Eradication of Helicobacter pylori increases childhood growth and serum acylated ghrelin levels

Yao-Jong Yang, Bor-Shyang Sheu, Hsiao-Bai Yang, Cheng-Chan Lu, Ching-Chun Chuang

Yao-Jong Yang, Departments of Pediatrics and Institute of Clinical Medicine, Medical College, National Cheng Kung University, Tainan 70428, Taiwan, China
Bor-Shyang Sheu, Departments of Internal Medicine and Institute of Clinical Medicine, Medical College, National Cheng Kung University, Tainan 70428, Taiwan, China
Hsiao-Bai Yang, Ton-Yen General Hospital, Hsinchu County 70428 Taiwan, China
Hsiao-Bai Yang, Department of Pathology, Medical College, National Cheng Kung University, Tainan 70428, Taiwan, China
Cheng-Chan Lu, Department of Pathology, Medical College, National Cheng Kung University, Tainan 70428, Taiwan, China
Ching-Chun Chuang, Institute of Clinical Medicine, Medical College, National Cheng Kung University, Tainan 70428, Taiwan, China

Author contributions: Yang YJ contributed to the study design, study performance, and wrote the first draft of the manuscript; Yang HB and Lu CC contributed to the study design, technique consultation and paper revision; Chuang CC performed the research and analyzed the data; Sheu BS organized the whole study design, team discussion and final revision of this paper.

Supported by National Cheng Kung University Hospital, Tainan, China, No. NCKUH96-030; and DOH99-TD-C-111-003 from Department of Health, Taiwan, China, No. DOH99-TD-C-111-003

Correspondence to: Bor-Shyang Sheu, Professor, Department of Internal Medicine, National Cheng Kung University Hospital, No. 138 Sheng Li Road, Tainan 70428, Taiwan, China. sheubs@mail.ncku.edu.tw
Telephone: +886-6-2353535 Fax: +886-6-2370941
Received: August 9, 2011 Revised: December 8, 2011 Accepted: April 28, 2012 Published online: June 7, 2012

Abstract

AIM: To determine whether Helicobacter pylori (H. pylori)-infected children have reduced body weight (BW) and height (BH) growth, and if H. pylori eradication may restore growth while improving serum acylated ghrelin.

METHODS: This longitudinal cohort study with one-year follow-up enrolled 1222 children aged 4 to 12 years old into an observation cohort (18 with and 318 without H. pylori) and intervention cohort (75 with and 811 without). The 7-d triple therapy was used for eradication in the intervention cohort. The net increases of BW and BH as well as serum acylated ghrelin after one-year follow-up were compared between successful eradicated H. pylori-infected children and controls.

RESULTS: In the observation cohort, the H. pylori-infected children had lower z score of BW (-1.11 ± 0.47 vs 0.35 ± 0.69, P = 0.01) and body mass index (BMI) (0.06 ± 0.45 vs 0.44 ± 0.73, P = 0.02) at enrollment and lower net BW gain after one-year follow-up (3.3 ± 2.1 kg vs 4.5 ± 2.4 kg, P = 0.04) than the non-infected controls. In the intervention cohort, the H. pylori-infected children had lower z score of BMI (0.25 ± 1.09 vs 0.68 ± 0.87, P = 0.009) and serum acylated ghrelin levels (41.8 ± 35.6 pg/mL vs 83.6 ± 24.2 pg/mL, P < 0.001) than the non-infected controls. In addition to restoring decreased serum ghrelin levels (87.7 ± 38.0 pg/mL vs 44.2 ± 39.0 pg/mL, P < 0.001), the H. pylori-infected children with successful eradication had higher net gains (P < 0.05) and increase of z scores (P < 0.05) of both BW and BH as compared with non-infected controls after one-year follow-up.

CONCLUSION: H. pylori-infected children are associated with low serum acylated ghrelin and growth retardation. Successful eradication of H. pylori restores ghrelin levels and increases growth in children.

© 2012 Baishideng. All rights reserved.

Key words: Child; Clinical trial; Ghrelin; Growth retardation; Helicobacter pylori

Peer reviewer: Francesco Franceschi, MD, PhD, Assistant Professor, Internal Medicine, Catholic University of Rome, Gemelli Hospital, 00168 Rome, Italy

Yang YJ, Sheu BS, Yang HB, Lu CC, Chuang CC. Eradication of Helicobacter pylori increases childhood growth and serum acylated ghrelin levels.
ed ghrelin levels. *World J Gastroenterol* 2012; 18(21): 2674-2681

Available from: URL: http://www.wjgnet.com/1007-9327/full/v18/i21/2674.htm DOI: http://dx.doi.org/10.3748/wjg.v18.i21.2674

INTRODUCTION

Primary infection with *Helicobacter pylori* (*H. pylori*) usually occurs during childhood[2,3]. This organism has been proven to cause chronic gastritis, peptic ulcer diseases, and has a high correlation with gastric cancer in humans[4-5]. In children, the *H. pylori* prevalence rate was relatively lower than adults[6,7]. Besides the link with gastric diseases, the association between *H. pylori* infection and growth retardation in children has raised clinical attention to this issue and caused some debate recently. Some cross-sectional analyses have indicated that *H. pylori*-infected children had subnormal growth retardation as compared with non-infected children[8-13], but some others did not support such findings[10,11]. Long-term observational studies have reported that children with persistent *H. pylori* infection have reduced body weight (BW) and height (BH) growth than the non-infected peers[9,10]. Therefore, to further support the causal relationship between *H. pylori* infection and growth retardation in children, interventional trials involving *H. pylori* eradication may provide new insights using a rigorous study design.

Ghrelin, a growth-hormone-releasing peptide biosynthesized mainly in the fundic mucosa, regulates appetite and body composition and is affected by inflammatory and atrophic events associated with *H. pylori* infection[14,15]. Previous studies showed conflicting results regarding the correlation between plasma ghrelin levels and *H. pylori* infection after eradication of bacteria[16-19]. This controversy may be caused by the measurement of total plasma ghrelin, which contains both acylated and desacylated forms. Acylated ghrelin is a more potent agonist on the growth-hormone-stimulating receptor than the desacylated form and undergoes a compensatory elevation in patients with chronic atrophic gastritis[19,20]. This study seeks to examine active ghrelin levels and its relationship with growth in patients before and after *H. pylori* eradication.

Although eradication of *H. pylori* can restore body mass index (BMI) and serum albumin in adult patients with infection[21,22], such improvement has not yet been documented in *H. pylori*-infected children. Moreover, it is unclear whether the improving growth parameters after *H. pylori* eradication are subsequently linked to increase serum acylated ghrelin levels. Therefore, this study sought to examine whether *H. pylori* eradication improves BW and BH growth in children in parallel with increases in serum acylated ghrelin levels.

MATERIALS AND METHODS

Subject enrollments in the two cohorts

This study enrolled 1292 students, aged 4 to 12 years old from three elementary schools and their associated pre-school kindergartens in Tainan City, Taiwan. The participants were consecutively enrolled into two study cohorts. Each participant provided informed consent documentation that was signed by her/his parents.

The first cohort (observation cohort) enrolled 400 children in 2005 to screen for the *H. pylori* infection, and they were then scheduled to return for follow-up growth status by a half-year interval of up to one year. The second group was an interventional cohort which enrolled 892 children in 2006 to screen for the *H. pylori* infection. Moreover, the *H. pylori*-infected subjects were invited to receive one-week of triple therapy for *H. pylori* eradication. As well, the children in the 2nd cohort were scheduled to return for follow-up growth status by a half-year interval of up to one year.

In each cohort, both the enrolled children and their parents were reviewed with a questionnaire to record data on underlying medical diseases, *H. pylori* infection status, and a range of demographic variables, including socioeconomic status, such as number of family members[23], and annual household income (low income indicated less than $15,000 US/year). The same nursing assistant provided the introduction of questionnaire to the enrolled subjects. Children with pre-established and severe medical/organic conditions predisposing to the failure of thrive, such as genetic/metabolic disorders and cyanotic congenital heart diseases, were not included. The study also excluded children with a known past history to receive anti-*H. pylori* therapy and children underwent eradication therapy or acid suppressors, during the follow-up period in the observation group. In both groups, the control cases were randomly selected (1:4 in the observation and 1:3 in the interventional cohorts) and were matched by age and gender to children with 13C-labeled urea breath test (13C-UBT)-confirmed *H. pylori* infection. Moreover, for the *H. pylori*-infected (confirmed by a positive 13C-UBT) children at entry, the *H. pylori* status was assessed with a 13C-UBT after 6 mo (intervention cohort) and one year follow-up (both cohort).

BMI and z scores of weight, height and BMI

For each participant, the overnight fasting BW and BH were serially measured at enrollment and at the follow-up period on the 6th mo and the 12th mo, respectively. The BMI was defined as BW in kilograms/squared of body length in meter (kg/m^2^). The z scores (SD scores) of BW, BH and BMI were calculated using the reference population of 2003 Taiwanese boys and girls based on health-related physical fitness and based on 2006 World Health Organization standards[24]. The net changes of BW, BH and BMI were calculated by the value of each parameter at follow-up minus the corresponding value at enrollment. We also defined the increase of z score means that z scores of BW, BH and BMI were upgrade at the one-year follow-up than at the enrollment (the net change > 0).

Serological screening of *H. pylori* infection and confirmation by urea breath test

In each enrolled child, the serum was tested for anti-*H. pylori*...
IgG antibodies (HEL-p TEST™ II, AMRAD Biotech, Australia) by enzyme-linked immunosorbent assay (ELISA) methods. The serologic kit has been validated with a favorable sensitivity and specificity (> 90%) in detecting *H. pylori* infection in our previous studies[8,26]. The seropositive children further confirmed by 13C-UBT to diagnose ongoing *H. pylori* infection[13]. The cut-off value of positive 13C-UBT was defined as excess 13CO2/12CO2 ratio more than 3.5‰[9,20].

Eradication therapy for *H. pylori*-infected children

For the *H. pylori*-infected children in the intervention cohort, lansoprazole (1 mg/kg per day, max. 30 mg bid), amoxicillin (50 mg/kg per day, max. 1 g bid), and clarithromycin (15 mg/kg per day, max. 500 mg bid) were prescribed for one week[26]. We have educated the participants and their parents for the compliance and report of complications. Successful eradication therapy was defined by a negative result of 13C-UBT on both the 6th and the 12th mo follow-up, respectively[7].

Serial serum acylated ghrelin levels before and after *H. pylori* eradication

The serum acylated ghrelin levels of the interventional cohorts at enrollment were compared between children with and without *H. pylori* infection. In addition, the serial serum acylated ghrelin levels of the children with *H. pylori* eradication collected at enrollment, the 6th mo, and the 12th mo follow-up were compared. Each blood sample of child was collected in the morning before breakfast and was incubated in the ice-bath container immediately. The sera were separated by centrifugation within 2-3 h and were stored in a -80 °C refrigerator until use. These samples’ serum acylated ghrelin levels were analyzed in duplicate by a commercial kit (LINCO Research, St. Charles, Missouri, United States), using ELISA methods.

Statistical analysis

The χ2 test with the odds ratio (OR) and 95% confidence interval (CI) and logistic regression test were applied as an estimate of the possibly related factors between *H. pylori*-infected and non-infected children. The Student’s *t* test and one-way analysis of variance with least significant difference test correction were used as appropriate to compare the differences of ghrelin, BW, BH, BMI and their net changes during one-year follow-up periods among different study groups. The paired *t* test was used to analyze the difference of the serial serum acylated ghrelin levels before and after eradication therapy within the same study group. A *P* value less than 0.05 was considered statistically significant.

RESULTS

Participants and *H. pylori* infection

There were 84% (336/400) children in the observation and 99% (886/892) children in the intervention cohorts who completed the questionnaires and provided their sera for the anti-*H. pylori* IgG antibodies tested, respectively. In Figure 1, the case numbers of each cohort were serially summarized during the one-year follow-up. One hundred and twenty-one (27 in the observation cohort, 94 in the intervention cohort) were defined with seropositive of *H. pylori* infection. Among them, 113 children received 13C-UBT, of which only 93 (82%) children were positive (18 in the observation cohort and 75 in the intervention cohort). Accordingly, the overall *H. pylori* prevalence was 7.6% in these two cohorts.

For the 18 *H. pylori*-positive children in the observation cohort, the infection was persisted with a positive 13C-UBT until the end of follow-up on the 1st year. Among the 75 *H. pylori*-infected children in the intervention cohort, 57 children were enrolled to receive the 7-d eradica-
Low income: Indicated < $15000 US/year. Increase of z score means that z scores of body weight, height and body mass index (BMI) were upgrade at the one-year follow-up than at the enrollment (the net change > 0). The difference of the body weight, height, BMI and ghrelin level among the three groups were analyzed by oneway analysis of variance model with least significant difference correction. The difference of the up-shift of the z scores of body weight, height and BMI were analyzed by χ² test. *P < 0.05 between H. pylori-positive subjects with eradication failure and controls, **P < 0.05 between H. pylori-positive subjects with eradication success and controls.

Low income: Indicated < $15000 US/year. Increase of z score means that z scores of body weight, height and body mass index (BMI) were upgrade at the one-year follow-up than at the enrollment (the net change > 0). The difference of the body weight, height, BMI and ghrelin level among the three groups were analyzed by oneway analysis of variance model with least significant difference correction. The difference of the up-shift of the z scores of body weight, height and BMI were analyzed by χ² test. *P < 0.05 between H. pylori-positive subjects with eradication failure and controls, **P < 0.05 between H. pylori-positive subjects with eradication success and controls.
June 7, 2012 | Volume 18 | Issue 21

Yang YJ et al. H. pylori eradication restores childhood growth

Figure 2 Comparison of the serum acylated ghrelin levels (mean) at enrollment, at 6 mo and at 12th mo follow-ups between the two groups of *Helicobacter pylori*-infected children with success (A) and with failure (B) of eradication therapy. The significance was analyzed by paired t-test.

Despite the current study should have not encountered a significant bias of social backgrounds on growth limitations [29]. Other studies have argued that lower socioeconomic status is conjunction with the presence of *H. pylori* accounts for poor growth in children [29]. For overcoming the influencing bias of poor socioeconomic status, indicated by low income, to child growth, multiple logistic regression confirmed that *H. pylori* infection was closely related to both z scores of BW and BMI independent to socioeconomic status. Accordingly, the current study should have not encountered significant bias of social backgrounds on growth limitation in children.

Based on the data of the observation cohort, the *H. pylori*...
Figure 3

H. pylori infection in children causes not only gastric inflammation and peptic ulcer diseases but also extragastric disorder. Longitudinal observational have found that children with persistent *H. pylori* infection have reduced body weight (BW) and height (BH) growth than the non-infected children. Even though some *H. pylori*-infected children had a failure of triple therapy, there was still existed an increase of BW, BH, and serum acylated ghrelin levels at the 6th and the 12th mo. Triple therapy can decrease bacterial loads or gastric inflammation [15,33]. We have analyzed the 51 pairs of 13C-UBT and ghrelin levels (at enrollment, the 6th and 12th mo follow-up) in 17 children with a failure of triple therapy. The result shows the bacterial loads, indicated by the values of 13C-UBT are not correlated well to the ghrelin levels ($r^2 = 0.03, P = 0.25$). Therefore, it is possibly due to transient improvement of gastric inflammation to restore serum acylated ghrelin levels. Lack of endoscopic evidence in children with failure of therapy is the limitation in this study. A longer follow-up period is thus needed to clarify this transient improving effect in children with failure of therapy.

In summary, *H. pylori* infection can be associated with decreased serum acylated ghrelin levels, BW and BH in children. Successful *H. pylori* eradication can restore ghrelin levels and the growth of BW and BH in the infected children with growth retardation.

COMMENTS

Background

Helicobacter pylori (*H. pylori*) infection in children causes not only gastric inflammation and peptic ulcer diseases but also extragastric disorder. Longitudinal observational have found that children with persistent *H. pylori* infection have reduced body weight (BW) and height (BH) growth than the non-infected

Table 3	The differences of the baseline serum acylated ghrelin levels between the children with body weight above and below the cut-off point selected based on the different age ranges of children (mean ± SD)			
Age ranges (yr)	H. pylori infection	Non-H. pylori infection		
4-7	8-12	4-7	8-12	
BW cut-off point, kg (n)	26 (31)	26 (32)	26 (47)	26 (67)
Baseline serum acylated ghrelin (pg/mL)	51.3 ± 40.9	51.8 ± 40.9	78.2 ± 12.0	85.9 ± 26.9
Above or equal to the BW cut-off point	47.8 ± 36.5	23.8 ± 22.1	82.5 ± 17.2	83.8 ± 31.2
1P value	0.93	0.02	0.31	0.78
z score of BW cut-off point (n)	0.5 (18)	0.5 (35)	0.5 (28)	0.5 (106)
Baseline serum acylated ghrelin (pg/mL)	53.4 ± 40.6	46.8 ± 38.9	81.3 ± 14.1	81.7 ± 19.7
Above or equal to the z score of BW cut-off point	45.9 ± 33.6	27.3 ± 26.5	81.9 ± 16.6	89.6 ± 36.4
1P value	0.68	0.09	0.91	0.15

1The P value indicated the difference of serum acylated ghrelin levels between the children with body weight (BW) and z score of BW above or equal to the cut-off point and those with below the cut-off point within the same age ranges, analyzed by the Student’s t test. The BW (z score of BW) cut-off point was determined by the mean (median) of non-*Helicobacter pylori* (*H. pylori*) infected children within the same age ranges.
ones. In addition, previous studies showed conflicting results regarding the correlation between plasma ghrelin levels and H. pylori infection after eradication of bacteria. Therefore, long-term follow-up the childhood growth as well ghrelin levels in H. pylori-infected children after eradication therapy can illustrate the causal relationship between H. pylori infection and growth retardation in children.

Research frontiers

Growth retardation in H. pylori-infected children without any organic diseases remains controversial for eradication therapy. The authors aimed to establish a new indication for treating H. pylori infection in children with growth retardation and to explore the serum acylated ghrelin levels correlated to eradication therapy.

Innovations and breakthroughs

This study demonstrated that H. pylori infection can be associated with decreased serum acylated ghrelin levels, BW and BH in children. In the intervention study, successful H. pylori eradication can restore serum acylated ghrelin levels and the growth of BW and BH in the infected children with growth retardation at the 1-year follow-up.

Applications

This study confirmed the causal relationship of H. pylori infection and childhood growth retardation. Therefore, we supposed that eradication therapy should be considered as a treatment strategy in H. pylori-infected children with growth retardation, which was not related to other organic diseases.

Terminology

Growth retardation is indicated by poor BW and BH growth as compared to the average and gender-matched normal population. Eradication therapy means that a treatment strategy to eradicate H. pylori from stomach. The first-line regimen consists of one proton pump inhibitor and two antibiotics.

Peer review

This is an interesting study aimed at determining whether H. pylori-infected children have reduced growth rates and lower levels of ghrelin compared to uninfected and if H. pylori eradication may reverse those changes. The study is well written and well designed.

REFERENCES

1. Malaty HM, Kumagai T, Tanaka E, Ota H, Kiyosawa K, Graham DY, Katsuynama T. Evidence from a nine-year birth cohort study in Japan of transmission pathways of Helicobacter pylori infection. J Clin Microbiol 2000; 38: 1971-1973
2. Marshall BJ, Warren JR. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1984; 1: 1311-1315
3. Suerbaum S, Michetti P. Helicobacter pylori infection. N Engl J Med 2002; 347: 1175-1186
4. Yang YJ, Wang SM, Chen CT, Huang MC, Chang CJ, Liu CC. Lack of evidence for fecal-oral transmission of Helicobacter pylori infection in Taiwanese. J Formos Med Assoc 2003; 102: 375-378
5. Lin DB, Lin JB, Chen CY, Chen SC, Chen WK. Seroprevalence of Helicobacter pylori infection among schoolchildren and teachers in Taiwan. Helicobacter 2007; 12: 258-264
6. Büyükgöz B, Dündar B, Böker E, Büyükgöz B. Helicobacter pylori infection in children with constitutional delay of growth and puberty. J Pediatr Endocrinol Metab 2001; 14: 549-551
7. Choe YH, Kim SK, Hong YC. Helicobacter pylori infection with iron deficiency anemia and subnormal growth at puberty. Arch Dis Child 2000; 82: 136-140
8. Yang YJ, Sheu BS, Lee SC, Yang HB, Wu JJ. Children of Helicobacter pylori-infected dyspeptic mothers are predisposed to H. pylori acquisition with subsequent iron deficiency and growth retardation. Helicobacter 2005; 10: 249-255
9. Chimonas MA, Baggett HC, Parkinson AJ, Muth PT, Dunaway E, Gossner BD. Asymptomatic Helicobacter pylori infection and iron deficiency are not associated with decreased growth among Alaska Native children aged 7-11 years. Helicobacter 2006; 11: 159-167
10. Sauvé-Martin H, Kalach N, Raymond J, Senouci L, Benhamou PH, Martin JC, Briet F, Maurel M, Flourie B, Dupont C. The rate of Helicobacter pylori infection in children with growth retardation. J Pediatr Gastroenterol Nutr 1999; 28: 354-355
11. Patel P, Mandell MA, Khulusi S, Northfield TC, Strachan DP. Helicobacter pylori infection in childhood: risk factors and effect on growth. BMJ 1994; 309: 1119-1123
12. Passaro DJ, Taylor DN, Gilman RH, Cabrera L, Parsonnet J. Growth slowing after acute Helicobacter pylori infection is age-dependent. J Pediatr Gastroenterol Nutr 2002; 35: 522-526
13. Bravo LE, Mera R, Reina JC, Pradilla A, Alzate A, Fontham E, Correa P. Impact of Helicobacter pylori infection on growth of children: a prospective cohort study. J Pediatr Gastroenterol Nutr 2003; 37: 614-619
14. Neary NM, Small CJ, Wren AM, Lee JL, Druce MR, Palmieri C, Frost GS, Ghatel MA, Coombes RC, Bloom SR. Ghrelin increases energy intake in cancer patients with impaired appetite: acute, randomized, placebo-controlled trial. J Clin Endocrinol Metab 2004; 89: 2832-2836
15. Isomoto H, Nakazato M, Ueno H, Date Y, Nishi Y, Mukae H, Mizuta Y, Ohtsuru A, Yamashita S, Kohno S. Low plasma ghrelin levels in patients with Helicobacter pylori-associated gastritis. Am J Med 2004; 117: 429-432
16. Isomoto H, Ueno H, Saenko VA, Mondal MS, Nishi Y, Kawano N, Ohnita K, Mizuta Y, Ohtsuru A, Yamashita S, Nakazato M, Kohno S. Impact of Helicobacter pylori infection on gastric and plasma ghrelin dynamics in humans. Am J Gastroenterol 2005; 100: 1711-1720
17. Nwokolo CU, Freshwater DA, O’Hare P, Randeva HS. Plasma ghrelin following cure of Helicobacter pylori. Gut 2003; 52: 637-640
18. Gokcel A, Gumurdulu Y, Kayaselek C, Serin E, Ozer B, Ozsahin AK, Guvener N. Helicobacter pylori has no effect on plasma ghrelin levels. Eur J Endocrinol 2003; 148: 423-426
19. Kojima M, Hosoda H, Date Y, Nakazato M, Matsuho H, Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 1999; 402: 656-660
20. Campana D, Fori F, Pagotto U, De Iasio R, Morselli-Labate AM, Pasquali R, Corinaldesi R, Tomassetti P. Plasma acylated ghrelin levels are higher in patients with chronic atrio-ventricular atresis. Clin Endocrinol (Oxf) 2007; 67: 761-766
21. Osaka H. Ghrelin and Helicobacter pylori infection. World J Gastroenterol 2008; 14: 6372-6333
22. Furuta T, Shirai N, Xiao F, Takashima M, Hanai H. Effect of Helicobacter pylori infection and its eradication on nutrition. Aliment Pharmacol Ther 2002; 16: 799-806
23. Yang YJ, Sheu BS, Chang WL, Cheng HC, Yang HB. Increased body mass index after H. pylori eradication for duodenal ulcer predisposes to erosive reflux esophagitis. J Clin Gastroenterol 2006; 43: 705-710
24. Chen W, Chang MH. New growth charts for Taiwanese children and adolescents based on World Health Organization standards and health-related physical fitness. Pediatr Neonatol 2010; 51: 69-79
25. Sheu BS, Lin CY, Lin XZ, Shieh SC, Yang HB, Chen CY. Long-term outcome of triple therapy in Helicobacter pylori-related nonulcer dyspepsia: a prospective controlled assessment. Am J Gastroenterol 1996; 91: 441-447
26. Gold BD, Colletti RB, Abbott M, Czinn SJ, Elitsur Y, Hassall E, Macarthur C, Snyder J, Sherman PM. Helicobacter pylori infection in children: recommendations for diagnosis and treatment. J Pediatr Gastroenterol Nutr 2000; 31: 490-497
27. Sheu BS, Lee SC, Yang HB, Wu HW, Wu CS, Lin XZ, Wu JJ. Lower-dose (13C)-urea breath test to detect Helicobacter pylori infection-comparison between infrared spectrometer and mass spectrometry analysis. Aliment Pharmacol Ther 2000; 14: 1359-1363
28. Malfertheiner P, Megraud F, O’Morain C, Bazzoli F, El-Omar E, Graham D, Hunt R, Rokkas T, Vakil N, Kuipers EJ.

World J Gastroenterol | www.wjgnet.com

Volume 18 | Issue 21 | June 7, 2012 | 2680
Current concepts in the management of Helicobacter pylori infection: the Maastricht III Consensus Report. *Gut* 2007; 56: 772-781

29 Sood MR, Joshi S, Akobeng AK, Mitchell J, Thomas AG. Growth in children with Helicobacter pylori infection and dyspepsia. *Arch Dis Child* 2005; 90: 1025-1028

30 Weigt J, Malfertheiner P. Influence of Helicobacter pylori on gastric regulation of food intake. *Curr Opin Clin Nutr Metab Care* 2009; 12: 522-525

31 Özçay F, Demir H, Özen H, Gürakan F, Saltik IN, Yüce A, Koçak N. Normal growth in young children with Helicobacter pylori infection. *J Pediatr Gastroenterol Nutr* 2002; 35: 102

32 Perri F, Pastore M, Leandro G, Clemente R, Ghoos Y, Poeters M, Annese V, Quitadamo M, Latiano A, Rutgeerts P, Andriulli A. Helicobacter pylori infection and growth delay in older children. *Arch Dis Child* 1997; 77: 46-49

33 Pacifico L, Anania C, Osborn JF, Ferrara E, Schiavo E, Bonamico M, Chiesa C. Long-term effects of Helicobacter pylori eradication on circulating ghrelin and leptin concentrations and body composition in prepubertal children. *Eur J Endocrinol* 2008; 158: 323-332

Yang YJ et al. *H. pylori* eradication restores childhood growth