The Apoptotic Effect of the Hexane Extract of *Rheum undulatum* L. in Oral Cancer Cells through the Down-regulation of Specificity Protein 1 and Survivin

Eun-Sun Choi¹, Sung-Dae Cho¹, Jae-Gyu Jeon² and Nam-Pyo Cho¹*

¹Department of Oral Pathology, School of Dentistry and Institute of Oral Bioscience, Brain Korea 21 Chonbuk National University, Jeonju, Republic of Korea
²Department of Preventive Dentistry, School of Dentistry and Institute of Oral Bioscience, Brain Korea 21, Chonbuk National University, Jeonju, Republic of Korea

The hexane extract of *Rheum undulatum* L. (HERL) has been shown to have anti-cancer activity in several cancers in vivo and in vitro. However, the anti-cancer activity of HERL and its molecular mechanism in human oral cancer cells has not been explored. Thus, the aim of this study was to elucidate the growth-inhibitory and apoptosis-inducing effects of HERL in HN22 and SCC15 oral cancer cell lines. This study shows that HERL inhibits oral cancer growth, decreases cell viability, and causes apoptotic cell death in HN22 and SCC15 cells, as characterized by morphological changes, nuclear condensation and fragmentation, the cleavage of PARP and the accumulation of cells in the sub-G₁ phase. The treatment of oral cancer cells with HERL also resulted in decreased expression of specificity protein (Sp1) and its downstream protein, survivin. Therefore, our results suggest that the regulation of Sp1 and survivin plays a critical role in HERL-induced apoptosis in human oral cancer cells.

Keywords: Hexane extract of *Rheum undulatum* L. (HERL), apoptosis, specificity protein 1, survivin, oral cancer

Received 9 January 2011; Revised version received 7 February 2011; Accepted 16 February 2011
Materials and Methods

Reagents
The antibodies for poly(ADP-ribose) polymerase (PARP) and survivin were obtained from BD Biosciences (San Jose, CA, USA) and Cell Signaling Technology (Danvers, MA, USA), respectively. Antibodies for Sp1 and actin were purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA). 4’-6-Diamidino-2-phenylindole (DAPI) and propidium iodide (PI) were acquired from Sigma-Aldrich (St. Louis, MO, USA). HERL was kindly supplied by professor Jeon JG (Jeonbuk National University, Jeonju, Korea).

Cell culture and chemical treatment
The HN22 and SCC15 human oral cancer cell lines were obtained from the School of Dentistry, Dankook University (Cheonan, Korea). The cells were cultured in Dulbecco’s modified essential medium (DMEM) containing 10% fetal bovine serum (FBS) and 100 units/mL penicillin and 100 µg/mL streptomycin (WelGENE, Daegu, Korea) in a humid atmosphere of 5% CO₂. Equal numbers of cells were seeded and allowed to attach overnight. The cells were treated with 0.1% NaCl or HERL (20, 40 or 60 µg/mL) diluted in DMEM with 5% FBS for 48 h.

MTS assay
The effects of HERL on cell viability were estimated using the CellTiter 96 Aqueous One Solution Cell Proliferation Assay Kit (Promega, Madison, WI, USA) according to the manufacturer’s instructions. The cells were seeded in 96-well plates and incubated with various concentrations of HERL. After the treatment with HERL for 48 h, 30 µL of 3-(4,5-dimethylthiazol-2-yi)-(3-carboxymethoxyphenyl)-2-(4-sulphophenyl)-2H-tetrazolium (MTS) solution was added to each well and the cells were incubated for 2 h at 37°C. MTS solution was analyzed using a microplate reader (BioTeck Instruments, Winooski, VT, USA) at 490 and 690 nm (background).

FACS analysis for sub-G₁ DNA measurement
After treatment with HERL for 48 h, the detached HN22 and SCC15 cells were collected and combined with the adherent cells that had been released by trypsination. The cells were fixed in 70% ethanol overnight at −20°C. The cells were subsequently stained with 0.02 mg/mL PI. The data were acquired using a FACSscan flow cytometer.

DAPI staining
The number of cells with nuclear condensation and fragmentation was measured using DAPI staining. After treatment with HERL or 0.1% NaCl (control), the HN22 and SCC15 cells were harvested by trypsination. The cells were resuspended in PBS, deposited on poly-L-lysin-coated slides, stained with DAPI solution (2 µg/mL) and observed under a fluorescence microscope.

Western blot analysis
After treatment with HERL, HN22 and SCC15 cells were harvested. The protein supernatant fractions were subjected to SDS-PAGE and then transferred to polyvinylidene difluoride (PVDF) membranes and blocked with 5% skim milk followed by hybridization with the indicated antibodies. After incubation with the horseradish peroxidase (HRP)-conjugated secondary antibody, the immunoreactive protein bands were observed using a chemiluminescence detection kit.

Statistical analysis
Data were assessed for statistical significance using a Student’s t-test. A value of P<0.05 compared to the vehicle control was considered statistically significant.

Results
HERL decreases the cell viability in oral cancer cell lines
We first investigated the effect of HERL on the growth of HN22 and SCC15 cells. HERL-treated cells were detached from the dishes compared to 0.1% NaCl-treated cells and these morphological changes occurred in a dose-dependent manner (Figure 1A). We also measured the effect of HERL on cell viability in the MTS assay. The results showed dose-dependent decreases of cell viability in HN22 and SCC15 cells (Figure 1B). These results suggest that HERL has a growth-inhibitory effect on HN22 and SCC15 cells.

HERL induces apoptosis in oral cancer cell lines
To examine whether HERL induced apoptosis, the number of cells accumulated in the sub-G₁ phase of the cell cycle was counted by flow cytometric analysis. As shown in Figure 2, the sub-G₁ population of HERL-treated cells accumulated in a dose-dependent manner compared to the vehicle control. To confirm the induction of apoptosis by HERL in HN22 and SCC15 cells, DAPI staining was performed and showed the fragmentation and condensation of nucleus in the cells treated with HERL (20, 40 and 60 µg/mL) for 48 h compared to the controls.
Rheum undulatum L. induces apoptosis of oral cancer cells

HERL inhibited anti-apoptotic protein Sp1 and survivin in oral cancer cell lines

In previous studies, it was reported that targeting of Sp1 protein is a good treatment strategy for various cancer cells (Lou et al., 2005; Safe and Abdelfrahim, 2005; Abdelfrahim...
Sp1 protein regulates survivin protein as the downstream protein to induce apoptosis in cancer cells (Shin et al., 2010). Therefore, we assessed whether HERL affects Sp1 and survivin protein to induce apoptotic cell death in HN22 and SCC15 cells. As shown in Figure 5, HERL-treated HN22 and SCC15 cells exhibited decreased Sp1 and survivin expression in a dose-dependent manner. These results suggest that HERL might inhibit Sp1 and survivin protein to exert its apoptotic activity in HN22 and SCC15 cells.

Discussion

Natural extracts from edible plants have been identified as excellent candidates for cancer therapeutics based on safety and efficacy (Stewart et al., 2003). Recently, *Rheum undulatum* L. was screened for anti-cancer activity in vitro using human breast, ovary, cervix and lung cancer cell lines (Kang et al., 2008). In that study, emodin showed strong cytotoxicity in both estrogen receptor (ER)-positive and -negative breast cancer cell lines (Kang et al., 2008). In addition, HERL was shown to inhibit angiogenic activity in a zebrafish model (He et al., 2009). These studies suggest that HERL has potential benefits for the treatment of various cancers. However, the anticancer activity of HERL against oral cancer cells has not been well established. Therefore, we focused on the anticancer activity of HERL in human oral cancer cells. Our first purpose was to examine the anti-proliferative and pro-apoptotic effects...
of HERL on oral cancer cell lines and the other was to determine its molecular mechanism in HERL-induced apoptosis. First, we found that HERL decreased the number of viable cells in a dose-dependent manner, showing that HERL has an inhibitory effect on cell growth in HN22 and SCC15 cells. We found that HERL induced the apoptosis of HN22 and SCC15 cells as evidenced by the accumulation of sub-G1 phase cells, distinct chromatin condensation and nuclear fragmentation of the nucleus and the cleavage of PARP protein, a typical apoptotic marker.

Sp1 is a member of the mammalian transcription factor family that binds to GC-rich sites containing GC-boxes. Recently, it was reported that Sp1 protein is over-expressed in many human tumors and cancer cell lines (Zannetti et al., 2000; Chieffari et al., 2002; Wang et al., 2003; Hosoi et al., 2004; Yao et al., 2004). Sp1 has also been implicated in multiple cell processes, including apoptosis, through activation of the FAS-ligand (Kavurma et al., 2001; Sun et al., 2001). In addition, survivin, an inhibitor of apoptosis and a key regulator of mitosis, is up-regulated in a variety of cancer cells and is often associated with a worse prognosis (Sun et al., 2001). Interestingly, several studies have shown that survivin expression can be regulated by Sp1 protein because it contains highly GC-rich sequences within its promoters (Li et al., 2000; Chiefari et al., 2003; Wang et al., 2004). Sp1 has also been implicated in signaling roles in HERL-induced apoptosis. Therefore, we examined the effects of HERL on the expression of Sp1 and its downstream target, survivin, as the key molecular factors in human oral cancer cells. Our results show that HERL decreases the expression levels of Sp1 and survivin proteins, suggesting that HERL inhibits the growth and induces apoptosis in HN22 and SCC15 cells through the regulation of Sp1 and survivin.

In summary, our data showed HERL exerts pro-apoptotic and anti-proliferative effects in HN22 and SCC15 human oral cancer cells and that Sp1 and survivin play important signaling roles in HERL-induced apoptosis. Therefore, we suggest that HERL is a promising anti-cancer drug candidate for the effective treatment of oral cancer.

References

Abdelrahim M, Baker CM, Abbruzzese JL, Safe S. Tolfenamic acid and pericanine cancer growth, angiogenesis, and Sp protein degradation. J Natl Cancer Inst 2006; 98: 855-868.

Cha TL, Qiu L, Chen CT, Wen Y, Hung MC. Emodin down-regulates androgen receptor and inhibits prostate cancer cell growth. Cancer Res 2005; 65: 2287-2293.

Chang CH, Lin CC, Yang JJ, Namta T, Hattori M. Anti-inflammatory effects of emodin from ventilago leiocarpa. Am J Chin Med 1996; 24: 139-142.

Chieffari E, Brunetti A, Arturi F, Bidart JM, Russo D, Schlumberger M, and Filetti S. Increased expression of AP2 and Sp1 transcription factors in human thyroid tumors: a role in NIS expression regulation? BMC Cancer 2007; 6: 89-90.

Hamakawa H, Nakashiro K, Sumida T, Shintani S, Myers JN, Takes RP, Rinaldo A, Ferlito A. Basic evidence of molecular targeted therapy for oral cancer and salivary gland cancer. Head Neck 2008; 30: 800-809.

He ZH, He MF, Ma SC, But PP. Anti-angiogenic effects of rhubarb and its anthraquinone derivatives. J Ethnopharmacol 2009; 121: 313-317.

Hosoi Y, Watanabe T, Nakagawa K, Matsumoto Y, Enomoto A, Morita A, Nagawa H, Suzuki N. Up-regulation of DNA-dependent protein kinase activity and Sp1 in colorectal cancer. Int J Oncol 2004; 25: 461-468.

Huang Q, Shen HM, Shui G, Wenk MR, Ong CN. Emodin inhibits tumor cell adhesion through disruption of the membrane lipid Raft-associated integrin signaling pathway. Cancer Res 2006; 66: 5807-5815.

Huang Q, Lu G, Shen HM, Chung MC, Ong CN. Anti-cancer properties of anthraquinones from rhubarb. Med Res Rev 2007; 27: 609-630.

Kang SC, Lee CM, Chung ES, Bae JP, Bae JI, Yoo HS, Kwak JH, Zee OP. Anti-proliferative effects of estrogen receptor-modulating compounds isolated from Rheum palmatum. Arch Pharm Res 2008; 31: 722-726.

Kavurma MM, Santiago FS, Bonifoco E, Khachigian LM. Sp1 phosphorylation regulates apoptosis via extracellular Fasl-Fas engagement. J Biol Chem 2001; 276(2): 1964-1971.

Kim JE, Kim HJ, Pandit S, Chang KW, Jeon JC. Inhibitory effect of a bioactivity-guided fraction from Rheum undulatum on the acid production of Streptococcus mutans biofilms at sub-MIC levels. Fitterapia, 2010; in press.

Kuo YC, Meng HC, Tsai WJ. Regulation of cell proliferation, inflammatory cytokine production and calcium mobilization in primary human T lymphocytes by emodin from Polygonum hypoleucum Ohwi. Inflamm Res 2001; 50: 73-82.

Li F, Altieri DC. Transcriptional analysis of human survivin gene expression. Biochem J 1999; 344 Pt 2: 305-311.

Li Y, Xie M, Yang J, Yang D, Deng R, Wan Y, Yan B. The expression of antiapoptotic protein survivin is transcriptionally upregulated by DECI primarily through multiple sp1 binding sites in the proximal promoter. Oncogene 2006; 25: 2396-2406.

Lou Z, O'Reilly S, Liang H, Maher VM, Sleight SD, McCormick JJ. Down-regulation of overexpressed sp1 protein in human fibrosarcoma cell lines inhibits tumor formation. Cancer Res 2005; 65(3): 1007-1017.

Lu S, Archer MC. Sp1 coordinately regulates de novo lipogenesis and proliferation in cancer cells. Int J Cancer 2010; 126(2): 416-425.

Papineni S, Chintharlapalli S, Abdelrahim M, Lee SO, Burghart R, Sabatayeh A, Baker C, Herrera L, Safe S. Tolfenamic acid inhibits esophageal cancer through repression of specificity proteins and c-Met. Carcinogenesis 2009; 30(7): 1193-1201.

Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin 2005; 55: 74-108.

Safe S, Abdelrahim M. Sp transcription factor family and its role in cancer. J Cancer Prev 2010; in press.

Shin JA, Shim JH, Jeon JG, Choi KH, Choi ES, Cho NP, Cho SD. Inhibitory effect on cell growth in HN22 and SCC15 cells as evidenced by the accumulation of sub-G1 phase cells, distinct chromatin condensation and nuclear fragmentation of the nucleus and the cleavage of PARP protein, a typical apoptotic marker. Sp1 is a member of the mammalian transcription factor family that binds to GC-rich sites containing GC-boxes. Recently, it was reported that Sp1 protein is over-expressed in many human tumors and cancer cell lines (Zannetti et al., 2000; Chieffari et al., 2002; Wang et al., 2003; Hosoi et al., 2004; Yao et al., 2004). Sp1 has also been implicated in multiple cell processes, including apoptosis, through activation of the FAS-ligand (Kavurma et al., 2001; Sun et al., 2001). In addition, survivin, an inhibitor of apoptosis and a key regulator of mitosis, is up-regulated in a variety of cancer cells and is often associated with a worse prognosis (Sun et al., 2001). Interestingly, several studies have shown that survivin expression can be regulated by Sp1 protein because it contains highly GC-rich sequences within its promoters (Li et al., 2000; Chiefari et al., 2003; Wang et al., 2004).
Apoptotic effect of Polygonum Cuspidatum in oral cancer cells through the regulation of specificity protein 1. Oral Dis 2010; in press.

Stewart JR, Arti MC, O'Brien CA. Resveratrol: a candidate nutritional substance for prostate cancer prevention. J Nutr 2003; 133(7): 2440S-2443S.

Sun Y, Giacalone NJ, Lu B. Terameprocol (Tetra-O-Methyl Nordihydroguaiaretic Acid), an Inhibitor of Sp1-Mediated Survivin Transcription, Induces Radiosensitization in Non-small Cell Lung Carcinoma. J Thorac Oncol 2011; 6(1): 8-14.

Wang L, Wei D, Huang S, Peng Z, Le X, Wu TT, Yao J, Ajani J, Xie K. Transcription factor Sp1 expression is a significant predictor of survival in human gastric cancer. Clin Cancer Res 2003; 9(17): 6371-6380.

Wu J, Ling X, Pan D, Apontes P, Song L, Liang P, Altieri DC, Beerman T, Li F. Molecular mechanism of inhibition of survivin transcription by the GC-rich sequence-selective DNA binding antitumor agent, hedamycin: evidence of survivin down-regulation associated with drug sensitivity. J Biol Chem 2005; 280: 9745-9751.

Yao JC, Wang L, Wei D, Gong W, Hassan M, Wu TT, Mansfield P, Ajani J, Xie K. Association between expression of transcription factor Sp1 and increased vascular endothelial growth factor expression, advanced stage, and poor survival in patients with resected gastric cancer. Clin Cancer Res 2004; 10: 4109-4117.

Yu HM, Liu YF, Cheng YF, Hu LK, Hou M. Effects of rhubarb extract on radiation induced lung toxicity via decreasing transforming growth factor-beta-1 and interleukin-6 in lung cancer patients treated with radiotherapy. Lung Cancer 2008; 59: 219-226.

Zannetti A, Del Vecchio S, Carriero MV, Fonti R, Franco P, Botti G, D'Alotto G, Stoppelli MR, Salvatore M. Coordinate up-regulation of Sp1 DNA-binding activity and urokinase receptor expression in breast carcinoma. Cancer Res 2000; 60: 1546-1551.