Repetitive Transcranial Magnetic Stimulation (RTMS) on Chronic Tinnitus: a Systematic Review and Meta-Analysis

Zhengrong Liang
Jinan University First Affiliated Hospital

Gui Cheng
Sun Yat-sen Memorial Hospital, Sun Yat-sen University

Lingfei Huang
Jinan University First Affiliated Hospital

Tao Zhang
Jinan University First Affiliated Hospital

Haidi Yang (yanghd@mail.sysu.edu.cn)
Third Affiliated Hospital of Sun Yat-Sen University Department of Otorhinolaryngology Head and Neck Surgery

Haiying Jia (jiahaiying79@126.com)
Jinan University First Affiliated Hospital

Research article

Keywords: repeated transcranial magnetic stimulation, chronic tinnitus, Randomized controlled trial, A Systematic Review and Meta-Analysis

DOI: https://doi.org/10.21203/rs.3.rs-29172/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Although the clinical efficacy and safety of repeated transcranial magnetic stimulation (rTMS) on the treatment of chronic tinnitus have been frequently reported, the results remain controversial. Therefore, its related clinical efficacy and safety were systematically evaluated and meta-classified in this study.

Methods: Literature on repeated transcranial magnetic stimulation (rTMS) on chronic tinnitus was retrieved in PubMed, Embase and Cochrane Library due April 2020. Review Manager 5.3 software was applied to data synthesis, and Stata 13.0 software was adopted for analyses of publication bias and sensitivity.

Results: A total of 29 randomized studies with 1,228 patients were included. Compared with sham rTMS, rTMS showed statistical significance in tinnitus handicap inventory (THI) scores 1 week after intervention (MD -7.92, 95% confidence interval [CI] -14.18, -1.66), THI scores 1 month after intervention (MD -8.52, 95% CI -12.49, -4.55), THI scores 6 months after intervention (MD -6.53, 95% CI -11.406, -1.66), TQ scores 1 week after intervention (MD -8.54, 95% CI -15.56, -1.52), mean change in THI scores 1 month after intervention (MD -14.86, 95% CI -21.42, -8.29) and mean change in THI scores 6 months after intervention (MD -16.37, 95% CI -20.64, -12.11). There was no statistical difference between rTMS and sham rTMS in THI scores 2 weeks after intervention (MD -1.51, 95% CI -13.42, -10.40), tinnitus questionnaire (TQ) scores 1 month after intervention (MD -8.97, 95% CI -20.41, 2.48), TQ scores 6 months after intervention (MD -7.02, 95% CI -18.18, 4.13), mean change in TQ scores 1 month after intervention (MD -3.67, 95% CI -8.56, 1.22) and adverse events (OR 1.11, 95% CI 0.51, 2.42). Egger's and Begg's tests indicated no publication bias (P = 0.925).

Conclusion: It was demonstrated that rTMS on chronic tinnitus has certain clinical curative effect and high safety, however, due to the lack of included studies and the small sample size, more large-sample, multi-center, randomized double-blind trials are needed for further verification.

1. Background

Tinnitus is a common auditory symptom that can cause severe stress when co-existing with other symptoms. Studies have shown that the incidence of tinnitus in adults ranges from 10 to 19 percent[^1^-^2^], characterized by an abnormal auditory perception in the brain or ear in the absence of external acoustic or electrical stimulation. In the 2019 European multidisciplinary tinnitus guidelines, tinnitus lasting more than 6 months is defined as chronic tinnitus[^3^]. Long-term tinnitus not only brings the influence of noise to patients, but also is often accompanied by varying degrees of mood disorders. Studies have found that tinnitus seriously damages the quality of life of 1–2% of people[^4^]. According to the neurophysiological model of tinnitus, tinnitus is the abnormal electrical activity of neurons in the peripheral and central auditory pathways (including the cerebral cortex), reshaping the detection and perception process of the cortex or subcortical center, and thus causing tinnitus[^5^].
In recent years, the incidence of tinnitus has increased year by year, and in most cases, there is no cure, and there is a lack of effective standardized treatment. In recent years, several studies have shown that repetitive transcranial stimulation is effective in the treatment of chronic tinnitus. Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive technique that enables electromagnetic pulses to reach the scalp and brain to cause changes in neuronal excitability and neurotransmitter systems. In other words, it is through repetitive rTMS and different frequency of stimulation, the auditory neurons are adjusted, reduce the abnormal electrical activity of hearing central neurons, reduce the occurrence of tinnitus, thus to achieve the treatment of tinnitus. The clinical efficacy and safety of rTMS on the treatment of chronic tinnitus have been reported by many lately, but the results of studies are divergent and even controversial. So far, a Cochrane review included 5 randomized studies and concluded that rTMS was useful for tinnitus, but the sample size is relatively small and the safety of rTMS treatment was not reported in five studies. The most recent of these, a systematic review of 15 studies showed that rTMS therapy had a significant effect on tinnitus, but large-scale experimental studies were lacking.

In this study, we retrieved the published literature on rTMS on the treatment of chronic tinnitus, extracted high-relevant data for a systematic review and meta-analysis to evaluated the efficacy and safety, in a bid to provide a reference for the prevention and treatment of chronic tinnitus.

2. Methods
2.1. Search strategies

- This study was executed in line with the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and reported based on the guidelines developed by the Meta-Analysis of Observational Studies in Epidemiology group. Because all the analyses were performed on the basis of previous published studies, no ethical approval or patient consent was required. In the initial screening, 2 investigators (Z-RL and GC) conducted the main search in the electronic databases of PubMed, Embase and Cochrane Library to retrieve eligible randomized controlled trial articles about rTMS on the treatment of chronic tinnitus from the inception of the databases to April 2020, without restrictions to languages or regions. The combined terms of Medical Subject Headings (MeSH) and non-MeSH were searched as follows: 'Transcranial magnetic stimulation', 'Transcranial Magnetic Stimulations', 'Magnetic Stimulation, Transcranial', 'Magnetic Stimulations, Transcranial', 'Stimulation, Transcranial Magnetic', 'Stimulations, Transcranial Magnetic', 'Transcranial Magnetic Stimulation, Single Pulse', 'Transcranial Magnetic Stimulation, Paired Pulse', 'Transcranial Magnetic Stimulation, Repetitive', 'Tinnitus', 'Ringing-Buzzing-Tinnitus', 'Ringing Buzzing Tinnitus', 'Tinnitus, Tensor Palatini Induced', 'Tensor Palatini Induced Tinnitus', 'Tinnitus, Tensor Tympani Induced', 'Tensor Tympani Induced Tinnitus', 'Pulsatile Tinnitus', 'Tinnitus, Pulsatile', 'Tinnitus, Spontaneous Oto-Acoustic Emission', 'Tinnitus, Spontaneous Oto Acoustic Emission', 'Spontaneous Oto-Acoustic Emission Tinnitus', 'Spontaneous Oto Acoustic
Emission Tinnitus’, ‘Tinnitus, Clicking’,'Clicking Tinnitus'‘Tinnitus, Leudet’,'Leudet Tinnitus’,'Tinnitus, Leudet's’,‘Leudet's Tinnitus’,'Tinnitus, Leudets’,'Tinnitus, Noise Induced’,'Induced Tinnitus, Noise’,'Noise Induced Tinnitus’,'Tinnitus, Objective’,'Objective Tinnitus’,'Tinnitus, Subjective’,'Subjective Tinnitus’,'Tinnitus of Vascular Origin’,'Tinnitus of Vascular Origin','Vascular Origin Tinnitus’,'Tinnitus, Vascular Origin’. A third investigator irrelevant to the initial procedure was consulted in case of any discrepancy. Taking the pubmed database as an example, the literature search strategy is shown in Table 1.
Table 1
The Pubmed database literature search strategy

#1	"Transcranial magnetic stimulation"[Mesh]
#2	Transcranial magnetic stimulation
#3	Transcranial Magnetic Stimulations
#4	Magnetic Stimulation, Transcranial
#5	Magnetic Stimulations, Transcranial
#6	Stimulation, Transcranial Magnetic
#7	Stimulations, Transcranial Magnetic
#8	Transcranial Magnetic Stimulation, Single Pulse
#9	Transcranial Magnetic Stimulation, Paired Pulse
#10	Transcranial Magnetic Stimulation, Repetitive
#11	
#12	"Tinnitus"[Mesh]
#13	Tinnitus
#14	Ringing-Buzzing-Tinnitus
#15	Ringing Buzzing Tinnitus
#16	Tinnitus, Tensor Palatini Induced
#17	Tensor Palatini Induced Tinnitus
#18	Tinnitus, Tensor Tympani Induced
#19	Tensor Tympani Induced Tinnitus
#20	Pulsatile Tinnitus
#21	Tinnitus, Pulsatile
#22	Tinnitus, Spontaneous Oto-Acoustic Emission
#23	Tinnitus, Spontaneous Oto Acoustic Emission
#24	Spontaneous Oto-Acoustic Emission Tinnitus
#25	Spontaneous Oto Acoustic Emission Tinnitus
#26	Tinnitus, Clicking
#27	Clicking Tinnitus
2.2. Study Selection Criteria

- Two independent investigators (Z-RL and GC) analyzed the initially selected articles to verify their relevance with the topic of rTMS on the treatment of chronic tinnitus. Studies had to fulfill the following criteria for inclusion: outcome was clinical efficacy and safety of rTMS on the treatment of chronic tinnitus; study design was randomized controlled trial; participants were selected without limitations to regions, ages or social status. Trials were excluded according to following identifications: non-randomized controlled, trial duplicate or overlapping data, animal experiments, conference abstracts, letters and review articles. In case of any disagreement the results were discussed and unified by senior authors.
2.3. Data Extraction

- Data from the included studies were extracted and independently categorized by 2 of the authors (Z-RL and GC) in a predefined data extraction form. All disagreements were resolved by discussion. Design information, baseline population characteristics (mean age, sample size, course of the disease and country), interventions, clinical efficacy score, adverse events, etc from all included studies were stratified into a standardized evidence table. All the data were rechecked to ensure accuracy. Study selections were shown in a PRISMA flow diagram.

2.4. Methodological Quality Assessment

- The methodological quality of the included studies was evaluated by 2 independent reviewers (Z-RL and GC) based on the Cochrane Handbook Version 5.3 that include Random sequence generation; Allocation concealment; The blinding of participants, Personnel and outcome assessor; Incomplete outcome data; Selective reporting and other sources of bias.

2.5. Statistical Analysis

- The meta-analysis and statistical analysis were performed using Cochrane Collaboration Review Manager software (RevMan version 5.3, Nordic Cochrane center, Copenhagen, Denmark). For Dichotomous data, we used the risk ratios (RRs) or odds ratios (ORs) as the analysis of statistics. For continuous data, we used the weighted mean difference (WMD) as the analysis of statistics. The I^2-square (\hat{I}^2) test was adopted to evaluate the influence of heterogeneity on the output of meta-analysis. \hat{I}^2 values of 0%, 25%, 50% and 75% represented no, low, medium and high heterogeneity, respectively. According to the Cochrane review guidelines, severe heterogeneity of $\hat{I}^2 \geq 50\%$ required the utilization of random-effect models. Otherwise, the fixed effect model was approved. P value less than 0.05 was accepted as statistical significance. Sensitivity analysis$^{[14]}$ was conducted by study removal approach to evaluate the quality and consistency of the results. Funnel plots were visually checked, and Egger and Begg linear regression tests of publication bias were carried out by Stata 13.0 software.

3. Results

3.1. Study selection process

As a result, 897 references were initially retrieved, 524 were left after eliminating duplicate literature; and then 477 without high-relevant to our topic were discarded by reading titles and abstracts, and 47 studies remained. Finally, 18 full-text articles were abandoned because of the following reasons: 4 studies on irrelevant topics; 1 study was viewpoint; 2 studies were protocol; 8 studies were no randomized controlled
trial; 3 studies without free online full-text materials. Therefore, 29 randomized controlled studies with 1,228 patients were included in the A Systematic Review and Meta-Analysis. The flow chart describing the selection process of the study was shown in Fig. 1.

3.2. Study Characteristics And Methodological Quality

- The 29 included references were randomized controlled studies, with the publication years differing from 2004 to 2017. 3 were conducted in China (including 1 in Taiwan), 4 in Germany, 3 in Turkey, 3 in South Korea, 6 in USA, 2 in Czech Republic and 1 in Italy, Egypt, Brazil, Australia, Netherlands, Finland, UK, Belgium, respectively. In the selected clinical trials, the sample sizes varied between 8 and 146 participants. The mean duration of tinnitus in these studies ranged from 6 to 420 months. The mean treatment Course in these studies ranged from 5 to 20 days. The basic characteristics of the 29 of them were shown in Table 2 and Table 3. In addition, the methodological quality graph (Figs. 2 and 3) presents each item for each included study as well as each item presented as percentages across all included trails according to our established quality evaluation standard.
| Inclusive trials | Country | Study design | Gender (male/female) | Age (years) | Duration of tinnitus (month) | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Landgrebe M 2017 | Germany | Sham-controlled, randomized multi center trial | 54/17 51/24 | 48.1 ± 12.5 49.9 ± 13.2 | 6.2 ± 5.3 8.1 ± 8.4 |
| Formánek M 2018 | Czech Republic | Randomized double-blinded controlled trial | 13/7 10/2 | 47.9 ± 14.31 51.8 ± 10.34 | 53.4 ± 61.89 76.8 ± 76.85 |
| Chung HK 2012 | China | Parallel randomized controlled study | 11/1 11/1 | 53.83 ± 18.4 51.90 ± 15.5 | 6–24 0 6–24 0 |
| Yilmaz 2014 | Turkey | Randomized controlled trial | 27/33 27/33 | 49.8 ± 8.03 (36–66) 49.8 ± 8.03 (36–66) | > 6 > 6 |
| Rossi S 2007 | Italy | Randomized, double blind, cross over, placebo controlled trial | 7/1 4/2 | 52.63 (35–72) 52.33 (37–62) | 12–300 12–300 |
| Included trials | Country | Study design | Gender (male/female) | Age (years) | Duration of tinnitus (month) |
|-----------------|---------------|---|----------------------|-------------|-----------------------------|
| | | | T | C | T | C | T | C |
| Langguth B 2014 (1) [4] | Germany | Randomized, double-blind, parallel-group, controlled clinical trial | 35/13 | 31/14 | 44.9 | ± 11.5 | 50.3 | ± 12.9 | 68.0 | ± 97.0 | 74.4 | ± 74.2 |
| Langguth B 2014 (2) [4] | Germany | Randomized, double-blind, parallel-group, controlled clinical trial | 32/16 | 31/14 | 50.4 | ± 12.5 | 50.3 | ± 12.9 | 78.3 | ± 64.9 | 78.3 | ± 64.9 |
| Bilici S 2015 | Turkey | Randomized, double-blind, placebo-controlled study | 33/42 | 33/42 | 40 ± 13.2 (20–62) | 40 ± 13.2 (20–62) | > 12 | > 12 |
| Khedr E 2009 | Egypt | Randomized controlled trial | Unclear | Unclear | Unclear | Unclear | Unclear | Unclear | Unclear |
| Included trials | Country | Study design | Gender(male/female) | Age(years) | Duration of tinnitus(month) |
|-----------------|---------------|---|---------------------|------------|--------------------------|
| Marc ondes RA 2010[21] | Brazil | Randomized, double-blind, parallel design, study | Unclear | > 18 | > 6 |
| Folmer RL 2015[22] | USA | Randomized, participant and clinician or observer-blinded, placebo-controlled clinical trial | 25/7 26/6 | 58.3 ± 9.5 | 62.8 ± 8.3 |
| Li LPH 2019[23] | Taiwan, China | Randomized controlled trial | 7/5 | 57 ± 10.1 | 54 ± 7.5 |
| Noh TS 2019[24] | South Korea | Double-blind randomized controlled trial | 14/3 7/6 | 51.9 ± 12.4| 55.8 ± 6.9 |

| | | | 76.1 ± 129.3 | 70.1 ± 70.4|
Included trials	Country	Study design	Gender (male/female)	Age (years)	Duration of tinnitus (month)				
Ander s M 2010[25]	Czech Republic	Randomized, placebo controlled study	12/10 17/3	48.09	106.8 ± 81.6 88.4 ± 67.5				
Hoekstra CEL 2013[26]	The Netherlands	Randomized, double-blind placebo controlled clinical trial	26/0 15/9	50 ± 12	58(8-240) 38(12-420)				
Sahls ten H 2017[27]	Finland	Randomized, placebo controlled study	13/6 14/6	48.9 ± 13.1	> 6 > 6				
Wang H 2016[28]	China	Randomized controlled trial	6/8 3/7	62.1 ± 9.81	6-72 6-72				
Caca ce AT 2017[29]	USA	Randomized single blinded sham controlled crossover study	30/0 30/0	54.2 ± 14.2	Unclear Unclear				
Inclued trials	Country	Study design	Gender(male/female)	Age(years)	Duration of tinnitus(month)				
----------------	---------	--------------	---------------------	------------	---------------------------				
			T	C	T	C	T	C	
Piccirillo JF 2013[30] USA	Cross over, double-blind, randomized controlled trial	9/5	9/5	Median 42(22–59)	Median 42(22–59)	6–36	0	6–36	0
James G 2018[31] USA	Double-blind, randomized clinical trial with participant crossover	9/3	9/3	49.2 ± 15.3	49.2 ± 15.3	> 6	> 6		
Kyong JS 2019(1)[32] Korea	Randomized controlled trial	4/4	6/2	56 ± 4.9	50.9 ± 7.1	> 6	> 6		
Kyong JS 2019(2)[32] Korea	Randomized controlled trial	6/2	6/2	50.9 ± 7.1	50.9 ± 7.1	> 6	> 6		
Roland LT 2016[33] USA	Randomized, double-blind, controlled clinical trial	11/5	10/4	Median 50	Median 53	> 6	> 6		
Included trials	Country	Study design	Gender (male/female)	Age (years)	Duration of tinnitus (month)				
-----------------	----------------	--	----------------------	-------------	------------------------------				
Barwood CHS 2013 [34]	Australia	Single blind, randomized controlled trial	T: 2/2	T: 29–58	C: >12				
Godbehere J 2019 [35]	UK	A two-arm, single-blind, randomized controlled trial	Unclear	Unclear	Unclear				
Mennemeier M 2011 [36]	USA	Randomized, sham-controlled crossover	Unclear	Unclear	28–75				
Lee HY 2013 [37]	Korea	Randomized controlled trial	8/7	53	Mean 48				
Lorenz I 2013 [38]	Germany	Randomized, single-blind, sham-controlled trial	7/3	49.8	Mean 21.6				
Included trials	Country	Study design	Gender(male/female)	Age(years)	Duration of tinnitus(month)				
-----------------	---------------	----------------------------------	---------------------	--------------	----------------------------				
			T/C	T/C	T/C				
Vanneste S 2012[39]	Belgium	Randomized controlled trial	Unclear Unclear	50.05 ± 11.77	50.05 ± 11.77 >12				
Plewnia C 2012(1)[40]	Germany	Randomized controlled trial	10/6 8/8	46.4 ± 13.0	45.6 ± 10.3 27 ± 14 22 ± 14				
Plewnia C 2012(2)[40]	Germany	Randomized controlled trial	7/9 8/8	55.8 ± 9.7	45.6 ± 10.3 28 ± 13 22 ± 14				
Table 3
Characteristics of the Included Studies

Included trials	Interventions	Position	Treatment Course(days)	Follow up	Conclusi on by author
Landgrebe M 2017[15]	1-Hz-rTMS (2000 stimuli, 110% motor threshold)	The left temporal cortex	10d	6 months	No significant
Formanek M 2018[6]	1-Hz-rTMS (1000 stimuli, 110% motor threshold, the left side and primary auditory cortex on both sides); 25-Hz-rTMS (300 stimuli, 80% motor threshold, the dorsolateral prefrontal cortex)	The dorsolateral prefrontal cortex or the left side and primary auditory cortex on both sides	5d	6 months	No significant
Chung HK 2012[16]	5-Hz-rTMS (900 stimuli, 80% motor threshold)	The temporoparietal	10d	1 month	Significant

rTMS = repeated transcranial magnetic stimulation, AC = auditory cortex, DLPFC = dorsolateral prefrontal cortex
Included trials	Interventions	Position	Treatment Course(d)ays	Follow up	Conclusion by author
Yilmaz 2014[17]	1-Hz-rTMS sham rTMS	Unclear	10d	1 month	Significant
Rossi S 2007[18]	1-Hz-rTMS sham rTMS	The left temporoparietal region	5d	6 weeks	Significant
langguth B 2014(1) [4]	1-Hz-rTMS sham rTMS	PET-based neuronavigated	10d	11 weeks	No significant
langguth B 2014(2) [4]	1-Hz-rTMS sham rTMS	The left auditory cortex	10d	11 weeks	No significant
Bilici S 2015(1) [19]	1-Hz-rTMS sham rTMS	The left temporoparietal region	10d	6 months	Significant

rTMS = repeated transcranial magnetic stimulation, AC = auditory cortex, DLPFC = dorsolateral prefrontal cortex
Included trials	Interventions	Position	Treatment Course(days)	Follow up	Conclusion by author
Bilici S 2015(2) [19]	10-Hz-rTMS (600 stimuli, 110% motor threshold)	The left temporoparietal region	10d	6 months	Significant
Khedr EM 2009(1) [20]	1-Hz-rTMS (1500 stimuli, 100% motor threshold)	The left temporoparietal region	10d	12 months	No significant
Khedr EM 2009(2) [20]	10-Hz-rTMS (1500 stimuli, 100% motor threshold)	The left temporoparietal region	10d	12 months	Significant
Khedr EM 2009(3) [20]	25-Hz-rTMS (1500 stimuli, 100% motor threshold)	The left temporoparietal region	10d	12 months	Significant
Marcondes RA 2010 [21]	1-Hz-rTMS (1020 stimuli, 110% motor threshold)	The left temporoparietal region	5d	6 months	Significant

rTMS = repeated transcranial magnetic stimulation, AC = auditory cortex, DLPFC = dorsolateral prefrontal cortex
Included trials	Interventions	Position	Treatment Course(days)	Follow up	Conclusion by author
Folmer RL 2015\[22\]	1-Hz-rTMS (2000 stimuli, 110% or lower motor threshold)	The auditory cortex	10d	6 months	Significant
Li LPH 2019\[23\]	1-Hz-rTMS (1800 stimuli, 110% or lower motor threshold)	The left primary auditory cortex	5d	1 month	Significant
Noh TS 2019\[24\]	1-Hz-rTMS (2,000 pulses over the AC and 1,000 pulses over the DLPFC, 110% or lower motor threshold)	The left primary auditory cortex (AC) and left dorsolateral prefrontal cortex (DLPFC)	4d	8 weeks	Significant
Anders M 2010\[25\]	1-Hz-rTMS (1500 stimuli, 110% or lower motor threshold)	The left primary auditory cortex	10d	6 months	Significant

rTMS = repeated transcranial magnetic stimulation, AC = auditory cortex, DLPFC = dorsolateral prefrontal cortex
Included trials	Interventions	Position	Treatment Course(days)	Follow up	Conclusion by author
Hoekstra CEL 2013[26]	1-Hz-rTMS (2000 stimuli, 110% motor threshold) sham rTMS	The auditory cortex	5d	6 months	No significant
Sahlsten H 2017[27]	1-Hz-rTMS (4000 stimuli, 100% motor threshold) sham rTMS	The left superior temporal gyrus	10d	6 months	No significant
Wang H 2016[28]	1-Hz-rTMS (1000 stimuli, 110% motor threshold) sham rTMS	The left temporoparietal region	10d	Unclear	Significant
Cacace AT 2017[29]	1-Hz-rTMS (1200 stimuli, 110% motor threshold) sham rTMS	The temporal cortex of the left hemisphere	5d	Unclear	Significant
Piccirillo JF 2013[30]	1-Hz-rTMS (1650 stimuli, 110% motor threshold) sham rTMS	The left temporoparietal area	20d	> 4 weeks	No significant

rTMS = repeated transcranial magnetic stimulation, AC = auditory cortex, DLPFC = dorsolateral prefrontal cortex
Included trials	Interventions	Position	Treatment Course(days)	Follow up	Conclusion by author
James G 2018^[31]	1 OR 10-Hz-rTMS (1800 stimuli, 110% motor threshold)	The posterior superior temporal gyrus	5d	Unclear	Significant
Kyong JS 2019(1)^[32]	1-Hz-rTMS	The auditory temporal cortex	Unclear	Unclear	No significant
Kyong JS 2019(2)^[32]	1-Hz-rTMS (stimuli: unclear, motor threshold: unclear)	The auditory temporal and the frontal regions	Unclear	Unclear	Significant
Roland LT 2016^[33]	1-Hz-rTMS (stimuli: unclear, 110 motor threshold)	The motor cortex	10d or 20d	4 weeks	No significant
Barwood CHS 2013^[34]	1-Hz-rTMS (2000 stimuli, 110% motor threshold)	The left primary auditory cortex	10d	3 months	Significant

rTMS = repeated transcranial magnetic stimulation, AC = auditory cortex, DLPFC = dorsolateral prefrontal cortex
Included trials	Interventions	Position	Treatment Course(days)	Follow up	Conclusion by author
Godbehere J 2019[35]	5-Hz-rTMS (1200 stimuli, 80% motor threshold)	The temporal-parietal region of the scalp, overlying the auditory cortex	5d	4 weeks	No significant
Mennemeier M 2011[36]	1-Hz-rTMS (1800 stimuli, 110% motor threshold)	The temporal cortex	5d	Unclear	Significant
Lee1 HY 2013[37]	1-Hz-rTMS (1200 stimuli, 100% motor threshold)	The motor cortex	5d	Unclear	Significant
Lorenz I 2013[38]	1-Hz-rTMS (1000 stimuli, 110% motor threshold)	The auditory cortex	5d	Unclear	Significant

rTMS = repeated transcranial magnetic stimulation, AC = auditory cortex, DLPFC = dorsolateral prefrontal cortex
Included trials	Interventions	Position	Treatmen t	Follow up	Conclusion by author
Vanneste S 2012 [39]	1 or 10 Hz-rTMS (900 stimuli, 120% motor threshold)	The left ventrolateral prefrontal cortex	5d	12 months	Significant (for 10 Hz)
Plewnia C 2012(1) [40]	5-Hz-rTMS (2400 stimuli, 80% motor threshold)	The secondary auditory cortex	20d	12 weeks	No significant
Plewnia C 2012(2) [40]	5-Hz-rTMS (2400 stimuli, 80% motor threshold)	The temporoparietal association cortex	20d	12 weeks	No significant

rTMS = repeated transcranial magnetic stimulation, AC = auditory cortex, DLPFC = dorsolateral prefrontal cortex
Table 4
Meta-analysis results of other outcome evaluation indicators

Outcome	Included studies(n)	Included patients(T/C,n)	Heterogeneity	MD,95%CI	P
TQ scores 1 week after intervention	2	38/34	P = 0.55, I^2 = 0%	-8.54(-15.56, -1.52)	0.02
TQ scores 1 month after intervention	2	38/34	P = 0.15, I^2 = 53%	-8.97(-20.41, 2.48)	0.12
TQ scores 6 months after intervention	2	97/99	P = 0.03, I^2 = 79%	-7.02(-18.18, 4.13)	0.22
Mean change in TQ scores 1 week after intervention	3	108/100	P = 0.04, I^2 = 69%	-3.67(-8.56,1.22)	0.14
VAS scores 1 month after intervention	2	56/54	P = 0.07, I^2 = 69%	-0.64(-1.77,0.48)	0.26
Tinnitus loudness 1 month after intervention	2	42/40	P = 0.71, I^2 = 0%	-1.13(-7.13,4.87)	0.71

TQ = tinnitus questionnaire, VAS = visual analogue scale, CI = confidence interval

3.3. The clinical efficacy and safety of rTMS on the treatment of chronic tinnitus

3.3.1. THI Scores 1 Week After Intervention

Of the 29 included studies, 3 reported[16,24,26] the THI scores 1 week after intervention. Because of nonsignificant heterogeneity among the studies, the fixed effect model was utilized ($I^2 = 0\%, P = 0.57$). The outcome manifested a statistically significant difference in the item between the two patient groups (MD: -7.92, 95%CI: -14.18,-1.66, $P = 0.01$). (Fig. 4)

3.3.2. THI Scores 2 Week After Intervention

Three studies[15,24,25] containing statistics on the THI scores 1 week after intervention were available for the analysis using the random effect model, with significant heterogeneity among the studies ($I^2 = 72\%, P$
The results exhibited no statistically significant differences in THI scores 1 week after intervention between the two patient groups (MD: -1.51, 95%CI: -13.42, 10.40, \(P = 0.80 \)). (Fig. 5)

3.3.3. THI Scores 1 Month After Intervention

Seven studies\cite{16, 17, 19, 21, 23, 24, 26} reporting statistics on the THI scores 1 month after intervention were involved in meta-analysis. There was no significant statistical heterogeneity among the studies (\(I^2 = 0\%\), \(P = 0.53 \)) and the fixed effect model was utilized. It was found that the difference in THI scores 1 month after intervention was significant between the two patient groups (MD: -8.52, 95%CI: -12.49, -4.55, \(P < 0.0001 \)). (Fig. 6)

3.3.4. THI Scores 6 Months After Intervention

Four studies\cite{15, 19, 21, 26} reporting statistics on the THI scores 6 months after intervention were involved in meta-analysis. There was no significant statistical heterogeneity among the studies (\(I^2 = 21\%\), \(P = 0.28 \)) and the fixed effect model was utilized. It was found that the difference in THI scores 6 months after intervention was significant between the two patient groups (MD: -6.53, 95%CI: -11.40, -1.66, \(P = 0.009 \)). (Fig. 7)

3.3.5. Mean change in THI scores 1 month after intervention

Three studies\cite{19, 21, 23} containing statistics on mean change in THI scores 1 month after intervention were available for the analysis using the random effect model, with significant heterogeneity among the studies (\(I^2 = 56\%\), \(P = 0.08 \)). The results exhibited a statistically significant differences in THI scores 1 month after intervention between the two patient groups (MD: -14.86, 95%CI: -21.42, -8.29, \(P < 0.00001 \)). (Fig. 8)

3.3.6. Mean change in THI Scores 6 Months After Intervention

Two studies\cite{19, 21} reporting statistics on mean change in THI scores 6 months after intervention were involved in meta-analysis. There was no significant statistical heterogeneity among the studies (\(I^2 = 0\%\), \(P = 0.87 \)) and the fixed effect model was utilized. It was found that the difference in mean change in THI scores 6 months after intervention was significant between the two patient groups (MD: -16.37, 95%CI: -20.64, -12.11, \(P < 0.00001 \)). (Fig. 9)

3.3.7. Other Outcome Evaluation Indicators
Two studies[16,26] reporting statistics on TQ scores 1 week after intervention, 2 studies[16,26] reporting statistics on TQ scores 1 month after intervention were involved in meta-analysis, 2 studies[15,26] reporting statistics on TQ scores 6 months after intervention, 3 studies[4,16] (One study[4] included two RCTs) reporting statistics on mean change in TQ scores 1 week after intervention, 2 studies[17,26] reporting statistics on VAS scores 1 month after intervention and 2 studies[16,17] reporting statistics on tinnitus loudness 1 month after intervention were involved in meta-analysis. The results exhibited a statistically significant differences in TQ scores 1 week after intervention between the two patient groups ($P = 0.02$). However, it was found that the difference in other outcome after intervention were no significant between the two patient groups (MD: -6.53, 95%CI: -11.40, -1.66, $P = 0.009$). (Table.4)

3.3.8. Adverse Events

Data on adverse events were available for the meta-analysis from 15 studies[4,6,15,17,19,22,23,26–30,35,38], and nonsignificant heterogeneity was presented among the studies ($I^2 = 37\%, P = 0.13$). Therefore, the fixed effect model was applied. However, differences in adverse events between the two patient groups were still nonsignificant (OR: 1.11, 95%CI: 0.51–2.42, $P = 0.79$). (Fig. 10)

3.3.9. Sensitivity Analyses

The sensitivity analysis was performed on the selected studies to assess whether individual studies would affect the overall results. The results showed that there was a nonsignificant difference in the stability of the results (Fig. 11), which validated the rationality and reliability of our analysis.

3.3.10. Evaluation Of Publication Bias

Visual inspection of funnel plots was adopted in the estimation (Fig. 12). Specifically, Eggers and Beggs analyses[16,17,19,21,23,24,26] of publication bias showed that publication bias did not exist in our meta-analysis ($P = 0.925$). (Figs. 13 and 14)

4. Discussion

In this study, we report results of a systematic review and meta-analysis of 29 selected RCTs of rTMS to reduce chronic tinnitus. In order to ensure reliable conclusions, we retrieved, reviewed and summarized the previously published studies on rTMS in the treatment of chronic tinnitus to achieve high levels, good compliance, and high quality to answer various clinical questions about this disease. Overall, our results suggest that repeated transcranial magnetic stimulation is effective in the treatment of chronic tinnitus. Group analysis showed that repeated transcranial magnetic stimulation for the treatment of chronic tinnitus was statistically significant among the participants. The treatment of rTMS was safe at
the intension: serious adverse events were evenly distributed between participants randomly assigned to rTMS versus sham rTMS.

Tinnitus heterogeneity and with a high incidence in the crowd, though many treatments have been used in the treatment of tinnitus, but because most of the low level of evidence therapeutic strategy, there is a lack of widely agreed to be able to reduce tinnitus loudness, reduce the impact of tinnitus and can be copied to verify the effective treatment of tinnitus methods\cite{41}. This presents a huge challenge for the ear, nose and throat doctor. Landgrebe et al. found that by repeated low-frequency rTMS stimulation on a daily basis, its biological effects had a stacking effect, which not only caused synaptic inhibition and changes in the plasticity of auditory cortex nucleus, but also affected the series changes of hemodynamics in the auditory region, showing a significant effect in the treatment of chronic tinnitus\cite{15}. Our findings from analysing the study population as a whole are consistent with those of recent aggregate data meta-analysis of RCTs of rTMS for the chronic tinnitus\cite{42}.

Our study has several strengths. The included studies were of publication of the protocol, detailed and predefined sensitivity and subgroup analyses, comprehensive assessment of the risk of systematic and random errors, and assessment of the quality of evidence. Secondly, the rationality and reliability of our meta-analysis have been prudently and significantly improved in that the overall comprehensive estimation is based on a large sample size. In addition, sufficient sensitivity analysis has been carried out to ensure the reliability of this study.

However, our review also has some limitations. On the one hand, despite the inclusion of recent large randomized trials, our analytical capabilities are still very low, because repeated transcranial magnetic stimulation has not been widely used in the clinic, the total sample of patients included in this study is still small, resulting in the loss of statistical significance in some outcome indicators. On the other hand, this study contains only English references, which leads to lost data from those in other languages. In addition, Egger’s and Begg’s analyses of publication bias showed that publication bias did not exist in our meta-analysis, however, because few studies were included in the analysis, false negatives cannot be excluded.

5. Conclusion

In summary, our systematic review and meta-analysis suggests that rTMS on chronic tinnitus has certain clinical curative effect and high safety, however, due to the lack of included studies and the small sample size, more large-sample, multi-center, randomized double-blind trials are needed for further verification.

Abbreviations

rTMS
repeated transcranial magnetic stimulation, CI = condidence interval, THI = tinnitus handicap inventory, TQ = tinnitus questionnaire, PRISMA = Preferred Reporting Items for Systematic Reviews and Meta-
Analyses, MeSH = Medical Subject Headings, AC = auditory cortex, DLPFC = dorsolateral prefrontal cortex, VAS = visual analogue scale.

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and materials

All data generated or analysed during this study are included in this published article and the original studies’ publications.

Competing interests

The authors declare that they have no competing interests.

Funding

This work was supported by the National Natural Science Foundation of China (81970887) and the Guangzhou Science and Technology Foundation (201903010088). The funding institutions were responsible for the provision of literature database resources and literature purchase. The principal of the institution instructed in the design of the study and data collection, analysis, interpretation of data and writing the manuscript.

Authors’ contributions

ZRL conceived the study idea. ZRL, GC and LFH retrieved and screened the literature. LFH and TZ conducted data extraction and evaluation of methodological quality. ZRL and GC performed statistical analyses and interpretation of corresponding results. ZRL drafted the initial manuscript. HYJ modified the initial manuscript. HYJ and HDY had primary responsibility for the final content. All authors made critical comments for the initial manuscript. All authors read and approved the final manuscript.
Acknowledgements

Not applicable.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Author details

1 Department of Otolaryngology, The First Affiliated Hospital of Jinan University, Guangzhou, China. 2 Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China. 3 Hearing and Speech Department, Xinhua College of Sun Yat-sen University, Guangzhou, China. ∗ Corresponding author: Haidi Yang, Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University and Hearing and Speech Department, Xinhua College of Sun Yat-sen University, 107 West Yan Jiang Road, Guangzhou 510120, China (E-mail: yanghd@mail.sysu.edu.cn); Haiying Jia, Department of Otolaryngology, The First Affiliated Hospital of Jinan University, 601 Huangpu Avenue, Guangzhou 510632, China (E-mail: jiahaiying79@126.com).

References

1. Axelsson A, Ringdahl A. Tinnitus—a study of its prevalence and characteristics[J]. Br J Audiol. 1989;23(1):53–62. DOI: 10.3109/03005368909077819.
2. Gilles A, De Ridder D. et al. Prevalence of leisure noise-induced tinnitus and the attitude toward noise in university students[J]. Otol Neurotol. 2012;33(6):899–906. 10.1097/MAO.0b013e31825d640a. DOI: 10.1007/s00106-019-0633-7.
3. Cima R, Mazurek B, Haider H, et al. A multidisciplinary European guideline for tinnitus: diagnostics, assessment, and treatment[J]. HNO, 2019, 67(Suppl1): S10-42. DOI: 10.1007/s00106-019-0633-7.
4. Langguth B, Landgrebe M, Frank E, et al. Efficacy of different protocols of transcranial magnetic stimulation for the treatment of tinnitus: Pooled analysis of two randomized controlled studies[J]. World J Biol Psychiatry, 2014, 15(4): 276–285. DOI: 10.3109/15622975.2012.708438.
5. Vielsmeier V, Schecklmann M, Schlee W, et al. A Pilot Study of Peripheral Muscle Magnetic Stimulation as Add-on Treatment to Repetitive Transcranial Magnetic Stimulation in Chronic Tinnitus[J]. Front Neurosci, 2018, 12: 445–449. DOI: 10.3389/fnins.2018.00068.
6. Formánek M, Migaľová P, Krulová P, et al. Combined transcranial magnetic stimulation in the treatment of chronic tinnitus[J]. Ann Clin Transl Neurol, 2018, 5(7): 857–864. DOI: 10.1002/acn3.587.
7. Sahilsten H, Holm A, Rauhala E, et al. Neuronavigated Versus Non-navigated Repetitive Transcranial Magnetic Stimulation for Chronic Tinnitus: A Randomized Study[J]. Trends Hear, 2019, 23: 1–14.
9. Allen EA, Pasley BN, Duong T, et al. Transcranial magnetic stimulation elicits coupled neural and hemodynamic consequences. [J]. Science, 2007, 317(5846), 1918–1921. DOI: 10.1126/science.1146426.

10. Lamusuo S, Hirvonen J, Lindholm P, et al. Neurotransmitters behind pain relief with transcranial magnetic stimulation—Positron emission tomography evidence for release of endogenous opioids. [J]. Eur J Pain, 2017, 21(9), 1505–1515. DOI: 10.1002/ejp.1052.

11. Meng Z, Liu S, Zheng Y, et al. Repetitive transcranial magnetic stimulation for tinnitus. [J]. Cochrane Libr 2011(10): CD007946.

12. Soleimani R, Jalali MM, Hasandokht T. Therapeutic impact of repetitive transcranial magnetic stimulation (rTMS) on tinnitus: a systematic review and meta-analysis. Eur Arch Otorhinolaryngol, 2016, 273(7): 1663–1675. DOI: 10.1007/s00405-015-3642-5.

13. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. [J]. BMJ, 2009, 339: b25-35.

14. Stroup DF, Berlin JA, Morton SC, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. [J]. JAMA, 2000, 283(15): 2008-12. DOI: 10.1001/jama.283.15.2008.

15. Fox MW, Piepgras DG, Bartleson JD. Anterolateral decompression of the atlantoaxial vertebral artery for symptomatic positional occlusion of the vertebral artery: case report. [J]. J Neurosurg, 1995, 83(4): 737–40. DOI: 10.3171/jns.1995.83.4.0737.

16. Landgrebe M, Hajak G, Wolf S, et al. 1-Hz rTMS in the treatment of tinnitus: A sham-controlled, randomized multicenter trial. [J]. Brain Stimul, 2017, 10(6): 1–41. DOI: 10.1016/j.brs.2017.08.001.

17. Chung HK, Tsai CH, Lin YC, et al. Effectiveness of Theta-Burst Repetitive Transcranial Magnetic Stimulation for Treating Chronic Tinnitus. [J]. Audiol Neurotol, 2012, 17(2): 112–120. DOI: 10.1159/000330882.

18. Yilmaz M, Yener MH, Turgut NF, et al. Effectiveness of transcranial magnetic stimulation application in treatment of tinnitus. [J]. J Craniofac Surg, 2014, 25(4): 1315–1318. DOI: 10.1097/SCS.0000000000000782.

19. Rossi S, De CA, Ulivelli M, et al. Effects of repetitive transcranial magnetic stimulation on chronic tinnitus: a randomised, crossover, double blind, placebo controlled study. [J]. J Neurol Neurosurg Psychiatry, 2007, 78(8): 857–63. DOI: 10.1136/jnnp.2006.105007.

20. Bilici S, Yigit O, Taskin U, et al. Medium-term results of combined treatment with transcranial magnetic stimulation and antidepressant drug for chronic tinnitus. [J]. Eur Arch Otorhinolaryngol, 2015, 272(2): 1–7. DOI: 10.1007/s00405-013-2851-z.

21. Khedr EM, Rothwell JC, El-Atar. A. One-year follow up of patients with chronic tinnitus treated with left temporoparietal rTMS. [J]. Eur J Neurol, 2009, 16(3): 404–408. DOI: 10.1111/j.1468-1331.2008.025.

22. Marcondes RA, Sanchez TG, Kii MA, et al. Repetitive transcranial magnetic stimulation improve tinnitus in normal hearing patients: a double-blind controlled, clinical and neuroimaging outcome study. [J]. Eur J Neurol, 2010, 17(1): 38–44. DOI: 10.1111/j.1468-1331.2009.02730.x.
23. Folmer RL, Theodoroff SM, Casiana L, et al. Repetitive Transcranial Magnetic Stimulation Treatment for Chronic Tinnitus: A Randomized Clinical Trial. [J]. JAMA Otolaryngol Head Neck Surg, 2015, 141(8): 716–722. DOI: 10.1001/jamaoto.2015.1219.

24. Li LP, Shiao AS, Li CT, et al. Steady-state auditory evoked fields reflect long-term effects of repetitive transcranial magnetic stimulation in tinnitus [J]. Clin Neurophysiol, 2019, 130(9): 1665–1672. DOI: 10.1016/j.clinph.2019.05.022.

25. Noh TS, Kyong JS, Park MK, et al. Treatment Outcome of Auditory and Frontal Dual-Site rTMS in Tinnitus Patients and Changes in Magnetoencephalographic Functional Connectivity after rTMS: Double-Blind Randomized Controlled Trial. [J]. Audiol Neurootol, 2019, 24(6): 1–6. DOI: 10.1159/000503134.

26. Anders M, Dvorakova J, Rathova L, et al. Efficacy of repetitive transcranial magnetic stimulation for the treatment of refractory chronic tinnitus: a randomized, placebo controlled study. [J]. Neuro Endocrinol Lett, 2010, 31(2): 238–249.

27. Hoekstra CEL, Versnel H, Neggers SFW, et al. Bilateral low-frequency repetitive transcranial magnetic stimulation of the auditory cortex in tinnitus patients is not effective: a randomised controlled trial. [J]. Audiol Neurootol, 2013, 18(6): 362–73.

28. Sahlsten H, Virtanen J, Joutsa J, et al. Electric field-navigated transcranial magnetic stimulation for chronic tinnitus: a randomized, placebo-controlled study [J]. Int J Audiol, 2017, 56(9): 692–700. DOI: 10.1080/14992027.2017.1313461.

29. Wang H, Li B, Wu HM, et al. Combination of gaps in noise detection and visual analog scale for measuring tinnitus components in patients treated with repetitive transcranial magnetic stimulation. [J]. Auris Nasus Larynx, 2016, 43(3): 1–5. DOI: 10.1016/j.anl.2015.09.004.

30. Cacace AT, Hu JN, Romero S, et al. Glutamate is down-regulated and tinnitus loudness-levels decreased following rTMS over auditory cortex of the left hemisphere: A prospective randomized single-blinded sham-controlled cross-over study. [J]. Hear Res, 2017, 14: 1–15. DOI: 10.1016/j.heares.2017.10.017.

31. Piccirillo JF, Kallogjeri D, Nicklaus J, et al. Low-frequency repetitive transcranial magnetic stimulation to the temporoparietal junction for tinnitus: four-week stimulation trial. [J]. JAMA Otolaryngol Head Neck Surg, 2013, 139(4): 388–395. DOI: 10.1001/jamaoto.2013.233.

32. James GA, Thostenson JD, Brown G, et al. Neural activity during attentional conflict predicts reduction in tinnitus perception following rTMS. [J]. Brain Stimul, 2017, 10(5): 934–943. DOI: 10.1016/j.brs.2017.05.009.

33. Kyong JS, Noh TS, Park MK, et al. Phantom Perception of Sound and the Abnormal Cortical Inhibition System: An Electroencephalography (EEG) Study. [J]. Ann Otol Rhinol Laryngol, 2019, 128(6S): 84S-95S. DOI: 10.1177/0003489419837990.

34. Roland LT, Peelle JE, KD, Nicklaus JP, et al. The effect of noninvasive brain stimulation on neural connectivity in Tinnitus: A randomized trial. [J]. The Laryngoscope, 2016, 126(5): 1201–1206. DOI: 10.1002/lary.25650.
35. Barwood CHS, Wilson WJ, Malicka, AN, et al. The effect of rTMS on auditory processing in adults with chronic, bilateral tinnitus: a placebo-controlled pilot study. [J]. Brain stimul, 2013, 6(5): 1–8. DOI: 10.1016/j.brs.2013.01.015.

36. Godbehere J. Sandhu J, Evans A, et al. Treatment of Tinnitus Using Theta Burst Based Repetitive Transcranial Magnetic Stimulation-A Single Blinded Randomized Control Trial[J]. Otol. Neurotol, 2019, 06(40): S38-S42.

37. Mennemeier M, Chelette KC, Allen S, et al. Variable changes in PET activity before and after rTMS treatment for tinnitus. [J]. The Laryngoscope, 2011, 121(4): 815–822. DOI: 10.1002/lary.21425.

38. Lee HY, Yoo SD, Ryu EW, et al. Short term effects of repetitive transcranial magnetic stimulation in patients with catastrophic intractable tinnitus: preliminary report. [J]. Clinical Experimental Otorhinolaryngol, 2013, 6(2): 63–67. DOI: 10.3342/ceo.2013.6.2.63.

39. Lorenz I, Müller N, Schlee W, et al. Short-term effects of single repetitive TMS sessions on auditory evoked activity in patients with chronic tinnitus [J]. J Neurophysiol, 2010, 104(3): 1497–1505. DOI: 10.1152/jn.00370.2010.

40. Vanneste S. Ridder DD. The involvement of the left ventrolateral prefrontal cortex in tinnitus: a TMS study [J]. Exp Brain Res, 2012, 221(3): 345–350. DOI: 10.1007/s00221-012-3177-6.

41. Plewnia C, Vonthein R, Wasserka B, et al. Treatment of chronic tinnitus with θ burst stimulation: a randomized controlled trial. [J]. Neurology, 2012, 78(21): 1628–1634. DOI: 10.1212/WNL.0b013e3182574ef9.

42. Bauer CA, Berry JL, Brozoski TJ. The effect of tinnitus retraining therapy on chronic tinnitus: A controlled trial [J]. Laryngoscope Investig Otolaryngol, 2017, 2(4): 166–177. DOI: 10.1002/lio2.76.

43. Soleimani R. Jalali MM, Hasandokht T. Therapeutic impact of repetitive transcranial magnetic stimulation(rTMS) on tinnitus: a systematic review and meta-analysis [J]. Eur Arch Otorhinolaryngol. 2016; 273(7): 1663–75. 10.1007/s00405-015-3642-5. DOI.

Figures
Figure 1

The flow diagram of literature selection.
Figure 2

The risk of bias graph.
Study	Random sequence generation (selection bias)	Allocation concealment (selection bias)	Blinding of participants and personnel (performance bias)	Blinding of outcome assessment (detection bias)	Incomplete outcome data (attrition bias)	Selective reporting (reporting bias)	Other bias
Anders M 2010	? ?	+	+	+	+	+	?
Banwood CHS 2013	? ?	?	+	+	?	?	?
Biici S 2013	? ?	+	+	+	?	?	?
Cacace AT 2017	? ?	?	+	+	+	?	?
Chung HK 2012	? ?	?	+	+	+	?	?
Fölmer RL 2015	? ?	+	+	+	+	?	?
Formanek M 2018	+ ?	+	+	+	+	?	?
Godbehere J 2019	? ?	+	+	+	+	?	?
Hoekstra CEL 2013	+ ?	+	+	+	+	?	?
James G 2018	? ?	+	+	+	+	?	?
Khder EM 2009	? ?	?	?	?	?	?	?
Kyong JS 2019	? ?	+	+	+	+	?	?
Landgrebe M 2017	? ?	+	+	+	+	?	?
Langguth B 2014	? ?	+	+	+	+	?	?
Lee1 HY 2013	? ?	+	+	+	+	?	?
Li LPH 2019	? ?	?	+	+	+	?	?
Lorenz I 2013	? ?	+	+	?	+	?	?
Marcondes RA 2010	? ?	+	+	+	+	?	?
Mennemeier M 2011	? ?	?	?	?	?	?	?
Non TS 2019	+ ?	+	+	+	+	?	?
Piccirillo JF 2013	+ ?	+	+	+	+	?	?
Figure 3

The risk of bias summary

Study or Subgroup	rTMS Mean	SD	Total	sham rTMS Mean	SD	Total	Mean Difference	Mean Difference
Chung HK 2012	32	13.21	12	38	9.48	10	43.4%	-6.00 [-15.51, 3.51]
Hoekstra CEL 2013	41	16	26	47	23	24	32.0%	-6.00 [-17.07, 5.07]
Noh TS 2019	38.1	16.3	17	52.9	19.3	13	24.6%	-13.90 [-26.41, -1.19]
Total (95% CI)	55			47		100.0%	-7.92 [-14.18, -1.66]	

Heterogeneity: \(I^2 = 1.11\), \(df = 2 (P = 0.57); I^2 = 0\%
Test for overall effect: \(Z = 2.48 (P = 0.01) \)

Figure 4

Meta-analysis results of the THI scores 1 week after intervention

Study or Subgroup	rTMS Mean	SD	Total	sham rTMS Mean	SD	Total	Weight	IV, Random, 95% CI	Mean Difference
Anders M 2010	31.32	22.3	22	23.1	19.5	20	30.3%	8.72 [-4.11, 21.55]	
Landgrebe M 2017	50.2	21.3	71	49	20.2	75	40.6%	1.20 [-5.54, 7.94]	
Noh TS 2019	34.4	17.9	17	50.3	18.3	13	29.2%	-15.90 [-29.41, -2.39]	
Total (95% CI)	110			108		100.0%	-1.51 [-3.42, 0.40]		

Heterogeneity: \(Tau^2 = 73.16\), \(Ch^2 = 7.21, df = 2 (P = 0.03); I^2 = 72\%
Test for overall effect: \(Z = 0.25 (P = 0.80) \)

Figure 5

Meta-analysis results of the THI scores 2 week after intervention
Figure 6

Meta-analysis results of the THI scores 1 month after intervention

Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Mean Difference	IV, Fixed, 95% CI
Bilici S 2013(1)	40.8	26.7	25	43.1	20.7	25	13.5%	-2.20 [-15.44, 11.04]
Bilici S 2013(2)	27.5	18.3	25	43.1	20.7	25	22.2%	-15.60 [-25.93, -5.27]
Hoekstra CEL 2013	43.1	22.2	71	57.0	22.5	75	38.9%	-1.60 [-9.12, 5.92]
Marcondaes RA 2010	22.8	13.2	10	29.6	23.5	9	6.5%	-6.90 [-25.85, 12.29]
Total (95% CI)	157	158	100.0%	-6.53 [-11.40, -1.66]				

Heterogeneity: Chi² = 5.06, df = 4 (P = 0.26); P = 21%
Test for overall effect: Z = 2.63 (P = 0.009)

Figure 7

Meta-analysis results of the THI scores 6 months after intervention

Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Mean Difference	IV, Random, 95% CI
Bilici S 2013(1)	19.1	21.2	25	0.7	5	25	26.3%	-16.70 [-27.16, -16.24]
Bilici S 2013(2)	-9.1	8.8	25	0.7	5	25	41.2%	-9.80 [-13.77, -5.83]
Li LFH 2019	-28.5	10.59	12	-7.56	13.49	12	23.5%	-20.32 [-30.62, -11.22]
Marcondes RA 2010	-10.4	20.2	10	0	24.85	9	8.5%	-10.40 [-30.90, 10.10]
Total (95% CI)	72	71	100.0%	-14.86 [-21.42, -8.29]				

Heterogeneity: Tau² = 23.15, Chi² = 8.77, df = 3 (P = 0.08); P = 56%
Test for overall effect: Z = 4.44 (P = 0.00001)

Figure 8

Meta-analysis results of the mean change in THI scores 1 month after intervention
Figure 9

Meta-analysis results of the mean change in THI scores 6 months after intervention

Study or Subgroup	rTMS Mean SD	sham rTMS Mean SD	Mean Difference IV, Fixed, 95% CI	Heterogeneity: Chi² = 0.28, df = 2 (P = 0.87), I² = 0%	Test for overall effect: Z = 7.53 (P = 0.0001)
Bilici S 2013(1)	-1.7 2.4	25	0.7 5	-18.40 [-27.46, -9.40]	
Bilici S 2013(2)	-15.2 11.7	25	0.7 5	-15.90 [-20.68, -10.91]	
Martindale RA 2016	-7 20.5	10	7 23.65	-14.00 [-24.30, 0.80]	
Total (95% CI)	**60**	**59**	**100.0%**	**-16.37 [-20.64, -12.11]**	

Figure 10

Meta-analysis results of the adverse events after intervention

Study or Subgroup	rTMS Events Total	sham rTMS Events Total	Odds Ratio M-H, Random, 95% CI	Total (95% CI)	Total events	Heterogeneity: Tau² = 0.42, Chi² = 11.13, df = 7 (P = 0.13), I² = 37%	Test for overall effect: Z = 0.27 (P = 0.79)
Bilici S 2013(1)	1 25	0 25	3.12 [0.12, 80.39]	462	462		
Bilici S 2013(2)	5 25	0 25	13.68 [0.71, 262.17]				
Casace AT 2017	0 25	0 25	Not estimable				
Formanek M 2018	3 19	3 10	0.44 [0.07, 2.73]				
Goddehove J 2019	3 23	0 20	7.00 [0.34, 144.27]				
Hoekstra CEL 2013	5 26	1 24	5.46 [0.50, 50.78]				
Landgrebe M 2017	31 74	43 76	0.55 [0.29, 1.06]				
Langguth B 2014(1)	0 48	0 48	Not estimable				
Langguth B 2014(2)	0 48	0 45	Not estimable				
Li LPH 2019	0 12	0 12	Not estimable				
Lorenz 2013	0 10	0 10	Not estimable				
Plewnia C 2012(1)	5 16	6 16	0.76 [0.18, 3.27]				
Plewnia C 2012(2)	5 16	6 16	0.76 [0.18, 3.27]				
Sahilsten H 2017	0 19	0 20	Not estimable				
Wang H 2015	0 14	0 10	Not estimable				
Yilmaz 2014	0 30	0 30	Not estimable				
Total (95% CI)	**462**	**441**	**100.0%**	**1.11 [0.51, 2.42]**			

Heterogeneity: Tau² = 0.42, Chi² = 11.13, df = 7 (P = 0.13), I² = 37%

Test for overall effect: Z = 0.27 (P = 0.79)
Figure 11

Influence analysis of included studies.

Figure 12

Funnel plot of the THI scores 1 month after intervention
Figure 13
Egger's funnel plot

Figure 14
Begg's funnel plot