Research Paper
Designing and Characterizing Nano-carriers Containing Nepeta Persica Extract and Their Effect on Bone Cancer

Samanah Aboeepoor1, Mahmood Dehghani Ashkezari2, *Fateme Aboee-Mehrizi2, Bibi Fatemeh Haghirladsat3, Narges Nikoonahad Lotfabadi4

1. Medical Biotechnology Research Center, Ashkezar Branch, Islamic Azad University, Ashkezar, Yazd, Iran.
2. Department of Medicine, Yazd Branch, Islamic Azad University, Yazd, Iran.
3. Medical Nanotechnology & Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
4. Department of Biology, Faculty of Basic Sciences, Science and Arts University, Yazd, Iran.

ABSTRACT

Aims: Niosomes have been considered as carriers for targeted delivery of drugs in modern drug delivery systems. The Iranian Nepta (Nepta genus) has unique biological properties; thus, this plant was used in this study to prepare the optimized formulation of niosomes containing extract, and to evaluate its cytotoxicity.

Methods & Materials: Initially, the extract of Iranian Nepta (N. persica) was prepared. Then, the niososomal system, containing the extract was designed and synthesized using cholesterol and Span-60. The physicochemical properties of the system were evaluated by FTIR and SEM. MTT assay (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) was used to determine the toxicity of the Nepta extract and nano-system containing it against bone cancer cells (MG63).

Findings: An optimized formulation was obtained using cholesterol and Span-60 with a ratio of 80:20. The amount of extract release from this formulation continued with a steady slope over a long period of time. The survival rate of MG63 cells against 100 μg/mL of the free form of N. persica extract and its niosomal form were 22% and 8.88%, respectively.

Conclusion: The present research results suggested that N. persica extract exert anti-cancer effects and niosome could improve its anti-cancer efficiency. Therefore, it could be used as a proper carrier to deliver the extract to the target tissue.

Key words: Nepta persica, Niosome, MTT, MG63 Cell line

Extended Abstract

1. Introduction

Bone cancer is an early mesenchymal tumor, i.e. histologically characterized by the production of steroids by malignant cells. It is a relatively rare malignancy and the most frequent bone malignancy. Available treatment methods often have severe adverse effects; thus, implementing medicinal plants, like Iranian nepeta (Pooneh-sa) and their derivatives has received significant attention. It is hoped that these plants, which have fewer adverse effects, could be more effective in fighting cancer cells. In modern pharmacology, numerous efforts have been made to improve drug delivery and optimize its pharmacological performance. A measure to solve this problem is applying nanotechnology, and consequently, using carriers, like niosomes. As two-

* Corresponding Author:
Fateme Aboee-Mehrizi, PhD.
Address: Department of Medicine, Yazd Branch, Islamic Azad University, Yazd, Iran.
Tel: +98 (35) 38210540
E-mail: aboeef@yahoo.com

Citation
Aboeepoor S, Dehghani Ashkezari M, Aboee-Mehrizi F, Haghirladsat B, Nikoonahad Lotfabadi N. [Designing and Characterizing Nano-carriers Containing Nepeta Persica Extract and Their Effect on Bone Cancer (Persian)]. Quarterly of "The Horizon of Medical Sciences". 2020; 26(2):142-155. https://doi.org/10.32598/hms.26.2.3161.1

https://doi.org/10.32598/hms.26.2.3161.1
layer carriers, niosomes are ideal models of biological cell membranes that work by minimizing the harmful effects on cell and tissue health.

Niosomes are carriers composed of cholesterol hydration with non-ionic surfactants in the aquatic environment; they could trap materials. Due to their biocompatibility and biodegradability along with nanoscale size, these carriers have demonstrated numerous applications in various fields, including cancer treatment [3]. The general tendency of society to use herbal medicines and natural products is increasing. Furthermore, a large share of commercial pharmaceutical products belongs to herbal medicines [4, 5]. Herbs have long been implemented to treat various human diseases. Genus Nepeta (of Lamiaceae family), known as “poone-sa” in Iran, contains different annual and perennial species. It is found in different parts of Asia, Europe, and North Africa. Approximately 250 species of this genus have been reported in different parts of the world [8]. The genus nepeta in Iran has 67 wildling species, i.e. distributed in various regions of Iran and are mostly indigenous [12].

The present study aimed to investigate the anti-cancer properties of the extract of Iranian nepeta plants (Nepeta persica) and the niosomes containing this extract against bone cancer cells.

2. Materials and Methods

Bone cancer cells (MG63 cell line) were studied in cell cultivation conditions in DMEM plant growth regulator enriched with 10% FBS in a CO2 incubator at 37°C, 5% CO2, and 95% humidity.

The MG63 cell line of bone cancer was obtained from the Cell Bank of Pasteur Institute of Iran. The extraction of the Iranian nepeta plant (Nepeta persica) was performed using the soxhlet apparatus. After drying, the dried extract was applied for further experiments. Thin-film hydration method was employed to synthesize nano-niosomes. The lipid phase consisted of span 60-cholesterol, which was formed by multiple mole ratios (F1-F3 formulations), using a rotating evaporator of a thin lipid film. Then, the thin lipid film was hydrated, homogenized, and filtered to reduce the size. After separating the free extract, the amount of the loaded extract was determined. Then, the physicochemical properties of the niosomes containing the extract, including their size and surface charge were evaluated. For this purpose, we applied a DLS and a Zetasizer device. Moreover, we evaluated it using the Scanning Electron Microscope (SEM) image of the morphology of the niosomes. Finally, the cytotoxic effect of the extract and the best formulation of the enzyme-containing niosomes (F2) were evaluated after 48 hours of treatment.

We employed the MTT test on bone cancer cells for this assessment. Analysis of Variance (ANOVA) and Student’s t-test was used in SPSS for data analysis (Table 1 & Figure 1).

3. Results

Based on the loading rate of the extract in the niosomes, the F2 formulation with 79.11% loading was recognized as the optimal formulation; subsequently, it was used in other research stages. The size of the niosome nano-carrier, containing the extract was 108.6 nanometers. Besides, the surface load of the niosome nano-carrier, containing the extract averaged -38.02±1.18 mV. The SEM image suggested that the particles had the right size distribution and spherical structure and were agglomerated. The MTT test results indicated that the survival rate of the cells against these two samples was 22% and 5.88%, respectively. Thus, at the same concentrations, the niosome system significantly destroyed a higher percentage of cancer cells.

4. Discussion

In 2014, Abolfazl Shakeri et al. examined the chemical compounds and antibacterial activity and cell toxicity of Nepeta ucrainica. They concluded that the extract of this plant presented antibacterial activity, especially against gram-positive bacteria. It also controlled the growth of ovarian cancer and breast cancer (MCF-7). Eventually, cytotoxic activity was associated with significant doses against MCF-7.

Table 1. Different nanoparticle formulations and the percentage of compounds used in these formulations

Formulation Code	Span 60 (%)	Cholesterol (%)	The Initial Concentration of the Extract (µg/mL)
F1	90	10	5000
F2	80	20	5000
F3	70	30	5000
and A2780 [17]. Askari et al. investigated the effect of cellular toxicity of pomegranate skin extract in the form of niosomes on breast cancer. They stated that using niosomes as a carrier improves the extraction process and further reduces the survival rate. In addition, the release rate and effectiveness of the extract in the condition of cancer cells (in terms of temperature and pH) are better than nanocarriers. Such data signify that their study findings are consistent with those of the present study [23].

Using other nanocarriers to load the extract of Iranian nepeta plants and comparing it with the current research findings could provide the best nanocarrier that could induce this plant’s maximum anti-cancer properties.

Apart from the high cost of materials and services, there were no restrictions for conducting the present study.

5. Conclusion

The obtained data revealed the higher effectiveness of nano niosomic form of the extract of Iranian nepeta plant, compared to the free form of the extract; such efficacy regarded the ability to enter the cell and induce anti-cancer effects.

Ethical Considerations

Compliance with ethical guidelines

The Medical Ethics Committee of the Islamic Azad University, based on letter No. 98975, has approved this research in terms of biological ethics.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or non-profit sectors.

Authors’ contributions

All authors contributed in designing, running, and writing all parts of the research.

Conflicts of interest

The authors declared no conflict of interest.

Acknowledgment

The authors express their gratitude to the School of Paramedical Sciences of Yazd Shahid Sadoughi University of Medical Sciences.
مطالعه مشخصه‌های جدیدی از پوست جنینی معادل نیوزوم مربوط به استخوان (نیوزوم MG-63) نپتئا پرسئیکا (نپتئا پرسئیکا)

با توجه به خواص اهداف، در این پژوهش از این گیاه جهت تهیه فرمول بهینه نیوزوم حاوی عصاره نپتئا پرسئیکا (نپتئا پرسئیکا) از فیزیولوژیکی منحصربه‌فرد گیاه و بررسی خاصیت سمیت سلولی آن استفاده شد. سامانه نانونیوزومی حاوی Span-60 ابتدا عصاره گیاه نپتئا پرسئیکا ایرانی تهیه شد. سپس، با استفاده از دو ترکیب کلسترول و مواد و روش‌های (۳-۴، ۵-دی‌متیل‌تیزولین) بررسی شد. از تست SEM و FTIR با استفاده از تیزولین‌های دسترسی و سامانه توس، نیوزوم MG-63 (mg36) استخوان کرده. نتایج حاصل نشان داد که مصرف نپتئا پرسئیکا و فرمول جدید نیوزوم برای رسادن سامانه به ترتیب بهترین اثرات را به دست آورد. میزان آزادسازی با شیب ثابت در ۸۰:۲۰ با نسبت Span-60 فرمولاسیون بهینه با ترکیب کلسترول و مواد و روش‌های نیوزومی حاوی MG-63 و N. میکروگرم بر میلی لیتر از فرم آزاد عصاره MG-63 در مقابل MG-63 مدتر مدت زمان طولانی ادامه داشت. میزان زنده مانی سلول‌های استخوانی استخوانی درصد بود. ۵/۸۸ و ۲۲/۲۲ و سامانه نیوزومی حاوی آن، به ترتیب بهبود نتیجه گرفت. نتایج حاصل نشان داد که عصاره پرسئیکا ایرانی دارای اثرات ضدسرطانی است و نیوزوم‌ها می‌توانند این اثرات را بهبود یابند. سامانه نیوزومی حاوی آن، به عنوان حاملهای مناسب برای رساندن عصاره به بافت هدف مورد استفاده قرار گیرند.

کلیدواژه‌ها: نپتئا پرسئیکا، سلول MTT، MG-63، سرطانی
گیاهان طرفی یزد جمیه‌آوری شد و توسط بخش گیاه‌شناسی مرکز تحقیقات و اموزش گیاه‌شناسی و مطالعه طبیعی نامه‌گزاری شد. مورد شناسایی قرار گرفت. این گونه در هریورهای مرکز تحقیقات مادرکاری به شماره هریورهای 47 و 49 مورد است. گیاه در محلی که به دلیل قابلیت زیست‌سازگاری و زیست‌تغییرپذیری توانسته‌اینها در کنار سایر گیاه‌های نورخورا، کاربردهای آن را در مورد سویسی را یکی از مهم‌ترین ماده‌های درمان سرطان، در مراکز بیماری و زندگی، مورد ارزیابی قرار گرفت.

با معرفی فیلم لیپیدی، اضافه شد. سپس فاز آلی محلول حاصل با اضافه و حل شد. اسانس به نسبت یک در نمونه اصلی، فاز لیپیدی با چندین نسبت مولی مختلف به تابش نور خورشید خشک شد. عصاره خشک شده جهت انجام در داخل یک ظرف شیشه‌ای قرار گرفت. در مجاورت هوا و به دور از بعد از اتمام عصاره‌گیری، محتویات بالن صاف شد و عصاره حاصل مرحله تکرار شد تا ترکیبات گیاه به طور کامل استخراج شود.

از تابش نور خورشید خشک شده عصاره خشک شده جهت انجام عمل عصاره‌گیری طی پنج دور بر دقیقه متصل شد. محلول بالن حاوی محلول فاز آبی به دستگاه تبخیرکننده دوار با دمای ۱۵۰۰ درجه سانتی گراد قرار گرفت. برای در این مرحله آب دیونیزه اضافه شد تا تا فیلم لیپیدی آب دهی ساعت در دمای چهار درجه سانتی گراد تحت فیلم لیپیدی به فیلم نازک لیپیدی چندین دور در دقیقه حذف و فیلم نازک لیپیدی تشکیل شد. همچنین استفاده از دستگاه تبخیرکننده دوار (هایدولف، آلمان) در دمای ۱۲۰ درجه سانتی گراد بود. برای در این مرحله آب دیونیزه اضافه شد تا تا فیلم لیپیدی آب دهی ساعت در دمای چهار درجه سانتی گراد تحت فیلم لیپیدی به فیلم نازک لیپیدی چندین دور در دقیقه حذف و فیلم نازک لیپیدی تشکیل شد. همچنین استفاده از دستگاه تبخیرکننده دوار (هایدولف، آلمان) در دمای ۱۲۰ درجه سانتی گراد بود. برای در این مرحله آب دیونیزه اضافه شد تا تا فیلم لیپیدی آب دهی ساعت در دمای چهار درجه سانتی گراد تحت فیلم لیپیدی به فیلم نازک لیپیدی چندین دور در دقیقه حذف و فیلم نازک لیپیدی تشکیل شد. همچنین استفاده از دستگاه تبخیرکننده دوار (هایدولف، آلمان) در دمای ۱۲۰ درجه سانتی گراد بود.

در این مرحله آب دیونیزه اضافه شد تا تا فیلم لیپیدی آب دهی ساعت در دمای چهار درجه سانتی گراد تحت فیلم لیپیدی به فیلم نازک لیپیدی چندین دور در دقیقه حذف و فیلم نازک لیپیدی تشکیل شد. همچنین استفاده از دستگاه تبخیرکننده دوار (هایدولف، آلمان) در دمای ۱۲۰ درجه سانتی گراد بود. برای در این مرحله آب دیونیزه اضافه شد تا تا فیلم لیپیدی آب دهی ساعت در دمای چهار درجه سانتی گراد تحت فیلم لیپیدی به فیلم نازک لیپیدی چندین دور در دقیقه حذف و فیلم نازک لیپیدی تشکیل شد. همچنین استفاده از دستگاه تبخیرکننده دوار (هایدولف، آلمان) در دمای ۱۲۰ درجه سانتی گراد بود. برای در این مرحله آب دیونیزه اضافه شد تا تا فیلم لیپیدی آب دهی ساعت در دمای چهار درجه سانتی گراد تحت فیلم لیپیدی به فیلم نازک لیپیدی چندین دور در دقیقه حذف و فیلم نازک لیپیدی تشکیل شد. همچنین استفاده از دستگاه تبخیرکننده دوار (هایدولف، آلمان) در دمای ۱۲۰ درجه سانتی گراد بود. برای در این مرحله آب دیونیزه اضافه شد تا تا فیلم لیپیدی آب دهی ساعت در دمای چهار درجه سانتی گراد تحت فیلم لیپیدی به فیلم نازک لیپیدی چندین دور در دقیقه حذف و فیلم نازک لیپیدی تشکیل شد. همچنین استفاده از دستگاه تبخیرکننده دوار (هایدولف، آلمان) در دمای ۱۲۰ درجه سانتی گراد بود. برای در این مرحله آب دیونیزه اضافه شد تا تا فیلم لیپیدی آب دهی ساعت در دمای چهار درجه سانتی گراد تحت فیلم لیپیدی به فیلم نازک لیپیدی چندین دور در دقیقه حذف و فیلم نازک لیپیدی تشکیل شد. همچنین استفاده از دستگاه تبخیرکننده دوار (هایدولف، آلمان) در دمای ۱۲۰ درجه سانتی گراد بود.
کاهش سایز

برای کاهش اندازه نیوزوم‌های چندلایه بزرگ و تشکیل وزیکولهای چندلایه از روش سونیکاسیون استفاده شد.

روش محلول کلوئیدی نیوزوم‌های تشکیل نیوزوم‌های پنج گروه MG-63 و تأثیر آن بر سرطان استخوان (رده سلولی)

سفرینفیتراسیون

قبل از فیلتراسیون، نمونه‌ها به محلول مایع گردیده شده و دستگاه در دمای چهار درجه سانتی‌گراد قرار گرفت.

فرمول شماره ۳

بعنوان روش بررسی، نمونه به محلول محیطی در دمای ۰.۵ درجه سانتی‌گراد و در دمای ۰.۵ درجه سانتی‌گراد صورت گرفت.

تعیین سایز و محدوده توزیع اندازه نانونیوزوم‌ها

بعنوان روش بررسی، نمونه به محلول محیطی در دمای ۰.۵ درجه سانتی‌گراد و در دمای ۰.۵ درجه سانتی‌گراد صورت گرفت.

تحیز عصاره آزاد

جهت بررسی، نمونه به محلول محیطی در دمای ۰.۵ درجه سانتی‌گراد و در دمای ۰.۵ درجه سانتی‌گراد صورت گرفت.

تحیز عصاره آزاد

جهت بررسی، نمونه به محلول محیطی در دمای ۰.۵ درجه سانتی‌گراد و در دمای ۰.۵ درجه سانتی‌گراد صورت گرفت.

تحیز عصاره آزاد

جهت بررسی، نمونه به محلول محیطی در دمای ۰.۵ درجه سانتی‌گراد و در دمای ۰.۵ درجه سانتی‌گراد صورت گرفت.
یافته‌ها

N. persica

تیمین طول موج ماکسیمم عصاره طول موج شماره 389 ناوتوم به عنوان طول موج ماکسیمم عصاره هیدروالکلی استحصال شده که بیشترین میزان جلب را تا خاک بود. برای انجام آنالیزهای کنتراکتیона تئوری (AUC)، در شرایطی متفاوت به کار رفته است.

Nepeta

به منظور بهبود کنتراکتیون، میزان ناوتوم به عنوان عصاره در میکروکالیبتر در ترکیبات مختلف TMT(G1-G3) انتخاب شده است. این نتایج نشان دهنده بنیادی بوده که در نمونه های مختلف TMT(G1-G3) و دارای تغییرات مختلف در ترمیم ناشی از تغییرات در فرآیند تئوری (AUC) می‌باشد.

بررسی الگوی نانوهولی: نانوهولی نیوزومی میزان اکسیداسیون عصاره از نانوهولی نیوزومی در دو شرایط دمای 37 و 42 درجه می رشد. این نتایج نشان دهنده نبودن نانوهولی نیوزومی در این دو شرایط می‌باشد.

جدول ۱: فرمولاسیون‌های مختلف نانوهولی و درصد ترکیبات استفاده‌شده در فرمولاسیون‌ها
کد فرمولاسیون
F1
F2
F3

SPSS

به منظور بررسی آماری نتایج، از نسخه ۲۲ نرم‌افزار SPSS استفاده شد. جهت آنالیز آماری نتایج، از استاندارد ANOVA استفاده شد و معانی نتایج بر حسب Student’s T-test و VA تحت سنجیده شد.
آزادسازی آزمایشی نشان دهنده درجه بندی، یا درجه بندی نشان می‌دهد که همان‌گونه که در تحقیقات دیگر نشان داده شده است، با افزایش دمای سلول‌های سرطانی رضایت‌بخش‌تری و برخی از موارد دیگر رضایت‌بخش‌تری دارد. در نظر گرفتن این نتایج، باید نمونه‌های حاوی عصاره را در دمای 37 و 42 درجه سانتی‌گراد در حاصل آزمایش‌ها مورد بررسی قرار داد.

بررسی رضایت‌بخشی و حساسیت نانوهمل‌ها:
با استفاده از دستگاه نانو سایزر، اندازه و بار سطحی نانوهمل‌ها حاوی عصاره بررسی گردید. به روش سونیک کردن کاهش اندازه نانوهمل‌ها در حاصل آزمایش مشخص شد. در میزان‌های مختلف و در فواصل بررسی‌شده در این تحقیق، نانوهمل‌های حاوی عصاره به طور میانگین به حداکثر 108 نانومتر کاهشی پیدا کردند. همچنین، با استفاده از دستگاه زتاسایزر، اندازه گیری بار سطحی نانوهمل‌ها حاوی عصاره نیز انجام شد. با استفاده از میزان‌های مختلف و در فواصل بررسی‌شده در این تحقیق، بار سطحی نانوهمل‌های حاوی عصاره به ترتیب 38±0.2 میلی‌ولت در دمای 37 و 42 درجه سانتی‌گراد مشاهده گردید.

3. Scanning Electron Microscope (SEM)
رخدادی نتیجه از دسترس خارج شدن گروه عاملی عصاره با توجه به قرار گرفتن آن در سامانه است. همچنین حضور عصاره در سامانه سبب ایجاد هیچ پیک اضافه که نشان از ایجاد ساختار شیمیایی جدید و یا تجزیه ترکیبات شیمیایی ترکیبات تشکیل می‌دهد، نشده است. در نتیجه حضور عصاره هیچ برهم کنش شیمیایی تاکارایشگری با سامانه برقرار نکرده است.

تصویر A. بررسی میکروسکوپ الکترونی نانو حامل نیوزومی به سلول سرطانی MG-63 و تأثیر آن بر سرطان استخوان (رده سلولی Nepeta persica) سامانه ابوئی پور و همکاران. طراحی و مشخصه‌یابی حامل نانویی حاوی عصاره FTIR (F2: Containing Plant Extract) و عصاره با رنگ مشکی (F2: blank) سامانه کل. تصویر B. تصویر میکروسکوپ الکترونی نانو حامل نیوزومی به سلول سرطانی MG-63 و تأثیر آن بر سرطان استخوان (رده سلولی Nepeta persica) سامانه ابوئی پور و همکاران. طراحی و مشخصه‌یابی حامل نانویی حاوی عصاره FTIR (F2: Containing Plant Extract) و عصاره با رنگ مشکی (F2: blank) سامانه کل.
ورود نانوسامانه به درون سلول و وقوع برداشت سلولی است (به ویژه DAPI ترتیب از چپ به راست)؛ هسته سلول رنگ آمیزی می‌شود و استفاده از نیوزوم فاقد عصاره و رنگ آبی رنگ آبی می‌شوند با گرفتن و استفاده از نانوسامانه نیوزومی ایپ و سپس نشان از ورود نانوسامانه به درون سلول دارد.

اندازه‌گیری اثر عصاره و نانوحامل بر میزان زنده مانی سلول‌های MG-63

اندازه‌گیری اثر عصاره و نانوحامل بر میزان زنده مانی سلول‌های MG-63 میکروگرم بر میلی لیتر از هر کدام از نمونه‌های MG-63 درصد زنده مانی سلول‌های سرطانی مغز استخوان می‌باشد. عصاره و نانوحامل بر میزان زنده مانی سلول‌های MG-63 درصد زنده مانی سلول‌های سرطانی مغز استخوان (MG-63) انجام پذیرفت. معیار SPSS، با استفاده از نرم‌افزار MTT آزمون (یا به اصطلاح پنج درصد P<0/05) کوچک تر از P معنی‌دار مقدار در نظر گرفته شد.

بررسی معنی‌داری و یا عدم معنی‌داری داده‌های حاصل از انجام پذیرفت. معیار SPSS، با استفاده از نرم‌افزار MTT. بررسی معنی‌داری و یا عدم معنی‌داری داده‌های حاصل از

* در مطالعه اخیر، سه سامانه نانوهامل نیوزومی مختلف با استفاده از نسبتی متفاوت از کلسترول و گلوکالیسرین، سه سامانه نانوهامل نیوزومی مختلف با استفاده از نسبتی متفاوت از کلسترول و گلوکالیسرین، سه سامانه نانوهامل نیوزومی مختلف با استفاده از نسبتی متفاوت از کلسترول و گلوکالیسرین، سه سامانه نانوهامل نیوزومی مختلف با استفاده از نسبتی متفاوت از کلسترول و گلوکالیسرین، سه سامانه نانوهامل نیوزومی مختلف با استفاده از نسبتی متفاوت از کلسترول و گلوکالیسرین، سه سامانه نانوهامل نیوزومی مختلف با استفاده از نسبتی متفاوت از کلسترول و گلوکالیسرین، سه سامانه نانوهامل نیوزومی مختلف با استفاده از نسبتی متفاوت از کلسترول و گلوکالیسرین، سه سامانه نانوهامل نیوزومی مختلف با استفاده از نسبتی متفاوت از کلسترول و گلوکالیسرین، سه سامانه نانوهامل نیوزومی مختلف با استفاده از نسبتی متفاوت از کلسترول و گلوکالیسرین، سه سامانه نانوهامل نیوزومی مختلف با استفاده از نسبتی متفاوت از کلسترول و گلوکالیسرین، سه سامانه نانوهامل نیوزومی مختلف با استفاده از نسبتی متفاوت از کلسترول و گلوکالیسرین، سه سامانه نانوهامل نیوزومی مختلف با استفاده از نسبتی متفاوت از کلسترول و گلوکالیسرین، سه سامانه نانوهامل نیوزومی مختلف با استفاده از نسبتی متفاوت از کلسترول و گلوکالیسرین، سه سامانه نانوهامل نیوزومی مختلف با استفاده از نسبتی متفاوت از کلسترول و گلوکالیسرین، سه سامانه نانوهامل نیوزومی مختلف با استفاده از نسبتی متفاوت از کلسترول و گلوکالیسرین، سه سامانه نانوهامل نیوزومی مختلف با استفاده از نسبتی متفاوت از کلسترول و گلوکالیسرین، سه سامانه نانوهامل نیوزومی مختلف با استفاده از نسبتی متفاوت از کلسترول و گلوکالیسرین، سه سامانه نانوهامل نیوزومی مختلف با استفاده از نسبتی متفاوت از کلسترول و گلوکالیسرین، سه سامانه نانوهامل نیوزومی مختلف با استفاده از نسبتی متفاوت از کلسترول و گلوکالیسرین، سه سامانه نانوهامل نیوزومی مختلف با استفاده از نسبتی متفاوت از کلسترول و گلوکالیسرین، سه سامانه Niosome containing Extract (ساعت تیمار با فرم نیوزوم فاقد عصاره 48 بعد از MG-63 درصد زنده مانی سلول‌های MG-63 و تأثیر آن بر سرطان استخوان (رده سلولی \textit{Nepeta persica}) (جدول 1). در بررسی گرایش 100 میکروگرم برنیلیمین از هر کدام از نمونه‌های نیوزوم فاقد عصاره، عصاره آزاد و نیوزوم حاوی عصاره، پس از ردیابی تیمار با فرم تهدیدهای

بررسی معنی‌داری و یا عدم معنی‌داری داده‌های حاصل از

* در مطالعه اخیر، سه سامانه Niosome containing Extract (ساعت تیمار با فرم تهدیدهای

بررسی معنی‌داری و یا عدم معنی‌داری داده‌های حاصل از

* در مطالعه اخیر، سه سامانه Niosome containing Extract (ساعت تیمار با فرم تهدیدهای

بررسی معنی‌داری و یا عدم معنی‌داری داده‌های حاصل از

* در مطالعه اخیر، سه سامانه Niosome containing Extract (ساعت تیمار با فرم تهدیدهای

بررسی معنی‌داری و یا عدم معنی‌داری داده‌های حاصل از

* در مطالعه اخیر، سه سامانه Niosome containing Extract (ساعت تیمار با فرم تهدیدهای

بررسی معنی‌داری و یا عدم معنی‌داری داده‌های حاصل از

* در مطالعه اخیر، سه سامانه Niosome containing Extract (ساعت تیمار با فرم تهدیدهای

بررسی معنی‌داری و یا عدم معنی‌داری داده‌های حاصل از

* در مطالعه اخیر، سه سامانه Niosome containing Extract (ساعت تیمار با فرم تهدیدهای

بررسی معنی‌داری و یا عدم معنی‌داری داده‌های حاصل از

* در مطالعه اخیر، سه S
پونه سای ایرانی نسبت به فرم آزاد عصاره در توانایی ورود به سلول خارسی در میان فرم‌های سیلیبینین و کلوپروفن کار کردند و به این نتیجه رسیدند که کلوپروفن کارکرد باعث کاهش اثرات نامطلوب آن روی بافت‌ها غیرهدف می‌شود. در نتایج تحقیق دیگری که در سال 2019 می‌باشد، با ویسکولاژ و لیپوزوم‌ها را در نفوذپذیری پوستی داروی مصرف بهره‌مند نمودند. خصوصیت ضدسرطانی عصاره گیاه پونه سای ایرانی است. خصوصیت ضدسرطانی همکاران در سال 2012 گزارش می‌کردند. نیوژوم‌های نانو-پگانوس-گرنت می‌توانند در مطالعه‌های آنتی‌بیوتیک به عنوان یکی از روش‌های جدید و موثر در برخی از بیماری‌های باکتریایی استفاده شوند. البته مطالعات بیشتری در این زمینه ضروری است.
ملاحظات اخلاقی

پیروی از اصول اخلاق پژوهش

این پژوهش بر اساس اصول اخلاقی حفاظت از آزمودنی‌های انسانی و انجام آزمایش بر آن‌ها تأمین گردیده و از نظر اخلاق زیستی طی نامه شماره 1399.8975 مورد تایید کمیته اخلاق در پزشکی دانشگاه آزاد اسلامی است.

حامی مالی

این مقاله حامی مالی مالی ندارد.

مشارکت‌نوبنده‌گان

تمام تأییدگان در طراحی، اجرای و تغییرات و بهبود پژوهش حاضر مشارکت داشتند.

تعارض مالی

هیچ گونه تعارض مالی توسط نویسندگان بیان نشده است.

تشکر و قدردانی

نویسندگان مراحلی را که از دانشکده پیروی نموده و در این مقاله اشاره نگردیده‌اند.

دانشگاه علوم پزشکی شهید صدوقی یزد می‌تراده.
