Introduction

Human papillomavirus (HPV) is the most commonly sexually transmitted infection in the world and the primary cause of cervical cancer. Canada introduced publicly funded HPV vaccination programs in 2006. The objectives of this study are twofold and aim to (1) determine the levels and (2) examine the various factors influencing vaccine uptake among the general Canadian population. A literature search was conducted on seven databases, followed by screening, methodological quality review (using modified Newcastle-Ottawa Scale), and data extraction. Pooled meta-analysis and a subgroup analysis were conducted stratifying by a number of variables (age, sex, type of program, and method of payment) determined apriori. A total of 718 peer-reviewed articles were initially identified with 12 remaining after screening and underwent methodological quality review. HPV vaccination uptake in Canada varied from 12.40% (95% confidence interval [CI] 6.77–20.26) to 88.20% (95% CI 85.72–90.39). The pooled random effects model showed the HPV vaccination uptake to be 55.92% (95% CI 44.87–66.65). The subgroup analysis showed that vaccination uptake was 66.95% (95% CI 55.00–77.89) in participants ≤ 18 years as compared to 13.58% (95% CI 10.92–16.46) for participants > 18 years. Uptake for females was higher 57.23% (95% CI: 45.40–68.66) when compared to that of 47.01% (95% CI: 0.82–97.75) in males. HPV vaccine uptake among school-based programs was 69.62% (95% CI 57.27–80.68) as compared to 18.66% (95% CI 6.66–34.92) for community-based programs. Vaccination uptake for publicly funded programs was significantly higher 66.95% (95% CI 55.00–77.89) when compared to 13.58% (95% CI 10.92–16.46) for programs where participants had to pay out of pocket. To prevent infections and reduce the burden of HPV-related diseases (including cervical cancer), communities should be made aware and encouraged to vaccinate their children. There is a documented need to direct effort and focus interventions toward improving HPV vaccination uptake in Canada.

Keywords: Canada, immunization, papillomavirus infections, papillomavirus vaccines, uterine cervical neoplasms, virus diseases

Abstract

Human papillomavirus (HPV) is the most commonly sexually transmitted infection in the world and the primary cause of cervical cancer. Canada introduced publicly funded HPV vaccination programs in 2006. The objectives of this study are twofold and aim to (1) determine the levels and (2) examine the various factors influencing vaccine uptake among the general Canadian population. A literature search was conducted on seven databases, followed by screening, methodological quality review (using modified Newcastle-Ottawa Scale), and data extraction. Pooled meta-analysis and a subgroup analysis were conducted stratifying by a number of variables (age, sex, type of program, and method of payment) determined apriori. A total of 718 peer-reviewed articles were initially identified with 12 remaining after screening and underwent methodological quality review. HPV vaccination uptake in Canada varied from 12.40% (95% confidence interval [CI] 6.77–20.26) to 88.20% (95% CI 85.72–90.39). The pooled random effects model showed the HPV vaccination uptake to be 55.92% (95% CI 44.87–66.65). The subgroup analysis showed that vaccination uptake was 66.95% (95% CI 55.00–77.89) in participants ≤ 18 years as compared to 13.58% (95% CI 10.92–16.46) for participants > 18 years. Uptake for females was higher 57.23% (95% CI: 45.40–68.66) when compared to that of 47.01% (95% CI: 0.82–97.75) in males. HPV vaccine uptake among school-based programs was 69.62% (95% CI 57.27–80.68) as compared to 18.66% (95% CI 6.66–34.92) for community-based programs. Vaccination uptake for publicly funded programs was significantly higher 66.95% (95% CI 55.00–77.89) when compared to 13.58% (95% CI 10.92–16.46) for programs where participants had to pay out of pocket. To prevent infections and reduce the burden of HPV-related diseases (including cervical cancer), communities should be made aware and encouraged to vaccinate their children. There is a documented need to direct effort and focus interventions toward improving HPV vaccination uptake in Canada.

Keywords: Canada, immunization, papillomavirus infections, papillomavirus vaccines, uterine cervical neoplasms, virus diseases

How to cite this article: Bird Y, Obidiya O, Mahmood R, Nwankwo C, Moraros J. Human papillomavirus vaccination uptake in Canada: A systematic review and meta-analysis. Int J Prev Med 2017;8:71.

Address for correspondence:
Dr. Yelena Bird, School of Public Health, University of Saskatchewan, E-Wing, Health Sciences, Room 3322, Saskatoon, SK, S7N 5E5, Canada.
E-mail: yelena.bird@usask.ca

Access this article online
Website: www.ijpvmjournal.net/www.ijpm.ir
DOI: 10.4103/ijpvm.IJPVM_49_17

Quick Response Code:
Given the strong link between HPV infections (Types 16 and 18) and cervical cancer, a number of new interventions have been introduced in an effort to curtail the burden of the disease. Chief among them is the population-based use of HPV vaccines. In 2006, two HPV vaccines Cervarix (which covers HPV types 16 and 18) and Gardasil (which covers HPV types 6, 11, 16, and 18) were approved for use mainly among females but also for males aged 9–26 years in Canada. Publicly funded HPV immunization programs for females are available in all Canadian provinces and territories. In addition, four provinces (Alberta, British Columbia, Prince Edward Island, and Nova Scotia) have publically funded HPV vaccination programs for males and two others (Ontario and Quebec) are in the process of doing so in the near future.

The HPV vaccine has been reported to be highly effective in preventing the targeted HPV types, as well as the diseases caused by them. Across Canada, the HPV vaccine uptake is quite variable with initial vaccination rates (i.e. first dose) ranging from 47% in the Northwest Territories to 93.8% in Newfoundland and Labrador. The rates are significantly lower when one considers the HPV vaccine completion rates (i.e. all three doses) with a number of provinces not even keeping records for these important statistics. Even less is known about the factors that may influence HPV vaccine uptake in Canada. Public discussion regarding the new HPV vaccines is characterized by strong feelings and beliefs and significant financial interest, but more research is needed to help inform policy choices, public health interventions, and decision-makers.

To the best of our knowledge, there are no systematic reviews examining HPV vaccination uptake in Canada. Instead, previous studies have primarily focused on HPV vaccine knowledge, attitudes toward vaccination, acceptability, and intention to vaccinate. However, to optimize the use of the HPV vaccination programs in Canada, it is critically important to understand the levels of HPV vaccine uptake. To this end, we conducted a systematic review and meta-analysis of the existing literature to address these key issues.

Methods

An extensive and systematic review of the literature was conducted on the following databases: Medline, PubMed, Cochrane Library, EMBASE, Global Health, ProQuest Public Health, and JSTOR. Searches were conducted using various combinations of keywords and Medical Subject Heading (MeSH) terms including “papillomavirus infections,” “virus diseases,” “uterine cervical neoplasms,” “papillomavirus vaccines,” “immunization,” and “Canada.”

Inclusion and exclusion criteria

Articles were included if they were in the English language, with a publication date of 2006 and later, were publically available, included human populations in Canada, involved an HPV vaccination intervention, and provided quantitative data regarding levels of HPV vaccination uptake. Articles involving case reports or case series studies were excluded.

Data extraction and quality assessment

Three steps were involved in the data extraction process. First, duplicates were removed and the remaining articles were screened by their titles and abstracts for relevance. Second, full-text articles were reviewed by two of the authors (OO and RM) to assess their conformity with the study inclusion criteria. Third, the selected articles underwent methodological quality review by using a modified Newcastle-Ottawa Scale (NOS). Using the modified NOS, each study was assessed and scored under two domains: selection (representativeness of the vaccinated group, ascertainment of vaccination status, demonstration that outcome of interest was absent at start of study) and outcome (assessment of outcome, adequacy of follow-up of vaccinated group). Any disagreement between the two authors (OO and RM) was further discussed to reach a resolution, and if required, a third author (CN) provided the tie-breaking vote. Reference management and duplication were handled using the reference manager, Mendeley. Data extracted from the studies included vaccination rates, study design, participants’ size, participants’ demographic information, program location, period of vaccination, as well as key conclusions of the study. Data were collected into a common folder and shared between the researchers on Google Drive. Spreadsheets were constructed based on screening outcomes and data extraction from the final articles.

Statistical analysis

The meta-analysis was carried out using the MedCalc analytic software version 16.2.1 (MedCalc Software, Ostend, Belgium). Weighted pooled vaccination rates were obtained with the aid of a random effects model using the Freeman-Tukey transformation. Statistical analysis for heterogeneity was performed using Higgins I-squared (I^2). This allowed us to determine the proportion of observed variation in vaccination rates across studies that could be attributed to heterogeneity. A value of $I^2 >75\%$ was considered a statistical indicator of the likely presence of heterogeneity. Suspected heterogeneity was further explored using a subgroup analysis. The factors to be explored in the subgroup analysis were determined apriori and they included age (>18 vs. 18 years or younger), sex (male vs. female), type of program (community-based vs. school-based) and funding (publicly funded vs. out of pocket). The vaccination rates were pooled for the respective subgroups using a random effects model, with the subsequent computation of rate ratios and corresponding 95% confidence intervals (CIs), using the MedCalc analytic software version 16.2.1. A funnel plot was used to assess the risk of publication bias for the included studies.
Results

Study selection

In the primary search, we found 718 peer-reviewed articles that were related to our topic. Of those, 205 were removed as duplicates. Of the remaining 513 articles, 366 were excluded after the title and abstract screening. Of the 147 articles that were assessed through full-text screening, 12 articles containing 624,604 participants remained. These articles underwent methodological quality review [Figure 1] and were included for analysis in our study.

Study characteristics

Of the 12 studies, [26–37] eight were longitudinal and four were cross-sectional. [26,30,36,37] Sample size ranged from 105 to 223,051 participants. [26,27] Two studies [26,28] involved participants over 18 years old, who had to pay out of pocket to receive their HPV vaccination, whereas participants in the other ten studies were younger than or equal to 18 years old and their HPV vaccination was publicly funded. Two studies involved male and female participants [29,32] while the remaining ten studies only used female participants. One study [21] was community based, six were school based [27–29,35–37] and five were both community and school based. Overall, the risk of bias was found to be low across all studies. A summary table of the key characteristics of the included studies is shown in Table 1.

Vaccine uptake

Of the 12 studies, four were conducted in the province of Ontario, two in Quebec, two in Alberta, two in British Columbia, one in Prince Edward Island, and one in Nova Scotia. The reported vaccination uptake rates varied widely among the 12 studies, with the lowest reported rate at 12.40% [20] and the highest at 88.20%. [26] The pooled vaccination uptake using a random effects model was 55.91% (95% CI 44.87–66.65), with the test for heterogeneity: $I^2 = 99.98$ ($P < 0.0001$). A summary of the pooled meta-analysis is shown in Table 2.

Subgroup analysis

A subgroup analysis was conducted stratifying by a number of variables (age, sex, type of program, and method of payment) determined apriori. The pooled estimate for each subgroup was obtained using a random effects model after which rate ratios (with 95% CIs and P values) were calculated using the MedCalc analytic software to assess differences in vaccination rate between the predetermined variables. [21] The subgroup analysis by age found the HPV vaccination uptake for participants younger than or equal to 18 years old to be 66.95% (95% CI: 55.00–77.89). This rate was significantly higher than the one observed for participants older than 18 years, 13.58% (95% CI 10.93–16.46). Participants younger than or equal to 18 years were 4.92 times more likely to be vaccinated for HPV compared to those over the age of 18 years ($P < 0.0001$; 95% CI 4.15–5.82). Vaccination uptake for females was higher 57.23% (95% CI: 45.40–68.66) when compared to that of males 47.01% (95% CI: 0.82–97.75). Females were 1.22 times more likely to be vaccinated for HPV compared to males ($P < 0.0001$; 95% CI 1.14–1.30).

The subgroup analysis also showed that HPV vaccine uptake among school-based programs was significantly higher 69.62% (95% CI 57.27–80.68) than community-based programs 18.66% (95% CI 6.66–34.92). Participants in school-based programs were 3.73 times more likely to be vaccinated for HPV compared to those in community-based programs ($P < 0.0001$; 95% CI 3.58–3.89). Further, there were notable differences in the levels of HPV vaccination uptake when the source of funding was considered. Vaccination uptake for publicly funded programs was significantly higher 66.95% (95% CI 55.00–77.89) when compared to 13.58% (95% CI 10.93–16.46) for programs where participants had to pay out of pocket. Participants in publically funded programs were 4.92 times more likely to be vaccinated for HPV compared to those who had to pay out of pocket ($P < 0.0001$; 95% CI 4.15–5.82). A summary of the results for the subgroup analysis is shown in Table 3.

Discussion

This systematic review was conducted to independently determine the HPV vaccine uptake in the Canadian population and to examine the various factors influencing vaccine uptake in different subpopulations that may require tailored interventions. Our pooled analysis showed the HPV vaccination uptake in Canada to be 55.91%, which is well below the >85% target set by the Canadian government. [10]

It has been well documented that receiving the HPV vaccine at younger ages (10–14 years) is more advantageous as it offers earlier protection against infection and better immune response to the vaccine when compared to older women and men. [38] Unsurprisingly, our study
First author, year	Purpose of the study	Study design	Sample size and characteristics	Study setting and location	Vaccination uptake (%)	Key findings
Akhen, 2015	To determine	Cross-sectional	105 females, Age range: 13-25 years	Community-based Ottawa, Ontario	12.4	Higher risk young women have high levels of HPV infection/vaccine awareness. Lack of knowledge with regard to HPV infection consequences.
Burchell, 2014	To study	Longitudinal	482 females, Mean age: 21 (18-26) years	School-based Montreal, Quebec	12.0	88% of women unvaccinated. 67% dyads harbored HPV. Condom use limited spread of HPV.
Krawczyk, 2015	To identify	Longitudinal	774 females, Mean age: 9.5 years	School-based Quebec	88.2	HPV vaccination decision-making among parents is a multifactorial process. HBM adds value to the study of decision-making. Parents who perceived their daughter to be susceptible to HPV were more likely to have vaccinated their daughter. Publicly funded, school-based HPV immunization overcome financial and accessibility barriers. Removing financial and accessibility barriers may not be sufficient for ensuring high HPV vaccine coverage.
Lim, 2014	To evaluate	Longitudinal	111,798 females, Mean age: 13 years	School and community-based Ontario	81.5	HPV vaccine uptake increased among the targeted population in Alberta. Females aged 9-14 years had the highest HPV vaccine uptake. Females aged 10-11 years had the highest uptake rates for the three doses of the publicly funded vaccine.
Liu, 2016	To determine	Longitudinal	169,259 males and females Mean age: 17.5 years Age range: 15-26 years	School and community-based Alberta	31.3	HPV vaccine uptake increased among the targeted population in Alberta. Females aged 9-14 years had the highest HPV vaccine uptake. Females aged 10-11 years had the highest uptake rates for the three doses of the publicly funded vaccine.
McClure, 2015	To determine	Longitudinal	1440 males and females Mean age: 11.5 years (Grade 6 estimate)	School-based Prince Edward, Island	79.0 male 85.0 female	Greater proportion of girls (85%) received all three doses of the HPV vaccine compared to boys (79%).

Contd...
First author, year	Purpose of the study	Study design	Sample size and characteristics	Study setting and location	Vaccination uptake (%)	Key findings
McClure, 2015	If there were any changes in the girls’ recent HPV vaccine uptake relative to previous years	Cross-sectional	35,592 females. (school=26,304; community=9288)	School and community-based Calgary, Alberta	75.0 school	Students in the English Language School Board were twice as likely to receive all 3 HPV vaccine doses (OR=2.14, 95% CI: 1.25-3.66) compared to the students in the French Language School Board doses
Musto, 2013	To determine Difference in HPV vaccine uptake between the two service delivery models, “in-school” and “community” If SES was a contributing factor	Cross-sectional	2025 females. Mean age: 11 years	School-based British Columbia	65.1	Service delivery models make a difference in HPV vaccination uptake and create inequities in disease prevention based on socioeconomic status
Ogilvie, 2010	To determine Parental factors associated with acceptance of the HPV vaccine	Cross-sectional	223,051 females. Mean age: 11 years	School-based British Columbia	61.7	Factors associated with increased likelihood of HPV vaccination
Ogilvie, 2015	To evaluate Impact of the HPV vaccine program on cervical intraepithelial neoplasia trends in young women aged 15-22 years before and after its implementation	Longitudinal	2519 females. Mean age: 13 years	School- and community-based Ontario	56.6	Significant reduction in CIN21 lesions in young women aged 15-17 years in British Columbia after the introduction of the HPV vaccine
Smith, 2011	To determine HPV vaccine use. Factors associated with the HPV vaccination of young girls	Longitudinal	3219, females. Mean age: 13 years	School- and community-based Halifax, Nova Scotia	74.2	Girls in the lowest income quintile were the least likely to complete the three-dose HPV vaccine regimen
Whelan, 2014	To explore Activities and strategies utilized in PHNs’ practice in fostering youth, parental and school engagement in the HPV immunization program	Longitudinal	2519 females. Mean age: 13 years	School- and community-based Ontario	56.6	Program delivery modified to improve HPV vaccine completion in vulnerable populations
Table 1: Contd...

First author, year	Purpose of the study	Study design	Sample size and characteristics	Study setting and location	Vaccination uptake (%)	Key findings
Wilson, 2013	To study	Cross-sectional	74,340, females Mean age: 13 years (Grade 8)	School-based Ontario	59.0	Thank you notes to school teachers
	The provincial HPV vaccine uptake.					Completion of the HPV series was associated with vaccine consents being returned to the teacher and a public health nurse being assigned to a school
	The source of denominator data used to estimate the vaccine program’s target population					HPV vaccine coverage has improved since the program was initiated in 2007
	The feedback received on the local methods used for HPV vaccine coverage assessment					However, only 59% of grade eight girls in Ontario completed the HPV vaccine series in the program’s 3rd year
						All Health Units should be encouraged to include girls attending independent schools, home schools, and nonparticipating schools in their denominators. Excluding such schools falsely raises coverage estimates

HPV=Human papillomavirus, SES=Socioeconomic status, HBM=Health belief model, OR=Odds ratio, CI=Confidence interval

Table 2: Pooled meta-analysis

Study	Sample size	HPV vaccine uptake (%)	95% CI	
Akhen	105	12.40	6.77-20.26	
Krawczyk	774	88.20	85.72-90.39	
Lim	111,798	81.50	81.27-81.73	
Liu	169,259	31.30	31.08-31.52	
McClure	Male	725	79.00	75.85-81.91
	Female	715	85.00	82.17-87.54
Musto	School	26,304	75.00	74.47-75.52
	Community	9288	36.00	35.02-36.99
Ogilvie	2025	65.10	62.98-67.19	
Ogilvie	22,305	61.70	61.50-61.90	
Smith	2519	56.60	54.64-58.55	
Whelan	3219	74.20	72.65-75.70	
Wilson	74,340	59.00	58.65-59.35	
Burchell	482	12.00	9.24-15.24	
Total (random effects)	624,604	55.91	44.87-66.65	

HPV=Human papillomavirus, OR=Odds ratio, CI=Confidence interval

found that participants younger than or equal to 18 years old were 4.92 times more likely to be vaccinated for HPV compared to those over the age of 18. However, several clinical trials have shown that older girls and women, who are most at risk of infection (18–30 years), also have a strong immune response to the HPV vaccine, inducing high virus-neutralizing antibody titers.[39,40] Consequently, implementation of programs that improve the levels of HPV vaccine uptake among older girls and women could prove very beneficial to Canadian women and help prevent a significant burden of the HPV-related diseases (including cervical cancer) on the nation.

Our findings showed that females were 1.22 times more likely to be vaccinated against HPV compared to males. In Canada, HPV vaccination for females was introduced in 2006 and for males in 2013.[8] As of 2015, only four provinces (Alberta, Nova Scotia, British Columbia, and Prince Edward Island) offered free vaccination to males.[9] This might help explain the observed gender disparity in our study. While the National Advisory Committee on Immunization (NACI) recommends HPV vaccination be extended to males aged 9–26, they also advise that the benefit of expanding HPV immunization to include males be compared to improving uptake amongst females to 85% in areas where uptake is <85%.[41] In addition, as many sectors are focusing on the direct association of
HPV with cervical cancer, vaccination programs across the country are largely female oriented. These developments, alongside concerns regarding the financial cost, have slowed progress toward achieving gender equity in HPV vaccination among Canadians.

Individuals participating in school-based programs were 3.73 times more likely to be vaccinated against HPV compared to community-based programs. This is similar to the findings in previous studies showing that school-based programs have higher rates of vaccine uptake in countries such as Spain, Scotland, Australia, and the USA. It was reported that HPV vaccines delivered through schools in Australia and New Zealand had a high and relatively balanced uptake across socioeconomic groups, suggesting that school-based delivery can help reduce inequities in HPV vaccine delivery. Moreover, school-based programs are known to provide an opportunity for children as well as their parents to be educated and make informed decisions about the importance of HPV vaccination.

Participants in publicly funded programs were 4.92 times more likely to be vaccinated for HPV compared to those who had to pay out of pocket. This finding is not surprising as a systematic review conducted among published articles in the USA found higher HPV vaccine uptake among individuals who had health insurance (private or public) as opposed to those who did not, suggesting that fee for service is negatively associated with vaccination uptake. Mathematical models of the clinical and economic impact of publicly funded HPV vaccination programs have demonstrated significant clinical and cost benefits. However, these studies assumed high levels of vaccine uptake (>70%), and therefore, the clinical and economic impact of the HPV vaccine may have been overestimated.

The HPV vaccine uptake rates in Canada appear to be much lower than in many other developed countries, which have reported coverage rates of > 70%. The reasons for this discrepancy are multifactorial. For instance, in 2013, the childhood National Immunization Coverage Survey (cNICS) found that approximately 75% of Canadian girls aged 12–14 years were immunized against HPV. By comparison in 2014, the adult NICS found Canadian females aged 18–26 and 27–45 years to have HPV vaccination uptakes of 44.7% and 8.3%, respectively. The dramatic fall in vaccination rates with increasing age among females may be attributed to the initial restriction of HPV vaccination programs to females in grades 4–8 (ages 10–14 years) in Canada. By 2012, the NACI modified their HPV vaccination guidelines to include a larger age group (9–26 years). However, despite these changes, our study results demonstrate that disparities in HPV vaccination uptake still persist by age group and setting as older cohorts, who are already out of school, are expected to pay out of pocket, potentially making the HPV vaccine unaffordable for them.

Limitations

Our study assessed the uptake of a relatively new vaccine, and as such, the amount of available data in the literature is scarce. Analysis of data showed significant heterogeneity that could be attributed to methodological and/or clinical variations in the characteristics of the included studies. There was little or no data available on the variation of vaccine uptake by ethnicity, especially with regards to the Aboriginal population in Canada. Furthermore, changing patterns of vaccine delivery, scheduling, and settings resulted in different uptake rates at different time periods. Finally, it is also possible that some of the findings may be due to factors unique to each study and could not be identified by means of a systematic review or meta-analysis.

Recommendations

Based on the findings of our systematic review and meta-analysis, we recommend expanding the HPV vaccination uptake in Canada.
vaccination programs to include young males and older females, subsidizing the costs for the vaccination and developing a national immunization surveillance program based on provincial databases to better determine the levels of HPV vaccination uptake within the Canadian population. Better surveillance will help identify at-risk subpopulations and yield epidemiological data that guide effective use of resources and inform tailoring of vaccination interventions.

Conclusions
Due to the relatively low number of studies and lack of long-term results, no firm conclusions can be drawn. To prevent infections and reduce the burden of HPV-related disease (including cervical cancer), communities should be made aware and encouraged to vaccinate their children. This study found that HPV vaccination rates were higher for females aged 18 years or younger, who were part of school based, publically funded program. Better surveillance and additional research are needed in this area. The future success of the HPV immunization programs in Canada will depend on the concerted efforts and commitment of researchers, healthcare professionals, the public, and the provincial and federal government.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

Received: 25 Jan 17 Accepted: 06 Nov 17
Published: 14 Sep 17

References
1. Carter JR, Ding Z, Rose BR. HPV infection and cervical disease: A review. Aust N Z J Obstet Gynaecol 2011;51:103-8.
2. Dunne EF, Unger ER, Sternberg M,McQuillan G, Swan DC, Patel SS, et al. Prevalence of HPV infection among females in the United States. JAMA 2007;297:813-9.
3. Garland SM. Human papillomavirus update with a particular focus on cervical disease. Pathology 2002;34:213-24.
4. World Health Organization. HPV and Cervical Cancer: Key Facts 2015. Available from: http://www.who.int/mediacentre/factsheets/fs380/en/. [Last accessed on 2016 Apr 14].
5. Canadian Cancer Society’s Advisory Committee on Cancer Statistics. Canadian Cancer Statistics. Toronto, ON: Canadian Cancer Society; 2016. Available from: http://www.cancer.ca/en/cancer-information/cancer-type/cervical/statistics/?region=on. [Last accessed on 2016 Jun 16].
6. Scheurer ME, Tortolero-Luna G, Adler-Storthz K. Human papillomavirus infection: Biology, epidemiology, and prevention. Int J Gynecol Cancer 2005;15:727-46.
7. Crum CP, Abbott DW, Quade BJ. Cervical cancer screening: From the Papanicolaou smear to the vaccine era. J Clin Oncol 2003;21 10 Suppl: 22A-30s.
8. Crum CP, Riverra MN. Vaccines for cervical cancer. Cancer J 2003;9:368-76.
9. CTV News. Ontario Extending Free HPV Vaccines to Boys; 21 April, 2016. Available from: http://www.ctvnews.ca/health/ontario-extending-free-hpv-vaccines-to-boys-1.2869481. [Last accessed on 2016 Apr 23].
10. Cancer System Performance. Human Papillomavirus (HPV) Vaccination; 2016. Available from: http://www. systemperformance.ca/cancer-control-domain/prevention/ hpv-vaccination/. [Last accessed on 2016 Apr 24].
11. Rogers C, Smith RJ. Examining Provincial HPV Vaccination Schemes in Canada: Should We Standardise the Grade of Vaccination or the Number of Doses? Int Sch Res Notices 2015;2015:170236.
12. Pruitt SL, Schootman M. Geographic disparity, area poverty, and human papillomavirus vaccination. Am J Prev Med 2010;38:525-33.
13. Kessels SJ, Marshall HS, Watson M, Brauman‑Mayer AJ, Reuzel R, Tooher RL. Factors associated with HPV vaccine uptake in teenage girls: A systematic review. Vaccine 2012;30:3546-56.
14. Drolet M, Boily MC, Greenaway C, Deeks SL, Blanchette C, Laprise JF, et al. Sociodemographic inequalities in sexual activity and cervical cancer screening: Implications for the success of human papillomavirus vaccination. Cancer Epidemiol Biomarkers Prev 2013;22:641-52.
15. Cerigo H, Macdonald ME, Franco EL, Brassard P. Inuit women’s attitudes and experiences towards cervical cancer and prevention strategies in Nunavik, Quebec. Int J Circumpolar Health 2012;71:17996.
16. Gainforth HL, Cao W, Latimer-Cheung AE. Determinants of human papillomavirus (HPV) vaccination intent among three Canadian target groups. J Cancer Educ 2012;27:717-24.
17. Kiely M, Sauvageau C, Dubé É, Deceuninck G, De Wals P. Human papilloma virus: Knowledge, beliefs and behavior of Quebec women. Can J Public Health 2011;102:303-7.
18. Meghani H, Dubey V, Kadri O, Mathur A, Cameron J, Beckermann K. Factors contributing to uptake of the publicly-funded HPV vaccine in Toronto. Int J Infect Dis 2010;14:E452.
19. Duval B, Gilca V, McNeil S, Dobson S, Money D, Gemmill IM, et al. Vaccination against human papillomavirus: A baseline survey of Canadian clinicians’ knowledge, attitudes and beliefs. Vaccine 2007;25:7841-7.
20. Wells GA, Shea B, O’Connell D, Peterson J, Welch V, Losos M, et al. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomized Studies in Meta-Analyses; 2009. Available from: http://www.ohrica/programs/clinical_epidemiology/oxfordhtm. [Last cited on 2009 Oct 19].
21. MedCalc. Easy-to-Use Statistical Software. Available from: https://www.medcalc.org/calc/. [Last accessed on 2016 Apr 14].
22. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials 1986;7:177-88.
23. Freeman MF, Tukey JW. Transformations related to the angular and the square root. Ann Math Stat 1950;21:607-11.
24. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med 2002;21:1539-58.
25. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ 2003;327:557-60.
26. Ahken S, Fleming N, Dumont T, Black A. HPV awareness in higher-risk young women: The need for a targeted HPV catch-up vaccination program. J Obstet Gynaecol Can 2015;37:122-8.
27. Ogilvie GS, Naus M, Money DM, Dobson SR, Miller D, Krajden M, et al. Reduction in cervical intraepithelial neoplasia in young women in British Columbia after introduction of the HPV vaccine: An ecological analysis. Int J Cancer 2015;137:1931-7.
28. Bird, et al.: HPV vaccination uptake in Canada

29. McClure CA, MacSwain MA, Morrison H, Sanford CJ. Human papillomavirus vaccine uptake in boys and girls in a school-based vaccine delivery program in Prince Edward Island, Canada. Vaccine 2015;33:1786-90.

30. Musto R, Siever JE, Johnston JC, Seidel J, Rose MS, McNeil DA. Social equity in Human Papillomavirus vaccination: A natural experiment in Calgary Canada. BMC Public Health 2013;13:640.

31. Lim WT, Sears K, Smith LM, Liu G, Lévesque LE. Evidence of effective delivery of the human papillomavirus (HPV) vaccine through a publicly funded, school-based program: The Ontario Grade 8 HPV Vaccine Cohort Study. BMC Public Health 2014;14:1029.

32. Liu XC, Bell CA, Simmonds KA, Russell ML, Svenson LW. HPV Vaccine utilization, Alberta 2008/09-2013/14 School year. BMC Infect Dis 2016;16:15.

33. Smith L, Brassard P, Kwong J, Deeks S, Ellis A, Lévesque, L. Factors associated with initiation and completion of the quadrivalent human papillomavirus vaccine series in an Ontario cohort of grade 8 girls. BMC Public Health 2011;11:645.

34. Whelan NW, Steenbeek A, Martin-Misener R, Scott J, Smith B, D’Angelo-Scott H. Engaging parents and schools improves uptake of the human papillomavirus (HPV) vaccine: Examining the role of the public health nurse. Vaccine 2014;32:4665-71.

35. Krawczyk A, Knäuper B, Gilca V, Dubé E, Perez S, Joyal-Desmarais K, et al. Parents’ decision-making about the human papillomavirus vaccine for their daughters: I. Quantitative results. Hum Vaccin Immunother 2015;11:322-9.

36. Ogilvie G, Anderson M, Marra F, McNeil S, Pielak K, Dawar M, et al. A population-based evaluation of a publicly funded, school-based HPV vaccine program in British Columbia, Canada: Parental factors associated with HPV vaccine receipt. PLoS Med 2010;7:e1000270.

37. Wilson SE, Harris T, Sethi P, Fediurek J, Macdonald L, Deeks SL. Coverage from Ontario, Canada’s school-based HPV vaccine program: The first three years. Vaccine 2013;31:757-62.

38. Schwartz TF, Spaczynski M, Schneider A, Wysokić J, Galaj A, Perona P, et al. Immunogenicity and tolerability of an HPV-16/18 AS04-adjuvanted prophylactic cervical cancer vaccine in women aged 15-55 years. Vaccine 2009 22;27:581-7.

39. Muñoz N, Manalastas R Jr, Pitisuttithum P, Tresukosol D, Monsonego J, Ault K, et al. Safety, immunogenicity, and efficacy of quadrivalent human papillomavirus (types 6, 11, 16, 18) recombinant vaccine in women aged 24-45 years: A randomised, double-blind trial. Lancet 2009;373:1949-57.

40. Einstein MH, Baron M, Levin MJ, Chatterjee A, Edwards RP, Zepp F, et al. Comparison of the immunogenicity and safety of Cervarix and Gardasil human papillomavirus (HPV) cervical cancer vaccines in healthy women aged 18-45 years. Hum Vaccin 2009;5:705-19.

41. Eggerton L. Provinces weighing HPV vaccination of boys. CMAJ 2012;184:E250-1.

42. Brisson M, Van de Velde N, De Wals P, Boily MC. The potential cost-effectiveness of prophylactic human papillomavirus vaccines in Canada. Vaccine 2007;25:5399-408.

43. Hopkins TG, Wood N. Female human papillomavirus (HPV) vaccination: Global uptake and the impact of attitudes. Vaccine 2013;31:1673-9.

44. Brotherton JM, Deeks SL, Campbell-Lloyd S, Misrahi A, Passaris I, Peterson K, et al. Interim estimates of human papillomavirus vaccination coverage in the school-based program in Australia 2008;32:457-61.

45. Blakely T, Kvizhinadze G, Karvonen T, Pearson AL, Smith M, Wilson N. Cost-effectiveness and equity impacts of three HPV vaccination programmes for school-aged girls in New Zealand. Vaccine 2014;32:2645-56.

46. Kim JJ, Brisson M, Edmunds WJ, Goldie SJ. Modeling cervical cancer prevention in developed countries. Vaccine 2008;26 Suppl 10:K76-86.

47. Dasbach EJ, Elbasha EH, Insinga RP. Mathematical models for predicting the epidemiologic and economic impact of vaccination against human papillomavirus infection and disease. Epidemiol Rev 2006;28:88-100.

48. Goldie SJ, Kohli M, Grima D, Weinstein MC, Wright TC, Bosch FX, et al. Projected clinical benefits and cost-effectiveness of a human papillomavirus 16/18 vaccine. J Natl Cancer Inst 2004;96:604-15.

49. Hughes JP, Garnett GP, Koutsky L. The theoretical population-level impact of a prophylactic human papilloma virus vaccine. Epidemiology 2002;13:631-9.

50. Elbasha EH, Dasbach EJ, Insinga RP. Model for assessing human papillomavirus vaccination strategies. Emerg Infect Dis 2007;13:28-41.

51. Statistics Canada. Vaccine Coverage in Canadian Children: Highlights from the 2013 Childhood National Immunization Coverage Survey (cNICS). Available from: http://www. healthycanadians.gc.ca/publications/healthy-living-vie-saine/ immunization-coverage-children-2013-couverture-vaccinale-enfants/index-eng.php. [Last updated on 2015 Jul 21; Last accessed on 2016 Apr 25].

52. Statistics Canada. Vaccine uptake in Canadian adults: Results from the 2014 Adult National Immunization Coverage Survey (aNICS). Available from: http://www. healthycanadians.gc.ca/publications/ healthy-living-vie-saine/ vaccine-coverage-adults-results-2014- resultats-couverture-vaccinale- adultes/index-eng.php. [Last updated on 2016 Feb 02; Last accessed on 2016 Apr 25].