Torus embeddings and
algebraic intersection complexes

Masa-Nori ISHIDA∗

Mathematical Institute, Faculty of Science
Tohoku University, Sendai 980, Japan

March 19, 2022

Introduction

In [GM], Goreskey and MacPherson defined and constructed intersection complexes
for topological pseudomanifolds. The complexes are defined in the derived category
of sheaves of modules over a constant ring sheaf. Since analytic spaces are of this
category, any algebraic variety defined over \mathbb{C} has an intersection complex for each
perversity.

The purpose of this paper is to give an algebraic description of the intersection
complex of a toric variety. Namely, we describe it as a finite complex of coherent
sheaves whose coboundary map is a differential operator of order one.

Let Z_h be the complete toric variety associated to a complete fan Δ. For each
$\sigma \in \Delta$, let $X(\sigma)_h$ be the associated closed subvariety of Z_h. For each perversity \mathbf{p},

∗Supported in part by a Grant under The Monbusho International Scientific Research Program:
04044081
we construct a bicomplex \((\text{ic}_p(Z_h)^{\bullet \bullet}, d_1, d_2)\) with the following properties.

(1) \(\text{ic}_p(Z_h)^{i,j} = \{0\}\) for \((i, j) \not\in [0, r] \times [-r, 0]\).

(2) Each \(\text{ic}_p(Z_h)^{i,j}\) is a direct sum for \(\sigma \in \Delta\) of free \(\mathcal{O}_{X(\sigma)_h}\)-modules of finite rank.

(3) \(d_1\) is an \(\mathcal{O}_{Z_h}\)-homomorphism and \(d_2\) is a differential operator of order one.

(4) The associated single complex \(\text{ic}_p(Z_h)^\bullet\) is quasi-isomorphic to the \(r\)-times dimension shifts to the right of the intersection complex defined in [GM2]. In other words, our complex belongs to “Beilinson-Bernstein-Deligne-Gabber scheme” (cf. [GM2, 2.3,(d)] and [BBD, 2.1]).

In §1, we introduce an abelian category \(\text{GM}(A(\sigma))\) of finitely generated graded \(A(\sigma)\)-modules, where \(A(\sigma)\) is the exterior algebra of the \(\mathbb{Q}\)-vector space \(N(\sigma)_\mathbb{Q}\) defined by a cone \(\sigma\).

In §2, we define an additive category \(\text{GEM}(\Delta)\) for a finite fan \(\Delta\). Each object \(L\) of this category is a collection \((L(\sigma) ; \sigma \in \Delta)\) of \(L(\sigma) \in \text{GM}(A(\sigma))\). We define a dualizing functor \(D\) on the category \(\text{CGEM}(\Delta)\) of finite complexes in \(\text{GEM}(\Delta)\).

A perversity \(p\) on \(\Delta\) is defined to be a \(\mathbb{Z}\)-valued map on \(\Delta \setminus \{0\}\). The intersection complex \(\text{ic}_p(\Delta)^\bullet\) as an object of \(\text{CGEM}(\Delta)\) is defined and constructed in §2.

In §3, we work on the toric variety \(Z(\Delta)\) associated to the fan \(\Delta\). For each \(L^\bullet \in \text{CGEM}(\Delta)\), we define a finite bicomplex \(\Lambda_{Z(\Delta)}(L)^{\bullet \bullet}\) of coherent \(\mathcal{O}_{Z(\Delta)}\)-modules whose second coboundary map is a differential operator of order one.

We consider the normal analytic space \(Z_h := Z(\Delta)_h\) associated to the toric variety \(Z(\Delta)\) in §4. The bicomplex \(\text{ic}_p(Z_h)^{\bullet \bullet}\) stated above is defined to be the bicomplex \(\Lambda_{Z(\Delta)_h}(\text{ic}_p(\Delta))^{\bullet \bullet}\) on this analytic space.

When \(\Delta\) is a complete fan, we show that the intersection cohomologies are described in terms of the complex \(\text{ic}_p(\Delta)^\bullet\) in \(\text{CGEM}(\Delta)\).

The middle perversity \(m\) is defined by \(m(\sigma) := 0\) for all \(\sigma \in \Delta \setminus \{0\}\). In [E], we will discuss on \(\text{ic}_m(\Delta)^\bullet\) and prove the decomposition theorem for a barycentric
subdivision of the fan.

Notation

We denote by \mathbb{Z} the ring of rational integers and by \mathbb{Q}, \mathbb{R} and \mathbb{C} the fields of rational numbers, real numbers and complex numbers, respectively.

For a free \mathbb{Z}-module F of finite rank, we denote $F_\mathbb{Q} := F \otimes \mathbb{Q}$ and $F_\mathbb{R} := F \otimes \mathbb{R}$.

We denote a complex E^\bullet of modules or of sheaves of modules simply by E^\bullet when the substitution of the dot by an integer is not suitable. In particular, we prefer to write $G(E)^\bullet$ rather than $G(E^\bullet)$, if G is a functor between categories of complexes. However, we left the dot in representing the cohomologies $H^i(E^\bullet)$.

For a complex (E^\bullet, d_E) and a integer n, the complex $(E[n]^\bullet, d_{E[n]}^\bullet)$ is defined by $E[n]^i := E^{i+n}$ and $d_{E[n]}^i := (-1)^n d_E^{i+n}$ for $i \in \mathbb{Z}$.

By a bicomplex $(E^{\bullet, \bullet}, d_1, d_2)$, we mean a naive double complex $[D2, 0.4]$, i.e., a double complex satisfying $d_1 \cdot d_2 = d_2 \cdot d_1$. The associated single complex (E^\bullet, d) is defined by $E^k := \bigoplus_{i+j=k} E^{i,j}$ for every $k \in \mathbb{Z}$ and $d(x) := d_1^{i,j}(x) + (-1)^i d_2^{i,j}(x)$ for $(i, j) \in \mathbb{Z} \times \mathbb{Z}$ and $x \in E^{i,j}$. In general, we follow $[D2]$ for the sign configuration of complexes.

By a d-complex and a ∂-complex, we mean complexes in an additive category whose coboundary maps are denoted by d and ∂, respectively. Some important bicomplexes in this paper has $d_1 = d$ and $d_2 = \partial$.

1 The exterior algebras and modules

Let r be a non-negative integer, and let N and M be mutually dual free \mathbb{Z}-modules of rank r with the pairing $\langle , \rangle : M \times N \rightarrow \mathbb{Z}$. This pairing is extended \mathbb{R}-bilinearly to $\langle , \rangle : M_\mathbb{R} \times N_\mathbb{R} \rightarrow \mathbb{R}$.

By a cone in $N_\mathbb{R}$, we mean a strongly convex rational polyhedral cone $[O1]$.

3
other hand, we set \(\sigma \) so that \(N/N \) complement of each other with respect to the pairing. These notations are defined of \(N \) and \(M \) dimensional of zero and the homogeneous elements of degree \(j \) for each \(i \in A \). Then \(N/N \) be such a \(Q \) for each \(i \in A \). Then \(N/N \) \(\mathbb{Q} \) for a cone \(\sigma \) in \(R_{\mathbb{Q}} \), we define \(N(\sigma) := N \cap (\sigma + (-\sigma)) \cong \mathbb{Z}^{\sigma^*} \) and \(N[\sigma] := N/N(\sigma) \cong \mathbb{Z}^{(-\sigma)} \). Hence, \(N(\sigma)_{\mathbb{R}} \) is the real subspace \(\sigma + (-\sigma) \) of \(N_{\mathbb{R}} \). On the other hand, we set \(\sigma^\perp := \{ x \in M_{\mathbb{R}} \mid \langle x, a \rangle = 0, \forall a \in \sigma \} \), \(M[\sigma] := M \cap \sigma^\perp \) and \(M(\sigma) := M/M[\sigma] \). Then \(N(\sigma)_{\mathbb{R}} \subset N_{\mathbb{R}} \) and \(M[\sigma]_{\mathbb{R}} \subset M_{\mathbb{R}} \) are orthogonal complement of each other with respect to the pairing. These notations are defined so that \(N(\sigma) \) and \(M(\sigma) \) as well as \(N[\sigma] \) and \(M[\sigma] \) are mutually dual, respectively.

In this article, we often treat finite dimensional graded \(\mathbb{Q} \)-vector spaces. Let \(V \) be such a \(\mathbb{Q} \)-vector space. Then, we denote by \(V_j \) the vector subspace consisting of zero and the homogeneous elements of degree \(j \) for each \(j \in \mathbb{Z} \). For two finite dimensional \(\mathbb{Q} \)-vector spaces \(V \) and \(W \), we define the grading of \(V \otimes_{\mathbb{Q}} W \) by

\[
(V \otimes_{\mathbb{Q}} W)_k := \bigoplus_{i+j=k} V_i \otimes_{\mathbb{Q}} W_j
\]

for each \(k \in \mathbb{Z} \). We identify \(V \otimes_{\mathbb{Q}} W \) with \(W \otimes_{\mathbb{Q}} V \) by the identifications

\[
a_i \otimes b_j = (-1)^{ij} b_j \otimes a_i
\]

for \(a_i \in V_i, b_j \in W_j \) for all \(i, j \in \mathbb{Z} \).

We denote by \(A(M_{\mathbb{Q}}) \) the exterior algebra \(\Lambda^* M_{\mathbb{Q}} \) over the rational number field \(\mathbb{Q} \). Then \(A(M_{\mathbb{Q}}) \) is a graded \(\mathbb{Q} \)-algebra with \(A(M_{\mathbb{Q}})_i := \Lambda^i M_{\mathbb{Q}} \) for each \(i \in \mathbb{Z} \).

The algebra \(A(N_{\mathbb{Q}}) := \Lambda^* N_{\mathbb{Q}} \) is more important in our theory. The grading of \(A(N_{\mathbb{Q}}) \) is defined negatively, i.e., \(A(N_{\mathbb{Q}})_i := \Lambda^{-i} N_{\mathbb{Q}} \) for each \(i \). For a cone \(\sigma \) in \(N_\mathbb{R} \), \(A(N(\sigma)_{\mathbb{Q}}) := \Lambda^* N(\sigma)_{\mathbb{Q}} \) is a graded subalgebra of \(A(N_{\mathbb{Q}}) \).

In order to simplify the notation, we set \(A := A(N_{\mathbb{Q}}) \) and \(A^* := A(M_{\mathbb{Q}}) \). For a cone \(\sigma \) in \(N_\mathbb{R} \), we set \(A(\sigma) := A(N(\sigma)_{\mathbb{Q}}) \subset A \) and \(A^*[\sigma] := A(M[\sigma]_{\mathbb{Q}}) \subset A^* \).

Let \(C = \bigoplus_{p \in \mathbb{Z}} C_p \) be a graded \(\mathbb{Q} \)-subalgebra of \(A \) or \(A^* \). For a graded left \(C \)-module \(V = \bigoplus_{q \in \mathbb{Z}} V_q \), we define the associated graded right \(C \)-module structure on...
\[x a := \sum_{q \in \mathbb{Z}} (-1)^{pq} ax_q \] (1.3)

for \(a \in C_p \) and \(x = \sum_{q \in \mathbb{Z}} x_q \in V \). Conversely, if \(V \) is a graded right \(C \)-module, then the associated graded left \(C \)-module structure is defined similarly. In both cases, we see easily that \(a(xb) = (ax)b \) for \(a, b \in C \) and \(x \in V \). Hence \(V \) is a two-sided \(C \)-module and we call it simply a \(C \)-module. The following lemma is checked easily.

Lemma 1.1 Let \(V, V' \) be graded \(C \)-modules for \(C \) as above. If \(W \) is a homogeneous left or right \(C \)-submodule of \(V \), then it is a two-sided \(C \)-submodule of \(V \). If \(f : V \to V' \) is a homogeneous homomorphism as left or right \(C \)-modules of degree zero, then it is a homomorphism of two-sided \(C \)-modules.

Let \(\text{GM}(C) \) be the abelian category of finitely generated graded \(C \)-modules where the morphisms are defined to be homogeneous homomorphisms of degree zero. By definition, every object in \(\text{GM}(C) \) is finite-dimensional as a \(\mathbb{Q} \)-vector space.

Since \(M_\mathbb{Q} \) is the dual \(\mathbb{Q} \)-vector space of \(N_\mathbb{Q} \), each homogeneous element \(a \in A_p^* \) for any \(p \in \mathbb{Z} \) induces a homogeneous \(\mathbb{Q} \)-linear map \(i(a) : A \to A \) (cf. [G, 5.14]) which is usually called the right interior product. Here note that the degree of the interior product \(i(a) \) is \(p \), since the indices of \(A \) are given negatively. It is known that this operation induces a graded right \(A^* \)-module structure on \(A \) (cf. [G, (5.50)]). With the associated left \(A^* \)-module structure, we regard \(A \) as a two-sided \(A^* \)-module.

Lemma 1.2 Let \(\sigma \) be a cone in \(N_\mathbb{R} \). Then the left operations of \(A(\sigma) \) and \(A^*[\sigma] \) on \(A \) commute with each other. This is also true for the right operations.

Proof. For \(a \in A^*[\sigma]_p, b \in A(\sigma)_q \) and \(x \in A_s \), we prove the equalities

\[b(ax) = a(bx) \] (1.4)

\[(xa)b = (xb)a \] (1.5)

\[(bx)a = (-1)^{pq} b(xa) \] (1.6)
Since $N(\sigma)_Q$ is the orthogonal complement of $M[\sigma]_Q$ and $(bx)a = i(a)(b \wedge x)$, the equality (1.6) is equal to $[Q, (5.58)]$. By this equality, we have $b(ax) = (-1)^p b(xa) = (-1)^{p+q} b(xa) = (xa)b = (-1)^q b(xa) = (xb)a$. These are the equalities (1.4) and (1.5).

Let σ be a cone in N_R and let V be a graded $A(\sigma)$-module. Then the above lemma implies that $V_A := V \otimes_{A(\sigma)} A$ has a structure of $A^*[\sigma]$-module such that $a(u \otimes x) = u \otimes ax$ for $u \in V$, $x \in A$ and $a \in A^*[\sigma]$.

Lemma 1.3 Let V be a finitely generated graded $A(\sigma)$-module with a homogeneous Q-basis $\{u_1, \ldots, u_s\}$ and let $\{x_1, \ldots, x_r\}$ be a Q-basis of N_Q such that $N(\sigma)_Q$ is generated by $\{x_1, \ldots, x_k\}$ for $k := r_\sigma$. Then V_A is a free $A^*[\sigma]$-module with the basis $\{u'_1, \ldots, u'_s\}$, where $u'_i := u_i \otimes (x_{k+1} \wedge \cdots \wedge x_r)$ for each i.

Proof. Let E be the subspace $Qx_{k+1} + \cdots + Qx_r$ of N_Q. Since the operation of $A^*[\sigma]$ on A is defined by the interior products, we have $A(E) = A^*[\sigma](x_{k+1} \wedge \cdots \wedge x_r)$ in A. Hence $A = A(\sigma) \otimes_Q A(E)$ is equal to $(A(\sigma) \otimes_Q A^*[\sigma])(x_{k+1} \wedge \cdots \wedge x_r)$. Hence

$$V_A = V \otimes_{A(\sigma)} A \simeq V \otimes_Q A^*[\sigma](x_{k+1} \wedge \cdots \wedge x_r) \quad (1.7)$$

as $A^*[\sigma]$-modules and we get the lemma. q.e.d.

Let σ be a cone of N_R. We set

$$\det(\sigma) := \bigwedge^{r_\sigma} N(\sigma) \simeq \mathbb{Z} \quad (1.8)$$

and $\det(\sigma)_Q := \det(\sigma) \otimes Q$. We denote by $\text{Det}(\sigma)_Q$ the graded Q-vector space defined by $(\text{Det}(\sigma)_Q)_{-r_\sigma} := \det(\sigma)_Q$ and $(\text{Det}(\sigma)_Q)_{j} := \{0\}$ for $j \neq -r_\sigma$.

For a finitely generated graded $A(\sigma)$-module V, we define a graded $A(\sigma)$-module $D_\sigma(V)$ as follows.

We define graded Q-vector spaces $D^\left(\sigma\right)_\sigma(V)$ and $D^\right(\sigma\right)_\sigma(V)$ by

$$D^\left(\sigma\right)_\sigma(V) = D^\right(\sigma\right)_\sigma(V) := \text{Hom}_Q(V, \text{Det}(\sigma)_Q) = \bigoplus_{i \in \mathbb{Z}} \text{Hom}_Q(V_{-r_\sigma - i}, \text{Det}(\sigma)_Q) \quad (1.9)$$
For $x \in V$ and $y \in D^\text{left}_\sigma(V)$ (resp. $z \in D^\text{right}_\sigma(V)$) we denote the operation by (y, x) (resp. (x, z)). The right $A(\sigma)$-module structure of $D^\text{left}_\sigma(V)$ (resp. the left $A(\sigma)$-module structure of $D^\text{right}_\sigma(V)$) is defined by}

$$(ya, x) := (y, ax) \quad (\text{resp. } (x, az) := (xa, z)) \quad (1.10)$$

for $a \in A(\sigma)$. There exists a unique homogeneous isomorphism $\varphi : D^\text{left}_\sigma(V) \to D^\text{right}_\sigma(V)$ degree zero such that $(y, x) = (-1)^{pq}(x, \varphi(y))$ for homogeneous elements $x \in V_p$ and $y \in D^\text{left}_\sigma(V)_q$ for all $p, q \in \mathbb{Z}$. We define $D_\sigma(V)$ to be the identification of $D^\text{left}_\sigma(V)$ and $D^\text{right}_\sigma(V)$ by the isomorphism φ. Namely, we have $(y, x) = (-1)^{pq}(x, y)$ for $x \in V_p$ and $y \in D_\sigma(V)_q$. Here note that $(y, x) = 0$ if $p + q \neq -r_\sigma$. It is easy to see that the induced left and right $A(\sigma)$-module structures on $D_\sigma(V)$ have the compatibility (1.3). By definition, we have

$$\dim_{\mathbb{Q}} D_\sigma(V)_j = \dim_{\mathbb{Q}} V_{-r_\sigma-j} \quad (1.11)$$

for every $j \in \mathbb{Z}$.

For $V \in \text{GM}(A(\sigma))$, we define an $A(\sigma)$-homomorphism $\iota : V \to D_\sigma(D_\sigma(V))$ by $(y, \iota(x)) := (y, x)$ for $x \in V$ and $y \in D_\sigma(V)$. It is easy to see that the symmetric equality $(\iota(x), y) = (x, y)$ holds. Since V is a finite dimensional \mathbb{Q}-vector space, the pairings are perfect and ι is an isomorphism. We call ι the canoniacal isomorphism.

For a homomorphism $f : V \to W$ in $\text{GM}(A(\sigma))$, we define $D_\sigma(f)$ to be the natural induced homomorphism $D_\sigma(W) \to D_\sigma(V)$ of $A(\sigma)$-modules, i.e., the equality $(y, f(x)) = (D_\sigma(f)(y), x)$ for $x \in V$ and $y \in D_\sigma(W)$. It is clear by definition that the correspondence $V \mapsto D_\sigma(V)$ is a contravariant exact functor from $\text{GM}(A(\sigma))$ to itself.

If π is of dimension r, then $A(\pi) = A$ and D_π is a functor from $\text{GM}(A)$ to itself. We denote this functor by D_N which does not depend on the choice of π.

Let σ and ρ be cones in $N_\mathbb{R}$ with $\sigma \prec \rho$. 7
For V in $\text{GM}(A(\sigma))$, we denote by $V_{A(\rho)}$ the graded $A(\rho)$-module $V \otimes_{A(\sigma)} A(\rho) = A(\rho) \otimes_{A(\sigma)} V$, where we identify $x \otimes a$ with $(-1)^{pq}a \otimes x$ for $x \in V_p$ and $a \in A(\rho)_q$. For a morphism $f : V \to V'$ in $\text{GM}(A(\sigma))$, we denote $f_{A(\rho)} := f \otimes 1_{A(\rho)} : V_{A(\rho)} \to V'_{A(\rho)}$. The correspondence $V \mapsto V_{A(\rho)}$ is a covariant functor from $\text{GM}(A(\sigma))$ to $\text{GM}(A(\rho))$. Let H be a linear subspace of $N(\rho)_Q$ such that $N(\rho)_Q = N(\sigma)_Q \oplus H$. Then $A(\rho) = A(\sigma) \otimes_Q A(H)$ and $V_{A(\rho)} = V \otimes_Q A(H)$ for any V in $\text{GM}(A(\sigma))$. This implies that the functor is exact. Similarly, the functor from $\text{GM}(A(\sigma))$ to $\text{GM}(A)$ defined by $V \mapsto V_A$ is exact.

For $V \in \text{GM}(A(\sigma))$, we define an $A(\sigma)$-homomorphism
\begin{equation}
\varphi : D_\sigma(V) \to D_\rho(V_{A(\rho)})
\end{equation}
by $(\varphi(y), xa) := \phi_\rho((y, xa))$ for $x \in V$, $y \in D_\sigma(V)$ and $a \in A(\rho)$, where ϕ_ρ is the homogeneous projection $A(\rho) \to A(\rho)_{-r_\rho} = \text{Det}(\rho)_Q$.

Lemma 1.4 Let σ, ρ be cones in N_R with $\sigma \prec \rho$. Then the homomorphism \((1.12)\) induces $A(\rho)$-isomorphism $D_\rho(V_{A(\rho)}) \simeq D_\sigma(V)_{A(\rho)}$ for every V in $\text{GM}(A(\sigma))$.

Proof. Consider the case $V = A(\sigma)$. Let $\phi_\sigma : A(\sigma) \to \text{Det}(\sigma)_Q = A(\sigma)_{-r_\sigma}$ be the homogeneous projection. For $u \in A(\sigma)$, the corresponding element $\phi_\sigma u$ of $D_\sigma(A(\sigma))$ is given by $(\phi_\sigma u, x) := \phi_\sigma(u \wedge x)$ for $x \in A(\sigma)$. Hence $D_\sigma(A(\sigma))$ is a free $A(\sigma)$-module generated by ϕ_σ. Similarly, $D_\rho(A(\rho))$ is equal to $\phi_\rho A(\rho)$.

By the definiton of φ in \((1.12)\), we have $\varphi(\phi_\sigma) = \phi_\rho$. Hence φ induces an isomorphism $D_\sigma(A(\sigma))_{A(\rho)} \simeq D_\rho(A(\rho))$.

For general V, we take an exact sequence
\begin{equation}
\bigoplus_{i=1}^m A(\sigma)x_i \xrightarrow{f} \bigoplus_{j=1}^n A(\sigma)y_j \longrightarrow V \longrightarrow 0
\end{equation}
of graded left $A(\sigma)$-modules, where $\{x_1, \ldots, x_m\}$ and $\{y_1, \ldots, y_n\}$ are homogeneous bases. Then by the exactness of the functors, we get exact sequences
\begin{equation}
0 \longrightarrow D_\sigma(V)_{A(\rho)} \longrightarrow \bigoplus_{j=1}^n y_j^* A(\rho) \xrightarrow{f^*} \bigoplus_{i=1}^m x_i^* A(\rho)
\end{equation}
and
\[0 \rightarrow D_\rho(V_{A(\rho)}) \rightarrow \bigoplus_{j=1}^{n} y_j^* A(\rho) \xrightarrow{i_f} \bigoplus_{i=1}^{m} x_i^* A(\rho) \] (1.15)
of graded right \(A(\rho) \)-modules. Hence we get the required isomorphism. \(\text{q.e.d.} \)

Let \(V^\bullet \) be a finite \(d \)-complex of graded \(A(\sigma) \)-modules in \(\text{GM}(A(\sigma)) \) with \(d = (d^i_V : i \in \mathbb{Z}) \). We define the complex \(D_\sigma(V)^\bullet \) by \(D_\sigma(V)^i := D_\sigma(V^{-i}) \) for \(i \in \mathbb{Z} \). The coboundary map \(d = (d^i_{D_\sigma(V)}) \) is defined by
\[d^i_{D_\sigma(V)} := (-1)^{i+1} D_\sigma(d^{-i-1}_V) : D_\sigma(V)^i \rightarrow D_\sigma(V)^{i+1} \] (1.16)
for each \(i \in \mathbb{Z} \) (cf. [D2, 1.1.5]). Note that we have the principle to put the dot sign of complexes at the right end.

Since \(D_\sigma \) is an exact functor, the cohomology group \(H^p(D_\sigma(V)^\bullet) \) is isomorphic to \(D_\sigma(H^{-p}(V^\bullet)) \) as a graded \(\mathbb{Q} \)-vector space. By the equality (1.11), we get the following lemma.

Lemma 1.5 Let \(\sigma \subset N_R \) be a cone and let \(V^\bullet \) be a finite \(d \)-complex in \(\text{GM}(A(\sigma)) \). Then
\[\dim_{\mathbb{Q}} H^p(D_\sigma(V)^\bullet)_q = \dim_{\mathbb{Q}} H^{-p}(V^\bullet)_{-r_\sigma - q} \] (1.17)
for any integers \(p, q \). In particular, we have
\[\dim_{\mathbb{Q}} H^p(D_N(V)^\bullet)_q = \dim_{\mathbb{Q}} H^{-p}(V^\bullet)_{-r - q} \] (1.18)
if \(V^\bullet \) is a finite \(d \)-complex in \(\text{GM}(A) \).

For a homomorphism \(f : V^\bullet \rightarrow W^\bullet \) in \(\text{CGM}(A(\sigma)) \), the homomorphism
\[D_\sigma(f) : D_\sigma(W)^\bullet \rightarrow D_\sigma(V)^\bullet \] (1.19)
is defined as the collection
\[\{ D_\sigma(f)^i = D_\sigma(f^{-i}) ; i \in \mathbb{Z} \} . \] (1.20)
For a homogeneous \mathbb{Q}-subalgebra C of A, we denote by $\text{CGM}(C)$ the category of finite d-complexes in $\text{GM}(C)$. It is easy to see that D_σ is a contravariant exact functor of the abelian category $\text{CGM}(A(\sigma))$ to itself.

Let V^\bullet be an object of $\text{CGM}(C)$. Hence each $V_i = \bigoplus_{j \in \mathbb{Z}} V^i_j$ is in $\text{GM}(C)$. For each $i, j \in \mathbb{Z}$, we denote by $d^{i,j} : V^i_j \to V^{i+1}_j$ the homogeneous component of d^i of degree j. For each integer k, the \textit{gradual truncation} below $(\text{gt} \leq k V^\bullet)$ is the homogeneous subcomplex of V^\bullet defined by

$$
(\text{gt} \leq k V^\bullet)_j^i := \begin{cases}
V^i_j & \text{if } i + j < k \\
\text{Ker } d^{i,j} & \text{if } i + j = k \\
\{0\} & \text{if } i + j > k
\end{cases}
$$

and the gradual truncation above $(\text{gt} \geq k V^\bullet)$ is the homogeneous quotient complex of V^\bullet defined by

$$
(\text{gt} \geq k V^\bullet)_j^i := \begin{cases}
\{0\} & \text{if } i + j < k \\
\text{Coker } d^{-1,j} & \text{if } i + j = k \\
V^i_j & \text{if } i + j > k
\end{cases}
$$

Since C is graded negatively, $(\text{gt} \leq k V^\bullet)$ and $(\text{gt} \geq k V^\bullet)$ are d-complexes in $\text{GM}(C)$. Hence, these are covariant functors from $\text{CGM}(C)$ to itself.

The variant gradual truncations $(\tilde{\text{gt}} \leq k V^\bullet)$ and $(\tilde{\text{gt}} \geq k V^\bullet)$ are defined by

$$
(\tilde{\text{gt}} \leq k V^\bullet)_j^i := \begin{cases}
V^i_j & \text{if } i + j \leq k \\
\text{Im } d^{-1,j} & \text{if } i + j = k + 1 \\
\{0\} & \text{if } i + j > k + 1
\end{cases}
$$

and

$$
(\tilde{\text{gt}} \geq k V^\bullet)_j^i := \begin{cases}
\{0\} & \text{if } i + j < k - 1 \\
\text{Im } d^{i,j} & \text{if } i + j = k - 1 \\
V^i_j & \text{if } i + j \geq k
\end{cases}
$$

respectively.
It is easy to see that \((\tilde{g}_t \leq k V)^*\) is quasi-isomorphic to \((g_t \leq k V)^*\), while \((\tilde{g}_t \geq k V)^*\) is quasi-isomorphic to \((g_t \geq k V)^*\) (cf. [GM2, p.93]).

It is clear that

\[
H^p((\text{gt} \leq k V)^*)_q = \begin{cases}
H^p(V^*)_q & \text{for } p + q \leq k \\
0 & \text{for } p + q > k
\end{cases}
\] \hspace{1cm} (1.25)

and

\[
H^p((\text{gt} \geq k V)^*)_q = \begin{cases}
0 & \text{for } p + q < k \\
H^p(V^*)_q & \text{for } p + q \geq k
\end{cases}
\] \hspace{1cm} (1.26)

An object \(V^*\) in \(\text{CGM}(C)\) is said to be acyclic if \(H^p(V^*) = \{0\}\) for all integers \(p\).

Lemma 1.6 Let \(\sigma\) be a cone of \(N_\mathbb{R}\). Let \(V^*\) be in \(\text{CGM}(A(\sigma))\) and \(k\) be an integer. Then the \(d\)-complex \((\text{gt} \leq k D_\sigma(V))^*\) is acyclic if and only if \((\text{gt} \geq -r_\sigma - k V)^*\) is. Similarly, the \(d\)-complex \((\text{gt} \geq k D_\sigma(V))^*\) is acyclic if and only if \((\text{gt} \leq -r_\sigma - k V)^*\) is.

If \(V^*\) is in \(\text{CGM}(A)\), then these assertions with \(D_\sigma\) replaced by \(D_\mathbb{N}\) and \(r_\sigma\) replaced by \(r\) hold.

Proof. By (1.25), \((\text{gt} \leq k D_\sigma(V))^*\) is acyclic if and only if \(H^p(D_\sigma(V)^*)_q = \{0\}\) for \(p + q \leq k\). By Lemma 1.5, this is equivalent to the condition

\[
\dim Q H^p(V^*)_q = \dim Q H^{-p}(D_\sigma(V)^*)_{-r_\sigma - q} = 0
\] \hspace{1cm} (1.27)

for \(p + q \geq -r_\sigma - k\). This condition means that \((\text{gt} \geq -r_\sigma - k V)^*\) is acyclic. The second assertion is similarly proved.

The last assertion is obtained by taking \(\sigma\) with \(r_\sigma = r\). \(q.e.d.\)

2 The graded exterior modules on a fan

Let \(\Delta\) be a finite fan of \(N_\mathbb{R}\) [OT 1.1]. We introduce an additive category \(\text{GEM}(\Delta)\) which contains \(\text{GM}(A(\sigma))\) as full subcategories for all \(\sigma \in \Delta\).
Let V be in $\text{GM}(A(\sigma))$ and W in $\text{GM}(A(\rho))$. If $\sigma \prec \rho$, then $A(\sigma) \subset A(\rho)$ and W has an induced structure of graded $A(\sigma)$-module.

A morphism $f : V \to W$ in $\text{GEM}(\Delta)$ is defined to be a homogeneous $A(\sigma)$-homomorphism of degree zero. If σ is not a face of ρ, we allow only the zero map as a morphism even if $A(\sigma)$ happens to be contained in $A(\rho)$.

Consequently, the additive category $\text{GEM}(\Delta)$ of graded exterior modules on Δ is defined as follows.

A graded exterior module L on Δ is a collection $(L(\sigma) : \sigma \in \Delta)$ of objects $L(\sigma)$ in $\text{GM}(A(\sigma))$ for $\sigma \in \Delta$. A homomorphism $f : L \to K$ of graded exterior modules on Δ is a collection $f = (f(\sigma/\rho))$ of morphisms

$$f(\sigma/\rho) : L(\sigma) \longrightarrow K(\rho)$$

in $\text{GM}(A(\sigma))$ for all pairs (σ, ρ) of cones in Δ with $\sigma \prec \rho$. For $f : L \to K$ and $g : K \to J$, the composite $(g \cdot f) : L \to J$ is defined by

$$(g \cdot f)(\sigma/\rho) := \sum_{\tau \in F[\sigma, \rho]} g(\tau/\rho) \cdot f(\sigma/\tau)$$

for σ, ρ with $\sigma \prec \rho$, where $F[\sigma, \rho]$ is the set of the faces τ of ρ with $\sigma \prec \tau$.

The direct sum of finite objects in $\text{GEM}(\Delta)$ is defined naturally. An object V of $\text{GM}(A(\sigma))$ is also regarded as an object of $\text{GEM}(\Delta)$ by defining $V(\sigma) := V$ and $V(\rho) := \{0\}$ for $\rho \neq \sigma$. In this sense, we may write $L = \bigoplus_{\sigma \in \Delta} L(\sigma)$.

A homomorphism $f : L \to K$ is said to be unmixed if $f(\sigma/\rho) = 0$ for any σ, ρ with $\sigma \neq \rho$. If f is unmixed, $\text{Ker} f$, $\text{Coker} f$ and $\text{Im} f$ are defined naturally as an object of $\text{GEM}(\Delta)$. We denote by $\text{UGEM}(\Delta)$ the category of the objects of $\text{GEM}(\Delta)$ with the class of homomorphisms restricted to unmixed ones. It is easy to see that $\text{UGEM}(\Delta)$ is an abelian category.

Let $f : L \to K$ be a homomorphism in $\text{GEM}(\Delta)$. We say that L is a submodule or a subobject of K, if f is unmixed and $f(\sigma/\sigma) : L(\sigma) \to K(\sigma)$ is an inclusion.
map for every \(\sigma \in \Delta \). If \(L \) is a submodule of \(K \), then we define an object \(K/L \) in \(\text{GEM}(\Delta) \) by \((K/L)(\sigma) := K(\sigma)/L(\sigma) \) for \(\sigma \in \Delta \). Namely, we have a short exact sequence
\[
0 \longrightarrow L \longrightarrow K \longrightarrow K/L \longrightarrow 0 \quad (2.3)
\]
in \(\text{UGEM}(\Delta) \).

We denote \(\hat{\Delta} := \Delta \cup \{ \alpha \} \) and call it an augmented fan where \(\alpha \) is an imaginary cone. We define \(A(\alpha) := A \). The category \(\text{GEM}(\hat{\Delta}) \) is defined similarly by supposing \(\sigma \prec \alpha \) for all \(\sigma \in \hat{\Delta} \). An object \(L \) of \(\text{GEM}(\Delta) \) is also regarded as that of \(\text{GEM}(\hat{\Delta}) \) by setting \(L(\alpha) := \{0\} \).

For each \(\rho \in \hat{\Delta} \), an additive covariant functor
\[
i_{\rho}^* : \text{GEM}(\hat{\Delta}) \longrightarrow \text{GM}(A(\rho)) \quad (2.4)
\]
is defined by
\[
i_{\rho}^*(L) := \bigoplus_{\sigma \in F(\rho)} L(\sigma)_{A(\rho)},
\]
where \(F(\rho) \) is the set of faces of \(\rho \) and we suppose \(F(\rho) = \hat{\Delta} \) if \(\rho = \alpha \). Recall that \(L(\sigma)_{A(\rho)} \) is the graded \(A(\rho) \)-module \(L(\sigma) \otimes_{A(\alpha)} A(\rho) \) for each \(\sigma \). We usually denote by \(\Gamma \) the functor \(i_{\alpha}^* \).

For a homomorphism \(f : L \rightarrow K \) in \(\text{GEM}(\hat{\Delta}) \), the \((\sigma, \tau)\)-component of the homomorphism
\[
i_{\rho}^*(f) : \quad i_{\rho}^*(L) \quad \longrightarrow \quad i_{\rho}^*(K)
\]
\[
\begin{array}{c}
\bigoplus_{\sigma \in F(\rho)} L(\sigma)_{A(\rho)} \\
\bigoplus_{\tau \in F(\rho)} K(\tau)_{A(\rho)}
\end{array}
\]
is defined to be \(f(\sigma/\tau)_{A(\rho)} \) if \(\sigma \prec \tau \) and zero otherwise.

For each \(\rho \in \Delta \), the additive covariant functor
\[
i_{\rho}^! : \text{GEM}(\hat{\Delta}) \longrightarrow \text{GM}(A(\rho)) \quad (2.7)
\]
is defined by $i^i(\rho) := L(\rho)$. For $f : L \to K$, the homomorphism $i^i(f)$ is defined to be $f(\rho/\rho)$.

For cones σ, τ with $\sigma \prec \tau$ and $r_\tau = r_\sigma + 1$, we define the *incidence isomorphism* $q'_{\sigma/\tau} : \det(\sigma) \to \det(\tau)$ of free \mathbb{Z}-modules of rank one as follows.

By the condition, $N(\tau)/N(\sigma)$ is a free \mathbb{Z}-module of rank one. We take $a \in N(\tau) \cap \tau$ such that the class of a in $N(\tau)/N(\sigma)$ is a generator. Then we define $q'_{\sigma/\tau}(w) := a \wedge w$ for $w \in \det(\sigma)$.

For cones σ, ρ with $\sigma \prec \rho$ and $r_\rho = r_\sigma + 2$, there exists exactly two cones τ with $\sigma \prec \tau \prec \rho$ and $r_\tau = r_\sigma + 1$. Let these cones be τ_1, τ_2. Then the equality

$$q'_{\sigma/\tau_1} \cdot q'_{\tau_1/\rho} + q'_{\sigma/\tau_2} \cdot q'_{\tau_2/\rho} = 0 \quad (2.8)$$

holds (cf. [I1, Lem.1.4]).

For a subset $\Phi \subset \Delta$ and an integer i, we set

$$\Phi(i) := \{ \sigma \in \Phi ; r_\sigma = i \} . \quad (2.9)$$

A subset Φ of Δ is said to be *locally star closed* if $\sigma, \rho \in \Phi, \tau \in \Delta$ and $\sigma \prec \tau \prec \rho$ imply $\tau \in \Phi$.

For a locally star closed subset Φ of Δ, we define a complex $E(\Phi, \mathbb{Z})^\bullet$ of free \mathbb{Z}-modules as follows.

For each integer i, we set

$$E(\Phi, \mathbb{Z})^i := \bigoplus_{\sigma \in \Phi(i)} \det(\sigma) . \quad (2.10)$$

For $\sigma \in \Phi(i)$ and $\tau \in \Phi(i + 1)$, the (σ, τ)-component of the coboundary map

$$d^i : E(\Phi, \mathbb{Z})^i \to E(\Phi, \mathbb{Z})^{i+1} \quad (2.11)$$

is defined to be $q'_{\sigma/\tau}$. The equality $d^{i+1} \cdot d^i = 0$ follows from (2.8) for every i.

We say that a locally star closed subset $\Phi \subset \Delta$ is 1-*complete* if, for each $\sigma \in \Phi(r - 1)$, there exist exactly two τ’s in $\Phi(r)$ with $\sigma \prec \tau$.

14
If the finite fan Δ is complete [O1, Thm.1.11], then $\Delta(\sigma \prec) := \{\rho \in \Delta \mid \sigma \prec \rho\}$ is 1-complete for every $\sigma \in \Delta$.

If Φ is 1-complete, then we can define an augmented complex $E(\hat{\Phi}, \mathbb{Z})^\bullet$ for $\hat{\Phi} := \Phi \cup \{\alpha\}$ by defining $r_\alpha := r + 1$, $\det(\alpha) := \bigwedge^r N$ and $q_{\tau/\alpha} := \text{id}$ for every $\tau \in \Phi(r)$ with respect to the identification $\det(\tau) = \det(\alpha)$. In particular, $E(\hat{\Phi}, \mathbb{Z})^i = E(\Phi, \mathbb{Z})^i$ for $i \neq r + 1$ and $E(\hat{\Phi}, \mathbb{Z})^{r+1} = \det(\alpha)$.

When Δ is complete, $E(\hat{\Delta}(\sigma \prec), \mathbb{Z})^\bullet$ is acyclic for every $\sigma \in \Delta$. Actually, $H^i(E(\Delta(\sigma \prec), \mathbb{Z})^\bullet)$ is equal to the $(i - r_{\sigma} - 1)$-th reduced cohomology group of an $(r - r_{\sigma} - 1)$-dimensional sphere, and hence it vanishes if $i \neq r$. The r-th cohomology is killed by $E(\hat{\Phi}, \mathbb{Z})^{r+1} = \det(\alpha)$.

We denote by $\text{CGEM}(\Delta)$ and $\text{CGEM}(\hat{\Delta})$ the category of finite d-complexes in $\text{GEM}(\Delta)$ and $\text{GEM}(\hat{\Delta})$, respectively.

Let (L^\bullet, d_L) be an object of $\text{CGEM}(\Delta)$. Then, for each $\rho \in \Delta$, we get an object $(L(\rho)^\bullet, d_L(\rho/\rho))$ of $\text{CGM}(A(\rho))$ which we denote simply $L(\rho)^\bullet$.

For $\rho, \mu \in \Delta$ with $\rho \prec \mu$, we set $F[\rho, \mu] := \{\sigma \in F(\mu) \mid \rho \prec \sigma\}$. Then the equality $d_L \cdot d_L = 0$ implies that

$$\sum_{\sigma \in F[\rho, \mu]} d_L^{i+1}(\sigma/\mu) \cdot d_L^i(\rho/\sigma) = 0 \quad (2.12)$$

for each integer i. In particular, if $r_\mu = r_\rho + 1$, then the collection $(d_L^i(\rho/\mu) \ ; \ i \in \mathbb{Z})$ defines a homomorphism of complexes $d_L(\rho/\mu) : L(\rho)^\bullet \to L(\mu)[1]^{\bullet}$ since then $F[\rho, \mu] = \{\rho, \mu\}$ and the equality (2.12) imply the commutativity of the diagram

$$\begin{array}{ccc}
L(\rho)^i & \xrightarrow{d_L^i(\rho/\rho)} & L^{i+1}(\rho) \\
\downarrow d_L^i(\rho/\mu) & & \downarrow d_L^{i+1}(\rho/\mu) \\
L(\mu)[1]^i & \xrightarrow{d_L^i(\mu/\mu)} & L(\mu)[1]^{i+1}
\end{array},$$

where $d_L^i(\mu/\mu) = -d_L^{i+1}(\mu/\mu)$.

15
Conversely, assume that complexes \(L(\rho)^{\bullet} \in \text{CGM}(A(\rho)) \) for \(\rho \in \Delta \) and homomorphisms

\[
d^i_L(\sigma/\tau) : L(\sigma)^i \to L(\tau)^{i+1}
\]

for \(\sigma, \tau \in \Delta \) with \(\sigma \prec \tau \) and \(i \in \mathbb{Z} \) are given. If they satisfy (2.12) for all \((\rho, \mu)\) and \(i \in \mathbb{Z} \), then we get a complex \((L^{\bullet}, d_L)\) in \(\text{CGEM}(\Delta) \).

An object \(L^{\bullet} \) in \(\text{CGEM}(\Delta) \) is said to be shallow if \(d_L(\sigma/\rho) = 0 \) for any \(\rho, \sigma \) with \(r_\rho - r_\sigma \geq 2 \).

In order to define a shallow object \(L^{\bullet} \) of \(\text{CGEM}(\Delta) \), it is sufficient to give the following data (1), (2) and check the condition (3).

1. A complex \(L(\sigma)^{\bullet} \in \text{CGM}(A(\sigma)) \) for each \(\sigma \in \Delta \).

2. A homomorphism \(d(\sigma/\tau) : L(\sigma)^{\bullet} \to L(\tau)[1]^{\bullet} \) for each pair \((\sigma, \tau)\) of cones in \(\Delta \) with \(\sigma \prec \tau \) and \(r_\tau = r_\sigma + 1 \).

3. The equality

\[
d(\tau_1/\rho)^{i+1} \cdot d(\sigma/\tau_1)^i + d(\tau_2/\rho)^{i+1} \cdot d(\sigma/\tau_2)^i = 0
\]

holds for all \(i \in \mathbb{Z} \) and all pairs \((\sigma, \rho)\) with \(\sigma \prec \rho \) and \(r_\rho = r_\sigma + 2 \), where \(\tau_1, \tau_2 \) are the dual cones with \(\sigma \prec \tau_i \prec \rho \) and \(r_{\tau_i} = r_\sigma + 1 \).

For an object \(L^{\bullet} \) in \(\text{CGEM}(\Delta) \), we define a shallow object \(\tilde{L}^{\bullet} \) as follows.

For each \(\rho \in \Delta \) and \(i \in \mathbb{Z} \), we set

\[
\tilde{L}(\rho)^i := \bigoplus_{\sigma \in F(\rho)} \bigoplus_{\eta \in F(\sigma)} \det(\rho) \otimes \det(\sigma)^* \otimes L(\eta)^{-r_\rho + r_\sigma + i}
\]

where \(\det(\sigma)^* := \text{Hom}_{\mathbb{Z}}(\det(\sigma), \mathbb{Z}) \). For

\[
\tilde{L}(\rho)^{i+1} := \bigoplus_{\tau \in F(\rho)} \bigoplus_{\zeta \in F(\tau)} \det(\rho) \otimes \det(\tau)^* \otimes L(\zeta)^{-r_\rho + r_\tau + i+1}
\]

the \((\sigma, \eta), (\tau, \zeta)\)-component of the coboundary map \(d(\rho/\rho)^i : \tilde{L}(\rho)^i \to \tilde{L}(\rho)^{i+1} \) is defined to be zero map except for the cases (a) \(\sigma = \tau \) and \(\eta \prec \zeta \), or (b) \(\tau \prec \sigma \), \(r_\sigma = r_\tau + 1 \) and \(\eta = \zeta \). In case (a), the component is defined to be \((-1)^{r_\rho - r_\sigma} \text{id} \otimes \)
\(d(\eta/\zeta)^{-r_\rho+r_\sigma+i} \), and in case (b), it is defined to be \((-1)^{r_\rho-r_\sigma-1}\det(\rho) \otimes (q_{\tau/\sigma}')^* \otimes \text{id} \), where \text{id}'s are identity maps of the corresponding parts.

For \(\rho \prec \mu \) with \(r_\mu = r_\rho + 1 \), the homomorphism \(d(\rho/\mu) : \tilde{L}(\rho)^* \rightarrow \tilde{L}(\mu)[1]^* \) is defined to be the tensor product of \(q_{\rho/\mu}' \) and the natural inclusion map.

It is easy to check that \(\tilde{L}(\rho)^* \) is actually a complex and \(d(\rho/\mu) \) is a homomorphism of complexes. The condition (3) in the definition of shallow complexes is satisfied by the equality (2.8).

We define a homomorphism \(f_L : L^* \rightarrow \tilde{L}^* \) as follows.

For \(\tau, \rho \in \Delta \) with \(\tau \prec \rho \), the \(A(\tau) \)-homomorphism \(f_L(\tau/\rho)^i : L(\tau)^i \rightarrow \tilde{L}(\rho)^i \) is the inclusion map to the component \(\det(\rho) \otimes \det(\sigma)^* \otimes L(\eta)^{-r_\rho+r_\sigma+i} \) for \(\sigma = \rho \) and \(\eta = \tau \) in the description (2.16). The compatibility with the coboundary maps is checked easily.

A homomorphism \(f : L^* \rightarrow K^* \) of \(d \)-complexes of graded exterior modules on \(\Delta \) is said to be a quasi-isomorphism if \(f(\sigma/\sigma) : L(\sigma)^* \rightarrow K(\sigma)^* \) is a quasi-isomorphism of \(d \)-complexes of \(A(\sigma) \)-modules for every \(\sigma \in \Delta \).

The following proposition shows that any object in \(\text{CGEM}(\Delta) \) is quasi-isomorphic to a shallow one.

Proposition 2.1 For any \(L^* \) in \(\text{CGEM}(\Delta) \), the homomorphism \(f_L : L^* \rightarrow \tilde{L}^* \) is quasi-isomorphic.
\[F^k(V)^\bullet / F^{k+1}(V)^\bullet \] to a direct sum

\[\bigoplus_{\eta \in F(\rho)(k)} V^\bullet_{k,\eta}, \tag{2.19} \]

where \(V^\bullet_{k,\eta} \) is the part consisting of the components related to \(\eta \). Then we see that \(V^\bullet_{k,\eta} \) is isomorphic to the associated single complex of the bicomplex

\[\det(\rho) \otimes \text{Hom}(E(F[\eta, \rho], \mathbf{Z}), \mathbf{Z})[-r_\rho] \otimes \bigotimes_{\eta \in F(\rho)(k)} L(\eta)^\bullet_{A(\rho)}, \tag{2.20} \]

where we denote by \(\text{Hom}(E, \mathbf{Z})^\bullet \) the complex defined by

\[\text{Hom}(E, \mathbf{Z})^i := \text{Hom}(E^{-i}, \mathbf{Z}) \tag{2.21} \]

and \(d^i := (-1)^{i+1}(d_E^{-i-1})^\ast \) for \(i \in \mathbf{Z} \). If \(k < r_\rho \), then \(\eta \neq \rho \) and \(E(F[\eta, \rho], \mathbf{Z})^\bullet \) is acyclic, and hence so is \(V^\bullet_{k,\eta} \). Hence \(V^\bullet \) is quasi-isomorphic to the subcomplex \(F^{r_\rho}(V)^\bullet \). Since \(f_L(\rho/\rho) \) is an isomorphism from \(L(\rho)^\bullet \) onto \(F^{r_\rho}(V)^\bullet \), it is a quasi-isomorphism to \(V^\bullet = \tilde{L}(\rho)^\bullet \).

q.e.d.

For a complex \(L^\bullet \) in \(\text{CGEM}(\Delta) \), we define a shallow complex \(D(L)^\bullet \) in \(\text{CGEM}(\Delta) \) as follows.

For each \(\rho \in \Delta \), we set

\[D(L)(\rho)^\bullet := \det(\rho) \otimes D_\rho(i^*_\rho L)[{-r_\rho}]^\bullet. \tag{2.22} \]

Let \(\rho, \mu \in \Delta \) satisfy \(\rho < \mu \) and \(r_\mu = r_\rho + 1 \). By the definition of \(i^*_\mu \) and \(i^*_\rho \), we see that \((i^*_\rho L)^{A(\mu)} \) is a direct summand of \(i^*_\mu L^i \). Let \(p(\mu/\rho)^i : i^*_\mu L^i \to (i^*_\rho L)^{A(\mu)} \) be the natural projection map. We see that \(\{p(\mu/\rho)^i : i \in \mathbf{Z} \} \) defines a homomorphism \(p(\mu/\rho) : i^*_\mu L^\bullet \to (i^*_\rho L)^{A(\mu)} \). Hence we get a homomorphism

\[D_\mu(p(\mu/\rho)) : D_\mu((i^*_\rho L)^{A(\mu)})^\bullet \to D_\mu(i^*_\mu L)^\bullet. \tag{2.23} \]

Since

\[D_\mu((i^*_\rho L)^{A(\mu)})^\bullet = D_\rho(i^*_\rho L)^{A(\mu)}^\bullet \tag{2.24} \]
by Lemma 1.4, we get a homomorphism

\[i(\rho/\mu) : D_{\rho}(i_{\rho}^*L)^{\bullet} \longrightarrow D_{\mu}(i_{\mu}^*L)^{\bullet} \] \hspace{1cm} (2.25)

as the composite of the inclusion \(D_{\rho}(i_{\rho}^*L)^{\bullet} \to D_{\rho}(i_{\rho}^*L)_{A(\rho)}^{\bullet} \) and \((2.23)\). We define

\[d_{D(L)}(\rho/\mu) : D(L)(\rho)^{\bullet} \longrightarrow D(L)(\mu)[1]^{\bullet} \] \hspace{1cm} (2.26)

to be \(q_{\rho/\mu} \otimes i(\rho/\mu)[-r_{\rho}] \). By the equality \((2.8)\), the condition (3) of the construction of shallow complexes is satisfied and we get a complex \(D(L)^{\bullet} \).

Lemma 2.2 Let \(L^{\bullet} \) be an object of \(CGEM(\Delta) \). Then, there exists a quasi-isomorphism \(\varphi : L^{\bullet} \to D(D(L))^{\bullet} \).

Proof. We prove that \(D(D(L))^{\bullet} \) is isomorphic to \(\tilde{L}^{\bullet} \). Then the lemma follows from Proposition 2.1.

Let \(\rho \) be an element of \(\Delta \). For each integer \(i \),

\[
\begin{align*}
D(D(L))(\rho)^i &= \bigoplus_{\sigma \in F(\rho)} \det(\rho) \otimes D_{\rho}(D(L)(\sigma)_{A(\rho)}^{-r_{\sigma}+r_{\rho}+i}) \\
&= \bigoplus_{\sigma \in F(\rho)} \bigoplus_{\eta \in F(\sigma)} \det(\rho) \otimes D_{\rho}(\det(\sigma) \otimes D_{\sigma}(L(\eta)_{A(\sigma)}^{-r_{\sigma}+r_{\sigma}+i})_{A(\rho)}) \\
&= \bigoplus_{\sigma \in F(\rho)} \bigoplus_{\eta \in F(\sigma)} \det(\rho) \otimes \det(\sigma)^* \otimes D_{\rho}(D_{\sigma}(L(\eta)_{A(\sigma)}^{-r_{\sigma}+r_{\sigma}+i})_{A(\rho)}) .
\end{align*}
\]

By Lemma 1.4, we have a natural isomorphism

\[
D_{\rho}(D_{\sigma}(L(\eta)_{A(\sigma)}^{-r_{\sigma}+r_{\sigma}+i})_{A(\rho)}) \simeq D_{\rho}(D_{\sigma}(L(\eta)_{A(\sigma)}^{-r_{\sigma}+r_{\sigma}+i})) . \] \hspace{1cm} (2.27)

We identify the last \(A(\rho) \)-module with \(L(\eta)_{A(\rho)}^{-r_{\rho}+r_{\sigma}+i} \) by the canonical isomorphism for all \((\sigma, \eta)\). we know \(D(D(L))(\rho)^i = \tilde{L}(\rho)^i \) for every \(\rho \in \Delta \) and \(i \in \mathbb{Z} \), however the coboundary map is not equal to that of \(\tilde{L}^{\bullet} \).
We consider the descriptions (2.16) and (2.17) with replacing \(\tilde{L}(\rho)^i \) and \(\tilde{L}(\rho)^{i+1} \) by \(\mathbf{D}(\mathbf{D}(L))(\rho)^i \) and \(\mathbf{D}(\mathbf{D}(L))(\rho)^{i+1} \), respectively. We can check that the \(((\sigma, \eta), (\tau, \zeta))\)-component of the coboundary map \(d(\rho/\rho)^i : \tilde{\mathbf{D}}(\mathbf{D}(L))(\rho)^i \to \mathbf{D}(\mathbf{D}(L))(\rho)^{i+1} \) is the zero map except for the cases (a) \(\sigma = \tau \) and \(\eta \prec \zeta \), or (b) \(\tau \prec \sigma, r_\sigma = r_\tau + 1 \) and \(\eta = \zeta \). In case (a), the component is calculated to be \((-1)^{r_\rho + 1} \otimes d(\eta/\zeta)^{-r_\rho + r_\sigma + i}\), and in case (b), it is \((-1)^{i+1} \det(\rho)^{-1} \otimes (q_{\tau/\sigma})^* \otimes \text{id}\).

For each \(\rho \) and \(i \), we define an isomorphism

\[\varphi(\rho)^i : \tilde{L}(\rho)^i \longrightarrow \mathbf{D}(\mathbf{D}(L))(\rho)^i \]

by defining its restriction to the component

\[\det(\rho) \otimes \det(\sigma)^* \otimes \mathbf{L}(\mathbf{L})(\rho)^i \]

\[\longrightarrow (-1)^{(r_\rho + 1)(r_\sigma + 1)} \times \text{id} \text{ to the same component of } \mathbf{D}(\mathbf{D}(L))(\rho)^i. \]

Then we see that the collection \(\{\varphi(\rho)^i\} \) defines an unmixed isomorphism \(\tilde{L}^\bullet \to \mathbf{D}(\mathbf{D}(L))^\bullet \).

q.e.d.

We can define a similar functor

\[\tilde{\mathbf{D}} : \text{CGEM}(\hat{\Delta}) \longrightarrow \text{CGEM}(\hat{\Delta}) \]

for an augmented 1-complete fan \(\hat{\Delta} \) by the convention that \(r_\alpha = r + 1 \), \(F(\alpha) = \hat{\Delta} \)
and \(q_{\tau/\alpha} := 1 \det N \) for \(\tau \in \Delta(r) \). When \(L^\bullet \) is an object of \(\text{CGEM}(\Delta) \), \(\tilde{\mathbf{D}}(L)^\bullet \) is in \(\text{CGEM}(\hat{\Delta}) \). Since \(\det(\alpha) = \det N \), we get an exact sequence

\[0 \rightarrow \tilde{\mathbf{D}}(L)(\alpha)^\bullet \longrightarrow \tilde{\mathbf{D}}(L)^\bullet \longrightarrow \mathbf{D}(L)^\bullet \longrightarrow 0 \]

in \(\text{CGEM}(\hat{\Delta}) \) as well as an exact sequence

\[0 \rightarrow \det N \otimes \mathbf{D}_N(\Gamma(L))[-r - 1]^\bullet \longrightarrow \Gamma(\tilde{\mathbf{D}}(L))^\bullet \longrightarrow \Gamma(\mathbf{D}(L))^\bullet \longrightarrow 0 \]

in \(\text{CGM}(A) \) by applying \(\Gamma \).
Lemma 2.3 Assume that Δ is a complete fan. Then, for any L^\bullet in CGEM(Δ), the complex of A-modules $\Gamma((\hat{D}(L)))^\bullet$ is acyclic.

Proof. For each $i \in \mathbb{Z}$, we have

$$\Gamma(\hat{D}(L))^i = \bigoplus_{\rho \in \Delta} \bigoplus_{\sigma \in F(\rho)} \det(\rho) \otimes D_\rho(L(\sigma)_{A(\rho)}^{-r_\rho-i})_A . \quad (2.33)$$

For

$$\Gamma(\hat{D}(L))^{i+1} = \bigoplus_{\mu \in \Delta} \bigoplus_{\tau \in F(\mu)} \det(\mu) \otimes D_\mu(L(\tau)_{A(\mu)}^{-r_\mu-i-1})_A , \quad (2.34)$$

the $((\rho, \sigma), (\mu, \tau))$-component of the coboundary map is nonzero only for (a) $\rho = \mu$ and $\tau \prec \sigma$, or (b) $\rho \prec \mu$, $r_\mu = r_\rho + 1$ and $\sigma = \tau$. In case (a), the component is $(-1)^{i+1} \text{id} \otimes D_\rho(d(\tau/\sigma)_{A(\rho)}^{-r_\rho-i})_A$, and in case (b), it is $q'_{\rho/\mu} \otimes \text{id}$, where id’s are the identities of the corresponding parts, respectively.

For $V^\bullet := \Gamma(\hat{D}(L))^\bullet$, we introduce a deceasing filtration $\{F^k\}$ as follow. For each integer i, we define $F^k(V)^i$ to be the direct sum of the components $\det(\rho) \otimes D_\rho(L(\sigma)_{A(\rho)}^{-r_\rho-i})_A$ of $\Gamma(\hat{D}(L))^i$ in the description (2.33) for all pairs (ρ, σ) with $r_\sigma \geq k$. Then $F^k(V)^\bullet$ is a subcomplex of V^\bullet for every $k \in \mathbb{Z}$, and $F^k(V)^\bullet/F^{k+1}(V)^\bullet$ is a direct sum of complexes $\bigoplus_{\sigma \in \Delta(k)} V^\bullet_{\sigma}$, where V^\bullet_{σ} is the part related to each σ. We see that V^\bullet_{σ} is isomorphic to the associated single complex of the bicomplex

$$E(F[\sigma, \alpha], \mathbb{Z})^\bullet \otimes D_\sigma(L(\sigma))^\bullet . \quad (2.35)$$

Since Δ is complete, $E(F[\sigma, \alpha], \mathbb{Z})^\bullet$ is acyclic for every $\sigma \in \Delta$. Hence $F^k(V)^\bullet/F^{k+1}(V)^\bullet$ is also acyclic for every k. Since $F^0(V)^\bullet = V^\bullet$ and $F^{r+1}(V)^\bullet = \{0\}$, V^\bullet is acyclic.

$q.e.d.$

By the long exact sequence obtained from the exact sequence (2.32), we get the following corollary.

Corollary 2.4 If Δ is complete, then there exists an isomorphism

$$H^{-p}(D_N(\Gamma(L))^\bullet) \simeq H^{r-p}(\Gamma(D(L))^\bullet) \quad (2.36)$$
in GM(A) for each integer p.

The following proposition is a consequence of Lemma 1.3 and Corollary 2.4.

Proposition 2.5 Assume that Δ is complete. For any integer p, q, the equality

$$\dim Q H^p(\Gamma(L)^\bullet)_q = \dim Q H^{r-p}(\Gamma(D(L))_q^{\bullet})_{-r-q}$$

(2.37)

holds.

A finite fan Δ of N_R is said to be lifted complete if there exists a rational line ℓ of N_R going through the origin with the following property.

Let $\bar{\sigma}$ be the image of σ in the quotient N_R/ℓ for each $\sigma \in \Delta$. Then (1) $\dim \bar{\sigma} = r_\sigma$ for every $\sigma \in \Delta$, (2) $\bar{\sigma} \neq \bar{\tau}$ for any distinct $\sigma, \tau \in \Delta$ and (3) $\Delta_\ell := \{ \bar{\sigma} ; \sigma \in \Delta \}$ is a complete fan of N_R/ℓ.

For a lifted complete fan, the associated toric variety has an action of the multiplicative algebraic group G_m, and it has a complete toric variety of dimension $r - 1$ as the geometric quotient in the sense of Mumford’s geometric invariant theory.

Let Δ be a lifted complete fan with respect to ℓ and let ℓ^+ be one of the one-dimensional cones contained in ℓ. By the property (1), $\dim (\tau + \ell^+) = r_\tau + 1$ for every $\tau \in \Delta$. The oriented lifted complete fan $\tilde{\Delta}$ is defined to be $\Delta \cup \{ \beta \}$ where β is an imaginary cone of dimension r. We suppose $\sigma \prec \beta$ for every $\sigma \in \Delta$. We define $\det(\beta) := \det N$ and $q_{\tau/\beta} : = q_{\tau'/\tau'}$ for $\tau \in \Delta(r-1)$, where $\tau' := \tau + \ell^+$.

For any star closed subset $\Phi \subset \tilde{\Delta}$, the complex $E(\Phi, Z)^\bullet$ is defined similarly as in the previous case. The complex $E(\tilde{\Delta}(\sigma \prec), Z)^\bullet$ is acyclic for every $\sigma \in \Delta$ since it is isomorphic to the augmented complex $E(\tilde{\Delta}_\ell, Z)^\bullet$.

Each lifted complete fan has two orientations according to the choice of ℓ^+, but it does not depend on the choice of the line ℓ.

Here we give three typical examples of oriented lifted complete fans.
(1) Let \(C \subset N_R \) be a closed convex cone of dimension \(r \) which may not be strongly convex and which is not equal to \(N_R \). Let \(\partial C \) be the boundary set of \(C \). Then a finite fan \(\Delta \) with the support \(\partial C \) is lifted complete. Any \(\ell \) which intersects the interior of \(C \) satisfies the condition. As the natural orientation, we take \(\ell^+ := \ell \cap C \).

(2) Let \(\Phi \) be a simplicial complete fan of \(N_R \) and let \(\gamma \) be a one-dimensional cone in \(\Phi \). Set
\[
\Delta := \{ \sigma \in \Phi ; \gamma \nleq \sigma, \sigma + \gamma \in \Phi \} .
\] Then \(\Delta \) is a lifted complete fan and \(\ell^+ := \gamma \) defines an orientation (cf. [O2]).

(3) Let \(N' \) be a free \(\mathbb{Z} \)-module of rank \(r - 1 \), \(\Phi \) a finite complete fan of \(N'_R \) and \(h \) a real-valued continuous function on \(N'_R \) which is linear on each cone \(\sigma \in \Phi \) and has rational values on \(N'_Q \). Then the fan \(\Delta = \{ \sigma' ; \sigma \in \Phi \} \) of \(N_R := N'_R \oplus R \) is lifted complete, where \(\sigma' := \{(x, h(x)) \mid x \in \sigma \} \) for each \(\sigma \in \Phi \). We take \(\ell^+ := \{0\} \times R_0 \) as the orientation. This type of fan is treated in [O3].

Let \(\tilde{\Delta} = \Delta \cup \{\beta\} \) be an oriented lifted complete fan. The category \(\text{GEM}(\tilde{\Delta}) \) is defined by setting \(A(\beta) := A \). Then the functors
\[
i^\beta : \text{GEM}(\tilde{\Delta}) \longrightarrow \text{GM}(A)
\]
and
\[
\hat{D} : \text{GEM}(\tilde{\Delta}) \longrightarrow \text{GEM}(\tilde{\Delta})
\]
are defined similarly as \(i^*_\alpha \) and \(\hat{D} \) in the case of augmented 1-complete fans, respectively. We denote also by \(\Gamma \) the functor \(i^*_\beta \).

We omit the proofs of the following results, since they are similar to those of the corresponding results for an augmented complete fan.

Lemma 2.6 Let \(\tilde{\Delta} = \Delta \cup \{\beta\} \) be an oriented lifted complete fan. Then, for any \(L^\bullet \) in \(\text{CGEM}(\Delta) \), the complex of \(A \)-modules \(\Gamma(\hat{D}(L))^\bullet \) is acyclic, and there exists an exact sequence
\[
0 \longrightarrow \text{det} N \otimes D(\Gamma(L))^\bullet[-r] \longrightarrow \Gamma(\hat{D}(L))^\bullet \longrightarrow \Gamma(D(L))^\bullet \longrightarrow 0 .
\]
Corollary 2.7 Let \(\Delta \cup \{ \beta \} \) be an oriented lifted complete fan. Then for any \(L^\bullet \in \text{CGEM}(\Delta) \), there exists an isomorphism
\[
H^{-p}(D_N(\Gamma(L))^\bullet) \simeq H^{r-p-1}(\Gamma(D(L))^\bullet)
\]
(2.42)
in \(\text{GM}(A) \) for each integer \(p \).

Proposition 2.8 Let \(\Delta \cup \{ \beta \} \) be an oriented lifted complete fan. For any integer \(p, q \), the equality
\[
\dim H^p(\Gamma(L)^\bullet)q = \dim H^{r-p-1}(\Gamma(D(L))^\bullet)_{-r-q}
\]
(2.43)
holds.

Let \(\Delta \) be a finite fan of \(N_\mathbb{R} \) and let \(\Phi \) be a subfan of \(\Delta \). For \(K^\bullet \) in \(\text{CGEM}(\Phi) \), we denote by the same symbol \(K^\bullet \) the trivial extension to \(\Delta \), i.e., we define \(K(\sigma)^\bullet := \{0\} \) for \(\sigma \in \Delta \setminus \Phi \).

For \(L^\bullet \in \text{CGEM}(\Delta) \) and \(\sigma \in \Delta \), we set
\[
i^*_\sigma(L)^\bullet := i^*_\sigma(L|F(\sigma)\setminus\{\sigma\})^\bullet,
\]
(2.44)
where \((L|F(\sigma)\setminus\{\sigma\})^\bullet \) is the restriction of \(L^\bullet \) to \(F(\sigma) \setminus \{\sigma\} \).

We see the case \(\Phi = \Delta \setminus \{\pi\} \) for a maximal element \(\pi \in \Delta \). Let \(L^\bullet \in \text{CGEM}(\Delta) \). Since
\[
i^0_\pi(L)^i = \bigoplus_{\sigma \in F(\pi) \setminus \{\pi\}} L(\sigma)^i_{A(\pi)}
\]
(2.45)
and \(i^*_\pi(L)^i = L(\pi)^i \oplus i^0_\pi(L)^i \) for each \(i \in \mathbb{Z} \), there exists an exact sequence
\[
0 \to L(\pi)^\bullet \longrightarrow i^*_\pi(L)^\bullet \longrightarrow i^0_\pi(L)^\bullet \to 0
\]
(2.46)
in \(\text{CGM}(A(\pi)) \). In other words, \(i^*_\pi(L)^\bullet \) is equal to the mapping cone of the homomorphism
\[
\phi : i^0_\pi(L)[-1]^\bullet \longrightarrow L(\pi)^\bullet
\]
(2.47)
whose component for each $\sigma \in F(\pi) \setminus \{\pi\}$ is $d(\sigma/\pi)_{A(\pi)}$.

The extension of $(L|\Phi)^{\bullet}$ to L^{\bullet} is determined by the above homomorphism ϕ. Actually, if $(L|\Phi)^{\bullet} \in \text{CGEM}(\Phi)$, $L(\pi)^{\bullet}$ and the homomorphism (2.47) is given, then we get the extension L^{\bullet}.

We define a functor $j^{\Phi}_{!} : \text{CGEM}(\Phi) \to \text{CGEM}(\Delta)$ as follows.

For K^{\bullet} in $\text{CGEM}(\Phi)$, we define $j^{\Phi}_{!}(K)^{\bullet}$ by

$$j^{\Phi}_{!}(K)(\sigma)^{\bullet} := K(\sigma)^{\bullet}$$ \hspace{1cm} (2.48)

for $\sigma \in \Phi$ and

$$j^{\Phi}_{!}(K)(\pi)^{\bullet} := i_{\pi}^{\circ}(K)[-1]^{\bullet} = i_{\pi}^{\circ}(K)[-1]^{\bullet}.$$ \hspace{1cm} (2.49)

In particular,

$$j^{\Phi}_{!}(K)(\pi)^{i+1} = \bigoplus_{\sigma \in F(\pi) \setminus \{\pi\}} K(\sigma)^{i}_{A(\pi)}.$$ \hspace{1cm} (2.50)

We define the extension $j^{\Phi}_{!}(K)^{\bullet} \in \text{CGEM}(\Delta)$ of K^{\bullet} by the identity map

$$i_{\pi}^{\circ}(K)[-1]^{\bullet} \longrightarrow j^{\Phi}_{!}(K)(\pi)^{\bullet}.$$ \hspace{1cm} (2.51)

Let (L^{\bullet}, d_{L}) and (K^{\bullet}, d_{K}) be d-complexes in $\text{CGEM}(\Delta)$. By an unmixed homomorphism $f : L^{\bullet} \to K^{\bullet}$, we means a collection $\{f^{i} : i \in \mathbb{Z}\}$ of unmixed homomorphisms $f^{i} : L^{i} \to K^{i}$ such that $d_{K}^{i} \cdot f^{i} = f^{i+1} \cdot d_{L}^{i}$ for every $i \in \mathbb{Z}$. Note that d_{L}^{i} and d_{K}^{i} are not necessary unmixed.

Let L^{\bullet} be an object of $\text{CGEM}(\Delta)$. Then there exists a unique unmixed homomorphism $j^{\Phi}_{!}(L|\Phi)^{\bullet} \to L^{\bullet}$ which is the identity map on Φ. The homomorphism

$$j^{\Phi}_{!}(L|\Phi)(\pi)^{\bullet} = i_{\pi}^{\circ}(L)[-1]^{\bullet} \longrightarrow L(\pi)^{\bullet}$$ \hspace{1cm} (2.52)

is defined to be (2.47).

We can define a functor $j^{\Phi}_{!} : \text{CGEM}(\Phi) \to \text{CGEM}(\Delta)$ for general subfan $\Phi \subset \Delta$ as the composite of the above functors. However, we will not use the general case.
Let π be a maximal element of Δ. For L^\bullet in CGEM(Δ) and an integer k, we define $gt^\geq_k L^\bullet$ by

$$
(gt^\geq_k L)(\sigma)^\bullet = \begin{cases}
L(\sigma)^\bullet & \text{if } \sigma \neq \pi \\
geq^\geq_k L(\pi)^\bullet & \text{if } \sigma = \pi .
\end{cases}
$$

(2.53)

There exists a natural unmixed homomorphism $L^\bullet \rightarrow gt^\geq_k L^\bullet$ such that the components for $\sigma \neq \pi$ are the identity maps and the component for π is the natural surjection $L^\bullet(\pi) \rightarrow gt^\geq_k L(\pi)^\bullet$. This homomorphism is a quasi-isomorphism if and only if $gt^\leq_{k-1} (L^\bullet(\pi))$ is acyclic.

Two objects L^\bullet, K^\bullet in CGEM(Δ) are said to be quasi-isomorphic if there exist a finite sequence $L^\bullet_0, L^\bullet_1, \cdots, L^\bullet_{2k}$ of objects in CGEM(Δ) with $L^\bullet = L^\bullet_0$ and $L^\bullet_{2k} = K^\bullet$ and quasi-isomorphisms $L^\bullet_{2i-2} \rightarrow L^\bullet_{2i-1}$ and $L^\bullet_{2i} \rightarrow L^\bullet_{2i-1}$ for $i = 1, \cdots, k$. Some lemmas on this definition are given at the end this section.

A map $p : \Delta \setminus \{0\} \rightarrow \mathbb{Z}$ is called a perversity on a finite fan Δ. We prove the following theorem.

Theorem 2.9 Let p be a perversity on Δ. Then there exists a finite d-complex $ic_p(\Delta)^\bullet$ of graded exterior modules on Δ satisfying the following conditions.

1. $H^i(ic_p(\Delta)(0)^\bullet) = \mathbb{Q}$ and $H^i(ic_p(\Delta)(0)^\bullet) = \{0\}$ for $i \neq 0$.
2. For $\sigma \in \Delta \setminus \{0\}$ and $i, j \in \mathbb{Z}$ with $i + j \leq p(\sigma)$, we have $H^i(ic_p(\Delta)(\sigma)^\bullet) = \{0\}$.
3. For $\sigma \in \Delta \setminus \{0\}$ and $i, j \in \mathbb{Z}$ with $i + j \geq p(\sigma)$, we have $H^i(i^*_\sigma(ic_p(\Delta))^\bullet) = \{0\}$.

Furthermore, if L^\bullet is another finite d-complex satisfying the above conditions, then L^\bullet is quasi-isomorphic to $ic_p(\Delta)^\bullet$.

Proof. We prove the theorem by induction on the number of cones in Δ. If $\Delta = \{0\}$, then we set $ic_p(\Delta)(0)^0 = \mathbb{Q}$ and $ic_p(\Delta)(0)^i = \{0\}$ for $i \neq 0$. Then (1) and the last assertion are clearly satisfied.
Assume that $\Delta \neq \{0\}$. Let $\pi \in \Delta$ be a cone of maximal dimension. We assume that the d-complex $ic_\Phi(\Phi)^\bullet$ exists for $\Phi = \Delta \setminus \{\pi\}$.

Let $L^\bullet := j_\Phi \cdot ic_\Phi(\Phi)^\bullet$. We define

$$ic_\Phi(\Delta)^\bullet := gt^{\geq p(\pi)+1}_\pi L^\bullet.$$ \hfill (2.54)

Since

$$ic_\Phi(\Delta)(\pi)^\bullet = gt^{\geq p(\pi)+1}_\pi L(\pi)^\bullet,$$ \hfill (2.55)

the truncation $gt_{\leq p(\pi)}(ic_\Phi(\Delta)(\pi))^\bullet$ is the zero complex.

On the other hand, $i_\pi^\bullet ic_\Phi(\Delta)^\bullet$ is equal to the mapping cone

$$(L(\pi)[1] \oplus gt^{\geq p(\pi)+1}_\pi L(\pi))^\bullet$$ \hfill (2.56)

of the natural surjection

$$L(\pi)^\bullet \longrightarrow gt^{\geq p(\pi)+1}_\pi L(\pi)^\bullet.$$ \hfill (2.57)

There exists an exact sequence

$$0 \longrightarrow gt_{\leq p(\pi)} L(\pi)^\bullet \longrightarrow L(\pi)^\bullet \longrightarrow gt^{\geq p(\pi)+1}_\pi L(\pi)^\bullet \longrightarrow 0$$ \hfill (2.58)

of d-complexes in $GM(A(\pi))$. Hence $i_\pi^\bullet ic_\Phi(\Delta)^\bullet$ is quasi-isomorphic to

$$(gt_{\leq p(\pi)} L(\pi))[1]^\bullet = gt_{\leq p(\pi)-1} (L(\pi)[1])^\bullet.$$ \hfill (2.59)

and to $gt_{\leq p(\pi)-1}(L(\pi)[1])^\bullet$. Hence $gt^{\geq p(\pi)} i_\pi^\bullet ic_\Phi(\Delta)^\bullet$ is acyclic. This is equivalent to the condition (3).

For the last assertion, it is sufficient to prove the following lemma.

Lemma 2.10 Let $\pi \neq 0$ be a maximal element of Δ and let $\Phi := \Delta \setminus \{\pi\}$. Let L^\bullet, K^\bullet be objects of $CGEM(\Delta)$ which satisfy the conditions of Theorem 2.9, and assume that there exists a quasi-isomorphism $(L|\Phi)^\bullet \rightarrow (K|\Phi)^\bullet$. Then, L^\bullet and K^\bullet is connected by a finite sequence of unmixed quasi-isomorphisms.
Proof. By the condition (2), the natural homomorphism
\[L^\bullet \to \operatorname{gt}^{\geq p(\sigma)+1}_\pi L^\bullet \] (2.60)
is a quasi-isomorphism. Since \(i^*_\pi(L)^\bullet \) is the mapping cone of the homomorphism \(j^\Phi_i(L|\Phi)^\bullet \to L(\pi)^\bullet \), the condition (3) implies the homomorphism
\[\operatorname{gt}^{\geq p(\sigma)+1}_\pi (j^\Phi_i(L|\Phi))^\bullet \to \operatorname{gt}^{\geq p(\sigma)+1}_\pi L^\bullet \] (2.61)
is also a quasi-isomorphism.

There are similar quasi-isomorphisms for \(K^\bullet \). We are done since the quasi-isomorphism \((L|\Phi)^\bullet \to (K|\Phi)^\bullet \) induces a quasi-isomorphism
\[\operatorname{gt}^{\geq p(\sigma)+1}_\pi (j^\Phi_i(L|\Phi))^\bullet \to \operatorname{gt}^{\geq p(\sigma)+1}_\pi (j^\Phi_i(K|\Phi))^\bullet \] (2.62)
=q.e.d.

Thus we complete the proof of Theorem 2.3.

In the rest of this paper, we denote by \(\operatorname{ic}_p(\Delta)^\bullet \) the \(d \)-complex constructed in the proof of the above theorem, and we call it the intersection complex of the fan \(\Delta \) with the perversity \(p \). It does not depend on the choice of the order of the induction, and is uniquely determined by \(\Delta \) and \(p \). If \(\Phi \) is a subfan of \(\Delta \), then the construction implies that \(\operatorname{ic}_p(\Phi)^\bullet \) is isomorphic to the restriction of \(\operatorname{ic}_p(\Delta)^\bullet \) to \(\Phi \). In particular, \(\operatorname{ic}_p(\Delta)(\sigma)^\bullet = \operatorname{ic}_p(F(\sigma))(\sigma)^\bullet \). Hence the complex \(\operatorname{ic}_p(\Delta)(\sigma)^\bullet \) of \(A(\sigma) \)-modules depends only on \(p \) and \(\sigma \).

Proposition 2.11 Let \(\sigma \) be a nonzero cone of \(\Delta \) and let \(p \) be a perversity on \(\Delta \). Then (1) \(\operatorname{ic}_p(\Delta)(\sigma)^j_i = \{0\} \) unless \((i,j) \in [1,r_{\sigma}] \times [-r_{\sigma},0] \), (2) \(i^*_\sigma(\operatorname{ic}_p(\Delta))^j_i = \{0\} \) unless \((i,j) \in [0,r_{\sigma}-1] \times [-r_{\sigma},0] \) and (3) \(i^*_\sigma(\operatorname{ic}_p(\Delta))^j_i = \{0\} \) unless \((i,j) \in [0,r_{\sigma}] \times [-r_{\sigma},0] \). Furthermore, \(\Gamma(\operatorname{ic}_p(\Delta))^j_i = \{0\} \) unless \((i,j) \in [0,r] \times [-r,0] \).

Proof. We prove the proposition by induction on \(r_{\sigma} \). Note that \(\operatorname{ic}_p(\Delta)(0)^j_i = \{0\} \) unless \((i,j) = (0,0) \) by the construction of \(\operatorname{ic}_p(\Delta)^\bullet \).
Let \(\eta, \sigma \) be cones in \(\Delta \) with \(\eta \prec \sigma \). Recall that, if we take an \((r_\sigma - r_\eta)\)-dimensional linear subspace \(H \) of \(N(\sigma)q \) such that \(N(\sigma)q = N(\eta)q \oplus H \), then \(V_{A(\sigma)} = V \otimes_q A(H) \) for \(V \in GM(A(\eta)) \). Hence, if \(V_j = \{0\} \) unless \(j \in [a, b] \) for integers \(a, b \) with \(a \leq b \), then \((V_{A(\sigma)})_j = \{0\} \) unless \(j \in [a - (r_\sigma - r_\eta), b] \).

Since

\[
i^\sigma_\sigma(i_{Cp}(\Delta))^i = \bigoplus_{\eta \in F(\sigma) \setminus \{\sigma\}} i_{Cp}(\Delta)(\eta)^i_{A(\sigma)}, \tag{2.63}\]

(2) is a consequence of (1) for \(\eta \in F(\sigma) \setminus \{\sigma\} \) which are true by the assumption of the induction. Since

\[
i_{Cp}(\Delta)(\sigma)^i = g_{t \geq p(\sigma) + 1}(i^\sigma_{Cp}(\Delta)[-1])^i, \tag{2.64}\]

(1) follows from (2). Since

\[
i^\sigma_{Cp}(\Delta))_i = i^\sigma_{Cp}(\Delta))^i \oplus i_{Cp}(\Delta)(\sigma)^i \tag{2.65}\]

for every \(i \in \mathbb{Z} \), (3) follows from (1) and (2).

Since

\[
\Gamma(i_{Cp}(\Delta)^i = \bigoplus_{\sigma \in \Delta} i_{Cp}(\Delta)(\sigma)^i \tag{2.66}\]

for every \(i \), the last assertion is a consequence of (1) for all \(\sigma \in \Delta \setminus \{0\} \). q.e.d.

Corollary 2.12 For any perversity \(p \) on \(\Delta \), \(D(i_{Cp}(\Delta))^* \) is quasi-isomorphic to \(ic_{-p}(\Delta)^* \).

Proof. It is sufficient to show that \(D(i_{Cp}(\Delta))^* \) satisfies the conditions of the theorem for the perversity \(-p\). (1) is satisfied since \(D(i_{Cp}(\Delta))(0)^i = Q \) and \(D(i_{Cp}(\Delta))(0)^i = \{0\} \) for \(i \neq 0 \) by the definition of \(D \).

We check the conditions (2) and (3) for each \(\sigma \) in \(\Delta \setminus \{0\} \).

Since \(D(i_{Cp}(\Delta))(\sigma)^* = \text{det}(\sigma) \otimes D_\sigma(i^\sigma_{Cp}(\Delta))[-r_\sigma]^* \), the condition (3) of the theorem and Lemma [1,3] imply that \(g_{t \leq -p(\sigma)}(D(i_{Cp}(\Delta))(\sigma))^* \) is acyclic, i.e., (2) for \(-p\).
By Lemma 2.2, ic$^p(\Delta)(\sigma)^\bullet$ is quasi-isomorphic to $D(D(ic^p(\Delta))(\sigma))^\bullet$. Hence $gt_{\leq p(\sigma)}(D(D(ic^p(\Delta))(\sigma))^\bullet)$ is acyclic by (2) for $ic^p(\Delta)(\sigma)^\bullet$. Since
\[
det(\sigma) \otimes D_\sigma(i_\sigma^* D(ic^p(\Delta)))^\bullet = D(D(ic^p(\Delta))(\sigma)[r_\sigma]^\bullet, \tag{2.67}
\]
Lemma 1.6 implies that $gt_{\geq -p(\sigma)}(i_\sigma^* D(ic^p(\Delta)))^\bullet$ is acyclic, i.e., (3) for $-p^\bullet$. q.e.d.

Two homomorphisms $f, g : L^\bullet \to K^\bullet$ in CGEM(\Delta) are said to be homotopic if there exists a collection of homomorphisms \{u_i : L_i \to K_{i-1}^\bullet ; i \in \mathbb{Z}\} in GEM(\Delta) such that
\[
f^i - g^i = d_{K}^{i-1} \cdot u^i + u^{i+1} \cdot d_L^i \tag{2.68}
\]
for every $i \in \mathbb{Z}$. If f and g are homotopic, then $f(\sigma), g(\sigma) : L(\sigma)^\bullet \to K(\sigma)^\bullet$ and $i_\sigma^* (f), i_\sigma^* (g) : i_\sigma^* L^\bullet \to i_\sigma^* K^\bullet$ for $\sigma \in \Delta$ as well as $\Gamma(f), \Gamma(g) : \Gamma(L)^\bullet \to \Gamma(K)^\bullet$ are homotopic as complexes in abelian categories. Actually, it is sufficient to take \{u^i(\sigma/\sigma)\}, \{i_\sigma^* (u^i)\} and \{\Gamma(u^i)\}, respectively. In particular, the maps of the cohomologies induced by the two homomorphisms of the complexes are respectively equal.

We give here some elementary lemmas on the quasi-isomorphism property in CGEM(\Delta).

Lemma 2.13 Let $f_1 : L_1^\bullet \to L_2^\bullet$ be a quasi-isomorphism and $f_2 : L_1^\bullet \to L_3^\bullet$ a homomorphism in CGEM(\Delta). Then there exist L_4^\bullet in CGEM(\Delta), a quasi-isomorphism $g_1 : L_3^\bullet \to L_4^\bullet$ and a homomorphism $g_2 : L_2^\bullet \to L_4^\bullet$ such that the homomorphisms $g_2 \cdot f_1$ and $g_1 \cdot f_2$ are homotopic. If f_2 is a quasi-isomorphism, then so is g_2.

Lemma 2.14 Let $g_1 : L_3^\bullet \to L_4^\bullet$ be a quasi-isomorphism and $g_2 : L_2^\bullet \to L_4^\bullet$ a homomorphism in CGEM(\Delta). Then there exist L_1^\bullet in CGEM(\Delta), a quasi-isomorphism $f_1 : L_1^\bullet \to L_2^\bullet$ and a homomorphism $f_2 : L_1^\bullet \to L_3^\bullet$ such that the homomorphisms $g_2 \cdot f_1$ and $g_1 \cdot f_2$ are homotopic. If g_2 is a quasi-isomorphism, then so is f_2. 30
We get these lemmas by setting L^4_1 and L^4_2 the mapping cones of the homomorphisms $L^1_1 \rightarrow L^2_1 \oplus L_3$ and $L^2_1 \oplus L_3 \rightarrow L^4_1$, respectively.

By applying these lemmas, we get the following equivalent conditions.

Lemma 2.15 For L^\bullet, K^\bullet in CGEM(Δ), the following conditions are equivalent.

1. L^\bullet is quasi-isomorphic to K^\bullet.
2. There exists J^\bullet in CGEM(Δ) and quasi-isomorphisms $L^\bullet \rightarrow J^\bullet$ and $K^\bullet \rightarrow J^\bullet$.
3. There exists I^\bullet in CGEM(Δ) and quasi-isomorphisms $I^\bullet \rightarrow L^\bullet$ and $I^\bullet \rightarrow K^\bullet$.

Lemma 2.16 Let $f_1 : L^1_1 \rightarrow K^1_1$ be a homomorphism in CGEM(Δ). Assume that L^2_2, K^2_2 in CGEM(Δ) are quasi-isomorphic to L^1_1 and K^1_1, respectively. Then there exist K^3_3 in CGEM(Δ), a quasi-isomorphism $K^2_2 \rightarrow K^3_3$ and a homomorphism $f_2 : L^2_2 \rightarrow K^3_3$ such that the diagrams

$$
\begin{align*}
\text{H}^i(\Gamma(L^1_1^\bullet)) & \rightarrow \text{H}^i(\Gamma(K^1_1^\bullet)) \\
\text{H}^i(\Gamma(L^2_1^\bullet)) & \rightarrow \text{H}^i(\Gamma(K^3_3^\bullet))
\end{align*}
$$

(2.69)

of the cohomologies are commutative for all $i \in \mathbb{Z}$.

There exist also L^3_3 in CGEM(Δ), a quasi-isomorphism $L^3_3 \rightarrow L^2_2$ and a homomorphism $f_3 : L^3_3 \rightarrow K^2_2$ with the similar compatibility with f_1.

Proof. By Lemma 2.15, there exists L^0_0 and quasi-isomorphisms $g_1 : L^0_0 \rightarrow L^1_1$ and $g_2 : L^0_0 \rightarrow L_2$. By applying Lemma 2.14 for $f_1 \cdot g_1$ and g_2, we get K^0_0 with a quasi-isomorphism $K^1_1 \rightarrow K^0_0$ and a homomorphism $h_0 : L^2_2 \rightarrow K^0_0$ with the compatibility condition. Since K^0_0 is quasi-isomorphic to K_2, there exists K^3_3 and quasi-isomorphisms $h_1 : K^0_0 \rightarrow K^3_3$ and $K^2_2 \rightarrow K^3_3$ by Lemma 2.15. It is sufficient to set $f_3 := h_1 \cdot h_0$.

The second assertion is proved similarly. q.e.d.
3 The algebraic theory on toric varieties

In this section, we construct a functor from the category of graded exterior modules to that of complexes on the toric variety associated to the fan. For a finite fan Δ, we denote by $Z(\Delta)$ the associated toric variety defined over \mathbb{Q} (cf. [O1]).

We start with the case of an affine toric variety. Assume that Δ is $F(\pi)$, i.e. the set of all faces of a cone π in \mathbb{N}_R.

We denote by $\mathbb{Q}[M]$ the group ring $\bigoplus_{m \in M} \mathbb{Q}e(m)$ defined by $e(m)e(m') = e(m + m')$ for $m, m' \in M$ and $e(0) = 1$. This \mathbb{Q}-algebra has a grading in the free \mathbb{Z}-module M. For a subset U of M, we denote $\mathbb{Q}[U] := \bigoplus_{m \in U} \mathbb{Q}e(m)$. Note that $1 \not\in \mathbb{Q}[U]$ if $0 \not\in U$.

For the subsemigroup $M \cap \pi^\vee \subset M$, we denote by $S(\pi)$ the M-graded \mathbb{Q}-subalgebra $\mathbb{Q}[M \cap \pi^\vee]$ of $\mathbb{Q}[M]$. Then the affine toric variety $Z(F(\pi))$ is equal to $\text{Spec } S(\pi)$. The algebraic torus T_N is equal to $\text{Spec } \mathbb{Q}[M]$ and the reduced complement $Z(F(\pi)) \setminus T_N$ is defined by the ideal $J(\pi) := \mathbb{Q}[M \cap \text{int } \pi^\vee]$.

The logarithmic de Rham complex $\Omega_{S(\pi)}(\log J(\pi))^\bullet$ is defined as follows.

We set
\[
\Omega_{S(\pi)}(\log J(\pi))^1 := S(\pi) \otimes M
\]
and
\[
\Omega_{S(\pi)}(\log J(\pi))^i := \bigwedge_i \Omega_{S(\pi)}(\log J(\pi))^1 = S(\pi) \otimes \bigwedge_i M
\]
for $0 \leq i \leq r$, where the exterior powers are taken as an $S(\pi)$-module and as a \mathbb{Z}-module, respectively. These are clearly free $S(\pi)$-modules. By the notation $A^* = A(M_\mathbb{Q}) = \wedge^* M_\mathbb{Q}$, the direct sum $\bigoplus_{i=0}^r \Omega_{S(\pi)}(\log J(\pi))^i$ is equal to the M-graded free $S(\pi)$-module
\[
S(\pi) \otimes_\mathbb{Q} A^* = \bigoplus_{m \in M \cap \pi^\vee} \mathbb{Q}e(m) \otimes_\mathbb{Q} A^*.
\]

The \mathbb{Q}-endomorphism ∂ of this $S(\pi)$-module is defined to be the M-homogeneous morphism such that the the restriction to the component $\mathbb{Q}e(m) \otimes_\mathbb{Q} A^*$ is $1 \otimes d_m$ for
each $m \in M \cap \pi^\vee$, where d_m is the left multiplication of m. Since $\partial(\Omega_S(\pi)(\log J(\pi))^i) \subset \Omega_S(\pi)(\log J(\pi))^{i+1}$ for each i, $\Omega_S(\pi)(\log J(\pi))^\bullet$ is a ∂-complex of M-graded Q-vector spaces.

For each face σ of π, $\pi^\vee \cap \sigma^\perp$ is a face of the dual cone $\pi^\vee \subset M_R$. Furthermore, it is known that the correspondence $\sigma \mapsto \pi^\vee \cap \sigma^\perp$ defines a bijection from $F(\pi)$ to $F(\pi^\vee)$ [O1, Prop.A.6].

For each $\sigma \in F(\pi)$, we denote by $P(\pi; \sigma)$ the M-homogeneous prime ideal
\[
Q[M \cap (\pi^\vee \setminus \sigma^\perp)] = \bigoplus_{m \in M \cap (\pi^\vee \setminus \sigma^\perp)} Qe(m)
\] (3.4)
of $S(\pi)$. The M-homogeneous quotient ring $S(\pi)/P(\pi; \sigma)$ is denoted by $S(\pi; \sigma)$. We denote the image of $e(m)$ in $S(\pi; \sigma)$ for $m \in M \cap \pi^\vee \cap \sigma^\perp$ also by $e(m)$. Since $M[\sigma] = M \cap \sigma^\perp$, we have a description $S(\pi; \sigma) = \bigoplus_{m \in M[\sigma] \cap \pi^\vee} Qe(m).

Let $J(\pi; \sigma)$ be the ideal $Q[M[\sigma] \cap \text{rel.int}(\pi^\vee \cap \sigma^\perp)]$ of $S(\pi; \sigma)$. The ∂-complex $\Omega_{S(\pi; \sigma)}(\log J(\pi; \sigma))^\bullet$ is defined to be $S(\pi; \sigma) \otimes_Q A^*[\sigma]$ with the M-homogeneous Q-homomorphism ∂ defined similarly as above, where $A^*[\sigma] = \wedge^\bullet M[\sigma]_Q$. Note that $\Omega_{S(\pi; 0)}(\log J(\pi; 0))^\bullet$ is equal to $\Omega_{S(\pi)}(\log J(\pi))^\bullet$.

We denote by $\text{Coh}(S(\pi))$ the category:

object: A finitely generated M-graded $S(\pi)$-module.

morphism: An M-homogeneous $S(\pi)$-homomorphism of M-degree zero.

A Q-homomorphism $\delta : F \to G$ of $S(\pi)$-modules is said to be a **differential operator of order one** if the map $(\delta \cdot f - f \cdot \delta) : F \to G$ defined by $(\delta \cdot f - f \cdot \delta)(x) := \delta(f(x)) - f(\delta(x))$ is an $S(\pi)$-homomorphism for every $f \in S(\pi)$. We denote by $\text{CCohDiff}(S(\pi))$ the category:

object: A finite ∂-complex F^\bullet such that F^i’s are in $\text{Coh}(S(\pi))$ and ∂ is M-homogeneous of M-degree zero and is a differential operator of order one.
morphism: An M-homogeneous $S(\pi)$-homomorphism of M-degree zero.

We construct a functor $\Lambda_{S(\pi)}$ from the category $\text{GEM}(F(\pi))$ of graded exterior modules on $F(\pi)$ to this category $\text{CCohDiff}(S(\pi))$.

Let ρ be a cone in $F(\pi)$. Recall that an object V of $\text{GM}(A(\rho))$ is a finitely generated graded $A(\rho)$-module and the A-module V_A has a structure of a free $A^*[\rho]$-module (cf. Lemma 1.3). Each $m \in M[\rho] = M \cap \rho^\perp$ is a homogeneous element of $A^*[\rho]$ of degree one. We denote by d_m the left operation of m on V_A. Then $d_m^2 = 0$ since $m \wedge m = 0$. For each $m \in M[\rho]$, we denote by $V_A(m)^\bullet$ the ∂-complex defined by $V_A(m)^i := (V_A)_i$ for each $i \in \mathbb{Z}$ and $\partial := d_m$.

We set $\Lambda^\rho_{S(\pi)}(V)^i := S(\pi; \rho) \otimes \mathbb{Q}(V_A)_i$ for each integer i. We define the ∂-complex $\Lambda^\rho_{S(\pi)}(V)^\bullet$ by

$$
\Lambda^\rho_{S(\pi)}(V)^\bullet := S(\pi; \rho) \otimes \mathbb{Q} V_A = \bigoplus_{m \in M[\rho] \cap \pi^\vee} \mathbb{Q}e(m) \otimes \mathbb{Q} V_A(m)^\bullet,
$$

i.e., the its m-component of ∂ is $1_{\mathbb{Q}e(m)} \otimes d_m$ for every $m \in M[\rho] \cap \pi^\vee$.

In order to check that ∂ is a differential operator of order one, it is sufficient to show the $S(\pi; \rho)$-linearly $\partial \cdot e(m_0) - e(m_0) \cdot \partial$ for $m_0 \in M \cap \pi^\vee$. Since $P(\pi; \rho)$ is the annihilator of $S(\pi; \rho)$, $\partial \cdot e(m_0) - e(m_0) \cdot \partial = 0$ if $m_0 \notin M[\rho]$. Assume $m_0, m_1 \in M[\rho] \cap \pi^\vee$ and $x \in V_A$. For any $m \in M[\rho] \cap \pi^\vee$, we have

$$(\partial \cdot e(m_0) - e(m_0) \cdot \partial)(e(m)e(m_1) \otimes x)$$

$$= \partial(e(m + m_0 + m_1) \otimes x) - e(m_0)\partial(e(m + m_1) \otimes x)$$

$$= e(m + m_0 + m_1) \otimes (m + m_0 + m_1)x - e(m + m_0 + m_1) \otimes (m + m_1)x$$

$$= e(m + m_0 + m_1) \otimes m_0x$$

$$= e(m + m_0 + m_1) \otimes (m_0 + m_1)x - e(m + m_0 + m_1) \otimes m_1x$$

$$= e(m)(\partial \cdot e(m_0) - e(m_0) \cdot \partial)(e(m_1) \otimes x).$$

Hence $\partial \cdot e(m_0) - e(m_0) \cdot \partial$ is an $S(\pi; \rho)$-homomorphism.
Proposition 3.1 Let ρ be in $F(\pi)$ and V in $GM(A(\rho))$. Then $\Lambda^\rho_{\pi}(V)^\bullet$ is isomorphic to a finite direct sum of subcomplexes which are isomorphic to dimension shifts of $\Omega_{\pi;\rho}(\log J(\rho))^\bullet$.

Proof. By Lemma 1.3, V_A is a free $A^*\rho$-module. Let $\{x_1, \cdots, x_s\}$ be a homogeneous basis. By the definition of ∂, the decomposition

$$\Lambda^\rho_{\pi}(V)^\bullet = \bigoplus_{i=1}^s S(\pi; \rho) \otimes Q A^*\rho x_i$$

(3.6)

is a direct sum of subcomplexes. Furthermore, there exists an isomorphism

$$\Omega_{\pi;\rho}(\log J(\rho))[-\deg x_i]^{\bullet} \rightarrow (S(\pi; \rho) \otimes Q A^*\rho x_i)^{\bullet}$$

(3.7)

for each i. $\quad q.e.d.$

For a homomorphism $f : V \rightarrow W$ in $GM(A(\rho))$, the $S(\pi)$-homomorphism $\Lambda^\rho_{\pi}(f) : \Lambda^\rho_{\pi}(V)^\bullet \rightarrow \Lambda^\rho_{\pi}(W)^\bullet$ of ∂-complexes is defined by $\Lambda^\rho_{\pi}(f) = 1_{S(\pi)} \otimes f_A$. Since f_A is an $A^*\rho$-homomorphism, $\Lambda^\rho_{\pi}(f)$ commutes with the coboundry maps of $\Lambda^\rho_{\pi}(V)^\bullet$ and $\Lambda^\rho_{\pi}(W)^\bullet$.

Proposition 3.2 Let σ, ρ be cones in $F(\pi)$ with $\sigma \prec \rho$. For V in $GM(A(\sigma))$, there exists a natural isomorphism

$$\Lambda^\sigma_{\pi}(V)^\bullet \otimes_{S(\pi;\sigma)} S(\pi; \rho) \simeq \Lambda^\rho_{\pi}(V_A(\rho))^\bullet$$

(3.8)

of M-graded ∂-complexes.

Proof. $\Lambda^\sigma_{\pi}(V)^\bullet \otimes_{S(\pi;\sigma)} S(\pi; \rho)$ is actually an M-graded ∂-complex since it is the quotient of $\Lambda^\sigma_{\pi}(V)^\bullet$ by the M-homogeneous subcomplex $P(\pi; \rho)\Lambda^\sigma_{\pi}(V)^\bullet$. Both sides are equal to $S(\pi; \rho) \otimes Q V_A$ by the identification $(V_A(\rho))_A = V_A$. The differential operators commute with the identification since the m-components of them for $m \in M(\rho) \cap \pi^\vee$ are both the operation d_m. $\quad q.e.d.$

35
For L in $\text{GEM}(F(\pi))$, we define the ∂-complex $\Lambda_{S(\pi)}(L)^\bullet$ in $\text{CCohDiff}(S(\pi))$ by

$$
\Lambda_{S(\pi)}(L)^\bullet := \bigoplus_{\sigma \in F(\pi)} \Lambda^\rho_{S(\pi)}(L(\rho))^\bullet, \quad (3.9)
$$

where the coboundary map ∂ is also defined as the direct sum.

Let $f : L \to K$ be a morphism in $\text{GEM}(F(\pi))$. We define an M-homogeneous $S(\pi)$-homomorphism $\Lambda_{S(\pi)}(f) : \Lambda_{S(\pi)}(L)^\bullet \to \Lambda_{S(\pi)}(K)^\bullet$ of ∂-complexes as follows.

For $\sigma, \rho \in F(\pi)$, the (σ, ρ)-component of the morphism $\Lambda_{S(\pi)}(f) : \Lambda_{S(\pi)}(L)^\bullet \to \Lambda_{S(\pi)}(K)^\bullet$ is defined to be the composite of the natural surjection

$$
\Lambda^\sigma_{S(\pi)}(L(\sigma))^\bullet \to \bigoplus_{\rho \in F(\pi)} \Lambda^\rho_{S(\pi)}(K(\rho))^\bullet
$$

and

$$
1_{S(\pi;\rho)} \otimes f(\sigma/\rho)_A : \Lambda^\rho_{S(\pi)}(L(\sigma)_{A(\rho)})^\bullet \to \Lambda^\rho_{S(\pi)}(K(\rho))^\bullet
$$

if $\sigma \prec \rho$ and is defined to be the zero map otherwise. Then $\Lambda_{S(\pi)}$ is a covariant functor from $\text{GEM}(\Delta)$ to $\text{CCohDiff}(S(\pi))$.

Let k be a field. For a topological space X, we denote by k_X the sheaf of rings with the constant stalk k. A k_X-module on X is called a k-sheaf and a k_X-homomorphism of k_X-modules is called simply a k-homomorphism. In this paper, we treat only the cases $k = \mathbb{Q}$ and $k = \mathbb{C}$.

Let \mathcal{O}_X be a sheaf of commutative k-algebras. A k-homomorphism $f : F \to G$ of \mathcal{O}_X-modules F, G is said to be a differential operator of order one if the k-homomorphism $f(U) : F(U) \to G(U)$ is a differential operator of order one of $\mathcal{O}_X(U)$-modules for every open subset $U \subset X$.

For a finitely generated $S(\pi)$-module E, we denote by $\mathcal{F}(E)$ the associated coherent sheaf on the affine scheme $\text{Spec } S(\pi)$. If $d : E \to G$ is a differential operator of
order one of finitely generated $S(\pi)$-modules, then it defines a differential operator $F(d) : F(E) \to F(G)$ of order one of $\mathcal{O}_{Z(F(\pi))}$-modules on the affine toric variety $Z(F(\pi))$. If $(E^\bullet, \partial = (\partial_E))$ is a ∂-complex such that each E^i is a finitely generated $S(\pi)$-module and ∂ is a differential operator of order one, then we denote by $F(E)^\bullet$ the ∂-complex on $Z(F(\pi))$ with the coboundary map $\partial = (F(\partial_E))$.

Let μ be an element of $F(\pi)$. Take an element $m \in M \cap \text{rel. int}(\pi^\vee \cap \mu^\perp)$. Since $\mu^\vee = \pi^\vee + \mathbf{R}(-m)$ [\text{Cor.A.7}], $S(\mu) := \mathbf{Q}[M \cap \mu^\vee]$ is equal to the localization $S(\pi)[\mathbf{e}(m)^{-1}]$. For any $\rho \in F(\pi)$, we see easily that $S(\pi; \rho) \otimes_{S(\pi)} S(\mu)$ is equal to $S(\mu; \rho)$ if $\rho \prec \mu$ and is $\{0\}$ otherwise.

Lemma 3.3 Let μ be an element of $F(\pi)$. For $\rho \in F(\mu)$ and V in $\text{GM}(A(\rho))$, the localization $\Lambda^\rho_{S(\pi)}(V)^\bullet \otimes_{S(\pi)} S(\mu)$ is equal to $\Lambda^\rho_{S(\mu)}(V)^\bullet$.

For L in $\text{GEM}(F(\pi))$, the localization $\Lambda_{S(\pi)}(L)^\bullet \otimes_{S(\pi)} S(\mu)$ of ∂-complex is equal to $\Lambda_{S(\mu)}(L|F(\mu))^\bullet$, where $L|F(\mu)$ is the restriction of L to $F(\mu)$.

Proof. The first equality is clear as $S(\mu)$-modules. The coboundary maps ∂ are compatible with the inclusion $\Lambda^\rho_{S(\pi)}(V)^\bullet \subset \Lambda^\rho_{S(\mu)}(V)^\bullet$ since they are defined as the direct sums of $\mathbf{Q}\mathbf{e}(m) \otimes_{\mathbf{Q}} V_A(m)^\bullet$’s. Since differential operators are extended to localizations uniquely, they are equal as ∂-complexes.

Since $\Lambda_{S(\pi)}(L)^\bullet$ and $\Lambda_{S(\mu)}(L)^\bullet$ are defined as the direct sums of $\Lambda^\rho_{S(\pi)}(L(\rho))^\bullet$ for $\rho \in F(\pi)$ and $\Lambda^\rho_{S(\mu)}(L(\rho))^\bullet$ for $\rho \in F(\mu)$, respectively, the second assertion follows from the first. \hspace{1cm} q.e.d.

Let Δ be a finite fan of $N_{\mathbf{R}}$. The toric variety $Z(\Delta)$ has the affine open covering $\bigcup_{\pi \in \Delta} Z(F(\pi))$. The reduced divisor $D(\Delta) := Z(\Delta) \setminus T_N$ is defined by the ideal $J(\pi) \subset S(\pi)$ on each affine open subscheme $Z(F(\pi))$.

The logarithmic de Rham complex $\Omega_{Z(\Delta)}(\log D(\Delta))^\bullet$ is defined by

$$\Omega_{Z(\Delta)}(\log D(\Delta))^\bullet := \mathcal{O}_{Z(\Delta)} \otimes_{\mathbf{Q}} A^*.$$ (3.13)
We define the coboundary map \(\partial = (\partial^i : i \in \mathbb{Z}) \)

\[
\partial^i : \Omega_{Z(D)}(\log D)^i \to \Omega_{Z(D)}(\log D)^{i+1}
\]

so that the restriction to \(Z(F(\pi)) \) is equal to \(\partial \) of \(\mathcal{F}(\Omega_{S(\pi)}(\log J(\pi)))^\bullet \) for each \(\pi \in \Delta \).

Although it is common to write a logarithmic de Rham complex as \(\Omega_X(\log D) \), we put the dot at the right end as \(\Omega_X(\log D)^\bullet \) for the compatibility with the other notation in this paper.

For each \(\sigma \in F(\rho) \), the subscheme \(\text{Spec } S(\rho; \sigma) \) of \(Z(F(\rho)) \) is denoted by \(X(\rho; \sigma) \).

In particular, \(X(\rho; \rho) \) is the algebraic torus \(T_N[\rho] := \text{Spec } \mathbb{Q}[M[\rho]] \) of dimension \(r - r_\rho \).

In order to simplify the notation, we set \(T := T_N \) and \(T[\rho] := T_N[\rho] \) for each \(\rho \in \Delta \).

Then the toric variety \(Z(\Delta) \) is decomposed as the disjoint union

\[
\bigcup_{\rho \in \Delta} T[\rho]
\]

of \(T \)-orbits \([11], \text{Prop.1.6}\).

For each \(\sigma \in \Delta \), we denote by \(X(\Delta; \sigma) \) or simply \(X(\sigma) \) the union of \(X(\rho; \sigma) \) for \(\rho \in \Delta \) with \(\sigma \prec \rho \). \(X(\sigma) \) is a \(T \)-invariant irreducible closed subvariety of \(Z(\Delta) \).

For each \(\sigma \in \Delta \), let \(N[\sigma] := N/N(\sigma) \). For each \(\rho \in \Delta \) with \(\sigma \prec \rho \), we denote by \(\rho[\sigma] \) the image of \(\rho \) in \(N[\sigma]_R := N_R/N(\sigma)_R \). Then \(\Delta[\sigma] := \{ \rho[\sigma] : \rho \in \Delta, \sigma \prec \rho \} \) is a fan of \(N[\sigma]_R \). It is known that \(X(\sigma) \subset Z(\Delta) \) is equal to the toric variety \(Z(\Delta[\sigma]) \) with the torus \(T[\sigma] \) \([11], \text{Cor.1.7}\). The reduced complement \(X(\sigma) \setminus T[\sigma] \) is denoted by \(D(\Delta; \sigma) \) or \(D(\sigma) \).

We define

\[
\Omega_{X(\sigma)}(\log D(\sigma))^\bullet := \mathcal{O}_{X(\sigma)} \otimes_{\mathbb{Q}} A^*[\sigma]
\]

and \(\partial \) of it is defined so that the restriction to the affine open subscheme \(Z(F(\rho)) \) is equal to that of \(\mathcal{F}(\Omega_{S(\rho; \sigma)}(\log J(\rho; \sigma)))^\bullet \) for every \(\rho \in \Delta \) with \(\sigma \prec \rho \).
For each $V \in \text{GM}(A(\sigma))$, we define the ∂-complex $\Lambda_{Z(\Delta)}^\sigma(V)^\bullet$ on $Z(\Delta)$ by

$$
\Lambda_{Z(\Delta)}^\sigma(V)^\bullet := \mathcal{O}_{X(\sigma)} \otimes_\mathbb{Q} V_A.
$$

The coboundary map ∂ is defined so that the restriction to each open set $Z(F(\rho))$ is equal to that of $\mathcal{F}(\Lambda_{S(\rho)}^\sigma(V))^\bullet$ for every $\rho \in \Delta$ with $\sigma \prec \rho$.

Note that M-gradings of $\Lambda_{S(\rho)}^\sigma(V)^\bullet$ for $\rho \in \Delta$ induce a natural T-action on the ∂-complex $\Lambda_{Z(\Delta)}^\sigma(V)^\bullet$.

The following propositions follow from Propositions 3.1 and 3.2, respectively.

Proposition 3.4 Let ρ be in Δ and V in $\text{GM}(A(\rho))$. Then $\Lambda_{Z(\Delta)}^\rho(V)^\bullet$ is isomorphic to a finite direct sum of subcomplexes which are isomorphic to dimension shifts of $\Omega_{X(\rho)}(\log D(\rho))^\bullet$.

Proposition 3.5 Let σ, ρ be cones in Δ with $\sigma \prec \rho$. For V in $\text{GM}(A(\sigma))$, there exists a natural T-equivariant isomorphism

$$
\Lambda_{Z(\Delta)}^\sigma(V)^\bullet \otimes_{\mathcal{O}_{X(\sigma)}} \mathcal{O}_{X(\rho)} \simeq \Lambda_{Z(\Delta)}^\rho(V_{A(\rho)})^\bullet
$$

of ∂-complexes.

Let V^\bullet be in $\text{CGM}(A(\sigma))$. Then the bicomplex $\Lambda_{Z(\Delta)}^\sigma(V)^{\bullet,\bullet}$ is defined by

$$
\Lambda_{Z(\Delta)}^\sigma(V)^{i,j} := \Lambda_{Z(\Delta)}^\sigma(V^i)^j
$$

for $i, j \in \mathbb{Z}$ and $d_1 := d$ and $d_2 := \partial$. We denote by $\Lambda_{Z(\Delta)}^\sigma(V)^\bullet$ the associated single complex and by δ the coboundary map.

For each object L of $\text{GEM}(\Delta)$, we set

$$
\Lambda_{Z(\Delta)}^\sigma(L)^\bullet := \bigoplus_{\sigma \in \Delta} \Lambda_{Z(\Delta)}^\sigma(L(\sigma))^\bullet.
$$
For a morphism $f : L \to K$ in $\text{GEM}(\Delta)$, the T-equivariant homomorphism

$$\Lambda_{Z(\Delta)}(f) : \Lambda_{Z(\Delta)}(L)\bullet \longrightarrow \Lambda_{Z(\Delta)}(K)\bullet$$

(3.21)

is defined naturally. Then $\Lambda_{Z(\Delta)}$ is a covariant functor from $\text{GEM}(\Delta)$ to the category $\text{CCohDiff}(Z(\Delta))$ which is defined naturally as the globalization of $\text{CCohDiff}(S(\pi))$.

Let $L\bullet$ be a d-complex in $\text{CGEM}(\Delta)$. Then the bicomplex $\Lambda_{Z(\Delta)}(L)^{\bullet,\bullet}$ is defined by

$$\Lambda_{Z(\Delta)}(L)^{i,j} := \Lambda_{Z(\Delta)}(L_i)^j$$

(3.22)

for $i, j \in \mathbb{Z}$. Note that $d_1 := d$ of this bicomplex is a $\mathcal{O}_{Z(\Delta)}$-homomorphism and $d_2 := \partial$ is a differential operator of order one. If there is no danger of confusion, we denote by $\Lambda_{Z(\Delta)}(L)^{\bullet}$ the associated single complex. The coboundary map, which we denote by δ, is a differential operator of order one. For each integer j, we denote by $\Lambda_{Z(\Delta)}(L)^{j,\bullet}$ the d-complex $\Lambda_{Z(\Delta)}(L)^{\bullet,j}$. Then $\Lambda_{Z(\Delta)}(L)^{j,\bullet}$ is a finite d-complex in the category of coherent \mathcal{O}_{Z}-modules.

If the fan Δ is complete, then the toric variety $Z(\Delta)$ is complete. For the functor $\Gamma : \text{GEM}(\Delta) \to \text{GM}(A)$ defined in Section 1, we get the following lemma.

Lemma 3.6 Assume that Δ is a complete fan. Let $L\bullet$ be an object of $\text{CGEM}(\Delta)$.

For any integers p, q, we have an isomorphism

$$H^p(Z(\Delta), \Lambda_{Z(\Delta)}(L)^{\bullet}) \simeq H^p(\Gamma(L)^{\bullet})_q$$

(3.23)

of finite dimensional \mathbb{Q}-vector spaces, where the lefthand side is the hypercohomology group of the complex of coherent sheaves on $Z(\Delta)$.

Proof. For each $\sigma \in \Delta$, we have $H^0(X(\sigma), \mathcal{O}_{X(\sigma)}) = \mathbb{Q}$ and $H^p(X(\sigma), \mathcal{O}_{X(\sigma)}) = \{0\}$ for $p > 0$, since $X(\sigma)$ is a complete toric variety [O1, Cor.2.8]. Since $\Lambda_{Z(L)}^p = \Lambda_{Z(L)}^{p,q}$ is a direct sum for $\sigma \in \Delta$ of free $\mathcal{O}_{X(\sigma)}$-modules for every $p \in \mathbb{Z}$, the
hypercohomology $H^p(Z(\Delta), \Lambda^\ast Z(L)_{q})$ is equal to the p-th cohomology of the complex $\Gamma(Z, \Lambda^\ast Z(L)_{q})$ of \mathbb{Q}-vector spaces. For any $\sigma \in \Delta$ and $p, q \in \mathbb{Z}$, we have

$$\Gamma(Z, \Lambda^\ast Z(L(\sigma))_q)^p = (L(\sigma)_\Delta^p)_q.$$ \hspace{1cm} (3.24)

Hence $\Gamma(Z, \Lambda^\ast Z(L)_{q})$ is isomorphic to $\Gamma(L)_{q}^\ast$ as a complex of \mathbb{Q}-vector spaces. \hspace{1cm} q.e.d.

4 The analytic theory on toric varieties

For any \mathbb{Q}-algebra B and any \mathbb{Q}-scheme X, we denote by B_C and X_C the scalar extensions $B \otimes_\mathbb{Q} \mathbb{C}$ and $X \times_{\text{Spec} \mathbb{Q}} \text{Spec} \mathbb{C}$, respectively.

When X is of finite type over \mathbb{Q}, we denote by X_h the analytic space associated to the algebraic \mathbb{C}-scheme X_C [H, Chap.1, §6]. For a coherent sheaf F on X, the pulled-back coherent sheaf on X_C and the associated analytic coherent sheaf on X_h are denoted by F_C and F_h, respectively. Let $f : F \to G$ be a differential operator of order one over \mathbb{Q}. Then it is easy to see that the \mathbb{C}-homomorphism $f_C : F_C \to G_C$ on X_C obtained by scalar extension is a differential operator of order one over \mathbb{C}. By [EGA4, 16.8], the differential operator $f_C : F_C \to G_C$ is decomposed uniquely to $u \cdot d^1_{X_C}$ where $d^1_{X_C} : F \to \mathcal{P}^1_{X_C}(F)$ is a canonical \mathbb{C}-homomorphism [EGA4, 16.7.5] and $u : \mathcal{P}^1_{X_C}(F) \to G$ is a \mathcal{O}_{X_C}-homomorphism. For the definition of $\mathcal{P}^1_{X_C}(F)$, see [EGA4]. Since these homomorphisms are canonically pulled-back to X_h, we get a differential operator $f_h : F_h \to G_h$ of order one of the analytic coherent sheaves on X_h.

Let ρ be a cone in $N_\mathbb{R}$. By the notation of the scalar extensions,

$$S(\rho)_{\mathbb{C}} = S(\rho) \otimes_\mathbb{Q} \mathbb{C} = \mathbb{C}[M \cap \rho^\vee] \hspace{1cm} (4.1)$$

and

$$S(\rho; \sigma)_{\mathbb{C}} = S(\rho; \sigma) \otimes_\mathbb{Q} \mathbb{C} = \mathbb{C}[M[\sigma] \cap \rho^\vee] \hspace{1cm} (4.2)$$

41
for each \(\sigma \in F(\rho) \). Since \(S(\rho; \sigma) = S(\rho)/P(\rho; \sigma) \), \(S(\rho; \sigma)_C \) is the quotient of \(S(\rho)_C \) by the prime ideal \(P(\rho; \sigma)_C = C[M \cap (\rho^\vee \setminus \sigma^\perp)] \).

We fix a finite fan \(\Delta \) of \(N \mathbb{R} \) in this section.

We denote simply by \(Z \) the toric variety \(Z(\Delta) \). Since \(Z \) is normal, so are the toric variety \(Z_C = Z(\Delta)_C \) over \(C \) and the analytic space \(Z_h = Z(\Delta)_h \). For each \(\sigma \in \Delta \), a \(T \)-invariant irreducible closed subvariety \(X(\sigma) \) of \(Z \) was defined in Section 3. Hence \(X(\sigma)_C \) and \(X(\sigma)_h \) are irreducible closed subvarieties of \(Z_C \) and \(Z_h \), respectively.

Let \(n \) be an element of \(N \). The group homomorphism \(M \to \mathbb{Z} \) defined by \(m \mapsto \langle m, n \rangle \) induces a homomorphism of group rings \(C[M] \to C[t, t^{-1}] \) and the associated morphism \(\lambda_n : \text{Spec} C[t, t^{-1}] \to T_C = \text{Spec} C[M] \), where \(t \) is the monomial corresponding to \(1 \in \mathbb{Z} \). We call \(\lambda_n \) the one-parameter subgroup associated to \(n \) [Ol1, 1.2]. We denote also by \(\lambda_n \) the associated map \(\mathbb{C}^* \to T_h \) of complex Lie groups. If \(n \in N \cap \rho \) for a cone \(\rho \in \Delta \), then \(C[M \cap \rho^\vee] \) is mapped to \(C[t] \). Hence the one-parameter subgroup is extended to a regular map \(\lambda_n : \mathbb{C} \to Z(F(\rho))_C \subset Z_C \), uniquely.

For each \(m \in M \), the monomial \(e(m) \in C[M] \) is regarded as a character \(T_h \to \mathbb{C}^* \). The composite \(e(m) \cdot \lambda_n : \mathbb{C}^* \to \mathbb{C}^* \) of \(\lambda_n \) and \(e(m) \) is equal to the map \(t \mapsto t^{(m, n)} \).

Since \(Z_C \) is a toric variety, the group \(T_h \) acts on \(Z_h \) analytically. For \(a \in T_h \) and \(x \in Z_h \), we denote by \(ax \) the corresponding point of \(Z_h \) by the action.

Let \(f \) be a complex analytic function on an open subset \(U \) of \(Z_h \). For each \(n \in N \), the derivation \(\partial_n f \) of \(f \) is defined by

\[
\partial_n f(x) := \left. \frac{d}{dt} \right|_{t=1} f(\lambda_n(t)x) = \lim_{t \to 1} \frac{f(x) - f(\lambda_n(t)x)}{1 - t} \quad (4.3)
\]

for \(x \in U \). Since \(f(\lambda_n(t)x) \) is analytic in the variables \(x, t \), the function \(\partial_n f \) is analytic on \(U \). Hence we get a \(\mathbb{C} \)-derivation \(\partial_h : \mathcal{O}_{Z_h} \to \mathcal{O}_{Z_h} \) of the structure sheaf.

For each \(\sigma \in \Delta \), we denote by \(\mathcal{P}(\sigma)_h \) the ideal sheaf of \(\mathcal{O}_{Z_h} \) defining \(X(\sigma)_h \subset Z_h \). If \(f \) is in \(\mathcal{P}(\sigma)_h(U) \), then so is \(\partial_n f \) since \(f \) is zero on \(X(\sigma) \cap U \) and \(X(\sigma)_h \) is closed.
Lemma 4.1 Let \(\sigma \) be an element of \(\Delta \) and let \(y \) be a point in \(X(\sigma)_h \). If \(n \) is in \(N \cap \text{rel. int } \sigma \), then the endomorphism \((\partial_n)_y \) of the stalk \((\mathcal{P}(\sigma)_h)_y \) is an automorphism as a \(\mathbb{C} \)-vector space.

Proof. Let \(U \subset Z_h \) be an open neighborhood of \(y \) such that \(\lambda_n(t)U \subset U \) for every \(t \) with \(|t| \leq 1 \). For \(g \in \mathcal{P}(\sigma)_h(U) \), we define
\[
f(x) := \int_0^1 \frac{g(\lambda_n(s)x)}{s} ds ,
\]
where the integration is taken on the real interval \([0, 1]\). Since \(\lambda_n(0)x \) is in \(X(\sigma)_h \), the analytic function \(g(\lambda_n(s)x) \) on \(U \times \{s ; |s| \leq 1\} \) has zero at the divisor \((s = 0) \). Hence \(g(\lambda_n(s)x)/s \) is an analytic function. Hence the integral \(f \) is an analytic function on \(U \). By the definition, we have
\[
f(\lambda_n(t)x) = \int_0^1 \frac{g(\lambda_n(st)x)}{s} ds = \int_0^t \frac{g(\lambda_n(u)x)}{u} du .
\]
Hence \(\partial_n f = g \). This implies that \(\partial_n : \mathcal{P}(\sigma)_h(U) \to \mathcal{P}(\sigma)_h(U) \) is surjective.

For \(f \in \mathcal{P}(\sigma)_h(U) \), suppose that \(\partial_n f = 0 \). Then \((d/dt)f(\lambda_n(t)x) = 0 \) for \(t \in [0, 1] \) and we have \(f(x) = f(\lambda_n(0)x) = 0 \). Since \(\partial_n \) is \(\mathbb{C} \)-linear, it is also injective.

Since \(U \)'s with this property form a fundamental system of neighborhood of \(y \), \(\partial_n : \mathcal{P}(\sigma)_h \to \mathcal{P}(\sigma)_h \) is isomorphic at the stalk of \(y \). q.e.d.

Let \(D = D(\Delta) \) be the complementary reduced divisor of \(T \) in \(Z \). We set
\[
\Omega_{Z_h}(\log D_h)^1 := \Omega_Z(\log D)^1_h = \mathcal{O}_{Z_h} \otimes_{\mathbb{Z}} M .
\]
We define the \(\mathbb{C} \)-derivation \(\partial : \mathcal{O}_{Z_h} \to \Omega_{Z_h}(\log D_h)^1 \) as follows.

Let \(n, n' \) be elements of \(N \). The equality \(\lambda_{n+n'}(t) = \lambda_n(t)\lambda_{n'}(t) \) holds for \(t \in \mathbb{C}^* \). For an analytic function \(f \) on an open subset \(U \) of \(Z_h \), we have
\[
\partial_{n+n'}f(x)
\]
\[\lim_{t \to 1} \frac{f(x) - f(\lambda_n(t)x)}{1 - t} = \nabla_n f(x) + \nabla_n f(t) \]

for any \(x \in U \). Hence the map \(n \mapsto \nabla_n f \in \mathcal{O}_{\mathbb{Z}}(U) \) is a homomorphism, i.e., an element of \(\text{Hom}_{\mathbb{Z}}(N, \mathcal{O}_{\mathbb{Z}}(U)) \). We define \(\nabla f \) to be the corresponding element of \(\Omega_{\mathbb{Z}}(\log D_{\mathbb{Z}})(U)^1 = \mathcal{O}_{\mathbb{Z}}(U) \otimes_{\mathbb{Z}} M \).

Let \(m \) and \(n \) be elements of \(M \) and \(N \), respectively. Since the character \(e(m) : T_h \to C^* \) is a homomorphism,

\[e(m)(\lambda_n(t)x) = e(m)(\lambda_n(t)) \cdot e(m)(x) = t^{\langle m, n \rangle} \cdot e(m)(x). \] (4.7)

Hence \(\nabla_n e(m) = \langle m, n \rangle e(m) \) for every \(n \in N \). This implies \(\nabla e(m) = e(m) \otimes m \).

Hence we denote the global section \(1 \otimes m \) of \(\Omega_{\mathbb{Z}}(\log D_{\mathbb{Z}})^1 \) by \(de(m) / e(m) \) for every \(m \in M \), however it is common to write it by \(d e(m) / e(m) \).

Let \(\{m_1, \cdots, m_r\} \) be a \(\mathbb{Z} \)-basis of \(M \) and let \(\{n_1, \cdots, n_r\} \) be the dual basis of \(N \).

If we write \(\nabla f = \sum a_i \otimes m_i \), we have \(a_i = \langle \nabla f, n_i \rangle = \nabla_n f \) for each \(i \). Hence

\[\nabla f = \sum_{i=1}^{r} \nabla_n f \frac{de(m_i)}{e(m_i)}. \] (4.8)

In particular \(\nabla \) is a \(C \)-derivation.

Since \(e(m) \)'s form a \(C \)-basis of the coordinate ring of each affine toric variety, we know that this \(C \)-derivation \(\nabla \) is compatible with the algebraic \(C \)-derivation \(\partial : \mathcal{O}_{\mathbb{C}} \to \Omega_{\mathbb{C}}(\log D_{\mathbb{C}})^1 \).

For each \(0 \leq i \leq r \) we set

\[\Omega_{\mathbb{Z}}(\log D_{\mathbb{Z}})^i := \bigwedge^i \Omega_{\mathbb{Z}}(\log D_{\mathbb{Z}})^1 = \mathcal{O}_{\mathbb{Z}} \otimes_{\mathbb{Z}} \bigwedge^i M. \] (4.9)

Since \(\Omega_{\mathbb{Z}}(\log D_{\mathbb{Z}})^1 \) is a free \(\mathcal{O}_{\mathbb{Z}} \)-module of rank \(r \), \(\Omega_{\mathbb{Z}}(\log D_{\mathbb{Z}})^i \) is free of rank \(r, Ci \).

For \(0 < i < r \), we define a pairing

\[\mathcal{O}_{\mathbb{Z}}(U) \times \bigwedge^i M \longrightarrow \Omega_{\mathbb{Z}}(\log D_{\mathbb{Z}})^{i+1}(U) \] (4.10)
by \((f, w) \mapsto \partial f \wedge w\) which induces a \(\mathbf{C}\)-homomorphism
\[
\partial : \Omega_{Z_h}(\log D_h)^i \to \Omega_{Z_h}(\log D_h)^{i+1}
\] of sheaves which we denote also by \(\partial\). We check easily that \(\partial \cdot \partial = 0\), and we get a \(\partial\)-complex \(\Omega_{Z_h}(\log D_h)^\bullet\) which we call the logarithmic de Rham complex on \(Z_h\). For any \(\sigma \in \Delta\), we see easily by the description (4.8) of \(\partial f\) that \(P(\sigma)_h \Omega_{Z_h}(\log D_h)^\bullet\) is a subcomplex of \(\Omega_{Z_h}(\log D_h)^\bullet\).

For each \(\sigma \in \Delta\), we denote by \(\bar{I}_\sigma\) the closed immersion \(X(\sigma)_h \to Z_h\) and by \(I_\sigma\) the immersion \(T[\sigma]_h \to Z_h\). For a \(\mathbf{C}\)-sheaf \(F\) on \(Z_h\), we denote by \(\bar{I}_\sigma^* F\) and \(I_\sigma^* F\) the pull-back of \(F\) to \(X(\sigma)_h\) and \(T[\sigma]_h\), respectively. Note that, even if \(F\) is an \(\mathcal{O}_{Z_h}\)-module, the pull-back is taken as a \(\mathbf{C}\)-sheaf.

Lemma 4.2 For every \(\sigma \in \Delta\), the \(\partial\)-complex \(\bar{I}_\sigma^*(\mathcal{P}(\sigma)_h \Omega_{Z_h}(\log D_h))^{\bullet}\) on \(X(\sigma)_h\) is homotopically equivalent to the zero complex.

Proof. We have to show that the identity map of this \(\partial\)-complex is homotopic to the zero map. Take an element \(n_0\) in \(N \cap \text{rel. int } \sigma\). Let \(h\) be the \(\mathcal{O}_{Z_h}\)-homomorphism of degree \(-1\) of the graded \(\mathcal{O}_{Z_h}\)-module \(\Omega_{Z_h}(\log D_h)^\bullet\) induced by the right interior product \(i(n_0) : \wedge^\bullet M \to \wedge^\bullet M\). Then the \(\mathbf{C}\)-homomorphism \(h \cdot \partial + \partial \cdot h\) on \(\Omega_{Z_h}(\log D_h)^\bullet = \mathcal{O}_{Z_h} \otimes \wedge^\bullet M\) is equal to \(\partial_{n_0} \otimes 1\) (cf. [D2, 13.4]). By Lemma 4.1, this induces an automorphism of \(\bar{I}_\sigma^*(\mathcal{P}(\sigma)_h \Omega_{Z_h}(\log D_h))^{\bullet}\) as a \(\mathbf{C}\)-sheaf. Let \(u\) be the inverse isomorphism of \(\bar{I}_\sigma^*(h \cdot \partial + \partial \cdot h)\). Since

\[
(h \cdot \partial + \partial \cdot h) \cdot \partial = \partial \cdot (h \cdot \partial + \partial \cdot h) = \partial \cdot h \cdot \partial ,
\]
we have \(\bar{I}_\sigma^* \partial \cdot u = u \cdot \bar{I}_\sigma^* \partial = u \cdot I_\sigma^*(\partial \cdot h \cdot \partial) \cdot u\). Set \(h' := u \cdot \bar{I}_\sigma^* h\). Then we have

\[
h' \cdot \bar{I}_\sigma^* \partial + \bar{I}_\sigma^* \partial \cdot h' = u \cdot I_\sigma^*(\partial \cdot h + \partial \cdot h) = 1.
\]

q.e.d.
Let σ be an element of Δ. We set $N[\sigma] := N/(N \cap (\sigma + (-\sigma)))$. This is naturally the dual \mathbb{Z}-module of $M[\sigma] = M \cap \sigma^\perp$. It is known that the closed subscheme $X(\sigma)$ of Z is naturally identified with the toric variety $Z(\Delta[\sigma])$ with the torus $T[\sigma]$ \cite[Cor.1.7]{O1}. Furthermore, the action of $T[\sigma]$ on $Z(\Delta[\sigma])$ is equivariant with that of T with respect to the natural surjection $T \to T[\sigma]$.

We set $D(\sigma)_h := X(\sigma)_h \setminus T[\sigma]_h$ and

$$\Omega_{X(\sigma)_h}(\log D(\sigma)_h)^\bullet := \mathcal{O}_{X(\sigma)_h} \otimes_{\mathbb{Z}} \bigwedge^\bullet M[\sigma]. \quad (4.14)$$

Then $\Omega_{X(\sigma)_h}(\log D(\sigma)_h)^\bullet$ has the ∂-complex structure so that it is identified with the logarithmic de Rham complex of $Z(\Delta[\sigma])_h$ similarly as $\Omega_{Z_h}(\log D_h)^\bullet$ for $Z_h = Z(\Delta)_h$.

Lemma 4.3 Let σ be an element of Δ. For $\rho \in \Delta$ with $\sigma < \rho$, the ∂-complex $\overline{I}_\rho^*(\mathcal{P}(\rho)_h \Omega_{X(\sigma)_h}(\log D(\sigma)_h))_h^\bullet$ of \mathcal{C}-sheaves on $X(\rho)_h$ is homotopically equivalent to the zero complex.

Proof. For the toric variety $X(\sigma)_h = Z(\Delta[\sigma])_h$, $X(\rho)_h$ is the closed subvariety associated to $\rho[\sigma] \in \Delta[\sigma]$. The closed subvariety $X(\rho)_h$ of $X(\sigma)_h$ is defined by the image of $\mathcal{P}(\rho)_h$ in $\mathcal{O}_{X(\sigma)_h}$. Hence, this is a consequence of Lemma 4.2 applied to the toric variety $Z(\Delta[\sigma])_h$. q.e.d.

Let ρ be an element of Δ and V an object of $\text{GM}(A(\rho))$. Then the ∂-complex $\Lambda^\rho_Z(V)^\bullet$ defined in Section 3 induces a ∂-complex $\Lambda^\rho_{Z_c}(V)^\bullet$ and its analytic version $\Lambda^\rho_{Z_h}(V)^\bullet$. By Proposition 3.1, $\Lambda^\rho_{Z_h}(V)^\bullet$ is isomorphic to a finite direct sum of dimension shifts of $\Omega_{X(\rho)_h}(\log D(\rho)_h)^\bullet$. In particular, we get the following corollary by Lemma 4.3.

Corollary 4.4 Let σ be an element of Δ and V in $\text{GM}(A(\sigma))$. For $\rho \in \Delta$ with $\sigma < \rho$, the ∂-complex $\overline{I}_\rho^*(\mathcal{P}(\rho)_h \Lambda^\rho_{Z_h}(V))_h^\bullet$ on $X(\rho)_h$ is homotopically equivalent to the zero complex.
We recall some general notation of derived categories (cf. [V]).

Let \(X \) be a locally compact topological space and let \(A(C_X) \) be the abelian category of the \(C \)-sheaves on \(X \). We denote by \(C^+(C_X) \) and \(D^+(C_X) \) the category of the complexes bounded below in \(A(C_X) \) and the derived category of it, respectively. For a continuous map \(f : X \to Y \), let \(f^* : A(C_Y) \to A(C_X) \) be the pull-back functor which is exact. We denote also by \(f^* \) the induced functors \(C^+(C_Y) \to C^+(C_X) \) and \(D^+(C_Y) \to D^+(C_X) \).

If the direct image functor with proper support \(f_! : A(C_X) \to A(C_Y) \) is of finite cohomological dimension, the functor \(f_! : D^+(C_Y) \to D^+(C_X) \) is defined [V, 2.2]. Note that this condition is satisfied for any regular morphisms of finite dimensional analytic spaces.

For \(V^\bullet \in \text{CGM}(A(\sigma)) \), the bicomplex \(\Lambda^\sigma_{Z_h}(V)^{\bullet \bullet} \) is defined as the analytic version of \(\Lambda^\sigma_Z(V)^{\bullet \bullet} \). The associated single complex is denoted by \(\Lambda^\sigma_{Z_h}(V)^\bullet \).

For \(L^\bullet \in \text{CGEM}(\Delta) \), we get the bicomplex \(\Lambda_{Z_h}(L)^{\bullet \bullet} \) and its associated single complex \(\Lambda_{Z_h}(L)^\bullet \), similarly. We denote by \(\delta \) the coboundary map of \(\Lambda_{Z_h}(L)^\bullet \).

Proposition 4.5 For \(\rho \in \Delta \) and a \(d \)-complex \(L^\bullet \) in \(\text{CGEM}(\Delta) \), there exist a quasi-isomorphism

\[
I^\rho_\pi \Lambda_{Z_h}(L)^\bullet \simeq I^\rho_\pi \Lambda^\rho_{Z_h}(i^\rho_\pi L)^\bullet
\]

as \(\delta \)-complexes of \(C \)-sheaves on \(T[\rho]_{\text{h}} \) and an isomorphism

\[
I^\rho_\pi \Lambda_{Z_h}(L)^\bullet \simeq I^\rho_\pi \Lambda^\rho_{Z_h}(i^\rho_\pi L)^\bullet
\]

in the derived category \(D^+(C_{T[\rho]_{\text{h}}}) \).

Proof. Let \(\sigma \) be an element of \(F(\pi) \) with \(\sigma \prec \rho \). For \(V \) in \(\text{GM}(A(\sigma)) \), there exists an exact sequence

\[
0 \to \mathcal{P}(\rho)_{\text{h}} \Lambda^\sigma_{Z_h}(V)^\bullet \to \Lambda^\sigma_{Z_h}(V)^\bullet \to \Lambda^\rho_{Z_h}(V_{A(\rho)})^\bullet \to 0.
\]

47
In particular, the homomorphism $I^*_\rho \lambda(V)$ of ∂-complexes is a quasi-isomorphism by Corollary 4.4.

For each L^i, we get a quasi-isomorphism

$$I^*_\rho \lambda(L^i) : I^*_\rho \Lambda^*_A \Lambda(V(L^i))^\bullet \rightarrow I^*_\rho \Lambda^*_A \Lambda(V(i^*_\rho L)^i)^\bullet$$

as a collection of quasi-isomorphisms $I^*_\rho \lambda(L^i(\sigma))$ for $\sigma \in F(\rho)$.

We get the first quasi-isomorphism as the collection of $I^*_\rho \lambda(L^i)$’s for $i \in \mathbb{Z}$.

Since $i^*_\rho L^i = L(\rho)^i$, it is enough to show that $\bar{I}^*_\rho \Lambda^*_A \Lambda(V(L^i(\sigma)))$ are quasi-isomorphic to the zero complex for all $\sigma \in F(\rho) \setminus \{\rho\}$ and $i \in \mathbb{Z}$. By proposition 3.1, $\Lambda^*_A \Lambda(V(L^i(\sigma)))$ is isomorphic to the finite direct sum of dimension shifts of the logarithmic de Rham complex $\Omega_{X(\sigma)h}(\log D(\sigma)h)^i$ on $X(\sigma)h$. By [2], Prop.1.2, the logarithmic de Rham complex is quasi-isomorphic to the direct image $Rj_* C_{T[\sigma]}$ for the open immersion $j : T[\sigma]h \rightarrow X(\sigma)h$. Since $T[\sigma]h \cap X(\rho)h = \emptyset$, $\bar{I}^*_\rho Rj_* C_{T[\sigma]h}$ is equivalent to zero. Hence $\bar{I}^*_\rho \Lambda^*_A \Lambda(V(L^i(\sigma)))$ is also zero in the derived category.

q.e.d.

For any \mathbb{Q}-vector space W, we denote by \bar{W} the scalar extension $W \otimes_{\mathbb{Q}} \mathbb{C}$. If W is graded, so is \bar{W}.

Let ρ be an element of Δ. For V in $\text{GM}(A(\rho))$, we denote by $\bar{V}_{T[\rho]h}$ the constant sheaf on $T[\rho]h$ with the stalk \bar{V}. We regard it as a ∂-complex of \mathbb{C}-sheaves by setting $\bar{V}^i_{T[\rho]h} := (\bar{V}_i)_{T[\rho]h}$ and $\partial = 0$.

For $N[\rho] := N/N(\rho)$, we set $\det[\rho]_\mathbb{Q} := \det N[\rho]_\mathbb{Q}$. We denote by $\text{Det}[\rho]$ the graded \mathbb{Z}-module defined by $(\text{Det}[\rho])_{-r+r^\rho} := \det[\rho]$ and $(\text{Det}[\rho])_i := \{0\}$ for $i \neq -r + r^\rho$. Here note that rank $N[\rho] = r - r^\rho$.

We define a homomorphism $(\bar{V} \otimes \text{Det}[\rho])^*_T[\rho]h \rightarrow I^*_\rho (\Lambda^*_A \Lambda(V))^\bullet$ as follows.

We take a \mathbb{Q}-linear subspace H of $N_\mathbb{Q}$ such that $N_\mathbb{Q} = N(\rho)_\mathbb{Q} \oplus H$. Then we have a natural isomorphisms $N[\rho]_\mathbb{Q} = N_\mathbb{Q}/N(\rho)_\mathbb{Q} \simeq H$ and $\det[\rho]_\mathbb{Q} = \det N[\rho]_\mathbb{Q} \simeq \det H \subset A_{-r+r^\rho}$. We denote by $\text{Det} H$ the graded \mathbb{Q}-vector space defined by $(\text{Det} H)_{-r+r^\rho} := \det H$ and $(\text{Det} H)_i := \{0\}$ for $i \neq -r + r^\rho$. By Lemma 1.3, $V_A = V \otimes_{A(\rho)} A$ is equal to the free $A^*[\rho]$-module $(V \otimes_{\mathbb{Q}} \text{Det} H) \otimes_{\mathbb{Q}} A^*[\rho]$.

48
The restriction of ∂ of $\Lambda^0_{\mathbb{Z}}(V)^\bullet = \mathcal{O}_Z \otimes_{\mathbb{Q}} V_A$ to the constant subsheaf $\mathcal{Q}e(0) \otimes_{\mathbb{Q}} V_A$ is zero. Hence the composite of the natural homomorphisms

$$\bar{V} \otimes \text{Det}[\rho] \longrightarrow \bar{V} \otimes_{\mathbb{Q}} \text{Det} H \longrightarrow \bar{V}_A \longrightarrow \mathcal{C}e(0) \otimes_{\mathbb{C}} \bar{V}_A$$

defines a homomorphism $(\bar{V} \otimes \text{Det}[\rho])_{T[\rho]} \longrightarrow \Lambda^0_{\mathbb{Z}}(V)|_{T[\rho]}$ of ∂-complexes of \mathbb{C}-sheaves on the algebraic torus $T[\rho]$. We denote by ϕ^H the associated homomorphism

$$(\bar{V} \otimes \text{Det}[\rho])_{T[\rho]} \longrightarrow I_\rho^*(\Lambda^0_{\mathbb{Z}}(V))$$

on the smooth analytic space $T[\rho]_h$.

Proposition 4.6 Let $\rho \in \Delta$ and let V be an object of $\text{GM}(A(\rho))$. Then the homomorphism ϕ^H_V is a quasi-isomorphism for any $H \subset N_\mathbb{Q}$ with $N_\mathbb{Q} = N(\rho)_{\mathbb{Q}} \oplus H$. For another $K \subset N_\mathbb{Q}$ with $N_\mathbb{Q} = N(\rho)_{\mathbb{Q}} \oplus K$, the homomorphisms ϕ^H_V and ϕ^K_V are locally homotopic.

Proof. Since V is of finite dimension, we prove the proposition by induction on the dimension of V. If $V = \{0\}$, then the ∂-complexes are trivial and the assertion is clear. Assume $\dim V \geq 1$. Let k be the maximal integer with $V_k \neq \{0\}$. We take a vector subspace $V'_k \subset V_k$ of codimension one. By setting $V'_i := V_i$ for $i \neq k$, we get a homogeneous subspace $V' \subset V$ of codimension one. Since $A(\rho)$ is graded negatively, V' is an object of $\text{GM}(A(\rho))$. We get an exact sequence

$$0 \longrightarrow V' \longrightarrow V \longrightarrow \mathbb{Q}(-k) \longrightarrow 0$$

of graded $A(\rho)$-modules, where $Q(a)$ is the graded \mathbb{Q}-vector space defined by $Q(a)_{i} := \{0\}$ for $i \neq -a$. Set $c := r - r_\rho$. Then we get a commutative diagram

$$
\begin{array}{cccccc}
0 & \rightarrow & (\bar{V}' \otimes \text{Det}[\rho])_{T[\rho]}^\bullet & \rightarrow & (\bar{V} \otimes \text{Det}[\rho])_{T[\rho]}^\bullet & \rightarrow & (C(-k) \otimes \text{Det}[\rho])_{T[\rho]}^\bullet & \rightarrow & 0 \\
\downarrow & & \phi^H_{V'} & & \phi^H_{V} & & \phi^H_{Q(-k)} & & \\
0 & \rightarrow & I_\rho^*(\Lambda^0_{\mathbb{Z}}(V'))^\bullet & \rightarrow & I_\rho^*(\Lambda^0_{\mathbb{Z}}(V))^\bullet & \rightarrow & I_\rho^*(\Lambda^0_{\mathbb{Z}}(\mathbb{Q}(-k)))^\bullet & \rightarrow & 0
\end{array}
$$

(4.22)
By the induction assumption, ϕ^H_V is a quasi-isomorphism of ∂-complexes of \mathbf{C}-sheaves. On the other hand, $I^*_\rho(\Lambda^p_{Z_h}(Q(-c)))^\bullet$ is equal to the analytic de Rham complex on the complex manifold $T[\rho]_h$. Since $\phi^H_{Q(-k)}$ is the dimension shift of the natural homomorphism $\mathbf{C}_{T[\rho]_h} \rightarrow \Omega^\bullet_{T[\rho]_h}$, this is a quasi-isomorphism, by the complex analytic version of the Poincaré Lemma. Hence ϕ^H_V is also a quasi-isomorphism.

Clearly, $\phi^H_{Q(-k)}$ does not depend on the choice of H. Hence $\phi^H_{Q(-k)} - \phi^K_{Q(-k)} = 0$. By assumption, $\phi^H_V - \phi^K_V$ is locally homotopic to zero. Hence, we know that $\phi^H_V - \phi^K_V$ gives zero maps on the cohomology sheaves. Since $\bar{V}_{T[\rho]_h}$ is a locally free \mathbf{C}-sheaf, $\phi^H_V - \phi^K_V$ is locally homotopic to zero. q.e.d.

Recall that Z_h has the decomposition $\bigcup_{\sigma \in \Delta} T[\sigma]_h$ into T_h-orbits. For each integer $0 \leq i \leq r$, we define

$$Z^i_h = Z^{2i+1}_h =: \bigcup_{\sigma \in \Delta \atop r_\sigma \geq r-i} T[\sigma]_h.$$ (4.23)

Then we have a filtration

$$Z_h = Z^{2r}_h \supset Z^{2r-1}_h \supset \cdots \supset Z^2_h \supset Z^1_h \supset Z^0_h$$ (4.24)

of Z_h satisfying the conditions of the topological stratification in [GM2, 1.1].

The intersection complex of a stratified space is defined for a sequence of integers $(p(2), p(3), p(4), \cdots)$ which is called a perversity [GM2, 2.0]. Since Z_h is a complex analytic space of dimension r, only $p(i)$’s for even i less than or equal to $2r$ are relevant for the intersection complex.

Let $p = (p(2), p(4), p(6), \cdots, p(2r))$ be a sequence of integers with $p(2) = 0$ and $p(2i) \leq p(2i+2) \leq p(2i)+2$ for $i = 1, \cdots, r-1$ as a perversity for Z_h. We denote by the same symbol p the perversity on Δ defined by $p(\sigma) := p(2r_\sigma) - r_\sigma + 1$ for $\sigma \in \Delta \setminus \{0\}$. Note that, for the middle perversity $m := (0, 1, 2, \cdots, r-1)$, we have $m(\sigma) = 0$ for all $\sigma \in \Delta \setminus \{0\}$.

We consider the δ-complex $\Lambda_Z(\text{ic}_p(\Delta))^\bullet$ which is the associated single complex of the bicomplex $\Lambda_Z(\text{ic}_p(\Delta))^\bullet$. 50
By [GM2, 3.3, AX1], the intersection complex $\text{IC}_p(Z_h)^\bullet$ in the derived category $D^b(C_{Z_h})$ of bounded complexes of C-sheaves is characterized by the following properties.

For the convenience of our use, we set $F := \text{IC}_p(Z_h)[-r]^\bullet$. Note that n in [GM2, 3.3] is $2r$ in our case.

(a) The restriction of F to T_h is quasi-isomorphic to $C_{T_h}[-r]$.

(b) $H^i(F)$ is a trivial sheaf for $i < -r$.

(c) For any $\sigma \in \Delta \setminus \{0\}$, $H^i(F_x) = \{0\}$ for $i \geq p(2r_\sigma) - r + 1$.

(d) For any $\sigma \in \Delta \setminus \{0\}$, $H^i((I_\sigma^r F)_x) = \{0\}$ for $i \leq p(2r_\sigma) - r + 1$.

Theorem 4.7 Let $p = (p(2), p(4), p(6), \ldots, p(2r))$ be a perversity. The complex of C-sheaves $\Lambda_{Z_h}(\text{ic}_p(\Delta))^\bullet$ is isomorphic to $\text{IC}_p(Z_h)[-r]^\bullet$.

Proof. We set $L^\bullet := \Lambda_{Z_h}(\text{ic}_p(\Delta))^\bullet$. It is sufficient to show that L^\bullet satisfies the above properties. Let σ be in $\Delta \setminus \{0\}$. Then the stratum $T[\sigma]_h$ is of dimension $2r - 2r_\sigma$ in the real dimension. By Propositions 4.5 and 4.6, we have an isomorphism

$$H^i(L^\bullet_x) \simeq H^{i+r-r_\sigma}(i^\star_\sigma \text{ic}_p(\Delta)^\bullet) \otimes \mathbb{Q} C$$

(4.25)

for every point $x \in T[\sigma]_h$. By the condition (3) of Theorem 2.9, the cohomology $H^i(i^\star_\sigma \text{ic}_p(\Delta)^\bullet)$ vanishes for $i \geq p(\sigma) = p(2r_\sigma) - r_\sigma + 1$. Hence $H^i(L^\bullet_x) = 0$ for $i \leq p(2r_\sigma) - r + 1$. By Propositions 4.5 and 4.6, we also have

$$H^i((I_\sigma^r L)^\bullet_x) \simeq H^{i+r-r_\sigma}(i^\star_\sigma \text{ic}_p(\Delta)^\bullet) \otimes \mathbb{Q} C$$

(4.26)

for all $x \in T[\sigma]_h$. The condition (2) of Theorem 2.9 implies $H^i(i^\star_\sigma \text{ic}_p(\Delta)^\bullet) = 0$ for $i \leq p(\sigma) = p(2r_\sigma) - (r_\sigma)+1$. Hence $H^i((I_\sigma^r L)^\bullet_x) = 0$ for $i \leq p(2r_\sigma) - r + 1$. Hence, by the Axioms [AX1] of [GM2, 3.3], L^\bullet is the intersection complex with the perversity p.

q.e.d.
Proposition 4.8 Assume that Δ is a complete fan. Let L^\bullet be an object of CGEM(Δ). Then there exists a natural isomorphism
\[
H^k(\Lambda Z_h(L)^\bullet) \simeq \bigoplus_{p+q=k} H^p(\Gamma(L)^\bullet)_q \otimes_\mathbb{Q} \mathbb{C}
\] (4.27)
for every integer k.

Proof. Since any $X(\sigma)$ is a complete toric variety, $H^i(X(\sigma), \mathcal{O}_{X(\sigma)}) = 0$ for every $i > 0$ [O1, Cor.2.8]. By [GAGA], we have
\[
H^i(X(\sigma)_h, \mathcal{O}_{X(\sigma)_h}) = \begin{cases}
\mathbb{C} & \text{if } i = 0 \\
\{0\} & \text{if } i > 0
\end{cases}
\] (4.28)

Since $\Lambda^\sigma_{Z_h}(L^i(\sigma))$ is a free $O_{X(\sigma)_h}$-module for any σ and i, we have an isomorphism
\[
H^k(\Lambda Z_h(L)^\bullet) = H^k(\Gamma(Z_h, \Lambda Z_h(L))^\bullet),
\] (4.29)
where $\Gamma(Z_h, \Lambda Z_h(L))^\bullet$ is the single complex of \mathbb{C}-vector spaces associated to the bicomplex $\Gamma(Z_h, \Lambda Z_h(L))^{\bullet\bullet}$. Since the global sections are locally M-homogeneous of degree $0 \in M$, $d_2 = \partial$ of the last bicomplex is zero. Hence the spectral sequence
\[
E_1^{p,q} := H^p(\Gamma(Z_h, \Lambda Z_h(L))^\bullet)_q \Rightarrow H^{p+q}(\Gamma(Z_h, \Lambda Z_h(L))^\bullet)
\] (4.30)
degenerates at E_1-terms. Consequently, the cohomology group $H^k(\Gamma(Z_h, \Lambda Z_h(L))^\bullet)$ is equal to the direct sum
\[
\bigoplus_{q \in \mathbb{Z}} H^{k-q}(\Gamma(Z_h, \Lambda Z_h(L))^\bullet)_q = \bigoplus_{q \in \mathbb{Z}} H^{k-q}(\Gamma(L)^\bullet)_q \otimes_\mathbb{Q} \mathbb{C}.
\] (4.31)
q.e.d.

5 The Serre duality

In this section, we again fix a finite fan Δ of $N_\mathbb{R}$ and let $Z := Z(\Delta)$ be the associated toric variety defined over \mathbb{Q}.
Let \(p \) be a perversity on \(\Delta \). Then \(\Lambda_Z(\text{ic}_p(\Delta))^{\bullet \bullet} \) is a bicomplex of coherent \(\mathcal{O}_Z \)-modules such that \(d_1 = d \) is a \(\mathcal{O}_Z \)-homomorphism and \(d_2 = \partial \) is a differential operator of order one. Note that \(\Lambda_Z(\text{ic}_p(\Delta))^{i,j} = \{0\} \) unless \(0 \leq i \leq r \) and \(-r \leq j \leq 0 \) by Proposition \[2.11\].

For each integer \(j \), we set

\[
\Omega_j(p; Z) := \Lambda_Z(\text{ic}_p(\Delta))^{*, -j} .
\]

(5.1)

Clearly, \(\Omega_j(p; Z) \) is the zero complex unless \(0 \leq j \leq r \). Since \(d \) is an \(\mathcal{O}_Z \)-homomorphism, \(\Omega_j(p; Z) \) is a finite complex in the category of coherent \(\mathcal{O}_Z \)-modules.

For the top perversity \(t \), we have

\[
\Omega_j(t; Z)^i = \bigoplus_{\sigma \in \Delta(i)} \det(\sigma) \otimes \bigwedge^j N[\sigma] \otimes \mathcal{O}_{X(\sigma)} ,
\]

(5.2)

where \(N[\sigma] := N/N(\sigma) \). For \(\sigma \in \Delta(i) \) and \(\tau \in \Delta(i + 1) \), the \((\sigma, \tau)\)-component of the coboundary map is the tensor product of \(q'_{\sigma/\tau} : \det(\sigma) \to \det(\tau) \) and the natural surjection

\[
\bigwedge^j N[\sigma] \otimes \mathcal{O}_{X(\sigma)} \to \bigwedge^j N[\tau] \otimes \mathcal{O}_{X(\tau)}
\]

(5.3)

if \(\sigma \prec \tau \) and is the zero map otherwise.

For finite complexes \(B^\bullet, C^\bullet \) of coherent sheaves on \(Z \), we denote by \(\mathcal{H}om_{\mathcal{O}_Z}(C, B)^{\bullet \bullet} \) the bicomplex with the component

\[
\mathcal{H}om_{\mathcal{O}_Z}(C, B)^{i,j} := \mathcal{H}om_{\mathcal{O}_Z}(C_j, B_i)
\]

(5.4)

for each pair \((i,j)\) of integers. We denote by \(\mathcal{H}om_{\mathcal{O}_Z}(C, B)^\bullet \) the associated single complex. The coboundary map

\[
d^k : \mathcal{H}om_{\mathcal{O}_Z}(C, B)^k \longrightarrow \mathcal{H}om_{\mathcal{O}_Z}(C, B)^{k+1}
\]

(5.5)

is determined as follows. For an integer \(i \), the restriction of \(d^k \) to the component \(\mathcal{H}om_{\mathcal{O}_Z}(C^i, B^{i+k}) \) is the sum of

\[
(d_B^{i+k})_* : \mathcal{H}om_{\mathcal{O}_Z}(C^i, B^{i+k}) \longrightarrow \mathcal{H}om_{\mathcal{O}_Z}(C^i, B^{i+k+1})
\]

(5.6)

53
\((−1)^{k+1}(d_C^{i+1})^*\mathcal{H}om_{O_Z}(C^i, B^{i+k}) \longrightarrow \mathcal{H}om_{O_Z}(C^{i-1}, B^{i+k}) \) \hspace{1cm} (5.7)

(cf. [D2, 1.1.10,(ii)])

Theorem 5.1 Let \(L^* \) be an object of CGEM(\(\Delta \)). For each integer \(q \), there exists

\[\mathcal{H}om_{O_Z}(\Lambda_{Z}(L)_q, \Omega(t; Z) \otimes \text{det } N)^* \simeq \Lambda_{Z}(D(L))^*_{r-q}. \] \hspace{1cm} (5.8)

Proof. For each pair \((i, j)\) of integers, we have

\[\mathcal{H}om_{O_Z}(\Lambda_{Z}(L)_q, \Omega(t; Z) \otimes \text{det } N)^{i,j} \]

\[= \bigoplus_{(\sigma, \rho)} \text{Hom}_Q((L(\sigma)^{−j})_q, \text{det}(\rho) \otimes \text{det } N) \otimes Q \mathcal{O}_{X(\rho)}, \] \hspace{1cm} (5.10)

where the sum is taken over all pairs \((\sigma, \rho)\) with \(\sigma \in \Delta, \rho \in \Delta(i) \) and \(\sigma \prec \rho \). We identify \(\text{Hom}_Q((L(\sigma)^{−j})_q, \text{det } N_Q) \) with \(D_N((L(\sigma)^{−j})−r−q) \) through the set of right operations \(D_N^{\text{right}}((L(\sigma)^{−j})−r−q) \). Hence

\[\mathcal{H}om_{O_Z}(\Lambda_{Z}(L)_q, \Omega(t; Z) \otimes \text{det } N)^k \]

\[= \bigoplus_{\rho \in \Delta} \text{det}(\rho) \otimes D_N((i^*_\rho L^{−r\rho+k})_A)_{−r−q} \otimes Q \mathcal{O}_{X(\rho)} \] \hspace{1cm} (5.12)

\[= \bigoplus_{\rho \in \Delta} \text{det}(\rho) \otimes (D_{\rho}(i^*_\rho L^{−r\rho+k})_A)_{−r−q} \otimes Q \mathcal{O}_{X(\rho)} \] \hspace{1cm} (5.13)

\[= \Lambda_{Z}(D(L))_{r-q}^k. \] \hspace{1cm} (5.14)

The equality of the coboundary maps is also checked. Namely, for \(\rho, \mu \in \Delta \), the

\((\rho, \mu)\)-component of \(d^k \)'s are nonzero only for (a) \(\rho < \mu \) and \(r_\mu = r_\rho + 1 \), or (b) \(\rho = \mu \). In case (a), they are both equal to the tensor product of \(q^{r_{\rho/\mu}} \), inclusion map

\[D_N((i^*_\rho L^{−r_\rho+k})_A)_{−r−q} \rightarrow D_N((i^*_\mu L^{−r_\mu+k})_A)_{−r−q} \] \hspace{1cm} (5.15)

and the natural surjection \(\mathcal{O}_{X(\rho)} \rightarrow \mathcal{O}_{X(\mu)} \) in the description \((5.12) \). In case (b), they are both equal to \((−1)^{k+1} \text{id} \otimes D_N(i^*_\rho (d_L)^{k-1}) \otimes \text{id}. \) q.e.d.
Let S be a scheme of finite type over a field and let $D^+_{\text{coh}}(S)$ be the derived category of complexes bounded below of \mathcal{O}_S-modules with coherent cohomologies. The Grothendieck theory of residues and duality \cite{RD} says that there exists an object of $D^+_{\text{coh}}(S)$ which is called the dualizing complex, and the Serre duality theorem for nonsingular projective varieties is generalized to S by using the the dualizing complex in place of the canonical invertible sheaf.

For the toric variety Z, the dualizing complex which is denoted by $C^*(Z, \Omega_0^\vee)$ in \cite[§5]{I2} is described as follows. For the compatibility with the notation of this paper, we write it by $C(Z, \Omega_0^\vee)^*$. For each integer $-r \leq i \leq 0$, we set

$$C^i(Z, \Omega_0^\vee) := \bigoplus_{\sigma \in \Delta(r+i)} \mathcal{O}_{X(\sigma)} \otimes \det M[\sigma] = \bigoplus_{\sigma \in \Delta(r+i)} \Omega_{X(\sigma)}(\log D(\sigma))^{-i}. \quad (5.16)$$

For $\sigma, \tau \in \Delta$, the subvariety $X(\tau)$ of Z is contained in $X(\sigma)$ if and only if $\sigma \prec \tau$. When $\sigma \prec \tau$, let $\varphi_{\sigma/\tau} : \mathcal{O}_{X(\sigma)} \to \mathcal{O}_{X(\tau)}$ be the natural surjection. The component of the coboundary map

$$C^i(Z, \Omega_0^\vee) \xrightarrow{d} C^{i+1}(Z, \Omega_0^\vee)$$

for $\sigma \in \Delta(r+i)$ and $\tau \in \Delta(r+i+1)$ is defined to be $\varphi_{\sigma/\tau} \otimes q_{\sigma/\tau}$ if $\sigma \prec \tau$ and the zero map otherwise, where $\varphi_{\sigma/\tau}$ is the natural surjection $\mathcal{O}_{X(\sigma)} \to \mathcal{O}_{X(\tau)}$. For the definition of $q_{\sigma/\tau}$, see \cite[§1]{I2}. With respect to the identifications $\det M[\sigma] \otimes \det N = \det(\sigma)$ and $\det M[\tau] \otimes \det N = \det(\tau)$, the isomorphism $q_{\sigma/\tau}'$ defined in §2 is equal to $q_{\sigma/\tau} \otimes 1_{\det N}$.

As a special case of \cite[Thm.5.4]{I2}, the d-complex $C(Z, \Omega_0^\vee)^*$ is quasi-isomorphic to the residual complex $f_Z^*\mathbb{Q}$ \cite[VI,§3]{RD} for the structure morphism $f_Z : Z \to \text{Spec} \mathbb{Q}$, i.e., it is a global dualizing complex of the \mathbb{Q}-scheme Z.

55
For a finite complex B^\bullet of \mathcal{O}_Z-modules with coherent cohomology sheaves, the object $R\mathcal{H}om(B, f_Z^* \mathbb{Q})^\bullet$ in the derived category $D^{+}_{\text{coh}}(Z)$ is called the Grothendieck dual of B^\bullet.

It is easy to see that $\Lambda_Z(\text{ic}_t(\Delta))^\bullet_0$ is isomorphic to $(\mathcal{C}(Z, \Omega^\vee_0)) \otimes (\det N)[-r]^\bullet$.

Corollary 5.2 For each integer $0 \leq j \leq r$, the Grothendieck dual of the d-complex $\Lambda_Z(L)_{-j}$ is quasi-isomorphic to $\Lambda_Z(D(L))_{j-r}[r]^\bullet$.

Proof. Since $\Lambda_Z(L)_{-j}$ is a direct sum of free $\mathcal{O}_{X(\sigma)}$-modules for $\sigma \in \Delta$, the dual $R\mathcal{H}om(\Lambda_Z(L)_{-j}, \mathcal{C}(Z, \Omega_0^\vee))^\bullet$ in the derived category $D^{+}_{\text{coh}}(Z)$ is represented by the complex $\mathcal{H}om(\Lambda_Z(L)_{-j}, \mathcal{C}(Z, \Omega_0^\vee))^\bullet$ by [2, Lem.3.6]. Hence we get the corollary by Theorem 5.1.

The following corollary follows from Corollaries 2.12 and 5.2.

Corollary 5.3 For each integer $0 \leq j \leq r$, the Grothendieck dual of the d-complex $\Omega_j(p; Z)$ is quasi-isomorphic to $\Omega_{r-j}(-p; Z)[r]$.

We assume that Δ is a complete fan. Then Z is a complete variety.

Let F^\bullet be a finite complex of coherent \mathcal{O}_Z-modules. By the Grothendieck duality theorem [Rd, VI, Thm.3.3] applied for the proper morphism $f_Z : Z \rightarrow \text{Spec} \mathbb{Q}$, we have a natural isomorphism

$$H^i(Z, R\mathcal{H}om(F, \mathcal{C}(Z, \Omega_0^\vee))^\bullet) \simeq \text{Hom}(H^{-i}(Z, F^\bullet), \mathbb{Q}). \quad (5.18)$$

Theorem 5.4 Assume that Δ is a complete fan. Then the equality

$$\dim_{\mathbb{Q}} H^i(Z, \Omega_j(p; Z)) = \dim_{\mathbb{Q}} H^{-i}(Z, \Omega_{r-j}(-p; Z)) \quad (5.19)$$

holds for any integers i, j.

56
Proof. By Corollary 5.2, this is a consequence of the Grothendieck-Serre duality theorem.

We can also prove the equality directly as follows. We have equalities

\[\dim_Q H^i(Z, \Omega_j(p; Z)^*) = \dim_Q H^i(\Gamma(ic_p(\Delta)^*))_{-j} \quad (5.20) \]

and

\[\dim_Q H^{-i}(Z, \Omega_{r-j}(p; Z)^*) = \dim_Q H^{-i}(\Gamma(ic_{-p}(\Delta)^*))_{-r+j} \quad (5.21) \]

by Lemma 3.6. Since $ic_p(\Delta)^*$ is quasi-isomorphic to $D(ic_{-p}(\Delta))^*$ by Corollary 2.12, we get the equality by Proposition 2.5.

q.e.d.

References

[BBD] A.A. Beilinson, J. Bernstein and P. Deligne, Faisceaux pervers, Analyse et Topologie sur les Espaces Singuliers (I), Astérisque 100, Soc. Math. France, 1982.

[D1] V.I. Danilov, The geometry of toric varieties, Russian Math. Surveys 33, (1978), 97-154.

[D2] P. Deligne, Cohomologie a supports propres, Expose XVII, SGA4, Tome 3, Lecture Notes in Math. 305, Springer-Verlag, Berlin, Heidelberg, New York, 1973.

[DL] J. Denef and F. Loeser, Weights of exponential sums, intersection cohomology, and Newton polyhedra, preprint.

[EGA4] A. Grothendieck and J. Dieudonné, Éléments de Géométrie Algébrique IV, Inst. Hautes Études Sci. Publ. Math. 20, 24, 28, 32, (1964-1967).

[GAGA] J.-P. Serre, Géométrie Algébrique et Géométrie Analytique, Ann. Inst. Fourier 6, (1956), 1-42.
[GM1] M. Goresky and R. MacPherson, Intersection homology theory, Topology 19, (1980), 135-162.

[GM2] M. Goresky and R. MacPherson, Intersection homology II, Invent. math. 72, (1983), 77-129.

[G] W.H. Grueb, Multilinear Algebra, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, 136, Springer-Verlag, Berlin, Heidelberg, New York, 1967.

[H] R. Hartshorne, On the de Rham cohomology of algebraic varieties, Inst. Hautes Études Sci. Publ. Math. 45, 1975.

[I1] M.-N. Ishida, Torus embeddings and dualizing complexes, Tohoku Math. J. 32, (1980), 111-146.

[I2] M.-N. Ishida, Torus embeddings and de Rham complexes, in Commutative Algebra and Combinatorics (M. Nagata and H. Matsumura, ed.), Adv. Studies in Pure Math. 11, Kinokuniya, Tokyo and North-Holland, Amsterdam, New York, Oxford, 1987, 111-145.

[I3] M.-N. Ishida, Torus embeddings and algebraic intersection complexes, II, preprint.

[MV] R. MacPherson and K. Vilonen, Elementary construction of perverse sheaves, Invent. math. 84, (1986), 403-435.

[O1] T. Oda, Convex Bodies and Algebraic Geometry, An Introduction to the Theory of Toric Varieties, Ergebnisse der Math. (3), 15, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1988.

[O2] T. Oda, The algebraic de Rham theorem for toric varieties, Tohoku Math. J. 45, (1993), 231-247.
[O3] T. Oda, Simple convex polytopes and the strong Lefschetz theorem, J. of Pure and Appl. Alg. 71, (1991), 265-286.

[RD] R. Hartshorne, Residues and Duality, Lecture Notes in Math. 20, Springer-Verlag, Berlin, Heidelberg, New York, 1966.

[SC] A. Ash, D. Mumford, M. Rapoport and Y. Tai, Smooth compactification of locally symmetric varieties, Lie Groups: History, Frontiers and Applications IV, Math. Sci. Press, Brookline, Mass., 1975.

[S] R. Stanley, Generalized h-vectors, intersection cohomology of toric varieties, and related results, in Commutative Algebra and Combinatorics (M. Nagata and H. Matsumura, ed.), Adv. Studies in Pure Math. 11, Kinokuniya, Tokyo and North-Holland, Amsterdam, New York, Oxford, 1987, 187-213.

[V] J.-L. Verdier, Dualité dans la cohomologie des espaces localement compacts, Séminar Bourbaki, 300, (1965).