Rbt1 Protein Domains Analysis in Candida albicans Brings Insights into Hyphal Surface Modifications and Rbt1 Potential Role during Adhesion and Biofilm Formation

Céline Monniot, Anita Baudevin, Gregory da Costa, Murielle Chauvel, Marc Sautour, Marie-Elisabeth Bougnoux, Marie Noelle Bellon-Fontaine, Frederic Dalle, Christophe d’Enfert, Mathias Richard

To cite this version:
Céline Monniot, Anita Baudevin, Gregory da Costa, Murielle Chauvel, Marc Sautour, et al.. Rbt1 Protein Domains Analysis in Candida albicans Brings Insights into Hyphal Surface Modifications and Rbt1 Potential Role during Adhesion and Biofilm Formation. PLoS ONE, 2013, 8 (12), pp.e82395. 10.1371/journal.pone.0082395 . hal-01204291

HAL Id: hal-01204291
https://hal.science/hal-01204291
Submitted on 9 Nov 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License
Rbt1 Protein Domains Analysis in *Candida albicans* Brings Insights into Hyphal Surface Modifications and Rbt1 Potential Role during Adhesion and Biofilm Formation

Céline Monniot¹,², Anita Boisramé¹,², Grégory Da Costa¹,², Muriel Chauvel³,⁴, Marc Sautour⁵, Marie-Elisabeth Bougnoux³,⁴,⁶,⁷, Marie-Noëlle Bellon-Fontaine¹,², Frédéric Dalle⁵, Christophe d’Enfert³,⁴, Mathias L. Richard¹,²*

¹ INRA, UMR1319 Micalis, Jouy-en-Josas, France, ² AgroParisTech, UMR Micalis, Thiverval Grignon, France, ³ Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Génomes et Génétique, Paris, France, ⁴ INRA, USC2019, Paris, France, ⁵ UMR Agroécologie 1347 Agrosup/INRA/Université de Bourgogne, Laboratoire Microbiologie Environnementale et Risque Sanitaire (M.E.R.S.), Dijon, France, ⁶ Université Paris Descartes, Sorbonne Paris Cité, Paris, France, ⁷ Assistance Publique – Hôpitaux de Paris Unité de Parasitologie-Mycologie, Service de Microbiologie, Hôpital Necker-Enfants-Malades, Paris, France

Abstract

Cell wall proteins are central to the virulence of *Candida albicans*. Hwp1, Hwp2 and Rbt1 form a family of hypha-associated cell surface proteins. Hwp1 and Hwp2 have been involved in adhesion and other virulence traits but Rbt1 is still poorly characterized. To assess the role of Rbt1 in the interaction of *C. albicans* with biotic and abiotic surfaces independently of its morphological state, heterologous expression and promoter swap strategies were applied. The N-terminal domain with features typical of the Flo11 superfamily was found to be essential for adhesiveness to polystyrene through an increase in cell surface hydrophobicity. A 42 amino acid-long domain localized in the central part of the protein was shown to enhance the aggregation function. We demonstrated that a VTTGVVVVT motif within the 42 amino acid domain displayed a high β-aggregation potential and was responsible for cell-to-cell interactions by promoting the aggregation of hyphae. Finally, we showed through constitutive expression that while Rbt1 was directly accessible to antibodies in hyphae, it was not so in yeast. Similar results were obtained for another cell wall protein, namely Iff8, and suggested that modification of the cell wall structure between yeast and hyphae can regulate the extracellular accessibility of cell wall proteins independently of gene regulation.

Citation: Monniot C, Boisramé A, Da Costa G, Chauvel M, Sautour M, et al. (2013) Rbt1 Protein Domains Analysis in *Candida albicans* Brings Insights into Hyphal Surface Modifications and Rbt1 Potential Role during Adhesion and Biofilm Formation. PLoS ONE 8(12): e82395. doi:10.1371/journal.pone.0082395

Editor: Robert Alan Arkowitz, Institute of Biology Valrose, France

Received June 21, 2013; Accepted October 23, 2013; Published December 5, 2013

Copyright: © 2013 Monniot et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by a research grant from the European Commission (FinSysB PITN-GA-2008-214004) to MLR and CdE and Agence Nationale de la Recherche (KANJi, ANR-08-MIE- 033-01) to CdE and FD. This study has received funding from the French Government’s Investissement d’Avenir program, Laboratoire d’Excellence "Integrative Biology of Emerging Infectious Diseases” (grant n°ANR-10-LABX-62-IBEID). CN was a recipient of a fellowship from the French Ministry of Research. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: The authors have declared that no competing interests exist.

* E-mail: mathias.lavie-richard@grignon.inra.fr

☯ These authors contributed equally to this work.

Introduction

Candida albicans is a major opportunistic fungal pathogen [1]. It can cause both superficial mucosal infections and life-threatening systemic infections in healthy and immunocompromised individuals, respectively [2]. In the latter case mortality rates can reach 50%. *C. albicans* pathogenicity is a multi factorial process: the main characteristics of *C. albicans* are its abilities to switch between yeast and filamentous (hyphal) growth modes [3], to adhere to various substrates and to resist the immune system. It is generally accepted that hyphae represent the invasive morphological form as shown by histological images of *C. albicans* invading kidney [4]. However, yeast cells can also be found in infected organs and it appears that this morphology is important for dissemination via the bloodstream [5]. Dimorphism is controlled by transcriptional factors such as Efg1 and Cph1 [6] or by repressors such as Nrg1 and Tup1 [7-9]. Morphology is not the
only trait governed by these regulators: expression of several morphology-associated genes is also controlled by these factors. Indeed, hypha formation is concomitant to the synthesis and cell surface exposure of hypha-specific adhesins. These adhesins mediate the attachment of cells to plastic surfaces or host cells but also the adherence of cells to one another and thereby contribute to biofilm formation [10].

Expression of surface display system allowed attachment of the recombinant adhesion properties [15,16]. Recently, Ramsook et al. [14] identified sequences with a high β-aggregation potential in Als5. They showed that this sequence in the threonine-rich region of Als5 proteins mediates amyloid formation, and that amyloid binding dyes can inhibit the cell aggregation in the S. cerevisiae surface display model [14]. Another study by the same laboratory showed that a single substitution in the amyloid sequence was sufficient to disrupt aggregation in the S. cerevisiae display model, but more importantly they showed the role of these sequences using inducing and inhibiting peptides in C. albicans live cells [15]. Additionally, atomic force microscopy (AFM) was used to illustrate that these amyloid sequences were responsible for the clustering of the adhesins on the cell surface, a phenomenon that might have a crucial role for C. albicans adhesion properties [15,16].

The other well-characterized adhesin Hwp1 is a member of a three protein family with Hwp2/Pga8 and Rbt1 (namely Family 12 of the 23 families of GPI-anchored proteins identified in the C. albicans genome [17]). This family is conserved to some extent in C. dubliniensis, C. tropicalis (no Hwp orthologue) and C. parapsilosis (no Hwp orthologue) but absent from other fungi [17]. Hwp1 was originally described as being required for the covalent attachment of C. albicans to host epithelial cells, following host transglutaminas activity on the Hwp1 N-terminal domain [18]. Further studies have portrayed Hwp1 involvement in biofilm formation and adhesion to plastic [13,19,20] and shown Hwp2/Pga8 contribution to tolerance to oxidative stress, invasive growth, adhesion and biofilm formation [21,22]. In contrast, little is known about Rbt1. Although this protein has been predicted to be GPI-anchored [23], its precise localization is unknown. Braun et al. [7] initially characterized Rbt1 as a protein Repressed By Tup1 along with Hwp1. Furthermore, they showed in a rabbit cornea model and a mouse systemic infection model that the rbt1-/- strain had a significantly reduced virulence, but no restoration of the wild type phenotype was observed after RBT1 re-integration. Studying its role in mating and biofilm formation showed that rbt1-/- mutants had a mild defect in biofilm formation but that Rbt1 did not seem to play, in C. albicans, a role equivalent to that of agglutinin in S. cerevisiae [19]. Notably, Hwp1, Hwp2 and Rbt1 share similarities mostly in their C-terminal domain, suggesting that the N-terminal domains of Hwp2 and Rbt1 might have substrate specificity other than that elicited by the Hwp1 N-terminal domain. In this respect, similarity of the Rbt1 N-terminal domain with the N-terminus of S. cerevisiae Flo11 suggested that the adhesiveness of Rbt1 was mediated by this part of the protein. Flo11 is a member of the flocculin family in S. cerevisiae, where it is required for diploid pseudohyphal formation and haploid invasive growth [24,25] but the mechanism of cellular adhesion mediated by Flo11 is not well understood. Goossens and Willaert [26] showed that the N-terminal domain of Flo11 that does not contain the mannose-binding domain PA14 present in the other flocculins (Flo1, Flo5, Flo9 and Flo10) was unable to bind mannose. They suggested that the ability of this domain to self-interact might explain the cell-to-cell interaction capacity of FLO11-expressing cells. Indeed, Flo11 involvement in cell-surface adhesion during invasive growth as well as in cell-to-cell interaction during biofilm formation has been previously reported [27,28].

Adhesion of C. albicans to epithelial cells has been also associated with modifications of cell surface hydrophobicity [29]. Based on cell surface ultrastructures and biochemical analyses Hazen & Hazen [30] have proposed that C. albicans hydrophobicity was not determined by differences in surface hydrophobic proteins but by the presence of hydrophilic surface fibrils. They showed that alteration of the C. albicans cell wall fibrillar outer layer resulted in exposure of cryptic hydrophobic proteins. In this paper, we integrated the two models with a study of the protein function as well as the biochemical properties of the cell surface to present a structure-function analysis of Rbt1 focused on its cellular localization and its adhesion properties. Our results have identified two key domains of Rbt1 involved in adhesion to abiotic and biotic surfaces and shown that Rbt1 cell surface exposure is influenced by the differing yeast and hypha cell wall structures. Thus, our data reveal a new type of regulation of protein exposure at the surface independent of gene regulation or post-translational modification.

Materials and Methods

Strains

The Saccharomyces cerevisiae BY4742 strain [31] was used for heterologous expression of Candida albicans Rbt1 protein. The C. albicans strain used for DNA amplification was BWP17 [32], constitutive expression of RBT1 was performed in a DAY286 [33] context and CAY-4 [34] was used for expression of the tagged copies of Rbt1-V5 (see Table 1). BY4742 and its derivatives were grown at 28°C either in liquid YPD (1% glucose, 1% bacto peptone, 1% yeast extract) or in liquid YNB N400 (1.7% yeast nitrogen base without ammonium sulphate and amino acid from Difco + 1% glucose + 0.5% ammonium...
sulphate) supplemented with 10 mg mL\(^{-1}\) lysine, 10 mg mL\(^{-1}\) leucine and 10 mg mL\(^{-1}\) histidine. *C. albicans* overexpressing strains and recombinant CAI-4 strains were cultivated at 30°C in liquid synthetic medium (0.67% yeast nitrogen base with ammonium sulphate and without amino acid from Difco, 2% glucose and 0.17% amino acid drop out mix) supplemented with 10 mg mL\(^{-1}\) uridine. For biofilm formation in micro fermenter, liquid YNB N\(_{600}\) was supplemented with 20 mg mL\(^{-1}\) arginine, 20 mg mL\(^{-1}\) histidine, 20 mg mL\(^{-1}\) uridine and 200 mg mL\(^{-1}\) methionine (GHAUM medium; [35]). For filamentation induction, cultures were switched to liquid synthetic medium buffered at pH 7 with 100 mM Hepes and incubated at 37°C. For the aggregation studies, the filamentation was induced as described above and were cultured 24h at 37°C before observation. In the case of the addition of the peptides: the peptide was added when the cells were transferred to the pH 7 buffer medium (VTTYVYVT at 2 μg mL\(^{-1}\) and VSN at 20 μg mL\(^{-1}\)); the growth at 37°C was only of 2h and the 24h left were at room temperature on the bench to keep loose aggregates, and differences visible. A rbt1\(-/-\) mutant strain and its wild type control from Ene and collaborators were included in this study (Table 1) [19].

Construction of epitope-tagged copies of Rbt1 proteins

To allow detection of the Rbt1 protein, a V5-tagged version was constructed in which the V5 epitope was inserted in the Rbt1 sequence between amino acid 273 and 274. This site of insertion was chosen because a Kex2 site is predicted in the N-terminal domain of the protein and the sequence at position 273 was part of no conserved domain. For this purpose, two couples of primers were designed (primers 12 to 15, see Table 2) and used separately in a first amplification. Since RBT1V5F820 and RBT1V5R819 contained 18 complementary bases, the two PCR products were mixed, denatured and the two simple strands of the two amplicons. A second amplification was then performed using this reaction as template and the two external primers (RBT1ATGHind and Rbt1STOPPst). The product was cloned in pGEMT-Easy (Promega), sequenced and then subcloned in the pExp-V5 expression vector [36] at the HindIII and NsiI unique restriction sites. Each of the two RBT1 alleles was cloned and the recombinant vectors were inserted in CAI-4 either at the RPS1 locus after linearization by StuI or at the RBT1 locus after linearization by AffII that cuts in the RBT1 coding sequence. Correct integrations were checked by PCR using respectively the RP10-1250R and PACTGLUC-4652 (Table 2) or the PRBT1f and V5R (Table 2, 18-19) couples of primers. While integration at RPS1 promoted expression of tagged RBT1 alleles from the ACT1 promoter (VIF211 and 212), integration at RBT1 promoted expression of these alleles from their native promoter (VIF209 and 210, see Table 1).

Cell lysis and preparation of cell walls and soluble protein fractions

C. albicans CAI-4 transformed cells were harvested by centrifugation, washed with 10 mM Tris-HCl containing 10 mM NaN\(_3\) and disrupted in ice after resuspension in lysis buffer (50 mM Tris-HCl pH7.5, 150 mM NaCl) containing protease inhibitors (complete, EDTA-free from Roche) and glass beads in a Bead-Beater 24™ (MP Biomedicals, California, USA) four times for 20 seconds each with 5 minutes in ice between each round. Subsequently, the lysate was collected and further centrifuged at 1,000 x g for 10 minutes at 4°C to collect a low-speed supernatant (S\(_{1000}\)) and a low-speed pellet (C\(_{1000}\)). To obtain a plasma membrane-enriched fraction, the low-speed supernatant was further centrifuged at 100,000 x g for 1 hour at

Table 1. List of strains used in this study.

Strains	Parental strains	Genotypes	References
BY4742	MATa his3Δl4-leu2Δ0 lys2Δ0 ura3Δ0		[31]
CAI-4	SC5314	ura3Δ::imm434/ura3Δ::imm434	[34]
BWP17	CAI-4	ura3Δ::imm434/ura3Δ::imm434/hisG::hisG	[32]
DAY286	BWP17	his1Δ::hisG/hisG/hisG/hisG	[40]
DAY185	BWP17	arg4Δ::URA3::hisG/arg4Δ::hisG	[40]
RBY1175	RBY1118	arg4/arg4	[19]
CAI-4	DAY286	leu2Δ0:: his1·his1 arg4/arg4 rbt1Δ::LEU2/rtb1Δ::his1	[19]
VIF105	CAI-4	Same as CAI-4 but RPS10/arg4Δ::Exp5/V5-FF8	[36]
VIF106	CAI-4	Same as CAI-4 but RPS10/arg4Δ::Exp5/V5-DCW1	[36]
VIF201	BY4742	Same as BY4742 + plasmid pBC542(URA3+RBT1SL)	This study
VIF202	BY4742	Same as BY4742 + plasmid pBC542(URA3+RBT1FL)	This study
VIF203	BY4742	Same as BY4742 + plasmid pBC542(pACT+RBT1SL)	This study
VIF204	BY4742	Same as BY4742 + plasmid pBC542(pACT+RBT1FL)	This study
VIF205	BY4742	Same as BY4742 + plasmid pBC542(URA3)	This study
VIF206	BY4742	Same as BY4742 + plasmid pBC542(URA3+EARP1)	This study
VIF207	DAY286	Same as DAY286 but pRBT1SL::HIS1-pTEF1-RBT1SL	This study
VIF208	DAY286	Same as DAY286 but pRBT1FL::HIS1-pTEF1-RBT1FL	This study
VIF209	CAI-4	Same as CAI-4 but RBT1::RBT1SL-V5-URA3	This study
VIF210	CAI-4	Same as CAI-4 but RBT1::RBT1FL-V5-URA3	This study
VIF211	CAI-4	Same as CAI-4 but RPS1::pACT-RBT1SL-V5-URA3	This study
VIF212	CAI-4	Same as CAI-4 but RPS1::pACT-RBT1FL-V5-URA3	This study

doi: 10.1371/journal.pone.0082395.0001
4°C and the supernatant corresponding to the soluble protein fraction was removed. For membrane protein solubilisation, the high-speed pellet was resuspended in 50 mM Tris-HCl pH 7.4 containing 2% SDS and anti-proteases and then heated for 5 minutes at 95°C. After 5 minutes of centrifugation at 10,000 x g, the non-solubilized material was discarded. For cell wall protein extraction, the low-speed pellet was washed extensively with 1M NaCl and the resulting cell walls were boiled twice in the presence of 50 mM Tris-HCl pH 8, 100 mM EDTA pH 8, 2% SDS to solubilize the non-covalently linked cell wall proteins and to remove any contaminant derived from the cytosol and/or plasma membrane. SDS-extracted cell walls were then extensively washed with H₂O, resuspended in 20 mM NaAc pH 4.5 and incubated for 3 hours at 37°C with purified recombinant β-1,6-glucanase [37]. After 5 minutes of centrifugation at 10,000 x g, the insoluble material was discarded and the solubilized proteins were concentrated on Microcon™ 50 (Millipore) before Western blot analysis.

Western blot analysis

Extracted proteins were separated by SDS-polyacrylamide gel electrophoresis on NuPAGE®Novex Tris-acetate 3-8% pre-cast gels (Invitrogen) in NuPAGE®Novex Tris-acetate Running buffer (Invitrogen) using the XCell Mini-Cell system from Invitrogen. The proteins were transferred onto a nitrocellulose membrane (PROTRAN) for Western blot analysis. Following transfer, membranes were rinsed in Phosphate-Buffered Saline (PBS) and blocked in PBST (PBS plus 0.1% Tween 20) + 2% skimmed milk from Difco for one hour at room temperature. The membrane was then incubated overnight at 4°C in PBST containing a 1:5000 dilution of the monoclonal anti-V5 antibody (Invitrogen). After 3 washes in PBST, one-hour incubation in the presence of peroxidase-conjugated anti-mouse IgG antibodies (GE Healthcare) was performed. The membranes were washed three times before detection of the signal using the Enhanced Chemi Luminescence (ECL)™ detection system (GE Healthcare).
Immunofluorescence detection

S. cerevisiae and *C. albicans* cells were fixed in 4.6% formaldehyde for 40 minutes and after washes were placed on polylysine coated slides, then blocked in PBS + 0.5% BSA and incubated successively in the presence of: (i) monoclonal anti-V5 antibodies (Invitrogen) for *C. albicans* cells and anti-rabbit IgG-Cy3 conjugated antibodies (SIGMA) in PBS + 0.5% BSA for 1 hour in the dark; or (ii) polyclonal anti-HA antibodies (MP Biomedicals) for *S. cerevisiae* cells and anti-rabbit IgG-Cy3 conjugated antibodies (SIGMA) in PBS + 0.5% BSA for 1 hour in the dark. After washes in PBS, DAPI was added (2 µg.mL⁻¹ final concentration) and rinsed before the mounting step. For permeabilization, cells grown to OD=1-2 were washed and resuspended in phosphate buffer pH 7.5 with a 5X concentration before being fixed in 8-fold diluted 37% formaldehyde and incubation for 40 minutes at room temperature. After 3 washes in phosphate buffer, cells were incubated for 20 minutes at 37°C in Sorbitol buffer + Zymolyase 100T (0.5 mg.mL⁻¹ final). 2 volumes of cold sorbitol buffer were added before centrifugation and 2 washes in sorbitol buffer. Cells were resuspended in sorbitol buffer before proceeding with immunofluorescence. Cells were examined by fluorescence microscopy (Olympus BX51) with 512-nm excitation and 565-nm emission filters using an Olympus 100X oil immersion objective and 10X oculars.

Flow Cytometry (FCM) analysis

FCM analyses were performed with a CyFlow SL cytometer (PARTEC, Sainte-Geneviève des Bois, France). The FCM analyses were performed using logarithmic gains and specific detector settings, adjusted on a sample of unstained cells, to eliminate cellular auto-fluorescence. Data were collected and analyzed with FlowMax software (PARTEC). The samples were prepared as follows: cells were fixed in 4.6% formaldehyde for 40 minutes and after two washes in PBS were incubated successively in PBS + 0.5% BSA + polyclonal anti-HA antibodies (MP Biomedicals) for 1h in the dark and in PBS + 0.5% BSA + polyclonal anti-Rabbit-IgG-fluorescein antibodies (Jackson Immuno Research) for 30min in the dark. After a final wash in PBS the cells were resuspended in water for FCM analysis. The experiment was repeated 3 times.

Cloning in *Saccharomyces cerevisiae* expression vectors

To express the *C. albicans* Rbt1 protein at the *S. cerevisiae* cell surface, fragments corresponding to the two allelic coding sequences were amplified from BWP17 genomic DNA using primers 1 and 2 (Table 2) and cloned in the pBC542 vector [38] using the Gateway recombinase-based cloning system (Invitrogen). The *EAP1* sequence, amplified using primers 3 and 4 (Table 2), was also cloned in this vector as a positive control of adherence. To express Rbt1 variants lacking the N-terminal domain, two different fragments were produced: (i) the Rbt1 signal peptide using primers 5 and 6; (ii) and the Rbt1 C-terminal sequences from amino acid 273 using primers 7 and 8. After restriction with *NheI* and *XbaI* and further ligation of the two fragments, the final products were digested with *XbaI* and *Xhol* and cloned in the pBC542 vector at the *XbaI* and *Xhol*

unique sites. The recombinant plasmids were sequenced and transferred into BY4742 as well as pBC542 that was used as a negative control. BY4742 Ura⁺ recombinant strains were selected on minimal medium supplemented for lysine, histidine and leucine.

Cell surface hydrophobicity

Cell surface hydrophobicity was determined by the previously described MATS method (for Microbial Adhesion to Solvents) with some modifications [39]. Cells grown overnight in liquid YNB N₅₀₀ medium supplemented with leucine, histidine and lysine at 28°C, were washed twice in physiological water and resuspended at an OD₆₀₀=0.8. 150 µl of decane was added to 1.5 ml of cell suspension. The samples were shaken 15 seconds in the hand and then vortexed 90 seconds. After 15 minutes at room temperature, the OD₆₀₀ of the sample without decan corresponded to A₀. To calculate the percentage of cell surface hydrophobicity (CSH), we used the formula: CSH = (1 – A₁/A₀) x 100.

Construction of RBT1 overexpressing strains

To exchange the native promoter for the *C. albicans* TEF1 promoter, primers JRB1TPUp and JRB1TDo (see Table 2, 9-10) and pHISOx, a pGEMT-Easy derivative harboring the *C. albicans* HIS1 gene (promoter and terminator included) cloned 80 bp upstream to the TEF1 promoter were used to generate a PCR product of 2.5 kbp containing successively: a 100 nucleotide-long sequence to the 5’ end identical to the RBT1 5’ upstream sequence located at position -1567 from the RBT1 start codon, the *C. albicans* HIS1 gene, a 412 nucleotide-long sequence corresponding to the *C. albicans* TEF1 promoter and at its 3’ end 100 nucleotides of the RBT1 coding sequence from the start codon. The PCR product was purified, concentrated and used for transformation of the *C. albicans* DAY286 strain, subsequent selection was made using the histidine auxotrophy. Correct promoter replacement after a double recombination event between the native promoter and the RBT1 promoter flanking regions of the ampiclon was verified by PCR on the genomic DNA using a TEF1 forward primer internal to the cloned sequence: PTEFMIuF (Table 2, 11) and a RBT1 reverse primer complementary to a portion of the coding sequence: RBT1Xho2290R (Table 2, 8). Two strains, OExRBT1SL and OExRBT1FL (VIF 207 and 208, Table 1), corresponding respectively to the expression of a short RBT1 allele and a long RBT1 allele under the control of the TEF1 promoter were obtained.

RT-qPCR analysis

To measure RBT1 expression in the two overexpressing strains, we performed RT-qPCR in yeast and in hypha forms. Yeast cells were grown overnight at 30°C in SC pH7, diluted at OD₆₀₀=0.25 and further grown in the same conditions to OD₆₀₀=1. To obtain hyphae, cells were grown overnight at 30°C in SC pH5, diluted in SC pH7 at OD₆₀₀=1 and then further incubated for 2 hours at 37°C. The yeast and hypha forms were treated with the same protocol described below. The cultures were centrifuged and the pellets were frozen in liquid

PLOS ONE | www.plosone.org

December 2013 | Volume 8 | Issue 12 | e82395
nitrogen and stored at -80°C. Total RNA was extracted following the instructions of the RNeasy Mini QIAGEN kit. To eliminate genomic DNA contamination, total RNA was treated with RNase-free DNase I (DNase Ambion). RNA was measured using the Nanodrop (ND-1000, ThermoScientific) to evaluate the concentration and the quality with A260/280 and A260/230 ratios. mRNAs were reverse transcribed using the SuperScript™ III Reverse Transcriptase Kit (Invitrogen) according to the manufacturer's instructions. Expression levels of RBT1 in the two cell forms were determined using primers RBT1qFb and RBT1qRb (Table 2, 20-21) in the two overexpressing strains and their control DAY185 [40] and compared to ACT1 expression levels (Table 2, 22-23).

Adhesion to polystyrene and biofilm formation

Saccharomyces cerevisiae transformed cells were grown overnight at 28°C in liquid YNB N400 medium supplemented with leucine, histidine and lysine. Cells were adjusted in fresh medium to OD600=1.5. 500 µl of cell suspension were allowed to adhere for 60 minutes at 28°C to wells of sterile 24-wells polystyrene plates treated for tissue culture (BD Falcon). After 60 minutes, non adherent cells were removed by washing three times with 1 ml of PBS. For biofilm formation, 500 µl of fresh supplemented YNB N4000 medium was added and plates were further incubated for 24 hours at 28°C without agitation. Adherence and biofilm formation were assessed by cells staining with 500 µl of 0.5% crystal violet per well during 10 min at room temperature. After two washes with 1 ml of H2O, the biomass was quantified after addition of 500 µl of 10% acetic acid per well and measurement of the OD600 of the solution after 10 minutes of incubation. In case of very high level of crystal violet absorbance, serial dilutions were performed to keep the OD600 in a 0.1-5 range.

C. albicans biofilm formation was assessed using a microfermenter system and Thermox™ (Nunc) as substrate [35]. Inocula were prepared from C. albicans early stationary-phase cultures grown in GHAUM medium at 30°C in an orbital shaker and diluted to OD600=1. Biofilms were produced in microfermenters that consist of a glass vessel with a 40-ml incubation chamber where two glass tubes are inserted to drive the entry of GHAUM medium and air. Used medium is recirculated pump (Ismatec) and pushed by the pressured air. Plastic slide (Thermanox™) glued to a glass spatula was inoculated with ~10^6 log phase yeast cells of C. albicans overexpressing strains and control. After 30 minutes at 37°C, the cells were washed three times with PBS to remove non-adherent yeasts and cells were fixed with paraformaldehyde 3.6 % for 10 minutes. Adherent C. albicans cells were stained with calcofluor white and quantified by epifluorescence (Eclipse E600, Nikon) using a filter set to detect calcofluor white. The percentage of adhesion in each culture was determined as the ratio of the number of adherent C. albicans cells on the entire surface of the coverslip to the number of C. albicans cells inoculated. Each condition was tested in quadruplicate.

Results

Rbt1: a protein with multiple domains and sequence variability

In order to perform a structure-function analysis of the Rbt1 protein, we amplified and sequenced the RBT1 coding sequence from the C. albicans BWP17 strain (Table 1). On the basis of both similarity and amino acid (aa) composition of the 750 aa long sequence deduced from the first allele, we distinguished four domains, referred to as domain I, II, III and IV (Figure 1). The first 21 aa residues are predicted to act as a signal peptide targeting the Rbt1 protein to the secretory pathway. Following this sequence, domain I extends from aa 71 to 216, and matches the Flol1 superfamily of the NCB! Conserved Domain Database (CDD) (pfam10182) [42]. Domain II lies from aa 279 to 396 and displays 4 repetitions of a 20 amino acid-long motif containing more than 50% of serine and threonine residues (Figure 1A) followed by 2 sequences of 19 aa residues harboring 3 repetitions of a “PES/TSA/V” motif. Domain III extends from aa 416 to 555 and shows 2 copies (respectively from aa 416 to 457 and 514 to 555) of the conserved flocculin type 3 repeat (pfam13928) found close to the C-terminus of the S. cerevisiae flocculation protein Flo9 (Figure 1A). This latter motif is also found twice in Hwp1 as well as in Hwp2 but is absent in proteins of the Als family (Figure 1B). In Rbt1, in contrast to Hwp1, the two copies are more distant and the sequence that separates them contains 5 repetitions of the “PES/TSA/V” motif from aa 474 to 500 (Figure 1A). Domain IV ranging from amino acid 556 to the C-terminal GPI anchoring signal is mainly composed of alanine (19%),
serine (18.4%) and proline (17.8%) residues. The omega site for GPI anchor addition is predicted to be a glycine at position 729 using the big-PI Fungal Predictor [43]. The last 60 amino acids display 80% identity with those in the Hwp1 C-terminus (Figure 1C) but less than 50% with those in the Hwp2 C-terminus.

The second allelic sequence amplified from BWP17 was shorter and was predicted to be translated into a 611 amino acid-long protein. The two proteins, respectively called Rbt1FL (full length) and Rbt1SL (short length) differed in domains II, III and IV. Specifically, the shorter protein Rbt1SL displayed a 110 amino acid-long deletion (positions 377-488) overlapping domains II and III, therefore yielding a protein with only one copy of the flocculin type 3 repeat (see Figure 1A); and a 29 amino acid-long deletion (positions 611-640) in domain IV (Figure 1A).

![Rbt1 protein description and sequence similarities](image_url)

Figure 1. Rbt1 protein description and sequence similarities. A/ Schematic representation of the two Rbt1 proteins domain organization with for Rbt1FL from left to right: the signal peptide (black box, aa 1-21); the domain I matching the Flo11 superfamily (dashed box, aa 71-216); the domain II, a Ser/Thr-rich region containing the imperfect repeats 1 and 2 (light grey box, aa 279-396); the domain III (dark grey box, aa 416-555) containing the two 42 amino acid-long repeats (repeat 3) comprising the sequence with a high β-aggregation potential (underlined) and another repeat 2 (containing two additional repeats PESSA); the domain IV (dotted box, aa 556-729) which precedes the GPI anchor addition signal (black box, aa 729-750). The two deletions in the Rbt1SL protein are represented by: Deletion 1 (aa 378-487) and Deletion 2 (aa 612-640). B/ Sequence similarities within the Hwp1 family in the 42 amino acid-long repeat 3. C/ Sequence similarities within the Hwp1 family in the last 60 aa.
We used 80 C. albicans clinical isolates in order to assess the distribution of the RBT1FL and RBT1SL alleles. Interestingly, although several isolates contained alleles of different sizes, none of them harbored an allele of the size of RBT1SL except for SC5314. BWP17 and its parental strains are thus the only strains harboring the RBT1FL/RBT1SL allelic assortment. Additionally, sequence analysis of the RBT1 alleles in 18 representative clinical isolates from different clades showed hot spots of either deletion or insertion in the “PES/TA/V” repetitions (repetition 2 in Figure 1A): deletions of 9 to 19 amino acids at position 377 of the full length protein or insertion of 28 amino acids at position 480 (data not shown). Finally, the strains harboring RBT1 length polymorphisms were contained within a single clade suggesting an early origin of these modifications within the C. albicans genus (data not shown).

Localization of the Rbt1 protein

In order to localize the Rbt1 protein in living cells, an epitope-tagged copy of each of the two alleles was constructed by insertion of a V5 sequence between amino acids 273 and 274, ie. just upstream of domain II (see Experimental procedures). These copies were targeted to the RBT1 locus to express the tagged proteins under the control of the native RBT1 promoter (VIF209 and 210, see Table 1). Since RBT1 expression has been shown to be controlled by Tup1 [7], we performed immunofluorescence after 3 different times of hypha induction. Data in Figure 2A clearly indicated that Rbt1 was not present at the cell surface of yeast cells including those from which the hypha emerged but was present at the surface of the germ tube and progressively covered the surface of the entire hypha. The same pattern was observed for the two alleles (data not shown). This experiment confirmed that Rbt1 was exclusively exposed on the cell surface of hyphae.

Rbt1 is predicted to be GPI-modified and considering the two amino acid residues upstream of the putative ω site (F, E), the protein should be cell wall anchored [44]. To test this prediction, the V5-tagged RBT1FL and RBT1SL alleles expressed under the control of the ACT1 promoter were targeted to the RPS1 locus as previously described (VIF211 and 212, see Experimental procedures and Table 1) [36]. Tagged strains were grown as yeast or hyphae before cell fractionation and western blotting. Cells expressing GPI-anchored V5-tagged Dcw1 protein and V5-tagged Iff8 protein were included as controls respectively of plasma membrane localization and cell wall localization [36]. As shown in Figure 2B, Rbt1 was detected in the β-1,6-glucanase solubilized cell wall fraction (lanes 5 and 6) as was the Iff8 control protein (lanes 7 and 8). However, Rbt1 was also present in the membrane-enriched pellet after solubilization with SDS (lanes 1 and 2) as observed for the Dcw1 control protein (lanes 3 and 4). This dual localization was observed for the Rbt1FL and Rbt1SL proteins independently of the cell morphology, even if slightly less protein was detected in the yeast form in comparison with hyphae.

Role of Rbt1 in adhesion to polystyrene

In order to further characterize Rbt1 and assign functions to its different domains, we tested the adhesion properties conferred by different subdomains of Rbt1 using the S. cerevisiae surface display system [38]. The RBT1SL and RBT1FL alleles deleted for the coding regions for the 27 C-terminal amino acid residues predicted to act as the GPI anchor addition signal, and truncated versions of RBT1SL and RBT1FL encoding proteins lacking amino acid 21 to 272 (including domain I, see Figure 1) were cloned in the pBC542 vector. This plasmid allows the production of a fusion protein between the tested polypeptide, a HA tag, the Candida glabrata Epa1 Ser/Thr-rich region and the S. cerevisiae Cwp2 cell wall targeting signal [38]. Heterologous expression at the S. cerevisiae cell surface of the entire or the truncated Rbt1 proteins as well as the Eap1 adhesin was confirmed by immunofluorescence (Figure 3D). Analysis by flow cytometry of the four strains expressing Rbt1FL and Rbt1SL variants showed an equivalent level of protein at the cell surface (Table 3).

The adhesion properties on polystyrene of each of these strains were investigated. S. cerevisiae cells expressing each of the Rbt1 constructs together with an Eap1 positive control and cells containing the empty vector were incubated in 24-well tissue culture plates for 1 h at 28°C. Non-adherent cells were removed and the biomass was estimated by crystal violet staining. As shown in Figure 3A, after 1 h of incubation, we observed that expression of the Rbt1FL and Rbt1SL proteins significantly enhanced S. cerevisiae adhesion to polystyrene (Student’s T-test, p<0.01). Indeed, the biomass levels were significantly higher: 10.6-fold and 12.4-fold higher for yeasts expressing the Rbt1SL and Rbt1FL fusion constructions, respectively, than the biomass observed for the control strain containing the empty vector. In the same experiment, the biomass level of the strain expressing the Eap1 fusion was 9-fold higher. Moreover, the S. cerevisiae recombinant strains that expressed the C-terminal domains of Rbt1FL or Rbt1SL displayed biomass levels similar to those measured for the strain carrying the empty vector, suggesting that the N-terminal domain of the Rbt1 protein was essential to mediate Rbt1-dependent adherence of S. cerevisiae to polystyrene either directly or because its absence modifies the protein in such way that the domain involved in adherence is no longer functional (Figure 3A).

In parallel experiments, the initial attachment was followed by a 24h-incubation and biomass levels (after two washes) were again measured to examine the formation of biofilm. Figure 3B showed that the two forms of Rbt1 contributed significantly to S. cerevisiae biofilm formation (p<0.01): indeed, while the strain harbouring the empty plasmid was unable to form a biofilm and grew only as planctonic cells, a biofilm was observed for the recombinant strains after 24h. Additionally, the ratio of biomass accumulation to initial adhesion was 3.1 for the Rbt1FL expressing strain and 2.7 for Rbt1SL expressing strain suggesting that Rbt1 was both involved in cell-substrate and in cell-to-cell adhesion, and that these functions required the entire protein.
Cell surface hydrophobicity of the *S. cerevisiae* recombinant strains

To characterize the cell surface properties of the strains expressing the different variants of Rbt1, we defined their cell surface hydrophobicity using a method based on decane affinity [39]. As shown in Figure 3C, the *S. cerevisiae* recombinant strains expressing Rbt1SL and Rbt1FL fusions had a percentage of cell surface hydrophobicity higher than that of yeasts containing the empty vector or expressing the ΔNRbt1SL or ΔNRbt1FL fusions. Notably, cell surface hydrophobicity of these strains was highly correlated with their ability to adhere to polystyrene ($R^2=0.986$). Taken together, these data indicated that the adhesion property conferred by Rbt1 was mainly due to its hydrophobicity, a characteristic linked to its N-terminal domain even if as yet unknown characteristics of Rbt1 might play a role in these adhesion processes.

Adhesion and biofilm formation of two *C. albicans* RBT1 overexpressing strains

In order to study the adhesiveness conferred by Rbt1 in *C. albicans* independently of other hypha-induced adhesins, we constructed *C. albicans* strains constitutively expressing high levels of Rbt1FL or Rbt1SL. For this purpose, the *RBT1* native promoter of either the *RBT1FL* or *RBT1SL* alleles was exchanged for the *TEF1* promoter, yielding strains OExRbt1FL.
and OExRbt1SL, respectively (VIF208 and 207, see Experimental procedures). Real time quantitative PCR analysis showed that in the yeast form RBT1 mRNA levels reached 40.1% and 47.1% of those of ACT1 mRNA for the RBT1FL and RBT1SL alleles, respectively, while RBT1 mRNA represented less than 0.1% of ACT1 mRNA in the wild type strain. In hyphae, RBT1 mRNA levels increased to 47.2% and 61.4% of the ACT1 mRNA levels for the RBT1FL and RBT1SL alleles,
respectively. In the wild type context, the levels of RBT1 mRNA represented 8.3% of those of ACT1 mRNA. Thus strains OExRbt1FL (VIF208) and OExRbt1SL (VIF207) overexpressed RBT1 in both yeast and hyphal forms.

Biofilm formation assays on Thermanox™ in microfermenters were performed for these two overexpressing strains as described by García-Sánchez et al. [35]. The results obtained in these conditions showed a thicker biofilm for the two overexpressing strains (Figure 4B) with the biomass measured for the OExRbt1SL and the OExRbt1FL strains after 40 hours of incubation being respectively 148% and 162% of that formed by the control strain, a difference statistically significant when compared to the reference strain (p<0.05) (Figure 4A). A greater biofilm formation of strain OExRbt1FL compared to OExRbt1SL was observed consistently over the different experiments but the difference was not statistically significant: this suggested that the Rbt1FL protein might have a higher capacity to promote biofilm formation than Rbt1SL. Microscopic observation of the Thermanox™ slides after the adhesion step did not reveal any difference between the three strains (data not shown).

Adhesion of the two overexpressing strains to human cells

We then tested the adherence to host cells of the two overexpressing strains using two models: human HeLa epithelial cells and human epithelial colorectal adenocarcinoma cells (Caco-2). As shown in Figure 5A, while adhesion to HeLa cells of the OExRbt1SL strain was similar to the adhesion of the control strain, the OExRbt1FL strain showed a significantly reduced percentage of adhesion in comparison with the two first strains (p <0.01). This result suggested that adherence of C. albicans was impaired by the expression of the longer RBT1 allele in yeast cells. With Caco-2 cells again adherence of the OExRbt1FL strain showed a repeatable slight decrease in comparison with the control and the OExRbt1SL strains but not statistically significant (Figure 5B).

Aggregation properties of the two overexpressing strains

In a recent study, Ramsook et al. (2010) identified sequences with a high β-aggregation potential in Rbt1 using the prediction program TANGO (http://tango.crg.es/) [45]. Prediction for Rbt1 revealed the presence of two VTTGVVVVT sequences in Rbt1FL (at position 433 and 531, in domain III, see Figure 1) while only one was present in Rbt1SL at position 421. Thus we tested the ability of the two overexpressing strains to aggregate. Cells were grown overnight either in unbuffered SC medium at 30°C or in buffered SC medium (pH7) at 37°C in order to obtain cells in either the yeast or hypha form. As illustrated in Figure 6A, while no aggregates were detected when cells were in the yeast form, hyphae were able to form aggregates. Moreover, the OExRbt1FL strain (VIF208) formed much bigger aggregates than did the OExRbt1SL strain (VIF207). As a consequence of the large

Table 3. FCM data on *S. cerevisiae* surface display strains.

Strains	% fluorescent cells	Mean
Empty plasmid (VIF205)	11%	5.4
Eap1 (VIF206)	44%	62.9
Rbt1SL (VIF201)	66%	51.1
Rbt1FL (VIF202)	60%	60.9
ΔNRbt1SL (VIF203)	74%	51.3
ΔNRbt1FL (VIF204)	57%	48.7

doi: 10.1371/journal.pone.0082395.t003
aggregates formed, the OExRbt1FL strain flocculated more quickly than the two other strains as shown in Figure 6B. To confirm the role of Rbt1 in hyphae aggregation a previously constructed rbt1-/- strain [19] was used in the same aggregation assay. As expected, formation of aggregates was abolished in the rbt1-/- strain (CAY171) in comparison with the control strain as presented in Figure 6C. We also confirmed, as published in Ene & Bennett’s study [19] that this strain was impaired in biofilm formation using polystyrene plates treated for cell culture (data not shown).

To confirm that the sequences with high β-aggregation propensity were directly involved in this phenomenon, we set up an experiment using two different peptides: (i) a wild-type peptide corresponding to the sequence found in both alleles; (ii) and a mutated peptide in which the valine at position 5 was replaced by an asparagine residue (V5N, VTTGNVVVT). The TANGO predictor no longer detected any β-aggregation potential for this mutated peptide. Filamentation was induced by growing cells in buffered medium for 2 hours at 37°C and cultures were stored for 24 hours at room temperature. Figure 7 clearly shows that the presence of the wild-type peptide enhanced aggregation for the two overexpressing strains in comparison with the culture without any peptide. On the contrary, incubation in the presence of the V5N peptide inhibited aggregation, demonstrating that the VTTGVVVVT sequence triggered the formation of aggregates and was critical for cell-to-cell association when C. albicans was in the hyphal form.

Morphology-dependent cell surface exposure

The absence of any aggregation phenotype when cells were in the yeast form was unexpected since RBT1 mRNA levels under the control of the TEF1 promoter were shown to reach a high level in both forms. This result suggested that Rbt1 could not play its role in aggregation when cells were in the yeast form for a yet unknown reason. Two hypotheses could be anticipated: (i) its surface exposure differed between the two forms because Rbt1 was shown to be also present in the yeast form in strains expressing a V5-tagged Rbt1 protein (see above); (ii) Rbt1 needed a hyphal-specific protein partner to allow cell aggregation. To test the first hypothesis, an immunofluorescence experiment was performed on cells that expressed the V5-tagged Rbt1 protein under the control of the ACT1 promoter grown either as yeast or as hyphae. The images presented in Figure 8A (left panel) showed that Rbt1 decorated the hyphal cell surface as observed for hyphae of a C. albicans strain expressing the V5-tagged Rbt1 protein from its own promoter (see Figure 2A). However, no signal was detectable on intact yeast cells (Figure 8A, middle panel) as also observed when the V5-tagged Rbt1 protein was expressed from its own promoter (see Figure 2A). However, no signal was detectable on intact yeast cells (Figure 8A, middle panel) as also observed when the V5-tagged Rbt1 protein was expressed from its own promoter (Figure 2A), suggesting that the V5 epitope was not accessible to the antibody from the surface. Consequently, a permeabilization step was performed using zymolyase prior to the incubation with anti-V5 antibodies. After this treatment, yeasts that expressed a V5-tagged Rbt1 protein under the control of the ACT1 promoter showed labeling (Figure 8A, right panel) while no signal appeared in yeast cells expressing the V5-tagged Rbt1 protein under

Figure 5. Adherence of C. albicans strains overexpressing the Rbt1SL and Rbt1FL proteins (VIF 207 and 208) to human cells. Yeasts cells were incubated with confluent HeLa cells for 45 minutes (A) or with Caco2 cells for 30 minutes (B). The percentage of adhesion represents the number of adherent yeasts reported to the number of yeasts in the inoculums. Values given represent mean ± standard deviation (SD) of results of one experiment performed in duplicate and representative of three independent experiments. Pairwise comparisons were made by two-tailed Student’s T-test: significant comparisons are indicated with two asterisks for p value<0.01.

doi: 10.1371/journal.pone.0082395.g005
control of its own promoter even after zymolyase permeabilization (data not shown). Consequently, although the V5-Rbt1 protein was present in the cell wall of both yeast and hyphae as shown by western blot (see Localization of the Rbt1 protein), the tag was specifically masked in the yeast form, suggesting a difference in the cell wall between the two cell morphologies.

In a previous study on the localization of proteins of the Iff family (GPI-anchored proteins), we performed immunofluorescence assays only on yeast cells [36]. In these conditions the cell wall protein Iff8 was undetected unless the cell wall was permeabilized with zymolyase, as Rbt1 in Figure 8A (right panel). Consequently we tested whether the change in cell wall structure in hyphae hypothesized in the case of Rbt1 could be confirmed with Iff8. Figure 8B shows that Iff8 could easily be detected without zymolyase treatment when cells were in the hyphal form confirming the data obtained with Rbt1.

Discussion

Much attention has been devoted to understand how *C. albicans* adheres to different substrates and to itself. These adhesion processes are considered of major importance in the first steps of colonization and biofilm formation, both being crucial phases occurring during *C. albicans* infection. To date many surface proteins have been implicated in the adhesion process such as the ALS family members, Hwp1 and Eap1 [46]. Hwp1 has two orthologues Hwp2/Pga8 and Rbt1; they share similarities mostly at the C-terminal domain and they all have been described as being involved in adhesion to different substrates. Interestingly they diverge in their N-terminal domain which is the domain specifically identified in Hwp1 as being a substrate for host transglutaminase activity, making this protein essential for attachment to buccal epithelial cells [18]. Therefore, we have investigated the contributions of the different domains of Rbt1 in adhesion and biofilm formation.
First we have studied Rbt1 surface localization, fundamental for a proposed role in adhesion: Rbt1 possesses a GPI anchor sequence signal at its C-terminus, like the two other members of the family Hwp1 and Hwp2 [17]. It is commonly accepted that GPI anchoring predictions are not 100% accurate due to problems in defining an exact C-terminus consensus for GPI-anchored proteins (GpiPs) [47]. Experimental demonstration is thus required to confirm localization to the cell envelope but also to demonstrate cell surface exposure, which is not seen for all GpiPs [36]. Our data indicated that Rbt1 is first deposited at the tip of the germ tube and subsequently distributed along the hyphae. In a previous study, trypsin treatment of live C. albicans yeast cells and hyphae suggested exposure of Rbt1 at the hyphal surface [48]. Our data are consistent with this observation and, furthermore, indicate the absence of Rbt1 at the surface of yeast cells. Moreover, we showed anchorage of Rbt1 both in the plasma membrane and the cell wall. While this dual location may be due to the artificially high levels of the V5-tagged Rbt1 protein that were necessary for detection by western blot, such problems have not been encountered when similar overexpression constructs were used to study the anchorage of proteins of the Ifp family [36]. Therefore, the Rbt1 localization signal may be rather inefficient or the Rbt1 protein might be inefficiently transferred to the cell wall. Altogether our data show that: (i) Rbt1 is partially bound to the cell wall through bonds with β-1,6-glucans; (ii) Rbt1 is cell surface exposed and easily accessible on the exterior of the hyphae. Since Rbt1 has a GPI anchor signal these results suggest that this is a cell wall-GpiP although this has not been biochemically proven.

To decipher the role of the different Rbt1 domains, we expressed these domains in the surrogate host S. cerevisiae and monitored the effects on adhesion. This confirmed the data of Nobbs and co-workers [13], showing adhesion of the S. cerevisiae cells expressing the entire Rbt1. On the other hand, Rbt1 deleted of its N-terminus, although detected at the S. cerevisiae cell surface, was unable to promote adhesion of the recombinant yeasts to polystyrene, confirming that the N-terminal domain was necessary but not necessary sufficient for adhesiveness of Rbt1 to polystyrene. Determination of the surface properties of these strains proved that only S. cerevisiae recombinant cells expressing the entire Rbt1
showed an increased cell surface hydrophobicity therefore correlating surface hydrophobicity to adhesiveness. Interestingly when Rbt1 was overexpressed in *C. albicans* we observed an increase in hydrophobicity but the changes in adhesion were not as strong as in *S. cerevisiae* (data not shown). Taken together, these results implied that high level expression of a cell surface protein might modify the cell surface physico-chemical properties such as its hydrophobicity but that in *C. albicans* other parameters greatly influence the adhesiveness of the cell. These parameters might include the occurrence of other adhesins or the difference in composition and structure of the cell wall.

Rbt1 possesses a C-terminus containing two 42 amino acid-long motifs shared by previously characterized *C. albicans* adhesins such as Hwp1 and Eap1 (see Figure 1). Yet, amplification of the *C. albicans RBT1* coding sequence in BWP17 produced two alleles, namely *RBT1FL* and *RBT1SL*, with a 420 nucleotides-difference in size. Interestingly Rbt1SL contrary to Rbt1FL possesses only one 42 aa-long motif. Characterization of the *RBT1* loci in different clinical isolates revealed allelic variations from one strain to another and within strains. However, none of the clinical isolates harbored the *RBT1SL* allele, suggesting that this allele recently emerged probably resulting from a recombination event between repeats within Rbt1. Here, we have taken advantage of the *RBT1FL* and *RBT1SL* alleles to understand the role of the Rbt1 42 amino acid-long motifs in adhesion and observed that the Rbt1FL protein exhibited a slight increase in capacity to promote biofilm formation, but it did not affect the initial adherence to polystyrene. These observations may reflect a role of the 42 aa-long motif in directly mediating cell-to-cell interactions during biofilm formation or in modifying the exposure of an interacting domain. Notably, a defect in biofilm formation has been observed by Padovan et al. [49] for *C. albicans* cells expressing a Hwp1 variant with a 34 amino acid-long deletion in a serine and threonine-enriched domain.

Recently, Garcia et al. [15] have uncovered amyloid-forming sequences in the Als5 protein that contribute to cell aggregation and biofilm formation. Since the Rbt1FL and Rbt1SL proteins differed by the number of repeats of a peptide with high β-aggregation potential (VTTGVVVVT), we hypothesized that strains overexpressing *RBT1FL* or *RBT1SL* would have different aggregation phenotypes. A liquid aggregation assay gave no result when cells were grown as yeasts but once filamentation was induced, we observed a massive aggregation of hyphae for the strain that expressed the full length Rbt1 protein in comparison with the wild type strain while the strain overexpressing the short length protein displayed an intermediate aggregation phenotype, strongly suggesting a role of the VTTGVVVVT sequences in aggregation. Garcia et al. [15] have shown that amyloid-dependent clustering of Als5 increases the avidity and the strength of adherence mediated through the N-terminal domain. A similar mechanism might operate in Rbt1 with the Rbt1 N-terminus acting as the “substrate-binding domain” and the putative aggregate-forming sequences inducing the clustering of different molecules of Rbt1 thereby increasing adhesiveness and cell-to-cell interaction. The difference of aggregation observed between yeast and hyphae could explain the observation of a more fragile biofilm in the micro-fermenter.

Figure 8. In vivo localization of Rbt1. A/ Cell surface detection of the *RPS1*-targeted *RBT1SL*-V5 allele under the control of the *ACT1* promoter (VIF211) in untreated hyphae (left), untreated yeast (middle) and yeast after cell permeabilization (right). B/ Cell surface exposure of the *RPS1*-targeted *IFF8*-V5 allele in hyphae. Fixed cells were incubated first with anti-V5 antibodies and then with anti-mouse IgG-Cy3 coupled antibody, and immunofluorescence was observed using an Olympus BX51 microscope.

doi: 10.1371/journal.pone.0082395.g008
experiments. Indeed the biofilm structure is reported to be composed of a layer of yeast cells upon which a mixture of pseudo-hyphae and hyphae are forming the mature biofilm embedded in an extracellular matrix. In the case of Rbt1 overexpressing strains, the mature layer would have been weakly attached to the support due to fragile interactions with the layer of yeast cells but would have formed a compact layer easily washed off by the flow through.

Most of the adhesins characterized in \textit{C. albicans} not only mediate adhesion to abiotic surfaces but also interaction with human cells. For instance Eap1 was shown to confer adhesion of recombinant \textit{S. cerevisiae} to human HEK293 kidney epithelial cells [50] and Hwp1 was shown to be covalently cross-linked to mammalian epithelial cells [18]. Consequently, we tested whether Rbt1 could confer properties of adhesion to host cells. Overexpression of Rbt1SL did not affect adhesion of \textit{C. albicans} yeast cells to human cells. In contrast, overexpression of Rbt1FL reduced adhesion of yeast cells, suggesting that increased levels of this form of Rbt1 could either mask proteins necessary for \textit{C. albicans} interaction with host cells (Hwp1 for example) or prevent them from interacting by forming intermolecular bonds. Indeed, according to the model of Ramsook et al. [14], Rbt1FL overexpression could trigger the clustering of other cell surface proteins harboring aggregate-forming sequences such as Hwp1 and Eap1 and thus interferes with the attachment to host cells.

Finally, our results have shown a striking difference in the cell surface accessibility of the V5-tagged Rbt1 protein in yeast and hyphal cells. Indeed, while this protein showed similar cell wall anchorage in the two cell types, it was accessible to anti-V5 antibodies only in hyphal cells. Similar observations have been made for the Iff8 protein. Indeed, we have previously shown that this 714 amino acid-long cell wall-anchored protein was not long enough to be cell surface-exposed in the yeast form [36]. That similar results were observed in the case of the V5-tagged Rbt1 protein was not unexpected since only 477 amino acid residues are found downstream of the V5 tag in this protein. Most interestingly, we could show that gentle enzymatic digestion of the yeast cell wall could uncover the V5 epitope harbored by the V5-tagged Rbt1 and Iff8 proteins, suggesting that these proteins are too deeply embedded in the yeast cell wall matrix to be reached by anti-V5 antibodies unless cell wall glucans are enzymatically degraded. Because the anchoring in the cell wall of these proteins does not differ according to \textit{C. albicans} morphology, the difference in accessibility of these cell wall proteins in yeast and hyphal cells is likely to result from changes in the cell wall organization between these morphological types. Notably, Cheng et al. [51] have described a reduction in the cell wall fimbriae layer in hypha: the average fibril length decreased from 0.116 μm in yeasts to 0.073 μm in hyphae, thus influencing detection by dectin-1. Wheeler and collaborators showed that glucans were more accessible to antibodies in the hyphae than in the yeast form; confirming also that the accessibility of cell wall compounds was very different between the two cell forms [52]. Therefore, major changes in the structure of the cell wall, possibly at the level of the fimbriae layer, might allow shielding of cell wall proteins in yeast cells and their unmasking in hyphal cells. This suggests an additional, unexpected layer of regulation for the function of cell wall proteins in addition to transcription regulation and post-translational modification. This new form of regulation may provide \textit{C. albicans} with an additional means to control its surface qualities and properties.

Acknowledgements

We are grateful to Richard Bennett from Brown University for sending us the strains RBY1175 and CAY 171.

Author Contributions

Conceived and designed the experiments: CM AB MNBF FD Cde MLR. Performed the experiments: CM AB GDC MC MS. Analyzed the data: CM AB MS MNBF FD Cde MLR. Contributed reagents/materials/analysis tools: MEB MNBF FD Cde MLR. Wrote the manuscript: CM AB MLR.

References

1. Enoch DA, Ludlam HA, Brown NM (2006) Invasive fungal infections: a review of epidemiology and management options. J Med Microbiol 55: 809-818. doi:10.1099/jmm.0.46548-0. PubMed: 16772406.
2. Pfaffer MA, Diekema DJ (2007) Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev 20: 133-163. doi:10.1128/CMR.00292-06. PubMed: 17223626.
3. Jacobsen ID, Grosse K, Hube B (2012) Embryonated chicken eggs as alternative infection model for pathogenic fungi. Methods Mol Biol 845: 487-496. doi:10.1007/978-1-61779-539-8_34. PubMed: 22238397.
4. Brown AJ, Gow NA (1999) Regulatory networks controlling Candida albicans morphogenesis. Trends Microbiol 7: 333-338. doi:10.1016/S0968-842X(99)01556-5. PubMed: 10431207.
5. Saville SP, Lazzell AL, Monteagudo C, Lopez-Ribot JL (2003) Engineered control of cell morphology in vivo reveals distinct roles for yeast and filamentous forms of Candida albicans during infection. Eurycytol Cell 2: 1053-1060. doi:10.1128/EC.2.5.1053-1060.2003. PubMed: 14555686.
6. Whiteway M, Bachewich C (2007) Morphogenesis in Candida albicans. Annu Rev Microbiol 61: 529-553. doi:10.1146/annurev.micro.61.080706.093341. PubMed: 17506678.
7. Braun BR, Head WS, Wang MX, Johnson AD (2000) Identification and characterization of TUP1-regulated genes in Candida albicans. Genetics 156: 31-44. PubMed: 10979273.
8. Braun BR, Johnson AD (1997) Control of filament formation in Candida albicans by the transcriptional repressor TUP1. Science 277: 105-109. doi:10.1126/science.277.5322.105. PubMed: 9204892.
9. Murad AM, Leng P, Straffon M, Wishart J, Macaskill S et al. (2001) NRG1 represses yeast-hypha morphogenesis and hypha-specific gene expression in Candida albicans. EMBO J 20: 4742-4752. doi:10.1093/emboj/20.17.4742. PubMed: 11532938.
10. Noble CJ, Mitchell AP (2006) Genetics and genomics of Candida albicans biofilm formation. Cell Microbiol 8: 1382-1391. doi:10.1111/j.1462-5822.2006.00761.x. PubMed: 16848788.
11. Liu Y, Filler SG (2011) Candida albicans Als3, a multifunctional adhesin and invasin. Eukaryot Cell 10: 168-173. doi:10.1128/EC.00729-10. PubMed: 21157138.
12. Sheppard DC, Yeaman MR, Welch WH, Phan QT, Fu Y et al. (2004) Functional and structural diversity in the Als protein family of Candida albicans. J Biol Chem 279: 30480-30489. doi:10.1074/jbc.M401929200. PubMed: 15128742.
13. Roberts AH, Vickerman MM, Jenkinson HF (2010) Heterologous expression of Candida albicans cell wall-associated adhesins in Saccharomyces cerevisiae Reveals differential specificities in adherence and biofilm formation and in binding oral Streptococcus gordonii. Eukaryot Cell 9: 1622-1634. doi:10.1128/EC.00103-10. PubMed: 20709785.
Candida albicans through gene disruption with short homology regions. PubMed: 10066176.

Characterization of Hwp2, a Candida albicans putative GPI-anchored cell wall protein necessary for invasive growth. Microbiol Res 165: 250-258. doi: 10.1016/j.micres.2009.03.006. PubMed: 19616419.

Younes S, Bahnan W, Dimassi Hl, Khalaf RA (2011) The Candida albicans Hwp2 is necessary for proper adhesion, biofilm formation and oxidative stress tolerance. Microbiol Res 166: 430-436. doi: 10.1016/j.micres.2010.03.004. PubMed: 20986922.

De Groot PW, Hellingwerf KJ, Kiis FM (2003) Genome-wide identification of fungal GPI proteins. Yeast 20: 781-796. doi:10.1002/yea.1007. PubMed: 12846504.

Lo WS, Dranginis AM (1998) FLO11, a yeast gene related to the STA genes, encodes a novel cell surface flocculin. J Bacteriol 178: 7144-7151. PubMed: 9253593.

Lo WS, Dranginis AM (1998) The cell surface flocculin Flo11 is required for pseudoth酵formation and invasion by Saccharomyces cerevisiae. Mol Biol Cell 9: 161-171. doi:10.1091/mbc.9.1.161. PubMed: 9436998.

Goossens KV, Willaert RG (2012) The N-terminal domain of the Flo11 protein from Saccharomyces cerevisiae is an adhesin without mannose-binding activity. FEBS Yeast Res 12: 78-87. doi:10.1111/j.17189485.2011.00766.x. PubMed: 22120943.

Guo B, Styles CA, Feng Q, Fink GR (2000) A Saccharomyces cerevisiae family involved in invasive growth, cell-cell adhesion, and mating. Proc Natl Acad Sci U S A 97: 12158-12163. doi:10.1073/pnas.97.23.12158. PubMed: 11027318.

Reynolds TB, Fink GR (2001) Bakers' yeast, a model for fungal biofilm formation. Science 291: 878-881. doi:10.1126/science.291.5505.878. PubMed: 11157168.

Hazen KC (1998) Participation of yeast cell surface hydrophobicity in adherence of Candida albicans to human epithelial cells. Infect Immun 66: 1499-1508. PubMed: 1548073.

Hazen KC, Hazen BW (1992) Hydrophobic surface protein masking by the opportunistic fungal pathogen Candida albicans. Infect Immun 60: 1499-1508. PubMed: 1548073.

Brachmann CB, Davies A, Cost GJ, Caputo E, Li J et al. (1998) Designer deletions in Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14: 115-132. doi:10.1002/(SICI)1097-0061(19980310)14:2<115::AID-YEAST4>3.0.CO;2-Z. PubMed: 9483801.

Wilson RB, Davis D, Mitchell AP (1999) Rapid hypothesis testing with Candida albicans through gene disruption with short homology regions. J Bacteriol 181: 1686-1874. PubMed: 10074081.

Davis DA, Bruno VM, Loza L, Filler SG, Mitchell AP (2002) Candida albicans Mds3p, a conserved regulator of pH responses and virulence identified through insertional mutagenesis. Genetics 162: 1573-1581. PubMed: 12624533.

Fonzi WA, Irwin MY (1993) Isogenic strain construction and gene mapping in Candida albicans. Genetics 134: 717-728. PubMed: 8349105.

García-Sánchez S, Aubert S, Iraqui I, Janbon G, Ghigo JM et al. (2004) Candida albicans biofilms: a developmental state associated with specific and stable gene expression patterns. Eukaryot Cell 3: 536-545. doi:10.1128/EC.3.3.536-545.2004. PubMed: 15075282.

Boisrarme A, Conu A, Da Costa G, Richard ML (2011) Unexpected role for a serine/threonine-rich domain in the Candida albicans Ifp protein family. Eukaryot Cell 10: 1317-1330. doi:10.1128/EC.05044-11. PubMed: 21841123.

Boisrarme A, Gaillardin C (2009) Heterologous expression and characterization of a beta-1,6-glucanase from Aspergillus fumigatus. Appl Microbiol Biotechnol 82: 663-669. doi:10.1007/s00253-008-1780-z. PubMed: 19039584.

Zupanic ML, Fierman M, Smith D, Alvarez RA, Cummins RD et al. (2008) Glycan microarray analysis of Candida glabrata adherence ligand specificity. Mol Microbiol 68: 547-559. doi:10.1111/j.1365-2958.2008.06184.x. PubMed: 18394144.

Pelletier C, Bouley C, Cayuela C, Boutilier S, Bourlioux P et al. (1997) Cell surface characteristics of Lactobacillus casei subsp. casei, Lactobacillus paracasei subsp. paracasei, and Lactobacillus rhamnosus strains. Appl Environ Microbiol 63: 1725-1731. PubMed: 9143199.

Davis D, Edwards JE Jr., Mitchell AP, Abraham AS (2000) Candida albicans RIM101 pH response pathway is required for host-pathogen interactions. Infect Immun 68: 5953-5959. doi:10.1128/IAI.68.10.5953-5959.2000. PubMed: 10992507.

Dalle F, Jouault T, Tronel PA, Esnault J, Mallet JM et al. (2003) Beta-1,2- and alpha-1,2-linked oligomannosides mediate adherence of Candida albicans blastospores to human enterocytes in vitro. Infect Immun 71: 7061-7068. doi:10.1128/IAI.71.12.7061-7068.2003. PubMed: 14638796.

Punta M, Cogill PC, Eberhardt RY, Mistry J, Tate J et al. (2012) The Pfam protein families database. Nucleic Acids Res 40: D290-D301. doi:10.1093/nar/gkr717. PubMed: 22127670.

Eisenhaber B, Schneider G, Wildpaner M, Eisenhaber F (2004) A sensitive predictor for potential GPI lipid modification sites in fungal protein sequences and its application to genome-wide studies for Aspergillus nidulans, Candida albicans, Neurospora crassa, Saccharomyces cerevisiae and Schizosaccharomyces pombe. J Mol Biol 343: 247-253. doi:10.1016/j.jmb.2004.01.025. PubMed: 15003443.

Mao Y, Zhang Z, Gast C, Wong B (2008) C-terminal signals regulate targeting of glycosylphosphatidylinositol-anchored proteins to the cell wall or plasma membrane in Candida albicans. Eukaryot Cell 7: 1906-1915. doi:10.1128/EC.00245-09. PubMed: 19837954.

Nobile CJ, Nett JE, Andes DR, Mitchell AP (2006) Function of Candida albicans Rbt1 Exposure and Adhesion Properties