Introduction

Patients with early cancers of the head and neck can be treated by irradiation or surgery with a high expectation of cure. Unfortunately, most patients present with more advanced disease for which the results of treatment are much less satisfactory. If multimodality therapy is skillfully applied, however, cure with a reasonable quality of life is possible if no clinical evidence exists of disease outside the head and neck region.

The principal goals of curative treatment are to render the patient grossly free of cancer, with functional and cosmetic outcomes acceptable to the patient; to prevent relapse of the cancer; and to prevent the appearance of new cancers. Surgical resection is often the most expeditious method of rendering the patient grossly free of cancer. Those for whom resection is not advisable (because of the extent of the cancer or the patient’s general medical condition or because resection would result in an unacceptable deficit) usually are treated by radiation therapy. This review discusses the role of adjuvant treatment in the management of patients with locally advanced head and neck cancers.

Adjuvant Therapy When the Primary Treatment Is Surgery

GENERAL CONSIDERATIONS

Reports in the 1960s and 1970s noted that even after seemingly adequate resection, a few patients with early cancers and most patients with locally advanced cancers suffered locoregional relapses. A prospective randomized study performed in the 1960s at Memorial Hospital in New York revealed that the addition of a modest dose of preoperative irradiation markedly decreased the relapse rate in patients with squamous cell carcinomas of the mouth and the throat who were at high risk for relapse in the neck. A subsequent prospective, randomized study conducted by the Radiation Therapy Oncology Group in the 1970s showed that postoperative irradiation decreased the relapse rate more than did preoperative irradiation. These studies established postoperative irradiation to 60 Gy in 6 weeks as the “standard” adjuvant treatment for many cancers of the mouth and the throat.

Careful analysis of the patterns of failure after surgery identified the factors that predicted relapse not only in epidermoid carcinomas but also in salivary neoplasms, soft tissue neoplasms, and melanomas. The recognition that even “radioresistant” neoplasms may be safely eradicated by irradiation when the residual tumor burden is minimal after surgery has greatly expanded the role of postoperative irradiation.
Many patients with thyroid cancers also benefit from postoperative irradiation, which often is delivered via the systemic route as radioactive iodine 131 to take advantage of the avidity of residual thyroid or cancerous tissue for iodine. Whether postoperative irradiation is indicated for a given patient depends on the answers to several questions, which are listed in Table 1. The most common indications for postoperative irradiation are shown in Table 2.

Table 1

Questions That Determine Whether Postoperative Irradiation Is Indicated for Cancers of the Head and Neck

| How high is the risk of relapse without irradiation? |
|---------------------------------|---|
| To what extent is irradiation likely to decrease the risk of relapse? |
| What is the anticipated morbidity of irradiation? |
| Will salvage treatment be possible with a reasonable expectation of success if a relapse occurs? |

Table 2

Indications for Postoperative Radiotherapy in Cancers of the Head and Neck

Clinical Stages I and II (T1 N0 or T2 N0)
Margin of resection was unsatisfactory
Multiple metastatic lymph nodes were found, or extracapsular extension was discovered at neck dissection
Elective neck dissection was not feasible, although significant likelihood existed that occult nodal metastases were present

Clinical Stages III and IV
All patients

Importance of Margins of Resection

One indication for postoperative irradiation is the surgeon’s inability to obtain adequate margins of resection, a situation that usually leads to relapse even if the patient undergoes immediate reexci-sion. Negative margins predict a high probability of tumor control in stage I or stage II but not necessarily in more advanced stages. The more extensive the cancer, the harder it is for the pathologist to evaluate the adequacy of the resection. Local recurrences after surgery for advanced cancers are not uncommon, even if the pathologist reported negative margins of resection.

Looser et al found that nearly 40% of patients with stage III or stage IV epidermoid carcinoma and apparently satisfactory resection margins subsequently had relapses at the primary site. In patients with unsatisfactory margins, of course, the relapse rate was much higher, almost 80%.

No prospective, randomized study...
has ever evaluated the relapse rates at the primary site with and without adjuvant postoperative irradiation, but Jacobs et al.15 and Laramore et al.6 analyzed a large intergroup study that delivered adjuvant postoperative external beam irradiation to a dose of 60 Gy after surgery for locally advanced cancers. They found relapse rates of 11% in patients with satisfactory margins of resection and 26% in those with unsatisfactory margins. Others also have reported that patients with unsatisfactory margins have higher relapse rates despite postoperative external beam irradiation.16-18

The unsatisfactory margins reflect a higher residual tumor burden, and we reasoned that these patients might benefit from a higher dose of irradiation near the surgical suture line. Therefore, to deliver a higher dose of radiation without increasing morbidity, we recently conducted a study in patients with unsatisfactory surgical margins. In the study, we boosted the region of the primary suture line by brachytherapy (using radioactive...
iodine 125 sources) after resection and postoperative external beam irradiation.19,20 We found that this strategy was safe and apparently quite effective; only 7\% of these patients relapsed at the primary site (Figure).

In addition to the clinical stage and the status of the margins of resection, the presence of perineural or lymphovascular invasion (or both) in the surgical specimen also might indicate an increased risk of relapse.14

\textbf{RELAPSE IN THE NECK}

Even when the neck is clinically negative, occult cervical lymph node metastases are present in a significant proportion of patients with carcinomas of the mouth and throat. If only the primary tumor is treated in such patients, metastases will subsequently appear in the cervical lymph nodes within a few months, often with lethal consequences.21-24

Elective neck dissections (unilateral or bilateral, radical or selective, as appropriate) are now commonly done if occult nodal metastases are suspected, even when the patient has a relatively small (T1 or T2) primary tumor.25 Neck dissections remain necessary because imaging modalities (such as computed tomography, magnetic resonance imaging, ultrasonography, and lymphoscintigraphy) have proved unreliable in distinguishing patients with occult cervical metastases from those without.26-28 In other words, these scans have a false-negative rate that is too high and acceptably low sensitivity.

If a patient is at significant risk for harboring occult nodal metastases but a neck dissection, for whatever reason, is not feasible, the patient should be considered for adjuvant elective irradiation to the neck to sterilize the occult metastases. Several studies suggest that a dose of 50 Gy in 5 weeks is safe and consistently effective in this regard.29-33 In selected patients, only the neck may be irradiated while the primary site is shielded (e.g., after a supraglottic laryngectomy with satisfactory margins of resection34).

In a review by Strong,3 when metastatic lymph nodes were discovered in the surgical specimen after neck dissection but no adjuvant treatment was delivered, 54\% of patients subsequently had relapses.

\textbf{In the future, biologic factors such as the expression of p53 and ki-67 might help determine which patients should be treated by radiotherapy alone, which patients should have surgery, and which patients might benefit from chemotherapy.}
might benefit from doses of irradiation higher than 60 Gy.39

Importance of Time Factor

Cancer cells left behind after surgery lead to relapse, and the longer they remain untreated, the more they may multiply and increase the residual tumor burden. They may also acquire resistant mutations as a result of postsurgical scarring and, perhaps, hypoxia.40 Therefore, beginning postoperative irradiation as soon after surgery as feasible seems logical.

Studies have shown that for the best results, irradiation should begin within about 6 weeks after surgery.17,36,41 Longer delays might, at best, require higher doses or multiple daily fractions of irradiation and, at worst, seriously compromise the likelihood of cure. Undue protraction of radiation therapy might also compromise tumor control (by allowing repopulation of the tumor42). Therefore, it is important not only to begin but also to complete the course of irradiation within a reasonable time after surgery. Parsons and colleagues17 found that in patients with oral cancers, the best results were observed when the time from surgery to the end of irradiation did not exceed 100 days.

Role of Chemotherapy

As combined therapy gained acceptance, it also became clear that approximately 20% to 25% of patients with stage III or stage IV resectable carcinoma of the upper aerodigestive tract would suffer locoregional relapse after treatment with surgery and postoperative external irradiation. It was also clear that an approximately equal proportion would develop distant metastases (which were more likely to appear in patients with multiple metastatic cervical lymph nodes).4,5,43

In an effort to improve these results, several prospective, randomized trials have evaluated whether benefits result from the administration of chemotherapy before surgery,5,44-47 before irradiation,6 or after irradiation.5,48-53 None of the trials showed a significant benefit in terms of survival or locoregional tumor control, despite the high response rates to induction chemotherapy. Some trials did suggest a lower incidence of distant metastases after chemotherapy, but survival was not improved.6,45,54,55

More promising have been the results of two trials that delivered chemo-

Adjuvant postoperative radiation therapy should be considered for all patients with locally advanced cancers and for patients with early cancers who have ominous pathologic findings.
current with postoperative irradiation is beneficial. The results should be available within a few years.

Adjuvant Therapy When the Primary Treatment Is Radiation Therapy

GENERAL CONSIDERATIONS

Many patients with locally advanced cancers of the head and neck are treated solely by radiation therapy. They form a heterogeneous population, and their rates of tumor control and survival depend upon many factors, such as the performance status, the sites and the extent of the primary tumors, and the extent of nodal metastases. Generally, in advanced cancers the results are not satisfactory. In most patients, locoregional disease is not controlled and the result is death, with or without distant metastases, even when surgery is feasible after radiation therapy.

A notable exception is nasopharyngeal carcinoma, for which consistent locoregional tumor control appears possible by external beam irradiation plus brachytherapy and for which preliminary results of chemotherapy to prevent distant metastases have been encouraging.

ROLE OF CHEMOTHERAPY

Several prospective, randomized trials have failed to show that administration of sequential chemotherapy and radiation therapy, rather than radiation therapy alone, benefits patients.

Some prospective, randomized studies, however, have suggested that the concurrent administration of chemotherapy and radiation therapy (either simultaneously or rapidly alternating) might be more efficacious (although it is more toxic) than radiation therapy alone or sequential chemotherapy and radiation therapy. The weight of the evidence, despite the toxicity, favors combined chemotherapy–radiation therapy, but no consensus exists about the optimal drug combination, doses, or schedules.

The Radiation Therapy Oncology Group recently launched a prospective, randomized trial (RTOG 97-03) to determine which of three different chemotherapy–radiation therapy regimens might be the best in locally advanced head and neck cancers. Ironically, none of the three was selected because it was superior to radiation therapy alone in a controlled trial. In the future, the best of these regimens has to be tested against radiation therapy alone.

ROLE OF CLINICAL AND BIOLOGIC PREDICTORS

Concurrent or alternating chemotherapy–radiation therapy improved the response rates and the locoregional tumor control rates in comparison to radiation therapy alone. However, approximately one-third to two-thirds of the patients still died of uncontrolled locoregional disease.
Recently, while conducting a phase II trial of alternating chemotherapy–radiation therapy, we noticed that the failure to achieve an “early” complete clinical response (within 6 weeks of starting chemotherapy–radiation therapy) predicted a high likelihood of relapse and death. If this finding is confirmed, the following strategy might be worth investigating. Only patients with early complete clinical response during chemotherapy–radiation therapy should be observed; the rest should undergo additional treatment (neck dissection or resection/brachytherapy for the primary tumor) even if complete clinical remission is subsequently achieved by chemotherapy–radiation therapy.

Recently, Raybaud-Diogene et al reported that the local relapse rate after radiation therapy alone was particularly high among patients with cancers of the oral cavity or oropharynx if their tumors exhibited both a high level of expression of p53 and a low level of expression of ki-67. They suggested that such patients might be better off if treated initially by surgery or chemotherapy–radiation therapy. Bradford et al reported that in laryngeal cancer, after treatment by sequential chemotherapy and radiation therapy the outcome was somewhat better in patients whose tumors overexpressed p53.

Studies such as these raise the hope that as our understanding of the molecular and genetic basis of cancer improves, biologic factors that better predict prognosis than do traditional clinical factors will be discovered and might even guide treatment choices.

Adjuvant Therapy for Prevention of New Cancers

SMOKING CESSATION

Smoking is a risk factor for a variety of cancers. It also limits the efficacy of treatment in head and neck cancers. Browman et al reported that patients who continued to smoke during radiation therapy for head and neck cancers had significantly worse survival (39% versus 66% after 2 years) than those who did not smoke or who had stopped smoking before treatment. Smokers who are cured of one head and neck cancer remain at high risk of developing a second tobacco-related cancer, not to mention many other nonneoplastic diseases caused by smoking.

For these reasons, effective and timely smoking cessation interventions should be regarded an integral part of the management of patients with head and neck cancer. Even brief interventions appear helpful, and strong advice from the physician to quit smoking, coupled with pharmacologic and behavioral treatment, can be remarkably effective. A standardized, individualized, interactive, and personalized self-help program for smoking cessation is also available.

Cloos et al recently reported an assay for the assessment of genetic susceptibility to head and neck cancers. Peripheral blood lymphocytes from head and neck cancer patients and from nor-
mal control subjects were cultured and exposed in vitro to bleomycin, which is known to damage DNA. The number of chromatid breaks per cell was counted; those with a large number of breaks were termed “bleomycin-sensitive,” and the others “bleomycin-resistant.”

The investigators found that bleomycin-resistant nonsmokers had the lowest risk of developing head and neck cancers (low-risk group). The risk was nearly 50 times greater among bleomycin-sensitive heavy smokers. The risk for heavy smokers who were bleomycin-resistant was about 10 times greater than that of the low-risk group. This, and other more sophisticated genetic assays in the future, might help us in identifying those patients who stand to gain the most from smoking cessation or chemoprevention (or both).

CHEMOPREVENTION

The preliminary results of a small, prospective, randomized study showed that the administration of 13-cis-retinoic acid to patients with cancers of the head and neck resulted in a sixfold decrease in the rate of development of second primary tumors. A large-scale study (RTOG 91-15) is now under way to evaluate this chemoprevention strategy.

Summary

Many challenges remain, but considerable progress has been made in this field since 1983, when we published in this journal an article titled “Adjuvant Radiation Therapy in Locally Advanced Head and Neck Cancer.” Several clinical and pathologic features have been identified that can stratify patients according to the risk of relapse (whether at the primary site, in the neck, or at distant sites) or the risk of second cancers, so that additional adjuvant treatment might be administered only to patients who are the most likely to benefit from it.

Hope exists that in the near future our capabilities will be bolstered by the availability of powerful new biologic and molecular genetic tools. The greatest advance, perhaps, has been the recognition that adjuvant therapy for head and neck cancer should not be an afterthought but part of a thoughtfully crafted interdisciplinary strategy aimed at maximizing tumor control with the least morbidity.

References

1. Landis SH, Murray T, Bolden S, et al: Cancer statistics, 1998. CA Cancer J Clin 1998;48:6-29.
2. Looser KG, Shah JP, Strong EW: The significance of “positive” margins in surgically resected epidermoid carcinoma. Head Neck Surg 1978;1:107-111.
3. Strong EW: Preoperative radiation and radical neck dissection. Surg Clin North Am 1969;49:271-276.
4. Kramer S, Gelber RD, Snow JB, et al: Combined radiation therapy and surgery in the management of advanced head and neck cancer: Final report of study 73-03 of the Radiation Therapy Oncology Group. Head Neck Surg 1987;10:49-55.
5. Head and Neck Contracts Program: Adjuvant chemotherapy treatment for advanced head and neck squamous carcinomas: Final report of the Head and Neck Contracts Program. Cancer 1987;60:301-311.
6. Laramore GE, Scott CB, Al-Sarraf M, et al: Adjuvant chemotherapy for resectable squamous cell carcinomas of the head and neck: Report on Intergroup study 0034. Int J Radiat Oncol Biol Phys 1992;23:705-713.
7. Guillamondegui OM, Byers RM, Luna MA, et al: Aggressive surgery in treatment for parotid cancer: The role of adjunctive postoperative radiotherapy. AJR Am J Roentgenol Radium Ther Nucl Med 1975;123:49-54.
8. Armstrong JG, Harrison LB, Spiro RH, et al: Malignant tumors of major salivary gland origin: A matched-pair analysis of the role of combined surgery and postoperative radiotherapy. Arch Otolaryngol Head Neck Surg 1990;116:290-293.
9. McKenna WG, Barnes MM, Kinsella TJ, et al: Combined modality treatment of adult soft tissue...
sarcomas of the head and neck. Int J Radiat Oncol Biol Phys 1987;13:1127-1133.

20. Ang KK, Peters LJ, Weber RS, et al: Postoperative radiotherapy for cutaneous melanoma of the head and neck region. Int J Radiat Oncol Biol Phys 1994;30:795-798.

21. Schlumberger MJ: Papillary and follicular thyroid carcinoma. N Engl J Med 1998;338:297-306.

22. Lee JG: Detection of residual carcinoma of the oral cavity, oropharynx, hypopharynx, and larynx: A study of surgical margins. Trans Am Acad Ophthalmol Otolaryngol 1974;78:49-53.

23. Scholl P, Byers RM, Batsakis JG, et al: Microscopic cut-through of cancer in the surgical treatment of squamous carcinoma of the tongue: Prognostic and therapeutic implications. Am J Surg 1986;152:354-360.

24. Byers RM, Bland KI, Borlase B, et al: The prognostic and therapeutic value of frozen section determinations in the surgical treatment of squamous carcinoma of the head and neck. Am J Surg 1978;136:525-528.

25. Jacobs JR, Ahmad K, Casiano R, et al: Implications of positive surgical margins. Laryngoscope 1993;103:64-68.

26. Vikram B, Strong EW, Shah JP, et al: Failure at the primary site following multimodality treatment in advanced head and neck cancer. Head Neck Surg 1984;6:720-723.

27. Parsons JT, Mendenhall WM, Stringer SP, et al: An analysis of factors influencing the outcome of postoperative irradiation for squamous cell carcinoma of the oral cavity. Int J Radiat Oncol Biol Phys 1997;39:137-148.

28. Huang D, Johnson CR, Schmidt-Ullrich RK, et al: Incompletely resected advanced squamous cell carcinoma of the head and neck: The effectiveness of adjuvant vs. salvage radiotherapy. Radiother Oncol 1992;24:87-93.

29. Vikram B, Mishra S: Permanent iodine-125 implants in postoperative radiotherapy for head and neck cancer with positive surgical margins. Head Neck 1994;16:155-157.

30. Beiter JJ, Smith RV, Silver CE, et al: Close or positive margins after surgical resection for the head and neck cancer patient: The addition of brachytherapy improves local control. Int J Radiat Oncol Biol Phys 1998;40:313-317.

31. Marks JE, Freeman RB, Ogura JH: Carcinoma of the supraglottic larynx. AJR Am J Roentgenol 1979;132:255-260.

32. Levendag P, Sessions R, Vikram B, et al: The problem of neck relapse in early stage supraglottic larynx cancer. Cancer 1989;63:345-348.

33. Spiro RH, Strong EW: Surgical treatment of cancer of the tongue. Surg Clin North Am 1974;54:759-765.

34. Marchetta FC, Sako K, Razack MS: Management of “localized” oral cancer. Am J Surg 1977;134:448-449.

35. Clayton GL, Frank DK: Selective neck dissection of anatomically appropriate levels is as efficacious as modified radical neck dissection for effective treatment of the clinically negative neck in patients with squamous cell carcinoma of the upper respiratory and digestive tracts. Arch Otolaryngol Head Neck Surg 1998;124:348-352.

36. Feinmesser R, Freeman JL, Noyek AM, et al: Metastatic neck disease: A clinical radiologic, pathologic correlative study. Arch Otolaryngol Head Neck Surg 1987;113:1307-1311.

37. Som PM: Lymph nodes of the neck. Radiology 1987;165:593-600.

38. Takes RP, Righi P, Meeuwis CA, et al: The value of ultrasound with ultrasound-guided fine-needle aspiration biopsy compared to computed tomography in the detection of regional metastases in the clinically negative neck. Int J Radiat Oncol Biol Phys 1998;40:1027-1032.

39. Bagshaw MA, Thompson RW: Elective irradiation of the neck in patients with primary carcinoma of the head and neck. JAMA 1971;217:456-458.

40. Rabuzzi DD, Chung CT, Sagerman RH: Prophylactic neck irradiation. Archives of Otolaryngology 1980;106:454-455.

41. Harwood AR, Beale FA, Cummings BJ, et al: Management of early supraglottic laryngeal carcinoma by irradiation with surgery in reserve. Archives of Otolaryngology 1983;109:583-585.

42. Ghossein NA, Bataim P: The role of radiotherapy in the treatment of neck metastases from head and neck cancer, in Wolf GT (ed): Head and Neck Oncology. Boston, Martinus Nijhoff, 1984, pp 169-197.

43. Fletcher GH: Place of irradiation in the management of head and neck cancers. Semin Oncol 1977;4:375-385.

44. Vikram B, Berson AM, Ng JPT, et al: Elective postoperative radiation therapy following supraglottic laryngectomy: A simple new technique. Radiat Oncol Invest 1996;4:239-242.

45. Cachin Y, Eschwege F: Combination of radiotherapy and surgery in the treatment of head and neck cancers. Cancer Treat Rev 1975;2:177-191.

46. Vikram B, Strong EW, Shah JP, et al: Failure in the neck following multimodality treatment for advanced head and neck cancer. Head and Neck Surgery 1984;6:724-729.

47. Huang DT, Johnson CR, Schmidt-Ullrich R, et al: Postoperative radiotherapy in head and neck carcinoma with extracapsular lymph node extension and/or positive resection margins: A comparative study. Int J Radiat Oncol Biol Phys 1992;23:737-742.

48. Lundahl EL, Foote RL, Bonner JA, et al: Combined neck dissection and postoperative radiation therapy in the management of the high-risk neck: A matched-pair analysis. Int J Radiat Oncol Biol Phys 1998;40:529-534.

49. Peters LJ, Goepfert H, Ang KK, et al: Evaluation of the dose for postoperative radiation therapy of head and neck cancer: First report of a prospective randomized trial. Int J Radiat Oncol Biol Phys 1993;26:3-11.

50. Graeber TG, Osmanian C, Jacks T, et al: Hypoxia-mediated selection of cells with diminished
ADJUVANT THERAPY IN HEAD AND NECK CANCER

apoptotic potential in solid tumors. Nature 1996;379:88-91.
41. Ang KK, Troviti A, Garden AS, et al: Importance of overall time factor in postoperative radiotherapy. Proceedings of the Fourth International Conference on Head and Neck Cancer, July 28-August 1, 1996, Toronto, Arlington, VA, The Society of Head and Neck Surgeons, 1996, pp 231-235.
42. Fowler JF, Lindstrom MJ: Loss of local control with prolongation in radiotherapy. Int J Radiat Oncol Biol Phys 1992;23:457-467.
43. Vikram B, Strong, EW, Shah JP, et al: Failure at distant sites following multimodality treatment for advanced head and neck cancer. Head and Neck Surgery 1984;6:730-733.
44. Rentschler RE, Wilbur DW, Petti GH, et al: Adjuvant methotrexate escalated to toxicity for resectable stage III and IV squamous head and neck carcinomas: A prospective, randomized study. J Clin Oncol 1987;5:278-285.
45. Schuller DE, Metch B, Stein DW, et al: Preoperative chemotherapy in advanced resectable head and neck cancer: Final report of the Southwest Oncology Group. Laryngoscope 1988;98:1205-1211.
46. Jortay A, Demard F, Dalesio O, et al: A randomized EORTC study on the effect of preoperative polychemotherapy in pyriform sinus carcinoma treated by pharyngolaryngectomy and irradiation: Results from 5 to 10 years. Acta Chir Belg 1990;90:115-122.
47. Richard JM, Kramar A, Molinari R, et al: Randomised EORTC head and neck cooperative group trial of preoperative intra-arterial chemotherapy in oral cavity and oropharynx carcinoma. Eur J Cancer 1991;27:821-827.
48. Szpirglas H, Chastang C, Bertrand JC: Adjuvant treatment of tongue and floor of the mouth cancers. Recent Results Cancer Res 1978;68:309-317.
49. Taylor SG 4th, Applebaum E, Showel JL, et al: A randomized trial of adjuvant chemotherapy in head and neck cancer. J Clin Oncol 1987;5:367-379.
50. Kun LE, Toohill RJ, Holoye PY, et al: Randomized study of adjuvant chemotherapy for cancer of the upper aerodigestive tract. Int J Radiat Oncol Biol Phys 1992;23:172-178.
51. Ervin TJ, Clark JR, Weichselbaum RR, et al: An analysis of induction and adjuvant chemotherapy in the multidisciplinary treatment of squamous-cell carcinoma of the head and neck. J Clin Oncol 1987;5:10-20.
52. Fu KK, Phillips TL, Silverberg IJ, et al: Combined radiotherapy and chemotherapy with bleomycin and methotrexate for advanced inoperable head and neck cancer: Update of a Northern California Oncology Group randomized trial. J Clin Oncol 1987;5:1410-1418.
53. Rossi A, Molinari R, Boracki P, et al: Adjuvant chemotherapy with vincristine, cyclophosphamide, and doxorubicin after radiotherapy in local-regional nasopharyngeal cancer: Results of a 4-year multicenter randomized study. J Clin Oncol 1988;6:1401-1410.
54. Jacobs C, Makuch R: Efficacy of adjuvant chemotherapy for patients with resectable head and neck cancer: A subset analysis of the Head and Neck Contracts Protocol. J Clin Oncol 1990;8:838-847.
55. Paccagnella A, Orlando A, Marchiori C, et al: Phase III trial of initial chemotherapy in stage III or IV head and neck cancers: A study by the Gruppo di Studio sui Tumori della Testa e del Collo. J Natl Cancer Inst 1994;86:265-272.
56. Haftty BG, Son YH, Sasaki CT, et al: Mitomycin C as an adjunct to postoperative radiation therapy in squamous cell carcinoma of the head and neck: Results from two randomized clinical trials. Int J Radiat Oncol Biol Phys 1993;27:241-250.
57. Bachaud JM, Cohen-Jonathan E, Alzieu C, et al: Combined postoperative radiotherapy and weekly cisplatin infusion for locally advanced head and neck carcinoma: Final report of a randomized trial. Int J Radiat Oncol Biol Phys 1996;36:999-1004.
58. Cooper JS, Farnan NC, Asbell SO, et al: Recursive partitioning analysis of 2105 patients treated in Radiation Therapy Oncology Group studies of head and neck cancer. Cancer 1996;77:1905-1911.
59. Wang CC: Improved local control of nasopharyngeal carcinoma after intracavitary brachytherapy boost. Am J Clin Oncol 1991;14:3-8.
60. Vikram B: Permanent iodine-125 (I-125) boost after teletherapy in primary cancers of the nasopharynx is safe and highly effective: Long-term results. Int J Radiat Oncol Biol Phys 1997;38:1140-1141.
61. Al-Sarraf M, Le Blanc M, Giri PGS, et al: Chemoradiotherapy vs radiotherapy in patients with locally advanced nasopharyngeal cancer: Phase III randomized Intergroup study (0099). J Clin Oncol 1998;16:1310-1317.
62. Arcangeli G, Nervi C, Righini R, et al: Combined radiation and drugs: The effect of intra-arterial chemotherapy followed by radiotherapy in head and neck cancer. Radiother Oncol 1983;1:101-107.
63. Stell PM, Dalby JE, Strickland P, et al: Sequential chemotherapy and radiotherapy in advanced head and neck cancer. Clin Radiol 1983;34:46-48.
64. Stolwijk C, Wagener DJ, Van den Brock P, et al: Randomized neo-adjuvant chemotherapy trial for advanced head and neck cancer. Neth J Med 1985;28:347-351.
65. Toohill RJ, Anderson T, Byhardt RW, et al: Cisplatin and fluorouracil as neoadjuvant therapy in head and neck cancer: A preliminary report. Arch Otolaryngol Head Neck Surg 1987;113:758-761.
66. Martin M, Hazan A, Vergnes L, et al: Randomized study of 5 fluorouracil and cisplatin as neoadjuvant therapy in head and neck cancer: A preliminary report. Int J Radiat Oncol Biol Phys 1990;19:973-975.
67. Mazeron JJ, Martin M, Brun B, et al: Induction chemotherapy in head and neck cancer: Results of a phase III trial. Head Neck 1992;14:85-91.
68. Jaulerry C, Rodriguez J, Brunin F, et al: Induction chemotherapy in advanced head and neck tumors: Results of two randomized trials. Int J Radiat Oncol Biol Phys 1992;23:483-489.
69. Chan AT, Teo PM, Leung TW, et al: A prospective randomized study of chemotherapy adjunctive to definitive radiotherapy in advanced nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys 1995;33:569-577.

70. Anonymous: Preliminary results of a randomized trial comparing neoadjuvant chemotherapy (cisplatin, epirubicin, bleomycin) plus radiotherapy vs. radiotherapy alone in stage IV (> or = N2, M0) undifferentiated nasopharyngeal carcinoma: A positive effect on progression-free survival: International Nasopharynx Cancer Study Group: VUMCA I trial. Int J Radiat Oncol Biol Phys 1996;35:463-469.

71. Lo TC, Wiley AL Jr, Ansfield FJ, et al: Combined radiation therapy and 5-fluorouracil for advanced squamous cell carcinoma of the oral cavity and oropharynx: A randomized study. Am J Roentgenol 1976;126:229-235.

72. Ansfield FJ, Ramirez G, Davis HL Jr, et al: Treatment of advanced cancer of the head and neck. Cancer 1970;25:78-82.

73. Shanta V, Krishnamurthi S: Combined bleomycin and radiotherapy in oral cancer. Clin Radiol 1980;31:617-620.

74. Gupta NK, Pointon RC, Wilkinson PM: A randomized clinical trial to contrast radiotherapy with radiotherapy and methotrexate given synchronously in head and neck cancer. Clin Radiol 1987;38:575-581.

75. Sanchiz F, Milla A, Torner J, et al: Single fraction per day versus two fractions per day versus radiochemotherapy in the treatment of head and neck cancer. Int J Radiat Oncol Biol Phys 1990;19:1347-1350.

76. Smid L, Lesnicar H, Zakotnik B, et al: Radiotherapy, combined with simultaneous chemotherapy with mitomycin C and bleomycin for inoperable head and neck cancer: Preliminary report. Int J Radiat Oncol Biol Phys 1995;32:769-775.

77. Adelstein DJ, Saxton JP, Lavertu P, et al: A phase III randomized trial comparing concurrent chemotherapy and radiotherapy with radiotherapy alone in resectable stage III and IV squamous cell head and neck cancer: Preliminary results. Head Neck 1997;19:567-575.

78. Southeast Cooperative Oncology Group: A randomized trial of combined multidrug chemotherapy and radiotherapy in advanced squamous cell carcinoma of the head and neck: An interim report from the SECOG participants. Eur J Surg Oncol 1986;12:289-295.

79. Merlano M, Benasso M, Corvo R, et al: Five-year update of a randomized trial of alternating radiotherapy and chemotherapy compared with radiotherapy alone in treatment of unresectable squamous cell carcinoma of the head and neck. J Natl Cancer Inst 1996;88:583-589.

80. Vikram B: Prognostic value of tumor regression during radiotherapy or chemoradiotherapy of advanced head and neck cancers: Regarding Jaulerry et al. Int J Radiat Oncol Biol Phys 1996;34:971. Letter.

81. Raybaut-Diogene H, Fortin A, Morency R, et al: Markers of radioresistance in squamous cell carcinomas of the head and neck: A clinicopathologic and immunohistochemical study. J Clin Oncol 1997;15:1030-1038.

82. Bradford CR, Zhu S, Wolf GT, et al: Overexpression of p53 predicts organ preservation using induction chemotherapy and radiation in patients with advanced laryngeal cancer: Department of Veterans Affairs Laryngeal Cancer Study Group. Otolaryngol Head Neck Surg 1995;113:408-412.

83. Browman GP, Wong G, Hodson I, et al: Influence of cigarette smoking on the efficacy of radiation therapy in head and neck cancer. N Engl J Med 1993;328:159-163.

84. Vikram B: Changing patterns of failure in advanced head and neck cancer. Arch Otolaryngol 1984;110:564-565.

85. Hong WK, Lippman SM, Itri LM, et al: Prevention of second primary tumors with isotretinoin in squamous cell carcinoma of the head and neck. N Engl J Med 1990;323:795-801.

86. Bartecchi CE, MacKenzie TD, Schrier RW: The human costs of tobacco use (part I). N Engl J Med 1994;330:907-912.

87. Cummings SR, Rubin SM, Oster G: The cost-effectiveness of counseling smokers to quit. JAMA 1989;261:75-79.

88. Gilpin EA, Pierce JP, Johnson M, et al: Physician advice to quit smoking: Results from the 1990 California Tobacco Survey. J Gen Intern Med 1993;8:549-553.

89. Prochaska JO, DiClemente CC, Velicer WF, et al: Standardized, individualized, interactive, and personalized self-help programs for smoking cessation. Health Psychol 1993;12:399-405.

90. Cloos J, Spitz MR, Schantz SP, et al: Genetic susceptibility to head and neck squamous cell carcinoma. J Natl Cancer Inst 1996;88:530-535.

91. Vikram B, Farr HW: Adjuvant radiation therapy in locally advanced head and neck cancer. CA Cancer J Clin 1983;33:134-138.