Preparation and characterization of R$_2$CoMnO$_6$ (R=La, Nd) via PVA sol-gel route

Zhibo Xu, Zhongshuai Feng and Yebin Xu

School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei, China

1. Introduction

The double perovskite oxides, which was usually expressed in the form A$_2$BB'O$_6$ (where A represents lanthanide ion and B and B' represents transition metals ions) have attracted much attention in recent decades due to their magnetoresistance effect, magnetodielectric properties, magnetocaloric effect, multiferroic properties, and catalytic properties [1–5]. Among them, La$_2$CoMnO$_6$ has received special attention recently. La$_2$CoMnO$_6$ is a ferromagnetic insulator with a Curie temperature of about 225 K [6]. The substitution of the La ion by another rare earth element with a smaller ionic radius significantly changes their magnetic structure and properties [7]. As the ionic radius of the rare earth element decreases, the ferromagnetic Curie temperature decreases gradually, along with the structural distortion [8–11]. In addition, different synthesis methods resulted in complicated crystal structures [6,12]. As we can see, the conventional solid-state reaction method is commonly employed in the preparation of R$_2$CoMnO$_6$ (R = La, Nd) at high temperature [8,11,13,14]. In the meantime, the wet chemical synthesis of R$_2$CoMnO$_6$ was also reported. Various wet chemical methods, such as citric acid sol-gel method [7,12,15–19], ethylene glycol sol-gel method [4,20,21], polymeric precursor method [6,22], glycine-nitrate combustion method [23–26], urea-nitrate combustion method [27], nitrate decomposition method [9,10,28–30], etc. have been employed to prepare R$_2$CoMnO$_6$. For example, Dass and Goodenough [6] synthesized La$_2$CoMnO$_6$ using the polymeric precursor method, and the formation conditions of single-phase La$_2$CoMnO$_6$ was 600°C for 12 h. Liu et al. [21] reported the synthesis of phase pure La$_2$CoMnO$_6$ via ethylene glycol sol-gel method at 600°C. Silva et al. [22] synthesized monophasic La$_2$CoMnO$_6$ by polymeric precursor method at 900°C for 16 h. Joy et al. [23] have prepared LaMn$_{0.5}$Co$_{0.5}$O$_3$ using the glycine-nitrate method and single-phase LaMn$_{0.5}$Co$_{0.5}$O$_3$ was obtained at 500°C for 12 h. They [24] also reported the synthesis of NdMn$_{0.5}$Co$_{0.5}$O$_3$ using the glycine combustion method. Even calcined at 700°C for 12 h, a peak from hexagonal Nd$_2$O$_3$ can still be found in the XRD patterns, although the authors attributed the peak to superlattice reflection [24]. Sayed et al. [26] synthesized La$_2$CoMnO$_6$ by glycine combustion method. The obtained powders were amorphous and monophasic La$_2$CoMnO$_6$ can be formed at 650°C for 3 h [26]. La$_2$CoMnO$_6$ was also reported to be synthesized by the molten-salt method and single-phase La$_2$CoMnO$_6$ was obtained at 700°C for 6 hours [31,32]. Obviously, La$_2$CoMnO$_6$ can be prepared by various methods, but the preparation temperatures are relatively higher. On the other hand, the report on the wet chemical synthesis of Nd$_2$CoMnO$_6$ is very few. Low-temperature synthesis of La$_2$CoMnO$_6$ and Nd$_2$CoMnO$_6$ can save energy. In addition, La$_2$CoMnO$_6$ and Nd$_2$CoMnO$_6$ powders synthesized at low temperatures have smaller particle sizes and may show properties different from those of the bulk, for example, certain ferromagnetic nanoparticles show superparamagnetism. Therefore, it is necessary to synthesize La$_2$CoMnO$_6$ and Nd$_2$CoMnO$_6$ at low temperature. The aim of this work is to synthesize La$_2$CoMnO$_6$ and Nd$_2$CoMnO$_6$ at low temperatures by a different method.

As we know, the PVA sol-gel method has been applied in the preparation of various metal oxide powders [33–35]. In this work, La$_2$CoMnO$_6$ and Nd$_2$CoMnO$_6$ were synthesized with the PVA route. Nanocrystalline La$_2$CoMnO$_6$ with average crystallite size ~20 nm was directly obtained during the charring procedure, while single-phase, nanosized Nd$_2$CoMnO$_6$ powders was synthesized at 600°C.
2. Experimental

La$_2$O$_3$, Nd$_2$O$_3$, Co(NO$_3$)$_{2\times}$·6H$_2$O, MnCO$_3$, and PVA (MW = 79000) were used as starting materials. The sol-gel preparation procedure of La$_2$CoMnO$_6$ and Nd$_2$CoMnO$_6$ is as follows: First, 5 wt% PVA solution and nitrate solution were prepared, respectively. The 5 wt% PVA aqueous solution was made by dissolving PVA powder into deionized water at 80°C. On the other hand, La$_2$O$_3$ or Nd$_2$O$_3$ as well as MnCO$_3$ powders were dissolved in nitric acid, along with the addition of stoichiometric Co(NO$_3$)$_{2\times}$·6H$_2$O to form nitrate solution. Afterward, the above two solutions were mixed with stirring at 80°C until the transparent gel was formed. For 1 mol La$_2$CoMnO$_6$ or Nd$_2$CoMnO$_6$, a 6 mol PVA monomer was used [35]. The samples were charred in an oven at 250°C for 2 h and the obtained powders were referred to as precursor. Finally, the precursors were calcined at 500°C to 700°C for 2 h.

The thermal decomposition behavior of the precursor was studied by applying differential scanning calorimetry (DSC) and thermogravimetric (TG) analysis on STA 449 F3 Jupiter (Netzsch, Germany) with a heating rate of 10°C/min. The Fourier transform infrared spectra of La$_2$CoMnO$_6$ and Nd$_2$CoMnO$_6$ precursor and powders were collected using Vertex 70 FT-IR spectrometer (Bruker Optik GmbH, Ettlingen, Germany). The phase purity of the obtained powders was characterized using X’Pert PRO X-ray diffractometer (PANalytical B.V., Almelo, Netherland) with Cu K$_\alpha$ radiation. The Raman spectra were collected at room temperature with 532 nm Nd:YAG laser excitation using a LabRAM HR800 single-stage spectrometer (Horiba JobinYvon Ltd., France). The morphology and size analysis of La$_2$CoMnO$_6$ and Nd$_2$CoMnO$_6$ powders was carried out by field emission scanning electron microscope (FESEM) (GeminiSEM 300, Carl Zeiss, Germany). A physical property measurement system (PPMS) from Quantum Design (San Diego, CA) was used to study the magnetic properties of La$_2$CoMnO$_6$ and Nd$_2$CoMnO$_6$ powders with magnetic fields up to 2 T.

3. Results and discussions

Figure 1 displays the simultaneous DSC and TG curves of La$_2$CoMnO$_6$ precursor. The DSC curve shows no obvious exothermic or endothermic peak, indicating that the reaction of forming La$_2$CoMnO$_6$ is complete. The later XRD patterns show that phase pure La$_2$CoMnO$_6$ has formed. A slight weight loss of 7.7% can be observed in the TG curve until the temperature reaches 1000°C, for the reason that the adsorbed moisture is gradually evaporated and residual organics is volatilized during the heating process.

The results of simultaneous DSC and TG for Nd$_2$CoMnO$_6$ precursor are presented in Figure 2. A small exothermic peak around 292°C in the DSC curve can be observed, which is associate with the oxidative decomposition of the majority of the organic material. On the other hand, the TG curve shows two-weight losses. The first weight loss of 5.4% below 100°C may associate with the vaporization of adsorbed moisture and the second weight loss of 4.6% between 100°C and 650°C can be attributed to the combustion of organics and the release of gases. After the temperature increased to more than 650°C, the sample weight gradually stabilized and remains almost unchanged.

Figure 3 displays the XRD patterns of La$_2$CoMnO$_6$ precursors and powders calcined at 500–700°C for 2 h. It can be seen that the single-phase La$_2$MnCoO$_6$ is formed directly in the precursor, and no peak from the unexpected intermediate phase is observed. All the diffraction peaks can be assigned to the monoclinic crystal structure [6], as indexed in the figure. The XRD patterns of La$_2$CoMnO$_6$ precursor calcined at temperatures ranging from 500 to 700°C. The XRD patterns of La$_2$CoMnO$_6$ precursor calcined at temperatures ranging from 500 to 700°C.
from 500°C to 700°C for 2 h showed no significant change, except a slight-increased intensity, indicating an increase in crystallinity. The crystallite size of La$_2$CoMnO$_6$ powder was estimated using the Scherrer formula: the crystallite size of La$_2$CoMnO$_6$ precursor and powders calcined at 500°C, 600°C, and 700°C for 2 h is about 20.8, 21.2, 22.3, and 23.5 nm, respectively. Table 1 summarizes the formation condition of single-phase La$_2$CoMnO$_6$ via various synthesis methods. We can see that the PVA sol-gel method in the present work has a lower temperature and shorter time for the synthesis of La$_2$CoMnO$_6$. To the best of our knowledge, this is the reported lowest synthesis temperature for La$_2$CoMnO$_6$.

The XRD patterns of Nd$_2$CoMnO$_6$ precursors and powders calcined at 500–700°C for 2 h are depicted in Figure 4. The XRD pattern of the Nd$_2$CoMnO$_6$ precursor shows that it is amorphous, which is different from that of La$_2$CoMnO$_6$. La$_2$CoMnO$_6$ phase formed directly in the precursor, indicating the formation temperature of single-phase Nd$_2$CoMnO$_6$ is higher than that of La$_2$CoMnO$_6$, which can only be attributed to the smaller radius of Nd than that of La. The Nd$_2$CoMnO$_6$ powder calcined at 500°

Table 1. The preparation method and formation conditions of single-phase La$_2$CoMnO$_6$.

Synthesis method	Formation condition	Reference
Polymeric precursor	600°C, 12 h	[6]
Polymeric precursor	900°C, 16 h	[22]
Ethylene glycol	600°C, not provided	[21]
Glycine	500°C, 12 h	[23]
Glycine	630°C, 2 h	[26]
Molten-salt	700 °C, 6 h	[32]
PVA	250°C, 2 h	This work

Figure 2. DSC-TG curves of Nd$_2$CoMnO$_6$ precursor via PVA sol-gel route.

Figure 3. XRD patterns of La$_2$CoMnO$_6$ precursors and powders calcined at various temperatures for 2 h via PVA sol-gel route.
C is still amorphous although some very weak peaks from Nd$_2$CoMnO$_6$ appeared. Calcining the precursor at 600°C for 2 h, monophasic Nd$_2$CoMnO$_6$ with monoclinic structure was formed. Moreover, when the calcination temperature reaches to 700°C, the XRD patterns still remain almost unchanged. The XRD patterns are consistent with those reported in Ref. 24 and 36. Therefore, it is convinced that phase pure Nd$_2$CoMnO$_6$ can be prepared at 600°C for 2 h by PVA sol-gel method. The crystallite size of Nd$_2$CoMnO$_6$ powder calcined at 600°C and 700°C for 2 h calculated from Scherrer formula is about 20.1 and 23.9 nm, respectively. There are very few reports on the wet chemical synthesis of Nd$_2$CoMnO$_6$. Joly et al. prepared NdMn$_0.5$Co$_0.5$O$_3$ using the glycine-nitrate combustion method. For the sample calcined at 700°C for 12 h, there may also be a small amount of hexagonal Nd$_2$O$_3$ impurity [24]. We can conclude that the PVA sol-gel method can synthesize single-phase Nd$_2$CoMnO$_6$ at a lower temperature than the glycine-nitrate combustion method.

Figure 4 presents the XRD patterns of Nd$_2$CoMnO$_6$ precursor and powders calcined at various temperatures for 2 h via PVA sol-gel route.

Figure 5. FT-IR spectra of La$_2$CoMnO$_6$ precursor and powders calcined at 500–700°C.
corresponds to nitrate ions \([35,36]\) and the formation of \(\text{La}_2\text{CoMnO}_6\) \([37]\), respectively. This is in accordance with the previous XRD result: \(\text{La}_2\text{CoMnO}_6\) phase has formed in the precursor (see Figure 3). After heating the \(\text{La}_2\text{CoMnO}_6\) precursor at 500–700°C, the intensities of absorption bands at 601 cm\(^{-1}\) increase due to increased crystallinity, and the band at 1384 cm\(^{-1}\) disappears because of the decomposition of residual nitrate.

The FT-IR spectra of \(\text{Nd}_2\text{CoMnO}_6\) precursor and calcined powders are presented in Figure 6. For the \(\text{Nd}_2\text{CoMnO}_6\) precursor, the absorption bands around 3436 cm\(^{-1}\) and 1631 cm\(^{-1}\) are related to \(\text{H}_2\text{O}\) molecules on the surface of the precursor; the absorption band around 1510 and 1385 cm\(^{-1}\) can be assigned to carbonate ions \([38,39]\). In the spectrum of \(\text{Nd}_2\text{CoMnO}_6\) calcined at 500°C for 2 h, no obvious change was observed except decreased intensities of carbonate and adsorbed water. Heating the precursor at 600°C for 2 h, two new strong absorption bands at 589 cm\(^{-1}\) and 450 cm\(^{-1}\) appears, suggesting the formation of \(\text{Nd}_2\text{CoMnO}_6\) \([37]\). Similarly, this is also in accordance with the XRD results in Figure 4. Compared with \(\text{La}_2\text{CoMnO}_6\), the substitution of \(\text{La}\) by \(\text{Nd}\) resulted in a shift of the corresponding absorption band to a lower wave-number. The FT-IR spectrum for the powder calcined at 700°C is almost the same as that of the powder calcined at 600°C.

Figure 7 displays the Raman spectra of \(\text{La}_2\text{CoMnO}_6\) precursor and powders calcined at 500°C and 700°C for 2 h. As can be seen from the figure, two Raman active modes around 515 cm\(^{-1}\) and 642 cm\(^{-1}\) are observed. The strongest Raman peak around 642 cm\(^{-1}\) can be attributed to the symmetric stretching of the basal oxygen ions of the octahedra \(\text{B} \approx \text{O} \approx \text{B} \approx \text{O}\) \([40]\). The second Raman peak around 515 cm\(^{-1}\) can be attributed to the antisymmetric stretching \((\text{A}_\text{g})\) associated with the Jahn–Teller distortion \([41–43]\).

These Raman spectra are consistent with that reported in Refs. 10, and 44–46. In addition, the obtained Raman spectra shows an increase in the intensity of the peaks as the calcination temperature grows higher, which implies that the crystallinity of \(\text{La}_2\text{CoMnO}_6\) increases.

The Raman spectra of \(\text{Nd}_2\text{CoMnO}_6\) precursors calcined at 500°C and 700°C are shown in Figure 8. The Raman spectra are similar to that of \(\text{La}_2\text{CoMnO}_6\) in Figure 7, but the two Raman peaks move to lower wavenumber, which is consistent with that reported in Refs. 10 and 36. The peaks around 627 and 475 cm\(^{-1}\) belong to symmetric stretching and antisymmetric stretching/bending modes of the \(\text{Co(Mn)O}_6\) octahedron \([40–42]\). Well-crystallized \(\text{Nd}_2\text{CoMnO}_6\) formed at 700°C, its Raman spectrum is strong. Very weak crystallization peak appears in the XRD pattern of \(\text{Nd}_2\text{CoMnO}_6\) precursors calcined at 500°C (Figure 4), its Raman spectrum is obviously weaker than that of \(\text{Nd}_2\text{CoMnO}_6\) precursors calcined at 700°C, but the two main Raman peaks have appeared.

The FESEM images of \(\text{La}_2\text{CoMnO}_6\) precursor, \(\text{La}_2\text{CoMnO}_6\) and \(\text{Nd}_2\text{CoMnO}_6\) powders calcined at 600°C for 2 h with different magnifications are presented in Figure 9. \(\text{La}_2\text{CoMnO}_6\) and \(\text{Nd}_2\text{CoMnO}_6\) powders show three-dimensional network structures. This is because, during the formation of the gel, the long-chain structure of PVA is interlaced to form a complex network structure in the space. The gel network is filled with a solvent. When the gel is dried and calcined to form \(\text{La}_2\text{CoMnO}_6\) or \(\text{Nd}_2\text{CoMnO}_6\) powders, the powders also present a spatial three-dimensional network structure. The enlarged images \(\text{(Figure 9 \(b,d,e)\)}\) revealed that the obtained powders are composed of smaller primary particles having a size on the order of nanometers.

The magnetization vs. applied magnetic field curves at room temperature and 100 K for \(\text{La}_2\text{CoMnO}_6\) precursor,
La$_2$CoMnO$_6$ powder calcined at 500°C, and Nd$_2$CoMnO$_6$ powders calcined at 600°C are shown in Figure 10 and 11, respectively. A linear relationship between magnetization vs. applied magnetic field at room temperature is observed for La$_2$CoMnO$_6$ precursor, La$_2$CoMnO$_6$, and Nd$_2$CoMnO$_6$ powders, indicating that the powders are paramagnetic at room temperature. However, La$_2$CoMnO$_6$ precursor, La$_2$CoMnO$_6$, and Nd$_2$CoMnO$_6$ powders show typical hysteresis loop at 100 K. This is consistent with the results reported in Refs. 7, 15, 27, and 36. Compared with La$_2$CoMnO$_6$ precursor, La$_2$CoMnO$_6$ powder calcined at 500°C shows larger remnant magnetization (M_R) and coercive field (H_c). The magnetization curves of Nd$_2$CoMnO$_6$ powders do not show any saturation at 100 K even at the highest magnetic field of 20 kOe. In addition to that, Nd$_2$CoMnO$_6$ also exhibits a larger H_c of about 5 kOe at 100 K. Similar results are also reported in Nd$_2$CoMnO$_6$ prepared by solid-state reaction method and Sm$_2$CoMnO$_6$ [7].

4. Conclusions

Pure La$_2$CoMnO$_6$ and Nd$_2$CoMnO$_6$ powders had been obtained through PVA sol-gel method. XRD analysis
revealed that single phase La$_2$CoMnO$_6$ powders with an average crystallite size of ~20 nm was synthesized through the charring step, while monophasic and well-crystallized Nd$_2$CoMnO$_6$ powders were obtained at 600°C for 2 h. The PVA sol-gel method used in the procedure has the advantages of lower synthesis temperature and shorter preparation time for the synthesis of La$_2$CoMnO$_6$ and Nd$_2$CoMnO$_6$. Magnetic measurements showed that both La$_2$CoMnO$_6$ and Nd$_2$CoMnO$_6$ powders are paramagnetic at room temperature.

Acknowledgments

The authors wish to acknowledge the Analytical and Testing Center in Huazhong University of Science and Technology for XRD, FT-IR, and Raman, analysis.

Disclosure statement

No, potential conflict of interest was reported by the authors.

Funding

This work was supported by the National Natural Science Foundation of China under grant numbers [61671214, 61401152].

References

[1] Kakarla DC, Jyothisharam KM, Das AK, et al. Dielectric and magnetodielectric properties of R$_2$NiMnO$_6$ (R = Nd, Eu, Gd, Dy, and Y). J Am Ceram Soc. 2014;97:2858–2866.
Figure 11. Magnetic hysteresis loops of Nd$_2$CoMnO$_6$ powders calcined at 600°C for 2 h.

[2] Singh MP, Truong KD, Fournier P, et al. A radical approach to promote multiferroic coupling in double perovskites. J Magn Magn Mater. 2009;321:1743–1747.

[3] Balli M, Fournier P, Jandli S, et al. A study of the phase transition and magnetocaloric effect in multiferroic La$_2$MnNiO$_6$ single crystals. J Appl Phys. 2014;115:173904.

[4] Murthy JK, Chandrasekhar KD, Murugavel S, et al. Investigation of the intrinsic magnetodielectric effect in La$_2$CoMnO$_6$: role of magnetic disorder. J Mater Chem. 2015;3:836–843.

[5] Wang QQ, Ma LP, Wang LC, et al. Mechanisms for enhanced catalytic performance for NO oxidation over La$_2$CoMnO$_6$ double perovskite by A-site or B-site doping: effects of the B-site ionic magnetic moments. Chem Eng J. 2019;372:728–741.

[6] Dass RI, Goodenough JB. Multiple magnetic phases of La$_2$Co$_{0.5}$Mn$_{0.5}$O$_6$: 0 ≤ ε ≤ 0.05. Phys Rev B. 2003;67:014401.

[7] Sahoo RC, Das S, Nath TK. Effect of rare earth site substitution on magnetic and transport properties of Ln$_2$CoMnO$_6$ (Ln = La, Sm and Gd) double perovskites. J Magn Magn Mater. 2018;460:409–417.

[8] Troyanchuk IO, Samsonenko NV, Shapovalova EF, et al. A synthesis and characterization of Ln(Bo.5Mn0.5)03 (Ln-lanthanoid; B = Ni, Co) perovskites. Mater Res Bull. 1997;32:67–74.

[9] Asai K, Fujisho K, Nishimori N, et al. Magnetic properties of REM$_{0.5}$Mn$_{0.5}$O$_3$ (RE = Rare Earth Element; Me = Ni, Co). J Phys Soc Jpn. 1998;67:4218–4228.

[10] Bull CL, McMillan PF. Raman scattering study and electrical properties characterization of elpasolite perovskites Ln$_2$(BB')$_6$O$_8$ (Ln = La, Sm . . . Gd and B, B' = Ni, Co, Mn). J Solid State Chem. 2004;177:2323–2328.

[11] Sazonov AP, Troyanchuk IO, Kozlenko DP, et al. Magnetic ordering in the Nd$_2$CoMn$_{0.5}$Co$_{0.5}$ perovskite system. J Magn Magn Mater. 2006;302:443–447.

[12] Madhogaria RP, Das R, Clements EM, et al. Effect of antiphase boundaries on the magnetic properties of La$_2$CoMnO$_6$. AIP Adv. 2019;9:035142.

[13] Goodenough JB, Wold A, Arnott RJ, et al. Relationship between crystal symmetry and magnetic properties of ionic compounds containing Mn$^{3+}$. Phys Rev. 1961;124:373–384.

[14] Sazonov AP, Troyanchuk IO, Sikoienko VV, et al. Effect of the oxygen nonstoichiometry on the structure and magnetic properties of Nd$_2$CoMnO$_{6+δ}$ double perovskites. Phys Status Solidi b. 2007;244:3367–3376.

[15] Mahato RN, Sethupathi K, Sankaranarayanan V. Colossal magnetoresistance in the double perovskite oxide La$_2$CoMnO$_6$. J Appl Phys. 2010;107:09D714.

[16] Jia YS, Li Y, Zhao LZ, et al. Magnetism and critical behavior of double perovskite RE$_2$CoMnO$_6$ (RE = La and Eu) compounds. J Magn Magn Mater. 2019;481:156–161.

[17] Chang H, Gao Y, Liu F, et al. Effect of synthesis on structure, oxygen voids, valence bands, forbidden band gap and magnetic domain configuration of La$_2$CoMnO$_6$. J Alloy Compd. 2017;690:8–14.

[18] Hosseini SA, Salari D, Niaei A, et al. Physical–chemical property and activity evaluation of LaB$_6$Co$_{0.5}$O$_6$ (B = Cr, Mn, Cu) and LaMn$_{0.5}$Co$_{0.5}$O$_6$ (x = 0.01, 0.25, 0.5) nano perovskites in VOC combustion. J Ind Eng Chem. 2013;19:1903–1909.

[19] Jiang M, Li J, Zhao Y, et al. Double perovskites as model bifunctional catalysts toward rational design: the correlation between electrocatalytic activity and complex spin configuration. ACS Appl Mater Interfaces. 2018;10:19746–19754.

[20] Murthy JK, Venimadhav A. Magnetodielectric behavior in La$_2$CoMn$_6$ nanoparticles. J Appl Phys. 2012;111:024102.

[21] Liu F, Gao Y, Chang H, et al. Control of magnetic properties and band gap by Co/Mn ordering and oxygen distributions of La$_2$CoMn$_6$. J Magn Magn Mater. 2017;435:217–222.

[22] Silva RX, De MAS, Almeida RM, et al. Structural order, magnetic and intrinsic dielectric properties of magnetodielectric La$_2$CoMn$_6$. J Alloy Compd. 2016;661:541–552.

[23] Joy PA, Kholam YB, Patole SN, et al. Low-temperature synthesis of single phase LaMn$_{0.5}$Co$_{0.5}$O$_6$. Mater Lett. 2000;46:261–264.

[24] Joly VLJ, Joy PA, Date SK. Synthesis of two different ferromagnetic phases of RMn$_{0.5}$Co$_{0.5}$O$_6$ (R = Pr, Nd, Sm) by a low-temperature method. Mater Lett. 2001;51:172–175.

[25] Viswanathan M, Kumar PSA, Bhadram VS, et al. Influence of lattice distortion on the Curie temperature
and spin-phonon coupling in LaMn$_{0.5}$Co$_{0.5}$O$_3$. J Phys Condens Matter. 2010;22:346006.

[26] Sayed FN, Achary SN, Deshpande SK, et al. Role of annealing atmosphere on structure, dielectric and magnetic properties of La$_x$CoMnO$_y$ and La$_x$MgMnO$_y$. Z Anorg Allg Chem. 2014;640:1907–1921.

[27] Filho PLC, Barrozo P, Landinez-Tellez DA, et al. Structural and magnetic properties of Ln$_x$CoMnO$_3$ (Ln=Dy and La) produced by combustion synthesis. J Supercond Nov Magn. 2013;26:2521–2524.

[28] Bull CL, Gleeson D, Knight KS. Determination of B-site ordering and structural transformations in the mixed transition metal perovskites La$_x$CoMnO$_y$ and La$_x$NiMnO$_y$. J Phys Condens Matter. 2003;15:4927–4936.

[29] Nishimori N, Asai K, Mizoguchi M. NMR Study on the super transferred hyperfine magnetic field at 55Mn in ferromagnetic perovskites La(Co$_{1-x}$Mg$_x$)$_{3}$MnO$_3$. J Phys Soc Jpn. 1995;64:1326–1333.

[30] Mahendiran R, Bréard Y, Herrvieu M, et al. Giant frequency dependence of dynamic freezing in nanocrystalline ferromagnetic LaCo$_{3}$MnO$_3$. Phys Rev B. 2003;68:104402.

[31] Mao Y. Facile molten-salt synthesis of double perovskite La$_3$BMnO$_6$ nanoparticles. RSC Adv. 2012;2:12675–12678.

[32] Mao Y, Parsons J, McCoy JS. Magnetic properties of double perovskite La$_3$BMnO$_6$ (B = Ni or Co) nanoparticles. Nanoscale. 2013;5:4720–4728.

[33] Saha SK, Pathak S, Pramanik P. Low-temperature preparation of fine particles of mixed oxide systems. J Mater Sci Lett. 1995;14:35–37.

[34] Gulgun MA, Nguyen MH, Kriven WM. Polymerized organic-inorganic synthesis of mixed oxides. J Am Ceram Soc. 1999;82:556–560.

[35] Liu T, Xu YB, Zhao JY. Low-temperature synthesis of BiFeO$_3$ via PVA sol-gel route. J Am Ceram Soc. 2010;93:3637–3641.

[36] Ghosh S, Dasgupta S, Sen A, et al. Low-temperature synthesis of nanosized bismuth ferrite by soft chemical route. J Am Ceram Soc. 2005;88:1349–1352.

[37] Rao GVS, Rao CNR, Ferraro JR. Infrared and electronic spectra of rare earth perovskites: ortho-chromites, -manganites and -ferrites. Appl Spectrosc. 1970;24:436–445.

[38] Busca G, Lorenzelli V. Infrared spectroscopic identification of species arising from reactive adsorption of carbon oxides on metal oxide surfaces. Mater Chem. 1982;7:89–126.

[39] Feng JS, Liu T, Xu YB, et al. Effects of PVA content on the synthesis of LaFeO$_3$ via sol–gel route. Ceram Int. 2011;37:1203–1207.

[40] Martin-Carrón L, de Andrés A, MJ M-L, et al. Raman phonons as a probe of disorder, fluctuations, and local structure in doped and undoped orthorhombic and rhombohedral manganites. Phys Rev B. 2002;66:174303.

[41] Martin-Carrón L, de Andrés A, MT C, et al. Raman phonons and light scattering in RMnO$_3$ (R=La, Pr, Nd, Ho, Er Tb and Y) orthorhombic and hexagonal manganites. J Alloy Compd. 2001;323–324: 494–497.

[42] Martin-Carrón L, de Andrés A. Melting of the cooperative Jahn-Teller distortion in LaMnO$_3$ single crystal studied by Raman spectroscopy. Eur Phys J B. 2001;22:11–16.

[43] Truong KD, Laverdiére J, Singh MP, et al. Impact of Co/Mn cation ordering on phonon anomalies in La$_2$CoMnO$_6$ double perovskites: raman spectroscopy. Phys Rev B. 2007;76:132413.

[44] Iliev MN, Abramshev MV, Litvinchuk AP, et al. Raman spectroscopy of ordered double perovskite La$_2$CoMnO$_6$ thin films. Phys Rev B. 2007;75:104118.

[45] Yadav R, Para TA, Reshi HA, et al. Easy synthesis and electric, magneto-transport and magnetic properties of double perovskite La$_2$CoMnO$_6$ compound. J Mater Sci: Mater Electron. 2017;28:2970–2975.

[46] Das RR, Lekshmi PN, Das SC, et al. Competing short-range magnetic correlations, metamagnetic behavior and spin-phonon coupling in Nd$_x$CoMnO$_y$ double perovskite. J Alloy Compd. 2019;773:770–777.