Elliptic Partial Differential Equation Involving Singularity

A. Panda, S. Ghosh & D. Choudhuri *

Abstract

The aim of this paper is to prove existence of solution for a partial differential equation involving a singularity with a general nonnegative, Radon measure μ as its nonhomogenous term which is given as

\[-\Delta u = f(x)h(u) + \mu \text{ in } \Omega \]
\[u = 0 \text{ on } \partial \Omega \]
\[u > 0 \text{ on } \Omega, \]

where Ω is a bounded domain of \mathbb{R}^N. f is a nonnegative function over Ω.

keywords: elliptic PDE; Sobolev space; Schauder fixed point theorem.

AMS classification: 35J35, 35J60.

1. Introduction

Problems involving singularity has of late become a hugely popular interest of research amongst the Mathematical community. A good amount of research has been done to prove the existence of a solution to the problem

\[-\Delta u = f(x)h(u) \text{ in } \Omega \]
\[u = 0 \text{ on } \partial \Omega. \quad (1.1)\]

A few noteworthy results on such problems can be found in [1], [3, 4], [10], [11], [12], [13] and the references therein. An existence result due to Lazer and Mc Kenna [1], pertaining to the case of $h(s) = \frac{1}{s^\gamma}$ with f being sufficiently regular, has a unique solution obtained by the application of the sub and the super solution method. The authors of this article in [1] have proved that the problem in (1.2) has a solution iff

*Corresponding author: dc.iit12@gmail.com
They have also shown that for \(\gamma > 1 \), solutions to the problem in (1.2) with infinite energy exists. A weaker condition on the function \(f \) can be considered by picking \(f \) from \(L^p(\Omega) \), for \(p \geq 1 \), or from the space of Radon measures. In a study due to Boccardo and Orsina \([5]\), they have proved the existence and uniqueness of solution to the problem

\[
-\Delta u = \frac{f}{u^{\gamma}} \quad \text{in } \Omega, \\
u = 0 \quad \text{on } \partial\Omega,
\]

where \(\Omega \) is a bounded domain in \(\mathbb{R}^N \). They considered \(f \geq 0 \) in \(\Omega \) and \(\gamma > 0 \). The result depend on the \(L^p \) space in which \(f \) is chosen from. The value of \(\gamma \) also decide the space in which the function belongs to - if \(\gamma < 1 \) then \(u \in W^{1,1}_0(\Omega) \), if \(\gamma = 1 \) then \(u \in H^1_0(\Omega) \), if \(\gamma > 1 \) then \(u \in H^1_{\text{loc}}(\Omega) \) where the zero Dirichlet boundary condition is assumed in a weaker sense, \(u^{2+1\gamma} \in H^1_0(\Omega) \), than the usual sense of trace. It is worth mentioning the work due to Giachetti et al. \([3, 4]\) and the references therein. When \(f \) is a measure, the problem may not possess a solution in general and in this case the question of nonexistence is of great importance as seen in \([5]\). In \([6]\) the authors have considered a nonlinear elliptic boundary value problem with a general singular lower order term. The authors here have shown the existence of a distributional solution. A slight improvement of the result in \([1]\) can be found in \([2]\). A series of noteworthy contributions to the semilinear problem with a singularity has been made by Canino et al \([7, 8, 9, 11, 12, 10]\). In \([7]\) a minimax method is used to address the ‘jumping problem’ for a singular semilinear elliptic equation. A symmetry of solutions have been shown in \([8]\) for some semilinear equations with singular nonlinearities. In \([9]\) the authors have considered quasilinear elliptic equations involving the p-Laplacian and singular nonlinearities. They have deduced a few comparison principles and have proved some uniqueness results. The readers may also refer to \([10, 11, 12]\) and the references therein. In this paper we will prove the existence of nonnegative weak solution to the following pde.

\[
-\Delta u = f(x)h(u) + \mu \quad \text{in } \Omega, \\
u = 0 \quad \text{on } \partial\Omega, \\
u > 0 \quad \text{on } \Omega,
\]

where \(\Omega \) is a bounded domain in \(\mathbb{R}^N \) for \(N \geq 2 \), \(f > 0 \) and \(\mu \) is a nonnegative Radon measure.

\[\text{1.1 Notations}\]

In this subsection we have explained the notations which will be used throughout this article. We denote a Sobolev space as \(W^{k,p}(\Omega) \) \([22]\), where \(\Omega \) is an open set of \(\mathbb{R}^N \),
consists of all locally summable functions \(u : \Omega \rightarrow \mathbb{R} \) such that for each multiindex \(\alpha \) with \(|\alpha| \leq k \), \(D^\alpha u \) exists in the weak sense and belongs to \(L^p(\Omega) \). If \(u \in W^{k,p}(\Omega) \), we define its norm as

\[
||u||_{W^{k,p}(\Omega)} = \begin{cases}
\left(\sum_{|\alpha| \leq k} \int_\Omega |D^\alpha u|^p dx \right)^{\frac{1}{p}} & (1 \leq p < \infty), \\
\sum_{|\alpha| \leq k} ||D^\alpha u||_{L^\infty(\Omega)} & (p = \infty).
\end{cases}
\]

We denote by \(W^{k,p}_0(\Omega) \) the closure of \(C_\infty^c(\Omega) \) in \(W^{k,p}(\Omega) \) and \(W^{k,p}_{loc}(\Omega) \) to be the local Sobolev space such that for any \(u \in W^{k,p}_{loc}(\Omega) \) and any compact \(K \subset \Omega \), \(u \in W^{k,p}(K) \).

The Hölder Space [22] is \(C^{k,\beta}(\overline{\Omega}) \) with \(0 < \beta \leq 1 \) consists of all functions \(u \in C^k(\overline{\Omega}) \) such that the norm \(\sum |\alpha| \leq k \sup |D^\alpha u| + \sup_{x \neq y} \left\{ \frac{|D^k u(x) - D^k u(y)|}{|x-y|^\beta} \right\} \) is finite. We will use the truncation function for fixed \(k > 0 \),

\[
T_k(s) = \max\{-k, \min\{k, s\}\},
\]

and

\[
G_k(s) = (|s| - k)^+ \text{sign}(s),
\]

with \(s \in \mathbb{R} \). Observe that \(T_k(s) + G_k(s) = s \) for any \(s \in \mathbb{R} \) and \(k > 0 \).

We will also use the notation

\[
\int_\Omega f(x) dx := \int f.
\]

We will denote the space of all finite Radon measures on \(\Omega \) as \(\mathcal{M}(\Omega) \). If \(\mu \in \mathcal{M}(\Omega) \), then we define the norm as

\[
||\mu||_{\mathcal{M}(\Omega)} = \int_\Omega d|\mu|.
\]

We will use the Marcinkiewicz space \(M^q(\Omega) \) [18] (or the weak \(L^q(\Omega) \) space) defined for every \(0 < q < \infty \), as the space of all measurable functions \(f : \Omega \rightarrow \mathbb{R} \) such that the corresponding distribution functions satisfy an estimate of the form

\[
m(\{x \in \Omega : |f(x)| > t\}) \leq \frac{C}{t^q} \quad t > 0, C < \infty.
\]

For bounded \(\Omega \) we have \(M^q \subset M^\overline{q} \) if \(q \geq \overline{q} \), for some fixed positive \(\overline{q} \). We recall here the following useful continuous embeddings

\[
L^q(\Omega) \hookrightarrow M^q(\Omega) \hookrightarrow L^q(\Omega), \quad (1.4)
\]

for every \(1 < q < \infty \) and \(0 < \epsilon < q - 1 \). We organize the paper as follows. In Section 2 we state and prove the main results which pertains to the cases \(\gamma \leq 1 \) and \(\gamma > 1 \). In Section 3 we make a few remarks for the case \(\gamma < 1 \). In Section 4 we discuss the problem with a few relaxation on the assumptions made on \(f \).
2. Assumptions, Definitions and the main results

Let us consider the following boundary value problem.

\[
-\Delta u = h(u)f + \mu \quad \text{in } \Omega,
\]
\[
u = 0 \quad \text{on } \partial\Omega,
\]
\[
u > 0 \quad \text{in } \Omega,
\]

where \(\Omega\) is an open bounded subset of \(\mathbb{R}^N\), \(N > 2\), \(\mu\) is a nonnegative, bounded Radon measure on \(\Omega\), \(f \ge 0 \in L^m(\Omega)\) for \(m > 1\), which could be a measure. We make sure that both \(f\) and \(\mu\) are nonzero.

The function \(h : \mathbb{R}^+ \rightarrow \mathbb{R}^+\) is a nonlinear, non-increasing function which we suppose to be continuous such that

\[
\lim_{s \to 0^+} h(s) \in (0, \infty], \quad \text{and} \quad \lim_{s \to \infty} h(s) = h(\infty) < \infty.
\]

We assume the growth condition near zero as

\[
\exists C_1, K > 0 \quad \text{such that} \quad h(s) \le \frac{C_1}{s^\gamma} \quad \text{if} \quad s < K,
\]

with \(\gamma > 0\). We will later observe that the behavior of \(h\) at infinity influences the regularity of the solution \(\nu\). Hence, we need to assume the following.

\[
\exists C_2, \overline{K} > 0 \quad \text{such that} \quad h(s) \le \frac{C_2}{s^\theta} \quad \text{if} \quad s > \overline{K},
\]

for \(\theta > 0\). We now give two important definitions which is essential to our study of the problem in (2.1).

Definition 2.1. Let \((\mu_n)\) be the sequence of measurable functions in \(\mathcal{M}(\Omega)\). We say \((\mu_n)\) converges to \(\mu \in \mathcal{M}(\Omega)\) in the sense of measure i.e. \(\mu_n \rightharpoonup \mu \in \mathcal{M}(\Omega)\), if

\[
\int_\Omega f d\mu_n \to \int_\Omega f d\mu, \quad \forall f \in C_0(\Omega).
\]

Definition 2.2. If \(\gamma < 1\), then a weak solution to the problem in (2.1) is a function in \(W^{1,1}_0(\Omega)\) such that

\[
\int_\Omega \nabla u \cdot \nabla \varphi = \int_\Omega fh(u)\varphi + \int_\Omega \varphi d\mu, \quad \forall \varphi \in C^1_c(\Omega)
\]

and

\[
\forall K \subset \subset \Omega, \exists C_K \quad \text{such that} \quad u \ge C_K > 0
\]

If \(\gamma \ge 1\), then a weak solution to the problem is a function \(u \in W^{1,1}_{loc}(\Omega)\) satisfying (2.5) and (2.6) such that \(T_k^{\frac{2+\gamma}{2}} u \in W^{1,2}_0(\Omega)\) for each fixed \(k > 0\).
In both the cases, i.e. $\gamma \leq 1$ and $\gamma > 1$, we will show the existence of solutions for problem (1.3) in the subsection 2.1 and 2.2. In order to prove this, we begin by considering a sequence of the following problems.

$$
-\Delta u_n = h_n \left(u_n + \frac{1}{n} \right) f_n + \mu_n \text{ in } \Omega,
$$

$$
u_n = 0 \text{ on } \partial \Omega,
$$

(2.7)

where (μ_n) is a sequence of smooth nonnegative functions bounded in $L^1(\Omega)$ and converging weakly to μ in the sense of Definition 2.1, $h_n = T_n(h)$ and $f_n = T_n(f)$ are the truncations at level n. The weak formulation of (2.7) is

$$
\int_{\Omega} \nabla u_n \nabla \varphi = \int_{\Omega} h_n \left(u_n + \frac{1}{n} \right) f_n \varphi + \int_{\Omega} \mu_n \varphi, \quad \forall \varphi \in C^1_c(\Omega).
$$

(2.8)

We now prove the existence of a solution to the problem (2.7) in the following lemma.

Lemma 2.3. Problem (2.7) admits a nonnegative weak solution $u_n \in W^{1,2}_0(\Omega) \cap L^\infty(\Omega)$.

Proof. We will apply the Schauder’s fixed point argument used in [21] to prove the lemma. For a fixed $n \in \mathbb{N}$ let us define a map,

$$
G : L^2(\Omega) \rightarrow L^2(\Omega),
$$

such that, for any $v \in L^2(\Omega)$ gives the weak solution w to the following problem

$$
-\Delta w = h_n \left(|v| + \frac{1}{n} \right) f_n + \mu_n \text{ in } \Omega,
$$

$$
w = 0 \text{ on } \partial \Omega.
$$

(2.9)

The existence of a unique $w \in W^{1,2}_0(\Omega)$ corresponding to a $v \in L^2(\Omega)$ is guaranteed by the Lax-Milgram theorem. Thus we can choose w as a test function in the weak formulation of (2.9) with the test function space $W^{1,2}_0(\Omega)$. We begin by using the Poincaré inequality to get

$$
\lambda_1^2 \int_\Omega |w|^2 \leq \int_\Omega |\nabla w|^2
$$

$$
= \int_\Omega h_n \left(|v| + \frac{1}{n} \right) f_n w + \int_\Omega w \mu_n \text{ by the weak formulation of (2.9)}
$$

$$
\leq C_1 \int_{(|v| + \frac{1}{n} \leq \lambda)} |f_n w| + \max \frac{h(s)}{K} \int_{\lambda \leq |v| + \frac{1}{n} \leq K} f_n w
$$

$$
+ C_2 \int_{(|v| + \frac{1}{n} \geq K)} |f_n w| + C(n) \int_\Omega |w|
$$
\[
\leq C_1 n^{1+\gamma} \int_{|v| + \frac{1}{n} \leq K} |w| + n \max_{K \subset \subset \Omega} h(s) \int_{(K \subset \subset \Omega)} |w| + C_2 n^{1+\theta} \int_{|v| + \frac{1}{n} \geq K} |w| \\
+ C(n) \int_{\Omega} |w| \\
\leq C(n, \gamma) \int_{\Omega} |w| \\
\leq C'.C(n, \gamma) ||w||_2 \text{ by using the Hölder's inequality.} \tag{2.10}
\]

This shows that
\[
||w||_{L^2(\Omega)} \leq C'.C(n, \gamma), \tag{2.11}
\]
where, \(C'\) and \(C(n, \gamma)\) are independent of \(v\). We will next prove that the map \(G\) is continuous over \(L^2(\Omega)\). Consider a sequence \((v_k)\) that converges to \(v\) in \(L^2(\Omega)\)-norm. Then by the dominated convergence theorem we get
\[
\| (h_n (v_k + \frac{1}{n}) f_n + \mu_n) - (h_n (v + \frac{1}{n}) f_n + \mu_n) \|_{L^2(\Omega)} \to 0.
\]
Hence, by the uniqueness of the weak solution, we can say that \(w_k = G(v_k)\) converges to \(w = G(v)\) in \(L^2(\Omega)\). Thus \(G\) is continuous over \(L^2(\Omega)\).

What finally needs to be checked is whether \(G(L^2(\Omega))\) is relatively compact in \(L^2(\Omega)\) or not?. We proved in \(2.11\) that
\[
\int_{\Omega} |\nabla w|^2 = \int_{\Omega} |\nabla G(v)|^2 \leq C'.C(n, \gamma),
\]
for any \(v \in L^2(\Omega)\), so that, \(G(L^2(\Omega))\) is relatively compact in \(L^2(\Omega)\) by Rellich-Kondrachov theorem. Therefore, we proved that \(G(L^2(\Omega))\) is relatively compact in \(L^2(\Omega)\). Now, on applying the Schauder fixed point theorem we obtain that \(G\) has a fixed point \(u_n \in L^2(\Omega)\) that is a weak solution to \((2.7)\) in \(W_0^{1,2}(\Omega)\). Since, \((h_n (u_n + \frac{1}{n}) f_n + \mu_n) \geq 0\) then by the maximum principle \(u_n \geq 0\). Furthermore, for a fixed \(n\), since the right-hand side of \((2.7)\) is in \(L^\infty(\Omega)\) we have \(u_n\) belongs to \(L^\infty(\Omega)\) by Théorème 4.2, page 215 in \[19\] and this concludes the proof.

The next step is to prove that \((u_n)\) is uniformly bounded from below on compact subsets of \(\Omega\).

Lemma 2.4. The sequence \((u_n)\) is such that for every \(K \subset \subset \Omega\) there exists \(C_K\) (independent of \(n\)) such that \(u_n(x) \geq C_K > 0, \text{ a.e. in } K\), and for every \(n \in \mathbb{N}\).

Proof. Let us consider the problem
\[
-\Delta v_n = h_n \left(v_n + \frac{1}{n} \right) f_n \text{ in } \Omega, \\
v_n = 0 \text{ on } \partial \Omega. \tag{2.12}
\]
We first show the existence of a weak solution \(v_n \) to the problem in (2.12) such that \(\forall K \subset \subset \Omega, \exists C_K \) such that \(v_n \geq C_K > 0 \), for almost every \(x \) in \(K \) and \(C_K \) is independent of \(n \). The existence of a weak solution to (2.12) follows the same proof as in Lemma 2.3. Since \(0 \leq f_n \leq f_{n+1} \), \(h \) is non-increasing and hence \(h_n \) is non-increasing, we have

\[
-\Delta v_n = f_n h_n \left(v_n + \frac{1}{n} \right) \\
\leq f_{n+1} h_n \left(v_n + \frac{1}{n+1} \right). \tag{2.13}
\]

We also know that \(u_{n+1} \) is a weak solution to

\[
-\Delta v_{n+1} = f_{n+1} h_{n+1} \left(v_{n+1} + \frac{1}{n+1} \right) \text{ in } \Omega, \\
v_{n+1} = 0 \text{ on } \partial \Omega. \tag{2.14}
\]

The difference between the weak formulations of the problems in (2.13), (2.14) with the choice of a test function as \((v_n - v_{n+1})^+ \) we obtain

\[
\int_{\Omega} \nabla (v_n - v_{n+1}) \cdot \nabla (v_n - v_{n+1})^+ = \int_{\Omega} |\nabla (v_n - v_{n+1})^+|^2 \\
\leq \int_{\Omega} f_{n+1} \left[h_n \left(v_n + \frac{1}{n+1} \right) \\
- h_{n+1} \left(v_{n+1} + \frac{1}{n+1} \right) \right] (v_n - v_{n+1})^+ \\
= \int_{\Omega} f_{n+1} \left[\left\{ h_n \left(v_n + \frac{1}{n+1} \right) \\
- h_{n+1} \left(v_{n+1} + \frac{1}{n+1} \right) \right\} \chi_{[v_n \leq v_{n+1}]} (v_n - v_{n+1})^+ \\
+ \left\{ h_n \left(v_n + \frac{1}{n+1} \right) \\
- h_{n+1} \left(v_{n+1} + \frac{1}{n+1} \right) \right\} \chi_{[v_n > v_{n+1}]} (v_n - v_{n+1})^+ \right] \\
\leq 0. \tag{2.15}
\]

Therefore, \((v_n - v_{n+1})^+ = 0 \) almost everywhere in \(\Omega \), thus implying that \(v_n \leq v_{n+1} \).

We use the Théorème 4.2, in page 215 [19] to obtain

\[
\|v_1\|_\infty \leq K_1 \|f_1 h_1 (v_1 + 1)\|_\infty + K_2 \|v_1\|_2 \\
\leq K_1 + K_2 = C \text{ say.} \tag{2.16}
\]
Thus we have

\[-\Delta v_1 = f_1 h_1(v_1 + 1) \geq f_1 h_1(||v_1||_\infty + 1) \geq f_1 h_1(C + 1) > 0.\]

(2.17)

Since \(f_1 h_1(C+1)\) is identically not equal to zero, hence by the strong maximum principle over \(-\Delta\) we have \(v_1 > 0\). Since we have considered a relatively compact subset \(K\) of \(\Omega\), there exists a constant \(C_K\) such that \(v_1 \geq C_K > 0\).

Coming back to the proof of the lemma, we first take the difference between the weak formulations of (2.7) and (2.12) respectively with the choice of test function being \((u_n - v_n)^-\). It is easy to show that \(u_n \geq v_n\) almost everywhere in \(\Omega\), for if not, i.e., if \(u_n < v_n\) in \(\Omega\). Then we have

\[-\int_\Omega |\nabla(u_n - v_n)^-|^2 = \int_\Omega \nabla(u_n - v_n) \cdot \nabla(u_n - v_n)^-\]

\[= \int_\Omega \left(h_n \left(u_n + \frac{1}{n}\right) - h_n \left(v_n + \frac{1}{n}\right)\right) f_n \cdot (u_n - v_n)^-\]

\[+ \int_\Omega \mu_n \cdot (u_n - v_n)^-\]

\[\geq 0.\]

This implies \(u_n \geq v_n\) almost everywhere in \(\Omega\) and hence in \(K\). We have also showed that for every \(K \subset \subset \Omega\) there exists \(C_K\) such that \(v_n \geq C_K > 0\). Hence \(\forall K \subset \subset \Omega \exists C_K\) such that \(u_n \geq C_K > 0\), a.e. in \(K\).

We are now in a position to prove the existence of a solutions to the problem (2.1). In order to do this we divide the problem into the following two cases.

2.1 The case of \(\gamma < 1\)

In this subsection, we consider the problem in (2.7) for the case of \(\gamma < 1\).

Lemma 2.5. Let \(u_n\) be a solution of (2.7), where \(h\) satisfy (2.3) and (2.4), with \(\gamma < 1\) and \(\theta \geq 1\). Then \((u_n)\) is bounded in \(W^{1,q}_0(\Omega)\) for every \(q < \frac{N}{N-1}\).

Proof. We will first prove that \((\nabla u_n)\) is bounded in \(M^{N,N}(\Omega)\). For this, we take \(\varphi = T_k(u_n)\) as a test function in the weak formulation of (2.7) and get

\[\int_\Omega |\nabla T_k(u_n)|^2 \leq \int_\Omega h_n \left(u_n + \frac{1}{n}\right) T_k(u_n) f_n + \int_\Omega T_k(u_n) \mu_n.\]

(2.18)
Now, \(\frac{T_k(u_n)}{(u_n + \frac{1}{n})^\gamma} \leq \frac{u_n^\gamma}{(u_n + \frac{1}{n})^\gamma u_n^\gamma} \leq u_n^{1-\gamma} \).

Using (2.3) and (2.4) in the right hand side of (2.18) we have,

\[
\int_\Omega h_n \left(u_n + \frac{1}{n} \right) f_n T_k(u_n) \leq C_1 \int_{(u_n + \frac{1}{n} \leq K)} \frac{f_n T_k(u_n)}{(u_n + \frac{1}{n})^\gamma} + \max h(s) \int_{(K \leq (u_n + \frac{1}{n}) \leq K)} f_n T_k(u_n) \\
+ C_2 \int_{(u_n + \frac{1}{n} \geq K)} \frac{f_n T_k(u_n)}{(u_n + \frac{1}{n})^\theta} \\
\leq C_1 K^{1-\gamma} \int_{(u_n + \frac{1}{n} \leq K)} f + k \max h(s) \int_{(K \leq (u_n + \frac{1}{n}) \leq K)} f \\
+ \frac{C_2 k}{K^\theta} \int_{(u_n + \frac{1}{n} \geq K)} f \\
\leq Ck
\]

and

\[
\int_\Omega T_k(u_n) \mu_n \leq k ||\mu_n||_{L^1(\Omega)} \leq Ck.
\]

Combining the previous results we obtain,

\[
\int_\Omega |\nabla T_k(u_n)|^2 \leq Ck. \tag{2.19}
\]

Consider

\[
\{|\nabla u_n| \geq t \} = \{|\nabla u_n| \geq t, u_n < k \} \cup \{|\nabla u_n| \geq t, u_n \geq k \} \\
\subset \{|\nabla u_n| \geq t, u_n < k \} \cup \{u_n \geq k \} \subset \Omega.
\]

Then using the subadditivity property of Lesbegue measure \(m \) we have,

\[
m(|\nabla u_n| \geq t) \leq m(|\nabla u_n| \geq t, u_n < k) + m(|u_n \geq k|). \tag{2.20}
\]

Therefore, from the Sobolev inequality

\[
\frac{1}{\lambda_1^2} \left(\int_\Omega |T_k(u_n)|^{2*} \right)^{\frac{2}{2*}} \leq \int_\Omega |\nabla T_k(u_n)|^2 \leq Ck,
\]

\(\lambda_1 \) is the first eigen value of the Laplacian operator. Now, on restricting the integral on the left hand side on \(I_1 = \{x \in \Omega : u_n \geq k \} \), on which \(T_k(u_n) = k \), we then obtain

\[
k^2 m(|u_n \geq k|) \leq Ck,
\]

which implies

\[
m(|u_n \geq k|) \leq \frac{C}{k^{\frac{N}{N-2}}} \quad \forall k \geq 1.
\]

Hence, \((u_n) \) is bounded in \(M^{\frac{N}{N-2}}(\Omega) \). Proceeding similarly for \(I_2 = \{|\nabla u_n| \geq t, u_n < k \} \), we get
\[
m(\{|\nabla u_n| \geq t, u_n < k\}) \leq \frac{1}{t^2} \int_{\Omega} |\nabla T_k(u_n)|^2 \leq \frac{C_k}{t^2}, \forall k > 1.
\]

Now (2.20) becomes
\[
m(\{|\nabla u_n| \geq t\}) \leq m(\{|\nabla u_n| \geq t, u_n < k\}) + m(\{u_n \geq k\}) \leq \frac{Ck}{t^2} + \frac{C}{k^{\frac{N}{N-2}}}, \forall k > 1.
\]

We then choose \(k = t^{\frac{N-2}{N-1}}\) and hence we get
\[
m(\{|\nabla u_n| \geq t\}) \leq \frac{C}{t^{\frac{N}{N-1}}}, \forall t \geq 1,
\]

We have proved that \((\nabla u_n)\) is bounded in \(M^{\frac{N}{N-1}}(\Omega)\). This implies by property (1.4) that \((u_n)\) is bounded in \(W^{1,q}_0(\Omega)\) for every \(q < \frac{N}{N-1}\).

\[\square\]

Theorem 2.6. There exists a weak solution \(u\) of (2.1) in \(W^{1,q}_0(\Omega)\) for every \(q < \frac{N}{N-1}\).

Proof. With the consideration of Lemma 2.5, it implies that there exists \(u\) such that the sequence \((u_n)\) converges weakly to \(u\) in \(W^{1,q}_0(\Omega)\) for every \(q < \frac{N}{N-1}\). This implies that for \(\varphi \in C^1_c(\Omega)\)
\[
\lim_{n \to \infty} \int_{\Omega} \nabla u_n \cdot \nabla \varphi = \int_{\Omega} \nabla u \cdot \nabla \varphi.
\]

In addition to this, by compact embeddings we can assume that \(u_n\) converges to \(u\) both strongly in \(L^1(\Omega)\) and up to a subsequence almost everywhere in \(\Omega\). Thus, taking \(\varphi \in C^1_c(\Omega)\), we have,
\[
0 \leq |h_n \left(u_n + \frac{1}{n} \right) f_n \varphi| \leq \begin{cases}
C_1 \|\varphi\|_{L^\infty(\Omega)} f, & \text{if } u_n + \frac{1}{n} \leq K \\
M \|\varphi\|_{L^\infty(\Omega)} f, & \text{if } K \leq u_n + \frac{1}{n} \leq K_f \\
C_2 \|\varphi\|_{L^\infty(\Omega)} f, & \text{if } u_n + \frac{1}{n} \geq K_f
\end{cases}
\]

where, \(M > 0\) and \(K\) is the set \(\{x \in \Omega : \varphi(x) \neq 0\}\). This is sufficient to apply the dominated convergence theorem to obtain
\[
\lim_{n \to \infty} \int_{\Omega} h_n \left(u_n + \frac{1}{n} \right) f_n \varphi = \int_{\Omega} h(u) f \varphi.
\]

Hence, we can pass the limit \(n \to \infty\) in the last term of (2.8) involving \(\mu_n\). This concludes the proof of the result as it is easy to pass to the limit in (2.8). Therefore, we obtain a weak solution of (2.1) in \(W^{1,q}_0(\Omega)\) for every \(q < \frac{N}{N-1}\). \[\square\]
2.2 The case of $\gamma \geq 1$

As this is a strongly singular case, so we can hold some local estimates on u_n in the Sobolev space. We shall give global estimates on $T_k^{\frac{\gamma + 1}{2}}(u_n)$ in $W_0^{1,2}(\Omega)$ with the aim of giving sense, at least in a weak sense, to the boundary values of u.

Lemma 2.7. Let u_n be a solution of (2.7) with $\gamma \geq 1$. Then $T_k^{\frac{\gamma + 1}{2}}(u_n)$ is bounded in $W_0^{1,2}(\Omega)$ for every fixed $k > 0$.

Proof. Consider $\varphi = T_k^\gamma(u_n)$ as a test function in (2.7). We have

$$\gamma \int_\Omega \nabla u_n \cdot \nabla T_k(u_n) T_k^{\gamma - 1}(u_n) = \int_\Omega h_n \left(u_n + \frac{1}{n} \right) f_n T_k^\gamma(u_n) + \int_\Omega T_k^\gamma(u_n) \mu_n. \quad (2.21)$$

Since $\gamma \geq 1$ and by the definition of $T_k u_n$, we can estimate the term on the left hand side of (2.21) as

$$\gamma \int_\Omega \nabla u_n \cdot \nabla T_k(u_n) T_k^{\gamma - 1}(u_n) \geq \gamma \int_\Omega |\nabla T_k^{\frac{\gamma + 1}{2}}(u_n)|^2.$$

Recalling that $\frac{T_k^\gamma(u_n)}{(u_n + \frac{1}{n})^\gamma} \leq \frac{u_n^\gamma}{(u_n + \frac{1}{n})^\gamma} \leq 1$, the term on the right hand side of (2.21) can be estimated as

$$\int_\Omega h_n \left(u_n + \frac{1}{n} \right) f_n T_k^\gamma(u_n) + \int_\Omega T_k^\gamma(u_n) \mu_n \leq C_1 \int_{(u_n + \frac{1}{n})^{\frac{1}{\gamma}} \leq K} \frac{f_n T_k^\gamma(u_n)}{(u_n + \frac{1}{n})^\gamma} + C_2 \int_{(u_n + \frac{1}{n})^{\frac{1}{\gamma}} \geq K} \frac{f_n T_k^\gamma(u_n)}{(u_n + \frac{1}{n})^\gamma}
+ \max_{[K, K]} \int_{(u_n + \frac{1}{n})^{\frac{1}{\gamma}} \leq K} f_n T_k^\gamma(u_n) + k^\gamma \int_\Omega \mu_n
\leq C_1 \int_{(u_n + \frac{1}{n})^{\frac{1}{\gamma}} \leq K} f + C_2 k^\gamma \int_{(u_n + \frac{1}{n})^{\frac{1}{\gamma}} \geq K} f
+ k^\gamma \max_{[K, K]} \int_{(u_n + \frac{1}{n})^{\frac{1}{\gamma}} \leq K} f + k^\gamma \int_\Omega \mu_n
\leq C(k, \gamma) k^\gamma.$$

On combining the previous inequalities we get

$$\int_\Omega |\nabla T_k^{\frac{\gamma + 1}{2}}(u_n)|^2 \leq C k^\gamma \quad (2.22)$$

then, $\left(T_k^{\frac{\gamma + 1}{2}}(u_n) \right)$ is bounded in $W_0^{1,2}(\Omega)$ for every fixed $k > 0$. \hfill \square

Now, so as to pass to the limit $n \to \infty$ in the weak formulation (2.8), we require to prove some local estimates on u_n. We first prove the following.
Lemma 2.8. Let \(u_n \) be a solution of (2.7) with \(\gamma \geq 1 \). Then \((u_n) \) is bounded in \(W_{\text{loc}}^1(\Omega) \) for every \(q < \frac{N}{N-1} \).

Proof. We follow [18] to prove this theorem in two steps.

Step 1. We claim that \((G_1(u_n)) \) is bounded in \(W_{0}^{1,q}(\Omega) \) for every \(q < \frac{N}{N-1} \).

It is apparent that \(G_1(u_n) = 0 \) when \(0 \leq u_n \leq 1 \), \(G_1(u_n) = u_n - 1 \), otherwise, i.e., when \(u_n > 1 \). So \(\nabla G_1(u_n) = \nabla u_n \) for \(u_n > 1 \).

Now, we need to show that \((\nabla G_1(u_n)) \) is bounded in \(M_{\infty}^N(\Omega) \), where \(M_{\infty}^N(\Omega) \) is the Marcinkiewicz space. Then we have

\[
\{|\nabla u_n| > t, u_n > 1\} = \{|\nabla u_n| > t, 1 < u_n \leq k + 1\} \cup \{|\nabla u_n| > t, u_n > k + 1\}
\]

\[
\subset \{|\nabla u_n| > t, 1 < u_n \leq k + 1\} \cup \{u_n > k + 1\} \subset \Omega.
\]

Hence, by the subadditivity of Lebesgue measure \(m \), we have

\[
m(\{|\nabla u_n| > t, u_n > 1\}) \leq m(\{|\nabla u_n| > t, 1 < u_n \leq k + 1\}) + m(\{u_n > k + 1\}). \tag{2.23}
\]

In order to estimate (2.23) we take \(\varphi = T_k(G_1(u_n)) \), for \(k > 1 \), as a test function in (2.7).

We observe that \(\nabla T_k(G_1(u_n)) = \nabla u_n \) only when \(1 < u_n \leq k + 1 \), otherwise is zero, and \(T_k(G_1(u_n)) = 0 \) on \(\{u_n \leq 1\} \). Hence we have

\[
\int_{\Omega} |\nabla T_k(G_1(u_n))|^2 = \int_{\Omega} h_n \left(u_n + \frac{1}{n} \right) f_n T_k(G_1(u_n)) + \int_{\Omega} T_k(G_1(u_n)) \mu_n
\]

\[
\leq C_1 \int_{(u_n + \frac{1}{n} \leq K)} \left(u_n + \frac{1}{n} \right)^\gamma \mathfrak{f}(\frac{k}{K}) + \max h(s) \int_{(k \leq (u_n + \frac{1}{n} \leq K))} f_n T_k(G_1(u_n))
\]

\[
+ C_2 \int_{(u_n + \frac{1}{n} \geq K)} \mathfrak{f}(\frac{k}{K}) + k \int \mu_n
\]

\[
\leq C_1 k \int_{(u_n + \frac{1}{n} \leq K)} \left(1 + \frac{1}{n} \right)^\gamma + \max h(s) \int_{(k \leq (u_n + \frac{1}{n} \leq K))} f_n
\]

\[
+ C_2 k \int_{(u_n + \frac{1}{n} \geq K)} f_n + k \int \mu_n
\]

\[
\leq C k,
\]

and by restricting the above integral on \(I_1 = \{1 < u_n \leq k + 1\} \) we get,

\[
\int_{\{1 < u_n \leq k + 1\}} |\nabla T_k(G_1(u_n))|^2 = \int_{\{1 < u_n \leq k + 1\}} |\nabla u_n|^2
\]

\[
\geq \int_{\{\nabla u_n > t, 1 < u_n \leq k + 1\}} |\nabla u_n|^2
\]

\[
\geq t^2 m(\{|\nabla u_n| > t, 1 < u_n \leq k + 1\})
\]
so that,
\[m(\{|\nabla u_n| > t, 1 < u_n \leq k + 1\}) \leq \frac{Ck}{t^2} \quad \forall k \geq 1. \]

According to (2.22) in the proof of Lemma 2.7 one can see that
\[\int_{\Omega} |\nabla T_k^{\gamma+1}(u_n)|^2 \leq Ck^\gamma \quad \forall k > 1, \]
Therefore, from the Sobolev inequality
\[\frac{1}{\lambda_1^2} \left(\int_{\Omega} |T_k^{\gamma+1}(u_n)|^{2^*} \right)^\frac{2}{2^*} \leq \int_{\Omega} |\nabla T_k^{\gamma+1}(u_n)|^2 \leq Ck^\gamma, \]
where, \(\lambda_1 \) is the first eigen value of the laplacian operator. Now, if we restrict the integral on the left hand side on \(I_2 = \{x : u_n(x) > k + 1\} \), on which \(T_k(u_n) = k \), we then obtain
\[k^{\gamma+1}m(\{u_n > k + 1\})^{\frac{2}{2^*}} \leq Ck^\gamma, \]
so that
\[m(\{u_n > k + 1\}) \leq \frac{C}{k^{\frac{N}{N-1}}} \quad \forall k \geq 1. \]

So, \((u_n)\) is bounded in \(M^{\frac{N}{N-2}}(\Omega) \), i.e., \((G_1(u_n))\) is also bounded in \(M^{\frac{N}{N-2}}(\Omega) \). Now (2.23) becomes
\[m(\{|\nabla u_n| > t, u_n > 1\}) \leq m(\{|\nabla u_n| > t, 1 < u_n \leq k + 1\}) + m(\{u_n > k + 1\}) \leq \frac{Ck}{t^2} + \frac{C}{k^{\frac{N}{N-2}}}, \forall k > 1. \]
We then choose \(k = t^{\frac{N}{N-2}} \) and we get
\[m(\{|\nabla u_n| > t, u_n > 1\}) \leq \frac{C}{t^{\frac{N}{N-1}}} \quad \forall t \geq 1, \]

We just proved that \((\nabla u_n) = (\nabla G_1(u_n))\) is bounded in \(M^{\frac{N}{N-2}}(\Omega) \). Thus by the property in (1.4) that \((G_1(u_n))\) is bounded in \(W^{1,q}_0(\Omega) \) for every \(q < \frac{N}{N-1} \).

Step 2. We claim that \(T_1(u_n) \) is bounded in \(W^{1,q}_{lo}(\Omega) \) for every \(q < \frac{N}{N-1} \).

We have to examine the behaviour, for small values, of \(u_n \) for each \(n \). We want to show that for every \(K \subset \subset \Omega \)
\[\int_K |\nabla T_1(u_n)|^2 \leq C. \quad (2.24) \]
We have already proved that \(u_n \geq C_K \) on \(K \subset \subset \Omega \) in Lemma 2.4. We will use \(\varphi = T_1^\gamma(u_n) \) as a test function in (2.8) to get
\[\int_{\Omega} \nabla u_n \cdot \nabla T_1(u_n) T_1^{\gamma-1}(u_n) = \int_{\Omega} h_n \left(u_n + \frac{1}{n} \right) f_n T_1^\gamma(u_n) + \int_{\Omega} T_1^\gamma(u_n) \mu_n \leq C. \quad (2.25) \]
Now observe that
\[\int_{\Omega} \nabla u_n \cdot \nabla T_1(u_n)T_1^{\gamma-1}(u_n) \geq \int_K |\nabla T_1(u_n)|^2 T_1^{\gamma-1}(u_n) \geq C_K^{\gamma-1} \int_K |\nabla T_1(u_n)|^2. \] (2.26)

Combining (2.25) and (2.26) we get (2.24). Since \(u_n = T_1(u_n) + G_1(u_n) \), hence, \((u_n) \) is bounded in \(W^{1,q}_{\text{loc}}(\Omega) \) for every \(q < \frac{N}{N-1} \).

Now, we can finally state and prove the existence result.

Theorem 2.9. Let \(\gamma \geq 1 \). Then there exists a weak solution \(u \) of (2.1) in \(W^{1,q}_{\text{loc}}(\Omega) \) for every \(q < \frac{N}{N-1} \).

Proof. The proof of this theorem is a straightforward application of the results in Theorem 2.6, Lemma 2.7 and Lemma 2.8.

3. Further discussion of the case \(\gamma < 1 \).

In this section we will consider \(\Omega \) to be a bounded open subset of \(\mathbb{R}^N (N \geq 2) \), with boundary \(\partial \Omega \) of class \(C^{2,\beta} \) for some \(0 < \beta < 1 \). We consider the following semilinear elliptic problem

\[
-\Delta u = h(u)f + \mu \text{ in } \Omega,
\]
\[
u = 0 \text{ on } \partial \Omega,
\] (3.1)

where \(0 < \gamma < 1 \), \(f \in C^\beta(\bar{\Omega}) \) such that \(f > 0 \) in \(\bar{\Omega} \) and \(\mu \) is a nonnegative bounded Radon measure on \(\Omega \).

Definition 3.1. A very weak solution to problem (3.1) is a function \(u \in L^1(\Omega) \) such that \(u > 0 \) a.e. in \(\Omega \), \(fh(u) \in L^1(\Omega) \), and

\[
-\int_{\Omega} u \Delta \varphi = \int_{\Omega} h(u)f \varphi + \int_{\Omega} \varphi d\mu, \quad \forall \varphi \in C^2_0(\Omega).
\] (3.2)

We will show the existence of a non-negative very weak solution to the problem (3.1).

Definition 3.2. A function \(\bar{u} \) is a subsolution for (3.1) if \(\bar{u} \in L^1(\Omega) \), \(\bar{u} > 0 \) in \(\Omega \), \(fh(\bar{u}) \in L^1(\Omega) \) and

\[
-\int_{\Omega} \bar{u} \Delta \varphi \leq \int_{\Omega} h(\bar{u})f \varphi + \int_{\Omega} \varphi d\mu, \quad \forall \varphi \in C^2_0(\Omega), \ \varphi \geq 0.
\] (3.3)

Equivalently, \(\bar{u} \) is said to be a supersolution for the problem (3.1) if \(\bar{u} \in L^1(\Omega) \), \(\bar{u} > 0 \) in \(\Omega \), \(fh(\bar{u}) \in L^1(\Omega) \) and

\[
-\int_{\Omega} \bar{u} \Delta \varphi \geq \int_{\Omega} h(\bar{u})f \varphi + \int_{\Omega} \varphi d\mu, \quad \forall \varphi \in C^2_0(\Omega), \ \varphi \geq 0.
\] (3.4)
Theorem 3.3. Let \(u \) is a subsolution and \(\bar{u} \) is a supersolution to the problem (3.1) with \(u \leq \bar{u} \) in \(\Omega \), then there exists a solution \(u \) to (3.1) according to the Definition 3.1 such that \(u \leq u \leq \bar{u} \).

Proof. We prove the theorem by following an argument due to Ponce [17]. We define \(\bar{g} : \Omega \times \mathbb{R} \to \mathbb{R} \) as

\[
\bar{g}(x,t) = \begin{cases}
 f(x)h(u(x)) & \text{if } t < u(x), \\
 f(x)h(t) & \text{if } u(x) \leq t \leq \bar{u}(x), \\
 f(x)h(\bar{u}(x)) & \text{if } t > \bar{u}(x).
\end{cases}
\]

Moreover, \(u > 0 \) and hence \(\bar{g} \) is well defined a.e. in \(\Omega \). For each fixed \(v \in L^1(\Omega) \) we have that \(\bar{g}(x,v(x)) \in L^1(\Omega) \). We divide the proof of the theorem into two steps.

Step 1. We claim that if \(u \) satisfies

\[
-\Delta u = \bar{g}(x,u) + \mu \text{ in } \Omega,
\]

\[
u = 0 \text{ on } \partial \Omega,
\]

then \(u \leq u \leq \bar{u} \). Thus \(\bar{g}(.,u) = fh(u) \in L^1(\Omega) \), and \(u \) is a solution to (3.1).

The very weak formulation of (3.5) is given by

\[
-\int_\Omega u \Delta \varphi = \int_\Omega \bar{g}(x,u) \varphi + \int_\Omega \varphi d\mu, \ \forall \varphi \in C^2_0(\Omega).
\]

We only show that \(u \leq \bar{u} \) in \(\Omega \). The proof of the other side of the inequality, \(u \leq u \), follows similarly.

We will show that \(u \) is a solution to (3.5), and \(\bar{u} \) is a supersolution to (3.1). Subtracting equation (3.6) from (3.4) we have, for every \(\varphi \in C^2_0(\Omega) \) such that \(\varphi \geq 0 \),

\[
-\int_\Omega (u - \bar{u}) \Delta \varphi \leq \int_\Omega (\bar{g}(x,u) - fh(\bar{u})) \varphi = \int_\Omega \chi_{\{u \leq \bar{u}\}} (\bar{g}(x,u) - fh(\bar{u})) \varphi.
\]

Now applying Kato type inequality (4.2) from the Appendix we get,

\[
\int_\Omega (u - \bar{u})^+ \leq \int_\Omega \chi_{\{u \leq \bar{u}\}} (\bar{g}(x,u) - fh(\bar{u})) (\text{sign}_+(u - \bar{u})) \varphi = 0,
\]

which further implies that

\[
\int_\Omega (u - \bar{u})^+ \leq 0.
\]

Thus \(u \leq \bar{u} \) a.e. in \(\Omega \), and the proof of the claim is complete.

Step 2. We now show that a solution to problem (3.5) does exist. Let us define

\[G : L^1(\Omega) \to L^1(\Omega), \]
This map assigns to every $v \in L^1(\Omega)$ the solution u to the following linear problem

$$
-\Delta u = \bar{g}(x, v) + \mu \text{ in } \Omega,
$$

$$
u = 0 \text{ on } \partial \Omega.
$$

(3.7)

The problem in (3.7) admits a unique solution for a given Radon measure due to [19]. We need to show that this map is continuous in $L^1(\Omega)$. Let us choose a sequence (v_n) converging to some function v in $L^1(\Omega)$, then by the definition of \bar{g} and h being a non-increasing, continuous function we get

$$
|\bar{g}(x, v_n(x))| \leq f h(u).
$$

Hence, using the dominated convergence theorem, we conclude that

$$
||\bar{g}(x, v_n) - \bar{g}(x, v)||_{L^1(\Omega)} \to 0.
$$

By [20] the linear problem (3.7) has a unique very weak solution corresponding to this v. Thus

$$
\lim_{n \to \infty} -\int_{\Omega} u_n \Delta \phi = \lim_{n \to \infty} \int_{\Omega} fh(v_n) \phi + \int_{\Omega} \phi d\mu = \int_{\Omega} fh(v) \phi + \int_{\Omega} \phi d\mu = -\int_{\Omega} u \Delta \phi.
$$

Hence $u = G(v)$. It can be seen from Théorème 9.1 in [19] that $||u_n - u||_{1} \leq ||u_n - u||_{W_0^{1,q}(\Omega)} \leq ||\bar{g}(x, v_n) + \mu - (\bar{g}(x, v) + \mu)||_{\mathcal{M}(\Omega)} = ||\bar{g}(x, v_n) - \bar{g}(x, v)||_{1} \to 0$ as $n \to \infty$. Hence $||u_n - u||_{L^1(\Omega)} = ||G(v_n) - G(v)||_{L^1(\Omega)} \to 0$ and therefore, we proved that G is continuous.

We are still left to prove that the set $G(L^1(\Omega))$ is bounded and relatively compact in $L^1(\Omega)$. For every $v \in L^1(\Omega)$ we have

$$
||\bar{g}(x, v) + \mu||_{\mathcal{M}(\Omega)} \leq ||\bar{g}(x, v)||_{\mathcal{M}(\Omega)} + ||\mu||_{\mathcal{M}(\Omega)} \leq ||fh(u)||_{L^1(\Omega)} + ||\mu||_{\mathcal{M}(\Omega)}.
$$

Again, by Théorème 9.1 in [19], we see that $G(v)$ is bounded in $W_0^{1,q}(\Omega)$ for every $q < \frac{N}{N-1}$ and therefore, by Rellich-Kondrachov theorem we get $G(L^1(\Omega))$ is bounded and hence relatively compact in $L^1(\Omega)$.

Now we can apply Schauder fixed point theorem to see that G has a fixed point $u \in L^1(\Omega)$. According to the result from step 1, we conclude that u is a solution to (3.1) such that $\underline{u} \leq u \leq \bar{u}$. \qed
Theorem 3.4. There exists a solution to the problem (3.1) in the sense of Definition 3.1.

Proof. We want to find both a subsolution and a supersolution to problem (3.1) in the sense of Definition 3.2. Then we will use the result in Theorem 3.3 to prove the existence of a solution to the problem (3.1) in the sense of Definition 3.1. We first find a subsolution. Let us consider the problem

\[-\Delta v = h(v) f \text{ in } \Omega,\]
\[v = 0 \text{ on } \partial \Omega.\]

(3.8)

The existence of a very weak solution in \(L^1(\Omega)\) to the problem in (3.8) can be proved as in the argument in Theorem 3.3 using the Schauder fixed point theorem. Consider the eigen function \(\phi_1 > 0\) of \(-\Delta\) corresponding to the smallest eigen value \(\lambda_1\) with \(\phi_1|_{\partial \Omega} = 0\) [22]. Observe that

\[-\Delta \phi_1 - h(\phi_1) f < 0\]

\[= -\Delta v - h(v) f\]

due to the facts (i) that \(\phi_1 > 0\), the non-increasing nature of \(h\) and (ii) \(v\) being a solution to (3.8). Hence we have \(v > 0\) in \(\Omega\). Since \(\mu\) is a nonnegative Radon measure we get the following inequality,

\[-\int_{\Omega} v \Delta \varphi \leq \int_{\Omega} h(v) f \varphi + \int_{\Omega} \varphi d\mu, \quad \forall \varphi \in C^2_0(\bar{\Omega}), \varphi \geq 0,\]

and hence \(v\) is a subsolution to the problem (3.1). Now we look for a supersolution of the problem in (3.1). Let \(w\) be the solution of

\[-\Delta w = \mu \text{ in } \Omega,\]
\[w = 0 \text{ on } \partial \Omega.\]

(3.9)

Since \(\mu \geq 0\), by the maximum principle on Laplacian we have \(w \geq 0\). Let us denote \(z = w + v\), where \(v\) is a solution to (3.8). Then we get

\[-\int_{\Omega} z \Delta \varphi = -\int_{\Omega} w \Delta \varphi - \int_{\Omega} v \Delta \varphi = \int_{\Omega} h(v) f \varphi + \int_{\Omega} \varphi d\mu, \quad \forall \varphi \in C^2_0(\bar{\Omega}).\]

We know that \(w\) is nonnegative, then we have \(0 < h(z) \leq h(v)\). Thus, we have

\[\int_{\Omega} h(z) f \varphi + \int_{\Omega} \varphi d\mu \leq \int_{\Omega} h(v) f \varphi + \int_{\Omega} \varphi d\mu, \quad \forall \varphi \in C^2_0(\bar{\Omega}), \varphi \geq 0,\]

i.e., \(z\) is a positive function in \(L^1(\Omega)\) such that \(h(z) \leq h(v) \in L^1(\Omega)\) and

\[-\int_{\Omega} z \Delta \varphi \geq \int_{\Omega} h(z) f \varphi + \int_{\Omega} \varphi d\mu, \quad \forall \varphi \in C^2_0(\bar{\Omega}), \varphi \geq 0.\]
Therefore, z is a supersolution to (3.1). We can now apply Theorem 3.3 to get the conclusion that there exists a solution u to problem (3.1) in the sense of Definition 3.1.

3.1 Relaxation on assumptions on f

We proved the Theorem 3.4 by assuming a strong regularity on f i.e. f belongs to $C^\beta(\bar{\Omega})$ for some $0 < \beta < 1$. In this section we do some relaxation on our assumption on f in order to prove the existence of solution.

For a fix $\delta > 0$, let us define $\Omega_\delta = \{x \in \Omega : \text{dist}(x, \partial\Omega) < \delta\}$, and let f be an almost everywhere positive function in $L^1(\Omega) \cap L^\infty(\Omega_\delta)$.

Theorem 3.5. Let $f \in L^1(\Omega) \cap L^\infty(\Omega_\delta)$ such that $f > 0$ a.e. in Ω for some fixed $\delta > 0$. Then there exists a solution to the problem (3.1) in the sense of Definition 3.1.

Proof. We consider the following sequence of problems

$$
-\Delta v_n = h \left(v_n + \frac{1}{n} \right) f_n \text{ in } \Omega,
$$

$$
v_n = 0 \text{ on } \partial\Omega,
$$

where, $f_n = T_n(f)$. In Lemma 2.4 we proved that the nondecreasing sequence (v_n) converges to a solution of problem (3.8) and for each fixed n, the function v_n belongs to $L^\infty(\Omega)$. So we observe that the function $h(v_n + 1)f_n$ also belongs to $L^\infty(\Omega)$. Now we can apply Lemma 3.2 in [16] so as to obtain

$$
\frac{v_1(x)}{d(x)} \geq C \int_\Omega d(y)f_1(y)h \left(\| v_1 \|_{L^\infty(\Omega)} + 1 \right) dy \geq C > 0
$$

for every x in Ω. where $d(x) = d(x, \partial\Omega)$ is the distance function of x from $\partial\Omega$. Thus, we have

$$v(x) \geq v_1(x) \geq Cd(x), \text{ a.e. on } \Omega.$$

Therefore, as $f \in L^\infty(\Omega_\delta)$, we have $h(v)f \in L^1(\Omega)$ due to the facts (i) $h(v)f \leq h(Cd(x))f$ and (ii) $h(Cd(x)f$ is integrable for every $\gamma < 1$. Hence the subsolution is bounded from below and this allows us to proceed as in the proof of Theorem 3.4.

Thus we conclude that there exists a solution to the problem in (3.1). \qed
4. Appendix

We prove the Kato type inequality for the problem

\[-\Delta u = h(u)f + \mu \text{ in } \Omega,\]
\[u = 0 \text{ on } \partial \Omega,\]
\[u > 0 \text{ in } \Omega,\]

(4.1)

where \(f > 0\) and \(u \in L^1(\Omega)\) is a very weak solution with \(u > 0\) a.e. in \(\Omega\) and \(fh(u) \in L^1(\Omega)\).

Let \(u_1\) and \(u_2\) are two very weak solutions to the problem (4.1) with measure sources \(\mu_1\) and \(\mu_2\), respectively. Hence, \(u_1, u_2 \in L^1(\Omega)\) and \(h(u_1)f, h(u_2)f \in L^1(\Omega)\). Then for every \(\phi \in C_0^2(\bar{\Omega})\), the very weak formulations corresponding to the problem (4.1) are

\[-\int_{\Omega} u_1 \Delta \phi = \int_{\Omega} h(u_1)f \phi + \int_{\Omega} \phi d\mu_1,\]

and

\[-\int_{\Omega} u_2 \Delta \phi = \int_{\Omega} h(u_2)f \phi + \int_{\Omega} \phi d\mu_2.\]

Taking the difference between two formulations we get

\[-\int_{\Omega} (u_1 - u_2) \Delta \phi = \int_{\Omega} f(h(u_1) - h(u_2))\phi + \int_{\Omega} \phi (d\mu_1 - d\mu_2),\]

and this a very weak formulation of the problem

\[-\Delta(u_1 - u_2) = f(h(u_1) - h(u_2)) + (\mu_1 - \mu_2) \text{ in } \Omega,\]
\[u_1 - u_2 = 0 \text{ on } \partial \Omega,\]

Now refering to the Proposition 1.5.4 (Kato’s inequality) of [15], we can observe that

\[-\int_{\Omega} (u_1 - u_2)^+ \Delta \phi \leq \int_{\Omega} f(h(u_1) - h(u_2))(\text{sign}_+(u_1 - u_2))\phi + \int_{\Omega} \phi (d\mu_1 - d\mu_2),\]

where, \(\text{sign}_+(u_1 - u_2) = \chi_{\{x \in \Omega: u_1(x) \geq u_2(x)\}}\). Let us consider a standard choice \(\phi_0\) such that \(-\Delta \phi_0 = 1\) in \(\Omega\) and \(\phi_0 = 0\) on \(\partial \Omega\). Now the above inequality becomes

\[\int_{\Omega} (u_1 - u_2)^+ \leq \int_{\Omega} f(h(u_1) - h(u_2))(\text{sign}_+(u_1 - u_2))\phi_0 + \int_{\Omega} \phi_0 (d\mu_1 - d\mu_2) \quad (4.2)\]

Equation (4.2) is our required Kato type inequality .

Now as \(f > 0\) and \(\phi_0 \geq 0\) we get

\[\int_{\Omega} (u_1 - u_2)^+ + \int_{\Omega} f(h(u_2) - h(u_1))\phi_0 \leq \int_{\Omega} \phi_0 (d\mu_1 - d\mu_2).\]

So if \(\mu_1\) becomes equal to \(\mu_2\), then

\[\int_{\Omega} f(h(u_2) - h(u_1))\phi_0 \leq 0.\]

As \(h(u_2) - h(u_1) \geq 0\) for \(u_1 \geq u_2\). So we reach at the conclusion that \(h(u_1) = h(u_2)\).
Acknowledgement

Two of the authors, A. Panda and S. Ghosh, thanks for the financial assistantship received from the Ministry of Human Resource Development(M.H.R.D.), Govt. of India and the Council for Scientific and Industrial Research(C.S.I.R.), Govt. of India respectively. This is also to declare that there are no financial conflict of interest whatsoever.

References

[1] A.C. Lazer, P.J. McKenna, On a singular nonlinear elliptic boundary-value problem, Proc. Amer. Math. Soc., 111(3), (1991), 721-730.

[2] Sun Yijing, Zhang Duanzhi, The role of the power 3 for elliptic equations with negative exponents, Calculus of Variations, 49, (2014), 90-922.

[3] D. Giachetti, P.J. Martínez-Aparicio, F. Murat, A semilinear elliptic equation with a mild singularity at $u = 0$: Existence and homogenization, Journal de Mathématiques Pures et Appliqués, in press.

[4] D. Giachetti, P.J. Martínez-Aparicio, F. Murat, Definition, existence, stability and uniqueness of the solution to a semilinear elliptic problem with a strong singularity at $u = 0$, preprint.

[5] L. Boccardo, L. Orsina, Semilinear elliptic equations with singular nonlinearities, Calc. Var. and PDEs, 37(3-4), (2010), 363-380.

[6] L.M. De Cave, F. Oliva, Elliptic equations with general singular lower order term and measure data, Nonlinear Analysis, 128, (2016), 391-411.

[7] A. Canino, Minimax methods for singular elliptic equations with an application to a jumping problem, Journal of Differential Equations, 221(1), (2006), 210-223.

[8] A. Canino, M. Degiovanni, A variational approach to a class of singular semilinear elliptic equations, Journal of Convex Analysis, 11(1), (2004), 147-162.

[9] A. Canino, M. Grandinetti, B. Sciuonzi, Symmetry of solutions of some semilinear elliptic equations with singular nonlinearities, Journal of Differential Equations, 255(12), (2013), 4437-4447.

[10] S. Taliaferro, A nonlinear singular boundary value problem, Nonlinear Analysis, 3, (1979), 897-904.
[11] J.A. Gatica, V. Oliker and P. Waltman, Singular nonlinear boundary-value problems for second-order ordinary differential equations, Journal of Differential Equations, 79, (1989), 62-78.

[12] D. Arcoya, L. Moreno-M´erida, T. Leonori, P.J. Martínez-Aparicio, L. Orsina, F. Petitta, Existence and nonexistence results, Journal of Differential Equations, 246(10), (2009), 4006-4042.

[13] F.Oliva, F.Petitta, Finite and infinite energy solutions of singular elliptic problems: Existence and Uniqueness, 264(1), (2018), 311-340.

[14] J.Leray, J.L.Lions, Quelques r´esultates de viˇsk sur les probl ´emess elliptiques semilin´eaires par les m´ethodes de Minty et Browder,Bull. Soc. Math.France, 93, (1965), 97-107.

[15] M.Marcus, L.Véron, Nonlinear second order elliptic equations involving measures, De Gruyter Series in Nonlinear Analysis and Applications-21.

[16] H.Brezis, X.Cabr´e, Some simple nonlinear PDE’s without solutions, Bollettino dell’Unione Matematica Italiana, Serie 8, 1-B(2), (1998), 223-262.

[17] M.Montenegro,A.C. Ponce, The sub-supersolution method for weak solutions, Proc. Amer. Math. Soc., 136 (7), (2008), 2429-2438.

[18] P.Benilan, L.Boccardo, T.Gallou¨et, R.Gariepy, M.Pierre, J.L. Vazquez,An L^1 theory of existence and uniqueness of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa, 22,(1995), 240-273.

[19] G.Stampacchia, Le probl`eme de Dirichlet pour les ´equations elliptiques du seconde ordre `a coefficientes discontinus , Ann.Inst.Fourier (Grenoble),15, (1965), 189-258.

[20] M. Bhakta and M. Marcus, Reduced limit for semilinear boundary value problems with measure data, J. Differential Equations, 256, (2014), 2691-2710.

[21] F.Oliva, F.Petitta, On singular elliptic equations with measure sources, ESAIM: Control, Optimisation and Calculus of Variations, 22, (2016), 289-308.

[22] L.C.Evans, Partial Differential Equations, American Mathematical Society, Vol-19.

[23] G.B.Folland, Real analysis (Modern techniques and their applications), Second edition, A Wiley-Interscience publication.