Joint Effects of Febrile Acute Infection and an Interferon-γ Polymorphism on Breast Cancer Risk

Yi Su¹, Lu-Ying Tang², Li-Juan Chen¹, Jian-Rong He¹, Feng-Xi Su³, Ying Lin⁴, Wei-Qing Chen¹, Xiao-Ming Xie⁵, Ze-Fang Ren¹*
¹The School of Public Health, Sun Yat-Sen University, Guangzhou, China, ²The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China, ³The Second Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China, ⁴The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China, ⁵Department of Breast Oncology, Sun Yat-Sen University, Guangzhou, China

Abstract

Background: There is an inverse relationship between febrile infection and the risk of malignancies. Interferon gamma (IFN-γ) plays an important role in fever induction and its expression increases with incubation at fever-range temperatures. Therefore, the genetic polymorphism of IFN-γ may modify the association of febrile infection with breast cancer risk.

Methodology and Principal Findings: Information on potential breast cancer risk factors, history of fever during the last 10 years, and blood specimens were collected from 839 incident breast cancer cases and 863 age-matched controls between October 2008 and June 2010 in Guangzhou, China. IFN-γ (rs2069705) was genotyped using a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry platform. Odds ratios (OR) and 95% confidence intervals (CIs) were calculated using multivariate logistic regression. We found that women who had experienced ≥1 fever per year had a decreased risk of breast cancer [ORs and 95% CI: 0.77 (0.61–0.99)] compared to those with less than one fever a year. This association only occurred in women with CT/TT genotypes [0.54 (0.37–0.77)] but not in those with the CC genotype [1.09 (0.77–1.55)]. The association of IFN-γ rs2069705 with the risk of breast cancer was not significant among all participants, while the CT/TT genotypes were significantly related to an elevated risk of breast cancer [1.32 (1.03–1.70)] among the women with <1 fever per year and to a reduced risk of breast cancer [0.63 (0.40–0.99)] among women with ≥1 fever per year compared to the CC genotype. A marked interaction between fever frequencies and the IFN-γ genotypes was observed (P for multiplicative and additive interactions were 0.005 and 0.058, respectively).

Conclusions: Our findings indicate a possible link between febrile acute infection and a decreased risk of breast cancer, and this association was modified by IFN-γ rs2069705.

Citation: Su Y, Tang L-Y, Chen L-J, He J-R, Su F-X, et al. (2012) Joint Effects of Febrile Acute Infection and an Interferon-γ Polymorphism on Breast Cancer Risk. PLoS ONE 7(5): e37275. doi:10.1371/journal.pone.0037275

Introduction

Since the 19th century, it has been repeatedly observed that spontaneous cancer regressions were coincided with acute infections and the cancer patients had a remarkable disease-free history before the onset of cancer [1–4]. In the 20th century, an inverse association between infectious diseases, particularly febrile ones, and cancer risk has also been consistently found for malignant melanoma and glioma using modern epidemiological methods [1,3,5–7].

With the widespread introduction of antibiotics and antipyretics since the beginning of the last century, however, the critical role played by fever has often been overlooked, resulting in considerable changes to the clinical course and magnitude of the immune response that develops following acute infections [1,8]. These changes may be part of the reasons for the substantial increase in the age-adjusted incidences or mortalities of malignant diseases during the early part of the last century in western countries [9] and in the late of the last century in China [10]. It has been observed that every 2% reduction in infectious disease mortality was followed by a 2% increase in cancer mortality over a 10-year interval from 1895 to 1963 in Italy [9]. Conventional cancer treatments have made slow progress and cancer is still an incurable ailment. Under these circumstances, there are important implications for the re-exploration of this hidden treasure buried in time—that fever induced by acute infection may be antagonistic to cancer development [2,4]. We may take the advantage of fever, the beneficial aspect of acute infections, to prevent and treat cancer because we are able to induce and control fever much better than before [4].

Increased body temperature has been shown to stimulate the immune system through the augmentation of T and NK cell activity and the production of cytokines, including interferon gamma (IFN-γ) [11–13]. The IFN-γ expression has been found to increase along with the artificial elevation of fever-range temper-
Fever frequencies and genotypes in cases and controls

Results

Fever frequencies and genotypes in cases and controls

Breast cancer cases, compared to similarly aged controls, were more likely to be premenopausal and low educated. They were comparable in terms of marital status, body mass index (BMI), age at menarche, parity, and family history of breast cancer (Table 1). The proportions for different fever frequencies of below once, 1–2 times, 3–4 times, and 5 times or above per year were 76.1%, 19.3%, 3.3%, and 1.4% for patients and 72.1%, 23.0%, 3.3% and 1.5% for controls, respectively.

After adjustment for potential breast cancer risk factors, women who had experienced 1–2 fevers per year and 3 fevers or more per year exhibited a significant and a non-significant decreased risk of breast cancer compared to those who experienced below one fever a year with ORs and 95% CIs of 0.77 (0.61–0.99) and 0.79 (0.47–1.32), respectively (Table 2). The non-significant decrease in breast cancer risk was probably the result of the small sample size at this level (only 34 cases and 38 controls). Given that the direction of the two ORs is the same, we combined these two levels. The ORs and 95% CIs for the combined level of fever frequencies (below once, 1–2 times, 3–4 times, and 5 times or above per year) were 0.73 (0.61–0.99) in the multivariate model (Table 2). The genotypes of IFN-γ rs2069705 in a case-control study in Guangzhou, China.

Table 1. Characteristics of breast cancer cases and controls.

Characteristic	Cases, n (%)	Controls, n (%)	P value
Age			
<40	210 (25.0)	226 (26.2)	
41–59	494 (58.9)	491 (56.9)	
60+	135 (16.1)	146 (16.9)	0.709
Mean ± SD	48.97 ± 11.57	49.23 ± 11.76	0.654a
Education			
Junior middle school or below	389 (46.4)	315 (36.5)	
Senior middle school	216 (25.7)	326 (37.8)	
College or above	174 (20.7)	188 (21.8) <0.001	
Unknown	60 (7.2)	34 (3.9)	
Marital status			
Never married	41 (4.9)	33 (3.8)	
Married/living as married	711 (84.7)	717 (83.1)	
Separated/widow	46 (5.5)	63 (7.3)	0.182
Unknown	41 (4.9)	50 (5.8)	
Body mass index (kg/m²)			
<22	349 (41.6)	338 (39.2)	
22–24	240 (28.6)	273 (31.6)	
≥25	206 (24.6)	196 (22.7)	0.293
Unknown	44 (5.2)	56 (6.5)	
Age at menarche (years)			
≤12	109 (13.0)	(15.5)	
>12	682 (81.3)	689 (79.8)	0.160
Unknown	48 (5.7)	40 (4.6)	
Menopausal status			
Premenopausal	479 (57.1)	402 (46.6)	
Postmenopausal	338 (40.3)	430 (49.8)	<0.001
Unknown	22 (2.6)	31 (3.6)	
Age at menopause (years)*			
≤45	72 (21.3)	72 (16.7)	
46–50	(38.5)	182 (42.3)	
>50	99 (29.3)	155 (36.1)	0.096
Unknown	37 (11.0)	21 (4.9)	
Parity			
0	73 (8.7)	59 (6.8)	
≥1	732 (87.3)	772 (89.5)	
Unknown	34 (4.1)	32 (3.7)	0.144
Family history of breast cancer			
Absent	780 (93.0)	800 (92.7)	
Present	25 (3.0)	28 (3.2)	0.753
Unknown	34 (4.1)	35 (4.1)	

*Postmenopausal women only.

*Student’s t-test.

P values in bold indicate statistical significance.

doi:10.1371/journal.pone.0037275.t001

Joint effects of fever frequency and IFN-γ genotypes on breast cancer risk

Finally, the joint effects of fever frequency and IFN-γ genotypes on breast cancer risk were analyzed. Compared to women who...
had experienced a fever below once a year, the reduced risk of one fever or above per year was more evident among women with the CT/TT genotypes than among those with the CC genotype with ORs and 95% CIs of 0.54 (0.37–0.77) and 1.09 (0.77–1.55), respectively (Table 4). Compared to women with the CC genotype, the risk of breast cancer in women with the CT/TT genotypes was significantly elevated among women with <1 fever per year, whereas it was significantly reduced among women with ≥1 fever per year. The ORs and 95% CIs were 1.32 (1.03–1.70) and 0.63 (0.40–0.99), respectively (Table 4). A marked interaction between fever frequencies and the IFN-γ genotypes on breast cancer risk was observed (P for multiplicative and additive interaction were 0.005 and 0.058, respectively).

Discussion

Acute infections are often accompanied by inflammatory reactions including fever, which is a cytokine-mediated rise in core temperature, and other immunologic, endocrinologic, neurologic, and physiologic changes [1,30]. A fever can establish a cascade of host defense mechanisms by inducing the proliferation and differentiation of leucocytes and the secretion of interferons and other cytokines, which can modulate fever and regulate the immune system [14–16,19–22]. Moreover, it has been shown that a low level of IFN-γ promotes tumor development and a high level of IFN-γ mediates significant antitumor effects [25]. Based on the evidence that the T allele is associated with a higher level of IFN-γ [27,28,48], the co-existence of a fever and the T allele of IFN-γ plays a role in tumor development depending on certain environments, such as febrile infections.

The evidence of interplay between fevers and IFN-γ has been noted in previous experimental studies that show how fever can induce IFN-γ and be induced by IFN-γ [14–16,19–22]. However, it has been shown that a low level of IFN-γ promotes tumor development and a high level of IFN-γ mediates significant antitumor effects [25]. Based on the evidence that the T allele is associated with a higher level of IFN-γ than the C allele [27,28,48], the co-existence of a fever and the T allele of IFN-γ might increase the IFN-γ level high enough to make the host’s anticancer defense more effective while the co-existence of less fever and the T allele might keep IFN-γ at a certain low level to promote tumourogenesis, supporting our results to some extent. Moreover, tumor cells are more vulnerable to heat than normal cells and undergo necrosis to a larger extent [31,32] and hyperthermia has become an auxiliary approach in cancer therapy [14,33–36]. In addition, several epidemiological studies have consistently found an inverse association between febrile acute infections and cancer risk [1,3,5–7,37–39], especially for malignant melanoma, which have been shown a link to breast cancer in epidemiologic and genetic studies [40–42]. Therefore, our finding of an inverse association between fever frequency and breast cancer risk is in agreement with the results of previous studies.

Table 2. Multivariate odds ratio of breast cancer risk associated with previous fever frequency and IFN-γ genotypes.

Variables	Cases, n (%)	Controls, n (%)	OR (95%CI)a	OR (95%CI)b
Fever frequency (/year)				
<1 time	556 (76.1)	560 (72.1)	1.00 (reference)	1.00 (reference)
1–2 times	141 (19.3)	179 (23.0)	0.79 (0.62–1.02)	0.77 (0.59–1.00)
≥3 times	34 (4.7)	38 (4.9)	0.90 (0.56–1.45)	0.79 (0.47–1.32)
P for trend			0.136	0.056
≥1 time	175 (23.9)	217 (27.9)	0.81 (0.64–1.02)	0.77 (0.61–0.99)
IFN-γ rs2069705				
CC	407 (50.4)	442 (52.6)	1.00 (reference)	1.00 (reference)
CT	332 (41.1)	342 (40.7)	1.05 (0.86–1.29)	1.06 (0.86–1.31)
TT	68 (8.4)	56 (6.7)	1.32 (0.90–1.93)	1.28 (0.87–1.90)
P for trend			0.204	0.245
CT+TT	400 (49.6)	398 (47.4)	1.09 (0.90–1.32)	1.09 (0.89–1.34)

*aAdjusted for age.

*bAdjusted for age, BMI, age at menarche, marital status, education, parity, menopausal status, and family history of breast cancer.

Values in bold indicate statistical significance.

doi:10.1371/journal.pone.0037275.t002

IFN-γ is one of the main products of Th1-specific proinflammatory cytokines and has an effect on host defense and immune regulation, such as antivirus, antimicrobial, and antitumor activities [43]. It has also been shown to have a high correlation to tumor regression in immunotherapy, but these results were mixed as to the efficacy in clinical trials [43]. Several studies have examined the association of polymorphisms in the IFN-γ gene, mainly rs2069705 (−1615 C/T) and rs2430561 (+874 T/A), with the risk of breast cancer [29,44–47], but these results also conflicted with null, positive, and inverse associations. In the present study, we found a null association of IFN-γ rs2069705 with the risk of breast cancer among the study participants as a whole. However, we observed a positive association among the women with <1 fever per year but an inverse association among women with ≥1 fever per year for the CT/TT genotypes and breast cancer risk. These phenomena may explain the previously mentioned inconsistent results to some extent, and suggest that IFN-γ plays a role in tumorigenesis depending on certain environments, such as febrile infections.
much as possible by ensuring that the interviewers were unaware of this study’s point of interest. Recall bias is another unavoidable concern in a case-control study. However, misclassification due to recall bias occurred equally in both groups of patients and controls. This non-differential misclassification meets the conditions to reduce test power and bias study estimators toward no association [49]. In the present study, moreover, due to an awareness of their disease status, patients might be more likely to recall their fever histories than controls, resulting in a more underestimated association. Therefore, the positive association between febrile infections and breast cancer risk cannot be completely explained by biased information. All of the participants in the present study were Han Chinese. Therefore, the results were not affected by population admixture or genetic heterogeneity. In addition, the frequency of the IFN-γ rs2069705 C allele among the healthy controls was 0.73 in our study, which was similar to that in the general Chinese population [47].

Table 3. Multivariate odds ratio of breast cancer associated with previous fever frequency stratified by clinicopathological characteristics.

Characteristics	Fever frequency	IFN-γ rs2069705						
	Frequency (time/year)	Cases (n (%))	Controls (n (%))	OR (95%CI)*	Genotype	Cases (n (%))	Controls (n (%))	OR (95%CI)*
Menopause								
Premenopausal	<1 1 330 (76.6) 268 (73.8) 1.00 (reference) CC 242 (52.7) 207 (52.5) 1.00 (reference)							
	≥1 1 101 (23.4) 95 (26.2) 0.82 (0.58–1.15) CT/TT 217 (47.3) 187 (47.5) 0.96 (0.73–1.28)							
Postmenopausal	<1 1 224 (75.4) 278 (69.8) 1.00 (reference) CC 156 (47.9) 219 (52.8) 1.00 (reference)							
	≥1 1 73 (24.6) 120 (30.2) 0.71 (0.50–1.03) CT/TT 170 (52.1) 196 (47.2) 1.18 (0.86–1.61)							
P^a for interaction (multiplicative/additive)	0.685/0.596	0.491/0.750						
BMI	<24 1 341 (73.5) 349 (70.9) 1.00 (reference) CC 261 (52.2) 277 (53.0) 1.00 (reference)							
	≥24 1 123 (26.5) 143 (29.1) 0.88 (0.65–1.18) CT/TT 239 (47.8) 246 (47.0) 0.97 (0.75–1.26)							
P^a for interaction (multiplicative/additive)	0.099/0.057	0.293/0.148						
Clinical stage	Localized							
	<1 1 306 (75.2) 560 (72.1) 1.00 (reference) CC 211 (47.7) 442 (52.6) 1.00 (reference)							
	≥1 1 101 (24.8) 217 (27.9) 0.83 (0.62–1.11) CT/TT 231 (52.3) 398 (47.4) 1.18 (0.93–1.49)							
Regional/distant	<1 1 207 (76.7) 560 (72.1) 1.00 (reference) CC 158 (52.7) 442 (52.6) 1.00 (reference)							
	≥1 1 63 (23.3) 217 (27.9) 0.75 (0.53–1.05) CT/TT 142 (47.3) 398 (47.4) 0.99 (0.75–1.32)							
P^a for heterogeneity test	0.469	0.184						
ER	Positive							
	<1 1 367 (75.1) 560 (72.1) 1.00 (reference) CC 273 (51.0) 442 (52.6) 1.00 (reference)							
	≥1 1 122 (24.9) 217 (27.9) 0.83 (0.63–1.08) CT/TT 262 (49.0) 398 (47.4) 1.05 (0.84–1.32)							
Negative	<1 1 150 (79.4) 560 (72.1) 1.00 (reference) CC 107 (50.2) 442 (52.6) 1.00 (reference)							
	≥1 1 39 (20.6) 217 (27.9) 0.67 (0.45–1.00) CT/TT 106 (49.8) 398 (47.4) 1.08 (0.79–1.48)							
P^a for heterogeneity test	0.235	0.911						
PR	Positive							
	<1 1 317 (74.8) 560 (72.1) 1.00 (reference) CC 247 (52.2) 442 (52.6) 1.00 (reference)							
	≥1 1 107 (25.2) 217 (27.9) 0.86 (0.65–1.14) CT/TT 226 (47.8) 398 (47.4) 1.01 (0.80–1.28)							
Negative	<1 1 199 (78.7) 560 (72.1) 1.00 (reference) CC 133 (48.5) 442 (52.6) 1.00 (reference)							
	≥1 1 54 (21.3) 217 (27.9) 0.66 (0.46–0.94) CT/TT 141 (51.5) 398 (47.4) 1.15 (0.86–1.53)							
P^a for heterogeneity test	0.123	0.459						
HER2	Positive/equivocal							
	<1 1 153 (75.7) 560 (72.1) 1.00 (reference) CC 115 (50.2) 442 (52.6) 1.00 (reference)							
	≥1 1 49 (24.3) 217 (27.9) 0.82 (0.56–1.19) CT/TT 114 (49.8) 398 (47.4) 1.09 (0.80–1.48)							
Negative	<1 1 354 (76.5) 560 (72.1) 1.00 (reference) CC 258 (51.3) 442 (52.6) 1.00 (reference)							
	≥1 1 109 (23.5) 217 (27.9) 0.78 (0.59–1.03) CT/TT 245 (48.7) 398 (47.4) 1.03 (0.82–1.30)							
P^a for heterogeneity test	0.969	0.682						

*aAdjusted for age, BMI, age at menarche, marital status, education, parity, menopausal status, and family history of breast cancer (excluded the stratified factor in each stratum).

Values in bold indicate statistical significance.
doi:10.1371/journal.pone.0037275.t003
Data collection and laboratory protocol

Cases and controls were interviewed face-to-face by trained interviewers using the same questionnaire. The following information was obtained from the interviews: menstrual and reproductive history, personal history of diseases including febrile acute infections, family history of cancer, height and weight, and demographic factors. In the instance of infections, subjects were asked to recall the average number of times per year during the last 10 years that they had experienced a fever or body temperature ≥38°C as the result of acute febrile infections including influenza, common cold, infectious enteritis, bronchitis, pneumonia, and herpes simplex (<1, 1–2, 3–4, or ≥5 times). Information about these infections was successfully collected from 731 cases (87.1% of those eligible) and 777 controls (90.0% of those eligible). The interviewers did not know the hypotheses of this study.

Blood samples were collected immediately after admission to the hospital for patients or after the interview for controls and were stored at −80°C. The clinical characteristics of the breast cancer patients were collected from medical records. The statuses of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) for the breast cancer were determined by pathologists using immunohistochemistry tests. The definitions of statuses of ER, PR and HER2 statuses were described in detail in our previous study [52].

Genomic DNA was extracted from the buffy coats of the participants using the TIANamp Genomic DNA Kit (TianGen Biotech Co., Ltd., Beijing, China) and genotyped using a matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry platform (Sequenom, San Diego, California, USA), according to the manufacturer’s instructions. The details of the primers were described elsewhere [51]. Duplicates (5% of the total) were included for the evaluation of genotyping quality and the concordance rate was 100%. Genotyping was successfully performed among 807 (96.2%) cases and 840 (97.3%) controls for IFN-γ rs2069705. No deviation from the Hardy-Weinberg equilibrium was observed (P = 0.350 in control group).
Statistical analysis

The differences in demographic characteristics and common risk factors for breast cancer between the cases and controls were tested using the \(\chi^2 \) test (for categorical variables) or Student’s \(t \)-test (for continuous variables). Differences in fever frequency between cases and controls were tested using the Mann-Whitney \(U \) test. The Hardy–Weinberg equilibrium for \(IFN-\gamma \) rs2069705 was evaluated using a goodness-of-fit \(\chi^2 \) test to compare the observed genotype frequency with the expected one among the controls. Multivariate logistic regression models were used to assess the effects of fever history and genotype on breast cancer risk, controlling for age, and for the potential risk factors of breast cancer (age, BMI, age at menarche, marital status, education, parity, menopausal status, and family history of breast cancer), which were defined categorically with the exception of age (Table 1). Models were fit using fever frequencies as categorical variable. For evaluating the dose-response association between fever frequency and the risk of breast cancer, tests for trends were performed by entering the categorical variables as continuous variables in the model. Stratified analyses for the associations between fever frequency, genotype, and the risk of breast cancer were performed by menopausal status, BMI, and clinical characteristics. The heterogeneity of the odds ratios between different studies was assessed using a method proposed by Rothman [53,54].

The interaction between fever frequency and genotype on breast cancer risk was evaluated by multiplicative and additive models. We tested for multiplicative interaction by including the product term in multivariate logistic regression. Additive interaction was assessed using a method proposed by Rothman [53,54]. All statistical tests were two-tailed with \(P < 0.05 \) considered to be significant. Statistical analyses were performed using SAS 9.2 (SAS Institute Inc., Cary, NC, USA).

Acknowledgments

We wish to thank the women who participated in this study and the members who were involved in the investigation (Biyun Chen, Xin Wang, Huajin Qi, Xuejiao Yuan, Shaofang Zhu, et al.).

Author Contributions

Conceived and designed the experiments: ZR LT XX. Performed the experiments: YS LC JH. Analyzed the data: YS JH. Wrote the paper: YS LT XX ZR. Collected information and biospecimen: YS FS YL WC XX.

References

1. Hoitton Cann SA, van Netten JP, van Netten C (2006) Acute infections as a means of cancer prevention: opposing effects to chronic infections? Cancer Detect Prev 30: 83–93.
2. Hoitton Cann SA, van Netten JP, van Netten C, Glover DW (2002) Spontaneous regression: a hidden treasure buried in time. Med Hypotheses 58: 113–119.
3. Kleef R, Jonas WB, Knooger W, Steninger W (2001) Fever, cancer incidence and spontaneous remissions. Neuroimmunomodulation 9: 55–64.
4. Hobohm U (2001) Fever and cancer in perspective. Cancer Immunol Immunother 50: 391–396.
5. Hobohm U (2005) Fever therapy revisited. Br J Cancer 92: 421–425.
6. KolmelKF, Pfalberg A, Mastrangelo G, Nini M, Bovet N, et al. (1999) Infections and melanoma risk: results of a multicentre EORTC case-control study. European Organization for Research and Treatment of Cancer. Melanoma Res 9: 511–519.
7. Schlehofer B, Blettner M, Preston-Martin S, Niehoff D, Wahrendorf J, et al. (1999) Role of medical history in brain tumour development. Results from the International adult brain tumour study. Int J Cancer 82: 153–160.
8. Hoitton Cann SA, van Netten JP, van Netten C (2003) Dr William Coley and tumour regression: a place in history or in the future. Postgrad Med J 79: 672–680.
9. Mastrangelo G, Fadda E, Milan G (1998) Cancer increased after a reduction of fever (for continuous variables). Differences in fever frequency between patients with and without breast cancer. Cytokine 51: 18–24.
10. Yang L, Parkin DM, Li L, Chen Y (2003) Time trends in cancer mortality in China: 1987–1999. Int J Cancer 106: 771–783.
11. Hasday JD, Fairchild KD, Shanbhag C (2000) Role of fever in the infected host. Microbes Infect 2: 1891–1900.
12. Roberts NJ, Jr. (1991) Impact of temperature elevation on immunologic defenses. Rev Infect Dis 13: 462–472.
13. Karayian Z, Zakaryan H, Sargsyan K, Voskanian H, Arzumanian H, et al. (2012) Interferon status and white blood cells during infection with African swine fever virus in vivo. Vet Immunol Immunopathol 145: 551–555.
14. Kida Y, Tsujii-Kawahara S, Otsaperu V, Kinosita H, Kijisawa E, et al. (2006) Increased liver temperature efficiently augments human cellular immune response: T-cell activation and possible monocyte translocation. Cancer Immunol Immunother 55: 1459–1469.
15. Bauer S, Srivastava PK (2003) Fever-like temperature induces maturation of dendritic cells through induction of bap90. Int Immunol 15: 1053–1061.
16. Aaby MG, Ravn P, Johansen BS, Engen-Olsen J, Ruholm M (2011) Incubation of whole blood at 39 degrees C augments gamma interferon (IFN-\(\gamma \))-induced protein 10 and IFN-\(\gamma \)-induced responses to Mycobacterium tuberculosis antigens. Clin Vaccine Immunol 18: 1150–1156.
17. Ostberg JR, Repasky EA (2006) Emerging evidence indicates that physiologically relevant thermal stress regulates dendritic cell function. Cancer Immunol Immunother 55: 299–298.
18. Atanackovic D, Nierhaus A, Neumier M, Hossfeld DK, Hegewisch-Becker S (2002) 41.8 degrees C whole body hyperthermia as an adjunct to chemotherapy induces prolonged T cell activation in patients with various malignant diseases. Cancer Immunol Immunother 51: 609–613.
19. Netae MG, Kullberg BJ, Van der Meer JW (2000) Circulating cytokines as mediators of fever. Clin Infect Dis 31 Suppl 3: S178–184.
20. Dinarello CA, Bernheim HA, Duft GW, Le HV, Nagabhushan TL, et al. (1984) Mechanisms of fever induced by recombinant human interferon. J Clin Invest 74: 906–913.
21. Morimoto A, Murakami N, Takada M, Teshirogi S, Watanabe T (1987) Fever and acute phase response induced in rabbits by human recombinant interferon-gamma. J Physiol 391: 209–218.
22. Dinarello CA (1999) Cytokines as endogenous pyrogens. J Infect Dis 179 Suppl 2: 8294–304.
23. Lane HC, Fauci AS (1983) Immunologic reconstitution in the acquired immunodeficiency syndrome. Ann Intern Med 103: 714–718.
24. Kurzrock R, Quisada JR, Rosenblum MG, Sherwin SA, Gutterman JU (1986) Phase I study of i.v. administered recombinant gamma interferon in cancer patients. Cancer Treat Rep 70: 1537–1564.
25. Ye HF, Yang WR, Zhang GM, Chen HT, Zhang H, et al. (2003) Sustained low-level expression of interferon-gamma promotes tumor development: potential insights in tumor prevention and tumor immunotherapy. Cancer Immunol Immunother 54: 891–897.
26. Ruiz-Ruiz C, Munoz-Pinedo C, Lopez-Rivas A (2000) Interferon-gamma treatment elevates caspase-8 expression and sensitizes human breast tumor cells to a death receptor-induced mitochondria-operated apoptotic program. Cancer Res 60: 5673–5680.
27. Harigai M, Kawamoto M, Hara M, Kubota T, Kamei H, et al. (2008) Excessive production of IFN-\(\gamma \) in patients with systemic lupus erythematosus and its contribution to induction of B lymphocyte stimulator/B cell-activating factor/TNF ligand superfamily-13B. J Immunol 181: 2211–2219.
28. Kim K, Cho SK, Sestak A, Namjou B, Kang C, et al. (2010) Interferon-gamma gene polymorphisms associated with susceptibility to systemic lupus erythematosus. Ann Rheum Dis 69: 1247–1250.
29. Erdel E, Kang H, Meiner A, White K, Pickett G, et al. (2010) Polymorphisms in cytokine genes and serum cytokine levels among New Mexican women with and without breast cancer. Cytokine 51: 18–24.
30. Gregson AL, Mackow PA (2004) Pathogenesis of fever. In: Cohen J, Powderly WG, eds. Infectious diseases 2nd ed. New York: Mosby. 853 p.
31. Dickson JA (1979) Hyperthermia in the treatment of cancer. Lancet 1: 202–205.
32. Trieb K, Sztankay A, Amberger A, Lechner H, Grubeck-Loebenstein B (1994) Excessive production of IFN-\(\gamma \)-induced protein 10 and IFN-\(\gamma \)-induced responses to Mycobacterium tuberculosis antigens. J Clin Invest 94: 1151–1157.
36. Wust P, Hildebrandt B, Sreenivasa G, Rau B, Gellermann J, et al. (2002)
 Hyperthermia in combined treatment of cancer. Lancet Oncol 3: 487–497.
37. Abel U, Becker N, Angerer R, Frentzel-Beyme R, Kaufmann M, et al. (1991)
 Common infections in the history of cancer patients and controls. J Cancer Res
 Clin Oncol 117: 339–344.
38. Kolmel KF, Gefeller O, Haferkamp B (1992) Febrile infections and malignant
 melanoma: results of a case-control study. Melanoma Res 2: 207–211.
39. Grossarth-Maticek R, Frentzel-Beyme R, Kanazir D, Jankovic M, Vetter H
 (1987) Reported herpes-virus-infection, fever and cancer incidence in a
 prospective study. J Chronic Dis 40: 967–976.
40. Borg A, Sandberg T, Nilsson K, Johannsson O, Klinker M, et al. (2000) High
 frequency of multiple melanomas and breast and pancreas carcinomas in
 CDKN2A mutation-positive melanoma families. J Natl Cancer Inst 92:
 1260–1266.
41. Goggins W, Gao W, Tsao H (2004) Association between female breast cancer
 and cutaneous melanoma. Int J Cancer 111: 792–794.
42. Ho WL, Comber H, Hill AD, Murphy GM (2011) Malignant melanoma and
 breast carcinoma: a bidirectional correlation. J Clin Immunol 31: 901–903.
43. Miller CH, Mahler SG, Young HA (2009) Clinical Use of Interferon-gamma.
 Ann N Y Acad Sci 1172: 69–79.
44. Karakus N, Kara N, Ulusoy AN, Ozaslan C, Bek Y (2011) Tumor necrosis
 factor alpha and Beta and interferon gamma gene polymorphisms in Turkish
 breast cancer patients. DNA Cell Biol 30: 371–377.
45. Kamali-Sarvestani E, Merat A, Talei AR (2005) Polymorphism in the genes of
 alpha and beta tumor necrosis factors (TNF-alpha and TNF-beta) and gamma
 interferon (IFN-gamma) among Iranian women with breast cancer. Cancer Lett
 223: 113–119.
46. Scola L, Vaglica M, Grivello A, Palmeri L, Forte GI, et al. (2006) Cytokine gene
 polymorphisms and breast cancer susceptibility. Ann N Y Acad Sci 1089:
 104–109.
47. Guoniu G, Basturk B, Evernel T, Oral B, Geokaman A, et al. (2007)
 Association of breast cancer and cytokine gene polymorphism in Turkish
 women. Saund Med J 28: 1728–1733.
48. He JR, Chen LJ, Su Y, Gao YL, Tang LY, et al. (2012) Joint effects of Epstein-
 Barr virus and polymorphisms in interleukin-10 and interferon-gamma on breast
 cancer risk. J Infect Dis 205: 64–71.
49. Jurek AM, Greenland S, Maldonado G, Church TR (2005) Proper
 interpretation of non-differential misclassification effects: expectations vs
 observations. Int J Epidemiol 34: 680–687.
50. Lee HC, Chang TY, Yeung CY, Chan WT, Jiang CB, et al. (2010) Association
 of interferon-gamma gene polymorphisms in Taiwanese children with biliary
 atresia. J Clin Immunol 30: 68–73.
51. He Jr, Chen LJ, Su Y, Gao YL, Tang LY, et al. (2011) Joint Effects of Epstein-
 Barr Virus and Polymorphisms in Interleukin-10 and Interferon-gamma on
 Breast Cancer Risk. J Infect Dis 205: 64–71.
52. He Jr, Tang LY, Yu DD, Su FX, Song EW, et al. (2011) Epstein-Barr virus and
 breast cancer: serological study in a high-incidence area of nasopharyngeal
 carcinoma. Cancer Lett 309: 126–136.
53. Rothman KJ (1976) The estimation of synergy or antagonism. Ann J Epidemiol
 103: 506–511.
54. Ren ZF, Liu WS, Qin HD, Xu YF, Yu DD, et al. (2010) Effect of family history
 of cancers and environmental factors on risk of nasopharyngeal carcinoma in
 Guangdong, China. Cancer Epidemiol 34: 419–424.