Title
Genomes of 13 domesticated and wild rice relatives highlight genetic conservation, turnover and innovation across the genus Oryza.

Permalink
https://escholarship.org/uc/item/69s9j770

Journal
Nature genetics, 50(2)

ISSN
1061-4036

Authors
Stein, Joshua C
Yu, Yeisoo
Copetti, Dario
et al.

Publication Date
2018-02-01

DOI
10.1038/s41588-018-0040-0

Peer reviewed
The genus *Oryza* is a model system for the study of molecular evolution over time scales ranging from a few thousand to 15 million years. Using 13 reference genomes spanning the *Oryza* species tree, we show that despite few large-scale chromosomal rearrangements rapid species diversification is mirrored by lineage-specific emergence and turnover of many novel elements, including transposons, and potential new coding and noncoding genes. Our study resolves controversial areas of the *Oryza* phylogeny, showing a complex history of introgression among different chromosomes in the young ‘AA’ subclade containing the two domesticated species. This study highlights the prevalence of functionally coupled disease resistance genes and identifies many new haplotypes of potential use for future crop protection. Finally, this study marks a milestone in modern rice research with the release of a complete long-read assembly of IR 8 ‘Miracle Rice’, which relieved famine and drove the Green Revolution in Asia 50 years ago.

The genus *Oryza* stands out in its significance to human civilization and food security with two species having been independently domesticated as rice: *Oryza sativa* in Asia ~10,000 years ago and *Oryza glaberrima* in Africa ~3,000 years ago. Today, Asian rice is the staple food for half the world, contributing an estimated 20% of human dietary calories (FAO Fact Sheet; see URLs).
As the global population is projected to increase by almost 3 billion by 2050, rice breeders urgently need to develop new and sustainable cultivars with higher yields, healthier grains and reduced environmental footprints. Because the wild relatives of rice are adapted to different biogeographic ranges (Fig. 1a) and can tolerate many biotic and abiotic stresses, they constitute an important reservoir for crop improvement. Strategies to harness such traits for crop improvement show clear promise, as exemplified by the introgression of bacterial blight resistance (Xa21) from the wild species Oryza longistaminata.

The 27 Oryza species span ~15 million years of evolution, with 11 genome types, 6 of which are diploid (n = 12: AA, BB, CC, EE, FF and GG) and 5 of which are polyploid (n = 24: BBCC, CCDD, HHJJ, HHKK and KKLL). Cultivated rice belongs to the AA genome group, the primary germplasm pool for rice improvement. Strategies to harness such traits for crop improvement show clear promise, as exemplified by the introgression of bacterial blight resistance (Xa21) from the wild species Oryza longistaminata.

As a first step toward a deeper evolutionary understanding of the genus, we developed a large array of publicly available genomic tools from BAC libraries and BAC-end sequences to physical maps and subgenome assemblies. Comparisons of select orthologous regions have addressed the origin and evolutionary fate of genes, as well as transposable element (TE) dynamics and the effects of polyploidy. In addition, assemblies of several AA genomes and the O. brachyantha FF genome have already pointed to the power of complete genome comparisons.

Here we detail the generation and analysis of nine new reference assemblies that span cultivated and wild species in the Oryza genus and extend to the African outgroup species Leersia perrieri. Our comparative evolutionary genomics analysis includes these and four previously published genomes (O. sativa vg. japonica (AA) and indica (AA), O. glaberrima (AA) and O. brachyantha (FF)), which were together reannotated using a common pipeline with the integration of baseline RNA-seq and bisulfite sequencing data.

Our analysis of this 13-genome dataset revealed several salient features of genome evolution in Oryza:

1. A single-species phylogeny, supported by over 6,000 single-copy orthologs, places the ‘crown’ age of the AA clade at ~2.5 million years, implying a diversification rate (~0.50 net new species/million years) that is comparable to the high rates estimated for diverse plants in a variety of continental and island biodiversity hotspots;
2. Extensive interspecific gene flow, particularly between the South American Oryza glumaepatula and African AA species, underscores the semipermeable nature of Oryza species boundaries, at least within AA-genome species;
3. The emergence of many putative taxonomically restricted gene families corresponds to higher lability, reduced coding length and higher rates of evolution than in ancient families. Along with long intergenic noncoding RNA (lincRNA) genes, members of new families are more likely to localize to repetitive regions of the genome, suggesting a possible role of TEs and reduced meiotic recombination in their origin;
4. Rapid diversification and turnover of LTR-retrotransposons largely differentiate the AA, BB, FF and Leersia genome types;
5. A significant preference of deletion over insertion mutations was detected across eight AA Oryza genomes, similar to in metazoan lineages;
6. Analysis of thousands of candidate disease resistance genes shows an overabundance of heterogeneous gene pairs organized in head-to-head fashion and with atypical domains, extending support for the integrated decoy model of disease resistance function.

Results

The 13-genome data package. Chromosome-level reference assemblies for two domesticated (O. sativa vg. indica cv. IR 8 (also known as Miracle Rice) and the drought-tolerant aas variety N 22) and seven wild species (Oryza rufipogon, Oryza nivara, Oryza barthi, O. glumaepatula, Oryza meridionalis, Oryza punctata and L. perrieri) were generated using either long-read or short-read technologies, with extensive scaffold support from long-insert library reads, including BAC-ends, as summarized in Table 1 (Supplementary Note). Extensive assessments of the quality of each assembly (for example, sequence accuracy, genome completeness and gene-space coverage) are described in the Supplementary Note (Supplementary Fig. 1 and Supplementary Tables 1–22) and Supplementary Data 1 and 2. These assemblies, plus the four additional published assemblies described above, were annotated using a uniform annotation pipeline to minimize methodological artifacts (Table 1, Supplementary Figs. 2 and 3, Supplementary Tables 14–25 and Supplementary Note).

Species tree. The outline of the Oryza phylogeny is clear, but the exact relationship between AA genomes, including the two domesticated rice species, has remained elusive owing to extensive gene tree discordance. Previous work has rarely used ‘species tree’ inference methods that explicitly incorporate gene tree discordance caused by factors such as incomplete lineage sorting, and, if it did, did so with only a few genes. Using 6,015 single-copy orthologs from ten Oryza genomes including L. perrieri, we inferred strong support for a single-species phylogeny (Fig. 1b, Supplementary Fig. 4, Supplementary Table 26 and Supplementary Note).
we identified nine paracentric inversions, ranging from 60 to 300 kb in length and involving up to 19 genes (Fig. 3 and Supplementary Table 31), from which we estimate that such inversions arise about once every 1.6 million years. However, this rate is not constant, as there was only one event between the divergence of FF genomes and the AA–BB ancestor. In contrast, there were at least six inversions in the branch leading to the common ancestor of the AA-type genomes, more than double the average rate.

TE diversification and rapid elimination. Selective amplification and loss of TEs has had a key role in *Oryza* genome and chromosome evolution\(^ {17,26,27,34}\). Repeats, including TEs, constitute 27–50% of the genome assemblies (Table 1 and Supplementary Table 20), providing a unique basis for a comprehensive genus-wide comparison of TE dynamics. Each species was distinguished by its diversity of long terminal repeat–retrotransposons (LTR-RTs), the most abundant TE class\(^ {17} \). Comparative annotation and phylogenetic analysis of LTR-RTs identified several lineage-specific transpositional bursts (Supplementary Figs. 8 and 9, and Supplementary Table 28).

Note), which supports two independent origins of *japonica* and *indica* rice. We note, however, that some gene tree conflicts cannot be explained by incomplete lineage sorting alone. For example, data for chromosomes 6 and 12 suggested that the South American AA species *O. glumaepatula* is the sister group only of African *O. barthii* and *O. glaberrima*, rather than of these two species plus the *O. sativa* complex, as inferred from the whole-genome tree (Fig. 1b and Supplementary Fig. 5).

An inferred crown age of the AA species of less than 2.5 million years (Fig. 1b, Supplementary Fig. 6, Supplementary Table 27 and Supplementary Note), footprints of past gene flow among AA species might still be detectible. Regions with evidence of introgression based on a positive \(D\) statistic\(^ {37} \) were found on all chromosomes, with ten having significant introgressions between AA species (Fig. 2 and Supplementary Table 28).

Another source of topological incongruence is gene conversion between duplicated regions retained after the pan-grass polyploidy event. Such regions are particularly common on the distal regions of chromosomes 11 and 12\(^ {14} \). Recent (<4.9 million years in age) large-scale conversion events were apparent on the distal 2.2-Mb regions of both of these chromosomes (Supplementary Fig. 6). From inter- and intraspecies comparisons, we inferred four independent conversion events, one in the *L. perrieri* lineage and one each in the AA, BB and FF lineages (Supplementary Tables 29 and 30; also see the Supplementary Note), with no further events since the divergence of the AA species. Dates calculated for *O. meridionalis*, the sister group to the other AA species analyzed, suggest that this common event occurred almost concomitantly with the divergence of the AA clade.

Karyotype conservation. The 12-chromosome karyotype in rice resulted from the pan-grass polyploidy event and has deviated little in rice in comparison to other extant grasses\(^ {38–40} \). Using synteny maps and whole-genome alignments, we found that the outgroup species *L. perrieri* has many small inversions of five or more genes when compared to *O. sativa*\(^ {29} \) (Supplementary Fig. 7). To estimate the rate of such events within *Oryza*, we focused on inversions shared by at least two consecutive species in the species tree, while discounting species-specific events as possible assembly errors. With *Brachypodium distachyon* as an additional outgroup, we identified nine paracentric inversions, ranging from 60 to 300 kb in length and involving up to 19 genes (Fig. 3 and Supplementary Table 31), from which we estimate that such inversions arise about every 1.6 million years. However, this rate is not constant, as there was only one event between the divergence of FF genomes and the AA–BB ancestor. In contrast, there were at least six inversions in the branch leading to the common ancestor of the AA-type genomes, more than double the average rate.

Table 1 | Assembly and annotation statistics of 13 Oryzeae reference genomes

Species (genome type; cultivar)	Assembly size (Mb)	Repeat (%)	Annotated loci	Orthologs	Syntenic (%)a
O. sativa vg. *japonica* (AA)\(^ {29} \)	374	48.6	38,550	36,823	96.8
O. sativa vg. *indica* (AA; 93-11)\(^ {29} \)	375	42.8	37,411	36,389	94.3
O. sativa vg. *indica* (AA; IR 8)	389	37.9	35,508	33,146	96.2
O. sativa vg. aus (AA; N 22)	372	46.3	36,140	32,216	94.0
O. nivara (AA)	338	36.4	36,258	35,092	94.7
O. rufipogon (AA)	338	42.1	37,071	35,892	96.7
O. glaberrima (AA)\(^ {24} \)	285	39.3	31,267	30,375	96.9
O. barthii (AA)	308	38.3	34,575	33,574	96.4
O. glumaepatula (AA)	373	31.4	35,674	33,855	95.5
O. meridionalis (AA)	336	37.2	29,308	26,958	89.7
O. punctata (BB)	394	49.6	31,679	28,259	90.6
O. brachyantha (FF)\(^ {29} \)	261	28.7	24,208	21,480	94.0
Leersia perrieri	267	26.7	29,078	25,436	90.7

Previously published genomes are cited. \(a\)Percentage of orthologous genes at conserved positions.

© 2018 Nature America Inc., part of Springer Nature. All rights reserved.
Pairwise comparisons of the eight most closely related AA genomes identified 216,059–699,587 indels, depending on the genome comparison, with the ancestral state determined for about half of these (Supplementary Table 34). In agreement with previous work in *Oryza* and *Arabidopsis*, short indels were strongly favored. In coding regions, in-frame indels at multiples of 3 bp were overrepresented, as expected (Supplementary Table 12). There was a significant bias toward deletions (chi-squared test, *P* < 8.96 × 10⁻¹¹; Supplementary Table 35), similar to findings in metazoan lineages.

To better understand indel population dynamics and the role of domestication, we expanded this study to include 20 accessions of cultivated *O. glaberrima* and 19 of its wild progenitor, *O. barthii*. From medium-depth resequencing, we identified 162,267 additional indels in *O. glaberrima* and 448,000 in *O. barthii*. Pairwise diversity was greater in *O. barthii* (0.622/kb) than in *O. glaberrima* (0.446/kb), consistent with a genetic bottleneck and strong selection during *O. glaberrima* domestication. To further test this hypothesis, we plotted the derived site-frequency spectrum across 80,507 and 41,947 indels (>1 bp) within *O. barthii* or *O. glaberrima*, with the ancestral state inferred from *O. sativa* *vg.* *japonica* and *O. glumaepatula* as outgroups. A U-shaped frequency distribution was observed only in *O. glaberrima* (Supplementary Fig. 13), indicating a much higher fixation rate of polymorphic indels in the domesticated species than in its progenitor. *O. glaberrima* was previously shown to have been derived from subpopulations of *O. barthii* more than 3,000 years ago, with an attendant population bottleneck during early cultivation and domestication. Thus, demographic history shaped by artificial selection could largely explain the high

Table 32, most within the last 2.5 million years (Fig. 4). Because of their young average age, the LTR-RT populations of the different species are distinct. For example, six families that amplified specifically in the BB species *O. punctata* (families 11, 26, 27, 36, 48 and 50; Supplementary Table 32) occupy almost 25 Mb (or 6.3% of the assembly). Even among the closely related Asian AA species, there are marked differences in RETRO 1/2 and Spip complements (family 7; Supplementary Fig. 10 and Supplementary Table 32).

RAPID LOSS OF LTR-RTs CAN GREATLY REDUCE TE DIVERSITY AND LIMIT GENOME SIZE INCREASES. Tracking 75 orthologous LTR-RT loci across the eight most closely related AA species (Supplementary Data 3) yielded an average loss rate of 3.62 kb/million years per element. Applying this ratio to the whole genome predicts that 25 Mb will be eliminated within the next 3–4 million years unless new waves of transposition occur during the same period. Similar to previous estimates, our analysis extends these findings across the AA genomes of the *Oryza* genus.

These results reinforce the notion that TEs are important drivers of genome evolution because they fuel the rapid turnover of intergenic regions. However, not all TEs behave equally: the terminal-repeat retrotransposons in miniature (TRIMs), which are mostly located near genes, were highly conserved among all 13 genomes (Supplementary Fig. 11 and Supplementary Table 33).

Indels as drivers of genome evolution and domestication. Pairwise comparisons of the eight most closely related AA genomes located near genes, were highly conserved among all 13 genomes (Supplementary Fig. 11 and Supplementary Table 33).
frequency of fixed mutations (984 insertions and 2,110 deletions) in *O. glaberrima* (Supplementary Table 35). Indels shared by >90% of individuals were enriched in 72 putative domestication loci as compared to genome background (5.2 versus 3.1 per 100 kb; t test, \(P < 0.01\), pointing to indels as being particularly important during domestication. These observations broadly resemble observations with SNP data from Asian cultivated rice and its progenitor.

To understand the evolutionary rates of indel formation in the non-cultivated species, we note that the single-genome comparisons (*O. barthii* versus *O. sativa* *v*g. *japonica* and *O. barthii* versus *O. glaberrima*) identified up to 170,903 and 46,846 indels in *O. barthii*, but none had become fixed since *O. barthii* split from *O. glaberrima*. This observation suggests that most indels inferred from comparisons of just single genomes (Supplementary Table 34) are still polymorphic within populations.

Oryzeae- and species-specific gene families. We identified 21,448 putative gene families, which were assigned to four age bins (Fig. 5a and Supplementary Fig. 14). The most ancient group, dated to at least the common ancestor of angiosperms, included 62% of genes but only 29% of families. The Poaceae age group, comprising a further 13% of genes and 9% of families, was enriched in defense response (GO:0006952) and wound response (GO:0009611) genes, including those encoding disease resistance receptors (see below) and enzyme inhibitors (Supplementary Table 36 and Supplementary Data 4). In addition, these families were enriched in genes encoding components of the ubiquitin–proteasome pathway, including SKP1/BTB/POZ and F-box proteins, the latter of which are known to undergo lineage-specific expansions and rapid evolution in plants. Also enriched in Poaceae were genes encoding two classes of proteins abundant in late embryogenesis, which function in dehydration and other stress tolerance. Genes that emerged within the Oryzeae accounted for 60% of families and 19% of annotated loci and were enriched in seed storage proteins, defense-related genes and nucleic-acid-binding functions (GO:0003676), including various DNA-binding domains, histones and methyl-CpG DNA-binding proteins (Supplementary Table 37 and Supplementary Data 4). Species-specific families and orphans accounted for an average of 6% of annotated loci per species.

While these analyses show that lineage-specific gene families can encode proteins with recognized biological functions, only 6% of species-specific and 10% of Oryzeae-specific loci have predicted InterPro domains, as compared to 63% in Poaceae and 91% in angiosperm-derived families. Despite some methodological concerns, it is widely recognized that new genes arise continuously across all domains of life. The fraction of Oryzeae-specific genes with syntenic orthologs in a second species was not substantially lower than for the two older groups, with 86% as compared to 93% and 97% for the Poaceae and angiosperm-derived families, respectively (Supplementary Table 38). This in turn provides unique opportunities to study patterns and mechanisms of putative new gene origination within a phylogenetic framework.

New functional genes likely evolve via transitory protogenes; while most are rapidly lost, a subset will be positively selected and gradually gain the characteristics of deeply rooted genes. A key prediction is that properties such as coding length, expression, substitution rate and evolutionary stability change in an age-dependent manner.

Coding length showed clear age dependence, with the median length increasing several fold from the youngest to the oldest group (Wilcoxon rank-sum test, \(P < 2.2 \times 10^{-16}\)) (Supplementary Fig. 15). This held true even when excluding genes shared throughout the angiosperms (Kendall’s tau, \(P < 2.2 \times 10^{-16}\)) (Fig. 5b). This observed age dependence, also found in *Arabidopsis* (Supplementary Table 38). This in turn provides unique opportunities to study patterns and mechanisms of putative new gene origination within a phylogenetic framework.

Gene expression was also positively correlated with age, both when assessed qualitatively (Supplementary Fig. 14) and quantitatively (Fig. 5b). Again, the exclusion of angiosperm-derived genes from the analysis did not change this finding (Kendall’s tau, \(P < 2.2 \times 10^{-16}\)) (Fig. 5b). These findings are consistent with lower and more restricted expression of lineage-specific loci in plants.

Relaxed negative selection is a common characteristic of lineage-specific genes. Comparisons of syntenic orthologs confirmed a trend of relaxed selection in younger genes (for example, median \(K_{A}/K_{S} \) for Oryzeae (0.59) > Poaceae (0.42) > angiosperms (0.27)),

Fig. 4 | Abundance and age distribution of LTR-RT insertions belonging to the Copia and Gypsy superfamilies and unclassified elements in 11 Oryzeae genomes. Box-and-whisker plots show the median and upper and lower quartiles of insertion age, while the width of each ‘violin’ is proportional to element abundance (plots not scaled between superfamilies).
concomitant with higher rates for both nonsynonymous and synonymous substitutions (Wilcoxon rank-sum test, $P < 2.2 \times 10^{-16}$) (Supplementary Fig. 16). Nevertheless, the median K_s value for $O. nivara$ (Fig. 5c), we found a significant negative correlation for K_s, K_a and K_a/K_s with age, even when restricting to nodes within the Oryzeae (Kendall’s tau, $P < 10^{-6}$).

A final expectation is greater evolutionary stability of older genes. On average, any one species had 96% of families shared through the angiosperms but only 76% of Poaceae-specific and 15% of Oryzeae-specific families. Similarly, 75% of families shared through the angiosperms were present in all species but only 34% of Poaceae-specific and 15% of Oryzeae-specific families were (Supplementary Fig. 14). The oldest families were also the largest, consistent with expectations that fixed families diversify over time. Finally, Oryzeae-specific loci were more likely to be found near centromeres over low-recombination regions, and thus more likely to reside closer to LRT-RTs (Fig. 6 and Supplementary Fig. 17).

Chimeric genes are common in $O. sativa$, suggesting that new genes originate at a much higher frequency than in animals66,67. One mechanism of chimeric gene formation is the transposition of genomic sequences captured by flanking MULE DNA transposons in rice68,69, MULE-derived loci (MDLs) accounted for 7% of Oryzeae- and species-specific genes. While this is a small minority, it is clearly much higher than for all genes (chi-squared test, $P < 10^{-12}$) (Supplementary Table 39). MDLs in AA genomes showed high rates...
of microsynteny (68–92%), indicative of conserved genomic position over periods of up to 2.4 million years. MDLs showed different characteristics from non-gene-containing MULEs, having for example higher GC content\(^1\) (Supplementary Fig. 18). Methylation levels of MDLs were also lower and changed with evolutionary age\(^7\) (Supplementary Fig. 19).

LincRNA genes as a source of genetic novelty. We found thousands of lincRNAs that did not overlap protein-coding genes. *L. perrieri* had more lincRNAs than any *Oryza* species (\(q \leq 3 \times 10^{-31}\)) (Supplementary Fig. 20), while the two domesticated species, *O. sativa* and *O. glaberrima*, had significantly fewer than their wild ancestors (*O. glaberrima* versus *O. barthii*, \(q \leq 5 \times 10^{-20}\); *O. sativa* versus *O. rufipogon*, \(q \leq 4 \times 10^{-7}\)). These differences cannot be explained by different RNA-seq coverage (Supplementary Fig. 21). Most lincRNA families have evolved very recently, with the majority being species specific (Supplementary Fig. 22). Of the 23,633 families identified in nine species, over 91% were species specific and only 101 lincRNA families (<0.5%) were detectable as far back as the common ancestor of *Oryza* and *L. perrieri*, indicating rapid emergence and turnover.

Similarly to vertebrates\(^{27,23}\), lincRNAs were enriched with TE-derived sequences, especially ones from DNA transposons and LTR-RTs (found in > 59%; Supplementary Fig. 23 and Supplementary Data 5). Whether this tolerance for TE sequence derives from non-functionality of the lincRNA transcripts or a modular structure that allows for large indels remains to be explored.

Evolution of disease resistance genes. Most plant disease resistance genes encode intracellular nucleotide-binding, leucine-rich repeat (NLR) receptors that directly or indirectly recognize pathogen effector proteins. NLR content is highly variable among rice populations, accounting for the majority of copy number and presence/absence polymorphisms affecting genes\(^{44,73}\), explained by rapid evolution and balancing selection\(^{77,78}\).

We identified 5,408 candidate NLR genes, ranging from 237 in *O. brachyantha* to 535 in *O. sativa* versus *O. indica* (93–11) (Supplementary Table 40), distributed across 28 subfamilies (Fig. 7a and Supplementary Tables 41 and 42). Summation of duplication histories in gene trees showed that a previously reported expansion of NLR genes in the AA genomes\(^26\) can be more precisely placed at the common ancestor of Asian and African rice, after the split of *O. meridionalis* and *O. glumaepatula* (Supplementary Fig. 24). In addition, NLR expansion was markedly higher in both the *indica* and *japonica* varietal groups as compared to their wild progenitors, consistent with recent artificial selection for increased NLR diversity.

As previously reported\(^{26,73,40}\), most NLR genes are positionally clustered (Supplementary Table 40), with the greatest density on chromosome 11, a finding now extended to the *Leersia* genus (Supplementary Table 43). One-third of the 1,046 clusters across 13 genomes had mixed subfamily composition (Supplementary Table 40) indicating that they did not arise simply by local duplications of single progenitor genes. Recent studies have shown that disease resistance sometimes requires the joint action of two side-by-side NLR genes\(^{73,41–43}\), suggesting that formation and maintenance of complex clusters may be driven by such functionally coupled pairs. As typified by rice *RGA4–RGA5*\(^5\) and *Pik-1–Pik-2*\(^4\), coupled NLRs are frequently distantly related, arranged in head-to-head formation (divergently transcribed) and include atypical domains that function as integrated decoy domains in pathogen recognition\(^{44}\).

To investigate the prevalence of these characteristics, we studied all 1,386 instances of adjacent NLR genes, of which over one-quarter were classified as heterogeneous (Supplementary Tables 44–46). Among these, the head-to-head configuration was significantly

Fig. 6 | Positional bias of loci derived from ancient and recent families in the Oryzeae. a. Each segment represents a stacked histogram of tiled windows of 100 loci. Species: 1, *O. sativa* var. *japonica*; 2, *O. sativa* var. *aus* (N 22); 3, *O. sativa* var. *indica* (IR 8); 4, *O. sativa* var. *indica* (IR 93–11); 5, *O. rufipogon*; 6, *O. nivara*; 7, *O. glaberrima*; 8, *O. barthii*; 9, *O. glumaepatula*; 10, *O. meridionalis*; 11, *O. punctata*; 12, *O. brachyantha*; 13, *L. perrieri*. Recombination rate is shown in the outer ring, ranging from 0 to 9 cM/Mb, based on the integrated genetic/physical map of rice (constructed from data from Harushima et al.\(^{103}\) and McCouch et al.\(^{104}\) for *O. sativa* var. *japonica* downloaded from http://archive.gramene.org/). Triangles show the position of rice centromeres (see URLs). b. Differential correlations in *O. sativa* var. *japonica* of gene age group prevalence (calculated over 191 2-Mb non-overlapping windows) with chromosome recombination rate. Plots show individual points color-coded by chromosome fitted by simple linear regression. Pearson’s correlation coefficient (\(r\)) and \(P\) value are shown for each plot.
more prevalent than expected by chance (47% versus 25%; chi-squared test, \(P = 0.0001\)) and also more likely to show conserved synteny than other arrangements (Supplementary Fig. 25 and Supplementary Table 45). In contrast, homogeneous pairs showed significant bias for the head-to-tail arrangement (chi-squared test, \(P = 0.0001\)) (Supplementary Table 45), which may reflect underlying mechanisms of tandem duplication.

Across the phylogeny, we identified 230 NLR genes with unusual N-terminal domains and 239 NLR genes with unusual C-terminal domains, with 23 genes having both (Supplementary Data 5). The most common domains match known integrated decoy domains \(85,86\), but many more rare types were also found. The presence of specific domains in different NLR subfamilies point to multiple, independent acquisitions of decoys by NLRs (Supplementary Table 42). Among adjacent NLR genes, putative integrated decoy domains were significantly more prevalent in heterogeneous pairs arranged in head-to-head configuration as compared to other classes (Supplementary Table 45; chi-squared test, \(P < 0.0001\)). These trends with the Pik-1–Pik-2 locus and adjacent cluster of RGA4–RGA5-like pairs are illustrated in Fig. 7b, with evidence for evolution of new specificities.
both within species and between species, by acquisition of WRKY, NAM, protein kinase, U-box and VQ domains. Finally, an analysis of the Pi-ta region (Supplementary Fig. 26) identifies an excellent candidate for the tightly linked R gene Pi-ta2, whose broader resistance spectrum encompasses that of Pi-ta81 but which has not been positively identified because of very low recombination in the Pi-ta region82.

Discussion

With two independently domesticated species, *Oryza* has had a significant role in advancing human civilization, leading some rice-dependent cultures to revere ‘rice is life’, as exemplified in dramatic fashion ~50 years ago with the release of IR8 in Asia. As the world population approaches 10 billion by 2050, rice breeders are faced with the challenge of producing crops that are high yielding and more nutritious while at the same time being more sustainable. How can we meet the challenge of producing more food and at the same time protecting the environment?

The premise of the International *Oryza* Map Alignment Project (IOMAP), initiated in 2003, was to develop a set of high-quality genomic resources for the wild relatives of rice that could be used as a foundational resource to discover and utilize novel genes, traits and/or genomic regions for crop improvement and basic research. IOMAP began with the generation of genomic tools (BAC libraries and physical maps) derived from wild accessions that have been actively used in breeding programs to introgress new traits into cultivated rice83. Only recently have viable F1 hybrids been developed for all 25 wild species crossed with *O. sativa*.

Here we describe the generation of new reference assemblies for six wild *Oryza* species (*O. nivara, O. rufipogon, O. barthii, O. glumaepatula, O. meridionalis* and *O. punctata*), two domesticates (*O. sativa* var. indica (IR 8) and *O. sativa* var. aus (N 22)) and the closely related outgroup species *L. perrieri*. In combination with four previously published *Oryza* genomes, our dataset represents a genome-wide vista of the results of ~15 million years of both natural and artificial selection on a single genus. Over this time period, the *Oryzeae* have maintained a base chromosome number of 12, despite having adapted to different ecological conditions associated with their global distribution and withstanding bursts of TE diversification that, in some cases, led to doubling of genome sizes, as in *O. australiensis*84 and *O. granulata*85.

Our phylogenomic work illustrates both the challenges of inferring species phylogenies in closely related plant taxa—inefficient lineage sorting86, hybridization and introgression87—and the power of whole-genome sequences to untangle the resulting phylogenetic discordance. Combining recent tools for species tree inference with this massive dataset permitted us to construct a much more nuanced view of the species phylogeny in *Oryza* that reflects the mosaic history of different parts of the genome88. Not only does this allow a more complete framework for studies of the evolution of genes, chromosomal and genomes in *Oryza*, but it also leads to more accurate placement of *Oryza* species in an evolutionary and ecological context. For example, our genome-based estimate of the age of the AA genome clade implies a remarkably rapid diversification rate of ~0.50 net new species/million years, placing it on par with many rapidly diversifying taxa in island and continental hotspots89,90. This rapid species diversification among *Oryza* species in the AA clade likely provided special opportunities for cultivation and improvement by humans, resulting in two independent domestication events in this group.

Our analyses of TE-driven genome dynamics in *Oryza* point to a very high rate of TE turnover over long evolutionary periods. While this has been previously demonstrated in cultivated rice, it was unclear whether this pattern holds for the entire genus. We show that this process results from both recent lineage-specific TE amplifications and a high deletion rate of TE-related sequences. Even if *Oryza* genomes share many TE families, one could expect that the vast majority of TE insertions are polymorphic among wild rice species. Several recent studies have demonstrated the functional impact of TE-related sequences in rice91,92 and other crops93,94 on gene expression. TE polymorphisms in wild *Oryza* species could thus be exploited for breeding in addition to the diversity found in the genes themselves.

Comparative analysis of gene annotations across the *Oryzeae* revealed many apparent lineage-specific families that emerged in the common ancestor of grasses or within the *Oryzeae* clade. The latter exhibited characteristics typical of taxonomically restricted loci in plants and other domains of life, including shorter coding sequences, low expression, rapid evolution rates and family instability. Lack of recognizable functional domains also characterized these annotations, consistent with a de novo origin. Although such qualities can also be found in annotation artifacts95,96, the *Oryzeae*-specific loci (as distinguished from species-specific loci) showed a surprising degree of conserved synteny, even among more distantly related species, and we therefore focused on this subset to examine the effects of age on these characteristics. Our finding of a clear correlation toward more ‘gene-like’ characteristics with increasing age is consistent with *Oryzeae*-specific loci representing a pool of rapidly evolving sequences with adaptive potential. The observed continuum of characteristics over evolutionary time extended to the older, more established gene families, with characteristics of Poaceae-derived families intermediate to those of the very new and very old. However, the relatively high proportion of genes in Poaceae-derived families with conserved functional domains (63% as compared to 91% in ancient families) suggests that de novo origin accounts for a minority of these families. Indeed, among *Oryza*-derived loci, the small proportion (~10%) with recognizable domains would have greater potential for future survival as compared to loci from other families. In both Poaceae- and *Oryzeae*-specific families, genes that do have conserved domains are enriched for defense and stress response functions, suggesting that their rapid evolution was driven by adaptation to varied environmental pressures. Although few putative de novo–originated genes have so far been functionally characterized in plants, the rice OsDR10 gene, conserved only in the *Oryzeae* tribe, is notable in having apparent function in the regulation of pathogen defense responses97.

TEs make an important contribution to the formation of lineage-specific loci in plants, by exaptation98,99, or exon capture100. Here MDLs accounted for almost 7% of *Oryzeae*-derived and species-specific loci. We also found that lincRNA genes, which mostly arose in a species-specific manner, are associated with both DNA and LTR-RT-type transposons. Aside from these, we found a clear positional bias of putative new loci over retrotransposon-rich pericentromeric regions, suggesting that LTR-RT activity may contribute to the origination of new genes. Although yet to be confirmed, the observed rapid rates of insertion and excision of LTR-RTs may drive the generation of novel sequences at these sites with chance generation of ORFs101. An unanticipated finding is that the rate of silent site substitutions was elevated in new gene families as compared to older ones. Elevated synonymous substitutions may be caused by higher background mutation rates in pericentromeric regions as compared to gene-rich regions, as has been found in *Arabidopsis*102. A second hypothesis is that background mutations accumulate more rapidly owing to suppressed meiotic recombination in pericentromeres. High recombination rates in euchromatin provide opportunities for allelic gene conversion during meiosis, correcting mismatches caused by spontaneous mutation.

Disease pathogens remain a major threat to rice harvests worldwide, with yearly losses from the most serious disease, blast (*Magnaporthe oryzae*), having the potential to feed an estimated 60 million people103. Future forecasts may become dire as climate change alters or expands the geographic range of pathogens. Risk-
reducing growing techniques and breeding of natural resistance have historically provided the most practical and effective means of control, with chemical fungicides as a last resort in some countries. Yet, natural resistance is fragile owing to the rapid evolution of new pathogens that evade host recognition. Stacking of traits from the large array of resistance genes and haplotypes in existing rice germplasm is a realistic approach to build durable resistance. Our sequencing of seven wild relatives of crop species opens a treasure trove of novel resistance haplotypes and loci to sustain this strategy. The practical utility of our resources is directly demonstrated by our identification of a strong candidate for the long-sought Pi-ta locus, which in combination with Pi-ta provides broad-specificity resistance to M. oryzae.

Sequencing of the first two Asian rice genomes over a decade greatly accelerated the identification and characterization of genes important to breeders, as well as insights into selective pressures acting on their evolution. The availability of 13 high-quality reference genome assemblies, presented here, now permits exploration of the majority of orthologous loci and genomic regions at will for the AA, BB and FF genome types and L. perriera. As more wild and cultivated Oryza genomes become available, this resource will become even more powerful.

Methods

Methods, including statements of data availability and any associated accession codes and references, are available at https://doi.org/10.1038/s41588-018-0040-0.

Received: 29 October 2017; Accepted: 18 December 2017; Published online: 22 January 2018

References

1. Atwell, B. J., Wang, H. & Sacchar, A. P. Could abiotic stress tolerance in wild relatives of rice be used to improve Oryza sativa? Plant Sci. 215–216, 48–58 (2014).
2. Giuliani, R. et al. Coordination of leaf photosynthesis, transpiration, and structural traits in rice and wild relatives (Genus Oryza). Plant Physiol. 162, 1632–1651 (2013).
3. Mizuta, Y., Harashima, Y. & Kurata, N. Rice pollen hybrid incompatibility caused by reciprocal gene loss of duplicated genes. Proc. Natl. Acad. Sci. USA 107, 20417–20422 (2010).
4. Garg, R. et al. Deep transcriptome sequencing of wild halophyte rice, Porteresia coarctata, provides novel insights into the salinity and submergence tolerance factors. DNA Res. 21, 69–84 (2014).
5. Iwamatsu, Y. et al. UVB sensitivity and cyclobutane pyrimidine dimer repair in rice (Oryza sativa). Proc. Natl. Acad. Sci. USA 97, 5012–5017 (2000).
6. Chen, J. F. et al. Whole-genome sequencing of Oryza sativa L. ssp. Oryza sativa (AA genome type) and cultivated Oryza glaberrima. Proc. Natl. Acad. Sci. USA 106, 2071–2076 (2009).
7. Iwamatsu, Y. et al. Comparative physical mapping between the two homeologous chromosomes 11 and 12 in Oryza sativa L. ssp. Oryza sativa (AA genome type). BMC Plant Biol. 10, 1–10 (2010).
8. Zhang, Y. et al. Genome and comparative transcriptomics of African wild rice Oryza longistaminata provide insights into molecular mechanisms of genome size evolution. Front. Plant Sci. 4, 248 (2013).
9. Zhu, T. et al. Phylogenetic analysis of BAC-end sequence libraries in Oryza (Poaceae). Syst. Bot. 35, 512–523 (2010).
10. Zhou, T. et al. Phylogenetic relationships and genome divergence among the AA genome species of the genus Oryza as revealed by nuclear and chloroplast genomes. BMC Evol. Biol. 11, 165 (2011).
11. Leggett, C. et al. Comparative genomic analysis of a genus-wide vertical data set. Genome Res. 20, 1545–1557 (2010).
12. Murat, F. et al. Ancestral grass karyotype reconstruction unravels new mechanisms of genome shuffling as a source of plant evolution. Plant J. 74, 536–543 (2010).
13. Shuai, Z. et al. Rapid diversification of five Oryza AA genomes associated with rice adaptation. Proc. Natl. Acad. Sci. USA 111, E4954–E4962 (2014).
14. Zhang, J. et al. Extensive sequence divergence between the reference genomes of two elite indica rice varieties Zhenshan 97 and Minghui 63. Plant Sci. 179, 221–232 (2011).
15. Du, Y. et al. Draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 327, 92–99 (2000).
16. An, H. et al. Versatile prototype of a wild rice BAC resource: a genus-wide and genome mechanistic of genome shuffling as a source of plant evolution. Plant Physiol. 163, 60–70 (2013).
17. He, R. et al. A systems-wide comparison of red rice (Oryza longistaminata) tissues identifies rhizome specific genes and proteins that are targets for cultivated rice improvement. BMC Plant Biol. 14, 46 (2014).
18. Song, W. Y. et al. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270, 1804–1806 (1995).
19. Jena, K. K. The species of the genus Oryza and transfer of useful genes from wild species into cultivated rice, O. sativa. Breed. Sci. 60, 518–523 (2010).
20. Ammiraju, J. S. S. et al. The Oryza bacterial artificial chromosome library: construction and analysis of 12 deep-coverage large-insert BAC libraries that represent the 10 genome types of the genus. Oryza. Genome Res. 16, 140–147 (2006).
21. Ammiraju, J. S. S. et al. The Oryza BAC resource: a genus-wide and genome scale tool for exploring rice genome evolution and leveraging useful genetic diversity from wild relatives. Breed. Sci. 60, 536–543 (2010).
22. Kim, H. et al. Construction, alignment and analysis of twelve framework physical maps that represent the ten genome types of the genus Oryza. Genome Biol. 9, R45 (2008).
23. Kim, H. et al. Comparative physical mapping between Oryza sativa (AA genome type) and O. punctata (BB genome type). Genetics 176, 379–390 (2007).
24. Rouze, P. et al. De novo next generation sequencing of plant genomes. Rice 2, 35–43 (2009).
25. Uozu, S. et al. Repetitive sequences: cause for variation in genome size and chromosome morphology in the genus Oryza. Plant Mol. Biol. 35, 791–799 (1997).
26. Kojima, K. et al. The species of the genus Oryza and cultivated Oryza species and their relatives. Trends Ecol. Evol. 24, 332–340 (2009).
27. Molina, J. et al. Molecular evidence for a single evolutionary origin of domesticated rice. Proc. Natl. Acad. Sci. USA 108, 8351–8356 (2011).
28. Durand, E. V., Patterson, N., Reich, D. & Slatkin, M. Testing for ancient admixture between closely related populations. Mol. Biol. Evol. 28, 2239–2252 (2011).
29. Wang, X. et al. Genome alignment spanning major Poaceae lineages reveals heterogeneous evolutionary rates and altered inferred dates for key evolutionary events. Mol. Biol. Evol. 35, 430–442 (2018).
30. Murat, F. et al. DExea, an approach for genome shuffling as a source of plant evolution. Genome Res. 20, 1545–1557 (2010).
31. Uozu, S. et al. Repetitive sequences: cause for variation in genome size and chromosome morphology in the genus Oryza. Plant Mol. Biol. 35, 791–799 (1997).
32. Bao, W., Kojima, K. K. & Kohany, O. Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob. DNA 6, 11 (2015).
33. Vitte, C., Chaparro, C., Quinseville, H. & Panaud, O. Spip and Squiq, two novel rice non-autonomous LTR retro-element families related to RIRE3 and RIRE8. Plant Sci. 172, 8–19 (2007).
Acknowledgements

We gratefully acknowledge CyVerse and the Texas Advanced Computing Center (TACC) for consultation and provision of computational resources. This material is based on work supported by the US National Science Foundation under grants 0321678, 0638541, 0822284 and 1026200 to S.A.J., C.A.M., M.J.S., M.L., D. Ware and R.A.W., the Bud Antle Endowed Chair in Agriculture and Life Sciences, the Alexander von Humboldt Research Award and the AXA Chair in Genome Biology and Evolutionary Genomics to R.A.W., DFG SFB 1101 to C.B. and D. Weigel, a University of Perpignan BQR grant to M.-C.C., E.L. and O.P., a Senior Chair from Institut Universitaire de France to O.P. and a CNPq grant to A.C.d.O. D. Ware was also funded by US National Science Foundation grant 1127112 and USDA–ARS 1907-21000-030-00D. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the US National Science Foundation.

Author contributions

J.C.S., M.C., B.H., R.H., Y.C.H., N.K., A.C.O., O.P., S.A.J., C.A.M., M.J.S., M.L., D. Ware, D. Weigel and R.A.W. conceived and contributed to all aspects of the project. Y.C.H., B.H. and R.A.W. led the O. nivara genome sequencing project with significant contributions from C.W., S.K., J. Zeng, F.W., Y.Y., D.K., J.L.G., J.S.S.A., S.H.L., J.T., L.F.R. and A.D.; N.K. and B.H. led the O. rufipogon sequencing project with significant contributions from Q.F. and Q.Z.; R.H., O.P., Y.Y. and R.A.W. led the O. meridionalis genome sequencing project with significant contributions from D.K., J. Zhang, J.L.G., J.S.S.A., S.H.L. and J.T.; O.P., A.C.O., Y.Y. and R.A.W. led the O. glumaepatula genome sequencing project with significant contributions from D.d.R.F., L.C.d.M., D.K., J. Zhang, J.L.G., J.S.S.A., S.H.L., J.T., L.F.R. and A.D.; R.H. and Y.Y. and R.A.W. led the O. barthii genome sequencing project with significant contributions from J. Zhang, J.L.G., J.S.S.A., S.H.L., J.T., M.W., Y.Y., D.K., L.F.R. and A.D.; R.A.W. led the O. punctata genome sequencing project with significant contributions from J. Zhang, J.L.G., J.S.S.A., D.C., D.K., S.H.L., J.T., L.F.R. and A.D.; R.A.W. led the O. sativa vg. aus cv. N 22 genome sequencing project with significant contributions from J.S., D.F., D.C., J. Zhang, D.K., S.H.L., J.T., K.L.M., N.A. and R.M.; D.C. and R.A.W. led the O. sativa vg. indica cv. IR 8 genome sequencing project with significant contributions from D.K., S.H.L., J.T., K.L.M., N.A. and R.M.; R.A.W. led the L. perrieri genome sequencing project with significant contributions from Y.Y., D.K., J.L.G., X.S., S.H.L. and J.T. P.S. and K.K.L grew and supplied plant material for the project. X.S. generated baseline transcriptome data with significant contributions from AGI's Genome Sequencing Center. J.C.S., Y.Y. and J.L.G. performed all assembly validation analyses. C.B. and D. Weigel performed all bisulfite sequencing and data analysis. K.C. loaded and ran the MAKER-P annotation pipeline for the 13-genome dataset. D.C. and O.P. coordinated the repeat annotation effort with significant contributions from D.G., A.I., J.W., C.E.M.L., A.Z., M.E., C.F., S.A.J. and T.W. J.C.S., S.W. and C.N. performed analysis of gene families and disease resistance genes and interpretations. M.J.S. and D.J.Z. led all phylogenomics analyses and interpretations. M.-C.C., E.L., R.S.d.S., D.C. and O.P. performed LTR-RT half-life analysis and interpretation. J.J. and R.C. performed all chromosome 11 and 12 evolutionary analyses and interpretation. Y.L., M.L. and M.C. performed all indel analysis and interpretation. C.A.M. and K.G.N. performed all lincRNA analyses and interpretation. L.Z., C.Z., A.R.G., J.W., C.F. and M.L. performed all new gene evolution analysis and interpretation. J.C.S. and R.A.W. wrote the manuscript with significant writing contributions led by Y.Y., M.C., O.P., S.A.J., C.A.M., M.J.S., M.L., J.J., C.F., D. Ware and D. Weigel.

Competing interests

The authors declare no competing financial interests.

Additional information

Supplementary information accompanies this paper at https://doi.org/10.1038/s41588-018-0040-0.

Reprints and permissions information is available at www.nature.com/reprints.

Correspondence and requests for materials should be addressed to R.A.W.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Methods

The 13-genome data package: sequence, assembly and annotation. Detailed descriptions of the genome sequencing, assembly, assembly validation and annotation are provided in the Supplementary Note under the same title.

Briefly, chromosome-level reference assemblies for two domesticated (O. sativa var. indica cv. IR 8 (Miracle Rice) and the drought-tolerant aus variety N 22) and seven wild species (O. rufipogon, O. nivara, O. barthii, O. glumaepatula, O. meridionalis, O. punctata and L. perrieri) were generated using either long- or short-read technologies; most of these have extensive scaffold support from long-insert library reads, including BAC-ends, as summarized in Table 1. These assemblies, plus the four additional published assemblies115,116,117, were annotated using a uniform annotation pipeline to minimize biases associated with different methods for gene and repeat identification (Table 1).

Phylogenetic inference. Data preparation. For each chromosome, we used the BLAST-Overlap-Synteny (BOS) filtering protocol118 to identify clusters of single-copy orthologous loci. Only clusters containing a single sequence from each genome were used in further analyses (note: the IR 8 and N 22 genomes were not used in this analysis as they did not provide any meaningful phylogenetic signal beyond the Nipponbare ReSeq sequence). The coding regions of each locus were aligned at the nucleotide level using PRANK v1.14.7 with the default settings except genthreshfortopoterm = 5000 and startoptprec = 0.01. For each individual gene alignment, the best fitting substitution model was chosen using ModelTest v3.7107 with the Akaike information criterion119. Supermatrix analyses were run using a partitioned likelihood substitution model that allowed each locus an independent relative substitution rate. A single general time-reversible nucleotide substitution model with gamma-distributed rate heterogeneity and an estimated proportion of invariable sites was shared by all loci within each supermatrix. Confidence estimates were obtained from 400 bootstrap search replicates computed on each supermatrix. In addition, 200 bootstrap tree searches were performed on each individual locus and used as input to species tree analyses. During bootstrap analyses, substitution model parameter values were fixed at the values estimated during the maximum-likelihood tree search, for tree analyses. During bootstrap analyses, substitution model parameter values within each supermatrix. Confidence estimates were obtained from 400 bootstrap samples, and this collection of trees was used as input to MP-EST. For each chromosome, alignments containing sequences from all 11 genomes were concatenated to create 12 ‘supermatrix’ alignments.

Maximum-likelihood tree inference. Maximum-likelihood phylogenies were inferred for individual loci using GARLI (default settings except genthreshfortopoterm = 5000 and startoptprec = 0.01). For each individual gene alignment, the best fitting substitution model was chosen using ModelTest v3.7107 with the Akaike information criterion119. Supermatrix analyses were run using a partitioned likelihood substitution model that allowed each locus an independent relative substitution rate. A single general time-reversible nucleotide substitution model with gamma-distributed rate heterogeneity and an estimated proportion of invariable sites was shared by all loci within each supermatrix. Confidence estimates were obtained from 400 bootstrap search replicates computed on each supermatrix. In addition, 200 bootstrap tree searches were performed on each individual locus and used as input to species tree analyses. During bootstrap analyses, substitution model parameter values were fixed at the values estimated during the maximum-likelihood tree search, for computational efficiency. Branches with negligible maximum-likelihood branch length estimates (1 x 10^-5) were collapsed, creating polytomes.

Species tree analyses. The MP-EST program v1.0120 was used to infer species trees from collections of gene trees using a multispecies coalescent model. Analyses were run independently for each chromosome. Polytomies in locus trees were first randomly resolved with zero-length branches. To account for uncertainty in the inference of gene trees for each locus and in the arbitrary resolution of polytomies, MP-EST was run multiple times using gene trees selected from bootstrap samples. For each chromosome, one tree was randomly selected for each locus from the bootstrap samples, and this collection of trees was used as input to MP-EST. This procedure was repeated 400 times. MP-EST support values for species tree branches were calculated as the proportion of replicates returning a species tree containing that branch.

Oryza divergence time estimation. Divergence times within Oryza were estimated using the supermatrix phylogenies inferred for each chromosome. The phylogenies were rooted using the outgroup L. perrieri, which was subsequently pruned from the trees. These pruned trees, with maximum-likelihood branch length estimates obtained from GARLI, were used as input to PATHd8 v1.9121. PATHd8 smoothed substitution branch lengths measured as substitutions per site to an ultrametric tree with relative node ages. To convert the relative ages to absolute ages, the age of the crown group of Oryza (the root of the pruned tree) was fixed using a calibration consistent with several recent studies122,123 (15 million years).

Introgression among AA genomes. We sought evidence of introgression within the AA-genome species to understand further some of the gene tree discordance observed in the chromosome-level analyses. We used the D statistic124, which examines site patterns (so-called ABBA/ABAB patterns) in genome alignments for a specified four-taxon tree. A significant departure from zero of the difference in numbers of the two kinds of ‘introgression’ sites was tested with a block-jackknife procedure125, which is aimed at overcoming autocorrelations within the sequence. We focused on the case that seemed problematic in gene/species tree construction: the position of O. glumaepatula. We used the tree (O. punctata, (O. glumaepatula, (O. barthii, O. rufipogon))) to see whether there was evidence that O. glumaepatula underwent introgression with either the African O. barthii or Asian O. rufipogon. As a control, we also considered the tree (O. punctata, (O. meridionalis, (O. barthii, O. rufipogon))), which replaces the problematic O. glumaepatula with another taxon in the AA clade, O. meridionalis, which is more distantly related to the Asian/African pair. Small alignment blocks sampled across the sequences of each chromosome were assembled using the program halmer126, which identifies exactly matching syntenic single-copy k-mers (k = 32) found in all four taxa, extended by an uncollapsed 25-nt region up- and downstream of each k-mer. Typically, the final dataset included 110–155% of the sequence data after this culling. D statistics were computed with a Perl script (available upon request), and block-jackknife estimates of the standard error of D were obtained using m = 20 blocks.

Concerted evolution in chromosomes 11 and 12. Whole-chromosome alignments of complete sequences of chromosomes 11 and 12 from O. sativa (Nipponbare ReSeq sequence), O. rufipogon, O. glaberrima, O. barthii, O. punctata, O. brachyantha and L. perrieri were carried out using a modification of the method described in Jacquemin et al.111 (note: the IR 8 and N 22 genomes were not used in this analysis as they did not provide any meaningful phylogenetic signal beyond the Nipponbare ReSeq sequence). Initial alignment was made with Mugsy using the parameters -d 100 -e 200 -nucmeropts -l 20, and alignments were refined with Mugsy itself. All subsequent analyses were encapsulated by in-house scripts. Multiple-sequence alignments (300bp) were generated directly from the MAF file and converted into a nexus format. Sequences with a majority of undefined bases or that were < 50bp in length were eliminated. Indels were coded with Indelcoder127 as described, and trees were generated with MRBAYES128 using the following parameters: Nst = 2 and Rates = Invgamma. The data were partitioned according to type: DNA and gap binary information. For the gap binary partition, we selected the option coding = variable. The four chains were run for 100,000 generations, sampling trees every 100 generations with the first 25% of trees discarded as burn-in. Posterior probabilities were calculated from the remaining samples. Intra- and interspecies distances were calculated from the output consensus file. Trees containing sequences from at least five species were retained for analysis. Phylogenetic (n = 5,782) trees were retained and used for calculation of intra- and interspecies Bayesian distances using BioPerl modules. For analyses of genome sequence, alignments of chromosomes 11 and 12 from O. sativa, O. rufipogon, O. glaberrima, O. barthii, O. nivara, O. glumaepatula, O. meridionalis and O. punctata were used. Divergence dates were calculated from the median nucleotide distance values as previously described115. Dates of divergence between species calculated by this method are consistent with published estimates.

Synteny maps and screen for chromosomal inversions. Synteny relationships between orthologous genes were mapped for all 78 pairwise combinations of the 13 reference assemblies. We used DAGeHaier111 to identify collinear gene pairs within syntonic blocks, with parameters requiring neighboring genes to be no more than ten genes apart and a minimum chain length of five collinear genes. As this method is strictly speaking identified ‘in-range’ syntencies of orthologs that mapped no more than five genes distant from the expected collinear position111. Clustered sets of synteny genes encompassing all species were identified by single-linkage clustering over the pairwise relationships. As a second approach, we conducted pairwise whole genome alignments using LASTZ129 and applied a suite of programs to filter maximum-scoring chains and identify non-overlapping ‘nets’ corresponding to regions of synteny115. To screen for chromosomal inversions, we first identified in each species the set of syntonic blocks (consisting of five or more collinear orthologs) having reverse orientation relative to the Nipponbare ReSeq sequence (note: the IR 8 and N 22 genomes were not used in this analysis as they did not provide any meaningful phylogenetic signal beyond the Nipponbare ReSeq sequence). Identified blocks were further screened to remove blocks associated with duplication or movement, by ensuring that the immediate upstream and downstream syntonic blocks were contiguous and in the forward orientation in both genomes. To increase confidence in our identification, we next screened for putative inversion events shared by two or more species. Putative inversions that overlapped with respect to IRGSP1.0 coordinates were identified using BEDTools v2.17.0130. Shared events were also required to have LASTZ129 alignment breakpoints within 20kb of one another in the IRGSP reference. The set of candidate inversion events was further refined to include only those that could be logically placed at a discrete internal branch of the species tree. Thus, the final set of putative inversion events was identified by the blocks found in reverse orientation in all outgroup species and in the forward orientation in all in-group species. A synteny map of IRGSP 1.0 with R. distachyon (built in the same manner as described above) was used as an additional outgroup to confirm the ancestral state of the region.

LTR-retrotransposon deletion rate. To estimate the deletion rate of LTR-RTs in rice, we first identified loci of the genomes that were absent from O. meridionalis but partly conserved in the remaining eight sequenced AA genomes and that contained deleted LTR-RTs. This was achieved in the following way: (1) All AA genomes were analyzed with RepeatMasker (see URLs) using a database of only full-length LTR-RTs to identify regions containing LTR-RT sequences. (2) To identify orthologous regions between the Nipponbare ReSeq sequence106 and all the other AA genomes (query), sequences were aligned with NUCmer from the MUMmer package (version 3.1)131 using the Nipponbare ReSeq sequence (IRGSP1.0 assembly) as the reference: nucmer -q 500 -c refforward -q <query>, -d for all other options. The NUCmer outputs were then parsed with the
utility show-coords from the same package: show-coords -r g -1 70 -T -H < nuclearr output>. The -g option was used to secure the orthologous relationship between the conserved blocks, thereby allowing the identification of indels by the break position, which were two adjacent alignments. The left position of conserved blocks between O. sativa var. japonica and each of the other AA genomes. Moreover, as mentioned above, the show-coords output from the O. sativa var. japonica–O. meridionalis comparison led to the identification of indels between the two genomes (regions of O. sativa var. japonica that were absent from O. meridionalis–O. glumaepatula orthologous positions). (3) Starting from the show-coords output, custom Perl scripts were used to identify regions that were common between O. sativa var. japonica and one to five of the seven remaining AA genomes (O. sativa var. indica, O. barthii, O. glaberrima, O. glumaepatula, O. nivara, O. rufipogon and O. meridionalis) and that overlapped regions identified as LTR-RT parts by the RepeatMaster analysis (note: all data extracted from O. sativa var. indica were identical to the IR 6 and IR 8 co-analysis output and thus were not used in this analysis) and to extract the sequences corresponding to these orthologous regions in all AA genomes, including 500 bp before and after the break position in O. meridionalis, to create multifasta files for each selected locus.

The whole set of sequences from one multifasta file were aligned using MAFFT v6.940b135 as follows: mafft –op –ep 0 –dif < multifasta file >. Increasing the opening penalty (-op) as compared to the default options allowed identification of the deleted parts from each sequence. Custom Perl scripts were then used to remove alignments that contained at least one sequence displaying stretches of 100 or more Ns that could represent assembly gaps, to measure deletion lengths in each aligned sequence and to compare to them to the length of the presumed initial complete element so that a deletion rate in kb/million years per element and a half life could be calculated.

Assembly-based indel detection. We identified indels from eight comparisons among closely related species with easily alignable genomes (Supplementary Table 34): O. sativa var. japonica (Nipponbare) versus each of O. sativa var. indica (93–11, IR 8 and N 22), O. rufipogon and O. nivara (with O. barthii as the outgroup); O. sativa var. japonica versus each of O. glaberrima and O. barthii (with O. glumaepatula as the outgroup); and O. glaberrima versus O. barthii (with O. sativa var. japonica as the outgroup) (summarized in Supplementary Table 34). Genome assemblies were first soft masked with RepeatMasker. Chromosome all-to-all alignments were performed with LASTZ137 between the target and query genomes, with the following parameters: --strand=both –ambiguous=–inver=2000 --gappedthreshold=6000 --gapped=identity=90. The resultant alignment blocks were further parsed with the CHAINNET package138. Syntenic alignments between intact chromosomes were used to detect indels. We further inferred indels by allowing a gap to cover adjacent alignments with Perl scripts, which permitted us to detect additional indel events.

Indel detection in population genome data. Sequence reads from O. glabella and O. barthii accessions were mapped onto the O. glabella (CC14) and O. barthii (version 1.3) genome assemblies using the Burrows–Wheeler aligner (BWA, version 0.7.12). Raw alignment files were further parsed by SAMTools (version 1.2) to remove duplicated reads that might be due to PCR amplification and reads that were mapped to multiple loci. Pindel (version 0.2.38b)139 was then used to call indels with default parameters. Only indels detected in at least two individuals and without sequence gaps were subjected to further analysis. O. sativa var. japonica and O. glumaepatula were used as outgroups to determine the ancestral state for each indel. If an indel was present in all O. glabella individuals, it was regarded as a ‘Fixed indel’. If an indel was present between individuals in a species, it was defined as a ‘within-species indel’. Genome-wide genetic diversity (σ2) was calculated with indel markers using VCTools v0.1.12140. Comparison of indels called using resequencing data versus the assembly–alignment-based approach identified a total of 23,372 (>1-bp) high-confidence indels that overlapped using both methods (1-bp indels were excluded to avoid false calls caused by sequencing errors) (Supplementary Table 35), a number much lower (~50%) than that estimated using the genome-assembly-based approach alone (46,307). This difference may be due to the low enrichment Analysis tool146. For each taxon bin, corresponding genes in families with root nodes of M and/or L) and the ‘Oryzeae bin’ (all other root nodes except N and leaf nodes) was analyzed using the online AgriGO Singular Enrichment Analysis tool147. For each taxon bin, corresponding genes in O. sativa var. japonica with GO assignments were used as queries and tested for enrichment against the reference of all genes with GO assignments using the hypergeometric statistical test option, applying the Hochberg FDR test for multi-test adjustment and requiring a minimum number of mapping entries of five. For InterPro domain enrichment, the number of genes possessing each InterPro domain was tallied in each taxon bin and among all genes overall across all 11 species. Enrichment was tested using R148 with the hypergeometric distribution function, phyper and Bonferroni correction using p.adjust.

For analysis of correlation of gene coding length, expression, and Ks, with gene family age, we used O. sativa var. japonica as the focal species. Age ranks for gene families were assigned, from youngest to oldest, on the basis of the root node taxon of the corresponding gene tree for each family, as follows: 0, species-specific families and orphans; 1, families at node D; 2, node A; 3, node J; 4, node F; 5, node I; 6, node O; 7, node K; 8, node P; 9, node L; 10, node M; and 11, node N (see “Compare input species tree” for node positions and Fig. 5). Because older gene families tended to have more genes (data not shown), which could bias results, we selected a single value to represent each family for each parameter. For coding length, we averaged the coding lengths of the longest predicted transcript for all genes in the family. For expression, we selected the most highly expressed gene across tissues from within each family. For Ks, Kd, and Kf/Ka, we used syntenic O. nivara loci (see below) as the reference, taking the lowest value to represent each family. Correlation between assigned age rank and each parameter was tested using Kendall’s tau rank correlation coefficient, as implemented by the cor.test function in R149.

The integrated genetic/physical map (constructed using data from Harushima et al.147 and McCouch et al.149 for O. sativa var. japonica) was downloaded from Gramene (see URL147). Recombination rates were calculated as cm/Mb over 2-Mb windows across each chromosome. State ancestral reconstruction of lincRNA families. lincRNA loci within and between species were grouped into families on the basis of sequence similarity.
A set of non-redundant exons for each locus was generated from transcript files using an R script (available upon request). Repeats and TEs were masked in genomes using the maskFastaFromBed utility in BEDTools v2.17.0112. FASTA files for non-redundant exons at each locus were then generated from repeat-masking genomes using the gffread utility in Cufflinks17. lincRNA families were first identified within each species using BLASTN v2.2.28110 (\(E\) value < 1 \(\times\) 10−5). Families were then grouped across species using a best hit reciprocal BLASTN approach, with the full transcriptomes (protein-coding and all unannotated, intergenic loci) for 5\(\times\) species used as the queried databases. Multi-locus families with linkage to multiple families in the same species were all grouped into a single family. Ancestral state reconstruction of lincRNA families within the Oryza phylogeny was performed with Mesquite v3.02 using a parsimony approach and an unordered evolutionary model for gains and losses110. When ambiguous, the lincRNA family at a particular node was assumed to be absent.

Transposable element content of lincRNAs. TE content for lincRNA loci was generated by cross-referencing a GFF file with all annotated TEs and a GFF file with non-redundant exons for lincRNA loci in each species using the intersectBed utility from BEDTools v2.17.0112.

Comparative analysis of resistance genes. A seed set of putative disease resistance genes was identified by screening for the NB-ARC nucleotide-binding adaptor domain ([IPRO002182] in predicted proteins. The list of candidate genes was further expanded to include any gene from the Compara-designated family from which the seed gene originated. These totalled 5,104 genes in 46 families. Among them, 381 false-positive genes were removed, leaving 4,723 putative disease resistance genes. More consistent annotation of domain structure was accomplished by running PfamScan113, initially accepting domain hits with a \(p\)-score threshold of less than 0.001. We noted that this threshold was too stringent for a number of relevant Pfam domains, for example, LRRs and RPW8, resulting in false-negative detection. To increase sensitivity, we relaxed the stringency to a \(p\) score of 1 for these and any other domains that, in the initial analysis, were not detected in at least six genes and at least two species. Domains that met these criteria included the following: NB-ARC, LRR, LRR-2, LRR-3, LRR-4, LRR-5, LRR-6, LRR-8, LRR-9, LRRNT-2, RPW8, AAA-16, TIR, 2, Jucalin, Plakin, PPR, 2, WRKY, zf-BED, Thiododoxin, B3, TAXI, C, TAXI-N, RPW8, UPF2612, TIR, PP2C, DUF3681, Myb DNA-bind 4, DUF3877, C3, C3_2, BTF, AAVrPrt-clavage and ALIX, LYPX1_bnd. Coiled-coil domains were annotated using the Coils output of InterProScan114.

The above procedure resulted in identification of 5,749 genes in 36 Compara families, of which 5,408 (94\%) had detectable NB-ARC domains. A phylogenetic analysis was performed using the NB-ARC domains extracted from the genes of \(L.\) perrieri, \(O.\) punctata and \(O.\) sativa v. indica (93-11). Domains less than 200 amino acids in length were excluded as being likely fragmentary, resulting in 1,000 sequences (306 \(L.\) perrieri, 273 \(O.\) punctata and 421 \(O.\) sativa v. indica (93-11)). To construct a multiple-sequence alignment, we first built a hidden Markov model (HMM) from 12 complete NB-ARC domains selected from genes of different families. A ClustalW alignment of these was fed into the hmmbuild program from the HMMER 3.0 package115. The resulting HMM model was then used to align the 1,000 sequences using hmmparms with the -trim option115. A maximum-likelihood phylogenetic tree was built using FastTree2 employing the WAG-CAT model and branch support was reported using the Shimodaira–Hasegawa method on 1,000 resampled alignments. Tree visualization used FigTree, http://tree.bio.ed.ac.uk/software/figtree/; IRRI Rice Knowledge Bank, http://www.knowledgebank.irri.org/images/docs/wild-rice-taxonomy.pdf; rice Genome Sequences, Annotation and Comparative Analyses used in this study are available for browsing and download at http://oie.gramene.org/, Gramene, http://archive.gramene.org/; RepeatMasker, http://www.repeatmasker.org/; Ensembl Compara Database, http:// Ensemble.compara.genomeontology.info/info/compare/homology_method.html; Ensembl Compara 2016 version: 87. http://dec2016.archive.ensembl.org/info/compare/homology_method.html; FigTree, http://tree.bio.ed.ac.uk/software/figtree/; IRRI Rice Knowledge Bank, http://www.knowledgebank.irri.org/images/docs/wild-rice-taxonomy.pdf; rice centromerora, http://rice.plantbiology.msu.edu/annotation_pseudo_centromeres.shtml; RepeatMasker, http://www.repeatmasker.org/.

Accession codes. All custom codes used in this study will be made available upon request.

References

105. Löytynoja, A. & Goldman, N. An algorithm for progressive multiple alignment of sequences with insertions. Proc. Natl. Acad. Sci. USA 102, 10557–10562 (2005).
106. Zhang, D. J. Genetic Algorithm Approaches for the Phylogenetic Analysis of Large Biological Sequence Datasets under the Maximum Likelihood Criterion. PhD thesis, Univ. Texas, Austin (2006).
107. Posada, D. & Crandall, K. A. MODELTEST: testing the model of DNA substitution. Bioinformatics 14, 817–818 (1998).
108. Higuchi, T. A. New look at the statistical model identification. IEEE Trans. Automat. Contr. 19, 716–723 (1974).
109. Liu, L. Yu, L. & Edwards, S. V. A maximum pseudo-likelihood approach for estimating species trees under the coalescent model. BMC Evol. Biol. 10, 302 (2010).
110. Britton, T., Anderson, C. L., Jacquet, D., Lundqvist, S. & Bremer, K. Maximum likelihood species trees under the coalescent model. Syst. Biol. 56, 741–752 (2007).
111. Tavtigian, S. V. Genetic evidence from combined analysis of 20 chloroplast fragments. Mol. Biol. Evol. 17, 716–723 (2000).
112. Zayed, A. et al. Phylogeny and biogeography of the rice tribe (Oryzeae): evidence from combined analysis of 20 chloroplast fragments. Mol. Phylogenet. Evol. 54, 266–277 (2010).
113. Zou, X. H. et al. Analysis of 142 genes resolves the rapid diversification of the rice genome. Genome Biol. 9, R49 (2008).
114. Altschul, S. F. et al. A drafic sequence of the Neandertal genome. Science 328, 710–722 (2010).
115. Huson, D. H. et al. Dendroscope—An interactive viewer for large phylogenetic trees. Bioinformatics 21, 74–83 (2005).
116. Krieger, L. et al. Decoding the rice genome to understand its biology and its role in world food production. Science 328, 710–722 (2010).
117. Busing, F., Meijer, E. & Leeden, R. Delete-m Jackknife for Unequal m. Stat. Comput. 9, 3–8 (1999).

URIs

Genome sequences, annotation and comparative analyses used in this study are available for browsing and download at http://oie.gramene.org/, Gramene, http://archive.gramene.org/; RepeatMasker, http://www.repeatmasker.org/; Ensembl Compara Database, http://Ensembl.compara.genomeontology.info/info/compare/homology_method.html; Ensembl Compara 2016 version: 87. http://dec2016.archive.ensembl.org/info/compare/homology_method.html; FigTree, http://tree.bio.ed.ac.uk/software/figtree/; IRRI Rice Knowledge Bank, http://www.knowledgebank.irri.org/images/docs/wild-rice-taxonomy.pdf; rice centromerora, http://rice.plantbiology.msu.edu/annotation_pseudo_centromeres.shtml; RepeatMasker, http://www.repeatmasker.org/.

© 2018 Nature America Inc., part of Springer Nature. All rights reserved.
Experimental design

1. **Sample size**
 - Describe how sample size was determined.
 - **NA**

2. **Data exclusions**
 - Describe any data exclusions.
 - **NA**

3. **Replication**
 - Describe whether the experimental findings were reliably reproduced.
 - **NA**

4. **Randomization**
 - Describe how samples/organisms/participants were allocated into experimental groups.
 - **NA**

5. **Blinding**
 - Describe whether the investigators were blinded to group allocation during data collection and/or analysis.
 - **NA**

 Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.

6. **Statistical parameters**
 - For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or the Methods section if additional space is needed).

n/a	Confirmed
☑	
☑	The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)
☑	A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same sample was measured repeatedly.
☑	A statement indicating how many times each experiment was replicated
☑	The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more complex techniques should be described in the Methods section)
☑	A description of any assumptions or corrections, such as an adjustment for multiple comparisons
☑	The test results (e.g. p values) given as exact values whenever possible and with confidence intervals noted
☑	A summary of the descriptive statistics, including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)
☑	Clearly defined error bars

See the web collection on [statistics for biologists](https://www.nature.com/articles/nprot.2013.04) for further resources and guidance.

Software

Policy information about availability of computer code

7. **Software**
 - Describe the software used to analyze the data in this study.
 - We used publicly available and appropriately cited software as described.
For all studies, we encourage code deposition in a community repository (e.g. GitHub). Authors must make computer code available to editors and reviewers upon request. The *Nature Methods* guidance for providing algorithms and software for publication may be useful for any submission.

Materials and reagents

Policy information about availability of materials

8. **Materials availability**

 Indicate whether there are restrictions on availability of unique materials or if these materials are only available for distribution by a for-profit company.

 No unique materials were used.

9. **Antibodies**

 Describe the antibodies used and how they were validated for use in the system under study (i.e. assay and species).

 NA

10. **Eukaryotic cell lines**

 a. State the source of each eukaryotic cell line used.

 NA

 b. Describe the method of cell line authentication used.

 NA

 c. Report whether the cell lines were tested for mycoplasma contamination.

 NA

 d. If any of the cell lines used in the paper are listed in the database of commonly misidentified cell lines maintained by ICLAC, provide a scientific rationale for their use.

 NA

Animals and human research participants

Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. **Description of research animals**

 Provide details on animals and/or animal-derived materials used in the study.

 NA

Policy information about studies involving human research participants

12. **Description of human research participants**

 Describe the covariate-relevant population characteristics of the human research participants.

 NA