The genus *Rumex* (Polygonaceae): an ethnobotanical, phytochemical and pharmacological review

Jing-Juan Li¹,², Yong-Xiang Li¹,², Na Li¹, Hong-Tao Zhu¹, Dong Wang¹ and Ying-Jun Zhang¹,³*

Abstract
Rumex L., a genus in Polygonaceae family with about 200 species, is growing widely around the world. Some *Rumex* species, called "sorrel" or "dock", have been used as food application and treatment of skin diseases and hemostasis after trauma by the local people of its growing areas for centuries. To date, 29 *Rumex* species have been studied to contain about 268 substances, including anthraquinones, flavonoids, naphthalenes, stilbenes, diterpene alkaloids, terpenes, lignans, and tannins. Crude extract of *Rumex* spp. and the pure isolates displayed various bioactivities, such as antibacterial, anti-inflammatory, antitumor, antioxidant, cardiovascular protection and antiaging activities. *Rumex* species have important potential to become a clinical medicinal source in future. This review covers research articles from 1900 to 2022, fetched from SciFinder, Web of Science, ResearchGate, CNKI and Google Scholar, using "*Rumex*" as a search term ("all fields") with no specific time frame set for the search. Thirty-five *Rumex* species were selected and summarized on their geographical distribution, edible parts, traditional uses, chemical research and pharmacological properties.

Keywords: Polygonaceae, *Rumex* L., Anthraquinones, Phenolics, Pharmacological properties

1 Introduction
Rumex L., the second largest genus in the family Polygonaceae, with more than 200 species, is mainly distributed in the northern temperate zone [1]. It is mostly perennial herbs with sturdy roots, paniculate inflorescences, and triangular fruits that are enclosed in the enlarged inner perianth. The name *"Rumex"* originated from the Greek word—"dart" or "spear", alluding to the shape of leaves [2]. The other explanation from Rome—"rums" alludes to the function that the leaves could be sucked to alleviate thirst [3]. *R. acetosa*, a typical vegetable and medicinal plant, whose name 'acetosa' originated from the Latin word "acetum", described the taste of the plant as vinegar. Currently, many oxalic acids have been reported from *Rumex*, verifying its sour tastes [4].

Rumex species have had a valued place as global folk medicine, e.g., in Southern Africa, America, India, China, and Turkey. The earliest medicinal record of *Rumex* spp. in China was in "Shennong's Herbal Classic", in which *Rumex* was recorded for the treatment of headed, scabies, fever, and gynecological diseases. Roots of *Rumex*, also called dock root, have been reported for its therapeutic capacity of bacterial infections, inflammatory, tumor and cardiovascular diseases [5, 6]. Recently, pharmacological study showed that *Rumex* species displayed apparent antibacterial and antifungal effects [7], and were employed in the management of skin scabies and inflammation [8, 9]. The processed *Rumex* exhibited different chemical profiles and bioactivities [10, 11]. Leaves, flowers and seeds of some *Rumex* plants are edible as vegetables, while in some regions, the *Rumex* plants are...
regarded as noxious weeds because oxalic acid makes them difficult to be digested [12].

To date, 268 components from 29 Rumex species have been reported. Anthraquinones, flavonoids, tannins, stilbenes, naphthalenes, diterpene alkaloids, terpenes, and lignans were as the main chemical components, with a broad spectrum of pharmacological activities, such as anti-inflammatory, antioxidant, antibacteria, antitumor, and antidiabetic activities [13–17]. In addition to important role of Rumex in the traditional applications, researchers also regard Rumex as a potential effective medicine of many diseases. This article has reviewed a comprehensive knowledge on the distribution, traditional uses, chemistry and bioactivity progress of Rumex, and their therapeutic applications and utilizations were provided.

2 Geographical distributions, local names, parts used and traditional uses

The genus Rumex with more than 200 species, is distributed widely in the world and has been used traditionally in many regions, e.g., Asia, America, Europe and other continents. Many of them known as "sorrel" or "dock" have a long history of food application and medicinal uses for the treatment of skin diseases, and hemostasis after trauma by the local people of its growing areas. For example, R. acetosa is commonly used medicinally for diuretics around the world [4]. R. maritimus and R. nepalensis, used as laxatives, have long-term medicinal applications in India as substitutes for Rheum palmatum (Polygonaceae), which is usually used to regulate the whole digestive system. Moreover, Indians have also recorded nine Rumex plants as astringent agents, including R. acetosa, R. acetosella, R. crispus, R. dentatus, R. hastatus, R. maritimus, R. nepalensis, R. scutatus, and R. vesicarius [18]. All seven species included R. acetosa, R. trisetifer, R. patientia, R. crispus, R. japonicus, R. dentatus and R. nepalensis, called "jinbuhuan", have been used for hemostasis remediation in China [19]. R. thrysiflorus, rich in nutrition, has been used as food by Europeans in history and as folk medicine due to its obvious anti-inflammatory activity [20]. R. lunaria has been used to treat diabetes by Canadian medicine [16]. The leaves of more than 14 Rumex spp., such as R. acetosa, R. hastatus, R. thrysiflorus, R. aquaticus, R. crispus, R. gmelini, R. patientia, R. vesicarius, R. ecklonianus, R. abyssinicus, R. confluentus, R. hymenosepalus, R. alpinus and R. sanguineus (Table 1) could be eaten freshly or cooked as vegetables in the folk of many places [5, 6]. In Table 1, the geographical distributions, local names, parts used and traditional uses of 35 Rumex species are summarized.

3 Chemical constituents

To date, 268 compounds including 56 quinones (1–56), 57 flavonoids (57–113), 25 tannins (114–138), 6 stilbenes (139–144), 22 naphthalenes (145–166), 6 terpenes (167–172), 3 diterpene alkaloids (173–175), 14 lignans (176–189) and 79 other types of components (190–268) were isolated and reported from 29 Rumex species (Table 2).

3.1 Quinones

Quinones are widely found in Rumex, particularly accumulated in the roots. 56 quinones (Fig. 1) including anthraquinones, anthranones, and seco-anthraquinones and their glycosides and diams were isolated and identified from more than 17 Rumex species (Table 2). Among them, anthraquinone O- and C-glycosides with glucose, galactose, rhamnose, and 6-hydroxyacetlated glucose as commonly existing sugar moieties, were normally found in Rumex. Three anthraquinones, chrysophanol (1), emodin (8) and physcion (18) are commonly used indicators to evaluate the quality of Rumex plants [22]. Some new molecules were also reported. For example, xanthorinin-5-methylether (30) was isolated from R. patientia for the first time [23, 24], and two new antioxidant anthraquinones, obtusifolate A (45) and B (46) were isolated from R. obtusifolius [25].

The anthranones often existed in pairs of enantiomers, whose meso-position is commonly connected with a C-glycosyl moiety. The enantiomers, rumejapсидes A (21) and B (22), E (25) and F (26), G (27) and H (28) were reported from R. dentatus, R. japonicus, R. nepalensis and R. patientia [26–28]. Three hydroxyanthrones, chrysophanol anthrone (7), emodin anthrone (17), physcion anthrone (20), whose C-10 were reduced as an alphatic methylene, were isolated from the roots of R. acetosa for the first time [29], while a new anthrone, rumeoxe (31) was reported from the roots of R. crispus [30]. Two anthranones, 10-hydroxyaloins A (39) and B (40) were reported from Rumex for the first time [31]. A new 8-ionized hydroxylated 9,10-anthraquinone namely, rumpictusoide A (56) was isolated from the whole plant of R. pictus [183]. Moreover, two new oxanthrone C-glycosides 6-methoxyl-10-hydroxyaloins A (41) and B (42) were isolated from the roots of R. gmelini [32].

Seco-anthraquinones are oxidized anthraquinones with a loop opened at C-10, resulting in the fixed planar structure of anthraquinone destroyed and causing of a steric hindrance between the two left benzene rings. So far, only two seco-anthraquinone glucosides, nepalensides A (49) and B (50) were reported from the roots of R. nepalensis [33].
No.	Species	Local names	Country	Parts used	Traditional uses	Ref
R1	*Rumex acetosa* L	Sorrel, garden sorrel, common dock, broad-leaved sorrel, English sorrel, sheep's sorrel, red sorrel, sour weed, field sorrel	South Africa, North America, Europe, Yemen, Czech Republic, Korea, Britain, Ireland, China, Hungary, Romania and Bulgaria	Leaf, flower, whole plant, fruit, root and seed	Gastrointestinal disorders (constipation, cramping, diarrhea, tenesmus), antiscorbutic, hemostasis, dermatological, tumors, cramping, sore throats, warts, dysentery, gonorrhea, ulcer, scabies, kidney diseases (diuretic), fever, worm, abscesses. Seed: astringent	[4, 18, 19, 57, 135, 192, 198]
R2	*R. hastatus* D. Don	Heartwing sorrel, hastate-leaved dock, sour dock, khatmial	China, India, Nepal, Bhutan, Pakistan and Afghanistan	Leaf, flower, seed, root, whole plant, anile part and contemporary tuber	Astringent, sexually transmitted diseases (AIDs), constipation, tonic agent, diuretic, rheumatism, dermatological, piles, bleeding of the lungs, cough, headache, fever, blood pressure, abdominal pain, sore throat, tonsillitis diseases, worm, wounds	[18, 58, 191, 195]
R3	*R. thyrsiflorus* Fingerh	Compact dock, thyrse sorrel	China, Kazakhstan and Russia, and Europe	Leaf	For food	[59, 198]
R4	*R. aquaticus* L	Red dock, western dock	China, Japan, Kazakhstan, Russia and Europe	Leaf	Disinfection, constipation, fever, diarrhea, stomach problems, edema, jaundice	[60, 201]
R5	*R. Chalepensis* Mill	–	Asia, Middle East, Morocco and Africa	–	–	[40, 61, 202]
R6	*R. crispus* L	Curled dock, curly dock, yellow dock, narrow-leaf dock	Asia, Europe, North America, Northern Africa, Colombia and India	Leaf, root, stem, seed	Antidysentery, hemostasis, ulcers, cough. Root: laxative, astringent, skin eruptions, skin diseases, scrofula, scurvy, intermittent fevers, congested liver and jaundice. Seed: astringent	[18, 19, 62, 195, 197]
R7	*R. dentatus* L	Toothed dock	Asia, Middle East and Southeast Europe and Pakistan	Whole plant	Cutaneous disorders, stomach problems. Plant: astringent, hemostasis	[18, 19, 28, 63, 195]
R8	*R. gmelini* Turcz. ex Ledeb	–	China, Japan, North Korea, Russia, Mongolia and Siberia	Leaf	Tumor, bacterial infection	[31, 64]
R9	*R. japonicus* Houtt	–	China, Japan, North Korea and Russia	Whole plant	Hemostasis, fever, constipation	[19, 65, 199]
R10	*R. maritimus* L	Golden dock	Bangladesh, India, North Africa and America	Leaf, root and seed	Leaf and root: laxative; externally applied to burns. Seed: aphrodisiac	[18, 66]
No	Species	Local names	Country	Parts used	Traditional uses	Ref
----	--------------------------	--	---	---------------------------	--	-----------
R11	*R. nepalensis* Spreng	Leaf, root and whole plant	Asia, Europe and Africa, Ethiopia, Nepal, Pakistan and India		Hemostasis, stomach problems, itch, astringent, paralysis, tonsillitis, ascariasis, uterine bleeding, as an abortifacient, joint pain. Leaf: colic; externally applied to syphilitic ulcers. Root: constipation	[18, 19, 33, 67, 195, 196]
R12	*R. obtusifolius* L	Broad-leaf dock, bitter dock, blunt-leaf dock	China, Japan, Europe, Africa and Ireland	Whole plant	Nettle, depurative, astringent, constipation, tonic agent, sores, blisters, hyperglycemic, burns, tumors	[62, 193, 194]
R13	*R. patientia* L	Herb patience, garden patience, patience dock, spinach dock	Asia, Europe, North India, Bulgaria and Ukraine	Leaf	Hemostasis, diarrhoea, diarrhoea in cows	[4, 19, 68, 192, 198]
R14	*R. cristatus* DC	Greek dock	France, Turkey and Spain		–	[69–71]
R15	*R. vesicarius* L	Bladder dock, country sorrel	South Asia, Egypt and North Africa	Leaf, seed and whole plant	Plant: astringent, antiscorbutic, stomach problems, diuretic. Seed: antisyndentery	[18, 72, 73, 203]
R16	*R. luminostrum* Jaub & Spach		Europe		–	[42]
R17	*R. pictus* Forssk	Veined dock	Egypt, Gulf States, Kuwait, Lebanon-Syria, Libya, Palestine, Saudi Arabia, Sinai and Israel	Whole plant	For food	[41, 74, 75]
R18	*R. bucephalophorus* L		North America and Libya	Whole plant	Laxative	[77, 204]
R19	*R. tingitanus* L	Koressa	Europe, Asia and Africa	Whole plant	Hepatoprotective, antidepressant, blood purification, constipation, tonic	[78, 186]
R20	*R. ecklonianus* Meissner		South African dock	Young leaf	Anemia, chlorosis	[79]
R21	*R. abyssinicus* Jacq	Spinach rhubarb, mekmeko	Europe, Africa and Spinach	Young shoot, leaf, fresh or dried plant	Best cancer, stomach problems, gonorrhea, liver diseases, wounds, diabetes, cough, hypertension, sores, rheumatism, hemorrhoids, scabies, diarrhoea	[80, 123]
R22	*R. confertus* Willd	Russian dock, Asiatic dock, mossy sorrel	Russia, Kazakhstan, China, Hungary, Slovakia, Romania, Italy, Europe, Finland, Norway, Sweden, Lithuania, Britain, Canada, North Dakota, Bulgaria and Ukraine	Leaf, root and rhubarb	Diarrhoea, diarrhoea in cows	[81–91, 198]
No	Species	Local names	Country	Parts used	Traditional uses	Ref
----	---------	-------------	---------	------------	------------------	-----
R23	*R. hymenosepalus* Torr	Canaigre, canaigre dock, desert rhubarb, wild rhubarb, sand dock	Australia, American California, Sonoran and Mexico	Leaf, tuber and rhubarb	Throat infections	[92, 93, 205, 206]
R24	*R. alpinus* L	Alpine dock, monk’s rhubarb	Europe and Asia	Leaf and rhubarb	For food	[94]
R25	*R. rugosus* Campd	Ithrib	North America, Europe	Leaf	For food	[95, 96, 200]
R26	*R. nervosus* Vahl	Ithrib	Himalayas, Nilgiri, Nainital, East Africa and Arab	Leaf	Microbial infections, anticoagulid	[97, 98, 207]
R27	*R. maderensis* Lowe	Azedas, madeira sorrel	Portugal	Leaf	Blood depurative, dermatosis, diuretic, simulated gastrointestinal digestion, antidiabetic	[99, 100]
R28	*R. chinensis* Campd. (Syn. = *R. trisetifer*)	–	Vietnam, China	–	Microbial infections	[101]
R29	*R. algeriensis* Barratte & Murb. (Syn. = *R. elongatus*)	–	Algeria	–	–	[102]
R30	*R. tunetanus*	–	Tunisia	–	–	[103, 104]
R31	*R. rechingerianus* Losinsk. (Syn. = *R. pamiricus*)	–	Trans-Il Ala-Tau	–	–	[61]
R32	*R. lunaria* L	–	Canarian	–	Diabetes	[16]
R33	*R. rothschildianus* Aarons	–	Palestine	Whole plant	Constipation, diarrhea, wound, diuretic, eczema and for food	[105]
R34	*R. sanguineus* L	Bloody dock, red veined dock, red-veined dock, red veined sorrel, red-veined sorrel	America, Canada, Chile and Italy	Young leaf	Wound, bacterial infections and abscesses	[61, 106]
R35	*R. acetosella* Linn	Sheep sorrel	Asia and Colombia	Root, the aerial part and leaf	Diuretic, constipation, diaphoretic, antiscorbutic. Fresh plant urinary and kidney diseases	[18, 195]
No	Compounds	Formula	Species	Plant parts	Ref	
----	--	--------------------	---------	-------------	----------------------------	
1	Chrysophanol	C_{15}H_{10}O_{4}	R2, R5, R7, R8, R9, R11, R13, R21, R22, R23, R28, R31	Rh, R, WP, T, A, S, F	[23, 35, 45, 46, 50, 51, 63, 80, 93, 101, 113, 125, 128, 129]	
2	Chrysophanol-1-O-β-D-glucoside	C_{21}H_{20}O_{9}	R8, R31	R, S	[64, 128]	
3	Chrysophanol-8-O-β-D-glucoside (chrysophanein)	C_{21}H_{20}O_{9}	R8, R9, R13, R21, R28	A, S, R, WP	[32, 46, 54, 101, 123, 129, 130]	
4	Chrysophanol-8-O-β-D-galactoside	C_{21}H_{20}O_{9}	R8, R14	R	[52, 112]	
5	Chrysophanol-1-O-(4-O-β-D-galactosyl-α-L-rhamnoside)	C_{20}H_{20}O_{13}	R2	WP	[184]	
6	6'-Acetyl-chrysophanol-8-O-β-D-glucoside	C_{23}H_{22}O_{10}	R8	R	[32, 112, 113]	
7	Chrysophanol anthrone	C_{15}H_{12}O_{3}	R1	R	[29]	
8	Emodin (1,6,8-trihydroxy-3-methylanthraquinone)	C_{15}H_{10}O_{5}	R2, R5, R6, R8, R9, R11, R13, R21, R28, R31	Rh, R, WP, A, S, F, L	[23, 32, 34, 35, 40, 45–47, 51, 54, 80, 101, 112, 113, 128, 129]	
9	Emodin-1-O-β-D-glucoside	C_{21}H_{20}O_{10}	R7, R8	R, A	[14, 64]	
10	Emodin-1-O-β-D-glucosyl-α-L-rhamnoside	C_{27}H_{30}O_{14}	R5, R31	R, S, L	[128, 131]	
11	Emodin-6-O-β-D-glucoside	C_{22}H_{22}O_{10}	R13	R	[54, 130]	
12	Emodin-8-O-β-D-glucoside (PMEG)	C_{22}H_{22}O_{10}	R4, R6, R8, R9, R13, R28	WP, A, R, S	[23, 32, 34, 38, 46, 47, 101, 112, 129, 130]	
13	Aloe-emodin	C_{18}H_{10}O_{6}	R2, R8, R13	R, WP, L	[23, 27, 35, 112]	
14	6-Hydroxy-emodin (citreoarsein)	C_{18}H_{10}O_{6}	R9, R21	WP	[50, 123]	
15	6-Acetoxy-aloe-emodin	C_{17}H_{9}O_{6}	R1	R	[29]	
16	Emodin dimethylether	C_{17}H_{9}O_{5}	R13	WP	[23]	
17	Emodin anthrone	C_{15}H_{12}O_{4}	R1	R	[29]	
18	Physcion (rheochrysin, emodin 3-methyl ether)	C_{16}H_{12}O_{5}	R2, R8, R9, R11, R13, R21, R23, R28	Rh, R, WP, T, A	[23, 35, 46, 50, 51, 54, 80, 93, 101, 113, 129]	
19	Physcion-8-O-β-D-glucoside (physcionin)	C_{22}H_{22}O_{10}	R8, R9, R13, R21, R28	A, F, R, WP	[45, 101, 123, 129, 130]	
20	Physcion anthrone	C_{18}H_{10}O_{4}	R1	R	[29]	
21	Rumejaposide A	C_{22}H_{22}O_{11}	R9	R	[26]	
22	Rumejaposide B	C_{22}H_{22}O_{11}	R9	R	[26]	
23	Rumejaposide C	C_{22}H_{22}O_{12}	R9	R	[26]	
24	Rumejaposide D	C_{22}H_{22}O_{13}	R9	R	[26]	
25	Rumejaposide E	C_{22}H_{22}O_{10}	R7, R9	R	[26, 28]	
26	Rumejaposide F	C_{22}H_{22}O_{10}	R7, R13	L, R	[27, 28]	
27	Rumejaposide G	C_{22}H_{22}O_{9}	R7	R	[28]	
28	Rumejaposide H	C_{22}H_{22}O_{9}	R7	R	[28]	
29	Rumejaposide I	C_{22}H_{22}O_{10}	R7, R13	L, R	[27, 28]	
30	Xanthorin-5-methylene	C_{21}H_{14}O_{6}	R13	WP	[23, 24]	
31	Rumexone	C_{15}H_{10}O_{4}	R6	R	[30]	
32	Rhein	C_{15}H_{8}O_{6}	R2	R	[35]	
33	Rhein-8-O-β-D-glucoside	C_{15}H_{12}O_{5}	R9	WP	[50]	
34	Cassialoin	C_{10}H_{14}O_{4}	R7, R13	L, R	[27, 28]	
35	Phallacinol (telochistin)	C_{18}H_{12}O_{6}	R11	R	[51]	
36	1,8-Dihydroxyanthraquinone	C_{14}H_{10}O_{4}	R1	R	[29]	
37	Martianine	C_{22}H_{18}O_{17}	R11	R	[132]	
38	Rumoside A	C_{22}H_{20}O_{16}	R8, R13	R	[32, 112]	
39	10-Hydroxyaloin A	C_{21}H_{22}O_{10}	R8	R	[31]	
40	10-Hydroxyaloin B	C_{21}H_{22}O_{10}	R8	R	[31]	
41	6-Methoxy-10-hydroxyaloin A	C_{22}H_{20}O_{11}	R8	R	[32]	
No	Compounds	Formula	Species	Plant parts	Ref	
----	--	------------------	---------	-------------	-------	
42	6-Methoxyl-10-hydroxyaloin B	C_{22}H_{24}O_{11}	R8	R	[32]	
43	10-Hydroxycascaroside C	C_{27}H_{32}O_{14}	R11	R	[132]	
44	10-Hydroxycascaroside D	C_{27}H_{32}O_{14}	R11	R	[132]	
45	Obtusifolate A	C_{39}H_{42}O_{8}	R12	R	[25]	
46	Obtusifolate B	C_{34}H_{34}O_{7}	R12	R	[25]	
47	Rumexpatienside A	C_{22}H_{24}O_{10}	R11	R	[133]	
48	Rumexpatienside B	C_{22}H_{24}O_{10}	R11	R	[133]	
49	Nepalenside A	C_{22}H_{24}O_{10}	R11	R	[33]	
50	Nepalenside B	C_{22}H_{24}O_{10}	R11	R	[33]	
51	Helminthosporin	C_{15}H_{12}O_{5}	R21	Rh	[80]	
52	1,5-Dihydroxyanthraquinone	C_{14}H_{10}O_{5}	R6	R	[30]	
53	1,3,5-Trihydroxy-7-methylanthaquinone	C_{15}H_{10}O_{5}	R13	R	[130]	
54	1,3,7-Trihydroxy-6-methylanthaquinone	C_{15}H_{10}O_{5}	R2	WP	[134]	
55	Przewalskinone B	C_{18}H_{19}O_{10}	R21	WP	[134]	
56	Rumpictusoide A	C_{21}H_{19}O_{10}	R17	WP	[183]	

Flavonoids

No	Compounds	Formula	Species	Plant parts	Ref
57	Vitexin	C_{21}H_{20}O_{10}	R1	A	[57]
58	Isovitexin	C_{21}H_{20}O_{10}	R15	A	[185]
59	Orientin	C_{21}H_{20}O_{11}	R1, R16	A, WP	[42, 57]
60	Acetyl-orientine	C_{21}H_{20}O_{12}	R16	WP	[42]
61	Iso-orientine	C_{21}H_{20}O_{11}	R1	A	[57]
62	Quercetin-3-O-β-D-galactoside (hyperoside)	C_{21}H_{20}O_{11}	R1, R7, R13, R3	S, R, WP	[36, 44, 47, 49]
63	Kaempferol	C_{15}H_{10}O_{6}	R2, R6, R7, R13	WP, R, A	[14, 23, 34, 35]
64	Kaempferol-3-O-β-D-glucoside	C_{21}H_{20}O_{11}	R4, R7, R13	WP, A	[14, 23, 36–38]
65	Kaempferol-3-O-α-L-rhamnoside	C_{21}H_{20}O_{11}	R1, R6	L, WP	[34, 39]
66	Kaempferol-3-O-α-L-rhamnosyl-(1→6)-β-D-galactoside	C_{21}H_{20}O_{15}	R5, R7	L, WP	[36, 40]
67	Kaempferol-3-O-α-L-arabinosyl-(1→6)-β-D-galactoside	C_{21}H_{20}O_{16}	R17	A	[41]
68	Kaempferol-3-O-[2”-O-acetyl-α-L-arabinosyl]-(1→6)-β-D-galactoside	C_{28}H_{30}O_{16}	R17	A	[41]
69	Kaempferol-7-O-β-D-glucoside	C_{21}H_{20}O_{11}	R16	WP	[42]
70	Kaempferol-7-O-α-L-rhamnoside	C_{21}H_{20}O_{10}	R16	WP	[42]
71	Quercetin	C_{15}H_{10}O_{7}	R2, R5, R7, R8, R13	F, S, R, A	[14, 35, 45, 47, 48]
72	Quercetin-3-O-β-D-glucoside (isoquercetin, ECQ, QGC)	C_{21}H_{20}O_{12}	R4, R5, R7, R13	A, WP, L, S	[14, 23, 27, 37, 38, 46, 47]
73	Quercetin-3-O-β-D-glucuronide	C_{21}H_{10}O_{13}	R7, R13	A	[14, 46]
74	Quercetin-3-O-β-D-glucosyl-(1→4)-β-D-galactoside	C_{21}H_{10}O_{17}	R5	L	[40]
75	Quercetin-3-O-α-L-rhamnoside (quercitrin)	C_{21}H_{20}O_{11}	R4, R5, R9, R13, R3	L, WP, R, A	[27, 38, 40, 49, 50]
76	Isorhamnetol	C_{18}H_{20}O_{7}	R13	WP	[23, 37]
77	Isorhamnetol-3-O-rutinoside	C_{20}H_{20}O_{16}	R7	WP	[36]
78	Isorhamnetol-3-O-β-D-galactoside	C_{22}H_{20}O_{12}	R7	WP	[36]
79	Isorhamnetol-3-O-β-D-glucoside	C_{22}H_{20}O_{12}	R7	WP	[36]
80	Quercetin-3-O-α-L-arabinoside	C_{20}H_{19}O_{11}	R4, R16	WP, A	[38, 42, 43]
Table 2 (continued)

No	Compounds	Formula	Species	Plant parts	Ref
81	Quercetin-3-O-α-L-arabinosyl-(1®→6)-β-D-galactoside	C_{26}H_{28}O_{16}	R17	A	[41]
82	Quercetin-3-O-[2'-O-acetyl-α-L-arabinosyl]-1®→6)-β-D-galactoside	C_{28}H_{30}O_{17}	R17	A	[41]
83	Quercetin-7-O-β-D-glucoside	C_{21}H_{20}O_{12}	R13, R16	S, WP	[42, 44, 47]
84	Quercetin-7-O-α-L-rhamnoside	C_{21}H_{20}O_{11}	R16	WP	[42]
85	Rutin	C_{20}H_{18}O_{16}	R5, R8, R31	R, L	[32, 40, 49, 112]
86	5-Hydroxy-4'-methoxyflavone-7-O-β-D-rutinoside	C_{28}H_{32}O_{14}	R13	WP	[23, 37]
87	Apigenin	C_{15}H_{10}O_{5}	R1	R	[53]
88	Luteolin (cyanidenon)	C_{15}H_{10}O_{6}	R1, R19, R35	L, WP, A	[136, 186–188]
89	Luteolin-7-O-β-D-glucose	C_{21}H_{20}O_{11}	R16	WP	[42]
90	7-Hydroxy-2,3-dimethyl-chromone	C_{21}H_{18}O_{3}	R14	R	[52]
91	5-Methoxy-7-hydroxy-1(3H)-chromone	C_{10}H_{9}O_{4}	R13	R	[53]
92	5,7-Dihydroxy-1(3H)-chromone	C_{10}H_{9}O_{4}	R13	R	[53]
93	Mikanin (3,5-dihydroxy-4',6,7-trimethoxyflavone)	C_{18}H_{18}O_{7}	R13	L	[27]
94	3,5-Dihydroxy-6,7,3',4'-tetramethoxyflavone	C_{18}H_{18}O_{8}	R13	L	[27]
95	2,5-Dimethyl-7-hydroxychromone-7-O-β-D-glucoside	C_{14}H_{20}O_{8}	R8	R	[31]
96	2,5-Dimethyl-7-hydroxycromone	C_{11}H_{13}O_{3}	R11	R	[51]
97	3-O-Methyl quercetin	C_{16}H_{14}O_{7}	R8	F	[45]
98	Tricin-7-O-β-D-glucoside	C_{15}H_{22}O_{12}	R22	R	[137]
99	2-(2'-Hydroxypropyl)-5-methyl-7-hydroxycromone	C_{13}H_{18}O_{4}	R13	R	[138]
100	2-(2'-Hydroxypropyl)-5-methyl-7-hydroxycromone	C_{13}H_{18}O_{5}	R13	R	[138]
101	Maackiain	C_{16}H_{12}O_{5}	R13	A	[46]
102	Maackiain-3-O-β-D-glucoside	C_{20}H_{22}O_{10}	R13	A	[46]
103	Aloeosin	C_{20}H_{22}O_{10}	R11	R	[33]
104	4'-p-Acetylcoumaroyl luteolin	C_{20}H_{22}O_{10}	R19	L	[78]
105	Catechin	C_{13}H_{14}O_{6}	R1, R6, R13, R19, R31	R, WP	[34, 49, 53, 54]
106	6-CI-catechin	C_{13}H_{14}O_{6}	R13, R19	R	[54]
107	Epicatechin	C_{13}H_{14}O_{6}	R13, R14, R31	R, WP	[34, 49]
108	(+)-Epigallocatechin	C_{13}H_{14}O_{7}	R1	R	[135]
109	(−)-Epigallocatechin	C_{13}H_{14}O_{7}	R1	R	[135]
110	Epicatechin-3-O-gallate	C_{22}H_{18}O_{10}	R1, R31	A, R	[49, 56]
111	Epigallocatechin-3-O-gallate	C_{22}H_{18}O_{11}	R1	A	[56]
112	Isokaempferide	C_{19}H_{20}O_{4}	R4	A, R	[148]
113	Quercetin-3,3'-dimethylether	C_{19}H_{20}O_{7}	R4	A, R	[148]

Tannins

No	Compounds	Formula	Species	Plant parts	Ref
114	Epiafzelechin-(4β→8)-epicatechin-(4β→8)-epicatechin	C_{46}H_{28}O_{17}	R1	A	[56]
No	Compounds	Formula	Species	Plant parts	Ref
----	--	--------------	---------	-------------	-------
115	Epicatechin-(4β→8)-epicatechin-(4β→8)-catechin	C_{63}H_{38}O_{18}	R1	A	[56]
116	Epicatechin-(4β→8)-epicatechin-(4β→8)-epicatechin (Procyanidin C1)	C_{61}H_{36}O_{18}	R1	A	[56]
117	Epicatechin-3-O-gallate-(4β→8)-epicatechin-3-O-gallate-(4β→8)-epicatechin-3-O-gallate	C_{66}H_{50}O_{30}	R1	A	[56]
118	Epicatechin-(4β→8)-epicatechin-(4β→8)-epicatechin	C_{60}H_{50}O_{24}	R1	A	[56]
119	Epicatechin-3-O-gallate-(4β→8)-epicatechin-3-O-gallate	C_{64}H_{56}O_{20}	R1	A	[139]
120	Epicatechin-(4β→6)-epicatechin (procyanidin B5)	C_{30}H_{26}O_{12}	R1	A	[56]
121	Epicatechin-(4β→6)-catechin	C_{30}H_{26}O_{12}	R1	A	[56]
122	Epicatechin-(4β→8)-catechin (procyanidin B1)	C_{30}H_{26}O_{12}	R1	A	[56, 107]
123	Catechin-(4α→8)-catechin	C_{30}H_{26}O_{12}	R1	A	[56, 107]
124	Catechin-(4α→8)-epicatechin	C_{30}H_{26}O_{12}	R1	A	[56, 107]
125	Epiafzelechin-(4β→8)-epicatechin (procyanidin B2)	C_{30}H_{26}O_{11}	R1	A	[56, 107]
126	Epicatechin-(4β→8)-epicatechin-3-O-gallate	C_{37}H_{30}O_{16}	R1	A	[56]
127	Epiafzelechin-(4β→8)-epicatechin-3-O-gallate	C_{37}H_{30}O_{15}	R1	A	[56]
128	Epicatechin-(4β→6)-epicatechin-3-O-gallate	C_{37}H_{30}O_{16}	R1	A	[56]
129	Epicatechin-3-O-gallate-(4β→6)-epicatechin-3-O-gallate	C_{44}H_{40}O_{20}	R1	A	[56]
130	Epiafzelechin-3-O-gallate-(4β→8)-epicatechin-3-O-gallate	C_{44}H_{40}O_{19}	R1	A	[56]
131	Epicatechin-(2β→7, 4β→8)-epicatechin-3-O-gallate	C_{44}H_{40}O_{18}	R1	A	[56]
132	Epicatechin-(2β→7, 4β→8)-epicatechin-3-O-gallate	C_{41}H_{38}O_{17}	R1	A	[56]
133	Epicatechin-3-O-gallate-(2β→7, 4β→8)-epicatechin (cinnamantanin B1)	C_{43}H_{46}O_{22}	R1	A	[56]
134	Epicatechin-(2β→7, 4β→8)-epicatechin-3-O-gallate	C_{43}H_{46}O_{14}	R1	A	[56]
135	Epiafzelechin-(4β→6)-epicatechin-3-O-gallate	C_{31}H_{26}O_{15}	R1	A	[56]
136	Parameritannin A1	C_{60}H_{60}O_{24}	R1	A	[56]
137	Epicatechin-3-O-gallate-(4β→8)-epicatechin-3-O-gallate- phloroglucinol	C_{60}H_{60}O_{25}	R1	A	[56]
No	Compounds	Formula	Species	Plant parts	Ref
-----	--	-----------------------	---------	-------------	-------------------
138	Epicatechin-(2β → 7, 4β → 8)-epicatechin	C_{30}H_{26}O_{12}	R1	A	[56]
139	Resveratrol	C_{14}H_{12}O_{3}	R2, R8	R, F	[32, 35, 45, 112]
140	(Z)-Resveratrol	C_{14}H_{12}O_{3}	R1	R	[124]
141	Polydatin (resveratrol-3-O-β-D-glucoside, piceid)	C_{20}H_{22}O_{8}	R7, R8	R, A	[14, 32, 112]
142	5,4’-Dihydroxy-3-methoxystilbene	C_{13}H_{14}O_{3}	R18	R	[77]
143	3,5-Dihydroxy-4’-methoxystilbene	C_{13}H_{14}O_{3}	R18	R	[77]
144	5,4’-Dihydroxystilbene-3-O-arabinoside	C_{19}H_{22}O_{8}	R18	R	[77]
145	Nepodin (musizin)	C_{13}H_{12}O_{3}	R2, R8	R, F	[32, 35, 112, 113, 130]
146	Nepodin-8-O-β-D-glucoside	C_{19}H_{22}O_{8}	R1, R2, R4, R7, R8, R13, R17	R, L, A	[27, 31, 38, 46, 63, 74, 110, 130]
147	Nepodin-8-O-β-D-(6’-O-acetyl)-glucoside	C_{21}H_{24}O_{8}	R2	R	
148	Neposide	C_{14}H_{14}O_{3}	R2, R22, R24	R, WP	[140, 141]
149	2-Acetyl-3-methyl-6-methoxyl-8-hydroxy-1,4-naphthoquinone	C_{14}H_{14}O_{3}	R9	WP	[141]
150	Torachrysone (TRA, 2-acetyl-1,8-dihydroxy-3-methyl-6-methoxynaphthalene)	C_{14}H_{14}O_{4}	R13	WP	[141]
151	Torachrysone-8-O-β-D-glucoside	C_{19}H_{22}O_{8}	R2, R7, R9, R13	L, R, A	[27, 46, 53, 63]
152	2-Methoxystypandrone (MSD, 6-acetyl-7-methyl-2-methoxyl-5-hydroxy-1,4-naphthoquinone)	C_{14}H_{14}O_{3}	R9, R10	L, S, R	[115, 116]
153	3-Acetyl-2-methyl-1,5-dihydroxyl-2,3-epoxynaphthoquinol	C_{14}H_{14}O_{3}	R9, R11	R	[51, 65]
154	Rumexoside	C_{16}H_{18}O_{10}	R2	R	[110]
155	2-Acetyl-4-chloro-1,8-dihydroxy-3-methylnaphthalene-8-O-β-D-glucoside (patientoside A)	C_{16}H_{18}O_{10}Cl	R13	R	[117]
156	Patientoside B	C_{19}H_{18}O_{12}Cl	R13	R	[117]
157	4,4’-Binaphthalene-8,8’-O,O-di-β-D-glucoside	C_{39}H_{40}O_{16}	R13	R	[120]
158	6-Hydroxymusizin-8-O-β-D-glucopyranoside	C_{13}H_{16}O_{6}	R2	R	[110]
159	3-Acetyl-2-methyl-1,4,5-trihydroxy-2,3-epoxynaphthoquinol	C_{13}H_{16}O_{6}	R13	R	[118]
160	3-Acetyl-2-methyl-1,5-dihydroxyl-7-methoxyl-2,3-epoxynaphthoquinol	C_{13}H_{16}O_{6}	R13	WP	[119]
161	Rumexone A	C_{14}H_{18}O_{4}	R11	R	[142]
162	Rumexneposide B	C_{20}H_{22}O_{5}	R11	R	[143]
163	Rumexneposide B	C_{20}H_{22}O_{10}	R11	R	[143]
164	Hastatuside B	C_{20}H_{22}O_{5}	R2, R13	L, R	[114]
165	Epi-isoshinanolone	C_{11}H_{12}O_{3}	R13	R	[138]
166	Isoshinanolone	C_{11}H_{12}O_{3}	R9, R13	R, WP	[50, 138]
167	Tormentic acid	C_{30}H_{40}O_{5}	R9	ST	[121]
168	Myrianthic acid	C_{12}H_{16}O_{6}	R9	ST	[121]
No	Compounds	Formula	Species	Plant parts	Ref
-----	---	---------------	---------	-------------	------
169	2α,3α,19α-Trihydroxy-24-norurs-4(23),12-dien-28-oic acid	C_{20}H_{22}O_{12}	R9	ST	[121]
170	4(R),23-Epoxo-2α,3α,19α-trihydroxy-24-norurs-12-ene-28-oic acid	C_{20}H_{22}O_{12}	R9	ST	[121]
171	Taraxasterol acetate	C_{32}H_{52}O_{2}	R2	R	[35]
172	Lupeol	C_{32}H_{52}O_{2}	R11	A	[189]
	Diterpene alkaloids				
173	7,11,14-Trihydroxy-2,13-dioxoheptisane (orientinine)	C_{32}H_{52}O_{4}	R17	A	[75]
174	6,13,15-Trihydroxyhetisane (acorientine)	C_{32}H_{52}O_{4}	R17	A	[75]
175	6-Hydroxy-11-deoxy-13-dehydrohetisane (panicudine)	C_{32}H_{52}O_{4}	R17	A	[75]
	Lignans				
176	Arctiin	C_{20}H_{22}O_{11}	R13	WP	[23]
177	3-Hydroxyarctiin	C_{20}H_{22}O_{11}	R13	WP	[23]
178	3-Methoxyarctiin	C_{20}H_{22}O_{11}	R13	WP	[23]
179	4-Ketopiresinol	C_{20}H_{22}O_{7}	R13	L	[27]
180	Syringaresinol	C_{20}H_{22}O_{8}	R9, R13	L, WP	[27, 50]
181	Manassatin A	C_{20}H_{22}O_{11}	R13	L	[27]
182	Balanophonin	C_{20}H_{22}O_{7}	R13	L	[27]
183	Schizandrine	C_{20}H_{22}O_{6}	R2	WP	[111]
184	(−)-Isolariciresinol-9-O-β-D-glucopyranoside	C_{20}H_{22}O_{10}	R2	WP	[111]
185	(−)-S-Methoxylariciresinol-9-O-β-D-glucopyranoside	C_{20}H_{22}O_{11}	R2	WP	[111]
186	(+)-S-Methoxylariciresinol-9-O-β-D-glucopyranoside	C_{20}H_{22}O_{11}	R2	WP	[111]
187	(−)-Lyoniside	C_{20}H_{22}O_{12}	R2	WP	[111]
188	Nudiposide	C_{20}H_{22}O_{12}	R2	WP	[111]
189	(−)-Lyoniresinol-3α-O-β-D-glucoside	C_{20}H_{22}O_{12}	R11	R	[33]
	Others				
190	Phenylethyl-α-α-L-arabinopyranosy-(1 → 6)-O-β-D-glucoside	C_{10}H_{22}O_{10}	R8	R	[31]
191	Methylorsellinate	C_{10}H_{22}O_{4}	R11	R	[51]
192	Ferulic acid	C_{10}H_{22}O_{4}	R11	R	[51]
193	Methyl 2-acetyl-3,5-dihydroxyphenylacetate	C_{10}H_{22}O_{3}	R11	R	[51]
194	1-(2-Hydroxy-S-methyl-phenyl)-ethanon	C_{10}H_{22}O_{2}	R11	R	[51]
195	Methyl syringate	C_{10}H_{22}O_{3}	R11	R	[51]
196	1-(2,4-Dihydroxy-6-methylphenyl)-ethanon	C_{10}H_{22}O_{3}	R11	R	[51]
197	4-Hydroxybenzene ethanol	C_{10}H_{22}O_{2}	R11	R	[51]
198	Isovanillin	C_{10}H_{22}O_{3}	R11	R	[51]
199	p-Coumaricacid-n-ecosanoyl ester	C_{10}H_{22}O_{3}	R13	S	[47]
200	Z-Octadecyl caffeate	C_{10}H_{22}O_{4}	R13	S	[47]
201	Dibutylphthalate	C_{10}H_{22}O_{4}	R11	R	[132]
202	2-Methoxyhydroquinone	C_{10}H_{22}O_{3}	R11	R	[132]
203	Batiansuanmol	C_{10}H_{22}O_{5}	R13	R	[138]
No	Compounds	Formula	Species	Plant parts	Ref
----	--	----------------	---------	-------------	------
204	Orcinol	C₇H₈O₂	R13	R	[54]
205	p-Hydroxybenzoic acid	C₆H₄O₂	R1, R9	L	[26, 39]
206	p-Coumaric acid	C₉H₈O₆	R1, R2, R7	L, R, WP, A	[39, 48, 134, 144]
207	Methyl 3,4-dihydroxyphenylpropionate	C₁₀H₁₁O₄	R1	L	[39]
208	Vanillic acid	C₆H₈O₄	R1	L	[39]
209	Isovanillic acid	C₆H₈O₄	R1, R7	A	[145]
210	Gallic acid	C₇H₄O₄	R2, R7, R13	R,	[35, 48, 53]
211	Methyl gallate	C₆H₈O₃	R2	R	[35]
212	2,6-Dimethoxy-4-hydroxybenzoic acid	C₉H₁₀O₅	R9	A	[26]
213	Pyrocatechin	C₆H₈O₂	R9	A	[145]
214	Syringic acid	C₈H₁₀O₃	R9	A	[145]
215	3,4-Dihydroxybenzaldehyde	C₇H₈O₃	R9	A	[145]
216	Ethyl 3,4-dihydroxybenzoate	C₈H₁₀O₄	R9	A	[145]
217	Ethyl gallate	C₈H₁₀O₄	R9	A	[145]
218	Rumexin	C₁₇H₂₂O₈	R4	A	[38]
219	Caffeic acid	C₈H₈O₄	R4	A	[38]
220	1-O-caffeoylglucose	C₁₉H₁₄O₂	R4	A	[38]
221	1-Methyl caffeic acid	C₁₉H₁₄O₂	R4	A	[38]
222	Neochlorogenic acid	C₁₉H₁₄O₂	R27	L	[146]
223	(S)-4′-Methylnonyl benzoate	C₁₉H₂₂O₂	R7	A	[14]
224	5-Methoxy-7-hydroxy-1(3H)-benzofuranone	C₉H₁₀O₄	R11	R	[51]
225	5,7-Dihydroxy-1(3H)-benzofuranone	C₉H₁₀O₄	R13	R	[53]
226	5-Methoxyl-1(3H)-benzofuranone-7-glucoside	C₁₉H₁₄O₃	R8	R	[31]
227	Sinapic acid	C₁₉H₁₄O₃	R1	FL	[147]
228	Protocatechuic acid	C₁₉H₁₄O₃	R1	L	[55]
229	p-Hydroxycinnamic acid	C₁₉H₁₄O₃	R8	R	[190]
230	Streptokordin	C₁₉H₂₀N₂	R11	R	[132]
231	Hastatuside A	C₁₉H₁₈O₃	R2	R	[114]
232	β-Sitosterol	C₂₀H₃₂O	R1, R6, R7, R11, R13, R28	A, R, S, L, WP	[34, 39, 47, 48, 53, 101, 189]
233	Daucosterol	C₂₀H₃₂O₆	R1, R7, R8, R13, R28	A, R, F, L	[39, 45, 48, 53, 101, 138, 190]
234	Ergosta-6,22-diene-3,5,8-triol	C₂₀H₃₂O₃	R21	WP	[123]
235	Nonadecanoic acid-2,3-dihydroxypropyl ester	C₂₁H₄₄O₄	R13	R	[53]
236	Hexadecanoic acid-2,3-dihydroxypropyl ester	C₂₁H₄₄O₄	R7	R	[48]
237	1-Stearylglycerol	C₂₁H₄₂O₄	R4	A, R	[148]
238	Triacanol	C₂₀H₃₂O₆	R13	S	[47]
239	Dotriacontanol	C₂₁H₄₂O₆	R13	S	[47]
240	Hexacosanoic acid	C₂₀H₃₂O₂	R6, R13	S, WP	[34, 47]
241	Dotriacontane	C₂₁H₆₆	R13	S	[47]
242	Glyceryl 1,3-dipalmitate	C₂₁H₃₂O₅	R13	S	[47]
243	(2S)-8-Hydroxy-2,6-dimethyl-2-octenoic acid	C₁₀H₁₆O₃	R11	R,	[132]
244	Tetratriacontane	C₁₀H₁₈O₃	R13	S	[149]
245	Ceryl alcohol	C₂₀H₃₂O	R20	A	[125]
They are mostly derived from kaempferol (14, 23, 34–42), and quercetin (4, 3-O-acetyl-α-L-arabinosyl)-(1 → 6)-β-D-galactoside (82), -7-O-β-D-glucoside (83), -7-O-α-L-rhamnoside (84), 3-O-methyl quercetin (97) and -3,3′-dimethylether (113) [14, 23, 27, 35, 37, 38, 40–50, 148], were reported from several Rumex plants.

Moreover, a new chromone glucoside, 2,5-dimethyl-7-hydroxychromone-7-O-β-D-glucoside (95) was isolated from the root of R. gmelini [31], and five chromones, 7-hydroxy-2,3-dimethyl-chromone (90), 5-methoxy-7-hydroxy-1(3H)-chromone (91), 5,7-dihydroxy-1(3H)-chromone (92), 2,5-dimethyl-7-hydroxychromone-7-O-β-D-glucoside (95) and 2,5-dimethoxy-7-hydroxychromone (96) were reported from R. gmelini, R. nepalensis, R. patientia and R. crispatus [31, 51–53].

Catechin (105) and epicatechin (107) are commonly distributed in R. patientia, the roots of R. rechingerianus, the whole plant of R. crispus, and the leaves of R. acetosa [34, 37, 39, 49, 54, 55]. Moreover, a variety of flavan-3-ols, 105, 107, epicatechin-3-O-gallate (110), epigallocatechin-3-O-gallate (111) were isolated from R. acetosa [49, 56].
Fig. 1 Structures of quinones (1–56)
Fig. 2 Structures of flavonoids (57–113)
3.3 Tannins
Tannins, which may be involved with the hemostasis activity, are abundant in Rumex plants. So far, 25 condensed tannins (114–138) (Fig. 3, Table 2) were reported from the genus Rumex.

Chemical investigations on the EtOAc fraction of acetone–water extract of the aerial parts of R. acetosa showed that R. acetosa was rich in tannins. Five new condensed tannin dimers, epiafzelechin-(4β→8)-epicatechin-3-O-gallate (127), cinnamattannin B1-3-O-gallate (132) and epiafzelechin-(4β→6)-epicatechin-3-O-gallate (135), and trimers, epiafzelechin-(4β→8)-epicatechin-(4β→8)-epicatechin (114), and epicatechin-(2β→7, 4β→8)-epiafzelechin (4α)-epicatechin (132) were reported. In addition, some procyanidins and propelargonidins, epiafzelechin-(4β→8)-epicatechin-(4β→8)-epicatechin (114), epicatechin-(4β→8)-epicatechin-(4β→8)-catechin (114), procyanidin C1 (116), epicatechin-(4β→6)-catechin (121), procyanidin B1-B5 (120, 122–125), and epicatechin-(4β→8)-epicatechin-3-O-gallate (126), were also isolated [56, 107].

3.4 Stilbenes
So far, 6 stilbenes have been separated from Rumex (139–144) (Fig. 4, Table 2). Resveratrol (139) isolated from R. japonica Houtt was found for the first time in the Polygonaceae family [108]. It has been widely applied in cardiovascular protection and as an antioxidant agent [109]. Resveratrol (139), (Z)-resveratrol (140) and polydatin (141) were obtained from Rumex spp. [14, 32, 35, 45, 110, 111]. 5,4’-Dihydroxy-3-methoxystilbene (142), 3,5-dihydroxy-4’-methoxystilbene (143) and 5,4’-dihydroxy-stilbene-3-O-α-arabinoside (144) were separated from the roots of R. bucephalophorus [77].

3.5 Naphthalenes
Naphthalenes are also widely distributed in Rumex. At present, 22 naphthalenes including naphthol, α-naphthoquinones and their derivatives have been identified from Rumex (145–166) (Fig. 4, Table 2). Nepodin (145) and nepodin-8-O-β-D-glucoside (146) are widespread in Rumex [31, 45, 112, 113]. In addition, nepodin-8-O-β-D-(6’-O-acetyl)-glucoside (147), rumexoside (154), 6-hydroxymusizin-8-O-β-D-glucopyranoside (158) and hastatuside B (164) were isolated from R. hastatus [35, 110, 114]. 2-Methoxyxypandrene (152) was isolated from R. japonicus and R. maritimus [115, 116]. Notably, some naphthalenes containing CI, 2-acetyl-1,4-chloro-1,8-dihydroxy-3-methylnaphthalene-8-O-β-D-glucoside (155) and patientoside B (156) were isolated from R. patientia [117]. Moreover, 3-acetyl-2-methyl-1,5-dihydroxyl-2,3-epoxy-naphthoquinol (153), 3-acetyl-2-methyl-1,4,5-trihydroxyl-2,3-epoxy-naphthoquinol (159) and 3-acetyl-2-methyl-1,5-dihydroxy-7-methoxyl-2,3-epoxy-naphthoquinol (160), which contain the ethylene oxide part of the structure, were rarely found in Rumex, and they were reported from R. patientia, R. japonicus and R. nepalensis [51, 65, 118, 119]. 4,4”-Binaphthalene-8,8”-O-D-di-β-D-glucoside (157) was isolated from R. patientia [120].

3.6 Terpenes
Until now, only six terpenes have been reported from Rumex (Fig. 5, Table 2). Four pentacyclic triterpenes, i.e., tormentic acid (167), myrianthic acid (168) and 2α,3α,19α-trihydroxy-24-norurs-4(23), 12-dien-28-oic acid (169) and (4R)-23-epoxy-2α,3α,19α-trihydroxy-24-norurs-12-en-28-oic acid (170) were obtained from the EtOAc fraction of the stems of R. japonicus. Of them, 169 and 170 were two new 24-norursane type triterpenoids, whose C-12 and C-13 were existed as double bonds [121]. A ursane (α-amyrane) type triterpene, taraxasterol acetate (171) was isolated from R. hastatus. [63]. And lupeol (172) was isolated from the roots of R. nepalensis for the first time [122].

3.7 Diterpene alkaloids
So far, only three hetisane-type (C-20) diterpene alkaloids, orientinine (7,11,14-trihydroxy-2,13-dioxohetisane, 173), acorintine (6,13,15-trihydroxyhetisane, 174) and panicudine (6-hydroxy-11-deoxy-13-dehydrohetisane, 175) were reported from the aerial part of R. pictus. They might be biosynthesized from tetra- or penta-cyclic diterpenes [75] (Fig. 6, Table 2).

3.8 Lignans
Fourteen lignans (176–189) were summarized from Rumex (Fig. 7, Table 2). A new lignan, 3-methoxyarctiin-4”-O-β-D-xylopyranose (178), and two known ones, arctinin (176) and 3-hydroxy-arctiin (177), were obtained from R. patientia [23]. Six lignan glycosides, schizandriside (183), (-)-isoriciresinol-9-O-β-D-xylopyranoside (184), (-)-5-methoxyisoriciresinol-9-O-β-D-xylopyranoside (185), (+)-5-methoxyisoriciresinol-9-O-β-D-xylopyranoside (186), (+)-lyoniside (187) and nudiposide (188) were reported from R. hastatus for the first time [111].

3.9 Other compounds
Up to now, 79 coumarins, sterides, alkaloids, glycosides and polysaccharide were found in Rumex (190–268) (Fig. 8, Table 2). Phenethyl-O-α-L-arabinopyranosy-(1→6)-O-β-D-glucoside (190) and 5-methoxy-1(3H)-benzofuranone-7-glucoside (226) were isolated from R. gmelini for the first time [31]. p-Hydroxybenzoic acid (205), p-coumaric acid (206), methyl 3,4-dihydrophenylpropionate (207), vanillic
Fig. 3 Structures of tannins (114–138)
Fig. 4 Structures of stilbenes (139–144) and naphthalenes (145–166)

Fig. 5 Structures of terpenes (167–172)
acid (208) and isovanillic acid (209) were isolated from the leaves of *R. acetosa* [39], β-Sitosterol (232) and daucosterol (233) are commonly distributed in *R. acetosa*, *R. chinensis*, *R. crispus* and *R. gmelini* [31, 34, 39, 101]. 2,6-Dimethoxy-4-hydroxyl benzoic acid (212) was isolated from *R. japonicus* [26]. Moreover, rumexin (218), caffeic acid (219), 1-O-caffeoylglucose (220) and 1-methyl caffeic acid (221) were isolated from the aerial...

Fig. 6 Structures of diterpene alkaloids (173–175)

Fig. 7 Structures of lignans (176–189)
Fig. 8 Structures of other compounds (190–268) (Note: 268 not given)
parts of *R. aquatica* [38]. Recently, one new compound (5S)-4′′-methyleneonl benzoate (223) was reported from *R. dentatus* [14]. Ergosta-6,22-diene-3,5,8-triol (234) was isolated from the EtOAc fraction of *R. abyssinicus* for the first time [123]. Conventional techniques and supercritical fluid extraction (SFE) were compared and the latter yielded great efficiency of phenolics from the roots of *R. acetosa* [124].

Ceryl alcohol (245) from *R. ecklonianus* [125], and β-carotene (254) and lutein (255) from *R. vesicarius* [126] were reported. Moreover, anhydroleutens I (256) and II (257) were separated from *R. rugosus* together with [95]. From the roots of *R. dentatus*, helonioside A (265) was isolated for the first time [48]. One new phloroglucinol glycoside 1-O-β-D-(2,4-dihydroxy-6-methoxyphenyl)-6-O-(4-hydroxy-3,5-dimethoxybenzoyl)-glucose (266) was isolated from *R. acetosa* [56]. It was the first time that 1-O-β-D-(3,5-dimethoxy-4-hydroxyphenol)-(6-O-galloyl)-glucose (267) was isolated from *R. nepalensis* [33].

Rumex polysaccharides have rarely been studied, and only one polysaccharide, RA-P (268), which has a 30 kDa molecular weight and consists of D-glucose and D-arabinose, was reported from *R. acetosa* [127].

4 LC–MS analysis

The chemical compositions of *Rumex* spp. were also analyzed by LC–MS techniques. Untargeted metabolomic profiling via UHPLC-Q-TOF–MS analysis on the flowers and stems of *R. tunetanus* resulted in the identification of 60 compounds, 18 of which were reported from the Polygonaceae family for the first time. Quercetin-3-O-β-D-glucuronide (73) was found to be the most abundant phenolic compound in flowers and epicatechin-3-O-gallate (110) in stems [103]. Moreover, 44 bioactive components classified as sugars, flavanols, tannins and phenolics were clarified from the flowers and stems of *R. algeriensis* based on RP-HPLC–DAD-QTOF-MS and MS–MS [102]. The analysis of sex-related differences in phenolics of *R. thyrsiflorus* has shown female plants of *R. thyrsiflorus* contain more bioactive components than males, such as phenolic acids and flavonoids, especially catechin (105) [20].

5 Bioactivity

Rumex has been used as food and medicine in the folk. In addition to important role of *Rumex* in the traditional application, during the past few decades, it was subjected to scientific investigations of the structure of isolated chemical components and their clinical applications by several research groups. Pharmacological studies on *Rumex* extracts and its pure compounds revealed a wide range of bioactivities, involving antimicrobial, anti-inflammatory, antiviral, renal and gastrointestinal protective effects, antioxidant, antitumor and anti-diabetes effects.

5.1 Antimicrobial

Bioassay-guided isolation on the whole plants of *R. abyssinicus* yielded six antimicrobial quinones, chrysophanol (1) and its 8-O-β-D-glucoside (3), emodin (8), 6-hydroxyemodin (14), phycion (18) and its 8-O-β-D-glucoside (19), with MIC values of 8—256 μg/mL [123].

Proanthocyanidin-enriched extract from the aqueous fraction of the acetone–water (7:3) extract of the aerial parts of *R. acetosa* (5 μg/mL—15 μg/mL) could interfered with the adhesion of *Porphyromonas gingivalis* (ATCC 33,277) to KB cells (ATCC CCL-17) both in vitro and in situ. In silico docking assay, a main active constituent from *R. acetosa*, epiafzelechin-3-O-gallate-(4β→8)-epicatechin-3-O-gallate (130) exhibited the ability to interact with the active side of Arg-gingipain and the hemagglutinin from *P. gingivalis* [139].

A bacteriostasis experiment of two naphthalenes, torachrysone (150) and 2-methoxy-stypandrone (152) isolated from *R. japonicus* roots, showed inhibitory effect on both gram-negative and gram-positive bacteria [152]. The antibacterial (*Bacillus subtilis, Escherichia coli, Moraxella catarrhalis*, etc.) potential of the *n*-hexane, chloroform, aqueous fractions of 14 *Rumex* from Carpathian Basin (*R. acetosa*, *R. acutata*, *R. alpinus*, *R. aquaticus*, *R. crispus*, *R. patientia*, *R. pulcher*, *R. conglomeratus*, *R. thyrsiflorus*, etc.) were investigated by the disc diffusion method. It showed that the *n*-hexane and chloroform fractions of roots of *R. acetosa*, *R. alpinus*, *R. aquaticus*, *R. conglomeratus* and *R. patientia* exhibited stronger activity against bacteria (inhibition zones >15 mm). Naphthalenes (*R. conglomeratus* [145, 146, 151, 152]) exhibited antibacterial capacity against several bacterial strains (MIC = 48—57.8 μM, in case of *M. catarrhalis*; MIC = 96—529.1 μM, in case of *B. subtilis*) than anthraquinones (1, 3, 8, 12, 14, 18), flavonoids (62, 71, 80, 105, 112, 113), stilbenes (139, 141) and 1-stearoylglycerol (237), etc., which were isolated from *R. aquaticus* [148].

Antimicrobial study demonstrated that *R. crispus* and *R. sanguineus* have the potential for wound healing due to their anti-*Acinetobacter baumannii* activities (MIC = 1.0—2.0 mg/mL, *R. crispus*; 1.0—2.8 mg/mL, aerial parts of *R. sanguineus*; 1.4—4.0 mg/mL, roots of *R. sanguineus*) [106].
5.2 Anti-inflammatory

The potential effects of anti-inflammatory of AST2017-01 composing of processed *R. crispus* and *Cordyceps militaris* which was widely used in folk medicines in Korea, as well as chrysophanol (1) on the treatment of ovalbumin-induced allergic rhinitis (AR) rats were investigated. The serum and tissue nasal mucosa levels of IgE, histamine, TSLP, TNF-α, IL-1, IL-4, IL-5 and IL-13 were both decreased by treatment with AST2017-01 and 1 (positive control: dexamethasone), indicating that *R. crispus* and 1 has the ability to prevent and treat AR [153]. The aqueous extract of roots of *R. patientia* has anti-inflammatory action in vivo. The higher dose of extract (150 mg/kg) showed inhibition (41.7%) of edema in rats compared with the positive control, indomethacin (10 mg/kg, 36.6%) [21]. Methanolic extracts of the roots and stems of *R. roseus* exhibited anti-inflammatory functions in intestinal epithelial cells, reducing TNF-α-induced gene expression of IL-6 and IL-8 [154].

The ethanol extract of the roots of *R. japonicus* could be a therapeutic agent for atopic dermatitis. Skin inflammation in Balb/c mice was alleviated with the extract in vivo. Moreover, an in vitro experiment showed that the extract of *R. japonicus* decreased the phosphorylation of MAPK and stimulated NF-κB in HaCaT cells [155]. Methanolic extracts of the roots and stems of *R. roseus* inhibited dextran sulfate sodium (DSS)-induced colitis in C57BL/6 N mice by protecting tight junction connections in the colonic tissue. It was observed that *R. japonicus* has the potential to treat colitis [156]. Ethyl acetate extract of the roots of *R. crispus* showed anti-inflammatory activity in inhibiting NO production and decreasing the secretion of proinflammatory cytokines [157].

5.3 Antivirus

1,4-Naphthoquinone and naphthalenes from *R. aquatius* presented antiviral activity against *herpes simplex* virus type 2 (HSV-2) replication infected Vero cells. In which, musizin (145) showed dose dependent inhibitory property, causing a 2.00 log₁₀ reduction in HSV-2 at 6.25 μM, on a traditional virus yield reduction test and qPCR assay. It suggested that *R. aquatius* had the potential to treat HSV-2 infected patients [158].

Acetone-water extract (R2, which contains oligomeric, polymeric proanthocyanidins and flavonoids) from the aerial parts of *R. acetosa* showed obvious antiviral activities via plaque reduction test and MTT assay on Vero cells. R2 was 100% effective against herpes simplex virus type-1 at concentrations > 1 μg/mL (IC₅₀ = 0.8 ± 0.04 μg/mL). At concentrations > 25 μg/mL (CC₅₀ = 78.6 ± 12.7 μg/mL), cell vitality was more than 100% reduced by R2 [107].

5.4 The function in kidney and gastrointestinal tract

It is noted that quercetin-3-O-β-D-glucoside (72, QGC) from *R. aquaticus* could alleviate the model that indomethacin (nonsteroidal anti-inflammatory drugs) induced gastric damage of rats and ethanol extract of *R. aquaticus* had a protective effect on the inflammation of gastric epithelial cells caused by *Helicobacter pylori*. In vivo research suggested that QGC pretreatment could decrease gastric damage by increasing mucus secretion, downregulating the expression of intercellular adhesion molecule-1 and decreasing the activity of myeloperoxidase. The in vitro test found that flavonoids including QGC could inhibit proinflammatory cytokine expression and inhibit the proliferation of an adenocarcinoma gastric cell line (AGS) [159, 160]. The cytoprotective effect of QGC against hydrogen peroxide-induced oxidative stress was noticed in AGS [161]. Moreover, QGC also showed protective efficiency in a rat reflux esophagitis model in a dose-dependent manner (1—30 mg/kg) [162].

Ten anthraquinones chrysophanol (1), chrysophanol-8-O-β-D-glucoside (3), 6’-acetyl-chrysophanol-8-O-β-D-glucoside (6), emodin (8), emodin-8-O-β-D-glucoside (12), physcion (18), aloe-emodin (13), rumexpatientoseides A (47) and B (48) and napelside A (49) from *R. patientia, R. nepalensis, R. hastatus* not only inhibited the secretion of IL-6, but also decreased collagen IV and fibronectin production at a concentration of 10 μM in vitro. On which concentration, they were nontoxic to cells [133]. It suggested that anthraquinones have great potential to treat kidney disease.

5.5 Antioxidant properties

An extraction technology to obtain the total phenolics of *R. acetosa* was optimized and the antioxidant activity of different plant parts of *R. acetosa* was well investigated. It was found that the 80% methanol extract of the roots (IC₅₀ = 118.8 μM) showed higher scavenging activity to DPPH free radicals than the other parts (leaves: IC₅₀ = 201.6 μM, flowers and fruits: IC₅₀ = 230.1 μM, stems: IC₅₀ = 411.2 μM) [163]. The roots of *R. thysiflorus* [164], ethanol extracts of *R. obtusifolius* and *R. crispus* showed antioxidant ability on DPPH, ABTS⁺ and FRAP assays [165]. Moreover, *R. tingitanus* leaves, *R. dentatus*, *R. rothschildianus* leaves, *R. roseus* and *R. vesicarius* also showed antioxidant activity on DPPH assay [13, 78, 105, 154, 166, 167]. Phenolics isolated from *R. tunetanus* flowers and stems displayed antioxidant properties on DPPH and FRAP assays [103]. DPPH, ABTS⁺, NO₂⁻ radical scavenging and phosphomolybdate antioxidant assays verified that *R. acetosella* has antioxidant properties [168]. Phenolic constituents from *R. maderensis* displayed antioxidant activity after the gastrointestinal digestion process. These components are known as dietary.
polyphenols and have the potential to be developed as functional products [99].

Moreover, the total antioxidant capacities of R. crispus were found to be 49.4%—86.4% on DPPH, ABTS⁺, NO, phosphomolybdate and SPF assays, which provided the basis to develop R. crispus as antioxidant, antiaging and skin care products [169]. Later on, the ripe fruits of R. crispus were studied and the aequous extract showed antioxidant activity in vitro [170]. Dichloromethane and ethyl acetate extracts of R. crispus exhibited stronger antioxidant activity, which were associated with the concentration of polyphenols and flavonoids [157]. The antioxidant activities of chrysophanol (1), 1,3,7-trihydroxy-6-methylanthraquinone (54), przewalskinone B (55) and p-coumaric acid (206) isolated from R. hastatus were investigated on a nitric oxide radical scavenging assay, whose IC₅₀ values were 0.39, 0.47, 0.45, and 0.45 mM, respectively [134].

5.6 Antitumor properties
MTT assays on HeLa (human cervical carcinoma), A431 (skin epidermoid carcinoma) and MCF7 (human breast adenocarcinoma) cell lines showed that R. acetosa and R. thyrsiflorus could inhibit the tumor cell proliferation [171]. The fruit of R. crispus showed cytotoxicity on HeLa, MCF7 and HT-29 (colon adenocarcinoma) cells in vitro [170]. The methanolic extract of R. vesicarius was assessed for hepatoprotective effects in vitro. CCl₄-induced hepatotoxicity was observed at 100 mg/kg bw and 200 mg/kg bw. The plant also has cytotoxicity in HepG2 (human hepatoma cancer) cell lines [172]. Dichloromethane extract of R. crispus roots inhibited the growth and induced cellular apoptosis of HepG2 cells [157]. The hexane fraction of R. rotundifolius leaves showed 98.9% and 97.4% inhibition of HeLa cells and MCF7 cells at a concentration of 4 mg/mL [105].

Different plant parts (stems, roots, flowers and leaves) of R. vesicarius were screened for their cytotoxicity by the MTS method on MCF7, Lovo and Caco-2 (human colon cancer), and HepG2 cell lines. The stems displayed stronger cytotoxicity in vitro and with non-toxicity on zebrafish development, with IC₅₀ values of 33.45—62.56 μg/mL. At a concentration of 30 μg/mL, the chloroform extract of the stems inhibited the formation of ≥70% of intersegmental blood vessels and 100% of subintestinal vein blood vessels when treated zebrafish embryos, indicating the chloroform extract of R. vesicarius stems has apparent antitumor potential [15].

2-Methoxystympandrone (152) from R. japonicus exhibited antiproliferative effect on Jurkat cells and the potential to treat leukemia, by reducing the mitochondrial membrane potential and increasing the accumulation of mitochondrial reactive oxygen, as shown by flow cytometry [116]. The phenolic extract from the flower parts of R. acetosa exhibited in vitro antiangiogenic effects on HaCaT cells. When increasing of the extract concentration from 25 μg/mL to 100 μg/mL, the proliferation ability on HaCaT cells gradually decreased [147].

5.7 Antidiabetes activities
Chrysophanol (1) and physcion (18) from the roots of R. crispus showed inhibition on α-glucosidase, with IC₅₀ values of 20.1 and 18.9 μM, respectively [180]. The alcohol extract of R. acetosella displayed stronger inhibitory activity on α-glucosidase (roots, IC₅₀ = 12.3 μM; aerial parts, IC₅₀ < 10 μM), compared to the positive control, acarbose (IC₅₀ = 605 μM, p < 0.05), revealing R. acetosella could be developed as an antidiabetic agent [168]. Moreover, the methanolic extract of R. lunaria leaves displayed remarkable kinetic of -α-glucosidase activity from the concentration of 3 μM by comparison with blank control [16], and the acetone fraction of R. rothschildianus leaves showed inhibitory activity against α-amylase and α-glucosidase (IC₅₀ = 19.1 ± 0.7 μM and 54.9 ± 0.3 μM, respectively) compared to acarbose (IC₅₀ = 28.8, 37.1 ± 0.3 μM, respectively) [105].

The hypoglycemic effects of oral administration of ethanol extract of R. obtusifolius seeds (treatment group) were compared to the control group (rabbits with hyperglycemia). The treatment group could decrease fasting glucose levels (57.3%, p < 0.05), improve glucose tolerance and increase the content of liver glycogen (1.5-fold, p < 0.01). It also not only reduced the total cholesterol, low-density lipoprotein cholesterol levels and liver enzyme levels, but increased the high-density lipoprotein cholesterol levels. The results showed that R. obtusifolius has great potential to treat diabetes [173]. In addition, phenolic components of R. dentatus showed the ability to ameliorate hyperglycemia by modulating carbohydrate metabolism in the liver and oxidative stress levels and upregulating PPARy in diabetic rats [14].

5.8 Other biological activities
The vasorelaxant antihypertensive mechanism of R. acetosa was investigated in vivo and in vitro. Intravenous injection (50 mg/kg) of the methanol extract of R. acetosa (Ra.Cr) leaves caused a mean arterial pressure (MAP) (40 mmHg) in normotensive rats with a decrease of 27.88 ± 4.55% and a MAP (70 mmHg) in hypertensive rats with a decrease of 48.40 ± 4.93%. In endothelium intact rat aortic rings precontracted with phenylephrine (1 μM), Ra.Cr induced endothelium-dependent vasorelaxation with EC₅₀ = 0.32 mg/mL (0.21—0.42), while in denuded endothelial rat aortic rings, EC₅₀ = 4.22 mg/mL (3.2—5.42), which was partially blocked with L-NAME (10 μM), indomethacin (1 μM) and atropine (1 μM).
isolated rabbit aortic rings precontracted with phenylephrine (1 μM) and K+ (80 mM), Ra.Cr induces vasorelaxation and the movement of Ca2+ [174].

The acetone extract of R. japonicus showed protective activity against myocardial apoptosis, through the regulation of oxidative stress levels in cardiomyocytes (LDH, MDA, CK, SOD) and the suppression of the expression of apoptosis proteins (caspase-3, Bax, Bcl-2) on in vitro H2O2-induced myocardial H9c2 cell apoptosis [175].

The antiplatelet activity of R. acetosa and the protective mechanism on cardiovascular system were investigated yet. The extract of R. acetosa showed inhibition of the collagen-induced platelet aggregation by modulating the phosphorylation of MAPK, PI3K/Akt, and Src family kinases and inhibited the ATP release in a dose dependent manner (25—200 μg/mL) [176]. The absorption of fexofenadine was inhibited by the ethanol extract of R. acetosa to decrease the aqueous solubility of fexofenadine [177]. The hepatoprotective effect of R. tingitanus was investigated by an in vivo experiment, in which the ethanol extract protected effectively the CCl4-damaged rats investigated by an in vivo experiment, in which the ethanol extract protected effectively the CCl4-damaged rats [177]. The hepatoprotective effect of R. tingitanus was investigated by an in vivo experiment, in which the ethanol extract protected effectively the CCl4-damaged rats [177].

Stimulating the ERK/Runx2 signaling pathway and related transcription factors could induce the differentiation of osteoblasts. Fortunately, chrysophanol (1), emodin (8) and physcion (18) from the aqueous extract of R. crispus could suppress the RANKL-induced osteolast differentiation by suppressing the MAPK/NF-kB/ NFATc1 signaling axis and increases the inhibitory factors of NFATc1 [178].

Moreover, the ethanol extract of R. crispus could reduce the degradation of collagen by inhibiting matrix metalloproteinase (MMP-1, MMP-8, MMP-13), indicating that R. crispus exhibited the antiangiogenic function [169].

The anti-Alzheimer effect of helminthosporin (51) from R. abyssinicus was investigated in PAMPA-BBB permeability research, showing that 51 inhibited obviously AChE and BChE with IC50 values < 3 μM. Compound 51 could not only cross the BBB with high BBB permeability, but also bind with the peripheral anion part of the cholinesterase activity site by molecular docking [80].

It is noted, R. crispus, a traditional medicinal herb in the folk with rich retinol, ascorbic acid and α-tocopherol in the leaves, could be used as a complementary diet [179]. Moreover, chrysophanol (1) and physcion (18) from R. crispus roots showed obvious inhibitory activity on xanthine oxidase (IC50 = 36.4, 45.0 μg/mL, respectively) [180].

Inhibition of human pancreatic lipase could reduce the hydrolysis of triacylglycerol into monoaclglycerol and free fatty acids [181]. Chrysophanol (1) and physcion (18) from R. nepalensis with good inhibitory activity on pancreatic lipase (Pearson’s r = 0.801 and 0.755, respectively) showed the obvious potential to treat obesity [182].

6 Conclusion

The genus Rumex distributing widely in the world with more than 200 species has a long history of food and medicinal application in the folk. These plants with rich secondary metabolites, e.g., quinones, flavonoids, tannins, stilbenes, naphthalenes, terpenes, diterpene alkaloids, lignans and other type of components, showed various pharmacological activities, such as antimicrobial, anti-inflammatory, antiviral, renal and gastrointestinal protective effects, antioxidant, anti-tumor and anti-diabetes effects. Particularly, quinones as the major components in Rumex showed stronger antibacterial activities and exerted the potential to treat kidney disease. However, detailed phytochemical studies are needed for many Rumex species, in order to clarify their bioactive components. Further studies and application may focus on the antitumor, anti-diabetes, anti-microbial, hepatoprotective, cardiovascular and gastrointestinal protective effects. Moreover, the toxicity or side effects for Rumex plants and their chemical constituents should be evaluated, in order to make the uses of Rumex more safety.

Abbreviations

AChE: Acetylcholinesterase; AGS: Adenocarcinoma gastric cell line; AR: Allergic rhinitis; BBB: Blood-brain barrier; BChE: Butyrylcholinesterase; EtOAc: Ethyl acetate; HPLC: High performance liquid chromatograph; IL: Interleukin; UHPLC-Q-TOF-MS: Ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry; MAPK: Mitogen-activated protein kinase; MIC: Minimum inhibitory concentration; MS: Mass Spectrometry; MTT: 3-(4,5-Dimethylthiazol-2-y)-2,5-diphenyl tetrazolium bromide; NF-κB: Nuclear factor-kappa B; QGC: Quercetin-3-β-D-glucoside; TNF-α: Tumor necrosis factor-α.

Acknowledgements

This work was supported by the Ministry of Science and Technology, China (2021YFE0103600) for International Scientific and Technological Innovative Cooperation between Governments.

Author contributions

J-J L, Y-X L, H-T Z, DW collected the related references; J-J L wrote the manuscript; NL and Y-J Z reviewed and edited the manuscript. All authors read and approved the final manuscript.

Declarations

Competing interests

The authors declare no conflict of interest.

Author details

1 State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201,
References

1. http://www.mobot.org/MOBOT/research/APweb/. Accessed 22 Jan 2021.

2. Liddell HG, Scott R, Jones HS, McKenzie R. A Greek-English lexicon. In: Fontaine D, editor. 9th edn. Oxford: Clarendon Press; 1940. p. 442. https://areoimage.net/PDF/LSJ.pdf.

3. Saleh NAM, Elhadidi N, Arafa RFM. Flavonoids and anthraquinones of some Egyptian Rumex species (Polygonaceae). Biochem Syst Ecol. 1993;21:301–3.

4. Korpelainen H, Pietilaenni M. Sorrel (Rumex acetosa L.): not only a weed but a promising vegetable and medicinal plant. Bot Rev. 2020;86:234–46.

5. Martin AC, Zim HS, Nelson AL. American wildlife and plants: a guide to wildlife food habits. New York: Dover Publications; 1951.

6. https://plants.usda.gov/home/basicsearchResult/home?ld=110db341-4141-4eb8-ab7d-e51d87b97045. Accessed 22 Jan 2021.

7. Magdalena W, Kosikowski U, Malm A, Smolarz H. Antimicrobial activity of the extracts from fruits of Rumex L. species. Cent Eur J Biol. 2011;6:1036–43.

8. Guo CH, Yang SL. TCM name combing and specification suggestions in the study of chemical constituents and bioactivity of Rumex species (Polygonaceae). J Chem Pharm Bio. 2020;86:234–46.

9. Michikio T, Juko G. Isolation of hydroxyanthrones from the roots of Rumex acetosa Linn. Agr Biol Chem Tokyo. 1982;46:1913–4.

10. Gunaydin K, Topcu G, Ion RM. 1,5-Dihydroxyanthraquinones and an anthrone from roots of Rumex crispus. Nat Prod Lett. 2002;16:665–70.

11. Wang ZY, Cheng JR, Li RM, Wang ZQ. New chromone glucoside from roots of Rumex gmelini. Nat Prod Res Dev. 2009;21:189–91.

12. Wang ZY, Zhao HP, Zhao Y, Wang ZQ, Tang XM. Two new C-glucose oleanoxanthines from Rumex gmelini. Phytochemistry. 2007;68:2444–5.

13. Wang S, Zhang X. Studies on chemical constituents of ethyl acetate extracted from leaves of Rumex patientia Linn. Acta Chin Med Pharma. 2019;47:60–8.

14. Zhu JJ, Zhang CF, Zhang M, Bligh SWA, Yang L, Wang ZM, Wang ZT. Separation and identification of three epimeric pairs of new C-glucosyl anthrones from Rumex dentatus by on-line high performance liquid chromatography-circular dichroism analysis. J Chromatogr A. 2010;1217:5384–8.

15. Chen WS, Hu XH, Yuan WP. Chemical constituents in the leaves of Rumex crispus L. China J Tradit Chin Med Pharm. 2015;38:63–4.

16. Su YZ, Gao LM, Zheng XD, Zheng SZ, Shen XW. Flavonoids from Polygonum × asarifolium. Phytochemistry. 1995;39:1211–3.

17. Salama HH. Flavonoid glycosides from Rumex pectinatus. Egypt J Bot. 2000;39:41–52.

18. El-Fattah AH, Gohar A, El-Dahmy S, Hubaishi A. Phytochemical investigation of Rumex uncinatus. Acta pharm Hung. 1994;64:83–5.

19. Orban-Gyapai O, Raghavan A, Vasas A, Forgo P, Hohmann J, Shah ZA. Flavonoids isolated from Rumex aquatilus exhibit neuroprotective and neurorestorative properties by enhancing neurite outgrowth and synaptophysin. CNS Neurol Disord Drug Targets. 2014;13:1458–64.

20. Yang B, Wang HY, Zhao P, Shen DF. Studies on the constituents of anthraquinone and flavonoid in the seed of Rumex patientia. Heilongjiang Med Pharm. 2015;38:63–4.

21. Xu MY, Wang QB, Wei LM, Guo SL, Ding CH, Wang ZY. Chemical constituents of ethyl acetate extract from Rumex gmelini fruit. Int J Tradit Chin Med. 2017;7:22–6.

22. Cheng Y, Luo JI, Li C. Chemical constituents from aerial part of Rumex patientia. J Chin Med Mater. 2013;36:57–60.

23. Zhao P. Dissertation, Jiamusi Univ, 2007.
48. Zhu JJ, Zhang CF, Zhang M, Wang ZT. Studies on chemical constituents in roots of Rumex dentatus. China J Chin Mater Med. 2006;31:1691–3.
49. Chumbalov TK, Kuznetsova LK, Tarasinka KV. Chemical and flavonoids of the roots of Rumex Rechingeri. Chem Nat Compd. 1969;5:155–6.
50. Zhao YL, Dong HQ, Zhang LS. Chemical constituents from the ethyl acetate portion of Rumex japonicus. J Dali Univ. 2020;5:27–30.
51. Deng LN, Li BR, Wang GW, Zhang JM, Ge JQ, Wang H, Liao ZH, Chen M. Chemical constituents from roots of Rumex nepalensis. Chin Tradit Herbal Drugs. 2016;47:2095–9.
52. Erturk S, Cebaz M, Imre S. Anthraquinone pigments from Rumex crista‑tus. Acta pharma. Turcica. 2001;43:21–2.
53. Yuan Y, Chen WS, Zheng SQ, Yang GY, Zhang WD, Zhang HM. Studies on chemical constituents in root of Rumex patientia L. China J Chin Mater Med. 2001;26:40–2.
54. Ömür LD, Ayse KU, Bergere I, Schiewe HJ, Zeeck A. The structures of catechin and epicatechin from R. Rechingeri. World J. 2015;2015:1–10.
55. Stöggl WM, Huck CW, Bonn GK. Structural elucidation of catechin and epicatechin from roots of Rumex patientia L. Chem Pharm Bull. 1990;38:2277–80.
56. Bicker J, Petereit F, Hensel A. Proanthocyanidins and a phloroglucinol derivative from Rumex patientia samples. Phytochemistry. 2009;70:485–95.
57. Kato T, Morita Y. C-glycosylflavonoids with acetyl substitution from Rumex acetalosus. J. Pharmacogn. 2014;32:139–44.
58. Saheen S, Khan MR, Khan RA. Comprehensive assessment of phenolics and antiradical potential of Rumex hastatus D. Dom. roots. BMC Complement Altern Med. 2014;14:11–14.
59. http://www.cabi.org/isc/datasheet/116820. Accessed 31 Dec 2021.
60. Yang J, Jiang ZB, Shao GJ, Guo DC, Tian Y, Song JJ, Lin YY. The extraction of new chemical compositions in Rumex root. Adv Mater Res Switz. 2012;382:372–4.
61. http://www.theplantlist.org. Accessed 31 Dec 2021.
62. Royer F, Richardson K. Weeds of the Northwestern U.S. and Canada. Canada: University of Alberta Press; 1999.
63. Zhang H, Guo ZJ, Wu N, Xu WM, Han L, Li N, Han YX. Two novel naphthalene glucosides and an anthraquinone isolated from Rumex dentatus and their antiproliferation activities in four cell lines. Molecules. 2012;17:843–50.
64. Kang YH, Wang ZY, Li JK, Liu LM. Isolation and identification of two anthraquinones from Rumex gemellinus Turcz. China J Chin Mater Med. 1996;21:741–2.
65. Zee OP, Kim DK, Kwon HC, Lee KR. A new epoxyanetholquinone from Rumex japonicus. Arch Pharm Res. 1998;21:485–6.
66. Rouf ASS, Islam MS, Rahman MT. Evaluation of antioxidant activity of Rumex confertus root. J Ethnopharmacol. 2003;84:307–10.
67. Watt JM, Breyer-Brandwijk MG. The medicinal and poisonous plants of Southern Africa. Edinburgh: Livingstone; 1932.
68. Gairola S, Sharma J, Bedy YA. Cross-cultural analysis of Jammu, Kashmir and Ladakh (India) medicinal plant use. J Ethnopharmacol. 2014;155:925–86.
69. Akeroyd JR. Docks and knotweed of Britain and Ireland, vol. 3. London: BSBI Handbook. 2015.
70. Akeroyd JR, Webb DA. Morphological variation in Rumex crispatus DC. Bot J Linn Soc. 1991;106:103–4.
71. Mosyakin SL. Rumex Flora of North America, vol. 5. New York: Oxford University Press; 2005.
72. El-Hawary SA, Sokkar NM, Ali ZY, Yehia MM. A profile of bioactive compounds of Rumex vesicatorius L. J Food Sci. 2011;76:C1195–202.
73. Khan TH, Ganaia NA, Siddiqui NA, Alam A, Ansari MN. Antioxidant potential of Rumex vesicatorius L.: in vitro approach. Asian Pac J Trop Bio. 2014;5:344–50.
74. Salama HMM. Two crystalline compounds from Rumex pictus Forssk. Egypt J Bot. 1996;36:235–44.
75. Salama HMM. Diterpenoid alkaloids from Rumex pictus Forssk. Egypt J Bot. 1997;37:85–92.
76. http://flora.org/en/plants/. Accessed 31 Dec 2021.
77. Kerem Z, Regev SG, Flashman MA, Sivan L. Resveratrol and two monomethylated stilbenes from Israeli Rumex bucephalophorus and their antioxidant potential. J Nat Prod. 2003;66:1270–2.
compounds in *Rumex algenis* flowers and stems. Phytochem Anal. 2020;31:616–35.

103. Abidi J, Ammar S, Ben Brahim S, Skalicka-Wozniak K, Ghrabi-Gammar Z, Bouaziz M. Use of ultra-high-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry system as valuable tool for an untargeted metabolomic profiling of *Rumex tunetanus* flowers and stems and contribution to the antioxidant activity. J Pharm Biomed. 2019;166:62–81.

104. Abidi J, Occhiuto C, Cimino F, Speciale A, Ruberto G, Siracusa L, Bouaziz M, Boumendjel M, Muscarà C, Saja A, Cristiani M. Phytochemical and biological characterization of medicinal extracts from *Rumex algeni* nis and *Rumex tunetanus*. Chem Biodivers. 2020. https://doi.org/10.1002/cbdv.202000345.

105. Jaradat N, Hawwash M, Dass G. Phytochemical analysis, in-vitro anti-proliferative, anti-oxidative, anti-diabetic, and anti-obesity activities of *Rumex rothschildianus* Aarons. Extracts. BMC Complement Med. 2021;21:107.

106. Islam MS, Iwasaki A, Suenaga K, Kato-Noguchi H. 2-Methoxystypanthin from *Rumex hastatus* roots. Jpn J Pharmacol. 2010;101:722–82.

107. Qiu Y, Li X, Lee JE, Lee EW, Cho N, Lee HM. Inhibition of Jurkat T cell proliferation by active components of *Rumex hastatus*. J Theor Exp Sci. 2009;97:1–11.

108. Liu JX, Zhou GR, Zhang LI, Kong LY. Study on the chemical constituents of *Rumex patientia*. J Chin Med Mater. 2011;34:893–5.

109. Hasan A, Ahmed I, Khan MA. A new anthraquinone glycoside from *Rumex chelensis*. Fitoterapia. 1997;68:140–2.

110. Wang HL, Wang Z, Liang WJ, Li X, Jiang K. Chemical constituents of *Rumex nepalensis* (II). J Chin Med Mater. 2002;43:119–31.

111. Wang Y, Yan YM, Wei J, Lee L, Zhang LS, Zhou XY, Wang PC, Yang XY, Cheng YX. Anthraquinone derivatives from *Rumex plants* and endo-phytic *Aspergillus fumigatus* and their effects on diabetic nephropathy. Bioorg Med Chem Lett. 2013;23:3905–9.

112. Shafiq N, Noreen S, Rafiq N, Ali B, Parveen S, Mahmood A, Sajjad A, Akhtar N, Bilal M. Isolation of bioactive compounds from *Rumex hastatus* extract and their biological evaluation and docking study as potential anti-oxidant and anti-urease agents. J Food Biochem. 2020. https://doi.org/10.1111/jfbc.13320.

113. Bélanger J, Balakrishna M, Latha P, Katumalla S, Johns T. Contribution of selected wild and cultivated leafy vegetables from South India to lutein and ß-carotene intake. Asia Pac J Clin Nutr. 2010;19:417–24.

114. Elzaawely AA, Xuan TD, Tawata S. Antioxidant and antibacterial activities of *Rumex acetosa* rhizome. J Nat Prod. 2011;74:169–73.

115. Zhou RH. Chemical taxonomy of medicinal plants. Shanghai: Shanghai Science and Technology Press; 1988.

116. Deng LN, Li BR, Wang R, Wang GW, Dong ZY, Liao ZH, Chen M. New hydroxyanthraquinones, -dianthrones, -naphthalenes and -benzenes in *Rumex japonicus* root via epicatechin-3-O-(4β-D-glucopyranosyl)-β-D-glucopyranoside and their effects on gastric ulcers. J Ethnopharmacol. 2005;99:433–43.

117. Zhou RH. Chemical taxonomy of medicinal plants. Shanghai: Shanghai Science and Technology Press; 1992.

118. Santos ER, Oliveira HNM, Oliveira EJ, Azevedo SHG, Jesus AA, Medeiros AM, Dariva C, Sousa EMBD. Supercritical fluid extraction of *Rumex Acetosa* roots: yield, composition, kinetics, bioactive evaluation and comparison with conventional techniques. J Supercrit Fluids. 2017;122:1–9.

119. Tutin F, Clewer WB. The constituents of *Rumex Eclatlanus*. J Chem Soc. 1910;97:1–11.
191. Verma KK, Gautam RK, Choudhary A, Gupta GD, Singla S, Goyal S. A review on ethnobotany, phytochemistry and pharmacology on Rumex hastatus. Res J Pharm and Tech. 2020;13(8):3969–76.

192. Nedelcheva A. An ethnobotanical study of wild edible plants in Bulgaria. EurAsia J Biosci. 2013;7:77–94.

193. Harshaw D, Nahar L, Vadla B, Safi-E-Naser GM, Sarker SD. Bioactivity of Rumex obtusifolius (Polygonaceae). Arch Biol Sci. 2010;62:387–92.

194. Duke J. Duke's Phytochemical and Ethnobotanical Databases. http://www.ars-grin.gov/cgi-bin/duke/ethnobot.pl?ethnobot.taxon=Rumex%20obtusifolius. Accessed 20 Mar 2022.

195. Paniagua-Zambriana NY, Bussmann RW, Echeverria J. Rumex acetosella L. Rumex crispus L. Rumex cuneifolius Campd. Polygonaceae. Ethnobot Andes. 2020. https://doi.org/10.1007/978-3-319-77093-2_255-1.

196. Dabe NE, Kefale AT, Dadi TL. Evaluation of abortifacient effect of Rumex nepalensis Spreng among pregnant swiss albino rats: laboratory-based study. J Exp Pharm. 2020;12:255–65.

197. Pareek A, Kumar A. Rumex crispus L. A plant of traditional value. Drug Discov. 2014;9(20):20–3.

198. Sõukand R, Pironier A. The importance of a border: Medical, veterinary, and wild food ethnobotany of the Hutsuls living on the Romanian and Ukrainian sides of Bukovina. J Ethnopharmacol. 2016;185:17–40.

199. Yang J, Luo JF, Gan QL, Ke LY, Zhang FM, Guo HR, Zhao FW, Wang TH. An ethnobotanical study of forage plants in Zhuxi County in the Qinba mountainous area of central China. Plant Divers. 2021;43(3):239–47.

200. Svanberg I. The use of wild plants as food in pre-industrial Sweden. Acta Soc Bot Pol. 2012;81(4):317–27.

201. Kwak HS, Park SY, Nguyen TT, Kim CH, Lee JM, Suh JS, Whang WK, Sohn UD. Protective effect of extract from Rumex aquaticus herba on ethanol-induced gastric damage in rats. Pharmacology. 2012;90:288–97.

202. Veldhoo F, Chambouleyron M, Léger JF. Rumex chalepensis (Polygonaceae), a new species for Morocco and Africa. Medit Bot. 2022;43: e74654.

203. Ammar NM, Ayoub NA, El-Ahmady SH, El-Kassim LTA, Zeid EMA. Phytochemical and cytotoxic studies of Rumex pictus forssk and Rumex vesicarius L. (family Polygonaceae), growing in Egypt. Eur J Med Plants. 2015;10(3):1–13.

204. El-Fattah HA, El-Dahmy S, Abdel-Aal M, Halim A, Abdel-Halim O. Phenolic constituents from Rumex bucephalophorus growing in Libya. Zagazig J Pharm Sci. 1994;3(1):88–91.

205. Rodríguez-León E, Iñiguez-Palomares RA, Navarro RE, Rodríguez-Beas C, Larios-Rodríguez E, Alvarez-Cireol FJ, Iñiguez-Palomares C, Ramírez-Saldaña M, Martínez-JH, Martínez-Higuera A, Galván-Moroyoqui JM, Martínez-Soto JM. Silver nanoparticles synthesized with Rumex hymenosepalus extracts: effective broad-spectrum microbicidal agents and cytotoxicity study. Artif Cells Nanomed Biotechnol. 2018;46(6):1194–206.

206. Cole JR, Buchalter L. Isolation of a potential antitumor fraction from Rumex hymenosepalus. J Pharm Sci. 1965;54(9):1376–8.

207. Azzam MM, Qaid MM, Al-Mufarrej SI, Al-Garadi MA, Albadani AH, Alhindary IA. Rumex nervosus leaves meal improves body weight gain, duodenal morphology, serum thyroid hormones, and cecal microflora of broiler chickens during the starter period. Poult Sci. 2020;99(11):5572–81.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.