Evaluation of RevX solution extract as a potential inhibitor of the main protease of SARS-CoV-2—*In vitro* study and molecular docking

Feng-Pai Chou a,b, Chia-Chun Liu c, Huynh Nguyet Huong Giang d, Sheng-Cih Huang a, Hsiu-Fu Hsu a,*, Tung-Kung Wu a,b,**

Corresponding author.
Corresponding author.

E-mail addresses: hhsu@mail.tku.edu.tw (H.-F. Hsu), tkwml@nycu.edu.tw (T.-K. Wu).

https://doi.org/10.1016/j.heliyon.2022.e09034

Received 26 November 2021; Received in revised form 8 February 2022; Accepted 24 February 2022

© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

HIGHLIGHTS

- The unique substrate specificity of SARS-CoV-2 M^{pro} makes it a potential target for drug design.
- Fermented sorghum extract RevX solution enhances adjuvant therapy of lung adenocarcinoma, suggesting the role of bioactive components in RevX solution.
- The solid extract of RevX showed potent M^{pro} inhibitory activity with IC₅₀ of 2.07 ± 0.38 μg/mL.
- The three sterol-like structures of RevX extract showed a similar binding cavity to Mpro-GC376, suggesting its putative inhibitory activity.

ARTICLE INFO

Keywords: Sorghum; Sterol; M^{pro}; GC-376; Antiviral drug

ABSTRACT

The main protease (M^{pro}) of SARS-CoV-2 is a protease necessary for viral polyprotein processing and maturation. M^{pro} cleaves the polypeptide sequence after the glutamine residues. There is no known cellular protease with this substrate specificity in humans; therefore, it is considered an attractive drug target. Previously, fermented sorghum extract RevX (trademark of Revolutrx INC.) solution significantly alleviated physical decline and complications in a patient with lung adenocarcinoma, suggesting the role of bioactive components in RevX solution. To further explore whether the bioactive components in RevX solution exhibit other biological activities, such as antiviral effects, we investigated its inhibitory effect on the M^{pro} of SARS-CoV-2 virus. We report herein that the solid extract of the RevX solution exhibits an efficacious M^{pro} inhibitory activity, with IC₅₀ of 2.07 ± 0.38 μg/mL. Molecular docking of sterol-like components in the RevX extracts identified by MS shows that the three sterol-like molecules can bind to the active region of the GC376-M^{pro} complex, supporting the structure-function relationship. Combined with its ability to significantly alleviate the body’s immunity decline and to inhibit the activity of SARS-CoV-2 M^{pro}, RevX solution may provide a possible alternative supportive treatment for patients with COVID-19.

1. **Introduction**

The 2019 global pandemic coronavirus disease (COVID-19), caused by severe acute respiratory syndrome-related coronavirus-2 (SARS-CoV-2), has caused high morbidity and mortality, and severe social, economic, and political chaos. As of 16 November 2021, the number of confirmed cases has exceeded 253.26 million, and the death toll has surpassed 5.11 million (https://sites.google.com/cdc.gov.tw/2019ncov/global). SARS-CoV-2 belongs to the *Coronaviridae* family and is a member of the same family as SARS-CoV for severe acute respiratory syndrome and MERS-CoV for the Middle East respiratory syndrome (Gordon et al., 2020). SARS-CoV-2, SARS-CoV and MERS-CoV viruses are all enveloped positive-stranded single-stranded RNA viruses. Phylogenetic analysis of the original SARS-CoV-2, SARS-CoV and MERS-CoV genomes showed that both SARS-CoV and SARS-CoV-2 are members of the genus *Betacoronavirus* and the subgenus *Sarbecovirus* (beta-CoV lineage B), whereas
MERS-CoV is a member of the subgenus *Merbecovirus* (beta-CoV lineage C). The sequence identity between SARS-CoV-2 and SARS-CoV and MERS-CoV is approximately 79% and 50%, respectively. In addition, both SARS-CoV-2 and SARS-CoV enter host cells by binding to angiotensin-converting enzyme 2 (ACE 2), while MERS-CoV enters host cells by binding to dipeptidyl peptidase 4 (DPP4) receptors (Ge et al., 2013; Fehr and Perlman, 2015; Lu et al., 2020). The genome of SARS-CoV-2 is about 30 kb in size and contains 16 open reading frames (ORFs) (Lu et al., 2020). Among the putative therapeutic targets for the treatment of COVID-19, the main protease (Mpro) is often a potential drug target (Hartenian et al., 2020). The protease has a unique substrate specificity of peptide bond cleavage at the conserved active site Cys-His, which makes Mpro inhibitors promising candidates for the treatment of SARS-CoV-2 infection. Until now, there have been few reports on safe and effective Mpro inhibitors, leaving an urgent need to discover more Mpro inhibitors to develop as therapeutic agents against COVID-19.

Phytochemicals in medicinal plants are known to be a major source of lead compounds for drug development (Egbuna et al., 2020). It has been reported that some natural products (such as alkaloids, flavonoids, polyketides, simple aromatics, terpenes, steroids, and phenolic compounds) have Mpro inhibitory activity, which encourages us to find more effective SARS-CoV-2 Mpro inhibitors from natural resources (Chojnacka et al., 2020; Russo et al., 2020; Wen et al., 2007). Sorghum contains low digestible proteins, unsaturated organics, and certain minerals, vitamins, phytosterols, terpenes, and fat-soluble compounds, and is an important source of nutrients and bioactive compounds in human and animal diets (Cardoso et al., 2017 and references therein). Sorghum from different sources shows a variety of biological activities, such as anti-oxidation, scavenging free radicals, anti-cancer, cardiac prevention, antimicrobial, antiviral, anti-diabetic, and neuroprotective abilities (Cardoso et al., 2017; Kamath et al., 2007; Muriu et al., 2002; Shih et al., 2007; Yang et al., 2009). For example, four compounds detected in Sorghum bicolor may reduce the severity of type-2 diabetic mellitus (T2DM) by activating the PPAR signaling pathway (Oh et al., 2020). Many studies have also shown that sorghum fermentation can increase the concentration and structural diversity of vitamins, phytosterols, terpenes, sterols, and fat-soluble compounds (Cardoso et al., 2017 and references therein).

RevX (trademark of Revolutrx INC.) solution extract is a fermented extract of sorghum obtained by a unique extraction technology. It contains various compositions such as organic acids, sulfonamides, phytosterols, and anti-inflammatory ingredients. Previously, the RevX solution has been used as an adjuvant treatment for lung adenocarcinoma (Lin, 2021). For example, a 71-year-old woman supplemented with the RevX solution during targeted therapy experienced a significantly alleviated decline in physical strength during the study treatment period and greatly reduced her complications. This suggests that the RevX solution may be used as an adjuvant therapy for patients with metastatic lung adenocarcinoma. Given the effects of the bioactive components in RevX solution on improving mental and physical strength and reducing complications arising from targeted cancer treatment, it is worth exploring whether the bioactive components in RevX solution exhibit other biological activities, such as antiviral effects. In this study, we further explored whether the bioactive components in the RevX solution have inhibitory effects on the Mpro of the SARS-CoV-2 virus. Three extracts of RevX solution, solid, organic, and water, were first partially characterized using gas chromatography-mass spectrometry (GC-MS) and then

![Figure 1](image-url)
analyzed for SARS-CoV-2 M\(^\text{pro}\) inhibitory activity in vitro. The in vitro M\(^\text{pro}\)
inhibitory activities of solid, organic, and water fractions showed IC\(_{50}\)s of 2.07 ± 0.38, 28.17 ± 3.49, and 32.73 ± 1.06 \(\mu\)g/mL, respectively. We then used molecular docking methods to search for compounds identified by MS that might interact with M\(^\text{pro}\), hoping to link their possible structure-activity relationship to M\(^\text{pro}\) inhibition. Interestingly, three MS-identified sterol-like components were found in the active region of the GC376-M\(^\text{pro}\) complex, a potent M\(^\text{pro}\) inhibitor, suggesting that they may have a potential function to inhibit M\(^\text{pro}\) activity. Collectively, these results suggest that the RevX solution may be useful as an adjunctive treatment for patients with SARS-CoV-2 infection and to help COVID-19 patients recover quickly.

2. Materials and methods

2.1. The RevX solution extracts

The RevX solution extracts were obtained according to the following procedures. First, 600 mL of RevX solution was gently removed the solid (S) fraction. By dissolving it in 30 mL CCl\(_4\) and 30 mL ddH\(_2\)O, the solid extract (S) was used to prepare the water (W) or organic (L) fractions using the following procedure: Collect the first organic layer (L1), add 30 mL of CCl\(_4\) to the water layer, repeat the extraction, and collect the organic layer (L2). Then add 30 mL of water for extraction and repeat the above process again to collect the organic layer (L3). After collecting the organic layer, the remaining water layer was marked as W1, and add 30 mL of water to L1 + L2 + L3 for extraction, and collect the water layer as W2. Then, add 30 mL of water for extraction and repeat the above process to obtain W3. Removing the organic solvent in L1 + L2 + L3 and the water in W1 + W2 + W3 to obtain the organic (L) and water (W) extracts. The three different samples, solid part (S), organic part (L), and water-soluble part (W), were used for in vitro M\(^\text{pro}\) inhibitory activity determination experiments.

2.2. GC-MS analysis

GC-MS analysis was performed using an Thermo Trace 1300GC + ISQ MS instrument equipped with a Rx5-5MS (30 m × 0.25 mm × 0.25 μm) capillary column. The instrument was initially set at 50 °C, then ramped up to 300 °C at a rate of 10 °C/min, then held at 300 °C for 10 min. The inlet temperature was set at 300 °C. The column uses helium as the carrier gas, which is flowed at a constant rate of 1 mL/min. Electron ionization was performed with an electron beam at 70 eV. The split mode for sample injection is 5:1. The MS scan range was from m/z 35 to 600. Mass spectra of all detected compounds and fragmentation modes were compared with spectra libraries in NIST2017 + Wiley 10\(^\text{th}\) Ed. The percentage of each compound is based on the relative peak area of each compound in the chromatogram.

2.3. In vitro inhibitory activity assay of M\(^\text{pro}\)

Dabcyl-KTSAVLQISGRKME-Edans is a Förster resonance energy transfer (FRET)-based 12-amino acid fluorescence quenching peptide that can be recognized and cleaved by M\(^\text{pro}\) (cleavage site: L) (Chen et al., 2006). The measurement of SARS-CoV-2 M\(^\text{pro}\) inhibition was performed according to the manufacturer’s protocol with minor modifications (Zhang et al., 2020a,b). In short, the reaction was performed in a 384-well black flat-bottomed microtiter plate (Thermo Scientific \(^{\text{TM}}\) Nunc\(^{\text{TM}}\)), with a final volume of 25 μL per well. The blank contained a 10 μL assay buffer (20 mM Tris, 100 mM NaCl, 1 % DTT, 1 % EDTA) and 2.5 μL inhibitor buffer (70% ethanol in water). The positive control contained a 10 μL M\(^\text{pro}\) protease in the assay buffer (36 mM, final concentration) and a 2.5 μL inhibitor buffer (70% ethanol in water). The inhibitor control contained a 10 μL M\(^\text{pro}\) protease and a 2.5 μL GC376 (1, 000 μM). The test samples of water and lipid fractions contained 10 μL M\(^\text{pro}\) protease and 2.5 μL of different concentrations of extract (0, 3.125, 6.25, 12.5, 25.0, 50.0, and 100.0 μg/mL). For the solid fraction, 2.5 μL of different concentrations of extracts (0, 0.78, 1.56, 3.125, 6.25, 12.5, and 25.0 μg/mL) was used. The reaction was initiated by incubating at 37 °C with slow shaking for 30 min. A 12.5 μL (40 μM, final concentration) substrate solution was added to start the hydrolysis reaction and was incubated at 37 °C for 1 h with slow shaking. The hydrolyzed product emitted a strong fluorescence signal (excitation/emission, 355 nm/460 nm) around 460 nm, which was recorded by a microplate reader (Fluoroskan Ascent FL, Thermo Fisher). The inhibitory effect was calculated by comparing with the control wells without an inhibitor. The IC\(_{50}\) value was determined by nonlinear regression (GraphPad Prism 8.0.1). For the calculation, the enzyme activity was assumed to be 100%. The reaction was carried out in triplicate.

2.4. Molecular docking

Ligand-based molecular docking of MS-identified RevX-extracted compounds with M\(^\text{pro}\) protein was performed using iGemdock software to search for potential drug targets (Hsu et al., 2011). Briefly, iGemdock is a structure-based virtual screening (VS) framework based on pharmacological interactions between ligands and targets. It integrates processes including ligand and binding site preparation, virtual screening, post-screening analysis, and pharmacological interactions. First, a screening compound and a binding site of interest are prepared. Then, using the in-house docking tool Gemdock, the compound is docked to the binding site. Next, iGemdock uses hydrogen bonding (H), electrostatic (E), and van der Waals (V) interactions to generate protein-compound interaction profiles. Next, iGemdock screened compounds for post-screen analysis using pharmacological interactions and clustering. Pharmacological interactions occur at conserved interacting residues that perform essential functions of target proteins by forming binding pockets with specific physico-chemical properties. Finally, iGemdock combines the pharmacological interaction and energy-based scoring capabilities of Gemdock to perform hierarchical clustering dendograms for screening, analysis, ranking, and visualization of screened compounds. The three-dimensional (3D) structure of SARS-CoV-2 M\(^\text{pro}\) was retrieved from the Protein Data Bank (https://www.rcsb.org/structure/6W63) in pdb format. Some ligand structures were obtained from the PubChem website (http://pubchem.ncbi.nlm.nih.gov), and the sdf format file was converted to Mol using Open Babel. Other ligands were drawn with ChemDraw 12.0 software and converted into Mol files with the ChemBio3D Ultra software. For docking experiments, amino acid residues, including His41, Cys44, Leu141, Asn142, Gly143, Ser144, Cys145, His163, His164, Met165, Glu166, Arg188, and Gln189 were used as active sites. The docking conformation of the ligand was determined by selecting the posture with the highest free energy of binding. The structural analysis of the system and graphics were carried out using PyMOL2 (Accelrys Software Inc., San Diego, CA, USA) and Ligplot + v.2.2.4 (DeLano, 2002).

3. Results and discussion

3.1. RevX extracts fractionation and GC-MS analysis

The RevX solution was concentrated by a rotary evaporator and was drained directly and extracted with carbon tetrachloride (CCl\(_4\)) and distilled water (ddH\(_2\)O) to obtain three parts: solid (S), organic (L), and water (W) fractions. Gas chromatography–mass spectrophotometry (GC-MS) was applied to identify the main components of each fraction. From the GC-MS process, more than 300 compounds were separated from the RevX solution extracts, and 80 main components were identified. The GC-MS analysis results show that representative components were identified, including flavonoids, vitamins, phenols, terpenes, steroids, and fat-soluble compounds. Based on the purpose of this study to focus on sterol-like components, Table 1 shows the representative compounds with sterol-like structures identified in the RevX solution extracts using GC-MS. All 13 compounds were screened for physio-chemical
Table 1. Representative sterol-like components identified by MS obtained from the RevX solution extract.

Name	Chemical formula	Molecule name	Chemical structure	Retention Time (min)
J1	C_{30}H_{50}O_{2}	3α-(hydroxymethyl)-5α,5β,8,8,11α-pentamethyl-1-prop-1-en-2-yl-1,2,3,4,5,6,7,7α,9,10,11,11b,12,13,13α,13β-hexadeca hydrocyclopenta [α]chrysen-9-ol	![Chemical structure](image1.png)	32.94
J2	C_{23}H_{24}	1,1-dimethyl-6-(propan-2-yl)-1,2,3,4-tetrahydrophenanthrene	![Chemical structure](image2.png)	20.13
J3	C_{29}H_{50}O_{2}	(3S)-17-(5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecacyclohexa-1H-cyclopenta [α]phenanthren-3-ol	![Chemical structure](image3.png)	20.67
J4	C_{24}H_{40}O_{4}	(4R)-4-((3S,5S,7R,8R,9S,10S,12S,13R,14S,17R)-3,7,12-trihydroxy-10,13-dimethyltetradehydro-1H-cyclopenta [α]phenanthren-17-yl)pentanoic acid	![Chemical structure](image4.png)	21.81
J5	C_{32}H_{52}O_{3}	(13α,14β)-3β-(acetyloxy)-5α-lanost-8-en-7-one	![Chemical structure](image5.png)	27.42
J6	C_{30}H_{50}O_{2}	7,7,12,16-tetramethyl-15-(6-methylheptan-2-yl)pentacyclo [9.7.0.01,3.04,12.05,9]icos-18-ene-8,10-diol	![Chemical structure](image6.png)	27.42
J7	C_{23}H_{24}O_{2}	24,25-epoxylanost-8-en-3-ol acetate	![Chemical structure](image7.png)	26.84
J8	C_{21}H_{29}NO_{3}	19-methoxy-9,13-dimethyl-20-thia-18-azapentacyclo [10.5.3.01,13.04,12.05,9]icos-18-ene-8,16-dione	![Chemical structure](image8.png)	25.70
J9	C_{30}H_{50}O_{2}	(1R,3αR,5αR,5βR,7αR,9S,11αR,11βR,13αR,13βR)-3α,5α,5β,8,8,11α-hexamethyl-1-prop-1-en-2-yl-1,2,3,4,5,6,7,7α,9,10,11,11b,12,13,13α,13β-hexadecacyclo cyclopenta [α]chrysen-9-ol	![Chemical structure](image9.png)	27.42
J10	C_{16}H_{24}O_{2}	12-α-hydroxyandrosta-1,4-diene-3,17-dione	![Chemical structure](image10.png)	28.03
J11	C_{25}H_{44}O_{3}	(6R)-6-((1R,3αS,4E,7αR)-4-((2Z)-2-(5S)-5-hydroxy-2-methylene cyclohexylidene)ethylidene)-7α-methyl-2,3α,5,6,7-hexahydroy-1H-inden-1-yl]2-methylheptane-2,3-diol	![Chemical structure](image11.png)	23.22

(continued on next page)
characteristics, drug-likeness properties, and bioavailability scores by Lipinski’s rule using SwissADME analysis (Lipinski et al., 2011). As shown in Table 2, all 13 compounds met Lipinski’s rule and had a satisfactory “Abbott Bioavailability Score (>0.1)”.

Table 2. Physico-chemical properties of the 13 sterol-like compounds for drug-likeness and bioavailability scorea.

Name	Chemical formula	Molecule name	Chemical structure	Retention Time (min)
J12	C20H34O3	1-(4-hydroxy-2,13,16-tri methyl-8-oxapentacyclo [9.7.0.2^7,9^13,16]octadecan -15-yl)ethanone	![Chemical Structure](image1)	23.61
J13	C30H52O3	4,4,6α,6β,8α,11,11,14β-octamethyl-13-oxodocosahydropenic-3-yl acetate	![Chemical Structure](image2)	26.84

Name	Chemical formula	Molecule name	Chemical structure	Retention Time (min)
J15	C20H34O3	1-(4-hydroxy-2,13,16-tri methyl-8-oxapentacyclo [9.7.0.2^7,9^13,16]octadecan -15-yl)ethanone	![Chemical Structure](image3)	23.61
J16	C30H52O3	4,4,6α,6β,8α,11,11,14β-octamethyl-13-oxodocosahydropenic-3-yl acetate	![Chemical Structure](image4)	26.84

3.2. Mpro inhibitory activity assay

Three RevX extracts, solid (S), organic (L), and water (W) fractions, were studied in vitro against Mpro in a spectrofluorometric assay. A novel fluorescent peptide, Dabcyl-KNSTLQSLRKE-Edans, was used as a substrate for Förster resonance energy transfer (FRET). GC376, a cysteine protease inhibitor that specifically binds to Cys145 of Mpro with a potent in vitro inhibitory concentration of 80 nM, was used as an inhibitor control (Vuong et al., 2020). The three fractions with a final concentration of 50 μg/mL were initially used in the Mpro inhibition test, and the emission fluorescence intensity detected at wavelength 460 nm was compared with the GC376 inhibitor control experiment. The results showed that, compared with GC376, the inhibitory activity of the enzyme exceeded 50%. To further quantify the inhibitory activity, different doses (from 0.0 to 100.0 μg/mL) were used to draw the dose-inhibition curve of the three fractions of Mpro. As shown in Figure 2, the solid, organic, and water fractions inhibit the target enzyme in a dose-dependent manner, and the calculated IC50 values were 2.07/3.60 μg/mL, 28.17/3.49 μg/mL, and 32.73/1.06 μg/mL, respectively. This finding indicates that all three fractions contain naturally occurring inhibitors against SARS-CoV-2 Mpro, with the solid fraction showing the strongest inhibitory effect.

3.3. Molecular docking of RevX extract components identified by MS with Mpro

Molecular docking, a method for predicting the preferred binding affinity and mode of a ligand to proteins of known three-dimensional structure, has become one of the most popular methods for drug discovery (Meng et al., 2011). To correlate the structure-function relationship of Mpro inhibition with the RevX extract, a docking simulation of the components of the RevX extract identified by MS and Mpro was performed and compared with the crystal structure of the Mpro-GC376 complex (Kneller et al., 2020). Previously, Vuong et al. reported the X-ray structure of the SARS-CoV-2 Mpro-GC373 and Mpro-GC376 complexes (Vuong et al., 2020). GC373 is the aldehyde form of GC376 and is covalently bound to Cys145 (Vuong et al., 2020). Molecular docking and X-ray structure of the GC376-Mpro complex exhibited similar active site cavity packing and electrostatic or hydrogen bonding interactions between amino acid residues and ligands (Figure 3). The glutamine surrogate of GC376 (P1 position) forms H-bonds with His163 and Glu166 and hydrophobic interactions with His172. The Leu of GC376 (P2 position) forms H-bonds with His172 and Glu166, and the P3 alanine ring interacts with Tyr193.
inserted into the S2 hydrophobic pocket consisting of Arg40, His41, Cys44, Met49, Tyr54, Met165, Arg188 and Gln189. The benzyl ring of GC376 (P3 position) fits into the S1 binding site and forms a H-bond with the side chain carboxyl group of Glu166. The hydrophobic and hydrogen bonding interactions of these residues form a support for drug binding (Fu et al., 2020). The backbones of Gly143, Ser144, and Cys145 form the oxyanion hole. Previously, the flexibility of Mpro was as pH-dependent as SARS-CoV Mpro (Tan et al., 2005). Proteins were found to be most stable at neutral pH. Basic protein structures become the most unstable with changes in pH, and acidic pH also tended to alter the structural properties.
of Mpro. When docking experiments were performed at pH 4, 5, 6, 7, and 8, it was assumed that all acidic amino acids (Asp and Glu) were deprotonated, while basic amino acids (Arg, Lys, and Cys) were protonated in this pH range. In addition, the protonation states of catalytic His41 and Cys145 were not changed. The protonation state of all other 12 His residues present in the protein changes by changing the partial charge on the atoms of the titratable residue. Moreover, all important domains of Mpro, including domains 1 and 2 affecting substrate binding to Mpro and domain 3 affecting dimerization, become unstable as the pH becomes acidic or basic. Finally, the correct orientation of the catalytic dyad His41 and Cys145 was only observed at pH 7, but a distorted or wrong orientation was present at all pH values except pH 7. Therefore, in this study, the amino acid residues used in the docking experiments included His41, Cys44, Leu141, Gly143, Asn142, Gly143, Ser144, Cys145, His163, His164, Met165, Glu166, Arg188, and Gln189 as active sites (Figure 3).

Because the purpose of this study was to focus on sterol-like components, the structure-function relationship of 13 sterol-like components identified by MS was further evaluated. The protein-ligand docking model based on the binding affinity of Igemdock showed that the three sterol-like components of RevX extract, clionasterol (J3), 2,7,12-trihydroxycholan-24-oic acid (J4) and 24,25-dihydroxycholecalciferol (J11), have an overall overlap with the active cavity of GC376 (Figures 4, 5, and 6). Figures 4, 5, and 6 show the 2D and 3D structures of the docking ligand molecules. The docked ligand molecules interact strongly with some residues around the active site of GC373, mainly through hydrophobic interactions and hydrogen bonds. The key interaction between these newly discovered sterol-like components and SARS-CoV-2 Mpro was also analyzed.

Clionasterol (J3) forms hydrophobic interactions with Met165, Glu166, Leu167, Pro168, Gln189, Ala191, and Gln192. The hydroxyl group at the C3 site forms hydrogen bonds with the backbone amide groups of Gly143, Ser144, and Cys145 and the carbonyl oxygen of Leu141 and Ser144 (Figure 4).

2,7,12-Trihydroxycholan-24-oic acid (J4) forms hydrogen bonds with His41, Cys145, His163, His164, and Gln189 and hydrophobic interactions with His41, Met 49, Tyr54, Leu141, Ser144, Met165, Glu166, Arg188, and Gln189 in the active site (Figure 5). The O1 hydroxyl group at the C3 site of J4 forms hydrogen bonds with Nε2 of His163 and the amide group of Cys145, and the O2 hydroxyl group at the C7 position forms a hydrogen bond with the sulfhydryl group of Cys145. The O3 hydroxyl group at the C12 site forms hydrogen bonds with Nε2 of His41 and the carbonyl oxygen of His164. The O4 of carboxylate oxygen at the C24 site forms a hydrogen bond with the amide group of Gln189.

Additionally, 24,25-dihydroxycholecalciferol (J11) binds to Cys44, Phe140, Asn142, Met165, Glu166, Asp187, and Gln189 in the GC376-Mpro cavity to form hydrophobic interactions and forms hydrogen bonds with Cys44, Leu141, Gly143, Ser144, Cys145, and His163 (Figure 6). The O1 hydroxyl atom at the C3 site of J11 forms a hydrogen bond with Cys44. The O2 hydroxyl group at the C24 position forms a hydrogen bond with Nε2 of His163, and the O3 hydroxyl group at the C25 site forms hydrogen bonds with the amide groups of Gly143, Ser144, and Cys145 and the carbonyl oxygen of Leu141 and His163.

As a common source of nutrients and biologically active compounds, sorghum’s variety of biological activities, including anti-oxidation, scavenging free radical, anti-cancer, heart prevention, antibacterial, antiviral, and neuroprotective abilities have been proven. Increasing evidences has also shown that some of the main components in sorghum, such as bioflavonones and glycyrrhetinic acid, have significant antiviral activity on DNA virus such as human cytomegalovirus and RNA viruses such as SARS-CoV, Ebola virus, and human immunodeficiency virus (Li et al., 2012; Russo et al., 2020; Ryu et al., 2010). In this study, we report the in vitro inhibition test of the RevX solution extract on SARS-CoV-2 Mpro and the results of molecular docking of putative candidates. The results show that the solid fraction can strongly inhibit the hydrolytic activity of Mpro, which indicates that the solid fraction might prevent the replication of SARS-CoV-2 by inhibiting the enzymatic activity of Mpro (Shaito et al., 2020; Wang et al., 2020). The molecular docking of MS identified components shows that the three sterol-like compounds are suitable for the putative active site pocket. COVID-19 is a complex, multi-organ, and heterogeneous severe case that is often accompanied by inflammation in a hypercoagulable state (Chauhan et al., 2020; Gordon-Cardo et al., 2020). In view of the need for supportive treatments for COVID-19, the RevX solution extract may be suitable for COVID-19 patients with chronic diseases such as cardiovascular disease, stroke, hypertension, diabetes and obesity, by relieving the main symptoms of COVID-19 and other underlying health problems.

4. Conclusion

In summary, our analysis of fermented sorghum RevX extract for use in inhibiting SARS-CoV-2 Mpro showed that the bioactive components in RevX solution have antiviral activity. GC-MS analysis identified 80 main components of various structural classes from more than 300 compounds, including 13 sterol-like compounds. Docking simulation results of 13 sterol-like compounds revealed 3 compounds that may interact with the protein’s active site pocket. Further identification of putative bioactive components and studies of RevX solution as adjunctive therapy are ongoing.
Declarations

Author contribution statement

Feng-Pai Chou, Huynh Nguyen Huong Giang, Sheng-Chi Huang: Performed the experiments; Analyzed and interpreted the data.
Chia-Chun Liu: Contributed reagents, materials, analysis tools or data.
Hsui-Fu Hsu: Conceived and designed the experiments; Contributed reagents, materials, analysis tools or data; Wrote the paper.
Tung-Kung Wu: Conceived and designed the experiments, Wrote the paper.

Funding statement

This work was supported by the Center for Emergent Functional Matter Science and the Center for Intelligent Drug Systems and Smart Bio-devices (IDS®-B) of National Yang Ming Chiao Tung University from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan.

Data availability statement

Data will be made available on request.

Declaration of interests statement

The authors declare no conflict of interest.

Additional information

No additional information is available for this paper.

References

Cardoso, I.D.M., Pinheiro, S.S., Martino, H.S.D., Pinheiro-Sant’Ana, H.M., 2017. Sorghum (Sorghum bicolor L.): nutrients, bioactive compounds, and potential impact on human health. Crit. Rev. Food Sci. Nutr. 52, 372–390.
Chauhan, A.J., Wilfen, J.L., Brown, T.P., 2020. COVID-19: a collision of complement, coagulation and inflammatory pathways. J. Thromb. Haemostasis 18, 2110–2117.
Chen, L.L., Chen, S., Gui, C.S., Shen, J., Shen, X., Jiang, H., 2006. Discovering severe acute respiratory syndrome coronavirus 3Cα protease inhibitors: virtual screening, surface Plasmon resonance, and fluorescence resonance energy transfer assays. J. Biomol. Screen 11, 915–921.
Chojnacka, K., Wittek-Krowiak, A., Skrzypczak, D., Mikula, K., Mlynarz, P., 2020. Phytochemicals containing biologically active polyphenols as a potential active agent against Covid-19-inducing coronavirus. J. Funct. Foods 73, 101446.
Gordon, D.E., Haßl, J., Bouzidou, M., Rezé, V.V., Ulferts, S., Braberg, H., Jurek, A.S., Obermier, K., Guo, J.Z., Batra, J., et al., 2020. Comparative host-coronavirus protein interaction networks reveal pan-viral disease mechanisms. Science 375, 248–253.
Grant, W.B., Lahore, H., McDonnell, S.L., Baggerly, C.A., French, C.B., Aliano, J.L., Bhattao, H.P., 2020. Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients 12, 6988.
Hartmann, E., Nandakumar, D., Lari, A., Ly, M., Tucker, J.M., Glaunsinger, B.A., 2020. The molecular virology of coronaviruses. J. Biol. Chem. 295, 12910–12934.
Hilgenfeld, R., 2014. From SARS to MERS: crystallographic studies on coronaviral enzymes and antiviral drug design. FEBS J. 281, 4085–4096.
Hsu, K.C., Chen, Y.F., Lin, S.H., Yang, J.M., 2011. GEMDCK: a graphical environment of enhancing GEMDCK using pharmaceutical interactions and post-screening analysis. BMC Bioinf. 12, S33.
Khatt, V., Nikoth, S., Chandrasekhar, A., Rajini, P.S., 2007. Chymotryptic hydrolyses of α-kafirin, the storage protein of sorghum (Sorghum bicolor) exhibited angiotensin converting enzyme inhibitory activity. Food Chem. 100, 306–311.
Knevel, D.W., Phillips, G., O’Neill, H.M., Tan, K., Joachimiak, A., Coates, L., Kovalevsky, A., 2020. Room temperature X-ray crystallography reveals oxidation and reactivity of cysteine residues in SARS-CoV-2 3CL pro: insights for enzyme mechanism and drug design. IUCrJ 7, 1028–1035.
Li, G., Clercq, E.D., 2020. Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat. Rev. Drug Discov. 19, 145–159.
Liu, J.M., Yan, S.Y., Jamaldadin, S.H., 2012. Ginkgoic acid inhibits HIV protease activity and HIV infection in vitro. Med. Sci. Mon. Int. Med. J. Exp. Clin. Res. 18, BR293–298.
Lin, C.J., 2021. Effect of RevX solution adjunct to standard therapy in a patient with metastatic lung adenocarcinoma: a case report. Int. J. Case Rep. 5, 238.
Lipinski, C.A., Lombardo, F., Dominy, B.W., Feeney, P.J., 2011. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 64, 3–26.
Lu, F., Yang, X., Li, J., Niu, P., Yang, B., Wu, H., et al., 2020. Genomic characterization and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395, 565–574.
Meng, X.-Y., Zhang, H.-X., Mezeti, M., Cui, M., 2011. Molecular Docking: A Powerful Approach for Structure-Based Drug Discovery. 7, pp. 146–157.
Murui, J.J., Njoku-Njiru, E., Eutiook, J.K., Nanya, J.N., 2002. Evaluation of sorghum (Sorghum bicolor) as replacement for maize in the diet of growing rabbits (Oryctolagus cuniculus). AJAS (Asian-Australasian J. Anim. Sci.) 15, 565–569.
Oh, H., Adnan, M., Cho, D.H., 2020. Network pharmacology of bioactive from SARS-CoV bicolor with targets related to diabetes mellitus. PLoS One 15, e0240873.
Painter, W.P., Holman, W., Bush, J.A., Almazelli, F., Malik, M., Enrat, N.C.J.E., et al., 2021. Human safety, tolerability, and pharmacokinetics of molupiravir; a novel broad-spectrum oral antiviral agent with activity against SARS-CoV-2. Antimicrob. Agents Chemother. 65 e00428-02420.
Russo, M., Mocia, S., Spagnuolo, C., Tedesco, L., Russo, G.L., 2020. Roles of flavonoids against coronavirus infection. Chem. Biol. Interact. 328, 109211.
Rot, W., Grobros, K., Zhang, L., Sun, X., Mauditzinski, M., Pavlik, B., Wang, X., Joachims, D., Neyes, J., Mlynaraki, W., Hilgenfeld, R., Drag, M., 2021. SARS-CoV-2 Mpro inhibitors and activity-based probes for patient-sample imaging. Nat. Chem. Biol. 17, 223–228.
Ryu, Y.B., Jeong, H.L., Kim, J.H., Kim, Y.M., Park, J.Y., Kim, D., Nguyen, T.T., Park, S.J., Chang, J.S., Park, K.H., Rho, M.C., Lee, W., 2010. Biflavonoids from Torreya nucifera displaying SARS-CoV-3Cpro inhibition. Bioorg. Med. Chem. 18, 7940–7947.
Saha, L., Dutta, M., Pramanik, A.R., Bhattacharya, M., Sharma, G., Lee, S.S., Chakrabarti, C., 2020. Probable molecular mechanism of remdesivir for the treatment of COVID-19 need to Know more. Arch. Med. Res. 51, 585–586.
Shai, A., Thuan, D.T.B., Phu, H.T., Nguyen, T.H.D., Hasan, H., Halabi, S., Abdelbadeh, S., Nazmiiah, G.K., Eid, A.H., Phuc, G., 2020. Herbal medicine for cardiovascular diseases: efficacy, mechanisms, and safety. Front. Pharmacol. 11, 422.
Shih, C.-H., Siu Ng, R., Wong, E., Chiu, L.C.M., Chu, I.K., Lo, C., 2007. Quantitative analysis of anticanter 3-deoxyanthocyanidins in infected sorghum seedlings. J. Agric. Food Chem. 55, 254–259.
Tan, J., Koen, H.G., et al., 2005. pH-dependent conformational flexibility of the SARS-CoV main protease (Mpro) dimer: molecular dynamics simulations and multiple X-ray structure analyses. J. Mol. Biol. 354, 25–40.
Ullrich, S., Nitsche, C., 2020. The SARS-CoV-2 main protease as drug target. Bioorg. Med. Chem. Lett 30, 127377.
Vuong, W., Khan, M.B., Fischer, A., Arutyunova, E., Lamer, T., 2020. Peline coronavirus drug inhibits the main protease of SARS-CoV-2 and blocks virus replication. Nat. Commun. 11, 4289.
Wang, Z., Zhang, P., Wang, Q., Sheng, X., Zhang, J., Lu, X., Fan, X., 2020. Protective effects of Ginkgo biloba Dropping Pills against liver ischemia/reperfusion injury in mice. Chin. Med. 151, 122.
Wen, C.-C., Yao, Y.H., Chen, J.-W., Liang, P.H., Wang, S.Y., et al., 2007. Specific plant Terpenoids and Lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. J. Med. Chem. 50, 4087–4095.
Yang, H., Rao, Z., 2021. Structural biology of SARS-CoV-2 and implications for therapeutic development. Nat. Rev. Microbiol. 19, 685–700.
Yang, L., Browning, J.D., Awika, J.M., 2009. Sorghum 3-deoxyanthocyanins possess strong phase II enzyme inducer activity and cancer cell growth inhibition properties. J. Agric. Food Chem. 57, 1797–1804.
Zhang, L., Lin, D., Sun, X., Garth, U., Drosten, C., Sauerhering, L., Becker, S., Rox, K., Hilgefeld, R., 2020a. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketomethylene inhibitors. Science 368, 409–412.
Zhang, L., Lin, D., Sun, X., et al., 2020b. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketomethylene inhibitors. Science 368, 409–412.