A mathematical model of production facilities location

Oleg Malafeyev1,a), Julia Lakhina1,b), Irina Zaitseva2,3,c), Nadezhda Redinskikh1,d), Tatiana Smirnova1,e) and Nikolay Smirnov1, f)

1 St. Petersburg State University, Faculty of Applied Mathematics and Control Processes, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
2 Stavropol State Agrarian University, Zootekhnicheskiy lane 12, Stavropol, 355017, Russia
3 Stavropol branch of the Moscow Pedagogical State University, Dovatortsev str. 66, Stavropol, 355042, Russia

a) malafeyevoa@mail.ru
b) juliala1401@gmail.com
c) Corresponding author: irina.zaitseva.stv@yandex.ru
d) redinskich@yandex.ru
e) t.smirnova@spbu.ru
f) nvs_v@mail.ru

Abstract. A mathematical model of the industrial enterprises location in the region is formalized and studied in this paper. It is necessary to locate objects polluting the environment in such way as to maximize the total income of the players. The total income is calculated as income from the activities of enterprises, minus the funds that are spent on the recover damage to the environment. This problem is formalized as a non-cooperative game with n players that exploit common sources – natural objects.

1. Introduction
Let us define a Cartesian coordinate system. The axis OX is directed to the east, the axis OY is directed strictly to the north. In the region under consideration there are natural objects A_1, \ldots, A_m. Each object is characterized by a pair of coordinates (x_j, y_j). Participants in the competitive process are objects: ”pollutants” B_1, \ldots, B_n and ”contaminated” A_1, \ldots, A_m. The number of players is n, and the number of natural objects is m.

2. Main results
The set of the player i strategies:

$D_i = \{u_i = (x_i, y_i), p \leq \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2} \leq \overline{p}, \forall j \in m, j \neq i, i \in n \}$

where \overline{p} - is the minimum (maximum) distance between objects.

For each players strategy profile the players payoff functions are defined [1].
The income of the player is equal to the value of its payoff function [2].
In the work [1] was built income function for the i player [3]:
\[H_i(u) = \sum_{j=1, j \neq i}^{m} \frac{L_{ij}}{p(i,j)} - \sum_{j=1, j \neq i}^{m} \frac{Q_{ij}W_i}{2\pi p^2(i,j)}, \quad i = 1, n, \]
(1)
where \(n \) is the number of players, \(m \) is the number of natural objects; \(p(i,j) = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2} \) is the distance between the industrial enterprise \(i \) and the natural object \(j \).

The income from the activity of the enterprise \(i \), received by the player \(i \) is[4]:
\[\frac{L_{ij}}{p(i,j)}, \]
(2)
where \(L_{ij} \geq 0 \) is the amount of the loss, depending on the distance \(p(i,j) \) between the objects \(i \) and \(j \). The greater the distance between the enterprise and the natural object, the lower the income amount of the \(i \) player will receive [4].

The amount of resources that the player \(i \) spends on compensating for environmental damage to the natural object \(j \) [5]:
\[\frac{Q_{ij}W_i}{2\pi p^2(i,j)}, \]
(3)
\(Q_{ij} \) is the weighting factor. It defines environmental damage that object \(i \) causes to object \(j \), \(W_i \) is the amount of harmful substances that the object \(i \) emits into the environment [6].

If the object \(i \) does not harm the object \(j \), then \(Q_{ij} = 0 \).

The function \(H_i(u) \) in the domain of \(p \leq \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2} \leq \bar{p} \) is continuous and has partial derivatives of the first and second order that are continuous in this region. Hence, it is smooth in the domain of the job [7-10].

3. Numerical example
Let's consider a numerical example [11].

A noncooperative game \(G = (N, \{X_i\}_{i \in N}, \{H_i\}_{i \in N}) \) is considered where \(N = 3 \) is the number of players, \(X_i \) is the set of player \(i \) strategies, \(H_i \) is the player \(i \) payoff function. Let the number of natural objects be \(m = 5 \). Let the region has an area of 15 square kilometers. We set \(\pi = 3 \). Let the natural objects \(A1, A2, A3, A4, A5 \) in the region be arranged as follows:

Natural objects	A1	A2	A3	A4	A5
Coordinate \(x \)	2	5	9	14	8
Coordinate \(y \)	3	9	6	1	13

For the enterprise of each player there is a permissible set of points where it is possible to build it, that is, each player \(i \) has an acceptable set of strategies:

Industrial enterprise 1	B1	B2	B3
Coordinate \(x \)	7	1	9
Coordinate \(y \)	8	2	10

Industrial enterprise 2	C1	C2	C3	C4
Coordinate \(x \)	6	11	5	8
Coordinate \(y \)	4	15	3	15

We calculate the value of the payoff function of each player according to the formula (1) taking into account the data specified above. We get the following payoff matrices for players 1, 2 and 3, where the lines are player's strategy 1, the columns are the strategies of player 2 [12].
Table 4. Admissible positions \((D_1, D_2)\) for placing the company's player

Industrial enterprise	\(D_1\)	\(D_2\)
Coordinate \(x\)	4	6
Coordinate \(y\)	12	1

Table 5. The amount of loss \(L_{ij}\) of player 1

Industrial enterprise	\(B_1\)	\(B_2\)	\(B_3\)
Natural object A	10	1	13
Natural object A	4	11	8
Natural object A	5	12	6
Natural object A	13	15	14
Natural object A	9	15	6

Table 6. The amount of loss \(L_{ij}\) of player 2

Industrial enterprise	\(C_1\)	\(C_2\)	\(C_3\)	\(C_4\)
Natural object A	5	17	2	15
Natural object A	7	10	8	9
Natural object A	4	13	6	12
Natural object A	11	16	13	18
Natural object A	13	3	14	1

Table 7. The amount of loss \(L_{ij}\) of player 3

Industrial enterprise	\(D_1\)	\(D_2\)
Natural object A	8	3
Natural object A	1	7
Natural object A	5	4
Natural object A	10	6
Natural object A	2	9

Table 8. The weighting coefficient \(Q_{ij}\), which determines the environmental damage caused by an industrial enterprise 1 to natural object \(j\)

Industrial enterprise	\(B_1\)	\(B_2\)	\(B_3\)
Natural object A	1.15	2.75	1.45
Natural object A	1.5	1.95	2.15
Natural object A	1	1.15	1.05
Natural object A	2.2	1.8	2.9
Natural object A	1.9	2.6	1.4

Table 9. The weighting coefficient \(Q_{ij}\), which determines the environmental damage for player 2

Industrial enterprise	\(C_1\)	\(C_2\)	\(C_3\)	\(C_4\)
Natural object A	2.4	1.96	1.34	2.05
Natural object A	1.67	1.02	1.73	1.09
Natural object A	2.45	1.75	1	2.05
Natural object A	1.85	2.3	1.6	1.31
Natural object A	1.1	2.7	1.32	1.09

Table 10. The weighting coefficient \(Q_{ij}\), which determines the environmental damage for player 3

Industrial enterprise	\(D_1\)	\(D_2\)
Natural object A	2.9	1.25
Natural object A	1.05	1.64
Natural object A	2.1	1.36
Natural object A	1.9	1.82
Natural object A	1.08	1.6
Table 11. Amount of harmful substances W_i discarded enterprise i to favorites

Industrial enterprise	W_i
1	60
2	15
3	35

Table 12. The influence of the choice of strategies of players 2 and 3 on the income of the player 1, when using 1 strategy

Player positions 3/Player positions 2	C1	C2	C3	C4
D1	0.17	0.89	0.25	0.32
D2	1.01	1.82	1.54	1.76

Strategies of player 3:

\[
\begin{align*}
& (0.444; 3.931; 1.007) & (2.326; 2.565; 0.186) & (0.654; 4.220; 2.633) & (0.836; 3.759; 1.487) \\
& (5.339; 4.515; 0.697) & (6.309; 3.178; 2.525) & (3.501; 3.674; 2.323) & (6.101; 4.658; 2.044) \\
& (1.154; 5.100; 1.146) & (0.902; 1.784; 2.478) & (3.210; 4.766; 1.936) & (0.613; 2.615; 1.239)
\end{align*}
\]

Table 13. The influence of the choice of strategies of players 2 and 3 on the income of the player 1, when using 2 strategy

Player positions 3/Player positions 2	C1	C2	C3	C4
D1	1.54	1.82	1.01	1.76
D2	0.25	0.89	0.17	0.32

Table 14. The influence of the choice of strategies of players 2 and 3 on the income of the player 1, when using 3 strategy

Player positions 3/Player positions 2	C1	C2	C3	C4
D1	0.32	0.25	0.89	0.17
D2	1.76	1.54	1.82	1.01

Table 15. The influence of the choice of strategies of players 1 and 3 on the income of the player 2, when using 1 strategy

Player positions 3/Player positions 1	B1	B2	B3
D1	0.74	0.85	0.96
D2	0.32	0.46	0.57

Table 16. The influence of the choice of strategies of players 1 and 3 on the income of the player 2, when using 2 strategy

Player positions 3/Player positions 1	B1	B2	B3
D1	0.46	0.57	0.32
D2	0.85	0.96	0.74

Table 17. The influence of the choice of strategies of players 1 and 3 on the income of the player 2, when using 3 strategy

Player positions 3/Player positions 1	B1	B2	B3
D1	0.85	0.74	0.96
D2	0.46	0.32	0.57

Table 18. The influence of the choice of strategies of players 1 and 3 on the income of the player 2, when using 4 strategy

Player positions 3/Player positions 1	B1	B2	B3
D1	0.46	0.57	0.32
D2	0.85	0.96	0.74
Table 19. The influence of the choice of strategies of players 1 and 2 on the income of the player 3, when using 1 strategy

Player positions 1	Player positions 2	C1	C2	C3	C4
B1	0.65	0.45	0.74	0.12	
B2	1.63	1.6	1.7	1.5	
B3	1.25	0.96	1.32	0.8	

Table 20. The influence of the choice of strategies of players 1 and 2 on the income of the player 3, when using 2 strategy

Player positions 1	Player positions 2	C1	C2	C3	C4
B1	0.45	0.74	0.12	0.65	
B2	0.96	1.32	0.8	1.25	
B3	1.6	1.7	1.5	1.63	

Strategies of player 1:

\[
\begin{align*}
(2.640; 1.700; 1.201) & \quad (4.757; 4.739; 1.735) & \quad (4.025; 2.284; 2.135) & \quad (4.600; 6.946; 4.537) \\
(0.867; 2.444; 1.975) & \quad (3.085; 5.352; 2.562) & \quad (0.589; 1.589; 3.336) & \quad (1.109; 7.845; 4.003) \\
(6.348; 3.028; 0.320) & \quad (5.554; 4.126; 3.523) & \quad (6.564; 2.830; 4.270) & \quad (3.643; 6.047; 4.350) \\
\end{align*}
\]

4. The Nash Equilibrium

In the book [2] it is presented the construction of the Nash equilibrium strategy profile. Since in our problem each of the three players has a finite number of strategies, and each competitive strategy profile corresponds to the set of the income functions values of the players, then in this game there is at least one Nash equilibrium strategy profile in the mixed strategies. Let us find the equilibrium strategy profile in this example. Let us recall the definition of the equilibrium strategy profile [13-15].

Definition. A set of the strategies \(u^* = (u^*_1, ..., u^*_3) \) of \(D_1 \) is called a Nash equilibrium strategy profile if for any strategy \(u_i \in D_i \) the inequality is valid

\[
H_i(u^*) \geq H_i(u^*\|u_i), \quad i = 1, k,
\]

where \(u^*\|u_i = (u^*_1, ..., u^*_{i-1}, u^*_{i+1}, ..., u^*_k) \).

From the definition of equilibrium it follows that an agent \(i \) one-sided deviation can only lead to a decrease in his income [16].

In this problem, the Nash equilibrium strategy profile is searched as follows: in the first step let us fix the strategy 1 of player 2 (column 1) and strategy 1 of player 3 (matrix 1). Then let us go through all the values (three) of the payoff function of player 1 and choose the largest of them.

In the second step let us fix strategy 2 of player 2 (column 2) and strategy 1 of player 3 (matrix 1). Similarly, let us find the largest value of the payoff function of player 1.

Thus, fixing the strategies of 2 and 3 players, let us find the greatest value of the payoff function of the player \(i \) in each column of each matrix.

After that let us search the largest value of the payoff function of player 2. Let us fix player's strategy 3 (matrix) and player's strategy 1 (fixed-matrix string). Further let us compare the values player's payoff function 2 (on matrix columns). Let us find the largest value in each row of both matrices.

Similarly, by fixing the strategies of player 1 (row) and player 2 (column) let us choose the largest value of the payoff function of player 3 by its two strategies (matrices).

Finally, let us examine the intersection of the chosen win values for each player. This is the Nash equilibrium strategy profile [17-30].

Following this algorithm, let us obtain the following Nash equilibrium point: \((4.600; 6.946; 4.537)\).
5. A Compromise Strategy Profile

Let us find a compromise strategy profile in this problem. In [3] \(M_i = \max \{ H_i(u), u \in D \} \) the set of compromise strategies profile is defined as follows:
\[C_k = \left\{ u \in D \mid \max_i \left(M_i - H_i(u) \right) \leq \max_i \left(M_i - H_i \left(u^* \right) \right), \forall u \in D \right\}. \]

In other words, a compromise strategy profile is a strategy profile in which the largest deviation of the payoff function of one of the players from its maximum value for \(i \) is not greater than the largest deviation of the \(i \) payoff function to one of the players from the maximum value in any other strategy profile [31–37].

The compromise strategy profile is searched as follows in this problem: for each player let us find the maximum value of its payoff function \(M_i \):
\[
M_1 = 6.564; M_2 = 7.845; M_3 = 4.537. \quad (5)
\]
Thus, the ideal vector is \((M_1, M_2, M_3) = (6.564, 7.845, 4.537)\).

Let us calculate the maximum values of the residuals for each strategy profile \(x \in X = B \ast C \ast D \). Here \(|X| = 3 \ast 4 \ast 2 = 24\). Now let us calculate \(x \in X \) maximum residual value \(\delta(x) \). Among them, let us find the minimum value (maximal discrepancy) for all strategies profile \(x \in X \):
\[
(B_1, C_4, D_2) : \delta(16) = M_1 - H_1(1) = 1.964; \quad (6)
\]
that is, the desired compromise strategy profile is the strategy profile \((B_1, C_4, D_2)\).

The values of the players winning features in this strategy profile are the following \((4:600; 6:946; 4:537)\).

6. Conclusion

The two principles of optimality, Nash equilibrium and compromise solution, are considered in this paper. The optimality strategy profile in the model is strategy profile \((B_1, C_4, D_2)\).

References

[1] Kirjanen A, Malafeyev O and Redinskikh N 2017 Developing industries in cooperative interaction: Equilibrium and stability in processes with lag Statistics, Optimization and Information Computing.

[2] Kriulina E, Tarasenko N, Miroshnitchenko N, Zaitseva I and Dedyukhina I 2016 Environmental Management in Agriculture: Problems and Solutions, Research Journal of Pharmaceutical, Biological and Chemical Sciences, no. 7(3), pp. 1908-1912.

[3] Neverova E and Malafeyev O 2015 A model of interaction between anticorruption authority and corruption groups AIP Conference Proceedings, (American Institute of Physics).

[4] Neverova E, Malafeyev O, Alferov G and Smirnova T 2015 Model of interaction between anticorruption authorities and corruption groups in International Conference on "Stability and Control Processes" in Memory of V.I. Zubov, (SCP, Proceedings, SPb), pp. 488-490.

[5] Drozdov G, Malafeyev O and Nemnyugin S 2015 Multicomponent dynamics of competitive single-sector economy development International Conference on "Stability and Control Processes" in Memory of V.I. Zubov (SCP 2015 – Proceedings).

[6] Kolesin I, Malafeyev O, Andreeva M and Ivanukovich G 2017 Corruption: Taking into account the psychological mimicry of officials AIP Conference Proceedings (American Institute of Physics).

[7] Zaitseva I and Popova M 2013 Technique to study the employment potential of the region: economic-mathematical aspect (World Applied Sciences Journal,), no. 22 (1), pp. 22-25.

[8] Zaitseva I, Kriulina E, Ermakova A, Shevchenko E and Vorokhobina Y 2016 Application of Factor Analysis to Study the Labour Capacity of Stavropol Krai (Research Journal of Pharmaceutical, Biological and Chemical Sciences,), no. 7(4), pp. 2183-2186.

[9] Zaitseva I, Popova M, Ermakova A, Bogdanova S and Rezenkov D 2016 Determination Prospects Of Development Labor Potential In Agriculture Stavropol Territory Based On Assessment His Condition (Research Journal of Pharmaceutical, Biological and Chemical Sciences, no. 7(3),), pp. 2592-2595.

[10] Zaitseva I, Malafeyev O, Strekopytov S, Ermakova A and Shlaev D 2018 Game-theoretical model
of labour force training Journal of Theoretical and Applied Information Technology.

[11] Zaitseva I, Malafeyev O, Strekopytov S, Bondarenko G and Lovyannikov D 2018 Mathematic model of regional economy development by the final result of labor resources AIP Conference Proceedings (American Institute of Physics).

[12] Zaitseva I, Ermakova A, Shlaev D, Shevchenko E and Lugovskoy S 2017 Workforce planning redistribution of the region's results (Research Journal of Pharmaceutical, Biological and Chemical Sciences), 8(1), pp. 1862-1866.

[13] Kostyukov K, Zaitseva I, Bondarenko G, Svechinskaya T and Nechayeva S 2016 Workforce Planning as An Element of Control System (Research Journal of Pharmaceutical, Biological and Chemical Sciences, no. 7(6)), pp. 2315–2319.

[14] Vlasov M, Glebov V, Malafeyev O and Novichkov D 1986 Experimental study of an electron beam in drift space (Soviet journal of communications technology & electronics), 31(3), pp. 145-149.

[15] Malafeyev O and Redinskikh N 2018 Compromise solution in the problem of change control for the material body exposed to the external medium AIP Conference Proceedings (American Institute of Physics) 1959, 080017. doi.org/10.1063/1.5034734.

[16] Malafeyev O, Redinskikh N, Nemnyugin S, Kolesin I and Zaitseva I 2018 The optimization problem of preventive equipment repair planning AIP Conference Proceedings (American Institute of Physics) 1978, 100013. doi.org/10.1063/1.5043757.

[17] Malafeyev O and Nemnyugin S 1996 Generalized dynamic model of a system moving in an external field with stochastic components, Theoretical and Mathematical Physics, no. 107(3), , 770 p.

[18] Malafeev O 1995 On the existence of nash equilibria in a noncooperative game model of regional economy development by the final result of labor resources Communications in Applied Mathematics and Computational Science, no. 5(4), pp. 689-701.

[19] Malafeyev O, Awasthi A, Zaitseva I, Rezenkov D and Bogdanova S 2018 A dynamic model of functioning of a bank AIP Conference Proceedings (American Institute of Physics).

[20] O. Malafeyev, D. Rylow, I. Zaitseva, M. Popova and L Novozhilova, “Game-theoretic model of dispersed material drying process”, AIP Conference Proceedings, American Institute of Physics, 2017.

[21] Malafeyev O, Saifullina D, Ivanikovich G, Marakhov V and Zaitseva I 2018 The model of multi-agent interaction in a transportation problem with a corruption component AIP Conference Proceedings (American Institute of Physics).

[22] Malafeyev O, Farvazov K, Zenovich O, Zaitseva I, Kostyukov K and Svechinskaya T 2018 Geopolitical model of investment power station construction project implementation AIP Conference Proceedings (American Institute of Physics).

[23] Malafeyev O, Nemnyugin S, Rylow D, Kolpak E and Awasthi A 2017 Corruption dynamics model AIP Conference Proceedings (American Institute of Physics).

[24] Malafeev O 1974 Equilibrium situations in dynamic games Cybernetics, 10(3), pp. 504-513.

[25] Malafeyev O 1977 Stationary strategies in differential games USSR Computational Mathematics and Mathematical Physics, 17(1), pp. 37-46.

[26] Malafeev O 1974 The existence of situations of e-equilibrium in dynamic games with dependent movements USSR Computational Mathematics and Mathematical Physics, 14(1), pp. 88-99.

[27] Malafeyev O and Redinskikh N 2017 Quality estimation of the geopolitical actor development strategy Constructive Nonsmooth Analysis and Related Topics Dedicated to the Memory of V.F. Demyanov, CNSA 2017 – Proceedings.

[28] Malafeyev O, Rylow D, Zaitseva I, Ermakova A and Shlaev D 2018 Multistage voting model with alternative elimination AIP Conference Proceedings 1978, 100012. doi.org/10.1063/1.5043756

[29] Kolokoltssov V and Malafeyev O 2015 Mean-field-game model of corruption Dynamic Games and Applications, pp. 1-14.

[30] Kolokoltssov V and Malafeyev O 2018 Corruption and botnet defense: a mean field game approach International Journal of Game Theory.

[31] Pichugin Y, Malafeyev O, Rylow D and Zaitseva I 2018 A statistical method for corrupt agents detection AIP Conference Proceedings (American Institute of Physics) 1978, 100014.
[32] Pichugin Y and Malafeyev O 2016 Statistical estimation of corruption indicators in the firm Applied Mathematical Sciences, 10(41-44), pp. 2065-2073.
[33] Malafeyev O, Nemnyugin S and Ivanikovich G 2015 Stochastic models of social-economic dynamics International Conference on “Stability and Control Processes” in Memory of V.I. Zubov, SCP 2015 – Proceedings, 7342178, pp. 483-485.
[34] Malafeyev O and Redinskikh N 2016 Stochastic analysis of the dynamics of corrupt hybrid networks Proceedings of 2016 International Conference ”Stability and Oscillations of Nonlinear Control Systems” (Pyatnitskiy's Conference), STAB, 7541208.
[35] Zaitseva I, Malafeyev O, Kolesin I, Ermakova A and Shlaev D 2018 Modeling of the labour force redistribution in investment projects with account of their delay IEEE International Conference on Power, Control, Signals and Instrumentation Engineering, ICPSI 2017, pp. 68-70.
[36] Malafeyev O and Nemnyugin S Model of the optimal parameters choice for the charged particles beam 25th Russian Particle Accelerator Conference, RuPAC, 2016, pp. 437-439.
[37] Malafeyev O, Awasthi A, Kambekar K, Kupinskaya A 2019 Random walks and Market Efficiency in Chinese and Indian equity markets Statistics Optimization and Information Computing, 7(1), c. 1-25.

Acknowledgments
The work is partially supported by the RFBR grant # 18-01-00796.