WHEN DIFFERENT ENTANGLEMENT WITNESSES DETECT ENTANGLED STATES SIMULTANEOUSLY

JINCHUAN HOU AND YU GUO

ABSTRACT. The question under what conditions different witnesses may detect some entangled states simultaneously is answered for both finite- and infinite-dimensional bipartite systems. Finite many different witnesses can detect some entangled states simultaneously if and only if their convex combinations are still witnesses; they can not detect any entangled state simultaneously if and only if the set of their convex combinations contains a positive operator. For two witnesses \(W_1 \) and \(W_2 \), some more can be said: (1) \(W_1 \) and \(W_2 \) can detect the same set of entangled states if and only if they are linearly dependent; (2) \(W_2 \) can detect more entangled states than that \(W_1 \) can if and only if \(W_1 \) is a linear combination of \(W_2 \) and a positive operator. As an application, some characterizations of the optimal witnesses are given and some structure properties of the decomposable optimal witnesses are presented.

1. INTRODUCTION

The challenging question of characterizing the quantum entangled states has attracted much attention in recent years. However, despite remarkable progress in this field, there is no general qualitative and quantitative characterizing of entanglement [3, 4, 5, 6, 8, 9, 10, 11, 15, 18, 19].

Recall that, a bipartite quantum state (or density operator) in an bipartite system is a positive trace one operator \(\rho \) (i.e. \(\rho \geq 0 \) and \(\text{Tr}(\rho) = 1 \)) acting on a complex tensor product Hilbert space \(H_1 \otimes H_2 \) which describing the bipartite quantum system, where \(H_1 \) and \(H_2 \) are complex separable Hilbert spaces describing the corresponding subsystems (we also say a unit vector in the corresponding Hilbert space is a pure state). If both \(H_1 \) and \(H_2 \) are finite-dimensional, then the composite system is a finite-dimensional system; if at least one of \(H_1 \) and \(H_2 \) is infinite-dimensional, then the composite system is an infinite-dimensional system. By \(S^{(1)} = S(H_1) \), \(S^{(2)} = S(H_2) \) and \(S = S(H_1 \otimes H_2) \) we denote the sets of all states on \(H_1 \), \(H_2 \) and \(H_1 \otimes H_2 \), respectively. Not that, when \(\dim H_1 \otimes H_2 = \infty \), we have \(S \subset T(H_1 \otimes H_2) \), the Banach space of all trace-class operators on \(H_1 \otimes H_2 \) with trace norm \(\| \cdot \|_T \). A state \(\rho \in S \) is

PACS. 03.67.Mn, 03.65.Ud, 03.65.Db.

Key words and phrases. Quantum state, Entanglement, Witness, Optimal witness.

This work is partially supported by National Natural Science Foundation of China (10771157) and Research Fund of Shanxi for Returned Scholars (2007-38).
said to be *separable* if it is a trace-norm limit of the states of the form

\[
\rho = \sum_i p_i \rho_i^{(1)} \otimes \rho_i^{(2)},
\]

where \(\rho_i^{(1)}\) and \(\rho_i^{(2)}\) are pure states in \(S^{(1)}\) and \(S^{(2)}\), respectively, \(\sum p_i = 1, p_i \geq 0\). Otherwise, \(\rho\) is said to be *entangled* (or inseparable). The set of all separable states will be denoted by \(S_{\text{sep}}(H_1 \otimes H_2)\).

Among the multitudinous criteria for deciding whether a given state is entangled or not, the well known one is the *entanglement witness criterion* [8]. This criterion provides a sufficient and necessary condition for separability of a given state in a bipartite quantum system. It is shown that [8], a given state is separable if and only if there exists at least one entanglement witness detecting it. A self-adjoint operator (also called hermitian operator some times) \(W\) acting on \(H_1 \otimes H_2\) is called an *entanglement witness* (or witness for short) if \(\text{Tr}(W\sigma) \geq 0\) for all separable sates \(\sigma \in S_{\text{sep}}\) and \(\text{Tr}(W\rho) < 0\) for at least one entangled state \(\rho\) (in this case, we say that \(\rho\) is detected by \(W\), or, equivalently, \(W\) is a witness for \(\rho\)).

Although any entangled state can be detected by some specific choice of witness, there is no universal witness, i.e., there is no witness which can detect all entangled states. From the entanglement witness criterion, the task is reduced to find out all witnesses. However, constructing the witnesses for an entangled state is a hard task, and the determination of witnesses for all entangled states is a NP-hard problem [1].

Witnesses not only can be used to detect any entangled states, but also are directly measurable quantities. This makes the entanglement witnesses one of the main methods to detect entanglement experimentally and a very useful tool for analyzing entanglement in experiment. So, it is important to know more about the features of the witnesses. Concerning this topic, much work has been done for finite-dimensional systems (for example, ref. [16, 21]). However, few results are known for infinite-dimensional systems. Generally, the structure of witnesses for infinite-dimensional systems are complicated. However, it was proved in [12] that, for any entangled state, a witness can be chosen so that it has a simple form of “nonnegative constant times identity + a self-adjoint operator of finite rank”. This kind of witnesses are Fradholm operator of index 0 with the spectrum consisting of finite many eigenvalues and hence are easily handled. The goal of the present paper is to solve the question when deferent witnesses can detect some entangled states simultaneously for mainly infinite-dimensional systems.
For simplicity, we introduce some notations. Let H_1, H_2 be complex Hilbert spaces and let
\[W = \mathcal{W}(H_1 \otimes H_2) \]
be the set of all entanglement witnesses of the system $H_1 \otimes H_2$, i.e.,
\[\mathcal{W} = \{ W : W \in \mathcal{B}(H_1 \otimes H_2), W^\dagger = W, \text{Tr}(W\sigma) \geq 0 \text{ for all } \sigma \in S_{\text{sep}} \text{ and } W \text{ is not positive} \}. \]

For $W \in \mathcal{W}$ and $\Gamma \subset \mathcal{W}$, define
\[D_W = \{ \rho : \rho \in S, \text{Tr}(W\rho) < 0 \} \]
and $D_{\Gamma} = \bigcap_{W \in \Gamma} D_W$. Then D_W and D_{Γ} are convex sets. Thus the witnesses in Γ can detect some entangled states simultaneously if and only if $D_{\Gamma} \neq \emptyset$.

For $W_1, W_2 \in \mathcal{W}$, if $D_{W_2} \subset D_{W_1}$, we say that W_1 is finer than W_2, denoted by $W_2 \prec W_1$.

We call W_1 is an optimal witness if there exists no other witness finer than W_1. Then \mathcal{W} becomes a poset with respect to the partial order “\prec”. Generally, for two given witnesses W_1 and W_2, there are three different situations that may happen: (i) $D_{W_1} \subset D_{W_2}$, i.e., $W_1 \prec W_2$; in particular, $D_{W_1} = D_{W_2}$; (ii) $D_{W_1} \cap D_{W_2} \neq \emptyset$ and $D_{W_i} \not\subset D_{W_j}$, $i, j = 1, 2$; (iii) $D_{W_1} \cap D_{W_2} = \emptyset$. Thus W_1 and W_2 can detect a state simultaneously if and only if (i) or (ii) holds.

For the finite-dimensional case, the relations (i)-(iii) above are studied in [16,21]. Suppose that $\text{Tr}(W_1) = \text{Tr}(W_2)$, then the following conclusions are true: (i) $D_{W_1} \subset D_{W_2}$ if and only if $W_1 = (1 - \varepsilon)W_2 + \varepsilon D$ for some $D \geq 0$ and $0 \leq \varepsilon < 1$; in particular, $D_{W_1} = D_{W_2}$ if and only if $W_1 = W_2$ [16]; (ii) if there are no inclusion relations between D_{W_1} and D_{W_2}, then $D_{W_1} \cap D_{W_2} \neq \emptyset$ if and only if $W = \varepsilon W_1 + (1 - \varepsilon)W_2$ is not positive for any $0 \leq \varepsilon \leq 1$ [21]. However, there are some mistakes in the proof of [21]. The main purpose of the present paper is to show that the similar results holds for infinite-dimensional systems and to correct the mistakes appeared in [21]. Note that, the condition $\text{Tr}(W_1) = \text{Tr}(W_2)$ makes no sense in general for infinite-dimensional case.

This paper is organized as follows. In Section 2, we propose a sufficient and necessary condition for any two given general witness W_1 and W_2 to satisfy $W_1 \prec W_2$. Let H_1, H_2 be complex Hilbert spaces. Assume that $W_1, W_2 \in \mathcal{W}(H_1 \otimes H_2)$. We show that, (1) $W_1 \prec W_2$ if and only if $W_1 = aW_2 + D$ for some operator $D \geq 0$ and some scalar $a > 0$; (2) $D_{W_1} = D_{W_2}$ if and only if there exists a positive number $a > 0$ such that $W_1 = aW_2$. Then these results are applied in Section 3 to obtain a sufficient and necessary condition for a witness to be optimal.

We show that $W \in \mathcal{W}(H_1 \otimes H_2)$ is optimal if and only if for any nonzero operator $D \geq 0$ and scalar $a > 0$, $W' = aW - D \notin \mathcal{W}(H_1 \otimes H_2)$. Some structure properties of the optimal decomposable witnesses are also presented. In Section 4, we discuss the question when finite many witnesses can detect a common entangled state. We show that $\bigcap_{k=1}^n D_{W_k} \neq \emptyset$ if and only...
if every combination of W_1, \ldots, W_n is still a witness; $\cap_{k=1}^n D_{W_k} = \emptyset$ if and only if there exists at least one convex combination W of W_1, \ldots, W_n such that $W \geq 0$.

Throughout this paper, we call an operator $A \in \mathcal{B}(H)$ is positive, if $\langle x|A|x \rangle \geq 0$ for all $|x \rangle \in H$. $\| \cdot \|_T$ denotes the trace norm, and $\| \cdot \|_2$ denotes the Hilbert-Schmidt norm. For an operator A, A^T stands for the transposition of A with respect some given orthonormal basis. By A^T we denote the partial transposition of A with respect to the second subsystem H_2, i.e., $A^T = (I_1 \otimes \tau)A$, where τ is the transpose operation. $\mathcal{T}(H_1 \otimes H_2)$ denotes the set of all positive elements $\tau \in \mathcal{T}(H_1 \otimes H_2)$.

2. Witnesses with the finer relation between them

In this section, we mainly highlight the finer relation between two given general witnesses of an infinite-dimensional bipartite system.

For finite-dimensional bipartite quantum system, it is known that if $W_1, W_2 \in \mathcal{W}$ with $\text{Tr}(W_1) = \text{Tr}(W_2)$, then $D_{W_1} \subseteq D_{W_2}$ if and only if $W_1 = (1 - \varepsilon)W_2 + \varepsilon D$ for some $D \geq 0$ and $0 \leq \varepsilon < 1$; $D_{W_1} = D_{W_2}$ if and only if $W_1 = W_2$ \cite{16}. Since the condition $\text{Tr}(W_1) = \text{Tr}(W_2)$ makes no sense in general for infinite-dimensional case, we have to consider the question without the trace-equal assumption.

The following is the main result in this section which answers the question when $D_{W_1} \cap D_{W_2} = D_{W_1}$ for both infinite-dimensional systems and finite-dimensional cases.

Theorem 2.1. Let H_1, H_2 be complex Hilbert spaces. Assume that $W_1,W_2 \in \mathcal{W}(H_1 \otimes H_2)$. Then

1. $W_1 < W_2$ if and only if $W_1 = aW_2 + D$ for some operator $D \geq 0$ and some scalar $a > 0$.
2. $D_{W_1} = D_{W_2}$ if and only if there exists a positive number $a > 0$ such that $W_1 = aW_2$.

To prove Theorem 2.1, we need several lemmas.

We first generalize a useful result in \cite{16} to infinite-dimensional case, which asserts that the restriction of any entanglement witness as a linear functional to the convex set consisting of separable states is nonzero.

Lemma 2.2. Let H_1, H_2 be complex Hilbert spaces. For any $W \in \mathcal{W}(H_1 \otimes H_2)$, there is a separable pure state $\sigma \in S_{\text{sep}}(H_1 \otimes H_2)$ such that $\text{Tr}(W\sigma) > 0$.

Proof. Let $\{|i\rangle\}$ and $\{|j\rangle\}$ be any orthonormal bases of H_1 and H_2, respectively. Then, $\{|i\rangle\otimes |j\rangle\}$ is an orthonormal basis of $H_1 \otimes H_2$. It turns out $\langle i|\langle j|W|i\rangle\langle j|\rangle \geq 0$ since $\langle i|\langle j|W|i\rangle\langle j|\rangle = \text{Tr}(W|i\rangle\langle i| \otimes |j\rangle\langle j|) \geq 0$ for any i, j.

To prove the lemma, it is suffice to show that there exist orthonormal bases $\{|i\rangle\}$ and $\{|j\rangle\}$ such that $\text{Tr}(W|i\rangle\langle i| \otimes |j\rangle\langle j|) \neq 0$ for some i, j. To get a contradiction, assume that this is not true. Then

$$\langle \psi_1|\langle \psi_2|W|\psi_1\rangle|\psi_2\rangle = 0$$
for all product vectors $|\psi_1\rangle|\psi_2\rangle \in H_1 \otimes H_2$. For any pure state $|\psi\rangle \in H_1 \otimes H_2$, let $|\psi\rangle = \sum_{k=1}^{n} \lambda_k |k\rangle|k'\rangle$ be the Schmidt decomposition of $|\psi\rangle$, where $\lambda_k > 0$, $\sum_{k=1}^{n} \lambda_k^2 = 1$ and $|k\rangle_{k=1}^{n}$, $|k'\rangle_{k=1}^{n}$ are orthonormal sets respectively in H_1, H_2, here n is called the Schmidt number of $|\psi\rangle$. Then,

$$\rho = |\psi\rangle\langle\psi| = (\sum_{k}^{n} \lambda_k |k\rangle|k'\rangle)(\sum_{l} \lambda_l |l\rangle\langle l'|) = \sum_{k,l} \lambda_k \lambda_l |k\rangle\langle l| \otimes |k'\rangle\langle l'| = \sum_{k,l} \lambda_k^2 |k\rangle\otimes |k'\rangle |k'\rangle\otimes |k\rangle + \sum_{k<l} \lambda_k \lambda_l |k\rangle\otimes |k'\rangle\langle l|\langle l'| + |l\rangle\langle l| \otimes |l'\rangle\langle l'|).$$

For given pair (k, l) with $k \neq l$, define $|\psi_{k,l}\rangle = \frac{1}{\sqrt{2}}(|k\rangle|k'\rangle + |l\rangle|l'\rangle)$. We have

$$|k\rangle\langle l| \otimes |k'\rangle\langle l'| + |l\rangle\langle k| \otimes |k'\rangle\langle k'| = 2|\psi_{k,l}\rangle\langle\psi_{k,l}| - |k\rangle\langle k| \otimes |k'\rangle\langle k'| - |l\rangle\langle l| \otimes |l'\rangle\langle l'|.$$

This indicates that, if $n < \infty$, then $\langle\psi|W|\psi\rangle = 0$. As the set of all unit vectors with the finite Schmidt number is dense in the set of all unit vectors in $H_1 \otimes H_2$, we see that $\langle\psi|W|\psi\rangle = 0$ holds for all unit vector $|\psi\rangle$ and hence $W = 0$, a contradiction. □

Analogues to the finite-dimensional case [16], the following lemma is obvious.

Lemma 2.3. Let H_1, H_2 be complex Hilbert spaces. For a given $W \in \mathcal{W}(H_1 \otimes H_2)$, if $\rho \in \mathcal{D}_W$ and $g_W \in T^+(H_1 \otimes H_2)$ satisfying $\text{Tr}(Wg_W) = 0$, then $(\rho + g_W)/\text{Tr}(\rho + g_W) \in \mathcal{D}_W$.

The next lemma is crucial for our purpose. Its statement as well as its proof are quite different from the counterpart lemma in [16] for finite-dimensional case.

Lemma 2.4. Let H_1, H_2 be complex Hilbert spaces and $W_1, W_2 \in \mathcal{W}(H_1 \otimes H_2)$. Assume that $W_1 < W_2$ and let

$$\lambda := \inf_{\rho_1 \in \mathcal{D}_{W_1}} \frac{\text{Tr}(W_2 \rho_1)}{\text{Tr}(W_1 \rho_1)}.$$

Then the following statements are true:

1. If $\rho \in \mathcal{S}(H_1 \otimes H_2)$ satisfies $\text{Tr}(W_1 \rho) = 0$, then $\text{Tr}(W_2 \rho) \leq 0$;
2. $\lambda > 0$.
3. If $\rho \in \mathcal{S}(H_1 \otimes H_2)$ satisfies $\text{Tr}(W_1 \rho) > 0$, then $\text{Tr}(W_2 \rho) \leq \lambda \text{Tr}(W_1 \rho)$.

Proof. (1) Let us assume, to reach a contradiction, that $\text{Tr}(W_2 \rho) > 0$. Then, for any $\rho_1 \in \mathcal{D}_{W_1}$ and $\alpha \geq 0$, we have $\rho(\alpha) = (\rho_1 + \alpha \rho)/(1 + \alpha) \in \mathcal{D}_{W_1}$. On the other hand, there exists a positive number a_0 such that $\text{Tr}(W_2 \rho(a)) > 0$ holds for all $a \geq a_0$, which is impossible since it leads to $\rho(a) \notin \mathcal{D}_{W_2}$.

(2) Assume that, on the contrary, $\lambda = 0$. Then, there exists a sequence $\{\rho_n\} \subset \mathcal{D}_{W_1}$ such that

$$\varepsilon_n = \frac{\text{Tr}(W_2 \rho_n)}{\text{Tr}(W_1 \rho_n)} \to 0 \text{ as } n \to \infty. \quad (2.1)$$

Note that there exists $\sigma \in \mathcal{S}_{\text{sep}} = \mathcal{S}_{\text{sep}}(H_1 \otimes H_2)$ such that both $\text{Tr}(W_1 \sigma)$ and $\text{Tr}(W_2 \sigma)$ are nonzero. If not, then for any $\sigma \in \mathcal{S}_{\text{sep}}$, either $\text{Tr}(W_1 \sigma) = 0$ or $\text{Tr}(W_2 \sigma) = 0$. Thus, by Lemma 2.2, there exist $\sigma_1, \sigma_2 \in \mathcal{S}_{\text{sep}}$ so that $\text{Tr}(W_1 \sigma_1) = t > 0$, $\text{Tr}(W_1 \sigma_2) = 0$, $\text{Tr}(W_2 \sigma_1) = 0$ and
Tr(W_2\sigma_2) = s > 0. Let \(\sigma = \frac{1}{s_1} \sigma_1 + \frac{1}{s_2} \sigma_2 \in S_{\text{sep}} \). Then Tr(W_1\sigma) = Tr(W_2\sigma) = \frac{1}{s} \neq 0$, contradicting to the assumption.

Now we can take \(\sigma \in S_{\text{sep}} \) so that both Tr(W_1\sigma) and Tr(W_2\sigma) are nonzero. Let

\[\tilde{\rho}_n = \frac{1}{1 - \frac{\operatorname{Tr}(W_2\rho_n)}{\operatorname{Tr}(W_2\sigma)}} (\rho_n - \frac{\operatorname{Tr}(W_1\rho_n)}{\operatorname{Tr}(W_1\sigma)} \sigma) \in S \]

with \(\rho_n \) satisfying Eq.(2.1). Then \(\operatorname{Tr}(W_1\tilde{\rho}_n) = 0 \) and by (1), we have \(\operatorname{Tr}(W_2\tilde{\rho}_n) \leq 0 \) for every \(n \). However,

\[\operatorname{Tr}(W_2\tilde{\rho}_n) = \frac{1}{1 - \frac{\operatorname{Tr}(W_2\rho_n)}{\operatorname{Tr}(W_2\sigma)}} (\operatorname{Tr}(W_2\rho_n) - \frac{\operatorname{Tr}(W_1\rho_n)}{\operatorname{Tr}(W_1\sigma)} \operatorname{Tr}(W_2\sigma)) \]

\[= \frac{1}{1 - \frac{\operatorname{Tr}(W_2\rho_n)}{\operatorname{Tr}(W_2\sigma)}} (\varepsilon_n - \frac{\operatorname{Tr}(W_1\sigma)}{\operatorname{Tr}(W_1\sigma)} \operatorname{Tr}(W_1\rho_n)) \]

and \(\varepsilon_n \to 0 \), which implies that for sufficient large \(n \), we have \(\varepsilon_n - \frac{\operatorname{Tr}(W_1\sigma)}{\operatorname{Tr}(W_1\sigma)} \operatorname{Tr}(W_1\rho_n) < 0 \) and hence \(\operatorname{Tr}(W_2\tilde{\rho}_n) > 0 \), a contradiction. This completes the proof of (2).

(3) Assume that \(\operatorname{Tr}(W_1\rho) > 0 \). Take \(\rho_1 \in D_{W_1} \) and let \(\tilde{\rho} = \frac{1}{\operatorname{Tr}(W_1\rho) - \operatorname{Tr}(W_1\rho_1)} [\operatorname{Tr}(W_1\rho)\rho_1 - \operatorname{Tr}(W_1\rho_1)\rho_1] \). Then we have \(\operatorname{Tr}(W_1\tilde{\rho}) = 0 \). By (1), we obtain that \(\operatorname{Tr}(W_2\tilde{\rho}) \leq 0 \). Thus we have \(\operatorname{Tr}(W_1\rho)\operatorname{Tr}(W_2\rho_1) \leq \operatorname{Tr}(W_1\rho_1)\operatorname{Tr}(W_2\rho) \). It follows that

\[\frac{\operatorname{Tr}(W_2\rho)}{\operatorname{Tr}(W_1\rho)} \leq \frac{|\operatorname{Tr}(W_2\rho_1)|}{|\operatorname{Tr}(W_1\rho_1)|} \]

Taking the infimum with respect to \(\rho_1 \in D_{W_1} \) on the right side of the above equation, we get \(\operatorname{Tr}(W_2\rho) \leq \lambda \operatorname{Tr}(W_1\rho) \).

Now we are in a position to give our proof of Theorem 2.1.

Proof of Theorem 2.1. (1) If \(W_1 = aW_2 + D \) for some positive operator \(D \) and some scalar \(a > 0 \), then for any \(\rho \in D_{W_1} \), we have \(a\operatorname{Tr}(W_2\rho) + \operatorname{Tr}(D\rho) = \operatorname{Tr}(W_1\rho) < 0 \), which implies that \(\operatorname{Tr}(W_2\rho) < 0 \). Hence \(D_{W_1} \subseteq D_{W_2} \). Conversely, assume that \(D_{W_1} \subseteq D_{W_2} \). Then, by Lemma 2.4,

\[\operatorname{Tr}(W_2\rho) \leq \lambda \operatorname{Tr}(W_1\rho) \quad (2.2) \]

holds for all \(\rho \in S \), where \(\lambda = \inf_{\rho_1 \in D_{W_1}} \frac{\operatorname{Tr}(W_1\rho_1)}{|\operatorname{Tr}(W_1\rho_1)|} > 0 \). This implies that \(D_1 = \lambda W_1 - W_2 \geq 0 \) and hence, with \(D = \lambda^{-1} D_1 \), \(W_1 = \lambda^{-1} W_2 + D \), as desired.

(2) We only need to prove the ‘only if’ part. Assume that \(D_{W_1} = D_{W_2} \). Then, by the statement (1) just proved above, there exist operators \(D_i \geq 0 \) and scalars \(a_i > 0 \), \(i = 1, 2 \), such that \(W_1 = a_1 W_2 + D_1 \) and \(W_2 = a_2 W_1 + D_2 \). It follows that \(W_1 = a_1(a_2 W_1 + D_2) + D_1 = a_1 a_2 W_1 + a_1 D_2 + D_1 \). Thus \((1 - a_1 a_2) W_1 = a_1 D_2 + D_1 \geq 0 \). Since \(W_1 \in \mathcal{W} \), we must have \(a_1 a_2 = 1 \). Hence \(D_1 = D_2 = 0 \) and \(W_2 = a_2 W_1 \), completing the proof.

3. Optimization of Entanglement Witnesses

In this section we discuss the optimization of entanglement witnesses, especially for infinite-dimensional systems by applying Theorem 2.1.
The following result states that a witness is optimal if and only if any negative permutation if it will break the witness. For finite-dimensional case, a similar result was obtained in [16].

Theorem 3.1. Let H_1, H_2 be complex Hilbert spaces. Then $W \in \mathcal{W}(H_1 \otimes H_2)$ is optimal if and only if for any nonzero operator $D \geq 0$ and scalar $a > 0$, $W = aW - D \notin \mathcal{W}(H_1 \otimes H_2)$.

Proof. To prove the ‘if’ part, assume, on the contrary, that W is not optimal, then $W < W'$ for some $W' \in \mathcal{W}(H_1 \otimes H_2)$ with W and W' are linearly independent. It follows from Theorem 2.1(1) that $W = aW' + D$ for some $D \geq 0$ and $a > 0$, which reveals that $W' = aW - \frac{1}{a}D$.

To prove the ‘only if’ part, assume that W is optimal but there exist nonzero operator $D \geq 0$, scalar $a > 0$ so that $W' = aW - D \notin \mathcal{W}(H_1 \otimes H_2)$. Then $W = \frac{1}{a}W' + \frac{1}{a}D$ and W' is linearly independent to W. But by Theorem 2.1, $W < W'$, a contradiction. □

In the following, we discuss the condition for an entanglement witness that it cannot subtract some positive operators. For convenience, we define

$$\mathcal{P}_w = \{ |\psi\rangle\langle\phi| \in H_1 \otimes H_2 : \langle\psi|W|\psi\rangle = 0 \}.$$ \hfill (3.1)

Proposition 3.2. Let H_1, H_2 be complex Hilbert spaces and $W \in \mathcal{W}(H_1 \otimes H_2)$. Let \mathcal{P}_w be as in Eq.(3.1). If $D \in \mathcal{B}(H_1 \otimes H_2)$ is positive and $D\mathcal{P}_w \neq \{0\}$, then $W - aD \notin \mathcal{W}(H_1 \otimes H_2)$ for any $a > 0$.

Proof. If $D\mathcal{P}_w \neq \{0\}$, then there exists a product vector $|\psi_0\rangle|\phi_0\rangle \in \mathcal{P}_w$ such that

$$\langle\psi_0|\langle\phi_0|D|\psi_0\rangle|\phi_0\rangle > 0.$$

Write $\rho_0 = |\psi_0\rangle\langle\psi_0| \otimes |\phi_0\rangle\langle\phi_0|$. It is clear that $\text{Tr}[(W - aD)\rho_0] = -a\text{Tr}(D\rho_0) < 0$, which leads to $W - aD \notin \mathcal{W}(H_1 \otimes H_2)$ for all $a > 0$. □

The following corollary is obvious.

Corollary 3.3. Let H_1, H_2 be complex Hilbert spaces and $W \in \mathcal{W}(H_1 \otimes H_2)$. Let \mathcal{P}_w be as in Eq.(3.1). If \mathcal{P}_w spans $H_1 \otimes H_2$, then W is optimal.

Next we give some structure properties of optimal decomposable witnesses. Recall that a self-adjoint operator $A \in \mathcal{B}(H_1 \otimes H_2)$ is said to be decomposable if

$$A = P + Q^T$$

for some operators $P \geq 0, Q \geq 0$, where Q^T denotes the partial transpose of Q with respect to the second subsystem H_2. Otherwise, A is said to be indecomposable. For example, in $n \times n$ system, the Hermitian swap operator $V = \sum_{i,j=0}^{n-1} |i\rangle\langle j| \otimes |j\rangle\langle i|$ is a decomposable witness since: (1) $\text{Tr}(V\sigma) \geq 0$ for all separable pure states σ; (2) V has a negative eigenvalue -1; (3) $V = nQ^T$ with $Q = |\psi\rangle\langle\psi|$ with $|\psi\rangle = \sqrt{n} \sum_{i=0}^{n-1} |i\rangle|i\rangle$ (ref. [20]). The examples of indecomposable witnesses can be found in [2, 7, 12]. It is easy to show that the decomposable witnesses can not detect any PPT entangled states (PPT stands for positive partial transposition as usual, [14]).
By applying Theorem 2.1, one can get a simple structure property of optimal decomposable entanglement witnesses for both finite-dimensional systems and infinite-dimensional systems.

Theorem 3.4. Let H_1, H_2 be complex Hilbert spaces and $W \in \mathcal{W}(H_1 \otimes H_2)$ be a decomposable entanglement witness. If W is optimal, then $W = Q^{T_2}$ for some $Q \geq 0$, and Q contains no product vectors in its range.

Proof. Since W is decomposable, so $W = P + Q^{T_2}$ for some positive operators P, Q. Assume that $P \neq 0$. As $\text{Tr}(Q^{T_2}\sigma) = \text{Tr}(Q\sigma^{T_2}) \geq 0$ for all $\sigma \in \mathcal{S}_{\text{sep}}$ and $W \in \mathcal{W}$, we must have $Q^{T_2} \in \mathcal{W}$. Thus, by Theorem 2.1 (1), one sees that $W < Q^{T_2}$, that is, W is not optimal. Hence, W is optimal implies that $P = 0$ and $W = Q^{T_2}$. Moreover, the range of Q contains no product vectors. In fact, if $|\psi\rangle\langle\phi| \in R(Q)$ for some unit vectors $|\psi\rangle \in H_1$ and $|\phi\rangle \in H_2$, then there exists a vector $|\omega\rangle \in H_1 \otimes H_2$ such that $Q|\omega\rangle = |\psi\rangle \otimes |\phi\rangle$. Observe that $Q(I - \lambda|\omega\rangle\langle\omega|)Q = Q^2 - \lambda|\psi\rangle\langle\psi| \otimes |\phi\rangle\langle\phi| \geq 0$ if and only if $I - \lambda|\omega\rangle\langle\omega|\geq 0$. It turns out that, for any $0 < \lambda < |||\omega|||^{-2}$ we have $[Q - \lambda|\psi\rangle\langle\psi| \otimes |\phi\rangle\langle\phi|]^{T_2} \in \mathcal{W}$, which implies that $[Q - \lambda|\psi\rangle\langle\psi| \otimes |\phi\rangle\langle\phi|]^{T_2}$ is finer than W, contradicting to the optimality of W.

Theorem 3.4 can be strengthened a little.

Theorem 3.5. Let H_1, H_2 be complex Hilbert spaces and $W \in \mathcal{W}(H_1 \otimes H_2)$ be a decomposable entanglement witness. If W is optimal, then $W = Q^{T_2}$ for some $Q \geq 0$ and there exists no positive operator A with $R(A) \subseteq R(Q)$ such that $A^{T_2} \geq 0$.

Proof. By Theorem 3.4, $W = Q^{T_2}$ as W is optimal. If there exists a positive operator A such that $R(A) \subseteq R(Q)$ and $A^{T_2} \geq 0$, then, by a well known result from operator theory, there exists an operator $T \in \mathcal{B}(H_1 \otimes H_2)$ such that $A = QT$. It follows that $A^2 = QTT^\dagger Q \leq tQ^2$, where $t = ||T||^2$. Thus, $A \leq \sqrt{t}Q$, which implies $Q - \lambda A \geq 0$ whenever $0 < \lambda < \frac{1}{\sqrt{t}}$. Thus we get $(Q - \lambda A)^{T_2} \in \mathcal{W}$. Now it follows from Theorem 2.1 (1) that $(Q - \lambda A)^{T_2}$ is finer than W, a contradiction.

Corollary 3.6. Let H_1, H_2 be complex Hilbert spaces and $W \in \mathcal{W}(H_1 \otimes H_2)$ be a decomposable entanglement witness. If W is optimal, then $W^{T_2} \notin \mathcal{W}$.

Proof. By Theorem 3.4, we know that $W = Q^{T_2}$ for some $Q \geq 0$. Therefore, $W^{T_2} = Q \geq 0$.

For low dimensional systems, the optimal witnesses are easily constructed. For example, the optimal witnesses for two qubits (i.e., the 2×2 system) are of the form

$$W = |\psi\rangle\langle\psi|^{T_2},$$

where $|\psi\rangle$ is an entangled state vector [13]. In fact, an optimal witness detecting the state ρ can be constructed from the eigenvector $|\psi\rangle$ of ρ^{T_2} with negative eigenvalue λ as $W = |\psi\rangle\langle\psi|^{T_2}$ since $\text{Tr}(\rho|\psi\rangle\langle\psi|^{T_2}) = \text{Tr}(|\psi\rangle\langle\psi|^{T_2}) = \lambda < 0$ [13]. This method can be generalized to infinite-dimensional case but the resulting witness may be not an optimal one.
4. Witnesses without the finer relation between them

Now we turn back to the question when different entanglement witnesses without “finer” relation between them can detect some entangled states simultaneously. This question was studied in [21] for finite-dimensional cases, there [21, Theorem 4] asserts that, in finite-dimensional systems, under the condition $\text{Tr}(W_1) = \text{Tr}(W_2)$, if there exists no inclusion relation between D_{W_1} and D_{W_2}, then $D_{W_1} \cap D_{W_2} = \emptyset$ if and only if $W = \lambda W_1 + (1 - \lambda)W_2$ is not a positive operator for all $0 \leq \lambda \leq 1$. We point out, though the result is true, the proof of [21] is not correct.

Our attention is main focus on the infinite-dimensional cases. We generalize the above result without the assumption “$\text{Tr}(W_1) = \text{Tr}(W_2)$” and provide a proof that valid for both finite-dimensional systems and infinite-dimensional systems.

The following two lemmas are obvious.

Lemma 4.1. Let H_1, H_2 be complex Hilbert spaces and let $W_1, W_2 \in \mathcal{W}(H_1 \otimes H_2)$ with $W_1 < W_2$. If $W(a, b) = aW_1 + bW_2$, a and b are positive numbers, then $W_1 < W(a, b) < W_2$.

Particularly, if $W_1 < W_2$, then all convex combinations of them are still witnesses.

Lemma 4.2. Let H_1, H_2 be complex Hilbert spaces. For $W_1, W_2 \in \mathcal{W}(H_1 \otimes H_2)$, let $W = aW_1 + bW_2 \neq 0$ with $a \geq 0$ and $b \geq 0$, then $D_W \subset D_{W_1} \cup D_{W_2}$ and $D_{W_1} \cap D_{W_2} \subset D_W$.

The following is our key lemma which is obtained for finite-dimensional cases in [21] with a different and longer proof.

Lemma 4.3. Let H_1, H_2 be complex Hilbert spaces. For $W, W_1, W_2 \in \mathcal{W}(H_1 \otimes H_2)$, if $D_{W_1} \cap D_{W_2} = \emptyset$ and if $D_W \subset D_{W_1} \cup D_{W_2}$, then either $D_W \subset D_{W_1}$ or $D_W \subset D_{W_2}$.

Proof. Assume, on the contrary, that both $D_{W_1} \cap D_W$ and $D_{W_2} \cap D_W$ are nonempty. Take $\rho_i \in D_{W_i} \cap D_W$, $i = 1, 2$. Consider the segment $[\rho_1, \rho_2] = \{ \rho_t = (1 - t)\rho_1 + t\rho_2 : 0 \leq t \leq 1 \}$. As D_W is convex, we have

$$[\rho_1, \rho_2] \subseteq D_W \subseteq D_{W_1} \cup D_{W_2}.$$

Thus we get

$$[\rho_1, \rho_2] = (D_{W_1} \cap [\rho_1, \rho_2]) \cup (D_{W_2} \cap [\rho_1, \rho_2]),$$

that is, $[\rho_1, \rho_2]$ is divided into two convex parts. It follows that there is $0 < t_0 < 1$ such that $\{ \rho_t : 0 \leq t < t_0 \} \subseteq D_{W_1}$, $\{ \rho_t : t_0 < t \leq 1 \} \subseteq D_{W_2}$, and either $\rho_{t_0} \in D_{W_1}$ or $\rho_{t_0} \in D_{W_2}$. Assume that $\rho_{t_0} \in D_{W_1}$; then $\text{Tr}(W_1\rho_{t_0}) < 0$. Thus, for sufficient small $\varepsilon > 0$ with $t_0 + \varepsilon \leq 1$, we have

$$0 \leq \text{Tr}(W_1\rho_{t_0 + \varepsilon}) = \text{Tr}(W_1\rho_{t_0}) + \varepsilon(\text{Tr}(W_1\rho_2) - \text{Tr}(W_1\rho_1)) < 0,$$

a contradiction. Similarly, $\rho_{t_0} \in D_{W_2}$ leads to a contradiction, too. This completes the proof.

\square
Now we are ready to state and prove the main result in this section, which asserts that two entanglement witnesses without “finer” relation between them can detect some entangled states simultaneously if and only if all convex combinations of them are entanglement witnesses.

Theorem 4.4. Let H_1, H_2 be complex Hilbert spaces and $W_1, W_2 \in W(H_1 \otimes H_2)$. Then $D_{W_1} \cap D_{W_2} = \emptyset$ if and only if there exists $0 < \lambda < 1$ such that $W = \lambda W_1 + (1 - \lambda)W_2 \geq 0$.

By Lemma 4.1, Lemma 4.2 and Theorem 4.4, the following result is immediate, which states that two witnesses can detect some entangled states simultaneously if and only if their convex combination does not break the witness.

Theorem 4.5. Let H_1, H_2 be complex Hilbert spaces and $W_1, W_2 \in W(H_1 \otimes H_2)$. Then $D_{W_1} \cap D_{W_2} = \emptyset$ if and only if $W_{\lambda} = \lambda W_1 + (1 - \lambda)W_2 \in W(H_1 \otimes H_2)$ for all $0 \leq \lambda \leq 1$.

Proof of Theorem 4.4. If $W = \lambda W_1 + (1 - \lambda)W_2 \geq 0$ for some $\lambda \in (0, 1)$, then, by Lemma 4.2, $D_{W_1} \cap D_{W_2} \subset D_W = \emptyset$.

Assume that $D_{W_1} \cap D_{W_2} = \emptyset$. Let $W(\lambda) = \lambda W_1 + (1 - \lambda)W_2$, $0 \leq \lambda \leq 1$. Then, by Lemma 4.3, for all $\lambda \in [0, 1]$, we have

$$D_{W(\lambda)} \subset D_{W_1} \text{, or } D_{W(\lambda)} \subset D_{W_2}.$$

When λ varies from 0 to 1 continuously, $D_{W(\lambda)}$ also varies from D_{W_2} to D_{W_1} continuously. Taken $\lambda_0 = \sup \{\lambda : D_{W(\lambda)} \subset D_{W_2}\}$.

We claim that, if $D_{W(\lambda_0)} \subset D_{W_2}$ then there exist $0 < \varepsilon < 1 - \lambda_0$ such that $W(\lambda_0 + \varepsilon)$ is a positive operator. Otherwise, if for all $0 < \varepsilon < 1 - \lambda_0$, $D_{W(\lambda_0 + \varepsilon)} \neq \emptyset$, then we have

$$D_{W(\lambda_0)} \subset D_{W_2}, \ D_{W(\lambda_0 + \varepsilon)} \subset D_{W_1},$$

and for all $\rho \in D_{W(\lambda_0)}$, we have

$$\text{Tr}(W(\lambda_0)\rho) < 0, \ \text{Tr}(W(\lambda_0)\rho) + \varepsilon[\text{Tr}(W_1\rho) - \text{Tr}(W_2\rho)] \geq 0.$$

Noticing that $\text{Tr}(W_1\rho) \geq 0$ and $\text{Tr}(W_2\rho) < 0$, the second part of the last inequality is positive, and ε is an arbitrarily small positive number, hence the last inequality is impossible. (We remark that there is a mistake in the proof of [21, Theorem 4] right here. In [21], the argument is “for all $\rho \in D_{W(\lambda_0 + \varepsilon)}$, we have

$$\text{Tr}(W(\lambda_0)\rho) \geq 0, \ \text{Tr}(W(\lambda_0)\rho) + \varepsilon[\text{Tr}(W_1\rho) - \text{Tr}(W_2\rho)] = \text{Tr}(W(\lambda_0 + \varepsilon)\rho) < 0.$$

Noticing that $\text{Tr}(W_1\rho) < 0$ and $\text{Tr}(W_2\rho) \geq 0$, the second part of the last inequality is negative, and ε is an arbitrarily small positive number, hence the last inequality is impossible.” However, $\text{Tr}(W(\lambda_0)\rho)$ maybe equals 0 for all possible ρ and the above argument is invalid.)

On the other hand, if $D_{W(\lambda_0)} \subset D_{W_1}$ then there exist $0 < \varepsilon < \lambda_0$ such that $W(\lambda_0 - \varepsilon)$ is a positive operator. Otherwise, if for all $0 < \varepsilon < \lambda_0$, $D_{W(\lambda_0 - \varepsilon)} \neq \emptyset$, then we have

$$D_{W(\lambda_0)} \subset D_{W_1}, \ D_{W(\lambda_0 - \varepsilon)} \subset D_{W_2},$$
and for all \(\rho \in \mathcal{D}_{W(\lambda_0)} \), we have
\[
\text{Tr}(W(\lambda_0)\rho) < 0, \quad \text{Tr}(W(\lambda_0)\rho) + \varepsilon[\text{Tr}(W_2\rho) - \text{Tr}(W_1\rho)] \geq 0.
\]
Noticing that \(\text{Tr}(W_2\rho) \geq 0 \) and \(\text{Tr}(W_1\rho) < 0 \), the second part of the last inequality is positive, and \(\varepsilon \) is an arbitrarily small positive number, hence the last inequality is impossible (We remark that there is a mistake similar to that pointed above in the proof of [21, Theorem 4] right here, too.)

To sum up the discussion above, no matter \(\mathcal{D}_{W(\lambda_0)} \subseteq \mathcal{D}_{W_1} \) or \(\mathcal{D}_{W(\lambda_0)} \subseteq \mathcal{D}_{W_2} \) there exists \(\lambda \in [0, 1] \) such that \(W(\lambda) \) is a positive operator, which completes the proof of the theorem. \(\Box \)

In what follows, we generalize Theorem 4.4 and Theorem 4.5 by allowing of finite many witnesses. The idea of the proof of the statement (1) is similar to that in [21] for finite-dimensional cases. Denote by \(\text{cov}(\Gamma) \) the convex hull of \(\Gamma \), that is, the convex set generalized by \(\Gamma \).

Theorem 4.6. Let \(H_1, H_2 \) be complex Hilbert spaces. For a set of entanglement witnesses, \(\Gamma = \{W_i : 1 \leq i \leq n\} \subseteq W(H_1 \otimes H_2) \). Then

1. \(\mathcal{D}_{\Gamma} = \emptyset \) if and only if \(\text{cov}(\Gamma) \) contains some positive operators.
2. \(\mathcal{D}_{\Gamma} \neq \emptyset \) if and only if \(\text{cov}(\Gamma) \subseteq W(H_1 \otimes H_2) \).

Proof. (1) The sufficient part is clear. In fact, if \(W = \sum_{i=1}^{n} \lambda_i W_i \geq 0 \) for some positive number \(\lambda_i \) with \(\sum_i \lambda_i = 1 \), then \(\mathcal{D}_W = \emptyset \), which implies that \(\mathcal{D}_{\Gamma} = \emptyset \) since \(\mathcal{D}_{\Gamma} \subseteq \mathcal{D}_W \).

Conversely, if \(\mathcal{D}_{\Gamma} = \emptyset \), we assume, without loss of generality that, any subset of \(\Gamma \) can detect some entangled states simultaneously. If \(n = 2 \), the theorem becomes Theorem 4.4. Assume that the theorem holds for \(k \leq n - 1 \). By induction, we have to show that the theorem holds for \(n \). Since the method is the same, we only need to show the case \(n = 3 \). By assumption, we have

\[
\mathcal{D}_{W_1} \neq \emptyset, \quad \mathcal{D}_{W_1} \cap \mathcal{D}_{W_2} \neq \emptyset, \quad \mathcal{D}_{W_1} \cap \mathcal{D}_{W_3} \neq \emptyset,
\]

but

\[
\mathcal{D}_{W_1} \cap \mathcal{D}_{W_2} \cap \mathcal{D}_{W_3} = \emptyset,
\]

namely,

\[
(\mathcal{D}_{W_1} \cap \mathcal{D}_{W_2}) \cap (\mathcal{D}_{W_1} \cap \mathcal{D}_{W_3}) = \emptyset.
\]

Let

\[
W(\lambda) = \lambda W_2 + (1 - \lambda)W_3, \quad \lambda \in [0, 1],
\]

then

\[
\mathcal{D}_{W_1} \cap \mathcal{D}_{W(\lambda)} \subset (\mathcal{D}_{W_1} \cap \mathcal{D}_{W_2}) \cup (\mathcal{D}_{W_1} \cap \mathcal{D}_{W_3}).
\]

Since \(\mathcal{D}_{W_1} \cap \mathcal{D}_{W_2} \) and \(\mathcal{D}_{W_1} \cap \mathcal{D}_{W_3} \) are disjoint, and \(\mathcal{D}_{W_1} \cap \mathcal{D}_{W(\lambda)} \) is convex, we know that \(\mathcal{D}_{W_1} \cap \mathcal{D}_{W(\lambda)} \) varies from \(\mathcal{D}_{W_1} \cap \mathcal{D}_{W_3} \) to \(\mathcal{D}_{W_1} \cap \mathcal{D}_{W_2} \) whenever \(\lambda \) varies from 0 to 1. Using
the similar argument as that in the proof of Theorem 4.4, we can conclude that there exists $0 < \lambda_0 < 1$ such that

$$\mathcal{D}_{W_1} \cap \mathcal{D}_{W(\lambda_0)} = \emptyset.$$

Therefore,

$$W = \mu W_1 + (1 - \mu)W(\lambda_0) = \mu W_1 + (1 - \mu)\lambda_0 W_2 + (1 - \mu)(1 - \lambda_0)W_3 \geq 0$$

for some $\mu \in (0, 1)$. By induction on n, we complete the proof of (1).

(2) The “only if” part is obvious. To check the “if” part, assume that $\text{cov}(\Gamma) \subseteq W(H_1 \otimes H_2)$. If, on the contrary, $\mathcal{D}_\Gamma = \emptyset$, then, by the statement (1) just proved above, there exists $W \in \text{cov}(\Gamma)$ such that $W \geq 0$. It follows that $W \notin W$, a contradiction. \qed

By Theorem 4.6 it is clear that $W_1, \ldots, W_n \in W(H_1 \otimes H_2)$ detect some entangled states simultaneously if and only if all convex combinations of them are witnesses.

5. Conclusion

To sum up, in this paper, we answer the question under what conditions different witnesses may detect some entangled states simultaneously. Generally speaking, for bipartite quantum systems, finite many different witnesses can detect some entangled states simultaneously if and only if their convex combinations are still witnesses; they can not detect any entangled state simultaneously if and only if the set of their convex combinations contains a positive operator. For two witnesses W_1 and W_2, some more can be said: (1) W_1 and W_2 can detect the same set of entangled states if and only if they are linearly dependent; (2) W_2 can detect more entangled states than that W_1 can if and only if W_1 is a linear combination of W_2 and a positive operator. As an application of above results, we show that a witness is optimal if and only if any negative permutation of it will break the witness, that is, a witness W is optimal if and only if $W - D$ is not a witness for any positive operator D; W is decomposable optimal implies that W is a partial transpose of some positive operator.

Before the end, we would like to stress that our results holds for both infinite-dimensional and finite-dimensional cases. Though some of them are known for finite-dimensional systems under the additional assumption $\text{Tr}(W_1) = \text{Tr}(W_2)$, the proof of our results are quite different.

References

[1] F.G.S.L. Brandao, R.O. Vianna, Robust semidefinite programming approach to the separability problem, Phys. Rev. A 70 (2004) 062309

[2] D. Chruściński, A. Kossakowski, How to construct indecomposable entanglement witnesses, J. Phys. A: Math. Theor. 41 (2008) 145301

[3] L. Clarisse, P. Wocjan, On independent permutation separability criteria, Quantum Inf. Comput. 6 (2006) 277
[4] O. Gühne, P. Hyllus, O. Gittsovich, and J. Eisert, Covariance matrices and the separability problem, Phys. Rev. Lett. 2007, 99, 130504
[5] O. Gühne, Characterizing entanglement via uncertainty relations, Phys. Rev. Lett. 2 (2004) 117903
[6] O. Gühne, M. Mechler, G. Tóth, P. Adam, Entanglement criteria based on local uncertainty relations are strictly stronger than the computable cross norm criterion, Phys. Rev. A 74 (2006) 010301
[7] O. Gühne, M. Mechier, T. Tóth, P. Adam, Entanglement criterion based on local uncertainty relations are strictly stronger than the computable cross norm criterion, Phys. Rev. A 74, 010301(R) (2006).
[8] M. Horodecki, P. Horodecki, R. Horodecki, Separability of mixed states: Necessary and sufficient condition, Phys. Lett. A, 1996, 233:1
[9] M. Horodecki, P. Horodecki, Reduction criterion of separability and limits for a class of distillation protocols, Phys. Rev. A, 1999, 59:4206
[10] M. Horodecki, P. Horodecki, and R. Horodecki, 1997, Phys. Rev. Lett. 78, 574.
[11] P. Horodecki, Separability criterion and inseparable mixed states with positive partial transposition, Phys. Lett. A, 232 (1997) 333-339
[12] J.C. Hou, X.F. Qi, Constructing entanglement witnesses for infinite-dimensional systems, arXiv: 1005.5530v1
[13] P. Hyllus, O. Gühne, D. Bru, M. Lewenstein, Relations between entanglement witnesses and Bell inequalities, Phys. Rev. A 72 (2005) 012321
[14] M. A. Jafarzadeh, N. Behzadi, Y. Akbari, Entanglement witnesses and characterizing entanglement properties of some PPT states, Eur.Phys.J.D 55,197-203(2009)
[15] M. Lewenstein, B. Kraus, P. Horodecki, J.I. Cirac, Characterization of separable states and entanglement witnesses, arXiv:quant-ph/0005112
[16] M. Lewensetein, B. Kraus, J.I. Cirac, P. Horodecki, Optimization of entanglement witnesses, Phys. Rev. A 62 (2001) 052310
[17] M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information. Cambridge: Cambridge University Press, 2000
[18] M.A. Nielsen, J. Kempe, Separable states are more disordered globally than locally, Phys. Rev. Lett.,2001,86:5184
[19] A. Peres, Separability criterion for density matrices, Phys. Rev. Lett. 1996,77:1413
[20] R.F. Werner, M.M. Wolf, All-multipartite Bell-correlation inequalities for two dichotomic observables per site, Phys. Rev. A 64, 032112 (2001)
[21] Y.C. Wu, Y.J. Han, G.C. Guo, When different entanglement witnesses can detect the same entangled states, Phys. Lett. A, 356 (2006) 402-405

Department of Mathematics, Taiyuan University of Technology, Taiyuan 030024, China; Department of Mathematics, Shanxi University, Taiyuan, 030006, China
E-mail address: jinchuanhou@yahoo.com.cn

Department of Mathematics, Shanxi University, Taiyuan, 030006, China; Department of Mathematics, Shanxi Datong University, Datong, 037009, China.
E-mail address: guoyu3@yahoo.com.cn