Recent Progress on 3D Silicon Detectors

Jörn Lange
IFAE Barcelona
24th International Workshop on Vertex Detectors, Santa Fe, 3 June 2015

With material from the ATLAS and CMS 3D groups, RD50, CNM, FBK, SLAC and SINTEF
3D Detectors – a Success Story

- 1997: First idea and devices
- Huge R&D effort
 - Manufacturers, ATLAS+CMS, RD50, ...
- ATLAS IBL
 - First installation of 3D detectors in a HEP experiment
- Forward Detectors: 2nd use of 3D detectors within 1 year
 - ATLAS Forward Proton (AFP)
 - CMS-TOTEM PPS
- HL-LHC Phase-2 Upgrades ~2024
 - New generation of 3D detectors

S. Parker, C. Kenney, J. Segal
NIM A 395 (1997), 328
1997: First idea and devices
- Huge R&D effort
 - Manufacturers, ATLAS+CMS, RD50, ...
- ATLAS IBL
 - First installation of 3D detectors in a HEP experiment
- Forward Detectors: 2nd use of 3D detectors within 1 year
 - ATLAS Forward Proton (AFP)
 - CMS-TOTEM PPS
- HL-LHC Phase-2 Upgrades ~2024
 - New generation of 3D detectors
- Conclusions

S. Parker, C. Kenney, J. Segal
NIM A 395 (1997), 328
Advantages
- Electrode distance decoupled from sensitive detector thickness → lower $V_{\text{depletion}}$
 → less power dissipation, cooling
 → smaller drift distance
 → faster charge collection
 → less trapping
- Active or slim edges are natural feature of 3D technology

Challenges
- Complex production process → long production time
 → lower yields
 → higher costs
- Higher capacitance → higher noise
- Non-uniform response from 3D columns and low-field regions → small efficiency loss at 0°
Different 3D Technologies

Single-sided process (“Full 3D”)

- Both column types (n, p) edged from front
 - Needs support wafer → removal needed
 - Bias to be applied at front side → overhanging bias tab or other front-side biasing

- Allows active edges
 - Only few µm dead material

Double-sided process

- n columns etched from front, p from back
 - FBK: passing-through columns, p-spray
 - CNM: non-passing-through columns, p-stop
 - No support wafer needed
 - Bias applied at back side → no bias tab needed → reduced process and assembly complexity

- Allows slim edges
 - FBK: p⁺ guard fence → ~10 µm
 - CNM: p⁺ guard fence + 3D guard ring → ~150 µm

SNF (Stanford) / SINTEF (Oslo)

FBK (Trento)

CNM (Barcelona)

C. Kenney et al., IEEE TNS 48 (2001) 2405

A. Zoboli et al., IEEE TNS 55(5) (2008) 2775

G. Giacomini, et al., IEEE TNS 60(3) (2013) 2357

G. Pellegrini et al., NIMA 592(2008) 38

G. Pellegrini et al. NIMA 699(2013), 27
Signal efficiency (SE) of 60-70% at $5 \times 10^{15} \text{n}_{\text{eq}}/\text{cm}^2$ and 30% at $2 \times 10^{16} \text{n}_{\text{eq}}/\text{cm}^2$ achieved for moderate $V < 200 \text{ V}$

Signal efficiency (SE) improves with decreasing electrode distance L

Charge multiplication at high fluences and V can further boost collected charge

\[SE = \frac{1}{1 + 0.6L \frac{K_{T}}{V_{D}} \Phi} \]
ATLAS IBL: First Use of 3D Detectors

- First upgrade of ATLAS pixel in long shutdown 1 (2013-2015): new innermost layer at 3.3 cm
- FE-I4: largest pixel front-end chip
- Radiation levels up to $5 \times 10^{15} \text{n}_{\text{eq}}/\text{cm}^2$, 250 Mrad
- 2011 sensor technology decision:
 - 75% n-in-in planar 200 µm (CIS)
 - 25% double-sided 230 µm 3D (CNM+FBK)

See talk by D. Dobos
IBL 3D Production

- **Sensors**
 - FE-I4 geometry: 80x336 pixels of 250x50 µm²
 - 2 n⁺ junction columns per pixel (2E) surrounded by 6 p⁺ ohmic columns in 230 µm p substrate → L=67 µm
 - Slim edge of 200 µm along columns

- **Technology details**
 - **FBK:**
 - Passing-through columns
 - p⁺ guard fence
 - Sensor selection from IV on temporary metal
 - **CNM:**
 - Columns ~20 µm shorter than thickness
 - 3D guard ring+p⁺ guard fence
 - Sensor selection from IV on guard ring (GR) (not ideal)

C. Da Via et al., NIM A 694 (2012) 321
IBL 3D Performance – Breakdown and Noise

- **Breakdown voltage**
 - Lower for 3D than planar, but much less bias voltage needed
 - Lower for FBK than CNM due to through-passing junction columns

- **Noise**
 - Larger for 3D than planar due to larger capacitance (170 vs. 110 fF)
 - Larger for FBK than CNM due to larger column overlap

Measurement in lab during QA
- Calibration: 10ToT@16ke
- Threshold: 3000e
- Temperature: -15 °C
IBL 3D Performance – Radiation Hardness

- Radiation hardness tested up to $5 \times 10^{15} \text{ n}_{\text{eq}}/\text{cm}^2$
- **3D sensors**
 - Fully efficient at **160 V** and 15° angle
 - Mean efficiency 1-2% lower at normal incidence due to columns
 - Power dissipation $<15 \text{ mW/cm}^2$ at $T=-15^\circ \text{C}$
- **Planar sensors**
 - Need 1000 V for similar efficiency
 - Power dissipation $\sim90 \text{ mW/cm}^2$ at $T=-15^\circ \text{C}$

→ operational advantage for 3D sensors
IBL Installation and Commissioning

- IBL installed in May 2014
- First 13 TeV collisions!
- Overwhelming fraction of sensors works according to specifications

See talk by D. Dobos

3D is in and working!!!
3D Sensors for Forward Detectors

- ATLAS Forward Proton (AFP) and CMS-TOTEM Precision Proton Spectrometer (PPS) intend to study forward protons scattered under very small angle.
- Tracking and timing detectors very close to the beam (2-3 mm).

AFP TDR submitted to LHCC, LHCC-2015-009
CMS-TOTEM PPS TDR, LHCC-2014-021
AFP and PPS 3D Trackers

- Requirements
 - Good position resolution (full tracker): 10 µm (x), 30 µm (y)
 - Slim edge of side facing beam: 100-200 µm
 - Highly non-uniform irradiation (up to $3 \times 10^{15} n_{eq}/cm^2$)

- Solution
 - Several layers of slim-edged 3D pixel detectors (telescope configuration)

- AFP:
 4 slim-edged IBL 3D FE-I4 single-chip modules, 13° tilt in x

- PPS:
 6 3D modules with PSI46dig, 6 chips/module, 20° tilt in x
AFP: Slim-Edge Efficiency

- **CNM**: Fully sensitive up to last pixel (3D guard ring design)
- **FBK**: Sensitivity extends ~75 µm beyond last pixel (no guard ring)
 - <15 µm insensitive edge: slimmest edge apart from fully active edge
- For both CNM and FBK: <150 µm insensitive edge possible
 - **AFP slim-edge requirements fulfilled**
AFP: FBK Slim-Edge Efficiency – Dependence on V, Side and Fluence

- Dependence on the side
 - Edges that are cut to obtain slim-edges have ~75 µm sensitivity extension, non-cut edges ~110 µm
 → probably cut defects influence depletion growth and increased recombination near cut edge
 → to be followed up in simulations

- Dependence on irradiation
 - Here: non-cut devices
 - Sensitivity extension still present after irradiation, but reduced (increasing with V)

I. Lopez et al., ANIMMA 2015, Lisbon
PPS: Slim-Edge Efficiency

Edge Pixel: 300x100 µm²

- Typical CMS pixel 150x100 µm²
- Here: edge pixel double size in long direction (300 µm) for this prototype (not for PPS)
- Edge-efficiency studies with 1E FBK sensors
 - 50 µm sensitivity extension at 0°, 70 µm at 20°
 - 130-150 µm remaining insensitive edge

→ PPS slim-edge requirements fulfilled

CMS-TOTEM PPS TDR, LHCC-2014-021
F. Ravera et al., 10th Trento Workshop 2015, Trento
AFP: Irradiation Studies

- Radiation hardness for uniform radiation to $5 \times 10^{15} \text{n}_{eq}/\text{cm}^2$ known from IBL
- AFP: Highly non-uniform fluence from diffractive p
 - $3 \times 10^{15} \text{n}_{eq}/\text{cm}^2$ in max. (\sim7 TeV p), orders of magnitudes less nearby
- 2 irradiation campaigns with different non-uniformity scenarios

1) Focussed 23 GeV p irradiation (CERN-PS)
→ fluence spread large

max. $4 \times 10^{15} \text{n}_{eq}/\text{cm}^2$

2) 23 MeV p (KIT) through hole in 5mm Al plate
→ very localised fluence with abrupt transition

$3.6 \times 10^{15} \text{n}_{eq}/\text{cm}^2$

Efficiency 96-99% in all regions

→ AFP radiation-hardness requirements fulfilled
PPS: Irradiation Studies

- Study of uniform irradiation
- Builds on experience of previous CMS 3D radiation hardness studies
 - Problems in past: chip PSI46 (analog) not radiation hard enough
 - New studies with new PSI46dig: more radiation hard, lower threshold
 - Efficiency of 98% after 1×10^{15} n_{eq}/cm2 and 93% after 3×10^{15} n_{eq}/cm2
 (only 1E available in first studies, 3 ke threshold)
 - Some remaining non-uniform inefficiencies, expected to improve with 2E configuration

See talk by L. Caminada for chip details

F. Ravera et al., 10th Trento Workshop 2015, Trento
F. Muñoz, PhD thesis (2014)
A. Krzywda et al., NIM A763 (2014) 404

Efficiency vs Angle After Irradiation

- 1×10^{15} n_{eq}/cm2, 85 V
- Angle 0°
- Angle 20°
- $V_{bias} = 85$ V
- $V_{bias} = 150$ V
- $V_{bias} = 145$ V
- gone into breakdown during data taking

F. Ravera et al,
AFP and PPS Production

AFP

- Production run at CNM finished in July 2014
- 8 lost wafers due to machine malfunctions, 5 wafers successfully finished (40 sensors)
- Slim-edged to 180 µm
- 9 good + 5 medium quality sensors after slim-edging
 → Low yield due to etching problems with DRIE
 → Identified and solved for next runs
- New IBL-like run started at CNM in February 2015
- Module assembly incl. bump- and wirebonding and QA to be done at IFAE Barcelona (on AFP flex from Oslo)

→ Installation of first two AFP stations with 2 x 4 3D FE-I4 pixel modules planned for winter shutdown 2015/16 (tight!)

PPS

- First FBK 6” 3D commissioning run had low yield on large sensors due to local defects
- CNM production run for PPS on-going
 - 2E default (also 1E); up to 6-chip sensors; no guard ring

→ Installation of PPS 3D pixel modules planned for 2016
New Developments for HL-LHC

- High-Luminosity LHC (HL-LHC) upgrade 2024
 → increased occupancy
 → unprecedented radiation levels ($1-2 \times 10^{16}$ n_{eq}/cm^2 innermost pixels)

- Development of new pixel sensors and front-end (RD53)
 - Reduced cell size: 50x50 μm2 or 25x100 μm2
 - Reduced threshold \sim1000e (in-time), $C_{det} < 100$ fF/pixel, $I_{leak} < 10$nA/pixel

- Strategy for 3D HL-LHC R&D
 - New generation of 3D productions under way
 - Explore the limits of existing 3D technology and devices from previous productions

See talks by R. Bates & R. Stringer (sensors), M. Garcia-Sciveres (chip)
HL-LHC Studies with Existing Technology

- Radiation-hardness studies on-going
 - With strips, PSI46dig, FE-I3, FE-I4: irradiations at PS, KIT, Ljubljana

- High-eta studies
 - Large clusters → large total charge → efficiency for whole cluster not a problem
 - But for 50 µm pitch very small charge deposition per pixel (almost parallel tracks): 3300 e
 - Testbeam campaign to measure CNM+FBK IBL FE-I4 devices with 80° angle in short pitch direction (50 µm)
 - 1000 e threshold
 - Cluster size 24-27
 - >99% efficiency per pixel before irradiation
 - Analysis on-going for irradiated devices

IFAE (I. Lopez et al.)

\[80^\circ (\eta=2.4) \rightarrow Q=3300 \text{ e/pixel (50 µm)} \]
New 3D Productions at CNM, FBK, Stanford, SINTEF

- Smaller cell sizes folded into existing FE geometries, also FE-RD53 prototypes
 - Cross-experiment runs: CMS PSI46dig, ATLAS FE-I3/4, LHCb Timepix/Velopix
- Reduced cell size means reduced electrode distance L
 - Advantageous for radiation hardness
 - Need to reduce 3D column diameter to $\sim 5 \, \mu m$ to keep dead material low
 - Go to thinner detectors with fixed aspect ratio (column length/diam.) 20:1 → all vendors
 - Increase aspect ratio to 40:1 with cryogenic technique → CNM
- Thinner sensors
 - To reduce 3D column diameter, C_{det} and cluster size at high eta
 - Double-sided: CNM 200 µm
 - Single-sided
 - Si-Si wafer-bonding (FBK 100-130 µm, Stanford 75-150 µm)
 - SOI (SINTEF 50+100 µm, CNM 100+150 µm)
 - 6” wafer production (FBK, SINTEF)
 - Improved on-wafer sensor selection (CNM: poly-Si)
 - Improved breakdown (FBK: non-passing through junction column)
 - Varying depth of junction columns to sense full 3D hit information (Stanford)
 - Active (Stanford, SINTEF) or slim (CNM, FBK) edges

Layout

50x50 1E	25x100 1E	25x100 2E	
El. Dist. L	35 µm	52 µm	28 µm

cf. FE-I4: $L=67 \, \mu m$
Conclusions

- 3D silicon detectors are an intrinsic radiation-hard and active/slim-edge technology
 - Now mature

- First-time use in HEP experiment in ATLAS IBL
 - Successful qualification, production, installation, commissioning and first collision data
 - Operational advantages compared to planar

- Second use in forward detectors imminent
 - ATLAS Forward Physics (AFP)
 - CMS-TOTEM PPS
 - Successful qualifications (slim edge and non-uniform irradiation)
 - Productions on-going

- R&D for HL-LHC pixel detectors on-going
 - New 3D production runs at CNM, FBK, Stanford, SINTEF
 - Smaller cell size, thinner, smaller columns, partly 6”
 - R&D with existing devices on-going
IBL 3D Production

- **Sensors**
 - FE-I4 geometry: 80x336 pixels of 250x50 µm²
 - 2 n⁺ junction columns per pixel (2E) surrounded by 6 p⁺ ohmic columns in 230 µm p substrate → L=67 µm
 - Slim edge of 200 µm along columns

- **Technology details**
 - **FBK:**
 - Passing-through columns
 - p⁺ guard fence
 - Sensor selection from IV on temporary metal → 57% wafer production yield
 - Assembly yield 56% (bump-bonding issues)
 - **CNM:**
 - Columns ~20 µm shorter than thickness
 - 3D guard ring+p⁺ guard fence
 - Sensor selection from IV on guard ring (GR) → 72% wafer production yield
 - Assembly yield 50% (GR IV bad indicator)

C. Da Via et al., NIM A 694 (2012) 321
IBL 3D Assembly Yield

V_{BD} COMPARISON AFTER HYBRIDIZATION

ATLAS IBL Preliminary

FBK: Method works! Good correlation!

ATLAS IBL Preliminary

CNM: poor correlation

CNM 3D-Guard Ring evaluation method not good enough!

CNM V_{BD} plot is done with a small subset of produced modules, because in the QA too low bias current ($\leq 10 \, \mu A$) limit has been used.

CNM implementing poly-silicon bias structure for new production

A. Gaudiello - 10th "Trento" Workshop on Advanced Silicon Radiation Detectors