Independent suppression of ribosomal +1 frameshifts by different tRNA anticodon loop modifications

Roland Klassen, Alexander Bruch, and Raffael Schaffrath

Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Kassel, Germany

ABSTRACT

Recently, a role for the anticodon wobble uridine modification 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U) has been revealed in the suppression of translational +1 frameshifts in *Saccharomyces cerevisiae*. Loss of either the mcm5U or s2U parts of the modification elevated +1 frameshift rates and results obtained with reporters involving a tRNA^{Lys}_{UUU} dependent frameshift site suggested these effects are caused by reduced ribosomal A-site binding of the hypomodified tRNA. Combined loss of mcm5U and s2U leads to increased ribosome pausing at tRNA^{Lys}_{UUU} dependent codons and synergistic growth defects but effects on +1 frameshift rates remained undefined to this end. We show in here that simultaneous removal of mcm5U and s2U results in synergistically increased +1 frameshift rates that are suppressible by extra copies of tRNA^{Lys}_{UUU}. Thus, two distinct chemical modifications of the same wobble base independently contribute to reading frame maintenance, loss of which may cause or contribute to observed growth defects. Since the thiolation pathway is sensitive to moderately elevated temperatures in yeast, we observe a heat-induced increase of +1 frameshift rates in wild type cells that depends on the sulfur transfer protein Urm1. Furthermore, we find that temperature-induced frameshifting is kept in check by the dehydration of N6-threonylcarbamoyladenosine (t6A) to its cyclic derivative (ct6A) at the anticodon adjacent position 37. Since loss of ct6A in elp3 or urm1 mutant cells is detrimental for temperature stress resistance we assume that conversion of t6A to ct6A serves to limit deleterious effects on translational fidelity caused by hypomodified states of wobble uridine bases.

Introduction

tRNA molecules from all three domains of life undergo extensive post-transcriptional modification, some of which are capable of modulating certain tRNA functions during the translation process. One of these is the conserved wobble base modification 5-methoxycarbonylmethyl-2-thio-uridine (mcm5s2U), which is found in the anticodons of tRNA^{Gln}_{UUG}, tRNA^{Glu}_{UUC} and tRNA^{Lys}_{UUU}. Three distinct enzyme sets are required to convert the unmodified wobble uridine to mcm5s2U. The six subunit Elongator complex (Elp1-Elp6) along with accessory proteins is required for the addition of a chemical side chain (likely a 5-carboxymethyl-chain, cm5) that is subsequently converted to mcm5 by the action of the Trm9-Trm112 methyltransferase complex. The thiolation (s2U) involves members of the URM1 pathway, a sulfur transfer system consisting of Nfs1, Tum1, Urm1, Uba4 and the thiolase complex Ncs2-Ncs6. In this pathway, sulfur is mobilized from cysteine and transferred to the thiolase complex via the sulfur transfer protein Urm1, which also acts as an ubiquitin-like protein modifier. In budding yeast, the modifications of the uracil base at C2 (s2U) and C5 (mcm5U) occur independently of each other and inactivation of either alone results in shared pleiotropic phenotypes including sensitivities to various stressors and growth defects at elevated temperature. Simultaneous inactivation of both s2U and mcm5U modifications results in synergistic growth defects that are partly suppressible by elevated copy numbers of the three tRNAs normally carrying mcm5s2U. Suppression efficiency is maximal when copy numbers of all three tRNAs are jointly elevated but detectable phenotypic rescue became already apparent when tRNA^{Lys}_{UUU} was individually overexpressed, suggesting a major part of the growth defects does result from tRNA^{Lys}_{UUU} malfunction in the absence of the wobble uridine modification. Recently, the mcm5U and s2U parts of the mcm5s2U modification were further implicated in the maintenance of translational accuracy. Absence of either increased ribosomal +1 frameshifting at tRNA^{Glu}_{UUC} and tRNA^{Lys}_{UUU} dependent test codons in dual luciferase based reporter constructs. To clarify whether induced frameshifting in the absence of mcm5U is due to weakened A-site or P-site binding, a series of modified Ty1 frameshift sites fused to a lacZ reporter gene were employed. In the original Ty1 sequence, frameshifting is induced by a "hungry" AGG (Arg) codon following the CUU (Leu) codon. The hungry Arg codon was replaced by the tRNA^{Lys}_{UUU} dependent test codons in dual luciferase based reporter constructs. To clarify whether induced frameshifting in the absence of mcm5U is due to weakened A-site or P-site binding, a series of modified Ty1 frameshift sites fused to a lacZ reporter gene were employed. In the original Ty1 sequence, frameshifting is induced by a "hungry" AGG (Arg) codon following the CUU (Leu) codon. The hungry Arg codon was replaced by the tRNA^{Lys}_{UUU} dependent test codons in dual luciferase based reporter constructs. To clarify whether induced frameshifting in the absence of mcm5U is due to weakened A-site or P-site binding, a series of modified Ty1 frameshift sites fused to a lacZ reporter gene were employed. In the original Ty1 sequence, frameshifting is induced by a "hungry" AGG (Arg) codon following the CUU (Leu) codon. The hungry Arg codon was replaced by the tRNA^{Lys}_{UUU} dependent test codons in dual luciferase based reporter constructs.

CONTACT Roland Klassen (roland.klassen@uni-kassel.de); Raffael Schaffrath (schaффrath@uni-kassel.de) Institut für Biologie, Universität Kassel, Fachgebiet Mikrobiologie, Heinrich-Plett-Str. 40, Kassel, Germany, D-34132.

© 2017 Roland Klassen, Alexander Bruch, and Raffael Schaffrath. Published with license by Taylor & Francis Group, LLC. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.
elevated copy numbers of tRNA$^{Lys}_{UUU}$ suppressed the increase in frameshifting in the elp3 mutant, suggesting that loss of mcm5U in tRNA$^{Lys}_{UUU}$ induces +1 frameshifts mainly by reduced A-site binding of the hypomodified tRNA rather than causing effects by affecting efficiency of P-site binding. This conclusion is further supported by in vitro assays demonstrating a reduced A-site binding capacity of tRNA$^{Lys}_{UUU}$ in the absence of either s2U or mcm5U.\(^{31}\)

Recently, the combination of mcm5U and s2U modification defects was shown to induce an increased ribosomal stalling at mcm5S2U dependent AAA (Lys) and CAA (Gln) codons. This has a negative impact on co-translational folding of nascent polypeptide chains and triggers a widespread protein aggregation phenomenon.\(^{28}\) Ribosomal stalling and protein aggregation were significantly suppressed by elevated levels of the three tRNAs normally carrying the mcm5S2U modification.\(^{28}\) Since growth phenotypes and protein aggregation are suppressible by elevated tRNA copy numbers, it seems likely that phenotypes in the mcm5S2U minus mutant are caused by the protein aggregation effect.\(^{28}\) However, in light of the contribution of mcm5U and s2U to the suppression of translational frameshifting,\(^{29}\) it seemed possible that combined loss of mcm5U and s2U not only leads to increased protein aggregation but also impairs translational accuracy, which was investigated in this study. Further, wobble uridine thiolation was recently found in several independent studies to decrease in budding yeast under conditions of mild heat stress,\(^{32-35}\) suggesting that elevated temperature may already cause measurable effects on +1 translational frameshifting. Since tRNA$^{Lys}_{UUU}$, additionally harbors a modified adenosine at position 37 (cyclic N6-threonyl-carbamoyl-adenosine, ct6A), which is already implicated in suppression of ribosomal frameshifts,\(^{36,37}\) we monitored how this modification impacts on the translational effects of heat induced suppression of wobble uridine thiolation.

Results and discussion

Independent suppression of +1 frameshifts by s2U and mcm5U

To further check for a role of the mcm5U or s2U parts of the wobble uridine thiolation mcm5S2U in translational accuracy, we utilized +1 frameshift reporters containing a modified Ty1 frameshift site (Fig. 1).\(^{29}\) Different yeast strains of the BY4741 background were transformed with an in-frame control construct (F12) and the test construct (W12). Both constructs contain the modified Ty1 frameshift site CTT-AAA-C decoded by tRNA$^{Leu}_{UAG}$ (CTT) and tRNA$^{Lys}_{UUU}$ (AAA) in a HIS4A::lacZ reporter cassette (Fig. 1B). F12 and W12 constructs differ in the position of the lacZ gene, which is in the 0 frame in F12 and in the +1 frame in W12. Previous work established that in the W303 strain background, loss of elp3, which removed the mcm5U side chain from tRNA$^{Lys}_{UUU}$ decoding the AAA codon in the frameshift site, strongly induced normalized frameshift rates in comparison to the wild type.\(^{28}\) We also detected a significant induction of +1 frameshift rates (4.5-fold) in the BY4741 elp3 mutant (Tab. 1; Fig. 2A). Deletion of the gene for the sulfur carrier Urm1, which is essential for wobble uridine thiolation, similarly increased frameshift rates (5.6-fold) (Tab. 1; Fig. 2A). To test for a potential contribution of the protein modifier function of Urm1, we compared frameshift rates between urm1 and ncs2. Loss of URM1 disables both protein modification and tRNA thiolation, whereas loss of the thiolase subunit Ncs2 disables tRNA thiolation alone.\(^{7,22,23,25}\) We detected no significant difference between frameshift rates of both mutants (Tab. 1), suggesting the effects of URM1 deletion on translational fidelity exclusively result from loss of s2U formation. Since double deletion of elp3 and urm1, which concomitantly removes both mcm5U and s2U from wobble uridines is permitted in BY4741 (but not in the W303 strain used in the previous study),\(^{27,38}\) we also analyzed frameshift rates in the double mutant and found a synergistic ~16-fold increase compared with the wild type. Frameshift rates in the double mutant were significantly increased ($p < 0.05$) in comparison to either single mutant (Tab. 1; Fig. 2A), indicating the sulfur at position 2 and the mcm side chain at position 5 of the wobble base (U34) do contribute to translational accuracy independently of each other. To test whether loss of s2U and combined loss of mcm5U and s2U increase frameshift rates through an A site effect (Fig. 1C-E), we analyzed whether the increase in the frameshift rates is suppressible by an extra tRNA$^{Lys}_{UUU}$ gene copy, tK(UUU), as was previously described for rescue of elp3 phenotypes by higher-than-normal levels of tRNA$^{Lys}_{UUU}$.\(^{29}\)

Indeed, the extra tK(UUU) copy present in the reporter constructs significantly reduced frameshift levels in urm1 and elp3 urm1 (Table. 1; Fig. 2A) mutants, consistent with the interpretation that a delayed A-site entry of hypomodified tRNA$^{Lys}_{UUU}$ induces a reading frame shift of the tRNA$^{Leu}_{UAG}$ occupying the ribosomal P-site (Fig. 1D). Since combination of mcm5U and s2U modification defects has deleterious effects on growth and stress resistance and these effects are suppressible by elevated levels of those three tRNAs that normally harbor the modification,\(^{27}\) we conclude that the observed strong increase in frameshift rates may contribute to growth defects, in addition to the described effects on protein homeostasis.\(^{28}\) Complete loss of another anticodon loop modification (ct6A) similarly causes growth defects, stress sensitivity, protein aggregation and ribosomal frameshift induction, which may be due to changes in the efficiency of codon occupancy.\(^{39}\) Hence it seems likely that tRNA modifi- cations other than mcm5S2U independently add to the efficiency of A-site binding and thereby explain synergistic phenotypes observed upon combined removal of different modifications from bases in tRNA anticodon loops.\(^{40}\)

Elevated temperature impacts on translational accuracy via the Urm1 pathway

Recent work revealed an unanticipated sensitivity of several of the thiolation pathway components to elevated temperature.\(^{32-35}\) This in turn leads to significantly reduced wobble uridine thiolation levels which are already detectable in BY4741 wild type cells after modest increase of temperatures to 33°C.\(^{33}\) Hence, it can be expected that mild heat stress increases translational +1 frameshift levels due to its destabilizing effects on the tRNA thiolation pathway. To
test this assumption, we grew wild type cells harboring the W12 or F12 constructs at mild heat stress conditions (37°C), measured +1 frameshift rates and compared them to rates observed under non-stress condition. We found that such elevated growth temperature increases +1 frameshift levels ~5-fold (Tab 1; Fig. 2B), a value similar to that seen in urm1 cells grown under non-stressed conditions. Furthermore, extra copies of tRNA\textsubscript{Lys\textsubscript{UUU}} significantly reduce the frameshift inducing effect of temperature stress (Tab. 1; Fig. 2B). Since both elevated temperature and loss of URM1 have comparable effects on +1 frameshift levels and similarly respond to increased tRNA\textsubscript{Lys\textsubscript{UUU}} doses, it seemed likely that the temperature effect is largely due to inactivation of the Urm1 dependent tRNA thiolation pathway. We took advantage of the fact that urm1 mutants are hardly growth affected under such mild heat stress conditions and tested whether temperature effects on +1 frameshift levels depend on a functional Urm1 pathway. urm1 mutants harboring the W12 and F12 construct were grown at 37°C, +1 frameshift rates were measured and compared with levels measured under non-stress conditions. As shown in Table 1 and Fig. 2B, there is no significant difference in +1 frameshift levels between urm1 cells grown at 30°C or at 37°C. These results suggest that moderate heat stress causes a significant increase in translational inaccuracy via the destabilization of the Urm1 pathway components. To test whether moderate heat stress (37°C) indeed reduces sulfur flow through the Urm1 pathway, we monitored the relative efficiency of Ahp1 urmylation, a process that is dependent on the thio-carboxylate formation at the Urm1 C-terminus. We have recently shown that more harsh heat stress (39°C) reduces both sulfur dependent Ahp1
urmylation and Urm1 stability without affecting Ahp1 levels. Thus, in order to check whether temperature shift to 37°C already affects both the tRNA thiolation and urmylation branches of the Urm1 pathway, we analyzed levels of Ahp1-Urm1 conjugates and free Urm1 after temperature shift from 30°C to 37°C by Western analysis (Fig. 3). We detected a clear reduction of Ahp1 urmylation already after 2.5h at 37°C and a reduction of detectable free Urm1 after 7.5 h. This result suggests that mild heat stress which increases C1 frameshift rates (Tab. 1, Fig. 2) has a direct effect on the Urm1 pathway, which might result in part from a destabilization of the sulfur carrier and a reduction of sulfur flow to Urm1. The latter notion is supported by a more rapid decline of Ahp1-Urm1 conjugates compared with Urm1 itself (Fig. 3) and a previously reported instability of Tum1 at 37°C, which operates upstream of Urm1 in the sulfur transfer pathway. Since neither wild type nor the urm1 mutant show a significant growth defect under mild heat stress conditions that induce +1 frameshift rates via downregulation of the Urm1 pathway, we assume that cells are well capable of handling the consequences of such disturbance of the translation machinery. Most likely, this occurs by proteasomal degradation of non-functional polypeptides generated due to translational frameshift events. In support, proteins induced in urm1 and elp3 cells are strongly enriched in proteasomal subunits and regulators, suggesting an increased need for protein degradation and turnover in the absence of s2 modification. We show here that upon combination of mcm3U and s2U defects, frameshift rates synergistically increase to much higher levels compared with those seen in heat stressed cells; at the same time, a general growth defect becomes apparent,

Figure 2. Induction of +1 translational frameshift rates relative to the wild type. Fold induction rates were calculated based on normalized frameshift values [%] shown in Table 1 and significance of differences determined using two-tail t-test. n.s.: not significantly different. Heat indicates moderate thermal stress condition during growth (37°C) and + tK(UUU) refers to frameshift levels measured with the WA-2 and FA-1 constructs that carry an additional copy of the tK(UUU) gene.
suggesting that growth defects may correlate with an overflow of the cell’s capacity to handle non-functional polypeptides. In support of this notion, it was demonstrated that cells lacking mcm5Ua n ds 2U display a severely reduced ability to respond to acute proteotoxic stress,28 a condition that puts an additional burden on the cellular resources for handling damaged proteins.

\begin{table}[h]
\centering
\begin{tabular}{|l|c|c|c|}
\hline
Strain & Modification missing & Temperature & Normalized frameshift rate\% (SD) \\
\hline
WT & — & 30 & 0.26 (0.07) \\
WT + tK & — & 30 & 0.33 (0.07)ns \\
WT (sUU)a & sUU & 37 & 1.30 (0.20)* \\
WT + tK (sUU)a & sUU & 37 & 0.34 (0.04)** \\
urm1 & sUU & 30 & 1.48 (0.16)** \\
urm1 + tK & sUU & 30 & 0.71 (0.02)** \\
urm1 & sUU & 37 & 1.26 (0.22)** \\
ncs2 & sUU & 30 & 1.41 (0.41)** \\
elp3 & n/mcmUU & 30 & 1.19 (0.27)** \\
elp3 urm1 & n/mcmUU + sUU & 30 & 4.17 (1.44)** \\
elp3 urm1 + tK & n/mcmUU + sUU & 30 & 1.62 (0.39)** \\
tcd1 & ctA & 30 & 0.32 (0.08)** \\
tcd1 urm1 & ctA + sUU & 30 & 2.22 (0.77)** \\
tcd1 & ctA + (sUU)a & 37 & 2.21 (0.22)** \\
\hline
\end{tabular}
\caption{Normalized frameshift rates in different yeast strains and growth conditions.}
\end{table}

+tK refers to frameshift levels measured with the WA-2 and FA-1 constructs28 that carry an additional copy of the tk(UUU) gene.

*temperature induced loss of sU32

ns not significantly different from wild type (30°C) levels as determined by t-test (p > 0.05).

* significantly different from wild type (30°C) levels as determined by t-test (p < 0.05).

** significantly different from wild type (30°C) levels as determined by t-test (p < 0.01).

\textbf{Role of the anticodon adjacent ctA modification in the prevention of heat induced +1 frameshifts}

Since the frameshift events recorded in this study are caused by a wobble uridine modification defect in tRNA1256,UUU, we investigated the relevance of cyclic N6-threonyl-carbamoyl-adenosine which is found in the anticodon loop of this tRNA at
position 37 (modomics.genesilico.pl). Complete loss of this modification is known to induce translational frameshift events in yeast. However, the role of the dehydration of t6A to its cyclic form ct6A in yeast is unknown. Conversion of t6A to ct6A is abolished in tcd1 and tcd2 mutants and both show negative genetic interaction with Urm1 pathway and Elongator genes. In addition, combination of tcd1 and Elongator mutations was shown to increase the formation of protein aggregates, which is likely due to increased ribosomal pausing. Hence, ct6A might play a functionally overlapping role with either pRS425 (vector), pK (multi copy tRNALys) or pQKE (multi copy tRNALys, tRNA54UUC and tRNA94UUC) and serial dilutions of cultures transferred to YPD plates that were incubated at the indicated temperatures for two days.

Figure 4. Heat induced growth defects in tcd1 and tcd2 single mutants are suppressible by elevated levels of tRNA54UUC. tcd1 and tcd2 mutants were transformed with either pRS425 (vector), pK (multi copy tRNA54UUC) or pQKE (multi copy tRNA54UUC, tRNA54UUC and tRNA94UUC) and serial dilutions of cultures transferred to YPD plates that were incubated at the indicated temperatures for two days.

Methods

Strains, plasmids and growth assay

Yeast strains used in this study are listed in Table 2. Constructs containing the HIS4A::lacZ reporter cassette and modified Ty1 frameshift sites are described in and are based on pMB38–9merWT or pMB38–9merFF, respectively. Construct F12 contains the frameshift site CUU–AAA–C and the lacZ gene in reading frame 0 (in frame control). Construct W12 contains the same frameshift site and the lacZ gene in frame +1 with respect to HIS4A. Suppression analysis of frameshift rates involved constructs WA-2 and FA-1, which are similar to W12 and F12 but carry an additional insert with the t(k(UU)) gene. Plasmids were transformed into yeast strains using the lithium acetate method and transformants selected on yeast minimal medium (Foremedium, Norfolk, UK) lacking uracil. Selection plates were incubated at 30°C until colonies were formed. Independent colonies from the selection plates were used to inoculate cultures for β-galactosidase assays. Growth phenotypes of tcd1 and tcd2 single mutants at different temperatures and suppression by tRNA overexpression were determined by serial dilution and spot assay as described. Overexpression plasmids for tRNA54UUC (pK) and for combined overexpression of tRNA54UUC, tRNA54UUC and tRNA54UUC were used along with pRS425 as the empty vector control. Assays were performed on solid yeast peptone dextrose medium (2% glucose, 1% yeast extract, 2% peptone) and plasmid carrying cells were precultured on yeast nitrogen based minimal medium (Foremedium, Norfolk, UK) lacking leucine.

Determination of frameshift levels

Freshly transformed cells were grown at 30°C or 37°C in liquid yeast nitrogen based media containing 2% glucose and lacking uracil to OD600 nm of 2–3 and harvested by centrifugation. Cells were washed with water and resuspended in Z-buffer (60 mM
Na$_2$HPO$_4$, 40 mM Na$_2$HPO$_4$, 10 mM KCl, 50 mM 2-mercaptoethanol, pH 7). Dilutions of this suspension were used to determine cell density by measuring the absorbance at 600 nm. 500 µl aliquots of undiluted suspension were removed to new tubes and 2 drops of 0.01% SDS solution and chloroform added followed by vortex-aided mixing of samples for 30 sec each. Samples were then incubated at 37°C for 5 min and 100 µl of 4 mg ml$^{-1}$ ortho-nitrophenyl-β-galactoside dissolved in Z-buffer was added. Upon color development during incubation at 37°C reactions were stopped by the addition of 250 µl 1 M Na$_2$CO$_3$ and centrifuged at 10,000 g for 5 min. Upper phases were transferred to optical cuvettes and absorbance at 420 nm determined using a photometer. β galactosidase activity units were calculated using absorbance data at 600 and 420 nm as well as reaction times by employing Miller’s formula.44 Frame-shift rates [%] were calculated by dividing the β galactosidase activity measured with the W12 (or WA-2) construct by the one measured with the F12 (or FA-1) construct. For each strain at least three independent cultures were run with both the test constructs and the in-frame control constructs and measured. Normalized frame-shift rates of the biological replicates were averaged and standard deviations calculated. Statistical significance was analyzed using two-tail t-test.

Ahp1 urmylation assay

TAP-tagged Urn1 was expressed in BY4741 urn1 mutants and cells were grown to OD$_{600nm}$ = 1 after which the culture was split. One half was further incubated at 30°C, whereas the other half was shifted to 37°C incubation temperature. At time points 0, 1h, 2.5h, 5h and 7.5h, aliquots were removed, total protein extracts generated and Ahp1 urmylation as well as free Urm1 levels determined as described previously.25,26 In parallel, protein extracts generated and Ahp1 urmylation as well as free Urm1 levels determined as described previously.25,26 Normalization of posttranscriptional modifications was analyzed using two-tail t-test.

Disclosure of potential conflicts of interest

No potential conflicts of interest were disclosed.

Acknowledgments

We thank Drs. Anders S. Byström for providing plasmids. We gratefully acknowledge support by the DFG (Deutsche Forschungsgemeinschaft) to RS (SCHA750/15) and funding by DFG Priority Program SPP1784 'Chemical Biology of Native Nucleic Acid Modifications' to RS (SCHA750/20) and RK (KL2937/1).

ORCID

Raffael Schaffrath http://orcid.org/0000-0001-9484-5247

References

1. El Yacoubi B, Bailly M, de Crècy-Lagarde V. Biosynthesis and function of posttranscriptional modifications of transfer RNAs. Annu Rev Genet 2012; 46:69-95; PMID:22905870; https://doi.org/10.1146/annurev-genet-110711-155641
2. Huang B, Johansson MJ, Byström AS. An early step in wobble uridine tRNA modification requires the Elongator complex. RNA 2005; 11:424-36; PMID:15769872; https://doi.org/10.1261/rna.7247705
3. Johansson MJ, Esberg A, Huang B, Björk GR, Byström AS. Eukaryotic wobble uridine modifications promote a functionally redundant decoding system. Mol Cell Biol 2008; 28:3301-12; PMID:18332122; https://doi.org/10.1128/MCB.01542-07
4. Mehlgarten C, Jablonowski D, Wrackmeyer U, Tschitschmann S, Sondermann D, Jäger G, Gong Z, Byström AS, Schaffrath R, Breunig KD. Elongator function in tRNA wobble uridine modification is conserved between yeast and plants. Mol Microbiol 2010; 75:1082-94; PMID:20398216; https://doi.org/10.1111/j.1365-2958.2010.07163.x
5. Karlsborn T, Täkunen H, Mahmud AK, Xu F, Xu H, Byström AS. Elongator, a conserved complex required for wobble uridine modifications in eukaryotes. RNA Biol 2014; 11:1519-28; PMID:25607684; https://doi.org/10.4161/rna.25607684.2014.992276
6. Kalhor HR, Clarke S. Novel methyltransferase for modified uridine residues at the wobble position of tRNA. Mol Cell Biol 2003; 23:9283-9292; PMID:14645538; https://doi.org/10.1128/MCB.23.24.9283-9292.2003
7. Huang B, Lu J, Byström AS. A genome-wide screen identifies genes required for formation of the wobble nucleoside 5-methoxycarbonylmethyl-2-thiouridine in Saccharomyces cerevisiae. RNA 2008; 14:2183-94; PMID:18755837; https://doi.org/10.10111/j.rna-1184108
8. Jablonowski D, Butler AR, Fichtner L, Gardiner D, Schaffrath R, Stark MJ. Sit4p protein phosphatase is required for sensitivity of Saccharomyces cerevisiae to Kluyveromyces lactis zymocin. Genetics 2001; 159:1479-89; PMID:11779790
9. Jablonowski D, Fichtner L, Stark MJR, Schaffrath R. The yeast Elongator histone acetylase requires Sit4-dependent dephosphorylation for toxin-target capacity. Mol Biol Cell 2004; 15:1459-69; PMID:14718557; https://doi.org/10.1091/mbc.E03-10-0750
10. Jablonowski D, Zink S, Mehlgarten C, Daum G, Schaffrath R. tRNA$^{\text{fmo}}$ wobble uridine methylation by Trm9 identifies Elongator’s key role for zymocin-induced cell death in yeast. Mol Microbiol 2006; 59:677-88; PMID:16390495; https://doi.org/10.1111/j.1365-2958.2005.04972.x
11. Jablonowski D, Täubert JE, Bär C, Stark MJR, Schaffrath R. Distinct subsets of Sit4p holophosphatases are required for inhibition of yeast growth by rapamycin and zymocin. Eukaryot Cell 2009; 8:1637-47; PMID:19749176; https://doi.org/10.1128/EC.00250-09
12. Fichtner L, Frohloff F, Bürkner K, Larsen M, Breunig KD, Schaffrath R. Molecular analysis of KTI12/TOT4, a Saccharomyces cerevisiae gene required for Kluyveromyces lactis zymocin action. Mol Microbiol 2002; 43:783-91; PMID:11929532; https://doi.org/10.1046/j.1365-2958.2002.02794.x
13. Fichtner L, Jablonowski D, Schierhorn A, Kitamoto HK, Stark MJR, Schaffrath R. Elongator’s toxin-target (TOT) function is nuclear localization sequence dependent and suppressed by post-translational modification. Mol Microbiol 2003; 49:1297-307; PMID:12940988; https://doi.org/10.1046/j.1365-2958.2003.03632.x
14. Bär C, Zabel R, Liu S, Stark MJ, Schaffrath R. A versatile partner of eukaryotic protein complexes that is involved in multiple biological processes: Kti11/Dph3. Mol Microbiol 2008; 69:1221-33; PMID:18627462; https://doi.org/10.1111/j.1365-2958.2008.06350.x
15. Studte P, Zink S, Jablonowski D, Bär C, von der Haar T, Tuite MF, Schaffrath R. tRNA and protein methylase complexes mediate zymocin toxicity in yeast. Mol Microbiol 2008; 69:1266-77; PMID:18657261; https://doi.org/10.1111/j.1365-2958.2008.06358.x
16. Zabel R, Bär C, Mehlgarten C, Schaffrath R. Yeast alpha-tubulin suppressor A3a/Kti13 relates to the Elongator complex and interacts with Elongator partner protein Kti11. Mol Microbiol 2008; 69:175-87; PMID:18466297; https://doi.org/10.1111/j.1365-2958.2008.06273.x
17. Mehlgarten C, Jablonowski D, Breunig KD, Stark MJ, Schaffrath R. Elongator function depends on antagonistic regulation by casein kinase Hrr25 and protein phosphatase Sit4. Mol Microbiol 2009; 73:869-81; PMID:19656297; https://doi.org/10.1111/j.1365-2958.2009.06811.x
18. Mazauric MH, Dirick L, Purushothaman SK, Björk GR, Lapeyre B. Trm112p is a 15-kDa zinc finger protein essential for the activity of
two tRNA and one protein methyltransferases in yeast. J Biol Chem 2010; 285:18505-15; PMID:20400505; https://doi.org/10.1074/jbc.M110.113100

19. Abdel-Fattah W, Jablonowski D, Di Santo R, Scheidt V, Hammemeister A, ten Have SM, Thüring KL, Helm M, Schaffrath F, Stark MJR. Phosphorylation of Elp1 by Hrr25 is required for Elongator-dependent tRNA modification in yeast. PLoS Genet 2015; 11:e1004931; PMID:25569479; https://doi.org/10.1371/journal.pgen.1004931

20. Nakai Y, Nakai M, Hayashi H. Thio-modification of yeast cytosolic tRNA requires a ubiquitin-related system that resembles bacterial sulfur transfer systems. J Biol Chem 2008; 283:27469-76; PMID:18664566; https://doi.org/10.1074/jbc.M804043200

21. Noma A, Sakaguchi Y, Suzuki T. Mechanistic characterization of the sulfur-relay system for eukaryotic 2-thioridine biogenesis at tRNA wobble positions. Nucleic Acids Research 2009; 37:1335-52; PMID:19151091; https://doi.org/10.1093/nar/gkn1023

22. Leidl S, Pedrioli PG, Bucher T, Brost R, Costanzo M, Schmidt A, Aebersold R, Boone C, Hofmann K, Peter M. Ubiquitin-related modifier Urm1 acts as a sulphur carrier in thiation of eukaryotic transfer RNA. Nature 2009; 458:228-32; PMID:19145231; https://doi.org/10.1038/nature07643

23. Goehring AS, Rivers DM, Sprague GF Jr. Urmylation: a ubiquitin-like pathway that functions during invasive growth and budding in yeast. Mol Biol Cell 2003; 14:4329-41; PMID:15455128; https://doi.org/10.1091/mbc.E03-02-0079

24. Van der Veen AG, Schorpp K, Schlieker C, Buti L, Damon JR, Spoo-om AS. The role of wobble uridine modifications in yeast. J Biol Chem 2016; 291:3423-43; PMID:26943403; https://doi.org/10.1074/jbc.M115.697082

25. Jüdes A, Ebert F, Bär C, Thüring KL, Harrer A, Klassen R, Helm M, Stark MJ, Schaffrath F. Urmylation and tRNA thiolation functions of ubiquitin-like modifier Urm1 as a noncanonical lysine-directed protein modifier. Proc Natl Acad Sci USA 2011; 108:1763-70; PMID:2120933; https://doi.org/10.1073/pnas.1014402108

26. Jüdes A, Bruch A, Klassen R, Helm M, Schaffrath F. Sulfur transfer and activation by ubiquitin-like modifier system Uba•Urm1 link protein urmylation and tRNA thiolation in yeast. Microb Cell 2016; 3:423-433; https://doi.org/10.15698/mic2016.11.539

27. Klassen R, Grunewald P, Thüring KL, Eichler C, Helm M, Schaffrath R. Loss of anticodon wobble uridine modifications affects tRNA(Lys) function and protein levels in Saccharomyces cerevisiae. PLoS One 2015; 10:e0119261; PMID:25747122; https://doi.org/10.1371/journal.pone.0119261

28. Nedialkova DD, Leidel SA. Optimization of Codon Translation Rates via tRNA Modifications Maintains Proteome Integrity. Cell 2015; 161:1606-18; PMID:26052047; https://doi.org/10.1016/j.cell.2015.05.022

29. Tükenmez H, Xu H, Esberg A, Byström AS. The role of wobble uridine modifications in +1 translational frameshifting in eukaryotes. Nucleic Acids Res 2015; 43:9489-99; PMID:26283182; https://doi.org/10.1093/nar/gkv832

30. Belcourt MF, Farabaugh PJ. Ribosomal frameshifting in the yeast retrotransposon Ty: tRNAs induce slippage on a 7 nucleotide minimal site. Cell 1990; 62:339-52; PMID:2164889; https://doi.org/10.1016/0092-8674(90)90371-K

31. Rezgui VA, Tyagi K, Ranjan N, Konevega AL, Mittelstaedt J, Rodnina MV, Peter M, Pedrioli PG. tRNA tKUU, tQUG, and tEUUC wobble position modifications fine-tune protein translation by promoting ribosome A-site binding. Proc Natl Acad Sci USA 2013; 110:12289-94; PMID:23836657; https://doi.org/10.1073/pnas.1300781110

32. Alings F, Sarin LP, Fufezan C, Drexler HC. Leidel SA An evolutionary approach uncovers a diverse response of tRNA 2-thiolation to elevated temperatures in yeast. RNA 2015; 21:202-22; PMID:25505025; https://doi.org/10.1261/rna.048199.114

33. Han L, Kon Y, Phizicky EM. Functional importance of Thr38 and Thr39 in distinct tRNAs, amplified for tRNA51U(UUG) by unexpected temperature sensitivity of the s2U modification in yeast. RNA 2015; 21:188-201; PMID:25505024; https://doi.org/10.1261/rna.048173.114

34. Damon JR, Pincus D, Ploegh HL tRNA thiolation links translation to stress responses in Saccharomyces cerevisiae. Mol Biol Cell 2015; 26:270-82; PMID:25392298; https://doi.org/10.1091/mbc.E14-06-1145

35. Tyagi K, Pedrioli PG. Protein degradation and dynamic tRNA thiolation fine-tune translation at elevated temperatures. Nucleic Acids Res 2015; 43:4701-12; PMID:25870413; https://doi.org/10.1093/nar/gkv322

36. El-Yacoubi B, Hatin I, Deutsch C, Kahveci T, Roussel JP, Iwata-Reuyl D, Murzin AG, de Crécy-Lagard V. A role for the universal Kael/Qri7/YgiD (C0G533) family in tRNA modification. EMBO J 2011; 30:882-93; PMID:21285948; https://doi.org/10.1038/emboj.2010.363

37. Miyauchi K, Kimura S, Suzuki T. A cyclic form of N6-threonylcarbamoyl-methionine as a widely distributed tRNA hypermodification. Nat Chem Biol 2013; 9:105-11; PMID:23242255; https://doi.org/10.1038/nchembio.1137

38. Björk GR, Huang B, Persson OP, Byström AS. A conserved modified wobble nucleoside (mcm2sU) in lysyl-tRNA is required for viability in yeast. RNA 2007; 13:1245-55; PMID:17592039; https://doi.org/10.1261/rna.558707

39. Thiaville PC, Legendre R, Rojas-Benítez D, Baudin-Bailieu A, Hatin I, Chalancon G, Glavic A, Namy O, de Crécy-Lagard V. Global translational impacts of the loss of the tRNA modification t6A in yeast. Microbial Cell 2015; 3:29-45; PMID:26798630; https://doi.org/10.15698/mic2016.01.473

40. Klassen R, Ćičić A, Johanna Funk J, Bruch A, Butler F, Schaffrath R, tRNA anticodon loop modifications ensure protein homeostasis and cell morphogenesis in yeast. Nucleic Acids Res 2016; 44:10946-10959; PMID:27496282; https://doi.org/10.1093/nar/gkw705

41. Costanzo M, Baryshnikova A, Bellay J, Kim Y, Spear ED, Sevier CS, Ding H, Koh JL, Toufighi K, Mostafavi S, et al. The genetic landscape of a cell. Science 2010; 327:425-31; PMID:20934466; https://doi.org/10.1126/science.1180823

42. Gietz D, Schiestl RH. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nature Protocols 2007; 2:31-4; PMID:17401334; https://doi.org/10.1038/nprot.2007.13

43. Lu J, Huang B, Esberg A, Johansson MJ, Byström AS. The Kluveromyces lactis gamma-toxin targets tRNA anticodons. RNA 2005; 11:1648-54; PMID:16244131; https://doi.org/10.1261/rna.2172105

44. Miller IH. Experiments in Molecular Genetics 1972; Cold Spring Har- bor Laboratory Press, Cold Spring Harbor, NY