Actin Remodeling Defects Leading to Autoinflammation and Immune Dysregulation

Riccardo Papa, Federica Penco, Stefano Volpi and Marco Gattorno*

Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, Genoa, Italy

A growing number of monogenic immune-mediated diseases have been related to genes involved in pathways of actin cytoskeleton remodeling. Increasing evidences associate cytoskeleton defects to autoinflammatory diseases and primary immunodeficiencies. We reviewed the pathways of actin cytoskeleton remodeling in order to identify inflammatory and immunological manifestations associated to pathological variants. We list more than twenty monogenic diseases, ranging from pure autoinflammatory conditions as familial Mediterranean fever, mevalonate kinase deficiency and PAPA syndrome, to classic and novel primary immunodeficiencies as Wiskott-Aldrich syndrome and DOCK8 deficiency, characterized by the presence of concomitant inflammatory and autoimmune manifestations, such as vasculitis and cytopenia, to severe and recurrent infections. We classify these disorders according to the role of the mutant gene in actin cytoskeleton remodeling, and in particular as disorders of transcription, elongation, branching and activation of actin. This expanding field of rare immune disorders offers a new perspective to all immunologists to better understand the physiological and pathological role of actin cytoskeleton in cells of innate and adaptive immunity.

Keywords: pyrin, Wiskott-Aldrich syndrome, autoinflammatory diseases, cytoskeleton, actin

“Cosa bella e mortal passa e non dura.” Francesco Petrarca

INTRODUCTION

Actin is a family of globular proteins that form microfilaments of cell cytoskeleton. In the past, the most important function of actin was related to the binding of myosin, collaborating to the muscle contraction with troponin. These properties can easily be tested adding pure myosin to water and actin, causing an increase in viscosity and birefringence of the liquid due to the formation of the actomyosin complex (1). Thus, the term of actinopathies was originally considered for a well-defined group of monogenic muscle diseases secondary to the actomyosin complex dysfunction (2). During the recent years, a growing number of disorders of the immune system have been linked to actin cytoskeleton abnormalities (numbers are related to the Table 1 and Figure 1) (3). Furthermore, evidences that actin cytoskeletal deregulation in immune cells causes inflammatory
N	Location	Gene	Protein	Mechanism	Effect	Diseases	MIM	Inheritance	Main symptoms	Main laboratory characteristics	
1	17p13.2	PFN1	Profi lin 1	LOF	Failure to differentiate pre-osteoblast	Early-onset Paget’s disease	None	AR	Polyostotic Paget’s disease, osteosarcoma	Thrombocytopenia, poor neutrophil chemotaxis and oxidative burst	
2	7p22.1	ACTB	Beta-actin	GOF	Failure to polarize cytoskeleton in response to fMLP	ACTB-related immunodeficiency	102630	DN	Recurrent stomatitis and otitis media, tuberculosis pneumonia, iritis, keratoconjunctivitis, acne, polyarthritis, intellectual impairment, and short stature		
3	4p16.1	WDR1	WDR1	LOF	Defect of coflin activation	PFIT	None	AR	Recurrent fevers and stomatitis, microstomia, Pneumocystis jiroveci pneumonia, pyoderma gangrenosum, genital ulcers, septic arthritis, and necrotizing cellulitis		
4	16p11.2	CORO1A	Coronin1A	LOF	Defect of WDR1 activation	Coronin1A deficiency	615401	AR	Mycobacterial and viral infections, neurological disorders	Naive T-cells lymphopenia	
5	16q22.1	RLTPR	Carmil2	LOF	Defective regulation of capping protein and CD28-mediated costimulation in T-cell	CARML2 deficiency	618131	AR	Bacterial and fungal infections, atopy, disseminated EBV-positive smooth muscle tumors	T-cells functional defect	
6	21q22.3	ITGB2	ITGAL/M/X	LOF	Deficit of the beta-2 integrin subunit of the LFA-1 causing delayed motility of neutrophils	LAD type I	116920	AR	Recurrent bacterial infections, delayed separation of the umbilical cord, and delayed wound healing	Severe granulocytosis	
7	11p11.2	SLC35C1	GDP-L-fucose transporter	LOF	Deficit of CD15 causing delayed motility of neutrophils	LAD type II/CDG2C	266265	AR	LAD1-like immune deficiency, psychomotor retardation, mild dysmorphism	Severe granulocytosis, Bombay blood type	
8	11q13.1	FERMT3	Kindlin-3	LOF	Deficit in inside-out signaling that enable high-avidity binding of integrin to ligands on leucocytes and platelets	LAD type III/I variant	612840	AR	LAD1-like immune deficiency, Glanzmann thrombasthenia-like bleeding problems, osteopetrosis	Severe granulocytosis	
9	7q31.2	CFTR	CFTR	LOF	Defect of monocyte adhesion	LAD type IV/Cystic fibrosis	219700	AR	Recurrent lung infections, pancreatic insufficiency, male infertility	Hypergammaglobulinemia	
10	Xq11	MSN	Moesin	LOF	Impaired T cells proliferation, X-MAID		300988	XLR	Recurrent bacterial and varicella zoster	Leukopenia with defective T-cell proliferation and	

(Continued)
N	Location	Gene	Protein	Mechanism	Effect	Diseases	MIM	Inheritance	Main symptoms	Main laboratory characteristics	
					migration and adhesion	virus infections, eczema and other skin manifestations (recurrent molluscum, thrombotic thrombocytopenic purpura), acute stroke				fluctuating neutropenia, hypogammaglobulinemia, ADAMTS13+ thrombocytopenia	
					RASGRP1 deficiency		618534	AR		T-cells and B-cells functional defect	
Protrusion defects	11	15q14	RASGRP1	LOF	Defect in Ras activation in T-cells and B-cells	RASGRP1 deficiency					
					NOCARH/TKS deficiency	Fever, rash, lymphedema	616737	AD			
					RAC2 dysfunction	Recurrent sterile abscesses (frequently perirectal)	608203	AR/AD/DN			
					DOCK2 deficiency	Early-onset invasive bacterial and viral infections, autoimmunity	616433	AR			
					DOCK8 deficiency	Recurrent viral infections, early-onset malignancy, and atopic dermatitis	243700	AR			
					HEM1 deficiency	Increased T and memory T cells, neutrophils migration defects, decreased NK cytotoxicity					
					WIPF1 deficiency	WAS type 2	614933	AR			
					PSTPIP1 deficiency	Recurrent bacterial and viral infections with warts and abscesses, autoimmunity, cardiac malformations					
					ARPC1B deficiency	SL-related immune deficiency	617718	AR			
					PTPN4 deficiency	Sterile abscesses, pioderma	604416	AD			
					WIPF1 deficiency	WAS/amp-related immune deficiency					
					PSTPIP1 deficiency	Recurrent bacterial and viral infections with warts and abscesses, autoimmunity, cardiac malformations					
					ARPC1B deficiency	SL-related immune deficiency					
					PTPN4 deficiency	Sterile abscesses, pioderma					
Branching defects	17	Xp11.23	WAS	LOF/GOF	Deficit of ARP2/3 complex activation causing lack of actin branching	WAS/X-linked thrombocytopenia/ X-linked neutropenia	301000	XLR		Recurrent bacterial neutropenia, eczema, autoimmunity, neutropenia, CD4+ and naive CD8+ T-cell and B-cell lymphopenia	Thrombocytopenia, defective T-cell and NK-cell functions, increased number of NK cells/ Neutropenia
					STK4 deficiency	Recurrent bacterial and viral infections with warts and abscesses, autoimmunity, cardiac malformations					
					WIPF1 deficiency	WAS type 2	614933	AR		Thrombocytopenia, defective T-cell and NK-cell functions, increased number of NK cells	
					ARPC1B deficiency	SL-related immune deficiency	617718	AR		Thrombocytopenia, hypogammaglobulinemia, reduced IgG, CD8+ T-cell count	
					PTPN4 deficiency	Sterile abscesses, pioderma	604416	AD		High acute phase reactants	

(Continued)
manifestations are increasing (4). In this review, we illustrate the inflammatory and immunological disorders associated with different pathways of actin-binding molecules.

Elongation Defects

Actin is the most abundant protein in the majority of eukaryotic cells, contributing to acquire and maintain cell structure and functions. Vertebrates express three actin isoforms, including the α-isoform of skeletal, cardiac, and smooth muscles cells, and the β- and γ-isoforms (5). The conformation of actin monomer, called globular (G)-actin, is the same among different isoforms. G-actin assembles into polarized filaments, called filamentous (F)-actin, that form cortical actin network (CAcN) and cell protrusions (6). Monomer binding proteins, such as the Profilin-1, control polymerization. Individual filaments lifetime can be as short as ten seconds or lasting for days, depending on the extracellular stimulus duration and intracellular conditions (7). Inhibiting the actin polymerization through activity of the capping proteins, or stimulating actin disassembly through the Cofilin/ADF in breast tumor cells causes defects in formation of filopodia, limiting cell motility and favoring proliferation through upregulation of the transcriptional factor SMAD3 (11). On the other hand, deficiency of Profilin-1 acts against invasion of cytotoxic T lymphocytes in tumors and hapatinsufficiency of Profilin-1 seems protective against subcutaneous inflammation induced by high fat diet (12). Furthermore, activation of the Profilin-1 pathway has been related to the inflammatory vascular damage in patients with diabetic retinopathy (13, 14).

Heterozygous gain-of-function (GoF) variant of the ACTB gene, coding for the β-isoform of actin, has been reported in a female with recurrent infections and defect of neutrophil chemotaxis and oxidative burst (no. 2 in Table 1 and Figure 1) (15). The patient also presented a short stature and intellectual disabilities. No other patients have been reported to date. The

Table 1

N	Location	Gene	Protein	Mechanism	Effect	Diseases	MIM	Inheritance	Main symptoms	Main laboratory characteristics
22	16p13.3	MEFV	Pyrin	GOF	Dysregulation of cytoskeleton resulting in activation of pyrin inflammasome	FMF/PAAND	134610	AR/AD	Recurrent fevers with abdominal pain and arthralgia	High acute phase reactants/Neutropenia
23	12q24.11	MKD	Pyrin	LOF	Dysregulation of cytoskeleton resulting in activation of pyrin inflammasome	MKD	260920	AR	Recurrent fevers, lymphadenopathy, arthralgia, skin rash	High concentration of mevalonate acid in urine during fever attacks

Elongation Defects

Actin is the most abundant protein in the majority of eukaryotic cells, contributing to acquire and maintain cell structure and functions. Vertebrates express three actin isoforms, including the α-isoform of skeletal, cardiac, and smooth muscles cells, and the β- and γ-isoforms (5). The conformation of actin monomer, called globular (G)-actin, is the same among different isoforms. G-actin assembles into polarized filaments, called filamentous (F)-actin, that form cortical actin network (CAcN) and cell protrusions (6). Monomer binding proteins, such as the Profilin-1, control polymerization. Individual filaments lifetime can be as short as ten seconds or lasting for days, depending on the extracellular stimulus duration and intracellular conditions (7). Inhibiting the actin polymerization through activity of the capping proteins, or stimulating actin disassembly through the Cofilin/act depolymerizing factor (ADF) in response to an increased concentration of the phosphatidylinositol (4,5)-bi-phosphate (PIP2). Mutation of the PFN1 gene coding for the Profilin-1 causes the familial form of amyotrophic lateral sclerosis (9) and deletions have been recently related to an early-onset form of Paget’s disease (no. 1 in Table 1 and Figure 1) (10). This condition is characterized by anomalies of the appendicular bone, favoring malign tumors. Pre-osteoblasts lacking Profilin-1 lose their differentiation and adhesion capability and fail to mineralize efficiently the appendicular bone, acquiring invasive properties. Depletion of the Profilin-1 in breast tumor cells causes defects in formation of filopodia, limiting cell motility and favoring proliferation through upregulation of the transcriptional factor SMAD3 (11). On the other hand, deficiency of Profilin-1 acts against invasion of cytotoxic T lymphocytes in tumors and hapatinsufficiency of Profilin-1 seems protective against subcutaneous inflammation induced by high fat diet (12). Furthermore, activation of the Profilin-1 pathway has been related to the inflammatory vascular damage in patients with diabetic retinopathy (13, 14).

Heterozygous gain-of-function (GoF) variant of the ACTB gene, coding for the β-isoform of actin, has been reported in a female with recurrent infections and defect of neutrophil chemotaxis and oxidative burst (no. 2 in Table 1 and Figure 1) (15). The patient also presented a short stature and intellectual disabilities. No other patients have been reported to date. The
authors showed that the mutant β-isofrom binds Profilin-1 less efficiently, despite a normal actin polymerization. Loss-of-function (LoF) variants of the ACTB gene, as well as of the ACTG1 gene, coding for the γ-isofrom of actin, have been related to the highly variable spectrum of the Baraitser-Winter syndrome, a rare condition without relevant immunological manifestations (16).

Cofilin/ADF activation is dependent by phospholipase Cγ (PLCγ) in tumors and Rac2 signaling in neutrophils (17). Reduction of Cofilin/ADF expression in leukocytes is associated with abnormal chemotaxis (18). In neurons, Cofilin/ADF controls axon elongation and regeneration (19) and serum levels are significantly higher in patient with Alzheimer’s disease (20). Cofilin/ADF is also upregulated in patients with Friedreich’s ataxia, whose mutations correlate with an altered immune-related genes transcription (21, 22).

Proteins containing a short structural motif of approximately 40 amino acids, often terminating in a tryptophan-aspartic acid (WD) dipeptide, called WD40 repeat, can accelerate the Cofilin/ADF activity. The best-known example is the WD40 repeat protein 1 (WDR1), also known as Actin interacting protein 1 (AIP1). Homozygous LoF mutations of the WDR1 gene cause a monogenic autoinflammatory disease characterized by periodic fever, immunodeficiency, and thrombocytopenia (PFIT; no. 3 in Table 1 and Figure 1) (23, 24). Patients display recurrent fever attacks lasting 3–7 days, every 6–12 weeks, with high acute phase reactants and hyperferritinaemia. Recurrent mucosal inflammation, causing a peculiar acquired microstomia, may resemble the Behcet’s disease’s attacks during childhood (25). Lymphocytes of patients with PFIT show adhesion and motility defects (26). Coronin-1A is another WD40 repeat-containing protein whose LoF mutants have been related to a severe combined immunodeficiency characterized by increased susceptibility to viral and mycobacterial infections (no. 4 in Table 1 and Figure 1) (27–30). Patients usually present with mucocutaneous manifestations, sinopulmonary diseases and neurocognitive disorders without inflammatory manifestations.

On the other hand, the capping proteins are heterodimers composed by two unrelated subunits with highly conserved amino acid sequences. The RGD, leucine-rich repeat, tropomodulin and proline-rich containing protein (RLTPR), also called CARMIL2, is a cytosolic protein that acts as scaffold between the nuclear factor kappa-light-chain-enhancer of activated B cells (NFkB) and CD28 (31, 32). Autosomal recessive (AR) LoF mutations of the RLTPR gene cause a primary immunodeficiency (PID) characterized by allergy, increased incidence of bacterial and fungal infections, and virus-related tumors (no. 5 in Table 1 and Figure 1) (33). The abnormal cytoskeleton of T-cell in patients with CARMIL2
deficiency causes defects of activation and is related to an abnormal activity of the capping proteins (34).

Activation Defects

Over 40 years ago, studies on the ligand-induced movement of immunoglobulin on the surface of lymphocytes called attention to a special relationship between CAcN and antigen-presenting cells (35). A specialized cell–cell junction, the immune synapse (36), is required for the activation of lymphocytes and begin with the formation of thousands of transient, low affinity interactions between antigens and integrins, such as the lymphocyte function-associated antigen 1 (LFA-1) (37). These interactions require a minimum distance of 40 nm, while the major histocompatibility complexes require 15 nm. The consequent antigen-induced CAcN rearrangements leads to morphological changes that are crucial for adhesion, migration, endocytosis, division, gene expression, and calcium flux, as well as for the releasing of cytokines and cytotoxic granules in lymphocytes, neutrophils and monocytes (38).

In particular, on resting leucocytes, LFA-1 is maintained in a low activity state by an inhibitory interaction with the CAcN (39, 40). Therefore, activation of leucocytes requires the release of CAcN-integrin interactions, so that LFA-1 can diffuse in the cell membrane and start binding activities (37). The essential role of CAcN in phagocyte function can be highlighted during chronic infections (41). In fact, microbes are able to lose their integrin ligands in order to escape the immune response (42). The abnormal rolling of leucocytes seems the main affected mechanism in patients with PID caused by LFA-1 defects (nos. 6–9 in Table 1 and Figure 1) (43). The deficiency of the β2 integrin subunit of the LFA-1 causes the leukocyte adhesion deficiency (LAD) type I, and the defective activation of LFA-1 subunits has been related to the LAD type III, both nowadays effectively treated with the hematopoietic stem cells transplantation (44, 45). On the other side, LAD type II is caused by mutations of a fusoc sugar transporter gene leading to cell membrane glycans lacking fucosylation. The administration of oral fucose did not seem effective to control the LAD type II clinical manifestations (46, 47).

Finally, a monocyte-selective adhesion defect has been recently noted in patients with cystic fibrosis (CF) and called LAD type IV (48–50). CFTR heterozygous LoF variants cause hyper activation of the small G-proteins Rho family that controls integrins activation (51). Interestingly, these small G-proteins are also well-known inhibitor of the pyrin inflammasome (52). Furthermore, CFTR interacts with Ezrin protein via its C-terminal domain. Ezrin is the most prominent members of the Ezrin-Radixin-Moesin (ERM) domain-containing protein family that links CAcN to the cell membrane, regulating tension during motility and endocytosis (53, 54). In hematopoietic cells, Ezrin and Moesin are highly expressed, whereas Radixin is mostly absent. Hemizygous LoF mutations of the MSN gene coding for Moesin is associated to a PID called X-linked MSN-associated immunodeficiency (X-MAID; no. 10 in Table 1 and Figure 1) (55). Patient T cells displayed impaired proliferative responses after activation by certain mitogens, and a variable defects in cell migration and adhesion, whereas the formation of immunologic synapses is normal. Thus, CAcN dysfunctions impair epithelial tight junction formation as well as lymphocytes adhesion capability in X-MAID patients.

Protrusions Defects

The collapse of CAcN to the side of cells occupied by microtubule organizing centers creates an opening for new actin polymerization to form membrane protrusions at the leading edge. This process is controlled by the small G-proteins Rho family, including the Cell division control protein 42 homolog (Cdc42) and Rac2 (56).

Small G-proteins are a superfamilly of ubiquitously expressed cytosolic hydrolase enzymes that can independently bind and hydrolyze guanosine triphosphate (GTP) to guanosine diphosphate (GDP), becoming inactive (57). The best-known subfamily members are the Ras GTPases that are divided into five main families: Ras, Rho, Ran, Rab, and Arf. The Ras family is generally responsible for cell proliferation, Rho for cell morphology, Ran for nuclear transport and Rab and Arf for vesicle transport. The Ras guanyl nucleotide-releasing protein 1 (RASGRP1) is a diacylglycerol-regulated nucleotide exchange factor specifically activating Ras and regulating T and B cells development, homeostasis and differentiation. Rasgrp1 deregulation in mice results in a systemic lupus erythematosus-like disorder (58) and RASGRP1 deficiency in humans causes a PID characterized by impaired cytoskeletal dynamics (no. 11 in Table 1 and Figure 1) (59). Patients with RASGRP1 deficiency suffer from recurrent bacterial and viral infections especially affecting the lung with a severe failure to thrive and can develop EBV-related lymphomas.

The localization of small G-proteins on the cell membrane is due to their prenylation, a post-translational modification characterized by the addition of twenty-carbon lipophilic isoprene units to the cysteine residues at the C-terminus (60). Furthermore, most of the Rho family members contain a cluster of positively charged residues (i.e., polybasic domain), directly preceding their geranylgeranyl moiety that serves to fine-tune their localization among different cell membrane sites. Overall, the prenylation of small G-proteins is involved in the regulation of cytokines production (61) and can be regulated by statins in monocytes and macrophages (62).

On 2D surfaces, activated Cdc42 and Rac2 generate filopodia and lamellipodia, respectively. The formation of these membrane protrusions consents leucocytes to reach the damaged tissue passing through an intact vessel wall, a process called diapedesis. The local concentration of the complement system C3 fraction also contributes to this process (63). However, in 3D environment, the blebbing motility seems the more common migratory strategy of blood cells (64, 65). Stop-codon variants of the CDC42 gene has been recently associated with a novel autoinflammatory disease characterized by neonatal-onset of cytopenia, rash, and hemophagocytosis (NOCARH), successfully treated with interleukin-1β inhibition (no. 12 in Table 1 and Figure 1) (66). Furthermore, heterozygous CDC42 missense variants have been related to the Takencuchi-Kosaki syndrome (TKS) (67–69). TKS patients do not usually display autoinflammatory manifestations but hematologic and/or lymphatic defects, including macrothrombocytopenia, lymphedema, intestinal...
lymphangiectasia and recurrent infections. Characteristics of platelets and B cells have been recently described (70–72). A recent extensive genotype-phenotype correlation study allows to classify three groups of the CDC42 variants regarding involved protein domain (73). Based on these evidences, the NOCARH-associated variants occur at the C-terminus that usually allows PIPI2 interaction, whereas associated variants with TKS resembling Noonan syndrome occurs at the N-terminus. Thus, different roles of the Cdc42 protein may be subverted in these conditions with different clinical manifestations.

The Rho guanosine triphosphatases Rac2 is expressed only in hematopoietic cells. Patients with Rac2 dysfunction secondary to dominant negative or homozygous LoF mutations present early-onset recurrent abscesses, neutrophilia, and defective wound healing, whereas monoallelic germline GoF mutations of the same

RAC2 gene cause a severe combined immunodeficiency (no. 13 in Table 1 and Figure 1) (74–77). Interestingly, Rac2 activation in neutrophils is primarily mediated by the dedicator of cytokinesis (DOCK) 2, an atypical guanine nucleotide exchange factor (GEF) that rapidly translocate to the plasma membrane in a phosphatidylinositol 3,4,5-trisphosphate (PIP3)-dependent manner upon stimulation, resulting in increased local Ca2N polymerization (78, 79). DOCK2 is mainly expressed in peripheral blood leukocytes and DOCK2 deficiency causes an early-onset PID characterized by a T-cell defective chemotactic responses with bacterial and viral infections (no. 14 in Table 1 and Figure 1) (80).

On the other side, DOCK8 is a Cdc42-specific GEF that regulates interstitial migration of dendritic cells and DOCK8 deficiency causes the AR Hyper-IgE syndrome (HIES), a combined immunodeficiency characterized by recurrent viral infections, early-onset malignancy and atopic dermatitis (no. 15 in Table 1 and Figure 1). Patients with DOCK8 deficiency display severe viral skin infections, such as chronic anogenital verrucae, ulcers, multiple acral warts, and desquamating molluscum contagiosum (81–84). Selective loss of group 3 innate lymphoid cell has been described in these patients (85).

Branching Defects

Cdc42 and Rac2 transmit many signals through the GTPase-activating protein (GAP) 2/3 complex constituted by seven subunits. Two of them, the ARP2 and 3, closely resemble the structure of the G-actin, allowing the formation of a thermodynamically stable dimer that serves as a nucleation site for the new actin filaments at 70° angle from the main filament. Homozygous LoF variants of the ARPC1B gene, coding for the p41 regulatory subunits of the ARP2/3 complex, cause the platelet abnormalities with eosinophilia and immune-mediated inflammatory disease (PLTEID; no. 20 in Table 1 and Figure 1) (100–104). Patients with PLTEID usually present systemic inflammation with lymphoproliferation and immunodeficiency resembling WAS, with early onset vasculitis, severe infections, and eczema. A functional test has been recently described to detect asymptomatic carriers (105).

Additional WASP activators include the proline-serine-threonine phosphatase-interacting protein 1 (PSTPIP1), PIP2, and the c-Src protein-tyrosine kinases family. Heterozygous GoF mutation of the PSTPIP1 gene causes the pyogenic sterile arthritis, pyoderma gangrenosum, and acne (PAPA) syndrome and the PSTPIP1-associated myeloid-related proteinemia inflammatory (PAMI) syndrome (no. 21 in Table 1 and Figure 1) (106, 107). PAMI syndrome is caused by variants that substantially alter electrostatic properties of the PSTPIP1 critical region for auto-inhibiting dimerization, resulting in a GoF mutant protein that constitutively activates the underlying Pyrin inflammasome (108).

Pyrin is the pivotal protein of the related inflammasome, a member of cytosolic multiprotein oligomers family responsible for the activation of inflammatory responses in human cells. The Pyrin-associated autoinflammation with neutrophilic dermatosis (PAAND) and familial Mediterranean fever (FMF) are well-known monogenic autoinflammatory...
diseases both related to GoF variants at different locus sites of the MEFV gene and associated with an excessive activation of the Pyrin inflammasome (no. 22 in Table 1 and Figure 1). Recently, the mevalonate kinase deficiency (MKD) caused by homozygous or compound heterozygous LoF mutations in the MVK gene has been related to the constitutive activation of Pyrin (no. 23 in Table 1 and Figure 1) (109).

Production Defects

Megakaryoblastic leukemia 1 (MKL1) is a member of the myocardin-related transcription factors and usually held in an inactive state in the cytoplasm in a reversible complex with G-actin (110). Stimulation of the small Rho GTPases promotes incorporation of G-actin into F-actin, allowing MLK1 to enter into the nucleus, stimulating transcription of actin and other cytoskeletal proteins genes. Homozygous LoF mutation in the MKL1 gene result in a PID characterized by susceptibility to severe bacterial infection and recurrent skin abscesses (no. 24 in Table 1 and Figure 1) (111). MLK1 deficiency causes reduced phagocytosis and almost complete abrogation of neutrophils spreading properties (112). MLK1 participates in differentiation of megakaryocytes and mild thrombocytopenia has been noted in patients with MKL1 deficiency (113).

Finally, LoF variants of the gene coding for the transcription factor CCAAT enhancer binding protein epsilon (C/EBPε) cause a PID called AR neutrophil-specific granule deficiency-1 (SGD) (114), whereas heterozygous GoF variants have been recently related to an autoinflammatory disease called the C/EBPε-associated autoinflammation and immune impairment of neutrophils (CAIN; no. 25 in Table 1 and Figure 1). Patients with CAIN display recurrent fevers characterized by abdominal pain, lasting 4–5 days, and skin inflammatory manifestations, such as sterile abscesses, pyoderma gangrenosum and oral ulcerations. The mutant C/EBPε causes deregulated transcription of interleukins and interferon response genes in neutrophils (115).

DISCUSSION

The field of autoinflammation is moving from a gene-centric view of innate immune-mediated diseases towards a systems-based concept, which describes how various convergent molecular pathways, including actin cytoskeleton, contribute to the autoinflammatory process (116) and to a number of conditions characterized by the coexistence of inflammation, autoimmunity and defective immune response. Indeed, the complex regulation of the actin remodeling represents an example of autoinflammatory diseases merging with immunodeficiencies. Despite the wide range of symptoms associated with these disorders, some features may suggest the diagnosis, such as recurrent fevers or infections, atypical skin manifestations (from severe viral infections to eczema and sterile abscesses), cytopenias and defects of chemotaxis and lymphocytes proliferation. Cytopenias may be secondary to the abnormal release of immune cells from the bone marrow and/or impairments in the immune synopsis, while the abnormal diapedesis associated with an altered vessels wall and the increased cell apoptosis in the skin matrix, called cytothripsis, may favor cutaneous manifestations (86). Cytoskeleton-targeted therapies, such as colchicine, may play new roles in these disorders. The study of the molecular and modular diversity of these immune responses to the changing conditions has only recently become possible through the development of the new “omics”-based screening technologies (117). The adoption of “omics” and systems-based concepts will have implications for the discovery of novel diseases and for the possible development of targeted diagnostic tests and treatment options.

AUTHOR CONTRIBUTIONS

RP drafted the manuscript. FP, SV, and MG reviewed the manuscript. All authors contributed to the article and approved the submitted version.

FUNDING

The study was supported with public funds granted by the Italian Ministry of Health.

ACKNOWLEDGMENTS

The authors are members of the European Reference Network for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases—Project ID No 739543.

REFERENCES

1. von der Ecken J, Heissler SM, Pathan-Chhatbar S, Manstein DJ, Raunser S. Cryo-EM structure of a human cytoplasmic actomyosin complex at near-atomic resolution. *Nature* (2016) 534(7609):724–8. doi: 10.1038/nature18295
2. Goebel HH. Congenital Myopathies in the New Millennium. *J Child Neurol* (2005) 20(2):94–101. doi: 10.1177/088307380502002020
3. Etrioni A, Ochs HD. Lazy Leukocyte Syndrome—an Enigma Finally Solved? *J Clin Immunol* (2020) 40(1):9–12. doi: 10.1007/s10875-019-00718-0
4. Papa R, Picco P, Gattorno M. The expanding pathways of autoinflammation: a lesson from the first 100 genes related to autoimmune manifestations. *Adv Protein Chem Struct Biol* (2020) 120:1–44. doi: 10.1016/bs.apcsb.2019.11.001
5. Dominguez R, Holmes KC. Actin Structure and Function. *Annu Rev Biophys* (2011) 40(1):169–86. doi: 10.1146/annurev-biophys-042910-153359
6. Skruber K, Read T-A, Vitriol EA. Reconsidering an active role for G-actin in cytoskeletal regulation. *J Cell Sci* (2018) 131(13):jcs203760. doi: 10.1242/jcs.203760
7. Merino F, Pospich S, Raunser S. Towards a structural understanding of the remodeling of the actin cytoskeleton. *Semin Cell Dev Biol* (2020) 102:51–64. doi: 10.1016/j.semcdb.2019.11.018
8. Alkam D, Feldman EZ, Singh A, Kiae M. Profilin1 Biology and its Mutation, Actin(g) in Disease. *Cell Mol Life Sci* (2017) 74(6):967–81. doi: 10.1007/s00018-016-2372-1
9. Wu C-H, Fallini C, Ticozzi N, Keagle PJ, Sapp PC, Piotrowska K, et al. Mutations in the Profilin 1 Gene Cause Familial Amyotrophic Lateral Sclerosis. *Nature* (2012) 488(7412):499–503. doi: 10.1038/nature11280

Frontiers in Immunology | www.frontiersin.org 8 January 2021 | Volume 11 | Article 604206
Papa et al. Actin Remodeling Defects

10. Scotti di Carlo F, Pazzaglia L, Esposito T, Gianfrancesco F. The Loss of Profilin 1 Causes Early Onset Paget’s Disease of Bone. J Bone Miner Res (2020) 35(8):1387–98. doi: 10.1002/jbmr.3964

11. Chakraborty S, Jiang C, Gau D, Oddo M, Ding Z, Vollmer L, et al. Profilin-1 deficiency leads to SMAD3 upregulation and impaired 3D outgrowth of breast cancer cells. Br J Cancer (2018) 119(9):1106–17. doi: 10.1038/s41416-018-0284-6

12. Schoppmeyer R, Zhao R, Cheng H, Hamed M, Liu C, Zhou X, et al. Human profilin 1 is a negative regulator of CTL mediated cell-killing and migration. Eur J Immunol (2017) 47(9):1562–72. doi: 10.1002/eji.201747124

13. Romeo GR, Pae M, Eberle D, Lee J, Shoelson SE. Profilin-1 Haploinsufficiency Protects Against Obesity-Associated Glucose Intolerance and Preserves Adipose Tissue Immune Homeostasis. Diabetes (2013) 62(11):3718–26. doi: 10.2337/db13-0650

14. Qianyi L, Peirong L, Wei C, Li L, Zhi Z. ANGPTL-4 induces diabetic retinal inflammation by activating Profilin-1. Exp Eye Res (2017) 166:140–50. doi: 10.1016/j.exer.2017.10.009

15. Nunoii H, Yamazaki T, Tsuchiya H, Kato S, Malec HI, Matsuda I, et al. A heterozygous mutation of beta-actin associated with neutrophil dysfunction and recurrent infection. Proc Natl Acad Sci USA (1999) 96(15):8693–8. doi: 10.1073/pnas.96.15.8693

16. Couvertino S, Stuart HM, Chandler KE, Roberts NA, Armstrong RR, Bernardini L, et al. ACTB Loss-of-Function Mutations Result in a Pleiotropic Developmental Disorder. Am J Hum Genet (2017) 101(6):1021–33. doi: 10.1016/j.ajhg.2017.11.006

17. van Rheenen J, Condeelis J, Glogauer M. A common co-activator defect in breast cancer cells. Eur J Immunol (2020) 50(8):1387–98. doi: 10.1002/eji.201947124

18. Bamburg JR, Wiggan OP. ADF/cofilin and actin dynamics in disease. Trends Cell Biol (2002) 12(12):598–605. doi: 10.1016/S0962-8924(02)02404-2

19. Tedeschi A, Dupraz S, Curcio M, Laskowski CJ, Schaffran B, Flynn KC, et al. ADF/cofilin activates integrin αβ1 leading to cell spreading and invasion of Pseudomonas aeruginosa. J Exp Med (2017) 214(1):59–71. doi: 10.1122/jem.20161228

20. Sun Y, Liang L, Dong M, Li C, Liu Z, Gao H. Cofilin 2 in serum as a novel Biomarker for Alzheimer’s Disease in Han Chinese. Front Aging Neurosci (2019) 11:214. doi: 10.3389/fnagi.2019.00214

21. Muñoz-Lasso DC, Molla B, Calap-Quintana P, García-Giménez JL, Pallardo FV, Palau F, et al. Cofilin dysregulation alters actin turnover in frataxin-deficient neurons. Sci Rep (2020) 10(1):5207. doi: 10.1145/341598-020-26050-7

22. Haugen AC, Di Prospero NA, Parker JS, Fannin RD, Chou J, Meyer JN, et al. Mutations affecting the actin regulator WD repeat-containing protein 1 lead to deficient neurons. J Exp Med (2019) 216(11):2437–57. doi: 10.1084/jem.20160579

23. Shoher T, Magg T, Laschinger M, Rohlfs M, Linhares ND, Puchalka J, et al. A human immunodeficiency syndrome caused by mutations in CARMIL2. Nat Commun (2017) 8:14209. doi: 10.1038/ncomms14209

24. Wang Y, Ma CS, Ling Y, Boushfa A, Camcioglu Y, Jacquot S, et al. Dual T cell- and B cell-intrinsic deficiency in humans with biallelic RLTPR mutations. J Exp Med (2016) 213(11):2413–35. doi: 10.1084/jem.20160576

25. Pfajfer L, Mair NK, Jimeńez JL, Pallardo EF, Bergo E, Auderset E, et al. The scaffolding function of the RLTPR protein explains its essential role for CD28 co-stimulation in mouse and human T cells. J Exp Med (2016) 213(11):2437–57. doi: 10.1084/jem.20160579

26. Roncagalli R, Cucchetti M, Jarman-1 N, Grete P, Bergo E, Auderset E, et al. Whole-exome sequencing identifies a novel RLTPR mutation leading to thrombocytopenia (PFIT) caused by mutation in actin-regulatory gene WRAP53. Blood (2017) 128(17):2135–43. doi: 10.1182/blood-2016-03-706028

27. Shiow LR, Roadcap DW, Paris K, Watson SR, Grigorova IL, Lebet T, et al. Identification, expression analysis and polymorphism of a novel RLTPR cDNA. J Immunol (2017) 199(10):5016–27. doi: 10.7414/S107149221700758-X

28. Exa MF, Elbashir E, Alroofi Q, Mohammed R, Alsuultan A. Successful hematopoietic stem cell transplantation in leukocyte adhesion deficiency type III presenting primarily as malignant infantile osteopetrosis. Clin Immunol (2020) 213:108365. doi: 10.1016/j.clinim.2020.108365

29. Qian X, Wang P, Wang H, Jiang W, Sun J, Wang X, et al. Successful umbilical cord blood transplantation in children with leukocyte adhesion deficiency type III. Acta Paediatr (2020) 99(1):34–42. doi: 10.1111/apa.14794

30. Ettioni A, Friedman P, Pollack S, Avidor I, Phillips ML, Paulson JC, et al. Receptor-Induced Severe Infections Caused by a Novel Leukocyte Adhesion Deficiency. J Exp Med (1992) 175(2):1789–92. doi: 10.1084/jem1992175272560

31. Wolach B, Gavrieli R, Wolach O, Stauber T, Abuzaitoun O, Kuperman A, et al. Leukocyte adhesion deficiency: A multicentre national experience. Eur J Clin Investig (2019) 49(2):e13047. doi: 10.1111/eci.13047

Frontiers in Immunology | www.frontiersin.org 9 January 2021 | Volume 11 | Article 604206
Papa et al. Actin Remodeling Defects

56. Ghose D, Lew D. Mechanistic insights into actin-driven polarity site
57. Murali A, Rajalingam K. Small Rho GTPases in the control of cell shape and
58. Lagresle-Peyrou C, Luce S, Ouchani F, Soheili TS, Sadek H, Chouteau M,
59. Slifer ZM, Blikslager AT. The Integral Role of Tight Junction Proteins in the
60. Johnson JL, Erickson JW. Cerione RA. C-terminal Di-arginine Motif of Cdc42
61. Akula MK, Ibrahim MX, Ivarsson EG, Khan OM, Kumar IT, Erlandsson M, et al.
62. Fu H, Alabdullah M, Großmann J, Spieler F, Abdsh R, Lutz V, et al. The differential statin effect on cytokine production of monocytes or macrophages is mediated by differential geranylgeranylation-dependent Rac activation. Cell Death Dis (2019) 10(12):880. doi: 10.1038/s41419-021-0958-9
63. Kolev M, West EE, Kunz N, Chauv D, Moseman EA, Rahman J, et al. Diapledes-Induced Intrins Intergel Signaling via LFA-1 Facilitates Tissue Immunity by Inducing Intrins Complex C3 Expression in Immune Cells. Immunity (2020) 52(3):531–537.e8. doi: 10.1016/j.immuni.2020.02.006
64. Yamada KM, Collins JW, Cruz Walma DA, Doyle AD, Morales SG, Lu J, et al. Extracellular matrix dynamics in cell migration, invasion and tissue morphogenesis. Int J Exp Pathol (2019) 100(3):144–52. doi: 10.1111/iep.12329
65. Guzman A, Avard RC, Devanny AJ, Kweon OS, Kaufman LJ. Membrane blebs play a critical role in a hybrid mode of cancer cell invasion in three-dimensional environments. J Cell Sci (2020) 133(8)jcs236778. doi: 10.1242/jcs.236778
66. Gernez Y, de Jesus AA, Alsaleem H, Macabaus C, Roy A, Lovell D, et al. Severe autoinflammation in 4 patients with C-terminal variants in cell division control protein 42 homolog (CDC42) successfully treated with IL-1β inhibition. J Allergy Clin Immunol (2019) 144(4):1122–5.e6. doi: 10.1016/j.jaci.2019.06.017
67. Takenouchi T, Kosaki R, Ninuma T, Hata K, Kosaki K. Macrophotobening and developmental delay with a de novo CDC42 mutation: Yet another locus for thrombocytopenia and developmental delay. Am J Med Genet A (2015) 167A (11):2822–5. doi: 10.1002/ajmg.a.37275
68. Takenouchi T, Okamoto N, Ida S, Uehara T, Kosaki K. Further evidence of a mutation in CDC42 as a cause of a recognizable syndromic form of thrombocytopenia. Am J Med Genet A (2016) 170A(4):852–5. doi: 10.1002/ajmg.a.37526
69. Motokawa M, Watanabe S, Nakatomi A, Kondoh T, Matsumoto T, Morifuji K, et al. A hot-spot mutation in CDC42 (p.Tyr64Cys) and novel phenotypes in the third patient with Takenouchi-Kosaki syndrome. J Hum Genet (2018) 63(3):387–90. doi: 10.1038/s41368-017-0396-5
70. Pleines I, Eckly A, Elvers M, Hagedorn I, Elslautou S, Bender M, et al. Multiple alterations of platelet functions dominated by increased secretion in mice lacking Cdc42 in platelets. Blood (2010) 115(16):3364–73. doi: 10.1182/blood-2009-09-242271
71. Burdage M, Keppler SJ, Gasparini F, Martinez-Martín N, Gaya M, Feest C, et al. Cdc42 is a key regulator of B cell differentiation and is required for antiviral humoral immunity. J Exp Med (2015) 212(1):53–72. doi: 10.1084/jem.20141143
72. Uehara T, Suzuki H, Okamoto N, Kondoh T, Ahmad A, O’Connor BC, et al. Pathogetic basis of Takenouchi-Kosaki syndrome: Electron microscopy study using platelets in patients and functional studies in a Caenorhabditis elegans model. Sci Rep (2019) 9(1):1–9. doi: 10.1038/s41598-019-40988-7
73. Martellini S, Kumbach OHF, Pantaleoni F, Coppola S, Amin E, Pannone L, et al. Functional Dysregulation of CDC42 Causes Diverse Developmental Phenotypes. Am J Med Genet A (2018) 102(2):309–20. doi: 10.1001/jamgen.2017.12.015
74. Williams DA, Tao W, Yang F, Kim C, Gu Y, Mansfield P, et al. Dominant negative mutation of the hematopoietic-specific Rho GTTase, Rac2, is associated with a human phagocyte immunodeficiency. Blood (2000) 96(5):9. doi: 10.1182/blood.V96.5.11646
75. Ambruso DR, Knoll C, Abell AN, Panejio J, Kurckhuhaschke A, Thurman G, et al. Human neutrophil immunodeficiency syndrome is associated with an inhibitory Rac2 mutation. Proc Natl Acad Sci USA (2000) 97(9):4654–9. doi: 10.1073/pnas.080074897
76. Alkhairy OK, Rezaei N, Graham RR, Abolhasanni H, Borte S, Hultenby K, et al. RAC2 loss-of-function mutation in 2 siblings with characteristics of common variable immunodeficiency. J Allergy Clin Immunol (2015) 135(5):1580–4.e5. doi: 10.1016/j.jaci.2014.10.039
77. Lougaris V, Chou J, Beano A, Wallace JG, Baronio M, Gazzarelli L, et al. A monoallelic activating mutation in RAC2 resulting in a combined immunodeficiency. J Allergy Clin Immunol (2019) 143(4):1649–53.e3. doi: 10.1016/j.jaci.2019.01.001
78. Nishikimi A, Fukuhara H, Su W, Hongu T, Takasuga S, Mihara H, et al. Human neutrophil immunodeficiency syndrome is associated with an inhibitory Rac2 mutation. Proc Natl Acad Sci USA (2000) 97(9):4654–9. doi: 10.1073/pnas.080074897
79. Kunimura K, Urutu T, Fukui Y. DOCK family proteins: key players in immune surveillance mechanisms. Int Immunol (2020) 32(1):5–15. doi: 10.1093/intimm/dzx067
80. Dobbs K, Dominguez Conde C, Zhang S-Y, Parolini S, Audry M, Chou J, et al. Inherited DOCK2 Deficiency in Patients with Early-Onset Invasive Infections. N Engl J Med (2015) 372(25):2409–22. doi: 10.1056/NEJMoa143462
81. Zhang Q, Davis JC, Lamborn IT, Freeman AF, Jing H, Favreau AJ, et al. Combined Immunoactivation and DOCK8 Mutations. N Engl J Med (2009) 361(21):2046–55. doi: 10.1056/NEJMoa0905506
82. Engelhardt KR, Gertz ME, Keles S, Schaffer AA, Sigmund EC, Glocker C, et al. Combined DOCK2 mutations in patients with early-onset neutrophil chemotaxis. Science (2009) 324(5925):384–7. doi: 10.1126/science.1170179
83. Buchbinder D, Kirov I, Danielson J, Shah NN, Freeman AF, Chavan RS, et al. Compound Heterozygous DOCK8 Mutations in a Patient with B Lymphoblastic Leukemia and EBV-Associated Diffuse Large B Cell Lymphoma. J Clin Immunol (2019) 39(6):592–5. doi: 10.1007/s10875-019-00663-y
84. Zhang Q, Dove CG, Hor JL, Murdock HM, Strauss-Albee DM, Garcia JA, et al. DOCK8 regulates lymphocyte shape integrity for skin antiviral immunity. *J Exp Med* (2014) 211(13):2349–66. doi: 10.1084/jem.20141307

85. Eken A, Cansever M, Okus FZ, Erdem S, Nain E, Azizoglu ZB, et al. ILC3 deficiency and generalized ILC2 abnormalities in DOCK8-deficient patients. *Allergy* (2020) 75(4):921–32. doi: 10.1111/all.14081

86. Amato C, Thomason PA, Davidson AJ, Swaminathan K, Ismail S, Machesky LM, et al. WASP Restricts Active Rac to Maintain Cells’ Front-Rear Polarization. *Curr Biol* (2019) 29(24):8469–82.e4. doi: 10.1016/j.cub.2019.10.036

87. Abdul-Manan N, Aghazadeh B, Liu GA, Majumdar A, Ouerfelli O, Siminovitch KA, et al. Structure of Cdc42 in complex with the GTPase-binding domain of the Wiskott-Aldrich syndrome protein. *Nature* (1999) 399(6734):379–83. doi: 10.1038/20726

88. Cook SA, Comrie WA, Poli MC, Simulk M, Oler AJ, Faraqi AJ, et al. HE1 deficiency disrupts mTORC2 and F-actin control in inherited immunodysregulatory disease. *Science* (2020) 369(6505):202–7. doi: 10.1126/science.aay5663

89. Volpi S, Santori E, Abernethy K, Mizui M, Dahlberg CIM, Recher M, et al. A combined immunodeficiency with neutropenia, eczema, anhidrosis, and cardiovascular abnormalities caused by ARPC1B deficiency. *Nat Immunol* (2020) 21(4):416–25. doi: 10.1038/s41590-019-0363-1

90. Zhang Q, Dove CG, Hor JL, Murdock HM, Strauss-Albee DM, Garcia JA, et al. PSTPIP1-associated myeloid-related proteinemia in Wiskott-Aldrich syndrome. A rare cause of childhood neutropenia associated with systemic inflammation and hyperzincemia. *Pediatr Blood Cancer* (2019) 66(1): e27439. doi: 10.1002/pbc.27439

91. Klotgen H-W, Beltramindi H, Yawalkar N, van Gijn ME, Holzinger D, et al. Expanding spectrum of clinical phenotypes associated with PSTPIP1 mutations: from PAPA to PAMI syndrome and beyond. *Br J Dermatol* (2018) 178(4):982–3. doi: 10.1111/bjd.16136

92. Hashmi SK, Bergstrom K, Bertuch AA, Despotovic JM, Muschal E, Xia P, et al. PSTPIP1-associated myeloid-related proteinemia inflammatory syndrome: a rare case of childhood neutropenia associated with systemic inflammation and hyperzincemia. *Pediatr Blood Cancer* (2019) 66(1): e27439. doi: 10.1002/pbc.27439

93. Park YM, Wood G, Kastner DL, Chae JJ, Pyrin inflammation activation and RhoA signaling in the autoinflammatory diseases FMF and HIDS. *Nat Immunol* (2016) 17(8):914–21. doi: 10.1038/ni.3457

94. Ho CY, Jaalouk DE, Vartainen KM, Lammers J, Lamin A/C and emerin regulate MKL1-SRF activity by modulating actin dynamics. *Nature* (2013) 497(7450):507–11. doi: 10.1038/nature12105

95. Sprekeler EGG, Henriot S, Tool A, Kreft IC, van der Bijl I, Aarts CCEM, et al. MKL1 deficiency results in a severe neutrophil motility defect due to impaired actin polymerization. *Blood* (2020) 135(24):2171–81. doi: 10.1182/blood.201902633

96. Record J, Malinova D, Zenner HL, Plagnol V, Nowak K, Syed F, et al. Immunodeficiency and severe susceptibility to bacterial infection associated with a loss-of-function homzygous mutation of MKL1. *Blood* (2015) 126(13):1527–35. doi: 10.1182/blood-2014-12-61012

97. Smith EC, Teixeira AM, Chen RC, Wang L, Gao Y, Hahn KL, et al. Induction of megakaryocyte differentiation drives nuclear accumulation and transcriptional function of MKL1 via actin polymerization and RhoA activation. *Blood* (2013) 121(7):1094–101. doi: 10.1182/blood-2012-05-429993

98. Gombart AF, Shiohara M, Kwok SH, Agematsu K, Komiyama A, Phillip Koehler F. Neutrophil-specific granule deficiency: Homozygous recessive inheritance due to a frameshift mutation in the gene encoding transcription factor CCAAT/enhancer binding protein-ε. *Blood* (2001) 97(9):2561–7. doi: 10.1182/blood.V97.9.2561

99. Göös H, Fogarty CL, Sahu B, Plagnol V, Rajamäki K, Nurmi K, et al. Gain-of-function CEBPE mutation causes noncanonical autoinflammatory inflammationinopathy. *J Allergy Clin Immunol* (2019) 144(5):1364–76. doi: 10.1016/j.jaci.2019.06.003

100. Savig CA, Casey EA, McDermott MF. Moving towards a systems-based classification of innate immune-mediated diseases. *Nat Rev Rheumatol* (2020) 16(4):222–37. doi: 10.1038/s41584-020-0377-5

101. Bludau I, Aebesold R. Proteomic and interactomic insights into the molecular basis of cell functional diversity. *Nat Rev Mol Cell Biol* (2020) 1:2137–40. doi: 10.1038/s41580-020-0321-2

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Papa, Penco, Volpi and Gattorno. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.