Non3 is an essential Drosophila gene required for proper nucleolus assembly

E.N. Andreyeva1, A.A. Ogienko1, 2, A.A. Yushkova1, 2, J.V. Popova1, 3, G.A. Pavlova1, E.N. Kozhevnikova1, 3, A.V. Ivankin1, M. Gatti1, 4, A.V. Pindyurin1, 2, 3

© Andreyeva E.N., Ogienko A.A., Yushkova A.A., Popova J.V., Pavlova G.A., Kozhevnikova E.N., Ivankin A.V., Gatti M., Pindyurin A.V., 2019

1 Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russia
2 Novosibirsk State University, Novosibirsk, Russia
3 Institute of Cytology and Genetics, SB RAS, Novosibirsk, Russia
4 IBPM CNR and Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy

The nucleolus is a dynamic non-membrane-bound nuclear organelle, which plays key roles not only in ribosome biogenesis but also in many other cellular processes. Consistent with its multiple functions, the nucleolus has been implicated in many human diseases, including cancer and degenerative pathologies of the nervous system and heart. Here, we report the characterization of the Drosophila Non3 (Novel nucleolar protein 3) gene, which encodes a protein homologous to the human Brix domain-containing Rpf2 that has been shown to control ribosomal RNA (rRNA) processing. We used imprecise P-element excision to generate four new mutant alleles in the Non3 gene. Complementation and phenotypic analyses showed that these Non3 mutations can be arranged in an allelic series that includes both viable and lethal alleles. The strongest lethal allele (Non3^600) is a genetically null allele that carries a large deletion of the gene and exhibits early lethality when homozygous. Flies heterozygous for Non3^600 occasionally exhibit a mild reduction in the bristle size, but develop normally and are fertile. However, heteroallelic combinations of viable Non3 mutations (Non3^317, Non3^259 and Non3^275) display a Minute-like phenotype, consisting in delayed development and short and thin bristles, suggesting that they are defective in ribosome biogenesis. We also demonstrate that the Non3 protein localizes to the nucleolus of larval brain cells and it is required for proper nucleolar localization of Fibrillarin, a protein important for post-translational modification and processing of rRNAs. In summary, we generated a number of genetic and biochemical tools that were exploited for an initial characterization of Non3, and will be instrumental for future functional studies on this gene and its protein product.

Key words: Drosophila melanogaster; nucleolus; Minute-like phenotype; Non3; Fibrillarin; Rpf2; Brix domain; ribosome biogenesis.

For citation: Andreyeva E.N., Ogienko A.A., Yushkova A.A., Popova J.V., Pavlova G.A., Kozhevnikova E.N., Ivankin A.V., Gatti M., Pindyurin A.V. Non3 is an essential Drosophila gene required for proper nucleolus assembly. Vavilovskii Zhurnal Genetiki i Selektsiyi = Vavilov Journal of Genetics and Breeding. 2019;23(2):190-198. DOI 10.18699/VJ19.481
Introduction

Ribosomes are highly conserved macromolecular machines that organize and catalyze mRNA translation in all organisms. In higher eukaryotes, mature cytoplasmic ribosomes include 4 ribosomal RNA molecules (rRNAs; 18S, 25S/28S, 5.8S and 5S) and 79 ribosomal proteins (RPs) (Marygold et al., 2007; Xue, Barna, 2012; Genth, Barna, 2018). *Drosophila melanogaster* has a 2S rRNA instead of 5S rRNA (Stage, Eickbush, 2007). Coordinated processing of 45S/47S precursor rRNA (pre-rRNA) into the mature 18S, 5.8S and 25S/28S rRNAs is a central process in the highly orchestrated ribosome assembly (Henras et al., 2015). Ribosomal biosynthesis includes progressive association of individual ribosomal proteins with maturing rRNAs, export of pre-ribosome particles from the nucleolus to the cytoplasm and their assembly into mature ribosomes. More than 200 different factors are required for ribosome biosynthesis and quality control of ribosome maturation on the path from the nucleolus to the cytoplasm (Kressler et al., 2017).

Depletion of eukaryotic RPs could be associated with disturbances in pre-rRNA processing and nucleolar organization (Neumüller et al., 2013; Farley-Barnes et al., 2018). In *Drosophila*, mutations in 75% of the genes encoding protein components of mature cytoplasmic ribosomes dominantly cause a *Minute* phenotype. The *Minute* syndrome includes short and thin bristles, delayed development, and reduced viability and fertility (Marygold et al., 2007). In addition, decreased levels of some *Drosophila* RPs result in overgrowth of specific tissues and melanotic tumors (Goudarzi, Lindström, 2016). Mutations in genes encoding RPs and ribosome biogenesis factors lead to a series of congenital human disorders collectively called ribosomopathies, and predispose to cancer (Narla, Ebert, 2010; Henras et al., 2015; Mills, Green, 2017; Núñez Villacís et al., 2018). In some cases, these diseases are also caused by haploinsufficiency for these genes caused by somatic mutations (Narla, Ebert, 2010; Núñez Villacís et al., 2018).

Although ribosomes have been considered for many years as ancient and rather invariable molecular machines, several lines of evidence indicate that they are instead heterogeneous in both RPs and rRNA composition (Genth, Barna, 2018). Indeed, mutations in RP coding genes lead to tissue-specific pleiotropic phenotypes in multicellular organisms (Kongsuwan et al., 1985; Drapchinskaia et al., 1999; Marygold et al., 2005; Gupta, Warner, 2014; Shi, Barna, 2015). Pleiotropic phenotypes could be only partially explained by the fact that several of these genes have paralogues (Xue, Barna, 2012). For example, in humans there are three paralogous RP genes (*RPS4X, RPS4Y1* and *RPSY2*) encoding the RPS4 protein, and one of them (*RPSY2*) is specifically expressed in testis and prostate (Fisher et al., 1990; Lopes et al., 2010). In *Drosophila*, a total of 88 genes encoding 79 different RPs have been identified; nine of these genes are present as duplicates (Marygold et al., 2007). These duplicated genes are expressed at different levels, and in some cases with a tissue-specific pattern. For instance, *Rpl22L, Rps5b, Rps19a, Rpl10.4a* and *Rpl37b* exhibit enhanced expression in the testes compared to their paralogues, suggesting specific composition of testis ribosomes (Marygold et al., 2007; Kearse et al., 2011).

A complex sequence of processing steps, involving several protein factors, is required to gradually release the mature rRNAs from precursor pre-rRNA (Henras et al., 2015). Many of these factors contain putative RNA-binding domains (e.g., GAR, RRM, KH, Brix, S1, dsRBD, and Zinc finger) and/or protein-protein interaction domains (WD40, HEAT, TPR, and HAT), but the enzymatic activities of most proteins required for ribosome biosynthesis have not been determined (Henras et al., 2015). One of the Brix domain-containing proteins is the *Saccharomyces cerevisiae* ribosome assembly factor Rpf2 (Ribosome production factor 2), which in complex with Rrs1 plays a role in the early steps of the 60S ribosome subunit maturation (Zhang et al., 2007; Henras et al., 2015; Kressler et al., 2017). Rpf2 binds the Rpl5 and Rpl11 ribosomal proteins and the Rrs1 protein, forming both the 5S ribonucleoprotein particle necessary for 25S rRNA maturation and the large 60S ribosomal subunit (Tutuncuoglu et al., 2016). Depletion of Rpf2 results in defects in pre-rRNA processing (Wehner, Baserga, 2002).

The Rpf2 proteins are highly conserved. The *Drosophila* Rpf2 orthologous protein is encoded by the *Novel nucleolar protein 3 (Non3)* gene (*CG7993*). Non3, which contains a Brix domain, exhibits 66% similarity and 47% sequence identity with human Rpf2 (Gramates et al., 2017). Thus far, most studies on Non3 were carried in tissue culture cells. Most interestingly, an RNAi-based screen showed that Non3 depletion results in short mitotic spindles. In addition, it has been shown that in interphase cells the GFP-tagged Non3 protein localizes to the nucleolus (Moutinho-Pereira et al., 2013). These phenotypes, and the finding that RNAi-mediated depletion of other nucleolar proteins results in short spindles, suggest that the short-spindle phenotype observed in *Non3* RNAi cells is due to limited translation of tubulin and/or other spindle components. However, it is also possible that Non3 has a direct role in spindle formation (Moutinho-Pereira et al., 2013).

To address the mitotic role of Non3, and to provide a *Drosophila* model for the study of the Rpf2 function in nucleolus assembly and ribosome maturation, we characterized the *Non3* gene. We generated several allelic mutations in the gene and...
showed that these mutations affect viability, fertility and bristle formation, resulting in a Minute-like phenotype. We also show that Non3 localizes to the nucleolus and is required for proper formation of this organelle. We believe that the mutations and the reagents generated in this study will be instrumental to define the role of Non3 in living flies.

Materials and methods

Fly stocks. Flies were raised and crossed on standard cornmeal agar media at 25 °C. The fly stocks used in this study are from the Bloomington Stock Center (Bloomington, IN, USA; flystocks.bio.indiana.edu): #30094 (w1118, P{EP}Non3G4706/TM6C, Sb1) (hereafter Non3G4706) and #4368 (y, w; Ki; P{ry}, Δ2-3)99B) (hereafter Δ2-3). The yw, P{γr, 4717} = nosphiC31int(NLS)X; P{γr, 4717} = CaryP{attP40} fly line was kindly provided by Sergei A. Demakov (Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia).

Generation of new Non3 alleles. The Non3 mutants were generated by imprecise excision (O’Brochta et al., 1991) of the P{EP} transposon located 48 bp downstream of the predicted transcription start site of Non3 in the Non3G4706 line (Fig. 1). The Δ2-3 strain was used as a source of transposase (Robertston et al., 1988), and the F1 progeny of Non3G4706/Δ2-3 flies was screened for loss of the mini-white (wme) marker carried by the P{EP} transposon. 512 independent excision lines were established and analyzed by PCR using primers Ins-non3-F2 (5ʹ-CGTTTGTTCATACCTCAATC-3ʹ) and Ins-non3-R (5ʹ-CTGTCGCACAAATGG-3ʹ) (primer positions are shown in Fig. 1). We identified one line with a large deletion internal to the Non3 gene, three lines with remnants of the P{EP} transposon, and several lines in which the transposon was most probably precisely excised. Only one of the latter lines was further analyzed and confirmed to be generated by precise excision of the P{EP} transposon; it was designated as Non3li. The PCR products obtained from all new Non3 mutant lines were cloned in a plasmid vector and sequenced (Suppl. Fig. 1).

Construction of rescue plasmid and germ-line transformation. To make a rescue construct, we cloned a 2.76-kb genomic DNA fragment [chr3R:18222722–18225482; the coordinates are from Release 6 of the Drosophila melanogaster genome assembly (Hoskins et al., 2015)] carrying the Non3 gene into the pUASTattB vector (Bischof et al., 2007) by substituting a UAS promoter, a multiple cloning site and a SV40 terminator. Details of plasmid construction are available upon request. The cloned genomic DNA fragment contains the coding sequence was PCR-amplified from the genomic DNA fragment [chr3R:18222722–18225482; the coordinates are from Release 6 of the Drosophila melanogaster genome assembly (Hoskins et al., 2015)] carrying the Non3 gene into the pUASTattB vector (Bischof et al., 2007) by substituting a UAS promoter, a multiple cloning site and a SV40 terminator. Details of plasmid construction are available upon request. The cloned genomic DNA fragment contains the coding sequence to produce pGEX-4T-Non3 construct. Details of plasmid construction are available upon request. The GST-Non3 fusion protein was expressed in Escherichia coli and subsequently purified as described previously (Chalkley, Verrijzer, 2004). The purified protein was used to immunize mice. Polyclonal antibodies were affinity purified from serum as previously described (Chalkley, Verrijzer, 2004).

Double-stranded RNA (dsRNA) production. A 730-bp fragment of the Non3 coding sequence was PCR-amplified with primers CG7993-maF1 (5ʹ-TAATACGACTCACTATAGGGAGGGTTTTACCGAG-3ʹ) and CG7993-maR1 (5ʹ-TAATACGACTCACTATAGGGAGGGTTTTACCGAG-3ʹ) (underlined is the added T7 promoter sequence) from the pGEX-4T-Non3 plasmid. The purified PCR product was used as a template to synthesize dsRNA as described earlier (Somma et al., 2002), with the minor modifications: the phenol/chloroform extraction step was omitted and DNaseI treatment was performed at the end of the procedure.

S2 cell culture and RNA interference (RNAi). S2 cells (for details, see Strunov et al., 2015) were cultured at 25 °C in 39.4 g/L Shields and Sang M3 Insect medium (Sigma, S8398) supplemented with 0.5 g/L LKHCO and 20 % heat-inactivated fetal bovine serum (FBS) (Thermo Scientific, 10270106). RNAi treatments were carried out as described previously (Somma et al., 2008), with the following modifications: 25 μg of dsRNA was added to the cells three times (on the first, the third and the fifth day of incubation), and cells were harvested for analyses after 7 days of RNAi.

Reverse transcription followed by quantitative PCR (RT-qPCR). RNAi efficiency in S2 cells was assessed by RT-qPCR. Total RNA was isolated from control and dsRNA-treated cells using RNAzol® RT reagent (Molecular Research Center, RN 190); genomic DNA was eliminated using the Rapid- Out DNA Removal Kit (Thermo Fisher Scientific, K2981) according to the manufacturer’s instructions. Synthesis of cDNA and PCR were performed as described previously (Ogienko et al., 2018), using the following gene-specific primers: RT-Non3-Fw2 (5ʹ-CGTTTGTTCATACCTCAATC-3ʹ) and RT-Non3-Rev2 (5ʹ-CTTTCCTCGTCCAAATGACG-3ʹ) for Non3 (this study), and RPL32-realtime-F (5ʹ-CTAAGCGTGGCACAATGG-3ʹ) and RPL32-realtime-R (5ʹ-AGGAACCTTCTGATCAGG-3ʹ) for Rpl32 (Yang et al., 2013), which was used as a reference gene.

Western blotting. S2 cells were harvested by centrifugation at 200 g for 5 min at room temperature, washed with phosphate-buffered saline (PBS) and centrifuged again. Pellets were lysed in RIPA buffer (Sigma, R0278) containing 1 × HalTM Protease and Phosphatase Inhibitor Cocktail (Thermo Fisher Scientific, 1861282), and the lysates were clarified by centrifugation at 15,000 g for 15 min at 4 °C. The samples were normalized to the total amount of protein using DC Protein Assay (Bio-Rad, 5000116). Each normalized sample was mixed with an equal volume of 2× Laemmli buffer and incubated at 95 °C for 5 min prior to loading on a SDS-PAGE gel. Larval tissues were dissected, homogenized in 1× Laemmli buffer with a pestle and incubated at 95 °C for 5 min prior to loading on a SDS-PAGE gel. The following primary
antibodies were used: mouse anti-Lamin Dm0 (1:300; DSHB, ADL67.10), mouse anti-α-Tubulin (1:5000; Sigma, T6199), mouse anti-β-Tubulin [1:800; BX69 (Tavares et al., 1996), kindly provided by Harald Saumweber (Humboldt University Berlin, Institute of Biology, Berlin, Germany)] and mouse anti-Non3 (1:5000; this study). The primary antibodies were detected with HRP-conjugated goat α-mouse IgG (1:3500; Jackson ImmunoResearch, West Grove, PA, USA) and mouse anti-β-Tubulin [1:800; BX69 (Tavares et al., 1996), kindly provided by Harald Saumweber (Humboldt University Berlin, Institute of Biology, Berlin, Germany)] and mouse anti-Non3 (1:5000; this study). The primary antibodies were detected with HRP-conjugated goat α-mouse IgG (1:3500; Jackson ImmunoResearch, West Grove, PA, USA) and mouse anti-β-Tubulin [1:800; BX69 (Tavares et al., 1996), kindly provided by Harald Saumweber (Humboldt University Berlin, Institute of Biology, Berlin, Germany)].

Immunofluorescence (IF) staining. Brains from late third instar larvae were dissected and immunostained as described earlier (Bonaccorsi et al., 2000). The following primary antibodies were used: mouse anti-Non3 (1:250; this study) and rabbit anti-Fibrillarin (1:300; Abcam, ab5821). They were detected with goat anti-mouse IgG conjugated to Alexa Fluor 488 (1:500; Invitrogen, A-11001) and goat anti-rabbit IgG conjugated to Alexa Fluor 568 (1:350; Invitrogen, A-11036), respectively. DAPI was used to stain DNA. IF images were acquired with a Zeiss Axio Imager M2 fluorescence microscope equipped with an AxioCam 506 mono (D) camera and a NeoFluar 100×/1.3 Oil objective using the ZEN 2012 software.

Results and discussion

Generation and characterization of the novel Non3 mutations

D. melanogaster Non3 gene (CG7993) maps to the 90F8 region of polytene chromosomal, includes two small introns, and has a total size of 1221 bp. It is ubiquitously expressed, with the highest expression levels in embryos (0–12 h), nervous ganglia, ovaries and testes (Gramates et al., 2017). When we began this work, only a *P*-element-induced mutation in the *Non3* gene (Non3⁸⁷⁰) was available. Animals homozygous for this mutation are lethal and die at late pupal stages. We sequenced Non3^{G4706} and confirmed that this mutation carries a *P*{EP} transposon inserted 48 bp downstream of the predicted transcription start of the gene (see Fig. 1, Suppl. Fig. 1). We then used precise *P*-element excision to generate a set of additional mutations in *Non3*. We isolated three hypomorphic alleles (Non3¹⁹⁷, Non3³¹⁰ and Non3²⁵⁹) and one putative null allele (Non3⁶⁰⁰) (see Material and Methods for details). As a control, we also generated a chromosome bearing a precise excision of the *P*{EP} transposon (Non3^{3cs}).

Flies homozygous for Non3^{cs} are fully viable and fertile, excluding a possible influence of background mutations on the “starting” chromosome (see Fig. 1). All mutations generated by imprecise excision were sequenced and their precise locations and molecular structures are shown in Figure 1 and Suppl. Fig. 1. The Non3⁶⁰⁰ allele carries a deletion of 617 bp of the *Non3* coding region and contains 13 residual bp of 3’ end of the *P*-element. The Non3¹⁹⁷, Non3³¹⁰ and Non3²⁵⁹ mutations carry differently sized remnants of the 5’ and 3’ *P*-element ends (373, 367 and 453 bp, respectively) that do not disrupt the coding region of the gene. Non3^{cs} did not show any sequence variation compared to wild type.

Non3 mutants exhibit a Minute-like phenotype

We next performed a phenotypic analysis and a functional categorization of the new mutations. This investigation was possible because the “starting” *Non3^{G4706}* chromosome does not carry background mutations, as shown by the charac-
Non3 is an essential Drosophila gene required for proper nucleolus assembly

Complementation analysis of Non3 mutant alleles

	Non3ex	Non3397	Non3310	Non3259	Non3G4706	Non3600
♂	V, F, NB					
♀	V, F, db	V, F, db	V, F, db	V, ss, DB	PLE, S, DB	
Non3397		V, F, db	V, F, db	V, F, db	V, ss, DB	PL
Non3310		V, F, db	V, F, db	V, ss, DB	PL	
Non3259		V, ss, db	V, S, DB	PL		
Non3G4706		PL	PL	PL		
Non3600		EL				

Note: V, viable both sexes; F, fertile both sexes; EL, early lethal (L1/L2); PL, pupal lethal; PLE, pupal lethal with escapers; S, sterile in both sexes; ss, semi sterile; NB, normal bristles; DB, defective bristles; db, slightly defective bristles.

Fig. 2. Non3 mutants exhibit a recessive Minute-like bristle phenotype.

Non3G4706/Non3259 flies have shorter and thinner bristles than Non3ex used as control. This is most clearly seen by comparing the notum bristles (red arrows). Non3600/Non3ex and Non3G4706/Non3ex flies exhibit a very weak dominant bristle phenotype. Addition of a wild-type copy of Non3 (P[rescue]) to Non3G4706/Non3ex flies leads to a complete rescue of the Minute-like phenotype.

Fig. 2. Non3 mutants exhibit a recessive Minute-like bristle phenotype.

Non3G4706/Non3259 flies have shorter and thinner bristles than Non3ex used as control. This is most clearly seen by comparing the notum bristles (red arrows). Non3600/Non3ex and Non3G4706/Non3ex flies exhibit a very weak dominant bristle phenotype. Addition of a wild-type copy of Non3 (P[rescue]) to Non3G4706/Non3ex flies leads to a complete rescue of the Minute-like phenotype.

In Drosophila, mutations in 75% of the RP coding genes dominantly produce a Minute phenotype characterized by prolonged development, short and thin bristles, and reduced viability and fertility, often accompanied by additional patterning and growth defects such as roughened eyes, abnormal wings, defective abdominal segmentation, and small body size (Marygold et al., 2005). Bristle production and gametogenesis require maximal protein synthesis and are therefore particularly sensitive to a reduction in the translational capacity of
The cell (Marygold et al., 2005). It is thus generally accepted that the Minute syndrome reflects a reduced protein synthesis resulting from insufficient ribosome function (Morata, Ripoll, 1975; Marygold et al., 2005). Mutations in several Drosophila genes involved in ribosome biosynthesis do not have dominant effects but, when homozygous, cause the same defective traits elicited by the dominant Minute mutations. The phenotype produced by these mutations is commonly designated as Minute-like (see for example, Cui, DiMario, 2007).

Non3\textalphaA000/+ and Non3\textalphaG7706/+ heterozygous flies occasionally exhibit a limited reduction in bristle size but develop normally and are fertile. Thus, Non3 mutations have only a minimal dominant effect. However, the combination of the Non3\textalphaG7706 allele with any other weaker allele results in a clear Minute-like phenotype: prolonged development, poor viability and fertility, and abnormally short and thin bristles (Table, Fig. 2) (some flies had crumpled wings). To verify that all Non3 phenotypes were due to a decrease in the Non3 protein level, we performed rescue experiments using a transgene that carries a full genomic copy of Non3 and fertility, and abnormally short and thin bristles (Table, Fig. 2). Mutant Non3 flies carrying one copy of this rescue construct (P[\text{rescue}]) showed normal viability and bristle length, and restored fertility (Fig. 2 and data not shown). Taken together, these findings indicate that Non3 mutations behave like Minute-like mutations (Cui, DiMario, 2007). The finding that mutants in Non3 exhibit a Minute-like phenotype is not surprising. The S. cerevisiae Rp\text{f}2 protein is one of the many factors necessary for the assembly of the pre-60S subunits (Beidka et al., 2018) and it is likely that its Drosophila homologue Non3 participates in the same processes.

Non3 hypomorphic mutations reduce the Non3 protein level

To further characterize the Non3 mutant alleles, we raised a polyclonal anti-Non3 antibody in mice (see Materials and Methods for details). This antibody recognizes a band of the expected molecular weight (~37 kDa) in Western blots from S2 cell protein extracts; this band is substantially reduced in the extracts from Non3 RNAi cells, confirming the specificity of the antibody (Fig. 3, a, b). It was suggested earlier that the short-spindle phenotype observed in Non3 RNAi S2 cells is caused by limited translation of tubulin and/or other spindle components (Moutinho-Pereira et al., 2013). Our finding that Non3 RNAi-treated cells exhibit a normal tubulin level (see Fig. 3, b) indicates that this phenotype is not caused by limited tubulin availability.

We next analyzed the levels of the Non3 protein in larval brains and salivary glands from the different Non3 mutants (see Fig. 3, c, d). In larval brain protein extracts from Non3G\textalpha7706 homozygotes, the Non3 protein is drastically reduced, supporting the view that Non3G\textalpha7706 is the strongest among the Non3 hypomorphic mutations. Two copies of the rescue construct (2 × P[\text{rescue}]) restored the Non3 protein level in both Non3G\textalpha7706/Non3G\textalpha7706 and Non3Δ600/Non3Δ600 mutants, approximately up to the level of Non3\textalpha homozygous brains (see Fig. 3, c). We also found that Non3 is substantially reduced in salivary glands from Non3\textalpha197, Non3\textalpha310 and Non3\textalpha259 homozygotes. In addition to a reduction of the wild-type Non3 protein, the salivary glands of these mutants displayed immunoreactive proteins of ~39–40 kDa (see Fig. 3, d). Because the Non3\textalpha197, Non3\textalpha310 and Non3\textalpha259 mutations are carrying remnants of P-element ends, we believe that the aberrant Non3 proteins
Non3 is an essential *Drosophila* gene required for proper nucleolus assembly

...are transcribed starting from ATG codons located within these P-element fragments (see Fig. 3, d; Suppl. Fig. 1).

Nucleolar Non3 protein is required for proper Fibrillarin localization

It has been previously shown that S2 cells transiently transfected with a plasmid encoding a GFP-Non3 fusion protein show a specific localization of the protein in the nucleolus (Moutinho-Pereira et al., 2013). We tried to confirm this Non3 localization by immunostaining S2 cells with our antibody, but were unable to see a clear signal. However, we successfully immunostained the nucleoli of larval brain cells (Fig. 4), possibly because nervous ganglia are one of the tissues with the highest level of Non3 expression (Gramates et al., 2017). In wild-type brain cells, Fibrillarin, the main component of the active nucleolus (Neumüller et al., 2013), co-localizes with Non3 in the nucleolus. In brain cells of homozygous Non3G4706 and Non3310 mutants, we observed a drastic reduction of both Non3 and Fibrillarin in the nucleolus, suggesting that Non3 is required for Fibrillarin localization in nucleoli. The presence of the Non3 rescue transgenes (2 × P(rescue)) restored the normal nucleolar signals of both proteins (see Fig. 4).

These results indicate that Non3 is a nucleolar protein that is required for proper Fibrillarin localization in the nucleolus. Fibrillarin is a major nucleolar protein with methyltransferase activity, playing roles in rRNA biogenesis and function (Rodriguez-Corona et al., 2015). Loss of nucleolar proteins such as Nopp140, Nop56, and Nop5 leads to mislocalization of Fibrillarin, compromises several nucleolar functions (Pederson, 1998; Olson, 2004), and causes developmental abnormalities (Cui, DiMario, 2007). The role of Non3 in Fibrillarin recruitment to the nucleolus is currently unknown and will be addressed in future studies.

Conclusions

We have generated several mutant alleles of the *Non3* gene and shown that viable combinations of these alleles exhibit a *Minute*-like phenotype, suggesting a role of Non3 in ribosome biogenesis. We have also shown that the Non3 protein localizes to the nucleolus and, most importantly, it is required for Fibrillarin recruitment to this organelle. Fibrillarin is a multifunctional protein that mediates methylation of several RNA species and plays roles in tumorigenesis and stem cell differentiation (Rodriguez-Corona et al., 2015; van Nues, Watkins, 2017). We believe that the Non3-related tools generated in our study will be instrumental to define the role of Non3 in RNA metabolism and to elucidate how it affects mitotic spindle formation. These tools will also help to investigate the mechanisms and biological significance of the interaction between Non3 and Fibrillarin.

References

Biedka S., Micic J., Wilson D., Brown H., Diorio-Toth L., Woolford J.L., Jr. Hierarchical recruitment of ribosomal proteins and assembly factors remolds nucleolar pre-60S ribosomes. J. Cell Biol. 2018;217(7):2503-2518. DOI 10.1083/jcb.201711037.

![Fig. 4. Non3 localizes to the nucleoli of larval brain cells.](image_url)

In wild-type (Non3ex) brain cells, Non3 largely co-localizes with the nucleolus marker Fibrillarin. Notably, brain cells from Non3G4706 and Non3310 homozygous larvae not only show a strong decrease of Non3 signals but also of Fibrillarin signals. Scale bar is 10 µm.
Генетика: 2019
для формирования ядрышка у Drosophila

Бисфо Дж., Мэда Р.К., Хедгер М., Карф Х., Баслер К. А оптимизированная трансгенная система для Drosophila, используя горми-линейный фиC31 интеграссе. Прот. Natl. Acad. Sci. USA. 2007;104(9):3312-3317. DOI 10.1073/pnas.0611511104.

Боначорски С., Гансианги М.Г., Гатти М. Спindle-асцессу In Drosophila, невробластов и ганглион мать матери. Nat. Cell Biol. 2000; 2(1):54-56. DOI 10.1073/pnas.071378.

Чалкхей Г.Е., Веррижер К.П. Иммунодефект и паттерн стратегий к структурированию факторов в vitro. Methods Enzymol. 2008;437:421-442. DOI 10.1016/S0076-6879(07)70208-1.

Цуи З., ДиМарко П. ЩАин кладоноска новой динамики здоровье. Trends в биохимии, Cell. 2007;18(6):2179-2191. DOI 10.1001/tmcb.07-01-0074.

Драпчинкина Н., Густавсон П., Пердирсен В., Вилли Т., Даниан И., Соул Т., Сержи М., Барнетт Х., МакКлен L., Огава L.М., Керф Д. Нуклеарный фактор Drosophila. Mol. Cell. Biol. 2000; 20(7):1923-1934. DOI 10.1016/j.molcel.2004.07.010.

Фишер Е.М., Бер-Ромеро П., Браун Л.Г., Риди А., Милион Н.Ж., Уэсли И.Б., Фишер Ф.Р., Паг Д.С. Компьютерный рибосомный белок, присутствующий на хромосомах X и Y: исчерпывающее исследование. Cell. 1990;63(6):1295-1306. DOI 10.1073/pnas.90.12.6921.

Генет. Наука 1999;21(2):169-175. DOI 10.1038/5951.

Фарли-Барнес К.И., МакКлен К.Л., Огава L.М., Керф Д.А., Суэнг С.А., Вулф В. Спредвики комбинации ribosomal protein S19 in mutated in Diamond-Blackfan anemia. Nat. Genet. 1999;20(3):249-250. DOI 10.1038/17133.

Барбадилла А., Маркс T., Ричард С.А., Джонсон Дж.С., Стоун Е.А., Ричард С.А., Барбадилла А., Айролес J.F., Маккай A., Миндерас M., Ньюшам И., Пердирсен В., Роллман М.С., Розас J., Саада N., Тулулапти Л., Ворлей К.С., Уу В.Ю., Ямамуто А., Зуи У., Бергман С.М., Полтон К.Р., Миттельман Д., Гиббс Р.А. The Drosophila melanogaster transgenesis system for in vitro Methods to study chromatin-remodeling factors. Cell Res. 2000;10:54-56. DOI 10.1038/71378.

Вычечкина П., Чаплов В., Салин С.И. Регуляция генов и геномов / genome and gene regulation

Демакова О.В., Андреева Е.Н., Болдырева Л.В., Андреева Е.Н., Маркестин М., Питсугли С., Виллата С., Цельнер С.Е., Перреном Н.Э. Expression of ribosomal protein in vitro. Methods to study chromatin-remodeling factors. Cell Res. 2000;10:54-56. DOI 10.1038/71378.

Маккay T.F., Ричард С., Стоун Е.А., Барбадилла А., Айролес J.F., Зуи Д., Касильс С., Хан Я., Уу В.Ю., Магвир М.М., Цридлен Дж.М., Ричардсон М.Ф., Анхолт Р.Р., Баррон М., Бесс С., Бланкенбург К.П., Карбон М.А., Кастеллано Д., Чабоуб Л., Дункан Л., Харис Л., Явайд М., Яясеасен J.C., Йоханин J.С., Сэрдесан К.В., Лара Ф., Ланство F., Ли С.Л., Фердер И.А., Мичелл Д., Мизуму Д.М., Назарет Л., Нешам И., Пердирсен В., Роллман М.С., Розас J., Саада Н., Тулулапти Л., Ворлей К.С., Уу В.Ю., Ямамуто А., Зуи У., Бергман С.М., Полтон К.Р., Миттельман Д., Гибс Р.А. The Drosophila melanogaster transgenesis system for in vitro Methods to study chromatin-remodeling factors. Cell Res. 2000;10:54-56. DOI 10.1038/71378.

Маккей T.F., Ричард С., Стоун Е.А., Барбадилла А., Айролес J.F., Зуи Д., Касильс С., Хан Я., Уу В.Ю., Магвир М.М., Цридлен Дж.М., Ричардсон М.Ф., Анхолт Р.Р., Баррон М., Бесс С., Бланкенбург К.П., Карбон М.А., Кастеллано Д., Чабоуб Л., Дункан Л., Харис Л., Явайд М., Яясеасен J.C., Йоханин J.С., Сэрдесан К.В., Лара Ф., Ланство F., Ли С.Л., Фердер И.А., Мичелл Д., Мизуму Д.М., Назарет Л., Нешам И., Пердирсен В., Роллман М.С., Розас J., Саада Н., Тулулапти Л., Ворлей К.С., Уу В.Ю., Ямамуто А., Зуи У., Бергман С.М., Полтон К.Р., Миттельман Д., Гибс Р.А. The Drosophila melanogaster transgenesis system for in vitro Methods to study chromatin-remodeling factors. Cell Res. 2000;10:54-56. DOI 10.1038/71378.

Маккей T.F., Ричард С., Стоун Е.А., Барбадилла А., Айролес J.F., Зуи Д., Касильс С., Хан Я., Уу В.Ю., Магвир М.М., Цридлен Дж.М., Ричардсон М.Ф., Анхолт Р.Р., Баррон М., Бесс С., Бланкенбург К.П., Карбон М.А., Кастеллано Д., Чабоуб Л., Дункан Л., Харис Л., Явайд М., Яясеасен J.C., Йоханин J.С., Сэрдесан К.В., Лара Ф., Ланство F., Ли С.Л., Фердер И.А., Мичелл Д., Мизуму Д.М., Назарет Л., Нешам И., Пердирсен В., Роллман М.С., Розас J., Саада Н., Тулулапти Л., Ворлей К.С., Уу В.Ю., Ямамуто А., Зуи У., Бергман С.М., Полтон К.Р., Миттельман Д., Гибс Р.А. The Drosophila melanogaster transgenesis system for in vitro Methods to study chromatin-remodeling factors. Cell Res. 2000;10:54-56. DOI 10.1038/71378.

Маккей T.F., Ричард С., Стоун Е.А., Барбадилла А., Айролес J.F., Зуи Д., Касильс С., Хан Я., Уу В.Ю., Магвир М.М., Цридлен Дж.М., Ричардсон М.Ф., Анхолт Р.Р., Баррон М., Бесс С., Бланкенбург К.П., Карбон М.А., Кастеллано Д., Чабоуб Л., Дункан Л., Харис Л., Явайд М., Яясеасен J.C., Йоханин J.С., Сэрдесан К.В., Лара Ф., Ланство F., Ли С.Л., Фердер И.А., Мичелл Д., Мизуму Д.М., Назарет Л., Нешам И., Пердирсен В., Роллман М.С., Розас J., Саада Н., Тулулапти Л., Ворлей К.С., Уу В.Ю., Ямамуто А., Зуи У., Бергман С.М., Полтон К.Р., Миттельман Д., Гибс Р.А. The Drosophila melanogaster transgenesis system for in vitro Methods to study chromatin-remodeling factors. Cell Res. 2000;10:54-56. DOI 10.1038/71378.
Pederson T. The plurifunctional nucleolus. Nucleic Acids Res. 1998; 26(17):3871-3876.

Robertson H.M., Preston C.R., Phillips R.W., Johnson-Schlitz D.M., Benz W.K., Engels W.R. A stable genomic source of P element transposase in Drosophila melanogaster. Genetics. 1988;118(3):461-470.

Rodriguez-Corona U., Sobol M., Rodriguez-Zapata L.C., Hozak P., Castano E. Fibrillarin from Archaea to human. Biol. Cell. 2015; 107(6):159-174. DOI 10.1111/boc.201400677.

Shi Z., Barna M. Translating the genome in time and space: specialized ribosomes, RNA regulators, and RNA-binding proteins. Annu. Rev. Cell Dev. Biol. 2015;31:31-54. DOI 10.1146/annurev-cellbio-100814-125346.

Somma M.P., Ceprani F., Bucciarelli E., Naim V., De Arcangelis V., Piergentili R., Palena A., Ciapponi L., Giancanti M.G., Pellacani C., Petrucci R., Cenci G., Verini F., Fasulo B., Goldberg M.L., Di Cunto F., Gatti M. Identification of Drosophila mitotic genes by combining co-expression analysis and RNA interference. PLoS Genet. 2008;4(7):e1000126. DOI 10.1371/journal.pgen.1000126.

Somma M.P., Fasulo B., Cenci G., Cundari E., Gatti M. Molecular dissection of cytokinesis by RNA interference in Drosophila cultured cells. Mol. Biol. Cell. 2002;13(7):2448-2460. DOI 10.1091/mbc.01-12-0589.

Stage D.E., Eickbush T.H. Sequence variation within the rRNA gene loci of 12 Drosophila species. Genome Res. 2007;17(12):1888-1897. DOI 10.1101/gr.6376807.

Strunov A., Boldyreva L.V., Pavlova G.A., Pindyurin A.V., Gatti M., Kiseleva E. A simple and effective method for ultrastructural analysis of mitosis in Drosophila S2 cells. MethodsX. 2016;3:551-559. DOI 10.1016/j.mex.2016.10.003.

Tavares A.A.M., Glover D.M., Sunkel C.E. The conserved mitotic kinase polo is regulated by phosphorylation and has preferred microtubule-associated substrates in Drosophila embryo extracts. EMBO J. 1996;15(18):4873-4883.

Tutuncuoglu B., Jakovljevic J., Wu S., Gao N., Woolf JD., Jr. The N-terminal extension of yeast ribosomal protein L8 is involved in two major remodeling events during late nuclear stages of 60S ribosomal subunit assembly. RNA. 2016;22(9):1386-1399. DOI 10.1261/rna.055798.115.

van Nues R.W., Watkins N.J. Unusual C/D motifs enable box C/D snoRNPs to modify multiple sites in the same rRNA target region. Nucleic Acids Res. 2017;45(4):2016-2028.

Wehner K.A., Baserga S.J. The σ70-like motif: a eukaryotic RNA binding domain unique to a superfamily of proteins required for ribosome biogenesis. Mol. Cell. 2002;9(2):329-339. DOI 10.1016/S1097-2765(02)00438-0.

Xue S., Barna M. Specialized ribosomes: a new frontier in gene regulation and organismal biology. Nat. Rev. Mol. Cell Biol. 2012;13(6):355-369. DOI 10.1038/nrm3359.

Yang X., Mao F., Lv X., Zhang Z., Fu L., Lu Y., Wu W., Zhou Z., Zhang L., Zhao Y. Drosophila Vps36 regulates Smo trafficking in Hedgehog signaling. J. Cell Sci. 2013;126(Pt.18):4230-4238. DOI 10.1242/jcs.128603.

Zhang J., Hampicharnchai P., Jakovljevic J., Tang L., Guo Y., Oeffinger M., Rout M.P., Hiley S.L., Hughes T., Woolf JD., Jr. Assembly factors Rpl2 and Rsr1 recruit 5S rRNA and ribosomal proteins Rpl5 and Rpl11 into nascent ribosomes. Genes Dev. 2007;21(20):2580-2592. DOI 10.1101/gad.1569307.

ORCID ID
E.N. Andreyeva orcid.org/0000-0001-6997-0492
A.A. Ogienko orcid.org/0000-0002-0896-1899
A.A. Yushkova orcid.org/0000-0002-9037-6866
J.V. Popova orcid.org/0000-0001-8800-8645
G.A. Pavlova orcid.org/0000-0001-7361-5039
A.V. Ivankin orcid.org/0000-0003-3309-6633
M. Gatti orcid.org/0000-0003-3777-300X
A.V. Pindyurin orcid.org/0000-0001-6959-0641

Acknowledgements. We thank E.V. Fedorova for technical assistance with generation of Non3 mutants, G. Reuter for valuable discussion, H. Saumweber for anti-β-Tubulin antibody, and S.A. Demakov for providing the fly line carrying the attP40 landing site. This work was supported by a grant from the Russian Foundation for Basic Research (18-34-00699), by a grant from the Ministry of Education and Science of the Russian Federation (14.Z50.31.0005) for raising antibodies specific to Non3, and by a project of the Fundamental Scientific Research Program of the Siberian Branch of the Russian Academy of Sciences (0310-2019-0005) for generation of mutant Non3 alleles. The microscopy and DNA sequencing were performed using resources provided by the Molecular and Cellular Biology core facility of the Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences. Antibodies were raised at the Center for Genetic Resources of Laboratory Animals, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (RFMEFI61914X0005 and RFMEFI61914X0010).

Conflict of interest. The authors declare no conflict of interest.

Received December 6, 2018. Revised December 18, 2018. Accepted January 10, 2019.