Structural and Functional Brain Abnormalities in Internet Gaming Disorder and Attention-Deficit/Hyperactivity Disorder: A Comparative Meta-Analysis

Xinyu Gao1,2,3, Mengzhe Zhang1,2,3, Zhengui Yang1,2,3, Mengmeng Wen1,2,3, Huiyu Huang1,2,3, Ruiping Zheng1,2,3, Weijian Wang1,2,3, Yarui Wei1,2,3, Jingliang Cheng1,2,3*, Shaoqiang Han1,2,3* and Yong Zhang1,2,3*

1 Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China, 2 Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China, 3 Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China

Background: Patients with Internet gaming disorder (IGD) and attention-deficit/hyperactivity disorder (ADHD) have high comorbidity but it is still unknown whether these disorders have shared and distinctive neuroimage alterations.

Objective: The aim of this meta-analysis was to identify shared and disorder-specific structural, functional, and multimodal abnormalities between IGD and ADHD.

Methods: A systematic literature search was conducted for whole-brain voxel-based morphometry (VBM) and functional magnetic resonance imaging (fMRI) studies comparing people with IGD or ADHD with healthy controls. Regional gray matter volume (GMV) and fMRI differences were compared over the patient groups and then a quantitative comparison was performed to find abnormalities (relative to controls) between IGD and ADHD using seed-based d mapping meta-analytic methods.

Result: The meta-analysis contained 14 IGD VBM studies (contrasts covering 333 IGDs and 335 HCs), 26 ADHD VBM studies (1,051 patients with ADHD and 887 controls), 30 IGD fMRI studies (603 patients with IGD and 564 controls), and 29 ADHD fMRI studies (878 patients with ADHD and 803 controls). Structurally, VBM analysis showed disorder-specific GMV abnormality in the putamen among IGD subjects and orbitofrontal cortex in ADHD and shared GMV in the prefrontal cortex. Functionally, fMRI analysis discovered that IGD-differentiating increased activation in the precuneus and shared abnormal activation in anterior cingulate cortex, insular, and striatum.

Conclusion: IGD and ADHD have shared and special structural and functional alterations. IGD has disorder-differentiating structural alterations in the putamen and
ADHD has alterations in the orbitofrontal cortex. Disorder-differentiating fMRI activations were predominantly observed in the precuneus among IGD subjects and shared impairing function connection was in the rewards circuit (including ACC, OFC, and striatum).

Keywords: internet gaming disorder, attention-deficit/hyperactivity disorder, rewards circuit, voxel-based morphometry, functional connectivity

INTRODUCTION

Internet gaming disorder (IGD) is characterized by difficulties in controlling online gaming behaviors, including symptoms such as craving (1, 2), loss of control, and excessive impulsivity (3, 4). Previous studies have indicated that the prevalence estimates of IGD range from 0.3 to 10.8%, depending on the country and age of the population (5–8). Attention-deficiency/hyperactivity disorder (ADHD) has a prevalence of 5–7% (9) and is typically characterized by symptoms of inattention, hyperactivity, and impulsivity (10).

Several comprehensive reviews reported a strong correlation between IGD and ADHD (11). These two disorders share some key features such as impulsivity, seeking immediate rewards, motivation deficit, and hostility (12, 13). A single prospective study followed over 2,000 adolescents for 2 years and found that ADHD was the most significant predictor for the development of internet addiction (14). Moreover, both IGD and ADHD have deficits in the reward circuit, which includes the prefrontal cortex (PFC), anterior cingulate cortex (ACC), orbitofrontal cortex (OFC), striatum (containing the caudate nucleus, putamen, globus pallidus), amygdaloid nucleus, and thalamus (15–17).

Current evidence shows that most addictive diseases exert initial reinforcing effects by activating reward circuits in the brain (18). Weinstein (19) has shown that individuals who are addicted to video-game playing obtain much pleasure during play because of extensive dopamine release. In addition, functional magnetic resonance imaging (fMRI) studies of the reward circuit showed hyperactivity in the bilateral dorsolateral prefrontal cortex (DLPFC), caudate nucleus, the supplementary motor cortex (SMA), and ACC among IGD people (2, 20). Moreover, people with IGD have abnormal structural alterations that include reduced gray matter volume (GMV) in the bilateral ACC, OFC, SMA, right putamen, and left dorsolateral prefrontal cortex through different studies (17, 21, 22).

In addition, Blum et al. (23) showed that ADHD is a reward deficiency disorder, and some theories considered that reward deficiency might predispose individuals to addictive, impulsive, and compulsive behavior. An ADHD, fMRI meta-analyses displayed hypoactivation in the right and left ventrolateral prefrontal cortex (VLPFC), anterior insular (AI), caudate nucleus, middle frontal gyrus (MFG) (24), SMA, and ACC. Moreover, whole-brain voxel-based morphometry (VBM) studies found common decreased GMV in the right globus pallidus and putamen, caudate nucleus, ventromedial prefrontal cortex (VMPFC), and ACC (25–27).

The above studies showed brain structural abnormalities were observed in the cingulate, striatum, frontal, and temporal lobes between these two disorders (15, 17). Moreover, both IGD and ADHD have abnormal whole-brain functional connectivity, such as deficits in the reward circuit (17, 28), although they may show much heterogeneous performance. However, only one study on VBM and no task fMRI compared these two disorders directly. The VBM study (29) showed that IGD subjects with a history of childhood ADHD symptoms had greater GMV in the angular gyrus, middle occipital gyrus, and lingual gyrus than IGD subjects who did not have childhood ADHD symptoms. However, the relatively small sample size of this study is statistically limited. This study aimed to establish the most consistent disorder-differentiating, shared structural, and functional deficits, which are important for developing disorder-specific or transdiagnostic treatment. A comprehensive meta-analysis was conducted, comparing structural and functional abnormalities between IGD and ADHD. Furthermore, multimodal structural and functional abnormalities were performed through conducting conjunction/disjunction analyses across VBM and fMRI studies.

According to previous studies, we hypothesized that disorder-specific GMV abnormality would be shown in the OFC among ADHD subjects (27) and in the putamen in IGD people, whereas we expected disorder-shared decreased GMV in the prefrontal cortex and striatum for both (29). As for fMRI, we hypothesized that IGD-differentiating increased activation in the prefrontal regions (e.g., OFC) (17) where ADHD patients show hypoactivation, and shared abnormal overactivation in the cingulate cortex in both disorders.

METHODS

Publication Search and Study Inclusion

Systematic and comprehensive searches were performed in the PubMed, Web of Knowledge, and Science Direct databases from January 1, 2010, to October 31, 2020, using different combinations of the keywords “voxel-based morphometry” or “VBM” or “morphometry” or “gray matter” or “functional magnetic resonance imaging” or “fMRI” and “online-game” or “Internet gaming disorder” or “IGD” or “Attention-Deficit/Hyperactivity Disorder” or “ADHD.” We identified further papers by reference tracking and consulting retrieved high-quality meta-analysis and review articles.

The included studies had to meet the following criteria: (1) they provided whole-brain pairwise voxel-based comparisons of patient groups (IGD or ADHD) relative to controls; (2) they were a task-related fMRI or VBM study; (3) they provided peak coordinates in Montreal Neurological Institute (MNI) or Talairach spaces; (4) the diagnosis of ADHD patients had to be
based on DSM-IV-TR, or DSM-5, or ICD-10 criteria, and IGD was diagnosed according to DSM-5 or YIAS or CIAS; and (5) there were no neurological or psychiatric comorbidities (such as depression, anxiety, autism, learning disorder, and epilepsy).

We excluded studies that had fewer than 10 patients, those that used only ROI analyses, duplicated patient data, or no eligible contrasts (25, 30–32). If studies did not report peak coordinates, corresponding authors were contacted for necessary details; otherwise, these studies were excluded from the meta-analysis.

The two authors (Gao and Zhang) assessed all articles and achieved 100% agreement.

Statistical Analysis

We used an anisotropic effect-size version of the Seed-based d Mapping software package (AES-SDM) (version 5.15) to conduct the voxel-wise meta-analysis (https://www.sdmproject.com/), following MOOSE guidelines for meta-analyses of observational studies. The AES-SDM data processing procedure is briefly summarized here (http://www.sdmproject.com/software/tutorial.pdf). AES-SDM uses an anisotropic non-normalized Gaussian kernel to recreate an effect-size map and an effect-size variance map for the contrast between patients and controls from peak coordinates and effect sizes for each VBM or fMRI study. Coordinates were converted to Montreal Neurological Institute (MNI) space for this analysis. Following this, a mean map is created by performing a voxel-wise calculation of the random-effects mean of the study maps, weighted by sample size and variance of each study and between-study heterogeneity. In addition, full width at half maximum (FWHM) was set to 20 mm because this setting was optimal to balance sensitivity and specificity and other parameters included voxel $P = 0.005$, peak height $Z = 1$, and cluster extent $= 10$ voxels (33).

First, separate analyses were conducted to examine regional GMV within each patient group (IGD and ADHD) relative to controls and then between the two disorders. Second, fMRI meta-analyses were conducted to examine the neural activation abnormalities observed within and between disorders using all available data. Then a conjunction analysis across both patient groups relative to controls was further performed to examine areas of shared/contrasting abnormalities; This conjunction method was also used within patient groups to conduct multimodal analyses, which showed regions of overlapping functional and structural abnormalities compared with controls. Some studies used multiple task contrasts, several functional tasks, or identical controls. Combined maps with reduced variance were calculated to avoid dependent data in the analyses (26). To examine the effects of age and gender, meta-regression analyses were performed. Finally, we also conducted additional reliability analyses to assess the robustness of the findings: a jackknife sensitivity analysis, which repeated the same analysis excluding one study each time, to assess the reproducibility of the results for each meta-analysis. Moreover, an Egger’s test was used to examine possible publication bias.

A statistical threshold $p < 0.005$ was used for all meta-analyses (32, 34), and a reduced threshold $p < 0.0005$ and a cluster extent 20 voxels was used in the meta-regression to control for false positives (35).

RESULT

Search Results and Sample Characteristics

A pool of 2,174 retrieved publications was searched and 41 additional records were identified through other sources. After duplicates were removed, 1,103 records were screened and 289 full-text articles were assessed for eligibility. The final dataset comprised 14 IGD VBM studies (contrasts covering 333 IGDs and 335 HCs), 26 ADHD VBM studies (1,051 patients with ADHD and 887 controls), 30 IGD fMRI studies (603 patients with IGD and 564 controls), and 29 ADHD fMRI studies (878 patients with ADHD and 803 controls). See Figure 1 and Tables 1, 2 for more details.

In the VBM analysis, Wilcoxon W tests revealed that patient groups did not differ in age ($z = -1.155; P = 0.248$), and Chi-squared test showed both groups contained a significantly greater proportion of males ($\chi^2 = 26.362; P = 0.001$). In the fMRI meta-analysis, patient groups did not differ in age ($z = -1.077; P = 0.282$) but a large proportion of patients with IGD and ADHD were males ($\chi^2 = 93.565; P = 0.001$). Age and sex were consequently included as covariates in all between-group meta-analyses performed including only the adult studies, which were age and sex matched.

Disorder-Differentiating and Shared Brain Structure Abnormalities

Regional Differences in GMV

IGD VBM

Relative to healthy controls, IGD had reduced gray-matter volume (GMV) in the bilateral anterior cingulate cortex (ACC), median cingulate cortex (MCC), superior frontal gyrus (SFG), the supplementary motor cortex (SMA), right putamen/striatum, bilateral inferior frontal gyrus (IFG), and left middle frontal gyrus (MFG) (Table 3 and Figure 2).

ADHD VBM

ADHD Patients compared with HCs showed significantly lower GMV in the bilateral ACC/olfactory cortex/median cingulate, bilateral striatum, left caudate nucleus, left precentral gyrus/postcentral gyrus, right superior frontal gyrus, and orbitofrontal cortex (OFC) (Table 3 and Figure 2).

IGD vs. ADHD VBM

People with IGD, relative to ADHD, had more reduced GMV in the right striatum (Montreal Neurological Institute [MNI]coordinates, $28, -4, -10; 44$ voxels); while people with ADHD showed lower left caudate nucleus GMV (MNI coordinates, $-12, 8, 6; 89$ voxels), relative to IGD (Table 3).

Disorder-Differentiating and Shared Brain Functional Connectivity

IGD fMRI

Across all fMRI studies, people with IGD showed activation in the bilateral precuneus/cingulate cortex (CC), right OFC, left angular
gyrus/middle temporal gyrus (MTG)/MOG, left precentral gyrus, bilateral IFG, right caudate nucleus. Moreover, IGDs had lower activation in the right precentral and postcentral gyri, right insular/rolandic operculum, compared with controls (Table 3 and Figure 3).

ADHD fMRI
Patients with ADHD relative to controls showed overactivation in the right DLPFC, right MFG, and right ACC. Hypoactivation was observed in the right precentral gyrus (motor cortex), left STG/insula/OFC, right STG/MTG, left DLPFC/MFG (Table 3 and Figure 3).

IGD vs. ADHD fMRI
ADHD was associated with disorder-specific hypoactivation relative to IGD in the L MCC, R MTG, R caudate nucleus, and L MFG (Table 3).

Multimodal VBM and fMRI Analyses

Multimodal Analysis in IGD
In patients with IGD, decreased GMV and functional connection relative to controls overlapped in the right insular/putamen (MNI coordinates, 36, −8, 4; 240 voxels) while increased GMV overlapped with increased activation in the right angular gyrus/MOG and precuneus (MNI coordinates, 38, −70, 36 and 8, −56, 34; 456 voxels and 258 voxels, respectively). The left ACC and right IFG was decreased in volume and increased in function connection in patients with IGD relative to controls (MNI coordinates, 4, 16, 22 and 50, 24, 24; 832 and 445 voxels) (Figure 4).

Multimodal Analysis in ADHD
As for ADHD patients, increased GMV and functional activation relative to controls overlapped in the right fusiform gyrus (MNI coordinates, 34, −8, −28; 39 voxels) while decreased GMV overlapped with decreased activation in the right superior temporal gyrus, left inferior frontal gyrus, and left postcentral gyrus (MNI coordinates: 58, −42, 16; −30, 16, −24 and −50, −14, 46; 810 voxels; 776 voxel and 222 voxels, respectively) (Figure 5).

Publication Bias
Egger’s tests were performed to examine potential publication bias. The results of the Egger tests were non-significant (P > 0.05).
TABLE 1 | Sample characteristics of VBM and fMRI studies in IGD and ADHD group.

References	Age group	Patients	Controls		
	Number (% male)	Mean age, y	Number (% male)	Mean age, y	
1. VBM studies in IGD					
Du et al. (36)	Adolescents	25 (100)	17.28	27 (100)	17.48
Han et al. (37)	Adults	20 (100)	20.90	18 (100)	20.90
He et al. (21)	Adults	26 (77) 20	20.69	26 (77)	20.46
Jin et al. (38)	Adults	25 (64) 16	19.12	21 (67)	18.76
Ko et al. (39)	Adults	20 (100)	21.70	20 (100)	22.40
Lee et al. (22)	Adults	30 (100)	23.57	30 (100)	24.23
Lee et al. (29)	Adults	31 (100)	24.00	30 (100)	23.00
Lin et al. (40)	Adults	20 (100)	23.90	20 (100)	22.70
Mohammadi et al. (41)	Adults	35 (100)	22.20	36 (100)	22.28
Seok and Sohn (42)	Adults	29 (100)	23.60	29 (100)	22.70
Sun et al. (43)	Adults	18 (83) 15	20.50	21 (88)	21.95
Weng et al. (44)	Adolescents	17 (24) 4	16.25	17 (12)	15.54
Yoon et al. (45)	Adults	19 (100)	22.90	25 (100)	25.40
Zhou et al. (46)	Adolescents	18 (89) 16	17.23	15 (87)	17.81
2. VBM studies in ADHD					
Ahrendts et al. (47)	Adults	31 (65)	31.20	31 (65)	31.50
Amico et al. (48)	Adults	20 (75)	33.60	20 (75)	34.70
Bonath et al. (49)	Adolescents	18 (x)	13.60	18 (x)	14.10
Bralten et al. (50)	Adolescents	307 (68)	17.06	196 (49)	16.66
Gehricke et al. (51)	Adults	32 (81)	25.31	40 (83)	23.93
He et al. (52)	Children	37 (100)	9.90	35 (100)	10.70
Jagger et al. (53)	Children	41 (x)	9.61	32 (x)	9.66
Kappel et al. (54)	Adults	16 (84)	23.50	20 (100)	23.70
Kappel et al. (54)	Children	14 (71)	9.80	10 (80)	11.00
Sutucubasi et al. (55)	Adolescents	19 (74)	10.32	18 (67)	10.17
Klein et al. (56)	Adults	25 (36)	66.90	34 (18)	68.90
Kobel et al. (57)	Adolescents	14 (x)	10.43	12 (x)	10.92
Kumar et al. (58)	Children	18 (100)	9.60	18 (100)	9.70
Li et al. (59)	Adolescents	30 (100)	10.30	30 (100)	10.30
Lim et al. (60)	Adolescents	29 (100)	13.80	29 (x)	14.40
Almeida Montes et al. (61)	Adults	20 (50)	28.95	20 (50)	27.57
Moreno-Alcázar et al. (62)	Adults	44 (66)	31.61	44 (66)	32.57
Ramesh and Rai (63)	Adolescents	15 (27)	16.80	15 (27)	16.72
Roman-Urestarazu et al. (64)	Adults	49 (65)	22.23	34 (57)	22.95
Steidman et al. (65)	Adults	74 (x)	37.30	54 (x)	34.30
Sethi et al. (66)	Adults	30 (63)	33.70	30 (63)	32.60
Shimada et al. (67)	Adolescents	17 (88)	10.29	15 (73)	12.80
van Wingen et al. (68)	Adults	14 (100)	32.00	15 (100)	37.00
Vilegis et al. (69)	Adolescents	33 (100)	12.58	31 (100)	12.75
Villemonteix et al. (70)	Adolescents	38 (58)	10.40	25 (60)	10.10
Wang et al. (71)	Adolescents	30 (63)	10.60	25 (48)	10.60
Zhao et al. (72)	Adolescents	36 (x)	12.14	36 (x)	11.69
3. fMRI studies in IGD					
Chiao et al. (73)	Adults	15 (100)	24.70	15 (100)	24.47
Chun et al. (74)	Adolescents	16 (100)	13.60	19 (100)	13.37
Dieter et al. (75)	Adults	15 (87)	28.7	17 (76)	24.94
Ding et al. (76)	Adolescents	17 (82)	16.40	17 (82)	16.29
Dong et al. (76)	Adults	18 (100)	21.00	19 (100)	21.00

(Continued)
TABLE 1 | Continued

References	Age group	Patients	Controls		
		Number (% male)	Mean age, y	Number (% male)	Mean age, y
Dong et al. (76)	Adults	27 (x)	21.00	43 (x)	21.47
Dong et al. (77)	Adults	16 (100)	21.40	15 (100)	22.10
Dong et al. (78)	Adults	14 (100)	23.40	13 (100)	24.10
Dong and Potenza (79)	Adults	20 (100)	21.30	16 (100)	21.90
Dong et al. (80)	Adults	16 (100)	21.40	15 (100)	22.40
Han et al. (81)	Adolescents	15 (100)	14.20	15 (100)	14.00
Kim et al. (82)	Adolescents	13 (x)	14.50	10 (x)	14.20
Ko et al. (83)	Adults	15 (100)	24.70	15 (100)	24.47
Ko et al. (84)	Adults	26 (100)	24.60	23 (100)	24.35
Lee et al. (85)	Adults	24 (100)	24.80	24 (100)	24.3.
Lee et al. (86)	Adolescents	18 (100)	13.60	18 (100)	13.40
Lemenager et al. (87)	Adults	16 (88)	28.30	17 (76)	24.94
Lin et al. (88)	Adults	19 (100)	22.20	21 (100)	22.80
Liu et al. (2)	Adults	39 (100)	22.60	23 (100)	23.09
Liu et al. (89)	Adults	11 (100)	23.50	11 (100)	22.45
Liu et al. (90)	Adults	41 (100)	21.90	27 (100)	22.74
Lorenz et al. (91)	Adults	8 (100)	25.00	9 (100)	24.80
Ma et al. (92)	Adults	29 (100)	22.60	23 (100)	23.09
Qi et al. (93)	Adolescents	23 (100)	17.30	24 (100)	17.42
Qi et al. (94)	Adolescents	24 (100)	17.20	24 (100)	17.42
Shin et al. (95)	Adults	20 (x)	22.10	21 (x)	22.14
Sun et al. (20)	Adults	10 (100)	20.40	10 (100)	20.30
Wang et al. (96)	Adults	20 (100)	21.00	20 (100)	21.95
Zhang et al. (97)	Adults	19 (100)	22.20	21 (21)	22.80
Zhang et al. (98)	Adults	40 (100)	22.00	19 (100)	22.89

4. fMRI studies in ADHD

References	Age group	Patients	Controls		
Cubillo et al. (99)	Adults	11 (100)	29.00	10 (100)	28.00
Dibbets et al. (100)	Adults	15 (100)	28.90	14 (100)	28.80
Kooistra et al. (101)	Adults	11 (100)	21.50	11 (100)	22.30
Passarotti et al. (102)	Adolescents	11 (65)	13.10	15 (47)	14.13
Cubillo et al. (103)	Adults	11 (100)	29.00	15 (100)	28.00
Rubia et al. (104)	Adolescents	12 (100)	13.00	13 (100)	13.00
Rubia et al. (105)	Adolescents	12 (100)	13.00	13 (100)	13.00
Spinelli et al. (106)	Adolescents	13 (69)	10.60	17 (47)	15.05
Ma et al. (107)	Children	15 (53)	9.82	15 (53)	9.91
Sebastian et al. (108)	Adults	20 (65)	33.30	24 (46)	30.30
Siniatchkin et al. (109)	Children	17 (82)	9.30	14 (71)	9.10
Bhaijova et al. (110)	Adolescents	12 (100)	13.80	12 (100)	15.40
Chantile et al. (111)	Adolescents	18 (100)	13.40	25 (100)	14.30
Cubillo et al. (112)	Adolescents	19 (100)	13.00	29 (100)	13.00
Schulz et al. (113)	Adults	14 (100)	23.30	14 (100)	22.80
Chen et al. (114)	Adults	29 (100)	24.90	25 (100)	25.64
Janssens et al. (115)	Adolescents	21 (80)	10.60	17 (76)	10.28
Rasmussen et al. (116)	Adults	25 (68)	24.60	12 (50)	24.10
Van Rooij et al. (117)	Adolescents	185 (70)	17.30	124 (44)	16.50
Ma et al. (118)	Adolescents	25 (76)	15.40	33 (67)	15.30
Zamorano et al. (119)	Adolescents	17 (100)	11.60	17 (100)	11.70
Fan et al. (120)	Adolescents	27 (89)	12.10	27 (70)	13.00
Shang et al. (121)	Adults	25 (56)	28.50	30 (50)	28.17

(Continued)
for all comparisons, Bonferroni corrected), suggesting that there was no publication bias. Jack-knife reliability analyses suggested robust disorder-differentiating findings.

DISCUSSION

The purpose of our meta-analytic comparison is to show that patients with IGD and ADHD have predominantly shared and disorder-specific patterns of structural and functional abnormalities, especially in reward function. Structurally, IGD people have decreased putamen GMV and ADHD patients have lower GMV in the orbitofrontal cortex. Functionally, precuneus was reported as disorder-special activation in IGD patients. Furthermore, functional alteration in the OFC was opposite, which is activated in IGDs and hypoactive in ADHD. Moreover, disorder-specific increased GMV and functional activation were found in the precuneus among IGD patients and in the fusiform gyrus in ADHD patients through multimodal analysis. Patients with IGD and ADHD showed commonly the same direction of change in the ACC (decreased GMV and hyperactivation) and insula (decreased GMV and lower activation). In addition, striatum, expecting abnormal structure in both two disorders, was reported to be reduced in GMV and functional connectivity in the IGD group and reduced in GMV and no significant change in fMRI for the ADHD group.

The key disorder-shared abnormality in two disorders both in structure and function is the prefrontal-striatum circuit. The circuit network contains the anterior cingulate cortex, the orbital prefrontal cortex, the ventral striatum, the ventral pallidum, the dorsal prefrontal cortex, amygdala, hippocampus (16). Attention-deficit/hyperactivity disorder (ADHD) has been conceptualized as a disorder of the prefrontal cortex for over 30 years (28) and IGD is found to be defective in PFC through various studies (22, 40), our results showed that parts of structural and functional alterations in ADHD and IGD patients concentrated on PFC areas. The main cortical areas in the PFC areas associated with reward are the anterior cingulate cortex and orbitofrontal cortex.

As predicted, the results of the main meta-analyses converged on the ACC, which showed functional hyperactivation and gray-matter reduction in IGDs and ADHD relative to HCs. This finding is in line with recent transdiagnostic meta-analyses that this region may serve as a common bio-marker across psychiatric disorders (128), possibly because it modulates the neural activity of the default-mode network and executive control network (129) and is critically involved in multiple processes including cognitive control (130), emotional regulation (131), and reward-relative decision-making (132). Bonath et al. found significantly smaller ACC gray matter volume in subjects with ADHD and reduced volume in ACC was directly associated with symptoms of attentional deficits (49). IGD participants cannot control their compulsion to play Internet games despite experiencing negative consequences due to impaired cognitive control of ACC (40). These studies are consistent with our findings. Neural alterations in the ACC area, consistent with the interaction of the Person-Affect-Cognition-Execution model, play an important role in cue-induced craving, rewards-seeking, (22) and cognitive control in the ACC among IGD and ADHD patients. Moreover, although the direction of the alteration of the ACC is inconsistent across modalities (fMRI and VBM), previous evidence suggests that gray-matter-volume increases or reductions may not simply correspond to functional neural activation or deactivation (132). In conclusion, fMRI and VBM may reflect the distinctive aspects of neural alterations, and the evidence converges to emphasize an important role for the ACC in IGD and ADHD.

The disorder-contrasting findings in OFC are worth discussion. Now it is commonly understood that the OFC contributes to psychotic dysfunction including impulse control.
TABLE 3 | Meta-analysis results for voxel-based morphometry studies in IGD and ADHD.

Contrast	MNI coordinates	SDM Z score	P-value	Voxels number	Jack-knife sensitivity	Brodmann areas
	X Y Z					
1. VBM RESULTS						
1) IGD decreased vs. control						
L ACC/R ACC/L SFG/R MCC/L MCC/R SMA/L SMA/R SFG	-2.636	0.000005186	2.107	14 out of 14	32, 24, 10, 11, 6	
R putamen/R striatum	-2.277	0.000072241	392	14 out of 14	48	
L MFG/L IFG	-1.742	0.001615345	99	11 out of 14	45, 46	
R IFG	-1.599	0.003282249	20	11 out of 14	45	
2) ADHD decreased vs. control						
L ACC/L SFG/R SFG/R ACC/L olfactory cortex/R olfactory cortex/L median cingulate/L caudate/L striatum/R striatum/R MCC/L median network/R MCC/L gyrus rectus/L gyrus rectus	-3.037	0.000361264	1,849	25 out of 27	10, 11, 24, 25, 32	
L precentral gyrus/L postcentral gyrus	-2.248	0.000743151	176	26 out of 27	6	
R OFC/R DLSFG	-2.381	0.000407696	92	26 out of 27	11	
L OFC	-2.222	0.000830889	55	25 out of 27	38	
3) IGD (vs. control) vs. ADHD (vs. control)						
IGD (vs. control) decreased vs. ADHD (vs. control)						
R striatum	1.958	0.00103235	24			
ADHD (vs. control) decreased vs. IGD (vs. control)						
L caudate nucleus	1.626	0.000030994	89			
2. fMRI RESULTS						
1) IGD increased vs. control						
L precuneus/R precuneus/R MCC/L MCC/R PCC/L PCC	2.253	0.000139356	1,185	30 out of 30	7, 23	
R IFG/R precentral gyrus	2.454	0.000015497	808	30 out of 30	6, 44, 45, 48	
L angular gyrus/L MTG/L MOG	2.098	0.000376761	465	30 out of 30	19, 39	
L precentral gyrus/L IFG	2.167	0.000232220	189	28 out of 30	6, 44	
R caudate nucleus	1.819	0.001832068	33	24 out of 30	25	
IGD decreased vs. control						
R precentral gyrus/R MFG/R postcentral gyrus	-1.489	0.000092924	831	27 out of 30	3, 4, 6	
R insula/R Rolandic operculum	-1.391	0.000175476	295	28 out of 30	48	
L precentral gyrus	-1.209	0.000547051	111	28 out of 30	4, 6	
2) ADHD increased vs. control						
R MFG/R DLSFG	1.166	0.000392199	103	27 out of 29	9, 46	
R ACC	1.158	0.00030994	52	28 out of 29	32	
ADHD decreased vs. control						
R precentral/R postcentral gyrus	-3.584	0.000030994	103	27 out of 29	9, 46	

(Continued)
TABLE 3 | Continued

Contrast	MNI coordinates	SDM Z Score	P-value	Voxels number	Jack-knife sensitivity	Brodmann areas
L STG/L Insula/L OFC	−46 12 20	−3.167	0.000113547	286	28 out of 29	38, 47
R STG/R MTG	56 −40 10	−3.172	0.000113547	147	28 out of 29	22, 42
L DLSFG/L MFG	−24 38 36	−3.246	0.000072241	55	28 out of 29	9, 46

3) IGD (vs. control) vs. ADHD (vs. control)

ADHD (vs. control) decreased vs. IGD (vs. control)

Area	X	Y	Z	Z Score	P-value	Voxels number	Jack-knife sensitivity
L MCC	−2	−6	32	3.534	0.000010312	254	23, 24
R STG	52	−40	12	2.987	0.000836074	88	41, 42
R caudate nucleus	10	8	20	2.925	0.001109600	20	9
L MFG	−20	46	32	2.925	0.001109600	20	9

IGD (vs. control) decreased vs. ADHD (vs. control)

Area	X	Y	Z	Z Score	P-value	Voxels number	Jack-knife sensitivity
L MCC	−2	−6	32	3.534	0.000010312	254	23, 24
R STG	52	−40	12	2.987	0.000836074	88	41, 42
R caudate nucleus	10	8	20	2.925	0.001109600	20	9
L MFG	−20	46	32	2.925	0.001109600	20	9

4) Multimodal analysis in IGD

VBM increased and fMRI increased

Area	X	Y	Z	Z Score	P-value	Voxels number	Jack-knife sensitivity
R MOG/angular gyrus	38	−70	36	1	456	7, 19, 39	
R precuneus	8	−56	34	1	258	23	

VBM decreased and fMRI increased

Area	X	Y	Z	Z Score	P-value	Voxels number	Jack-knife sensitivity
L ACC/SFG	4	16	22	1	832	24, 32	
R IFG	50	24	24	1	445	45, 48	

VBM decreased and fMRI decreased

Area	X	Y	Z	Z Score	P-value	Voxels number
Insula/putamen	36	−8	4	1	240	48

5) Multimodal analysis in ADHD

VBM increased and fMRI increased

Area	X	Y	Z	Z Score	P-value	Voxels number	Jack-knife sensitivity
R fusiform gyrus	34	−8	−28	1	39	20	

VBM decreased and fMRI increased

Area	X	Y	Z	Z Score	P-value	Voxels number	Jack-knife sensitivity
R MCC	4	24	32	1	1,315	24	
R SFG(OFC)	4	38	−14	1	786	24	
R STG	62	−12	4	1	376	22	
R MOG	40	−82	6	1	229	19	

VBM decreased and fMRI decreased

Area	X	Y	Z	Z Score	P-value	Voxels number	Jack-knife sensitivity
R STG	58	−42	16	1	860	42	
L IFG	−30	16	−24	1	543	38	
L postcentral gyrus	−50	−14	46	1	222	4	

ACC, anterior cingulate cortex; DL, dorsolateral; IFG, inferior frontal gyrus; L, Left; MNI, Montreal Neurological Institute; MCC, median cingulate cortex; MFG, middle frontal gyrus; MOG, middle occipital gyrus; MTG, middle temporal gyrus; OFC, orbitofrontal cortex; PCC, posterior cingulate cortex; R, Right; SDM, seed-based d mapping; SMA, supplementary motor area; SFG, superior frontal gyrus; STG, superior temporal gyrus.

and monitoring ongoing behavior and rewards-seeking behaviors (44). Our decreased OFC activation in ADHD is consistent with a previous study that showed decreased cognitive capacity, which is related to hyperactivity and impulsivity and is associated with reduced OFC activity during reward expectation in ADHD patients (133). Furthermore, the strong activation of OFC in IGD patients might be explained by pleasant objects and rewarding anticipation, which refers to internet games in IGD,
so that IGD people are more eager to look for stimulation and rewards.

As for the striatum, which comprises the caudate nucleus and the putamen, the nucleus accumbens (NAc), and the olfactory tubercle, which appear in our result. When IGD or ADHD patients are exposed to cue-relative stimulation, the activation of glutamatergic projections from the ventral PFC, the ventral hippocampus, and the amygdala (and presumably medial thalamus) to striatal projections that increase DA signaling and release in the NAc and dorsal striatum will enhance reward craving and eventually result in game activity in IGD and distraction in ADHD (18). However, we found reduced striatum GMV in the IGD and ADHD group and lower functional connectivity in the IGD group, but there was no significant change in fMRI for the ADHD group. Using all kinds of checkout, there was still no significant functional connection alteration in striatum among ADHD patients. We speculate that the reasons could include ADHD fMRI studies that claim there was inconsistent striatum action, meaning there was no result when putting these studies together to conduct meta-analyses.

We found consistent changes in the insula, which had decreased GMV and lower activity in ADHD and IGD subjects. The insula are involved in motivation, rewards, salience detection, and cognitive control (98, 134, 135), modulated by dopaminergic activity (134), which is typically decreased in IGD and ADHD. Therefore, the insula is hypothesized to be a neural system that increases reward drivers and weakens cognitive control (136). In ADHD, deficient insula activation may result in reduced task-related salience detection and cognitive control, resulting in lower self-control ability and increased distractibility. IGD hypoactivation in the insula probably shows that they are habituated to gaming-related stimulation and insensitive to other conventional stimulation, which contributes to gaming addiction.

We find decreased putamen GMV in IGD people through VBM analysis. The dorsolateral putamen has been functionally linked to the sensorimotor cortices, forming the sensorimotor network. A recent research report that health controls show a significant positive correlation in the neural pathways connecting the putamen-MFG-insula when facing gaming cues, which is missing in individuals with IGD (136). Meanwhile, this study also demonstrated increased excitatory
neuromodulation in the effective connections among the insula-putamen-OFC in IGD, a neural pathway involving reward-related activity. In conclusion, the putamen is part of the reward pathway, the declination of putamen gray matter may impact its function, which is part of the reason for game addiction.

In our study, disorder-specific activation is suggested in the precuneus among IGD patients. The precuneus is associated with visual imagery, attention, and memory retrieval by participating in the visual process and integrates related memory (137). A possible explanation is that high activation in the precuneus is relative to gaming urge, craving, and the severity of Internet addiction. This result suggests that the precuneus activates to process the gaming cue, and contributes to the cue-induced craving for online gaming. Furthermore, ADHD patients have special activation in the fusiform gyrus. The findings are consistent with a study of reward effect on brain structure and function in adults and children with ADHD (54). The fusiform gyrus (FG), which topographically connects the striate cortex to the inferior temporal lobe, plays a pivotal role in high-level visual/cognitive functions (138). Speculation is that fusiform mediate various stimuli that result in it being hard for people with ADHD to focus on what they are doing.

LIMITATION

This meta-analysis has several limitations. First, it was based primarily on peak coordinates rather than raw statistical brain maps. Besides, the heterogeneity of the methodologies among VBM studies could not be avoided, such as the differences in MRI machines, slice thickness, preprocessing protocols (traditional or optimized), and smoothing kernel size, which might have contributed to the inconsistent results (33). Moreover, the included studies have different proportions of males and diverse statistical thresholds, which may lead to discrepant results. Previous studies suggest that neural alterations in some regions may be more severe in female IGDs and ADHDs (17), but future studies are needed to shed more light on gender difference and conduct further research.

CONCLUSION

The comparative meta-analytic findings of this study stress the shared and distinctive brain structure and function in IGD and ADHD. Disorder-differentiating structure alterations are reported in the putamen for IGD and in the orbitofrontal
cortex for ADHD subjects. Disorder-differentiating fMRI activation was predominantly observed in the precuneus among IGD subjects. The shared functional alterations focus on the frontal-striatum reward circuit, which is important for understanding the underlying pathophysiology and proves that these two disorders have a common neurological foundation. Disorder-shared neurofunctional biomarkers provide useful evidence that the drugs treat ADHD could be used on IGD. Disorder-specific neurofunctional biomarkers could ultimately aid in the development of future, disorder-differentiated behavioral, pharmacological, or neurotherapeutic treatments.

REFERENCES

1. Ko C-H, Yen J-Y, Chen S-H, Wang P-W, Chen C-S, Yen C-F. Evaluation of the diagnostic criteria of Internet gaming disorder in the DSM-5 among young adults in Taiwan. J Psychiatric Res. (2014) 53:103–10. doi: 10.1016/j.jpsychires.2014.02.008
2. Liu L, Yip SW, Zhang JT, Wang LJ, Shen ZL, Liu B, et al. Activation of the ventral and dorsal striatum during cue reactivity in Internet gaming disorder. Addict Biol. (2017) 22:791–801. doi: 10.1111/adb.12338
3. Choi SW, Kim HS, Kim GY, Jeon Y, Park SM, Lee JY, et al. Similarities and differences among Internet gaming disorder, gambling disorder and alcohol use disorder: a focus on impulsivity and compulsivity. J Behav Addict. (2014) 3:246–53. doi: 10.1556/jba.2014.4.6
4. Yao YW, Wang LJ, Yip SW, Chen PR, Li S, Xu J, et al. Impaired decision-making under risk is associated with gaming-specific inhibition deficits among college students with Internet gaming disorder. Psychiatry Res. (2015) 229:302–9. doi: 10.1016/j.psychres.2015.07.004
5. Müller KW, Janikian M, Dreier M, Mößle T, Petry NM. Prevalence of Internet addiction and its correlates: impulsivity and hostility. J Behav Addict. (2015) 4:21–30. doi: 10.1038/jba.2014.3
6. Przybylski AK, Weinstein N, Murayama K. Internet gaming disorder: investigating the clinical relevance of a new phenomenon. Am J Psychiatry. (2017) 174:230–6. doi: 10.1176/appi.ajp.2016.16020224
7. Rehbein F, Kliem S, Baier D, Mößle T, Petry NM. Prevalence of Internet gaming disorder in German adolescents: diagnostic contribution of the nine DSM-5 criteria in a state-wide representative sample. Addiction. (2015) 110:842–51. doi: 10.1111/add.12849
8. Wang HR, Cho H, Kim DJ. Prevalence and correlates of comorbid depression in a nonclinical online sample with DSM-5 internet gaming disorder. J Affect Disord. (2018) 226:1–5. doi: 10.1016/j.jad.2017.08.005
9. Polanczyk GV, Willcutt EG, Salum GA, Kieling C, Rohde LA. Depression in a nonclinical online sample with DSM-5 Internet gaming disorder: overview of neural and genetic mechanisms. J Affect Disord. (2015) 271:74–84. doi: 10.1016/j.jad.2014.09.022
10. Gallo EF, Posner J. Moving towards causality in attention-deficit hyperactivity disorder: overview of neural and genetic mechanisms. Lancet Psychiatry. (2016) 3:555–67. doi: 10.1016/s2215-0366(16)00096-1
11. Kim D, Lee D, Lee J, Namkoong K, Jung YC. Association between childhood and adult attention deficit hyperactivity disorder symptoms in Korean young adults with Internet addiction. J Behav Addict. (2017) 6:345–53. doi: 10.1556/2006.6.2017.044
12. Yen JY, Liu TL, Wang PW, Chen CS, Yen CF, Ko CH. Association between Internet gaming disorder and adult attention deficit and hyperactivity disorder and their correlates: impulsivity and hostility. Addict Behav. (2017) 64:308–13. doi: 10.1016/j.addbeh.2016.04.024
13. Ding WN, Sun JH, Sun YW, Chen X, Zhou Y, Zhuang ZG, et al. Trait impulsivity and impaired prefrontal impulse inhibition function in adolescents with internet gaming addiction revealed by a Go/No-Go fMRI study. Behav Brain Funct. (2014) 10:20. doi: 10.1186/1744-9081-10-20
14. Ko CH, Yen JY, Chen CS, Yeh YC, Yen CF. Predictive values of psychiatric symptoms for Internet addiction in adolescents: a 2-year prospective study. Arch Pediatr Adolesc Med. (2009) 163:937–43. doi: 10.1001/archpediatrics.2009.159
15. Bush G, Liddle P, frontal, and parietal cortical dysfunction in attention-deficit/hyperactivity disorder. Biol Psychiatry. (2011) 69:1160–7. doi: 10.1016/j.biopsych.2011.01.022
16. Haber SN, Knutson B. The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology. (2010) 35:4–26. doi: 10.1038/npp.2009.129
17. Yao YW, Liu L, Ma SS, Shi XH, Zhou N, Zhang JT, et al. Functional and structural neural alterations in Internet gaming disorder: A systematic review and meta-analysis. Neuropsychobiol Rev. (2017) 83:313–24. doi: 10.1016/j.neubiorev.2017.10.029
18. Volkow ND, Morales M. The brain on drugs: from reward to addiction. Cell. (2015) 162:712–25. doi: 10.1016/j.cell.2015.07.046
19. Weinstein AM. Computer and video game addiction: a comparison between game users and non-game users. Am J Drug Alcohol Abuse. (2010) 36:668–76. doi: 10.3109/00912900.2010.491879
20. Sun Y, Ying H, Sreetohul RM, Xuemei W, Ya Z, Qian L, et al. Brain MRI study of crave induced by cue pictures in online game addicts (male adolescents). Behav Brain Res. (2012) 233:563–76. doi: 10.1016/j.bbr.2012.05.005
21. He Q, Turel O, Wei L, Bechara A. Structural brain differences associated with extensive massively-multiplayer video gaming. Brain Imag Behav. (2020) 15:364–74. doi: 10.1007/s11862-020-0263-0
22. Lee D, Namkoong K, Lee J, Jung Y-C. Abnormal gray matter volume and impulsivity in young adults with Internet gaming disorder. Addiction biology. (2018) 23:1160–1167. doi: 10.1111/adb.12552
23. Blum K, Chen AL, Braverman ER, Comings DE, Chen TJ, Arcuri V, et al. Attention-deficit-hyperactivity disorder and reward deficiency syndrome. Neuropsychiatric Dis Treatment. (2008) 4:893–918. doi: 10.2147/ndt.s2627
24. Han DH, Bae S, Hong J, Kim SM, Son YD, Renshaw P. Resting-state fMRI study of ADHD and internet gaming disorder. J Atten Disord. (2019) 2019:108705471983022. doi: 10.1177/108705471983022
25. Frodl T, Skokauskas N. Meta-analysis of structural MRI studies in children and adults with attention deficit hyperactivity disorder indicates treatment effects. Acta Psychiatr Scand. (2012) 125:114–26. doi: 10.1111/j.1600-0447.2011.01786.x
26. Norman LJ, Carlisi C, Lukito S, Hart H, Mataix-Cols D, Meltzer HM, et al. Brain imaging of the cortex in ADHD: a coordinated analysis of large-scale clinical and population-based samples. Am J Psychiatry. (2019) 176:531–42. doi: 10.1176/appi.ajp.2019.18091033

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article, further inquiries can be directed to the corresponding authors.

AUTHOR CONTRIBUTIONS

XG and YZ designed the experiment. XG, MZ, and ZY performed the experiment. MW, HH, RZ, WW, YW, JC, SH, and YZ modified the experiment and paper. All authors contributed to the article and approved the submitted version.

Frontiers in Psychiatry | www.frontiersin.org 12 July 2021 | Volume 12 | Article 679437
Gao et al. Structural and Functional Brain Abnormalities

28. Durston S, van Belle J, de Zeeuw P. Differentiating frontal-striatal and fronto-cerebellar circuits in attention-deficit/hyperactivity disorder. Biol Psychiatry. (2011) 69:1178–84. doi: 10.1016/j.biopsych.2010.07.057

29. Lee D, Namkoong K, Lee J, Jung YC. Preliminary evidence of altered gray matter volume in subjects with internet gaming disorder: associations with history of childhood attention-deficit/hyperactivity disorder symptoms. Brain Imaging Behav. (2019) 13:660–8. doi: 10.1007/s11862-018-9872-6

30. Hart H, Rudja J, Nakao T, Mataix-Cols D, Rubia K. Meta-analysis of functional magnetic resonance imaging studies of inhibition and attention in attention-deficit/hyperactivity disorder: exploring task-specific, stimulant medication, and age effects. JAMA Psychiatry. (2013) 70:185–98. doi: 10.1001/jamapsychiatry.2013.277

31. McCarthy H, Skokauskas N, Frodl T. Identifying a consistent pattern of neural function in attention deficit hyperactivity disorder: a meta-analysis. Psychol Med. (2014) 44:689–90. doi: 10.1017/s0033291713001037

32. Radua J, Mataix-Cols D. Voxel-wise meta-analysis of grey matter changes in obsessive-compulsive disorder. Br J Psychiatry. (2009) 195:393–402. doi: 10.1192/bjp.bp.108.055046

33. Yang Z, Zhang Y, Cheng J, Zheng R. Meta-analysis of brain gray matter changes in chronic smokers. Eur J Radiol. (2020) 132:109300. doi: 10.1016/j.ejrad.2020.109300

34. Radua J, Mataix-Cols D, Phillips ML, El-Hage W, Mennes M, Zwijs WP, Rommelse NJ, et al. Voxel-based morphometry analysis reveals frontal brain differences in participants with ADHD and their unaffected siblings. J Psychiatry Neurosci. (2016) 41:272–9. doi: 10.1503/jpsycr.140377

35. Gehricke J-G, Kruegel F, Thampipip T, Alejo SD, Tatos E, Fallon J, et al. The brain anatomy of attention-deficit/hyperactivity disorder in young adults - a magnetic resonance imaging study. PLoS ONE. (2017) 12:e0175433. doi: 10.1371/journal.pone.0175433

36. He N, Li F, Li Y, Guo L, Chen L, Huang X, et al. Neuroanatomical deficits correlate with executive dysfunction in boys with attention deficit hyperactivity disorder. Neuropsi Lett. (2015) 600:45–9. doi: 10.1101/neu.15.2015.05.062

37. Jaggers-Mickells AC, Kibby MY, Constance JM. Global gray matter morphometry differences between children with reading disability, ADHD, and comorbid reading disability/ADHD. Brain Lang. (2018) 185:54–66. doi: 10.1016/j.bandl.2018.08.004

38. Kappel V, Lorenz RC, Streilting M, Renneberg B, Lehmkuhl U, Ströhle A, et al. Effect of brain structure and function on reward anticipation in children and adults with attention deficit hyperactivity disorder combined subtype. Soc Cogn Affect Neurosci. (2015) 10:945–51. doi: 10.1093/soccne/snu135

39. Sutucubas Kaya B, Metin B, Tas ZC, Buyukaslan A, Soysal A, Hatioglu D, et al. Gray matter increase in motor cortex in pediatric ADHD: a voxel-based morphometry study. J Atten Disord. (2018) 22:611–8. doi: 10.1177/1087054716659139

40. Klein M, Souza-Duran FL, Menezes AKPM, Alves TM, Busatto G, Louza MR. Gray matter volume in elderly adults with ADHD: associations of symptoms and comorbidities with brain structures. J Atten Disord. (2019) 2019:1087054719855683. doi: 10.1177/1087054719855683

41. Kobel M, Bechel N, Specht K, Klarhöfer M, Weber P, Scheffler K, et al. Structural and functional imaging approaches in attention deficit/hyperactivity disorder: does the temporal lobe play a key role? Psychiatry Res. (2010) 183:230–6. doi: 10.1016/j.psychres.2010.03.010

42. Kumar U, Araya A, Agarwal V. Neural alterations in ADHD children as indicated by voxel-based cortical thickness and morphometry analysis. Brain Dev. (2017) 39:403–10. doi: 10.1016/j.braindev.2016.12.002

43. Li X, Cao Q, Fu F, Li D, Fan Y, An L, et al. Abnormalities of structural covariance networks in drug-naïve boys with attention deficit hyperactivity disorder. Psychiatry Res. (2015) 231:273–8. doi: 10.1016/j.psychres.2015.01.006

44. Lim L, Marquand A, Cubillo AA, Smith AB, Chantiluke K, Simmons A, et al. Disorder-specific predictive classification of adolescents with attention deficit hyperactivity disorder (ADHD) relative to autism using structural magnetic resonance imaging. PLoS ONE. (2013) 8:e63660. doi: 10.1371/journal.pone.0063660

45. Almeida Montes LG, Ricardo-Garcell J, Barajas De La Torre LB, Prado Alcántara H, Martínez García RB, Fernández-Bouzas A, et al. Clinical correlations of grey matter reductions in the caudate nucleus of adults with attention deficit hyperactivity disorder. J Psychiatry Neurosci. (2010) 35:238–46. doi: 10.1503/jn.090099

46. Moreno-Alcázar A, Ramos-Quiroga JA, Radua J, Salvador J, Palomar G, Bosch R, et al. Brain abnormalities in adults with attention deficit hyperactivity disorder revealed by voxel-based morphometry. Psychiatry Res Neuroimag. (2015) 244:1–7. doi: 10.1016/j.pscychresns.2015.06.002

47. Ramesh MG, Rai KS. Region-wise gray matter volume alterations in brains of adolescents with attention deficit hyperactive disorder: a voxel based morphometric analysis. Ind J Physiol Pharmacol. (2013). 57:270–9.
64. Roman-Urrestarazu A, Lindholm P, Moilanen I, Kiviniemi V, Miettunen J, Jääskeläinen E, et al. Brain structural deficits and working memory MRI dysfunction in young adults who were diagnosed with ADHD in adolescence. *Eur Child Adolesc Psychiatry*. (2016) 25:329–38. doi: 10.1007/s00787-015-0755-w
65. Seidman LJ, Biederman J, Liang L, Valera EM, Monuteaux MC, Brown A, et al. Gray matter alterations in adults with attention-deficit/hyperactivity disorder identified by voxel based morphometry. *Biol Psychiatry*. (2011) 69:857–66. doi: 10.1016/j.biopsych.2010.09.053
66. Sethi A, Evelyn-Rahr E, Dowell N, Jain S, Voon V, Critchley HD, et al. Magnetization transfer imaging identifies basal ganglia abnormalities in adult ADHD that are invisible to conventional T1 weighted voxel-based morphometry. *Neuroimage Clin*. (2017) 15:12. doi: 10.1016/j.nicl.2017.03.012
67. Shimada K, Fujisawa TX, Takiguchi S, Naruse H, Kosaka H, Okazawa H, et al. Ethnic differences in COMT genetic effects on striatal grey matter alterations associated with childhood ADHD: A voxel-based morphometry study in a Japanese sample. *World J Biol Psychiatry*. (2017) 18:322–8. doi: 10.3109/15622975.2015.1102325
68. van Wingen GA, van den Brink W, Veltman DJ, Schmaal L, Dom G, Booj J, et al. Reduced striatal brain volumes in non-medicated adult ADHD patients with comorbid cocaine dependence. *Drug Alcohol Depend*. (2013) 131:198–203. doi: 10.1016/j.drugalcdep.2013.05.007
69. Vilgis V, Sun L, Chen J, Silk TJ, Vance A. Global and local grey matter reductions in boys with ADHD combined type and ADHD inattentive type. *Psychiatry Res Neuroimag*. (2015) 254:119–26. doi: 10.1016/j.pscychresns.2016.06.008
70. Villemonex T, De Brito SA, Slama H, Kavec M, Balériaux D, Metens T, et al. Structural correlates of COMT Val158Met polymorphism in childhood ADHD: a voxel-based morphometry study. *World J Biol Psychiatry*. (2015) 16:199–203. doi: 10.1016/j.wjbp.2014.08.049
71. Wang L-J, Li S-C, Kuo H-C, Chou W-J, Lee M-J, Chou M-C, et al. Reduced striatal brain volumes in non-medicated adult ADHD and ADHD inattentive type. *Psychiatr Res*. (2016) 248:87–94. doi: 10.1016/j.psychres.2016.06.008
72. Zhao Y, Cui D, Lu W, Li H, Zhang H, Qiu J. Aberrant gray matter volumes and functional connectivity in adolescent patients with ADHD. *J Magn Reson Imaging: JMRI*. (2020) 51:719–26. doi: 10.1002/jmri2.26854
73. Chen CY, Huang MF, Yen JY, Chen CS, Liu GC, Yen CF, et al. Brain correlates of response inhibition in Internet gaming disorder. *Psychiatry Clin Neurosci*. (2015) 69:201–9. doi: 10.1111/pcn.12224
74. Chun JW, Choi J, Yoon KJ, Kee N, Jung Y-C. Impaired anterior insular activation during risky decision making in young adults with internet gaming disorder. *Neuroreport*. (2016) 27:605–9. doi: 10.1097/WNR.0000000000000584
75. Lee J, Lee S, Chun JW, Cho H, Kim D-y, Jung Y-C. Compromised prefrontal cognitive control over emotional interference in adolescents with internet gaming disorder. *Cyberpsychol Behav Soc Netw*. (2015) 18:661–8. doi: 10.1089/cyber.2015.0231
76. Lemenager T, Dieter J, Hill H, Koopmann A, Reinhard I, Sell M, et al. Neurobiological correlates of physical self-control and self-identification with avatars in addicted players of Massively Multiplayer Online Role-Playing Games (MMORPGs). *Addict Behav*. (2014) 39:1789–97. doi: 10.1016/j.addbeh.2014.07.017
77. Lin X, Zhou H, Dong G, Du X. Impaired risk evaluation in people with Internet gaming disorder: fMRI evidence from a probability discounting task. *Prog Neuro-Psychopharmacol Biol Psychiatry*. (2015) 56:142–8. doi: 10.1016/j.pnpbp.2014.08.016
78. Liu G-C, Yen J-Y, Chen C-Y, Chen C-S, Lin W-C, et al. Brain activation for response inhibition under gaming cue distraction in internet gaming disorder. *Kauhsiang J Med Sci*. (2014) 30:43–51. doi: 10.1016/j.kjms.2013.08.005
79. Liu L, Xue G, Potenza MN, Zhang J-T, Yao Y-W, Xia C-C, et al. Dissociable neural processes during risky decision-making in individuals with Internet-gaming disorder. *NeuroImage Clin*. (2017) 14:741–9. doi: 10.1016/j.nicl.2017.03.010
80. Lorenz RC, Krüger J-K, Neumann B, Schott BH, Kaufmann C, Heinz A, et al. A neural mechanism of the relationship between impulsivity and emotion dysregulation in patients with Internet gaming disorder. *Prog Neuro-Psychopharmacol Biol Psychiatry*. (2015) 44:282–91. doi: 10.1016/j.pnpbp.2015.07.017
81. Ma S-S, Worhunsky PD, Xu J-S, Yip SW, Zhou N, Zhang J-T, et al. Alterations in functional networks during cue-reactivity in Internet gaming disorder. *J Behav Addict*. (2019) 8:277–87. doi: 10.1556/2006.2019.23
82. Qi X, Gao P, Xie Y, Du G, Zhang Y, et al. Decreased modulation by the risk level on the brain activation during decision making in adolescents with internet gaming disorder. *Front Behav Neurosci*. (2015) 9:296. doi: 10.3389/fnbeh.2015.00296
83. Qi X, Yang Y, Dai S, Gao P, Du X, Zhang Y, et al. Effects of outcome on the covariance between risk level and brain activity in adolescents with internet gaming disorder. *NeuroImage Clin*. (2016) 12:845–51. doi: 10.1016/j.nicl.2016.10.024
84. Shin Y-B, Kim H, Kim S-J, Kim J-J. A neural mechanism of the relationship between impulsivity and emotion dysregulation in patients with Internet gaming disorder. *Addict Biol*. (2020) 25:621–32. doi: 10.1111/adb.12916
85. Wang Y, Wu L, Wang L, Zhang Y, Du X, Dong G. Impaired decision-making and impulse control in Internet gaming addicts: evidence from the comparison with recreational Internet game users. *Addict Biol*. (2017) 22:1610–21. doi: 10.1111/adb.12458
86. Zhang Y, Lin X, Zhou H, Xu J, Du X, Dong G. Brain activity toward gaming-related cues in internet gaming disorder during an addiction stroop task. *Front Psychol*. (2016) 7:714. doi: 10.3389/fpsyg.2016.00714
87. Zhang JT, Yao YW, Potenza MN, Xia CC, Lan J, Liu L, et al. Effects of craving behavioral intervention on neural substrates of cue-induced craving in Internet gaming disorder. *NeuroImage Clin*. (2016) 12:591–9. doi: 10.1016/j.nicl.2016.09.004
88. Cubillo A, Halarri R, Ecker C, Giampietro V, Taylor E, Rubia K. Reduced activation and inter-regional functional connectivity of adolescents with on-line game addiction. *Psychiatry Res*. (2012) 202:126–31. doi: 10.1016/j.psychres.2012.02.011
fronto-striatal networks in adults with childhood Attention-Deficit Hyperactivity Disorder (ADHD) and persisting symptoms during tasks of motor inhibition and cognitive switching. *J Psychiatr Res.* (2010) 44:629–39. doi: 10.1016/j.jpsychires.2009.11.016

100. Dibbets P, Evers E, Hurks P, Bakker K, Jolles J. Differential brain activation patterns in adult attention-deficit hyperactivity disorder (ADHD) associated with task switching. *Neuropsychology.* (2010) 24:413–23. doi: 10.1037/a0018997

101. Kooistra L, van der Meer J, Edwards J, Kaplan B, Crawford S, Goodyear B. Preliminary fMRI findings on the effects of event rate in adults with ADHD. *J Neural Transm.* (2010) 117:655–62. doi: 10.1007/s00702-010-0374-y

102. Passarotti A, Sweeney J, Pavuluri M. Neural correlates of response inhibition in pediatric bipolar disorder and attention deficit hyperactivity disorder. *Psychiatry Res.* (2010) 181:36–43. doi: 10.1016/j.psychres.2009.07.002

103. Cubillo A, Halari R, Giampietro V, Taylor E, Rubia K. Fronto-striatal underactivation during interference inhibition and attention allocation in grown up children with attention deficit/hyperactivity disorder and persistent symptoms. *Psychiatry Res.* (2011) 193:17–27. doi: 10.1016/j.psychres.2010.12.014

104. Rubia K, Halari R, Cubillo A, Smith A, Mohammad A, Brammer M, et al. Methylphenidate normalizes fronto-striatal underactivation during interference inhibition in medication-naive boys with attention-deficit hyperactivity disorder. *Neuropsychopharmacology.* (2011) 36:1575–86. doi: 10.1038/npp.2011.30

105. Rubia K, Halari R, Mohammad A, Taylor E, Brammer M. Methylphenidate normalizes frontocingulate underactivation during error processing in attention-deficit/hyperactivity disorder. *Biol Psychiatry.* (2011) 70:255–62. doi: 10.1016/j.biopsych.2011.04.018

106. Spinelli S, Joel S, Nelson T, Vasa R, Pekar J, Mostofsky S. Different neural patterns are associated with trials preceding inhibitory errors in children with and without attention-deficit/hyperactivity disorder. *J Am Acad Child Adolesc Psychiatry.* (2011) 50:705–15.e3. doi: 10.1016/j.jaac.2011.03.014

107. Ma J, Lei D, Jin X, Du X, Jiang F, Li F, et al. Compensatory brain activation patterns in adult attention-deficit/hyperactivity disorder subtypes: a simplified Go/No-go task. *J Neural Transmission.* (2012) 119:613–9. doi: 10.1007/s00702-011-0744-0

108. Sebastian A, Gerdes B, Feige B, Klöppel S, Lange T, Philipse A, et al. Neural correlates of interference inhibition, action withholding and action cancelation in adult ADHD. *Psychiatry Res.* (2012) 202:132–41. doi: 10.1016/j.psychres.2012.02.010

109. Sinhaichkin M, Glatthaar N, von Müller G, Prehn-Kristensen A, Siniatchkin M, et al. Emotional bias of cognitive control in adults with childhood ADHD and persistent symptoms. *Biol Psychiatry.* (2011) 70:255–62. doi: 10.1016/j.biopsych.2011.04.018

110. Chantiluke K, Barrett B, Feige B, Klöppel S, Lange T, Philipse A, et al. Adult patients with ADHD differ from healthy controls in implicit, but not explicit, emotion regulation. *J Psychiatry Neurosci.* (2019) 44:340–9. doi: 10.1503/jpn.180139

111. Mehtani A, Owrey J, Thiel CM, Brandes M, Lam AP, Philipse A. Effects of acute aerobic exercise on response inhibition in adult patients with ADHD. *Brain Imaging Behav.* (2019) 13:876–86. doi: 10.1007/s11682-019-9454-1

112. Thornton S, Bray S, Langevin L, Dewey D. Functional brain correlates of motor response inhibition in children with developmental coordination disorder and attention deficit/hyperactivity disorder. *Hum. Movement Sci.* (2018) 59:134–42. doi: 10.1016/j.humov.2018.03.022

113. Materna L, Wisner CD, Shushakova A, Trieloff J, Weber N, Engell A, et al. Emotional bias of cognitive control in adults with childhood ADHD. *Biol Psychiatry.* (2011) 70:255–62. doi: 10.1016/j.biopsych.2011.04.018

114. Pretus C, Picado M, Ramos-Quiroga A, Carmona S, Richarte V, Fauquet J, et al. Presence of distractor improves time estimation performance in an adult ADHD sample. *J Attent Disord.* (2020) 24:1530–7. doi: 10.1177/1087054716648876

115. Goodkind M, Eickhoff SB, Oathes DJ, Jiang Y, Chang A, Jones-Hagata LR, et al. Identification of a common neurobiological substrate for mental illness. *JAMA Psychiatry.* (2015) 72:305–15. doi: 10.1001/jamapsychiatry.2014.2206

116. Sutherland MT, McHugh MJ, Parikh V, Stein EA. Resting state functional connectivity in addiction: Lessons learned and a road ahead. *Neuroimage.* (2012) 62:2281–95. doi: 10.1016/j.neuroimage.2012.01.117

117. Meng Y, Deng W, Wang H, Guo W, Li T. The prefrontal dysfunction in individuals with Internet gaming disorder: a meta-analysis of functional magnetic resonance imaging studies. *Addict Biol.* (2015) 20:799–808. doi: 10.1111/adb.12154

118. Etkin A, Egner T, Kalisch R. Emotional processing in anterior cingulate and medial prefrontal cortex. *Trends Cogn Sci.* (2011) 15:85–93. doi: 10.1016/j.tics.2011.10.004

119. Kennerly SW, Walton ME, Behrens TE, Buckley MJ, Rushworth MF. Optimal decision making and the anterior cingulate cortex. *Nat Neurosci.* (2006) 9:940–7. doi: 10.1038/nn1724

120. Tegelbecker J, Kanowski M, Krauel K, Haynes JD, Breitling C, Fechtner HH, et al. Orbitofrontal signaling of future reward is associated with hyperactivity in attention-deficit/hyperactivity disorder. *J Neurosci.* (2018) 38:6779–86. doi: 10.1523/jneurosci.0411-18.2018

121. Volkow ND, Wang GJ, Fowler JS, Ding YS. Imaging the effects of marijuana use in young adults examined using fMRI of a Go/NoGo task. *Brain Imaging Behav.* (2016) 10:761–71. doi: 10.1007/s11868-015-9438-9
for attention-deficit/hyperactivity disorder. *Biol Psychiatry.* (2005) 57:1410–5. doi: 10.1016/j.biopsych.2004.11.006

135. Chikama M, McFarland NR, Amaral DG, Haber SN. Insular cortical projections to functional regions of the striatum correlate with cortical cytoarchitectonic organization in the primate. *J Neurosci.* (1997) 17:9686–705. doi: 10.1523/jneurosci.17-24-09686.1997

136. Wang M, Dong H, Zheng H, Du X, Dong GH. Inhibitory neuromodulation of the putamen to the prefrontal cortex in Internet gaming disorder: How addiction impairs executive control. *J Behav Addict.* (2020) 9:312–24. doi: 10.1556/2006.2020.00029

137. Cavanna AE, Trimble MR. The precuneus: a review of its functional anatomy and behavioural correlates. *Brain.* (2006) 129:564–83. doi: 10.1093/brain/awl004

138. Zhang W, Wang J, Fan L, Zhang Y, Fox PT, Eickhoff SB, et al. Functional organization of the fusiform gyrus revealed with connectivity profiles. *Hum Brain Mapp.* (2016) 37:3003–16. doi: 10.1002/hbm.23222

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Gao, Zhang, Yang, Wen, Huang, Zheng, Wang, Wei, Cheng, Han and Zhang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.