The Chinese Herbal Formula Huoxiang Zhengqi Dropping Pills Prevents Acute Intestinal Injury Induced by Heatstroke by Increasing the Expression of Claudin-3 in Rats

Yu-Nong Li,¹ Hui Tao,¹ Jia-Hui Hong,¹ Ya-Lan Xiong,¹ Xi-Chun Pan,¹ Ya Liu,¹ Xue-Sen Yang,² and Hai-Gang Zhang¹

¹Department of Pharmacology, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing, China
²Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China

Correspondence should be addressed to Hai-Gang Zhang; hg2ster@gmail.com

Received 22 February 2022; Accepted 1 July 2022; Published 31 July 2022

Academic Editor: Jian-You Guo

Copyright © 2022 Yu-Nong Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Intestinal injury has been regarded as an important causative factor for systemic inflammation during heatstroke, and maintaining intestinal integrity has been a potential target for the prevention of HS. Huoxiang Zhengqi Dropping Pills (HZPD) is a modern preparation of Huoxiang Zhengqi and widely used to prevent HS. The present study aims to explore the protective effect of HZDP on intestinal injury during heatstroke and analyze its potential pharmacodynamic basis. Male rats in the control and HS groups were given normal saline, and those in the HZDP groups were given HZDP (0.23, 0.46, and 0.92 g/kg) before induction of HS. Serum contents of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), intestinal fatty acid-binding protein (iFABP), and diamine oxidase (DAO) were determined using ELISA. Histopathology of intestinal injury was observed following H&E staining. The expression of claudin-3 was determined using western blot, immunohistochemistry, and immunofluorescence techniques. Moreover, network pharmacological tools were used to analyze the potential pharmacodynamic basis and the mechanism of HZDP. Treatment with HZDP significantly prolonged the time to reach Tc. Compared with the control group, the contents of TNF-α, IL-6, iFABP, and DAO in HS rats increased markedly. HZDP treatments reduced these levels significantly, and the effects in the middle dose group (0.46 g/kg) were most obvious. HZDP also attenuated intestinal injury and significantly reversed the decrease in claudin-3 expression. Bioinformatics analysis suggested that 35 active ingredients and 128 target genes of HZDP were screened from TCMSP and 93 target genes intersected with heatstroke target genes, which were considered potential therapeutic targets. TNF-α and IL-6 were the main inflammatory target genes of HZDP correlated with HS. These results indicated that HZDP effectively protected intestinal barrier function and prevented acute intestinal injury by increasing the expression of claudin-3 in rats, eventually improving heat resistance.

1. Introduction

Continuous global warming results in a rapid increase in the mortality risk of heat-related illnesses, which seriously restricts the efficiency of labor productivity for outdoor work. Heatstroke (HS) is the most serious type of heat injury disease and is characterized by elevated core temperatures (Tc) as high as 40°C, systemic inflammatory response syndrome (SIRS), and multiple organ dysfunction (MOD) [1]. Although rapid cooling methods and a few drugs for HS therapy have been applied, SIRS and MOD still occur frequently [1, 2]. Because of the rapid progression, high mortality, and limitations of current clinical drugs in the treatment of HS, preventative strategies are more clinically effective than treatment after onset.

Heat exposure induces tissue damage, including hepatic, renal, and intestinal injuries in humans, and intestinal injury is the main route of HS progression [3, 4]. Heat stress
impairs intestinal barrier integrity and intestinal permeability, causing endotoxin translocation into systemic circulation, which plays a key role in aggravating systemic inflammation [5–7]. Therefore, preventing injury to the intestinal mucosal barrier may be an effective modality for patients suffering from HS [8, 9].

The main manifestation of intestinal injury is the impairment of barrier function. Intestinal barrier function is achieved by intercellular junctions, including subjacent adherens junctions (AJs) and apical tight junctions (TJs). The TJs between intestinal epithelial cells present a robust barrier to invasion by bacteria and their toxins. Defective TJs resulting in intestinal barrier dysfunction are the primary reason for HS-related alterations in intestinal permeability [8, 10]. The TJs consist of transmembrane proteins (occludin, claudins, and junction adhesion molecules), intracellular plaque zonula occludens (ZO-1, ZO-2, and ZO-3), and other related kinases [8, 11, 12]. The claudin family of transmembrane proteins plays a critical role in maintaining tight junction integrity and may regulate the selective passage of ions and molecules through the paracellular space [13]. Abnormal expression of claudins causes changes in paracellular permeability, abnormal cell proliferation, loss of polarity, and obstacles to differentiation and participates in tumorigenesis [14].

Claudin-3 is one of the 26 claudin family members, and its effect on intestinal function has been reported. Increasing expression of claudin-3 can strengthen the connection between cells and reduce paracellular permeability [15]. Another study also reported that hyperthermia exposure disrupted the established monolayer by increasing paracellular permeability and decreasing claudin-3 expression at 42°C [16]. However, the altering pattern of the expression and distribution of claudin-3 and its regulation of TJs and intestinal barrier function during heat exposure remain unclear.

Huoxiang Zhengqi Dropping Pills (HZDP) is a Chinese patent medicine composed of 10 kinds of traditional Chinese herbs, including Atractylodes Rhizoma, Citri Reticulatae Pericarpium, Magnoliae Officinalis Cortex, Atractylodis Rhizoma, Citri Reticulatae Pericarpium, Pinelliae Rhizoma, Glycyrrhizae Radix Et Rhizoma, Macrocephalae Rhizoma, Arecae Pericarpium, and Magnoliae Officinalis Cortex, Atractylodis Rhizoma, Citri Reticulatae Pericarpium, and Poria. The component content of HZDP is determined by high-performance liquid chromatography (HPLC) system (Agilent Infinity 1260; Agilent Technologies, Santa Clara, CA, USA). The chromatographic column was filled with octadecylsilane bonded silica gel, acetonitrile as mobile phase A, and 0.5% glacial acetic acid solution as mobile phase B, and the theoretical plate number calculated by hesperidin was less than 2500. For preparation of the sample solution, 1 g of HZDP was crushed, weighed accurately, and placed in a conical flask with a stopper. In addition, then 25 mL of methanol was added into the flask. The samples were treated with ultrasound (120 W, 40 kHz) for 15 minutes, weighed after cooling, supplemented the lost weight with methanol, shaken, and filtered to obtain the filtrate. For preparation of the reference solution, the reference standards of hesperidin, magnolol, and honokiol (Chengdu Must Bio-Technology, Chengdu, China) were weighed accurately, and methanol was added to prepare the reference solution. The final concentrations of hesperidin, magnolol, and honokiol were 140 μg/mL, 40 μg/mL, and 70 μg/mL, respectively. One microliter of each solution was injected. The sample solution was analyzed, and the peaks were identified compared with the available standards.

2.2. Quality Control of HZDP. The component content of Huoxiang Zhengqi Dropping Pills (Taixly Pharmaceutical Group, Lot number 200707, Tianjin, China) was determined by a high-performance liquid chromatography (HPLC) system (Agilent Infinity 1260; Agilent Technologies, Santa Clara, CA, USA). The column was filled with octadecylsilane bonded silica gel, acetonitrile as mobile phase A, and 0.5% glacial acetic acid solution as mobile phase B, and the theoretical plate number calculated by hesperidin was less than 2500. For preparation of the sample solution, 1 g of HZDP was crushed, weighed accurately, and placed in a conical flask with a stopper. In addition, then 25 mL of methanol was added into the flask. The samples were treated with ultrasound (120 W, 40 kHz) for 15 minutes, weighed after cooling, supplemented the lost weight with methanol, shaken, and filtered to obtain the filtrate. For preparation of the reference solution, the reference standards of hesperidin, magnolol, and honokiol (Chengdu Must Bio-Technology, Chengdu, China) were weighed accurately, and methanol was added to prepare the reference solution. The final concentrations of hesperidin, magnolol, and honokiol were 140 μg/mL, 40 μg/mL, and 70 μg/mL, respectively. One microliter of each solution was injected. The sample solution was analyzed, and the peaks were identified compared with the available standards.

2.3. HS Injury Rat Model Induction. Twenty-five rats were randomly assigned to five groups (n = 5 in each group), i.e., control, HS, and HZDP-treated (0.23, 0.46, and 0.92 g/kg) groups. Rats in the control and HS group were intragastrically (ig) administered normal saline, and those in the HZDP groups were given HZDP solution at 0.23, 0.46, and 0.92 g/kg (ig) once daily for 7 days before induction of HS. All animal procedures conformed to the Guide for the Care and Use of Laboratory Animals from the National Institutes of Health (8th Ed., 2011) and were approved by the Animal Ethical and Experimental Committee of the Army Medical University.
HZDP groups were given HZDP solution at 0.23, 0.46, and 0.92 g/kg (ig) once daily for 7 days before being exposed to a humid-heat environment. The animals in the control group were sham-heated at a temperature of 25 ± 0.5°C and humidity of 60 ± 5%. Rats in the HS group and HZDP-treated HS groups were placed in a specific environment-control smart chamber (HOPE-MED 8150E; Tianjin, China) at 38°C and 90% humidity. Core temperature (Tc) was monitored every 10 minutes using a rectal thermometer until it reached 42°C, which indicated the occurrence of heat radiation disease.

2.4. Serum Collection and Determination of Inflammatory Factors and Markers of Intestinal Integrity. HS rats were anesthetized by isoflurane 2 h after the onset of HS. Blood samples were harvested from the femoral artery, and serum was separated by centrifugation at 3,000 rpm for 10 min at 4°C and stored at −80°C for ELISA analysis. ELISA kits were used to measure the serum levels of TNF-α and IL-6 [Invitrogen, CA, USA] and IFABP and DAO (Elabscience, Wuhan, China) according to the manufacturer’s instructions.

2.5. Histopathological Examination. Samples of jejunum were harvested at 6 h after HS, sliced into transverse sections, and fixed in 10% neutral-buffered formalin. The tissues were then embedded in paraffin blocks after conventional gradient ethanol dehydration, sectioned into 5 µm-thick slices, stained with hematoxylin and eosin (H&E), and examined microscopically at a magnification of 200×.

2.6. Immunohistochemistry Staining. Paraffin-embedded jejunal sections were used for immunohistochemistry staining for claudin-3. Samples were dewaxed and hydrated through graded ethanol solutions, repaired antigen with citrate buffer (pH 6.0), blocked endogenous peroxidase with 3% H2O2 for 20 minutes at room temperature, blocked in goat serum, and then incubated with primary antibody claudin-3 (1:200, Invitrogen, CA, USA) and ifABP and DAO (Elabscience, Wuhan, China) according to the manufacturer’s instructions.

2.7. Immunofluorescence Staining. Paraffin-embedded sections of the jejunum samples were used for claudin-3 immunofluorescence staining. Claudin-3 was stained with claudin-3 primary antibody (1:50) and Alexa Fluor 594-conjugated secondary antibody (1:300, Invitrogen, CA, USA), and the nuclei were stained with DAPI. Next steps were counterstained with hematoxylin, differentiation with 1% hydrochloric acid-anhydrous alcohol solution, dehydration, transparency, and sealing.

2.8. Western Blot Analysis. Samples of jejunal tissue were harvested at 6 h after HS and stored at −80°C. Tissue lysates were harvested by centrifugation at 12,000 g for 15 minutes at 4°C. Protein concentrations were measured using the enhanced BCA protein assay kit (Beyotime Biotechnology, Shanghai, China). Lysates were subjected to SDS/PAGE followed by blotting with primary antibody against claudin-3 (1:1000) and corresponding secondary antibody (1: 5000, Minneapolis, USA). Signal detection was achieved using Clarity Western ECL substrate (Bio-Rad, CA, USA), and the intensity was captured using a ChemiDoc touch system (Bio-Rad, CA, USA).

2.9. Network Pharmacological Analysis. To understand the potential target and mechanism of HZDP, we performed network pharmacological analysis with bioinformatics tools. The ingredients of HZDP were searched from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP, https://tcmspw.com/index.php) based on oral bioavailability (OB) ≥ 30% and drug-likeness (DL) ≥ 0.18. The active ingredient-related target genes were obtained from the TCMSP, and these target names were calibrated to the standardized name in the UniProt database (https://www.UniProt.org/). HS-related target genes were collected from GeneCard (https://www.genecards.org/) and Online Mendelian Inheritance in Man (OMIM, https://omim.org/search/advanced/geneMap). Potential target genes of HZDP that prevented HS were acquired through Venny 2.1.0 (https://bioinfogp.cnb.csic.es/tools/venny/). A PPI network map of potential targets was acquired through the STRING database (https://string-db.org/). The PPI network results were imported into Cytoscape software (version 3.9.0), and the network topology parameters were analyzed by the degree calculated to select the key target genes.

2.10. Statistical Analysis. Results are expressed as the mean ± SD. Statistical comparisons of the results were performed using one-way analysis of variance (ANOVA) following least significant difference (LSD) post hoc analyses using SPSS software 11.0 (Chicago, IL, USA). Time to core temperature between HS and HZDP-treated groups were analyzed with Dunnett’s method. P < 0.05 was considered statistically significant.

3. Results

3.1. Active Ingredient Content of HZDP. HZDP is a compound preparation composed of a variety of traditional Chinese medicines. The contents of hesperidin, magnolol, and honokiol were used as HZDP quality control standards. As shown in Figure 1(a), the retention times of standards of hesperidin, magnolol, and honokiol in the reference substance were 1.163, 4.003, and 5.317 minutes, respectively. In the chromatogram of the sample substance (Figure 1(b)), we found three typical chromatographic peaks, and their retention times were the same as those of the standards. In the HZDP sample used in the present experiments, the contents of hesperidin, magnolol, and honokiol were 4.33 mg/g, 0.94 mg/g, and 2.07 mg/g, respectively.
3.2. HZDP Improves High-Temperature Resistance during Heat Exposure.

To verify the ability of HZDP to prevent HS, rats were pretreated with HZDP prior to the establishment of the HS model. Under an environment of high temperature and humidity, rats gradually became irritable, hyperactive, and hyperhidrotic and finally fell into less activity and coma. When the core temperature (Tc) of rats reached 42°C, heat radiation disease had occurred. The time to reach Tc was used to evaluate the effects of HZDP on high-temperature resistance. Compared with the HS group, the rats in HZDP-treated groups were quieter and sweated less, and the time to reach Tc elevated significantly. In particular, the time to reach Tc of rats in the 0.46 g/kg HZDP-treated HS group was longer than that of the other two groups (0.23 and 0.92 g/kg) (Figure 2). This result suggests that pretreatment with HZDP can improve the high-temperature and high-humidity resistance.

3.3. HZDP Ameliorates Intestinal Pathologic Injury Induced by HS.

To further explore the effect of HZDP on intestinal injury, histopathological examination was performed on intestinal tissue. In the HS group, the injury of rat jejunum mainly located in the villi with loss of the integrity of the epithelial lining, interstitial edema in the intestinal villi, apparent shortening, and villus desquamating. In contrast, in the HZDP-treated HS groups, although morphology changed to a certain degree, the villi of the jejunum were relatively protected from injury, as villus swelling and desquamating decreased. Among those, 0.46 g/kg HZDP treatment had the best effect on intestinal protection (Figure 3).

3.4. HZDP Improves Intestinal Mucosa Barrier Function during Heat Exposure.

When the intestinal mucosa is damaged, the serum concentrations of iFABP and DAO will increase, which are normally absent from systemic circulation. Compared with the control group, the levels of serum iFABP and DAO in the HS group were significantly elevated. Pretreatment with HZDP significantly reduced the levels compared with that of the HS group (Figures 4(a) and 4(b)). In addition, the serum inflammatory cytokines TNF-α and IL-6 were selected to evaluate the inflammatory response.
Figure 3: Huoxiang Zhengqi dropping pills (HZDP) preadministration attenuated intestinal injury in rats during heatstroke. Representative pathological images of jejunum from control rats, HS rats, and HZDP-treated HS rats stained with H&E. In each group, n = 5. Scale bar = 50 μm.

Figure 4: Huoxiang Zhengqi dropping pills (HZDP) preadministration decreased levels of intestinal-related proteins and inflammatory cytokines. Serum concentrations of intestinal fatty acid binding protein (iFABP) (a), diamine oxidase (DAO) (b), tumor necrosis factor-α (TNF-α) (c), and interleukin-6 (IL-6) (d), were presented as mean ± SEM (n = 5), *P < 0.05, **P < 0.01, ***P < 0.001 compared with HS group.
The levels of serum TNF-α and IL-6 increased during heat exposure, but those in the HZDP-treated HS groups were lower than those in the HS group (Figures 4(c) and 4(d)). These results suggest that HZDP improves the intestinal mucosa barrier and reduces intestinal permeability during heat exposure, further reducing bacterial and endotoxin translocation and resulting in a systemic inflammatory response.

3.5. HZDP Reverses the Decrease in Claudin-3 Expression. Since claudin-3 is the main component of TJs, we explored the effect of HZDP on claudin-3 expression during heat exposure. Compared with the control group, the expression of claudin-3 decreased remarkably in the HS group. Simultaneously, HZDP pretreatment reversed this reduction. We found that the expression of claudin-3 increased in the HZDP-treated HS groups (Figures 5(a) and 5(b)), and the level of claudin-3 in the 0.46 g/kg HZDP group recovered to a similar level as that in the control group (Figures 5(c) and 5(d)).

3.6. Potential Target Genes and the PPI Network Map of HZDP Treatment for Heatstroke. HZDP ingredients were searched from the TCMSP database, and 35 active ingredients were selected (Supplementary Table S1). A total of 4768 HS target genes were obtained. The top 10 potential target genes with the highest scoring were screened to build the PPI network map for HZDP treatment for heatstroke.

Figure 5: HZDP reversed the decrease of claudin-3 caused by heat stress. Immunohistochemistry (a) and immunofluorescence (b) analysis showed the expression of claudin-3. In each group, n = 5. Scale bar = 50 μm. The expression of claudin-3 was detected by western blot analysis (c and d). Data were presented as mean ± SD (n = 5, *P < 0.05, **P < 0.001).
genes were obtained from the GeneCard and OMIM databases. One hundred and twenty-eight target genes, excluding duplicates, were obtained from the TCMSP corresponding to 35 active ingredients of HZDP (Supplementary Table S2). HS-related genes and HZDP target genes were intersected using Venny 2.1.0 to obtain 93 potential targets (Figure 6(a) and Table 1). Furthermore, the 93 potential targets were imported into the STRING database to obtain the PPI network map (Figure 6(b)). The results of PPI network were analyzed by the degree calculated in Cytoscape software, and the top 20 key target genes were acquired (Figure 6(c)). The list of top 20 genes of PPI network map.

4. Discussion

Accumulating evidence has indicated that the main mortality from heatstroke (HS) is the result of systemic inflammatory response syndrome (SIRS). Bacterial translocation and endotoxemia induced by intestinal injury and increased permeability are related to the pathophysiological process of SIRS [30, 31]. Preventing and mitigating intestinal injury could be considered a potential clinical strategy to minimize the incidence of HS [8].

We found different protective effects on rats treated with different doses of HZDP, among which 0.46 g/kg HZDP treatment had the best effect on intestinal protection. Additionally, the time to Tc in this group was longest compared with the other two groups. This might be because 0.46 g/kg
HZDP was the maximum therapeutic dose, while 0.92 g/kg HZDP caused some side effects. We hypothesized that raw Pinelliae Rhizoma, one of the components of HZDP, was the main cause of side effects. Studies have shown that raw Pinelliae Rhizoma has a stimulating effect on gastrointestinal mucosa and could lead to gastrointestinal mucosal damage.

Table 1: The 93 potential target genes of Huoxiang Zhengqi Dropping Pills prevented heatstroke.

| No. | Target Symbol | Entry No. | Target Symbol | Entry No. |
|-----|---------------|-----------|---------------|-----------|
| 1   | Thrombin F2   | P00734    | Progesterone receptor PGR | P06401 |
| 2   | Nitric oxide synthase, endothelial NOS3 | P29474 | Alpha-1A adrenergic receptor ADRA1A | P35348 |
| 3   | Sodium channel protein type 5 subunit alpha SCN5A | Q14524 | Calcium-activated potassium channel subunit alpha-1 KCNMA1 | Q12791 |
| 4   | Interleukin-6 IL-6 | P05231 | Transcription factor p65 RELA | Q04206 |
| 5   | Matrix metalloproteinase-9 MMP9 | P14780 | Dipeptidyl peptidase IV DPP4 | P27487 |
| 6   | Cellular tumor antigen p53 TP53 | P04637 | Leukotriene A-4 hydrolase LTA4H | P09960 |
| 7   | RAC-alpha serine/threonine-protein kinase AKT1 | P31749 | Phosphatidylinositol-4,5-bisphosphate-3-kinase catalytic subunit, gamma isoform PIK3CG | P48736 |
| 8   | Caspase-3 CASP3 | P42574 | Alpha-1B adrenergic receptor ADRA1B | P35368 |
| 9   | Tumor necrosis factor TNF | P01375 | Acetycholinesterase ACHE | P22303 |
| 10  | Estrogen receptor ESR1 | P03372 | Alpha-2A adrenergic receptor ADRA2A | P08913 |
| 11  | Peroxisome proliferator-activated receptor gamma PPARG | P37231 | Potassium voltage-gated channel subfamily H member 2 KCNHI | Q12809 |
| 12  | Coagulation factor VII F7 | P08709 | Insulin-like growth factor II IGF2 | P01344 |
| 13  | Beta-2 adrenergic receptor ADRB2 | P07550 | Serine/threonine-protein kinase Chk1 CHEK1 | Q14757 |
| 14  | Interleukin-8 CXCL8 | P10145 | Egl nine homolog 1 EGLN1 | Q09GZ79 |
| 15  | Serum paraoxonase/arylesterase 1 PON1 | P27169 | Sodium-dependent dopamine transporter SLC6A3 | Q01959 |
| 16  | Mitogen-activated protein kinase-1 MAPK14 | Q16539 | Urokinase-type plasminogen activator PLAU | P00749 |
| 17  | Mitogen-activated protein kinase-8 MAPK8 | P45983 | Sodium-dependent noradrenaline transporter SLC6A2 | P23975 |
| 18  | Coagulation factor Xa F10 | P00742 | Aryl hydrocarbon receptor AHR | P05269 |
| 19  | Caspase-8 CASP9 | P55211 | Alpha-1D adrenergic receptor ADRA1D | P25100 |
| 20  | Prostaglandin G/H synthase 2 PTGS2 | P35354 | 5-Hydroxytryptamine receptor 3A HTR3A | P46098 |
| 21  | Cyclic AMP-responsive element-binding protein 1 CREB1 | P16220 | Scavenger receptor cysteine-rich type I protein CD63 | Q86VB7 |
| 22  | C-C motif chemokine 2 CCL2 | P13500 | Amine oxidase [flavin-containing] B MAOB | P27338 |
| 23  | Transforming growth factor beta-1 TGFBI | P01137 | Neuronal acetylcholine receptor protein, alpha-7 chain CHRNA7 | P36544 |
| 24  | Sodium-dependent serotonin transporter SLC6A4 | P31645 | 5-Hydroxytryptamine 2C receptor HTR2C | P28335 |
| 25  | Nitric oxide synthase, inducible NOS2 | P35228 | Amine oxidase [flavin-containing] A MAOA | P21397 |
| 26  | Hypoxia-inducible factor 1-alpha HIF1A | Q16665 | Alpha-2C adrenergic receptor ADRA2C | P18852 |
| 27  | Caspase-9 CASP9 | P55211 | Protein kinase C delta type PRKCD | P05665 |
| 28  | Intersitial collagenase MMP1 | P03956 | Cyclin-A2 CCNA2 | P20248 |
| 29  | Myeloperoxidase MPO | P05164 | Cytosolic phospholipase A2 PLAZG4A | P47712 |
| 30  | Microtubule-associated protein 2 MAP2 | P11137 | Cell division protein kinase 2 CDK2 | P29491 |
| 31  | Androgen receptor AR | P10275 | NADPH oxidase 5 NOX5 | Q96PH1 |
| 32  | G1/S-specific cyclin-D1 CCND1 | P24385 | G2/mitotic-specific cyclin-B1 CCNB1 | P14635 |
| 33  | Apoptosis regulator Bcl-2 BCL2 | P10415 | Glutamate receptor 2 GRIA2 | P42262 |
| 34  | CGMP-inhibited 3’,5’-cyclic phosphodiesterase A PDE3A | Q14432 | mRNA of protein-tyrosine phosphatase, nonreceptor type 1 PTPN1 | P18031 |
| 35  | Beta-1 adrenergic receptor ADRB1 | P08588 | Apolipoprotein D APOD | P05090 |
| 36  | Metallproteinase inhibitor 1 TIMP1 | P01033 | Retinoic acid receptor RXR-alpha RXRA | P19793 |
| 37  | Transcription factor AP-1 JUN | P05412 | Fatty acid-binding protein 5 FABP5 | Q01469 |
| 38  | Prostaglandin G/H synthase 1 PTGS1 | P23219 | Muscarinic acetylcholine receptor M3 CHRM3 | P20309 |
| 39  | Pro-ontocogene c-fos FOS | P01100 | Prostaglandin E2 receptor EP3 subtype PTGER3 | P43115 |
| 40  | Fibronectin FN1 | P02751 | Telomerase protein component 1 TEP1 | Q99973 |
| 41  | Mineralocorticoid receptor NR3C2 | P08235 | Carbonic anhydrase II CA2 | P00918 |
| 42  | Apoptosis regulator BAX BAX | Q07812 | Muscarinic acetylcholine receptor M2 CHRM2 | P08172 |
| 43  | Glycogen synthase kinase-3 beta 5-Hydroxytryptamine 2A receptor HTR2A | P28223 | Delta-type opioid receptor OPRD1 | P41143 |
| 44  | Mu-type opioid receptor OPRM1 | P35372 | Lysozyme LYZ | P61626 |
| 45  | Purine nucleoside phosphorylase PNP | P00491 | Bel-2-binding component 3 BBC3 | Q96FG8 |
Evidence-Based Complementary and Alternative Medicine

...may also cause gastrointestinal mucosal damage by increasing the content of prostaglandin E2 (PGE2), inducing serious inflammation. Experiments confirmed that intragastric administration of tubers of raw Pinelliae Rhizoma at a dose of 0.5 g/kg for 3 days to rats significantly decreased the intestinal inflammation. Moreover, Pinellia lectin proteins, attaching to calcium oxalate needle crystals, then entered the tissue and caused inflammation. Calcium oxalate needle crystals had long and thin tips, barbs, and troughs and caused irritation by piercing into the tissue through pressure and the force of mucus cells. Calcium oxalate needle crystals and Pinellia lectin proteins are the main toxic components of raw Pinelliae Rhizoma, causing toxicity are only calcium oxalate needle crystals and Pinellia lectin proteins and the mechanism of toxicity need to be further confirmed. Interestingly, this optimal dose (0.46 g/kg) in rats is equivalent to the daily clinical dosage for adult humans (5.2 g).

Heat stress could impair intestinal barrier integrity by increasing intestinal permeability, resulting in the increase of plasma endotoxin in the circulation and leading to severe conditions [37, 38]. Molecules related to this process might be used as indicators for evaluating the integrity and permeability of the intestinal barrier. Intestinal fatty acid-binding protein (iFABP), located at the luminal pole of the enterocyte, and diamine oxidase (DAO), an enzyme that catalyzes oxidative deamination of histamine-like diamines, could reflect the degree of intestinal mucosal injury [39]. Huang et al. [25] reported that Huoxiang Zhengqi Oral Liquid reduced the DAO activity in the serum of rats with dampness obstructing spleen-stomach syndrome. In the present study, we found that the levels of serum iFABP and DAO increased after HS, but these increases were blunted in HZDP rats. Huoxiang Zhengqi Oral Liquid could also repair the intestinal mechanical barrier function by raising the expression levels of occludin and ZO-1 in rat colon tissues [25]. Similar results were observed, and HZDP restored the intestinal barrier by increasing the expression of claudin-3. Although claudins are the key proteins of TJs, it is unclear whether the interactions of claudin and occludin, ZO proteins, and claudin monomers participate in the regulation of TJs during heat exposure, as well as the mechanisms of these regulations.

It has been found that some intestinal cytokines, including IL-1β, IL-2, IL-6, IL-10, IL-12, and TNF-α, showed significant changes at different time points after heat stress in mice [31]. Considering the developmental process of intestinal injury and the inflammatory response during HS, the levels of serum inflammatory factors and intestinal-related proteins at different time points should be detected not only 2 h after HS. Since the expression of claudins varies in different intestinal segments [40], the tissue of other intestinal sites should also be analyzed, not only the jejunum. We are willing to observe more time points and more intestinal sites in future studies.

The intestine seems to be more susceptible to heat injury than other visceral organs, and direct intestinal injury caused by heat stress plays a key role in the pathogenesis and pathophysiology of HS [41–43]. Studies have shown that many components had the effects of improving intestinal injury and heat resistance. Wogonin, an ingredient of Atractylodis Rhizoma, has been shown to suppress the inflammatory response and maintain intestinal barrier function [44]. Hesperidin, the active ingredient of Citri Reticulatae Pericarpium, could protect against intestinal inflammation by reducing the levels of TNF-α, IL-6, and other inflammatory factors and increasing the levels of anti-inflammatory factors. Additionally, hesperidin could maintain intestinal barrier function by improving the expression of tight junction proteins and intestinal permeability in DSS-induced mouse colonic tissues [45, 46]. Magnolol and honokiol are the main bioactive compounds isolated from Magnoliae Officinalis Cortex. Previous studies demonstrated that magnolol and honokiol could enhance the intestinal anti-inflammatory capacities, elongate the villus height and crypt depth, and reduce goblet cell numbers to protect the intestinal mucosa [47]. Magnolol treatment attenuated dextran sulfate sodium-induced colitis by regulating inflammation and intestinal barrier integrity in mice [48]. Bioinformatics screening and the network pharmacology results revealed that TNF-α and IL-6 were the main inflammatory target genes related to HZDP. Hesperidin, magnolol, and other active components might have anti-inflammatory effect through inhibiting NF-kB-mediated inflammatory cytokines mRNA formation [49], downregulation of p38/MAPK [50], blocking RIPK3/MLKL necroptosis signaling [45], and modulation of the JAK2/STAT3/SOCS3 pathway [51]. We speculated that HZDP might prevent intestinal injury mainly by wogonin, hesperidin, magnolol, magnolol, and other active components through anti-inflammatory effects, increasing the expression of tight junction proteins, maintaining villus morphology, and eventually improving heat resistance.

5. Conclusion

Our study demonstrated that Huoxiang Zhengqi Dropping Pills (HZDP) could effectively protect intestinal barrier function and prevent acute intestinal injury, eventually improving heat resistance. This study may provide a basis for minimizing the incidence of heatstroke by preventing and mitigating intestinal injury. It is worth considering that HZDP may serve as a valuable preventive medicine for heatstroke.

Abbreviations

HZDP: Huoxiang Zhengqi Dropping Pills
HS: Heatstroke
TNF-α: Tumor necrosis factor-α
IL-6: Interleukin-6
iFABP: Intestinal fatty acid-binding protein
DAO: Diamine oxidase.

Data Availability
The data used to support the findings of this study are available from the corresponding author upon request.

Conflicts of Interest
The authors declare that they have no conflicts of interest.

Authors’ Contributions
YN Li and HG Zhang designed the experiments. YN Li, HTao, JH Hong, YL Xiong, XC Pan, Y Liu, and XS Yang participated in the experimental work. YN Li wrote the manuscript, and HG Zhang revised the manuscript.

Acknowledgments
This work was supported by the AMU Centralized planning project of the National Natural Science Foundation of China (No. 2021-2018-040). The authors thank the Department of Tropical Medicine (Army Medical University, Chongqing, China) for providing a specific environment-control smart chamber.

Supplementary Materials

Table S1. Characteristics of active ingredients in Huoxiang Zhengqi Dropping Pills. Table S2. The 128 target genes of Huoxiang Zhengqi Dropping Pills active ingredients. (Supplementary Materials)

References
[1] Y. Epstein and R. Yanovich, “Heatstroke,” New England Journal of Medicine, vol. 380, no. 25, pp. 2449–2459, 2019.
[2] F. G. Gaudio and C. K. Grissom, “Cooling methods in heat stroke,” Journal of Emergency Medicine, vol. 50, no. 4, pp. 607–616, 2016.
[3] K. Miyamoto, K. Suzuki, H. Ohtaki et al., “A novel mouse model of heatstroke accounting for ambient temperature and relative humidity,” Journal of Intensive Care Medicine, vol. 9, no. 1, p. 35, 2021.
[4] T. Hifumi, Y. Kondo, K. Shimizu, and Y. Miyake, “Heat stroke,” Journal of Intensive Care Medicine, vol. 6, no. 1, p. 30, 2018.
[5] Z. N. Xia, Y. Zong, Z. T. Zhang et al., “Dexmedetomidine protects against multi-organ dysfunction induced by heat-stroke via sustaining the intestinal integrity,” Shock, vol. 48, no. 2, pp. 260–269, 2017.
[6] L. R. Leon and B. G. Helwig, “Heat stroke: role of the systemic inflammatory response,” Journal of Applied Physiology, vol. 109, no. 6, pp. 1980–1988, 1985.
[7] L. R. Leon and B. G. Helwig, “Role of endotoxin and cytokines in the systemic inflammatory response to heat injury,” Frontiers in Bioscience, vol. 2, no. 3, pp. 111–938, 2010.
[8] N. Ye, T. Yu, H. Guo, and J. Li, “Intestinal injury in heat stroke,” Journal of Emergency Medicine, vol. 57, no. 6, pp. 791–797, 2019.
[9] M. E. R. Andrade, R. S. Araujo, P. A. V. de Barros et al., “The role of immunomodulators on intestinal barrier homeostasis in experimental models,” Clinical Nutrition, vol. 34, no. 6, pp. 1080–1087, 2015.
[10] J. R. Turner, “Molecular basis of epithelial barrier regulation: from basic mechanisms to clinical application,” American Journal Of Pathology, vol. 169, no. 6, pp. 1901–1909, 2006.
[11] Y. Kitayama, H. Fukui, K. Hara et al., “Role of regenerating gene I in claudin expression and barrier function in the small intestine,” Translational Research, vol. 173, pp. 92–100, 2016.
[12] Y. Cui and X. Gu, “Proteomic changes of the porcine small intestine in response to chronic heat stress,” Journal of Molecular Endocrinology, vol. 55, no. 3, pp. 277–293, 2015.
[13] P. Ewert, S. Aguilera, C. Alliende et al., “Disruption of tight junction structure in salivary glands from Sjögren’s syndrome patients is linked to proinflammatory cytokine exposure,” Arthritis & Rheumatism, vol. 62, no. 5, pp. 1280–1289, 2010.
[14] V. Garcia-Hernandez, M.Quiros, and A. Nusrat, “Intestinal epithelial Claudins: expression and regulation in homeostasis and inflammation,” Annals of the New York Academy of Sciences, vol. 1397, no. 1, pp. 66–79, 2017.
[15] S. Amasheh, M. Fromm, and D. Gunzel, “Claudins of intestine and nephron—a correlation of molecular tight junction structure and barrier function,” Acta Physiologica, vol. 201, no. 1. pp. 133–140, 2011.
[16] P. Lian, S. Braber, S. Varasteh, H. J.wichers, and G. Folkerts, “Hypoxia and heat stress affect epithelial integrity in a Caco-2/HT-29 co-culture,” Scientific Reports, vol. 11, no. 1, Article ID 13186, 2021.
[17] Y. Liu, W. Liu, Q. X. Peng, J. L. Peng, L. Z. Yu, and J. L. Hu, “Protective effect of huoxiang zhengqi oral liquid on intestinal mucosal mechanical barrier of rats with postinfectious irritable bowel syndrome induced by acetic Acid,” Evidence-Based Complementary and Alternative Medicine, vol. 2014, Article ID 218383, 10 pages, 2014.
[18] Chinese Pharmacopoeia Commission, Pharmacopoeia of the People’s Republic of China, 2020 edn, vol. 1, pp. 1884-1885, Beijing, China, China Medical Science Press, 2020.
[19] J. T. Chi, J. F. Guo, and Y. D. Wang, “Treatment of 48 cases of acute gastroenteritis with huoxiang zhengqi powder,” Chinese Medicine Modern Distance Education of China, vol. 22, no. 425, pp. 122-123, 2016.
[20] H. Q. Cui, ”An effective analysis of treating acute gastroenteritis with the Huoxiang Zhengqi pill,” Chinese Medical Journal, vol. 5, no. 8, pp. 87-88, 2013.
[21] M. M. Cao, P. Men, J. Wen, L. Liu, Y. H. Yang, and R. S. Zhao, “Evidence-based evaluation on Huoxiang Zhengqi oral preparation in the treatment of gastrointestinal dysfunction,” Evaluation and Analysis of Drug-Use in Hospitals of China, vol. 21, no. 5, pp. 600–602, 2021.
[22] C. H. Guo, “Clinical effect of Huoxiang Zhengqi Pills in the treatment of acute gastroenteritis,” Contemporary Medicine, vol. 22, no. 425, pp. 122-123, 2016.
[23] H. Dong, “Analysis of huoxiang zhengqi powder prevention and treatment of heatstroke,” CJGMCM, vol. 23, no. 10, 2008.
[24] Y. Wang, L. Wang, and J. Chen, “Clinical analysis of treating 42 cases of acute heatstroke with Huoxiang Zhengqi Powder,” Chinese Medicine Science and Technology, vol. 21, no. 2, p. 222, 2014.
[25] F. Huang, M. J. Gong, Y. F. Chen, and C. E. Feng, “Effects of Huoxiang Zhengqi Oral Liquid on intestinal barrier
function in rats with dampness obstructing spleen-stomach syndrome," *China Journal of Chinese Materia Medica*, vol. 45, no. 9, pp. 2144–2150, 2020.

[26] Z. Wang, Z. Yang, V. Grinchuk et al., "Mo2038 anti-inflammatory and intestinal function-modulating activities of a traditional Chinese herbal formula houxiang zhengqi," *Gastroenterology*, vol. 142, no. 5, pp. S–726, 2012.

[27] Z. P. Li, "The 240 cases of infantile high fever were treated by traditional Chinese medicine external therapy," *Journal of External Therapy of TCM*, vol. 12, no. 5, 2003.

[28] Y. Xu, L. Ding, Z. Wang, Y. Wang, and L. Sun, "Virtual screening of cabilin patchouli herb as a treatment for heat stress: a study based on network pharmacology, molecular docking, and experimental verification," *Evidence-based Complementary and Alternative Medicine*, vol. 2021, Article ID 8057587, 14 pages, 2021.

[29] C. P. Chang, Y. C. Hsu, and M. T. Lin, "Magnolol protects against cerebral ischaemic injury of rat heatstroke," *Clinical and Experimental Pharmacology and Physiology*, vol. 30, no. 5–6, pp. 387–392, 2003.

[30] J. Ji, Z. Gu, H. Li, L. Su, and Z. Liu, "Cryptdin-2 predicts intestinal injury during heatstroke in mice," *International Journal of Molecular Medicine*, vol. 41, no. 1, pp. 137–146, 2018.

[31] Z. Liu, X. Sun, J. Tang et al., "Intestinal inflammation and tissue injury in response to heat stress and cooling treatment in mice," *Molecular Medicine Reports*, vol. 4, no. 3, pp. 437–443, 2011.

[32] X. Y. Wu, J. L. Zhao, M. Zhang, F. Li, T. Zhao, and L. Yang, "Sedative, hypnotic and anticonvulsant activities of the ethanolic fraction from rhizoma pinelliae preparatum," *Journal of Ethnopharmacology*, vol. 135, no. 2, pp. 325–329, 2011.

[33] J. Wu, Z. Cheng, S. He et al., "Pinelliae rhizoma, a toxic Chinese herb, can significantly inhibit CYP3A activity in rats," *Molecules*, vol. 20, no. 1, pp. 792–806, 2015.

[34] F. Zhu, H. Yu, H. Wu, R. Shi, W. Tao, and Y. Qiu, "Correlation of Pinellia ternata aglutinin and Pinellia ternata raphides’ toxicity," *Zhongguo Zhongyao Zazhi*, vol. 37, no. 7, pp. 1007–1011, 2012.

[35] H. L. Yu, H. Wu, X. D. Zhang, and F. Y. Liu, "Irritant stability of raphides and tubers from Pinellia ternate," *Zhong Yao Cai*, vol. 33, no. 6, pp. 903–907, 2010.

[36] X. Ji, B. Huang, G. Wang, and C. Zhang, "The ethnobotanical, phytochemical and pharmacological profile of the genus Pinellia," *Fitoerapia*, vol. 93, pp. 1–17, 2014.

[37] N. J. Klingensmith and C. M. Coopersmith, "The gut as the motor of multiple organ dysfunctions in critical illness," *Critical Care Clinics*, vol. 32, no. 2, pp. 203–212, 2016.

[38] J. Hu, H. Kang, C. Liu, P. Hu, M. Yang, and F. Zhou, "Regulatory T cells could improve intestinal barrier dysfunction in heatstroke," *Inflammation*, vol. 42, no. 4, pp. 1228–1238, 2019.

[39] L. Zhang, X. Fan, Z. Zhong, G. Xu, and J. Shen, "Association of plasma diamine oxidase and intestinal fatty acid-binding protein with severity of disease in patient with heat stroke," *The American Journal of Emergency Medicine*, vol. 33, no. 7, pp. 867–871, 2015.

[40] P. Nighot and T. Ma, "Endocytosis of intestinal tight junction proteins: in time and space," *Inflammatory Bowel Diseases*, vol. 27, no. 2, pp. 283–290, 2021.

[41] P. Lian, S. Braber, J. Garsen et al., "Beyond heat stress: intestinal integrity disruption and mechanism-based intervention strategies," *Nutrients*, vol. 12, no. 3, p. 734, 2020.