SUPPLEMENTARY MATERIAL

Pseudolycorine-\textit{N}-oxide, a new \textit{N}-oxide from \textit{Narcissus tazetta}

Deepali Katochab*, Dharmesh Kumarc, Yogendra S Padwadbc, Bikram Singhab*, Upendra Sharmaab*

aNatural Product Chemistry and Process Development Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India

bAcademy of Scientific & Innovative Research, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India

cDepartment of Food and Nutraceuticals, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India

ABSTRACT

A new \textit{N}-oxide, Pseudolycorine \textit{N}-oxide (1) was characterised along with eleven known alkaloids homolycorine (2), \textit{O}-methylmaritidine (3), 8-\textit{O}-demethylhomolycorine (4), homolycorine \textit{N}-oxide (5), lycorine (6), narciclasine (7), pseudolycorine (8), ungeremine (9), 8-\textit{O}-demethylmaritidine (10), zefbetaine (11) and lycorine \textit{N}-oxide (12), from \textit{Narcissus tazetta}. Their structures were established on the basis of spectroscopic data analysis. The extract, fractions and isolated compounds were screened for \textit{in vitro} cytotoxicity against two human cancer cell lines, human cervical cancer (SiHa) and human epidermoid carcinoma (KB) cells. The study demonstrated the cytotoxic potential of extract and its chloroform and \textit{n}-butanol fractions. Further, the results revealed the bioactive potential of narciclasine, pseudolycorine and homolycorine alkaloids.

*Correspondence:Ms. Deepali Katoch, Dr. Bikram Singh, Dr. Upendra Sharma

Natural Product Chemistry and Process Development Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh-176061, INDIA
Table S1: 1H (600 MHz) and 13C (150 MHz) NMR data for Compound 1 (δ in ppm) in MeOD-d_4 (J in Hz).

Table S2: IC$_{50}$ values of extract, fractions and alkaloids against KB and SiHa cell lines in μM.

Figure S1. The 1H-1H COSY (---) and key HMBC correlations (H→C) of compound(1).

Figure S2. Structures of the isolated alkaloids.

Figure S3: Growth inhibition by extract and fractions using SRB assay A. *In vitro* cytotoxicity against KB cell lines and B. *In vitro* cytotoxicity against SiHa cell lines

Figure S4: Growth inhibition by Amaryllidaceae alkaloids using SRB assay A. *In vitro* cytotoxicity against KB cell lines and B. *In vitro* cytotoxicity against SiHa cell lines

Figure S5. HRMS spectra for compound 1

Figure S6. 1H NMR spectrum for compound 1 in MeOD-d_4

Figure S7. 1H NMR spectrum expansion for compound 1 in MeOD-d_4

Figure S8. 13C NMR spectrum for compound 1 in MeOD-d_4

Figure S9. Expansion of 13C NMR spectrum for compound 1 in MeOD-d_4

Figure S10. DEPT NMR spectrum for compound 1 in MeOD-d_4

Figure S11. Expansion of DEPT NMR spectrum for compound 1 in MeOD-d_4

Figure S12. HMQC spectrum for compound 1 in MeOD-d_4

Figure S13. Expansion of the HMQC spectrum for compound 1

Figure S14. HMBC spectrum for compound 1 in MeOD-d_4

Figure S15. Expansion of the HMBC spectrum for compound 1

Figure S16. Expansion of the HMBC spectrum for compound 1 (continued)

Figure S17. 1H-1H COSY spectrum for compound 1 in MeOD-d_4

Figure S18. Expansion of 1H-1H COSY spectrum for compound 1

Figure S19. Expansion of 1H-1H COSY spectrum for compound 1

Figure S20. 1H-1H NOESY spectrum for compound 1 in MeOD-d_4

Figure S21. Expansion for 1H-1H NOESY spectrum for compound 1
Table S1: 1H (600 MHz) and 13C (150 MHz) NMR data for Compound 1 (δ in ppm) in MeOD-d_4 (J in Hz).

Position	δ_H (ppm)	δ_C (ppm)	DEPT
1	4.47, brs	71.1	CH
2	4.04, t ($J = 1.8$)	72.2	CH
3	5.63, brs	122.6	CH
4	-	138.0	C
4a	3.93, d ($J = 11.4$)	72.9	CH
6a	4.44, d ($J = 14.6$)	68.6	CH$_2$
6β	4.65, d ($J = 14.5$)	-	C
6a	-	123.3	C
7	6.63, s	112.0	CH
8	-	148.3	C
9	-	147.2	C
10	6.79, s	112.5	CH
10a	-	127.0	C
10b	3.21, d*($J = 11.8$)	35.3	CH
11α	2.85-2.91, m	27.2	CH$_2$
11β	2.68-2.72, m	-	C
12α	3.75-3.78, m	69.1	CH$_2$
12β	3.64-3.69, m	-	C

*overlapped signals

Table S2: IC$_{50}$ values of extract, fractions and alkaloids against KB and SiHa cells.

Extract	IC$_{50}$ value(µg/mL)		
		SiHa	KB
Extract		131.16	>200
Fractions			
n-hexane		>200	>200
Chloroform		85.54	88.86
n-butanol		<25	>200
Water		>200	>200
Alkaloids	IC$_{50}$ value(µM)		
Pseudolycorine N-oxide (1)	>100	>100	
Homolycorine (2)	>100	<10	
O-methyl maritidine (3)	>100	>100	
8-O-demethylhomolycorine (4)	>100	>100	
Homolycorine N-oxide (5)	>100	>100	
Narcicasine (7)	<10	<10	
Pseudolycorine (8)	124.24	<10	
8-O-demethylmaritidine (10)	38.4	>100	
Zerbetaine (11)	>100	>100	
Lycorine N-oxide (12)	>100	>100	

SI3
Figure S1. The 1H-1H COSY (-----) and key HMBC correlations (H→C) of compound(1).

Figure S2. Structures of the isolated alkaloids (2-12).
Figure S3: Growth inhibition by extract and fractions using SRB assay. A. *In vitro* cytotoxicity against SiHa cells. B. *In vitro* cytotoxicity against KB cells.
Figure S4: Growth inhibition by Amaryllidaceae alkaloids using SRB assay. A. *In vitro* cytotoxicity against SiHa cells and B. *In vitro* cytotoxicity against KB cells.
Figure S5. HRMS spectra for compound 1

Figure S6. 1H NMR spectrum for compound 1 in MeOD-d_4

Figure S7. 1H NMR spectrum expansion for compound 1 in MeOD-d_4
Figure S8. 13C NMR spectrum for compound 1 in MeOD-d_4

Figure S9. Expansion of 13C NMR spectrum for compound 1 in MeOD-d_4
Figure S10. DEPT NMR spectrum for compound 1 in MeOD-\textit{d}_4

Figure S11. Expansion of DEPT NMR spectrum for compound 1 in MeOD-\textit{d}_4
Figure S12. HMQC spectrum for compound 1 in MeOD-d_4
Figure S13. Expansion of the HMQC spectrum for compound 1
Figure S14. HMBC spectrum for compound 1 in MeOD-d_4
Figure S15. Expansion of the HMBC spectrum for compound 1
Figure S16. Expansion of the HMBC spectrum for compound 1 (continued)
Figure S17. 1H-1H COSY spectrum for compound 1 in MeOD-d_4
Figure S18. Expansion of 1H-1H COSY spectrum for compound 1
Figure S19. Expansion of 1H-1H COSY spectrum for compound 1
Figure S20. 1H-1H NOESY spectrum for compound 1 in MeOD-d_4
Figure S21. Expansion for 1H-1H NOESY spectrum for compound 1