GEOMETRICAL STATISTICS —
CLASSICAL AND QUANTUM\(^1\)

Ingemar Bengtsson\(^2\)

Stockholm University, Alba Nova
Fysikum
S-106 91 Stockholm, Sweden

Abstract

This is a review of the ideas behind the Fisher–Rao metric on classical probability distributions, and how they generalize to metrics on density matrices. As is well known, the unique Fisher–Rao metric then becomes a large family of monotone metrics. Finally I focus on the Bures–Uhlmann metric, and discuss a recent result that connects the geometric operator mean to a geodesic billiard on the set of density matrices.

\(^1\)Talk at the third Växjö conference on Quantum Theory: Reconsideration of foundations, June 2005.

\(^2\)Email address: ingemar@physto.se. Supported by VR.
1. Classical preliminaries

How far apart are two probability distributions? An answer to this question should encapsulate the ease with which the two distributions can be distinguished from each other by means of some kind of sampling. The answer will depend very much on what the precise rules of this game are.

What kind of Riemannian metric is appropriate on a set of classical probability distributions over N events, that is on a probability simplex? One way of answering the second question proceeds by taking the first question seriously, and formulating it for a large number of samplings, so that only infinitesimal distances need to be considered. In effect, with some minor changes, we will use the idea that long ago led investigators in colour theory to introduce a metric on the convex set of colours. This is, in a way, very close to the original ideas of Riemann himself [1]. But we can also approach the question in the spirit of Felix Klein, and first ask what transformations of the simplex that we are going to consider. It is encouraging that both avenues lead to the same answer. In quantum mechanics—or more appropriately quantum probability theory—the situation is more complex, as we will see.

Let us first deal with the question as Riemann might have dealt with it: let us assume that we perform N samplings from a probability distribution P over N mutually exclusive events. We were taught by a member of the Bernoulli family that if the number of samplings is large, then the probability that we obtain the frequency distribution F will be

$$P(F) \sim \exp \left(-\frac{N}{2} \sum_{i=1}^{N} \frac{(f_i - p_i)^2}{p_i} \right).$$

(I have placed the index on the probability vector upstairs, because I will be doing differential geometry very soon.) For the moment, the point about this famous result is that the width of the distribution P depends on where we are in the probability simplex. Let us fix $N = 3$ for definiteness, in which case the set of probability distributions is a two dimensional simplex. Bernoulli’s results provides us with an error ellipse at each point in the simplex. In the spirit of Riemannian geometry we now imagine that the simplex is made of rubber, and we try to deform it so that all error ellipses become circles of a certain standard size. If we succeed we will be looking at a curved surface
with a definite geometry determined by Bernoulli’s theorem.

It is even easier to do this with equations. The error ellipses are such that we are looking at the quadratic form

\[ds^2 = \frac{1}{4} \sum_{i,j} g_{ij} dp^i dp^j = \frac{1}{4} \sum_i \frac{dp^i dp^i}{p^i} . \]

(2)

This equation defines a Riemannian metric \(g_{ij} \), known in this context as the Fisher–Rao metric. The factor \(1/4 \) in front is for later agreement with the conventions of quantum mechanics, and is not important at this stage. We refer to the tensor

\[g_{ij} = \frac{1}{4} \delta_{ij} , \quad \sum_i p^i = 1 , \quad p^i \geq 0 , \]

(3)

as the Fisher–Rao metric. Up to normalization, it is the Fisher information matrix \([2]\); it was first treated as a Riemannian metric by Rao \([3]\). Because of its origins it has a definite operational significance, in particular its inverse \(g^{ij} \) limits the variance of an unbiased estimator according to the Cramér–Rao inequality \([4]\). The Fisher–Rao metric can also be used to define a natural prior, known as Jeffrey’s prior, on the space of probability distributions. The point is that any Riemannian metric determines a natural measure which is proportional to the square root of the determinant of the metric tensor.

But what is this metric? We can use the rules for how Riemannian metrics transform under coordinate changes to answer this. Define

\[x^i = \sqrt{p^i} . \]

(4)

In these coordinates

\[ds^2 = \sum_i dx^i dx^i , \quad \sum_i x^i x^i = 1 , \quad x^i \geq 0 . \]

(5)

This is recognizable as the metric on a sphere, or more precisely on the positive (hyper-) octant of a sphere. So now we know what we have to do to our rubber simplex in order to make the error ellipses look like circles of a standard size: we have to wrap it on the octant of a round sphere.

We can use the Fisher–Rao notion of distance to write down an equation for the geodesic (shortest) distance between an arbitrary pair of probability distributions, namely
\[\cos D_{FR}(P, Q) = \sum_i \sqrt{p_i q_i}. \]

At this point a cautionary note must be sounded: although a Riemannian metric can always be used to define a finite geodesic distance between any pair of points in space, there is no obvious operational significance attached to this here. It is the infinitesimal distance between nearby probability distributions that has a meaning, in the limit of a large number of samplings—but even so the finite geodesic distance may be a useful crutch to study the infinitesimal distance.

There is a different train of arguments that leads to the same metric. Let us define a stochastic matrix as a matrix with positive elements that obey \(\sum_i T_{ij} = 1 \). This is the most general matrix such that \(\vec{q} = T\vec{p} \) is a probability distribution whenever \(\vec{p} \) is. The set of stochastic matrices do not form a group, but they do form a semigroup, and it is natural to require that any meaningful notion of distance between probability distributions should obey

\[D(TP, TQ) \leq D(P, Q). \]

The idea is that stochastic transformations can only decrease the distinguishability of two given probability distributions. Hence their mutual distance should decrease, or at best stay constant. A Riemannian metric whose geodesic distance has this property is said to be a metric monotone under stochastic maps, or a monotone metric for short. Then we can rely on a very clear cut theorem, called Chentsov’s theorem: there exists one and only one monotone Riemannian metric, and this is the Fisher-Rao metric.

Although the statement of Chentsov’s theorem could not be simpler, his proof (of uniqueness) is quite difficult [5]; for an accessible version see Campbell [6]. Proving that the Fisher–Rao metric has the stated property is fairly easy though, and can be done using nothing more involved than the Cauchy–Schwarz inequality. Even better, it is fairly easy to see what goes on using pictures. To find a stochastic map that stretches the flat simplex (i.e., to prove that the flat metric is not monotone under stochastic maps), consider the stochastic matrix

\[T = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}. \]
This represents a coarse graining of the outcomes of the samplings. Such a matrix maps the entire probability simplex onto one of its edges. Now it is easy to see what the flow of this transformation looks like. On the flat simplex, all points along any line parallel to a particular edge will be taken to the same point on another edge, and as a result distances between different points may be stretched. The flat metric is not monotone. On the round octant, the parallel lines turn into latitude circles. All points on a given latitude circle will be taken to a point on a given longitude quarter circle (representing an edge of the simplex). Distances between different points will decrease if they have different longitudes to start with, otherwise they will stay constant. Therefore the round metric is monotone.

2. Monotone metrics in the quantum case

In the quantum case we do not have probability distributions any more, we have density matrices instead. A density matrix is an object that stands ready to produce a probability distribution once a POVM is given, but it is not in itself a probability distribution. Therefore the statistical geometry of quantum states is much subtler than it was in the classical case.

The easy way to generalize the classical treatment is to focus on stochastic maps. A stochastic map of the set of density matrices must take density matrices to density matrices, but—as is well known—a somewhat stronger requirement is natural. It must do so also when applied to only one of the factors of a tensor product. This may sound like a triviality—classically it is trivial—but it is not a trivial requirement in quantum theory, and in fact it makes the set of maps to be considered much more manageable than it would otherwise have been. Thus a stochastic quantum map is defined to be a completely positive trace preserving map. While this is a manageable set of maps, it turns out that it does not single out a unique monotone Riemannian metric. The situation is fully described by a theorem that was proved (in stages) by Morozova and Chentsov [7], and Petz [8]. It states that a Riemannian metric on the space of density matrices is monotone under stochastic maps if and only if, at a point where \(\rho = \text{diag}(\lambda_1, \ldots, \lambda_N) \), it is of the form
\[ds^2 = \frac{1}{4} \left[\sum_{i=1}^{N} \frac{d\rho_{ii}^2}{\lambda_i} + 2 \sum_{i<j} \frac{|d\rho_{ij}|^2}{\lambda_i \lambda_j f(\lambda_i/\lambda_j)} \right]. \tag{9} \]

It is assumed that the function \(f \) obeys three conditions, namely

i) It is operator monotone.

ii) \(f(1/t) = f(t)/t \).

iii) \(f(1) = 1 \).

The third condition ensures that the metric is regular at the origin. The second condition ensures that the metric is symmetric in the eigenvalues. The meaning of the first condition is that

\[A > B \implies f(A) > f(B), \tag{10} \]

where \(A \) and \(B \) are positive matrices of an arbitrary size; since positive matrices can be diagonalized it is easy to define \(f(A) \). The ordering \(A > B \) means that \(A - B \) is positive definite. An operator monotone function is always monotone (in the ordinary sense, that is for \(1 \times 1 \) matrices), but the converse is not true—seemingly innocent functions like \(t^2 \) and \(e^t \) are not operator monotone. Nevertheless there exists infinitely many functions that obey the three conditions stated, and hence infinitely many monotone metrics on the space of density matrices. But all of them share the same diagonal part, so we recover the uniqueness of the Fisher–Rao metric on the set of classical probability distributions over \(N \) events.

The conditions i)–iii) do not come out of thin air. They appear also in the definition of something known as the mean \(A\#B \) of two positive operators \(A \) and \(B \) [9]. This can be characterized axiomatically, as follows:

a) \(A\#A = A \).

b) \((\alpha A)\#(\alpha B) = \alpha(A\#B), \alpha \in \mathbb{R} \).

c) \(A \geq C \) and \(B \geq D \) imply \(A\#B \geq C\#D \).

d) \((U A U^\dagger)\#(U B U^\dagger) \geq U(A\#B)U^\dagger \).

Here \(U \) is a unitary matrix. Clearly anything that deserves the name “mean” must obey this. When a modest continuity requirement is added these conditions determine any operator mean to be
\[A \# B = \sqrt{A} f \left(\frac{1}{\sqrt{A}} B \frac{1}{\sqrt{A}} \right) \sqrt{A}, \]

(11)

where the function \(f \) obeys conditions i) and iii). Moreover the mean will be symmetric, \(A \# B = B \# A \), if and only if \(f \) obeys condition ii). (You may now begin to suspect that nobody knows how to define the mean of three operators. This is correct, as far as I know.)

Let us give three examples of operator means, and hence of functions obeying conditions i)–iii). We choose the arithmetic mean, given by \(f = (1 + t)/2 \), the geometric mean given by \(f = \sqrt{t} \), and the harmonic mean given by \(f = 2t/(1 + t) \). It is known that the arithmetic mean is the maximal of all possible means, while the harmonic mean is the minimal mean. So we get two choices of \(f \), and hence of monotone quantum metrics, that are clearly distinguished in some sense. The geometric mean will also be of interest to us, so let us write down the geometric mean of two operators explicitly:

\[A \# B_{\text{geom}} = \sqrt{A} \sqrt{\frac{1}{\sqrt{A}} B \frac{1}{\sqrt{A}}} \sqrt{A}. \]

(12)

It is clear that if the two matrices commute this reduces to an ordinary geometric mean. It is also clear that if they do not commute, this is a computational nightmare.

It is worth noting that, of the three examples that we quoted, two have the property that \(f(0) = 0 \). Inspection of expression (9) for the metric shows that this means that the metric will diverge at the boundary of the set of density matrices, in particular for all pure states. From the point of view of statistical distinguishability this is in fact not as absurd as it seems at first sight, but I will not go into this here.

3. The Bures–Uhlmann metric

Let us now think of metrics on the space of density matrices from a completely different angle. Monotonicity apart, are there any other geometrically natural ways to introduce such metrics? On the space of pure states, the answer is yes: some very different considerations lead to the Fubini–Study metric there [10, 11]. Then the geodesic distance between state vectors is given by
This is a distance defined on the space of physically inequivalent state vectors, that is on complex projective space. When the dimension N of Hilbert space equals 2, it is a sphere of radius $1/2$, but in general it is a more complicated space. The point, for the moment, is that the Fubini–Study metric arises naturally in a setting that has nothing to do with statistical distance. It is a fibre bundle construction. To see this we first normalize all vectors in Hilbert space, that is we start with an odd dimensional sphere S^{2N-1} and equip it with its natural round metric. Then we observe that such spheres contain a space filling congruence of circles (linked circles in the especially famous S^3 case). These are the fibres of the bundle, and the base manifold is the set of all these circles. If we let the shortest distance between a pair of fibres define the distance between a pair of points in the base manifold, we arrive precisely at the Fubini–Study metric on complex projective space. In brief, $S^{2N-1}/S^1 = \mathbb{C}P^{N-1}$.

Can this approach be generalized to mixed states? In fact there is a setting in which the set of density matrices acting on the Hilbert space \mathcal{H}^N does appear as the base manifold of something that is—almost—a fibre bundle. This is so because a mixed state ρ acting on \mathcal{H}_N can always be purified, that is one can always find a pure state acting on $\mathcal{H}_N \otimes \mathcal{H}_N'$ such that the partial trace over the second subsystem is the original state ρ. It is convenient to identify this composite Hilbert space with the set of matrices $\mathcal{B}(\mathcal{H}_N)$ acting on \mathcal{H}_N. That every state can be purified means that we can always find an $N \times N$ complex matrix A such that

$$\rho = AA^\dagger.$$ \hspace{1cm} (14)

The set of complex matrices is a Hilbert space, with the natural scalar product

$$\langle A|B \rangle = \text{Tr} BA^\dagger.$$ \hspace{1cm} (15)

Now a density matrix is a positive matrix of unit trace. It is seen that the unit sphere in $\mathcal{B}(\mathcal{H}_N)$ projects down to the set of density matrices under

$$\Pi : \quad A \rightarrow \rho = AA^\dagger.$$ \hspace{1cm} (16)
Namely

\[||A||^2 = \text{Tr}AA^\dagger = 1 \Rightarrow \text{Tr}\rho = 1. \] \hspace{1cm} (17)

We also see that the unitary group acts on the fibres, in the sense that \(A \) and \(AU \) will project onto the same \(\rho \) provided that \(U \) is a unitary matrix. Mathematically, this setting is almost exactly the same as that which gives rise to the Fubini–Study metric, the only catch being that—in the density matrix case—the fibres are not isomorphic to each other but depend on the rank of the density matrix. This is not too serious a problem, in fact we may ignore it.

Following Uhlmann [12] (and, originally, Bures [13]) we can now define the distance between two density matrices, that is on the base manifold of the purification bundle, through

\[
\cos D_{BU} \equiv \max \left| \frac{1}{2}(A_1A_2^\dagger + A_2A_1^\dagger) = \text{Tr} \sqrt{\sqrt{\rho_2} \rho_1 \sqrt{\rho_2}} \equiv \sqrt{F(\rho_1, \rho_2)} \right|. \hspace{1cm} (18)
\]

The maximum is to be taken over all purifications of \(\rho_1 \) and \(\rho_2 \) that lie on the unit sphere in \(\mathcal{B}(\mathcal{H}_N) \), so the definition of the Bures–Uhlmann distance simply says that the distance between a pair of density matrices is the length of the shortest geodesic, in the unit sphere, between their two fibres. (It is not particularly difficult to find this maximum, provided that one performs polar decompositions of every matrix in sight.) The function \(F \) is known as the fidelity—it is a symmetric function of its two arguments, although this is not immediately apparent from the explicit expression.

Now it is not too difficult to see that if we set \(\rho_2 = \rho_1 + \epsilon \rho \), and choose a diagonal form for \(\rho_1 \), then the Bures–Uhlmann distance is consistent with one of the monotone metrics given above, namely for the distinguished choice \(f(t) = (1 + t)/2 \), that is for the arithmetic mean. This metric is known as the Bures metric.

Although we had some difficulties in defining our fibre bundle over the boundary of the set of density matrices, it is nevertheless easy to check that for a pair of pure states the Bures–Uhlmann distance coincides with the Fubini–Study distance. When \(N = 2 \), that is for qubits, we can parametrize an arbitrary density matrix as
\[
\rho = \frac{1}{2} \begin{bmatrix}
1 + z & x - iy \\
x + iy & 1 - z
\end{bmatrix}.
\]

(19)

The Bures metric becomes
\[
ds^2 = \frac{1}{4} \left(dx^2 + dy^2 + dz^2 + \frac{(xdx + ydy + zdz)^2}{1 - x^2 - y^2 - z^2} \right)^2.
\]

(20)

This is recognizable as the metric on the “upper” hemisphere of a 3-dimensional sphere of radius 1/2, in orthographic coordinates. The maximally mixed state sits at the North Pole and the pure states at the equator, and states of equal purity have the same latitude [14].

Some features of the qubit example do generalize to higher \(N\). For all \(N\) we do have a reasonable amount of control over geodesics with respect to the Bures metric, and the pure states form a totally geodesic subset. If one performs a horizontal lift of a geodesic between a pair of density matrices one finds that the corresponding points in the bundle are connected by
\[
A_2 = \frac{1}{\sqrt{\rho_1}} \sqrt{\rho_1 \rho_2} \frac{1}{\sqrt{\rho_1}} A_1.
\]

(21)

Thus \(A_1^\dagger A_2\) is a positive matrix, and its trace takes the maximal value \(\sqrt{F(\rho_1, \rho_2)}\). Meanwhile, note that here we encounter the geometric mean—of \(\rho_1^{-1}\) and \(\rho_2\)—for the second time. A third time is coming.

The qubit example is misleadingly simple too. The Bures geometry does not have constant curvature for higher \(N\). In fact there are curvature singularities whenever the rank of the density matrices drops with 2 [15]. And it is only for \(N = 2\) that a manageable expression for the metric, using the matrix elements as coordinates, is known.

\section*{4. The best possible measurement}

Let us now try to tie the two strands of our story together. Let us first recall exactly how a density matrix can be made to yield a probability distribution. We have to choose a POVM, that is to say a set of positive operators \(E_i\) that form a resolution of the identity:
\[1 = \sum_i E_i \, , \quad E_i \geq 0 \, . \] \tag{22}

Here the range of \(i \) can be anything: in a projective measurement the POVM consists of \(N \) orthogonal operators, but that is a quite special case. It is assumed that every measurement corresponds to some POVM.

Given two density matrices a POVM helps us to two probability vectors, with components

\[p_i = \text{Tr} E_i \rho_1 \quad \text{and} \quad q_i = \text{Tr} E_i \rho_2 \, . \] \tag{23}

These probability vectors govern the statistics of the particular measurement that is associated to the given POVM. With the measurement, and hence the POVM, kept fixed, we can compute the statistical distance between \(\rho_1 \) and \(\rho_2 \) as the classical statistical distance between \(\vec{p} \) and \(\vec{q} \). If we vary the POVM, we vary that distance. This suggests that we should define the quantum statistical distance \(D \) as

\[\cos D = \min_{\{E\}} \sum_i \sqrt{p_i q_i} \, , \] \tag{24}

where the minimum is taken over all possible POVMs (that is, we maximize the distance over all POVMs). This procedure was actually carried out by Fuchs and Caves [16], and the answer is precisely the Bures–Uhlmann distance. In this specific sense then, the Bures–Uhlmann distance is the quantum statistical distance. (There are other ways of defining statistical distance, giving other answers, but we will stick to this particular definition here.)

The argument offered by Fuchs and Caves is fully explicit, in the sense that the best possible POVM is found explicitly. It is a projective measurement, associated to the Hermitian operator

\[M(\rho_1, \rho_2) = \frac{1}{\sqrt{\rho_1}} \sqrt{\sqrt{\rho_1 \rho_2} \sqrt{\rho_1}} \frac{1}{\sqrt{\rho_1}} \, . \] \tag{25}

In the specific sense of the argument, this is the best possible measurement that one can perform with the aim of distinguishing \(\rho_1 \) and \(\rho_2 \). The proof is valid as long as one of the density matrices is invertible. For a pair of pure states the best possible measurement is not unique, but the statistical
distance D remains well defined—and equal to the Fubini–Study distance between the states.

Note that the operator M is precisely the geometric mean of the operators ρ_1^{-1} and ρ_2. From the symmetry of the geometric mean it follows that $M(\rho_1, \rho_2) = M^{-1}(\rho_2, \rho_1)$. Hence we get the same eigenbasis, and the same projective measurement, regardless of the order in which we consider the two density matrices. Note also that the operator M was used in the description of geodesics with respect to the Bures metric, and note the simple relation $\rho_2 = M\rho_1 M$.

5. The Uhlmann billiard

Curiously, the operator M has now appeared at three points in our story. This is intriguing. At the same time this is awkward, because it is a difficult operator to handle. Is there some easy geometric way to determine the best possible measurement, given the two density matrices to be distinguished?

Let us see how everything works out for a qubit, where the state space is just a round hemisphere (of the 3-sphere), a geodesic is an arc of a great circle on the sphere, and a projective measurement can be represented by a pair of antipodal points on the equator (representing the eigenstates of M, in our case). We would like to develop enough intuition so that, if we are told the location of ρ_1 and ρ_2, we can point to the pair of points representing M without performing any calculations. But before we do so, let us see how badly the uniqueness of the best measurement fails if the two density matrices to be distinguished are pure. Let us think of the two pure states as two points on the boundary of a circular disk, subtending an angle $\theta < \pi$. Let a projective measurement define a diameter of this disk, making an angle θ_A with the closest of the pair of pure states. A short calculation verifies that the classical statistical distance between the states, given such a measurement, is $\theta/2 - \theta_A$ if the diameter lies inside the segment formed by the states, and it is $\theta/2$ otherwise. Hence all measurements of the latter kind are optimal from this point of view, and the quantum statistical distance (as defined above) equals $\theta/2$, which is just the Fubini–Study distance between the states. This degree of ambiguity in our results will recur in higher dimensional Hilbert spaces too.

When one of the two density matrices is invertible, M is unique. A
possible guess for M would be that its eigenstates lie on a straight line, parallel to the straight line through ρ_1 and ρ_2 (with “straight line” defined in the sense of convex mixtures). This is the sort of thing I mean, but it is wrong. Fortunately a short calculation is enough to verify that the eigenstates of M lie on the endpoints of the unique Bures–Uhlmann geodesic through ρ_1 and ρ_2. Since geodesics on a round 3-sphere are easy to construct, our program to see what M is without calculating it has succeeded—for the qubit.

For $N > 2$ this picture generalizes as follows. A Bures–Uhlmann geodesic in the set of density matrices is always the image of a great circle on the unit sphere in Hilbert–Schmidt space, projected down to the base manifold. Such a great circle is the intersection of the sphere with some real 2–plane

$$\{ A : A = A_1 + \lambda A_2 , \quad \lambda \in \mathbb{R} \}. \quad (26)$$

The determinant of such N by N matrices can be zero for at most N real values of λ. But the density matrix to which such a matrix projects lies on the boundary of the set of density matrices if and only if the matrix has a zero eigenvalue. This is the first observation. The second observation is that only rather special great circles project down to geodesics. Uhlmann [12] pointed out that for those special great circles all the roots of the characteristic equation are real, which means that the Bures–Uhlmann geodesic actually does hit the boundary exactly N times (and then it repeats—the great circle covers the geodesic twice).

Hence we have a geodesic billiard, in which any geodesic bounces from N points on the boundary of the set of density matrices. (In exceptional cases there may be multiple roots, and then there are less than N distinct bounce points, but for now we ignore this.) The question is: do these N points have anything to do with the N eigenstates of the geometric mean, or more precisely with the Fuchs–Caves best measurement operator for a pair of density matrices through which the geodesic is drawn?

In the generic case any bounce will occur in the interior of one of the maximal faces of the body of density matrices, or equivalently at a density matrix with a unique zero eigenvalue. Such a density matrix singles out a unique pure state to which it is orthogonal in the sense of the Hilbert–Schmidt scalar product. Hence, any geodesic through a pair of density matrices ρ_1 and ρ_2 singles out, through its N bounces, N pure states. It has been shown
quite recently [17] that these \(N \) pure states are precisely the eigenstates of the operator \(M(\rho_1, \rho_2) \). It is not clear whether this observation gives any special calculational advantages, but it paints a nice picture anyway.

6. Apologia

But why do I tell this story to an audience that is reconsidering the foundations of quantum theory?

The answer is that I think that the story is a beautiful illustration of the pre-established harmony between mathematical statistics and quantum mechanics. Several other speakers were inclined to refer to the latter as “quantum probability theory”. This would be my position also. In quantum probability theory the pure states are always numerous enough to form a symplectic manifold. Therefore the name “quantum mechanics” is a useful one—but still one that misses the main point.

Acknowledgements:

I thank Åsa Ericsson and Karol Życzkowski for many discussions of these things—and of course Andrei Khrennikov for inviting me to visit Småland, where I enjoyed discussing them with a larger circle of friends (as well as swimming in the lakes). For my understanding of Bures geodesics I relied on unpublished notes by Hans–Jürgen Sommers.

References

[1] B. Riemann, Über die Hypothesen, welche der Geometrie zu Grunde liegen, reprinted in D. E. Smith (ed): A Source Book in Mathematics, vol. two, Dover 1959.

[2] R. A. Fisher, Theory of statistical estimation, Proc. Cambr. Phil. Soc. 22 (1925) 700.

\(^3\)Actually, it was proved only after my talk that this punchline is true. In Växjö, it was just Åsa Ericsson’s guess.
[3] C. R. Rao, Information and accuracy attainable in the estimation of statistical parameters, Bull. Calcutta Math. Soc. 37 (1945) 81.

[4] H. Cramér: Mathematical Methods of Statistics, Almqvist and Wiksells, Uppsala 1945.

[5] N. N. Čencov: Statistical Decision Rules and Optimal Inference, American Mathematical Society, 1982.

[6] L. L. Campbell, An extended Cencov characterization of the information metric, Proc. Amer. Math. Soc. 98 (1986) 135.

[7] E. A. Morozova and N. N. Čencov, Markov invariant geometry on state manifolds (in Russian), Itogi Nauki i Tehniki 36 (1990) 69.

[8] D. Petz, Monotone metrics on matrix spaces, Lin. Alg. Appl. 244 (1996) 81.

[9] T. Ando, Majorizations and inequalities in matrix theory, Lin. Alg. Appl. 199 (1994) 17.

[10] G. Fubini, Sulle metriche definite da una forma Hermitiana, Atti Instituto Veneto 6 (1903) 501.

[11] E. Study, Kürzeste Wege in komplexen Gebiet, Math. Annalen 60 (1905) 321.

[12] A. Uhlmann, Density operators as an arena for differential geometry, Rep. Math. Phys. 33 (1993) 253.

[13] D. J. C. Bures, An extension of Kakutani’s theorem on infinite product measures to the tensor product of semiinfinite W_* algebras, Trans. Am. Math. Soc. 135 (1969) 199.

[14] M. Hübner, Explicit computation of the Bures distance for density matrices, Phys. Lett. A163 (1992) 239.

[15] J. Dittman, On the Riemannian metric on the space of density matrices, Rep. Math. Phys. 36 (1995) 309.
[16] C. A. Fuchs and C. M. Caves, Mathematical techniques for quantum communication theory, Open Sys. Inf. Dyn. 3 (1995) 345.

[17] Å. Ericsson, Geodesics and the best measurement for distinguishing quantum states, arXiv preprint quant-ph/0508133, 2005.