CircParser: a novel streamlined pipeline for circular RNA structure and host gene prediction in non-model organisms

Artem Nedoluzhko Corresp., Equal first author, 1, Fedor Sharko Equal first author, 2, 3, Md. Golam Rbbani 1, Anton Teslyuk 2, Ioannis Konstantinidis 1, Jorge MO Fernandes Corresp. 1

1 Faculty of Biosciences and Aquaculture, Nord University, Bodø, Bodø, Norway
2 Complex of NBICS Technologies, National Research Centre "Kurchatov Institute", Moscow, Russia
3 Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia, Russia

Corresponding Authors: Artem Nedoluzhko, Jorge MO Fernandes
Email address: artem.nedoluzhko@nord.no, jorge.m.fernandes@nord.no

Circular RNAs (circRNAs) are long noncoding RNAs which play a significant role in various biological processes, including embryonic development and stress responses. These regulatory molecules can modulate microRNA activity and are involved in different molecular pathways as indirect regulators of gene expression. Thousands of circRNAs have been described in diverse taxa due to the recent advances in high throughput sequencing technologies, which led to a huge variety of total RNA sequencing being publicly available. A number of circRNA de novo and host gene prediction tools are available to date, but their ability to accurately predict circRNA host genes is limited in the case of low-quality genome assemblies or annotations. Here, we present CircParser, a simple and fast Unix/Linux pipeline that uses the outputs from the most common circular RNAs in silico prediction tools (CIRI, CIRI2, CircExplorer2, find_circ, and circFinder) to annotate circular RNAs, assigning presumable host genes from local or public databases such as National Center for Biotechnology Information (NCBI). Also, this pipeline can discriminate circular RNAs based on their structural components (exonic, intronic, exon-intronic or intergenic) using genome annotation file.
CircParser: a novel streamlined pipeline for circular RNA structure and host gene prediction in non-model organisms

Artem Nedoluzhko¹,*, Fedor Sharko²,³,*, Md. Golam Rbbani¹, Anton Teslyuk³, Ioannis Konstantinidis¹, and Jorge M. O. Fernandes¹

¹ Faculty of Biosciences and Aquaculture, Nord University, Bodø, Nordland county, Norway
² Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
³ Complex of NBICS Technologies, National Research Centre “Kurchatov Institute”, Moscow, Russia

Corresponding Author:
Artem Nedoluzhko¹
Universitetsalléen 11, Bodø, Nordland county, 8049, Norway
Email address: artem.nedoluzhko@nord.no
Jorge M. O. Fernandes¹
Universitetsalléen 11, Bodø, Nordland county, 8049, Norway
Email address: jorge.m.fernandes@nord.no

Abstract
Circular RNAs (circRNAs) are long noncoding RNAs which play a significant role in various biological processes, including embryonic development and stress responses. These regulatory molecules can modulate microRNA activity and are involved in different molecular pathways as indirect regulators of gene expression. Thousands of circRNAs have been described in diverse taxa due to the recent advances in high throughput sequencing technologies, which led to a huge variety of total RNA sequencing being publicly available. A number of circRNA de novo and host gene prediction tools are available to date, but their ability to accurately predict circRNA host genes is limited in the case of low-quality genome assemblies or annotations.

Here, we present CircParser, a simple and fast Unix/Linux pipeline that uses the outputs from the most common circular RNAs in silico prediction tools (CIRI, CIRI2, CircExplorer2, find_circ, and circFinder) to annotate circular RNAs, assigning
presumable host genes from local or public databases such as National Center for
Biotechnology Information (NCBI). Also, this pipeline can discriminate circular RNAs
based on their structural components (exonic, intronic, exon-intronic or intergenic)
using genome annotation file.

Introduction

De novo genome sequencing has become a routine procedure, due to a decrease in
sequencing costs, diversification of high-throughput sequencing platforms and
improvement of bioinformatic tools (Ekblom & Wolf 2014). However, the quality of
non-model species genome assemblies and, as a result, their annotations are often of
unsatisfactory quality, because of (1) repetitive sequences, including transposons, and
short sequence repeats (SSRs); (2) gene and genome duplications; (3) single-nucleotide
polymorphisms (SNPs) and genome rearrangements (Lien et al. 2016; Negrisolo et al.
2010; Rodriguez & Arkhipova 2018; Yahav & Privman 2019).

CircRNAs are relatively poorly studied members of the non-coding RNA family. These
unique single-stranded molecules are generated through back-splicing of pre-mRNAs
in a wide range of eukaryotic and prokaryotic taxa (Danan et al. 2012; Holdt et al. 2018),
and even viruses (Huang et al. 2019). CircRNAs play a significant role in the regulation
of the molecular pathways not only through modulating of microRNA and protein
activity, but also by the affecting transcription or splicing (Holdt et al. 2018).

These regulatory molecules have been known for decades, but the development of high-
throughput DNA analysis methods lead to a rapid increase in the number of studies
related to these type of non-coding RNAs. This, in turn, resulted in a requirement for
additional circRNA prediction tools. The miARma-Seq (Andres-Leon & Rojas 2019)
with CIRI predictor (Gao et al. 2015), circRNA_finder (Westholm et al. 2014), find_circ
(Memczak et al. 2013), CIRCexplorer2 (Zhang et al. 2016), and other tools are very
popular today for prediction of circRNAs sequences based on transcriptomic data
(Hansen et al. 2016; Szabo & Salzman 2016), despite significant output differences.

Several circRNA predictors (CIRI, CIRI2, and CIRCexplorer2) can use genome
annotation files for host gene prediction but they are definitely useful only for well-
annotated genomes, and even, such as CircView (Feng et al. 2018) or circMeta (Chen et
al. 2019), have been designed specifically for them.

Here we describe CircParser, a novel and easy to use Unix/Linux pipeline for prediction
of host gene circular RNAs using the blastn program and the freely available bedtools
software (Quinlan & Hall 2010). CircParser can be also implemented as a part of pipelines for de novo prediction of circular RNA because of its versatile output files. CircParser is most useful for circRNA host gene prediction analysis in whole transcriptomic datasets for low-quality assembled, as well as poorly annotated genomes. It sorts and joins overlapped circular RNAs sequences and predicts host gene name for overrepresented circRNAs, while identifying their structural components. We demonstrate the prediction capacity of CircParser on a recently published transcriptomic data set from the wild and domesticated females of Nile tilapia (Oreochromis niloticus) fast muscle (Konstantinidis et al., under review) using the five most popular circRNAs in silico prediction tools – CIRI, CIRI2, CircExplorer2, find_circ, and circFinder.

Materials & Methods

The results of Illumina sequencing of twelve ribosomal RNA depleted RNA-seq libraries reads have been downloaded from Gene Expression Omnibus (accession number GSE135811). The DNA reads were filtered by quality (phred >20) and library adapters were trimmed using Cutadapt software (version 1.12) (Marcel 2011). The Nile tilapia reference genome (ASM185804v2) and its gene-annotation (ref_O_niloticus_UMD_NMBU_top_level.gff3) were used in the following analysis.

CircRNA prediction was performed for each ribosomal RNA depleted RNA-seq library using the circRNA in silico prediction tools i) CIRI (Gao et al. 2015) that is linked to miARma-Seq pipeline (Andres-Leon & Rojas 2019), ii) CIRI2 (Gao et al. 2018), iii) CircExplorer2 (Zhang et al. 2016), iv) find_circ (Memczak et al. 2013), and v) circFinder (Westholm et al. 2014). Prediction output files from all libraries were converted separately to coordinate file format. After sorting, these coordinate files (from different prediction algorithms, but for each library) were merged using bedtools multiinter (Quinlan & Hall 2010) to determine a joint prediction output from CIRI, CIRI2, CircExplorer2, find_circ, and circFinder (see Supplementary Table S1).

We developed CircParser, as a streamlined pipeline, which makes use output files from the most popular circRNAs in silico predictors. CircParser only works under Linux/Unix system. The parameters for CircParser are presented in Table 1.

Usage: perl CircParser.pl [-h] -b INPUT_FILE --genome REF_GENOME
CircParser can merge overlapped circRNAs coordinates from circRNAs predictor outputs using bedtools merge (Quinlan & Hall 2010) at the first stage of the pipeline; this ensures that they are related to the same host gene and creates separate coordinates files (bed file) with overlapped circRNAs coordinates. In addition, it is optionally possible to merge circRNA without overlapping coordinates but located in the contiguous genome locus using the special option.

The separate coordinate files (bed file) are converted to fasta files using bedtools getfasta (Quinlan & Hall 2010). Finally, CircParser uses fasta files for host gene prediction using a NCBI database (the longest stage of pipeline) for circRNAs (Figure 1A). CircParser works by default with the NCBI online database, but it can optionally use a custom database or a pre-compiled NCBI database installed locally. CircParser includes the following blast parameters, which are necessary for host gene prediction, and assigns sequences to the respective circRNA: -perc_identity 90; -max_target_seqs 1000; -max_hsps 1; the maximum number of aligned sequences to keep is 1000; the minimum percent identity of matches to report is 90%. CircParser also filters out non-informative blast results, such as "uncharacterized", "clone", "linkage group" and others from the output table.

CircParser can also discriminate circular RNAs by their structural components: exonic, intronic, exon-intronic or intergenic using genome annotation gff/gff3 file (-a parameter). In this case, the user should avoid circRNAs coordinate merging (using --np parameter) during the pipeline implementation for correct results (Figure 1B).

Usage: perl CircParser.pl -np -b INPUT_FILE –genome REF_GENOME -a GENOME.gff

However, poor quality of annotation file can lead to errors in the circRNAs structure analysis.

The Perl implementation of CircParser is available at https://github.com/SharkoTools/CircParser

Results
We applied CircParser to twelve merged coordinate files that contained information about joint coordinates for circRNAs predicted using CircExplorer2, miARma-Seq (with CIRI predictor), CIRI2, find_circ, and circFinder. The five different algorithms predicted on average ~131 (CircExplorer2); ~501 (CIRI); ~706 (CIRI2); ~257 (find_circ), and ~398 (circFinder) circRNAs per sample, with an insignificant overlap ~37 circRNAs (Figure 2; Supplementary Table S1), similarly to previously published comparisons (Hansen 2018; Hansen et al. 2016).

To access the host gene of circular RNAs and to reduce false-positive rates, only overlapping circRNAs (Figure 2) were used in CircParser. This pipeline allows the elimination of non-informative outputs (e.g. contains only chromosome/contig name, number of uncharacterized loci, or name of BAC clone, and etc.), while keeping more the relevant blast results and retrieving the likely host gene name for the circular RNAs; in the case of impossibility to find identical sequences in the database, this tool mark these sequence as NOT ASSIGNED).

Discussion

The CircParser results also allow to determine the number of circRNA types from one host gene and their minimum and maximum size in base pairs (bp). We showed that our algorithm detected presumable host gene names for the vast majority of predicted circRNAs. Moreover, most of them were related to muscle functions (e.g. calcium/calmodulin-dependent protein kinase, troponin T3, myocyte-specific enhancer factor 2C, and others), and immune-related genes (MHC class IA antigen), which were consistently found among different individuals (Supplementary Table S2), despite the relatively low coverage for circRNAs analysis of the sequencing data used (Mahmoudi & Cairns 2019). An example of circRNA structure analysis for CIRI, CIRI2, CircExplorer2, find_circ, and circFinder outputs are presented in Supplementary Table S3.

To estimate the capacity of our pipeline we compared a number of host genes that were predicted by CircExplorer2 and CircParser (CircExplorer2 outputs were used as input files) for the same *O. niloticus* fast muscle datasets used earlier. As a result, CircParser shows greater efficiency for Nile tilapia, improving the number of predicted host genes up to two-fold (Figure 3).
Another equally important aspect of CircParser concerned the accuracy of this pipeline. The most well-annotated reference genome of zebrafish (assembly GRCz11) and zebrafish muscle transcriptomic dataset (ERR145655) were used for accuracy estimation, i.e. the agreement between the annotation file and CircParser output. We showed that in this case, CircParser host gene prediction was confirmed in 82.4% cases.

Conclusions
Thus, we conclude that CircParser represents a reproducible workflow that enables researchers to effectively predict the host genes for circular RNAs, even in non-model organisms with poorly annotated genome assemblies.

Acknowledgements
We would like to acknowledge Jorge Galindo-Villegas from Nord University (Norway) and Tomas B. Hansen from the Aarhus University (Denmark) for their valuable advice.

References
Andres-Leon E, and Rojas AM. 2019. miARma-Seq, a comprehensive pipeline for the simultaneous study and integration of miRNA and mRNA expression data. Methods 152:31-40. 10.1016/j.ymeth.2018.09.002
Chen L, Wang F, Bruggeman EC, Li C, and Yao B. 2019. circMeta: a unified computational framework for genomic feature annotation and differential expression analysis of circular RNAs. Bioinformatics. 10.1093/bioinformatics/btz606
Danan M, Schwartz S, Edelheit S, and Sorek R. 2012. Transcriptome-wide discovery of circular RNAs in Archaea. Nucleic Acids Res 40:3131-3142. 10.1093/nar/gkr1009
Ekblom R, and Wolf JB. 2014. A field guide to whole-genome sequencing, assembly and annotation. Evol Appl 7:1026-1042. 10.1111/eva.12178
Feng J, Xiang Y, Xia S, Liu H, Wang J, Ozguc FM, Lei L, Kong R, Diao L, He C, and Han L. 2018. CircView: a visualization and exploration tool for circular RNAs. *Brief Bioinform* 19:1310-1316. 10.1093/bib/bbx070

Gao Y, Wang J, and Zhao F. 2015. CIRI: an efficient and unbiased algorithm for de novo circular RNA identification. *Genome Biol* 16:4. 10.1186/s13059-014-0571-3

Gao Y, Zhang J, and Zhao F. 2018. Circular RNA identification based on multiple seed matching. *Brief Bioinform* 19:803-810. 10.1093/bib/bbx014

Hansen TB. 2018. Improved circRNA Identification by Combining Prediction Algorithms. *Front Cell Dev Biol* 6:20. 10.3389/fcell.2018.00020

Hansen TB, Veno MT, Damgaard CK, and Kjems J. 2016. Comparison of circular RNA prediction tools. *Nucleic Acids Res* 44:e58. 10.1093/nar/gkv1458

Holdt LM, Kohlmaier A, and Teupser D. 2018. Molecular roles and function of circular RNAs in eukaryotic cells. *Cell Mol Life Sci* 75:1071-1098. 10.1007/s00018-017-2688-5

Huang JT, Chen JN, Gong LP, Bi YH, Liang J, Zhou L, He D, and Shao CK. 2019. Identification of virus-encoded circular RNA. *Virology* 529:144-151. 10.1016/j.virol.2019.01.014

Lien S, Koop BF, Sandve SR, Miller JR, Kent MP, Nome T, Hvidsten TR, Leong JS, Minkansen RA, von Schalburg K, Rondeau EB, Di Genova A, Samy JK, Olav Vik J, Vigeland MD, Caler L, Grimholt U, Jentoft S, Vage DI, de Jong P, Moen T, Baranski M, Palti Y, Smith DR, Yorke JA, Nederbragt AJ, Tooming-Klunderud A, Jakobsen KS, Jiang X, Fan D, Hu Y, Liberles DA, Vidal R, Iturra P, Jones SJ, Jonassen I, Maass A, Omholt SW, and Davidson WS. 2016. The Atlantic salmon genome provides insights into rediploidization. *Nature* 533:200-205. 10.1038/nature17164

Mahmoudi E, and Cairns MJ. 2019. Circular RNAs are temporospatially regulated throughout development and ageing in the rat. *Sci Rep* 9:2564. 10.1038/s41598-019-38860-9

Marcel M. 2011. Cutadapt Removes Adapter Sequences From High-Throughput Sequencing Reads. *EMBnetjournal* 17:10-12. 10.14806/ej.17.1.200.

Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, Loewer A, Ziebold U, Landthaler M, Kock C, le Noble F, and Rajewsky N. 2013. Circular RNAs are a large class of animal RNAs with regulatory potency. *Nature* 495:333-338. 10.1038/nature11928

Negrisol E, Kuhl H, Forcato C, Vitulo N, Reinhardt R, Patarnello T, and Bargelloni L. 2010. Different phylogenomic approaches to resolve the evolutionary relationships among model fish species. *Mol Biol Evol* 27:2757-2774. 10.1093/molbev/msq165
Quinlan AR, and Hall IM. 2010. BEDTools: a flexible suite of utilities for comparing genomic features. *Bioinformatics* 26:841-842. 10.1093/bioinformatics/btq033

Rodriguez F, and Arkhipova IR. 2018. Transposable elements and polyploid evolution in animals. *Curr Opin Genet Dev* 49:115-123. 10.1016/j.gde.2018.04.003

Szabo L, and Salzman J. 2016. Detecting circular RNAs: bioinformatic and experimental challenges. *Nat Rev Genet* 17:679-692. 10.1038/nrg.2016.114

Westholm JO, Miura P, Olson S, Shenker S, Joseph B, Sanfilippo P, Celniker SE, Graveley BR, and Lai EC. 2014. Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. *Cell Rep* 9:1966-1980. 10.1016/j.celrep.2014.10.062

Yahav T, and Privman E. 2019. A comparative analysis of methods for de novo assembly of hymenopteran genomes using either haploid or diploid samples. *Sci Rep* 9:6480. 10.1038/s41598-019-42795-6

Zhang XO, Dong R, Zhang Y, Zhang JL, Luo Z, Zhang J, Chen LL, and Yang L. 2016. Diverse alternative back-splicing and alternative splicing landscape of circular RNAs. *Genome Res* 26:1277-1287. 10.1101/gr.202895.115
Table 1. CircParser.pl usage. Required and optional parameters
Table 1. CircParser.pl usage. Required and optional parameters

Parameter	Parameter description	
-h, --help	Show this help message and exit	
-b	CircRNA input file (required)	
-g, --genome	Reference genome file (required)	
-t, --tax	NCBI TaxID (optional)	
-a	Genome annotation file, gff/gff3 file (optional)	
--np	Prohibition for coordinate merging (optional)	
-c, --ciri	Input circRNA from CIRI	CIRI2 in silico predictors, (default: input from CircExplorer2, find_circ, circFinder, and BED files)
--threads	Number of threads (CPUs) for BLAST search (optional)	
-v, --version	Current CircParser version	
Figure 1

An overview of the CircParser pipeline

An overview of the CircParser pipeline: Figure 1A: The pipeline includes merging of the circRNAs with overlapping genome coordinates and presents the number of different circRNAs originating from one host gene. Figure 1B: CircParser includes the prediction of circRNA structural components using a genome annotation gff/gff3 file.
Figure 2

Number of circular RNAs that have been predicted by CIRI, CIRI2, CircExplorer2, find_circ, circFinder, and that are common between all prediction algorithms

Overlapping circular RNAs from five predictors
Figure 3

CircParser capacity: number of host genes that were predicted by CircExplorer2 and CircParser

The number of predicted host genes for Nile tilapia datasets