TENSOR TRIANGULAR GEOMETRY AND KK-THEORY

IVO DELL’AMBROGIO

Abstract. This is a first foray of tensor triangular geometry \cite{Ba05} into the realm of bivariant topological K-theory. As a motivation, we first establish a connection between the Balmer spectrum $\text{Spec}(KKG)$ and a strong form of the Baum-Connes conjecture with coefficients for the group G, as studied in \cite{MN06}. We then turn to more tractable categories, namely, the thick triangulated subcategory $KG \subseteq KK(G)$ and the localizing subcategory $T^G \subseteq KG$ generated by the tensor unit \mathbb{C}. For G finite, we construct for the objects of T^G a support theory in $\text{Spec}(R(G))$ with good properties. We see as a consequence that $\text{Spec}(KG)$ contains a copy of the Zariski spectrum $\text{Spec}(R(G))$ as a retract, where $R(G) = \text{End}_{\text{KKG}}(\mathbb{C})$ is the complex character ring of G. Not surprisingly, we find that $\text{Spec}(K^{(1)}) \simeq \text{Spec}(\mathbb{Z})$.

Contents

1. Introduction
2. Triangular preliminaries
 2.1. Brown representability and Bousfield localization
 2.2. The spectrum of a \otimes-triangulated category
 2.3. Rigid objects
 2.4. Central localization
3. Classification in compactly generated categories
 3.1. An abstract criterion
 3.2. Compact objects and central rings
 3.3. Comparison with the support of Benson-Iyengar-Krause
4. The spectrum and the Baum-Connes conjecture
5. Some homological algebra for KK-theory
 5.1. The categories T^G and KG
 5.2. Central localization of equivariant KK-theory
 5.3. The Phillips-Künneth formula
 5.4. The residue field object at a prime ideal
6. First results for finite groups
 6.1. The nice support $(\text{Spec} R(G), \sigma_G)$ on T^G
 6.2. Split injectivity of $f_G : \text{Spec} R(G) \to \text{Spec} KG$
 6.3. The spectrum and the Bootstrap category
References

1. Introduction

Let G be a second countable locally compact Hausdorff group, and let KK^G denote the G-equivariant Kasparov category of separable G-C^*-algebras (\cite{Ka88, Me07}). As shown in \cite{MN06}, KK^G is naturally equipped with the structure of a tensor triangulated category (Def. 2.12). This means that we are in the domain of tensor triangular geometry. In particular, the (essentially small) category KK^G
has a spectrum \(\text{Spc}(\mathbb{K}^G) \), as defined by Paul Balmer [Ba08] (see Def. 2.14 below). If \(H \leq G \) is a subgroup, the restriction functor \(\text{Res}^H_G : \mathbb{K}^G \to \mathbb{K}^H \) induces a continuous map \((\text{Res}^H_G)^* : \text{Spc}(\mathbb{K}^H) \to \text{Spc}(\mathbb{K}^G) \). Then

Theorem 1.1. Assume that \(G \) is such that \(\text{Spc}(\mathbb{K}^G) = \bigcup_H (\text{Res}^H_G)^* \left(\text{Spc}(\mathbb{K}^H) \right) \), where \(H \) runs through all compact subgroups of \(G \). Then \(G \) satisfies the Baum-Connes conjecture for every functor on \(\mathbb{K}^G \) and any coefficient algebra \(A \in \mathbb{K}^G \).

This is proved in [HI] where the reader may also find the precise meaning of the conclusion. Now, we do not know yet if the above fact may provide a way of proving Baum-Connes. For one thing, we still don’t know of a single non-compact group satisfying the above covering hypothesis. But the result looks intriguing, and it suggests that further geometric inquiry in this context will be fruitful.

As a first step in this direction, we turn to the subcategories \(\mathcal{T}^G := (1)_{\text{loc}} \subset \mathbb{K}^G \) and \(\mathcal{K}^G := (1) \subset \mathbb{K}^G \), that is, the localizing, respectively the thick triangulated subcategory generated by the tensor unit \(1 = \mathbb{C} \in \mathbb{K}^G \). Moreover, we restrict our attention to the much better understood case when the group \(G \) is compact or even finite. Then the endomorphism ring \(\text{End}(1) \) of the \(\otimes \)-unit can be identified with the complex representation ring \(R(G) \) of the compact group, which is known to be noetherian if \(G \) is a Lie group (e.g. finite); see [Ba08]. Note that \(\mathcal{K}^G = (\mathcal{T}^G)_{\text{c}} \) is the subcategory of compact objects in \(\mathcal{T}^G \) (see [2.1] and [5.1]). When \(G = \{1\} \) is trivial, \(\text{Boot} := \mathcal{T}^G \) is better known as the “Bootstrap” category of separable \(C^* \)-algebras. We will prove in §6.3

Theorem 1.2. There is a canonical homeomorphism \(\text{Spc}(\text{Boot}_c) \simeq \text{Spec}(\mathbb{Z}) \).

The latter statement generalizes naturally as follows:

Conjecture 1.3. For every finite group \(G \), the natural map \(\rho_{\mathcal{K}^G} : \text{Spc}(\mathcal{K}^G) \to \text{Spec}(R(G)) \) (see [3.1] or §6.2 below) is a homeomorphism.

If true, this would show that, in yet another branch of mathematics, an object of classical interest (here: the spectrum of the complex representation ring of a finite group) can be recovered as the Balmer spectrum of a naturally arising \(\otimes \)-triangulated category. We have some interesting facts that suggest a positive answer. Namely:

Theorem 1.4 (Thm. [3.1] and Prop. [6.3]). Let \(G \) be a finite group. Then there exists an assignment \(\sigma_G : \text{obj}(\mathcal{T}^G) \to 2^{\text{Spec}(R(G))} \) from objects of \(\mathcal{T}^G \) to subsets of the spectrum enjoying the following properties:

(a) \(\sigma_G(0) = \emptyset \) and \(\sigma_G(1) = \text{Spec}(R(G)) \).
(b) \(\sigma_G(A \oplus B) = \sigma_G(A) \cup \sigma_G(B) \).
(c) \(\sigma_G(TA) = \sigma_G(A) \).
(d) \(\sigma_G(B) \cup \sigma_G(A) \cup \sigma_G(C) \) for every exact triangle \(A \to B \to C \to TA \).
(e) \(\sigma_G(A \oplus B) = \sigma_G(A) \cap \sigma_G(B) \).
(f) \(\sigma_G(\bigcup_i A_i) = \bigcup_i \sigma_G(A_i) \).
(g) if \(A \in \mathcal{K}^G \), then \(\sigma_G(A) \) is a closed subset of \(\text{Spec}(R(G)) \).

Here \(A, B \in \mathcal{T}^G \) are any objects and \(\bigcup_i A_i \) any coproduct in \(\mathcal{T}^G \). In particular, the restriction of \(\sigma_G \) to \(\mathcal{K}^G \) is a support datum in the sense of Balmer [Ba05] (see [2.2] below), so it induces a canonical map \(f_G : \text{Spec}(R(G)) \to \text{Spc}(\mathcal{K}^G) \). This map is topologically split injective; indeed, it provides a continuous section of \(\rho_{\mathcal{K}^G} \).

Remark. In the course of proving Theorem 1.3 we construct, for \(G \) compact, a well-behaved ‘localization of \(\mathcal{T}^G \) at a prime \(p \in \text{Spec}(R(G)) \)’, written \(\mathcal{T}_p^G \subset \mathcal{T}^G \) (see [5.2]). It follows for instance that there is a functor \(L_p : \mathbb{K}^G \to \mathcal{T}_p^G \) together with a natural isomorphism \(K_p^G(L_pA) \simeq K_p^G(A)_p \), for all \(A \in \mathbb{K}^G \) (Cor. 5.12).
We believe Theorem 1.4 provides evidence for Conjecture 1.3 because of the following more general result in tensor triangular geometry, which is of independent interest (see Theorem 3.1 below).

Theorem 1.5. Let T be a compactly generated \otimes-triangulated category. Let X be a spectral topological space (such as the Zariski spectrum of a commutative ring – see Remark 2.15), and let $\sigma: \text{obj}(T) \to 2^X$ be a function assigning to every object of T a subset of X. Assume that the pair (X, σ) satisfies the following ten axioms:

(S0) $\sigma(0) = \emptyset$.
(S1) $\sigma(1) = X$.
(S2) $\sigma(A \oplus B) = \sigma(A) \cup \sigma(B)$ (really, this is redundant because of (S6) below).
(S3) $\sigma(TA) = \sigma(A)$.
(S4) $\sigma(B) \subset \sigma(A) \cup \sigma(C)$ for every distinguished triangle $A \to B \to C \to TA$.
(S5) $\sigma(A \otimes B) = \sigma(A) \cap \sigma(B)$ for every compact $A \in \mathcal{T}_c$ and arbitrary $B \in T$.
(S6) $\sigma(\prod_i A_i) = \bigcup_i \sigma(A_i)$ for every small family $\{A_i\}_i \subset T$ of objects.
(S7) $\sigma(A)$ is closed in X with quasi-compact complement $X \setminus \sigma(A)$ for all $A \in \mathcal{T}_c$.
(S8) For every closed subset $Z \subset X$ with quasi-compact open complement, there exists a compact object $A \in \mathcal{T}_c$ with $\sigma(A) = Z$.
(S9) $\sigma(A) = \emptyset$ implies $A \simeq 0$.

Then the restriction of (X, σ) to \mathcal{T}_c is a classifying support datum; in particular, the induced canonical map $X \to \text{Spec}(\mathcal{T}_c)$ is a homeomorphism (see Thm. 2.19).

Remark 1.6. We note that the latter theorem has also been announced by Julia Pevtsova and Paul Smith. It specializes to the classification of thick tensor ideals in the abstract version of their [BCR97, Theorem 3.4].

As concerns us here, our hope is to apply Theorem 1.5 to the category $T := T^G$ for a finite group G, choosing σ to be the assignment σ_G in Theorem 1.4. We note that it follows from the first part of the theorem that σ_G satisfies conditions (S0)-(S7). At least for $G = \{1\}$, axioms (S8) and (S9) are also satisfied and therefore we obtain Theorem 1.2 from Theorem 1.5. We don’t know yet if the same strategy also works in general, i.e., we don’t know if (S8) and (S9) also hold when G is non-trivial (we have some clues that this might be the case, but they are too sparse to be mentioned here).

More abstractly, in §3.2 we examine condition (S8) (and also (S7)) in relation to the endomorphism ring of the tensor unit 1. As a payoff, we then show in §3.3 how to use Theorem 1.5 in order to compare Balmer’s universal support with that of Benson, Iyengar and Krause [BIK09] and Pevtsova and Paul Smith in the situation where both are defined.

In a sequel to this article, we intend to study the spectrum of “finite noncommutative G-CW-complexes” for a finite group G, that is, of the triangulated subcategory of KK^G generated by all G-C^*-algebras $C(G/H)$ with $H \leq G$ a subgroup.

Conventions. If $F: A \to B$ is an additive functor, we denote by $\text{Im}(F) \subset B$ the essential image of F, i.e., the full subcategory of B of those objects isomorphic to $F(A)$ for some $A \in A$; by $\text{Ker}(F) := \{A \in A \mid F(A) \simeq 0\}$ we denote its kernel on objects, and by $\text{ker}(F) := \{f \in \text{Mor}(A) \mid F(f) = 0\}$ its kernel on morphisms. The translation functor in all triangulated categories is denoted by T. Triangulated subcategories are always full and closed under isomorphic objects.

Acknowledgements. This work was done during my PhD thesis under the supervision of Paul Balmer. I wish to thank him for his interest and generosity. I am

1See Convention 2.15 below for the precise (modest) hypotheses we are making here. We require in particular that compact objects form a tensor triangulated subcategory \mathcal{T}_c.
very grateful to Amnon Neeman for spotting two mistakes in a previous version of this paper.

2. Triangular preliminaries

2.1. Brown representability and Bousfield localization. The material of this section, originated in stable homotopy and generalized to triangulated categories by Amnon Neeman in a series of papers, is now standard. However we shall have to use a slight variation of the definitions and results. Namely, we fix an uncountable regular cardinal number α, and consider variants of the usual notions that are relative to this cardinal. (Later on, in our applications we shall only need the case $\alpha = \aleph_1$.) We use subscripts as in “dummywordα”, because the prefixed notation “α-dummyword” has already found different uses. Throughout, \mathcal{T} will be a triangulated category admitting arbitrary small α coproducts, i.e., coproducts indexed by sets I of cardinality $|I| < \alpha$. In general, we shall say that a set S is small α if $|S| < \alpha$.

Definition 2.1. An object A of \mathcal{T} is compactα if $\text{Hom}_{\mathcal{T}}(A, \cdot)$ commutes with small α coproducts, and if moreover $|\text{Hom}_{\mathcal{T}}(A, B)| < \alpha$ for every $B \in \mathcal{T}$. We write \mathcal{T}_c for the full subcategory of compactα objects of \mathcal{T}. A set of objects $\mathcal{G} \subset \mathcal{T}$ generates \mathcal{T} if for all $A \in \mathcal{T}$ the following implication holds:

$$\text{Hom}_{\mathcal{T}}(\mathcal{G}, A) \cong 0 \text{ for all } G \in \mathcal{G} \Rightarrow A \cong 0.$$

We say that \mathcal{T} is compactlyα generated if there is a small α subset $\mathcal{G} \subset \mathcal{T}_c$ of compactα objects generating the category. If $\mathcal{E} \subset \mathcal{T}$ is some class of objects, we write $\langle \mathcal{E} \rangle_{\text{loc}}$ for the smallest localizingα subcategory of \mathcal{T} containing \mathcal{E}, where localizingα means triangulated and closed under the formation of smallα coproducts in \mathcal{T}. We will reserve the notation $\langle E \rangle$ for the thick triangulated subcategory of \mathcal{T} generated by \mathcal{E}. Note that $\langle \mathcal{E} \rangle_{\text{loc}}$ is automatically thick, as is every triangulated category with arbitrary countable coproducts, by a well-known argument.

It was first noticed in [MN06] that these definitions allow the following α-relative version of Neeman's Brown representability for cohomological functors, simply by verifying that the usual proof ([Ne96, Thm. 3.1]) only needs the formation of small α coproducts in \mathcal{T} and never requires bigger ones.

Theorem 2.2 (Brown representability). Let \mathcal{T} be compactlyα generated, with \mathcal{G} a generating set. Then a functor $F : \mathcal{T}^{\text{op}} \to \text{Ab}$ is representable if and only if it is homological, it sends smallα coproducts in \mathcal{T} to products of abelian groups and if moreover $|F(A)| < \alpha$ for all $A \in \mathcal{G}$ (or equivalently, for all compactα objects $A \in \mathcal{T}_c$).

Corollary 2.3. For a triangulated category \mathcal{T} with arbitrary smallα coproducts, the following are equivalent:

(i) \mathcal{T} is compactlyα generated.

(ii) $\mathcal{T} = \langle \mathcal{G} \rangle_{\text{loc}}$ for some smallα subset $\mathcal{G} \subset \mathcal{T}_c$ of compactα objects.

(iii) $\mathcal{T} = \langle \mathcal{T}_c \rangle_{\text{loc}}$ and \mathcal{T}_c is essentially smallα (by which of course we mean that \mathcal{T}_c has a smallα set of isomorphism classes of objects).

Corollary 2.4. Thus, for every smallα subset $\mathcal{S} \subset \mathcal{T}_c$ there is a compactlyα generated localizingα subcategory $\mathcal{L} = \langle \mathcal{S} \rangle_{\text{loc}} \subset \mathcal{T}$. Its compact$\alpha$ objects are given by $\mathcal{L}_c = \mathcal{T}_c \cap \mathcal{L} = \langle \mathcal{S} \rangle$.

\footnote{beware that our terminology is slightly changed from that in loc. cit.}
Notation 2.5. Let \mathcal{E} be a class of objects in \mathcal{T} closed under translations. We write
\[\mathcal{E}^\perp := \{ A \in \mathcal{T} \mid \hom(E, A) \simeq 0 \text{ for all } E \in \mathcal{E} \} \]
\[\perp \mathcal{E} := \{ A \in \mathcal{T} \mid \hom(A, E) \simeq 0 \text{ for all } E \in \mathcal{E} \} \]
For two collections $\mathcal{E}, \mathcal{F} \subseteq \mathcal{T}$ of objects we write $\mathcal{E} \perp \mathcal{F}$ to mean that $\hom(E, F) \simeq 0$ for all $E \in \mathcal{E}$ and $F \in \mathcal{F}$.

The following proposition collects well-known facts related to Bousfield localization, which we recall in order to fix notation (see e.g. [Ne01] §9, [MN06] §2.6).

Proposition 2.6 (Bousfield localization). Let \mathcal{T} be a triangulated category, and let $\mathcal{L}, \mathcal{R} \subseteq \mathcal{T}$ be thick subcategories satisfying the following condition:

\((\ast) \quad \mathcal{L} \perp \mathcal{R} \) and for every $A \in \mathcal{T}$ there exists a distinguished triangle $A' \to A \to A'' \to TA'$ with $A' \in \mathcal{L}$ and $A'' \in \mathcal{R}$.

Then the triangle in \((\ast)\) is unique up to unique isomorphism and is functorial in A. Moreover, the resulting functors $L : A \mapsto A'$ and $R : A \mapsto A''$ and morphisms $\lambda : L \to \id_T$ and $p : \id_T \to R$ enjoy the following properties:

(a) $\lambda_A : LA \to A$ is the terminal morphism to A from an object of \mathcal{L}. Dually, $\rho_A : A \to RA$ is initial among morphisms from A to an object of \mathcal{R}.

(b) $\mathcal{R} = \mathcal{L}^\perp$ and $\mathcal{L} = \perp \mathcal{R}$. In particular, \mathcal{L} and \mathcal{R} determine each other.

(c) \mathcal{L} is a coreflective subcategory of \mathcal{T}. Dually, \mathcal{L}^\perp is a reflective subcategory.

(d) The composition $\mathcal{L} \hookrightarrow \mathcal{T} \to \mathcal{T}/\mathcal{L}^\perp$ is an equivalence identifying the right adjoint of the inclusion $\mathcal{L} \hookrightarrow \mathcal{T}$ with the Verdier quotient $\mathcal{T} \to \mathcal{T}/\mathcal{L}^\perp$. Dually, the composition $\mathcal{L}^\perp \hookrightarrow \mathcal{T} \to \mathcal{T}/\mathcal{L}$ is an equivalence identifying the left adjoint of $\mathcal{L}^\perp \hookrightarrow \mathcal{T}$ with the Verdier quotient $\mathcal{T} \to \mathcal{T}/\mathcal{L}$.

(e) $\mathcal{L} = \ker(L) = \ker(R)$ and $\mathcal{R} = \ker(L) = \ker(R)$.

Definition 2.7. Following [MN06], if $\mathcal{L}, \mathcal{R} \subseteq \mathcal{T}$ are thick subcategories satisfying condition (\ast) of Proposition 2.6, we say that $(\mathcal{L}, \mathcal{R})$ is a pair of complementary subcategories of \mathcal{T}. The functorial distinguished triangle in (\ast) will be called the gluing triangle (at A) for the complementary pair $(\mathcal{L}, \mathcal{R})$.

We also recall the following immediate consequence of Proposition 2.6.

Corollary 2.8. If $(\mathcal{L}, \mathcal{R})$ and $(\mathcal{L}', \mathcal{R}')$ are two complementary pairs in \mathcal{T} such that $\mathcal{L} \subseteq \mathcal{L}'$ (equivalently: such that $\mathcal{R} \supset \mathcal{R}'$) with gluing triangle $L \to \id \to R \to TL$, resp. $\tilde{L} \to \id \to \tilde{R} \to T\tilde{L}$, then $\tilde{R} \simeq \tilde{R}R$ and $L\tilde{L} \simeq L$.

One can use Brown representability to produce complementary pairs:

Proposition 2.9. Let \mathcal{T} be a triangulated category with small, coproducts. If $\mathcal{S} \subseteq \mathcal{T}_c$ is a small, subset of compact objects, then $(\mathcal{S}_{\text{loc}}, \mathcal{S}^\perp)$ is a complementary pair of localizing, subcategories of \mathcal{T}, depending only on the thick subcategory $(\mathcal{S}) \subseteq \mathcal{T}_c$.

The proof of yet another well-known result, namely Neeman’s localization theorem ([Ne92a]), also works verbatim in the α-relative setting.

Theorem 2.10 (Neeman localization theorem). Let \mathcal{T} be a compactly, generated triangulated category. Let $\mathcal{L}_0 \subseteq \mathcal{T}_c$ be some (necessarily essentially small,) subset of compact objects, and let $\mathcal{L} := (\mathcal{L}_0)_{\text{loc}}$ be the localizing subcategory of \mathcal{T} generated by \mathcal{L}_0. Consider the resulting diagram of inclusions and quotient functors.

\[
\begin{array}{ccc}
\mathcal{L}_c & \hookrightarrow & \mathcal{T}_c \\
\downarrow & & \downarrow \\
\mathcal{L}_c/\mathcal{L} & \longrightarrow & \mathcal{T}_c/\mathcal{L}_c
\end{array}
\]
Then the following hold true:

(a) The induced functor F is fully faithful.
(b) The image of F consists of compact$_A$ objects of \mathcal{T}/\mathcal{L}.
(c) $F(\mathcal{T}/\mathcal{L}_c)$ is a cofinal subcategory of $(\mathcal{T}/\mathcal{L})_c$: for every $A \in (\mathcal{T}/\mathcal{L})_c$ there are objects $A' \in (\mathcal{T}/\mathcal{L})_c$ and $B \in \mathcal{T}_c/\mathcal{L}_c$ such that $A \oplus A' \simeq F(B)$. □

Not everything generalizes, however. As the next example shows, arbitrary small$_\alpha$ products are representable in a compactly$_\alpha$ generated category only when α is inaccessible (which is, essentially, the case of a genuine compactly generated category). As a consequence, the representation theorem for covariant functors ([Ne01] Thm. 2.1) is not available — it cannot even be formulated in the usual way. See also Example 2.22 for a related problem.

Example 2.11. Let \mathcal{T} be a compactly$_\alpha$ generated triangulated category, and assume that the cardinal number α is not inaccessible, i.e., that there exists a cardinal β with $\beta < \alpha$ and $2^\beta \geq \alpha$ (e.g. $\alpha = \aleph_1$). If $0 \neq A \in \mathcal{T}_c$ is a nontrivial compact$_\alpha$ object, then its β-fold product cannot exist in \mathcal{T}, because otherwise we would have $|\text{Hom}(A, \prod_\beta A)| = |\prod_\beta \text{Hom}(A, A)| \geq 2^\beta \geq \alpha$, in contradiction with the compact$_\alpha$-ness of A.

2.2. The spectrum of a \otimes-triangulated category. We recall from [Bat05] some basic definitions and results of Paul Balmer’s geometric theory of tensor triangulated categories, or “tensor triangular geometry”.

Definition 2.12. By a tensor triangulated category we always mean a triangulated category \mathcal{T} ([Ver96] [Ne01]) equipped with a tensor product $\otimes : \mathcal{T} \times \mathcal{T} \rightarrow \mathcal{T}$ (i.e., a symmetric monoidal structure, see [Ma98]); we denote the unit object by 1. We assume that \otimes is a triangulated functor in both variables, and we also assume that the natural switch $T(1) \otimes T(1) \rightarrow T(1) \otimes T(1)$ given by the tensor structure is equal to minus the identity. Following [Bat08], we call

$$R_T := \text{End}_\mathcal{T}(1) \quad \text{and} \quad R_T^\ast(1) := \bigoplus_{n \in \mathbb{Z}} \text{Hom}_\mathcal{T}(1, T^n(1))$$

the central ring and the graded central ring of $\mathcal{T} = (\mathcal{T}, \otimes, 1)$, respectively.

Remark 2.13. The central ring R_T is commutative, and it acts on the whole category via $f \mapsto r \cdot f := r \otimes f : A \simeq 1 \otimes A \rightarrow 1 \otimes B \simeq B$, for $r \in R_T$ and $f \in \text{Hom}(A, B)$; we use here the structural identifications $1 \otimes A \simeq A \simeq A \otimes 1$. This makes \mathcal{T} canonically into an R_T-linear category. Our hypothesis on the switch $T(1) \otimes T(1) \simeq T(1) \otimes T(1)$ ensures that the graded central ring R_T^\ast is graded commutative, by a classical argument. Also, it implies that the tensor product makes each graded $\text{Hom}^\ast(A, B) := \bigoplus_n \text{Hom}(A, T^n B)$ into a graded (left) module over R_T^\ast such that composition is bilinear up to a sign rule (see [Bat08] or [De08] § 2.1 for details). In the following, we will localize these graded modules at homogeneous prime ideals p of R_T^\ast, see 5.8

Definition 2.14 (The spectrum). Let \mathcal{T} be an essentially small \otimes-triangulated category. A prime tensor ideal \mathcal{P} in \mathcal{T} is a proper (i.e. $\mathcal{P} \subsetneq \mathcal{T}$) thick subcategory of \mathcal{T}, which is a tensor ideal ($A \in \mathcal{P}, B \in \mathcal{T} \Rightarrow A \otimes B \in \mathcal{P}$) and is prime ($A \otimes B \in \mathcal{P} \Rightarrow A \in \mathcal{P}$ or $B \in \mathcal{P}$). The spectrum of \mathcal{T}, denoted $\text{Spc}(\mathcal{T})$, is the small set of its prime ideals. The support of an object $A \in \mathcal{T}$ is the subset

$$\text{supp}(A) := \{ P \mid A \not\in P \} = \{ P \mid A \not\simeq 0 \text{ in } \mathcal{T}/P \} \subset \text{Spc}(\mathcal{T}).$$

We give the spectrum the Zariski topology, which has $\{ \text{Spc}(\mathcal{T}) \setminus \text{supp}(A) \}_{A \in \mathcal{T}}$ as a basis of open subsets. The space $\text{Spc}(\mathcal{T})$ is naturally equipped with a sheaf of commutative rings $\mathcal{O}_\mathcal{T}$ whose stalks are the local rings $\mathcal{O}_{\mathcal{T}, p} = R_{\mathcal{T}/p}$ (see [Bat05]). The resulting locally ringed space is denoted by $\text{Spec}(\mathcal{T}) := (\text{Spc}(\mathcal{T}), \mathcal{O}_\mathcal{T})$.
Remark 2.15. The spectrum $\text{Spc}(\mathcal{T})$ is a spectral space, in the sense of Hochster [Ho69]: it is quasi-compact, its quasi-compact open subsets form an open basis, and every irreducible closed subset has a unique generic point. The support $A \mapsto \text{supp}(A)$ is compatible with the tensor triangular structure, and is the finest such:

Proposition 2.16 (Universal property [Ba05]). The support $A \mapsto \text{supp}(A)$ has the following properties.

(SD1) $\text{supp}(0) = \emptyset$ and $\text{supp}(1) = \text{Spc}(\mathcal{T})$.
(SD2) $\text{supp}(A \oplus B) = \text{supp}(A) \cup \text{supp}(B)$.
(SD3) $\text{supp}(T A) = \text{supp}(A)$.
(SD4) $\text{supp}(B) \subset \text{supp}(A) \cup \text{supp}(C)$ if $A \to B \to C \to T A$ is distinguished.
(SD5) $\text{supp}(A \otimes B) = \text{supp}(A) \cap \text{supp}(B)$.

Moreover, if (X, σ) is a pair consisting of a topological space X together with an assignment $A \mapsto \sigma(A)$ from objects of \mathcal{T} to closed subsets of X, satisfying the above five properties (in which case we say that (X, σ) is a support datum on \mathcal{T}), then there exists a unique morphism of support data $f : (X, \sigma) \to (\text{Spc}(\mathcal{T}), \text{supp})$, i.e., a continuous map $f : X \to \text{Spc}(\mathcal{T})$ such that $\sigma(A) = f^{-1}\text{supp}(A)$ for all $A \in \mathcal{T}$. Concretely, f is defined by $f(x) := \{A \in \mathcal{T} \mid x \notin \sigma(A)\}$.

Terminology 2.17. In the following, by “a support” (X, σ) on some tensor triangulated category \mathcal{T} we will simply mean a space X together with some assignment $\sigma : \text{obj}(\mathcal{T}) \to 2^X$ possibly lacking (some of) the good properties of a support datum.

Thus, the spectrum $(\text{Spc}(\mathcal{T}), \text{supp})$ is the universal support datum on \mathcal{T}. It has another important characterization.

Definition 2.18. We say that a \otimes-ideal $\mathcal{J} \subset \mathcal{T}$ is radical if $A^n \in \mathcal{J}$ for some $n \geq 1$ implies $A \in \mathcal{J}$. A subset $Y \subset \text{Spc}(\mathcal{T})$ of the form $Y = \bigcup Z_i$, where each Z_i is closed with quasi-compact open complement, is called a Thomason subset.

Theorem 2.19 (Classification theorem [Ba05] [BKS07]). The assignments

$$\mathcal{J} \mapsto \bigcup_{A \in \mathcal{J}} \text{supp}(A) \quad \text{and} \quad Y \mapsto \{A \in \mathcal{T} \mid \text{supp}(A) \subset Y\}$$

define mutually inverse bijections between the set of radical thick \otimes-ideals of \mathcal{T} and the set of Thomason subsets of its spectrum $\text{Spc}(\mathcal{T})$.

Conversely, if (X, σ) is a support datum on \mathcal{T} inducing the above bijection and with X spectral (in which case we say that (X, σ) is a classifying support datum), then the canonical morphism $f : (X, \sigma) \to (\text{Spc}(\mathcal{T}), \text{supp})$ is invertible; in particular, $f : X \to \text{Spc}(\mathcal{T})$ is a homeomorphism.

So, up to canonical isomorphism, $(\text{Spc}(\mathcal{T}), \text{supp})$ is the unique classifying support datum on \mathcal{T}. In examples so far, all explicit descriptions of the spectrum have been obtained from the Classification theorem, by proving that a specific concrete support datum is classifying.

2.3. **Rigid objects.** It often happens that the tensor product in a triangulated category is closed, i.e., it has an internal Hom functor $\text{Hom} : \mathcal{T}^{op} \times \mathcal{T} \to \mathcal{T}$ providing a right adjoint $\text{Hom}(A, ?) : \mathcal{T} \to \mathcal{T}$ of $? \otimes A : \mathcal{T} \to \mathcal{T}$ for each object $A \in \mathcal{T}$.

Being right adjoint to a triangulated functor, each $\text{Hom}(A, ?)$ is triangulated. Under some mild hypothesis, Hom preserves distinguished triangles also in the first variable: see [Mu07], App. C (I thank Amnon Neeman for the reference). In general, it is easily verified that the functor $\text{Hom}(?, A)$ sends every distinguished triangle to a triangle that, while possibly not belonging to the triangulation, still yields long exact sequences upon application of the Hom functors $\text{Hom}_\mathcal{T}(B, ?)$. The latter property suffices for many purposes, such as the proof of Prop. 2.24 below.
Example 2.21. If \mathcal{T} is a genuine compactly generated tensor triangulated category where the tensor commutes with coproducts, one obtains the internal Hom for free via Brown representability (simply represent the functors $\text{Hom}_\mathcal{T}(?, \otimes A, B)$).

In the α-relative setting, the internal Hom is only available when the source object is compact. Fortunately, this suffices for our purposes. More precisely:

Example 2.22. Let \mathcal{T} be a compactly generated tensor triangulated category (Def. 2.21) where \otimes commutes with small α coproducts and where $\mathcal{T}_c \otimes \mathcal{T}_c \subset \mathcal{T}_c$. With these assumptions, if $A \in \mathcal{T}_c$ then Brown representability (Thm. 2.24) applies to the functor $\text{Hom}(?, \otimes A, B) : \mathcal{T} \to \text{Ab}$, providing the right adjoint $\text{Hom}(A, ?) : \mathcal{T} \to \mathcal{T}$ to tensoring with A. In general though there is a problem: if α is not inaccessible, i.e., if there exists a cardinal β with $\beta < \alpha$ and $2^\beta \geq \alpha$ (e.g., $\alpha = \aleph_1$), then $\text{Hom}(A, ?)$ cannot be everywhere defined, as soon as $0 \not\simeq 1 \in \mathcal{T}_c$. Indeed, if $X := \text{Hom}(\prod_\alpha 1, 1) \in \mathcal{T}$ were defined, we would have a natural isomorphism

$$\text{Hom}(A, X) \simeq \text{Hom}(A \otimes \prod_\beta 1, 1) \simeq \text{Hom}(\prod_\beta A, 1) \simeq \prod_\beta \text{Hom}(A, 1).$$

Choosing $A = 1 \not\simeq 0$ we would obtain $|\text{Hom}(1, X)| = |\prod_\beta \text{End}(1)| \geq 2^\beta \geq \alpha$, contradicting the hypothesis that 1 is compact. (Alternatively, we see that $X \simeq \prod_\beta 1 \in \mathcal{T}_c$, which is impossible by Example 2.11).

Definition 2.23. Let \mathcal{T} be a closed \otimes-triangulated category. We write $A^\vee := \text{Hom}(A, 1)$ for the dual of an object $A \in \mathcal{T}$. An object $A \in \mathcal{T}$ is rigid (or strongly dualizable), if the morphism $A^\vee \otimes ? \to \text{Hom}(A, ?) : \mathcal{T} \to \mathcal{T}$ obtained canonically by adjunction is an isomorphism. The \otimes-category \mathcal{T} is rigid if all its objects are rigid.

Proposition 2.24 (See [HPS97, App. A]). Let \mathcal{T} be a closed \otimes-triangulated category. The full subcategory of rigid objects is a thick \otimes-triangulated subcategory of \mathcal{T} (in particular it contains the tensor unit). The contravariant functor $A \mapsto A^\vee$ restricts to a duality (i.e., $(?)^\vee \simeq \text{id}$) on this subcategory. \square

Convention 2.25. We say that $\mathcal{T} = (\mathcal{T}, \otimes, 1)$ is a compactly generated tensor triangulated category if it is a tensor triangulated category (Def. 2.21) and if \mathcal{T} is compactly generated (Def. 2.21) for some uncountable regular cardinal α, possibly with $\alpha = \text{cardinality of a proper class (what we dub the “genuine” case, that is, the usual sense of “compactly generated”). Moreover, we assume that

(a) for every $A \in \mathcal{T}$ the triangulated functors $A \otimes ?$ and $? \otimes A$ preserve small α coproducts, and

(b) $\mathcal{T}_c \otimes \mathcal{T}_c \subset \mathcal{T}_c$ (cf. Ex. 2.22) and the compact and rigid objects of \mathcal{T} coincide.

In particular, \mathcal{T}_c is a (rigid) tensor triangulated subcategory of \mathcal{T}. From now on, we will also drop the fixed cardinal α from our terminology.

Remark 2.26. In the case of a genuine compactly generated category, as well as in the monogenic case (i.e., $1 \in \mathcal{T}_c$ and $\mathcal{T} = (1)_{\text{loc}}$), the hypothesis $\mathcal{T}_c \otimes \mathcal{T}_c \subset \mathcal{T}_c$ is superfluous. Also, in general (and assuming (a)), to have equality of compact and rigid objects one needs only check that 1 is compact and that \mathcal{T} has a generating set consisting of compact and rigid objects.

Lemma 2.27. Let \mathcal{T} be a compactly generated \otimes-triangulated category and $\mathcal{J} \subset \mathcal{T}_c$ a \otimes-ideal of its compact objects. Then $(\mathcal{J})_{\text{loc}}$ is a localizing \otimes-ideal of \mathcal{T}.

Proof. For an object $A \in \mathcal{T}$, consider $\mathcal{S}_A := \{X \in \mathcal{T} \mid X \otimes A \in (\mathcal{J})_{\text{loc}}\}$. We must show that $\mathcal{S}_A = \mathcal{J}$ for all $A \in (\mathcal{J})_{\text{loc}}$. Note that \mathcal{S}_A is always a localizing triangulated subcategory of \mathcal{T}, because so is $(\mathcal{J})_{\text{loc}}$ and because \otimes preserves distinguished triangles and small coproducts. If $A \in \mathcal{J}$, then $\mathcal{T}_c \subset \mathcal{S}_A$ by hypothesis.
and therefore $S_A = T$. Now consider $U := \{A \in T \mid S_A = T\}$. We have just seen that $J \subset U$, and one verifies immediately that U is a localizing subcategory of T. It follows that $(J)_{\text{loc}} \subset U$, as required. □

The next result was first considered in stable homotopy by H. R. Miller [M192], cf. also [HPS97, Thm. 3.3.3] or [BIK09, Prop. 8.1]. In the topologist’s jargon, it says that “finite localizations are smashing”.

Theorem 2.28 (Miller). Let T be a compactly generated \otimes-triangulated category (as in Convention [2.27]), and let $J \subset T_0$ be a tensor ideal of its compact objects. Then $J^\perp = (J)_{\text{loc}}^\perp$ is a localizing tensor ideal, so that $(J)_{\text{loc}}, J^\perp$ is a pair of complementary localizing tensor ideals of T.

Proof. It follows from Prop. 2.29 that $(J)_{\text{loc}}, J^\perp$ is a complementary pair of localizing subcategories, and from Lemma 2.27 that $(J)_{\text{loc}}$ is a \otimes-ideal of T. It remains to see that J^\perp is a \otimes-ideal. Let $A \in J^\perp$, and consider the subcategory $V_A := \{X \in T \mid X \otimes A \subset J^\perp\}$ of T. It is triangulated and localizing because J^\perp is. It contains every compact object: if $C \in T_0$ and $J \in T$, then $\text{Hom}(J, C \otimes A) \approx \text{Hom}(J \otimes C^!, A) \approx 0$ because C is rigid and J is an ideal. Therefore $V_A = (T_0)_{\text{loc}} = T$, that is to say $T \otimes A \subset J^\perp$, for all $A \in J^\perp$. □

Remark 2.29. If both subcategories $L, R \subset T$ in a complementary pair (L, R) are \otimes-ideals, then the gluing triangle for an arbitrary object $A \in T$ is obtained by tensoring A with the gluing triangle for the \otimes-unit 1. (This is an exercise application of the uniqueness of the gluing triangle, see Prop. 2.6)

2.4. **Central localization.** In a tensor triangulated category T, as we already mentioned, the tensor product naturally endows the Hom sets with an action of the central ring $R_T = \text{End}_T(1)$, making T an R_T-linear category. If $S \subset R_T$ is a multiplicative system, one may localize each Hom set at S. As the next theorem shows, the resulting category still carries a tensor triangulated structure. Let us be more precise.

Construction 2.30. Let C be an R-linear category, for some commutative ring R. Let $S \subset R$ be a multiplicative system (i.e., $1 \in S$ and $S \cdot S \subset S$). Define $S^{-1}C$ to be the category with the same objects as C, with Hom sets the localized modules $S^{-1}\text{Hom}_C(A, B)$ and with composition defined by $(\frac{f}{s}, \frac{g}{t}) \mapsto \frac{sf}{st}$. One verifies easily that $S^{-1}C$ is an $S^{-1}R$-linear category and that there is a R-linear canonical functor $\text{loc}: C \rightarrow S^{-1}C$. It is the universal functor from C to an $S^{-1}R$-linear category.

Definition 2.31. Let T be a tensor triangulated category, and let $S \subset R_T$ be a multiplicative system of its central ring. We call $S^{-1}T$ (as in 2.30) the central localization of T at S. The next result shows that it is again a tensor triangulated category.

Theorem 2.32 (Central localization [Ba08, Thm. 3.6]). Consider the thick \otimes-ideal $J = \langle \text{cone}(s) \mid s \in S \rangle_\otimes \subset T$ generated by the cones of maps in S. Then there is a canonical isomorphism $S^{-1}T \approx T/J$ which identifies $\text{loc}: T \rightarrow S^{-1}T$ with the Verdier quotient $q: T \rightarrow T/J$. In particular, the central localization $S^{-1}T$ inherits a canonical \otimes-triangulated structure such that loc is \otimes-triangulated; conversely, q is the universal R-linear triangulated functor to an $S^{-1}R$-linear \otimes-triangulated category. □

The procedure of central localization can be adapted to compactly generated categories in a most satisfying way, as we expound in the next theorem.

Theorem 2.33. Let T be a compactly generated \otimes-triangulated category (as in 2.29), and let S be a multiplicative subset of the central ring R_T. Write $J_S := \langle \text{cone}(s) \mid s \in S \rangle_\otimes \subset T_0$, $\mathcal{L}_S := (J_S)_{\text{loc}} \subset T$.

The objects of $\mathcal{T}_S := (\mathcal{L}_S)^\perp$ will be called S-local objects. Then the pair $(\mathcal{L}_S, \mathcal{T}_S)$ is a complementary pair (Def. 2.7) of localizing \otimes-ideals of \mathcal{T}. In particular, the gluing triangle for an object $A \in \mathcal{T}$ is obtained by tensoring A with the gluing triangle for the \otimes-unit

$$L_S(1) \xrightarrow{\varepsilon} 1 \xrightarrow{\eta} R_S(1) \xrightarrow{\rho} TL_S(1).$$

This situation has the following properties:

(a) $\mathcal{L}_S = L_S(1) \otimes \mathcal{T}$ and $\mathcal{T}_S = R_S(1) \otimes \mathcal{T}$.
(b) $\varepsilon : L_S(1) \otimes L_S(1) \simeq L_S(1)$ and $\eta : R_S(1) \simeq R_S(1) \otimes R_S(1)$.
(c) \mathcal{T}_S is again a compactly generated \otimes-triangulated category, as in Conv. 2.25, with tensor unit $R_S(1)$. (Note that $R_S(1)$ is compact in \mathcal{T}_S, but need not be in \mathcal{T}.)
(d) Its compact objects are $(\mathcal{T}_S)_c = (R_S(\mathcal{T}_c)) \subset \mathcal{T}_S$. (Again, they are possibly non compact in \mathcal{T}.)
(e) The functor $R_S = R_S(1) \otimes ? : \mathcal{T} \to \mathcal{T}_S$ is an R_T-linear \otimes-triangulated functor commuting with small coproducts. It takes generating sets to generating sets.
(f) To apply $\text{Hom}(1, ?)$ on $1 \xrightarrow{\eta} R_S(1)$ induces the localization $R_T \to S^{-1}R_T$.
 It follows in particular that $R_{T \otimes S} = S^{-1}R_T$.
(g) An object $A \in \mathcal{T}$ is S-local if and only if $s \cdot \text{id}_A$ is invertible for every $s \in S$.
(h) If $A \in \mathcal{T}_c$, then $\eta : B \to R_S(1) \otimes B$ induces an isomorphism
 $$S^{-1}\text{Hom}_\mathcal{T}(A, B) \simeq \text{Hom}_\mathcal{T}(A, R_S(1) \otimes B)$$
 for every $B \in \mathcal{T}$.

Remarks 2.34. (a) The category \mathcal{L}_S is both compactly generated and a tensor triangulated category but, since in general its \otimes-unit $L_S(1)$ is not compact, it may fail to be a compactly generated tensor triangulated category as defined in Convention 2.25.

(b) There are graded versions of the above results, where one considers multiplicative systems of the graded central ring $R_T^+ = \text{End}^+(1)$. We don’t use them here, so we have omitted their (slightly more complicated) formulation.

(c) We don’t really need that all compact objects be rigid (as was assumed in Convention 2.25) in order to prove Theorem 2.33. More precisely, one can show that \mathcal{T}_S is a \otimes-ideal in \mathcal{T} without appealing to Miller’s Theorem. It suffices to use the R_T-linearity of the tensor product and the characterization of S-local objects (part (g) of the theorem): if $A \in \mathcal{T}_S$ and $B \in \mathcal{T}$, then $s \cdot \text{id}_{A \otimes B} = (s \cdot \text{id}_A) \otimes B$ is invertible for all $s \in S$ and therefore $A \otimes B \in \mathcal{T}_S$.

Proof of Theorem 2.33. The first claim is Miller’s Theorem 2.28 and Remark 2.29 applied to the \otimes-ideal $\mathcal{J}_S \subset \mathcal{T}_c$. Thus $(\mathcal{L}_S, \mathcal{T}_S)$ is a complementary pair of localizing \otimes-ideals. Part (a) and (b) are then formal consequences. The statements in (c)-(e) are either clear, or follow from Neeman’s Localization Theorem 2.10 (the R_T-linearity in (e) is Lemma 2.40 below). Let’s now turn to the more specific claims (f)-(h).

Lemma 2.35. The quotient functor $q : \mathcal{T} \to \mathcal{T}/\mathcal{L}_S$ is R_T-linear and it inverts all endomorphisms of the form $s \cdot \text{id}_A$ with $s \in S$ and $A \in \mathcal{T}$.

Proof. Let $s \in S$ and $A \in \mathcal{T}$. Then $\text{cone}(s \cdot \text{id}_A) = \text{cone}(s) \otimes A$ belongs to \mathcal{L}_S, because $\text{cone}(s) \in \mathcal{J}_S \subset \mathcal{L}_S$ by definition and \mathcal{L}_S is a \otimes-ideal. □
In particular, by the universal property of central localization (2.31), the quotient functor \(q : \mathcal{T} \to \mathcal{T}/\mathcal{L}_S \) factors as

\[
\begin{array}{ccc}
\mathcal{T} & \xrightarrow{q} & \mathcal{T}/\mathcal{L}_S \\
\text{loc} & \downarrow & \\
S^{-1}\mathcal{T} & \xrightarrow{\eta} & \\
\end{array}
\]

We clearly have a commutative square

(2.36)

\[
\begin{array}{ccc}
S^{-1}\mathcal{T} & \xrightarrow{\eta} & \mathcal{T}/\mathcal{L}_S \\
\uparrow & & \uparrow \\
S^{-1}\mathcal{T}_e & \xrightarrow{\eta_e} & \mathcal{T}_e/\mathcal{J}_S \\
\end{array}
\]

where every functor is the identity or an inclusion on objects, and where \(\eta_e \) is the canonical identification of Theorem 2.32; the right vertical functor is fully faithful by Theorem 2.10 (a).

Proposition 2.37. The canonical functor \(\eta \) restricts to an isomorphism

\[
\eta : S^{-1}\text{Hom}_\mathcal{T}(C, B) \xrightarrow{\sim} \text{Hom}_{\mathcal{T}/\mathcal{L}_S}(C, B)
\]

of \(S^{-1}\text{R}_\mathcal{T} \)-modules for all compact \(C \in \mathcal{T}_e \) and arbitrary \(B \in \mathcal{T} \).

Proof. Fix a \(C \in \mathcal{T}_e \). We may view

(2.38)

\[
\eta : S^{-1}\text{Hom}_\mathcal{T}(C, ?) \xrightarrow{\sim} \text{Hom}_{\mathcal{T}/\mathcal{L}_S}(C, ?)
\]

as a morphism of homological functors to \(S^{-1}\text{R}_\mathcal{T} \)-modules, both of which commute with small coproducts. Moreover, \(\eta \) is an isomorphism on compact objects, as we see from (2.36). It follows that (2.38) is an isomorphism on the localizing subcategory generated by \(\mathcal{T}_e \), which is equal to the whole category \(\mathcal{T} \).

Part (h) of the theorem is now an easy consequence, provided we correctly identify the isomorphism in question.

Corollary 2.39. Let \(C, B \in \mathcal{T} \) with \(C \) compact. Then \(\eta_B : B \to \text{R}_S(B) \) induces an isomorphism \(\beta : S^{-1}\text{Hom}_\mathcal{T}(C, B) \xrightarrow{\sim} \text{Hom}_{\mathcal{T}}(C, \text{R}_S(B)) \) of \(\text{R}_\mathcal{T} \)-modules.

Proof. Recall from 2.6 (c)-(d) that \(q \) has a fully faithful right adjoint \(q_r \) such that \(\text{R}_S = q_rq \). Since \(\eta \) is natural, the following square commutes for all \(f : C \to B \),

\[
\begin{array}{ccc}
C & \xrightarrow{\eta_c} & q_cq(C) \\
\downarrow & & \downarrow q_cq(f) \\
B & \xrightarrow{\eta_B} & q_rq(B) \\
\end{array}
\]

showing that the next (solid) square is commutative.
Notice that \((\eta_C)^*\) is an isomorphism by Lemma 2.37 (a). By the compactness of \(C\) and by Proposition 2.37, \(q\) induces the isomorphism \(\overline{\eta}\). Composing this isomorphism with the other two, we see that \(\beta\), the factorization of \((\eta_B)^*\), through \(\text{loc}\), is an isomorphism as claimed. □

Lemma 2.40. The endofunctors \(L_S\) and \(R_S\) are \(R_T\)-linear.

Proof. This can be seen in various ways. For instance, by applying the functorial gluing triangle \(L_S \rightarrow \text{id} \rightarrow R_S \rightarrow T L_S\) to \(r \cdot f : A \rightarrow B\), resp. by applying it to \(f : A \rightarrow B\) and then multiplying by \(r\), we obtain two commutative squares

\[
\begin{array}{ccc}
A & \xrightarrow{\eta_A} & R_S A \\
\downarrow{r \cdot f} & & \downarrow{r \cdot R_S (f)} \\
B & \xrightarrow{\eta_B} & R_S B
\end{array}
\quad \quad
\begin{array}{ccc}
A & \xrightarrow{\eta_A} & R_S A \\
\downarrow{r} & & \downarrow{r \cdot R_S (f)} \\
B & \xrightarrow{\eta_B} & R_S B.
\end{array}
\]

In particular, we see that the difference \(d := R_S (r \cdot f) - r \cdot R_S (f)\) composed with \(\eta_A\) is zero, so it must factor through \(T L_S A \in L_S\). But the only map \(T L_S A \rightarrow R_S B\) is zero, hence \(d = 0\), that is \(R_S (r \cdot f) = r \cdot R_S (f)\). A similar argument applies to show that \(L_S\) is \(R_T\)-linear.

Together with Lemma 2.35, the next lemma provides part (g).

Lemma 2.41. If \(A \in \mathcal{T}\) is such that \(s \cdot \text{id}_A\) is invertible for all \(s \in S\), then \(\eta_A : A \rightarrow R_S (A)\) is an isomorphism. In particular, \(A \in \text{Im}(R_S) = T_S\).

Proof. The map \(\eta_A : A \rightarrow R_S (A)\) induces the following commutative diagram of natural transformations between cohomological functors \(T^{\text{op}} \rightarrow R_T\text{-Mod}:

\[
\begin{array}{ccc}
\text{Hom}(\mathcal{T}, A) & \xrightarrow{(\eta_A)_*} & \text{Hom}(\mathcal{T}, R_S A) \\
\downarrow{\text{loc}} & & \downarrow{\beta} \\
S^{-1} \text{Hom}(\mathcal{T}, A)
\end{array}
\]

The hypothesis on \(A\) implies that \(\text{loc}\) is an isomorphism. By Corollary 2.39, the map \(\beta\) is an isomorphism on compact objects. Hence their composition \((\eta_A)_*\) is a morphism of cohomological functors both of which send coproducts to products – indeed they are representable – and such that it is an isomorphism at each \(C \in T_c\). It follows that \((\eta_A)_*\) is an isomorphism at every object. By Yoneda, \(\eta_A\) is an isomorphism in \(\mathcal{T}\), showing that \(A \in \text{Im}(R_S)\). □

Finally, part (f) is (h) for \(A = B = 1\); note for the second assertion that \(\text{Hom}(1, R_S (1)) \approx \text{Hom}(R_S (1), R_S (1)) = R_S^{-1} T\). This ends the proof of Theorem 2.33. □

Remark 2.42. The authors of [BHK09] prove very similar results (and much more) for genuine compactly generated categories, without need for a tensor structure. Instead of the central ring \(R_T\), they posit a noetherian graded commutative ring acting on \(\mathcal{T}\) via endomorphisms of \(\text{id}_T\), compatibly with the translation. If \(\mathcal{T}\) is moreover a tensor triangulated category (with our same hypotheses 2.25), they also prove the results in Theorem 2.33 for the graded central ring \(R_T\), but only when the latter is noetherian; see [BHK09 §8]. Wishing to apply their results, we met the apparently insurmountable problem that in the \(\alpha\)-relative setting Brown representability for the dual, which is crucially used in \(\text{loc. cit.}\), is not available (cf. Ex. 2.11).
3. Classification in compactly generated categories

3.1. An abstract criterion. Let \(K \) be an essentially small \(\otimes \)-triangulated category. In most examples so far where the Balmer spectrum \(\text{Spec}(K) \) has been described explicitly, \(K \) is the subcategory \(\mathcal{T}_c \) of compact and rigid objects in some compactly generated \(\otimes \)-triangulated category \(\mathcal{T} \). Indeed, the ambient category \(\mathcal{T} \) provides each time essential tools for the computation of \(\text{Spec}(K) \). The next theorem, abstracted from the example of modular representation theory (see Example 3.2), yields a general method for precisely this situation.

Theorem 3.1. Let \(\mathcal{T} \) be a compactly generated \(\otimes \)-triangulated category, as in Convention [2.25]. Let \(X \) be a spectral topological space, and let \(\sigma : \text{obj}(\mathcal{T}) \to 2^X \) be a function assigning to every object of \(\mathcal{T} \) a subset of \(X \). Assume that the pair \((X, \sigma)\) satisfies the following ten axioms:

\[
\begin{align*}
(S0) & \quad \sigma(0) = \emptyset. \\
(S1) & \quad \sigma(1) = X. \\
(S2) & \quad \sigma(A \oplus B) = \sigma(A) \cup \sigma(B). \\
(S3) & \quad \sigma(T A) = \sigma(A). \\
(S4) & \quad \sigma(B) \subseteq \sigma(A) \cup \sigma(C) \text{ for every distinguished triangle } A \to B \to C \to TA. \\
(S5) & \quad \sigma(A \otimes B) = \sigma(A) \cap \sigma(B) \text{ for every compact } A \in \mathcal{T}_c \text{ and arbitrary } B \in \mathcal{T}. \\
(S6) & \quad \sigma(\bigcup_i A_i) = \bigcup_i \sigma(A_i) \text{ for every small family } \{A_i\}_i \subseteq \mathcal{T}. \\
(S7) & \quad \sigma(A) \text{ is closed in } X \text{ with quasi-compact complement } X \setminus \sigma(A) \text{ for all } A \in \mathcal{T}_c. \\
(S8) & \quad \text{For every closed subset } Z \subseteq X \text{ with quasi-compact complement, there exists an } A \in \mathcal{T}_c \text{ with } \sigma(A) = Z. \\
(S9) & \quad \sigma(A) = \emptyset \Rightarrow A \simeq 0.
\end{align*}
\]

Then the restriction of \((X, \sigma)\) to \(\mathcal{T}_c \) is a classifying support datum, so that, by Theorem 2.1, the induced canonical map \(X \to \text{Spec}(\mathcal{T}_c) \) is a homeomorphism.

Example 3.2. Let \(G \) be a finite group and \(k \) a field. Let \(\mathcal{T} \) be the stable module category \(\text{stmod}(kG) := \text{mod}(kG)/\text{proj}(kG) \) of finitely generated \(kG \)-modules, equipped with the tensor product \(\otimes := \otimes_k \) (with diagonal \(G \)-action) and the unit object \(1 := k \) (with trivial \(G \)-action); see [Ca96]. Then there is a homeomorphism \(\text{Spc}(\text{stmod}(kG)) \simeq \text{Proj}(H^*(G; k)). \)

Indeed, we may embed \(\text{stmod}(kG) \) as the full subcategory of compact and rigid objects inside \(\text{StMod}(kG) \), the stable category of possibly infinite dimensional \(kG \)-modules. The latter is a (genuine) compactly generated category as in [2.25] cf. e.g. [Ro97] [BIK09, §10]. Let \(R := H^*(G; k) = \text{End}_{\text{stmod}(kG)}(k, k) \) be the cohomology ring of \(G \). Let \(X := \text{Proj}(H^*(G; k)) = \text{Spec}^b(H^*(G; k)) \setminus \{m\} \), where \(m = H^{>0}(G; k) \). Consider on \(\text{StMod}(kG) \) the support \(\sigma : \text{obj}(\mathcal{T}) \to 2^X \) given by the support variety of a module \(M \in \text{StMod}(kG) \), as introduced in [BCR96]. It follows from the results of loc. cit. that \((X, \sigma)\) satisfies all of our axioms (S0)-(S9). Most non-trivially, (S5) holds by the Tensor Product theorem [BCR96, Thm. 10.8] and (S9) by, essentially, Chouinard’s theorem. Therefore by Theorem 3.1 there is a unique isomorphism \((X, \sigma) \simeq (\text{Spec}(\text{stmod}(kG)), \text{supp})\) of support data on \(\text{stmod}(kG) \).

Before we give the proof of the theorem, we note that a common way of obtaining supports \((X, \sigma)\) on \(\mathcal{T} \) is by constructing a suitable family of homological functors \(F_x : \mathcal{T} \to \mathcal{A}_x \), \(x \in X \). We make this intuition precise in the following – somewhat pedant – lemma, whose proof is a series of trivial verifications left to the reader.

Lemma 3.3. Consider a family \(\mathcal{F} = \{F_x : \mathcal{T} \to \mathcal{A}_x\}_{x \in X} \) of functors parametrized by a topological space \(X \). Assume that each \(\mathcal{A}_x \) has a zero object 0 (i.e., 0 is initial and final in \(\mathcal{A}_x \)). For each \(A \in \mathcal{T} \) we define
\[
\sigma_\mathcal{F}(A) := \{x \in X \mid F_x(A) \neq 0 \text{ in } \mathcal{A}_x\} \subset X.
\]
Then, if the functors $F = \{F_x\}_x$ satisfy condition (Fn) of the following list, the induced support (X, σ_X) satisfies the corresponding hypothesis (Sn) of Theorem 3.1

(F0) $F_x(0) \simeq 0 \in \mathcal{A}_x$.

(F1) $F_x(1) \not\simeq 0 \in \mathcal{A}_x$.

(F2) \mathcal{A}_x is additive and F_x is an additive functor (thus (F2) \Rightarrow (F0)).

(F3) \mathcal{A}_x is equipped with an endoequivalence T and $F_xT \simeq TF_x$.

(F4) \mathcal{A}_x is abelian and $F_xA \rightarrow F_xB \rightarrow F_xC$ is exact for every distinguished triangle $A \rightarrow B \rightarrow C \rightarrow TA$.

(F5) $\mathcal{A}_x = (\mathcal{A}_x, \otimes)$ is a tensor category such that

$$M \otimes N \simeq 0 \iff M \simeq 0 \text{ or } N \simeq 0,$$

and there exist isomorphisms

$$F_x(A \otimes B) \simeq F_x(A) \otimes F_x(B)$$

at least for $A \in \mathcal{T}_c$ compact and $B \in \mathcal{T}$ arbitrary.

(F6) F_x preserves small coproducts.

(F9) The family $F = \{F_x\}_{x \in X}$ detects objects, i.e.: $F_x(A) \simeq 0 \forall x \Rightarrow A \simeq 0$. □

A functor F with properties (F2), (F3) and (F4) is usually called a stable homological functor (also recalled in Def. 5.1 below). Note also that the only collective property of the family F is (F9).

In this generality, the translations of conditions (S7) and (S8) remain virtually identical, so we omitted them from our list (but see Prop. 3.12 below for the discussion of a significant special case).

Let us now prove Theorem 3.1. For any subset $Y \subset X$, let us use the notation

$$\mathcal{C}_Y := \{A \in \mathcal{T}_c \mid \sigma(A) \subset Y\} \subset \mathcal{T}_c$$

$$\mathcal{T}_Y := (\mathcal{C}_Y)_{\text{loc}} \subset \mathcal{T}.$$

We begin with some easy observations:

Lemma 3.4. (a) The subcategory $\mathcal{C}_Y \subset \mathcal{T}_c$ is a radical thick \otimes-ideal. In particular, it is a thick triangulated subcategory and thus $\mathcal{C}_Y = (\mathcal{T}_Y)_c$.

(b) If $A \in \mathcal{T}_Y$, then $\sigma(A) \subset Y$.

Proof. (a) It follows immediately from axioms (S0) and (S2)-(S5) that \mathcal{C}_Y is a thick triangulated tensor ideal of \mathcal{T}_c. Now let $A \in \mathcal{T}_c$ with $A^{\otimes n} \in \mathcal{C}_Y$ for some $n \geq 1$. This means $\sigma(A^{\otimes n}) \subset Y$ and therefore $\sigma(A) \subset Y$ by (S5). Thus \mathcal{C}_Y is radical.

(b) By the axioms (S0), (S2)-(S4) and (S6), the full subcategory $\{A \in \mathcal{T} \mid \sigma(A) \subset Y\}$ of all objects supported on Y is a localizing triangulated subcategory of \mathcal{T}. Since it obviously contains \mathcal{C}_Y, it must contain $\mathcal{T}_Y = (\mathcal{C}_Y)_{\text{loc}}$. □

Lemma 3.5 (cf. [BCR97, Prop. 3.3]). Let $\mathcal{E} \subset \mathcal{T}_c$ be any self-dual collection of compact objects, meaning that $\mathcal{E} = \mathcal{E}^\vee := \{E^\vee \mid E \in \mathcal{E}\}$, and let $\sigma(\mathcal{E}) := \bigcup_{E \in \mathcal{E}} \sigma(E) \subset X$ denote their collective support. Then

$$\langle \mathcal{E} \rangle_\otimes = \mathcal{C}_{\sigma(\mathcal{E})}$$

in \mathcal{T}_c, that is, the thick \otimes-ideal of \mathcal{T}_c generated by \mathcal{E} consists precisely of the compact objects which are supported on $\sigma(\mathcal{E})$.

Proof. Let us write $Y := \sigma(\mathcal{E})$. Each of the thick subcategories $\langle \mathcal{E} \rangle_\otimes$ and \mathcal{C}_Y of \mathcal{T}_c determines a complementary pair in \mathcal{T} by Proposition 2.9, namely $(\langle \mathcal{E} \rangle_\otimes, (\mathcal{E})^\vee_{\text{loc}})$ and $(\mathcal{T}_Y, (\mathcal{T}_Y)^\vee_{\text{loc}})$, with gluing triangles

$$\xymatrix{ L(\langle \mathcal{E} \rangle_\otimes) \ar[r]^\text{id}_\mathcal{T} & R(\langle \mathcal{E} \rangle_\otimes) \ar[r] & TL(\langle \mathcal{E} \rangle_\otimes) \ar[d]^\text{id}_\mathcal{T} \ar[r] & \text{ and } \ar[l] }$$

$$\xymatrix{ L_{\mathcal{C}_Y} \ar[r]^\text{id}_\mathcal{T} & R_{\mathcal{C}_Y} \ar[r] & T L_{\mathcal{C}_Y} }.$$
respectively. Moreover, the two thick subcategories can be recovered as
\[\langle E \rangle_{\oplus} = (\text{Im}(L_{\langle E \rangle_{\oplus}}))_c \quad \text{and} \quad C_Y = (\text{Im}(L_{C_Y}))_c. \]

Thus, in order to prove the lemma, it suffices to find an isomorphism \(L_{\langle E \rangle_{\oplus}} \simeq L_{C_Y}. \)

Since \(C_Y \) is a thick \(\otimes \)-ideal (by Lemma 3.4 (a)) and it contains \(E \), we must have the inclusion \(\langle E \rangle_{\oplus} \subseteq C_Y \) and thus \(\langle E \rangle_{\oplus,\text{loc}} \subseteq T_Y \). It follows from Corollary 2.3 that \(L_{\langle E \rangle_{\oplus}} L_{C_Y} \simeq L_{\langle E \rangle_{\oplus}}. \) Hence, for any \(A \in T \), the first of the above gluing triangles applied to the object \(L_{C_Y}(A) \) takes the form

\[\begin{array}{ccc}
L_{\langle E \rangle_{\oplus}}(A) & \longrightarrow & L_{C_Y}(A) \\
& \longrightarrow & R_{\langle E \rangle_{\oplus}} L_{C_Y}(A) \\
& \longrightarrow & TL_{\langle E \rangle_{\oplus}}(A)
\end{array} \]

Since \(A \in T \) is arbitrary, we have reduced the problem to proving that the third object \(B := R_{\langle E \rangle_{\oplus}} L_{C_Y}(A) \) in the distinguished triangle \((\ast)\) is zero. By axiom (S9), it suffices to prove the following

Claim: \(\sigma(B) = 0 \).

Indeed, since the first two objects in \((\ast)\) belong to the triangulated category \(T_Y \), so does \(B \). Therefore \(\sigma(B) \subseteq Y \) by Lemma 3.4 (b). Let \(E \in \mathcal{E} \), and let \(C \) be any compact object of \(T \). Then

\[\text{Hom}_T(C, E^\vee \otimes B) \simeq \text{Hom}_T(C \otimes E, B) \simeq 0 \]

because \(E \in T_Y \) is rigid (for the first isomorphism), and because \(C \otimes E \in \langle E \rangle_{\oplus} \) and \(B \in \text{Im}(R_{\langle E \rangle_{\oplus}}) = \langle E \rangle_{\oplus} \) (for the second one). But this implies \(E^\vee \otimes B \simeq 0 \), because compact objects generate \(T \). Hence \(\sigma(E^\vee \otimes B) = \emptyset \) by (S0). Using this fact, together with \(\sigma(B) \subseteq Y = \sigma(E) = \sigma(E^\vee) \), we conclude that

\[\sigma(B) = \left(\bigcup_{E \in \mathcal{E}} \sigma(E^\vee) \right) \cap \sigma(B) = \bigcup_{E \in \mathcal{E}} \sigma(E^\vee) \cap \sigma(B) \overset{(S5)}{=} \bigcup_{E \in \mathcal{E}} \sigma(E^\vee \otimes B) = \emptyset \]

as we had claimed. \(\square \)

Lemma 3.7. Every thick \(\otimes \)-ideal of \(T_c \) is self-dual.

Proof. This is [Ba07, Prop. 2.6]; note that the hypothesis in loc. cit. that the duality functor \((\cdot)^\vee \) be triangulated is not used in the proof. Indeed, let \(C \subseteq T_c \) be a thick \(\otimes \)-ideal. Every rigid object \(A \) is a retract of \(A \otimes A^\vee \otimes A \) (this holds in any closed tensor category, by one of the triangular identities of the adjunction between \(\otimes \otimes A \) and \(A^\vee \otimes \otimes \)). Then also \(A^\vee \) is a direct summand of \(A^\vee \otimes A^\vee \otimes A^\vee \simeq A^\vee \otimes A \otimes A^\vee \).

Since \(C \) is thick and \((\cdot)^\vee : T_c \rightarrow T_c^{\text{op}} \) is an additive tensor equivalence, both \(C \) and \(C^\vee \) are closed under taking summands and tensoring with arbitrary objects of \(T_c \). It follows from the previous remarks that \(C \subseteq C^\vee \) and \(C^\vee \subseteq C \). \(\square \)

Proof of Theorem 3.7. By properties (S0)-(S5) and (S7), the restriction of \((X, \sigma)\) to \(T_c \) is a support datum. The space \(X \) is spectral by assumption, so in order to prove that \((X, \sigma|_{T_c})\) is classifying, we have to show that the assignments

\[\begin{array}{rcl}
Y & \mapsto & C_Y = \{ A \in T_c \mid \sigma(A) \subseteq Y \} \\
C & \mapsto & \sigma(C) = \bigcup_{A \in C} \sigma(A),
\end{array} \]

define mutually inverse bijections between the set of Thomason subsets \(Y \subseteq X \) and the set of radical thick \(\otimes \)-ideals \(C \subseteq T_c \).

First of all, the two maps are well-defined: the set \(\sigma(C) \) is a Thomason subset by (S7) (for any subcategory \(C \subseteq T_c \)) and \(C_Y \) is a radical thick \(\otimes \)-ideal by Lemma 3.4 (a) (for any subset \(Y \subseteq X \)).

Now, given a thick \(\otimes \)-ideal \(C \) in \(T_c \), we have the equality \(C = \langle C \rangle_{\oplus} \subseteq C_{\sigma(C)} \) by Lemma 3.7 and Lemma 3.3 applied to \(\mathcal{E} = C \). Conversely, let \(Y = \bigcup_i Z_i \) be a union of closed subsets of \(X \), each with quasi-compact complement \(X \setminus Z_i \),
Clearly $\sigma(\mathcal{C}_Y) \subset Y$ by definition (indeed for any subset $Y \subset X$). By axiom (S8) there are compact objects A_i with $\sigma(A_i) = Z_i$. But then $A_i \in \mathcal{C}_Z \subset \mathcal{C}_Y$, and thus $Y = \bigcup_i \sigma(A_i) \subset \sigma(\mathcal{C}_Y)$. So we have proved that $\sigma(\mathcal{C}_Y) = Y$, concluding the verification that the functions $Y \mapsto \mathcal{C}_Y$ and $\mathcal{C} \mapsto \sigma(\mathcal{C})$ are the inverse of each other. □

3.2. Compact objects and central rings. In Lemma 3.3 we had ignored conditions (S7) and (S8). In this section we explore them for the situation when (X, σ) can be defined on compact objects by functors of the form $\text{Hom}_R^*(\mathcal{C}, ?)_{\mathfrak{p}}$, where we localize the $\mathcal{R}_\mathfrak{T}$-module (resp. the graded $\mathcal{R}_\mathfrak{T}$-module) $\text{Hom}_R^*(\mathcal{C}, ?)$ with respect to prime ideals $\mathfrak{p} \in \text{Spec}(R_{\mathfrak{T}})$ (resp. homogeneous prime ideals $\mathfrak{p} \in \text{Spec}^b(R_{\mathfrak{T}})$). At a crucial point, we must require that the (graded) central ring is noetherian. Just to be safe, let us explain what we mean precisely by “localization at a homogeneous prime”.

Construction 3.8. Let M be a graded module over a graded commutative ring R. Let $S \subset R$ be a multiplicative system of homogeneous and central elements. Then the localized module $S^{-1}M = \{ \frac{m}{s} \mid m \in M, s \in S \}$ is a well-defined graded $S^{-1}R$-module. For a point $\mathfrak{p} \in \text{Spec}^b(R)$, we set $M_{\mathfrak{p}} := S^{-1}M$, where $S_{\mathfrak{p}}$ consists of all homogeneous central elements in $R \smallsetminus \mathfrak{p}$. We write $\text{Supp}_R(M)$ for the ‘big’ support of a graded R-module M defined by $\text{Supp}_R(M) := \{ \mathfrak{p} \in \text{Spec}^b(R) \mid M_{\mathfrak{p}} \neq 0 \}$.

For the rest of this section, let \mathcal{T} be a compactly generated \otimes-triangulated category. Recall from Remark 2.13 that the graded Hom sets $\text{Hom}_R^*(\mathcal{C}, \mathcal{C}')$ are graded modules over the graded central ring $\mathcal{R}_\mathfrak{T}$. We assume given a graded commutative ring R and a grading preserving homomorphism $\phi : R \to \mathcal{R}_\mathfrak{T}$, and always regard the graded Hom sets of \mathcal{T} as graded \mathcal{R}-modules via ϕ and the (left) canonical action of $\mathcal{R}_\mathfrak{T}$. We shall be ultimately interested in the case when ϕ is the identity of $\mathcal{R}_\mathfrak{T}$ or the inclusion $\mathcal{R}_\mathfrak{T} \hookrightarrow \mathcal{R}_\mathfrak{T}$ of its zero degree part (see Prop. 3.12 below).

Notation 3.9. For each object $A \in \mathcal{T}$, define the following subsets of $\text{Spec}^b(R)$:

$$
\begin{align*}
\text{Supp}_{\text{tot}}(A) & := \text{Supp}_R(\text{End}_R^*(A)) \\
\text{Supp}_p(A) & := \text{Supp}_R(\text{Hom}_R^*(B, A)), \quad \text{for an object } B \in \mathcal{T} \\
\text{Supp}_\mathcal{E}(A) & := \bigcup_{B \in \mathcal{E}} \text{Supp}_R(\text{Hom}_R^*(B, A)), \quad \text{for a family } \mathcal{E} \subset \mathcal{T}.
\end{align*}
$$

Lemma 3.10. In the above notation, we have:

(a) $\text{Supp}_{\text{tot}} = \text{Supp}_\mathfrak{T}$.

(b) Let E be a unital graded R-algebra (e.g. $E = \text{End}_R^*(A)$ for an $A \in \mathcal{T}$). Then $\text{Supp}_R(E) = V(\text{Ann}_R(E))$, where the annihilator $\text{Ann}_R(E)$ is the ideal generated by the homogeneous $r \in R$ such that $rE = 0$.

Proof. (a) Let $A \in \mathcal{T}$ and $\mathfrak{p} \in \text{Spec}^b(R)$. We have equivalences: $\mathfrak{p} \notin \text{Supp}_{\text{tot}}(A) \iff \text{id}_A = 0$ in $\text{End}_R^*(A)_\mathfrak{p} \iff f = \text{id}_Af = 0$ in $\text{Hom}_R^*(B, A)_\mathfrak{p}$ for all $B \in \mathcal{T}$ and all $f \in \text{Hom}_R^*(B, A)$ implies $\mathfrak{p} \notin \text{Supp}_{\mathfrak{T}}(A)$.

(b) Let $\mathfrak{p} \in \text{Spec}^b(R)$. Then $\mathfrak{p} \notin V(\text{Ann}_R(E)) \iff \exists$ homogeneous element $r \in R \smallsetminus \mathfrak{p}$ with $r1_E = 0 \iff \exists$ homogeneous central $r \in R \smallsetminus \mathfrak{p}$ with $r1_E = 0$ (for “\Rightarrow” simply take r^2, which is central because even-graded) implies $E_\mathfrak{p} \simeq 0 \iff \mathfrak{p} \notin \text{Supp}_R(E)$. □

Lemma 3.11. Let $\mathcal{E} \subset \mathcal{T}$ be a family of objects containing the \otimes-unit 1 and let $X \subset \text{Spec}^b(R)$ be a subset of homogeneous primes. Assume that the support $(X, \sigma_{X, \mathcal{E}})$ on $\mathcal{T}_\mathcal{E}$ defined by $\sigma_{X, \mathcal{E}}(A) := \text{Supp}_\mathcal{E}(A) \cap X$ satisfies axiom (S5) in Theorem 3.3, namely: $\sigma_{X, \mathcal{E}}(A \otimes B) = \sigma_{X, \mathcal{E}}(A) \cap \sigma_{X, \mathcal{E}}(B)$ for all $A, B \in \mathcal{T}_\mathcal{E}$. Then $\sigma_{X, \mathcal{E}}(A) = \text{Supp}_{\text{tot}}(A) \cap X$.

for every compact object \(A \in \mathcal{T}_c \).

In particular, if \((X, \sigma_X, \mathcal{E})\) satisfies (S5) then it does not depend on \(\mathcal{E}\)!

Proof. By Lemma 3.10 (a) we have

\[
\sigma_{X, \mathcal{E}}(A) \overset{\text{def}}{=} \text{Supp}_\mathcal{E}(A) \cap X \subseteq \text{Supp}_\mathcal{T}(A) \cap X = \text{Supp}_\text{rig}(A) \cap X
\]

for all \(A \). By our convention, every compact object in \(\mathcal{T} \) is rigid. It follows that

\[
\text{Supp}_\text{rig}(A) \cap X = \text{Supp}_A(A) \cap X
\]

thus proving the reverse inclusion.

\(\square \)

Proposition 3.12. Let \(\mathcal{T} \) be a compactly generated \(\otimes \)-triangulated category. Let \(R \) be either the graded central ring \(R_{\mathcal{T}}^+ \) or its subring \(R_{\mathcal{T}} \), and assume that it is (graded) noetherian. Let \((X, \sigma_X := \sigma_X(1))\) be the support on \(\mathcal{T}_c \) we defined in Lemma 3.11 for some subset \(X \subset \text{Spec}^b(R) \), and again assume that \((X, \sigma_X)\) satisfies (S3) on \(\mathcal{T}_c \). Then

(a) The support \((X, \sigma_X)\) satisfies axiom (S7) in Theorem 3.1 namely: For every \(A \in \mathcal{T}_c \) the subset \(\sigma_X(A) \) is closed in \(X \) and its complement \(X \setminus \sigma_X(A) \) is quasi-compact.

(b) The support \((X, \sigma_X)\) satisfies axiom (S8) in Theorem 3.1: For every closed subset \(Z \subseteq X \) there exists a compact object \(A \in \mathcal{T}_c \) with \(\sigma_X(A) = Z \).

Proof. (a) By Lemma 3.11 and Lemma 3.10 (b), for each \(A \in \mathcal{T}_c \) we have equalities

\[
\sigma_X(A) = \text{Supp}_\text{rig}(A) \cap X = V(\text{Ann}_R(\text{End}_\mathcal{T}^+(A))) \cap X.
\]

This is by definition a closed subset of \(X \). Since we assumed \(R \) noetherian, it follows easily that every open subset of \(\text{Spec}^b(R) \) is quasi-compact.

(b) Every closed subset of \(X \) has the form \(Z = X \cap V(I) \) for some homogeneous ideal \(I \subset R \). Since \(R \) is noetherian, \(I \) is generated by finitely many homogeneous elements, say \(I = (r_1, \ldots, r_n) \). Let \(C_i \) be the cone of \(r_i : 1 \to T^{m_i}1 \). It is rigid and compact, and moreover we claim that \(\text{Supp}_2(C_i) = V(\langle r_i \rangle) \). Indeed, by applying \(\text{Hom}_\mathcal{T}^+(1, ?)_p \) to the distinguished triangle \(1 \to T^{m_i}1 \to C_i \to T1, \) we obtain an exact sequence

\[
\xymatrix{ \text{Hom}_\mathcal{T}^+(1, 1)_p \ar[rr]^-{r_i} & & \text{Hom}_\mathcal{T}^+(m_i, 1)_p \ar[rr] & & \text{Hom}_\mathcal{T}^+(1, C_i)_p \ar[rr] & & \text{Hom}_\mathcal{T}^{+1}(1, 1)_p }
\]

of graded \(R \)-modules. Note that the first morphism is multiplication by \(r_i \) (see 2.13). It is invertible if and only if \(r_i \) is invertible in \(R_p \), because we assumed that \(R = R_{\mathcal{T}}^+ \) or \(R = R_{\mathcal{T}} \). Hence \(r_i \in R_{\mathcal{T}}^+ \Leftrightarrow \text{Hom}_\mathcal{T}^+(1, C_i)_p \simeq 0 \Leftrightarrow p \notin \text{Supp}_4(C_i) \), as claimed. Now it suffices to set \(A := C_1 \otimes \cdots \otimes C_n \) (which is again a rigid and compact object by Conv. 2.20 (b)), because then

\[
\sigma_X(A) \overset{(S5)}{=} \sigma_X(C_1) \cap \cdots \cap \sigma_X(C_n) = X \cap \text{Supp}_4(C_1) \cap \cdots \cap \text{Supp}_4(C_n) = X \cap V(\langle r_1 \rangle) \cap \cdots \cap V(\langle r_n \rangle) = X \cap V(I) = Z,
\]

as desired.

\(\square \)
3.3. Comparison with the support of Benson-Iyengar-Krause. As an application of the last two sections, we provide sufficient conditions for the support defined by Benson, Iyengar and Krause in [BIK09] to coincide with Balmer’s support on compact objects, in the situation where both supports are defined.

Let \mathcal{T} be a tensor triangulated category which is a genuine compactly generated category, such that the tensor is exact and preserves small coproducts in both variables, and where compact and rigid objects coincide (thus in particular \mathcal{T} satisfies the hypotheses in Convention 2.25). Let R be either $\text{End}_\mathcal{T}(1)$ or $R_\mathcal{T} = \text{End}_\mathcal{T}(1)$, and assume that it is a (graded) noetherian ring. In such a situation, the support $\text{supp}^\mathcal{BIK}_R : \text{obj}(\mathcal{T}) \to 2^{\text{Spec}^h(R)}$ defined in [BIK09] can be given by the formula

$$\text{supp}^\mathcal{BIK}_R(A) = \{ p \mid \Gamma^p(1) \otimes A \not\cong 0 \} \subset \text{Spec}^h(R)$$

for every $A \in \mathcal{T}$, where $\Gamma^p(1)$ is a certain non-trivial object depending on p (see loc. cit., especially §5 and Cor. 8.3). In this setting, $\text{supp}^\mathcal{BIK}_R$ also recovers the support for noetherian stable homotopy categories considered in [HPS97] §6.

Here is our comparison result:

Theorem 3.14. Keep the notation of the last paragraph. Let further $X \subset \text{Spec}^h(R)$ be a spectral subset, and write $\sigma(A) := X \cap \text{supp}^\mathcal{BIK}_R(A)$ for the restricted support. Assume the following three hypotheses:

1. For every compact $A \in \mathcal{T}_c$, we have $\sigma(A) = X \cap \text{Ann}_R(\text{End}_\mathcal{T}(A))$.
2. The support (X, σ) detects objects of \mathcal{T}: $\sigma(A) = \emptyset \Rightarrow A \cong 0$.
3. The support (X, σ) satisfies the ‘partial Tensor Product theorem’:

$$\sigma(A \otimes B) = \sigma(A) \cap \sigma(B)$$

whenever $A \in \mathcal{T}_c$ is compact and $B \in \mathcal{T}$ arbitrary.

Then there is a unique isomorphism $(X, \sigma) \simeq (\text{Spc}(\mathcal{T}_c), \text{supp})$ of support data on \mathcal{T}_c between the restricted Benson-Iyengar-Krause support and the Balmer support.

Remark 3.15. Note that hypothesis (1) is not so restrictive as it may seem. Indeed, by [BIK09] Thm. 5.5 it must hold for every $A \in \mathcal{T}_c$ for which $\text{End}_\mathcal{T}(A)$ is finitely generated over R. Also, (2) holds for the choice $X := \text{Spec}^h(R)$ by [BIK09] Thm. 5.2. Thus, our theorem says roughly that, if we can ‘adjust’ the Benson-Iyengar-Krause support by restricting it to a subset X in such a way that it satisfies the partial Tensor Product theorem and it still detects objects, then it must be the universal support datum on \mathcal{T}_c.

Proof. It suffices to show that (X, σ) satisfies axioms (S0)-(S9) in Theorem 3.1.

Note that (S0)-(S4) and (S6) are immediate from (3.13), and (S5), resp. (S9), are simply assumed in hypothesis (3), resp. (2). We are left with the verification of (S7) and (S8). By hypothesis (1), the restriction of (X, σ) on compact objects coincides with the support $(X, \sigma_X) = (X, \sigma_{X,c})$ of the previous section §3.2. Hence, since R is noetherian, (X, σ) satisfies (S7) and (S8) by virtue of Proposition 3.12.

4. The spectrum and the Baum-Connes conjecture

As in the Introduction, let G be a second countable locally compact Hausdorff group, and let \mathcal{KK}^G be the G-equivariant Kasparov category of separable G-C^*-algebras (see [MN06] [Me07]). It is a tensor triangulated category as in Definition 2.12 with arbitrary countable coproducts ([MN06] App. A) [De08] App. A). The tensor structure \otimes is induced by the minimal tensor product of C^*-algebras with the diagonal G-action, and the unit object 1 is the field of complex numbers \mathbb{C} with the trivial G-action. Of the rich functoriality of \mathcal{KK}^G, we mention the restriction tensor triangulated functor $\text{Res}^H_G : \mathcal{KK}^G \to \mathcal{KK}^H$ and the induction triangulated
functor $\text{Ind}^G_H : KK^H \to KK^G$ for H a closed subgroup of G. They are related by a ‘Frobenius’ natural isomorphism

$$\text{Ind}^G_H(A \otimes \text{Res}^H_G(B)) \simeq \text{Ind}^G_H(A) \otimes B.$$

(Roughly speaking, the Baum-Connes Conjecture proposes a computation for the K-theory of the reduced crossed product $G\rtimes ? : KK^G \to KK$. We recall now the conceptual formulation of the conjecture, and its generalizations, due to Meyer and Nest [MN06].

Definition 4.2. Consider the two full subcategories of KK^G

$$\text{Cl}^G := \bigcup_{H \leq G \text{ compact}} \text{Im}(\text{Ind}^G_H) \quad \text{and} \quad \text{CC}^G := \bigcap_{H \leq G \text{ compact}} \text{Ker}(\text{Res}^H_G)$$

(for “compactly induced” and “compactly contractible”, respectively). We consider the localizing hull $\langle \text{Cl}^G \rangle_{\text{loc}} \subset KK^G$. Note that both $\langle \text{Cl}^G \rangle_{\text{loc}}$ and CC^G are localizing subcategories. Both are also \otimes-ideals: CC^G because each Res^H_G is a \otimes-triangulated functor and $\langle \text{Cl}^G \rangle_{\text{loc}}$ because of the Frobenius formula (4.1).

Theorem 4.3 (MN06 Thm. 4.7). The localizing tensor ideals $\langle \text{Cl}^G \rangle_{\text{loc}}$ and CC^G are complementary in KK^G (see Def. 2.7). □

By Remark 2.29, the gluing triangle for this complementary pair at any object $A \in KK^G$, that we shall denote by $P^G(A) \xrightarrow{D^G(A)} A \to N^G(A) \to TP^G(A)$, is obtained by tensoring A with the gluing triangle

$$
\begin{array}{ccc}
P^G(1) & \xrightarrow{D^G(1)} & 1 \\
\downarrow & & \downarrow \\
N^G(1) & \rightarrow & N^G(1)
\end{array}
\rightarrow
\begin{array}{ccc}
 & \\
TP^G(1) & \rightarrow &
\end{array}
$$

for the tensor unit. The approximation $D^G = D^G(1) : P^G(1) \to 1$ is called the *Dirac morphism for G*. Note that, by the general properties of Bousfield localization (Prop. 2.6), the objects $P^G(1)$ and $N^G(1)$ are \otimes-idempotent:

$$P^G(1) \otimes P^G(1) \simeq P^G(1), \quad N^G(1) \otimes N^G(1) \simeq N^G(1).$$

Definition 4.5. Let $A \in KK^G$, and let $F : KK^G \to C$ be any functor defined on the equivariant Kasparov category. One says that G satisfies the *Baum-Connes conjecture for F with coefficients A* if the homomorphism

$$F(D^G(A)) : F(P^G(A)) \longrightarrow F(A)$$

is an isomorphism in C.

The main result of [MN06] is a proof that, if $F = K_* (G \rtimes ?) : KK^G \to \text{Ab}$ is the K-theory of the reduced crossed product, then the homomorphism (1.6) is naturally isomorphic to the so-called assembly map for the group G with coefficients A, implying that for this choice of F the above formulation of the Baum-Connes conjecture is equivalent to the original formulation with coefficients (see [BCH94]).

The above formulation for general functors F on KK^G is then a natural generalization. Note that, if the Dirac morphism D^G is itself an isomorphism in KK^G, then G satisfies the conjecture for all functors F and all coefficients $A \in KK^G$. Note also that D^G is an isomorphism if and only if $N^G(1) \simeq 0$, if and only if the inclusion $\langle \text{Cl}^G \rangle_{\text{loc}} \hookrightarrow KK^G$ is an equivalence.

In [HK01], Higson and Kasparov proved that the Dirac morphism is invertible, and therefore that the conjecture holds for every functor and all coefficients, for groups G having the *Haagerup approximation property* (= a-T-menable groups). These are groups admitting a proper and isometric action on Hilbert space, in a suitable sense. They form a rather large class containing all amenable groups.
We contribute the following intriguing observation, which serves as a motivation for pursuing the (tensor triangular) geometric study of triangulated categories arising in connection with Kasparov theory.

Theorem 4.7. Assume that the spectrum of KK^G is covered by the spectra of KK^H as H runs through the compact subgroups of G:

\[(4.8) \quad \text{Sp}(\text{KK}^G) = \bigcup_{H \leq G \text{ compact}} \text{Sp}((\text{Res}^H_{\text{comp}}) \bigtriangledown \text{Sp}(\text{KK}^H)).\]

Then the Dirac morphism $D^G : P^G(1) \to 1$ is an isomorphism.

Proof. By a basic result of tensor triangular geometry (see [Ba05, Cor. 2.4]), an object $A \in \text{KK}^G$ belongs in each prime \otimes-ideal $P \in \text{Sp}(\text{KK}^G)$ if and only if it is \otimes-nilpotent, i.e., if and only if $A^{\otimes n} \simeq 0$ for some $n \geq 1$. Thus if the covering hypothesis (4.8) holds, we have

\[A \text{ is } \otimes \text{-nilpotent } \iff A \in P \quad \forall P \in \text{Spec}(\text{KK}^G)\]

\[\iff A \in (\text{Res}^H_{\text{comp}})^{-1} Q \quad \forall Q \in \text{Spec}(\text{KK}^H), \forall H\]

\[\iff \text{Res}^H_{\text{comp}}(A) \in Q \quad \forall Q \in \text{Spec}(\text{KK}^H), \forall H\]

where H ranges among all compact subgroups of G. Now specialize the above to $A := N^G(1)$. Clearly $N^G(1)$ satisfies the latter condition, because by construction $N^G(1) \in \text{CC}^G = \bigcap_n \text{Ker}((\text{Res}^G_n)^{-1})$. Thus $N^G(1)$ is a \otimes-nilpotent object. But $N^G(1)$ is also \otimes-idempotent ([4.1]), and therefore $N^G(1) \simeq 0$, implying the claim. \square

5. Some homological algebra for KK-theory

We recall a few definitions and results of relative homological algebra in triangulated categories ([Ch98, Be00, MN08]); our reference is [MN08]. Here T will always denote a triangulated category admitting (at least) all countable coproducts.

Definition 5.1. A **stable abelian category** is an abelian category $A = (A, T)$ equipped with a self-equivalence $T : A \to A$. A **stable homological functor** $H = (H, \delta)$ on T is an additive functor $H : T \to A$ to some stable abelian category A together with an isomorphism $\delta : HT \to TH$, and such that for every distinguished triangle $A \to B \to C \to TA$ of T the sequence $HA \to HB \to HC \to 1$ is exact in A.

Example 5.2. If $H : T \to A$ is a homological functor in the usual sense (i.e., an additive functor to some abelian category A such that if $A \to B \to C \to TA$ is distinguished in T then $HA \to HB \to HC$ is exact), we may construct a stable homological functor $H_* : T \to A^\mathbb{Z}$ as follows. Let $A^\mathbb{Z}$ be the category of \mathbb{Z}-graded objects $M_\bullet = (M\!_\!n)_{n \in \mathbb{Z}}$ in A (with degree-zero morphisms); with the shift $TM_\bullet := (M\!_\!n\!_{\!-\!1})_n$ it is a stable abelian category. Then $H_*(A) := (H^{\otimes n}(A))_n$ defines a stable homological functor (with $\delta = \text{id}$). Note that, if the translation T of T is n-periodic for some $n \geq 1$, by which we mean that there is an isomorphism $T^\mathbb{n} \simeq \text{id}_T$, then we may equally consider H_* as a functor to the stable abelian category $A^{\mathbb{Z}/n}$ of \mathbb{Z}/n-graded objects of A.

Definition 5.3. A **homological ideal** I in T is a subfunctor $I \subset \text{Hom}_T(?, ?)$ of the form $I = \ker(H)$ for some stable homological functor $H : T \to A$. For convenience, we define a **homologival pair** (T, I) to consist of a triangulated category T with countable coproducts together with a homological ideal I in T which is closed under the formation of countable coproducts of morphisms. If $I = \ker(H)$, the last condition is satisfied whenever H commutes with countable coproducts.

Let (T, I) be a homological pair. A (stable) homological functor $H : T \to A$ is I-**exact** if $H(f) = 0$ for all $f \in I$. An object $P \in T$ is I-**projective** if $\text{Hom}(P, ?)$:
$\mathcal{T} \to \text{Ab}$ is \mathcal{I}-exact. An object $N \in \mathcal{T}$ is \mathcal{I}-contractible if $\text{id}_N \in \mathcal{I}$. The category \mathcal{T} has enough \mathcal{I}-projectives if, for every $A \in \mathcal{T}$, there exists a distinguished triangle $B \to P \to A \to TB$ where P is \mathcal{I}-projective and $(A \to TB) \in \mathcal{I}$.

Remark 5.4. It can be shown that for every pair $(\mathcal{T}, \mathcal{I})$ there exists a universal \mathcal{I}-exact stable homological functor $h : \mathcal{T} \to A(\mathcal{T}, \mathcal{I})$ (where $A(\mathcal{T}, \mathcal{I})$ has small hom sets) – at least if \mathcal{T} has enough \mathcal{I}-projectives, which is the case in all our examples. See [MN08, §3.7] for details. With this assumption, it is proved in loc. cit. that h_T restricts to an equivalence between the full subcategory $\mathcal{P}_\mathcal{T}$ of \mathcal{I}-projective objects in \mathcal{T} and the full subcategory of projectives in the stable abelian category $A(\mathcal{T}, \mathcal{I})$.

Theorem 5.5 ([Me08 Thm. 3.21]). Let $(\mathcal{T}, \mathcal{I})$ be a homological pair, and assume that \mathcal{T} has enough \mathcal{I}-projectives. Then the pair of subcategories $\langle \mathcal{P}_\mathcal{T} \rangle_{\text{loc}}, \mathcal{N}_\mathcal{T}$ is complementary in \mathcal{T}, where $\mathcal{P}_\mathcal{T}$ denotes the full subcategory of \mathcal{I}-projective objects in \mathcal{T} and $\mathcal{N}_\mathcal{T}$ that of \mathcal{I}-contractible ones.

Fix a homological pair $(\mathcal{T}, \mathcal{I})$. Given additive functors $F : \mathcal{T} \to \mathcal{C}$ and $G : \mathcal{T}^{\text{op}} \to \mathcal{D}$ to some abelian categories \mathcal{C}, \mathcal{D}, if there are enough \mathcal{I}-projective objects one may use \mathcal{I}-projective resolutions to define, in the usual way, both the left derived functors $L_n^F : \mathcal{T} \to \mathcal{C}$ and the right derived functors $R_n^G : \mathcal{T}^{\text{op}} \to \mathcal{D}$ (relative to \mathcal{I}), for $n \geq 0$. These can sometimes be identified with more familiar derived functors in the context of abelian categories by means of the universal exact functor $h : \mathcal{T} \to A(\mathcal{T}, \mathcal{I})$ (see e.g. Prop. 5.17 below). The notation $\text{Ext}^1_{\mathcal{T}, \mathcal{I}}(A, B)$ stands for $R_2^G(A)$ in the case of the functor $G = \text{Hom}_\mathcal{T}(\cdot, B) : \mathcal{T}^{\text{op}} \to \text{Ab}$.

We will make use of some instances of the following result:

Theorem 5.6. Let $(\mathcal{T}, \mathcal{I})$ be a homological pair. Let $A \in \langle \mathcal{P}_\mathcal{T} \rangle_{\text{loc}}$, and assume that A has an \mathcal{I}-projective resolution of length one. Then

(a) For every homological functor $F : \mathcal{T} \to \mathcal{A}$ there is a natural exact sequence

\[0 \to L_0^F(A) \to F(A) \to L_1^F(TA) \to 0.\]

(b) For every homological functor $G : \mathcal{T}^{\text{op}} \to \mathcal{A}$ there is a natural exact sequence

\[0 \to R_1^G(TA) \to G(A) \to R_0^G(A) \to 0.\]

(c) Choosing $G = \text{Hom}_\mathcal{T}(\cdot, B)$ in (b), for any object $B \in \mathcal{T}$, we get

\[0 \to \text{Ext}^1_{\mathcal{T}, \mathcal{I}}(TA, B) \to \text{Hom}_\mathcal{T}(A, B) \to \text{Ext}^0_{\mathcal{T}, \mathcal{I}}(A, B) \to 0.\]

Proof. This is [MN08 Thm. 4.4]. Note that our assumption $A \in \langle \mathcal{P}_\mathcal{T} \rangle_{\text{loc}}$ coincides with that in loc. cit., namely $A \in 1_{\mathcal{N}_\mathcal{T}}$, because of Theorem 5.5. \qed

Remark 5.7. In the situation of Theorem 5.6, assume that there exists a decomposition $A \cong A_0 \oplus A_1$ such that $L_j^F(A_i) = 0$ (resp. $R_j^G(A_i) = 0$) for $\{i, j\} = \{0, 1\}$. Then we see from its naturality and additivity that the sequence in (a) (resp. in (b) and (c)) has a splitting, determined by the isomorphism $A \cong A_0 \oplus A_1$.

5.1 The categories \mathcal{T}^G and K^G.

Consider the equivariant Kasparov category KK^G for a compact group G. We recall that the $R(\mathcal{G})$-modules $\text{Hom}_{KK^G}(T^1, A) = KK^G(T^1, A)$ identify naturally with topological G-equivariant K-theory $K^G_{\mathcal{T}^1}(A)$ ([Phi87 §2], [BHR88 §11]). By the Green-Julg theorem ([BHR88 Thm. 11.7.1]), there is an isomorphism $K^G_{\mathcal{T}^1} \cong K_0(G \rtimes \mathbb{Z})$. Since ordinary K-theory K_0 of separable C^*-algebras yields countable abelian groups and commutes with countable coproducts in KK^G, and since $G \rtimes \mathbb{Z}$ commutes with coproducts and preserves separability, we conclude that the \otimes-unit $1 = \mathbb{C}$ is a compactly generated object of KK^G (Def. 2.4). Hence the category $\mathcal{T}^G := \langle 1 \rangle_{\text{loc}} \subset KK^G$ is compactly generated. Moreover, since it is monogenic – in the sense of being generated by the translations of the \otimes-unit – its
Theorem 5.10. necessarily come from prime ideals.

In particular, \(T^G \) is a compactly generated \(\otimes \)-triangulated category as in Convention 2.23.

As in \(\text{KK}^G \), we have Bott periodicity: \(T^2 \cong \text{id}_{T^G} \). Hence all homological functors \(H : T^G \to A \) give rise to stable homological functors \(H_* \), to the category of \(\mathbb{Z}/2 \)-graded objects \(\mathcal{A}^{G/2} \) (see Example 5.2).

The relevance of \(T^G \) to \(K \)-theory is explained by the following result.

Theorem 5.8. Let \(G \) be a compact group. The pair of localizing subcategories \((T^G, \text{Ker}(K^G))\) of \(\text{KK}^G \) is complementary. In particular, there exists a triangulated functor \(L : \text{KK}^G \to T^G \) and a natural map \(L(A) \to A \) inducing an isomorphism \(K^G(LA) \cong K^G(A) \) for all \(A \in \text{KK}^G \).

Proof. Meyer and Nest prove ([MN08, Thm. 5.5]) that \(K^G = K_* \circ (G \ltimes ?) \), as a functor from \(\text{KK}^G \) to \(\mathbb{Z}/2 \)-graded countable \(R(G) \)-modules, is the universal \(\ker(K^G) \)-exact functor and that, as a consequence, it induces an equivalence between the category \(\mathcal{P}_{\ker(K^G)} \) of \(\ker(K^G) \)-projective objects in \(\text{KK}^G \) and that of projective graded \(R(G) \)-modules (cf. Remark 5.3). Since every projective module is a direct summand of a coproduct of copies of \(R(G) = K^G(1) \) and of its shift \(R(G)(1) = K^G(1) \), it follows that \(\mathcal{P}_{\ker(K^G)} \) is equal to \(\{1\}_{\text{loc}} \subset \text{KK}^G \), and therefore the claim is just Theorem 5.3 applied to the homological pair \((\text{KK}^G, \ker(K^G))\).

We shall make use of quite similar arguments in the following section.

In the rest of this article we shall begin the study of these categories from a geometric point of view, concentrating on the easier case of a finite group \(G \).

5.2. Central localization of equivariant KK-theory

Let \(G \) be a compact group, and let \(p \in \text{Spec}(R(G)) \). We wish to apply the abstract results of 2.23 to the monogenic compactly generated tensor triangulated category \(T = T^G \) and the multiplicative system \(S = R(G) \setminus p \). Thus we consider the thick \(\otimes \)-ideal of compact objects

\[J_p^G := \langle \text{cone}(s) \mid s \in R(G) \setminus p \rangle \otimes \subset T^G \]

and the localizing \(\otimes \)-ideal \(L_p^G := (J_p^G)_{\text{loc}} \subset T^G \) that it generates. We denote its right orthogonal category of \(p \)-local objects by

\[T_p^G := (L_p^G)^\perp \cong T^G / L_p^G. \]

Now Theorem 2.23 specializes to the following result, which says that \(T_p^G \) is a well-behaved notion of localization of \(T^G \) at \(p \). Note that similar results are true with, instead of \(T^G \), any other localizing \(\otimes \)-subcategory of \(\text{KK}^G \) generated by compact and rigid objects, and also, obviously, for multiplicative subsets which do not necessarily come from prime ideals.

Theorem 5.10. The pair \((L_p^G, T_p^G)\) is a complementary pair of localizing \(\otimes \)-ideals of \(T^G \). In particular, the gluing triangle for an object \(A \in T^G \) is obtained by tensoring \(A \) with the gluing triangle for the \(\otimes \)-unit, which we denote by

\[p1 \overset{\varepsilon}{\longrightarrow} 1 \overset{\eta}{\longrightarrow} 1_p \longrightarrow T(p1). \]

Moreover, the following hold true:

(a) \(L_p^G = p1 \otimes T^G \) and \(T_p^G = 1_p \otimes T^G \).

(b) The maps \(\varepsilon \) and \(\eta \) induce isomorphisms \(p1 \cong p1 \otimes 1_p \) and \(1_p \cong 1_p \otimes 1_p \).

(c) The category \(T_p^G \) is a monogenic compactly generated \(\otimes \)-triangulated category with tensor unit \(1_p \).
(d) Its tensor triangulated subcategory of compact and rigid objects is \((\mathcal{T}_p^G)_c = (1_p \otimes \mathcal{T}_c^G) \subset \mathcal{T}_p^G \).

(e) The functor \(1_p \otimes ? : \mathcal{T}^G \to \mathcal{T}_p^G \) is an \(R(G) \)-linear \(\otimes \)-triangulated functor commuting with coproducts.

(f) The central ring \(R_{\mathcal{T}_p^G} = \text{End}(1_p) \) of \(\mathcal{T}_p^G \) is \(R(G)_p \), and \(K^0(\eta : 1 \to 1_p) \) is the localization homomorphism \(R(G) \to R(G)_p \).

(g) \(A \) is \(p \)-local (i.e., \(A \in \mathcal{T}_p^G \)) \(\Leftrightarrow \) \(s \cdot \text{id}_A \) is invertible for every \(s \in R(G) \setminus p \).

(h) If \(A \in \mathcal{T}_c^G \), then \(\eta : B \to 1_p \otimes B \) induces a canonical isomorphism

\[
\text{KK}^G(A, B)_p \simeq \text{KK}^G(A, 1_p \otimes B)
\]

for every \(B \in \mathcal{T}_G \). In particular \(K^G_c(B)_p \simeq K^G_c(1_p \otimes B) \) (set \(A = T^*1 \)).

Corollary 5.12. For \(G \) a compact group and \(p \in \text{Spec}(R(G)) \), there exists a triangulated functor \(L_p : \text{KK}^G \to \mathcal{T}_p^G \) on the equivariant Kasparov category and natural maps \(L_p(A) \leftarrow L(A) \to A \) in \(\text{KK}^G \), inducing an isomorphism \(K^G_c(L_p A) \simeq K^G_c(A)_p \).

Proof. By Theorem 5.8, there exists in \(\text{KK}^G \) a natural map \(LA \to A \) with \(LA \in \mathcal{T}^G \) and \(K^G_c(LA \to A) \) invertible. Set \(LA \to L_p A \) to be \(\eta : LA \to 1_q \otimes LA \) as in Theorem 5.10. The fraction \(L_p(A) \leftarrow L(A) \to A \) in \(\text{KK}^G \) has the required property. □

For later use, we record the behaviour of central localization under restriction.

Lemma 5.13. Let \(H \) be a closed subgroup of the compact group \(G \). Moreover, let \(q \) be a prime ideal in \(R(H) \) and let \(p := (\text{Res}_H^G)^{-1}(q) \in \text{Spec}(R(G)) \). Let \(q^1 \to 1 \to 1_p \to T(1_p) \) be the gluing triangle in \(\mathcal{T}^G \) for \(p \) and let \(q^1 \to 1 \to 1_q \to T(q^1) \) be the one in \(\mathcal{T}^H \) for \(q \). Then

\[
\text{Res}_H^G(q^1) \simeq \text{Res}_H^G(p^1) \quad \text{and} \quad 1_q \otimes \text{Res}_H^G(p^1) \simeq 1_q.
\]

Proof. Note that \(S := \text{Res}_H^G(R(G) \setminus p) \) is a multiplicative system in \(R(H) \), so there is an associated central localization of \(\mathcal{T}^H \) with complementary pair \((\mathcal{L}^H_S, \mathcal{T}^H_S) \) and gluing triangle \(S^1 \to 1 \to 1_S \to T(S^1) \). We claim that this triangle is isomorphic to the restriction of \(p^1 \to 1 \to 1_p \to T(p^1) \). By the uniqueness of gluing triangles and since \(\text{Res}_H^G(1) = 1 \), it suffices to show that \(\text{Res}_H^G(\mathcal{L}^H_S) \subset \mathcal{T}_S^H \) and \(\text{Res}_H^G(\mathcal{T}^H_S) \subset \mathcal{T}_S^H \).

The first inclusion holds because \(\text{Res}_H^G \) is a coproduct preserving \(\otimes \)-triangulated functor and because \(\text{Res}_H^G(\text{cone}(s)) \simeq \text{cone}(\text{Res}_H^G(s)) \in \mathcal{L}_S^H \) for all \(s \in R(G) \setminus p \). The second inclusion holds by the characterization in Theorem 2.33 (g) of the objects of \(\mathcal{T}^H_S \). Finally, the inclusion \(S \subset R(H) \setminus q \) implies \(\mathcal{L}_S^H \subset \mathcal{L}_q^H \) and therefore we have isomorphisms \(S^1 \otimes q^1 \simeq S^1 \) and \(1_q \otimes S^1 \simeq 1_q \) by Corollary 2.33. □

The following consequence is a local version of the more trivial remark that \(K^G_c(A) \simeq 0 \) for an \(A \in \mathcal{T}^G \) implies \(K^H_c(\text{Res}_H^G A) \simeq 0 \).

Corollary 5.14. In the situation of Lemma 5.13, if \(A \in \mathcal{T}^G \) and \(K^G_c(A)_p \simeq 0 \) then \(K^H_c(\text{Res}_H^G A)_q \simeq 0 \).

Proof. Since \(\{1, T(1)\} \) generates \(\mathcal{T}^G \), \(K^G_c(A)_p = K^G_c(1_p \otimes A) \simeq 0 \) implies \(1_p \otimes A \simeq 0 \) and therefore \(\text{Res}_H^G(1_p \otimes A) \simeq 0 \). Hence, by the second isomorphism in the lemma, \(1_q \otimes \text{Res}_H^G(A) \simeq 0 \) and consequently \(K^H_c(\text{Res}_H^G A)_q \simeq 0 \). □

Next, we prove \(p \)-local versions of a couple of results of [MN08] which will be put to good use in the following two sections.

Consider the homological pair \((\mathcal{T}^G_p, \mathcal{I}) \) with \(\mathcal{I} := \ker(K^G_c(?)_p) \) (see Def. 5.3). Denote by \(R(G)_p \)-\text{Mod}_{\mathcal{I}^2}^\otimes \) the stable abelian category of \(\mathbb{Z}/2 \)-graded countable (indicated by “\(\infty \)”) \(R(G)_p \)-modules and degree-zero homomorphisms.
Proposition 5.15. The functor $h := K_e^G(?)_p \simeq K_w^G : \mathcal{T}_p^G \to R(G)_p\text{-Mod}_{\infty}^{\oplus/2}$ is the universal I-exact (stable homological) functor on \mathcal{T}_p^G. Moreover, h restricts to an equivalence $\mathcal{P}_r \simeq \text{Pro}(R(G)_p\text{-Mod}_{\infty}^{\oplus/2})$, and, for every $A \in \mathcal{T}_p^G$, it induces a bijection between isomorphism classes of projective resolutions of $h(A)$ in $R(G)_p\text{-Mod}_{\infty}^{\oplus/2}$ and isomorphism classes of I-projective resolutions of A in \mathcal{T}_p^G.

Proof. We use Meyer and Nest’s criterion [MN08, Theorem 3.39]. Since \mathcal{T}_p^G is idempotent complete (having arbitrary countable coproducts); since the abelian category $R(G)_p\text{-Mod}_{\infty}^{\oplus/2}$ has enough projectives (being: graded modules that are degree-wise $R(G)_p$-projective), and since h is obviously an I-exact stable homological functor, in order to derive the universality of h from the cited theorem it remains to find for h a partial left adjoint

$$h^! : \text{Proj}(R(G)_p\text{-Mod}_{\infty}^{\oplus/2}) \to \mathcal{T}_p^G$$

defined on projective objects, such that

\begin{equation}
(5.16) \quad h \circ h^!(P) \simeq P
\end{equation}

naturally in P. Since every projective in $R(G)_p\text{-Mod}_{\infty}^{\oplus/2}$ is a direct factor of a coproduct of copies of $R(G)_p(0)$ and $R(G)_p(1)$ (i.e., $R(G)_p$ concentrated in $\mathbb{Z}/2$-degree 0 and 1 respectively), and since h preserves coproducts, it suffices to define $h^!$ on the latter two graded modules ([MN08, Remark 3.40]).

Set $h^!(R(G)_p(i)) := T^i(1_p)$ for $i = 0, 1$, where $1_p \in \mathcal{T}_p^G$ is the p-localization of the tensor unit as in Theorem 5.10. Then indeed, the partially defined $h^!$ (extended to a functor in the evident way) is left adjoint to h, because for all $A = 1_p \otimes A \in T_p^G$ we have

$$\text{KK}^G(h^!(R(G)_p(i)), A) \simeq \text{KK}^G(T^i1_p, 1_p \otimes A) \simeq \text{KK}^G(T^i1, 1_p \otimes A) \simeq K_i^G(A_p) = \text{Hom}_{R(G)}(R(G)(i), h(A)),$$

by Proposition 2.6 (a) and Theorem 5.10 (h). We immediately verify (5.16):

$$hh^!(R(G)_p(i)) = \text{KK}^G(1, T^i1_p) \simeq R(G)_p(i) \quad (i = 0, 1).$$

Thus h is the universal I-exact functor. The other claims in the proposition follow from this one, see [MN08, Thm. 3.41].

We can use the latter proposition to compute left derived functors with respect to $I = \ker(h)$, as follows:

Proposition 5.17. Let $F : \mathcal{T}_p^G \to \text{Ab}$ be a homological functor which preserves small coproducts. Then for every $n \geq 0$ there is a canonical isomorphism

\begin{equation}
(5.18) \quad L^nIF_* \simeq \text{Tor}_n^{R(G)_p}(F_*(1_p), h(?))
\end{equation}

of functors $\mathcal{T}_p^G \to \text{Ab}^{\oplus/2}$. (On the left hand side we have the left derived functors of F_* with respect to $I = \ker(h)$; on the right hand side, the left derived functors of the usual tensor product of graded modules, i.e., the homology of $\otimes_p^{R(G)_p}$, the $R(G)_p$-action on $F_*(1_p)$ is induced by the functoriality of F, cf. Rem. 5.22.)

Proof. (Note by inspecting the definitions that $L_0^n(F_*) = (L_0^nF)_*$.) We have proved above that h is the universal I-exact functor. It follows that every homological functor $F : \mathcal{T}_p^G \to \mathcal{A}$ extends (up to isomorphism, uniquely) to a right exact functor

$$\tilde{F} : R(G)_p\text{-Mod}_{\infty}^{\oplus/2} \to \mathcal{A}$$
such that \(\tilde{F} \circ h(P) = F(P) \) for all \(\mathcal{I} \)-projective objects \(P \); this functor \(\tilde{F} \) is stable, resp. commutes with coproducts, if so does \(F \). Moreover, there are canonical isomorphisms

\[
L_n^\circ F_* \simeq (L_n \tilde{F}_*) \circ h
\]

for all \(n \in \mathbb{Z} \). (See [MN08, Theorem 3.41] for these results). Therefore we are left with computing \(\tilde{F}_* \) and its left derived functors, in the case where \(\mathcal{A} \) is the category of abelian groups.

Lemma 5.20. There is a natural isomorphism

\[
(5.21) \quad \tilde{F}_*(M) \simeq F_*(1_p) \otimes_{R(G)_p} M
\]

of graded abelian groups, for \(M \in R(G)_p\text{-Mod}_{\mathbb{Z}/2}^\infty \).

To prove the lemma, notice first that \((5.21) \) holds for the free module \(M = R(G)_p \) (set in degree zero), because there are canonical isomorphisms of graded \(R(G)_p \)-modules

\[
\tilde{F}_*(R(G)_p) = \tilde{F}_* \circ h(1_p) = F_*(1_p) \simeq F_*(1_p) \otimes_{R(G)_p} R(G)_p.
\]

We may extend this to all \(\mathbb{Z}/2 \)-graded free modules in the evident way. Since both \(\tilde{F}_* \) and \(F_*(1_p) \otimes (\cdot) \) are right exact functors, we can compute them – and we can extend the natural isomorphism \((5.21) \) – for general graded modules \(M \) by using free presentations \(P \to P' \to M \to 0 \).

Proposition 5.17 follows now from Lemma 5.20: by taking left derived functors of \((5.21) \) we get\(L_n \tilde{F}_* \simeq \text{Tor}_n^{R(G)_p}(F_*(1_p), \cdot) \), and by combining this with \((5.19) \) we find the predicted isomorphism \((5.18) \).

Remark 5.22. Let \(F : \mathcal{T}_p^G \to \text{Ab} \) be an additive functor. Since \(\mathcal{T}_p^G \) is an \(R(G)_p \)-linear category, \(F \) lifts to \(R(G)_p\text{-Mod}_{\mathbb{Z}/2}^\infty \), simply via \(r \cdot a := F(r \cdot \text{id}_A)(a) \) for all \(r \in R(G)_p \) and \(a \in F(A) \). This is for instance how we regard \(F_*(1_p) \) as a graded \(R(G)_p \)-module in Proposition 6.17. It is clear from the proof that the isomorphism \((5.18) \) is actually an isomorphism of graded \(R(G)_p \)-modules.

The same arguments provide an analog statement for contravariant functors. We leave the details of the proof to the reader (cf. [MN08 Thm. 5.5]):

Proposition 5.23. Let \(F : (\mathcal{T}_p^G)^{op} \to \text{Ab} \) be a homological functor sending small coproducts in \(\mathcal{T}_p^G \) to products. Then for every \(n \geq 0 \) there is an isomorphism

\[
R^n F_* \simeq \text{Ext}_{R(G)_p}^n(h(\cdot), F_*(1))
\]

of contravariant functors from \(\mathcal{T}_p^G \) to \(\mathbb{Z}/2 \)-graded \(R(G)_p \)-modules. (The graded \(\text{Ext} \) on the right are the derived functors of the graded \(\text{Hom} \) \(\text{Hom}_{R(G)_p}^n(\cdot, F_*(1)) \)).

5.3. The Phillips-Künneth formula. We derive from the above theory a new version of a theorem of N.C. Phillips ([Phi87, Theorem 6.4.6]). Our theorem and that of Phillips differ only in the technical assumptions on the \(C^* \)-algebras involved; we don’t know how these compare precisely, but we suspect that neither set of hypotheses implies the other.

Phillips’ theorem is about the following data, whose relevance will be explained at the beginning of 6.1

Definition 5.24. A local pair \((S, q)\) consists of a finite cyclic group \(S \) and a prime ideal \(q \in \text{Spec}(R(S)) \) such that, if \(S' \leq S \) is a subgroup with the property that \((\text{Res}_S^{S'})^{-1}(q') = q \) for some \(q' \in \text{Spec}(R(S')) \), then \(S' = S \). (Here \(\text{Res}_S^{S'} : R(S) \to R(S') \) is the usual restriction ring homomorphism; of course, it coincides with the functor \(\text{Res}_S^{S'} : \text{KK}^S \to \text{KK}^{S'} \) at \(R(S) = \text{KK}^S(1, 1) \).)
Lemma 5.25. Let \((S, \mathfrak{q})\) be a local pair. Then the local ring \(R(S)_{\mathfrak{q}}\) is a discrete valuation ring or a field; in particular, it is hereditary (that is, every submodule of a projective \(R(S)_{\mathfrak{q}}\)-module is again projective).

Proof. See [Phil87, Prop. 6.2.2], where it is proved that, under the above hypothesis, \(R(S)_{\mathfrak{q}}\) is isomorphic to the localization at a prime ideal of \(\mathbb{Z}[\zeta]\), the subring of \(\mathbb{C}\) generated by a primitive \(n\)th root of unity \(\zeta\), where \(n = |S|\). The claims follow because \(\mathbb{Z}[\zeta]\) is a Dedekind domain (cf. [Phil87, Lemma 6.4.2]).

\[\square\]

Theorem 5.26. (Phillips-Künneth Formula). Let \((S, \mathfrak{q})\) be a local pair. Then for all \(A \in T^S\) and \(B \in KK^S\) there is a natural short exact sequence

\[K^S(A)_{\mathfrak{q}} \otimes_{R(S)_{\mathfrak{q}}} K^S(B)_{\mathfrak{q}} \rightarrow K^S(A \otimes B)_{\mathfrak{q}} \rightarrow \text{Tor}^1_{R(S)_{\mathfrak{q}}}(K^S(A)_{\mathfrak{q}}, K^S(B)_{\mathfrak{q}})\]

of \(\mathbb{Z}/2\)-graded \(R(S)_{\mathfrak{q}}\)-modules which splits unnaturally (the +1 indicates a map of \(\mathbb{Z}/2\)-degree one).

Lemma 5.27. It suffices to prove the theorem for the special case \(A, B \in T^S_{\mathfrak{q}}\).

Proof. Let \(A, B \in T^S\) and \(B \in KK^S\). Let \(LB \rightarrow B \rightarrow RB \rightarrow TLB\) be the natural distinguished triangle with \(LB \in T^S\) and \(K^S(BR) \simeq 0\) (Thm. 5.8). Since \(LB \rightarrow B\) induces an isomorphism \(K^S(LB) \simeq K^S(B)\), we may substitute \(LB\) for \(B\) in the first and third terms of the sequence. Note that the subcategory \(\{X \in KK^S | K^S(X \otimes RB) \simeq 0\}\) is localizing and contains \(1\), hence it contains \(T^S\). Therefore \(LB \rightarrow B\) also induces an isomorphism \(K^S(A \otimes LB) \simeq K^S(A \otimes B)\). Hence it suffices to prove the existence and split exactness of the sequence for \(A, B \in T^S\).

Now, if \(A, B \in T^S\) then \(K^S(A)_{\mathfrak{q}} \otimes_{R(S)_{\mathfrak{q}}} K^S(B)_{\mathfrak{q}} = K^S(A)_{\mathfrak{q}} \otimes_{R(S)_{\mathfrak{q}}} K^S(B)_{\mathfrak{q}} = K^S(A \otimes B)_{\mathfrak{q}}\) by Theorem 5.10, so we may as well substitute \(1 \in A \in T^S_{\mathfrak{q}}\) for \(A\) and \(1 \in B \in T^S_{\mathfrak{q}}\) for \(B\).

\[\square\]

Proof of Theorem 5.26. By the previous lemma we can assume that \(A \in T^S_{\mathfrak{q}}\). We wish to apply Theorem 5.23 (a) to the homological pair \((T^S_{\mathfrak{q}}, I := \ker(K^S(?)_{\mathfrak{q}}))\) and the homological functor \(F := K^S(?)_{\mathfrak{q}}\).

By Prop. 5.13, \(h := K^S(?)_{\mathfrak{q}} : T^S \rightarrow R(S)_{\mathfrak{q}}\text{-Mod}^Z_{/2}\) is the universal \(\mathcal{L}\)-exact functor and therefore it induces a bijection between isomorphism classes of projective resolutions of the graded \(R(S)_{\mathfrak{q}}\)-module \(K^S(A)_{\mathfrak{q}}\) and isomorphism classes of \(\mathcal{L}\)-projective classes of \(A\). By Lemma 5.23, every \(R(S)_{\mathfrak{q}}\)-module has a projective resolution of length one, so \(A\) has an \(\mathcal{L}\)-projective resolution of length one. Since \(A \in T^S_{\mathfrak{q}} = (1)_{\mathfrak{q}} = (T^S_{\mathfrak{q}})_{\mathfrak{q}}\), it satisfies the hypothesis of Theorem 5.6. Therefore there exists a natural short exact sequence \(0 \rightarrow L^1_{\mathfrak{q}}F(A) \rightarrow F(A) \rightarrow L^1_{\mathfrak{q}}F(TA) \rightarrow 0\). It remains to identify the derived functors of \(F = K^S(?)_{\mathfrak{q}}\) and to show that the sequence splits. According to Proposition 5.17, the universal isomorphism

\[L^i_{\mathfrak{q}}F(A) \simeq \text{Tor}^i_{R(S)_{\mathfrak{q}}}(K^S(A)_{\mathfrak{q}}, \mathcal{L}_{\mathfrak{q}}) \quad (i = 0, 1)\]

of graded \((R(S)_{\mathfrak{q}})-\text{modules for } i = 0, 1, \text{ as claimed. As for the splitting, we can use the same argument as in [B098, §23.11].}\) We postpone this to Corollary 5.32 which requires the (unsplit) universal coefficient theorem.

\[\square\]

Theorem 5.28. (Universal Coefficient Theorem, UCT). Let \((S, \mathfrak{q})\) be a local pair. For every \(A \in T^S\) and \(B \in KK^S\) there exists a natural short exact sequence

\[\text{Ext}^1_{R(S)_{\mathfrak{q}}}(K^S(A)_{\mathfrak{q}}, K^S(B)_{\mathfrak{q}}) \rightarrow \text{KK}^S(A, B)_{\mathfrak{q}} \rightarrow \text{Hom}^*_{R(S)_{\mathfrak{q}}}(K^S(A)_{\mathfrak{q}}, K^S(B)_{\mathfrak{q}})\]
of \(\mathbb{Z}/2\)-graded \(R(S)_q\)-modules.

Proof. The proof is quite similar to that of Theorem 5.26. Just as before in Lemma 5.27 we reduce to the case \(A, B \in \mathcal{T}_q^S\), and then we use Theorem 5.34(c) (for both \(B\) and \(TB\)) to produce the short exact sequence and Proposition 5.23 to identify its right and left terms as required (cf. [MN08 Thm. 5.5]).

The UCT has corollaries familiar from ordinary \(K\)-theory (cf. [Bl98 §23]).

Corollary 5.29. Let \(M\) be any countable \(\mathbb{Z}/2\)-graded \(R(S)_q\)-module. Then there exists an object \(A \in \mathcal{T}_q^S\) such that \(K^S(A)_q = K^S(B)_q \simeq M\).

Proof. Consider a projective (i.e., free) resolution \(0 \to Q \to P \to M \to 0\) in \(R(S)_q\text{-Mod}^{\mathbb{Z}/2}\). Applying \(h^1\) (see the proof of Proposition 5.15) we obtain a morphism \(f : h^1Q \to h^1P\) between \(\mathcal{I}\)-projective objects in \(\mathcal{T}_q^S\). Now apply \(h = K^S(A)\) to the distinguished triangle \(h^1Q \to h^1P \to \text{cone}(f)\) to get the exact sequence \(Q \to P \to K^S(\text{cone}(f))_q \to Q[1] \to P[1]\). The rightmost map is injective and therefore \(K^S(\text{cone}(f))_q \simeq M\).

Corollary 5.30. Consider objects \(A, B \in \mathcal{T}_q^S\) such that \(K^S(A)_q \simeq K^S(B)_q\). Then there exists an isomorphism \(A \simeq B\) in \(\mathcal{T}_q^S\).

Proof. Because of the surjectivity of the second homomorphism in the UCT (in degree zero), we may lift the isomorphism \(K^S(A)_q \simeq K^S(B)_q\) to a map \(f : A \to B\) in \(\mathcal{T}_q^S\). Since \((1, T(1))\) generates \(\mathcal{T}\), the condition \(\text{cone}(f) \simeq 0\) is equivalent to \(KK^S(1, \text{cone}(f)) = K^S(\text{cone}(f))_q \simeq 0\). But \(K^S(f)_q\) is an isomorphism by construction, hence \(f : A \simeq B\).

Corollary 5.31. Let \(A \in \mathcal{T}_q^S\), and assume that there is an isomorphism \(K^S(A)_q \simeq M_1 \oplus M_2\) of graded \(R(S)_q\)-modules. Then there exists in \(\mathcal{T}_q^S\) a decomposition \(A \simeq A_1 \oplus A_2\) with \(K^S(A_i)_q \simeq M_i\) \((i = 1, 2)\).

Proof. Use Corollary 5.20 to get \(A_i \in \mathcal{T}_q^S\) with \(K^S(A_i)_q \simeq M_i\) \((i = 1, 2)\). Now employ Corollary 5.30.

Corollary 5.32. The short exact sequences in the Phillips-Künneth Theorem 5.26 and the Universal Coefficient Theorem 5.28 are (unnaturally) split.

Proof. If \(\widehat{A} \in \mathcal{T}_q^S\), according to Corollary 5.31 the degree-wise decomposition \(K^S(\widehat{A})_q = K^S(\widehat{A})_q(0) \oplus K^S(\widehat{A})_q(1)\) can be realized by a decomposition \(\widehat{A} \simeq A_0 \oplus A_1\) in \(\mathcal{T}_q^S\). Let \(A \in \mathcal{T}^S\). Now we apply the preceding to \(\widehat{A} := 1_q \oplus A \in \mathcal{T}_q^S\) and appeal to Remark 5.7.

5.4. The residue field object at a prime ideal.

Fix a local pair \((S, q)\), as in Def. 5.24. That is: \(S\) is a cyclic group and \(q \in \text{Spec } R(S)\) does not lie above any \(q' \in \text{Spec } R(S')\) with \(S' < S\) a proper subgroup. Denote by \(k(q) := R(S)_q/qR(S)_q\) the residue field of \(R(S)\) at the prime ideal \(q\). The following lemma is an immediate consequence of Corollary 5.20. Together with the Phillips-Künneth formula, it is the key ingredient needed for the construction of the support \(\sigma_q\) in Theorem 1.4.

Lemma 5.33. There exists an object \(\kappa_q \in \mathcal{T}_q^S\) with the property that \(K^S_0(\kappa_q) \simeq k(q)\) and \(K^S_1(\kappa_q) \simeq 0\).

Definition 5.34. We call such an object \(\kappa_q\) a residue field object at \((S, q)\). By Corollary 5.30 it is uniquely determined by \((S, q)\) up to isomorphism.

Proposition 5.35. For every \(A \in \mathcal{T}_q^S\), the product \(\kappa_q \oplus A\) is isomorphic in \(\mathcal{T}^S\) to a countable coproduct of translated copies of \(\kappa_q\).
Proof. Note that $\kappa_q \otimes A \in T^S_q$. Applied to the objects κ_q and A, the Phillips-Künneth split short exact sequence (Thm. 5.26) implies that the $\mathbb{Z}/2$-graded $R(S)_q$-module $K^S_q(\kappa_q \otimes A)$ is isomorphic to a $\mathbb{Z}/2$-graded $k(q)$-vector space, which has the form $\prod_{i_0} k(q)(0) \oplus \prod_{i_1} k(q)(1)$ for some countable index sets I_{0} and I_{1}. The latter vector space can be realized in T^S_q as the object $B := \prod I_0 \kappa_q \oplus \prod I_1 T(q \kappa)$. Since $\kappa_q \otimes A$ and B both lie in T^S_q and have isomorphic K-theory, by Corollary 5.30 of the UCT they must be isomorphic.

Proposition 5.36. Let (S, q) be a local pair. Then for every two objects $A, B \in T^S_q$ there exists a (non natural) isomorphism

$$K^S_q(\kappa_q \otimes A \otimes B) \simeq K^S_q(\kappa_q \otimes A) \otimes K^S_q(\kappa_q \otimes B)$$

of $\mathbb{Z}/2$-graded $k(q)$-vector spaces. Here \otimes denotes the usual tensor product of graded vector spaces, given by $(V \otimes W)_x = \bigoplus_{i+j=x} V_i \otimes_k W_j$.

Proof. To simplify notation, we write $\kappa := \kappa_q$ and $k := k(q)$. Choose isomorphisms

$$\kappa \otimes A \simeq \prod_{n_0} \kappa \otimes \prod_{n_1} T(\kappa)$$

and

$$\kappa \otimes B \simeq \prod_{m_0} \kappa \otimes \prod_{m_1} T(\kappa)$$

in T^S_q as provided by Proposition 5.35. Then

$$\kappa \otimes A \otimes B \simeq \left(\prod_{n_0} \kappa \otimes \prod_{n_1} T(\kappa) \right) \otimes B$$

$$\simeq \left(\prod_{n_0} \kappa \otimes \prod_{n_1} T(\kappa) \right) \otimes \left(\prod_{m_0} \kappa \otimes \prod_{m_1} T(\kappa) \right)$$

$$\simeq \prod_{n_0 \oplus m_0 + n_1 \oplus m_1} \kappa \otimes \prod_{n_0 \oplus m_0 + n_1 \oplus m_1} T(\kappa).$$

Since $K^S_q(\kappa) \simeq k(0)$ and $K^S_q(T \kappa) \simeq k(1)$ (where, as before, $V(i)$ stands for the k-vector space V in degree $i \in Z/2$), we obtain

$$K^S_q(\kappa \otimes A \otimes B) \simeq \prod_{n_0 \oplus m_0 + n_1 \oplus m_1} k(0) \oplus \prod_{n_0 \oplus m_1 + n_1 \oplus m_0} k(1).$$

The right hand side of the equation is computed similarly:

$$K^S_q(\kappa \otimes A) \otimes K^S_q(\kappa \otimes B) \simeq \left(\prod_{n_0} k(0) \oplus \prod_{n_1} k(1) \right) \otimes \left(\prod_{m_0} k(0) \oplus \prod_{m_1} k(1) \right)$$

$$\simeq \prod_{n_0 \oplus m_0 + n_1 \oplus m_1} k(0) \oplus \prod_{n_0 \oplus m_1 + n_1 \oplus m_0} k(1)$$

using that $k(i) \otimes k(j) \simeq k(i + j)$. We see that the two sides are isomorphic.

We also record the following consequence of the Phillips-Künneth theorem.

Corollary 5.37. Let $A \in T^S_q$. Then $K^S_q(\kappa_q \otimes A) \simeq 0$ if and only if the derived tensor product $k(q) \otimes \overline{k}(S)_{q} K^S_q(A) = k(q) \otimes \overline{k}(S)_{q} K^S_q(A)$ is zero.

Proof. Since $\kappa_q \simeq 1_q \otimes \kappa_q$, we may substitute A with $1_q \otimes A$ and $K^S_q(\kappa_q \otimes A)$ with $K^S_q(\kappa_q \otimes A)_q$. By the Phillips-Künneth formula 5.26 $K^S_q(\kappa_q \otimes A)_q$ vanishes if and only if $\text{Tor}_i^R(S)_q(k(q), K^S_q(A)_q) \simeq 0$ $(i = 0, 1)$. The latter Tor modules are by definition the homology of the complex $k(q) \otimes \overline{k}(S)_{q} K^S_q(A)_q$.

6. First Results for Finite Groups

6.1. The nice support (Spec $R(G), \sigma_G$) on T^G. We are now ready to prove Theorem 6.4 of the introduction. We fix an arbitrary finite group G and consider the compactly generated \otimes-triangulated category $T^G = (I)_{loc} \subset KK^G$ of Section 5.1.

In [Se68], it is shown that for every prime ideal $p \in \text{Spec}(R(G))$ there exists a cyclic subgroup $S \leq G$, unique up to conjugacy in G (let us call it the source of p), such that: There exists a prime ideal $q \in \text{Spec}(R(S))$ with $(\text{Res}_G^S)^{-1}(q) = p$, and moreover S is minimal (with respect to inclusion) among the subgroups of G with this property. It follows that q also cannot come from any proper subgroups of S, i.e., the source of such a $q \in \text{Spec}(R(S))$ is S itself.

Notation 6.1. In the following, for a $p \in \text{Spec}(R(G))$ and a fixed cyclic subgroup $S = \sigma_p$ of G in the conjugacy class of the source of p, we shall denote by

$$\text{Fib}(p) := \{ q \in \text{Spec}(R(S(p))) | (\text{Res}_G^S)^{-1}(q) = p \}$$

the fiber in $\text{Spec}(R(S(p)))$ over the point $p \in \text{Spec}(R(G))$.

Note that the pair $(S(p), q)$, for any $q \in \text{Fib}(p)$, is a local pair as in Definition 5.24. In particular, we can apply to it all the results of Section 5.3 such as the existence of a residue field object $\kappa_q \in T^S_q$ (Lemma 5.33).

Definition 6.2. For a local pair (S, q), denote by $A(S, q)$ the stable abelian category of countable $\mathbb{Z}/2$-graded $k(q)$-vector spaces. Write

$$F_{(S, q)} : T^S \longrightarrow A(S, q)$$

for the stable homological functor sending $B \in T^S$ to $K^S_2(\kappa_q \otimes B)$. Now for every $p \in \text{Spec}(R(G))$, choose a $q = q(p) \in \text{Fib}(p)$ and consider the functor

$$F_p := F_{(S(p), q(p))} \circ \text{Res}_G^S(p) : T^G \longrightarrow A(S(p), q(p)) := A(p).$$

Finally, define the support σ_G by

$$\sigma_G(A) := \{ p \mid F_p(A) \neq 0 \} = \{ p \mid K^S_2(q(p) \otimes \text{Res}_G^S(p) A) \neq 0 \} = \{ p \mid \kappa_{q(p)} \otimes \text{Res}_G^S(p) (A) \neq 0 \} \subset \text{Spec}(R(G))$$

for every object $A \in T^G$.

Remark 6.3. The set $\sigma_G(A) \subset \text{Spec}(R(G))$ only depends on the group G and the object $A \in T^G$, not on the choices of $S(p)$, $q(p) \in \text{Fib}(p)$ or $\kappa_{q(p)}$. By Cor. 5.37, for fixed $(S, q) = (S(p), q(p))$ the vanishing of $F_p(A)$ only depends on the $(R(S))$-module $K^S_2(\kappa_q) \simeq (q)$, not on the choice of $\kappa_q \in T^G_q$. Now let (S, q) and (S', q') be two choices. As we already noted, if S and S' are two cyclic subgroups of G, both representing the source of p, then S and S' are conjugate in G; moreover, any two primes $q_1, q_2 \in \text{Spec}(R(S))$ lying above p are also conjugate by the induced action of some element of the normalizer $N_G(S)$ ([Se68, Prop. 3.5]). Combining the two, we easily find an isomorphism $\phi : S \rightarrow S'$, $s \mapsto g^{-1} s g$ inducing a \otimes-triangulated isomorphism $\phi^* : KK^S \simeq KK^S$ such that $\phi^* \circ \text{Res}_G^S \simeq \text{Res}_G^S$ and $\phi^*(\kappa_{q'}) \simeq \kappa_q$. This shows that $\sigma_G(A)$ is independent of all choices.

Theorem 6.4. The pair $(\text{Spec } R(G), \sigma_G)$ defines a support on T^G enjoying all the properties stated in Theorem 7.4. These are (S0)-(S7) of Theorem 7.4, where moreover (S5) holds for any two objects:

$$\sigma_G(A \otimes B) = \sigma_G(A) \cap \sigma_G(B)$$

Footnote 3: In loc. cit. Segal calls it the "support" of p, but surely the reader of this article will forgive us for avoiding charging this poor word with yet another meaning.
for all \(A, B \in \mathcal{T}^G \). In particular, the restriction \((\text{Spec}(R(G)), \sigma_G|_{\mathcal{K}^G})\) defines a support datum on the subcategory \(\mathcal{K}^G = (\mathcal{T}^G)_{\sigma} \) of compact objects.

Proof. By definition, \(\sigma_G \) is the support \(\sigma_{F(G)} \) induced, as in Lemma 3.3, by the family of functors \(F(G) := \{F_p\}_{p \in \text{Spec}(R(G))} \). Every \(F_p : \mathcal{T}^G \to \mathcal{A}(p) \) is a stable homological functor commuting with coproducts, because it is by definition a composition of a triangulated functor followed by a stable homological one, both of which preserve small coproducts. Thus, by Lemma 3.3 \(\sigma_G \) satisfies properties (S0), (S2)-(S4) and (S6). Since \(F_p(1) = k(\mathfrak{q}(p)) \cong 0 \), (S1) holds as well. Moreover, every \(\mathcal{A}(p) \) can be equipped with the tensor product \(\otimes \) of graded vector spaces, and clearly a product \(V \otimes W \) in \(\mathcal{A}(p) \) is zero if and only if one of the two factors already is (consider bases). For any two objects \(A, B \in \mathcal{T}^G \), there exists an isomorphism

\[
F_p(A \otimes B) \cong F_p(A) \otimes F_p(B)
\]

because of Proposition 5.36 and because restriction \(\text{Res}^G \) is a \(\otimes \)-functor. It follows that \(\sigma_G \) enjoys (S5) for any two objects.

It remains only to verify property (S7). We will do so in a series of lemmas.

Lemma 6.5. If \(H \) is a finite (or compact Lie) group and \(A \in \mathcal{T}^H \), then the \(R(H) \)-module \(\mathcal{K}^H(A) \) is finitely generated.

Proof. The proof is a routine induction on the length of the object \(A \in \mathcal{T}^H = \{1\} \), using that \(R(H) \) is noetherian. We leave it to the reader. \(\square \)

Lemma 6.6. For every compact object \(A \in \mathcal{T}^G \), we have

\[
\sigma_G(A) = \{ p \in \text{Spec}(R(G)) \mid K^S(p)(\text{Res}^G_A \mathfrak{a})_{\mathfrak{q}(p)} \cong 0 \}.
\]

Proof. Write \(S = S(\mathfrak{p}) \) and \(\mathfrak{q} = \mathfrak{q}(p) \). We know by Corollary 5.37 that \(F_p(A) = K^S(\mathfrak{q} \otimes \text{Res} \mathfrak{a}) \cong 0 \) is equivalent to the vanishing of \(X_\mathfrak{a} := k(\mathfrak{q}) \otimes_{\mathcal{F}(S)_{\mathfrak{q}}} K^S(\text{Res} \mathfrak{a})_{\mathfrak{q}} \).

Let us show that the latter is equivalent to \(K^S(\text{Res} \mathfrak{a})_{\mathfrak{q}} \cong 0 \). Since \(A \) is compact in \(\mathcal{T}^G \), Res is a compact in \(\mathcal{T}^G \) and therefore the \(\mathcal{R}(\mathfrak{S})_{\mathfrak{q}} \)-module \(M := K^S(\text{Res} \mathfrak{a})_{\mathfrak{q}} \) is finitely generated, by Lemma 6.5. Since \(\mathcal{R}(\mathfrak{S})_{\mathfrak{q}} \) is a noetherian ring of global dimension one (Lemma 3.25), we find a length-one resolution of \(M \) by finitely generated projectives, say \(P_i = (\cdots 0 \to P_i \to P_0) \). Moreover, since \(\mathcal{R}(\mathfrak{S})_{\mathfrak{q}} \) is local and the \(P_i \) finitely generated, we may choose the complex \(P_i \) to be minimal, that is, such that \(d(P_i) \subset \mathfrak{m} P_0 \) where \(\mathfrak{m} := q(\mathcal{R}(\mathfrak{S})_{\mathfrak{q}} \) denotes the maximal ideal (see [Ro80]). Now \(X_\mathfrak{a} = k(\mathfrak{q}) ^{\otimes 1} M = k(\mathfrak{q}) ^{\otimes P_i} = (P_i / \mathfrak{m} P_i, 0) \); so \(X_\mathfrak{a} \cong 0 \) iff \(P_i / \mathfrak{m} P_i = 0 \). By Nakayama (or simply because the modules \(P_i \) are free), the latter condition is equivalent to \(P_i \cong 0 \) \((i = 0, 1) \), i.e., to \(M \cong 0 \).

Finally, let us prove the remaining claim of Theorem 6.4

Lemma 6.7. The support \((\text{Spec}(R(G)), \sigma_G)\) satisfies (S7): for every \(A \in \mathcal{T}^G \), the set \(\sigma_G(A) \) is closed in \(\text{Spec}(R(G)) \).

Proof. Let \(A \) be a compact object of \(\mathcal{T}^G \). By Lemma 6.6, we can express the complement of \(\sigma_G(A) \) as follows:

\[
\text{Spec}(R(G)) \setminus \sigma_G(A) = \{ p \in \text{Spec}(R(G)) \mid K^S(\text{Res}^G_A \mathfrak{a})_{\mathfrak{q}(p)} \cong 0 \}.
\]

Note that, whenever \(S \) is a cyclic subgroup of \(G \) containing \(S(\mathfrak{p}) \) and \(\mathfrak{r} \) is a prime ideal in \(R(S) \) such that \(\mathfrak{r} = \text{Res}^{-1}(\mathfrak{q}) \) and \(\mathfrak{p} = \text{Res}^{-1}(\mathfrak{r}) \), then

\[
K^S(\text{Res}^G_A \mathfrak{a})_{\mathfrak{r}} \cong 0 \implies K^S(\text{Res}^G_A \mathfrak{a})_{\mathfrak{q}} \cong 0
\]

by Corollary 5.14. Hence, by the minimality and uniqueness, up to conjugacy in \(G \), of the pair \((S(\mathfrak{p}), \mathfrak{q}(\mathfrak{p}))\) (see Remark 6.3), we see that \(K^S(\text{Res}^G_A \mathfrak{a})_{\mathfrak{q}(\mathfrak{p})} \) vanishes
if and only if \(K^S_*(\text{Res}^G_S A)_r \cong 0 \) for some pair \((S, \tau)\) with \(S \) cyclic and \(\tau \in \text{Spec}(R(S)) \) lying above \(p \). By considering all \(p \) simultaneously, the above expression becomes

\[
\text{Spec}(R(G)) - \sigma_G(A) = \bigcup_S \text{Spec}(\text{Res}^S_*(\text{Res}^G_S A))^{-1}(\text{Spec}(R(S)) - \text{Supp}(R(S)) \cap K^S_*(\text{Res}^G_S A))
\]

where the sum is over all cyclic subgroups of \(G \). Since \(\text{Res}^S_*(A) \in T^S_+ \), the \((R(S)\text{-mod})_G \)-module \(K^S_*(\text{Res}^G_S A) \) is finitely generated \((\text{Lemma } 6.5)\). Therefore its module-theoretic support \(\text{Supp}(R(S)) \) is closed in \(\text{Spec}(R(S)) \), and we conclude from the latter formula that \(\sigma_G(A) \) is a closed subset of \(\text{Spec}(R(G)) \).

In the next section we prove the last claim of Theorem 1.4.

6.2. Split injectivity of \(f_G : \text{Spec}(R(G)) \to \text{Spec}(K^G) \)

In \[Ba08\], Balmer shows that, for every \(\otimes \)-triangulated category \(T \), there is a natural continuous comparison map

\[
\rho_T : \text{Spec}(T) \to \text{Spec}(R_T) \quad , \quad P \mapsto \rho_T(P) := \{ r \in R_T \mid \text{cone}(r) \notin P \}
\]

between the spectrum of \(T \) and the Zariski spectrum of its central ring. Since the ring \(R_{k,G} = R(G) \) is noetherian (at least for \(G \) a compact Lie group), it follows from \[Ba08\] Thm. 7.3 that \(\rho_{K^G} : \text{Spec}(K^G) \to \text{Spec}(R(G)) \) is surjective. In the previous section, we have constructed a support datum \((\text{Spec}(R(G)), \sigma_G)\) on \(K^G \) for each finite group \(G \). By the universal property of Balmer’s spectrum \((\text{Prop. 2.10})\), we have the canonical continuous map

\[
f_G : \text{Spec}(R(G)) \to \text{Spec}(K^G) \quad , \quad p \mapsto f_G(p) = \{ A \in K^G \mid p \notin \sigma_G(A) \}.
\]

We now verify that \(f_G \) provides a continuous section of \(\rho_{K^G} \):

Proposition 6.8. The composition \(\rho_{K^G} \circ f_G \) is the identity map of \(\text{Spec}(R(G)) \).

Proof. Notice that \(f_G(p) = \text{Ker}(F_p) \cap K^G \). For a \(p \in \text{Spec}(R(G)) \) and an \(r \in R(G) \) we have equivalences \((\text{write } \rho := \rho_{K^G} \text{ and } f := f_G \text{ for readability}): r \notin \rho(f(p)) \iff \text{cone}(r) \in f(p) \) \((\text{by definition of } \rho)\) \(\iff F_p(\text{cone}(r)) \simeq 0 \iff K^S_*(\text{Res}^S_*(\text{cone}(r)))_q \simeq 0 \), with \(q = q(p) \) and \(S = S(p) \) \((\text{By Lemma } 6.6)\) \(\iff K^S_*(\text{cone}(\text{Res}^S_*(r)))_q \simeq 0 \) \((\text{because } \text{Res}^S_*(r) \text{ is triangulated}) \iff \text{Res}^S_*(r) \in (R(S)_q)^* \).

Thus: \(r \notin \rho(f(p)) \iff \text{Res}^S_*(r) \in (R(S)_q)^* \). On the other hand, we also have \(r \notin p \iff r \in R(G)_p^* \). Now observe the commutative square

\[
\begin{array}{ccc}
R(G) & \xrightarrow{\text{Res}^S_*(r)} & R(S) \\
\downarrow{\ell_q} & & \downarrow{\ell_q} \\
R(G)_p & \xrightarrow{\psi_p} & R(S)_q
\end{array}
\]

where the vertical maps are the localization homomorphism of rings at the indicated prime. Since \(p = (\text{Res}^S_*(r))^{-1}(q) \), the lower horizontal map is a local homomorphism of local rings, and we deduce that \(\ell_q(r) \) is invertible if and only if \(\ell_q(\text{Res}^S_*(r)) \) is invertible. This proves that \(\rho(f(p)) = p \).

6.3. The spectrum and the Bootstrap category

Theorem 3.12 can be easily applied to \(T^G = \{ 1 \}_{\text{loc}} \subseteq K^G \) in the case of the trivial group, i.e., to the “Bootstrap category” \(\text{Boot} = \{ C \}_{\text{loc}} \subseteq KK \). Its central ring \(R(G) \) is just \(\mathbb{Z} \), and its subcategory of compact objects \(\text{Boot}_c = \{ C \} \) is the full subcategory of separable \(C^* \)-algebras having finitely generated \(K \)-theory groups \((\text{see } [De08] \text{ Lemma } 5.1.6)\).

Theorem 6.9. There is a canonical isomorphism \(\text{Spec}(\text{Boot}_c) \cong \text{Spec}(\mathbb{Z}) \) of locally ringed spaces, given by \(\rho_{\text{Boot}_c} \) with inverse \(f_G \).
Proof. Let \(\sigma : \text{obj(Boot)} \to 2^{\text{Spec}(G)} \) be the support constructed in §5.1 for \(G = \{1\} \). Namely: \(\sigma(A) = \{(p) \in \text{Spec}(Z) \mid Z_0 \otimes_{K_*} K_*(A) \not\simeq 0\} \) (here \(Z_0 \simeq \mathbb{Q} \)). In this case at least, \(\sigma \) detects objects (see [Ne92b], Lemma 2.12) for a more general statement working for any commutative noetherian ring \(R \) instead of \(Z \). Moreover, if \(A \in \text{Boot}_r \), then \(\sigma(A) = \{(p) \mid K_*(A)(p) \not\simeq 0\} = \text{Supp}_2(K_*(A)) \) by Lemma 6.9. Thus, by Theorem 6.3 and Proposition 6.12, \(\sigma \) satisfies all ten hypotheses (S0)-(S9) of Theorem 5.1, and therefore we have a canonical homeomorphism \(f := f_{(1)} : \text{Spc(Boot)} \simeq \text{Spec}(Z) \). By Proposition 6.8, its inverse must be the comparison map \(\rho := \rho_{\text{Boot}} \). It is now a general fact, true for any \(\otimes \)-triangulated category \(T \), that if \(\rho_T \) is a homeomorphism then it yields also automatically an isomorphism of locally ringed spaces \(\text{Spec}(T) \simeq \text{Spec}(R^T) \); see [Ba08, Prop. 6.10 (b)]. Alternatively, in the case at hand it is straightforward to check this directly. \(\square \)

Remark 6.10. In [De08, §5.1] we give a more elementary proof of Theorem 6.9 relying on the classical Universal Coefficient theorem and the Künneth theorem of Rosenberg and Schochet [RS87].

References

[AM69] M. F. Atiyah, I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont. (1969)

[BCR96] D. J. Benson, J. F. Carlson, J. Rickard, Complexity and varieties for infinitely generated modules, II, Math. Proc. Cambridge Philos. Soc. 120 (1996), no. 4, 597–615

[BCR97] D. J. Benson, J. F. Carlson, J. Rickard, Thick subcategories of the stable module category, Fund. Math. 153 (1997), no. 1, 59–80

[Ben91] D. J. Benson, Representations and cohomology II, Cambridge Studies in Mathematics 31, Cambridge University Press, Cambridge (1991) x+278

[BK90] Apostolos Beligiannnis, Relative homological algebra and purity in triangulated categories, J. Algebra 227 (2000), no. 1, 268–361

[Bel00] Apostolos Beligiannnis, Relative homological algebra and purity in triangulated categories, J. Algebra 227 (2000), no. 1, 268–361

[Bel98] Bruce Blackadar, K-theory for operator algebras, 2nd ed., Mathematical Sciences Research Institute Publications 5, Cambridge University Press (1998)

[BGKS99] R. R. Brun, J. W. Lewis, H. Krause, Local homology and support for triangulated categories, Ann. Scient. Éc. Norm. Super. (4) 12, no. 4, (2009) 575-621

[BN93] Marcel Bökstedt, Amnon Neeman, Homotopy limits in triangulated categories, Compositio Math. 86, no. 2, (1993) 209–234

[Bor98] Bruce Blackadar, K-theory for operator algebras, 2nd ed., Mathematical Sciences Research Institute Publications 5, Cambridge University Press (1998)

[BK90] Apostolos Beligiannnis, Relative homological algebra and purity in triangulated categories, J. Algebra 227 (2000), no. 1, 268–361

[BGKS99] R. R. Brun, J. W. Lewis, H. Krause, Local homology and support for triangulated categories, Ann. Scient. Éc. Norm. Super. (4) 12, no. 4, (2009) 575-621

[Ch98] J. Daniel Christensen, Ideals in triangulated categories: phantoms, ghosts and skeleta, Adv. Math. 136 (1998), no. 2, 284–339

[De08] Ivo Dell’Ambrogio, Prime tensor ideals in some triangulated categories of C*-algebras, Doctoral Thesis Nr. 17939 at ETH Zürich (2008)

[HK01] Nigel Higson, Gennadi Kasparov, E-theory and KK-theory for groups which act properly and isometrically on Hilbert space, Invent. Math. 144 (2001) no. 1, 23–74

[Ho89] Melvin Hochster, Prime ideal structure in commutative rings, Trans. Amer. Math. Soc. 142 (1969) 45–60

[HPS97] M. Hovey, J. H. Palmieri and N. P. Strickland, Axiomatic stable homotopy theory, Mem. Amer. Math. Soc. 128 (610) (1997)

[Ka88] G. G. Kasparov, Equivariant KK-theory and the Novikov conjecture, Invent. Math. 91 (1988) no. 1, 147–201
L. G. Lewis, Jr., J. P. May, M. Steinberger, *Equivariant stable homotopy theory*, with contributions by J. E. McClure, Lecture Notes in Mathematics 1213, Springer-Verlag, Berlin (1986)

Saunders Mac Lane, *Categories for the working mathematician*, 2nd ed., Graduate Texts in Math., vol. 5, Springer-Verlag, New York (1998)

Ralf Meyer, *Categorical aspects of bivariant K-theory*, preprint [arXiv:math/0702145v2] (Feb 2007)

Ralf Meyer, *Homological algebra in bivariant K-theory and other triangulated categories II*, preprint [arXiv:0801.1344v3] (Dec 2008)

Ralf Meyer and Ryszard Nest, *The Baum-Connes conjecture via localization of categories*, Topology 45 (2006) 209–259

Ralf Meyer and R. Ryszard Nest, *Homological algebra in bivariant K-theory and other triangulated categories I*, preprint [arXiv:math/0702146v2] (Aug 2008)

Haynes Miller, *Finite localizations*, Papers in honor of José Adem (Spanish), Bol. Soc. Mat. Mexicana (2) 37 (1992) no. 1-2, 383–389

Daniel S. Murfet, *The mock homotopy category of projectives and Grothendieck duality*, Doctoral Thesis at Australian National University (2007)

Amnon Neeman, *The connection between the K-theory localization theorem of Thomason, Trobaugh and Yao and the smashing subcategories of Bousfield and Ravenel*, Ann. Sci. École Norm. Sup. (4) 25, no. 5, (1992) 547-566

Amnon Neeman, *The chromatic tower for D(R)*, With an appendix by Marcel Bökstedt, Topology 31 (1992), no. 3, 519–532

Amnon Neeman, *The Grothendieck duality theorem via Bousfield’s techniques and Brown representability*, J. Amer. Math. Soc. 9 (1996), no. 1, 205–236

Amnon Neeman, *Brown representability for the dual*, Invent. Math. 133 (1998) 97–105

Amnon Neeman, *Triangulated categories*, Annals of Mathematics Studies 148, Princeton University Press, Princeton (2001)

N. Christopher Phillips, *Equivariant K-theory and freeness of group actions on C*-algebras*, Lecture Notes in Mathematics 1274, Springer-Verlag, Berlin (1987), viii+371 pp.

Jeremy Rickard, *Idempotent modules in the stable category*, J. London Math. Soc. (2) 56 (1997), no. 1, 149–170

Paul Roberts, *Homological invariants of modules over commutative rings*, Séminaire de Mathématiques Supérieures [Séminaire on Higher Mathematics] 72, Presses de l’Université de Montréal, Montreal, Que. (1980)

Jonathan Rosenberg and Claude Schochet, *The Künneth theorem and the universal coefficient theorem for Kasparov’s generalized K-functor*, Duke Math. J. 55 (2), (1987) 431–474

Graeme Segal, *The representation ring of a compact group*, Inst. Hautes Études Sci. Publ. Math. 34 (1968) 113–128.

Jean-Louis Verdier, *Des catégories dérivées des catégories abéliennes*, with a preface by Luc Illusie, edited and with a note by Georges Maltsiniotis, Astérisque 239 (1996)
TENSOR TRIANGULAR GEOMETRY AND KK-THEORY

IVO DELL’AMBROGIO

Abstract. This is a first foray of tensor triangular geometry [Ba05] into the realm of bivariant topological K-theory. As a motivation, we first establish a connection between the Balmer spectrum $\text{Spec}(KK^G)$ and a strong form of the Baum-Connes conjecture with coefficients for the group G, as studied in [MN06]. We then turn to more tractable categories, namely, the thick triangulated subcategory $K^G \subset KK^G$ and the localizing subcategory $T^G \subset KK^G$ generated by the tensor unit C. For G finite, we construct for the objects of T^G a support theory in $\text{Spec}(R(G))$ with good properties. We see as a consequence that $\text{Spec}(K^G)$ contains a copy of the Zariski spectrum $\text{Spec}(R(G))$ as a retract, where $R(G) = \text{End}_{K^G}(C)$ is the complex character ring of G. Not surprisingly, we find that $\text{Spec}(K(1)) \simeq \text{Spec}(\mathbb{Z})$.

Contents

1. Introduction 1
2. Triangular preliminaries 4
 2.1. Brown representability and Bousfield localization 4
 2.2. The spectrum of a \otimes-triangulated category 6
 2.3. Rigid objects 7
 2.4. Central localization 9
3. Classification in compactly generated categories 13
 3.1. An abstract criterion 13
 3.2. Compact objects and central rings 16
 3.3. Comparison with the support of Benson-Iyengar-Krause 18
4. The spectrum and the Baum-Connes conjecture 18
 5. Some homological algebra for KK-theory 20
 5.1. The categories T^G and K^G 21
 5.2. Central localization of equivariant KK-theory 22
 5.3. The Phillips-Kümeth formula 25
 5.4. The residue field object at a prime ideal 27
6. First results for finite groups 29
 6.1. The nice support $(\text{Spec} R(G), \sigma_G)$ on T^G 29
 6.2. Split injectivity of $f_G : \text{Spec} R(G) \to \text{Spec} K^G$ 31
 6.3. The spectrum and the Bootstrap category 31
References 32

1. Introduction

Let G be a second countable locally compact Hausdorff group, and let KK^G denote the G-equivariant Kasparov category of separable G-C^*-algebras ([Ka88] [Me08a]). As shown in [MN06], KK^G is naturally equipped with the structure of a tensor triangulated category (Def. 2.12). This means that we are in the domain of tensor triangular geometry. In particular, the (essentially small) category KK^G...
has a spectrum $\text{Spc}(\mathcal{K}K^G)$, as defined by Paul Balmer \cite{Balmer05} (see Def. 2.14 below). If $H \leq G$ is a subgroup, the restriction functor $\text{Res}_H^G : \mathcal{K}K^G \to \mathcal{K}K^H$ induces a continuous map $(\text{Res}_H^G) : \text{Spc}(\mathcal{K}K^H) \to \text{Spc}(\mathcal{K}K^G)$. Then

Theorem 1.1. Assume that G is such that $\text{Spc}(\mathcal{K}K^G) = \bigcup_H \big((\text{Res}_H^G) \big)^* \big(\text{Spc}(\mathcal{K}K^H)\big)$, where H runs through all compact subgroups of G. Then G satisfies the Baum-Connes conjecture for every functor on $\mathcal{K}K^G$ and any coefficient algebra $A \in \mathcal{K}K^G$.

This is proved in \cite{GJS10} where the reader may also find the precise meaning of the conclusion. Now, we do not know yet if the above fact may provide a way of proving Baum-Connes. For one thing, we still don’t know of a single non-compact group satisfying the above covering hypothesis. But the result looks intriguing, and it suggests that further geometric inquiry in this context will be fruitful.

As a first step in this direction, we turn to the subcategories $\mathcal{T}^G := (1)_{\text{loc}} \subset \mathcal{K}K^G$ and $\mathcal{K}^G := (1) \subset \mathcal{K}K^G$, that is, the localizing, respectively the thick triangulated subcategory generated by the tensor unit $1 = C \in \mathcal{K}K^G$. Moreover, we restrict our attention to the much better understood case when the group G is compact or even finite. Then the endomorphism ring $\text{End}(1)$ of the \otimes-unit can be identified with the complex representation ring $R(G)$ of the compact group, which is known to be noetherian if G is a Lie group (e.g. finite); see \cite{Grothendieck68}. Note that $\mathcal{K}^G = (\mathcal{T}^G)^c$ is the subcategory of compact objects in \mathcal{T}^G (see \cite{Balmer05} and \cite{Guerard10}). When $G = \{1\}$ is trivial, $\text{Boot} : = \mathcal{T}^G$ is better known as the “Bootstrap” category of separable C^*-algebras. We will prove in \cite{GJS10}:

Theorem 1.2. There is a canonical homeomorphism $\text{Spc}(\text{Boot}_c) \simeq \text{Spec}(\mathbb{Z})$.

The latter statement generalizes naturally as follows:

Conjecture 1.3. For every finite group G, the natural map $\rho_{\mathcal{K}K^G} : \text{Spc}(\mathcal{K}K^G) \to \text{Spec}(R(G))$ (see \cite{Balmer10} or \cite{GJS10} below) is a homeomorphism.

If true, this would show that, in yet another branch of mathematics, an object of classical interest (here: the spectrum of the complex representation ring of a finite group) can be recovered as the Balmer spectrum of a naturally arising \otimes-triangulated category. We have some interesting facts that suggest a positive answer. Namely:

Theorem 1.4 (Thm. 6.3 and Prop. 6.5). Let G be a finite group. Then there exists an assignment $\sigma_G : \text{obj}(\mathcal{T}^G) \to 2^{\text{Spec}(R(G))}$ from objects of \mathcal{T}^G to subsets of the spectrum enjoying the following properties:

(a) $\sigma_G(0) = \emptyset$ and $\sigma_G(1) = \text{Spec}(R(G))$.
(b) $\sigma_G(A \oplus B) = \sigma_G(A) \cup \sigma_G(B)$.
(c) $\sigma_G(TA) = \sigma_G(A)$.
(d) $\sigma_G(B) \subseteq \sigma_G(A) \cup \sigma_G(C)$ for every exact triangle $A \to B \to C \to TA$.
(e) $\sigma_G(A \oplus B) = \sigma_G(A) \cap \sigma_G(B)$.
(f) $\sigma_G(\coprod_i A_i) = \bigcup_i \sigma_G(A_i)$.
(g) if $A \in \mathcal{K}^G$, then $\sigma_G(A)$ is a closed subset of $\text{Spec}(R(G))$.

Here $A, B \in \mathcal{T}^G$ are any objects and $\coprod_i A_i$ any coproduct in \mathcal{T}^G. In particular, the restriction of σ_G to \mathcal{K}^G is a support datum in the sense of Balmer \cite{Balmer10} (see \cite{GJS10} below), so it induces a canonical map $f_G : \text{Spec}(R(G)) \to \text{Spec}(\mathcal{K}K^G)$. This map is topologically split injective; indeed, it provides a continuous section of $\rho_{\mathcal{K}K^G}$.

Remark. In the course of proving Theorem 1.4 we construct, for G compact, a well-behaved ‘localization of \mathcal{T}^G at a prime $p \in \text{Spec}(R(G))$’, written $\mathcal{T}^G_p \subset \mathcal{T}^G$ (see \cite{GJS10}). It follows for instance that there is a functor $L_p : \mathcal{K}K^G \to \mathcal{T}^G_p$ together with a natural isomorphism $K^G_p(L_p A) \simeq K^G_p(A)_p$, for all $A \in \mathcal{K}K^G$ (Cor. 5.12).
We believe Theorem 3.4 provides evidence for Conjecture 1.3 because of the following more general result in tensor triangular geometry, which is of independent interest (see Theorem 3.1 below).

Theorem 1.5. Let \mathcal{T} be a compactly generated \otimes-triangulated category1. Let X be a spectral topological space (such as the Zariski spectrum of a commutative ring – see Remark 2.15), and let $\sigma : \text{obj}(\mathcal{T}) \to 2^X$ be a function assigning to every object of \mathcal{T} a subset of X. Assume that the pair (X, σ) satisfies the following ten axioms:

(S0) $\sigma(0) = \emptyset$.
(S1) $\sigma(1) = X$.
(S2) $\sigma(A \oplus B) = \sigma(A) \cup \sigma(B)$ (really, this is redundant because of (S6) below).
(S3) $\sigma(TA) = \sigma(A)$.
(S4) $\sigma(B) \subseteq \sigma(A) \cup \sigma(C)$ for every distinguished triangle $A \to B \to C \to TA$.
(S5) $\sigma(A \otimes B) = \sigma(A) \cap \sigma(B)$ for every compact $A \in \mathcal{T}_c$ and arbitrary $B \in \mathcal{T}$.
(S6) $\sigma(\coprod A_i) = \bigcup \{ \sigma(A_i) \}$ for every small family $\{ A_i \} \subseteq \mathcal{T}$ of objects.
(S7) $\sigma(A)$ is closed in X with quasi-compact complement $X \setminus \sigma(A)$ for all $A \in \mathcal{T}_c$.
(S8) For every closed subset $Z \subseteq X$ with quasi-compact open complement, there exists a compact object $A \in \mathcal{T}_c$ with $\sigma(A) = Z$.
(S9) $\sigma(A) = \emptyset$ implies $A \simeq 0$.

Then the restriction of (X, σ) to \mathcal{T}_c is a classifying support datum; in particular, the induced canonical map $X \to \text{Spc}(\mathcal{T}_c)$ is a homeomorphism (see Thm. 2.19).

Remark 1.6. We note that the latter theorem has also been announced by Julia Pevtsova and Paul Smith. It specializes to the classification of thick tensor ideals in the stable category stmod of modular representation theory, due to Benson, Carlson and Rickard [BCR97] (see Example 3.2 below). Indeed, our proof is an abstract version of their [BCR97] Theorem 3.4.

As concerns us here, our hope is to apply Theorem 1.5 to the category $\mathcal{T} := \mathcal{T}^G$ (so that $\mathcal{T}_c = \mathcal{K}^G$) for a finite group G, choosing σ to be the assignment σ_G in Theorem 1.4 note that it follows from the first part of the theorem that σ_G satisfies conditions (S0)-(S7). At least for $G = \{1\}$, axioms (S8) and (S9) are also satisfied and therefore we obtain Theorem 1.2 from Theorem 1.5. We don’t know yet if the same strategy also works in general, i.e., we don’t know if (S8) and (S9) also hold when G is non-trivial (we have some clues that this might be the case, but they are too sparse to be mentioned here).

More abstractly, in §3.2 we examine condition (S8) (and also (S7)) in relation to the endomorphism ring of the tensor unit $\mathbf{1}$. As a payoff, we then show in §3.3 how to use Theorem 1.5 in order to compare Balmer’s universal support with that of Benson, Iyengar and Krause [BIK09] in the situation where both are defined.

In a sequel to this article, we intend to study the spectrum of “finite noncommutative G-CW-complexes” for a finite group G, that is, of the triangulated subcategory of $\mathcal{K}G$ generated by all G-C*-algebras $C(G/H)$ with $H \leq G$ a subgroup.

Conventions. If $F : A \to B$ is an additive functor, we denote by $\text{Im}(F) \subseteq B$ the essential image of F, i.e., the full subcategory of B of those objects isomorphic to $F(A)$ for some $A \in A$; by $\text{Ker}(F) := \{ A \in A \mid F(A) \simeq 0 \}$ we denote its kernel on objects, and by $\text{ker}(F) := \{ f \in \text{Mor}(A) \mid F(f) = 0 \}$ its kernel on morphisms. The translation functor in all triangulated categories is denoted by T. Triangulated subcategories are always full and closed under isomorphic objects.

Acknowledgements. This work was done during my PhD thesis under the supervision of Paul Balmer. I wish to thank him for his interest and generosity. I am

1See Convention 2.25 below for the precise (modest) hypotheses we are making here. We require in particular that compact objects form a tensor triangulated subcategory \mathcal{T}_c.
very grateful to Amnon Neeman for spotting two mistakes in a previous version of this paper.

2. Triangular preliminaries

2.1. Brown representability and Bousfield localization. The material of this section, originated in stable homotopy and generalized to triangulated categories by Amnon Neeman in a series of papers, is now standard. However we shall have to use a slight variation of the definitions and results. Namely, we fix an uncountable regular cardinal number α, and consider variants of the usual notions that are relative to this cardinal. (Later on, in our applications we shall only need the case $\alpha = \aleph_1$.) We use subscripts as in “dummyword$_\alpha$”, because the prefixed notation “α-dummyword” has already found different uses. Throughout, T will be a triangulated category admitting arbitrary small$_\alpha$ coproducts, i.e., coproducts indexed by sets I of cardinality $|I| < \alpha$. In general, we shall say that a set S is small$_\alpha$ if $|S| < \alpha$.

Definition 2.1. An object A of T is compact$_\alpha$ if $\text{Hom}_T(A, ?)$ commutes with small$_\alpha$ coproducts, and if moreover $|\text{Hom}_T(A, B)| < \alpha$ for every $B \in T$. We write T_c for the full subcategory of compact$_\alpha$ objects of T. A set of objects $G \subset T$ generates T if for all $A \in T$ the following implication holds: $\text{Hom}_T(G, A) \simeq 0$ for all $G \in G \Rightarrow A \simeq 0$.

We say that T is compactly$_\alpha$ generated if there is a small$_\alpha$ set $G \subset T$ of compact$_\alpha$ objects generating the category. If $E \subset T$ is some class of objects, we write $\langle E \rangle$ for the smallest localizing$_\alpha$ subcategory of T containing E, where localizing$_\alpha$ means triangulated and closed under the formation of small$_\alpha$ coproducts in T. We will reserve the notation $\langle E \rangle$ for the thick triangulated subcategory of T generated by E. Note that $\langle E \rangle$ is automatically thick, as is every triangulated category with arbitrary countable coproducts, by a well-known argument.

It was first noticed in [MN06] that these definitions allow the following α-relative version of Neeman’s Brown representability for cohomological functors, simply by verifying that the usual proof ([Ne96, Thm. 3.1]) only needs the formation of small$_\alpha$ coproducts in T and never requires bigger ones.

Theorem 2.2 (Brown representability). Let T be compactly$_\alpha$ generated, with G a generating set. Then a functor $F : T^{\text{op}} \to \text{Ab}$ is representable if and only if it is homological, it sends small$_\alpha$ coproducts in T to products of abelian groups and if moreover $|F(A)| < \alpha$ for all $A \in G$ (or equivalently, for all compact$_\alpha$ objects $A \in T_c$).

As in the case of a genuine compactly generated category (i.e., when $\alpha =$ cardinality of a proper class), one obtains from the techniques of the proof the following characterization:

Corollary 2.3. For a triangulated category T with arbitrary small$_\alpha$ coproducts, the following are equivalent:

(i) T is compactly$_\alpha$ generated.
(ii) $T = \langle G \rangle_{\text{loc}}$ for some small$_\alpha$ subset $G \subset T_c$ of compact$_\alpha$ objects.
(iii) $T = (T_c)_{\text{loc}}$ and T_c is essentially small$_\alpha$ (by which of course we mean that T_c has a small$_\alpha$ set of isomorphism classes of objects).

Corollary 2.4. Thus, for every small$_\alpha$ subset $S \subset T_c$ there is a compactly$_\alpha$ generated localizing$_\alpha$ subcategory $L = \langle S \rangle_{\text{loc}} \subset T$. Its compact$_\alpha$ objects are given by $L_c = T_c \cap L = \langle S \rangle$.
Moreover, the resulting functors L^*.

Then the triangle in (\ref{GluingTriangle}) is unique up to unique isomorphism and is functorial in A. Moreover, the resulting functors $L : A \mapsto A'$ and $R : A \mapsto A''$ and morphisms $\lambda : L \mapsto id_T$ and $p : id_T \mapsto R$ enjoy the following properties:

(a) $\lambda A : LA \to A$ is the terminal morphism to A from an object of L. Dually, $\rho A : A \to RA$ is initial among morphisms from A to an object of R.

(b) $R = L^\perp$ and $L = R^\perp$. In particular, L and R determine each other.

(c) L is a coreflective subcategory of T. Dually, L^\perp is a reflective subcategory.

(d) The composition $L \hookrightarrow T \mapsto T/L^\perp$ is an equivalence identifying the right adjoint of the inclusion $L \hookrightarrow T$ with the Verdier quotient $T \mapsto T/L^\perp$.

Dually, the composition $L^\perp \hookrightarrow T \mapsto T/L$ is an equivalence identifying the left adjoint of $L^\perp \hookrightarrow T$ with the Verdier quotient $T \mapsto T/L$.

(e) $L = \text{Im}(L) = \text{Ker}(R)$ and $R = \text{Ker}(L) = \text{Im}(R)$. \hfill \Box

Definition 2.7. Following [MN06], if $L, R \subseteq T$ are thick subcategories satisfying condition (\ref{GluingTriangle}) of Proposition 2.6, we say that (L, R) is a pair of complementary subcategories of T. The functorial distinguished triangle in (\ref{GluingTriangle}) will be called the gluing triangle (at A) for the complementary pair (L, R).

We also recall the following immediate consequence of Proposition 2.6.

Corollary 2.8. If (L, R) and (\hat{L}, \hat{R}) are two complementary pairs in T such that $L \subseteq \hat{L}$ (equivalently: such that $R \supset \hat{R}$) with gluing triangle $L \mapsto \hat{L} \mapsto \hat{R}$, resp. $L \mapsto \text{id} \mapsto R \mapsto TL$, then $\hat{L} \simeq \hat{R}R$ and $L\hat{L} \simeq L$. \hfill \Box

One can use Brown representability to produce complementary pairs:

Proposition 2.9. Let T be a triangulated category with small$_\alpha$ coproducts. If $S \subseteq T_\alpha$ is a small$_\alpha$ subset of compact$_\alpha$ objects, then $(S)_{\text{loc}}, S^\perp$ is a complementary pair of localizing$_\alpha$ subcategories of T, depending only on the thick subcategory $(S) \subseteq T_\alpha$.

The proof of yet another well-known result, namely Neeman’s localization theorem (Ne02), also works verbatim in the α-relative setting.

Theorem 2.10 (Neeman localization theorem). Let T be a compactly$_\alpha$ generated triangulated category. Let $L_0 \subseteq T_\alpha$ be some (necessarily essentially small$_\alpha$) subset of compact$_\alpha$ objects, and let $L := (L_0)_{\text{loc}}$ be the localizing$_\alpha$ subcategory of T generated by L_0. Consider the resulting diagram of inclusions and quotient functors.

\[
\begin{array}{cccccc}
\mathcal{L} & \rightarrow & T & \rightarrow & T/L \\
\downarrow & & \downarrow & & \downarrow \\
\mathcal{L}_c & \rightarrow & T_c & \rightarrow & T_c/L_c \\
\end{array}
\]
Then the following hold true:

(a) The induced functor F is fully faithful.
(b) The image of F consists of compact objects of T/\mathcal{L}.
(c) $F(T_c/\mathcal{L}_c)$ is a cofinal subcategory of $(T/\mathcal{L})_c$: for every $A \in (T/\mathcal{L})_c$ there are objects $A' \in (T/\mathcal{L})_c$ and $B \in T_c/\mathcal{L}_c$ such that $A \oplus A' \simeq F(B)$. \hfill \square

Not everything generalizes, however. As the next example shows, arbitrary small products are representable in a compactly generated category only when α is inaccessible (which is, essentially, the case of a genuine compactly generated category). As a consequence, the representation theorem for covariant functors ([Ne01] Thm. 2.1) is not available – it cannot even be formulated in the usual way. See also Example 2.22 for a related problem.

Example 2.11. Let T be a compactly generated triangulated category, and assume that the cardinal number α is not inaccessible, i.e., that there exists a cardinal β with $\beta < \alpha$ and $2^\beta \geq \alpha$ (e.g. $\alpha = \aleph_1$). If $0 \neq A \in T_c$ is a nontrivial compact object, then its β-fold product cannot exist in T, because otherwise we would have $|\text{Hom}(A, \prod_\beta A)| = |\prod_\beta \text{Hom}(A, A)| \geq 2^\beta \geq \alpha$, in contradiction with the compactness of A.

2.2. The spectrum of a \otimes-triangulated category. We recall from [Ba05] some basic definitions and results of Paul Balmer’s geometric theory of tensor triangulated categories, or “tensor triangular geometry”.

Definition 2.12. By a tensor triangulated category we always mean a triangulated category T ([Ver96] [Ne01]) equipped with a tensor product $\otimes : T \times T \to T$ (i.e., a symmetric monoidal structure, see [Ma98]); we denote the unit object by 1. We assume that \otimes is a triangulated functor in both variables, and we also assume that the natural switch $T(1) \otimes T(1) \to T(1) \otimes T(1)$ given by the tensor structure is equal to minus the identity. Following [Ba10], we call

$$R_T := \text{End}_T(1) \quad \text{and} \quad R_T^1 := \text{End}_T^1(1) := \bigoplus_{n \in \mathbb{Z}} \text{Hom}_T(1, T^n(1))$$

the central ring and the graded central ring of $T = (T, \otimes, 1)$, respectively.

Remark 2.13. The central ring R_T is commutative, and it acts on the whole category via $f \mapsto r \cdot f := r \otimes f : A \otimes 1 \to 1 \otimes B \simeq B$, for $r \in R_T$ and $f \in \text{Hom}(A, B)$; we use here the structural identifications $1 \otimes A \simeq A \simeq A \otimes 1$. This makes T canonically into an R_T-linear category. Our hypothesis on the switch $T(1) \otimes T(1) \to T(1) \otimes T(1)$ ensures that the graded central ring R_T^1 is graded commutative, by a classical argument. Also, it implies that the tensor product makes each graded Hom set $\text{Hom}^n(A, B) := \bigoplus_n \text{Hom}(A, T^n B)$ into a graded (left) module over R_T such that composition is bilinear up to a sign rule (see [Ba10] or [De08] § 2.1 for details). In the following, we will localize these graded modules at homogeneous prime ideals p of R_T, see 3.8

Definition 2.14 (The spectrum). Let T be an essentially small \otimes-triangulated category. A prime tensor ideal P in T is a proper (i.e. $P \subseteq T$) thick subcategory of T, which is a tensor ideal ($A \in P, B \in T \Rightarrow A \otimes B \in P$) and is prime ($A \otimes B \in P \Rightarrow A \in P$ or $B \in P$). The spectrum of T, denoted $\text{Spc}(T)$, is the small set of its prime ideals. The support of an object $A \in T$ is the subset

$$\text{supp}(A) := \{P \mid A \notin P\} = \{P \mid A \neq 0 \text{ in } T/P\} \subset \text{Spc}(T).$$

We give the spectrum the Zariski topology, which has $\{\text{Spc}(T) \setminus \text{supp}(A)\}_{A \in T}$ as a basis of open subsets. The space $\text{Spc}(T)$ is naturally equipped with a sheaf of commutative rings \mathcal{O}_T whose stalks are the local rings $\mathcal{O}_{T, p} = R_{T/p}$ (see [Ba10]). The resulting locally ringed space is denoted by $\text{Spec}(T) := (\text{Spc}(T), \mathcal{O}_T)$.

Ivo Dell’Ambrogio
Remark 2.15. The spectrum Spc(\(T\)) is a spectral space, in the sense of Hochster \cite{Ho69}: it is quasi-compact, its quasi-compact open subsets form an open basis, and every irreducible closed subset has a unique generic point. The support \(A \mapsto \text{supp}(A)\) is compatible with the tensor triangular structure, and is the finest such:

Proposition 2.16 (Universal property \cite{Ba05}). The support \(A \mapsto \text{supp}(A)\) has the following properties.

\begin{enumerate}[(SD1)]
\item \(\text{supp}(0) = \emptyset\) and \(\text{supp}(1) = \text{Spc}(T)\).
\item \(\text{supp}(A \oplus B) = \text{supp}(A) \cup \text{supp}(B)\).
\item \(\text{supp}(TA) = \text{supp}(A)\).
\item \(\text{supp}(B) \subset \text{supp}(A) \cup \text{supp}(C)\) if \(A \to B \to C \to TA\) is distinguished.
\item \(\text{supp}(A \otimes B) = \text{supp}(A) \cap \text{supp}(B)\).
\end{enumerate}

Moreover, if \((X, \sigma)\) is a pair consisting of a topological space \(X\) together with an assignment \(A \mapsto \sigma(A)\) from objects of \(T\) to closed subsets of \(X\), satisfying the above five properties (in which case we say that \((X, \sigma)\) is a support datum on \(T\)), then there exists a unique morphism of support data \(f : (X, \sigma) \to (\text{Spc}(T), \text{supp})\), i.e., a continuous map \(f : X \to \text{Spc}(T)\) such that \(\sigma(A) = f^{-1}\text{supp}(A)\) for all \(A \in T\). Concretely, \(f\) is defined by \(f(x) := \{A \in T \mid x \notin \sigma(A)\}\).

Terminology 2.17. In the following, by “a support” \((X, \sigma)\) on some tensor triangulated category \(T\) we will simply mean a space \(X\) together with some assignment \(\sigma : \text{obj}(T) \to 2^X\) possibly lacking (some of) the good properties of a support datum.

Thus, the spectrum \((\text{Spc}(T), \text{supp})\) is the universal support datum on \(T\). It has another important characterization.

Definition 2.18. We say that a \(\otimes\)-ideal \(J \subset T\) is radical if \(A^\otimes n \in J\) for some \(n \geq 1\) implies \(A \in J\). A subset \(Y \subset \text{Spc}(T)\) of the form \(Y = \bigcup Z_i\), where each \(Z_i\) is closed with quasi-compact open complement, is called a Thomason subset.

Theorem 2.19 (Classification theorem \cite{Ba05, BKS07}). The assignments

\[(J \mapsto \bigcup_{A \in J} \text{supp}(A) \quad \text{and} \quad Y \mapsto \{A \in T \mid \text{supp}(A) \subset Y\}\]

define mutually inverse bijections between the set of radical thick \(\otimes\)-ideals of \(T\) and the set of Thomason subsets of its spectrum \(\text{Spc}(T)\).

Conversely, if \((X, \sigma)\) is a support datum on \(T\) inducing the above bijection and with \(X\) spectral (in which case we say that \((X, \sigma)\) is a classifying support datum), then the canonical morphism \(f : (X, \sigma) \to (\text{Spc}(T), \text{supp})\) is invertible; in particular, \(f : X \to \text{Spc}(T)\) is a homeomorphism.

So, up to canonical isomorphism, \((\text{Spc}(T), \text{supp})\) is the unique classifying support datum on \(T\). In examples so far, all explicit descriptions of the spectrum have been obtained from the Classification theorem, by proving that a specific concrete support datum is classifying.

2.3. **Rigid objects.** It often happens that the tensor product in a triangulated category is closed, i.e., it has an internal Hom functor \(\text{Hom} : T^{op} \times T \to T\) providing a right adjoint \(\text{Hom}(A, ?) : T \to T\) of \(\otimes : T \to T\) for each object \(A \in T\).

Being right adjoint to a triangulated functor, each \(\text{Hom}(A, ?)\) is triangulated. Under some mild hypothesis, \(\text{Hom}\) preserves distinguished triangles also in the first variable: see \cite{Mu07} App. C (I thank Amnon Neeman for the reference). In general, it is easily verified that the functor \(\text{Hom}(?, A)\) sends every distinguished triangle to a triangle that, while possibly not belonging to the triangulation, still yields long exact sequences upon application of the Hom functors \(\text{Hom}_T(B, ?)\). The latter property suffices for many purposes, such as the proof of Prop. \[2.23\] below.
Example 2.21. If \mathcal{T} is a genuine compactly generated tensor triangulated category where the tensor commutes with coproducts, one obtains the internal Hom for free via Brown representability (simply represent the functors $\text{Hom}_\mathcal{T}(?, \otimes A, B)$).

In the α-relative setting, the internal Hom is only available when the source object is compact, fortunately, this suffices for our purposes. More precisely:

Example 2.22. Let \mathcal{T} be a compactly,α generated tensor triangulated category (Def. 2.11) where \otimes commutes with small α coproducts and where $\mathcal{T}_c \otimes \mathcal{T}_c \subset \mathcal{T}_c$. With these assumptions, if $A \in \mathcal{T}_c$ then Brown representability (Thm. 2.2) applies to the functor $\text{Hom}(?, \otimes A, B) : \mathcal{T} \to \text{Ab}$, providing the right adjoint $\text{Hom}(A, ?) : \mathcal{T} \to \mathcal{T}$ to tensoring with A. In general though there is a problem: if α is not inaccessible, i.e., if there exists a cardinal β with $\beta < \alpha$ and $2^\beta \geq \alpha$ (e.g. $\alpha = \aleph_1$), then Hom cannot be everywhere defined, as soon as $0 \not\cong 1 \in \mathcal{T}_c$. Indeed, if $X := \text{Hom}(\prod_\beta 1, 1) \in \mathcal{T}$ were defined, we would have a natural isomorphism

$$\text{Hom}(A, X) \cong \text{Hom}(A \otimes \prod_\beta 1, 1) \cong \text{Hom}(\prod_\beta A, 1) \cong \prod_\beta \text{Hom}(A, 1).$$

Choosing $A = 1 \not\cong 0$ we would obtain $|\text{Hom}(1, X)| = |\prod_\beta \text{End}(1)| \geq 2^\beta \geq \alpha$, contradicting the hypothesis that 1 is compact. (Alternatively, we see that $X \cong \prod_\beta 1 \in \mathcal{T}$, which is impossible by Example 2.11).

Definition 2.23. Let \mathcal{T} be a closed \otimes-triangulated category. We write $A^\vee := \text{Hom}(A, 1)$ for the dual of an object $A \in \mathcal{T}$. An object $A \in \mathcal{T}$ is rigid (or strongly dualizable), if the morphism $A^\vee \otimes ? \to \text{Hom}(A, ?) : \mathcal{T} \to \mathcal{T}$ obtained canonically by adjunction is an isomorphism. The \otimes-category \mathcal{T} is rigid if all its objects are rigid.

Proposition 2.24 (See [HPS97, App. A]). Let \mathcal{T} be a closed \otimes-triangulated category. The full subcategory of rigid objects is a thick \otimes-triangulated subcategory of \mathcal{T} (in particular it contains the tensor unit). The contravariant functor $A \mapsto A^\vee$ restricts to a duality (i.e., $(?)^\vee \cong \text{id}$) on this subcategory. \hfill \Box

Convention 2.25. We say that $\mathcal{T} = (\mathcal{T}, \otimes, 1)$ is a compactly generated tensor triangulated category if it is a tensor triangulated category (Def. 2.12) and if \mathcal{T} is compactly,α generated (Def. 2.11) for some uncountable regular cardinal α, possibly with $\alpha = \text{the cardinality of a proper class (what we dub the “genuine” case, that is, the usual sense of “compactly generated”). Moreover, we assume that

(a) for every $A \in \mathcal{T}$ the triangulated functors $A \otimes ?$ and $? \otimes A$ preserve small,α coproducts, and

(b) $\mathcal{T}_c \otimes \mathcal{T}_c \subset \mathcal{T}_c$ (cf. Ex. 2.22) and the compact and rigid objects of \mathcal{T} coincide. In particular, \mathcal{T}_c is a (rigid) tensor triangulated subcategory of \mathcal{T}. From now on, we will also drop the fixed cardinal α from our terminology.

Remark 2.26. In the case of a genuinely compact generated category, as well as in the monogenic case (i.e., $1 \in \mathcal{T}_c$ and $\mathcal{T} = (1)_{\text{loc}}$), the hypothesis $\mathcal{T}_c \otimes \mathcal{T}_c \subset \mathcal{T}_c$ is superfluous. Also, in general (and assuming (a)), to have equality of compact and rigid objects one needs only check that 1 is compact and that \mathcal{T} has a generating set consisting of compact and rigid objects.

Lemma 2.27. Let \mathcal{T} be a compactly generated \otimes-triangulated category and $\mathcal{J} \subset \mathcal{T}$ a \otimes-ideal of its compact objects. Then $(\mathcal{J})_{\text{loc}}$ is a localizing \otimes-ideal of \mathcal{T}.

Proof. For an object $A \in \mathcal{T}$, consider $\mathcal{S}_A := \{X \in \mathcal{T} | X \otimes A \in (\mathcal{J})_{\text{loc}}\}$. We must show that $\mathcal{S}_A = \mathcal{T}$ for all $A \in (\mathcal{J})_{\text{loc}}$. Note that \mathcal{S}_A is always a localizing triangulated subcategory of \mathcal{T}, because so is $(\mathcal{J})_{\text{loc}}$ and because \otimes preserves distinguished triangles and small coproducts. If $A \in \mathcal{J}$, then $\mathcal{T}_c \subset \mathcal{S}_A$ by hypothesis.
and therefore $S_A = T$. Now consider $U := \{ A \in T \mid S_A = T \}$. We have just seen that $J \subset U$, and one verifies immediately that U is a localizing subcategory of T. It follows that $(J)_{loc} \subset U$, as required.

The next result was first considered in stable homotopy by H. R. Miller [M192], cf. also [HPS97, Thm. 3.3.3] or [BIK09, Prop. 8.1]. In the topologist’s jargon, it says that “finite localizations are smashing”.

Theorem 2.28 (Miller). Let T be a compactly generated \otimes-triangulated category (as in Convention 2.27), and let $J \subset T$ be a tensor ideal of its compact objects. Then $J^\perp = (J)_{loc}^\perp$ is a localizing tensor ideal, so that $((J)_{loc}, J^\perp)$ is a pair of complementary localizing tensor ideals of T.

Proof. It follows from Prop. 2.29 that $((J)_{loc}, J^\perp)$ is a complementary pair of localizing subcategories, and from Lemma 2.27 that $(J)_{loc}$ is a \otimes-ideal of T. It remains to see that J^\perp is a \otimes-ideal. Let $A \in J^\perp$, and consider the full subcategory $\mathcal{V}_A := \{ X \in T \mid X \otimes A \in J^\perp \}$ of T. It is triangulated and localizing because so is J^\perp. It contains every compact object: if $C \in T$, and $J \subset T$, then $\text{Hom}(J, C \otimes A) \simeq \text{Hom}(J \otimes C^\vee, A) \simeq 0$ because C is rigid and J is an ideal. Therefore $\mathcal{V}_A = (\mathcal{T})_{loc} = T$, that is to say $T \otimes A \subset J^\perp$, for all $A \in J^\perp$. □

Remark 2.29. If both subcategories $L, R \subset T$ in a complementary pair (L, R) are \otimes-ideals, then the gluing triangle for an arbitrary object $A \in T$ is obtained by tensoring A with the gluing triangle for the \otimes-unit 1. (This is an exercise application of the uniqueness of the gluing triangle, see Prop. 2.6).

2.4. **Central localization.** In a tensor triangulated category T, as we already mentioned, the tensor product naturally endows the Hom sets with an action of the central ring $R_T = \text{End}_{T}(1)$, making T an R_T-linear category. If $S \subset R_T$ is a multiplicative system, one may localize each Hom set at S. As the next theorem shows, the resulting category still carries a tensor triangulated structure. Let us be more precise.

Construction 2.30. Let C be an R-linear category, for some commutative ring R. Let $S \subset R$ be a multiplicative system (i.e., $1 \in S$ and $S \cdot S \subset S$). Define $S^{-1}C$ to be the category with the same objects as C, with Hom sets the localized modules $S^{-1}\text{Hom}_C(A, B)$ and with composition defined by $(\frac{a}{s}, \frac{b}{t}) \mapsto \frac{at}{st}$. One verifies easily that $S^{-1}C$ is an $S^{-1}R$-linear category and that there is an R-linear canonical functor $\text{loc}: C \to S^{-1}C$. It is the universal functor from C to an $S^{-1}R$-linear category.

Definition 2.31. Let T be a tensor triangulated category, and let $S \subset R_T$ be a multiplicative system of its central ring. We call $S^{-1}T$ (as in 2.30) the central localization of T at S. The next result shows that it is again a tensor triangulated category.

Theorem 2.32 (Central localization [Ba10, Thm. 3.6]). Consider the thick \otimes-ideal $J = \langle \text{cone}(s) \mid s \in S \rangle_{\otimes} \subset T$ generated by the cones of maps in S. Then there is a canonical isomorphism $S^{-1}T \simeq T/J$ which identifies $\text{loc}: T \to S^{-1}T$ with the Verdier quotient $q: T \to T/J$. In particular, the central localization $S^{-1}T$ inherits a canonical \otimes-triangulated structure such that loc is \otimes-triangulated; conversely, q is the universal R-linear triangulated functor to an $S^{-1}R$-linear \otimes-triangulated category.

The procedure of central localization can be adapted to compactly generated categories in a most satisfying way, as we expound in the next theorem.

Theorem 2.33. Let T be a compactly generated \otimes-triangulated category (as in 2.27), and let S be a multiplicative subset of the central ring R_T. Write $J_S := \langle \text{cone}(s) \mid s \in S \rangle_{\otimes} \subset T$, $L_S := (J_S)_{loc} \subset T$.

The objects of $\mathcal{T}_S := (\mathcal{L}_S)^\perp$ will be called S-local objects. Then the pair $(\mathcal{L}_S, \mathcal{T}_S)$ is a complementary pair (Def. [2.7]) of localizing \otimes-ideals of \mathcal{T}. In particular, the gluing triangle for an object $A \in \mathcal{T}$ is obtained by tensoring A with the gluing triangle for the \otimes-unit

\[
L_S(1) \xrightarrow{\epsilon} 1 \xrightarrow{\eta} R_S(1) \xrightarrow{\delta} TL_S(1).
\]

This situation has the following properties:

(a) $\mathcal{L}_S \equiv L_S(1) \otimes \mathcal{T}$ and $\mathcal{T}_S = R_S(1) \otimes \mathcal{T}$.

(b) $\varepsilon : L_S(1) \otimes L_S(1) \cong L_S(1)$ and $\eta : R_S(1) \cong R_S(1) \otimes R_S(1)$.

(c) \mathcal{T}_S is again a compactly generated \otimes-triangulated category, as in Conv. 2.25, with tensor unit $R_S(1)$. (Note that $R_S(1)$ is compact in \mathcal{T}_S, but need not be in \mathcal{T}.)

(d) Its compact objects are $(\mathcal{T}_S)_c = (R_S(\mathcal{T}_c)) \subset \mathcal{T}_S$. (Again, they are possibly non compact in \mathcal{T}.)

(e) The functor $R_S = R_S(1) \otimes ? : \mathcal{T} \rightarrow \mathcal{T}_S$ is an R_T-linear \otimes-triangulated functor commuting with small coproducts. It takes generating sets to generating sets.

(f) To apply $\text{Hom}(1, ?)$ on $1 \xrightarrow{\eta} R_S(1)$ induces the localization $R_T \rightarrow S^{-1}R_T$.

It follows in particular that $R_{T_S} = S^{-1}R_T$.

(g) An object $A \in \mathcal{T}$ is S-local if and only if $s \cdot \text{id}_A$ is invertible for every $s \in S$.

(h) If $A \in \mathcal{T}_c$, then $\eta : B \rightarrow R_S(1) \otimes B$ induces an isomorphism

\[S^{-1}\text{Hom}_\mathcal{T}(A, B) \cong \text{Hom}_\mathcal{T}(A, R_S(1) \otimes B)\]

for every $B \in \mathcal{T}$.

Remarks 2.34. (a) The category \mathcal{L}_S is both compactly generated and a tensor triangulated category but, since in general its \otimes-unit $L_S(1)$ is not compact, it may fail to be a compactly generated tensor triangulated category as defined in Convention 2.25.

(b) There are graded versions of the above results, where one considers multiplicative systems of the graded central ring $R_T^+ = \text{End}_{T}(1)$. We don’t use them here, so we have omitted their (slightly more complicated) formulation.

(c) We don’t really need that all compact objects be rigid (as was assumed in Convention 2.25) in order to prove Theorem 2.33. More precisely, one can show that \mathcal{T}_S is a \otimes-ideal in \mathcal{T} without appealing to Miller’s Theorem. It suffices to use the R_T-linearity of the tensor product and the characterization of S-local objects (part (g) of the theorem): if $A \in \mathcal{T}_S$ and $B \in \mathcal{T}$, then $s \cdot \text{id}_{A \otimes B} = (s \cdot \text{id}_A) \otimes B$ is invertible for all $s \in S$ and therefore $A \otimes B \in \mathcal{T}_S$.

Proof of Theorem 2.33. The first claim is Miller’s Theorem 2.28 and Remark 2.29 applied to the \otimes-ideal $\mathcal{J}_S \subset \mathcal{T}_c$. Thus $(\mathcal{L}_S, \mathcal{T}_S)$ is a complementary pair of localizing \otimes-ideals. Part (a) and (b) are then formal consequences. The statements in (c)-(e) are either clear, or follow from Neeman’s Localization Theorem 2.10 (the R_T-linearity in (e) is Lemma 2.30 below). Let’s now turn to the more specific claims (f)-(h).

Lemma 2.35. The quotient functor $q : \mathcal{T} \rightarrow \mathcal{T}/\mathcal{L}_S$ is R_T-linear and it inverts all endomorphisms of the form $s \cdot \text{id}_A$ with $s \in S$ and $A \in \mathcal{T}$.

Proof. Let $s \in S$ and $A \in \mathcal{T}$. Then $\text{cone}(s \cdot \text{id}_A) = \text{cone}(s) \otimes A$ belongs to \mathcal{L}_S, because $\text{cone}(s) \in \mathcal{J}_S \subset \mathcal{L}_S$ by definition and \mathcal{L}_S is a \otimes-ideal. □
In particular, by the universal property of central localization (2.31), the quotient functor \(q : T \to T/L_S \) factors as

\[
\begin{array}{ccc}
T & \xrightarrow{q} & T/L_S \\
\downarrow \text{loc} & & \\
S^{-1}T. & \xrightarrow{\gamma} & S^{-1}T/\mathcal{L}_S
\end{array}
\]

We clearly have a commutative square

\[
(2.36)
\begin{array}{ccc}
S^{-1}T & \xrightarrow{\eta} & T/L_S \\
\downarrow \gamma & & \\
S^{-1}\mathcal{T}_e & \xrightarrow{\bar{\eta}} & \mathcal{T}_e/\mathcal{L}_S
\end{array}
\]

where every functor is the identity or an inclusion on objects, and where \(\bar{\eta} \) is the canonical identification of Theorem 2.32; the right vertical functor is fully faithful by Theorem 2.10 (a).

Proposition 2.37. The canonical functor \(\eta \) restricts to an isomorphism

\[\eta : S^{-1}\text{Hom}_T(C, B) \xrightarrow{\sim} \text{Hom}_{T/\mathcal{L}_S}(C, B) \]

of \(S^{-1}R_T \)-modules for all compact \(C \in \mathcal{T}_e \) and arbitrary \(B \in \mathcal{T} \).

Proof. Fix a \(C \in \mathcal{T}_e \). We may view

\[(2.38) \quad \eta : S^{-1}\text{Hom}_T(C, ?) \xrightarrow{\sim} \text{Hom}_{T/\mathcal{L}_S}(C, ?) \]

as a morphism of homological functors to \(S^{-1}R_T \)-modules, both of which commute with small coproducts. Moreover, \(\eta \) is an isomorphism on compact objects, as we see from (2.36). It follows that (2.38) is an isomorphism on the localizing subcategory generated by \(\mathcal{T}_e \), which is equal to the whole category \(\mathcal{T} \). \(\square \)

Part (h) of the theorem is now an easy consequence, provided we correctly identify the isomorphism in question.

Corollary 2.39. Let \(C, B \in \mathcal{T} \) with \(C \) compact. Then \(\eta_B : B \to R_S(B) \) induces an isomorphism \(\beta : S^{-1}\text{Hom}_T(C, B) \xrightarrow{\sim} \text{Hom}_T(C, R_S(B)) \) of \(R_T \)-modules.

Proof. Recall from 2.6 (c)-(d) that \(q \) has a fully faithful right adjoint \(q_r \) such that \(R_S = q_r q \). Since \(\eta \) is natural, the following square commutes for all \(f : C \to B \),

\[
\begin{array}{ccc}
C & \xrightarrow{\eta_C} & q_r q(C) \\
\downarrow f & & \downarrow q_r q(f) \\
B & \xrightarrow{\eta_B} & q_r q(B)
\end{array}
\]

showing that the next (solid) square is commutative.
Notice that $(\eta_C)^*$ is an isomorphism by 2.33 (a). By the compactness of C and by Proposition 2.37, q induces the isomorphism $\overline{\eta}$. Composing this isomorphism with the other two, we see that β, the factorization of $(\eta_B)_*$ through loc, is an isomorphism as claimed. □

Lemma 2.40. The endofunctors L_S and R_S are R_T-linear.

Proof. This can be seen in various ways. For instance, by applying the functorial gluing triangle $L_S \to \text{id} \to R_S \to TL_S$ to $r \cdot f : A \to B$, resp. by applying it to $f : A \to B$ and then multiplying by r, we obtain two commutative squares

$$
\begin{array}{ccc}
A & \xrightarrow{\eta_A} & R_SA \\
\downarrow{r \cdot f} & & \downarrow{R_S(r \cdot f)} \\
B & \xrightarrow{\eta_B} & R_SB
\end{array}
$$

In particular, we see that the difference $d := R_S(r \cdot f) - r \cdot R_S(f)$ composed with η_A is zero, so it must factor through $TL_SA \in L_S$. But the only map $TL_SA \to R_SB$ is zero, hence $d = 0$, that is $R_S(r \cdot f) = r \cdot R_S(f)$. A similar argument applies to show that L_S is R_T-linear.

Together with Lemma 2.35, the next lemma provides part (g).

Lemma 2.41. If $A \in T$ is such that $s \cdot \text{id}_A$ is invertible for all $s \in S$, then $\eta_A : A \to R_S(A)$ is an isomorphism. In particular, $A \in \text{Im}(R_S) = T_S$.

Proof. The map $\eta_A : A \to R_S(A)$ induces the following commutative diagram of natural transformations between cohomological functors $T^{\text{op}} \to R_T\text{-Mod}$:

$$
\begin{array}{ccc}
\text{Hom}_T(i_*, A) & \xrightarrow{(\eta_A)_*} & \text{Hom}_T(i_*, R_S(A)) \\
\downarrow{\text{loc}} & & \downarrow{\beta} \\
S^{-1}\text{Hom}_T(i_*, A)
\end{array}
$$

The hypothesis on A implies that loc is an isomorphism. By Corollary 2.39, the map β is an isomorphism on compact objects. Hence their composition $(\eta_A)_*$ is a morphism of cohomological functors both of which send coproducts to products – indeed they are representable – and such that it is an isomorphism at each $C \in T_c$. It follows that $(\eta_A)_*$ is an isomorphism at every object. By Yoneda, η_A is an isomorphism in T, showing that $A \in \text{Im}(R_S)$. □

Finally, part (f) is (h) for $A = B = 1$; note for the second assertion that $\text{Hom}(1, R_S(1)) \simeq \text{Hom}(R_S(1), R_S(1)) = R_{S^{-1}T}$. This ends the proof of Theorem 2.33. □

Remark 2.42. The authors of [BHK09] prove very similar results (and much more) for genuine compactly generated categories, without need for a tensor structure. Instead of the central ring R_T, they posit a noetherian graded commutative ring acting on T via endomorphisms of id_T, compatibly with the translation. If T is moreover a tensor triangulated category (with our same hypotheses 2.25), they also prove the results in Theorem 2.33 for the graded central ring R_T^*, but only when the latter is noetherian; see [BHK09 §8]). Wishing to apply their results, we met the apparently insurmountable problem that in the α-relative setting Brown representability for the dual, which is crucially used in loc. cit., is not available (cf. Ex. 2.11).
3. Classification in compactly generated categories

3.1. An abstract criterion. Let \(\mathcal{K} \) be an essentially small \(\otimes \)-triangulated category. In most examples so far where the Balmer spectrum \(\text{Spc}(\mathcal{K}) \) has been described explicitly, \(\mathcal{K} \) is the subcategory \(\mathcal{T}_c \) of compact and rigid objects in some compactly generated \(\otimes \)-triangulated category \(\mathcal{T} \). Indeed, the ambient category \(\mathcal{T} \) provides each time essential tools for the computation of \(\text{Spc}(\mathcal{K}) \). The next theorem, abstracted from the example of modular representation theory (see Example 3.2), yields a general method for precisely this situation.

Theorem 3.1. Let \(\mathcal{T} \) be a compactly generated \(\otimes \)-triangulated category, as in Convention 2.23. Let \(X \) be a spectral topological space, and let \(\sigma : \text{obj}(\mathcal{T}) \to 2^X \) be a function assigning to every object of \(\mathcal{T} \) a subset of \(X \). Assume that the pair \((X, \sigma)\) satisfies the following ten axioms:

\[
\begin{align*}
\text{(S0)} & : \sigma(0) = \emptyset, \\
\text{(S1)} & : \sigma(1) = X, \\
\text{(S2)} & : \sigma(A \oplus B) = \sigma(A) \cup \sigma(B), \\
\text{(S3)} & : \sigma(TA) = \sigma(A), \\
\text{(S4)} & : \sigma(B) \subset \sigma(A) \cup \sigma(C) \text{ for every distinguished triangle } A \to B \to C \to TA, \\
\text{(S5)} & : \sigma(A \otimes B) = \sigma(A) \cap \sigma(B) \text{ for every compact } A \in \mathcal{T}_c \text{ and arbitrary } B \in \mathcal{T}, \\
\text{(S6)} & : \sigma(\bigcup_i A_i) = \bigcup_i \sigma(A_i) \text{ for every small family } \{A_i\}_i \subset \mathcal{T}, \\
\text{(S7)} & : \sigma(A) \text{ is closed in } X \text{ with quasi-compact complement } X \setminus \sigma(A) \text{ for all } A \in \mathcal{T}_c, \\
\text{(S8)} & : \text{For every closed subset } Z \subset X \text{ with quasi-compact complement, there exists an } A \in \mathcal{T}_c \text{ with } \sigma(A) = Z, \\
\text{(S9)} & : \sigma(A) = \emptyset \Rightarrow A \cong 0.
\end{align*}
\]

Then the restriction of \((X, \sigma)\) to \(\mathcal{T}_c \) is a classifying support datum, so that, by Theorem 2.19, the induced canonical map \(X \to \text{Spc}(\mathcal{T}_c) \) is a homeomorphism.

Example 3.2. Let \(G \) be a finite group and \(k \) a field. Let \(\mathcal{T} \) be the stable module category \(\text{stmod}(kG) := \text{mod}(kG)/\text{proj}(kG) \) of finitely generated \(kG \)-modules, equipped with the tensor product \(\otimes := \otimes_k \) (with diagonal \(G \)-action) and the unit object \(1 := k \) (with trivial \(G \)-action); see [Ca96]. Then there is a homeomorphism \(\text{Spc}(\text{stmod}(kG)) \simeq \text{Proj}(H^*(G;k)) \).

Indeed, we may embed \(\text{stmod}(kG) \) as the full subcategory of compact and rigid objects inside \(\text{StMod}(kG) \), the stable category of possibly infinite dimensional \(kG \)-modules. The latter is a (genuine) compactly generated category as in [2.23] cf. e.g. [K07, BIK09, §10]. Let \(R := H^*(G;k) = \text{End}_{\text{stmod}(kG)}(k) \) be the cohomology ring of \(G \). Let \(X := \text{Proj}(H^*(G;k)) = \text{Spec}^b(H^*(G;k)) \setminus \{m\} \), where \(m = H^0(G;k) \). Consider on \(\text{StMod}(kG) \) the support \(\sigma : \text{obj}(\mathcal{T}) \to 2^X \) given by the support variety of a module \(M \in \text{StMod}(kG) \), as introduced in [BC98]. It follows from the results of loc. cit. that \((X, \sigma)\) satisfies all of our axioms (S0)-(S9). Most non-trivially, (S5) holds by the Tensor Product theorem [BC98, Thm. 10.8] and (S9) by, essentially, Chouinard’s theorem. Therefore by Theorem 3.1 there is a unique isomorphism \((X, \sigma) \simeq (\text{Spec}(\text{stmod}(kG)), \text{supp})\) of support data on \(\text{stmod}(kG) \).

Before we give the proof of the theorem, we note that a common way of obtaining supports \((X, \sigma)\) on \(\mathcal{T} \) is by constructing a suitable family of homological functors \(F_x : \mathcal{T} \to \mathcal{A}_x, x \in X \). We make this intuition precise in the following – somewhat pedant – lemma, whose proof is a series of trivial verifications left to the reader.

Lemma 3.3. Consider a family \(\mathcal{F} = \{F_x : \mathcal{T} \to \mathcal{A}_x\}_{x \in X} \) of functors parametrized by a topological space \(X \). Assume that each \(\mathcal{A}_x \) has a zero object 0 (i.e., 0 is initial and final in \(\mathcal{A}_x \)). For each \(A \in \mathcal{T} \) we define

\[
\sigma_{\mathcal{F}}(A) := \{x \in X \mid F_x(A) \not\cong 0 \text{ in } \mathcal{A}_x\} \subset X.
\]
Then, if the functors $F = \{F_x\}$ satisfy condition (Fn) of the following list, the induced support (X, σ_X) satisfies the corresponding hypothesis (Sn) of Theorem 3.1:

(F0) $F_x(0) \simeq 0 \in \mathcal{A}_x$.

(F1) $F_x(1) \not\in \mathcal{A}_x$.

(F2) \mathcal{A}_x is additive and F_x is an additive functor (thus (F2) \Rightarrow (F0)).

(F3) \mathcal{A}_x is equipped with an endoequivalence T and $F_xT \simeq TF_x$.

(F4) \mathcal{A}_x is abelian and $F_xA \rightarrow F_xB \rightarrow FxC$ is exact for every distinguished triangle $A \rightarrow B \rightarrow C \rightarrow TA$.

(F5) $\mathcal{A}_x = (\mathcal{A}_x, \otimes)$ is a tensor category such that

$$M \hat{\otimes} N \simeq 0 \iff M \simeq 0 \text{ or } N \simeq 0,$$

and there exist isomorphisms

$$F_x(A \otimes B) \simeq F_x(A) \hat{\otimes} F_x(B)$$

at least for $A \in \mathcal{T}_c$ compact and $B \in \mathcal{T}$ arbitrary.

(F6) F_x preserves small coproducts.

(F9) The family $\mathcal{F} = \{F_x\}_{x \in X}$ detects objects, i.e.: $F_x(A) \simeq 0 \forall x \Rightarrow A \simeq 0$. □

A functor F with properties (F2), (F3) and (F4) is usually called a stable homological functor (also recalled in Def. 5.1 below). Note also that the only collective property of the family \mathcal{F} is (F9).

In this generality, the translations of conditions (S7) and (S8) remain virtually identical, so we omitted them from our list (but see Prop. 3.12 below for the discussion of a significant special case).

Let us now prove Theorem 3.1. For any subset $Y \subset X$, let us use the notation

$$\mathcal{C}_Y := \{A \in \mathcal{T}_c | \sigma(A) \subset Y\} \subset \mathcal{T}_c,$$

$$\mathcal{T}_Y := \langle \mathcal{C}_Y \rangle_{\text{loc}} \subset \mathcal{T}.$$

We begin with some easy observations:

Lemma 3.4.

(a) The subcategory $\mathcal{C}_Y \subset \mathcal{T}_c$ is a radical thick \otimes-ideal. In particular, it is a thick triangulated subcategory and thus $\mathcal{C}_Y = (\mathcal{T}_Y)_{\text{loc}}$.

(b) If $A \in \mathcal{T}_Y$, then $\sigma(A) \subset Y$.

Proof.

(a) It follows immediately from axioms (S0) and (S2)-(S5) that \mathcal{C}_Y is a thick triangulated tensor ideal of \mathcal{T}_c. Now let $A \in \mathcal{T}_c$ with $A^{\otimes n} \in \mathcal{C}_Y$ for some $n \geq 1$. This means $\sigma(A^{\otimes n}) \subset Y$ and therefore $\sigma(A) \subset Y$ by (S5). Thus \mathcal{C}_Y is radical.

(b) By the axioms (S0), (S2)-(S4) and (S6), the full subcategory $\{A \in \mathcal{T} | \sigma(A) \subset Y\}$ of all objects supported on Y is a localizing triangulated subcategory of \mathcal{T}. Since it obviously contains \mathcal{C}_Y, it must contain $\mathcal{T}_Y = \langle \mathcal{C}_Y \rangle_{\text{loc}}$. □

Lemma 3.5 (cf. [BCR97, Prop. 3.3]). Let $E \subset \mathcal{T}_c$ be any self-dual collection of compact objects, meaning that $E = E^\vee := \{E^\vee | E \in \mathcal{E}\}$, and let $\sigma(E) := \bigcup_{E \in \mathcal{E}} \sigma(E) \subset X$ denote their collective support. Then

$$\langle \sigma(E) \rangle_{\otimes} = \mathcal{C}_{\sigma(E)}$$

in \mathcal{T}_c, that is, the thick \otimes-ideal of \mathcal{T}_c generated by E consists precisely of the compact objects which are supported on $\sigma(E)$.

Proof. Let us write $Y := \sigma(E)$. Each of the thick subcategories $\langle E \rangle_{\otimes}$ and \mathcal{C}_Y of \mathcal{T}_c determines a complementary pair in \mathcal{T} by Proposition 3.9, namely $(\langle E \rangle_{\otimes, \text{loc}} \cap \mathcal{C}_Y)_{\otimes, \text{loc}}$ and $(\mathcal{T}_Y, \mathcal{T}_Y^\perp)$, with gluing triangles

$$\begin{array}{ccc}
L_{\langle E \rangle_{\otimes}} & \xrightarrow{id_T} & R_{\langle E \rangle_{\otimes}} \\
L_{\mathcal{C}_Y} & \xrightarrow{id_T} & R_{\mathcal{C}_Y}
\end{array}$$

and

$$\begin{array}{ccc}
TL_{\langle E \rangle_{\otimes}} & \xrightarrow{id_T} & TL_{\mathcal{C}_Y} \\
T_{\mathcal{C}_Y} & \xrightarrow{id_T} & T_{\mathcal{C}_Y}
\end{array}$$
respectively. Moreover, the two thick subcategories can be recovered as
\[\langle \mathcal{E} \rangle_\ominus = (\text{Im}(L(\langle \mathcal{E} \rangle_\ominus)))_C \quad \text{and} \quad \mathcal{C}_Y = (\text{Im}(L_{\mathcal{C}_Y}))_C. \]

Thus, in order to prove the lemma, it suffices to find an isomorphism \(L(\langle \mathcal{E} \rangle_\ominus) \simeq L_{\mathcal{C}_Y}. \)

Since \(\mathcal{C}_Y \) is a thick \(\ominus \)-ideal (by Lemma 3.3 (a)) and it contains \(\mathcal{E} \), we must have the inclusion \(\langle \mathcal{E} \rangle_\ominus \subset \mathcal{C}_Y \) and thus \(\langle \mathcal{E} \rangle_\ominus, \text{loc. cit.} \subset \mathcal{T}_Y \). It follows from Corollary 2.3 that \(L(\langle \mathcal{E} \rangle_\ominus) L_{\mathcal{C}_Y} \simeq L(\langle \mathcal{E} \rangle_\ominus). \) Hence, for any \(A \in \mathcal{T} \), the first of the above gluing triangles applied to the object \(L_{\mathcal{C}_Y}(A) \) takes the form
\[
(3.6) \quad L(\langle \mathcal{E} \rangle_\ominus)(A) \longrightarrow L_{\mathcal{C}_Y}(A) \longrightarrow R(\langle \mathcal{E} \rangle_\ominus) \longrightarrow T L(\langle \mathcal{E} \rangle_\ominus)(A).
\]

Since \(A \in \mathcal{T} \) is arbitrary, we have reduced the problem to proving that the third object \(B := R(\langle \mathcal{E} \rangle_\ominus) L_{\mathcal{C}_Y}(A) \) in the distinguished triangle (3.6) is zero. By axiom (S9), it suffices to prove the following

Claim: \(\sigma(B) = \emptyset \).

Indeed, since the first two objects in (3.6) belong to the triangulated category \(\mathcal{T}_Y \), so does \(B \). Therefore \(\sigma(B) \subset Y \) by Lemma 3.3 (b). Let \(E \in \mathcal{E} \), and let \(C \) be any compact object of \(\mathcal{T} \). Then
\[
\text{Hom}_\mathcal{T}(C, E^\vee \otimes B) \simeq \text{Hom}_\mathcal{T}(C \otimes E, B) \simeq 0
\]
because \(E \in \mathcal{T}_Y \) is rigid (for the first isomorphism), and because \(C \otimes E \in \langle \mathcal{E} \rangle_\ominus \) and \(B \in \text{Im}(R(\langle \mathcal{E} \rangle_\ominus) = \langle \mathcal{E} \rangle_\ominus \) (for the second one). But this implies \(E^\vee \otimes B \simeq 0 \), because compact objects generate \(\mathcal{T} \). Hence \(\sigma(E^\vee \otimes B) = \emptyset \) by (S0). Using this fact, together with \(\sigma(B) \subset Y = \sigma(\mathcal{E}) \equiv \sigma(\mathcal{E}^\vee) \), we conclude that
\[
\sigma(B) = \left(\bigcup_{E \in \mathcal{E}} \sigma(E^\vee) \right) \cap \sigma(B) = \bigcup_{E \in \mathcal{E}} \sigma(E^\vee) \cap \sigma(B) \overset{(\mathcal{S}5)}{=} \bigcup_{E \in \mathcal{E}} \sigma(E^\vee \otimes B) = \emptyset
\]
as we had claimed. \(\square \)

Lemma 3.7. Every thick \(\ominus \)-ideal of \(\mathcal{T}_c \) is self-dual.

Proof. This is [Ba07] Prop. 2.6; note that the hypothesis in *loc. cit.* that the duality functor \((\cdot)^\vee \) be triangulated is not used in the proof. Indeed, let \(C \subset \mathcal{T}_c \) be a thick \(\ominus \)-ideal. Every rigid object \(A \) is a retract of \(A \otimes A^\vee \otimes A \) (this holds in any closed tensor category, by one of the triangular identities of the adjunction between \(? \otimes A \) and \(A^\vee ? \)). Then also \(A^\vee \) is a direct summand of \(A^\vee \otimes A^\vee \otimes A^\vee \simeq A^\vee \otimes A \otimes A^\vee \).

Since \(C \) is thick and \((\cdot)^\vee : \mathcal{T}_c \to \mathcal{T}_c^{op} \) is an additive tensor equivalence, both \(C \) and \(C^\vee \) are closed under taking summands and tensoring with arbitrary objects of \(\mathcal{T}_c \).

It follows from the previous remarks that \(C \subset C^\vee \) and \(C^\vee \subset C \). \(\square \)

Proof of Theorem 3.7. By properties (S0)-(S5) and (S7), the restriction of \((X, \sigma) \) to \(\mathcal{T}_c \) is a support datum. The space \(X \) is spectral by assumption, so in order to prove that \((X, \sigma|_{\mathcal{T}_c}) \) is classifying, we have to show that the assignments
\[
Y \mapsto \mathcal{C}_Y = \{ A \in \mathcal{T}_c \mid \sigma(A) \subset Y \}
\]
\[
\mathcal{C} \mapsto \sigma(\mathcal{C}) = \bigcup_{A \in \mathcal{C}} \sigma(A),
\]
define mutually inverse bijections between the set of Thomason subsets \(Y \subset X \) and the set of radical thick \(\ominus \)-ideals \(\mathcal{C} \subset \mathcal{T}_c \).

First of all, the two maps are well-defined: the set \(\sigma(\mathcal{C}) \) is a Thomason subset by (S7) (for any subcategory \(C \subset \mathcal{T}_c \)) and \(\mathcal{C}_Y \) is a radical thick \(\ominus \)-ideal by Lemma 3.3 (a) (for any subset \(Y \subset X \)).

Now, given a thick \(\ominus \)-ideal \(\mathcal{C} \) in \(\mathcal{T}_c \), we have the equality \(\mathcal{C} = \langle \mathcal{C} \rangle_\ominus = \mathcal{C}_{\sigma(\mathcal{C})} \) by Lemma 3.7 and Lemma 3.5 applied to \(\mathcal{E} =: \mathcal{C} \). Conversely, let \(Y = \bigcup_i Z_i \) be a union of closed subsets of \(X \), each with quasi-compact complement \(X \setminus Z_i \),
Clearly $\sigma(C_Y) \subset Y$ by definition (indeed for any subset $Y \subset X$). By axiom (S8) there are compact objects A_i with $\sigma(A_i) = Z_i$. But then $A_i \in C_{Z_i} \subset C_Y$, and thus $Y = \bigcup_i \sigma(A_i) \subset \sigma(C_Y)$. So we have proved that $\sigma(C_Y) = Y$, concluding the verification that the functions $Y \mapsto C_Y$ and $C \mapsto \sigma(C)$ are the inverse of each other. □

3.2. Compact objects and central rings. In Lemma 3.3 we had ignored conditions (S7) and (S8). In this section we explore them for the situation when (X, σ) can be defined on compact objects by functors of the form $\text{Hom}^*_T(C, ?)_p$, where we localize the R_T-module (resp. the graded R_T-module) $\text{Hom}^*_T(C, ?)$ with respect to prime ideals $p \in \text{Spec}(R_T)$ (resp. homogeneous prime ideals $p \in \text{Spec}^h(R_T)$). At a crucial point, we must require that the (graded) central ring is noetherian. Just to be safe, let us explain what we mean precisely by “localization at a homogeneous prime”.

Construction 3.8. Let M be a graded module over a graded commutative ring R. Let $S \subset R$ be a multiplicative system of homogeneous and central elements. Then the localized module $S^{-1}M = \{ \frac{m}{s} \in M : s \in S \}$ is a well-defined graded $S^{-1}R$-module. For a point $p \in \text{Spec}^h(R)$, we set $M_p := S_p^{-1}M$, where S_p consists of all homogeneous central elements in $R \setminus p$. We write $\text{Supp}_R(M)$ for the ‘big’ support of a graded R-module M defined by $\text{Supp}_R(M) := \{ p \in \text{Spec}^h(R) \mid M_p \not= 0 \}$.

For the rest of this section, let \mathcal{T} be a compactly generated \otimes-triangulated category. Recall from Remark 3.3 that the graded Hom sets $\text{Hom}^*_T(A, B)$ are graded modules over the graded central ring R_T. We assume given a graded commutative ring R and a grading preserving homomorphism $\phi : R \to R_T$, and always regard the graded Hom sets of \mathcal{T} as graded R-modules via ϕ and the (left) canonical action of R_T. We shall be ultimately interested in the case when ϕ is the identity of R_T or the inclusion $R_T \hookrightarrow R_T$ of its zero degree part (see Prop. 3.12 below).

Notation 3.9. For each object $A \in \mathcal{T}$, define the following subsets of $\text{Spec}^h(R)$:

$$
\text{Supp}_{\text{tot}}(A) := \text{Supp}_R(\text{End}^*_T(A))
$$

$$
\text{Supp}_p(A) := \text{Supp}_R(\text{Hom}^*_T(B, A)), \text{ for an object } B \in \mathcal{T}
$$

$$
\text{Supp}_E(A) := \bigcup_{B \in \mathcal{E}} \text{Supp}_R(\text{Hom}^*_T(B, A)), \text{ for a family } \mathcal{E} \subset \mathcal{T}.
$$

Lemma 3.10. In the above notation, we have:

(a) $\text{Supp}_{\text{tot}} = \text{Supp}_T$.

(b) Let E be a unital graded R-algebra (e.g. $E = \text{End}^*_T(A)$ for an $A \in \mathcal{T}$). Then $\text{Supp}_R(E) = V(\text{Ann}_R(E))$, where the annihilator $\text{Ann}_R(E)$ is the ideal generated by the homogeneous $r \in R$ such that $rE = 0$.

Proof. (a) Let $A \in \mathcal{T}$ and $p \in \text{Spec}^h(R)$. We have equivalences: $p \not\in \text{Supp}_{\text{tot}}(A) \iff \text{id}_A = 0 \in \text{End}^*_T(A)_p \iff f = \text{id}_Af = 0 \in \text{Hom}^*_T(B, A)_p$ for all $B \in \mathcal{T}$ and all $f \in \text{Hom}^*_T(B, A) \iff p \not\in \text{Supp}_T(A)$.

(b) Let $p \in \text{Spec}^h(R)$. Then $p \not\in V(\text{Ann}_R(E)) \implies \exists$ homogeneous element $r \in R \setminus p$ with $r1_E = 0 \implies \exists$ homogeneous central $r \in R \setminus p$ with $r1_E = 0$ (for “\implies” simply take r^3, which is central because even-graded) $\implies E_p \simeq 0 \implies p \not\in \text{Supp}_R(E)$. □

Lemma 3.11. Let $\mathcal{E} \subset \mathcal{T}$ be a family of objects containing the \otimes-unit 1 and let $X \subset \text{Spec}^h(R)$ be a subset of homogeneous primes. Assume that the support $(X, \sigma_{X, \mathcal{E}})$ on $\mathcal{T}_\mathcal{E}$ defined by $\sigma_{X, \mathcal{E}}(A) := \text{Supp}_\mathcal{E}(A) \cap X$ satisfies axiom (S5) in Theorem 3.3, namely: $\sigma_{X, \mathcal{E}}(A \otimes B) = \sigma_{X, \mathcal{E}}(A) \cap \sigma_{X, \mathcal{E}}(B)$ for all $A, B \in \mathcal{T}_\mathcal{E}$. Then $\sigma_{X, \mathcal{E}}(A) = \text{Supp}_{\text{tot}}(A) \cap X$.

IVO DELL’AMBROGIO
for every compact object \(A \in \mathcal{T}_c \).

In particular, if \((X, \sigma_X, \mathcal{E})\) satisfies (S5) then it does not depend on \(\mathcal{E}! \)

Proof. By Lemma 3.10 (a) we have

\[
\sigma_{X, \mathcal{E}}(A) \overset{\text{def}}{=} \text{Supp}_\mathcal{E}(A) \cap X \subset \text{Supp}_\mathcal{T}(A) \cap X = \text{Supp}_\text{tot}(A) \cap X
\]

for all \(A \). By our convention, every compact object in \(\mathcal{T} \) is rigid. It follows that

\[
\text{Supp}_\text{tot}(A) \cap X = \text{Supp}_A(A) \cap X
\]

\[
\overset{A \text{ rigid}}{=} \text{Supp}_A(A^v \otimes A) \cap X
\]

\[
= \sigma_{X,(1)}(A^v \otimes A)
\]

\[
\subset \sigma_{X, \mathcal{E}}(A^v \otimes A)
\]

\[
\overset{(S5)}{=} \sigma_{X, \mathcal{E}}(A^v) \cap \sigma_{X, \mathcal{E}}(A)
\]

\[
\subset \sigma_{X, \mathcal{E}}(A),
\]

thus proving the reverse inclusion. \(\square \)

Proposition 3.12. Let \(\mathcal{T} \) be a compactly generated \(\otimes \)-triangulated category. Let \(R \) be either the graded central ring \(R_\mathcal{T}^+ \) or its subring \(R_\mathcal{T} \), and assume that it is (graded) noetherian. Let \((X, \sigma_X := \sigma_{X,(1)})\) be the support on \(\mathcal{T}_c \) we defined in Lemma 3.11 for some subset \(X \subset \text{Spec}^h(R) \), and again assume that \((X, \sigma_X)\) satisfies (S3) on \(\mathcal{T}_c \). Then

(a) The support \((X, \sigma_X)\) satisfies axiom (S7) in Theorem 3.7 namely: For every \(A \in \mathcal{T}_c \) the subset \(\sigma_X(A) \) is closed in \(X \) and its complement \(X \setminus \sigma_X(A) \) is quasi-compact.

(b) The support \((X, \sigma_X)\) satisfies axiom (S8) in Theorem 3.7. For every closed subset \(Z \subset X \) there exists a compact object \(A \in \mathcal{T}_c \) with \(\sigma_X(A) = Z \).

Proof. (a) By Lemma 3.11 and Lemma 3.10 (b), for each \(A \in \mathcal{T}_c \) we have equalities

\[
\sigma_X(A) = \text{Supp}_\text{tot}(A) \cap X = V(\text{Ann}_R(\text{End}^+_\mathcal{T}(A))) \cap X.
\]

This is by definition a closed subset of \(X \). Since we assumed \(R \) noetherian, it follows easily that every open subset of \(\text{Spec}^h(R) \) is quasi-compact.

(b) Every closed subset of \(X \) has the form \(Z = X \cap V(I) \) for some homogeneous ideal \(I < R \). Since \(R \) is noetherian, \(I \) is generated by finitely many homogeneous elements, say \(I = (r_1, \ldots, r_n) \). Let \(C_i \) be the cone of \(r_i : 1 \to T^{m_i} \cdot 1 \). It is rigid and compact, and moreover we claim that \(\text{Supp}_1(C_i) = V((r_i)) \). Indeed, by applying \(\text{Hom}^+_\mathcal{T}(1, ?)_p \) to the distinguished triangle \(1 \xrightarrow{T^{m_i}} 1 \to C_i \to T1 \), we obtain an exact sequence

\[
\text{Hom}^+_\mathcal{T}(1, 1)_p \xrightarrow{r_i^*} \text{Hom}^+_\mathcal{T}(1, 1)_p \xrightarrow{\text{Hom}^+_\mathcal{T}(1, C_i)_p} \text{Hom}^+_\mathcal{T}(1, 1)_p
\]

of graded \(R \)-modules. Note that the first morphism is multiplication by \(r_i \) (see 2.13). It is invertible if and only if \(r_i \) is invertible in \(R_p \), because we assumed that \(R = R_\mathcal{T}^+ \) or \(R = R_\mathcal{T} \). Hence \(r_i \in R_p^+ \Leftrightarrow \text{Hom}^+_\mathcal{T}(1, C_i)_p \simeq 0 \Leftrightarrow p \notin \text{Supp}_1(C_i) \), as claimed. Now it suffices to set \(A := C_1 \otimes \cdots \otimes C_n \) (which is again a rigid and compact object by Conv. 2.28 (b)), because then

\[
\sigma_X(A) \overset{(S5)}{=} \sigma_X(C_1) \cap \cdots \cap \sigma_X(C_n)
\]

\[
= X \cap \text{Supp}_1(C_1) \cap \cdots \cap \text{Supp}_1(C_n)
\]

\[
= X \cap V((r_1)) \cap \cdots \cap V((r_n))
\]

\[
= X \cap V(I) = Z
\]

as desired. \(\square \)
3.3. Comparison with the support of Benson-Iyengar-Krause. As an application of the last two sections, we provide sufficient conditions for the support defined by Benson, Iyengar and Krause in [BIK09] to coincide with Balmer’s support on compact objects, in the situation where both supports are defined.

Let T be a tensor triangulated category which is a genuine compactly generated category, such that the tensor is exact and preserves small coproducts in both variables, and where compact and rigid objects coincide (thus in particular T satisfies the hypotheses in Convention 2.25). Let R be either $R_T^+ = \text{End}_T^+(1)$ or $R_T = \text{End}_T(1)$, and assume that it is a (graded) noetherian ring. In such a situation, the support $\text{supp}^{\text{BIK}}_R : \text{obj}(T) \to \text{2}^{\text{Spec}^h(R)}$ defined in [BIK09] can be given by the formula
\begin{equation}
\text{supp}^{\text{BIK}}_R(A) = \{ p | \text{I}_p^+(1) \otimes A \not\cong 0 \} \subset \text{Spec}^h(R)
\end{equation}
for every $A \in T$, where $\text{I}_p^+(1)$ is a certain non-trivial object depending on p (see loc. cit., especially §5 and Cor. 8.3). In this setting, $\text{supp}^{\text{BIK}}_R$ also recovers the support for noetherian stable homotopy categories considered in [HPS97, §6].

Here is our comparison result:

Theorem 3.14. Keep the notation of the last paragraph. Let further $X \subset \text{Spec}^h(R)$ be a spectral subset, and write $\sigma(A) := X \cap \text{supp}^{\text{BIK}}_R(A)$ for the restricted support. Assume the following three hypotheses:

1. For every compact $A \in T_c$, we have $\sigma(A) = X \cap \text{V(Ann}_R(\text{End}_T^+(A)))$.
2. The support (X, σ) detects objects of T: $\sigma(A) = \emptyset \Rightarrow A \cong 0$.
3. The support (X, σ) satisfies the ‘partial Tensor Product theorem’:
 \[\sigma(A \otimes B) = \sigma(A) \cap \sigma(B) \]
 whenever $A \in T_c$ is compact and $B \in T$ arbitrary.

Then there is a unique isomorphism $(X, \sigma) \cong (\text{Spec}(T_c), \text{supp})$ of support data on T_c between the restricted Benson-Iyengar-Krause support and the Balmer support.

Remark 3.15. Note that hypothesis (1) is not so restrictive as it may seem. Indeed, by [BIK09] Thm. 5.5 it must hold for every $A \in T_c$ for which $\text{End}_T^+(A)$ is finitely generated over R. Also, (2) holds for the choice $X := \text{Spec}^h(R)$ by [BIK09] Thm. 5.2. Thus, our theorem says roughly that, if we can ‘adjust’ the Benson-Iyengar-Krause support by restricting it to a subset X in such a way that it satisfies the partial Tensor Product theorem and it still detects objects, then it must be the universal support datum on T_c.

Proof. It suffices to show that (X, σ) satisfies axioms (S0)-(S9) in Theorem 3.1.

Note that (S0)-(S4) and (S6) are immediate from (3.13), and (S5), resp. (S9), are simply assumed in hypothesis (3), resp. (2). We are left with the verification of (S7) and (S8). By hypothesis (1), the restriction of (X, σ) on compact objects coincides with the support $(X, \sigma_X) = (X, \sigma_{X_c})$ of the previous section 3.2. Hence, since R is noetherian, (X, σ) satisfies (S7) and (S8) by virtue of Proposition 3.12. □

4. The spectrum and the Baum-Connes conjecture

As in the Introduction, let G be a second countable locally compact Hausdorff group, and let KK^G be the G-equivariant Kasparov category of separable C^*-algebras (see [MN06] [Me08a]). It is a tensor triangulated category as in Definition 2.12 with arbitrary coproducts (cf. MN06 App. A] [De08 App. A]). The tensor structure \otimes is induced by the minimal tensor product of C^*-algebras with the diagonal G-action, and the unit object 1 is the field of complex numbers \mathbb{C} with the trivial G-action. Of the rich functoriality of KK^G, we mention the restriction tensor triangulated functor $\text{Res}_G^H : \text{KK}^G \to \text{KK}^H$ and the induction triangulated
functor \(\text{Ind}_G^H : KK^H \to KK^G \) for \(H \) a closed subgroup of \(G \). They are related by a ‘Frobenius’ natural isomorphism

\[
\text{Ind}_G^H(A \otimes \text{Res}_G^H(B)) \simeq \text{Ind}_G^H(A) \otimes B.
\]

(4.1)

Roughly speaking, the Baum-Connes Conjecture proposes a computation for the \(K \)-theory of the reduced crossed product \(G \times ? : KK^G \to KK \). We recall now the conceptual formulation of the conjecture, and its generalizations, due to Meyer and Nest \([MN06]\).

Definition 4.2. Consider the two full subcategories of \(KK^G \)

\[
\text{Cl}^G := \bigcup_{H \leq G \text{compact}} \text{Im} \left(\text{Ind}_G^H \right) \quad \text{and} \quad \text{CC}^G := \bigcap_{H \leq G \text{compact}} \ker \left(\text{Res}_G^H \right)
\]

(for “compactly induced” and “compactly contractible”, respectively). We consider the localizing hull \((\text{Cl}^G)_{\text{loc}} \subset KK^G \). Note that both \((\text{Cl}^G)_{\text{loc}} \) and \(\text{CC}^G \) are localizing subcategories. Both are also \(\otimes \)-ideals: \(\text{CC}^G \) because each \(\text{Res}_G^H \) is a \(\otimes \)- triangulated functor and \((\text{Cl}^G)_{\text{loc}} \) because of the Frobenius formula (1.1).

Theorem 4.3 \([MN06]\) Thm. 4.7. The localizing tensor ideals \((\text{Cl}^G)_{\text{loc}} \) and \(\text{CC}^G \) are complementary in \(KK^G \) (see Def. 2.7). \(\square \)

By Remark 2.29 the gluing triangle for this complementary pair at any object \(A \in KK^G \), that we shall denote by \(P^G(A) \xrightarrow{D^G(A)} A \to N^G(A) \to TP^G(A) \), is obtained by tensoring \(A \) with the gluing triangle

\[
P^G(1) \xrightarrow{D^G(1)} 1 \longrightarrow N^G(1) \longrightarrow TP^G(1)
\]

for the tensor unit. The approximation \(D^G = D^G(1) : P^G(1) \to 1 \) is called the *Dirac morphism for G*. Note that, by the general properties of Bousfield localization (Prop. 2.6), the objects \(P^G(1) \) and \(N^G(1) \) are \(\otimes \)-idempotent:

\[
P^G(1) \otimes P^G(1) \simeq P^G(1) \quad \text{and} \quad N^G(1) \otimes N^G(1) \simeq N^G(1).
\]

(4.4)

Definition 4.5. Let \(A \in KK^G \), and let \(F : KK^G \to C \) be any functor defined on the equivariant Kasparov category. One says that \(G \) *satisfies the Baum-Connes conjecture for \(F \) with coefficients \(A \) if the homomorphism

\[
F(D^G(A)) : F(P^G(A)) \to F(A)
\]

is an isomorphism in \(C \).

The main result of \([MN06]\) is a proof that, if \(F = K_* (G \times ?) : KK^G \to \text{Ab} \) is the \(K \)-theory of the reduced crossed product, then the homomorphism (4.0) is naturally isomorphic to the so-called assembly map for the group \(G \) with coefficients \(A \), implying that for this choice of \(F \) the above formulation of the Baum-Connes conjecture is equivalent to the original formulation with coefficients (see [BCH94]).

The above formulation for general functors \(F \) on \(KK^G \) is then a natural generalization. Note that, if the Dirac morphism \(D^G \) is itself an isomorphism in \(KK^G \), then \(G \) satisfies the conjecture for all functors \(F \) and all coefficients \(A \in KK^G \). Note also that \(D^G \) is an isomorphism if and only if \(N^G(1) \simeq 0 \), if and only if the inclusion \((\text{Cl}^G)_{\text{loc}} \hookrightarrow KK^G \) is an equivalence.

In \([HK01]\), Higson and Kasparov proved that the Dirac morphism is invertible, and therefore that the conjecture holds for every functor and all coefficients, for groups \(G \) having the *Haagerup approximation property* (= a-T-menable groups). These are groups admitting a proper and isometric action on Hilbert space, in a suitable sense. They form a rather large class containing all amenable groups.
We contribute the following intriguing observation, which serves as a motivation for pursuing the (tensor triangular) geometric study of triangulated categories arising in connection with Kasparov theory.

Theorem 4.7. Assume that the spectrum of KK^G is covered by the spectra of KK^H as H runs through the compact subgroups of G:

$$\text{Sp} (\text{KK}^G) = \bigcup_{H \leq G \text{ compact}} \text{Sp} (\text{Res}_H^G) \left(\text{Sp} (\text{KK}^H) \right) .$$

Then the Dirac morphism $D^G : P^G(1) \to 1$ is an isomorphism.

Proof. By a basic result of tensor triangular geometry (see [Ba05, Cor. 2.4]), an object $A \in \text{KK}^G$ belongs in each prime \otimes-ideal $P \in \text{Spec}(\text{KK}^G)$ if and only if it is \otimes-nilpotent, i.e., if and only if $A^{\otimes n} \simeq 0$ for some $n \geq 1$. Thus if the covering hypothesis (4.8) holds, we have

\[
A \text{ is } \otimes\text{-nilpotent } \iff A \in P \text{ } \forall P \in \text{Spec}(\text{KK}^G) \\
\iff A \in (\text{Res}_H^G)^{-1} Q, \quad \forall Q \in \text{Spec}(\text{KK}^H), \quad \forall H \\
\iff \text{Res}_G^H(A) \in Q, \quad \forall Q \in \text{Spec}(\text{KK}^H), \quad \forall H
\]

where H ranges among all compact subgroups of G. Now specialize the above to $A := N^G(1)$. Clearly $N^G(1)$ satisfies the latter condition, because by construction $N^G(1) \in \text{CC}^G = \bigcap_H \text{Ker} (\text{Res}_H^G)$. Thus $N^G(1)$ is a \otimes-nilpotent object. But $N^G(1)$ is also \otimes-idempotent (4.1), and therefore $N^G(1) \simeq 0$, implying the claim. \Box

5. SOME HOMOLOGICAL ALGEBRA FOR KK-THEORY

We recall a few definitions and results of relative homological algebra in triangulated categories ([Ch08], [Ba00], [MN10]); our reference is [MN10]. Here \mathcal{T} will always denote a triangulated category admitting (at least) all countable coproducts.

Definition 5.1. A **stable abelian category** is an abelian category $\mathcal{A} = (\mathcal{A}, \mathcal{T})$ equipped with a self-equivalence $T : \mathcal{A} \to \mathcal{A}$. A **stable homological functor** $H = (H, \delta)$ on \mathcal{T} is an additive functor $H : \mathcal{T} \to \mathcal{A}$ to some stable abelian category \mathcal{A} together with an isomorphism $\delta : HT \to TH$, and such that for every distinguished triangle $A \to B \to C \to TA$ of \mathcal{T} the sequence $HA \overset{Hu}{\to} HB \overset{Hv}{\to} HC \overset{\delta u}{\to} THC$ is exact in \mathcal{A}.

Example 5.2. If $H : \mathcal{T} \to \mathcal{A}$ is a homological functor in the usual sense (i.e., an additive functor to some abelian category \mathcal{A} such that if $A \to B \to C \to TA$ is distinguished in \mathcal{T} then $HA \to HB \to HC$ is exact), we may construct a stable homological functor $H_* : \mathcal{T} \to \mathcal{A}^Z$ as follows. Let \mathcal{A}^Z be the category of \mathbb{Z}-graded objects $M_\bullet = (M_n)_{n \in \mathbb{Z}}$ in \mathcal{A} (with degree-zero morphisms); with the shift $TM_\bullet := (M_{\bullet-1})_n$, it is a stable abelian category. Then $H_\cdot(A) := (HT^{\cdot n}A)_n$ defines a stable homological functor (with $\delta = \text{id}$). Note that, if the translation T of \mathcal{T} is n-periodic for some $n \geq 1$, by which we mean that there is an isomorphism $T^n \simeq \text{id}_\mathcal{T}$, then we may equally consider H_\cdot as a functor to the stable abelian category \mathcal{A}^Z/n of \mathbb{Z}/n-graded objects of \mathcal{A}.

Definition 5.3. A **homological ideal** \mathcal{I} in \mathcal{T} is a subfunctor $\mathcal{I} \subset \text{Hom}_{\mathcal{T}}(\cdot, \cdot)$ of the form $\mathcal{I} = \ker(H)$ for some stable homological functor $H : \mathcal{T} \to \mathcal{A}$. For convenience, we define a **homological pair** $(\mathcal{T}, \mathcal{I})$ to consist of a triangulated category \mathcal{T} with countable coproducts together with a homological ideal \mathcal{I} in \mathcal{T} which is closed under the formation of countable coproducts of morphisms. If $\mathcal{I} = \ker(H)$, the last condition is satisfied whenever H commutes with countable coproducts.

Let $(\mathcal{T}, \mathcal{I})$ be a homological pair. A (stable) homological functor $H : \mathcal{T} \to \mathcal{A}$ is \mathcal{I}-**exact** if $H(f) = 0$ for all $f \in \mathcal{I}$. An object $P \in \mathcal{T}$ is \mathcal{I}-**projective** if $\text{Hom}(P, \cdot) : \mathcal{A}^{\mathcal{T}} \to \mathcal{A}$
\(\mathcal{T} \to \text{Ab} \) is \(\mathcal{I} \)-exact. An object \(N \in \mathcal{T} \) is \(\mathcal{I} \)-contractible if \(\id_N \in \mathcal{I} \). The category \(\mathcal{T} \) has enough \(\mathcal{I} \)-projectives if, for every \(A \in \mathcal{T} \), there exists a distinguished triangle \(B \to P \to A \to TB \) where \(P \) is \(\mathcal{I} \)-projective and \((A \to TB) \in \mathcal{I} \).

Remark 5.4. It can be shown that for every pair \((\mathcal{T}, \mathcal{I})\) there exists a universal \(\mathcal{I} \)-exact stable homological functor \(h_\mathcal{T} : \mathcal{T} \to \mathcal{A}(\mathcal{T}, \mathcal{I}) \) (where \(\mathcal{A}(\mathcal{T}, \mathcal{I}) \) has small hom sets) – at least if \(\mathcal{T} \) has enough \(\mathcal{I} \)-projectives, which is the case in all our examples. See [MN10] [§3.7] for details. With this assumption, it is proved in loc. cit. that \(h_\mathcal{T} \) restricts to an equivalence between the full subcategory \(\mathcal{P}_\mathcal{T} \) of \(\mathcal{I} \)-projective objects in \(\mathcal{T} \) and the full subcategory of projectives in the stable abelian category \(\mathcal{A}(\mathcal{T}, \mathcal{I}) \).

Theorem 5.5 (McDS85 Thm. 3.16). Let \((\mathcal{T}, \mathcal{I})\) be a homological pair, and assume that \(\mathcal{T} \) has enough \(\mathcal{I} \)-projectives. Then the pair of subcategories \((\langle \mathcal{P}_\mathcal{T} \rangle_{\text{loc}}, \mathcal{N}_\mathcal{T})\) is complementary in \(\mathcal{T} \), where \(\mathcal{P}_\mathcal{T} \) denotes the full subcategory of \(\mathcal{I} \)-projective objects in \(\mathcal{T} \) and \(\mathcal{N}_\mathcal{T} \) that of \(\mathcal{I} \)-contractible ones.

Fix a homological pair \((\mathcal{T}, \mathcal{I})\). Given additive functors \(F : \mathcal{T} \to \mathcal{C} \) and \(G : \mathcal{T}^{\text{op}} \to \mathcal{D} \) to some abelian categories \(\mathcal{C}, \mathcal{D} \), if there are enough \(\mathcal{I} \)-projective objects one may use \(\mathcal{I} \)-projective resolutions to define, in the usual way, both the left derived functors \(L^\mathcal{I}_n F : \mathcal{T} \to \mathcal{C} \) and the right derived functors \(R^\mathcal{I}_n G : \mathcal{T}^{\text{op}} \to \mathcal{D} \) (relative to \(\mathcal{I} \)), for \(n \geq 0 \). These can sometimes be identified with more familiar derived functors in the context of abelian categories by means of the universal exact functor \(h_\mathcal{T} : \mathcal{T} \to \mathcal{A}(\mathcal{T}, \mathcal{I}) \) (see e.g. Prop. 5.17 below). The notation \(\text{Ext}_{\mathcal{T}, \mathcal{I}}^n(A, B) \) stands for \(R^nG(A) \) in the case of the functor \(G = \text{Hom}_\mathcal{T}(\cdot, B) : \mathcal{T}^{\text{op}} \to \text{Ab} \).

We will make use of some instances of the following result:

Theorem 5.6. Let \((\mathcal{T}, \mathcal{I})\) be a homological pair. Let \(A \in \langle \mathcal{P}_\mathcal{T} \rangle_{\text{loc}} \), and assume that \(A \) has an \(\mathcal{I} \)-projective resolution of length one. Then

(a) For every homological functor \(F : \mathcal{T} \to \mathcal{A} \) there is a natural exact sequence

\[
0 \to L^\mathcal{I}_0 F(A) \to F(A) \to L^\mathcal{I}_1 F(TA) \to 0.
\]

(b) For every homological functor \(G : \mathcal{T}^{\text{op}} \to \mathcal{A} \) there is a natural exact sequence

\[
0 \to R^\mathcal{I}_0 G(TA) \to G(A) \to R^\mathcal{I}_1 G(A) \to 0.
\]

(c) Choosing \(G = \text{Hom}_\mathcal{T}(\cdot, B) \) in (b), for any object \(B \in \mathcal{T} \), we get

\[
0 \to \text{Ext}_{\mathcal{T}, \mathcal{I}}^1(TA, B) \to \text{Hom}_\mathcal{T}(A, B) \to \text{Ext}_{\mathcal{T}, \mathcal{I}}^0(A, B) \to 0.
\]

Proof. This is [MN10 Thm. 66]. Note that our assumption \(A \in \langle \mathcal{P}_\mathcal{T} \rangle_{\text{loc}} \) coincides with that in loc. cit., namely \(A \in \mathcal{P}_\mathcal{N}_\mathcal{T} \), because of Theorem 5.5.

Remark 5.7. In the situation of Theorem 5.6, assume that there exists a decomposition \(A \cong A_0 \oplus A_1 \) such that \(L^\mathcal{I}_* F(A_j) = 0 \) (resp. \(R^\mathcal{I}_* G(A_j) = 0 \)) for \(\{i, j\} = \{0, 1\} \).

Then we see from its naturality and additivity that the sequence in (a) (resp. in (b) and (c)) has a splitting, determined by the isomorphism \(A \cong A_0 \oplus A_1 \).

5.1 The categories \(\mathcal{T}^G \) and \(k^G \)

Consider the equivariant Kasparov category \(KK^G \) for a compact group \(G \). We recall that the \(R(G) \)-modules \(\text{Hom}_{KK^G}(T^1, A) = KK^G(T^1, A) \) identify naturally with topological \(G \)-equivariant \(K \)-theory \(K^G_i(A) \) ([Prin87 §2], [Br98 §11]). By the Green-Julg theorem ([Br98 Thm. 11.7.1]), there is an isomorphism \(K^G_i \cong K_i(G \ltimes \tau) \). Since ordinary \(K \)-theory \(K_0 \) of separable \(C^* \)-algebras yields countable abelian groups and commutes with countable coproducts in \(KK^G \), and since \(G \ltimes \tau \) commutes with coproducts and preserves separability, we conclude that the \(\otimes \)-unit \(1 = C \) is a compactly generated \(\mathcal{K}^G \) (Def. 2.4). Hence the category \(\mathcal{T}^G := \langle 1 \rangle_{\text{loc}} \subset \mathcal{K}^G \) is compactly generated. Moreover, since it is monogenic – in the sense of being generated by the translations of the \(\otimes \)-unit – its
compact and rigid objects coincide, and form a thick \otimes-triangulated subcategory $\mathcal{K}_G := \mathcal{T}_c^G = \langle 1 \rangle$, which is also the smallest thick subcategory of \mathbf{KK}^G containing the tensor unit. In particular \mathcal{T}^G is a compactly generated \otimes-triangulated category as in Convention 2.25.

As in \mathbf{KK}^G, we have Bott periodicity: $T^2 \simeq \text{id}_{T^2}$. Hence all homological functors $H : \mathcal{T}^G \to A$ give rise to stable homological functors H_* to the category of $\mathbb{Z}/2$-graded objects $\mathcal{A}^{G/2}$ (see Example 5.2).

The relevance of T^G to K-theory is explained by the following result.

Theorem 5.8. Let G be a compact group. The pair of localizing subcategories $(\mathcal{T}^G, \text{Ker}(\mathcal{T}^G))$ of \mathbf{KK}^G is complementary. In particular, there exists a triangulated functor $L : \mathbf{KK}^G \to T^G$ and a natural map $L(A) \to A$ inducing an isomorphism $K^G_0(LA) \simeq K^G_0(A)$ for all $A \in \mathbf{KK}^G$.

Proof. Meyer and Nest prove ([MN10, Thm. 72]) that $K^G_0 = K_* \circ (G \times ?)$, as a functor from \mathbf{KK} to $\mathbb{Z}/2$-graded countable $R(G)$-modules, is the universal $\text{Ker}(K^G_0)$-exact functor and that, as a consequence, it induces an equivalence between the category $\mathcal{P}_{\text{Ker}(K^G_0)}$ of $\text{Ker}(K^G_0)$-projective objects in \mathbf{KK}^G and that of projective graded $R(G)$-modules (cf. Remark 5.3). Since every projective module is a direct summand of a coproduct of copies of $R(G) = K^G_0(1)$ and of its shift $R(G)(1) = K^G_0(T1)$, it follows that $(\mathcal{P}_{\text{Ker}(K^G_0)})_{\text{loc}} = \langle 1 \rangle_{\text{loc}} \subset \mathbf{KK}^G$, and therefore the claim is just Theorem 5.8 applied to the homological pair $(\mathbf{KK}^G, \text{Ker}(K^G_0))$. \qed

We shall make use of quite similar arguments in the following section.

In the rest of this article we shall begin the study of these categories from a geometric point of view, concentrating on the easier case of a finite group G.

5.2. Central localization of equivariant KK-theory

Let G be a compact group, and let $p \in \text{Spec}(R(G))$. We wish to apply the abstract results of 4.3 to the monogenic compactly generated tensor triangulated category $\mathcal{T} = \mathcal{T}^G$ and the multiplicative system $S = R(G) \setminus p$. Thus we consider the thick \otimes-ideal of compact objects

$$\mathcal{J}^G_p := \langle \text{cone}(s) \mid s \in R(G) \setminus p \rangle \otimes \subset \mathcal{T}^G$$

and the localizing \otimes-ideal $\mathcal{L}^G_p := (\mathcal{J}^G_p)_{\text{loc}} \subset T^G$ that it generates. We denote its right orthogonal category of p-local objects by

$$\mathcal{T}^G_p := (\mathcal{L}^G_p)^{\perp} \simeq T^G / \mathcal{L}^G_p.$$

Now Theorem 2.39 specializes to the following result, which says that \mathcal{T}^G_p is a well-behaved notion of localization of \mathcal{T}^G at p. Note that similar results are true with, instead of \mathcal{T}^G, any other localizing \otimes-subcategory of \mathbf{KK}^G generated by compact and rigid objects, and also, obviously, for multiplicative subsets which do not necessarily come from prime ideals.

Theorem 5.10. The pair $(\mathcal{L}^G_p, \mathcal{T}^G_p)$ is a complementary pair of localizing \otimes-ideals of \mathcal{T}^G. In particular, the gluing triangle for an object $A \in \mathcal{T}^G$ is obtained by tensoring A with the gluing triangle for the \otimes-unit, which we denote by

$$p1 \xrightarrow{\varepsilon} 1 \xrightarrow{\eta} 1_p \longrightarrow T(p1).$$

Moreover, the following hold true:

(a) $\mathcal{L}^G_p = p1 \otimes \mathcal{T}^G$ and $\mathcal{T}^G_p = 1_p \otimes \mathcal{T}^G$.

(b) The maps ε and η induce isomorphisms $p1 \simeq p1 \otimes p1$ and $1_p \simeq 1_p \otimes 1_p$.

(c) The category \mathcal{T}^G_p is a monogenic compactly generated \otimes-triangulated category with tensor unit 1_p.
(d) Its tensor triangulated subcategory of compact and rigid objects is \((T_p^G)_c = (1_p \otimes T_c^G) \subset T_p^G\).

(e) The functor \(1_p \otimes ? : T_p^G \to T_p^G\) is an \(R(G)\)-linear \(\otimes\)-triangulated functor commuting with coproducts.

(f) The central ring \(R_{T_p^G} = \text{End}(1_p)\) of \(T_p^G\) is \(R(G)\), and \(K^G_0(\eta : 1 \to 1_p)\) is the localization homomorphism \(R(G) \to R(G)\).

(g) \(A\) is \(p\)-local (i.e., \(A \in T_p^G\)) \(\Leftrightarrow s \cdot \text{id}_A\) is invertible for every \(s \in R(G) \setminus p\).

(h) If \(A \in T_p^G\), then \(\eta : B \to 1_p \otimes B\) induces a canonical isomorphism

\[KK^G(A, B)_p \simeq KK^G(A, 1_p \otimes B) \]

for every \(B \in T^G\). In particular \(KK^G(A, B)_p \simeq KK^G(1_p \otimes B)\) (set \(A = \ast \cdot 1\)).

Corollary 5.12. For \(G\) a compact group and \(p \in \text{Spec}(R(G))\), there exists a triangulated functor \(L_p : KK^G \to T_p^G\) on the equivariant Kasparov category and natural maps \(L_p(A) \leftarrow L(A) \to A\) in \(KK^G\), inducing an isomorphism \(KK^G(L_p A) \simeq KK^G(A)_p\).

Proof. By Theorem 5.8, there exists in \(KK^G\) a natural map \(LA \to A\) with \(LA \in T^G\) and \(K^G_1(LA, A)\) invertible. Set \(LA \to L_p A\) to be \(\eta : LA \to 1_q \otimes LA\) as in Theorem 5.10. The fraction \(L_p(A) \leftarrow L(A) \to A\) in \(KK^G\) has the required property. \(\square\)

For later use, we record the behaviour of central localization under restriction.

Lemma 5.13. Let \(H\) be a closed subgroup of the compact group \(G\). Moreover, let \(q\) be a prime ideal in \(R(H)\) and let \(p := (\text{Res}^H_0)^{-1}(q) \in \text{Spec}(R(G))\). Let \(q 1 \to 1 \to 1_p \to T(\ast 1)\) be the gluing triangle in \(T^G\) and let \(q \ast 1 \to 1 \to 1_q \to T(\ast 1)\) be the one in \(T^H\) for \(q\). Then

\[\text{Res}^H_0(1_p) \otimes q 1 \simeq \text{Res}^H_0(1_p) \quad \text{and} \quad 1_q \otimes \text{Res}^H_0(1_p) \simeq 1_q. \]

Proof. Note that \(S := \text{Res}^H_0(R(G) \setminus p)\) is a multiplicative system in \(R(H)\), so there is an associated central localization of \(T^H\) with complementary pair \((L^H_S, T^H_S)\) and gluing triangle \(S 1 \to 1 \to L^H_S \to T(1)\). We claim that this triangle is isomorphic to the restriction of \(1 1 \to 1 \to 1_p \to T(\ast 1)\). By the uniqueness of gluing triangles and since \(\text{Res}^H_0(1) = 1\), it suffices to show that \(\text{Res}^H_0(L^H_S) \subset L^H_S\) and \(\text{Res}^H_0(T^H_S) \subset T^H_S\). The first inclusion holds because \(\text{Res}^H_0\) is a coproduct preserving \(\otimes\)-triangulated functor and because \(\text{Res}^H_0(\text{cone}(s)) \simeq \text{cone}(\text{Res}^H_0(s)) \subset L^H_S\) for all \(s \in R(G) \setminus p\). The second inclusion holds by the characterization in Theorem 2.8 (g) of the objects of \(T^H_S\). Finally, the inclusion \(S \subset R(H) \setminus q\) implies \(L^H_S \subset L^H_q\) and therefore we have isomorphisms \(s 1 \otimes q 1 \simeq s 1\) and \(1_q \otimes L^H_S \simeq 1_q\) by Corollary 2.8. \(\square\)

The following consequence is a local version of the more trivial remark that \(K^G_0(1) \simeq 0\) for \(A \in T^G\). Then \(K^H_0(\text{Res}^H_0 A) \simeq 0\).

Corollary 5.14. In the situation of Lemma 5.13, if \(A \in T^G\) and \(K^G_*(A)_p \simeq 0\) then \(K^H_*(\text{Res}^H_0 A)_q \simeq 0\).

Proof. Since \(\{1, T(1)\}\) generates \(T^G\), \(K^G_*(A)_p = K^G_*(1_p \otimes A) \simeq 0\) implies \(1_p \otimes A \simeq 0\) and therefore \(\text{Res}^H_0(1_p) \otimes \text{Res}^H_0(A) \simeq 0\). Hence, by the second isomorphism in the lemma, \(1_q \otimes \text{Res}^H_0(A) \simeq 0\) and consequently \(K^H_*(\text{Res}^H_0 A)_q \simeq 0\). \(\square\)

Next, we prove \(p\)-local versions of a couple of results of [MN10] which will be put to good use in the following two sections.

Consider the homological pair \((T_p^G, I)\) with \(I := \ker(K^*_p(\ast)_p)\) (see Def. 5.5). Denote by \(R(G)_p\)-\text{Mod}^\otimes_{\mathbb{Z}/2}\) the stable abelian category of \(\mathbb{Z}/2\)-graded countable (indicated by “\(\infty\)”) \(R(G)_p\)-modules and degree-zero homomorphisms.
Proposition 5.15. The functor $h := K^G_1(?)_p \simeq K^G_2 : \mathcal{T}^G_p \to R(G)_p\text{-}\text{Mod}_{2/\infty}^{\mathcal{I}}$ is the universal I-exact (stable homological) functor on \mathcal{T}^G_p. Moreover, h restricts to an equivalence $\mathcal{P}_2 \simeq \text{Proj}(R(G)_p\text{-}\text{Mod}_{2/\infty}^{\mathcal{I}})$, and, for every $A \in \mathcal{T}^G_p$, it induces a bijection between isomorphism classes of projective resolutions of $h(A)$ in $R(G)_p\text{-}\text{Mod}_{2/\infty}^{\mathcal{I}}$ and isomorphism classes of \mathcal{I}-projective resolutions of A in \mathcal{T}^G_p.

Proof. We use Meyer and Nest’s criterion [MN10, Theorem 57]. Since \mathcal{T}^G_p is idempotent complete (having arbitrary countable coproducts); since the abelian category $R(G)_p\text{-}\text{Mod}_{2/\infty}^{\mathcal{I}}$ has enough projectives (being: graded modules that are degree-wise $R(G)_p$-projective), and since h is obviously an \mathcal{I}-exact stable homological functor, in order to derive the universality of h from the cited theorem it remains to find for h a partial left adjoint

$$h^\dagger : \text{Proj}(R(G)_p\text{-}\text{Mod}_{2/\infty}^{\mathcal{I}}) \to \mathcal{T}^G_p$$

defined on projective objects, such that

$$h \circ h^\dagger (P) \simeq P$$

naturally in P. Since every projective in $R(G)_p\text{-}\text{Mod}_{2/\infty}^{\mathcal{I}}$ is a direct factor of a coproduct of copies of $R(G)_p(0)$ and $R(G)_p(1)$ (i.e., $R(G)_p$ concentrated in $\mathbb{Z}/2$-degree 0 and 1 respectively), and since h preserves coproducts, it suffices to define h^\dagger on the latter two graded modules ([MN10, Remark 58]).

Set $h^\dagger(R(G)_p(i)) := T^i(1_p)$ for $i = 0, 1$, where $1_p \in \mathcal{T}^G_p$ is the p-localization of the tensor unit as in Theorem [5.10]. Then indeed, the partially defined h^\dagger (extended to a functor in the evident way) is left adjoint to h, because for all $A = 1_p \otimes A \in \mathcal{T}^G_p$ we have

$$\text{KK}^G(h^\dagger(R(G)_p(i)), A) = \text{KK}^G(T^i1_p, 1_p \otimes A) \simeq \text{KK}^G(T^i1, 1_p \otimes A) \simeq K_i^G(A)_p = \text{Hom}_{R(G)}(R(G)(i), h(A)),$$

by Proposition [2.4] (a) and Theorem [5.10] (h). We immediately verify (5.16):

$$hh^\dagger(R(G)_p(i)) = \text{KK}^G(1, T^i1_p) \simeq R(G)_p(i) \quad (i = 0, 1).$$

Thus h is the universal \mathcal{I}-exact functor. The other claims in the proposition follow from this one, see [MN10, Thm. 59].

We can use the latter proposition to compute left derived functors with respect to $\mathcal{I} = \ker(h)$, as follows:

Proposition 5.17. Let $F : \mathcal{T}^G_p \to \text{Ab}$ be a homological functor which preserves small coproducts. Then for every $n \geq 0$ there is a canonical isomorphism

$$L^n_F \simeq \text{Tor}^R_{n}(G)_p, F_*(1_p), h(?)$$

of functors $\mathcal{T}^G_p \to \text{Ab}^\mathcal{I}$, (On the left hand side we have the left derived functors of F_* with respect to $\mathcal{I} = \ker(h)$; on the right hand side, the left derived functors of the usual tensor product of graded modules, i.e., the homology of $\otimes^R_{G_p}$, the $R(G)_p$-action on $F_*(1_p)$ is induced by the functoriality of F, cf. Rem. [5.22].)

Proof. (Note by inspecting the definitions that $L^n_F(F_*) = (L^nF)_*$) We have proved above that h is the universal \mathcal{I}-exact functor. It follows that every homological functor $F : \mathcal{T}^G_p \to \text{Ab}$ extends (up to isomorphism, uniquely) to a right exact functor

$$\tilde{F} : R(G)_p\text{-}\text{Mod}_{\infty}^{\mathcal{I}} \to \text{Ab}.$$
such that $\hat{F} \circ h(P) = F(P)$ for all \mathcal{I}-projective objects P; this functor \hat{F} is stable, resp. commutes with coproducts, if so does F. Moreover, there are canonical isomorphisms
\begin{equation}
L_n^x F_* \simeq (L_n \hat{F}_*) \circ h
\end{equation}
for all $n \in \mathbb{Z}$. (See [MN10] Theorem 59 for these results). Therefore we are left with computing \hat{F}_* and its left derived functors, in the case where \mathcal{A} is the category of abelian groups.

Lemma 5.20. There is a natural isomorphism
\begin{equation}
\hat{F}_*(M) \simeq F_*(1_p) \otimes_{R(G)_p} M
\end{equation}
of graded abelian groups, for $M \in R(G)_p\text{-Mod}_{\mathbb{Z}/2}$.

To prove the lemma, notice first that (5.21) holds for the free module $M = R(G)_p$ (set in degree zero), because there are canonical isomorphisms of graded $R(G)_p$-modules
\[
\hat{F}_*(R(G)_p) = \hat{F}_* \circ h(1_p) = F_*(1_p) \simeq F_*(1_p) \otimes_{R(G)_p} R(G)_p.
\]
We may extend this to all $\mathbb{Z}/2$-graded free modules in the evident way. Since both \hat{F}_* and $F_*(1_p) \otimes (?)$ are right exact functors, we can compute them – and we can extend the natural isomorphism (5.21) – for general graded modules M by using free presentations $P \to P' \to M \to 0$. \hfill \Box

Proposition 5.17 follows now from Lemma 5.20 by taking left derived functors of (5.21) we get $L_n \hat{F}_* \simeq \text{Tor}_n^{R(G)_p}(F_*(1_p), ?)$, and by combining this with (5.19) we find the predicted isomorphism (5.18). \hfill \Box

Remark 5.22. Let $F : \mathcal{T}_p^G \to \text{Ab}$ be an additive functor. Since \mathcal{T}_p^G is an $R(G)_p$-linear category, F lifts to $R(G)_p\text{-Mod}_{\mathbb{Z}/2}$, simply via $r \cdot a := F(r \cdot \text{id}_A)(a)$ for all $r \in R(G)_p$ and $a \in F(A)$. This is for instance how we regard $F_*(1_p)$ as a graded $R(G)_p$-module in Proposition 5.17. It is clear from the proof that the isomorphism (5.18) is actually an isomorphism of graded $R(G)_p$-modules.

The same arguments provide an analog statement for contravariant functors. We leave the details of the proof to the reader (cf. [MN10] Thm. 72):

Proposition 5.23. Let $F : (\mathcal{T}_p^G)^{\text{op}} \to \text{Ab}$ be a homological functor sending small coproducts in \mathcal{T}_p^G to products. Then for every $n \geq 0$ there is an isomorphism
\[
R^n F_* \simeq \text{Ext}_n^{R(G)_p}(h(\cdot), F_*(1))
\]
of contravariant functors from \mathcal{T}_p^G to $\mathbb{Z}/2$-graded $R(G)_p$-modules. (The graded Ext on the right are the derived functors of the graded Hom $\text{Hom}_{R(G)_p}^n(h, F_*(1))$.) \hfill \Box

5.3. The Phillips-Kiënnetz formula.

We derive from the above theory a new version of a theorem of N.C. Phillips ([Phil87] Theorem 6.4.6]). Our theorem and that of Phillips differ only in the technical assumptions on the C^*-algebras involved; we don’t know how these compare precisely, but we suspect that neither set of hypotheses implies the other.

Phillips’ theorem is about the following data, whose relevance will be explained at the beginning of §6.1

Definition 5.24. A **local pair** (S, q) consists of a finite cyclic group S and a prime ideal $q \in \text{Spec}(R(S))$ such that, if $S' \leq S$ is a subgroup with the property that $(\text{Res}^{S'}_S)^{-1}(q') = q$ for some $q' \in \text{Spec}(R(S'))$, then $S' = S$. (Here $\text{Res}^{S'}_S : R(S) \to R(S')$ is the usual restriction ring homomorphism; of course, it coincides with the functor $\text{Res}^{S'}_S : \text{KK}^\Sigma \to \text{KK}^\Sigma$ at $R(S) = \text{KK}^\Sigma(1, 1)$.)
Lemma 5.25. Let \((S,q)\) be a local pair. Then the local ring \(R(S)_q\) is a discrete valuation ring or a field; in particular, it is hereditary (that is, every submodule of a projective \(R(S)_q\)-module is again projective).

Proof. See [Phi87, Prop. 6.2.2], where it is proved that, under the above hypothesis, \(R(S)_q\) is isomorphic to the localization at a prime ideal of \(\mathbb{Z}[\mathcal{C}]\), the subring of \(\mathbb{C}\) generated by a primitive \(n\)th root of unity \(\zeta\), where \(n = |S|\). The claims follow because \(\mathbb{Z}[\mathcal{C}]\) is a Dedekind domain (cf. [Phi87, Lemma 6.4.2]). \(\square\)

Theorem 5.26. (Phillips-Künneth Formula). Let \((S,q)\) be a local pair. Then for all \(A \in \mathcal{T}_S\) and \(B \in \mathbb{K}K^S\) there is a natural short exact sequence

\[
K^S_0(A)_q \otimes_{R(S)_q} K^S_0(B)_q \longrightarrow K^S_0(A \otimes B)_q \longrightarrow \operatorname{Tor}^1_{R(S)_q}(K^S_0(A)_q, K^S_0(B)_q) \to 0
\]

of \(\mathbb{Z}/2\)-graded \(R(S)_q\)-modules which splits unnaturally (the \(+1\) indicates a map of \(\mathbb{Z}/2\)-degree one).

Lemma 5.27. It suffices to prove the theorem for the special case \(A, B \in \mathcal{T}_q^S\).

Proof. Let \(A \in \mathcal{T}_S\) and \(B \in \mathbb{K}K^S\). Let \(LB \to B \to RB \to TLB\) be the natural distinguished triangle with \(LB \in \mathcal{T}_S^S\) and \(K^S_0(RB) \simeq 0\) (Thm. 5.8). Since \(LB \to B\) induces an isomorphism \(K^S_0(LB) \simeq K^S_0(B)\), we may substitute \(LB\) for \(B\) in the first and third terms of the sequence. Note that the subcategory \(\{X \in \mathbb{K}K^S \mid K^S_0(X \otimes RB) \simeq 0\}\) is localizing and contains \(1\), hence it contains \(\mathcal{T}_S^S\). Therefore \(LB \to B\) also induces an isomorphism \(K^S_0(A \otimes LB) \simeq K^S_0(A \otimes B)\). Hence it suffices to prove the existence and split exactness of the sequence for \(A, B \in \mathcal{T}_S^S\).

Now, if \(A, B \in \mathcal{T}_S^S\) then \(K^S_0(1_q \otimes A)_q = K^S_0(A)_q\), \(K^S_0(1_q \otimes B)_q = K^S_0(B)_q\) and \(K^S_0(1_q \otimes A \otimes 1_q \otimes B)_q = K^S_0(A \otimes B)_q\) by Theorem 5.10, so we may as well substitute \(1_q \otimes A \in \mathcal{T}_q^S\) for \(A\) and \(1_q \otimes B \in \mathcal{T}_q^S\) for \(B\). \(\square\)

Proof of Theorem 5.26. By the previous lemma we can assume that \(A \in \mathcal{T}_q^S\). We wish to apply Theorem 5.26 (a) to the homological pair \((T^S_q, I := \ker(K^S_0(?)_q))\) and the homological functor \(F := K^S_0(\cdot \otimes B)_q\).

By Prop. 5.15 \(h := K^S_0(?)_q : \mathcal{T}_q^S \to R(S)_q\text{-Mod}_{\mathcal{Z}^2/2}\) is the universal \(I\)-exact functor and therefore it induces a bijection between isomorphism classes of projective resolutions of the graded \(R(S)_q\)-module \(K^S_0(A)_q\) and isomorphism classes of \(I\)-projective resolutions of \(A\). By Lemma 5.25 every \(R(S)_q\)-module has a projective resolution of length one, so \(A\) has an \(I\)-projective resolution of length one. Since \(A \in \mathcal{T}_q^S = (1_q)_\text{loc} = (\mathcal{T}_q^S)_\text{loc}\), it satisfies the hypothesis of Theorem 5.6. Therefore there exists a natural short exact sequence \(0 \to \mathcal{L}_1^2 F(A) \to F(A) \to \mathcal{L}_1^2 F(TA) \to 0\). It remains to identify the derived functors of \(F = K^S_0(\cdot \otimes B)_q\) and to show that the sequence splits. According to Proposition 5.17 \((\text{applied to the homological functor } K^S_0(\cdot \otimes B)_q)\), we have a natural isomorphism

\[
\mathcal{L}_1^2 F(A) \cong \operatorname{Tor}^1_{R(S)_q}(K^S_0(1_q \otimes B)_q, h_*(A)) = \operatorname{Tor}^1_{R(S)_q}(K^S_0(B)_q, K^S_0(1_q)_q) = \operatorname{Tor}^1_{R(S)_q}(K^S_0(A)_q, K^S_0(B)_q)
\]

of graded \(R(S)_q\)-modules for \(i = 0, 1\), as claimed. As for the splitting, we can use the same argument as in [B08, §23.11]. We postpone this to Corollary 5.32 which requires the (unsplit) universal coefficient theorem. \(\square\)

Theorem 5.28 (Universal Coefficient Theorem, UCT). Let \((S,q)\) be a local pair. For every \(A \in \mathcal{T}_S^S\) and \(B \in \mathbb{K}K^S\) there exists a natural short exact sequence

\[
\begin{array}{c}
\operatorname{Ext}^1_{R(S)_q}(K^S_0(A)_q, K^S_0(B)_q) \longrightarrow \mathcal{K}K^S_0(A, B)_q \longrightarrow \operatorname{Hom}^*_{R(S)_q}(K^S_0(A)_q, K^S_0(B)_q)
\end{array}
\]
of $\mathbb{Z}/2$-graded $R(S)_q$-modules.

Proof. The proof is quite similar to that of Theorem 5.26. Just as before in Lemma 5.27 we reduce to the case $A, B \in \mathcal{T}_q^S$, but then we use Theorem 5.24 (c) (for both B and TB) to produce the short exact sequence and Proposition 5.23 to identify its right and left terms as required (cf. [MN10, Thm. 72]). □

The UCT has corollaries familiar from ordinary K-theory (cf. [B98, §23]).

Corollary 5.29. Let M be any countable $\mathbb{Z}/2$-graded $R(S)_q$-module. Then there exists an object $A \in \mathcal{T}_q^S$ such that $K^S_q(A) = K^S_q(A)_q \simeq M$.

Proof. Consider a projective (i.e., free) resolution $0 \to Q \to P \to M \to 0$ in $R(S)_q\text{-Mod}_{\mathbb{Z}/2}^{\mathbb{Z}}$. Applying h^1 (see the proof of Proposition 5.15) we obtain a morphism $f : h^1Q \to h^1P$ between \mathbb{Z}-projective objects in \mathcal{T}_q^S. Now apply $h = K^S_q(??)_q$ to the distinguished triangle $h^1Q \to h^1P \to \text{cone}(f) \to Th^1Q$ to get the exact sequence $Q \to P \to K^S_q(\text{cone}(f))_q \to Q[1] \to P[1]$. The rightmost map is injective and therefore $K^S_q(\text{cone}(f))_q \simeq M$. □

Corollary 5.30. Consider objects $A, B \in \mathcal{T}_q^S$ such that $K^S_q(A)_q \simeq K^S_q(B)_q$. Then there exists an isomorphism $A \simeq B$ in \mathcal{T}_q^S.

Proof. Because of the surjectivity of the second homomorphism in the UCT (in degree zero), we may lift the isomorphism $K^S_q(A)_q \simeq K^S_q(B)_q$ to a map $f : A \to B$ in \mathcal{T}_q^S. Since $(1, T(1))$ generates T^S, the condition $\text{cone}(f) \simeq 0$ is equivalent to $K^S_q(1, \text{cone}(f)) = K^S_q(\text{cone}(f))_q \simeq 0$. But $K^S_q(f)_q$ is an isomorphism by construction, hence $f : A \simeq B$. □

Corollary 5.31. Let $A \in \mathcal{T}_q^S$, and assume that there is an isomorphism $K^S_q(A)_q \simeq M_1 \oplus M_2$ of graded $R(S)_q$-modules. Then there exists in \mathcal{T}_q^S a decomposition $A \simeq A_1 \oplus A_2$ with $K^S_q(A_i)_q \simeq M_i$ ($i = 1, 2$).

Proof. Use Corollary 5.29 to get $A_i \in \mathcal{T}_q^S$ with $K^S_q(A_i)_q \simeq M_i (i = 1, 2)$. Now employ Corollary 5.30. □

Corollary 5.32. The short exact sequences in the Phillips-Künneth Theorem 5.26 and the Universal Coefficient Theorem 5.28 are (unnaturally) split.

Proof. If $\tilde{A} \in \mathcal{T}_q^S$, according to Corollary 5.31 the degree-wise decomposition $K^S_q(\tilde{A})_q = K^S_q(\tilde{A}(0))_q \oplus K^S_q(\tilde{A}(1))_q$ can be realized by a decomposition $\tilde{A} \simeq A_0 \oplus A_1$ in \mathcal{T}_q^S. Let $A \in \mathcal{T}_q^S$. Now we apply the preceding to $\tilde{A} := 1_q \otimes A \in \mathcal{T}_q^S$ and appeal to Remark 5.4. □

5.4. The residue field object at a prime ideal. Fix a local pair (S, q), as in Def. 5.7.23 That is: S is a cyclic group and $q \in \text{Spec } R(S)$ does not lie above any $q' \in \text{Spec } R(S')$ with $S' \subset S$ a proper subgroup. Denote by $k(q) := R(S)_q/qR(S)_q$ the residue field of $R(S)$ at the prime ideal q. The following lemma is an immediate consequence of Corollary 5.29. Together with the Phillips-Künneth formula, it is the key ingredient needed for the construction of the support σ_G in Theorem 1.3.

Lemma 5.33. There exists an object $\kappa_q \in \mathcal{T}_q^S$ with the property that $K^S_q(\kappa_q) \simeq k(q)$ and $K^S_q(\kappa_q) \simeq 0$.

Definition 5.34. We call such an object κ_q a residue field object at (S, q). By Corollary 5.30 it is uniquely determined by (S, q) up to isomorphism.

Proposition 5.35. For every $A \in \mathcal{T}_q^S$, the product $\kappa_q \otimes A$ is isomorphic in \mathcal{T}_q^S to a countable coproduct of translated copies of κ_q.
by definition the homology of the complex T^k in \mathfrak{S}. Applied to the objects κ_q and A, the Phillips-Künneth split short exact sequence (Thm. 5.26) implies that the $\mathbb{Z}/2$-graded $R(S)q$-module $K^S_\kappa(\kappa_q \otimes A)$ is isomorphic to a $\mathbb{Z}/2$-graded $k(q)$-vector space, which has the form $\prod_{I_0} k(q)(0) \oplus \prod_{I_1} k(q)(1)$ for some countable index sets I_0 and I_1. The latter vector space can be realized in T_q^S as the object $B := \prod_{I_0} \kappa_q \oplus \prod_{I_1} T(\kappa_q)$. Since $\kappa_q \otimes A$ and B both lie in T_q^S and have isomorphic K-theory, by Corollary 5.30 of the UCT they must be isomorphic.

\textbf{Proposition 5.36.} Let (S, q) be a local pair. Then for every two objects $A, B \in T^S$ there exists a (non natural) isomorphism

$$K^S_\kappa(\kappa_q \otimes A \otimes B) \simeq K^S_\kappa(\kappa_q \otimes A) \otimes K^S_\kappa(\kappa_q \otimes B)$$

of $\mathbb{Z}/2$-graded $k(q)$-vector spaces. Here \otimes denotes the usual tensor product of graded vector spaces, given by $(V \otimes W)_\ell = \bigoplus_{i+j=\ell} V_i \otimes k(q) V_j$.

\textbf{Proof.} To simplify notation, we write $\kappa := \kappa_q$ and $k := k(q)$. Choose isomorphisms

$$\kappa \otimes A \simeq \prod_{n_0} \kappa \otimes \prod_{n_1} T(\kappa) \quad \text{and} \quad \kappa \otimes B \simeq \prod_{m_0} \kappa \otimes \prod_{m_1} T(\kappa)$$

in T^S as provided by Proposition 5.35. Then

$$\kappa \otimes A \otimes B \simeq \left(\prod_{n_0} \kappa \otimes \prod_{n_1} T(\kappa) \right) \otimes B$$

$$\simeq \left(\prod_{n_0} \kappa \otimes B \right) \oplus \left(\prod_{n_1} T(\kappa \otimes B) \right)$$

$$\simeq \prod_{n_0} \left(\prod_{m_0} \kappa \otimes \prod_{m_1} T(\kappa) \right) \oplus \prod_{n_1} \left(\prod_{m_0} T(\kappa) \otimes \prod_{m_1} \kappa \right)$$

$$\simeq \prod_{n_0m_0+n_1m_1+n_1m_0} \kappa \oplus \prod_{n_0m_1+n_1m_0} T(\kappa).$$

Since $K^S_\kappa(\kappa) \simeq k(0)$ and $K^S_\kappa(T\kappa) \simeq k(1)$ (where, as before, $V(i)$ stands for the k-vector space V set in degree $i \in \mathbb{Z}/2$), we obtain

$$K^S_\kappa(\kappa \otimes A \otimes B) \simeq \prod_{n_0m_0+n_1m_1} k(0) \oplus \prod_{n_0m_1+n_1m_0} k(1).$$

The right hand side of the equation is computed similarly:

$$K^S_\kappa(\kappa \otimes A) \otimes K^S_\kappa(\kappa \otimes B) \simeq \left(\prod_{n_0} k(0) \otimes \prod_{n_1} k(1) \right) \otimes \left(\prod_{m_0} k(0) \otimes \prod_{m_1} k(1) \right)$$

$$\simeq \prod_{n_0m_0+n_1m_1} k(0) \oplus \prod_{n_0m_1+n_1m_0} k(1)$$

using that $k(i) \otimes k(j) \simeq k(i+j)$. We see that the two sides are isomorphic. \hfill \Box

We also record the following consequence of the Phillips-Künneth theorem.

\textbf{Corollary 5.37.} Let $A \in T^S$. Then $K^S_\kappa(\kappa_q \otimes A) \simeq 0$ if and only if the derived tensor product $k(q) \otimes^L R(S)q_k A_q = k(q) \otimes^L R(S) K^S_\kappa(A)_q$ is zero.

\textbf{Proof.} Since $\kappa_q \simeq 1_q \otimes \kappa_q$, we may substitute A with $1_q \otimes A$ and $K^S_\kappa(\kappa_q \otimes A)$ with $K^S_\kappa(\kappa_q \otimes A)_q$. By the Phillips-Künneth formula $K^S_\kappa(\kappa_q \otimes A)_q$ vanishes if and only if $\text{Tor}_i R(S)\kappa_q k(q), K^S_\kappa(A)_q \simeq 0$ ($i = 0, 1$). The latter Tor modules are by definition the homology of the complex $k(q) \otimes^L R(S)_q K^S_\kappa(A)_q$. \hfill \Box
6. First results for finite groups

6.1. The nice support \((\text{Spec } R(G), \sigma_G)\) on \(T^G\). We are now ready to prove Theorem 1.4 of the introduction. We fix an arbitrary finite group \(G\) and consider the compactly generated \(\otimes\)-triangulated category \(T^G = (1)_{\text{loc}} \subset KK^G\) of \([5.1]\).

In [Se68], it is shown that for every prime ideal \(p \in \text{Spec}(R(G))\) there exists a cyclic subgroup \(S \leq G\), unique up to conjugacy in \(G\) (let us call it the source \(^G\) of \(p\)), such that: There exists a prime ideal \(q \in \text{Spec}(R(S))\) with \((\text{Res}_G^S)^{-1}(q) = p\), and moreover \(S\) is minimal (with respect to inclusion) among the subgroups of \(G\) with this property. It follows that \(q\) also cannot come from any proper subgroups of \(S\), i.e., the source of such a \(q \in \text{Spec}(R(S))\) is \(S\) itself.

Notation 6.1. In the following, for a \(p \in \text{Spec}(R(G))\) and a fixed cyclic subgroup \(S = \text{S}(p)\) of \(G\) in the conjugacy class of the source of \(p\), we shall denote by

\[
\text{Fib}(p) := \{q \in \text{Spec}(R(S(p))) \mid (\text{Res}_G^S)^{-1}(q) = p\}
\]

the fiber in \(\text{Spec}(R(S(p)))\) over the point \(p \in \text{Spec}(R(G))\).

Note that the pair \((S(p), q)\), for any \(q \in \text{Fib}(p)\), is a local pair as in Definition 5.21. In particular, we can apply to it all the results of [5.3] such as the existence of a residue field object \(\kappa_q \in T^S_q\) (Lemma 5.33).

Definition 6.2. For a local pair \((S, q)\), denote by \(A(S, q)\) the stable abelian category of countable \(\mathbb{Z}/2\)-graded \(k(q)\)-vector spaces. Write

\[
F_{(S, q)} : T^S \to A(S, q)
\]

for the stable homological functor sending \(B \in T^S\) to \(K^S_q(\kappa_q \otimes B)\). Now for every \(p \in \text{Spec}(R(G))\), choose a \(q = q(p) \in \text{Fib}(p)\) and consider the functor

\[
F_p := F_{(S(p), q(p))} \circ \text{Res}_G^{S(p)} : T^G \to A(S(p), q(p)) =: A(p).
\]

Finally, define the support \(\sigma_G\) by

\[
\sigma_G(A) := \{p \mid F_p(A) \neq 0\} = \{p \mid K^S_{q(p)}(\kappa_{q(p)} \otimes \text{Res}_G^{S(p)}(A)) \neq 0\} = \{p \mid \kappa_{q(p)} \otimes \text{Res}_G^{S(p)}(A) \neq 0\} \subset \text{Spec}(R(G))
\]

for every object \(A \in T^G\).

Remark 6.3. The set \(\sigma_G(A) \subset \text{Spec}(R(G))\) only depends on the group \(G\) and the object \(A \in T^G\), not on the choices of \(S(p), q(p) \in \text{Fib}(p)\) or \(\kappa_{q(p)}\). By Cor. 5.37 for fixed \((S, q) = (S(p), q(p))\) the vanishing of \(F_p(A)\) only depends on the \(R(S)\)-module \(K^S_q(\kappa_q) \simeq q\), not on the choice of \(\kappa_q \in T^S_q\). Now let \((S, q)\) and \((S', q')\) be two choices. As we already noted, if \(S\) and \(S'\) are two cyclic subgroups of \(G\), both representing the source of \(p\), then \(S\) and \(S'\) are conjugate in \(G\); moreover, any two primes \(q_1, q_2 \subset \text{Spec}(R(S))\) lying above \(p\) are also conjugate by the induced action of some element of the normalizer \(N_G(S)\) ([Se68 Prop. 3.5]). Combining the two, we easily find an isomorphism \(\phi : S \simeq S', s \mapsto g^{-1}sg\) inducing a \(\otimes\)-triangulated isomorphism \(\phi^* : KK^S_s \simeq KK^S_s\) such that \(\phi^* \circ \text{Res}_G^S_s \simeq \text{Res}_G^S_s\) and \(\phi^*(\kappa_{q'}) \simeq \kappa_q\). This shows that \(\sigma_G(A)\) is independent of all choices.

Theorem 6.4. The pair \((\text{Spec } R(G), \sigma_G)\) defines a support on \(T^G\) enjoying all the properties stated in Theorem 1.4. These are (S0)-(S7) of Theorem 1.4, where moreover (S5) holds for any two objects:

\[
\sigma_G(A \otimes B) = \sigma_G(A) \cap \sigma_G(B) \tag{3}
\]

3In loc. cit. Segal calls it the support of \(p\), but surely the reader of this article will forgive us for avoiding charging this poor word with yet another meaning.
for all $A, B \in \mathcal{T}^G$. In particular, the restriction $(\text{Spec}(R(G)), \sigma_G|_{\mathcal{K}^G})$ defines a support datum on the subcategory $\mathcal{K}^G = (\mathcal{T}^G)_c$ of compact objects.

Proof. By definition, σ_G is the support $\sigma_{F(G)}$ induced, as in Lemma 3.3, by the family of functors $F(G) := \{F_p\}_{p \in \text{Spec}(R(G))}$. Every $F_p : \mathcal{T}^G \to \mathcal{A}(p)$ is a stable homological functor commuting with coproducts, because it is by definition a composition of a triangulated functor followed by a stable homological one, both of which preserve small coproducts. Thus, by Lemma 3.3, σ_G satisfies properties (S0), (S2)-(S4) and (S6). Since $F_p(1) = k(\mathfrak{q}(p)) \neq 0$, (S1) holds as well. Moreover, every $\mathcal{A}(p)$ can be equipped with the tensor product \otimes of graded vector spaces, and clearly a product $V \otimes W$ in $\mathcal{A}(p)$ is zero if and only if one of the two factors already is (consider bases). For any two objects $A, B \in \mathcal{T}^G$, there exists an isomorphism

$$F_p(A \otimes B) \cong F_p(A) \otimes F_p(B)$$

because of Proposition 5.36 and because restriction Res_G^S is a \otimes-functor. It follows that σ_G enjoys (S5) for any two objects.

It remains only to verify property (S7). We will do so in a series of lemmas.

Lemma 6.5. If H is a finite (or compact Lie) group and $A \in \mathcal{T}^H$, then the $R(H)$-module $K^H(A)$ is finitely generated.

Proof. The proof is a routine induction on the length of the object $A \in \mathcal{T}^H = (1)$, using that $R(H)$ is noetherian. We leave it to the reader. □

Lemma 6.6. For every compact object $A \in \mathcal{T}^G$, we have

$$\sigma_G(A) = \{p \in \text{Spec}(R(G)) \mid K^S_p(\text{Res}_G^S(A))_{\mathfrak{q}(p)} \neq 0\}.$$

Proof. Write $S = S(p)$ and $\mathfrak{q} = q(p)$. We know by Corollary 5.37 that $F_p(A) = K^S(\mathfrak{q} \oplus \text{Res} A) \cong 0$ is equivalent to the vanishing of $X_\mathfrak{q} := k(\mathfrak{q}) \oplus K^S(\text{Res} A)_{\mathfrak{q}}$. Let us show that the latter is equivalent to $K^S(\text{Res} A)_{\mathfrak{q}} \cong 0$. Since A is compact in \mathcal{T}^G, $\text{Res} A$ is compact in \mathcal{T}^S and therefore the $R(S)_{\mathfrak{q}}$-module $M := K^S(\text{Res} A)_{\mathfrak{q}}$ is finitely generated, by Lemma 6.5. Since $R(S)_{\mathfrak{q}}$ is a noetherian ring of global dimension one (Lemma 5.24), we find a length-one resolution of M by finitely generated projectives, say $P_\bullet = (\cdots \to P_1 \xrightarrow{\partial_1} P_0 \to \cdots)$. Moreover, since $R(S)_{\mathfrak{q}}$ is local and the P_i finitely generated, we may choose the complex \mathcal{P}_\bullet to be minimal, that is, such that $d(P_1) \subset \mathfrak{m}P_0$ where $\mathfrak{m} := q(R(S))$ denotes the maximal ideal (see [Ro0]). Now, $X_{\mathfrak{q}} = k(\mathfrak{q}) \otimes M = k(\mathfrak{q}) \otimes P_\bullet = (P_1/\mathfrak{m}P_1 \to P_0/\mathfrak{m}P_0)$; so $X_{\mathfrak{q}} \cong 0$ iff $P_i/\mathfrak{m}P_i = 0$ ($i = 0, 1$). By Nakayama (or simply because the modules P_i are free), the latter condition is equivalent to $P_i \cong 0$ ($i = 0, 1$), i.e., to $M \cong 0$. □

Finally, let us prove the remaining claim of Theorem 6.4.

Lemma 6.7. The support $(\text{Spec}(R(G)), \sigma_G)$ satisfies (S7): for every $A \in \mathcal{T}_c^G$, the set $\sigma_G(A)$ is closed in $\text{Spec}(R(G))$.

Proof. Let A be a compact object of \mathcal{T}^G. By Lemma 6.6, we can express the complement of $\sigma_G(A)$ as follows:

$$\text{Spec}(R(G)) \setminus \sigma_G(A) = \{p \in \text{Spec}(R(G)) \mid K^S_p(\text{Res}_G^S(A))_{\mathfrak{q}(p)} \cong 0\}.$$

Note that, whenever S is a cyclic subgroup of G containing $S(p)$ and \mathfrak{t} is a prime ideal in $R(S)$ such that $\mathfrak{t} = \text{Res}_G^{-1}(\mathfrak{q})$ and $p = \text{Res}_G^{-1}(\mathfrak{t})$, then

$$K^S(\text{Res}_G^S(A))_{\mathfrak{t}} \cong 0 \implies K^S_p(\text{Res}_G^S(A))_{\mathfrak{q}} \cong 0$$

by Corollary 5.14. Hence, by the minimality and uniqueness, up to conjugacy in G, of the pair $(S(p), q(p))$ (see Remark 6.3), we see that $K^S_p(\text{Res}_G^S(A))_{\mathfrak{q}(p)}$ vanishes
if and only if $K^S_R(\text{Res}^S_G A)_r \simeq 0$ for some pair (S, τ) with S cyclic and $\tau \in \text{Spec}(R(S))$ lying above p. By considering all p simultaneously, the above expression becomes

$$\text{Spec}(R(G)) \setminus \sigma_G(A) = \bigcup_S \text{Spec}(\text{Res}^S_G)^{-1}(\text{Spec}(R(S)) \setminus \text{Supp}_{R(S)} K^S_G(\text{Res}^S_G A))$$

where the sum is over all cyclic subgroups of G. Since $\text{Res}^S_G(A) \in T^S_G$, the (S)-module $K^S_G(\text{Res}^S_G A)$ is finitely generated (Lemma 6.5). Therefore its module-theoretic support $\text{Supp}_{R(S)}$ is closed in $\text{Spec}(R(S))$, and we conclude from the latter formula that $\sigma_G(A)$ is a closed subset of $\text{Spec}(R(G))$.

In the next section we prove the last claim of Theorem 1.4.

6.2. Split injectivity of $f_G : \text{Spec}(R(G)) \rightarrow \text{Spec}(K^G)$. In [Ba10], Balmer shows that, for every \otimes-triangulated category \mathcal{T}, there is a natural continuous comparison map

$$\rho_\mathcal{T} : \text{Spec}(\mathcal{T}) \rightarrow \text{Spec}(\text{Res}_G^{\mathcal{T}} R) \quad \mathcal{P} \mapsto \rho_\mathcal{T}(\mathcal{P}) := \{ r \in R_T \mid \text{cone}(r) \not\in \mathcal{P} \}$$

between the spectrum of \mathcal{T} and the Zariski spectrum of its central ring. Since the ring $R_G = R(G)$ is noetherian (at least for G a compact Lie group), it follows from [Ba10] Thm. 7.3 that $\rho_{\text{Loc}} : \text{Spec}(K^G) \rightarrow \text{Spec}(R(G))$ is surjective. In the previous section, we have constructed a support datum $(\text{Spec}(R(G)), \sigma_G)$ on K^G for each finite group G. By the universal property of Balmer’s spectrum (Prop. 2.10), we have the canonical continuous map

$$f_G : \text{Spec}(R(G)) \rightarrow \text{Spec}(K^G) \quad p \mapsto f_G(p) = \{ A \in K^G \mid p \not\in \sigma_G(A) \}.$$

We now verify that f_G provides a continuous section of ρ_{Loc}:

Proposition 6.8. The composition $\rho_{K^G} \circ f_G$ is the identity map of $\text{Spec}(R(G))$.

Proof. Notice that $f_G(p) = \text{Ker}(F_p) \cap K^G$. For a $p \in \text{Spec}(R(G))$ and an $r \in R(G)$ we have equivalences (write $\rho := \rho_{K^G}$ and $f := f_G$ for readability):

$$r \not\in \rho(f(p)) \Leftrightarrow \text{cone}(r) \not\in f(p) \Leftrightarrow \text{cone}(f(r)) \not\in \text{cone}(r) \Leftrightarrow K^S_G(\text{Res}^S_G(\text{cone}(r))_q) \simeq 0,$$

with $q = q(p)$ and $S = S(p)$ (By Lemma 6.6 $K^S_G(\text{cone}(\text{Res}^S_G(r))_q) \simeq 0$ (because Res^S_G is triangulated) $\Leftrightarrow \text{Res}^S_G(r) \in \langle R(S)_q \rangle^\times$.

Thus: $r \not\in \rho(f(p)) \Leftrightarrow \text{Res}^S_G(r) \in \langle R(S)_q \rangle^\times$. On the other hand, we also have $r \not\in p \Leftrightarrow r \in R(G)^p$. Now observe the commutative square

$$\begin{array}{ccc}
R(G) & \xrightarrow{\text{Res}^S_G} & R(S) \\
\downarrow{\iota_}\hspace{1em} & & \downarrow{\iota_} \\
R(G)_p & \xrightarrow{\text{Res}^S_G} & R(S)_q
\end{array}$$

where the vertical maps are the localization homomorphism of rings at the indicated prime. Since $p = (\text{Res}^S_G)^{-1}(q)$, the lower horizontal map is a local homomorphism of local rings, and we deduce that $\iota_\tau(r)$ is invertible if and only if $\iota_\tau(\text{Res}^S_G(r))$ is invertible. This proves that $\rho(f(p)) = p$. □

6.3. The spectrum and the Bootstrap category. Theorem 5.1 and Proposition 5.12 can be easily applied to $T^G = (1)_{\text{loc}} \subset KK^G$ in the case of the trivial group, i.e., to the “Bootstrap category” $\text{Boot} = \langle C \rangle_{\text{loc}} \subset KK$. Its central ring $R(G)$ is just \mathbb{Z}, and its subcategory of compact objects $\text{Boot}_c = \langle C \rangle$ is the full subcategory of separable C*-algebras having finitely generated K-theory groups (see [DedDS 5.1.6]).

Theorem 6.9. There is a canonical isomorphism $\text{Spec}(\text{Boot}_c) \simeq \text{Spec}(\mathbb{Z})$ of locally ringed spaces, given by ρ_{Boot_c} with inverse f_G.
Proof. Let $\sigma : \text{obj}(\text{Boot}) \to 2^{\text{Spec}(\mathcal{Z})}$ be the support constructed in [De08, §5.1] for $G = \{1\}$. Namely: $\sigma(A) = \{(p) \in \text{Spec}(\mathcal{Z}) \mid F_p \otimes_{\mathcal{O}} K_*(A) \not\cong 0\}$ (here $F_p := \mathbb{Q}$). In this case at least, σ detects objects (see [Ne92b, Lemma 2.12] for a more general statement working for any commutative noetherian ring R instead of \mathcal{Z}). Moreover, if $A \in \text{Boot}$, then $\sigma(A) = \{(p) \mid K_*(A)(p) \not\cong 0\} = \text{Supp}_p(K_*(A))$ by Lemma 6.9 Thus, by Theorem 5.4 and Proposition 6.12 σ satisfies all ten hypotheses (S0)-(S9) of Theorem 5.1, and therefore we have a canonical homeomorphism $f := f_{(1)} : \text{Spec}(\text{Boot}) \simeq \text{Spec}(\mathcal{Z})$. By Proposition 6.8 its inverse must be the comparison map $\rho := \rho_{\text{Boot}}$. It is now a general fact, true for any \otimes-triangulated category \mathcal{T}, that if $\rho_{\mathcal{T}}$ is a homeomorphism then it yields also automatically an isomorphism of locally ringed spaces $\text{Spec}(\mathcal{T}) \simeq \text{Spec}(\mathcal{R})$; see [Ba10, Prop. 6.11 (b)]. Alternatively, in the case at hand it is straightforward to check this directly. \hfill \Box

Remark 6.10. In [De08, §5.1] we give a more elementary proof of Theorem 6.9 relying on the classical Universal Coefficient theorem and the K"unneth theorem of Rosenberg and Schochet [RS87].

References

[AM69] M. F. Atiyah, I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont. (1969)
[Ba05] Paul Balmer, The spectrum of prime ideals in tensor triangulated categories, J. Reine angew. Math. 588 (2005) 149–168
[Ba07] Paul Balmer, Supports and filtrations in algebraic geometry and modular representation theory, Amer. J. Math. 129 (2007), no. 5, 1227–1250.
[Ba10] Paul Balmer, Spectra, spectra, spectra - Tensor triangular spectra versus Zariski spectra, Proc. Amer. Math. Soc. 138 (2010), no. 3, 1521–1563
[BCH94] P. Baum, A. Connes, N. Higson, Classifying space for proper actions and K-theory of group C^\ast-algebras, (English Summary). C^\ast-algebras: 1943–1993 (San Antonio, TX, 1993), 240–291, Contemp. Math. 167, Amer. Math. Soc., Providence, RI (1994)
[Bel00] Apostolos Beligiannis, Relative homological algebra and purity in triangulated categories, J. Algebra 227 (2000), no. 1, 268–361
[Ben91] D. J. Benson, Representations and cohomology II, Cambridge Studies in Advanced Mathematics 31, Cambridge University Press, Cambridge (1991) x+278
[BCR96] D. J. Benson, J. F. Carlson, J. Rickard, Complexity and varieties for infinitely generated modules. II, Math. Proc. Cambridge Philos. Soc. 120 (1996), no. 4, 597–615
[BCR97] D. J. Benson, J. F. Carlson, J. Rickard, Thick subcategories of the stable module category, Fund. Math. 153 (1997), no. 1, 59–86
[BK09] D. Benson, S. Iyengar, H. Krause, Local cohomology and support for triangulated categories, Ann. Sci. Éc. Norm. Sup. (4) 41, no. 4, (2009) 575–621
[BN93] Marcel Bökstedt, Amnon Neeman, Homotopy limits in triangulated categories, Compositio Math. 86, no. 2. (1993) 209–234
[B98] Bruce Blackadar, K-theory for operator algebras, 2nd ed., Mathematical Sciences Research Institute Publications 5, Cambridge University Press (1998)
[BKS07] A. B. Buan, H. Krause, O. Solberg, Support varieties: an ideal approach, Homology, Homotopy Appl. 9 (2007), no. 1, 45–74 (electronic)
[Ca90] Jon F. Carlson, Modules and group algebras, Notes by Ruedi Suter, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel (1996) xii+91
[Ch98] J. Daniel Christensen, Ideals in triangulated categories: phantoms, ghosts and skeleta, Adv. Math. 136 (1998), no. 2, 284–339
[De08] Ivo Dell’Ambrogio, Prime tensor ideals in some triangulated categories of C^\ast-algebras, Doctoral Thesis Nr. 17939 at ETH Zürich (2008)
[HK01] Nigel Higson, Gennadi Kasparov, E-theory and KK-theory for groups which act properly and isometrically on Hilbert space, Invent. Math. 144 (2001) no. 1, 23–74
[Ho69] Melvin Hochster, Prime ideal structure in commutative rings, Trans. Amer. Math. Soc. 142 (1969) 43–60
[HPS97] M. Hovey, J. H. Palmieri and N. P. Strickland, Axiomatic stable homotopy theory, Mem. Amer. Math. Soc. 128 (610) (1997)
[Ka88] G. G. Kasparov, Equivariant KK-theory and the Novikov conjecture, Invent. Math. 91 (1988) no. 1, 147–201
[LMS86] L. G. Lewis, Jr., J. P. May, M. Steinberger, *Equivariant stable homotopy theory*, with contributions by J. E. McClure, Lecture Notes in Mathematics 1213, Springer-Verlag, Berlin (1986)

[Ma98] Saunders Mac Lane, *Categories for the working mathematician*, 2nd ed., Graduate Texts in Math., vol. 5, Springer-Verlag, New York (1998)

[Me08a] Ralf Meyer, *Categorical aspects of bivariant K-theory*, in *K-theory and noncommutative geometry*, 1-39, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich (2008)

[Me08b] Ralf Meyer, *Homological algebra in bivariant K-theory and other triangulated categories II*, Thal. Math. J. 1 (2008) 165-210

[MN06] Ralf Meyer and Ryszard Nest, *The Baum-Connes conjecture via localization of categories*, Topology 45 (2006) 209–259

[MN10] Ralf Meyer and R. Ryszard Nest, *Homological algebra in bivariant K-theory and other triangulated categories I*, in *Triangulated categories*, 236-289, edited by T. Holm, P. Jørgensen and R. Rouquier, London Mathematical Society Lecture Note Series 375, Cambridge University Press, Cambridge (2010)

[Mi92] Haynes Miller, *Finite localizations*, Papers in honor of José Adem (Spanish), Bol. Soc. Mat. Mexicana (2) 37 (1992) no. 1-2, 383–389

[Mur07] Daniel S. Murfet, *The mock homotopy category of projectives and Grothendieck duality*, Doctoral Thesis at Australian National University (2007)

[Ne92a] Amnon Neeman, *The connection between the K-theory localization theorem of Thomason, Trobaugh and Yao and the smashing subcategories of Bousfield and Ravenel*, Ann. Sci. École Norm. Sup. (4) 25, no. 5, (1992) 547-566

[Ne92b] Amnon Neeman, *The chromatic tower for D(R)*, With an appendix by Marcel Bökstedt, Topology 31 (1992), no. 3, 519–532

[Ne96] Amnon Neeman, *The Grothendieck duality theorem via Bousfield’s techniques and Brown representability*, J. Amer. Math. Soc. 9 (1996), no. 1, 205–236

[Ne98] Amnon Neeman, *Brown representability for the dual*, Invent. Math. 133 (1998) 97–105

[Ne01] Amnon Neeman, *Triangulated categories*, Annals of Mathematics Studies 148, Princeton University Press, Princeton (2001)

[Phi87] N. Christopher Phillips, *Equivariant K-theory and freeness of group actions on C*-algebras*, Lecture Notes in Mathematics 1274, Springer-Verlag, Berlin (1987), viii+371 pp.

[Ri97] Rickard, Jeremy, *Idempotent modules in the stable category*, J. London Math. Soc. (2) 56 (1997), no. 1, 149–170

[Ro80] Paul Roberts, *Homological invariants of modules over commutative rings*, Séminaire de Mathématiques Supérieures [Séminaire de Mathématics Supérieures] [Seminar on Higher Mathematics] 72, Presses de l’Université de Montréal, Montreal, Que. (1980)

[RS87] Jonathan Rosenberg and Claude Schochet, *The Künneth theorem and the universal coefficient theorem for Kasparov’s generalized K-functor*, Duke Math. J. 55 (2) (1987) 431–474

[Se68] Graeme Segal, *The representation ring of a compact group*, Inst. Hautes Études Sci. Publ. Math. 34 (1968) 113–128.

[Ver96] Jean-Louis Verdier, *Des catégories dérivées des catégories abéliennes*, with a preface by Luc Illusie, edited and with a note by Georges Maltsiniotis, Astérisque 239 (1996)