8 AB	2.9 B
Crab	82 A	15.5 A	2.6 A	6.7 AB	3.1 AB
Cranberry	79 A	14.5 C	2.6 A	8.3 A	3.0 AB
Entek-habi-saveh	73 A	15.5 A	3.3 A	5.7 AB	3.2 A
Kaj-acik-anor	80 A	15.3 AB	3.3 A	5.2 B	2.9 B
Salavatski	78 A	15.4 AB	2.6 A	8.2 A	3.1 AB
Storage					
CA	80 A	15.5 A	3.7 A	4.6 B	3.0 A
RA	76 A	14.8 B	2.1 B	9.0 A	3.0 A
Significance	0.0683	0.0002	0.4089	0.0037	0.0472
Storage	0.0627	<0.0001	<0.0001	<0.0001	0.3552
Cultivar × storage	0.3645	0.0002	0.0002	<0.0001	0.0504

Cultivar	JC (%)	TSS (%)	TA (% malic acid)	TSS/TA	pH of fruit juice
2011					
Afganski	77 A	14.6 B	1.65 A	9.02 C	5.51 B
Crab	75 A	16.4 A	1.04 B	16 A	5.81 A
Cranberry	77 A	14.3 B	0.96 B	15.2 AB	5.74 AB
Kaj-acik-anor	78 A	15.6 AB	1.73 A	9.34 C	5.54 B
Nikitski-ranni	78 A	14.3 B	1.13 B	12.7 B	5.78 AB
Salavatski	76 A	15 B	1.19 B	12.8 B	5.81 A
Storage					
CA	76 A	15.2 A	1.23 B	13.1 A	5.84 A
RA	77 A	15 A	1.41 A	11.3 B	5.54 B
Significance	0.829	<0.0001	<0.0001	<0.0001	0.0006
Storage	0.534	0.1874	0.0149	0.0001	<0.0001
Cultivar × storage	0.9964	0.0317	0.7113	0.219	0.0006

Values followed by the same letter within a column are significantly different at P < 0.05 according to Tukey’s honestly significant difference test.

JC = juice content of arils by weight; TSS = total soluble solids; TA = titratable acidity.
content was unaffected by storage method in both years. Chemical attributes were affected inconsistently by storage method.

Juice anthocyanin contents varied by cultivar but did not vary by storage condition in both 2010 (Table 4) and 2011 (Table 5). Delphinidin 3,5-diglucoside content was among the highest in ‘Crab’ in both years (Tables 4 and 5). Cyanidin 3,5-diglucoside was highest in ‘Crab’ in both years. Petunidin 3-glucoside, cyanidin 3-glucoside, pelargonidin 3-glucoside, and total anthocyanins had among the highest values in ‘Kaj-acik-anor’ in both years. Fruit rind color lightness, hue angle, and chroma varied by cultivar, which was expected given the range of rind color displayed in harvested fruit (Table 6). ‘Afganski’, ‘Crab’, and ‘Cranberry’ had reduced hue angle values (31.2–33.6), which indicates their fruit rind was reddish, whereas ‘Entekhabi-saveh’, ‘Kaj-acik-anor’, and ‘Salavatski’ had values ranging from 51.6–53.8, indicating their fruit rind was yellowish. There were no differences in color attributes as a result of storage conditions, although a cultivar–storage interaction was observed for lightness and hue angle.

Discussion

In our study, fruit quality was affected by cultivar. Weather conditions during maturity may affect cultivars differently, with the produce from one year being affected more compared with another (Kays, 1999). Year 2011 was dry during pomegranate maturity, possibly decreasing fruit quality in comparison with 2010 (Fig. 1). Moisture, heat, and other abiotic stresses during maturity affect fruit quality in apple, banana, citrus, cucumber, muskmelon, peach, pineapple, olive, and many other species (Kays, 1999).

CA storage had a positive effect on most of the fruit attributes. CA storage has been observed to preserve fruit rind quality and prolong storage shelf life of fruit (Ozgen et al., 2002). Rind shriveling results from moisture loss and could account for a sizeable portion of total fruit weight loss (Elyatem and Kader, 1984). Rind of pomegranate is very porous and allows rapid loss of moisture. Fruit quality can be maintained with a prestorage wax treatment, but that incurs an added cost (Barman et al., 2011). Fruit weight loss from transpiration further leads to fruit wilting and desiccation. Greater fruit quality under CA storage than RA storage is a result of mitigation of fruit deterioration processes (D’Aquino et al., 2010).

Our finding of reduced fruit decay in CA storage compared with ambient air storage is consistent with reports on other fruit. Apples stored under CA storage had less fungal damage compared with ambient air-stored apples when evaluated after keeping at 20 °C for a few weeks following cold storage (Børve and Stensvand, 2016). Fungal damage affects fruit quality directly because rind smoothness is affected by the incidence of disease. There was reduced damage from fungal diseases under CA than under RA.

Table 4. Anthocyanins contents of pomegranate fruit of various cultivars immediately after 3 months of storage in either CA (5% CO₂ and 90% to 95% RH) or regular air (RA; 5 °C and 90% to 95% RH), harvested from Ponder Farm, Ty Ty, GA, in 2010. Rows labeled Cultivar, Storage, and Cultivar × Storage include the P values.

Cultivar	De-3-5-digl (μg g⁻¹ aril wt)	Cy-3-4-digl (μg g⁻¹ aril wt)	Pet-3-gl (μg g⁻¹ aril wt)	Cy-3-gl (μg g⁻¹ aril wt)	Pel-3-gl (μg g⁻¹ aril wt)	Totalz (μg g⁻¹ aril wt)
Afganski	93 C¹	364 C	95 AB	499 AB	37 AB	1089 B
Crab	387 A	1015 A	93 AB	398 BC	36 AB	1930 A
Cranberry	294 A	690 B	46 B	207 C	15 C	1252 AB
Entekhabi-saveh	130 BC	481 BC	61 B	334 BC	14 BC	1020 B
Kaj-acik-anor	266 AB	733 AB	145 A	773 A	41 A	1958 A
Salavatski	51 C	380 C	30 B	304 BC	13 C	777 B
Storage						
CA	186 A	612 A	76 A	435 A	23 A	1331 A
RA	229 A	621 A	83 A	410 A	31 A	1373 A
Significance						
Cultivar	<0.0001	<0.0001	0.0002	<0.0001	0.0002	<0.0001
Storage	0.2144	0.8032	0.6275	0.5699	0.1516	0.9946
Cultivar × Storage	0.9856	0.5924	0.7304	0.1877	0.8641	0.6807

¹Total anthocyanin content.

²Values followed by the same letter within a column are not significantly different at P < 0.05 according to Tukey’s honestly significant difference test.

Table 5. Anthocyanins content of pomegranate fruit of various cultivars immediately after 3 months of storage in either a controlled atmosphere [CA; 5% CO₂ and 3% O₂, 5 °C and 90% to 95% relative humidity (RH)] or regular air [RA (5 °C and 90% to 95% RH)], harvested from Ponder Farm, Ty Ty, GA, in 2011. Rows labeled Cultivar, Storage, and Cultivar × Storage include the P values.

Cultivar	De-3-5-digl (μg g⁻¹ aril wt)	Cy-3-4-digl (μg g⁻¹ aril wt)	Pet-3-gl (μg g⁻¹ aril weight)	Cy-3-gl (μg g⁻¹ aril wt)	Pel-3-gl (μg g⁻¹ aril wt)	Totalz (μg g⁻¹ aril wt)
Afganski	53 B¹	188 C	53 BC	178 B	20 AB	492 C
Crab	235 A	601 A	61 B	133 B	16 BC	1046 AB
Cranberry	65 AB	319 ABC	13 BC	36 B	0 BC	433 BC
Kaj-acik-anor	228 A	488 AB	133 A	455 A	37 A	1341 A
Nikitski-ranni	119 AB	272 BC	22 BC	60 B	3 BC	475 C
Salavatski	18 B	140 C	10 C	42 B	2 C	213 C
Storage						
CA	107 A	361 A	51 A	167 A	15 A	701 A
RA	139 A	300 A	52 A	152 A	13 A	656 A
Significance						
Cultivar	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Storage	0.1957	0.286	0.7515	0.4411	0.7958	0.0711
Cultivar × Storage	0.0354	0.0128	0.4697	0.7693	0.6324	0.0711

¹Total anthocyanin content.

²Values followed by the same letter within a column are not significantly different at P < 0.05 according to Tukey’s honestly significant difference test.

De-3-5-digl = delphinidin 3,5-diglucoside; Cy-3-4-digl = cyanidin 3,5-diglucoside; Pet-3-gl = petunidin 3-glucoside; Cy-3-gl = cyanidin 3-glucoside; Pel-3-gl = pelargonidin 3-glucoside.
Table 6. Rind color of pomegranate fruit of various cultivars, immediately after 3 months of storage in either a controlled atmosphere (CA; 5% CO₂ and 3% O₂, 5 °C, and 90% to 95% relative humidity (RH)) or regular air (RA; 5 °C and 90% to 95% RH), harvested from Ponder Farm, Ty Ty, GA in 2010 and 2011. Rows labeled Cultivar, Storage, and Cultivar x storage include the P values.

Cultivar	Lightness*	Hue*	Chroma*
Afgansi	37.6 C	33.6 B	34.9 B
Crab	40.4 BC	31.2 B	35.7 B
Cranberry	42.8 B	32.4 B	39.7 A
Entek-habi-saveh	49.4 A	51.6 A	33.3 B
Kaj-acik-anor	47.8 A	53.7 A	34.9 B
Salavatski	49.1 A	53.8 A	36.5 AB

Storage

	0.975	0.6155	0.7635
Cultivar	<0.0001	<0.0001	<0.0001
Storage	<0.0001	<0.0001	<0.0001
Cultivar x storage	0.0266	0.0246	0.6443

*Degree of darkness or lightness (0 = black and 100 = white).

HortScience Vol. 54(6) June 2019 1065

In conclusion, fruit physical quality attributes were affected by storage conditions. The CA-stored fruit had better fruit quality, with a smoother rind, less rind shriveling, less fruit cracking, less CI, and less damage from fungal diseases compared with RA-stored fruit. Thus, CA storage is a better option for pomegranate fruit storage than regular air.

Literature Cited

Ali, Z.M., L.-H. Chin, M. Marinuthu, and H. Lazan. 2004. Low temperature storage and modified atmosphere packaging of carambola fruit and their effects on ripening related texture changes, wall modification and chilling injury symptoms. Postharvest Biol. Technol. 33:181–192.

Almenar, E., P. Hernández-Muñoz, J.M. Lagaron, R. Catala, and R. Gavara. 2006. Controlled atmosphere storage of wild strawberry fruit (Fragaria vesca L.). J. Agr. Food Chem. 54:86–91.

Artés, F., J.G. Mar, and J.A. Martínez. 1996. Controlled atmosphere storage of pomegranate. Eur. Food Res. Technol. 203:33–37.

Artés, F., J.A. Tudela, and M.I. Gil. 1998. Improving the keeping quality of pomegranate fruit by intermittent warming. Eur. Food Res. Technol. 207:316–321.

Bai, J., E.A. Baldwin, K.L. Goodner, J.P. Matheis, and J.K. Brecht. 2005. Response of four apple cultivars to 1-methylcyclopropene treatment and controlled atmosphere storage. HortScience 40:1534–1538.

Barman, K., R. Asrey, and R.K. Pal. 2011. Putrescine and carnaba wax pretreatments alleviate chilling injury, enhance shelf life and preserve pomegranate fruit quality during cold storage. Scientia Hort. 130:795–800.

Basu, A. and K. Penugonda. 2009. Pomegranate juice: A heart-healthy fruit juice. Nutr. Rev. 67:49–56.
Changes in strawberry anthocyanins and other polyphenols in response to carbon dioxide treatments. J. Agr. Food Chem. 45:1662–1667.

Gómez, P.A. and F. Artés. 2004. Controlled atmospheres enhance postharvest green celery quality. Postharvest Biol. Technol. 34:203–209.

Holland, D., K. Hatib, and I. Bar-Ya‘akov. 2009. Pomegranate: Botany, horticulture, breeding. Hort. Rev. 35:127–191.

Kader, A.A. 2003. A summary of CA requirements and recommendations for fruits other than apples and pears. Acta Hort. 600:737–740.

Kader, A.A. and E.J. Mitcham. 1999. Postharvest physiology and storage of tropical and subtropical fruits, p. 78–79. In: S.K. Mitra (ed.). The quarterly review of biology, 74. Oxford University Press, Oxford, UK.

Kader, A.A. and C.B. Watkins. 2000. Modified atmosphere packaging: Toward 2000 and beyond. HortTechnology 10:483–486.

Kays, S.J. 1999. Preharvest factors affecting appearance. Postharvest Biol. Technol. 15:233–247.

Kulkarni, A.P. and S.M. Aradhya. 2005. Chemical changes and antioxidant activity in pomegranate arils during fruit development. Food Chem. 93:319–324.

Küpper, W., M. Pekmezci, and J. Henze. 1995. Studies on CA-storage of pomegranate (Punica Granatum L., cv. Hicaz). Acta Hort. 398:101–108.

Lidster, P.D., H.J. Lightfoot, and K.B. McRae. 1983. Fruit quality and respiration of ‘McIn- tosh’ apples in response to ethylene, very low oxygen and carbon dioxide storage atmospheres. Scientia Hort. 20:71–83.

Lin, T.Y., P.E. Koehler, and R.L. Shewfelt. 1989. Stability of anthocyanins in the skin of Stark-rimmed apples stored unpackaged, under heat shrinkable wrap and in-package modified atmosphere. J. Food Sci. 54:405–407.

Opara, U.L., J. Atukuri, and O.A. Fawole. 2015. Application of physical and chemical postharvest treatments to enhance storage and shelf life of pomegranate fruit: A review. Scientia Hort. 197:41–49.

Özgen, M., J.P. Palta, and J.D. Smith. 2002. Ripeness stage at harvest influences postharvest life of cranberry fruit: Physiological and anatomical explanations. Postharvest Biol. Technol. 24:291–299.

Palou, L., C.H. Crisosto, and D. Garner. 2007. Combination of postharvest antifungal chemical treatments and controlled atmosphere storage to control gray mold and improve storability of ‘Wonderful’ pomegranates. Postharvest Biol. Technol. 43:133–142.

Reay, P.F. 1998. The effects of maturity on colour and concentration of pigments in the blush and shaded sides of ‘Gala’ apple fruit during cool storage. J. Hort. Sci. Biotechnol. 73:841–845.

Roberts, E.A.H. 1960. Effect of glycosylation on the enzymic oxidation and translocation of flavonoids. Nature 185:536.

Sayyari, M., S. Castillo, D. Valero, H.M. Díaz-Mula, and M. Serrano. 2011. Acetyl salicylic acid alleviates chilling injury and maintains nutritive and bioactive compounds and antioxidant activity during postharvest storage of pomegranates. Postharvest Biol. Technol. 60:136–142.

Schotmans, W., A. Molan, and B. MacKay. 2007. Controlled atmosphere storage of rabbiteye blueberries enhances postharvest quality aspects. Postharvest Biol. Technol. 44:277–285.

Shulman, Y., L. Fainberstein, and S. Lavee. 1984. Pomegranate fruit development and maturity. HortScience 19:136–142.

Taylor, J.M. Lagarón, R. Catalá, and R. Gavara. 2006. Controlled atmosphere storage of wild strawberry fruit (Fragaria vescas L.). J. Agr. Food Chem. 54:86–91.

Wang, C.Y. 1993. Approaches to reduce chilling injury of fruits and vegetables. Hort. Rev. 15:63–95.

Weerakkody, P., J. Jobling, M.M.V. Infante, and G. Rogers. 2010. The effect of maturity, sunburn and the application of sunscreens on the internal and external qualities of pomegranate fruit grown in Australia. Scientia Hort. 124:57–61.

Yaffe, M.C., A.I. Nelson, L.S. Wei, and M.P. Steinberg. 1971. Effect of controlled atmosphere on growth of mold on synthetic media and fruit. Appl. Microbiol. 22:513–516.

Yahia, E.M. 2006. Modified and controlled atmospheres for tropical fruits. Stewart Postharvest Rev. 2:1–10.