MEASURING Ω/b WITH WEAK LENSING

N. BENÍTEZ AND J. L. SANZ1,2

Department of Astronomy, University of California, Berkeley, 601 Campbell Hall, Berkeley, CA 94720; benitezn@mars.berkeley.edu

Received 1999 July 16; accepted 1999 September 2; published 1999 September 29

ABSTRACT

A correlation between the surface density of foreground galaxies tracing the large-scale structure and the position of distant galaxies and quasars is expected from the magnification bias effect. We show that this foreground-background correlation function w_{fb} can be used as a straightforward and almost model-free method to measure the cosmological ratio Ω/b. For samples with appropriate redshift distributions, $w_{fb} \propto \Omega (\delta g)$, where δ and g are respectively the foreground dark matter and galaxy surface density fluctuations. Therefore, $\Omega/b \propto w_{fb}/w$, where $w \equiv \langle gg \rangle$ is the foreground galaxy angular two-point correlation function, b is the biasing factor, and the proportionality factor is independent of the dark matter power spectrum. Simple estimations show that the application of this method to the galaxy and quasar samples generated by the upcoming Sloan Sky Digital Survey will achieve a highly accurate and well-resolved measurement of the ratio Ω/b.

Subject headings: cosmology: theory — gravitational lensing — large-scale structure of universe

1. INTRODUCTION

Weak lensing promises to be one of the most effective ways to study the properties of large-scale structure (LSS) in the next years (Kaiser & Squires 1993; Kaiser 1998; Bernardeau, van Waerbeke, & Mellier 1997; Bartelmann & Schneider 1999; Hu & Tegmark 1999; Schneider 1998). Most of the weak lensing methods proposed so far rest heavily on the analysis of background galaxy distortions (Kaiser 1992; van Waerbeke, Bernardeau, & Mellier 1999; Schneider 1996; Seljak 1998; Schneider et al. 1998a), as they potentially contain finer detail about the LSS than the fluctuations of the background number counts, which are affected by intrinsic clustering. However, detecting and analyzing the typical shear expected from the LSS offers technical problems that are difficult to underestimate (Kaiser, Squires, & Broadhurst 1995; Bonnet & Mellier 1995; van Waerbeke et al. 1997; Kaiser 1999; Kuijken 1999; although see Schneider et al. 1998b). In addition, a number of surveys will be available in the near future, for example the Sloan Digital Sky Survey (SDSS; Gunn & Weinberg 1995), NOAO (Januzzi et al. 1999), etc. with vast amounts of data that may not be optimal for shear analysis due to the imaging pixel size or typical seeing. It is therefore necessary to develop methods that are able to tap the wealth of cosmological information contained in such surveys without relying exclusively on image distortion analysis.

Such an approach is provided by the background–foreground correlation function w_{fb} (Bartelmann & Schneider 1991; Bartelmann & Schneider 1993). The value of this statistic has been calculated by several authors using linear and nonlinear evolution models for the power spectrum evolution (Bartelmann 1995; Villumsen 1996; Sanz, Martínez-González, & Benítez 1997; Dolag & Bartelmann 1997; Moessner & Jain 1998; Moessner, Jain, & Villumsen 1998). The two most obvious cases in which it is possible to measure w_{fb} are galaxy-galaxy correlations and quasar-galaxy correlations. The detection of the latter has a long and controversial history (for a discussion, see Schneider, Ehlers, & Falco 1992; Benítez 1997), but it seems to be already well established. However, due to the scarcity of complete, well-defined quasar catalogs not affected by observational biases, the results have low signal-to-noise ratios and are difficult to interpret (Benítez, Sanz & Martínez-González 1999). The value of the expected amplitude for the low-z galaxy—high-z galaxy cross-correlation is rather small and hard to measure within typical single CCD fields (Villumsen, Freudling, & da Costa 1997). Only with the advent of deep, multicolor galaxy samples and reliable photometric redshift techniques has it been possible to detect this effect (Herranz et al. 1999).

To interpret the measurements of w_{fb} using the calculations mentioned above, it is necessary to assume a certain shape for the power spectrum. Unfortunately, it is still far from clear whether the most popular Ansatz, that of Peacock & Dodds (1996)—or any other for that matter—provides an accurate fit to the LSS distribution (see, e.g., Jenkins et al. 1998). It is thus desirable to develop methods whose application is not hindered by this uncertainty. An example is the statistic R (van Waerbeke 1998), which combines shear and number counts information and can be used to measure the scale dependence of the bias. The value of R is almost independent of the shape of the power spectrum if the foreground galaxy distribution has a narrow redshift range. Here we show that something similar can be achieved with w_{fb}, with the additional advantage of being able to do without the shear information when it is difficult to obtain it.

It follows from the magnification bias effect (Canizares 1981; Narayan 1989; Broadhurst, Taylor, & Peacock 1995) that the surface number density of the background population n_b is changed by the magnification μ, associated with a foreground galaxy population with number density n as $g_b = (\alpha - 1)\mu n$, where g_b is the perturbation in the galaxy surface density n_b ($g_b = n_b / (n_b - 1)$). α is the logarithmic slope of the number counts and in the weak lensing regime $\mu \approx 1 + \delta \mu$, $\delta \mu \ll 1$. Since $\mu \approx 1 + 2\kappa$ and κ, the convergence, is proportional to the projected matter surface density Σ, it follows that $g_b \propto \delta \kappa \propto \delta \Sigma \propto \Omega \delta$, where δ is the dark matter surface density perturbation. Therefore $w_{fb} \propto \langle gg \rangle \propto \Omega \langle g \delta \rangle$ and assuming linear and deterministic bias $w_{fb} \propto \Omega \delta^2 w$, where w is the two-point galaxy correlation function for the background populations and

1 Center for Particle Astrophysics, University of California, Berkeley, 301 Le Conte Hall, Berkeley, CA.

2 On sabbatical leave from IFCA (CSIC-UC), Santander, Spain.

3 Results from the NOAO Deep Wide-Field Survey can be found at http://www.noao.edu/noao/noaodeep/.
the biasing factor b is defined by $w = b^2 w_{\text{bg}}$. This result provides a straightforward, virtually model-independent method to estimate the ratio Ω/b. Williams & Irwin (1998) arrived at a similar expression using a phenomenological approach. The redshift distortion method provides the quantity $\beta \propto \Omega^{1/2}/b$ (De- kel 1994), so combining both one can estimate Ω and b separately.

The outline of the Letter is as follows. In § 2 we show rigorously that under reasonable assumptions $w_{\text{tg}} \propto \Omega b^{-1} w$. Section 3 explores the application of this method to future and ongoing surveys, and § 4 summarizes our main results and conclusions.

2. FOREGROUND-BACKGROUND CORRELATIONS

Let us consider two populations of sources: a background one (e.g., quasars or galaxies) and a foreground one (e.g., galaxies), placed at different distances λ with probability density functions (pdf's) $R_\lambda(\lambda)$ and $R(\lambda)$, respectively. In Sanz et al. (1997), the background-foreground correlation w_{bg} was calculated as a functional of the power spectrum $P(\lambda, k)$ of the matter fluctuations at any time (the comoving distance from the observer to an object at redshift $z_\lambda = [(1 + \Omega z)^{1/2} - 1] / [(1 + \Omega z)^{1/2} - 1 + \Omega]$ and $\Omega < 1$, $\Lambda = 0$):

$$w_{bg}(\theta) = (\alpha_b - 1) C_{bg}(\theta),$$

$$C_{bg}(\theta) = 12 \Omega \int_0^1 d\lambda b(\lambda, s\theta) T_b(\lambda) R(\lambda) \frac{\lambda^2}{(1 - \Omega)^2} \tau(\lambda, s\theta),$$

$$\tau(\lambda, s\theta) = \frac{1}{2\pi} \int_0^\infty dk kP(\lambda, k) J_0(k s\theta),$$

$$s = \frac{\lambda}{1 - (1 - \Omega)^2},$$

where $b(\lambda, s\theta)$ is the bias factor for the foreground galaxies (assumed to be linear, nonstochastic but possibly redshift and scale dependent), α_b is the slope of the background source number counts, and $C_{bg}(\theta) = 2 \mu \Theta(\Theta + \theta)$ is the correlation between the magnification and the mass density fluctuation. $T_b(\lambda)$ is the lensing window function given by equation (7) in Sanz et al. (1997):

$$T_b(\lambda) = \frac{1}{\lambda} \int_0^\lambda \frac{du}{u} R_b(u)(u - \lambda) \frac{1 - (1 - \Omega) u \lambda}{1 - (1 - \Omega) \lambda^2}.$$

The angular two-point correlation function for the foreground population w can be obtained as

$$w(\theta) = \int_0^1 d\lambda b^2(\lambda, s\theta) R^2(\lambda)[1 - (1 - \Omega) \lambda^2] \tau(\lambda, s\theta),$$

where $w(\theta) \equiv \langle \phi(\phi + \theta) \rangle$ is the foreground angular galaxy-galaxy correlation function.

If we assume that the foreground and background galaxies are concentrated at the “effective” distances λ_f and λ_b (a good approximation for realistic, nonoverlapping redshift distributions; Sanz et al. 1997), the previous formulae can be rewritten as

$$w_{tg}(\lambda_\text{f}, \lambda_\text{b}, \theta) = (\alpha_b - 1) 12 \Omega \frac{2b}{a_f \Sigma}\tau(\lambda_\text{f}, s\theta),$$

$$w(\lambda_\text{f}, \Delta\lambda_\text{f}, \theta) \approx b^2 \frac{1}{\Delta\lambda_\text{f}} [1 - (1 - \Omega) \lambda_\text{b}^2] \tau(\lambda_\text{f}, s\theta),$$

$$\Sigma(\lambda_\text{f}, \lambda_\text{b}) \equiv (D_\text{f}/D_\text{bg})$$

is the critical surface mass distance defined by the angular distance D, $a_f \equiv (1 - \lambda_\text{f})^2 / [1 - (1 - \Omega) \lambda_\text{b}^2]$, the scale factor, and $\Delta\lambda_\text{f} = 1/R_b(\lambda_\text{f})$ is the width of the pdf $R(\lambda)$ (e.g., the FWHM for a Gaussian distribution). Dividing equation (5) by equation (6) and simplifying, one obtains

$$w_{bg} = Q \frac{\Delta z_\text{f} (\alpha_b - 1) \Omega}{b},$$

i.e., the two correlations are proportional. The proportionality factor Q has the form

$$Q \equiv \frac{6a_f (1 - \lambda_\text{f}/\lambda_\text{b}) [1 - (1 - \Omega) \lambda_\text{b}^2] [1 - (1 - \Omega) \lambda_\text{f}^2]}{[1 - (1 - \Omega) \lambda_\text{f}^2]}.$$

Note in Figure 1 that for $z_\text{f} < 0.2$ and $z_\text{b} > 1$ the value of Q in both open and flat geometries changes very slowly with z_f and almost linearly with z_b. To better understand this behavior from equation (8) let us assume that $z_\text{f} \ll z_\text{b}$. In that case, $\lambda_\text{b} \approx s_\text{b} \approx z_\text{b}$, $a_f \approx 1 - z_\text{f}$, and $Q \approx 3z_\text{b}$. Therefore, w_{bg} is almost independent of λ_f (Fig. 1) and roughly $w_{bg} \approx 3z_\text{b} \Delta z_\text{f} \times (\alpha_b - 1) \Omega b^{-1} w$. Figure 2 also shows that for the same redshift range, the amplitude of Q is also approximately independent of Ω, allowing an empirical, model-independent estimation of Ω/b.

3. PRACTICAL APPLICATION

The main quantity that determines the signal in the measurement of the angular correlation function is the excess (or defect) in the expected number of galaxy pairs. For a bin with surface A_{bin} at distance θ, this number will be

$$\Delta N(\theta) \approx (\pm) N_\text{f} n_\text{bg} A_{\text{bin}}(\theta) w_{\text{tg}}(\theta).$$

Therefore, the signal-to-noise ratio of the detection will be roughly

$${S \over N} = \frac{\Delta N}{\sqrt{N}} = \sqrt{N \sqrt{n_\text{bg} A_{\text{bin}}} w_{\text{tg}}(\theta)}. $$
We have not included the scatter due to the clustering of foreground galaxies and background galaxies, but it is unlikely that this effect will increase the noise over Poisson more than a factor of a few for any realistic case. The quantity \(n A_{\text{bin}} \) is the number of background galaxies per bin. If we assume radial concentric bins of width \(\Delta \theta \) and \(w_{\text{fb}} = A b \theta^{-\gamma} \), the signal-to-noise ratio (S/N) in each bin will be

\[
\frac{S}{N} \sim A b \sqrt{2 \pi N n A \Delta \theta \theta^{0.5 - \gamma}}.
\]

Since \(\gamma \) is typically 0.7–0.8, the efficiency of the method will decrease very slowly with radius, allowing one to map \(\Omega/b \) up to very large scales.

The SDSS will obtain \(\sim 10^6 \) spectra for a population of \(\langle z \rangle \sim 0.1 \) galaxies (Gunn & Weinberg 1995), forming a splendid foreground sample. It may be assumed that its projected angular correlation function will be similar to that of the APM catalog, which has an amplitude \(A = 0.44 \) at 1' and a slope \(\gamma = 0.668 \) (Maddox et al. 1990). The SDSS will also obtain \(S/N \sim 10 \) \(u'g'r'i'z' \) photometry for \(10^5 \) galaxies in a 10° deg region, for which photometric redshifts will be estimated. The background sample can be formed by those galaxies with \(z > 0.4 \) and \(\langle z \rangle \approx 0.7–0.8 \), with \(n_b \approx 1–1.5 \) arcsec\(^{-2} \). The value of \(Q \) cannot be considered constant for these two samples (see Fig. 1) because of the range of redshifts involved. Luckily, the existence of spectroscopic redshifts for the foreground sample will allow one to select subsamples with an extremely thin redshift distribution for which \(Q \) is approximately constant, each yielding independent estimates of \(\Omega/b \) that can afterwards be combined together. A rough estimate of the expected result using equation (12) gives

\[
\left(\frac{S}{N}_{\text{SDSS}} \right) \sim 20 \frac{\Omega}{b} \sqrt{\frac{\Delta \theta}{5'}} \theta^{-0.2}
\]

(we have assumed \(N_b = 10^4 \), \(n_b = 1.5 \), \(\Delta z_b = 0.05 \), \(Q = 0.25 \), and \(\alpha_b = 1 = 0.5 \)). This shows that it will be possible to map \(\Omega/b \) with an extremely good combination of resolution and accuracy using the SDSS. At large radii, the bias factor is expected to become constant (Coles 1993), which means that the bin size can be made as large as desired without being affected by the scale dependence of \(b \) and therefore substantially decrease the error in the estimation of \(\Omega/b \). It is obvious from the above numbers that the main source of errors will not be the shot noise, but contamination due to low-redshift galaxies which may sneak into the high-redshift sample, creating a spurious correlation. This contamination can be very effectivly minimized by applying a Bayesian threshold (Benitez 1999). In addition, it will be possible to accurately quantify and correct this effect using a calibration sample with spectroscopic redshifts.

The SDSS also plans to obtain spectra for a sample of \(10^7 \) red luminous galaxies with \(\langle z \rangle \sim 0.4 \) and 10° QSOs. Due to the much lower density of the background sample, it will not be possible to attain such a good spatial resolution in the measurement of \(\Omega/b \), but these samples will allow one to trace the evolution of biasing with redshift up to \(z \sim 1 \). However, experience shows that in this case the utmost attention will have
to be paid to eliminating or accounting for the observational biases in the QSO detection and identification procedure, which can totally distort the estimation of \(w_{ab} \) (Ferreras, Benítez, & Martínez-González 1997; Benítez et al. 1999).

4. CONCLUSIONS

A correlation (positive or negative) between the surface density of foreground galaxies tracing the large-scale structure and the position of background galaxies and quasars is expected from the magnification bias effect (Canizares 1981). We show that this foreground-background correlation function \(w_{fb} \) can be used as a straightforward and almost model-free method to measure the cosmological ratio \(\Omega/b \).

For samples with appropriate redshift distributions, \(w_{fb} \propto \Omega (\delta g) \), where \(\delta \) and \(g \) are respectively the foreground dark matter and galaxy surface density fluctuations. Therefore, \(\Omega/b \propto w_{fb}/w \), where \(w \equiv \langle gg \rangle \) is the foreground galaxy angular two-point correlation function, \(b \) is the biasing factor, and the proportionality factor is independent of the dark matter power spectrum.

Simple estimations show that the application of this method to the galaxy and quasar samples generated by the upcoming Sloan Sky Digital Survey will achieve a highly accurate and well-resolved measurement of the ratio \(\Omega/b \).

The authors thank Enrique Martínez-González for interesting discussions. N. B. acknowledges a Basque Government postdoctoral fellowship and partial financial support from NASA grant LTSA NAG-3280. J. L. S. acknowledges a MEC fellowship and partial financial support from the Center for Particle Astrophysics.

REFERENCES

Bartelmann, M. 1995, A&A, 303, 643
Bartelmann, M., & Schneider, P. 1991, A&A, 248, 349
———. 1993, A&A, 268, 1
———. 1999, A&A, 345, 17
Benítez, N. 1997, Ph.D. thesis, Univ. Cantabria
———. 1999, ApJ, in press (astro-ph/9811189)
Benítez, N., Sanz, J. L., & Martínez-González, E. 1999, in preparation
Bernardeau, F., van Waerbeke, L., & Mellier, Y. 1997, A&A, 322, 1
Bonnet, H., & Mellier, Y. 1995, A&A, 303, 331
Broadhurst, T. J., Taylor, A. N., & Peacock, J. A. 1995, ApJ, 438, 49
Canizares, C. R. 1981, Nature, 291, 620
Coles, P. 1993, MNRAS, 262, 1065
Dekel, A. 1994, ARA&A, 32, 371
Dolag, K., & Bartelmann, M. 1997, MNRAS, 291, 446
Ferreras, I., Benítez, N., & Martínez-González, E. 1997, AJ, 114, 1728
Gunn, J. E., & Weinberg, D. H. 1995, in Wide-Field Spectroscopy and the Distant Universe, ed. S. J. Maddox & A. Aragón-Salamanca (Singapore: World Scientific), 3
Herranz, D., et al. 1999, in preparation
Hu, W., & Tegmark, M. 1999, ApJ, 514, L65
Januzzi, B. T., & Dey, A. 1999, BAAS, 194, 88.03
Jenkins, A., et al. 1998, ApJ, 499, 20
Kaiser, N. 1992, ApJ, 388, 272
———. 1998, ApJ, 498, 26
———. 1999, preprint (astro-ph/9904003)
Kaiser, N., & Squires, G. 1993, ApJ, 404, 441
Kaiser, N., Squires, G., & Broadhurst, T. 1995, ApJ, 449, 460
Kuijken, K. 1999, A&A, submitted (astro-ph/9904418)
Maddox, S. J., Efstathiou, G., Sutherland, W. J., & Loveday, J. 1990, MNRAS, 242, 43P
Moessner, R., & Jain, B. 1998, MNRAS, 294, L18
Moessner, R., Jain, B., & Villumsen, J. V. 1998, MNRAS, 294, 291
Narayan, R. 1989, ApJ, 339, L53
Peacock, J. A., & Dodds, S. J. 1996, MNRAS, 280, L19
Sanz, J. L., Martínez-González, E., & Benítez, N. 1997, MNRAS, 291, 418
Schneider, P. 1996, MNRAS, 283, 837
———. 1998, ApJ, 498, 43
Schneider, P., Ehlers, J., & Falco, E. E. 1992, Gravitational Lenses (Berlin: Springer)
Schneider, P., van Waerbeke, L., Jain, B., & Kruse, G. 1998a, MNRAS, 296, 873
Schneider, P., van Waerbeke, L., Mellier, Y., Jain, B., Seitz, S., & Fort, B. 1998b, A&A, 333, 767
Seljak, U. 1998, ApJ, 506, 64
van Waerbeke, L. 1998, A&A, 334, 1
van Waerbeke, L., Bernardeau, F., & Mellier, Y. 1999, A&A, 342, 15
van Waerbeke, L., Mellier, Y., Schneider, P., Fort, B., & Mathez, G. 1997, A&A, 317, 303
Villumsen, J. V. 1996, MNRAS, 281, 369
Villumsen, J. V., Freudling, W., & da Costa, L. N. 1997, ApJ, 481, 578
Williams, L. L. R., & Irwin, M. 1998, MNRAS, 298, 378