Radio frequency occupancy state control of a single nanowire quantum dot

Matthias Weiß1,3, Florian J R Schülein1,3, Jörg B Kinzel1,3, Michael Heigl1, Daniel Rudolph2,3, Max Bichler2, Gerhard Abstreiter2,3,4, Jonathan J Finley2,3, Achim Wixforth1,3,5, Gregor Koblmüller2,3 and Hubert J Krenner1,3,5

1 Lehrstuhl für Experimentalphysik 1 and Augsburg Centre for Innovative Technologies ACTT, Universität Augsburg, Universitätstraße 1, 86159 Augsburg, Germany
2 Walter Schottky Institut and Physik Department, Technische Universität München, Am Coulombwall 4, 85748 Garching, Germany
3 Nanosystems Initiative Munich (NIM), Schellingstraße 4, 80339 München, Germany
4 Institute for Advanced Study (IAS), Technische Universität München, Lichtenbergstraße 2a, 85748 Garching, Germany
5 Center for NanoScience CeNS, Geschwister-Scholl-Platz 1, 80539 München, Germany

E-mail: hubert.krenner@physik.uni-augsburg.de

Received 11 April 2014, revised 23 May 2014
Accepted for publication 10 June 2014
Published 11 September 2014

Abstract
The excitonic occupancy state of a single, nanowire-based, heterostructure quantum dot is dynamically programmed by a surface acoustic wave. The quantum dot is formed by an interface or thickness fluctuation of a GaAs QW embedded in a AlGaAs shell of a GaAs–AlGaAs core–shell nanowire. As we tune the time at which carriers are photogenerated during the acoustic cycle, we find pronounced intensity oscillations of neutral and negatively charged excitons. At high acoustic power levels these oscillations become anticorrelated which enables direct acoustic programming of the dot's charge configuration, emission intensity and emission wavelength. Numerical simulations confirm that the observed modulations arise from acoustically controlled modulations of the electron and electron–hole pair concentrations at the position of the quantum dot.

Keywords: nanowires, quantum dots, surface acoustic waves

(Some figures may appear in colour only in the online journal)

1. Introduction

The dynamic control of spin and charge excitations in semiconductor nanosystems is of paramount importance for applications in quantum-optoelectronic devices. By confining the motion of carriers in one, two or all three spatial dimensions, quantum wells (QWs), quantum wires (QWRs) and quantum dots (QDs) have been realized on planar substrates and studied in great detail over the past decades. In the field of optically active QWs and QDs several key experiments have been performed, including for example the isolation of individual ‘natural’, interface fluctuation QDs in a disordered QW [1], bright, electrically driven single photon emission [2] or the creation of ‘artificial’ molecules with tunable bonds [3]. A central goal in this active field of fundamental and applied research is the transfer of these concepts to the one-dimensional platform of a nanowire (NW) using axial [4, 5] or radial approaches [6–8]. For axial NW-based QDs key experiments including ultra-bright single photon emission [9], quasi-static charge state control [10] and optical initialization of spin states [11] clearly underpinned the large potential of these systems.

Radio frequency surface acoustic waves (SAWs) represent a particularly attractive and powerful tool to probe and dynamically control charge excitations in semiconductor heterostructures including quantum Hall systems [12–14], charge transport in one- and two-dimensional electron channels [15, 16], ambipolar transport of charges [17–19],
spins [20] or dipolar excitons [21] and precisely timed carrier injection into QDs for low-jitter single photon emission [22–25]. Recently, these concepts have been transferred to intrinsic NWs [26] and nanotubes [27] and NWs containing complex radial and axial heterostructures [28–30].

In this contribution we demonstrate that the excitonic occupancy state of a single NW-based heterostructure QD can be dynamically programmed by a SAW. The QD studied is formed by an interface or thickness fluctuation of a thin radial GaAs QW embedded in a AlGaAs shell of a GaAs NW. As we tune the time at which carriers are photogenerated over the SAW cycle we find pronounced intensity oscillations of neutral and negatively charged excitons confined in the QD. At high acoustic power levels these oscillations become anticorrelated which enables direct acoustic programming of the QD charge configuration, emission intensity and emission wavelength. We compare the observed emission characteristics of the QD to numerical calculations of the spatio-temporal carrier dynamics in the NW induced by the SAW and find that the observed modulations arise from enhancements of the electron (e) and electron–hole (e–h) pair concentrations at the position of the QD.

2. Sample and optical characterization

The NWs studied here were grown by solid-source molecular beam epitaxy (MBE) in a self-catalysed growth process. The average length of the NWs was \(l_{\text{NW}} = 10 \, \mu\text{m} \). In the radial direction the as-grown NWs consist of a ~60 nm diameter GaAs core capped by a 60 nm thick Al\(_{0.3}\)Ga\(_{0.7}\)As shell. In the centre region of this shell we included a 2 nm thick radial GaAs QW. Finally the NWs were passivated by a 5 nm GaAs layer to prevent oxidation. For SAW experiments we mechanically removed NWs from the Si substrate and transferred them from suspension onto a \(YZ \)-cut LiNbO\(_3\) SAW-chip with lithographically defined interdigital transducers (IDTs). An RF signal applied to the IDT excites a Rayleigh-type SAW which propagates at the speed of sound, \(c_{\text{SAW}} = 3488 \, \text{m s}^{-1} \), along the \(Z \)-direction of the LiNbO\(_3\) substrate. The design of the IDTs determines the SAW’s wavelength to be \(\lambda_{\text{SAW}} = 18 \, \mu\text{m} \), which corresponds to a resonance frequency of \(f_{\text{SAW}} = 194 \, \text{MHz} \) and a SAW period of \(T_{\text{SAW}} = 5.15 \, \text{ns} \). After transfer, we identified NWs with their (1 1 1) growth axis aligned along the SAW’s propagation direction [26]. A schematic of our sample structure is presented as an inset of figure 1(a). We study the optical emission of these NWs by low-temperature \((T = 10 \, \text{K}) \) stroboscopic micro-photoluminescence (\(\mu \)-PL) spectroscopy. Electron–hole pairs are photogenerated by an externally triggered, pulsed diode laser \((E_{\text{Laser}} = 1.88 \, \text{eV})\) which was focused by a 50× microscope objective to a ~2 \(\mu\text{m} \) diameter spot. The NW emission was collected, dispersed by a 0.5 m grating monochromator and detected time integrated by a liquid N\(_2\) cooled Si-charged coupled device (CCD) camera.

In figure 1(a) we present an overview PL spectrum recorded in the centre of a typical NW for an intermediate optical pump power. In this spectrum we identify the emission of the NW core at the lowest photon energies. It consists of a characteristic double peak structure [32]. The high energy peak at \(E_{\text{ZB}} = 1.515 \, \text{eV} \) arises from exciton recombination in ZB regions of the NW core. The low energy peak at \(E_{\text{ZB/WZ}} = 1.488 \, \text{eV} \) stems from recombination of spatially indirect excitons of reduced binding energy for which e’s and h’s are localized in ZB and WZ segments, respectively. The emission of the 2 nm QW extends over a ~100 meV wide energy band centred at \(E_{\text{QW}} = 1.7 \, \text{eV} \). This emission is not observed for a reference sample without a radial QW, which excludes other types of emitter systems [30, 31, 33] as its origin. The large spread of the emission energy arises from the (i) the small nominal thickness and (ii) the fact that growth occurs on the [1 1 0]-type facet of a NW. The QW emission peak consists of a series of sharp emission lines. These characteristics are indicative of a disordered QW with pronounced exciton localization which for planar QWs occurs
due to local QW thickness fluctuations \cite{34}. In addition to this established and dominant type-I contribution to the QD confinement, further localization can occur in our NW-based QWs due to a transfer of the ZB and WZ crystal phases from the core to the radial shell \cite{35, 36}. Thus axial type-II heterostructures could also contribute to the total confinement potential. This weaker contribution would only be effective along the NW growth axis and not along the NW circumference and on its own is not sufficient to achieve the observed full three-dimensional confinement. The such formed ‘natural’, interface fluctuation QDs have been studied over the past in type-I, direct bandgap GaAs/AlGaAs QWs \cite{37-40} as well as in type-II, indirect bandgap GaAs/AlAs QWs \cite{41}. The superior optical quality of this type of QDs manifests itself in long exciton coherence times \cite{42} and clean single photon emission \cite{43}.

In the spectrum shown in figure 1(a) the emission signal of an individual QD is well isolated on the low energy side of the QW emission band. Its energy levels are confined \(\sim 20 \text{meV}\) below the two-dimensional QW band in which the SAW can induce spatio-temporal carrier dynamics. We want to note at this point, that this confinement energy is significantly smaller than that for self-assembled QDs and their two-dimensional wetting layer. The close examination in figure 1(b) shows that it consists of three sharp emission lines. We attribute the dominant emission line at \(E_{1X^+} = 1.6349 \text{eV}\) to recombination of the neutral exciton, \(1X^0 = 1e + 1h\) and the two weaker signatures at \(E_{1X^+} = 1.6326 \text{eV}\) and \(E_{1X^-} = 1.6302 \text{eV}\) to the positive, \(1X^+ = 1e + 2h\), and negative ion, \(1X^- = 2e + 1h\), respectively. At this point our assignment is based on (i) the observed renormalization energies consistent with the values reported for IFQDs in planar QWs \cite{44} and (ii) the optical excitation power dependence of the emission intensities \cite{37}. The latter is plotted in double-logarithmic representation in figure 1(c) to identify the underlying power law dependencies. Clearly, the line assigned to \(1X^0\) and \(1X^+\) exhibits the smallest slope of 0.8 and 1.0, consistent with a single excitonic nature. In contrast, \(1X^-\) exhibits a larger slope of 1.45 which could be indicative for a charged exciton or the biexciton. Our excitation power dependent spectroscopy does not show signatures of higher confined shells. The observed broadening most likely arises from interactions of the confined exciton species with free or localized carriers in the surrounding QW. Thus, higher charged exciton species, which require carriers populating higher shells can be excluded. Moreover, the QD emissions show a weak (\(<1 \text{meV}\) blueshift with increasing excitation power which points towards the presence of an additional contribution of a type-II band alignment due to polytypism. Finally, we want to note at this point, that our SAW experiments presented later will provide clear evidence for our attribution of this emission line to \(1X^-\).

3. Dynamic spectral modulation and SAW phase calibration

We now turn to the manipulation of the QD’s emission by the dynamic strain and electric fields of a SAW. To assess the dynamic SAW-driven modulation of the optical emission we employ an established stroboscopic excitation scheme combined with time-integrated multichannel detection \cite{45, 46}. We employ weak optical pumping which is crucial for these experiments for three reasons: (i) the resulting low charge carrier densities in the QW and NW core do not significantly screen the SAW-induced electric fields driving the spatio-temporal carrier dynamics. The maximum number of (ii) excitons and (iii) excess \(e’s\) captured by the QD is limited to 1. In figure 2(a) we show stroboscopic PL data of the above characterized QD controlled by a SAW excited by applying a radio frequency signal of power \(P_{RF} = -10 \text{dBm}\) to the IDT. The emission intensity is colour coded and plotted as a function of the photon energy (vertical axis) and stroboscopic phase \(\phi\) (horizontal axis). Both emission lines observed in the data, \(1X^0\) and \(1X^-\), exhibit clear sinusoidal spectral modulations due to the dynamic strain field of the SAW. This strain field and its corresponding hydrostatic pressure \((p)\) tunes the QD emission due to deformation potential coupling \cite{47}. At such low acoustic amplitudes the contribution of SAW-induced lateral electric fields are weak \cite{48} and the observed spectral shift is dominated by the strain contribution \cite{30, 49}. The extracted relative spectral tuning \(\Delta E_{\text{strain}}\) of \(1X^0\) and \(1X^-\) are plotted as a function of \(\phi\) in figure 2(b). Clearly, the modulations of both emission lines are in phase and exhibit similar amplitudes. This is expected because the underlying deformation potential coupling modulates the effective bandgap with a weaker contribution arising from a perturbation of the single particle wavefunctions \cite{50}. The observed spectral shifts correspond to \(0.5 < p < 0.8 \text{MPa}\) \cite{47}. Taken together, the maximum (minimum) emission energies are observed for the value of \(\phi\) at which \(p\) is maximum positive (negative). For the crystal cut of our LiNbO\(_3\) substrate we can derive the \(\phi\)-dependence of the SAW-induced modulations of the conduction (CB) and valence band (VB) within the GaAs NW using finite element modelling (FEM) \cite{30} which is shown in figure 2(c) for times \(t = 0\) (i.e. time of photoexcitation) and \(t = T_{\text{SAW}}/2\) at which the band modulation is translated spatially due to the propagation of the SAW. Using this calibration reveals that the weak suppression (enhancement) of the \(1X^0\) (\(1X^-\)) emission occurs for stroboscopic excitation in between the stable (\(\phi = -90^\circ\)) and unstable (\(\phi = +90^\circ\)) points for \(e’s\) in the CB and for which the \(e\)-drift is anti-parallel to the SAW propagation and wavevector \(k_{\text{SAW}}\). Thus, as the SAW propagates, \(e’s\) are effectively transported back to the position of the QD and increase the net \(e\)-density which in turn reduces the probability of the QD being occupied by \(1X^0\). Therefore, the SAW effectively induces an anticorrelated rocking motion for \(e’s\) and \(h’s\) which is weak at the applied small band edge modulation. This picture does not take into account the finite length of the NW. Before presenting detailed experimental and numerical results of the SAW control of the QD’s occupancy state, we want to point out, that we have to take into account the fact that \(n_{\text{NW}} \approx \lambda_{\text{SAW}}/2\). This boundary condition limits the spatio-temporal carrier dynamics to a sub-\(\lambda_{\text{SAW}}\) lengthscale, which is in strong contrast to previous experiments performed on planar self-assembled QDs and quantum posts \cite{45, 51, 52}. The two ends of the NW effectively represent efficient recombination.
sites for carriers and non-radiatively remove these from the system. We convert the spatial coordinate along the NW axis x to ϕ and take into account (i) QD position in the centre of the NW ($x = 0$) and (ii) $l_{NW} \approx \lambda_{SAW}/2$. The latter condition implies that, for a fixed value of $\phi = \phi_0$, carrier can be transferred without loss by $\Delta x \sim \lambda_{SAW}/4$ away from the point of photogeneration, i.e. the position of the QD in the centre of the NW. This restriction is indicated by the grey shaded area in figure 2(c).

4. Acoustic control of QD occupancy state

In this section we investigate the SAW-regulated occupancy state control in detailed stroboscopic PL experiments and numerical simulations of the SAW-driven spatio-temporal carrier dynamics.

We begin by presenting stroboscopic PL data recorded from the same QD for $P_{RF} = -2$ dBm, +3 dBm, +8 dBm in figures 3(a)–(c). The data are plotted in the same representation as in figure 2(a) and the corresponding CB and VB modulations are sketched schematically in the upper parts of each panel. As we increase P_{RF}, the intensity modulations of the dominant $1X^0$ and $1X^-$ emissions changes dramatically. Most notably, the $P_{RF} = +8$ dBm, the ϕ-dependence of the $1X^0$ and $1X^-$ emission intensities are clearly anticorrelated. This anticorrelation provides a direct route to effectively program the occupancy state of the QD simply by tuning ϕ at the RF signal generator used to excite the SAW.

The first striking difference between this data and the data in figure 1 is the pronounced increase of the $1X^-$ emission, which is more intense than that of $1X^0$. This observation confirms an increase of probability to statistically capture and additional e due to the SAW-induced carrier dynamics analogous to our recent experiments performed on InGaAs QDs on planar substrates [52]. We want to note that the QDs studied in [52] confine a larger number of charges compared to the QD studied here, no indications of higher charged excitons species are observed under the applied weak optical excitations. This provides further evidence for the assignment of the different emission lines in the experiments presented here. Moreover, the higher intensity of $1X^-$ provides direct evidence that this emission line does not arise from $2X^0$ recombination which should exhibit at most the same intensity as $1X^0$ under the applied pulsed optical excitation scheme. We continue by addressing a second particularly peculiar feature when comparing the data at these three acoustic amplitudes. It is the development of a global minimum of the QD emission at $\phi = \pm 180^\circ$. At this local stroboscopic phase the drift of electrons in the SAW-induced electric field is aligned with the SAW propagation. Thus, both effects add up and result in an efficient depletion of the e-concentration at the position of the QD and subsequent loss of this carrier species. Taking into account that e’s exhibit a larger transport mobility than h’s, the global minimum of the QD occupancy and emission is indeed expected at this local phase confirming our ϕ-calibration. As we increase P_{RF}, two prominent effects are observed. (i) The $1X^0$ emission develops two pronounced maxima at $\phi = -45^\circ$ and $\phi = +90^\circ$. (ii) The range of ϕ over which $1X^-$ is observed focuses to a $\Delta \phi = 90^\circ$ wide range centred around $\phi = 0$. The increase of $1X^-$ can be qualitatively understood.
by an acoustically regulated return of e’s to the position of the QD as described in the previous section and shown in the schematics of figures 2(c) and 3(a). Furthermore, at high acoustic amplitudes, the first step of this process, the field-driven transfer of e’s to their stable CB minimum dominates. When ϕ is tuned to positive values, this minimum shifts outside of the NW. Thus, non-radiative loss of e’s is enhanced for $45^\circ < \phi < 90^\circ$. The upper limit of $\phi = 90^\circ$ (see schematic in figure 3(b)) corresponds to photogeneration of e’s at an unstable point, the maximum of the CB modulation, while h’s are effectively confined at the stable VB maximum. The combination of these effects enhance the e–h pair, exciton density at this stroboscopic phase and in turn favours pair-wise capture. Similar reasoning can be applied for $\phi = -90^\circ$ at which the exciton formation is expected to be enhanced further since the transfer of h’s towards their stable point in the VB is comparably slow due to their reduced transport mobility. This effect leads to the observed formation of $1X^0$ in the dot. For $0^\circ > \phi > -90^\circ$ the removal of h’s along the SAW propagation direction breaks down (see schematic in figure 3(c)) giving rise to a net increase of the h-density and in turn a reduced probability for forming $1X^-$. Based on these so far qualitative arguments we attribute the preferential formation of $1X^0$ to an enhanced (neutral) exciton concentration at the position of the QD and the preferential formation of $1X^-$ to that of e’s. Before presenting numerical simulations of the underlying SAW-driven carrier dynamics we want to point out that the observed intensity modulations and their dependence on P_{RF} is similar to that observed for planar self-assembled QDs [52]. The data reported here clearly reproduces the expected ϕ-dependence of the horizontal electric field component which is aligned with the NW axis as it is also the case for planar QDs and quantum posts. The combination of these observations provides final evidence for our assignment of the observed emission lines as arising from exciton recombination in an interface fluctuation QD.

To confirm that this qualitative picture indeed agrees with the underlying spatio-temporal carrier dynamics, we performed numerical solutions of the semi-classical drift and diffusion processes in the SAW-modulated band structure. In contrast to a QW which infinitely extends in the plane as assumed in previous reports [19, 53], we take into account the geometry of the NW studied in our experiments. We account for its finite length ($l_{NW} \approx \lambda_{SAW}/2$) and the non-radiative loss of carriers at the open facets at the NW ends by removing carriers arriving at position $|x| > l_{NW}/2 = \lambda_{SAW}/4$ from the centre of the NW ($s = 0$). In particular we integrated the calculated e, h and exciton (e–h pair) densities at the QD position over time as a function of ϕ. The ϕ-dependence of these time-integrated densities are plotted in figure 4 for low (a), intermediate (b) and high acoustic powers (c), as black and orange lines, respectively. For low acoustic powers (P_{RF}) the exciton density remains high over the entire range of ϕ which is consistent with the overall modulation observed for $1X^0$ and also $1X^-$. In contrast, the calculated e density exhibits a clear and broad maximum centred at $\phi \sim -15^\circ$. This maximum nicely overlaps with that of $1X^-$ observed in the experimental data in figure 3(a). As we increase the acoustic amplitude in our simulations (see figure 4(b + c)) the exciton density develops a clear double peak structure in good agreement with the experimentally observed maxima of the $1X^0$ modulation. Furthermore, also the calculated e-density modulation sharpens in ϕ which reproduces the modulations of $1X^0$ in the experimental data. In addition, an increase of the e density with respect to that of excitons with increasing acoustic power is clearly resolved in this simulation data. This calculated behaviour is in good agreement with the experimentally observed increase of the $1X^-$ intensity with respect to that of $1X^0$ (see figures 2 and 3). Furthermore, the ϕ-dependence of h density is anticorrelated to that of e providing further evidence for the preferential formation of negatively charged excitons.

Figure 3. SAW control of QD occupancy state. Stroboscopic PL spectra in false colour representation for (a) $P_{RF} = -2$ dBm, (b) +3 dBm, (c) +8 dBm and the corresponding band edge modulations as schematics in the upper part of each panel: maximum $1X^-$ intensity is detected for $\phi \leq 0^\circ$, schematics in (a) and (c). The additional maximum of $1X^0$ develops for $\phi \approx 90^\circ$, schematics in (b).
Figure 4. Simulation of SAW-controlled electron and exciton densities. Calculated time-integrated exciton (black), electron (orange) and hole (dashed, blue) densities (in arbitrary units) at the position of the QD as a function of ϕ for low (a), intermediate (b) and high (c) acoustic amplitudes.

The emission lines similar to those reported by Heiss et al in [33] exhibit also a characteristic SAW-response [30]. This, however, features characteristic differences to that reported here since both the emission centre and the driving mechanism are of different nature. (i) In [30] we identify quantum tunnelling as the underlying mechanism and the overall ϕ-dependence of the remains constant within the experimental resolution as P_{RF} is tuned. (ii) This fixed ϕ-dependence follows the oscillation of the vertical electric field component of the SAW which dynamically modulates the tunnelling probability of carriers out of randomly distributed, defect-related emission centres localized in the $\text{Al}_{0.3}\text{Ga}_{0.7}\text{As}$ shell to a continuum of states. Both effects are in strong contrast to the data presented here and similar experiments performed for planar QD [52] and quantum post systems [45]. Moreover, the calculated tunnelling rates using WKB theory indicate that for the radial layer sequence chosen here, any type of emission centre localized in the radial shell is expected to be depopulated non-radiatively due to quantum tunnelling as discussed in [30] and its accompanying supplementary information.

5. Conclusions and outlook

In summary, we have demonstrated that the occupancy state of a NW-based heterostructure QD can be programmed using SAW-regulated carrier injection under strictly stroboscopic optical excitation. In our experiments we observe characteristic intensity oscillation of $1X^0$ and $1X^-$ as we tune the stroboscopic excitation phase ϕ. The modulation show a characteristic dependence on the acoustic amplitude. These arise from a modifications of the time-integrated exciton and e densities at the position of the QD as confirmed by numerical simulations of the SAW-driven spatio-temporal carrier dynamics. Our results clearly demonstrate that concepts developed for planar semiconductor heterostructures can be readily transferred to a NW-platform. Our experiments have been performed on radial heterostructure and could be directly applied to axial heterostructures. For this type of architecture carrier extraction schemes, as recently demonstrated for NW-based defect-related emission centres [30] could be combined with the here reported injection principle to realize SAW-mediated single carrier transfer between distant optically active QDs on a single NW [54, 55]. To implement quantum communication protocols based on the spin degree of freedom, these states have to be initialized optically. For NWs this has been first demonstrated both for vertically oriented, standing [11] NWs. Recently, the polarizing effect of the NW has been overcome for a lying geometries [56] fully compatible with our SAW technique.

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) via Sonderforschungsbereich SFB631 (Projects B1 and B5) and the Emmy Noether Program (KR 3790/2-1) and by the European Union via SOLID and the FP7 Marie-Curie Reintegration Grant.

References

[1] Brunner K, Bockelmann U, Abstreiter G, Walther M, Böhm G, Tränkle G and Weimann G 1992 Phys. Rev. Lett. 69 3216–9
[2] Yuan Z, Kardynal B E, Stevenson R M, Shields A J, Lobo C J, Cooper K, Beattie N S, Ritchie D A and Pepper M 2002 Science 295 102–5
[3] Krenner H J, Clark E C, Nakaoka T, Bichler M, Scheurer C, Abstreiter G and Finley J J 2006 Phys. Rev. Lett. 97 076403
[4] Borgström M T, Zwiller V, Müller E and Imamoglu A 2005 Nano Lett. 5 1439–43
[5] Tribu A, Sallen G, Aichele T, André R, Poizat J P, Bougerol C, Tatarenko S and Kheng K 2008 Nano Lett. 8 4326–9
[6] Qian F, Gradecak S, Li Y, Wen C Y and Lieber C M 2005 Nano Lett. 5 2287–91
[7] Fontcuberta i Morral A, Spirkoska D, Arbiol J, Heigoldt M, Ramon Morante J and Abstreiter G 2008 Small 4 899–903
[8] Fickenscher M et al 2013 Nano Lett. 13 1016–22
[9] Reimer M E, Bulgarini G, Akopian N, Hocevar M, Bavinck M B, Verheijen M A, Bakkers E P A M, Kouwenhoven L P and Zwiller V 2012 Nature Commun. 3 737
