An Improvement of Non-binary Code Correcting Single b-Burst of Insertions or Deletions

Toyohiko Saeki and Takayuki Nozaki
Dept. of Informatics, Yamaguchi University, JAPAN
Email: {g012vb,tnozaki}@yamaguchi-u.ac.jp

Abstract—This paper constructs a non-binary code correcting a single b-burst of insertions or deletions with a large cardinality. This paper also proposes a decoding algorithm of this code and evaluates a lower bound of the cardinality of this code. Moreover, we evaluate an asymptotic upper bound on the cardinality of codes which correct a single burst of insertions or deletions.

I. INTRODUCTION

In communication and storage systems, several symbols in a sequence are inserted or deleted for the synchronization errors. Levenshtein [1] proved that VT codes (constructed by Varshamov and Tenengolts [2] for error correction on the Z-channel) correct a single insertion or deletion. This code had been extended to non-binary single insertion or deletion [3] and to two adjacent insertion or deletion [4]. This code had been also extended to a binary [5] and a non-binary multiple insertion or deletion correcting code [6].

Cheng et al. [7] constructed a binary b-burst insertion or deletion correcting code, which corrects any consecutive insertion or deletion of length b. Schoeny et al. [8] improved this construction and showed that the resulting code has larger cardinality than the code constructed by Cheng et al. These constructions have been extended to permutation code [9], [10]. Nowadays, Schoeny et al. [11] gives a non-binary b-burst insertion or deletion correcting code.

In this paper, we construct a non-binary b-burst insertion or deletion correcting code with a larger cardinality. The key idea of the paper is to investigate the correcting capability of the non-binary shifted VT code, which is a component of non-binary b-burst insertion or deletion correcting codes. We also derive a lower bound of the number of codewords of the constructed non-binary b-burst insertion or deletion correcting code. Moreover, we show an asymptotic upper bound of the cardinality of the best non-binary b-burst insertion or deletion correcting code.

II. PRELIMINARIES AND PREVIOUS WORKS

This section briefly introduces previous works, i.e., insertion/deletion codes given in [2], [3], [7], [8], [11]. We use notations given in this section throughout the paper.

A. Notation and Definition

For integers i, j, define $[i, j] := \{ k \in \mathbb{Z} | i \leq k \leq j \}$ and $[i] := [0, i - 1]$, where \mathbb{Z} stands the set of integers.

For a sequence $x = (x_1, x_2, \ldots, x_n) \in [q]^n$, we denote the subsequence of x whose s-th symbol is deleted, by x_{-s}, i.e., $x_{-s} = (x_1, x_2, \ldots, x_{s-1}, x_{s+1}, \ldots, x_n)$. In this case, we say that a single deletion has occurred in x. If y is an output of the single insertion channel with an input x, there exists i such that $y_{-1} = x$. For a sequence $x \in [q]^n$, a symbol $\lambda \in [q]$, and an integer $s \in [1, n + 1]$, we denote $x_{r(s, \lambda)} = (x_1, x_2, \ldots, x_{s-1}, \lambda, x_s, \ldots, x_n)$.

A run of length r of a sequence x is a subsequence of x such that $x_i = x_{i+1} = \cdots = x_{i+r-1}, x_i \neq x_{i+1} \ (\text{for} \ i > 1)$, and $x_{i+r} \neq x_{i+r} \ (\text{for} \ i + r \leq n)$.

Remark 1: For a sequence $x = (1, 0, 0, 1, 1)$, (x_2, x_3) is a run of length 2 and we have

$$x_{-2} = x_{-3} = (1, 0, 1, 1, 1).$$

From this, we see that we receive the same subsequences if a symbol in the same run is deleted under the single deletion channel. In other words, in the single deletion channel, even if one can correct a deletion, one cannot detect which symbol in a run is deleted.

Similarly, we get

$$x_{r(2, 0)} = x_{r(3, 0)} = x_{r(4, 0)} = (1, 0, 0, 0, 1, 1, 1).$$

Hence, in the single insertion channel, we receive the same sequence if the symbol λ is inserted into a run of λ.

We refer to exactly b consecutive deletions as a single b-burst deletion. We define $x_{-[i, i+b]} := (x_1, x_2, \ldots, x_i, x_{i+b+1}, x_{i+b+2}, \ldots, x_n)$. In words, when the b consecutive, namely from i-th to $(i + b - 1)$-th, symbols of x are deleted, we denote it, by $x_{-[i, i+b-1]}$. If y is an output of the single b-insertion channel with an input x, there exists an integer i such that $y_{-[i, i+b-1]} = x$.

A code which corrects single b-burst deletions (resp. insertions) is called a single b-burst deletion (resp. insertion) correcting code. A code is b-burst insertion/deletion correcting if it corrects single b-burst insertions or single b-burst deletions. Similarly, we define the terms: single deletion correcting code, single insertion correcting code, and single insertion/deletion correcting code.

The following theorem given in [8] shows a relationship between single b-burst deletion correcting codes and single b-burst insertion correcting codes.

1Section II-A will give the details of definition of the notation “insertion/deletion”.
Theorem 1: [8, Theorem 1] A code is a b-burst deletion correcting code if and only if it is a b-burst insertion correcting code. This theorem holds for not only binary case but also non-binary case. Hence, when we prove a code is a b-burst insertion/deletion correcting code, we only need to prove it is a b-burst deletion correcting code.

B. Single Insertion/Deletion Correcting Code

The VT code is a single insertion/deletion correcting code. The VT code is defined by the code length n and a ∈ [n + 1] as follows:

\[\text{VT}_a(n) = \{ x \in [2]^n | \sum_{i=1}^n ix_i \equiv a \pmod{n+1} \}. \]

Let \([P] \) be the indicator function, which equals 1 if the proposition \(P \) is true and equals 0 otherwise. A mapping \(\sigma \) of a q-ary sequence \((x_1, x_2, \ldots, x_n) \in [q]^n \) to a binary sequence \((u_1, u_2, \ldots, u_{n-1}) \in [2]^{n-1} \) is defined by

\[u_i = [x_i < x_{i+1}]. \]

We refer to the sequence \(u = \sigma(x) \) as the ascent sequence for \(x \). The non-binary VT code is a non-binary single insertion/deletion correcting code defined by the code length \(n \), \(a \in [n] \) and \(c \in [q] \) as follows:

\[q\text{VT}_{a,c}(n, q) = \{ x \in [q]^n | \sum_{i=1}^n ix_i \equiv c \pmod{q}, \sigma(x) \in \text{VT}_a(n-1) \}. \]

C. Binary Burst Insertion/Deletion Correcting Code

This section briefly introduces the binary burst insertion/deletion correcting codes given in [7], [8]. Roughly speaking, those methods employ interleaving to construct the codes.

For simplicity, we assume that \(n \) is divided by \(b \). The \(b \times n \) matrix representation for a sequence \(x \) is given as

\[A_b(x) = \begin{pmatrix} x_1 & x_{b+1} & \cdots & x_{n-b+1} \\ x_2 & x_{b+2} & \cdots & x_{n-b+2} \\ \vdots & \vdots & \ddots & \vdots \\ x_b & x_{2b} & \cdots & x_n \end{pmatrix}. \] (1)

We denote the \(i \)-th row of this matrix, by \(A_b(x)_i \).

Example 1: Consider the 3-burst deletion channel with an input \(x \in [2]^{12} \). Assume that the output is \(x_{-}[6,8] \). Then, these matrix representations are

\[A_3(x) = \begin{pmatrix} x_1 & x_4 & x_7 & x_{10} \\ x_2 & x_5 & x_8 & x_{11} \\ x_3 & x_6 & x_9 & x_{12} \end{pmatrix}, \]

\[A_3(x_{-[6,8]}) = \begin{pmatrix} x_1 & x_4 & x_{10} \\ x_2 & x_5 & x_{11} \\ x_3 & x_9 & x_{12} \end{pmatrix}. \]

From these, we see that \(A_3(x_{-[6,8]})_i \) is a result of a single deletion to \(A_3(x)_i \). Moreover, we see that when the \((1, i) \)-th entry of \(A_3(x) \) is deleted, the \((j, i-1) \)-th or \((j, i) \)-th entry is deleted for \(j \geq 2 \).

From the above example, for recovering a single b-burst deletion, one needs to correct a single deletion for each row of the matrix representation. Moreover, if one detects the position \(i \) of deletion in the first row, one needs to correct a deletion for a given two adjacent positions \(i-1, i \) in the other rows.

The code in [7, Sect.III-C] embeds a marker \((0, 1, 0, 1, \ldots) \) in the first row of the matrix representation to detect the deletion position and employs substitution-transposition codes [12] in the other rows to correct a single deletion for a given two adjacent positions. Here, note that we are able to regard to the marker \((0, 1, 0, 1, \ldots) \) as a codeword of a VT code with maximum run length 1.

Schoeny et al. [8] improved the construction of this code. The first row of the code in [8] is a run-length-limited VT code which is a VT code with maximum run length at most \(r \). From Remark 1, one detects the interval of deletion position with the length at most \(r \). The other rows of the code are the shifted-VT codes, which correct a single deletion for a given \(r+1 \) adjacent positions. Let \(S_{n,q}(r) \) be the set of sequences in \([q]^n\) with maximum run length at most \(r \). Then, the run-length-limited VT code and shifted-VT (SVT) code are defined as

\[\text{RLL-VT}_a(n, r) = \text{VT}_a(n) \cap S_{n,2}(r), \]

\[\text{SVT}_{d,e}(n, r) = \{ x \in [2]^n : \sum_{i=1}^n ix_i \equiv d \pmod{r}, \sum_{i=1}^n x_i \equiv e \pmod{2} \}, \]

for \(d \in [r] \) and \(e \in [2] \). By using those codes, the binary single b-burst correcting code is constructed as:

\[C_{2,b} = \{ x : A_b(x)_i \in \text{RLL-VT}_a(n/b, r), \forall i \in [2,b] \ A_b(x)_i \in \text{SVT}_{d,e}(n/b, r+1) \}. \]

D. Decoding Algorithm for SVT codes

In this section, we briefly introduce the decoding algorithm for the SVT codes. The details of decoding algorithms are in [8, Appendix C].

Firstly, we consider the case of deletion correction. Assume that we employ \(\text{SVT}_{d,e}(n, r) \). Let \(y \in [2]^{n-1} \) be the received sequence. Denote the first possible deletion position, by \(k \). The inputs of the deletion decoder are those, namely \(y, (d, e, n, r) \), and \(k \). We denote the estimated codeword, by \(x \). Let \([s, t] \) be the interval of the run which contains the inserted symbol. The outputs of the deletion decoder are a pair of the estimated codeword \(x \) and interval \([s, t]\). We denote the deletion correcting algorithm for the SVT code, by \(\text{SVT-DC}(y, d, e, n, r, k) \rightarrow (x, [s, t]) \). For example, we have \(\text{SVT-DC}(0011, 0, 0, 5, 3, 2) \rightarrow (00011, [1, 3]) \).

Secondly, we consider the case of insertion correction. Let \(y \in [2]^{n+1} \) be the received sequence. Denote the first possible insertion position, by \(k \). We denote the estimated codeword, by \(x \). Let \([s, t] \) be the interval of the run which contains the inserted symbol. We denote the insertion correction algorithm for the SVT code, by \(\text{SVT-IC}(y, d, e, n, r, k) \rightarrow (x, [s, t]) \). For example, we have \(\text{SVT-IC}(000111, 0, 0, 5, 3, 2) \rightarrow (00011, [4, 5]) \). The notations \(\text{SVT-DC} \) and \(\text{SVT-IC} \) will be used in Section III-C.
E. Non-binary Burst Insertion/Deletion Correcting Code

This section introduces the non-binary b-burst insertion/deletion correcting code given in [11].

By a straightforward construction, one obtains the non-binary b-burst insertion/deletion correcting code. Similar to the construction of non-binary VT code, we employ the mapping \(\sigma \) given in Sect. II-B. The non-binary run-length-limited VT code and the non-binary SVT code are defined as:

\[
\text{RLL}_q\text{-VT}_{a,c}(n,r,q) := q\text{VT}_{a,c}(n,q) \cap S_{a,q}(r),
\]

\[
\text{qSVT}_{d,e,f}(n,r,q) := \{ x \in [q]^n \mid \sum_{i=1}^{n} x_i \equiv f \pmod{q}, \sigma(x) \in \text{SVT}_{d,e,f}(n-1, r) \},
\]

where \(a \in [n], c \in [q], d \in [r], e \in [2], \) and \(f \in [q] \). Schoney et al. [11] showed the following lemma:

Lemma 1 ([11, Lemma 1]): For all \(d \in [r], e \in [2], \) and \(f \in [q] \), the code \(\text{qSVT}_{d,e,f}(n,r,q) \) corrects a single insertion/deletion for a given \(r \) and \(1 \) adjacent positions.

As the result, they constructed the following non-binary single b-burst insertion/deletion correcting code:

\[
\hat{C}_{q,b} := \{ x \mid A_b(x), \hat{x} \in \text{RLL}_q\text{-VT}_{a,b}(n/b, r, q), \forall i \in [2, b] \ A_b(x), \hat{x} \in \text{qSVT}_{d,e,f}(n/b, r + 2, q) \}.
\]

III. MAIN RESULTS

This section constructs a non-binary burst insertion/deletion correcting code with a large cardinality. Section III-A gives the main theorem and construction of the code. Section III-B proves that the code is a non-binary burst insertion/deletion correcting code. Section III-C provides the decoding algorithm for the code. Section IV will evaluate the asymptotic cardinality of the code and show a numerical example.

A. Code Construction And Main Theorem

We investigate the correcting capability of the non-binary SVT code. As a result, we obtain that the code corrects a single insertion/deletion in a longer range as the following theorem.

Theorem 2: For all \(d \in [r], e \in [2], \) and \(f \in [q] \), the code \(\text{qSVT}_{d,e,f}(n,r,q) \) corrects a single insertion/deletion for a given \(r \) adjacent positions.

Based on this result, we construct a code:

\[
C_{q,b} := \{ x \mid A_b(x), \hat{x} \in \text{RLL}_q\text{-VT}_{a,b}(n/b, r, q), \forall i \in [2, b] \ A_b(x), \hat{x} \in \text{qSVT}_{d,e,f}(n/b, r + 1, q) \}.
\]

Moreover, we show the following theorem.

Theorem 3: The code \(C_{q,b} \) corrects a single b-burst insertion/deletion.

B. Proof of Theorems

In this section, we prove Theorem 2 and 3. Now, we will derive several lemmas to prove Theorem 2. The following lemma clarifies the effect of a single deletion in a sequence to its ascent sequence.

Lemma 2: Denote \(u = \sigma(x) \). Then, \(\sigma(x,\cdot) = u_{\cdot} \) or \(\sigma(x,\cdot) = u_{\cdot} \) holds.

Proof: Denote \(w = \sigma(x,\cdot) \). Obviously, it hold that \(w_j = u_j \) for \(j \in [1, i-2] \) and \(w_j = u_{j+1} \) for \(j \in [i, n-2] \). Hence, we will show that \(w_{i-1} = u_{i-1} \) or \(w_{i-1} = u_i \) holds.

Firstly, we assume \(x_{i-1} < x_i < x_{i+1} \). Then, \(u_{i-1} = u_i \) holds. Since \(x_{i-1} < x_{i+1}, w_{i-1} = 1 \) holds. Hence, \(w_{i-1} = u_{i-1} = u_i = 1 \) holds. Secondly, we assume \(x_i < x_{i-1} \) and \(x_i \geq x_{i+1} \). Then, \(u_{i-1} = 1 \) and \(u_i = 0 \) holds. If \(x_{i-1} < x_{i+1}, w_{i-1} = 1 \) otherwise \(w_{i-1} = 0 \). Hence, \(w_{i-1} = u_{i-1} = 1 \) or \(w_{i-1} = u_i = 0 \) holds.

The other cases are proved in a similar way.

Similarly, for an insertion, we obtain the following lemma.

Lemma 3: Denote \(u = \sigma(x) \). Then, \(\sigma(x,\cdot) = u_{\cdot} \) or \(\sigma(x,\cdot) = u_{\cdot} \) holds, where \(\delta = 0 \) or 1.

The following lemma is used for the proof of Theorem 2.

Lemma 4: Consider \(x, y \in \{ z \in [q]^n \mid \sum_{i=1}^{n} z_i \equiv f \pmod{q} \} \) such that \(x \neq y \) and \(x_{\cdot} = y_{\cdot} \) for a pair of integers \(s < t \). Denote \(u = \sigma(x), v = \sigma(y), \) and \(\sigma(x,\cdot) = \sigma(y_{\cdot}) \). Then, the following hold:

1) If \(w = u_{\cdot} = v_{\cdot} \), then there exist \(i, j \in [s, t] \) such that \(u_i \neq u_j \)

2) For a pair of integers \((\alpha, \beta) \in \{(0, 0), (0, 1), (1, 1)\} \), if \(w = u_{\cdot} = v_{\cdot} \) and \(u_{\cdot} = v_{\cdot} = \gamma \), there exist \(i \in [s - \alpha + 1, t - \beta] \) such that \(u_i \neq \gamma \).

Proof: From Lemma 2, we have \(w = u_{\cdot} = v_{\cdot} \), or \(w = v_{\cdot} = v_{\cdot} \), and \(w = u_{\cdot} = v_{\cdot} \). Hence, \(w = u_{\cdot} = v_{\cdot} \) holds for a pair of integers \((\alpha, \beta) \in \{(0, 0), (0, 1), (1, 1)\} \). We have

\[
\sum_{i=s}^{n} x_i - \sum_{i=1}^{n} y_i \pmod{q} = x_s - y_t,
\]

where the first equivalence follows from \(x, y \in \{ z \in [q]^n \mid \sum_{i=1}^{n} z_i \equiv f \pmod{q} \} \) and the second equality follows from \(x_{\cdot} = y_{\cdot} \). Since \(x_s, y_t \in [q] \), we get

\[
x_s = y_t.
\]

From \(x_{\cdot} = y_{\cdot} \) and \(u_{\cdot} = u_{\cdot} = v_{\cdot} \), we have

\[
x_i = \begin{cases} y_i, & (i \in [s - \alpha + 1, t + 1, n]), \\ y_{i-1}, & (i \in [s + 1, t]), \end{cases}
\]

\[
u_i = \begin{cases} v_i, & (i \in [s - \alpha + 1, t + 1, n - 1]), \\ v_{i-1}, & (i \in [s - \alpha + 1, t - \beta]). \end{cases}
\]

Firstly, we prove the case 1), i.e., the case of \((\alpha, \beta) = (1, 0) \).

Let us hypothesize \(u_s = u_{s+1} = \cdots = u_t = 0 \). From (6), we get \(u_{s-1} = v_s = v_{s+1} = \cdots = v_{t-1} = 0 \). Hence, we have

\[
x_s \geq x_{s+1} \geq \cdots \geq x_{t+1}, \quad y_s \geq y_{s+1} \geq \cdots \geq y_{t+1}.
\]

Note that \(x_t = y_{t-1} \) and \(x_{t+1} = y_s \). Follow from (5), from (4), (5) and (7), we have

\[
x_s \geq x_{s+1} \geq \cdots \geq x_t \geq y_t \geq y_{t-1} \geq \cdots \geq y_s = x_s,
\]

\[
x_s \geq x_{s+1} \geq y_s \geq y_{s+1} \geq \cdots \geq y_t = x_s.
\]

Note that both ends of these equations are \(x_s \). Hence, these give

\[
x_s = x_{s+1} = \cdots = x_t = y_s = y_{s+1} = \cdots = y_t.
\]
From this equation and (5), we get $x = y$. This contradicts $x \neq y$. Next, let us hypothesize $u_s = u_{s+1} = \cdots = u_t = 1$. Similarly, we get

$$x_s < x_{s+1} < \cdots < x_{t+1}, \quad y_{s-1} < y_s < \cdots < y_t.$$

Note that $x_{s+1} = y_s$ follows from (5). Combining those and (4), we have the following contradiction

$$x_s < x_{s+1} < \cdots < x_{t} = y_{t-1} < y_t = x_s.$$

Thus, we obtain the case 1).

Secondly, we prove the case 2), i.e. the case of $(\alpha, \beta) \in \{(0, 0), (0, 1), (1, 1)\}$. From the assumption, we have $u_{s-\alpha} = v_{t-\beta} = \gamma$. Now, let us hypothesize $u_i = \gamma$ for all $i \in [s - \alpha + 1, t - \beta]$. Suppose $\gamma = 0$. Then, $u_i = v_i = 0$ for all $i \in [s - \alpha, t - \beta]$. Hence, we have

$$x_s - \alpha \geq x_{s-\alpha+1} \geq \cdots \geq x_{t-\beta+1},$$

$$y_s - \alpha \geq y_{s-\alpha+1} \geq \cdots \geq y_{t-\beta+1}.$$

Combining (4), (5), (8), and (9), we get

$$x_s = x_{s+1} = \cdots = x_t = y_s = y_{s+1} = \cdots = y_t,$$

for all pair of $(\alpha, \beta) \in \{(0, 0), (0, 1), (1, 1)\}$. Combining this and (5), we get $x = y$. This contradicts $x \neq y$. Next, suppose $\gamma = 1$. Then, $u_i = v_i = 1$ for all $i \in [s - \alpha, t - \beta]$. Similarly, we get

$$x_s = x_{s+1} = \cdots = x_t = y_s = y_{s+1} = \cdots = y_t,$$

This leads the contradiction $x_s < x_s$. Thus, we obtain the case 2).

Now we will prove the two theorems.

Proof of Theorem 2: Let us hypothesize that there exists a pair of codewords $x, y \in qSVT_{d,e,f}(n, r, q)$ such that $x \neq y$ and $x_{s-\alpha} = y_{t-\beta}$ for two integers $s < t$ and $t - s < r$. Here, without loss of generality, we assume $s < t$. Denote $u = \sigma(x)$ and $v = \sigma(y)$. From Lemma 2, $\sigma(x_{s-\alpha}) = u_{s-(s-\alpha)}$ and $\sigma(y_{t-\beta}) = v_{s-(t-\beta)}$ holds for a pair of integers $(\alpha, \beta) \in \{(0, 0), (0, 1), (1, 0), (1, 1)\}$. We have

$$0 \equiv \sum_{i=1}^{n-1} u_i - \sum_{i=1}^{n-1} v_i \pmod 2 = u_{s-\alpha} - v_{t-\beta},$$

where the first equivalence follows from $x, y \in qSVT_{d,e,f}(n, r, q)$, i.e., $u, v \in SVT_{d,e}(n - 1, r)$, and the second equation follows from $u_{s-(s-1)} = \sigma(x_{s-\alpha}) = \sigma(y_{t-\beta}) = v_{t-\beta}$. Hence, we get

$$u_{s-\alpha} = v_{t-\beta}.$$

(10)

Since $u_{s-(s-\alpha)} = v_{s-(t-\beta)}$, we get (6). From (6) and (10), we have

$$\sum_{i=s}^{t} u_i - \sum_{i=s}^{t} v_i = \sum_{i=s}^{t} u_i = (t - s + \alpha - \beta) u_{s-\alpha}.$$

(11)

Note that $x, y \in qSVT_{d,e,f}(n, r, q) \subset \{z \in [q]^n \mid \sum_{i=1}^{n} z_i \equiv f \pmod {q} \}$. Hence, the pair of x and y satisfies the conditions of Lemma 4. Firstly, we assume $(\alpha, \beta) = (1, 0)$. Then, case 1) of Lemma 4 derives

$$0 < \sum_{i=s}^{t} u_i \leq t - s.$$

Recall that $t - s < r$. Combining the above with (11), we obtain for $u_{s-\alpha} = 0$

$$0 < \sum_{i=s}^{t} u_i - \sum_{i=s}^{t} v_i \leq t - s < r,$$

and for $u_{s-\alpha} = 1$

$$r - s < t - s - 1 < \sum_{i=s}^{t} u_i - \sum_{i=s}^{t} v_i \leq t - s - 1.$$

However, these contradict $\sum_{i=s}^{t} u_i - \sum_{i=s}^{t} v_i \equiv 0 \pmod r$ which follows from $x, y \in qSVT_{d,e,f}(n, r, q)$, i.e., $u, v \in SVT_{d,e}(n - 1, r)$. Secondly, we assume $(\alpha, \beta) \in \{(0, 0), (0, 1), (1, 1)\}$. Then, case 2) of Lemma 4 derives

$$0 < \sum_{i=s}^{t} u_i \leq t - s + \alpha - \beta, \quad (\text{if } u_{s-\alpha} = 0),$$

$$0 < \sum_{i=s}^{t} u_i \leq t - s + \alpha - \beta, \quad (\text{if } u_{s-\alpha} = 1).$$

Since $t - s < r$ and $\alpha - \beta \leq 0$, we have $t - s + \alpha - \beta < r$

Combining the above and (11), we obtain

$$0 < \sum_{i=s}^{t} u_i - \sum_{i=s}^{t} v_i \leq r, \quad (\text{if } u_{s-\alpha} = 0),$$

$$0 < \sum_{i=s}^{t} u_i - \sum_{i=s}^{t} v_i < 0, \quad (\text{if } u_{s-\alpha} = 1).$$

Similarly, these contradict $\sum_{i=s}^{t} u_i - \sum_{i=s}^{t} v_i \equiv 0 \pmod r$.

Hence, we obtain the theorem.

- Theorem 3 is proved in a similar way to [8, Theorem 5].

C. Decoding Algorithm

Due to space limitations, we only describe the insertion/deletion correcting algorithm for the non-binary SVT code. In other words, we omit the decoding algorithm for $C_{q,b}$.

We denote the remainder when i is divided by q, by $(i)_{q}$. Denote the transmitted sequence, by x. Algorithms 1 and 2 describe the deletion and insertion correcting algorithm for the SVT code, respectively. The set of inputs of those algorithms is the received sequence y, code parameters (d, e, f, n, r), and
Ensure:

estimated sequence

received sequence

Algorithm 1

| Require: Received sequence \(y \), code parameters \((d, e, f, n, r, \sigma)\), first possible deletion position \(k \)
| Ensure: Estimated sequence \(x^\prime \)
| \begin{align*}
1: & \quad \hat{x} \leftarrow (f - \sum_{i=1}^{n-1} y_i) / q \\
2: & \quad \text{if } y_{-(k, \hat{x})} \in qSVT_{d,e,f}(n, r, q) \text{ then}
3: & \quad x^\prime \leftarrow y_{-(k, \hat{x})}
4: & \quad \text{else}
5: & \quad (u, [s, t]) \leftarrow \text{SVT-DC}(\sigma(y), d, e, n-1, r, k) \\
6: & \quad s' \leftarrow \max\{s, k+1\}, t' \leftarrow \min\{t, k + r - 2\} \\
7: & \quad j \leftarrow t' + 1 \\
8: & \quad \text{if } u_{s'} = 0 \text{ (i.e., } u_{s'} = u_{s'+1} = \cdots = u_n = 0) \text{ then}
9: & \quad \text{for } i = s', s' + 1, \ldots, t' \text{ do}
10: & \quad \text{if } \hat{x} \geq y_i \text{ then}
11: & \quad \hat{x} \leftarrow i \text{ and go to Step 21}
12: & \quad \text{end if}
13: & \quad \text{end for}
14: & \quad \text{else}
15: & \quad \text{for } i = s', s' + 1, \ldots, t' \text{ do}
16: & \quad \text{if } \hat{x} < y_i \text{ then}
17: & \quad \hat{x} \leftarrow i \text{ and go to Step 21}
18: & \quad \text{end if}
19: & \quad \text{end for}
20: & \quad \text{end if}
21: & \quad x^\prime \leftarrow y_{r(j, \hat{x})}
22: & \quad \text{end if}
| |

first possible deletion/insertion position \(k \). The output of those algorithms is the estimated sequence.

In Algorithm 1, \(\hat{x} \) stands the deleted symbol and \(j \) represents the position of the deleted symbol. Step 1 calculates the deleted symbol since \(\sum_{i=1}^{n-1} y_i + \hat{x} = \sum_{i=1}^{n} x_i \equiv f \pmod{q} \). Step 2 checks whether the \(k \)-th symbol is deleted. If the condition of Step 2 does not satisfy, then the deletion position is in \([k + 1, k + r - 1]\). In such a case, from Lemma 2, \(\sigma(y) \) equals \(\sigma(x) \) with an integer \(i \in [k, k + r - 1] \). Hence, we obtain \(u = \sigma(x) \) as in Step 5. The algorithm searches the position of the deleted symbol in Steps 7-20.

In Algorithm 2, \(\hat{x} \) stands the inserted symbol and \(j \) represents the position of the inserted symbol. Step 1 calculates the inserted symbol since \(\sum_{i=1}^{n+1} y_i - \hat{x} = \sum_{i=1}^{n} x_i \equiv f \pmod{q} \). Step 2 checks whether the \(k \)-th symbol is inserted. If the condition of Step 2 does not satisfy, then the inserted position is in \([k + 1, k + r]\). In such case, from Lemma 3, \(\sigma(y) \) equals \(\sigma(x) - (i, \delta) \) with an integer \(i \in [k, k + r] \) and \(\delta \in \{0, 1\} \). Hence, we obtain \(u = \sigma(x) \) as in Step 5. The algorithm searches the position of the inserted symbol in Steps 7-11.

IV. THE NUMBER OF CODEWORDS

This section evaluates the gap between the lower bound of the cardinality of the constructed code and the upper bound of the cardinality of arbitrary non-binary \(b \)-burst insertion/deletion correcting codes. Moreover, we evaluate the number of codewords of the SVT codes by a numerical example for an evidence that the code in (3) has a larger cardinality.

A. LOWER BOUND OF CARDINALITY OF CONSTRUCTED CODE

In a similar way to [8, Lemma 2], we have the following lemma.

Lemma 5: The following holds

\[
|S_{n,q}(r)| \geq (q^r - n)q^{n-r}.
\]

By the pigeonhole principle and this lemma, we get the following two lemmas.

Lemma 6: The cardinality of non-binary run-length-limited VT code is lower bounds as:

\[
\max_{a \in [n], c \in [q]} |\text{RLL-}q\text{VT}_{a,c}(n, r, q)| \geq \frac{(q^r - n)q^{n-r} - 1}{n}.
\]

Lemma 7: The cardinality of non-binary SVT code is lower bounds as:

\[
\max_{d \in [r], e \in [2], f \in [q]} |q\text{SVT}_{d,e,f}(n, r, q)| \geq \frac{q^{n-1}}{2^r}.
\]

From those lemmas, we obtain a lower bound of cardinality of the constructed code.

Theorem 4: For all \(r \), the cardinality of \(C_{q,b} \) satisfies

\[
\max |C_{q,b}| \geq \frac{q^{n-b} - (b - nq^r)}{2^{b-1}(r+1)^{b-1}} .
\]

Substituting \(r = \log_q n \) in (12), we have

\[
\max |C_{q,b}| \geq \frac{2q^{n-b} - b - 1}{2^{b\log_q n + 1} b^{b-1}} .
\]

We define redundancy of a \(q \)-ary code \(C \) by \(n - \log_q |C| \). From (13), an upper bound of redundancy of \(C_{q,b} \) with the best parameter is

\[
b + \log_q n - \log_q (b - 1) + (b - 1) \log_q 2 \\
+ (b - 1) \log_q (\log_q n + 1).
\]
B. Upper Bound of Cardinality of Burst Insertion/Deletion Correcting Code

Let C be the set of non-binary b-burst insertion/deletion correcting codes of length n. Define $M_b(n) := \arg\max_{C \in C} |C|$. In words, $M_b(n)$ is the non-binary b-burst insertion/deletion correcting code of length n with maximum cardinality, i.e., $M_b(n)$ is the best code. The following theorem gives an upper bound of the cardinality of $M_b(n)$.

Theorem 5: For enough large n, the following holds:

$$|M_b(n)| \leq \frac{q^{n-b+1}}{(q-1)^n}.$$

This theorem is proved in a similar way to [4, Lemma 1].

Proof: Define $m := n/b - 1$. Denote the number of runs in x, by $|x|$. For a positive integer r, define

$$M_b(r) := \{ x \in M_b(n) \mid \forall i \in [1, b] \ | A_b(x)_i| \geq r + 2 \},$$

$$M_2(r) := \{ x \in M_b(n) \mid \exists i \in [1, b] \ s.t. \ | A_b(x)_i| \leq r + 1 \}.$$

Note that $M_b(n) = M_b(r) \cup M_2(r)$ and $M_1(r) \cap M_2(r) = \emptyset$. This leads

$$|M_b(n)| = |M_b(r)| + |M_2(r)| \quad \text{for all } r. \quad (15)$$

Now, we will derive upper bounds of $|M_1(r)|$ and $|M_2(r)|$.

Firstly, we consider $|M_1(r)|$. Denote $D(x) := \{ x_{i|i+i+b-1} \mid i \in [1, n-b+1] \}$. In words, $D(x)$ is a b-burst deletion ball for x, i.e., the set of sequences after b-burst deletion to x. The volume of b-burst deletion ball for x is derived in [4] as

$$|D(x)| = 1 + \sum_{i=1}^{b} (|A_b(x)_i| - 1).$$

Since $|A_b(x)_i| \geq r + 2$ for all i, $|D(x)|$ is bounded by

$$|D(x)| \geq b(r+1) + 1.$$

Since $M_b(n)$ is a b-burst deletion correcting code, $M_1(r)$ is also a b-burst deletion correcting code. Hence, $\bigcup_{x \in M_1(r)} D(x) \subseteq \left[q \right]^{n-b}$ and $D(x) \cap D(y)$ for all $x, y \in M_1(r)$ hold. This leads $q^{n-b} \geq \sum_{x \in M_1(r)} |D(x)|$. Combining the above yields

$$q^{n-b} \geq |M_1(r)| (b(r+1) + 1).$$

As the result, we have an upper bound for $|M_1(r)|$ as follows:

$$|M_1(r)| \leq \frac{q^{n-b}}{b(r+1) + 1} < \frac{q^{n-b}}{b(r+1)} =: f(r). \quad (16)$$

Secondly, we derive an upper bound for $|M_2(r)|$. Define

$$B_{\leq r+1} := \{ x \in \left[q \right]^{n} \mid \exists i.s.t. |A_b(x)_i| \leq r + 1 \},$$

$$B_{\leq r+1, i} := \{ x \in \left[q \right]^{n} \mid |A_b(x)_i| \leq r + 1 \},$$

$$B_{j, i} := \{ x \in \left[q \right]^{n} \mid |A_b(x)_i| = j \}.$$

Then, the following holds

$$M_2(r) \subseteq B_{\leq r+1} = \bigcup_{i=1}^{b} B_{\leq r+1, i} = \bigcup_{i=1}^{b} \bigcup_{j=1}^{r+1} B_{j, i}.$$

Now, the cardinality of $B_{j, i}$ is

$$|B_{j, i}| = \binom{m}{j-1} q^{n-m} (q-1)^{j-1}.$$

These derives

$$|M_2(r)| \leq bq^{n-m} \sum_{j=0}^{r} \binom{m}{j} (q-1)^j.$$

For $r < (1 - q^{-1})m$, the summation is bounded by (e.g. see [13, Exercise 5.8])

$$\sum_{j=0}^{r} \binom{m}{j} (q-1)^j \leq (q-1)^r \exp [mh_2(r/m)], \quad (17)$$

where $h_2(x) := -x \ln x - (1-x) \ln(1-x)$. For $r \geq \frac{q-1}{q} m$,

$$\sum_{j=0}^{r} \binom{m}{j} (q-1)^j \leq q^{m} - (q-1)^{r+1} \exp [mh_2((r+1)/m)] \leq \sqrt{2m}.$$

where the last inequality follows from $\sum_{j=0}^{m} \binom{m}{j} (q-1)^j \geq (q+1)(q-1)^{r+1}$ and $(\frac{m}{r+1}) \geq \exp [mh_2((r+1)/m)]$. Thus, $|M_2(r)|$ is bounded by

$$|M_2(r)| \leq g(r) := \begin{cases} g_1(r), & \text{if } r < \frac{q-1}{q} m, \quad \text{(18)} \\
g_2(r), & \text{if } r \geq \frac{q-1}{q} m, \end{cases}$$

$$g_1(r) := bq^{n-m} (q-1)^r \exp [mh_2(r/m)],$$

$$g_2(r) := bq^{n-m} \left[q^{m} - (q-1)^{r+1} \exp [mh_2((r+1)/m)/\sqrt{2m}] \right].$$

Combining (15), (16) and (18) yields

$$|M_b(n)| \leq \min_{r} (f(r) + g(r)). \quad (19)$$

Note that $f(r)$ is monotonically decreasing function and $g_1(r), g_2(r)$ are monotonically increasing functions. Firstly, we consider the case of $r < \frac{q-1}{2} m$. Let α be a positive real number. Define $\epsilon := \sqrt{\frac{\alpha \ln m}{m}}$. Substituting $r = (1 - q^{-1} - \epsilon)m$ yields

$$f \left((1 - q^{-1} - \epsilon)m \right) \leq \frac{q^{n-b}}{b} \frac{1}{q^{1} (m-1) - \epsilon m} = \frac{q^{n-b+1}}{n(q-1)} (1 + O(\epsilon)),$$

where the last equation follows from $(1 - \epsilon)^{-1} = 1 + O(\epsilon)$. Note that $\ln(1+x) = x - \frac{1}{2} x^2 + O(x^3)$. This leads

$$h_2(1 - q^{-1} - \epsilon) = - (1 - q^{-1} - \epsilon) \ln(q-1) + \ln q + \frac{1}{2} q^{-1} + O(\epsilon^3).$$

This yields

$$g_1 \left((1 - q^{-1} - \epsilon)m \right) = bq^{n-m} \frac{q^2}{q^{1} - \epsilon m} \exp \left[O(\epsilon^3 m) \right].$$

Hence, if $\alpha > 2q^{-1}/q$, $g_1(r) = o(f(r))$. Otherwise, $f(r) = O(g_1(r))$. Thus, for $r \leq \frac{q-1}{2} m$, (19) is evaluated as

$$\min_{r \leq \frac{q-1}{2} m} (f(r) + g(r)) \leq f \left((1 - q^{-1})m - \sqrt{m \ln m} \right) = \frac{q^{n-b+1}}{n(q-1)} (1 + O \left(\sqrt{\frac{\ln m}{m}} \right)). \quad (20)$$
Comparing (20) and (21) leads the theorem.

Secondly, let us consider the case of $r \geq \frac{1}{q} m$. Recall that $f(r)$ and $g_2(r)$ are monotonically decreasing and increasing function, respectively. Since $f((1-q^{-1})m) < g_2((1-q^{-1})m)$, $f(r) < g_2(r)$ holds for all $r \geq \frac{2-1}{q} m$. Thus, for $r \geq \frac{2-1}{q} m$, (19) is evaluated as

$$
\min_{r \geq \frac{2-1}{q} m} (f(r) + g_2(r)) = bq^n + o(q^n).
$$

Comparing (20) and (21) leads the theorem.

From Theorem 5, the redundancy of $M_b(n)$ is lower bounded by

$$
b - \log_q 2 + \log_q n.
$$

By comparing (14), the gap of redundancy between the constructed code and the best code is upper bounded by

$$
- \log_q (b - 1) + b \log_q 2 + (b - 1) \log_q (\log_q n + 1).
$$

C. Numerical Example

Table I shows the number of codewords of the non-binary SVT code with best parameters for $n = 10, q = 4$, i.e., shows $\max_{d,e,f} |q\text{SVT}_{d,e,f}(10, r, 4)|$ for $r = 2, 3, \ldots, 10$. From Table I, we see that the number of codewords decreases for $r \leq 8$ as r increases. In other n, q, we also observe the number of codewords decreases except that r is nearly equals to n. Hence, for small r (e.g., $r = \log_q n$, employed in (13)), we conclude that $C_{q,b}$ has a larger cardinality than $C_{q,b}^*$.

r	2	3	4	5	6
Cardinality	66240	44028	33136	26475	22108
r	7	8	9	10	
Cardinality	19000	17874	17918	18156	

V. CONCLUSION AND FUTURE WORKS

In this paper, we have constructed a non-binary b-burst insertion/deletion correcting code with a larger cardinality and presented a decoding algorithm for the code. We also have derived a lower bound on the cardinality of the proposed code and an asymptotic upper bound on the cardinality of non-binary b burst deletion correcting codes. Our future works are (1) construction of non-binary codes which correct a deletion burst of at most b consecutive symbols and (2) deriving non-asymptotic upper bound on the maximum cardinality of any non-binary b burst deletion correcting code.

ACKNOWLEDGMENT

The authors wish to thank to Dr. C. Schoeny for telling us [11]. This work was supported by JSPS KAKENHI Grant Number 16K16007.

REFERENCES

[1] V. I. Levenshtein, “Binary codes capable of correcting deletions, insertions, and reversals,” in Soviet physics doklady, vol. 10, no. 8, 1966, pp. 707–710.
[2] R. Varshamov and G. Tenenholtz, “Codes which correct single asymmetric errors,” Avtomatika i Telemekhanika, vol. 26, no. 2, pp. 288–292, 1965.
[3] G. Tenengolts, “Nonbinary codes, correcting single deletion or insertion (corresp.),” IEEE Transactions on Information Theory, vol. 30, no. 5, pp. 766–769, 1984.
[4] V. Levenshtein, “Asymptotically optimum binary code with correction for losses of one or two adjacent bits,” Problemy Kibernetiki, vol. 19, pp. 293–298, 1967.
[5] A. S. J. Helberg and H. C. Ferreira, “On multiple insertion/deletion correcting codes,” IEEE Transactions on Information Theory, vol. 48, no. 1, pp. 305–308, Jan. 2002.
[6] F. Paluni, T. G. Swart, J. H. Weber, H. C. Ferreira, and W. A. Clarke, “A note on non-binary multiple insertion/deletion correcting codes,” in 2011 IEEE Information Theory Workshop, Oct 2011, pp. 683–687.
[7] L. Cheng, T. G. Swart, H. C. Ferreira, and K. A. S. Abdel-Ghaffar, “Codes for correcting three or more adjacent deletions or insertions,” in 2014 IEEE International Symposium on Information Theory, June 2014, pp. 1246–1250.
[8] C. Schoeny, A. Wachter-Zeh, R. Gabrys, and E. Yaakobi, “Codes correcting a burst of deletions or insertions,” IEEE Transactions on Information Theory, vol. 63, no. 4, pp. 1971–1985, 2017.
[9] Y. M. Chee, V. K. Vu, and X. Zhang, “Permutation codes correcting a single burst deletion i: Unstable deletions,” in 2015 IEEE International Symposium on Information Theory (ISIT), June 2015, pp. 1741–1745.
[10] Y. M. Chee, S. Ling, T. T. Nguyen, V. K. Vu, and H. Wei, “Permutation codes correcting a single burst deletion ii: Stable deletions,” in 2017 IEEE International Symposium on Information Theory (ISIT), June 2017, pp. 2688–2692.
[11] C. Schoeny, F. Sala, and L. Dolecek, “Novel combinatorial coding results for dna sequencing and data storage,” in 2017 51st Asilomar Conference on Signals, Systems, and Computers, Oct 2017, pp. 511–515.
[12] K. A. S. Abdel-Ghaffar, “Detecting substitutions and transpositions of characters,” The Computer Journal, vol. 41, no. 4, pp. 270–277, 1998.
[13] R. G. Gallager, Information theory and reliable communication. Springer, 1968, vol. 2.

TABLE I

The cardinality of non-binary SVT codes with best parameters for $n = 10, q = 4$.

r	2	3	4	5	6
Cardinality	66240	44028	33136	26475	22108
r	7	8	9	10	
Cardinality	19000	17874	17918	18156	