Knowledge and awareness about airborne pathogens and its prevention among the general public

Ashritha M¹, Geetha R V², Jayalakshmi Somasundaram³

¹Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
²Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
³White lab, Material Research Centre, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India

Article History:
Received on: 23 Jul 2020
Revised on: 25 Aug 2020
Accepted on: 28 Aug 2020

Keywords:
Airborne disease, Respiratory disease, Infection protection, Susceptible, Pandemic

ABSTRACT
The airborne disease is mainly caused by the pathogens, which spread through respiratory droplets while coughing, sneezing or talking. Infection protection and control measures are taken to prevent the possible spread of coronavirus, which also spreads through respiratory droplets. Discharged microbes are suspended in the air as dust particles and even in the form of droplets. The Middle East respiratory syndrome is caused by coronavirus wherein the health workers are at a higher risk. Hence, awareness must be created in order to reduce a number of cases. The preventive measures are mainly taken in health care as patients are susceptible to diseases. It is essential for all the people to become aware and take steps according. The survey was distributed online to around 100 participants of various places of Tamil Nadu regarding the awareness of airborne pathogens. From this above study, it could be noticed that around 85% of the people are aware of the airborne pathogen whereas 15% of the people are not aware of. 64% of people have a good knowledge of the symptoms of any type of airborne disease. Regarding the protective measures that must be taken, about 65% of the people are conscious of doing it. The study concludes that there is awareness of airborne pathogens and its prevention among the general public.

INTRODUCTION
Airborne diseases are caused by pathogenic microbes small enough to be discharged from an infected person via coughing, sneezing, close personal contact or aerosolization of the microbe. The discharged microbes remain suspended in the air on dust particles, respiratory and water droplets. These airborne pathogens are responsible for causing these types of diseases. Any type of airborne disease is caused by the pathogen that would get transmitted through air at a particular time over a distance (Prevention and Korean Society of Infectious Diseases and Korea Centers for Disease Control and Prevention, 2020). These pathogens could be viruses, bacteria, or fungi which can spread through breathing, talking, coughing, sneezing, dust particles, spraying of liquids that promote aerosol particles or droplets (Ai et al., 2019). The airborne transmission mainly occurs through droplet nuclei.
which are usually of size greater than 5 micrometres. New pathogens are emerging every day, which pose a significant threat in treating hospitalised patients (Ashwin and Muralidharan, 2015; Renuka and Muralidharan, 2017). Recent researches have revealed that inhaling any kind of airborne antibiotic resistance gene can cause severe lung problems and damage to our immune system (Girija et al., 2019a). The airborne particles are generally dry. Air pollution plays a significant role in promoting airborne diseases which increases the risk of asthma in people (Rosa et al., 2012).

The airborne disease mainly focuses on violent expiratory events (Pan et al., 2017). Aerosol transmission of COVID is plausible because the virus can be viable and infectious in aerosol for hours and even on the surfaces for an extended period of time (Nicas et al., 2005). In general, it could be noticed that these viral infections mostly spread by direct contact such as touching an infected person or surface which is being contaminated. (Booth et al., 2005). The procedure which happens during transmission where the transport of infection loaded particles are present in the air (Marickar et al., 2014). When the droplets are expired, the liquid contents present slowly start to evaporate, wherein these droplets become so small that transport by air current affects them more than gravitation (Twu et al., 2003). These small droplets are free to travel as they contain viral content, spread along meters over meters from where they originated (Morawska et al., 2009).
Figure 5: 52% of the people are aware of the previous airborne outbreak, while 48% of them are not aware.

Figure 6: 64% of the people have responded that cold, fever, running nose are the symptoms of any airborne diseases while 21% of them feel that common cold is the only symptom seen.

Figure 7: 84% of the participants have opted for airborne being the riskier mode of transmission when compared to the modes while 16% of the people disagreed.

Figure 8: 64% of the people are aware enough to cover their mouth with face masks and also maintain distance from people having those symptoms.

Few of the precautions that could be taken against these airborne diseases include increased ventilation rate, using natural ventilation, avoiding air recirculation, staying away from another person's direct airflow and minimizing the number of people sharing the same environment (Qian and Zheng, 2018). There is a general lack of awareness on vaccine among the general public towards the airborne pathogens (Pratha and Geetha, 2017). The precautionary measures that are generally taken in the health care department in order to eliminate the airborne pathogens through expiratory aerosols, dispersion, heat and mass transfer, modelling to airflow, modelling aerosol dispersion, viability and infectivity measurements (Aliabadi et al., 2011). Preventive measures need to be taken by washing hands properly, maintaining health during any type of pandemic (Shahana and Muralidharan, 2016). The aim of this study is to assess the knowledge on airborne pathogens and its prevention among the general public.

MATERIALS AND METHODS

A cross-sectional study survey research approach using the electronic distribution of a questionnaire was made, and the sample size was taken to be 100. This study was approved by the scientific board of Saveetha University. This was the best approach to do the collection of the data as a large number of people were involved, and the questionnaire contained questions regarding the awareness of COVID-19, any kind of airborne disease, awareness on airborne pathogens and its transmission, preventive measures taken by them. The survey included around 20 questions, and it was distributed among the general public of Tamil Nadu and data was collected and analysed using SPSS software in which chi-square test and Pearson correlation analysis were also used, with a p-value less than 0.05 to be statistically significant.
Figure 9: 45% of the people would consult a medical professional as well avoid contact with other people.

Figure 10: 85% of the people have become aware of dealing with these kinds of situations in future.

RESULTS AND DISCUSSION

The study produces the data which are represented through pie charts. The following pie charts are the results produced from the survey questions based on the participants’ understanding. These produce the actual percentage in which people have responded, and that could help in deriving at results. The study discusses awareness of airborne pathogens and the diseases caused by it.

Figure 1 reveals that about 85% of the participants have enough knowledge, whereas 15% of the people lack knowledge towards airborne pathogens.

As we know, airborne diseases are illnesses that spread by tiny pathogens that are present in the air (Vaishali and Geetha, 2018). This is a high rate of awareness of airborne pathogens due to the corona pandemic. It has made people able to face any such situation in the future while a small proportion of people yet to gain knowledge.

Figure 2 of this study shows that 31% of the people feel that airborne diseases could be bronchitis, pneumonia, COVID whereas 26% of them believe entirely that COVID is the only airborne disease among the options that were available.

Around 13% of them are not aware of airborne diseases. Some of the airborne diseases are influenza, bronchitis, pneumonia, common cold, varicella-zoster, mumps, measles, whooping cough (pertussis) etc. (M et al., 2019; Girija et al., 2019b). These particles are small enough, which have the capacity to cling to the air. It hangs on the dust particles, moisture droplets or picked up through breathing. There is also a possibility of these pathogens to be spread through mucus or phlegm. (Girija et al., 2019a; Priyadharsini et al., 2018a).

Figure 3 represents the role of air pollution, and around 85% of them agreed while 7% of them disagreed, and 8% of people are not aware. Air pollution plays an effective in causing airborne disease like asthma which is most common among people.

Various sources of these particulate matter result in the low quality of human health. The effect of air pollution that leads to pneumonia kills many people every year (Paramasivam et al., 2020).

This control of air pollution is required to decrease the number of cases affected by the airborne disease. Adverse effects of these air pollutants have resulted in multiple respiratory diseases like chronic obstructive pulmonary disease, etc. (Gordon et al., 2014). Figure 4 depicts sources of airborne diseases where 77% of the participants have responded that it could be transmitted from person to person, 20% of them opted for contaminated objects while the rest felt that both transmissions from person to person as well as contaminated objects could be sources of a type of airborne diseases. There are eight primary sources for the air-
borne diseases to get transmitted. Those include pets, plants, plumbing systems, heating, ventilation air conditioning systems, dust resuspension and outdoor environment (Kelley and Gilbert, 2013).

Figure 4 where, 77% of the participants have responded that it could be transmitted from person to person, 20% of them opted for contaminated objects.

The most common source could be an outdoor environment where people are exposed to the pathogens present in the air. Figure 5 reveals that 52% of the people are aware of the previous airborne outbreak, while 48% of them are not aware.

Effect of airborne transmission due to human movement in an aeroplane was one of the outbreaks which made the passengers under the risk to travel in an aeroplane (Mangili and Gendreau, 2005). Figure 6 reveals that about 64% of the people have responded that cold, fever, running nose are the symptoms of any airborne diseases while 21% of them feel that common cold is the only symptom seen.

Most of the common symptoms that could be seen in any type of the airborne disease are cough, sneezing, congestion and body aches. Figure 7 reveals that 84% of the participants have opted for airborne being the riskier mode of transmission when compared to the modes, while 16% of the people disagreed. The airborne diseases are considered to be a significant threat as the pathogens have an efficient route of spread and gain access to many people (Priyadharsini et al., 2018a,b; Shahzan et al., 2019). Figure 8 provides the responses obtained from people regarding the preventive measures and around 64% of the people are aware enough to cover their mouth with face masks and also maintain distance from people having those symptoms. In order to control the spread of these airborne diseases, negative pressure is employed in health (Jensen et al., 1999).

Preventive measures must be taken to control the rate of spread of these airborne diseases. In the case of flu, antiviral drugs can be given, for infants suffering from whooping cough, antibiotics are prescribed. Figure 9 reveals that 45% of the peo-
ple would consult a medical professional as well as avoid contact with other people while 24% of the people responded that they would only avoid close contact with other people. And shows 24% of the people responded that they would only avoid close contact with other people.

Figure 10 represents that 85% of the people have become aware of dealing with these kinds of situations in future, whereas still, 13% of them are not aware. The general precautions that could be taken are wearing masks, maintaining hygiene and staying away from people who are showing the symptoms of any type of airborne disease.

Figure 11 shows the Red colour denotes the awareness that people have and blue colour denotes the people who are not aware of. Out of 84.15% of awareness on airborne pathogens constituted, 32.67% of people between the age group 18-25 years, 23.76% between 26-40 years, 22.77% of the people between 41-60 years and 4.95% of the people above 60 years of age. People between the age group of 18-25 years are more awareness among the rest of the age groups. However, there is a significant difference between the two groups. [p value-0.049 (p<0.05)-significant]. The X-axis represents age, and Y-axis represents the number of people.

Figure 12 shows For the sources of air pollution, a maximum number of people have opted for objects (blue colour), person to person (red colour) while others (green, yellow) have responded as it could be due to coughing, sneezing. Chi-square test was done, and the association was found not to be statistically significant. [p value-0.536 (p>0.05)-not significant]. The X-axis represents age, and Y-axis represents sources of airborne diseases.

Figure 13 shows More people have agreed (blue colour), few disagreed (red colour), while others are not aware (green colour) that air pollution plays a role in airborne diseases. Chi-square test was done, and the association between the two groups was found to be statistically insignificant. [p value-0.420 (p>0.05)-not significant]. The X-axis represents the age, and Y-axis represents the awareness of the role of air pollution in airborne diseases.

Figure 14 shows Blue denotes the percentage they are aware of, red denotes that they disagree with such previous outbreaks and green represents that people are not aware of any previous airborne disease outbreak. Chi-square test was done, and the association was found to be statistically insignificant. [p value-0.186 (p>0.05)-not significant]. The X-axis represents the age, and Y-axis represents the awareness of the previous airborne outbreak.

Figure 15 shows More people have opted for all of these symptoms which includes common cold, fever, running nose (orange), few for the common cold (blue), others for fever (red) and running nose (green). Out of 63.36% of the people who are aware on all the symptoms of an airborne disease which constitutes 30.69% of them between age group 18-25 years, 16.83% of the people are between 26-40 years, 11.88% of the people are between the age group 41-60 years and 3.96% of them are above 60 years of age. People between the age group 18-25 years are more aware than others. Chi-square test was done, and the association was found to be statistically significant [p value-0.036 (p<0.05)-significant]. The X-axis represents the age, and Y-axis represents the awareness of the symptoms of any type of airborne diseases.

CONCLUSIONS

The study concludes that awareness of airborne pathogens and its prevention among the general public after the corona pandemic is considerably at a higher rate. Participants are even aware of the symptoms that are produced by any type of airborne pathogen. Hence, they would be able to handle any kind of situation in future if they are affected by any type of airborne disease. It is high time that people are aware and necessary to take preventive mea-
sures to prevent the further spread of any airborne disease.

Funding Support
The authors declare that they have no funding support for this study.

Conflict of Interest
The authors declare that they have no conflict of interest.

REFERENCES

Ai, Z. T., Huang, T., Melikov, A. K. 2019. Airborne transmission of exhaled droplet nuclei between occupants in a room with horizontal air distribution. *Building and Environment*, 163:106328–106328.

Aliabadi, A. A., Rogak, S. N., Bartlett, K. H., Green, S. I. 2011. Preventing Airborne Disease Transmission: Review of Methods for Ventilation Design in Health Care Facilities. *Advances in Preventive Medicine*, 2011:1–21.

Ashwin, K. S., Muralidharan, N. P. 2015. Vancomycin-resistant enterococcus (VRE) vs Methicillin-resistant Staphylococcus Aureus (MRSA). *Indian Journal of Medical Microbiology*, 33(5):166–166.

Booth, T. F., Kournikakis, B., Bastien, N., Ho, J., Kobasa, D., Stadnyk, L., Li, Y., Spence, M., Paton, S., Henry, B., Mederski, B., White, D., Low, D. E., McGeer, A., Simor, A., Vearncombe, M., Downey, J., Jamieson, F. B., Tang, P., Plummer, F. 2005. Detection of Airborne Severe Acute Respiratory Syndrome (SARS) Coronavirus and Environmental Contamination in SARS Outbreak Units. *The Journal of Infectious Diseases*, 191(9):1472–1477.

Bourouiba, L., Dehandschoewercker, E., Bush, J. W. M. 2014. Violent expiratory events: on coughing and sneezing. *Journal of Fluid Mechanics*, 745:537–563.

Duguid, J. P. 1946. The size and the duration of air-carriage of respiratory droplets and droplet-nuclei. *Epidemiology and Infection*, 44(6):471–479.

Girija, A. S., Priyadharsini, J. V., Paramasivam, A. 2019a. Plasmid-encoded resistance to trimethoprim/sulfamethoxazole mediated by dfrA1, dfrA5, sul1 and sul2 among Acinetobacter baumannii isolated from urine samples of patients with severe urinary tract infection. *Journal of Global Antimicrobial Resistance*, 17:145–146.

Girija, S., Priyadharsini, J. V., Paramasivam, A. 2019b. Prevalence of carbapenem-hydrolyzing OXA-type β-lactamases among Acinetobacter baumannii in patients with severe urinary tract infection. *Acta Microbiologica et Immunologica Hungarica*, pages 1–7.

Gordon, S. B., Bruce, N. G., Grigg, J., Hibberd, P. L., Kurmi, O. P., Lam, H., Martin, W. J. 2014. Respiratory risks from household air pollution in low and middle-income countries. *The Lancet Respiratory Medicine*, pages 70168–70175.

Jensen, P., Burroughs, G., Hayden, C., Hughes, R. 1999. Use of Smoke Tubes for the Evaluation of Negative Pressure and Airflow Patterns in Health Care Facilities. *AIHce 1996 - Health Care Industries Papers*, 341:341–341.

Kelley, S. T., Gilbert, J. A. 2013. Studying the microbiology of the indoor environment. *Genome Biology*, 14(2):202–202.

M, M. A., RV, G., Thangavelu, L. 2019. Evaluation of anti-inflammatory action of Laurus nobilis-an in vitro study of anti-inflammatory action of Laurus nobilis-an in vitro study. *International Journal of Research in Pharmaceutical Sciences*, 10(2):1209–1213.

Mangili, A., Gendreau, M. A. 2005. Transmission of infectious diseases during commercial air travel. *The Lancet*, 365(9463):989–996.

Marickar, R. F., Geetha, R. V., Neelakantan, P. 2014. Efficacy of new and novel intracanal medicaments against Enterococcus faecalis. *Journal of Clinical Pediatric Dentistry*.

Morawska, L., Johnson, G. R., Ristovski, Z. D., Hargreaves, M., Mengersen, K., Corbett, S., Chao, C. Y. H., Li, Y., Katoshevski, D. 2009. Size distribution and sites of origin of droplets expelled from the human respiratory tract during expiratory activities. *Journal of Aerosol Science*, 40(3):256–269.

Nicas, M., Nazaroff, W. W., Hubbard, A. 2005. Toward Understanding the Risk of Secondary Airborne Infection: Emission of Respirable Pathogens. *Journal of Occupational and Environmental Hygiene*, 2(3):143–154.

Olsen, S. J., Chang, H. L., Cheung, T. Y., Tang, Y., F, A., Fisk, Y., Ooi, T. L., P, S., Dowell, L., F. S. 2003. Transmission of the Severe Acute Respiratory Syndrome on Aircraft. *New England Journal of Medicine*, 349(25):2416–2422.

Pan, M., Bonny, T. S., Loeb, J., Jiang, X., Lednicky, J. A., Eiguren-Fernandez, A., Hering, S., Fan, Z. H., Wu, C.-Y. 2017. Collection of Viable Aerosolized Influenza Virus and Other Respiratory Viruses in a Student Health Care Center through Water-Based Condensation Growth. *mSphere*, 2(5).

Paramasivam, A., Priyadharsini, J. V., Raghunandhakumar, S. 2020. N6-adenosine methylation (m6A): a promising new molecular target in...
hypertension and cardiovascular diseases. *Hypertension Research*, 43(2):153–154.

Peiris, J. S. M., Guan, Y., Yuen, K. Y. 2004. Severe acute respiratory syndrome. *Nature Medicine*, 10(S12):588–597.

Pratha, A. A., Geetha, R. V. 2017. Awareness on Hepatitis-B vaccination among dental students-A Questionnaire Survey. *Research Journal of Pharmacy and Technology*, 10(5):1360–1360.

Prevention and Korean Society of Infectious Diseases and Korea Centers for Disease Control and Prevention 2020. Analysis on 54 Mortality Cases of Coronavirus Disease 2019 in the Republic of Korea. *Journal of Korean Medical Science*.

Priyadharsini, J. V., Girija, A. S. S., Paramasivam, A. 2018a. An insight into the emergence of Acinetobacter baumannii as an oro-dental pathogen and its drug resistance gene profile. *An in silico approach*.

Priyadharsini, J. V., Girija, A. S. S., Paramasivam, A. 2018b. In silico analysis of virulence genes in an emerging dental pathogen A. baumannii and related species. *Archives of Oral Biology*, 94:93–98.

Qian, H., Zheng, X. 2018. Ventilation control for airborne transmission of human exhaled bioaerosols in buildings. *Journal of Thoracic Disease*, 10(59):2295–2304.

Renuka, S., Muralidharan, N. P. 2017. Comparison in the benefits of herbal mouthwashes with chlorhexidine mouthwash: A review. *Asian Journal of Pharmaceutical and Clinical Research*.

Rosa, G. L., Fratini, M., della Libera, S., Iaconelli, M., Muscillo, M. 2012. Emerging and potentially emerging viruses in water environments. *Annali dell’Istituto Superiore di Sanità*, 48(4):397–406.

Sabariego, S., de la Guardia, C. D., Alba, F. 2000. The effect of meteorological factors on the daily variation of airborne fungal spores in Granada (southern Spain). *International Journal of Biometeorology*, 44(1):1–5.

Shahana, R. Y., Muralidharan, N. P. 2016. Efficacy of mouth rinse in maintaining oral health of patients attending orthodontic clinics. *Research Journal of Pharmacy and Technology*, 9(11):1991–1991.

Shahzan, M. S., Girija, A. S. S., Priyadharsini, J. V. 2019. A computational study targeting the mutated L321F of ERG11 gene in C. albicans, associated with fluconazole resistance with bioactive compounds from Acacia nilotica. *Journal de Mycologie Médicale*, 29(4):303–309.

Stadnytskyi, V., Bax, C. E., Bax, A., Anfinrud, P. 2020. The airborne lifetime of small speech droplets and their potential importance in SARS-CoV-2 transmission. *Proceedings of the National Academy of Sciences*, 117(22):11875–11877.

Twu, S. J., Chen, T. J., Chen, C. J., Olsen, S. J., Lee, L. T., Fisk, T., and, Y. C. W. 2003. Control measures for the severe acute respiratory syndrome (SARS) in Taiwan. *Emerging infectious diseases*, 9(6).

Vaishali, M., Geetha, R. V. 2018. Antibacterial activity of Orange peel oil on Streptococcus mutans and Enterococcus-An In-vitro study. *Research Journal of Pharmacy and Technology*, 11(2):513–513.

Wells, W. F. 1948. On the mechanics of droplet nuclei infection. *American Journal of Epidemiology*, 47(1):1–10.