Data Article

Dataset showing steel cold rolling process parameters for a 6-high cold rolling mill in Nigeria

Emmanuel O. Ayuba a,*, Christian.A. Bolua a, Temitope M. John b, Abiodun A. Abioye a

a Department of Mechanical Engineering, Covenant University, Ota, Nigeria
b Department of Electrical and Information Engineering, Covenant University, Ota, Nigeria

A R T I C L E I N F O

Article history:
Received 26 February 2018
Accepted 16 March 2018
Available online 22 March 2018

Keywords:
X-ray gauge
Accuracy
Automatic gauge control
Cold rolling mill
Steel rolling mill

A B S T R A C T

The data contained in this article was acquired from the automatic gauge control system for a steel cold rolling mill production line in Nigeria. Accuracy is one of the most important indices of productivity during a milling process. A total of 486 data points were obtained from selected feedback sensors located on the rolling mill machine via the control panel Human Machine Interface (HMI). The selected rolling parameters were gathered at different time intervals for different sample coils strips during the different milling stages. The data shows parameters such as actual thickness measured, x-ray gauge temperature, mill speed at both entry and exit and the mill power. This dataset could be used to analyze and improve the accuracy of the Automatic gauge control system and reduction in error in thickness variation.

© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

* Corresponding author.
E-mail address: emmanuel.ayuba@covenantuniversity.edu.ng (E.O. Ayuba).

https://doi.org/10.1016/j.dib.2018.03.081
2352-3409/© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
The rolling process parameters were gathered from the 6 high rolling mill of the steel cold rolling mill Line 1 via the Intelligent Mechatronics system (IMS) and Supervisory Control and Data (SCADA) program for the six milling passes to achieve the target thickness as final output.

The 486 data points were gathered from the rolling milling automatic gauge control system for a period of 400 h at different time intervals. The data were gathered for the six milling passes to determine the error and deviation in target exit thickness measurements as the X-ray temperature, mill speed and mill power varies.

A Steel Rolling Mill located in Abeokuta, Ogun State Nigeria

Data are available within this article in the supplementary material section.

1. Data

The following parameters were selected from the 6-high cold rolling mill of a steel cold rolling plant; located in Abeokuta, Ogun State, Nigeria. For each pass (thickness reduction stages in the milling process. Table 1 shows the description of the sensor (input) parameters retrieved from the HMI panel. Tables 2–10 show the first order descriptive statistics for the input parameters.

The data gathered from the various parameters were analyzed for each phases or stages of the rolling mill process. A pass is the defined as a phase/ stage in which the material is reduced to a predetermined range of thickness [3]. Each coil was subjected to six passes; the target exit thickness for each pass is given below:

First Pass: First stage of the milling process and the material is reduced from its initial thickness of 1.800 mm to a target thickness of 1.2600 mm;

Second Pass: Second stage of the milling process where the entry thickness is 1.260 mm and the target exit thickness is 0.806 mm;

Third Pass: Third stage of the milling process, its entry thickness is 0.806 mm and target exit thickness is 0.516 mm;

Fourth pass: Fourth stage of the milling process, its entry thickness is 0.516 mm and target exit thickness measurement is 0.330 mm;

Fifth Pass: Fifth stage of the milling process with 0.330 mm and exit target thickness measurement is 0.211 mm;

Sixth Pass: Final stage of milling with entry thickness measurement of 0.211 mm and exit thickness measurement is 0.135 mm.
Table 1
Description of input parameters.

s/n	Parameter Code	Parameters	Description
1	TTEn (mm)	Target entry thickness (mm)	This is the thickness measurement preset by the operator at the entry side of the mill for each pass before the mill process starts; the mill is set to carry milling process for passes [1].
2	TTEx (mm)	Target Exit Thickness (mm)	This is the desired exit thickness for each pass, this measurement determines the thickness of the strip sheet after every pass.
3	ATEn (mm)	Actual Entry Thickness (mm)	This is the measurement derived from the X-ray sensing device positioned the entry point of the mill. This is the actual thickness of the sheet passing through the rolls.
4	ATEx (mm)	Actual Exit Thickness (mm)	This is the thickness of the strip after a milling process as taken place. The measurement is taken by the X-ray sensing device positioned at the exit side of the mill [2].
5	XTEx (°C)	Exit X-ray Temperature (°C)	This is the temperature in degree Celsius of the cooling chamber unit connected to the exit side of the X-ray source.
6	XTEn (°C)	Entry X-ray Temperature (°C)	This is the temperature in degree Celsius of the cooling chamber unit connected to the entry side of the X-ray source.
7	MP (kW)	Mill Power (kW)	This is the power in Kilowatts (kW) exerted on the backup rolls that cause a deformation in the strip sheet to be milled.
8	MSEn (mpm)	Entry Mill Speed (mpm)	The speed of drive of the coiler called the Payup reel at the entry side of the mill, the mill speed sustains tension across the mill. Its unit of measurement is in metres per minutes (mpm).
9	MSEX (mpm)	Exit Mill Speed (mpm)	The speed of the drive of the coiler called the Payoff reel at the exit side of the mill, this speed ensures that tension is maintained across the mill and ensures that the sheet are coiled up properly after the milling is completed. Its unit of measurement is in metres per minutes (mpm).

Table 2
Descriptive information for target thickness at entry (mm).

Coil no.	PASS	Mean	Median	Mode	Minimum	Maximum	Standard deviation	Variance	Count
1	1	1.8	1.8	1.8	1.8	0	0	0	2
2	1	2.66	1.26	1.26	1.26	0	0	0	2
3	0.81	0.81	0.81	0.81	0.81	0	0	0	6
4	0.52	0.52	0.52	0.52	0.52	0	0	0	4
5	0.33	0.33	0.33	0.33	0.33	0	0	0	6
6	0.21	0.21	0.21	0.21	0.21	0	0	0	8
2	1	1.8	1.8	1.8	1.8	0	0	0	2
2	1.26	1.26	1.26	1.26	1.26	0	0	0	5
3	0.81	0.81	0.81	0.81	0.81	0	0	0	4
4	0.52	0.52	0.52	0.52	0.52	0	0	0	6
5	0.33	0.33	0.33	0.33	0.33	0	0	0	6
6	0.21	0.21	0.21	0.21	0.21	0	0	0	9
3	1	1.8	1.8	1.8	1.8	0	0	0	8
2	1.26	1.26	1.26	1.26	1.26	0	0	0	8
3	0.81	0.81	0.81	0.81	0.81	0	0	0	15
4	0.52	0.52	0.52	0.52	0.52	0	0	0	12
5	0.33	0.33	0.33	0.33	0.33	0	0	0	11
6	0.21	0.21	0.21	0.21	0.21	0	0	0	30
4	1	1.8	1.8	1.8	1.8	0	0	0	13
2	1.26	1.26	1.26	1.26	1.26	0	0	0	9
3	0.81	0.81	0.81	0.81	0.81	0	0	0	10
4	0.52	0.52	0.52	0.52	0.52	0	0	0	14
Table 3
Descriptive Information for target thickness at exit (mm).

Coil no.	PASS	Mean	Median	Mode	Maximum	Minimum	Standard deviation	Variance	Count
1	1	1.26	1.26	1.26	1.26	0	0	0	2
2	0.81	0.81	0.81	0.81	0.81	0	0	0	5
3	0.52	0.52	0.52	0.52	0.52	0	0	0	6
4	0.33	0.33	0.33	0.33	0.33	0	0	0	4
5	0.21	0.21	0.21	0.21	0.21	0	0	0	6
6	0.14	0.14	0.14	0.14	0.14	0	0	0	9
5	1	1.8	1.8	1.8	1.8	0	0	0	11
6	1.26	1.26	1.26	1.26	1.26	0	0	0	13

Table 2 (continued)

Coil no.	PASS	Mean	Median	Mode	Maximum	Minimum	Standard deviation	Variance	Count
2	1	1.26	1.26	1.26	1.26	0	0	0	2
2	0.81	0.81	0.81	0.81	0.81	0	0	0	5
3	0.52	0.52	0.52	0.52	0.52	0	0	0	6
4	0.33	0.33	0.33	0.33	0.33	0	0	0	4
5	0.21	0.21	0.21	0.21	0.21	0	0	0	6
6	0.14	0.14	0.14	0.14	0.14	0	0	0	9
3	1	1.26	1.26	1.26	1.26	0	0	0	8
2	0.81	0.81	0.81	0.81	0.81	0	0	0	8
3	0.52	0.52	0.52	0.52	0.52	0	0	0	15
4	0.33	0.33	0.33	0.33	0.33	0	0	0	12
5	0.21	0.21	0.21	0.21	0.21	0	0	0	11
6	0.14	0.14	0.14	0.14	0.14	0	0	0	30
4	1	1.26	1.26	1.26	1.26	0	0	0	13
2	0.81	0.81	0.81	0.81	0.81	0	0	0	9
3	0.52	0.52	0.52	0.52	0.52	0	0	0	10
4	0.33	0.33	0.33	0.33	0.33	0	0	0	14
5	0.21	0.21	0.21	0.21	0.21	0	0	0	11
6	0.14	0.14	0.14	0.14	0.14	0	0	0	19
5	1	1.26	1.26	1.26	1.26	0	0	0	18
2	0.81	0.81	0.81	0.81	0.81	0	0	0	6
3	0.52	0.52	0.52	0.52	0.52	0	0	0	6
4	0.33	0.33	0.33	0.33	0.33	0	0	0	10
5	0.21	0.21	0.21	0.21	0.21	0	0	0	16
6	0.14	0.14	0.14	0.14	0.14	0	0	0	20
6	1	1.26	1.26	1.26	1.26	0	0	0	11
2	0.81	0.81	0.81	0.81	0.81	0	0	0	12
3	0.52	0.52	0.52	0.52	0.52	0	0	0	14
4	0.33	0.33	0.33	0.33	0.33	0	0	0	19
5	0.21	0.21	0.21	0.21	0.21	0	0	0	16
6	0.14	0.14	0.14	0.14	0.14	0	0	0	19
Table 4
Descriptive information for actual thickness at entry (mm).

Coil_no.	PASS Mean	Median	Mode	Maximum	Minimum	Standard deviation	Variance	Count
1	1.00 1.80	1.79	1.81	1.79	0.02	0.00	2	
	2.00 1.24	1.23	1.26	1.23	0.03	0.00	2	
	3.00 0.80	0.80	0.82	0.80	0.01	0.00	6	
	4.00 0.52	0.51	0.53	0.51	0.01	0.00	4	
	5.00 0.33	0.32	0.34	0.32	0.01	0.00	6	
	6.00 0.21	0.21	0.21	0.21	0.00	0.00	8	
2	1.00 1.78	1.77	1.78	1.77	0.00	0.00	2	
	2.00 1.27	1.27	1.27	1.27	0.00	0.00	5	
	3.00 0.80	0.79	0.81	0.79	0.01	0.00	4	
	4.00 0.52	0.50	0.57	0.50	0.03	0.00	6	
	5.00 0.33	0.33	0.34	0.33	0.00	0.00	6	
	6.00 0.21	0.21	0.22	0.21	0.00	0.00	9	
3	1.00 1.78	1.78	1.79	1.78	0.01	0.00	8	
	2.00 1.26	1.25	1.28	1.24	0.01	0.00	8	
	3.00 0.81	0.80	0.83	0.79	0.01	0.00	15	
	4.00 0.52	0.51	0.53	0.50	0.01	0.00	12	
	5.00 0.33	0.32	0.34	0.32	0.01	0.00	11	
	6.00 0.21	0.21	0.22	0.21	0.00	0.00	30	
4	1.00 1.78	1.78	1.78	1.77	0.00	0.00	13	
	2.00 1.26	1.25	1.28	1.25	0.01	0.00	9	
	3.00 0.81	0.80	0.83	0.79	0.01	0.00	10	
	4.00 0.52	0.51	0.53	0.51	0.01	0.00	14	
	5.00 0.33	0.33	0.34	0.33	0.00	0.00	11	
	6.00 0.21	0.21	0.22	0.21	0.00	0.00	30	
5	1.00 1.78	1.78	1.78	1.78	0.01	0.00	18	
	2.00 1.26	1.25	1.28	1.25	0.01	0.00	9	
	3.00 0.81	0.80	0.83	0.79	0.01	0.00	10	
	4.00 0.52	0.51	0.53	0.51	0.01	0.00	14	
	5.00 0.33	0.33	0.34	0.32	0.01	0.00	16	
	6.00 0.21	0.21	0.22	0.21	0.00	0.00	19	
6	1.00 1.78	1.78	1.78	1.78	0.01	0.00	11	
	2.00 1.25	1.25	1.28	1.22	0.02	0.00	12	
	3.00 0.81	0.80	0.82	0.79	0.01	0.00	14	
	4.00 0.51	0.51	0.53	0.50	0.01	0.00	19	
	5.00 0.33	0.33	0.34	0.32	0.01	0.00	16	
	6.00 0.21	0.21	0.22	0.21	0.00	0.00	19	

Table 5
Descriptive information for actual thickness at exit (mm).

Coil_no.	PASS Mean	Median	Mode	Maximum	Minimum	Standard deviation	Variance	Count
1	1.27	1.27	1.26	1.26	0.01	0.00	2	
	0.8	0.8	0.8	0.8	0.01	0.00	2	
	0.52	0.52	0.51	0.51	0.01	0.00	6	
	0.33	0.33	0.33	0.33	0.01	0.00	4	
	0.21	0.21	0.21	0.21	0.01	0.00	6	
	0.14	0.14	0.14	0.13	0.01	0.00	8	
2	1.24	1.24	1.23	1.23	0.02	0.00	2	
	0.81	0.82	0.8	0.8	0.01	0.00	5	
	0.52	0.52	0.54	0.52	0.01	0.00	4	
	0.33	0.32	0.35	0.32	0.01	0.00	6	
	0.21	0.21	0.21	0.21	0.01	0.00	6	
	0.14	0.15	0.16	0.13	0.01	0.00	9	
3	1.26	1.26	1.25	1.24	0.01	0.00	8	
	1.00	0.81	0.79	0.79	0.01	0.00	8	
	0.51	0.51	0.53	0.5	0.01	0.00	15	
	0.33	0.33	0.34	0.32	0.01	0.00	12	
Table 5 (continued)

Coil_no	PASS	Mean	Median	Mode	Maximum	Minimum	Standard deviation	Variance	Count
6	1	0.13	0.14	0.14	0.15	0.12	0	0	30
1	1.26	1.26	1.27	1.28	1.24	1.21	0.01	0.01	13
2	0.8	0.8	0.8	0.81	0.79	0	0.01	0.01	9
3	0.51	0.52	0.52	0.52	0.5	0.01	0.01	0.01	10
4	0.33	0.33	0.33	0.34	0.33	0	0.01	0.01	14
5	0.19	0.21	0.21	0.22	0.03	0.06	0.01	0.01	11
6	0.14	0.14	0.13	0.16	0.13	0.01	0.01	0.01	19

Table 6
Descriptive information for X-ray Temp at entry (°C).

Coil_no	PASS	Mean	Median	Mode	Maximum	Minimum	Standard deviation	Variance	Count
1	1	30.6	30.6	30.6	30.6	30.6	0	0	2
2	32.1	32.1	32	32.2	32	32	0.14	0.02	2
3	32.08	32.4	32.4	32.6	30.3	31	0.88	0.77	6
4	31.38	31.25	31	32	31	31	0.48	0.23	4
5	32.52	32.55	32.6	32.7	32.3	32.9	0.15	0.02	6
6	31.8	31.8	30.9	32.7	30.9	31	0.96	0.93	8
2	1	31.3	31.3	31.6	31	31	0.42	0.18	2
2	33.14	33.1	33	33.3	33	33	0.15	0.02	5
3	31.65	31.3	31.3	33	31	31	0.91	0.83	4
4	31.98	31.65	31.6	32.7	31.6	31.6	0.56	0.31	6
5	32.43	32.45	32.5	32.7	32.2	32.2	0.18	0.03	6
6	32.82	33	32	33.6	32	32	0.69	0.47	9
3	1	30.95	31.1	31.4	30.2	30.6	0.41	0.17	8
2	31.23	31.6	31.6	31.6	30.6	30.6	0.52	0.27	8
3	30.92	31.7	31.8	32	28.9	31.7	1.27	1.6	15
4	31.5	31.6	31.6	31.7	30.9	30.9	0.26	0.07	12
5	54.97	29.5	28.8	30.8	28.8	28.8	0.83	0.07	11
6	30.76	30.8	31	31.5	30.2	30.2	0.36	0.13	30
4	1	30.82	31.2	31.9	29.1	29.1	1.01	1.02	13
2	31.6	31.6	31.6	31.6	31.6	31.6	0	0	9
3	29.95	29.4	28.8	31.6	28.8	28.8	1.9	1.43	10
4	31.57	31.6	31.6	31.6	31.3	31.3	0.08	0.01	14
5	30.17	30	30.2	32.1	28.9	30.9	1.07	1.15	11
6	30.65	30.5	31.6	31.6	29.9	29.9	0.7	0.5	19
5	1	30.84	31.05	31.9	31.9	28.9	1.17	1.37	18
2	30.83	30.85	30.9	30.9	30.7	30.7	0.08	0.01	6
3	30.67	31.05	31.9	32	28.9	31.4	1.46	2.12	6
4	31.04	31	31.4	31.4	30.8	30.8	0.16	0.02	10
5	29.95	29.6	28.9	31.3	28.7	31	1	1	16
6	30.91	31	31.2	31.2	30.4	30.4	0.26	0.07	20
6	1	31.43	31.6	31.6	31.9	30.4	0.57	0.33	11
2	29.76	29.5	29.5	31.2	28.7	28.7	0.96	0.92	12
3	31.14	31.5	31.9	32.1	29	29	1.08	1.16	14
4	31.48	31.5	31.5	31.5	31.2	31.2	0.07	0.01	19
5	31.18	30.9	30.9	32.2	30.2	30.2	0.64	0.41	16
6	31.53	31.6	31.6	31.6	31	31	0.18	0.03	19
Table 7
Descriptive information for X-ray Temp at exit (°C).

Coil_no.	PASS	Mean	Median	Mode	Maximum	Minimum	Standard deviation	Variance	Count
1	1	31	31	31	31	0	0.61	0.38	2
2	3.125	31.25	30.4	32.1	30.4	1.2	1.45	2	
3	3.185	31.7	31.6	32.7	31	0.61	0.38	6	
4	3.245	32.45	32.4	32.5	32.4	0.06	0	4	
5	32	32	32	32	32	0	0	6	
6	30.85	30.8	30.6	31.5	30.5	0.34	0.11	8	

Coil_no.	PASS	Mean	Median	Mode	Maximum	Minimum	Standard deviation	Variance	Count
1	1	31	31	31	31	0	0.61	0.38	2
2	31.25	31.25	31.25	31	31.5	0.35	0.13	2	
3	31.66	31.66	31.66	31	31.5	0.5	0.25	4	
4	32.18	32.18	32.18	32	31.9	0.25	0.06	6	
5	32.88	32.88	32.88	32	31.8	0.53	0.28	6	
6	31.69	31.69	31.69	31	30.5	1.22	1.5	9	

Coil_no.	PASS	Mean	Median	Mode	Maximum	Minimum	Standard deviation	Variance	Count
1	1	31	31	31	31	0	0.61	0.38	2
2	31.13	31.13	31.13	31	31.5	0.35	0.13	8	
3	31.36	31.36	31.36	31	31.5	0.31	0.09	15	
4	30.01	30.01	30.01	31	31.5	1.05	0.11	12	
5	30.09	30.09	30.09	31	29.8	0.45	0.2	11	
6	30.91	30.91	30.91	31	28.9	0.85	0.72	30	

Coil_no.	PASS	Mean	Median	Mode	Maximum	Minimum	Standard deviation	Variance	Count
1	1	31	31	31	31	0	0.61	0.38	2
2	29.84	29.84	29.84	31	28.9	0.94	0.88	8	
3	31.36	31.36	31.36	31	31.5	0.31	0.09	15	
4	30.01	30.01	30.01	31	29.8	1.05	0.11	12	
5	30.09	30.09	30.09	31	29.8	0.45	0.2	11	
6	30.91	30.91	30.91	31	28.9	0.85	0.72	30	

Coil_no.	PASS	Mean	Median	Mode	Maximum	Minimum	Standard deviation	Variance	Count
1	1	31	31	31	31	0	0.61	0.38	2
2	29.66	29.66	29.66	31	28.8	0.74	0.54	9	
3	31	31	31	31	31	0	0	10	
4	50.64	50.64	50.64	39.9	28.9	0.74	0.55	14	
5	31.26	31.26	31.26	31.1	30.7	0.42	0.18	11	
6	30.79	30.79	30.79	30.8	28.9	1.09	1.18	19	

Coil_no.	PASS	Mean	Median	Mode	Maximum	Minimum	Standard deviation	Variance	Count
1	1	31	31	31	31	0	0.61	0.38	2
2	29.65	29.65	29.65	31	28.9	0.8	0.65	6	
3	30.82	30.82	30.82	31.6	30.6	0.44	0.19	6	
4	29.83	29.83	29.83	31.6	27.8	1.31	1.71	10	
5	30.91	30.91	30.91	31.4	29.8	0.83	0.68	16	
6	31.02	31.02	31.02	30.95	29.7	0.86	0.74	20	

Table 8
Descriptive information for mill speed at entry in (mpm).

Coil_no.	PASS	Mean	Median	Mode	Maximum	Minimum	Standard deviation	Variance	Count
1	1	98	98	98	165	31	94.75	8978	2
2	183.5	183.5	124	243	31.5	31	84.15	7080.5	2
3	326	326	322	331	322	31	3.16	10	6
4	597.25	597.25	594	600	594	31	2.5	6.25	4
5	606	606	607	610	603	31	2.53	6.4	6
6	597.5	597.5	610	617	490	31	43.51	1892.86	8

Coil_no.	PASS	Mean	Median	Mode	Maximum	Minimum	Standard deviation	Variance	Count
1	1	98	98	98	165	31	94.75	8978	2
2	223.5	223.5	225	231	217	217	2.12	4.5	2
3	265.47	265.47	265	265	265	265	90.73	8231.7	15
4	340	340	340	386	340	340	75.26	5663.45	12
Table 8 (continued)

Coi_no.	PASS	Mean	Median	Mode	Maximum	Minimum	Standard deviation	Variance	Count
5	384.55	408	411	413	278	47.17	2225.47	11	
6	353.42	393	289	431	29.7	91.34	8342.74	30	
4	185.02	212	199.8	253.6	30.9	81.88	6703.64	13	
2	228.11	228	233	224	2.67	71.11	9		
3	314.6	314.5	318	309	2.84	8.04	4699.76	19	
4	353.29	384.5	390	384.5	282	44.2	1954.07	14	
5	381.82	400	391	318	9.14	34.91	1218.96	11	
6	338.26	374	401	200	68.55	4699.76	19		

Table 9

Descriptive information for mill speed at exit in (mpm).

Coi_no.	PASS	Mean	Median	Mode	Maximum	Minimum	Standard deviation	Variance	Count
1	98.95	98.95	30.9	167	30.9	96.24	9261.61	2	
2	270.5	270.5	169	372	169	143.54	20604.5	2	
3	509	509	506	512	506	2.37	5.6	6	
4	381.25	381	379	384	379	2.22	4.92	4	
5	389.67	390.5	382	394	382	4.13	17.07	6	
6	379.38	388.5	390	393	316	25.82	6665.5	8	

Coi_no.	PASS	Mean	Median	Mode	Maximum	Minimum	Standard deviation	Variance	Count
1	337.5	337.5	333	342	333	6.36	40.5	2	
2	335.58	357.2	251.7	360	251.7	47.05	2214.01	5	
3	515.93	500.2	498.4	564.9	498.4	32.68	1067.7	4	
4	611.68	633.2	633.2	643.7	558	41.04	1684.63	6	
5	603	603	603	605	601	1.41	2	6	
6	470.89	379	369	669	368	143.43	20572.86	9	

Coi_no.	PASS	Mean	Median	Mode	Maximum	Minimum	Standard deviation	Variance	Count
1	170.15	174.5	183	183	145.2	14.81	219.27	8	
2	350.75	351	351	353	349	1.39	1.93	8	
3	402.33	488	493	493	493	1.93	20355.38	15	
4	530.59	593.5	596	600.1	190	126.13	15909.16	12	
5	598.09	634	643	643	431	73.44	5392.89	11	
6	568.9	618	460	666	325	109.85	12066.16	30	

Coi_no.	PASS	Mean	Median	Mode	Maximum	Minimum	Standard deviation	Variance	Count
1	188.05	199	187	254	30.7	78.93	6230.72	13	
2	360.33	360	359	363	358	1.58	2.5	9	
3	491.8	490.5	490	497	488	3.12	9.73	10	
4	547.64	602.5	603	606	603	32.68	1067.7	4	
5	564.27	624	627	631	405	90.79	8242.22	11	
6	535.05	598	598	620	321	107.93	11649.72	19	

Coi_no.	PASS	Mean	Median	Mode	Maximum	Minimum	Standard deviation	Variance	Count
1	115.44	102.5	85	207	55	45.5	2069.91	18	
2	302.83	301.5	301	310	299	3.87	14.97	6	
3	414.67	485.5	489	489	209	118.8	14113.07	6	
4	480.4	475	409	596	256	114.46	13101.82	10	
5	463.25	539	350	546	224	104.28	11942.87	16	
6	432.1	423	330	563	327	89.74	8052.62	20	

Coi_no.	PASS	Mean	Median	Mode	Maximum	Minimum	Standard deviation	Variance	Count
1	256	257	257	258	253	1.55	2.4	11	
2	321.67	349.5	148	487	148	87.42	7641.88	12	
3	474.5	489.5	492	493	378	38.87	1511.19	14	
4	562.11	597	606	608	400	68.06	4631.65	19	
5	433.31	449	508	516	313	82.29	6771.16	16	
6	508.84	537	542	627	377	85.63	7332.14	19	
Table 10
Descriptive information for mill power (kW).

Coil_no.	PASS	Mean	Median	Mode	Maximum	Minimum	Standard deviation	Variance	Count
1	1	1179	1178	1180	1178	1178	1.41	2	2
2	1	1185	1183	1187	1183	1183	2.83	8	2
3	1	1693	1711.5	1760	1561	1561	79.08	6253.47	6
4	1	1557	1556.5	1554	1554	1554	2.08	4.33	4
5	1	1217	1217.5	1227	1207	1207	6.65	44.24	4
6	2	978	1000	1000	1015	803	71.29	5082.86	8
2	1	37.5	37.5	42	33	42	6.36	40.5	2
2	1	1711	1667	1804	1632	1632	82.79	6854.8	5
3	1	1611	1780	1102	1782	1102	339.34	115148.67	4
4	1	1513	1504	1521	1504	1504	6.77	45.77	6
5	1	1258	1254	1263	1254	1254	3.58	12.8	6
6	1	1100	1108	1108	1090	1090	6.8	46.28	9
3	1	795.3	739	937	739	937	86.63	7505.36	8
2	1	1698	1689	1711	1689	1689	7.4	54.7	8
3	1	1381	1692	1705	110	110	551.84	304525.11	15
4	1	1428	811	1563	811	811	273.19	74635.15	12
5	1	1181	1266	1275	703	703	182.31	33237.36	11
6	1	921.9	1000	996	1077	542	172.67	29816.4	30
4	1	1113	1145	899	1198	1198	100.1	10019.92	13
2	1	1715	1718	1700	1725	1700	8.24	67.94	9
3	1	1693	1694.5	1694	1700	1684	4.99	24.93	10
4	1	1397	1555	1556	1576	1019	207.7	43138.26	14
5	1	1217	1250	1256	1016	73.43	73.43	5391.62	11
6	1	855.9	952	969	1011	610	152.09	23436.1	19
5	1	522.1	405	310	1135	180	285.86	81713.4	18
2	1	1480	1481.5	1463	1495	1463	14.68	215.37	6
3	1	1448	1646	798	1772	798	393.93	155178.57	6
4	1	1041	1123	1142	1175	572	185.6	34447.82	10
5	1	909.9	1110	1110	1125	409	290.14	84181.93	16
6	1	709.9	746	516	934	516	157.35	24760.34	20

Table 11
X-ray gauge specifications.

Measurement range	3500–8000 μm
Source	160 KV
Operating values	85 KV, 2 mA
Sensitivity	0.1%
Max high voltage	100 KV
Maximum tube current	10 mA
Maximum continuous output	1 kW
Resolution	0.001 μm
Mill Type & direction configuration	Cold, Reversible
Maximum cooling chamber temperature	35 °C
Cooling chamber flow rate	4litres/Min
Table 12
ANOVA analysis of rolling parameters mill speed at entry and exit.

	Sum of squares	df	Mean square	F	Sig.	
Mill_Speed_entry_mpm	Between Groups	2252428.224	5	450485.645	52.539	0.000
	Within Groups	3266827.338	381	8574.350		
	Total	5519255.562	386			
Mill_Speed_exit_mpm	Between Groups	5472997.442	5	1094599.488	110.776	0.000
	Within Groups	3764746.031	381	9881.223		
	Total	9237743.473	386			

Table 13
ANOVA analysis of parameters X-ray Temp at entry and exit.

	Sum of squares	df	Mean square	F	Sig.	
Xray_Temp_at_entry	Between Groups	786.378	5	157.276	0.788	0.559
	Within Groups	76090.613	381	199.713		
	Total	76876.991	386			
Xray_Temp_at_exit	Between Groups	947.494	5	189.499	0.941	0.454
	Within Groups	76724.734	381	201.377		
	Total	77672.228	386			

Table 14
ANOVA analysis of parameters actual thickness at entry and exit.

	Sum of squares	df	Mean square	F	Sig.	
Actual_Thickness_at_entry_mm	Between Groups	113.717	5	22.743	203031.301	0.000
	Within Groups	0.043	381	0.000		
	Total	113.760	386			
Actual_Thickness_at_exit_mm	Between Groups	13973.476	5	2795.095	1.731	0.127
	Within Groups	615260.434	381	1614.857		
	Total	629235.911	386			

Table 15
ANOVA analysis of parameters Mill power.

	Sum of squares	df	Mean square	F	Sig.
Between Groups	32150337.441	5	6430067.488	81.468	0.000
Within Groups	30071288.745	381	78927.267		
Total	62221626.186	386			
2. Experimental design, materials, and methods

This data were manually collected from the Supervisory Control and Data Acquisition (SCADA) via the operators Human Machine Interface (HMI). The Supervisory Control and Data Acquisition system (SCADA) provides a detailed real time monitoring of the numerous feedback parameters [4,5] from installed sensors during the manufacturing process [6,7]. An average of three readings was recorded for each pass with minimum time interval of 3 minutes for the various parameters [8]. The X-ray thickness gauge sensor specifications are presented in Table 11. The tolerance range for thickness measurement for the reversible cold rolling mill is $\pm 0.001 \mu m$ [1]. The Analysis of Variance (ANOVA) for rolling parameters are given in Tables 12–15.

Acknowledgments

This research was conducted by the Mechatronics and Rapid Prototyping Research Cluster of Covenant University. The authors wish to acknowledge Covenant University Center for Research Innovation and Discovery (CUCRID) for sponsoring this research.

Transparency document. Supporting information

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2018.03.081.

Appendix A. Supplementary material

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2018.03.081.

References

[1] A.E. Raftery, M. Kárný, P. Ettler, Online prediction under model uncertainty via dynamic model averaging: application to a cold rolling mill, Technometrics 52 (2010) 52–66.
[2] R. Bauri, D. Yadav, C.S. Kumar, G.J. Ram, Optimized process parameters for fabricating metal particles reinforced 5083 Al composite by friction stir processing, Data Brief 5 (2015) 305–313.
[3] A. Heidari, M.R. Forouzan, Optimization of cold rolling process parameters in order to increasing rolling speed limited by chatter vibrations, J. Adv. Res. 4 (2013) 27–34.
[4] O.B. Ayomide, O.O. Ajayi, S.O. Banjo, A.A. Ajayi, Data on the no-load performance analysis of a tomato postharvest storage system, Data Brief 13 (2017) 667–674.
[5] P.O. Babalola, C. Bolu, A.O. Inegbenebor, Artificial neural network prediction of aluminium metal matrix composite with silicon carbide particles developed using stir casting method, Int. J. Mech. Mechatron. Eng. 15 (2015).
[6] N. Syreyshchikova, L. Semashko, Gauges manufacture process planning automated control system at an industrial enterprise, Procedia Eng. 206 (2017) 965–971.
[7] J. Tautz-Weinert, S.J. Watson, Using SCADA data for wind turbine condition monitoring—a review, IET Renew. Power Gen. 11 (2016) 382–394.
[8] T. Monyai, O. Fayomi, A. Popoola, Data analysis and study of the influence of deposition power on the microstructural evolution and functionality of metallic phase composite coating, Data Brief (2018).