Multiple Phosphorylation of SacY, a \textit{Bacillus subtilis} Transcriptional Antiterminator Negatively Controlled by the Phosphotransferase System*

(Received for publication, February 3, 1997, and in revised form, April 28, 1997)

Pablo Tortosa‡, Stéphane Aymeric‡, Cordula Lindner§§, Milton H. Saier, Jr., Jonathan Reizer§, and Dominique Le Coq‡‡**

From the \textit{Laboratoire de Génétique des Microorganismes}, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique ERS 567, F-78850 Thiverval-Grignon, France, the \textit{Institut de Biologie et Chimie des Protéines}, Centre National de la Recherche Scientifique UPR 412, F-69367 Lyon Cedex 07, France, and the \textit{Department of Biology}, University of California at San Diego, La Jolla, California 92093–0116

\textbf{The Bacillus subtilis SacY transcriptional antiterminator is a regulator involved in sucrose-promoted induction of the \textit{ sacB} gene. SacY activity is negatively controlled by enzyme I and HPr, the general energy coupling proteins of the phosphoenolpyruvate:sugar phosphotransferase system (PTS), and by SacX, a membrane protein homologous to SacP, the \textit{ B. subtilis} sucrose-specific PTS-permease. Previous studies suggested that the negative control exerted by the PTS on bacterial antiterminators of the SacY family involves phosphoenolpyruvate-dependent phosphorylation by the sugar-specific PTS-permeases. However, data reported herein show direct phosphorylation of SacY by HPr(His–P) with no requirement for SacX. Experiments were carried out to determine the phosphorylatable residues in SacY. \textit{In silico} analyses of SacY and its homologues revealed the modular structure of these proteins as well as four conserved histidines within two homologous domains (here designated P1 and P2), present in 14 distinct mRNA- and DNA-binding bacterial transcriptional regulators. Single or multiple substitutions of these histidyl residues were introduced in SacY by site-directed mutagenesis, and their effects on phosphorylation and antitermination activity were examined. \textit{In vitro} phosphorylation experiments showed that SacY was phosphorylated on three of the conserved histidines. Nevertheless, \textit{in vivo} studies using cells bearing a \textit{sacB}–\textit{lacZ} reporter fusion, as well as SacY mutants lacking the phosphorylatable histidyls, revealed that only His-99 is directly involved in regulation of SacY antitermination activity.

The \textit{Bacillus subtilis} SacY protein is a transcriptional antiterminator involved in sucrose-promoted induction of the \textit{ sacB} gene, encoding levansucrase (1–4). Transcription initiates constitutively from the \textit{ sacB} promoter, but in the absence of sucrose, most transcripts terminate at a rho-independent transcriptional terminator located in the leader region preceding the \textit{ sacB} structural gene. In the presence of sucrose, SacY is activated and stabilizes a stem-loop structure of a ribonucleic acid antiterminator, thereby preventing alternative formation of the overlapping transcriptional terminator (5). SacY activity is negatively controlled by enzyme I (EI) and HPr, the general energy coupling proteins of the phosphoenolpyruvate:sugar phosphotransferase system (PTS), and by SacX, a protein homologous to sucrose-specific PTS permeases (6, 7).

The PTS catalyzes both the transport and the phosphorylation of numerous carbohydrates in bacteria. Energy for these coupled reactions is provided by phosphoenolpyruvate (PEP). The phosphoryl group of PEP is sequentially transferred to the incoming sugar via EI, HPr, and two domains in each of the sugar-specific permeases. The modular carbohydrate-specific permeases are generally comprised of three proteins or domains, EIIA, EIIB, and EIIC (8). The EIIC protein or domain is the integral membrane permease, whereas EIHA and EIIB are hydrophilic, peripherally membrane-associated proteins or domains that are phosphorylated during the phosphor transfer cascade. \textit{EIIB–P} transfers its phosphate to the incoming sugar during its translocation across the membrane (for reviews, see Refs. 9 and 10). SacX is thought to be an EIIBC protein; the corresponding EIIA protein has not been characterized to date.

Our long term interest in the multifaceted controls exerted by the PTS led us to investigate the molecular mechanism involved in PTS-mediated regulation of transcriptional antitermination by SacY. Previous genetic data (7) and comparison with results reported for the homologous BglG antiterminator of \textit{Escherichia coli} (11–13) suggested that this control involves a cascade of phosphorylations. The \textit{E. coli} \textit{bgl} operon, required for transport and hydrolysis of \textit{β}-glucosides, is inducible by \textit{β}-glucosides through a BglG-dependent antitermination mechanism (14, 15). Activity of BglG is negatively controlled by BglF, a \textit{β}-glucoside permease with EIIBC domain structure, that has been reported to phosphorylate BglG at an unknown residue in response to the external level of inducer (11–14). Furthermore, phosphorylation of BglG has been shown to prevent its dimerization. Consequently the PTS was proposed to control the antitermination activity of BglG by modulating the level of its active, unphosphorylated, dimeric form (16).

Two other antiterminators in \textit{ B. subtilis}, in addition to SacY, belong to the BglG family: SacT mediates induction of the

* This work was supported by the Ministère de la Recherche, the Centre National de la Recherche Scientifique, and the Institut National de la Recherche Agronomique and by U.S. Public Health Service Grant 5R01 AI21702 from the NIAID and Grant 9K01 GM55434 from the NIGMS, National Institutes of Health (to M. H. S.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

‡ Present address: Institut für Mikrobiologie, Ernst-Moritz-Arndt Universität, D-17487 Greifswald, Germany.

‡‡ To whom correspondence should be addressed. Tel.: 33-01-30-81-54-45; Fax: 33-01-30-81-54-57; E-mail: lecoq@cardere.grignon.inra.fr.

1 The abbreviations used are: EI, enzyme I; PTS, phosphoenolpyruvate:sugar phosphotransferase system; PEP, phosphoenolpyruvate; GST, glutathione \textit{S}-transferase; IPTG, isopropyl-\textit{β}-D-thiogalactopyranoside.

\textbf{REFERENCES}

[1] This paper is available on line at http://www.jbc.org
Multiple Phosphorylation of the SacY Antiterminator

SacPA operon by sucrose (17), and LiCT mediates induction of the lidTS and bglPH operons by β-glucosides (18, 19). Interestingly, SacT and LiCT are not active in mutants lacking EI (ptsI) or HPr (ptsH) (20–22). Thus, PTS-mediated phosphorylation appears to exert positive control over SacT and LiCT antitermination activities. Positive control by the PTS has been also demonstrated for LevA, a B. subtilis DNA-binding transcriptional regulator involved in fructose-promoted induction of the levanase operon (23, 24). Recent experiments have shown that SacT and LevA are phosphorylated by PEP in a PTS-catalyzed reaction that depends only on EI and HPr. These observations suggested that phosphorylation is involved in PTS-mediated positive control of these transcriptional regulators (4, 24). We note however that despite the sequence conservation between the antiterminators of the BglG family, SacY is not subject to PTS-mediated positive control since sacC is constitutively expressed in a ptsH mutant (7). This fact renders SacY a good model protein for analysis of PTS-mediated negative control of antitermination.

In this manuscript, we show that SacY is readily phosphorylated by PEP in a PTS-catalyzed reaction that depends only on EI and HPr. Additionally, computer-aided analyses led us to identify histidyl residues that are highly conserved in the modular SacY and in 13 distinct RNA- and DNA-binding proteins that bear duplicated SacY-like domains. Utilizing site-directed mutants of these conserved histidyl residues, we provide evidence demonstrating that His-99, His-207 and His-269 of SacY and in 13 distinct RNA- and DNA-binding proteins identify histidyl residues that are highly conserved in the modulator EI and HPr. Additionally, computer-aided analyses led us to identify a model protein for analysis of PTS-mediated negative control of antitermination activities. Positive control by the PTS has been also demonstrated for LevA, a B. subtilis DNA-binding transcriptional regulator involved in fructose-promoted induction of the levanase operon (23, 24). Recent experiments have shown that SacT and LevA are phosphorylated by PEP in a PTS-catalyzed reaction that depends only on EI and HPr. These observations suggested that phosphorylation is involved in PTS-mediated positive control of these transcriptional regulators (4, 24). We note however that despite the sequence conservation between the antiterminators of the BglG family, SacY is not subject to PTS-mediated positive control since sacC is constitutively expressed in a ptsH mutant (7). This fact renders SacY a good model protein for analysis of PTS-mediated negative control of antitermination.

EXPERIMENTAL PROCEDURES

Bacterial Strains and Plasmids—A fragment carrying the entire sacY sequence, flanked with BamHI and EcoRI restriction sites, was generated by PCR with the DYB (5′-CGCGGATCCATGAAAATTAATGCAGCTATACTGGCCTGU-3′) and FYE (5′-CGCGGATCCATGAAAATTAATGCAGCTATACTGGCCTGU-3′) primers on pSL90 (7). Following digestion with BamHI and EcoRI, the 847-base pair fragment was cloned into pBlue-script SK+ (Stratagene, La Jolla, CA) generating pIC437. The CAT (His) codon at position 99, 158, 207 and 269 was substituted with a TAT (Ter) codon by site-directed mutagenesis using the Muta-gene M13 in vitro mutagenesis kit (Bio-Rad, Hercules, CA). sacY alleles carrying two or three of these His to Tyr mutations were constructed by successive site-directed mutageneses or, when possible, by exchange of a relevant restriction fragment. The wild-type and mutated sacY genes were then cloned into the B. subtilis pSL90 integrative plasmid (7), generating a collection of plasmids that were used to introduce the different alleles at the sacY locus. For this, the BstBI/AciI fragment of pSL90, carrying the Y′ part of sacY, was replaced with the BstBI/EcoRV fragment of pIC437 or one of its derivatives carrying a sacY mutant allele.

The BamHI/EcoRI fragment from pIC437 or its derivatives was inserted into pGEX-2T (Pharmacia, Uppsala, Sweden) to give a placid overproducing the wild-type or a mutant glutathione S-transferase (GST)-SacY fusion protein. pGEX-2T derivatives overproducing the wild-type or the mutated P1 and P2 domains of SacY were constructed as follows. DNA fragments carrying the wild-type or the mutated sequences encoding the P1 and P2 domains flanked with BamHI and EcoRI restriction sites, were generated by PCR using pIC437 or its derivatives with the primers DYB1P (5′-CGCGGATCCATGAAAATTAATGCAGCTATACTGGCCTGU-3′) and FYEP1 (5′-CGCGGATCCATGAAAATTAATGCAGCTATACTGGCCTGU-3′) for the P1 domain encoding sequence) or DYB2P (5′-CGCGGATCCATGAAAATTAATGCAGCTATACTGGCCTGU-3′) and FYEP2 (for the P2 domain encoding sequence). These fragments were then digested with BamHI and EcoRI, and cloned into pGEX-2T. The entire sacY gene as well as the P1 and P2 encoding sequences in the different plasmids were verified by sequencing after site-directed mutagenesis or PCR.

Plasmid pIC424, which carries the B. subtilis pts operon with a ptsI::spe disruption, was derived from pTS20 (25) by insertion of a SalI fragment from pIC156 (26), into the SacI site of pSL90, pSL151 is a B. subtilis replicative plasmid, carrying the pUB110 replication origin, the chloramphenicol resistance cat gene, and the sacX gene under the control of the spac promoter (27). E. coli strains used for plasmid construction, mutagenesis and protein overproduction were DH5α, C3236, and BL21(DE3), respectively (28). pIC424, pSL152 (the pSL152 derivative) was described previously (7). The B. subtilis strain GM1288 (sacXYΔ sacBA23 sacTΔ anymEc::bglP-lacZ SilC::bglP::aph3) is deleted of all known antiterminator genes and derived from GM1271 (18). B. subtilis GM1320 and GM1336 were derived from GM1288 by an in-frame deletion of the DraI/HpaI fragment of ptsH (deletion of codons 6–34) and by introduction of the ptsI::spe disruption present in plasmid pIC424, respectively. The B. subtilis strains GM1288X, GM1320X, and GM1386X were obtained by transformation of GM1288, GM1320, and GM1386, respectively, with pSL151.

Media, Growth Conditions and Preparation of Crude Extracts—LB medium (29) supplemented with appropriate antibiotics (chloramphenicol (4 µg/ml) or spectinomycin (100 µg/ml)) for B. subtilis, and ampicillin (50 µg/ml) for E. coli was routinely used for selection of transformants. BL21(DE3) transformants were grown at 30 °C in 2 × YT medium (29) supplemented with 50 µg/l ampicillin.

B. subtilis extracts for phosphorylation assays were prepared as follows. Cells were grown in liquid LB medium supplemented with sucrose (30 μM) and isopropyl-β-D-thiogalactopyranoside (IPTG) (0.5 mM) to allow sacX expression from the spac promoter carried by pSL151. Cells were harvested by centrifugation when the culture reached an A600 of 1.5 and reuspended in a B. subtilis lysis buffer (50 mM Tris-HCl, pH 7.4, 1 mM EDTA, 0.1 mM phenylmethylsulfonyl fluoride, 1 mM dithiothreitol). Cells were ruptured by sonication, and extracts were then centrifuged at 10,000 g, for 5 min. Aliquots of the supernatants were stored at −80 °C until used.

Protein Purification—Enzyme 1 and HPr were prepared as described previously (30, 31). The wild type and mutant SacY proteins as well as the P1 and P2 domains were produced and purified as GST-fusions. For this purpose, BL21(DE3) was transformed with the pGEX-2T derivatives, and transformants were grown with shaking at 30 °C in 2 × YT liquid medium. Protein overproduction was induced by addition of IPTG (0.5 mM) at an A600 of 0.5. After an additional 4-h incubation at 30 °C, cells were harvested by centrifugation and resuspended in an E. coli lysis buffer (50 mM Tris-HCl, pH 7.5, 120 mM NaCl, 2 mM EDTA, 1 mM dithiothreitol, 5 mM benzamidine). Cells were lysed by sonication, and membranes were removed by a 30-min centrifugation at 100,000 × g. The supernatant was then applied to a prepacked glutathione-Sepharose 4B column (Pharmacia), and fusion proteins were purified as recommended by the manufacturer. Purity of the proteins was confirmed by electrophoresis on 12.5% SDS-polyacrylamide gels (32). Protein concentrations were determined by the Bradford method (33).

[32P]PEP Synthesis and Protein Phosphorylation—Chemical synthesis of [32P]PEP from [32P]Thiophosphate (ICN, Costa Mesa, CA) was performed as described previously (30, 31). The reaction mixture was loaded onto an AG1 X8 column (Bio-Rad), preequilibrated with 0.1 M ammonium bicarbonate, and [32P]PEP was separated from [32P]Thiophosphate using 5-ml aliquots of 0.2, 0.4, and 0.7 M ammonium bicarbonate. Fractions of 1 ml were collected, and eluted material was identified by thin layer chromatography on silica plates and tert-amyl alcohol/formate/H2O (3:2:1) as a solvent. Under these conditions, [32P]Thiophosphate eluted in fractions 7 and 8 while [32P]PEP eluted in fractions 11–13. Purified SacY (2.5 μg, used as the GST-fusion or separated from GST after cleavage with thrombin) was phosphorylated by incubation at 37 °C in a reaction mixture (15 μl final volume) containing 50 mM potassium phosphate buffer (pH 7.4), 2 mM dithiothreitol, 0.5 mM MgCl2, 2.5 μM (0.25 μCi) [32P]PEP, and either B. subtilis crude extract (17 μg) or the purified PTS proteins EI (1 μg) and HPr (0.1 μg). The reaction was terminated after 20 min by addition of SDS-electrophoresis sample buffer. This incubation was repeated for maximal protein phosphorylation, as determined by kinetic experiments (up to 60 min). Proteins were separated on 12.5% SDS-polyacrylamide gels. Autoradiography of dried gels were performed with Kodak x-ray film (X-OMAT) with exposure times ranging between 2 and 24 h at −80 °C.

β-Galactosidase Assays—B. subtilis liquid cultures were grown in
Multiple Phosphorylation of the SacY Antiterminator

RESULTS

SacY Is Phosphorylated by HPr(His$^-$P)—PTS-catalyzed phosphorylation of SacY was examined using *in vitro* phosphorylation assays. Purified SacY was incubated in the presence of 32P]PEP and a crude extract prepared from *B. subtilis* GM1288X. Phosphorylation of the 55-amino acid N-terminal domain of SacY fused to GST was examined under the same conditions. As shown, SacY was readily phosphorylated by PEP (Fig. 1, lane 3), whereas no phosphorylation of the 55-amino acid N-terminal peptide was detected (Fig. 1, lane 2). The involvement of the general PTS enzymes in this phosphorylation was examined by incubating SacY in the presence of a crude extract from GM1320X (ptsH) or GM1386X (ptsI). No phosphorylation could be detected when SacY was incubated in the presence of a GM1386X crude extract (Fig. 1, lane 4). SacY was also not phosphorylated when incubated with a crude extract prepared from GM1320X (Fig. 1, lane 5). Nevertheless, SacY phosphorylation was observed following addition of 0.1 or 1 µg of purified HPr to extracts of the ptsH mutant (Fig. 1, lanes 6 and 7). These results demonstrate that SacY is phosphorylated in a PTS-dependent reaction involving the general energy-coupling proteins, EI and HPr.

In the following phosphorylation experiments, the *B. subtilis* crude extract containing all the PTS components was replaced by the purified *B. subtilis* general energy-coupling proteins EI and HPr. In these assays, EI, HPr, and SacY were incubated in all possible combinations in the presence of 32P]PEP. As shown in Fig. 2, SacY was readily phosphorylated in the presence of both EI and HPr, whereas no SacY phosphorylation was detected when at least one of the two general PTS proteins was absent. Interestingly, SacX appeared dispensable although the extent of SacY phosphorylation was somewhat higher in the presence of the crude extract (Fig. 1, lanes 6 and 7) than in the presence of the purified EI and HPr (see Fig. 2). These results show that SacY can serve as phosphoryl acceptor with the general energy-coupling protein, HPr(His$^-$P) serving as the phosphoryl donor, and that phosphorylation of SacY occurs outside of the first 55 N-terminal amino acids. The phosphate groups of phosphorylated SacY, like that of EI and HPr, were unstable under acidic conditions or during heat treatment (data not shown), suggesting that, as are EI and HPr, SacY is phosphorylated on histidyl residues. Studies described below were carried out to identify the phosphorylatable residues in SacY.

Sequence Analysis of Transcriptional Regulators Bearing Domains Conserved in the SacY Family—*In silico* analyses of SacY and its homologues were performed to derive guidelines for a biochemically based search of the phosphoryl acceptor residues in these proteins. Recent studies have identified the mRNA-binding domain of SacY as the N-terminal 55 amino acids of the antiterminator (36). Homologous N-terminal mRNA-binding domains are also present in six fully sequenced SacY homologues. Sequence analysis of these seven proteins revealed that their C-terminal regions consist of two homologous domains (~100 residues each), herein designated P1 (the N-terminal domain) and P2 (the C-terminal domain; see Fig. 3). P domains are also present in four partially sequenced putative transcriptional regulatory proteins, one in GlnR of *Staphylococcus carnosus*, one in LicT of *Bacillus amylobacter* and *Bacillus stearothermophilus*, one in CasR of *Klebsiella oxytoca*, and two in CelR of *Bacillus stearothermophilus*. Two P domains are also present in each of three distinct transcriptional initiation regulatory proteins, the helix-turn-helix motif possessing DNA-binding function (previously named CelR; see Ref. 37), LevR of *B. subtilis*, and MitR of *B. stearothermophilus* (see Fig. 3). Altogether, 25 homologous P domains have been identified in 14 modular transcriptional regulators. Significantly, homologous P domains could not be identified in eukaryotes or in bacteria lacking the PTS.

Binary comparison scores calculated for all P1 and P2 domains revealed that (i) all P domains are homologous, (ii) the P1 domains are more closely related to themselves than to the P2 domains, and (iii) the antiterminator P2 domains, but not the DNA binding protein P2 domains, are more closely related to themselves than to the P1 domains (data not shown). These findings lead us to propose that intragenic duplication of the gene encoding the ancestral P domain gave rise to the present day mRNA-binding antiterminators bearing two homologous P domains and that the P2 domains of the antiterminators evolved to serve a function distinct from that of the P1 domains. Surprisingly, all six P domains of the DNA-binding proteins (LevR, LicR, and MitR) exhibit higher similarity with the P1 domains than with the P2 domains of the mRNA-binding antiterminators (data not shown; see below for interpretation).

The phylogenetic tree of all 25 sequenced P domains (Fig. 4) confirmed the conclusions derived from the binary statistical analysis. Although the branch lengths vary substantially, the tree is largely symmetrical with all P1 domains depicted on the left and most P2 domains (except those of LevR, LicR, and MitR) depicted on the right. The tree reveals (i) that the antiterminator P1 domains comprise a tighter cluster than the corresponding cluster of the P2 domains, (ii) that the P1 and P2
clusters of the antiterminators exhibit a near mirror image appearance, and (iii) that the P2 domains of the DNA-binding regulators also exhibit a near mirror image appearance, but they are more closely aligned with the antiterminator P1 domains. We propose that the antiterminator P2 domains evolved to assume a function dissimilar from that of the P1 domains while the P2 domains of the DNA-binding proteins did not.

When the 25 sequenced P1 and P2 domains were multiply aligned, only three residues in the alignment proved to be conserved in at least 23 positions (Fig. 5). These amino acids, highlighted in black, are (i) the histidyl residue at alignment position 8 that corresponds, respectively, to His-99 and His-207 in the P1 and P2 domains of SacY (conserved in all 25 P domains), (ii) the arginyl residue at alignment position 15 (conserved in 23 P domains), and (iii) the glutamyl residue at alignment position 63 (conserved in 24 P domains). An additional histidyl residue (alignment position 74 in Fig. 5) that corresponds to His-158 and His-269 in the P1 and P2 domains of SacY, respectively, is conserved in all P1 domains and in all but three of the P2 domains (those of BglR, BglG, and LevR). It is noteworthy, however, that a histidyl residue is present in two of these P2 domains close to alignment position 74, i.e. in position 82 of P2BglG and in position 81 of P2LevR (see Fig. 5). Additionally, we suspect that a frameshift error was inadvertent in the C-terminal region of BglR. The “correct” sequence at this region contains histidyl, glutamyl, and arginyl residues that can be aligned with the corresponding conserved C-terminal residues of the P2 domains (data not shown).

Altogether, the data provide evidence for a modular organization of the mRNA-binding antiterminators and the DNA-binding transcriptional regulators and provide clues regarding their functional residues. The high degree of conservation of the four histidyl residues in the 25 P domains and the lability of the phosphorylated SacY under acidic conditions, as well as during heat treatment, prompted us to investigate the possibility that one or more of these histidyls in SacY can serve as phosphoryl acceptor from HPr(His-P).

SacY Is Phosphorylated on at Least Two Distinct Sites—A point mutation, replacing the His-99 (CAT) codon with a Tyr (TAT) codon, was introduced in sacY and was cloned into the pGEX-2T protein overproduction vector. GST-SacY and GST-SacYH99Y were then purified and used in [γ-32P]PEP-dependent phosphorylation assays in the presence of a GM1288X crude extract. SacY, from which the GST module had been removed by cleavage with thrombin, was similarly examined for phosphorylation. As shown in Fig. 6, lane 2, the GST-SacY protein was readily phosphorylated albeit to a lower extent than SacY. It was, nevertheless, phosphorylated sufficiently to allow use of the GST-fusion protein instead of the thrombin-cleaved protein in further experiments. The GST-SacYH99Y mutant protein (Fig. 6, lane 3) was similarly phosphorylated although significantly less efficiently than the corresponding wild-type protein. This last result suggests either that SacY is phosphorylated on His-99 as well as an additional site or that His-99 is not phosphorylated but has an effect on the phosphorylation of SacY at a distinct site.

Since His-99 and His-207 have homologous environments, the residual phosphorylation of GST-SacYH99Y could be due to phosphorylation of His-207. This possibility was tested by incubating purified GST-SacYH207Y with the GM1288X extract in the presence of [γ-32P]PEP (Fig. 6, lanes 4 and 5). The H207Y substitution led to a marked decrease in SacY phosphorylation. Furthermore, only very slight phosphorylation of GST-SacYH99Y/H207Y was detected on overexposed films. These results suggest the presence of multiple phosphorylation sites in SacY.

Further experiments to reveal the putative phosphorylation sites of SacY were carried out with the purified regulatory P domains. The P1 and P2 domains of SacY (wild-type and the H99Y and H207Y mutants) were purified as GST fusions. Fig.
Multiple Phosphorylation of the SacY Antiterminator

Fig. 4. Phylogenetic tree of the 25 sequenced P1 and P2 domains. Construction of the tree was as described by Reizer and Reizer (39) using the progressive multiple alignment method of Feng and Doolittle (40). Relative branch lengths (in arbitrary units) are provided adjacent to the branches. Dashed branches denote accessions for SwissProt and GenBankTM/EBI data banks, respectively, as are as follows: SacY(Bsu), the antiterminator of the sacB operon of B. subtilis (P15401); SacT(Bsu), the antiterminator of the sacPA operon of B. subtilis (P26212); note that the first 23 residues of SacT(Bsu) were deleted in M33761); LicT(Bsu), the antiterminator of the icTS and bglPH operons of B. subtilis (P39805); BglG(Eco), the antiterminator of the bgl operon of E. coli (P11989); ArbG(Ech), the antiterminator of the sac operon of E. chrysanthemi (P26211); BglR(Lla), the antiterminator of the bgl operon of L. lactis (L27422); Abg3(Clo), a putative antiterminator of the abg operon of C. longisporum (L49336); CasR(Kox), partially sequenced, putative regulatory protein of the bgl operon of K. oxytoca (U61727); LicR(Bsu), helix-turn-helix bearing transcriptional regulator of the licBAC operon of B. subtilis (P46321); CelR(Bst), partially sequenced regulatory protein of the cel operon of B. subtilis (U70818); LevR(Bsu), DNA-binding transcriptional activator of the levansucrase operon of B. subtilis (P23914); MitR(Bst), helix-turn-helix bearing transcriptional regulator of the mit operon of B. stearothermophilus (U18943); LicR(Bam), partially sequenced protein of B. amyloquefaciens (M15674); GlcR(Clo), partially sequenced, putative regulator of the operon encoding the twin glucose-specific enzymes II of S. carnosus (X93360). Not shown here and in Fig. 5 are the P domains of the recently sequenced antiterminator (LacT) of the lac operon of Lactobacillus casei (Z80834). The designations proposed here for the partially sequenced GlcR of S. carnosus and LicT of B. amyloquefaciens is in accordance with the published designations of other protein members of this family.

7 shows the results obtained when the purified GST-P1, GST-P2, GST-P1H99Y, and GST-P2H2O7Y were incubated with the GM1288X extract in the presence of [32P]PEP. GST-P1 (Fig. 7, lane 3) and GST-P2 (Fig. 7, lane 4) were both readily phosphorylated, showing that SacY can be phosphorylated on at least two distinct sites located within the P1 and P2 domains. The GST-P2H2O7Y domain was slightly phosphorylated (Fig. 7, lane 6), whereas no phosphorylation of the GST-P1H99Y domain was detected (Fig. 7, lane 5). Similar phosphorylation patterns were obtained when these domains were incubated with purified EI and HPr (data not shown). Taken together, these results strongly suggest that SacY is phosphorylated on His-99, His-207, and another residue located in P2. These results provide evidence for multisite phosphorylation of SacY by HPr(His—P). They further suggest that phosphorylation occurs on P1 and P2, very likely on His-99, His-207, and His-269.

Effects of Substitution of the Conserved Histidines on SacY Antitermination Activity—The involvement of the four conserved histidines in SacY antitermination activity was tested in vivo. Genes encoding proteins in which one, two, or three of these histidines were replaced with tyrosines were introduced into plasmid pSL90 carrying the sacY coding sequences to integrate the different alleles at the chromosomal sacY locus. These pSL90 derivatives were used to transform strain GM152 carrying sacB-lacZ reporter fusion, a deletion of the 3' part of sacX, and a deletion of the entire sacY gene. As shown in Table I, the H99Y substitution led to strongly constitutive expression of sacB-lacZ. The H269Y substitution slightly increased expression of the reporter gene, whereas the two other point mutations, H158Y and H2O7Y, did not significantly modify the phenotype when compared with wild-type SacY. The double mutants H99Y/H2O7Y and H99Y/H269Y, as well as the H99Y/H2O7Y/H269Y triple mutant exhibited strong constitutive expression of the fusion, comparable with that conferred by the single H99Y mutation. Increased expression conferred by
H269Y was further slightly enhanced by addition of the H158Y mutation, whereas addition of H207Y or H158Y/H207Y had no significant effect when compared with the H269Y single mutation. Thus, while H99Y mutation conferred strong constitutive expression of sacB when present alone or in combination with other mutations, H269Y had only a slight positive effect. These results indicate that His-99 is the major target of the regulation of SacY antitermination activity.

DISCUSSION

In *silico*, *in vitro*, and *in vivo* analyses described here provide evidence for the modular organization of SacY, PTS-catalyzed phosphorylation of its duplicated P1 and P2 domains, and the phosphorylation-dependent regulation of SacY antitermination activity. The data strongly suggest that His-99, His-207, and His-269 in SacY can be phosphorylated by HPr(His\(^{P}\); P) since (i) substitution of residues 99 and/or 207 drastically decreased...
phosphorylation of the complete SacY protein, (ii) substitution of His-99 in the purified P1 domain abolished phosphorylation of this domain, and (iii) substitution of His-207 or His-269 of P2 led to strongly decreased phosphorylation of this domain while the double mutant GST-P2H2O7Y/H269Y was not phosphorylated. Since His-99, His-207, and His-269 are highly conserved in homologous RNA-binding antiterminators as well as in functionally distinct DNA-binding transcriptional regulators (see Fig. 5), we propose that PTS-catalyzed phosphorylation of the conserved histidines plays a role in the regulation of transcription by proteins possessing P domains. Thus, in these transcriptional regulators, phosphorylation of the P domains would be involved in the transduction of signal (presence/absence of a sugar) to the effector domain (i.e., the RNA- or DNA-binding domain).

LicT, a SacY homologous antiterminator, has recently been shown to be phosphorylated at multiple sites; separation of proteolytic fragments, obtained from phosphorylated 32P-labeled LicT, showed that LicT is phosphorylated by HPt(His−P) on four histidines corresponding to His-99, His-158, His-207, and His-269 of SacY. While the reported findings using the recombinant P1 and P2 domains of SacY clearly indicate that His-99, His-207, and His-269 are phosphorylated by HPt(His−P), we cannot eliminate the possibility that His-158 is phosphorylated in the complete protein. The occurrence of multisite phosphorylation of LicT is not surprising since its antitermination activity is modulated both positively and negatively by the PTS (22). However, multisite phosphorylation of SacY was unexpected as this regulator is only subject to a negative control by the PTS (7).

Previous genetic studies had already suggested that His-99 phosphorylation in SacY negatively regulates antitermination activity (7). Our results show that H99Y mutation, introduced alone or in combination with substitutions of other conserved histidines, confers a strong constitutive expression of sacB. This dominant constitutive phenotype indicates that His-99 is the major determinant for the control of SacY antitermination activity. Phosphorylation of one (or two) of the other conserved histidines in SacY could play an indirect role, by modulating the level of His-99 phosphorylation. Indeed, the positive effect conferred by the H269Y single mutation, the H158Y/H269Y double mutation and the H158Y/H207Y/H269Y triple mutation on sacB expression suggests the possibility of phosphate transfer from His-269 to His-99 in the wild-type protein, albeit in vitro experiments clearly showed that His-99 could be directly phosphorylated by HPt(His−P). Alternatively, phosphorylation of other histidyl residues in SacY might correspond only to the positive regulation exerted by the PTS on SacT and LicT. This suggestion stems from the isolation of sacT and licT mutants possessing antitermination activity that is independent of EI and HPr. However, one of these LicT mutant proteins has been shown to be phosphorylated in vitro on the same histidines and to the same extent as the wild-type protein. Additionally, our in vitro assays clearly showed that the H2O7Y substitution severely reduced overall phosphorylation of SacY (Fig. 6, lane 4). Similarly, phosphorylation experiments with LicT, carried out under similar conditions, revealed that His-207 was 4–10-fold more strongly phosphorylated as compared with the other phosphorylatable histidyl residues. Finally, substitution of either histidine 99, 207, or 269 of SacY led to a markedly reduced phosphorylation of the complete protein, indicating that the effects of single substitutions are not additive. Since the phenotypes conferred in vivo by the different mutations (e.g., H207Y, Table I) do not always correlate with the level of SacY phosphorylation observed in vitro (Fig. 6, lane 4), it is conceivable that the relative phosphorylation level of each phosphorylatable histidine (and particularly His-99) is not equivalent under both conditions. Our in vitro phosphoryl-

Fig. 6. Substitution of His-99 and/or His-207 in SacY affects its phosphorylation. Autoradiogram of an SDS-polyacrylamide gel showing the radiolabeled proteins obtained by incubation of 14 μg of crude extract from GM1288X in the presence of 2.8 μg of SacY (lane 1), GST-SacY (lane 2), GST-SacYH99Y (lane 3), GST-SacYH207Y (lane 4), or GST-SacYH99Y/H207Y (lane 5) and [32P]PEP. The arrows indicate the positions of the SacY and GST-SacY proteins.

Fig. 7. SacY is phosphorylated on both P1 and P2 domains. Autoradiogram of an SDS-polyacrylamide gel showing the radiolabeled proteins obtained by incubation, in the presence of [32P]PEP, of 14 μg of crude extract from GM1288X without addition (lane 1) or with addition of 2.8 μg of SacY (lane 2), 17 μg of GST-P1 (lane 3), or GST-P2 (lane 4), 34 μg of GST-P1H99Y (lane 5), or GST-P2H207Y (lane 6). The arrows indicate the positions of the SacY and GST-P proteins.

Fig. 8. Effect of substitutions of histidines 207 and/or 269 on the phosphorylation of P2. Autoradiogram of an SDS-polyacrylamide gel showing the radiolabeled proteins obtained by incubation, in the presence of [32P]PEP, of 2.8 μg of SacY (lane 2), 17 μg of GST-P2 (lane 3), GST-P2H207Y (lane 4), GST-P2H269Y (lane 5), or GST-P2H207Y/H269Y (lane 6) with 14 μg of GM1288X crude extract (panel A) or 3 μg of EI and 1 μg of HPr (panel B). Lane 1, control (no addition of SacY). The arrows indicate the positions of the SacY and GST-P2 proteins.

C. Lindner, unpublished results.

D. Le Coq and C. Lindner, unpublished results.
Multiple Phosphorylation of the SacY Antiterminator

TABLE I

SacY	sacB-lacZ expression*	−Sucrose	+Sucrose
Wild-type		3.3	3.3
H99Y	≥0.1	26.5	26.5
H158Y	≥0.1	5.5	5.5
H207Y	≥0.1	2.7	2.7
H269Y	≥1.0	9.8	9.8
H99Y,H207Y	24.3	30.4	30.4
H99Y,H269Y	42.3	30.2	30.2
H158Y,H207Y	≤0.1	2.9	2.9
H158Y,H269Y	3.4	19.3	19.3
H207Y,H269Y	0.8	7.5	7.5
H99Y,H207Y,H269Y	25.6	27.0	27.0
H158Y,H207Y,H269Y	0.6	5.0	5.0

* Miller units. Values are the average of at least three experiments, performed with three independent transformants.

SacY phosphorylation by HPr(His−P) will need to be measured, in the absence or presence of sucrose. In the same way, the occurrence of the SacX/SacY complex and its possible stabilization by addition of HPr(His−P) must be demonstrated. These studies are currently in progress.

Acknowledgments—The contribution of Michel Steinmetz to the initiation of this work is particularly acknowledged. We would like to thank Xavier Mannival and Michel Kochoyan for providing the purified, thrombin-cleaved SacY, Andrée Lépingle for DNA sequencing, Gaspar Perez Martinez and Carl Alfred Alpert for helping in radioactive PEP synthesis and Anne Galinier for giving the overexpression plasmids used for purification of the B. subtilis EI and HPr proteins. We also thank Josef Deutscher and Claude Gaillardin for constant interest in this work.

REFERENCES
1. Shimotsu, H., and Henner, D. J. (1986) J. Bacteriol. 168, 380–388
2. Steinmetz, M., and Aymerich, S. (1986) Ann. Microbiol. (Paris) 137A, 3–14
3. Aymerich, S., and Steinmetz, M. (1987) Mol. & Gen. Genet. 206, 114–120
4. Arnaud, M., Debarbouille, M., Rapeport, G., Saier M. H., Jr., and Reizer, J. (1996) J. Biol. Chem. 271, 18966–18972
5. Aymerich, S., and Steinmetz, M. (1992) Proc. Natl. Acad. Sci. U. S. A. 89, 10410–10414
6. Zukowski, M. M., Miller, L., Cogswell, P., Chen, K., Aymerich, S., and Steinmetz, M. (1990) Gene (Amst.) 90, 153–155
7. Crutz, A.-M., Steinmetz, M., Aymerich, S., Richter, R., and Le Coq, D. (1990) J. Bacteriol. 172, 1043–1050
8. Saier, M. H. Jr., and Reizer, J. (1992) J. Bacteriol. 174, 1433–1438
9. Postma, P. W., Lengeler, J. W., and Jacobson, G. R. (1993) Microbiol. Rev. 57, 543–594
10. Saier, M. H., Jr., and Reizer, J. (1994) Mol. Microbiol. 13, 755–764
11. Amster-Choder, O., Houman, F., and Wright, A. (1989) Cell 58, 847–855
12. Amster-Choder, O., and Wright, A. (1990) Science 240, 540–542
13. Schnetz, K., and Rak, R. (1990) Proc. Natl. Acad. Sci. U. S. A. 87, 5074–5078
14. Mahadevan, S., and Wright, A. (1987) Cell 50, 485–494
15. Schnetz, K., and Rak, R. (1988) EMBO J. 7, 3271–3277
16. Amster-Choder, O., and Wright, A. (1992) Science 257, 1395–1398
17. Debarbouille, M., Arnaud, M., Foutet, A., Klier, A., and Rapeport, G. (1990) J. Bacteriol. 172, 3966–3973
18. Le Coq, D., Lindner, C., Krüger, S., Steinmetz, M., and Stülke, J. (1995) J. Bacteriol. 177, 1527–1535
19. Schnetz, K., Stülke, J., Gertz, S., Krüger, S., Krieg, M., Hecker, M., and Rak, B. (1996) J. Bacteriol. 178, 1971–1979
20. Arnaud, M., Vary, P., Zagare, M., Klier, A., Debarbouille, M., Postma, P., and Rapeport, G. (1992) J. Bacteriol. 174, 3161–3170
21. Krüger, S., and Hecker, M. (1995) J. Bacteriol. 177, 5590–5597
22. Krüger, S., Gertz, S., and Hecker, M. (1996) J. Bacteriol. 178, 2637–2644
23. Schmetz, K., Martin-Verstraete, I., Klier, A., and Rapeport, G. (1991) Proc. Natl. Acad. Sci. U. S. A. 88, 2212–2216
24. Stülke, J., Martin-Verstraete, I., Charrier, V., Klier, A., Deutscher, J., and Rapeport, G. (1995) J. Bacteriol. 177, 4928–4936
25. González-Trehoué, G., and Steinmetz, M. (1987) J. Bacteriol. 169, 2287–2290
26. Steinmetz, M., and Richter, R. (1994) Gene 142, 79–83
27. Yanura, D. G., and Henner, D. J. (1984) Proc. Natl. Acad. Sci. U. S. A. 81, 439–443
28. Sambrock, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
29. Miller, J. H. (1972) Experiments in Molecular Genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
30. Reizer, J., Sutrina, S. L., Saier, M. H., Jr., Stewart, G. C., Peterkofsky, A., and Reddy, P. (1989) EMBO J. 8, 2113–2120
31. Reizer, J., Sutrina, S. L., Wu, L.-F., Deutscher, J., Reddy, P., and Saier, M. H., Jr. (1992) J. Biol. Chem. 267, 9158–9169
32. Laemmli, U. K. (1970) Nature 227, 685–695
33. Bradford, M. M. (1976) Anal. Biochem. 72, 248–254
34. Alpert, C. A., Frank, R., Stüber, K., Deutscher, J., and Hengstenberg, W. (1988) Biochemistry 27, 595–601
35. Piggot, P. J., and Curtis, C. A. M. (1987) J. Bacteriol. 169, 1260–1266
36. Manival, X., Yang, Y., Strub, M.-P., Kochoyan, M., Steinmetz, M., and Aymerich, S. (1997) EMBO J., in press
37. Tóth, B., Glaser, P., Müller, C., and Hecker, M. (1997) J. Bacteriol. 179, 496–506
38. Reizer, A., and Reizer, J. (1996) Res. Microbiol. 147, 458–471
39. Reizer, A., and Reizer, J. (1994) in Methods in Molecular Biology: Computer Analysis of Sequence Data (S. A. Griffin, A. M., and Griffin, H. G., eds) pp. 319–325, Humana Press, Totowa, NJ
40. Feng, D. F., and Doedt, R. F. (1990) Methods Enzymol. 183, 375–387