Waste Management Technique Applied in the Preparation of Bio Concrete Material

E. Kowsalya, L. Jeyanthi Rebecca

Abstract. Due to Modernization and urbanization constructing industries are fast growing also it leading to high demand of constructing materials because of expensive prices, and for the construction industry, usage of steel is currently limited heavily. Many studies have been carried out to identify highly available, low cost innovative material to use in construction industry as a solution to meet the ever increasing demand for raw material. Bamboo was used as a construction material as a coarse aggregate, steel reinforcement. Bamboo has a higher compressive strength than wood, brick, or concrete and a tensile strength that rivals steel. Water absorption in bamboo was the main problem used for construction because the durability of the concrete is largely affected by absorption of water. Also polyethylene bags are widely used in the country and its disposal after use causes more problems. Mismanaged waste of polyethylene bags is the current threatening to the environment this waste is largely available its abundant high resistance to insects, fungi, animals, as well as molds, mildew, rot and many chemicals. In this study cubic bamboo was used as a coarse aggregate and it was coated with the waste LDPE bag melt, as one of the coating material and other one is neem oil. And it was investigated to find the water absorption and turbidity, antifungal activity and compressive strength some other parameters in bamboo material with coatings it was observed that compared to untreated bamboo the polyethylene coated bamboo material shows reduction in water absorption level and turbidity.

IndexTerm: Bioconcrete, bamboo, LowDensityPolyethylene (LDPE) bags, Neem oil, water absorption.

I. INTRODUCTION

Conventionally non-renewable materials are used for construction such as brick, sand, rocks for making concrete and steel is a main thing since production of steel processing industries utilizing more natural resources and also producing various types of pollution. So to save our environment this is the right time to minimize the usage of these product and to find the various other substitute. Among many choice Bamboo is the potential plant and fast growing used as construction material. Comparatively its not equal strength to steel or concrete but it can be used in mixture to replace some portion of conventional material. So many researchers are working in finding alternatives have prepared bamboo as concrete beams. The research work of tried with concrete column with the bamboo, so many work was done for finding reuse of waste material as a concrete aggregate substitute such as coconut shell.

In wood material water absorption is the main problem, bamboo material shrink or swell due to water effect so some treatment should be done for bamboo to use for construction. Coatings are the better choice to reduce water absorption silicone modified coatings are used to increase durability and also Neem botanical name as Azadirachta indica (A. Juss) is evidently known that all parts of plant used for disease curing exhibit the property of antibacterial, antifungal, anti viral, anti- malarial. Neem Leaf extract is a good inhibitor of plant pathogens and wood decay fungi. Neem wood is against wood rotters. Bamboo may also be attacked and destroyed by biodegradation factors. Chemical treatments are used to increase durability, and to reduce water absorption, chemical treatment is not eco-friendly and high cost. There are also some eco-friendly methods to improve the durability, which use thermal and natural products like vegetable oils (palm, sunflower, or soy bean) and high cost.

So in this work we used Neem oil for treating bamboo material to make it resistant to microbial degradation so that it can be used in a concrete for long life. Also today the major reason for environmental pollution is usage of thin plastic carry bags which cannot be recycled and use only once. It can affect land and aquatic life if it is incinerated it emits more gases which create more air pollution. But it has favorable properties like high water resistant and flexible in nature so the idea of making these type of low density polyethylene LDPE in to another way of use was as a coating for bamboo to reduce water absorption.

II. MATERIALS AND METHODS

A. Sample preparation:

Bamboo logs are collected from my residence as the waste unused dried and tender bamboo logs. They were dried at room temperature and are reduced in size by cutting with blades. These smaller cubic bamboos were coated with neem oil. The bamboo was soaked into the neem oil for one day. And then take out the bamboos and bamboos were dried in sunlight for one day. The cubic bamboos were coated with plastic are eventually. The plastic was melted in the form of liquid and then coated in bamboos. After coating left for setting again in room temperature and was used as the sample. The sample was prepared and stored in room temperature for further use.

Revised Manuscript Received on November 22, 2019.
Ms. E. Kowsalya, M.Tech., (Ph.D). Totally published 20 papers in various scopus Journals and also in refereed journals. Research Area: Environmental Engineering, Bioprocess.
Dr. L. Jeyanthi Rebecca D.Sc., Totally published 100 papers in various scopus Journals and also in refereed journals. Research Area: Plant biotech, Enzymology.

Published By:
Blue Eyes Intelligence Engineering & Sciences Publication

Retrieval Number: D9209118419/2019©BEIESP
DOI:10.35940/ijeer.D9209.118419
Waste Management Technique Applied in the Preparation of Bio Concrete Material

B. Water absorption test:
The initial dry weight of sample bamboo was taken, and that same sample was immersed to required time of investigation and weighed after surface wiping with cloth from the readings noted the water absorption rate was calculated as follows,

\[
\text{Water absorption (\%)} = \left(\frac{W_{t2} - W_{t1}}{W_{t2}} \right) \times 100
\]

\(W_{t1} \) = initial weight of specimen gm
\(W_{t2} \) = specimen weight after hours of water soaking, gm.

C. Antifungal test:
The dried and tender samples were taken and soak it in distilled water. Then after 24 hours the water was taken for culture. Use water sample for serial dilution. The water was cultured each sample in each petriplates. And then the culture is incubated it for 24 hours at 370 c. the sample procedure is repeated for 10 days.

D. Turbidity test:
Turbidity test was done to find whether any dissolution occurs in bamboo material after immersion with water and also any fungal growth is to occurs. The dried and tender bamboo sample 1, sample 2 and sample 3 was taken to check the turbidity. And then take the distilled water and measure the turbidity to know the initial turbidity value of the distilled water. Then the sample was immersed in to Dis.H2O. After a day take the water and checked the turbidity. The water is taken daily to check the turbidity till 10 days and the turbidity was checked in turbid meter.

E. Concrete mix design:
The materials used for these investigations are: cement, fine and coarse aggregates, water, cement. The test sample concrete block was made with the different combinations as follows
1. Cement+Fine aggregates+Coarse aggregate
2. Cement+Fine aggregates+Coarse aggregate+ Uncoated bamboo
3. Cement+Fine aggregates+Coarse aggregate+Neemoil coated bamboo
4. Cement+Fine aggregates+Coarse aggregate+LDPE coated bamboo

F. Compressive strength:
Compressive strength is an important parameter to be considered for any structures so the four set of mix design were prepared as a concrete block in a mould after one day of drying it was subjected for curing after that all the four samples were subjected for compression test.

III. RESULTS AND DISCUSSION

Water absorption test:
Dried bamboo

Sample weight	Initial weight(gms)	Day 1	Day 6	Day 7	Day 8	Day 12
Untreated Bamboo	3.438	5.54	6.78	6.9	7.07	7.3
Neem oil coated	3.16	4.44	5.7	5.86	5.93	6.09
Polyethylene coated	3.33	4.55	5.81	5.92	6.01	6.12

From the table 1 we can observe the day by day water absorption increases the rate of water absorption was calculated in percentage for ease of understanding and presented in table 2.

Day	Untreated Sample (%)	Neem Oil (%)	Plastic (%)
1	61	40	36
6	22	28	27
7	1.8	2.8	1.8
8	2	1.2	1.8
12	3.2	2.6	1.8

The water absorption for untreated bamboo was more 60% whereas for neem oil it was reduced to 40% and more than that only 36% of water absorption showed for plastic coated after the day one.

Fig.3: Water absorption Rate

The Fig 3 shows the graphical representation of water absorption rate over 12 days showing that untreated bamboo shows higher rate of water absorption.
Table 3 Moisture content of untreated and treated bamboo.

S.No	Untreated Sample (%)	Neem Oil (%)	Plastic (%)
1	59	40	36
2	72	50	45
3	79	68	52
4	84	75	64
5	90	76	70
6	94	80	74
7	98	85	77
8	103	87	80
9	106	90	81
10	110	92	83

From the above graph it’s been confirmed that the plastic treated bamboo shows less water absorbance than the other two samples i.e. the untreated bamboo and the neem oil treated bamboo.

Antifungal Activity:

Table 4 Antifungal activity

Day	Antifungal
1	-
2	-
3	-
4	-
5	-
6	-
7	-
8	-
9	-
10	-

From the Fig:5 The results were concluded that all the three days there was no growth of any fungal stains. This shows that both untreated and treated bamboo as antifungal characteristics by nature itself.

Turbidity Test:

Table 5 Turbidity of dried untreated and treated bamboo

S.No	Untreated Bamboo (OD)	Neem Oil (OD)	Plastic (OD)
1	0.06	0.03	0.01
2	0.11	0.08	0.06
3	0.15	0.11	0.10
4	0.18	0.17	0.14
5	0.21	0.20	0.17
6	0.21	0.21	0.18
7	0.24	0.23	0.18
8	0.26	0.25	0.19
9	0.29	0.27	0.21
10	0.33	0.30	0.22

From the above graph it is clearly shown that the untreated bamboo shows much more turbidity than the plastic and neem oil treated bamboo sample.
Waste Management Technique Applied in the Preparation of Bio Concrete Material

Table 6: Turbidity of tender untreated and treated bamboo

S.No	Untreated Bamboo (OD)	Neem Oil (OD)	Plastic (OD)
1	0.02	0.02	0.01
2	0.05	0.03	0.02
3	0.07	0.05	0.05
4	0.10	0.08	0.06
5	0.12	0.10	0.07
6	0.14	0.13	0.07
7	0.16	0.15	0.07
8	0.17	0.16	0.08
9	0.18	0.17	0.08
10	0.23	0.20	0.10

Tender bamboo blocks also were tested for turbidity measurement during immersion in water. Table 6 shows the results which proved that pretreatment of bamboo blocks with plastic coatings is the best way of avoiding water absorption.

Table 7 shows that bamboo substituted cement block also giving relatively equal compressive strength.

From Fig. 10 we can observe that compared to Non coated bamboo, coated bamboo substituted cement block giving good compressive strength.

IV. CONCLUSION

This work was done to find the usability of bamboo as a substitute for coarse aggregate and also it is showing good compressive strength after prepared as concrete block in the meantime the method of coating bamboo with neem oil and LDPE melt proven that there is a way for managing polythene carry bag waste that could not be recycled in practice. Further this work can be extended for some more test which is applicable and as well as the time period of investigation also to be extended.

REFERENCES

1. A.A. Mark, A. O. Russell, “A Comparative Study of Bamboo Reinforced Concrete Beams Using Different Stirrup Materials for Rural Construction” International Journal of Civil and Structural Engineering, vol. 2, No 1, 2011, pp. 407-427.
2. K. Ghavami, “Ultimate load behavior of Bamboo-reinforced lightweight concrete beams”, Cement & Concrete Composites, vol. 17(4), 1995, pp. 281-288.
3. K. Ghavami, “Bamboo as Reinforcement in Structural Concrete elements”, Cement & Concrete Composites, vol. 27(6): 2005, pp. 637-649.
4. H. M. A. Alhazuz., M. Ahmed, M. Ashrajuzzaman, R. Karim and R. Ahmed, “Performance Evaluation of Bamboo with Mortar and Concrete” Journal of Engineering and Technology Research, vol. 3(12), 2011, pp. 342 – 350.
5. S.Leelatanon, S. Srivaro and N. Matan, “Compressive strength and ductility of short concrete columns reinforced by bamboo”, Songklanakarin J. Sci. Technology, vol. 32 (4), 2010, pp. 419-424.
6. G.N.V Sai Teja 2015, International Journal of Innovative Research in Engineering & Management (IJIREM)ISSN: 2350-0557, Volume-3, Special Issue-1, April-2015
7. S. C. Sahoo • Amitava Sil • K. Thanigai • C. N. Pandey, “Use of silicone based coating for protection of wood materials and bamboo composites from weathering and UV degradation” J Indian Acad Wood Sci (December 2011) 8(2): 143–147.
8. Tewari, D.N. 1992. Monograph on Neem. International book distributor, Dehradun.
9. Chavan, S.R. and S.T. Nikam (1988). Investigation of alkanes from alkanes from Neem leaves and their mosquito larvicidal activity. Pesticides, 22 (7): 32–33.
10. Bhatnagar, D. and S.P. McCormick 1988. The inhibitory effect of neem (Azadirachta indica A. society, 65: 1166-1168.
11. Kurucheve, V., G.J. Ezhilalnad J. Jayraj (1997). Screening of higher plants for fungitoxicity against Rhizoctonia solani in vitro. Indian phytopathology, 50(2): 235-241.
12. Swathi Dhyani, Sadhana Tripathi and Indradev 2004. Preliminary screening of neem (Azadirachta indica) Leaf extractives against poria monticola- A wood destroying fungus. J.Ind.Acad.Wood Sci.,(N.S.) 1 (1 & 2): 103-112.
13. Rao, R. V. 1990. Natural decay resistance of Neem wood. J.Ind.Acad. Wood Sci., 21(1): 19-21.
14. Razi, P.S.; Portie, R.; Rama, A. Studies on polymer-wood interface bonding: Effect of coupling agents and surface modification. J.Compos. Mater. 1999, 33 (12), 1064–1079.
15. Lu, J.; Askeland, P.; Drzal, L.T. Surface modification of microfibrillated cellulose for epoxy composite applications. Polymer 2008, 49, 1285–1296.
16. Hashemi, S.A.; Arabi, H.; Mirzaeyan, N. Surface modification of bagasse fibers by silane coupling agents through microwave oven and its effects on physical, mechanical and rheological properties of PP Bagasse fiber composite. Polym. Compos. 2007, 28 (6), 713–721.
17. Kim, H.Y.; Seo, D.W. Effect of water absorption fatigue on mechanical properties of sisal textile-reinforced composites. Int. J. Fatigue 2006, 28, 1307–1314.
18. Salon, M.C.B.; Abdelmouleh, M.; Bousfi, S.; Belgacem, M.N.; Gandini, A. Silane adsorption onto cellulose fibers: Hydrolysis and condensation reactions. J. Coll. Interf. Sci. 2005, 289, 249–261.
19. Sreekala, M.S.; Thomas, S. Effect of fiber surface modification on water-sorption characteristics of oil palm fibers. Compos. Sci. Technol. 2003, 63, 861–869.
20. Sreekala, M.S.; Kumaran, M.G.; Thomas, S. Oil palm fibers: Morphology, chemical composition, surface modification and mechanical properties. J. Appl. Polym. Sci. 1997, 66, 821–835.
21. Pothen, L.A.; Thomas, S.; Groeninck, G. The role of fiber-matrix interactions on the dynamic mechanical properties of chemically modified banana fiber-polyester composites. Compos. P. 2006, 37, 1260–1269
22. Gassan, J.; Bledzki, A.K. Effect of moisture content on the properties of silanized jute-epoxy composites. Polym. Compos. 1997, 18 (2), 179–184.
23. Valadez-Gonzaleza, A.; Cervantes-Uca, J.M.; Olayob, R.; Herrera-Francoa, P.J. Effect of fiber surface treatment on the fiber-matrix bond strength of natural fiber reinforced composites. Compos. P. 1999, 30, 309–320.

AUTHORS PROFILE

Ms.E. Kowsalya M.Tech., (Ph.D), Totally published 20 papers in various scopus Journals and also in refereed journals. Research Area: Environmental Engineering, Bioprocess.