Immobilization and assessment of heavy metals in chicken manure compost amended with rice straw-derived biochar

Hui Li**, Wei Wu**, Xue Min, Wenyoung Zhan†, Ting Fang‡, Xinju Dong§ and Yanhong Shi**

**School of Resources and Environment, Anhui Agricultural University, Hefei Anhui, China; †Agricultural Engineering Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China; ‡Anhui Dechang Mao Mu Co. LTD, Hefei, Anhui, PR China; §Key Laboratory of Freshwater Aquaculture and Enhancement of Anhui Province, Fisheries Research Institute, Anhui Academy of Agricultural Sciences, Hefei Anhui, China; ¶Department of Chemistry, University of Louisville, Louisville, Kentucky USA;

ABSTRACT
In this study, a 30-days laboratory experiment was implemented to investigate the impact of additive biochar on the stabilization of heavy metals in chicken manure compost. Results showed that after the addition of rice straw-derived biochar, heavy metals were more stabilized except Cu, of which the residual fractions distinctly decreased due to the interaction with organic functional groups from biochar. Given the bioavailability of heavy metals, the biochar addition at a 10% proportion decreased the concentration of CaCl2-extractable Cr, Zn, Ni, and Cd. Besides, CaCl2-extractable As did not differ significantly between treatments with and without biochar addition. Furthermore, the CaCl2-extractable Cu was higher than the control, in agreement with the observed changes in speciation. Environment pollution assessment by integrating potential ecological risk assessment explicating the chicken manure compost reached a very high-risk pollution level, and decreased with biochar addition. Therein, Cd was the dominant pollutant with very high potential risk.

1. Introduction

With the increasing demand for poultry products in daily food consumption, poultry breeding in China had been greatly developed [1,2]. Globally, China was the largest producer of meat in recent two decades, the total amount of breeding animals reached 855 million tons in 2016 [3]. Meanwhile, the huge amount of manures and slurries with a total yield of 8.3 billion tons had caused a series of environmental problems, such as greenhouse gas emissions, land-use change, odor and airborne ammonia [4-6]. Therefore, livestock was one of the most significant contributors to present serious environmental problems [7]. In addition, various additives had been wildly adopted during the poultry breeding for the special effects on growth promotion and disease prevention after the earlier study concluded that the addition of Cu could promote the growth of livestock [8]. Therein, most additives contained toxic heavy metals, the majority of which were excreted in feces and urine, thus became important pollution sources once the compost was applied as agricultural fertilizer [9]. According to the previous survey, approximately 20% of agricultural soil exhibited elevated levels of heavy metals due to the application of fertilizer including chicken manure [5]. Therefore, investigation on heavy metals in chicken manure was urgent for proper application and necessary about environmental safety.

With the implementation of ‘Livestock and Poultry Manure Utilization Action Plan (2017–2020)’ policy in 2017 in China, the composting practice had been adopted for livestock and poultry manure utilization [2]. Results of recent studies demonstrated that composting was a viable approach for organic matter stabilization and sanitization [10]. However, during the composting process, toxic heavy metals in chicken manure could not be destroyed or eliminated thus being persistent in the final compost as predominant pollution sources to the subsequent environment [11]. High levels of toxic heavy metals in compost had been extensively reported in China [12]. A recent nationwide survey showed 13.7% and 2.4% compost was characterized with high As and Cd, respectively, exceeding the maximum permissible value [5]. The field study showed that the application of swine manure compost might lead to elevated levels of Cu and Zn in soil, especially after long-term continuous application [13,14]. Besides, Luo et al [15] found that more than half of Cd, Cu and Zn in agricultural soil was attributed to the utilization of livestock manure.

Compared with conventional remediation materials, biochar, which was characterized with high porous micro-structure, active functional groups, high pH, surface area and cation exchange capacity (CEC), had been considered as an effective candidate for re-vegetation and restoration [16], and had been widely
adopted in environmental remediation [17,18]. Biochar being added into soil then increased metal sorption was observed [19], indicating the addition of biochar could reduce metal availability in contaminated soil [20]. Ahmad et al. [21] prepared six different biochar and applied to different soil samples (10% w/w, one was contaminated with Pb and Zn, the other was contaminated with Pb and Cu), it showed that the additive biochar resulted in an increase of soil pH, and the majority of heavy metals were immobilized by biochar through functional group complexation and metal-hydroxide precipitation. Furthermore, Fellet et al. (2011) added various proportions of biochar (0, 1, 5 and 10% w/w) to mine tailings which was contaminated with Cd, Pb and Zn, and found that heavy metal bioavailability decreased with increasing biochar application.

The extensive investigation had been focused on the application of biochar in water and soil remediation [22,23]. However, up to now, there was still limited research on the impact of additive biochar on the stabilization of heavy metals in compost [12]. Only a few studies were put emphasize on the speciation and bioavailability of heavy metals in compost affected by adding biochar, which was of practical significance for composting process optimization and environmental pollution control [24–27]. Therefore, the objectives of the present study were to investigate the impact of additive biochar on the speciation and bioavailability of heavy metals in chicken manure compost, which could provide scientific support and reference for the application of biochar as a modifier in compost.

2. Materials and methods

2.1 Materials

Rice straw-derived biochar was produced at a treatment temperature of 550°C using a slow pyrolysis method for 1 h under limited oxygen supply [28]. Chicken manure samples were collected from commercial composting factory in Anhui Province of China. All the biochar and samples were oven-dried at 105°C for 24 h, then ground using an agate mortar and ground to pass through 2 mm sieves, then thoroughly mixed and stored in labeled plastic bottles before analysis. The ultimate analysis indicated the concentration of carbon, hydrogen, oxygen, nitrogen and sulphur were 83.6, 1.3 13.6, 1.2 and 0.3%, respectively. The biochar had a pH value of 10.5, and a relatively low content of heavy metals (<0.005 mg kg⁻¹) [29].

2.2 Experimental design

According to the Chinese National Agriculture Industry Standard animal manure composting (NY/T 3442–2019), the composting process was performed in PVC reactors (with 30 L effective volume) for 30 days. The composting raw material was mixture of fresh chicken manure with corn straw to adjust the carbon/nitrogen (C/N) ratio to ~25:1. In addition, as shown in Table 1, biochar with five different proportion of 0, 10, 20, 30, and 40% (on dry weight basis) were labeled as CK, C1, C2, C3 and C4, respectively. After the 30-days composting experiment finished, end-product samples were collected and dried at 105°C for 24 h until constant weight and then ground to pass through 2 mm sieves for chemical analysis.

2.3 Sample analysis

2.3.1 Total content of heavy metals

The total content of six selected heavy metals (Zn, Cu, As, Cr, Cd and Ni) in the compost samples (approximately 0.10 g) was determined by inductively coupled plasma atomic emission spectrometer (ICP-AES, PerkinElmer Optima 7300 DV) following digestion with HF-HClO₄-HNO₃ (2:3:2:1) mixed-acid. All plastic-ware and glassware were immersed in a 5% (v/v) nitric acid solution for 24 h and syringed with ultrapure water before determination.

2.3.2 Bioavailability of heavy metals

To predict the bioavailability of heavy metals, neutral salts such as calcium chloride (CaCl₂) was the most suitable extractant with the ability of extract various cations at low concentration with no change of pH during extraction process [29]. In this study, the bioavailability of heavy metals was measured using 0.01 M CaCl₂ solution, as reported by Pueyo et al. [30]. Briefly, compost samples were transferred in 10 mL centrifuge tubes with 10 mL 0.01 M CaCl₂ solution and then shaken at 200 rpm for 2 h at 25 ± 1°C, and then the suspension was separated by centrifugation at 3000 rpm for 30 min and filtered through 0.45 μm membrane. Extracted metal concentration was determined using inductively coupled plasma atomic emission spectrometer.

2.3.3 Chemical speciation of heavy metals

As one of the most widely applied extraction procedures for investigation of metal speciation, the European Community Bureau of Reference (BCR) sequential extraction procedures were adopted in the present study to investigate the chemical speciation of heavy metals [31,32]. Generally, heavy metals speciation can be divided into four different fractions such as
Table 2. Sequential extraction procedure for the speciation of BCR.

Fraction	Reagent	Shaking
Acid soluble	40 ml 0.11 mol L⁻¹ HAc	16 h (3000 r min⁻¹) at 22 ± 5°C
Reducible	40 ml 0.5 mol L⁻¹ NH₄OH (adjusted pH = 1.5 with HNO₃)	16 h (3000 r min⁻¹) at 22 ± 5°C
Oxidizable	10 ml 8.8 mol L⁻¹ H₂O₂, (pH = 2–3), followed by 10 ml 8.8 mol L⁻¹ H₂O₂, (pH = 2–3) and 50 ml 1 mol L⁻¹ NH₄Ac, (pH = 2)	1 h at 85 ± 2 °C, 85 ± 2 °C and 22 ± 5°C
Residual	HF-HCl-HNO₃-HNO₃, digestion	

exchangeable fraction (F1), carbonate fraction (F2), Fe-Mn oxide fraction (F3) and residual fraction (F4), which were regarded as direct eco-toxic and bioavailable (F1 + F2), potentially bioavailable (F3) and non-toxic (F4), respectively [29]. Detailed sequential extraction steps are tabulated in Table 2. The obtained extracted solutions were analyzed by the ICP-AES.

2.4 Risk assessment methods

In this study, based on the chemical speciation of heavy metals, the potential ecological risk index (RI) was applied to gain further insights into the risk assessment of heavy metals in compost [33,34]. RI is an indicator to assess the levels of potential risk of heavy metal pollution, which can be defined as follows:

\[P_m = \frac{C(F_1 + F_2)}{C_0} \]

\[ER_m = T_m \times P_m \]

\[RI = \sum ER_m \]

where, \(P_m \) is the contamination factor of each heavy metal, \(C(F_1 + F_2) \) is the sum of the contents of heavy metals present in fractions F₁ and F₂ in the samples, \(C_0 \) is the background values of heavy metal in Anhui (China), the background concentration of Cr, Ni, Cu, As, Zn and Cd in local soil are 66.5, 29.8, 20.4, 9.0, 62.0, 0.1 mg kg⁻¹, respectively [35,36]. \(ER_m \) is the monomial potential ecological risk coefficient for each heavy metal, \(T_m \) used for reflecting the toxicity of heavy metals are Cr (2), Ni (5), Cu (5), As (10), Zn (1) and Cd (30) [33,37].

2.5 Quality control and evaluation

A certified reference material (GBW07428) as well as reagent blanks, duplicate samples were analyzed simultaneously to check the accuracy and precision of the method. The precision and bias of the analysis results were within ±5%, and the returning recoveries of heavy metal speciation were ranged from 82.5% to 119.48%. The data were presented as mean ± standard deviation (n = 3).

3 Results and discussions

3.1 Content of heavy metals

Total content of heavy metals in the compost samples is given in Table 3. Zinc showed the highest level in chicken manure compost, which was 424.11 mg·kg⁻¹, followed by Cr, Cu, Ni and As, with the mean values of 76.17, 61.66, 28.22 and 27.22 mg·kg⁻¹, respectively, whereas Cd content was the least present in the compost, only 3.09 mg·kg⁻¹. Content of Cr, Cd, Ni and As showed comparable levels to the national statistical data reported by Qin et al. and Wang et al. [38,39]. However, it was noteworthy that heavy metals in present study were higher than the experimental results of Wang and Shan et al. [40,41], which might be attributed to additives used for growth promotion and disease prevention during the breeding process [42,43]. Addition of Cu and Zn to intensive livestock feed had been a common practice to promote optimal nutrition supply [44].

According to the compost standards set by China and other countries, maximum allowable values for heavy metals in compost are summarized in Table 3. On the basis of the Chinese national standard for organic fertilizers [45], Cd and As content in the compost samples were 1.03 and 1.81 times higher than corresponding guideline values, respectively. High As content in compost may pose a significant threat to the environment and human health [46]. Nevertheless, there had been no guideline values set for Cu, Zn, and Ni in China so far. Instead, results were compared with the standard values of heavy metals in mature manure in Germany with upper limit being 400, 20 and 100 mg·kg⁻¹ for Zn, Ni, and Cu [47], where content of Ni exceeding the maximum values by 1.06 times. Furthermore, according to the Australian standards of

Cr	Ni	Cu	Zn	As	Cd	Source
76.17	28.22	61.66	424.11	27.22	3.09	This study
35.52	9.71	72.24	258.1	16.33	2.42	Ding et al., 2017
0.69 ~ 6603	0.68 ~ 72.7	3.55 ~ 916	11.8 ~ 3692	0.37 ~ 71.7	0.012 ~ 8.72	Yang et al., 2017
0 ~ 1229	0 ~ 9600	0.7 ~ 501.2	0 ~ 53.2	0.1 ~ 75.8	0.1 ~ 28.0	Qin et al., 2015
7.06 ± 3.23	5.50 ± 1.60	271.2 ± 144.9	379.6 ± 181.7	5.04 ± 2.65	0.73 ± 0.31	Wang et al., 2015
33.68 ± 1.03	45.25 ± 1.30	184.98 ± 2.32	364.93 ± 8.38	0.93 ± 0.11	-	Sunur et al., 2016
16.3	7.63	314	573	10.3	0.73	-
185.89 ± 435.59	13.08 ± 5.74	96.2 ± 136.1	509.18 ± 613.35	23.26 ± 96.67	0.42 ± 0.65	Ru et al., 2016
200 and 25 mg·kg\(^{-1}\) for Zn and Ni [48], metal content in compost exceeded the limit values by 2.12 and 1.13 times, respectively. Therefore, heavy metal enriched in compost should be taken special consideration for its agricultural applications [49].

3.2 Chemical speciation of heavy metals in compost

As the most crucial factor for mobility and bioavailability of heavy metals, chemical speciation would influence their environmental behavior and potential toxicity [50]. Detailed speciation characterization of heavy metals in compost was depicted in Figure 1. It was worth note that Cr, Ni, and Cu were predominantly associated with the residual fraction, which accounted for more than 70% of the total amount, then followed by reducible and oxidizable fractions, indicating that Cr, Ni, and Cu in compost were mostly presented in a more stable form with relatively low risk to the surrounding environment. However, Cd was generally more bioavailable and showed higher mobility in environment [51,52], where reducible fraction was dominant for Cd, with the value of 70.32%, and the acid soluble and oxidizable fraction contributed only 11.58% in present study. Zinc mainly existed in the reducible and residual fraction, which may be attributed to the presence of small molecule humic components in compost [53]. Besides, the predominant chemical partitioning of As was the residual fraction (45.70%), followed by reducible and oxidizable fraction with 22.05 and 22.28%, respectively.

The bioavailability of heavy metal fractions decreased in the order of acid soluble>reducible>oxidizable>residual [54]. Thus, the acid soluble and reducible fractions were more available in environment, whereas the oxidizable and residual fractions were comparably stable [55]. Therefore, given the chemical speciation of heavy metals in compost, the mobility, and bioavailability of the heavy metals could be sequenced as Cd>Zn>As>Cu>Ni>Cr.

3.3 Effect of biochar on speciation of heavy metals

Results showed that the speciation of heavy metals in compost was variously affected by the addition of biochar in the 30-days experiment. As displayed in Figure 2, the residual fraction of Cd, As, Cr, Ni, and Zn was increased with the biochar amendment, which indicated that heavy metals were turned to a more stable status after treatment. In addition, the residual fraction of Cd, As, and Zn was mostly increased with 10% biochar as no apparent increasing tendency were found with more biochar. The residual fraction of Ni had risen with the biochar addition within the range from 10% to 30%; then there was no significant change for more biochar addition.

Metal stabilization with biochar had been widely developed for soil and waste water remediation [56]. Chemical speciation of heavy metals was interpreted to be affected by the addition of biochar through direct and indirect interactions: the direct interactions referred to heavy metals were associated with the organic functional groups originated from biochar [57], thus led to the stability of heavy metals [58,59]; while the indirect interactions were related to the release of dissolved organic carbon and increase of pH that would favor metal stability and precipitation [60,61]. The pH was increased from 7.52 to 8.46 in this study, which promoted the formation of stable metal complexes with the dissolved organic matter [62], indicating the predominant effect for heavy metal stabilization, according to the study of Rees et al. [63]. Meanwhile, mineral phases and organic matter from biochar would also provide
3.4 Impact of biochar application on the bioavailability of heavy metals

Bioavailability of heavy metals had been regarded as one of the most crucial issues in agricultural and environmental studies [70], where heavy metals were considered to be bio-absorbed or toxic to organisms [71]. Bioavailability of heavy metals in compost was closely related to the morphology [24,72]. As shown in Figure 3, with the addition of biochar, the proportion of CaCl$_2$-extractable fraction for all metals except Cu showed decreasing tendency. The extractable fraction of Ni, As, Cr, Cd and Zn were observed with a biochar dosage rate of 10%, which were 32.38, 25.57, 56.65, 50.68 and 82.92% lower than those at control sample, respectively. With the increasing amount of biochar, levels of the CaCl$_2$-extractable concentration of Ni, As, Cr and Zn did not show any apparent change, which indicated that more addition of biochar did not make sense. These results were in agreement with the change of speciation of heavy metals aforementioned.

Bioavailability of heavy metals in compost predominantly depended on the specific chemical forms and environmental condition changes. Compost properties included pH, organic matter, sulfate, carbonate, cation exchange capacity, and hydroxide [73,74]. Due to the addition of alkaline biochar, the physical and biological properties of compost were effectively regulated and the pH value of the compost was increased, which enhanced the cation adsorption ability and promoted the precipitation of heavy metals in the forms of oxides, carbonates, hydroxides and phosphates so as to reduce metal bioavailability via sorption and/or precipitation reactions [25,75,76]. Meanwhile, biochar was additional adsorption sites and provide high binding capacity for heavy metals [64].

It was noteworthy that Cu showed an opposite trend, of which the residual fraction was decreased with the biochar amendment. The result was in good agreement with previous studies [65–67]. With the addition of biochar, the dissolved organic carbon increased rapidly, consequently accelerated the combination of Cu and organic matter, especially under high pH value. In a previous study conducted by Hartley et al. [68], higher Cu concentration was found due to the addition of biochar in greenwaste compost. Organic matter may play an important role in Cu speciation in compost, which had also been found in sludge compost [24] and soil [69].
known as well-developed porous structure and abundant surface functional groups including phenolic hydroxyls, carboxyls and carbonyls, which could promote the ion exchange of biochar surface, lower the bioavailability of heavy metals thus alleviate heavy metal pollution in environment [28,77,78]. Besides, biochar had been found to accelerate microbial activity, which also contributed to stimulate metal stabilization in compost [58,79].

As for the level of CaCl₂-extractable Cu, it demonstrated the application of biochar had an adverse effect on Cu immobilization. The extractable level was increased from 0.60 to 1.45 mg·kg⁻¹, which was similar to the result of biochar remedy soil for long time [58,80]. Other studies also observed that compost could increase the proportion of available Cu, which was due to the fact that Cu was temporarily mobilized by humic acids [81]. Results of Ippolito et al. [82] showed that Cu was in complexation with organic ligands under acidic condition, then changed to carbonate, oxide, and hydroxide mineral associations with the increase of pH, which consequently affected the bioavailability of Cu. In summary, the application of biochar can be contributable to change the speciation of heavy metals in compost, thereby lowering the bioavailability of heavy metals.

3.5 Integrated potential ecological risk assessment of heavy metals

To comprehensively evaluate the potential ecological risk of heavy metals in chicken manure compost, potential ecological risk index (RI) was used in this study. Table 5 shows the risk indices (Er) of each heavy metal in compost, ranked in the order of Cd>As>Zn>Cu>Ni>Cr. In comparison with the classification, Cd was the only one element that values for all samples were higher than 40, suggesting the Cd in compost have very high potential environmental risk. With the addition of biochar, the E value was declined, while, no obvious change with the increase of biochar appeared in this research.

With regard to RI values of each sample shown in Figure 4, it was observed that the RI value of composts varied significantly ranging from 480.51 to 740.61, followed the sequence: CK>C1> C2> C3> C4. According to the category of RI [34,83], the compost without
Table 5. Ecological risk assessment of heavy metals in the compost with the addition of biochar.

Heavy metal	Tr	CK	C1	C2	C3	C4
Cr	2	0.01	0.01	0.01	0.01	0.01
Ni	5	0.25	0.18	0.18	0.09	0.12
Cu	5	1.05	1.47	0.98	1.62	1.80
Zn	1	3.38	3.28	3.31	3.27	3.17
As	10	9.68	5.78	5.40	5.07	5.27
Cd	30	727.23	539.85	501.89	491.87	470.20
RI	741.61	550.57	511.76	501.94	480.57	

Er: 40–40, 80–160, 160–320, and >320 denote low risk, moderate risk, considerable risk, high risk, and very high risk, respectively.

After the biochar addition, the residual fraction of Cd, Cr, Ni, Zn, and As was increased, whereas Cu showed an opposite tendency. Meanwhile, the bioavailability of Zn, Ni, Cr, and Cd was also diminished, while bioavailability of Cu was increased, and with no obvious effect on As. According to the results of risk assessment, the biochar addition reduce the potential ecological risk of heavy metals in compost, however, Cd with very high potential environmental risk should be taken more concern.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was financially supported by the Nature Science Research Project of Anhui province (NO.2008085QC139), The Natural Science Foundation of the Education Department of Anhui Province (NO.KJ2019A0207), Anhui Science and Technology Major Project (NO.18030701186), Natural Science Foundation of Anhui Province(NO.2008085QC139), The Open Fund of Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention (NO.FECP202003), The Project Startup Foundation for Advanced Talents AHAU (NO.Y2018-56), Special Project in Old Revolutionary Base Area and Impoverished County of Anhui Province (No.201904f06020053).

References

[1] Du Y, Ge Y, Ren Y, et al. A global strategy to mitigate the environmental impact of China’s ruminant consumption boom. Nat Commun. 2018;9(1):4133.

[2] Bai Z, Ma W, Ma L, et al. China’s livestock transition: driving forces, impacts, and consequences. Sci Adv. 2018;4(7):eaar8534.

[3] Lei S, Shi Y, Qiu Y, et al. Performance and mechanisms of emerging animal-derived biochars for immobilization of heavy metals. Sci Total Environ. 2019;646:1281–1289.

[4] Sun X, Liu Q, Guo H. Effects of swine manure biochar on soil fertility and cabbage (Brassica chinensis) growth. Agro-Environ Sci. 2016;35:1756–1763.

[5] Yang X, Li Q, Tang Z, et al. Heavy metal concentrations and arsenic speciation in animal manure composts in China. Waste Manage. 2017;64:333–339.

[6] Chen Q, Qin J, Cheng Z, et al. Synthesis of a stable magnesium-impregnated biochar and its reduction of phosphorus leaching from soil. Chemosphere. 2018;199:402–408.

[7] Steinfeld H, Gerber P, Wassenaar TD, et al. Livestock’s long shadow: environmental issues and options. Rome: Food & Agriculture Org; 2006.

[8] Stokstad EL, Jukes TH, Pierce J. The multiple nature of the animal protein factor. J Biol Chem. 1949;180(2):647.

[9] Tullio E, Finzi A, Guarino M. Review: environmental impact of livestock farming and Precision Livestock Farming as a mitigation strategy. Sci Total Environ. 2019;650:2751–2760.

[10] Bernal MP, Alburquerque JA, Moral R, et al. Composting of animal manures and chemical criteria for compost maturity assessment. A review. Biore Technol. 2009;100(22):5444.

[11] Möller K, Schultheiß U. Chemical characterization of commercial organic fertilizers. Arch Agron Soil Sci. 2015;61(7):989–1012.
Ding F, He Z, Liu S, et al. Heavy metals in composites of China: historical changes, regional variation, and potential impact on soil quality. Environ Sci Pollut Res. 2017;24(3):3194–3209.

Tripathy S, Bhattacharyya P, Mohapatra R, et al. Influence of different fractions of heavy metals on microbial ecophysiological indicators and enzyme activities in century old municipal solid waste amended soil. Ecol Eng. 2014;70:25–34.

Zhao B, Maeda M, Zhang J, et al. Accumulation and Chemical Fractionation of Heavy Metals in Andisols after a Different, 6-year Fertilization Management (8 pp). Environmental Science and Pollution Research - International. 2006;13(2):90–97.

Luo L, Ma Y, Zhang S, et al. An inventory of trace element inputs to agricultural soils in China. J Environ Manage. 2009;90(8):2524–2530.

Lehmann J. Bio-Energy in the Black. Front EcolEnviron. 2007;5(7):381–387.

Chen Y, Liu Y, Li Y, et al. Influence of biochar on heavy metals and microbial community during composting of river sediment with agricultural wastes. Biore Technol. 2017;243:347–355.

Manyā JJ. Pyrolysis for biochar purposes: a review to establish current knowledge gaps and research needs. Environ Sci Technol. 2012;46(15):7939–7954.

Melo LCA, Puga AP, Coscione AR, et al. Sorption and desorption of cadmium and zinc in two tropical soils amended with sugarcane-straw-derived biochar. J Soils Sediments. 2016;16(1):226–234.

Puga A, Abreu CA, Melo LCA, et al. Biochar application to a contaminated soil reduces the availability and plant uptake of zinc, lead and cadmium. J Environ Manage. 2015;159:86–93.

Ahmad M, Lee SS, Lee SE, et al. Biochar-induced changes in soil properties affected immobilization/mobilization of metals/metalloids in contaminated soils. J Soils Sediments. 2017;17(3):1–14.

Li R, Wang JJ, Gaston LA, et al. An overview of carbothermal synthesis of metal–biochar composites for the removal of oxoanion contaminants from aqueous solution. Carbon. 2018;129:674–687.

Li H, Dai M, Dai S, et al. Current status and environmental impact of direct straw return in China’s cropland – a review. Ecotoxicol Enviro. Safety. 2018;159:293–300.

Singh J, Kalamdhad AS. Chemical Speciation of Heavy Metals in Compost and Compost Amended Soil -A Review. International Journal of Environmental Engineering Research. 2013(2):27–37.

Zeng G, Wu H, Liang J, et al. Efficiency of biochar and compost (or composting) combined amendments for reducing Cd, Cu, Zn and Pb bioavailability, mobility and ecological risk in wetland soil. RSC Adv. 2015;5(44):34541–34548.

Awasthi SK, Liu T, Awasthi MK, et al. Evaluation of biochar amendment on heavy metal resistant bacteria abundance in biosolids compost. Biore Technol. 2020;306:123114.

Cui H, Ou Y, Wang L, et al. The passivation effect of heavy metals during biochar-amended composting: emphasize on bacterial communities. Waste Manage. 2020;118:360–368.

Mohamed BA, Ellis N, Kim CS, et al. The role of tailored biochar in increasing plant growth, and reducing bioavailability, phytotoxicity, and uptake of heavy metals in contaminated soil. Environ Pollut. 2017;230:329–338.

Dai S, Li H, Yang Z, et al. Effects of biochar amendments on speciation and bioavailability of heavy metals in coal-mine-contaminated soil. Human Ecol Risk Assess. 2018;24(7):1887–1900.

Pueyo M, López-Sánchez JF, Rauret G. Assessment of CaCl2, NaNO3 and NH4NO3 extraction procedures for the study of Cd, Cu, Pb and Zn extractability in contaminated soils. Analytica Chimica Acta. 2004;504(2):217–226.

Huang S-H. Fractional distribution and risk assessment of heavy metal contaminated soil in vicinity of a lead/zinc mine. Trans Nonferrous Met Soc China. 2014;24(10):3324–3331.

Rauret G, López-Sánchez JF, Sahuquillo A, et al. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. J Environ Monit. 1999;1(1):57.

Hakanson L. An ecological risk index for aquatic pollution control.a sedimentological approach. Water Res. 1980;14(8):975–1001.

Chai L, Li H, Yang Z, et al. Heavy metals and metalloids in the surface sediments of the Xiangjiang River, Hunan, China: distribution, contamination, and ecological risk assessment. Environ Sci Pollut Res. 2017;24(1):874–885.

Zhang X, Zha T, Guo X, et al. Spatial distribution of metal pollution of soils of Chinese provincial capital cities. Sci Total Environ. 2018;643:1502–1513.

Li H, Xu W, Dai M, et al. Assessing heavy metal pollution in paddy soil from coal mining area, Anhui, China. Environ Monit Assess. 2019;191(8):518.

Xu ZQ, Ni SJ, Tuo X, et al. Calculation of heavy metals’ toxicity coefficient in the evaluation of potential ecological risk index. Environ Sci Technol. 2008;31:112–115.

Qin L, Ma J, Wan S, et al. Characteristics of heavy metal and nutrient contents in livestock manure in Zhejiang Province. Acta Agric Zhejiangens. 2015;27:604–610.

Wang F, Zhao L, Shen Y, et al. Analysis of heavy metal contents and source tracing in organic fertilizer from livestock manure in North China. Trans Chin Soc Agri Eng. 2013;29:202–208.

Fei W, Ling Q, Shen Y, et al. Investigation and analysis of heavy metal contents from livestock feed and manure in North China. Nongye Gongcheng Xuebao/trans Chin Soc Agri Eng. 2015;31:261–267.

Shan Y-J, Zhang M-K. Contents of nutrient elements and pollutants in different sources of animal manures. <https://cdata[Chinese Journal of Eco-Agriculture]>.. 2012;20(1):80–86.

Paradelo R, Villada A, Devesa-Rey R, et al. Distribution and availability of trace elements in municipal solid waste composts. J. Environ. Monit. 2011;13(1):201.

Wang H, Dong Y, Yang Y, et al. Changes in heavy metal contents in animal feeds and manures in an intensive animal production region of China. J Environ Sci. 2013;25(12):2435–2442.

Lu X-M, Lu P-Z, Chen J-J, et al. Effect of passivator on Cu form transformation in pig manure aerobic composting and application in soil. Environ Sci Pollut Res. 2015;22(19):14727–14737.

MAPRC, organic fertilizer NY 525–2012, Beijing: Ministry of Agriculture of the PRC, China Agricultural Press 2012.

Michalak I, Chojnacka K. Algal compost – toward sustainable fertilization. Rev Inorg Chem. 2013;33(4):161–172.
[47] Verdonck O. Compost specifications. Int Symp Composting Use Composted Mater Hortic. 1997:469:169–178.

[48] Lefebvre D, Folliet-Hoyte N, Fortin S Support Document for Compost Quality Criteria-National Standard of Canada (CAN/BNQ 0413-200). The Canadian Council of Ministers of the Environment (CCME) Guidelines, Agriculture and Agri-Food Canada (AAFC) Criteria 1994

[49] Li H, Yang Z, Dai M, et al. Input of Cd from agriculture phosphate fertilizer application in China during 2006–2016. Sci Total Environ. 2020;698:134149.

[50] Kim Y, Kim K, Kim K. Distribution and speciation of heavy metals and their sources in Kumho River sediment, Korea. Environ Earth Sci. 2010;60(5):943–952.

[51] Lepp NW, Dickinson NM, Ross SM. Fungicide-derived copper in tropical plantation crops. Toxic Metals Soil-Plant Syst. 1994:367–393.

[52] Kabata-Pendias A. Soil–plant transfer of trace elements—an environmental issue. Geoderma. 2004;122 (2–4):143–149.

[53] Huang G. Chemical changes of heavy metals in the process of pig manure composting. China Environ Sci. 2004;24:94–99.

[54] Zimmerman AJ, Weindorf DC. Heavy metal and trace metal analysis in soil by sequential extraction: a review of procedures. Int J Anal Chem. 2010;2010:387803. ([2010-4-18]).

[55] Alvarez EA, Mochón MC, Jiménez Sánchez JC, et al. Heavy metal extractable forms in sludge from wastewater treatment plants. Chemosphere. 2002;47 (7):765–775.

[56] Wang M, Zhu Y, Cheng L, et al. Review on utilization of biochar for metal-contaminated soil and sediment remediation. J Environ Sci. 2017.

[57] Liu W, Huo R, Xu J, et al. Effects of biochar on nitrogen transformation and heavy metals in sludge composting. Biores Technol. 2017;235:43–49.

[58] Beesley L, Moreno-Jiménez E, Gomez-Eyles JL. Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environ Pollut. 2010;158(6):2282–2287.

[59] Beesley L, Innehe OS, Norton GJ, et al. Assessing the influence of compost and biochar amendments on the mobility and toxicity of metals and arsenic in a naturally contaminated mine soil. Environ Pollut. 2014;186:195.

[60] Gomez-Eyles JL, Beesley L, Moreno-Jiménez E, et al. The potential of biochar amendments to remediate contaminated soils. Biochar and soil biota, 2013;4:100–133.

[61] Beesley L, Moreno-Jiménez E, Gomez-Eyles JL, et al. A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environ Pollut. 2011;159(12):3269–3282.

[62] Beesley L, Dickinson N. Carbon and trace element fluxes in the pore water of an urban soil following greenwaste compost, woody and biochar amendments, inoculated with the earthworm Lumbricus terrestris. Soil Biol Biochem. 2011;43(1):188–196.

[63] Rees F, Simonnnot MO, Morel JL. Short-term effects of biochar on soil heavy metal mobility are controlled by intra-particle diffusion and soil pH increase. Euro J Soil Sci. 2014;65(1):149–161.

[64] Uchimiya M, Lima IM, Klasson KT, et al. Contaminant immobilization and nutrient release by biochar soil amendment: roles of natural organic matter. Chemosphere. 2010;80(8):935.

[65] Park JH, Choppala GK, Bolan NS, et al. Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant Soil. 2011;348(1–2):439.

[66] Liang J, Yang Z, Tang L, et al. Changes in heavy metal mobility and availability from contaminated wetland soil remediated with combined biochar-compost. Chemosphere. 2017;181:281.

[67] Zhao S, Feng C, Wang D, et al. Salinity increases the mobility of Cd, Cu, Mn, and Pb in the sediments of Yangzte Estuary: relative role of sediments’ properties and metal speciation. Chemosphere. 2013;91(7):977–984.

[68] Hartley W, Dickinson NM, Riby P, et al. Arsenic mobility in brownfield soils amended with green waste compost or biochar and planted with Miscanthus. Environ Pollut. 2009;157(10):2654.

[69] Smith SR. A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge. Environ Int. 2009;35(1):142–156.

[70] Zogaj M, Düring R-A. Plants uptake of metals, transfer factors and prediction model for two contaminated regions of Kosovo. J Plant Nutr Soil Sci. 2016;179 (5):630–640.

[71] Dirilgen N. Accumulation of Heavy Metals in Freshwater Organisms: assessment of Toxic Interactions. Turk J Chem. 2001;25:173–179.

[72] Singh J, Kalamdhad AS. Bioavailability and Leachability of Heavy Metals during Composting –A Review. Isca In. 2013;2:59–64.

[73] McBride M, Sauve S, Hendershot W. Solubility control of Cu, Zn, Cd and Pb in contaminated soils. Euro J Soil Sci. 1997;48(2):337–346.

[74] Guala SD, Vega FA, Covelo EF. The dynamics of heavy metals in plant–soil interactions. Ecol Mode. 2010;221(8):1148–1152.

[75] Chen T, Zhang Y, Wang H, et al. Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage sludge. Biores Technol. 2014;164:47–54.

[76] Cao X, Ma L, Liang Y, et al. Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar. Environ Sci Technol. 2011;45 (11):4884.

[77] Qian KZ, Kumar A, Zhang HL, et al. Recent advances in utilization of biochar. Renewable Sustainable Energy Rev. 2015;42:1055–1064.

[78] Abdelhafez AA, Li J, Abbas MHH. Abbas M H H Feasibility of biochar manufactured from organic wastes on the stabilization of heavy metals in a metal smelter contaminated soil. Chemosphere. 2014;117:66.

[79] Steinbeiss S, Gleixner G, Antonietti M. Antonietti M Effect of biochar amendment on soil carbon balance and soil microbial activity. Soil Biol Biochem. 2009;41 (6):1301–1310.

[80] Li H, Ye X, Geng Z, et al. The influence of biochar type on long-term stabilization for Cd and Cu in contaminated paddy soils. J Hazard Mater. 2016;304:40.

[81] Clemente R, Bernal MP. Fractionation of heavy metals and distribution of organic carbon in two contaminated soils amended with humic acids. Chemosphere. 2006;64 (8):1264–1273.
[82] Ippolito JA, Strawn DG, Scheckel KG, et al. Macroscopic and molecular investigations of copper sorption by a steam-activated biochar. J Environ Qual. 2012;41(4):1150.

[83] Zhang Z, Lu Y, Li H, et al. Assessment of heavy metal contamination, distribution and source identification in the sediments from the Zijiang River, China. Sci Total Environ. 2018;645:235–243.