Interaction between Treg Apoptosis Pathways, Treg Function and HLA Risk Evolves during Type 1 Diabetes Pathogenesis

Sanja Glisic1*, Parthav Jailwala2

1 Department of Pediatrics, Max McGee National Research Center for Juvenile Diabetes, Human and Molecular Genetics Center, Medical College of Wisconsin, Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America, 2 Advanced Biomedical Computing Center, SAIC-Frederick/NCI-Frederick, Bethesda, Maryland, United States of America

Abstract

We have previously reported increased apoptosis of regulatory T cells (Tregs) in recent-onset Type 1 Diabetes subjects (RO T1D) in the honeymoon phase and in multiple autoantibody-positive (Ab+) subjects, some of which are developing T1D. We have also reported that increased Treg apoptosis was associated with High HLA risk and that it subsided with cessation of the honeymoon period. In this report, we present results generated using genetics, genomics, functional cell-based assays and flow cytometry to assess cellular changes at the T-cell level during T1D pathogenesis. We measured ex vivo Treg apoptosis and Treg function, surface markers expression, expression of HLA class II genes, the influence of HLA risk on Treg apoptosis and function, and evaluated contribution of genes reported to be involved in the apoptosis process. This integrated comprehensive approach uncovered important information that can serve as a basis for future studies aimed to modulate Treg cell responsiveness to apoptotic signals in autoimmunity. For example, T1D will progress in those subjects where increased Treg apoptosis is accompanied with decreased Treg function. Furthermore, Tregs from High HLA risk healthy controls had increased Treg apoptosis levels and overexpressed FADD but not Fas/Fasl. Tregs from RO T1D subjects in the honeymoon phase were primarily dying through withdrawal of growth hormones with contribution of oxidative stress, mitochondrial apoptotic pathways, and employment of TNF-receptor family members. Ab+ subjects, however, expressed high inflammation level, which probably contributed to Treg apoptosis, although other apoptotic pathways were also activated: withdrawal of growth hormones, oxidative stress, mitochondrial apoptosis and Fas/Fasl apoptotic pathways. The value of these results lie in potentially different preventive treatment subjects would receive depending on disease progression stage when treated.

Introduction

Type 1 Diabetes (T1D) is one of the most prevalent autoimmune chronic diseases in children with a raising incidence of ~3% annually [1,2]. T1D has a complex etiology as it is influenced by multiple genetic and environmental risk factors. The inherited genetic factors influence both susceptibility and resistance to the disease [3,4]. The genetics of T1D has a long history of studies evaluating candidate genes for association with disease status using either case-control or family-based studies. These studies revealed that the major susceptibility genetic locus for T1D lies in the major histocompatibility complex (MHC) region referred as IDDM1 [5]. The MHC region is located on the short arm of chromosome 6 (6p21.3) spanning an interval of ~4 Mb. Although the interval contains over 200 expressed genes [6], candidate gene studies have implicated human histocompatibility antigens (HLA) as being the primary T1D susceptibility locus [7,8]. The importance of the HLA region in the determination of T1D risk was discovered in the 1970s [9]. Early family studies comparing disease concordance in monozygotic twins and HLA-matched siblings established the significance of HLA region genes accounting for about 50% of the genetic risk [10].

Although extremely polymorphic [11], the major susceptibility for T1D has been mapped to the HLA class II genes HLA-DQB1, HLA-DQA1 and HLA-DRB1 [12,13]. The three genes have been shown to independently contribute to T1D susceptibility with the strongest single effect coming from HLA-DQB1 [3]. The molecular basis for the association between at risk alleles and T1D is still not clear. The HLA gene products are known to be heterodimeric transmembrane glycoproteins that involve non-covalently associated α- and β-chains, each having two extracellular domains (α1 and α2 or β1 and β2). These molecules are expressed on B lymphocytes, macrophages, and other cells of the immune system termed antigen-presenting cells (APC) whose role is to present antigens to T and B cells. Qualitative differences in antigen presentation between the predisposing and the protective DQ molecules coded by different alleles have been demonstrated in functional studies, and these molecules are shown to contribute...
to differences in the ability to activate autoreactive T cells involved in pancreatic beta-cell destruction [14,15], suggesting that HLA genes have an important role in antigen-specific regulation of T-cell activation. However, HLA class II genes are also signaling molecules leading to a variety of cellular responses including cell-cell adhesion, proliferation, differentiation and apoptosis [16,17,18,19]. CD4 T cells recognize HLA class II gene products while CD8 T cells recognize HLA class I gene products. Variations in HLA genes could, therefore, account for differential transcriptional activities and quantities of mRNA of genes involved in the activation/signal transduction. A quantitative hierarchy of DRB1 mRNA in healthy individuals has been observed for different alleles (DRB1*0301>DRB1*0401>DRB1*0101>DRB1*08) [20]. Similar quantitative hierarchy has been observed for DQJ1 (DQJ1*0301>DQJ1*0101>DQJ1*0501) [21] and DQB1 genes (DQB1*0301>DQB1*0501>DQB1*0602) [22]. Over 90% of Caucasian diabetic subjects possess one of susceptibility haplotypes HLA-DR4-DQA1*0301-DQB1*0302 or HLA-DR3-DQA1*0501-DQB1*0201 or both [23,24,25]. The HLA-DR15-DQA1*0102-DQB1*0602 haplotype is protective, and rarely present in T1D subjects [26,27,28]. As polymorphisms in the DR and DQ genes appear to be of great biological importance suggesting their involvement in the etiology of the disease [4], HLA class II genes are considered to be the best genetic markers for T1D [29] currently available.

Our Wisconsin Family T1D Study involving non-related random healthy controls, recent-onset (RO) T1D, healthy autoantibody-positive (Ab+) siblings of T1D probands and long-standing (LS) T1D subjects, has allowed us to develop an HLA DQA1/DR haplotype risk assessment tool that recognizes susceptible (S), resistant (R), weakly protective (Y) and neutral haplotypes (X). When these HLA DQA1/DR haplotypes are combined into haplogenotypes (please see table S1, and in ref [30]), they provide information about HLA risk status with four categories: low, moderate, high and very high risk [30]. These four categories we further condensed into two-tier system, Low and High HLA risk for easier comparison between T1D-related subject groups. We found that there is a significant association of high HLA risk status and T1D incidence in Wisconsin cohort, as >90% of affected subjects possess High HLA risk haplotypes (Table 1). Our results are consistent with previously published studies [24,25,31]. Earlier, we have reported a correlation between High HLA risk haplotypes and increased Treg apoptosis [30]. The present cross-sectional study was designed to: 1) validate this result in larger sample of subjects, 2) presents additional lines of evidence showing an association between HLA gene expression and Treg apoptosis and function, 3) assess change in Treg function during T1D progression, and 4) assess activation of apoptosis pathways in T cells.

Our results show that T1D will progress in those subjects where increased Treg apoptosis is accompanied with decreased Treg function. We also show that different apoptosis pathways are prevalent during T1D progression. The value of these results lie in potentially different preventive treatment subjects would receive depending on disease progression stage when treated.

Materials and Methods

Healthy subjects

One hundred and seven subjects were recruited through the diabetes program at Children’s Hospital of Wisconsin. Recent -onset T1D subjects (after stabilization on exogenous insulin but within 10 months of diagnosis; n = 29) were recruited through the diabetes program at Children’s Hospital of Wisconsin. Diabetes was defined according to World Health Organization criteria and included blood glucose levels of >200 mg/dl with symptoms confirmed by a physician [32]. Healthy control (n = 35) subjects were recruited by posting flyers in Children’s Hospital of Wisconsin and the Medical College of Wisconsin. The control group comprised fasting blood glucose of <100 mg/dl, no familial history of any autoimmune disorder, and lack of islet autoantibodies. We also recruited autoantibody-positive siblings of T1D probands not included in this study (n = 23) and longstanding (LS) T1D subjects (n = 20). All study subjects were free of known infection at the time of sample collection. At the time of each visit, the following clinical measurements were taken: HbA1c, glucose level, height, weight and BMI (subject characteristics are shown in Table 1). DNA was collected for HLA typing and presence of autoantibodies was measured from peripheral blood. The research protocol was approved by the Institutional Review Board (IRB) of the Children’s Hospital of Wisconsin and participants and/or their parents (guardians) provided written informed consent.

PBMC and FACS cell isolation

Peripheral blood mononuclear cells (PBMC) were collected using vacutainers with ACD solution B of trisodium citrate and isolation was done using Ficoll-Hypaque (Amersham Pharmacia, Uppsala, Sweden) gradient density centrifugation according to the recommended protocol. The PBMC were counted and stained with a cocktail of fluorochrome conjugated monoclonal antibodies in PBS (APC-aCD4 clone RPA-T4, APC-Cy7-aCD25 or PE-aCD25 (clone M-A251), FITC-aCD14 (clone M5E2), FITC-aCD32 (clone FL18.26), FITC-aCD116 (clone M5D12), PE-Cy7-aCD8 (clone RPA-T8) all from BD Pharmingen, San Diego, CA) and sorted on a FACS Aria (BD Biosciences, San Diego, CA). Using the same FACS isolation protocol described earlier [33], we collected the top 1% of CD4+CD25bright T-cells as Tregs. This additional stringency of collecting just the top 1% of CD4+CD25bright cells as Tregs across subject groups ensured removal of most of the activated CD25low T cells. CD4+ T cells were further gated as CD4+25−, CD4+25low and CD4+CD25bright using the Fluorochrome Minus One (FMO) method, which allowed for a more precise definition of cells having fluorescence above the background level. The cells expressing low levels of CD25 were collected and defined as CD4+CD25low T cells. Based on performed assays, our isolation protocol generated Tregs that maintained high level of sustained FOXP3 expression associated with phenotypic and functional stability. HLA DQ-PE (clone 1a3) antibody recognizing all DQ alleles [34] was purchased from Leinco Technologies, Inc (St. Louis, MO).

Cell culture and Suppression assay

CD4+CD25− and CD4+CD25low T-cells (2.5×10^4 cells/well) were cultured in RPMI 1640 media supplemented with 2 mM L-glutamine, 5 mM HEPES, 100 U/µg/ml penicillin/streptomycin, 0.5 mM sodium pyruvate and 10% human AB serum. Cells were stimulated with aCD3 coated beads (1 µg/ml, 3 beads/cell) in U-bottom 96-well plates (Costar) in the presence of the same number of irradiated autologous PBMC for 3 days. For the suppression assays Treg cells were co-cultured with responder T cells at a 1:10 ratio (Treg:Responder) using the same stimuli. Cells were pulsed with 1 µCi of [3H] thymidine (Amersham Pharmacia Biotech) and harvested after 16 hours. The cpm per well was determined with a scintillation counter (Top Count NXT, Packard). The percentage of suppression was calculated as (1−s−c/s)×100%, where s = cpm in single culture and c = cpm in co-culture.
Table 1. Demographic data of studied population.

	Random Control	Recent-onset T1D	Auto-Ab+	Longstanding T1D	p value
Number of subjects	35	29	23	20	NS
Average time after diagnosis (years)	30.22	12.05	14.14	12.74	<0.0001
BMI at recruitment (%)	22.75 ± 0.73	14.14	12.74	14.14	<0.0001
Age at diagnosis (years)	N/A*	0.58 ± 0.16	0.62	0.62	<0.0001
Glucose at recruitment (mg/dl⁻¹)	89.26 ± 1.91	163.31 ± 14.14	84.41 ± 1.14	162.87 ± 12.74	<0.0001
HbA1c (%)	N/A*	7.00 ± 0.19	6.97	6.97	NS
Insulin dose at recruitment (U/kg/day)	N/A*	0.40 ± 0.03	N/A*	0.62 ± 0.05	<0.0001
High HLA risk (%)	37.1	89.6	69.6	90	<0.001
Treg apoptosis (%)	3.84 ± 0.49	15.52 ± 2.66	5.8 ± 0.74	4.04 ± 0.45	<0.0001

All data presented as (mean value) ± SE; N/A – not available; * - not applicable.

doi:10.1371/journal.pone.0036040.t001

HLA genotyping

Genotyping of both HLA-DQA1 and HLA-DQB1 was performed by direct sequencing of the polymorphic regions of each gene. For HLA-DQA1, exon 2 was sequenced, yielding a low-resolution (2-digit) typing result. For HLA-DQB1, exon 2 was sequenced using SeqCore DQB1 Locus Sequencing Kits (Invitrogen, Brown Deer, WI). This method yields high-intermediate (4-digit resolution) of HLA-DQB1. HLA-DQA1-DQB1 haplotypes and 4-digit resolution of HLA-DQA1 were then inferred using Caucasian frequencies as reported by Klitz, et al. [35].

Apoptosis assay

Apoptosis was measured in CD4+CD25−, CD4+CD25+low and CD4+CD25+high T cells immediately after FACS sorting for baseline apoptosis levels and before exposure to any stimulation. The cells were stained in the dark with 250 nM YOPRO1 (Molecular Probes, Eugene, OR) for 20 min and then 250 ng 7AAD (BD Biosciences) was added 10 min before acquiring at least 10,000 events on LSRII FACS (BD Bioscience) machine. The thresholds for both YOPRO1 and 7AAD were determined based on the forward and side scatter properties of the naive T cells. Apoptosis was measured as the percentage of apoptotic cells (YOPRO1+/7AAD−) among live cells (all 7AAD− cells comprising both YOPRO1+ and YOPRO1− cells).

PCR array of naive and Treg cells

Apoptosis PCR array (SABiosciences, Frederick, MD) of naive and Treg cells was done on a subset of subjects involved in this study: unaffected subjects in High HLA control group (n = 8), unaffected subjects in Low HLA control group (n = 3), unaffected multiple Ab+ subject group (n = 4) and affected RO T1D (n = 4). Apoptosis PCR array used in this study was a 384-well (4×96) plate consisting of 64 key genes involved in programmed cell death. There are 12 other wells set up for quality controls, for example checking genomic DNA contamination, reverse transcription efficacy and PCR array reproducibility. The plate set up used in this study was done in pairs for every subject (naive and Tregs from the same subject) and, whenever possible, in pairs for control and RO T1D/multiple Ab+ subjects. Gene expression of Tregs from every subject was then normalized with gene expression of autologous naive T cells to account for expression induced by common factors coming from, for example, T cell lineage commitment or the procedure of cell isolation. Such normalized values were then compared between groups. The analysis of gene expression was done through comparison to Low HLA risk healthy control subject group.

Real-Time PCR analysis

The second portion of isolated total RNA was converted to cDNA using the QuantiTect® Reverse Transcription Kit (QIAGEN, Valencia, CA). Real-time PCR was then performed using the QuantiTect® SYBR Green PCR Kit (QIAGEN) on an ABI Prism 7900HT Sequence Detection System machine using SDS software (Applied Biosystems, Foster City, CA). Manufacturer protocols were followed for all procedures. RNA expression was quantitated relative to 18S RNA expression, mRNA gene-expression was quantitated relative to GAPDH mRNA expression. Using the Oligo 6 software (Molecular Biology Insights), primer sets for each gene were designed towards the same region of cDNA that was represented by the probe sets on the Affymetrix GeneChip arrays, and RT-PCR validation was performed.

In vitro inhibition of Treg apoptosis

Tregs isolated from random healthy control, RO T1D, Ab+ subjects and LS T1D subjects were treated either with soluble FasL (1/40 dilution or 600 ng/ml) or with plate-bound aCD3 (clone UCHT1, Ancell) at high concentration (20 μg/ml) causing activation-induced cell death (AICD). Separate cell aliquots were pre-treated with Z-DEVD (caspase 3 inhibitor) or with Ac-IETD (caspase 8 inhibitor) for 30 minutes before exposure to stimulation with either soluble FasL or to AICD agent and apoptosis was measured using YOPRO1+/7AAD−, as described above.

Statistics

The Mann-U-Whitney and Tukey-Kramer tests were used to compare generated results between clinical groups, with p value ≤0.05 considered significant. GraphPad software was used for data presentation. We also performed Kruskal-Wallis test in addition to a one-way ANOVA. Linear regression model was used for association studies of Treg functional measurements (in vitro suppression of proliferation of responder T cells) and HLA risk for T1D.
Quality control and normalization for microarray data was done as previously described [36]. Briefly, inspected RNA degradation across all arrays showed no significant differences in the degradation patterns. Quality control was done through visual inspection of each microarray scan for irregularities, and the whole microarray set was assessed using the ‘affyQCreport’ package from the Bioconductor project (Halling et al, 2006). The quality of the data was ascertained by inspecting various plots. Raw expression values were normalized across all 27 samples by computing the Robust Multi-chip Average (RMA) directly from the Affymetrix CEL files (Irizarry et al. 2003), generating expression measure on the log base 2 scale.

Gene expression differences between RO T1D and control samples were captured earlier using Affymetrix GeneChip human genome U133 Plus 2.0 arrays. The experimental design, quality control procedure, detailed statistical analysis and results are described in [36].

Results and Discussion

This study involved subjects belonging to several cohorts aimed at capturing different points of T1D progression, in an effort to increase our ability to detect positive correlation between generated results with T1D pathogenesis. These cohorts included: unrelated healthy controls (no T1D), siblings of probands (not included in this study) possessing multiple Ab+ (in a stage of developing T1D), recent-onset (RO) T1D (experienced T1D onset, but in the honeymoon phase when endogenous insulin production temporarily improves) and longstanding (LS) T1D subjects (fully dependent on exogenous insulin) (Table 1). Each of these subject groups was also tested for correlation of the results relative to HLA risk. For this comparison, we gathered data capturing changes at the genetic, genomic or transcriptional as well as at protein and functional level in different cell subsets, isolated by Fluorescent Activated Cell Sorting (FACS). Thus, we present here several lines of evidence that confirm differences in monitored traits between Low and High HLA risk subjects when divided according to T1D status.

HLA risk associated with Treg apoptosis levels

As HLA has been recognized as a major genetic risk factor, subject groups involved in this study were partitioned into two HLA risk groups (Low and High) according to the scheme we have developed earlier [30]. We have linked Treg apoptosis with HLA risk for T1D in our previous study [30] and in this study we verify the trend in a larger sample of subjects (Figure 1A). Partitioning of healthy controls and RO T1D subjects on Low and High HLA risk groups (High involving Moderate, High and Very High HLA risk groups), reveals increased Treg apoptosis levels in High HLA risk control subjects when compared to their Low HLA risk counterparts, while Treg apoptosis difference between the two HLA risk groups has not been seen in RO T1D subject group. This suggests that in healthy control subjects there is an association of HLA risk with Treg apoptosis. In disease state, however, T1D progression overrides this association, increasing Treg apoptosis levels further independently of HLA risk. High HLA risk status was associated with increased Treg suppressive function in Control group, most likely offering an explanation of why High risk control subjects do not succumb the disease. High HLA risk RO T1D group had significantly lower Treg function compared to High HLA risk healthy controls (Figure 1B). In a search for better understanding the association of HLA and Tregs, we have also measured frequency of healthy control and RO T1D subjects’ Tregs expressing surface HLA DQ molecules (Figure 1C).

Significantly higher frequency of Tregs from High HLA risk RO T1D subjects expressed surface DQ alleles compared to Tregs from High HLA risk healthy control subjects (p = 0.001). It has been acknowledged that, when activated, T cells also express HLA molecules on their surface [37]. The HLA DQ expression on Tregs implies potential antigen presentation to other T cells [38,39,40] encouraging belief that T- T cell interactions play an important role in the immune response [41].

Putting together HLA risk with Treg apoptosis and function in four different subject cohorts as representative of stages during T1D development, has shown changes in their correlation (Figure 2). Increased Treg suppressive function directly correlated with Treg apoptosis up to 6% in High HLA risk healthy control and LS T1D subject groups. The opposite was true for RO T1D, where higher suppressive function in High HLA risk RO T1D subjects correlated with lower Treg apoptosis. There was no significant correlation between the three factors in multiple Ab+ subjects. These findings prompted us to look into differences in HLA expression on Treg cells as well as mechanisms of Treg apoptosis.

Differential expression of HLA class II genes might be impacted by HLA risk and/or disease progression

We conducted gene expression profiling of un-manipulated, FACS isolated ex vivo Treg cells in the two most clinically distinct subject groups, healthy Control (n = 15) and RO T1D subjects (n = 12) and using GeneChip® Human Genome U133 Plus 2.0 array (Affymetrix, Santa Clara, CA) (data not shown here but deposited as GEO in [36]). In this report, the primary discussion was on the expression of apoptosis genes across RO T1D and controls. Although downregulation of HLA Class II genes in RO T1D was also observed in the results, this observation was not discussed in that report. In the current report, we highlight this down-regulation of HLA genes (HLA DQA1, DQB1, DRA1, DRB1) with fold changes of −5.3, −1.9, −2.2 and −1.6, respectively) and validate those results by RT-PCR (Figure 3A and 3B). The goal here is to better understand processes involved in T1D pathogenesis relative to the expression of HLA genes. RO T1D subjects express lower levels of HLA genes class II compared to healthy control subjects, with HLA DQB1 reaching significance (p = 0.04). When both subject groups were divided according to HLA risk using our simplified scheme (Low and High HLA risk), opposite trend was noticed for control and RO T1D subjects. Namely, High HLA risk healthy controls showed higher expression of HLA DQB1, DRA1 and DRB1 compared to Low HLA risk control group, while opposite was true for RO T1D. Low HLA risk RO T1D had significantly higher expression of the three HLA class II genes compared to High HLA risk RO T1D subjects (Figure 3B). The same trend of the HLA class II genes’ expression was detected in CD25low T cells (data not shown), suggesting effect of disease on the expression of HLA genes in all T cells without exerting cell specificity.

Our observation of reduced overall expression of HLA DR and DQ molecules in freshly isolated Tregs from RO T1D brings up an interesting but yet unexplored aspect of ‘inducible’ HLA expression and its role in Treg phenotype and function. It is not completely clear if HLA gene expression, the frequency of T cells expressing HLA molecules or the magnitude of expressed HLA molecules on the surface of T cells is relevant to the pathogenesis of diabetes. HLA Class II genes are constitutively expressed only on some cells (for example, antigen-presenting cells), but there is evidence of inducible HLA expression in several other cells, including Tregs [42]. The fact that we detected co-ordinated down-regulation of several HLA genes in disease could be
explained through changes in expression or function of one or more transcription factors common across all genes within each HLA group. Analysis of the promoter regions of HLA class II genes, with the search restricted to locate transcription factors common across four HLA class II genes (DRA1, DRB1, DQA1 and DQB1) showed two transcription factors (NFYA and NFAT) down-regulated in Tregs from T1D subjects compared to healthy control subjects (0.93-fold, p = 0.12 and 0.97-fold, p = 0.045, respectively). Although expression differences in fold change were subtle, downregulation of NFAT in RO T1D has reached significance (p = 0.045). Interestingly, NFYA, which is a transcription factor regulating both Class I and Class II genes (HLA class I genes were also downregulated, data not shown) is located in the 6p21.31 region, roughly 8.4MB centromeric to T1D-linked HLA DQB1 gene. Indeed, it was reported that NFYA participates in regulation of class II genes in activation-specific manner [43]. Significantly downregulated NFAT expression in RO T1D versus healthy control subjects could offer an explanation for reduced HLA expression we report here and IL-2 deprivation we reported earlier [36], considering that NFAT is a downstream molecule in IL-2 signaling pathway. NFAT is transcription factor important in the lifecycle not only effector T cells (forming complex with AP-1) but also in Tregs (forming complex with Foxp3). Namely, crystal structure of an NFAT:FOXP:DNA complex reveals an extensive protein-protein interaction interface between NFAT and FOXP family of proteins [44]. Thus, by switching transcriptional partners, NFAT converts the acute T cell activation program into the suppressor program of Tregs [44]. There is evidence that HLA expression can be induced in an environment rich in inflammatory cytokines [45,46], suggestive of type of environment in the islets of a person progressing towards total beta-cell destruction. Furthermore, as human T lymphocytes are one of cell types that express HLA class II molecules following activation, these molecules on activated T cells could either affect the activity of T cells or they could provide signals that modulate T-cell functioning. If allogeneic dendritic cells expressing HLA-DQ (not HLA-DR) stimulate naïve T cells, they will shift towards Th2 phenotype [46]. As both HLA-DQ and HLA-DR genes, latter known as an activation marker, are down-regulated in Tregs from T1D subjects, it is possible that in T1D subjects, Tregs in the periphery have an activation defect, due to which they fail to exert suppressive function. Similar problem could affect effector T cells, causing lower IL-2 production leading to IL-2 deprivation, increased Treg apoptosis and decreased Treg function.

Figure 1. Treg apoptosis, function and surface HLA DQ relative to HLA risk in healthy control and RO T1D subjects. A) Healthy High HLA risk control subjects show significantly increased Treg apoptosis levels (ANOVA F = 10.24 df(3,64), p < 0.0001). Detailed significance presented in the figure done using Mann-U-Whitney test. However, RO T1D subjects that succumbed disease show significantly increased Treg apoptosis levels independently on HLA risk. B) High HLA risk healthy control subjects show significantly increased suppressive function of their Tregs compared to Low HLA risk controls (Mann-U-Whitney test, p = 0.01), while that association was lost in RO T1D group (Mann-U-Whitney, p ≥ 0.69). C) RO T1D subjects with High HLA risk haplotypes show significantly higher surface DQ expression compared to Low HLA risk both RO T1D and healthy control subjects while High HLA risk healthy controls express the least number of cells with surface HLA DQ (ANOVA F = 14.62 df(3,20), p < 0.0001). Detailed comparisons was done using Mann-U-Whitney test. Values are presented with standard errors.

doi:10.1371/journal.pone.0036040.g001

Figure 2. Changes in correlation of HLA risk with Treg apoptosis and Treg function in subject cohorts representing stages of T1D development. In High HLA risk both healthy control and LS T1D subjects, increased Treg apoptosis significantly correlated with increased Treg function (p = 0.017 and p = 0.042, respectively). High HLA risk RO T1D subjects showed opposite correlation: increased Treg apoptosis was correlated with decreased Treg function (p = 0.027). Multiple Ab+ subjects did not show correlation between Treg apoptosis and function in High HLA risk group (p = 0.95). Although some trends were present, Low HLA risk groups did not show correlation with Treg apoptosis and function.

doi:10.1371/journal.pone.0036040.g002
we have noticed that both effector T cell subsets isolated from RO T1D subjects proliferated less compared to control subjects (data not shown). Beside the current study, few other studies have focused on the expression of HLA molecules in T cells of patients with T1D, reporting unequal expression of HLA alleles in total peripheral PBMC of T1D patients [47,48].

Common and different apoptosis pathways activated during T1D pathogenesis

In the light of observations of increased Treg apoptosis in High HLA risk subjects compared to Low HLA risk group (Figure 1A), we were specifically interested in the expression of genes involved in apoptosis pathways with a goal to identify potential differences in activated apoptotic pathways associated with T1D pathogenesis. PCR Arrays were used to measure expression of 84 genes of known apoptotic pathways in un-manipulated ex vivo naive and Treg cell subsets from High HLA risk Control subject group (n = 8), Low HLA risk control subject group (n = 5), RO T1D patients (n = 4) and multiple Ab subjects (n = 4). Gene expression of Tregs from every subject was normalized with gene expression of the same genes in autologous naive T cells to account for expression induced by common factors coming from, for example, T cell lineage commitment or the procedure of cell isolation. Such normalized values were then compared between groups. The analysis of gene expression in each subject group (High HLA control, RO T1D, and multiple Ab+) was done through comparison to Low HLA risk healthy control subject group.

The analysis of resultant gene expressions between each subject group relative to Low HLA risk (Figure 4A) showed few commonly overexpressed genes across RO T1D, multiple Ab+ and High HLA risk control subjects: Bik, CARD6, caspase2, TNFRSF11B and caspase 14. Tregs from all subject groups overexpressed caspase 2, known as initiator caspase, relative to Low HLA risk. This result is in agreement with our cellular assay showing increased Treg apoptosis in all those subject groups relative to Low HLA risk group suggesting activation of caspase-dependent apoptosis pathway(s). As a highly conserved and tightly controlled process, apoptosis involves activation of many other genes as well. A recent publication indicated the necessity of BID expression in the commitment to apoptosis, which is one of pro-apoptotic members of Bcl-2 family [49]. Indeed, compared to Low HLA risk healthy control subjects, both RO T1D and Ab+ subject groups (showing the highest Treg cell apoptosis levels) had increased expression of both caspase 4 and BID genes in Tregs versus Low HLA risk Tregs.

Each of the three subject groups with increased Treg apoptosis also overexpressed a unique set of genes (Figure 4B). Interestingly, some of overexpressed genes among both RO T1D and Ab+ subjects were genes with anti-apoptotic function (RO T1D overexpressed Akt1 (>24-fold), Bag1 (>331-fold) and Mcl-1 (>266-fold) and Ab+ overexpressed BIRC6 (>467-fold), BIRC2 (>14-fold) and Bcl2L1 (>13-fold), suggesting that Tregs are trying to counteract strong pro-apoptotic signal. Additionally, different anti-apoptotic molecules are probably activated at different points in T1D pathogenesis, most likely as a response to different apoptotic stimuli.

FADD (adaptor molecule associated with apoptosis) was the only uniquely upregulated gene in High HLA control group when compared to both Low HLA risk and RO T1D (>8-fold and >14-fold, respectively), implying the prevalent Treg apoptosis pathway(s) in this subject group. Interestingly, High HLA risk subject group consists of healthy subjects that have not succumbed T1D despite increased Treg apoptosis. The explanation might lie in apoptosis pathway activated in this subject group. We noticed that many pro-apoptotic genes were overexpressed in both RO T1D and Ab+ subjects (TNFRSF9, TNFRSF10B, PYCARD, caspases 3, 7 and 9, BIRC3, BCLAF1, Bik1, and APAF1, Figure 4C). In addition, gene coding TNFRSF11b (OPG), indirectly involved in apoptosis process, was expressed 34.5-fold more in High HLA risk control compared to Low HLA risk control subjects. This gene acts as decoy receptor for both TRAIL and RANKL [50], and reacts through it to FADD, that was, as mentioned earlier, uniquely overexpressed (>8-fold) in Tregs of High HLA risk subjects, transmitting an inhibitory signal to NFkB and affecting many biological processes. Although OPG was upregulated in RO T1D and Ab+ subjects, lack of FADD overexpression suggests that OPG might in these subject groups react with different ligand potentially increasing Treg apoptosis through different pathways compared to High HLA risk control subjects. Furthermore, it has been shown that inflammatory cytokines elevate OPG expression and release [51]. Intriguingly, OPG is involved in development and function of dendritic cells [32,33]. All subjects also showed increased expression (52-fold) of caspase recruitment domain family,
Several pro-apoptotic Bcl2-family members (Bcl2L11 - 17.5-fold, Bim - 15-fold of both), suggesting involvement of TNF pathway to total Treg apoptosis.

Based on gene expression profile of PCR array discussed above supported by ex vivo and in vivo assays, Tregs of High HLA risk subjects differ from autologous naive T cells by higher cell turnover completed through a caspase-dependent process that involves molecules transmitting a signal via FADD. On the other hand, analysis of genes expressed in multiple Ab+ subjects suggests that apoptosis is occurring through overexpression of multiple pro-apoptotic members of Bcl2 family, as their dimerization results in caspase-3apoptotic pathway in Ab+ subjects heavily involve mitochondria. Overexpression of Bcl2L11 (Bim) suggests apoptosis initiation through withdrawal of growth hormones, supporting findings of other studies [36,56]. Ab+ subjects expressed TNFRSF21/25 (~15-fold of both), suggesting involvement of TNF pathway to total Treg apoptosis.
Thus, our results show that in RO T1D and Ab+ subjects in particular, inflammatory processes, mitochondrial and ER stress all converge in caspase - induced apoptosis of Tregs, leading to T1D onset. In Ab+ subjects that have not yet experienced T1D onset, the degree of expression and activation of these genes, which depends on cytokine milieu, will dictate time distance to T1D onset for those subjects, making this period of time particularly important in terms of preventive immunomodulatory treatment. Since our data show that Tregs from both RO T1D and Ab+ subjects die through Fas/ FasL pathway, and the opposite was true for High HLA control subjects, we chose this stimulation to validate our microarray and PCR array results. We thus performed in vitro cell-based assay where both naïve and Tregs were treated either with soluble FasL (1/40 dilution or 600 ng/ml) for 20 hours (Figure 5A), and proceed further treating Tregs with either soluble FasL treatment or with TCR stimulation, both with and without pretreatment with caspase inhibitors (Figure 5B and C). Knowing that these two apoptosis inductions activate caspase cascade [73], we chose to pretreat cells with caspase 3 (Z-DEVD) and caspase 8 (Ac-IETD) inhibitors. As shown on Figure 5A, manipulated (FasL-treated) Tregs from RO T1D subjects (as well as naïve T cells) were significantly more susceptible to FasL-initiated apoptosis pathways compared to High HLA risk healthy control subjects (Mann-U-Whitney test, p = 0.016, Figure 5A), which was in concordance with our PCR array finding, showing noticeable Fas/FasL downregulation in ex vivo Tregs from High HLA risk control subjects (Figure 4A). Studying Tregs isolated from healthy individuals with no consideration of their HLA risk, Fritzsching reported higher sensitivity of Tregs to Fas-mediated apoptosis and lower to that mediated by TCR [76]. In our study, Tregs from healthy Low HLA risk only were responsive to Fas-mediated apoptosis (data not shown), while High HLA risk control subjects showed the opposite apoptotic phenotype, suggesting that HLA might have not yet recognized role in receiving an apoptosis signal. This hypothesis warrants additional studies. In an attempt to abrogate Treg apoptosis in FasL- and the AICD-induced apoptosis pathway, Z-DEVD or Ac-IETD were (or not) used for 30 minutes pre-treatment of Tregs in vitro in Low HLA risk controls, RO T1D and Ab+ subject groups (presented together in Figure 5B and C). In vitro FasL treatment significantly increased Treg apoptosis through involvement of caspase 3, as apoptosis was significantly lowered by pretreatment with caspase3 inhibitor Z-DEVD in all subjects except in RO T1D subjects (depicted by red symbols throughout Figure 5). Since Treg apoptosis in RO T1D subjects was more efficiently prevented after pretreatment with caspase 8 inhibitor Ac-IETD, quite expectedly showing that the apoptosis pathway in RO T1D subjects was triggered through membrane receptors (Figure 5B). This result clearly suggests more significant involvement of caspase 8 rather than caspase 3 in the FasL-triggered apoptosis pathway in Tregs from RO T1D subjects during honeymoon period. AICD apoptosis activated both caspase 3 and 8 at comparable levels across subject groups.

In conclusion, our data sheds new light on evolving Treg apoptosis pathways and function during T1D development and suggests the importance of HLA in this process. Our results support our hypothesis about the triangular association of HLA risk, Treg survival and Treg function to suggest that different stages in T1D development activate diverse prevalent apoptosis mechanisms, probably as a result of changing surrounding factors impacting further progression towards T1D. This information could be useful when choosing preventive treatment for subjects at different stages of diabetogenesis (either at risk to develop T1D or after T1D onset while in honeymoon phase). Combined with our Treg apoptosis/function methods, apoptosis pathway analysis offers valuable information about potential selection of an immunomodulatory treatment that could prevent further T1D progression in these subject groups. Unquestionably, our results of prevalent Treg apoptotic pathways associated with T1D development warrant further investigation. One type of future study could be a clinical trial employing an agent tailored to block prevalent mechanism(s) in each of the stages of T1D development where our assays would monitor treatment effects in real time.

Supporting Information

Table S1 *DQ2/DQ8* heterozygotes are designated as "Very High HLA Risk".

Acknowledgments

The authors thank Drs Soumitra Ghosh, Martin Hessner and Yi-Guang Chen for helpful suggestions after reviewing the manuscript.

Author Contributions

Conceived and designed the experiments: SG PJ. Performed the experiments: SG. Analyzed the data: SG PJ. Contributed reagents/materials/analysis tools: SG. Wrote the paper: SG PJ.
References

1. Dabelea D, Bell RA, D’Agostino RB, Jr., Imperatore G, Johansen JM, et al. (2007) Incidence of diabetes in youth in the United States. JAMA 297: 971-977.

2. Onakpo PM, Vananen S, Karvonen M, Tuomilehto J (1999) Worldwide increase in incidence of Type I diabetes—the analysis of the data on published incidence trends. Diabetologia 42: 1395–1403.

3. Todd JA, Bell JI, McDevitt HO (1987) HLA-DQ beta gene contributes to susceptibility and resistance to insulin-dependent diabetes mellitus. Nature 329: 599-604.

4. Thorsby E, Romminger KS (1993) Particular HLA-DQ molecules play a dominant role in determining susceptibility or resistance to type I (insulin-dependent) diabetes mellitus. Diabetologia 36: 371-377.

5. Todd JA (1990) The role of MHC class II genes in susceptibility to insulin-dependent diabetes mellitus. Curr Top Microbiol Immunol 164: 17–40.

6. Brown WM, Perce J, Hildur JE, Perdue LH, Lohman K, et al. (2009) Overview of the MHC fine mapping data. Diabetes Obes Metab 11 Suppl 1:2–7.

7. Noble JA, Vailes AM, Cook M, Klitz T, Thomson G, et al. (1996) The role of HLA class II genes in insulin-dependent diabetes mellitus: molecular analysis of 100 Caucasian, multiples families. Am J Hum Genet 59: 1134–1140.

8. Nejenstve S, Gombos Z, Laine AP, Veijola R, Knip M, et al. (2000) Non-class II HLA gene associated with type 1 diabetes maps to the 240 kb region near HLA-B, Diabetes 49: 2127–2221.

9. Neuj P, Platz P, Anderson EO, Christy M, Lyngooy J, et al. (1974) HLA antigens and diabetes mellitus. Lancet 2: 864-866.

10. Rotter JI, Landaw EM (1984) Measuring the genetic contribution of a single locus to a multifactor disease. Clin Genet 26: 259–542.

11. de Bakker PI, McVean G, Sabeti PC, Miretti MM, Green T, et al. (2006) A high-resolution HLA and SNP haplotype map for disease association studies in the extended human MHC. Nat Genet 38: 1166–1172.

12. She JX (1996) Susceptibility to type 1 diabetes: HLA-DQ and DR revisited. Immunol Today 17: 321–329.

13. Pociot F, McDermott MF (2002) Genetics of type 1 diabetes mellitus. Genes Immun 3: 235–249.

14. Kwok WW, Dommeie ME, Johnson MJ, Nepom GT, Koelle DM (1996) HLA-DQ beta 57 is critical for peptide binding and recognition. J Exp Med 183: 1253–1258.

15. Cucca F, Lampis R, Coniglia M, Angius E, Nuttall S, et al. (2001) A correlation between the relative predisposition of MHC class II alleles to type 1 diabetes and the structure of their promoters. Hum Mol Genet 10: 2025–2033.

16. Mocic F, Mooney NA, Devergie A, Gluckman E, Charron D (1990) Role of HLA-DR molecules on human peripheral monocytes induces their death. Cell Immunol 139: 268–273.

17. Mooney NA, Grillot-Courvalin C, Hivroz C, Ju LY, Charron D (1990) Early transcription-polymerase chain reaction. Genes Immun 5: 405–416.

18. Mascle F, Mooney N, Devergie A, Gluckman E, Charron D (1990) Role of HLA DR1 haplotypes. Diabetes 40: 478–481.

19. Todd JA, Pociot F, McDermott MF (2002) Genetics of type 1 diabetes mellitus. Genes Immun 3: 235–249.

20. Donner H, Seidl C, Rau H, Herwig J, Seifried E, et al. (2002) Unbalanced FDCR-1, a TNF receptor family member, is expressed in lymphoid cells and is associated with rheumatoid arthritis, multiple sclerosis and myocardial infarction. Nat Genet 37: 486–494.

21. Benoist C, Mathis D (1990) Regulation of major histocompatibility complex class II genes: X, Y and other letters of the alphabet. Annu Rev Immunol 8: 681–715.

22. Barcher-Allan C, Wolf E, Hafler DA (2006) HLA class II expression identifies functionally distinct human regulatory T cells. J Immunol 177: 574–780.

23. Hewitt CR, Fiddmeln M (1989) Human T cell clones present antigen by human T lymphocytes. J Immunol 143: 762–769.

24. Nejentsev S, Gombos Z, Laine AP, Veijola R, Knip M, et al. (2000) Non-class II HLA-DQ genotypes and susceptibility in insulin-dependent diabetes mellitus. N Engl J Med 322: 1836–1841.

25. Todd JA, Pociot F, McDermott MF (2002) Genetics of type 1 diabetes mellitus. Genes Immun 3: 235–249.

26. Hewitt CR, Fiddmeln M (1989) Human T cell clones present antigen by human T lymphocytes. J Immunol 143: 762–769.

27. Barnabà V, Watts C, de Boer M, Lane P, Lanzavecchia A (1994) Professional presentation of antigen by activated human T cells. Eur J Immunol 24: 71–75.

28. Baecher-Allan C, Wolf E, Hafler DA (2006) HLA class II expression identifies functionally distinct human regulatory T cells. J Immunol 176: 4622–4631.

29. Benoist C, Mathis D (1990) Regulation of major histocompatibility complex class II genes: X, Y and other letters of the alphabet. Annu Rev Immunol 8: 681–715.

30. Wu Y, Borde M, Heissmeyer V, Feuerer M, Lapan AD, et al. (2006) FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell 126: 375–387.

31. Lechleitner C, Steger G, Tillinger W, Scheiner O, et al. (2003) Donor dependent, interferon-gamma induced HLA-DR expression on human neutrophils in vivo. Clin Exp Immunol 133: 476–481.

32. Kato-Kogor N, Ohyama D, Shinohara F, Mepuro M, Yoshizawa S, et al. (2010) Fibroblasts stimulated via HLA-II molecules produce prostaglandin F2 and regulate cytokine production from helper T cells. Lab Invest 90: 1747–1756.

33. Donner H, Seidl C, Rau H, Herwig J, Seifried E, et al. (2002) Unbalanced amounts of HLA-DQA1 and DQA1*04 might cause low amounts of mRNA in heterozygous individuals. Eur J Immunogenet 29: 321–330.

34. Steinberg M, Lohman O, Padyukov L, Eriksson P, Akesson E, et al. (2005) MHC-TATA is associated with differential MHC molecule expression and susceptibility to rheumatoid arthritis, multiple sclerosis and myocardial infarction. Nat Genet 37: 486–494.

35. Bouzon C, Boecher-Hayes L, Pagliari LJ, Green DR, Nimsverey DD (2006) Caspase-2-induced apoptosis requires bid cleavage: a physiological role for bid in heat shock-induced death. Mol Biol Cell 17: 2150–2157.

36. Sood SK, Balasubramanian S, Higham S, Fernando M, Harrison B (2011) Osteoprotegerin (OPG) and related proteins (RANK, RANKL and TRAIL) in thyroid disease. World J Surg 35: 1894–1902.

37. Collin-Osdoby P, Rothe L, Anderson F, Nelson M, Maloney W, et al. (2001) FDCR-1, a TNF receptor family member, is expressed in lymphoid cells and is a crucial regulator of bone metabolism, also regulates B cell microvascular endothelial cells, regulation by inflammatory cytokines, and role in human osteoclastogenesis. J Biol Chem 276: 20659–20672.

38. Yun T, Tallqvist MD, Acker A, Rafferty KL, Marshall AJ, et al. (2001) Osteoprotegerin, a crucial regulator of bone metabolism, also regulates B cell function and survival. J Immunol 167: 1629–1633.

39. Yun T, Chaffaty PM, Shi GL, Frazer JK, Easings MK, et al. (1998) OPG/FDCR-1, a TNF receptor family member, is expressed in lymphoid cells and is up-regulated by ligating CD40. J Immunol 161: 6113–6121.

40. Svenning U, Yoo H, Yoo H, Park J, Lee S, et al. (2005) CARD6 is a modulator of NF-kappa-B activation by Nod1- andCARD15-mediated pathways. J Biol Chem 280: 31941–31949.

41. Fang HY, Chro CY, Huf MG, Hsiao YH, Chang TC, et al. (2011) Caspase-14 is an antipapoptotic-proinflammatory factor that provides a

42. Granulocyte/macrophage colony-stimulating factor causes a paradoxical
increase in the BH3-only pro-apoptotic protein Bim in human neutrophils. Am J Respir Cell Mol Biol 44: 879–887.

57. Xiang J, Chao DT, Korsmeyer SJ (1996) BAX-induced cell death may not require interleukin 1 beta-converting enzyme-like proteases. Proc Natl Acad Sci U S A 93: 14559–14563.

58. Rhoads DM, Umbach AL, Subbaiah CC, Siedow JN (2006) Mitochondrial reactive oxygen species. Contribution to oxidative stress and interorganellar signaling. Plant Physiol 141: 357–366.

59. Rains JL, Jiao SK (2011) Oxidative stress, insulin signaling, and diabetes. Free Radic Biol Med 50: 567–575.

60. Taplin CE, Barker JM (2008) Autoantibodies in type 1 diabetes. Autoimmunity 41: 11–18.

61. Sohn D, Budach W, Janicke RU (2011) Caspase-2 is required for DNA damage-induced expression of the CDK inhibitor p21(WAF1/CIP1). Cell Death Differ 18: 1664–1674.

62. Yamamoto T, Maruyama W, Kato Y, Yi H, Shamoto-Nagai M, et al. (2002) Selective nitration of mitochondrial complex I by peroxynitrite: involvement in mitochondria dysfunction and cell death of dopaminergic SH-SY5Y cells. J Neural Transm 109: 1–13.

63. Robertson LA, Kim AJ, Wertzack GH (2006) Mechanisms linking diabetes mellitus to the development of atherosclerosis: a role for endoplasmic reticulum stress and glycogen synthase kinase-3. Can J Physiol Pharmacol 84: 39–48.

64. Zhang K, Shen X, Wu J, Sakaki K, Saunders T, et al. (2006) Endoplasmic reticulum stress activates cleavage of CREBH to induce a systemic inflammatory response. Cell 124: 567–599.

65. Wei Y, Wang D, Topczewski F, Pagliassotti MJ (2006) Saturated fatty acids induce endoplasmic reticulum stress and apoptosis independently of ceramide in liver cells. Am J Physiol Endocrinol Metab 291: E275–281.

66. Ishola DA, Jr., Post JA, van Timmeren MM, Bakker SJ, Goldschmeding R, et al. (2006) Albumin-bound fatty acids induce mitochondrial oxidant stress and impair antioxidant responses in proximal tubular cells. Kidney Int 70: 724–731.

67. Scheuner D, Vander Miede D, Song B, Flamez D, Cremers JW, et al. (2005) Control of mRNA translation preserves endoplasmic reticulum function in beta cells and maintains glucose homeostasis. Nat Med 11: 757–764.

68. Russell JW, Golovoy D, Vincent AM, Mahendru P, Olzmann JA, et al. (2002) High glucose-induced oxidative stress and mitochondrial dysfunction in neurons. FASEB J 16: 1738–1748.

69. Eizirik DL, Cardoso AK, Coop M (2008) The role for endoplasmic reticulum stress in diabetes mellitus. Endocr Rev 29: 42–61.

70. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, et al. (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39: 44–84.

71. Li H, Zhu H, Xu CJ, Yuan J (1998) Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94: 491–501.

72. Mauro C, Crescenzi E, De Mattia R, Palàcio F, Melone S, et al. (2006) Central role of the scaffold protein tumor necrosis factor receptor-associated factor 2 in regulating endoplasmic reticulum stress-induced apoptosis. J Biol Chem 281: 2631–2638.

73. Shen HM, Liu Y, Choksi S, Tran J, Jin T, et al. (2004) Essential roles of receptor-interacting protein and TRAF2 in oxidative stress-induced cell death. Mol Cell Biol 24: 5914–5922.

74. Urano F, Wang X, Bertolotti A, Zhang Y, Chung P, et al. (2000) Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287: 664–666.

75. Himer L, Csoka B, Selmeczy Z, Kocsis B, Pocza T, et al. (2010) Adenosine A2A receptor activation protects CD4+ T lymphocytes against activation-induced cell death. FASEB J 24: 2631–2640.

76. Fritzsching B, Obele N, Eberhardt N, Quick S, Haas J, et al. (2005) In contrast to effector T cells, CD4+CD25+FoxP3+ regulatory T cells are highly susceptible to CD95 ligand- but not to TCR-mediated cell death. J Immunol 175: 32–36.