Metagenomics of the faecal virome indicate a cumulative effect of enterovirus and gluten amount on the risk of coeliac disease autoimmunity in genetically at risk children: the TEDDY study

Katri Lindfors,1,4,5 Jake Lin,1,2 Hye-Seung Lee,3 Heikki Hyöty,1 Matti Nykter,1 Kalle Kurppa,1,4,5,6 Edwin Liu,6,7 Sibylle Koletzko,8,9 Marian Rewers,10 William Hagopian,11 Jorma Toppari,12,13 Annette-Gabriele Ziegler,14,15,16 Beena Akolkar,17 Jeffrey P Krischer,3 Joseph F Petrosino,18 Richard E Lloyd,18 Daniel Agardh1,19 the TEDDY Study Group

ABSTRACT
Objective Higher gluten intake, frequent gastrointestinal infections and adenovirus, enterovirus, rotavirus and reovirus have been proposed as environmental triggers for coeliac disease. However, it is not known whether an interaction exists between the ingested gluten amount and viral exposures in the development of coeliac disease. This study investigated whether distinct viral exposures alone or together with gluten increase the risk of coeliac disease autoimmunity (CDA) in genetically predisposed children.

Design The Environmental Determinants of Diabetes in the Young study prospectively followed children carrying the HLA risk haplotypes DQ2 and/or DQ8 and constructed a nested case–control design. From this design, 83 CDA case–control pairs were identified. Median age of CDA was 31 months. Stool samples collected monthly up to the age of 2 years were analysed for virome composition by Illumina next-generation sequencing followed by comprehensive computational virus profiling.

Results The cumulative number of stool enteroviral exposures between 1 and 2 years of age was associated with an increased risk for CDA. In addition, there was a significant interaction between cumulative stool enteroviral exposures and gluten consumption. The risk conferred by stool enteroviruses was increased in cases reporting higher gluten intake.

Conclusions Frequent exposure to enterovirus between 1 and 2 years of age was associated with increased risk of CDA. The increased risk conferred by the interaction between enteroviruses and higher gluten intake indicate a cumulative effect of these factors in the development of CDA.

INTRODUCTION
The incidence of autoimmune diseases is rising more rapidly than can be explained by genetics, supporting the role of environmental factors in the disease pathogenesis.1 Coeliac disease, a dietary gluten-driven chronic small bowel enteropathy, is characterised by an autoimmune response against tissue transglutaminase (tTG). The main autoantigen in coeliac disease is tTG, which post-translationally deamidates gluten-derived gliadin peptides.2 Coeliac disease autoimmunity (CDA), which refers to the appearance of...
Coeliac disease

Table 1 Demographic data of the 83 nested case and control pairs

HLA genotype, n (%)	Cases	Controls
DQ2/DQ2	29 (35)	11 (13)
DQ2/DQ8	39 (47)	36 (43)
DQ8/DQ8	11 (13)	20 (24)
DQ8/X	4 (5)	15 (19)
Other (ineligible)	1 (1)	

Age at CDA, months	31 (23, 46)	NA
Developed CD during follow-up, n (%)	28 (34)	NA
With CD-FDR, n (%)	6 (7)	3 (4)
Ever breastfed, n (%)	83 (100)	83 (100)
Breastfeeding stopped, months	8 (5, 11)	8 (4, 12)
Glutenn		
Age at introduction, months	6 (5, 7)	6 (5, 7)
Total intake by 2 years of age (g)	8.0 (5.4, 11.0)	7.6 (5.0, 11.8)
IA positivity, n (%)	41 (49)	15 (18)
Prior to CDA, n (%)	31 (37)	NA

For continuous variables, the median (25th percentile, 75th percentile) is reported. CD, coeliac disease; CDA, coeliac disease autoimmunity; CD-FDR, subject having a first degree relative with coeliac disease; IA, islet autoantibody; NA, not applicable.

Materials and Methods

The nested case–control (NCC) study design

Following new-born screening for high-risk HLA-DR-DQ genotypes, The Environmental Determinants of Diabetes in the Young (TEDDY) enrolled 8676 children before 4.5 months of age for a 15-year follow-up study with the main aim of identifying genetic and environmental triggers associated with T1D and coeliac disease. Annual screening for CDA started at the age of 2 years by detection of tTG autoantibodies using radiobinding assays, as previously described. If a sample was tTG-autoantibody positive, all of the child’s earlier available samples were tested to determine the age of seroconversion. CDA was defined as being positive for tTG autoantibodies in two consecutive samples at least 3 months apart.

From this cohort, two nested case–control (NCC) studies were conducted to improve the efficiency of multiple biomarker studies, with one focused on islet autoimmunity (IA) and the other on T1D. Cases and controls were identified as of 31 May 2012, then all available samples meeting the design criteria by that time were processed in the laboratories chosen for each biomarker analysis. Case–control pairs were matched for T1D family history (defined as having a first-degree relative with T1D), gender and clinical site location in the region where the participant was enrolled. All children in the 1:1 NCC studies for gut virome analysis that had been screened for CDA were considered for the present study. Each case–control pair included a CDA positive child (‘case’) matched with a child (‘control’) who was CDA-free for at least 6 months from the CDA case’s age of seroconversion.

Identified were 88 CDA case–control pairs. Among those, only the 83 pairs (44 were females and 39 were males) whose stool virome data were available after introducing gluten in their diet were included in the final analysis (figure 1, table 1). The distribution by country was as follows: USA (n=25), Finland (n=13), Germany (n=5) and Sweden (n=40). There were 16 pairs with family history of T1D. Of the CDA cases, 41 were confirmed for IA positivity and 31 of these developed IA prior to CDA. Of the controls, 11 were IA positive. During the follow-up, 28 of the CDA cases developed coeliac disease. Six CDA cases and three controls had a first-degree relative with coeliac disease. As for the rotavirus vaccination status, 15 CDA cases and 20 controls...
were vaccinated. Other characteristics of the cases and controls are shown in table 1.

Detection of viral stool sequences
Stool samples were collected monthly from 3 months until 2 years of age. NGS viral sequences were assayed in serial stool samples using a custom offline version of Vipie.20 Vipie virus population profiling pipeline components include standard scripts for base quality, trimming, chimera detection while de novo assembled contigs were generated via integration of local assembly methods SPAdes and Velvet.21 22 These contigs were mapped to NCBI virus database using BLAST23 resulting in a sample-based general virus population profile. For the present study, we focused on enterovirus, adenovirus, astrovirus, norovirus, reovirus and rotavirus. To approximate serotype and increase specificity, viral structural capsid-specific remapping on positive NGS samples was performed for enteroviruses and adenoviruses. For this analysis, MAPQ alignment cut-off of 20, representing greater than 0.99 probability was applied. The capsid resource contains Genbank and Tampere Virology Group-selected strains of adenovirus hexon, fibre and penton regions as well as enterovirus strains Coxsackievirus A, Coxsackievirus B and selected Echovirus P1 protein (VP1-4) regions. This study included 1507 samples processed, after introducing gluten in diet.

Dietary data from food records
By 2 years of age, information on breastfeeding and the timing of introduction to gluten-containing cereals were collected from validated questionnaires at each clinic visit occurring every 3 months. Information on gluten consumption was collected at each clinic visit every 3 months up to 1 year of age and biannually thereafter (24 hours recall at 3-month visit and subsequently 3-day food records). Amount of gluten intake was calculated by multiplying the amount of vegetable protein in gluten-containing flours by a factor of 0.8. From the 3-day food records, daily consumption (g/day) was obtained as the mean of 3 days of consumption.

Statistical analysis
The case–control pairs identified from the TEDDY NCC design were used to examine whether viral profiles differed by the CDA status. Conditional logistic regression was used to compare the cumulative appearance of viral exposures, after adjusting for HLA. Viral exposures were categorised by age: <1 year of life and from 1 to <2 years of life. From pairs where the case seroconverted prior to 2 years of age, only the samples available prior to age of seroconversion were included in the analysis. Interaction with cumulative gluten intake on the risk of CDA was examined. The cumulative gluten intake was obtained from the sum of daily consumption (g/day) from all clinical visits by 2 years of age. None reported any gluten consumption at 3-month visit. Additionally, the effects of the enterovirus sequence reads from 1 to <2 years of life were assessed in three groups by the total gluten intake: low (<33rd percentile), middle (33–66rd percentile) and high (>66rd percentile) based on unique individuals included in the analysis. Two-sided p-values are reported. Statistical significance was determined when the p-value was <0.05. All statistical analyses were performed using SAS V.9.4.

RESULTS
Association of viral exposures with CDA
The highest coverage of stool samples (available in 72.9% of the case–control pairs) was at 9 months where after the number gradually declined and at 24 months samples were available in 21.7% of the pairs (figure 2). Among the available stool samples at each collection age, the percentage of samples positive for any virus fluctuated between 22% and 50% without any obvious peaks at any collection age (figure 2A). The frequency of enterovirus positive samples ranged from 0% to 21% from the age 6 months onwards (figure 2B).

Between the time of first introduction of gluten at median 6 months of age and 1 year of age, 63 cases compared with 72 controls had at least one viral exposure (table 2). Enterovirus and adenoviruses were detected in 17 and 56 cases compared with 19 and 65 controls, respectively. Rotavirus exposures were detected in only one case and one control, and rotaviral exposures were detected only in one of the controls. The cumulative

Figure 2 Stool samples positive for (A) any of the investigated viruses and (B) enteroviruses by 2 years of age as a percentage of samples available at each collection age. Filled triangles denote cases with CDA and unfilled circles controls. Bars represent the percentage of case–control pairs from whom stool samples were available for analysis at each collection age. CDA, coeliac disease autoimmunity.
Table 2: HLA-adjusted OR of cumulative virus detections in stool up to 1 year of age from a matched CDA case and control study

Virus/serotype	OR (95% CI)	P value	Cases positive (n)†	Controls positive (n)†
Any virus	0.68 (0.49 to 0.94)	0.02	63	72
HEV*	0.97 (0.56 to 1.70)	0.92	17	19
HEV A	1.65 (0.56 to 4.84)	0.36	8	6
CVA	6.69 (0.70 to 63.79)	0.1	8	2
HEV B	1.64 (0.77 to 3.53)	0.2	12	8
CVB	1.85 (0.81 to 4.24)	0.15	12	7
Echovirus	1.92 (0.68 to 5.45)	0.22	9	6
HAdV*	0.69 (0.48 to 0.99)	0.04	56	65
HAdV A	0.56 (0.13 to 2.36)	0.43	3	3
HAdV B	NA	NA	1	3
HAdV C	0.72 (0.37 to 1.37)	0.31	19	23
HAdV F	3.62 (0.70 to 18.88)	0.13	10	5
Astrovirus	0.94 (0.42 to 2.11)	0.89	15	18
Norovirus	1.10 (0.48 to 2.52)	0.82	12	11
Reovirus	0.71 (0.03 to 18.69)	0.84	1	1
Rotavirus	NA	NA	0	1

Total number of pairs with available stool samples is 79.

*Species and serotypes of HEV and HAdV are based on virome capsid mapping after Vipie genus taxonomy identification as follows: enterovirus capsid (VP1-4) repository includes CV9, CVB1-6, Echovirus 6, 11, 18, 25 and 30. Adenovirus resource includes penton, hexon and fibre regions from prototypes AC_000007, X73487, JX423382, NC_010956, NC_001454 and KF303071.

†Number refers to the number of children having at least one viral sequence read in the stool.

CDA, coeliac disease autoantibody positivity; CVA, coxsackievirus A; CVB, coxsackievirus B; HAdV, human adenovirus; HEV, human enterovirus; NA, not applicable.

Table 3: HLA-adjusted OR of cumulative viral detections in stool between 1 and 2 years of age: a matched CDA case and control study

Virus/serotype	OR (95% CI)	P value	Cases positive (n)†	Controls positive (n)†	OR (95% CI) Excluding pairs with IA first‡
Any virus	1.60 (1.12 to 2.29)	0.01	59	58	0.02 (0.56 to 1.83)
HEV*	2.56 (1.19 to 5.51)	0.02	31	16	1.04 (0.42 to 2.56)
HEV A	2.10 (0.67 to 6.60)	0.2	13	8	0.65 (0.13 to 3.15)
CVA	2.53 (0.73 to 8.78)	0.15	7	5	0.64 (0.06 to 6.96)
HEV B	2.64 (0.84 to 8.36)	0.1	15	7	1.32 (0.32 to 5.41)
CVB	6.00 (1.27 to 28.46)	0.02	16	6	2.45 (0.45 to 13.3)
Echovirus	2.27 (0.68 to 7.61)	0.18	11	6	1.86 (0.42 to 8.21)
HAdV*	1.41 (0.99 to 2.02)	0.05	52	55	1.03 (0.59 to 1.77)
HAdV A	5.11 (0.71 to 36.63)	0.1	9	1	NA
HAdV B	6.12 (0.55 to 67.70)	0.14	4	4	2.46 (0.21 to 28.7)
HAdV C	1.74 (0.82 to 3.70)	0.15	19	17	1.31 (0.45 to 3.88)
HAdV F	1.09 (0.23 to 5.11)	0.01	0	0	2.87 (0.21 to 39.1)
Astrovirus	0.70 (0.29 to 1.68)	0.42	13	18	0.45 (0.10 to 1.99)
Norovirus	1.04 (0.42 to 2.62)	0.93	10	11	0.33 (0.05 to 3.00)
Reovirus	NA	NA	0	0	NA
Rotavirus	NA	NA	0	NA	NA

Total number of pairs with available stool samples is 72.

*Species and serotypes of HEV and HAdV are based on virome capsid mapping after Vipie genus taxonomy identification as follows: enterovirus capsid (VP1-4) repository includes CV9, CVB1-6, Echovirus 6, 11, 18, 25 and 30. Adenovirus resource includes penton, hexon and fibre regions from prototypes AC_000007, X73487, JX423382, NC_010956, NC_001454 and KF303071.

†Number refers to the number of children having at least one viral sequence read in the stool.

‡Number refers to the number of children having at least one viral sequence read in the stool.

CDA, coeliac disease autoantibody positivity; CVA, coxsackievirus A; CVB, coxsackievirus B; HAdV, human adenovirus; HEV, human enterovirus; IA, islet autoimmunity; NA, not applicable; T1D, type 1 diabetes.

Effects of feeding habits and viral exposures on the risk of CDA

The cumulative amount of any viral infections or enteroviruses during the period after gluten introduction but while breastfeeding was still ongoing was not associated with CDA (OR 1.15, 95% CI 0.72 to 1.82, p=0.56 and OR 0.98, 95% CI 0.43 to 2.21, p=0.96, respectively). When restricting the analysis to the time period after the end of any breastfeeding and to stool amount of any viral exposures (OR 0.68, 95% CI 0.49 to 0.94, p=0.02), and specifically those by adenoviruses (OR 0.69, 95% CI 0.48 to 0.99, p=0.04), were inversely associated with CDA when adjusting for HLA (table 2). None of the other individual viruses were associated with CDA.

Between 1 and 2 years of age, 59 cases compared with 58 controls had at least one positive stool sample with any of the selected viruses (table 3). Adenoviruses were detected in 52 cases compared with 55 controls, whereas enteroviruses were detected in 31 cases compared with 16 controls. Reovirus sequences were detected in one case, but none of the controls, while rotavirus sequences were not detected in any subjects. Cumulative number of positive stool samples for any virus was associated with an increased risk for CDA (OR 1.60, 95% CI 1.12 to 2.29, p=0.01). Of the different viruses, enteroviruses conferred the strongest positive association with CDA (OR 2.56, 95% CI 1.19 to 5.51, p=0.02) (table 3). When excluding the enteroviruses, the association of any viruses with the development of CDA was lost (OR 1.35, 95% CI 0.92 to 1.98, p=0.13). The ORs for the enterovirus B group were in the same direction when excluding the 42 pairs where either the case or control developed IA or T1D prior to seroconversion of CDA, although the reduced sample size did not have enough power to show differences between the groups (table 3).
samples collected between 1 and 2 years of age when the children were exposed to gluten, both the cumulative amount of any virus sequence reads (OR 1.41, 95% CI 1.00 to 2.00, p=0.05) and enterovirus sequence reads (OR 2.47, 95% CI 1.12 to 5.48, p=0.03) were associated with CDA.

There was a significant interaction between enteroviruses and gluten intake by 2 years of age in the risk of CDA (p=0.03) (table 4). The risk of CDA was the highest among enterovirus positive children who had the highest cumulative gluten intake by 2 years of age (OR 8.3 (95% CI 1.8 to 37.1), as compared with those consuming middle or low amounts (OR 2.9, 95% CI 1.2 to 7.1 and OR 1.0, 95%CI 0.4 to 2.8, respectively) figure 3.

DISCUSSION

This study showed that the cumulative number of stool enteroviral exposures between 1 and 2 years of age was associated with CDA. In addition, an interaction between enteroviral exposures and gluten intake was observed. More importantly, the risk of CDA was increased in cases reporting higher intake of gluten. These results indicate that enteroviral exposure augmented by higher gluten intake could act as triggers of coeliac disease in genetically at-risk children.

Only few previous studies have reported an association between enteroviruses and coeliac disease of which one study found an increased number of tTG autoantibody positive subjects among individuals with a proven enteroviral infection. In addition, enteroviruses have previously been detected in the small bowel mucosa of coeliac disease patients. Moreover, enteroviral infections prior to 1 year of age were not associated with increased risk of coeliac disease, while those occurring after the age of 1 year increased the risk. Our findings are consistent with both of these previous studies. Additionally, in line with the Norwegian study, our results also showed that enteroviruses increased the risk of CDA only when restricting the analysis to the period when breastfeeding had ceased, but not while breastfeeding was still ongoing. As breastfeeding does not seem to be associated with the development of coeliac disease, this finding might indicate that enteroviral infections modulate CDA risk at an age when the child has ceased being breastfed.

This study extends previous investigations by showing an interaction between cumulative enteroviral exposures between age 1 and 2 with cumulative amount of gluten intake by 2 years of age. In addition, enteroviruses were associated with high risk, particularly among children reporting higher gluten intake, indicating that the gluten amount could amplify the effect of enteroviruses in the development of CDA. As comprehensive BLAST searches of the enterovirus contigs compiled from the NGS-derived enterovirus sequence reads did not reveal hits to gluten (data not shown), molecular mimicry likely does not account for the additive risk effect. Distinct isolate of reovirus, T1L has recently been shown to abrogate oral tolerance to gluten in a mechanism involving a type 1 interferon-induced activation of gluten-specific inflammatory T cells and inhibition of regulatory T cells. Along with these, the T1L reovirus infection was also reported to activate TGC. As enteroviruses have been shown to induce type 1 interferons, it could be speculated that enteroviruses may promote the development of coeliac disease by a mechanism involving an enterovirus-induced type 1 interferon-mediated breakage of oral tolerance to gluten coupled with activation of tTG similar to reovirus. Higher gluten intake will result in more gliadin peptides available for tTG-mediated deamidation resulting in augmented activation of the immune system ultimately leading chronic gut inflammation.

According to our results, cumulative adenoviral infections were associated with reduced risk for CDA after gluten introduction up to 1 year of age suggesting a putatively protective role.

Table 4 HLA-adjusted interactions of specific viruses or virus serotypes between 1 and 2 years of age with the cumulative amount of ingested gluten up to the age of 2 years

Virus/serotype	P value
Any virus	0.41
HEV	0.03
HEV A	0.05
CV A	0.83
HEV B	0.04
CV B	0.1
Echovirus	0.1
HAdV	0.5
HAdV A	0.81
HAdV B	0.44
HAdV C	0.76
HAdV F	0.15
Astrovirus	0.37
Norovirus	0.08
Reovirus	NA
Rotavirus	NA

CVA, coxsackievirus A; CVB, coxsackievirus B; HAdV, human adenovirus; HEV, human enterovirus; NA, not applicable.

Figure 3 Effect of the enteroviral exposures between 1 and 2 years of age and risk of coeliac disease autoimmunity stratified by cumulative gluten consumption up to 2 years of age.
infectious disease.11 The potential limitation was not adjusting for having a first-degree family member with coeliac disease.12 In addition, the variation of sequence coverage and number of subject pairs restricted the identification of individual enterovirus types, which limits the analysis to species level. Another potential limitation was not adjusting for having a first-degree family member with coeliac disease. This was not carried out in order to avoid a selection bias due to more likely antibody screening of family members among the CDA cases.

In conclusion, the present study found that a cumulative number of stool enterovirus exposures is associated with CDA in children at genetic risk for coeliac disease. In addition, the interaction of enterovirus exposures and higher gluten intake indicate a cumulative effect of these factors in the development of CDA.

Author affiliations
1 Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
2 Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
3 Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
4 Center for Child Health Research, Tampere University and Tampere University Hospital, Tampere, Finland
5 The University Consortium of Seinäjoki, Seinäjoki, Finland
6 University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA
7 Digestive Health Institute, Children's Hospital Colorado, Aurora, United States
8 Ludwig-Maximilians-Universität München, Munich, Bayern, Germany
9 Division of Paediatric Gastroenterology and Hepatology, Dr von Hauner Children's Hospital, Munich, Germany
10 Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Denver, Colorado, USA
11 Pacific Northwest Research Institute, Seattle, Washington, USA
12 Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland

13 Department of Paediatrics, Turku University Hospital, Turku, Finland
14 Klinikum Rechts der Isar, Technische Universität München, München, Bayern, Germany
15 Institute of Diabetes Research, Helmholtz Zentrum München, Germany
16 Forschergruppe Diabetes e.V, Neuherberg, Germany
17 National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, Maryland, USA
18 Alikek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
19 The Diabetes and Celiac Disease Unit, Department of Clinical Sciences, Lund University, Lund, Sweden

Collaborators
Aaron Barbour; Kimberly Bautista; Judith Baxter; Daniel Felipe-Morales; Kimberly Driscoll; Brightt I Frohnen; Marisa Stahl; Patricia Gesualdo; Jill Hoffmann; Rachel Kilgo; Jill Norris; Slesha Peacock; Hanan Shorr; Andrea Steck; Megan Stern; Erica Villegas; Kathleen Waugh; Olli G Simell; Annika Adamsson; Suvi Ahonen; Mari Akerlund; Leena Hakola; Anne Hekkala; Henna Holappa; Anni Ilonen; Jorma Ilonen; Sinikka Jääskö; Leena Kalliström; Erik Laatikainen; Anna Lappi; Lalla Maltassu; Teija Mykkänen; Tiina Niininen; Sari Niinistö; Miia Nyblom; Sami Oikarinen; Paola Ollikainen; Zhihan Othman; Pirjo Pohjola; Petra Rajala; Jutta Rautanen; Anne Riikonen; Eija Riski; Miia Pekkonen; Minna Romo; Satu Ruohonhen; Satu Simell; Maija Sjöberg; Aino Stenius; Päivi Tossavainen; Mari Väha-Mäkili; Sini Vainopää; Eeva Varjonen; Riitta Veijola; Irene Vinikangas; Suvi Virtanen; Jin-Xiong She; Desmond Schatz; Diane Hopkins; Leigh Steed; Jennifer Bryant; Katherine Silvis; Michael Haller; Melissa Gardiner; Richard McNido; Anna John; Laura Jakobson; Stephen W Johnson; Zeliha Mestan; Anita Gavrisan; Cigdem Gecgin; Anja Heubelin; Verona Hoffmann; Sandra Hummel; Andrea Keimer; Annette Knoppf; Charlotte Koch; Claudia Rammering; Roswith Roth; Marlon Scholz; Joanne Stock; Katharina Warncke; Lorena Wendel; Christiane Winkler; Åke Lernmark; Carin Andren Aronsson; Maria Ask; Rasmus Bennet; Corrado Cilillo; Helene Engqvist; Emelie Ericson-Hallström; Annika Fons; Lena Fransson; Thomas Guard; Monika Hansen; Hanna Jisser; Fredrik Johansen; Berlingd Jonsdott; Silvia Jovic; Helena Elgendar Larsson; Marielle Lindström; Markus Lundgren; Marlene Maziarz; Maria Månsen-Martinez; Maria Markan; Jessica Melin; Zeliha Mestan; Carola Nilsdot; Karin Ottosson; Kobba Rahmati; Anita Ramelius; Falastin Salimani; Anette Sjöberg; Birgitta Sjöberg; Malin Svensson; Carina Torn; Anne Wallin; Asa Wimar; Sofie Åberg; Michael Killian; Claire Cowen Crouch; Jennifer Skidmore; Masumeh Chavoshi; Rachel Hervey; Rachel Lyons; Arlene Meyer; Denise Mulgrew; Jared Radke; Matei Romanck; Davey Schmitt; Sarah Zink; Dorothy Becker; Margaret Franciscus; MaryEllen Dalmagro-Elias Smith; Ashi Dafary; Finna Beth; Christel Yates; Sarah Austin-Gonzalez; Maryouli Avandano; Sandra Baethke; Rasheedah Brown; Brant Burkhardt; Martha Butterworth; Joanna Clasen; David Cuthbertson; Stephen Danksy; Christopher Eberhard; Steven Fiske; Jennifer Garmeson; Veena Gowda; Kathleen Heyman; Belinda Hisao; Christina Karges; Francisco Perez Laraus; Qian Li; Shih-Li Liu; Xiang Lu; Kristian Lynch; Colleen Maguire; Jamie Malloy; Cristina McCarthy; Aubrie Merrell; Hemang Parikh; Ryan Quigley; Cacareño Remedios; Chris Shaffer; Laura Simms; Susan Smith; Noah Sulman; Roy Tamura; Deni Tewey; Michael Toth; Ulla Uusitalo; Kendra Vehkki; Pooni Vijayakandian; Keith Wood; Jimin Yang; Michael Abbondonardo; Lori Ballard; David Hadley; Wendy McLeod; Steven Meulemans; Liping Yu; Dongmei Miao; Polly Bingley; Alastair Williams; Kyla Chandler; Olivia Ball; Ilkka Hietala; Dan Graham; Masumeh Chavoshi; Jared Radke; Sarah Zink; Nadim I. Ajami; Matthew C Ross; Jacqueline L O'Briens; Diane S Hutchinson; Daniel P Smith; Matthew C Wong; Xianjun Tian; Tulin Ayaz; Auriol Magee; Nguyen Truong; Hannah Moreno; Lauren Riley; Eduardo Moreno; Tonya Bauch; Lenka Kus; Ginger Metcalfe; Donna Muzny; Harsha/Aradhana Doppidiapan; Richard Gibbs; Sandra Ke; Niveen Mullah; Kaisa Bourier; Thomas Briese; Suzanne Bennett Johnson; Eric Triplett.

Contributors
Study concept and design: JL, HH, REL, MN, KK, EL, SK, MR, WH, JT, AGZ, BA, JPK, JFF, KL, DA; administrative, technical and material support: WH, JJ, BA; JPK acquisition, analysis and interpretation of the data: JL, HLSI, HH, REL, MN, KK, EL, SK, WH, JT, AGZ, BA, JPK, KL, DA; statistical analysis: JL, HLSI, MN, JPK: drafting of the manuscript: JL, HH, KL: DA; obtaining funding: MR, WH, JT, AGZ, BA, JPK; study supervision: HH, MR, WH, JT, AGZ, BA, JPK; DA. All authors have participated in the critical revision of the manuscript for important intellectual content.

Funding
The TEDDY Study was funded by grants U01 DK63829, U01 6 DK3861, U01 DK38621, U01 42 DK38665, U01 DK3863, U01 42 DK3863, 7 U01 DK3790, U04 DK8329, U04 DK3861, U43 42 DK8321, U43 8 DK3865, U45 DK3863, U45 DK3863, U45 DK5300, U45 DK100238, and 44 U45 DK106955, U45 DK112343, U45 DK117483, and Contract No. HH3N2720007001C from the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institute of Allergy and Infectious Diseases (NIAID), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institute of Environmental Health Sciences (NIHES), 4 Centers for Disease
Coeliac disease

Control and Prevention (CDC) and JDRE. This work supported in part by the 5 NIH/NCATS Clinical and Translational Science Awards to the University of Florida (UL1 TR000064) and the University of Colorado (UL1 TR001082).

Competing interests HHI is a shareholder and chairman of the board of Vactech Ltd, which develops vaccines against picornaviruses.

Patient consent for publication Not required.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement De-identified datasets generated and analysed during the current study will be made available by request from the NIDDK Central Repository at https://www.niddkrepository.org/studies/teddyy. The TEDDY metagenomics next-generation sequencing (NGS) data that support the findings of this study will be available by request from NCBI’s database of Genotypes and Phenotypes (dbGaP) with the primary accession code phs001442.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

ORCID iDs Katri Lindfors http://orcid.org/0000-0001-7417-5151 Kalle Kurppa http://orcid.org/0000-0003-4757-2164 Daniel Agardh http://orcid.org/0000-0003-1435-1234

REFERENCES

1. Voigtan A, A potential link between environmental triggers and autoimmunity. Autoimmune Dis 2014;2014:1–18.
2. Dietrich W, Ehni T, Bauer M, et al. Identification of tissue transglutaminase as the autoantigen of celiac disease. Nat Med 1997;3:797–801.
3. Kurppa K, Collin P, Viljamäa M, et al. Diagnosing mild enteropathy celiac disease: a randomized, controlled clinical study. Gastroenterology 2009;136:816–823.
4. Kurppa K, Ashorn M, Iltanen S, et al. Celiac disease without villous atrophy in children: a prospective study. J Pediatr 2010;157:373–80.
5. Andrén-Aronsson C, Lee H-S, Koletzko S, et al. Effects of gluten intake on risk of celiac disease: a case-control study on a Swedish birth cohort. Clin Gastroenterol Hepatol 2016;14:403–9.
6. Märdal K, Dong F, Lund-Blix NA, et al. Gluten intake and risk of celiac disease: long-term follow-up of an at-risk birth cohort. Am J Gastroenterol 2019.
7. Mylku A, Herrn O, Goethefs L, et al. Early infections are associated with increased risk for celiac disease: an incident case-referent study. BMC Pediatr 2012;12:194.
8. Canova C, Zabeo V, Pitter G, et al. Association of maternal education, early infections, and antibiotic use with celiac disease: a population-based birth cohort study in northeastern Italy. Am J Epidemiol 2014;180:76–85.
9. Märdal K, Kahrs CR, Tapiia G, et al. Infections and risk of celiac disease in childhood: a prospective nationwide cohort study. Am J Gastroenterol 2015;110:1475–84.
10. Kemppainen KM, Lynch KE, Liu E, et al. Factors that increase risk of celiac disease autoimmunity after a gastrointestinal infection in early life. Clin Gastroenterol Hepatol 2017;15:694–702.
11. Kagnoff MF, Patterson YJ, Kumar PJ, et al. Evidence for the role of a human intestinal adenosinovirus in the pathogenesis of celiac disease. Gut 1987;28:995–1001.
12. Kahrs CR, Chuda K, Tapiia G, et al. Enterovirus as trigger of celiac disease: nested case-control study within prospective birth cohort. BMJ 2019;394.
13. Stene LC, Honeymon MC, Hoffenberg EJ, et al. Rotavirus infection frequency and risk of celiac disease autoimmunity in childhood: a longitudinal study. Am J Gastroenterol 2006;101:2333–40.
14. Dololino M, Zanoni G, Baxon C, et al. A subset of anti-rota virus antibodies directed against the viral protein VP7 predicts the onset of celiac disease and induces typical features of the disease in the intestinal epithelial cell line T84. Immunol Res 2013;56:465–76.
15. Bouzat R, Hinterleitner R, Brown JJ, et al. Reovirus infection triggers inflammatory responses to dietary antigens and development of celiac disease. Science 2017;356:44–50.
16. Hagopian WA, Erlich H, Lemmark Åke, et al. The environmental determinants of diabetes in the young (TEDDY): genetic criteria and international diabetes risk screening of 421,000 infants. Pediatr Diabetes 2011;12:733–43.
17. Vehik K, Fiske SW, Logan CD, et al. Methods, quality control and specimen management in an international multi-centre investigation of type 1 diabetes: TEDDY. Diabetes Metab Res Rev 2013;29:557–67.
18. Liu E, Lee H-S, Aronsson CA, et al. Risk of pediatric celiac disease according to HLA haplotype and country. N Engl J Med 2014;371:42–9.
19. Burkhart BR, McLeod W, et al. Biomarker discovery study design for type 1 diabetes in the environmental determinants of diabetes in the young (TEDDY) study. Diabetes Metab Res Rev 2014;30:424–34.
20. Lin J, Kramma L, Auto R, et al. Vipie: web pipeline for parallel characterization of viral populations from multiple NGS samples. BMC Genomics 2017;18:378.
21. Bankevich A, Nurek S, Antipov D, et al. SRNA: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012;19:455–77.
22. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Brujin graphs. Genome Res 2008;18:821–9.
23. Altschul SF, Gish W, Miller W, et al. Basic local alignment search tool. J Mol Biol 1990;215:403–10.
24. van Overbeek FM, Ull-Dieterman IG, Mol IW, et al. The daily gluten intake in relatives of patients with celiac disease and control subjects. Acta Paediatr 1997;3:797–801.
25. Simne K, Ulbo O, Peet A, et al. Early-life exposure to common virus infections did not differ between celiac disease patients and controls. Acta Paediatr 2019;108:1709–16.
26. Szajewska H, Shamen R, Chmielowska A, et al. Systematic review with meta-analysis: early infant feeding and coeliac disease - update 2015. Alliment Pharmacol Ther 2015;41:1038–54.
27. Silano M, Agostoni C, Sanz Y, et al. Infant feeding and risk of developing celiac disease: a systematic review. BMJ Open 2016;6:009163.
28. Brown IU, Jabri B, Demody T. A viral trigger for celiac disease. PLoS Pathog 2018;14:e1007181.
29. Härmäläinen S, Nurminen N, Ahlfors H, et al. Coxsackievirus B1 reveals strain specific differences in plasmacytoid dendritic cell mediated immunogenicity. J Med Virol 2014;86:1412–20.
30. Lähdeaho M-L, Lehtinen M, Rissa H-R, et al. Antiprotein peptides to adenosinovirus E1B protein indicate enhanced risk of celiac disease and dermatitis herpetiformis. Int Arch Allergy Immunol 2003;130:122–6.
31. Lähdeaho M-L, Parkkonen P, Reunala T, et al. Antibodies to E1b Protein-Derived Peptides:of Enteric Adenovirus Type 40 Are Associated with Celiac Disease and Dermatitis Herpetiformis. Clin Immunol Immunopathol 1993;69:300–5.
32. Mahon I, Blair GE, Wood GM, et al. Is persistent adenosinovirus 12 infection involved in celiac disease? A search for viral DNA using the polymerase chain reaction. Gut 1991;32:1144–6.
33. Lawler M, Humphries P, O’Farrelly C, et al. Adenosinovirus 12 E1A gene detection by polymerase chain reaction in both the normal and celiac duodenum. Gut 1994;35:1226–32.
34. Hemming-Harlo M, Lähdeaho M-L, Mäki M, et al. Rotavirus vaccination does not increase type 1 diabetes and may decrease celiac disease in children and adolescents. Pediatr Infect Dis J 2019;38:539–41.
35. Fan F-M, Okarinen S, Lehto K-M, et al. High prevalence of selected viruses and parasites and their predictors in Malawian children. Epidemiol Infect 2019;147:e409.
36. Demody TS, Parker JSL, Sherry B. Orthoreoviruses. In: Knipe DM, Howley PM, eds. Fields virology. 6th ed. Philadelphia, PA: Lippincott, Williams & Wilkins, 2013: Volume 2: 1304–46.
37. Salminen K, Sadehaju K, Lönnrot M, et al. Enterovirus infections are associated with the induction of β-cell autoimmunity in a prospective birth cohort study. J Med Virol 2003;69:91–8.