GEOMETRY AND TOPOLOGY OF SOME OVERDETERMINED ELLIPTIC PROBLEMS

ANTONIO ROS AND PIERALBERTO SICBALDI

Abstract. We prove some geometric and topological properties for regular (unbounded) domains $\Omega \subset \mathbb{R}^2$ that support a positive solution of the equation $\Delta u + f(u) = 0$, with 0 Dirichlet and constant Neumann boundary conditions, where f has Lipschitz regularity. In particular, we prove that if Ω has finite topology and there exists a positive constant R such that Ω does not contain balls of radius R, then any end of Ω stays at bounded distance from a straight line. As a corollary of this result, we prove that under the hypothesis that $\mathbb{R}^2 \setminus \overline{\Omega}$ is connected and there exists a positive constant λ such that $f(t) \geq \lambda t$ for all $t \geq 0$, then Ω is a ball. We study also some boundedness and symmetry properties of the function u and the domain Ω. In particular, if u is bounded and the domain lies in a half-plane, then we obtain that Ω is either a ball or a half-plane. Some of these geometric properties that we prove are established also for $\Omega \subset \mathbb{R}^n$.

1. Introduction and main results

Let Ω be a bounded connected open domain in \mathbb{R}^n with boundary of class C^2 and $\overline{\Omega} = \Omega \cup \partial \Omega$. Consider the Dirichlet problem

\begin{equation}
\begin{cases}
\Delta u + \lambda u = 0 & \text{in } \Omega \\
u = 0 & \text{on } \partial \Omega.
\end{cases}
\end{equation}

Denote by $\lambda_1(\Omega)$ the smallest positive constant λ for which this system has a nonzero solution (i.e., $\lambda_1(\Omega)$ is the first eigenvalue of the Euclidean Laplacian on Ω with 0 Dirichlet boundary condition). By the Krein–Rutman theorem, the solution u, up to a constant factor, is the only eigenfunction with constant sign in Ω and we can consider u to be positive on Ω.

Consider the functional $\Omega \to \lambda_1(\Omega)$ for all smooth bounded domains Ω in \mathbb{R}^n of the same volume, say $\text{Vol}(\Omega) = V$. A classical result due to Garabedian and Schiffer asserts that Ω is a critical point for λ_1 (among all domains of volume V) if and only if the first eigenfunction of the Laplacian in Ω with 0 Dirichlet boundary condition has also constant Neumann data at the boundary, see [12]. In this case, we say that Ω is an extremal domain for the first eigenvalue of the Laplacian, or simply an extremal domain. Extremal domains are then characterized as the domains for which there exists a positive constant λ such that the
overdetermined elliptic problem

\[
\begin{cases}
\Delta u + \lambda u = 0 & \text{in } \Omega \\
u > 0 & \text{in } \Omega \\
u = 0 & \text{on } \partial \Omega \\
\langle \nabla u, \nu \rangle = \text{const} & \text{on } \partial \Omega
\end{cases}
\]

(2)

can be solved, where \(\nu \) is the unit normal vector to \(\partial \Omega \) pointing outwards \(\Omega \) and \(\langle \cdot, \cdot \rangle \) denotes the scalar product in \(\mathbb{R}^n \). By a classical result due to J. Serrin, the only bounded domains where one can solve (2) are round balls, and in fact this result is true also for the more general overdetermined elliptic problem

\[
\begin{cases}
\Delta u + f(u) = 0 & \text{in } \Omega \\
u > 0 & \text{in } \Omega \\
u = 0 & \text{on } \partial \Omega \\
\langle \nabla u, \nu \rangle = \alpha & \text{on } \partial \Omega
\end{cases}
\]

(3)

where \(f \) is a \(C^1 \) function and \(\alpha \) is a constant, see [27]. Moreover, the proof of J. Serrin can be generalized in order to obtain the same result when \(f \) is supposed to have only Lipschitz regularity, see [23], p. 196. The paper of Serrin was very important because it made the moving plane method available to a large part of the mathematical community. This method had been introduced some years before by A. D. Alexandroff to prove that the only compact, constant mean curvature hypersurfaces embedded in \(\mathbb{R}^n \) are the spheres, see [3]. The idea of Serrin showed a profound link between overdetermined elliptic problems and the theory of constant mean curvature hypersurfaces.

Systems (2) and (3) can be studied also for unbounded domains, and therefore it is natural to study the geometry of domains \(\Omega \) where (2) or (3) admits a solution \(u \) that belongs to \(C^2(\Omega) \). We call a domain that satisfies (3) an \(f \)-extremal domain. In this paper we focus our attention on \(f \)-extremal domains, and \(f \) will always have at least Lipschitz regularity.

The case of exterior domains, i.e., domains that are the complement of a compact region, was studied by Reichel in [24] and Aftalion and Busca in [1]. Assuming that \(\Omega \) is the exterior of some bounded and smooth region \(D \) and \(u \) is a solution of (3) for some particular classes of \(f \) and with some assumptions on the behavior of \(u \) at infinity, they prove that \(D \) is a ball.

The interesting case of 0-extremal domains of \(\mathbb{R}^2 \) has been recently studied by F. Hélein, L. Hauswirth and F. Pacard. In [16] they provide the following nontrivial example of 0-extremal domain:

\[
\Omega_* = \left\{ \omega \in \mathbb{C} : |\text{Im } \omega| < \frac{\pi}{2} + \cosh(\Re \omega) \right\},
\]
and they conjecture that Ω_*, the half-planes and the complements of a ball are the only 0-extremal domains in \mathbb{R}^2. Their work is inspired by the theory of minimal surfaces, and it is interesting to remark that 0-extremal domains arise as limits under scaling of sequences of λ-extremal domains just like minimal surfaces arise as limits under scaling of sequences of constant mean curvature surfaces.

In some recent papers, A. Farina and E. Valdinoci study problem (3) in order to obtain natural geometric assumptions under which one can conclude that Ω is a half-space and u is a function of only one variable, see [9], [10] and [11]. In these papers many results are proved, and we want to recall some of them. A first result they obtain is that if Ω is a globally Lipschitz smooth epigraph of \mathbb{R}^n, with $n \geq 2$, then there exists no solution $u \in C^2(\Omega) \cap L^\infty(\Omega)$ for the problem (2) without the Neumann condition at the boundary. In fact, the proof of Farina and Valdinoci applies to prove the same result for problem (3) when $f(u) \geq \lambda u$ for a given positive constant λ. In our paper we obtain such a result in a different way. A second result of A. Farina and E. Valdinoci, that we will use in our paper, is the following (we refer to it as Theorem 1.6 of [9], even though this is only a part of the original theorem): if f is locally Lipschitz, $n = 2$, and Ω is a uniformly Lipschitz coercive epigraph of class C^3, then there exists no function $u \in C^2(\Omega) \cap L^\infty(\Omega)$ which is solution of (3) (the definition of uniformly Lipschitz coercive epigraph is presented below). An other result of A. Farina and E. Valdinoci, that also we will use in our paper, is the following (we refer to it as Theorem 1.2 of [9], even though this is only a part of the original theorem): if f is locally Lipschitz, $n = 2$, and $u \in C^2(\Omega)$ is a solution of (3) increasing in the second variable and with bounded gradient, then Ω is a half-plane.

We remark that if (3) is solvable, then the solution u is unique, also for unbounded domains. In fact, if u_1 and u_2 are two functions that satisfy the elliptic equation of system (3) such that there exists a C^1 subset Γ of $\partial \Omega$ where $u_1 = u_2$ and $\langle \nabla u_1, \nu \rangle = \langle \nabla u_2, \nu \rangle$, then $u_1 = u_2$ in the whole Ω, see [11]. It is clear that in (3), the constant α must be negative because u is positive in Ω.

Berestycki, Caffarelli and Nirenberg conjectured in [4] that if f is a Lipschitz function on \mathbb{R}_+ and Ω a domain in \mathbb{R}^n such that $\mathbb{R}^n \setminus \Omega$ is connected, then the existence of a bounded solution to (3) implies that Ω is either a ball, a half-space, a generalized cylinder $B^k \times \mathbb{R}^{n-k}$ where B^k is a ball in \mathbb{R}^k, or the complement of one of them. In [29], P. Sicbaldi provided a counterexample to this conjecture in dimension bigger or equal to 3 when f is a linear function. In [28], F. Schlenk and P. Sicbaldi improved such result by constructing a smooth 1-parameter family of unbounded domains $s \mapsto \Omega_s$ in \mathbb{R}^{n+1} for $n \geq 1$, whose boundaries are smooth periodic hypersurfaces of revolution with respect to an \mathbb{R}-axis and such that (2) has a bounded solution in Ω_s. They prove this result by showing that the cylinder $B^n \times \mathbb{R} \subset \mathbb{R}^{n+1}$ (for which it is easy to find a bounded solution to (2)) bifurcates into unbounded domains whose boundary is a periodic hypersurface of revolution with respect to the axis of the cylinder, and such that (2) has a bounded solution, paralleling in some sense the construction of the well known family of constant mean curvature surfaces of Delaunay. The technique used by F. Schlenk and P. Sicbaldi is based on the Crandall-Rabinowitz bifurcation theorem, see [6]. This result provides a smooth 1-parameter family
of counterexamples to the conjecture of Berestycki-Caffarelli-Nirenberg in dimension bigger or equal to 3, but not in dimension 2 because in this case, Ω_0 is a perturbation of a strip in \mathbb{R}^2 and then its complement is not connected. In dimension 2 the conjecture of Berestycki-Caffarelli-Nirenberg is still open, and in this paper we will give a partial answer to it.

In this paper we study some properties of the geometry and topology of f-extremal domains Ω, and we will focus our attention on 2-dimensional domains.

In order to state our results, let us recall some topological facts. Denote by $B^n_R \subset \mathbb{R}^n$ the open ball centered at the origin and radius R. In our context, if the domain $\Omega \subset \mathbb{R}^n$ has finite topology then outside of a ball B^n_R of large radius R, we have that either

- $\Omega \setminus B^n_R$ is empty and then Ω is compact, or
- $\Omega \setminus B^n_R$ is equal to $\mathbb{R}^n \setminus B^n_R$ and then Ω is the complement of a compact region, or
- $\Omega \setminus B^n_R$ has a finite number of connected noncompact components and each component E is diffeomorphic to $B^{n-1}_1 \times [0, +\infty[$.

In the last case we can assume that the sphere ∂B^n_R intersects $\partial \Omega$ transversally and each component of $\partial B^n_R \cap \partial \Omega$ is diffeomorphic to ∂B^{n-1}_1, and we say that Ω has proper finite topology and E will be called a solid cylindrical end of Ω, and a planar strip end of Ω if $n = 2$. If $n = 2$, then Ω has proper finite topology if and only if it is noncompact, $\partial \Omega$ has a finite number of boundary components, some of them being noncompact. Moreover the ends of Ω have the topology of a half-strip $[0, 1] \times [0, +\infty[$. In this case, the number of ends coincides with the number of noncompact components of $\partial \Omega$.

Let now define the following property:

P_1 : there exists a positive constant R such that $\overline{\Omega}$ does not contain any closed ball of radius R.

We will prove the following:

Theorem 1.1. Let Ω be an f-extremal domain of \mathbb{R}^2 of finite topology, satisfying the property P_1. Then, the following properties hold:

- **(T1)** If E is a planar strip end of Ω, then E stays at bounded distance from a straight line.
- **(T2)** Ω cannot have only one planar strip end.
- **(T3)** If Ω has exactly two planar strip ends, then there exist a line L such that Ω is at bounded distance from L (i.e., Ω satisfies property P_0), and the two ends are on opposite sides with respect to any line orthogonal to L.

Ends can be defined also for surfaces: a hypersurface M properly embedded in \mathbb{R}^n has proper finite topology if for a large R we have that $M \setminus B^n_R$ has a finite number of connected noncompact components, the sphere ∂B^n_R intersects M transversally, and each component E of $M \setminus B^n_R$ is diffeomorphic to $S^{n-1}_1 \times [0, \infty[$, where S^{n-1}_1 is the boundary of B^n_1. Such E is called an annular end of Ω. To underline once more the link with the geometry of constant mean curvature surfaces, we recall that in [22] W. H. Meeks proved that if E is an annular end of an embedded, non-zero constant mean curvature surface M in \mathbb{R}^3 of proper finite topology, then
(R1) E stays at bounded distance from a straight line.
(R2) M cannot have only one annular end;
(R3) If M has exactly two annular ends, then M stays at bounded distance from a straight line.

The similarity of the statements of our results on extremal domains and the parallel results in the context of constant mean curvature surfaces and extremal domains is evident. Nevertheless, the two problems are very different, we only recall the fact that the geometry of constant mean curvature surfaces is local, while the geometry of extremal domains is global. Consequently, the proofs of such two parallels might be different.

We want now to link property P_1 with the overdetermined problem (3). Consider a Lipschitz function f that satisfies the property P_2: there exists a positive constant λ such that $f(t) \geq \lambda t$ for all $t > 0$.

We will obtain the following result:

Theorem 1.2. Let Ω be an f-extremal domain of \mathbb{R}^2, where f satisfies property P_2. Then, the following properties hold:

1. **(T4)** There exists a positive constant R such that $\overline{\Omega}$ does not contain any closed ball of radius R (i.e., Ω satisfies property P_1).
2. **(T5)** There exists a positive constant h_0 such that every connected component of $\{x \in \Omega \mid u(x) > h_0\}$, where u is the solution of (3), is contained in a ball of radius $\frac{\sqrt{5}}{2}R$.

In fact, as we will prove, property T4 is true for f-extremal domains Ω contained in \mathbb{R}^n, and not only in \mathbb{R}^2. By Theorem 1.2, property P_1 is satisfied if f satisfies property P_2. Then all the conclusions of Theorem 1.1 are true for f-extremal domains of \mathbb{R}^2 when f satisfies property P_2. In particular, we obtain the following result, that gives a partial affirmative answer to the conjecture of Berestycki-Caffarelli-Nirenberg in dimension 2:

Corollary 1.3. Let Ω be an f-extremal domain of \mathbb{R}^2, where f satisfies property P_2, such that $\mathbb{R}^2 \setminus \overline{\Omega}$ is connected. Then, Ω is a ball.

Corollary 1.3 follows immediately from Theorem 1.1 because if Ω is a (connected) domain and its complement is connected, then Ω has the topology of a disc and its boundary consists just of one planar curve. Hence $\partial \Omega$ separates \mathbb{R}^2 into two connected components. Then, Ω is either bounded, or the complement of a compact domain, or a proper finite topology domain with only one end. The corollary now follows from Theorems 1.2 (T4), 1.1 (T2), and the classical Serrin’s result. We emphasize the fact that boundedness of the solution u of the overdetermined problem (3) is not assumed: under the hypothesis of Corollary 1.3, u is bounded “a fortiori”. Moreover, we remark that under the hypothesis P_2, the complement of a ball and the half-plane do not support any solution (bounded or unbounded) to the overdetermined problem (3).
In section 6 we study some global properties of domains where there exists a solution of the elliptic overdetermined problem (3), without any extra assumption on the function f.

In order to state such results, we give the following definition.

Definition 1.4. Let Ω be a domain whose boundary is made by a unique proper arc Γ. We say that the domain Ω is an **epigraph** if, after a suitable choice of coordinates, Γ is the graph of a C^2 function $\varphi : \mathbb{R} \to \mathbb{R}$, i.e.,

$$\Omega = \{(x, y) \in \mathbb{R}^2 \mid y > \varphi(x)\}.$$

The epigraph Ω is said to be **coercive** if

$$\lim_{|x| \to +\infty} \varphi(x) = +\infty.$$

The epigraph Ω is said to be **uniformly Lipschitz** if φ is uniformly Lipschitz.

The result we will prove is the following:

Theorem 1.5. Let Ω be an f-extremal domain of \mathbb{R}^2 (no restriction about the topology of the domain). The following properties hold:

(T6) If Ω is contained in a wedge of angle less than π, then Ω is either a ball or a uniformly Lipschitz epigraph.

(T7) If Ω is contained in a wedge of angle less than $\pi/2$, then Ω is a ball.

(T8) If Ω is contained in a half-plane, then Ω is either a ball or (after a rigid motion) there exists a C^2 positive function $\varphi : \mathbb{R} \to [0, +\infty[$ such that either

i. the domain Ω is an epigraph $\{y > \varphi(x)\}$, or

ii. φ is bounded and Ω is the symmetric domain $\{|y| < \varphi(x)\}$.

(T9) If Ω is unbounded and $\partial \Omega$ is done by a unique proper arc, then either Ω is an epigraph or it contains a half-plane. Moreover f does not satisfy property P_2.

We remark that Corollary 1.3 can be obtained also from Theorem 1.5 (T9), using theorem 1.2 (T4).

If Ω is an epigraph contained in a wedge $\{y > c|x|\}, c > 0$ (i.e., the angle of the wedge is less than π), then it is clearly a coercive epigraph. From Theorem 1.6 in [9] we conclude the following result.

Corollary 1.6. Let Ω be a C^3-domain (with arbitrary topology) and u a solution of problem (3). If Ω is contained in a wedge of angle less than π and u is bounded, then Ω is a ball.

Remark 1.7. Even for unbounded u, it is natural to conjecture that any Ω contained in a wedge of angle less than π is a ball.

We remark that u bounded implies that $|\nabla u|$ is bounded, see section 1.2 of [9] and [13].

A basic geometric step of Theorem 1.6 of [9] is the fact that if Ω is a coercive epigraph, then u must be strictly increasing in the second variable. This follows from the moving line argument, see [8] and [4]. In our proof of T8 we use a tilted moving line argument and in the case of item i we obtain that the moving line reflection can be applied for any horizontal line. It follows that $\partial u/\partial y > 0$ and from Theorem 1.2 in [9] we have the
Corollary 1.8. Let Ω be a C^3-domain in \mathbb{R}^2 such that $\mathbb{R}^2 \setminus \Omega$ is connected and u be a solution of problem (3). If Ω is contained in a half-plane and the gradient of u is bounded, then either Ω is a ball and u is a radial function or (after a rigid motion) $\Omega = \{ y > 0 \}$ and u depends only on the variable y.

As u bounded implies that $|\nabla u|$ is bounded, it follows that Corollary 1.8 proves the Berestycki-Caffarelli-Nirenberg conjecture when Ω lies in a halfplane.

As we will see, the proof of property T8 of theorem 1.5 can be adapted to n-dimensional domains Ω, for any $n > 2$, but only with the extra assumption that Ω is contained in a cylinder. We get then the following result.

Theorem 1.9. Let Ω be an f-extremal domain of \mathbb{R}^n, $n \geq 2$, satisfying the property that there exists a line L such that Ω is at bounded distance from L (i.e., Ω is contained in a cylinder). Then, Ω has two ends, its boundary is rotationally symmetric with respect to a straight line parallel to L and its generating curve is a bounded planar graph over this axis, i.e., there exists a C^2 positive function $\varphi : \mathbb{R} \to [0, \infty[$ such that Ω (after a suitable rigid motion) is the domain $\{(x, y) \in \mathbb{R} \times \mathbb{R}^{n+1} \mid |y| < \varphi(x)\}$.

Theorem 1.9 is the parallel of a well known result on constant mean curvature surfaces due to N. J. Korevaar, R. Kusner and B. Solomon: if M is a properly embedded, non-zero constant mean curvature surface M in \mathbb{R}^3 (or more generally a properly embedded, non-zero constant mean curvature hypersurface in \mathbb{R}^n) contained in a solid cylinder, then M is rotationally symmetric with respect to a line parallel to the axis of the cylinder. In the constant mean curvature case, W. H. Meeks in [22], and N. J. Korevaar, R. Kusner and B. Solomon in [18] proved that finite topology properly embedded surfaces have ends asymptotic to Delaunay surfaces. The construction of surfaces with this geometry has led to powerful methods in Geometric Analysis, see the paper of N. Kapouleas [17] and the papers of R. Mazzeo, F. Pacard and D. Pollack [20, 21]. A particularly related situation to our overdetermined problem (3) is the study of coplanar end surfaces, see the papers of C. Cosin and A. Ros [5], and K. Große-Brauckmann, R. Kusner and J. Sullivan [15] and that of these authors joint with N. Korevaar and J. Ratzkin [14].

From property T8 of theorem 1.5 we have that if the domain Ω is unbounded and contained in a strip, then it is symmetric with respect to an axis contained in the strip and its boundary has two connected components which are graphs over that axis.

Remark 1.10. We conjecture that if Ω has proper finite topology, then each planar strip end of Ω has this asymptotic geometry.

We remark that the domains of the family $s \to \Omega_s$ of periodic and symmetric perturbations of the strip found by F. Schlenk and P. Sicbaldi in [28] are examples of such kind of extremal domains.

In the last section, we focus our attention on the geometry of double periodic domains of \mathbb{R}^2 where system (3) can be solved. Let T^2 be a flat torus obtained as a quotient of \mathbb{R}^2 by a lattice, i.e., $T^2 = \mathbb{R}^2 / \langle v_1, v_2 \rangle$, where v_1 and v_2 are two linearly independent nonzero vectors of \mathbb{R}^2 and
\[\langle v_1, v_2 \rangle = \{ a v_1 + b v_2 : a, b \in \mathbb{Z} \}. \]

It is clear that a (connected) domain in \(\mathbb{T}^2 \) corresponds to a (possibly nonconnected) double periodic domain in \(\mathbb{R}^2 \). We will prove the following result:

Theorem 1.11. Let \(\Omega \) be a (connected) domain of \(\mathbb{T}^2 \) that supports a solution \(u \in C^2(\Omega) \cap C^3(\Omega) \) to problem (3), where \(f \) is a \(C^1 \) function such that

\[(4) \quad 2 \max_{x \in \Omega} \int_0^{u(x)} f(s) \, ds < \alpha^2. \]

Then, each component of \(\mathbb{T}^2 \setminus \Omega \) is strictly convex.

The previous theorem is true in particular for the linear function \(f(t) = \lambda t \). We state it in the formulation of a double periodic domain of \(\mathbb{R}^2 \).

Corollary 1.12. Let \(\Omega \) be a connected component of a (possibly nonconnected) double periodic open domain of \(\mathbb{R}^2 \). Let us suppose that there exists a doubly periodic solution \(u \in C^2(\Omega) \cap C^3(\Omega) \) to the overdetermined problem

\[(5) \begin{cases}
\Delta u + \lambda u = 0 & \text{in } \Omega \\
u > 0 & \text{in } \Omega \\
u = 0 & \text{on } \partial \Omega \\
\langle \nabla u, \nu \rangle = \alpha & \text{on } \partial \Omega
\end{cases} \]

where \(\lambda \) is a positive constant and \(\alpha \) is a constant. If

\[(6) \quad \max_{\Omega} u < \frac{|\alpha|}{\sqrt{\lambda}}, \]

then each component of \(\mathbb{R}^2 \setminus \Omega \) is strictly convex.

We state explicitly Corollary 1.12 because it is interesting to remark that \(\frac{|\alpha|}{\sqrt{\lambda}} \) is the maximum value of the function \(u \) that satisfies (5) in the strip \([0, \pi/\sqrt{\lambda}] \times \mathbb{R} \). Such a result implies that the maximum value of the (bounded) function \(u \), that satisfies (5) in the domains of the family \(s \to \Omega_s \) of periodic and symmetric perturbations of the strip found by F. Schlenk and P. Sicbaldi in [28], is bigger or equal to \(\frac{|\alpha|}{\sqrt{\lambda}} \). This follows from the fact that \(\mathbb{R}^2 \setminus \Omega_s \) is not convex (by construction of \(\Omega_s \)).

In order to simplify the exposition, we will start by proving Theorem 1.2, then we will continue with Theorems 1.1, 1.5, 1.9, and 1.11.

Acknowledgments. This paper was started in April 2011, when the second author visited the University of Granada. The first author is partially supported by MEC-FEDER Grants MTM2007-61775, MTM2011-22547 and J. Andalucía Grant no. P09-FQM-5088. The second author is grateful to the members of the Department of Geometry and Topology.
of the University of Granada for their warm hospitality, to the International Scientific Coordination Network ‘Geometric Analysis’ (France and Spain) and to the applied analysis group of the LATP of Marseille for financial supporting. Both authors thank Alberto Farina and Joaquín Pérez for useful suggestions.

2. A NARROWNESS PROPERTY OF THE DOMAIN VIA THE MAXIMUM PRINCIPLE

To every positive constant \(\lambda \) we can associate the radius \(R_\lambda \) of balls whose first eigenvalue of the Laplacian with 0 Dirichlet boundary condition is \(\lambda \). In other words, \(R_\lambda \) is the positive constant such that one can solve

\[
\begin{align*}
\Delta v + \lambda v &= 0 \quad \text{in } B_{R_\lambda}(p) \\
v &> 0 \quad \text{in } B_{R_\lambda}(p) \\
v &= 0 \quad \text{on } \partial B_{R_\lambda}(p)
\end{align*}
\]

where \(B_{R_\lambda}(p) \) is the ball of \(\mathbb{R}^n \) of radius \(R_\lambda \) and center \(p \in \mathbb{R}^2 \). We remark that the first eigenvalue of the Dirichlet-Laplacian on a ball of radius \(R \) is given by

\[
R^{-2} \lambda_1(B_1)
\]

where \(\lambda_1(B_1) \) is the first eigenvalue the Laplacian on the unit ball in \(\mathbb{R}^n \) with 0 Dirichlet boundary condition, and then \(R_\lambda \) depends on the constant \(\lambda \) and the dimension \(n \).

Property T4 of Theorem 1.2, and some more details, are an immediate consequence of the following result:

Proposition 2.1. Let us suppose \(\Omega \) is an open (bounded or unbounded) connected domain of \(\mathbb{R}^n \) such that one can find a (strictly) positive function \(u \in C^2(\Omega) \) that solves the elliptic equation

\[
\Delta u + f(u) = 0 \quad \text{in } \Omega,
\]

where \(f : (0, +\infty) \to \mathbb{R} \) satisfies property \(P_2 \). Then, \(\Omega \) does not contain any closed ball of radius \(R_\lambda \). Moreover, if \(u \) satisfies the boundary conditions

\[
\begin{align*}
u &= 0 \quad \text{on } \partial \Omega \\
\langle \nabla u, \nu \rangle &= \alpha \quad \text{on } \partial \Omega
\end{align*}
\]

for some constant \(\alpha \), then either the closure \(\overline{\Omega} \) does not contain any closed ball of radius \(R_\lambda \) or \(\Omega \) is a ball of radius \(R_\lambda \).

Proof. Let \(u \) be a solution of equation (8) where \(f \) satisfies property \(P_2 \). Let us suppose that there exists a point \(p \in \mathbb{R}^2 \) such that \(B_{R_\lambda}(p) \subseteq \Omega \). If \(v \) is the solution of (7) normalized to have \(L^2 \)-norm equal to 1, then it is possible to choose \(\epsilon > 0 \) such that the function

\[
v_\epsilon = \epsilon v
\]

has the following properties (see fig. 1):

1. \(v_\epsilon(x) \leq u(x) \) for all \(x \in \overline{B_{R_\lambda}(p)} \);
(2) there exists \(x_0 \in B_{R_{\lambda}}(p) \) such that \(v_{\epsilon}(x_0) = u(x_0) \).

The function \(v_{\epsilon} \) satisfies (7) and then, by property \(P_2 \), the function \(u - v_{\epsilon} \) satisfies

\[
\Delta(u - v_{\epsilon}) \leq -\lambda(u - v_{\epsilon}) \leq 0 \quad \text{in} \quad B_{R_{\lambda}}(p)
\]

Moreover \(u - v_{\epsilon} \) is a nonnegative function that attains its minimum at the interior point \(x_0 \). The maximum principle (see [13], p.32) leads to a contradiction.

![Figure 1. The domain \(\Omega \), a portion of the graph of the function \(u \) and the graph of the function function \(\epsilon v \) over the ball of radius \(R_{\lambda} \).](image)

Now let us suppose that \(\Omega \) is unbounded and \(u \) satisfies the boundary conditions (9). By the previous statement it is clear that \(\Omega \) does not contain any closed ball of radius \(R_{\lambda} \). Let us suppose that there exists a point \(p \in \mathbb{R}^2 \) such that \(\overline{B_{R_{\lambda}}(p)} \subseteq \overline{\Omega} \). Then, the boundary of \(\overline{B_{R_{\lambda}}(p)} \) touches the boundary of \(\Omega \) in some point \(q \). Boundary conditions (9) imply that there exists a positive constant \(\delta_0 \) such that the function

\[
v_{\delta_0} = \delta_0 v
\]

has the following properties:

(1) \(v_{\delta_0}(x) < u(x) \) for all \(x \in B_{R_{\lambda}}(p) \), and

(2) the Neumann data of \(v_{\delta_0} \) at the boundary \(B_{R_{\lambda}}(p) \) are equal to a negative constant \(\beta \) such that \(\beta > \alpha \).

Now, as the parameter \(\delta \) increases starting from \(\delta_0 \), defining \(v_{\delta} \) as \(\delta v \), one of the two situations occurs:

(1) \(v_{\delta}(x_0) = u(x_0) \) for some \(x_0 \in B_{R_{\lambda}}(p) \);

(2) the Neumann data of \(v_{\delta} \) becomes equal to \(\alpha \) and \(v_{\delta}(x) < u(x) \) for all \(x \in B_{R_{\lambda}}(p) \).

The first situation above implies, by the maximum principle, that \(u = v_{\delta} \) and then \(\Omega = B_{R_{\lambda}}(p) \). In the second case, we have that \(u - v_{\delta} \) is a positive function in \(B_{R_{\lambda}}(p) \) with

\[
\Delta(u - v_{\delta}) \leq -\lambda(u - v_{\delta}) \leq 0
\]
and at \(q \in \partial \Omega \cup \partial B_{R_{\lambda}}(p) \) we have \((u - v_{\delta})(q) = 0\) and \(\langle \nabla(u - v_{\delta}), \nu \rangle(q) = 0\), leading to a contradiction by the maximum principle (see [13], p.34).

\[\square \]

The previous proposition says us that if \(f \) satisfies property \(P_2 \), then the domain \(\Omega \) is quite narrow, in the sense that it does not contain any ball which radius is bigger or equal to the given constant \(R_{\lambda} \). An immediate consequence is the following:

Remark 2.2. If \(\Omega \) admits a positive solution of (8) and \(f \) satisfies property \(P_2 \), then \(\Omega \) cannot be neither the complement of a ball, nor a half-space, nor an epigraph, nor the complement of a cylinder \(B^k \times \mathbb{R}^{n-k} \) where \(B^k \) is a round ball in \(\mathbb{R}^k \).

3. Symmetry properties of the domain via the moving plane method

One of the most important tools coming from the maximum principle is the moving plane method. It was introduced by A. D. Alexandrov [3] in order to prove that the only embedded, compact mean curvature hypersurface in \(\mathbb{R}^n \) is the sphere. In a very elegant paper [27], J. Serrin adapted the moving plane method to bounded domains where the elliptic overdetermined problem (3) can be solved, in order to prove a strong symmetric property. In fact, he improved one of the central ingredients of Alexandrov’s proof, the maximum principle at the boundary, proving what we now call the boundary maximum principle at a corner. Let us outline the result of J. Serrin [27], see also [23].

Let us suppose that \(\Omega \) is a bounded open domain of \(\mathbb{R}^n \) whose boundary is of class \(C^2 \) and there exists a solution \(u \in C^2(\overline{\Omega}) \) to the problem (3), where \(f \) is of class \(C^1 \) (in fact only Lipschitz regularity is required, as shown in [24]). Let \(T_0 \) be a hyperplane in \(\mathbb{R}^n \) not intersecting the domain \(\Omega \) (the boundedness of \(\Omega \) guarantees the existence of \(T_0 \)). We suppose this hyperplane to be continuously moved normal to itself until it intersects by first time \(\Omega \). From that moment onward, at each stage of the motion the resulting hyperplane \(T \) will cut off from \(\Omega \) a bounded cap \(\Sigma(T) \) (\(\Sigma(T) \) is the portion of \(\Omega \) which lies on the same side of \(T \) as the original hyperplane \(T_0 \), and its boundedness comes from the boundedness of \(\Omega \)). For any cap \(\Sigma(T) \) thus formed, let \(\Sigma'(T) \) be its reflection about \(T \). \(\Sigma'(T) \) is contained in \(\Omega \) at the beginning of the process, and indeed as \(T \) advances into \(\Omega \), the resulting cap \(\Sigma'(T) \) will stay within \(\Omega \) at least until one of the following two events occurs:

1. \(\Sigma'(T) \) becomes internally tangent to the boundary of \(\Omega \) at some point not on \(T \), or
2. \(T \) reaches a position where it is orthogonal to the boundary of \(\Omega \) at some point.

Denote the hyperplane \(T \) when it reaches either one of these positions by \(T' \). The main result of Serrin is the following:

Theorem 3.1. (J. Serrin, 1971, [27]) The reflected cap \(\Sigma'(T') \) coincides with the part of \(\Omega \) on the same side of \(T' \) as \(\Sigma'(T') \); that is, \(\Omega \) is symmetric about \(T' \).

As a corollary of this theorem we have that the only bounded domains \(\Omega \) where one can solve (3) are balls. In fact, the boundedness of \(\Omega \) implies that for any given direction of \(\mathbb{R}^n \), there exists an hyperplane \(T' \) normal to that direction such that \(\Omega \) is symmetric about \(T' \).
Moreover, the construction of Ω as union of caps $\Sigma(T')$ and $\Sigma'(T')$ implies that Ω is simply connected. But the only simply connected domains which have the symmetry property are balls.

We will refer to Theorem 3.1 as the Serrin’s reflection method. We remark that the boundedness of Ω is used only to guarantee the existence of the original nonintersecting plane T_0 and the compacity of the cap $\Sigma(T)$. We remark also that the regularity hypothesis on the boundary of Ω (it is asked to be of class C^2) is a technical hypothesis used in the proof of Theorem 3.1.

We can use the Serrin’s technique to obtain some symmetry results for unbounded domains. Let Ω be an unbounded open domain of \mathbb{R}^n whose boundary is of class C^2 and let u be a $C^2(\Omega)$-solution to problem (3). Let L be an hyperplane in \mathbb{R}^n that intersects Ω, and let L^+ and L^- be the two connected components of $\mathbb{R}^n \setminus L$. We are interested in the geometry of bounded connected components of $\Omega \cap L^+$ or $\Omega \cap L^-$.

Proposition 3.2. Let us suppose that $\Omega \cap L^+$ has a bounded connected component C. Then, the closure of $\partial C \cap L^+$ is a graph over $\partial C \cap L$ (see fig. 2).

![Figure 2](image)

Proof. The proof of this proposition is based on the Serrin’s reflection method. By the boundedness of C, there exists a hyperplane $T_0 \in L^+$ parallel to L not intersecting C. When this hyperplane is continuously moved normal to itself, it will intersect C a first time. From that moment on, at each stage of the motion the resulting hyperplane T will cut off from C a bounded cap $\Sigma(T)$. For any cap $\Sigma(T)$ thus formed, let $\Sigma'(T)$ be its reflection about T. $\Sigma'(T)$ is contained in Ω at the beginning of the process, and as T advances into C, the resulting cap $\Sigma'(T)$ will stay within Ω at least until one of the following three events occurs:

1. $\Sigma'(T)$ becomes internally tangent to the boundary of Ω at some point not on T, or
2. T reaches a position where it is orthogonal to the boundary of Ω at some point, or
3. T coincides with L.

The first two events are not possible by the Serrin’s reflection, because Ω is unbounded. This means that $\Sigma'(T)$ stays within Ω for all hyperplane parallel to T_0 staying between T_0 and L (fig. 2), and then the closure of $\partial \Sigma(L) \cap L^+$, i.e., the closure of $\partial C \cap L^+$ is a graph over $\partial C \cap L$.

The previous proposition and its proof immediately imply the following properties:

Corollary 3.3. $\partial C \cap L$ is connected.

Corollary 3.4. The closure of $\partial C \cap L^+$ is not orthogonal to L at any point.

Proof. In fact, if the closure of $\partial C \cap L^+$ meets L orthogonally, then Ω is symmetric with respect to L, which contradicts the fact that Ω is unbounded.

Corollary 3.5. If C' is the reflection of C about L, then the closure of $C \cup C'$ stays within Ω, see fig. 2.

We remark that L is an arbitrary hyperplane such that there exists a bounded connected component C of $\Omega \cap L^+$.

Now, let us suppose that f satisfies property P_2. Then by Proposition 2.1 and Corollary 3.5 we have the following:

Corollary 3.6. If f satisfies property P_2, then it is not possible to construct a half-ball of radius R_λ having base on $\partial C \cap L$ and staying within C.

Corollary 3.6 follows immediately from the fact that if f satisfies property P_2 and C' is the reflection of C about L, then the closure of $C \cup C'$ cannot contain any closed ball of radius R_λ.

4. Boundedness properties for the solution of the elliptic problem

Let Ω be an open unbounded connected domain of \mathbb{R}^2 whose boundary is of class C^2, and such that there exists a function $u \in C^2(\Omega)$ that solves the elliptic problem \(3\). Let R_λ be the radius of the ball whose first eigenvalue of the Dirichlet-Laplacian is λ, and v the solution of (7) such that
\[
\langle \nabla v, \nu \rangle = \alpha
\]
at the boundary of $B_{R_\lambda}(p)$. Denote
\[
h_0 := h_0(\lambda, \alpha) := \max_{B_{R_\lambda}(p)} v = v(p)
\]

Property T5 of Theorem 1.2 follows from the following proposition. Similar geometric ideas were used by J. M. Espinar, J. A. Gálvez and H. Rosenberg in [7] in the context of constant curvature surfaces.

Proposition 4.1. Let f satisfy property P_2. Let Ω' be a connected component of
\[
\{x \in \Omega \mid u(x) > h_0\}
\]
Then, the diameter of Ω' is smaller than $2R_\lambda$. In particular, there exists a point p such that $\overline{\Omega'} \subset B_R(p)$, where $R = \frac{\sqrt{5}}{2}R_\lambda$.

Proof. Let $h \geq h_0$ be a regular value of u (by the Sard’s theorem, almost all $h \geq h_0$ are regular values). Let C be a connected component of $\partial \Omega'$. C could be bounded or unbounded, see fig. 3.

First let us suppose that C is bounded, i.e., it is a closed curve. Let d be its diameter, i.e., the maximum of the distance between any two points of C. Let us suppose $d \geq 2R_\lambda$, and let q_1 and q_2 be two points of C such that the distance between q_1 and q_2 is bigger or equal to $2R_\lambda$, see fig. 3. Let m be the mid point of the segment $\overline{q_1q_2}$, denote by L_1 the line containing $\overline{q_1q_2}$ and by L_2 the line orthogonal to the segment $\overline{q_1q_2}$ passing through m. Let γ be one of the portions of C joining q_1 and q_2, and consider the curve $\Gamma = (L_1 \setminus \overline{q_1q_2}) \cup \gamma$.

Let H_1 be the component of $\mathbb{R}^2 \setminus \Gamma$ not containing Ω', let H_2 be other component of $\mathbb{R}^2 \setminus \Gamma$, and let $\Omega_1 = \Omega \cap H_1$. Let $p \in L_2 \cap H_2$ a point very far from Ω_1 and consider the graph G of the function v defined on $B_{R_\lambda}(p)$ by (7). Now let us translate the point p along the line L_2 in order to approach the domain Ω_1.

![Figure 3](image_url)

Figure 3. The darker region is $\{x \in \Omega \mid u(x) > h_0\}$

As the length of the segment $\overline{q_1q_2}$ is bigger or equal then $2R_\lambda$, and $u(C) = h \geq h_0$, there will exist a first point of contact between the moved graph G and the graph of u over Ω_1, at the interior or at the boundary of Ω.

Both cases contradict the maximum principle (in the second case because $\langle \nabla v, \nu \rangle = \alpha$).

We conclude that $d < 2R_\lambda$. The least sentence in the statement is a classical geometric property which relates de diameter and the circumradius of a planar figure.
In the case that C is unbounded we reason in a similar way (one can consider a component of C in the role of Γ in order that H_1 contains some boundary of Ω). This completes the proof of the result.

\[\square\]

5. Boundedness of planar strip ends

In this section we suppose Ω to be an unbounded open connected domain of \mathbb{R}^2 whose boundary is of class C^2, and such that there exists a function $u \in C^2(\Omega)$ that solves elliptic problem (3), where $f : (0, +\infty) \to \mathbb{R}$ is a Lipschitz function. Moreover we suppose that there exists a constant R such that Ω does not contain any closed ball of radius R, i.e., the domain satisfies property P_1 (note that this property is satisfied for example if property P_2 holds, i.e., when there exists a positive constant λ such that $f(t) \geq \lambda t$ for all $t > 0$, and in this case $R = R_\lambda$). Let L be a straight line of \mathbb{R}^2, L^+ and L^- the two half-spaces separated by L. First we prove a boundedness property which will be a key step in the proof of Theorem 1.1. Similar geometric ideas were used by W. H. Meeks [22] in the context of constant mean curvature surfaces. For other related boundedness results see the paper of J. A. Aledo, J. M. Espinar and J. A. Gálvez [2].

Lemma 5.1. Let C be a bounded connected component of $\Omega \cap L^+$, and $h(C)$ be the maximum distance of ∂C to L. Then

$$h(C) \leq 3R.$$

Proof. Reasoning by contradiction, we will suppose that $h = h(C)$ is greater than $3R$. We can suppose that L^+ is the half-space $\{y > 0\}$, where x and y denote the coordinates of \mathbb{R}^2, and $L = \{y = 0\}$.

By Proposition 3.2 the closure of the curve $\partial C \cap L^+$ is the graph of a function $g(x)$ on a segment of L, say $[a, b]$, which is positive at the interior and vanishes at the boundary. Moreover we can assume that the maximum of g is attained at $x = 0$, $g(0) = h$, see fig. 4.

Observe that when one intersects C with the line $\{y = R\}$, the connected components of $C \cap \{y = R\}$ are open intervals whose length is less than $2R$. In fact, if one of such intervals is given by $\{(x, R) \mid a' < x < b'\}$ with $b' - a' \geq 2R$, then the rectangle $(a', b') \times (0, R)$ would be contained in C and then C contains a half-ball of radius R and base on the x-axis, leading to a contradiction by Corollary 3.6.

Let \tilde{C} be the connected component of $\tilde{C} \cap \{y > R\}$ whose boundary contains the point $(0, h)$. Let Γ be the closure of the boundary of \tilde{C} in $\{y > R\}$ and p and q be the end points of Γ. Note that Γ is a graph over $\{y = R\}$ of high $h_1 = h - R$. Moreover $|pq| \leq 2R$. By our hypothesis, $h_1 > 2R$, and then there exists a point $p' \in \Gamma$, other than q, maximizing the distance to p and therefore $|pp'| > h_1 > |pq|$, see fig. 4.

Denote by L_* the line through p and p' and let L^*_+ and L^*_- the half-spaces determined by L_* (i.e., the connected components of $\mathbb{R}^2 \setminus L_*$) such that $q \in L^-_*$. We have that $\tilde{C} \cap L^*_+$
is a bounded connected component of $\Omega \cap L^+_s$ and by construction it is clear that L_s is orthogonal to the boundary of \tilde{C} at the point p'. By Corollary 3.4 we have a contradiction. □

Now we start to study the behavior of Ω at infinity, where Ω is supposed to be an f-extremal domain satisfying property P_1 and having finite topology. It is clear that Ω cannot be the complement of a compact region, and that if Ω is bounded then it is a ball. The only interesting case of finite topology is then the proper finite topology one, and then we will use the following simple kind of end.

Definition 5.2. A (planar strip) end of Ω is an unbounded subdomain $E \subset \overline{\Omega}$, with an homeomorphism $F : [0, 1] \times [0, +\infty[\to E$ such that:

1. $F(0, s) \in \partial \Omega$ for all $s \in [0, +\infty[.$
2. $F(1, s) \in \partial \Omega$ for all $s \in [0, +\infty[.$
3. $F(t, s) \in \overline{\Omega}$ for all $(t, s) \in]0, 1[\times [0, +\infty[.$

We will call a **transversal curve** of the end a curve joining a point of $F(\{0\} \times [0, +\infty[)$ with a point of $F(\{1\} \times [0, +\infty[)$ and lying in E (see fig. 5).

Let E be a (planar strip) end of Ω and let L be a straight line of \mathbb{R}^2 intersecting E. The first property of the ends of our domain is the following:

Lemma 5.3. Let E be an end of Ω and suppose that $L \cap E$ contains an unbounded connected component. Then any straight line L' parallel to L and sufficiently far from L intersects E in only bounded connected components.

Proof. After a rigid motion, we can suppose that L is the x-axis of \mathbb{R}^2 and the unbounded connected component of $L \cap E$ is

$$\{(x, 0) \in \mathbb{R}^2 \mid x \in [0, +\infty[\}.$$

\[\begin{figure}[h]
\begin{center}
\includegraphics[width=\textwidth]{figure4.png}
\end{center}
\caption{Figure 4.}
\end{figure}
Now take a straight line L', parallel to L and at a distance from L bigger than R. Of course L' is given by the equation $y = k$ with $|k| > R$. If $L' \cap E$ contains an unbounded connected component, then there exists a constant ρ such that the unbounded connected component C of $L \cap E$ is either
\[\{(x, k) \in \mathbb{R}^2 \mid x \in [\rho, +\infty[\} \quad \text{or} \quad \{(x, k) \in \mathbb{R}^2 \mid x \in]-\infty, \rho[\} \]
Moreover, there exists a regular curve $\gamma \in \mathbb{R}^2$ joining $(0, 0)$ to (ρ, k) and lying in E. We have that
\[\sigma = \{(x, 0) \in \mathbb{R}^2 \mid x \in [0, +\infty[\} \cup \gamma \cup C \]
separates \mathbb{R}^2 in two connected components, one of which is contained in E, and then also in Ω. Lemma 2.1 leads to a contradiction because both the components of $\mathbb{R}^2 \setminus \sigma$ contain balls of radius R. Hence $L' \cap E$ does not contain any unbounded connected component and the lemma follows at once. \hfill \Box

The main result of this section is property T1 of Theorem 1.1:

Proposition 5.4. Let E be a (planar strip) end of Ω. Then E stays at bounded distance from a half-line.

Proof. Let F be the homeomorphism associated to E by definition 5.2 between $[0, 1] \times [0, +\infty[\}$ and E, and $\beta = F([0, 1] \times \{0\})$ the initial transversal curve of the end. Let $B = B_r(0)$ be a ball of radius r centered at the origin of \mathbb{R}^2 containing β and let p_1, p_2, p_3, \ldots be a divergent sequence of points in E such that the sequence of normalized vectors $q_i = p_i/|p_i|$ converges to a unit vector q. After a possible rotation of E we can assume $q = (1, 0)$.
We show now that E stays at bounded distance from the x-axis. Otherwise, assume that E intersects every horizontal line in $y > 0$. Choose $\alpha > r + 1$ such that $l_\alpha = \{y = \alpha\}$ meets ∂E transversally. By Proposition 3.2 and Lemma 5.1 the region $E \cap \{y > \alpha\}$ has an unbounded connected component C and by Lemma 5.3 the intersection of E with the line l_α does not contain any unbounded connected component. Therefore there exists a transversal curve γ of E contained in C.

It follows that the transversal curves β and γ lie below and above l_α, respectively.

![Figure 6.](image)

Therefore, when $\varepsilon > 0$ is small enough, the same holds for the line $l_{\alpha, \varepsilon} = \{y = \varepsilon x + \alpha\}$, that is $\beta \subset \{y < \varepsilon x + \alpha\}$ and $\gamma \subset \{y > \varepsilon x + \alpha\}$, see fig. 6.

Now we apply again the same argument to the subend E^\ast of E whose initial transversal arc is γ, i.e., E^\ast is the closure of the unbounded component of $E \setminus \gamma$. As the arc γ lies above $l_{a, \varepsilon}$, almost all points p_i belong to $\{y < \varepsilon x + \alpha\}$, and the distance between p_i and $l_{a, \varepsilon}$ diverges to infinity, reasoning as above we find that there exists a transversal curve σ of E^\ast (and so of E also) contained in $y < \varepsilon x + \alpha$ (see fig. 6).

The existence of γ and σ leads to a contradiction. In fact, the component of $E \cap \{y > \varepsilon x + \alpha\}$ containing the transversal arc γ must be bounded, which contradicts Proposition 3.2 and then E stays at bounded distance from the x-axis.

In order to prove that E is at bounded distance from the half-line $\{y = 0, x > 0\}$, let $\Gamma = \partial E \cap \partial \Omega$ and take $b > 0$. Assume that $B \cap \{x < -b\} = \emptyset$ and the line $\{x = -b\}$ intersects Γ transversally. Hence $E \cap \{x = -b\}$ consists of a finite union of proper Jordan arcs whose extremes belongs to Γ. The existence of the divergent sequence $p_i \in E \cap \{x > 0, |y| < k\}$, where k is the maximum distance of the end E to the x-axis, implies that $E \cap \{x < -b\}$ has only bounded components and using Lemma 5.1 we conclude...
that E is contained is the half-strip $\{x > -(b + 3R), |y| < k\}$. Hence E is at bounded distance from a half-line and the proposition follows.

Now we are able to prove properties T2 and T3 of Theorem 1.1.

Proposition 5.5. The following properties hold:

1. Ω can not have only one (planar strip) end. Moreover Ω can not stay in a half-strip.
2. If Ω has exactly two (planar strip) ends, then there exists a line L such that Ω stays at bounded distance from L, and the two ends are on opposite sides with respect to any line orthogonal to L.

Proof. The proof of the two statements follows from Propositions 3.2 and Lemma 5.1.

1. Let us suppose that Ω is contained in a half-strip. We can suppose that

$$\Omega \subseteq \{(x, y) \in \mathbb{R}^2 : -A < x < A, y > 0\}$$

for some positive constant A. For any $k > 0$, each connected component of $\Omega \cap \{y < k\}$ is bounded. Choosing k large enough one leads to a contradiction by Lemma 5.1. For a general statement of this kind see Proposition 6.2 below.

Let us suppose now that Ω has only one end E. This means that $\Omega \setminus E$ is bounded. By Proposition 5.4, Ω lies in a half-strip, contradiction.

2. Let us suppose that Ω has exactly two ends E_1 and E_2. By Proposition 5.4, E_1 is at bounded distance from a line L_1 and E_2 is at bounded distance from an other line L_2. If L_1 and L_2 are parallel, then it is clear that Ω is at bounded distance from both L_1 and L_2, because $\Omega \setminus (E_1 \cup E_2)$ is bounded. If L_1 and L_2 are not parallel, then there exists a straight line l such that l is tangent to $\partial \Omega$ and Ω is contained in only one of the two connected components of $\mathbb{R}^2 \setminus l$. After a rigid motion we can suppose that l is the x-axis and Ω stays in the upper half-plane. Proposition 5.4 implies that each connected component of $\Omega \cap \{y < k\}$, $k > 0$, is bounded, and by construction the distance of $\partial \Omega \cap \{y < k\}$ is equal to k. Choosing k big enough one leads to a contradiction by Lemma 5.1. This proves that L_1 and L_2 must be parallel, and then Ω is at bounded distance from a line L. If the two ends are on the same side with respect to a line orthogonal to L, then Ω is contained in a half-strip, contradiction. Then the two ends are on opposite sides with respect to any line orthogonal to L.

6. **Boundedness of the domains**

In this section we prove some properties of planar domains Ω where problem (3) can be solved, without any extra assumption on the function f, that is only supposed to have
Lipschitz regularity. From now to the end of the section Ω will be a planar C^2-domain where problem (3) can be solved.

In the case that Ω is bounded by a unique proper arc Γ, let $\gamma(t) = (x(t), y(t)), t \in \mathbb{R}$, be an arc-length parametrization of Γ, $\gamma' = (x', y')$ the unit tangent vector and $n = -\nu = (-y', x')$ the inward pointing normal vector along Γ. A basic property of the domain Ω is the following:

Lemma 6.1. For any point $p \in \Gamma$, the normal inward half-line

$$L^+(p) = \{p + t n(p) \mid t \geq 0\}$$

lies in $\{p\} \cup \Omega$ (see fig. 7).

Proof. In fact, this holds for small $t > 0$ and if $L^+(p)$ meets Γ in a second point p', for the first time, then there exists a bounded region $C \subset \Omega$ bounded by the segment pp' and the arc in Γ joining p and p'. As both arcs cut orthogonally at p, we have a contradiction by using the moving line argument as in the proof of Lemma 5.1 (see fig. 4 and invert p and p').

We are now able to prove properties T6 and T7.

Proposition 6.2. If Ω is contained in a wedge of angle less than π (no restriction about the topology of the domain), then Ω is either a ball or a uniformly Lipschitz epigraph. If the angle of the wedge is less than $\pi/2$, then the domain is a ball.

Proof. If we choose the coordinates so that the wedge is contained in the upper half-plane and is symmetric with respect to y-axis, then $\Omega \cap \{y < a\}$ is bounded for any $a > 0$ and using the Serrin’s reflection argument with horizontal lines, as in the proof of Proposition 5.5, we conclude that either Ω is bounded (and then a ball, by the theorem of J. Serrin) or $\Gamma = \partial \Omega$ is a proper arc whose projection over the x-axis is one-to-one. In this last case, the previous lemma asserts that $L^+(p)$ lies in the wedge for all $p \in \Gamma$ and it follows that
$x' > \varepsilon$ for some positive ε, where $(x(t), y(t)), t \in \mathbb{R}$, is an arc-length parametrization of Γ. Hence Ω is a uniformly Lipschitz epigraph.

If the angle of the wedge is smaller than $\pi/2$, then by changing the Euclidean coordinates, we can assume that $\Omega \subset \{0 < y < bx\}$ for some $b > 0$. Lemma 6.3 implies that, for any point $p \in \Gamma$, the slope of the normal half-line $L^+(p)$ lies between the ones of $\{y = 0\}$ and $\{y = bx\}$ and therefore, the unit tangent vector $\gamma'(t), t \in \mathbb{R}$, points down more than the vector $(b, -1)$ which contradicts the fact that $\Omega \subset \{y > 0\}$. \hfill \Box

Remark 6.3. Let Γ be the graph of a C^2 function $\varphi : \mathbb{R} \rightarrow \mathbb{R}$ and Ω the epigraph $\{y > \varphi(x)\}$. Let’s see some cases where $\Omega \subset \mathbb{R}^2$ satisfies the conclusion of the lemma, i.e. for any $p \in \Gamma$,

$$L^+(p) \subset \Omega \cup \{p\}. \tag{11}$$

The tangent vector at a point $p = (x, \varphi(x))$ is $(1, \varphi'(x))$ and the inner normal half-line is $L^+(p) = \{(x, \varphi(x)) + a(-\varphi'(x), 1) / a \geq 0\}$.

1) If $\varphi' \geq 0$, then φ is increasing and the inner normal half-line is either vertical or tilted to the left. Then (11) follows.

2) If $\varphi'' \leq 0$, the $\mathbb{R}^2 - \Omega$ is convex and so Ω satisfies (11). On the contrary, if Ω is convex, then (11) does not hold in general. However it can be verified directly in some cases like for the domain bounded by the equilateral hyperbola $\Omega = \{y > \sqrt{1 + x^2}\}$. In particular, by using our argument we cannot improve Proposition 6.2 to include the case $\theta = \pi/2$ in the second statement.

3) If $|\varphi'| \leq 1$, then the epigraph Ω satisfies (11). Otherwise, we can suppose there is $x_1 < x_2$ such that the inner normal half-line $L^+(p)$, with $p = (x_1, \varphi(x_1))$, meets Γ at the point $q = (x_2, \varphi(x_2))$. Therefore, the slope of the $L^+(p)$ is positive and we have that

$$1 \leq \frac{-1}{\varphi'(x_1)} = \frac{\varphi(x_2) - \varphi(x_1)}{x_2 - x_1} = \frac{1}{x_2 - x_1} \int_{x_1}^{x_2} \varphi' \, dx \leq 1.$$

It follows that both inequalities are in fact equalities: $\varphi'(x_1) = -1$ and $\varphi'(x) = 1$, $x_1 \leq x \leq x_2$ and this contradiction proves the claim. For instance, property (11) is satisfied for the functions

$$\varphi(x) = \sin(x), \quad \varphi(x) = \frac{1}{4} \log(1 + x^2) \sin(\log(1 + x^2)).$$

The first function is periodic and the second one is oscillating and gives a domain Ω which neither contains a half-plane nor is contained in a half-plane, compare with Proposition 6.5.

Now we prove property $T8$. The basic idea of the proof is the tilted moving plane argument, used in [18] for surface theory.
Proposition 6.4. Let $\Omega \subset \mathbb{R}^2$ be an f-extremal domain contained in a half-plane. Then Ω is either a ball or (after a rigid motion) there exist a C^2 positive function $\varphi : \mathbb{R} \rightarrow]0, \infty[$ such that either

i. the domain Ω is an epigraph $\{y > \varphi(x)\}$, or

ii. φ is bounded and Ω is the symmetric domain $\{|y| < \varphi(x)\}$.

Proof. If Ω is bounded, then it is a ball by Serrin’s theorem. Then, assume that Ω is an unbounded subset of the half-plane $\{y > 0\}$. After a suitable translation, we can assume that $\partial \Omega$ intersects the y-axis transversally.

Let us suppose that the intersection of $\partial \Omega$ with the y-axis is done by more than one point. Consider $\Omega_1 = \Omega \cap \{x > 0\}$ and $\Omega_2 = \Omega \cap \{x < 0\}$. Note that Ω_1 and Ω_2 are nonempty open sets. If either Ω_1 or Ω_2 is contained in a vertical slab, then it follows from Proposition 6.2 that Ω is an epigraph with respect to one of the diagonals of the plane. So, henceforth we will suppose that Ω_1 and Ω_2 are unbounded and that the orthogonal projection of $\partial \Omega$ over $\{y = 0\}$ is onto. It is clear that $\Omega \cap \{x = 0\}$ is a discrete union of open intervals in the y-axis, the lowest of these intervals being bounded. Denote by p the lowest point in the boundary of this interval.

Given a straight line T, for any $x \in \mathbb{R}^2$ and any subset $X \subset \mathbb{R}^2$ let x' be the reflection of x about T and X' be the reflected image of X about T. Fix $\varepsilon > 0$ and consider the two pencils of parallel straightlines

$$T_a = \{y = a\} \quad \text{and} \quad T_{\varepsilon,a} = \{y = -\varepsilon x + a\}$$

for $a \in \mathbb{R}$. Now we use the moving line argument. Let $T = T_{\varepsilon,a}$ be an element of the second pencil. For $a = 0$ the line T does not intersect Ω_1. We suppose this line to be continuously moved parallel to itself, by increasing a, until it pass through p. From that moment onward, at each stage of the motion the resulting line T will cut off from Ω_1 a bounded cap $\Sigma(T)$ defined as follows. As the part of Ω_1 below T is bounded, it follows from Proposition 3.2 that the reflected image with respect to T of the connected components of $\Omega_1 \cap \{y < -\varepsilon x + a\}$ are contained in Ω, except possibly for the component whose boundary contains p. Let’s denote this component by $\Sigma(T)$. The portions of the boundary of $\Sigma(T)$ contained in T, $x = 0$ and $\partial \Omega$ will be denoted by I, J and K, respectively. Note that $p \in J \cap K$.

Let $\Sigma'(T)$, K' and J' be respectively the symmetric image of $\Sigma(T)$, K and J about T. Define on the closure of $\Sigma'(T)$ the function u'_T given by $u'_T(x) = u(x')$. At the beginning $\Sigma'(T)$ is contained in Ω and $u'_T \leq u$ and we continue the process while this occurs. As the y-axis cuts transversally $\partial \Omega$ in at least two points, we will meet a first value $a = a(\varepsilon) > 0$ for which one of the following events holds (see fig. 8):

1. at a interior point, the reflected arc K' touches the boundary of Ω,
2. K meets T orthogonally,
3. at a point of $\Sigma'(T) \cup I$, the graph of the resulting function u'_T is tangent to the graph of the function u,
4. p', the reflection of p about T, belongs to $\partial \Omega$,

(5) when restricted to the segment J', the graph of the resulting function u_T' is tangent at some interior point to the graph of the function u.

By the Serrin’s reflection method, we deduce that each one of the first three options implies that $K' \subset \partial \Omega$. Therefore both events (4) and (5) are also true. We conclude that in fact the process can be carried on until either event (4) or event (5) occurs for a first value $a = a(\varepsilon) > 0$.

Now take a sequence of $\varepsilon_i > 0$ going to zero, and repeat all the reasoning with $\varepsilon = \varepsilon_i$. The sequence $a(\varepsilon_i)$ is bounded and then, if a is the limit of $a(\varepsilon_i)$, the argument and its conclusion hold also for the limit horizontal line, leading to the following result: there exists a horizontal line $T = T_a$, with $a > 0$, such that the reflected image of $\Omega_1 \cap \{y < a\}$ lies in Ω, $u_T' \leq u$ and one of the two events (4) or (5) above occurs. Moreover, as $\varepsilon = 0$, J is an interval contained in the closure of the lowest interval of $\Omega \cap \{x = 0\}$ and the value of a depends only on J and on the behavior of u restricted to $\Omega \cap \{x = 0\}$.

Now repeat all the process for $\Omega_2 = \Omega \cap \{y < 0\}$ instead of Ω_1, with lines of positive slope defined by $T_{\varepsilon,a}^* = \{y = \varepsilon x + a\}$. We obtain the existence of a horizontal line $T^* = \{y = a^*\}$, such that the reflected image of $\Omega_2 \cap \{y < a^*\}$ stays within Ω, $u_T' \leq u$ and one of the two events (4) or (5) occurs.

As a and a^* depends only on behavior of the solution u along $x = 0$, it follows that $a = a^*$ and the line $T = T^*$ satisfies that the reflected image of $\Omega \cap \{y < a\}$ with respect to T is contained in Ω, $u_T' \leq u$ and one of the assertions (1), (2) or (3) holds (at some point of the y-axis). From the Serrin’s reflection argument we obtain that Ω is symmetric with respect to T. After a suitable rigid motion, Item $ii)$ in the statement of the proposition follows for
the domain Ω from the fact that Ω_1 and Ω_2 are both unbounded.

Now let us consider the case where any vertical line which meets transversally the boundary of Ω meets $\partial \Omega$ just in a point. Then the boundary of Ω consists on a unique proper arc Γ which projects monotonically and surjectively onto the x-axis. If Γ is given as the graph of a function, then Ω is an epigraph. If the arc Γ is tangent to a vertical line at some point q of the horizontal line $T = \{ y = b \}$, $b > 0$, then we repeat the reflection argument of the beginning of the proof with straight lines $T = T_{\epsilon,a}$ and $T^* = T^*_{\epsilon,a}$, $a \leq b$, and we conclude that the domain is symmetric with respect to a line $T = \{ y = a \}$, with $a \leq b$, and this is not possible by the assumptions on Γ. This contradiction completes the proof of the proposition.

Property T9 is a consequence of the previous proposition. Its proof follows from the corollary 1.3 and the following:

Proposition 6.5. Let Ω be an f-extremal unbounded domain of \mathbb{R}^2 bounded by a unique proper arc. Then either Ω is an epigraph or it contains a half-plane.

Proof. Let Γ be the boundary of Ω and $\gamma(t) = (x(t), y(t))$, $t \in \mathbb{R}$, an arc-length parametrization of Γ, $\gamma' = (x', y')$ the unit tangent vector and $n = -\nu = (-y', x')$ the inward pointing normal vector along Γ. If there are two points $p, q \in \Gamma$ such that $n(p) = -n(q)$, then from Lemma 6.1 we have that Ω contains two parallel half-lines with opposite orientation and it follows that Ω contains a half-plane. Otherwise the normal image is contained in a open half-circle and, after a rigid motion we can assume that $x' > 0$. Hence Γ is the graph of a function defined on a open interval. If the interval is not the whole x-axis, we can suppose that it is bounded above by a constant a, and therefore Γ and $x = a$ are disjoint and either Ω contains a half-plane or it is contained in a half-plane. In the second case, using Proposition 6.4, we get that is an epigraph.

The first part of the proof of Proposition 6.4 can be adapted to f-extremal domains Ω contained in a solid cylinder.

Proof of Theorem 1.9. Suppose that the unbounded domain $\Omega \subset \mathbb{R}^n$ is contained in the solid cylinder $\mathbb{R} \times B$, where B is a n-dimensional ball. If Ω is contained in a half-cylinder, assume $\Omega \subset \{ x > 0 \} \times B$, then by cutting the figure with hyperplanes normal to the x-axis, and using Proposition 3.2, we conclude that $\partial \Omega$ is the graph of a function $f : D \rightarrow \mathbb{R}$, with $D \subset B$, such that the limit value of f at ∂D is $+\infty$. So it follows that a suitably chosen half-plane $H^- = \{ y_1 \geq mx + n \}$ (where y_1 is the first coordinate of $y \in \mathbb{R}^{n-1}$) with m large, intersects $\partial \Omega$ in a compact hypersurface which is not a graph over a piece of $H = \{ y_1 = mx + n \}$, which contradicts Proposition 3.2.

Therefore, the intersection of Ω with any hyperplane normal to the x-axis is non empty. Define $\Omega_1 = \Omega \cap \{ x > 0 \}$ and $\Omega_2 = \Omega \cap \{ x < 0 \}$. Note that Ω_1 and Ω_2 are unbounded. Moreover $\{ x = 0 \} \cap \Omega$ is done of finitely many open connected domains and the intersection $\{ x = 0 \} \cap \partial \Omega$ is done by more than one point. We can assume that the x-axis intersects Ω transversally. If p is the lowest point of $\{ x = 0 \} \cap \partial \Omega$, then we can repeat all the reasoning of the first part of the proof of proposition 6.4, with tilted hyperplanes instead.
of tilted lines, getting to the conclusion that there exists a horizontal line \(T \) such that \(\Omega \) is rotationally symmetric with respect to \(T \). Remark that the component \(\Sigma(T) \) that can be naturally defined by generalization of the same component in dimension 2, is bounded by the assumption that \(\Omega \) is contained in a cylinder. This allows to apply the moving plane argument and completes the proof of the result. \(\square \)

7. Concavity properties for double periodic domains

In this paragraph we deal with 2-dimensional domains that are double periodic, i.e., domains in \(\mathbb{R}^2 \) whose closure is represented by a compact region in the quotient space modulo two linearly independent translations, and where it is possible to solve problem (3). In order to simplify the notation we will consider an open connected domain of a flat torus \(T^2 = \mathbb{R}^2 / \langle v_1, v_2 \rangle \), where \(v_1 \) and \(v_2 \) are two linearly independent vectors. The closure of the connected components of the universal covering of such a domain can be either compact (this case is not interesting because we know that the only bounded domains where it is possible to solve problem (3) are balls), or domains that are periodic in one direction, or a double periodic domain (in this case there exists only one connected component in the covering \(\mathbb{R}^2 \)).

We will prove now Theorem 1.11. Before to prove the theorem, we want to remark that condition (4), when \(f(u) = \lambda u \), becomes

\[
\max_{\Omega} u < \frac{|\alpha|}{\sqrt{\lambda}}
\]

and for example \(\max_{\Omega} u = |\alpha|/\sqrt{\lambda} \) if \(\Omega \) is a strip \((0, \pi/\sqrt{\lambda}) \times \mathbb{R} \).

The periodicity of \(u \) is used just to guarantee that the differential expressions considered in this section attain their maximum. These expressions and their connections with the maximum principle can be found in the book of R. Sperb [30], chapter X. For constant mean curvature surfaces in the euclidean space, related results where proved by A. Ros and H. Rosenberg in [25]. See [19] for other ambient spaces.

Proof of Theorem 1.11. Let us define the operator

\[
P(x) = |\nabla u(x)|^2 + 2 \int_0^{u(x)} f(s) \, ds
\]

where \(P : \Omega \to \mathbb{R} \). Let us denote the coordinates of \(\mathbb{R}^2 \) by \(x = (x_1, x_2) \), and partial derivatives by a comma followed by a subscript, i.e., the partial derivative of a function \(u \) with respect to the coordinate \(x_i \) will be written as \(u_{,i} \) and second partial derivative with respect to the coordinate \(x_i \) and \(x_j \) will be written as \(u_{,ij} \). Moreover we use the standard summation convention. We have

\[
P_i = 2 u_{,ji} u_{,j} + 2 f(u) u_{,i}
\]

and

\[
\Delta P = P_{ii} = 2 u_{,ji} u_{,ji} + 2 u_{,jii} u_{,j} + 2 f'(u) |\nabla u|^2 + 2 f(u) \Delta u
\]
Using the equation $\Delta u + f(u) = 0$ and its derivation

$$u_{jii} = u_{iij} = -f'(u) u_j$$

we get

(13) \[\Delta P = 2 u_{ji} u_{ji} - 2 f(u)^2 \]

In order to eliminate the term $2 u_{ji} u_{ji}$ we use an identity valid only for two variable functions. In fact, if v is a C^2 function of two real variables, an explicit computation shows that

(14) \[|\nabla v|^2 v_{ij} v_{ij} = |\nabla v|^2 (\Delta u)^2 + 2 v_i v_{ik} v_{j} v_{jk} - 2 (\Delta v) v_i v_j v_{ij} \]

Let us define

$$L_i = -P_{,i} + 2 f(u) u_i$$

Using (12), (13) and (14) we get

$$\Delta P + \frac{L_i P_{,i}}{|\nabla u|^2} = 0$$

The maximum principle can be applied to P at any point x where $\nabla u \neq 0$, then, unless P is constant, one of the following two events occurs:

1. the maximum of P is attained at $\partial \Omega$, or
2. the maximum of P is attained at a point $x_0 \in \Omega$ where $\nabla u(x_0) = 0$.

We remark that at $\partial \Omega$ we have

$$P(x) = \alpha^2$$

and, by our hypothesis, at a point x_0 where $\nabla u(x_0) = 0$ we have

$$P(x) < \alpha^2$$

We conclude that P attains its maximum at $\partial \Omega$ and then

$$P(x) < \alpha^2$$

for all $x \in \Omega$ and

$$P(x) = \alpha^2$$

for all $x \in \partial \Omega$. So the maximum principle implies the following condition on the normal derivative of P:

(15) \[\langle \nabla P, \nu \rangle > 0 \text{ for all } x \in \partial \Omega. \]

Our aim is now to calculate the normal derivative of P in order to make explicit the curvature of $\partial \Omega$. If t is the unit tangent vector about $\partial \Omega$, and we use the same notation as above for derivatives, then at $\partial \Omega$ we have

$$\langle \nabla P, \nu \rangle = 2 u_{,\nu \nu} u_{,\nu} + 2 f(u) u_{,\nu}$$

$$= 2 u_{,\nu} (\Delta u - u_{,tt} + f(u))$$

$$= -2 u_{,\nu} u_{,tt}$$

$$= -2 \alpha u_{,tt}$$
From (15), and recalling that α is negative, we obtain (16) $u_{,tt} > 0$ at $\partial \Omega$.

Let now $\gamma : S^1 \to \mathbb{R}^2$ be the arclength parametrization of a connected component of $\partial \Omega$ and let k be its curvature with respect to the outward pointing unit normal vector ν. As u is equal to 0 at $\partial \Omega$, we have

$$0 = \langle \nabla u, \gamma' \rangle = u_{,tt} + \langle \nabla u, \gamma'' \rangle$$

$$= u_{,tt} + k \langle \nabla u, \nu \rangle$$

$$= u_{,tt} + \alpha k$$

From (16), and recalling that α is negative, we obtain $k > 0$ at $\partial \Omega$

i.e., $T^2 \setminus \Omega$ is strictly convex. This completes the proof of the result.

References

[1] A. Aftalion and J. Busca. Symétrie radiale pour des problèmes elliptiques surdéterminés posés dans des domaines extérieurs (French) [Radial symmetry of overdetermined boundary value problems in exterior domains]. C. R. Acad. Sci. Paris Sr. I Math. 324 n. 6 (1997) 633–638.

[2] J. A. Aledo, J. M. Espinar, J. A. Gálvez. The Codazzi equation for surfaces. Adv. Math. 224 (2010) 2511–2530.

[3] A.D. Alexandrov. Uniqueness theorems for surfaces in the large. I. (Russian) Vestnik Leningrad Univ. Math. 11 (1956) 5–17.

[4] H. Berestycki, L. A. Caffarelli and L. Nirenberg. Monotonicity for elliptic equations in unbounded Lipschitz domains. Comm. Pure Appl. Math. 50 (1997) 1089–1111.

[5] C. Cosin and A. Ros. A Plateau problem at infinity for properly immersed minimal surfaces with finite total curvature. Indiana Univ. Math. J. 50 (2001) 847–878.

[6] M. Crandall and P. Rabinowitz. Bifurcation from simple eigenvalues. J. Functional Analysis. 8 (1971) 321–340.

[7] J. M. Espinar, J. A. Gálvez, H. Rosenberg. Complete surfaces with positive extrinsic curvature in product spaces. Comm. Math. Helv. 93 (2009) 351–386

[8] M. J. Esteban and P.-L. Lions. Existence and nonexistence results for semilinear elliptic problems in unbounded domains. Proc. Roy. Soc. Edinburgh Sect. A 93(1-2) (1982/1983) 1–14

[9] A. Farina and E. Valdinoci. Flattening Results for Elliptic PDEs in Unbounded Domains with Applications to Overdetermined Problems Arch. Rational Mech. Anal. 195 (2010) 1025–1058.

[10] A. Farina and E. Valdinoci. Partially and globally overdetermined problems of elliptic type. Advances in Nonlinear Analysis, to appear.

[11] A. Farina and E. Valdinoci. On partially and globally overdetermined problems of elliptic type. American Journal of Math., to appear.

[12] P. R. Garadedian and M. Schiffer. Variational problems in the theory of elliptic partial differential equations. J. Rational Mech. Anal. 2 (1953) 137–171.

[13] D. Gilbarg and N. Trudinger. Elliptic partial differential equations of second order. A Series of Comprehensive Studies in Mathematics, 224. Second Edition. Revised Third Printing 1998. Springer, Berlin, 1998.

[14] K. Große-Brauckmann, N. Korevaar, R. Kusner, J. Ratzkin and J. Sullivan. Coplanar k-Unduloids Are Nondegenerate International mathematics research notices 18 (2009) 3391–3416
[15] K. Große-Brauckmann, R. Kusner and J. Sullivan. Constant mean curvature surfaces with three ends. Proc. Nat. Acad. Sci. USA 97 (2000) 14067–14068.
[16] F. Hélein, L. Hauswirth and F. Pacard. A note on some overdetermined problems. Pacific J. Maths. 250 n. 2 (2011), 319-334.
[17] N. Kapouleas. Complete constant mean curvature surfaces in Euclidean three space. Ann. of Math. (2) 131 (1990), 239–330.
[18] N. J. Korevaar, R. Kusner and B. Solomon. The structure of complete embedded surfaces with constant mean curvature. J. Diff. Geom. 30 (1989), 465–503.
[19] J. M. Manzano. Estimates for constant mean curvature graphs in $M \times \mathbb{R}$. Preprint.
[20] R. Mazzeo and F. Pacard. Constant mean curvature surfaces with Delaunay ends. Comm. Anal. Geom. 9 (2001), 169–237.
[21] R. Mazzeo, F. Pacard and D. Pollack. Connected Sums of constant mean curvature surfaces in Euclidean 3 space. J. Reine Angew. Math. 536 (2001), 115–165.
[22] W. H. Meeks. The topology and geometry of embedded surfaces of constant mean curvature. J. Diff. Geom. 27 (1988), 539–552.
[23] P. Pucci, J. Serrin The maximum principle. Progress in Nonlinear Differential Equations and Their Applications. Birkhauser, Basel, 2007.
[24] W. Reichel. Radial symmetry by moving planes for semilinear elliptic boundary value problems on exterior domains. Arch. Rational Mech. Anal. 137 (1997) 381–394.
[25] A. Ros, H. Rosenberg. Properly embedded surfaces with constant mean curvature. Am. J. Math. 132 (2010), 1429–1443.
[26] R. Sa Earp, E. Toubiana. Variants on Alexandrov reflection principle and other applications of maximum principle Sem. Théorie spectr. et géom. 19 (2000–2001), 93–121.
[27] J. Serrin. A Symmetry Theorem in Potential Theory. Arch. Rational Mech. Anal. 43 (1971), 304–318.
[28] F. Schlenk, P. Sicbaldi. Bifurcating extremal domains for the first eigenvalue of the Laplacian. Adv. Math. 229 (2012) 602–632.
[29] P. Sicbaldi. New extremal domains for the first eigenvalue of the Laplacian in flat tori. Calc. Var. Partial Diff. Equations 37 (2010) 329–344.
[30] R. Sperb. Maximum principles and their applications. Mathematics in Science and Engineering, 157. Academic Press, Inc., New York, 1981.

(A. Ros) Departamento de Geometría y Topología, Universidad de Granada, Campus Fuentenueva, 18071 Granada, Spain
E-mail address: aros@ugr.es

(P. Sicbaldi) Laboratoire d’Analyse Topologie Probabilités, Aix-Marseille Université,
Avenue de l’Escadrille Normandie Niemen, 13397 Marseille cedex 20, France
E-mail address: pieralberto.sicbaldi@univ-cezanne.fr