Service Intelligence Oriented Distributed Data Stream Integration

Feng-Lin Li, Chi-Hung Chi, Yue Wang, Cong Liu
School of Software, Tsinghua University, Beijing, China, 100084

Abstract

Software as a service (SaaS) has recently enjoyed much attention as it makes the use of software more convenient and cost-effective. At the same time, the arising of users’ expectation for high quality service such as real-time information or functionality provisioning brings about new challenges: to satisfy such (near) real-time requirements, real-time monitoring and effective processing of streaming data is necessary. However, due to the composition structure and multi-instance property of services, service data streams are often distributed, hard to synchronize and aggregate. We tackle these challenges by (1) proposing systematic associate strategies for relating distributed data; (2) introducing a new small window array mechanism for aggregating distributed data; (3) setting window parameters based on the cumulative distribution function (CDF) method; and (4) modeling streaming operators with queuing models for performance evaluation and prediction. Experiments show that our approach has good accuracy, completeness and acceptable performance measurement in processing distributed service data streams.

Keywords: Service Intelligence, Data Streaming, Small Window Array, Queuing Theory

1. Introduction

Along with the movement of information technology, the majority of software nowadays are presented in the form of services over Internet. In this way, most of the implementation details can be well hidden behind interfaces which are simple and user-friendly to users, making software easier to use in spite of its increasingly complicated internal building blocks. Service is a set of functionalities which can perform a specified task or supply corresponding information with the addition of its deployment and runtime environment [1, 2]. Providing software as a service emerges as a novel service delivery model in recent years, in which people use software on-demand instead of purchasing the entire software package, makes the using of software more convenient and cost-effective [3] and has obtained wide attention from both academic and industrial circles.

The general trend indirectly reflects the customers’ interesting and potential demand for satisfactory services. As time moves on, people’s expectation for high service quality and intelligence brings novel requirements and challenges to services. Though undeniably current services and traditional off-line analysis have done a pretty good job to cater to customers’ demand, there
are still some aspects - say real-time functionality, information, service intelligence (dynamic scaling) - that they don’t perform well in.

Generally in services nowadays, static data is operated on to produce desired values which may become invalid when it comes to time varying data. Supposing that a driver want to find the nearest available parking space, the service may have to gather the parking information of adjacent parking areas timely and provide reasonable outcomes after instant computation.

Another important aspect of service intelligence is service management. A customer may expect the service he/she has subscribed to could keep working with high performance. In other words, a customer may hope that a service could deliver a valid response within 3 seconds even at the visit peak.

As is known, traditional off-line analysis may provide some intelligence - say service requirement, recommendation - through data mining or analysis. However, they won’t be able to satisfy the real-time requirement because of the time limitation. In order to provide real-time information or guarantee high service quality, real-time data collecting and processing is the essence.

Data usually comes from different sources in practice. As for a real-time functional service, it may need to gather information from different terminals like sensor, agent and smart phone to conduct computation. On the other hand, the composite structure and multi-copy property of service also contribute to the data distributivity. Usually for convenience and reusing, a service is composed of sub-services, each of which provides specified functionalities and may be deployed on different nodes. Also, a service may have multiple copies running on the same platform in order to respond to the users’ requests timely during peak time. Due to the distributivity of service, multiple data streams will be generated on sequential requests (each node will generate an event stream in which a tuple stands for an invocation). In order to provide relevant function or intelligence, reasonable preparation and integration over the multi-streams should be taken as the fundamental step.

In fact, real-time information or functionality service is a kind of service intelligence - quality requirement. In this paper, we mainly pay attention to distributed data integration towards upper service intelligence provision. The remainder of this paper is structured as follows: Sec. 2 presented the relevant work; Sec. 3 analyze significant problems of distributed data stream information integration in service environment; Sec. 4 proposes different associate strategies to address the identifier problem; Sec. 5 introduce the small window array mechanism and employs the cumulative distribution function approach to configure stream system parameters for better integration completeness; Sec. 6 builds reasonable queuing model for typical stream operators involved in this paper to predict performance indicators; finally, we draw our conclusion and give some future research issues in section 7.

2. Related Work

2.1. Service Intelligence

Except for the functionality, service intelligence mainly includes requirement, trust, recommendation, management and so on. In order to provide customized service, the key point is to obtain a deep understanding of service quality requirement. SiMing Li proposed a framework of acquiring service non-functional requirement through user-oriented behavior information and service-oriented runtime as well as static information (i.e. service structure, SLA). An example is that some people put great attention on quality while others only care about the price. In addition to the traditional quality requirement like reliability and availability, real-time information
or functionality turns to be another kind of significant quality requirement and relies heavily on
the underlying real-time data gathering and processing. For instance, ticket information inquiry
and real-time stock market analysis might fall into this category.

Recommendation is of great significance to both service providers and customers. Based on
the subjective and objective information, providers can know well about the Service Level Agree-
ment (SLA) compliance (the conformity degree between practical measurements and guaranteed
service quality in SLA)[4, 5], customers’ interests and hence make reasonable decisions. At
present, customer-oriented recommendation mainly hires the collaborative filtering method and
falls into two classes: user- and content-based recommendation [6]. The customized recommenda-
tion of blog, commodity and trip modes that press close to users’ interest can bring customers
better experience. A route selection service which can analyze real-time route information and
recommend an uncrowded route will be a good case in point. It could become more wonderful
if user preference is also taken into consideration.

In order to provide customized service for individuals, service providers need to gather as
much user-generated content [7] as possible instead of asking them to fill in an electronic form
explicitly. The user-generated implicit data includes the query keywords in a search engine,
browser history on web-sites, purchasing behavior, etc. Comparing with the explicit information
like manual feedbacks and reviews, implicit data generated by users unconsciously is of great
value in acquiring users’ interests and preference, which can contribute a lot to service require-
ment analysis, reputation and recommendation.

Service management includes SLA compliance, problem diagnosis, dynamic scaling etc.
SLA compliance indicates the conformity between the actual runtime measurement and the guar-
anteed quality. Problem diagnosis is of great importance when a service takes a long time to re-
response or even fails to respond. Problems have to be located accurately and got fixed as soon as
possible in order to minimize the negative effects. Last but not least, dynamic scaling plays a key
role in the maintenance of service scalability. As is well known, the number of visits varies over
time, and thus dynamic scaling mechanism of service management should be able to perceive
the changes and take appropriate countermeasures.

From the discussion above, we can get a clear picture of real-time service intelligence that
rely on time varying data. A plenty of research have been done towards service intelligence like
trust, requirement and recommendation on the basis of static data. Researchers usually assume
the required data to be ready when verifying their models or algorithms. In fact, when it comes
to real-time scenario, how to gather distributed streaming data and prepare them well for kinds
of superior intelligence models is a Gordian knot.

2.2. Data Stream

A data stream is an infinite sequence of tuple [8]. Similar with the data table of database
system, a data stream has an appropriate schema that is defined by a collection of attributes
with specified data types. Generally, a stream has a timestamp located in the first column which
records the tuple’s generation time. According to the interval time between tuples, stream falls
into two classes: uniform and random. Intuitively, a data stream can be characterized by a two-
dimension array. Each row in a stream represents a tuple while each column stands for a specific
attribute.

Comparing with static data in traditional database system, streaming data is dynamic and
transient. It can be processed only once at each operator and then sent away or discarded. Be-
cause of the time-varying stream rate and limited processing capacity, sometime the stream en-
gine has to drop some tuples or use synopsis to obtain approximate results. In addition, streaming data is updated in the form of appending instead of modifying and its model (schema) can be modified by operators dynamically during processing.

Another significant difference between data stream and database is the **continuous query**. A database will return back static and eligible data on a query and the result won’t change even if updates are delivered soon afterwards. Being different from the database, a query in data stream system is installed permanently before it is canceled explicitly by the user. The query is triggered by the arrival of each incoming tuple. Apparently, the query result is updated continuously and becomes a stream \([9–11]\).

Numerous studies have been done in different aspects of distributed data stream research. B. Babcock etc. \([12]\) proposed an approximate but effective Top-K algorithm to calculate the K most popular pages with prerequisite of minimizing data communication between computation and coordinate nodes. C. Olston etc. \([13]\) considered an adaptive filter algorithm which adjusts the tolerance according to users’ requirement in order to reduce redundant information under multi-user query scenario. Samuel Madden etc. \([14]\) put forward a Fjord framework which joins sensor streaming data with traditional static data. It is pretty useful to calculate SLA compliance by combining dynamic runtime information with static service or SLA information.

Current work in data stream has made excellent progress and developed fairly mature prototypes, such as BOREALIS \([15, 16]\) system of MIT, Brown and Brandy University, Telegraph-CQ \([17, 19]\) system of UC Berkeley, STREAM \([20, 21]\) of Stanford University. Among them, Telegraph-CQ and STREAM employ Continuous Query Language (CQL) \([10, 11]\) as the query language while BOREALIS use XML. All the above three data stream system supports sliding window but STREAM doesn’t support the regulation of advance step which is fixed to 1 by default. They can accept multiple streams as inputs from network or file and deliver query results to multiple users at the same time.

We choose BOREALIS stream system as our research and experiment platform because its distributivity is really suitable for our service environment. The key concept of BOREALIS is operator box \([22]\). The operators fall into two classes: stateless and stateful. Typical stateless operators contain MAP, FILTER and UNION; operators such as JOIN, SORT and AGGREGATE are stateful. Another significant property of BOREALIS is the good extendability that stems from its inheritance mechanism with which users can define and implement custom operators like clustering by inheriting the QBox super class and overwrite the run_impl function. In this way we obtained our own sliding window aggregate operator.

2.3. Queuing Theory

Queuing theory is a mathematical study for waiting queue and contains three key stages: input/arrival process, waiting for processing and receiving service in the system. In view of the Markov process’s steady-state balance equation and the Little rules \([23]\), queuing model can be used to predict kinds of indicators like waiting queue length (customers in the waiting line), queue length (all the customer in the system), waiting time, residence time, and the probability of system is busy or the probability a tuple will be dropped.

Queuing model can be presented as \(A/B/C/D/E/F\) via Kendall symbols \([23, 24]\). \(A\) represents the input interval distribution which usually includes poison distribution (\(M\)), K-Erlang distribution (\(Ek\)) and General distribution (\(G\)); \(B\) stands for the service time distribution and has similar types of distribution with input process; \(C\) means the number of service desk; \(D\) is the buffer length; \(E\) indicates whether the data source is infinite or not; \(F\) is the service discipline, like first come first served (FCFS, default discipline), last come first served (LCFCS).
The most common distribution for input process and service time is negative exponential distribution (also known as poisson distribution, M). This kind of queuing model contains $M/M/1$ and $M/M/C$, which means a queuing model with both poisson input process and service time distribution, 1 or C server(s). The model can be extended to $G/M/1$ or $M/G/1$ if the input process or service distribution becomes general (e.g. K-Erlang distribution, deterministic and poisson). The normal Poisson and Erlang distributions have apparent limitation in practical applications because of their relative simplicity. Therefore we mainly employ Hyper-Erlang [25, 26] and Phase-Type (PH) distribution [27] to fit general distribution from real streaming data.

Erlang distribution is of significant importance to the Expectation Maximization [28] approach. Its probability density function (PDF, f) and cumulative distribution function (CDF, F) are shown in formula (1).

$$f(x, k, \lambda) = \frac{\lambda^k x^{k-1} e^{-\lambda x}}{k!}, (x, \lambda \geq 0) \quad F(x, k, \lambda) = 1 - \sum_{n=0}^{k-1} \frac{e^{-\lambda x} (\lambda x)^n}{n!} \prod_{i=1}^{k} i, \quad (x, \lambda \geq 0)$$

Hyper-Erlang Distribution is a mixture of m branches of Erlang distribution. The i-th Erlang branch has an initial probability α_i and the sum of all α_i equals to 1. Each branch of Erlang distribution has a parameter pair $E_i(\lambda, K)$ in which λ is the rate and K represents the scale (number of phases). The PDF and CDF of Hyper-Erlang Distribution can be expressed as formula (2) based on the formula (1) [25, 26].

$$f_{\text{HED}} = \sum_{i=1}^{m} \alpha_i f_i = \sum_{i=1}^{m} \alpha_i \frac{\lambda_i^k x^{k-1} e^{-\lambda_i x}}{k!} \prod_{i=1}^{k} i, \quad (x, \lambda_i \geq 0) \quad F_{\text{HED}} = \sum_{i=1}^{m} \alpha_i F_i = \sum_{i=1}^{m} \alpha_i (1 - \sum_{n=0}^{k-1} \frac{e^{-\lambda_i x} (\lambda_i x)^n}{n!} \prod_{j=1}^{k} j)$$

A PH distribution with parameter (α, T), $PH(\alpha, T)$, is the distribution of the time until absorption into state 0 in a Markov chain on the states $\{1, \ldots, n, 0\}$ with initial probability vector $(\alpha, 1 - \alpha \times 1)$ and an infinitesimal generator:

$$Q = \begin{pmatrix} T & T^0 \\ 0 & 0 \end{pmatrix}$$

where α is a $1 \times n$ vector, T is a $n \times n$ matrix and $T^0 = -T \times 1$, here 1 represents an $n \times 1$ vector with every element being 1.

Hyper-Erlang Distribution and PH distribution will play significant role in our queuing model. In addition, the service model of queuing system falls into two classes: single and batch service [25, 26, 28]. In simple words, the batch service model is of great importance for stateful stream operators with window mechanism. For modeling details, please refer to section 6.

3. Problem Analysis

3.1. Service Intelligence Environment

3.1.1. Data Stream based Service Intelligence System

Various services can be deployed on a service platform, including utility services such as identification, security, and monitoring services, and functional services like search, shopping
and consulting services. Taking book search services for example, here we present a brief explanation for service recommendation. Assume a book search service set \(\{ S_1, S_2, \ldots, S_n \} \) with similar functionalities are deployed on a service platform. Facing so many similar services, which one should a new user choose when he/she has just got on the platform? If records are kept about recent behavior of each service on the platform, like whether the service quality conforms to the promise, how much percentage of users are using it, and to what extent users are satisfied with results provided by the service, such information can be fed to some trust or recommendation algorithms for further computation. Having the necessary information, we can then recommend the most popular search services to users according to some sorting rules, thus providing better service quality.

At some degree, those varieties of intelligence models such as requirements, trust, reputation share not only some common procedures but also mutual data basis. On one hand, given a computation procedure library constituted of common procedures, different intelligence models can be conveniently constructed by combining procedures. When we are in need of a new model, combination of current available procedures are first examined. New computation procedure will be introduced into the layer if none of the combinations works. On the other hand, the above service-oriented objective and user-oriented subjective information constitutes the data basis of service intelligence algorithms.

Based on these ideas, we propose the concepts of the algorithm layer and the data layer. The algorithm layer is the collection of different formulas and algorithms like clustering algorithms, distance-based algorithms, etc. The data layer collects data from the service platform and performs real-time processing to give out the uniform data distribution, which then is shared by these two layers as the basis of communication and interaction.

The algorithm layer and the data layer are the core components of the Data Stream based Service Intelligence System (DSSIS), which aims at extracting common features such as requirement, recommendation and management and building a fundamental system for service intelligence with uniform data distribution and common algorithms. The framework of DSSIS is composed of four layers which are the model layer, the algorithm layer, the data distribution (the knowledge layer) and the data layer respectively.

- **The model Layer** is on the top of DSSIS in which models differ from application to application. Representative models includes recommendation, user classification, etc.

- **The algorithm layer** is a collection of algorithms designed for obtaining information for the upper models. A large number of algorithm classes are located in this layer, each of which includes multiple algorithms. Typical classes includes (1) Clustering, (2) Averaging, (3) Time-decaying.

- **The knowledge layer** is a uniform data distribution which updates with certain frequency. A data distribution is the summary of runtime service measurement, user behavior and feedbacks during a period. In addition, it can be persisted and the evolving of data distribution can be valuable for prediction as time goes on. The data distribution is structured to meet the input requirement of upper algorithms.

- **The data layer** collects streaming data from different service nodes and performs appropriate preparation and integration. The data comes from monitoring services deployed on the platform and transfers between nodes as data streams. Due to the composite structure and multi-copy of services, the integration of distributed data streams brings novel challenges.
To obtain model knowledge, the model layer may require different classes of algorithms; the structure of the data distribution in the knowledge layer needs to meet the input standard of the algorithm layer; Based on the algorithms’ requirements, the data layer integrates data from distributed streaming data and produces a uniform data distribution. As is seen, these four layers are correlated, modification in one layer may have effects on another one. Our study in this paper mainly focuses on the data integration in the fundamental data layer.

3.1.2. Service Property

Service is usually deployed on a platform and is composed of other services because of complicated business logic. Sometimes it also has multiple copies running on the platform in order to guarantee the scalability. We will give a brief introduction of service properties at first.

- **Service**

Service includes atomic and composite service [32]. An **atomic service** can either offer utility independently or can be a component of composite services. A **composite service** is composed of multiple services, each of which may be atomic or composite. Accordingly, an **independent service** is an atomic service which offer utility independently or a final composite service. The components (atomic or composite service) of an independent service are called **sub-services**. The number of sub-services is called **service degree**. From the definition above, we come to know that a composite service is defined iteratively. The root - which is called **head service** - is used as the representative of the entire service. Meanwhile, head service is also a sub-service. Sub-services except for the head are called **subordinate services**. When a user invokes the head of a composite service, its response will guide the user to the subordinate services.
• **Invocation**

An invocation is a request sent from the client to a certain service. A *primary invocation* is an invocation of an independent atomic service or the head service of a composite service. A *subordinate invocation* is the invocation of the subordinate service which is caused by the primary invocation. An invocation of atomic service is primary when it is independent while subordinate if it acts as a service component.

• **Instance**

An instance includes at least one primary invocation and zero or more subordinate invocations of the same service. The number of invocations in an instance is called the *instance degree*.

The relations among service, invocation and instance are illustrated in Figure 2. We assume that each service, no matter atomic or composite, should be invoked by the client directly. The head service will not invoke the subordinate services on its own but its response will guide the client to the remaining subordinate services. It looks a bit like a HTML file of the web page.

3.2. Case Study

Through a specific case of service recommendation model, this section explains how to make use of the stream integration result to support upper intelligence model in DSSIS, presenting the important role that the data layer plays in the whole system.

Assuming there are two computation nodes N_1, N_2 and three services S_1, S_2, S_3. S_1 includes atomic service A_1 and subordinate services B_1, C_1 (which indicates a service degree of 3); S_3 includes A_3 and B_3; S_2 is an independent atomic service. We also suppose that A_1, B_1, A_2 are deployed on node N_1 while A_2, A_3, B_3, C_1 are hosted on N_2. The deployment diagram is illustrated in Figure 3. Please note that service S_1 is deployed separately and S_2 has two copies running on the platform. Every time a service is invoked, the information about the invocation will be collected, producing distributed monitoring data streams. We define a schema for the invocation stream: \{*Timestamp, UserId, ServiceId, ResponseTime*\}. An invocation tuple implies a user invoked a service at some time point and how much time the service has spent to response.

Good services can be recommended to a new user by simply sorting SLA compliances of the available services, while for old users, their interest or preference may should be taken into
consideration as well. Given data streams of service invocations, to get the SLA compliance of each service, we have to analyze the whole instance which reflects the service quality and behavior in a service process. The data tuples that record invocation information and belong to the same instance are, as explained above, distributed across multiple streams and may be disordered in invocation time. Discussing how to integrate these data tuples distributed over different data streams into one entire instance as accurately, completely and effectively as possible is the key point of this paper. As shown in figure 3, service S_1 is invoked once, service S_2 twice. The invocation tuples are distributed in the two data streams $stream_1$ and $stream_2$. The problem is how to integrate correlated invocation tuples in $stream_1$ and $stream_2$ to the service instance in $stream_3$.

Provided that we can address the issues well and obtain $stream_3$, we are able to calculate the SLA compliance via joining and comparing the conformity degree between the runtime measurement and promised quality as shown in figure 4. Having the SLA compliance of each book search service, it is feasible to recommend befitting services to users through sorting relies on some rules and is performed at some frequency.

3.3. Invocation Association Accuracy

Associating relevant invocations distributed in different streams is the fundamental step of integration, which plays a significant role for further calculation of SLA compliance or service intelligence model like recommendation and management. At the same time, it’s not such an easy task. First of all, because of the composite structure and multi-copy properties of a service, the invocations of an instance may be scattered in different streams. Second, if a composite service is invoked several times, there will be multiple identical invocations about each sub-service. How can we associate separate but relevant invocations together into one instance accurately? How can we distinguish the invocations of the same service?

Take the case in section 3.2 for example, we may get event streams as shown in figure 5(a) as time goes on. In the monitoring streams, the requested service name - say A_1, B_1, C_1 - is used to represent an invocation tuple. A tuple usually includes a set of attributes such as timestamp, service name, response time and so on. Intuitively, an tuple implies a user invocation and records the service behavior as well as state information which will be useful for further service intelligence computation. As figure 5(a) shows, S_1 and S_2 are invoked for three times and S_3 is requested only once. We may infer that the first appearance of A_1, B_1 in stream 2 and the first C_1 in stream 1 belongs to an instance. But as for the subsequent appearance of A_1, B_1, C_1, it is wont be easy. Are the n–th A_1 and n–th B_1 in stream 2 pertaining to the same instance? If A_1 and A_2 are the same service (this implies that atomic service A_1 acts as a service component for
3.4. Information Integration

3.4.1. Integration Completeness

Supposing that we can address the association problem proposed in section 3.3 well, we may want to gather as much invocations of an instance as possible for further modeling. The instance summary information reflects an independent service’s behavior and state during a service process and can be used as an important measurement for quality of service and SLA compliance. Consequently, it is of great significance to integrate the relevant invocations as completely as possible. However, distributed data streams own intrinsic issues - dispersity and asynchronism. How can we overcome such a tough nut?

Dispersity indicates invocations pertain to the same instance are scattered over multiple streams. Asynchronism means the relevant parts in different streams don’t arrive simultaneously. As figure 6 shows, the isolation of the first \(A_1 \) and \(B_1 \) by \(A_2 \) in stream 1 illustrates the dispersity while the interval between \(A_1 \) of stream 1 and \(C_1 \) in stream 2 indicates the inter-stream asynchronism. Here our target is to integrate the related invocations - say \(A_1, B_1, C_1 \) - into a corresponding instance as completely as possible.

Mostly, the challenge arise from the instantaneity of streaming data. Once a tuple is processed by a streaming operator, it will be sent to the destination or discarded without any local copy. In normal stateless data stream, a tuple has no subordinate or membership relation with other tuples. Even those tuples with the same key are only description for the same object’s different states. As for our case, the related invocation tuples belonging to the same instance are scattered...
in multiple streams now. Usually, a stream may include several invocation tuples of the same instance. As a result, a tuple in the stream has something to do with some other tuples before or after itself. That’s to say, our data streams are stateful. The state property of streaming data make it harder to integrate completely. By the way, the underlying streams of real-time information or functionality service could be either stateful or stateless. In other words, problems included in this real-time scenario are no more complex than those in multi-spot service monitoring scenario.

Data is very likely to get lost due to the dispersity and asynchronism. In order to gather relevant tuples in stateful streams as completely as possible, we may need an appropriate buffer mechanism. Stream operators that rely on the relation between tuples and employ sliding window to perform data processing \[10, 11\] like JOIN, AGGREGATE will be our first choice. However, JOIN operator doesn’t fit right here because of the inter stream asynchronism. In fact, as shown in figure 7, we first UNION the distributed streams into one rich stream and then AGGREGATE relevant invocation tuples to instances. The AGGREGATE operator will be the emphasis of our study.

In round figures, the completeness has something to do with the window mechanism and parameters. Take figure 7 for example, if the window size is set to be 4, then the tuple \(C_1\) will be lost when considering the first invocation of \(S_1\). Increasing the window size may make the first instance of \(S_1\) complete but the subsequent service instances remain incomplete. How to obtain appropriate parameters? Is enlarging window size reasonable for improving integration completeness? Is the sliding window mechanism suitable for distributed stream data integration? These are the issues we are going to address in this paper.
3.4.2. Performance Evaluation

The major concern of performance evaluation during integration is the performance measurement and resource consumption of each stream operator. Stream operators are going to make up an operator network of certain structure. The behavior analysis of single operator is the cornerstone of stream processing performance analysis and strategy decision making.

For example, if we need to merge multiple data streams, we may wonder how long will the UNION operator take to forward a tuple? Will the operator be blocked for the time-consuming operation and hence result in tuple losing? As for the stateful AGGREGATE operator, it quite a different story. It usually open a sliding window to buffer incoming tuples and process them in a batch mode. In this way, how long will it take to process a window? Can we have a rough estimate about the memory consumption of the operator according to the stream rate? Usually a new window will be be open if the original one is filled and there may be multiple windows in the system at the same time, so will the AGGREGATE operator run out of the system memory?

To evaluate whether a integration strategy is good or bad, in addition to the accuracy and completeness of the final result, we also need to consider its performance, resource consumption in order to give a more comprehensive evaluation. In this paper we will use the queuing theory as the theoretical basis to model the data stream operators, and present detailed analysis.

3.5. Design of Experiment

In practice, a web page is quite similar to a composite service. Intuitively, the HTML file is equivalent to the head service while the objects on a page are akin to subordinate services. A request for an object on a page will fill the "referrer" field in the request header to declare which page the current object belongs to. When a page is requested for several times, multiple identical instance of the page will be generated. In addition, we also get to know the objects of web pages on Amazon website are mainly located in two domains. The static files such as HTML, JS and CSS are stored in a domain while images with kinds of format, like PNG, JPEG and GIF, are located in another region. The distributed storage goes well with the distributed data streams scenario.

Therefore in our experiment, we use the Amazon access trace obtained through HtmlUnit (an open source java web browser) as our data set. The data we collected includes invocation sequence, request time, requested object, the referred web page etc. To make the data more convincing, we consulted the interval time distribution of the English wiki trace between 2008-1-1 22:50:22 and 2008-1-1 23:50:22. We first obtained the interval request time distribution from wiki and then generate several homogenous random sequences that have identical distribution. We also find that there are 270,000 unique pages among the 440,000 page instances
in the specified trace. Taking for example the multiplicity of enwiki’s page instances, we finally acquired 13,997 instances from the original 10,000 unique pages in the Amazon trace.

Based on the distributed storage environment mentioned above, we assume that for each storage region, a stream conforming to the same schema will be generated. During the data processing, we can first UNION the two streams into a rich stream and then AGGREGATE the objects that belong to the same page to obtain page instance level summary information. Finally, the instance-level tuples are sent to the sink node. The stream processing strategy is shown in figure 8 and the computation node configuration is shown in table 1. Note that the operators can be deployed on the same node or separately.

4. Association Strategy

In this section, we will first give a brief introduction to information types that could contribute to identifying invocations and then propose potential associate strategies systematically.

4.1. Information Type

1. **Service Information**

Service information contains the service identifier and service structure. A service identifier is a unique symbol which distinguishes different services and can be represented in the form of service names, digital ID, URL, etc. Service structure tells the sub services of the current one or which service the current one belongs to (it is possible that an atomic service can belong to multiple services). In practice, service structure information can be distributed to clients through responses and then will be included in the subsequent requests. For example, the HTTP request header usually contains a "referrer" entry, which is the URL of web page that the current requested object belongs to.

2. **Client Information**

Client information can be the identifier of client agent (e.g. IP address) or user-specific information such as cookie. Usually it can be obtained in the request header and do good to distinguishing different users but is useless for seperating multi-instances of a service generated by the same person.
3. **Instance Status Information**

An instance will be produced when an independent service is invoked and it usually contains some dynamic status information like invocation sequence number (ID) and timestamp. The instance ID can distinguish instances perfectly if it is unique for each instance but also leads to great overhead for maintaining uniqueness, and in fact it is not practical in distributed environment. In this paper, we mainly employ timestamp as the status information to help differentiate instances. For each primary invocation, a timestamp will be generated and encapsulated into the response; as for subordinate invocations, the information are contained in the request headers. Keep in mind that in this paper, we use the timestamp of head service to represent that of the entire instance for convenience.

4.2. **Association Strategies**

In the following subsections, we will illustrate different associate strategies by employing the above three kinds of information. As shown in Figure 5, all the strategies involves UNION and AGGREGATE. UNION puts multiple streams together into one stream and AGGREGATE groups the invocation records into instances according specific key attributes. The data stream processing goes smoothly provided that the streaming engine has an infinite buffer.

4.2.1. **Service Structure Information + Instance Status Information (Timestamp)**

As shown in Table 2, "Head service" and "Instance Timestamp" are used as the association key. Keys (A, 2010-12-21 17:11:29) and (A, 2010-12-21 17:11:37) stand for different instances of composite service A. If the load is stable, this strategy can distinguish instances of the same or different services. But if many a user invoked the same service within a single time unit, the instances of a service will have the same timestamp which leads to the failure to distinguish.

4.2.2. **Service Structure Information + Client Information**

As shown in Table 3, "Head service" and "Client information" are used as the identify keys. Tuples (A, 192.168.10.28) and (A, 192.168.10.111) represents different instances of service A. This scheme can be used to distinguish different users for services. However, the strategy cannot discriminate multi-instances of the same service generated by the same user during a specified interval.
Table 4: Stream structure of "Head + Timestamp + Client" strategy

Requested Service	Head Service	Timestamp	Client Information
B	A	2011-2-25 17:11:29	192.168.10.28
B	A	2011-2-25 17:11:37	192.168.10.111
B	A	2011-2-25 17:11:29	192.168.10.28

4.2.3. Service Structure + Instance Status Information (Timestamp) + Client Information

This is a re-enforced version of "Service structure + Timestamp" strategy and its stream structure is shown in Table 4. The only difference is that the number of associated attributes increases from two to three, which may increase the association cost for each tuple. With the additional "Client information", it can distinguish multiple instances of the same service invoked by different clients within a single time unit and the error is extremely small. An exception is that a strange client invoked the same service within a single time unit for several times.

4.3. Brief Summary

Table 5: Brief Summary

"Service Structure + Client Information"
(√): If users access the same service in sequential mode (there is no limitation for different services)
(†): It can’t tell the instances of the same service that generated by concurrent access of the same user

"Service Structure + Timestamp"
(√): Under normal work load, it has good discriminatory capacity
(†): If a service is invoked for several times in a time unit or has multi-copies running on a platform, the multi-instances of the same service may have the same timestamp and can’t be distinguished

"Structure + Timestamp + Client Information"
(√): It is the most powerful approach and can cover the shortcomings of the above two methods
(†): It may should pay cost for the performance.

1 (✓) – applicable scenario; (†) – non-applicable scenario

5. Integration Completeness

As shown in figure 3, our integration approach consists of two stream operators: UNION and AGGREGATE. The stateless UNION operator merges more than one identical streams into a rich one and the stateful AGGREGATE employs window mechanism to perform relevant computation. As for the window type, there are two typical classes of sliding windows: counting and timing window. The counting window accommodates a fixed number of tuples while the time window can hold all the tuples in a specified interval. In this paper, our main efforts are directed to reasonable window mechanism as well as its parameters in AGGREGATE operator to maximize the information integration completeness.

In general, the normal sliding window performs pool in our stateful stream scenario. Supposing there is a set of services \(\{ S_1, S_2, \ldots, S_k \} \) and each service has its own degree. For instance, service \(S_1 \) includes sub-services \(A_1, B_1, \) and \(C_1 \); \(S_2 \) only contains \(A_2 \); \(S_3 \) includes \(A_3 \) and \(B_3 \). At some time, the snapshot of a stream is shown in figure 3.
Assuming that both the window size and the advance step has the value of 5 we can get the partition in figure 9. We can get two intact instances - (A1, B1, C1) and (A2) - from the first window and A3 is lost. In the second one we only get one intact instance - (A1, B1, and C1). In total, three out of ten invocation tuples get lost in this partition.

Some may argue that the reasonable advance step can do good to improving the completeness of integration. We first should be aware that the advance step is fixed and can’t be changed dynamically. The adjusting of advance step may work well under some conditions but still bad in other scenarios. Because we can’t know well about the arrival pattern of stream in advance and change the step adaptively, the performance of sliding window depends heavily on luck. In addition, increasing the window size may reduce the information loss rate at some degree but couldn’t solve the problem fundamentally.

5.1. Small Window Array Mechanism AGGREGATE

Aiming at improving the integration completeness in stateful streams, we introduce a small window array mechanism that fit well in our scenario. It works as follows:

The operator box maintains a map of small windows at runtime. A <key, value> pair represents the value of association attributes and the corresponding small window in which all the tuples have the same key. The operator box extracts each tuple’s key at its arrival. If there is no such key in the map, the operator box will open up a new small window with fixed size, insert the tuple into the window and finally put the new key and window pair into the map. If such key exits, the operator box just insert the invocation tuple into the relevant window. If a small window is full, it will be closed and calculated automatically. Timeout is also supported to close a window which stays in the system for an unreasonably long time. When a window is constructed, it will have its first tuple immediately. This is the time point that the clock start to timing.

A case in point of small window array is shown in figure 10. The first row represents the tuple sequence, and the other rows stand for small windows for service instances. The invocation tuples in a small window belongs to a service (page) instance. We refer to a small window as an instance for convenience. Here the biggest service degree is |S1| = 3. If we set the window size to 3, the information loss rate will be minimized to zero. In practice, maybe only a small fraction of services have large degree number and hence we can’t use the biggest degree as the small window size by default because of the potential waste of large storage space.

BOREALIS maintains a window list for each key. We make sure each list has no more than one window by setting window size equal to advance step in the paper. Window parameters
have great influence on the outcome of information integration. In order to improve the integration completeness and minimize the loss rate, we have to pay great attention on setting rational window parameters values.

5.2. Parameter Estimation: Counting Window Size

We are going to obtain the counting window size in this way: first of all, try to get the frequency distribution of service degree through statistical analysis; then employ the Expectation-Maximization [28] method to obtain the probability density function \(g(n) \) and cumulative distribution function \(G(n) \) [36]. The symbol \(n \) means the service degree, \(g(n) \) indicates the percentage of services that has a degree of \(n \), \(G(n) \) stands for the proportion of the services whose degree is less than or equal to \(n \). Given the precise integration completeness \(\alpha \), we can acquire the appropriate \(n \), which will be used as the window size, by solving the equation \(F = \alpha \).

It should be noted \(F \) is the precise completeness. In practice, we can use approximate completeness which is based on level \(\gamma \) to measure the goodness of a parameter setting. Supposing the counting window size is set to be \(n \) and some service have a degree of \(N \), the number of tuples collected in a small window is \(K (1 \leq K \leq n) \). When the window is closed, if \(K/N \geq \gamma \), we hold the opinion that this instance is approximately integrated based on level \(\gamma \). In general, the approximate completeness is higher than the precise one. They equal to each other on condition that \(\gamma = 1 \). In fact, \(1 - \alpha \) is considered to be the up limits of information loss rate if we use approximate completeness to measure the outcome.

In our experiment, the service (page) degree is a single-branch Erlang distribution with \(\alpha = 1, E(\lambda, K) = E(8.7963, 100), m = 1 \). It can be expressed as formula (4) and depicted as figure 11. In figure 11, the light gray line is the practical distribution while the dark gray represents the fitted one. From it we can see that the majority of service degree lie in [10, 15] and the services whose degree are less than or equal to 15 account for nearly 99%.

$$
\begin{align*}
 f_{\text{degree}} &= \frac{8.7963^{100} \times e^{-8.7963x}}{\prod_{i=1}^{99} i} = 2.8840^{-62} \times 99 e^{-8.7963x} \\
 F_{\text{degree}} &= 1 - \sum_{n=0}^{99} e^{-8.7963x} \times 8.7963^n \prod_{j=1}^{n} j
\end{align*}
$$

\((4) \)

Given integration completeness \(\alpha \), the window size \(n \) can be obtained by solving \(F_{\text{degree}} = \alpha \). In practice, there is a little trouble when trying to obtain the analytic solution through the newton
iteration method because of the accumulation of multiple branches. However, if we can realize that the window size n is a natural number and definitely has a value lies in $[0, \max(\text{degree})]$, things will be much simple. In fact, we at last hire the trial-and-error method to discover the closest window size according to the given α. For example, supposing $\alpha = 0.90$, we can obtain the best suitable window size $n = 13$. When $x_1 = 12, F_1 = 0.7186; x_2 = 13, F_2 = 0.9200; x_3 = 14, F_3 = 0.9857$. So $n = x_2 = 13$ is the best choice for $\alpha = 0.90$.

5.3. Parameter Estimation: Timing Window Size & Timeout

Similarly, the response time of services (pages) can be used to guide the setting of time window and timeout. In our experiment, we obtained a two-branch Hyper-Erlang distribution as shown in formula (5) and figure 12. The average response time is $11.2513\,(s)$ and nearly 90% of the services’ response time lasts no more than $20\,(s)$ (see figure 12).

$$f_{\text{time}} = 0.0009979e^{-0.0404x} + 0.0029xe^{-0.3666x}$$
$$F_{\text{time}} = 1 - (0.0247e^{-0.0404x} + 0.9753 \sum_{n=0}^{\infty} \frac{e^{-0.3666x} \cdot 0.3666x^n}{n!})$$ (5)

Similar with the analysis of counting window size, given precise completeness α, we can acquire the reasonable time window size as well as timeout through $F_{\text{time}} = \beta$. For example, given timeout rate $\beta = 0.05$, we can obtain a sound timeout value $t = 22(s)$. It means that around 5% of the windows will be closed forcibly if it stays over 22(s). In an ideal word, 95% of the service instances will be covered.

5.4. Experiment Verification

5.4.1. Comparison of Window Mechanisms

The association attributes are identical for both sliding window and small window array mechanisms, including service structure, instance status (timestamp) and client information. For small window array, given precise completeness $\alpha = 0.90$ and timeout rate $\beta = 0.05$, we get window size $n = 13$ and timeout $t = 22(s)$. The normal sliding window size is taken as 8000, 16000 and 32000 (advance step = window size). The results are shown in table 6.

Figure 6 shows that the small window array mechanism performs much better. Its precise completeness is 80.4815% when $\gamma = 1$, approximate completeness based on $\gamma = 0.85$ and
Table 6: Comparison between sliding window and small window array (SWA) mechanisms

Indicators	Small Window Array	Sliding Window		
Window Parameters a	13/13/22	8000/8000	16000/16000	32000/32000
Integration Completeness(γ = 1) b	80.48%	13.15%	43.44%	72.11%
Integration Completeness(γ = 0.85)	90.30%	15.17%	47.63%	74.73%
Integration Completeness(γ = 0.75)	91.66%	16.99%	45.87%	73.76%
Integration Completeness(0 < γ ≤ 1) c	94.96%	40.16%	63.15%	76.27%

a The window parameters mean window size/advance step/timeout (if necessary)

b If γ = 1, the instance is integrated completely
c If 0 < γ < 1, the instances are integrated partially

0.75 reaches 90.2979% and 91.6553% respectively. In addition, 94.0649% of the invocations have been integrated (once an invocation is gathered into an instance, the completeness of that instance will be bigger than 0).

When it comes to the normal sliding window mechanism, the integrate completeness increases with the enlargement of window size. Even though the sliding window mechanism has similar completeness when the window size reaches 32000, there are still several intrinsic problems in it. First of all, the completeness here is obtained after a series of experiments. In fact, data stream can only be handled once at each operator node and hence more than one attempt for reasonable window parameters is impossible. Second, the sliding window will consume more resources (please refer to Table 11 for details). Another issue is that the window size is nearly one-sixth of the total tuple records (174069) which make the outcome unconvincing for in theory the completeness will reach 100% if the window size is equal to the entire data set size. In practice the window size is quite limited when comparing to the infinite length of data streams.

5.4.2. Quantitative Analysis of Association Strategies

We proceed to analyze the association strategies based on the small window array approach with identical parameter settings 13/13/22 here. From Table 7 we can see that the "Head" strategy which only makes use of service structure information performs relatively bad. The recall rate of service (page) instances is 91.3053% and the accuracy is 85.1683%. The "Head + IP" strategy which relies on service structure and client information performs pretty well in the ordinary case as we have expected. Provided that users access the same service in a sequential order (there is no limitation about different services), this approach can be considered to be the first choice. Though the "Head + Timestamp + IP" strategy owns the best effectiveness, it also consumes extra computation resource and capacity. It is not necessary to pursue little improvement at the high price of processing overhead.

6. Performance Evaluation

In this section, we will employ queuing theory to carry on behavior analysis for typical stream operators involved in the processing strategy. The behavior or performance analysis has considerable guiding significance for stream processing and operator network optimization. For instance, queue and waiting queue length can be used to predict the resource consumption; the probability that a coming tuple will be rejected by the system is helpful for load shielding.
Table 7: Analysis for association strategies

Strategy	Head	Head + Time	Head + IP	Head + IP + Timestamp
Window Parameters	13/13/22	13/13/22	13/13/22	13/13/22
Integration Completeness($\gamma = 1$)	70.38%	79.53%	80.44%	80.4815%
Integration Completeness($\gamma = 0.85$)	78.30%	89.14%	90.13%	90.2979%
Integration Completeness($\gamma = 0.75$)	79.41%	90.48%	91.49%	91.6553%
Integration Completeness($0 < \gamma \leq 1$)	81.14%	92.79%	93.98%	94.0649%
Recall	91.31%	99.31%	99.99%	100%
Correct rate b	85.17%	98.63%	99.98%	100%

a Ratio of the integrated instances and the total instances
b If an integrated instance contains more than or equal to one invocation that doesn’t belong to it, we think the instance is associated improperly

6.1. Obtaining Prior Parameters of Queuing Model

In order to build a rational queuing model, insightful understanding about the three major components - input process, service time and service discipline - comes first. The input interval and service time distribution should be obtained in anticipation during a modeling process.

We obtained a practical web page request distribution from wiki trace. It turns out to be a 2-stage PH distribution through employing the distribution fitting approach [24] and is expressed as formula (6):

$$\alpha = [1, 0] \quad T = \begin{pmatrix} -0.1452 & -0.0329 \\ 0 & -0.1191 \end{pmatrix}$$

(6)

We try to generate several homogenous random sequences that have identical distribution with wiki trace. At first we replay the sample data into the stream system in the light of one of the homogenous sequences to gain the service time distribution of a specific operator. Once the input tuple arriving interval and service time distribution are obtained, the model will be easy to set up.

It should be noted that the original web page request distribution has not taken the objects on pages into consideration. In other words, the data stream is a primary invocation tuple stream. When considering the subordinate invocation tuples, the stream will become much denser and have different distribution coefficients. We get another 2-stage PH Distribution after combining all the primary and subordinate invocations. It can be expressed as formula (7):

$$\alpha = [1, 0] \quad T = \begin{pmatrix} -1.1215 & 0.0001 \\ 0 & -0.0021 \end{pmatrix}$$

(7)

6.2. Queuing Model for UNION Operator

Union is stateless and serves as a router. It accepts several (≥ 1) streams that have a uniform schema and merges them into a stream with identical schema according to tuples’ arriving order [22]. In our experiment, there are two distributed streams. The input distribution of UNION is the combination of the two branches and is the same as formula (7).

The service time conforms to a 4-stage PH distribution with average service time 0.005364(ms). The service time distribution can be recorded as formula (8):
To understand the working mechanism of the union operator box, it is better to have a close look at the operator architecture. In Figure 13, the union accepts multiple identical streams and inserts each incoming tuple of those streams into one input queue if there is enough space or drops it otherwise. The first tuple in the waiting queue will be put forward to output queue if the operator is idle or left alone for waiting otherwise. In BOREALIS, the input queue length can be regulated through changing the following parameters: AURORA_PAGE and AURORA_PAGE_SIZE. AURORA_PAGE means the number of memory pages reserved for the queue and defaults to 4000; AURORA_PAGE_SIZE indicates the size of each page and is 4096 bytes by default. Given the size of each tuple, we can get the queue length.

In our experiment, AURORA_PAGE and AURORA_PAGE_SIZE are set to be 10 and 1024 respectively. In addition, the size of a tuple is 135 bytes. The queue length can be calculated via expression (9). Getting rid of trivial storage overhead, we obtained the final queue length at around 60.

\[
\frac{\text{AURORA_PAGE} \times \text{AURORA_PAGE_SIZE}}{\text{Size_of_Tuple}} = 10 \times \left\lfloor \frac{1024}{135} \right\rfloor = 70 \quad (9)
\]

From the discussion above, we can build an appropriate queuing model for the UNION operator. Of which the input process is a 2-stage PH distribution, service time conforms to a 4-stage PH distribution, the number of service desk is 1, the buffer size is 60, the service discipline is FCFS and the number of input tuples is infinite. It can be noted as \(PH_2/PH_4/1/60/\infty/FCFS \).

Keep in mind that PH distribution is a kind of markovian arrival process (MAP) and also a sort of general distribution. With the background we can obtain our model via replacing \(a, b \) with the same value 1 in MAP/G\(^{(a,b)}\)/1/N and get the leading performance indicators by using the matrix-based approach [29] in that model.

In Table 8, the difference between the predicted average process time 0.005388 (ms) and the observation 0.005370 (ms) is quite small (0.000018 ms) and the error rate is only 0.33%. As for the queue length, the predicted value says 0.005698 while observation is 0. In addition, a coming tuple has to wait at a probability of 0.5673% (system is busy) or will be dropped at a probability of 0.0027%. We regard the model to be acceptable based on the conformity between prediction and observation.

One thing to note is that we obtain the observation through chopping off the head and feet of data streams which makes the observation more closer to the practical infinite scenario. In
Table 8: Behavior indicators of PH2/PH4/1/60 model

Prediction:		Observation:	
Queue Length (L) a	0.005698	Queue Length (L)	0
Waiting Queue Length (Lq) b	0.000025	Error	–
Residence Time (W) c	0.005388	Residence Time (W)	0.005370
Waiting Time (Wq) d	0.000024	Error	0.33%
Pbusy e	0.005673	Ploss f	0.000027
Ploss f	0.000027		

a Queue length, tuples in the operator box and waiting queue
b Tuples in the waiting queue
c Residence time, including the processing time and waiting time
d Waiting time
e The probability system is busy at a tuple arrival
f The probability that a tuple is rejected at its arrival

Figure 14: Architecture of Aggregate operator box

In addition, queuing models for other stateless operators, like MAP, FILTER can be built in a similar way.

6.3. Queuing Model for Sliding Window AGGREGATE Operator

The normal sliding window aggregate operator buffers a certain number of tuples from the input stream and partitions them into different groups according to their keys. For each group, the operator will perform specified operation(s) on corresponding attributes and produce one tuple [22]. When defining an aggregate operator, important parameters like window type, window size, timeout, sorting attribute and aggregate function(s) should be specified.

In our experiment, the input process of aggregate operator is the same as UNION (refer to expression [7]). The normal aggregate operator works in a batch mode. Assuming the waiting queue length to be \(N \), the operator will keep waiting until the number of tuples in the queue exceeds \(a \), and serve at most \(b \) tuples each time. In general, \(a \) and \(b \) are assigned with the same value - window size \(K \) and which means the operator will perform a calculation each \(K \) tuples.

The design architecture of the AGGREGATE operator is shown in figure 14. The batch service time obtained in the training process is a 53-stage PH distribution with an average of 0.6121\((ms)\). In fact, it is similar to a uniform distribution. Uniform distribution is a special case of PH distribution and can be fitted via increasing the stage number of PH distribution. The distribution can be noted as formula [10].
In conclusion, we obtained a queuing model with a 2-stage PH distribution input process, a 53-stage distribution service time, a buffer with fixed size 60, a window (batch) size of 20, one service desk and FCFS rule. It can be noted that the receiving end, the residence time is predicted to be 10 ms in streaming system. In fact, the average interval time at the sending end is 0 ms and the transmission delay on local area network can’t be ignored when it is compared to the processing time in streaming system.

It is necessary to explain the observation of residence time of an output tuple and the queue length is obtained through recording the tuple number in the whole system (including queue and each group will generate only one corresponding tuple. Its residence time is the sum of the average waiting time of the tuples in that group and the processing time of that group. The queue length is obtained through recording the tuple number in the whole system (including queue and operator box) at each tuple arrival and then averaging them.

Here the queue length $N = 60$ and window size $K = 20$ are relatively small because of the computation limitation of high-dimensional matrix. An n-stage PH distribution has an n dimension transfer matrix. Taking the queue length and service time distribution into consideration, the dimension of the intermediate result will reach $2 \times 60 \times 53 = 6360$ here. If the queue length N reaches 200, it will bring trouble to the computation.

In order to make our model more practical, we obtained numerical functional relationship between predicted queue length, residence time and window size. Assuming K at between 10 and 80 ($N = 2K < 200$), we obtained the functional relationship as expression (11):

\[
\alpha = [0.9992, 0, \ldots, 0.0008]^{53}
\]

\[
T = \begin{pmatrix}
-72081.18 & 72081.18 & 0 & \cdots & \cdots & \cdots \\
0 & -72081.18 & 0 & 0 & \cdots & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & -74322.59 & 21604.73 & 72153.12 & \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
& & & & & -29965.91
\end{pmatrix}
\]

Table 9 says the predicted error of residence time is 20.6829% while the queue length error is 7.2083%. Obviously, the residence time error is unacceptable. We found that the tuple transmission delay on local area network can’t be ignored when it is compared to the processing time in streaming system. In fact, the average interval time at the sending end is 0.9457 ms and increases to 1.1049 ms at the receiving end. By using the tuple arriving interval sequence at the receiving end, the residence time is predicted to be 10.5275 ms which reduce the error from 20.6829% to 7.3683% and little is changed for the queue length prediction.
When $K = 8000$, the prediction value of queue length and residence time are 3994.4747 tuples and 4.4139(s) respectively. In practice, the observed values are 4008.9335 tuples and 4.9367(s) which indicate the error is 0.3600% and 10.1861%. We consider the functional relation to be reasonable.

6.4. Queuing Model for Small Window Array AGGREGATE Operator

The architecture of the small window array aggregate operator is shown in figure 15. At any time there is a group of small windows coexisting in the operator box. Each small window that collects related invocations represents a service (page) instance. In the case, we take the arrival of a tuple as the opening of a new small window. In other words, the input of the special aggregate operator is an instance-level stream. It should be noted that our aggregate operator locates after the union operator in the processing network as shown in figure 8 and thus the observed input stream is an invocation-level stream with the same distribution of expression (7). It is necessary to extract the primary invocations interval in the observed stream and estimate its distribution. In fact, the instance-level stream is a 2-stage PH distribution as recorded in expression (6) and has an average interval of 9.77780(ms).

In our experiment, we got an average service time of 20.7137(s) in the training process by setting window size to be 13 and taking timeout as 22(s). Because of the timeout mechanism, it is difficult to fitting the service time distribution and hence we only obtained its average and standard deviation.

The service mode of this AGGREGATE operator is a little interesting. Each small window in the system will generate one output tuple. For that tuple, we consider the service begin at the point when a window is opened (the first invocation tuple is inserted into it immediately). When the window is closed and the output tuple is generated the service process ends. It is clear that multi-windows coexist in the system and thus the service desk works in a concurrent mode. In other words, the number of service desk is $C(>1)$ instead of one. A queuing system can keep in equilibrium state only on condition that the traffic intensity $\rho \leq 1$, i.e. the average input rate λ should be slower than the process rate μ. Here we need to adjust service desk number C to make sure the system stay in a stable state:
We can obtain the minimum of C as 2119 in the case, i.e. there should be at least 2119 small windows in the aggregate operator box to guarantee the processing capacity. Having the number of windows and the window size, we can obtain the necessary storage space of aggregate operator as follows:

\[\text{Number of Window} \times \text{Capacity of Window} \times \text{Size of Tuple} = C \times K \times 135 = 2119 \times 13 \times 135 = 3.5466 \text{MB} \] (13)

A conservative estimate suggests that the storage space allocated to the aggregate operator box is about 32 MB in on a computation node with 2000MB memory space in total (we observed a minimum memory consumption via deploying the single AGGREGATE operator on a computation node), i.e. the operator box can accommodate at least 1, 9119 small windows with the fixed size of 13. The number is much big than 2119 and hence we can hold the opinion that the service desk is infinite. As for the queue length, we can configure it through AURORA_PAGE and AURORA_PAGE_SIZE and hence we can make it to be long enough. Finally we obtained a model which can be noted as \(G/G/10000 \) and gained the indicators through Queuing ToolPak [37] by using the average as well as the stand deviation of both input process and service time.

PH distribution is no longer suitable in this case and thus the \(MAP/G(\alpha,\beta)/1/N \) model do little here for the multiple service desk models. Table 10 predicts the queue length (i.e. the number of small windows) to be 2120 and observes 1861 in fact. The difference leads to an error of 12.0251%. When it comes to residence time, the error is \((20.7137 - 19.0129)/20.7137 = 9.04\% \).
the window size and advance step of normal sliding window are both set to 32000. The association keys are service structure, instance status information (timestamp) and client information. The results are shown in Table 11.

Table 11: Comprehensive comparison between different window mechanisms

Indicators	Small Window Array	Sliding Window
Window Parameters	13/13	32000/32000
Integration Completeness ($\gamma = 1$)	80.4815%	72.1083%
Integration Completeness ($\gamma = 0.85$)	90.2979%	73.7587%
Integration Completeness ($\gamma = 0.75$)	91.6553%	74.7302%
Integration Completeness ($0 < \gamma \leq 1$)	94.0649%	76.2744%
Average Queue Length (L_{avg})	1861 (window)	15374 (tuple)
Average Storage (S_{avg})	3.1148MB	5.2909MB
Max Queue Length (L_{max})	2007 (window)	32096 (tuple)
Max Storage (S_{max})	3.3591MB	5.3910MB
Residence Time (W)	19.0192 (S)	16.8402 (S)

Through the quantitative analysis of the two mechanisms, it is clear to see the advantages of small window array in stateful stream under service environment. It can not only guarantee high information integration completeness but also has acceptable performance as well as resource consumption indicators. Although the sliding window has approximate completeness when window size $K = 32000$, it not only consumes more memory but also leads to unstable integration completeness as tuple arrival pattern varies. We obtained the completeness here after multiple attempts which is impossible under real stream scenario. That is to say sliding window is not practical in stateful stream.

An important note about the sliding window is the computation of storage space. Aggregate operator will partition the tuples into different groups according the specified key. We observed that the maximum, average, minimum group numbers are 3221, 3162 and 2962 respectively. Each group is allocated with the same size 13 which is deduced in the small window array mechanism. Having the group number, group size and the tuple size, we can acquire the storage space easily.

7. Conclusion and Future work

In this paper we mainly discussed the stateful stream in service intelligence context. Thorn problems arise because of the complicate structure and multi-copy of service on a platform. We focus on solving association accuracy, integration completeness and performance evaluation during the distributed stream information integration process.

We (1) proposed associate strategies for decentralized information systematically and conducted comparative analysis in detail (2) analyzed a new mechanism of small window array and employed the cumulative distribution function approach to guide the setting of window parameters which can guarantee completeness of integration (3) built reasonable queueing models for the typical streaming operators involved in the paper to predict performance indexes. Experiments show that our work is convincing and effective.

There are also some meaningful issues that are in need of further study:
1. Building queuing model for JOIN operator. Generally the join operator accepts two input streams and connects the related tuples according to specified keys. Independent buffers will be reserved for each stream. To construct sound model for JOIN operator, it is necessary to obtain a deep understanding about the working principles and draw support from the embedded markov chain, supplementary variable methods.

2. How to evaluate the goodness of the specified completeness factor α? In sec[5] we simply give a value subjectively. Does the factor has something to do with the users’ error tolerance? How can we establish appropriate mapping between error tolerance and completeness index?

3. Intuitively, the probability a tuple will be dropped at its arriving given by the queuing model can contribute to the load shielding of stream engine to some degree. Is this approach really practical?

4. Data stream network optimization. Though queuing theory is a powerful tool in behavior analysis when comparing with the cost model [38], it also performs pool on how to construct an optimized operator network. Directed Acyclic Graph theory, Type theory and multi-query optimization of database may be of great significance in this sphere.

References

[1] T. Erl, SOA: principles of service design, Prentice Hall Press, Upper Saddle River, NJ, USA, 2007.
[2] S. Jones, Toward an acceptable definition of service, IEEE software 22 (1) (2005) 87–93.
[3] Software as a service, http://en.wikipedia.org/wiki/Software-as-a-service.
[4] S. M. Li, C. Ding, C. H. Chi, J. Deng, Adaptive quality recommendation mechanism for software service provisioning, in: Proceedings of the 2008 IEEE international conference on web services, IEEE, 2008, pp. 169–176.
[5] A. Keller, H. Ludwig, Defining and monitoring service level agreements for dynamic e-Business, 2002.
[6] B. Sarwar, G. Karypis, J. Konstan, J. Reinders, Item-based collaborative filtering recommendation algorithms, in: Proceedings of the 10th international conference on World Wide Web, ACM, 2001, pp. 285–295.
[7] G. Burtch, Y. Hong, User-Generated Content (UGC): Developing a Theoretical Framework to Inform is Research, SSRN eLibrary.
[8] S. Schmidt, Quality-of-service-aware data stream processing, Ph.D. thesis, Dresden University of Technology (2006).
[9] N. Koudas, D. Srivastava, Data stream query processing, in: Proceedings of the 4th international conference on web information systems engineering, IEEE, 2003, p. 374.
[10] B. Babcock, S. Babu, M. Datar, R. Motwani, J. Widom, Models and issues in data stream systems, in: Proceedings of the 21st ACM SIGMOD-SIGACT-SIGART symposium on principles of database systems, ACM, 2002, pp. 1–16.
[11] L. Golab, M. T. ?svu, Issues in data stream management, ACM Sigmod Record 32 (2) (2003) 5–14.
[12] B. Babcock, C. Olston, Distributed top-k monitoring, in: Proceedings of the 2003 ACM SIGMOD international conference on management of data, ACM, 2003, pp. 28–39.
[13] C. Olston, J. Jiang, J. Widom, Adaptive filters for continuous queries over distributed data streams, in: Proceedings of the 2003 ACM SIGMOD international conference on management of data, ACM, 2003, pp. 563–574.
[14] S. Madden, M. J. Franklin, Fjording the stream: An architecture for queries over streaming sensor data, in: Proceedings of the 18th international conference on data engineering, IEEE, 2002, pp. 555–566.
[15] The borealis project, http://www.cs.brown.edu/research/borealis/public/
[16] D. I. Abadi, Y. Ahmad, M. Balazinska, M. Chernick, J. hyon Hwang, W. Lindner, A. S. Maskey, E. Rasin, E. Rytkina, N. Tabul, Y. Xing, S. Zdonik, The design of the borealis stream processing engine, in: Proceedings of the 2nd biennial conference on innovative data systems research, Citeseer, Asilomar, CA, USA, 2005, pp. 277–289.
[17] Telegraphcq, http://telegraph.cs.berkeley.edu/telegraphcq/v2.1/
[18] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M. Hellerstein, W. Hong, S. Krishnamurthy, S. Madden, V. Raman, F. Reiss, M. A. Shah, Telegraphcq: Continuous dataflow processing for an uncertain world, in: Proceedings of the 1st biennial conference on innovative data systems research, 2003.
[19] S. Madden, M. Shah, J. M. Hellerstein, V. Raman, Continuously adaptive continuous queries over streams, in: Proceedings of the 2002 ACM SIGMOD international conference on management of data, ACM, 2002, pp. 49–60.
[20] Stanford stream data manager, http://infostlab.stanford.edu/stream/
[21] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar, K. Ito, R. Motwani, U. Srivastava, J. Widom, Stream: The stanford data stream management system, Technical Report 2004-20, Stanford InfoLab (2004).

[22] B. Team, Borealis application programmer’s guide, Technical report, Brandeis University, Brown University, MIT (2006).

[23] D. Gross, Fundamentals of queueing theory, Wiley-India, 2008.

[24] T. Osogami, Analysis of multi-server systems via dimensionality reduction of markov chains, Ph.D. thesis, Carnegie Mellon University (2005).

[25] Erlang distribution, http://en.wikipedia.org/wiki/Erlang_distribution.

[26] X. Xu, W. Wang, S. Xu, Performance of a queuing model with Hyper-Erlang distribution service for wireless network nodes, in: Proceedings of the IEEE international conference on wireless communications networking and mobile computing, IEEE, 2008, pp. 1–4.

[27] Phase-type distribution, http://en.wikipedia.org/wiki/Phase-type_distribution.

[28] A. Thminler, P. Buchholz, M. Telek, A novel approach for phases-type fitting with the em algorithm, IEEE Transactions on Dependable and Secure Computing 3 (2006) 245–258.

[29] U. C. Gupta, P. V. Laxmi, Analysis of the MAP/G/1 queue, Queueing systems 38 (2) (2001) 109–124.

[30] A. D. Banik, U. C. Gupta, M. L. Chaudhry, Finite-buffer bulk service queue under markovian service process: GI/MS/(P(a,b))/1/N, Stochastic Analysis and Applications 27 (3) (2009) 500–522.

[31] P. V. Laxmi, U. C. Gupta, On the finite-buffer bulk-service queue with general independent arrivals: GI/M(b)/1/N, Operations Research Letters 25 (5) (1999) 241–245.

[32] V. Cortellessa, V. Grassi, Reliability modeling and analysis of service-oriented architectures, Test and Analysis of Web Services (2007) 339–362.

[33] Htmlunit, http://htmlunit.sourceforge.net/.

[34] G. Urdaneta, G. Pierre, M. van Steen, Wikipedia workload analysis for decentralized hosting, Elsevier Computer Networks 53 (11) (2009) 1830–1845.

[35] M. Bergsma, Wikimedia architecture, http://www.ied.net/presentations/an/Wikimedia2architecture.pdf.

[36] P. Buchholz, An EM-algorithm for MAP fitting from real traffic data, Computer Performance (2003) 218–236.

[37] Queueng ToolPak 4.0, http://apps.business.ualberta.ca/aingolfsson/qtp/.

[38] Y. Xing, J. H. Hwang, U. Cetintemel, S. Zdonik, Providing resiliency to load variations in distributed stream processing, in: Proceedings of the 32nd international conference on very large data bases, VLDB Endowment, 2006, pp. 775–786.