Abstract

Despite the success of existing tensor factorization methods, most of them conduct a multilinear decomposition, and rarely exploit powerful modeling frameworks, like deep neural networks, to capture a variety of complicated interactions in data. More important, for highly expressive, deep factorization, we lack an effective approach to handle streaming data, which are ubiquitous in real-world applications. To address these issues, we propose SPIDER, a Streaming Probabilistic Deep Tensor Factorization method. We first use Bayesian neural networks (NNs) to construct a deep tensor factorization model. We assign a spike-and-slab prior over each NN weight to encourage sparsity and to prevent overfitting. We then use Taylor expansions and moment matching to approximate the posterior of the NN output and calculate the running model evidence, based on which we develop an efficient streaming posterior inference algorithm in the assumed-density-filtering and expectation propagation framework. Our algorithm provides responsive incremental updates for the posterior of the latent factors and NN weights upon receiving new tensor entries, and meanwhile select and inhibit redundant/useless weights. We show the advantages of our approach in four real-world applications.

1 Introduction

Tensor factorization is a fundamental tool for multiway data analysis. While many tensor factorization methods have been developed (Tucker, 1966; Harshman, 1970; Chu and Ghahramani, 2009; Kang et al., 2012; Choi and Vishwanathan, 2014), most of them conduct a multilinear decomposition and are incapable of capturing complex, nonlinear relationships in data. Deep neural networks (NNs) are a class of very flexible and powerful modeling framework, known to be able to estimate all kinds of complicated (e.g., highly nonlinear) mappings. The most recent work (Liu et al., 2018, 2019) have attempted to incorporate NNs into tensor factorization and shown a promotion of the performance, in spite of the risk of overfitting the tensor data that are typically sparse.

Nonetheless, one critical bottleneck for NN based factorization is the lack of effective approaches for streaming data. In practice, many applications produce huge volumes of data at a fast pace (Du et al., 2018). It is extremely costly to run the factorization from scratch every time when we receive a new set of entries. Some privacy-demanding applications (e.g., Snapchat) even forbid us from revisiting the previously seen data. Hence, given new data, we need an effective way to update the model incrementally and promptly.

A general and popular approach is streaming variational Bayes (SVB) (Broderick et al., 2013), which integrates the current posterior with the new data, and then estimates a variational approximation as the updated posterior. Although SVB has been successfully used to develop the state-of-the-art multilinear streaming factorization (Du et al., 2018), it does not perform well for (deep) NN based
factORIZATION. Due to the nested linear and nonlinear coupling of the latent embeddings and NN weights, the variational model evidence lower bound (ELBO) that SVB maximizes is analytically intractable and we have to seek for stochastic optimization, which is unstable and hard to diagnose the convergence. Consequently, the posterior updates are often unreliable and inferior, and in turn hurt the subsequent updates, leading to poor model estimations finally.

To address these issues, we propose SPIDER, a streaming probabilistic deep tensor factorization method that not only exploits NN’s expressive power to capture intricate relationships, but also provides efficient, high-quality posterior updates for streaming data. Specifically, we first use Bayesian neural networks to build a deep tensor factorization model, where the input is the concatenation of the associated factors in each tensor entry and the NN output predicts the entry value. To reduce the risk of overfitting, we place a spike-and-slab prior over each NN weight to encourage sparsity. For streaming inference, we use the first-order Taylor expansion of the NN output to compute its moments (with closed-forms), and moment matching to obtain its current posterior and so the running model evidence. We then use back-propagation to calculate the gradient of the log evidence, with which we update the likelihood of the new data, to obtain an unnormalized, blending distribution.

\[
\tilde{p}(\theta) = q_{\text{cur}}(\theta) p(\mathcal{D}_{\text{new}} | \theta)
\]

which can be viewed as approximately proportional to the joint distribution \(p(\theta, \mathcal{D}_{\text{old}} \cup \mathcal{D}_{\text{new}}) \). To conduct the incremental update, SVB uses \(\tilde{p}(\theta) \) to construct a variational ELBO (Wainwright et al. 2008), \(\mathcal{L}(q(\theta)) = \mathbb{E}_q[\log \left(\tilde{p}(\theta) / q(\theta) \right)] \), and maximizes the ELBO to obtain the updated posterior, \(\hat{q}^* = \arg\max_q \mathcal{L}(q) \). This is equivalent to minimizing the Kullback-Leibler (KL) divergence between \(q \) and the normalized \(\tilde{p}(\theta) \). We then set \(q_{\text{cur}} = \hat{q}^* \) and prepare the update for the next batch of new data. At the beginning (when we do not receive any data), we set \(q_{\text{cur}} = p(\theta) \), the original prior in

2 Background

Tensor Factorization. We denote a \(K \)-mode tensor by \(\mathcal{Y} \in \mathbb{R}^{d_1 \times \cdots \times d_K} \), where mode \(k \) includes \(d_k \) nodes. We index each entry by a tuple \(i = (i_1, \ldots, i_K) \), which stands for the interaction of the corresponding \(K \) nodes. The value of entry \(i \) is denoted by \(y_{i} \). To factorize the tensor, we represent all the nodes by weights, the variational model evidence lower bound (ELBO) that SVB maximizes is analytically intractable and we have to seek for stochastic optimization, which is unstable and hard to diagnose the convergence. Consequently, the posterior updates are often unreliable and inferior, and in turn hurt the subsequent updates, leading to poor model estimations finally.

For evaluation, we examined SPIDER on four real-world large-scale applications, including both binary and continuous tensors. We compared with the state-of-the-art streaming tensor factorization algorithm (Du et al. 2018) based on a multilinear form, and streaming nonlinear factorization methods implemented with SVB. In both running and final predictive performance, our method consistently outperforms the competing approaches, mostly by a large margin. The running accuracy is also much more stable and smooth than the SVB based methods.
the model. For efficiency and convenience, a factorized variational posterior \(q(\theta) = \prod_i q(\theta_i) \) is usually adopted to fulfill cyclic, closed-form updates. For example, the state-of-the-art streaming tensor factorization, POST (Du et al., 2018), uses the CP form to build a Bayesian model, and applies SVB to update the posterior of the embeddings incrementally when receiving new tensor entries.

3 Bayesian Deep Tensor Factorization

Despite the elegance and convenience of the popular Tucker and CP factorization, their multilinear form can severely limit the capability of estimating complicated, highly nonlinear/nonstationary relationships hidden in data. While numerous other methods have also been proposed, e.g., (Chu and Ghahramani, 2009; Kang et al., 2012; Choi and Vishwanathan, 2014), most of them are still inherently based on the CP or Tucker form. Enlightened by the expressive power of (deep) neural networks (Goodfellow et al., 2016), we propose a Bayesian deep tensor factorization model to overcome the limitation of traditional methods and flexibly estimate all kinds of complex relationships.

Specifically, for each tensor entry \(i \), we construct an input vector \(x_i \) by concatenating all the embedding vectors associated with \(i \), namely, \(x_i = \left[(u_i^1)^\top, \ldots, (u_i^K)^\top \right]^\top \). We assume that there is an unknown mapping between the input embeddings \(x_i \) and the value of entry \(i \), \(f : \mathbb{R}^{\sum_{l=1}^d r_l} \rightarrow \mathbb{R} \), which reflects the complex interactions/relationships between the tensor nodes in entry \(i \). Note that CP factorization uses a multilinear mapping. We use an \(M \)-layer neural network (NN) to model the mapping \(f \), which are parameterized by \(M \) weight matrices \(W = \{ W_1, \ldots, W_M \} \). Each \(W_m \) is \(V_m \times (V_{m-1} + 1) \) where \(V_m \) and \(V_{m-1} \) are the widths for layer \(m \) and \(m - 1 \), respectively; \(V_0 = \sum_{k=1}^K r_k \) is the input dimension and \(V_M = 1 \). We denote the output in each hidden layer \(m \) by \(h_m \) \((1 \leq m \leq M-1)\) and define \(h_0 = x_i \). We compute each \(h_m = \sigma(W_m h_{m-1}; 1)/\sqrt{V_{m-1}+1} \) where \(\sigma(\cdot) \) is a nonlinear activation function, e.g., ReLU and tanh. Note that we append a constant feature \(1 \) to introduce the bias terms in the linear transformation, namely the last column in each \(W_m \). For the last layer, we compute the output by \(f_{W}(x_i) = W_M[h_{M-1}; 1]/\sqrt{V_{M-1}+1} + \Gamma \) given the output, we sample the observed entry value \(y_i \) via a noisy model. For continuous data, we use a Gaussian noise model, \(p(y_i | \mathcal{U}) = \mathcal{N}(y_i | f_{W}(x_i), \tau^{-1}) \) where \(\tau \) is the inverse noise variance. We further assign \(\tau \) a Gamma prior, \(p(\tau) = \text{Gamma}(\alpha_0, \beta_0) \). For binary data, we use the Probit model, \(p(y_i | \mathcal{U}) = \Phi \left(\left(2y_i - 1 \right) f_{W}(x_i) \right) \) where \(\Phi(\cdot) \) is the cumulative density function (CDF) of the standard normal distribution.

Despite their great flexibility, NNs take the risk of overfitting. The larger a network, i.e., with more weight parameters, the easier the network overfits the data. In order to prevent overfitting, we assign a spike-and-slab prior (S Campus et al., 2005; Tsiatis and Lázaro-Gredilla, 2011) over each NN weight to sparsify and condense the network. Specifically, for each weight \(w_{mjt} = [W_m]_{jt} \), we first sample a binary selection indicator \(s_{mjt} \) from \(p(s_{mjt} | \rho_0) = \text{Bern}(s_{mjt} | \rho_0) = \rho_0^{s_{mjt}} (1 - \rho_0)^{1-s_{mjt}} \). The weight is then sampled from

\[
p(w_{mjt} | s_{mjt}) = s_{mjt} \mathcal{N}(w_{mjt} | 0, \sigma_0^2) + (1 - s_{mjt}) \delta(w_{mjt}),
\]

where \(\delta(\cdot) \) is the Dirac-delta function. Hence, the selection indicator \(s_{mjt} \) determines the type of prior over \(w_{mjt} \): if \(s_{mjt} = 1 \), meaning the weight is useful and active, we assign a flat Gaussian prior with variance \(\sigma_0^2 \) (slab component); if otherwise, \(s_{mjt} = 0 \), namely the weight is useless and should be deactivated, we assign a spike prior concentrating on \(0 \) (spike component).

Finally, we place a standard normal prior over the embeddings \(\mathcal{U} \). Given the set of observed tensor entries \(D = \{ y_{i_1}, \ldots, y_{i_N} \} \), the joint probability of our model for continuous data is

\[
p(\mathcal{U}, W, \mathcal{S}, \tau) = \prod_{m=1}^M \prod_{j=1}^{V_m} \prod_{t=1}^{V_{m-1}+1} \text{Bern}(s_{mjt} | \rho_0) \left(s_{mjt} \mathcal{N}(w_{mjt} | 0, \sigma_0^2) + (1 - s_{mjt}) \delta(w_{mjt}) \right) \]
\[
\prod_{k=1}^K \prod_{d_k} \mathcal{N}(u_{k}^{d_k} | 0, I) \Gamma(\tau | a_0, b_0) \prod_{n=1}^N \mathcal{N}(y_n | f_{W}(x_n), \tau^{-1})
\]
We now present our streaming model estimation algorithm. In general, the observed tensor entries where s_{mjt},

to address these problems, we exploit the assumed-density-filtering (ADF) framework (Boyen and

variational ELBO, ADF projects the (unnormalized) blending distribution (2) to the exponential

the model evidence under the blending distribution, $q_{\text{cur}}(\theta) \propto \mathbb{E}_{\tilde{p}(\theta)}(2y_{i_n} - 1)f_{\mathcal{W}}(x_{i_n})$. To obtain its moments, we consider the normalizer, i.e., the model evidence under the blending distribution,

$$Z_n = \int q_{\text{cur}}(\mathcal{W}, \mathcal{U}, \mathcal{S}) \Phi((2y_{i_n} - 1)f_{\mathcal{W}}(x_{i_n})) d\mathcal{W} d\mathcal{U} d\mathcal{S}.$$ (6)
Under the Gaussian form, according to [Minka 2001b], we can compute the moments and update the posterior of each NN weight \(w_{ni} \) and each embedding element associated with \(i_n = \{u_{ni}, \} \) by
\[
\mu^* = \mu + \nu \frac{\partial \log Z_n}{\partial \mu}, \quad \nu^* = \nu - \nu^2 \left[\left(\frac{\partial \log Z_n}{\partial \mu} \right)^2 - 2 \frac{\partial \log Z_n}{\partial \nu} \right],
\]
(7)
where \(\mu \) and \(\nu \) are the current posterior mean and variance of the corresponding weight or embedding element. Note that since the likelihood does not include the binary selection indicators, their moments are the same as those under \(q_{\text{cur}} \) and we do not need to update their posterior.

However, a critical issue is that due to the nonlinear coupling of the \(U \) and \(W \) in computing the NN output \(f_W(x_{i_n}) \), the exact normalizer is analytically intractable. To overcome this issue, we consider approximating the current posterior of \(f_W(x_{i_n}) \) first. To this end, we assume the posterior variance of \(W \) and \(U \) are much smaller as compared with the rate of change of the NN output. Then we can use first-order Taylor expansion at the mean of \(W \) and \(U \) to approximate the output,
\[
f_W(x_{i_n}) \approx f_E|W| \left[E[x_{i_n}] \right] + g_n^T (\eta_n - E[\eta_n])
\]
(8)
where the expectation is under \(q_{\text{cur}}(\cdot) \), \(\eta_n = \text{vec}(W \cup U) \), \(g_n = \nabla f_W(x_{i_n}) |_{\eta_n=E[\eta_n]} \). Note that \(x_{i_n} \) is the concatenation of the embeddings associated with \(i_n \). Based on (8), we can calculate the first and second moments of \(f_W(x_{i_n}) \),
\[
\alpha_n = E_{q_{\text{cur}}}[f_W(x_{i_n})] \approx E_{q_{\text{cur}}}[E[x_{i_n}]], \quad \beta_n = \text{Var}_{q_{\text{cur}}}(f_W(x_{i_n})) \approx g_n^T \text{diag}(\gamma_n) g_n
\]
(9)
where each \([\gamma_n] \) is \(\text{Var}_{q_{\text{cur}}}(\eta_n) \). Note that due to the fully factorized posterior form, we have \(\text{cov}(\eta_n) = \text{diag}(\eta_n) \). Now we use moment matching to approximate the current (marginal) posterior of the NN output by \(q_{\text{cur}}(f_W(x_{i_n})) = \mathcal{N}(f_W(x_{i_n}) | \alpha_n, \beta_n) \). Then we can compute the running model evidence (9) by
\[
Z_n = E_{q_{\text{cur}}(W,U,S)} \left[\Phi \left(\frac{2y_n - 1}{f_W(x_{i_n})} \right) \right] = E_{q_{\text{cur}}(f_W(x_{i_n}))} \left[\Phi \left(\frac{2y_n - 1}{f_W(x_{i_n})} \right) \right]
\]
\[\approx \int N(f_o | \alpha_n, \beta_n) \Phi \left(\frac{2y_n - 1}{f_o} \right) df_o = \Phi \left(\frac{2y_n - 1}{\alpha_n} \right) \sqrt{1 + \frac{1}{\beta_n}} \]
(10)
where we redefine \(f_o = f_W(x_{i_n}) \) for simplicity. With the nice analytical form, we can immediately apply (7) to update the posterior for \(W \) and the associated embeddings in \(i_n \). In light of the NN structure, the gradient can be efficiently calculated via back-propagation, which can be automatically done by many deep learning libraries. Note that although the first-order Taylor expansion seems a bit crude, it integrates all the information in the Gaussian posterior (i.e., mean and variance) of \(W \) and \(U \) to approximate the moments and posterior of the NN output (see (9)). Our empirical evaluation shows excellent performance (see Sec. 6). We have also tried the second-order expansion, which, however, is unstable and does not improve the performance.

For continuous data, we introduce a Gamma posterior for the inverse noise variance, \(q_{\text{cur}}(\tau) = \text{Gamma}(\tau | a, b) \) in addition to the fully factorized posterior for \(V, U, S \) as in the binary case. After we use (8) and (9) to obtain the posterior of the NN output, we derive the running model evidence by
\[
Z_n = E_{q_{\text{cur}}(W,U,S)} \left[\mathcal{N}(y_n | f_W(x_{i_n}), \tau^{-1}) \right] = E_{q_{\text{cur}}(f_o)} \left[\mathcal{N}(y_n | f_o, \tau^{-1}) \right]
\]
\[\approx E_{q_{\text{cur}}(\tau)} \left[\int N(f_o | \alpha_n, \beta_n) \mathcal{N}(y_n | f_o, \tau^{-1}) df_o \right] = E_{q_{\text{cur}}(\tau)} \left[\mathcal{N}(y_n | \alpha_n, \beta_n + \tau^{-1}) \right]. \]
(11)
Next, we use the first-order Taylor expansion again, at the mean of \(\tau \), to approximate the Gaussian term inside the expectation, \(\mathcal{N}(y_n | \alpha_n, \beta_n + \tau^{-1}) \approx \mathcal{N}(y_n, \alpha_n, \beta_n + \text{E}_{q_{\text{cur}}}(\tau) - \text{E}_{q_{\text{cur}}}(\tau)) \). Taking expectation over the Taylor expansion gives
\[
Z_n \approx \mathcal{N}(y_n | \alpha_n, \beta_n + \text{E}_{q_{\text{cur}}}(\tau)^{-1}) = \mathcal{N}(y_n | \alpha_n, \beta_n + b/a).
\]
(12)
We now can use (7) to update the posterior of \(W \) and the embeddings associated with the entry. While we can also use more accurate approximations, e.g., the second-order Taylor expansion or quadrature, we found empirically our method achieves almost the same performance.

To update \(q_{\text{cur}}(\tau) \), we consider the blending distribution only in terms of the NN output \(f_o \) and \(\tau \) so we have \(\hat{q}_{\text{cur}}(f_o, \tau) \propto q_{\text{cur}}(f_o) q_{\text{cur}}(\tau) \mathcal{N}(y_n | f_o, \tau^{-1}) = \mathcal{N}(f_o, \alpha_n, \beta_n) \text{Gamma}(\tau | a, b) \mathcal{N}(y_n | f_o, \tau^{-1}) \). Then we follow [Wang and Zhe 2019] to first derive the conditional moments and then approximate the expectation of the conditional moments to obtain the moments. The details are given in the supplementary material. The updated posterior is given by \(q^*(\tau) = \text{Gamma}(\tau | a^*, b^*) \), where \(a^* = a + \frac{1}{2} \) and \(b^* = b + \frac{1}{2} ((y_n - \alpha_n)^2 + \beta_n) \).
4.2 Prior Approximation Refinement

Ideally, at the beginning (i.e., when we have not received any data), we should set q_{cut} to the prior of the model (see (3) and (5)). This is feasible for the embeddings \mathcal{U}, selection indicators S and the inverse noise variance τ (for continuous data only), because their Gaussian, Bernoulli and Gamma priors are all members of the exponential family. However, the spike-and-slab prior for each NN weight w_{mjt} (see (3)) is a mixture prior and does not belong to the exponential family. Hence, we introduce an approximation term,

$$p(w_{mjt}|s_{mjt}) \propto \mathcal{A}(w_{mjt}, s_{mjt}) = \text{Bern}(s_{mjt}|c(\rho_{mjt}))\mathcal{N}(w_{mjt}|\mu_{mjt}^0, \sigma_{mjt}^0)$$

where \propto means “approximately proportional to” and $c(x) = 1/(1 + \exp(-x))$. At the beginning, we initialize $\sigma_{mjt}^0 = \sigma_0^2$ and μ_{mjt}^0 to be a random number generated from a standard Gaussian distribution truncated in $[-\sigma_0, \sigma_0]$; we initialize $\rho_{mjt} = 0$. Obviously, this is a very rough approximation. If we only execute the standard ADF to continuously integrate new entries to update the posterior (see (7)), the prior approximation term will remain the same and never be changed. However, the spike-and-slab prior is critical to sparsify and condense the network, and an inferior approximation will make it noneffective at all. To address this issue, after we process all the entries in the incoming batch, we use EP to update/improve the prior approximation term (13), with which to further update the posterior of the NN weights. In this way, as we process more and more batches of the observed tensor entries, the prior approximation becomes more and more accurate, and thereby can effectively inhibit/deactivate the redundant or useless weights on the fly. The details of the updates are provided in the supplementary material. Finally, we summarize our streaming inference in Algorithm 1 in the supplementary material.

4.3 Algorithm Complexity

The time complexity of our streaming inference is $O(NV + \sum_{k=1}^{K} d_k r_k)$ where V is the total number of weights in the NN. Therefore, the computational cost is proportional to N, the size of the streaming batch. The space complexity is $O(V + \sum_{k=1}^{K} d_k r_k)$, including the storage of the posterior for the embeddings \mathcal{U}, NN weights W and selection indicators S, and the approximation term for the spike-and-slab prior.

5 Related Work

Classical CP (Harshman, 1970) and Tucker (Tucker, 1966) factorization are multilinear and therefore are incapable of estimating complex, nonlinear relationships in data. While numerous other approaches have been proposed (Shashua and Hazan, 2005; Chu and Ghahramani, 2009; Sutskever et al., 2009; Acar et al., 2011a; Hoff, 2011; Kang et al., 2012; Yang and Dunson, 2013; Rai et al., 2014; Choi and Vishwanathan, 2014; Hu et al., 2015; Rai et al., 2015), most of them are still based on the CP or Tucker form. To overcome these issues, recently, several Bayesian nonparametric tensor factorization models (Xu et al., 2012; Zhe et al., 2015, 2016) were proposed to estimate the nonlinear relationships with Gaussian processes (Rasmussen and Williams, 2006). The most recent work, NeuralCP (Liu et al., 2018) and CoSTCo (Liu et al., 2019) have shown the advantage of NNs in tensor factorization. CoSTCo also concatenates the embeddings associated with each entry to construct the input and use the NN output to predict the entry value; but to alleviate overfitting, CoSTCo introduces two convolutional layers to extract local features and then feed them into dense layers. By contrast, with the spike-and-slab prior and Bayesian inference, we found that our model can also effectively prevent overfitting, without the need for extra convolutional layers. NeuralCP uses two NNs, one to predict the entry value, the other the (log) noise variance. Hence, NeuralCP only applies to continuous data. Our model can be used for both continuous and binary data. Finally, both CoSTCo and NeuralCP are trained with stochastic optimization, need to pass the data many times (epochs), and hence cannot handle streaming data.

Expectation propagation (Minka, 2001a) is an approximate Bayesian inference algorithm that generalizes assumed-density-filtering (ADF) (Boyen and Koller, 1998) and (loopy) belief propagation (Murphy et al., 1999). EP employs an exponential-family term to approximate the prior and likelihood of each data point, and cyclically updates each approximation term via moment matching. ADF can be considered as applying EP in a model including only one data point. Because ADF only maintains the holistic posterior, without the need for keeping individual approximation terms, it is very appropriate for streaming learning. EP can meet a practical barrier when the moment matching is intractable. To address this problem, Wang and Zhe (2019) proposed conditional EP that uses conditional moment matching, quadrature and Taylor approximations to provide a high-quality, analytical solution. Based
on EP and ADF, Hernández-Lobato and Adams (2015) proposed probabilistic back-propagation, a batch inference algorithm for Bayesian neural networks. PBP conducts ADF to pass the dataset many times and re-update the prior approximation after each pass. A key difference from our work is that PBP conducts a forward, layer by layer moment matching, to approximate the posterior of each hidden neuron in the network, until it reaches the output. The computation is limited to fully connected, feed-forward networks and ReLU activation function. By contrast, our method computes the moments of the NN output via Taylor expansions and does not need to approximate the posterior of the hidden neurons. Therefore, our method is free to use any NN architecture and activation function. Furthermore, we employ spike-and-slab priors over the NN weights to control the complexity of the model and to prevent overfitting in the streaming inference.

6 Experiment

6.1 Predictive Performance

Datasets. We examined SPIDER on four real-world, large-scale datasets. (1) DBLP (Du et al., 2018), a binary tensor about bibliography relationships (author, conference, keyword), of size $10,000 \times 200 \times 10,000$, including 0.001% nonzero entries. (2) Anime [https://www.kaggle.com/CooperUnion/anime-recommendations-database], a two-mode tensor depicting binary (user, anime) preferences. The tensor contains 1,300,160 observed entries, of size $25,838 \times 4,066$. (3) ACC (Du et al., 2018), a continuous tensor representing the three-way interactions (user, action, file), of size $3,000 \times 150 \times 30,000$, including 0.9% nonzero entries. (4) MovieLen1M [https://grouplens.org/datasets/movielens/], a two-mode continuous tensor of size $6,040 \times 3,706$, consisting of (user, movie) ratings. We have 1,000,209 observed entries.

Competing methods. We compared with the following baselines. (1) POST (Du et al., 2018), the state-of-the-art streaming tensor decomposition algorithm based on a probabilistic CP model. It uses streaming variational Bayes (SVB) (Broderick et al., 2013) to perform mean-field posterior updates upon receiving new entries. (2) SVB-DTF, SVB based deep tensor factorization. (3) SVB-GPTF, the streaming version of the Gaussian process (GP) based nonlinear tensor factorization (Zhe et al., 2016), implemented with SVB. Note that similar to NNs, the ELBO in SVB for GP factorization is intractable and we used stochastic optimization. (4) SS-GPTF, the streaming GP factorization implemented with the recent streaming sparse GP approximations (Bui et al., 2017). It uses SGD to optimize another intractable ELBO. (5) CP-WOPT (Acar et al., 2011b), a scalable static CP factorization algorithm implemented with gradient-based optimization.

Parameter Settings. We implemented our method, SPIDER with Theano, and SVB-DTF, SVB/SS-GPTF with TensorFlow. For POST, we used the original MATLAB implementation [https://github.com/yishuaidu/POST]. For SVB/SS-GPTF, we set the number of pseudo inputs to 128 in their sparse approximations. We used Adam (Kingma and Ba, 2014) for the stochastic optimization in SVB-DTF and SVB/SS-GPTF, where we set the number of epochs to 100 in processing each streaming batch and tuned the learning rate from $\{10^{-5}, 5 \times 10^{-5}, 10^{-4}, 3 \times 10^{-4}, 5 \times 10^{-4}, 10^{-3}, 3 \times 10^{-3}, 5 \times 10^{-3}, 10^{-2}\}$. For SPIDER and SVB-DTF, We used a 3-layer NN, with 50 nodes in each hidden layer. We tested ReLU and tanh activations.

We first evaluated the prediction accuracy after all the (accessible) entries are processed. To do so, we sequentially fed the training entries into every method, each time a small batch. We then evaluated the predictive performance on the test entries. We examined the root-mean-squared-error (RMSE) and area under ROC curves (AUC) for continuous and binary data, respectively. We ran the static factorization algorithm CP-WOPT on the entire training set. On DBLP and ACC, we used the same split of the training and test entries in (Du et al., 2018), including 320K and 1M training entries for DBLP and ACC respectively, and 100K test entries for both. On Anime and MovieLen1M, we randomly split the observed entries into 90% for training and 10% for test. For both datasets, the number of training entries is around one million. For each streaming factorization approach, we randomly shuffled the training entries and then partitioned them into a stream of batches. On each dataset, we repeated the test for 5 times and calculated the average of RMSEs/AUCs and their standard deviations. For CP-WOPT, we used different random initializations in each test.

We conducted two groups of evaluations. In the first group, we fixed the batch size to 256 and examined the predictive performance with different ranks (or dimensions) of the embedding vectors, $\{3, 5, 8, 10\}$. In the second group, we fixed the rank to 8, and examined how the prediction accuracy varies with the size of the streaming batches, $\{2^6, 2^7, 2^8, 2^9\}$. The results are reported in Fig. 1. As we can see, in both settings, our method SPIDER (with both tanh and ReLU) consistently
SPIDER-ReLU
SPIDER-tanh
SVB-DTF-ReLU
SVB-DTF-tanh
POST
SS-GPTF
SVB-GPTF
CP-WOPT

3 5 8 10
Rank
0.75
0.8
0.85
0.9
AUC

(a) DBLP
(b) Anime
(c) ACC
(d) MovieLen1M

0.7 0.8 0.9
AUC

0 500 1000
Number of Batches

0.6 0.7 0.8 0.9
AUC

0 2000 4000
Number of Batches

0.35 0.4 0.45
RMSE

0 1500 3000
Number of Batches

0.9 0.95 1
RMSE

Figure 1: Predictive performance with different ranks (top row) and streaming batch sizes (bottom row). In the top row, the streaming bath size is fixed to 256; in the bottom row, the rank is fixed to 8. The results are averaged over 5 runs.

outperforms all the competing approaches in all the cases and mostly by a large margin. First, SPIDER significantly improves upon POST and CP-WOPT — the streaming and static multilinear factorization, confirming the advantages of the deep tensor factorization. It worth noting that CP-WOPT performed much worse than POST on ACC and MovieLen1M, which might be due to the poor local optimums CP-WOPT converged to. Second, SVB/SS-GPTF are generally far worse than our method, and in many cases even inferior to POST (see Fig. 1b, c, d and f). SVB-DTF are even worse. Only on Fig. 1c, the performance of SVB-DTF is comparable to or better than CP-WOPT, and in all the other cases, SVB-DTF is much worse than all the other methods and we did not show its curve in the figure (similar for CP-WOPT in Fig. 1g). Those results might be due to the inferior/unreliable stochastic posterior updates. Lastly, although both SPIDER-ReLU and SPIDER-tanh outperform all the baselines, SPIDER-ReLU is overall better than SPIDER-tanh (especially Fig. 1g).

6.2 Prediction On the Fly

Next, we evaluated the dynamic performance. We randomly generated a stream of training batches from each dataset, upon which we ran each algorithm and examined the prediction accuracy after processing each batch. We set the batch size to 256 and tested with rank $r = 3$ and $r = 8$. The running RMSE/AUC of each method are reported in Fig. 2. Note that some curves are missing or partly missing because the performance of the corresponding methods are much worse than all
the other ones. In general, nearly all the methods improved the prediction accuracy with more and more batches, showing increasingly better embedding estimations. However, SPIDER always obtained the best AUC/RMSE on the fly, except at the beginning stage on Anime and MovieLen1M ($r = 8$). In addition, the trends of SPIDER and POST are much smoother than that of SVB-DTF and SVB/SS-GPTF, which might again because the stochastic updates in the latter methods are unstable and unreliable. Note that in Fig. 2b, SVB-DTF has running AUC steadily around 0.5, implying that SVB actually failed to effectively update the posterior. Finally, in the supplementary material, we provide the running time, and showcase the sparse posteriors of the NN weights learned by SPIDER.

7 Conclusion
We have presented SPIDER, a streaming probabilistic deep tensor factorization approach, which can effectively leverage neural networks to capture complicated relationships for streaming factorization. Experiments on real-world applications have demonstrated the advantage of SPIDER.

Broader Impact
The work has the potential positive impact in the society because it can be used in a variety privacy-protective streaming applications such as in recommendation, online shopping and social networks. Furthermore, the embedding representations can avoid the storage of actual user profiles and hence benefit anonymization. To our knowledge, this work does not seem to present any foreseeable societal consequences.

References
Acar, E., Dunlavy, D. M., Kolda, T. G., and Morup, M. (2011a). Scalable tensor factorizations for incomplete data. Chemometrics and Intelligent Laboratory Systems, 106(1):41–56.

Acar, E., Dunlavy, D. M., Kolda, T. G., and Morup, M. (2011b). Scalable tensor factorizations for incomplete data. Chemometrics and Intelligent Laboratory Systems, 106(1):41–56.

Boyen, X. and Koller, D. (1998). Tractable inference for complex stochastic processes. In Proceedings of the Fourteenth conference on Uncertainty in artificial intelligence, pages 33–42.

Broderick, T., Boyd, N., Wibisono, A., Wilson, A. C., and Jordan, M. I. (2013). Streaming variational bayes. In Advances in neural information processing systems, pages 1727–1735.

Bui, T. D., Nguyen, C., and Turner, R. E. (2017). Streaming sparse gaussian process approximations. In Advances in Neural Information Processing Systems, pages 3299–3307.

Choi, J. H. and Vishwanathan, S. (2014). Dfacto: Distributed factorization of tensors. In Advances in Neural Information Processing Systems, pages 1296–1304.

Chu, W. and Ghahramani, Z. (2009). Probabilistic models for incomplete multi-dimensional arrays. AISTATS.

Du, Y., Zheng, Y., Lee, K.-c., and Zhe, S. (2018). Probabilistic streaming tensor decomposition. In 2018 IEEE International Conference on Data Mining (ICDM), pages 99–108. IEEE.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press. http://www.deeplearningbook.org.

Harshman, R. A. (1970). Foundations of the PARAFAC procedure: Model and conditions for an"explanatory"multi-mode factor analysis. UCLA Working Papers in Phonetics, 16:1–84.

Hernández-Lobato, J. M. and Adams, R. (2015). Probabilistic backpropagation for scalable learning of bayesian neural networks. In International Conference on Machine Learning, pages 1861–1869.

Hoff, P. (2011). Hierarchical multilinear models for multiway data. Computational Statistics & Data Analysis, 55:530–543.

Hu, C., Rai, P., and Carin, L. (2015). Zero-truncated poisson tensor factorization for massive binary tensors. In UAI.

Ishwaran, H., Rao, J. S., et al. (2005). Spike and slab variable selection: frequentist and bayesian strategies. The Annals of Statistics, 33(2):730–773.
Kang, U., Papalexakis, E., Harpale, A., and Faloutsos, C. (2012). Gigatensor: scaling tensor analysis up by 100 times-algorithms and discoveries. In Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 316–324. ACM.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.

Kingma, D. P. and Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114.

Kolda, T. G. (2006). Multilinear operators for higher-order decompositions, volume 2. United States. Department of Energy.

Liu, B., He, L., Li, Y., Zhe, S., and Xu, Z. (2018). Neuralcp: Bayesian multiway data analysis with neural tensor decomposition. Cognitive Computation, 10(6):1051–1061.

Liu, H., Li, Y., Tsang, M., and Liu, Y. (2019). Costco: A neural tensor completion model for sparse tensors. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pages 324–334.

Minka, T. P. (2001a). Expectation propagation for approximate bayesian inference. In Proceedings of the Seventeenth conference on Uncertainty in artificial intelligence, pages 362–369.

Minka, T. P. (2001b). A family of algorithms for approximate Bayesian inference. PhD thesis, Massachusetts Institute of Technology.

Murphy, K. P., Weiss, Y., and Jordan, M. I. (1999). Loopy belief propagation for approximate inference: An empirical study. In Proceedings of the Fifteenth conference on Uncertainty in artificial intelligence, pages 467–475. Morgan Kaufmann Publishers Inc.

Rai, P., Hu, C., Harding, M., and Carin, L. (2015). Scalable probabilistic tensor factorization for binary and count data. In IJCAI.

Rai, P., Wang, Y., Guo, S., Chen, G., Dunson, D., and Carin, L. (2014). Scalable Bayesian low-rank decomposition of incomplete multiway tensors. In Proceedings of the 31th International Conference on Machine Learning (ICML).

Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian Processes for Machine Learning. MIT Press.

Shashua, A. and Hazan, T. (2005). Non-negative tensor factorization with applications to statistics and computer vision. In Proceedings of the 22th International Conference on Machine Learning (ICML), pages 792–799.

Sutskever, I., Tenenbaum, J. B., and Salakhutdinov, R. R. (2009). Modelling relational data using bayesian clustered tensor factorization. In Advances in neural information processing systems, pages 1821–1828.

Titsias, M. K. and Lázaro-Gredilla, M. (2011). Spike and slab variational inference for multi-task and multiple kernel learning. In Advances in neural information processing systems, pages 2339–2347.

Tucker, L. (1966). Some mathematical notes on three-mode factor analysis. Psychometrika, 31:279–311.

Wainwright, M. J., Jordan, M. I., et al. (2008). Graphical models, exponential families, and variational inference. Foundations and Trends® in Machine Learning, 1(1–2):1–305.

Wang, Z. and Zhe, S. (2019). Conditional expectation propagation. In UAI, page 6.

Xu, Z., Yan, F., and Qi, Y. (2012). Infinite Tucker decomposition: Nonparametric Bayesian models for multiway data analysis. In Proceedings of the 29th International Conference on Machine Learning (ICML).

Yang, Y. and Dunson, D. (2013). Bayesian conditional tensor factorizations for high-dimensional classification. Journal of the Royal Statistical Society B, revision submitted.
Zhe, S., Xu, Z., Chu, X., Qi, Y., and Park, Y. (2015). Scalable nonparametric multiway data analysis. In Proceedings of the Eighteenth International Conference on Artificial Intelligence and Statistics, pages 1125–1134.

Zhe, S., Zhang, K., Wang, P., Lee, K.-c., Xu, Z., Qi, Y., and Ghahramani, Z. (2016). Distributed flexible nonlinear tensor factorization. In Advances in Neural Information Processing Systems, pages 928–936.