Abstract: We study the dynamics of the family of copulas \(\{C_t\}_{t \geq 0} \) of a pair of stochastic processes given by stochastic differential equations (SDE). We associate to it a parabolic partial differential equation (PDE). Having embedded the set of bivariate copulas in a dual of a Sobolev Hilbert space \(H^1(\mathbb{R}^2)^* \) we calculate the derivative with respect to \(t \) and the \(* \)-weak topology i.e. the tangent vector field to the image of the curve \(t \to C_t \). Furthermore we show that the family \(\{C_t\}_{t \geq 0} \) is an orbit of a strongly continuous semigroup of transformations and provide the infinitesimal generator of this semigroup.

Keywords: Copulas, copula processes, stochastic differential equations, parabolic partial differential equations, semigroups of transformations

MSC: 62H05, 60J60, 60H10, 46E35, 47H20, 58D07

1 Introduction

There is a vast literature dealing with the borderline of the copula theory and stochastic processes. There are two main objectives, temporal dependence and spatial dependence. The first one concerns the studies of dependencies over time: given a one-dimensional stochastic process \((X_t)_{t \in T} \) and \(n \) times \(t_1, \ldots, t_n \in T \) determine the copula of the random vector \((X_{t_1}, \ldots, X_{t_n}) \). The research in this direction was originated by seminal paper of Darsow, Nguyen and Olsen [7] and continued by many authors, amongst others Sempi [26], Bibbona et al. [2] and Schmitz [23]. The second one concerns the vector valued stochastic processes \(X_t = (X^1_t, \ldots, X^n_t), t \in T \). The goal is to describe the evolution of interdependencies between \(X^1_t, \ldots, X^n_t \) in terms of copulas and copula processes. It is represented by papers by Sempi [25], Choe et al. [6] and Jaworski and Krzywda [12, 13].

This paper belongs to the second category. The work here is strongly influenced by the paper of Sempi ([25]) who was studying the possibility of coupling two Wiener processes by using a given copula, and the research on copulas of self-similar processes in [12, 13]. It generalized the results presented in [6].

Due to the celebrated Sklar’s Theorem, one can split a study of a pair \((X, Y)\) of random variables into two parts. First one can deal with \(X \) and \(Y \) separately and then with the interdependence between them. In this paper we apply this methodology to the study of a pair of stochastic processes. We assume that dynamics of each process is described by a stochastic differential equation. Our objective is to describe the evolution of the interdependence. This is done in terms of a family of copulas \(C_t \), linking the corresponding elements of the both processes. Having embedded the set of bivariate copulas \(C_t^2 \) into the dual to the Sobolev space \(H^1(\mathbb{R}^2) \) we calculate the vector field tangent to the image of the family \((C_t)_{t \geq 0} \). Moreover, under some additional assumptions implying the existence and uniqueness of of the solutions of SDE, we show that there exists a continuous semigroup \(\Lambda \) of transformations (endomorphisms) of the Cartesian product of nonnegative real numbers and the set of bivariate copulas \(\mathbb{R}^+ \times \mathcal{C}^2 \)

\[
\Lambda : \mathbb{R}^+ \longrightarrow \text{End}(\mathbb{R}^+ \times \mathcal{C}^2)
\]
such that the graph \((t, C_t)\) is an orbit of \(A\). Having embedded the space of copulas into the dual to the Sobolev space \(H^1(\mathbb{R}^2)\) we calculate the infinitesimal generator of \(A\).

Structure of the paper:

First we shortly recall basics on copulas and the Sobolev space \(H^1(\mathbb{R}^2)\) and its dual. Then we introduce the underlying stochastic processes \(X^1_t\) and \(X^2_t\) and the copula process \((C_t)_{t \geq 1}\). Next we show how to transform the stochastic differential equations of \(X^1\) and \(X^2\) to stochastic differential equations describing the processes of representers of the corresponding copulas \(X\) of \((C_t)_{t \geq 1}\). We next discuss the differentiability of \(C_t\) with respect to \(t\) and provide a parabolic differential equation for which the family \(C_t\) serves as a weak solution. In the following we construct the semigroup of transformations \(A\) describing the dependence of the evolution of the families \(C_t\) on initial values and discuss its properties. The proofs are relegated to section 6.

\section{Notation}

We recall the following basic concepts.

A (bivariate) \textit{copula} is a restriction to \([0, 1]^2\) of a distribution function whose univariate margins are uniformly distributed on \([0, 1]\). Specifically, \(C : [0, 1]^2 \to [0, 1]\) is a copula if it satisfies the following properties:

(C1) \(C(x, 0) = C(0, x) = 0\) for every \(x \in [0, 1]\),

(C2) \(C(1, 1) = 1\), i.e., \(C\) is \(2\)-increasing, that is, \(C\)-volume \(V_C\) of any rectangle \([x_1, x_2] \times [y_1, y_2]\) of \([0, 1]^2\) is positive, i.e.,

\[V_C([x_1, x_2] \times [y_1, y_2]) = C(x_1, y_1) + C(x_2, y_2) - C(x_1, y_2) - C(x_2, y_1) \geq 0. \]

We recall that every bivariate copula is a restriction to the unit square \([0, 1]^2\) of the cumulative distribution function of a vector \((U_1, U_2)\) of standard uniform random variables, i.e., for all \(u_1, u_2 \in [0, 1]\),

\[C(u_1, u_2) = \Pr(U_1 \leq u_1, U_2 \leq u_2) \]

and for \(i = 1, 2\), \(\Pr(U_i \leq u_i) = u_i \). Such random variables \(U_1, U_2\) will be called representers of the copula \(C\). Indeed, such a pair serves as a representative of the equivalence class of the pairs of random variables which are uniformly distributed on the unit interval \((0,1)\) and admit \(C\) as their copula.

Due to Sklar’s Theorem, the joint distribution function \(F\) of any pair \((X, Y)\) of random variables defined on the probability space \((\Omega, \mathcal{M}, \Pr)\) can be written as a composition of a copula \(C\) and the univariate marginals \(F_1\) and \(F_2\), i.e., for all \((x, y) \in \mathbb{R}^2\),

\[F(x, y) = C(F_1(x), F_2(y)) \]

Moreover, if \((X, Y)\) are continuous random variables, then the copula \(C\) is uniquely determined.

We will denote the set of all two-dimensional copulas by \(\mathcal{C}^2\). Note, that \(\mathcal{C}^2\) is a bounded, compact, convex subset of the Banach space of the continuous functions on the unit square endowed with the supremum metric. In this paper we show that sometimes it is useful to consider the space of copulas with a more refined topology (compare [27]) and a more refined embedding into a Banach space. For more details about copula theory and some of its applications, we refer to ([5, 8, 14–17, 20]).

Note that the copulas are weakly differentiable. We recall that a function \(\psi(x_1, x_2)\), defined on an open set \(U\), is called a weak partial derivative of a function \(\Psi(x_1, x_2)\) with respect to the \(i\)th variable, written

\[D_i \Psi = \psi, \]

provided

\[\int_U \psi(x_1, x_2) h(x_1, x_2) dx_1 dx_2 = - \int_U \Psi(x_1, x_2) \frac{\partial h(x_1, x_2)}{\partial x_i} dx_1 dx_2 \quad (1) \]

for all infinitely many times differentiable test functions with compact support \(h, h \in C_c^\infty(U)\). To distinguish the \textit{classical} partial derivatives from their weak generalizations, we will denote the first ones by \(\frac{\partial}{\partial x_i} \) and the second ones by \(D_i \).

Since copulas are Lipschitz functions, they are differentiable except possibly some set of Lebesgue measure
We consider a probability space $(\Omega, \mathcal{M}, \mu)$, with filtration $\mathcal{F} = \{\mathcal{F}_t\}_{t \geq 0}$ and a pair of randomly correlated Wiener processes $W^1 = (W^1_t)_{t \geq 0}$ and $W^2 = (W^2_t)_{t \geq 0}$.

We assume:

A1. W^1 and W^2 are adapted to the filtration \mathcal{F} and the increments $W^i_{t+h} - W^i_t, i = 1, 2$, are all independent of
where

\[A3. \text{ bounded derivative} \]

We set for \(x \) right-side differentiable at \(t \), representers \(U \): \(t \) and derivatives are continuous with respect to both variables and "regular" at \(t \).

\[\text{Let } C \text{ be a copula process and } \sigma_i(t, x) \text{ are continuous functions defined on } [0, +\infty) \times (-\infty, +\infty), \text{ continuously differentiable with respect to } x \text{ with bounded derivatives} \]

\[\forall T > 0 \ \exists L \in \mathbb{R}^+ \ \forall x \in \mathbb{R} \ \forall t \in [0, T] \ \left| \frac{\partial \mu_i(t, x)}{\partial x} \right| + \left| \frac{\partial \sigma_i(t, x)}{\partial x} \right| < L, \ i = 1, 2. \] (5)

For more details the reader is referred to the extensive literature on SDE, for example [1, 4, 10, 18, 21, 24]. Furthermore we assume:

\[A2. \] The quadratic covariation of \(X^1 \) and \(X^2 \) can be described by a deterministic function of \(X^1 \) and \(X^2 \)

\[d\langle X^1, X^2 \rangle_t = \sigma_1(t, X^1_t)\sigma_2(t, X^2_t)A(t, X^1_t, X^2_t)dt = \sigma_1(t, X^1_t)\sigma_2(t, X^2_t)d\langle W^1, W^2 \rangle_t, \]

where \(|A| \) is a bounded by 1 and the product \(\sigma_2(t, x_2)A(t, x_1, x_2) \) is differentiable with respect to \(x_2 \) with bounded derivative

\[\forall T > 0 \ \exists L_A \in \mathbb{R}^+ \ \forall (x_1, x_2) \in \mathbb{R}^2 \ \forall t \in [0, T] \ \left| \frac{\partial \sigma_2(t, x_2)A(t, x_1, x_2)}{\partial x_2} \right| < L_A. \] (6)

\[A4. \] The univariate distribution functions \(F_i(t, x) = P(X^i_t \leq x) \) are differentiable with respect to \(t \), for \(t > 0 \), right-side differentiable at \(t = 0 \) and twice differentiable with respect to \(x \), with positive first derivatives with respect to \(x \). The derivatives are continuous with respect to both variables and "regular" at \(\pm \infty \), i.e. there exists \(\varepsilon > 0 \) such that for \(i = 1, 2 \), almost uniformly with respect to \(t \):

\[\lim_{x \to \pm \infty} \frac{\partial F_i(t, x)}{\partial t} = 0, \]

\[\lim_{x \to \pm \infty} x \frac{\partial F_i(t, x)}{\partial x} = 0, \]

\[\lim_{x \to \pm \infty} |x|^{2+\varepsilon} \frac{\partial^2 F_i(t, x)}{\partial x^2} = 0. \] (7-9)

Let \(C_t \) be a corresponding copula process

\[P(X^1_t \leq x_1, X^2_t \leq x_2) = C_t(F_1(t, x_1), F_2(t, x_2)). \] (10)

We set for \(i = 1, 2 \)

\[U_{i,t} = F_i(t, X^i_t). \]

\[U_{1,t} = F_1(t, X^1_t), \]

\[U_{2,t} = F_2(t, X^2_t). \]

Obviously \(U_{1,t} \) and \(U_{2,t} \) are uniformly distributed and are the representers of the copula \(C_t \). The processes of representers \(U_1 \) and \(U_2 \) are also called the copula uniform marginal processes.

Since the assumption \(A4. \) allows us to apply the Itô’s Lemma, there exist functions \(\nu_i(t, u) \) such that

\[dU_{i,t} = \nu_{i,1}(t, U_{i,t})dt + \nu_{i,2}(t, U_{i,t})dW^i_t. \]
Indeed from Ito’s Lemma we get for $i = 1, 2$

$$
\begin{align*}
\nu_{i,1}(t, F_i(t, x)) &= \frac{\partial F_i(t, x)}{\partial t} + \frac{\partial^2 F_i(t, x)}{\partial x^2} \mu_i(t, x) \frac{\partial F_i(t, x)}{\partial x} + \frac{1}{2} \frac{\partial^2 F_i(t, x)}{\partial x^2} \sigma_i^2(t, x), \\
\nu_{i,2}(t, F_i(t, x)) &= \frac{\partial F_i(t, x)}{\partial x} \sigma_i(t, x).
\end{align*}
$$

(13)

(14)

Since by A4 the univariate distribution functions F_i are strictly increasing, the above defines ν’s inside the unit interval. We extend ν’s by 0. For $u \leq 0$ and $u \geq 1$ we set

$$
\nu_{i,1}(t, u) = \nu_{i,2}(t, u) = 0.
$$

The last part of A4 and A2 imply that constructed in such a way $\nu_{i,j}$ are continuous functions on $[0, +\infty) \times \mathbb{R}$. Hence they are bounded on compact subsets of t i.e. on $[0, T] \times \mathbb{R}$. Moreover, since F_i have differentiable inverses, the volatilities $\nu_{i,2}$ are differentiable with respect to x on the whole real line, except perhaps at the two points 0 and 1.

Indeed

$$
\begin{align*}
\vartheta(x) &= \int_0^x \nu_{i,1}(s, \xi) d\xi = 0, \\
\frac{\partial \nu_{i,2}(s, u)}{\partial u} &= \nu_{i,1}(s, u).
\end{align*}
$$

(18)

(19)

The proof of the proposition is provided in section 6.1.

In the example below we show that the volatilities $\nu_{i,2}(t, x)$ need not to be differentiable at $x = 0, 1$.

Example 3.1. The Gaussian copula.

Let (X^1, X^2) be a shifted by 1 two-dimensional Wiener process. Since for every $t \geq 0$ the pair (X^1_t, X^2_t) has a bivariate normal distribution and the correlation is constant, the corresponding copula is a Gaussian one (see [8] section 6.7 for more details). Such a process fulfills assumptions A1 - A4 with the following parameters and initial values:

$$
\begin{align*}
\mu_i &= 0, \quad \sigma_i = 1, \quad A(t, x, y) = \rho, \quad (X^1_0, X^2_0) \sim N(0, \Sigma), \quad \Sigma = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}.
\end{align*}
$$

For $u \in (0, 1)$ we have

$$

\nu_{i,1}(t, u) = -\varphi \left(\Phi^{-1}(u) \right) \frac{\Phi^{-1}(u)}{1 + t},
$$

(20)
\begin{align}
v_{i,2}(t, u) &= \varphi \left(\Phi^{-1}(u) \right) \frac{1}{\sqrt{1+t}}, \\
A_c(t, u_1, u_2) &= \rho,
\end{align}

where Φ and φ are the distribution function and the density of the standard normal probability law $N(0, 1)$. Note that for $u \in (0, 1)$
\[\frac{d}{du} \varphi \left(\Phi^{-1}(u) \right) = -\Phi^{-1}(u). \]
Furthermore both functions $\Phi^{-1}(u)$ and $\varphi \left(\Phi^{-1}(u) \right)$ are regularly varying at 0^+ and 1^-. The first one is slowly varying, while the second has index of variation equal 1. For more details the reader is referred to section 6.2.

Note that for $i, j = 0, 1$, \[\lim_{u \to 0^+} v_{i,j}(t, u) = \lim_{u \to 1^-} v_{i,j}(t, u) = 0, \]
and, although $v_{i,j}(t, u)$ are not differentiable at 0 and 1, they are regularly varying with index of variation 1.

\section{The Copula processes}
We have defined a one-parameter family of copulas $(C_t)_{t \geq 0}$, i.e. a curve:
\[\gamma : [0, +\infty) \to \mathbb{R}^2, \quad \gamma(t) = C_t. \]

Problem:
Choose an embedding of \mathbb{R}^2 into a topological linear space such that the embedded family is not only continuous but also differentiable with respect to the parameter t.

We provide the solution of this problem by embedding the space of copulas into the space of continuous linear functionals on the Hilbert space of Sobolev functions on the real plane $H^1(\mathbb{R}^2)$.

The embedding
\[j : \mathbb{R}^2 \to H^1(\mathbb{R}^2)^* \]
is constructed in the following way
\[j(C)(h) = \int_{[0,1]^2} h(x,y) C(x,y) dxdy. \]
Note that since copulas are bounded by 1, we have for every $h \in H^1(\mathbb{R}^2)$
\[|j(C)(h)| \leq \int_{[0,1]^2} |h(x,y)| C(x,y) dxdy \leq \left(\int_{[0,1]^2} h(x,y)^2 dxdy \right)^{1/2} \left(\int_{[0,1]^2} C(x,y)^2 dxdy \right)^{1/2} \leq \left(\int_{[0,1]^2} h(x,y)^2 dxdy \right)^{1/2} \leq ||h||_{L^2} \leq ||h||_{H^1}. \]
Hence $j(C)$ is indeed a continuous linear functional. Furthermore the mapping
\[j(C_t) : [0, \infty) \to H^1(\mathbb{R}^2)^* \]
is differentiable with respect to the *weak topology on $H^1(\mathbb{R}^2)^*$ (for $t = 0$ we take the right-side derivative).
Theorem 4.1. For any \(h \in H^1(\mathbb{R}^2) \) and \(t \geq 0 \)

\[
\frac{d}{dt} \int_{[0,1]^2} h(v_1, v_2) c(t, v_1, v_2) dv_1 dv_2 = -B_t(h, c),
\]

(26)

where for fixed \(t \geq 0 \) and fixed copula \(C \), \(B_t(\cdot, C) \) is a continuous linear functional on \(H^1(\mathbb{R}^2) \), given by a formula

\[
B_t(h, C) = \frac{1}{2} \int_{[0,1]^2} D_1 \left(h(v_1, v_2) v_{1,2}(t, v_1) \right) D_1 C(v_1, v_2) dv_1 dv_2
\]

\[
+ \frac{1}{2} \int_{[0,1]^2} D_2 \left(h(v_1, v_2) v_{2,2}(t, v_2) \right) D_2 C(v_1, v_2) dv_1 dv_2
\]

(27)

\[
+ \int_{[0,1]^2} D_2 \left(h(v_1, v_2) v_{1,2}(t, v_1) v_{2,2}(t, v_2) A_c(t, v_1, v_2) \right) D_1 C(v_1, v_2) dv_1 dv_2
\]

The proof is provided in section 6.3.

Since \(B_t \) is uniformly bounded on bounded sets of \(t \), \(j(c_t) \) is locally Lipschitz in respect to the strong topology on \(H^1(\mathbb{R}^2) \).

Theorem 4.2. For any \(T > 0 \) and \(s, t \in [0, T] \) there exists a constant \(L_T \) such that for all \(h \in H^1 \)

\[
\left| \int_{[0,1]^2} h(v_1, v_2) c_1(v_1, v_2) dv_1 dv_2 - \int_{[0,1]^2} h(v_1, v_2) c_s(v_1, v_2) dv_1 dv_2 \right| \leq L_T ||h||_{H^1} |t - s|,
\]

(28)

The proof is provided in section 6.3.

When the copula \(C \) is twice differentiable, the above can be restated in terms of partial differential equations. Applying integration by parts with respect to respectively the first and the second variable, we get:

Corollary 4.1. For \(C \) twice differentiable on \((0,1)^2\), any test function \(h \) with support contained in \((0,1)^2\) and \(t \geq 0 \)

\[
B_t(h, C) = - \int_{[0,1]^2} h(v_1, v_2) \left(\frac{1}{2} \sum_{j=1}^2 v_{j,2}(t, v_j) \frac{\partial^2 C(v_1, v_2)}{\partial v_j^2} \right) dv_1 dv_2
\]

\[
+ \int_{[0,1]^2} v_{1,2}(t, v_1) v_{2,2}(t, v_2) A_C(t, v_1, v_2) \frac{\partial^2 C(v_1, v_2)}{\partial v_1 \partial v_2} dv_1 dv_2
\]

(29)

Therefore, using the terminology of the theory of partial differential equations, we may say that the family \(C_t \), defined by (10), is a weak solution ([9]) of a parabolic differential equation

\[
\frac{\partial C(t, v_1, v_2)}{\partial t} = \frac{1}{2} \sum_{j=1}^2 v_{j,2}(t, v_j) \frac{\partial^2 C(t, v_1, v_2)}{\partial v_j^2}
\]

\[
+ \int_{[0,1]^2} v_{1,2}(t, v_1) v_{2,2}(t, v_2) A_C(t, v_1, v_2) \frac{\partial^2 C(t, v_1, v_2)}{\partial v_1 \partial v_2}.
\]

(30)

Note that equation (30) was already studied in literature, but under more demanding assumptions. In [6] it was proved for copulas \(C \) with twice differentiable density, three times differentiable marginals \(F_x \) and the interdependence given by a quadratic correlation function \(A(t, x_1, x_2) \), introduced in A3, being a product

\[
A(t, x_1, x_2) = A_1(t, x_1) A_2(t, x_2).
\]
In [12] a stationary version of (30) was derived for twice differentiable copulas and Brownian margins.

To illustrate the possible applications of Theorem 4.1 we provide the following example concerning comonotonic random processes. We recall that random variables are comonotonic when they admit a singular copula M as their copula

$$M(v_1, v_2) = \min(v_1, v_2).$$

For more details the reader is referred to [8] Theorem 2.5.7.

Proposition 4.1. Let the stochastic processes X^1 and X^2 be as in section 3 and $T > 0$ be a fixed horizon. If for all $t \in [0, T]$ the random variables X^1_t and X^2_t are comonotonic then for all $t \in [0, T]$ and $v \in [0, 1]$

$$|v_{1,2}(t, v)| = |v_{2,2}(t, v)| \quad \text{and} \quad v_{1,2}(t, v) = v_{2,2}(t, v)A_C(t, v, v).$$

The proof is based on the study of the dynamic of $\rho(C_t)$, where ρ is the Spearman rank correlation coefficient. It is provided in subsection 6.4.

5 A semigroup approach to copula processes

The theory of semigroups of operators plays an important role in two domains which were mentioned in the previous sections, diffusion processes described by stochastic differential equations and parabolic partial differential equations (see for example [9, 21]). We show that it might be applied to the study of copula processes as well. To do it, we have to add two more assumptions which will ensure the existence and uniqueness, necessary to construct a semigroup of transformations.

A5. The functions $\sigma_2 A$ and $\sigma_2 B$, where $B = \sqrt{1 - A^2}$, are Lipschitz.

$$\forall T > 0 \ \exists L_{AB} \ \forall (x_1, x_2), (y_1, y_2) \in \mathbb{R}^2 \ \forall t \in [0, T]$$

$$|\sigma_2(t, x_2)A(t, x_1, x_2) - \sigma_2(t, y_2)A(t, y_1, y_2)| + |\sigma_2(t, x_2)B(t, x_1, x_2) - \sigma_2(t, y_2)B(t, y_1, y_2)|$$

$$\leq L_{AB}(|x_1 - y_1| + |x_2 - y_2|).$$

A6. The functions σ_1 and σ_2 do not vanish and the supremum of $|A|$ is less than 1.

$$\forall T > 0 \ \forall x_1, x_2 \in \mathbb{R} \ \forall t \in [0, T] \quad \sigma_1(t, x_1)\sigma_2(t, x_2) \neq 0,$$

$$\forall T > 0 \ \exists A_M \ \forall (x_1, x_2) \in \mathbb{R}^2 \ \forall t \in [0, T] \quad |A(t, x_1, x_2)| \leq A_M < 1.$$

Theorem 5.1. Let a pair of stochastic processes X^1 and X^2 fulfill **A1.** - **A6.** with parameters $\mu_i, \sigma_i, F_i, i = 1, 2,$ and ν. Then for any copula C and $s \geq 0$ there exists a filtered probability space, a pair of Wiener processes and two stochastic processes $X^{1,s,C}$ and $X^{2,s,C}$ fulfilling **A1.** - **A4.** with shifted parameters

$$\tilde{\mu}_i(t, x) = \mu(t + s, x), \quad \tilde{\sigma}_i(t, x) = (t + s, x),$$

$$\tilde{F}_i(t, x) = F_i(t + s, x), \quad \tilde{A}(t, x_1, x_2) = A(t + s, x_1, x_2),$$

such that C is the copula of $(X^{1,s,C}_t, X^{2,s,C}_t)$.

The pair of stochastic processes $(X^{1,s,C}, X^{2,s,C})$ is law-unique.

The proof is provided in section 6.5.

We denote the copula corresponding to the pair $(X^{1,s,C}, X^{2,s,C})$ by $C^{s,C}_t$.

Since the pair $(X^{1,s,C}, X^{2,s,C})$ is law-unique, the copula process $(C^{s,C}_t)_{t \geq 0}$ is well defined. It does not depend on the choice of the probability space, Wiener processes and the pair $(X^{1,s,C}, X^{2,s,C})$, as long as the assumptions of the theorem are fulfilled.
Moreover, since the restricted process \(\left(X_{t_1+t}^{1,s,C}, X_{t_1+t}^{2,s,C} \right) \) for \(t_1 > 0 \), coincides with the process with parameters shifted by \(t_1 + s \) and initial copula equal copula of the pair \(\left(X_{t_1+t}^{1,s,C}, X_{t_1+t}^{2,s,C} \right) \) (i.e. \(C_{t_1}^{s,C} \)), we get a chain rule for copulas
\[
C_{t_1+t}^{s,C} = C_{t_1}^{s,C}.
\]

The restricted copula process \(\left(C_{t_1+t}^{s,C} \right) \), for \(t_1 > 0 \), coincides with the copula process with parameters shifted by \(t_1 + s \) and initial copula equal copula \(C_{t_1}^{s,C} \).

Now we are in a position to define a semigroup of transformations \(\Lambda \). To make our system "autonomous" we add one more dependent variable. Instead of a process \((C_t)_{t \geq 0} \), we consider \((t, C_t)_{t \geq 0} \). We set
\[
\Lambda : \mathbb{R}^+ \rightarrow \text{End}(\mathbb{R}^+ \times \mathcal{C}_2^2); \quad A_t(s, C) = (t + s, C_t^{s,C}).
\]
Here \(\text{End} \) denotes the set of endomorphisms. The above chain rule for copulas implies that \(\Lambda \) is a semigroup. Indeed:
\[
A_{t_2} \circ A_{t_1}(s, C) = A_{t_2}(t_1 + s, C_{t_1}^{s,C})
= (t_2 + t_1 + s, C_{t_2+t_1}^{s,C}) = A_{t_2+t_1}(s, C).
\]

Note that the graph of the copula process \(C_t \) corresponding to the pair \((X^1, X^2) \) is an orbit of \(\Lambda \). Indeed:
\[
A_t(0, C_0) = (t, C_t).
\]

We show that that local properties of \(\Lambda \) can be described in terms of the bilinear form \(B \) introduced by (27). In order to be able to apply the concept of differentiability, we imbed our state space into a Banach space
\[
(id, j) : \mathbb{R}^+ \times \mathcal{C}_2^2 \rightarrow \mathbb{R} \times H^1(\mathbb{R}^2)^*.
\]
where \(j \) is given by formula (24). We select the *weak topology on \((H^1)^* \). Following the notation used for semigroups of linear operators we introduce an infinitesimal generator \(L \)
\[
L : D(L) \rightarrow \mathbb{R} \times H^1(\mathbb{R}^2)^*, \quad D(L) = \mathbb{R}^+ \times \mathcal{C}_2^2,
\]
\[
\lim_{t \rightarrow 0^+} \frac{(id, j) \circ A_t(s, C) - (s, j(C))}{t} - L(s, C) = 0.
\]
It shows that the choice of the embedding \(j \) and the *weak topology ensures that \((id, j) \circ A_t(s, C) \) is differentiable for all \((s, C) \), i.e. \(D(L) = \mathbb{R}^+ \times \mathcal{C}_2^2 \).

Theorem 5.2. With respect to the topology induced by imbedding \(j : \mathcal{C}_2^2 \rightarrow (H^1(\mathbb{R}^2))^* \), \(\Lambda \) is a strongly continuous semigroup of transformations. Moreover the generator \(L \) is a mapping given by
\[
L : \mathbb{R}^+ \times \mathcal{C}_2^2 \rightarrow \mathbb{R} \times H^1(\mathbb{R}^2)^*, \quad L(s, C) = (1, -B_{s,C}),
\]
where for a test function \(h \in H^1(\mathbb{R}^2) \)
\[
B_{s,C}(h) = B_{s}(h, C).
\]
The proof is provided in section 6.5.

Since the graph of the copula process \(C_t \) corresponding to the pair \((X^1, X^2) \) is an orbit of \(\Lambda \)
\[
A_t(0, C_0) = (t, C_t),
\]
the tangent vector to the curve \(t \rightarrow j(C_t) \) and the generator of the semigroup coincide.
\[
L(s, C) = \left(1, \frac{d}{dt} j(C_t)_{t=s} \right).
\]
6 Proofs and auxiliary results

6.1 Proof of Proposition 3.1

Since both drifts \(v_{j,2} \) are bounded,

\[
E(U_{j,t}) - E(U_{j,0}) = \int_0^t E(v_{j,1}(s, U^j_s)) ds = \int_0^t \left(\int_0^1 v_{j,1}(s, u) du \right) ds.
\]

Since the expected values of all \(U_{j,t} \) are the same, we get for \(s > 0 \)

\[
\int_0^1 v_{j,1}(s, u) du = 0.
\]

Next, we calculate the characteristic function of the random variable \(U_{j,t}, t \geq 0 \).

\[
d \exp(i z U_{j,t}) = \left(i z v_{j,1} \exp(i z U_{j,t}) - \frac{1}{2} z^2 v_{j,2}^2 \exp(i z U_{j,t}) \right) dt + \exp(i z U_{j,t}) v_{j,2} dW^j_t.
\]

Since \(v_{j,2} \) are bounded,

\[
E \left(\exp(i z U_{j,t}) \right) = E \left(\exp(i z U_{j,1}) \right) + \int_0^t E \left(i z v_{j,1} \exp(i z U^j_s) - \frac{1}{2} z^2 v_{j,2}^2 \exp(i z U^j_s) \right) ds.
\]

Furthermore, since all \(U^j_s \) are uniformly distributed on \([0, 1]\), the characteristic function does not depend on \(s \) and we get for all \(z \in \mathbb{R} \)

\[
0 = E \left(i z v_{j,1} \exp(i z U^j_0) - \frac{1}{2} z^2 v_{j,2}^2 \exp(i z U^j_0) \right)
= iz \int_0^1 v_{j,1}(s, u) \exp(i z u) du - \frac{1}{2} z^2 \int_0^1 v_{j,2}(s, u)^2 \exp(i z u) du.
\]

We divide (40) by \(z^2 \) and apply integration by parts to the first integral. We get for all \(z \in \mathbb{R} \):

\[
\int_0^1 \left(u \int_0^u v_{j,1}(s, \xi) d\xi \right) \exp(i z u) du - \frac{1}{2} \int_0^1 v_{j,2}(s, u)^2 \exp(i z u) du = 0.
\]

Hence for all \(u \in [0, 1] \) and \(s \geq 0 \)

\[
2 \int_0^u v_{j,1}(s, \xi) d\xi = v_{j,2}(s, u)^2.
\]

Since \(v_{j,1} \) are continuous and \(v_{j,2} \) are differentiable for \(u \in (0, 1) \), the above implies

\[
v_{j,2}(s, u) \frac{\partial v_{j,2}(s, u)}{\partial u} = v_{j,1}(s, u)
\]

for \(s \geq 0 \) and \(u \in (0, 1) \). \(\square \)
6.2 A note on regular variation

We recall that a function $U : (0, +\infty) \to (0, +\infty)$ is regularly varying at $+\infty$ with index $\rho \in [-\infty, +\infty]$ if for every $x > 0$ the limit
\[
\lim_{t \to +\infty} \frac{U(tx)}{U(t)} = x^\rho,
\]
equals and equals x^ρ, where
\[
x^{+\infty} = \begin{cases}
0 & \text{if } x < 1, \\
1 & \text{if } x = 1, \\
+\infty & \text{if } x > 1,
\end{cases}
\]
and
\[
x^{-\infty} = \begin{cases}
+\infty & \text{if } x < 1, \\
1 & \text{if } x = 1, \\
0 & \text{if } x > 1,
\end{cases}
\]
(compare [22] Definition 2.1 and section 2.4). The variation with index 0 is also called the slow variation, while variation with index $+\infty$ - the rapid variation.

The above can be extended for functions $F : (0, 1) \to (-\infty, +\infty)$. We say that F is regularly varying at 0^+ or respectively 1^- with index $\rho \in [-\infty, +\infty]$ if for every $x > 0$
\[
\lim_{t \to 0^+} \frac{F(tx)}{F(t)} = x^\rho,
\]
or respectively
\[
\lim_{t \to 0^-} \frac{F(1 - tx)}{F(1 - t)} = x^\rho.
\]

Let Φ, Φ^{-1} and φ denote the distribution function, the quantile function and the density of the standard normal distribution $N(0, 1)$.

Lemma 6.1. The quantile function $\Phi^{-1} : (0, 1) \to (-\infty, +\infty)$ is slowly varying at 0^+ and 1^-. For $x > 0$
\[
\lim_{t \to 0^+} \frac{\Phi^{-1}(tx)}{\Phi^{-1}(t)} = \lim_{t \to 0^-} \frac{\Phi^{-1}(1 - tx)}{\Phi^{-1}(1 - t)} = 1.
\]

Proof.

First we show that the auxiliary function U,
\[
U(x) = \frac{1}{1 - \Phi(x)},
\]
is rapidly varying at $+\infty$. Indeed applying the de l’Hospital rule we get
\[
\lim_{t \to +\infty} \frac{U(tx)}{U(t)} = \lim_{t \to +\infty} \frac{\varphi(t)}{x \varphi(tx)} = \lim_{t \to +\infty} \frac{1}{x} \exp \left(\frac{1}{2} t^2 (x^2 - 1) \right) = \begin{cases}
0 & \text{if } x < 1, \\
1 & \text{if } x = 1, \\
+\infty & \text{if } x > 1.
\end{cases}
\]

Hence the inverse function U^{-1} is slowly varying at $+\infty$ (see [22] Proposition 2.6.v). Since for $y \in (0, 1)$
\[
-\Phi^{-1}(y) = \Phi^{-1}(1 - y) = U^{-1} \left(\frac{1}{y} \right),
\]
Φ^{-1} is slowly varying at both ends of the unit interval.

□
Lemma 6.2. The composition of the density \(\varphi \) and the quantile function \(\Phi^{-1} : (0, 1) \to (-\infty, +\infty) \) is regularly varying at \(0^+ \) and \(1^- \) with index 1. For \(x > 0 \)

\[
\lim_{t \to 0^+} \frac{\varphi(\Phi^{-1}(tx))}{\varphi(\Phi^{-1}(t))} = \lim_{t \to 0^-} \frac{\varphi(\Phi^{-1}(1-tx))}{\varphi(\Phi^{-1}(1-t))} = x.
\]

Proof.
We apply the de l’Hospital rule and the previous lemma. Since

\[
\frac{d}{dy} \varphi(\Phi^{-1}(y)) = -\Phi^{-1}(y),
\]

we have

\[
\lim_{t \to 0^+} \frac{\varphi(\Phi^{-1}(tx))}{\varphi(\Phi^{-1}(t))} = \lim_{t \to 0^-} \frac{x\Phi^{-1}(tx)}{\Phi^{-1}(t)} = x.
\]

This finishes the proof because \(\varphi \) is an even function and \(\varphi(\Phi^{-1}(1-y)) = \varphi(\Phi^{-1}(y)) \).

\[\Box\]

6.3 Proof of Theorems 4.1 and 4.2

We start with showing that assumption \(\text{A3} \) implies that, although the derivatives of \(v_{2,2} \) might be unbounded, for fixed \(v_1 \) and \(s > 1 \) the function

\[G(v_2) = \frac{\partial}{\partial v_2} (v_{2,2}(s, v_2)A_C(s, v_1, v_2)) \]

has finite \(L^1 \) norm.

Lemma 6.3. For any fixed \(T > 0 \) there exists a constant \(M_T \) such that for all \(s \in [0, T] \) and \(v_1 \in (0, 1) \)

\[||G||_{L^1} = \int_0^1 \left| \frac{\partial}{\partial v_2} (v_{2,2}(s, v_2)A_C(s, v_1, v_2)) \right| dv_2 \leq M_T < \infty. \]

Proof.
We denote by \(m \) the supremum of the value of \(|\sigma_2(s, x)A(s, x_1, x)| \) at \(x = 0 \). From the Mean Value Theorem we get an estimate for all \(x \)

\[|\sigma_2(s, x)A(s, x_1, x)| \leq m + L_A|x|. \]

Furthermore the assumption \(\text{A4} \) implies that there exists a constant \(M \) such that for all \(x \in \mathbb{R} \) and \(s \in [0, T] \)

\[\left| \frac{\partial^2}{\partial x^2} F_2(s, x) \right| \leq \frac{M}{1 + |x|^{2+\varepsilon}}. \]

Applying the above we get:

\[||G||_{L^1} = \int_0^1 |G(v_2)| dv_2 \]

\[= \int_{-\infty}^{+\infty} |G(F_2(s, x))| \left| \frac{\partial}{\partial x} F_2(s, x) \right| dx \]
Theorem 6.1. Let

be an infinitely many times differentiable function with a compact support. Then for any

be a twice continuously differentiable function. Then for

We recall Ito's formula. Let

Proof.

Now we switch to the bivariate case.

Theorem 6.1. Let

be an infinitely many times differentiable function with a compact support. Then for any

\[
\int_0^t h(v_1, v_2)C_1(v_1, v_2)dv_1dv_2 = \int_0^t h(v_1, v_2)C_1(v_1, v_2)dv_1dv_2 - \int_0^t B_s(h, C_s)ds,
\]

where for \(t \geq 0 \) and a copula \(C \)

\[
B_t(h, C) = \frac{1}{2} \int_{[0,1]^2} \frac{\partial}{\partial v_1} \left(h(v_1, v_2)v_{1,2}(t, v_1)^2 \right) D_1C(v_1, v_2)dv_1dv_2 + \frac{1}{2} \int_{[0,1]^2} \frac{\partial}{\partial v_2} \left(h(v_1, v_2)v_{2,2}(t, v_2)^2 \right) D_2C(v_1, v_2)dv_1dv_2 + \int_{[0,1]^2} \frac{\partial}{\partial v_1} \left(h(v_1, v_2)v_{1,2}(t, v_1)v_{2,2}(t, v_2)A_C(t, v_1, v_2) \right) D_1C(v_1, v_2)dv_1dv_2
\]

Proof.

We recall Ito's formula. Let

be a twice continuously differentiable function. Then for \(t \geq 0 \)

\[
E(H(U_{1,t}, U_{2,t})) = E(H(U_{1,1}, U_{2,1})) + \int_0^t E \left(\sum_{j=1}^2 \frac{\partial H}{\partial u_j}(U_{1,s}, U_{2,s})v_{j,1}(s, U_{j,s}) \right) ds + \frac{1}{2} \sum_{j=1}^2 \int_0^t \frac{\partial^2 H}{\partial u_j^2}(U_{1,s}, U_{2,s})v_{j,1}(s, U_{j,s}) ds \right) + \int_0^t \frac{\partial^2 H}{\partial u_1 \partial u_2}(U_{1,s}, U_{2,s})v_{1,2}(s, U_{1,s})v_{2,2}(s, U_{2,s})A_C(s, U_{1,s}, U_{2,s}) ds.
\]
Applying an operator like approach, we can abbreviate the above as

\[E(H(U_{1,t}, U_{2,t})) - E(H(U_{1,1}, U_{2,1})) = \int_0^t E \left(\sum_{(i,j) \in I} \frac{\partial^i j H}{\partial u_i^j u_2^j} (U_{1,s}, U_{2,s}) L_{ij}(s, U_{1,s}, U_{2,s}) \right) ds, \]

where the set \(I \) consists of 5 pairs of indices

\[I = \{ (0, 1), (0, 2), (1, 0), (2, 0), (1, 1) \}. \]

Next we substitute as \(H \) a convolution of an infinitely many times differentiable function with compact support \(\kappa(u_1) \kappa(u_2) \)

\[\kappa(u) = \begin{cases} 1 & \text{when } u \leq 0, \\ 0 & \text{otherwise.} \end{cases} \]

\[H(u_1, u_2) = \int_{\mathbb{R}^2} h(v_1, v_2) \kappa(u_1 - v_1) \kappa(u_2 - v_2) dv_1 dv_2. \]

Note that \(H \) is infinitely many times differentiable.

\[\frac{\partial H}{\partial u_j}(u) = \int_{\mathbb{R}^2} \frac{\partial h}{\partial v_j}(v_1, v_2) \kappa(u_1 - v_1) \kappa(u_2 - v_2) dv_1 dv_2, \]

\[\frac{\partial^2 H}{\partial u_j \partial u_k}(u) = \int_{\mathbb{R}^2} \frac{\partial^2 h}{\partial v_j \partial v_k}(v_1, v_2) \kappa(u_1 - v_1) \kappa(u_2 - v_2) dv_1 dv_2. \]

Furthermore note that for every \(u = (u_1, u_2) \)

\[|H(u_1, u_2)| \leq \int_{\mathbb{R}^2} |h(v_1, v_2)| \kappa(u_1 - v_1) \kappa(u_2 - v_2) dv_1 dv_2 \]

\[\leq \int_{\mathbb{R}^2} |h(v_1, v_2)| dv_1 dv_2 = ||h||_{L^1}. \]

Replacing \(h \) by its derivative we get

\[\left| \frac{\partial H}{\partial u_j}(u) \right| \leq \left| \frac{\partial h}{\partial v_j} \right|_{L^1} \]

\[\left(\frac{\partial^2 H}{\partial u_j \partial u_k}(u) \right) \leq \left| \frac{\partial^2 h}{\partial v_j \partial v_k} \right|_{L^1}. \]

Using the Fubini Theorem, Sklar Theorem and the boundary properties of copulas we get for \(t \geq 0 \)

\[E(H(U_{1,t}, U_{2,t})) - E(H(U_{1,1}, U_{2,1})) = \int_{\mathbb{R}^2} h(v_1, v_2) \left(\kappa(U_{1,t} - v_1) \kappa(U_{2,t} - v_2) - \kappa(U_{1,1} - v_1) \kappa(U_{2,1} - v_2) \right) dv_1 dv_2 \]

\[\leq \int_{\mathbb{R}^2} h(v_1, v_2) E \left(\kappa(U_{1,t} - v_1) \kappa(U_{2,t} - v_2) - \kappa(U_{1,1} - v_1) \kappa(U_{2,1} - v_2) \right) dv_1 dv_2 \]

\[\leq \int_{\mathbb{R}^2} h(v_1, v_2) \left(C_l(\min(1, v_1^1), \min(1, v_2^1)) - C_l(\min(1, v_1^2), \min(1, v_2^2)) \right) dv_1 dv_2 \]

\[\leq \int_{[0,1]^2} h(v_1, v_2) \left(C_l(v_1, v_2) - C_l(v_1^1, v_2^1) \right) dv_1 dv_2. \]
Let B_s denote the integrand in formulas (46) and (47) multiplied by -1. Since $P(U_{j,s} \leq 0) = 0$, in a similar way as above, we obtain for $s \geq 0$

\begin{equation}
-B_s = E \left(\sum_{(i,j) \in I} \frac{\partial^{ij} H}{\partial u_1 \partial u_2} (U_{1,s}, U_{2,s}) L_{i,j}(s, U_{1,s}, U_{2,s}) \right)
\end{equation}

\begin{equation}
= \sum_{(i,j) \in I} E \left(\int_{\mathbb{R}^2} \frac{\partial^{ij} h(v_1, v_2)}{\partial v_1 \partial v_2} \kappa(U_{1,s} - v_1) \kappa(U_{2,s} - v_2) L_{i,j}(s, U_{1,s}, U_{2,s}) dv_1 dv_2 \right)
\end{equation}

\begin{equation}
= \sum_{(i,j) \in [0, \infty)^2} \int_{\mathbb{R}^2} \frac{\partial^{ij} h(v_1, v_2)}{\partial v_1 \partial v_2} E \left(\kappa(U_{1,s} - v_1) \kappa(U_{2,s} - v_2) L_{i,j}(s, U_{1,s}, U_{2,s}) \right) dv_1 dv_2.
\end{equation}

Now we apply the chain rule for conditional expectations

\[E(F(U_1, U_2)) = E(E(F(U_1, U_2) | U_j)) = \int_0^1 E(F(U_1, U_2) | U_j = \xi) d\xi \]

and obtain

\begin{equation}
-B_s = \sum_{i=1}^{2} \int_{[0, \infty)^2} \frac{\partial^i h(v_1, v_2)}{\partial v_1} \min(1, v_1) \times E \left(\kappa(U_{2,s} - v_2) L_{i,0}(s, \xi, U_{2,s}) | U_{1,s} = \xi \right) d\xi dv_1 dv_2
\end{equation}

\begin{equation}
+ \sum_{j=1}^{2} \int_{[0, \infty)^2} \frac{\partial^j h(v_1, v_2)}{\partial v_2} \min(1, v_2) \times E \left(\kappa(U_{1,s} - v_1) L_{0,j}(s, \xi, U_{1,s}) | U_{2,s} = \xi \right) d\xi dv_1 dv_2
\end{equation}

\begin{equation}
+ \int_{[0, \infty)^2} \frac{\partial^2 h(v_1, v_2)}{\partial v_1 \partial v_2} \min(1, v_1) \times E \left(\kappa(U_{1,s} - v_2) L_{1,1}(s, \xi, U_{1,s}) | U_{2,s} = \xi \right) d\xi dv_1 dv_2.
\end{equation}

Next we integrate by parts.

\begin{equation}
B_s = \sum_{i=0}^{+\infty} \int_0^{+\infty} \frac{\partial^i h(v_1, v_2)}{\partial v_1} E \left(\kappa(U_{2,s} - v_2) L_{i+1,0}(s, v_1, U_{2,s}) | U_{1,s} = v_1 \right) dv_1 dv_2
\end{equation}

\begin{equation}
+ \sum_{j=0}^{+\infty} \int_0^{+\infty} \frac{\partial^j h(v_1, v_2)}{\partial v_2} E \left(\kappa(U_{1,s} - v_1) L_{0,j+1}(s, U_{1,s}, v_2) | U_{2,s} = v_2 \right) dv_2 dv_1
\end{equation}

\begin{equation}
+ \int_0^{+\infty} \frac{\partial h(v_1, v_2)}{\partial v_2} E \left(\kappa(U_{2,s} - v_2) L_{1,1}(s, v_1, U_{2,s}) | U_{1,s} = v_1 \right) dv_1 dv_2.
\end{equation}
Setting

\[L_{1,0} = v_{1,1}, \quad L_{0,1} = v_{2,1}, \quad L_{2,0} = \frac{1}{2}v_{1,2}, \quad L_{0,2} = \frac{1}{2}v_{2,2}, \quad L_{1,1} = v_{1,2}v_{2,2}A_C, \]

we get

\[
B_s = \int_0^1 \int_0^1 \left(h(v_1, v_2) \frac{\partial v_{1,2}(s, v_1)}{\partial v_1} + \frac{1}{2} \frac{\partial h(v_1, v_2)}{\partial v_1} v_{1,2}(s, v_1)^2 \right) \\
\times E \left((\kappa(U_{2,s} - v_2))|U_{1,s} = v_1 \right) dv_1 dv_2 \\
+ \int_0^1 \int_0^1 \left(h(v_1, v_2) \frac{\partial v_{1,2}(s, v_2)}{\partial v_2} + \frac{1}{2} \frac{\partial h(v_1, v_2)}{\partial v_2} v_{1,2}(s, v_2)^2 \right) \\
\times E \left((\kappa(U_{1,s} - v_1))|U_{2,s} = v_2 \right) dv_1 dv_2 \\
+ \int_0^1 v_{1,2}(s, v_1) \\
\times E \left(\int_0^1 \kappa(U_{2,s} - v_2) \frac{\partial h(v_1, v_2)}{\partial v_2} dv_2 \right) v_{2,2}(s, U_{2,s})A_C(s, v_1, U_{2,s})|U_{1,s} = v_1 \\
\frac{1}{2} \int_0^1 \int_0^1 \frac{\partial}{\partial v_1} \left(h(v_1, v_2)v_{1,2}(s, v_1)^2 \right) E \left((\kappa(U_{2,s} - v_2))|U_{1,s} = v_1 \right) dv_1 dv_2 \\
+ \frac{1}{2} \int_0^1 \int_0^1 \frac{\partial}{\partial v_2} \left(h(v_1, v_2)v_{2,2}(s, v_2)^2 \right) E \left((\kappa(U_{1,s} - v_1))|U_{2,s} = v_2 \right) dv_1 dv_2 \\
+ \int_0^1 v_{1,2}(s, v_1)E \left(-h(v_1, U_{2,s})v_{2,2}(s, U_{2,s})A_C(s, v_1, U_{2,s})|U_{1,s} = v_1 \right) dv_1 \tag{55}
\]

We apply the Fubini Theorem to the last summand and recall that \(v_{j,1} \) are the derivatives of \(v_{j,2}^2 \) (Proposition 3.1).

\[B_s = \int_0^1 \int_0^1 \left(h(v_1, v_2) \frac{\partial v_{1,2}(s, v_1)}{\partial v_1} + \frac{1}{2} \frac{\partial h(v_1, v_2)}{\partial v_1} v_{1,2}(s, v_1)^2 \right) \\
\times E \left((\kappa(U_{2,s} - v_2))|U_{1,s} = v_1 \right) dv_1 dv_2 \\
+ \int_0^1 \int_0^1 \left(h(v_1, v_2) \frac{\partial v_{1,2}(s, v_2)}{\partial v_2} + \frac{1}{2} \frac{\partial h(v_1, v_2)}{\partial v_2} v_{1,2}(s, v_2)^2 \right) \\
\times E \left((\kappa(U_{1,s} - v_1))|U_{2,s} = v_2 \right) dv_1 dv_2 \\
+ \int_0^1 v_{1,2}(s, v_1) \\
\times E \left(\int_0^1 \kappa(U_{2,s} - v_2) \frac{\partial h(v_1, v_2)}{\partial v_2} dv_2 \right) v_{2,2}(s, U_{2,s})A_C(s, v_1, U_{2,s})|U_{1,s} = v_1 \\
\frac{1}{2} \int_0^1 \int_0^1 \frac{\partial}{\partial v_1} \left(h(v_1, v_2)v_{1,2}(s, v_1)^2 \right) E \left((\kappa(U_{2,s} - v_2))|U_{1,s} = v_1 \right) dv_1 dv_2 \\
+ \frac{1}{2} \int_0^1 \int_0^1 \frac{\partial}{\partial v_2} \left(h(v_1, v_2)v_{2,2}(s, v_2)^2 \right) E \left((\kappa(U_{1,s} - v_1))|U_{2,s} = v_2 \right) dv_1 dv_2 \\
+ \int_0^1 v_{1,2}(s, v_1)E \left(-h(v_1, U_{2,s})v_{2,2}(s, U_{2,s})A_C(s, v_1, U_{2,s})|U_{1,s} = v_1 \right) dv_1 \tag{56}
\]

Now we show that the domain of integration can be restricted to the unit square. Since for \(x \geq 1 \) and \(s \geq 0 \)

\[\kappa(U_{2,s} - x) \overset{a.s.}{=} \kappa(U_{1,s} - x) \overset{a.s.}{=} 1, \]

and \(v_{l,2} \) are vanishing at the ends of the unit interval we have

\[\frac{1}{2} \int_0^1 \int_0^1 \frac{\partial}{\partial v_1} \left(h(v_1, v_2)v_{1,2}(s, v_1)^2 \right) E \left((\kappa(U_{2,s} - v_2))|U_{1,s} = v_1 \right) dv_1 dv_2 \]
In a similar way we obtain

\[
\frac{1}{2} \int_{0}^{1} \int_{0}^{1} \frac{\partial}{\partial v_1} \left(h(v_1, v_2) v_{1,2}(s, v_1)^2 \right) \, dv_1 \, dv_2
\]

\[
= \int_{0}^{1} h(v_1, v_2) \, dv_2 \bigg|_{v_1=0}^{v_1=1} \, dv_2 = 0
\]

(57)

In a similar way we obtain

\[
\frac{1}{2} \int_{0}^{1} \int_{0}^{1} \frac{\partial}{\partial v_2} \left(h(v_1, v_2) v_{2,2}(s, v_2)^2 \right) E \left(\kappa(U_{1,s} - v_1) \right) |U_{2,s} = v_2) \, dv_1 \, dv_2 = 0.
\]

To finish the proof we observe that for \(v_1, v_2 \in [0, 1] \)

\[
E \left(\kappa(U_{2,s} - v_2) \right) |U_{1,s} = v_1) \overset{\text{a.e.}}{=} D_1 C_s(v_1, v_2), \tag{58}
\]

\[
E \left(\kappa(U_{1,s} - v_1) \right) |U_{2,s} = v_2) \overset{\text{a.e.}}{=} D_2 C_s(v_1, v_2). \tag{59}
\]

Furthermore due to Lemma 6.3 we may apply once more the Fubini Theorem.

\[
E \left(-h(v_1, U_{2,s}) v_{2,2}(s, U_{2,s}) A_C(s, v_1, U_{2,s}) |U_{1,s} = v_1) \right)
\]

\[
= E \left(\int_{u_{2,s}}^{1} \frac{\partial}{\partial v_2} \left(h(v_1, v_2) v_{2,2}(s, v_2) A_C(s, v_1, v_2) \right) \, dv_2 |U_{1,s} = v_1) \right)
\]

\[
= E \left(\int_{0}^{1} \kappa(U_{2,s} - v_2) \frac{\partial}{\partial v_2} \left(h(v_1, v_2) v_{2,2}(s, v_2) A_C(s, v_1, v_2) \right) \, dv_2 |U_{1,s} = v_1) \right)
\]

\[
= \int_{0}^{1} \frac{\partial}{\partial v_2} \left(h(v_1, v_2) v_{2,2}(s, v_2) A_C(s, v_1, v_2) \right) E \left(\kappa(U_{2,s} - v_2) |U_{1,s} = v_1) \right) \, dv_2
\]

\[
= \int_{0}^{1} \frac{\partial}{\partial v_2} \left(h(v_1, v_2) v_{2,2}(s, v_2) A_C(s, v_1, v_2) \right) D_1 C_s(v_1, v_2) \, dv_2 \tag{60}
\]

Applying the above to (56) we get

\[
B_s = \frac{1}{2} \int_{[0,1]^2} \frac{\partial}{\partial v_1} \left(h(v_1, v_2) v_{1,2}(s, v_1)^2 \right) D_1 C_s(v_1, v_2) \, dv_1 \, dv_2
\]

\[
+ \frac{1}{2} \int_{[0,1]^2} \frac{\partial}{\partial v_2} \left(h(v_1, v_2) v_{2,2}(s, v_2)^2 \right) D_2 C_s(v_1, v_2) \, dv_1 \, dv_2
\]

\[
+ \int_{[0,1]^2} \frac{\partial}{\partial v_2} \left(h(v_1, v_2) v_{1,2}(s, v_1) v_{2,2}(s, v_2) A_C(s, v_1, v_2) \right) D_1 C_s(v_1, v_2) \, dv_1 \, dv_2 \tag{61}
\]

We extend the bilinear form \(B_I \) for Sobolev test functions. We set for \(h \in H^1 \)

\[
B_I(h, C) = \frac{1}{2} \int_{[0,1]^2} D_1 \left(h(v_1, v_2) v_{1,2}(t, v_1)^2 \right) D_1 C(v_1, v_2) \, dv_1 \, dv_2
\]

\[
+ \frac{1}{2} \int_{[0,1]^2} D_2 \left(h(v_1, v_2) v_{2,2}(t, v_2)^2 \right) D_2 C(v_1, v_2) \, dv_1 \, dv_2 \tag{62}
\]
Let \(h \) be a Sobolev function from \(H^1 \).
We recall two useful facts about Sobolev functions from \(H^1 \).
We start with absolutely continuity on lines (ACL) of Sobolev functions (see for example [19] §1.1.3.).
If \(a \) function is in \(H^1(\mathbb{R}^2) \), then, possibly after modifying the function on a set of measure zero, the restriction to almost every line parallel to the coordinate directions in \(\mathbb{R}^2 \) is absolutely continuous; what is more, the classical derivative along the lines that are parallel to the coordinate directions are in \(L^2 \).
Therefore when \(h \in H^1(\mathbb{R}^2) \) has a compact support, then
\[
\int_{[0,1]^2} D_2 \left(h(v_1, v_2)v_{1,2}(t, v_1)v_{2,2}(t, v_2)A_c(t, v_1, v_2) \right) D_1 C(v_1, v_2) dv_1 dv_2
\]

We show that the extended bilinear form \(B_t \) for fixed copula \(C \) is a bounded linear mapping of test functions \(h \).

Lemma 6.4. We fix \(T > 0 \). For any test function \(h \in H^1 \), any copula \(C \) and \(s \in [0, T] \) we have
\[
|B_s(h, C)| \leq L_T \|h\|_{H^1}
\]

where
\[
L_T = \max \left\{ |v_{1,1}(s, v_1)| + |v_{2,1}(s, v_2)| + (|v_{2,1}(s, v_3)| + |v_{2,2}(s, v_4)|)^2 : s \in [1, T], (v_1, v_2, v_3, v_4) \in [0, 1]^4 \right\}
\]
Proof.

We start with the following estimate:

\[
|B_r(h, C)| \leq \frac{1}{2} \int_{[0,1]^2} D_1 \left(h(v_1, v_2)v_{1,2}(t, v_1)^2 \right) D_1 C(v_1, v_2) dv_1 dv_2
+ \frac{1}{2} \int_{[0,1]^2} D_2 \left(h(v_1, v_2)v_{2,2}(t, v_2)^2 \right) D_2 C(v_1, v_2) dv_1 dv_2
+ \int_{[0,1]^2} D_2 \left(h(v_1, v_2)v_{1,2}(t, v_1)v_{2,2}(t, v_2)A_c(t, v_1, v_2) \right) D_1 C(v_1, v_2) dv_1 dv_2
\]

(67)

Since copulas are nondecreasing Lipschitz functions with Lipschitz constant 1, \(D_1 C(v_1, v_2) \in [0, 1] \). Hence due to Hölder-Schwarz inequality ([9] Appendix B2)

\[
\left| \int_{[0,1]^2} D_1 \left(h(v_1, v_2)v_{1,2}(t, v_1)^2 \right) D_1 C(v_1, v_2) dv_1 dv_2 \right|
\leq \int_{[0,1]^2} \left| D_1 \left(h(v_1, v_2)v_{1,2}(t, v_1)^2 \right) \right| dv_1 dv_2
\leq \int_{[0,1]^2} \left(\left| D_1 h(v_1, v_2)v_{1,2}(t, v_1)^2 \right| + 2 |h(v_1, v_2)v_{1,1}(t, v_1)| \right) dv_1 dv_2
\leq ||D_1 h||_{L^2} \cdot ||v_{1,2}^2(t, \cdot)||_{L^2} + 2||D_1 h||_{L^2} \cdot ||v_{1,1}(t, \cdot)||_{L^2}
\leq ||h||_{H^1([0,1])} \cdot \left(||v_{1,2}^2(t, \cdot)||_{L^2} + 2||v_{1,1}(t, \cdot)||_{L^2} \right).
\]

(68)

In a similar way we get

\[
\left| \int_{[0,1]^2} D_2 \left(h(v_1, v_2)v_{2,2}(t, v_2)^2 \right) D_2 C(v_1, v_2) dv_1 dv_2 \right|
\leq ||h||_{H^1([0,1])} \cdot \left(||v_{2,2}^2(t, \cdot)||_{L^2} + 2||v_{2,1}(t, \cdot)||_{L^2} \right).
\]

(69)

The estimation of the last summand is more complicated.

We invert the transformations from the proof of Theorem 6.1 and then apply Hölder-Schwarz inequality. Let \(U_1, U_2 \) be representers of the copula \(C \) and \(\Psi \) be the cut-off function defined by formula (65).

\[
\int_{[0,1]^2} D_2 \left(h(v_1, v_2)v_{1,2}(t, v_1)v_{2,2}(t, v_2)A_c(t, v_1, v_2) \right) D_1 C(v_1, v_2) dv_1 dv_2
= \int_{[0,1]^2} D_2 \left(h(v_1, v_2)\Psi(v_2)v_{1,2}(t, v_1)v_{2,2}(t, v_2)A_c(t, v_1, v_2) \right) D_1 C(v_1, v_2) dv_1 dv_2
= \int_{[0,1]^2} D_2 \left(h(v_1, v_2)\Psi(v_2)v_{1,2}(t, v_1)v_{2,2}(t, v_2)A_c(t, v_1, v_2) \right) E \left(\kappa(U_2 - v_2)) |U_1 = v_1 \right) dv_2 dv_1
= \int_{[0,1]} E \left(h(v_1, U_2)\Psi(U_2)v_{1,2}(t, v_1)v_{2,2}(t, U_2)A_c(t, v_1, U_2) |U_1 = v_1 \right) dv_1
\]

(70)
We fix a test function h from $H^1(\mathbb{R}^2)$. First to "bound" the support, we set $h_b(v_1, v_2) = h(v_1, v_2)\Psi(v_1)\Psi(v_2)$, where Ψ is an auxiliary function defined by formula (65). Let h_k, $k = 1, 2, \ldots$, be a sequence of C^∞_0 functions with which approximate $h_b(v_1, v_2)$ in Sobolev norm $\| \cdot \|_{H^1}$.

Theorem 6.1 implies that for every k

$$\int_{[0,1]^2} h_k(v_1, v_2)C_2(v_1, v_2)dv_1dv_2 = \int_{[0,1]^2} h(v_1, v_2)C_2(v_1, v_2)dv_1dv_2 - \int_0^t B_s(h, C_2)ds.$$

Proof.

We fix a test function h from $H^1(\mathbb{R}^2)$. First to "bound" the support, we set $h_b(v_1, v_2) = h(v_1, v_2)\Psi(v_1)\Psi(v_2)$, where Ψ is an auxiliary function defined by formula (65). Let h_k, $k = 1, 2, \ldots$, be a sequence of C^∞_0 functions with which approximate $h_b(v_1, v_2)$ in Sobolev norm $\| \cdot \|_{H^1}$.

Theorem 6.1 implies that for every k

$$\int_{[0,1]^2} h_k(v_1, v_2)C_2(v_1, v_2)dv_1dv_2 = \int_{[0,1]^2} h(v_1, v_2)C_2(v_1, v_2)dv_1dv_2 - \int_0^t B_s(h, C_2)ds.$$

Putting the above three estimates together we obtain

$$|B_t(h, C)| \leq \|h\|_{H^1(\mathbb{R}^2)} \cdot \left(\|v_{1,1}(t, \cdot)\|_{L^\infty} + \|v_{2,1}(t, \cdot)\|_{L^\infty} \right) + \left(\|v_{1,2}(t, \cdot)\|_{L^\infty} + \|v_{2,2}(t, \cdot)\|_{L^\infty} \right)$$

$$\leq \|h\|_{H^1(\mathbb{R}^2)} \cdot \left(\|v_{1,1}(t, \cdot)\|_{L^\infty} + \|v_{2,1}(t, \cdot)\|_{L^\infty} + \left(\|v_{1,2}(t, \cdot)\|_{L^\infty} + \|v_{2,2}(t, \cdot)\|_{L^\infty} \right)^2 \right)$$

This implies the following uniform bound. For all $t \in [0, T]$ we have

$$|B_t(h, C)| \leq L_T\|h\|_{H^1(\mathbb{R}^2)},$$

where

$$L_T = \max \left\{ |v_{1,1}(s, v_1)| + |v_{2,1}(s, v_2)| + (|v_{2,1}(s, v_3)| + |v_{2,2}(s, v_4)|)^2 \right\} : s \in [1, T], (v_1, v_2, v_3, v_4) \in [0, 1]^4.$$

Since $v_{1,1}(t, v)$ are continuous functions the bound L_T is well-defined.

Since $B_k(\cdot, C)$ are uniformly bounded linear functionals on H^1, Theorem 6.1 remains valid for Sobolev test functions.

Corollary 6.1. Let $h \in H^1(\mathbb{R}^2)$. Then for any $t > 0$

$$\int_{[0,1]^2} h(v_1, v_2)C_2(v_1, v_2)dv_1dv_2$$

$$= \int_{[0,1]^2} h(v_1, v_2)C_2(v_1, v_2)dv_1dv_2 - \int_0^t B_s(h, C_2)ds.$$
where \(\frac{\bar{t}}{2} \). for all \(t \geq 0 \).

All three terms converge as \(k \to \infty \). Indeed:

for all \(t \geq 0 \)

\[
\left| \int_{[0,1]^2} h_k(v_1, v_2) C_t(v_1, v_2) dv_1 dv_2 - \int_{[0,1]^2} h(v_1, v_2) C_t(v_1, v_2) dv_1 dv_2 \right| \leq \left| \int_{[0,1]^2} (h_k(v_1, v_2) - h_b(v_1, v_2)) C_t(v_1, v_2) dv_1 dv_2 \right|
\]

\[
\leq \int_{[0,1]^2} |h_k(v_1, v_2) - h_b(v_1, v_2)| dv_1 dv_2
\]

\[
\leq \|h_k - h_b\|_{L^2} \leq \|h_k - h_b\|_{H^1} \to 0.
\]

Similarly, basing on Lemma 6.4 with \(T = t \) we get

\[
\left| \int_0^t B_s(h_k, C_s) ds - \int_0^t B_s(h, C_s) ds \right| \leq \int_0^t |B_s(h_k - h, C_s)| ds
\]

\[
\leq t \cdot L \|h_k - h_b\|_{H^1} \to 0.
\]

\[
\Box
\]

Lemma 6.5. Let the test function \(h \) belong to \(H^1(\mathbb{R}^2) \), then the function

\[B_h(t) = B_t(h, C_t) : [0, \infty) \to \mathbb{R} \]

is continuous.

Proof.

Step 1. Let \(h \in C_c^\infty \).

We recall formula (52).

\[
B_h(t) = -E \left(\sum_{(i,j) \in I} \frac{\partial^{|i+j|} H}{\partial u_1^i \partial u_2^j} (U_{1,t}, U_{2,t}) L_{i,j}(t, U_{1,t}, U_{2,t}) \right),
\]

where

\[L_{1,0} = v_{1,1}, \quad L_{0,1} = v_{2,1}, \quad L_{2,0} = \frac{1}{2} v_{1,2}^2, \quad L_{0,2} = \frac{1}{2} v_{2,2}^2, \quad L_{1,1} = v_{1,2} v_{2,2} A_C. \]
By assumption the processes \(X_t^1 \) and \(X_t^2 \) are path-continuous. Since their distribution functions \(F_j(t, x) \) are continuous, the random variables

\[U_{j,t} = F_j(t, X_t^j) \]

are path-continuous as well. Now, since the convolutions \(H \) are continuously differentiable and the coefficients \(L_{i,j} \) are continuous, the composed stochastic process

\[L_t(H)(U_{1,t}, U_{2,t}) = \sum_{(i,j) \in I} \frac{\partial^{i+j} H}{\partial u_1^i \partial u_2^j}(U_{1,t}, U_{2,t}) L_{i,j}(t, U_{1,t}, U_{2,t}) \]

is path-continuous. Since it is bounded, we apply the Lebesgue dominated convergence theorem

\[
\lim_{s \to t} E(L_t(H)(U_{1,t}, U_{2,t}) - L_s(H)(U_{1,s}, U_{2,s})) = E \left(\lim_{s \to t} (L_t(H)(U_{1,t}, U_{2,t}) - L_s(H)(U_{1,s}, U_{2,s})) \right) = E(0) = 0.
\]

Which implies that \(B_t(h) \) is continuous at each \(t \geq 0 \).

Step 2. The general case \(h \in H^1(\mathbb{R}^2) \).

Let \(h_k, k = 1, 2, \ldots, \) be a sequence of \(C^\infty \) functions with compact supports which approximate \(h_k(v_1, v_2) = h(v_1, v_2) \cdot \min(1, (5 - (v_1^2 + v_2^2))^\delta) \) in Sobolev norm \(\| \cdot \|_{H^1} \) (compare \cite{9} §5.3).

Since for any \(t \geq 0 \) \(B_t(h, C) = B_t(h_k, C) \) we get that the functions \(B_{h_k}(t) \) converge almost uniformly to \(B_h(t) \). Indeed, we fix \(T > 1 \), then

\[
\sup \{ |B_h(t) - B_{h_k}(t)| : t \in [1, T] \} = \sup \{ |B_h(t) - B_{h_k}(t)| : t \in [1, T] \}
\]

\[
\leq \sup \{ |B_t(h_k - h_k)| : t \in [1, T] \}
\]

\[
\leq M\|h_k - h_k\|_{H^1} \to 0
\]

Almost uniform convergence implies the continuity. \(\square \)

To conclude the proofs of the theorems, one has to observe that Corollary 6.1 and Lemma 6.5 imply Theorem 4.1, and the same Corollary and Lemma 6.4 imply Theorem 4.2.

6.4 Comonotonicity

The study of the form \(B_t \) simplifies for singular copulas with support reduced to a union of segments. Especially for the copula

\[M(v_1, v_2) = \min(v_1, v_2), \]

having support equal to the diagonal section of the unit square. Note that the weak derivatives of \(M \) are discontinuous.

\[
D_1(M)(v_1, v_2) = \kappa(v_1 - v_2), \quad D_2(M)(v_1, v_2) = \kappa(v_2 - v_1).
\]

Lemma 6.6. For all \(t \in [0, +\infty) \) and \(h \in H^1(\mathbb{R}^2) \)

\[
B_t(h, M) = \frac{1}{2} \int_0^1 h(v, v) \left(v_{1,2}(t, v)^2 + v_{2,2}(1, v)^2 + 2v_{1,2}(t, v)v_{2,2}(1, v)A_C(t, v, v) \right) dv.
\]

Proof. Applying (81), we obtain:

\[
B_t(h, M) = \frac{1}{2} \int_0^1 \int_0^1 D_1 \left(h(v_1, v_2)v_{1,2}(t, v_1)^2 \right) \kappa(v_1 - v_2) dv_1 dv_2
\]
or

Note that, since the above conditions (84), (85) and (86) are equivalent to

We recall that the Spearman ρ is given by a formula

$$\rho(C) = 12 \int C(v_1, c_2) dv_1 dv_2 - 3.$$
the range of ρ is $[-1, 1]$ and the maximum is attained only at $C = M$.

We apply Theorem 4.1 for a test function h equal 1 on the unit square

$$\forall (v_1, v_2) \in [0, 1]^2 \quad h(v_1, v_2) = 1.$$

We get

$$\frac{d}{dt}\rho(C_t) = -12B_1(h, C_t).$$

Now if for $t \in [0, T]$ $C_t = M$ then $\rho(C_t) = 1$ and $B_1(h, M) = 0$. Hence for $t \in [0, T]$ and $v \in [0, 1]$ condition (87) must occur. This concludes the proof of Proposition 4.1.

6.5 Semigroups

In this section we provide proofs of Theorems 5.1 and 5.2, i.e. we show how to construct the bivariate stochastic processes $(X^{1,s,C}, X^{2,s,C})$ and the generator of the semigroup Λ.

Proof of Theorem 5.1.

Let C be a bivariate copula and s a nonnegative real number. It is well-known that for a bivariate distribution function $F(x_1, x_2) = C(F_1(s, x_1), F_2(s, x_2))$ there exists a pair of random variables $(Y^{1,s,C}, Y^{2,s,C})$ defined on a probability space (Ω, M, P) such that their distribution function equals F. Next let $\tilde{W} = (\tilde{W}^1, \tilde{W}^2)$ be a standard two-dimensional Wiener process defined on the probability space (Ω^W, M^W, P^W) and let \mathcal{F}^W denotes the natural filtration of \tilde{W}.

We extend the random variables $(Y^{1,s,C}, Y^{2,s,C})$ and the Wiener process \tilde{W} to the Cartesian product of probability spaces

$$\left(\Omega^W \times \Omega^{s,C}, \sigma(M^W \times M^{s,C}), P^W \times P^{s,C}\right).$$

Obviously the extensions, which will be denoted by the same symbols, are independent. We extent the filtration \mathcal{F} as well

$$\mathcal{F}^{ext}_t = \sigma\{\forall \in \mathcal{F}^W_t, \forall \in M^{s,C}\}.$$

We define the bivariate stochastic process $(X^{1,s,C}, X^{2,s,C})_{t \geq 0}$ as a \mathcal{F}^{ext} adapted path-continuous solution of the following system of stochastic differential equations:

\begin{align*}
\d X^1_t &= \mu_1(t+s, X^1_t)dt + \sigma_1(t+s, X^1_t)d\tilde{W}^1_t, \quad (89) \\
\d X^2_t &= \mu_2(t+s, X^2_t)dt + \sigma_2(t+s, X^2_t)A(t+s, X^1_t, X^2_t)d\tilde{W}^1_t + \sigma_2(t+s, X^2_t)B(t+s, X^1_t, X^2_t)d\tilde{W}^2_t, \quad (90) \\
&\quad + \sigma_2(t+s, X^2_t)B(t+s, X^1_t, X^2_t)d\tilde{W}^2_t,
\end{align*}

with initial values $Y^{1,s,C}, Y^{2,s,C}$.

The existence of the solution is ensured by the assumptions A_2 and A_5. Indeed, $\mu_1, \mu_2, \sigma_1, A\sigma_2$ and $B\sigma_2$ are Lipschitz functions, hence of bounded growth and fulfill the assumptions of the theorems on the existence of the solutions of SDE (see for example [18] Thm 3.4).

Note that due to the Lévy characterization theorem the process

$$\tilde{W}_t = \int_0^t A(\xi + s, X^{1,s,C}_\xi, X^{2,s,C}_\xi)\tilde{W}^1_\xi + \int_0^t B(\xi + s, X^{1,s,C}_\xi, X^{2,s,C}_\xi)\tilde{W}^2_\xi$$

is a Wiener one (compare [1] Prop. 5.58). Thus $X^{2,s,C}$ fulfills the equation

$$dX^{2,s,C}_t = \mu_2(t+s, X^{2,s,C}_t)dt + \sigma_2(t+sX^{2,s,C}_t)d\tilde{W}_t,$$

(92)
Furthermore
\[
d(X^{1,s,C}, X^{2,s,C})_t = \sigma_1(t, X^{1,s,C}_t)\sigma_2(t, X^{2,s,C}_t) d(\tilde{W}^1, \tilde{W}^2)_t
\]
(93)
\[
= \sigma_1(t, X^{1,s,C}_t)\sigma_2(t, X^{2,s,C}_t) A(t, X^{1,s,C}_t, X^{2,s,C}_t) dt.
\]

The above concludes the proof of the first part of Theorem 5.1. Indeed the pair $X^{1,s,C}, X^{2,s,C}$ fulfills conditions A1 - A4 with shifted parameters.

The uniqueness follows from the fact that every pair of stochastic processes (X^1, X^2) which fulfill A1-A6, with Wiener processes $(\tilde{W}^1, \tilde{W}^2)$ is a solution of SDE (89) with Wiener processes $(\tilde{W}^1, \tilde{W}^2)$
\[
\tilde{W}^1_t = W^1_t, \quad d\tilde{W}^2_t = \frac{1}{B(t, X^1_t, X^2_t)} dW^2_t - \frac{A(t, X^1_t, X^2_t)}{B(t, X^1_t, X^2_t)} dW^1_t, \quad \tilde{W}^2_0 = 0.
\]
(94)

Note that, since the Wiener processes defined by (94) are quadratically uncorrelated, due to the Lévy characterization theorem they form together a bivariate Wiener process (see [21] Theorem 8.6.1).

Let us fix $s \geq 0$ and $C \in \mathbb{R}^2$. Since weak solutions of SDE (89) are law equivalent (see [4]), all the possible two-dimensional processes $(X^{1,s,C}, X^{2,s,C})$ are law equivalent as well.

\[\square\]

Proof of Theorem 5.2.

We have
\[
\frac{(id, j) \circ \Lambda_t(s, C) - (s, j(C))}{t} - (1, -B_{s,C}) = \frac{(s + t, j(C^{s,c}_t)) - (s, j(C))}{t} - (1, -B_{s,C})
\]
\[
= \left(0, \frac{j(C^{s,c}_t) - j(C)}{t} + B_{s,C} \right).
\]
(95)

In order to determine the limit in the *weak topology, we evaluate the above with test functions from $H^1(\mathbb{R}^2)$. From Theorem 4.1, for any $h \in H^1(\mathbb{R}^2)$ we get
\[
\lim_{t \to 0} \left(\frac{j(C^{s,c}_t) - j(C)}{t} + B_{s,C} \right)(h)
\]
(96)
\[
= \lim_{t \to 0} \frac{1}{t} \int_{[0,1]^2} h(v_1, v_2) C^{s,c}_t(v_1, v_2) dv_1 dv_2 - \int_{[0,1]^2} h(v_1, v_2) C(v_1, v_2) dv_1 dv_2 + B_s(h, C)
\]
\[
= \frac{d}{dt} \int_{[0,1]^2} h(v_1, v_2) C^{s,c}_t(v_1, v_2) dv_1 dv_2 \bigg|_{t=0} + B_s(h, C^{s,c}_0) = 0.
\]

Hence in the *weak topology on $H^1(\mathbb{R}^2)^*$
\[
\lim_{t \to 0^+} \frac{(id, j) \circ \Lambda_t(s, C) - (s, j(C))}{t} - (1, -B_{s,C}) = 0.
\]

Generator L is defined on the whole state space $\mathbb{R}^+ \times \mathbb{R}^2$ and $L(s, C)$ equals $(1, -B_{s,C})$.

\[\square\]

References

[1] Baudoin, F. (2014). Diffusion Processes and Stochastic Calculus. European Mathematical Society, Zürich.
[2] Bibbona, E., L. Sacerdote, and E. Torre (2016). A copula-based method to build diffusion models with prescribed marginal and serial dependence. *Methodol. Comput. Appl. Probab.* 18(3), 765–783.

[3] Brezis, H. (2011). *Functional Analysis, Sobolev Spaces and Partial Differential Equations.* Springer, New York.

[4] Cherny, A. S. (2002). On the uniqueness in law and the pathwise uniqueness for stochastic differential equations. *Theory Probab. Appl.* 46(3), 406–419.

[5] Cherubini, U., E. Luciano, and W. Vecchiato (2004). *Copula Methods in Finance.* John Wiley & Sons, Chichester.

[6] Choe, H. J., C. Ahn, B. J. Kim, and Y.-K. Ma (2013). Copulas from the Fokker-Planck equation. *J. Math. Anal. Appl.* 406(2), 519–530.

[7] Darsow, W. F., B. Nguyen, and E. T. Olsen (1992). Copulas and Markov processes. *Illinois J. Math.* 36(4), 600–642.

[8] Durante, F. and C. Sempi (2016). *Principles of Copula Theory.* CRC Press, Boca Raton FL.

[9] Evans, L. C. (1998). *Partial Differential Equations.* American Mathematical Society, Providence RI.

[10] Gilbarg, D. and N. S. Trudinger (2001). *Elliptic Partial Differential Equations of Second Order.* Second edition. Springer, Berlin.

[11] Jaworski, P. and M. Krzywda (2013). Coupling of Wiener processes by using copulas. *Statist. Probab. Lett.* 83(9), 2027–2033.

[12] Jaworski, P. and M. Krzywda (2019). On copulas of self-similar Itô processes. Working paper.

[13] Jaworski, P., F. Durante, and W. Härdle, editors (2013). *Copulae in Mathematical and Quantitative Finance.* Springer, Heidelberg.

[14] Jaworski, P., F. Durante, W. Härdle, and T. Rychlik, editors (2010). *Copula Theory and its Applications.* Springer, Heidelberg.

[15] Joe, H. (1997). *Multivariate Models and Dependence Concepts.* Chapman & Hall, London.

[16] Joe, H. (2015). *Dependence Modeling with Copulas.* CRC Press, Boca Raton FL.

[17] Khasminskii, R. (2012). *Stochastic Stability of Differential Equations.* Second edition. Springer, Berlin.

[18] Maz'ya, V. (2011). *Sobolev Spaces.* Second edition. Springer, Berlin.

[19] Nelsen, R. B. (2006). *An Introduction to Copulas.* Second edition. Springer, New York.

[20] Oksendal, B. (2003). *Stochastic Differential Equations.* Sixth edition. Springer, Berlin.

[21] Resnick, S. I. (2007). *Heavy-Tail Phenomena.* Springer, New York.

[22] Schmitz, V. (2003). *Copulas and Stochastic Processes.* Shaker, Aachen.

[23] Schuss, Z. (2010). *Theory and Applications of Stochastic Processes.* Springer, New York.

[24] Sempi, C. (2010). Coupled brownian motion. In C. Borgelt, G. González Rodríguez, W. Trutschnig, M. A. Lubiano, M. Ángeles Gil, P. Grzegorzewski, and O. Hryniewicz (Eds.), *Combining Soft Computing and Statistical Methods in Data Analysis*, pp. 569–574. Springer, Berlin.

[25] Sempi, C. (2016). Copulae of processes related to the Brownian motion: A brief survey. In S. Saminger-Platz and R. Mesiar (Eds.), *On Logical, Algebraic, and Probabilistic Aspects of Fuzzy Set Theory*, pp. 173–180. Springer, Basel.

[26] Trutschnig, W. (2011). On a strong metric on the space of copulas and its induced dependence measure. *J. Math. Anal. Appl.* 384(2), 690–705.