Data Article

Chemical composition of steam and solvent crude oil extracts from Azadirachta indica leaves

D.E. Babatunde a,*, G.O. Otusemade a, V.E. Efeovbokhan a, M.E. Ojewumi a, O.P. Bolade b, T.F. Owoye b

a Department of Chemical Engineering, Covenant University, PMB 1023, Ota, Ogun State, Nigeria
b Department of Chemistry, Covenant University, PMB 1023, Ota, Ogun State, Nigeria

A R T I C L E I N F O

Article history:
Received 24 September 2018
Revised 19 February 2019
Accepted 27 February 2019
Available online 28 February 2019

Keywords:
Essential oil
Bioactive
Herbal
Extraction
Chemical structure

A B S T R A C T

This work identifies the chemical components of Azadirachta indica (neem plant) leave extracts. A. indica is a vascular plant which belongs to the Meliaceae family and its use as herb in folk medicine is widely acclaimed. Essential oils were extracted from leaves of A. indica. Steam and solvent extraction methods were used with two solvents: Ethanol and Hexane. The crude oil extracted using both extraction methods were analyzed using GC–MS. The result of the analyses show that the major constituents were Eicosane (9.7662%), Diacacenaphth[1,2-j:1′,2′-j]fluoranthene (11.301%), Phenol, 4-[(4-methoxyphenyl)methylene]methyleneamino]- (11.84%) and (3aR,5aR,9aR)-1,2,3,4,5,6,7,9a-octahydro-8-methyl-3a,6-methano-3ah-cyclopentacycloocten-10-one (36.883%) in steam extracted oil; Eicosane (10.259%), Diacacenaphth[1,2-j:1′,2′-j]fluoranthene (13.51%) and Butanamide, N-(2-methoxyphenyl)-3-oxo- (16.615%) in the ethanol extracted oil, and (3aR,5aR,9aR)-1,2,3,4,5,6,7,9a-octahydro-8-methyl-3a,6-methano-3ah-cyclopentacycloocten-10-one (10.72%), n-Hexadecanoic acid (14.688%) and 9,12,15-Octadecatrienoic acid, (Z,Z,Z) (34.719%) in the hexane extracted A. indica essential oil.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

Specifications Table

Subject area	Chemical Engineering, Biochemistry
Compounds	Active Ingredient
Data category	data of bioactive compounds in crude essential oil from neem and lemon plants
Data acquisition format	Mass spectra
Data type	Raw, analyzed
Procedure	Oil samples were analyzed using a gas chromatography-mass spectrometry analyzer, Agilent technologies 7890B GC system, operating at ionization energy of 70 eV with a HP-5MS capillary column (30 m × 0.25 mm; film thickness 0.50 μm). 1 μl of essential oil was injected in split/splitless mode at a split ratio of 20:1 and an inlet temperature of 250 °C. The carrier gas used to aid the analysis of the essential oils was helium at a constant pressure mode of 9.4 psi. The oven was programmed to have a 3 °C/min incremental raise until it reached 240 °C from 60 °C. The mass spectrometry analyzer was operated at a scan mode in 40–400 m/z range with an ion source and transfer line temperature at 230 and 300 °C respectively. ChemStation software was used in the analysis of the data acquired from the GC–MS. The constituents of the essential oils was determined based on their Kovats indices (K), retention time (RT) and mass spectra with NIST.

* Corresponding author.
E-mail address: damilola.babatunde@covenantuniversity.edu.ng (D.E. Babatunde).

https://doi.org/10.1016/j.cdc.2019.100208
2405-8300 © 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)
1. Rationale

It has long been observed that plants’ roots, flowers, seeds and leaves contain some active ingredients. Some are being extracted with organic solvent such as ether while some are odouriferous and very volatile [1–3]. Azadirachta indica is a vascular perennial plant belonging to the family Meliaceae and has A. excelsa as its only congener. It is a fast growing evergreen tree. Its leaves are pinnate and consist of 20–30 serrated leaflets which are dark green in colour when they are mature. A indica adapts to tropical and subtropical climates and grows best where annual rainfall is between 450–1200 mm. Although A. indica can grow within soil pH of 5.0–8.0 and is known to survive in variety of soil types, it is best adapted to deep, permeable sandy soil and soil pH between 6.2–7.0 [4]. A. indica extracts are used in cosmetics, insecticides and repellents. The plant is also known to have diverse medicinal values. Constituents of extracts from the leaves and other parts of the plant have been reported to exhibit antidiabetic, immunomodulatory, diuretic, antiseptic, anti-inflammatory, antipyretic, anti-hyperglycaemic, antiulcer, antiarthritic, antimalarial, spermicidal, antifungal, antibacterial, hypoglycemic, antioxidant, antimutagenic and anticarcinogenic properties [5–8]. A. indica leave extracts and some other leaves are active against certain dermatophytes, microorganisms and parasitic insects such as bacteria, fungi and mosquitoes [9–11]. The wide range of bioactive constituents and the versatility of the use of A. indica plant extracts have positioned the plant as one of the most important herbal and medicinal plants [12].

As there are renewed interests in herbal based medications in order to forestall the side effects of synthetic drugs, the quest to find new and unique molecular structures of plant origin as major constituents of some natural products, and those of modern drugs as means of combating recalcitrant diseases is also on the increase [13–15]. Inasmuch as essentials oils and other plant extracts are principally products of complex biological processes; and genetics and environment play crucial role in determining the morphology, chemical composition and ultimately the properties of herbal and medicinal plants [16,17], expanded knowledge rooted in holistic scientific research will open up a wealth of possibilities. As demand for plant based medication increases, studies on taxonomy, toxicity, chemical analysis and pharmacology of plant secondary metabolites will among other things, prevent problems associated with indiscriminate use caused by incorrect identification, improper documentation and lack of standardization of plant based extracts and their products. This work presents the chemical components of essential oils from A. indica leaves of Nigerian origin, extracted using steam, ethanol and hexane for the purpose of further scientific investigations.

2. Procedure

2.1. Source of raw materials

Several A. indica trees are found within the premises of Covenant University, Ota, Ogun State, Nigeria. Ota is on latitude 6.41 °N and longitude 3.41 °E, has a tropical climate and a mean annual rainfall of 1280 mm. Fresh leaves were plucked from one of the A. indica trees found on sandy - loam soil within the academic area of the University, air dried and partly ground to powder.

2.2. Extraction of the essential oil by steam distillation

The air dried leaves was placed in a conical flask with distilled water at the bottom of the flask and an electrically powered hot plate with a control dial to set the temperature as desired served as the heat source for generating the required steam for the extraction process. A T-connector, having a thermometer at one end and a condenser at the other was attached to the conical flask with the aid of a cork. The condenser had an L-connector at its other end by which it was attached to a flat bottom flask with a cork. The mixture of extracted essential oil and water flowed from the conical flask to the flat bottom flask.

2.3. Solvent extraction of the essential oil

Using the Soxhlet apparatus, essential oil was extracted from the plant material with hexane and ethanol. The ground plant material was placed in a muslin cloth material and put in the extraction chamber of the Soxhlet apparatus. Hexane or ethanol was placed in the flat bottom flask: 300 ml of each of the solvent was used to cause a siphoned flow in the apparatus without totally evaporating from the flat bottom flask. As the solvent is evaporated from the flat bottom flask at a temperature between 50–70 °C for hexane and 78.24 °C for ethanol, it goes through the distillation path through which it gets to the middle section of the Soxhlet apparatus before the vapour flows to the condenser at the top of the apparatus. The vapour condenses and falls back into the middle section of the Soxhlet apparatus where it comes in contact with the plant material placed there. Based on the design of the apparatus, the solvent has enough retention time in the middle
section to enable it to extract the desired substances from the plant material there before it is siphoned back into the flat bottom flask.

2.4. Oil extract analysis

The composition of the oil extracts was determined with the use of a gas chromatography-mass spectrometry analyser, Agilent technologies 7890B GC system, operating at ionization energy of 70 eV with a HP-5MS capillary column (30 m × 0.25 mm; film thickness 0.50 μm). 1 μl of essential oil was injected in split/splitless mode at a split ratio of 20:1 and an inlet temperature of 250 °C. The carrier gas used to aid the analysis of the essential oils was helium at a constant pressure mode of 9.4 psi. The oven was programmed to have a 3 °C/min incremental raise until it reached 240 °C from 60 °C. The mass spectrometry analyser was operated at a scan mode in 40–400 m/z range with an ion source and transfer line temperature at 230 and 300 °C respectively. ChemStation software was used in the analysis of the data acquired from the GC–MS. The constituents of the essential oils was determined based on their Kovats indices (KI), retention time (RT) and mass spectra with NIST.
Fig. 3. Gas chromatogram of hexane extracted essential oil from A. indica leaves.

Fig. 4. Gas chromatogram of commercial neem oil.

3. Data, value and validation

The chemical components of neem essential oil from commercial source and those extracted from A. indica leaves with steam, ethanol and hexane are presented in Table 1 and the gas chromatograms are shown in Figs. 1–4.

Respectively, a total of 39, 44, 44 and 25 compounds were identified in essential oil extracted using steam, ethanol, hexane and the commercial neem oil. 2,6-Octadienal, 3,7-dimethyl-, (Z)-; Citral; Eicosane and 1,2-Bis(trimethylsilyl)benzene were found to be common chemical components of essential oils from steam extraction, ethanol extraction, hexane extraction and the commercial neem oil. Eicosane is known to possess antifungal, antibacterial, antitumor and cytotoxic properties [18]. Anticancer, antimicrobial, antioxidant and hypercholesterolemic properties of 9,12,15-Octadecatrienoic acid, (Z,Z,Z)- have been reported [19]. Several fatty acids like oleic acid and hexadecanoic acid exhibit antibacterial and antifungal activities [20]. Octadecanoic acid is also known to possess antitumor activity in addition to antibacterial and antifungal activities [18,21]. The roles of minor components in increasing the activity of essential oils and providing synergistic effects have been shown [22]; hence, probable contributions of minor components to the overall properties of essential oils should not be underestimated. As an antioxidant, Vitamin E has the capability to protect organisms from oxidative stress [23].
Table 1 Constituents of crude oil extracts from Azadirachta indica leaves and a commercial source as identified by GC–MS analysis.

No	RT	Compound	Area% for extraction methods considered	Area% for commercial essential oil				
			Steam	Ethanol	Hexane			
1	3.2014	Toluene	ND	1.0011	0.8454	ND		
2	3.476	Cyclopentanol, 1-methyl-	ND	ND	0.369	ND		
3	3.503	Silanediol, dimethyl-	0.2081	ND	ND	ND		
4	5.462	3-Pentanol, 2-methyl-	ND	ND	0.2057	ND		
5	6.776	1,2,3,4-Butanetetrol, [5-(R, R')]	ND	0.251	ND	ND		
6	10.898	4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl-	ND	0.2448	ND	ND		
7	13.226	2,6-Octadienal, 3,7-dimethyl-, (Z)-	0.4485	0.744	1.1123	0.1863		
8	13.507	Geraniol	ND	ND	0.1885	ND		
9	13.896	Citral	0.5734	0.7511	1.4285	0.2286		
10	16.385	2,6-Octadien-1-ol, 3,7-dimethyl-, (Z)-	ND	ND	0.1808	ND		
11	16.722	Undecane	ND	0.1974	ND	ND		
12	17.289	Caryophyllene	ND	ND	0.3518	ND		
13	17.483	Cyclopentaneundecanoic acid	ND	0.224	ND	ND		
14	17.546	N-acetyl-4-fluoromphetamine	ND	0.4074	ND	ND		
15	17.575	1,3,6,10-Dodecatetraene, 3,7,11-trimethyl-, (Z,E)-	ND	ND	0.2578	ND		
16	17.947	Diethylmalonic acid, di(3-chlorobenzyl) ester	ND	ND	0.659	ND		
17	18.021	1-Decanol, 2-hexyl-	ND	ND	0.2578	ND		
18	18.141	4,5-Dimethyl-3-heptanol	ND	ND	0.7893	ND		
19	18.645	Octanal, 7-hydroxy-3,7-dimethyl-	ND	0.2364	ND	ND		
20	18.799	Pentadecane	ND	ND	0.1359	ND		
21	19.063	.beta.-Bisabolene	ND	ND	ND	0.1402		
22	19.223	Naphthalene, 1,2,4a,5,6,8a-hexahydro-4,7-dimethyl-1-(1-methylthyl)-	ND	ND	0.2427	ND		
23	19.549	1,4-Diphenyl-1H-indene, octahydro-1,7a-dimethyl-4-(1-methylthyl)-,	ND	ND	0.1652	ND		
24	20.167	1-Piperidinethiocarbamide	ND	1.3956	ND	ND		
25	20.528	Imidazolidine-2-carboxylic acid, 4-methyl-	ND	0.4337	ND	ND		
26	20.631	Hexadecane, 1-(ethenlyxoxy)-	ND	0.2265	ND	ND		
27	20.768	Hexadecane	ND	0.1809	ND	ND		
28	21.294	Azulene, 1,2,3,3a,4,5,6,7-octahydro-1,4-dimethyl-7-(1-methylthynyl)-,	0.4568	0.6594	ND	ND		
29	21.706	.alpha.-Cadinal	ND	0.3012	ND	ND		
30	21.798	1-[1-4-Hydroxy-1-methylproline	ND	ND	0.1621	ND		
31	21.952	1,4-Methano-1H-indene, octahydro-1,7a-dimethyl-4-(1-methylthynyl)-,	ND	ND	0.224	ND		
32	22.748	1-Naphthalenol, decahydro-1,4a-dimethyl-7-(1-methylthyleneidene)-,	ND	0.2223	ND	ND		
33	22.753	Pentadecane, 2,6,10,14-tetramethyl-	ND	ND	0.1602	ND		
34	23.709	Tetradecanoic acid	ND	ND	0.1533	0.1998		
35	23.823	N-Benzhydrolimidazole	ND	0.2007	ND	ND		
36	24.825	2-Naphthalenemethanol	ND	0.514	ND	ND		
37	25.214	2-Pentadecanoine, 6,10,14-trimethyl-	ND	ND	0.1843	ND		
38	26.558	Hexadecanoic acid, methyl ester	ND	ND	ND	0.2843		
39	27.114	n-Hexadecanoic acid	ND	2.117	14.688	19.463		
40	27.668	Ethyl 13-methyl-tetradecanate	ND	ND	ND	0.4315		
41	29.236	9,12-Octadecadienoic acid, (Z,Z)-, methyl ester	ND	ND	0.1296	ND		
42	29.328	11-Octadecenoic acid, methyl ester	ND	ND	0.322	ND		
43	29.328	6-Octadecenoic acid, methyl ester, (Z)-	ND	ND	ND	0.6452		
44	29.522	Phytol	ND	ND	8.0087	ND		
45	29.545	3H-Pyrazolo	4,3-c	quinolinol-3-one, 8-fluoro-1,2-dihydro-	ND	1.1577	ND	ND
46	29.711	2-Methyl stearate	ND	ND	ND	0.2046		
47	29.797	9,12-Octadecadienoic acid, (Z,Z)-	ND	0.8601	ND	ND		
48	29.894	9,12,15-Octadecatrienoic acid, (Z,Z,Z)-	ND	2.8747	34.719	ND		
49	30.198	Octadecanoic acid	ND	0.2942	ND	10.187		
50	30.215	Oleic Acid	ND	ND	ND	55.723		
51	30.352	9-Octadecenoic acid, (E)-	ND	ND	ND	2.2079		
52	31.079	Tridecanal	ND	ND	0.1968	ND		
53	34.809	Thujone	0.4116	ND	ND	ND		
54	34.987	2-Dodecen-1-yl)-succinic anhydride	0.396	ND	ND	ND		
55	34.993	15-Hydroxypentadecanoic acid	0.3036	0.2885	ND	ND		
56	34.998	cis-9-Hexadecenal	ND	ND	0.1752	ND		

(continued on next page)
No	RT	Compound	Area% for extraction methods considered	Area% for commercial essential oil
57	35.147	Longifolene	0.7151	ND
58	35.29	2,6,10,14,18-Pentamethyl-2,6,10,14,18-eicosapentaene	0.1915	ND
59	35.439	1,3,3-Trimethyl-2-hydroxy-3-methyl-5-(4-methylbut-2-yl)-cyclohexene	1.0775	ND
60	35.536	Phthalic acid, di(2-propyloxy) ester	ND	0.2928
61	35.542	3-OXO-18-NOR-ENT-ROS-4-ENE-15,16-ACETONIDE	ND	0.2014
62	35.708	1,6,10,14-Hexadecatetraen-3-ol, 3,7,11,15-tetramethyl-, (E,E)-	0.2251	ND
63	35.862	4-((2,2,6-Trimethylbicyclo[4.1.0]hept-1-yl)butan-2-one	0.9811	ND
64	36.206	Tricyclo[4.3.1.3.8]undecane	0.8226	ND
65	37.276	7-Pentadecyne	0.5684	ND
66	37.276	Heptasiloxane, 1,1,3,3,5,5,7,7,9,11,11,13,13-tetradecamethyl-	0.2393	1.4927
67	37.281	6-Octadecenoic acid, (Z)-	ND	ND
68	37.344	Nonadecane	ND	1.0061
69	37.344	Eicosane	10.259	0.1472
70	37.608	Phenol, 4-[2,3-dihydro-7-methoxy-3-methyl-5-(1-propenyl)-2-benzofuranyl]-2-methoxy-acetate, (E,E)-	0.4073	ND
71	37.968	2,6,10,14-Hexadecatetraen-1-ol, 3,7,11,15-tetramethyl-, acetate, (E,E)-	0.4922	ND
72	38.117	Silanol, trimethyl-, phosphite (3:1)	0.4224	ND
73	38.123	2-Pyridinamine, 5-methyl-	ND	0.3278
74	38.523	Octadecane, 3-ethyl-5-(2-ethylbutyl)-	ND	ND
75	38.912	Squalene	0.1401	ND
76	38.912	Trichothe-9-en-4-ol, 7,8-12,13-diepoxy-, 2-butenoate, [4.6a(2,3),7beta,8,9a]-	0.1926	0.2308
77	39.662	Heptadecane	ND	7.5686
78	39.667	Tetracosane	ND	3.5068
79	40.011	trans-Geranylgeraniol	1.4076	ND
80	40.263	Indolizine, 2-(4-methylphenyl)-	0.2395	ND
81	40.755	Octadecane, 1-iodo	0.4477	0.188
82	40.76	Heneicosane, 3-methyl-	0.3953	ND
83	40.966	4-Dehydro-N-(4.5-methylene dioxy)-2-nitrobenzylidene-tyramine	0.6149	ND
84	41.333	2-(Acetoxyethyl)-3-(methoxy carbonyl)bibiphylene	0.2009	ND
85	41.85	Octadecane	1.6801	3.0339
86	41.956	1,2,4-Oxadiazo[2,1-b]benzene	1.1733	ND
87	42.122	1,4a-Bis(trimethylsilyl)benzene	2.3602	4.4112
88	42.174	1,4-bis(trimethylsilyl)benzene	1.2851	2.1832
89	42.179	5-Methyl-2-phenylindolizine	0.4894	ND
90	42.305	Vitamin E	0.6673	3.3997
91	42.866	Phenylacetic acid, 2-(1-adamantyl)ethyl est	ND	0.3971
92	43.015	Silane, trimethyl[5-methyl-2-(1-methyl-phenyl)phenoxy]-	0.3152	1.7215
93	43.255	Benzenamine, N-[(4-methoxyphenyl)[methylen]-, N-oxide	ND	2.3849
94	43.255	4-[(3-Methoxy-phenylimino)-methyl]-phenol	ND	4.7733
95	43.267	Phenol, 4-[(4-methoxyphenyl)[methylen]amino]-	ND	11.84
96	43.267	1-Isopropoxy-2-phenylmethylbenzene	ND	ND
97	43.387	Benzo[h]quinoline, 2,4-dimethyl-	4.4605	ND
98	43.764	2,4-Cyclohexadien-1-one, 3,5-bis(1,1-dimethyl)-4-hydroxy-1H-Indole-2-carboxylic acid, 6-(4-ethoxyphenyl)-3-methyl-4-oxo-4,5,6,7-tetrahydro-iso propyl ester	0.5062	ND
99	43.764	1H-Indole-2-carboxylic acid, 6-(4-ethoxyphenyl)-3-methyl-4-oxo-4,5,6,7-tetrahydro-iso propyl ester	ND	1.7602
100	43.862	4-[1.1-Dimethylpropyl]phenol, trimethylsilylether	0.2728	ND
101	44.016	Tris[(tert-butyldimethylsilyloxy)arsane	0.26	ND
102	44.222	Octasiloxane, 1,1,3,3,5,5,7,7,9,11,13,13,15,15-hexadecamethyl-	ND	0.3901
103	44.251	Silicic acid, diethyl bis(trimethylsilyl) est	0.6732	ND
104	44.485	.beta.-Sitossterol	2.4735	ND
105	44.491	.gamma.-Sitossterol	ND	4.675
106	45.035	Arsenous acid, tris(trimethylsilyl) est	ND	1.5873
107	45.04	2-[4-(Cyclohexylbutanoylamino)-3-chloro-1,4-naphthoquinone	ND	6.5549
108	46.602	1-Oxo-delta,4-decahydrobenzindene	ND	ND
109	46.608	Butanamide, N-(2-methoxyphenyl)-3-oxo-	ND	16.615
110	46.631	(3ar,6S,9ar)-1,2,3,4,5,6,7,9a-octahydro-8-methyl-3a,6-methano-3a,9cyclo pentacycloocten-10-one	36.883	10.72

(continued on next page)
Table 1 (continued)

No	RT	Compound	Area% for extraction methods considered	Area% for commercial essential oil
111	46.906	Tetrasiloxane, decamethyldiethyldimethylsiloxane, 3-Quinolinecarboxylic acid, 6,8-difluoro-4-hydroxy-, ethyl ester	ND	ND
112	46.906	2-ethylacridine	ND	ND
113	46.917	Anthra[2,3-a]corticosterone	2.7375	ND
114	47.787	Anthra[2,3-a]corticosterone	ND	3.3455
115	47.793	Diacapthol[1,2-j:1,2-l]fluoranthene	ND	3.8743
TOTAL			11.301	13.51
			100	100

ND—not detected.

Funding

The APC was funded by Covenant University and the authors are appreciative of this sponsorship.

Supplementary material

Supplementary material associated with this article can be found, in the online version, at doi: 10.1016/j.cdc.2019.100208.

References

[1] M.E. Ojewumi, R.U. Owolabi, The effectiveness of the extract of ‘Hyptis suaveolens’ leave (a specie of effinrin) in repelling mosquito, Transnatl. J. Sci. Technol. 2 (8) (2012) 79–87.
[2] O.O. Ogunlana, O.E. Ogunlana, C.A. Ntute, J.A. Olagunju, A.A. Akinhadunsi, Phytochemical Screening and in vivo antioxidant activity of Ethanolic extract of caesalpinia bondoc (L.) Roxb, Glob. Res. J. Pharm. Sci. 1 (1) (September 2012) 1–4.
[3] O.E. Ogunlana, O. Ogunlana, O.E. Farombi, Morinda lucida: antioxidant and reducing activities of crude medicanolic stem bark extract, Adv. Nat. Appl. Sci. 2 (2) (2008) 49–55.
[4] S. Csurhes, Pest plant risk assessment Neem tree Azadirachta indica, Queensl. Gov. Dep. Prim. Ind. Fish. Brisbane, Qld. 4001 (2008) 1–14.
[5] A. Eid, N. Jaradat, N. Elmarzugi, A Review of chemical constituents and traditional usage of Neem plant (Azadirachta indica), Palest. Med. Pharm. J. 2 (2017) 75–81.
[6] M.E. Ojewumi, M.G. Banjo, T.A. Ogundun, A.A. Ayoola, O.O. Awolu, E.O. Ojewumi, Analytical investigation of the extract of lemon grass leaves in repelling mosquito, Int. J. Pharm. Sci. Res. 8 (5) (2017) 1000–1008.
[7] D. Dastan, M. Pezhmann, N. Askari, S.N. Ebrahimh, J. Hadian, Essential oil compositions of the leaves of Azadirachta indica A. Juss from Iran, J. Essent. Oil Bear. Plants 13 (3) (2010) 357–361.
[8] R. Subapriya, S. Nagini, Medicinal properties of neem leaves: a review, Curr. Med. Chem. Agents 5 (2) (2005) 149–156.
[9] D.A. Mahmoud, N.M. Hassanein, K.A. Yousef, A. Zeid, Antifungal activity of different neem leaf extracts and the nimonol against some important human pathogens, Brazilian J. Microbiol. 42 (3) (2011) 1007–1016.
[10] M.E. Ojewumi, S.O. Adedokun, O.J. Omodara, E.A. Oyeniyi, O.S. Taiwo, E.O. Ojewumi, Phytochemical and antimicrobial activities of the leaf oil extract of Mentha spicata and its efficacy in repelling mosquito, Int. J. Pharm. Res. Allied Sci. 6 (4) (2017) 17–27.
[11] M.E. Ojewumi, A.O. Adeyemi, E.O. Ojewumi, Oil extract from local leaves—an alternative to synthetic mosquito repellants, Pharmacophore 9 (2) (2018) 1–6.
[12] D.E. Babatunde, G.O. Otsusemade, M.E. Ojewumi, O. Agboola, K.D. Akinlabu, E. Oyeniyi, Antimicrobial activity and phytochemical screening of neem leaves and lemon grass essential oil extracts, Int. J. Mech. Eng. Technol. 10 (02) (2019). 1–25.
[13] J.E.F. Benzie, S. Wachtel-Galor, Herbal Medicine: Biomolecular and Clinical Aspects, CRC Press, 2011.
[14] S.-Y. Pan, et al., New perspectives on how to discover drugs from herbal medicines: CAM’s outstanding contribution to modern therapeutics, Evidence-Based Complement. Altern. Med. 2013 (2013) 1–25.
[15] X. Xiao, B. Zhang, W. Wang, A. Nie, Chinese herbal medicine for seborrhoeic dermatitis complicated by allergy to topical agent: a case report, J. Tradit. Chinese Med. Sci. 4 (4) (2017) 380–383.
[16] A.G. Pirbalouti, M. Mohammadi, Phytochemical composition of the essential oil of different populations of Stachys lavandulifolia Vahl, Asian Pac. J. Trop. Biomed. 3 (2) (2013) 123–128.
[17] A. Chowdhary, V. Singh, Geographical distribution, ethnobotany and indigenous uses of neem, in: Neem, a Treatise, I.K. International, 2009, p. 20.
[18] A. Ben Houna, M. Trigui, R. Ben Mansour, R.M. Jarraya, M. Damak, S. Jaoua, Chemical composition, cytotoxicity effect and antimicrobial activity of Ceratonia siliqua essential oil with preservative effects against Listeria inoculated in minced beef meat, Int. J. Food Microbiol. 148 (1) (2011) 66–72.
[19] F.N. Ineagwam, E.I. Nsot, K.O. Kayode, O.C. Emiloju, O.O. Ogunlana, S.N. Chinedu, Bioactive screening and in vitro antioxidant assessment of Nauclea latifolia leaf decoction, in: AIP Conference Proceedings, 1954, 2018(1), p. 30015.
[20] M. Ogunlesi, W. Okie, E. Ofor, A.E. Osibote, Analysis of the essential oil from the dried leaves of Euphorbia hirta Linn (Euphorbiaceae), a potential medication for asthma, African J. Biotechnol. 8 (24) (2009).
[21] M. Donia, M.T. Hamann, Marine natural products and their potential applications as anti-infective agents, Lancet Infect. Dis. 3 (6) (2003) 338–348.
[22] S. Burt, Essential oils: their antibacterial properties and potential applications in foods—a review, Int. J. Food Microbiol. 94 (3) (2004) 223–253.
[23] K.H.C. Baser, G. Buchbauer, Handbook of Essential Oils: Science, Technology, and Applications, CRC Press, 2015.