Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Title: Infection Prevention and Control of SARS-CoV-2 In Healthcare Settings

Authors:
Marisa L. Winkler, MD, PhD1, 2, 3
David C. Hooper, MD1, 2, 3
Erica S. Shenoy, MD, PhD1, 2, 3

Affiliations:
1Infection Control Unit, Massachusetts General Hospital, 55 Fruit Street, Bulfinch 334, Boston, MA 02114, USA
2Division of Infectious Diseases, Massachusetts General Hospital, 55 Fruit Street, Bulfinch 334, Boston, MA, USA
3Harvard Medical School, Boston, MA, USA

Corresponding Author:
Marisa L. Winkler, MD, PhD
Massachusetts General Hospital
55 Fruit Street
Boston, MA 02114
mlwinkler@partners.org

Disclosures: None

Tables: 1 Figures: 2

Synopsis:
We describe infection prevention and control approaches to SARS-CoV-2 in the healthcare setting, including a review of the chain of transmission and the hierarchy of controls, which are cornerstones of infection control and prevention. We also discuss lessons learned from nosocomial transmission events.

Keywords: SARS-CoV-2, COVID-19, infection prevention and control, hierarchy of controls, standard precautions, transmission-based precautions

Key Points:

1. Adherence to the hierarchy of controls can mitigate the risk of transmission of infectious diseases
2. Nosocomial COVID-19 transmission events often involve multiple lapses in implementation of infection prevention and control
3. Implementation of the hierarchy of controls is likely to evolve over the course of the pandemic
Background

Coronaviruses have been known to infect both humans and animals, and most identified human coronaviruses cause mild seasonal respiratory tract infections.\(^1\) Prior to the current COVID-19 pandemic caused by Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2), the outbreaks of Severe Acute Respiratory Syndrome Coronavirus (SARS) in 2003-2004 and of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in 2012 raised concerns regarding the public health implications of coronaviruses emerging from animals to infect humans.\(^2,\ 3\)

This manuscript reviews the chain of transmission of infectious agents, including SARS-CoV-2, recommended infection prevention and control (IPC) practices to mitigate the risk of transmission of SARS-CoV-2 in healthcare settings, including implementation of the Hierarchy of Controls and evaluation and management of potential nosocomial transmission events, and summarizes lessons learned from transmission events in healthcare settings.

Transmission of Infectious Agents

The chain of transmission of an infectious agent is a cycle comprising multiple parts, (Figure 1) and including three main requirements: a reservoir of infectious agent, a mode of transmission, and a susceptible host.\(^4\) Reservoirs include humans, animals, and inanimate objects. The infectious agent exits the reservoir and is transmitted by direct or indirect contact (i.e., fomite), droplet, or airborne transmission, or a combination of modes. A susceptible host with a portal of entry through which the infectious agent can enter at an inoculum sufficient to result in infection is required to complete the chain of transmission. This involves a complicated interplay of host factors including vaccination status and response to vaccination for vaccine-preventable diseases, history of prior infection, genetic makeup, and predisposing or immunocompromising conditions.\(^5,\ 6\) One important concept of the chain of transmission is that if any single link in the chain is broken, transmission can be prevented. Interventions within IPC are aimed at multiple links in the chain, providing redundancy, which increases the likelihood of interrupting transmission.

Individuals infected with SARS-CoV-2 can transmit infection while asymptomatic, presymptomatic, and symptomatic. The highest risk of transmission occurs early in infection, prior to symptom development and within the first 5 days of symptoms, when viral load is highest.\(^7\) The majority of transmission is thought to occur through either deposition of droplet particles on mucous membrane surfaces or inhalation of particles, both in close proximity to the source. Fomite transmission is possible though not thought to represent a major transmission risk.\(^8\) Despite the ability to culture SARS-CoV-2 from surfaces, the viral particles are easily inactivated by heat or various disinfectants.\(^9\) Proximity of both space and time is a key factor in transmission risk.\(^9,\ 10\) This risk has been demonstrated in studies assessing secondary attack rates, with households reported to have the highest risk, ranging from 17% - 53%.\(^11-13\)
Prevention of Transmission in Healthcare Settings: Implementation of the Hierarchy of Controls

Prevention of transmission in healthcare settings is focused on breaking links in the chain of transmission, using a layered mitigation approach, often described as the Hierarchy of Controls. This framework was developed by the National Institute of Occupational Safety and Health (NIOSH) to describe interventions to improve workplace safety by reducing workplace hazard risk.14, 15 This framework has been applied to a variety of workplace settings, including healthcare, during the pandemic to prevent risk of exposure to SARS-CoV-2 (i.e., the “hazard”), to healthcare providers (HCP), patients, and visitors. The framework includes elimination, substitution, engineering controls, administrative controls, and use of personal protective equipment (PPE), in descending order (Figure 2).14 Generally, interventions at the top of the pyramid are thought to be most effective, and implementation of each level of the pyramid leads to progressively safer environments.

Elimination
During the COVID-19 pandemic, several elimination strategies have been implemented to reduce risk of transmission including visitor restrictions and use of telemedicine and telework.16, 17 At peak periods of the pandemic, nonessential and elective procedures were canceled, and routine visits postponed, reducing density in the workplace and clinical areas and also helping manage the volume of patients related to the surge of COVID-related illness. With the first Emergency Use Authorization (EUA) of COVID-19 vaccines in December 2020, vaccination was added as an elimination strategy. Many employers, including healthcare facilities, have made employee vaccination for COVID-19 a condition of employment, an approach that has been supported by multiple professional societies and organizations.18-20 As variants of SARS-CoV-2 evolve, the need for booster vaccinations is likely to be reevaluated and the definition of full vaccination may change.

Some elimination strategies, notably visitor restrictions, have been associated with negative impacts on patient, HCP, and family well-being in terms of social isolation, reduced quality of life, emotional distress, and difficulty with end-of-life care, and have been reconsidered since the initial phase of the pandemic.21, 22 Prior to the COVID-19 pandemic, studies showed that allowance of visitors did not increase risk of infection but did reduce frequency of delirium and anxiety-related symptoms in patients and family satisfaction.23 The postponement of routine or emergency medical care has led to delayed diagnoses of malignancies and avoidable and ongoing excess morbidity and mortality.24-26 Although telemedicine can improve access to medical services, it has been found to be less accessible to patients with certain social determinant factors such as lower income, lower education level, and public insurance.27, 28

Substitution
An example of substitution or replacement of a hazard was a change of nebulizers to metered inhalers, which do not aerosolize secretions and therefore reduce the risk of
SARS-CoV-2 transmission. Replacing work surfaces with materials that are easier to clean and disinfect is also performed.

Engineering Controls

A variety of engineering controls have been recommended to decrease the risk of SARS-CoV-2 transmission in healthcare settings. Placement of patients with suspected or confirmed COVID-19, or confirmed exposure during the quarantine period, should be in a standard patient room with the door closed; this room should have a private bathroom. Airborne infection isolation rooms (AIIRs, “negative pressure”) are reserved for patients in whom aerosol-generating procedures (AGPs) are anticipated or planned. Patients with confirmed COVID-19 can be cohorted together. Appropriate ventilation, filtration, and pressurization of patient care spaces as required by the Facilities Guidelines Institute and public health authorities are essential to prevent infection, reduce contamination, and decrease the number of infectious particles through a combination of air exchanges, occupancy, and cycling time between patient use. Eating spaces that allow increased distance between persons were also designed to decrease transmission between employees in the setting of facemask removal.

Administrative Controls

Administrative controls that require changes in workflows constitute a major component of the Hierarchy of Controls. These controls can be some of the most challenging to implement because of their impact on healthcare operations. Symptom and exposure screening of all HCP, patients, and visitors is recommended. In one study, a sensitivity of 83% was found if at least two of fever, cough, anosmia, dyspnea, oxygen saturation < 93%, or headache were reported among patients presenting to the emergency department between April and July of 2020. Temperature checks are not a reliable screening tool as only 19.4% of patients with active COVID-19 infection by polymerase chain reaction (PCR)-based testing platform had a fever ≥ 38°C. Other workflow modifications include bundling of clinical tasks to reduce room entry and exit in caring for patients exposed to or with suspected or confirmed COVID-19, enhanced training for clinicians in correct donning and doffing of PPE, and supporting physical distancing when source control (i.e., facemasks) are removed during break and mealtimes by scheduling staff in a staggered fashion. An observational study found that restructuring computer workstations, workrooms, breakrooms, use of clear cognitive aids, adjusting shift times, and utilizing virtual conferencing are successful in encouraging physical distancing in healthcare facilities.

Symptom and exposure screening will fail to identify all infected patients and thus in addition to testing of all symptomatic and exposed patients for COVID-19, asymptomatic testing has been employed in specific situations to further reduce the risk of transmission in healthcare facilities from an occultly infected patient. For patients admitted to facilities or undergoing AGPs, pre-admission and pre-procedural testing to identify asymptomatic infected individuals has been implemented. Some institutions have instituted surveillance testing at intervals to identify individuals who test negative at admission but may be in the incubation period. In healthcare facilities with
congregate living arrangements as well as behavioral health treatment facilities where physical distancing and compliance with source control may be suboptimal, more frequent asymptomatic screening may be employed particularly in the setting of high community prevalence. The conversion rate from negative to positive with serial testing of inpatients was 1-1.9% in two studies. Specific screening strategies are expected to change over time, based on a combination of factors, including community prevalence and vaccination within the specific community and patient population.

High rates of presenteeism (HCP working while sick) have been documented with symptom monitoring and remains a challenge. Early reports during the COVID-19 pandemic found that 64.6% of infected HCP came to work after developing symptoms. Use of a passive symptom screening tool found that 82% of those who screened positive had not been planning to stay home from work.

HCP should similarly be evaluated if they develop symptoms consistent with COVID-19 or have a confirmed exposure. The role of routine testing of asymptomatic HCP has not been demonstrated to be necessary to support IPC when strategies are in place to limit risk of transmission. Several studies have demonstrated the prevalence of asymptomatic infection in HCP to be less than 1% in 2020. Mass testing of asymptomatic HCP in one facility found 15 asymptomatic HCP who tested positive out of 13,703 total tests, with a much lower prevalence of positive results compared to the community. Current CDC guidance states that testing with either a PCR- or antigen-based test should be performed in the setting of symptoms, and can be considered in asymptomatic HCP if community risk and transmission levels are high. As with testing strategies for patients, strategies applied to HCP are expected to change over time, based on the same factors of community prevalence and vaccination among HCP and the community.

Personal Protective Equipment

The final component of the Hierarchy of Controls is the use of PPE. While correct and consistent use of PPE is a cornerstone of HCP and patient safety, it appears at the bottom of the pyramid as it is susceptible to human error and requires compliance. In the setting of the COVID-19 pandemic, universal source control (i.e., use of a facemask for HCP, patients, and visitors) has been implemented and associated with reduced risk of transmission. Additionally, use of eye protection (i.e., face shields or goggles) is recommended for use by HCP in all clinical encounters during periods of substantial to high community transmission as a barrier to prevent direct mucous membrane inoculation and contamination of the eyes by hands. Patients with suspected or confirmed COVID-19, or confirmed exposures to COVID-19 in the quarantine period, are managed in healthcare settings using Standard and Transmission-based precautions. For these patients, the recommended PPE by the Centers for Disease Control (CDC) includes a NIOSH-approved fit-tested N95 filtering facepiece respirator or higher, eye protection (face shield or goggles), gown, and gloves. Personal glasses are not considered to be sufficient protective eyewear. Both the CDC and World Health Organization (WHO) state that in the setting of N95 respirator shortages, facemasks can be used for patient care outside of AGPs.
The CDC definition of AGP includes suctioning of airways, sputum induction, cardiopulmonary resuscitation, endotracheal intubation and extubation, non-invasive ventilation, bronchoscopy, manual ventilation, nebulizer administration, high-flow oxygen delivery, or procedures involving areas of higher viral load such as nose and throat, oropharynx, or respiratory tract.32, 56 WHO definition of AGP includes tracheal intubation, non-invasive ventilation, tracheostomy, cardiopulmonary resuscitation, manual ventilation, bronchoscopy, sputum induction using nebulized hypertonic saline, dentistry, and autopsy procedures.57, 58 The definition of an AGP has evolved during the pandemic, and analysis has found that the patient characteristics such as severe illness with high viral load and significant symptoms, sustained exposure by HCP to the patient, and procedures with close proximity to the respiratory tract are more significant factors leading to transmission events.59

Practice in use of facemasks or N95 respirators for care of patients with suspected or confirmed COVID-19 or confirmed exposures outside of AGPs has varied; in one survey of Veteran’s Administration facilities, 63% utilized N95 respirators in all patients with suspected or confirmed COVID-19.60 A meta-analysis of randomized trials did not find a statistical difference in the risk of acquiring a respiratory infection when wearing a surgical mask or a N95 respirator.61

Early in the COVID-19 pandemic, due to disruption in the supply chain of PPE, crisis and contingency standards of care were implemented under guidance from public health authorities.62, 63 Reuse of PPE, defined as donning for a patient contact then doffing and storing for use with another patient, and extended use, defined as wearing PPE for a prolonged period, including multiple patient contacts before removing and discarding, were employed for items that under conventional standards are single-use.62 The implementation of extended use and reuse raises challenges related to the potential for cross- and self-contamination as well as concerns for decrements in filtration efficiency and fit over multiple uses of N95 respirators.64, 65 Supplies have improved over the course of the pandemic, and many healthcare settings have returned to conventional standards in the use of PPE.66 The impact of extended use and reuse on effectiveness of PPE has been assessed without failure over up to 12 reuses67 but concerns have been raised regarding failure with higher numbers of reuse.67-69 There is also concern regarding contamination of PPE over multiple uses even in the setting of proper handling technique.65 Simulation training to increase the understanding of IC practices in the setting of donning or doffing PPE, resuscitation, airway management, and transportation was performed in some hospitals.70-72 Some facilities have provided just-in-time education with observed donning and doffing to improve HCP practice.70

\textit{Evaluation and Management of HCP Infections and Exposures}

Infections in HCP risk spread to other HCP, patients, and visitors. Contact tracing of HCP with infections is important to determine, when possible, the likely source of infection, if breaches in correct practices may have contributed, and to identify potentially exposed HCP, patients, and others. Studies have shown that the majority of
HCP infections are attributable to community exposures and not related to occupational exposure, particularly in the setting of appropriate IPC procedures.73

Duration of isolation for infected HCP and duration of quarantine for exposed HCP continue to evolve. HCP who are moderately to severely immunocompromised or with severe illness may require either longer duration of isolation when infected or a test-based approach to clearance with consultation with both local infectious disease and occupational health experts.

Exposure definitions in healthcare differ in important ways with respect to mitigating risk of exposure through use of PPE. In healthcare settings, exposures that qualify based on duration (cumulative 15 minutes of direct contact) and proximity (within 6 feet), can be mitigated by use of PPE.74 In the setting of an AGP, if proper PPE is not worn, then an exposure is considered to have occurred regardless of the duration of interaction. The CDC framework for managing HCP exposures is detailed including vaccination status, post-exposure testing, level of staffing, and restrictions from work. Lack of eye protection has been associated with COVID-19 infection following occupational exposure.52, 75, 76 Despite implementation of multiple infection prevention interventions, transmission in healthcare settings has been observed, although it is low in the setting of adherence to IPC methods.77

HCP are expected to report community exposures to their occupational health departments to determine the testing protocol and work restriction and frequently household exposures are managed in a similar manner as high-risk occupational exposures.74

\textit{Transmission in healthcare settings and lessons learned}

The potential routes of transmission in healthcare settings include patient-to-HCP, patient-to-patient, HCP-to-HCP, HCP-to-patient, visitor-to-patient, and visitor-to-HCP. Examples of each are discussed below and described in Table 1. For the most part, the published exposure and transmission events described occurred prior to widespread vaccination of HCP and the general public. Transmission has, however, been noted in healthcare settings in the post-vaccination period. Common themes from nosocomial transmission events include HCP presenteeism, lack of compliance with IPC measures including appropriate use of PPE, and unrecognized asymptomatic, presymptomatic, or symptomatic infection in patients who subsequently undergo high-risk activities such as AGPs.

Despite symptom screening of patients and the use of testing to identify asymptomatic infection, patients who are incubating infection on admission and are missed by such strategies, or patients who acquire infection from another source (roommate, HCP, visitor) during the course of an admission while not isolated, can result in exposures to HCP and other patients.75, 78-81 In one outbreak in an acute care hospital tracing by epidemiology and genomic sequencing found late-onset infection following admission of the index patient who spread COVID-19 to both other patients and to HCP.75 The initial
exposure event was attributed to a symptomatic patient who tested negative for SARS-CoV-2 on two serial nasopharyngeal swabs upon admission with subsequent AGPs performed. At the time of the cluster, universal source control with facemasks was in place for all HCP and eye protection for all interactions with patients. In response to this cluster, implementation of serial admission screening as well as repeat screening prior to AGPs were implemented. Studies show an attack rate of 0 - 4.7% for hospital-exposures versus 15.2% for community exposures, supporting the efficacy of layered infection control approaches to reduce risk of transmission, including universal source control.82-84

Patient-to-patient transmission in the setting of roommates in semi-private accommodations in healthcare facilities has been directly studied.85, 86 In one report over 7 months at an acute care hospital, there were 31 exposed patient roommates, 39\% of whom ultimately tested positive for SARS-CoV-2.85 The beds were 5 feet apart side-by-side and 7 feet apart mid-pillow to mid-pillow with a closed curtain between them. Exposed patients who subsequently became infected were more likely to have roommates with cycle thresholds ≤ 21 by PCR based testing. A separate study found a secondary attack rate for hospitalized roommates of 18.9\% overall and 35.7\% in the setting of AGPs.86 The attack rate in these scenarios mirrors that observed in household settings.11-13, 87 Infections among patients have also been observed in inpatient psychiatric units where it is difficult to promote mask wearing, distancing, and hand hygiene, and group activities are instrumental to treatment.80 Strategies to reduce the risk of patient-to-patient transmission includes serial testing at regular intervals during hospitalization and rapid isolation with positive testing or development of symptoms.

Multiple descriptions of transmission events between HCP resulting in clusters of infections have been reported in the literature. Often the initial source is attributed to community acquisition with subsequent occupational spread in breakrooms or other settings where masks are removed and distance not maintained. Presenteeism has featured in several published accounts.43, 44, 88, 89 Since the widespread adoption of vaccination against SARS-CoV-2, in areas with minimal community transmission, current CDC guidance permits fully vaccinated HCP to be non-masked and non-distanced for dining or socializing in areas restricted from patient access.32 However, as evidence of post-vaccination infection increases, guidelines regarding this are also evolving.90, 91

Exposures from infected HCP to patients resulting in transmission appear to be uncommon, especially in the era of universal masking in healthcare facilities. A study evaluating transmission from infected HCP to patients found two transmission events, one where neither the HCP nor patient was wearing a mask and one where the patient was not wearing a mask but also had a household exposure.92

Visitors to healthcare facilities are screened for symptoms and exposure and are required to wear facemasks. Transmission from infected visitors is not thought to be common, though can occur, usually in the setting of lack of masking between visitors
and the patients they are visiting. One transmission event from a presymptomatic infected spouse visiting daily to a patient infected on hospital day 15 was reported.42

In most nosocomial clusters, there may be multiple events arising from a single index source, prior to recognition of the transmission events and implementation of additional control measures as appropriate.

Summary

IPC approaches to prevention of SARS-CoV-2 transmission in healthcare settings is grounded in understanding the chain of transmission and implementation of the hierarchy of controls. As community prevalence of SARS-CoV-2 waxes and wanes, duration and protection from vaccines continues to be assessed, and effective and accessible therapies and prophylaxis options emerge, the relative importance of various components of mitigation strategies will change. This will mean that public health recommendations and healthcare facilities strategies will continue to evolve.

Acknowledgements: We thank Noah Feder for assistance with figure preparation.

Clinical Care Points:

1. Transmission of infectious agents in healthcare settings can be interrupted through application of the Hierarchy of Controls

2. The Hierarchy of Controls involves elimination, substitution, engineering controls, administrative controls, and use of personal protective equipment; implementation of multiple strategies reduces the risk of transmission

3. Observed transmission events in healthcare settings often involve multiple lapses in control measures, including healthcare personnel presenteeism, lack of compliance with infection prevention and control measures, and unrecognized infections in patients
TABLES

Table 1. Documented healthcare facility SARS-CoV-2 outbreaks, actions attributed to the spread of infection, and facility response to contain infections.

Outbreak setting	Number of infected people	Attributable actions	Response to infection	Citation
Long-term care facilities, skilled nursing facilities, or nursing homes				
Skilled nursing facility	16 HCP, 5 residents	Presenteeism	Closure to new admissions, limited ancillary services, contact tracing, symptom screening, serial respiratory surveys, whole genome sequencing to characterize spread, isolate staff with close contact with confirmed cases, restrict movement between units, uniform masking, use of recommended PPE (isolation gown, N95 respirator, gloves, and eye protection with face shield or reusable goggles) for interactions in units with cases, training for donning and doffing, hand hygiene, and cleaning	93
Ambulatory setting (including emergency department)				
Location	Description	Events	Report Number	
--------------------------	---	--	---------------	
Emergency Department	2 clusters, one with 3 HCP, one with 2 HCP	Close interactions among coworkers without source control	88	
		Reinforced uniform masking, increased space between computer workstations, encouraged social distancing and avoiding shared meals		
Inpatient				
Inpatient stroke ward	14 HCP and 10 patients	Patients moving through ward unmasked, close contact required between patients and staff, decreased compliance with hand hygiene	94	
		Increased PPE, quarantined exposed patients, decreased break room capacity, increased random PPE and cleaning assessments, HCP offered testing		
Academic cancer center	3 clusters, first with 8 HCP, second with 4 HCP, third with 2 HCP	Presenteeism	89	
		Reinforcement of symptom reporting, enhanced cleaning, reinforcement and monitoring of masking, break room closed and gathering prohibited, isolation of all positive HCP, testing of all asymptomatic employees in same area		
Inpatient medical ward	3 HCP	Undiagnosed patient receiving AGPs without appropriate precautions	79	
		Early testing and isolation of patients with		
Setting	HCP and Patients	Description	Outcome	Score
--------------------------	------------------	--	--	-------
Inpatient psychiatry unit	5 HCP and 5 patients	Community-exposed patient with minimal symptoms admitted to double room, slow uptake of PPE by staff, patient behaviors limited appropriate PPE use, physical distancing difficult given need for group sessions and meals, limited testing capacity early in pandemic	Closed to new admissions, universal PPE, observed hand hygiene prior to meals and group therapy, restricted visitors, staff and patient symptom screening, limited number of patients in shared spaces by staggered group mealtimes, increased cleaning frequency	80
OR staff	24 HCP	Presenteeism, using communal spaces including break rooms without appropriate IC practices, other nonoccupational high-risk exposure	Increased cleaning, rapid screening of asymptomatic HCP, reeducation regarding masking, limiting capacity in communal areas, quarantine if symptomatic	95
Integrated healthcare system	14 (not separated between)	Presenteeism, transport of infection patients between facilities, no universal	Implemented universal source control,	81
Setting	Number	Description		
-----------------------------	----------------	---		
Acute care hospital	38 HCP, 14 patients	Symptomatic patient with false-negative serial testing receiving AGPs, shared rooms, infectious patients moved several times, positive pressure in index patient room, lack of eye protection among staff, interaction among unmasked staff in nonclinical areas		
HCP and patients (including patients)	masking or use of PPE, no available in-house testing, patients not under isolation while testing pending, shared rooms, variable symptom screening	symptom screening at facility entrance, empiric precautions until test results if patients screen positive for symptoms, restricted visitors, altered testing algorithm, testing all new admissions	Mobilized incident command for cluster response, increased testing capacity, serial testing of all patients and exposed staff, preemptive enhanced respiratory isolation for all patients on involved units, positive patients moved to dedicated unit, enhanced cleaning of affected units, occupational health interviews of all positive staff, air changes and airflow patterns assessed	
Acronyms: HCP, healthcare provider; ERI, enhanced respiratory isolation; PPE, personal protective equipment; AGP, aerosol-generating procedure; OR, operating room; powered air-purifying respirator, PAPR

FIGURE LEGENDS

Figure 1. Chain of Transmission: An infectious agent originates from a reservoir where it leaves by a portal of exit, then through a mode of transmission uses a portal of entry in a susceptible host to start a new cycle of infection.

Figure 2. Hierarchy of controls ranging from most effective (elimination) to least effective (PPE). Personal protective equipment (PPE), airborne infection isolation room (AIIR), aerosol-generating procedure (AGP), healthcare provider (HCP). (Adapted from Centers for Disease Control and National Institute for Occupational Safety, The National Institute for Occupational Safety and Health (NIOSH): Hierarchy of Controls. Accessed 9/8/2021, https://www.cdc.gov/niosh/topics/hierarchy/default.html)
REFERENCES

1. V’Kovski P, Kratzel A, Steiner S, Stalder H, Thiel V. Coronavirus biology and replication: implications for SARS-CoV-2. *Nat Rev Microbiol*. Mar 2021;19(3):155-170. doi:10.1038/s41579-020-00468-6
2. Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. *Nat Rev Microbiol*. Mar 2019;17(3):181-192. doi:10.1038/s41579-018-0118-9
3. Hu B, Guo H, Zhou P, Shi ZL. Characteristics of SARS-CoV-2 and COVID-19. *Nat Rev Microbiol*. Mar 2021;19(3):141-154. doi:10.1038/s41579-020-00459-7
4. Dicker RC, Coronado, F., Koo, D., and Parrish, R.G. Principles of Epidemiology in Public Health Practice, Third Edition. An Introduction to Applied Epidemiology and Biostatistics, Lesson 1: Introduction to Epidemiology. Section 10: Chain of Infection. Accessed 10/25/2021, https://www.cdc.gov/csels/dsepd/ss1978/lesson1/section10.html
5. Fricke-Galindo I, Falfan-Valencia R. Genetics Insight for COVID-19 Susceptibility and Severity: A Review. *Front Immunol*. 2021;12:622176. doi:10.3389/fimmu.2021.622176
6. Liu X, Zhou H, Zhou Y, et al. Risk factors associated with disease severity and length of hospital stay in COVID-19 patients. *J Infect*. Jul 2020;81(1):e95-e97. doi:10.1016/j.jinf.2020.04.008
7. Delta Variant: What We Know About the Science. Accessed 9/6/2021, https://www.cdc.gov/coronavirus/2019-ncov/variants/delta-variant.html
8. Science Brief: SARS-CoV-2 and Surface (Fomite) Transmission for Indoor Community Environments. Accessed 10/18/2021, https://www.cdc.gov/coronavirus/2019-ncov/more/science-and-research/surface-transmission.html
9. Meyerowitz EA, Richterman A, Gandhi RT, Sax PE. Transmission of SARS-CoV-2: A Review of Viral, Host, and Environmental Factors. *Ann Intern Med*. Jan 2021;174(1):69-79. doi:10.7326/M20-5008
10. Transmission of SARS-CoV-2: implications for infection prevention precautions. Accessed 9/6/2021, https://www.who.int/news-room/commentaries/detail/transmission-of-sars-cov-2-implications-for-infection-prevention-precautions
11. Martinez DA, Klein EY, Parent C, et al. Latino Household Transmission of SARS-CoV-2. *Clin Infect Dis*. Aug 31 2021;doi:10.1093/cid/ciab753
12. Musa S, Kissling E, Valenciano M, et al. Household transmission of SARS-CoV-2: a prospective observational study in Bosnia and Herzegovina, August - December 2020. *Int J Infect Dis*. Sep 29 2021;doi:10.1016/j.ijid.2021.09.063
13. Grijalva CG, Rolffes MA, Zhu Y, et al. Transmission of SARS-CoV-2 Infections in Households - Tennessee and Wisconsin, April-September 2020. *MMWR Morb Mortal Wkly Rep*. Nov 6 2020;69(44):1631-1634. doi:10.15585/mmwr.mm6944e1
14. The National Institute for Occupational Safety and Health (NIOSH): Hierarchy of Controls. Accessed 9/8/2021, https://www.cdc.gov/niosh/topics/hierarchy/default.html
15. Kraus A, Awoniyi O, AlMalki Y, et al. Practical Solutions for Healthcare Worker Protection During the COVID-19 Pandemic Response in the Ambulatory, Emergency, and Inpatient Settings. *J Occup Environ Med*. Nov 2020;62(11):e616-e624. doi:10.1097/JOM.0000000000002008
16. Using Telehealth to Expand Access to Essential Health Services during the COVID-19 Pandemic. Accessed 9/17/2021, https://www.cdc.gov/coronavirus/2019-ncov/hcp/telehealth.html
17. Bashshur R, Doarn CR, Frenk JM, Kvedar JC, Woolliscroft JO. Telemedicine and the COVID-19 Pandemic, Lessons for the Future. *Telemed J E Health*. May 2020;26(5):571-573. doi:10.1089/tmj.2020.29040.rh
18. Weber DJ, Al-Tawfiq JA, Babcock HM, et al. Multisociety statement on coronavirus disease 2019 (COVID-19) vaccination as a condition of employment for healthcare personnel. *Infect Control Hosp Epidemiol*. Jul 13 2021:1-9. doi:10.1017/ice.2021.322
19. Joint Statement in Support of COVID-19 Vaccine Mandates for All Workers in Health and Long-Term Care. Accessed 10/16/2021, https://www.acponline.org/acp_policy/statements/joint_statement_covid_vaccine_mandate_2021.pdf
20. AHA Policy Statement on Mandatory COVID-19 Vaccination of Health Care Personnel. Accessed 10/16/2021, https://www.aha.org/public-comments/2021-07-21-aha-policy-statement-mandatory-covid-19-vaccination-health-care
21. Wendlandt B, Kime M, Carson S. The impact of family visitor restrictions on healthcare workers in the ICU during the COVID-19 pandemic. *Intensive Crit Care Nurs*. Jul 28 2021:103123. doi:10.1016/j.iccn.2021.103123
22. Hindmarch W, McGhan G, Flemons K, McCaughey D. COVID-19 and Long-Term Care: the Essential Role of Family Caregivers. *Can Geriatr J*. Sep 2021;24(3):195-199. doi:10.5770/cgj.24.508
23. Nassar Junior AP, Besen B, Robinson CC, Falavigna M, Teixeira C, Rosa RG. Flexible Versus Restrictive Visiting Policies in ICUs: A Systematic Review and Meta-Analysis. *Crit Care Med*. Jul 2018;46(7):1175-1180. doi:10.1097/CCM.0000000000003155
24. Excess Deaths Associated with COVID-19. Accessed 9/17/2021, https://www.cdc.gov/nchs/nvss/vsrr/covid19/excess_deaths.htm
25. Czeisler ME, Marynuk K, Clarke KEN, et al. Delay or Avoidance of Medical Care Because of COVID-19-Related Concerns - United States, June 2020. *MMWR Morb Mortal Wkly Rep*. Sep 11 2020;69(36):1250-1257. doi:10.15585/mmwr.mm6936a4
26. Woolf SH, Chapman DA, Sabo RT, Zimmerman EB. Excess Deaths From COVID-19 and Other Causes in the US, March 1, 2020, to January 2, 2021. *JAMA*. Apr 2 2021;doi:10.1001/jama.2021.5199
27. Luo J, Tong L, Crotty BH, et al. Telemedicine Adoption during the COVID-19 Pandemic: Gaps and Inequalities. *Appl Clin Inform*. Aug 2021;12(4):836-844. doi:10.1055/s-0041-1733848
28. Sun R, Blayney DW, Hernandez-Boussard T. Health management via telemedicine: Learning from the COVID-19 experience. *J Am Med Inform Assoc*. Aug 30 2020;doi:10.1093/jamia/ocab145
29. Amirav I, Newhouse MT. COVID-19: Time to embrace MDI+ valved-holding chambers! *J Allergy Clin Immunol*. Aug 2020;146(2):331. doi:10.1016/j.jaci.2020.04.046
30. Sethi S, Barjaktarevic IZ, Tashkin DP. The use of nebulized pharmacotherapies during the COVID-19 pandemic. *Ther Adv Respir Dis*. Jan-Dec 2020;14:1753466620954366. doi:10.1177/1753466620954366
31. Background E. Environmental Services. Accessed 10/29/2021, https://www.cdc.gov/infectioncontrol/guidelines/environmental/background/services.html
32. Interim Infection Prevention and Control Recommendations for Healthcare Personnel During the Coronavirus Disease 2019 (COVID-19) Pandemic. Accessed 10/19/2021, https://www.cdc.gov/coronavirus/2019-ncov/hcp/infection-control-recommendations.html
33. Heating, Ventilation, and Air Conditioning Systems in Health-Care Facilities. Accessed 10/16/2021, https://www.cdc.gov/infectioncontrol/guidelines/environmental/background/air.html#c3
34. Filtration/Disinfection. Accessed 10/16/2021, https://www.ashrae.org/technical-resources/filtration-disinfection#mechanical
35. Keller SC, Pau S, Salinas AB, et al. Barriers to physical distancing among healthcare workers on an academic hospital unit during the coronavirus disease 2019 (COVID-19) pandemic. Infect Control Hosp Epidemiol. Apr 7 2021:1-7. doi:10.1017/ice.2021.154
36. Romero-Gameros CA, Colin-Martinez T, Waizel-Haiat S, et al. Diagnostic accuracy of symptoms as a diagnostic tool for SARS-CoV 2 infection: a cross-sectional study in a cohort of 2,173 patients. BMC Infect Dis. Mar 11 2021;21(1):255. doi:10.1186/s12879-021-05930-1
37. Vilke GM, Brennan JJ, Cronin AO, Castillo EM. Clinical Features of Patients with COVID-19: is Temperature Screening Useful? J Emerg Med. Dec 2020;59(6):952-956. doi:10.1016/j.jemermed.2020.09.048
38. Amer HA, Alowidah IA, Bugtai C, Soule BM, Memish ZA. Challenges to Infection Control Team during COVID-19 Pandemic in a Quaternary Medical Center in Saudi Arabia. Infect Control Hosp Epidemiol. Feb 19 2021:1-20. doi:10.1017/ice.2021.72
39. Zhang H, Dimitrov D, Simpson L, et al. A Web-Based, Mobile-Responsive Application to Screen Health Care Workers for COVID-19 Symptoms: Rapid Design, Deployment, and Usage. JMIR Form Res. Oct 8 2020;4(10):e19533. doi:10.2196/19533
40. Overview of Testing for SARS-CoV-2 (COVID-19). Accessed 10/19/2021, https://www.cdc.gov/coronavirus/2019-ncov/hcp/testing-overview.html
41. Kobayashi T, Trannel A, Holley SA, et al. COVID-19 Serial Testing among Hospitalized Patients in a Midwest Tertiary Medical Center, July-September 2020. Clin Infect Dis. Oct 26 2020;doi:10.1093/cid/ciaa1630
42. Rhee C, Baker M, Vaidya V, et al. Incidence of Nosocomial COVID-19 in Patients Hospitalized at a Large US Academic Medical Center. JAMA Netw Open. Sep 1 2020;3(9):e2020498. doi:10.1001/jamanetworkopen.2020.20498
43. Lichtman A, Greenblatt E, Malenfant J, Kuo A. Universal symptom monitoring to address presenteeism in healthcare workers. Am J Infect Control. Aug 2021;49(8):1021-1023. doi:10.1016/j.ajic.2021.02.009
44. Chow EJ, Schwartz NG, Tobolowsky FA, et al. Symptom Screening at Illness Onset of Health Care Personnel With SARS-CoV-2 Infection in King County, Washington. JAMA. May 26 2020;323(20):2087-2089. doi:10.1001/jama.2020.6637
45. Chow A, Htun HL, Kyaw WM, Lee LT, Ang B. Asymptomatic health-care worker screening during the COVID-19 pandemic. Lancet. Oct 31 2020;396(10260):1393-1394. doi:10.1016/S0140-6736(20)32208-X
46. Roberts SC, Peaper DR, Thorne CD, et al. Mass severe acute respiratory coronavirus 2 (SARS-CoV-2) testing of asymptomatic healthcare personnel. *Infect Control Hosp Epidemiol*. May 2021;42(5):625-626. doi:10.1017/ice.2021.9

47. Klompas M, Morris CA, Sinclair J, Pearson M, Shenoy ES. Universal Masking in Hospitals in the Covid-19 Era. *N Engl J Med*. May 21 2020;382(21):e63. doi:10.1056/NEJMp2006372

48. Leung NHL, Chu DKW, Shiu EYC, et al. Respiratory virus shedding in exhaled breath and efficacy of face masks. *Nat Med*. May 2020;26(5):676-680. doi:10.1038/s41591-020-0843-2

49. Walker J, Fleece ME, Griffin RL, et al. Decreasing High Risk Exposures for Healthcare workers through Universal Masking and Universal SARS-CoV-2 Testing upon entry to a Tertiary Care Facility. *Clin Infect Dis*. Sep 8 2020;doi:10.1093/cid/ciaa1358

50. Wang X, Ferro EG, Zhou G, Hashimoto D, Bhatt DL. Association Between Universal Masking in a Health Care System and SARS-CoV-2 Positivity Among Healthcare Workers. *JAMA*. Aug 18 2020;324(7):703-704. doi:10.1001/jama.2020.12897

51. Seidelman JL, Lewis SS, Advani SD, et al. Universal masking is an effective strategy to flatten the severe acute respiratory coronavirus virus 2 (SARS-CoV-2) healthcare worker epidemiologic curve. *Infect Control Hosp Epidemiol*. Dec 2020;41(12):1466-1467. doi:10.1017/ice.2020.313

52. Chu DK, Akl EA, Duda S, et al. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis. *Lancet*. Jun 27 2020;395(10242):1973-1987. doi:10.1016/S0140-6736(20)31142-9

53. Core Infection Prevention and Control Practices for Safe Healthcare Delivery in All Settings – Recommendations of the HICPAC. Accessed 9/17/2021, https://www.cdc.gov/hicpac/recommendations/core-practices.html

54. The National Institute for Occupational Safety and Health (NIOSH): Eye Safety. Accessed 10/10/2021, https://www.cdc.gov/niosh/topics/eye/eye-infectious.html

55. Mask use in the context of COVID-19. Accessed 10/14/2021, https://apps.who.int/iris/bitstream/handle/10665/337199/WHO-2019-nCov-IPC_Masks-2020.5-eng.pdf?sequence=1&isAllowed=y

56. Tran K, Cimon K, Severn M, Pessoa-Silva CL, Conly J. Aerosol generating procedures and risk of transmission of acute respiratory infections to healthcare workers: a systematic review. *PLoS One*. 2012;7(4):e35797. doi:10.1371/journal.pone.0035797

57. Mask use in the context of COVID-19. Accessed 10/22/2021, https://www.who.int/publications/i/item/advice-on-the-use-of-masks-in-the-community-during-home-care-and-in-healthcare-settings-in-the-context-of-the-novel-coronavirus-(2019-ncov)-outbreak

58. Mask use in the context of COVID-19. Accessed 10/29/2021, https://www.who.int/publications/i/item/advice-on-the-use-of-masks-in-the-community-during-home-care-and-in-healthcare-settings-in-the-context-of-the-novel-coronavirus-(2019-ncov)-outbreak

59. Klompas M, Baker M, Rhee C. What Is an Aerosol-Generating Procedure? *JAMA Surg*. Feb 1 2021;156(2):113-114. doi:10.1001/jamasurg.2020.6643
60. McCormick WL, Koster MP, Sood GN, Mermel LA. Level of respiratory protection for healthcare workers caring for coronavirus disease 2019 (COVID-19) patients: A survey of hospital epidemiologists. *Infect Control Hosp Epidemiol.* Feb 19 2021:1-2. doi:10.1017/ice.2021.74

61. Barycka K, Szarpak L, Filipiak KJ, et al. Comparative effectiveness of N95 respirators and surgical/face masks in preventing airborne infections in the era of SARS-CoV2 pandemic: A meta-analysis of randomized trials. *PLoS One.* 2020;15(12):e0242901. doi:10.1371/journal.pone.0242901

62. Implementing Filtering Facepiece Respirator (FFR) Reuse, Including Reuse after Decontamination, When There Are Known Shortages of N95 Respirators. Accessed 9/17/2021, https://www.cdc.gov/coronavirus/2019-ncov/hcp/ppe-strategy/decontamination-reuse-respirators.html

63. Fisher EM, Shaffer RE. Considerations for recommending extended use and limited reuse of filtering facepiece respirators in health care settings. *J Occup Environ Hyg.* 2014;11(8):D115-28. doi:10.1080/15459624.2014.902954

64. Peters A, Palomo R, Ney H, et al. The COVID-19 pandemic and N95 masks: reusability and decontamination methods. *Antimicrob Resist Infect Control.* May 29 2021;10(1):83. doi:10.1186/s13756-021-00921-y

65. Li DF, Alhmidi H, Scott JG, et al. A simulation study to evaluate contamination during reuse of N95 respirators and effectiveness of interventions to reduce contamination. *Infect Control Hosp Epidemiol.* May 10 2021:1-6. doi:10.1017/ice.2021.218

66. FDA Recommends Transition from Use of Decontaminated Disposable Respirators - Letter to Health Care Personnel and Facilities. Accessed 9/17/2021, https://www.fda.gov/medical-devices/letters-health-care-providers/fda-recommends-transition-use-decontaminated-disposable-respirators-letter-health-care-personnel-and

67. Fabre V, Cosgrove SE, Hsu YJ, et al. N95 filtering face piece respirators remain effective after extensive reuse during the coronavirus disease 2019 (COVID-19) pandemic. *Infect Control Hosp Epidemiol.* Jul 2021;42(7):896-899. doi:10.1017/ice.2021.76

68. Degesys NF, Wang RC, Kwan E, Fahimi J, Noble JA, Raven MC. Correlation Between N95 Extended Use and Reuse and Fit Failure in an Emergency Department. *JAMA.* Jul 7 2020;324(1):94-96. doi:10.1001/jama.2020.9843

69. Bergman MS, Viscusi DJ, Zhuang Z, Palmiero AJ, Powell JB, Shaffer RE. Impact of multiple consecutive donnings on filtering facepiece respirator fit. *Am J Infect Control.* May 2012;40(4):375-80. doi:10.1016/j.ajic.2011.05.003

70. Cheng VC, Wong SC, Tong DW, et al. Multipronged infection control strategy to achieve zero nosocomial coronavirus disease 2019 (COVID-19) cases among Hong Kong healthcare workers in the first 300 days of the pandemic. *Infect Control Hosp Epidemiol.* Mar 19 2021:1-10. doi:10.1017/ice.2021.119

71. COVID-19 Simulation Exercises Packages. Accessed 9/17/2021, https://www.who.int/emergencies/diseases/novel-coronavirus-2019/training

72. Pan D, Rajwani K. Implementation of Simulation Training During the COVID-19 Pandemic: A New York Hospital Experience. *Simul Healthc.* Feb 1 2021;16(1):46-51. doi:10.1097/SIH.0000000000000535
73. Team CC-R. Characteristics of Health Care Personnel with COVID-19 - United States, February 12-April 9, 2020. *MMWR Morb Mortal Wkly Rep*. Apr 17 2020;69(15):477-481. doi:10.15585/mmwr.mm6915e6

74. Interim Guidance for Managing Healthcare Personnel with SARS-CoV-2 Infection or Exposure to SARS-CoV-2. Accessed 1/2/2022, https://www.cdc.gov/coronavirus/2019-ncov/hcp/guidance-risk-assessment-hcp.html

75. Klompas M, Baker MA, Rhee C, et al. A SARS-CoV-2 Cluster in an Acute Care Hospital. *Ann Intern Med*. Jun 2021;174(6):794-802. doi:10.7326/M20-7567

76. Shah VP, Breeher LE, Hainy CM, Swift MD. Evaluation of healthcare personnel exposures to patients with severe acute respiratory coronavirus virus 2 (SARS-CoV-2) associated with personal protective equipment. *Infect Control Hosp Epidemiol*. May 12 2021:1-5. doi:10.1017/ice.2021.219

77. Habermann EB, Tande AJ, Pollock BD, Neville MR, Ting HH, Sampathkumar P. Providing safe care for patients in the coronavirus disease 2019 (COVID-19) era: A case series evaluating risk for hospital-associated COVID-19. *Infect Control Hosp Epidemiol*. Apr 5 2021;1-7. doi:10.1017/ice.2021.38

78. Saidel-Odes L, Nesher L, Nativ R, Borer A. An outbreak of coronavirus disease 2019 (COVID-19) in hematology staff via airborne transmission. *Infect Control Hosp Epidemiol*. Jan 12 2021;1-2. doi:10.1017/ice.2020.1431

79. Heinzerling A, Stuckey MJ, Scheuer T, et al. Transmission of COVID-19 to Health Care Personnel During Exposures to a Hospitalized Patient - Solano County, California, February 2020. *MMWR Morb Mortal Wkly Rep*. Apr 17 2020;69(15):472-476. doi:10.15585/mmwr.mm6915e5

80. McGloin JM, Asokaraj N, Feeser B, et al. Coronavirus disease 2019 (COVID-19) outbreak on an inpatient psychiatry unit: Mitigation and prevention. *Infect Control Hosp Epidemiol*. May 21 2021;1-2. doi:10.1017/ice.2021.233

81. Thompson ER, Williams FS, Giacin PA, et al. Universal masking to control healthcare-associated transmission of severe acute respiratory coronavirus virus 2 (SARS-CoV-2). *Infect Control Hosp Epidemiol*. Mar 29 2021;1-7. doi:10.1017/ice.2021.127

82. Ng K, Poon BH, Kiat Puar TH, et al. COVID-19 and the Risk to Health Care Workers: A Case Report. *Ann Intern Med*. Jun 2 2020;172(11):766-767. doi:10.7326/L20-0175

83. Baker MA, Rhee C, Fiumara K, et al. COVID-19 infections among HCWs exposed to a patient with a delayed diagnosis of COVID-19. *Infect Control Hosp Epidemiol*. Sep 2020;41(9):1075-1076. doi:10.1017/ice.2020.256

84. Howell A, Havens L, Swinford W, Arroliga A. PPE Effectiveness - Yes, the Buck and Virus can Stop Here. *Infect Control Hosp Epidemiol*. Feb 19 2021;1-3. doi:10.1017/ice.2021.75

85. Karan A, Klompas M, Tucker R, et al. The Risk of SARS-CoV-2 Transmission from Patients with Undiagnosed Covid-19 to Roommates in a Large Academic Medical Center. *Clin Infect Dis*. Jun 18 2021;doi:10.1093/cid/ciab564

86. Chow K, Aslam A, McClure T, et al. Risk of Healthcare-Associated Transmission of SARS-CoV-2 in Hospitalized Cancer Patients. *Clin Infect Dis*. Jul 30 2021;doi:10.1093/cid/ciab670
87. Lindstrom JC, Engebretsen S, Kristoffersen AB, et al. Increased transmissibility of the alpha SARS-CoV-2 variant: evidence from contact tracing data in Oslo, January to February 2021. Infect Dis (Lond). Oct 7 2021:1-6. doi:10.1080/23744235.2021.1977382

88. Chan ER, Jones LD, Redmond SN, et al. Use of whole-genome sequencing to investigate a cluster of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in emergency department personnel. Infect Control Hosp Epidemiol. May 4 2021:1-3. doi:10.1017/ice.2021.208

89. Ariza-Heredia EJ, Frenzel E, Cantu S, et al. Surveillance and identification of clusters of healthcare workers with coronavirus disease 2019 (COVID-19): Multidimensional interventions at a comprehensive cancer center. Infect Control Hosp Epidemiol. Jul 2021;42(7):797-802. doi:10.1017/ice.2020.1315

90. Britton A, Jacobs Slifka KM, Edens C, et al. Effectiveness of the Pfizer-BioNTech COVID-19 Vaccine Among Residents of Two Skilled Nursing Facilities Experiencing COVID-19 Outbreaks - Connecticut, December 2020-February 2021. MMWR Morb Mortal Wkly Rep. Mar 19 2021;70(11):396-401. doi:10.15585/mmwr.mm7011e3

91. Teran RA, Walblay KA, Shane EL, et al. Postvaccination SARS-CoV-2 Infections Among Skilled Nursing Facility Residents and Staff Members - Chicago, Illinois, December 2020-March 2021. MMWR Morb Mortal Wkly Rep. Apr 30 2021;70(17):632-638. doi:10.15585/mmwr.mm7017e1

92. Baker MA, Fiumara K, Rhee C, et al. Low risk of COVID-19 among patients exposed to infected healthcare workers. Clin Infect Dis. Aug 28 2020;doi:10.1093/cid/ciaa1269

93. Karmarkar EN, Blanco I, Amornkul PN, et al. Timely intervention and control of a novel coronavirus (COVID-19) outbreak at a large skilled nursing facility-San Francisco, California, 2020. Infect Control Hosp Epidemiol. Dec 14 2020;1-8. doi:10.1017/ice.2020.1375

94. Lesho EP, Walsh EE, Gutowski J, et al. A cluster-control approach to a coronavirus disease 2019 (COVID-19) outbreak on a stroke ward with infection control considerations for dementia and vascular units. Infect Control Hosp Epidemiol. Jan 11 2021;1-7. doi:10.1017/ice.2020.1437

95. McDougal AN, Elhassani D, DeMaet MA, et al. Outbreak of coronavirus disease 2019 (COVID-19) among operating room staff of a tertiary referral center: An epidemiologic and environmental investigation. Infect Control Hosp Epidemiol. Mar 19 2021;1-7. doi:10.1017/ice.2021.116
Elimination: Remove the Hazard
- Vaccination, telehealth, restricting visitation, telework

Substitution: Replace the Hazard
- Substituting nebulizer treatments with metered dose inhalers, changing surfaces to easier to clean material

Engineering: Isolate from the Hazard
- Placement of suspected COVID-19 patients in private rooms; prioritize AIIR for AGPs

Administrative: Change workflow
- Patient, visitor, and HCP symptom screening; staggered break times to allow for physical distancing

PPE: Protect Workers
- Use of universal source control for patients, visitors and HCP; additional PPE per standard- and transmission-based precautions