Parametric Estimation of the Ultimate Size of Hypercomputers

Dmitry Zinoviev
Mathematics and Computer Science Department
Suffolk University, Boston, 02114 USA
dmitry@mcssuffolk.org

Abstract

The performance of the emerging petaflops-scale supercomputers of the nearest future (hypercomputers) will be governed not only by the clock frequency of the processing nodes or by the width of the system bus, but also by such factors as the overall power consumption and the geometric size. In this paper, we study the influence of such parameters on one of the most important characteristics of a general purpose computer — on the degree of multithreading that must be present in an application to make the use of the hypercomputer justifiable. Our major finding is that for the class of applications with purely random memory access patterns “super-fast computing” and “high-performance computing” are essentially synonyms for “massively-parallel computing”.

1. Introduction

Super-fast computers processing data at a sustained rate on the order of 10^{15} integer or floating-point operations per second (1 petaops, or 1 petaflops), also known as hypercomputers [9], will be emerging within the next decade as ultimate tools for solving very large-scale problems of computational fluid dynamics, weather forecasting, nuclear stockpile stewardship, cryptanalysis, real-time image processing and rendering, and the like [3].

Common sense supported by the results of preliminary case studies [11] suggests that the hypercomputers will materialize as hardware installations of substantial size and power consumption. The average geometric diameter of the installation, combined with the ultra-high clock frequency, will be eventually translated into a memory access latency of several hundreds and thousands processor cycles, — a situation unthinkable in the domain of personal computers but quite common on the Internet. To achieve and sustain the required performance, the hypercomputer must be originally designed as a highly multithreaded machine [10, 4]. Preemptive multithreading helps to hide the memory access latency. However, it implies high parallelism, which inevitably limits the usability of a hypercomputer to a narrow domain of intrinsically parallel applications. Careful consideration of physical factors can help to anticipate the potential problems that may render the design of a hypercomputer doomed to failure.

In this paper, we will obtain a rough parametric estimation of the performance of hypercomputers based on their fundamental physical and geometric properties, such as power consumption and wire size.

2. Model

For the purpose of this study, the following simplified model of a hypercomputer has been used. We assume that the hypercomputer consists of Q nodes, each node being either a processing element (PE), or a memory bank. The nodes are connected using a multistage internal network. The diameter of the network D is on the order of $\log_2 Q$ (this is true for delta networks and approximately true for other high-performance networks). For the ease of application development, all processing elements have uniform access to the globally shared memory. A typical application using the hypercomputer generates purely random memory traffic at a rate of 1.32 (“load”) requests and 0.78 replies (“store”) per clock cycle [7], or approximately 1 outbound message per cycle per node. All instructions are presumed to be fetched from local instruction caches and do not contribute to the total traffic. Data caches are not considered, taking into account the random pattern of the memory usage. Finally, we assume that the processor word width is W bits, the processor clock frequency is f_0, and that each PE completes one instruction per clock cycle.
To achieve its ultimate performance, the system must be well balanced in a sense that the round-trip memory access latency, measured in PE clock cycles, should be approximately equal to the degree of multithreading. In this case, a thread blocked at a memory request will be scheduled for execution by the hardware exactly when the results arrive to the local registers. Smaller degree of multithreading will reduce the performance of the hypercomputer, while higher degree will require extra hardware for thread contexts, most of which will never be used.

As a first step toward the refining of the proposed model, we observe that the design of a petaflops-scale hypercomputer implies three-dimensional integration. Indeed, it has been shown [2] that the footprint of a hypercomputer flattened into the two-dimensional space would be as large as a soccer field (namely, \(\sim 1,000 \text{m}^2 \)). The actual arrangement of the components (PEs, memory banks, and internal network nodes) is not essential for the study. We will focus on a rather unrealistic, but easy to model, spherical configuration, with all active components evenly placed on the surface of a sphere of diameter \(L \), and all passive components (wires) hidden under the surface, as shown in Figure 1. (A similar — but technically more sound — cylindrical arrangement has been proposed in [1] and [12].) Such configuration permits relatively easy access to the active components in case they need maintenance or replacement.

3. Power Consumption

Electrical power is consumed by the hypercomputer statically and dynamically. The static term is attributed to the leakage current (which can be ignored, at least in theory) and to the power dissipation in passive interconnecting wires. The dynamic term depends on the performance \(\Theta \) of the hypercomputer.

Let us begin with the evaluation of the total number of wires required to interconnect the processing elements. The signal transfer rate on a wire (limited by the wire bandwidth \(B_w \)) may be substantially slower than the PE clock rate \(f_0 \). Respectively, the amount of passive wires in the network must be proportionally larger to match the total bandwidth \(B \) of requests generated by the PEs, and the available bandwidth of the network. Each stage of a multistage network contributes proportionally to the total number of wires, too. Finally, we must add extra wires to compensate for the network saturation, which typically takes place at \(\alpha \sim 60 \% \) load:

\[
N = \frac{B D}{B_w \alpha} = \frac{(1.1 f_0 W Q) D}{B_w \alpha} \sim \frac{f_0 W Q D}{B_w \alpha}.
\]

Second, we must establish a relationship between the performance of the hypercomputer and its configuration and clock frequency. The aggregate peak performance of the hypercomputer, measured in floating point operations per second, can be roughly estimated as

\[
\Theta = Q f_0 (W/W_0),
\]

where \(W_0 \) is the number of bits per word in a “standard” processing element. The ratio in the parentheses takes into account the fact that, for instance, a 128-bit PE is twice as powerful as its 64-bit counterpart running at the same clock rate.

The size of the hypercomputer installation will be defined by the amount of power \(p_v \) that can be possibly removed from a unit volume by means of either forced-air or water cooling. The maximum power that can be removed in the former case is \(p_s = 5 \cdot 10^5 \text{W/m}^2 \) [5]. Water cooling can remove more power, but requires more sophisticated and bulky plumbing. At the moment, we do not know what will be the ultimate vertical chip pitch \(h \) for the 3-dimensional integration. The pitch of \(h = 5 \text{mm} \) sounds like a sane approximation, with a proper allowance for the packaging and cooling infrastructure. Under this assumption, the maximum power that can be removed from a unit volume is \(p_c = p_s/h = 10^8 \text{W/m}^3 \).
3.1. “Test Vehicle” Hypercomputer

To verify our theoretical reasonings, we will consider a hypothetical hypercomputer of year 2007. This “Test Vehicle” hypercomputer (TVHC) will be driven by $Q = 50,000$ super-fast 128-bit Intel chips ($f_0 = 20\,GH\zeta$). The nodes will be connected using a banyan network ($D = \log_2 Q \approx 16$) implemented as a collection of insulated thin pure copper wires (bandwidth per wire $B_w \approx 3.6\,Gbps$ [5]; resistivity $\rho = 17.5 \times 10^{-9} \,\Omega \cdot m$; wire electrical cross-section $\sigma_w = 2.5 \times 10^{-8} \,m^2$). One can verify using Eq. 2 that the peak performance of this hypercomputer will be 10^{15} operations per second, or 1 petaops.

3.2. Static Power Dissipation

Power dissipated statically by a passive resistive electrical system is given by Ohm’s law: $P_s = I^2 R$, where I is the signal current, and R is the overall resistance of the system. We assume that $I \approx \pm 20\,mA$, although higher-current drivers may be needed to sustain error-prone high bit rate transmission at meterscale distances.

The interconnection network can be ultimately considered as a collection of N individual wires of length l_i, with electrical cross-section σ_w, made out of a good conductor with resistivity ρ. It can be shown that the average distance between any two components on a sphere L is $2L/\pi$. The wires are connected in series, and the total resistance is:

$$R = \sum_i R_i = \frac{\rho}{\sigma_w} \sum_i l_i = \frac{\rho N L_{st}}{\sigma_w} = \frac{2 \rho N L_{st}}{\pi \sigma_w}.$$

Finally,

$$P_s = \frac{2 I^2 L_{st} \rho N}{\pi \sigma_w}. \quad \text{(3)}$$

The total heat generated by the static power dissipation P_s must be removed from the chip, according to the conditions stated above. This is only possible, if the volume occupied by the wire is large enough: $P_s \leq p_c V = \pi p_c L_{st}^3/6$. Substituting P_s from Eq. 3 and N from Eq. 4 and Eq. 2 we get the final dependency of L_{st} on Θ:

$$L_{st} \approx \sqrt{\Theta W_0 \left(\frac{\rho I^2 D}{\sigma_w p_c B_w \alpha} \right)}. \quad \text{(4)}$$

The diameter of the “static thermal core” for the TVHC L_{st} is $\approx 0.008\,m$.

3.3. Dynamic Power Dissipation

Dynamic power dissipation is due to the fact that each operation executed by any PE requires certain energy (in our case, $w \approx 10^{-10} \,J/op$ [3]). We have to consider heat generated by both processing elements and memories (there are $2Q$ of them), and switching elements (there are at least $QD/2$ of them, assuming a delta-class interconnection network). We do not know the exact relationship between the complexity of operations executed by the switching engines and computational engines, and for the purpose of this study we will assume that they are equivalent. Therefore, the total dynamic power dissipation P_d in the hypercomputer is equal to $\Theta w (2 + D/2)$. According to the model proposed in Sec. 2 active processing and switching elements are spread on the surface of the sphere enclosing the passive interconnection wires, forming an “active shell”. The surface of the sphere must be spacious enough to enable adequate heat removal: $w (2 + D/2) \leq \pi L_{dyn}^2 w_0$. Obviously,

$$L_{dyn} = \sqrt{\frac{\Theta w}{\pi w_0} \left(2 + \frac{D}{2} \right)}. \quad \text{(5)}$$

For the TVHC, $L_{dyn} = 0.8\,m$. This is certainly an optimistic estimation, because a lot of power is required for various support operations, such as PE “housekeeping” and memory refreshing.

3.4. Power Dissipation in Drivers

Yet another source of dynamic power consumption is the set of drivers responsible for the transmission of digital signals from one agent to another along the interconnecting wires. Each driver constitutes a current source injecting either $+I$ or $-I$ into the attached wire, at voltage V. To reduce noise and decrease bit error rate, the drivers must be placed as close to the agents as possible, and therefore are located on the same surface of the “active core”. Altogether, $2N$ drivers are required, with the total power dissipation of $P_{dr} = 2NIU$. Again, the surface of the core must be spacious enough: $2NIU \leq \pi L_{dr}^2 p_s$. Naturally,

$$L_{dr} = \sqrt{\frac{2NIU}{\pi p_s}} = \sqrt{\Theta W_0 \frac{2IU D}{\pi p_s B_w \alpha}}. \quad \text{(6)}$$

Under the assumption of a really low-voltage driver ($V = 1\,V$), the diameter of the “thermal core” expands to $L_{dr} \approx 4.9\,m$.

The diameters of all three thermal spheres considered so far — Eq. 4, Eq. 5 and Eq. 6 — scale as...
Therefore, the following simple equation holds:

\[L_{\text{pow}} = \max (L_{st}, L_{dyn}, L_{dr}). \]

(7)

To summarize: the size of the “minimal thermal core” of the hypercomputer suggested in Subsection 3.1 must conform to the driver power dissipation requirements. The surface of the conforming core will be large enough to accommodate the processing and switching elements, and the volume of the core will be large enough to fit the interconnection wires — without introducing additional power constraints.

4. Wiring Constraints

Alternatively, the ultimate size of a hypercomputer can be estimated by considering how much space is required to contain the copper wires constituting the interconnection network.

If a cross-section of a single interconnecting wire (including appropriate insulation, cooling, mechanical support, etc.) is \(\sigma \), and there is the total of \(N \) wires constituting the interconnection network, then the total physical volume \(V_1 \) occupied by the wiring is:

\[V_1 = \sigma N L_g = 2\sigma NL_g / \pi. \]

On the other hand, this volume cannot exceed the volume of the core:

\[V_2 = \pi L^3_g / 6. \]

Therefore, the following simple equation holds:

\[L_g = \sqrt{12\pi N / \pi} \sim \sqrt{\sigma N}. \]

(8)

For interconnection connections implemented on a printed circuit board (PCB), \(\sigma \) may be chosen to be on the order of \(10^{-7} \text{ m}^2 \) (wires are placed at \(\approx 0.3 \text{ mm} \) pitch).

Substituting Eq. (4) into Eq. (8) we obtain the dependence of the average network size on the PE clock frequency:

\[L_g = \sqrt{f_0WQ \left(\frac{\sigma D}{B_w \alpha} \right)}. \]

(9)

Notice that the parameters in the parentheses are beyond our control. \((D \text{ is a slow function of } N \text{ and can be considered a constant.})\)

Combining Eq. (2) and Eq. (9) we discover that the average “packing” size of the interprocessor network again scales as the square root of the performance of the hypercomputer:

\[L_g = \sqrt{\Theta W_0 \left(\frac{\sigma D}{B_w \alpha} \right)}. \]

(10)

We would like to emphasize that Eq. (10) has been obtained exclusively by considering the geometric volume necessary to contain the passive interconnecting wires.

The “packing” size of the hypercomputer given by Equation (10) is almost 9.8 m.

5. Parallelism

The “well-balanced” condition postulated in Sec. 2 imposes even stricter requirements on the scaling of a hypercomputer. The net effect of the geometry of the system on the expected degree of parallelism will be discussed in this section.

In a “well balanced” system, the number of thread contexts per PE (or the amount of parallelism, \(T \)) must be large enough to tolerate the round trip latency of a memory access measured in PE clock cycles. The latency includes the signal propagation time \(\tau_p \), message processing overhead \(\tau_m \), and memory response time \(\tau_m \):

\[T = (\tau_p + \tau_n + \tau_m) f_0 = \left(\frac{2LD}{c_s} + \frac{DC}{f_0} + \tau_m \right) f_0. \]

(11)

Here, \(c_s \) is the signal propagation speed (in copper, \(c_s \approx 9 \cdot 10^7 \text{ m/s} \)), and \(C \) is the number of PE cycles required for message processing at one internal network node (we take \(C \approx 10 \), but believe that it may be as low as 1). It can be shown that for the hypercomputer proposed above, the first term dominates the other two. Indeed, \(\tau_p \approx 2.25 \mu s, \tau_n \approx 5 \text{ ns} \) (the first and the second terms in Eq. (11), and \(\tau_m \approx 1 \text{ ns} \)). For the rest of our reasoning, we may safely assume that

\[T \approx L f_0 (2D/c_s). \]

(12)

The comparison of Eq. (7) and Eq. (10) with respect to “our” hypercomputer suggests (Figure 2) that the geometric considerations dominate the power-management considerations, regardless of the performance of the installation. Therefore, the study of the power consumption may be safely omitted, and we can concentrate on the geometric term.

The combination of Eq. (10) and Eq. (12) gives the dependence of \(T \) on the hypercomputer clock frequency and overall performance:

\[T = f_0 \sqrt{\Theta \left(\frac{2}{c_s} \sqrt{\frac{\sigma D^3 W_0}{B_w \alpha}} \right)}. \]

(13)

For the TVHC, \(T \sim 70,000 \). As usual, the factors collected in the parentheses are beyond our control.
6. Solutions

An unpleasant consequence of the equation \[L_g = \sqrt{4N}\sigma_{LE}/\pi \] is that the amount of intrinsic parallelism required from an application in order to be efficiently executed by a hypercomputer is proportional to the clock frequency of the PE and to the square root of the overall performance of the machine. This means that “super-fast computing” and “high-performance computing” are essentially synonyms for “massively-parallel computing”, and as such cannot be considered suitable for general-purpose applications with a purely random memory access pattern.

A number of solutions may be suggested to this problem. One way to circumvent the “packing” constraint is to use open-space optical interconnects. For this kind of links, one can expect to have the bandwidth \(B_0 \approx 40 \text{ Gbps} \) per link, with signal propagation speed \(c_s = 3 \cdot 10^8 \text{ m/s} \). An important property of an open-space network is that the links can actually overlap. Therefore, the size of the core will not be limited by volume anymore. Instead, it will be limited by the area of the inner surface of the shell:

\[L_g = \sqrt{4N}\sigma_{LE}/\pi. \]

Here, \(\sigma_{LE} \) is the footprint of a light emitting element, for instance, vertical cavity surface emitting laser (VCSEL). Assuming that the size of a VCSEL is 200 \(\mu \text{m} \times 200 \mu\text{m} \), the diameter of the shell \(L_g \) will be \(\approx 2 \text{ m} \)—a big improvement, compared to the “copper” shell. It is also worth mentioning that the static power dissipation in an open-space network is zero, due to the absence of wires.

We could not find reliable information on the power consumption of very high-speed VCSELs and photodiodes. An intelligent guess is that at 40 Gbps, power required by a single emitter is \(\approx 0.1 \text{ mW} \). Equation 6 gives the size of the “driver core”: \(L_{dr} \approx 3.3 \text{ m} \). As one can see, the “driver” shell becomes bigger than the “packing” shell and determines the size of the TVHC. Once again, we would like to emphasize that we have no solid numbers for very high-speed VCSELs, and the result of this calculation must be considered exclusively as a rough estimate.

There exists at least yet another alternative to copper wires. They can be replaced with high-speed ballistic high-\(T_c \) superconductor (HTSC) ceramic wires. HTSC wires promise high data transfer rates \((B_w \approx 10 \text{ Gbps}) \) and high signal propagation speed \((s_c \approx 2 \cdot 10^8 \text{ m/s}) \). These two factors together can reduce the “packing” size and the degree of parallelism by 40\% and 60\%, respectively. However, the ultimate cross-section of ceramic wires is not known now, and this third factor may potentially undo the improvement. There will be still at least some gain, unless the HTSC wires are \(6 \cdot 10^{-7} \text{ m}^2 \) in cross-section or thicker.

The biggest improvement that can be brought in by the HTSC wires is the shrinkage of the “driver” core. Superconductor drivers may consume as little as 10 \(\mu \text{W} \) of power, compared to 20 \(\text{mW} \) for semiconductor drivers. This would reduce the size of the respective core to \(L_{dr} \approx 0.5 \text{ m} \), which would allow us to totally exclude it from the consideration.

Unfortunately, HTSC wires can operate only at the temperature of liquid nitrogen and require deep refrigeration. The dissipated power will be removed elsewhere (namely, at the nitrogen liquifier setup, which may be located outside of the shell) and will not contribute to the power balance of the core. However, the cryogenic infrastructure may (and apparently will) inflate the effective cross-section \(\sigma \) of the interconnects. The net effect of this inflation is not known yet.

7. Conclusion

We have considered the parametric dependences of the geometric size of a hypothetical petaflops-scale hypercomputer on the geometric size and power properties of its interconnection network. We discovered that the size of a hypercomputer with spherical arrangement of active components (processing and switching elements and memories) scales as the square root of the aggregate peak performance: \(L \sim \sqrt{\sigma} \). In order to sustain the execution rate, the hypercomputer must be designed as a highly multithreaded machine. As such, it will be most suited for highly parallel applications.
Even though it may be possible to reduce the degree of parallelism by optimizing the implementation of the network, it is questionable whether a general-purpose application with purely random memory access pattern can benefit from being executed by the hypercomputer.

8. Acknowledgments

The author would like to thank Paul Ezust and Dan Stăfănescu (Suffolk University) for useful discussions and help with the preparation of the manuscript, and T. Sterling (JPL), K. Likharev (SUNY), and P. Bunyk (TRW) for the inspiration.

References

[1] L. Abelson, Q. Herr, G. Kerber, M. Leung, and T. Tighe. Manufacturability of superconductor electronics for a petaflops-scale computer. IEEE Trans. on Appl. Supercond., 9(2):3202–3207, June 1999.
[2] M. Dorojevets, P. Bunyk, D. Zinoviev, and K. Likharev. "COOL-0": Design of an RSFQ subsystem for petaflops computing. IEEE Trans. on Appl. Supercond., 9(2):3606–3614, June 1999.
[3] G. Gao, K. K. Likharev, P. C. Messina, and T. L. Sterling. Hybrid technology multithreaded architecture. In Proc. Frontiers’96, pages 98–105, Annapolis, MD, Feb. 1996.
[4] G. Gao, K. Theobald, A. Marquez, and T. Sterling. The HTMT program execution model. Technical Memo 09, Univ. of Delaware, CAPSL, July 1997.
[5] ITWG. International technology roadmap for semiconductors. Available electronically at: http://public.itrs.net/, 1999.
[6] LaserMate. VCSEL (Vertical Cavity Surface Emitting Laser): The Next Generation Laser. Lasermate Corporation, 2001. Available electronically at: http://www.lasermate.com//vcsels.htm.
[7] D. Patterson and J. Hennessy. Computer Architecture. A Quantitative Approach. Morgan Kaufmann Publishers, Inc., 2nd edition, 1996.
[8] L. D. Paulson. Intel technology promises 20-GHz chips. IEEE Computer, pages 25–27, Dec. 2001.
[9] T. Sterling, 1999. Personal communication.
[10] Tera. Tera: Principles of Operation. Tera Computer Company, 1997.
[11] L. Wittie, G. Sazaklis, Y. Zhou, and D. Zinoviev. High throughput networks for petaloflops computing. In Proc. 17th IEEE Symp. on Reliable Distributed Systems (SRDS’98), pages 312–317, West Lafayette, IN, Oct. 1998.
[12] L. Wittie, D. Zinoviev, G. Sazaklis, and K. Likharev. CNET: Design of an RSFQ switching network for petaflops-scale computing. IEEE Trans. on Appl. Supercond., 9(2):4034–4039, June 1999.