Efficacy and safety of salmeterol/fluticasone compared with montelukast alone (or add-on therapy to fluticasone) in the treatment of bronchial asthma in children and adolescents: a systematic review and meta-analysis

Xiao-Jian Zhou, Zhen Qin, Jiao Lu, Jian-Guo Hong

Department of Paediatrics, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai 200080, China.

Meta Analysis

Abstract

Background: Despite the recommendation of inhaled corticosteroids (ICSs) plus long-acting beta 2-agonist (LABA) and leukotriene receptor antagonist (LTRA) or ICS/LTRA as stepwise approaches in asthmatic children, there is a lack of published systematic review comparing the efficacy and safety of the two therapies in children and adolescents aged 4 to 18 years. This study aimed to compare the safety and efficacy of salmeterol/fluticasone (SFC) vs. montelukast (MON), or combination of montelukast and fluticasone (MFC) in children and adolescents aged 4 to 18 years with bronchial asthma.

Methods: A systematic search was conducted in MEDLINE, EMBASE, the Cochrane Library, China BioMedical Literature Database, Chinese National Knowledge Infrastructure, VIP Database for Chinese Technical Periodical, and Wanfang for randomized controlled trials (RCTs) published from inception to May 24, 2021. Interventions are as follows: SFC vs. MON, or combination of MFC, with no limitation of dosage or duration. Primary and secondary outcome measures were as follows: the primary outcome of interest was the risk of asthma exacerbation. Secondary outcomes included risk of hospitalization, pulmonary function, asthma control level, quality of life, and adverse events (AEs). A random-effects \((I^2 \geq 50\%)\) or fixed-effects model \((I^2 < 50\%)\) was used to calculate pooled effect estimates, comparing the outcomes between the intervention and control groups where feasible.

Results: Of the 1006 articles identified, 21 studies met the inclusion criteria with 2643 individuals; two were at low risk of bias. However, more studies favored SFC, instead of MON, owing to a lower risk of asthma exacerbation in the SFC group. As for secondary outcome, SFC showed a significant improvement of peak expiratory flow (PEF) %pred after 4 weeks compared with MFC (mean difference [MD]: 5.45; 95% confidence interval [CI]: 1.57–9.34; \(I^2 = 95\%; P = 0.006\)). As for asthma control level, SFC also showed a higher full-controlled level (risk ratio [RR]: 1.51; 95% CI: 1.24–1.85; \(I^2 = 0\%; P < 0.001\)) and higher childhood asthma control test score after 4 weeks of treatment (MD: 2.30; 95% CI: 1.39–3.21; \(I^2 = 72\%; P < 0.001\)) compared with MFC.

Conclusions: SFC may be more effective than MFC for the treatment of asthma in children and adolescents, especially in improving asthma control level. However, there is insufficient evidence to make firm conclusive statements on the use of SFC or MON in children and adolescents aged 4 to 18 years with asthma. Further research is needed, particularly a combination of good-quality long-term prospective studies and well-designed RCTs.

PROSPERO registration number: CRD42019133136.

Keywords: Bronchial asthma; Fluticasone/salmeterol; Montelukast; Systematic review; Pediatric

Introduction

Asthma is the most common chronic airway disease in childhood and affects approximately 3.0% of children in China between 0 and 14 years of age.\(^\text{[1]}\) Despite the decrease in the percentage of children with acute asthma attacks and the frequency of hospitalizations for asthma attacks over the past 10 years,\(^\text{[2]}\) uncontrolled asthma in the pediatric population still poses a substantial challenge in China.\(^\text{[3,4]}\) Poorly controlled childhood asthma continues to be a significant economic burden in China, adversely affecting the quality of life of individual sufferers and their caretakers.

Inhaled corticosteroids (ICSs)-containing controller treatment is crucial, and recommended to be initiated as soon as
possible after the diagnosis of asthma both in preschool-
children (<6 years) and school-aged children and
adolescents (≥6 years), according to the 2016 Chinese
guidelines.[5] However, recommendations in stepwise
approaches vary from age to age. ICS plus long-acting
beta 2-agonist (ICS/LABA) is only recommended as the
preferred stepwise control in children ≥6 years. Although
leukotriene receptor antagonist (LTRA, montelukast
[MON]) is less effective than regular ICS, LTRA alone
and ICS/LTRA are also recommended as alternative
therapies for stepwise approaches among children and
adolescents.

Limited data from randomized controlled trials (RCTs)
suggested that salmeterol/fluticasone (SFC) might be
superior to MON in reducing the risk of asthma
exacerbation and improving morning pulmonary function
in children and adolescents (6–14 years) with asthma.[6,7]
However, to our knowledge, there is no published
systematic review comparing the efficacy and safety of
SFC vs. MON or combination of montelukast and
fluticasone (MFC) limited to children and adolescents
aged 4 to 18 years to firmly support this recommendation.
Therefore, the objective of this systematic review was
to compare the efficacy and safety of SFC vs. MON
monotherapy or MFC in children and adolescents aged 4
to 18 years with asthma.

Methods

Registration

A priori protocol was developed and registered with
PROSPERO (registration number: CRD42019133156).
This review was informed by, and reported, using the
Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) guidelines.[8]

Search strategy

The following electronic databases were searched: MED-
LINE, EMBASE, the Cochrane Library, China BioMedical
Literature Database, China Academic Journals Full-text
Database, Chinese National Knowledge Infrastructure,
VIP Database for Chinese Technical Periodicals, and
Wanfang Chinese language bibliographic database. All
databases were searched from inception to May 24, 2021
using the keywords “asthma,” “salmeterol/fluticasone,”
“montelukast,” and “fluticasone.” The search was limited
to humans without limitations of date, time, or document
type. The search strategies were developed with the
assistance of a medical information specialist and were
reported in detail [Supplementary Appendix 1, http://links.
lww.com/CM9/A827]. Additional searches were manually
conducted in relevant systematic reviews from relevant
databases.

Study selection

Two reviewers independently performed the literature
screening. After removing duplicate records and initial
screening of all remaining references via titles and
abstracts, the full texts of the references that appeared
to meet the inclusion criteria were obtained and further
screened to finalize the inclusion decision. Any disagree-
ment between the two reviewers over eligibility was
resolved through discussion with a third reviewer. A study
was included if it met the following criteria: (1) Study
design: RCTs; (2) Patients: participants aged 4 to 18 years
with diagnosed bronchial asthma (asthma diagnosed by a
physician based on the criteria recommended by standard
clinical pathway or practice guidelines for childhood
asthma in different countries[5]; full details of diagnostic
criteria are given in Supplementary Appendix 2, http://
links.lww.com/CM9/A827); and (3) Intervention and
Control: Comparing SFC with MON, or SFC with
MFC, with no limitation of dosage or duration. Trials
were excluded if they: (1) included participants who had an
acute episode of asthma and (2) were not written in English
or Chinese.

Outcome measures

The primary outcome was the risk of asthma exacerbation
(as defined by the original studies). The secondary
outcomes included risk of hospitalization, change of
pulmonary function (including peak expiratory flow
[PEF], PEF%pred, PEF variability, forced expiratory flow
rate in one second [FEV1], FEV1%pred, and forced
expiratory flow [FEF] at 25–75% of forced vital capacity
[FEF25–75%]), asthma control level (as defined by the
original studies, including change of Childhood Asthma
Control Test [C-ACT], night-time symptom score, day-
time symptom score, asthma control level assessment
[defined as full controlled, partial controlled, and un-
controlled], asthma symptom-free days, frequency of reliever
use, and asthma control questionnaire [ACQ]), quality
of life (measured by Pediatric Asthma Quality of Life
Questionnaire [PAQLQ] or Pediatric Asthma Caregiver’s
Quality of Life Questionnaire [PACQLQ]), and the risk of
overall adverse events (AEs).

Quality assessment

Two reviewers independently assessed the quality of
included studies using the Cochrane risk of bias tool,[9]
which is based on sequence generation, allocation
concealment, blinding of participants and personnel,
blinding of outcome assessment, incomplete outcome
data, selective outcome reporting, and other bias. Overall,
a summarized quality of included studies was made
according to the risk of bias level in key domains. Any
disagreement between reviewers was settled by an
additional reviewer referring to the original article.

Data extraction and analysis

Two reviewers extracted the data independently according
to a standard extraction Excel form including: General
study characteristics (including first authors, publication
years, study center, and sample size); demographic
characteristics (including diagnosis, age, and settings);
intervention characteristics (including administration of
interventions and controls, and treatment duration); and
outcome characteristics (including category and definitions
of outcome, and follow-up).
Any disagreement between the two reviewers over eligibility was resolved through discussion with a third reviewer. When information was not available in the original article, efforts were made to contact the authors by e-mail.

Data analysis
Data were synthesized and analyzed using RevMan version 5.3 (The Cochrane Collaboration, Oxford, UK). Dichotomous outcome results were expressed as risk ratio (RR) with 95% confidence intervals (CI). Continuous scales of measurement were expressed as mean difference (MD) with 95% CI. Heterogeneity was calculated using the I2 statistic. For I2 ≥ 50%, the heterogeneity was classified as important and was interpreted according to the study characteristics. A random-effects (I2 ≥ 50%) or fixed-effects (I2 < 50%) model was used to calculate pooled effect estimates comparing the outcomes between the intervention and control groups where feasible. Sensitivity analysis on different models was planned on the primary outcome to test the robustness of findings. Unfortunately, owing to insufficient data, not all predefined outcomes could be performed in meta-analysis, such as risk of asthma exacerbation, risk of hospitalization, change of PEF, change of FEV1, asthma symptom free days, changes of ACQ score, PAQLQ score, and PACQLQ score. Therefore, descriptive synthesis of the aforementioned outcomes was performed instead.

Results
Study selection
A total of 1006 records were retrieved [Figure 1]. After duplicate publications were removed, 864 studies were included. After screening, 739 records were excluded by ineligible title and abstract. A total of 98 studies with 100 articles were eliminated for other reasons. Thus, 21 studies included childhood and adolescent patients. The age group varied across studies from 4 to 17 years. Seventeen studies reported treatment duration ranging from 8 weeks to 1 year and four studies did not report treatment duration [Supplementary Appendix 2, http://links.lww.com/CM9/A827]. All trials included children and adolescent patients. The age group varied across studies from 4 to 17 years. Seventeen studies reported treatment duration ranging from 8 weeks to 1 year and four studies did not report treatment duration [Supplementary Appendix 2, http://links.lww.com/CM9/A827]. All trials included children and adolescent patients. The age group varied across studies from 4 to 17 years. Seventeen studies reported treatment duration ranging from 8 weeks to 1 year and four studies did not report treatment duration [Supplementary Appendix 2, http://links.lww.com/CM9/A827]. All trials included children and adolescent patients. The age group varied across studies from 4 to 17 years. Seventeen studies reported treatment duration ranging from 8 weeks to 1 year and four studies did not report treatment duration [Supplementary Appendix 2, http://links.lww.com/CM9/A827].

Characteristics of included studies and patients
A total of 21 RCTs were included with a parallel group design, except for three cross-over designed trials.[28-30] There were nine studies comparing SFC with MON,[6,7,11,13-16,23-25] and 12 studies comparing SFC with MFC.[10,12,14,17-22,28-30] These RCTs involved 2643 participants and met the inclusion criteria for this review. Table 1 describes the characteristics of the selected studies [Supplementary Appendix 2, http://links.lww.com/CM9/A827].

Risk of bias in included studies
Quality analysis was conducted based on the aforementioned method and tool. Figure 2 showed the main quality assessment of studies included. Of the 21 articles included for quality analysis, three studies (14.29%) were of high risk of bias,[7,16,29] two studies (9.52%) were of low risk of bias,[1,31] and the remaining 16 studies (76.19%) were of unclear risk of bias.[6,10,15,17-23,25-28]

Primary outcome
Two studies reported risk of asthma exacerbation comparing SFC and MON. One showed a significant reduction of the risk of asthma exacerbation in the SFC group after 12 weeks of treatment.[7] Another study showed a significant reduction of the risk of emergency entering in SFC group after 1 year of treatment.[6] Two studies reported the risk of asthma exacerbation comparing SFC with MFC,[10,21,22,29] with no significant reduction [Table 1].[31] Sensitivity analysis was not performed because of insufficient data on the primary outcome.

Secondary outcome
Risk of hospitalization
Two studies reported the risk of hospitalization comparing SFC and MON[16,25] and one study reported the risk of hospitalization comparing SFC and MFC.[29] Also, one study favored SFC after 1 year of treatment [Table 2].[6]

Pulmonary function
Five studies reported pulmonary functions comparing SFC and MON.[6,7,11,16,25] One study assessed FEV1 and morning and evening PEF and favored SFC after 12 weeks of treatment.[7] Three studies assessed PEF%pred[6,16,25] with one favoring SFC after 48 weeks of treatment.[25] Three studies assessed FEV1%pred[6,11,25] with one favoring SFC after 48 weeks of treatment[25] and one favoring MON after 5 months of treatment [Supplementary Appendix 3 Table 1, http://links.lww.com/CM9/A827].[23]

Eight studies reported pulmonary functions comparing SFC and MFC.[10,12,17,18,20-22,29] Among them, seven assessed the outcomes of PEF%pred[6,10,12,17,18,20-22,29] two assessed the variation of PEF,[10,21] two assessed FEV1,[17,20] four assessed FEV1%pred[12,18,21,29] and two assessed FEF25–75%.[18,21] The SFC group showed a significant improvement of PEF%pred after 4 weeks (MD: 5.45; 95% CI: 1.57–9.34; F = 95%; P = 0.006; Figure 3). SFC group also showed significant improvement of FEV1%pred and FEF25–75% after 4 weeks of treatment [Supplementary Appendix 4, http://links.lww.com/CM9/A827]. Other outcomes of pulmonary function are aggregated in Supplementary Appendix 3 Table 2, http://links.lww.com/CM9/A827.

Changes in asthma control level
Seven studies assessed changes in asthma control level comparing SFC and MON.[7,11,13-16,25] Two reported recurrence rate with no significant difference. Two reported clinical effective rate, favoring SFC after 8 weeks
of treatment and 5 months of treatment.\textsuperscript{14,15} Two reported clinical effective rate, favoring SFC after 8 weeks of treatment and 5 months of treatment.\textsuperscript{11,13} Two reported proportion of asthma symptom-free days, favoring SFC treatment after 12 weeks of treatment and 48 weeks of treatment.\textsuperscript{7,25} One reported the proportion of patients in complete control and the change of ACQ score,\textsuperscript{25} without significant difference [Supplementary Appendix 5 Table 1, http://links.lww.com/CM9/A827].

Eight studies assessed changes in asthma control level comparing SFC and MFC\textsuperscript{10,12,17-22} and all of them reported clinical effective rate. Two assessed day-time and night-time asthma score,\textsuperscript{10,22} three assessed C-ACT score,\textsuperscript{12,17,22} and two assessed the frequency of reliever use.\textsuperscript{10,22} The SFC group showed significantly higher full controlled level (RR: 1.51; 95% CI: 1.24–1.85; $I^2 = 0$; $P < 0.001$; Supplementary Appendix 6 Figure 1, http://links.lww.com/CM9/A827) and lower uncontrolled level (RR: 0.35; 95% CI: 0.24–0.52; $I^2 = 0$; $P < 0.001$; Supplementary Appendix 6 Figure 2, http://links.lww.com/CM9/A827), with higher C-ACT score after 4 weeks of treatment (MD: 2.30; 95% CI: 1.39–3.21; $I^2 = 72%$; $P < 0.001$; Supplementary Appendix 6 Figure 3, http://links.lww.com/CM9/A827). SFC group also showed significant improvement in night-time asthma score after 12 weeks of treatment [Supplementary Appendix 6 Figure 4, http://links.lww.com/CM9/A827]. Other out-

Figure 1: PRISMA study flow diagram. PRISMA: Preferred reporting items for systematic reviews and meta-analyses; RCT: Randomized controlled trial.
comes of asthma control level are aggregated in Supplementary Appendix 3 Table 2, http://links.lww.com/CM9/A827.

Quality of life

Only one study assessed quality of life by PAQLQ with no significant difference between SFC and MON. One study assessed the quality of life by PAQLQ and PACQLQ, and the result of PACQLQ favored SFC [Supplementary Appendix 7, http://links.lww.com/CM9/A827].

Adverse events

Two studies reported AEs comparing SFC and MON, both with no significant differences [Supplementary
Appendix 8 Table 1, http://links.lww.com/CM9/A827]. Six studies reported AEs with no differences [Supplementary Appendix 9, http://links.lww.com/CM9/A827, Appendix 8 Table 2, http://links.lww.com/CM9/A827].[10,17–19,22]

**Discussion**

Nowadays, there is a lack of evidence on the efficacy and safety of LABAs in the pediatric population which results in unlicensed use of LABA in children aged <4 years for salmeterol and 6 years for formoterol. [32] Although LTRAs are less effective than ICS, particularly for exacerbation reduction, they are still recommended as other asthma controllers in children and adolescents. [33] In addition, the lack of consensus among domestic and international guidelines regarding ICS/LABA and LTRA treatment options in the pediatric population has led to considerable confusion in China regarding the role of LTRAs for managing childhood asthma in clinical practice. For example, in the Japanese guidelines for childhood asthma (2017), LTRAs can be considered as additional initial therapy as well as a component of graduated step-up treatment options for children and adolescents aged 2 to 15 years.[34] Similar recommendations have been put forth in the Global Initiative for Asthma (GINA-2019) for children aged 6 years and older (Global Strategy for Asthma Management and Prevention [2019 Update]).[35] Although in the Chinese guidelines for childhood asthma (2016), ICS/LABA is recommended as the preferred steps 3–5 controller only in children ≥6 years with a suboptimal response to initial ICS treatment. For children <6 years with a suboptimal response to ICS, ICS/LTRA is also recommended as an alternative therapy for stepwise approaches for children and adolescents.

This review was undertaken to explore whether a clear benefit exists for either treatment, given the lack of large-scale head-to-head studies. Although it was not possible to perform a meta-analysis of predefined primary outcomes in the 21 RCTs of children and adolescents aged 4 to 18 years with asthma comparing SFC with MON, more evidence favored SFC, which indicated the lower risk of asthma exacerbation of SFC, with an overall reduction rate of 12.9% and 10% after 12 weeks and 1 year of treatment, respectively.[6,7] But when compared with MFC, only one study reported the risk of asthma exacerbation and there

| Study, country | Age, years, mean (range) | Diagnosis | N of Patients | Intervention | Details of treatment | Timeframe of outcomes | Significant key results |
|----------------|--------------------------|-----------|--------------|--------------|----------------------|----------------------|------------------------|
| Lenney 2013[29], UK | 10.39 (6.5–14.67) | Uncontrolled asthma | 63 | SFC vs. MFC | SFC: Inhaled 50 µg/100 µg BID vs. MFC: Oral 5 mg QD/100 µg BID for 48 weeks | 24 weeks and 48 weeks | No significant differences |
| Sorkness 2007[25], USA | 10 (6–14) | Mild to moderate persistent asthma | 189 | SFC vs. MON | SFC: Inhaled 50 µg/100 µg BID vs. MON: Oral 5 mg QD for 48 weeks | 48 weeks | No significant differences |
| Ma 2016[6], China | 4.4 (NR) | Mild to moderate asthma | 80 | SFC vs. MON | SFC: Inhaled 50 µg/100 µg BID (reduced 1/4 dosage for patients’ condition and pulmonary functions after 6 months and 12 months) vs. MON: Oral 4 mg (<6 years) or 5 mg (≥6 years) QD for 1 year | 6 months, 12 months, and 18 months | SFC treatment significantly decreased the risk of hospitalization at 18 months (5% vs. 12.5%, P < 0.001) |

**Table 2: Summary of secondary outcome: risk of hospitalization.**

| Study or Subgroup | SFC Mean (SD) | MFC Mean (SD) | Mean Difference | 95% CI |
|-------------------|---------------|---------------|-----------------|-------|
| Mean Difference   | N, Random, 95% CI | N, Random, 95% CI |
| SFC vs. MFC       |               |               |                 |
| Rao 2016          | 80.9 (3.3)    | 81.0 (3.2)    | 0.10 (0.34)     | 0.20 |
| Wang 2014         | 80.35 (1.77)  | 80.35 (1.77)  | 0.00 (0.34)     | 0.20 |
| Wang 2018         | 84.18 (7.78)  | 84.18 (7.78)  | 0.34 (0.34)     | 0.20 |

**Figure 3:** Results of PEF%pred after 4 weeks of SFC vs. MFC. CI: Confidence interval; MFC: Montelukast/Fluticasone; MON: Montelukast sodium; NR: Not reported; SFC: Salmeterol/Fluticasone.
were no significant differences between the two groups, which indicated the evidence was still insufficient to make a firm conclusive statement.\(^\text{[13]}\)

As for secondary outcomes, there was no difference of risk of hospitalization between SFC and MON. However, more studies favored SFC, with higher asthma control level (four in seven). Comparing SFC with MFC, one study (one in two) favored SFC with a significantly lower risk of hospitalization after 1 year of treatment.\(^\text{[6]}\) SFC also showed a significant improvement of pulmonary function (PEF%pred, MD: 5.45; 95% CI: 1.57–9.34; \(I^2 = 95\%\); \(P = 0.006\), a higher full asthma controlled level (RR: 1.51; 95% CI: 1.24–1.85; \(I^2 = 0\); \(P < 0.001\)), and a higher C-ACT score (MD: 2.30; 95% CI: 1.39–3.21; \(I^2 = 72\%\); \(P < 0.001\)) compared with MFC after 4 weeks of treatment. However, there were no significant differences in most of the pre-defined outcomes after 12 weeks treatment. Meta-analysis could not be performed in other timepoints.

**Strengths and limitations**

There are several limitations that warrant consideration. First, the external validity of the studies was quite poor, primarily because of the variability in asthma diagnoses (such as the degree of severity) and the design of RCT. Second, research protocols were not always well described, especially when comparing SFC therapy with MFC and the design of RCT. There are several limitations that warrant consideration. First, the external validity of the studies was quite poor, primarily because of the variability in asthma diagnoses (such as the degree of severity) and the design of RCT.

**Conclusions**

Existing evidence suggested that SFC may be more effective than MFC for the treatment of asthma in children and adolescents aged between 4 and 18 years with asthma. But there was still a lack of sufficient evidence to produce a conclusive statement on the optimal choice of SFC or MON. Larger multicenter and high-quality RCTs are required to verify this conclusion and to explore the applicable population, depending on different age, stages, and severity of asthma, and the level of EOS of SFC.

**Conflicts of interest**

This work was supported by GlaxoSmithKline (GSK), China. The company did not participate in data screening, extraction and analysis.

**References**

1. Zhao J. National parents of asthmatic children KAP project team. Asthma control status in children and related factors in 29 cities of China (in Chinese). Chin J Pediatr 2013;51:90–95. doi: 10.3760/ cmaj.sz.2013.01.003.
2. Sha L, Liu C, Shao M, Chen Y. Ten years comparison of diagnosis and treatment of asthma in urban children in China (in Chinese). Chin J Pediatr 2016;54:182–186. doi: 10.3760/cma.j.issn.0578- 1310.2016.03.003.
3. Zhou X, Hong J. Pediatric asthma management in China: current and future challenges. Pediatr Drugs 2018;20:105–110. doi: 10.1007/ s40272-017-0276-7.
4. Xiang L, Zhao J, Zheng Y, Liu H, Hong J, Yao Y, et al. Uncontrolled asthma and its risk factors in Chinese children: a cross-sectional observational study. J Asthma 2016;53:699–706. doi: 10.3109/ 02770903.2016.1144399.
5. Bough Y, Chen A, Fu Z, Liu C, Xiang L, et al. Guidelines for the diagnosis and management of bronchial asthma in children (2016 edition) (in Chinese). Chin J Pediatr 2016;3:167–181. doi: 10.3321/j.issn.1007-614x.2016.03.006.
6. Ma X, Hao T, Hao L, Liu S. Observations on the efficacy and safety of different treatment methods for children with mild to moderate asthma (in Chinese). Hebei Med J 2016;24:3720–3723. doi: 10.3969/j.issn.1002-7386.2016.24.010.
7. Maspedo J, Guerra F, Cuevas FY, Guerra JP, Soto-Ramos M, Anderton S, et al. Efficacy and tolerability of salmeterol/fluticasone propionate versus montelukast in childhood asthma: a prospective, randomized, double-blind, double-dummy, parallel-group study. Clin Ther 2008;30:1492–1504. doi: 10.1016/j.clithera.2008. 07.018.
8. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71. doi: 10.1136/bmj.n71.
9. Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, et al. Cochrane handbook for systematic reviews of interventions version 6.2 (updated February 2021) PN Cochrane. 2021. Available from: www.training.cochrane.org/handbook. [Accessed March 6, 2021].
10. Huang X, Huang W, Chen J, Yang L. Comparison of efficacy of salmeterol-fluticasonealone versus fluticasone propionate combined with montelukast sodium in the treatment of children with moderate persistent asthma (in Chinese). China Pharm 2016;27:3240–3243. doi: 10.6039/j.issn.1001-0408.2016.23.25.
11. Huang W. Application of montelukast in variable asthma (in Chinese). Guide China Med 2018;16:101–102. doi: 10.15912/cnki. ccmx.2018.17.077.
12. Rao M, Li J. A comparative study on efficacy between seretide and inhaled glucocorticoid combined with montelukast sodium in the treatment of children with moderate persistent asthma (in Chinese). J Hunan Norm Univ (Med Sci) 2016;13:123–126. doi: CNKI:SUN: HNYG.0.2016.03.043.
13. Han L. Study on inhalation of zoleide in the treatment of children with cough variant asthma (in Chinese). Chin Community Doctors 2013;15:80. doi: 10.3969/j.issn.1007-614x.2013.08.073.
14. Yuan D, Huang X. Observation of curative effect of seretide combined with montelukast sodium in the treatment of children with cough variant asthma (in Chinese). Jilin Med J 2012;33:960–961. doi: 10.3969/j.issn.1004-0412.2012.05.050.
15. Luo Y. Clinical analysis of montelukast Steiner treatment of children with cough variant asthma (in Chinese). Guide China Med 2013;11:405–406. doi: 10.3969/j.issn.1671-8194.2013.03.331.
16. Wang X. Analysis of the curative effect of montelukast in the treatment of children with cough variant asthma (in Chinese). Chin Pract Med 2012;7:170–171. doi: 10.3969/j.issn.1673-7535. 2012.09.131.
17. Wang C, Li H. Effect of combined treatment of different drugs on pulmonary function and C-ACT in children more than 5 years old with moderate asthma during persistent period (in Chinese). Matern Child Health Care China 2018;33:2504–2507. doi: 10.7620/zgfybj. jn.issn.1001-4411.2018.11.33.
18. Wang C. Clinical study of combination of different drugs for moderate persistent asthma in children aged 5 years or older (in Chinese). J Suzhou Univ 2014. doi: CNKI:CDMD:2.1015.539015.
19. Jiao Y. Comparison of the efficacy of salmeterol fluticasone alone versus salmeterol fluticasone propionate combined with montelukast sodium in the...
treatment of children with moderate persistent asthma (in Chinese). China Health Care Nutr 2017;27:33–34. doi: 10.3969/j.issn.1004-7484.2017.05.039.
20. Duan S. Clinical study of combination of different drugs in the treatment of children with moderate persistent asthma over 5 years old (in Chinese). China Contin Med Educ 2016;8:172–173. doi: 10.3969/j.issn.1674-9308.2016.15.114.
21. Zhang X, Ni C, Pan J, Chen Y, Liao C, Liu L. Observation on the clinical effect of moderate persistent asthma in children (in Chinese). J Clin Pulm Med 2009;14:1587–1589. doi: 10.3969/j.issn.1009-6663.2009.12.006.
22. Zhang Q. Effect of two different therapeutic strategies on children with moderate persistent asthma (in Chinese). Taishan, China: Hebei United University; 2014.
23. Liu F. To observe the effect of different therapeutic drugs on exhaled nitric oxide in asthmatic children (in Chinese). Taichung, China: Chinese Medical University; 2012.
24. Yu F. Clinical observation of salmeterol ticasone powder inhaler combined with montelukast sodium in the treatment of children with cough variant asthma (in Chinese). Chin J Pharm Econ 2014;9:59–60. doi: CNKI:SUN:ZYWA.0.2014-08-032.
25. Sorkness CA, Lemanske RF Jr, Mauger DT, Boehmer SJ, Chinchilli VM, Martinez FD, et al. Long-term comparison of 3 controller regimens for mild-moderate persistent childhood asthma: the pediatric asthma controller trial. J Allergy Clin Immunol 2007;119:64–72. doi: 10.1016/j.jaci.2006.09.042.
26. Pedersen S, Maspero J, Gul N, Sharma R. Components of asthma control and treatment response of individual control criteria in children: analysis of the PEACE study. Pediatr Pulmonol 2011;46:1182–1188. doi: 10.1002/ppul.21499.
27. NCT00328718. Pediatric ADVAIR DISKUS Versus Oral Montelukast Chewable Tablets. Available from: https://clinicaltrialsgov/show/NCT00328718, 2006 [added to CENTRAL: 31 May 2018 | 2018 Issue 5. [Accessed: January 10, 2021].
28. Verani M, Peroni DG, Piacentini GL, Nicodemo A, Rossi N, Bodini A, et al. Comparison of add-on therapy to inhaled fluticasone propionate in children with asthma: residual volume and exhaled nitric oxide as outcome measures. Allergy Asthma Proc 2007;28:691–694. doi: 10.2500/aap.2007.28.3034.
29. Lenney W, McKay AJ, Tudur Smith C, Williamson PR, James M, Price D. Management of asthma in School age Children on Therapy (MASCOT): a randomised, double-blind, placebo-controlled, parallel study of efficacy and safety. Health Technol Assess 2013;17:1–218. doi: 10.3310/hta17040.
30. Fogel RB, Rosario N, Aristizabal G, Loeyes T, Noonan G, Gaile S, et al. Effect of montelukast or salmeterol added to inhaled fluticasone on exercise-induced bronchoconstriction in children. Allergy Asthma Immunol 2010;104:511–517. doi: 10.1016/j.anai.2009.12.011.
31. Lemanske RF Jr, Mauger DT, Sorkness CA, Jackson DJ, Boehmer SJ, Martinez FD, et al. Step-up therapy for children with uncontrolled asthma receiving inhaled corticosteroids. N Engl J Med 2010;362:975–985. doi: 10.1056/NEJMoa1001278.
32. Matera MG, Page CP, Calzetta L, Rogliani P, Cazzola M. Pharmacology and therapeutics of bronchodilators revisited. Pharmacol Rev 2020;72:218–252. doi: 10.1124/pr.119.018150.
33. Chauhan BF, Ducharme FM. Anti-leukotriene agents compared to inhaled corticosteroids in the management of recurrent and/or chronic asthma in adults and children. Cochrane Database Syst Rev 2012;2012:CD002314. doi: 10.1002/14651858.CD002314.pub3.
34. Arakawa H, Hamasaki Y, Kohno Y, Ebisawa M, Kondo N, Nishima S, et al. Japanese guidelines for childhood asthma 2017. Allergol Int 2017;66:190–204. doi: 10.1016/j.alr.2016.11.003.
35. Asthma GIF. Global Strategy for Asthma Management and Prevention; 2019. Available from: www.ginasthma.org. [Accessed December 27, 2020].
36. Hong J, Bao Y, Chen A, Li C, Xiang L, Liu C, et al. Chinese guidelines for childhood asthma 2016: major updates, recommendations and key regional data. J Asthma 2018;55:1138–1146. doi: 10.1080/02770903.2017.1396474.

How to cite this article: Zhou XJ, Qin Z, Lu J, Hong JG. Efficacy and safety of salmeterol/fluticasone compared with montelukast alone (or add-on therapy to fluticasone) in the treatment of bronchial asthma in children and adolescents: a systematic review and meta-analysis. Chin Med J 2021;134:2954–2961. doi: 10.1097/CM9.0000000000001853