Learning From the Exceptions: HIV Remission in Post-treatment Controllers

Behzad Etemad, Elmira Esmaeilzadeh and Jonathan Z. Li*

Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, United States

Among the top priorities of the HIV field is the search for therapeutic interventions that can lead to sustained antiretroviral therapy (ART)-free HIV remission. Although the majority of HIV-infected persons will experience rapid viral rebound after ART interruption, there are rare individuals, termed post-treatment controllers (PTCs), who demonstrate sustained virologic suppression for months or years after treatment cessation. These individuals are considered an ideal example of durable HIV control, with direct implications for HIV cure research. However, understanding of the mechanisms behind the capacity of PTCs to control HIV remains incomplete. This is in part due to the scarcity of PTCs identified through any one research center or clinical trial, and in part because of the limited scope of studies that have been performed in these remarkable individuals. In this review, we summarize the results of both clinical and basic research studies of PTCs to date, explore key differences between PTCs and HIV spontaneous controllers, examine potential mechanisms of post-treatment control, and discuss unanswered questions and future research directions in this field.

Keywords: HIV, post-treatment controllers, remission, treatment interruption, elite controllers

INTRODUCTION

Within each medical field, there exist individuals who exhibit extreme responses to medical treatment. As an example, individuals who have an unexpectedly dramatic response to cancer therapy are termed “exceptional responders.” These exceptional responders represent an area of intense research interest within the oncology field (1) and have already made important contributions to the understanding of both basic tumor biology and drug development (2). In this review, we focus on a group of exceptional responders within the HIV field, specifically individuals who were treated with antiretroviral therapy (ART) and can subsequently maintain HIV remission even when the ART is discontinued.

HIV infection is characterized by sustained viral replication and progressive decline in CD4 cell counts (3). ART is effective in suppressing viral replication and decreasing HIV-associated morbidity and mortality, but it cannot completely eradicate all HIV-infected cells. Consequently, HIV viral load rebounds rapidly after treatment interruption in most HIV patients (4, 5). However, there are rare individuals, termed post-treatment controllers (PTCs), who are able to suppress the virus for a prolonged period of time after treatment interruption (Figure 1). These individuals are considered an ideal example of durable HIV control and have the potential to provide substantial insight into the “natural” mechanisms of functional cure and sustained HIV remission (7).
Interest in ways to induce post-treatment control were initially kindled by a report of an individual who was able to control HIV without ART after undergoing several sequential treatment interruptions (8) and in an in-depth report of 14 early-treated PTCs reported in the VISCONTI study (7). There have been a number of subsequent studies of PTCs with a wide range of reported frequency amongst those who discontinue ART (6, 7, 9–19). This variation in reported frequency of PTCs may be attributed to different baseline characteristics of the populations in which these studies were done, as well as the heterogeneous definitions applied for defining this rare group of HIV patients (18). In this review, we will summarize the most recent findings on the clinical and immunological characteristics of PTCs, differentiate them from HIV spontaneous controllers (SCs), and discuss the role of PTCs in the search for strategies toward HIV remission and cure.

POST-TREATMENT CONTROLLER DEFINITIONS

Since the initial description of the post-treatment controller phenotype, a number of observational studies and interventional clinical trials have been performed to investigate the characteristics of this rare group of patients and to determine the mediators of post-treatment control. However, the heterogeneities in study designs have made it challenging to compare studies and to gain a clear grasp of the PTC population. For example, the definition of post-treatment control has differed dramatically between studies. Some studies have considered virologic rebound to be a plasma viral load above 50 HIV-1 RNA copies/ml after treatment interruption, while others have used a threshold of 400 HIV-1 RNA copies/ml or 1,000 HIV-1 RNA copies/ml for this purpose (Table 1, Supplementary Table S1). The duration of viral control after treatment interruption has also differed dramatically between studies and ranged from a median of 6 month to more than 2 years (7, 9–32). Furthermore, the loss of viral control was also defined differently between previous studies. Some considered 2 consecutive viral loads above 50 HIV-1 RNA copies/ml to indicate the loss of post-treatment control (8–10), while others considered 1–4 consecutive viral loads higher than 400 HIV-1 RNA copies/ml as the definition for viral rebound post-treatment interruption (7, 12, 16–18). Of note, the largest PTC study to date has been the Control of HIV after Antiretroviral Medication Pause (CHAMP) study, which identified 67 PTCs through the pooled analysis of 14 clinical studies from the AIDS Clinical Trials Group (ACTG) and other North American cohorts (6, 14, 20–32). In this study, the PTCs were defined as individuals who maintained viral loads ≤400 copies/mL at two-thirds or more of time points for ≥24 weeks post treatment interruption (6).

DEMOGRAPHIC CHARACTERISTICS OF PTCs

The median age of PTCs in these studies ranged from 27 to 46 years old. The majority of PTCs identified were male, likely reflecting the sex distribution of the clinical trial participants (6, 7, 9, 11, 12, 15–18). Intriguingly, there have been reports that female gender may be associated with a higher chance of post-treatment HIV control (10) and spontaneous control (33, 34), highlighting the need for studies focusing on female participants of treatment interruption trials. In addition, the majority of PTCs have been reported by studies from North America and Europe (6, 7, 9–12, 15–18) and little is known about PTCs from outside of those regions. In an analysis of SPARTAC trial participants who initiated ART during early HIV infection, individuals with delayed viral rebound could be
Post-treatment controller (PTC) frequency after treatment interruption reported from previously published studies.

References	Cohort	Timing of ART	PTC, Total, N	PTC Frequency (%)	VF threshold copies/ml	PTC duration
Hocqueloux et al. (9)	ANRS	Early	5	15.6	>50	75 months (median)
Goujard et al. (10)	ANRS PRIMO	Early	14	8.5	>50	4.5 years (median)
Lodé et al. (11)	CASCADE	Early	11	5.5	>50	24 months
Saez-Cirion et al. (7)	VISCONTI	Early	14	15.3	>400	89 months (median)
Stohr et al. (12)	SPARTAC	Early	4	2.4	>400	164–202 weeks
Van Gullck et al. (15)	Secondary Controllers	Chronic	4	>1,000		At least 6 months
Assoumou et al. (18)	ANRS SALTO	Chronic	7	4.2	>400	12 months (7 patients)
Calin et al. (17)	ULTRASTOP	Early Chronic	1	10	>400	56 weeks
Perkins et al. (18)	NHS	Chronic	4	4.2	>400	267–1,068 days
Fidler et al. (19)	CASCADE	Early	22	2.8	>50	24 months
Namazi et al. (6)*	CHAMP	Early & Chronic	67	13 (Early)	>400	24–804 weeks

*The CHAMP study includes participants from 8 AIDS Clinical Trials Group (ACTG) studies [ACTG 371 (23), A5024 (21), A5068 (22), A5102 (23), A5130 (24), A5170 (23), A5187 (26), and A5197 (27)], the Montreal Primary HIV Infection Cohort (Montreal PIC) (28), the Seattle Primary Infection Program (SeaPIP) (13, 13a), the University of California San Diego Primary Infection Cohort (UCSD PIC) (1–4), a National Institutes of Health (NIH) therapeutic vaccine trial (30), the University of California San Francisco (UCSF) OPTIONS study (31), and the Ragon HIV Controllers cohort (32). ART, Anti Retroviral Therapy; VF, Viral Failure.

identified from participants enrolled in South Africa and Uganda (35). Furthermore, African participants tended to have lower pre-ART viral load and integrated HIV DNA levels, and after treatment interruption, Africans appeared to experience a longer duration of viral remission than non-Africans in the SPARTAC study (12, 36). These results provide a strong rationale for additional studies of PTCs from Africa and other regions to assess the impact of race and HIV subtype on barriers to HIV remission.

CLINICAL AND IMMUNOLOGICAL CHARACTERISTICS

Historically, the majority of PTCs have been identified in studies of patients who initiated ART during early HIV infection (7, 9–12, 20, 26, 29–31, 37). However, PTCs have also been identified in participants who were treated during chronic HIV infection (15, 16, 18, 21, 22, 25, 27, 38). The CHAMP study directly compared the frequency of post-treatment control between individuals who initiated ART during early and chronic HIV infection. This study found that individuals who were treated during early infection were far more likely to meet the PTC criteria after treatment interruption compared to those treated during chronic infection (13 vs. 4%, $P < 0.01$, Figure 2) (6).

At the time of treatment interruption, CD4 cell counts for the PTCs were generally quite high with a median of 720 to 1,429 cells/mm3 amongst the studies (7, 9–12, 15–19). After ART discontinuation, PTCs can exhibit a range of viral load dynamics with a subset demonstrating persistent viral load suppression (Figure 1B) while others experience early viral rebound before subsequently regaining viral control (Figure 1C). In the CHAMP study, \sim45% of PTCs had early viral load peaks \geq1,000 HIV-1 RNA copies/mL and 33% had early viral load peaks \geq10,000 HIV-1 RNA copies/mL amongst those with intensive weekly viral load monitoring (6).

The comparison of previously published PTC studies has also been difficult due to heterogeneity in the inclusion of PTCs with varying duration of viral control. To place the PTC studies in context, the median time of HIV rebound after ART interruption for post-treatment non-controllers (NCs) is \sim3–4 weeks and only a small proportion of non-controllers are able to maintain viral suppression to 12 weeks or beyond (4). The VISCONTI study was one of the earliest and most comprehensive of the PTC studies (7). The inclusion criteria for the 14 VISCONTI participants were individuals who were treated during early HIV infection and maintained viral suppression <400 HIV-1 RNA copies/mL for at least 2 years after ART interruption. To assess the durability of HIV remission, the CHAMP study used a more inclusive definition of post-treatment control (viral...
suppression for 24 weeks). In this analysis, the median duration of post-treatment control was a little over 2 years and the proportion of PTCs who remained virologically suppressed in years 1–5 were 75, 55, 41, 30, and 22%, respectively (6). These results show that post-treatment control is not always durable and that PTCs will require continued clinical and virologic monitoring. These results highlight the heterogeneity in the post-treatment controller phenotype, with some individuals losing control within 1 year and others maintaining viral suppression for more than 10 years (6, 7). While the latter group may be the best model of sustained HIV remission, uncovering factors that lead to the loss of viral control in PTCs may also provide insight on the mechanisms behind their HIV remission. It should be noted though, that the rates of viral suppression reported in the PTCs are in the absence of any additional interventions and that strategies to augment key HIV-specific immune responses have the potential to improve the durability of post-treatment control.

COMPARING SPONTANEOUS AND POST-TREATMENT CONTROLLERS

Without ART, most HIV-infected individuals will have high levels of HIV-1 RNA and experience progressive absolute CD4+ T-cell decline, clinical immunodeficiency, and death (39). However, a small proportion of those infected with HIV can spontaneously maintain very low levels of plasma viral load without the use of antiretroviral therapy (ART) (40, 41). The existence of these HIV spontaneous controllers (SCs), also known as elite controllers (ECs), represented the first indication that the goal of drug-free HIV remission is possible. Although these SCs have low or even undetectable viremia by conventional viral load assays, they generally harbor replication competent virus and have evidence of ongoing viral replication and evolution (42–45). Through robust genetic and functional studies, the most consistent mediator of spontaneous HIV control appears to be through the effects of cytotoxic CD8+ lymphocyte (CTL) responses (46, 47), and the protective effects of certain HLA alleles, such as HLA B*27 and B*57 (48–50). Similar to the PTCs, SCs appear to be a heterogeneous population of individuals with respect to the level and durability of HIV control (51, 52). While some SCs can maintain viral loads <50 copies/mL in absence of ART (i.e., elite controllers [ECs]) (41, 53). Viremic controllers (VCs) can maintain a less robust level of viral replication, with detectable viral loads below 2,000 HIV-1 RNA copies/mL in the absence of ART (54).

However, even amongst the ECs, there is evidence of heterogeneity in immune responses (49, 55), and a subset will lose viral control and experience immunological and clinical progression over time (56–58). Low Gag-specific CD8+ T cell response, high levels of inflammatory cytokines and high viral diversity have been reported as factors that predict loss of viral control in ECs (51).

Due to the rarity of individuals undergoing treatment interruption, PTCs have for a long time not been recognized as a separate entity from SCs. While it is possible that some PTCs treated during early HIV infection may have achieved spontaneous control in the absence of ART, there are now several lines of evidence that PTCs are indeed distinct from HIV SCs: (1) CTL responses have been found to be far weaker in PTCs compared to SCs (7); (2) Unlike SCs, PTCs do not appear to be enriched in protective HLA alleles (3, 10, 59), with the VISCONTI study reporting a high frequency of HLA alleles previously associated with less favorable clinical outcomes (7); (3) PTCs frequently present with symptomatic acute retroviral syndrome and have pre-ART viral loads that are similar to that of non-controllers, but significantly higher than that of HIV SCs (6, 7); and (4) Results from both the SPARTAC and CHAMP studies have demonstrated an ART-specific effect as early ART initiation significantly increases the chances of achieving post-treatment control (6, 35). Together, these findings support the concept that PTCs are largely distinct from SCs and represent individuals who would not have been able to achieve HIV remission without the period ART.

MECHANISMS AND PREDICTORS OF POST-TREATMENT CONTROLLERS

While the exact mechanism behind the ability of PTCs to maintain HIV remission remains unclear, there is evidence for an unusual degree of reservoir restriction and relatively weak HIV-specific CTL activity. In prior studies of ART-treated individuals, the HIV reservoir is primarily maintained within memory CD4+ CTL cells, especially those of central memory (TCM) and transitional memory (TBM) cells (60). In prior treatment interruption studies, smaller total and active HIV reservoirs before treatment interruption have been associated with delayed HIV rebound after treatment interruption. Specifically, lower levels of pre-treatment interruption HIV proviral DNA have predicted delayed viral rebound (16, 61), as has lower levels of cell-associated HIV RNA (4, 30). In PTCs, levels of HIV DNA and cell-associated RNA have also been found to be low in some studies (10, 15) but not others (38). In the VISCONTI analysis, the predominant cellular subset contributing to the HIV reservoir has been reported to be the TBM cells (7), similar to that found in other early treated patients (62) and suggest that the low frequency of HIV infection within the longest-lived CD4+ T cells (naïve and central memory) may contribute to post-treatment control. In studies of SCs, there have been reports that the HIV reservoir is also restricted within the TCM cell subset (63), although this has not been replicated in other studies (7). In ART-treated individuals, the vast majority of HIV proviral DNA are defective and until recently, the proviral landscape within PTCs had not been investigated. In an analysis of ACTG PTCs, Sharaf et al. reported near-full length proviral sequencing results showing that PTCs had an ~7-fold smaller HIV reservoir compared to NCs prior to the ATI, but that some PTCs had relatively large fractions of intact proviruses (64). In a separate case report, post-treatment control could be maintained despite the presence of a clonally-expanded population of HIV-infected cells harboring replication-competent virus (65). Overall, these results demonstrate that PTCs have a restricted HIV reservoir, especially within longer-lived cellular subsets, which may contribute to their ability to maintain HIV remission. Additional studies are needed to...
explore the role of viral fitness (15), clonal expansion and the integration sites of intact proviruses in HIV remission.

Primate studies have also provided insight on strategies for delaying viral rebound. In particular, early ART therapy restricts the seeding of SIV reservoirs and lead to delayed timing of viral rebound (66, 67). Similarly, early initiation of ART has been associated with a significantly increased chance of achieving post-treatment control both within CHAMP study and others (6, 19). Prior studies of early ART treatment have found that it is effective in dramatically reducing the size of the HIV reservoir (68–71). In addition, early ART may preserve HIV-specific T cell responses (72–74). However, the VISCONTI study and others have shown that HIV-specific CD8 T cell responses in PTCs are weak compared to either SCs or viremic individuals (7, 75, 76). These results are consistent with reports that pre-ART viral loads are generally quite high in PTCs (6, 7) and that they do not tend to harbor protective HLA alleles (7, 38, 59, 75). However, other studies have not found significant differences in T cell responses between PTCs and SCs (15). In addition, there are reports from the VISCONTI study that early HIV treatment in PTCs preserves robust poly-functional CD4+ responses to HIV (77). Finally, there have been several reports that early ART initiation in infants may also lead to long-term HIV remission (76, 78, 79). In the first reported case, known as the “Mississippi baby,” the infant initiated ART 30 h after delivery until 18 months of age. ART remission was achieved without detectable HIV-specific antibody or T cell responses (78), but viral rebound occurred ~2 years after ART discontinuation (80). In the second case, the infant became infected despite 6 weeks of Zidovudine prophylaxis after delivery and initiated ART at 3 months of age. ART was discontinued between 5 and 7 years of age and viral control has been documented for ~12 years despite several transient viral blips, a detectable replication-competent reservoir, and weak HIV-specific CD8+ T cell responses (76). The final report is that of a child who initiated 40 weeks of ART at day 61 after delivery as part of the Children with HIV Early antiretroviral therapy (CHER) trial (81, 82). The child has maintained viral suppression for almost 9 years after ART discontinuation, with detectable HIV DNA and residual viremia, low level of HIV-specific antibody and weak T cell response (79). Importantly, none of these children harbored the protective HLA class I alleles B*27 or B*57 associated with spontaneous viral control and levels of immune activation during HIV remission were low in all three children (76, 78, 79). These cases also highlight that post-treatment control in children can occur with a range of ART initiation times (between 30 h and 2–3 months after delivery), HIV subtypes (B, H, and C in the three cases, respectively), and duration of ART (10 months to 6 years) (76, 78, 79). Although these studies support the possibility of HIV remission in early-treated children, the frequency of post-treatment control appears to be rare as only 1 of 227 children in the CHER trial achieved this outcome (79) and smaller studies of treatment interruption in children have failed to detect any PTCs (83).

Early ART initiation has also been shown to preserve HIV-specific humoral immunity by preserving memory B cell numbers and function (84, 85). There are reports from a small case series that PTCs may harbor high levels of autologous neutralizing antibodies (15), although that has not been replicated in other studies (8, 75).

KNOWLEDGE GAPS AND UNANSWERED QUESTIONS

Among the top priorities of the HIV field is the search for therapeutic interventions that can lead to sustained ART-free HIV remission (41). Understanding the mechanisms and predictors of post-treatment control would represent a key step toward that goal as PTCs represent a realistic model for the functional cure of HIV infection. Only in the past few years have interest heightened in the study of PTCs and a host of important questions remain unanswered. First, it has become clear that early initiation of ART is not only associated with personal health and public health benefits but may also lower the barrier to HIV remission and post-treatment control. However, the optimal timing of ART during early HIV infection is unknown. It is interesting to note that the vast majority of PTCs in the VISCONTI and CHAMP studies initiated ART during Fiebig stages III-V (6, 7) and that a small treatment interruption study of individuals who initiated ART during Fiebig I did not identify any PTCs as all individuals demonstrated rapid viral rebound (86). While extremely early initiation of ART will limit the extent of HIV reservoir seeding (87), additional research is needed to assess whether a slight delay in ART initiation allows for the further maturation of the HIV-specific immune response that may be important for post-treatment control.

As noted above, there is increasing evidence that PTCs do not appear to mediate HIV suppression through the same CTL and HLA-mediated mechanisms as SCs. While important, the favorable genetic profiles of SCs have not been easily translatable to therapeutics and the elucidation of the mechanisms of control in PTCs may have a greater impact on the design and evaluation of the next generation of HIV therapeutics. Studies of the HIV reservoir in PTCs have revealed the restricted size of the reservoir, including the intact proviral genomes (64). This, however, does not fully explain post-treatment control, especially given our experience in hematopoietic stem cell transplant participants who can dramatically lower their peripheral reservoir size, but are unable to maintain HIV remission (88). Additional studies are needed to assess potential differences in the distribution of infected cell types (7), cellular transcription environment, integration sites, and other factors that could contribute to the maintenance of a “deeper” state of viral latency (89).

Finally, little is known about the clinical implications of post-treatment control. While SCs can maintain low or undetectable viremia in the absence of ART, the ongoing viral replication and immune response in SCs may be associated with adverse consequences, including the progressive loss of CD4+ T cells in some individuals, increased T cell activation and inflammation (90–93). Chronic immune activation and systemic inflammation has been associated with poor clinical outcomes in non-controllers (94–97) but also in SCs, who are reported to have an increased risk of cardiovascular disease (98) and hospitalization (58), although the extent of this risk is still a matter of some uncertainty (99, 100). There is some evidence that PTCs may
not exhibit the same heightened levels of immune activation as SCs (7, 10), but additional studies are needed to confirm these findings and to assess the long-term clinical implications of sustained HIV remission.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for publication.

REFERENCES

1. Exceptional Responders Initiative: Questions and Answers. National Cancer Institute. (2016) Available online at: http://www.cancer.gov/about-cancer/treatment/research/exceptional-responders-initiative-qa

2. Chau NG, Lorch JH. Exceptional responders inspire change: lessons for drug development from the bedside to the bench and back. Oncologist. (2015) 20:699–701. doi: 10.1634/theoncologist.2014-0476

3. Richey LE, Halperin J. Acute human immunodeficiency virus infection. Am J Med Sci. (2013) 345:136–42. doi: 10.1097/MJA.0b013e31825d4b88

4. Li JZ, Etemad B, Ahmed H, Aga E, Bosch RJ, Mellors JW, et al. The size of the expressed HIV reservoir predicts timing of viral rebound after treatment interruption. AIDS. (2016) 30:343–53. doi: 10.1097/QAI.0000000000000953

5. Bongiovanni M, Casana M, Tincati C, d’Arminio Monforte A. Treatment interruptions in HIV-infected subjects. J Antimicrob Chemother. (2006) 58:502–5. doi: 10.1093/jac/dkl268

6. Namazi G, Fajnzylber JM, Aga E, Bosch RJ, Acosta EP, Sharaf R, et al. The Control of HIV After Antiretroviral Medication Pause (CHAMP) Study: Posttreatment Controllers Identified From 14 Clinical Studies. J Infect Dis. (2018) 218:1954–63. doi: 10.1093/infdis/jiy479

7. Saez-Cirion A, Bacchus C, Hocqueloux L, Avettand-Fenoel V, Girault I, Lecuroux C, et al. Post-treatment HIV-1 controllers with a long-term virological remission after the interruption of early initiated antiretroviral therapy ANRS VISCONTI Study. PLoS Pathog. (2013) 9.e1003211. doi: 10.1371/journal.ppat.1003211

8. Lisiewicz J, Rosenberg E, Lieberman J, Jessen H, Lopalo P, Siliciano R, et al. Control of HIV despite the discontinuation of antiretroviral therapy. N Engl J Med. (1999) 340:1683–4. doi: 10.1056/NEJM199905273402114

9. Hocqueloux L, Prazuck T, Avettand-Fenoel V, Lefaucheur A, Cardon B, Viard JP, et al. Long-term immunovirologic control following antiretroviral therapy interruption in patients treated at the time of primary HIV-1 infection. AIDS. (2010) 24:1598–601. doi: 10.1097/QAD.0b013e32833b61b9

10. Goujard C, Girault I, Rouzioux C, Lecuroux C, Deveau C, Chaix M, et al. HIV-1 control after transient antiretroviral therapy initiated in primary infection: role of patient characteristics and effect of therapy. Antivir Ther. (2012) 17:1001–9. doi: 10.3851/IMP2273

11. Lodi S, Meyer L, Kelleher AD, Rosinska M, Ghosh J, Sannes M, et al. Immunovirologic control 24 months after interruption of antiretroviral therapy initiated close to HIV seroconversion. Arch Intern Med. (2012) 172:2522–3. doi: 10.1001/archinternmed.2012.2719

12. Stohr W, Fidler S, McClure M, Weber J, Cooper D, Ramjee G, et al. Duration of HIV-1 viral suppression on cessation of antiretroviral therapy in primary infection correlates with time on therapy. PLoS ONE. (2013) 8:e78267. doi: 10.1371/journal.pone.0078287

13. Maenza J, Tapia K, Holte S, Stekler JD, Stevens CE, Mullins JL, et al. How often does treatment of primary HIV lead to post-treatment control? Antivir Ther. (2015) 20:855–63. doi: 10.3851/IMP2963

14. Gianella S, Anderson CM, Richman DD, Smith DM, Little SJ. No evidence of posttreatment control after early initiation of antiretroviral therapy. AIDS. (2015) 29:2093–7. doi: 10.1097/QAD.0000000000000816

15. Van Guilk E, Bracke L, Heyndrickx L, Coppens S, Atkinson D, Merlin C, et al. Immune and viral correlates of “secondary viral control” after treatment interruption in chronically HIV-1-infected patients. PLoS ONE. (2012) 7:e37792. doi: 10.1371/journal.pone.0037792

16. Assoumou L, Weiss L, Pikiety C, Burgard M, Melard A, Girard PM, et al. A low HIV-DNA level in peripheral blood mononuclear cells at antiretroviral treatment interruption predicts a higher probability of maintaining viral control. AIDS. (2015) 29:2003–7. doi: 10.1097/QAD.0000000000000734

17. Calin R, Hamimi C, Lambert-Niclot S, Carcelain G, Bellet J, Assoumou L, et al. Treatment interruption in chronically HIV-infected patients with an ultralow HIV reservoir. AIDS. (2016) 30:761–9. doi: 10.1097/QAD.0000000000000987

18. Perkins MJ, Bradley WP, Lalani T, Agan BK, Whitman TJ, Ferguson TM, et al. Brief report: prevalence of posttreatment controller phenotype is rare in HIV-infected persons after stopping antiretroviral therapy. J Acquir Immune Defic Syndr. (2017) 75:364–9. doi: 10.1097/QAI.0000000000001393

19. Fidler S, Olson AD, Bucher HC, Fox J, Thornhill J, Morrison C, et al. Virological blips and predictors of post treatment viral control after stopping ART started in primary HIV Infection. J Acquir Immune Defic Syndr. (2017) 74:126–33. doi: 10.1097/QAI.0000000000001220

20. Volberding P, Demeter L, Bosch RJ, Aga E, Pettinelli C, Hirsch M, et al. Antiretroviral therapy in acute and recent HIV infection: a prospective multicenter stratified trial of intentionally interrupted treatment. AIDS. (2009) 23:1987–95. doi: 10.1097/QAD.0b013e3283282eb285

21. Kilby JM, Bucy RP, Mildvan D, Fischl M, Santana-Bagur J, Lennox J, et al. A randomized, partially blinded phase 2 trial of antiretroviral therapy, HIV-specific immunizations, and interleukin-2 cycles to promote efficient control of viral replication (ACTG A5024). J Infect Dis. (2006) 194:1672–6. doi: 10.1086/509508

22. Jacobson JM, Pat Bucy R, Spritzler J, Saag MS, Eron JJ Jr, Coombs RW, et al. Evidence that intermittent structured treatment interruption, but not immunization with ALVAC-HIV vCP1452, promotes host control of HIV replication: the results of AIDS Clinical Trials Group 5068. J Infect Dis. (2006) 194:623–32. doi: 10.1086/506364

23. Henry K, Katzenstein D, Cherng DW, Valdez H, Powderly W, Vargas MB, et al. A pilot study evaluating time to CD4 T-cell count <350 cells/mm3 after treatment interruption following antiretroviral therapy +/- interleukin-2: results of ACTG A5102. J Acquir Immune Defic Syndr. (2006) 42:140–8. doi: 10.1097/01.qai.0000225319.59652.1e

24. Gandhi RT, O’Neill D, Bosch RJ, Chan ES, Bucy RP, Shope J, et al. A randomized therapeutic vaccine trial of canarypox-HIV-pulsed dendritic cells vs. canarypox-HIV alone in HIV-1-infected patients on antiretroviral therapy. Vaccine. (2009) 27:6088–94. doi: 10.1016/j.vaccine.2009.05.016

25. Skiest D, Su Z, Hlavir DV, Robertson KR, Coombs RW, Cain P, et al. Interruption of antiretroviral treatment in HIV-infected patients with preserved immune function is associated with a low rate of clinical progression: a prospective study by AIDS Clinical Trials Group 5170. J Infect Dis. (2007) 195:1426–36. doi: 10.1086/512681

26. Rosenberg ES, Graham BS, Chan ES, Bosch RJ, Stocker V, Maenza J, et al. Safety and immunogenicity of therapeutic DNA vaccination in individuals treated with antiretroviral therapy during acute/early HIV-1 infection. PLoS ONE. (2010) 5:e10555. doi: 10.1371/journal.pone.0010555

27. Schooley RT, Spritzler J, Wang H, Lederman MM, Hlavir D, Kuritzkes DR, et al. AIDS clinical trials group 5197: a placebo-controlled trial of immunization of HIV-1-infected persons with a replication-deficient

FUNDING

JL was funded by a grant from amfAR, The Foundation for AIDS Research.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fimmu.2019.01749/full#supplementary-material
adeno virus type 5 vaccine expressing the HIV-1 core protein. J Infect Dis. (2010) 202:705–16. doi: 10.1086/655468

28. Routy JP, Vanhemans P, Rouleau D, Toucas K, Lefebvre E, Cote P, et al. Comparison of clinical features of acute HIV-1 infection in patients infected sexually or through injection drug use. J Acquir Immune Defic Syndr. (2000) 24:425–32. doi: 10.1097/00014457-200006010-00004

29. Stekler JD, Wellman R, Holte S, Maenza J, Stevens CE, Corey L, et al. Are there benefits to starting antiretroviral therapy during primary HIV infection? Conclusions from the Seattle Primary Infection Cohort vary by control group. Int J STD AIDS. (2012) 23:201–6. doi: 10.1258/ijsa.2011.011178

30. Sneller MC, Justement JS, Gittens KR, Petrone ME, Clarke KJ, Proshcan MA, et al. A randomized controlled safety/efficacy trial of therapeutic vaccination in HIV-infected individuals who initiated antiretroviral therapy early in infection. Sci Transl Med. (2017) 9eaan8848. doi: 10.1126/scitranslmed.aan8848

31. Jain V, Liegl T, Vittinghoff E, Hartogensis W, Bacchetti P, Poole L, et al. Transmitted drug resistance in persons with acute/early HIV-1 in San Francisco, 2002–2009. PLoS ONE. (2010) 5:e15510. doi: 10.1371/journal.pone.0015510

32. Pereyra F, Jia X, McLaren PJ, Teleni A, de Bakker PI, Walker BD, et al. The major genetic determinants of HIV-1 control affect HLA class I peptide presentation. Science. (2010) 330:1551–7. doi: 10.1126/science.1195271

33. Yang OO, Cumberland WG, Escobar R, Liao D, Chew KW. Demographics and natural history of HIV-1-infected spontaneous controllers of viremia. AIDS. (2017) 31:1091–8. doi: 10.1097/QAD.0000000000001443

34. Vieria VA, Zuidewind P, Muenchhoff M, Roeder I, Millar J, Clapson M, et al. Strong sex bias in elite control of paediatric HIV infection. AIDS. (2019) 33:67–75. doi: 10.1097/QAD.0000000000002043

35. Martin GE, Gosses M, Williams JP, Stohr W, Meyrowitz J, Leitman EM, et al. Post-treatment control or treated controllers? Viral remission in HIV-1-infected patients. J Infect Dis. (2013) 211:1692–702. doi: 10.1093/infdis/jiu809

36. Routy JP, Vanhems P, Rouleau D, Tsoukas C, Lefebvre E, Cote P, et al. Comparison of clinical features of acute HIV-1 infection in patients infected sexually or through injection drug use. J Acquir Immune Defic Syndr. (2000) 24:425–32. doi: 10.1097/00014457-200006010-00004

37. Stekler JD, Wellman R, Holte S, Maenza J, Stevens CE, Corey L, et al. Are there benefits to starting antiretroviral therapy during primary HIV infection? Conclusions from the Seattle Primary Infection Cohort vary by control group. Int J STD AIDS. (2012) 23:201–6. doi: 10.1258/ijsa.2011.011178

38. Maggiolo F, Di Filippo E, Comi L, Callegaro A. Post-treatment control or treated controllers? Viral remission in HIV-1-infected patients. J Infect Dis. (2012) 211:1692–702. doi: 10.1093/infdis/jiu809

39. Stekler JD, Wellman R, Holte S, Maenza J, Stevens CE, Corey L, et al. Are there benefits to starting antiretroviral therapy during primary HIV infection? Conclusions from the Seattle Primary Infection Cohort vary by control group. Int J STD AIDS. (2012) 23:201–6. doi: 10.1258/ijsa.2011.011178

40. Lambotte O, Boufassa F, Madec Y, Nguyen A, Goujard C, Meyer L, et al. Strong sex bias in elite control of paediatric HIV infection. AIDS. (2019) 33:67–75. doi: 10.1097/QAD.0000000000002043

41. Deeks SG, Walker BD. Human immunodeficiency virus controllers: a homogeneous group of HIV-1-infected patients with spontaneous control of viral replication. Clin Infect Dis. (2005) 41:1053–6. doi: 10.1086/433188

42. Deeks SG, Walker BD. Human immunodeficiency virus controllers: mechanisms of durable viral control in the absence of antiretroviral therapy. Immunity. (2007) 27:406–16. doi: 10.1016/j.immuni.2007.08.010

43. Blankson JN, Bailey JR, Thayil S, Yang HC, Lassen K, Lai J, et al. Isolation and characterization of replication-competent human immunodeficiency virus type 1 from a subset of elite suppressors. J Virol. (2007) 81:2508–18. doi: 10.1128/JVI.01265-06

44. Bailey JR, Brennan TP, O’Connell KA, Siliciano RF, Blankson JN. Control of HIV-1 in elite suppressors despite ongoing replication and evolution in plasma virus. J Virol. (2010) 84:7018–28. doi: 10.1128/JVI.01265-06

45. Bailey JR, Brennan TP, O’Connell KA, Siliciano RF, Blankson JN. Evidence of CD8+ T-cell-mediated selective pressure on human immunodeficiency virus type 1 nef in HLA-B+57+ elite suppressors. J Virol. (2009) 83:88–97. doi: 10.1128/JVI.01958-08

46. Bailey JR, Williams TM, Siliciano RF, Blankson JN. Maintenance of viral suppression in HIV-1-infected HLA-B+57+ elite suppressors despite CTL escape mutations. J Exp Med. (2006) 203:1537–69. doi: 10.1084/jem.20052319

47. Walker BD, Yu XG. Unraveling the mechanisms of durable control of HIV-1. Nat Rev Immunol. (2013) 13:487–98. doi: 10.1038/nri3478

48. Migueles SA, Osborne CM, Royce C, Compton AA, Joshi RP, Weeks KA, et al. Lytic granule loading of CD8+ T cells is required for HIV-infected cell elimination associated with immune control. Immunity. (2008) 29:1009–21. doi: 10.1016/j.immuni.2008.10.010

49. Migueles SA, Sabbagehan MS, Shupert WL, Bettinotti MP, Marincola FM, Martino L, et al. HLA B+5701 is highly associated with restriction of virus replication in a subgroup of HIV-infected long term nonprogressors. Proc Natl Acad Sci USA. (2000) 97:2709–14. doi: 10.1073/pnas.05067397

50. Pereyra F, Addo MM, Kaufmann DE, Liu Y, Miura T, Rathod A, et al. Genetic and immunologic heterogeneity among persons who control HIV infection in the absence of therapy. J Infect Dis. (2008) 197:563–71. doi: 10.1086/526786
Early antiretroviral therapy limits SIV reservoir establishment to delay or prevent post-treatment viral rebound. *Nat. Med.* (2018) 24:1340–40. doi: 10.1038/s41591-018-0130-6

Henrich Tj, Hatano H, Bacon O, Hogan LE, Rutishauser R, Hill A, et al. HIV-1 persistence following extremely early initiation of antiretroviral therapy (ART) during acute HIV-1 infection: An observational study. *Proc Natl Acad Sci USA.* (2017) 114:10024–17. doi: 10.1073/pnas.1702174

Henrich Tj, Hanhauser E, Marty FM, Sigrignano MN, Keating S, Lee TH, et al. Antiretroviral-free HIV-1 remission and viral rebound after allogeneic stem cell transplantation: report of 2 cases. *Ann Intern Med.* (2014) 161:319–27. doi: 10.7326/M14-1027

Yukl SA, Kaiser P, Kim P, Telwasse S, Joshi VK, Vu M, et al. HIV latency in isolated patient CD4(+)* T cells may be due to blocks in HIV transcriptional elongation, completion, and splicing. *Sci Transl Med.* (2018) 10:eaap9927. doi: 10.1126/scitranslmed.aap9927

Naviguer M, Delobel P, Cazabat M, Debois M, LFagihi-Olive FE, Raymond S, et al. HIV-1 residual viremia correlates with persistent T-cell activation in poor immunological responders to combination antiretroviral therapy. *PLoS ONE.* (2009) 4:e7658. doi: 10.1371/journal.pone.007658

Ostrowski SR, Katzenstein TL, Pedersen BK, Gerstof J, Ullum H. Residual viremia in HIV-1-infected patients with plasma viral load ≤20 copies/ml is associated with increased blood levels of soluble immune activation markers. *Scand J Immunol.* (2008) 68:652–60. doi: 10.1111/j.1365-3083.2008.02184.x

Hunt PW, Brenchley J, Sinclair E, McCume JM, Roland M, Page-Shafer K, et al. Relationship between T cell activation and CD4+ T cell count in HIV-seropositive individuals with undetectable plasma HIV RNA levels in the absence of therapy. *J Infect Dis.* (2008) 197:126–33. doi: 10.1086/521433

Pereyra F, Palmer S, Miura T, Block BL, Wiegand A, Rothchild J, et al. Persistent low-level viremia in HIV-1 elite controllers and relationship to immunological parameters. *J Infect Dis.* (2009) 200:984–90. doi: 10.1086/605446

Liu Z, Cumberland WG, Hultin LE, Kaplan AH, Detels R, Giorgi JV. CD8+ T-lymphocyte activation in HIV-1 disease reflects an aspect of pathogenesis distinct from viral burden and immunodeficiency. *J Acquir Immune Defic Syndr Hum Retrovirol.* (1998) 18:332–40. doi: 10.1097/00042560-199808100-00004

Giorgi JV, Hultin LE, McKeating JA, Johnson TD, Owens B, Jacobson LP, et al. Shorter survival in advanced human immunodeficiency virus type 1 infection is more closely associated with T lymphocyte activation than with plasma virus burden or virus chemokine coreceptor usage. *J Infect Dis.* (1999) 179:859–70. doi: 10.1086/314660

Kuller LH, Tracy R, Belloso W, De Wit S, Drummond F, Lane HC, et al. Inflammatory and coagulation biomarkers and mortality in patients with HIV infection. *PLoS Med.* (2008) 5:e203. doi: 10.1371/journal.pmed.0050203

Hazenberg MD, Otto SA, van Bentheim BH, Roos MT, Coutinho RA, Lange JM, et al. Persistent immune activation in HIV-1 infection is associated with progression to AIDS. *AIDS.* (2003) 17:1881–8. doi: 10.1097/00002030-200309050-00006
98. Pereyra F, Lo J, Triant VA, Wei J, Buzon MJ, Fitch KV, et al. Increased coronary atherosclerosis and immune activation in HIV-1 elite controllers. AIDS. (2012) 26:2409–12. doi: 10.1097/QAD.0b013e32835a9950

99. Crowell TA, Ganesan A, Berry SA, Deiss RG, Agan BK, Okulicz JF. Hospitalizations among HIV controllers and persons with medically controlled HIV in the U.S. Military HIV Natural History Study. J Int AIDS Soc. (2016) 19:20524. doi: 10.7448/IAS.19.1.20524

100. Noel N, Gominet M, Meyer L, Boufassa F, Lambotte O. Cardiovascular events in the French ANRS HIV controller cohort. J Acquir Immune Defic Syndr. (2019). doi: 10.1097/QAI.0000000000002108

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Etemad, Esmaeilzadeh and Li. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.