An improved upper bound on the maximum degree of terminal-pairable complete graphs

António Girão ∗ Gábor Mészáros †

August 24, 2017

Abstract

A graph G is terminal-pairable with respect to a demand multigraph D on the same vertex set as G, if there exists edge-disjoint paths joining the end vertices of every demand edge of D. In this short note, we improve the upper bound on the largest $\Delta(n)$ with the property that the complete graph on n vertices is terminal-pairable with respect to any demand multigraph of maximum degree at most $\Delta(n)$. This disproves a conjecture originally stated by Csaba, Faudree, Gyárfás, Lehel and Schelp.

1 Introduction

The concept of terminal-pairability emerged as a practical networking problem and was introduced by Csaba, Faudree, Gyárfás, Lehel, and Shelp [2]. It was further studied by Faudree, Gyárfás, and Lehel [3, 4, 5] and by Kubicka, Kubicki and Lehel [7]. Terminal-pairable networks can be defined as follows: given a simple undirected graph $G = (V(G), E(G))$ and an undirected multigraph $D = (V(D), E(D))$ on the same vertex set $(V(D) = V(G))$ we say that G can realize the edges $e_1, \ldots , e_{|E(D)|}$ of D if there exist edge disjoint paths $P_1, \ldots , P_{|E(D)|}$ in G such that P_i joins that endpoints of e_i, $i = 1, 2, \ldots , |E(D)|$. We call D and its edges the demand graph and the demand edges of G, respectively. Given G and a family \mathcal{F} of (demand)graphs defined on $V(G)$ we call G terminal-pairable with respect to \mathcal{F} if every demand graph in \mathcal{F} can be realized in G.

∗Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, Cambridge, UK; A.Girao@dpmms.cam.ac.uk
†Department of Mathematical Sciences, The University of Memphis, Memphis, Tennessee; gmszaros@memphis.edu
Given a simple graph G, one central question in the topic of terminal-pairability concerns the maximum value of Δ for which any demand graph D with maximum degree $\Delta(D) \leq \Delta$ can be realized in G. Csaba, Faudree, Gyárfás, Lehel, and Shelp [2] studied the above extremal value for complete graphs. Let K^q_n denote the set of demand multigraphs with maximum degree at most q on a complete graph on n vertices. One can easily verify that if K_n is terminal-pairable with respect to K^q_n then q cannot exceed $n/2$. Indeed, consider the demand graph D obtained by replacing every edge in a one-factor by q parallel edges. In order to create edge-disjoint paths routing the endpoints of the demand edges, one needs to use at least two edges in K_n, for most of the demand edges. Thus a rather short calculation implies the indicated upper bound on $\Delta(D)$.

The same authors proved in [2] that K^q_n can be realized in K_n if $q \leq \frac{n}{4+2\sqrt{3}}$, and conjectured that if $n \equiv 2 \pmod{4}$, then the upper bound of $n/2$ is attainable, that is, K_n is terminal-pairable with respect to $K^{n/2}_n$. This conjecture is also stated in [3]. In this note, we disprove this conjecture by showing that q/n is asymptotically bounded away from $1/2$.

Theorem 1.1. If K_n is terminal-pairable with respect to K^q_n, then $q \leq \frac{13}{27}n + O(1)$.

We do not know if the newly established upper bound is asymptotically sharp. To this date the best known lower bound on q is $\frac{n}{3} - O(1)$ (see [6]).

2 Proof of Theorem 1.1

We may assume n is divisible by 3. Let q be an even integer. We shall construct a demand graph on n vertices by partitioning the vertex set of K_n into triples, each one forming a triangle where every edge has multiplicity $\frac{q}{2}$. Assume that there exists an edge-disjoint path system P in K_n that satisfies this demand graph. Note that $e(D) = \frac{3nq}{2}$ and at most n demand edges can be realized using exactly one edge of K_n or using 2 edges within its triple, thus at least $\frac{3nq}{2} - n$ demand edges correspond to path of length 2 or more in P. In particular, if t denotes the number of paths of length 2 in P, then the following condition holds due to simple edge counting:

$$2t + 3\left(\frac{nq}{2} - n - t\right) \leq \frac{n(n-1)}{2},$$

that is, $t \geq \frac{n}{2}(3q - n - 5)$. Hence, if q is sufficiently large (in terms of n), then lots of demand edges must be realized through paths of length 2 ("cherries").
For a triangle T_i, let α_i denote the number of demand edges not in T_i that are resolved in a cherry through any vertex of T_i. Also, let β_i be the number of demand edges of T_i that are resolved via a cherry with its middle vertex lying outside of T_i. Observe that by simple double-counting

$$\sum_{i=1}^{n} \alpha_i + \beta_i = 2t \geq n(3q - n - 5)$$

and therefore there must exist a triangle T_i with $\alpha_i + \beta_i \geq 3(3q - n - 5)$.

Note that between two distinct triangles at most 4 edges can be solved via paths of length 2 (every cherry requires two edges between the triangles in K_n and we only have 9 of them). This implies that between T_i and any other triangle at most $4 \cdot (\frac{n}{3} - 1)$ demand edges can be solved via cherries. Hence, $4 \cdot (\frac{n}{3} - 1) \geq 3(3q-n-5)$ which implies $q \leq \frac{13}{27}n+1$ as desired.

3 Additional Remarks

Terminal-pairability of non-complete graphs has been recently studied by Colucci et al. [1]. The authors investigated the extremal value of q for which the set $K_{n,n}^q$ consisting of every demand multigraph on the complete balanced bipartite graph $K_{n,n}$ with maximum degree at most q, can be realized. Note that in this variant of the problem the demand graph does not have to be bipartite. It was shown in [1] that $K_{n,n}^q$ can be realized in $K_{n,n}$ as long as $q \leq (1 - o(1))\frac{n}{4}$. On the other hand, q has to be smaller than $(1 + o(1))\frac{n}{3}$ since any one-factor in which every edge has multiplicity $n/3$ is not realizable in $K_{n,n}$. However, we believe that the one-factor construction does not yield a sharp bound:

Conjecture 3.1. There exists $\epsilon > 0$ such that if $K_{n,n}^q$ can be realized in $K_{n,n}$, then $q < (\frac{1}{3} - \epsilon)n$, for every n sufficiently large.

References

[1] Colucci, L., Os, P. E., Győri, E., and Mezei, T. R. Terminal-pairability in complete bipartite graphs with non-bipartite demands. submitted, arXiv:1705.02124.

[2] Csaba, L., Faudree, R., Gyárfás, A., Lehel, J., and Schelp, R. Networks communicating for each pairing of terminals. Networks 22 (1992), 615–626.
[3] Faudree, R., Gyárfás, A., and Lehel, J. Minimal path pairable graphs. *Congressus Numerantium* 88 (1992), 111–128.

[4] Faudree, R. J. Properties in path-pairable graphs. *New Zealand Journal of Mathematics* 21 (1992), 91–106.

[5] Faudree, R. J., Gyárfás, A., and Lehel, J. Path-pairable graphs. *Journal of Combinatorial Mathematics and Combinatorial Computing* 20 (1999), 145–157.

[6] Győri, E., Mezei, T. R., and Mészáros, G. Terminal pairability in complete graphs. *Journal of Combinatorial Mathematics and Combinatorial Computing*, submitted, arXiv:1605.05857.

[7] Kubicka, E., Kubicki, G., and Lehel, J. Path-pairable property for complete grids. *Combinatorics, Graph Theory, and Algorithms* 1 (1999), 577–586.