Structural-transition-driven antiferromagnetic to spin-glass transition in Cd–Mg–Tb 1/1 approximants

Farid Labib¹,4®, Daisuke Okuyama¹, Nobuhisa Fujita¹, Tsunetomo Yamada², Satoshi Ohhashi¹, Daisuke Morikawa¹, Kenji Tsuda³, Taku J Sato¹ © and An-Pang Tsai¹

1 Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai 980-8577, Japan
2 Faculty of Science, Department of Applied Physics, Tokyo University of Science, Katsushika-ku, Tokyo, Japan
3 Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8578, Japan

E-mail: labib.farid.t2@dc.tohoku.ac.jp

Received 18 May 2020, revised 15 July 2020
Accepted for publication 24 July 2020
Published 3 September 2020

Abstract
The magnetic susceptibility of the 1/1 approximants to icosahedral quasicrystals in a series of Cd₈₅₋ₓMgₓTb₁₅ (x = 5, 10, 15, 20) alloys was investigated in detail. The occurrence of antiferromagnetic (AFM) to spin-glass (SG)-like transition was noticed by increasing Mg. Transmission electron microscopy analysis evidenced a correlation between the magnetic transition and suppression of the monoclinic superlattice ordering with respect to the orientation of the Cd₄ tetrahedron at T > 100 K. The possible origins of this phenomenon were discussed in detail. The occurrence of the AFM to SG-like magnetic transition is associated with the combination of chemical disorder due to a randomized substitution of Cd with Mg and the orientational disorder of the Cd₄ tetrahedra.

Keywords: approximants, magnetism, spin glass, antiferromagnetism, magnesium alloys

Supplementary material for this article is available online
(Some figures may appear in colour only in the online journal)

1. Introduction
Quasicrystals have been an object of research since their initial discovery in 1984 [1]. They are characterized as solid state materials possessing a particular kind of long-range order without periodicity in their atomic configuration [2]. Tsai-type icosahedral quasicrystals (iQCs), in particular, exhibiting an icosahedral point symmetry consist of rare earth (RE) elements along with Cd or a mix of two metallic species following the substitution rules [3–5]. Their atomic structure is composed of a kind of clusters with five successive shells [6–8]; as seen in figure 1(a). Generally, their temperature-dependent magnetization at high temperatures (except RE = Yb, which is divalent in the iQCs) follows the Curie–Weiss law with effective magnetic moments being consistent with free RE³⁺ ions. At low temperatures, spin-glass (SG)-like freezing behavior has been reported for iQCs [9–12].

In the near proximity of iQCs in some alloy systems, in terms of chemical composition, there exist compounds that contain the same rhombic triacontahedron (RTH) clusters being arranged in a body-centred cubic (bcc) packing rather than in aperiodic manner [13, 14]. These compounds are known as 1/1 approximants (APs). The configuration of RE atoms within the unit cell of the Tsai-type 1/1 AP is illustrated schematically in figure 1(b). Amongst the known 1/1 APs, the binary Cd₄RE [11, 15–17], ternary Au–Al–RE
and Au–SM–RE systems (RE = rare earth, SM = Si, Ge or Sn) [18–20] have received considerable attention since they exhibit a long-range magnetic ordering at low temperatures. The binary Cd–RE compounds, in particular, exhibit an antiferromagnetic (AFM) ordering evidenced by one or several anomalies in their magnetic susceptibilities [15, 16].

One of the unique features of the compounds in the Cd–RE systems is that they show high solubility of Mg atoms that locate on Cd sites due to their almost similar atomic size and valence. This leads to a rather elongated single-phase region for iQC or 1/1 AP in the ternary Cd–Mg–RE phase diagrams [21, 22]. For example, the single phase region of 1/1 AP in the Cd–Mg–Tb system spans up to Cd₆Mg₂₀Tb₁₅. This paper, therefore, aims to study the consequences of Mg addition on the magnetic properties of 1/1 APs in the Cd–Mg–Tb system especially focusing on the relevance of minor changes in the crystal structure. The AFM to SG-like transition is noticed to be triggered by increasing Mg content of the alloys. Such magnetic transition is associated with order–disorder-type phase transition with respect to the orientation of the central Cd₄ tetrahedron. The results indicate that Mg addition effectively suppresses the ordering of Cd₄ tetrahedra, which is a key element in the occurrence of AFM magnetic transition.

2. Experiment

Polycrystalline samples of Cd₆₋ₓMgₓTb₁₅ (x = 5, 6, 7.5, 10, 12.5, 15, 17.5, 20) 1/1 APs were prepared first by loading three grams in total of pure Cd (99.99%),(Mg (99.9999%) and Tb (99.9999%)) into stainless-steel tubes and sealed with Ar gas employing arc-welding. The tubes were further sealed in quartz tubes under an Ar gas atmosphere (~550 Torr). After an initial melting of the prepared alloys at 973 K, they were isothermally annealed at 773 K for 100 h. In order to evaluate the phase quality of the resulting alloys, powder x-ray diffractometry (XRD) was performed using Cu-Kα. In addition, the scanning electron microscopy (SEM; Hitachi SU-6600) equipped with energy dispersive x-ray (EDX) spectrometer was utilized to investigate the microstructure and local compositions of the prepared alloys. All the samples turned out to be single phase polycrystalline 1/1 APs, as described later. For electron backscatter diffraction (EBSD) analysis, the surface of the samples was polished by ion bombardment machine with accelerated voltage, gun current, milling time and ion angle of 2 kV, 2 mA, 3 h, and 12°, respectively. For transmission electron microscopy (TEM) analysis, the samples were crushed in ethanol and transferred to a Cu grid. An energy-filter TEM JEM-2010FEF was used at an accelerating voltage of 100 kV with a liquid-nitrogen cooling specimen holder.

The temperature dependence of the magnetic susceptibility was measured between 2–300 K under an external DC field of 100 Oe using superconducting quantum interfering device magnetometer (Quantum Design, MPMS-XL). Both zero-field cooled (ZFC) and field cooled (FC) data were collected. The AC magnetic responses of two representative samples were measured within 2 < T < 300 K and frequencies varying from 1 to 100 Hz with H_AC = 3 Oe.

3. Results and discussion

Figure 2(a) shows a typical backscattered SEM image from a microstructure of the Cd₆₀Mg₅Tb₁₅ 1/1 AP. The EDX analysis of specific region is shown on the top right corner. (b) EBSD Kikuchi pattern of the same sample. The pattern exhibits split Kikuchi bands forming distorted pentagonal bands with pseudo-five-fold [032] pole in the center suggesting a significant deviation of the 1/1 AP structure from an ideal iQC one.

![Figure 2](image-url)
Table 1. Nominal alloy compositions and analyzed compositions of the alloys examined in this study.

Nominal composition	Analyzed compositions
Cd80Mg5Tb15	Cd81.26Mg4.18Tb14.56
Cd79Mg7.5Tb15	Cd79.17Mg5.91Tb14.92
Cd77.5Mg7.5Tb15	Cd77.11Mg6.81Tb14.75
Cd75Mg10Tb15	Cd74.18Mg11.51Tb14.29
Cd72.5Mg12.5Tb15	Cd71.19Mg13.36Tb14.05
Cd70Mg15Tb15	Cd68.7Mg16.51Tb14.79
Cd67.5Mg17.5Tb15	Cd66.68Mg19.06Tb14.26
Cd65Mg20Tb15	Cd64.09Mg21.34Tb14.57

Figure 3. Calculated (red line) and measured (green line) powder x-ray diffraction (XRD) patterns of the Cd–Mg–Tb1/1 APs containing 5, 10, 15 and 20 at% Mg after annealing at 773 K. Le Bail analysis is performed for the calculation. The blue line indicates the difference between the theoretical and experimental intensities, while black vertical bars show the Bragg peak positions.

The corresponding Le Bail refinements [23] in the space group of $Im\bar{3}$ using Jana 2006 software suite [24]. Measured peak intensities (I_{obs}) and calculated peak intensities (I_{cal}) in the figure are represented by green and red solid lines, respectively. The difference between the theoretical and experimental intensities ($I_{\text{cal}} - I_{\text{obs}}$) is represented by a blue line, while the expected Bragg peak positions are shown by black vertical bars. As seen, all the XRD peaks could be indexed as 1/1 AP indicating that this phase is formed inside a relatively elongated compositional area up to \sim20 at% Mg. A complete set of measured and refined XRD spectra for all samples are provided separately as a supplementary material (https://stacks.iop.org/JPCM/32/485801/mmedia). The variation of the lattice parameter as a function of analyzed Mg content of the prepared alloys is displayed in figure 4. Clearly, the lattice parameter increases from 15.482(5) Å in Cd81.26Mg4.18Tb14.56 to 15.5104(4) Å in Cd64.09Mg21.34Tb14.57. This is due to the slightly larger atomic radius of Mg (1.60 Å) compared to that of Cd (1.57 Å) [25] leading to expansion of the unit cell, as expected from Vegard’s law. However, the unit cell expansion does not follow a monotonous trend; it grows gradually up to about 12 at% Mg, above which it undergoes a swift expansion. The lattice parameter growth seems to saturate when the Mg content approaches the solubility limit in 1/1 AP (i.e. \sim20 at% Mg). A slight deviation of the lattice parameter of the sample with 7.5 at% Mg from a linear trend may be attributed to an error originating from SEM–EDX element analysis. A sudden rise of the lattice parameters above \sim12 at% Mg, however, might be correlated with the filling up of some preferred atomic sites by Mg, which will be discussed in detail later.

Figure 5(a) depicts the temperature dependence of DC magnetic susceptibility for the Cd65Mg20Tb15 1/1 AP, as a typical example, measured under 100 Oe in a temperature range of 2–300 K. Measured susceptibility data under the FC and ZFC conditions are shown with open and filled circles, respectively. The corresponding inverse magnetic susceptibility data shown in the inset fit well with the Curie–Weiss law in a high
Table 2. Weiss temperature (θw), the freezing temperatures (Tf1, Tf2), and effective magnetic moment (μeff) of the Cd85−xMgxB15 (x = 5, 10, 15 and 20) 1/1 APs. Appearance of successive phase transitions is associated with the existence of various AFM magnetic configurations, which are nearly degenerate, over a bcc array of icosahedral clusters.

Nominal composition	μeff (μB/REion)	μcalc. (μB/REion)	θw (K)	Tf1 (K)	Tf2 (K)	TN (K)
Cd80Mg5Tb15	9.6 ± 0.2		−14 ± 2	3.0 ± 0.5	—	20.5 ± 0.5
Cd75Mg10Tb15	9.8 ± 0.2	9.72	−14 ± 2	3.0 ± 0.5	—	17.0 ± 0.5a
Cd70Mg15Tb15	9.4 ± 0.2		−16 ± 2	3.0 ± 0.5	—	17.0 ± 0.5a
Cd65Mg20Tb15	9.4 ± 0.2		−18 ± 2	3.0 ± 0.5	13.5 ± 0.5	—

aThe boxes highlighted in gray to represent an uncertainty in assigning the anomalies to the Tf2 or TN.

The measured θw values are negative demonstrating AFM interactions between the magnetic moments. The given uncertainty of ±2 K in the estimation of θw in table 2 corresponds to the standard deviation from a mean value after averaging the obtained θw by fitting over different temperature ranges within 100–300 K (with 50 K intervals). The μeff values are consistent with the ideal values calculated for the Tb3+ free ion, i.e. 9.72 μB, confirming that Tb ions are trivalent.

A magnetic phase transition temperature, at which an anomaly associated either with magnetic freezing (Tf) or AFM ordering (TN) occurred, was determined from the magnified low-temperature DC susceptibility curves shown in figure 5(b). The figure clearly evidences the occurrence of two successive transitions.

Figure 6. The in-phase and out-of-phase components of the AC susceptibilities for the (a) and (c) Cd80Mg5Tb15 and (b) and (d) Cd65Mg20Tb15 measured under fAC = 1–100 Hz. The insets in figures 5(a) and (b) show the magnified view of the susceptibility curves around the cusp.
anomalies in each of the susceptibility curves for the 1/1 APs containing 5, 10, 15 and 20 at% Mg in Cd–Mg–Tb system. In Cd$_{80}$Mg$_{5}$Tb$_{15}$, for instance, both χ''_{AC} and χ_{FC} curves are peaked at $T \sim 21$ K, while at $T \sim 3$ K only ZFC shows a maximum. The onset of the bifurcation between ZFC and FC data occurs at $T \sim 12$ K. The susceptibility curve of Cd$_{65}$Mg$_{20}$Nb$_{15}$ exhibits similar features to that of Cd$_{80}$Mg$_{5}$Tb$_{15}$ except the maximum of ZFC data that appears at $T \sim 13$ K. Below $T \sim 13$ K, the bifurcation between ZFC and FC magnetization curves takes place. Such a bifurcation points to an SG-like freezing transition [26]. The transition temperatures for Cd$_{85-x}$Mg$_{x}$Nb$_{15}$ $(x = 5, 10, 15$ and $20)$ compounds are listed in table 2.

Figure 6 depicts in-phase (χ'_{AC}) and out-of-phase (χ''_{AC}) components of the AC magnetic susceptibilities for the Cd$_{80}$Mg$_{5}$Nb$_{15}$ and Cd$_{65}$Mg$_{20}$Nb$_{15}$ alloys under selected frequencies between 1 to 100 Hz. The insets in figures 6(a) and (b) provide magnified views of the susceptibility curves around the cusps. The cusps in χ''_{AC} curves are noticed at exactly the same temperatures as those observed in the DC magnetization curves in figure 4(b). As seen from the insets, the amplitude and position of the cusp in the Cd$_{80}$Mg$_{5}$Nb$_{15}$ alloy (figure 6(a), at around 21 K) are independent of the frequency of the applied field, whereas they are systematically affected by the frequency variation in the Cd$_{65}$Mg$_{20}$Nb$_{15}$ alloy (figure 6(b), at around 13–14 K). At $T \sim 3$ K, however, both alloys exhibit frequency-dependent variation of the χ''_{AC}. These results confirm that the Cd$_{80}$Mg$_{5}$Nb$_{15}$ alloy undergoes an AFM ordering and SG-like freezing at $T \sim 21$ and 3 K, respectively. This is consistent with the earlier reports about the binary Cd$_{6}$Tb where the partial participation of Tb moments in the AFM ordering at $T = 24$ K and the SG freezing of the rest at lower temperature is reported [11, 15, 16, 27–29].

The out-of-phase components χ''_{AC} evidence the occurrence of two frequency dependent peaks for both alloys: the strong peaks at $T \sim 3$ K followed by weak peaks at $T \sim 12$–13 K (indicated by arrows in figures 6(c) and (d)). The weak peak at $T \sim 12$ K for Cd$_{80}$Mg$_{5}$Nb$_{15}$, which disappears with the frequency increment, might reflect either a certain, yet unclarified slow spin dynamics or possible impurities within the samples. Note that all investigated samples exhibit such weak peaks at $T \sim 12$–13 K. The Cd$_{65}$Mg$_{20}$Nb$_{15}$ alloy, on the other hand, exhibits two successive SG-like transitions at $T \sim 3$ and 13.5 K. This implies that the Mg substitution to the Cd$_{6}$Tb 1/1 AP structure (shown in figure 1) disrupts the long-ranged AFM ordering and induces the SG-like transition above the threshold Mg concentration of ~ 12–14 at%.

In order to gain further insights into the AFM to SG-like magnetic transition from the viewpoint of the crystal structure, TEM experiments have been carried out. Figure 7 presents the selected area electron diffraction (SAED) patterns of the Cd$_{80}$Mg$_{5}$Nb$_{15}$ and Cd$_{65}$Mg$_{20}$Nb$_{15}$ 1/1 APs taken with an incidence along [111]$_{C}$ of the (a) and (b) Cd$_{80}$Mg$_{5}$Nb$_{15}$ and (c) and (d) Cd$_{65}$Mg$_{20}$Nb$_{15}$ at 100 K and 300 K. The superlattice reflections are found in the pattern of the Cd$_{80}$Mg$_{5}$Nb$_{15}$ at 100 K, as indicated by arrow heads.

Figure 7. SAED patterns taken with an incidence along [111]$_{C}$ of the (a) and (b) Cd$_{80}$Mg$_{5}$Nb$_{15}$ and (c) and (d) Cd$_{65}$Mg$_{20}$Nb$_{15}$ at 100 K and 300 K. The superlattice reflections are found in the pattern of the Cd$_{80}$Mg$_{5}$Nb$_{15}$ at 100 K, as indicated by arrow heads.

Figure 8. Schematic illustration of the possible low-temperature superstructure of Cd$_{80}$Mg$_{5}$Nb$_{15}$ regarding the orientation of the Cd$_{6}$ tetrahedron at the center of the RTH cluster. Planes with different colors represent different orientations of the Cd$_{6}$ tetrahedron. (a1c, b1c, c1c) and (a0s, b0s, c0s) stand for a cubic and monoclinic lattice basic vectors, respectively.

Reflections in figure 7(a) indicate the doubling of the periodicity along [101]$_{C}$, clearly breaking the threefold symmetry. This means that a structural phase transition has occurred in the Cd$_{80}$Mg$_{5}$Nb$_{15}$ during cooling. In fact, similar phenomena have been commonly observed in the binary Cd$_{6}$RE and Zn$_{6}$Sc 1/1 APs, and have been described as order–disorder-type phase transitions associated with the orientations of the Cd$_{6}$ tetrahedra. Here, the low temperature phase takes a monoclinic structure [11, 15, 28, 30–33]. In the binary systems, the transition temperature depends on the RE type, but is always in the range of $100 < T < 200$ K [30, 31, 34]. Figure 8 presents a schematic illustration of the low-temperature superstructure of the Cd$_{80}$Mg$_{5}$Nb$_{15}$ 1/1 APs with respect to orientational
ordering of the Cd₄ tetrahedra. In the figure, planes with different colors represent different orientations of the Cd₄ tetrahedron. Solid lines indicate cubic unit cells for the high-temperature phase, while dashed lines show a monoclinic unit cell for the low-temperature phase. Interestingly, the SAED patterns of the Cd₆₅Mg₂₀Tb₁₅ 1/1 AP at both T = 100 and 300 K (figures 7(c) and (d)) show no superlattice reflections down to low temperatures indicating that, unlike Cd₈₀Mg₅Tb₁₅, the crystal remains disordered in terms of the orientations of the Cd₄ tetrahedra. The absence of the ordering in the orientations of the tetrahedra might possibly explain why Cd₆₅Mg₂₀Tb₁₅ exhibits no AFM ordering but only SG-like transition at low temperatures (see figures 5 and 6). To the best of our knowledge, this is the first observation that indicates that a high Mg content hinders the ordering of central Cd₄ tetrahedra and further long-ranged AFM ordering in 1/1 AP.

One possible factor that hinders the orientational ordering of Cd₄ tetrahedron in alloys with high Mg content may be the effect of Mg atoms that enter into the central tetrahedral shell. Based on the only structure analysis in hand, i.e. the structure of the Cd₆₅Mg₂₀Y₁₅ 1/1 AP shown in figure 9 [35], the three most preferred Mg occupational sites are the vertex positions of the RTH (M₆ sites), the positions on the two-fold axes of the icosidodecahedron (M₅ sites) and the central tetrahedron (M₇ sites), with 87%, 72% and 72% occupational fractions of Mg, respectively. The M₆ sites, in particular, shows a relatively strong tendency to accept Mg. The numbers in parentheses in figure 9 refer to Mg occupational fractions. It is instructive to note that the Mg content that resides on the M₆ sites alone amounts to 12.42 at% in the total composition. The latter value is reasonably close to the threshold Mg concentration in figure 4 above which the lattice parameters rise significantly (i.e. ~12 at%). This suggests a possible scenario that upon increasing the Mg content, most Mg atoms would first go into the M₆ sites if the Mg content is low, while if Mg content exceeds ~12 at%, Mg atoms would start to occupy the other sites including those in the central tetrahedra, inhibiting the ordering of their orientations. This picture needs to be further verified through more detailed analyses, which is left for future studies.

Another important factor to consider when discussing the order-disorder transition in 1/1 APs in the course of increasing Mg content is the size effect of the second shell dodecahedra that encage the centraltetrahedra. It has been commonly assumed that too short interatomic distances between the central tetrahedron and the surrounding dodecahedron would induce a deformation of the dodecahedral shell thus costing elastic strain energy, while the ordering would take place to minimize the energy [30, 36]. At high-enough temperatures, the entropy gain could compensate for the energy cost. Using the Helmholtz formula, the differential free energy ΔF upon disordering can be written as $\Delta F = \Delta E - T \Delta S$, where ΔE and ΔS denote the energy and entropy differences, respectively. At a crude approximation, one can assume that ΔS is a constant. Then the transition temperature T_c, which follows from $\Delta F = 0$, scales linearly with ΔE. Importantly, as the lattice parameter increases, the volume of the dodecahedron expands and the distances between the neighboring atoms located on the tetrahedron and the dodecahedron increases, which leads to lower strain energy and thus lower T_c. For Cd₆RE 1/1 APs...
having larger RE atoms and thus a larger volume of the dodecahedron, the transition temperature is reported to be relatively lower than those with smaller RE size [30, 36]. The present argument is fully consistent with this observation, and can also be naturally extended to the present system of ternary alloys. Note that the dodecahedron volume increases following the significant rise in the lattice parameter of 1/1 APs above ~12 at% Mg (see figure 4) leading the structural transition temperature \(T_c \) to drop. In this scenario, the structural transition in \(\text{Cd}_{85.5} \text{Mg}_{5} \text{Tb}_{15} \) 1/1 AP (nominal composition) may still take place below \(T = 100 \) K. However, the probability of the tetrahedron reorientation is proportional to \(\exp(-E_a/k_B T) \), where the \(E_a \) and \(k_B \) are the activation energy of the tetrahedron reorientation and the Boltzmann factor, respectively [30, 36]. In this sense, the reorientation of the tetrahedron (disordering) is strongly dependent on the temperature and might be kinetically frozen at lower temperatures.

Here, the underlying reasons of the composition-driven AFM to SG-like magnetic transition will be discussed. The composition-dependent AFM to FM and FM to SG transitions have been reported in the Au–Al–RE (RE = Gd and Tb) systems [27, 37] and been interpreted by the impact of Au/Al variation on the electron-per-atom \((e/a) \) ratio of the compounds. However, given that both Mg and Cd are valent, the \(e/a \) values of the present \(\text{Cd}_{85.5-x} \text{Mg}_x \text{Tb}_{15} \) \((x = 5, 10, 15, 20)\) compounds equal 2.15. Therefore, the AFM to SG-like magnetic transition in the present study is perhaps not triggered by \(e/a \) ratio, but rather by the suppression of \(\text{Cd}_4 \) tetrahedra ordering, which is a key element in the establishment of AFM magnetic transition. Indeed, the cubic to monoclinic structural transition induces a strong distortion which plays an important role in relieving some degree of magnetic frustration inherent to the RE elements with nearly perfect icosahedral arrangement in the cubic structure and favors the occurrence of AFM magnetic transition [28]. Nevertheless, the structural disorder of inner \(\text{Cd}_4 \) tetrahedron may induce randomness of crystal electric field (CEF) and raise the SG-like freezing of the RE magnetic moments at low temperatures. The present result calls for further experimental and theoretical studies for more clarification.

Note that the chemical disorder of the Cd/Mg should also be taken into account as the source of disorder contributing to the observed SG behavior in alloys with high Mg content. The importance of chemical disorder was recently confirmed by measuring CEF splitting in \(\text{Au–Si–Tb} \) 1/1 AP [38]. It seems reasonable, therefore, to assume that the combination of chemical disorder due to a randomized substitution of Cd with Mg and the orientational disorder of the \(\text{Cd}_4 \) tetrahedra is responsible for the occurrence of the AFM to SG-like magnetic transition in the present compounds.

4. Conclusion

This research was undertaken to evaluate the effect of Mg/Cd substitution on the crystal structure and magnetic properties in the \(\text{Cd}_{85.5-x} \text{Mg}_x \text{Tb}_{15} \) \((x = 5, 10, 15, 20)\) 1/1 APs. Each of the four compounds exhibited two anomalies in their DC magnetic susceptibilities. The higher transition temperature was found to be of the AFM-type in the \(\text{Cd}_{80} \text{Mg}_{20} \text{Tb}_{15} \) and SG-type in the \(\text{Cd}_{85} \text{Mg}_{20} \text{Tb}_{15} \). The superlattice reflections were observed in the SAED pattern of the \(\text{Cd}_{80} \text{Mg}_{20} \text{Tb}_{15} \) at \(T = 100 \) K, whereas no superlattice reflections were noticed for the \(\text{Cd}_{85} \text{Mg}_{20} \text{Tb}_{15} \) at the same temperature. The appearance of superlattice reflections is associated with the order-disorder-type phase transition with respect to the orientations of the \(\text{Cd}_4 \) tetrahedra. Taken together, the combined effect of chemical disorder of Cd/Mg and orientational disorder of the \(\text{Cd}_4 \) tetrahedra is presumably responsible for the occurrence of the AFM to SG-like magnetic transition in the present compounds.

Acknowledgments

This work was supported in part by Japan Society for the Promotion of Science through Grants-in-Aid for Scientific Research (Grant Nos. JP19H05819, JP17K18744, JP19H01834, JP19K21839, JP19H05824, JP19K03709 and JP18K13987). This work was also supported partly by the research program ‘dynamic alliance for open innovation bridging human, environment, and materials’.

ORCID iDs

Farid Labib https://orcid.org/0000-0003-2912-2004
Taku J Sato https://orcid.org/0000-0003-2511-4998

References

[1] Shechtman D, Blech I, Gratias D and Cahn J W 1984 Metallic phase with long-range orientational order and no translational symmetry Phys. Rev. Lett. 53 1951–3
[2] Levine D and Steinhardt P J 1984 Quasicrystals: a new class of ordered structures Phys. Rev. Lett. 53 2477–80
[3] Steurer W and Deloudi S 2008 Fascinating quasicrystals Acta Crystallogr. A 64 1–11
[4] Fujiwara T and Ishi Y 2008 Quasicrystals: Handbook of Metal Physics (Amsterdam: Elsevier)
[5] Tsai A P 2008 Icosahedral clusters, icosahedral order and stability of quasicrystals—a view of metallurgy Sci. Technol. Adv. Mater. 9 013008
[6] Takakura H, Gómez C P, Yamamoto A, De Boissieux M and Tsai A P 2007 Atomic structure of the binary icosahedral Yb–Cd quasicrystal Nat. Mater. 6 58–63
[7] Yamada T, Takakura H, Boissieux M D and Tsai A P 2017 Atomic structures of ternary Yb–Cd–Mg icosahedral quasicrystals and a 1/1 approximant Acta Crystallogr. B 73 1125–41
[8] Yamada T et al 2016 Atomic structure of the 1–R–Cd quasicrystals and consequences for magnetism Phys. Rev. B 94 060103(R)
[9] Sato T J, Guo J and Tsai A P 2001 Magnetic properties of the icosahedral Cd–Mg–Yb quasicrystals J. Phys.: Condens. Matter 13 L105–11
[10] Jagličič Z, Dolšnik J, Trontelj Z and Martinez-Aguado J M 2004 Magnetic properties of Cd–Mg–Yb quasicrystal Mater. Sci. Eng. A 375–377 998–1001
[11] Goldman A I 2014 Magnetism in icosahedral quasicrystals: current status and open questions Sci. Technol. Adv. Mater. 15 044801
[12] Kong T, Bud S L, Jesche A, Mcarthur J, Kreyssig A, Goldman A I and Canfield P C 2014 Magnetic and transport properties of 1–R–Cd icosahedral quasicrystals \((R = \text{Y, Gd–Tm})\) Phys. Rev. B 90 014424
[13] Goldman A I and Kelton R F 1993 Quasicrystals and crystalline approximants Rev. Mod. Phys. 65 213–30
[14] Gómez C P and Lidin S 2003 Comparative structural study of the disordered MCd₆ quasicrystal approximants Phys. Rev. B 68 024203
[15] Tamura R, Muro Y, Hiroto T, Nishimoto K and Takabatake T 2010 Long-range magnetic order in the quasicrystalline approximant Cd₆Tb Phys. Rev. B 82 220201
[16] Mori A et al 2012 Electrical and magnetic properties of quasicrystal approximants RCd₆ (R: rare earth) J. Phys. Soc. Japan 81 042740
[17] Kreyssig A, Beutier G, Hiroto T, Kim M G, Tucker G S, Boissieu M D, Tamura R and Goldman A I 2013 Antiferromagnetic order and the structural order-disorder transition in the Cd₆Ho quasicrystal approximant Phil. Mag. Lett. 93 512–20
[18] Gebresenbut G, Andersson M S, Beran P, Manuel P, Nordblad P, Sahliberg M and Gomez C P 2014 Long range ordered magnetic and atomic structures of the quasicrystal approximant in the Tb–Au–Si system J. Phys.: Condens. Matter 26 322202
[19] Hiroto T, Tokiwa K and Tamura R 2014 Sign of canted ferromagnetism in the quasicrystal approximants Au–SM–R (SM = Si, Ge and Sm/R = Tb, Dy and Ho) J. Phys.: Condens. Matter 26 216004
[20] Hiroto T and Gebresenbut G H 2013 Ferromagnetism and re-entrant spin-glass transition in quasicrystal approximants Au–SM–Gd (SM = Si, Ge) J. Phys.: Condens. Matter 25 426004
[21] Labib F, Fujita N, Ohhashi S and Tsai A 2020 Icosahedral quasicrystals and their cubic approximants in the Cd–Mg–RE (RE = Y, Sm, Gd, Tb, Dy, Ho, Er, Tm) systems J. Alloys Compd. 822 153541
[22] Labib F, Ohhashi S and Tsai A 2019 Formation and crystallographic orientation study of quasicrystal, 2/1 and 1/1 approximants in Cd–Mg–Y system using electron backscatter diffraction (EBSD) Phil. Mag. 99 1528–50
[23] Le Bail A, Duroy H and J L F 1988 Ab initio structure determination of LiSbWO₆ by X-ray powder diffraction Mater. Res. Bull. 23 447–52
[24] Petricek V, Dušek M and Palatinus L 2014 Crystallographic computing system JANA2006: general features Z. Kristallogr. 229 345–52
[25] Pearson W B 1973, The crystal chemistry and physics of metals and alloys (New York: Wiley)
[26] Binder K and Young A P 1986 Spin glasses: experimental facts, theoretical concepts, and open questions Rev. Mod. Phys. 58 801–976
[27] Ishikawa A, Fujii T, Takeuchi T, Yamada T, Matsushita Y and Tamura R 2018 Antiferromagnetic order is possible in ternary quasicrystal approximants Phys. Rev. B 98 220403(R)
[28] Kim M G, Beutier G, Kreyssig A, Hiroto T, Yamada T, Kim J, De Boissieu M, Tamura R and Goldman A I 2012 Antiferromagnetic order in the quasicrystal approximant Cd₆Tb studied by x-ray resonant magnetic scattering Phys. Rev. B 85 134442
[29] Tamura R, Muro Y, Hiroto T, Yaguchi H, Beutier G and Takabatake T 2012 Structural and magnetic transitions in the crystalline approximant Cd₆Sm Phys. Rev. B 85 014203
[30] Nishimoto K, Sato T and Tamura R 2013 Low-temperature superstructures of a series of Cd₆M (M = Ca, Y, Sr, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) crystalline approximants J. Phys.: Condens. Matter 25 235403
[31] Tamura R, Edagawa K, Aoki C, Takeuchi S and Suzuki K 2004 Novel phase transition in the Cd₆M intermetallics J. Alloys Compd. 378 290–3
[32] Yamada T, Euchner H, Gómez C P, Takakura H, Tamura R and De Boissieu M 2013 Short- and long-range ordering during the phase transition of the Zn₆Sc 1/1 cubic approximant J. Phys.: Condens. Matter 25 205405
[33] Ishimasa T, Kasano Y, Tachibana A, Kashimoto S and Osaka K 2007 Low-temperature phase of the Zn–Sc system Phil. Mag. 87 2887–97
[34] Pay Gómez C and Lidin S 2004 Superstructure of Eu₄Cd₃₅: a quasicrystal approximant Chem. Eur. J. 10 3279–85
[35] Yamada T, Labib F and Fujita N in preparation
[36] Tamura R 2011 Properties of Cd-based binary quasicrystals and their 1/1 approximants Isr. J. Chem. 51 1263–74
[37] Ishikawa A, Hiroto T, Tokiwa K, Fujii T and Tamura R 2016 Composition-driven spin glass to ferromagnetic transition in the quasicrystal approximant Au–Al–Gd Phys. Rev. B 93 024416
[38] Hiroto T, Sato T J, Cao H, Hawai T, Yokos T, Itoh S and Tamura R 2020 Noncoplanar ferrimagnetism and local crystalline-electric-field anisotropy in the quasicrystal approximant Au₇₀Si₁₇Tb₁₃ J. Phys.: Condens. Matter 32 415802