The non-avian theropod quadrate I: standardized terminology with an overview of the anatomy and function

Christophe Hendrickx, Ricardo Araújo, Octávio Mateus

The quadrate of reptiles and most other tetrapods plays an important morphofunctional role by allowing the articulation of the mandible with the cranium. In Theropoda, the morphology of the quadrate is particularly complex and varies importantly among different clades of non-avian theropods, therefore conferring a strong taxonomic potential. Inconsistencies in the notation and terminology used in discussions of the theropod quadrate anatomy have been noticed, including at least one instance when no less than eight different terms were given to the same structure. A standardized list of terms and notations for each quadrate anatomical entity is proposed here, with the goal of facilitating future descriptions of this important cranial bone. In addition, an overview of the literature on quadrate function and pneumaticity ontogeny in non-avian theropods is presented, along with a discussion of the inferences that could be made from this research. Specifically, the quadrate of the large majority of non-avian theropods is akinetic but the diagonally oriented intercondylar sulcus of the mandibular articulation allowed both rami of the mandible to move laterally when opening the mouth in many of theropods. Pneumaticity of the quadrate is also present in most tetanuran clades and the pneumatic chamber—invaded by the quadrate diverticulum of the mandibular arch pneumatic system—was connected to one or several pneumatic foramina on the medial, lateral, posterior, anterior or ventral sides of the quadrate.
The non-avian theropod quadrate I: standardized terminology with
an overview of the anatomy and function

Christophe Hendrickx1,2

1Universidade Nova de Lisboa, CICEGe, Departamento de Ciências da Terra, Faculdade de
Ciências e Tecnologia, Quinta da Torre, 2829-516, Caparica, Portugal.
2Museu da Lourinhã, 95 Rua João Luis de Moura, 2530-158, Lourinhã, Portugal.

chritophe.hendrickx@hotmail.com

Ricardo Araújo2,3,4,5

2Museu da Lourinhã, 95 Rua João Luis de Moura, 2530-158, Lourinhã, Portugal.
3Huffington Department of Earth Sciences, Southern Methodist University, PO Box 750395,
75275-0395, Dallas, Texas, USA.
4Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisboa,
Portugal.
5Museum für Naturkunde, Invalidenstraße 43, 10115, Berlin, Germany.

Rmaraujo@smu.edu

Octávio Mateus1,2

1Universidade Nova de Lisboa, CICEGe, Departamento de Ciências da Terra, Faculdade de
Ciências e Tecnologia, Quinta da Torre, 2829-516, Caparica, Portugal.
2Museu da Lourinhã, 95 Rua João Luis de Moura, 2530-158, Lourinhã, Portugal.

omateus@fct.unl.pt
The quadrate of reptiles and most other tetrapods plays an important morphofunctional role by allowing the articulation of the mandible with the cranium. In Theropoda, the morphology of the quadrate is particularly complex and varies importantly among different clades of non-avian theropods, therefore conferring a strong taxonomic potential. Inconsistencies in the notation and terminology used in discussions of the theropod quadrate anatomy have been noticed, including at least one instance when no less than eight different terms were given to the same structure. A standardized list of terms and notations for each quadrate anatomical entity is proposed here, with the goal of facilitating future descriptions of this important cranial bone.

In addition, an overview of the literature on quadrate function and pneumaticity ontogeny in non-avian theropods is presented, along with a discussion of the inferences that could be made from this research. Specifically, the quadrate of the large majority of non-avian theropods is akinetic but the diagonally oriented intercondylar sulcus of the mandibular articulation allowed both rami of the mandible to move laterally when opening the mouth in many of theropods. Pneumaticity of the quadrate is also present in most tetanuran clades and the pneumatic chamber—invaded by the quadrate diverticulum of the mandibular arch pneumatic system—was connected to one or several pneumatic foramina on the medial, lateral, posterior, anterior or ventral sides of the quadrate.
INTRODUCTION

The quadrate (in Latin quadratum, meaning ‘square’) is a cranial bone of endochondral origin that articulates with the mandible in all gnathostomes except mammaliaforms, which have had the quadrate evolved into the incus (Reichert 1837; Takechi and Kuratani 2010; Brusatte 2012; Benton 2015). In theropods, this bone plays many important functions such as a structural support for the basicranium, articulatory element with the lower jaws, attachment for several muscles, hearing, and hosting important nerves, pneumatic sinuses, and vascular passages (e.g., Witmer 1990, 1997; Bakker 1998; Sedlmayr 2002; Kundrát and Janáček 2007; Holliday and Witmer 2008; Tahara and Larsson 2011; see Supplemental Information Appendix 1).

Although the outward morphology of the quadrate is relatively simple, it varies significantly among theropods in the structure of its head, mandibular articulation, quadratojugal contact and the presence of pneumatic openings, quadrate foramen, and lateral processes (e.g., Holtz 2003; Therrien et al. 2005; Hone and Rauhut 2010; Zanno and Makovicky 2011).

Variation in the quadrate morphology in the derived theropod group Aves has long been used as a means of systematic significance (e.g., Lowe 1926; Samejima and Otsuka 1987; Barbosa 1990; Elzanowski et al. 2001; Elzanowski and Stidham 2010). Similarly, but to a lesser degree, the systematic potential of the quadrate bone has also been noted for non-avian theropods (Maryańska and Osmólska 1997; Currie 2006), highlighting the importance that should be given to the description of this bone in the literature on non-avian theropod anatomy. Nevertheless, the terminology and abbreviations of the quadrate anatomy has been inconsistent in non-avian theropods, and several different anatomical terms for the same quadrate sub-entity are often used (see Supplemental Information Appendix 2). Although a list of anatomical terms has been given by Baumel and Witmer (1993), Elzanowski et al. (2001) and Elzanowski and Stidham (2010) for
the avian quadrate, the terminology proposed by these authors has not been applied to the
description of the non-avian theropod quadrate hitherto. Indeed, the quadrate of birds has greatly
changed in its morphology throughout the evolution of this clade and hence displays many
features absent in more primitive theropods. Thus, many anatomical terms coined by Baumel and
Witmer (1993), Elzanowski et al. (2001) and Elzanowski and Stidham (2010) cannot be applied
to the non-avian theropod quadrate. Moreover, some quadrate entities such as the quadrate
foramen and the lateral process observable in non-avian theropods are absent in their avian
descendants and do not appear in the list made by these authors.

The work presented here has two major aims. First, we propose a standardization of the
anatomical terms for the quadrate sub-units, each associated with a two to four letters
abbreviation and followed by a definition, in order to facilitate future descriptions of this bone in
the literature. Second, we present and discuss the current knowledge on the function and
pneumaticity of this important bone in non-avian theropods. A comprehensive study on the
anatomy and phylogenetic potential of the non-avian theropod quadrate through cladistic and
phylogenetic morphometric analyses will be provided in a companion article that will be
published later.

Institutional Abbreviations

AMNH, American Museum of Natural History, New York, U.S.A.; BHI, Black Hills Institute,
Hill City, South Dakota, USA; BYUVP, Brigham Young University Vertebrate Paleontology,
Provo, Utah, U.S.A.; CMNH, Carnegie Museum, Pittsburgh, Pennsylvania, U.S.A.; FMNH,
Field Museum of Natural History, Chicago, Illinois, U.S.A.; IGM, Mongolian Institute of
Geology, Ulaan Bataar, Mongolia; IVPP, Institute for Vertebrate Paleontology and
Theropod classification

The theropod phylogeny adopted here follows the classification summarized by Hendrickx et al. (2015) for non-avian theropods. Megaraptorian theropods are here considered as belonging to the clade Allosauroidea, as proposed by Benson et al. (2010) and Carrano et al. (2012). The
phylogenetic definitions of each non-avian theropod clade also follow those compiled and given
by Hendrickx et al. (2015): table 1).

PROPOSED TERMINOLOGY OF THE QUADRATE ANATOMY

Favored terminology

The anatomical terms of the theropod quadrate were grouped in five main sections: quadrate body, quadrate head, mandibular articulation, pterygoid flange, and pneumatic openings. The terms for each quadrate sub-units were selected by their relevance, significance and importance in the non-avian theropod literature. The non-standardized traditional Romerian directional and anatomical terms (Romer 1956; Wilson 2006) were, therefore, favored over the terminology of the *Nomina Anatomica Veterinaria* (NAV) defined by the ICVGAN (2012) and the *Nomina Anatomica Avium* (NAA) provided by Baumel (1993) as Romerian terms are the most commonly used in the non-avian theropod literature (e.g., Eddy and Clarke 2011; pers. obs.). Consequently, ‘anterior’ and ‘posterior’ are used as directional terms in lieu of the veterinarian alternatives ‘cranial’ and ‘caudal’, respectively. Because non-avian archosaurs are the direct ancestors of birds, Harris (2004) recommended to adopt the NAA as the standardized nomenclature to describe all archosaurs (and even diapsids), yet we favor Wilson's (2006) opinion to retain Romerian terms for non-avian dinosaurs. As noted by Wilson (2006), the Romerian nomenclature is the lingua franca for most of the dinosaur/archosaur literature. In addition, standard terminologies using Romerian terms are often proposed to describe the saurischian anatomy (e.g., Hendrickx et al. in press; Wilson 1999; Wilson et al. 2011; Hendrickx and Mateus 2014). Comparison between the NAA nomenclature and the Romerian terminology here proposed for the quadrate anatomy is provided in Figure and Table 1.
Romer (1956)’s terminology of the quadrate is limited. He only expanded the vocabulary to describe this bone in reptiles to six terms, namely: the main body, quadrate shaft, quadrate foramen, quadrate head, quadrate flange and articular termination. Three terms were kept as such in the proposed terminology of the quadrate (i.e., quadrate shaft, quadrate foramen, and quadrate head) and the three others were slightly modified. The quadrate body (instead of “main body of [the] quadrate” sensu Romer 1956: p. 640), mandibular articulation (instead of “articular termination” sensu Romer 1956: p. 632) and pterygoid flange (instead of “quadrate flange” sensu Romer 1956: p. 146) were chosen not only because they are more commonly used in the theropod literature currently describing the quadrate (pers. obs.), but are also more specific of the loci of the anatomical sub-entity described. It should be noted that the pterygoid flange of Romer (1956) describes a wing-like process of the pterygoid and not the anteriorly projected ramus of the quadrate.

Table 1

Quadrate body
Quadrate body (qb): Part of the quadrate that includes the quadrate shaft, the quadrate ridge, the lateral contact (quadratojugal and/or squamosal contact), and the lateral process, and excludes the quadrate head, mandibular articulation, and pterygoid flange (Figs. 1G, 2A). In posterior view, the quadrate body is delimited by the lateral margin of the lateral contact and sometimes by the medial margin of the quadrate foramen, the dorsal margin of the mandibular articulation, the ventral margin of the quadrate head, and a medial margin mostly formed by the quadrate shaft and the medial fossa of the pterygoid flange. The quadrate body is equivalent to the...
‘Corpus ossis quadrati’ of Baumel and Witmer (1993), and the ‘Corpus quadrati’ of Elzanowski et al. (2001) and Elzanowski and Stidham (2010) for avian theropods (Fig. 1A).

Quadrate shaft (qs). Part of the quadrate body that excludes the lateral process and all articulating surfaces (i.e., quadrate head, quadratojugal/squamosal/pterygoid contacts, and mandibular articulation; Fig. 2C). The quadrate shaft, as called by Welles (1984), Sereno and Novas (1994), Norell et al. (2006), Sampson and Witmer (2007), Sereno et al. (2008), Carrano et al. (2011), Brusatte et al. (2012), and Choiniere et al. (2014a, b) is also referred as the ‘quadrate pillar’ by Madsen and Welles (2000), and the ‘ascending process’ by Colbert (1989).

Quadrate ridge (qr). Ventrodorsally elongated column, ridge or crest located on the quadrate body and visible in posterior view (Fig. 2C). Although the quadrate ridge is present in the large majority of non-avian theropods, a description of the structure is often omitted in the literature. The quadrate ridge is referred as ‘a column’ by Welles (1984), a ‘ridge-like mediodorsal edge’ by Carr (1996), ‘a prominent rounded ridge’ by Smith et al. (2007), a ‘columnar ridge’ by Rauhut et al. (2010), a ‘robust ridge’ by Brusatte et al. (2012), a ‘ridge’ or ‘pillar’ by Choiniere et al. (2014a), and a ‘bulging ridge’ by Lautenschlager et al. (2014).

Quadrate ridge groove (qrg). Groove dividing the quadrate ridge in two different units at two-thirds, or more dorsally, of the quadrate body height (Fig. 2G). A quadrate ridge groove exists in some allosauroid theropods.

Quadrate foramen (qf). Aperture in the quadrate body or concavity on the lateral margin of the quadrate body and delimited ventrally by the ventral quadratojugal contact and dorsally by the dorsal quadratojugal contact and its ventral projection in some theropod taxa (Fig. 2A, E–G, I). Most authors usually refer to this perforation as the quadrate foramen (e.g., Welles 1984; Sereno and Novas 1994; Charig and Milner 1997; Maryańska and Osmólska 1997; Currie and Carpenter
Coria and Currie 2006; Currie 2006; Norell et al. 2006; Choiniere et al. 2010, 2014a, b; Zanno 2010; Brusatte et al. 2012). Yet, it can be also called the ‘paraquadratic foramen’ (e.g., Barsbold and Osmólska 1999; Kobayashi and Lü 2003; Kobayashi and Barsbold 2005), the ‘paraquadrate foramen’ (Sampson and Witmer 2007; Dal Sasso and Maganuco 2011; Lautenschlager et al. 2014), the ‘paraquadrate fenestra’ (Smith et al. 2007) or the ‘quadrate fenestra’ (e.g., Carr 1996; Sereno et al. 1998; Currie 2003; Eddy and Clarke 2011). A quadrate foramen exists in all non-avian theropods but Ceratosauria and Megalosauridae.

Lateral process (lpq). Lateral or anterolateral projection of the lateral margin of the quadrate body (Fig. 2B). Also known as the ‘dorsal wing’ (Welles 1984; Currie 2006), the ‘anterolateral wing’ (Madsen and Welles 2000), the ‘lateral lamina’ (Coria and Salgado 1998) and the ‘lateral ramus’ (Sampson and Witmer 2007), this process can contact the quadratojugal and/or the squamosal and therefore either be referred to the ‘quadratojugal ramus’ (Sampson and Witmer 2007) or the ‘squamosal ramus’ (Norell et al. 2006).

Quadratojugal contact (qjc). Area of contact of the quadrate with the quadratojugal on the lateral, anterolateral or, posterolateral margin of the quadrate body (Fig. 2G). The quadratojugal contact, which is similar to the ‘cotyla quadratojugalis’ of Baumel and Witmer (1993), Elzanowski et al. (2001) and Elzanowski and Stidham (2010) for avian theropods (Fig. 1B), can be divided into a ventral and a dorsal quadratojugal contact when the quadrate foramen is present and delimited by both quadrate and quadratojugal.

Ventral quadratojugal contact (vqjc). Ventral area of contact of the quadrate with the quadratojugal (Fig. 2B, F, H). The ventral quadratojugal contact of the quadrate always receives the quadratojugal bone.
Dorsal quadratojugal contact (dqjc). Dorsal area of contact of the quadrate with the quadratojugal (Fig. 2B, F). The ventral quadratojugal contact of the quadrate can either receive the quadratojugal or both quadratojugal and squamosal in some theropod taxa.

Ventral projection of the dorsal quadratojugal contact (vpdq). Small projection of the dorsal quadratojugal contact delimiting the laterodorsal margin of the quadrate foramen (Fig. 2I).

Dorsal projection of the ventral quadratojugal contact (dpvq). Small projection of the ventral quadratojugal contact delimiting the lateroventral margin of the quadrate foramen.

Quadratojugal process (qjp). Anterior projection of the ventral quadratojugal contact of the quadrate (Fig. 2B). Also known as the ‘quadratojugal lamina’ (Lautenschlager et al. 2014).

Lateroventral process (lvp)—Lateromedially oriented ventral projection of the ventral quadratojugal contact of the quadrate that bounds the quadratojugal ventrally (Fig. 2H). The lateroventral process is similar to the 'lateral process' of Maryańska and Osmólska (1997).

Squamosal contact (sqc). Contact on the lateral margin of the quadrate with the squamosal (Fig. 2B).

Posterior fossa (pfq). Depression or concavity situated on the posterior side of the quadrate body and dorsal to the mandibular articulation, ventral to the quadrate head and lateral to the quadrate ridge (Fig. 2B). The posterior fossa can include or exclude the quadrate foramen.

Quadrate head

Quadrate head (qh). Dorsal articulation of the quadrate abutting to the cotyle of the squamosal and touching other bones of the braincase in some theropod taxa (Fig. 2D). The quadrate head, as it is called by Britt (1991), Charig and Milner (1997), Madsen and Welles (2000), Sampson and Witmer (2007), Sereno et al. (2008), Norell et al. (2009), Brusatte et al. (2012), Choiniere et al.
and Lautenschlager et al. (2014) among others, has also been termed ‘quadrate cotylus’ (Currie 2003; Coria and Currie 2006), ‘quadrate cotyle’ (Currie 2003; Coria and Currie 2006), ‘squamosal condyle’ (Coria and Salgado 1998), ‘squamosal articulation’ (Turner et al. 2011), ‘dorsal articular surface’ (Larson 2013), and ‘otic process’ (Maryańska and Osmólska 1997; Burnham 2004; Holliday and Witmer 2008). In avian theropods, the quadrate head is homologous to the ‘Caput quadrati’ of Elzanowski et al. (2001) and Elzanowski and Stidham (2010), and roughly equivalent to the ‘Processus oticus’ (Baumel and Witmer 1993). In birds, the ‘Processus oticus’ (Baumel and Witmer 1993), and the ‘Pars oticus’ of Elzanowski et al. (2001) and Elzanowski and Stidham (2010) also includes several sub-units that are either absent in non-avian theropods (e.g., Crista Tympanica, Tuberculum subcapitulare), or here included in the quadrate body (e.g., Sulcus pneumaticus, Foramen pneumaticum rostromediale). The bistylic quadrate head present in some tyrannosaurids, alvarezsauroids, oviraptorids and avian theropods is divided into otic and squamosal capitula.

Otic capitulum (oca). Medial capitulum of the quadrate head articulating with the braincase (Fig. 2H). The otic capitulum is referred as the ‘capitulum (condylus) oticum’ by Baumel and Witmer (1993), Elzanowski et al. (2001) and Elzanowski and Stidham (2010) for avian theropods (Fig. 1A).

Squamosal capitulum (sca). Lateral capitulum of the quadrate head articulating with the squamosal (Fig. 2H). The squamosal capitulum is similar to the ‘capitulum (condylus) squamosum’ of Baumel and Witmer (1993), Elzanowski et al. (2001) and Elzanowski and Stidham (2010) for avian theropods (Fig. 1C).

Intercapitular sulcus (icas). Groove separating the ootic capitulum from the squamosal capitulum on the dorsal surface of the quadrate head (Fig. 2H). The intercapitular sulcus (Witmer
1990) is equivalent to the ‘incisura intercapitularis’ of Baumel and Witmer (1993), and the
‘vallecula intercapitularis’ of Elzanowski et al. (2001) and Elzanowski and Stidham (2010) for
avian theropods (Fig. 1E).

Mandibular articulation

Mandibular articulation (mar). Ventral surface of the quadrate, articulating with the mandible
and fitting into the glenoid fossa of the lower jaw. It includes the ectocondyle, entocondyles,
sometimes a mediocondyle, and a single intercondylar sulcus, even when three condyles are
present (Fig. 2C). The mandibular articulation, also known as the ‘mandibular capitulum’
(Lautenschlager et al. 2014), is equivalent to the ‘Processus mandibularis’ of Baumel and
Witmer (1993), and ‘Pars mandibularis’ of Elzanowski et al. (2001) and Elzanowski and
Stidham (2010) for avian theropods (Fig. 1A). Although most authors (e.g., Currie 2006;
Sampson and Witmer 2007; Rauhut et al. 2010; Brusatte et al. 2012; Lautenschlager et al. 2014)
referred the ectocondyle and entocondyles as the lateral and medial condyles (or hemicondyles)
respectively, the terms ectocondyle and entocondyle have been used by Welles (1984), and
Madsen and Welles (2000). The condyle present in between the ecto- and entocondyles in some
theropods is here coined mediocondyle.

Ectocondyle (ecc). Lateral condyle of the mandibular articulation (Fig. 6.2). The ectocondyle is
equivalent to the ‘condylus (mandibularis) lateralis’ of Baumel and Witmer (1993), Elzanowski
et al. (2001) and Elzanowski and Stidham (2010) for avian theropods (Fig. 1F).

Entocondyle (enc). Medial condyle of the mandibular articulation. The entocondyle has been
referred as the ‘condylus (mandibularis) medialis’ by Baumel and Witmer (1993), Elzanowski et
al. (2001) and Elzanowski and Stidham (2010) for avian theropods (Fig. 1F).
Mediocondyle (mdc). Posterior condyle of the mandibular articulation located between the ecto- and entocondyles. The mediocondyle is referred as the ‘third condyle’ by Clark et al. (1994) and Xu and Wu (2001), the ‘accessory condyle’ by Kobayashi and Lü (2003) and Lautenschlager et al. (2014), and the ‘condylus caudalis’ of Baumel and Witmer (1993) and Elzanowski et al. (2001) for avian theropods.

Intercondylar sulcus (ics). Groove separating the ectocondyle from the entocondyle and articulated with the interglenoid ridge of the articular (Fig. 2E, K). The intercondylar sulcus, a term also used by Carrano et al. (2011), can be referred as a ‘groove’ (e.g., Madsen 1976; Britt 1991; Madsen and Welles 2000; Currie 2006), ‘swelling’ (Charig and Milner 1997), ‘sulcus’ (e.g., Kobayashi and Lü 2003; Norell et al. 2006; Sadleir et al. 2008), ‘trochlea’ (Brochu 2003; Brusatte et al. 2010), ‘trochlear surface’ (Brusatte et al. 2010, 2012), and ‘intercondylar bridge’ (Zanno 2010). The intercondylar sulcus is similar to the ‘sulcus intercondylaris’ (Baumel and Witmer 1993) and the ‘vallecula intercondylaris’ (Elzanowski et al. 2001; Elzanowski and Stidham 2010) of the quadrate of avian theropods (Fig. 1F).

Anterior intercondylar notch (ain). Notch located in between the ectocondyle and entocondyle, on the anterior margin of the mandibular articulation (Fig. 2K).

Posterior intercondylar notch (pin). Notch located in between the ectocondyle and entocondyle, on the posterior margin of the mandibular articulation, and being referred as the ‘pit’ by Bakker (1998) (Fig. 2J).

Figure 2

Pterygoid flange
Pterygoid flange (pfl). Ventrodorsally elongated sheet-like process projecting anteriorly or anteromedially from the medial side of the anterior surface of the quadrate body to contact the pterygoid bone (Fig. 2A, D). The pterygoid flange, a term also used by Charig and Milner (1997), Brochu (2003), Currie (2006), Coria and Currie (2006), Rauhut et al. (2010) and Lautenschlager et al. (2014), is also known as the ‘quadrate/anterior flange’ (e.g., Colbert 1989; Norell et al. 2006; Brusatte et al. 2010, 2012), the ‘pterygoid ramus’ (e.g., Sereno and Novas 1994; Sampson and Witmer 2007; Choiniere et al. 2010, 2014a, b), the ‘pterygoid wing’ (e.g., Welles 1984; Madsen and Welles 2000; Eddy and Clarke 2011), the ‘pterygoid ala’ (e.g., Currie 2003, 2006; Sadleir et al. 2008; Dal Sasso and Maganuco 2011), the ‘pterygoid process’ (Molnar 1991; Carr 1996; Sereno et al. 2008), the ‘optic wing’ (Balanoff and Norell 2012), the ‘orbital process’ (Clark et al. 1994; Chiappe et al. 2002), and the ‘processus orbitalis’ (Baumel and Witmer 1993; Elzanowski et al. 2001; Elzanowski and Stidham 2010) for avian theropods (Fig. 1B).

Pterygoid contact (ptc). Area of contact with the pterygoid on the medial margin of the pterygoid flange or the quadrate body (Fig. 2D). In avian theropods, the pterygoid contact is homologous, to the ‘facies pterygoidea’ in Elzanowski et al. (2001) and the ‘facies articularis pterygoidea’ in Elzanowski and Stidham (2010), as well as the ‘condylus pterygoideus’, located on the quadrate body in Baumel and Witmer (1993), Elzanowski et al. (2001), and Elzanowski and Stidham (2010; Fig. 1D).

Medial fossa (mfq). Depression or concavity located on the medial surface of the pterygoid flange, typically on its posteroventral extremity (Fig. 2D). The medial fossa is delimited by the quadrate shaft and the ventral shelf in some theropod taxa. The medial fossa is similar to the
‘fossa corporis quadrati’ of Fuchs (1954) and the ‘fossa basi orbitalis’ of Elzanowski et al. (2001) and Elzanowski and Stidham (2010) for avian theropods (Fig. 1D).

Ventral shelf (vsh). A medial or posteromedial fold of the ventral margin of the pterygoid flange (Fig. 3A, G, M). The term ‘shelf’ was employed by Sereno and Novas (1994) and ventral shelf was used by Sampson and Witmer (2007), Eddy and Clarke (2011) and Carrano et al. (2011).

Pneumatic foramina and fossae

Quadrate pneumatic chamber (qpc). Internal chamber within the quadrate, either fully contained within the bone or communicating externally by one or several pneumatic foramina. The quadrate pneumatic chamber hosts the quadrate sinus/diverticulum and, in some cases, includes several interconnected chambers separated by thin bony lamellae within the quadrate body and pterygoid flange (Kundrát and Janáček 2007; Tahara and Larsson 2011; Gold et al. 2013).

Dorsal pneumatic foramen (dpf). Aperture located on the anterodorsal surface of the quadrate, just ventral to the quadrate head.

Medial pneumatic foramen (mpf). Aperture or recess situated on the medial side of the quadrate, typically in the ventral portion of the medial surface of the pterygoid flange (Fig. 5A-D). The medial pneumatic foramen is homologous to the ‘foramen pneumaticum’ of Baumel and Witmer (1993), and the ‘foramen pneumaticum basi orbitale’ of Elzanowski et al. (2001) and Elzanowski and Stidham (2010) for avian theropods.

Posterior pneumatic foramen (ppf). Aperture or recess on the posterior surface of the quadrate body, typically at mid-height of the quadrate (Figs. 2G, 5). The posterior pneumatic foramen is
similar to and likely homologous to the ‘foramen pneumaticum caudomediale’ of Elzanowski and Stidham (2010) for avian theropods (Fig. 1C).

Anterior pneumatic foramen (apf). Aperture or recess on the anterior surface of the quadrate body, typically at mid-height of the quadrate (Fig. 5K). The anterior pneumatic foramen is likely homologous to the ‘foramen pneumaticum medial’ of Elzanowski et al. (2001), and the ‘foramen pneumaticum rostromediale’ of Elzanowski and Stidham (2010).

Ventral pneumatic foramen (vpf). Aperture or recess on the ventral surface of the quadrate. The ventral pneumatic foramen is equivalent to the ‘foramen pneumaticum adventitium’ (or ectopic pneumatic foramen) of Elzanowski and Stidham (2010) for avian theropods (Fig. 5I, J).

Posterior pneumatic fossa (ppfo). Shallow and well-delimited pneumatic recess on the posterior surface of the quadrate body, at mid-height of the bone and medial to the quadrate foramen (Fig. 5E).

Lateral pneumatic fossa (lpfo). Shallow and poorly-delimited pneumatic recess on the ventral portion of the lateral surface of the quadrate, shortly dorsal to the ectocondyle (Fig. 5L).

MORPHOLOGICAL VARIATION IN QUADRATE SUB-UNITS

To establish comparisons between taxa with widely disparate quadrate morphology, a homology concept of the feature in question is required. Here, we will give a general account of the variability within different anatomical sub-units of the quadrate by following the criteria summarized in Rieppel (2006) to establish inter-taxic topological homologies.

The quadrate ridge is easily distinguishable in many theropod taxa such as *Dilophosaurus wetherilli* (Welles 1984; Fig. 3C), *Aerosteon riocoloradensis* (MCNA-PV 3137; Fig. 4C) and
Proceratosaurus bradleyi (NHM R.4860) but the demarcation of this structure may be only subtly developed, as in Noasaurus leali (PVL 4061), Majungasaurus crenatissimus (FMNH PR 2100; Fig. 3I), and Eustreptospondylus oxoniensis (OUMNH J.13558; Fig. 3U). The quadrate ridge is developed as a ‘columnar ridge’ in many theropod taxa such as Dilophosaurus wetherilli (Welles 1984), Allosaurus ‘jimmadseni’ (SMA 0005; Allosaurus ‘jimmadseni’ sensu Chure 2000; Loewen 2010) and Eotyrannus lengi (MIWG 1997.550) but also forms a thin crest as in Tyrannosauridae (AMNH 5027; Carr 1996; Brusatte et al. 2012). Although the ventral portion of the quadrate ridge is usually demarcated just above the entocondyle of the mandibular articulation, its dorsal termination is more variable. The dorsal termination can reach the quadrate head like in Acrocanthosaurus atokensis (NCSM 14345) or flatten at the mid-height of the quadrate such as in Albertosaurus sarcophagus (Currie 2003: fig. 10B). The quadrate ridge can be divided into two ridges by a deep groove as in Allosaurus fragilis (AMNH 600) and Allosaurus europaeus (ML 415). The quadrate ridge can also flare at the second dorsal third of the quadrate, and reappears slightly more dorsally, as observed in some derived Spinosauridae (Hendrickx et al. 2014). Likewise, the ventral portion of the quadrate ridge can also dichotomize into two crests separated by a concavity such as in the tyrannosaurids Albertosaurus sarcophagus, Daspletosaurus sp. (Currie 2003: figs. 10 and 28) and Tyrannosaurus rex (AMNH 5027).

The pterygoid flange (Fig. 2D, pfl) contacts the quadrate process of the pterygoid anteriorly or anteromedially, and sometimes other bones such as the epipterygoid in Herrerasaurus ischigualastensis (Sereno and Novas 1994) and possibly Incisivosaurus (Balanoff et al. 2009), the basisphenoid and prootic in Erlikosaurus andrewsi (Clark et al. 1994; Lautenschlager et al. 2014), and the squamosal in Khaan mckennai (Balanoff and Norell 2012).
Although the pterygoid flange can be easily homologized between taxa, it may acquire subtrapezoidal, subtriangular, subrectangular and M-shaped outlines, or form a large semi-oval structure. The ventral limit of the flange can reach the mandibular condyles (e.g., *Tyrannosaurus rex*, *Baryonyx walkerii*; Fig. 3P) or get attached to the quadrate body far above the mandibular articulation (e.g., *Majungasaurus crenatissimus*; Fig. 3J). This structure can in some instances be divided into two ridges delimited by a deep pneumatic foramen facing ventrally (e.g., *Alioramus altai*; Fig. 6.4J; *Tyrannosaurus rex* FMNH PR2081). In anterior view, the pterygoid flange can be straight and only projected anteriorly, as in the carcharodontosaurid *Shaochilong maortuensis* (Brusatte et al. 2010: fig. 7a), or anteromedially recurved. The anteroventral margin of the pterygoid flange can either be straight, or medially and/or dorsally deflected, forming a horizontally oriented or dorsally inclined shelf-like structure here referred as the ventral shelf, as in *Majungasaurus crenatissimus* (FMNH PR 2100; Fig. 3G), *Carnotaurus sastrei* (MACN-CH 894) and *Allosaurus fragilis* (Madsen 1976: plate 3d).

The medial fossa of the quadrate (Fig. 2D, mfq) is easily homologized between taxa as it is always situated on the pterygoid flange, typically on its ventrodorsal surface. This fossa is posteriorly delimited by the quadrate body in non-avian theropods and sometimes by the ventral shelf of the pterygoid flange. The medial fossa can be of variable depth (deep in *Cryolophosaurus*; FMNH PR1821; shallow in *Eustreptospondylus*; OUMNH J.13558), pneumatized (e.g., *Falcarius*; UMNH VP 14559; Fig. 4P), and situated in the ventralmost part of the pterygoid flange (e.g., *Tsaagan*; IGM 100-1015) or at mid-height of it and just above a large pneumatic recess like in *Mapusaurus roseae* (MCF PVPH-108.102).

The posterior fossa of the quadrate (Fig. 2B, pfq) can be located either in between the quadrate and the quadratojugal, being confluent with the quadrate foramen (e.g., *Mapusaurus*;
MCF PVPH-108.102), or in the middle of the quadrate shaft and between the quadrate ridge and the lateral limit of the quadrate shaft (e.g., ‘Syntarsus’; MNA V2623), *Tsaagan* (Norell et al. 2006), *Majungasaurus* (Sampson and Witmer 2007; Fig. 3I). The posterior fossa can either be strongly ventrodorsally elongated like in the carcharodontosaurid *Acrocanthosaurus* (NCSM 14345), or form an oval concavity lateromedially wide (e.g., *Majungasaurus*; Sampson and Witmer 2007). Similarly to the medial fossa, the posterior fossa can host a pneumatic foramen positioned dorsally (e.g., *Sinornithomimus*; IVPP V11797–10) or ventrally (e.g., *Garudimimus*; IGM 100-13) inside the fossa.

Due to the highly variable morphology of the quadrate foramen, this structure deserves special attention. It can be completely absent (e.g., *Carnotaurus*, *Torvosaurus*, *Eustreptospondylus*; Fig. 3U), or form a very small aperture (e.g., ’Syntarsus’; Tykoski 2005) to a large opening (e.g., *Bambiraptor*; Fig. 4T). In most non-avian theropods, only a small portion of the lateral margin of the quadrate foramen is delimited by the quadratojugal (e.g., *Sinraptor*; Currie 2006) while in some non-avian theropods the majority of the lateral margin is formed by the quadratojugal (e.g., *Dromaeosaurus*). Finally, in a few theropods, the foramen can be completely enclosed in the quadrate (e.g., *Aerosteon*; Sereno et al. 2008; Fig. 4C).

The quadratojugal contact of the quadrate (Fig. 2G, qjc) can either be a single extensive contact or made of two contacts separated by the quadrate foramen. In the latter case, the ventral quadratojugal contact and the dorsal quadratojugal contact of the quadrate are not always clearly separated and their dorsal and ventral margins, respectively, can overlap like in the sinraptorid *Sinraptor dongi* (IVPP 10600). If the quadrate foramen is absent or fully enclosed by the quadrate, the lateral quadratojugal contact typically forms an elongated line of variable width along the lateral margin of the quadrate. Where separated by the quadrate foramen, the ventral
and dorsal contacts can display a wide variety of surface and outlines. Both quadratojugal
contacts may face laterally, anteriorly or posteriorly, and their articulating surface can be smooth,
irregular or deeply grooved by several radiating ridges, as in *Allosaurus fragilis* (Madsen 1976).
The ventral quadratojugal contact is typically D-shaped or ovoid in lateral view. Its anterior
margin can extend far anteriorly, forming the quadratojugal process (Norell et al. 2006), and its
ventral margin can project far laterally, as in Oviraptoridae (Maryańska and Osmólska 1997).
The dorsal quadratojugal contact can vary from a very thin line to a broad surface in lateral or
posterior views and its dorsal extension can reach the dorsal condyle or terminate well beneath it.
A ventral projection of this contact may be present, and such projection delimiting part of the
lateral border of the quadrate can either be short, like in *Daspletosaurus* sp. (Currie 2003: fig.
28A) and *Baryonyx walkeri* (Fig. 3O), or form an elongated ramus, like in the therizinosaurid
Falcarius utahensis (Zanno 2010: fig. 1H) and the coelurosaur *Zuolong saddlei* (Choiniere et al.
2010: fig. 3B).

In some basal theropods, ceratosaurids and dromaeosaurids, the lateral process of the
quadrate (Fig. 2B, lpq) forms a wing-like projection similar to the pterygoid flange. This process
is an extension of the quadrate body laterally so it is difficult to delimit. Such process is present
in *Allosaurus ‘jimmadseni’* (SMA 0005), *Sinraptor dongi* (Currie 2006: fig. 1D), and
Erlikosaurus andrewsi (Clark et al. 1994: fig. 7). The lateral process can also vary in shape and
size, as it is lateromedially short and parabolic in posterior view (e.g., *Carnotaurus*; MACN-CH
894), or lateromedially elongated and subtriangular in posterolateral view (e.g., *Dilophosaurus*;
UCMP 37302; Fig. 3B). Its ventral border can also extend to the quadrate foramen (e.g.,
Bambiraptor; AMNH 30556; Fig. 4T) or more ventrally, sometimes reaching the medial condyle
of the mandibular articulation (e.g., *Ilokelesia, Majungasaurus*; MCF PVPH 35, FMNH PR 2100; Fig. 31).

The quadrate head always articulates with the cotylus of the squamosal and more rarely with other bones of the braincase such as the opisthotic in oviraptorids (Maryańska and Osmólska 1997), the prootic in *Mononykus olecranus* (Perle et al. 1994; Chiappe et al. 2002) and the postorbital in *Shuvuuia deserti* (Chiappe et al. 1998, 2002). The contact between the quadrate and the opistothic-exoccipital/paroccipital process is also present in *Herrerasaurus ischigualastensis* (Sereno and Novas 1994), *Dilophosaurus wetherilli* (Welles 1984), *Ceratosaurus magnicornis* (Madsen and Welles 2000; Sanders and Smith 2005), tyrannosaurids (Currie 2003), *Heyuannia huangi* (Lü 2005), and *Erlikosaurus andrewsi* (Lautenschlager et al. 2014), yet this contact occurs on a small medial surface just immediately dorsal to the quadrate head and not with the quadrate head itself. The large majority of non-avian theropods have a monostylic quadrate head (Rauhut 2003; pers. obs.); yet, oviraptorids (Maryańska and Osmólska 1997: fig. 3B), the alvarezsaurid *Shuvuuia deserti* (Chiappe et al. 1998), and some tyrannosaurids such as *Tyrannosaurus* and *Gorgosaurus* (Larson 2013) have the apomorphic condition of possessing a bistylic quadrate head. In those theropods, the otic capitulum of the quadrate head always contacts the braincase. This condition has also been observed in the dromaeosaurid *Mahakala omnogovae* (Turner et al. 2007) but Turner et al. (2011: fig. 4) later reconsidered the head of the quadrate as not being bistylic. The morphology of the quadrate head is variable in dorsal view; it may be subtriangular in most basal theropods (Sereno and Novas 1994) like *Dilophosaurus* (UCMP 37302; Fig. 3E), *Erlikosaurus* (Lautenschlager et al. 2014) and *Bambiraptor* (AMNH 30556; Fig. 4V), oval to subcircular in megalosaurids like *Afrovenator* (UC OBA1) and *Torvosaurus* (BYUVP 9246), and allosauroids such as *Aerosteon* (MCNA-PV-
Sinraptor (IVPP 10600) and Shaochilong (IVPP V2885.3) or subquadrangular in some Spinosaurinae such as Irritator (SMNS 58022). While the dorsal surface of the quadrate head is either convex or flattened in posterior view in most non-avian theropods, the quadrate head of some allosaurids (Bakker 1998: fig. 5C) and derived tyrannosaurids (FMNH PR208) shows a well-marked concavity on the dorsal margin. The quadrate head can also be conical in posterior view, as in Oviraptoridae (Maryańska and Osmólska 1997: fig. 1B). Despite this variability, the quadrate head can be easily homologized inter-taxically due to the obvious location of this structure.

With the exception of the therizinosaur Erlikosaurus andrewsi and the ornithomimosaur Sinornithomimus dongi which both seem to have an autapomorphical tricondylar condition on the mandibular articulation (Clark et al. 1994; Kobayashi and Lü 2003; Lautenschlager et al. 2014), all other non-avian theropods have two mandibular condyles. The presence of three mandibular condyles was also noted in the alvarezsaurid Avimimus portentosus (Chatterjee 1995) and the dromaeosaurid Sinornithosaurus millenii (Xu and Wu 2001). However, Vickers-Rich et al. (2002) only found two condyles in Avimimus and our observations confirm that the third condyle of Sinornithosaurus seems to be part of the much broader lateral condyle (Xu and Wu 2001: fig. 4D).

The intercondylar sulcus (Fig. 2E, ics) varies in orientation, size and depth. It can be large, shallow and sub-perpendicular to the long axis passing through the mandibular articulation as in Tyrannosaurus rex (FMNH PR2081), or narrow, deep and strongly lateromedially-oriented as in some derived spinosaurids (e.g., MHNMM.KK376).

In posterior view, the shape of the mandibular articulation (Fig. 2C, mar) can vary from the biconvex condition known in most theropods, to the W-shaped articulation typical of Citipati.
osmolskae (Clark et al. 2002: fig. 6) or a single convex articulation seen in some dromaeosaurids such as Tsaagan mangas (IGM 100/1015). In Tsaagan, the convex outline of the mandibular articulation in posterior view results from a poor delimitation of the ecto- and entocondyle and the separation of these two condyles by a shallow intercondylar sulcus; yet this morphology might be due to poor preservation of the mandibular condyle. A posterior intercondylar notch (Fig. 2J, pin) was observed in Allosaurus (Bakker 1998: fig. 5B, C; SMA 0005) and Suchomimus tenerensis (MNN GAD 502) whereas an anterior intercondylar notch (Fig. 2K, ain) is present in the abelisaurids Majungasaurus crenatissimus (FMNH PR 2100; Fig. 3L) and Carnotaurus sastrei (MACN-CH 894). Pneumaticity of the quadrate can be externally expressed by pneumatic foramina or restricted to an internal chamber within the quadrate bone. The establishment of inter-taxic homologies is difficult to assess because these structures have very diverse interspecific variability. Nevertheless, as in other saurischian taxa (Schwarz et al. 2007), these pneumatic structures have phylogenetic signal (e.g., Gold et al. 2013; Hendrickx et al. 2014; see below). These openings can appear on different sides and portions of the quadrate. The medial and posterior pneumatic foramina (Fig. 2G, ppf) usually occur in the medial and posterior fossa respectively, and their position inside these fossae is quite variable. Pneumatic foramina can also be located in a pneumatic recess outside the medial fossa and just beneath it such as in the carcharodontosaurids Mapusaurus roseae (Coria and Currie 2006) and Acrocanthosaurus atokensis (Eddy and Clarke 2011). In the latter, the pneumatic aperture is divided by a septum.

REVIEW OF THE QUADRATE FUNCTION AND PNEUMATICITY IN NON-AVIAN THEROPODS
Function of the Quadrate

In all archosaurs, and all amniotes except Mammaliaformes, the main function of the quadrate is the articulation of the cranium with the mandible, yet this bone also play an important role in the mobility of the skull in many extant theropods. Streptostyly is a fundamental property of all avian theropods, and quadrate kinesis in birds, known already in the beginning of the 19th century (Nitzsch 1816), has been extensively studied over the past sixty years (e.g., Fisher 1955; Bock 1964, 1999, 2000; Bühler 1981; Zusi 1984, 1993; Bühler et al. 1985, 1988; Chatterjee 1991, 1997; Hoese and Westneat 1996; Zweers et al. 1997; Zweers and Vanden Berge 1998; Bout and Zweers 2001; Gussekloo and Bout 2005; Meekangvan et al. 2006). Streptostyly consists of the rotation of the quadrate at its dorsal articulation against the squamosal which typically lead to a transverse movement, although a lateral movement of the quadrate around an anteroposteriorly directed axis occurs in some lepidosaur taxa (Metzger 2002). Cranial kinesis in avian theropods with a streptostylic quadrate includes upward (protraction) and downward (retraction) rotation of the rostrum relative to the braincase. Three main types of kinesis, in which the role of the quadrate is relatively equivalent, are recognized relative to the position of the dorsal flexion zone of the cranium and the nature of the nasal opening in modern theropods (Bock 1964; Bühler 1981; Zusi 1984; Meekangvan et al. 2006). In prokinesis, flexion occurs at the nasofrontal joint and the upper jaw thereby moves as one unit; in amphikinesis, flexion occurs in two zones of flexibility and the upper jaw and its tip are bent upward in rhynchokinesis, flexion occurs forward from the nasofrontal joint, allowing its anterior part to be moved (Zusi 1984).

Inference of the cranial kinesis and quadrate mobility in non-avian theropods has been investigated by Holliday and Witmer (2008) which regard the cranium of this group of dinosaurs
as partially kinetically competent, because synovial joints and protractor muscles are present, but not fully kinetic like in birds. The strong suture of the quadrate to the quadratojugal and the immobile contact of the quadrate and the pterygoid on the medial side of the pterygoid flange in most non-avian theropods seem to indicate a limited movement, and perhaps even the total absence of movement within the cranium. Although the synovial quadrate head joint existing in theropods, and all other archosaurs, is necessary to infer cranial kinesis, its presence in akinetic taxa such as crocodiles demonstrates that the synovial joint cannot be considered alone as an argument for cranial kinesis. Synovial joints have actually been interpreted as growth zones rather than articular surfaces of mobile joints based on the presence of very thin articular cartilage covering the end of this joint (Holliday and Witmer 2008). According to Holliday and Witmer (2008) “articular cartilage persists in loading environments that exert hydrostatic pressures (which result in a change in volume but not shape) but exert low shear stresses”.

Indeed, one of the key centers of deformation during normal biting is the quadrate-squamosal contact, which would have experienced large shear stresses associated with torque and asymmetrical loading during biting (Rayfield 2005), and the presence of a minimal amount of cartilage between the quadrate and squamosal would therefore suggest that the synovial zone was rather a growth zone than a mobile one. A streptostylic quadrate in *Tyrannosaurus rex* (Molnar 1991, 1998), *Nanotyrannus lancensis* (Larson 2013), *Oviraptor philoceratops* (Smith 1992), *Heyuannia huangi* (Lü 2005) and *Dromiceiomimus brevitertius* (Russell 1972) based on the saddle joint between the quadrate and squamosal only is therefore unlikely.

Nevertheless, and more convincingly, a streptostylic quadrate was also proposed in the alvarezsaurid *Shuvuuia deserti* by Chiappe et al. (1998). In this taxon, the quadratojugal/jugal? (n.b., Dufeau (2003) considers the quadratojugal to be absent in *Shuvuuia deserti*), instead of
being firmly sutured to the quadrate as in other non-avian theropods, would have contacted the lateral surface of the quadrate through a movable joint (Chiappe et al. 1998, 2002; see Supplemental Information Fig. S3). According to Chiappe et al. (1998), the absence of a laterodorsal contact of the quadrate with the quadratojugal/jugal, as well as a lateroventral process of the squamosal, would have permitted the quadrate to pivot anteroposteriorly, and the upper jaw to rotate ventrodorsally due to this transversal movement. These authors have implied the existence of a bending zone between the frontals and the nasal–preorbital bones in *S. deserti*, allowing the flexion of the snout as a single unit when the quadrate displaced forward, like in prokinetic birds. Nevertheless, the complex contacts between the nasal, frontal and prefrontal illustrated by Sereno (2001: fig. 12B) makes assessment of Chiappe et al.’s (1998) hypothesis dubious (Holliday and Witmer 2008). Holliday and Witmer (2008) also note that the maxillojugal and palatal flexion zones necessary to allow a true prokinesis in alvarezsaurids are still not clearly defined. Likewise, the contact between the pterygoid flange of the quadrate and the pterygoid also needs to be better documented in order to imply any specific movement of the quadrate inside the cranium of *S. deserti*.

A movable articulation between the quadrate and quadratojugal was proposed in the oviraptosaurs *Heyuannia huangi* (Lü 2003) and *Nemegtomaia huangi* (Lü et al. 2004, 2005). In *Heyuannia*, the quadrate and quadratojugal articulation forms a trochlea-like structure (Lü 2003, 2005), while the quadratojugal contact of *Nemegtomaia* is diagnostically convex and was described as a lateral cotyle by Lü et al. (2004). Although such articulation suggests some mobility between the quadrate and quadratojugal, it is unlikely that the skull of these two oviraptorids could display avian-like kinesis. As in other non-avian theropods, the oviraptorid quadrate was an immovable bone (Barsbold 1977; Maryańska and Osmólska 1997) so that the
quadratojugal, if kinetic, could only pivot either ventrodorsally or mediolaterally from the quadratojugal contact of the quadrate. Yet, the quadratojugal of at least *Nemegtomaia* does not seem to have a loose articulation with the jugal given that the articulating surface between the two bones is anteroposteriorly extensive (Lü et al. 2004: fig. 2), disallowing mobility between the jugal and quadratojugal. Consequently, we consider unlikely that movement was possible between the quadrate and quadratojugal in *Heyuannia* and *Nemegtomaia* and, unlike Barsbold (1977), see the oviraptorosaur skull as akinetic.

Quadrate articulation with the mandible and orientation of the intercondylar sulcus are highly variable among non-avian theropods, therefore suggesting some variation in the movement of the mandibular rami when the jaw opened. The helical intercondylar sulcus present in many non-avian theropods (pers. obs.) was noticed by Bakker (1998) in basal theropod dinosaurs, by Hendrickx and Buffetaut (2008) in spinosaurids, and by Molnar (1991) and Larson (2008) in *Tyrannosaurus rex*. These authors suggested that the spiral groove of the mandibular articulation constrained the diagonal ridge of the articular glenoid fossa, which fitted into the intercondylar sulcus, to slide laterally. This would force the mandibular rami of the mandible to displace laterally when the lower jaw was depressed, enlarging the width of the larynx in order to swallow large-size prey items (Hendrickx and Buffetaut 2008).

In *Allosaurus*, the enlargement of the mandibular condyles associated with the posteroventral inclination of the ventral part of the quadrate, and the intercondylar notch, were interpreted by Bakker (1998) as joint-stabilization zones. According to Bakker (1998), the anteroposterior enlargement of the articulating surface would improve the stability of the mandibular articulation when the mouth was widely opened, whereas the intercondylar notch, morphologically convergent to the depression of knee joints in crocodiles and birds, would be
hosting one or several ligaments within the quadrate-mandibular articulation (Bakker 1998). An intercondylar notch is present in the abelisaurids *Carnotaurus sastrei* (MACN-CH 894) and *Majungasaurus crenatissimus* (FMNH PR 2100), and the spinosaurid *Suchomimus tenerensis* (MNN GAD 502), perhaps implying similar jaw mechanics of the mandibular articulation as in *Allosaurus*. Yet, Bakker (1998)’s jaw mechanics hypotheses based on the shape of the mandibular articulation and the presence of an intercondylar notch require further investigation with modern functional analysis methods such as FEA to be tested.

Figure 5 & 6

Pneumaticity in the Quadrate

Pneumatization of the quadrate bone has long been recognized for its phylogenetic value (e.g., Gauthier 1986; Holtz 1998; Chiappe 2001; Rauhut 2003; Holtz et al. 2004; Smith et al. 2007; Benson 2010; Carrano et al. 2012; Turner et al. 2012; Novas et al. 2013; Choiniere et al. 2014). Pneumatic foramina of the quadrate are widespread among avetheropod clades (Gold et al. 2013; Fig. 4). The presence of one or several pneumatic foramina has indeed been recorded in carcharodontosaurids (e.g., Coria and Currie 2006; Eddy and Clarke 2011), megaraptorans (Sereno et al. 2008), tyrannosaurids (e.g., Molnar 1991; Brochu 2003; Currie 2003; Xu et al. 2004; Witmer and Ridgely 2010; Brusatte et al. 2012; Gold et al. 2013), compsognathids (Currie and Chen 2001), alvarezsaurids (Choiniere pers. comm.), therizinosaurids (Clark et al. 1994; Zanno 2010), oviraptorids (e.g., Maryańska and Osmólska 1997; Lü 2003; Kundrát and Janáček 2007; Balanoff and Norell 2012), ornithomimosaurs (e.g., Witmer 1997; Tahara and Larsson 2011), dromaeosaurids (Makovicky et al. 2005) and troodontids (Barsbold et al. 1987; Currie and Zhao 1993; Varricchio 1997; Xu et al. 2002; Xu and Norell 2004). An incipient development of
a pneumatic recess, the posterior pneumatic fossa, also exists in the basal allosauroid *Sinraptor dongi* (Currie 2006), suggesting that quadrate pneumaticity may be an avetheropod synapomorphy. Yet, external manifestation of quadrate pneumaticity only occurs in derived members of Allosauroidea, Tyrannosauroidea, and Ornithomimosauria and an apneumatic quadrate exists in the basal members of each of these clades (i.e., *Sinraptor* and *Allosaurus* for Allosauroidea (Currie 2006); pers. obs., *Tanycolagreus* and *Proceratosaurus* for Tyrannosauroidea (Carpenter et al. 2005; Rauhut et al. 2010), and *Nqwebasaurus* for Ornithomimosauria; see Choiniere et al. (2012) codings of their datamatrix). Pneumatic foramina have not been reported for any alvarezsauroid taxa, but are present in basalmost members of Therizinosauria, Oviraptorosauria and Paraves. This suggests that external quadrate pneumaticity occurred independently in several basal avetheropod clades and is a possibly synapomorphy of the clade Therizinosauria + Pennaraptora (Fig. 6).

The pneumatic opening is particularly large in some allosauroids such as *Aerosteon riocoloradensis* (Sereno et al. 2008; Fig. 5F) and *Acrocanthosaurus atokensis* (Eddy and Clarke 2011; Fig. 5A), and the therizinosaur *Falcarius utahensis* (Zanno 2010; Fig. 5D). It, however, forms a small rounded or oval aperture lodged in the posterior fossa of the quadrate body in most avetheropods (Fig. 5). The posterior pneumatic foramen is the most common quadrate pneumatic aperture in non-avian theropods and is seen in many coelurosaur clades. For instance, it is present in the tyrannosauroid *Dilong paradoxus* (Xu et al. 2004), the compsgnathid *Sinosauropteryx prima* (Currie and Chen 2001: fig. 3f), the ornithomimids *Hexing qingyi* (the ‘quadratic foramen’ of Liyong et al. 2012), *Garudimimus brevipes* (the ‘foramen’ of Kobayashi and Barsbold 2005; Fig. 5G), *Sinornithomimus dongi* (the ‘quadratic foramen’ of Kobayashi and Lü 2003) and *Struthiomimus altus* (AMNH 5339), the basal oviraptorosaur *Incisivorosaurus*
gauthieri (Balanoff et al. 2009), the dromaeosaurid *Buitreraptor gonzalezorum* (Makovicky et al. 2005; Fig. 5H), and the troodontids *Mei long* (Xu and Norell 2004), *Sinovenator changii* (Xu et al. 2002) and possibly *Gobivenator mongoliensis* (Tsuihiji et al. 2014). The posterior pneumatic foramen is, in fact, incorrectly interpreted by several authors as the quadrate foramen in ornithomimosaurs (e.g., Kobayashi and Lü 2003; Kobayashi and Barsbold 2005; Choiniere et al. 2012). A genuine quadrate foramen between the quadrate and quadratojugal, as seen in the large majority of other theropods, is found in most (possibly all) ornithomimosaurs possessing a posterior pneumatic foramen (e.g., *Garudimimus*, *Struthiomimus*; Kobayashi and Barsbold 2005; pers. obs.). Tahara and Larsson (2011) wrote that “no obvious foramen or fossa was identified on the posterior surface of the quadrate” in *Ornithomimus edmontonicus*. Yet, a deep posterior fossa seems to be present on the right side of the specimen they studied (TMP 95-110-1; n.b., the fossa seems to be filled with sediment on the left side), in the homologous position of that of the posterior fossa of other ornithomimosaurs (pers. obs.). It is, therefore, surprising that this fossa was apneumatic, as implied by Tahara and Larsson (2011). Consequently, we consider likely that a posterior pneumatic foramen was also leading to the pneumatic chamber hosting the quadrate diverticulum in this taxon. An incipient development of a posterior pneumatic foramen is seen in *Sinraptor dongi* in which the quadrate, though apneumatic, includes a well-delimited pneumatic fossa between the quadrate foramen and quadrate ridge (Currie 2006; Fig. 5E). The presence of a posterior pneumatic foramen is a possible synapomorphy of the clade Pennaraptora, which encompasses Oviraptorosauria and Paraves (Foth et al. 2014; Fig. 6). The medial pneumatic foramen, located in the ventral corner of the pterygoid flange, has also been reported in several theropod clades. It is present in the carcharodontosaurids *Acrocanthosaurus atokensis* (Eddy and Clarke 2011; Fig. 5A), *Mapusaurus roseae* (Coria and Currie 2006; Fig. 5B), and
Giganotosaurus carolinii (MUCPv-CH-1; Fig. 5C), the tyrannosaurids *Albertosaurus sarcophagus* (Currie 2003: fig. 10B) and *Tyrannosaurus rex* (Molnar 1991; Brochu 2003), the therizinosauroid *Falcarius utahensis* (Zanno 2010; Fig. 5D), the oviraptorsaurids *Conchoraptor gracilis* and possibly *Ajancingenia yanshini* (Maryańska and Osmólska 1997; Kudrát and Janáček 2007), and the basal avialan *Archaeopteryx lithographica* (Domínguez Alonso et al. 2004). A pneumatic foramen has also been noticed in the mediodorsal part of the quadrate in the ornithomimosaur *Ornithomimus edmontonicus* (Tahara and Larsson 2011). A pneumatic foramen piercing the quadrate medially is a probable synapomorphic feature of Carcharodontosauridae or carcharodontosaurs more derived than *Concavenator corcovatus* and/or *Eocarcharia dinops*, pending on the results of the latest phylogenetic analyses on carcharodontosaurs (i.e., Ortega et al. 2010; Carrano et al. 2012). In non-avian theropods, the ventral pneumatic foramen that occurs within a recess on the posteroventral part of the pterygoid flange (‘funnel-like external opening on the rostral surface of the quadrate, above the condyles’ of Gold et al., 2013: p. 37) is only present in Tyrannosauroidea. It is observed in the tyrannosaurs *Alioramus altai* (Brusatte et al. 2012; Gold et al. 2013; Fig. 5I), *Daspletosaurus* sp. (Currie 2003: fig. 28C) and *Tyrannosaurus rex* (Brochu 2003; Witmer and Ridgely 2010; Fig. 5J). In non-tyrannosaurid tyrannosaurs, such a ventral pneumatic foramen is present in *Dilong paradoxus* (Gold et al. 2013) but was not observed in the closely related taxa *Guanlong wucaii*, *Proceratosaurus lengi*, and *Xiongguanlong baimoensis* (Gold et al. 2013). Yet, it is not clearly present in *Eotyrannus lengi* (contra Gold et al. 2013; pers. obs.). A ventral pneumatic foramen of the quadrate is most likely synapomorphic of non-proceratosaurid Tyrannosauroidea (Fig. 6). A pneumatic foramen can also be seen on the anterior surface of the quadrate, as in *Mapusaurus roseae* (Coria and Currie 2006; Fig. 5K), *Heyuania huangi* (Lü 2005), *Erlikosaurus andrewsi* (Lautenschlager et al. 2014),
Troodon formosus (Currie and Zhao 1993), and perhaps Tyrannosaurus rex (Molnar 1991). More rarely, a pneumatic fossa can be situated on the lateral and posterior surface of the quadrate body, as in Aerosteon riocoloradensis (MCNA-PV 3137; Fig. 5L) and Sinraptor dongi (Currie 2006; Fig. 5E), respectively. The presence of an anterior pneumatic foramen, a lateral pneumatic fossa, or a posterior pneumatic fossa is an autapomorphy in each of these taxa.

Carcharodontosauridae (Coria and Currie 2006; Eddy and Clarke 2011) and Tyrannosauridae (Molnar 1991; Brochu 2003) possess several pneumatic openings which perforate different sides of the quadrate and sometimes intercommunicate (Brochu 2003). The pneumatic foramina usually enter a large pneumatic chamber within the quadrate bone as in Tyrannosaurus rex (Molnar 1991; Brochu 2003; Witmer and Ridgely 2010), Alioramus altai (Gold et al. 2013), Conchoraptor gracilis (Kundrát and Janáček 2007) or Ornithomimus edmontonicus (Tahara and Larsson 2011). The neovenatorid Aerosteon riocoloradensis also possesses a large posterior pneumatic foramen leading to a pneumatic chamber, as well as a shallow pneumatic recess on the lateral surface of the quadrate shaft (pers. obs.).

These pneumatic foramina and the pneumatic chamber associated with them are invaded by the quadrate diverticulum of the mandibular arch pneumatic system which, together with the periotic pneumatic system, forms the tympanic sinus of archosaurs (Dufeau 2011; Tahara and Larsson 2011). The mandibular arch pneumatic system includes the quadrate and/or the articular diverticulum which both have their embryological origins as parts of the first pharyngeal (= mandibular) arch, like the middle ear sac itself (Witmer 1997). As in non-avian theropods, the quadrate diverticulum of modern birds exhibits a large variety of morphologies, and can pneumatize the quadrate by entering through a single medial or anteromedial foramen (Witmer 1990; Tahara and Larsson 2011). In basal theropods with an apneumatic quadrate, both medial
and posterior fossae of the quadrate possibly represent the osteological trace of the quadrate diverticulum. In non-avian theropods having a pneumatic quadrate, the position of the quadrate diverticulum is variable as in ornithomimids (Tahara and Larsson 2011), carcharodontosaurusids and oviraptorids (pers. obs.). The quadrate diverticulum of non-avian theropods may also have communicated with other diverticula such as the squamosal diverticulum as in Conchoraptor gracilis (Kundrát and Janáček 2007), and the siphoneal diverticulum of the articular as in Dilong paradoxus, Aerosteon riocoloradensis and perhaps other non-avian maniraptorans (Sereno et al. 2008; Tahara and Larsson 2011). In Tyrannosaurus rex, however, the siphoneal diverticulum does not pass through the quadrate and the quadrate diverticulum only enters the ventral opening of the pterygoid flange, and then passes with or without the siphoneal diverticulum along the medial fossa of the pterygoid flange. Likewise, the quadrate diverticulum only pneumatizes two distinct regions of the quadrate in Acrocanthosaurus atokensis and Mapusaurus roseae (Tahara and Larsson 2011).

Figure 7

CONCLUSIONS

Here we propose a revised nomenclature of the quadrate bone and a corresponding set of abbreviations that provide a standard set of terms for describing this cranial bone in non-avian theropod dinosaurs. The quadrate can be divided into two regional categories—the quadrate body and the pterygoid flange—and twelve anatomical sub-units—the quadrate shaft, quadrate head, quadrate ridge, quadrate foramen, lateral process, quadratojugal contact, squamosal contact, pterygoid contact, mandibular articulation, medial fossa, and posterior fossa. Although
they are highly variable in shape, all quadrate entities, with perhaps the exception of the posterior
fossa, are easy to homologize across taxa, and a description of their morphology should be
provided in the literature.

The quadrate of the large majority of non-avian theropods is akinetic, and it is
unlikely that the streptostylic quadrate is present in the derived alvarezsauroids *Shuvuuia deserti,*
as was previously thought. A lateral movement of the rami while the mandible was depressed
occurred in various theropods (e.g. spinosaurids). This lateral movement of the rami was due to a
helicoidal and diagonally oriented intercondylar sulcus of the mandibular articulation. The
presence of an intercondylar notch in allosaurs is interpreted as a joint-stabilization zone that
would improve the stability of the mandibular articulation when the mouth was widely opened.
However, this assumption needs further investigation from modern functional morphology
techniques.

A pneumatic quadrate is present in members of most non-avian avetheropod clades, in
which a pneumatic foramen is seen in the ventral part of the pterygoid flange and in the medial
and lateral fossae. Pneumatic foramina invading the quadrate seem to be independently acquired
by allosaurs, tyrannosaurs, compsognathids, and ornithomimosaurs throughout their
evolution. The presence of pneumatic foramina in the quadrate of basalmost members of
therizinosauroids, oviraptorids, troodontids and dromaeosaurs suggests that quadrate
pneumacity is a synapomorphy of the clade Therizinosauria + Pennaraptora. Although the
pneumatic recess invaded by the quadrate diverticulum of the mandibular arch pneumatic system
is linked to a single pneumatic foramen in most avetheropods, the presence of several pneumatic
openings perforating different sides of the quadrate has been recorded in Megaraptora,
Carcharodontosauridae and Tyrannosauridae.
ACKNOWLEDGMENTS

We thank editor Andrew Farke (Raymond M. Alf Museum of Paleontology) and reviewers Jonah Choiniere (Uni. Witwatersrand) and Federico Agnolin (MACN) who kindly provided insightful comments that greatly improved this paper. The quadrate of many non-avian theropods were examined first hand in several institutions and we thanks P. Sereno (Uni. Chicago), P. Makovicky (FMNH), W. Simpson (FMNH), M. Lamanna (CMNH), A. Henrici (CMNH), M. Carrano (NMNH), M. Brett-Surman (NMNH), S. Chapman (NHM), P. Barrett (NHM), P. Jeffery (OUMNH), S. Hutt (MIW), R. Allain (MNHN), R. Schoch (SMNS), H.-J. Siber (SMA), C. Dal Sasso (MSNM), A. Kramarz (MACN), F. Novas (MACN), R. Barbieri (MPCA), L. Salgado (MUCPv), J. Ignacio Canale (MUCPv-CH), R. Coria (MCF PVPH), C. Succar (MCF PVPH), J. Calvo (CePaLB), R. Martinez (PVSJ), C. Mehling (AMNH), M. Norell (AMNH), D. Krauze (SBU), J. Groenke (SBU), P. Brinkman (NCSM), and L. Zanno (NCSM) for access to specimens in their care. Photographs of theropod quadrates were kindly shared by M. Lamanna (CMNH), M. Ezcurra (MACN), R. Delcourt (Uni. São Paulo), M. Carrano (USNM), E. Buffetaut (CNRS), M. Ellison (AMNH), L. Witmer (Uni. Ohio), S. Brusatte (Uni. Edinburgh), R. Benson (Uni. Oxford), C. Foth (BSPG), P. Currie (Uni. Alberta), J. Canale (MUCPv-CH), P. Barrett (NHM), J. Choiniere (Uni. Witwatersrand), D. Eddy (Uni. Texas), P. Viscardi (Horniman), S. Nesbitt (Uni. Texas), Y. Kobayashi (HUM), R. Tahara (McGill Uni.), R. Pei (AMNH), C. Dal Sasso (MSNM), P. Sereno (Uni. Chicago), C. Abraczinskas (Uni. Chicago), N. Smith (Uni. Chicago), L. Zanno (FMNH), R. Tykoski (MNSD), D. Burnham (Uni. Kansas), P. Asaroff (MACN), R. Irmis (UMNH), V. Shneider (NCMNS), C. Brochu (Uni. Kansas).
Iowa), S. Lautenschlager (Uni. Bristol), M. Mortimer, K. Peyer (MNHN), and R. Molnar (MNA), and the authors would like to address their sincere thanks to all of these people. We acknowledge the use of Phylopic for the theropod silhouettes, and thank Scott Hartman, Funkmonk, M. Martyniuk, and T. Michael Keesey for providing their artworks on Phylopic. A special thank goes to Paolo Viscardi for taking photos of the ostrich quadrate at the Horniman Museum & Gardens, and D. Dufeau for sharing his MSc thesis on *Shuvuuia*. We also thank Isabel Torres for giving a final check in the English. C.H. dedicates this paper to the memory of Roger Bec.

REFERENCES

Bakker, R. T. 1998. Brontosaur killers: late Jurassic allosaurids as sabre-tooth cat analogues. *Gaia* 15: 145–158.
Balanoff, A. M. and Norell, M. A. 2012. Osteology of *Khaan mckennai* (Oviraptorosauria: Theropoda). *Bulletin of the American Museum of Natural History* 372: 1–77.
Balanoff, A. M., Xu, X., Kobayashi, Y., Matsufune, Y. and Norell, M. A. 2009. Cranial osteology of the theropod dinosaur *Incisivosaurus gauthieri* (Theropoda: Oviraptorosauria). *American Museum Novitates* 3651: 1–35.
Barbosa, A. 1990. Identification key of Iberian waders (Charadriiformes) based on the os quadratum. *Miscellània Zoològica* 14: 181–185.
Barsbold, R. 1977. Kinetism and peculiarity of the jaw apparatus of oviraptors (Theropoda, Saurischia). *Soviet-Mongolian Paleontological Expedition, Trudy* 4: 37–47 (In Russian).
Barsbold, R. and Osmólska, H. 1999. The skull of *Velociraptor* (Theropoda) from the Late Cretaceous of Mongolia. *Acta Palaeontologica Polonica* 44 (2): 189–219.
Barsbold, R., Osmólska, H. and Kurzanov, S. M. 1987. On a new troodontid (Dinosauria, Theropoda) from the Early Cretaceous of Mongolia. *Acta Palaeontologica Polonica* 32 (1-2): 121–132.
Baumel, J. J. 1993. Handbook of Avian Anatomy: Nomina Anatomica Avium. 2nd ed. *Publications of the Nuttall Ornithological Club* 23: 1–779.
Baumel, J. J. and Witmer, L. M. 1993. Osteologia. In: Baumel, J. J. (ed.), *Handbook of Avian Anatomy: Nomina Anatomica Avium*, 45–132. Nuttall Ornithological Club, Cambridge.
Benson, R., Carrano, M. and Brusatte, S. 2010. A new clade of archaic large-bodied predatory dinosaurs (Theropoda: Allosauroidae) that survived to the latest Mesozoic. *Naturwissenschaften* 97 (1): 71–78.
Benson, R. B. J. 2010. A description of *Megalosaurus bucklandii* (Dinosauria: Theropoda) from the Bathonian of the UK and the relationships of Middle Jurassic theropods. *Zoological Journal of the Linnean Society* 158 (4): 882–935.
Benton, M. J. 2015. *Vertebrate Palaeontology*. Wiley-Blackwell, Chichester, West Sussex; Hoboken, NJ, 480pp.

Bock, W. J. 1964. Kinetics of the avian skull. *Journal of Morphology* 114 (1): 1–41.

Bock, W. J. 1999. Avian cranial kinesis revisited. *Acta Ornithologica* 34 (2): 115–122.

Bock, W. J. 2000. The evolution of avian cranial kinesis. In: Zhou, Z. and Zhang, F. (eds.), *Proceedings of the 5th Symposium of the Society of Avian Paleontology and Evolution, Beijing, 1–4 June 2000.*, Vol. 1, 191–201. Beijing, China.

Bout, R. G. and Zweers, G. A. 2001. The role of cranial kinesis in birds. *Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology* 131 (1): 197–205.

Britt, B. B. 1991. Theropods of Dry Mesa Quarry (Morrison Formation, Late Jurassic), Colorado, with emphasis on the osteology of *Torvosaurus tanneri*. *Brigham Young University Geology Studies* 37: 1–72.

Brochu, C. A. 2003. Osteology of *Tyrannosaurus rex*: Insights from a nearly complete skeleton and high-resolution computed tomographic analysis of the skull. *Society of Vertebrate Paleontology Memoir* 7: 1–138.

Brusatte, S. L. 2012. *Dinosaur Paleobiology*. Wiley-Blackwell, 336pp.

Brusatte, S. L., Carr, T. D. and Norell, M. A. 2012. The osteology of *Alioramus*, a gracile and long-snouted tyrannosaurid (Dinosauria: Theropoda) from the Late Cretaceous of Mongolia. *Bulletin of the American Museum of Natural History* 366: 1–197.

Brusatte, S. L., Chure, D. J., Benson, R. B. J. and Xu, X. 2010. The osteology of *Shaochilong maortuensis*, a carcharodontosaurid (Dinosauria: Theropoda) from the Late Cretaceous of Asia. *Zootaxa* 2334: 1–46.

Bühler, P. 1981. Functional anatomy of the avian jaw apparatus. *Form and function in birds* 2: 439–468.

Bühler, P., Martin, L. D. and Witmer, L. M. 1988. Cranial kinesis in the Late Cretaceous birds *Hesperornis* and *Parahesperornis*. *The Auk* 105 (1): 111–122.

Bühler, P., Hecht, M. K., Ostrom, J. H., Virohl, G. and Wellnhofer, P. 1985. On the morphology of the skull of *Archaeopteryx*. *The Beginnings of Birds*: 135–140.

Burnham, D. A. 2004. New Information on *Bambiraptor feinbergeri* (Theropoda: Dromaeosauridae) from the Upper Jurassic Morrison Formation of Montana. In: Currie, P. J., Koppelhus, E. B., Shugar, M. A. and Wright, J. L. (eds.), *Feathered Dragons: Studies on the Transition from Dinosaurs to Birds*, 67–111. Indiana University Press, Bloomington, Indiana.

Carpenter, K., Miles, C. and Cloward, K. 2005. New small theropod from the Upper Jurassic Morrison Formation of Wyoming. In: Carpenter, K. (ed.), *The Carnivorous Dinosaurs*, 23–48. Indiana University Press, Bloomington, Indiana.

Carrano, M. T., Loewen, M. A. and Sertich, J. J. W. 2011. New materials of *Masiakasaurus knopfleri* Sampson, Carrano, and Forster, 2001, and implications for the morphology of the Noasauridae (Theropoda: Ceratosauria). *Smithsonian Contributions to Paleobiology* 95: 1–53.

Carrano, M. T., Benson, R. B. J. and Sampson, S. D. 2012. The phylogeny of Tetanurae (Dinosauria: Theropoda). *Journal of Systematic Palaeontology* 10 (2): 211–300.

Carr, T. D. 1996. Cranial osteology and craniofacial ontogeny of Tyrannosaurus (Dinosauria: Theropoda) from the Dinosaur Park Formation (Judith River Group, Upper Cretaceous, Campanian) of Alberta. MSc. Dissertation, University of Toronto, Toronto, Ontario, Canada, 358pp.
Charig, A. J. and Milner, A. C. 1997. *Baryonyx walkeri*, a fish-eating dinosaur from the Wealden of Surrey. *Bulletin of the Natural History Museum* 53 (1): 11–70.

Chatterjee, S. 1991. Cranial anatomy and relationships of a new Triassic bird from Texas. *Philosophical Transactions: Biological Sciences* 332 (1265): 277–342.

Chatterjee, S. 1995. The Triassic bird *Protoavis*. *Archaeopteryx* 13: 15–31.

Chatterjee, S. 1997. *The Rise of Birds: 225 Million Years of Evolution*. Johns Hopkins University Press, Baltimore, Maryland, 312pp.

Chiappe, L. M. 2001. Phylogenetic relationships among basal birds. In: Gauthier, J. and Gall, L. F. (eds.), *New Perspectives on the Origin and Early Evolution of Birds: Proceedings of the International Symposium in Honor of John H. Ostrom*, 125–139. Yale Univ Peabody Museum.

Chiappe, L. M., Norell, M. A. and Clark, J. M. 1998. The skull of a relative of the stem-group bird *Monykus*. *Nature* 392 (6673): 275–278.

Chiappe, L. M., Norell, M. A. and Clark, J. M. 2002. The Cretaceous, short-armed Alvarezsauridae: *Monykus* and its kin. In: Chiappe, L. M. and Witmer, L. M. (eds.), *Mesozoic Birds: Above the Heads of Dinosaurs*, 87–120. University of California Press.

Choiniere, J. N., Forster, C. A. and de Klerk, W. J. 2012. New information on *Nqwebasaurus thwazi*, a coelurosaurian theropod from the Early Cretaceous Kirkwood Formation in South Africa. *Journal of African Earth Sciences* 71–72: 1–17.

Choiniere, J. N., Clark, J. M., Forster, C. A. and Xu, X. 2010. A basal coelurosaur (Dinosauria: Theropoda) from the Late Jurassic (Oxfordian) of the Shishugou Formation in Wucaiwan, People’s Republic of China. *Journal of Vertebrate Paleontology* 30 (6): 1773–1796.

Choiniere, J. N., Clark, J. M., Norell, M. A. and Xu, X. 2014a. Cranial osteology of *Haplocheirus sollers* Choiniere et al., 2010 (Theropoda, Alvarezsauroidea). *American Museum Novitates* 3816: 1–44.

Choiniere, J. N., Clark, J. M., Forster, C. A., Norell, M. A., Eberth, D. A., Erickson, G. M., Chu, H. and Xu, X. 2014b. A juvenile specimen of a new coelurosaur (Dinosauria: Theropoda) from the Middle–Late Jurassic Shishugou Formation of Xinjiang, People’s Republic of China. *Journal of Systematic Palaeontology* 12 (2): 177–215.

Chure, D. J. 2000. A new species of *Allosaurus* from the Morrison Formation of Dinosaur National Monument (Utah-Colorado) and a revision of the theropod family Allosauridae. Ph.D. Dissertation, Columbia University, New York, New York., 909pp.

Clark, J. M., Perle, A. and Norell, M. A. 1994. The skull of *Erichosaurus andrewsi*, a late Cretaceous ‘Segnosaur’ (Theropoda, Therizinosauridae) from Mongolia. *American Museum Novitates* 3115: 1–39.

Clark, J. M., Norell, M. A. and Rowe, T. 2002. Cranial anatomy of *Citipati osmolskae* (Theropoda, Oviraptorosauria), and a reinterpretation of the holotype of *Oviraptor philoceratops*. *American Museum Novitates* 3364: 1–24.

Colbert, E. H. 1989. The Triassic dinosaur *Coelophysis*. *Museum of Northern Arizona Bulletin* 57: 1–174.

Coria, R. A. and Salgado, L. 1998. A basal Abelisauria Novas, 1992 (Theropoda-Ceratosauria) from the Cretaceous of Patagonia, Argentina. *Gaia* 15: 89–102.

Coria, R. A. and Currie, P. J. 2006. A new carcharodontosaurid (Dinosauria, Theropoda) from the Upper Cretaceous of Argentina. *Geodiversitas* 28 (1): 71–118.
Currie, P. J. 2003. Cranial anatomy of tyrannosaurid dinosaurs from the Late Cretaceous of Alberta, Canada. *Acta Palaeontologica Polonica* 48 (2): 191–226.

Currie, P. J. 2006. On the quadrate of *Sinraptor dongi* (Theropoda: Allosauroidea) from the Late Jurassic of China. *Mesozoic and Cenozoic Vertebrates and Paleoenvironments. Tributes to the career of Prof. Dan Grigorescu*: 111–115.

Currie, P. J. and Zhao, X.-J. 1993. A new troodontid (Dinosauria, Theropoda) braincase from the Dinosaur Park Formation (Campanian) of Alberta. *Canadian Journal of Earth Sciences* 30 (10): 2231–2247.

Currie, P. J. and Carpenter, K. 2000. A new specimen of *Acrocanthosaurus atokensis* (Theropoda, Dinosauria) from the Lower Cretaceous Antlers Formation (Lower Cretaceous, Aptian) of Oklahoma, USA. *Geodiversitas* 22 (2): 207–246.

Currie, P. J. and Chen, P. 2001. Anatomy of *Sinosauropteryx prima* from Liaoning, northeastern China. *Canadian Journal of Earth Sciences* 38 (12): 1705–1727.

Dal Sasso, C. and Maganuco, S. 2011. *Scipionyx samniticus* (Theropoda: Compsognathidae) from the Lower Cretaceous of Italy: osteology, ontogenetic assessment, phylogeny, soft tissue anatomy, taphonomy and palaeobiology. *Memorie della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano* 37 (1): 1–281.

Domínguez Alonso, P., Milner, A. C., Ketcham, R. A., Cookson, M. J. and Rowe, T. B. 2004. The avian nature of the brain and inner ear of *Archaeopteryx*. *Nature* 430 (7000): 666–669.

Dufeau, D. L. 2003. The cranial anatomy of the theropod dinosaur *Shuvuuia deserti* (Coelurosauria: Alvarezsauridae), and its bearing upon coelurosaurian phylogeny. MSc. Dissertation, University of Texas, Austin, Texas, 275pp.

Dufeau, D. L. 2011. The Evolution of Cranial Pneumaticity in Archosauria: Patterns of Paratympanic Sinus Development. Ph.D. Dissertation, Ohio University, Athens, Ohio, USA, 175pp.

Eddy, D. R. and Clarke, J. A. 2011. New information on the cranial anatomy of *Acrocanthosaurus atokensis* and its implications for the phylogeny of Allosauroidea (Dinosauria: Theropoda). *PLoS ONE* 6 (3): e17932.

Elzanowski, A. and Stidham, T. A. 2010. Morphology of the quadrate in the Eocene anseriform *Presbyornis* and extant galloanserine birds. *Journal of Morphology* 271 (3): 305–323.

Elzanowski, A., Paul, G. S. and Stidham, T. A. 2001. An avian quadrate from the Late Cretaceous Lance formation of Wyoming. *Journal of Vertebrate Paleontology* 20 (4): 712–719.

Fisher, H. I. 1955. Some aspects of the kinetics in the jaws of birds. *The Wilson Bulletin* 67 (3): 175–188.

Foth, C., Tischlinger, H. and Rauhut, O. W. M. 2014. New specimen of *Archaeopteryx* provides insights into the evolution of pennaceous feathers. *Nature* 511 (7507): 79–82.

Fuchs, A. 1954. On the correlation between the skull structure and the muscles in the male *Phasianus colchicus* L. IV. The attachment of the musculus protractor quadri et pterygoidei and of the musculus depressor mandibulae. *Koninklijke Nederlandse Akademie van Wetenschappen, Proceedings, C* 57: 666–672.

Gauthier, J. 1986. Saurischian monophyly and the origin of birds. *In*: Padian, K. (ed.), *The Origin of Birds and the Evolution of Flight*, Vol. 8, 1–55. Memoirs of the California Academy of Sciences, San Francisco, California.
Gold, M. E. L., Brusatte, S. and Norell, M. A. 2013. The cranial pneumatic sinuses of the tyrannosaurid *Alioramus* (Dinosauria, Theropoda) and the evolution of cranial pneumaticity in theropod dinosaurs. *American Museum Novitates* 3790: 1–46.

Gussekloo, S. W. S. and Bout, R. G. 2005. Cranial kinesis in palaeognathous birds. *Journal of Experimental Biology* 208 (17): 3409–3419.

Harris, J. D. 2004. Confusing dinosaurs with mammals: Tetrapod phylogenetics and anatomical terminology in the world of homology. *The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology* 281A (2): 1240–1246.

Hendrickx, C. and Buffetaut, E. 2008. Functional interpretation of spinosaurid quadrates (Dinosauria: Theropoda) from the Mid-Cretaceous of Morocco. *56th Annual Symposium of Vertebrate Palaeontology and Comparative Anatomy*. Dublin (September 2nd-6th 2008): 25–26.

Hendrickx, C. and Mateus, O. 2014. *Torvosaurus gurneyi* n. sp., the largest terrestrial predator from Europe, and a proposed terminology of the maxilla anatomy in nonavian theropods. *PLoS ONE* 9 (3): e88905.

Hendrickx, C., Mateus, O. and Araújo, R. in press. A proposed terminology of theropod teeth (Saurischia: Dinosauria). *Journal of Vertebrate Paleontology*.

Hendrickx, C., Araújo, R. and Mateus, O. 2014. The nonavian theropod quadrate II: systematic usefulness, major trends and cladistic and phylogenetic morphometrics analyses. *PeerJ PrePrints*: 2:e380v1.

Hendrickx, C., Hartman, S. A. and Mateus, O. 2015. An overview of non-avian theropod discoveries and classification. *PalArch’s Journal of Vertebrate Palaeontology* 12 (1): 1–73.

Hoese, W. J. and Westneat, M. W. 1996. Biomechanics of cranial kinesis in birds: testing linkage models in the white-throated sparrow (*Zonotrichia albicollis*). *Journal of Morphology* 227 (3): 305–320.

Holliday, C. M. and Witmer, L. M. 2008. Cranial kinesis in dinosaurs: intracranial joints, protractor muscles, and their significance for cranial evolution and function in diapsids. *Journal of Vertebrate Paleontology* 28 (4): 1073–1088.

Holtz, T. R. J. 1998. A new phylogeny of the carnivorous dinosaurs. *Gaia* 15: 5–61.

Holtz, T. R. J. 2003. Dinosaur predation: evidence and ecomorphology. *In*: Kelley, P. H., Kowalewski, M. and Hansen, T. A. (eds.), *Predator—Prey Interactions in the Fossil Record*, Vol. 20, 325–340. Kluwer Academic/Plenum Publishers, New York.

Holtz, T. R. J., Molnar, R. E. and Currie, P. J. 2004. Basal Tetanurae. *In*: Weishampel, D. B., Dodson, P. and Osmólska, H. (eds.), *The Dinosauria. Second Edition*, 71–110. University of California Press, Berkeley, California.

Hone, D. W. E. and Rauhut, O. W. M. 2010. Feeding behaviour and bone utilization by theropod dinosaurs. *Lethaia* 43 (2): 232–244.

ICVGAN. 2012. *Nomina Anatomica Veterinaria*. International Committee on Veterinary Gross Anatomical Nomenclature (ICVGAN), 160pp.

Kobayashi, Y. and Lü, J.-C. 2003. A new ornithomimid dinosaur with gregarious habits from the Late Cretaceous of China. *Acta Palaeontologica Polonica* 48 (2): 235–259.

Kobayashi, Y. and Barsbold, R. 2005. Reexamination of a primitive ornithomimus, *Garudinimus brevipes* Barsbold, 1981 (Dinosauria: Theropoda), from the Late Cretaceous of Mongolia. *Canadian Journal of Earth Sciences* 42 (9): 1501–1521.
Kundrát, M. and Janáček, J. 2007. Cranial pneumatization and auditory perceptions of the oviraptorid dinosaur Conchoraptor gracilis (Theropoda, Maniraptora) from the Late Cretaceous of Mongolia. Naturwissenschaften 94 (9): 769–778.

Larson, P. 2013. The case for Nanotyrannus. In: Parrish, J. M., Molnar, R. E., Currie, P. J. and Koppelhus, E. B. (eds.), Tyrannosaurid Paleobiology, 15–53. Indiana University Press, Bloomington, Indiana.

Larson, P. L. 2008. Atlas of the skull bones of Tyrannosaurus rex. In: Larson, P. L. and Carpenter, K. (eds.), Tyrannosaurus Rex, the Tyrant King, 233–243. Indiana University Press, Bloomington, Indiana.

Lautenschlager, S., Witmer, L. M., Altangerel, P., Zanno, L. E. and Rayfield, E. J. 2014. Cranial anatomy of Erlikosaurus andrewsi (Dinosauria, Therizinosauria): new insights based on digital reconstruction. Journal of Vertebrate Paleontology 34 (6): 1263–1291.

Liyong, J., Jun, C. and Godefroit, P. 2012. A new basal ornithomimosaur (Dinosauria: Theropoda) from the Early Cretaceous Yixian Formation, Northeast China. In: Godefroit, P. (ed.), Bernissart Dinosaurs and Early Cretaceous Terrestrial Ecosystems, 466–487. Indiana University Press, Bloomington, Indiana.

Loewen, M. A. 2010. Variation in the Late Jurassic theropod dinosaur Allosaurus: Ontogenetic, functional, and taxonomic implications. Ph.D. Dissertation, The University of Utah, Texas, Utah, USA, 326pp.

Lowe, P. R. 1926. More notes on the quadrate as a factor in avian classification. Ibis 68 (1): 152–188.

Lü, J. 2003. A new oviraptorosaurid (Theropoda: Oviraptorosauria) from the Late Cretaceous of southern China. Journal of Vertebrate Paleontology 22 (4): 871–875.

Lü, J. 2005. Oviraptorid dinosaurs from southern China. Ph.D. Dissertation, Southern Methodist University, Dallas, Texas, USA, 200pp.

Lü, J., Tomida, Y., Azumia, Y., Dong, Z. and Lee, Y. N. 2004. New oviraptorid dinosaur (Dinosauria: Oviraptorosauria) from the Nemegt Formation of Southwestern Mongolia. Bulletin of the National Science Museum: Geology & paleontology 30: 95–130.

Lü, J. C., Tomida, Y., Azuma, Y., Dong, Z. M. and Lee, Y. N. 2005. Nemegtomaia gen. nov., a replacement name for the oviraptorosaurian dinosaur Nemegtosaurus Nemegtia Lu et al., 2004, a preoccupied name. Bulletin of the National Science Museum of Tokyo, Series C 31: 51.

Madsen, J. H. 1976. Allosaurus fragilis: A revised osteology. Utah Geological Survey Bulletin 109: 1–177.

Madsen, J. H. and Welles, S. P. 2000. Ceratosaurus (Dinosauria, Theropoda): a revised osteology. Utah Geological Survey, Miscellaneous Publication 00-2: 1–89.

Makovicky, P. J., Apesteguía, S. and Agnolin, F. L. 2005. The earliest dromaeosaurid theropod from South America. Nature 437 (7061): 1007–1011.

Maryańska, T. and Osmólska, H. 1997. The quadrate of oviraptorid dinosaurs. Acta Palaeontologica Polonica 42 (3): 361–371.

Meekangvan, P., Barhorst, A., Burton, T. D., Chatterjee, S. and Schovanec, L. 2006. Nonlinear dynamical model and response of avian cranial kinesis. Journal of Theoretical Biology 240 (1): 32–47.

Metzger, K. 2002. Cranial kinesis in lepidosaurs: skulls in motion. In: Aerts, P., D’Août, K., Herrel, A. and Van Damme, R. (eds.), Topics in Functional and Ecological Vertebrate Morphology, 15–46. Shaker Publishing, Maastricht.
Molnar, R. E. 1991. The cranial morphology of *Tyrannosaurus rex*. *Palaeontographica Abteilung A* 217 (4-6): 137–176.

Molnar, R. E. 1998. Mechanical factors in the design of the skull of *Tyrannosaurus rex* (Osborn, 1905). *Gaia* 15: 193–218.

Nitzsch, C. L. 1816. Über die bewegung des oberkiefers der vögel. *Deutsches Archiv für die Physiologie* 2: 361–380.

Norell, M. A., Clark, J. M., Turner, A. H., Makovicky, P. J., Barsbold, R. and Rowe, T. 2006. A new dromaeosaurid theropod from Ukhaa Tolgod (Ömnögov, Mongolia). *American Museum Novitates* 3545: 1–51.

Norell, M. A., Makovicky, P. J., Bever, G. S., Balanoff, A. M., Clark, J. M., Barsbold, R. and Rowe, T. 2009. A review of the Mongolian Cretaceous dinosaur *Saurornithoides* (Troodontidae: Theropoda). *American Museum Novitates* 3654: 1–63.

Novas, F. E., Agnolin, F. L., Ezcurra, M. D., Porfiri, J. and Canale, J. I. 2013. Evolution of the carnivorous dinosaurs during the Cretaceous: The evidence from Patagonia. *Cretaceous Research* 45: 174–215.

Ortega, F., Escaso, F. and Sanz, J. L. 2010. A bizarre, humped Carcharodontosauria (Theropoda) from the Lower Cretaceous of Spain. *Nature* 467 (7312): 203–206.

Perle, A., Chiappe, L. M. and Barsbold, R. 1994. Skeletal morphology of *Mononykus olecranus* (Theropoda: Avialae) from the Late Cretaceous of Mongolia. *American Museum Novitates* 3105: 1–29.

Rauhut, O. W. M. 2003. The interrelationships and evolution of basal theropod dinosaurs. *Special Papers in Palaeontology* 69: 1–213.

Rauhut, O. W. M., Milner, A. C. and Moore-Fay, S. 2010. Cranial osteology and phylogenetic position of the theropod dinosaur *Proceratosaurus bradleyi* (Woodward, 1910) from the Middle Jurassic of England. *Zoological Journal of the Linnean Society* 158 (1): 155–195.

Rayfield, E. J. 2005. Using finite-element analysis to investigate suture morphology: A case study using large carnivorous dinosaurs. *The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology* 283A (2): 349–365.

Reichert, K. B. 1837. Über die Visceralbogen der Wirbelthiere im allgemeinen und deren Metamorphosen bei den Vögeln und Säugethieren. *Archiv für Anatomie, Physiologie, und wissenschaftliche Medizin* 1837: 120–222.

Rieppel, O. 2006. The merits of similarity reconsidered. *Systematics and Biodiversity* 4 (2): 137–147.

Romer, A. 1956. *Osteology of the Reptiles*. University of Chicago Press, Chicago, 772pp.

Russell, D. A. 1972. Ostrich dinosaurs from the Late Cretaceous of Western Canada. *Canadian Journal of Earth Sciences* 9 (4): 375–402.

Sadleir, R., Barrett, P. M. and Powell, H. P. 2008. The anatomy and systematics of *Eustreptospondylus oxoniensis*, a theropod dinosaur from the Middle Jurassic of Oxfordshire, England. *Monograph of the Palaeontographical Society, London* 160: 1–82.

Samejima, M. and Otsuka, J. 1987. Observations on the Quadrate of Birds. *Japanese Journal of Ornithology* 35 (4): 129–144.

Sampson, S. D. and Witmer, L. M. 2007. Craniofacial anatomy of *Majungasaurus crenatissimus* (Theropoda: Abelisauroidea) from the Late Cretaceous of Madagascar. *Society of Vertebrate Paleontology Memoir* 8: 32–104.

Sanders, R. K. and Smith, D. K. 2005. The endocranium of the theropod dinosaur *Ceratosaurus* studied with computed tomography. *Acta Palaeontologica Polonica* 50 (3): 601.
Schwarz, D., Frey, E. and Meyer, C. A. 2007. Pneumaticity and soft-tissue reconstructions in the neck of diplodocid and dicraeosaurid sauropods. *Acta Palaeontologica Polonica* 52 (1): 167.

Sedlmayr, J. C. 2002. Anatomy, evolution, and functional significance of cephalic vasculature in Archosauria. Ph.D. Dissertation, Ohio University, Athens, Ohio, USA, 398pp.

Sereno, P. C. 2001. Alvarezsaurids: birds or ornithomimosaurs. *In*: Gauthier, J. and Gall, L. F. (eds.), *New Perspectives on the Origin and Early Evolution of Birds: Proceedings of the International Symposium in Honor of John H. Ostrom*, 69–98. Yale Univ Peabody Museum.

Sereno, P. C. and Novas, F. E. 1994. The skull and neck of the basal theropod *Herrerasaurus ischigualastensis*. *Journal of Vertebrate Paleontology* 13 (4): 451–476.

Sereno, P. C., Martinez, R. N., Wilson, J. A., Varricchio, D. J., Alcober, O. A. and Larsson, H. C. E. 2008. Evidence for avian intrathoracic air sacs in a new predatory dinosaur from Argentina. *PLoS ONE* 3 (9): e3303.

Sereno, P. C., Beck, A. L., Dutheil, D. B., Gado, B., Larsson, H. C. E., Lyon, G. H., Marcot, J. D., Rauhut, O. W. M., Sadleir, R. W., Sidor, C. A., Varricchio, D. D., Wilson, G. P. and Wilson, J. A. 1998. A long-snouted predatory dinosaur from Africa and the evolution of spinosaurids. *Science* 282 (5392): 1298–1302.

Smith, D. 1992. The type specimen of *Oviraptor philoceratops*, a theropod dinosaur from the Upper Cretaceous of Mongolia. *Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen* 186 (3): 365–388.

Smith, N. D., Makovicky, P. J., Hammer, W. R. and Currie, P. J. 2007. Osteology of *Cryolophosaurus ellioti* (Dinosauria: Theropoda) from the Early Jurassic of Antarctica and implications for early theropod evolution. *Zoological Journal of the Linnean Society* 151 (2): 377–421.

Tahara, R. and Larsson, H. C. E. 2011. Cranial pneumatic anatomy of *Ornithomimus edmontonicus* (Ornithomimidae: Theropoda). *Journal of Vertebrate Paleontology* 31 (1): 127–143.

Takechi, M. and Kuratani, S. 2010. History of studies on mammalian middle ear evolution: A comparative morphological and developmental biology perspective. *Journal of Experimental Zoology Part B: Molecular and Developmental Evolution* 314B (6): 417–433.

Therrien, F., Henderson, D. M. and Ruff, C. B. 2005. Bite me: biomechanical models of theropod mandibles and implications for feeding behavior. *In*: Carpenter, K. (ed.), *The Carnivorous Dinosaurs*, 179–237. Indiana University Press, Bloomington, Indiana.

Tsuihiji, T., Barsbold, R., Watabe, M., Tsogtbaatar, K., Chinzorig, T., Fujiyama, Y. and Suzuki, S. 2014. An exquisitely preserved troodontid theropod with new information on the palatal structure from the Upper Cretaceous of Mongolia. *Naturwissenschaften* 101 (2): 131–142.

Turner, A. H., Hwang, S. H. and Norell, M. A. 2007. A small derived theropod from Öösh, Early Cretaceous, Baykhangor Mongolia. *American Museum Novitates* 3557: 1–27.

Turner, A. H., Pol, D. and Norell, M. A. 2011. Anatomy of *Mahakala omnogovae* (Theropoda: Dromaeosauridae), Tögrögiin Shiree, Mongolia. *American Museum Novitates* 3722: 1–66.
Turner, A. H., Makovicky, P. J. and Norell, M. 2012. A review of dromaeosaurid systematics and paravian phylogeny. *Bulletin of the American Museum of Natural History* 371: 1–206.

Tykoski, R. S. 2005. Anatomy, ontogeny, and phylogeny of coelophysoid theropods. Ph.D. Dissertation, The University of Texas, Austin, Texas, 553pp.

Varricchio, D. J. 1997. Troodontidae. *In: Currie, P. J. and Padian, K. (eds.), Encyclopedia of Dinosaurs*, 749–754. Academic Press, San Diego, California.

Vickers-Rich, P., Chiappe, L. M. and Kurzanov, S. 2002. The enigmatic birdlike dinosaur *Avimimus portentosus*. *In: Chiappe, L. M. and Witmer, L. M. (eds.), Mesozoic Birds: Above the Heads of Dinosaurs*, 65–86. University of California Press, Berkeley/Los Angeles/London.

Welles, S. P. 1984. *Dilophosaurus wetherilli* (Dinosauria, Theropoda). Osteology and comparisons. *Palaeontographica Abteilung A* 185 (4-6): 85–180.

Wilson, J. A. 1999. A nomenclature for vertebral laminae in sauropods and other saurischian dinosaurs. *Journal of Vertebrate Paleontology* 19 (4): 639–653.

Wilson, J. A. 2006. Anatomical nomenclature of fossil vertebrates: standardized terms or ‘lingua franca’? *Journal of Vertebrate Paleontology* 26 (3): 511–518.

Wilson, J. A., D’Emic, M. D., Ikejiri, T., Moacdieh, E. M. and Whitlock, J. A. 2011. A nomenclature for vertebral fossae in sauropods and other saurischian dinosaurs. *PloS ONE* 6 (2): e17114.

Witmer, L. M. 1990. The craniofacial air sac system of Mesozoic birds (Aves). *Zoological Journal of the Linnean Society* 100 (4): 327–378.

Witmer, L. M. 1997. The evolution of the antorbital cavity of archosaurs: a study in soft-tissue reconstruction in the fossil record with an analysis of the function of pneumaticity. *Society of Vertebrate Paleontology Memoir* 3: 1–76.

Witmer, L. M. and Ridgely, R. C. 2010. The Cleveland tyrannosaur skull (*Nanotyrannus* or *Tyrannosaurus*): new findings based on CT scanning, with special reference to the braincase. *Kirtlandia* 57: 61–81.

Xu, X. and Wu, X.-C. 2001. Cranial morphology of *Sinornithosaurus millenii* Xu et al. 1999 (Dinosauria: Theropoda: Dromaeosauridae) from the Yixian Formation of Liaoning, China. *Canadian Journal of Earth Sciences* 38 (12): 1739–1752.

Xu, X. and Norell, M. A. 2004. A new troodontid dinosaur from China with avian-like sleeping posture. *Nature* 431 (7010): 838–841.

Xu, X., Norell, M. A., Wang, X., Makovicky, P. J. and Wu, X. 2002. A basal troodontid from the Early Cretaceous of China. *Nature* 415 (6873): 780–784.

Xu, X., Norell, M. A., Kuang, X., Wang, X., Zhao, Q. and Jia, C. 2004. Basal tyrannosauroids from China and evidence for protofeathers in tyrannosauroids. *Nature* 431 (7009): 680–684.

Zanno, L. E. 2010. Osteology of *Falcarius utahensis* (Dinosauria: Theropoda): characterizing the anatomy of basal therizinosaurans. *Zoological Journal of the Linnean Society* 158 (1): 196–230.

Zanno, L. E. and Makovicky, P. J. 2011. Herbivorous ecomorphology and specialization patterns in theropod dinosaur evolution. *Proceedings of the National Academy of Sciences* 108 (1): 232–237.

Zusi, R. L. 1984. A functional and evolutionary analysis of rhynchokinesis in birds. *Smithsonian Contributions to Zoology* 395: 1–40.
FIGURE CAPTIONS

FIGURE 1. Avian and non-avian theropod terminology of the quadrate bone. Left quadrate of the common ostrich *Struthio camelus* (NH.11.75; courtesy of Paolo Viscardi) in (A, G) anterior, (B, H) lateral, (C, I) posterior, (D, J) medial, (E, K) dorsal, and (F, L) ventral views. The ostrich quadrate is annotated with (A-F) Baumel and Witmer (1993), Elzanowski et al. (2001) and Elzanowski and Stidham (2010) terminologies, and (G-L) the here proposed terminology for the non-avian theropod quadrate.

FIGURE 2. Anatomy of non-avian theropod quadrates. Line drawings of the right (A–E) quadrate of *Tsaagan mangas* (IGM 100-1015) in (A) anterior, (B) lateral, (C) posterior, (D) medial and (E) ventral views; left (F–I) and right (J–K) quadrates (F) of *Baryonyx walkeri* (NHM R9951), (G) *Aerosteon riocoloradensis* (MCNA-PV-3137), (H) an indeterminate Oviraptoridae (GIN A; Maryańska and Osmólska 1997), (I) *Tyrannosaurus rex* (BHI 3333; Larson and Carpenter, 2008), (J) *Allosaurus ‘jimmadseni’* (SMA 0005), and (K) *Majungasaurus crenatissimus* (FMNH PR 2100) in (F–I) posterior and (J–K) ventral views. Abbreviations: ain, anterior intercondylar notch; dqjc, dorsal quadratojugal contact; ecc, ectocondyle; enc, entocondyle; ics, intercondylar sulcus; lpq, lateral process of the quadrate; mar, mandibular articulation; mfq, medial fossa of the quadrate; oca, otic capitulum; pfl, pterygoid flange; pfq, posterior fossa of the quadrate; pin, posterior intercondylar notch; pff, posterior pneumatic...
FIGURE 3. Topological homologies in the non-averostran theropod quadrate. Left (A, C, F) and right (B, D, E; reversed) quadrates of *Dilophosaurus wetherilli* (UCMP 37302) in (A) anterior, (B) lateral, (C) posterior, (D) medial, (E) dorsal and (F) ventral views (courtesy of Randall Irmis and Matthew Carrano). Right quadrate (G–L; reversed) of *Majungasaurus crenatissimus* (FMNH PR 2100) in (G) anterior, (H) lateral, (I) posterior, (J) medial, (K) dorsal, and (L) ventral views. Left quadrate (M–R) of *Baryonyx walker* (NHM R9951) in (M) anterior, (N) lateral, (O) posterior, (P) medial, (Q) dorsal, and (R) ventral views. Right quadrate (S–W) of *Eustreptospondylus oxoniensis* (OUMNH J.13558; reversed) in (S) anterior, (T) lateral, (U) posterior, (V) medial and (W) ventral views (courtesy of Paul Barrett). Abbreviations: afq, anterior fossa; ain, anterior intercondylar notch; dqjc, dorsal quadratojugal contact; ecc, ectocondyle; enc, entocondyle; ics, intercondylar sulcus; lpq, lateral process; mfq, medial fossa; pfq, posterior fossa; pfl, pterygoid flange; qf, quadrate foramen;qh, quadrate head; qjp, quadratojugal process; qr, quadrate ridge; qrg, quadrate ridge groove; qs, quadrate shaft; sqc, squamosal contact; sca, squamosal capitulum; vqjc, ventral quadratojugal contact; vpdq, ventral projection of the dorsal quadratojugal contact; vsh, ventral shelf of the pterygoid flange.

FIGURE 4. Topological homologies in the non-avian averostran quadrate. Left quadrate (A–F) of *Aerosteon riocoloradensis* (MCNA-PV-3137) in (A) anterior, (B) lateral, (C) posterior, (D) medial, (E) dorsal, and (F) ventral views (courtesy of Martin Ezcurra). Left quadrate (G–K) of
Alioramus altai (IGM 100-1844) in (G) anterior, (H) lateral, (I) posterior, (J) medial, and (K) dorsal, (courtesy of Mike Ellison © AMNH). Right quadrate (L) of *Qianzhousaurus sinensis* (GM F10004-1; reversed) in ventral views (courtesy of Stephen Brusatte). Right quadrate (M–Q) of *Falcarius utahensis* (UMNH VP 14559; reversed) in (M) anterior, (N) lateral, (O) posterior, (P) medial, and (Q) ventral views (courtesy of Lindsay Zanno). Left quadrate (R–W) of *Bambiraptor feinbergi* (AMNH 30556) in (R) anterior, (S) lateral, (T) posterior, (U) medial, (V) dorsal, and (W) ventral views. Abbreviations: afq, anterior fossa; dqjc, dorsal quadratojugal contact; ecc, ectocondyle; enc, entocondyle; ics, intercondylar sulcus; lpq, lateral process; mfq, medial fossa; mpf, medial pneumatic foramen; pfq, posterior fossa; ppf, posterior pneumatic foramen; pfl, pterygoid flange; qf, quadrate foramen;qh, quadrate head; qjp, quadratojugal process; qr, quadrate ridge; vpdq, ventral projection of the dorsal quadratojugal contact; vpf, ventral pneumatic foramen; vqjc, ventral quadratojugal contact; vsh, ventral shelf of the pterygoid flange.

FIGURE 5. Morphology and position of pneumatic openings in the quadrate of non-avian Theropoda. Right quadrate (A) of the carcharodontosaurid *Acrocanthosaurus atokensis* (NCSM 14345; reversed) in medial view. Left quadrate (B) of the carcharodontosaurid *Mapusaurus roseae* (MCF PVPH-108) in medial view. Left quadrate (C) of the carcharodontosaurid *Giganotosaurus carolinii* (MUCPv CH 1) in medial view. Right quadrate (D) of the therizinosauroid *Falcarius utahensis* (UMNH VP 14559; reversed) in medial view (courtesy of Lindsay Zanno). Right quadrate (E) of the metriacanthosaurid *Sinraptor dongi* (IVPP 10600; reversed) in posterior view (courtesy of Philip Currie). Left quadrate (F) of the neovenatorid *Aerosteon riocoloradensis* (MCNA-PV 3137) in posterior view (courtesy of Martín Ezcurra).
Left quadrate (G) of the ornithomimid *Garudimimus brevipes* (IGM 100–13) in posterior view (courtesy of Yoshitsugu Kobayashi). Right quadrate (H) of the dromaeosaurid *Buitreraptor gonzalezorum* (MPCA 245; reversed) in posterior view. Right quadrate (I) of the tyrannosaurid *Alioramus altai* (IGM 100–844) in ventral view (courtesy of Mick Ellison). Left quadrate (J) of the tyrannosaurid *Tyrannosaurus rex* (FMNH PR2081; cast, reversed) in ventral view. Left quadrate (K) of the carcharodontosaurid *Mapusaurus roseae* (MCF PVPH-108) in anterior view. Left quadrate (L) of the neovenatorid *Aerosteon riocoloradensis* (MCNA-PV 3137) in lateral view (courtesy of Martín Ezcurra). Abbreviations: apf, anterior pneumatic foramen; lpq, lateral process; lpfo, lateral pneumatic fossa; mpf, medial pneumatic foramen; ppf, posterior pneumatic foramen; ppfo, posterior pneumatic fossa; qf, quadrate foramen; vpf, ventral pneumatic foramen. Scale bars = 10 cm (A–C, J, K), 5 cm (E–G,L), 1 cm (D,H, I).

FIGURE 6. Distribution of quadrate pneumaticity in Theropoda. Cladogram of non-avian theropods based on the theropod classification summarized by Hendrickx et al. (2015) and showing the phylogenetic distribution of quadrate pneumaticity and the different quadrate pneumatic foramina in theropod dinosaurs. Silhouettes by Funkmonk (*Dilophosaurus, Shuvuuia* and *Dromaeosauridae*), M. Martyniuk (*Ornitholestes* and *Similicaudipteryx*), T. Michael Keesey (*Deinocheirus* and *Suzhousaurus*), Choiniere et al. (2010; *Zuolong*; modified) and S. Hartman (all others).

SUPPLEMENTAL INFORMATION

- Text S1: Function of quadrate sub-entities and quadrate sub-units terminology.
Figure 1. Avian and non-avian theropod terminology of the quadrate bone.

Left quadrate of the common ostrich *Struthio camelus* (NH.11.75; courtesy of Paolo Viscardi) in (A, G) anterior, (B, H) lateral, (C, I) posterior, (D, J) medial, (E, K) dorsal, and (F, L) ventral views. The ostrich quadrate is annotated with (A-F) Baumel and Witmer (1993), Elzanowski et al. (2001) and Elzanowski and Stidham (2010) terminologies, and (G-L) the here proposed terminology for the non-avian theropod quadrate.
Figure 2. Anatomy of non-avian theropod quadrates.

Line drawings of the right (A–E) quadrate of *Tsaagan mangas* (IGM 100-1015) in (A) anterior, (B) lateral, (C) posterior, (D) medial and (E) ventral views; left (F–I) and right (J–K) quadrates (F) of *Baryonyx walkeri* (NHM R9951), (G) *Aerosteon riocoloradensis* (MCNA-PV-3137), (H) an indeterminate Oviraptoridae (GIN A; Maryańska and Osmólska 1997) , (I) *Tyrannosaurus rex* (BHI 3333; Larson and Carpenter, 2008), (J) *Allosaurus ‘jimmadseni’* (SMA 0005), and (K) *Majungasaurus crenatissimus* (FMNH PR 2100) in (F–I) posterior and (J–K) ventral views. Abbreviations: *ain*, anterior intercondylar notch; *dqjc*, dorsal quadratojugal contact; *ecc*, ectocondyle; *enc*, entocondyle; *ics*, intercondylar sulcus; *lpq*, lateral process of the quadrate; *mar*, mandibular articulation; *mfq*, medial fossa of the quadrate; *oca*, otic capitulum; *pfl*, pterygoid flange; *pfq*, posterior fossa of the quadrate; *pin*, posterior intercondylar notch; *ppf*, posterior pneumatic foramen; *qb*, quadrate body; *qf*, quadrate foramen; *qh*, quadrate head; *jq*, quadratojugal; *qjp*, quadratojugal process; *qr*, quadrate ridge; *qrg*, quadrate ridge groove; *qs*, quadrate shaft; *sqc*, squamosal contact; *sca*, squamosal capitulum; *vqjc*, ventral quadratojugal contact; *vpdq*, ventral projection of the dorsal quadratojugal contact; *vsh*, ventral shelf.
Figure 3. Topological homologies in the non-averostran theropod quadrate.

Left (A, C, F) and right (B, D, E; reversed) quadrates of *Dilophosaurus wetherilli* (UCMP 37302) in (A) anterior, (B) lateral, (C) posterior, (D) medial, (E) dorsal and (F) ventral views (courtesy of Randall Irmis and Matthew Carrano). Right quadrate (G–L; reversed) of *Majungasaurus crenatissimus* (FMNH PR 2100) in (G) anterior, (H) lateral, (I) posterior, (J) medial, (K) dorsal, and (L) ventral views. Left quadrate (M–R) of *Baryonyx walkeri* (NHM R9951) in (M) anterior, (N) lateral, (O) posterior, (P) medial, (Q) dorsal, and (R) ventral views. Right quadrate (S–W) of *Eustreptospondylus oxoniensis* (OUMNH J.13558; reversed) in (S) anterior, (T) lateral, (U) posterior, (V) medial and (W) ventral views (courtesy of Paul Barrett). Abbreviations: afq, anterior fossa; ain, anterior intercondylar notch; dqjc, dorsal quadratojugal contact; ecc, ectocondyle; enc, entocondyle; ics, intercondylar sulcus; lpq, lateral process; mfq, medial fossa; pfq, posterior fossa; pfl, pterygoid flange; qf, quadrate foramen;qh, quadrate head; qjp, quadratojugal process; qr, quadrate ridge; vpdq, ventral projection of the dorsal quadratojugal contact; vjqc, ventral quadratojugal contact; vsh, ventral shelf of the pterygoid flange.
Figure 4. Topological homologies in the non-avian averostran quadrate.

Left quadrate (A–F) of *Aerosteon riocoloradensis* (MCNA-PV-3137) in (A) anterior, (B) lateral, (C) posterior, (D) medial, (E) dorsal, and (F) ventral views (courtesy of Martin Ezcurra). Left quadrate (G–K) of *Alioramus altai* (IGM 100-1844) in (G) anterior, (H) lateral, (I) posterior, (J) medial, and (K) dorsal, (courtesy of Mike Ellison © AMNH). Right quadrate (L) of *Qianzhousaurus sinensis* (GM F10004-1; reversed) in ventral views (courtesy of Stephen Brusatte). Right quadrate (M–Q) of *Falcarius utahensis* (UMNH VP 14559; reversed) in (M) anterior, (N) lateral, (O) posterior, (P) medial, and (Q) ventral views (courtesy of Lindsay Zanno). Left quadrate (R–W) of *Bambiraptor feinbergi* (AMNH 30556) in (R) anterior, (S) lateral, (T) posterior, (U) medial, (V) dorsal, and (W) ventral views. Abbreviations: afq, anterior fossa; dqjc, dorsal quadratojugal contact; ecc, ectocondyle; enc, entocondyle; icn, intercondylar notch; ics, intercondylar sulcus; lpq, lateral process; mfq, medial fossa; mpf, medial pneumatic foramen; pfq, posterior fossa; ppf, posterior pneumatic foramen; pfl, pterygoid flange; qf, quadrate foramen; qh, quadrate head; qjp, quadratojugal process; qr, quadrate ridge; vpdq, ventral projection of the dorsal quadratojugal contact; vpf, ventral pneumatic foramen; vqjc, ventral quadratojugal contact; vsh, ventral shelf of the pterygoid flange.
Figure 5. Morphology and position of pneumatic openings in the quadrate of non-avian Theropoda.

Right quadrate (A) of the carcharodontosaurid *Acrocanthosaurus atokensis* (NCSM 14345; reversed) in medial view. Left quadrate (B) of the carcharodontosaurid *Mapusaurus roseae* (MCF-PVPH-108) in medial view. Left quadrate (C) of the carcharodontosaurid *Giganotosaurus carolinii* (MUCPv CH 1) in medial view. Right quadrate (D) of the therizinosauroid *Falcarius utahensis* (UMNH VP 14559; reversed) in medial view (courtesy of Lindsay Zanno). Right quadrate (E) of the metriacanthosaurid *Sinraptor dongi* (IVPP 10600; reversed) in posterior view (courtesy of Philip Currie). Left quadrate (F) of the neovenatorid *Aerosteon riocoloradensis* (MCNA PV 3137) in posterior view (courtesy of Martín Ezcurra). Left quadrate (G) of the ornithomimid *Garudimimus brevipes* (IGM 100–13) in posterior view (courtesy of Yoshitsugu Kobayashi). Right quadrate (H) of the dromaeosaurid *Buitreraptor gonzalezorum* (MPCA 245; reversed) in posterior view. Right quadrate (I) of the tyrannosaurid *Alioramus altai* (IGM 100–844) in ventral view (courtesy of Mick Ellison). Left quadrate (J) of the tyrannosaurid *Tyrannosaurus rex* (FMNH PR2081; cast, reversed) in ventral view. Left quadrate (K) of the carcharodontosaurid *Mapusaurus roseae* (MCF-PVPH-108) in anterior view. Left quadrate (L) of the neovenatorid *Aerosteon riocoloradensis* (MCNA PV 3137) in lateral view (courtesy of Martín Ezcurra). Abbreviations: *apf*, anterior pneumatic foramen; *lpq*, lateral process; *lpf*, lateral pneumatic foramen; *mpf*, medial pneumatic foramen; *ppf*, posterior pneumatic foramen; *ppfo*, posterior pneumatic fossa; *qf*, quadrate foramen; *vpf*, ventral pneumatic foramen. Scale bars = 10 cm (A–C, J, K), 5 cm (E–G,L), 1 cm (D,H, I).
Figure 6. Distribution of quadrate pneumaticity in Theropoda.

Cladogram of non-avian theropods based on the theropod classification summarized by Hendrickx et al. (in pressa) and showing the phylogenetic distribution of quadrate pneumaticity and the different quadrate pneumatic foramina in theropod dinosaurs. Silhouettes by Funkmonk (*Dilophosaurus*, *Shuvuuia* and *Dromaeosauroidea*), M. Martyniuk (*Ornitholestes* and *Similicaudipteryx*), T. Michael Keesey (*Deinocheirus* and *Suzhousaurus*), Choiniere et al. (2010; *Zuolong*; modified) and S. Hartman (all others).
Table 1. Standardized terminology and abbreviation of the non-avian theropod quadrate and comparison with the terminology of the avian quadrate based on Baumel and Witmer (1993), Elzanowski et al. (2001) and Elzanowski and (Stidham 2010).
TABLE 1. Standardized terminology and abbreviation of the non-avian theropod quadrate and comparison with the terminology of the avian quadrate based on Baumel and Witmer (1993), Elzanowski et al. (2001) and Elzanowski and (Stidham 2010).

Non-avian theropod quadrate	Avian theropod quadrate	
Quadrate	q	Os quadratum (Quadratum)
Quadrate body	qb	Corpus quadrati
Quadrate shaft	qs	
Quadrate ridge	qr	
Quadrate ridge groove	qrg	
Quadrate foramen	qf	
Lateral process	lpq	
Quadratojugal contact	qjc	Cotyla quadratojugalalis
Ventral quadratojugal contact	vqjc	
Dorsal quadratojugal contact	dqjc	
Quadratojugal process	qjp	
Ventral projection of the	vpdq	
dorsal quadratojugal contact		
Dorsal projection of the	dpvq	
ventral quadratojugal contact		
Squamosal contact	sqc	
Posterior fossa	pfq	
Quadrate head	qh	Caput quadrati
Otic capitulum	oca	Capitulum oticum
Latin Term	Abbreviation	English Term
--------------------------------	--------------	--
Squamosal capitulum	sca	Capitulum squamosum
Intercapitular sulcus	icas	Incisura/Vallecula intercapitularis
Mandibular articulation	mar	Pars/Processus mandibularis
Ectocondyle	ecc	Condylus (mandibularis) lateralis
Entocondyle	enc	Condylus (mandibularis) medialis
Mediocondyle	mec	Condylus caudalis
Intercondylar sulcus	ics	Sulcus/Vallecula intercondylaris
Anterior intercondylar notch	ain	/
Posterior intercondylar notch	pin	/
Pterygoid flange	pfl	Processus orbitalis
Pterygoid contact	ptc	Condylus pterygoideus/Facies articularis pterygoidea
Medial fossa	mfq	Fossa basiobitalis
Ventral shelf	vsh	/
Quadrate diverticulum	qdi	/
Dorsal pneumatic foramen	dpf	/
Medial pneumatic foramen	mpf	Foramen pneumaticum basiobitalis
Posterior pneumatic foramen	ppf	Foramen pneumaticum caudomedial
Anterior pneumatic foramen	apf	Foramen pneumaticum rostromedial
Ventral pneumatic foramen	vpf	Foramen pneumaticum adventitium
Posterior pneumatic fossa	ppfo	/
Lateral pneumatic fossa	lpfo	/