Statement concerning the assessment of environmental fate and behaviour and ecotoxicology in the context of the pesticides peer review of the active substance dimoxystrobin

European Food Safety Authority (EFSA)

Abstract

In August 2022, the European Commission asked EFSA to provide a statement on the available outcomes of the assessment of environmental fate and behaviour and ecotoxicology drawn in the context of the pesticides peer review for the renewal of approval of the active substance dimoxystrobin conducted in accordance with Commission Implementing Regulation (EC) No 844/2012. The current statement contains the conclusions of the assessments related to environmental fate and behaviour and ecotoxicology finalised following the pesticides peer review expert discussions held in January and June 2022. The concerns identified are presented.

© 2022 Wiley-VCH Verlag GmbH & Co. KgaA on behalf of the European Food Safety Authority.

Keywords: dimoxystrobin, pesticide, fungicide, peer review, environmental fate and behaviour, ecotoxicology assessment

Requestor: European Commission

Question number: EFSA-Q-2022-00542

Correspondence: pesticides.peerreview@efsa.europa.eu
Declarations of interest: If you wish to access the declaration of interests of any expert contributing to an EFSA scientific assessment, please contact interestmanagement@efsa.europa.eu.

Suggested citation: EFSA (European Food Safety Authority) 2022. Statement concerning the assessment of environmental fate and behaviour and ecotoxicology in the context of the pesticides peer review of the active substance dimoxystrobin. EFSA Journal 2022;20(11):7634, 90 pp. https://doi.org/10.2903/j.efsa.2022.7634

ISSN: 1831-4732

© 2022 Wiley-VCH Verlag GmbH & Co. KgaA on behalf of the European Food Safety Authority.

This is an open access article under the terms of the Creative Commons Attribution-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited and no modifications or adaptations are made.

The EFSA Journal is a publication of the European Food Safety Authority, a European agency funded by the European Union.
Summary

Dimoxystrobin is an active substance covered by the third stage of the renewal programme for pesticides (‘AIR3’) in accordance with Commission Implementing Regulation (EU) No 844/2012.

An application for the renewal of approval of the active substance dimoxystrobin followed by the submission of the supplementary dossiers in July 2015 was made by BASF SE to the rapporteur Member State (RMS), Hungary, and the co-rapporteur Member State (co-RMS), Ireland.

An initial evaluation of the dossiers was provided by the RMS in the Renewal Assessment Report (RAR) which was submitted to EFSA in September 2017. Subsequently, EFSA initiated a peer review of the pesticides risk assessment on the RMS evaluation in line with the provisions of Commission Implementing Regulation (EU) No 844/2012.

Following the completion of a commenting period, including a public consultation on the RAR, EFSA requested the applicant to provide certain additional information under the stop the clock procedure in accordance with Article 13(3) of Regulation (EU) No 844/2012, which was evaluated by Hungary and incorporated into an updated RAR. Subsequently, in January 2022, meetings of experts from EFSA and Member States took place to discuss certain elements related to mammalian toxicology, environmental fate and behaviour and ecotoxicology. In addition, in June 2022, follow-up meetings of experts from EFSA and Member States took place to further discuss elements related to mammalian toxicology and ecotoxicology.

In August 2022, prior to completion of the peer review process, EFSA was mandated by the European Commission to provide a statement on the available outcomes of the assessment of environmental fate and behaviour and ecotoxicology drawn in the context of the peer review of dimoxystrobin.

The present statement contains the finalised conclusions of the assessments related to environmental fate and behaviour and ecotoxicology following the pesticides peer review expert discussions in those areas held in January and June 2022.

The data available on environmental fate and behaviour were sufficient to carry out the required environmental exposure assessments at EU level for the representative uses. A critical area of concern with respect to point 3.10 of Annex II to Regulation (EC) No 1107/2009 was identified in relation to the potential for groundwater contamination by the relevant metabolites.

In the area of ecotoxicology, a high risk was identified for aquatic organisms leading to a critical area of concern. In addition, the risk assessment for honeybee larvae could not be finalised.
Table of contents

Abstract .. 1
Summary .. 3
1. Introduction ... 5
 1.1. Background and terms of reference as provided by the requestor .. 6
 The active substance and the formulated product .. 7
2. Assessment .. 7
 2.1. Mammalian toxicity in relation to groundwater metabolites .. 7
 2.2. Environmental fate and behaviour ... 7
 2.3. Ecotoxicology ... 9
 2.4. Particular conditions proposed for the representative uses evaluated (Table 2) 13
 2.5. Overview of the risk assessment of compounds listed in residue definitions triggering assessment of
effects data for the environmental compartments (Tables 3–5) .. 13
3. Conclusions .. 15
 3.1. Concerns and related data gaps for the representative uses evaluated ... 15
 3.1.1. Issues that could not be finalised ... 15
 3.1.2. Critical areas of concern ... 15
 3.1.3. Overview of the concerns identified for each representative use considered (Table 6) 16
 3.2. List of other outstanding issues .. 16
 References .. 16
Abbreviations .. 17
Appendix A – Consideration of some cut-off criteria for dimoxystrobin according to Annex II of Regulation (EC)
No 1107/2009 of the European Parliament and of the Council .. 20
Appendix B – List of end points for the active substance and the representative formulations with regard to
identity, assessment of mammalian toxicity in relation to groundwater metabolites, environmental fate and
behaviour and ecotoxicology .. 21
Appendix C – Wording EFSA used in Section 2.2 of this statement, in relation to DT and Koc ‘classes’ exhibited
by each compound assessed ... 88
Appendix D – Used compound codes ... 89
1. Introduction

Dimoxystrobin is an active substance covered by the third stage of the renewal programme for pesticides (AIR3') in accordance with Commission Implementing Regulation (EU) No 844/2012. The Regulation (EU) No 844/2012, as amended by Commission Implementing Regulation (EU) No 2018/1659, lays down the provisions for the procedure of the renewal of the approval of active substances, submitted under Article 14 of Regulation (EC) No 1107/2009. This regulates for the European Food Safety Authority (EFSA) the procedure for the consultation of Member States, the applicant(s) and the public on the initial evaluation provided by the rapporteur Member State (RMS) and/or co-rapporteur Member State (co-RMS) in the renewal assessment report (RAR), and the organisation of an expert consultation where appropriate.

In accordance with Article 13 of the Regulation, unless formally informed by the European Commission that a conclusion is not necessary, EFSA is required to adopt a conclusion on whether the active substance can be expected to meet the approval criteria for endocrine disruption properties. In addition, in June 2022, follow-up meetings of experts from EFSA and Member States took place to further discuss elements related to mammalian toxicology and ecotoxicology. Although the peer review process is not fully completed, with the assessment of the endocrine disruption properties according to point 3.8.2 of Annex II to Regulation (EC) No 1107/2009 remaining pending, all other aspects of the risk assessment are considered finalised. Likewise, the assessment concerning environmental fate and behaviour and ecotoxicology has been completed following the expert discussions in those areas. Subsequently, during the drafting of the EFSA Conclusion, EFSA informed the Commission that critical areas of concern have been identified for dimoxystrobin in those areas.

1 Commission Implementing Regulation (EU) No 844/2012 of 18 September 2012 setting out the provisions necessary for the implementation of the renewal procedure for active substances, as provided for in Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market. OJ L 252, 19.9.2012, pp. 26–32.

2 Commission Implementing Regulation (EU) No 2018/1659 of 7 November 2018 amending Implementing Regulation (EU) No 844/2012 in view of the scientific criteria for the determination of endocrine disrupting properties introduced by Regulation (EU) 2018/605.

3 Regulation (EC) No 1107/2009 of 21 October 2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC. OJ L 309, 24.11.2009, pp. 1–50.
In this context, on 12 August 2022, prior to completion of the peer review process, EFSA was requested by the European Commission to provide a statement containing the available outcomes of the assessment related to environmental fate and behaviour and ecotoxicology. Given the critical concerns identified, a request in accordance with Commission Implementing Regulation (EU) No 2018/1659, to be able to conclude whether the approval criteria for endocrine disruption in line with the scientific criteria for the determination of endocrine-disrupting properties, as laid down in Commission Regulation (EU) 2018/605⁴, are met, seems also not justified.

Based on that mandate, EFSA prepared a draft statement in September 2022 summarising the conclusions of the assessment of environmental fate and behaviour and ecotoxicology as finalised following the expert discussions held in January and June 2022 in the context of the peer review of the renewal of the approval of the active substance and the representative formulation, evaluated on the basis of the representative uses of dimoxystrobin as a fungicide on oilseed rape and sunflower, as proposed by the applicant.

The draft statement was circulated to all Member States for commenting via a written procedure. A list of the relevant end points for the active substance and the formulation is provided in Appendix B. In addition, the considerations as regards some of the cut-off criteria for dimoxystrobin according to Annex II of Regulation (EC) No 1107/2009 are summarised in Appendix A.

A key supporting document to this statement is the peer review report (EFSA, 2022), which is a compilation of the documentation developed to evaluate and address all issues raised in the course of the peer review of the renewal of the active substance dimoxystrobin, from the initial commenting phase to the preparation of this statement. For reasons of completeness and transparency, the peer review report comprises all background documents, which were developed and finalised during the ongoing renewal process up to the production of the present statement and relate to all sections of the risk assessment, as follows:

- the comments received on the RAR;
- the reporting tables (22 July 2019);
- the evaluation tables (September 2022);
- the reports of the scientific consultation with Member State experts (where relevant);
- the comments received on the assessment of the additional information (where relevant);
- the comments received on the draft EFSA statement.

Given the importance of the RAR, including its revisions prepared up to the revision required following the expert consultations (Hungary, 2022), and the peer review report, both documents are considered as background documents to this statement and thus are made publicly available.

It is recommended that this statement and its background documents would not be accepted to support any registration outside the EU for which the applicant has not demonstrated that it has regulatory access to the information on which this statement is based.

1.1. Background and terms of reference as provided by the requestor

EFSA was mandated by the European Commission on 12 August 2022 to provide a statement containing the available outcomes of the assessment related to environmental fate and behaviour and ecotoxicology drawn in the context of the pesticides peer review for the renewal of approval of the active substance dimoxystrobin conducted in accordance with Commission Implementing Regulation (EU) No 844/2012. Given the critical concerns identified during the peer review, a request for additional information in accordance with Article 13(3a) of Regulation (EU) No 844/2012, to obtain information on endocrine disrupting properties, seems also not justified.

Although the peer review process is not yet fully completed, with the assessment of the endocrine disruption properties according to point 3.8.2 of Annex II to Regulation (EC) No 1107/2009 remaining pending, the assessment concerning environmental fate and behaviour and ecotoxicology has been finalised following the expert discussions held in January and June 2022 in those areas. During the drafting of the EFSA Conclusion the Commission was informed by EFSA that critical areas of concern have been identified for dimoxystrobin in those areas. The approval of dimoxystrobin expires on 31 January 2023 following several extensions in accordance with Article 17 of Regulation (EC) No

⁴ Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out scientific criteria for the determination of endocrine-disrupting properties. OJ L 101, 20.4.2018, pp. 33–36.
The active substance and the formulated product

Dimoxystrobin is an ISO common name for (2E)-2-{2-[(2,5-dimethylphenoxy)methyl]phenyl}-2-(methoxyimino)-N-methylacetamide (IUPAC).
The representative formulated product for the evaluation was ‘BAS 540 01F’, a suspension concentrate (SC) containing 200 g/L dimoxystrobin and 200 g/L boscalid.

EFSA was requested to complete this mandate by 30 September 2022.

2. Assessment

2.1. Mammalian toxicity in relation to groundwater metabolites

The toxicological profile of the active substance dimoxystrobin and its metabolites was discussed at the Pesticides Peer Review Experts’ Teleconference 70 in January 2022 and at the Pesticides Peer Review Experts’ Teleconference 78 in June 2022. The assessment of groundwater metabolites for their relevance was based on the following guidance document: European Commission, 2003.

Dimoxystrobin has harmonised classification according to Regulation (EC) No 1272/2008 as Carc. Cat. 2, H351 ('Suspected of causing cancer') and Repr. Cat. 2, H361d ('Suspected of damaging the unborn child'). Metabolites 505M08 and 505M09 are unlikely to be genotoxic. Available data demonstrate that metabolites 505M08 and 505M09 do not share the carcinogenic properties of the parent compound; however, this is not the case for the reproductive toxicity properties of the parent. Consequently, they are considered as toxicologically relevant groundwater metabolites (see also Section 2.2). Metabolite 505M01 is considered unlikely to be mutagenic and clastogenic; however, aneugenicity has not been investigated (outstanding data gap). Data are missing to demonstrate that the metabolite 505M01 does not share the carcinogenicity and reproductive toxicity properties of the parent. Consequently, metabolite 505M01 has to be considered as toxicologically relevant groundwater metabolite (see also Section 2.2).

2.2. Environmental fate and behaviour

Dimoxystrobin was discussed at the Pesticides Peer Review Experts’ Teleconference 71 in January 2022.

Dimoxystrobin test substance used in fate and behaviour studies included low amounts of Z-isomer; however, the Z-isomer remained at low levels in all environmental compartments. The sum of both isomers (E and Z) was considered for the environmental exposure assessment.

The rates of dissipation and degradation in the environmental matrices investigated were estimated using FOCUS (2006) kinetics guidance. In soil laboratory incubations under aerobic conditions in the dark, dimoxystrobin exhibited high persistence, forming the major (>10% applied radioactivity (AR)) metabolite 505M09 (max. 13% AR, moderate to high persistence in soil) and metabolite 505M08 (>10% of the initially measured dimoxystrobin in 0–10 cm soil layer in field studies, moderate to high persistence in soil). Mineralisation to carbon dioxide accounted for 15% AR after 119 days for the benzyl ring 14C radiolabel and for 25% AR after 122 days for the phenyl 14C radiolabel. The formation of unextractable residues accounted for 24% AR and 25% AR after 119 and 122 days for the benzyl and the phenyl 14C radiolabels, respectively. In anaerobic soil incubations, dimoxystrobin was essentially stable.
In laboratory soil photolysis studies, dimoxystrobin degraded more rapidly than in the dark control forming the major metabolite 505M01 (max. 11% AR), which exhibited low to moderate persistence under aerobic dark conditions. Dimoxystrobin exhibited medium to low mobility in soil. Metabolites 505M08 and 505M09 exhibited very high to high mobility, and 505M01 exhibited very high soil mobility. It was concluded that the adsorption of dimoxystrobin and metabolite 505M01 was not pH dependent, while the adsorption of metabolites 505M08 and 505M09 was pH dependent, with adsorption decreasing in alkaline soils. In satisfactory field dissipation studies carried out at four sites in Germany, three in Spain, one in Sweden, one in Italy, one in France and one in the UK, dimoxystrobin exhibited medium to high persistence in soil. Sample analyses were carried out for dimoxystrobin, 505M01, 505M08 and 505M09. These three metabolites were only determined sporadically above the limit of quantification precluding the derivation of formation and decline kinetic endpoints. Field study DegT50 values for parent dimoxystrobin were derived following normalisation to FOCUS reference conditions (20°C and pF2 soil moisture) following the EFSA (2014) DegT50 guidance. The field data endpoints were not combined with laboratory values to derive modelling endpoints as following the DegT50 guidance the laboratory and field values were considered to represent different populations.

In a lysimeter study of 2-year duration, the mean annual concentration of dimoxystrobin was < 0.1 μg/L. Metabolites 505M08 and 505M09 were found to reach a maximum annual average concentration of 2.35 μg/L and 2.0 μg/L respectively. No other known metabolites were detected in any leachate sample.

In laboratory incubations in dark aerobic natural sediment water systems, dimoxystrobin exhibited high to very high persistence, forming the major metabolite 505M96 (max. 10% AR in water exhibiting moderate persistence). The unextractable sediment fraction (not extracted by acetonitrile/water) accounted for 6–11% AR at study end (100 days) for the phenyl and benzyl ring 14C radiolabel. Mineralisation of this radiolabel accounted for only 0.8–2.1% AR at the end of the study. The rate of decline of dimoxystrobin in a laboratory sterile aqueous photolysis experiment was faster (low persistence) relative to that which occurred in the aerobic sediment water incubations. No chromatographically resolved component (excluding dimoxystrobin) accounted for > 8% AR.

The necessary surface water and sediment exposure assessments (predicted environmental concentrations (PEC) calculations) were carried out for the metabolites 505M08, 505M09, 505M01 and 505M96, using the FOCUS (FOCUS, 2001) step 1 and step 2 approach (version 3.2 of the Steps 1–2 in FOCUS calculator). For the active substance dimoxystrobin, appropriate step 3 (FOCUS, 2001) and step 4 calculations were available. The step 4 calculations appropriately followed the FOCUS (FOCUS, 2007) guidance, with no-spray drift buffer zones of up to 20 m being implemented for the drainage scenarios (representing a 57–92.5% spray drift reduction), and combined no-spray buffer zones with vegetative buffer strips of up to 20 m (reducing solute flux in run-off by 80% and erosion run-off of mass adsorbed to soil by 95%) being implemented for the run-off scenarios. The SWAN tool (version 5.0.1) was appropriately used to implement these mitigation measures in the simulations. However, risk managers and others may wish to note that whilst run-off mitigation is included in the step 4 calculations available, the FOCUS (FOCUS, 2007) report acknowledges that for substances with Kd < 2,000 mL/g (i.e. dimoxystrobin), the general applicability and effectiveness of run-off mitigation measures had been less clearly demonstrated in the available scientific literature, than for more strongly adsorbed compounds.

The necessary groundwater exposure assessments were appropriately carried out using FOCUS (European Commission, 2014a) scenarios and the models PEARL 4.4.4, PELMO 5.5.3 and MACRO 5.5.4 for dimoxystrobin and its metabolites. The potential for groundwater exposure from the representative uses by dimoxystrobin above the parametric drinking water limit of 0.1 μg/L was concluded to be low in geoclimatic situations that are represented by all six FOCUS groundwater scenarios.

For the representative use on oilseed rape (early and late triennial applications), the 80th percentile annual average recharge concentrations leaving the 1 m soil layer were estimated to be > 0.1 μg/L at all of the six scenarios for metabolites 505M08 and 505M09 in both acidic and alkaline soils, and in one of six scenarios for metabolite 505M01.

For the representative use on sunflowers (triennial application), the 80th percentile annual average recharge concentrations leaving the 1 m soil layer were estimated to be > 0.1 μg/L at both of the FOCUS sunflower scenarios for metabolite 505M08 in both acidic and alkaline soils and for metabolite 505M09 in alkaline soils, and in one of these two scenarios for metabolite 505M09 in acidic soils.

7 Simulations utilised the agreed Q10 of 2.58 (following EFSA, 2008) and Walker equation coefficient of 0.7.
while concentrations leaving the 1 m soil layer were estimated to be < 0.1 μg/L at both of the scenarios for metabolite 505M01.

It should be noted that though concentrations in groundwater were > 0.75 μg/L for metabolites 505M08 and 505M09 as they are concluded as relevant at Step 3 of the applicable guidance (see Sections 2.1 and 2.5), the only concentration that needed to be assessed against was 0.1 μg/L.

A critical area of concern is identified (see Section 3.1.2) as relevant groundwater metabolites (see Sections 2.1 and 2.5) have been indicated to be above the parametric drinking water limit of 0.1 μg/L in annual average recharge concentrations leaving the top 1 m soil layers in geoclimatic conditions represented by all the pertinent FOCUS groundwater scenarios and in a relevant lysimeter, in the context of all the representative uses assessed and the whole range of soil pH conditions.

The applicant provided appropriate information to address the effect of water treatment processes on the nature of the residues that might be present in surface water and groundwater, when surface water or groundwater are abstracted for drinking water, though it should be noted that for groundwater metabolites 505M01, 505M08 and 505M09, concentrations will legally need to be below 0.1 μg/L in groundwater.

The PEC in soil, surface water, sediment and groundwater covering the representative uses assessed can be found in Appendix B of this statement. A key to the wording used to describe the persistence and mobility of the compounds assessed can be found in Appendix C of this statement.

2.3. Ecotoxicology

The risk assessment was based on the following documents: European Commission (2002), SETAC (2001), EFSA (2009, 2013) and EFSA PPR Panel (2013).

The representative formulation, ‘BAS 540 01 F’, contains a second active substance (i.e. boscalid) in the same proportion. In some cases, different formulations than the representative one were used in the ecotoxicity tests (‘BAS 540 00F’; ‘BAS 505 01F’, a solo-formulation; and ‘BAS 507 00F’, the old representative formulation, which contains epoxiconazole as second active substance in lower proportion). Based on all the available information, bridging between the formulations ‘BAS 540 01 F’ and ‘BAS 540 00 F’ is supported and both formulations can be considered comparable. Several aspects pertaining to the risk assessment of dimoxystrobin were discussed at the Pesticide Peer Review Experts’ Teleconference 72 (January 2022) and at the Pesticides Peer Review Experts’ Teleconference 79 in June 2022.

Suitable acute and long-term ecotoxicity studies were available with dimoxystrobin with birds and mammals. Acute studies with the representative formulation were also available for both groups. A low acute and long-term risk to birds and mammals was identified for all representative uses.

An assessment of the major plant metabolites of dimoxystrobin (i.e. 505M01, 505M08, 505M09, 505M93, 505M95, 505M96), to which birds and wild mammals can be exposed, was available in the RAR and the risk was considered as low. In addition, the risk to birds and mammals resulting from the exposure to contaminated water and the risk due to secondary poisoning were also concluded as low for all representative uses.

Acute toxicity data with the active substance were available for fish (three species) and aquatic invertebrates (on the standard species Daphnia magna, on Asellus aquaticus, and with the marine species Americanysis bahia and Crassostrea virginica). The aquatic invertebrate endpoints for A. aquaticus and on A. bahia were discussed at the experts’ meeting.

Chronic toxicity data with the active substance were available for fish, aquatic invertebrates and algae. No reliable data were available for macrophytes.

Acute toxicity data with fish and aquatic invertebrates as well as chronic data for algae were available with the representative formulation.

In addition, acute toxicity data with other formulations (‘BAS 505 01 F’ and ‘BAS 507 00 F’) were also available with additional fish species. The reliability of several acute fish studies was discussed during the experts’ meeting.

The potential use of the fish acute toxicity data with formulations including a second active substance in a refinement at Tier 2 was also discussed at the experts’ meeting. It was agreed that

8 See experts’ consultation 5.1 in the Report of Pesticides Peer Review Experts’ Teleconference 72 (EFSA, 2022).
9 See experts’ consultation 5.2 in the Report of Pesticides Peer Review Experts’ Teleconference 72 (EFSA, 2022).
10 See experts’ consultation 5.6 in the Report of Pesticides Peer Review Experts’ Teleconference 72 (EFSA, 2022).
11 See experts’ consultation 5.4 in the Report of Pesticides Peer Review Experts’ Teleconference 72 (EFSA, 2022).
12 See experts’ consultation 5.8 in the Report of Pesticides Peer Review Experts’ Teleconference 72 (EFSA, 2022).
data from formulation with another active substance should not be used in Tier 2 assessment since the presence of another active substance would add uncertainty to the calculation. Therefore, only data on the active substance and the solo-formulation were considered at Tier 2, using the geomean approach; the species sensitivity distribution (SSD) approach was not considered acceptable for the refined risk assessment, since it includes data from formulation with two active substances.

Endpoints for the two chronic early-life stage (ELS) fish studies and the two chronic fish modified exposure studies were discussed at the experts’ meeting. It was agreed that the endpoint of 8 μg/L from a standard ELS study on fathead minnow (revised to cover potential effect on growth) should be used in the risk assessment. Toxicokinetic–Toxicodynamic (TKTD) modelling, using the General Unified Threshold model of Survival (GUTS), was submitted for refining the chronic risk assessment for fish, and was discussed in the follow-up experts’ meeting. The TKTD model was comprehensively reported and relied on a large experimental data set. However, the calibration and the interpretation of the validation of the model presented some deficiencies which decrease the overall reliability of the model application. In addition, GUTS model addresses lethal effects whereas the Tier 1 risk assessment was driven by sublethal effects; the calibration/validation of the model was carried out for rainbow trout whereas the sublethal effects were observed on the fathead minnow, and interspecies extrapolation is not recommended in the EFSA PPR Panel (2018). Therefore, the experts concluded that this modelling could not be used for refining the chronic fish risk assessment for dimoxystrobin.

For further refinement for aquatic invertebrates, a mesocosm study was also available with the solo formulation. The proposed endpoint from the mesocosm study was also discussed during the experts’ meetings. The experts agreed that an overall endpoint could not be derived for aquatic organisms due to several shortcomings (e.g. few species), especially vulnerable ones, with sufficient abundance; lack of pre-exposure sampling for some taxa which makes it difficult to assess the effect; an effect class 3A was observed at the lowest concentration which makes it impossible to derive an ETO-RAC (ecological threshold option – Regulatory Acceptable Concentration). Only a specific provisional ecological recovery option (ERO) – RAC could be derived for Daphnia, and the experts agreed not to use this endpoint in the risk assessment since it has not been demonstrated that the exposure in the mesocosm covers the predicted exposure profiles of the representative uses and that this endpoint might not be protective enough for molluscs (driving the Tier 1 risk assessment), crustaceans with long reproductive cycle and the most sensitive phytoplankton taxa.

Regarding sediment-dwelling organisms, toxicity data were available with the active substance. Based on the available Tier 1 data, a high acute risk for fish and aquatic invertebrates was identified at FOCUS Step 3 for all scenarios for the two representative uses.

Considering Tier 2 refinement (geomean), a high acute risk to fish was identified for all scenarios and representative uses using FOCUS Step 3 PECsw, except for scenario D5 on sunflower. At FOCUSsw Step 4, a high acute risk to fish remained for 2/6 scenarios (D2 and D4) for use on oilseed rape. Low acute risk was concluded for the remaining scenarios for the use on oilseed rape when considering risk mitigation measures (RMM) up to 20 m no-spray buffer zone in combination with 20 m vegetated filter strip. For the use on sunflower, low acute risk to fish was concluded when considering RMM up to 20 m no-spray buffer zone in combination with a 20 m vegetated filter strip.

An overview of the outcome of the risk assessment for aquatic organisms is presented in Table 1 below.

13 See experts’ consultation 5.5 in the Report of Pesticides Peer Review Experts’ Teleconference 72 (EFSA, 2022).
14 See expert consultation in the Report of Pesticide Peer Review Expert’s Teleconference 79 (EFSA, 2022).
15 See experts’ consultation 5.7 in the Report of Pesticides Peer Review Experts’ Teleconference 72 (EFSA, 2022) and expert consultation in the Report of Pesticide Peer Review Expert’s Teleconference 79 (EFSA, 2022).
Step 3 for all scenarios for both representative uses. Using the 20-m no-spray buffer zone in combination with a 20-m vegetated filter strip, high chronic risk to sediment-dwelling organisms was identified at FOCUS Step 3 for 4/6 scenarios for the use on oilseed rape and 3/4 scenarios for use on sunflower. At FOCUSsw Step 4, for the use in oilseed rape, a high chronic risk to fish was remains with a 20-m buffer zone combined with a 20-m vegetated filter strip for 2/6 scenarios; low chronic risk to fish was concluded when considering a 10-m no-spray buffer zone in combination with a 10-m vegetated filter strip for the two remaining scenarios. For the representational use on sunflower, low chronic risk was concluded when considering a 10-m no-spray buffer zone in combination with a 10-m vegetated filter strip for all remaining scenarios.

By using Tier 1 data, high chronic risk for fish was identified at FOCUS Step 3 for 4/6 scenarios for the representative use on oilseed rape and 3/4 scenarios for use on sunflower. At FOCUSsw Step 4, for the use in oilseed rape, a high chronic risk to fish remains with a 20-m buffer zone combined with a 20-m vegetated filter strip for 2/6 scenarios; low chronic risk to fish was concluded when considering a 10-m no-spray buffer zone in combination with a 10-m vegetated filter strip for the two remaining scenarios. For the representational use on sunflower, low chronic risk was concluded when considering a 10-m no-spray buffer zone in combination with a 10-m vegetated filter strip for all remaining scenarios.

For acute risk to aquatic invertebrates, based on the most sensitive species (*C. Virginica*, acute endpoint based on shell deposition), high risk was concluded for all relevant scenarios and uses (except for one scenario (D3) for the use on oilseed rape) at FOCUSsw Step 4 when considering a 20-m no-spray buffer zone in combination with a 20-m vegetated filter strip (critical area of concern, see Section 3.1.2).

High chronic risk to aquatic invertebrates was identified at FOCUS Step 3 for 3/6 scenarios for the use on oilseed rape. By using FOCUSsw Step 4 exposure estimations, a high chronic risk remains for one scenario; low chronic risk to aquatic invertebrates was concluded when considering a 10-m no-spray buffer zone in combination with a 10-m vegetated filter strip for two scenarios. For the use on sunflower, the chronic risk was high at FOCUS step 3 for 1/4 scenarios, for which a low risk was identified at FOCUSsw Step 4, with a 10-m no-spray buffer zone in combination with a 10-m vegetated filter strip.

In addition, high chronic risk to sediment-dwelling organisms was concluded at FOCUSsw Step 3 for all scenarios for both representative uses. Using the FOCUSsw Step 4 calculations that considered a 20-m no-spray buffer zone in combination with a 20-m vegetated filter strip, high chronic risk to sediment-dwelling organisms was identified for 3/6 scenarios for the use on oilseed rape. For the use on sunflower, low risk was concluded at FOCUSsw Step 4 for all scenarios when considering RMM up to 20 m no-spray buffer zone combined with 20 m vegetated filter strip.

By using FOCUSsw Step 3 calculations, 4/6 and 3/4 scenarios showed a high risk to algae for the uses in oilseed rape and sunflower, respectively. At FOCUSsw Step 4, for the use on oilseed rape,

Table 1: Overview of the outcome of the risk assessment for aquatic organisms

FOCUSsw scenario	Acute fish (geomean)	Chronic fish	Invert acute (*C. virginica*)	Invert. chronic	Chironomus riparius	Algae
Oilseed rape – 1 or 2 applications						
D2	LR	LR	LR step 4 10 m + 10 m	HR	HR	HR
D3	LR	LR	LR step 4 20 m + 20 m	LR	LR step 4 10 m + 10 m	LR
D4	LR	LR	LR step 4 10 m + 10 m	HR	LR	HR
D5	LR	LR	LR step 4 10 m + 10 m	HR	LR	HR
R1	LR step 4 20 m + 20 m	LR step 4 10 m + 10 m	LR step 4 10 m + 10 m	HR	LR step 4 10 m + 10 m	LR
R3	LR step 4 20 m + 20 m	LR step 4 10 m + 10 m	LR step 4 10 m + 10 m	HR	LR step 4 10 m + 10 m	LR
Sunflower						
D5	LR	LR	LR step 4 10 m + 10 m	LR	LR step 4 10 m + 10 m	LR
R1	LR step 4 10 m + 10 m	LR step 4 10 m + 10 m	LR step 4 10 m + 10 m	HR	LR step 4 10 m + 10 m	LR
R3	LR step 4 10 m + 10 m	LR step 4 10 m + 10 m	LR step 4 10 m + 10 m	HR	LR step 4 10 m + 10 m	LR
R4	LR step 4 10 m + 10 m	LR step 4 10 m + 10 m	LR step 4 10 m + 10 m	HR	LR step 4 10 m + 10 m	LR

HR: High risk remaining with the RMM; LR: Low risk concluded (FOCUS step 3).

- LR step 4 10 m + 10 m: Low risk concluded at FOCUS step 4 with RMM of 10 m no-spray buffer zone in combination with a 10 m vegetated filter strip.
- LR step 4 20 m + 20 m: Low risk concluded at FOCUS step 4 with RMM 20 m no-spray buffer zone in combination with a 20 m vegetated filter strip.

Statements concerning the assessment of environmental fate and behaviour and ecotoxicology in the context of the pesticides peer review of the active substance dimoxystrobin.
the high risk remained for two scenarios (D2 and D4) even after considering a 20-m no-spray buffer zone in combination with a 20-m vegetated filter strip, whereas a low risk was identified for the remaining scenarios when considering a 10-m no-spray buffer zone in combination with a 10-m vegetated filter strip. For the use on sunflower, a low risk to algae could be concluded when considering a 10-m no-spray buffer zone in combination with a 10-m vegetated filter strip.

To conclude on aquatic organisms, 1/6 scenarios show a low risk applying RMM of 20 m no-spray buffer zone in combination with 20 m vegetated filter strip for the use on oilseed rape, whereas a high risk is identified for the remaining five scenarios; for the use on sunflower, a high risk is identified for all scenarios even considering RMM.

Several pertinent metabolites of dimoxystrobin have been identified in surface water (501 M01, 505M08, 505M09, 505M096). These pertinent aquatic metabolites were tested acutely for fish, invertebrates and algae. Low acute risk was concluded for all the pertinent aquatic metabolites by using FOCUS Step 1 PECsw for fish, aquatic invertebrates and algae for all uses. The metabolites 505M08, 505M09, 505M01, 505M96 were also identified as relevant in the sediment phase. However, no risk assessment for sediment dwellers was submitted (data gap, see Section 3.2).

Oral acute toxicity data on honeybees were available for dimoxystrobin and two formulated products (i.e. ‘BAS 540 01 F’ and ‘BAS 540 00 F’). Acute contact toxicity data were available for the same formulations but not for the active substance (data gap, see Section 3.2). Furthermore, chronic studies for larvae and adults were available. The chronic toxicity study was conducted with the active substance whilst the 8-day larval toxicity study was conducted with the representative formulation. Since this latest study does not cover the main developmental stages of honeybee larvae in line with the current recommendations, a data gap for a proper study with honeybee larvae was identified (i.e. a test with repeated dosing and longer test duration according to OECD Guidance No 239 is preferable; see also below paragraph for further information). No information was available on bumblebees and solitary bees.

An acute risk assessment following the SANCO Guidance on Terrestrial ecotoxicology (European Commission, 2002) was available. Low acute risk to honeybees from oral and contact exposure was concluded for both representative uses. Following the Tier 1 risk assessment according to the EFSA bee guidance (EFSA, 2013), the same conclusion could be reached for the acute scenario as assessed with the SANCO Guidance. Likewise, low chronic risk to adult honeybees could also be concluded for all representative uses, and the acute and chronic risk to adult bees from exposure to contaminated water was considered low as well.

A suitable assessment for sublethal effects (e.g. hypopharyngeal glands (HPGs)) was not available (data gap, see Section 3.2). An assessment to address the potential effects of plant metabolites occurring in pollen and nectar as a result of the representative uses was not available (data gap, see Section 3.2). An assessment of accumulative effects on bees was not available.

In addition to the Tier 1 ecotoxicity data for honeybees, a number of higher tier studies were also available. The available tunnel study considered ecotoxicological parameters related to the honeybee risk assessment (i.e. brood developmental observations) whilst the other two studies, residue studies under semi-field and field conditions, aimed at characterising the residue situation in pollen and nectar for oilseed rape and sunflowers. Those studies were discussed at the experts’ meeting.

The information from the residue studies showed several deficiencies (i.e. the sampling method was not in line with the recommendations of the EFSA bee guidance (EFSA, 2013), the residue trials were not independent from each other, there were adverse environmental conditions that could have affected the residue decline etc.); therefore, it was concluded that the information provided could not be used to refine exposure parameters in the risk assessment equations.

In the tunnel study, high variability on the brood termination rate was observed. In addition, due to several shortcomings in terms of experimental set-up and conditions, the study was considered unsuitable to fully address the risk to honeybee larvae. As a consequence of the data gap identified for Tier 1 data for honeybee larvae as indicated previously and the unsuitability of a refinement based on

16 Ecotoxicity endpoints for bees obtained from both formulations are similar and are in the same range. The formulations are comparable based on existing information.

17 A further consideration to the risk to honey bee larvae is given below taking into account the available tunnel study.

18 The endpoint obtained from the product study but expressed as a.s. equivalent was used for risk assessment purposes.

19 One of the residue studies was conducted under semi-field conditions, while the other study was a field study.

20 See experts’ consultation 5.9 in the Report of Pesticides Peer Review Experts’ Teleconference 72 (EFSA, 2022) for the detailed discussion on higher tier testing with honey bees.
the available tunnel study, the risk assessment for honeybee larvae is considered as an **issue that could not be finalised** (see Section 3.1.1).

Standard and extended laboratory toxicity tests with the formulation ‘BAS 540 00 F’ were available for **non-target arthropods other than bees**. By using the available data, low in- and off-field risk could be concluded for all representative uses.

Based on the available laboratory data with dimoxystrobin, high chronic risk was identified for **earthworms** for all representative uses at Tier 1. Three field studies were available to refine the risk. The studies were discussed at the experts’ meeting. Two were considered only as supportive information due to several shortcomings identified (e.g. uncertain exposure, limited information in terms of pre-application sampling and pesticide history, poor performance of the toxic reference), whilst the study conducted in line with the GAPs under assessment was considered reliable and relevant to refine the risk. Considering the information from all the studies, it was possible to conclude low risk for earthworms for both representative uses.

For other **soil macro- and meso-fauna** (i.e. *Folsomia candida* and *Hypoaspis aculeifer*), low chronic risk was concluded for all representative uses at Tier1.

Low risk to soil organisms from the exposure to the soil metabolite 505M09 was concluded for all representative uses. For the other relevant soil metabolites (i.e. 501M01, 505M08), toxicity data were not available for all non-target soil organism taxa–metabolite combination. However, considering that metabolite 505M09 represents the worst-case metabolite in soil in terms of formed fraction and degradation time, low chronic risk to soil organisms could be concluded for all the other relevant soil metabolites for the representative uses under assessment.

Suitable ecotoxicity tests were available to conclude a low risk to **soil microorganisms** for the active substance as well as for all the relevant soil metabolites for all representative uses.

A low chronic risk to **non-target terrestrial plants** and **organisms involved in biological methods for sewage treatment** was concluded for all the representative uses.

2.4. **Particular conditions proposed for the representative uses evaluated (Table 2)**

Table 2: Risk mitigation measures proposed for the representative uses assessed

Representative use	Oilseed rape	Foliar spray
Risk to aquatic organisms	RMM of 20 m no-spray buffer zone combined with a 20-m vegetated buffer was sufficient for only 1/6 scenarios(a)	

(a): D3.

2.5. **Overview of the risk assessment of compounds listed in residue definitions triggering assessment of effects data for the environmental compartments (Tables 3–5)**

Table 3: Soil

Compound (name and/or code)	Ecotoxicology
Dimoxystrobin	Low risk to soil organisms
505M08	Low risk to soil organisms
505M09	Low risk to soil organisms
505M01	Low risk to soil organisms

21 See experts’ consultation 5.10 in the Report of Pesticides Peer Review Experts’ Teleconference 72 (EFSA, 2022) for the detailed discussion on higher tier testing with earthworms.
Table 4: Groundwater\(^{(a)}\)

Compound (name and/or code)	Biological (pesticidal) activity/ relevance Step 2	Hazard identified Steps 3b. and 3c.	Consumer RA triggered Steps 4 and 5	Human health relevance	
Dimoxystrobin	Yes	No	Yes	Yes	
505M08	Winter oilseed rape (early application): 1.253–2.640 µg/L 6/6 FOCUS scenarios (alkaline soils) Winter oilseed rape (late application): 1.283–2.733 µg/L 6/6 FOCUS scenarios (alkaline soils) Sunflower: 0.590–1.050 µg/L 2/2 FOCUS scenarios (alkaline soils)	No	Parent dimoxystrobin is classified Repr. Cat. 2	No	Toxico logically relevant groundwater metabolite (see Section 2.1)
505M09	Winter oilseed rape (early application): 0.927–1.764 µg/L 6/6 FOCUS scenarios (alkaline soils) Winter oilseed rape (late application): 0.929–1.844 µg/L 6/6 FOCUS scenarios (alkaline soils) Sunflower: 0.270–0.684 µg/L 2/2 FOCUS scenarios (alkaline soils)	No	Parent dimoxystrobin is classified Repr. Cat. 2	No	Toxico logically relevant groundwater metabolite (see Section 2.1)
505M01	Winter oilseed rape (late application): 0.111 µg/L 1/6 FOCUS scenarios	No	Parent dimoxystrobin is classified Carc. Cat 2 and Repr. Cat. 2 Aneugenicity not investigated.		

\(^{(a)}\): Assessment according to European Commission guidance of the relevance of groundwater metabolites (2003).

\(^{(b)}\): FOCUS scenarios or relevant lysimeter.

Table 5: Surface water and sediment

Compound (name and/or code)	Ecotoxicology
Dimoxystrobin	High acute risk to aquatic invertebrates for 5/6 scenarios for the uses on oilseed rape and all scenarios for the use on sunflower. High chronic risk to sediment-dwelling organisms for 3/6 scenarios for the uses on oilseed rape. High acute risk and chronic risk to fish for 2/6 scenarios for the uses on oilseed rape. High risk to algae for 2/6 scenarios for the uses on oilseed rape. High chronic risk to aquatic invertebrates for 1/6 scenarios for the uses on oilseed rape.
505M08	Low risk to aquatic organisms, except sediment dwellers (data gap)
505M09	Low risk to aquatic organisms, except sediment dwellers (data gap)
505M01	Low risk to aquatic organisms, except sediment dwellers (data gap)
505M96	Low risk to aquatic organisms, except sediment dwellers (data gap)
3. Conclusions

3.1. Concerns and related data gaps for the representative uses evaluated

3.1.1. Issues that could not be finalised

An issue is listed as ‘could not be finalised’ if there is not enough information available to perform an assessment, even at the lowest tier level, for one or more of the representative uses in line with the uniform principles in accordance with Article 29(6) of Regulation (EC) No 1107/2009 and as set out in Commission Regulation (EU) No 546/2011 and if the issue is of such importance that it could, when finalised, become a concern (which would also be listed as a critical area of concern if it is of relevance to all representative uses).

An issue is also listed as ‘could not be finalised’ if the available information is considered insufficient to conclude on whether the active substance can be expected to meet the approval criteria provided for in Article 4 of Regulation (EC) No 1107/2009.

The following issues or assessments that could not be finalised have been identified, together with the reasons including the associated data gaps where relevant, which are reported directly under the specific issue to which they are related:

1) The risk assessment to honeybee larvae could not be finalised due to the lack of reliable information (applicable for all the representative uses, see Section 2.3).
 a) A chronic toxicity study with honeybee larvae in line with OECD Guidance No 239 is required (applicable for all the representative uses, see Section 2.3).

3.1.2. Critical areas of concern

An issue is listed as a critical area of concern if there is enough information available to perform an assessment for the representative uses in line with the uniform principles in accordance with Article 29(6) of Regulation (EC) No 1107/2009 and as set out in Commission Regulation (EU) No 546/2011, and if this assessment does not permit the conclusion that, for at least one of the representative uses, it may be expected that a plant protection product containing the active substance will not have any harmful effect on human or animal health or on groundwater, or any unacceptable influence on the environment.

An issue is also listed as a critical area of concern if the assessment at a higher tier level could not be finalised due to lack of information, and if the assessment performed at the lower tier level does not permit the conclusion that, for at least one of the representative uses, it may be expected that a plant protection product containing the active substance will not have any harmful effect on human or animal health or on groundwater, or any unacceptable influence on the environment.

An issue is also listed as a critical area of concern if, in the light of current scientific and technical knowledge using guidance documents available at the time of application, the active substance is not expected to meet the approval criteria provided for in Article 4 of Regulation (EC) No 1107/2009.

The following critical areas of concern are identified, together with any associated data gaps, where relevant, which are reported directly under the specific critical area of concern to which they are related:

2) High acute risk to aquatic invertebrates for 5/6 scenarios for the use on winter oilseed rape and all scenarios for the use on sunflower (see Section 2.3) when also considering the implementation of the assessed mitigation measures that reduced exposure (20 m no-spray buffer zone +20 m vegetated filter strip).

3) High potential for groundwater contamination by groundwater relevant metabolites in geoclimatic conditions represented by all the relevant FOCUS groundwater scenarios for all the representative uses assessed (see Sections 2.1, 2.2 and 2.5).

\(^{22}\) Commission Regulation (EU) No 546/2011 of 10 June 2011 implementing Regulation (EC) No 1107/2009 of the European Parliament and of the Council as regards uniform principles for evaluation and authorisation of plant protection products. OJ L 155, 11.6.2011, pp. 127–175.

\(^{23}\) With these risk mitigation measures, the exposure reduction is just below the limit of 95% (92.5%) for spray drift that is recommended by the FOCUS Landscape and mitigation guidance (FOCUS, 2007). Whilst theoretically there is a small margin, it is unlikely that with the absolute 95% drift reduction (i.e. with a 30-m no-spray buffer zone resulting in 94.94% drift reduction; also using 50% drift reducing nozzle +10 m buffer zone is essentially the same) any additional scenario would pass, nevertheless the risk assessment to absolutely confirm the situation is not available from the peer review. Nonetheless, it is unlikely that the critical area of concern would change.
3.1.3. Overview of the concerns identified for each representative use considered (Table 6)

(If a particular condition proposed to be taken into account to manage an identified risk, as listed in Section 2.4, has been evaluated as being effective, then ‘risk identified’ is not indicated in Table 6).

Table 6: Overview of concerns reflecting the issues not finalised, critical areas of concerns and the risks identified that may be applicable for some but not for all uses or risk assessment scenarios

Representative use	Oilseed rape	Sunflower		
Risk to wild non-target terrestrial vertebrates	Risk identified	Assessment not finalised		
Risk to wild non-target terrestrial organisms other than vertebrates	Risk identified	Assessment not finalised	X^1	X^1
Risk to aquatic organisms	Risk identified	Assessment not finalised	$X^2{(b)}$ (5/6)	$X^2{(c)}$ (4/4)
Groundwater exposure to active substance	Legal parametric value breached	Assessment not finalised		
Groundwater exposure to metabolites	Legal parametric value breached	Assessment not finalised	X^3	X^3
Groundwater exposure to active substance	Legal parametric value breached	Assessment not finalised	X^3	X^3

The superscript numbers relate to the numbered points indicated in Sections 3.1.1 and 3.1.2.

(a): Value for non-relevant metabolites prescribed in SANCO/221/2000-rev. 10 final, European Commission, 2003.
(b): High acute risk to aquatic invertebrates (5/6 scenarios); high acute and chronic risk to fish (2/6 scenarios); high risk to algae (2/6 scenarios), high risk to sediment-dwelling organisms (3/6), high chronic risk to aquatic invertebrates (1/6 scenarios).
(c): High acute risk to aquatic invertebrates (4/4 scenario).

3.2. List of other outstanding issues

Remaining data gaps not leading to critical areas of concern or issues not finalised but considered necessary to comply with the data requirements, and which are relevant for some or all of the representative uses assessed at EU level. Although not critical, these data gaps may lead to uncertainties in the assessment and are considered relevant.

These data gaps refer only to the representative uses assessed and related to the environmental assessments:

- The aneugenicity potential for metabolite 505M01 was not investigated (relevant for all representative uses, see Section 2.1).
- No aquatic risk assessment for sediment dwellers was provided for the metabolites 505M08, 505M09, 505M01 and 505M06 (relevant for all representative uses, see Section 2.3).
- Acute contact toxicity data with dimoxystrobin for bees were not available (relevant for all representative uses, see Section 2.3).
- Further data were not available to address the risk to honeybees from sublethal effects (e.g. effects on HPG) and via exposure to metabolites formed in pollen and nectar (relevant for all representative uses, see Section 2.3).

References

ECHA (European Chemicals Agency), 2020. Committee for Risk Assessment (RAC) Opinion proposing harmonised classification and labelling at EU level of dimoxystrobin (ISO); (2E)-2-(2,5-dimethylphenoxy)methyl)[phenyl]-2-(methoxyimino)-N-methylacetamide; (E)-2-(methoxyimino)-N-methyl-2-[α-(2,5-xylyloxy)-otoly]acetamide. CLH-O-0000006865-62-01/F. Adopted 8 October 2020. Available at: www.echa.europa.eu
EFSA (European Food Safety Authority), 2008. Opinion on a request from EFSA related to the default Q10 value used to describe the temperature effect on transformation rates of pesticides in soil. EFSA Journal 2008;6 (1):622, 32 pp. https://doi.org/10.2903/j.efsa.2008.622
EFSA (European Food Safety Authority), 2009. Guidance on Risk Assessment for Birds and Mammals on request from EFSA. EFSA Journal 2009;7(12):1438, 358 pp. https://doi.org/10.2903/j.efsa.2009.1438

EFSA (European Food Safety Authority), 2013. EFSA Guidance Document on the risk assessment of plant protection products on bees (Apis mellifera, Bombus spp. and solitary bees). EFSA Journal 2013;11(7):3295, 268 pp. https://doi.org/10.2903/j.efsa.2013.3295

EFSA (European Food Safety Authority), 2014. EFSA Guidance Document for evaluating laboratory and field dissipation studies to obtain DegT50 values of active substances of plant protection products and transformation products of these active substances in soil. EFSA Journal 2014;12(5):3662, 37 pp. https://doi.org/10.2903/j.efsa.2014.3662

EFSA (European Food Safety Authority), 2022. Peer review report to the statement concerning the assessment of environmental fate and behaviour and ecotoxicology in the context of the pesticides peer review of the active substance dimoxystrobin. Available online: www.efsa.europa.eu

EFSA PPR Panel (EFSA Panel on Plant Protection Products and their Residues), 2013. Guidance on tiered risk assessment for plant protection products for aquatic organisms in edge-of-field surface waters. EFSA Journal 2013;11(7):3290, 186 pp. https://doi.org/10.2903/j.efsa.2013.3290

EFSA PPR Panel (EFSA Panel on Plant Protection Products and their Residues), 2018. Scientific Opinion on the state of the art of Toxicokinetic/Toxicodynamic (TKTD) effect models for regulatory risk assessment of pesticides for aquatic organisms. EFSA Journal 2018;16(8):5377, 188 pp. https://doi.org/10.2903/j.efsa.2018.5377

European Commission, 2002. Guidance Document on Terrestrial Ecotoxicology Under Council Directive 91/414/EEC. SANCO/10329/2002-rev. 2 final, 17 October 2002.

European Commission, 2003. Guidance Document on Assessment of the Relevance of Metabolites in Groundwater of Substances Regulated under Council Directive 91/414/EEC. SANCO/221/2000-rev. 10-final, 25 February 2003.

European Commission, 2014a. Assessing potential for movement of active substances and their metabolites to ground water in the EU. Report of the FOCUS Workgroup. EC Document Reference SANCO/13144/2010-v. 3, 613 pp., as outlined in Generic guidance for tier 1 FOCUS groundwater assessment, v. 2.2 May 2014.

European Commission, 2014b. Guidance document on the renewal of approval of active substances to be assessed in compliance with Regulation (EU) No 844/2012. SANCO/2012/11251-rev. 4, 12 December 2014.

FOCUS (Forum for the Co-ordination of Pesticide Fate Models and their Use), 2001. FOCUS surface water scenarios in the EU evaluation process under 91/414/EEC. Report of the FOCUS Working Group on Surface Water Scenarios. EC Document Reference SANCO/4802/2001-rev. 2, 245 pp., as updated by Generic guidance for FOCUS surface water scenarios, v. 1.3 December 2014.

FOCUS (Forum for the Co-ordination of Pesticide Fate Models and their Use), 2006. Guidance document on estimating persistence and degradation kinetics from environmental fate studies on pesticides in EU Registration Report of the FOCUS Work Group on Degradation Kinetics. EC Document Reference SANCO/10058/2005-v. 2.0, 434 pp., as updated by the Generic guidance for Estimating Persistence and Degradation Kinetics from Environmental Fate Studies on Pesticides in EU Registration, v. 1.1 December 2014.

FOCUS (Forum for the Co-ordination of Pesticide Fate Models and their Use), 2007. Landscape and mitigation factors in aquatic risk assessment. Volume 1. Extended summary and recommendations. Report of the FOCUS Working Group on Landscape and Mitigation Factors in Ecological Risk Assessment. EC Document Reference SANCO/10422/2005 v. 2.0, 169 pp.

Hungary, 2017. Renewal Assessment Report (RAR) on the active substance dimoxystrobin prepared by the rapporteur Member State Hungary, in the framework of Commission Implementing Regulation (EU) No 844/2012, August 2017. Available online: www.eufs.europa.eu

Hungary, 2022. Revised Renewal Assessment Report (RAR) on dimoxystrobin prepared by the rapporteur Member State Hungary in the framework of Commission Implementing Regulation (EU) No 844/2012, July 2022. Available online: www.eufs.europa.eu

McCall PJ, Laskowski DA, Swann RL and Dishburger HJ, 1980. Measurements of sorption coefficients of organic chemicals and their use in environmental fate analysis. In: Test Protocols for Environmental Fate and Movement of Toxicants. In: Proceedings of the 94th Annual Meeting of the American Association of Official Analytical Chemists (AOAC). Oct 21–22, Washington, D.C. pp. 89–109.

SETAC (Society of Environmental Toxicology and Chemistry), Candolfi MP, Barrett KL, Campbell PJ, Forster R, Grandy N, Huet MC, Lewis G, Oomen PA, Schmuck R and Vogt H (eds), 2001. Guidance document on regulatory testing and risk assessment procedures for plant protection products with non-target arthropods. ESCORT 2 workshop.

Abbreviations

Abbreviation	Description
a.s.	active substance
AF	assessment factor
AR	applied radioactivity
BCF	bioconcentration factor
bw	body weight
CAS	Chemical Abstracts Service

www.efsa.europa.eu/efsajournal 17 EFSA Journal 2022;20(11):7634
CIPAC Collaborative International Pesticides Analytical Council Limited

cm centimetre

d day

DAT days after treatment

DDD daily dietary dose

DT\textsubscript{50} period required for 50% dissipation (define method of estimation)

DT\textsubscript{90} period required for 90% dissipation (define method of estimation)

d.w. dry weight

EAS oestrogen, androgen and steroidogenesis modalities

EbC\textsubscript{50} effective concentration (biomass)

EC\textsubscript{50} effective concentration

ECHA European Chemicals Agency

EEC European Economic Community

EINECS European Inventory of Existing Commercial Chemical Substances

ELINCS European List of New Chemical Substances

ER\textsubscript{50} emergence rate/effective rate, median

ErC\textsubscript{50} effective concentration (growth rate)

ERO ecological recovery option

ETO ecological threshold option

ETR exposure toxicity ratio

ETR\textsubscript{acute} exposure toxicity ratio for acute exposure

ETR\textsubscript{laraevae} exposure toxicity ratio for chronic exposure

ETR\textsubscript{laraevae} exposure toxicity ratio for larvae

FAO Food and Agriculture Organisation of the United Nations

FOCUS Forum for the Co-ordination of Pesticide Fate Models and their Use

g gram

h hour(s)

ha hectare

hL hectolitre

HQ hazard quotient

HQ\textsubscript{contact} hazard quotient for contact exposure

HR hazard rate

ISO International Organization for Standardization

IUPAC International Union of Pure and Applied Chemistry

K\textsubscript{doc} organic carbon linear adsorption coefficient

K\textsubscript{foc} Freundlich organic carbon adsorption coefficient

kg kilogram

L litre

LC\textsubscript{50} lethal concentration, median

LD\textsubscript{50} lethal dose, median; dosis letalis media

LDD\textsubscript{50} lethal dietary dose; median

LOQ limit of quantification

m metre

M mol

mg milligram

mL millilitre

mm millimetre (also used for mean measured concentrations)

MWHC maximum water-holding capacity

NOAEL no observed adverse effect level

NOEC no observed effect concentration

NOEL no observed effect level

OECD Organisation for Economic Co-operation and Development

OM organic matter content

PEC predicted environmental concentration

PEC\textsubscript{sed} predicted environmental concentration in sediment

PEC\textsubscript{soil} predicted environmental concentration in soil

PEC\textsubscript{sw} predicted environmental concentration in surface water
Statement concerning the assessment of environmental fate and behaviour and ecotoxicology in the context of the pesticides peer review of the active substance dimoxystrobin

pF2 \hspace{1cm} \text{pF value of 2 (suction pressure that defines field capacity soil moisture)}

pH \hspace{1cm} \text{pH-value}

PHI \hspace{1cm} \text{preharvest interval}

P_{ow} \hspace{1cm} \text{partition coefficient between \textit{n}-octanol and water}

RAC \hspace{1cm} \text{regulatory acceptable concentration}

RAR \hspace{1cm} \text{Renewal Assessment Report}

S \hspace{1cm} \text{svedberg, S (10^{-13} s)}

SFO \hspace{1cm} \text{single first-order}

SMILES \hspace{1cm} \text{simplified molecular-input line-entry system}

SSD \hspace{1cm} \text{species sensitivity distribution}

TER \hspace{1cm} \text{toxicity exposure ratio}

TWA \hspace{1cm} \text{time-weighted average}

\mu g \hspace{1cm} \text{microgram}
Appendix A – Consideration of some cut-off criteria for dimoxystrobin according to Annex II of Regulation (EC) No 1107/2009 of the European Parliament and of the Council

Properties	Conclusion^(a)
CMR Carcinogenicity (C)	Dimoxystrobin is classified as a Carc. Cat 2 (H351) (ECHA RAC, 2020).
Mutagenicity (M)	Dimoxystrobin is not classified as Mutag. Cat 1A, B.
	Dimoxystrobin is not considered to be a mutagen according to point 3.6.2 of Annex II of Regulation (EC) No 1107/2009.
Toxic for Reproduction (R)	Dimoxystrobin is classified as Repr. Cat 2 (H361d) (ECHA RAC, 2020).
POP Persistence	Dimoxystrobin is not considered to be a persistent organic pollutant (POP) according to point 3.7.1 of Annex II of Regulation (EC) 1107/2009.
Bioaccumulation	Dimoxystrobin not considered to be a persistent, bioaccumulative and toxic (PBT) substance according to point 3.7.2 of Annex II of Regulation (EC) 1107/2009.
Long-range transport	
PBT Persistence	
Bioaccumulation	
Toxicity	
vPvB Persistence	Dimoxystrobin not considered to be a very persistent, very bioaccumulative substance according to point 3.7.3 of Annex II of Regulation (EC) 1107/2009.

^(a): Origin of data to be included where applicable (e.g. EFSA, ECHA RAC, Regulation).
Appendix B – List of end points for the active substance and the representative formulations with regard to identity, assessment of mammalian toxicity in relation to groundwater metabolites, environmental fate and behaviour and ecotoxicology

Identity, Physical and Chemical Properties, Details of Uses, Further Information (Regulation (EU) N° 283/2013, Annex Part A, points 1.3 and 3.2)

Active substance (ISO Common Name)	dimoxystrobin
Function (e.g. fungicide)	fungicide
Rapporteur Member State	Hungary
Co-rapporteur Member State	Ireland

Identity (Regulation (EU) N° 283/2013, Annex Part A, point 1)

Chemical name (IUPAC)	(2E)-2-{2-[2,5-dimethylphenoxy]methyl[phenyl]-2-(methoxyimino)-N-methylacetamide
Chemical name (CA)	Benzeneacetamide, 2-{[2,5-dimethylphenoxy]methyl}-α-(methoxyimino)-N-methyl-αE)-
CIPAC No	739
CAS No	149961-52-4
EC No (EINECS or ELINCS)	604-712-8
FAO Specification (including year of publication)	none
Minimum purity of the active substance as manufactured	min. 980 g/kg (Regulation (EU) 540/2011 min 994 g/kg (proposed based on data for the renewal of approval - peer review not finalised)
Identity of relevant impurities (of toxicological, ecotoxicological and/or environmental concern) in the active substance as manufactured	no relevant impurity
Molecular formula	C₁₉H₂₂N₂O₃
Molar mass	326.394 g/mol

Groundwater metabolites: Screening for biological activity (SANCO/221/2000-rev.10-final Step 3 a Stage 1)

Activity against target organism	505M01	505M08	505M09
	no	no	no
Summary of representative uses evaluated, for which all risk assessments needed to be completed (*dimoxystrobin*)
(Regulation (EU) No 284/2013, Annex Part A, points 3, 4)

Crop and/or situation (a)	Member State or Country	Product name	F G or I (b)	Pests or Group of pests controlled (c)	Preparation	Application	Application rate per treatment	Remarks						
Oilseed rape Brassica napus BRSNW	EU	BAS 540 01 F	F	Sclerotinia sclerotiorum, Alternaria brassicae, Erysiphe cruciferarum, Pyrenopeziza brassicae, Plenodomus maculans	SC	200* g/l, 200** g/l	foliar spraying	BBCH 20-75	2	28	0.025-0.1	100-400	0.1* 0.1**	*** no autumn application, spring application not before 1st February Application is restricted to every third year
Sunflower Helianthus annuus HELAN	CEU SEU	BAS 540 01 F	F	Sclerotinia sclerotiorum, Alternaria helianthi, Plenodomus lindquisti, Botrytis cinerea, Diaporthe helianthi	SC	200* g/l, 200** g/l	foliar spraying	BBCH 51-75	1	–	0.025-0.1	100-400	0.1* 0.1**	30 Application is restricted to every third year

*: dimoxystrobin.
**: boscalid.
***: defined by growth stage at latest application timing.
(a): For crops, the EU and Codex classifications (both) should be taken into account; where relevant, the use situation should be described (e.g. fumigation of a structure).
(b): Outdoor or field use (F), greenhouse application (G) or indoor application (I).
(c): e.g. biting and sucking insects, soil born insects, foliar fungi, weeds.
(d): e.g. wettable powder (WP), emulsifiable concentrate (EC), granule (GR).
(e): CropLife International Technical Monograph no 2, 6th Edition. Revised May 2008. Catalogue of pesticide.
(f): All abbreviations used must be explained.
(g): Method, e.g. high volume spraying, low volume spraying, spreading, dusting, drench.
(h): Kind, e.g. overall, broadcast, aerial spraying, row, individual plant, between the plant- type of equipment used must be indicated.

www.efsa.europa.eu/efsajournal 22 EFSA Journal 2022;20(11).7634
(i): g/kg or g/L. Normally the rate should be given for the active substance (according to ISO) and not for the variant in order to compare the rate for same active substances used in different variants (e.g. fluoroxypry). **In certain cases, where only one variant is synthesised, it is more appropriate to give the rate for the variant (e.g. benthiavalicarb-isopropyl).**

(j): Growth stage range from first to last treatment (BBCH Monograph, Growth Stages of Plants, 1997, Blackwell, ISBN 3-8263-3152-4), including where relevant, information on season at time of application.

(k): Indicate the minimum and maximum number of applications possible under practical conditions of use.

(l): The values should be given in g or kg whatever gives the more manageable number (e.g. 200 kg/ha instead of 200,000 g/ha or 12.5 g/ha instead of 0.0125 kg/ha).

(m): PHI – minimum preharvest interval.
Impact on Human and Animal Health

Other toxicological studies (Regulation (EU) N°283/2013, Annex Part A, point 5.8)

Studies performed on metabolites or impurities

Group 1: Cleavage metabolites	505M01, representative metabolite of cleavage metabolites (PEC_{Cgw} > 0.1 µg/L)
QSAR	Ames: negative
	CA: negative
	in vivo MNT: negative
Acute oral toxicity	LD_{50} > 2000 mg/kg bw
Genotoxicity	Ames: negative
	in vitro mammalian gene mutation: negative
	in vivo CA test: negative
	Aneugenicity was not investigated
Carcinogenicity	Carcinogenicity potential of the parent cannot be excluded
Reproductive toxicity	Reprotoxic potential of the parent cannot be excluded
ADI, ARfD	Reference values cannot be derived

Group 3: Carboxylated products	505M08, representative metabolite of carboxylated metabolites, (PEC_{Cgw} > 0.1 µg/L)
QSAR	Ames: negative
	CA: negative
Acute oral toxicity	LD_{50} > 2000 mg/kg bw/day
Genotoxicity	Ames test: negative
	In vitro gene mutation test: negative
	In vitro CA assay in V79 cells: weak clastogenicity (in high concentrations)
	in vivo MNT: negative
Carcinogenicity	No effects on iron serum levels and in duodenum.
7-day dietary study in rats

Carcinogenicity mechanism of the parent is not expected

Reproductive toxicity

Reprotoxic potential of the parent cannot be excluded

ADI, ARfD

Reference values cannot be derived

505M09, carboxylated metabolite (PEC_car > 0.1 µg/L) unconjugated form of the major rat metabolite 505M81)

QSAR	Ames: negative
Acute oral toxicity	\(LD_{50} > 2000\) mg/kg bw/day
Genotoxicity	Ames test: negative
	In vitro gene mutation test: negative
	In vitro CA assay in V79 cells: negative
	in vivo MNT: negative
Carcinogenicity	No effects on iron serum levels and in duodenum. Carcinogenicity mechanism of the parent is not expected
7-day dietary study in rats	
Reproductive toxicity	Repprotoxic potential of the parent cannot be excluded
ADI, ARfD	Reference values of the parent cannot be applied
Environmental fate and behaviour

Route of degradation (aerobic) in soil (Regulation (EU) No 283/2013, Annex Part A, point 7.1.1.1)

Parameter	Description	Values
Mineralisation after 100 days	14.9% after 119 d, [14C-benzyl]-label (n=5)	24.5% after 122 d, [14C-phenyl]-label (n=1)
Non-extractable residues after 100 days	24.1% after 119 d, [14C-benzyl]-label (n=1)	24.6% after 122 d, [14C-phenyl]-label (n=1)
Metabolites requiring further consideration	505M09 (BF 505-8) max. 13% at 90 d (n=5)	[14C-phenyl] & [14C-benzyl] label

(a): n corresponds to the number of soils.

Route of degradation (anaerobic) in soil (Regulation (EU) No 283/2013, Annex Part A, point 7.1.1.2)

Parameter	Description	Values
Mineralisation after 100 days	0% after 120 d, [14C-phenyl]-label (n=1)	
Non-extractable residues after 100 days	9.7% after 120 d, [14C-phenyl]-label (n=1)	
Metabolites that may require further consideration for risk assessment - name and/or code, % of applied (range and maximum)	no metabolite > 1% AR	

Route of degradation (photolysis) on soil (Regulation (EU) No 283/2013, Annex Part A, point 7.1.1.3)

Parameter	Description	Values
Metabolites that may require further consideration for risk assessment - name and/or code, % of applied (range and maximum)	505M01 (BF505-4) max. 10.8% at 15 d (n=1)	[14C-benzyl] & [14C-phenyl] label
Mineralisation at study end	0.6% after 15 d, [14C-benzyl]-label (n=1)	1.8% after 15 d, [14C-phenyl]-label (n=1)
Non-extractable residues at study end	8.1% after 15 d, [14C-benzyl]-label (n=1)	8.6% after 15 d, [14C-phenyl]-label (n=1)
Rate of degradation in soil (aerobic) laboratory studies active substance (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.1.1 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.1)

Parent	Dark aerobic conditions							
	org. C (%)	pH (CaCl₂)	t. °C/%MWHC	Trigger DT₅₀/DT₉₀ (day)	Kinetic parameters	Modelling DT₅₀ (day) 20°C, pF2^a	St. (χ²) trigger/modelling	Method of calculation trigger/modelling
Bruch West sandy loam (b)	2.0	7.5	20/40	78.2/423.1	α: 1.869	138.7^(b)	2.2/2.3	FOMC/DFOP^(d)
Bruch West sandy loam (p)	2.0	7.5	20/40	70.9/481.4	α: 1.331	124.7^(b)	1.2/2.4	FOMC/DFOP^(d)
Bruch West sandy loam average	2.0	7.5	20/40	74.5^(c)	–	131.5^(b)	–	FOMC/DFOP^(d)
Lufa 2.2 sand/loamy sand (b)	2.5	5.8	20/40	419.9/1,000	k₂: 0.05724, g: 0.069	331.8	1.2/1.5	DFOP/SFO^(d)
Minto loam (b)	3.0	7.7	20/40	363/>1,000	k: 0.001909	279.5	2.0	SFO^(e)
Dinuba sandy loam (b)	0.6	7.0	20/40	265.3/881.3	k: 0.002613	187.8	1.3	SFO^(d)
Li 35b sandy loam (b)	1.1	6.8	20/40	411.4/1,000	k: 0.00169	325.5	1.6	SFO^(d)
Borstel loamy sand (b)	1.2	4.6	20/40	306.2/1,000	k: 0.002264	215.7	1.0	SFO^(e)
Geometric mean (if not pH dependent)						233.2		

Statement concerning the assessment of environmental fate and behaviour and ecotoxicology in the context of the pesticides peer review of the active substance dimoxystrobin.

Rate of degradation in soil (aerobic) laboratory studies transformation products (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.1.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.1)

505M08	Dark aerobic conditions								
	org. C (%)	pH (CaCl₂)	t. °C/%MWHC	Trigger DT₅₀/DT₉₀ (day)	f. f. k_f/k_{op} trigger/modelling	Kinetic parameters	DT₅₀ (day) 20°C pF2/10kPa^a	St. (χ²) trigger/modelling	Method of calculation trigger/modelling
Bruch West sandy loam (b)	2.0	7.5	20/40	11.6/38.63	0.2835/0.2716	k: 0.0596	11.6	16.5/16.7	SFO^(b)/SFO⁽ⁱ⁾
Bruch West sandy loam (p)	2.0	7.5	20/40	55.8/185.5	0.1222/0.1135	k: 0.01368	52.9	13.2/8.5	SFO^(b)/SFO⁽ⁱ⁾
Bruch West sandy loam average	2.0	7.5	20/40	24.3^(j)	0.203^(k)	k: 0.0286^(j)	24.7^(j)	–	SFO^(b)/SFO⁽ⁱ⁾
Lufa 2.2 sand/loamy sand (b)	2.5	5.8	20/40	68.1/226.1	0.2226/0.3983	k: 0.01019	26.1	9.1/12.4	SFO⁽ⁱ⁾/SFO^(c)
Minto loam (b)	3.0	7.7	20/40	27.7/91.92	0.373	k: 0.02505	19.6	14.7	SFO^(c)
Dinuba sandy loam (b)	0.6	7.0	20/40	–	–	–	–	–	SFO^(c)

No

(a): Normalised using a Q10 of 2.58 and Walker equation coefficient of 0.7.
(b): Derived from slow phase of bi-phasic model (DT50slow = ln2/k2).
(c): Geometric mean of studies with two labels of Bruch West soil (b), (p) – benzyl-, phenyl-label.
(d): Parent-metabolite pathway fit.
(e): Parent-only fit.

www.efsa.europa.eu/efsajournal 27 EFSA Journal 2022;20(11):7634
Statement concerning the assessment of environmental fate and behaviour and ecotoxicology in the context of the pesticides peer review of the active substance dimoxystrobin

www.efsa.europa.eu/efsajournal 28 EFSA Journal 2022;20(11):7634

Soil type	org.C (%)	pH (CaCl₂)	t. °C/ % MWHC	Trigger DT₅₀/DT₉₀ (day)	f. f. kᵣ/kdp trigger/modelling	Kinetic parameters	DT₅₀ (day) 20°C pF2/10 kPa (a)	St. (χ²) trigger/modelling	Method of calculation trigger/modelling
Bruch West sandy loam (b)	2.0	7.5	20/40	54.6/181.46	0.4286/0.428	k: 0.01269	51.8	5.0/4.7	SFO(b)/SFO(b)
Bruch West sandy loam (p)	2.0	7.5	20/40	76.8/255	0.3661/0.3537	k: 0.009031	74.9	7.6/3.4	SFO(p)/SFO(p)
Bruch West sandy loam average	2.0	7.5	20/40	64.7/215.1 (i)	0.397(k)/0.391(k)	k: 0.0107(k)	62.3(i)	–	SFO(i)/SFO(i)
Lufa 2.2 sand/loamy sand (b)	2.5	5.8	20/40	29.1/96.61	0.3234/0.6017	k: 0.02383	13.4	12.8/16.6	SFO(i)/SFO(i)
Minto loam (b)	3.0	7.7	20/40	(d)	(0.0722)(e)	_ (d)	_ (d)	_ (d)	SFO(c)
Dinuba sandy loam (b)	0.6	7.0	20/40	69.0/229.12	0.369	k: 0.01005	48.8	9.1	SFO(c)
Li 35b sandy loam (b)	1.1	6.8	20/40	61.9/205.5	0.3033	k: 0.01120	49.0	11.3	SFO(c)
Li 10 loamy sand (b)	0.81	6.3	20/40	122.8/531.8	_ (i)	kᵣ: 0.003935	165.5(6)	1.6	DFOP
Lufa 2.2. sandy loam (b)	1.6	5.4	20/40	65.5/358.8	_ (i)	kᵣ: 0.2085	93.7(6)	2.5	DFOP
Lufa 5 M sandy loam (b)	2.18	7.4	20/40	159.5/592.8	_ (i)	kᵣ: 0.4865	119.7(6)	2.3/3.2	DFOP/SFO

Geometric mean (if not pH dependent)

| Dark aerobic conditions | 50S5M09 (BF 505–8) | 62.47(h) |

(a): Normalised using a Q10 of 2.58 and Walker equation coefficient of 0.7.
(b): FOMC kinetics for parent.
(c): SFO kinetics for parent.
(d): No reliable endpoints derived in kinetic evaluation.
(e): Not taken into consideration for averaging of formation fractions.
(f): Applied as parent.
(g): Derived from slow rate of the respective bi-phasic model (ln2/k2).
(h): Results from Bruch West soil with two labels were averaged before calculating the overall mean.
(i): DFOP kinetics for parent.
(j): Geometric mean of studies with two labels of Bruch West soil (b), (p) – benzyl-, phenyl-label.
(k): Arithmetic mean of studies with two labels of Bruch West soil (b), (p) – benzyl-, phenyl-label.
Arithmetic mean 0.347 (h)

pH dependence	No

(a): Normalised using a Q10 of 2.58 and Walker equation coefficient of 0.7.
(b): FOMC kinetics for parent.
(c): SFO kinetics for parent.
(d): No reliable endpoints derived in kinetic evaluation.
(e): Not taken into consideration for averaging of formation fractions.
(f): Applied as parent.
(g): Derived from slow rate of the respective bi-phasic model (ln2/k2).
(h): Results from Bruch West soil with two labels were averaged before calculating the overall mean.
(i): DFOP kinetics for parent.
(j): Geometric mean of studies with two labels of Bruch West soil (b), (p) – benzyl-, phenyl-label.
(k): Arithmetic mean of studies with two labels of Bruch West soil (b), (p) – benzyl-, phenyl-label.

Soil type	org.C (%)	pH (CaCl2)	t. °C/ % MWHC	Trigger DT50/ DT90 (day)	f. f. k1/kap trigger/modelling	Kinetic parameters	DT50 (day) 20°C pF2/10 kPa (a)	St. (χ^2) trigger/modelling	Method of calculation trigger/modelling
Li 10 loamy sand (b)	0.81	6.3	20/40	3.1/15.3	(b)	k1: 0.5452 k2: 0.1195 g: 0.3759	3.4	2.1/9.0	DFOP/SFO
Lufa 2.2. sandy loam (b)	1.6	5.4	20/40	11.6/45.8	(b)	k1: 0.10.89 k2: 0.04703 g: 0.1379	9.4	5.1/8.8	DFOP/SFO
Lufa 5M sandy loam (b)	2.18	7.4	20/40	1.2/35.07	(b)	k1: 0.578316 k2: 0.03613 ts: 1.90956	14.4	9.3	HS
Geometric mean (if not pH dependent)								7.75	
Arithmetic mean									
pH dependence	No								

(a): Normalised using a Q10 of 2.58 and Walker equation coefficient of 0.7.
(b): Applied as parent.

Rate of degradation field soil dissipation studies (Regulation (EU) No 283/2013, Annex Part A, point 7.1.2.2.1 and Regulation (EU) No 284/2013, Annex Part A, point 9.1.1.2.1).
Statement concerning the assessment of environmental fate and behaviour and ecotoxicology in the context of the pesticides peer review of the active substance dimoxystrobin

| Soil Type (bare soil) | Start Date | End Date | pH | OC (%) | K1 | K2 | g | DegT50 (f) | DegT50 (e) | DegT50 (d) | DegT50 (c) | DegT50 (b) | DegT50 (a) |
|-----------------------|------------|----------|----|--------|----|----|----|------------|------------|------------|------------|------------|------------|------------|
| Loamy sand (bare soil) | 2000/1000122 | - D05/03/97 | 6.3 | 1.08 | 29.3 | > 1000 | k1: 0.05682 | g: 0.613 | 1.9/5.9 | 8.3 | 346.2 | DFOP/HS |
| Loamy sand (bare soil) | 2000/1000122 | - D03/04/97 | 5.3 | 0.63 | 63.0 | > 1000 | k1: 0.01428 | g: 0.843 | 4.8/7.5 | 62.0 | DFOP/SFO |
| Silty clay loam (bare soil) | 2000/1000122 | - D03/04/97 | 6.4 | 1.29 | 25.1 | > 1000 | k1: 0.04073 | g: 0.776 | 6.7/7.0 | 6.5 | 158.7 | DFOP/DFOP |
| Loam (bare soil, sand cover) | 2014/1289366 | - 01 (ES) | 7.3 | 0.93 | 18.5 | 611.7 | k1: 0.03753 | g: 0.341 | 25.2/33.0 | 101.9 | HS/FOMC |
| Sandy loam (bare soil, sand cover) | 2014/1289366 | - 02 (IT) | 7.6 | 0.45 | 36.7 | 946.6 | k1: 0.04145 | g: 0.615 | 6.0/6.3 | 15.3 | 279.7 | DFOP/DFOP |
| Silt loam (bare soil, sand cover) | 2014/1289366 | - 03 (UK) | 6.6 | 1.64 | 62.7 | 625.1 | k1: 1458 | g: 0.241 | 15.2/15.8 | 65.6 | DFOP/SFO |
| Sandy loam (bare soil, sand cover) | 2014/1289366 | - 04 (DE) | 5.9 | 2.07 | 184.7 | > 1,000 | k1: 0.02567 | g: 0.339 | 4.5/6.6 | 126.6 | DFOP/SFO |
| Silt loam (bare soil, sand cover) | 2014/1289366 | - 05 (FR) | 4.9 | 0.81 | 14.0 | 283.2 | k1: 0.09157 | g: 0.665 | 4.5/9.9 | 47.4 | DFOP/FOMC |

Geometric mean (if not pH dependent)

	n = 9	n = 9
38.0	113.2	

pH dependence

No

(a): First value applies to trigger DT50, second value applies to modelling DT50.
(b): No normalised DT50 derived due to experimental conditions not suitable for normalisation.
(c): DegT50 calculated from fast rate (ln2/k1).
(d): DegT50 calculated from slow rate (ln2/k2).
(e): DegT50 was calculated as DT90/3.32.
(f): Best-fit endpoints should not be used as triggers for additional work due to exclusion of surface loss processes.

Dimoxystrobin metabolites appeared in amounts > LOQ only sporadically under field conditions

Combined laboratory and field kinetic endpoints for modelling (when not from different populations)

- Rate of degradation in soil active substance, normalised geometric mean (if not pH dependent)
- Rate of degradation in soil transformation products, normalised geometric mean (if not pH dependent)
- Kinetic formation fraction (f.f. k_f/k_d) of transformation products, arithmetic mean

- Laboratory and field kinetic endpoints for modelling are from different populations according to EFSA calculator tool.
- Not applicable since no field DegT50 values for metabolites available
- Not applicable since no formation fractions from field available

*: Only relevant after implementation of the published EFSA guidance describing how to amalgamate laboratory and field endpoints.
Soil accumulation (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.2.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.2.2)

Soil accumulation and plateau concentration

\[P_{\text{soil,plateau}} \text{ calculated to be 0.006 mg/kg (reached after 10 years) in winter oilseed rape and 0.004 mg/kg (reached after 10 years) in sunflowers.} \]

Respective \(P_{\text{soil,accu}} \) calculated to be 0.054 mg/kg in winter oilseed rape and 0.038 mg/kg in sunflowers.

Soil accumulation experiment:
Application of 200 g/ha per annum in 2 field studies over 4 years (1998-2002): no accumulation observed (the highest dimoxystrobin concentrations were 0.036 and 0.034 mg/kg soil (corrected for moisture content of soil) in the years 2000 and 2001.

Rate of degradation in soil (anaerobic) laboratory studies active substance (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.1.3 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.1)

Parent	Dark anaerobic conditions							
	Soil type	org. C (%)	pH(a)	t. °C/% MWHC	DT50/DT90 (day)	DT50 (day) 20°C(b)	St. (\(\chi^2 \))	Method of calculation
Bruch West sandy loam (p)	2.0	7.5	20/flooded	not calc. parent stable	not calc.	–	–	
Geometric mean (if not pH dependent)								

(a): Measured in calcium chloride solution.
(b): Normalised using a Q10 of 2.58.

Aerobic soil metabolites do not appear in significant amounts under field conditions in soil; data on anaerobic degradation rate of metabolites not considered necessary.

Rate of degradation on soil (photolysis) laboratory active substance (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.1.3)

Parent	Soil photolysis					
	Soil type	pH(a)	t. °C/% MWHC	DT50/DT90 (d)	St. (\(\chi^2 \))	Method of calculation
Limburgerhof sandy loam	7.5	22/-34	33.8	112.2	3.5	First-order test system days (cont. irradiation); extrapolated

(a): Measured in calcium chloride solution.

Soil adsorption active substance (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.3.1.1 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.2.1)

Soil Type	OC (%)	\(pH_{\text{CaCl2}} \) (\(pH_{\text{H2O}} \))	\(K_a \) (mL/g)	\(K_{\text{doc}} \) (mL/g)	\(K_f \) (mL/g)	\(K_{\text{foc}} \) (mL/g)	1/n
Silt loam (Nierswalder)	1.85	5.7 (6.5)	9.14	9.14	493.8	0.99	
Loam (Fiorentino)	1.00	7.4 (8.2)	5.94	5.94	593.9	0.95	
Loamy sand (Li10)	0.95	6.2 (6.9)	3.33	3.33	350.6	0.94	
Sand (Lufa 2.1)	0.60	5.6 (6.5)	1.82	1.82	303.6	0.93	
Sandy loam (Lufa 2.3)	0.99	6.7 (7.4)	3.45	3.45	348.1	0.94	

Indirect method
Indirect method

Soil Type	OC (%)	pH_{CaCl_2} (pH_{H_2O})	K_d (mL/g)	K_{doc} (mL/g)	K_F (mL/g)	K_{Foc} (mL/g)	1/n
Sandy loam (Bruch West)	1.8	7.5 (8.0) \(^{(a)}\)	3.52	195.8	0.902		
Loamy sand (Borstel)	1.2	4.6 (5.6)	6.76	563	0.940		

Geometric mean (if not pH dependent): 382.5

Arithmetic mean (if not pH dependent): 0.942

pH dependence: No

\(^{(a)}\): estimated using pH water = 0.953*pH_{CaCl_2} + 0.853 European Commission (2014a).

Soil adsorption transformation products (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.3.1.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.2.1)

Metabolite 505M08 (BF 505–7)

Soil Type	OC (%)	pH_{CaCl_2} (pH_{H_2O})	K_d (mL/g)	K_{doc} (mL/g)	K_F (mL/g)	K_{Foc} (mL/g)	1/n
Indirect method							
Sand/loamy sand (Lufa 2.2)	2.5	5.8 (6.4)	0.499	20.0	0.95		
Loamy sand (Bruch West)	1.5	7.5 (8.0)	0.057	3.8	1.22		
Loamy sand (Li35b)	1.1	6.5 (7.0)	0.086	7.8	0.99		
Silty loamy sand (USA 538-31-2)	0.5	5.2 (5.8)	0.665	133.0	0.95		

Indirect (one soil, Niersw. Wild.) and Direct method (four soils)

Soil Type	OC (%)	pH_{CaCl_2} (pH_{H_2O})	K_d (mL/g)	K_{doc} (mL/g)	K_F (mL/g)	K_{Foc} (mL/g)	1/n
Silt loam (Niersw. Wild.)	1.9	5.7 (6.5)	0.750	40.6	0.96		
Loam (Fiorentino)	1.0	7.4 (8.2)	0.080	8.3	1.00		
Loamy sand (Li 10)	1.0	6.2 (6.9)	0.090	9.6	1.00		
Sand (Lufo 2.1)	0.6	5.6 (6.5)	0.130	22.0	1.00		
Sandy loam (Lufo 2.3)	1.0	6.7 (7.4)	0.060	6.0	0.99		

Direct method

Soil Type	OC (%)	pH_{CaCl_2} (pH_{H_2O})	K_d (mL/g)	K_{doc} (mL/g)	K_F (mL/g)	K_{Foc} (mL/g)	1/n
Silt loam (Niersw. Wild.)	2.01	5.6 (6.2)	0.49	24.2	0.91		
Loam (PioggioRenatico)	0.82	7.5 (8.3)	0.17	20.2	0.96		
Loamy sand (Li 10)	0.89	6.1 (6.9)	0.14	15.7	0.93		
Sand (Lufo 2.1)	0.72	5.6 (6.2)	0.26	35.6	0.93		
Sandy loam (Lufo 2.3)	0.66	5.3 (6.3)	0.12	17.6	0.96		

Geometric mean (if not pH dependent)

- Soils with pH (water) > 6.5: 8.92
- Soils with pH (water) ≤ 6.5: 32.2

Arithmetic mean (if not pH dependent)

- Soils with pH (water) > 6.5: 1.01
- Soils with pH (water) ≤ 6.5: 0.952

pH dependence: Yes

Metabolite 505M09 (BF 505–8)

Soil Type	OC (%)	pH_{CaCl_2} (pH_{H_2O})	K_d (mL/g)	K_{doc} (mL/g)	K_F (mL/g)	K_{Foc} (mL/g)	1/n
Indirect method							
Sand/loamy sand (Lufa 2.2)	2.5	5.8 (6.4) \(^{(a)}\)	1.111	44.4	0.92		
Loamy sand (Bruch West)	1.5	7.5 (8.0) \(^{(a)}\)	0.135	9.0	0.81		
Loamy sand (Li35b)	1.1	6.5 (7.0) \(^{(a)}\)	0.142	12.9	0.812		
Silty loamy sand (USA 538-31-2)	0.5	5.2 (5.8) \(^{(a)}\)	0.595	119.0	0.892		

Direct method

Soil Type	OC (%)	pH_{CaCl_2} (pH_{H_2O})	K_d (mL/g)	K_{doc} (mL/g)	K_F (mL/g)	K_{Foc} (mL/g)	1/n
Silt loam (Niersw. Wild.)	1.9	5.7 (6.5)	1.170	63.22	0.95		
Soil Type	OC (%)	pH_{CaCl2} (pH_{H2O})	Kd (mL/g)	K_{doc} (mL/g)	KF (mL/g)	K_{Foc} (mL/g)	1/n
---------------------------	--------	------------------------	-----------	---------------	-----------	---------------	-----
Silt loam (Niersw. Wild.)	1.85	5.7 (6.5)	0.150	8.4	0.99		
Loam (Fiorentino)	1.0	7.4 (8.2)	0.230	23.4	0.91		
Loamy sand (Li 10)	0.95	6.2 (6.9)	0.050	5.5	0.98		
Sand (Lufa 2.1)	1.0	6.2 (6.5)	0.040	6.6	0.93		
Sandy loam (Lufa 2.3)	0.99	6.7 (7.4)	0.100	10.0	1.00		

Direct method

Soil Type	OC (%)	pH_{CaCl2} (pH_{H2O})	Kd (mL/g)	K_{doc} (mL/g)	KF (mL/g)	K_{Foc} (mL/g)	1/n
Sand (Lufa 2.1)	0.72	5.6 (6.2)	0.031	4.322	0.973		
Sandy loam (Lufa 2.3)	0.66	5.6 (6.3)	0.019	2.862	0.877		
Loamy sand (Li 10)	0.89	6.1 (6.9)	0.040	4.525	1.017		
Silt loam (Niersw. Wild.)	2.01	5.6 (6.2)	0.156	7.758	0.998		
Loam (Fiorentino)	0.82	7.5 (8.3)	0.105	12.784	0.954		

Mobility in soil column leaching active substance

Elution (mm): 200 mm
Time period (d): 2 d
Leachate: < 1 % total radioactivity in leachate
> 80-90 % total residues/radioactivity retained in top 18 cm
Mobility in soil column leaching transformation products (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.4.1.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.2.1)

Column leaching
Elution (mm): 200 mm
Time period (d): 2 d
Leachate: ~ 2.5 % total radioactivity in leachate
> 90 % total residues/radioactivity retained in top 18 cm

Lysimeter/field leaching studies (Regulation (EU) N° 283/2013, Annex Part A, points 7.1.4.2/7.1.4.3 and Regulation (EU) N° 284/2013, Annex Part A, points 9.1.2.2/9.1.2.3)

Lysimeter/field leaching studies
Location: Schmallenberg (NRW, Germany)
Study type: lysimeter
Soil properties: sand, pH 5.4, OC 1.3%
Dates of application:
Lys.core 3,4: May 12, 1997, June 17, 1997
Lys.core 5: May 12, 1997, June 17, 1997
April 28, 1998, June 9, 1998
Crop:
Lys.core 3,4,5 1997: winter wheat (BBCH 29, 55 – 59)
Lys.core 5 1998: winter wheat (BBCH 31, 49)
Number of applications: 2 applications per year
Duration: 2–3 years (3rd year of the study on lysimeter nr. 4 and 5 only)
Application rate:
2 x 250 g/ha in 1. year (Lys.core 3,4,5)
2 x 200 g/ha in 2. year (only Lys.core 5)
Average annual rainfall (mm): 855 – 1318mm
Average annual leachate volume (L): 651 – 1133
% radioactivity in leachate (maximum/year):
1.9 - 6.8% AR
max. yearly average:
parent < 0.1 μg/L
505M01 < 0.1 μg/L
505M08 2.35 μg/L (1. year, Lys.core 3)
505M09 1.99 μg/L (2. year, Lys.core 5)
NIR* 1.25 μg/L (2. year, Lys.core 5)
* not identified radioactivity, expressed as parent equivalent, calculated as difference between total radioactivity in leachate and sum of identified components.
Hydrolytic degradation (Regulation (EU) N° 283/2013, Annex Part A, point 7.2.1.1)

Hydrolytic degradation of the active substance and metabolites > 10 %

Dimoxystrobin is stable at all pH values (pH 4 - 9 tested, 25 and 50°C, 30 and 5 days)

Aqueous photochemical degradation (Regulation (EU) N° 283/2013, Annex Part A, points 7.2.1.2/7.2.1.3)

Photolytic degradation of active substance and metabolites above 10 %

Sterile aqueous photolysis:

DT₅₀ : 62.6 d (test system days, cont. irrad. geometric mean of trials with benzyl- and phenyl-label)

Met 505M01: 7.8% AR (15 d cont. irrad.)

Natural water photolysis:

DT₅₀: 14.0d (test system days, cont. irrad.)

Quantum yield of direct phototransformation in water at S > 290 nm

1.29 x 10⁻³ mol · Einstein⁻¹

‘Ready biodegradability’ (Regulation (EU) N° 283/2013, Annex Part A, point 7.2.2.1)

Readily biodegradable (yes/no)

No

Aerobic mineralisation in surface water (Regulation (EU) N° 283/2013, Annex Part A, point 7.2.2.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.2.1)

Parent	Compound stable under applied experimental conditions, no significant degradation was observed									
	System identifier (indicates fresh, estuarine or marine)									
	pH water phase									
	pH sed(a)									
	t. °C(b)									
	DT₅₀/DT₉₀ whole sys. (suspended sediment test)									
	At study temp									
	Normalised to – °C(c)									
	St. (χ²)									
	DT₅₀/DT₉₀ Water (pelagic test)									
	At study temp									
	Normalised to – °C(c)									
	St. (χ²)									
	Method of calculation									
Fresh water (high conc.*)	8.99	7.5	20	n.c.	n.p.	–	n.c.	n.p.	–	–
Fresh water (low conc.*)	8.99	7.5	20	n.c.	n.p.	–	n.c.	n.p.	–	–

n.p.: not performed; n.c.: not calculated.

*: The test was performed in lake water and sediment at two different dimoxystrobin concentrations (10 µg/L and 90 µg/L).

(a): Measured in calcium chloride solution.

(b): Temperature of incubation = temperature that the environmental media were collected or std. temperature of 20°C.

(c): Normalised using a Q₁₀ of 2.58 to the temperature of the environmental media at the point of sampling. (note temp of × should be stated.)
Metabolites

505M08 & 09

System identifier (indicates fresh, estuarine or marine)	**Max in total system**	**< 1% after 59 days**

pH	**pH**	**t.°C**	**DT_{50}/DT_{90} whole sys.**	**At study Normalised to**	**St. (χ^2)**	**Method of calculation**

Fresh water (high conc.) | 8.99 | 7.5 | 20 | n.c. | n.p. | –

Fresh water (low conc.) | 8.99 | 7.5 | 20 | n.c. | n.p. | –

n.p.: not performed; n.c.: not calculated.

*: The test was performed in lake water and sediment at two different dimoxystrobin concentrations (10 µg/L and 90 µg/L).

(a): Measured in calcium chloride solution.

(b): Temperature of incubation = temperature that the environmental media were collected or std. temperature of 20°C.

(c): Normalised using a Q10 of 2.58 to the temperature of the environmental media at the point of sampling. (note temp of × should be stated).

Mineralisation and non-extractable residues (for parent dosed experiments)

System identifier (indicate fresh, estuarine or marine)

System identifier (indicate fresh, estuarine or marine)	**pH**	**pH**	**Mineralisation max % after 35 and 59 days (end of the study)**	**Non-extractable residues. Max % after d (suspended sediment test)**	**Non-extractable residues. Max % after d (end of the study) (suspended sediment test)**

Fresh water (high conc.) | 8.99 | 7.5 | 0.1 - 0.5% (35, 59 d) | – | –

Fresh water (low conc.) | 8.99 | 7.5 | 0.7% (59 d) | – | –

*: The test was performed in lake water and sediment at two different dimoxystrobin concentrations (10 µg/L and 90 µg/L).

Water/sediment study (Regulation (EU) No° 283/2013, Annex Part A, point 7.2.2.3 and Regulation (EU) No° 284/2013, Annex Part A, point 9.2.2)

Parent

Distribution	**max 89-93% in water after 0 d; max. sed. dark: 58-62% after 100 d**

Water/sediment system

pH	**pH**	**t.°C**	**DT_{50}/DT_{90} whole sys.**	**St. (χ^2)**	**DT_{50}/DT_{90} water**	**St. (χ^2)**	**DT_{50}/DT_{90} sed**	**St. (χ^2)**	**Method of calculation**

Trigger endpoints

Kellmetschweiher (dark, lab.) | 8.5 | 7.5 | 20 | 834.5/1,000 | 0.5 | 25.3/213.9 | 2.4 | n.c. | – | HS/DFOP/–

Bergh. Altrhein (dark, lab.) | 8.2 | 7.6 | 20 | 297.6/988.7 | 1.5 | 13.6/126.9 | 3.0 | n.c. | – | SFO/DFOP/–

Modelling endpoints

Kellmetschweiher (dark, lab.) | 8.5 | 7.5 | 20 | 525.6 | 1.0 | – | – | – | – | SFO/–/–

Bergh. Altrhein (dark, lab.) | 8.2 | 7.6 | 20 | 297.6 | 1.5 | – | – | – | – | SFO/–/–

Geometric mean at 20°C | 395.5 | n.c. | n.c. |

n.c.: not calculated; not rep.: not reported.

(a): Measured in calcium chloride solution.

(b): Geometric mean of modelling endpoints, laboratory systems, n = 2.
Metabolite 505M08

Distribution:
- max. water (dark) 2.9%; max. water (irrad.) 3.6%
- max. sediment (dark) 0%, max. sediment (irrad.) 0.8%

No reliable derivation of degradation rates possible.

Water/sediment system	pH water phase	pH sed	t. ºC	DT50/DT90 whole sys.	St. (χ²)	DT50/DT90 water	St. (χ²)	DT50/DT90 sed	St. (χ²)	Method of calculation

Geometric mean at 20°C

n.c.: not calculated.

Metabolite 505M09

Distribution:
- max. water (dark) 5.2%; max. water (irrad.) 5.3%
- max. sediment (dark) 0%, max. sediment (irrad.) 1.2%

No reliable derivation of degradation rates possible.

Water/sediment system	pH water phase	pH sed	t. ºC	DT50/DT90 whole sys.	St. (χ²)	DT50/DT90 water	St. (χ²)	DT50/DT90 sed	St. (χ²)	Method of calculation

Geometric mean at 20°C

n.c.: not calculated.

Metabolite 505M01

Distribution:
- max. water (irrad.) 3.2%
- max. sediment (irrad.) 0.4%

Water/sediment system	pH water phase	pH sed (a)	t. ºC	DT50/DT90 whole sys.	St. (χ²)	DT50/DT90 water	St. (χ²)	DT50/DT90 sed	St. (χ²)	Method of calculation
Kellmetschweiher (irradiated)	8.8	not rep. (b)	31.2/103.6	4.4	n.c.	n.c.	SFO			

Geometric mean at 20°C (b)

Not rep.: not reported; n.c.: not calculated.

(a): Measured in calcium chloride solution.

(b): Mean water temp. during incub. period 18.1 ºC (min 8.6 ºC, max. 28.5 ºC).

Metabolite 505M96

Distribution:
- max. water (irrad.) 9.6%
- max. sediment (irrad.) 0%

Water/sediment system	pH water phase	pH sed (a)	t. ºC	DT50/DT90 whole sys.	St. (χ²)	DT50/DT90 water	St. (χ²)	DT50/DT90 sed	St. (χ²)	Method of calculation
Kellmetschweiher (irradiated)	8.8	not rep. (b)	43.4/144.2	4.2	n.c.	n.c.	SFO			

Geometric mean at 20°C (b)

Not rep.: not reported; n.c.: not calculated.

(a): Measured in calcium chloride solution.

(b): Mean water temp. during incub. period 18.1 ºC (min 8.6 ºC, max. 28.5 ºC).
Mineralisation and non-extractable residues (from parent dosed experiments)

Water/sediment system	pH water phase	pH sed	Mineralisation % after 100/120 d. (end of the study)	Non-extractable residues in sed. max % after 100/120 d (end of the study)	Non-extractable residues in sed. max % after 100/120 d (end of the study)
Kellmetschweiler (dark, lab.)	8.5	7.5	0.8% at 100 d	6% after 100 d	6% after 100 d
Bergh. Altrhein (dark, lab.)	8.2	7.6	2.1% at 100 d	11% after 100 d	11% after 100 d

Fate and behaviour in air (Regulation (EU) No 283/2013, Annex Part A, point 7.3.1)

Phenomenon	Description
Direct photolysis in air	see below (photochemical oxidative degradation)
Photochemical oxidative degradation in air	DT₅₀ of 1.48 hours derived by the Atkinson model (version 3.1). OH (12 h) concentration assumed = 1.5 x 10⁶ mol cm⁻³
Volatilisation	from plant surfaces (BBA guideline): ~ 3 % after 24 hours
	from soil surfaces (BBA guideline): ~ 2 % after 24 hours
Metabolites	none

Residues requiring further assessment (Regulation (EU) No 283/2013, Annex Part A, point 7.4.1)

Environmental occurring residues requiring further assessment by other disciplines (toxicology and ecotoxicology) and or requiring consideration for groundwater exposure

Environment	Residues
Soil	dimoxystrobin, 505M08, 505M09, 505M01
Surface water	dimoxystrobin, 505M08, 505M09, 505M01, 505M96
Sediment	dimoxystrobin, 505M08, 505M09, 505M01, 505M96
Ground water	dimoxystrobin, 505M08, 505M09, 505M01
Air	dimoxystrobin

Definition of the residue for monitoring (Regulation (EU) No 283/2013, Annex Part A, point 7.4.2)

Environment	Residues
Soil	dimoxystrobin
Surface water	dimoxystrobin
Sediment	dimoxystrobin
Ground water	dimoxystrobin, 505M08, 505M09, 505M01
Air	dimoxystrobin
Monitoring data, if available (Regulation (EU) N° 283/2013, Annex Part A, point 7.5)

Soil (indicate location and type of study)	no data available
Surface water (indicate location and type of study)	no data available
Ground water (indicate location and type of study)	no data available
Air (indicate location and type of study)	no data available

PEC soil (Regulation (EU) N° 284/2013, Annex Part A, points 9.1.3/9.3.1)

Parent
Method of calculation
Kinetics: HS (HUS/09/98 trial)
Parameters: $k_1 = 0.00758$, $k_2 = 0.0007$, $t_b = 118.6$
worst case from field studies

Application data
Depth of the soil layer: 5 cm
Soil bulk density 1.5 g/cm³
Accumulation assessment: Depth of tillage layer: 20 cm
Crop: winter oilseed rape
Plant interception: 80%
Number of applications: 2
Interval: 28 days
Application rate: 100 g a.s./ha
Application of the active substance every year

Crop: sunflowers
Plant interception: 75%
Number of applications: 1
Interval: –
Application rate: 100 g a.s./ha
Application of the active substance every year

Parent – Winter oilseed rape

PEC(s) (mg/kg)	Single application Actual	Single application Time-weighted average	Multiple application Actual	Multiple application Time-weighted average
Initial	Not reported(6)	0.048		
Short term 24 h	Not reported(6)	Not reported(6)	0.048	0.048
2d	Not reported(6)	Not reported(6)	0.048	0.048
4d	Not reported(6)	Not reported(6)	0.047	0.048
Long term 7d	Not reported(6)	Not reported(6)	0.046	0.047
28d	Not reported(6)	Not reported(6)	0.039	0.044
50d	Not reported(6)	Not reported(6)	0.033	0.040
Parent – Sunflower

PEC_(s) (mg/kg)	Single application Actual	Single application Time-weighted average	Multiple application Actual	Multiple application Time-weighted average
100d	Not reported^(a)	Not reported^(a)	0.023	0.034
Plateau concentration	0.006 mg/kg (ESCAPE)			

^(a): Only values for the multiple application are reported as worst case.

Metabolite 505M01

Method of calculation

- Kinetics: DFOP (LUFA 2.2 soil)
- Parameters: \(k_1 = 10.89 \), \(k_2 = 0.04703 \), \(g = 0.1379 \)
- Field or Lab: worst case from laboratory studies

Application data

- Depth of the soil layer: 5 cm
- Soil bulk density 1.5 g/cm³
- Molar correction factor: 0.681
- Maximum occurrence: 21.6 % conservative estimate from field studies
- “Equivalent parent” application rates to soil surface used for PEC_{soil} calculations:
 - Winter oilseed rape: 14.711 g/ha
 - Sunflowers: 14.711 g/ha

505M01 – Winter oilseed rape

PEC_(s) (mg/kg)	Single application Actual	Single application Time-weighted average	Multiple application Actual	Multiple application Time-weighted average
Initial	Not reported^(a)	0.005		
Short term 24 h	Not reported^(a)	Not reported^(a)	Not reported^(b)	Not reported^(b)
2d	Not reported^(a)	Not reported^(a)	Not reported^(b)	Not reported^(b)
4d	Not reported^(a)	Not reported^(a)	Not reported^(b)	Not reported^(b)
Long term 7d	Not reported^(a)	Not reported^(a)	Not reported^(b)	Not reported^(b)
28d	Not reported^(a)	Not reported^(a)	Not reported^(b)	Not reported^(b)
PEC_{(s) (mg/kg)}	Single application Actual	Single application Time-weighted average	Multiple application Actual	Multiple application Time-weighted average
--------------------------	---------------------------	--	----------------------------	--
50d	Not reported^(a)	Not reported^(a)	Not reported^(b)	Not reported^(b)
100d	Not reported^(a)	Not reported^(a)	Not reported^(b)	Not reported^(b)

Plateau concentration
Not applicable

(a): Only values for the multiple application are reported as worst case.
(b): Only initial values are reported as worst-case estimates of short-term and long-term exposure.

505M01 – Sunflower

PEC_{(s) (mg/kg)}	Single application Actual	Single application Time-weighted average	Multiple application Actual	Multiple application Time-weighted average
Initial	0.005	Not applicable	Not applicable	Not applicable
Short term 24 h	Not reported^(a)	Not reported^(a)	Not applicable	Not applicable
2d	Not reported^(a)	Not reported^(a)	Not applicable	Not applicable
4d	Not reported^(a)	Not reported^(a)	Not applicable	Not applicable
Long term 7d	Not reported^(a)	Not reported^(a)	Not applicable	Not applicable
28d	Not reported^(a)	Not reported^(a)	Not applicable	Not applicable
50d	Not reported^(a)	Not reported^(a)	Not applicable	Not applicable
100d	Not reported^(a)	Not reported^(a)	Not applicable	Not applicable

Plateau concentration
Not applicable

(a): Only initial values are reported as worst-case estimates of short-term and long-term exposure.

Metabolite 505M08

Method of calculation

Kinetics: DFOP (LUFA 5M)
Parameters: k₁ = 0.02196, k₂ = 0.0007, g = 0.419
Field or Lab: worst case from laboratory studies

Application data

- Depth of the soil layer: 5 cm
- Soil bulk density 1.5 g/cm³
- Accumulation assessment: Depth of tillage layer: 20 cm
- Metabolite applied as “equivalent parent”
- Molar correction factor: 1.092
- Maximum occurrence: 14.6%(conservative estimate from field studies)
- “Equivalent parent” application rates to soil surface used for PEC_{soil} calculations:
 - Winter oilseed rape: 15.942 g/ha
 - Sunflowers: 15.942 g/ha

505M08 – Winter oilseed rape

PEC_{(s) (mg/kg)}	Single application Actual	Single application Time-weighted average	Multiple application Actual	Multiple application Time-weighted average
Initial	Not reported^(a)	0.008	Not reported^(b)	Not reported^(b)
Short term 24 h	Not reported^(a)	Not reported^(a)	Not reported^(b)	Not reported^(b)
2d	Not reported^(a)	Not reported^(a)	Not reported^(b)	Not reported^(b)
PEC(s) (mg/kg) | Single application Actual | Single application Time-weighted average | Multiple application Actual | Multiple application Time-weighted average
---|---|---|---|---
4d | Not reported (a) | Not reported (a) | Not reported (b) | Not reported (b)
Long term 7d | Not reported (a) | Not reported (a) | Not reported (b) | Not reported (b)
28d | Not reported (a) | Not reported (a) | Not reported (b) | Not reported (b)
50d | Not reported (a) | Not reported (a) | Not reported (b) | Not reported (b)
100d | Not reported (a) | Not reported (a) | Not reported (b) | Not reported (b)
Plateau concentration | 0.004 mg/kg (ESCAPE)

(a): Only values for the multiple application are reported as worst case.
(b): Only initial values are reported as worst-case estimates of short-term and long-term exposure.

505M08 – Sunflower

PEC(s) (mg/kg)	Single application Actual	Single application Time-weighted average	Multiple application Actual	Multiple application Time-weighted average
Initial | 0.005 | Not applicable | |
Short term 24 h | Not reported (a) | Not reported (a) | Not applicable | Not applicable
2d | Not reported (a) | Not reported (a) | Not applicable | Not applicable
4d | Not reported (a) | Not reported (a) | Not applicable | Not applicable
Long term 7d | Not reported (a) | Not reported (a) | Not applicable | Not applicable
28d | Not reported (a) | Not reported (a) | Not applicable | Not applicable
50d | Not reported (a) | Not reported (a) | Not applicable | Not applicable
100d | Not reported (a) | Not reported (a) | Not applicable | Not applicable
Plateau concentration | 0.003 mg/kg (ESCAPE)

(a): Only initial values are reported as worst-case estimates of short-term and long-term exposure.

Metabolite 505M09

Method of calculation

Kinetics: DFOP (LUFA 5M)
Parameters: \(k_1 = 0.486\), \(k_2 = 0.00371\), \(g = 0.0958\)
Field or Lab: worst case from laboratory studies

Application data

Depth of the soil layer: 5 cm
Soil bulk density 1.5 g/cm³
Accumulation assessment: Depth of tillage layer: 20 cm
Metabolite applied as “equivalent parent”
Molar correction factor: 1.092
Maximum occurrence: 14.4% (conservative estimate from field studies)
“Equivalent parent” application rates to soil surface used for PEC\(_{soil}\) calculations:
Winter oilseed rape: 15.724 g/ha
Sunflowers: 15.724 g/ha
505M09 – Winter oilseed rape

PEC(s) (mg/kg)	Single application Actual	Single application Time-weighted average	Multiple application Actual	Multiple application Time-weighted average
Initial	Not reported^(a)	0.008		
Short term 24 h	Not reported^(a)	Not reported^(a)	Not reported^(b)	Not reported^(b)
2d	Not reported^(a)	Not reported^(a)	Not reported^(b)	Not reported^(b)
4d	Not reported^(a)	Not reported^(a)	Not reported^(b)	Not reported^(b)
Long term 7d	Not reported^(a)	Not reported^(a)	Not reported^(b)	Not reported^(b)
28d	Not reported^(a)	Not reported^(a)	Not reported^(b)	Not reported^(b)
50d	Not reported^(a)	Not reported^(a)	Not reported^(b)	Not reported^(b)
100d	Not reported^(a)	Not reported^(a)	Not reported^(b)	Not reported^(b)
Plateau concentration	0.001 mg/kg (ESCAPE)			

^(a): Only values for the multiple application are reported as worst case.
^(b): Only initial values are reported as worst-case estimates of short-term and long-term exposure.

505M09 – Sunflower

PEC(s) (mg/kg)	Single application Actual	Single application Time-weighted average	Multiple application Actual	Multiple application Time-weighted average
Initial	0.005	Not applicable		
Short term 24 h	Not reported^(a)	Not reported^(a)	Not applicable	Not applicable
2d	Not reported^(a)	Not reported^(a)	Not applicable	Not applicable
4d	Not reported^(a)	Not reported^(a)	Not applicable	Not applicable
Long term 7d	Not reported^(a)	Not reported^(a)	Not applicable	Not applicable
28d	Not reported^(a)	Not reported^(a)	Not applicable	Not applicable
50d	Not reported^(a)	Not reported^(a)	Not applicable	Not applicable
100d	Not reported^(a)	Not reported^(a)	Not applicable	Not applicable
Plateau concentration	< 0.001 mg/kg (ESCAPE)			

^(a): Only initial values are reported as worst-case estimates of short-term and long-term exposure.
PEC ground water (Regulation (EU) N° 284/2013, Annex Part A, point 9.2.4.1)

Method of calculation and type of study (e.g. modelling, field leaching, lysimeter)

Calculations according to FOCUS (2000): FOCUS groundwater scenarios in the EU review of active substances. - Report of the FOCUS Groundwater Scenarios Workgroup, EC Document Reference Sanco/321/2000; European Commission (2014): Assessing Potential for Movement of Active Substances and their Metabolites to Ground Water in the EU. Report of the FOCUS Ground Water Work Group, EC Document Reference Sanco/13144/2010 version 3; FOCUS (2014): Generic Guidance for Tier 1 FOCUS Ground Water Assessments, version 2.2

Models used: FOCUS-PEARL 4.4.4, FOCUS-PELMO 5.5.3 and FOCUS-MACRO 5.5.4

Crops: Winter oilseed rape and sunflowers (maize taken as surrogate crop for sunflowers for MACRO 5.5.4 calculations). Application of the active substance every third year (calculation for 66 years). All scenarios parameterized for the respective crop considered in the assessment.

Substance parameters for dimoxystrobin
Molar mass (g/mol): 326.4
Water solubility (mg/L): 3.324 (at 20°C)
Vapor pressure (Pa): 6 x 10⁻⁷ (20°C)
K_{oc} (mL/g): 382.5, geometric mean (n = 7)
1/n: 0.942, arithmetic mean (n = 7)
DegT_{50,soil} (d): 113.2, geometric mean of normalized field DegT_{50} (20°C, pF2; n = 9)
Crop uptake factor: 0 (FOCUS recommendation)

Substance parameters for 505M01
Molar mass (g/mol): 222.3
Water solubility (mg/L): 26300 (at 20°C)
Vapor pressure (Pa): 1 x 10⁻⁹ (20°C), default value
K_{oc} (mL/g): 7.24, geometric mean (n = 10)
1/n: 0.963, arithmetic mean (n = 10)
DegT_{50,soil} (d): 7.75, geometric mean of normalized laboratory DegT_{50} (20°C, pF2; n = 3)
Crop uptake factor: 0 (FOCUS recommendation)
Substance parameters for 505M08

Property	Value
Molar mass (g/mol)	356.4
Water solubility (mg/L)	37.5 (at 20°C)
Vapor pressure (Pa)	1×10^{-9} (20°C), default value
K_{oc} (mL/g)	8.93, geometric mean (n = 7) considering soils with pH > 6.5; 32.2, geometric mean (n = 7) considering soils with pH ≤ 6.5
1/n	1.01, Arithmetic mean (n = 7) considering soils with pH > 6.5; 0.95, arithmetic mean (n = 7) considering soils with pH ≤ 6.5
$DegT_{50,soil}$ (d)	54.72, geometric mean of normalized laboratory $DegT_{50}$ (20°C, pF2; n = 7)

Substance parameters for 505M09

Property	Value
Molar mass (g/mol)	356.4
Water solubility (mg/L)	20.7 (at 20°C)
Vapor pressure (Pa)	1×10^{-9} (20°C), default value
K_{oc} (mL/g)	17.32, geometric mean (n = 7) considering soils with pH > 6.5; 50.58, geometric mean (n = 7) considering soils with pH ≤ 6.5
1/n	0.903, Arithmetic mean (n = 7) considering soils with pH > 6.5; 0.945, arithmetic mean (n = 7) considering soils with pH ≤ 6.5
$DegT_{50,soil}$ (d)	62.47, geometric mean of normalized laboratory $DegT_{50}$ (20°C, pF2; n = 7)

Application rate

Property	Value
Crop: winter oilseed rape	
Gross application rate: 100 g a.s/ha	
Crop growth stage: BBCH 20–75	
Canopy interception: 80%	
Application rate net of interception: 20 g a.s/ha	
No. of applications: 2	
Time of application: Early application scenario -first application at BBCH 20 was set to February 1st (subsequent application scheduled by the minimum application interval of 28 days).	
PEC(gw) – FOCUS modelling results (80th percentile annual average concentration at 1 m) triennial application

Scenario	Parent (µg/L)	505M01	505M08 (Kfoc = 8.93 ml/g)	505M08 (Kfoc = 32.2 ml/g)	505M09 (Kfoc = 17.32 ml/g)	505M09 (Kfoc = 50.58 ml/g)
Early application						
Châteaudun	0.001	0.010	2.018	0.621	1.129	0.431
Hamburg	0.011	0.091	2.640	1.127	1.701	0.823
Kremsmünster	0.007	0.030	1.760	0.735	1.160	0.533
Okehampton	0.011	0.054	1.499	0.773	1.097	0.607
Piacenza	0.004	0.025	0.979	0.496	0.741	0.371
Porto	0.003	0.044	1.259	0.532	0.849	0.399
Late application						
Châteaudun	0.001	0.011	2.034	0.640	1.149	0.428
Hamburg	0.011	0.101	2.727	1.144	1.742	0.849
Kremsmünster	0.007	0.033	1.774	0.752	1.195	0.549
Okehampton	0.010	0.056	1.511	0.786	1.107	0.615
Piacenza	0.003	0.028	1.011	0.497	0.750	0.375
Porto	0.003	0.051	1.373	0.578	0.920	0.433

Late application scenario – second application was set at BBCH 75 as it is the growth stage of the last treatment according to GAP; first application was set 28 days prior to the second application:

Scenario 1\(^{st}\) application 2\(^{nd}\) application
Châteaudun 3\(^{rd}\) May 31\(^{st}\) May
Hamburg 19\(^{th}\) May 16\(^{th}\) June
Kremsmünster 19\(^{th}\) May 16\(^{th}\) June
Okehampton 13\(^{th}\) May 10\(^{th}\) June
Piacenza 20\(^{th}\) Apr 18\(^{th}\) May
Porto 3\(^{rd}\) May 31\(^{st}\) May

Dates were selected with AppDate software, model version 3.06 (28/06/2019).
Crop: sunflowers (maize used as surrogate crop in simulations at the Chateaudun scenario)
Gross application rate: 100 g a.s/ha
Crop growth stage: BBCH 51
Canopy interception: 75%
Application rate net of interception: 25 g a.s/ha
No. of applications: 1
Time of application: application at BBCH 51 was set to 55 days after emergence.
PELMO 5.5.3/Winter oilseed rape 2 × 100 g a.i./ha

Scenario	Parent (µg/L)	Metabolite (µg/L)		
	505M01	505M08	505M09	
	(Kfoc = 8.93 ml/g)	(Kfoc = 32.2 ml/g)	(Kfoc = 17.32 ml/g)	
	(Kfoc = 50.58 ml/g)			
Early application				
Chateaudun	0.001	0.013	1.847	0.592
			1.089	0.404
Hamburg	0.009	**0.101**	2.588	1.169
			1.764	0.854
Kremmünster	0.007	0.039	1.902	0.834
			1.299	0.606
Okehampton	0.014	0.075	1.630	0.876
			1.220	0.694
Piacenza	0.004	0.045	1.253	0.601
			0.927	0.459
Porto	0.006	0.075	1.302	0.677
			0.936	0.514
Late application				
Chateaudun (early appl.)	< 0.001	0.013	1.822	0.599
			1.095	0.403
Chateaudun (late appl.)	0.001	0.016	1.570	0.458
			0.896	0.310

MACRO 5.5.4/Winter oilseed rape 2 × 100 g a.i./ha

Scenario	Parent (µg/L)	Metabolite (µg/L)		
	505M01	505M08	505M09	
	(Kfoc = 8.93 ml/g)	(Kfoc = 32.2 ml/g)	(Kfoc = 17.32 ml/g)	
	(Kfoc = 50.58 ml/g)			
Chateaudun (early appl.)	0.001	0.015	1.480	0.447
			0.857	0.299
Chateaudun (late appl.)	0.001	0.016	1.570	0.458
			0.896	0.310

PEARL 4.4.4/Sunflower 100 g a.i./ha

Scenario	Parent (µg/L)	Metabolite (µg/L)		
	505M01	505M08	505M09	
	(Kfoc = 8.93 ml/g)	(Kfoc = 32.2 ml/g)	(Kfoc = 17.32 ml/g)	
	(Kfoc = 50.58 ml/g)			
Piacenza	0.004	0.024	1.050	0.438
			0.684	0.340
Sevilla	< 0.001	0.006	0.541	0.112
			0.234	0.069

PELMO 5.5.3/Sunflower 100 g a.i./ha

Scenario	Parent (µg/L)	Metabolite (µg/L)					
	505M01	505M08	505M09				
	(Kfoc = 8.93 ml/g)	(Kfoc = 32.2 ml/g)	(Kfoc = 17.32 ml/g)				
	(Kfoc = 50.58 ml/g)						
Piacenza	0.007	0.031	0.885	0.427			
			0.604	0.340			
Sevilla	< 0.001	0.009	0.590	0.129			
			0.270	0.062			
Scenario	Parent (µg/L)	Metabolite (µg/L)	50SM01	50SM08	50SM08	50SM09	50SM09
----------------	--------------	------------------	--------	--------	--------	--------	--------
Chateaudun	0.001	0.018	0.813	0.308	0.507	0.205	

PEC\(_{gw}\) From lysimeter/field studies

PEC surface water and PEC sediment (Regulation (EU) N° 284/2013, Annex Part A, points 9.2.5/9.3.1)

Parent

Parameters used in FOCUSsw step 1 and 2

- Model: FOCUS STEPS 1-2, version 3
- Molar mass (g/mol): 326.4
- \(K_{f,oc}\) (mL/g): 382.5, geometric mean (n = 7)
- Deg\(_{T_{50,soil}}\) (d): 115.5, geometric mean of normalized field Deg\(_{T_{50}}\) (20°C, pF2; n = 9)*
- DT\(_{50}\) water/sediment system (d): 395.5, geometric mean whole system (n = 2)
- DT\(_{50}\) water (d): 395.5, geometric mean whole system (n = 2)
- DT\(_{50}\) sediment (d): 395.5, geometric mean whole system (n = 2)
- Crop interception winter oilseed rape (early and late applications): 70% (average crop cover)
- Crop interception sunflowers: 75% (full canopy)

*The correct value to be used in FOCUS modelling should be 113.2 days, geometric mean of normalized field Deg\(_{T_{50}}\) (20°C, pF2; n = 9)

This deviation is considered minor and therefore not considered to invalidate the presented PEC\(_{gw}/sed\) results.

Parameters used in FOCUSsw step 3 (if performed)

- Models: SWASH 5.1 in combination with MACRO 5.5.4, PRZM 4.3.1 and TOXSWA 5.5.3 (Step 3), SWAN version 5.0.1 (Step 4)
- Molar mass (g/mol): 326.4
Water solubility (mg/L): 3.324 (at 20°C)
Vapor pressure (Pa): 6 x 10⁻⁷ (20°C)
$K_{f,oc}$ (mL/g): 382.5, geometric mean (n = 7)
$1/n$: 0.942, arithmetic mean (n = 7)
DegT_{50,soil} (d): 115.5, geometric mean of normalized field DegT_{50} (20°C, pF2; n = 9) *
DT_{50} water (d): 1000, Conservative assumption (default value)
DT_{50} sediment (d): 395.5, geometric mean whole system (n = 2)
Crop uptake factor: 0
Q_{10}=2.58, Walker equation coefficient 0.7 (PRZM) /0.49 (MACRO)
The correct value to be used in FOCUS modelling should be 113.2 days, geometric mean of normalized field DegT_{50} (20°C, pF2; n = 9)
This deviation is considered minor and therefore not considered to invalidate the presented PEC_{sw/sed} results.

Application rate

Crop: winter oilseed rape, early application
Crop growth stage: BBCH 20 at first application
No. of applications: 2
Interval: 28 days
Application rate: 100 g a.s/ha
Application window:

Scenario	Application window*
D2	1st February - 31st March (1st February - 3rd March)
D3	1st February - 31st March (1st February - 3rd March)
D4	1st February - 31st March (1st February - 3rd March)
D5	1st February - 31st March (1st February - 3rd March)
R1	1st February - 31st March (1st February - 3rd March)
R3	1st February - 31st March (1st February - 3rd March)

Crop: winter oilseed rape, late application
Crop growth stage: BBCH 75 at last application
No. of applications: 2
Interval: 28 days
Application rate: 100 g a.s/ha
Application window:

Scenario	Application window*
D2	1st February - 31st March
D3	1st February - 31st March
D4	1st February - 31st March
D5	1st February - 31st March
R1	1st February - 31st March
R3	1st February - 31st March

* Use the correct value 113.2 days, geometric mean of normalized field DegT_{50} (20°C, pF2; n = 9)
Day after overall maximum | \(PEC_{SW} (\mu g/L) \) Actual | \(PEC_{SW} (\mu g/L) \) TWA | \(PEC_{SED} (\mu g/kg) \) Actual | \(PEC_{SED} (\mu g/kg) \) TWA
--- | --- | --- | --- | ---
0 h | 45.989 | – | 173.23 | –
24 h | 45.289 | 45.639 | Not reported\(^{(a)}\) | Not reported\(^{(a)}\)
2 d | 45.210 | 45.444 | Not reported\(^{(a)}\) | Not reported\(^{(a)}\)
4 d | 45.051 | 45.287 | Not reported\(^{(a)}\) | Not reported\(^{(a)}\)
7 d | 44.815 | 45.135 | Not reported\(^{(a)}\) | Not reported\(^{(a)}\)
14 d | 44.269 | 44.838 | Not reported\(^{(a)}\) | Not reported\(^{(a)}\)
21 d | 43.729 | 44.553 | Not reported\(^{(a)}\) | Not reported\(^{(a)}\)
28 d | 43.196 | 44.284 | Not reported\(^{(a)}\) | Not reported\(^{(a)}\)
42 d | 42.149 | 43.746 | Not reported\(^{(a)}\) | Not reported\(^{(a)}\)

(a): Only initial values are reported as worst-case estimates of short-term and long-term exposure.
FOCUS STEP 2

Scenario

Day after overall maximum

Northern EU	Twofold application to winter oilseed rape, early application (October–February)	
0 h	7.141	26.76
24 h	6.996	7.069
2 d	6.984	7.030
4 d	6.960	7.001
7 d	6.923	6.975
14 d	6.839	6.928
21 d	6.755	6.884
28 d	6.673	6.842
42 d	6.511	6.759

Southern EU	Twofold application to winter oilseed rape, early application (October–February)	
0 h	5.948	22.21
24 h	5.805	5.877
2 d	5.795	5.839
4 d	5.775	5.812
7 d	5.745	5.790
14 d	5.675	5.750
21 d	5.605	5.713
28 d	5.537	5.678
42 d	5.403	5.608

(a): Only initial values are reported as worst-case estimates of short-term and long-term exposure.

Table: FOCUS STEP 2

Northern EU	Twofold application to winter oilseed rape, late application (March–May)	
0 h	3.562	13.09
24 h	3.423	3.493
2 d	3.417	3.457
4 d	3.406	3.434
7 d	3.388	3.418
14 d	3.346	3.392
21 d	3.306	3.370
28 d	3.265	3.349
42 d	3.186	3.308

Southern EU	Twofold application to winter oilseed rape, late application (March–May)	
0 h	5.948	22.21
24 h	5.805	5.877
2 d	5.795	5.839
4 d	5.775	5.812
7 d	5.745	5.790
14 d	5.675	5.750
21 d	5.605	5.713
28 d	5.537	5.678
42 d	5.403	5.608

(a): Only initial values are reported as worst-case estimates of short-term and long-term exposure.
FOCUS STEP 1

Scenario

Day after overall maximum

	PEC_{SW} (µg/L)		**PEC_{SED} (µg/kg)**	
	Actual	**TWA**	**Actual**	**TWA**
Single application to sunflowers				
0 h	22.995	–	86.61	–
24 h	22.644	22.820	Not reported^(a)	Not reported^(a)
2 d	22.605	22.722	Not reported^(a)	Not reported^(a)
4 d	22.526	22.644	Not reported^(a)	Not reported^(a)
7 d	22.408	22.568	Not reported^(a)	Not reported^(a)
14 d	22.134	22.419	Not reported^(a)	Not reported^(a)
21 d	21.864	22.279	Not reported^(a)	Not reported^(a)
28 d	21.598	22.142	Not reported^(a)	Not reported^(a)
42 d	21.074	21.873	Not reported^(a)	Not reported^(a)

^(a): Only initial values are reported as worst-case estimates of short-term and long-term exposure.

FOCUS STEP 2

Scenario

	PEC_{SW} (µg/L)		**PEC_{SED} (µg/kg)**	
	Actual	**TWA**	**Actual**	**TWA**
Northern EU				
Single application to sunflowers (March-May)				
0 h	1.759	–	6.42	–
24 h	1.679	1.719	Not reported^(a)	Not reported^(a)
2 d	1.677	1.699	Not reported^(a)	Not reported^(a)
4 d	1.671	1.686	Not reported^(a)	Not reported^(a)
7 d	1.662	1.678	Not reported^(a)	Not reported^(a)
14 d	1.642	1.665	Not reported^(a)	Not reported^(a)
21 d	1.622	1.654	Not reported^(a)	Not reported^(a)
28 d	1.602	1.643	Not reported^(a)	Not reported^(a)
42 d	1.563	1.623	Not reported^(a)	Not reported^(a)

^(a): Only initial values are reported as worst-case estimates of short-term and long-term exposure.

FOCUS STEP 2

Scenario

	PEC_{SW} (µg/L)		**PEC_{SED} (µg/kg)**	
	Actual	**TWA**	**Actual**	**TWA**
Southern EU				
Single application to sunflowers (March-May)				
0 h	2.837	–	10.54	–
24 h	2.755	2.796	Not reported^(a)	Not reported^(a)
2 d	2.750	2.774	Not reported^(a)	Not reported^(a)
4 d	2.741	2.760	Not reported^(a)	Not reported^(a)
7 d	2.726	2.749	Not reported^(a)	Not reported^(a)
14 d	2.693	2.729	Not reported^(a)	Not reported^(a)
21 d	2.660	2.712	Not reported^(a)	Not reported^(a)
28 d	2.628	2.695	Not reported^(a)	Not reported^(a)
42 d	2.564	2.662	Not reported^(a)	Not reported^(a)

^(a): Only initial values are reported as worst-case estimates of short-term and long-term exposure.
sunflowers (June–September)

Day after overall maximum	PEC\(_{\text{SW}}\) (µg/L)	PEC\(_{\text{SW}}\) (µg/kg)	
	STEP 3	10 m buffer (Drift + Runoff mitigation)	STEP 4 20 m buffer (Drift + Runoff mitigation)
	Actual TWA	Actual TWA	Actual TWA

FOCUS STEP 3 and STEP 4 Scenario

Water body

D2, ditch

- **Single application to winter oilseed rape (early application)**
 - Day after overall maximum:
 - 0 h: 3.805
 - 24 h: 0.641
 - 48 h: 0.483
 - 72 h: 0.417
 - 96 h: 0.388
 - 120 h: 0.335
 - 144 h: 0.301
 - 168 h: 0.275
 - 192 h: 0.238

D3, ditch

- **Single application to winter oilseed rape (early application)**
 - Day after overall maximum:
 - 0 h: 0.631
 - 24 h: 0.114
 - 48 h: 0.006
 - 72 h: 0.001
 - 96 h: 0.000
 - 120 h: 0.000
 - 144 h: 0.000
 - 168 h: 0.000
 - 192 h: 0.000

D4, pond

- **Single application to winter oilseed rape (early application)**
 - Day after overall maximum:
 - 0 h: 0.444
 - 24 h: 0.444
 - 48 h: 0.444
 - 72 h: 0.444
 - 96 h: 0.444
 - 120 h: 0.444
 - 144 h: 0.444
 - 168 h: 0.444

FOCUS STEP 3 and STEP 4 Scenario

Single application to winter oilseed rape (early application)

- Day after overall maximum:
 - 0 h: 3.805
 - 24 h: 0.641
 - 48 h: 0.483
 - 72 h: 0.417
 - 96 h: 0.388
 - 120 h: 0.335
 - 144 h: 0.301
 - 168 h: 0.275
 - 192 h: 0.238

(a): Only initial values are reported as worst-case estimates of short-term and long-term exposure.

Statement concerning the assessment of environmental fate and behaviour and ecotoxicology in the context of the pesticides peer review of the active substance dimoxystrobin

www.efsa.europa.eu/efsajournal 53 EFSA Journal 2022;20(11):7634
Time	D4, stream	D5, pond	R1, pond	R1 stream	R3, stream					
0 h	0.494	0.244	0.040	0.892	0.989					
24 h	0.002	0.243	0.039	0.001	0.005					
2 d	0.002	0.242	0.039	0.000	0.000					
4 d	0.002	0.242	0.038	0.000	0.000					
7 d	0.002	0.236	0.037	0.000	0.000					
14 d	0.002	0.227	0.034	0.000	0.000					
21 d	0.002	0.219	0.032	0.000	0.000					
28 d	0.002	0.211	0.030	0.000	0.000					
42 d	0.003	0.197	0.026	0.000	0.000					
2 h	0.407	0.243	0.153	0.285	0.247					
24 h	0.364	0.242	0.146	0.000	0.000					
2 d	0.322	0.242	0.149	0.000	0.000					
4 d	0.322	0.242	0.142	0.000	0.000					
7 d	0.349	0.235	0.124	0.000	0.000					
14 d	0.310	0.212	0.107	0.000	0.000					
21 d	0.293	0.218	0.083	0.000	0.000					
28 d	0.250	0.211	0.070	0.000	0.000					
42 d	0.186	0.223	0.058	0.000	0.000					
4 h	0.407	0.242	0.153	0.000	0.000					
24 h	0.364	0.242	0.146	0.000	0.000					
2 d	0.322	0.242	0.149	0.000	0.000					
4 d	0.322	0.242	0.142	0.000	0.000					
7 d	0.349	0.235	0.124	0.000	0.000					
14 d	0.310	0.212	0.107	0.000	0.000					
21 d	0.293	0.218	0.083	0.000	0.000					
28 d	0.250	0.211	0.070	0.000	0.000					
42 d	0.186	0.223	0.058	0.000	0.000					
7 h	0.407	0.242	0.153	0.000	0.000					
24 h	0.364	0.242	0.146	0.000	0.000					
2 d	0.322	0.242	0.149	0.000	0.000					
4 d	0.322	0.242	0.142	0.000	0.000					
7 d	0.349	0.235	0.124	0.000	0.000					
14 d	0.310	0.212	0.107	0.000	0.000					
21 d	0.293	0.218	0.083	0.000	0.000					
28 d	0.250	0.211	0.070	0.000	0.000					
42 d	0.186	0.223	0.058	0.000	0.000					
14 d	0.310	0.212	0.107	0.000	0.000					
28 d	0.250	0.211	0.070	0.000	0.000					
42 d	0.186	0.223	0.058	0.000	0.000					
FOCUS STEP 3 and STEP 4 Scenario	Water body	Day after overall maximum	\(\text{PEC}_{\text{SW}} \) (\(\mu \text{g}/\text{L} \)) STEP 3	\(\text{PEC}_{\text{SW}} \) (\(\mu \text{g}/\text{kg} \)) STEP 4 10 m buffer (Drift + Run-off mitigation)	\(\text{PEC}_{\text{SW}} \) (\(\mu \text{g}/\text{kg} \)) STEP 4 20 m buffer (Drift + Run-off mitigation)					
----------------------------------	------------	--------------------------	---------------------------------	---------------------------------	---------------------------------					
		Actual	TWA	Actual	TWA	Actual	TWA	Actual	TWA	
Twofold application to winter oilseed rape (early application)	D2, ditch	0 h	8.174	–	8.174	–	8.174	–	8.174	–
		24 h	5.914	7.138	5.914	7.138	5.914	7.138	5.914	7.138
		2 d	4.271	6.157	4.271	6.157	4.271	6.157	4.271	6.157
		4 d	3.491	4.979	3.491	4.979	3.491	4.979	3.491	4.979
		7 d	3.216	4.287	3.216	4.287	3.216	4.287	3.216	4.287
		14 d	2.772	3.838	2.771	3.837	2.771	3.837	2.771	3.837
		21 d	4.397	5.55	4.397	5.55	4.397	5.55	4.397	5.55
		28 d	3.504	3.616	3.503	3.616	3.503	3.616	3.503	3.616
		42 d	2.724	3.475	2.723	3.474	2.723	3.474	2.723	3.474
Twofold application to winter oilseed rape (early application)	D2, stream	0 h	5.129	–	5.129	–	5.129	–	5.129	–
		24 h	3.445	4.385	3.445	4.385	3.445	4.385	3.445	4.385
		2 d	2.388	3.475	2.388	3.475	2.388	3.475	2.388	3.475
		4 d	1.363	2.607	1.363	2.607	1.363	2.607	1.363	2.607
		7 d	1.341	2.177	1.341	2.177	1.341	2.177	1.341	2.177
		14 d	1.265	2.071	1.264	2.071	1.264	2.071	1.264	2.071
		21 d	1.533	1.914	1.533	1.914	1.533	1.914	1.533	1.914
		28 d	1.478	1.820	1.478	1.820	1.478	1.820	1.478	1.820
		42 d	1.241	1.657	1.241	1.657	1.241	1.657	1.241	1.657
Twofold application to winter oilseed rape (early application)	D3, ditch	0 h	0.552	–	0.074	–	0.038	–	0.038	–
		24 h	0.172	0.388	0.023	0.052	0.012	0.027	0.012	0.027
		2 d	0.013	0.225	0.002	0.030	0.001	0.015	0.001	0.015
		4 d	0.001	0.114	0.000	0.015	0.000	0.008	0.000	0.008
		7 d	0.000	0.066	0.000	0.009	0.000	0.004	0.000	0.004
		14 d	0.000	0.033	0.000	0.004	0.000	0.002	0.000	0.002
		21 d	0.000	0.022	0.000	0.003	0.000	0.002	0.000	0.002
		28 d	0.000	0.016	0.000	0.002	0.000	0.001	0.000	0.001
		42 d	0.000	0.020	0.000	0.003	0.000	0.001	0.000	0.001
Twofold application to winter oilseed rape (early application)	D4, pond	0 h	0.917	–	0.915	–	0.914	–	0.914	–
		24 h	0.916	0.916	0.914	0.915	0.913	0.914	0.913	0.914
		2 d	0.913	0.916	0.911	0.914	0.911	0.914	0.911	0.914
		4 d	0.905	0.915	0.903	0.914	0.903	0.913	0.903	0.913
		7 d	0.889	0.914	0.888	0.912	0.887	0.911	0.887	0.911
		14 d	0.848	0.905	0.847	0.903	0.846	0.902	0.846	0.902
		21 d	0.807	0.891	0.806	0.889	0.805	0.888	0.805	0.888
		28 d	0.757	0.875	0.755	0.874	0.755	0.873	0.755	0.873
		42 d	0.673	0.841	0.672	0.839	0.671	0.839	0.671	0.839
Twofold application to winter oilseed rape (early application)	D4, stream	0 h	0.947	–	0.947	–	0.947	–	0.947	–
		24 h	0.766	0.851	0.766	0.851	0.766	0.851	0.766	0.851
		2 d	0.682	0.790	0.682	0.790	0.682	0.790	0.682	0.790
		4 d	0.575	0.759	0.575	0.759	0.575	0.759	0.575	0.759
		7 d	0.642	0.718	0.642	0.718	0.642	0.718	0.642	0.718
	0 h	2 d	4 d	7 d	14 d	21 d	28 d	42 d		
----------------	---------	---------	---------	---------	---------	---------	---------	---------		
Twofold application to winter oilseed rape (early application)										
D5, pond	0.513	0.512	0.511	0.512	0.511	0.510	0.446	0.416		
	0.512	0.513	0.511	0.512	0.510	0.446	0.416			
	0.510	0.513	0.509	0.511	0.508	0.503	0.486			
	0.497	0.507	0.477	0.501	0.476	0.494	0.445			
	0.478	0.502	0.447	0.495	0.454	0.459	0.435			
	0.461	0.494	0.460	0.493	0.459	0.452	0.438			
	0.446	0.486	0.445	0.485	0.443	0.433	0.424			
	0.416	0.470	0.415	0.469	0.414	0.468				
	0.512	0.320	0.321	0.320	0.321	0.320	0.248	0.176		
	0.067	0.313	0.241	0.313	0.241	0.313	0.149	0.087		
	0.065	0.298	0.180	0.298	0.180	0.298	0.101	0.061		
	0.054	0.270	0.118	0.270	0.118	0.270	0.050	0.031		
	0.058	0.218	0.072	0.218	0.072	0.218	0.045	0.027		
	0.072	0.176	0.051	0.176	0.051	0.176	0.035	0.017		
	0.069	0.148	0.038	0.148	0.038	0.148	0.030	0.017		
	0.038	0.123	0.067	0.123	0.067	0.123	0.029			
	0.083	0.037	0.020							
	0.081	0.028	0.020							
	0.081	0.026	0.019							
	0.079	0.036	0.019							
	0.077	0.053	0.019							
	0.072	0.032	0.019							
	0.068	0.031	0.017							
	0.064	0.029	0.016							
	0.057	0.026	0.014							
	0.038	0.021	0.007							
	1.634	0.715	0.369							
	0.001	0.226	0.000							
	0.000	0.113	0.000							
	0.000	0.057	0.000							
	0.000	0.034	0.000							
	0.000	0.023	0.000							
	0.000	0.015	0.000							
	0.000	0.014	0.000							
	0.000	0.013	0.000							
	0.000	0.027	0.000							
	0.000	0.012	0.000							
	0.000	0.007	0.000							
	0.000	0.007	0.000							
	0.000	0.006	0.000							
	0.000	0.005	0.000							
	0.000	0.004	0.000							
	0.000	0.003	0.000							
	0.000	0.002	0.000							
	0.000	0.001	0.000							
	0.000	0.001	0.000							

Statement concerning the assessment of environmental fate and behaviour and ecotoxicology in the context of the pesticides peer review of the active substance dimoxystrobin
FOCUS STEP 3 and STEP 4 Scenario	Water body	Day after overall maximum	PEC_{sw} (µg/L) STEP 3	PEC_{sw} (µg/kg) STEP 4 10 m buffer (Drift + Run-off mitigation)	PEC_{sw} (µg/kg) STEP 4 20 m buffer (Drift + Run-off mitigation)
Single application to winter oilseed rape (late application)	D2, ditch	0 h	2.060	2.060	2.060
	24 h	0.501 1.440	0.500 1.440	0.500 1.440	
	2 d	1.516 1.297	1.516 1.297	1.516 1.297	
	4 d	0.390 1.142	0.389 1.142	0.389 1.142	
	7 d	0.347 1.156	0.346 1.155	0.346 1.155	
	14 d	0.905 1.120	0.904 1.120	0.904 1.120	
	21 d	1.369 1.051	1.369 1.051	1.369 1.051	
	28 d	0.971 1.009	0.971 1.009	0.971 1.009	
	42 d	0.755 0.918	0.754 0.918	0.754 0.918	
Single application to winter oilseed rape (late application)	D2, stream	0 h	1.289	1.289	1.289
	24 h	0.143 0.828	0.143 0.828	0.143 0.828	
	2 d	0.834 0.759	0.834 0.759	0.834 0.759	
	4 d	0.146 0.675	0.146 0.675	0.146 0.675	
	7 d	0.224 0.662	0.224 0.662	0.224 0.662	
	14 d	0.454 0.656	0.454 0.656	0.454 0.656	
	21 d	0.782 0.615	0.782 0.615	0.782 0.615	
	28 d	0.616 0.585	0.616 0.585	0.616 0.585	
	42 d	0.456 0.536	0.456 0.536	0.456 0.536	
Single application to winter oilseed rape (late application)	D3, ditch	0 h	0.635	0.091	0.047
	24 h	0.394 0.527	0.076	0.029 0.039	
	2 d	0.101 0.377	0.054	0.008 0.028	
	4 d	0.006 0.204	0.029	0.000 0.015	
	7 d	0.001 0.118	0.017	0.000 0.009	
	14 d	0.000 0.059	0.009	0.000 0.004	
	21 d	0.000 0.040	0.006	0.000 0.003	
	28 d	0.000 0.030	0.004	0.000 0.002	
	42 d	0.000 0.020	0.003	0.000 0.001	
Single application to winter oilseed rape (late application)	D4, pond	0 h	0.309	0.307	0.306
	24 h	0.309 0.309	0.307	0.306 0.306	
	2 d	0.308 0.309	0.306	0.305 0.306	
	4 d	0.305 0.309	0.303	0.302 0.306	
	7 d	0.299 0.308	0.298	0.297 0.305	
	14 d	0.285 0.305	0.284	0.283 0.302	
	21 d	0.272 0.300	0.270	0.269 0.298	
	28 d	0.255 0.295	0.253	0.253 0.292	
	42 d	0.227 0.283	0.226	0.225 0.281	
Single application to winter oilseed rape (late application)	D4, stream	0 h	0.534	0.309	0.309
	24 h	0.001 0.275	0.245	0.245 0.275	
	2 d	0.000 0.254	0.216	0.216 0.254	
	4 d	0.000 0.244	0.180	0.180 0.244	
	7 d	0.000 0.229	0.213	0.213 0.229	
	14 d	0.000 0.222	0.155	0.155 0.222	
	21 d	0.000 0.202	0.079	0.079 0.202	
	D5, pond	D5, stream	R1, pond	R1 stream	R3, stream
Single application to winter oilseed rape (late application)					
D5					
0 h	0.201	0.198	0.201	0.201	0.197
24 h	0.201	0.200	0.199	0.200	0.197
2 d	0.199	0.198	0.199	0.198	0.197
4 d	0.197	0.200	0.196	0.199	0.195
7 d	0.196	0.190	0.190	0.197	0.189
14 d	0.186	0.184	0.185	0.184	0.194
21 d	0.180	0.179	0.179	0.179	0.192
28 d	0.177	0.176	0.176	0.176	0.192
42 d	0.177	0.176	0.176	0.176	0.192
D5					
0 h	0.591	0.198	0.055	0.055	0.029
24 h	0.005	0.164	0.142	0.142	0.028
2 d	0.001	0.125	0.054	0.054	0.028
4 d	0.001	0.141	0.051	0.051	0.028
7 d	0.000	0.095	0.048	0.048	0.027
14 d	0.000	0.077	0.045	0.045	0.027
21 d	0.000	0.059	0.035	0.035	0.027
28 d	0.000	0.066	0.026	0.026	0.027
42 d	0.000	0.080	0.020	0.020	0.027
D5					
0 h	1.247	0.566	0.091	0.091	0.021
24 h	0.002	0.303	0.097	0.097	0.023
2 d	0.001	0.152	0.004	0.004	0.014
4 d	0.005	0.076	0.003	0.003	0.014
7 d	0.001	0.064	0.002	0.002	0.014
14 d	0.000	0.044	0.000	0.000	0.014
21 d	0.000	0.035	0.000	0.000	0.014
28 d	0.000	0.026	0.000	0.000	0.014
42 d	0.000	0.020	0.000	0.000	0.014
R1, pond					
0 h	0.127	0.128	0.113	0.113	0.091
24 h	0.127	0.055	0.111	0.111	0.091
2 d	0.126	0.054	0.120	0.120	0.091
4 d	0.126	0.053	0.124	0.124	0.091
7 d	0.120	0.051	0.120	0.120	0.091
14 d	0.112	0.048	0.116	0.116	0.091
21 d	0.105	0.045	0.078	0.078	0.011
28 d	0.101	0.043	0.060	0.060	0.011
42 d	0.091	0.039	0.060	0.060	0.011
R1 stream					
0 h	1.247	0.566	0.091	0.091	0.021
24 h	0.002	0.303	0.097	0.097	0.023
2 d	0.001	0.152	0.004	0.004	0.014
4 d	0.005	0.076	0.003	0.003	0.014
7 d	0.001	0.064	0.002	0.002	0.014
14 d	0.000	0.044	0.000	0.000	0.014
21 d	0.000	0.035	0.000	0.000	0.014
28 d	0.000	0.026	0.000	0.000	0.014
42 d	0.000	0.020	0.000	0.000	0.014
R3, stream					
0 h	0.589	0.191	0.100	0.100	0.011
24 h	0.002	0.157	0.039	0.039	0.011
2 d	0.000	0.127	0.017	0.017	0.011
4 d	0.000	0.079	0.042	0.042	0.011
7 d	0.000	0.045	0.024	0.024	0.011
14 d	0.000	0.027	0.014	0.014	0.011
21 d	0.000	0.018	0.009	0.009	0.011
28 d	0.000	0.013	0.007	0.007	0.011
42 d	0.000	0.009	0.002	0.002	0.011
FOCUS STEP 3 and STEP 4 Scenario

Water body	Day after overall maximum	PEC_{sw} (μg/L) STEP 3	PEC_{sw} (μg/kg) STEP 4 10 m buffer (Drift + Runoff mitigation)	PEC_{sw} (μg/kg) STEP 4 20 m buffer (Drift + Runoff mitigation)			
D2, ditch	0 h 6.392 – 6.392	Actual	TWA	Actual	TWA	Actual	TWA
	24 h 1.690 – 4.102			1.689 – 4.102		1.689 – 4.102	
	2 d 1.459 – 3.309			1.457 – 3.309		1.457 – 3.309	
	4 d 1.236 – 3.257			1.232 – 3.257		1.232 – 3.257	
	7 d 1.121 – 3.022			1.115 – 3.022		1.115 – 3.022	
	14 d 0.947 – 2.855			0.937 – 2.855		0.937 – 2.855	
	21 d 0.833 – 2.718			0.820 – 2.718		0.820 – 2.718	
	28 d 0.750 – 2.688			0.735 – 2.687		0.735 – 2.687	
	42 d 2.169 – 2.496			2.168 – 2.496		2.168 – 2.496	
D2, stream	0 h 3.995 – 3.995			3.995 – 3.995		3.995 – 3.995	
	24 h 0.328 – 2.237			0.328 – 2.237		0.328 – 2.237	
	2 d 0.299 – 1.980			0.299 – 1.980		0.299 – 1.980	
	4 d 0.296 – 1.784			0.296 – 1.784		0.296 – 1.784	
	7 d 0.300 – 1.760			0.299 – 1.760		0.299 – 1.760	
	14 d 0.296 – 1.601			0.293 – 1.601		0.293 – 1.601	
	21 d 0.279 – 1.562			0.274 – 1.562		0.274 – 1.562	
	28 d 0.253 – 1.518			0.247 – 1.518		0.247 – 1.518	
	42 d 0.969 – 1.430			0.969 – 1.430		0.969 – 1.430	
D3, ditch	0 h 0.555 – 0.075			0.038 – 0.075		0.038 – 0.075	
	24 h 0.344 – 0.461			0.024 – 0.062		0.024 – 0.062	
	2 d 0.089 – 0.330			0.006 – 0.044		0.006 – 0.044	
	4 d 0.005 – 0.178			0.000 – 0.024		0.000 – 0.024	
	7 d 0.001 – 0.103			0.000 – 0.014		0.000 – 0.014	
	14 d 0.000 – 0.052			0.000 – 0.007		0.000 – 0.007	
	21 d 0.000 – 0.035			0.000 – 0.004		0.000 – 0.004	
	28 d 0.000 – 0.026			0.000 – 0.003		0.000 – 0.003	
	42 d 0.000 – 0.031			0.000 – 0.004		0.000 – 0.004	
D4, pond	0 h 0.705 – 0.702			0.701 – 0.702		0.701 – 0.702	
	24 h 0.704 – 0.702			0.700 – 0.701		0.700 – 0.701	
	2 d 0.702 – 0.704			0.698 – 0.700		0.698 – 0.700	
	4 d 0.696 – 0.693			0.692 – 0.700		0.692 – 0.700	
	7 d 0.684 – 0.702			0.680 – 0.698		0.680 – 0.698	
	14 d 0.652 – 0.695			0.648 – 0.691		0.648 – 0.691	
	21 d 0.621 – 0.685			0.617 – 0.681		0.617 – 0.681	
	28 d 0.582 – 0.673			0.579 – 0.669		0.579 – 0.669	
	42 d 0.518 – 0.646			0.515 – 0.643		0.515 – 0.643	
D4, stream	0 h 0.714 – 0.714			0.714 – 0.714		0.714 – 0.714	
	24 h 0.572 – 0.639			0.572 – 0.639		0.572 – 0.639	
	2 d 0.507 – 0.591			0.507 – 0.591		0.507 – 0.591	
	4 d 0.427 – 0.567			0.427 – 0.567		0.427 – 0.567	
	7 d 0.498 – 0.536			0.498 – 0.536		0.498 – 0.536	
	14 d 0.338 – 0.515			0.338 – 0.515		0.338 – 0.515	
	21 d 0.173 – 0.463			0.173 – 0.463		0.173 – 0.463	
	28 d 0.101 – 0.394			0.101 – 0.394		0.101 – 0.394	
	42 d 0.064 – 0.293			0.064 – 0.293		0.064 – 0.293	
Twofold application to winter oilseed rape (late application)

	D5, pond	0 h	0.434	0.432	0.431		
	24 h	0.433	0.434	0.431	0.432	0.430	0.431
	2 d	0.432	0.434	0.430	0.432	0.429	0.431
	4 d	0.429	0.433	0.427	0.431	0.426	0.430
	7 d	0.423	0.432	0.421	0.430	0.420	0.429
	14 d	0.409	0.427	0.407	0.425	0.406	0.424
	21 d	0.396	0.421	0.394	0.419	0.393	0.418
	28 d	0.384	0.415	0.382	0.413	0.381	0.412
	42 d	0.369	0.404	0.368	0.402	0.367	0.401

	D5, stream	0 h	0.530	0.356	0.356
	24 h	0.037	0.291	0.289	0.291
	2 d	0.030	0.279	0.220	0.279
	4 d	0.011	0.251	0.248	0.251
	7 d	0.001	0.236	0.165	0.236
	14 d	0.000	0.196	0.131	0.196
	21 d	0.000	0.170	0.101	0.170
	28 d	0.000	0.154	0.111	0.154
	42 d	0.000	0.137	0.090	0.137

	R1, pond	0 h	0.203	0.087	0.046		
	24 h	0.199	0.201	0.085	0.086	0.045	0.046
	2 d	0.196	0.199	0.084	0.086	0.044	0.045
	4 d	0.192	0.197	0.082	0.084	0.043	0.045
	7 d	0.185	0.193	0.080	0.083	0.042	0.044
	14 d	0.173	0.186	0.074	0.080	0.039	0.042
	21 d	0.161	0.180	0.069	0.077	0.037	0.041
	28 d	0.162	0.176	0.070	0.076	0.037	0.040
	42 d	0.156	0.169	0.067	0.072	0.035	0.038

	R1 stream	0 h	1.259	0.573	0.300		
	24 h	0.003	1.024	0.001	0.467	0.001	0.245
	2 d	0.001	0.516	0.001	0.236	0.000	0.124
	4 d	0.000	0.259	0.000	0.118	0.000	0.062
	7 d	0.000	0.148	0.000	0.068	0.000	0.035
	14 d	0.000	0.074	0.000	0.034	0.000	0.018
	21 d	0.000	0.057	0.000	0.026	0.000	0.013
	28 d	0.000	0.057	0.000	0.025	0.000	0.013
	42 d	0.000	0.051	0.000	0.022	0.000	0.012

	R3, stream	0 h	1.510	0.688	0.361		
	24 h	0.016	1.013	0.007	0.466	0.004	0.245
	2 d	0.003	0.520	0.002	0.239	0.001	0.126
	4 d	0.001	0.261	0.000	0.120	0.000	0.063
	7 d	0.000	0.137	0.000	0.077	0.000	0.040
	14 d	0.000	0.097	0.000	0.040	0.000	0.021
	21 d	0.000	0.065	0.000	0.028	0.000	0.015
	28 d	0.000	0.050	0.000	0.021	0.000	0.011
	42 d	0.000	0.044	0.000	0.017	0.000	0.009
Table 1: Environmental Fate and Behaviour Assessment of Dimoxystrobin

FOCUS STEP 3 and STEP 4 Scenario	Water body	Day after overall maximum	PECSw (µg/L) STEP 3	PECsw (µg/kg) STEP 4 10 m buffer (Drift + Runoff mitigation)	PECsw (µg/kg) STEP 4 20 m buffer (Drift + Runoff mitigation)
Single application to sunflower	D5, pond	0 h	0.193	0.191 (TWA)	0.190 (TWA)
		24 h	0.192	0.191 (TWA)	0.190 (TWA)
		2 d	0.192	0.190 (TWA)	0.189 (TWA)
		4 d	0.189	0.188 (TWA)	0.187 (TWA)
		7 d	0.186	0.184 (TWA)	0.183 (TWA)
		14 d	0.178	0.177 (TWA)	0.176 (TWA)
		21 d	0.171	0.170 (TWA)	0.169 (TWA)
		28 d	0.166	0.164 (TWA)	0.163 (TWA)
		42 d	0.155	0.154 (TWA)	0.153 (TWA)
	D5, stream	0 h	0.513 (TWA)	0.229 (TWA)	0.229 (TWA)
		24 h	0.004	0.185 (TWA)	0.185 (TWA)
		2 d	0.001	0.131 (TWA)	0.131 (TWA)
		4 d	0.000	0.149 (TWA)	0.149 (TWA)
		7 d	0.000	0.080 (TWA)	0.080 (TWA)
		14 d	0.000	0.048 (TWA)	0.048 (TWA)
		21 d	0.000	0.027 (TWA)	0.027 (TWA)
		28 d	0.000	0.029 (TWA)	0.029 (TWA)
		42 d	0.000	0.056 (TWA)	0.020 (TWA)
	R1, pond	0 h	0.278	0.117 (TWA)	0.061 (TWA)
		24 h	0.274	0.116 (TWA)	0.060 (TWA)
		2 d	0.271	0.114 (TWA)	0.059 (TWA)
		4 d	0.265	0.112 (TWA)	0.058 (TWA)
		7 d	0.256	0.108 (TWA)	0.056 (TWA)
		14 d	0.239	0.101 (TWA)	0.052 (TWA)
		21 d	0.223	0.094 (TWA)	0.049 (TWA)
		28 d	0.210	0.088 (TWA)	0.046 (TWA)
		42 d	0.185	0.078 (TWA)	0.040 (TWA)
	R1 stream	0 h	1.167	0.528 (TWA)	0.276 (TWA)
		24 h	0.002	0.382 (TWA)	0.001 (TWA)
		2 d	0.001	0.231 (TWA)	0.000 (TWA)
		4 d	0.780	0.154 (TWA)	0.151 (TWA)
		7 d	0.006	0.125 (TWA)	0.001 (TWA)
		14 d	0.000	0.064 (TWA)	0.000 (TWA)
		21 d	0.000	0.051 (TWA)	0.000 (TWA)
		28 d	0.000	0.038 (TWA)	0.000 (TWA)
		42 d	0.000	0.026 (TWA)	0.000 (TWA)
	R3, stream	0 h	0.865	0.394 (TWA)	0.207 (TWA)
		24 h	0.010	0.329 (TWA)	0.002 (TWA)
		2 d	0.003	0.176 (TWA)	0.001 (TWA)
		4 d	0.001	0.088 (TWA)	0.000 (TWA)
		7 d	0.628	0.051 (TWA)	0.150 (TWA)
		14 d	0.000	0.044 (TWA)	0.000 (TWA)
		21 d	0.001	0.037 (TWA)	0.000 (TWA)
		28 d	0.001	0.031 (TWA)	0.000 (TWA)
		42 d	0.000	0.023 (TWA)	0.000 (TWA)
FOCUS STEP 3
Scenario Waterbody Maximum PEC_{SED} (µg/kg) *STEP 3*(a)

Single application to sunflower
R4, stream

Time (d)	0 h	0.584	0.306	0.241	0.121	0.061	0.035	0.027	0.021	0.018	0.012
0 h	1.283										
24 h	0.003	1.009	0.009	0.460	0.005	0.241					
2 d	0.001	0.508	0.001	0.231	0.000	0.121					
4 d	0.000	0.255	0.000	0.116	0.000	0.061					
7 d	0.000	0.146	0.000	0.066	0.000	0.035					
14 d	0.000	0.112	0.000	0.051	0.000	0.027					
21 d	0.187	0.089	0.085	0.040	0.045	0.021					
28 d	0.000	0.075	0.001	0.034	0.000	0.018					
42 d	0.000	0.051	0.000	0.023	0.000	0.012					

Scenario Waterbody Maximum PEC_{SED} (µg/kg) *STEP 3*(a)

Single application to winter oilseed rape
(early application)
D2, ditch
D2, stream
D3, ditch
D4, pond
D4, stream
D5, pond
D5, stream
R1, pond
R1, stream
R3, stream

(a): Only maximum values at STEP 3 are reported as worst-case estimates of short-term and long-term exposure.

Scenario Waterbody Maximum PEC_{SED} (µg/kg) *STEP 3*(a)

Twofold application to winter oilseed rape
(early application)
D2, ditch
D2, stream
D3, ditch
D4, pond
D4, stream
D5, pond
D5, stream
R1, pond
R1, stream
R3, stream

(a): Only maximum values at STEP 3 are reported as worst-case estimates of short-term and long-term exposure.

Scenario Waterbody Maximum PEC_{SED} (µg/kg) *STEP 3*(a)

Single application to winter oilseed rape
(late application)
D2, ditch
D2, stream
D3, ditch
D4, pond
D4, stream
D5, pond
D5, stream
R1, pond
R1, stream
R3, stream

(a): Only maximum values at STEP 3 are reported as worst-case estimates of short-term and long-term exposure.

www.efsa.europa.eu/efsajournal 62 EFSA Journal 2022;20(11):7634
FOCUS STEP 3

Scenario	Waterbody	Maximum PEC\textsubscript{SED} (\(\mu g/kg\)) STEP 3(a)
Twofold application to winter oilseed rape (late application)	D2, ditch	12.550
	D2, stream	7.234
	D3, ditch	0.268
	D4, pond	2.984
	D4, stream	1.119
	D5, pond	3.016
	D5, stream	0.657
	R1, pond	0.776
	R1, stream	0.758
	R3, stream	0.617

(a): Only maximum values at STEP 3 are reported as worst-case estimates of short-term and long-term exposure.

Scenario	Waterbody	Maximum PEC\textsubscript{SED} (\(\mu g/kg\)) STEP 3(a)
Single application to sunflower	D5, pond	1.298
	D5, stream	0.271
	R1, pond	0.965
	R1, stream	0.972
	R3, stream	0.553
	R4, stream	0.511

(a): Only maximum values at STEP 3 are reported as worst-case estimates of short-term and long-term exposure.

Metabolite 505M01

Parameters used in FOCUSsw step 1 and 2

- Molar mass (g/mol): 222.3
- Soil or water metabolite: soil metabolite
- \(K_{foe}\) (mL/g): 7.24, geometric mean (\(n = 10\))
- Deg\textsubscript{T50,soil} (d): 7.75, geometric mean of normalized laboratory Deg\textsubscript{T50} (20°C, pF2; \(n = 3\))
- DT\textsubscript{50} water/sediment system (d): 1000, Conservative assumption (default value)
- DT\textsubscript{50} water (d): 1000, Conservative assumption (default value)
- DT\textsubscript{50} sediment (d): 1000, Conservative assumption (default value)
- Max. occurrence in soil: 21.6% (conservative estimate from field studies)
- Max. occurrence in water/sediment: 3.6%

Parameters used in FOCUSsw step 3 (if performed)

- not performed

Application rate

- Metabolite is not applied but formed from parent

Main routes of entry

- Spray drift of the parent
- Runoff
- Drainage
FOCUS STEP 1

	Single application		Max. PEC_{SW} (µg/L)^(a)	Max. PEC_{SED} (µg/kg)^(a)	Max. PEC_{SW} (µg/L)^(a)	Max. PEC_{SED} (µg/kg)^(a)
Winter oilseed rape	5.69	0.41	11.38	0.82	n/a	n/a
Sunflowers	5.69	0.41	Not applicable	Not applicable	n/a	n/a

(a): Only initial values are reported as worst-case estimates of short-term and long-term exposure.

FOCUS STEP 2

	Single application		Max. PEC_{SW} (µg/L)^(a)	Max. PEC_{SED} (µg/kg)^(a)	Max. PEC_{SW} (µg/L)^(a)	Max. PEC_{SED} (µg/kg)^(a)
Northern EU						
Winter oilseed rape, early application (October–February)	0.65	0.05	0.81	0.06		
Winter oilseed rape, late application (March–May)	0.27	0.02	0.35	0.03		
Sunflowers (March–May)	0.23	0.02	Not applicable	Not applicable		
Sunflowers (June–September)	0.23	0.02	Not applicable	Not applicable		

	Single application		Max. PEC_{SW} (µg/L)^(a)	Max. PEC_{SED} (µg/kg)^(a)	Max. PEC_{SW} (µg/L)^(a)	Max. PEC_{SED} (µg/kg)^(a)
Southern EU						
Winter oilseed rape, early application (October–February)	0.52	0.04	0.65	0.05		
Winter oilseed rape, late application (March–May)	0.52	0.04	0.65	0.05		
Sunflowers (March–May)	0.44	0.03	Not applicable	Not applicable		
Sunflowers (June–September)	0.34	0.02	Not applicable	Not applicable		

(a): Only initial values are reported as worst-case estimates of short-term and long-term exposure.

Metabolite 505M08

- **Molar mass (g/mol):** 356.4
- **Soil or water metabolite:** soil metabolite
- **K_{foc} (mL/g):** 8.93, geometric mean (n =) considering soils with pH > 6.5
- **Deg_{T₅₀,soil} (d):** 54.72, geometric mean of normalized laboratory Deg<sub>T₅₀ (20°C, pF2; n = 7)
- **DT₅₀ water/sediment system (d):** 1000, Conservative assumption (default value)
- **DT₅₀ water (d):** 1000, Conservative assumption (default value)
- **DT₅₀ sediment (d):** 1000, Conservative assumption (default value)
- **Max. occurrence in soil:** 14.6%(conservative estimate from field studies)
- **Max. occurrence in water/sediment:** 4.3%

Parameters used in FOCUSsw step 1 and 2

- **Application rate:** Metabolite is not applied but formed from parent
- **Main routes of entry:** Spray drift of the parent, Runoff, Drainage

Parameters used in FOCUSsw step 3 (if performed)

- not performed
FOCUS STEP 1

Application	Single Application	Twofold Application		
	Max. PEC_{SW} ($\mu \text{g}/\text{L})^{(a)}$	Max. PEC_{SED} ($\mu \text{g}/\text{kg})^{(a)}$	Max. PEC_{SW} ($\mu \text{g}/\text{L})^{(a)}$	Max. PEC_{SED} ($\mu \text{g}/\text{kg})^{(a)}$
Winter oilseed rape	6.84	0.61	13.68	1.22
Sunflowers	6.84	0.61	Not applicable	Not applicable

(a): Only initial values are reported as worst-case estimates of short-term and long-term exposure.

FOCUS STEP 2

Application	Single Application	Twofold Application		
	Max. PEC_{SW} ($\mu \text{g}/\text{L})^{(a)}$	Max. PEC_{SED} ($\mu \text{g}/\text{kg})^{(a)}$	Max. PEC_{SW} ($\mu \text{g}/\text{L})^{(a)}$	Max. PEC_{SED} ($\mu \text{g}/\text{kg})^{(a)}$
Northern EU				
Winter oilseed rape, early application (October–February)	1.02	0.09	1.77	0.16
Winter oilseed rape, late application (March–May)	0.43	0.04	0.75	0.07
Sunflowers (March–May)	0.37	0.03	Not applicable	Not applicable
Sunflowers (June–September)	0.37	0.03	Not applicable	Not applicable
Southern EU				
Winter oilseed rape, early application (October–February)	0.82	0.07	1.43	0.13
Winter oilseed rape, late application (March–May)	0.82	0.07	1.43	0.13
Sunflowers (March–May)	0.69	0.06	Not applicable	Not applicable
Sunflowers (June–September)	0.53	0.05	Not applicable	Not applicable

(a): Only initial values are reported as worst-case estimates of short-term and long-term exposure.

Metabolite 505M09

Parameters used in FOCUSsw step 1 and 2

- Molar mass (g/mol): 356.4
- Soil or water metabolite: soil metabolite
- $K_{\text{f,oc}}$ (mL/g): 17.32, geometric mean ($n = 7$) considering soils with pH > 6.5
- DegT$_{50,\text{soil}}$ (d): 62.47, geometric mean of normalized laboratory DegT$_{20}$ (20°C, pH2; $n = 7$)
- DT$_{50}$ water/sediment system (d): 1000, Conservative assumption (default value)
- DT$_{50}$ water (d): 1000, Conservative assumption (default value)
- DT$_{50}$ sediment (d): 1000, Conservative assumption (default value)
- Max. occurrence in soil: 14.4%(conservative estimate from field studies)
- Max. occurrence in water/sediment: 6.4%

Parameters used in FOCUSsw step 3 (if performed) not performed

- Application rate: Metabolite is not applied but formed from parent
- Main routes of entry: Spray drift of the parent, Runoff, Drainage
FOCUS STEP 1

	Single application		Twofold application	
	Max. PEC_{SW} (µg/L)^(a)	Max. PEC_{SED} (µg/kg)^(a)	Max. PEC_{SW} (µg/L)^(a)	Max. PEC_{SED} (µg/kg)^(a)
Winter oilseed rape	7.46	1.29	14.93	2.58
Sunflowers	7.46	1.29	Not applicable	Not applicable

(a): Only initial values are reported as worst-case estimates of short-term and long-term exposure.

FOCUS STEP 2

	Single application		Twofold application	
	Max. PEC_{SW} (µg/L)^(a)	Max. PEC_{SED} (µg/kg)^(a)	Max. PEC_{SW} (µg/L)^(a)	Max. PEC_{SED} (µg/kg)^(a)
Northern EU				
Winter oilseed rape, early application (October–February)	1.13	0.20	2.00	0.35
Winter oilseed rape, late application (March–May)	0.49	0.08	0.87	0.15
Sunflowers (March–May)	0.42	0.07	Not applicable	Not applicable
Sunflowers (June–September)	0.42	0.07	Not applicable	Not applicable
Southern EU				
Winter oilseed rape, early application (October–February)	0.92	0.16	1.62	0.28
Winter oilseed rape, late application (March–May)	0.92	0.16	1.62	0.28
Sunflowers (March–May)	0.78	0.13	Not applicable	Not applicable
Sunflowers (June–September)	0.60	0.10	Not applicable	Not applicable

(a): Only initial values are reported as worst-case estimates of short-term and long-term exposure.

Metabolite 505M96

Parameters used in FOCUS_{sw} step 1 and 2

- Molar mass (g/mol): 220.2
- Soil or water metabolite: water metabolite
- K_{foc} (mL/g): 1 x 10⁻¹⁰, default value (conservative assumption for water metabolite)
- Deg_{T₅₀} (d): 0.1 (SFO), conservative assumption for water metabolite
- DT₅₀ water/sediment system (d): 1000, Conservative assumption (default value)
- DT₅₀ water (d): 1000, Conservative assumption (default value)
- DT₅₀ sediment (d): 1000, Conservative assumption (default value)
- Max. occurrence in soil: 0.001%, conservative assumption for water metabolite
- Max. occurrence in water/sediment: 9.6%

Parameters used in FOCUS_{sw} step 3 (if performed)

not performed

Application rate

Metabolite is not applied but formed from parent

Main routes of entry

Spray drift of the parent
FOCUS STEP 1

	Single application	Twofold application		
	Max. PEC_{SW} (µg/L)^(a)	Max. PEC_{SED} (µg/kg)^(a)	Max. PEC_{SW} (µg/L)^(a)	Max. PEC_{SED} (µg/kg)^(a)
Winter oilseed rape	2.22	0.00	4.44	0.00
Sunflowers	2.22	0.00	Not applicable	Not applicable

(a): Only initial values are reported as worst-case estimates of short-term and long-term exposure.

FOCUS STEP 2

	Single application	Twofold application		
	Max. PEC_{SW} (µg/L)^(a)	Max. PEC_{SED} (µg/kg)^(a)	Max. PEC_{SW} (µg/L)^(a)	Max. PEC_{SED} (µg/kg)^(a)
Northern EU				
Winter oilseed rape, early application (October–February)	0.38	0.00	0.69	0.00
Winter oilseed rape, late application (March–May)	0.19	0.00	0.34	0.00
Sunflowers (March–May)	0.16	0.00	Not applicable	Not applicable
Sunflowers (June–September)	0.16	0.00	Not applicable	Not applicable
Southern EU				
Winter oilseed rape, early application (October–February)	0.31	0.00	0.57	0.00
Winter oilseed rape, late application (March–May)	0.31	0.00	0.57	0.00
Sunflowers (March–May)	0.27	0.00	Not applicable	Not applicable
Sunflowers (June–September)	0.22	0.00	Not applicable	Not applicable

(a): Only initial values are reported as worst-case estimates of short-term and long-term exposure.

Estimation of concentrations from other routes of exposure (Regulation (EU) N° 284/2013, Annex Part A, point 9.4)

Method of calculation

No other routes of exposure are relevant for the representative uses of dimoxystrobin

PEC

Maximum concentration

Not applicable

Ecotoxicology

Effects on birds and other terrestrial vertebrates (Regulation (EU) N° 283/2013, Annex Part A, point 8.1 and Regulation (EU) N° 284/2013, Annex Part A, point 10.1)

Species	Test substance	Timescale	End point	Toxicity (mg/kg bw per day)
Colinus virginianus	Dimoxystrobin	Acute	LD₅₀	> 2,000
			LD₅₀ extrapolated	3,776
Colinus virginianus	BAS 540 01 F	Acute	LD₅₀	> 2,000
Colinus virginianus	Dimoxystrobin	Short term	LC₅₀	> 1,043
Anas platyrhynchos	Dimoxystrobin	Short term	LC₅₀	> 232
Colinus virginianus	Dimoxystrobin	Long term	NOAEL	77
Anas platyrhynchos	Dimoxystrobin	Long term	NOAEL	36
Mammals

Species	Active Substance	Life Stage	LD₅₀	NOAEL
Rattus	Dimoxystrobin	Acute	>5,000	
Rattus	BAS 540 01 F	Acute	>300	
Rattus	Dimoxystrobin	Long term (two generation)	12	

Endocrine-disrupting properties (Annex Part A, points 8.1.5).

Specific information on the ED properties of dimoxystrobin for non-target organisms is not available. A preliminary assessment of the available XETA test in line with OECD TG 248 was available. For details, please refer to the ED assessment in Vol 1.

Additional higher tier studies (Annex Part A, points 10.1.1.2): A number of residue decline studies were submitted for the refinement of the birds & mammals section. Further information can be found in Vol 3 B9 CP (Section B.9.2.2.1).

Terrestrial vertebrate wildlife (birds, mammals, reptile and amphibians) (Annex Part A, points 8.1.4, 10.1.3):

See information in Vol 3 B9 CA, B.9.1.4.

Toxicity/exposure ratios for terrestrial vertebrates (Regulation (EU) N° 284/2013, Part A, Annex point 10.1)

Oilseed rape at 100 g a.s./ha × 2 applications; interval of 28 d

Sunflower at 100 g a.s./ha × 1 application

Growth stage	Indicator or focal species	Timescale	DDD (mg/kg bw per day)	TER	Trigger
Screening Step (Birds)					
Oilseed rape	Small omnivorous bird	Acute	17.47	216.2	10
Oilseed rape	Small omnivorous bird	Long term	3.78	9.5	5
Sunflower	Small omnivorous bird	Acute	15.88	237.8	10
Sunflower	Small omnivorous bird	Long term	3.43	10.5	5
Screening Step (Birds) 0.56 kg formulation/ha using a measured LD₅₀ for BAS 540 01 F					
Oilseed rape	Small omnivorous bird	Acute	97.82	> 20.4	10
Sunflower	Small omnivorous bird	Acute	88.93	> 22.5	10
Screening Step (Mammals)					
Oilseed rape	Small herbivorous mammal	Acute	13.02	> 383.9	10
Oilseed rape	Small herbivorous mammal	Long term	2.82	4.26	5
Sunflower	Small herbivorous mammal	Acute	11.84	> 422.3	10
Sunflower	Small herbivorous mammal	Long term	2.56	4.69	5
Tier 1 (Mammals) – long term					
Oilseed rape BBCH 10 – 29	Small omnivorous mammal 'mouse'	Long term	0.46	26.09	5
Oilseed rape BBCH ≥20	Small insectivorous mammal 'shrew'	Long term	0.11	109.1	5
Oilseed rape BBCH 30 – 39	Small omnivorous mammal 'mouse'	Long term	0.13	92.31	5
Oilseed rape BBCH ≥40	Small herbivorous mammal 'vole'	Long term	1.06	11.32	5
Oilseed rape BBCH ≥40	Small omnivorous mammal 'mouse'	Long term	0.11	109.1	5
Oilseed rape All season	Large herbivorous mammal 'lagomorph'	Long term	0.83	14.46	5
Sunflower BBCH ≥20	Small insectivorous mammal 'shrew'	Long term	0.1	120	5
Risk from bioaccumulation and food chain behaviour

Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
Earthworm-eating birds	Long-term	0.394	91.4	5
Earthworm-eating mammals	Long-term	0.481	25.0	5
Fish-eating birds	Long-term	0.116	310.3	5
Fish-eating mammals	Long-term	0.104	115.4	5

Risk from consumption of contaminated water

Puddle scenario, Screening step

TER calculations are not needed, since the ratio ‘application rate (g a.s./ha)/relevant endpoint’ is below the trigger of 50 (Koc = 382.5)

- **Birds (oilseed rape)**: ratio acute = 0.05, ratio (long term) = 5.11
- **Mammals (oilseed rape)**: ratio acute = < 0.04, ratio (long term) = 15.3

Toxicity data for all aquatic tested species (Regulation (EU) N° 283/2013, Annex Part A, points 8.2 and Regulation (EU) N° 284/2013 Annex Part A, point 10.2)

Group	Test substance	Timescale (test type)	End point	Toxicity¹ (mg/L)
Laboratory tests				
Fish	dimoxystrobin	Acute 96 h (static)	Mortality, LC₅₀	0.0434 (nom)
O. mykiss	dimoxystrobin	Acute 96 h (flow-through)	Mortality, LC₅₀	**0.0465** (nom)
O. mykiss	BAS 540 01 F²	Acute 96 h (static)	Mortality, LC₅₀	0.0512 (nom, as)
O. mykiss	BAS 540 00 F³	Acute 96 h (static)	Mortality, LC₅₀	0.0402 (nom, as)
O. mykiss	505M01	Acute 96 h (static)	Mortality, LC₅₀	> 100 (nom)
O. mykiss	505M08	Acute 96 h (static)	Mortality, LC₅₀	> 100 (nom)
O. mykiss	505M09	Acute 96 h (static)	Mortality, LC₅₀	> 100 (nom)
O. mykiss	505M96	Acute 96 h (static)	Mortality, LC₅₀	> 100 (nom)
O. mykiss	Dimoxystrobin	Chronic 28 d (flow-through)	Mortality and sub-lethal effects (toxic symptoms), NOEC	0.010 (nom)
Group	Test substance	Timescale (test type)	End point	Toxicity 1 (mg/L)
-------	----------------	----------------------	-----------	---------------------
Pimephales promelas (ELS study)	Dimoxystrobin	Chronic 36 d (flow-through)	Mortality, and sublethal effects (wet weight), NOEC	0.008$^{(\text{nom})}$
Cyprinodon variegatus	Dimoxystrobin	Acute 96 h (flow-through)	Mortality, LC$_{50}$	0.167$^{(\text{mm})}$
Cyprinus carpio	BAS 507 00 F4	Acute 96 h (static)	Mortality, LC$_{50}$	0.0392$^{(\text{mm, as})}$
Danio rerio	BAS 507 00 F	Acute 96 h (static)	Mortality, LC$_{50}$	0.0259$^{(\text{nom, as})}$ 0.210$^{(\text{nom, pr})}$
Lepomis macrochirus	Dimoxystrobin	Acute 96 h (flow-through)	Mortality, LC$_{50}$	0.0546$^{(\text{nom})}$
L. macrochirus	BAS 507 00 F	Acute 96 h (static)	Mortality, LC$_{50}$	0.0646$^{(\text{nom, as})}$
Leuciscus idus melanotus	BAS 505 01 F5	Acute 96 h (static)	Mortality, LC$_{50}$	0.0238$^{(\text{nom, as})}$ 0.147$^{(\text{nom, pr})}$
O. mykiss	BAS 507 00 F	Acute 96 h (static)	Mortality, LC$_{50}$	$>$ 0.0181 < 0.0264 0.0219$^{(\text{nom, as})}$ $>0.147 < 0.215$ 0.178$^{(\text{nom, pr})}$
O. mykiss	BAS 505 01 F	Acute 96 h (static)	Mortality, LC$_{50}$	$>$ 0.0238 < 0.0347 0.0289$^{(\text{nom, as})}$ $>0.147 < 0.215$ 0.178$^{(\text{nom, pr})}$
Pimephales promelas	BAS 507 00 F	Acute 96 h (static)	Mortality, LC$_{50}$	0.0185$^{(\text{nom, as})}$ 0.15$^{(\text{nom, pr})}$
O. mykiss (modified ELS with variable exposure)	Dimoxystrobin	Chronic 69 d (flow-through) Pulsed exposure study	Mortality, NOEC	0.012$^{(\text{nom})}$ (based on peak conc.)
L. idus melanotus (ELS study in outdoor microcosms, including sediment)	BAS 505 01 F	66 d (flow-through)	Mortality, NOEC	0.015$^{(\text{nom, as})}$ 0.092$^{(\text{nom, pr})}$

Aquatic invertebrates

Group	Test substance	Timescale (test type)	End point	Toxicity 1 (mg/L)
Daphnia magna	Dimoxystrobin	Acute 48 h (static)	Immobility, EC$_{50}$	0.0394$^{(\text{nom})}$
D. magna	505M01	Acute 48 h (static)	Immobility, EC$_{50}$	$> 100^{(\text{nom})}$
D. magna	505M08	Acute 48 h (static)	Immobility, EC$_{50}$	$> 100^{(\text{nom})}$
D. magna	505M09	Acute 48 h (static)	Immobility, EC$_{50}$	$> 100^{(\text{nom})}$
D. magna	505M96	Acute 48 h (static)	Immobility, EC$_{50}$	$> 100^{(\text{nom})}$
D. magna	BAS 540 01 F	Acute 48 h (static)	Immobility, EC$_{50}$	0.044$^{(\text{nom, as})}$ 0.243$^{(\text{nom, pr})}$
D. magna	BAS 540 00 F	Acute 48 h (static)	Immobility, EC$_{50}$	0.038$^{(\text{nom, as})}$ 0.21$^{(\text{nom, pr})}$
D. magna	Dimoxystrobin	Chronic 21 d (semi-static)	Reproduction, NOEC	0.0125$^{(\text{nom})}$
Asellus aquaticus	Dimoxystrobin	Acute 96 h (static)	Mortality, LC$_{50}$	0.269$^{(\text{nom})}$
Americamysis bahia (former name: *Mysidopsis bahia*)	Dimoxystrobin	Acute 96 h (flow-through)	Mortality, LC$_{50}$	0.0272$^{(\text{nom})}$
Crassostrea virginica	Dimoxystrobin	Acute 96 h (flow-through)	Shell growth and toxic symptoms, EC$_{50}$ Mortality, LC$_{50}$	0.00892$^{(\text{nom})}$ $> 0.025^{(\text{nom})}$
Sediment-dwelling organisms

Group	Test substance	Timescale (test type)	End point	Toxicity\(\text{mg/L}\)
Chironomus riparius (spiked water study)	Dimoxystrobin	Chronic 28 d (flow-through)	Emergence rate, NOEC	0.0044\(\text{mm}\)

Algae

Algal species	Test substance	Timescale (test type)	End point	Toxicity\(\text{mg/L}\)
Pseudokirchneriella subcapitata	Dimoxystrobin	96 h (static)	Growth rate, \(E_{C50}\) ErC10, Biomass, \(E_{C60}\) EbC10	0.153\(\text{mm}\) 0.0133\(\text{mm}\) 0.017\(\text{mm}\) 0.0035\(\text{mm}\)
P. subcapitata	505M01	72 h (static)	Growth rate, \(E_{C50}\) ErC10, Biomass, \(E_{C60}\) EbC10	> 100\(\text{mm}\) > 100\(\text{mm}\) > 100\(\text{mm}\) > 100\(\text{mm}\)
P. subcapitata	505M08	72 h (static)	Growth rate, \(E_{C50}\) ErC10, Biomass, \(E_{C60}\) EbC10	> 100\(\text{mm}\) > 100\(\text{mm}\) > 100\(\text{mm}\) > 100\(\text{mm}\)
P. subcapitata	505M09	72 h (static)	Growth rate, \(E_{C50}\) ErC10, Biomass, \(E_{C60}\) EbC10	> 100\(\text{mm}\) > 100\(\text{mm}\) > 100\(\text{mm}\) > 100\(\text{mm}\)
P. subcapitata	505M96	72 h (static)	Growth rate, \(E_{C50}\) ErC10, Biomass, \(E_{C60}\) EbC10	43.6\(\text{mm}\) 14.5\(\text{mm}\) 21.5\(\text{mm}\) 12.4\(\text{mm}\)
P. subcapitata	BAS 540 01 F	72 h (static)	Growth rate, \(E_{C50}\) Biomass, \(E_{C60}\)	0.093\(\text{mm}\) (0.519\(\text{mm}\)) 0.019\(\text{mm}\) (0.106\(\text{mm}\))
P. subcapitata	BAS 540 00 F	72 h (static)	Growth rate, \(E_{C50}\) Biomass, \(E_{C60}\)	0.047\(\text{mm}\) (0.264\(\text{mm}\)) 0.013\(\text{mm}\) (0.07\(\text{mm}\))
Navicula pelliculosa	Dimoxystrobin	72 h (static)	Growth rate, \(E_{C50}\) ErC10, Biomass, \(E_{C60}\)	0.0078\(\text{mm}\) 0.0008\(\text{mm}\) 0.0025\(\text{mm}\)
Anabaena flos-aquae	Dimoxystrobin	72 h (static)	Growth rate, \(E_{C50}\) ErC10, Biomass, \(E_{C60}\)	> 2.06\(\text{mm}\) > 2.06\(\text{mm}\) > 2.06\(\text{mm}\) > 2.06\(\text{mm}\)
Skeletonema costatum	Dimoxystrobin	120 h (static)	Growth rate, \(E_{C50}\) Biomass, \(E_{C60}\)	> 4.31\(\text{mm}\) > 4.31\(\text{mm}\)

Macrophytes

Species	Test substance	Timescale (test type)	End point	Toxicity\(\text{mg/L}\)
Lemna gibba	Dimoxystrobin	14 d (static)	EC\(50\)	No reliable data available, not required

Mesocosm

| Outdoor mesocosm | BAS 505 01 F\(^9\) | approx. 5 months, single application | NOEAEC (D. Longispina) | NOEC | 0.0017\(\text{nom, as}\) 0.01\(\text{nom, pr}\) |

Bioconcentration

Species	Test substance	Timescale (test type)	End point	Toxicity\(\text{mg/L}\)
O. mykiss (bioconcentration study)	Dimoxystrobin	35 d exposure and 14 d depuration period (flow-through)	BCF\(\text{SSL}\) (wholefish)	106

Further testing on aquatic organisms

Potential endocrine-disrupting properties (Annex Part A, point 8.2.3)

The available information in the data set provided very limited information for the EAS-modalities since ED-mediated parameters were not investigated in those studies but only sensitive parameters. Further information is...
required to finalise the ED assessment. For the **T-modality** only preliminary results of the XETA (OECD TG 248) were available. The results of this test were negative for thyroid activity. Therefore, dimoxystrobin does not meet the ED criteria for the T-modality for non-target organisms since the T-mediated endocrine activity was sufficiently investigated and was negative. For details, please refer to the ED assessment in Vol 1.

(1): (nom) nominal concentration; (mm) mean measured concentration; n.d.: not determined

(2): Study was conducted with the formulated product **BAS 540 01 F** (suspension concentrate formulation containing 200 g dimoxystrobin/L and 200 g bosalid/L, nominally; new representative formulated product).

(3): Study was conducted with the formulation **BAS 540 00 F** (a minor change formulation of BAS 540 01 F, which differs only in the preservative used).

(4): Study was conducted with the formulated product **BAS 507 00 F** (suspension concentrate formulation containing 133 g dimoxystrobin/L and 50 g epoxiconazole/L, nominally; former representative formulated product during Annex I inclusion process for dimoxystrobin). Epoxiconazole does not have significant influence on toxicity (dimoxystrobin being the single driver with > 99.5% TU) within the formulation BAS 507 00 F.

(5): Study was conducted with the solo-formulation **BAS 505 01 F** (containing 167 g dimoxystrobin/L, nominally).

(6): Interpolated value (geometric mean) with corresponding LC0 (>) and LC100 (<)

(7): Study is not considered fully reliable due to some deviations with respect to the recommendations of the test guideline.

(8): Study is not considered fully reliable because it cannot be excluded that the sensitive life stages were not exposed adequately.

(9): This endpoint is not considered protective of species with a longer reproductive cycle.

Bioconcentration in fish (Annex Part A, point 8.2.2.3)

	Active substance	Metabolite 505M01	Metabolite 505M08	Metabolite 505M09	Metabolite 505M96
logPO/W	3.59	0.79	0.64 (pH 7)	0.87 (pH 7)	No data available
Steady-state bioconcentration factor (BCF)\(^1\) (total wet weight/ normalised to 6% lipid content)	106	No BCF study required			
Uptake/depuration kinetics BCF (total wet weight/ normalised to 5% lipid content)					
Annex VI Trigger for the bioconcentration factor					
Clearance time (days) (CT50)	0.5				
(CT90)	1.6				
Level and nature of residues (%) in organisms after the 14 day depuration phase	< 2.5%				

Higher tier study
Not provided, not required

(1): Based on total \(^1\)C or on specific compounds.
PEC/RAC ratios for the most sensitive aquatic organisms (Regulation (EU) No 284/2013, Annex Part A, point 10.2)
FOCUS\textsubscript{sw} steps 1–3 – PEC/RAC ratios for dimoxystrobin – winter oilseed rape at 100 g a.s./ha one or two applications

Scenario	PEC\textsubscript{sw} global max (\(\mu g/L\))\(^3\)	Fish acute	Fish chronic	Aquatic invertebrates acute	Aquatic invertebrates chronic	Algae	Higher plant	Sed. dweller chronic	Higher tier, Geomean	Higher tier, pulse exposure test	Microcosm/Mesocosm
	O. mykiss \(L_C_{50}\) \(NOEC\)	O. mykiss \(E_C_{50}\) \(NOEC\)	O. mykiss \(N. pelliculosa\) \(L. gibba\) \(C. riparius\)	Fish, acute \(4\) species	Sed. dweller chronic	Higher tier, Geomean	Fish, chronic \(O. mykiss\)	D. longispina			
	46.5 \(\mu g/L\) 8 \(\mu g/L\) 8.92 \(\mu g/L\) 12.5 \(\mu g/L\) 7.8 \(\mu g/L\) 4.42 \(\mu g/L\) 0.442 \(\mu g/L\) 0.564 \(\mu g/L\)										
AF	100 100 100 100 100 100 100 100 100	10 10 10 10 10 10 10 0.8	0.0892 1.25 0.78 0.442 0.564	0.442 0.564	1.7 \(\mu g/L\)						
RAC (\(\mu g/L\))	0.465 0.465 0.8 0.8 0.0892 1.25 0.78	8.92	46.5 \(\mu g/L\) 8 \(\mu g/L\) 8.92 \(\mu g/L\) 12.5 \(\mu g/L\) 7.8 \(\mu g/L\)	4.42 \(\mu g/L\) 0.442	0.442 0.564	1.7 \(\mu g/L\)					
FOCUS Step 1	45.99 98.903 57.488 515.583 36.792 58.962 104.050 81.543										
FOCUS Step 2	45.99 98.903 57.488 515.583 36.792 58.962 104.050 81.543										
FOCUS Step 3	7.14 15.355 8.925 80.045 5.712 9.154 16.154 12.660										
North/South Europe	7.14 15.355 8.925 80.045 5.712 9.154 16.154 12.660										
D2/ditch	8.174 17.578 10.218 91.637 6.539 10.479 18.493 14.493	10.218 91.637 6.539 10.479 18.493 14.493									
D2/stream	5.129 11.030 6.411 57.500 4.103 6.576 11.604 9.094	6.411 57.500 4.103 6.576 11.604 9.094									
D3/ditch	0.635 1.366 0.794 7.119 0.508 0.814 1.437 1.126	0.794 7.119 0.508 0.814 1.437 1.126									
D4/pond	0.917 1.972 1.146 10.280 0.734 1.176 2.075 1.626	1.146 10.280 0.734 1.176 2.075 1.626									
D4/stream	0.947 2.037 1.184 10.617 0.758 1.214 2.143 1.679	1.184 10.617 0.758 1.214 2.143 1.679									
D5/pond	0.513 1.103 0.641 5.751 0.410 0.658 1.161 0.910	0.641 5.751 0.410 0.658 1.161 0.910									
D5/stream	0.591 1.271 0.739 6.625 0.473 0.758 1.337 1.048	0.739 6.625 0.473 0.758 1.337 1.048									
R1/pond	0.203 0.437 0.254 2.276 0.162 0.260 0.459 0.360	0.254 2.276 0.162 0.260 0.459 0.360									
R1/stream	1.634 3.514 2.043 18.318 1.307 2.095 3.697 2.897	2.043 18.318 1.307 2.095 3.697 2.897									
R3/stream	1.510 3.247 1.888 16.928 1.208 1.936 3.416 2.677	1.888 16.928 1.208 1.936 3.416 2.677									

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the relevant trigger of 1 are shown in **bold**.
(1): Study is not considered fully reliable because it cannot be excluded that the sensitive life stages were not exposed adequately.
(2): As this endpoint may not provide a suitable protection level for species with a longer reproductive cycle it is not considered further; no overall ETO-NOEC is available.
(3): For winter oilseed rape, only the worst-case PEC values are presented, either resulting from calculations for single or multiple, early or late applications.
Statement concerning the assessment of environmental fate and behaviour and ecotoxicology in the context of the pesticides peer review of the active substance dimoxystrobin

FOCUSsw Steps 1–3 – PEC/RAC ratios for dimoxystrobin – sunflower at 100 g a.s./ha with one application

Scenario	PEC_{sw} global max (<mu g/L>)³	Fish acute	Fish chronic	Aquatic invertebrates acute	Aquatic invertebrates chronic	Algae	Higher plant	Sed. dweller chronic	Higher tier, Geomean	Higher tier, pulse exposure test	Microcosm/Mesocosm
		O. mykiss	P. promelas	C. virginica	D. magna	N. pelliculosa	L. gibba	C. riparius	Fish, acute (4 species)	Fish, chronic, O. mykiss	D. longispina
		LC₅₀	NOEC	EC₅₀	NOEC	E₅₀	NOEC	geomean NOEC	NOEC	NOAEC	
		46.5 µg/L	8 µg/L	8.92 µg/L	12.5 µg/L	7.8 µg/L	No reliable data available	4.42 µg/L	56.4 µg/L	12 µg/L¹	1.7 µg/L²
AF	100	10	100	10	10	10	10	100	–	–	
RAC (µg/L)	0.465	0.8	0.0892	1.25	0.78	0.442	0.564	–	–	–	
FOCUS Step 1	22.99	49.441	28.738	257.735	18.392	29.474	52.014	40.762			
FOCUS Step 2	2.84	6.108	3.550	31.839	2.272	3.641	6.425	5.035			
FOCUS Step 3											
D5/pond	0.193	0.415	0.241	2.164	0.154	0.247	0.437	0.342			
D5/stream	0.513	1.103	0.641	5.751	0.410	0.658	1.161	0.910			
R1/pond	0.278	0.598	0.348	3.117	0.222	0.356	0.629	0.493			
R1/stream	1.167	2.510	1.459	13.083	0.934	1.496	2.640	2.069			
R3/stream	0.865	1.860	1.081	9.697	0.692	1.109	1.957	1.534			
R4/stream	1.283	2.759	1.604	14.383	1.026	1.645	2.903	2.275			

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the relevant trigger of 1 are shown in **bold**.

(1): Study is not considered fully reliable because it cannot be excluded that the sensitive life stages were not exposed adequately.

(2): As this endpoint may not provide a suitable protection level for species with a longer reproductive cycle it is not considered further; no overall ETO-NOEC is available.
FOCUS_{sw} Step 4 – PEC/RAC ratios for dimoxystrobin – winter oilseed rape at 100 g a.s./ha with one or two applications

Scenario	PEC_{sw} global max (µg/L)³	Fish acute	Fish chronic	Aquatic invertebrates acute	Aquatic invertebrates chronic	Algae	Higher plant	Sed. dweller chronic	Higher tier, Geomean	Higher tier, pulse exposure test	Microcosm/Mesocosm
	O. mykiss	P. promelas	C. virginica	D. magna	N. pelliculosa	L. gibba	C. riparius	Fish, acute (4 species)	Fish, chronic, O. mykiss	D. longispina	
LC₅₀	NOEC	EC₅₀	NOEC	E_C	NOEC	NOEC	geomean	NOEC	NOEAEC		
AF 100	46.5 µg/L	8 µg/L	8.92 µg/L	12.5 µg/L	7.8 µg/L	No reliable data available	4.42 µg/L	56.4 µg/L	12 µg/L	1.7 µg/L²	
RAC (µg/L)	0.465	0.8	0.0892	1.25	0.78	–	0.442	0.564	–	–	
Nozzle reduction	FOCUS Step 4	risk mitigation 10 m buffer zone and 10 m vegetated filter strip									
None	D2/ditch	8.174	17.578	10.218	91.637	6.539	10.479	18.493	14.493		
D2/stream	5.129	11.030	6.411	57.500	4.103	6.576	11.604	9.094			
D3/ditch	0.091	0.196	0.114	1.020	0.073	0.117	0.206	0.161			
D4/pond	0.915	1.968	1.144	10.258	0.732	1.173	2.070	1.622			
D4/stream	0.947	2.037	1.184	10.617	0.758	1.214	2.143	1.679			
D5/pond	0.512	1.101	0.640	5.740	0.410	0.656	1.158	0.908			
D5/stream	0.397	0.854	0.496	4.451	0.318	0.509	0.898	0.704			
R1/pond	0.087	0.187	0.109	0.975	0.070	0.112	0.197	0.154			
R1/stream	0.715	1.538	0.894	8.016	0.572	0.917	1.618	1.268			
R3/stream	0.688	1.480	0.860	7.713	0.550	0.882	1.557	1.220			

¹ Data available for 10 species
² Data available for 2 species

EC₅₀ = 50% effective concentration
LC₅₀ = 50% lethal concentration
NOEC = No Observable Effect Concentration
ErC₅₀ = Estimated Toxicant Concentration
NOEAEC = No Observable Effect Algal Chronic Concentration

EC₅₀ and LC₅₀ values are used as reference points for risk assessment. NOEC and ErC₅₀ values are used to determine the margin of safety.

For each scenario, the PEC_{sw} global max is calculated by taking the maximum value of all endpoints. The RAC values are used to determine if additional risk mitigation measures are necessary. If the RAC exceeds the AF, risk mitigation measures are required.

The table provides a comprehensive overview of the PEC/RAC ratios for dimoxystrobin, including endpoints for fish, aquatic invertebrates, algae, and higher trophic levels, as well as the results of field studies for aquatic invertebrates and higher plant exposure.
Nozzle reduction	FOCUS Step 4	risk mitigation 20 m buffer zone and 20 m vegetated filter strip
None	D2/ditch	8.174, 17.578, 10.218, 91.637, 6.539, 10.479, 18.493, 14.493
	D2/ stream	5.129, 11.030, 6.411, 57.500, 4.103, 6.576, 11.604, 9.094
	D3/ditch	0.047, 0.101, 0.059, 0.527, 0.038, 0.060, 0.106, 0.083
	D4/ pond	0.914, 1.966, 1.143, 10.247, 0.731, 1.172, 2.068, 1.621
	D4/ stream	0.947, 2.037, 1.184, 10.617, 0.758, 1.214, 2.143, 1.679
	D5/ pond	0.511, 1.099, 0.639, 5.729, 0.409, 0.655, 1.156, 0.906
	D5/ stream	0.397, 0.854, 0.496, 4.451, 0.318, 0.509, 0.898, 0.704
	R1/ pond	0.046, 0.099, 0.058, 0.516, 0.037, 0.059, 0.104, 0.082
	R1/ stream	0.369, 0.794, 0.461, 4.137, 0.295, 0.473, 0.835, 0.654
	R3/ stream	0.361, 0.776, 0.451, 4.047, 0.289, 0.463, 0.817, 0.640

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the relevant trigger of 1 are shown in **bold**.

(1): Study is not considered fully reliable because it cannot be excluded that the sensitive life stages were not exposed adequately.
(2): As this endpoint may not provide a suitable protection level for species with a longer reproductive cycle it is not considered further; no overall ETO-NOEC is available.
(3): For winter oilseed rape, only the worst-case PEC values are presented, either resulting from calculations for single or multiple, early or late applications.
Statement concerning the assessment of environmental fate and behaviour and ecotoxicology in the context of the pesticides peer review of the active substance dimoxystrobin

FOCUSsw Step 4 – PEC/RAC ratios for dimoxystrobin – sunflower at 100 g a.s./ha with one application

Scenario	PEC_{sw} global max (µg/L)³	Fish acute	Fish chronic	Aquatic invertebrates acute	Aquatic invertebrates chronic	Algae	Higher plant	Sed. dweller chronic	Higher tier, pulse exposure test	Microcosm/Mesocosm								
O. mykiss	P. promelas	C. virginica	D. magna	N. pelliculosa	L. gibba	C. riparius	Fish, acute (4 species)	Fish, chronic, O. mykiss	D. longispina									
LC₅₀	NOEC	EC₅₀	NOEC	E_{C50}	E_{C50}	NOEC	Geomean	NOEC	NOEAECD5	D5/stream	0.191	0.409	0.238	2.130	0.152	0.244	0.430	0.337
46.5 µg/L	8 µg/L	8.92 µg/L	12.5 µg/L	7.8 µg/L	No reliable data available	4.42 µg/L	56.4 µg/L	12 µg/L¹	1.7 µg/L²	D5/pond	0.191	0.411	0.239	2.141	0.153	0.245	0.432	0.339
D5/stream	0.229	0.492	0.286	2.567	0.183	0.294	0.518	0.406	D5/pond	0.191	0.411	0.239	2.141	0.153	0.245	0.432	0.339	
R1/pond	0.117	0.252	0.146	1.312	0.094	0.150	0.265	0.207	D5/pond	0.191	0.411	0.239	2.141	0.153	0.245	0.432	0.339	
R1/stream	0.528	1.135	0.660	5.199	0.422	0.677	1.195	0.936	D5/pond	0.191	0.411	0.239	2.141	0.153	0.245	0.432	0.339	
R3/stream	0.394	0.847	0.493	4.417	0.315	0.505	0.891	0.699	D5/pond	0.191	0.411	0.239	2.141	0.153	0.245	0.432	0.339	
R4/stream	0.584	1.256	0.730	6.547	0.467	0.749	1.321	1.035	D5/pond	0.191	0.411	0.239	2.141	0.153	0.245	0.432	0.339	

AF (1): Study is not considered fully reliable because it cannot be excluded that the sensitive life stages were not exposed adequately.

(2): As this endpoint may not provide a suitable protection level for species with a longer reproductive cycle it is not considered further; no overall ETO-NOEC is available.

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration; PEC/RAC ratios above the relevant trigger of 1 are shown in **bold**.
FOCUS sw Steps 1–2 – PEC/RAC ratios for 505M01 – winter oilseed rape at 100 g a.s./ha with one or two applications

Scenario	PEC_{sw} global max (μg/L)¹	Fish acute	Fish chronic	Aquatic invertebrates acute	Aquatic invertebrates chronic	Algae	Higher plant	Sed. dweller chronic
AF		O. mykiss	O. mykiss	D. magna	D. magna	P. subcapitata	L. gibba	C. riparius
RAC		LC₅₀	NOEC	EC₅₀	NOEC	E_{C50}	E_{C50}	NOEC
		> 100,000 μg/L	> 100,000 μg/L	> 100,000 μg/L		> 100,000 μg/L	–	–
		100	100	10		10	–	–
		> 1,000	> 1,000	> 1,000		> 1,000	–	–
FOCUS Step 1	11.38	< 0.011	< 0.011	< 0.001				
FOCUS Step 2	–	–	–	–				

North/South Europe – – – –

(1): For winter oilseed rape, only the worst-case PEC values are presented, either resulting from calculations for single or multiple, early or late applications.

FOCUS sw Steps 1–2 – PEC/RAC ratios for 505M08 – winter oilseed rape at 100 g a.s./ha with one or two applications

Scenario	PEC_{sw} global max (μg/L)¹	Fish acute	Fish chronic	Aquatic invertebrates acute	Aquatic invertebrates chronic	Algae	Higher plant	Sed. dweller chronic
AF		O. mykiss	O. mykiss	D. magna	D. magna	P. subcapitata	L. gibba	C. riparius
RAC		LC₅₀	NOEC	EC₅₀	NOEC	E_{C50}	E_{C50}	NOEC
		> 100,000 μg/L	> 100,000 μg/L	> 100,000 μg/L		> 100,000 μg/L	–	–
		100	100	10		10	–	–
		> 1,000	> 1,000	> 1,000		> 1,000	–	–
FOCUS Step 1	13.68	< 0.014	< 0.014	< 0.001				
FOCUS Step 2	–	–	–	–				

North/South EU – – – –

(1): For winter oilseed rape, only the worst-case PEC values are presented, either resulting from calculations for single or multiple, early or late applications.
Statement concerning the assessment of environmental fate and behaviour and ecotoxicology in the context of the pesticides peer review of the active substance dimoxystrobin

Scenario	PEC_{sw} global max (µg/L)	Fish acute	Fish chronic	Aquatic invertebrates acute	Aquatic invertebrates chronic	Algae	Higher plant	Sed. dweller chronic
		O. mykiss	O. mykiss	D. magna	D. magna	P. subcapitata	L. gibba	C. riparius
		LC₅₀	NOEC	EC₅₀	NOEC	E_{C50}	E_{C50}	NOEC
		> 100,000 µg/L	> 100,000 µg/L	> 100,000 µg/L	> 100,000 µg/L	> 100,000 µg/L	> 10,000	
AF	100	100	100	10				
RAC	> 1,000	> 1,000	> 1,000	> 1,000				
FOCUS Step 1	14.93	< 0.015	< 0.015	< 0.002				
FOCUS Step 2								

(1): For winter oilseed rape, only the worst-case PEC values are presented, either resulting from calculations for single or multiple, early or late applications.

FOCUS sw Steps 1–2 – PEC/RAC ratios for 505M096 – winter oilseed rape at 100 g a.s./ha with one or two applications

Scenario	PEC_{sw} global max (µg/L)	Fish acute	Fish chronic	Aquatic invertebrates acute	Aquatic invertebrates chronic	Algae	Higher plant	Sed. dweller chronic
		O. mykiss	NOEC	D. magna	D. magna	P. subcapitata	L. gibba	C. riparius
		LC₅₀	NOEC	EC₅₀	NOEC	E_{C50}	E_{C50}	NOEC
		> 100,000 µg/L	> 100,000 µg/L	> 100,000 µg/L	> 100,000 µg/L	> 100,000 µg/L	> 10,000	
AF	100	100	100	10				
RAC	> 1,000	> 1,000	> 1,000	> 1,000				
FOCUS Step 1	4.44	< 0.004	< 0.004	0.001				
FOCUS Step 2								

(1): For winter oilseed rape, only the worst-case PEC values are presented, either resulting from calculations for single or multiple, early or late applications.
FOCUS sw Steps 1–2 – PEC/RAC ratios for 505M01 – sunflower at 100 g a.s./ha with one application

Scenario	PEC\textsubscript{sw} global max (µg/L)	Fish acute	Fish chronic	Aquatic invertebrates acute	Aquatic invertebrates chronic	Algae	Higher plant	Sed. dweller chronic
		O. mykiss	O. mykiss	D. magna	D. magna	P. subcapitata	L. gibba	C. riparius
AF		LC\textsubscript{50}	NOEC	EG\textsubscript{50}	NOEC	EG\textsubscript{50}	EG\textsubscript{50}	NOEC
RAC		> 100,000 µg/L	–	> 100,000 µg/L	–	> 100,000 µg/L	–	–
		100	100	> 1,000	10	> 10,000		
FOCUS Step 1	5.69	< 0.006						< 0.001
FOCUS Step 2								
North/South Europe	–	–						

FOCUS sw Steps 1–2 – PEC/RAC for 505M08 – sunflower at 100 g a.s./ha one application

Scenario	PEC\textsubscript{sw} global max (µg/L)	Fish acute	Fish chronic	Aquatic invertebrates acute	Aquatic invertebrates chronic	Algae	Higher plant	Sed. dweller chronic
		O. mykiss	O. mykiss	D. magna	D. magna	P. subcapitata	L. gibba	C. riparius
AF		LC\textsubscript{50}	NOEC	EG\textsubscript{50}	NOEC	EG\textsubscript{50}	EG\textsubscript{50}	NOEC
RAC		> 100,000 µg/L	–	> 100,000 µg/L	–	> 100,000 µg/L	–	–
		100	100	> 1,000	10	> 10,000		
FOCUS Step 1	6.84	< 0.007						< 0.001
FOCUS Step 2								
North/South Europe	–	–						
FOCUS sw Steps 1–2 – PEC/RAC for 505M09 – sunflower at 100 g a.s./ha with one application

Scenario	PEC\textsubscript{sw} global max (\(\mu g/L\))	Fish acute	Fish chronic	Aquatic invertebrates acute	Aquatic invertebrates chronic	Algae	Higher plant	Sed. dweller chronic
		O. mykiss	O. mykiss	D. magna	D. magna	P. subcapitata	L. gibba	C. riparius
AF		LC\textsubscript{50}	NOEC	EC\textsubscript{50}	NOEC	E\textsubscript{C50}	E\textsubscript{R50}	NOEC
RAC		> 100,000 \(\mu g/L\)	–	> 100,000 \(\mu g/L\)	–	> 100,000 \(\mu g/L\)	–	–
FOCUS Step 1	7.46	< 0.007	< 0.007			< 0.001	–	–
FOCUS Step 2								

Scenario								
North/South Europe	–	–	–	–	–	–	–	–

FOCUS sw Steps 1–2 – PEC/RAC ratios for 505M096 – sunflower at 100 g a.s./ha with one application

Scenario	PEC\textsubscript{sw} global max (\(\mu g/L\))	Fish acute	Fish chronic	Aquatic invertebrates acute	Aquatic invertebrates chronic	Algae	Higher plant	Sed. dweller chronic
		O. mykiss	O. mykiss	D. magna	D. magna	P. subcapitata	L. gibba	C. riparius
AF		LC\textsubscript{50}	NOEC	EC\textsubscript{50}	NOEC	E\textsubscript{C50}	E\textsubscript{R50}	NOEC
RAC		> 100,000 \(\mu g/L\)	–	> 100,000 \(\mu g/L\)	–	> 10,000	> 1,000	10
FOCUS Step 1	2.22	< 0.002	< 0.002			0.001	–	–
FOCUS Step 2								

Scenario								
North/South Europe	–	–	–	–	–	–	–	–
Effects on bees (Regulation (EU) N° 283/2013, Annex Part A, point 8.3.1 and Regulation (EU) N° 284/2013 Annex Part A, point 10.3.1)

Species	Test substance	Timescale/type of endpoint	End point	Toxicity
Apis mellifera L.	Dimoxystrobin	Acute	Oral toxicity 48 h (LD₅₀)	> 79.4 µg/bee
			Contact toxicity 48 h (LD₅₀)	no data available, required
BAS 540 00 F	Acute		Oral toxicity 48 h (LD₅₀)	> 342.28 µg product/bee (> 61.23 µg dimoxystrobin/bee)
			Contact toxicity 72 h (LD₅₀)	> 279.5 µg product/bee (> 50 µg dimoxystrobin/bee)
BAS 540 01 F	Acute		Oral toxicity 48 h (LD₅₀)	> 333.1 µg product/bee (> 59.75 µg dimoxystrobin/bee)
			Contact toxicity 48 h (LD₅₀)	> 278.5 µg product/bee (> 50 µg dimoxystrobin/bee)
Dimoxystrobin	Chronic	10 d-LDD₅₀¹	83.3 µg/bee/day	
		NOEL for HPG	no data available, required	
BAS 540 01 F	Semichronic	8 d-NOED² larvae (with dietary exposure on day 4)	33.48 µg product/larvae (6 µg dimoxystrobin/ larvalae)	
Dimoxystrobin	Semichronic	22 d-NOED² larvae (repeated dietary exposure)	no data available, required	

(1): Study is considered reliable although some deviations were noted with respect to the recommendations of the current test guidelines.
(2): Study is a short-term study with single exposure.

Potential for accumulative toxicity: no data

Higher tier data with honeybees
A semield tunnel study conducted with BAS 540 01 F and two residue field studies were available. For further information, please see RAR Vol 3 CP 9, Sections B.9.5.1.6 and B.9.5.1.7.

Risk assessment for dimoxystrobin includes application in winter oilseed rape (2 × 0.5 L BAS 540 01 F/ha, with an application interval of 28 d) and sunflower (1 × 0.5 L BAS 540 01 F/ha)

(The risk assessment was performed according to SANCO/10329/2002 rev 2 final)

Species	Test substance	Risk quotient	HQ/ETR	Trigger
Honeybees	Dimoxystrobin	HQ_oral	< 1.26	50
Honeybees	BAS 540 01 F	HQ_oral	< 1.68¹	50
Honeybees	dimoxystrobin	HQ_contact	no data available, required	50
Honeybees	BAS 540 01 F	HQ_contact	< 2.00¹	50

(1): For the calculation of the HQ values, the maximum single application rate of 500 mL/ha was multiplied by the product density of 1.118 g/cm³. For acute contact, the endpoint obtained in the study with the product was considered for risk assessment purposes as it was expressed in terms of a.s. equivalent.
The following risk assessment was carried out according to EFSA Bee GD (2013).

Risk assessment for bees from contact and oral dietary exposure – winter oilseed rape (2 × 0.5 L BAS 540 01 F/ha, with an application interval of 28 d) and sunflower (1 × 0.5 L BAS 540 01 F/ha)

Species	Test substance	Scenario	Risk quotient	HQ/ETR	Trigger
Apis mellifera	Dimoxystrobin	Not relevant	ETR_{acute adult oral}	< 0.01	0.2
Apis mellifera	Dimoxystrobin	Not relevant	HQ_{contact}	No data available, required	42
Apis mellifera	BAS 540 01 F	Not relevant	ETR_{acute adult oral}	< 0.01	0.2
Apis mellifera	BAS 540 01 F	Not relevant	HQ_{contact}	< 2	42
Apis mellifera	Dimoxystrobin	Not relevant	ETR_{chronic adult oral}	0.009	0.03
Apis mellifera	BAS 540 01 F	Not relevant	ETR_{larvae}	No study on repeated exposure is available, required	0.2

Risk assessment for honeybees from consumption of contaminated water

Species	Test substance	Risk quotient	ETR	Trigger
Apis mellifera	Dimoxystrobin	ETR_{acute adult oral}	< 0.0004	0.2
Apis mellifera	Dimoxystrobin	ETR_{chronic adult oral}	0.0004	0.03
Apis mellifera	Dimoxystrobin	ETR_{larvae}	No data available, required	0.2

Risk assessment from exposure to residues in surface water (FOCUS Step 3; D2 ditch PEC_{sw} of 8.174 µg/L²)

Species	Test substance	Risk quotient	ETR	Trigger
Apis mellifera	Dimoxystrobin	ETR_{acute adult oral}	< 0.0001	0.2
Apis mellifera	Dimoxystrobin	ETR_{chronic adult oral}	< 0.0001	0.03
Apis mellifera	Dimoxystrobin	ETR_{larvae}	No data available, required	0.2

(1): Water solubility: 3.324 mg dimoxystrobin/L (20°C)
(2): Worst-case PEC_{sw} (FOCUS_{sw} Step 3; D2 ditch) resulting from calculations for application with 100 g a.s./ha in oilseed rape.

Effects on other arthropod species (Regulation (EU) No 283/2013, Annex Part A, point 8.3.2 and Regulation (EU) No 284/2013 Annex Part A, point 10.3.2)

Laboratory tests with standard sensitive species

Species	Test Substance	End point	Toxicity	
Typhlodromus pyri	Preparation (BAS 540 00 F)	Mortality, LR₅₀ Reproduction, ER₅₀	> 1.0 L/ha	> 1.0 L/ha
Aphidius rhopalosiphi	Preparation (BAS 540 00 F)	Mortality, LR₅₀ Reproduction, ER₅₀	> 1.0 L/ha	> 0.03 L/ha

Additional species

Species	Test Substance	End point	Toxicity	
Chrysoperla carnea	Preparation (BAS 540 00 F)	Mortality, LR₅₀ Reproduction, ER₅₀	> 1.0 L/ha	> 1.0 L/ha
Poecilus cupreus	Preparation (BAS 540 00 F)	Mortality, LR₅₀ Food consumption, ER₅₀	> 1.0 L/ha	> 1.0 L/ha

First-tier risk assessment for BAS 540 01 F – winter oilseed rape at 0.5 L product/ha with two applications (covers intended use of BAS 540 01 F in sunflower)

Test substance	Species	Effect (LR₅₀ g/ha)	HQ in-field	HQ off-field¹	Trigger
BAS 540 00 F	Typhlodromus pyri	> 1.0	< 0.85	< 0.02	2
BAS 540 00 F	Aphidius rhopalosiphi	> 1.0	< 0.85	< 0.02	2

(1): indicates distance assumed to calculate the drift rate: 1 m
Extended laboratory tests, aged residue tests

Species	Life stage	Test substance, substrate	Time scale	Dose (g/ha)	End point	% effect	ER50
Aphidius rhopalosiphi	Adults	BAS 540 00 F, natural substrate, 3-D	13 d	0.07	Mortality, reproduction	8.28	> 1.0
				0.5		±10.56	> 1.0
				1.0		17.16	> 1.0

n.d.: not determined; DAT: days after treatment.
(1): indicates whether initial or aged residues.
(2): for preparations indicate whether dose is expressed in units of a.s. or preparation.
(3): adverse effects; positive values indicate a decrease; negative values indicate an increase.

Risk assessment for BAS 540 01 F – winter oilseed rape at 0.5 L product/ha with two applications (covers intended use of BAS 540 01 F in sunflower) based on extended lab test or aged residue tests.

Species	L/ER50 (g/ha)	In-field rate	Off-field rate	Trigger
A. rhopalosiphi, 3D	LR50 > 1.0	0.85 L/ha	0.1 L/ha	Endpoint > PER acceptable risk
	ER50 > 1.0			

(1): At 1 m distance.

Semi-field tests: Not provided, not required
Field studies: Not provided, not required
Additional specific test: Not provided, not required

Effects on non-target soil meso- and macro fauna; effects on soil nitrogen transformation (Regulation (EU) N° 283/2013, Annex Part A, points 8.4, 8.5, and Regulation (EU) N° 284/2013 Annex Part A, points 10.4, 10.5)

Test organism	Test substance	Application method of test a.s./OM	Timescale	End point	Toxicity
Earthworms					
Eisenia fetida	Dimoxystrobin	Mixed into soil 10% peat	Chronic	Growth, reproduction, behaviour	NOEC 0.05 mg/kg d.w. soil (reproduction)
					EC10 0.048 mg/kg d.w. soil (reproduction)
					NOECCORE 0.025 mg/kg d.w. soil (reproduction)
Eisenia fetida	BAS 540 01 F	Mixed into soil	Chronic	Growth, reproduction, behaviour	No data available, required
Eisenia fetida	505M01	Mixed into soil 5% peat	Chronic	Growth, reproduction, behaviour	NOEC < 15.625 mg/kg d.w. soil
Eisenia fetida	505M08	Mixed into soil 10% peat	Chronic	Growth, reproduction, behaviour	NOEC 250 mg/kg d.w. soil (reproduction)
Eisenia fetida	505M09	Mixed into soil 10% peat	Chronic	Growth, reproduction, behaviour	NOEC 250 mg/kg d.w. soil (reproduction)

Other soil macroorganisms

Species	Test substance	Application method of test a.s./OM	Timescale	End point	Toxicity
Folsomia candida	Dimoxystrobin	Mixed into soil 5% peat	Chronic	Mortality, reproduction	NOEC 1,000 mg/kg d.w. soil (reproduction)
					NOECCORE 500 mg/kg d.w. soil (reproduction)
Test organism	Test substance	Application method of test	Timescale	End point	Toxicity
-------------------	----------------	---------------------------	-----------	--------------------------------	---
Folsomia candida	BAS 540 00 F	Mixed into soil 10% peat	Chronic	Mortality, reproduction	NOEC 250 mg product/kg d.w. soil (mortality)
					NOEC 44.8 mg dimoxystrobin/kg d.w. soil (mortality)
					NOEC_{Corr} 22.4 mg dimoxystrobin/kg d.w. soil
Folsomia candida	505M09	Mixed into soil 5% peat	Chronic	Mortality, reproduction	NOEC 1,000 mg/kg d.w. soil (reproduction)
Hypoaspis aculeifer	dimoxystrobin	Mixed into soil 5% peat	Chronic	Mortality, reproduction	NOEC 1,000 mg/kg d.w. soil (reproduction)
	BAS 540 01 F	Mixed into soil 5% peat	Chronic	Mortality, reproduction	NOEC 1,000 mg/kg d.w. soil (reproduction)
	505M09	Mixed into soil 5% peat	Chronic	Mortality, reproduction	NOEC 1,000 mg/kg d.w. soil (reproduction)

(1): The study is valid since all validity criteria are met; however, effects on reproduction were seen at the lowest tested concentration; therefore, a proper NOEC from this study could not be derived and the risk assessment to earthworms is considered only illustrative related to this metabolite.

Higher tier testing (e.g. modelling or field studies)

Several field studies with earthworms were available. For further information, please see RAR Vol 3 CP 9, Section B.9.7.1.2.

Nitrogen transformation	dimoxystrobin	< 25% effects after 28 days at **0.72** mg/kg dry soil
505M01		< 25% effects after 28 days at 100 g/ha, corresponding to **0.133** mg/kg dry soil
505M08		< 25% effects after 28 days at 40 g/ha, corresponding to **0.053** mg/kg dry soil
505M09		< 25% effects after 28 days at 200 g/ha, corresponding to **0.266** mg/kg dry soil
BAS 540 01 F		< 25% effects after 70 days at 37.2 mg/kg dry soil, **6.7** mg dimoxystrobin/kg dry soil

(1): Study is considered reliable although some deviations were noted with respect to the recommendations of the current test guidelines.

Toxicity/exposure ratios for soil organisms

Test organism	Test substance	Time scale	Soil PEC¹	TER	Trigger
Eisenia fetida	dimoxystrobin	chronic	0.054	**0.46**³	5
Eisenia fetida	505M01	chronic	0.0049	< 3,189⁴	5
Eisenia fetida	505M08	chronic	0.0118	21,186	5
Eisenia fetida	505M09	chronic	0.0082	30,488	5
Folsomia candida	dimoxystrobin	chronic	0.054	**9,259**³	5

In winter oilseed rape 2 × 100 g a.s./ha/year; in sunflower 1 × 100 g a.s./ha/year²
Test organism	Test substance	Time scale	Soil PEC[^1]	TER	Trigger
Folsomia candida	dimoxystrobin in BAS 540 00 F	chronic	0.054	415[^3]	5
Hypoaspis aculeifer	dimoxystrobin	chronic	0.054	9,259[^3]	5
Hypoaspis aculeifer	505M09	chronic	0.0082	12,1951	5
Hypoaspis aculeifer	dimoxystrobin in BAS 540 01 F	chronic	0.054	1,657[^3]	5

Values in **bold** fall below the trigger value.

(1): PECsoil,accu was used.
(2): Worst-case use pattern of BAS 540 01 F; only the worst-case PECsoil values are presented and used for TER calculations.
(3): Toxicity endpoints of the a.s. are re-adjusted by a soil factor of 2, since the log P_{ow} for the substance is > 2.
(4): Risk assessment considered only orientative since a proper NOEC could not be derived from the study.

Effects on terrestrial non-target higher plants (Regulation (EU) N° 283/2013, Annex Part A, point 8.6 and Regulation (EU) N° 284/2013 Annex Part A, point 10.6)

Screening data

Species	Test substance	ER50 (g/ha) vegetative vigour	ER50 (g/ha) seedling emergence	Exposure[^1]	Risk acceptable	Trigger
Cabbage, carrot, oat, onion, pea, sunflower	BAS 540 00 F	> 1.0 L/ha	No data available	0.5 L/ha	Yes	< 50% effect at highest application rate

Laboratory dose–response tests

Species	Test substance	ER50 (g/ha) vegetative vigour	ER50 (g/ha) seedling emergence	Exposure[^1]	TER	Trigger
Buckwheat, carrot, corn, cucumber, lettuce, oat, onion, ryegrass, soybean, tomato	BAS 540 01 F	> 2.0 L/ha	> 1.0 L/ha	0.5 L/ha	Yes	< 50% effect at highest application rate

(1): maximum single application rate.

Extended laboratory studies: not provided, not required.
Semi-field and field test: not provided, not required.

Effects on biological methods for sewage treatment (Regulation (EU) N° 283/2013, Annex Part A, point 8.8)

Test type/organism	End point
Activated sludge	No significant inhibition of respiration was measured. EC50 was determined to be > 1,000 mg a.s./L (nominal)

Monitoring data (Regulation (EU) N° 283/2013, Annex Part A, point 8.9 and Regulation (EU) N° 284/2013, Annex Part A, point 10.8)

Available monitoring data concerning adverse effect of the a.s.
No data available

Available monitoring data concerning effect of the PPP.
No data available
Definition of the residue for monitoring (Regulation (EU) N° 283/2013, Annex Part A, point 7.4.2) Ecotoxicologically relevant compounds

Compartment	Compound
Soil	Dimoxystrobin
Water	Dimoxystrobin
Sediment	Dimoxystrobin

(1): Metabolites are considered relevant when, based on the risk assessment, they pose a risk comparable or higher than the parent.

Classification and labelling with regard to ecotoxicological data (Regulation (EU) N° 283/2013, Annex Part A, Section 10)

Substance: Dimoxystrobin

Harmonised classification according to Regulation (EC) No 1272/2008 and its Adaptations to Technical Process [Table 3.1 of Annex VI of Regulation (EC) No 1272/2008 as amended] (a):

- **Regulation (EC) No 1272/2008, amended by Commission Regulation (EU) No 286/2011**
 - Category: Aquatic Acute 1, H400; M-factor: 100
 - Aquatic Chronic 1, H410; M-factor: 100
 - Symbol: GHS09
 - i) **Navicula pelliculosa** 72-hr ErC50 0.0078 mg a.s./L
 - ii) **Navicula pelliculosa** 72-hr ErC10 0.0008 mg a.s./L
 - iii) Substance not ‘rapidly biodegradable’

According to the peer review, criteria for harmonised classification according to Regulation (EC) No 1272/2008 may be met for:

- H400, H410
- GHS09

(a): Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. OJ L 353, 31.12.2008, 1-1355.
Appendix C – Wording EFSA used in Section 2.2 of this statement, in relation to DT and Koc ‘classes’ exhibited by each compound assessed

Wording	DT50 normalised to 20°C for laboratory incubations or not normalised DT50 for field studies (SFO equivalent, when biphasic, the DT90 was divided by 3.32 to estimate the DT50 when deciding on the wording to use)
Very low persistence	< 1 day
Low persistence	1 to < 10 days
Moderate persistence	10 to < 60 days
Medium persistence	60 to < 100 days
High persistence	100 days to < 1 year
Very high persistence	A year or more

Note these classes and descriptions are unrelated to any persistence class associated with the active substance cut-off criteria in Annex II of Regulation (EC) No 1107/2009. For consideration made in relation to Annex II, see Appendix A.

Wording	Koc (either KFoc or Kdoc) mL/g
Very high mobility	0–50
High mobility	51–150
Medium mobility	151–500
Low mobility	501–2,000
Slight mobility	2,001–5,000
Immobile	> 5,000

Based on McCall et al. (1980).

24 For laboratory soil incubations normalisation was also to field capacity soil moisture (pF2/10kPa). For laboratory sediment water system incubations, the whole system DT values were used.
Appendix D – Used compound codes

Code/trivial name(a)	IUPAC name/SMILES notation/InChiKey(b)	Structural formula(c)
dimoxystrobin	(2E)-2-{2-[(2,5-dimethylphenoxy)methyl]phenyl}-2-{(methoxyimino)-N-methylacetamide CNC(=O)C(=N\OC)c1cccc1OC\ccc1C(c)ccc1C WUXZAHCNPWONDH-DYTRJAOYSA-N	![dimoxystrobin](image)
505M01 BF 505-4 M505F001	(2E)-2-{2-(hydroxymethyl)phenyl}-2-(methoxyimino)-N-methylacetamide OC\ccc1cccc1OC(=N\OC)(=O)NC XJIRPXW\WLN\NGSS-JLYYAGUSA-N	![505M01](image)
505M08 BF 505-7 M505F008	2-\{(2-[(1E)-N-methoxy-2-(methylamino)-2-oxoethanimidoyl]phenyl}methoxy\}-4-methylbenzoic acid CNC(=O)C(=\N\OC)c1cccc1OC\ccc1C(c)ccc1C (=O)O VVBFFEYXSJKVET-HEHNFIMWSA-N	![505M08](image)
505M09 BF 505-8 M505F009	3-\{(2-[(1E)-N-methoxy-2-(methylamino)-2-oxoethanimidoyl]phenyl}methoxy\}-4-methylbenzoic acid CNC(=O)C(=\N\OC)c1cccc1OC\ccc1C(c)ccc1C (=O)O RKECPZYSBKRJM-HEHNFIMWSA-N	![505M09](image)
505M93	Structure undefined, a unique name/SMILES/InChiKey cannot be allocated	![505M93](image)
505M95	Structure undefined, a unique name/SMILES/InChiKey cannot be allocated	![505M95](image)
Code/trivial name^(a)	IUPAC name/SMILES notation/InChiKey^(b)	Structural formula^(c)
---	---	---
505M96 M505F096	(4\,E)-1-hydroxy-4-(methoxyimino)-2-methyl-1,4-dihydroisoquinolin-3(2H)-one O=C1\{C(=N\{(OC)2ccc2cC(=O)N1C RVPXDSJHGHSKY-FMIVXFBMSA-	

^(a) The metabolite name in bold is the name used in the conclusion.
^(b) ACD/Name 2021.1.3 ACD/Labs 2021.1.3 (File Version N15E41, Build 123232, 07 Jul 2021).
^(c) ACD/ChemSketch 2021.1.3 ACD/Labs 2021.1.3 (File Version C25H41, Build 123835, 28 Aug 2021).