Swirling flow of fluid containing (SiO$_2$) and (MoS$_2$) nanoparticles analyze via Cattaneo-Christov theory

Juan Zhang1,2, Awais Ahmed3, Muhammad Naveed Khan4, Fuzhang Wang5, Shaimaa AM Abdelmohsen6 and Hadia Tariq3

Abstract
Investigation of heat transport mechanism in swirling flow of viscous fluid containing silicon dioxide (SiO$_2$) and molybdenum disulfide (MoS$_2$) nanoparticles is performed. The flow is engendered due to stretchable rotating cylinder which immersed in infinite fluid. The boundary layer assumption is applied to simplify the governing equations of the problem. The theory of Cattaneo-Christov for thermal energy transportation is employed in the present phenomenon under the heat and mass constraints. The flow is also influenced by Lorentz force. The results for flow field, temperature, and concentration field are produced by employing the bvp4c numerical technique to the similar differential equations. According to the observations, it is noted that in the presence of Lorentz force the reduction in velocity field of the nanofluid occurs. The thermal and solutal relaxation phenomena also declines the energy transport in nanofluid flow. The outcomes are validated through the comparison with previous published studies.

Keywords
Nanofluid (water-SiO$_2$/MoS$_2$), rotating cylinder, numerical solution, heat source or sink, Cattaneo-Christov theory

Introduction
Researchers have been interested in the fluid flow characteristics and heat transfer aspects of a stretching/shrinking surfaces for a few years. There is no doubt that the theory of fluid flow and heat transfer at a stagnation point may be applied to a wide range of industrial processes, such as plastic extrusion, wire coating, and so on. Sakiadis1 proposed the concept of a boundary layer formed by a moving flow on a rigid sheet with constant velocity from a slit through a fluid at rest. The boundary layer assumption is applied to simplify the governing equations of the problem. The theory of Cattaneo-Christov for thermal energy transportation is employed in the present phenomenon under the heat and mass constraints. The flow is also influenced by Lorentz force. The results for flow field, temperature, and concentration field are produced by employing the bvp4c numerical technique to the similar differential equations. According to the observations, it is noted that in the presence of Lorentz force the reduction in velocity field of the nanofluid occurs. The thermal and solutal relaxation phenomena also declines the energy transport in nanofluid flow. The outcomes are validated through the comparison with previous published studies.

Keywords
Nanofluid (water-SiO$_2$/MoS$_2$), rotating cylinder, numerical solution, heat source or sink, Cattaneo-Christov theory

Date received: 14 November 2021; revised: 18 February 2022; accepted: 30 March 2022

Juan Zhang1,2, Awais Ahmed3, Muhammad Naveed Khan4, Fuzhang Wang5, Shaimaa AM Abdelmohsen6 and Hadia Tariq3

Abstract
Investigation of heat transport mechanism in swirling flow of viscous fluid containing silicon dioxide (SiO$_2$) and molybdenum disulfide (MoS$_2$) nanoparticles is performed. The flow is engendered due to stretchable rotating cylinder which immersed in infinite fluid. The boundary layer assumption is applied to simplify the governing equations of the problem. The theory of Cattaneo-Christov for thermal energy transportation is employed in the present phenomenon under the heat and mass constraints. The flow is also influenced by Lorentz force. The results for flow field, temperature, and concentration field are produced by employing the bvp4c numerical technique to the similar differential equations. According to the observations, it is noted that in the presence of Lorentz force the reduction in velocity field of the nanofluid occurs. The thermal and solutal relaxation phenomena also declines the energy transport in nanofluid flow. The outcomes are validated through the comparison with previous published studies.

Keywords
Nanofluid (water-SiO$_2$/MoS$_2$), rotating cylinder, numerical solution, heat source or sink, Cattaneo-Christov theory

Date received: 14 November 2021; revised: 18 February 2022; accepted: 30 March 2022

Introduction
Researchers have been interested in the fluid flow characteristics and heat transfer aspects of a stretching/shrinking surfaces for a few years. There is no doubt that the theory of fluid flow and heat transfer at a stagnation point may be applied to a wide range of industrial processes, such as plastic extrusion, wire coating, and so on. Sakiadis1 proposed the concept of a boundary layer formed by a moving flow on a rigid sheet with constant velocity from a slit through a fluid at rest. Based on the outcomes, with increasing distance from the slit, the thickness of the boundary layer increases. The concept of boundary on a moving surface was investigated by Crane.2 Following Crane,2 Carragher and Crane3 examined the thermal approach to this problem. McLeod and Rajagopal4 address the existence and uniqueness of these stretched flow solutions. Wang5 has provided many references on stretching surfaces in a viscous fluid. Miklavčič and Wang6 examined the shrinking case of a viscous fluid initially, followed by Fang7 and Tie-Gang et al.8 As Goldstein9 discusses, a shrinking sheet flow is fundamentally a backward boundary-layer flow that exhibits physical features distinct from stretching sheet flows. Very recently, the numerical simulation for the nanofluid flow due to a stretching/shrinking

1. Guangdong ATV Vocational College for the Performing Arts, Dongguan, China
2. School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
3. Department of Mathematics, National University of Modern Languages, Islamabad, Pakistan
4. Department of Mathematics, Quaid-i-Azam University, Islamabad, Pakistan
5. Nanchang Institute of Technology, Nanchang, China
6. Department of Physics, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
7. Corresponding author: Awais Ahmed, Department of Mathematics, National University of Modern Languages, H-9, Islamabad, Pakistan.
 Email: awais.ahmed@numl.edu.pk

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
There are several applications of swirling flow due to rotating surfaces in industry such as paper drying, plastic manufacturing and wire coating. Many scientists put their effort to investigate the mechanism of swirling flow of viscous fluid with heat transport in the recent decade. Swirl motion of Newtonian fluid was investigated by Fang and Yao. In this article authors established the suitable flow similarities for the conversion of governing three-dimensional flow equations. Naumov et al. investigated the thin layer in interface of two immiscible fluids using well-known finite element method. The studies in recent years put on the thermal characteristics of nanofluid. The focus of this article is to explore the thermal mechanism in the nanofluid. The source/sink and chemical reaction parameters are also utilized as heat and mass constraint. The MATLAB built-in solver bvp4c is used to achieve numerical results of the governing problem. The results of the velocity, temperature, and concentration field are illustrated graphically for various values of significant parameters.

Mathematical formulation

Consider an elastic cylinder of radius R_i which is immersed in an infinite viscous fluid which contains SiO_2 and MoS_2 solid nanoparticles. The axisymmetric 3D flow produce due the constant rotation E and stretching with rate a of the cylinder. The flow field is assumed as $V=[u,v,w]$ in the (z,ϕ,r) directions. The magnetic field $B=(0,0,B_z)$ is applied normal to the cylinder axis (see Figure 1). Moreover, the heat source/sink and chemical reaction are also considered. Furthermore, it is supposed that the temperature at the cylinder surface T_w and the ambient fluid temperature is T_a, are constant and $T_w > T_a$. In view of conservation laws and the Cattaneo-Christov theory for heat flux the governing equation for the present problem are:

$$\frac{\partial u}{\partial z} + \frac{w}{r} \frac{\partial u}{\partial r} + \frac{1}{\rho_n} \left(\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} \right) = \frac{\sigma_n}{\rho_n} B_z^2 u,$$

$$\frac{\partial v}{\partial z} + \frac{w}{r} \frac{\partial v}{\partial r} + \frac{1}{\rho_n} \left(\frac{\partial^2 v}{\partial r^2} + \frac{1}{r} \frac{\partial v}{\partial r} \right) = \frac{\sigma_n}{\rho_n} B_z^2 v,$$

$$\frac{\partial w}{\partial z} + \frac{w}{r} \frac{\partial w}{\partial r} + \lambda_s \left[\frac{\partial^2 T}{\partial r^2} + \frac{1}{r} \frac{\partial T}{\partial r} \right] = \frac{k_n}{\rho C_p} \left(\frac{\partial^2 T}{\partial r^2} + \frac{1}{r} \frac{\partial T}{\partial r} \right) + \frac{Q_0}{(\rho C_p)_n} (T - T_a)$$

The above comprehensive literature review prove that there is space for the investigation of nanofluid swirling flow. The focus of this article is to explore the thermal transportation characteristics of flow of viscous fluid containing SiO_2/MoS_2 particles. The flow produced via a stretched and rotating cylinder with constant surface temperature. The realistic approach of Cattaneo-Christov theory is employed to predict the heat and mass transport.
the equation (1) is satisfied automatically and equations (2) – (5) yield
\[
\frac{A1}{A2}\left(f'''' + \frac{f'''}{\eta}\right) + \frac{Re}{\eta} f''' - \frac{Re}{A2} f' = 0, \quad (9)
\]
\[
\frac{A1}{A2}\left(2\eta^2 g'' + \eta g' - \frac{g}{2}\right) + 2Re\eta f'g' = 0, \quad (10)
\]
\[
\left(\eta\theta'' + \theta'\right) + \frac{Re}{A4} \left(\delta + Le f\theta'\right) = 0, \quad (11)
\]
\[
\left(\eta\phi'' + \phi'\right) + RePrLe\left(f\phi''' - \frac{\gamma}{2}\phi''\right) = 0, \quad (12)
\]
with transformed boundary conditions
\[
f(1) = 0, f'(1) = 1, g(1) = 1, \theta(1) = \phi(1) = 1, \quad (13)
\]
\[
f'(\infty) = 0, g(\infty) = 0, \theta(\infty) = 0, \phi(\infty) = 0.
\]
Where \(Re\left(= \frac{aR_0^2}{2v}\right)\) is the Reynolds number, \(M\left(= \frac{\delta A^2}{\rho_f a}\right)\) the Magnetic field parameter, \(Pr\left(= \frac{v}{\alpha_f}\right)\) the Prandtl number, \(Le\left(= \frac{a}{D_B}\right)\) the Lewis number, \(\delta\left(= \frac{Q_0}{a(\rho c_p)_f}\right)\) the source/sink parameter, \(\gamma\left(= \frac{k_f}{a}\right)\) the chemical reaction parameter, \(\beta_1\left(= \lambda_1a\right)\) and \(\beta_3\left(= \lambda_3a\right)\) the thermal and mass relaxation parameters. Moreover the \(A1, A2, A3, A4, A5\) can be stated as follows
\[
A1 = \left(\frac{\mu_{nf}}{\mu_f}\right), A2 = \left(\frac{\rho_{nf}}{\rho_f}\right), A3 = \left(\frac{(\rho c_p)_{nf}}{(\rho c_p)_f}\right), \quad (14)
\]
\[
A4 = \left(\frac{k_{nf}}{k_f}\right), A5 = \left(\frac{\sigma_{nf}}{\sigma_f}\right).
\]
A further transformation \(\eta = e^\tau\) is employed to accelerate convergence of the solution. Thus equations (8) – (11) become
\[
\frac{A1}{A2}\left(f_{xx'} - 2f_{xx} + f_x\right) - Re\left(f_x'' + ff' - ff''\right) = 0, \quad (15)
\]
\[2 \frac{A_1}{A_2} g_{ss} + \frac{g}{2} + Re \left(2 f g_s + f g \right) \frac{A_5}{A_4} MRe \left(g e^x \right) = 0, \quad (16)\]

\[\theta_{ss} e^x + \frac{RePr}{A_4} \left(e^{2x} \left(\delta / 2 \right) + A3 f \theta_s e^x \right) \]

\[-2\beta, RePr \frac{A3}{A4} \left(f^2 \theta_{ss} - f^2 \theta_s + 2 f f \theta_s \right) = 0 \] \quad (17),

\[\phi_{ss} e^x + RePr Le \left(f \phi_s e^x - \frac{\rho_f}{2} \right) \]

\[-2\beta, RePr Le \left(f^2 \phi_{ss} - f^2 \phi_s + ff \phi_s \right) = 0, \quad (18)\]

with BCs

\[f(0) = 0, f_s(0) = 1, g(0) = 1, \theta(0) = 1, \phi(0) = 1 \] \quad (19)

\[\lim_{x \to x} e^{\varphi} f_s = 0, g(\infty) = 0, \theta(\infty) = 0, \phi(\infty) = 0 \] \quad (19).

Physical reasoning of the outcomes

In this portion of research, the graphical results which are computed numerically describe the impact of physical parameters such as Reynolds number \(Re\), magnetic field parameter \(M\), volume fraction coefficient \(\phi\), Prandtl number \(Pr\), Lewis number \(Le\), sourcing parameter \(\delta\), chemical reaction parameter \(\gamma\), and thermal and mass relaxation parameters \((\beta, \beta_c)\) for both nanofluids \((\text{SiO}_2 / \text{water} \text{and MoS}_2 / \text{water})\) with the provided mathematical relations for thermophysical properties of nanofluids.

Table 1. Mathematical relations for thermophysical properties of nanofluids.

Properties	Nanofluid
Density \(\rho_{nf} = \rho_t \left(1 - \phi + \phi \frac{\rho_r}{\rho_t}\right)\)	
Viscosity \(\mu_{nf} = \frac{\mu_t}{(1 - \phi)^{2.5}}\)	
Heat Capacity \((\rho C_p)_t = \frac{1}{(1 - \phi + \phi \left(\frac{\rho C_p}{\rho_t}\right))}\)	
Thermal Conductivity \(k_f = k_t + 2k_f - 2\phi (k_f - k_t)\)	
Electric Conductivity \(\frac{\sigma_{nf}}{\sigma_t} = 1 + 3(\sigma - 1)\phi / (\sigma + 2)(\sigma - 1)\phi\)	

Table 2. Thermophysical characteristics of nanoparticles

Nanoparticles	Water	MoS\(_2\)	SiO\(_2\)
\(\rho / \text{kgm}^{-3}\)	997.1	5060	2650
\(c_p / \text{kgK}^{-1}\)	4179	397.746	730
\(\sigma / \text{Sm}^{-1}\)	0.613	34.5	1.5
\(k / \text{WmK}^{-1}\)	5.5x10^{-6}	17.9x10^6	10^{-12}

Table 3. The comparison table for numerical values of \(f'(1)\) and \(g'(1)\).

Re	0.1	0.2	0.5	1.0	2.0	5.0	10.0
\(f'(1)\)	-0.4880	-0.6164	-0.7920	-0.8348	-0.8900	-0.9560	-0.9759
\(g'(1)\)	-0.5102	-0.5259	-0.5859	-0.6899	-0.8726	-0.9560	-0.9759
\(f'(1)\) Present	-0.4825	-0.6161	-0.884	-1.1782	-1.5978	-2.4174	-3.3446
\(g'(1)\) Present	-0.5102	-0.5259	-0.5859	-0.6879	-0.8726	-0.9560	-0.9759
\(f'(1)\) Fang and Yao12	-0.4818	-0.6175	-0.8822	-1.1775	-1.5939	-2.4173	-3.3446
\(g'(1)\) Fang and Yao12	-0.5101	-0.5260	-0.5849	-0.6877	-0.8726	-0.9560	-0.9759
Table 4. Numerical values of $-\theta'(l)$ for various Re, Pr, δ, and β_t.

Re	Pr	δ	β_t	$-\theta'(l)$
0.5	6.2	2	0.1	2.242906
0.7				2.382541
0.9				2.552958
	0.5			1.751631
	0.7			1.747774
	0.9			1.744803
		0.5		2.842302
		0.7		2.613992
		0.9		2.242906
		0.5		2.341122
		0.7		1.740708
		0.9		0.368323

thermophysical properties in Table 2 on flow field and temperature and concentration distributions. When we go through the numerical computation, we specify the values of relevant parameters as $Re = 1.0, M = 2.0, \phi = 0.025$, $Pr = 6.2, Le = 1, \gamma = \delta = 1.5, \beta_t = 0.1, \beta_c = 0.1$. Figure 2(a) to (c) represents the results for velocity field, temperature, and solutal distributions for various values of Reynolds number Re. It is noted that the axial velocity $f'(\eta)$, swirling velocity $g(\eta)$, and radial velocity $\frac{f}{\eta^{1/2}}$ are significantly decrease when Re boosted. Physically, the opposing flow agent in the form of inertial force increase when the Reynolds number enhance with fixed viscosity of the fluid. Moreover, it is also observed that there is algebraic decay in flow field for higher Re and the disturbance in the fluid occurs very far away to the thermophysical properties in Table 2 on flow field and temperature and concentration distributions. When we go through the numerical computation, we specify the values of relevant parameters as $Re = 1.0, M = 2.0, \phi = 0.025$, $Pr = 6.2, Le = 1, \gamma = \delta = 1.5, \beta_t = 0.1, \beta_c = 0.1$. Figure 2(a) to (c) represents the results for velocity field, temperature, and solutal distributions for various values of Reynolds number Re. It is noted that the axial velocity $f'(\eta)$, swirling velocity $g(\eta)$, and radial velocity $\frac{f}{\eta^{1/2}}$ are significantly decrease when Re boosted. Physically, the opposing flow agent in the form of inertial force increase when the Reynolds number enhance with fixed viscosity of the fluid. Moreover, it is also observed that there is algebraic decay in flow field for higher Re and the disturbance in the fluid occurs very far away to the

Figure 2. (a–c) Impact of Reynolds number Re on $f'(\eta), g(\eta)$ and $f/\eta^{1/2}$.

free stream from surface of cylinder when Re have small magnitude. As the transport mechanism of thermal and solutal energy in the present problem is exist due to the forced convection in the system and the fluid motion produced due cylinder rotation with stretching. The outcomes for flow field with higher Re prove that fluid motion limited to the surface of cylinder in this case. Thus, the forced convection also decreases for higher Re and diminishing temperature, concentration profiles are observed in Figure 3(a) and (b). The objective of Figure 4 is to demonstrate the effects of Prandtl number Pr on temperature. These results tell us that the thermal diffusivity of the fluid decreases as Pr values rise. Figure 5(a) to (c) demonstrate the effect of the magnetic field parameter M on the velocity profile. The velocity profile is shown to declines as the magnetic field parameter is raised. Because the transverse magnetic field in the flow system of electrically conducting fluid generates a drag-like Lorentz force. This force tends to oppose the motion of nanofluid. Figure 6(a) to (c) depicts the decreasing behavior of axial velocity, swirling velocity, and radial velocity as nanoparticles volume fractions is enhanced. Physically, the higher concentration of nanoparticles in the viscous fluid produce the resistance to the fluid motion as fluid particles require more kinetic energy to flow. Thus, in results flow field decreases. The thermal and solutal conduction enhancement of base fluid is booted due to higher concentration of solid particles in it. These results are shown in Figure 7(a) and (b). The volume fraction parameter is an important one that plays a role in improving the thermal characteristics of fluids. As a conclusion, it may deduce that in many industrial processes, temperature can be adjusted by changing the nanoparticles volume fraction. Figure 8(a) and (b) displays the impact of Lewis number Le and chemical reaction parameter γ on concentration field. It is noted the mass diffusivity of the fluid decrease with more values of Le and a chemical reaction the fluid declines the mass transport. The temperature and concentration patterns are displayed versus the thermal relaxation time parameter β_r and the mass relaxation time parameter β_c, accordingly, in Figure 9(a) and (b). The temperature and concentration fields decline as the thermal relaxation time and thermal relaxation mass parameter values improve. In Cattaneo-Christov theory, higher values of the relaxation time parameter control the immediate propagation of heat waves in a given medium.
As a consequence, the fluid with increasing relaxation parameter values required more time to carry the thermal and solutal energy in the base fluid. Thus, the temperature and concentration fields drop as a result. The results of the present study validated through the comparison Table 3. The values of thermal gradient at the cylinder surface are given in Table 4 as well.

Concluding remarks

Thermal energy transport in the nanofluid flow caused by stretchable rotating cylinder investigated in this article. The water base fluid contains the two different nanoparticles (SiO$_2$ / MoS$_2$). The mechanism of thermal and solutal energy transport predicted via well-known Cattaneo-Christov theory. Thermal conduction controlled with heat source and Lorentz force in the system. Governing similar equations solved numerically. Some major points of the entire analysis are as follows:

- The flow confined to the surface of cylinder when Reynolds number Re was increased.
- Forced convection declined in case of higher inertial force.
- Flow of nanofluid feels resistance when Lorentz force and solid particles concentration were boosted.
- The temperature of the fluid rises as ϕ increased.
- Thermal and solutal relaxation phenomenon limited the energy transportation in the nanofluid flow.

Future scope

The present work can be extend for the rheology of non-Newtonian fluids with heat transport. Moreover, entropy
Figure 6. (a–c) Impact of volume fraction coefficient ϕ on $f'(\eta)$, $g(\eta)$, and f/η^2.

Figure 7. (a and b) Impact of volume fraction coefficient ϕ on $\theta(\eta)$ and $\phi(\eta)$.
generation analysis can also be performed in the present investigated phenomenon.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This research was funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2022R61) Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

ORCID iDs

Awais Ahmed https://orcid.org/0000-0003-1401-9098
Muhammad Naveed Khan https://orcid.org/0000-0001-8506-1475

References

1. Sakiadis BC. Boundary-layer behavior on continuous solid surfaces: I. Boundary-layer equations for two-dimensional and axisymmetric flow. AIChE J 1961; 7(1): 26–28.
2. Crane LJ. Flow past a stretching plate. Z Flugel Angew Math Phys 1970; 21(4): 645–647.

3. Carragher P and Crane LJ. Heat transfer on a continuous stretching sheet. Z Angew Math Mech 1982; 62(10): 564–565.

4. McLeod JB and Rajagopal KR. On the uniqueness of flow of a Navier-Stokes fluid due to a stretching boundary. Arch Ration Mech Anal 1987; 89(4): 385–393.

5. Wang CY. Review of similarity stretching exact solutions of the Navier–Stokes equations. Eur J Mech B Fluids 2011; 30(5): 475–479.

6. Miklavčič M and Wang C. Viscous flow due to a shrinking sheet. Q Appl Math 2006; 64(2): 283–290.

7. Fang T. Boundary layer flow over a shrinking sheet with power-law velocity. Int J Heat Mass Transf 2008; 51(25–26): 5838–5843.

8. Tie-Gang F, Ji Z and Shan-Shan Y. Viscous flow over an unsteady shrinking sheet with Mass Transfer. Chin Phys Lett 2009; 26(1): 014703.

9. Goldstein S. On backward boundary layers and flow in converging passages. J Fluid Mech 1965; 21(01): 33–45.

10. Ferdows M, Shamshuddin M, Salawu SO and Zaimi K. Numerical simulation for the steady nanofluid boundary layer flow over a moving plate with suction and heat generation. SN Appl Sci 2021; 3(2): 1–11.

11. Mousavi SM, Rostami MN, Yousefi M, Dinarvand S, Pop I and Sheremet MA. Dual solutions for Casson hybrid nanofluid flow due to a stretching/shrinking sheet: a new combination of theoretical and experimental models. Chin J Phys 2021; 71: 574–588.

12. Fang T and Yao S. Viscous swirling flow over a stretching cylinder. Chin Phys Lett 2011; 28(11): 114702.

13. Naumov IV, Glavny VG, Sharifullin BR and Shtern VN. Formation of a thin circulation layer in a two-fluid rotating flow. Phys Rev Fluids 2019; 4(5): 054702.

14. Hayat T, Aziz A, Muhammad T and Alsaedi A. Numerical simulation for Darcy—Forchheimer three-dimensional rotating flow of nanofluid with prescribed heat and mass flux conditions. J Therm Anal Calorim 2019; 136(5): 2087–2095.

15. Krishna MV and Chamkha AJ. Hall and ion slip effects on MHD rotating flow of elastico-viscous fluid through porous medium. Int Commun Heat Mass Transf 2020; 113: 104494.

16. Ali B, Rasool G, Hussain S, Balaenu D and Bano S. Finite element study of magnetohydrodynamics (MHD) and activation energy in Darcy—Forchheimer rotating flow of Casson Carreau nanofluid. Processes 2020; 8(9): 1185.

17. Shamshuddin MD and Satya Narayana PV. Combined effect of viscous dissipation and Joule heating on MHD flow past a Riga plate with Cattaneo–Christov heat flux. Indian J Phys 2020; 94(9): 1385–1394.

18. Shamshuddin MD, Mishra SR, Anwar Beg O and Kadir A. Adomain decomposition method simulation of von Karman swirling bioconvection nanofluid flow. J Central South Univ 2019; 26(10): 2797–2813.

19. Piquet A, Zebiri B, Hadjadj A and Safdari Shadloo M. A parallel high-order compressible flows solver with domain decomposition method in the generalized curvilinear coordinates system. Int J Numer Methods Heat Fluid Flow 2019; 30(1): 2–38.

20. Dinarvand S and Nademi Rostami M. An innovative mass-based model of aqueous zinc oxide–gold hybrid nanofluid for von Kármán’s swirling flow. J Therm Anal Calorim 2019; 138(1): 845–855.

21. Khan MR, Pan K, Khan AU and Ullah N. Comparative study on heat transfer in CNTs-water nanofluid over a curved surface. Int Commun Heat Mass Transf 2020; 116: 104707.

22. Shamshuddin M, Li M, Mao S, Ali R and Khan S. Comparative study on heat transfer and friction drag in the flow of various hybrid nanofluids effected by aligned magnetic field and nonlinear radiation. Sci Rep 2021; 11(1): 3691–3714.

23. Choi S. Enhancing thermal conductivity of fluids with nanoparticles. ASME Publications-Fed 1995; 231: 99–106.

24. Mahanthes B, Gireesha BJ, Gorla RSR, Abbasi FM and Shehzad SA. Numerical solutions for magnetohydrodynamic flow of nanofluid over a bidirectional non-linear stretching surface with prescribed surface heat flux boundary. J Magn Magn Mater 2016; 417: 189–196.

25. Hayat T, Rashid M, Imitiaz M and Alsaedi A. Nanofluid flow due to rotating disk with variable thickness and homogeneous-heterogeneous reactions. Int J Heat Mass Transf 2017; 113: 96–105.

26. Zheng D, Wang J, Chen Z, Baleta J and Sundén B. Performance analysis of a plate heat exchanger using various nanofluids. Int J Heat Mass Transf 2020; 158: 119993.

27. Maleki A, Elahi M, Assad MEH, Alhuyi Nazari M, Safdari Shadloo M and Nabipour N. Thermal conductivity modeling of nanofluids with ZnO particles by using approaches based on artificial neural network and MARS. J Therm Anal Calorim 2021; 143(6): 4261–4272.

28. Shamshuddin M, Mabood F and Bég OA. Thermomagnetic reactive ethylene glycol-gold nanoparticles fluid transport from a convectively heated porous surface with Ohmic dissipation, heat source, thermophoresis and Brownian motion effects. Int J Model Simul 2021; 2021: 1–15.

29. Aghamajidi M, Yazdi M, Dinarvand S and Pop I. Tiwari-Das nanofluid model for magnetohydrodynamics (MHD) natural-convective flow of a nanofluid adjacent to a spinning down-pointing vertical cone. Propulsion Power Res 2018; 7(1): 78–90.

30. Dinarvand S, Mousavi SM, Yousefi M and Nademi Rostami M. MHD flow of MgO–Ag/water hybrid nanofluid past a moving slim needle considering dual solutions: an applicable model for hot-wire anemometer analysis. Int J Numer Methods Heat Fluid Flow 2022; 32: 488–510.

31. Dinarvand S, Nodal/saddle stagnation-point boundary layer flow of CuO–Ag/water hybrid nanofluid: a novel hybridity model/water hybrid nanofluid: a novel hybridity mode undefined. Microsyst Technol 2019; 25(7): 2609–2623.

32. Li YX, Alshbooh MI, Lv YP, Khan I, Riaz Khan M and Issakov A. Heat and mass transfer in MHD Williamson nanofluid flow over an exponentially porous stretching surface. Case Stud Therm Eng 2021; 26: 100975.

33. Shamshuddin M, Abderrahmane A, Koulali A, Eid MR, Shahzad F and Jamshed W. Thermal and solutal performance of Cu/CuO nanoparticles on a non-linear radially stretching surface with heat source/sink and varying chemical reaction effects. Int Commun Heat Mass Transf 2021; 129: 105710.