The 78,000 Mr Intermediate Chain of Chlamydomonas Outer Arm Dynein Is a WD-repeat Protein Required for Arm Assembly

Curtis G. Wilkerson,* Stephen M. King,** Anthony Koutoulis,* Gregory J. Pazour,* and George B. Witman*

*Worcester Foundation for Experimental Biology, Shrewsbury, Massachusetts 01545; and **Department of Biochemistry, The University of Connecticut Health Center, Farmington, Connecticut 06032

Abstract. We have isolated and sequenced a full-length cDNA clone encoding the 78,000 Mr intermediate chain (IC78) of the Chlamydomonas outer arm dynein. This protein previously was shown to be located at the base of the solubilized dynein particle and to interact with α tubulin in situ, suggesting that it may be involved in binding the outer arm to the doublet microtubule. The sequence predicts a polypeptide of 683 amino acids having a mass of 76.5 kD. Sequence comparison indicates that IC78 is homologous to the 69,000 Mr intermediate chain (IC69) of Chlamydomonas outer arm dynein and to the 74,000 Mr intermediate chain (IC74) of cytoplasmic dynein. The similarity between the chains is greatest in their COOH-terminal halves; the NH2-terminal halves are highly divergent. The COOH-terminal half of IC78 contains six short imperfect repeats, termed WD repeats, that are thought to be involved in protein–protein interactions. Although not previously reported, these repeated elements also are present in IC69 and IC74. Using the IC78 cDNA as a probe, we screened a group of slow-swimming insertional mutants and identified one which has a large insertion in the IC78 gene and seven in which the IC78 gene is completely deleted. Electron microscopy of three of these IC78 mutants revealed that each is missing the outer arm, indicating that IC78 is essential for arm assembly or attachment to the outer doublet. Restriction fragment length polymorphism mapping places the IC78 gene on the left arm of chromosome XII/XIII, at or near the mutation oda9, which also causes loss of the outer arm. Mutants with defects in the IC78 gene do not complement the oda9 mutation in stable diploids, strongly suggesting that ODA9 is the structural gene for IC78.

Dyneins are molecular motors involved in various types of microtubule-based motility. These motors are currently divided into two major groups: axonemal and cytoplasmic dyneins. Axonemal dyneins (reviewed by Witman, 1992; Witman et al., 1994) are essential for flagellar and ciliary beating, while cytoplasmic dyneins (reviewed by Bloom, 1992; Holzbauer et al., 1994) are involved in spindle positioning and the movement of membranous organelles toward the “minus” ends of microtubules. Axonemal dyneins can be divided further into inner and outer arm dyneins. Inner arm dyneins probably are responsible for bend initiation and maintenance of the angle of propagating bends, while the outer arm dynein provides as much as four-fifths of the beating force (Brokaw, 1994). Both axonemal and cytoplasmic dyneins have an ATP-sensitive microtubule-binding site that interacts transiently with microtubules during force production. Outer arm dynein and at least some inner arm dyneins have a second structural microtubule-binding site that serves to anchor the arm to the A-tubule of the outer doublet. In contrast, cytoplasmic dynein interacts with membranous vesicles and kinetochores (Pfarr et al., 1990; Steuer et al., 1990), and so must contain a binding site either for a vesicle or kinetochore component or a protein capable of binding these structures.

The most well-characterized dynein with regard to structural binding is the outer arm dynein of Chlamydomonas reinhardtii. Chlamydomonas outer arm dynein contains three different heavy chains, each of which has a mass in excess of 500 kD, two intermediate chains (ICs)1 of 78,000 Mr, (IC78) and 69,000 Mr, (IC69), and 10 light chains (LCs) ranging from 8,000 to 22,000 Mr, (Piperno and Luck, 1979; Huang et al., 1979; Pfister et al., 1982; King and Witman, 1989). Each heavy chain contains a globular head domain and a flexible stem domain (Witman et al., 1983). The head

1. Abbreviations used in this paper: DHC, dynein heavy chain; IC, intermediate chain; LC, light chain; RFLP, restriction fragment length polymorphism; TRP, tetratricopeptide.
contains at least one ATP-hydrolytic site and is presumed to bind transiently to the B-tubule of the outer doublet during force production, whereas the stem extends to the base of the soluble dynein particle and appears to interact with the stems of the other dynein heavy chains (DHCS) to hold the whole complex together. The two intermediate chains and several of the light chains are associated with each other in a discrete complex (Mitchell and Rosenbaum, 1986; King et al., 1991) that is located at the base of the stems (King and Witman, 1990). Protein cross-linking studies indicate that one of the components of this complex, IC78, is in direct contact with α tubulin in the axoneme (King et al., 1991). This suggests that IC78 may be involved in anchoring the outer arm to the outer doublet.

To learn more about the function of IC78, we now have sequenced a full-length cDNA clone encoding it. The deduced amino acid sequence reveals that it is homologous to IC69 and also to the 74,000 M_r intermediate chain (IC74) of cytoplasmic dynein. Southern blot analysis using the cloned cDNA has enabled us to identify several new cell lines, generated by insertional mutagenesis, in which the IC78 gene is either completely deleted or is disrupted by an insertion. Electron microscopy indicates that the axonemes of these cell lines lack outer arms. Therefore, IC78 is essential for outer arm assembly or attachment to the outer doublet microtubule. Restriction fragment length polymorphism analysis maps the IC78 gene near or to a previously described mutation (oda9) which results in loss of the outer arms (Kamiya, 1988). The new cell lines in which the IC78 gene is disrupted or deleted do not complement oda9 in stable diploids, indicating that the primary defect in oda9 may be a mutation in the gene encoding IC78. Elsewhere, we demonstrate that IC78 translated in vitro is a bona fide microtubule-binding protein (King, S. M., C. G. Wilkerson, and G. B. Witman, manuscript submitted for publication). Taken together, these results provide strong support for the hypothesis that IC78 plays an important role in the structural binding of the outer-arm dynein to the α-tubule of the outer doublet.

Materials and Methods

Strains

Strains used included Chlamydomonas reinhardtii strains CC-124 (1132D "wild-type", nitl; nitl2; aggl; m−; nitl-305 (nitl-305; NT72; m−); gl (nitl; NT72; aggl; m+; derivative of crosses between CC-124 and nitl-305, selected for ease of transformation); CC-2244 (oda9; nitl; nitl2; m+); CC-2245 (oda9; nitl; nitl2; m−); CC-2229 (oda1; nitl; nitl2; m−); B214 (acl7; nitl; NT72; aggl; m−); CC-1952 (S1-D2 wild-type, m+); gl (hid; nitl-305, map distance (Harris, 1989). A C. smithii strain (CC-1373) also was used. "CC" numbers are catalog numbers of the Chlamydomonas Genetics Center, Duke University, Durham, NC.)

Isolation and Partial Direct Amino Acid Sequencing of IC78

Axonemes isolated from 1132D cells as previously described (Witman, 1986) were extracted with 0.6 M NaCl to remove the inner and outer dynein arms (King et al., 1990). The resulting extract was then subjected to sucrose density gradient centrifugation to purify the α dimer of the outer arm dynein. IC78 was separated from other proteins in this complex by SDS-PAGE and transferred to a PVDF membrane. This PVDF replica was stained with amido black, the portion containing IC78 excised, and the bound IC78 directly sequenced in a sequencer (model 477A; Applied Biosystems, Foster City, OR). A similar strip of PVDF containing IC78 was digested with 40 mg/ml CNBr in 70% formic acid for 16 h. The CNBr solution was removed and the strip twice extracted at 37°C for 16 h with a solution containing 70% isopropanol and 1% TFA. The CNBr and isopropanol solutions were combined and dried under vacuum. These peptides were separated by SDS-PAGE and transferred to PVDF. This blot was stained with amido black and a peptide excised and sequenced as above.

Cloning and Sequencing of IC78

Chlamydomonas cells were deflagellated by pH shock (Witman et al., 1972) and allowed to regenerate their flagella for 30 min to induce synthesis of flagellar proteins. Total RNA was isolated from these cells and poly A+ mRNA was prepared by oligo-ol DT cellulose chromatography. This mRNA was used to construct a CDNA library in the vector AZAP II using the protocol provided by the manufacturer. Clones containing IC78 sequences were identified by screening with an oligonucleotide designed using the sequence of the internal CnBr fragment. Duplicate plaque lifts were hybridized with the labeled oligonucleotide at 37°C in 6× SSC, 1% SDS and 5× Denhardt's solution for 48 h. Washing consisted of subsequent incubations in 6× SSC and 1% SDS at 22, 37, and 45°C. Filters were autoradiographed after washes at each temperature and plaques showing strong signals at 45°C were removed and plaque purified. The cDNA inserts in the purified plagues were isolated by helper phage excision. Insert sizes were determined by digesting the resulting plasmids with EcoRI and XhoI. Exonuclease III–nested deletions were generated from the largest insert with the Erase-a-Base kit (Promega Biotech, Madison, WI), and sequenced using the T-Deata Sequencing kit (United States Biochemical, Cleveland, OH). Northern and Southern blots were performed as previously described (Wilkerson et al., 1994).

To obtain a genomic clone containing IC78 sequence, an IC78 CDNA clone (p78k3) was used to screen a AFX1 II library (kindly provided by Rogene Schaeel, University of Minnesota, Minneapolis, MN) prepared from DNA of the Chlamydomonas strain 21g. The resulting genomic clone contained an insert of 9 kb.

Insertional Mutagenesis

The C. reinhardtii strain gl, which has a mutant nitrate reductase allele (nitl) and a wild-type N/T2 allele, was transformed with the plasmid pGP505, which contains the wild-type N/TI allele (Fernandez et al., 1989), and plated on selective medium containing only NO3 as a nitrogen source. Colonies expressing the wild-type allele of N/T1 were screened for slow swimming. From 2978 colonies screened, 24 independently isolated cell lines with reduced swimming speed were obtained. DNA was isolated from these slow-swimmers and used to prepare Southern blots, which were then probed with the IC78 cDNA or with clones encoding portions of the α, β, or γ DHCS or IC69 of Chlamydomonas outer arm dynein.

Linkage Analysis

A strain (CC-2244) carrying a mutation at the ODA9 locus was mated to the distantly related strain CC-1952. Tetradts were dissected and DNA was isolated from the products of 15 complete tetrads. These DNAs were digested with BamHI and used to prepare Southern blots, which were then probed with the CDNA clone p78k3 encoding IC78. Map distances were calculated from the formula (NPD + 0.5T)/(PD + NPD + T) × 100 = map distance (Harris, 1989).

Complementation in Diploids

V24 and V27 cells, in which the IC78 gene is disrupted or deleted, respectively, were crossed to B214 (acl7; nitl; m−) cells to obtain slow-swimming m+ haploid products that required acetate for growth and could use NO3 as a nitrogen source. These cells then were mated to CC-2245 (oda9; nitl; nitl2; m−) or CC-2229 (oda1; nitl; nitl2; m−) cells in low ionic strength nitrogen-free medium (Sager and Granick, 1954; medium I minus nitrate [M−N] diluted 5×) supplemented with 0.1% sodium acetate. The mated cells were washed three times in M−N medium to which had been added 0.0375% KNO3 (M−N+KNO3), plated immediately onto M−N+KNO3 agar, and then subjected to a 15 h light/9 h dark regime. From DNA of the diploids and meiotic progeny but did not allow the haploid parental cells to survive. After 7-10 d single colonies were transferred to M−N+KNO3 liquid medium and scored for motility. Restriction fragment length polymorphism (RFLP) analysis using a 1.6-kb XbaI fragment of λ phage KQ7, which is tightly linked to the mating-type locus (Ferris and Goodenough, 1994; and Ferris, P., personal communication), permitted unequivocal identification of true stable diploids as those which contained both mating types.
Computational Analysis

The GCG suite of programs (Devereux et al., 1984) was used for sequence assembly, dot plot comparisons and protein structure predictions. The ALL-MAT and FILTER programs (Vingron and Argos, 1991) were used to generate filtered dot plots. The program NEWCOILS (Lupas et al., 1991) was used to predict regions of coiled-coil structure. The BLAST program (Altschul et al., 1990) was used to search the database for related sequences.

In Vitro Transcription and Translation

T3 RNA polymerase was used to generate synthetic RNA from the plasmid pc78k3 which had been digested with XhoI. This RNA was translated in an in vitro reticulocyte lysate system (Promega Biotec) using [35S]methionine to label the proteins.

Electron Microscopy

Chlamydomonas cells were fixed in glutaraldehyde as described previously (Hoops and Witman, 1983), embedded in 4% low melting temperature agarose (SeaPrep; FMC Corp. Bioproducts, Rockland, ME), washed three times for 10 min in 0.1 M cacodylate buffer (pH 7.2), postfixed for 1 h with 1% OsO4 in 50 mM cacodylate buffer, washed again with buffer followed by deionized water, stained en bloc with 2% aqueous uranyl acetate, rinsed, dehydrated, and embedded in Poly Bed 812 (Polysciences, Inc., Warrington, PA).

Results

Cloning and Sequence of IC78

As a first step in furthering our understanding of outer arm dynein intermediate chain structure and function, we cloned and sequenced an IC78 cDNA. One of the simplest and most direct methods for isolating a cDNA clone for a specific protein is to obtain partial protein sequence and use this sequence to design an oligonucleotide probe based on the codon usage of the organism under study. Because it is possible to obtain large amounts of pure outer-arm dynein from Chlamydomonas and to readily resolve the IC78 polypeptide from the other outer-arm dynein subunits by SDS-PAGE, we chose this method to clone an IC78 cDNA. This approach was additionally facilitated by the very restricted codon usage of Chlamydomonas, which allowed the design of oligonucleotide probes having only a small amount of degeneracy.

NH2-terminal sequence was determined directly from purified IC78 (see Materials and Methods); internal sequence was obtained from a CnBr fragment. The NH2-terminal and internal sequences are shown in Table I. The oligonucleotide probe SA-1 (5'-[G/A]TCG[G/A]TCGAAGTTCAT-3') was designed from the peptide sequence MNFDLND obtained from the internal CnBr fragment. This oligonucleotide was used to screen a cDNA library prepared from RNA isolated from Chlamydomonas cells in the process of regenerating their flagella. Three positive plaques were found and purified. The insert from each of these phage was excised by digestion with EcoRI and XhoI, which were used in the original library construction. The cDNA clone pc78k3 was found to have the largest insert with a length of 2.65 kb. This size is consistent with the expected size of a mRNA encoding a protein of 78,000 Mr. Hybridization of this cDNA probe to Southern and northern blots revealed that this sequence occurs once in the Chlamydomonas genome and that the mRNA and the cDNA clone are of approximately the same size (Fig. 1).

To check the identity of this cDNA we used the clone pc78k3 to produce a synthetic mRNA and translated it in an in vitro translation system. The major translation product was immunoprecipitated with the monoclonal antibody 1B78A (Fig. 2), which is specific for IC78 (King et al., 1986). Because the antibody precipitation is independent of the cloning method, these results confirmed that the cDNA clone isolated using the oligonucleotide SA-1 encodes IC78. The size of the translation product was identical to that of IC78, suggesting that the cDNA clone contains the entire coding region.

Using convenient restriction enzyme sites and exonuclease III-generated nested deletions, we obtained the complete sequence, in both directions, of the clone pc78k3. This sequence is shown in Fig. 3. The first ATG is located at nucleotide position 153. The next 18 amino acids correspond to the NH2-terminal peptide sequence obtained directly from IC78, confirming that this is indeed the translation initiation site. Because this NH2-terminal sequence was not used to obtain the cDNA clone, its presence in the sequence predicted by the clone also rigorously establishes the identity of this clone. At nucleotide 1827 is an amino acid sequence that matches the peptide sequence obtained from the CnBr fragment. In-frame stop codons are present at nucleotides 2202 and 2205. At nucleotide 2608 there is a consensus poly A addition signal (TGTTAA) and at nucleotide 2626 the poly A tail is found. Therefore, this clone contains the entire cod...
Figure 2. In vitro translation of synthetic RNA prepared from pc78k3 and immunoprecipitation of the product with an IC78-specific monoclonal antibody. Lane A of the autoradiograph shows the product obtained when RNA prepared from pc78k3 (see Materials and Methods) was translated in vitro in a reticulocyte lysate system. Lane B shows what remained in the supernatant after immunoprecipitation, and lane C shows the pellet obtained by immunoprecipitation with monoclonal antibody 1878A (King et al., 1985). The product of the in vitro translation was completely removed from the lysate by the immunoprecipitation.

The protein is predicted to contain 683 amino acids and to have a mass of 76.5 kD, in good agreement with the size estimated by SDS-PAGE.

An examination of the predicted secondary structure of the IC78 sequence using the NEWCOILS program does not show any regions of extended α-helix, and no segments show a strong propensity to form coiled-coil structures. The NH2-terminal 25 amino acids form an extremely hydrophilic region that is predicted to be a random coil and is separated from the rest of the protein by a region rich in glutamine and proline. The REPEAT program revealed that the COOH-terminal half of the molecule contains five imperfect repeats; visual inspection revealed a sixth (Fig. 4). These repeats are similar to the WD repeats found in many proteins and believed to be involved in protein-protein interaction (van der Voorn and Ploegh, 1992; Neer et al., 1994; and see Discussion).

Homologous Proteins

Comparing the IC78 nucleotide sequence to the sequences in the non-redundant PDB+SwissProt+SPuptide+PDB+GenPept+Genupidate database using the BLAST program revealed three sequences that showed significant similarity to IC78. Two of these were IC69 of the Chlamydomonas outer arm dynein (Mitchell and Kang, 1991) and IC74 of rat cytoplasmic dynein (Paschal et al., 1992). Fig. 5 shows dot plot comparisons of the IC69, IC74, and IC78 sequences and a filtered dot plot which shows those sequences common between all three ICs. Clearly, the COOH-terminal halves of these sequences share the most similarity, and the NH2-terminal halves are the most divergent. It previously was shown that the cytoplasmic dynein IC was homologous to IC69. The present finding that IC78 is homologous to IC69, even though the two chains appear to have different functions (King, S. M., C. G. Wilkerson, and G. B. Witman, manuscript submitted for publication), indicates that there was a gene duplication followed by divergent evolution of function. The fact that IC78 is homologous to IC69 and IC74 also allows a finer dissection of the sequences conserved between these three chains. A close examination of a three-way alignment of these sequences (Fig. 6) shows that several positions (e.g., positions 374 to 376, 395 to 404, and 494 to 498 in the IC78 sequence shown in Fig. 3) contain a high proportion of residues that are identical in all three chains. In addition, there are numerous instances of residues that are identical in two of the chains but not the third, indicating that the divergence of the two outer-arm IC sequences occurred near the time of the divergence of cytoplasmic and axonemal ICs. Although not previously recognized, IC69 and IC74 each contain five repeat elements which closely match the WD consensus sequence (Fig. 4A); a sixth repeat in each
Figure 4. (A) Alignment of repetitive elements present in IC78, IC69, and IC74 which conform to the WD repeat consensus of Neer et al. (1994). Examination of the IC78 sequence with the program REPEAT (window size 40, stringency 20, and a range of 300) found five repetitive elements (A-C, E, and F) in IC78. We recognized these as conforming to the regular expression that describes the WD repeat. Visual inspection of the IC78 sequence revealed a sixth repeat (D) which matched the WD repeat consensus. Further analysis indicated that similar repeats also are present in IC69 and IC74. The alignment in A was accomplished by hand using only the spacing (dots) allowed by the consensus of Neer et al. (1994). The only exception is in the A repeat from IC74, where the symbol X represents the amino acid sequence EDAPHEP. The asterisks at the top of the aligned sequences indicate constrained amino acids in the WD repeat consensus sequence. Amino acids shown in bold text are those which match the consensus. Only two of three amino acids need to match under the asterisks marked by the overline. (B) Diagrammatic representation of the location of the six repetitive elements in the IC78 sequence. N and C indicate the NH₂ and COOH termini.
loss of the outer arm. The availability of a cDNA clone for IC78 made it possible to identify mutations with disruptions or deletions in the IC78 gene and thus test this prediction. To do this, we took advantage of the fact that when *Chlamydomonas* is transformed, the inserting DNA usually inserts at random into the genome, disrupting the gene at the site of entry or, more commonly, causing large deletions of the flanking DNA (Tam and Lefebvre, 1993; Gumpel and Purton, 1994; and see below).

Figure 6. Three-way alignment of IC78, IC69, and IC74. The numbers are arbitrary and include gaps introduced by the alignment program CLUSTAL. Asterisks indicate amino acids conserved between all three sequences whereas dots indicate conservative replacements.

Figure 7. (A) Dot plot comparison between IC78 and the predicted amino acid sequence of the protein encoded by the human cDNA LO7758. The dot plot was generated by the program COMPARE using a window size of 30 and a stringency of 19. (B) Alignment of two regions of IC78 with a single region of LO7758. The program BLAST matched the regions of IC78 from residues 363-391 and 553-598 (indicated by bold text) with residues 302-376 of LO7758. The program marks amino acid identities with asterisks and conservative replacements with pluses.
Chlamydomonas strain gl, carrying a mutant allele (nit1) of the nitrate reductase gene, was transformed with DNA carrying the wild-type allele. Transformed cells were selected on the basis of their ability to grow on medium containing nitrate as the sole nitrogen source. Transformants were then screened for a slow swimming phenotype, which is characteristic of mutants with defects in the dynein arms. Of 2978 independently isolated colonies that were screened, 24 had reduced swimming speed. The DNA from these cells was isolated and analysed in Southern blots probed with the IC78 cDNA or with cloned DNA encoding portions of the α, β, or γ DHCs or IC69. Of the 24 mutants, seven had a complete deletion of the IC78 gene, and one had a large insertion in the gene (Fig. 8). Two other mutants had deletions of all or part of the β DHC gene. No alterations were detected with the probes for the other dynein genes.

Two of the IC78 deletion mutants (V5 and V27) and the IC78 disruption mutant (V24) were selected for further study. All three of the mutants had normal length flagella but swam with a slow jerky movement, which is indicative of a defect in the outer dynein arm (Kamiya, 1991). Electron microscopic analysis revealed that the outer arm was completely missing in each of these strains (Fig. 9), although the inner arms, the radial spokes, and the central microtubules and their projections appeared normal. Therefore, deletion or disruption of IC78 specifically prevents assembly of the outer arm.

Mapping the IC78 Gene

To determine the location of the IC78 gene on the C. reinhardtii genetic map, we collaborated with Drs. P. Lefebvre and C. Silflow (University of Minnesota), who have been using RFLP analysis to map cloned nuclear sequences throughout the C. reinhardtii genome (Ranum et al., 1988). This mapping effort relies on RFLPs between C. reinhardtii and the closely related interfertile strain C. smithii. No RFLPs were observed between these two strains using the IC78 cDNA clone as a probe. However, using a 9-kb genomic clone encoding IC78, bands of 9 and 12 kb were observed in Southern blots of BamHI digests of C. reinhardtii and C. smithii DNA, respectively. The pattern of segregation of the RFLP in random tetrad products from a C. reinhardtii × C. smithii cross-indicated that the gene encoding IC78 was on the left arm of chromosome XII/XIII, approximately 13 map units from a β-2 tubulin RFLP marker.
IC78 Probably Is Encoded by the ODA9 Locus

The region of chromosome XII/XIII which contains the IC78 gene also contains the ODA9 locus, which is necessary for outer arm assembly. To determine how closely linked the IC78 and ODA9 loci are, we crossed strain CC-2244 containing the oda9 mutation, which causes loss of the outer arm and slow swimming, with the wild-type C. reinhardtii strain CC-1952, which has abundant RFLPs with respect to the standard laboratory strains (Gross et al., 1988). The CC-2244 and CC-1952 strains exhibit restriction fragments of 9 and 4 kb, respectively, when Southern blots of BamHI digests of their DNAs are probed with the IC78 cDNA clone pC78k3. Tetrad progeny were scored for the IC78 RFLP marker and the slow swimming phenotype indicative of the oda9 mutation (Fig. 10). Only parental dityps were found in 15 tetrads, indicating that the two markers are less than 3 map units apart.

To determine if mutations at the ODA9 and IC78 loci could complement one another, we constructed stable diploids between the IC78-defective strains V24 or V27 and strains containing either the mutations oda9 or oda1, which also causes loss of the outer arm and slow swimming. Diploids containing V24 or V27 and oda1 swam at wild-type speeds, indicating that there was complementation between these loci. In contrast, there was no complementation between V24 or V27 and oda9. These results strongly suggest that the ODA9 locus encodes IC78.

Discussion

Previous studies have shown that IC78 is located in an IC/LC complex at the base of the isolated αβ heterodimer of the outer arm dynein (King and Witman, 1990), and is in direct contact with α tubulin in the axoneme of the Chlamydomonas flagellum (King et al., 1991). These findings suggested that IC78 might be involved in binding the outer arm to the outer doublet microtubule. To learn more about the structure of IC78, and thus ultimately to better understand its function and its interaction with tubulin and the other proteins with which it associates, we have cloned and sequenced a full-length cDNA encoding IC78.

The sequence reveals that IC78 shares significant homology with IC69 (the other IC of Chlamydomonas outer arm dynein) and with IC74 (the IC of cytoplasmic dynein). A previous study showed that IC69 and IC74 were homologous (Paschal et al., 1992). The finding that IC78 also is related is of interest for several reasons. First, this is the first demonstration that different ICs within a single dynein are homologous. Thus, Chlamydomonas IC78 and IC69 are members of the same protein family, despite differences in their size, antigenicity (King et al., 1985, 1986) and apparent function (King, S. M., C. G. Wilkerson, and G. B. Witman, manuscript submitted for publication; and see below). Second, whereas IC69 may have a role in the regulation of dynein activity (Mitchell and Kang, 1993), IC78 probably is involved in binding dynein to the outer doublet microtubule (King, S. M., C. G. Wilkerson, and G. B. Witman, manuscript submitted for publication, and see below). This raises the possibility that the ICs of other dynein isoforms may be similarly involved in structural attachment to the cell organelles to which those dyneins bind. Third, the fact that IC78 is related to the other two ICs has permitted a more detailed analysis of the domains and specific residues conserved between the ICs (see below). The finding that residues which are conserved between any two of the ICs may be different in the third IC suggests that, during evolution, the outer arm ICs diverged from each other soon after the separation of axonemal and cytoplasmic dyneins.

The IC78 sequence can be divided into two regions based on its similarity to IC69 and IC74. One region, representing the COOH-terminal one-half of the protein, is fairly conserved among the three ICs, whereas the NH2-terminal third is very divergent. The conserved region contains six repetitive elements that are related to the WD repeats first identified in β-transducin (Fong et al., 1986). These repeats, each of which is about 40–residues long and contains a variable and a conserved region, are present in non-enzymatic, regulatory proteins with widely different functions and cellular locations (van der Voorn and Ploegh, 1992; Neer et al., 1994). It has been proposed that they play a role in the assembly of multiprotein complexes (Neer et al., 1994). Neer et al. (1994) have speculated that the conserved core of the WD repeat provides a "scaffold" to present the variable region, which may dictate the specificity of binding, on the surface of the protein. They further suggest that the differentiated repeats in a single protein may allow interactions with different subunits. The presence of WD repeats in all three dynein ICs would be consistent with a role for the repeats in subunit-subunit interactions within the dyneins, as such interactions are common to these dynein ICs. Repeats A and B of IC78 correspond precisely with the region of that polypeptide which appears to bind IC69 (King, S. M., C. G. Wilkerson, and G. B. Witman, manuscript submitted for publication), suggesting that these particular repeats are involved in IC78/IC69 interaction, and supporting the general hypothesis that WD repeats are involved in subunit-subunit binding.

Some of the proteins containing WD repeats have been shown by genetic means to be associated with proteins containing tetratricopeptide (TRP) repeats (Goebel and Yanagida, 1991). This has led to the suggestion that proteins containing WD and TRP elements interact with each other via their respective repeats (van der Voorn and Ploegh, 1992). We have not found evidence of TRP repeats in any of the ICs, and have found only weak matches in the DHCs. Nevertheless, there is a precedent for TRP repeats in the non-enzymatic subunits of molecular motors, as the kinesin light chain contains a large number of repeats (Fan and Amos, 1994) which are related to the TRP repeats in the yeast glucose repression mediator protein (P14922) (Willkerson and Witman, unpublished results).

The conserved half of IC78 also contains one of the chain's microtubule-binding domains (King, S. M., C. G. Wilkerson, and G. B. Witman, manuscript submitted for publication). Inasmuch as IC78 is the only one of the ICs to bind to microtubules, the critical determinants for this microtubule-binding site must not have been retained, or did not evolve, in the other chains. The other microtubule-binding sites, which appear to be responsible for the cross-linking between IC78 and α-tubulin, occur in the non-conserved NH2-terminal half of IC78.

Although the NH2-terminal one-third is poorly conserved among members of the IC family, the extreme NH2-termi-
nus of both IC78 and IC74 is very highly charged. In IC78, this region is separated from the rest of the protein by a short segment enriched in the amino acids glutamine and proline. Similar segments have been shown to form flexible structures that link functional elements of proteins and are known as polyproline II helices (Adzhubei and Sternberg, 1994) or Q-linkers (Wootton and Drummond, 1989). It is therefore of interest that in IC78, the presence or absence of the NH2 terminus affects the protein's ability to bind to microtubules (King, S. M., C. G. Wilkerson, and G. B. Witman, manuscript submitted for publication). IC69, which does not bind microtubules, lacks both the highly charged NH2-terminal region and the flexible linker. It is tempting to speculate that the highly charged NH2 terminus of IC74 may have a role comparable to that of the NH2 terminus of IC78.

A search of the Genbank database revealed that IC78 is similar to a human cDNA sequence encoding a 56-kD protein. The BLAST program listed this sequence as having a smallest Poisson probability (which is a measure of the likelihood that the match occurred by chance) of 1.9 x 10^-4, which was even smaller than the value of 2.6 x 10^-4 obtained for IC69. The 56-kD protein was not found when the database was searched with either the IC69 or IC74 sequences, indicating that this match was specific for IC78. A dot plot comparison revealed that two contiguous amino acid stretches in the 56-kD protein match two of the WD repeats (B and E) that are separated by 162 amino acids in the IC78 sequence. In addition, a third sequence between amino acids 270 and 285 in the 56-kD protein matches both the B and E WD repeats in IC78. Nothing is known about the function of either the 56-kD protein or its closest match in the database, the yeast PWPI protein. However, the similarity between the WD repeats in IC78 and the 56-kD protein suggests that they interact with a similar protein.

Using the IC78 cDNA as a probe, we have identified several mutants in which the IC78 gene was either disrupted or completely deleted. These mutants initially were selected on the basis of a slow-swimming phenotype, which previously has been used to isolate outer dynein arm-less (oda) mutants (Kamiya, 1988). Although EM analysis revealed that not all of the slow-swimming mutants were lacking the outer arm (Koutoulis, A., G. J. Pazour, and G. B. Witman, unpublished results), the outer arm was missing in all of the IC78 deletion or disruption mutants that were examined. This is the first direct evidence that IC78 is essential for the assembly of the outer arm or for its attachment to the outer doublet microtubule. In light of the evidence that IC78 is a microtubule-binding protein (King, S. M., C. G. Wilkerson, and G. B. Witman, manuscript submitted for publication), it is reasonable to assume that loss of IC78 greatly decreases the affinity of the outer arm for the outer doublet.

IC78 appears to be encoded by the ODA9 locus. First, mutations in ODA9 and the IC78 gene both lead to loss of the outer arm. Second, we have mapped the IC78 gene to within 3 map units of ODA9. Third, insertion mutations in which the IC78 gene is disrupted or deleted do not complement a mutant allele of ODA9 in diploids, although they do complement a mutant allele of ODA4, which also causes loss of the outer arm. Absolute proof that the ODA9 locus encodes IC78 would require rescue of an ODA9 mutant by transformation with a genomic clone or minigene encoding the wild-type IC78. In the absence of such definitive evidence, we tenta-

We are grateful to Dr. John Aghajanian and Ms. Christine Snay for expert assistance with the electron microscopy, and to Dr. John Leszyk for expert assistance with the protein and peptide sequencing. We thank Drs. Pete Lefebvre for the cloned NIT1 gene, Rogene Snell for the genomic library.
Patrick Ferris for the mating-type probe, and David Mitchell for probes to IC69 and the a and b DHCs.

This work was supported by National Institutes of Health grants GM30626 and GM14804 and a grant from the W. M. Keck Foundation for the Worcester Foundation for Experimental Biology Protein Chemistry Faculty.

Received for publication 4 October 1994 and in revised form 29 December 1994.

References

Azhubei, A. A., and M. J. E. Sternberg. 1994. Conservation of polyproline II helices in homologous proteins: implications for structure prediction by model building. Protein Sci. 3:2395-2410.

Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1990. Basic alignment search tool. J. Mol. Biol. 215:403-410.

Bloome, G. S. 1992. Motor proteins for cytoplasmic microtubules. Curr. Opin. Cell Biol. 4:56-73.

Brokaw, C. J. 1994. Control of flagellar bending: a new agenda based on dynein diversity. Cell Motil. Cytoskeleton. 28:199-204.

Deverveix, J. P. Haerfellner, and O. Smithies. 1984. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 12:387-395.

Fan, J., and L. A. Amos. 1994. Kinesin light chain isoforms in Caenorhabditis elegans. J. Mol. Biol. 240:507-512.

Fernandez, D. R. Schnell, L. W. P. Frances, S. C. Hussey, C. D. Sillifow, and P. A. Lefevbre. 1989. Isolation and characterization of the nitrate reductase structural gene of Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. USA. 86:6449-6453.

Ferris, P. J., and U. W. Goodenough. 1994. The mating-type locus of Chlamydomonas reinhardtii. Cell Motil. & Cytoskeleton. 215:403-410.

Fong, H. K. W., J. B. Hurley, R. S. Hopkins, R. S. Miake-Lye, M. S. Johnson, P. Haebedi, and O. Smithies. 1984. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 12:387-395.

Goebl, M. and M. Yanagida. 1991. The TRP snap helix: a novel protein repeat domain. Science (Wash. DC). 252:1162-1164.

Haimo, L. T., and R. D. Fenton. 1988. Interaction of the 74 kD cytoplasmic dynein subunit with a flagellar dynein polypeptide suggests an intracellular targeting function. J. Cell Biol. 118:113-1143.

Harris, E. H. 1989. The Chlamydomonas Sourcebook. Academic Press. San Diego, 780 pp.

Holzbaur, E. L. F., A. Mikami, B. M. Paschal, and R. B. Vallee. 1994. Molecular model building. Trends Biochem. Sci. 16:173-177.

Hongo, Y., S. M. King, and G. B. Witman. 1985. Characterization of related mRNAs. Proc. Natl. Acad. Sci. USA. 83:2162-2166.

Hori, M., and M. Yanagida. 1991. The TRP snap helix: a novel protein repeat domain. Science (Wash. DC). 252:1162-1164.

Huisman, A. and G. B. Witman. 1986. Molecular cloning and expression of flagellar radial spoke and dynein genes of Chlamydomonas reinhardtii. Cell Motil. Cytoskeleton. 4:74-79.

In Cell Movement: The Dynein ATPases. F. D. Warner, P. Satir, and I. R. Gibbons, editors. Alan R. Liss, Inc., New York. 49-60.

Itoh, K., R. B. Gay, and G. B. Witman. 1992. Axonemal dynein mutants. In Cell Movement: The Dynein ATPases. F. D. Warner, P. Satir, and I. R. Gibbons, editors. Alan R. Liss, Inc., New York. 49-60.

Itoh, K., R. B. Gay, and G. B. Witman. 1992. Axonemal dynein mutants. In Cell Movement: The Dynein ATPases. F. D. Warner, P. Satir, and I. R. Gibbons, editors. Alan R. Liss, Inc., New York. 49-60.

King, S. M. 1992. Molecular analysis of the a and b dynein genes. Trends Biochem. Sci. 17:435-445.

Kamiya, R. 1991. Selection of IC69 and the a and b DHCs. Cell Motil. & Cytoskeleton. 15:75-80.

Kamiya, R. 1988. Mutations at twelve independent loci result in absence of outer dynein arms. J. Cell Sci. 97:902-908.

Kamiya, R. 1990. Defective for axonemal outer-dynein arm outer-dynein mutant by rescue with the wild-type gene. J. Cell Biol. 113:835-842.

Kamiya, R. 1993. Reversion analysis of dynein intermediate chain function. J. Cell Sci. 105:1069-1078.

Kamiya, R. 1991. Selection of IC69 and the a and b DHCs. Cell Motil. & Cytoskeleton. 14:435-445.

Kamiya, R. 1988. Mutations at twelve independent loci result in absence of outer dynein arms. J. Cell Sci. 97:902-908.

Kamiya, R. 1988. Mutations at twelve independent loci result in absence of outer dynein arms. J. Cell Sci. 97:902-908.

Kamiya, R. 1990. Defective for axonemal outer-dynein arm outer-dynein mutant by rescue with the wild-type gene. J. Cell Biol. 113:835-842.

Kamiya, R. 1993. Reversion analysis of dynein intermediate chain function. J. Cell Sci. 105:1069-1078.

King, S. M., and G. B. Witman. 1986. Molecular analysis of the a and b dynein genes. Trends Biochem. Sci. 11:758-762.

Kamiya, R. 1988. Mutations at twelve independent loci result in absence of outer dynein arms. J. Cell Sci. 97:902-908.

Kamiya, R. 1990. Defective for axonemal outer-dynein arm outer-dynein mutant by rescue with the wild-type gene. J. Cell Biol. 113:835-842.

Kamiya, R. 1993. Reversion analysis of dynein intermediate chain function. J. Cell Sci. 105:1069-1078.

Kamiya, R. 1988. Mutations at twelve independent loci result in absence of outer dynein arms. J. Cell Sci. 97:902-908.

Kamiya, R. 1990. Defective for axonemal outer-dynein arm outer-dynein mutant by rescue with the wild-type gene. J. Cell Biol. 113:835-842.

Kamiya, R. 1993. Reversion analysis of dynein intermediate chain function. J. Cell Sci. 105:1069-1078.

Kamiya, R. 1988. Mutations at twelve independent loci result in absence of outer dynein arms. J. Cell Sci. 97:902-908.

Kamiya, R. 1990. Defective for axonemal outer-dynein arm outer-dynein mutant by rescue with the wild-type gene. J. Cell Biol. 113:835-842.

Kamiya, R. 1993. Reversion analysis of dynein intermediate chain function. J. Cell Sci. 105:1069-1078.

Kamiya, R. 1988. Mutations at twelve independent loci result in absence of outer dynein arms. J. Cell Sci. 97:902-908.

Kamiya, R. 1990. Defective for axonemal outer-dynein arm outer-dynein mutant by rescue with the wild-type gene. J. Cell Biol. 113:835-842.

Kamiya, R. 1993. Reversion analysis of dynein intermediate chain function. J. Cell Sci. 105:1069-1078.

Kamiya, R. 1988. Mutations at twelve independent loci result in absence of outer dynein arms. J. Cell Sci. 97:902-908.

Kamiya, R. 1990. Defective for axonemal outer-dynein arm outer-dynein mutant by rescue with the wild-type gene. J. Cell Biol. 113:835-842.

Kamiya, R. 1993. Reversion analysis of dynein intermediate chain function. J. Cell Sci. 105:1069-1078.