ROBUST TRANSLITIVITY AND TOPOLOGICAL MIXING FOR
C1-FLOWS

FLAVIO ABDENUR, ARTUR AVILA AND JAIRO BOCHI

Abstract. We prove that non-trivial homoclinic classes of Cr-generic flows are topologically mixing. This implies that given Λ a non-trivial C1-robustly transitive set of a vector field X, there is a C1-perturbation Y of X such that the continuation Λt_Y of Λ is a topologically mixing set for Y. In particular, robustly transitive flows become topologically mixing after C1-perturbations. These results generalize a theorem by Bowen on the basic sets of generic Axiom A flows. We also show that the set of flows whose non-trivial homoclinic classes are topologically mixing is not open and dense, in general.

2000 Mathematics Subject Classification: 37C20.
Key words: generic properties of flows, homoclinic classes, topological mixing.

1. Statement of the Results

Throughout this paper M denotes a compact d-dimensional boundaryless manifold, d ≥ 3, and X$^r(M)$ is the space of Cr vector fields on M endowed with the usual Cr topology, where r ≥ 1. We shall prove that, generically (residually) in X$^r(M)$, nontrivial homoclinic classes are topologically mixing. As a consequence, nontrivial C1-robustly transitive sets (and C1-robustly transitive flows in particular) become topologically mixing after arbitrarily small C1-perturbations of the flow.

These results generalize the following theorem by Bowen [B]: non-trivial basic sets of Cr-generic Axiom A flows are topologically mixing. Note that C1-robustly transitive sets are a natural generalization of hyperbolic basic sets; they are the subject of several recent papers, such as [BD1] and [BDP].

In order to announce precisely our results, let us introduce some notations and definitions.

Given $t \in \mathbb{R}$ and $X \in X^r(M)$, we shall denote by X^t the induced time t map. A subset R of X$^r(M)$ is residual if it contains the intersection of a countable number of open dense subsets of X$^r(M)$. Residual subsets of X$^r(M)$ are dense. Given an open subset U of X$^r(M)$, then property (P) is generic in U if it holds for all flows in a residual subset R of U; (P) is generic if it is generic in all of X$^r(M)$.

A compact invariant set for X is non-trivial if it is neither a periodic orbit nor a single point. A compact invariant set Λ of X is transitive if it there is some point $x \in \Lambda$ such that the future orbit $\{X^t(x) : t > 0\}$ of x is dense in Λ; Λ is topologically mixing for X if given any nonempty open subsets U and V of Λ then there is some $t_0 > 0$ such that $X^t(U) \cap V \neq \emptyset$ for all $t \geq t_0$. A non-trivial X-invariant transitive set Λ is Ω-isolated if there is some open neighborhood U of Λ such that $U \cap \Omega(X) = \Lambda$. Furthermore, Λ is isolated if there is a neighborhood U of Λ (called an isolating block) such that

$$\Lambda = \bigcap_{t \in \mathbb{R}} X^t(U).$$

Date: March 29, 2022.
F.A. was supported by FAPERJ and Prodoc/CAPES, A.A. was supported by FAPERJ and CNPq, and J.B. was supported by Profix/CNPq.
Given a hyperbolic closed orbit γ of X, the homoclinic class of γ relative to X is given by
\[H_X(\gamma) = W^s(\gamma) \cap W^u(\gamma), \]
where \cap denotes points of transverse intersection of the invariant manifolds. $H_X(\gamma)$ is a transitive compact X-invariant subset of the non-wandering set $\Omega(X)$. Moreover, if γ is a closed orbit of index i, then the set $P_1(H_X(\gamma)) \equiv \{ p \in H_X(\gamma) \cap \text{Per}(X) : p \text{ is hyperbolic with index } i \}$ is dense in $H_X(\gamma)$. (See [BDP]). $H_X(\gamma)$ is not necessarily hyperbolic, but if X is Axiom A then its basic sets are hyperbolic homoclinic classes. In the absence of ambiguity, we may write $H(\gamma)$ for $H_X(\gamma)$.

An attractor is a transitive set Λ of X that admits a neighborhood U such that
\[X^t(U) \subset U \text{ for all } t > 0, \text{ and } \bigcap_{t \in \mathbb{R}} X^t(U) = \Lambda. \]
A repeller is an attractor for $-X$. Clearly any attractor or repeller is Ω-isolated.

An isolated X-invariant compact set Λ is C^1-robustly transitive if there is some open neighborhood V of X in $\mathcal{X}^1(M)$ and some isolating block U of Λ such that given any $Y \in V$, then
\[\Lambda_Y \equiv \bigcap_{t \in \mathbb{R}} Y_t(U) \]
is a compact transitive non-trivial set of Y.

Finally, a flow X is C^1-robustly transitive if there is some open neighborhood W of X in $\mathcal{X}^1(M)$ such that given any $Y \in W$ then Y is transitive.

Our main result is the following:

Theorem A. There is a residual subset \mathcal{R} of $\mathcal{X}^1(M)$ such that if Λ is an isolated non-trivial transitive set of $X \in \mathcal{R}$, then Λ is topologically mixing for X.

Theorem A has the following immediate consequence for robustly transitive sets or flows:

Corollary A’. Let Λ be a non-trivial robustly transitive set, with V and U as in the definition above. Then there is some residual subset \mathcal{R} of V such that if $Y \in \mathcal{R}$ then Λ_Y is topologically mixing for Y. In particular, given an open set $W \subset \mathcal{X}^1(M)$ of transitive flows, then there is some residual subset \mathcal{R} of W such that any $Y \in \mathcal{R}$ is topologically mixing.

Theorem A is very much a nonhyperbolic, C^1 version of Bowen’s aforementioned result. It is actually a consequence of the proof of the following result:

Theorem B. Given any $r \in \mathbb{N}$, there is a residual subset \mathcal{R} of $\mathcal{X}^r(M)$ such that if $Y \in \mathcal{R}$ and $H(\gamma)$ is a non-trivial homoclinic class of Y, then $H(\gamma)$ is topologically mixing for Y.

Theorem B follows from general properties of homoclinic classes combined with simple topological arguments. All of the arguments in the proof of Theorem B hold in any C^r topology with $r \geq 1$, whereas Theorem A requires the use of C^1-generic properties which are not known in finer topologies.

Pugh’s General Density Theorem [Pu] and Theorem B of [BD2] (which is stated for diffeomorphisms but holds for flows via the same arguments) imply that C^1-generically any Ω-isolated transitive set coincides with some homoclinic class. Therefore Theorem B implies the following corollary:

Corollary B’. There is a residual subset \mathcal{R} of $\mathcal{X}^1(M)$ such that if $Y \in \mathcal{R}$ and Λ is a non-trivial transitive Ω-isolated set of Y, then Λ is topologically mixing for Y. In particular, C^1-generically any non-trivial attractor/repeller is topologically mixing.
Note that Corollary B' generalizes the “mixing” aspect of [MP]. We remark that the dependence of our proofs on the \((C^1)\) Closing and Connecting Lemmas means that extending our results (with the exception of Theorem B) to finer topologies is probably very difficult.

Of course, in general not every non-trivial homoclinic class is topologically mixing: the basic sets of suspensions of Axiom A diffeomorphisms, for example, are not mixing. One may therefore ask how large is the set of the flows that have a non-trivial homoclinic class which is not mixing. A partial answer to this question is given by:

Theorem C. There exists a 4-manifold \(M\) and an open set \(\mathcal{U} \subset \mathcal{X}^4(M)\) such that each flow \(X\) in a dense subset \(\mathcal{D} \subset \mathcal{U}\) has a non-trivial homoclinic class which is not topologically mixing for \(X\).

Theorem C shows that the residual set \(\mathcal{R}\) of Theorem B is, in general, not open. The construction in Theorem C relies on the wild diffeomorphisms from [BD2] and [BD3].

On the other hand, robustly transitive flows have relatively tame dynamics. We pose the following:

Question. Is the set of \(C^1\)-robustly topologically mixing flows dense in the set of robustly transitive flows?

In [AA] the first two authors prove analogues of Theorems A, B, and C for diffeomorphisms. In addition, a robustly transitive but non-mixing diffeomorphism is constructed.

The next section first lists some definitions and properties needed for the proofs and then sets out the proofs themselves.

2. The Proofs

Given a hyperbolic periodic point \(p\), let \(\gamma = \gamma(p)\) be its orbit and \(\Pi_X(p) = \Pi_X(\gamma)\) be its period. Set also

\[
W^s(p) = \{x \in M : d(X^t(x), \gamma(p)) \to 0 \text{ as } t \to +\infty\},
\]

\[
W^{ss}(p) = \{x \in M : d(X^t(x), X^t(p)) \to 0 \text{ as } t \to +\infty\}.
\]

We define \(W^u(p)\) and \(W^{uu}(p)\) as the corresponding sets for \(-X\). Note that the set \(W^s(p)\) is \(X^t\)-invariant for all \(t \in \mathbb{R}\), whereas \(W^{ss}(p)\) is \(X^t\)-invariant only for \(t \in \Pi_X(p) \cdot \mathbb{Z}\). The *index* of \(\gamma\) is the dimension of the stable manifold \(W^s(\gamma) = W^s(p)\).

Lemma 1. Given any \(r \in \mathbb{N}\), there exists a residual subset \(\mathcal{R}_1\) of \(\mathcal{X}(M)\) such that if \(X \in \mathcal{R}_1\) then given any distinct closed orbits \(\gamma, \gamma'\), we have that

\[
\frac{\Pi_X(\gamma)}{\Pi_X(\gamma')} \in \mathbb{R} \setminus \mathbb{Q}.
\]

Proof. For \(N \in \mathbb{N}\), let \(A_N \subset \mathcal{X}(M)\) be the set of vector fields \(X\) such that all singularities of \(X\) are hyperbolic and all closed orbits with periods less than \(N\) are hyperbolic. It follows from the standard proof of the Kupka–Smale theorem that the set \(A_N\) is open and dense in \(\mathcal{X}(M)\).

Now let \(a_1, a_2, \ldots\) be an enumeration of the positive rational numbers and let \(B_N \subset \mathcal{X}(M)\) be the set of vector fields \(X \in A_N\) such that if \(\gamma, \gamma'\) are distinct closed orbits with periods less than \(N\) then \(\Pi_X(\gamma)/\Pi_X(\gamma')\) does not belong to \(\{a_1, \ldots, a_N\}\).

If \(X \in A_N\) then the number of orbits with periods less that \(N\) is finite. Moreover, each of these orbits has a continuation and the period varies continuously. It follows that the set \(B_N\) is open.

Let us show that \(B_N\) is also dense, so we can define \(\mathcal{R}_1 = \cap_N B_N\). Given any \(X_0 \in \mathcal{X}^4(M)\), first approximate it by \(X_1 \in A_N\). Let \(\gamma_1, \ldots, \gamma_k\) be the \(X_1\)-orbits with periods
Analogously, there exist any t

Definition 1. Let Λ be a compact invariant set of X ∈ X^r(M). Then we set \(R_i(Λ) = \{ p \in Λ : p \text{ is a hyperbolic periodic point of } X \text{ with index } i \} \).

The next definition comes from [BDP].

Definition 2. Let p be a periodic point of a flow X ∈ X^r(M) and U be a neighborhood of p in M. Then the homoclinic class of p relative to U is given by

\[
HR_X(p, U) = \overline{\{ q \in H_X(p) \cap \text{Per}(X) : \text{the orbit } γ(q) \text{ is contained in } U \}}.
\]
It is easily seen that $HR_X(p,U)$ is a compact transitive invariant set. Moreover, if $\text{ind}(p) = i$, then $P_i(HR_X(p,U))$ is dense in $HR_X(p,U)$.

We need the following lemma, which is a consequence of a theorem by Arnaud [Ar] together with an argument from [BDP]:

Lemma 3. There is a residual subset \mathcal{R} of $\mathcal{X}^1(M)$ such that if Λ is an isolated transitive set of $X \in \mathcal{R}$, then $\Lambda = HR_X(p,U)$ for some periodic point $p \in \Lambda$.

Proof. Let \mathcal{R}_2 be as in Theorem 1 of [Ar] and let \mathcal{R}_3 be as in Theorem B of [BD2], and set $\mathcal{R} \equiv \mathcal{R}_2 \cap \mathcal{R}_3$. Let Λ be an isolated transitive set of $X \in \mathcal{R}$, with U an isolating block of Λ.

By Theorem 1 of [Ar], there is a sequence of periodic orbits γ_k which converge to Λ in the Hausdorff topology. The orbit γ_k is contained in U for k sufficiently large. Since Λ is the maximal invariant set of U, it follows that for large k the orbit γ_k is contained in Λ. Since the sequence $\{\gamma_k\}$ converges to Λ in the Hausdorff topology, the set of periodic points contained in Λ must be a dense subset of Λ.

Now, since Λ is transitive and has a dense subset of periodic points, we apply an argument from [BDP] which uses Theorem B of [BD2] to conclude that given any periodic point $p \in \Lambda$ then

$$\Lambda = HR_X(p,U).$$

\square

We are now ready to prove Theorem A:

Proof of Theorem A. It is easy to see that the proof of Theorem B actually implies the following result:

Theorem D. There is a residual subset \mathcal{R} of $\mathcal{X}^1(M)$ such that if $Y \in \mathcal{R}$ and Λ is a non-trivial transitive set of Y such that for some $i \in \{1, \ldots, d - 1\}$ the set $P_i(\Lambda)$ is dense in Λ, then Λ is topologically mixing for Y.

Now by Lemma 3 above we have that Λ coincides with some relative homoclinic class $HR_X(p,U)$. Let i be the index of the periodic point p. Since $P_i(HR_X(p,U))$ is dense in $HR_X(p,U)$, we conclude that Λ satisfies the hypotheses of Theorem D above, and therefore that Λ is a mixing set for X. \square

At last, we give the:

Proof of Theorem C. Let S be a compact 3-manifold and let $\text{Diff}^1(S)$ be the set of C^1 diffeomorphisms of S endowed with the C^1-topology. The key of the construction is the following result of Bonatti and Díaz ([BD3, Theorem 3.2]): There exist an open set $\mathcal{U}_0 \subset \text{Diff}^1(S)$ and a dense subset $\mathcal{D}_0 \subset \mathcal{U}_0$ such that for every $f \in \mathcal{D}_0$ there are an open set $B \subset S$ and an integer $n \in \mathbb{N}$ such that every $x \in B$ is a periodic point of f of (prime) period n.

Let $f_0 : S \to S$ be a diffeomorphism from the set \mathcal{D}_0 above. Let $X_0^t : M \to M$ be the suspension flow. As usual, M is the 4-manifold obtained from $S \times [0,1]$ by gluing points $(x,1)$ and $(f_0(x),0)$. We will identify S with the submanifold $\{(x,0) \in M; x \in S\}$ of M.

Let $\mathcal{U} \subset \mathcal{X}^1(M)$ be a small neighborhood of X_0 such that every vector field $X \in \mathcal{U}$ is transverse to S and, moreover, the first-return map $f_X : \text{Diff}^1(S)$ belongs to \mathcal{U}_0. For $X \in \mathcal{U}$, we let $\tau_X : S \to \mathbb{R}_+$ be the return-time map, which is a C^1-smooth function depending continuously (in the C^1 topology) on $X \in \mathcal{U}$.

We will omit the proof of the following:
Lemma 4. For every $X \in \mathcal{U}$ and every neighborhood $\mathcal{V} \ni X$, if \tilde{f} is a small perturbation of f_X and $\tilde{\tau}$ is a small perturbation of τ_X then there is $X \in \mathcal{V}$ such that $f_X = \tilde{f}$ and $\tau_X = \tilde{\tau}$.

Now let $X_1 \in \mathcal{U}$. We shall prove that there exists X_4 arbitrarily close to X_1 which has a non-trivial homoclinic class which is not topologically mixing.

Let $f_1 = f_{X_1}$, and $\tau_1 = \tau_{X_1}$. Take $f_2 \in \mathcal{D}_0$ close to f_1. Since $f_2 \in \mathcal{D}_0$, there is a ball $B \subset S$ of points that are f_2-periodic, of period n. Let $\tau^n_1 : S \to \mathbb{R}_+$ be defined by $\tau^n_1 = \sum_{j=0}^{n-1} \tau_1 \circ f^j_1$.

Using a chart, we identify B with a ball $B(0,r) \subset \mathbb{R}^3$, in such a way that the kernel of the differential $D\tau^n_1(0)$ contains the plane xy.

Let $f_3 \in \text{Diff}^1(S)$ be a perturbation of f_2 such that:

- f_3 equals f_2 outside $\bigcup_{j=0}^{n-1} f^j_2(B)$;
- there exists a ball $B_1 = B(0,r_1)$, with $0 < r_1 < r$, such that $f^n_3(B_1) = B_1$;
- f^n_3 restricted to B_1 is an orthogonal rotation (indicated by R) of angle $2\pi/m$, where $m \in \mathbb{N}$, along the axis y.

It is easy to construct a map $\tau_3 : S \to \mathbb{R}$ close to τ_1, such that $\tau^n_3 = \sum_{j=0}^{n-1} \tau_3 \circ f^j_3$ is an affine map in a smaller ball B_2 around 0 and such that $D\tau^n_3(0) = D\tau^n_1(0)$. That is, if $x \in B_2$ then $\tau^n_3(x) = \tau^n_1(x) + D\tau^n_2(0) \cdot x$.

Using Lemma 4 we find a flow X_3 close to X_1 and such that $f_{X_3} = f_3$ and $\tau_{X_3} = \tau_3$.

Let $x \in B_2 \setminus \{0\}$. Its successive returns to B_1 under the flow X_3 are $R(x), \ldots, R^{r-1}(x)$, $R^m(x) = x$. In particular, x is a periodic point. Summing the respective return times we get that the period of x is $\sum_{j=0}^{r-1} \tau^n_3(R^j(x)) = m \tau^n_3(0)$, since $\sum_{j=0}^{r-1} R^j(x)$ belongs to the y axis. That is, all points in $B_3 \setminus \{0\}$ are periodic under X_3 of (prime) period $m \tau^n_3(0)$.

Let $B_3 \subset B_2$ be a ball (not centered in 0) such that $cl B_3, cl R(B_3), \ldots, cl R^{r-1}(B_3)$ are pairwise disjoint.

Choose now some $f_4 : S \to S$ which is C^1 close to f_3 and such that:

- f_4 equals f_3 outside B_3;
- f_4^m restricted to B_3 has a non-trivial homoclinic class (say, a solenoid attractor).

Let also $\tau_4 : S \to \mathbb{R}_+$ be given by $\tau_4 = \tau_3 \circ f^{-1}_3 \circ f_4$. Then τ_4 is C^1 close to τ_3. Using Lemma 4 again, we obtain X_4 C^1 close to X_3 such that $f_{X_4} = f_4$ and $\tau_{X_4} = \tau_4$. The return time of a point $x \in B_3$ to B_3 under X_4 is $\tau^n_{X_4}(x) = \tau^n_3(f^{-1}_3 \circ f_4(x))$, which independ of x (where, as usual, we let $\tau^n_{X_4} = \sum_{j=0}^{nm-1} \tau_4 \circ f^j_4$ and $\tau^n_{X_3} = \sum_{j=0}^{nm-1} \tau_3 \circ f^j_3$).

Therefore X_4 has a non-trivial homoclinic class which is not topologically mixing. □

Acknowledgements: We would like to thank the referee for his detailed report and for pointing out to us that our proof of Theorem B was not restricted to the C^1 topology.

References

[AA] F. Abdenur and A. Avila, Robust transitivity and topological mixing for diffeomorphisms, preprint IMPA (www.preprint.impa.br), (2002).

[Ar] M.-C. Arnaud, Approximation des ensembles ω-limites des difféomorphismes par des orbites périodiques, to appear in Ann. Scient. Ecole Nor. Sup. Paris

[B] R. Bowen, Mixing Anosov flows, Topology, 15, 77-79, (1976).

[BD1] Ch. Bonatti and L.J. Díaz, Persistence of transitive diffeomorphisms, Ann. Math., 143, 367-396, (1995).

[BD2] Ch. Bonatti and L.J. Díaz, Connexions hétéroclines et générnicité d’une infinité de puits ou de sources, Ann. Scient. Ecole Nor. Sup. Paris, 32, 135-150, (1999).

[BD3] Ch. Bonatti and L.J. Díaz, On maximal transitive sets of generic diffeomorphisms, preprint, (2001).

[BDP] Ch. Bonatti, L.J. Díaz, and E. Pujals, A C^1-generic dichotomy for diffeomorphisms: weak forms of hyperbolicity or infinitely many sinks or sources, to appear in Ann. Math.
[H] S. Hayashi, Connecting invariant manifolds and the solution of the C^1 stability and Ω-stability conjectures for flows, Ann. Math. 145, 81-137, (1997).

[MP] C. A. Morales and M. J. Pacifico, Mixing attractors for 3-flows, Nonlinearity 14, 359-378, (2001).

[Pu] C. Pugh, An improved closing lemma and a general density theorem, Amer. J. Math., 89, 1010-1021, (1967).

Flavio Abdenur (flavio@impa.br)
IMPA
Estr. D. Castorina 110
22460-320 Rio de Janeiro – Brazil.

Artur Avila (avila@impa.br)
Collège de France
3 rue d’Ulm
75005 Paris – France.

Jairo Bochi (bochi@impa.br)
IMPA
Estr. D. Castorina 110
22460-320 Rio de Janeiro – Brazil.