Exploring the spatial features of electronic transitions in molecular and biomolecular systems by swift electrons

Ciro A. Guido,∗,† Enzo Rotunno,∗,† Matteo Zanfrognini,‡ Stefano Corni,†,‡ and Vincenzo Grillo‡

†Dipartimento di Scienze Chimiche, Università di Padova, via F. Marzolo 1, 35131 Padova, Italy.
‡CNR-NANO, Institute of Nanoscience, via Campi 213/A, Modena, Italy

E-mail: ciro.guido@unipd.it; enzo.rotunno@nano.cnr.it
Numerical integration procedure of the OAM-EELS rate

The numerical integration of the energy loss rate per unit of angular momentum, eq(10), imply the discretization of the molecular transition potential $V_{0n}(r)$. Due to the dimension of the large systems treated, we use a linear response TD-DFT approach:¹ indeed, the optimal compromise between accuracy and computational cost makes TD-DFT the most widely used method of calculating excitation energies of chemically relevant systems.

Figure 1: cube grid centered on a G-quadruplex
The transition potential is therefore expressed as:

\[
V_{0n}(\mathbf{r}) = \int d\mathbf{r}' \frac{\rho(\mathbf{r}', \omega_{0n})}{|\mathbf{r} - \mathbf{r}'|} = \sum_{ia} \int d\mathbf{r}' \left[\phi_{i}(\mathbf{r}') \phi_{a}^{*}(\mathbf{r}') X_{ia}(\omega_{0n}) + \phi_{a}(\mathbf{r}') \phi_{i}^{*}(\mathbf{r}') Y_{ia}(\omega_{0n}) \right] \frac{1}{|\mathbf{r} - \mathbf{r}'|} \]

(1)

\(X_{ia}(\omega_{0n})\) and \(Y_{ia}(\omega_{0n})\) refer to the excitation and de-excitation coefficients involving all the possible pair of occupied \(\phi_{i}(\mathbf{r}')\) and virtual \(\phi_{a}(\mathbf{r}')\) orbitals that describe a transition from the ground (\(|0\rangle\)) to an excited state (\(|n\rangle\)) associated to an energy difference of \(\omega_{0n}\). The quantity in eq.(1) have been discretized over a cubic grid (with a length side of \(L\), fig.1) by slightly modifying the input of the G16 software,\(^2\) and then averaged along the direction \(p = k_{z,f} - k_{z,i}\):

\[
\tilde{V}_{p}^{0n}(\mathbf{r}_{\perp}) = V_{0n}(x,y,p) = \frac{1}{L} \sum_{z=-L/2}^{L/2} V_{0n}(x,y,z) \cdot e^{-ipz} \]

(2)

The eq.(2) of the manuscript have been finally integrated over the grid cube, by a home-made Matlab script.

Computational details

We report in this section the computational details used in the simulations, the geometrical structures, the excitation energies, the oscillator strengths and the final OAM resolved transition probabilities of studied systems.

Coordinates of the structures

The coordinates (in Angstrom) of the geometrical structures of different molecular systems are here reported.
Table 1: Coordinates (Angstrom) of the optimized guanine structure.

Atomic num.	X	Y	Z
6	0.527396	-0.848145	-0.000496
6	0.852889	0.503229	0.006425
7	-0.694082	-1.431941	0.006852
6	-1.669670	-0.564036	-0.003188
7	2.220761	0.676588	0.006069
1	3.755825	-0.784696	0.000844
6	2.708797	-0.530077	0.001573
7	1.726856	-1.501188	-0.002774
1	1.849904	-2.499212	-0.010476
6	-0.209959	1.468808	0.002677
8	-0.191592	2.680114	-0.002454
7	-1.473623	0.787371	-0.003150
1	-2.265157	1.410920	-0.066178
7	-2.968795	-1.004832	-0.066863
1	-3.064106	-1.992225	0.107193
1	-3.678270	-0.436363	0.365378
Table 2: Coordinates (Angstrom) of the guanine tetramer. The first 16 atoms correspond to the extracted monomer.

Atomic num.	Guanine tetramer (first part)	Guanine tetramer (second part)	
X	Y	Z	
X	Y	Z	
Atomic num.	X	Y	Z
6	7.124327	2.025491	3.630807
6	7.815970	3.240532	3.585003
7	5.779680	1.840050	3.646899
6	5.078949	2.987362	3.615867
7	9.188858	3.018085	3.572269
1	10.253991	1.158362	3.607276
6	9.312348	1.696283	3.612156
7	8.092717	1.044264	3.654290
1	5.093909	0.099009	3.547453
7	3.726185	2.927002	3.630253
1	3.304059	2.017258	3.485154
1	3.117740	3.762059	3.543164
6	5.852214	13.716316	3.680861
6	5.161402	12.500891	3.644500
7	7.196996	13.903079	3.682239
6	7.898841	12.756290	3.643754
7	3.788280	12.723837	3.631236
1	2.722884	14.582529	3.654934
6	3.664574	14.045178	3.664321
7	4.884248	14.697496	3.700946
1	5.078446	15.724232	3.693632
6	5.902649	11.279515	3.587592
8	5.472693	10.113603	3.507215
7	7.305081	11.511765	3.608361
1	7.882460	10.646625	3.542254
7	9.250935	12.817400	3.651762
1	9.672655	13.729362	3.519903
1	9.860913	11.983377	3.563293
Table 3: Coordinates (Angstrom) of the L-alanine.

Atomic num.	X	Y	Z
7	1.280452	-1.135863	0.238015
1	-0.363503	-1.588108	-0.623873
6	0.621780	0.167930	0.423392
1	0.672247	0.513619	1.458338
6	1.249350	1.229605	-0.479824
6	-0.876223	0.046556	0.088166
1	1.230769	0.907089	-1.522457
1	0.696031	2.162401	-0.398987
1	2.285385	1.413109	-0.191154
8	-1.201375	-1.079117	-0.561303
1	1.324027	-1.662055	1.101125
8	-1.673970	0.900814	0.364784
1	2.225200	-1.033135	-0.107347

Table 4: Coordinates (Angstrom) of the D-alanine.

Atomic num.	X	Y	Z
6	0.621864	-0.167998	0.423331
6	1.249342	-1.229479	-0.480095
6	-0.876217	-0.046528	0.088182
1	0.696051	-2.162307	-0.399261
1	1.230606	-0.906912	-1.522707
1	2.285426	-1.413035	-0.191631
8	-1.201354	1.078865	-0.561779
1	0.672170	-0.513967	1.458206
7	1.280547	1.135824	0.238280
1	-0.363487	1.587840	-0.624691
1	1.322755	1.662345	1.101268
8	-1.674042	-0.900579	0.365257
1	2.225884	1.033002	-0.105468
Table 5: Coordinates (Angstrom) of Gquadruplex 2MB2. First layer.

Atomic num.	X	Y	Z	Atomic num.	X	Y	Z
6	-3.254354	-2.520009	3.027107	6	-1.145159	5.399237	-3.732626
1	-3.615623	-1.951693	2.156515	1	-0.883116	6.054751	-4.577057
1	-3.960043	-2.09807	3.939316	1	-0.958827	5.940084	-2.792310
1	-3.59108	-3.571993	2.931273	1	-2.208457	5.126829	-3.795233
7	-1.804667	-2.462697	3.096973	7	-0.352438	4.182943	-3.777142
6	-0.905280	-3.510106	3.055813	6	-0.794386	2.878406	-3.875075
1	-1.248047	-4.541619	2.959861	1	-1.859524	2.649050	-3.936924
7	0.366387	-3.127127	3.143061	7	0.187854	1.980425	-3.895731
6	0.279688	-1.753096	3.246367	6	1.328116	2.752663	-3.797745
6	1.327627	-0.760867	3.371064	6	2.720950	3.265271	-3.764128
8	2.543734	-0.867965	3.417564	8	3.252149	1.257151	-3.812210
7	0.724964	0.542113	3.445551	7	3.535398	3.354582	-3.653083
1	1.409075	1.291761	3.534907	1	4.532526	3.328660	-3.624804
6	-0.617204	0.845832	3.408707	6	3.109093	4.842947	-3.587898
7	-0.951457	2.168681	3.496852	7	4.078294	5.801862	-3.485174
1	-0.261798	2.899210	3.584967	1	5.061783	5.580365	-3.457685
1	-1.933988	2.403151	3.470828	1	3.776681	6.765003	-3.436089
7	-1.574554	-0.053387	3.295354	7	1.842902	5.208748	-3.618109
6	-1.054936	-1.317645	3.220142	6	1.019261	4.120342	-3.722976
6	-3.097976	1.497085	-0.309350	6	1.731854	7.899708	3.080344
1	-3.153362	2.121525	-1.214025	1	2.237432	8.214789	2.154849
1	-3.237622	2.138749	0.573936	1	2.258830	8.340305	3.940343
1	-3.890598	0.735784	-0.339369	1	0.690353	8.251641	3.068085
7	-1.812428	0.824310	-0.242286	7	1.729559	6.450787	3.182286
6	-1.558860	-0.533163	-0.217259	6	0.643040	5.601175	3.254976
1	-2.374154	-1.257747	-0.248700	1	-0.376382	5.990101	3.239851
7	-0.264054	-0.834513	-0.153336	7	0.974387	4.315033	3.341418
6	0.350980	0.401445	-0.136259	6	2.354694	4.338981	3.323193
6	1.757867	0.740471	-0.073224	6	3.305706	3.248312	3.388467
8	2.758335	0.041394	-0.019341	8	3.148301	2.039912	3.475302
7	1.889913	2.171910	-0.080791	7	4.636076	3.790257	3.334426
1	2.859539	2.481690	-0.038081	1	5.359018	3.073612	3.376141
6	0.878924	3.104494	-0.137420	6	4.995682	5.115474	3.236956
7	1.253639	4.419403	-0.132428	7	6.334903	5.388730	3.201697
1	2.218471	4.709824	-0.089758	1	7.038459	4.667420	3.243972
1	0.519643	5.112632	-0.173698	1	6.610308	6.358299	3.130238
7	-0.402710	2.801058	-0.194895	7	4.134131	6.111531	3.177260
6	-0.587297	1.444622	-0.190527	6	2.845980	5.650675	3.225095
Table 6: Coordinates (Angstrom) of G-quadruplex 2MB2. Second layer.

Atomic num.	X	Y	Z	Atomic num.	X	Y	Z
6	6.403772	7.893023	-0.415215	6	12.125116	2.886545	3.266823
1	7.049051	7.916503	-1.306557	1	12.527775	2.364080	2.385731
1	7.024049	8.069236	0.476768	1	12.505761	2.395505	4.175348
1	5.640577	8.680523	-0.493360	1	12.451516	3.936300	3.252405
7	5.734173	6.608008	-0.314547	7	10.673102	2.853114	3.249549
6	4.377395	6.349556	-0.311433	6	9.794306	3.918243	3.220037
1	3.650859	7.159280	-0.390115	1	10.158334	4.968641	3.206453
7	4.079223	5.056819	-0.204897	7	8.513829	3.553320	3.210659
6	5.316615	4.448388	-0.135441	6	8.572641	2.176164	3.235600
6	5.659057	3.046467	-0.010572	6	7.936777	1.198647	3.239615
8	4.962462	2.045699	0.065373	8	6.288776	1.326194	3.222433
7	7.090739	2.920590	0.020281	7	8.080312	-0.117822	3.269826
1	7.402871	1.954696	0.107381	1	7.380402	-0.858139	3.274126
6	8.020803	3.928303	-0.053371	6	9.417375	-0.444607	3.292011
7	9.336555	3.564400	-0.003372	7	9.724982	-1.775646	3.319182
1	9.629314	2.603209	0.080353	1	9.019908	-2.497602	3.323171
1	10.027954	4.299351	-0.056624	1	10.703529	-2.027934	3.335633
7	7.714254	5.209935	-0.167048	7	10.393878	0.441154	3.28467
6	6.357444	5.388526	-0.201366	6	8.994759	1.171419	3.259976
6	9.799810	5.400193	-3.625789	6	12.203566	-1.681881	0.115429
1	10.425291	5.101525	-4.480774	1	12.277459	-2.362728	-0.746206
1	10.356925	5.211727	-2.695450	1	12.294398	-2.692998	1.041338
1	9.561856	6.470917	-3.700994	1	13.015105	-0.941606	0.069332
7	8.556826	4.684695	-3.627000	7	10.933217	-0.978803	0.009895
6	7.265767	5.132977	-3.706332	6	10.712108	0.383589	0.022403
1	7.070956	6.204120	-3.779910	1	11.545453	1.086640	-0.021970
7	6.351455	4.181749	-3.683252	7	9.423560	0.716816	0.017324
6	7.070775	3.017706	-3.583230	6	8.778327	-0.501796	0.086662
6	6.628718	1.639958	-3.515114	6	7.362210	-0.805120	0.115818
8	5.511512	1.145742	-3.527389	8	6.377972	-0.828156	0.087637
7	7.782425	0.787842	-3.418337	7	7.195632	-2.230971	0.191371
1	7.542766	-0.201015	-3.366476	1	6.217813	-2.516025	0.215426
6	9.104503	1.170460	-3.391328	6	8.184961	-3.187332	0.231613
7	10.032517	0.171079	-3.294103	7	7.778332	-4.490777	0.303092
1	9.778816	-0.803682	-3.243650	1	6.805776	-4.756619	0.326099
1	11.006166	0.440524	-3.273451	1	8.496215	-5.201241	0.333149
7	9.511822	2.422757	-3.453030	7	9.474874	-2.916411	0.205335
6	8.449485	3.281055	-3.546690	6	9.692230	-1.566756	0.133254
Table 7: Coordinates (Angstrom) of G-quadruplex 2MB2. Third layer.

Atomic num.	X	Y	Z	Atomic num.	X	Y	Z
6	10.264334	-5.881469	-2.84563	6	2.674049	-7.963378	-0.010491
1	10.039485	-6.645291	-3.604461	1	2.047804	-8.037974	-0.912533
1	10.001309	-6.279392	-1.852644	1	2.035104	-8.090235	0.876687
1	11.336835	-5.641151	-2.871385	1	3.439105	-8.752751	-0.028118
7	9.511502	-4.668916	-3.114232	7	3.340750	-6.673621	0.031913
6	9.996512	-3.400940	-3.368503	6	4.697034	-6.413138	0.049148
1	11.069435	-3.202881	-3.386490	1	5.425480	-7.225379	0.030594
7	9.043636	-2.495722	-3.578340	7	4.992262	-5.115963	0.089132
6	7.877692	-3.224188	-3.451955	6	3.753385	-4.506665	0.098136
6	6.497612	-2.800442	-3.570178	6	3.407703	-3.100507	0.136754
8	6.002500	-1.709366	-3.073201	8	4.102054	-2.095893	0.171026
7	5.644143	-3.936350	-3.351521	7	1.975629	-2.975485	0.130241
1	4.653617	-3.708249	-3.420750	1	1.661260	-2.006746	0.156306
6	6.027484	-5.228869	-3.073201	6	1.047819	-3.991788	0.093971
7	5.026490	-6.144683	-2.903731	7	-0.268874	-3.623355	0.095836
1	4.050083	-5.902732	-2.975545	1	-0.563859	-2.659316	0.121451
1	5.296447	-7.096645	-2.699013	1	-0.958636	-4.361289	0.068937
7	7.281901	-5.619432	-2.964288	7	1.357319	-5.272776	0.058752
6	8.141568	-4.572987	-3.164123	6	2.714638	-5.405748	0.063188
6	7.189287	-7.496018	3.367719	6	-0.724050	-5.752736	-3.318720
1	6.674313	-7.908501	2.486762	1	-1.341779	-5.485040	-4.189453
1	6.713007	-7.894807	4.276319	1	-1.281003	-5.511312	-2.400647
1	8.247620	-7.793068	3.347109	1	-0.503448	-6.829549	-3.341921
7	7.115512	-6.045422	3.358216	7	0.531091	-5.022423	-3.350711
6	8.155711	-5.137253	3.328774	6	1.814283	-5.530824	-3.401724
1	9.193943	-5.472507	3.308891	1	1.991736	-6.607277	-3.423455
7	7.757368	-3.867315	3.327670	7	2.760302	-4.594806	-3.420214
6	6.380498	-3.965253	3.358185	6	2.043545	-3.415534	-3.378661
6	5.37328	-2.923146	3.371985	6	2.507918	-2.043461	-3.374412
8	5.467446	-1.705099	3.360639	8	3.633114	-1.568589	-3.405728
7	4.073910	-3.536257	3.404783	7	1.368037	-1.169089	-3.322943
1	3.314487	-2.857202	3.416007	1	1.623714	-0.182903	-3.317245
6	3.784444	-4.881974	3.421339	6	0.039780	-1.528478	-3.283056
7	2.461683	-5.226578	3.452576	7	-0.872026	-0.510669	-3.237231
1	1.721369	-4.541825	3.463344	1	-0.602536	0.461142	-3.232213
1	2.237614	-6.211798	3.464960	1	-1.850025	-0.762986	-3.207684
7	4.696926	-5.833386	3.408888	7	-0.387823	-2.775517	-3.286718
6	5.958849	-5.303689	3.377550	6	0.660590	-3.654431	-3.35158
Atomic num.	X	Y	Z	Atomic num.	X	Y	Z
------------	---------	---------	---------	------------	---------	---------	---------
6	11.972350	-1.982580	4.206760	6	8.050410	-6.764150	-3.986640
1	12.110290	-2.882020	3.587570	1	7.715160	-6.940330	-5.020800
1	11.883200	-2.287380	5.260600	1	7.453850	-7.392570	-3.307950
1	12.840590	-1.318550	4.088600	1	9.113150	-7.030380	-3.894760
7	10.780530	-1.264630	3.789800	7	7.892910	-5.362340	-3.640410
6	10.684360	0.029460	3.314430	6	8.867420	-4.463020	-3.251430
1	11.570800	0.657440	3.213920	1	9.912530	-4.766620	-3.174800
7	9.441270	0.398520	3.016880	7	8.399850	-3.242460	-3.003900
6	8.694380	-0.723880	3.314430	6	7.045470	-3.363980	-3.241910
6	7.268100	-0.949990	3.201200	6	5.900240	-2.376670	-3.142170
8	6.360470	-0.226120	2.802710	8	6.011760	-1.196470	-2.827160
7	6.975480	-2.288220	3.637120	7	4.742070	-2.995730	-3.496200
1	5.983850	-2.515690	3.583370	1	3.952310	-2.353980	-3.447230
6	7.867000	-3.232510	4.093770	6	4.534650	-4.303330	-3.873250
7	7.348210	-4.445070	4.454320	7	3.248150	-4.663100	-4.164630
1	6.363510	-4.654640	4.395150	1	2.476930	-4.015460	-4.111280
1	7.993640	-5.145840	4.791010	1	3.084300	-5.620660	-4.442570
7	9.165690	-3.031610	4.198640	7	5.491490	-5.205500	-3.965500
6	9.501630	-1.767430	3.794920	6	6.707100	-4.667890	-3.637960
6	10.250340	-6.200190	1.457250	6	-2.507820	-3.932410	-3.542700
1	10.646130	-5.730080	2.370360	1	-2.827990	-3.703550	-4.570580
1	11.005460	-6.119500	0.660560	1	-3.159380	-3.391900	-2.839320
1	10.035240	-7.260350	1.653500	1	-2.591630	-5.013970	-3.364040
7	9.019280	-5.545970	1.049530	7	-1.123610	-3.537240	-3.348870
6	7.762010	-6.100890	0.911700	6	-0.049090	-4.331880	-3.000140
1	7.589200	-7.158710	1.116310	1	-0.173580	-5.402710	-2.831210
7	6.833740	-5.231840	0.518690	7	1.098850	-3.665790	-2.900310
6	7.535070	-4.048880	0.396650	6	0.741650	-2.366860	-3.202510
6	7.078450	-2.732410	0.000860	6	1.552830	-1.168290	-3.262950
8	5.975030	-2.321270	-0.324670	8	2.744920	-0.958750	-3.067660
7	8.194860	-1.827240	0.029310	7	0.713060	-0.058630	-3.623490
1	7.943210	-0.877420	-0.239900	1	1.222310	0.821650	-3.684470
6	9.497210	-2.116410	0.368870	6	-0.639560	-0.081930	-3.878210
7	10.389900	-1.081890	0.320850	7	-1.224900	1.109770	-4.204780
1	10.124730	-0.146720	0.052140	1	-0.706490	1.973010	-4.269040
1	11.348810	-1.282810	0.568130	1	-2.217500	1.104370	-4.393810
7	9.917650	-3.312650	0.729680	7	-1.382070	-1.169940	-3.824490
6	8.890910	-4.218030	0.720110	6	-0.629960	-2.261900	-3.483950
Table 9: Coordinates (Angstrom) of G-quadruplex 143D. Second layer

Atomic num.	X	Y	Z	Atomic num.	X	Y	Z
6	-1.232110	-5.128430	0.776320	6	6.023280	7.614230	3.168110
1	-0.947920	-5.516940	1.766130	1	6.787090	7.724880	2.383400
1	-1.027060	-5.900890	0.019560	1	6.526550	7.516710	4.142090
1	-2.304160	-4.884660	0.771310	1	5.374530	8.501800	3.177060
7	-0.481660	-3.921380	0.476970	7	5.203000	6.444060	2.908080
6	-0.968190	-2.654430	0.220500	6	3.838940	6.386210	2.699150
1	-2.040590	-2.452820	0.224770	1	3.229060	7.290910	2.715890
7	-0.017380	-1.754770	-0.020360	7	3.382110	5.154480	2.485680
6	1.148760	-2.485950	0.087540	6	4.518870	4.374660	2.561790
6	2.527160	-2.068280	-0.066740	6	4.676710	2.942190	2.415610
8	3.020280	-0.981480	-0.328000	8	3.866070	2.056300	2.190660
7	3.381680	-3.204820	0.144390	7	6.065420	2.610090	2.582040
1	4.371110	-2.980910	0.050330	1	6.248930	1.612080	2.491100
6	3.000550	-4.493030	0.444850	6	7.106590	3.473360	2.838470
7	4.002160	-5.410520	0.601160	7	8.350740	2.918890	2.957150
1	4.977460	-5.172740	0.504690	1	8.515840	1.928330	2.864360
1	3.733820	-6.359360	0.821900	1	9.122510	3.543350	3.145400
7	1.747670	-4.878060	0.586260	7	6.968110	4.777530	2.972320
6	0.887100	-3.830760	0.395030	6	5.659560	5.150750	2.822640
6	2.236320	-7.612410	5.801350	6	10.993390	5.273920	-0.63590
1	1.703930	-8.005770	4.921990	1	10.621550	5.896970	0.191040
1	1.498860	-7.353610	6.576330	1	10.780040	5.783860	-1.58837
1	2.922550	-8.379090	6.188650	1	12.078520	5.132230	-0.530940
7	3.011520	-6.439900	5.435220	7	10.351900	3.971010	-0.610910
6	4.376780	-6.254200	5.531260	6	10.943490	2.729900	-0.479330
1	5.024740	-7.040640	5.921610	1	12.025360	2.631160	-0.376690
7	4.785110	-5.059250	5.110810	7	10.076750	1.719940	-0.492330
6	3.613940	-4.440330	4.721640	6	8.856430	2.348340	-0.640960
6	3.397910	-3.117140	4.173240	6	7.523890	1.786460	-0.732930
8	4.174920	-2.211870	3.912410	8	7.127550	0.631470	-0.685820
7	1.992190	-2.940870	3.929490	7	6.578180	2.858340	-0.876300
1	1.767950	-2.026100	3.541080	1	5.615160	2.532260	-0.941340
6	0.983150	-3.847950	4.161990	6	6.846080	4.207200	-0.938170
7	-0.286600	-3.449960	3.847700	7	5.773130	5.041530	-1.08677
1	-0.492080	-2.540370	3.463650	1	4.825330	4.702740	-1.149660
1	-1.035170	-4.107910	4.014280	1	5.958160	6.033810	-1.133370
7	1.174600	-5.053130	4.660830	7	8.056820	4.723390	-0.863150
6	2.501600	-5.275560	4.913010	6	9.009090	3.742940	-0.716740
Table 10: Coordinates (Angstrom) of Gquadruplex 143D. Third layer.

Atomic num.	X	Y	Z	Atomic num.	X	Y	Z
6	11.967630	3.831900	-4.250140	6	-0.391950	6.167290	-0.418760
1	12.424150	3.196200	-5.024020	1	-0.762450	6.005690	0.604980
1	12.378670	3.547780	-3.269450	1	-1.157520	5.824770	-1.131510
1	12.202270	4.886220	-4.453520	1	-0.197980	7.238200	-0.574470
7	10.524230	3.669610	-4.255040	7	0.847110	5.437840	-0.624670
6	9.557110	4.631330	-4.472820	6	2.089060	5.940820	-0.959630
1	9.831060	5.668340	-4.673520	1	2.240940	7.011470	-1.105740
1	8.312970	4.162580	-4.411140	7	3.030580	5.007380	-1.076590
6	8.490410	2.820970	-4.137710	6	2.354540	3.856360	-0.800700
6	7.509910	1.770910	-3.952710	6	2.834720	2.469410	-0.767600
8	6.288820	1.786990	-3.987590	8	3.941950	1.994400	-0.970020
7	8.197730	0.536760	-3.687580	7	1.739820	1.601970	-0.428120
1	7.564380	-0.248710	-3.546610	1	2.008760	0.620160	-0.387010
6	9.557670	0.337010	-3.612300	6	0.436750	1.962520	-0.169220
7	9.978850	-0.936270	-3.346240	7	-0.432790	0.951860	0.133920
1	9.338700	-1.703400	-3.209120	1	-1.506500	-0.015670	0.170530
1	10.975200	-1.094400	-3.288730	1	-1.392000	1.205100	0.325770
7	10.453890	1.289200	-3.779870	7	-0.005090	3.204260	-0.198060
6	9.851540	2.491440	-4.036390	6	1.000480	4.076420	-0.517720
6	0.642570	7.050140	-4.597350	6	-3.802880	1.798490	3.877630
1	1.011050	7.309980	-5.601400	1	-3.999530	2.359630	2.951420
1	1.165650	7.672330	-3.855260	1	-3.671620	2.513030	4.704460
1	-0.438440	7.242580	-4.541570	1	-4.654430	1.137850	4.094730
7	0.876640	5.642540	-4.325970	7	-2.610910	0.982400	3.726090
6	-0.052640	4.661520	-4.040120	6	-2.497260	-0.390530	3.824960
1	-1.117980	4.893070	-3.993850	1	-3.367370	-1.012200	4.041220
7	0.482790	3.459880	-3.838170	7	-1.259390	-0.840160	3.632760
6	1.835480	3.681100	-4.003840	6	-0.534640	0.310950	3.396470
6	2.948050	2.758180	-3.910830	6	0.876470	0.481890	3.117560
8	2.990450	1.561980	-3.663550	8	1.786710	-0.326880	3.018070
7	4.167170	3.475350	-4.167590	7	1.147710	1.882930	2.944230
1	4.994590	2.882990	-4.117920	1	2.127790	2.076070	2.744000
6	4.304450	4.814040	-4.457540	6	0.250320	2.924000	3.020990
7	5.576100	5.271510	-4.665060	7	0.747600	4.181340	2.817950
1	6.385220	4.671840	-4.612260	1	1.721080	4.355890	2.620580
1	5.688630	6.252700	-4.878640	1	0.097690	4.953170	2.871980
7	3.295240	5.657900	-4.543300	7	-1.034620	2.773620	3.274500
6	2.104380	5.025550	-4.306640	6	-1.349860	1.452950	3.449030
Optimized Guanine

The geometrical structure have been optimized using the B3LYP exchange-correlation (xc) functional and the cc-pVTZ basis set. TD-DFT simulations have been done using the CAM-B3LYP xc-functional and the aug-cc-pVTZ basis set. The cubic grid, centered on the molecular structure, have a spacing of 0.1 a.u., a side of 40 a.u., and 68921 grid points. The annular shaped electron beam have the following dimensions: 7 a.u. of radius and 3 a.u. thick.

Table 11: Excitation energy (eV), oscillator strength and OAM resolved transition rates of the optimized guanine structure.

Transition	Guanine energy	Osc. Str.	Orbital angular momentum						
$S_1 \rightarrow S_0$	5.056	0.133	0.0	0.7	16.0	0.0	16.0	0.7	0.0
$S_2 \rightarrow S_0$	5.167	0.023	0.0	0.2	2.5	0.0	2.5	0.2	0.0
$S_3 \rightarrow S_0$	5.514	0.079	0.1	0.5	8.4	0.0	8.4	0.5	0.1
$S_4 \rightarrow S_0$	5.553	0.000	0.0	0.0	0.0	0.0	0.0	0.0	0.0
$S_5 \rightarrow S_0$	5.557	0.244	0.2	1.2	26.7	0.0	26.7	1.2	0.2

Guanine tetramer

The geometry of the flat guanine tetramer has been obtained optimizing a monolayer of guanine on top of a gold slab with four layers of Au(111), as detailed in ref. 3. TD-DFT simulations have been done using the CAM-B3LYP xc-functional and the 6-311G(d) basis set. The cubic grid, centered on the molecular structure, have a spacing of 0.1 a.u., a side of 50 a.u. and 132651 grid points. The annular shaped electron beam have the following dimensions: 20 a.u. of radius and 3 a.u. thick. In the case of the monomer extracted from the structure of the tetramer, we used the same computational protocol of the total system including the grid cube: therefore this last was centered on the total structure.
Table 12: Excitation energy (eV), oscillator strength and OAM resolved transition rates of the guanine monomer extracted from the tetramer.

Guanine Monomer	Orbital angular momentum								
Transition	energy	Osc. Str.	-3	-2	-1	0	1	2	3
S₁ ← S₀	5.057	0.163	0.0	0.6	19.9	0.0	19.9	0.6	0.0
S₂ ← S₀	5.358	0.001	0.0	0.0	0.1	0.0	0.1	0.0	0.0
S₃ ← S₀	5.507	0.290	0.2	1.5	32.5	0.0	32.5	1.5	0.2
S₄ ← S₀	5.710	0.008	0.1	0.8	0.0	0.0	0.8	0.0	0.0
S₅ ← S₀	6.233	0.002	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Table 13: Excitation energy (eV), oscillator strength and OAM resolved transition rates of the guanine tetramer structure.

Guanine tetramer	Orbital angular momentum										
Transition	energy	Osc. Str.	-4	-3	-2	-1	0	1	2	3	4
S₁ ← S₀	5.061	0.002	0.0	0.0	4.7	0.1	0.1	4.7	0.0	0.0	
S₂ ← S₀	5.074	0.271	0.0	0.2	0.0	12.1	0.0	12.1	0.0	0.2	0.0
S₃ ← S₀	5.086	0.306	0.0	0.2	0.0	13.6	0.0	13.6	0.0	0.2	0.0
S₄ ← S₀	5.097	0.002	0.0	0.0	0.1	0.1	0.1	0.1	0.0	0.0	
S₅ ← S₀	5.357	0.000	1.5	0.0	0.3	0.0	0.4	0.0	0.3	0.0	1.5
S₆ ← S₀	5.378	0.721	0.0	2.8	0.0	30.3	0.0	30.3	0.0	2.8	0.0
S₇ ← S₀	5.394	0.721	0.0	3.6	0.0	30.2	0.0	30.2	0.0	3.6	0.0
S₈ ← S₀	5.417	0.000	0.1	0.0	22.3	0.0	0.0	0.0	22.3	0.0	0.1

Alanine enantiomers

The geometrical structure have been optimized using the B3LYP exchange-correlation (xc) functional and the cc-pVTZ basis set. TD-DFT simulations have been done using the CAM-B3LYP xc-functional and the cc-pVTZ basis set. The cubic grid, centered on the molecular structure, have a spacing of 0.1 a.u., a side of 80 a.u. and 531441 grid points. The annular shaped electron beam have the following dimensions: 7 a.u. of radius and 3 a.u. thick.

G-quadruplex structures

The geometries of the guanine core of parallel and anti-parallel G-quadruplexes have been extracted from the NMR structures of PDB files: PDB ID 2MB2 and 143D, respectively. Therefore, they have been refined by projecting the MP2/cc-pVDZ optimized geometry of
Table 14: Excitation energy (eV), oscillator strength and OAM resolved transition rates of the L-alanine.

L-alanine	Orbital angular momentum								
Transition energy	Osc. Str.	-3	-2	-1	0	1	2	3	
\(S_1 \leftarrow S_0 \)	5.7623	0.0013	0.02	0.31	1.71	0.96	1.70	0.31	0.02
\(S_2 \leftarrow S_0 \)	7.0424	0.0154	0.89	3.23	30.59	3.55	29.89	3.18	0.88
\(S_3 \leftarrow S_0 \)	7.9932	0.0227	1.54	1.26	33.99	9.68	33.79	1.28	1.53
\(S_4 \leftarrow S_0 \)	8.0665	0.0032	0.15	0.73	4.33	0.39	4.14	0.74	0.15
\(S_5 \leftarrow S_0 \)	8.4068	0.0087	0.68	2.05	10.09	0.6	10.4	2.08	0.69

Table 15: Excitation energy (eV), oscillator strength and OAM resolved transition rates of the D-alanine.

D-alanine	Orbital angular momentum								
Transition energy	Osc. Str.	-3	-2	-1	0	1	2	3	
\(S_1 \leftarrow S_0 \)	5.7623	0.0013	0.02	0.33	1.64	1.08	1.65	0.33	0.02
\(S_2 \leftarrow S_0 \)	7.0424	0.0154	0.76	3.25	30.01	3.33	30.7	3.3	0.77
\(S_3 \leftarrow S_0 \)	7.9932	0.0227	1.61	1.57	34.2	8.5	34.37	1.55	1.61
\(S_4 \leftarrow S_0 \)	8.0665	0.032	0.17	0.7	4.15	0.35	4.34	0.69	0.17
\(S_5 \leftarrow S_0 \)	8.4068	0.0087	0.64	2.08	10.58	0.64	10.25	2.04	0.64

the guanine base to the NMR structure, as detailed in ref. 6.

All the TD-DFT calculations have been done employing the CAM-B3LYP xc-functional and the 6-31G(d) basis set. The cubic grid, centered on each supramolecular structure, have a spacing of 0.1 a.u., a side of 85 a.u. and 753571 grid points for both the structures. The annular shaped electron beam have the following dimensions: 24 a.u. of radius and 3 a.u. thick.
Table 16: Excitation energy (eV), oscillator strength and dichroic figure of merit (eq. (13) of main text) of the 2MB2 G-quadruplex.

| Transition | Energy | Osc. Str. | $|l| = 1$ | $|l| = 2$ | $|l| = 3$ |
|------------|--------|-----------|---------|---------|---------|
| $S_1 \leftarrow S_0$ | 4.938 | 0.004 | 5.9 | 0.7 | 2.2 |
| $S_2 \leftarrow S_0$ | 5.064 | 0.0208 | 0.8 | 1.3 | 2.8 |
| $S_3 \leftarrow S_0$ | 5.065 | 0.0001 | -0.9 | -0.3 | -2.3 |
| $S_4 \leftarrow S_0$ | 5.090 | 0.0007 | 2.2 | -0.4 | 2.2 |
| $S_5 \leftarrow S_0$ | 5.107 | 0.618 | 1.8 | 4.9 | 1.5 |
| $S_6 \leftarrow S_0$ | 5.137 | 0.0305 | 2.0 | -0.7 | 5.2 |
| $S_7 \leftarrow S_0$ | 5.143 | 0.0152 | 0.1 | 2.8 | 1.7 |
| $S_8 \leftarrow S_0$ | 5.151 | 0.0356 | 3.1 | 2.4 | 2.8 |
| $S_9 \leftarrow S_0$ | 5.153 | 0.0187 | 1.7 | -2.1 | 3.7 |
| $S_{10} \leftarrow S_0$ | 5.166 | 0.0338 | 2.6 | 4.2 | -7.2 |
| $S_{11} \leftarrow S_0$ | 5.174 | 0.0946 | 0.5 | -3.9 | -0.8 |
| $S_{12} \leftarrow S_0$ | 5.175 | 0.0241 | 1.8 | -0.2 | 0.7 |
| $S_{13} \leftarrow S_0$ | 5.181 | 0.0328 | -0.1 | -0.4 | -0.2 |
| $S_{14} \leftarrow S_0$ | 5.195 | 0.0909 | 0.8 | -2.6 | -0.6 |
| $S_{15} \leftarrow S_0$ | 5.207 | 0.0162 | -1.2 | 9.1 | -0.7 |

Table 17: Excitation energy (eV), oscillator strength and dichroic figure of merit (eq. (13) of main text) of the 143D G-quadruplex.

| Transition | Energy | Osc. Str. | $|l| = 1$ | $|l| = 2$ | $|l| = 3$ |
|------------|--------|-----------|---------|---------|---------|
| $S_1 \leftarrow S_0$ | 4.9987 | 0.1197 | 1.5 | 1.3 | 2.1 |
| $S_2 \leftarrow S_0$ | 5.0264 | 0.0315 | 3.0 | 7.9 | -2.9 |
| $S_3 \leftarrow S_0$ | 5.0938 | 0.0386 | 0.8 | 0.9 | 3.4 |
| $S_4 \leftarrow S_0$ | 5.1059 | 0.0386 | -1.1 | 1.0 | -1.0 |
| $S_5 \leftarrow S_0$ | 5.1232 | 0.0438 | 0.4 | -1.8 | -2.8 |
| $S_6 \leftarrow S_0$ | 5.1259 | 0.0390 | 0.7 | -0.2 | 0.5 |
| $S_7 \leftarrow S_0$ | 5.143 | 0.0400 | -0.8 | -0.6 | -2.3 |
| $S_8 \leftarrow S_0$ | 5.1715 | 0.0182 | 7.7 | -2.4 | 1.4 |
| $S_9 \leftarrow S_0$ | 5.1839 | 0.0444 | -0.7 | -4.1 | 2.5 |
| $S_{10} \leftarrow S_0$ | 5.1922 | 0.0155 | 7.4 | 2.9 | -1.8 |
| $S_{11} \leftarrow S_0$ | 5.1988 | 0.0118 | -4.4 | -4.6 | -1.2 |
| $S_{12} \leftarrow S_0$ | 5.2147 | 0.0544 | 0.4 | 0.0 | -1.2 |
| $S_{13} \leftarrow S_0$ | 5.2287 | 0.0308 | -1.1 | 0.5 | -1.9 |
| $S_{14} \leftarrow S_0$ | 5.2333 | 0.2754 | -1.0 | 0.1 | -2.0 |
| $S_{15} \leftarrow S_0$ | 5.2459 | 0.1652 | 0.2 | -2.7 | -2.1 |
References

(1) Casida, M. E. In *Time-Dependent Density-Functional Response Theory for Molecules*; Chong, D. P., Ed.; Recent Advances in Density Functional Methods; World Scientific: Singapore, 1995; Vol. 1; pp 155–192.

(2) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H. et al. Gaussian®16 Revision A.03. 2016; Gaussian Inc. Wallingford CT.

(3) Rosa, M.; Corni, S.; Di Felice, R. Enthalpy–Entropy Tuning in the Adsorption of Nucleobases at the Au(111) Surface. *J. Chem. Theory Comput.* **2014**, *10*, 1707–1716.

(4) Sengar, A.; Heddi, B.; Phan, A. T. Formation of G-Quadruplexes in Poly-G Sequences: Structure of a Propeller-Type Parallel-Stranded G-Quadruplex Formed by a G15 Stretch. *Biochemistry* **2014**, *53*, 7718–7723.

(5) Wang, Y.; Patel, D. J. *Structure* **1993**, *1*, 263–282.

(6) Jurinovich, S.; Cupellini, L.; Guido, C. A.; Mennucci, B. EXAT: EXcitonic analysis tool. *J. Comp. Chem.* **2018**, *39*, 279–286.