Representations attached to vector bundles on curves over finite and p-adic fields, a comparison

Christopher Deninger

1 The comparison

In [DW2] and [DW4] a partial analogue of the classical Narasimhan–Seshadri correspondence between vector bundles and representations of the fundamental group was developed. See also [F] for a p-adic theory of Higgs bundles. Let \mathfrak{o} be the ring of integers in $\mathbb{C}_p = \hat{\mathbb{Q}}_p$ and let $k = \mathfrak{o}/\mathfrak{m} = \mathbb{F}_p$ be the common residue field of \mathbb{Z}_p and \mathfrak{o}. Consider a smooth projective (connected) curve X over \mathbb{Q}_p and let E be a vector bundle of degree zero on $X_{\mathbb{C}_p} = X \otimes \mathbb{C}_p$.

If E has potentially strongly semistable reduction in the sense of [DW4] Definition 2, then for any $x \in X(\mathbb{C}_p)$ according to [DW4] Theorem 10 there is a continuous representation

$$\rho_{E,x} : \pi_1(X, x) \longrightarrow \text{GL}(E_x).$$

We now describe a special case of the theory where one can define the reduction of $\rho_{E,x} \mod \mathfrak{m}$. Assume that we are given the following data:

i) A model \mathfrak{X} of X i.e. a finitely presented proper flat \mathbb{Z}_p-scheme \mathfrak{X} with $X = \mathfrak{X} \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$,

ii) A vector bundle \mathcal{E} over $\mathfrak{X}_o = \mathfrak{X} \otimes_{\mathbb{Z}_p} \mathfrak{o}$ extending E.

Such models \mathfrak{X} and \mathcal{E} always exist. Consider the special fibre $\mathfrak{X}_k = \mathfrak{X} \otimes_{\mathbb{Z}_p} k = \mathfrak{X}_o \otimes_{\mathfrak{o}} k$ and set $\mathcal{E}_k = \mathcal{E} \otimes_{\mathfrak{o}} k$, a vector bundle on \mathfrak{X}_k. We assume that \mathcal{E}_k restricted to $\mathfrak{X}_k^{\text{red}}$ is strongly semistable of degree zero in the sense of section 2 below.
In this case we say that E has strongly semistable reduction of degree zero on \mathfrak{X}_o. Then [DW2] provides a continuous representation

\begin{equation}
\rho_{E,x_o} : \pi_1(X,x) \longrightarrow \text{GL} \left(\mathcal{E}_{x_o} \right),
\end{equation}

which induces π. Here $x_o \in \mathfrak{X}(o) = X(\mathbb{C}_p)$ is the section of \mathfrak{X} corresponding to x and $\mathcal{E}_{x_o} = \Gamma(\text{spec } o, x_o^* \mathcal{E})$ is an o-lattice in \mathcal{E}_x.

Denoting by $x_k \in \mathfrak{X}_k(k) = \mathfrak{X}_k^{\text{red}}(k)$ the reduction of x_o, we have $\mathcal{E}_{x_o} \otimes_o k = \mathcal{E}_x$ the fibre over x_k of the vector bundle \mathcal{E}_k.

The aim of this note is to describe the reduction mod m of ρ_{E,x_o} i.e. the representation

\begin{equation}
\rho_{E,x_o} \otimes k : \pi_1(X,x) \longrightarrow \text{GL} \left(\mathcal{E}_x \right),
\end{equation}

using Nori’s fundamental group scheme [N].

Let us recall some of the relevant definitions. Consider a perfect field k and a reduced complete and connected k-scheme Z with a point $z \in Z(k)$. A vector bundle H on Z is \textit{essentially finite} if there is a torsor $\lambda : P \rightarrow Z$ under a finite group scheme over k such that $\lambda^* H$ is a trivial bundle. Nori has defined a profinite algebraic group scheme $\pi(Z,z)$ over k classifying the essentially finite bundles H on Z. Every such bundle corresponds to an algebraic representation

\begin{equation}
\lambda_{H,z} : \pi(Z,z) \longrightarrow \text{GL}_H.
\end{equation}

The group scheme $\pi(Z,z)$ also classifies the pointed torsors under finite group schemes on Z. If k is algebraically closed, it follows that the group of k-valued points of $\pi(Z,z)$ can be identified with Grothendieck’s fundamental group $\pi_1(Z,z)$. On k-valued points the representation $\lambda_{H,z}$ therefore becomes a continuous homomorphism

\begin{equation}
\lambda_{H,z} = \lambda_{H,z}(k) : \pi_1(Z,z) \longrightarrow \text{GL}_H(k).
\end{equation}

We will show the following result:

\textbf{Theorem 1} With notations as above, consider a vector bundle E on \mathfrak{X}_o with strongly semistable reduction of degree zero. Then $\mathcal{E}_k^{\text{red}}$, the bundle \mathcal{E}_k restricted to $\mathfrak{X}_k^{\text{red}}$ is essentially finite. For the corresponding representation:

\begin{equation}
\lambda = \lambda_{\mathcal{E}_k^{\text{red}},x_k} : \pi_1(\mathfrak{X}_k^{\text{red}},x_k) \longrightarrow \text{GL}(\mathcal{E}_x),
\end{equation}

2
the following diagram is commutative:

\[
\begin{array}{ccc}
\pi_1(X, x) & \xrightarrow{\rho_{E, x} \otimes k} & \text{GL}(E_{x_k}) \\
\downarrow & & \downarrow \\
\pi_1(X, x) & \xrightarrow{\lambda} & \text{GL}(E_{x_k})
\end{array}
\]

In particular, the reduction mod m of $\rho_{E, x}$ factors over the specialization map $\pi_1(X, x) \to \pi_1(X_{\text{red}}^k, x_k)$. In general this is not true for $\rho_{E, x}$ itself according to Example 5.

This note originated from a question of Vikram Mehta. I am very thankful to him and also to Hélène Esnault who once drew my attention to Nori’s fundamental group.

2 sss-bundles on curves over finite fields

In this section we collect a number of definitions and results related to Nori’s fundamental group [N]. The case of curves over finite fields presents some special features.

Consider a reduced complete and connected scheme Z over a perfect field k with a rational point $z \in Z(k)$. According to [N] the \otimes-category of essentially finite vector bundles H on Z with the fibre functor $H \mapsto H_z$ is a neutral Tannakian category over k. By Tannakian duality it is equivalent to the category of algebraic representations of an affine group scheme $\pi(Z, z)$ over k which turns out to be a projective limit of finite group schemes.

Let $f : Z \to Z'$ be a morphism of reduced complete and connected k-schemes. The pullback of vector bundles induces a tensor functor between the categories of essentially finite bundles on Z' and Z which is compatible with the fibre functors in $f(z)$ and z. By Tannakian functoriality we obtain a morphism
\(f_* : \pi(Z, z) \to \pi(Z', f(z))\) of group schemes over \(k\). If \(k\) is algebraically closed the induced map on \(k\)-valued points

\[
\pi_1(Z, z) = \pi(Z, z)(k) \to \pi(Z', f(z))(k) = \pi_1(Z', f(z))
\]
is the usual map \(f_*\) between the Grothendieck fundamental groups.

We will next describe the homomorphism

\[\lambda_{H,z} = \lambda_{H,z}(k) : \pi_1(Z, z) = \pi(Z, z)(k) \to \text{GL}(H_z)\]
in case \(H\) is trivialized by a finite étale covering. Consider a scheme \(S\) with a geometric point \(s \in S(\Omega)\). We view \(\pi_1(S, s)\) as the automorphism group of the fibre functor \(F_s\) which maps any finite étale covering \(\pi : S' \to S\) to the set of points \(s' \in S'(\Omega)\) with \(\pi(s') = s\).

Proposition 2 Let \(Z\) be a reduced complete and connected scheme over the algebraically closed field \(k\) with a point \(z \in Z(k)\). Consider a vector bundle \(H\) on \(Z\) for which there exists a connected finite étale covering \(\pi : Y \to Z\) such that \(\pi^*H\) is a trivial bundle. Then \(H\) is essentially finite and the map \(\lambda_{H,z} : \pi_1(Z, z) \to \text{GL}(H_z)\) in (5) has the following description. Choose a point \(y \in Y(k)\) with \(\pi(y) = z\). Then for every \(\gamma \in \pi_1(Z, z)\) there is a commutative diagram:

```
(6) \(\begin{array}{ccc}
\left(\pi^*H\right)_y & \xrightarrow{y^*} & \Gamma(Y, \pi^* H) \\
\downarrow & & \downarrow \\
H_z & \xrightarrow{\lambda_{H,z}(\gamma)} & H_z
\end{array}\)
```

Proof The covering \(\pi : Y \to Z\) can be dominated by a finite étale Galois covering \(\pi' : Y' \to Z\). Let \(y' \in Y'(k)\) be a point above \(y\). If the diagram (6) with \(\pi, Y, y\) replaced by \(\pi', Y', y'\) is commutative, then (6) itself commutes. Hence we may assume that \(\pi : Y \to Z\) is Galois with group \(G\). In particular \(H\) is essentially finite. Consider the surjective homomorphism \(\pi_1(Z, z) \to G\) mapping \(\gamma\) to the unique \(\sigma \in G\) with \(\gamma y = y\sigma\). The right action of \(G\) on \(Y\) induces a left action on \(\Gamma(Y, \pi^* H)\) by pullback and it follows from the definitions that \(\lambda_{H,z}\) is the composition

\[
\lambda_{H,z} : \pi_1(Z, z) \to G \to \text{GL}(\Gamma(Y, \pi^* H)) \xrightarrow{\sim y^*} \text{GL}(H_z) .
\]
Now the equations
\[(\gamma y)^* \circ (y^*)^{-1} = (y^* \sigma) \circ (y^*)^{-1} = (\sigma \circ y)^* \circ (y^*)^{-1} = y^* \sigma^* \circ (y^*)^{-1} = \lambda_H(k)(\gamma)\]
imply the assertion. Here \(\sigma^*\) is the automorphism of \(\Gamma(Y, \pi^* H)\) induced by \(\sigma\).

The following class of vector bundles contains the essentially finite ones. A vector bundle \(H\) on a reduced connected and complete \(k\)-scheme \(Z\) is called strongly semistable of degree zero (\(sss\)) if for all \(k\)-morphisms \(f : C \to Z\) from a smooth connected projective curve \(C\) over \(k\) the pullback bundle \(f^*(H)\) is semistable of degree zero, c.f. \([DM]\) (2.34). It follows from \([N]\) Lemma (3.6) that the \(sss\)-bundles form an abelian category. Moreover a result of Gieseker shows that it is a tensor category, c.f. \([Gi]\). If \(Z\) is purely one-dimensional, a bundle \(H\) is \(sss\) if and only if the pullback of \(H\) to the normalization \(\tilde{C}_i\) of each irreducible component \(C_i\) of \(Z\) is strongly semistable of degree zero in the usual sense on the smooth projective curve \(\tilde{C}_i\) over \(k\), see e.g. \([DW3]\) Proposition 4.

Generalizing results of Lange–Stuhler and Subramanian slightly we have the following fact, where \(F_q\) denotes the field with \(q = p^r\) elements.

Theorem 3 Let \(Z\) be a reduced complete and connected purely one-dimensional scheme over \(F_q\). Then the following three conditions are equivalent for a vector bundle \(H\) on \(Z\).

1. \(H\) is strongly semistable of degree zero.
2. There is a finite surjective morphism \(\varphi : Y \to Z\) with \(Y\) a complete and purely one-dimensional scheme over \(F_q\) such that \(\varphi^* H\) is a trivial bundle.
3. There are a finite étale covering \(\pi : Y \to Z\) and some \(s \geq 0\) such that for the composition \(\varphi : Y \xrightarrow{\pi} Y \xrightarrow{\pi} Z\) the pullback \(\varphi^* H\) is a trivial bundle. Here \(F = Fr_q = Fr_p^r\) is the \(q\)-linear Frobenius morphism on \(Y\).

If \(Z\) has an \(F_q\)-rational point, these conditions are equivalent to

4. \(H\) is essentially finite.

Remark If \(Z(F_q) \neq \emptyset\), then according to 4 the trivializing morphism \(\varphi : Y \to Z\) in 2 can be chosen to be a \(G\)-torsor under a finite group scheme \(G/Fq\).

Proof The equivalence of 1 to 3 is shown in \([DW2]\) Theorem 18 by slightly generalizing a result of Lange and Stuhler. It is clear that 4 implies 2. Over
a smooth projective curve Z/F_q the equivalence of 1 and 4 was shown by Subramanian in [S], Theorem (3.2) with ideas from [MS] and [BPS]. His proof works also over our more general bases Z and shows that 1 implies 4. Roughly the argument goes as follows: Using the fibre functor in a point $z \in Z(F_q)$ the abelian tensor category \mathcal{T}_Z of sss-bundles on Z becomes a neutral Tannakian category over F_q. Note by the way that the characterization 2 of sss-bundles shows without appealing to [Gi] that \mathcal{T}_Z is stable under the tensor product. Consider the Tannakian subcategory generated by H. Its Tannakian dual is called the monodromy group scheme M_H in [BPS]. Let n be the rank of H. The GL_n-torsor associated to H allows a reduction of structure group to M_H. Hence we obtain an M_H-torsor $\alpha: P \to Z$ such that α^*H is a trivial bundle. We have $\text{Fr}_{q^s}H = \text{Fr}_{q^t}H$ for some $s > t \geq 0$ because there are only finitely many isomorphism classes of semistable vector bundles of degree zero on a smooth projective curve over a finite field. See [DW2] Proof of Theorem 18 for more details. A short argument as in [S] now implies that M_H is a finite group scheme and we are done.

Later on we will need the following fact:

Proposition 4 Let S_0 be a scheme over F_q and let $F = \text{Fr}_q$ be the q-linear Frobenius morphism on S_0. Set $k = \bar{F}_q$ and let $\bar{F} = F \otimes_{F_q} k$ be the base extension of F to a morphism of $S = S_0 \otimes_{F_q} k$. Then for any geometric point $s \in S(\Omega)$ the induced map $\bar{F}_*: \pi_1(S, s) \to \pi_1(S, \bar{F}(s))$ is an isomorphism.

Proof Let F_k be the automorphism of k with $F_k(x) = x^q$ for all $x \in k$. Then $\psi = \text{id}_{S_0} \otimes F_k$ is an automorphism of the scheme S and hence it induces isomorphisms on fundamental groups. It suffices therefore to show that

$$(\psi \circ \bar{F})_*: \pi_1(S, s) \to \pi_1(S, \psi(\bar{F}(s)))$$

is an isomorphism. The morphism $\psi \circ \bar{F}$ is the q-linear Frobenius morphism Fr_q on S. For any finite étale covering $\pi: T \to S$ the relative Frobenius morphism is known to be an isomorphism and hence the commutative diagram

\[
\begin{array}{ccc}
T & \xrightarrow{\text{Fr}_q} & T \\
\pi \downarrow & & \downarrow \pi \\
S & \xrightarrow{\text{Fr}_q} & S
\end{array}
\]

is cartesian. It follows that $\text{Fr}_{q^s} = (\psi \circ \bar{F})_*$ is an isomorphism on fundamental groups. \qed
3 Proof of theorem 1

For the proof of theorem 1 we first give a description of the representation \(\rho_{\mathcal{E},x_0} \otimes k\) which follows immediately from the construction of \(\rho_{\mathcal{E},x_0}\) in [DW2] section 3.

We assume that we are in the situation of theorem 1. By assumption \(E_{\text{red}}^k\) is strongly semistable of degree zero on \(X_{\text{red}}^k\). According to [DW2] theorem 17 there is a proper morphism \(\pi : Z \to X\) with the following properties:

a. The generic fibre \(Z = Z \otimes \mathbb{Q}_p\) is a smooth projective connected \(\mathbb{Q}_p\)-curve.

b. The induced morphism \(\pi : Z \to X\) is finite and for an open dense subscheme \(U \subset X\) the restriction \(\pi : \pi^{-1}(U) = W \to U\) is étale. Moreover we have \(x \in U(\mathbb{C}_p)\) for the chosen base point \(x \in X(\mathbb{C}_p)\).

c. The scheme \(Z\) is a model of \(Z\) over \(\mathbb{Z}_p\) whose special fibre \(Z_k\) is reduced. In particular \(Z/\mathbb{Z}_p\) is cohomologically flat in degree zero.

d. The pullback \(\pi^*_k \mathcal{E}_k\) is a trivial vector bundle on \(Z_k\).

The following construction gives a representation of \(\pi_1(U,x)\) on \(\mathcal{E}_{x_k}\). For \(\gamma \in \pi_1(U,x) = \text{Aut}(F_x)\) choose a point \(z \in W(\mathbb{C}_p)\) with \(\pi(z) = x\). Then \(\gamma z \in W(\mathbb{C}_p)\) is another point over \(x\). From \(z\) and \(\gamma z\) in \(W(\mathbb{C}_p) \subset Z(\mathbb{C}_p)\) we obtain points \(z_k\) and \((\gamma z)_k\) in \(Z_k(k)\) as in the introduction. Consider the diagram

\[
\begin{align*}
\mathcal{E}_{x_k} = (\pi^*_k \mathcal{E}_k)_{z_k} \xleftarrow{z_k^*} \Gamma(Z_k, \pi^*_k \mathcal{E}_k) \xrightarrow{(\gamma z)_k^*} (\pi^*_k \mathcal{E}_k)_{(\gamma z)_k} = \mathcal{E}_{x_k}.
\end{align*}
\]

Here the pullback morphisms along \(z_k : \text{spec } k \to Z_k\) and \((\gamma z)_k : \text{spec } k \to Z_k\) are isomorphisms because \(\pi^*_k \mathcal{E}_k\) is a trivial bundle and \(Z/\mathbb{Z}_p\) is cohomologically flat in degree zero.

It turns out that the map

\[
\rho : \pi_1(U,x) \to \text{GL}(\mathcal{E}_{x_k}) \quad \text{defined by } \rho(\gamma) = (\gamma z)_k^* \circ (z_k^*)^{-1}
\]

is a homomorphism of groups which (by construction) factors over a finite quotient of \(\pi_1(U,x)\). Thus \(\rho\) is continuous if \(\text{GL}(\mathcal{E}_{x_k})\) is given the discrete topology. Moreover \(\rho\) does not depend on either the choice of the point \(z\) above \(x\) nor on the choice of morphism \(\pi : Z \to X\) satisfying a–d. It follows from [DW2] Theorem 17 and Proposition 35 that \(\rho\) factors over \(\pi_1(X,x)\). The resulting representation \(\rho : \pi_1(X,x) \to \text{GL}(\mathcal{E}_{x_k})\) agrees with \(\rho_{\mathcal{E},x_0} \otimes k\).
In order to prove theorem 17 we will now construct given \mathcal{E}_k a suitable morphism $\mathcal{Z} \to \mathcal{X}$. We use a modification of the method from the proof of theorem 17 in [DW2]. In that proof the singularities were resolved at the level of \mathcal{Y} which is too late for our present purposes because it creates an extension of \mathcal{Y}_k which is hard to control discussing the Nori fundamental group. Instead, we will resolve the singularities of a model of X. Then \mathcal{Y} does not have to be changed later.

We proceed with the details:

Choose a finite extension K/\mathbb{Q}_p with ring of integers \mathfrak{o}_K and residue field k such that $(\mathcal{X}, \mathcal{E}_k, x_k)$ descends to $(\mathcal{X}_{\mathfrak{o}_K}, \mathcal{E}_0, x_0)$. Here $\mathcal{X}_{\mathfrak{o}_K}$ is a proper and flat \mathfrak{o}_K-scheme with $\mathcal{X}_{\mathfrak{o}_K} \otimes_{\mathfrak{o}_K} \mathbb{Z}_p = \mathcal{X}$ and \mathcal{E}_0 a vector bundle on $\mathcal{X}_0 = \mathcal{X}_{\mathfrak{o}_K} \otimes k$ with $\mathcal{E}_0 \otimes_k k = \mathcal{E}_k$. Since $\mathcal{E}_k^{\text{red}}$ is an sss-bundle on $\mathcal{X}_k^{\text{red}}$ the restriction $\mathcal{E}_0^{\text{red}}$ of \mathcal{E}_0 to $\mathcal{X}_0^{\text{red}}$ is an sss-bundle as well. Finally $x_0 \in \mathcal{X}_0(k)$ is a point which induces x_k after base change to k. Theorem 3 implies that $\mathcal{E}_0^{\text{red}}$ is essentially finite and hence $\mathcal{E}_k^{\text{red}}$ is essentially finite as well.

After replacing K by a finite extension and performing a base extension to the new K we can find a semistable model $\mathcal{X}'_{\mathfrak{o}_K}$ of the smooth projective curve $X_K = \mathcal{X}_{\mathfrak{o}_K} \otimes K$ together with a morphism $\alpha_{\mathfrak{o}_K} : \mathcal{X}'_{\mathfrak{o}_K} \to \mathcal{X}_{\mathfrak{o}_K}$ extending the identity on the generic fibre X_K. This is possible by the semistable reduction theorem, c.f. [A] for a comprehensive account. By Lipman’s desingularization theorem we may assume that $\mathcal{X}'_{\mathfrak{o}_K}$ besides being semistable is also regular, c.f. [Li] 10.3.25 and 10.3.26. The irreducible regular surface $\mathcal{X}'_{\mathfrak{o}_K}$ is proper and flat over \mathfrak{o}_K.

Let \mathcal{E}'_0 be the pullback of \mathcal{E}_0 along the morphism $\alpha_0 : \mathcal{X}'_0 = \mathcal{X}' \otimes k \to \mathcal{X}_0$. Since \mathcal{X}'_0 is reduced the map factors as $\alpha_0 : \mathcal{X}'_0 \to \mathcal{X}_0^{\text{red}} \subset \mathcal{X}_0$ and \mathcal{E}'_0 is also the pullback of the sss-bundle $\mathcal{E}_0^{\text{red}}$. Hence \mathcal{E}'_0 is an sss-bundle as well.

Using theorem 3 we find a finite étale covering $\pi_0 : \mathcal{Y}_0 \to \mathcal{X}'_0$ by a complete and one-dimensional κ-scheme \mathcal{Y}_0 and an integer $s \geq 0$ such that under the composed map $\varphi : \mathcal{Y}_0 \xrightarrow{F^s} \mathcal{Y}_0 \xrightarrow{\pi_0} \mathcal{X}'_0$ the pullback $\varphi^* \mathcal{E}'_0$ is a trivial bundle. Here $F = \text{Fr}_q$ is the $q = |\kappa|\cdot \text{linear Frobenius}$ morphism on \mathcal{Y}_0. Let $\tilde{\kappa}$ be a finite extension of κ such that all connected components of $\mathcal{Y}_0 \otimes_\kappa \tilde{\kappa}$ are geometrically connected. Let \tilde{K}/K be the unramified extension with residue field $\tilde{\kappa}$. We replace $\mathcal{X}_{\mathfrak{o}_K}, \mathcal{X}_{\mathfrak{o}_K}^\prime$ and $\mathcal{E}_0, \mathcal{E}_0^\prime$ by their base extensions with $\mathfrak{o}_{\tilde{K}}$ resp. $\tilde{\kappa}$ and F by the $|\tilde{\kappa}|$-linear Frobenius morphism. We also replace \mathcal{Y}_0 be a connected component of $\mathcal{Y}_0 \otimes_\kappa \tilde{\kappa}$ and π_0 by the induced morphism. Then the new $\mathcal{X}_{\mathfrak{o}_K}, \mathcal{X}_{\mathfrak{o}_K}^\prime, \varphi, \ldots$ keep the previous properties and \mathcal{Y}_0 is now geometrically connected. Using
IX Théorème 1.10 we may lift \(\pi_0 : Y_0 \rightarrow X'_0 \) to a finite étale morphism \(\pi_{o_K} : Y_{o_K} \rightarrow X'_{o_K} \). The proper flat \(o_K \)-scheme \(Y_{o_K} \) is regular with geometrically reduced fibres over \(o_K \) because \(X'_{o_K} \) has these properties. In particular, the morphism \(Y_{o_K} \rightarrow \text{spec} \ o_K \) is cohomologically flat in degree zero. Since the special fibre \(Y_0 \) is geometrically connected and reduced it follows that the generic fibre \(Y_K \) of \(Y_{o_K} \) is geometrically connected and hence a smooth projective geometrically irreducible curve over \(K \). In particular \(Y_{o_K} \) is irreducible in addition to being regular and proper flat over \(o_K \). By a theorem of Lichtenbaum [Li] there is thus a closed immersion \(\tau_K : Y_{o_K} \hookrightarrow \mathbb{P}^N_{\kappa} \) for some \(N \). Composing with a suitable automorphism of \(\mathbb{P}^N_{o_K} \) we may assume that \(\tau_K^{-1}(G_{m,K}) \subset Y_K \) contains all points in \(Y_K(\kappa) \) over \(x \in X_K(\kappa) = X(\kappa) \). In particular, \(\tau_K^{-1}(G_{m,K}) \) is open and dense in \(Y_K \) with a finite complement. Thus there is an open subscheme \(U_K \subset X_K \) with \(x \in U_K(\kappa) \) and such that \(V_K = \tau_K^{-1}(U_K) \) is contained in \(\tau_K^{-1}(G_{m,K}) \).

Consider the finite morphism \(F_{o_K} : \mathbb{P}^N_{o_K} \rightarrow \mathbb{P}^N_{o_K} \) given on \(A \)-valued points where \(A \) is any \(o_K \)-algebra, by sending \([x_0 : \ldots : x_N] \) to \([x_0^q : \ldots : x_N^q] \). The reduction of \(F_{o_K} \) is the \(q \)-linear Frobenius morphism on \(\mathbb{P}^N_{\kappa} \).

Let \(\rho_{o_K} : Y'_{o_K} \rightarrow Y_{o_K} \) be the base change of \(F_{o_K} \) via \(\tau_K \). It is finite and its generic fibre \(\rho_K : Y'_K \rightarrow Y_K \) is étale over \(V_K \). Now we look at the reductions and we define a morphism \(i : Y_0 \rightarrow Y'_0 \) over \(\kappa \) by the commutative diagram

\[
\begin{array}{ccc}
Y_0 & \xrightarrow{i} & Y'_0 \\
\downarrow{\tau_0} & & \downarrow{\rho_0} \\
\mathbb{P}^N_{\kappa} & \xrightarrow{F^s} & \mathbb{P}^N_{\kappa}
\end{array}
\]

In [DW2] Lemma 19 it is shown that \(i \) induces an isomorphism \(i : Y_0 \isom Y'_0 \). Here the index 0 always refers to the special fibre over \(\text{spec} \ k \).

Taking the normalization of \(Y_{o_K} \) in the function field of an irreducible component of \(Y'_K \) we get a proper, flat \(o_K \)-scheme \(Y''_{o_K} \) which is finite over \(Y'_{o_K} \). Its generic fibre \(Y''_K \) is a smooth projective connected curve over \(K \) (maybe not
geometrically connected). The following diagram summarizes the situation

```
\begin{array}{c}
Y''_0 \rightarrow Y''_K \leftarrow Y''_K \\
\downarrow \quad \downarrow \quad \downarrow \\
Y'_0 \rightarrow Y'_K \leftarrow Y'_K \\
\downarrow \quad \downarrow \quad \downarrow \\
Y_0 \rightarrow Y_K \leftarrow Y_K \\
\downarrow \quad \downarrow \quad \downarrow \\
X_0 \rightarrow X_K \leftarrow X_K \\
\downarrow \quad \downarrow \quad \downarrow \\
X_0^{\text{red}} \rightarrow X_K^{\text{red}} \leftarrow X_K^{\text{red}}
\end{array}
```

For a suitable finite extension \tilde{K}/K all connected components of $Y''_K \otimes_K \tilde{K}$ will be geometrically connected. Let Y'''_K be one of them and let $Y'''_o \otimes \tilde{K}$ be its closure with the reduced scheme structure in $Y''_o \otimes \tilde{K}$. By the semistable reduction theorem there are a finite extension L/\tilde{K} and a semistable model Z_{o_L} of $Y'''_K \otimes \tilde{K}$ over $Y'''_o \otimes \tilde{K}$. Base extending X_{o_K}, Y_{o_K}, X_{o_K}, and Z_{o_L} over o_K and o_L we get a commutative diagram, where δ is the composition $\delta: Z \rightarrow Y''' \rightarrow Y'' \rightarrow Y' \rightarrow Y$,

```
\begin{array}{c}
Z_k \rightarrow Z \leftarrow Z \\
\downarrow \quad \downarrow \quad \downarrow \\
Y_k \rightarrow Y \leftarrow Y \\
\downarrow \quad \downarrow \quad \downarrow \\
X'_L \rightarrow X \leftarrow X \\
\downarrow \quad \downarrow \quad \downarrow \\
X_k^{\text{red}} \rightarrow X_k \leftarrow X_k
\end{array}
```

Here the morphism $\beta_k: Z_k \rightarrow Y_k$ comes about as follows: Since Z_k is reduced, the composition $Z_k \rightarrow Y'''_K \rightarrow Y''_K \rightarrow Y'_K$ factors over $Y'_K \rightarrow Y_K$ and this
defines β_k. By construction, the map $\pi_{Q_p} \circ \delta_{Q_p} : Z \to X$ is finite and such that its restriction to a map $W = (\pi_{Q_p} \circ \delta_{Q_p})^{-1}(U) \to U$ is finite and étale. By construction the bundle $E_k' = \alpha_k^*E_k = E_0' \otimes \kappa$ is trivialized by pullback along $\pi_k \circ (F \otimes \kappa)$ and hence also along $(\pi \circ \delta)_k = \pi_k \circ (F \otimes \kappa) \circ \beta_k$. For later purposes note that we have a commutative diagram

$$(10)$$

\[
\begin{array}{ccc}
\mathcal{Y}_k & \overset{F \otimes \kappa}{\longrightarrow} & \mathcal{Y}_k \\
\pi_k \downarrow & & \downarrow \pi_k \\
\mathcal{X}_k' & \overset{F \otimes \kappa}{\longrightarrow} & \mathcal{X}_k'
\end{array}
\]

obtained by base changing the corresponding diagram over κ:

\[
\begin{array}{ccc}
\mathcal{Y}_0 & \overset{F}{\longrightarrow} & \mathcal{Y}_0 \\
\pi_0 \downarrow & & \downarrow \pi_0 \\
\mathcal{X}_0' & \overset{F}{\longrightarrow} & \mathcal{X}_0'
\end{array}
\]

The inclusion $\mathfrak{X}_k \to \mathfrak{X}$ induces a natural isomorphism $\pi_1(\mathfrak{X}_k, x_k) \sim \pi_1(\mathfrak{X}, x_k)$. This follows from [SGA1] Exp. X, Théorème 2.1 together with an argument to reduce the finitely presented case to a Noetherian one as in the proof of [SGA1], Exp. IX, Théorème 6.1, p. 254 above.

Next we note that there is a canonical isomorphism

$$\pi_1(\mathfrak{X}, x_k) = \text{Aut}(F_{x_k}) = \text{Aut}F_x = \pi_1(\mathfrak{X}, x).$$

Namely, for a finite étale covering $\mathcal{Y} \to \mathfrak{X}$, by the infinitesimal lifting property, any point $y_k \in \mathcal{Y}_k(k)$ over x_k determines a unique section $y_\phi \in \mathcal{Y}(\phi)$ over $x_\phi \in \mathfrak{X}(\phi)$ and hence a point $y \in \mathcal{Y}(C_p)$ over $x \in \mathfrak{X}(C_p)$. In this way one obtains a bijection between the points y_k over x_k and the points y over x. Thus the fibre functors F_{x_k} and F_x are canonically isomorphic.

Finally, by [SGA1], Exp. IX, Proposition 1.7, the inclusion $\mathfrak{X}_k^{\text{red}} \hookrightarrow \mathfrak{X}_k$ induces an isomorphism $\pi_1(\mathfrak{X}_k^{\text{red}}, x_k) \sim \pi_1(\mathfrak{X}_k, x_k)$. Thus we get an isomorphism

$$\pi_1(\mathfrak{X}_k^{\text{red}}, x_k) \sim \pi_1(\mathfrak{X}_k, x_k) = \pi_1(\mathfrak{X}, x_k) = \pi_1(\mathfrak{X}, x)$$
and hence a commutative diagram

(11)

\[
\begin{array}{ccc}
\pi_1(X', x) & \xrightarrow{\alpha_*} & \pi_1(X'_k, x'_k) \\
\downarrow & & \downarrow \\
\pi_1(X, x) & \xrightarrow{\alpha_k*} & \pi_1(X_{\text{red}}^k, x_k).
\end{array}
\]

For $\gamma \in \pi_1(X, x)$ choose an element $\gamma \in \pi_1(U, x)$ which maps to $\overline{\gamma}$ and let $\overline{\gamma}_k$ be the image of $\overline{\gamma}$ in $\pi_1(X'_k, x'_k)$. Fix a point $z \in W(C_p)$ which maps to $x \in U(C_p)$ in diagram (9). As explained at the beginning of this section the automorphism $\rho_{E, x}(\gamma) \otimes k$ of E_{x_k} is given by the formula

(12)

\[
\rho_{E, x}(\gamma) \otimes k = (\gamma z)^* \circ (z_k^*)^{-1}.
\]

Here the isomorphisms z_k^* and $(\gamma z)_k^*$ are the ones in the upper row of the following commutative diagram, where we have set $F_k = (\pi_k \circ (F^s \otimes \kappa))^* E'_k$, so that $(\alpha \circ \pi \circ \delta)^* E_k = \beta_k^* F_k$. Moreover $\overline{y}_1 := \beta_k(z_k)$ and $\overline{y}_2 := \beta_k((\gamma z)_k)$ in $Y_k(k)$,

(13)

\[
\begin{array}{ccc}
E_{x_k} \xrightarrow{(\beta_k^* F_k)_{z_k}} & \Gamma(Z_k, \beta_k^* F_k) \xrightarrow{(\gamma z)_k^*} & E_{x_k} \\
\downarrow & \approx & \downarrow \\
E_{x_k} \xrightarrow{(F_k)_{\overline{y}_1}} & \Gamma(Y_k, F_k) \xrightarrow{(\gamma z)_k} & E_{x_k}.
\end{array}
\]

Note here that F_k is already a trivial bundle and that Y_k and Z_k are both reduced and connected. It follows that all maps in this diagram are isomorphisms. Using (12) we therefore get the formula:

(14)

\[
\rho_{E, x}(\gamma) \otimes k = \overline{y}_2 \circ (\overline{y}_1^{-1}).
\]

The point $y = \delta_{\overline{y}_2}(z)$ in $V(C_p) \subset Y(C_p)$ lies above x and we have $\gamma y = \delta_{\overline{y}_2}(\gamma z)$. Moreover the relations

(15)

\[(F^s \otimes \kappa)k(\overline{y}_1) = y_k \quad \text{and} \quad (F^s \otimes \kappa)k(\overline{y}_2) = (\gamma y)_k = \overline{\gamma}_k(y_k)\]

hold because $\gamma y = \overline{\gamma}y$ implies that $(\gamma y)_k = (\overline{\gamma}y)_k = \overline{\gamma}_k(y_k)$. Setting $G_k = (F^s \otimes \kappa)^* E'_k$, a bundle on X'_k, we have $F_k = \pi_k^* G_k$.

12
Next we look at representations of Nori’s fundamental group. For the point \(\pi_1 = \pi_k(\pi_1) \) in \(X'_k(k) \) we have \((F^s \otimes k)(\pi_1) = x'_k\).

Consider the commutative diagram:

\[
\begin{array}{ccc}
\pi_1(X'_k, \pi_1) & \xrightarrow{\lambda_{G_k, \pi_1}} & \text{GL}((G_k)_{\pi_1}) \\
\downarrow \quad (F^s \otimes k)_* & & \downarrow \\
\pi_1(X'_k, x'_k) & \xrightarrow{\lambda_{E'_k, x'_k}} & \text{GL}((E'_k)_{x'_k}) \\
\downarrow \quad \alpha_k & & \downarrow \\
\pi_1(X^\text{red}_k, x_k) & \xrightarrow{\lambda_{E^\text{red}_k, x_k}} & \text{GL}((E_k)_{x_k})
\end{array}
\]

It is obtained by passing to the groups of \(k \)-valued points in the corresponding diagram for representations of Nori’s fundamental group schemes. Recall that as observed above \(E_k^\text{red} \) is an essentially finite bundle on \(X_k^\text{red} \). The fact that \((F^s \otimes k)_* \) is an isomorphism on fundamental groups was shown in Proposition 4. Let \(\tilde{\gamma}_k \in \pi_1(X'_k, \pi_1) \) be the element with \((F^s \otimes k)_* (\tilde{\gamma}_k) = \pi_k\). Using the diagrams (11) and (16), theorem 4 will follow once we have shown the equation

\[
(\rho_{E, x_k}(\gamma) \otimes k = \lambda_{G_k, x_k}(\tilde{\gamma}_k) \quad \text{in} \quad \text{GL}((E_k)_{x_k}) \).
\]

We now use the description of \(\rho_{E, x_k} \otimes k \) in formula (14) and the one of \(\lambda_{G_k, x_k} \) in Proposition 2 applied to the finite étale covering \(\pi_k : Y_k \to X'_k \) which trivializes \(G_k \). It follows that (17) is equivalent to the following diagram being commutative where we recall that \(F_k = \pi_k^* G_k \):

\[
\begin{array}{ccc}
E_k & \xrightarrow{(\pi_k)_!} & \Gamma(Y_k, F_k) \\
\downarrow \quad \overline{\pi}_1 & & \downarrow \\
E_k & \xrightarrow{(\pi_k)_!} & \Gamma(Y_k, F_k) \\
\downarrow \quad \overline{\pi}_2 & & \downarrow \\
E_k & \xrightarrow{(\pi_k)_!} & \Gamma(Y_k, F_k)
\end{array}
\]

But this is trivial since we have \(\overline{\pi}_2 = \tilde{\gamma}_k(\overline{\pi}_1) \). Namely (15) implies the equations:

\[
(F^s \otimes k)(\overline{\pi}_2) = \tilde{\gamma}_k(\overline{\pi}_1) = \tilde{\gamma}_k((F^s \otimes k)(\overline{\pi}_1)) = (F^s \otimes k)(\tilde{\gamma}_k(\overline{\pi}_1))
\]

and \(F^s \otimes k \) is injective on \(k \)-valued points because \(F \) is universally injective.
Example 5 The following example shows that in general the representation
\[\rho_{E,x} : \pi_1(X, x) \to \text{GL}(E_x) \]
in theorem [1] does not factor over the specialization map \(\pi_1(X, x) \to \pi_1(\mathfrak{X}_k, x_k) \).
Let \(\mathfrak{X} \) be an elliptic curve over \(\mathbb{Z}_p \) whose reduction \(\mathfrak{X}_k \) is supersingular. Then we have \(\mathfrak{X}_k^{\text{red}} = \mathfrak{X}_k \) and \(\pi_1(\mathfrak{X}_k, 0)(p) = 0 \). The exact functor \(E \mapsto \rho_{E,0} \) of [DW2] or [DW4] induces a homomorphism
\[\rho_* : \text{Ext}^1_{X_{\mathbb{C}_p}}(\mathcal{O}, \mathcal{O}) \to \text{Ext}^1_{\pi_1(X, 0)}(\mathbb{C}_p, \mathbb{C}_p) = \text{Hom}(\pi_1(X, 0), \mathbb{C}_p). \]
Here the second Ext-group refers to the category of finite dimensional \(\mathbb{C}_p \)-vector spaces with a continuous \(\pi_1(X, 0) \)-operation. Moreover, Hom refers to continuous homomorphisms. In [DW1] Corollary 1, by comparing with Hodge–Tate theory it is shown that \(\rho_* \) is injective. For an extension of vector bundles \(0 \to \mathcal{O} \to E \to \mathcal{O} \to 0 \) on \(X_{\mathbb{C}_p} \) the corresponding representation \(\rho_{E,0} \) of \(\pi_1(X, 0) \) on \(\text{GL}(E_0) \) is unipotent of rank 2 and described by the additive character
\[\rho_*([E]) \in \text{Hom}(\pi_1(X, 0), \mathbb{C}_p) = \text{Hom}(\pi_1(X, 0)(p), \mathbb{C}_p). \]
In particular \(\rho_{E,0} \) factors over \(\pi_1(X, 0)(p) \) and \(\rho_{E,0} \) is trivial if and only if \([E] = 0 \). Thus any extension \([\mathcal{E}] \) in \(H^1(\mathfrak{X}, \mathcal{O}) \) whose restriction to \(H^1(X, \mathcal{O}) \) is non-trivial has a non-trivial associated representation
\[\rho_{\mathcal{E},0} : \pi_1(X, 0) \to \text{GL}(\mathcal{E}_0). \]
Since \(\rho_{\mathcal{E},0} \) factors over \(\pi_1(X, 0)(p) \) it cannot factor over \(\pi_1(\mathfrak{X}_k, 0) \) because then it would factor over \(\pi_1(\mathfrak{X}_k, 0)(p) = 0 \).

References

[A] Abbes, Ahmed, Réduction semi-stable des courbes d’après Artin, Deligne, Grothendieck, Mumford, Saito, Winters, ... In: Courbes semi-stables et groupe fondamental en géométrie algébrique (Luminy, 1998), Progr. Math., 187, 59–110, Birkhäuser, Basel, 2000

[BPS] I. Biswas, A.J. Parameswaran, S. Subramanian, Monodromy group for a strongly semistable principal bundle over a curve. Duke Math. J. 132 (2006), 1–48
[DM] P. Deligne, J.S. Milne, Tannakian categories. Springer LNM 900

[DW1] C. Deninger, A. Werner, Line bundles and p-adic characters. In: G. van der Geer, B. Moonen, R. Schoof (eds.), Number Fields and Function Fields – Two Parallel Worlds, Progress in Mathematics 239, 101–131, Birkhäuser 2005

[DW2] C. Deninger, A. Werner, Vector bundles on p-adic curves and parallel transport. Ann. Scient. Éc. Norm. Sup. 38 (2005), 553–597

[DW3] C. Deninger, A. Werner, On Tannakian duality for vector bundles on p-adic curves. In: Algebraic cycles and motives, vol. 2, LMS Lecture notes 344 (2007), 94–111

[DW4] C. Deninger, A. Werner, Vector bundles on p-adic curves and parallel transport II. Preprint 2009, arXiv: 0902.1437

[F] G. Faltings, A p-adic Simpson correspondence. Adv. Math. 198 (2005), 847–862

[Gi] D. Giesecker, On a theorem of Bogomolov on Chern classes of stable bundles. Am. J. Math. 101 (1979), 79–85

[Li] S. Lichtenbaum, Curves over discrete valuation rings. Amer. J. Math. 90 (1968), 380–405

[Lip] J. Lipman, Desingularization of two-dimensional schemes. Ann. of Math. 107 (1978), 151–207

[MS] V.B. Mehta, S. Subramanian, On the fundamental group scheme. Invent. Math. 148 (2002), 143–150

[N] M.V. Nori, The fundamental group-scheme. Proc. Indian Acad. Sci. 91 (1982), 73–122

[S] S. Subramanian, Strongly semistable bundles on a curve over a finite field. Arch. Math. 89 (2007), 68–72

[SGA1] A. Grothendieck et al., Revêtements étal es et groupe fondamental. Springer LNM 224, 1971