THE SYMPLECTIC DISPLACEMENT ENERGY

AUGUSTIN BANYAGA†, DAVID E. HURTUBISE, AND PETER SPAETH

Abstract. We define the symplectic displacement energy of a non-empty open subset of a compact symplectic manifold as the infimum of the Hofer-like norm \[\mathcal{H} \] of symplectic diffeomorphisms that displace this set. We show that this energy (like the usual displacement energy defined using Hamiltonian diffeomorphisms) is a strictly positive number. As a consequence we prove a result justifying the introduction of the notion of strong symplectic homeomorphisms [3].

1. Statement of results

In [9], Hofer defined a norm \[\| \cdot \|_H \] on the group \(\text{Ham}(M, \omega) \) of compactly supported Hamiltonian diffeomorphisms of a symplectic manifold \((M, \omega)\).

For any bounded open set \(A \subset M \), he introduced the notion of the displacement energy \(e(A) \) of \(A \):

\[
e(A) = \inf \{ \| \phi \|_H \mid \phi \in \text{Ham}(M, \omega), \phi(A) \cap A = \emptyset \}.
\]

The displacement energy is defined to be \(+\infty \) if no compactly supported Hamiltonian diffeomorphism displaces \(A \).

Eliashberg and Polterovich [7] proved the following result.

Theorem 1. For any non-empty open subset \(A \) of \(M \), \(e(A) \) is a strictly positive number.

It is easy to see that if \(A \) and \(B \) are non-empty open subsets of \(M \) such that \(A \subset B \), then \(e(A) \leq e(B) \), and that \(e \) is a symplectic invariant. That is,

\[
e(f(A)) = e(A)
\]

†Corresponding author: banyaga@math.psu.edu

2010 Mathematics Subject Classification. Primary: 53D35 Secondary: 57R17.

Key words and phrases. Symplectic displacement energy, Hofer-like metric, Hofer metric, Calabi invariant, flux, strong symplectic homeomorphism.
for all \(f \in \text{Symp}(M, \omega) = \{ \phi \in \text{Diff}(M) \mid \phi^* \omega = \omega \} \). This follows from the fact that \(\| f \circ \phi \circ f^{-1} \|_H = \| \phi \|_H \).

In [4], a Hofer-like metric \(\| \cdot \|_{HL} \) was constructed on the group \(\text{Symp}_0(M, \omega) \) of all symplectic diffeomorphisms of a compact symplectic manifold \((M, \omega)\) that are isotopic to the identity. It was proved recently by Buss and Leclercq [6] that the restriction of \(\| \cdot \|_{HL} \) to \(\text{Ham}(M, \omega) \) is a metric equivalent to the Hofer metric.

Let us now propose the following.

Definition 2. The **symplectic displacement energy** \(e_s(A) \) of a bounded open set \(A \) is defined to be:

\[
e_s(A) = \inf \{ \| \phi \|_{HL} \mid \phi \in \text{Symp}_0(M, \omega), \phi(A) \cap A = \emptyset \}.
\]

Clearly, if \(A \) and \(B \) are non-empty open subsets of \(M \) such that \(A \subset B \), then \(e_s(A) \leq e_s(B) \).

The goal of this note is to prove the following result.

Theorem 3. For any closed symplectic manifold \((M, \omega)\), the symplectic displacement energy of any non-empty open subset \(A \subset M \) satisfies \(e_s(A) > 0 \).

2. The Hofer metric \(\| \cdot \|_H \) and the Hofer-like metric \(\| \cdot \|_{HL} \)

2.1. Let \(\text{Iso}(M, \omega) \) be the set of all compactly supported symplectic isotopies of a symplectic manifold \((M, \omega)\). A compactly supported symplectic isotopy \(\Phi \in \text{Iso}(M, \omega) \) is a smooth map \(\Phi : M \times [0, 1] \to M \) such that for all \(t \), if we denote by \(\phi_t(x) = \Phi(x, t) \), then \(\phi_t \) is a symplectic diffeomorphism with compact support and \(\phi_0 = \text{id} \). Isotopies \(\Phi = \{ \phi_t \} \) are in one-to-one correspondence with families of smooth vector fields \(\{ \dot{\phi}_t \} \) defined by

\[
\dot{\phi}_t(x) = \frac{d\phi_t}{dt}(\phi_t^{-1}(x)).
\]

If \(\Phi \in \text{Iso}(M, \omega) \), then the one-form \(i(\dot{\phi}_t)\omega \) such that

\[
i(\dot{\phi}_t)\omega(X) = \omega(\dot{\phi}_t, X)
\]

for all vector fields \(X \) is closed. For any isotopy \(\Phi \), we denote by \(\phi_1 \) its time-one map.
If there exists a smooth family $F = F(x, t)$ of functions on $M \times [0, 1]$ with compact supports such that $i(\dot{\phi}_t)\omega = dF_t$, then the isotopy Φ is called a Hamiltonian isotopy and will be denoted by Φ_F. We define the group $\text{Ham}(M, \omega)$ of Hamiltonian diffeomorphisms as the set of time-one maps of Hamiltonian isotopies.

For each $\Phi = \{\phi_t\} \in \text{Iso}(M, \omega)$, the mapping

$$\Phi \mapsto \left[\int_0^1 (i(\dot{\phi}_t)\omega) dt \right],$$

where $[\alpha]$ denotes the cohomology class of a closed form α, induces a well defined map \tilde{S} from the universal cover of $\text{Symp}_0(M, \omega)$ to the first de Rham cohomology group $H^1(M, \mathbb{R})$. This map is called the Calabi invariant (or the flux). It is a surjective group homomorphism. Let $\Gamma \subset H^1(M, \mathbb{R})$ be the image by \tilde{S} of the fundamental group of $\text{Symp}_0(M, \omega)$. We then get a surjective homomorphism

$$S : \text{Symp}_0(M, \omega) \to H^1(M, \mathbb{R})/\Gamma.$$

The kernel of this homomorphism is the group $\text{Ham}(M, \omega)$ $[1, 2]$.

2.2. Hofer $[9]$ defined the length l_H of a Hamiltonian isotopy Φ_F as

$$l_H(\Phi_F) = \int_0^1 (\text{osc } F(x, t)) \, dt,$$

where the oscillation of a function $f : M \to \mathbb{R}$ is

$$\text{osc } (f) = \max_{x \in M} (f(x)) - \min_{x \in M} (f(x)).$$

For $\phi \in \text{Ham}(M, \omega)$, the Hofer norm of ϕ is

$$\|\phi\|_H = \inf \{l_H(\Phi_F) \},$$

where the infimum is taken over all Hamiltonian isotopies Φ_F with time-one map equal to ϕ, i.e. $\phi_{F,1} = \phi$.

The Hofer distance $d_H(\phi, \psi)$ between two Hamiltonian diffeomorphisms ϕ and ψ is

$$d_H(\phi, \psi) = \|\phi \circ \psi^{-1}\|_H.$$

This distance is bi-invariant. This was the main ingredient used to prove Theorem [1].
2.3. Now let \((M, \omega)\) be a compact symplectic manifold without boundary, on which we fix a Riemannian metric \(g\). For each \(\Phi = \{\phi_t\} \in \text{Iso}(M, \omega)\), we consider the Hodge decomposition \[13\] of the 1-form \(i(\dot{\phi}_t)\omega\) as

\[i(\dot{\phi}_t)\omega = \mathcal{H}_t + du_t, \]

where \(\mathcal{H}_t\) is a harmonic 1-form. One knows that \(\mathcal{H}_t\) and \(u_t\) are unique and depend smoothly on \(t\).

For \(\Phi \in \text{Iso}(M, \omega)\), define

\[l_0(\Phi) = \int_0^1 (|\mathcal{H}_t| + \text{osc} (u(x, t))) \, dt, \]

where \(|\mathcal{H}_t|\) is a Euclidean norm on the finite dimensional vector space of harmonic 1-forms. We let

\[l(\phi) = \frac{1}{2}(l_0(\Phi) + l_0(\Phi^{-1})), \]

where \(\Phi^{-1} = \{\phi_t^{-1}\}\).

For each \(\phi \in \text{Symp}_0(M, \omega)\), let

\[\|\phi\|_{HL} = \inf\{l(\phi)\}, \]

where the infimum is taken over all symplectic isotopies \(\Phi\) with \(\phi_1 = \phi\).

The following result was proved in \[4\].

Theorem 4. For any closed symplectic manifold \((M, \omega)\), \(\|\cdot\|_{HL}\) is a norm on \(\text{Symp}_0(M, \omega)\).

Remark 5. The norm \(\|\cdot\|_{HL}\) depends on the choice of the Riemannian metric \(g\) on \(M\) and the choice of the Euclidean norm \(|\cdot|\) on the space of harmonic 1-forms. However, different choices for \(g\) and \(|\cdot|\) yield equivalent metrics. See Section 3 of \[4\] for more details.

3. Proof of the main result

We will closely follow the proof given by Polterovich of Theorem 2.4.A in \[11\] that \(e(A) > 0\). We will use without any change Proposition 1.5.B, which states:

For any non-empty open subset \(A\) of \(M\), there exists a pair of Hamiltonian diffeomorphisms \(\phi\) and \(\psi\) that are supported in \(A\) and whose commutator \([\phi, \psi] = \psi^{-1} \circ \phi^{-1} \circ \psi \circ \phi\) is not equal to the identity.
For the sake of completeness we provide the following alternate proof of Polterovich’s Proposition 1.5.B based on the transitivity lemmas in [2] (pages 29 and 109). (For a proof of k-fold transitivity for symplectomorphisms see [5].)

Proof. Let U be an open subset of A such that $U \subset A$. Pick three distinct points $a, b, c \in U$. By the transitivity lemma of $\text{Ham}(M, \omega)$, there exist $\phi, \psi \in \text{Ham}(M, \omega)$ such that $\phi(a) = b$ and $\psi(b) = c$. Moreover, we can choose ϕ and ψ so that $\text{supp}(\phi) = V$ and $\text{supp}(\psi) = W$ are small tubular neighborhoods of distinct paths in U joining a to b and b to c respectively, and we can assume that $c \in U \setminus V$.

Then $(\psi^{-1} \phi^{-1} \psi \phi)(a) = (\psi^{-1} \phi^{-1})(c) = \psi^{-1}(c) = b$. Hence $[\phi, \psi] \neq \text{id}$. □

We will say that a map h displaces A if $h(A) \cap A = \emptyset$. We note the following fact.

Proposition 6. If h displaces A, then for any homeomorphism ϕ with $\text{supp}(\phi) \subset A$ the maps $\phi^{-1} \circ h \circ \phi$ and $\phi \circ h \circ \phi^{-1}$ also displace A.

Proof. Assume $h(A) \cap A = \emptyset$ but $(\phi^{-1} \circ h \circ \phi)(A) \cap A \neq \emptyset$. Then there exist $x, y \in A$ such that $x = (\phi^{-1} \circ h \circ \phi)(y)$. Hence, $

\phi(x) = h(\phi(y))

$ where $\phi(x)$ and $\phi(y)$ are in A since $\text{supp}(\phi) \subset A$. Therefore $\phi(x) \in h(A) \cap A$, contradicting the assumption that $h(A) \cap A = \emptyset$.

The proof that $\phi \circ h \circ \phi^{-1}$ displaces A is similar, since $\text{supp}(\phi) \subset A$ implies that $\text{supp}(\phi^{-1}) \subset A$. □
Proof of Theorem 3 continued. Let us denote by $D(A)$ the set of all $h \in \text{Symp}_0(M,\omega)$ that displace A. Following the proof of Theorem 2.4.A in [11] we assume there exists $h \in D(A) \neq \emptyset$. Otherwise, we are done since $\epsilon_s(A) = +\infty$. Now let ϕ and ψ be as in Polterovich’s Proposition 1.5.B and consider the commutator

$$\theta = [h, \phi^{-1}] = \phi \circ h^{-1} \circ \phi^{-1} \circ h,$$

which is contained in $\text{Ham}(M,\omega)$ because commutators are in the kernel of the Calabi invariant. Now, if $x \in A$ then $h(x) \not\in A$. Hence,

$$\theta(x) = (\phi \circ h^{-1})(\phi^{-1}(h(x))) = \phi(h^{-1}(h(x))) \quad \text{since supp} \, (\phi^{-1}) \subset A = \phi(x),$$

and we see that $\theta|_A = \phi|_A$. Similarly, for $x \in A$ we have $\phi^{-1}(x) \in A$, and hence $h(\phi^{-1}(x)) \not\in A$ since $h(A) \cap A = \emptyset$. Thus,

$$\theta^{-1}(x) = h^{-1}(\phi(h(\phi^{-1}(x)))) = h^{-1}(h(\phi^{-1}(x))) \quad \text{since supp} \, (\phi) \subset A = \phi^{-1}(x),$$

and we see that $\theta^{-1}|_A = \phi^{-1}|_A$. Thus, $(\phi^{-1} \circ \psi \circ \phi)(x) = (\theta^{-1} \circ \psi \circ \theta)(x)$ for all $x \in A$ since supp $(\psi) \subset A$.

Now, if $x \not\in A$ and $\theta(x) \in A$ we would have $x = \theta^{-1}(\theta(x)) = \phi^{-1}(\theta(x)) \in A$ since supp $(\phi^{-1}) \subset A$, a contradiction. Hence, for $x \not\in A$ we have $\theta(x) \not\in A$ and

$$(\phi^{-1} \circ \psi \circ \phi)(x) = x = (\theta^{-1} \circ \psi \circ \theta)(x)$$

since both ϕ and ψ have support in A. Therefore, $\phi^{-1} \circ \psi \circ \phi = \theta^{-1} \circ \psi \circ \theta$, and we have

$$[\phi, \psi] = [\theta, \psi].$$

Because both θ and ψ are in $\text{Ham}(M,\omega)$ and the Hofer norm is conjugation invariant, we have

$$\| [\theta, \psi] \|_H = \| \psi^{-1} \circ \theta^{-1} \circ \psi \circ \theta \|_H \leq \| \psi^{-1} \circ \theta^{-1} \circ \psi \|_H + \| \theta \|_H \leq 2\| \theta \|_H.$$
By Buss and Leclercq’s theorem \cite{6} there is constant λ such that

$$\|\theta\|_H \leq \lambda \|\theta\|_{HL}.$$

Using the triangle inequality and the symmetry of $\|\cdot\|_{HL}$ we have

$$[[\theta,\psi]]_H \leq 2\lambda (\|\phi \circ h \circ \phi^{-1}\|_{HL} + \|h\|_{HL}).$$

However, we do not know if $\|h\|_{HL} = \|\phi \circ h \circ \phi^{-1}\|_{HL}$, which is a key step used for $\|\cdot\|_H$ in Eliashberg and Polterovich’s proof that $e(A) > 0$. We therefore consider two cases:

(i) $\|\phi \circ h \circ \phi^{-1}\|_{HL} \leq \|h\|_{HL}$ and
(ii) $\|h\|_{HL} \leq \|\phi \circ h \circ \phi^{-1}\|_{HL}.$

In the first case we estimate the right hand side of inequality (1) by

$$[[\phi,\psi]]_H = [[\theta,\psi]]_H \leq 4\lambda \|h\|_{HL},$$

whereas in the second case, (1) is controlled by

$$[[\phi,\psi]]_H = [[\theta,\psi]]_H \leq 4\lambda \|\phi \circ h \circ \phi^{-1}\|_{HL}.$$

Consider the following sets X and Y of real numbers

$$X = \{\|\phi \circ h \circ \phi^{-1}\|_{HL} \mid h \in D(A)\}$$
and

$$Y = \{\|h\|_{HL} \mid h \in D(A)\}.$$

We show that $X = Y$. If $a \in X$, then $a = \|\phi \circ h \circ \phi^{-1}\|_{HL}$ with $h \in D(A)$. But by Proposition \cite{6}, $\phi \circ h \circ \phi^{-1} \in D(A)$, meaning that $a \in Y$. Conversely, if $b \in Y$ then $b = \|h\|_{HL}$, with $h \in D(A)$. Hence $b = \|\phi \circ (\phi^{-1} \circ h \circ \phi) \circ \phi^{-1}\|_{HL}$ with $\phi^{-1} \circ h \circ \phi \in D(A)$ by Proposition \cite{6}. This means that $b \in X$.

Therefore, the fact that $X = Y$ combined with inequalities (2) and (3) yields

$$\inf X = \inf Y = e_s(A) \geq \frac{1}{4\lambda} [[\phi,\psi]]_H > 0.$$

This completes the proof of Theorem 3. \qed

Remark 7. The proof of Theorem 4 relies on the bi-invariance of the distance d_H. It is quite remarkable that the proof of Theorem 3 did not rely on any invariance property of d_{HL}.
4. Examples

A harmonic 1-parameter group is an isotopy $\Phi = \{\phi_t\}$ generated by the vector field V_H defined by $i(V_H)\omega = H$, where H is a harmonic 1-form. It is immediate from the definitions that

$$l_0(\Phi) = l_0(\Phi^{-1}) = |H|$$

where $|\cdot|$ is a Euclidean norm on the space of harmonic 1-forms. Hence $l(\Phi) = |H|$. Therefore, if ϕ_1 is the time one map of Φ we have

$$\|\phi_1\|_{HL} \leq |H|.$$

For instance, take the torus T^{2n} with coordinates $(\theta_1, \ldots, \theta_{2n})$ and the flat Riemannian metric. Then all the 1-forms $d\theta_i$ are harmonic. Given $v = (a_1, \ldots, a_n, b_1, \ldots, b_n) \in \mathbb{R}^{2n}$, the translation $x \mapsto x + v$ on \mathbb{R}^{2n} induces a rotation ρ_v on T^{2n}, which is a symplectic diffeomorphism. Moreover, $x \mapsto x + tv$ on \mathbb{R}^{2n} induces a harmonic 1-parameter group $\{\rho^t_v\}$ on T^{2n}.

Taking the 1-forms $d\theta_i$ for $i = 1, \ldots, 2n$ as basis for the space of harmonic 1-forms and using the standard symplectic form

$$\omega = \sum_{j=1}^{n} d\theta_j \wedge d\theta_{j+n}$$
on T^{2n} we have

$$i(\dot{\rho^t_v})\omega = \sum_{j=1}^{n} (b_j d\theta_j - a_j d\theta_{j+n}).$$

Thus,

$$l(\{\rho^t_v\}) = |(b_1, \ldots, b_n, -a_1, \ldots, -a_n)|$$

where $|\cdot|$ is a Euclidean norm on the space of harmonic 1-forms, and we see that

$$\|\rho_v\|_{HL} \leq |v|$$

if we use $|v| = |a_1| + \cdots + |a_n| + |b_1| + \cdots + |b_n|$ as the Euclidean norm on both \mathbb{R}^{2n} and the space of harmonic 1-forms.

Consider the torus T^2 as the rectangle:

$$\{(p, q) \mid 0 \leq p \leq 2 \text{ and } 0 \leq q \leq 1\} \subset \mathbb{R}^2,$$
with opposite sides identified. For any \(r < 1 \), let
\[
A_0(r) = \{(x, y) \mid 0 \leq x, y < r\},
\]
and \(A(r) \) the corresponding subset in \(T^2 \). If \(v = (a_1, 0) \) with \(r \leq a_1 \leq 2 - r \), then the rotation \(\rho_v \) induced by the translation \((p, q) \mapsto (p + a_1, q) \) displaces \(A(r) \). Therefore, using the norm \(|v| = |a_1| + |b_1| \) we have
\[
\|\rho_a\|_{HL} \leq l(\{\rho_a^t\}) = a_1.
\]
Since this holds for all \(r \leq a_1 \) we have,
\[
es(A(r)) \leq r.
\]

Remark 8. Observe that the above computation depended on the choice of the flat Riemannian metric and the choice of the Euclidean norm on the space of harmonic 1-forms. However, for any other Riemannian metric \(g \), a 1-form \(\alpha \) that is harmonic with respect to \(g \) has a Hodge decomposition \(\alpha = \mathcal{H} + d\mu \) with respect to the flat metric. Mapping \(\alpha \mapsto \mathcal{H} \) gives an explicit isomorphism between the space of harmonic 1-forms with respect to \(g \) and the space of harmonic 1-forms with respect to the flat metric. Thus, if we fix a Euclidean metric on the space of harmonic 1-forms with respect to the flat metric, then the above isomorphism induces a Euclidean metric on the space of harmonic 1-forms for any Riemannian metric \(g \).

5. **Application**

The following result is an immediate consequence of the positivity of the symplectic displacement energy of non-empty open sets. For two isotopies \(\Phi \) and \(\Psi \) denote by \(\Phi^{-1} \circ \Psi \) the isotopy given at time \(t \) by
\[
(\Phi^{-1} \circ \Psi)_t = \phi_t^{-1} \circ \psi_t.
\]

Theorem 9. Let \(\Phi_n \) be a sequence of symplectic isotopies and let \(\Psi \) be another symplectic isotopy. Suppose that the sequence of time-one maps \(\phi_{n,1} \) of the isotopies \(\Phi_n \) converges uniformly to a homeomorphism \(\phi \), and \(l(\Phi_n^{-1} \circ \Psi) \to 0 \) as \(n \to \infty \), then \(\phi = \psi_1 \).

This theorem can be viewed as a motivation for the following.
Definition 10. A homeomorphism h of a compact symplectic manifold is called a strong symplectic homeomorphism if there exist a sequence Φ_n of symplectic isotopies such that $\phi_{n,1}$ converges uniformly to h, and $l(\Phi_n)$ is a Cauchy sequence.

Proof of Theorem 9. Suppose $\phi \neq \psi_1$, i.e. $\phi^{-1} \circ \psi_1 \neq \text{id}$. Then there exists a small open ball B such that $(\phi^{-1} \circ \psi_1)(B) \cap B = \emptyset$. Since $\phi_{n,1}$ converges uniformly to ϕ, $((\phi_{n,1})^{-1} \circ \psi_1)(B) \cap B = \emptyset$ for n large enough. Therefore, the symplectic energy $e_s(B)$ of B satisfies

$$e_s(B) \leq \|(\phi_{n,1})^{-1} \circ \psi_1\|_{HL} \leq l(\Phi_n^{-1} \circ \Psi).$$

The later tends to zero, which contradicts the positivity of $e_s(B)$. □

Remark 11. This theorem was first proved by Hofer and Zehnder for $M = \mathbb{R}^{2n}$ [8], and then by Oh-Müller in [10] for Hamiltonian isotopies using the same lines as above, and very recently by Tchuiaga [12], using the L^∞ version of the Hofer-like norm.

References

[1] Augustin Banyaga, Sur la structure du groupe des difféomorphismes qui préser-vent une forme symplectique, Comment. Math. Helv. 53 (1978), no. 2, 174–227. MR490874 (80c:58005)

[2] , The structure of classical diffeomorphism groups, Mathematics and its Applications, vol. 400, Kluwer Academic Publishers Group, Dordrecht, 1997. MR98h:22024

[3] , On the group of symplectic homeomorphisms, C. R. Math. Acad. Sci. Paris 346 (2008), no. 15-16, 867–872. MR2441923 (2009f:53137)

[4] , A Hofer-like metric on the group of symplectic diffeomorphisms, Symplectic topology and measure preserving dynamical systems, 2010, pp. 1–23. MR2605311 (2011d:53213)

[5] William M. Boothby, Transitivity of the automorphisms of certain geometric structures, Trans. Amer. Math. Soc. 137 (1969), 93–100. MR0236961 (38 #5254)

[6] Guy Buss and Rémi Leclercq, Pseudo-distances on symplectomorphism groups and applications to flux theory, Math. Z. 272 (2012), no. 3-4, 1001–1022. MR2995152

[7] Yakov Eliashberg and Leonid Polterovich, Bi-invariant metrics on the group of Hamiltonian diffeomorphisms, Internat. J. Math. 4 (1993), no. 5, 727–738. MR1245350 (94i:58029)
[8] Helmut Hofer and Eduard Zehnder, *Symplectic invariants and Hamiltonian dynamics*, Modern Birkhäuser Classics, Birkhäuser Verlag, Basel, 2011. Reprint of the 1994 edition. MR2797558 (2012b:53191)

[9] Helmut Hofer, *On the topological properties of symplectic maps*, Proc. Roy. Soc. Edinburgh Sect. A 115 (1990), no. 1-2, 25–38. MR1059642 (91h:58042)

[10] Yong-Geun Oh and Stefan Müller, *The group of Hamiltonian homeomorphisms and C^0-symplectic topology*, J. Symplectic Geom. 5 (2007), no. 2, 167–219. MR2377251 (2009k:53227)

[11] Leonid Polterovich, *The geometry of the group of symplectic diffeomorphisms*, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2001. MR1826128 (2002g:53157)

[12] Stéphane Tchuiaga, *On symplectic dynamics*, preprint (2013).

[13] Frank W. Warner, *Foundations of differentiable manifolds and Lie groups*, Graduate Texts in Mathematics, vol. 94, Springer-Verlag, New York, 1983. MR722297 (84k:58001)

Department of Mathematics, Penn State University, University Park, PA 16802

E-mail address: banyaga@math.psu.edu

Department of Mathematics and Statistics, Penn State Altoona, Altoona, PA 16601-3760

E-mail address: Hurtubise@psu.edu

Department of Mathematics and Statistics, Penn State Altoona, Altoona, PA 16601-3760

E-mail address: spaeth@psu.edu