BAP1 and YY1 regulate expression of death receptors in malignant pleural mesothelioma

Yuki Ishii1*, Krishna K. Kolluri1*, Adam Pennycuick1, Xidan Zhang1, Ersilia Nigro1,2, Doraid Alrifai1, Elaine Borg3, Mary Falzon3, Khalid Shah4, Neelam Kumar1#, Sam M. Janes1#

1 Lungs for Living Research Centre, UCL Respiratory, University College London, London, United Kingdom
2 Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Caserta, Italy
3 Department of Histopathology, University College London Hospital, Euston Road, London, United Kingdom
4 Center for Stem Cell Therapeutics and Imaging, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA

*; These authors contributed equally to this work.
#; To whom correspondence should be addressed:
Neelam Kumar: neelam.kumar@alumni.ucl.ac.uk
Samuel M Janes: s.janes@ucl.ac.uk

Running title:
On the trail of BAP1 and YY1

Statement of significance:
We describe that YY1 interacts with BAP1, the most-frequently mutated tumour suppressor gene in mesothelioma, to regulate the response to TNF-related apoptosis-inducing ligand (TRAIL). These findings will accelerate a biomarker-driven cancer therapy.

Keywords:
BAP1, YY1, TRAIL, apoptosis, cancer therapy, tumor cell biology, receptor regulation
Abstract

Malignant pleural mesothelioma (MPM) is a rare, aggressive, and incurable cancer arising from the mesothelial lining of the pleura, with few available treatment options. We recently reported loss of function of the nuclear deubiquitinase BRCA1-associated protein 1 (BAP1), a frequent event in MPM, is associated with sensitivity to tumour necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis. As a potential underlying mechanism, here we report that BAP1 negatively regulates the expression of TRAIL receptors: death receptors 4 (DR4) and 5 (DR5). Using tissue microarrays (TMAs) of tumour samples from MPM patients, we found a strong inverse correlation between BAP1 and TRAIL receptor expression. BAP1 knockdown increased DR4 and DR5 expression, whereas overexpression of BAP1 had the opposite effect. Reporter assays confirmed wild-type BAP1, but not catalytically-inactive mutant BAP1, reduced promoter activities of DR4 and DR5, suggesting deubiquitinase activity is required for the regulation of gene expression. Co-IP studies demonstrated direct binding of BAP1 to the transcription factor Ying Yang 1 (YY1), and ChIP assays revealed BAP1 and YY1 to be enriched in the promoter regions of DR4 and DR5. Knockdown of YY1 also increased DR4 and DR5 expression and sensitivity to TRAIL. These results suggest that BAP1 and YY1 cooperatively repress transcription of TRAIL receptors. Our finding that BAP1 directly regulates the extrinsic apoptotic pathway will provide new insights into the role of BAP1 in the development of MPM and other cancers with frequent BAP1 mutations.
Introduction

Malignant pleural mesothelioma (MPM) is a rare, aggressive cancer that arises from the mesothelial lining of the lungs and is commonly associated with occupational exposure to asbestos. There are currently no curative therapies. Standard first line treatment is combination chemotherapy consisting of an anti-folate and a platinum agent which offers only a modest survival benefit (1). Advances in the understanding of MPM tumour biology have led to the development of multiple novel targeted agents currently in preclinical and clinical development. Many of these therapies lack a biomarker for activity and results so far have not delivered an effective clinical therapy (2).

A molecular target of significant interest in MPM is BRCA1-associated protein 1 (BAP1) (3–5). BAP1 mutations are frequent in MPM (23-67%) and in other tumour types including uveal melanoma (31-50%), cholangiocarcinoma (20-25%) and clear cell renal cell carcinoma (CCRCC) (8-14%) (6, 7, 16–19, 8–15). BAP1 is a deubiquitinase (DUB) that binds to a number of transcription factors through which it regulates gene transcription and modulates cellular pathways such as DNA repair, cell cycle and cell death (4, 5). The response to drugs that act upon these pathways, including PARP and EZH2 inhibitors, has been shown to be increased in the absence of BAP1 function (20). Clinical trials of these drugs in BAP1 mutant MPM are underway (21). In addition to its function as a nuclear deubiquitinase, a recent report suggests BAP1 also has cytoplasmic functions involving the regulation of cell death and mitochondrial metabolism (22).

We have previously demonstrated that loss of BAP1 function results in sensitivity to the death receptor (DR) agonist recombinant tumour necrosis factor-related apoptosis-inducing ligand (rTRAIL) (23). TRAIL is a member of the tumour necrosis factor (TNF) cytokine superfamily. It activates the extrinsic apoptotic pathway by binding to either of two death receptors, DR4 or DR5, which leads to the recruitment of the adaptor protein FADD and caspase-8 to form the death-inducing signalling complex (DISC) (24). Once formed, catalytic subunits of caspase-8 are cleaved and activate downstream effector caspases triggering apoptosis (25, 26). Activation of this pathway by TRAIL is specific to cancer cells, however the mechanism of this
selectivity is poorly understood (27, 28). Several therapeutic DR agonists including rTRAIL and agonistic DR4/5 antibodies have been developed (29–31). Clinical trials of such agents to date have demonstrated broad tolerability, but unfortunately limited therapeutic benefit (32). Potential reasons include the suboptimal pharmacokinetics of compounds, resistant cell populations and the lack of a targeting biomarker (33). Novel DR agonists with improved pharmacokinetics are in development and potential biomarkers such as BAP1 are emerging (34, 35).

We have extensively validated the association between loss of BAP1 function and increased sensitivity to rTRAIL in in vitro, in vivo and ex vivo models (23). Here we set out to delineate the mechanisms underlying this association. We hypothesise that BAP1 activity modulates expression of proteins of the extrinsic and intrinsic apoptosis pathways with an increase in pro-apoptotic protein expression in the absence of BAP1 activity. We demonstrate both BAP1 activity and rTRAIL sensitivity correlate with expression of the death receptors DR4 and DR5 at the transcriptional level. As BAP1 lacks DNA binding sites, we searched for the transcriptional factor that cooperates with BAP1 to modulate expression of DR4 and DR5 identifying the polycomb group (PcG) protein YY1.

Results

Loss of BAP1 activity correlates with increased DR4 and DR5 expression and increased rTRAIL sensitivity

We have previously shown that MPM cells with loss of BAP1 function are more sensitive to treatment with rTRAIL (23). To determine the mechanism underlying this, we investigated the expression of death receptors DR4 and DR5, the levels of which are known to significantly contribute to TRAIL response (36, 37), and nuclear BAP1 expression, a surrogate for BAP1 wild-type status (7). Immunohistochemical analysis of human tissue micro arrays (TMAs) (88 cores from 32 patients) (Fig. 1A), demonstrated a significant correlation between loss of nuclear BAP1 expression and higher DR4 and DR5 expression (Fig. 1B and Fig. S1). This correlation was further supported by immunohistochemistry in primary MPM tissue samples collected as
part of the MSO1 clinical trial (NCT00075699) (38); samples that lacked nuclear
BAP1 also showed elevated levels of DR4 and DR5 (Fig. S2B and S2C). Interestingly, when we used antibodies against cytokeratin 5 (CK5) and calretinin to confirm the areas of mesothelioma, we observed higher expression of DR4 and DR5 where CK5 or calretinin are expressed. This suggests that DR4 and DR5 are expressed in mesothelioma cells but not in surrounding stromal tissue (Fig. S2A). The expression of death receptors on cancer cells but not non-transformed cells, including stromal tissue, is an existing theory for the selectivity of rTRAIL and other death receptor agonists for cancer cells which our data supports (36).

We further confirmed the correlation of loss of BAP1 activity and high DR4 and DR5 expression in a panel of MPM cell lines. Immunoblot analysis of MPM cell lines (7 BAP1 mutant, 7 BAP1 wild-type) overall demonstrated a higher level of DR4 and DR5 expression in BAP1 mutant vs BAP1 wild-type cell lines (Fig. 1C and 1D). The BAP1 wild-type cell line, CRL2081, however expressed a high level of DR4 and was found to be rTRAIL sensitive. The BAP1 wild-type line H2803 expressed a high level of DR5 yet remained rTRAIL resistant. It cannot simply be inferred, therefore, that expression levels of DR4 or DR5 alone determine rTRAIL sensitivity in these BAP1 wild-type cells. Indeed, the apoptotic pathway consists of dozens of proteins, many of which are mutated in cancer cells. We hypothesise it is the balance of pro- and anti-apoptotic factors that determine TRAIL sensitivity of which DR4 and DR5 are likely to be dominant but not fully determinant. Indeed we observed additional heterogeneous changes in expression of 20 other proteins involved in the extrinsic and intrinsic apoptosis pathways, however, they did not directly correlate with the mutational status of BAP1 or rTRAIL sensitivity (Fig. S3).

We have previously shown that strong nuclear BAP1 expression is highly correlated with rTRAIL resistance in human early passage, unsequenced MPM cultures (MesobanK UK) (39–41)(23). Here, in further support of a correlation between loss of BAP1 activity and increased DR4 and DR5 expression and rTRAIL sensitivity, immunoblot analysis revealed that DR4 and DR5 expression was higher in MPM cultures with loss of nuclear BAP1 expression and these cells were more sensitive to rTRAIL treatment (Fig. 1E and Fig. S4). Flow cytometry analysis also showed higher surface expression of DR4 and DR5 in MPM cultures with loss of nuclear BAP1
expression (Fig. 1F). Taken together, our data demonstrate strong inverse correlations between BAP1 expression and DR4 and DR5 expression, which may underlie the ability of BAP1 to determine rTRAIL sensitivity.

TRAIL has been documented in some cells to induce anti-apoptotic, rather than pro-apoptotic, pathways. Therefore, we investigated expression of anti-apoptotic proteins following treatment with rTRAIL (42–46). We examined c-FLIP, a catalytically inactive caspase-8 homologue that competes with caspase-8, inhibitors of apoptosis proteins (cIAP1/2), MAPK and NFκB pathways that enhance proliferation and induce cIAPs (36). We saw no induction of these proteins, excluding this as a mechanism of TRAIL-resistance in BAP1- mutant cells (Fig. S5).

Loss of BAP1 function increases DR4 and DR5 expression in malignant but not in non-transformed cells

To further investigate the relationship between BAP1 and DR4 and DR5 expression we knocked down BAP1 expression in a BAP1-wild type MPM cell line using lentiviral shRNA constructs. BAP1 knockdown significantly increased expression of both DR4 and DR5 (Fig. 2A). DR5 has two isoforms; the expression of both was found to increase with BAP1 knockdown (Fig 2A). It is not understood if there is a difference in function between these isoforms (47, 48). We confirmed BAP1 knockdown resulted in increased sensitivity to rTRAIL in these cells (Fig. 2B).

Induction of cleaved caspase-8 and cleaved PARP was observed only in BAP1 knockdown cells indicating apoptosis activation only in the absence of BAP1. To examine the effect across additional tumour types we next knocked down BAP1 in two BAP1 wild-type clear cell renal cell carcinoma (CCRCC) cell lines. This also resulted in increased expression of DR4 and DR5 and increased sensitivity to rTRAIL (Fig. 2C and D). An additional shRNA clone confirmed these results in these two CCRCC lines and in a BAP1 wild-type MPM cell line (Fig.2C and Fig.S6). BAP1 knockdown also lead to increased DR4 and DR5 mRNA levels (Fig. 2E) indicating the effect of BAP1 on DR4 and DR5 expression is at the transcriptional level.

Significantly, BAP1 knockdown in human lung fibroblasts and human bronchial epithelial cells (HBECs) did not affect expression of DR4 and DR5 or sensitivity to rTRAIL suggesting this effect is specific to malignant cells (Fig. S7).
BAP1 negatively regulates transcription of DR4 and DR5

To test if BAP1 deubiquitinase activity is required for transcriptional regulation of DR4 and DR5 expression, we next transduced a BAP1-null early passage MPM cell line, Meso-8T, with a lentiviral construct expressing wild-type BAP1 (wt-BAP1) or BAP1 with an inactivating mutation in the deubiquitinase site C91A-BAP1 or A95D-BAP1. Various mutations at C91 have been reported and shown in COSMIC (https://cancer.sanger.ac.uk/cosmic)(49). A95D is a naturally occurring mutation in MPM tumours in patients (6). Transduction with wt-BAP1 but not C91A-BAP1 resulted in a decrease in DR4 and DR5 expression (Fig. 3A). Flow cytometry confirmed a decrease in surface expression of DR4 and DR5 in cells transduced with wt-BAP1 but not C91A-BAP1 or A95D-BAP1 (Fig. 3B). Cell survival assays confirmed transduction with wt-BAP1, but not C91A-BAP1 or A95D-BAP1, resulted in a significant reduction in rTRAIL sensitivity (Fig. 3C). Concordantly, we saw decreased activation of caspase-8, caspase-3 and reduced PARP cleavage in wt-BAP1 transduced relative to C91A-BAP1 transduced cells when treated with rTRAIL (Fig. 3A) reflective of reduced activation of the extrinsic apoptotic pathway in the presence of wt-BAP1. Quantitative PCR analysis demonstrated that DR4 and DR5 mRNA expression were both decreased in cells transduced with wt-BAP1 relative to those transduced with C91A-BAP1 suggesting regulation of DR4 and DR5 expression by catalytically active BAP1 is at the transcriptional level (Fig. 3D). These results were confirmed in a further MPM cell line, H28 which harbours a BAP1 splice site mutation commonly found in MPM tumours (Fig. S8) (6). We have also previously confirmed reduced DR4 and DR5 expression in C91A BAP1 transduced relative to BAP1-wild-type-transduced H226 cells using flow cytometry analysis (23). Subsequently, we tested the effect of BAP1 on DR4 and DR5 transcription more directly. Meso-8T cells were transduced with lentiviral vectors with luciferase reporters under the control of DR4 or DR5 promoters (50). These reporter cells were also transduced with either wt-BAP1 or A95D-BAP1. Cells transduced with wt-BAP1 displayed a significantly lower luciferase activity than those transduced with A95D-BAP1 or the parental cell line reflecting decreased DR4 and DR5 transcriptional activity in the presence of functional BAP1 (Fig. 3E).
Together the above results support that the deubiquitinase activity of BAP1 mediates transcriptional repression of DR4 and DR5. To determine whether this in turn determines rTRAIL sensitivity, we used two complementary approaches. First, we knocked down DR4 or DR5 in BAP1 wild-type H2869 MPM cells transduced with BAP1 shRNA. BAP1 knockdown increased the sensitivity of H2869 cells to rTRAIL as expected (Fig. 3F). Interestingly, DR5, but not DR4 knockdown, in shBAP1-H2869 cells abolished the effect of BAP1 knockdown, resulting in rTRAIL resistance (Fig. 3F). Second, we knocked down DR4 or DR5 in the BAP1-null, rTRAIL-sensitive Meso-8T cell line. DR5 knockdown only slightly decreased rTRAIL sensitivity but DR4 knockdown reduced it to a similar level as transduction with wild-type BAP1 (Fig. 3G). These data are in line with previous reports showing preferential use of one of the two receptors by distinct cell types (31). For example, haematological cancers seem to prefer DR4 for induction of apoptosis (51, 52), whereas solid tumours appear to exhibit heterogeneity in death receptor preference (31, 53, 54).

YY1 negatively regulates transcription of DR4 and DR5

As BAP1 does not bind to DNA directly (5), we aimed to identify transcription factors that bind to the promoter regions of DR4 and DR5. Bioinformatic analysis of 2000 nucleotides of the promoter region of DR4 and DR5 was conducted. From candidates identified (Fig. S9), YY1 was selected for further analysis as it has previously been shown to negatively regulate DR5 expression in prostate cancer (55, 56). Furthermore, YY1 has been shown to bind directly to BAP1, with the C-terminal region of BAP1 essential for this interaction, forming a complex capable of regulating gene expression (57). YY1 knock down with two different shRNA clones in BAP1 wild-type MPM and CCRCC cells resulted in increased expression of both DR4 and DR5 without affecting steady-state levels of BAP1 (Fig. 4A and Fig.S10). shRNA knockdown of BAP1 in MPM cells also did not affect steady-state levels of YY1 (Fig.S11A). In addition, we did not observe any difference in YY1 expression based on BAP1 mutational status and BAP1 expression level (Fig. S11B). qPCR analysis confirmed increased mRNA expression of DR4 and DR5 in cells transduced with YY1 shRNA (Fig. 4B). YY1 knockdown also significantly increased sensitivity to rTRAIL and the DR5 agonist Medi3039 in MPM and CCRCC cells (Fig. 4C)(58). We also determined if YY1 is able to regulate DR4 and DR5 expression in the absence...
We knocked down YY1 in BAP1-mutant MPM cell lines and BAP1-null early passage MPM cells and assessed the expression of DR4 and DR5, and rTRAIL sensitivity. Neither DR4/DR5 expression nor TRAIL sensitivity increased in the YY1 knock down cells (Fig. 4D and E) in these BAP1 mutant cells, unlike in BAP1 wild-type cells, suggesting that BAP1 is required for DR4/5 regulation by YY1. These data demonstrate that YY1, in addition to BAP1, modulates expression of DR4 and DR5. As YY1 and BAP1 have been shown to form a complex capable of regulating gene expression, it is likely that this complex regulates DR4 and DR5 expression (57).

BAP1 and YY1 act at DR4 and DR5 promoters to facilitate transcriptional repression

BAP1 has been shown to form a ternary complex with YY1 and HCF-1 (Host Cell Factor 1) in HeLa cells (57). Through its coiled-coil motif, BAP1 directly interacts with the zinc fingers of YY1 while HCF-1 interacts with the middle region of YY1 and is essential for the formation of the ternary complex in vivo (57). Therefore, we aimed to determine if BAP1 and YY1 also interact directly in MPM and CCRCC cells. Protein extracts from H2818, MPP89 and Caki-1 cells were co-immunoprecipitated (co-IP) using anti-YY1 antibody or IgG as a control. Immunoblot confirmed the interaction of endogenous YY1 with BAP1 (Fig. 5A). To verify the specificity of these results, we compared results of co-IP assay in BAP1-null MPM cells (Meso-8T) that were transduced with wt-BAP1 or a control vector alone. A strong interaction of YY1 and BAP1 was detected only in cells transduced with wt-BAP1 but not the control vector, confirming the specificity of the YY1/BAP1 interaction (Fig. 5B). Here, co-IP assay demonstrates that YY1 also interacts with HCF-1 in BAP1 wild-type CCRCC cells (Fig S12). However, we have previously shown that MPM cells expressing BAP1 that lacks the binding domain for HCF-1 are not significantly different in their TRAIL sensitivity compared to cells expressing wtBAP1 (23). This suggests that the HCF-1/BAP1 interaction does not determine TRAIL sensitivity and is unlikely to be involved in death receptor regulation.
In addition to physical interactions, we sought to examine the functional interaction between YY1 and BAP1. As BAP1 does not have a DNA binding domain, but directly interacts with the transcriptional repressor YY1, we hypothesized that BAP1 and YY1 are recruited to the promoter regions of DR4 and DR5. Chromatin immunoprecipitation (ChIP) assays were performed with antibodies for BAP1, YY1 or IgG as a control. The immunoprecipitated DNA was analysed with probes for DR4 or DR5 by qPCR in Meso-8T cells transduced with wt-BAP1, C91A-BAP1 or a control vector. Both BAP1 and YY1 were enriched in the promoter regions of DR4 and DR5 in cells transduced with wt-BAP1 but not the control vector (Fig. 5C). Interestingly, BAP1 and YY1 were also enriched in these promoter regions in cells transduced with C91A-BAP1 indicating BAP1 and YY1 are recruited to these promoter regions regardless of deubiquitinase activity. This finding is consistent with previous reports that catalytically inactive BAP1 is also recruited to FoxK2-binding regions (59). Catalytically inactive BAP1 has also previously been shown to form a complex with YY1 (57). Taken together we show that BAP1 and YY1 are recruited at the promoters of TRAIL receptors and are necessary to initiate transcriptional regulation of TRAIL receptors.

Discussion

We have recently reported that loss of BAP1 function is a predictive biomarker for rTRAIL sensitivity in cancer (23). In this study, we delineate the underlying molecular mechanism. We demonstrate BAP1 and the transcriptional regulator YY1 act at the promoter regions of DR4 and DR5 where they facilitate transcriptional repression of DR4 and DR5, which requires BAP1 deubiquitinase activity. Decreased cell surface expression of DR4 and DR5 and reduced activation of the apoptotic pathway in turn mediates rTRAIL resistance in BAP1 wild-type cells. Conversely, increased cell surface expression of DR4 and DR5 in BAP1 mutant cells mediates the observed increased sensitivity to rTRAIL. Various mechanisms of resistance to rTRAIL and other death receptor agonists have been suggested (60). Evidence supports that low expression of DR4 and DR5 due to mutations, promoter methylation, constitutive endocytosis or deficient transport to the cell surface is important (60–63). Indeed, strategies to enhance the efficacy of rTRAIL treatment, such as a combination with
chemotherapeutic drugs, have been demonstrated to mediate these effects through increased death receptor expression (25). Our results are consistent with these data and support the centrality of death receptor expression in TRAIL therapeutics.

YY1 inhibition has previously been shown to upregulate DR5 expression and enhance rTRAIL sensitivity in prostate cancer and B-non-Hodgkin lymphoma cells (55, 56, 64). Here however we show that YY1 is involved in the transcriptional regulation of both DR4 and DR5 and is enriched at the promoters of both DR4 and DR5 when BAP1 is present. BAP1 is known to form multiprotein complexes including as many as ten partners which in turn determine the precise targets of its deubiquitinase activity (5, 65). It has previously shown that BAP1 forms a multiprotein complex with YY1 and the transcriptional cofactor HCF-1 (57). Although not investigated here, further work might identify additional cofactor(s) that direct BAP1 and YY1 to the DR4 and DR5 promoters. We have previously shown that mutation of the ASXL binding site on BAP1 and ASXL1 knockdown also increases rTRAIL sensitivity (23). The BAP1/ASXL1 complex is a polycomb repressor deubiquitinase complex capable of deubiquitination of histone 2A at lysine 119 (H2A119Ub), a process which modulates expression of the polycomb genes (5). Interestingly, YY1 has also been shown to interact with polycomb proteins (57, 66). It may therefore be that YY1 interacts with both BAP1 and ASXL1 to modulate death receptor expression through the deubiquitination of H2A119Ub or that BAP1 and YY1 form an alternate complex with a different target that modulates histone and chromatin structure death receptor expression.

YY1 and BAP1 may be involved more widely in the transcriptional regulation of the TNF receptor superfamily. Nitric oxide has been shown to inhibit YY1 binding to the Fas promoter resulting in Fas upregulation and cell sensitisation to Fas-ligand induced apoptosis in prostate cancer (67). YY1 has also been shown to supress the Fas promoter activity in B-non-Hodgkin lymphoma and colon cancer (68, 69). We have also previously demonstrated that BAP1 knockdown sensitises MPM cells to Fas ligand and TNF-alpha (23).

Although BAP1 was originally identified as a tumour suppressor gene, accumulating evidence has revealed roles in multiple clinically targetable pathways (70–73).
Indeed we have proposed BAP1 expression to be a stratifying biomarker for sensitivity to death receptor agonists (23) and our work here provides a biological rationale for this. The current study also demonstrates that YY1 knockdown enhances the sensitivity to TRAIL and DR5 agonist. YY1 is overexpressed in many types of cancer and high expression correlates with poor clinical outcomes and resistance to chemotherapy and immunotherapy making it an attractive therapeutic target (74, 75). Thus, targeting the BAP1/YY1 axis may be an additional novel therapeutic strategy in TRAIL therapeutics.

Experimental procedures

Cell Culture

All cancer cell lines were obtained from the Wellcome Trust Sanger Institute (Cambridgeshire, UK) except the H226 line that was kindly gifted from Dr. P. Szlosarek (Barts Cancer Institute, London, UK). Cancer cell lines were cultured in RPMI-1640, Dulbecco’s modified Eagle’s medium (DMEM) or DMEM and nutrient mix 12 medium (DMEM:F12) supplemented with 10% fetal bovine serum (FBS), penicillin/ streptavidin and sodium pyruvate. Early passage human mesothelioma cells were purchased from MesobanK (39) and cultured in RPMI-1640 medium supplemented with 5% FBS, 25 mM HEPES, penicillin/ streptavidin and sodium pyruvate. Primary human lung fibroblasts (kind gift from Dr. R. Chambers at UCL) were cultured in DMEM media supplemented with 10% FBS and penicillin/streptavidin in an incubator with 10% CO₂ (76). Experiments were conducted on cells between passage 6 and 8. Primary human bronchial epithelial cells (HBECs) were obtained from endobronchial biopsies with patient consent as previously described (77). Ethical approval was obtained through the National Research Ethic Committee (REC reference 06/Q0505/12). All studies involving human subjects abide by the Declaration of Helsinki Principles. HBECs were cultured in bronchial epithelial growth medium (BEGM; Lonza) on top of 3T3-J2
mouse embryonic fibroblast feeder cells inactivated by mitomycin-C treatment (0.4 μg/ml, Sigma-Aldrich, Merck, Darmstadt, Germany).

XTT cell viability assay

Cells were seeded in 96-well plates in 100 μl media per well at a density of 40,000 cells/ml one day prior to treatment with soluble recombinant TRAIL (PeproTech, Rocky Hill, NJ, USA) or MEDI3039 (Medimmune, AstraZeneca, Cambridge, UK). XTT reagent and the activation solution (Applichem, Akron Biotech, Boca Raton, FL, USA 88) were mixed and added to the cells at the end of treatment. The plate was returned to a CO₂ incubator to incubate for 2 hours, the absorbance at a wavelength of 490nm was measured using a microplate reader. Relative cell viability was calculated as a fraction of viable cells relative to untreated cells.

Immunoblotting

Cells were lysed in RIPA lysis buffer (Sigma-Aldrich) with protease inhibitors (Complete-mini; Roche, Basel, Switzerland) on ice to extract protein. 30 μg of protein samples were separated by SDS–PAGE and transferred onto nitrocellulose membranes using iBlot2 Dry Blotting System (Thermo Fisher Scientific, Waltham, MA, USA). Membranes were incubated with specific primary antibodies, washed, incubated with secondary antibodies and visualised using an ImageQuant LAS 4000 imaging system (GE Healthcare, Chicago, IL, USA). A list of antibodies used for immunoblotting is provided in Table S1. Quantification of bands was performed using ImageJ (Image Processing and Analysis in Java).

Immunoprecipitation (IP)

Cells were lysed in IP buffer containing 0.2% NP-40, 20mM Tris-HCl (pH 7.4), 150mM NaCl, 10% glycerol and protease inhibitors. The lysates were incubated overnight with gentle rocking with anti-YY1 antibody (ab38422, Abcam, Canmbridge, UK) or IgG (2729, Cell Signaling Technology, Danvers, MA, USA). Protein-A magnetic beads (Pierce Biotechnology, Thermo Fisher Scientific, Waltham, MA, USA) were added and incubation was continued for 1 hour. The beads were washed
with IP buffer and proteins eluted from the beads by heating with SDS sample buffer. Proteins were separated by SDS-PAGE and immunoblotting was performed as described above with anti-BAP1 antibody (sc-28383, Santa Cruz).

Plasmids

Full-length BAP1 cDNA was amplified by PCR from pCMV6-AC BAP1 plasmid (SC117256, Origene, Rockville, MD, USA) and cloned into the lentiviral plasmid pCCL-CMV-fIT vector. Vectors expressing mutant BAP1 constructs were generated by site-directed mutagenesis (E0554, New England Biolabs, Ipswich, MA, USA) of the pCCL-CMV-BAP1 vector as previously described (23).

RNA interference

Short hairpin RNAs (shRNAs) were expressed as part of a mir30-based GIPZ lentiviral vector (Dharmacon, Lafayette, CO, USA). The clones used in this study include BAP1 (clone#1; V2LHS_41473, clone#2; V2LHS_41478), DR4 (V3LHS_383718), DR5 (V3LHS_328891), YY1 (clone#1; V3LHS_412955, clone#2; V3LHS_412955) and the empty GIPZ control vector.

Lentivirus production and cell transfection

Lentiviral particles were produced by co-transfection of 293T cells with construct plasmids and the packaging plasmids pCMV-dR8.74 and pMD2.G (kind gifts from Dr Adrian Thrasher, University College London) using a DNA transfection reagent jetPEI (Source Bioscience, Nottingham, UK). The viral particles were concentrated by ultracentrifugation at 17,000 rpm (SW28 rotor, Optima LE80K Ultracentrifuge, Beckman, Brea, CA, USA) for 2 hours at 4°C. To determine the titres of prepared lentivirus, 293T cells were transduced with serial dilutions of viruses in the presence of 8 μg/mL polybrene and protein expression was assessed by flow cytometry and immunoblotting.
Flow cytometry

All flow cytometry analysis was performed on an LSR Fortessa analyser (Becton Dickinson, Franklin Lakes, NJ, USA). For analysis of BAP1 expression, cells were fixed, permeabilized and stained with primary antibody to BAP1 (1:50, SC28383, Santa Cruz) and then with an AlexaFluor 488-conjugated anti-mouse antibody (1:200, A-21202, Invitrogen, Carlsbad, CA, USA). For analysis of surface expression of DR4 and DR5, cells were stained with 1:100 dilution of PE-conjugated antibody (#307205 for DR4, #307405 for DR5, #400112 for isotype, Biolegend, San Diego, CA, USA). FlowJo software was used to analyse all data.

Quantitative RT-PCR

Total RNA was extracted from the cells using SV Total RNA Isolation System (Promega, Madison, WI, USA) according to the manufacture’s instructions. cDNA was synthesized using iScript Reverse Transcription Supermix for RT-qPCR (Bio-Rad Laboratories, Hercules, CA, USA). Quantitative PCR was performed using TaqMan probes (DR4: Hs00269492_m1, DR5: Hs00366278_m1, beta-2-microglobulin: Hs00187842_m1) and TaqMan Gene Expression Master Mix (Life Technologies, Carlsbad, CA, USA) as per the manufacture’s protocol. Relative expression of DR4 and DR5 was calculated using comparative CT method with a reference gene, beta-2-microglobulin.

ChIP assay

The ChIP assay was carried out using EZ ChIP™ Chromatin Immunoprecipitation kit (Merck-Millipore, Burlington, MA, USA) according to the manufacture’s instruction. Briefly, the cells were cross-linked, quenched and lysed then the chromatin was fragmented by sonication shearing. Protein/DNA complexes were diluted, pre-cleared with Protein G agarose beads, then immunoprecipitated (IP) by incubation with antibodies against BAP1 (#78105, Cell Signaling), YY1 (#ab38422, Abcam 422) or IgG (#2729, Cell Signaling) overnight with rotation, followed by incubation with protein G agarose beads for 1 hr. After washing beads, protein/DNA complexes were eluted, reverse crosslinked to free DNA, which was then purified using spin columns.
and analysed by quantitative PCR (qPCR). Primer pairs for ChIP assays were as follows: DR5; forward 5'-GGGAAGGGGAGAAGATCAAG-3', reverse 5'-GAAGGGACCGGAACTAACCT-3'. DR4; forward 5'-CCGAATGCGAAGTTCTGTCT-3', reverse 5'-AAGAGCCCCACACTTTGCT-3'.

Luciferase Reporter assay

Meso-8T cells were transduced with lentiviral vectors expressing a firefly luciferase reporter plasmid containing either DR4 promoter (upstream -1773/+63) or DR5 promoter (upstream -1400), plus control Renilla luciferase reporter under a control of CMV promoter (pDR4-FireflyLuc-CMV-RenillaLucDsRed2 or pDR5-FireflyLuc-CMV-RenillaLucDsRed2) vectors (50). Cells were seeded in 96 wells plate and luciferase activities were measured using Dual-Luciferase Reporter Assay System kit as described by the manufacture (Promega). Fluc/Rluc ratios were determined as relative luciferase activities.

Immunohistochemistry (IHC)

Tumor biopsies taken from patients with MPM in the MS01 trial (NCT00075699) were stored as formalin fixed paraffin embedded (FFPE) blocks or as unstained mounted sections as previously described (38). The TMA slides containing tumour samples from patients with MPM were purchased from MesobanK UK. All studies involving human subjects abide by the Declaration of Helsinki Principles. To assess expression of DR4, DR5, CK5 and calretinin, samples were first incubated in the oven at 60 °C for 30min, then deparaffinised and rehydrated using an automated tissue processor (Tissue-Tek, Alpena an den Rijn, The Netherlands). Antigen retrieval was achieved by immersion in 10mM Citric acid buffer (pH.6.0) at 95 °C for 15 min. After washing with PBS and blocking with 2.5% normal goat serum, samples were incubated with primary antibody: anti-DR4 (1:500, ab8414, abcam), anti-DR5, (1:500, ab8416, abcam), anti-calretinin (1:200, NCL-L-CALRET-566, Leica Biosystems, Wetzlar, Germany), anti-keratin 5 (Biolegend: 905501, 1:500) in 1% BSA / 4% serum overnight at 4 °C. Samples were incubated with ImmPRESS polymer reagent (VECTOR Laboratories, Burlingame, CA, USA) for 30min and stained with ImmPACT Nova RED (VECTO Laboratories). Hematoxylin and eosin
(H&E) staining was carried out using an automated tissue processor (Tissue-Tek).

Staining for BAP1 was performed as described before using anti-BAP1 antibody (1:150, sc-28282, Santa Cruz Biotechnology) (38). Images were acquired using a NanoZoomer 2.0HT whole slide imaging system (Hamamatsu Photonics, Hamamatsu, Japan). Histology and nuclear BAP1 assessment was performed by two consultant pathologists. Intensity of DR4 and DR5 expression was assessed blindly by three independent observers and scored as follows (no staining=0; low staining=1; medium staining=2; strong staining=3).

Bioinformatical Analysis

To identify the common transcription factors which potentially regulate these genes, the 2000 nucleotide sequence of the promoter regions of DR4 and DR5 are entered into Human Core-Promoter Finder (http://rulai.cshl.org/tools/genefinder/CPROMOTER/human.htm).

Statistical Analysis

Data were evaluated using the statistical analysis and indicated with P values. $P<0.05$ was considered statistically significant. Using Prism 8 (GraphPad, CA, USA), student’s t-test was performed to analyse differences between two groups whilst one-way ANOVA was used to determine the differences between three or more independent groups.

For the statistical analysis of TMAs, linear mixed modelling was used to account for multiple samples per patient, including the patient ID as a random effect. Linear mixed models were implemented using the Bioconductor *Ime4* and *ImerTest* packages. Pairwise t-test confirmed that there was no systematic bias between the score of different observers.

Data availability

All data are contained within the article.

Supporting information

This article contains supporting information.
Acknowledgement

We would like to thank Dr. Rachel Chambers for providing human primary fibroblasts, Dr. Deepak Chandrasekaran and Dr. Pascal. Durrenberger for help with histological analysis and Dr. Sandra Lopez Gomez for reading the manuscript and providing suggestions (University College London Respiratory). We also would like to thank MesobanK, a Research Tissue Bank supported by the British Lung Foundation and The Victor Dahdaleh Foundation, as the source of supply of the original materials.

Funding

This research was supported by Wellcome Trust (to S.M.J: WT107963AIA, to N.K:106555/Z/14/Z), Caner Research UK (to D.A: 536993 K71), British Lung Foundation (to S.M.J) and NIHR University College London Hospital Biomedical Research Centre (to S.M.J and M.F).

Conflict of interest:

The authors declare no potential conflict of interest.
References

1. Vogelzang, N. J., Rusthoven, J. J., Symanowski, J., Denham, C., Kaukel, E., Ruffie, P., Gatzemeier, U., Boyer, M., Emri, S., Manegold, C., Niyikiza, C., and Paoletti, P. (2003) Phase III study of pemetrexed in combination with cisplatin versus cisplatin alone in patients with malignant pleural mesothelioma. J. Clin. Oncol. 21, 2636–2644

2. Nicollini, F., Bocchini, M., Bronte, G., Delmonte, A., Guidoboni, M., Criniò, L., and Mazza, M. (2020) Malignant Pleural Mesothelioma: State-of-the-Art on Current Therapies and Promises for the Future. Front. Oncol. 10.3389/fonc.2019.01519

3. Schunselaar, L. M., Zwart, W., and Baas, P. (2017) Targeting BAP1: a new paradigm for mesothelioma. Lung Cancer. 109, 145–146

4. Wang, A., Papneja, A., Hyrcza, M., Al-Habeeb, A., and Ghazarian, D. (2016) BAP1: Gene of the month. J. Clin. Pathol. 69, 750–753

5. Carbone, M., Yang, H., Pass, H. I., Krausz, T., Testa, J. R., and Gaudino, G. (2013) BAP1 and cancer. Nat. Rev. Cancer. 13, 153–159

6. Bott, M., Brevet, M., Taylor, B. S., Shimizu, S., Ito, T., Wang, L., Creaney, J., Lake, R. A., Zakowski, M. F., Reva, B., Sander, C., Delsite, R., Powell, S., Zhou, Q., Shen, R., Olsken, A., Rusch, V., and Ladanyi, M. (2011) The nuclear deubiquitinase BAP1 is commonly inactivated by somatic mutations and 3p21.1 losses in malignant pleural mesothelioma. in Nature Genetics, pp. 668–672, Nat Genet, 43, 668–672

7. Nasu, M., Emri, M., Pastorino, S., Tanji, M., Powers, A., Luk, H., Baumann, F., Zhang, Y. A., Gazdar, A., Kanodia, S., Tiirikainen, M., Flores, E., Gaudino, G., Becich, M. J., Pass, H. I., Yang, H., and Carbone, M. (2015) High incidence of somatic BAP1 alterations in sporadic malignant mesothelioma. J. Thorac. Oncol. 10, 565–576

8. Lo Iacono, M., Monica, V., Righi, L., Grosso, F., Libener, R., Vatrano, S., Bironzo, P., Novello, S., Musmeci, L., Volante, M., Papotti, M., and Scaglitti, G. V. (2015) Targeted next-generation sequencing of cancer genes in advanced stage malignant pleural mesothelioma: A retrospective study. J. Thorac. Oncol. 10, 492–499

9. Kato, S., Tomson, B. N., Buys, T. P. H., Elkin, S. K., Carter, J. L., and Kurzrock, R. (2016) Genomic landscape of malignant mesotheliomas. Mol. Cancer Ther. 15, 2498–2507

10. Righi, L., Duregon, E., Vatrano, S., Izzo, S., Giorcelli, J., Rondón-Lagos, M., Ascoli, V., Ruffini, E., Ventura, L., Volante, M., Papotti, M., and Scaglitti, G. V. (2016) BRCA1-Associated protein 1 (BAP1) immunohistochemical expression as a diagnostic tool in malignant pleural mesothelioma classification: A large retrospective study. J. Thorac. Oncol. 11, 2006–2017

11. Ewens, K. G., Lalonde, E., Richards-Yutz, J., Shields, C. L., and Ganguly, A. (2018) Comparison of Germline versus Somatic BAP1 Mutations for Risk of Metastasis in Uveal Melanoma. BMC Cancer. 18, 1–12

12. Robertson, A. G., Shih, J., Yau, C., Gibb, E. A., Oba, J., Mungall, K. L., Hess, J. M., Uzunangelov, V., Walter, V., Danilova, L., Lichtenberg, T. M., Kucherlapati, M., Kimes, P. K., Tang, M., Penson, A., et al. (2017) Integrative Analysis Identifies Four Molecular and Clinical Subsets in Uveal Melanoma. Cancer Cell. 32, 204-220.e15

13. Smit, K. N., Jager, M. J., de Klein, A., and Kiliç, E. (2020) Uveal melanoma: Towards a molecular understanding. Prog. Retin. Eye Res. 10.1016/j.preteyeres.2019.100800

14. Jiao, Y., Pawlik, T. M., Anders, R. A., Selaru, F. M., Streppel, M. M., Lucas, D. J., Niknafs, N., Guthrie, V. B., Maïtra, A., Argani, P., Offerhaus, G. J. A., Roa, J. C., Roberts, L. R., Gores, G. J., Popescu, I., et al. Nat. Genet. 45, 1470–1473

15. Andrici, J., Goeppert, B., Sioson, L., Clarkson, A., Renner, M., Stenzinger, A., Tayao, M., Watson, N., Farzin, M., Toon, C. W., Smith, R. C., Mittal, A., Samra, J. S., Hugh, T. J., Chou, A., et al. (2016) Loss of BAP1 expression occurs frequently in intrahepatic cholangiocarcinoma. Med. (United States). 10.1097/MD.0000000000002491

16. Misumi, K., Hayashi, A., Shibahara, J., Arita, J., Sakamoto, Y., Hasegawa, K., Kokudo,
17. Dizman, N., Philip, E. J., and Pal, S. K. (2020) Genomic profiling in renal cell cancer. *Nat. Rev. Nephrol.* 10.1038/s41581-020-0301-x

18. Joseph, R. W., Kapur, P., Serie, D. J., Eckel-Passow, J. E., Parasramka, M., Ho, T., Cheville, J. C., Frenkel, E., Rakheja, D., Brugarolas, J., and Parker, A. (2014) Loss of genetic characteristics with BAP1 loss. *Histopathology.* 70, 766–774

19. Peña-Llopis, S., Vega-Rubín-De-Celís, S., Liao, A., Leng, N., Pavía-Jiménez, A., Wang, S., Yamazaki, T., Zhubker, L., Sivanand, S., Spence, P., Kinch, L., Hambuch, T., Jain, S., Lotan, Y., Margulis, V., et al. (2012) BAP1 loss defines a new class of renal cell carcinoma. *Nat. Genet.* 44, 751–759

20. Lafave, L. M., Béguelin, W., Koche, R., Teater, M., Spitzer, B., Chramiec, A., Papalexi, E., Keller, M. D., Hricik, T., Konstantinoff, K., Micol, J. B., Durham, B., Knutson, S. K., Campbell, J. E., Blum, G., et al. (2015) Loss of BAP1 function leads to EZH2-dependent transformation. *Nat. Med.* 21, 1344–1349

21. Zauderer, M. G., Szlosarek, P. W., Le Moulec, S., Popat, S., Taylor, P., Planchard, D., Scherpereel, A., Jahan, T. M., Koczysaw, M., Forster, M., Cameron, R. B., Peikert, T., Argon, E. K., Michaud, N., Yang, J., Kansra, V., and Fennell, D. A. (2020) Safety and efficacy of tazemetostat, an enhancer of zeste-homolog 2 inhibitor, in patients with relapsed or refractory malignant mesothelioma. *J. Clin. Oncol.* 38, 9058–9058

22. Bononi, A., Giorgi, C., Paterngni, S., Larson, D., Verbruggen, K., Tanji, M., Pellegrini, L., Signorato, V., Olivetto, F., Pastorino, S., Nasu, M., Napolitano, A., Gaudino, G., Morris, P., Sakamoto, G., et al. (2017) BAP1 regulates IP3R3-mediated Ca2+ flux to mitochondria suppressing cell transformation. *Nature.* 546, 549–553

23. Kolluri, K. K., Alifrangis, C., Kumar, N., Ishii, Y., Price, S., Michaut, M., Williams, S., Barthorpe, S., Lightfoot, H., Busacca, S., Sharkey, A., Yuan, Z., Sage, E. K., Vallath, S., Le Quesne, J., et al. (2018) Loss of functional BAP1 augments sensitivity to TRAIL in cancer cells. *Elife.* 10.7554/eLife.30224

24. Kischkel, F. C., Lawrence, D. A., Chintharpai, A., Schow, P., Kim, K. J., and Ashkenazi, A. (2000) Apo2L/TRAIL-dependent recruitment of endogenous FADD and caspase-8 to death receptors 4 and 5. *Immunity.* 12, 611–620

25. Abdulghani, J., and El-Deiry, W. S. (2010) TRAIL receptor signaling and therapeutics. *Expert Opin. Ther. Targets.* 14, 1091–1108

26. Von Karstedt, S., Montinaro, A., and Walczak, H. (2017) Exploring the TRAILs less travelled: TRAIL in cancer biology and therapy. *Nat. Rev. Cancer.* 17, 352–366

27. Ashkenazi, A., Pai, R. C., Fong, S., Leung, S., Lawrence, D. A., Marsters, S. A., Blackie, C., Chang, L., McMurtrey, A. E., Hebert, A., DeForge, L., Koumenis, I. L., Lewis, D., Harris, L., Bussiere, J., et al. (1999) Safety and antitumor activity of recombinant soluble Apo2 ligand. *J. Clin. Invest.* 104, 155–162

28. Walczak, H., Miller, R. E., Ariail, K., Gliniak, B., Griffith, T. S., Kubin, M., Chin, W., Jones, J., Woodward, A., Le, T., Smith, C., Smolak, P., Goodwin, R. G., Rauch, C. T., Schuh, J. A. C. L., and Lynch, D. H. (1999) Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. *Nat. Med.* 5, 157–163

29. Prasad, S., Kim, J. H., Gupta, S. C., and Aggarwal, B. B. (2014) Targeting death receptors for TRAIL by agents designed by Mother Nature. *Trends Pharmacol. Sci.* 35, 520–536

30. De Vries, E. G. E., Gietema, J. A., and De Jong, S. (2006) Tumor necrosis factor-related apoptosis-inducing ligand pathway and its therapeutic implications. *Clin. Cancer Res.* 12, 2390–2393

31. Van Roosmalen, I. A. M., Quax, W. J., and Kruyt, F. A. E. (2014) Two death-inducing human TRAIL receptors to target in cancer: Similar or distinct regulation and function? *Biochem. Pharmacol.* 91, 447–456

32. Lemke, J., Von Karstedt, S., Zinggrebe, J., and Walczak, H. (2014) Getting TRAIL back on track for cancer therapy. *Cell Death Differ.* 21, 1350–1364
33. Ashkenazi, A. (2015) Targeting the extrinsic apoptotic pathway in cancer: Lessons learned and future directions. *J. Clin. Invest.* **125**, 487–489

34. De Miguel, D., Lemke, J., Anel, A., Walczak, H., and Martinez-Lostao, L. (2016) Onto better TRAILs for cancer treatment. *Cell Death Differ.* **23**, 733–747

35. Dianat-Moghadam, H., Heidarifard, M., Mahari, A., Shahgolzari, M., Keshavarz, M., Nouri, M., and Amoozgar, Z. (2020) TRAIL in oncology: From recombinant TRAIL to nano- and self-targeted TRAIL-based therapies. *Pharmacol. Res.* **155**, 104716

36. Zhang, L., and Fang, B. (2005) Mechanisms of resistance to TRAIL-induced apoptosis in cancer. *Cancer Gene Ther.* **12**, 228–237

37. Deng, D., and Shah, K. (2020) TRAIL of Hope Meeting Resistance in Cancer. *Trends in Cancer*. 10.1016/j.trecan.2020.06.006

38. Kumar, N., Alrifai, D., Kolluri, K. K., Sage, E. K., Ishii, Y., Guppy, N., Borg, E., Falzon, M., Nankivell, M., Nicholson, A., and Janes, S. M. (2019) Retrospective analysis of BAP1 expression to predict the clinical activity of systemic cytotoxic chemotherapy in mesothelioma. *Lung Cancer*. **127**, 164–166

39. Rintoul, R. C., Rassl, D. M., Gittins, J., and Marciukaitis, S. J. (2016) MesobanK UK: An international mesothelioma bioresource. *Thorax*. **71**, 380–382

40. Chernova, T., Sun, X. M., Powley, I. R., Galavotti, S., Grosso, S., Murphy, F. A., Miles, G. J., Cresswell, L., Antonov, A. V., Bennett, J., Nakas, A., Dinsdale, D., Cain, K., Bushell, M., Willis, A. E., and MacFarlane, M. (2016) Molecular profiling reveals primary mesothelioma cell lines recapitulate human disease. *Cell Death Differ.* **23**, 1152–1164

41. Al-Taie, S., Salimu, J., Lester, J. F., Linnane, S., Goonewardena, M., Harrop, R., Mason, M. D., and Tabi, Z. (2012) Overexpression and potential targeting of the oncofoetal antigen 5T4 in malignant pleural mesothelioma. *Lung Cancer*. **77**, 312–318

42. Lincoln, F. A., Imig, D., Boccellato, C., Juric, V., Noonan, J., Kontermann, R. E., Allgöwer, F., Murphy, B. M., and Rehm, M. (2018) Sensitization of glioblastoma cells to TRAIL-induced apoptosis by IAP- and Bcl-2 antagonism. *Cell Death Dis.* **10.1038/s41419-018-1160-2

43. Lee, T. J., Lee, J. T., Park, J. W., and Kwon, T. K. (2006) Acquired TRAIL resistance in human breast cancer cells are caused by the sustained cFLIPL and XIAP protein levels and ERK activation. *Biochem. Biophys. Res. Commun.* **351**, 1024–1030

44. Kaminský, V. O., Surova, O. V., Piskunova, T., Zborovskaya, I. B., Tchevkina, E. M., Andera, L., and Zhivotovsky, B. (2013) Upregulation of cFLIP-short in response to TRAIL promotes survival of NSCLC cells, which could be suppressed by inhibition of Ca2+/calmodulin signaling. *Cell Death Dis.* **4**, e522

45. Ishimura, N., Isomoto, H., Bronk, S. F., and Gores, G. J. (2006) Trail induces cell migration and invasion in apoptosis-resistant cholangiocarcinoma cells. *Am. J. Physiol. - Gastrointest. Liver Physiol.* 10.1152/ajpgi.00242.2005

46. Falschlehner, C., Emmerich, C. H., Gerlach, B., and Walczak, H. (2007) TRAIL signalling: Decisions between life and death. *Int. J. Biochem. Cell Biol.* **39**, 1462–1475

47. Scrovetan, G. R., Mongkolsapaya, J., Xu, X. N., Cowper, A. E., McMichael, A. J., and Bell, J. I. (1997) TRICK2, a new alternatively spliced receptor that transduces the cytotoxic signal from TRAIL. *Curr. Biol.* **7**, 693–696

48. Valley, C. C., Lewis, A. K., Mudaliar, D. J., Perlmutter, J. D., Braun, A. R., Karim, C. B., Thomas, D. D., Brody, J. R., and Sachs, J. N. (2012) Tumor Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL) Induces Death Receptor 5 Networks That Are Highly Organized. *J. Biol. Chem.* **287**, 21265–21278

49. Tate, J. G., Bamford, S., Jubb, H. C., Sondka, Z., Beare, D. M., Bindal, N., Boutsalakis, H., Cole, C. G., Creatore, C., Dawson, E., Fish, P., Harsha, B., Hathaway, C., Jupe, S. C., Kok, C. Y., et al. (2019) COSMIC: the Catalogue Of Somatic Mutations In Cancer. *Nucleic Acids Res.* **47**, D941–D947

50. Bagci-Onder, T., Agarwal, A., Fiasberg, D., Wanningen, S., Sorger, P., and Shah, K. (2013) Real-time imaging of the dynamics of death receptors and therapeutics that overcome TRAIL resistance in tumors. *Oncogene*. **32**, 2818–2827

51. Szegedy, E., Reis, C. R., Sloat, A. M. van der, Natoni, A., O’Reilly, A., Reeve, J.,...
Cool, R. H., O'Dwyer, M., Knapper, S., Serrano, L., Quax, W. J., and Samali, A. (2011) Targeting AML through DR4 with a novel variant of rhTRAIL. *J. Cell. Mol. Med.* 15, 2216–2231.

52. Xiao, W., Ishdorj, G., Sun, J., Johnston, J. B., and Gibson, S. B. (2011) Death receptor 4 is preferentially recruited to lipid rafts in chronic lymphocytic leukemia cells contributing to tumor necrosis related apoptosis inducing ligand-induced synergistic apoptotic responses. *Leuk. Lymphoma.* 52, 1290–1301.

53. Lemke, J., Noack, A., Adam, D., Tchikov, V., Bertsch, U., Röder, C., Schütze, S., Wajant, H., Kalthoff, H., and Trauzold, A. (2010) TRAIL signaling is mediated by DR4 in pancreatic tumor cells despite the expression of functional DR5. *J. Mol. Med.* 88, 729–740.

54. Van Geelen, C. M. M., Pennarun, B., Le, P. T. K., De Vries, E. G. E., and De Jong, S. (2011) Modulation of TRAIL resistance in colon carcinoma cells: Different contributions of DR4 and DR5. *BMC Cancer.* 11, 39.

55. Baritaki, S., Huerta-Yepez, S., Sakai, T., Spandidos, D. A., and Bonavida, B. (2007) Chemotherapeutic drugs sensitize cancer cells to TRAIL-mediated apoptosis: Up-regulation of DR5 and inhibition of Yin Yang 1. *Mol. Cancer Ther.* 6, 1387–1399.

56. Huerta-Yepez, S., Vega, M., Escoto-Chavez, S. E., Murdock, B., Sakai, T., Baritaki, S., and Bonavida, B. (2009) Nitric oxide sensitizes tumor cells to TRAIL-induced apoptosis via inhibition of the DR5 transcription repressor Yin Yang 1. *Nitric Oxide - Biol. Chem.* 20, 39–52.

57. Yu, H., Mashtalir, N., Daou, S., Hammond-Martel, I., Ross, J., Sui, G., Hart, G. W., Rauscher, F. J., Drobetsky, E., Milot, E., Shi, Y., and Affar, E. B. (2010) The Ubiquitin Carboxyl Hydroxylase BAP1 Forms a Ternary Complex with YY1 and HCF-1 and Is a Critical Regulator of Gene Expression. *Mol. Cell. Biol.* 30, 5071–5085.

58. Greer, Y. E., Gilbert, S. F., Gril, B., Narwal, R., Peacock Brooks, D. L., Tice, D. A., Steeg, P. S., and Lipkowitz, S. (2019) MEDI3039, a novel highly potent tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) receptor 2 agonist, causes regression of orthotopic tumors and inhibits outgrowth of metastatic triple-negative breast cancer. *Breast Cancer Res.* 10.1186/s13058-019-1116-1.

59. Okino, Y., Machida, Y., Frankland-Searby, S., and Machida, Y. J. (2015) BRCA1-associated protein 1 (BAP1) deubiquitinase antagonizes the ubiquitin-mediated activation of FoxK2 target genes. *J. Biol. Chem.* 290, 1580–1591.

60. Zhang, L., and Fang, B. (2005) Mechanisms of resistance to TRAIL-induced apoptosis in cancer. *Cancer Gene Ther.* 12, 228–237.

61. Horak, P., Pils, D., Haller, G., Pribill, I., Roessler, M., Tomek, S., Horvat, R., Zeilinger, R., Zelinski, C., and Krainer, M. (2005) Contribution of epigenetic silencing of tumor necrosis factor-related apoptosis inducing ligand (DR4) to TRAIL resistance and ovarian cancer. *Mol. Cancer Res.* 3, 335–343.

62. Elias, A., Siegelin, M. D., Steinmüller, A., Von Deimling, A., Lass, U., Korn, B., and Mueller, W. (2009) Epigenetic silencing of death receptor 4 mediates tumor necrosis factor-related apoptosis-inducing ligand resistance in gliomas. *Clin. Cancer Res.* 15, 5457–5465.

63. Jin, Z., McDonald, E. R., Dicker, D. T., and El-Deiry, W. S. (2004) Deficient tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptor transport to the cell surface in human colon cancer cells selected for resistance to TRAIL-induced apoptosis. *J. Biol. Chem.* 279, 35829–35839.

64. Martínez-Paniagua, M. A., Baritaki, S., Huerta-Yepez, S., Ortiz-Navarrete, V. F., González-Bonilla, C., Bonavida, B., and Vega, M. I. (2011) Mcl-1 and YY1 inhibition and induction of DR5 by the BH3-mimetic obatoclax (GX15-070) contribute in the sensitization of B-NHL cells to TRAIL apoptosis. *Cell Cycle.* 10, 2792–2805.

65. Szczepanski, A. P., and Wang, L. (2021) Emerging multifaceted roles of BAP1 complexes in biological processes. *Cell Death Discov.* 10.1038/s41420-021-00406-2.

66. Hoxha, S., Shepard, A., Troutman, S., Diao, H., Doherty, J. R., Janiszewska, M., Witwicki, R. M., Pipkin, M. E., Ja, W. W., Kareta, M. S., and Kissil, J. L. (2020) YAP-Mediated Recruitment of YY1 and EZH2 Represses Transcription of Key Cell-Cycle
Regulators. *Cancer Res.* **80**, 2512–2522

Garbán, H. J., and Bonavida, B. (2001) Nitric Oxide Inhibits the Transcription Repressor Yin-Yang 1 Binding Activity at the Silencer Region of the Fas Promoter: A Pivotal Role for Nitric Oxide in the Up-Regulation of Fas Gene Expression in Human Tumor Cells. *J. Immunol.* **167**, 75–81

Vega, M. I., Jazirehi, A. R., Huerta-Yepez, S., and Bonavida, B. (2005) Rituximab-Induced Inhibition of YY1 and Bcl-x L Expression in Ramos Non-Hodgkin’s Lymphoma Cell Line via Inhibition of NF-κB Activity: Role of YY1 and Bcl-x L in Fas Resistance and Chemoresistance, Respectively. *J. Immunol.* **175**, 2174–2183

Vega, M. I., Huerta-Yepez, S., Jazirehi, A. R., Garban, H., and Bonavida, B. (2005) Rituximab (chimeric anti-CD20) sensitizes B-NHL cell lines to Fas-induced apoptosis. *Oncogene.* **24**, 8114–8127

Qin, J., Zhou, Z., Chen, W., Wang, C., Zhang, H., Ge, G., Shao, M., You, D., Fan, Z., Xia, H., Liu, R., and Chen, C. (2015) BAP1 promotes breast cancer cell proliferation and metastasis by deubiquitinating KLF5. *Nat. Commun.* 10.1038/ncomms9471

Jia, X., Chen, H., Ren, Y., Dejizhuoga, Gesangyuzhen, Gao, N., Feng, H., Huang, W., Liao, Y., and Yu, H. (2021) BAP1 antagonizes WWP1-mediated transcription factor KLF5 ubiquitination and inhibits autophagy to promote melanoma progression. *Exp. Cell Res.* **402**, 112506

Liu, X., Kumar, M., Yang, L., Molkentine, D. P., Valdecanas, D., Yu, S., Meyn, R. E., Heymanc, J. V., and Skinner, H. D. (2018) BAP1 is a novel target in HPV-negative head and neck cancer. *Clin. Cancer Res.* **24**, 600–607

Guo, Y., Yang, H., Chen, S., Zhang, P., Li, R., Nimer, S. D., Harbour, J. W., Xu, M., and Yang, F. C. (2018) Reduced BAP1 activity prevents ASXL1 truncation-driven myeloid malignancy in vivo. *Leukemia.* **32**, 1834–1837

Khachigian, L. M. (2018) The Yin and Yang of YY1 in tumor growth and suppression. *Int. J. Cancer.* **143**, 460–465

Melia, I. T. S., Hosea, R., Kasim, V., and Wu, S. (2020) The biological implications of Yin Yang 1 in the hallmarks of cancer. *Theranostics.* **10**, 4183–4200

Mercer, P. F., Woodcock, H. V., Eley, J. D., Platé, M., Sulikowski, M. G., Durrenberger, P. F., Franklin, L., Nanthalakumar, C. B., Man, Y., Genovese, F., McAnulty, R. J., Yang, S., Maher, T. M., Nicholson, A. G., Blanchard, A. D., et al. (2016) Exploration of a potent PI3 kinase/mTOR inhibitor as a novel anti-fibrotic agent in IPF. *Thorax.* **71**, 701–711

Butler, C. R., Hynds, R. E., Gowers, K. H. C., Lee, D. D. H., Brown, J. M., Crowley, C., Teixeira, V. H., Smith, C. M., Urbani, L., Hamilton, N. J., Thakrar, R. M., Booth, H. L., Birchall, M. A., De Coppi, P., Giangreco, A., et al. (2016) Rapid expansion of human epithelial stem cells suitable for airway tissue engineering. *Am. J. Respir. Crit. Care Med.* **194**, 156–168
Figure Legends

Figure1: Expression levels of DR4 and DR5 are inversely correlated with BAP1 expression in malignant pleural mesothelioma

Figure1A, Representative images of IHC of DR4 and DR5 in a core from an MPM tissue microarray (TMA) with or without nuclear BAP1 expression (from 88 cores of 32 patients). *B*, Semi-quantitative analysis of DR4 and DR5 expression in MPM TMA cores with (n=42) and without (n=46) nuclear BAP1 expression. Each dot represents an average score per patient (n=32). t-test; p=0.024 (DR4) and p=0.0092 (DR5). See method section for details.

Figure1C, Immunoblots of DR4, DR5 and BAP1 protein expression in BAP1 mutant (n=7) vs BAP1 wild-type (n=7) MPM cell lines. Duplet bands of DR5 represent two isoforms, DR5-short (DR5-S) and DR5-long (DR5-L).

Figure1D, Quantitative analysis of immunoblot intensity of DR4 and DR5 in wild type BAP1 and mutant BAP1 MPM cell lines (DR4 t-test; p=0.046, DR5 t-test; p=0.009). Dots color indicates the sensitivity to rTRAIL treatment as shown in (C).

Figure1E, Quantitative analysis of immunoblot intensity of DR4 and DR5 in early-passage MPM cells with (+) and without (-) nuclear BAP1 expression. (DR4 t-test; p=0.033, DR5 t-test; p=0.049).

Figure1F, Flow cytometry analysis of DR4 and DR5 cell surface expression in early passage MPM cells with (BAP1+) and without (BAP1-) nuclear BAP1 expression alongside an isotype control.

Figure2: BAP1 knockdown increases death receptors expression and TRAIL sensitivity in cancer cells

Figure2A, Immunoblots of pro-apoptotic proteins in parental, BAP1 shRNA (shBAP1-clone#1) or empty vector shRNA (EV) transduced BAP1-wild-type MPM cells (H2818) across multiple time points (0, 6, 12, 24 and 48 hours) post rTRAIL treatment (100ng/mL). Duplet bands of DR5 represent two isoforms, DR5-short (DR5-S) and DR5-long (DR5-L). The bands were quantified and normalized to an average of parental cells data. *B*, Cell viability assay of parental, shBAP1- or EV-transduced H2818 cells following treatment with a dose range of rTRAIL (0-1000ng/ml) for 72 hours. *C*, Immunoblot analysis in BAP1-wild-type- clear cell renal cell carcinoma (CCRCC) cells (BB65 and Caki-1) and MPM cells (H2818)
transduced with BAP1 (shBAP1#1 or shBAP1#2) or empty vector (EV) shRNA. The bands were quantified and normalized to EV. D, Cell viability assay of EV- or shBAP1- transduced BAP1 wild-type CCRCC cells following treatment with a dose range of rTRAIL (0-1000ng/ml) for 72 hours. E, Relative expression of DR4 and DR5 mRNA in CCRCC cells transduced with EV or shBAP1 assessed by qPCR. Relative mRNA expression was normalized to beta-2-microgloblin (B2M) expression.

Figure 3: The deubiquitinase function of BAP1 regulates the transcription of DR4 and DR5
A, Immunoblots of pro-apoptotic proteins in BAP1 null early passage mesothelioma cells (Meso-8T) transduced with constructs expressing wild type-BAP1 (wt-BAP1), deubiquitinase mutant BAP1 (C91A-BAP1) or a control vector (cont-vec) untreated and after 5 hours of rTRAIL treatment (50 ng/mL). B, Flow cytometry analysis of cell surface expression of DR4 and DR5 in Meso-8T cells transduced with constructs expressing wild type-BAP1 (wt-BAP1) or one of two deubiquitinase mutant BAP1 vectors (C91A or A95D). One-way ANOVA; ***p<0.001. C, Cell viability assay of Meso-8T cells transduced with wt-BAP1 or one of two deubiquitinase mutant BAP1 vectors (C91A or A95D) following treatment with a dose range of rTRAIL (0-1000ng/ml) for 72 hours. D, Relative DR4 and DR5 mRNA expression in parental Meso-8T cells and cells transduced with wt-BAP1 or C91A-BAP1. Relative mRNA expression was normalized to beta-2-microgloblin (B2M) expression. Data are shown as the mean ± s.d. of two experiments performed in triplicates. *, P<0.05; **, P<0.01. E, Reporter assay for promoter activities of DR4 and DR5 in parental Meso-8T cells transduced with a luciferase reporter under the control of DR4 or DR5 promoter and cells further transduced with wt-BAP1 or A95D-BAP1. Firefly luciferase/Renilla luciferase ratios were determined as relative luciferase activities. Data are shown as the mean ± s.d. of two experiments (n=6 in each experiment). *, P<0.05; **, P<0.01. F, Cell viability assay of BAP1 wild-type H2869 cells transduced with EV or shBAP1 following treatment with a dose range of rTRAIL (0-1000ng/ml) for 72 hours and for shBAP1 cells further transduced with DR4 (shDR4) or DR5 shRNA (shDR5) following the same treatment. G, Cell viability assay of parental
BAP1 null Meso-8T early passage MPM cells transduced with wild-type BAP1 (wtBAP1) or DR4 (shDR4) or DR5 shRNA (shDR5) following treatment with a dose range of rTRAIL (0-1000ng/ml) for 72 hours. +,++; lentiviral titer. Error bars represent the standard deviation.

Figure 4: YY1 knockdown increases the expression of death receptors and rTRAIL-induced cell death

A, Immunoblot analysis in BAP1-wild-type MPM cells (H2818, MPP89 and H2591) or CCRCC cells (BB65 and Caki-1) transduced with YY1 shRNA-clone#1 (+) or an empty vector shRNA (-). Quantitative analysis of DR4 and DR5 bands from three independent experiments was performed. Average data after normalization to tubulin were shown as bar graphs. B, Relative DR4 and DR5 mRNA expression in MPM cells (H2818) and CCRCC cells (Caki-1 and BB65) transduced with YY1-shRNA or EV-shRNA. Relative mRNA expression was normalized to beta-2-microgloblin (B2M) expression. Data are shown as the mean ± s.d. of two experiments performed in triplicates. *, P<0.05; **, P<0.01. C, Cell viability assays of BAP1-wild-type MPM and CCRCC cells transduced with EV shRNA or shYY1 (clone#1) following treatment with a dose range of rTRAIL (0-1000ng/ml) or MEDI3039 (0.1-100pM) for 72 hours. Error bars represent the standard deviation. D, Immunoblot analysis in BAP1-null early passage MPM Meso-8T cells and BAP1-mutant MPM cell lines (H28, H226) transduced with YY1 (clone#1) or empty vector (EV) shRNA. E, Cell viability assay of EV- or shYY1 (clone#1) - transduced cells described in D, following treatment with a dose range of rTRAIL (0-1000ng/ml) for 72 hours.

Figure 5: YY1 recruits BAP1 to the promoter regions of DR4 and DR5 and represses their transcriptional activities

A, Co-Immunoprecipitation (Co-IP) of endogenous YY1 and BAP1 in MPM (H2818, MPP89) and CCRCC (Caki-1) cells. B, Co-IP of YY1 and BAP1 in BAP1 null early passage MPM Meso-8T cells transduced with wild-type BAP1 (wt-BAP1) or a control vector. C, Enrichment of BAP1 and YY1 in the promoter regions of DR4 and DR5. Meso-8T cells were overexpressed with wt-BAP1, catalytically inactive mutant-BAP1 (C91A-BAP1) or a control vector (cont). Chromatin Immunoprecipitation (ChIP) was
performed against BAP1, YY1 or IgG control followed by qPCR using primers specific for promoter regions of DR4 or DR5. Error bars represent the standard deviation. P-values are calculated to compare against IgG control using student t-test (n=3); *p<0.05, **p<0.01. D, Schematic model of the transcriptional regulation of TRAIL death receptors by BAP1 and YY1.
Figure 3

A panel showing Western blot analysis of TRAIL-induced apoptosis in Meso-8T cells transfected with BAP1, DR4, DR5, and control vector.

B shows densitometric analysis of cleaved caspase-8 and -3 in DR4 and DR5 transfected Meso-8T cells.

C presents survival curves of H2869 cells treated with TRAIL and transfected with different vectors.

D illustrates relative mRNA expression levels of DR4 and DR5 in Meso-8T cells transfected with different vectors.

E displays relative luciferase activities in Meso-8T cells transfected with different vectors.

F and G depict survival curves of Meso-8T cells treated with TRAIL and transfected with different vectors.
