CC16 Gene A38G Polymorphism and Susceptibility to Asthma: An Updated Meta-analysis

Dan Cheng¹,², Honghong Di¹,², Zheng Xue³ and Guohua Zhen¹,²

Abstract

Objective To comprehensively evaluate the association between the CC16 gene A38G polymorphism and the risk of asthma.

Methods Studies were retrieved from databases including PubMed, EMBASE, Web of Science and the Chinese Biomedical Literature Database according to the inclusive and exclusive criteria. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the strength of the associations.

Materials Fifteen case-control studies with 1,623 cases and 3,294 controls were recruited for the analysis of the association between the CC16 gene A38G polymorphism and the risk of asthma.

Results The overall ORs showed no significant associations between the CC16 gene A38G polymorphism and the risk of asthma (AA vs. GG: OR=1.04, 95%CI=0.86-1.25; AG vs. GG: OR=1.08, 95%CI=0.94-1.24; AA + AG vs. GG: OR=1.07, 95%CI=0.94-1.22; AA vs. AG + GG: OR=1.01, 95%CI=0.85-1.19; A vs. G: OR=1.04, 95%CI=0.95-1.14). Moreover, similar results were obtained in the subgroup analysis stratified by ethnicity (Asian: AG vs. GG: OR=1.02, 95%CI=0.87-1.21; Caucasian: AG vs. GG: OR=1.22, 95%CI=0.94-1.57) and age (Child: AG vs. GG: OR=1.21, 95%CI=0.84-1.74; Adult: AG vs. GG: OR=1.06, 95%CI=0.91-1.23).

Conclusion CC16 gene A38G polymorphism is not associated with the risk of asthma.

Key words: CC16, single nucleotide polymorphism, asthma, meta-analysis

(Intern Med 54: 155-162, 2015) (DOI: 10.2169/internalmedicine.54.2979)

Introduction

Asthma is one of the most common chronic inflammatory respiratory diseases (1). The hallmarks of asthma include allergic airway inflammation, bronchial hyper-responsiveness, mucus hyperplasia and airway remodeling (2). It has been shown that asthma is a complex disease that results from interactions between environment and genetic factors (3-5). The associations between the risk of asthma and gene polymorphisms, such as single nucleotide polymorphism (SNPs), have been studied extensively. Recently, a number of studies have investigated the association between the risk of asthma and the CC16 gene A38G polymorphism (6-15).

CC16, also known as homo sapiens secretoglobin, family 1A, member 1 (SCGB1A1), Clara cell 10 kDa protein (CC10) or Clara cell secretory protein (CCSP) (16-18), is secreted by non-mucous, non-ciliated airway epithelial cells (19, 20). CC16 is the main component of the extracellular lining fluid of airways (21). It has been shown that CC16 plays an important role in the inhibition of airway inflammation and the pathogenesis of asthma (19, 22). Compared with wild-type mice, CC16-deficient mice exhibit significantly higher levels of Th2 cytokines with pulmonary eosinophilia after antigen sensitization and challenges (23). In addition, Van Vyve reported that the levels of CC16 proteins are reduced in the bronchoalveolar lavage fluid in asthmatic patients (24). Moreover, the CC16 protein expression is downregulated in the small airways and reduced in the serum in asthmatic subjects (25-28).
The human CC16 gene is located on chromosome 11q13 (29). The A38G polymorphism (dbSNP rs3741240) is an adenine/guanine polymorphism located 38 bp downstream from the transcription start site of the CC16 gene (30, 31). The A38G polymorphism is a major genetic determinant of the serum CC16 level and has been identified to be a potential susceptibility factor for the development and severity of asthma (6, 12, 30). The A allele is also associated with reduced gene transcription, with 25% lower transcription levels than the G allele (29, 32, 33). Thus far, a number of studies have reported an association between the CC16 gene A38G polymorphism and the risk of asthma (6-8, 10, 12). However, this association was not replicated in several other studies (9, 11, 13).

Because single studies with a small sample size may have low power to draw reliable conclusions, we performed a meta-analysis including 15 case-control studies in order to assess the relationship between the CC16 gene A38G polymorphism and asthma susceptibility.

Data source

We performed a literature search using the electronic databases PubMed, EMBASE, Web of Science and the Chinese Biomedical Literature Database (CBM) to identify articles that evaluated the association between the CC16 gene A38G polymorphism and asthma susceptibility. The search terms were as follows: (“asthma” or “asthmatic”) and (“polymorphism” or “mutation” or “variant”) and (“CC16” or “CC10” or “CCSP” or “SCGB1A1”) and (“polymorphism” or “mutation” or “variant”). The literature search was last updated on February 28, 2014.

Study selection

The following criteria were used to select the studies included in this meta-analysis: (1) an evaluation of the association between the CC16 gene A38G polymorphism and asthma susceptibility; (2) a case-control study; (3) the availability of genotype distributions in both cases and controls; (4) genotype distributions in the control population consistent with Hardy-Weinberg equilibrium (HWE). The following exclusion criteria were used: (1) abstracts or reviews; (2) lack of reporting of genotype frequencies; (3) design based on family or sibling pairs. For overlapping studies, only the study with the largest sample numbers was included.

Data extraction

Two authors independently reviewed the full text of the included articles and extracted relevant data. The following information was collected: first author’s name, year of publication, country of origin, ethnicity, sample size, genotyping methods and number of genotype frequencies in the cases and controls. Any discrepancies between the two authors were resolved by discussion, and a third author assessed the disputed articles.

Statistical analysis

For each case-control study, we first examined whether the genotype distribution in the control group was consistent with HWE using Pearson’s X² test. The OR and 95% CI were calculated to assess the strength of the association between the CC16 gene A38G polymorphism and the risk of asthma. The significance of the summary ORs was determined according to the Z test, with a p value of <0.05 considered to be statistically significant. We also assessed the risk of homozygote comparison (AA vs. GG), heterozygote comparison (AG vs. GG) and dominant (AA+AG vs. GG), recessive (AA vs. AG+GG) and additive (A vs. G) genetic model comparisons.

The heterogeneity between studies was assessed using the X² test based on the Cochrane Q-test. A p value of >0.10 for the Q-test indicates lack of heterogeneity among the studies. The pooled OR estimate of each study was then calculated according to the fixed-effects model. Otherwise, the random-effects model was used. F was also calculated to test heterogeneity among the included studies, with F<25%, 25-75% and >75% considered to represent a low, moderate and high degree of heterogeneity, respectively (34). Publication bias was examined using Begg’s funnel plot and Egger’s test (35). All statistical analyses were completed using the Revman 5.1 (Nordic Cochrane Center, Copenhagen, Denmark) and STATA 10.0 (Stata Corporation, College Station, USA) software programs.

Results

Characteristics of the studies

Overall, 77 articles were recruited from the databases mentioned in the Materials and methods section. Sixty-two articles were excluded for the following reasons: 18 articles were duplications or reviews, 15 articles were not relevant to asthma, three articles were not relevant to the CC16 gene, 14 articles did not examine the A38G polymorphism in patients with the CC16 gene, eight studies were not case-control studies, three articles did not provide sufficient data and one study included subjects with allergic rhinitis as a control group. Finally, 15 case-control studies with a total of 1,623 cases and 3,294 controls met the inclusion criteria and were included in the analysis (Fig. 1).

The main characteristics of the 15 studies included in the meta-analysis are summarized in Table 1. There were eight studies of Asians and seven studies of Caucasians. Twelve studies were performed in adults, and three studies were performed in children. Healthy subjects or subjects without symptoms or a history of allergic diseases, such as asthma, allergic rhinitis or atopic dermatitis, matched for age and sex were used as controls. Polymerase chain reaction (PCR)
was performed as a genotyping method. The genotype frequencies and HWE examination results are shown in Table 2.

Quantitative synthesis

The association between the CC16 gene A38G polymorphism and the risk of asthma is summarized in Table 3. Overall, no significant associations were found between the CC16 gene A38G polymorphism and the risk of asthma (AA vs. GG: OR=1.04, 95%CI=0.86-1.25, p=0.72; AG vs. GG: OR=1.08, 95%CI=0.94-1.24, p=0.30; AA + AG vs. GG: OR=1.07, 95%CI=0.94-1.22, p=0.28; AA vs. AG + GG: OR=1.01, 95%CI=0.85-1.19, p=0.95; A vs. G: OR=1.04, 95%CI=0.95-1.14, p=0.43; Fig. 2).

Moreover, similar results were obtained in the stratified subgroup analysis. For example, no significant associations were observed between the CC16 gene A38G polymorphism and the risk of asthma in the subgroup analysis stratified by ethnicity (Asian: AG vs. GG: OR=1.02, 95%CI=0.87-1.21, p=0.79; AA + AG vs. GG: OR=1.02, 95%CI=0.88-1.20, p=0.77; Caucasian: AG vs. GG: OR=1.22, 95%CI=0.94-1.57, p=0.13; AA + AG vs. GG: OR=1.21, 95%CI=0.95-1.54, p=0.13; Fig. 3). Moreover, there were no significant associations in the subgroup analysis stratified by age (Child: AG vs. GG: OR=1.21, 95%CI=0.84-1.74, p=0.30; AA + AG vs. GG: OR=1.13, 95%CI=0.80-1.61, p=0.49; Adult: AG vs. GG: OR=1.06, 95%CI=0.91-1.23, p=0.48; AA + AG vs. GG: OR=1.07, 95%CI=0.92-1.23, p=0.38; Fig. 4).

Sensitivity analysis

In order to assess the stability of the results of the meta-analysis, we performed a sensitivity analysis by sequentially excluding each individual study. Statistically similar results were obtained after sequentially excluding each study, sug-
Table 2. Distribution of CC16 Genotype and Allele among Asthmatic Patients and Controls

Reference Year	Case	Control	Case	Control	HWE						
	GG	GA	AA	GG	GA						
6 2003	35	43	6	57	49	12	113	55	163	73	0.76
6 2003	48	48	8	57	49	12	144	64	163	73	0.76
7 2004	68	119	72	62	115	74	255	263	239	263	0.2
8 2004	45	31	9	58	23	4	121	49	139	31	0.39
9 2002	37	39	11	17	18	6	113	61	52	30	0.73
10 2000	16	16	4	27	29	8	48	24	83	45	0.96
11 1998	54	61	10	55	76	19	169	81	186	114	0.36
11 1998	36	15	19	36	50	14	121	79	122	78	0.61
12 2005	41	40	19	36	50	14	122	78	122	78	0.61
13 2003	13	21	16	26	16	8	47	53	68	32	0.06
14 2003	18	19	4	30	21	4	55	27	81	29	0.9
15 2013	54	67	20	206	273	103	175	107	685	479	0.45
15 2013	59	65	26	206	273	103	183	117	685	479	0.45
15 2013	65	111	37	206	273	103	241	185	685	479	0.45

HWE: p value for Hardy-Weinberg equilibrium for CC16 gene A38G polymorphism among controls.

Table 3. Total and Stratified Analysis of the CC16 Gene A38G Polymorphism on Risk of Asthma

Variables	No. of Case/Control	Case vs. Control	OR(95% CI)									
Total	12	1,623/3,294	1.04(0.86-1.25)	p=0.72	1.08(0.94-1.24)	p=0.30	1.07(0.94-1.22)	p=0.28	1.01(0.85-1.19)	p=0.95	1.04(0.95-1.14)	p=0.43
Ethnicity												
Asian	8	1,098/2,332	1.00(0.80-1.25)	p=1.00	1.02(0.87-1.21)	p=0.79	1.02(0.88-1.20)	p=0.77	0.99(0.81-1.20)	p=0.90	1.01(0.90-1.12)	p=0.89
Caucasian	7	525/962	1.16(0.78-1.73)	p=0.46	1.22(0.94-1.57)	p=0.13	1.21(0.95-1.54)	p=0.13	1.07(0.74-1.55)	p=0.71	1.12(0.94-1.34)	p=0.19
Age												
Child	3	224/300	0.81(0.43-1.53)	p=0.52	1.21(0.84-1.74)	p=0.30	1.13(0.80-1.61)	p=0.49	0.74(0.41-1.36)	p=0.34	1.01(0.78-1.32)	p=0.92
Adult	12	1,399/2,994	1.06(0.87-1.33)	p=0.55	1.06(0.91-1.23)	p=0.48	1.07(0.92-1.23)	p=0.38	1.03(0.86-1.24)	p=0.72	1.04(0.94-1.15)	p=0.42

a Number of studies

Figure 2. Association between CC16 gene A38G and the risk of asthma in the overall population (GA vs. GG)

suggesting the stability of the results.

Publication bias

Begg’s funnel plot and Egger’s test were used to assess the publication bias of the included studies. No publication bias was observed in Begg’s funnel plot (Fig. 5), and there were no significant differences according to Egger’s weighted regression method (p for bias =0.230). These data indicate that there was no significant publication bias among the studies included in this meta-analysis.
Figure 3. Association between CC16 gene A38G and the risk of asthma in the subgroup analysis stratified by ethnicity (GA vs. GG).

Subgroup	Asthma Events	Control Events	Total Events	Weight	Odds Ratio M.H. Fixed, 95% CI		
2.1.1 Asian	1-3 Sharma S2004	119	187	115	177	11.2%	0.94 [0.81, 1.14]
1-4 Saadat M 2004	31	76	23	91	3.4%	1.74 [0.99, 3.39]	
1-7 Gao P (alcoholic)1998	10	81	50	86	6.4%	0.70 [0.38, 1.29]	
1-7 Gao P (inhaled)1998	21	34	16	42	1.4%	2.63 [1.03, 6.68]	
11 Gu G 2003	17	41	18	45	1.4%	2.71 [1.02, 7.16]	
13 Taniguchi N(Early)2013	67	121	273	479	12.8%	0.94 [0.83, 1.04]	
13 Taniguchi N(Late)2013	65	124	273	479	13.9%	0.63 [0.56, 1.24]	
Subtotal (95% CI)	111	176	273	479	14.1%	1.29 [0.90, 1.84]	

Total events: 515
Heterogeneity: CH² = 11.58, df = 7 (P = 0.12); I² = 49%
Test for overall effect: Z = 0.27 (P = 0.79)

Figure 4. Association between CC16 gene A38G and the risk of asthma in the subgroup analysis stratified by age (GA vs. GG).

Subgroup	Asthma Events	Control Events	Total Events	Weight	Odds Ratio M.H. Fixed, 95% CI		
2.1.1 Child	1-3 Sharma S2004	43	78	49	106	4.9%	1.43 [0.79, 2.57]
1-4 Saadat M 2004	48	96	49	106	6.1%	1.06 [0.57, 2.02]	
1-5 Mansur AH 2002	10	36	18	35	3.1%	1.00 [0.45, 2.22]	
1-6 Laing IA 2000	18	32	29	56	2.9%	0.93 [0.39, 2.22]	
1-7 Gao P (British)1998	49	85	50	86	5.5%	0.69 [0.53, 1.80]	
10 Candelaria PV 2005	25	38	20	37	3.3%	0.61 [0.22, 1.56]	
12 Kalyoncu AF 2003	19	37	21	51	2.2%	1.51 [0.84, 2.74]	
Subtotal (95% CI)	1356	2768	1000%	1.08 [0.94, 1.24]			

Total events: 754
Heterogeneity: CH² = 2.39, df = 6 (P = 0.88); I² = 0%
Test for overall effect: Z = 1.51 (P = 0.13)
Test for subgroup differences: Not available

Subgroup	Asthma Events	Control Events	Total Events	Weight	Odds Ratio M.H. Fixed, 95% CI		
2.1.2 Adult	1-3 Sharma S2004	119	187	115	177	11.2%	0.94 [0.81, 1.14]
1-4 Saadat M 2004	31	76	23	91	3.4%	1.74 [0.99, 3.39]	
1-7 Gao P (alcoholic)1998	88	156	85	131	8.7%	0.92 [0.49, 1.85]	
1-7 Gao P (inhaled)1998	10	50	50	86	6.4%	0.70 [0.38, 1.29]	
10 Candelaria PV 2005	25	38	20	37	3.3%	0.60 [0.22, 1.56]	
12 Kalyoncu AF 2003	19	37	21	51	2.2%	1.51 [0.84, 2.74]	
Subtotal (95% CI)	111	176	273	479	14.1%	1.29 [0.90, 1.84]	

Total events: 847
Heterogeneity: CH² = 14.07, df = 11 (P = 0.23); I² = 22%
Test for overall effect: Z = 0.71 (P = 0.48)

Total events: 754
Heterogeneity: CH² = 15.23, df = 14 (P = 0.38); I² = 8%
Test for overall effect: Z = 1.05 (P = 0.30)
Test for subgroup differences: Not available
Discussion

CC16 plays an important role in the inhibition of airway inflammation and pathogenesis of asthma (19, 22). The A38G polymorphism is a major genetic determinant of the serum *CC16* level and has been identified to be a potential susceptibility factor for the development and severity of asthma. A number of original studies have reported an association between the *CC16* gene A38G polymorphism and the risk of asthma with inconclusive results, possibly due to the small sample size and relatively low statistical power of these studies. In order to better understand this association, we conducted a meta-analysis including 1,623 cases and 3,294 controls from 15 published case-control studies assessing the association between the *CC16* gene A38G polymorphism and asthma.

The results of our meta-analysis indicated that the *CC16* gene A38G polymorphism is not associated with an increased risk of asthma in the overall population. We obtained the same results in the subgroup analysis stratified by ethnicity and age. Several factors may account for the lack of contribution of the *CC16* gene A38G polymorphism to the risk of asthma. Asthma is a genetically complex disease caused by multiple genetic and environmental factors, and gene-gene and gene-environment interactions may have an effect on the development of the asthma phenotype. For example, exposure to environmental challenges, such as cigarette smoking and air pollution, which cause oxidative stress and an inflammatory response, may interact with the anti-inflammatory function of the *CC16* gene. Therefore, studies with more a stringent design considering environmental factors, such as cigarette smoking, are required to validate the findings of this meta-analysis.

Heterogeneity among the studies included in meta-analyses will affect the final conclusion. Moderate heterogeneity was observed under most of the genetic models in this meta-analysis. The degree of heterogeneity can be attributed to the limited number of included studies and differences in ethnic and genetic backgrounds, environmental exposure or methodological factors in design between these studies. As the publication of findings often depends on the expectations of the researchers, false-positive results may be magnified or false-negative results may be suppressed (36). In the present meta-analysis, Begg’s funnel plot and Egger’s test showed that there was no significant publication bias among the included studies.

This meta-analysis is associated with several limitations. First, the number of included studies and subjects in the overall population and subgroup analyses were relatively small. Second, all included studies were published in English or Chinese indexed by the selected databases. Therefore, studies published in other languages may have been missed. Third, subgroup analyses according to age at asthma onset or the presence of atopic versus non-atopic asthma, although important, could not be performed in this meta-analysis because such data were not available in the included studies. In spite of these limitations, the present meta-analysis has some advantages. First, the quality of the case-control studies included in this meta-analysis was good and met the inclusion criteria. Second, we did not detect any obvious publication bias, indicating that the whole pooled results were unbiased.

In summary, the present meta-analysis showed that there is no association between the *CC16* gene A38G polymorphism and an increased risk of asthma in the overall population. In order to validate the findings of this meta-analysis, additional large scale case-control studies with a more strin-
gent design considering environmental factors, such as cigarette smoking, and detailed information regarding age at onset and the atopic status are required.

The authors state that they have no Conflict of Interest (COI).

Financial Support
This study was supported by the National Natural Science Foundation of China Grant 81170022 and the National Key Technology R&D Program of the 12th Five-year Development Plan 2012BAI05B01. The funders had no role in the study design, data collection or analysis, decision to publish or preparation of the manuscript.

References
1. Qian FH, Zhang Q, Zhou LF, Jin GF, Bai JL, Yin KS. Polymorphisms in the toll-like receptor 2 subfamily and risk of asthma: a case-control analysis in a Chinese population. J Investig Allergol Clin Immunol 20: 340-346, 2010.
2. Gauchat J, Lebman D, Coffman R, Gascan H, de Vries J. Structure and expression of germine epsilon transcript in human B cells induced by interleukin 4 to switch to IgE production. J Exp Med 172: 463-473, 1990.
3. Mukherjee AB, Zhang Z. Allergic asthma: influence of genetic and environmental factors. J Biol Chem 286: 32883-32889, 2011.
4. Koppelman GH. Gene by environment interaction in asthma. Curr Allergy Asthma Rep 6: 103-111, 2006.
5. Denham S, Koppelman GH, Blakey J, et al. Meta-analysis of genome-wide linkage studies of asthma and related traits. Respir Res 9: 38, 2008.
6. Sengler C, Heinzmann A, Jerkic SP, et al. Clara cell protein 16 (CC16) gene polymorphism influences the degree of airway responsiveness in asthmatic children. J Allergy Clin Immunol 111: 515-519, 2003.
7. Sharma S, Ghosh B. Association of an intragenic microsatellite marker in the CC16 gene with asthma in the Indian population. J Hum Genet 49: 677-683, 2004.
8. Saadat M, Saadat I, Saboori Z, Emad A. Combination of CC16, GSTM1, and GSTT1 genetic polymorphisms is associated with asthma. J Allergy Clin Immunol 113: 996-998, 2004.
9. Mansur A, Fryer A, Hepple M, Strange R, Spiteri M. An association study between the Clara cell secretory protein CC16 A38G polymorphism and asthma phenotypes. Clin Exp Allergy 32: 994-999, 2002.
10. Laing IA, Hermans C, Bernard A, Burton P, Goldblatt J, Le Souef PN. Association between plasma CC16 levels, the A38G polymorphism, and asthma. Am J Respir Crit Care Med 161: 124-127, 2000.
11. Gao PS, Mao X, Kawai M, et al. Negative association between asthma and variants of CC16(CC10) on chromosome 11q13 in British and Japanese populations. Hum Genet 103: 57-59, 1999.
12. Candelaria PV, Backer V, Laing I, et al. Association between asthma-related phenotypes and the CC16 A38G polymorphism in an unselected population of young adult Danes. Immunogenetics 57: 25-32, 2005.
13. Gai Q, Qian G, Huang G, Li S. Study on association between CC16 gene G38A mutation and asthma in the patients of Han population in Chongqing, China. Zhonghua Yi Xue Yi Chuan Xue Za Zhi (Chinese Journal of Medical Genetics) 20: 542-543, 2003 (in Chinese).
14. Kalyoncu AF, Karakaya G, Yilmaz E, Balci B, Karaduman A, Yasavul U. Analogical intolerance with or without bronchial asthma: is there a marker. J Invest Allergy Clin Immunol 13: 162-169, 2003.
15. Taniguchi N, Konno S, Hattori T, et al. The CC16 A38G polymorphism is associated with asymptomatic airway hyper-responsiveness and development of late-onset asthma. Ann Allergy Asthma Immunol 111: 376-381, 2013.
16. Laing IA, de Klerk NH, Turner SW, et al. Cross-sectional and longitudinal association of the secretoglobin 1A1 gene A38G polymorphism with asthma phenotype in the Perth Infant Asthma Follow-up cohort. Clin Exp Allergy 39: 62-71, 2009.
17. Bernard A, Dumont X, Roels H, et al. The molecular mass and concentrations of protein 1 or Clara cell protein in biological fluids: a reappraisal. Clin Chim Acta 223: 189-191, 1993.
18. Gupta RP, Patton SE, Jetten AM, Hook GE. Purification, characterization and proteinase-inhibitory activity of a Clara-cell secretory protein from the pulmonary extracellular lining of rabbits. Biochem J 248: 337-344, 1987.
19. Dierynck I, Bernard A, Roels H, De Ley M. Potent inhibition of both human interferon-gamma production and biologic activity by the Clara cell protein CC16. Am J Respir Cell Mol Biol 22: 120-125, 1995.
20. Miele L, Cordella-Miele E, Facchiano A, Mukherjee A. Inhibition of phospholipase A2 by uteroglobin and antiinflammatory peptides. Adv Exp Med Biol 279: 137-160, 1990.
21. Miele L, Cordella-Miele E, Facchiano A, Mukherjee A. Novel anti-inflammatory peptides from the region of highest similarity between uteroglobin and lipocortin I. Nature 335: 726-730, 1988.
22. Hayward A. Who is to blame for asthma. Lancet 346: 1243, 1995.
23. Chen LC, Zhang Z, Myers AC, Huang SK. Cutting edge: altered pulmonary eosinophilic inflammation in mice deficient for Clara cell secretory 10-kDa protein. J Immunol 167: 3025-3028, 2001.
24. Van Vyve T, Chanez P, Bernard A, et al. Protein content in bronchoalveolar lavage fluid of patients with asthma and control subjects. J Allergy Clin Immunol 95: 60-68, 1995.
25. Yang K, Ou C, Chang J, et al. Infant frequent wheezing correlated to Clara cell protein 10 (CC10) polymorphism and concentration, but not allergy sensitization, in a perinatal cohort study. J Allergy Clin Immunol 120: 842-848, 2007.
26. Shijubo N, Itoh Y, Yamaguchi T, et al. Clara cell protein-positive epithelial cells are reduced in small airways of asthmatics. Am J Respir Crit Care Med 160: 930-933, 1999.
27. Shijubo N, Itoh Y, Yamaguchi T, et al. Serum levels of Clara cell 10-kDa protein are decreased in patients with asthma. Lung 177: 45-52, 1999.
28. Lensmar C, Nord M, Gudmundsson GH, et al. Decreased pulmonary levels of the anti-inflammatory Clara cell 16 kDa protein after induction of airway inflammation in asthmatics. Cell Mol Life Sci 57: 976-981, 2000.
29. Ohchi T, Shijubo N, Kawabata I, et al. Polymorphism of Clara cell 10-kD protein gene of sarcoidosis. Am J Respir Crit Care Med 169: 180-186, 2004.
30. Laing IA, Goldblatt J, Eber E, et al. A polymorphism of the CC16 gene is associated with an increased risk of asthma. J Med Genet 35: 463-467, 1998.
31. Zhang Z, Zimonjic DB, Popescu NC, et al. Human uteroglobin gene: structure, subchromosomal localization, and polymorphism. DNA Cell Biol 16: 73-83, 1997.
32. Kim YS, Kang D, Kwon DY, et al. Uteroglobin gene polymorphisms affect the progression of immunoglobulin A nephropathy by modulating the level of uteroglobin expression. Pharmacogenetics 11: 299-305, 2001.
33. Stripp B, Sowaya P, Luse D, et al. cis-acting elements that confer lung epithelial cell expression of the CC10 gene. J Biol Chem 267: 14703-14712, 1992.
34. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ 327: 557-560, 2003.
35. Zhang Y, Zhang J, Huang J, et al. Polymorphisms in the trans-
forming growth factor-beta1 gene and the risk of asthma: A meta-analysis. Respirology 15: 643-650, 2010.

36. Salanti G, Sanderson S, Higgins JP. Obstacles and opportunities in meta-analysis of genetic association studies. Genet Med 7: 13-20, 2005.