Relationship between EGFR mutation and computed tomography characteristics of the lung in patients with lung adenocarcinoma

Xiaowei Qiu*, Hang Yuan* & Bin Sima

Department of Radiology, Hangzhou Red Cross Hospital, Hangzhou, China

Keywords
CT feature; EGFR mutation; lung adenocarcinoma.

Abstract
Background: The aim of this study was to investigate the relationship between EGFR mutation and computed tomography (CT) features in patients with adenocarcinoma of the lung.

Methods: One hundred and ninety two lung adenocarcinoma patients who underwent surgery were retrospectively included in this study. Examination of EGFR gene mutation was performed on all resected tumor samples. The 192 recruited lung adenocarcinoma patients were divided into groups according to EGFR mutation status: patients with mutations in exons 18–21 (effective mutated, \(n = 61 \)) and non-mutated (\(n = 131 \)). The clinical characteristics and lung CT imaging features of the two groups were recorded and compared. Univariate and logistic regression analysis were performed to identify the independent risk factors relevant to effective EGFR gene mutation.

Results: The independent risk factors relevant to effective EGFR mutation were evaluated by logistic regression test. The results indicated that female gender (odds ratio [OR] 3.23), lung CT features of lymphangitis carcinomatosa (OR 2.66), semi-solid lesion density (OR 3.56), and spicule sign (OR 1.61) were independent risk factors relevant to EGFR mutation.

Conclusion: Female patients with lung CT features of lymphangitis carcinomatosa, semi-solid lesion density, and spicule sign are more prone to harbor EGFR gene mutations and are more likely to benefit from targeted therapy.

Introduction
Epidemiology studies have shown that lung cancer is the most commonly diagnosed malignant carcinoma and the leading cause of cancer-related death in men and second in women.1,2 Generally, lung cancer prognosis is poor with low long-term survival rates. It is reported that approximately 75–80% of non-small cell lung cancer (NSCLC) patients have advanced or locally advanced disease.3 Patients with advanced disease have lost the opportunity of surgery and thus are treated by chemoradiation or targeted therapy. At present, the most commonly used target drugs for NSCLC treatment are EGFR-tyrosine kinase inhibitors (TKIs), including gefitinib and erlotinib.4–6 However, not all NSCLC patients can benefit from EGFR-TKI treatment.

Prognosis can only be improved in patients with effective EGFR mutations, which frequently occur in exons 18–21 and are part of the gene coding for the tyrosine kinase domain of the EGFR protein. In patients diagnosed with advanced NSCLC, the most common activating mutations observed are exon 19 deletions and an L858R point mutation in exon 21.7,8 Treatment with EGFR-TKIs can significantly improve overall and disease-free survival in NSCLC patients with effective EGFR gene mutations. Therefore, evaluation of EGFR mutation status is recommended in patients with NSCLC before administering target drugs.9–11 However, it is difficult to obtain adequate cancer tissue for EGFR mutation detection in some NSCLC patients. Thus, predicting effective EGFR mutation by clinical and demographic characteristics and imaging features is important.
In our present study, we investigate the relationship between effective EGFR mutation and computed tomography (CT) features in patients with adenocarcinoma of the lung in order to determine the CT features relevant to effective EGFR mutation.

Methods

Patients

One hundred and ninety-two lung adenocarcinoma patients who underwent surgery were retrospectively included in the study. Examination of EGFR gene mutation was performed on all resected tumor samples. The 192 recruited lung adenocarcinoma patients were divided into groups according to EGFR mutation status: effective mutated (n = 61) and non-mutated (n = 131). The study design was reviewed and approved by the ethics committee of the Hangzhou Red Cross Hospital, Hospital of Integrated Traditional Chinese and Western Medicine affiliated to Zhejiang Chinese Medical University Review Board. Written informed consent was obtained from all subjects included in the study.

Lung computed tomography (CT) features:

Collection and analysis

All patients underwent 16 multislice spiral CT or enhanced scans. Scanning parameters were: tube voltage 120 kV, tube current 200 mA, scanning field of vision (SFOV) 300 mm or 350 mm, reconstruction image layer thickness 1.5 mm, layer interval 1.25 mm, reconstruction matrix 512 * 512. For the enhanced scan, 80 mL of contrast agent was injected into the anterior elbow vein. Scanning was performed in all patients while they held their breath after inhalation. The scan ranged from the apex of the lung to the diaphragm.

Statistical analysis

SPSS version 17.0 (SPSS, Inc., Chicago, IL, USA) was used for data analysis. The measurement data was demonstrated by $\bar{x} \pm s$ and comparison between groups was made using a Student’s t-test of the sample mean. Enumeration data were expressed by a relative number and comparison between groups was made based on chi-square or Fisher’s exact tests. Univariate logistic regression was performed for each candidate variable and $P < 0.05$ was considered statistically significant. $P < 0.05$ meant a statistical difference.

Results

Clinical features relevant to effective EGFR mutation

Single factor analysis showed that effective EGFR mutation was correlated with gender ($P < 0.05$) and smoking history ($P < 0.05$). Female non-smokers were more inclined to have an EGFR gene mutation. However, effective EGFR mutation was not correlated with body mass index, clinical stage, family history of tumor, or tumor differentiation (Table 1).

Lung CT imaging features relevant to EGFR mutation

The correlation between lung CT imaging features and effective EGFR mutation was evaluated by single factor analysis. Compared to non-mutated EGFR cases, patients with effective mutated EGFR had more lung lesions with a lobular sign ($P < 0.05$), spicule sign ($P < 0.05$), semi-solid lesion density ($P < 0.05$), air bronchogram ($P < 0.05$), pleural indentation sign ($P < 0.05$), and lymphangitis carcinomatosa ($P < 0.05$) (Table 2, Fig 1).

Table 1 Clinical features of the included patients with or without EGFR gene mutation

Characteristics	EGFR status	Gender	Smoking	Age	BMI	Stage	CEA	Family history	Differentiation
	Effective mutated	(n = 71)	(n = 121)	t/ χ^2	0.002	0.013	0.38	0.91	0.67
Male	111	31 (27.93)	80 (72.07)	6.23 ± 11.2	64.2 ± 10.6				
Female	81	40 (49.38)	41 (50.62)						
Age (year)	192	62.3	64.2	10.6					
Smoking N, (%)	192	90	102						
Positive	25 (27.78)	65 (72.22)	56 (54.90)	19.2 ± 2.1	19.6 ± 2.6				
Negative	46 (45.10)	56 (54.90)							
BMI (kg·m$^{-1}$)	192	19.2 ± 2.1	19.6 ± 2.6						
Stage N, (%)									
I–II	103	41 (39.81)	62 (60.19)						
III	89	30 (33.71)	59 (66.29)						
CEA N, (%)									
Elevated	62	22 (35.48)	40 (64.52)						
Normal	130	49 (37.69)	81 (62.31)						
Family history of tumor N, (%)									
Positive	29	11 (37.93)	18 (62.07)						
Negative	163	60 (36.81)	103 (63.19)						
Differentiation N, (%)									
Well/moderate	77	42 (54.55)	35 (45.45)						
Poor	115	29 (30.53)	86 (69.47)						

BMI, body mass index; CEA, carcinoembryonic antigen.
The independent factors relevant to effective \textit{EGFR} gene mutations were evaluated by logistic regression analysis. The results indicated that female gender (odds ratio [OR] 3.23), lung CT features of lymphangitis carcinomatosa (OR 2.66), semi-solid lesion density (OR 3.56), and spicule sign (OR 1.61) were independent factors relevant to effective \textit{EGFR} mutation (Fig 2).

Discussion

The successful treatment of NSCLC with EGFR-TKIs marks an era of targeted cancer therapy.12-14 Previous studies have proven that the prognosis of NSCLC patients with effective \textit{EGFR} gene mutations can be significantly improved by EGFR-TKI treatment.15-17 Studies have also shown that small molecule TKIs (gefitinib or erlotinib) are more effective in patients with mutations in exon 18–21 of the \textit{EGFR} gene, especially those with mutations in exon 19, whereas these targeted drugs are almost ineffective in patients without mutations.8 Therefore, it is important to assess \textit{EGFR} gene status before administering target drugs. However, adequate histological specimens to assess \textit{EGFR} gene mutations are not always available. In such patients, the effectiveness of targeted therapy is measured by clinical features, such as gender and smoking history.18,19 Previous studies have screened clinical and demographic characteristics to determine the independent factors relevant to effective \textit{EGFR} mutations that may be sensitive to EGFR-TKI treatment.20 They found that female non-smoking East Asian lung cancer patients were more likely to harbor effective mutations in the \textit{EGFR} gene.21 Consistent with the results of previous studies, our results also showed that the mutation rate in exons 18–21 of the \textit{EGFR} gene in female non-smokers was higher than in other patients. However, judging the effectiveness of small molecule TKI therapy by clinical characteristics alone is inadequate.

In recent years, medical radiologists have attempted to obtain gene mutation information indirectly from the imaging manifestations of lung cancer patients in order to obtain more imaging features to assist in identifying driving genes.22,23 In our present work, we investigated the relationship between effective \textit{EGFR} gene mutations and CT imaging characteristics and clinical features in patients with adenocarcinoma of the lung in order to provide more information for small molecule TKI therapy. Our study found that female gender, lung CT features of lymphangitis carcinomatosa, semi-solid lesion density, and spicule sign were independent factors relevant to effective \textit{EGFR} mutation.

In conclusion, our results show that female patients with lung CT features of lymphangitis carcinomatosa, semi-solid lesion density, and spicule sign are more prone to harbor effective \textit{EGFR} gene mutations. As a result, these patients are more likely to benefit from small molecule TKI therapy. CT imaging can be used to predict effective \textit{EGFR} mutation in patients with inadequate tissue samples. The combination of CT features and driver gene status is
helpful to further understand the occurrence and development of tumors to predict prognosis and promote the development of imaging genomics.

Disclosure

No authors report any conflict of interest.

References

1 Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin 2017; 67: 7–30.
2 Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin 2016; 66: 7–30.
3 Imai H, Kaira K, Minato K. Clinical significance of post-progression survival in lung cancer. Thorac Cancer 2017; 8: 379–86.
4 Lee CK, Davies L, Wu YL et al. Gefitinib or erlotinib vs chemotherapy for EGFR mutation-positive lung cancer: Individual patient data meta-analysis of overall survival. J Natl Cancer Inst 2017; 109: djw279.
5 Yang Z, Hackshaw A et al. Comparison of gefitinib, erlotinib and afatinib in non-small cell lung cancer: A meta-analysis. Int J Cancer 2017; 140: 2805–19.
6 Greenhalgh J, Bagust A, Boland A et al. Erlotinib and gefitinib for treating non-small cell lung cancer that has progressed following prior chemotherapy (review of NICE technology appraisals 162 and 175): A systematic review and economic evaluation. Health Technol Assess 2015; 19: 1–134.
7 Shi Z, Zheng X, Shi R et al. Score for lung adenocarcinoma in China with EGFR mutation of exon 19: Combination of...
clinical and radiological characteristics analysis. Medicine (Abingdon) 2018; 97 (38): e12537.
8 Memon AA, Zhang H, Gu Y et al. EGFR with TKI-sensitive mutations in exon 19 is highly expressed and frequently detected in Chinese patients with lung squamous carcinoma. Onco Targets Ther 2017; 10: 4607–13.
9 Westphal M, Oho AUID, Maire CL, Lamszus K. EGFR as a Target for Glioblastoma Treatment: An Unfulfilled Promise. CNS Drugs 2017; 31: 723–35.
10 Nedaeinia R, Avan A, Manian M, Salehi R, Ghayour-Mobarhan M. EGFR as a potential target for the treatment of pancreatic cancer: Dilemma and controversies. Curr Drug Targets 2014; 15: 1293–301.
11 Schwab R, Petak I, Pinter F et al. [Epidermal growth factor receptor (EGFR): Therapeutic target in the treatment of lung adenocarcinoma]. Orv Hetil 2005; 146: 2335–42.
12 Morin-Ben AS, Hirsh V. Epidermal growth factor receptor tyrosine kinase inhibitors in treatment of metastatic non-small cell lung Cancer, with a focus on Afatinib. Front Oncol 2017; 7: 97.
13 Proto C, Imbimbo M, Gallucci R et al. Epidermal growth factor receptor tyrosine kinase inhibitors for the treatment of central nervous system metastases from non-small cell lung cancer: The present and the future. Trans Lung Cancer Res 2016; 5: 563–78.
14 Patel HM, Rane R, Thaphyal N, Palkar M, Shaikh M, Karpoormath R. Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors from the natural origin: A recent perspective. Anticancer Agents Med Chem 2015; 15: 988–1011.
15 Watanabe S, Inoue A, Nukiwa T, Kobayashi K. Comparison of Gefitinib versus chemotherapy in patients with non-small cell lung cancer with exon 19 deletion. Anticancer Res 2015; 35: 6957–61.
16 Choi YJ, Lee DH, Choi CM et al. Randomized phase II study of paclitaxel/carboplatin intercalated with gefitinib compared to paclitaxel/carboplatin alone for chemotherapy-naive non-small cell lung cancer in a clinically selected population excluding patients with non-smoking adenocarcinoma or mutated EGFR. BMC Cancer 2015; 15: 763.
17 Soria JC, Wu YL, Nakagawa K et al. Gefitinib plus chemotherapy versus placebo plus chemotherapy in EGFR-mutation-positive non-small-cell lung cancer after progression on first-line gefitinib (IMPRESS): A phase 3 randomised trial. Lancet Oncol 2015; 16: 990–8.
18 Rizvi NA, Rusch V, Pao W et al. Molecular characteristics predict clinical outcomes: prospective trial correlating response to the EGFR tyrosine kinase inhibitor gefitinib with the presence of sensitizing mutations in the tyrosine binding domain of the EGFR gene. Clin Cancer Res 2011; 17: 3500–6.
19 Janjigian YY, Miller VA. Do molecular diagnostics add to clinical characteristics in selecting patients for gefitinib treatment. Nat Clin Pract Oncol 2008; 5 (1): 10–1.
20 Kim HR, Lee JC, Kim YC et al. Clinical characteristics of non-small cell lung cancer patients who experienced acquired resistance during gefitinib treatment. Lung Cancer (Amsterdam, Netherlands) 2014; 83: 252–8.
21 Ahn MJ, Yang JC, Liang J et al. Randomized phase II trial of first-line treatment with pemetrexed-cisplatin, followed sequentially by gefitinib or pemetrexed, in East Asian, never-smoker patients with advanced non-small cell lung cancer. Lung Cancer (Amsterdam, Netherlands) 2012; 77: 346–52.
22 Sabri A, Oho AUID, Batool M et al. Predicting EGFR mutation status in lung cancer:Proposal for a scoring model using imaging and demographic characteristics. Eur Radiol 2016; 26: 4141–7.
23 Rizzo S, Petrella F, Buscarino V et al. CT Radiogenomic characterization of EGFR, K-RAS, and ALK mutations in non-small cell lung Cancer. Eur Radiol 2016; 26: 32–42.