Lifestyle Modifications May Improve Glycemic Control in Pregnant Women

Eunice Hartsock, RN, MSN, FNP and Annie Huynh*, RN, PHN, DNP, FNP

Department of Nursing, California State University, 9001 Stockdale Hwy, 29RNC, Bakersfield, CA 93311, United States.

Introduction

Over 23% of adults 18 years and older are considered physically inactive or insufficiently active [1]. The WHO has identified physical inactivity as a leading risk factor for mortality worldwide and a key risk factor for disease and disability, including obesity, cardiovascular disease (CVD), hypertension, diabetes mellitus (DM), and gestational diabetes mellitus (GDM) [1-5]. GDM prevalence is up to 25% pregnancies globally and close to 10% in the US [6, 7]. GDM can cause physiological and psychological problems in pregnant women [3, 6]. Studies have shown various interventions such as lifestyle modification of diet and exercise have been found favorable in controlling GDM and preventing pregnancy related adverse outcomes. Thus, clinicians are charged with counseling and promoting lifestyle modification in all pregnant women during patient encounters.

Abstracts

Over 23% of adults 18 years and older are considered physically inactive or insufficiently active [1]. The WHO has identified physical inactivity as a leading risk factor for mortality worldwide and a key risk factor for disease and disability, including obesity, cardiovascular disease, hypertension, diabetes mellitus (DM), and gestational diabetes mellitus (GDM) [1-5].

GDM is defined as a carbohydrate and glucose intolerance of any degree with varying severity, resulting in hyperglycemia that is first detected and diagnosed during pregnancy, usually after 24 weeks of gestation and is not overtly type 1 DM (T1DM) or type 2 DM (T2DM) [8-13]. Due to varying diagnostic criteria, risk factors, and demographic characteristics, the prevalence of GDM is difficult to determine, so its true significance is unknown [3, 7]. However, some studies have found that GDM affects up to 25% of pregnancies globally and as high as 9.2% in the United Sates [6, 7].

Problem

In the United States, GDM is more prevalent in non-white ethnicities, such as African-American, Hispanic, Native Hawaiian, Pacific Islander, and Asian, with Pacific Islander and Asian women having the greatest risk [5, 14-16]. Modifiable and non-modifiable risk factors include advanced maternal age greater than 35 years old, height of less than 1.5 m or 5 feet, smoking, and family history of diabetes, history of GDM, history of recurrent miscarriages, obesity, and polycystic ovary syndrome [2, 3, 5]. Obstetric history, such as fetal or neonatal death, macrosomia, multi-parity, offspring malformation, preeclampsia, pregnancy induced hypertension, polyhydramnios, twins pregnancy and lifestyle choices, e.g. poor diet, physical inactivity, and/or sedentary lifestyle are also significant for GDM risks [2, 3, 5].

Studies have shown that GDM may cause psychological problems of anxiety and emotionally distress, resulting in a negative pregnancy experience and poorer health perceptions [6, 17]. Many pregnant women expressed feelings of shock, fear, and denial when initially diagnosed with GDM, and most were worried, frightened, or concerned regarding the possible fetal and neonatal adverse effects [6, 17, 18].

Physiological problems associated with GDM include pregnancy and birth complications, such as disorders of pregnancy induced hypertension, preeclampsia or eclampsia, macrosomia, shoulder dystocia, non-elective cesarean section, birth injuries of bone fracture or nerve palsy, fetal hyperinsulinemia, or neonatal intensive care unit (NICU) admission [3, 6, 19]. Long-term maternal complications include an increased risk of developing T2DM, cardiovascular disease, and metabolic syndrome [3]. There is little research on long-term complications of GDM in children, however, newborns and offspring born from women with a history of GDM have an increased risk of developing metabolic disorders, include metabolic syndrome, obesity, prediabetes, and T2DM [3, 9].

Primary prevention for GDM targets adult women in the preconception phase and focuses on healthy lifestyles of proper diet, exercise, and/or weight loss, and preventing pregnancy risk factors [20]. Secondary prevention targets women who are at risk with GDM during the early antenatal phase and focuses on early screening, early diagnosis, pharmacological, non-pharmacological treatment, and lifestyle modifications [20]. Tertiary prevention targets women with complicated GDM and their newborns and offspring at the antenatal, inter-conception life phase and focuses on the management of GDM complications to minimize their impact on maternal/neonatal health [20].

Current evidenced-based practice guidelines recommend aggressive treatment of GDM, with the goal of improving glycemic control to prevent or decrease adverse maternal and fetal outcomes [19, 21, 22]. Standard guidelines in glycemic control in pregnant women with GDM include glucose monitoring and lifestyle modifications, i.e. nutritional therapy and moderate-intensity exercises [4, 19, 21, 22]. Pharmacological treatment, such as oral medications and/or insulin injection, is utilized if glycemic control cannot be accomplished with lifestyle modifications alone [4, 19, 21, 22].

Literature Review

Afaghi et al. [10] hypothesized that a low-glycemic-index and low-glycemic-load diet with fiber (e.g. wheat bran), compared to a regular diet, would show effective postprandial blood glucose (PPBG) control
Kizirian et al. [23] hypothesized that LGI/LGL meals would control in pregnant women diagnosed with GDM [10]. Based on these findings, an LGI/LGL diet consumed with fiber could be utilized to improve glycemic control in pregnant women diagnosed with GDM [10].

Asemi et al. [24] investigated the effects of the Dietary Approach to Stop Hypertension (DASH) diet on insulin resistance. FBG, serum insulin levels, and Homeostasis Model of Assessment – Insulin Resistance (HOMA-IR)), serum high-sensitivity C-reactive protein (hs-CRP), and biomarkers of oxidative stress (e.g. total antioxidant capacity [TAC] and total glutathione [GSH]) can have effects on pregnant women diagnosed with GDM. The study was a randomized, two-arm parallel clinical trial, with a sample size of 32 pregnant women at risk or diagnosed with GDM. The study was a randomized, two-arm parallel clinical trial, with a sample size of 32 pregnant women between 18-49 years of age and diagnosed with GDM [24]. Participants were randomly allocated to the DASH diet group (n=16) and the Control diet group (n=16) after stratification for gestational age and BMI [24]. Dietary interventions were implemented for four weeks, after which biochemical markers were measured at a reference laboratory in Kashan, Iran [24]. Results showed that FBG, serum insulin levels, and HOMA-IR score in the DASH diet group were decreased compared to the Control diet group [24]. The study concluded that the DASH diet had beneficial effects on the HOMA-IR score, serum insulin levels, FPG, and biomarkers of oxidative stress, which could positively impact the "metabolic profiles of pregnant women diagnosed with GDM" [24]. Based on these findings, the DASH diet could be utilized to achieve glycemic control in pregnant women diagnosed with GDM [24].

Discussion and Application

The Afraghi et al. [10], Kizirian et al. [23], and Asemi et al. [24] studies have all explored the effects of dietary interventions on blood glucose levels, insulin resistance, and/or glycemic control in pregnant women at risk or diagnosed with GDM. The Afraghi et al. [10] and Kizirian et al. [23] studies utilized an LGI/LGL and LGI/LGL diet consumed with added fiber, respectively, while the Asemi et al. [24] study utilized the DASH diet. All three studies concluded that their implemented dietary intervention had beneficial effects on glycemic control in pregnant women diagnosed with GDM, which was initially surprising especially regarding the DASH diet [10, 23, 24]. However, on further analysis, the LGI/LGL diet with added fiber utilized by Kizirian et al. [23] was similar in nutrient composition with the DASH diet utilized by Asemi et al. [24]. Both diets were low in simple sugars and high in fruits and vegetables, which previous studies shown to have positive effects on insulin resistance [24]. In addition, both diets had higher fiber contents compared to the control diets in their respective studies; the LGI/LGL diet in the [23] study had an additional 15 grams of fiber and the DASH diet in the [24] study had a fiber content that was 1.5-2 times higher compared to the control group. Based on this analysis, both an LGI/LGL diet and an LGI/LGL diet with added fiber (like the DASH diet), could be utilized to improve glycemic control in pregnant women diagnosed with GDM.
The study by Youngwanichsetha et al. [4] also explored the effects of dietary interventions on blood glucose levels in pregnant women diagnosed with GDM. This study utilized mindful eating, which included setting a glycemic target, considering portion sizes, decreasing or eliminating diabetic foods, and eating slowly (over 30-45 minutes) [4]. Similarly to the Afagh et al. [10], Kizirian et al. [23], and Aseme et al. [24] studies, it also incorporated an LGI/LGL diet as part of their dietary intervention [4]. However, unlike these previous studies, the study by Youngwanichsetha et al. [4] also explored the effects of exercise interventions on blood glucose levels in pregnant women diagnosed with GDM, specifically yoga. The study concluded that combining mindfulness eating and yoga exercises optimized glycemic control in pregnant women diagnosed with GDM [4]. Since there is limited research on the effectiveness of these specific interventions on the treatment of GDM in pregnant women, there may be some hesitation to implement them in this population [4]. However, on further analysis, mindful eating was developed from the foundation of nutritional therapy and yoga is a type of moderate-intensity exercise; nutritional therapy and moderate-intensity exercises are examples of lifestyle modifications, which are considered current evidenced-based practice guidelines on the treatment of pregnant women diagnosed with GDM [4, 16, 19, 21]. Based on this analysis, combining mindfulness eating and yoga exercise could be utilized to improve glycemic control in pregnant women diagnosed with GDM.

The Halse et al. [25] also explored the effects of exercise interventions on the blood glucose profile in pregnant women diagnosed with GDM, specifically utilizing a supervised, home-based exercise program that consisted of interval training combined with continuous-steady state cycling. Similarly to the Youngwanichsetha et al. [4] also concluded that implementing a moderate-intensity exercise can have beneficial effects on glycemic control in pregnant women diagnosed with GDM [25, 26]. However, unlike the Youngwanichsetha et al. [4] study, the Halse et al. [25] study also explored the effects of their supervised, home-based cycling program on exercise motivation and enjoyment. With a 96% compliance rate, the study concluded that their exercise intervention had beneficial effects on improving adherence [25]. However, there are aspects in the study that make it difficult to determine if implementation would be feasible in this population [25]. For example, supervision was conducted by an exercise physiologist (EP) that came to the participants’ houses three times a week and actively tailored the exercises to the individual participants [25]. Based on this analysis, a moderate-intensity exercise, such as cycling, can be utilized to improve glycemic control in pregnant women diagnosed with GDM. Clinicians should recommend an exercise program for pregnant women diagnosed with GDM.

Implications

Studies have shown that physically inactive pregnant women are more likely to develop GDM [3, 4]. However, women diagnosed with GDM usually remain physically inactive despite understanding the benefits of an exercise program [25]. In addition, 60% of pregnant women diagnosed with GDM are unable to achieve their recommended glycemic goal despite receiving education and nutritional counseling regarding their dietary choices [4]. Clinical process can optimize a patient’s likelihood of adopting new behaviors to decrease GDM-specific maternal and newborn outcomes [27].

Exercise

Women commonly reported that inadequate support and supervision played an immense role on adherence with their treatment plan, especially with exercise [17, 28]. When developing and implementing exercise regimens, clinicians can provide methods of continuous support and supervision throughout the pregnancy [25]. This can be accomplished by recommending group exercise classes, where peer motivation can improve exercise adherence and enjoyment [4, 17, 25, 28].

Diet

Women prefer receiving visual information regarding self-glucose monitoring and healthy dietary habits; they perceive written information overwhelming and inconvenient [29, 30]. Clinicians can utilize the use of a mobile application, such as the Pregnant+ app, which provides easily accessible information on the patient’s cell phone [30]. The Pregnant+ app, which studies have found to be useful in the management of GDM, can provide visual, portable information regarding diagnosis, healthy food choices of LGI/LGL foods and/or LGI/LGL foods with added fiber; real-time blood glucose readings can be automatically transferred from the glucometer [4, 10, 23, 24, 30].

Health Care System

GDM is a growing clinical and public health concern and is the most predictive factor for developing T2DM later in life [3, 16, 27, 28]. Over 50% of women with diet-controlled GDM can develop T2DM within 5-10 years following the index pregnancy [3]. GDM is also associated with an increased risk of developing metabolic syndrome and cardiovascular disease [3]. The risk of developing metabolic syndrome is 17.6% in women diagnosed with GDM and 20% in women with previous GDM [3]. Women with GDM have a 70% higher risk of developing cardiovascular disease, compared to women without, and can occur within 11 years following the index pregnancy [3].

With GDM’s increasing prevalence and its associated risk of adverse outcomes, there is an increased economic burden on the health care system to provide additional services and resources for this population [31, 32]. In 2007, approximately 180,000 GDM pregnancies that resulted in deliveries were associated with $636 million in increased health care and medical costs; roughly costing $596 million for mothers and $40 million for newborns and offspring [31, 32]. In 2012, the national health care costs associated with GDM and elevated blood glucose levels increased to $1.3 billion [32].

Future Research

All the studies analyzed in this review were conducted outside of the United States. In addition, most of the studies had small sample sizes (the lowest had 17 participants) and were extremely short in duration [4, 10, 23-25]. Future research is indicated to determine if interventions in these studies would produce similar findings and be representative of pregnant women diagnosed with GDM in the United States. Furthermore, there is limited information on the effects of providing visual information as a tool, such as the Pregnant+ app, for pregnant women diagnosed with GDM [29]. Future research is indicated to determine the effectiveness of this intervention on the adherence and outcomes of pregnant women diagnosed with GDM.

Conflict of interest: The authors have declared no conflict of interest.

References

1. World Health Organization. (2018). Physical inactivity [Fact sheet].
2. Pons, R. S., Rockett, F. C., de Almeida Rubin, B., Oppermann, M. L. R., & Bosa, V. L. (2015). Risk factors for gestational diabetes mellitus in a sample of pregnant women diagnosed with the disease. Diabetology & Metabolic Syndrome, 7(1), 1-2. https://dx.doi.org/10.1186%2F1758-5996-7-S1-A80
3. Kampmann, U., Madsen, L. R., Skaja, G. O., Iversen, D. S., Moeller, N., & Ovesen, P. (2015). Gestational diabetes: A clinical update. World Journal of Diabetes, 6(8), 1065-1072. DOI: 10.4239/wjd.v6.i8.1065
4. Youngwanichsetha, S., Phumdoung, S., & Ingkathawornwong, T. (2014). The effects of mindfulness eating and yoga exercise on blood sugar levels of pregnant women with gestational diabetes mellitus. Applied Nursing Research, 27(4), 227-230. https://doi.org/10.1016/j.apnr.2014.02.002
5. Zhang, C., Rawal, S., & Chong, Y. S. (2016). Risk factors for gestational diabetes: Is prevention possible? *Diabetologia*, 59(7), 1385-1390. DOI: 10.1007/s00125-016-3979-3

6. Parsons, J., Sparrow, K., Ismail, K., Hunt, K., Rogers, H., & Forbes, A. (2018). Experiences of gestational diabetes and gestational diabetes care: A focus group and interview study. *BMC Pregnancy and Childbirth*, 18(25), 1-12. https://dx.doi.org/10.1186%2Fs12884-018-1657-9

7. DeSisto, C. L., Kim, S. Y., & Sharma, A. J. (2014). Prevalence of gestational diabetes mellitus in the United States, pregnancy risk assessment monitoring system (PRAMS), 2007-2010. *Preventing Chronic Disease, 11*, 1-9. http://dx.doi.org/10.5888/pcd11.03130415

8. McCance, K. L., & Huether, S. E. (2014). *Pathophysiology: The biologic basis for disease in adults and children*. St. Louis, MO: Elsevier

9. Damm, P., Houshmard-Oeregaard, A., Kelstrup, L., Launborg, J., Mathiesen, E. R., & Clausen, T. D. (2017). Gestational diabetes mellitus and long-term consequences for mother and offspring: A view from Denmark. *Diabetolog. 59*(7), 1396-1399. DOI: 10.1007/s00125-016-3985-5

10. Afaghi, A., Ghanei, L., & Ziaee, A. (2013). Effect of low glycemic load diet with and without wheat bran on glucose control in gestational diabetes mellitus: A randomized trial. *Indian Journal of Endocrinology and Metabolism, 17*(4), 689-692. DOI: 10.4103/2230-8210.113762

11. American Diabetes Association. (2003). Gestational diabetes mellitus. *Diabetes Care, 26*(1), S103-S105. https://doi.org/10.2337/diacare.26.2007.S103

12. Marchetti, D., Carrozzino, D., Fraticelli, F., Fulcheri, M., & Vitacolonna, E. (2017). Quality of life in women with gestational diabetes mellitus: A systemic review. *Journal of Diabetes Research, 2017*, 1-13. https://doi.org/10.1155/2017/7058082

13. Wang, C., Guelfi, K. J., & Yang, H. (2016). Exercise and its role in gestational diabetes mellitus. *Chronic Disease and Translational Medicine, 2*(4), 208-214. https://doi.org/10.1016/j.cdtm.2016.11.006

14. Ferrara, A. (2007). Increasing prevalence of gestational diabetes mellitus. *Diabetes Care, 30*(2), S141-S146. https://doi.org/10.2337/dc07-s206

15. Fujimoto, W., Samoa, R., & Worting, A. (2013). Gestational diabetes in high-risk populations. *Clinical Diabetes, 31*(2), 90-94. https://doi.org/10.2337/diaclin.31.2.90

16. Center for Vulnerable Populations. (2013). The prevalence of gestational diabetes is growing [Fact sheet]. Retrieved from https://cvp.ucsf.edu/docs/gdm_factsheet_format.pdf

17. Morrison, M. K., Lowe, J. M., & Collins, C. E. (2014). Australian women’s experiences of living with gestational diabetes. *Women and Birth, 27*(1), 52-57. https://doi.org/10.1016/j.wombi.2013.10.001

18. Ge, L., Wikby, K., Rask, M. (2017). Live experience of women with gestational diabetes mellitus living in China: A qualitative interview study. *BMJ Open, 7*(11), 1-11. http://dx.doi.org/10.1136/bmjopen-2017-017648

19. ACOG releases guideline on gestational diabetes (2014). *American Family Physician, 90*(6), 416-417.

20. Kalra, S., Gupta, Y., & Kumar, A. (2016). Prevention of gestational diabetes mellitus (GDM). *E-Journal of Pakistan Medical Association, 66*(11), S107-S109.

21. Garrison, A. (2015). *Screening, diagnosis, and management of gestational diabetes mellitus*. *E-Journal of American Family Physician, 91*(7), 460-467.

22. Sklempe Kocic, I., Ivanisevic, M., Biolo, G., Simunic, B., Kocic, T., & Pisot, R. (2017). Combination of structured aerobic and resistance exercise improves glycemic control in pregnant women diagnosed with gestational diabetes mellitus. A randomized controlled trial. *Women and Birth, 1-7*. https://doi.org/10.1016/j.wombi.2017.10.004

23. Kizirian, N. V., Goletzke, J., Brodie, S., Atkinson, F. S., Markovic, T. P. Ross, G. P.,…Brand-Miller, J. C. (2018). Lower glycemic load meals reduce diurnal glycemic oscillations in women with risk factors for gestational diabetes (2017). *BMJ Open Diabetes Research and Care, 5*(1), 1-7. http://dx.doi.org/10.1136/bmjdrhc-2016-000351

24. Asemi, Z., Samimi, M., Tabassi, Z., Sabihi, S., & Esmaillzadeh, A. (2013). A randomized controlled clinical trial investigating the effect of DASH diet on insulin resistance, inflammation, and oxidative stress in gestational diabetes. *Nutrition, 29*(4), 619-624. https://doi.org/10.1016/j.nut.2012.11.020

25. Halse, R. E., Wallman, K. E., Newham, J. P., & Guelfi, K. J. (2014). Home-based exercising training improves capillary glucose profile in women with gestational diabetes. *Medicine & Science in Sports & Exercise, 46*(9), 1702-1702. DOI: 10.1249/MSS.0000000000000302

26. Centers for Disease Control and Prevention. (2018). General physical activities defined by level of intensity [Fact sheet].

27. Veeraswamy, S., Vijayam, B., Gupta, V. K., & Kapur, A. (2012). Gestational diabetes: The public health relevance and approach. *Diabetes Research and Clinical Practice*, 97(3), 350-358. https://doi.org/10.1016/j.diabres.2012.04.024

28. Mukona, D., Munjanja, S. P., Zvinavashe, M., & Stray-Pederson, B. (2017). Barriers to adherence and possible solutions to nonadherence to antidiabetic therapy in women with diabetes in pregnancy: Patients’ perspective. *Journal of Diabetes Research, 2017*, 1-11. https://doi.org/10.1155/2017/3578075

29. Martis, R., Brown, J., & Crowther, C. A. (2017). View and experiences of New Zealand women with gestational diabetes in achieving glycemic control targets: The views study. *Journal of Diabetes Research, 9*, 1-9. http://doi.org/10.1155/2017/2F2190812

30. Borgen, I., Garnweidner-Holme, L. M., Jacobsen, A. F., Bjerkman, K., Fayyad, S., Joranger, P.,…Lukasse, M. (2018). Smartphone application for women with gestational diabetes mellitus: A study protocol for a multicenter randomized controlled trial. *BJM Open, 7*(3), 1-8. http://dx.doi.org/10.1136/bmjopen-2016-013117

31. Chen, Y., Quick, W. W., Yang, W., Zhang, Y., Baldwin, A., Moran, J.,…Dall, T. M. (2009). Cost of gestational diabetes mellitus in the United States in 2007. *Population Health Management*, 12(3), 165-174. https://doi.org/10.1089/pop.2009.12303

32. Dall, T. M., Yang, W., Halder, P., Pang, B., Massoudi, M., Winfeld, N.,…Hogan, P. F. (2014). The economic burden of elevated blood glucose levels in 2012: Diagnosed and undiagnosed diabetes, gestational diabetes mellitus, and prediabetes. *Diabetes Care, 37*(12), 3172-3179. https://doi.org/10.2337/dc14-1036