Formin1 Mediates the Induction of Dendritogenesis and Synaptogenesis by Neurogenin3 in Mouse Hippocampal Neurons

Julia Simon-Areces1, Ana Dopazo2, Markus Dettenhofer3, Alfredo Rodriguez-Tebar4, Luis Miguel Garcia-Segura1, Maria-Angeles Arevalo1*

1 Laboratory of Neuroactive Steroids, Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain, 2 Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain, 3 Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America, 4 Centro Andaluz de Biología Molecular y Medicina Regenerativa/Consejo Superior de Investigaciones Científicas (CABIMER/CSIC), Seville, Spain

Abstract
Neurogenin3, a proneural transcription factor controlled by Notch receptor, has been recently shown to regulate dendritogenesis and synaptogenesis in mouse hippocampal neurons. However, little is known about the molecular mechanisms involved in these actions of Ngn3. We have used a microarray analysis to identify Ngn3 regulated genes related with cytoskeleton dynamics. One of such genes is Fmn1, whose protein, Formin1, is associated with actin and microtubule cytoskeleton. Overexpression of the Fmn1 isoform-Ib in cultured mouse hippocampal neurons induced an increase in the number of primary dendrites and in the number of glutamatergic synaptic inputs at 4 days in vitro. The same changes were provoked by overexpression of Ngn3. In addition downregulation of Fmn1 by the use of Fmn1-siRNAs impaired such morphological and synaptic changes induced by Ngn3 overexpression in neurons. These results reveal a previously unknown involvement of Formin1 in dendritogenesis and synaptogenesis and indicate that this protein is a key component of the Ngn3 signaling pathway that controls neuronal differentiation.

Introduction
Neurogenin3 (Ngn3) is a transcription factor whose expression is negatively controlled by the activity of Notch receptor [1]. Ngn3 is mostly known as a proendocrine factor implicated in the differentiation of precursors of the four endocrine cell lineages in the developing pancreas [2]. In addition, Ngn3 is also involved in the development of neurons and glial cells in the central nervous system. In chick embryos, Ngn3 promotes early retinal neurogenesis [3]. In rodents, Ngn3 is expressed in glial precursors in the developing spinal cord [4] and regulates glial differentiation [5]. Furthermore, Ngn3 participates in the control of neuronal differentiation, regulating dendritogenesis and synaptogenesis in hippocampal neurons [6,7], two processes that involve a remodeling of actin and microtubule cytoskeleton. In order to identify the molecular mechanisms mediating Ngn3 actions on neuronal development we used microarray technology [8]. Using this approach and focusing on genes related with cytoskeletal reorganization, among those upregulated by Ngn3, we identified Fmn1, which encodes for Formin1.

The formin proteins consist of approximately 25 family members, and are widely expressed in eukaryotic cells [9–11]. The formins are defined by the presence of the formin homology 2 domain (FH2), which was originally shown to be sufficient for the nucleation of filamentous actin at its barbed-end [12–15]. The founding member of the formin family, Formin1 consists of six different mRNA isoforms (Ia, Ib, II, III, IV and V) that are differentially expressed in mammalian tissues [16–19]. Fmn1-IV is localized to the cytoplasm of fibroblasts and epithelial cells, and is detected at concentrated points along microtubules. Primary cells where Fmn1-IV has been genetically disrupted display cell spreading and focal adhesion formation defects [20]. Additionally, when isoform Ib of Formin1 (Fmn1-Ib) is exogenously expressed, it is almost exclusively cytoplasmic and specifically localizes to interphase microtubules. This localization is regulated by the peptide encoded by exon 2 of the Fmn1-Ib gene and does not depend on the FH2 or other domains. This suggests that independent regions of the Formini-Ib protein are responsible for its association with the actin and microtubule cytoskeletons [21].

We show here that overexpression of Fmn1-Ib produces an increase in the number of primary dendrites in cultured hippocampal neurons and an increase in the number of glutamatergic synaptic inputs. In addition, siRNA mediated downregulation of Fmn1 impaired the morphological and synaptic changes induced by Ngn3. This suggests that Ngn3 regulates dendritogenesis and synaptogenesis through the actions of Formin1.
Results

Microarray analysis

324 genes were found to be differentially expressed between cultured hippocampal neurons overexpressing Ngn3 and control cultures (overexpressing GFP) at false discovery rate (FDR) = 5% after multiple testing corrections to control the FDR across all genes. Among the 324 genes, expression levels of 186 genes are upregulated and 138 genes are down-regulated by Ngn3 overexpression (Table S1, Supporting Information).

Then, genes regulated by Ngn3 were organized by function to better understand their profile. The functional characterization of data are presented in Figure 1, which lists the top ten canonical pathways regulated by Ngn3. Genes included in each group of the top ten signaling pathways presented in Figure 1 are listed in Table S2 (Supporting Information).

Validation of expression profiling results

One of the genes upregulated by Ngn3 is Fmn1, which encodes for Formin1. This gene is included in the group of genes associated with Cellular Assembly and Organization (Table S2). Formin1 is involved in nucleation and assembly of actin filaments, processes that have been directly implicated in dendritogenesis [22,23]. Although Fmn1 has previously been shown to be expressed in neurons [16,24], the precise function of Formin1 in the nervous system is unknown. To validate the differential expression of Fmn1, detected by microarray analysis, we used real time RT-PCR and Western blot. Hippocampal neuronal cultures were incubated with Sindbis virus expressing either Ngn3 or GFP and analyzed for mRNA and Formin1 protein expression levels in the extracts of both samples. The overexpression of Ngn3 induced a marked increase of Ngn3 mRNA levels, as expected (Figure 2A), as well as a significant increase of Fmn1 mRNA (Figure 2B) and protein (Figure 2C) levels. Furthermore, the downregulation of Ngn3 gene using siRNA oligonucleotides lead to a significant decrease in Fmn1 mRNA (Figure 2D) and protein (Figure 2E) levels.

Overexpression of Fmn1-Ib changes the dendritic morphology of hippocampal neurons

We have previously reported that under conditions of intermediate cell density, overexpression of Ngn3 stimulates the sprouting of new dendrites in cultured hippocampal neurons [6]. Conversely, addition of NGF to cultures induces the down-regulation of Ngn3 mRNA levels and hence hippocampal neurons sprout fewer primary and secondary dendrites. Since Ngn3 enhances the expression of Fmn1, we decided to test the effects of Fmn1 overexpression on hippocampal neuronal development. Hippocampal neuronal cultures were transfected with vectors expressing EGFP and EGFP-Fmn1-Ib. Specimen images of transfected cells are presented in Figure 3, A–D. As expected, the protein encoded by EGFP-Fmn1-Ib was not found in the nuclei. The quantification of the results showed that overexpression of Fmn1-Ib resulted in a clear stimulation of dendrite initiation (Figure 3E). The number of primary dendrites was increased by 50% versus control levels by 16 h after transfection with EGFP-Fmn1-Ib.

Overexpression of Fmn1-Ib increases the number of glutamatergic synaptic terminals without modification of inhibitory terminal numbers

Double immunostaining experiments with neurons expressing EGFP alone or EGFP-tagged Fmn1-Ib were performed to test for a specific change in the number of glutamatergic as opposed to GABAergic synaptic terminals. In all experiments, transfected cells grew in a dense network of neurons, ensuring the availability of a proper synaptic network and excluding differences in synapse number resulting from different cell densities. Glutamatergic and GABAergic terminals were identified with antibodies against the respective vesicular transmitter transporters VGluT1 (Figure 3A and B) and VGAT (Figure 3C and D). It can be seen that neurons responded to the over-expression of Fmn1 with a clear increase in the number of glutamatergic presynaptic terminals (Figure 3F). In contrast, the number of GABAergic presynaptic terminals was not significantly changed (Figure 3G). This resulted in a significant increase in the ratio of excitatory/inhibitory synaptic inputs (Figure 3H).

Formin1 mediated the effects of Ngn3 on neuronal morphology and number of synaptic terminals in hippocampal cultures

To determine whether Formin1 mediates the effects of Ngn3 on neuronal morphology, three different double-stranded Fmn1-specific siRNA oligonucleotides were electroporated in hippocampal neuronal cultures. Figure 4A shows that two of the three siRNAs tested significantly reduced Fmn1 mRNA expression. The Formin1 protein levels were also reduced after Fmn1 gene knockdown, while no detectable β-actin level reduction was observed (Figure 4B), demonstrating the specificity of siRNA2 and siRNA3.

Next we co-transfected cells with siRNA oligonucleotides plus plasmid expressing Ngn3 and EGFP or EGFP alone and assessed morphology and the number of glutamatergic presynaptic inputs in hippocampal neurons. Specimen images of transfected cells are presented in Figure 5, A–F. Morphometric evaluation of neurons shows that the addition, at 1 day in vitro (DIV), of Fmn1-specific

![Figure 1. Top ten signaling pathways regulated by Ngn3.](image-url)

For the functional categorization of genes, Fisher’s exact test was used to calculate a p value (shown as bars) determining the probability that each biological function assigned to the network is due to chance alone. The number of modified genes for each pathway is shown between brackets. doi:10.1371/journal.pone.0021825.g001
siRNA oligonucleotides to cultures overexpressing EGFP alone induced a decrease in the number of neurites at 2 DIV (Figure 5G).

To assess the synaptic input the transfection was made at 3 DIV and primary dendrites and glutamatergic presynaptic inputs were evaluated at 4 DIV. Under these conditions, overexpression of Ngn3 induced an increase in the number of primary dendrites (Figure 5D and G) and in the number of glutamatergic synaptic terminals (Figure 5H). When Fmn1-specific siRNA2 and siRNA3 were added to cultures overexpressing Ngn3 (Figure 5E and F), in both cases the effects induced by Ngn3 on primary dendrites and synaptic inputs were counteracted (Figure 5G and H), suggesting that Formin1 mediates the function of Ngn3 in the development of hippocampal neurons.

Discussion

In the present study we used DNA microarrays to identify genes regulated by Ngn3 in cultured hippocampal neurons. Gene expression was compared between cultures overexpressing Ngn3 and those overexpressing GFP. This comparative approach identified a set of genes, which are consistently regulated by Ngn3. Ngn3 regulates genes that are associated with cellular development, cellular growth and proliferation, cell morphology and cellular assembly and organization. Genes associated with the development and functioning of the nervous system are also regulated by Ngn3. Among the different groups of genes under the control of Ngn3, we focused on the genes related to cytoskeleton dynamics, since we were interested
in elucidating the molecular mechanism by which Ngn3 controls morphology and synaptic inputs of hippocampal neurons [6]. One of those genes is \textit{Fmn1}, which encodes a protein that nucleates actin [25] and associates with microtubules [20,21]. The upregulation of \textit{Fmn1} by Ngn3 was corroborated by direct assessment of gene expression at the mRNA and protein levels.

The morphology and synaptogenesis of hippocampal neurons is regulated by \textit{Fmn1}. The formation and maintenance of the neuronal dendritic tree depends on an underlying cytoskeleton consisting of a core of...
Figure 5. Effects of siRNAs targeting *Fmn1* on neurons overexpressing *Ngn3*. Hippocampal neuronal cultures were transfected at 1 or 3 DIV with pEGFP-C2 vector (control); co-transfected with either pEGFP-C2 plus 6xmyc- *Ngn3*-expressing vector (Ngn3) or one of the siRNA oligonucleotides targeted to *Fmn1* (siRNA) or both (siRNA-Ngn3). After 16 h of expression time cultures were fixed and processed for immunocytochemistry for the analysis of neuritic morphology, dendritic morphology and glutamatergic synaptic inputs. (A–F) Representative immunofluorescence images of neurons marked in green for GFP and with VGlut1 synaptic terminals marked in red. Scale bar, 25 μm. (G) Number of primary neurites at 2 DIV and number of primary dendrites at 4 DIV. (H) Counts of VGlut1 immunoreactive terminals in contact with a neuron per ROI. ROI diameter: 50 μm. Data are mean ± SEM and significance levels were determined using a one way ANOVA followed by Bonferroni post hoc test, **p<0.01** versus neurons overexpressing *Ngn3*; ### p<0.001 versus control neurons.

doi:10.1371/journal.pone.0021825.g005
Loss of Formin1 function abrogates Ngn3 effects on neuronal morphology and synaptic input

We have demonstrated that Ngn3 overexpression increases the number of primary dendrites and the number of excitatory glutamatergic synaptic inputs at 4 DIV, in agreement with previous findings indicating that Ngn3 increases dendritogenesis and the ratio of excitatory/inhibitory synapses [6]. Here we demonstrate that these effects of Ngn3 are impaired by knocking down the Fmn1 gene. However, the knocking down of the Fmn1 gene at 1 DIV produced a decrease in the number of neurites in resting cultured hippocampal neurons but did not induce a significant effect on dendritogenesis and synapses at 3 DIV. This could be explained because at 3 DIV, Ngn3 levels are decreased compared to previous developmental stages [7] and the physiological effect of Ngn3 and Formin1 on dendritogenesis is difficult to observe. Thus, the fact that the knocking down of the Fmn1 gene affects dendritogenesis and synapse number only in cells overexpressing Ngn3 suggests that Fmn1 is needed for Ngn3-dependent initiation of new dendrites and synapses and not for the maintenance of previously generated ones. In conclusion, our findings indicate that Formin1 is involved in the Ngn3 signaling pathway that regulates neuronal morphology and synaptogenesis.

Materials and Methods

Ethics Statement

Mice were obtained from the Instituto Cajal and treated following the guidelines of Council of Europe Convention ETS123, recently revised as indicated in the Directive 86/609/ECC. In addition all protocols were approved by the Bioethics Committee of the “Consejo Superior de Investigaciones Científicas” (CSIC). Permit number: 28079/31A (01/08/2008).

Hippocampal neuronal cultures

The hippocampus was dissected out from embryonic day 17 CD1 mouse embryos and dissociated to single cells after digestion with trypsin (Worthington Biochemicals, Freehold, NJ) and DNase I (Sigma-Aldrich) [41]. Neurons were plated on 6-wells plates or glass coverslips coated with poly-L-lysine (Sigma-Aldrich) at a density of 150–300 neurons/mm², and they were cultured in Neurobasal supplemented with B-27 and GlutaMAX I (Invitrogen, Greve, United Kingdom). Under the conditions used, our cultures were nearly devoid of glia.

Transfection

Neurons were transfected at 1 and 3 DIV using the Effectene Transfection Reagent (Qiagen GmbH, Hilden, Germany), following the manufacturer’s instructions. Cells were either transfected with an EGFP- or EGFP-Fmn1-Ib-expressing C2 vector [21]; Clontech, USA) or co-transfected with pEGFP-C2 plus shmyc-Ngn3-expressing C2+ vector or one of the siRNA oligonucleotides targeted to Fmn1. After 16h of expression time the cultures were fixed in 4% paraformaldehyde in 0.1 M phosphate buffer for immuno staining.

Nucleofection

The same plasmids and small interfering RNAs (siRNAs) targeted to Fmn1 or Ngn3 were nucleofected into cultured neurons using an Amaxa nucleofector with the Mouse Neuron Kit (Amaxa, Gaithersburg, MD) according to the manufacturer’s instructions and after 1–3 DIV, the neurons were harvested and processed to real time PCR or to Western blotting analysis.

siRNA

The siRNA oligonucleotides were purchased from Applied Biosystems/Ambion and the concentration was 50 nM during transfection. siRNAs targeting Ngn3 were: Ngn3-siRNA1 (sense, AACUAACUAGGGGACUGATT; antisense, UCAUGUGCCCA-GAUGAUUGG); Ngn3-siRNA2 (sense, GCUUCUCUGG-GUACCCCUUtt; antisense, AAGGGUACCCGAGAAGGct) whose extent and specificity of gene silencing has been described elsewhere [42].

SiRNAs targeting Fmn1 were: Fmn1-siRNA1 (sense, GGAGGAACUGACUUAAAUtt; antisense, UAUUUAAGUCUGU-CACUCtc); Fmn1-siRNA2 (sense, GGCAGAUAUUUUGAGAAGt; antisense, GGUUGAAAUAUUGUGGCGGt) and Fmn1-siRNA3 (sense, CGUUUGAUUGGACCGAAt; antisense,
Microarray gene expression data and analysis

Hippocampal neurons were transduced at 5 DIV using Sindbis virus bearing myc-tagged Ngn3, prepared as described before [7] or GFP as control. After 1 h viral particles were removed and proteins were allowed to express during 16 h. Next cells were lysed and total RNA was extracted using illustra RNAspin Mini RNA isolation kit from GE Healthcare (Buckinghamshire, UK). RNA quality was analyzed using a BioAnalyzer (Agilent Technologies, Santa Clara, CA). Differential gene expression analysis between the experimental populations (neurons expressing 6xmyc-Ngn3) and the corresponding control populations (neurons expressing GFP) was performed using one-color CodeLink Whole Mouse Genome Bioarrays (GE/Amersham, Piscataway, NJ, now Applied Microarrays, Tempe, AZ) according to manufacturer’s recommendations. In order to obtain results with statistical significance, four biological replicates were analyzed per experimental group; therefore 8 RNA samples were analyzed. Hybridized arrays were scanned on an Agilent Microarray Scanner (G2565BA, Agilent Technologies) and CodeLink Expression Analysis software was used for primary data extraction from bioarray images. All data from the DNA microarray analyses are MIAME compliant and have been deposited in the Gene Expression Omnibus (GEO) data repository under the GEO accession number [GEO: GSE 26911]. Microarray data were analyzed using the R language and packages from the Bioconductor project (http://www.bioconductor.org/). The codelink [43] package was used for preprocessing the arrays, genefilter [44] for data filtering and limma [45] for statistical analysis. For preprocessing, background was corrected using the normexp method and quantile normalization was performed. Data were considered in the log2 scale. P-values were adjusted to control the False Discovery Rate (FDR) using the Benjamini and Hochberg correction [46]. Genes with a Benjamini-Hochberg adjusted p-value smaller than 0.05 were selected as differentially expressed.

Functional analysis was performed using Ingenuity Pathway Analysis (Ingenuity Systems®, www.ingenuity.com). This analysis identified the functions and/or diseases that were most significant to the dataset. Genes from the dataset that were associated with biological functions and/or diseases in the Ingenuity knowledge base were considered for the analysis. Fischer’s exact test was used to calculate a p-value determining the probability that each biological function and/or disease assigned to the data set is due to chance alone.

Quantitative real-time polymerase chain reaction (PCR)

First strand cDNA was prepared from RNA using the First Strand Synthesis kit from Fermentas GMBH (St Leon-Rot, Germany) following the manufacturer instructions. Quantitative real-time PCR was performed using the ABI Prism 7000 Sequence Detector (Applied Biosystems). TaqMan probes and primers for Ngn3, Fnin1 and for the control housekeeping gene, GAPDH, were Assay-on-Demand gene expression products (Applied Biosystems). Real-time PCRs were performed following the suppliers instructions using the TaqMan Universal PCR Master Mix. All reactions were done in triplicates, from 3 different cultures. Ngn3 and Fnin1 expression were normalized for GAPDH expression. The data were analyzed with an unpaired t-test or one-way analysis of variance (ANOVA) followed by the Bonferroni post hoc test using GraphPad Prism 5 (GraphPad Software, Inc., San Diego, CA).

Antibodies

The following primary antibodies were used: goat anti-Formin1 (1:200; Santa Cruz Biotechnology, Inc.); mouse anti-tyr (1:200; Roche, Indianapolis, USA); chicken anti-GFP (1:1000; Abcam, Cambridge, UK); guinea pig anti-vesicular glutamate transporter 1 (VGAT) (1:500; Millipore Corporation); rabbit anti-vesicular GABA transporter (VGAT) (1:250; Millipore Corporation); mouse anti-GAPDH (1:500, Millipore Corporation) and mouse anti-β-actin (1:5000, Sigma). All secondary antibodies were from Jackson Immuno Research (West Grove, PA, USA).

Western Blotting

Proteins were resolved by SDS-PAGE and transferred onto polyvinylidene difluoride membranes (Millipore). The membranes were blocked in Tris-buffered saline containing 0.3% Tween 20 and 5% fat-free dry milk and incubated first with primary antibodies and then with horseradish peroxidase-conjugated secondary antibodies. Specific proteins were visualized with enhanced chemiluminescence detection reagent according to the manufacturer’s instructions (Amersham). Densitometry and quantification of the bands were carried out using the Quantity One software (Bio-Rad). Statistical analysis of the data was performed using an unpaired t-test.

Image acquisition and analysis of labeled hippocampal neurons

Images were acquired digitally using a 20× or 40× oil immersion objective and fluorescence filters in a Leica (Bensheim, Germany) microscope. Photomicrographs were stored and digitally processed with Adobe Photoshop, v. 7.0 (Adobe Systems, San Jose, CA). Only minor adjustments to brightness and contrast were made. Primary neurite number at 2 DIV and primary dendrite number at 4 DIV (i.e., the number of neurites or dendrites emerging from the soma) and synaptic terminal counts at 4 DIV were performed manually. A circular region of interest (ROI) with a diameter of 100 μm was projected onto the GFP labeled neuron, its center roughly coinciding with the center of the soma. Synaptic terminals contacting somata or dendrites were counted within the circular ROI.

Supporting Information

Table S1 Differentially Expressed Genes (Control versus Ngn3 overexpressed). Shown are the genes selected as differentially expressed (adjusted p-value smaller than 0.05) and fold changes represented in log2 scale. The sign, a plus (+) or minus (−), indicates the direction of the change: positive values refer to greater transcript abundance in the control cultures, whereas negative values indicate less abundance in the controls (and higher abundance in the Ngn3 overexpressing neurons).

Table S2 Functional analysis of differently expressed genes in Ngn3 overexpressing neurons. Genes are classified according to their known biological function.

Acknowledgments

The authors thank Maria García-Maurín for her expert technical assistance.
Author Contributions
Conceived and designed the experiments: M-AA AR-T. Performed the experiments: JS-A AD M-AA. Analyzed the data: M-AA LMG-S JSA AD.

References
1. Apelqvist A, Li H, Sommer L, Beatus P, Anderson DJ, et al. (1999) Notch signalling controls pancreatic cell differentiation. Nature 400: 377–381.
2. Gradwohl G, Derich A, LeMeur M, Guillenot F (2000) Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc Natl Acad Sci U S A 97: 1607–1611.
3. Ma W, Yan RT, Mao W, Wang SZ (2009) Neurogenin3 promotes early retinal neurogenesis. Mol Cell Neurosci 40: 187–198.
4. Liu Y, Wu Y, Lee JC, Xue H, Peny LH, et al. (2002) Oligodendrocyte and astrocyte development in rodents: an in situ and immunohistochemical analysis during embryonic development. Glia 40: 25–43.
5. Lee J, Wu Y, Qi Y, Xue H, Liu Y, et al. (2003) Neurogenin3 Participates in Glialogenesis in the Developing Vertebrate Spinal Cord. Dev Biol 255: 84–98.
6. Salama-Cohen P, Arevalo MA, Grantyn R, Rodriguez-Tebar A (2006) Notch and NFP/FGF17 control dendrite morphology and the balance of excitatory/inhibitory synaptic input to hippocampal neurones through neurogenin 3. J Neurochem 97: 1269–1278.
7. Simon-Areces J, Membrebe G, Garcia-Fernandez C, Garcia-Segura LM, Arevalo MA (2010) Neurogenin 3 cellular and subcellular localization in the developing and adult hippocampus. J Comp Neurol 518: 1814–1824.
8. Treviso V, Falciani F, Barrella-Saldana HA (2007) DNA microarrays: a powerful genomic tool for biomedical and clinical research. Mol Med 13: 527–541.
9. Faix J, Grosse R (2006) Staying in Shape with Formins. Dev Cell 10: 693–706.
10. Wallar BJ, Alberts AS (2003) The formins: active scaffolds that remodel the actin cytoskeleton and power cytoskeletal and Exocytic Machinery that Drives Neurogenesis. Dev Cell 14: 725–736.
11. You JJ, Lin-Chao S (2010) Gas7 Functions with N-WASP to Regulate the Neurite Outgrowth of Hippocampal Neurons. J Biol Chem 285: 11652–11666.
12. Salomon SN, Haber M, Murai KK, Dunn RJ (2008) Localization of the Diaphanous-related formin Daam1 to neuronal dendrites. Neurosci Lett 447: 63–68.
13. Korobova F, Svitkina T (2008) Arp2/3Complex Is Important for Filopodia Formation, Growth Cone Motility, and Neurogenesis in Neuronal Cells. Mol Biol Cell 19: 1561–1574.
14. Goode BL, Eck MJ (2007) Mechanism and Function of Formins in the Control of Actin Assembly. Annu Rev Biochem 76: 593–627.
15. Kobielak A, Pasolli HA, Fuchs E (2004) Mammalian formin-1 participates in adherens junctions and polymerization of linear actin cables. Nat Cell Biol 6: 21–30.
16. Scott KE, Luo L (2001) How do dendrites take their shape? Nat Neurosci 4: 359–365.
17. Wallar BJ, Alberts AS (2003) The formins: active scaffolds that remodel the actin cytoskeleton and power cytoskeletal and Exocytic Machinery that Drives Neurogenesis. Dev Cell 14: 725–736.
18. Zallen JA, Cohen Y, Hudson AM, Cooley L, Wieschaus E, et al. (2002) SCAR is a primary regulator of Arp2/3-dependent morphological events in Drosophila. J Cell Biol 156: 689–701.
19. Goode BL, Eck MJ (2007) Mechanism and Function of Formins in the Control of Actin Assembly. Annu Rev Biochem 76: 593–627.
20. Akarawa Y, Bito H, Furuyashiki T, Tuji T, Takeno-Kimura S, et al. (2003) Control of axon elongation via an SDF-1α/Rho/mDia pathway in cultured cerebellar granule neurones. J Cell Biol 161: 381–391.
21. Dent EW, Kwiatkowski AV, Melbane LM, Philippar U, Barzik M, et al. (2007) Filopodia are required for cortical neurite initiation. Nat Cell Biol 9: 1347–1359.
22. Matsuek T, Gombos R, Szecsenyi A, Sanchez-Soriano N, Czabala A, et al. (2008) Formin Proteins of the DAAM Subfamily Play a Role during Axon Growth. J Neurosci 28: 13150–13159.
23. Zallen JA, Cohen Y, Hudson AM, Cooley L, Wieschaus E, et al. (2002) SCAR is a primary regulator of Arp2/3-dependent morphological events in Drosophila. J Cell Biol 156: 689–701.
24. Wynshaw-Boris A, Ryan G, Deng CX, Chan DC, Jackson-Grusby L, et al. (1997) The role of a single formin isoform in the limb and renal phenotypes of limb deformity. Mol Med 3: 372–384.
25. Kobilka B, Paselli HA, Fuchs E (2004) Mammalian formin-1 participates in adherens junctions and polymerization of linear actin cables. Nat Cell Biol 6: 21–30.
26. Scott KE, Luo L (2001) How do dendrites take their shape? Nat Neurosci 4: 359–365.
27. Strasser GA, Rahina NA, VanderWaal KE, Gertler FB, Lanier LM (2004) Arp2/3 Is a Negative Regulator of Growth Cone Translocation. Neuron 43: 81–94.
28. Svitkina TM, Borisy GG (1999) Arp2/3 Complex and Actin Depolymerizing Factor/Cofilin in Dendritic Organization and Treadmillig of Actin Filament Array in Lamellipodia. J Cell Biol 145: 1009–1026.
29. Pollard TD (2007) Regulation of Actin Filament Assembly by Arp2/3 Complex and Filamins. Annu Rev Biophys Biomol Struct 36: 451–477.
30. Gepstein SI, Gertler FB (2010) Integrin Signaling Switches the Cytoskeletal and Exocytic Machinery that Drives Neurogenesis. Dev Cell 18: 725–736.
31. Howlin-Hughes A, Sivak J, Lin-Chao S (2010) Gas7 Functions with N-WASP to Regulate the Neurite Outgrowth of Hippocampal Neurons. J Biol Chem 285: 11652–11666.
32. Zallen JA, Cohen Y, Hudson AM, Cooley L, Wieschaus E, et al. (2002) SCAR is a primary regulator of Arp2/3-dependent morphological events in Drosophila. J Cell Biol 156: 689–701.
33. Goode BL, Eck MJ (2007) Mechanism and Function of Formins in the Control of Actin Assembly. Annu Rev Biochem 76: 593–627.
34. Akarawa Y, Bito H, Furuyashiki T, Tuji T, Takeno-Kimura S, et al. (2003) Control of axon elongation via an SDF-1α/Rho/mDia pathway in cultured cerebellar granule neurones. J Cell Biol 161: 381–391.
35. Dent EW, Kwiatkowski AV, Melbane LM, Philippar U, Barzik M, et al. (2007) Filopodia are required for cortical neurite initiation. Nat Cell Biol 9: 1347–1359.
36. Matsuek T, Gombos R, Szecsenyi A, Sanchez-Soriano N, Czabala A, et al. (2008) Formin Proteins of the DAAM Subfamily Play a Role during Axon Growth. J Neurosci 28: 13150–13159.
37. Polog S, Sananbenesi F, Zovolli A, Barkhardt S, Bahari-Javan S, et al. (2010) Altered histone acetylation is associated with age-dependent memory impairment in mice. Science 328: 753–756.
38. Horulaenen P, Llanos O, Smirnov S, Tanhuanpää K, Faist J, et al. (2009) Defining mechanisms of actin polymerization and depolymerization during dendritic spine morphogenesis. J Cell Biol 185: 323–339.
39. Salomon SN, Haber M, Murai KK, Dunn RJ (2008) Localization of the Diaphanous-related formin Daam1 to neuronal dendrites. Neurosci Lett 435: 62–67.
40. Goslin K, Banker G (1989) Experimental observations on the development of polarity by hippocampal neurons in culture. J Cell Biol 108: 1507–1516.
41. Ruiz-Palmero I, Simon-Areces J, Garcia-Segura LM, Arevalo MA (2011) Novich/Neurogenin 3 signalling is involved in the neurotrophic actions of oestradiol in developing hippocampal neurones. J Neuroendocrinol 23: 355–364.
42. Díez D, Alvarez R, Dopazo A (2007) CodeLink: an R package for analysis of GE healthcare gene expression biosarrays. Bioinformatics 23: 1168–1169.
43. Gentleman R, Carey V, Huber W, Hahne F (2004) Bioconductor: methods for filtering genes from microarray experiments. Available: http://bioconductor.org/packages/2.2/bio vignettes/genesfiter.html.
44. Smyth GK (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3: Article3.