Immunoglobulin Profiles Provide New Insights into Infectious Diseases

ANN SCHLUEDERBERG, Sc.D.

Division of Research Grants, National Institutes of Health, Bethesda, Maryland

Received April 19, 1982

New technologies are being developed which will facilitate measurement of IgG subclass responses to disease and vaccination. To illustrate the potential benefit of determining antibody subclass profiles, special features of the less abundant subclasses are discussed in relation to specific infectious disease problems.

We are tooling up for an exciting period in infectious disease immunology. As more and more monoclonal antibodies become available, we will be able to look at antibody responses in terms of both antibody subclass and individual microbial antigenic specificity. Just as determination of antibody class is informative in diagnosis [1], vaccine evaluation [2,3], and epidemiology [4], determination of antibody subclass is sure to provide welcome explanations for unusual host reactions and immunopathogenesis.

A good example of the latter is Berger’s disease, which is a common type of glomerulonephritis with onset of symptoms often coinciding with upper-respiratory tract infection or gastroenteritis. The finding of a high proportion of IgA1 in glomerular deposits in this disease supports the idea that renal pathology is caused by deposition of immune complexes of IgA derived from plasma cells associated with mucosal surfaces. This is in contrast to the primarily IgA1 renal deposits in lupus erythematosus [5].

IgG subclass determination promises to be particularly informative, because IgG subclasses show important biological differences (Table 1). The time at which adult serum levels are reached varies markedly, and we can expect that age-associated variation in disease severity will become more explicable in these terms. This is well illustrated by the severity of encapsulated bacterial infections in young children. IgG antibody responses to polysaccharide capsular antigens are restricted to IgG2, which is the last subclass to appear in the infant and the last to reach adult levels [25,26]. As expected, genetic deficiency in IgG3 has been reported to be associated with severe and recurrent infections with these agents [27].

Examples of such restriction and consequent disease effects are not yet documented for viruses, but subclass restriction may provide the explanation for a well-known but unexplained observation. The complement-fixing (CF) antibody responses to certain antigens of a number of different viruses—notably the togaviruses—share a characteristic post-immunization time course: late appearance and early decline. Since IgG3 antibodies have a strong CF capacity and a catabolic rate which is uniquely short, we may find that these CF antibodies are restricted to
TABLE 1
Human IgG Subclass Characteristics

	IgG1	IgG2	IgG3	IgG4	Ref.
Physiologic:					
Cross placenta	+	±	+	+	[6,7]
Physiological half-life (d)	21	21	7	21	[8]
Age when adult levels attained	8 mo	12 y	3 mo	50% 2 y	[9,10]
Relative concentration (%)	66	23	7	4	[11]
Biologic:					
Complement fixation	+	+	+	+	[12]
Reversed PCA, guinea pig	+	-	+	+	[13,14]
Attach to monocytes	+	-	+	-	[15]
Attach to lymphocytes	+	+	+	-	[16]
Attach to mast cells, subhuman primates	-	-	-	+	[17]
Associated immediate hypersensitivity	-	-	-	+	[18,19]
React rheumatoid factor	+	+	-	+	[20]
Biophysical-biochemical:					
Bind to Protein A	+	+	-	+	[21]
Papain labile (− cysteine)	+	-	+	-	[22]
Papain labile (+ cysteine)	-	+	+	-	[22]
Electrophoretic mobility	slow	fast	medium	fast	[23]
Isoelectric focusing	broad > 8	6-8	> 8	6	[24]

the IgG3 subclass. If so, the failure of some persons to mount measurable levels of CF antibody following rubella might reflect their allotype [28]. For example, total IgG3 levels are about twice as high in individuals homozygous for Gm(5) as in those homozygous for Gm(21) [29].

An important area in virology where IgG subclass serum profiles may provide needed answers is the study of serious reactions to virus challenge in the partially immune host [30,31]. IgG4 seems likely to play an important role, since it has been associated with hypersensitivity reactions of the immediate type, and in at least one case of severe anaphylactic reaction, appeared to be the only immunoglobulin involved [32]. The maintenance of an appropriate balance in specific class and subclass antibody levels may be critical in determination of immunopathological outcome. We can easily imagine how this balance might be disturbed in the partially immune host, but we cannot begin to understand the implications until more is learned about the individual time courses and feedback restrictions in primary and secondary antibody responses. In the absence of a clear understanding of these variables and their interrelationships, it is little wonder that mechanisms of antibody-mediated pathology have defied definition. In this regard, it will be of interest to learn how IgG subclasses and allotype figure in the pathogenesis of dengue hemorrhagic fever—a disease for which none of the proposed mechanistic theories has proved to be entirely satisfying [33–35].

In pursuit of these and related questions, monoclonal antibodies will be of enormous help. The extreme differences noted between these subclasses should also signal caution in the interpretation of data derived with an IgG monoclonal reagent, for its activity will depend on the subclass. As an example, a human IgG4—or mouse IgG1—monoclonal antibody specific for a viral "CF antigen" might go unrecognized
if tested only by complement fixation. Moreover, reactivity attributed to subclass may, in fact, be associated with allotypic or other determinants.

We are now in an era when new serologic tools often are adopted because of ease of execution (ELISA) or increase in sensitivity (RIA), without regard to the loss of individual antigenic specificity associated with classical tests such as inhibition of hemagglutination, inhibition of hemolysis, and neutralization. Thus, “old-fashioned” tests permit discrimination between antigenic specificities even with relatively crude antigens, whereas the “new fangled” tests do not. Fortunately, scientific curiosity and commercial interests assure that both sensitivity and specificity will eventually surpass our dreams with the provision of monoclonal antibodies specific for individual microbial antigens and for individual human immunoglobulin subclasses. When these reagents are intelligently and fully exploited, we can expect clarification of earlier observations and many exciting insights.

REFERENCES

1. Ankerst J, Christensen P, Kjellen L, et al: A routine diagnostic test for IgA and IgM antibodies to rubella virus: absorption of IgG with Staphylococcus aureus. J Inf Dis 130:268-273, 1974
2. Schluenderberg A, Karelitz S: Suppression of measles IgM antibody formation as evidence of immi-
3. nity: primary immune response masked by maternal antibody. JAMA 191:1064-1066, 1965
4. Ogura PL, Kerr-Grant D, Umana G, et al: Antibody response in serum and nasopharynx after infe-
5. cion with rubella virus, New Eng J Med 285:1333-1339, 1971
6. Schaffner W, Schluenderberg AE, Byrne EB: Clinical epidemiology of sporadic measles in a highly
7. immunized population. New Eng J Med 279:783-789, 1968
8. Andre C, Bernhoux FC, Andre F, et al: Prevalence of IgA2 deposits in IgA nephropathies. New Eng
9. J Med 303:1343-1346, 1980
10. Bernier GM, Ballieux RE, Tominaga KT, et al: Heavy chain subclasses of human gamma G-globulin.
11. J Exp Med 125:303-318, 1967
12. Catty D, Seger R, Drew R, et al: IgG-subclass concentrations in cord sera from premature, full-term
13. and small-for-date babies. Europ J Pediat 125:89-96, 1977
14. Morell A, Terry WD, Waldmann TA: Metabolic properties of IgG subclasses in man. J Clin Invest
15. 49:673-696, 1970
16. Morell A, Skvaril F, Hitzig WH, et al: IgG subclasses: development of the serum concentration in
17. normal infants and children. J Pediat 80:960-964, 1972
18. Van der Giessen M, Rossouw E, Algra-Van Veen T, et al: Quantification of IgG subclasses in sera of
19. normal adults and healthy children between 4 and 12 years of age. Clin Exp Immunol 21:501-509,
20. 1975
21. Yount WJ, Hong R, Seligmann M, et al: Imbalances of gamma globulin subgroups and gene detector
22. in patients with primary hypogammaglobulinaemia. J Clin Invest 49:1957-1966, 1970
23. Augener W, Grey HM, Cooper NR, et al: The reaction of monomeric and aggregated immunoglobulins with C I. Immunochem 8:1011-1020, 1971
24. Terry WD: Skin sensitizing activity related to γ-polypeptide chain characteristics of human IgG. J
25. Immunol 95:1041-1047, 1965
26. Ovary Z, Kunkel HG, Joslin FG: Further studies of guinea pig skin sensitizing activities of human
27. myeloma proteins. J Immunol 105:1103-1107, 1970
28. Huber H, Douglas SD, Nubscher J, et al: IgG subclass specificity of human monocyte receptor
29. sites. Nature (London) 229:419-420, 1971
30. Larsson A, Perlmann P, Natvig JB: Cytotoxicity of human lymphocytes induced by rabbit anti-
31. bodies to chicken erythrocytes. Inhibition by normal IgG and by human myeloma proteins of dif-
32. ferent IgG subclass. Immunol 25:675-686, 1973
33. Stanworth DR, Smith AK: Inhibition of reagin-mediated PCA reactions in baboons by the human
34. IgG subclass. Clin Allergy 3:37-41, 1973
35. Shakib F, Stanworth DR, Smalley CA, et al: Elevated serum IgG4 levels in cystic fibrosis patients.
36. Clin Allergy 6:237-240, 1976
37. Bruynzeel PLB, Berrens L: IgE and IgG4 antibodies in specific human allergies. Int Arch Allergy
38. 58:344-350, 1979
20. Natvig JB, Gaarder PI, Turner MW: IgG antigen of the Cγ2 and Cγ3 homology regions interacting with rheumatoid factors. Clin Exp Immunol 12:177–184, 1972
21. Kronvall G, Williams RC: Differences in anti-protein activity among IgG subgroups. J Immunol 103:828–833, 1969
22. Gergely J, Medgyesi GA, Stanworth DR: Structural studies of immunoglobulins: II. The varying susceptibility to papain digestion of a group of human myeloma G-globulins. Immunochem 4:369–374, 1967
23. Virella G, Howard A: Correlation between electrophoretic mobility and heavy chain subclasses of residual IgG from patients with severe hypogammaglobulinaemia. Experientia (Basel) 26:901–903, 1970
24. Howard A, Virella G: The separation of pooled human IgG into fractions by isoelectric focusing and immunologic properties. Prot Biol Fluids 17:449–453, 1970
25. Johnston RB Jr, Anderson P, Rosen FS, et al: Characterization of human antibody to polyriboinosinic acid, the capsular antigen of Haemophilus influenzae type b. Clin Immunol Immunopath 1:234–240, 1973
26. Siber GR, Shur PH, Aisenberg AC, et al: Correlation between serum IgG3 concentrations and the antibody response to bacterial polysaccharide antigens. New Eng J Med 303:178–182, 1980
27. Oxelius V: Chronic infections in a family with hereditary deficiency of IgG2 and IgG4. Clin Exp Immunol 17:19–27, 1974
28. Horstmann DM: Rubella: The challenge of its control. J Infect Dis 123:640–654, 1971
29. Morell A, Skvaril F, Steinberg AG, et al: Correlation between concentrations of the four subclasses of IgG and Gm allotype in normal human sera. J Immunol 108:195–206, 1972
30. Fulginiti VA, Eller JJ, Downie AW, et al: Altered reactivity to measles virus: Atypical measles in children previously immunized with inactivated measles virus vaccines. JAMA 202:1075–1080, 1967
31. Chanock RM, Kapikian AZ, Mills J, et al: Influence of immunological factors in respiratory syncytial virus disease. Arch Environ Hlth 21:347–355, 1970
32. Shakib F, Stanworth DR: IgG4: a possible mediator of anaphylaxis in a haemophiliac patient. Clin Allergy 9:597–603, 1979
33. Halstead SB: Observations relating to pathogenesis of dengue hemorrhagic fever. VI Hypotheses and discussion. Yale J Biol Med 42:350–362, 1970
34. Bokisch VA, Top FH Jr, Russell PK, et al: The potential pathogenic role of complement in dengue hemorrhagic shock syndrome. New Eng J Med 289:996–1000, 1973
35. Rosen L: The emperor's new clothes revisited, or reflections on the pathogenesis of dengue hemorrhagic fever. Am J Trop Med Hyg 26:337–343, 1977