Geochemistry dataset of the Sol Hamed Neoproterozoic ophiolitic serpentinites, southern Eastern Desert, Egypt

Tarek Sedki*, Shehata Ali, Haroun A. Mohamed

Geology Department, Faculty of Science, Minia University, El–Minia, 61519, Egypt

A R T I C L E I N F O

Article history:
Received 19 July 2019
Received in revised form 25 July 2019
Accepted 6 August 2019
Available online 14 August 2019

Keywords:
Sol hamed
Ophiolitic complex
Serpentinites
Fore-arc peridotites
Supra-subduction zone

A B S T R A C T

The Sol Hamed (SH) area is a part of the Arabian-Nubian Shield (ANS) ophiolites occurred within Onib-Sol Hamed suture zone in the southern Eastern Desert of Egypt. The ophiolitic assemblages in this area are represented by serpentinite, metagabbro and arc assemblages represented by metavolcanics. They later intruded by gabbros and granites. The compatible trace elements (Cr = 2426 –2709 ppm, Ni = 1657–2377 ppm and Co = 117–167 ppm) enrichment in SH serpentinites indicate derivation from a depleted mantle peridotite source. They show affinity to the typical metamorphic peridotites. The normative compositions reflect harzburgitic mantle source. Their Al2O3 contents (0.05–1.02 wt %) are akin to oceanic and active margin peridotites and Pan-African serpentinites. The Cr and TiO2 contents indicate supra-subduction zone (SSZ) environment. Their Al2O3/SiO2 and MgO/SiO2 ratios support the SSZ affinity and are similar to ANS peridotites with fore-arc setting. Moreover, their Al2O3 and CaO depletion is typical of fore-arc peridotites.

© 2019 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

* Corresponding author;
E-mail addresses: t.sedki@yahoo.com, t.sedki2@gmail.com (T. Sedki).

https://doi.org/10.1016/j.dib.2019.104393
2352-3409 © 2019 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
The data set of this article provides informations on the abundance of the Neoproterozoic serpentinites and its affinity. The Figs. 1–7, representing the geochemical analysis interpretation of the serpentinites, Fig. 8 representing comparing between SH serpentinite and others. Fig. 9 show geologic map of the area and also sample location. Fig. 10 represent photo for the serpentinites outcrops in the field. Table 1 represent the raw data of the major and trace element of the rocks. Table 2 represent the co-ordination of the samples.

2. Experimental design, materials, and methods

Ten representative rock samples from SH serpentinites were analyzed for major and trace elements. The analyses were carried out using a Philips X-ray fluorescence equipment model PW/2404, with Rh radiation tube and eight analyzing crystals. Crystal (LIF–200) was used for analyzing Ca, Fe, K, Ti and Mn; crystal (TIAP, PX–1) for Mg and Na; crystal (Ge) for P; and crystal (PET) for Si and Al. The concentration of the analyzed elements was determined using Super-Q software with accuracy 99.5% and confidence limit 95.6%. These chemical analyses were carried out at Central Laboratories of Egyptian Mineral Resource Authority (EMRA). The samples were cleaned and grinded in an electric agate mill, homogenized, and dried on the oven for 60 min at 105°C then mix with 50% from wax/polyvinyl metaaclylate additive.

3. Sample collections

Serpentinites samples were collected from some rock outcrops within area, ten (10) samples in total with their GPS coordinates recorded in Table 2. These samples were pulverized then filtered using sieve in order to remove pebbles and other irrelevant materials which may affect the result during the analysis. These samples were then packaged in to neat polyethylene bags and labelled orderly for identification.
4. Geochemistry of serpentinites

The MgO content is hardly affected by serpentinization process and its elevated values in SH serpentinites ($\text{MgO} = 43.83$–$45.71 \text{ wt} \%$) reflect highly depleted mantle source. Their high Mg# (89.94–92.85) are like modern oceanic peridotites indicating a limited mobility of Mg and Fe. Their very low Na$_2$O (0.00–0.28 wt %) and K$_2$O (0.00–0.06 wt %) contents are comparable to those from the Eastern Desert supporting this implication [6,7]. The serpentinitization processes possibly increased the LOI contents without significant modification of the major element composition. The Ca–metasomatism is a common issue in Egyptian serpentinites, however the very low CaO contents (0.05–0.75 wt %) in the serpentinites indicates restricted effect of carbonate metasomatism. So, we
suggest that the protolith major element compositions must have been preserved during the hydration processes and that the geochemistry of the serpentinites display mostly the original nature.

SH serpentinites display affinity to the typical metamorphic peridotites on the AFM diagram (Fig. 1) [1]. The bulk-rock Al$_2$O$_3$ content is relatively unaffected by serpentinization and therefore retains its original primary signature (Fig. 2) [2]. They have Al$_2$O$_3$ contents (0.05–1.02 wt %) comparable to oceanic and active margin peridotites and fore-arc and Pan-African serpentinites (Fig. 2) [2,3,6,7]. Like other Eastern Desert ultramaftes, the SH serpentinites have SiO$_2$/MgO ratios and Al$_2$O$_3$ contents analogous to ophiolitic peridotite (Fig. 3) [4–7]. The Al$_2$O$_3$ and CaO depletion is typical of fore-arc peridotites (Fig. 4) [8] and characterizes ED ophiolitic ultramaftes [5–7]. In terms of Al$_2$O$_3$/SiO$_2$ and

Fig. 3. SiO$_2$/MgO ratios vs. Al$_2$O$_3$ diagram. Ophiolitic peridotite, ophiolitic gabbro and MORB are [4]. Data from Eastern Desert (ED) are shown for comparison [5–7].

Fig. 4. CaO vs. Al$_2$O$_3$ diagram showing SH serpentinites compared with fore-arc and MOR peridotites [8].
MgO/SiO₂ ratios, they are like Arabian–Nubian shield and fore-arc peridotites (Fig. 5) [5–7]. The serpentinites have enriched compatible trace elements (Cr = 2426–2709 ppm, Ni = 1657–2377 ppm and Co = 117–167 ppm) suggesting derivation from a depleted mantle peridotite source.

5. Alteration and serpentinization

Metamorphism ranging from low-grade greenschist to medium-grade amphibolite facies usually influenced the ophiolitic ultramafites of the Egyptian ED forming serpentinite and/or mixtures of serpentine, talc, chlorite, carbonates and magnetite [6,7]. The time and source of carbonate metasomatism that commonly affected the Egyptian ultramafites still debated.

Even with changes occurred during serpentinization in the mineral compositions of peridotites, geochemical data of serpentinites suggest negligible modification of major elements (except for Ca) at the hand-specimen scale. Therefore, the low CaO contents (0.05–0.75 wt %) in the serpentinites

![Fig. 5. MgO/SiO₂ vs. Al₂O₃/SiO₂ diagram. Primitive and depleted mantle values are after [9], respectively. The “terrestrial array” represents the bulk silicate Earth evolution [10]. Abyssal and fore-arc peridotite fields are after [11]. ANS ophiolitic peridotite field is after [6].](image)

![Fig. 6. Cr vs. TiO₂ plot to discriminate SSZ and MORB ophiolites after [12].](image)
indicate restricted effect of Ca–metasomatism. The CaO contents are not correlated with LOI further confirming this implication. Moreover, the trace element compositions (except U and Sr) are not significantly modified during serpentinization. Accordingly, the major and trace element data reflect the primary signature of the serpentinites protolith in subduction zones.

6. Geotectonic implications

The MgO/SiO$_2$ and Al$_2$O$_3$/SiO$_2$ ratios of serpentinites agree with SSZ peridotites from fore-arc setting (Fig. 5). Generally, the Al$_2$O$_3$ and CaO depletion characterizes fore-arc peridotites [8]. The Cr vs. TiO$_2$ diagram also supports the SSZ setting for the SH serpentinites (Fig. 6) [12].

Comparing SH ophiolites with other ophiolites such as, Troodos in Cyprus [15], Gerf ophiolite in South Eastern Desert [7] and Wadi Ghadir ophiolites in Central Eastern Desert [16]. Using the criteria in [12], we conclude that the chemical signature, the crystallization arrangement and mantle residue of
Fig. 9. Geologic map for SH area show the sample location.
Fig. 10. Field Photograph show the outcrop of the serpentinites.

Table 1	Major and trace elements of the studied rocks.									
Sample no	1	2	3	4	5	6	7	8	9	10
Major oxides (wt. %)										
SiO₂	45.699	46.286	45.709	45.539	45.957	45.654	44.360	44.050	44.857	47.617
TiO₂	0.057	0.056	0.011	0.058	0.012	0.023	0.023	0.023	0.035	0.012
Al₂O₃	0.550	0.993	0.491	0.465	0.966	0.231	1.015	0.915	0.346	0.115
Fe₂O₃	7.788	8.365	7.771	9.294	9.099	9.379	9.249	9.954	8.660	6.924
MnO	0.103	0.089	0.114	0.081	0.092	0.173	0.056	0.034	0.104	0.104
MgO	45.470	43.832	45.709	44.261	44.575	44.063	44.778	44.863	45.226	45.182
CaO	0.218	0.134	0.171	0.290	0.196	0.203	0.160	0.750	0.046	
Na₂O	0.103	0.011	0.058	0.000	0.012	0.000	0.034	0.000	0.012	0.000
K₂O	0.011	0.056	0.011	0.000	0.012	0.000	0.034	0.000	0.012	0.000
Total	100	100	100	100	100	100	100	100	100	100

Trace elements (ppm)										
V	40.200	25.900	27.400	37.200	26.100	22.160	40.200	14.010	34.100	19.500
Cr	2655.400	2701.100	2706.600	2656.800	2688.800	2580.200	2701.200	2654.100	2708.600	2425.900
Ni	2377.100	1800.300	2056.300	2057.300	2070.100	1840.200	1816.200	2055.400	1657.200	1999.100
Cu	63.100	15.100	24.100	30.530	43.210	53.210	54.210	152.400	154.200	136.100
Zn	56.900	13.460	24.900	23.070	35.100	17.900	34.800	17.200	11.890	23.050
Co	166.500	121.400	120.500	162.300	165.200	152.400	154.200	152.400	117.200	136.100
Ga	1.560	1.050	0.900	1.300	1.200	1.110	1.200	1.400	1.330	1.340
Rb	0.330	0.350	0.500	0.400	0.450	0.500	0.450	0.350	0.300	0.280
Sr	55.020	46.150	47.900	62.100	60.100	72.110	50.100	88.990	48.080	48.100
Zr	120.000	118.000	127.000	119.000	121.000	120.000	123.000	122.000	121.000	118.000
Nb	0.100	0.090	0.085	0.100	0.100	0.100	0.100	0.090	0.080	0.100
Ba	35.600	15.100	25.000	15.120	19.800	17.110	16.430	45.040	20.000	29.500
La	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100	0.100
Ta	0.085	0.085	0.085	0.085	0.085	0.085	0.085	0.085	0.085	0.085
Pb	4.800	13.140	16.100	15.100	16.900	19.900	17.100	46.600	24.050	14.700
Th	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200
Tl	0.037	0.038	0.040	0.030	0.026	0.040	0.038	0.040	0.300	0.280
Li	10.100	5.000	7.000	6.120	5.500	8.200	8.980	9.900	1.710	7.150
Hf	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020
Cs	0.850	0.750	0.090	0.090	0.088	0.090	0.080	0.680	0.070	0.060
Sn	0.085	0.085	0.085	0.085	0.085	0.085	0.085	0.085	0.085	0.085
Bi	0.010	0.030	0.025	0.020	0.010	0.020	0.030	0.030	0.025	0.020
SH ophiolites are similar to supra-subduction zone ophiolites formed in fore-arc basins based on the Ti–V variation diagram [14], (Fig. 8).

7. Magma source

The samples show low Al$_2$O$_3$ content reflecting depleted upper mantle source. Their high Mg#, Cr and Ni are consistent with a depleted mantle peridotite source. The MgO/SiO$_2$ and Al$_2$O$_3$/SiO$_2$ ratios accord with peridotites generated from subduction-related magma source (Fig. 5).

8. Protolith primary signature

Numerous geochemical studies demonstrated restricted mobility of major elements during serpentinization and protolith primary signature were retained [11]. The SH serpentinites have low CaO contents comparable to ophiolitic peridotites [4]. Moreover, their low Al$_2$O$_3$/SiO$_2$ ratios (mostly < 0.03) are similar to fore-arc mantle wedge serpentinites suggesting that their protolith had experienced partial melting before serpentinization which has no effect on this ratio. Also, their low MgO/SiO$_2$ ratios (<1.1) resemble serpentinised lherzolites and harzburgite. They have low TiO$_2$ contents (0.01–0.06 wt %) compared to depleted mantle composition but like subduction zone serpentinites. Their major element data consistent with harzburgitic source (Fig. 7).

Acknowledgments

The first author is grateful to Shalaten Mineral Resource Company for helping during geologic field work. He also, thanked his wife for continuous support. Lastly, we thank the managing editor Co-Eic

Table 1 (continued)

Sample no	1	2	3	4	5	6	7	8	9	10
Cd	2.100	2.100	3.200	3.400	2.150	2.500	3.500	3.400	3.450	2.900
In	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010
W	0.090	0.090	0.090	0.090	0.090	0.090	0.090	0.090	0.090	0.090
Mo	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010	0.010
Re	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003
Sb	1.830	2.400	3.110	1.140	3.150	2.700	3.100	3.100	1.980	2.330
As	4.210	5.330	3.700	5.700	5.300	4.800	4.500	5.210	4.910	3.800
Ag	185.000	190.000	195.000	191.000	187.000	170.000	193.000	192.000	190.000	194.000
S	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040
Se	0.300	0.500	0.400	0.300	0.700	0.230	0.300	0.400	0.700	0.500
Be	0.850	0.700	0.900	0.850	0.900	0.900	0.800	0.700	0.700	0.800
Te	5.500	5.400	5.500	5.500	4.110	4.800	5.700	4.300	4.980	5.120
Rb	1.810	1.000	1.200	1.700	1.450	0.330	0.800	0.200	0.200	1.300
Sc	4.100	4.010	3.800	3.550	4.200	3.700	3.940	4.010	4.300	3.900
U	0.090	0.090	0.090	0.090	0.090	0.090	0.090	0.090	0.090	0.090

Table 2

The sample location of SH serpentinites.

Sample Code	Longitude	Latitude
SH 01	36° 10’ 35.83”	22° 19’ 13.83”
SH 02	36° 08’ 23.35”	22° 17’ 14.57”
SH 03	36° 11’ 16.68”	22° 19’ 04.75”
SH 04	36° 10’ 21.00”	22° 18’ 41.50”
SH 05	36° 08’ 01.49”	22° 16’ 38.41”
SH 06	36° 09’ 59.28”	22° 17’ 25.84”
SH 07	36° 08’ 47.10”	22° 17’ 18.11”
SH 08	36° 09’ 44.93”	22° 17’ 25.51”
SH 09	36° 09’ 54.64”	22° 18’ 07.03”
SH 10	36° 07’ 29.67”	22° 16’ 12.07”
and also the anonymous reviewers for their thoughtful inputs to improve the quality of this manuscript.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

[1] R.G. Coleman, Ophiolites, “Mir”, 1978, p. 261.
[2] P.A. Floyd, Oceanic Basalts, Blachie and Son Ltd, New York, 1991.
[3] A.M. Abdel-Karim, Z. Ahmed, Possible origin of the ophiolites of Eastern Desert of Egypt, from geochemical perspectives, Arabian J. Sci. Eng. 34 (2010) 1–27.
[4] J.L. Bodinier, M. Godard, Orogenic, ophiolitic, and abyssal peridotites, in: R.W. Carlson (Ed.), Treatise on Geochemistry Mantle and Core: Treatise on Geochemistry, 2 edn., Elsevier Science Ltd, Amsterdam, 2003, pp. 103–170.
[5] M.K. Azer, Evolution and economic significance of listwaenites associated with Neoproterozoic ophiolites in south Eastern Desert, Egypt, Geol. Acta 11 (1) (2013) 113–128.
[6] A.M. Abdel-Karim, S. Ali, S.A. El-Shafei, Mineral chemistry and geochemistry of ophiolitic metalultramafic from Um Halham and Fawakhir, Central Eastern Desert, Egypt International Journal of Earth Sciences 107 (2018) 2337–2355. https://doi.org/10.1007/s00531-018-1601-2.
[7] A.M. Abdel-Karim, S. Ali, H.M. Helmy, S.A. El-Shafei, Fore-arc setting of the Gerf ophiolite, Eastern Desert, Egypt: evidence from mineral chemistry and geochemistry of ultramaficites, Lithos 263 (2016) 52–65.
[8] T. Ishii, P.T. Robinson, H. Maekawa, R. Fiske, Petrological studies of peridotites from diapiric Serpentinite Seamounts in the Izu- Ogasawara-Mariana forearc, leg 125, in: J. Pearce, L.B. Stokking, et al. (Eds.), Proceedings of the Ocean Drilling Project, Leg 125, Scientific Results (College Station), 1992, pp. 445–485.
[9] V.J.M. Salters, A. Stracke, Composition of the Depleted Mantle, Geochem Geophys Geosyst, 2004, https://doi.org/10.1029/ 2003GC000957.
[10] S.R. Hart, A. Zindler, In search of a bulk-Earth composition, Chem. Geol. 57 (1986) 247–267.
[11] Y. Niu, Bulk-rock major and trace element compositions of abyssal peridotites: implications for mantle melting melt extraction and post-melting processes beneath mid-ocean ridges, J. Petrol. 45 (12) (2004) 2423–2458.
[12] J.A. Pearce, S.J. Lippard, S. Roberts, Characteristics and tectonic significance of supra-subduction ophiolites, in: B.P. Kokelaar, M.F. Howells (Eds.) 16, Geological Society of London, Special Publication, 1984, pp. 777–794.
[13] A. Strecker, Classification of common igneous rocks by mean of their chemical composition. A provisional attempt, Neues Jahrb. Mineral. Abh. (1976) 1–15.
[14] J.W. Shervais, Ti – V plots and the petrogenesis of modern and ophiolitic lavas, Earth Planet. Sci. Lett. 59 (1982) 101–118.
[15] M.F.J. Flower, H.M. Levine. Petrogenesis of a tholeiite–boninite sequence from Ayios Mamas, Troodos ophiolite: evidence for splitting of a volcanic arc? Contrib. Mineral. Petrol. 97 (1987) 509–524.
[16] Y. Abd El-Rahman, A. Polat, Y. Dilek, B.J. Fryer, M. El-Sharkawy, S. Sakran, Geochemistry and tectonic evolution of the Neoproterozoic incipient arc–forearc crust in the Fawakhir area, Central Eastern Desert of Egypt, Precambrian Res. 175 (2009) 116–134.