S-Concave Distributions: Towards Broader Distributions for Noise-Tolerant and Sample-Efficient Learning Algorithms

Maria-Florina Balcan∗ Hongyang Zhang†

Abstract

We provide new results concerning noise-tolerant and sample-efficient learning algorithms under s-concave distributions over \mathbb{R}^n for $-\frac{1}{1+n^2} \leq s \leq 0$. The new class of s-concave distributions is a broad and natural generalization of log-concavity, and includes many important additional distributions, e.g., the Pareto distribution and t-distribution. This class has been studied in the context of efficient sampling, integration, and optimization, but much remains unknown concerning the geometry of this class of distributions and their applications in the context of learning.

The challenge is that unlike the commonly used distributions in learning (uniform or more generally log-concave distributions), this broader class is not closed under the marginalization operator and many such distributions are fat-tailed. In this work, we introduce new convex geometry tools to study the properties of s-concave distributions and use these properties to provide bounds on quantities of interest to learning including the probability of disagreement between two halfspaces, disagreement outside a band, and disagreement coefficient. We use these results to significantly generalize prior results for margin-based active learning, disagreement-based active learning, and passively learning of intersections of halfspaces.

Our analysis of geometric properties of s-concave distributions might be of independent interest to optimization more broadly.

1 Introduction

Developing provable learning algorithms is one of the central challenges in learning theory. Study of such algorithms has led to significant advances in both the theory and practice of passive and active learning. In the passive learning model, the learning algorithm has access to a set of labeled examples sampled i.i.d. from some unknown distribution over the instance space and labeled according to some underlying target function. In the active learning model, however, the algorithm can access unlabeled examples and request labels by its own choice, and the goal is to learn the target function with significantly fewer labels. In this work, we study both learning models in the case where the underlying distribution belongs to the class of s-concave distributions.

Prior work on noise-tolerant and sample-efficient algorithms mostly relies on the assumption that the distribution over instance space is log-concave [AK91, CM07, BL13]. A distribution is log-concave if the logarithm of its density is a concave function. The assumption of log-concavity has been made for a few purposes: for computational efficiency reasons and for sample efficiency reasons. For computational efficiency reasons, it was made to obtain noise-tolerant algorithm even for seemingly simple decision surfaces like linear separators. These simple algorithms exist for noiseless scenarios, e.g., via linear programming [Ser01],

∗Carnegie Mellon University. Email: ninamf@cs.cmu.edu
†Carnegie Mellon University. Email: hongyanz@cs.cmu.edu
Theorem 1

Below, we state our results informally: When disagreement-based active learning [Wan11, H +14], learning intersections of halfspaces [KLT09], etc. When $s \to 0$, our results exactly reduce to those for the log-concave distributions [BL13, ABHZ16, ABL17].

1.1 Our Results

In this work, we provide a broad generalization of all above results, showing how they extend to s-concave distributions ($s < 0$). A distribution with density $f(x)$ is s-concave if $f(x)^s$ is a concave function. We identify key properties of these distributions that allow us to simultaneously extend all above results. In particular, we study many geometric properties concerning the class of s-concavity. These properties serve as the building blocks for many provable learning algorithms, e.g., margin-based active learning [BL13], disagreement-based active learning [Wan11, H +14], learning intersections of halfspaces [KLT09], etc. When $s \to 0$, our results exactly reduce to those for the log-concave distributions [BL13, ABHZ16, ABL17].

Below, we state our results informally:

Theorem 1 (Informal). Let D be an isotropic s-concave distribution in \mathbb{R}^n with $-\frac{1}{2^n+3} \leq s \leq 0$. Then there exist closed-form functions $\gamma(s, m), f_1(s, n), f_2(s, n), f_3(s, n), f_4(s, n), f_5(s, n)$ such that

1. (Weakly Closed under Marginal) The marginal of D over m arguments (or cumulative distribution function, CDF) is isotropic $\gamma(s, m)$-concave. (Theorems 4, 6)
2. (Lower Bound on Hyperplane Disagreement) For any two unit vectors u and v in \mathbb{R}^n, $f_1(s, n)\theta(u, v) \leq \Pr_{x \sim D}[\sigma(u \cdot x) \neq \sigma(v \cdot x)]$, where $\theta(u, v)$ is the angle between u and v. (Theorem 15)
3. (Probability of Band) There is a function $d(s, n)$ such that for any unit vector $w \in \mathbb{R}^n$ and any $0 < t \leq d(s, n)$, we have $f_2(s, n)t < \Pr_{x \sim D}[|w \cdot x| \leq t] \leq f_3(s, n)t$. (Theorem 14)
4. (Disagreement outside Margin) For any absolute constant $c_1 > 0$ and any function $f(s, n)$, there exists a function $f_4(s, n) > 0$ such that $\Pr_{x \sim D}[\sigma(a \cdot x) \neq \sigma(v \cdot x) \text{ and } |v \cdot x| \geq f_4(s, n)\theta(u, v)] \leq c_1 f(s, n)\theta(u, v)$. (Theorem 16)
5. (Variance in 1-D Direction) There is a function $d(s, n)$ such that for any unit vectors u and a in \mathbb{R}^n such that $\|u - a\| \leq r$ and for any $0 < t \leq d(s, n)$, we have $\mathbb{E}_{x \sim D_{u,t}}[(\sigma(a \cdot x))^2] \leq f_5(s, n)(r^2 + t^2)$, where $D_{u,t}$ is the conditional distribution of D over the set $\{x : |u \cdot x| \leq t\}$. (Theorem 17)
6. (Tail Probability) We have $\Pr[|x| > \sqrt{nt}] \leq \left[1 - \frac{\text{est}}{1+ns}\right]^{(1+ns)/s}$. (Theorem 8)

If $s \to 0$ (a.k.a. log-concave distribution), then $\gamma(s, m) \to 0$ and functions $f(s, n), f_1(s, n), f_2(s, n), f_3(s, n), f_4(s, n), f_5(s, n)$, and $d(s, n)$ are all absolute constants.

Margin Based Active Learning: We consider margin-based active learning of a halfspace w^* under an isotropic s-concave distribution for both realizable and adversarial noise models. In the realizable case, the instance X is drawn from an isotropic s-concave distribution and the label $Y = \sigma(w^* \cdot X)$. In the adversarial noise model, an adversary can corrupt any $\eta (\leq O(\epsilon))$ fraction of labels. For both cases, we show that there exists a computationally efficient algorithm that outputs a linear separator w_T such that $\Pr_{x \sim D}[\sigma(w_T \cdot x) \neq \sigma(w^* \cdot x)] \leq \epsilon$ (See Theorems 18 and 19). The label complexity w.r.t. $1/\epsilon$ improves
Table 1: Comparisons with prior distributions for margin-based active learning, disagreement-based active learning, and Baum’s algorithm.

	Prior Work	Ours
Margin (Efficient, Noise)	uniform [ABL14] log-concave [ABL17] s-concave	
Disagreement	uniform [Han07] nearly-log-concave [BL13] s-concave	
Baum’s	symmetric [Bau90] log-concave [KLT09] s-concave	

exponentially over the passive learning scenario under s-concave distributions. To the best of our knowledge, this is the first result concerning the

computationally-efficient, noise-tolerant margin-based active learning under the broader class of s-concave distributions. Our work solves an open problem proposed by Awasthi et al. [ABL17] about exploring wider classes of distributions for provable active learning algorithms.

Disagreement Based Active Learning: We apply our results to agnostic disagreement-based active learning under s-concave distributions. The key to the analysis is estimating the disagreement coefficient, a distribution-dependent measure of complexity that is used to analyze certain types of active learning algorithms, e.g., the CAL [CAL94] and A^2 algorithm [BBL09]. We work out the disagreement coefficient under isotropic s-concave distribution (See Theorem 20). By composing it with the existing work on active learning [DHM07], we obtain a bound on label complexity under the class of s-concave distributions. As far as we are aware, this is the first result concerning disagreement-based active learning that goes beyond the log-concave distributions. Our bounds on the disagreement coefficient match the best known results for the much less general case of log-concave distributions [BL13]; Furthermore, they apply to the s-concave case where we allow an arbitrary number of discontinuities, a case not captured by [Fri09].

Learning Intersections of Halfspaces: Baum’s algorithm is one of the most famous algorithms for learning the intersections of halfspaces. The algorithm was first proposed by Baum [Bau90] under the symmetric distribution, and later extended to the log-concave distribution by Klivans et al. [KLT09] as the distribution is almost symmetric. In this paper, we show that approximate symmetry also holds for the case of s-concave distributions. With this, we work out the label complexity of Baum’s algorithm under the broader s-concave distributions (See Theorem 21), and advance the state-of-the-art results (See Table 1).

Our results can be potentially applied to other provable learning algorithms as well [BZ16, ZLZ16], which might be of independent interest. We discuss other related papers in Appendix A.

1.2 Techniques

In this section, we introduce the techniques used for obtaining our results.

Marginalization: Our results are inspired by isoperimetric inequality for s-concave distributions by the work of Chandrasekaran et al. [CDV09]. Roughly, the isoperimetry states that if two sets K_1 and K_2 are well-separated, then the area B between them has large measure relative to the measure of the two sets (See Figure 1 and Theorem 2). Results of this kind are particularly useful for margin-based active learning of halfspace [ABL14, ABHZ16, ABL17]: The algorithm proceeds in rounds, aiming to cut down the error by half in each round in the band. Since the measure of the band is large or even dominates, the error over the whole space decreases almost by half in each round, resulting in exponentially fast convergence rate. However, in order to make the analysis of such algorithms work for s-concave distribution, we typically require more refined geometric properties than the isoperimetry as the isoperimetric inequality states nothing about the absolute measure of band under s-concave distributions.
The insight behind the isoperimetry is a collection of properties concerning the geometry of probability density. While the geometric properties of some classic paradigms, such as log-concave distributions (for the case of $s = 0$), are well-studied [LV07], it is typically hard to generalize those results to the s-concave distribution, for broader range of $s < 0$. This is due to the fact that the class of s-concave functions is not closed under marginalization: The marginal of an s-concave function may not be s-concave any more. This directly restricts the possibility of applying the prior proof techniques for log-concave distribution to the s-concave one. Furthermore, previous proofs heavily depend on the assumption that the density is light-tailed (See Theorem 11 in [BL13]), which is not applicable for probably fat-tailed s-concave distribution.

To mitigate the above concerns, we begin with a powerful tool from convex geometry by Brascamp and Lieb [BL76]. This result can be viewed as an extension of celebrated Prékopa-Leindler inequality (See Theorem 3), an integral inequality that is closely related to a number of classical inequalities in analysis and serves as the building block of isoperimetry under the log-concave distributions [CM04, CM07]. With this, we can show that the marginal of any s-concave function is γ-concave, with a closed-form γ that is related to the parameter s and the dimension of marginalization (See Theorem 4). Our analysis is tight as there exists an s-concave function with a γ-concave marginal.

Reduction to 1-D Baseline Function: It is in general hard to study a high-dimensional s-concave distribution. Instead, we build on the marginalization technique described above to reduce each n-dimensional s-concave function to the one-dimensional case. Thus it suffices to investigate the geometry of one-dimensional γ-concave functions. But there are still infinitely many such functions in this class.

Our proofs take a novel analysis by reducing *all* one-dimensional γ-concave density to a certain baseline function. The baseline function should meet two goals: (a) It represents the worst case in the class of γ-concave functions, namely, such functions should achieve the bounds of geometric properties of our interest; (b) The function should be easy to analyze, e.g., with closed-form moments or integrations. Note that choosing a baseline function at the “boundary” between γ-concavity and non-γ-concavity classes readily achieves goal (a). To achieve goal (b), we set the “template” function as easy as $h(t) = \alpha(1 + \beta t)^{1/\gamma}$ for a particular choice of parameters α and β. Such functions have many good properties that one can exploit. First, the moments can be represented in closed-form by the beta function. This enables us to figure out the relations among moments of various orders explicitly and obtain a recursive inequality, which is critical for deducing the bounds of one-dimensional geometric properties. Second, $h(t)$ is at the “boundary” of γ-concave class: $h(t)^{\eta}$ is not a concave function for any $\eta < \gamma$. Therefore, this enables us to analyze the whole class of s-concavity by focusing on $h(t)$. Below, we summarize our high-level proof ideas briefly.

$$
\begin{align*}
\text{n-D s-concave} & \quad \rightarrow \quad \text{1-D γ-concave} & \quad \rightarrow \quad \text{1-D $h(t) = \alpha(1 + \beta t)^{1/\gamma}$} \\
\text{Marginalization} & & \text{Baseline Function}
\end{align*}
$$

S-Concavity vs. Nearly-Log-Concavity: A distribution with density $f(x)$ is β-log-concave if for any $\lambda \in [0, 1], x_1, x_2 \in \mathbb{R}^n$, we have $f(\lambda x_1 + (1 - \lambda) x_2) \geq e^{-\beta} f(x_1)^{\lambda} f(x_2)^{1-\lambda}$. In particular, a distribution is nearly-log-concave if $\beta < 0.0154$ [BL13]. The class of s-concavity includes many important additional distributions which do not belong to the nearly log-concave distributions, e.g., fat-tailed distributions like the generalized Pareto [Arn08]. This is due to the fact that a nearly log-concave distribution must have sub-exponential tails (See Theorem 11, [BL13]), while the tail probability of an s-concave distribution decays
slowly as a polynomial of $\|x\|^{-1}$ (See Theorem 1 (6)).

2 Preliminary

Before proceeding, we define some notations and clarify our problem setup in this section.

Notations: We will use capital or lower-case letter to represent random variables, \mathcal{D} to represent an s-concave distribution, and $\mathcal{D}_{u,t}$ to represent the conditional distribution of \mathcal{D} over the set $\{x: |u \cdot x| \leq t\}$. We define the *sign* function as $\text{sign}(x) = +1$ if $x \geq 0$ and -1 otherwise. We denote by $B(\alpha, \beta) = \int_0^1 t^{\alpha-1}(1-t)^{\beta-1}dt$ the beta function, and $\Gamma(\alpha) = \int_0^\infty t^{\alpha-1}e^{-t}dt$ the gamma function. We will consider a single norm for the vectors in \mathbb{R}^n, namely, the 2-norm denoted by $\|x\|$. We will frequently use μ (or μ_f, μ_D) to represent the measure of probability distribution \mathcal{D} having density function f. The notation $\text{ball}(w^*, t)$ represents the set $\{w \in \mathbb{R}^n: \|w - w^*\| \leq t\}$. For convenience, the symbol \oplus slightly differs from the ordinary addition $+$. For $f = 0$ or $g = 0$, $\{f^s \oplus g^s\}^{1/s} = 0$; Otherwise, \oplus and $+$ are the same. For $u, v \in \mathbb{R}^n$, we define the angle between them as $\theta(u, v)$. We define the distance between any two sets K_1 and K_2, denoted by $d(K_1, K_2)$, as the minimum distance between any two points in K_1 and K_2.

2.1 From Log-Concavity to S-Concavity

We begin with the definition of s-concavity. There are slight differences among s-concave density, s-concave distribution, and s-concave measure.

Definition 1 (S-Concave (Density) Function, Distribution, Measure). A function $f: \mathbb{R}^n \to \mathbb{R}_+$ is s-concave, for $-\infty \leq s \leq 1$, if

$$f(\lambda x + (1-\lambda)y) \geq (\lambda f(x)^s + (1-\lambda)f(y)^s)^{1/s},$$

for all $\lambda \in [0,1]$, $\forall x, y \in \mathbb{R}^n$. A probability distribution \mathcal{D} is s-concave, if its density function is s-concave. A probability measure μ is s-concave if

$$\mu(\lambda A + (1-\lambda)B) \geq [\lambda\mu(A)^s + (1-\lambda)\mu(B)^s]^{1/s},$$

for any sets $A, B \subseteq \mathbb{R}^n$ and $\lambda \in [0,1]$.

The s-concavity is a very broad class of functions that contains many well-known functions as special cases. For example, when $s \to 0$, the RHS of (1) (as well as (2)) equals $f(x)^\lambda f(y)^{1-\lambda}$, which matches the definition of log-concave functions. Other special classes of functions include concavity ($s = 1$), harmonic-concavity ($s = -1$), quasi-concavity ($s = -\infty$), etc. The conditions in Definition 1 are progressively weaker as s becomes smaller: s_1-concave densities (distributions, measures) are s_2-concave if $s_1 \geq s_2$. Thus one can see [CDV09]: concave ($s = 1$) \subseteq log-concave ($s = 0$) \subseteq s-concave ($s < 0$) \subseteq quasi-concave ($s = -\infty$). For example, s-concave class contains infinitely many fat-tailed densities such as the Cauchy distribution, which does not belong to the narrower class of log-concavity.

Despite a large amount of functions in the class of s-concavity, only small fractions of them have good isoperimetry. Good isoperimetry implies efficient sampling, integration, and optimization algorithms for a distribution, and is a key element for other geometric properties [LV07, CM04]. Chandrasekaran et al. [CDV09] showed the following result on isoperimetry:
Theorem 2 ([CDV09], Thms 3, 4). Let \(f : \mathbb{R}^n \to \mathbb{R}_+ \) be a \(-\frac{1}{n-1}\)-concave function with a convex support \(K \) of diameter \(D \), and denote by \(\mathbb{R}^n = K_1 \cup B \cup K_2 \) a measurable partition of \(\mathbb{R}^n \) into three non-empty subsets. Then
\[
\mu_f(B) \geq \frac{d(K_1, K_2)}{D} \min\{\mu_f(K_1), \mu_f(K_2)\}.
\] (3)

Furthermore, for any \(\epsilon > 0 \), there exists \(-\frac{1}{n-1}\)-concave function \(f \) such that (3) does not hold.

So all \(-1/(n-1)\)-concave functions consist of the broadest class of functions with good isoperimetry among the whole class of \(s \)-concavity.

In this paper, we investigate much more refined geometric properties than the isoperimetry for \(-1/(2n+3)\)-concave distribution. The value \(-1/(2n+3)\) follows from the existence of high-order moments due to our proof technique. These properties play a key role for many provable learning algorithms. We summarize our results in the following figure.

3 Analysis of S-Concave Distributions: A Toolkit

In this section, we develop several geometric properties of \(s \)-concave distribution. They serve as tools for future analysis of provable learning algorithms under \(s \)-concave distributions.

3.1 Marginal Distribution and Cumulative Distribution Function

We begin with the analysis of marginal distribution, which forms the basis of other geometric properties of \(s \)-concave distributions. Unlike the (nearly) log-concave distribution where the marginal remains (nearly) log-concave, the class of \(s \)-concave distributions is not closed under the marginalization operator. To study the marginal, our primary tool will be the theory of convex geometry. Specifically, we will use an extension of Prékopa-Leindler inequality developed by Brascamp and Lieb [BL76], which allows for a characterization of integral of \(s \)-concave functions.

Theorem 3 ([BL76], Thm 3.3). Let \(0 < \lambda < 1 \), and \(H_s, G_1, G_2 \) be non-negative integrable functions on \(\mathbb{R}^m \) such that \(H_s(\lambda x + (1 - \lambda) y) \geq [\lambda G_1(x)^s + (1 - \lambda) G_2(y)^s]^{1/s} \) for every \(x, y \in \mathbb{R}^m \). Then
\[
\int_{\mathbb{R}^m} H_s(x) dx \geq \left[\lambda \left(\int_{\mathbb{R}^m} G_1(x) dx \right)^\gamma + (1 - \lambda) \left(\int_{\mathbb{R}^m} G_2(x) dx \right)^\gamma \right]^{1/\gamma} \text{ for } s \geq -1/m \text{, with } \gamma = s/(1 + ms).
\]

Building on this, the following theorem plays a key role in our analysis of marginal distribution. The theorem basically claims that the projection of an \(s \)-concave distribution is \(\gamma \)-concave with a different \(\gamma \) that is closely related to the parameter \(s \) and the projected dimension \(m \). The parameter \(\gamma \) is also tight as such a distribution exists.
Theorem 4 (Marginal). Let \(f(x, y) \) be an \(s \)-concave density on a convex set \(K \subseteq \mathbb{R}^{n+m} \) with \(s \geq -\frac{1}{m} \). Denote by \(K|_{\mathbb{R}^n} = \{ x \in \mathbb{R}^n : \exists y \in \mathbb{R}^m \text{ s.t. } (x, y) \in K \} \). For every \(x \) in \(K|_{\mathbb{R}^n} \), consider the section \(K(x) = \{ y \in \mathbb{R}^m : (x, y) \in K \} \). Then the marginal density \(g(x) = \int_{K(x)} f(x, y) \, dy \) is \(\gamma \)-concave on \(K|_{\mathbb{R}^n} \), where \(\gamma = \frac{s}{1+ms} \). Moreover, if \(f(x, y) \) is isotropic, then \(g(x) \) is isotropic.

Proof. The proof that \(g(x) \) is isotropic is standard [LV07]. We now prove the first part. Let \(x_1, x_2 \) be any two points. Define \(g_i(y) = f(x_i, y) \) for \(i = 1, 2 \). So the functions \(g_i(y) \) are defined on \(K(x_i) \), \(i = 1, 2 \). Now let \(x = \lambda x_1 + (1-\lambda)x_2 \) for \(\lambda \in (0, 1) \) and define \(h_s(y) = f(x, y) \) on \(K(x) \). Notice that for any \(y_i \in K(x_i) \), \(i = 1, 2 \), \(y = \lambda y_1 + (1-\lambda)y_2 \subseteq K(x) \). To see this, by the convexity of the set \(K \), the point \((x, y) = (\lambda x_1, y_1) + (1-\lambda)(x_2, y_2) \) belongs to \(K \). So \(y \in K(x) \), i.e., \(\lambda K(x_1) + (1-\lambda)K(x_2) \subseteq K(x) \). Using the \(s \)-concavity of \(f(x, y) \), we have \(f(x, y) = f(\lambda(x_1, y_1) + (1-\lambda)(x_2, y_2)) \geq [\lambda f(x_1, y_1)^s + (1-\lambda)f(x_2, y_2)^s]^{1/s} \), which implies that \(h_s(y) = h_s(\lambda y_1 + (1-\lambda)y_2) \geq [\lambda g_1(y_1)^s + (1-\lambda)g_2(y_2)^s]^{1/s} \). Denote by \(I_A \) the indicator function. So \(h_s((1-\lambda)y_2)I_{K(x)}(y) \geq [\lambda(g_1(y_1)I_{K(x_1)}(y_1))^s + (1-\lambda)(g_2(y_2)I_{K(x_2)}(y_2))^s]^{1/s} \).

Set \(H_s(y) = h_s((1-\lambda)y_2)I_{K(x)}(y) = (g_1(y_1)I_{K(x_1)}(y_1) + (1-\lambda)g_2(y_2)I_{K(x_2)}(y_2))^s \). By Theorem 3,

\[
g(x) = \int_{\mathbb{R}^n} H_s(y) \, dy = \int_{\mathbb{R}^n} h_s(y) I_{K(x)}(y) \, dy \geq \left[(1-\lambda) \left(\int_{\mathbb{R}^n} G_1(y_1) \, dy_1 \right)^\gamma + \lambda \left(\int_{\mathbb{R}^n} G_2(y_2) \, dy_2 \right)^\gamma \right]^{1/\gamma} \\
= \left[(1-\lambda) \left(\int_{\mathbb{R}^n} f(x_1, y_1) I_{K(x_1)}(y_1) \, dy_1 \right)^\gamma + \lambda \left(\int_{\mathbb{R}^n} f(x_2, y_2) I_{K(x_2)}(y_2) \, dy_2 \right)^\gamma \right]^{1/\gamma} \\
= \left[(1-\lambda)g(x_1)^\gamma + \lambda g(x_2)^\gamma \right]^{1/\gamma},
\]

where \(\gamma = s/(1+ms) \). Namely, the marginal function \(g(x) \) is \(\gamma \)-concave. \(\square \)

Similar to the marginal, the CDF of an \(s \)-concave distribution might not remain in the same class. This is in sharp contrast with the log-concave distributions. The following lemma from [BL76] provides a useful tool for our analysis of CDF, which basically claims that the measure of any \(s \)-concave distribution is \(\gamma \)-concave with a closed-form \(\gamma \).

Lemma 5 ([BL76], Cor 3.4). The density function \(f(x) \) is \(s \)-concave for \(s \geq -1/n \) where \(x \in \mathbb{R}^n \), if and only if the corresponding probability measure \(\mu \) is \(\gamma \)-concave for \(\gamma = \frac{s}{1+ns} \), namely, \(\mu(A + (1-\lambda)B) \geq [\lambda \mu(A)^\gamma + (1-\lambda)\mu(B)]^{1/\gamma} \), for any \(A, B \subseteq \mathbb{R}^n \) and \(\lambda \in [0, 1] \), where \(\mu(A) = \int_A f(x) \, dx \).

Lemma 5 is an extension of celebrated Brunn-Minkowski theorem. The following theorem concerning the CDF of an \(s \)-concave distribution is a straightforward result from Lemma 5.

Theorem 6. The CDF of \(s \)-concave distribution in \(\mathbb{R}^n \) is \(\gamma \)-concave, where \(\gamma = \frac{s}{1+ns} \) and \(s \geq -\frac{1}{n} \).

Proof. Denote by \(F(x) \) the CDF. Applying Lemma 5 to the set \(A = \{ x : x \leq x_1 \} \) and \(B = \{ x : x \leq x_2 \} \) and taking into account that \(F(x_1) = \mu(A) \), \(F(x_2) = \mu(B) \), and \(F(\lambda x_1 + (1-\lambda)x_2) = \mu(\lambda A + (1-\lambda)B) \), we have the result. \(\square \)

3.2 Fat-Tailed Density

Tail probability is one of the most distinct characteristic of \(s \)-concave distributions compared to the nearly log-concavity. To study this, we first require a concentration result from [Bob07].
Lemma 7 ([Bob07], Thm 5.2). Let f be a Borel function on \mathbb{R}^n and let m be a median for $|f|$ w.r.t. a κ-concave measure μ, where $\kappa < 0$. Then for every $t > 1$ such that $4\delta_f(\frac{1}{t}) \leq 1$, we have $\mu[|f| > mt] \leq \left[1 - \frac{cm}{\delta_f(\frac{1}{t})}\right]^{1/\kappa}$, where c is a constant, $\delta_f(\epsilon) = \sup_{x,y} \text{mes}\{t \in (0, 1) : |f(tx + (1 - t)y)| \leq \epsilon |f(x)|\}$, $0 \leq \epsilon \leq 1$, and mes stands for the Lebesgue measure.

Now we are ready to bound the tail probability of s-concave density. While it can be shown that the nearly log-concave distribution has an exponentially small tail (Theorem 11, [BL13]), the tail of s-concave distribution is fat, as proved by the following theorem.

Theorem 8 (Tail Probability). Let x come from an isotropic distribution over \mathbb{R}^n with an s-concave density. Then for every $t \geq 16$, we have $\Pr[\|x\| > \sqrt{nt}] \leq \left[1 - \frac{cst}{1+ns}\right]^{(1+ns)/s}$, where c is an absolute constant.

Proof. Set function $f(x)$ in Lemma 7 as $\|x\|$. Bobkov [Bob07] claimed that $\delta_f(\epsilon) \leq 2\epsilon$. Also, Lemma 5 implies that the probability measure is $\kappa = \frac{s}{1+ns}$-concave.

By the definition of the median m, the Markov inequality, and the Jensen inequality, we have $\frac{1}{2} = \Pr[\|x\| \geq m] \leq \frac{\mathbb{E}[\|x\|]}{m} \leq \frac{\sqrt{\mathbb{E}[\|x\|^2]}}{m} = \frac{\sqrt{n}}{m}$, where the last equality is due to the isotropicity assumption. So by Lemma 7, we have that for every $t \geq 8$, $\Pr[\|x\| > 2\sqrt{nt}] \leq \Pr[\|x\| > mt] \leq [1 - cst/(1 + ns)]^{(1+ns)/s}$. Replacing t with $t/2$, the proof is completed.

Theorem 8 is almost tight for $s < 0$. To see this, consider X that is drawn from one-dimensional Pareto distribution with density $f(x) = (-1 - \frac{1}{s})^{-\frac{1}{s}}x^{\frac{1}{s}}(x \geq \frac{s+1}{s})$. It can be easily seen that $\Pr[X > t] = \left[(\frac{s+1}{s})t\right]^\frac{s+1}{s}$ for $t \geq \frac{s+1}{s}$, which matches our prediction up to a constant in Theorem 8.

3.3 Geometry of S-Concave Distribution

We now investigate the geometry of s-concave distribution. We first consider one-dimensional s-concave distribution: We provide bounds on the probability of halfspace (Lemma 9) and range of density function (Theorem 8). Building upon these, we develop geometric properties of high-dimensional s-concave distribution by reducing the distribution to the one-dimensional case based on marginalization (Theorem 4).

3.3.1 One-Dimensional Case

We begin with the analysis of one-dimensional halfspace. To bound the probability, a normal technique is to bound the centroid region and the tail region separately. However, the challenge is that the s-concave distribution is fat-tailed (Theorem 8). So while the probability of one-dimensional halfspace is bounded below by an absolute constant for log-concave distribution, such a probability for s-concave distribution decays as $s(\leq 0)$ becomes smaller. The following lemma captures such an intuition.

Lemma 9 (Probability of Halfspace). Let X be drawn from a one-dimensional distribution with s-concave density for $-1/2 \leq s \leq 0$. Then $\Pr[X \geq \mathbb{E}X] \geq (1 + \gamma)^{-1/\gamma}$ for $\gamma = s/(1 + s)$.

Proof Sketch Without loss of generality, we assume that $\mathbb{E}X = 0$. Let $G(x) = \Pr(X \leq x)$ be the CDF of the distribution, which is γ-concave by Theorem 6. To prove the lemma, we novelly upper bound $G(x)$ by a γ-concave function in the form of $G(x) \leq G(0)(1 + \gamma cx)^{\gamma}$, where $c = G'(0)/G(0) > 0$. The inequality is true because G^{γ} is concave and so it lies above its tangent at 0. The RHS of inequality then serves as the baseline function. Bounding $G(x)$ below and replacing X with $-X$ obtain the result. ■
We also study the image of a one-dimensional s-concave density. The following condition for $s > -1/3$ is for the existence of second-order moment.

Lemma 10. Let $g : \mathbb{R} \to \mathbb{R}_+$ be an isotropic s-concave density function and $s > -1/3$.

(a) For all x, $g(x) \leq \frac{1 + s}{1 + 3s}$.
(b) We have $g(0) \geq \sqrt{\frac{1}{3(1+\gamma)/\gamma}}$, where $\gamma = \frac{s}{s+1}$.

Proof Sketch (a) Let z be the maximum point of function g. Assume the value of the function g evaluated at z is too large. So the corresponding distribution has a small deviation from z. However, the moment property restricts that the second moment cannot be too small, which leads to a contradiction. (b) The proof is to lower bounds $g(0)$ by the second order moment of g, which is 1 according to the isotropicity assumption. ■

3.3.2 High-Dimensional Case

We now move on to the high-dimensional case ($n \geq 2$). In the following, we will assume $\frac{-1}{2n+3} \leq s \leq 0$. We start with analyzing the probability of halfspace in the high-dimensional space.

Lemma 11 (Probability of Halfspace). Let $f : \mathbb{R}^n \to \mathbb{R}_+$ be an isotropic s-concave density function, and let H be any halfspace containing its centroid. Then $\int_{H} f(x)dx \geq (1+\gamma)^{-1/\gamma}$ for $\gamma = s/(1+ns)$.

Proof. Without loss of generality, we assume H is orthogonal to the first axis. From Theorem 4, we know that the first marginal of f is $s/(1+(n-1)s)$-concave. Then by Lemma 9, $\int_{H} f(x)dx \geq (1+\gamma)^{-1/\gamma}$, where $\gamma = s/(1+ns)$. □

The following theorem is an extension of Lemma 10 to the high-dimensional space. The proofs basically reduce the n-dimensional density to its first marginal, and apply Lemma 10 to bound the image. We defer the detailed proofs to Appendix D.

Theorem 12 (Bounds on Density). Let $f : \mathbb{R}^n \to \mathbb{R}_+$ be an isotropic s-concave density. Then

(a) Let $d(s, n) = (1+\gamma)^{-1/\gamma} \beta^{1+3\beta/3\beta}$, where $\beta = \frac{s}{1+(n-1)s}$ and $\gamma = \frac{\beta}{1+\beta}$. For any $u \in \mathbb{R}^n$ such that $\|u\| \leq d(s, n)$, we have $f(u) \geq \left(\frac{\|u\|}{d}\right)^{s}((2-2^{-(n+1)s})^{-1} - 1) + 1)^{1/s} f(0)$.

(b) $f(x) \leq f(0) \left(\frac{1 + s}{1+3s} \sqrt{3(1+\gamma)^{3/\gamma}2^{n-1+1/s}}\right)^{s} - 1 \right)^{1/s}$ for every x.

(c) There exists an $a \in \mathbb{R}^n$ such that $f(a) = (4e\pi)^{-n/2}$.

(d) $(4e\pi)^{-n/2} \left[\frac{1 + s}{1+3s} \sqrt{3(1+\gamma)^{3/\gamma}2^{n-1+1/2}}\right]^{s} - 1 \right)^{1/2} f(0) \leq (2-2^{-(n+1)s})^{1/s} \frac{n!\Gamma(n/2)}{2\pi^{n/2}d^n} \left[\frac{1 + s}{1+3s} \sqrt{3(1+\gamma)^{3/\gamma}2^{n-1+1/s}}\right]^{s} - 1 \right)^{1/s}$ for every x.

(e) $f(x) \leq (2-2^{-(n+1)s})^{1/s} \frac{n!\Gamma(n/2)}{2\pi^{n/2}d^n} \left[\frac{1 + s}{1+3s} \sqrt{3(1+\gamma)^{3/\gamma}2^{n-1+1/s}}\right]^{s} - 1 \right)^{1/s}$ for every x.

(f) For any line ℓ through the origin, $\int_{\ell} f \leq (2-2^{-(n+1)s})^{1/s} \frac{n!\Gamma(n/2)}{2\pi^{n/2}d^n} \left[\frac{1 + s}{1+3s} \sqrt{3(1+\gamma)^{3/\gamma}2^{n-1+1/s}}\right]^{s} - 1 \right)^{1/s}$.

Theorem 12 provides uniform bounds on the density function. To have more refined upper bound on the image of s-concave density function, we have the following lemma. The proof is in Appendix E.

Lemma 13 (More Refined Upper Bound on Density). Let $f : \mathbb{R}^n \to \mathbb{R}_+$ be an isotropic s-concave density. Then $f(x) \leq \beta_1(n, s)(1 - s\beta_2(n, s))^{1/s}$ for every $x \in \mathbb{R}^n$, where

$$
\beta_1(n, s) = \frac{1}{2\pi^{n/2}d^n} \left[\frac{1 + s}{1+3s} \sqrt{3(1+\gamma)^{3/\gamma}2^{n-1+1/s}}\right]^{s} - 1 \right)^{1/s},
$$
Recall that the isoperimetry (3) claims that if two sets K_1 and K_2 are well-separated, then the band B between them has large measure relative to the measure of the two sets (See Figure 1). To give an absolute bound on the measure of band, we have the following theorem.

Theorem 14 (Probability inside Band). Let D be an isotropic s-concave distribution in \mathbb{R}^n. Denote by $f_3(s, n) = 2(1 + ns)/(1 + (n + 2)s)$. Then for any unit vector w, $\Pr_{x \sim D}[|w \cdot x| \leq t] \leq f_3(s, n)t$. Moreover, if $t \leq d(s, n) \triangleq \frac{1 + 2\gamma}{1 + \gamma} - \frac{s\sqrt{\frac{s(n - 1)\gamma}{\beta}}}{\beta + \gamma}$ where $\gamma = \frac{s}{1 + (n - 1)s}$, then $\Pr_{x \sim D}[|w \cdot x| \leq t] > f_2(s, n)t$, where

$$f_2(s, n) = 2(2 - 2^{-2\gamma})^{-1/\gamma}(4\pi)^{-1/2} \left(2 \left(\frac{\beta}{1 + \beta} \frac{\frac{3 + 3\gamma}{\beta}}{\gamma} - 1\right)\right)^{-1/\gamma} - 1.$$

Proof Sketch The proof is based on the fact that any 1-dimensional projection/marginal of isotropic s-concave distribution is isotropic and γ-concave. So using the bounds on the image of 1-dimensional, isotropic, γ-concave density of $w \cdot x$, we can bound the probability.

To analyze the problem of learning linear separators, we are typically interested in studying the disagreement between the hypothesis of the output and the hypothesis of the target. The following theorem captures such a characteristic under s-concave distribution.

Theorem 15 (Probability of Disagreement). Assume D is an isotropic s-concave distribution in \mathbb{R}^n. Then for any two unit vectors u and v in \mathbb{R}^n, we have $d_P(u, v) = \Pr_{x \sim D}[\text{sign}(u \cdot x) \neq \text{sign}(v \cdot x)] \geq f_1(s, n)\theta(u, v)$, where $f_1(s, n) = c(2 - 2^{-3\alpha})^{-\frac{1}{\alpha}} \left[\left(\frac{1 + 2\gamma}{1 + \gamma} \frac{\frac{3 + 3\gamma}{\beta}}{\gamma} + 1/\alpha\right)^{\frac{\alpha}{\beta}} - 1\right]^{-\frac{1}{2\gamma}} \alpha^{-1}(1 + \gamma)^{-2/\gamma} \left(\frac{1 + 2\gamma}{1 + \gamma} \frac{\frac{3 + 3\gamma}{\beta}}{\gamma}\right)^2$, c is an absolute constant, $\alpha = \frac{s}{1 + (n - 2)s}$, $\beta = \frac{s}{1 + (n - 1)s}$, $\gamma = \frac{s}{1 + ns}$.

Proof. Consider the 2-dimensional space spanned by vectors u and v, and let D_2 be the marginal of distribution D over that space. Since $d_P(u, v) = d_{D_2}(u', v')$, where u' and v' are projection of u and v, respectively, we only need to focus on the marginal distribution D_2, which has an α-concave density according to Theorem 4, and is isotropic according to Theorem 4.

Let A be the disagreement region of u and v intersected with the ball of radius $d = (1 + \gamma)^{-1/\gamma} \frac{1 + 3\beta}{3 + 3\gamma}$ in \mathbb{R}^2. By Theorem 12 (a) and (d), $d_P(u, v) = d_{D_2}(u', v') \geq \text{vol}(A) \inf_{x \in A} p(x) \geq f_1(s, n)\theta(u', v') = f_1(s, n)\theta(u, v)$, where $p(x)$ is the density of distribution D_2. \hfill \Box

4 Provable Learning Algorithms under S-Concave Distributions

In this section, we show that many algorithms that work under log-concave distribution behave well under the s-concave distribution. For simplicity, We frequently use the notations in Theorem 1.

4.1 Margin Based Active Learning

We first investigate margin-based active learning under isotropic s-concave distribution in both realizable (Algorithm 3) and adversarial noise (Algorithm 1) models. The algorithm follows a localization technique inspired by [BBZ07]: It proceeds in rounds, aiming to cut the error down by half in each round in the margin (See Algorithm 1).
4.1.1 Relevant Properties of S-Concave Distribution

The analysis requires more refined geometric properties as below. Theorem 16 basically claims that the error mostly concentrates in a band, and Theorem 17 guarantees that the variance in any 1-D direction cannot be too large. We defer the detailed proofs to Appendices G and H, respectively.

Theorem 16 (Disagreement outside Band). Let \(u \) and \(v \) be two vectors in \(\mathbb{R}^n \) and assume that \(\theta(u, v) = \theta < \pi/2 \). Let \(D \) be an isotropic \(s \)-concave distribution. Then for any absolute constant \(c_1 > 0 \) and any function \(f_1(s, n) > 0 \), there exists a function \(f_4(s, n) > 0 \) such that \(\Pr_{x \sim D}[\text{sign}(u \cdot x) \neq \text{sign}(v \cdot x)] \geq f_4(s, n)\theta \leq c_1 f_1(s, n)\theta \), where \(f_4(s, n) = \frac{4\beta_1(2, \alpha)B(-1/\alpha - 3, 3)}{c_1 f_1(s, n)\alpha^3\beta_2(2, \alpha)^2}, B(\cdot, \cdot) \) is the beta function, \(\alpha = s/(1 + (n - 2)s) \), \(\beta_1(2, \alpha) \) and \(\beta_2(2, \eta) \) are given by Lemma 13.

Theorem 17 (1-D Variance). Assume that \(D \) is isotropic \(s \)-concave. For \(d \) given by Theorem 12 (a), there is an absolute constant \(C_0 \) such that for all \(0 < t \leq d \) and for all \(a \) such that \(\|u - a\| \leq r \) and \(\|a\| \leq 1 \), \(\mathbb{E}_{x \sim D, u,t}[(a \cdot x)^2] \leq f_5(s, n)(r^2 + t^2) \), where \(f_5(s, n) = 16 + C_0 \frac{8\beta_1(2, \alpha)B(-1/\alpha - 3, 3)}{f_2(s, n)\beta_2(2, \eta)^2(\eta + 1)^2}, (\beta_1(2, \eta), \beta_2(2, \eta)) \) and \(f_2(s, n) \) are given by Lemma 13 and Theorem 14, and \(\eta = \frac{1 + (n - 2)s}{1 + (n - 2)s} \).

4.1.2 Realizable Case

We show that margin-based active learning works under \(s \)-concave distributions in the realizable case.

Theorem 18. In the realizable case, let \(D \) be an isotropic \(s \)-concave distribution in \(\mathbb{R}^n \). Then for \(0 < \epsilon < 1/4, \delta > 0 \), and absolute constants \(c_0 \), there is an algorithm (See Appendix N) that runs in \(T = \lceil \log \frac{1}{c_0} \rceil \) iterations, requires \(m_k = O\left(f_3 \min\left\{ \frac{2^{-k} f_4 f_5^{-1} d}{2^{-k}} \right\} \right) \) labels in the \(k \)-th round, and outputs a linear separator of error at most \(\epsilon \) with probability at least \(1 - \delta \). In particular, when \(s \to 0 \) (a.k.a. log-concave), we have \(m_k = O\left(n + \log\left(\frac{1 + s - k}{\delta} \right) \right) \).

4.1.3 Efficient Learning with Adversarial Noise

In the adversarial noise model, an adversary can choose any distribution \(\mathcal{D} \) over \(\mathbb{R}^n \times \{+1, -1\} \) such that the marginal \(\mathcal{D} \) over \(\mathbb{R}^n \) is \(s \)-concave but an \(\eta \) fraction of labels can be flipped adversarially. The analysis builds upon an induction technique where in each round we do hinge loss minimization in the band and cut down the 0/1 loss by half. The algorithm was previously analyzed in [ABL14, ABL17] for the special class of log-concave distribution. In this paper, we analyze it for the much more general class of \(s \)-concave distributions.

Theorem 19. Let \(D \) be an isotropic \(s \)-concave distribution in \(\mathbb{R}^n \) over \(x \) and the label \(y \) obey the adversarial noise model. If the rate \(\eta \) of adversarial noise satisfies \(\eta < c_0 \epsilon \) for some absolute constant \(c_0 \), then for \(0 < \epsilon < 1/4, \delta > 0 \), and an absolute constant \(c \), Algorithm 1 runs in \(T = \lceil \log \frac{1}{c} \rceil \) iterations, outputs a linear separator in the \(k \)-th round is \(m_k = O\left(\left(b_k^{-1} + \tau_k \sqrt{(1 + n)s} \right)^{\Theta\left(\frac{n + \log\left(\frac{5 + k^2}{\delta} \right)}{\tau_k^2} \right)} \right) \), where \(b_k = \min\{ \Theta(2^{-k} f_4 f_5^{-1}), d \}, \tau_k = \Theta\left(\frac{f_1^{-2} f_2^{-1/2} f_3^{-2} f_5^{-1/2} 2^{-(k - 1)}}{f_2 \min\{b_k^{-1} d^2, \frac{b_k^{-1} \sqrt{f_5}}{\tau_k^2\sqrt{f_5}} \}} \right), \kappa = \max\left\{ \frac{f_3 \tau_k}{f_2 \min\{b_k^{-1} d^2, \frac{b_k^{-1} \sqrt{f_5}}{\tau_k^2\sqrt{f_5}} \}} \right\} \).

In particular, when \(s \to 0 \) (a.k.a. log-concave), we have \(m_k = O\left(n \log\left(\frac{n}{\kappa} \right) \right) \).

Remark 1. By Theorems 18 and 19, the label complexity of margin-based active learning improves exponentially over that of passive learning w.r.t. \(\frac{1}{\epsilon} \) even under the fat-tailed \(s \)-concave distribution.
4.2 Disagreement Based Active Learning

We apply our results to the analysis of disagreement-based active learning under s-concave distributions. The key is estimating the disagreement coefficient, a measure of complexity of active learning problems that can be used to bound the label complexity [Han07]. Recall the definition of disagreement coefficient w.r.t. classifier w^*, precision ϵ, and distribution \mathcal{D} as follows. For any $r > 0$, define $\text{ball}(w, r) = \{u \in \mathcal{H} : d_\mathcal{D}(u, w) \leq r\}$ where $d_\mathcal{D}(u, w) = \Pr_{x \sim \mathcal{D}}[(u \cdot x)(w \cdot x)] < 0$. Define the disagreement region as $\text{DIS} \mathcal{H} = \{x : \exists u, v \in \mathcal{H} s.t. (u \cdot x)(v \cdot x) < 0\}$. Let the Alexander capacity $\text{cap}_{w^*, \mathcal{D}} = \Pr_{x \sim \mathcal{D}}[\text{DIS}(\text{ball}(w^*, r))]$. The disagreement coefficient is defined as $\Theta_{w^*, \mathcal{D}}(\epsilon) = \sup_{r \geq \epsilon}[\text{cap}_{w^*, \mathcal{D}}(r)]$. Below, we state our results on the disagreement coefficient under the isotropic s-concave distribution.

Theorem 20 (Disagreement Coefficient). Let \mathcal{D} be an isotropic s-concave distribution over \mathbb{R}^n. For any w^* and $r > 0$, the disagreement coefficient is $\Theta_{w^*, \mathcal{D}}(\epsilon) = O\left(\sqrt{s} \log(1/\epsilon)\right)$. In particular, when $s \to 0$ (a.k.a. log-concave), $\Theta_{w^*, \mathcal{D}}(\epsilon) = O(\sqrt{n} \log(1/\epsilon))$.

Our bounds on the disagreement coefficient match the best known results for the much less general case of log-concave distribution [BL13]; furthermore, they apply to s-concave case where we allow arbitrary number of discontinuities, a case not captured by [Fri09]. The result immediately implies concrete bounds on the label complexity of disagreement-based active learning algorithms, e.g., CAL [CAL94] and A^2 [BBL09]. For instance, by composing it with the result from [DHM07], we obtain a bound of $O\left(n^{3/2} \frac{(1+ns)^2}{s(1+(n+2)s)f(s)} (1 - \epsilon^{s/(1+ns)}) \left(\log^{2} \frac{1}{\epsilon} + \frac{OPT^2}{\epsilon^2}\right)\right)$ for agnostic active learning under isotropic s-concave distribution \mathcal{D}. Namely, $O\left(n^{3/2} \frac{(1+ns)^2}{s(1+(n+2)s)f(s)} (1 - \epsilon^{s/(1+ns)}) \left(\log^{2} \frac{1}{\epsilon} + \frac{OPT^2}{\epsilon^2}\right)\right)$ labels suffices to output a halfspace with error at most $OPT + \epsilon$, where $OPT = \min_w \text{err}_\mathcal{D}(w)$.

4.3 Learning Intersections of Halfspaces

Baum [Bau90] provided a polynomial-time algorithm for learning the intersections of halfspaces w.r.t. symmetric distribution. Later, Klivans [KLT09] extended the result by showing that the algorithm works under any distribution \mathcal{D} as long as $\mu_\mathcal{D}(E) \approx \mu_\mathcal{D}(-E)$ for any set E. In this section, we show that the condition holds for the broader s-concave distributions as well.
Algorithm 2 Learning Intersections of Halfspaces under S-Concave Distributions

Input: Parameters m_1, m_2, and m_3 as in Theorem 21.

1: Draw m_3 examples. Denote by r the number of observed positive examples.
2: If $r < m_2$, output the hypothesis that labels every point as negative, and end the algorithm.
3: Learn an origin-centered halfspace H' which contains all r positive examples.
4: Draw a set S of m_1 i.i.d. examples in H'. Learn a weight vector $w \in \mathbb{R}^{n \times n}$ such that the hypothesis $h_{xor} = \text{sign} \left(\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} x_i x_j \right)$ is consistent with the set S.

Output: $h : \mathbb{R}^n \to \{-1, 1\}$ such that $h(x) = h_{xor}(x)$ if $x \in H'$; Otherwise, $h(x) = -1$.

Theorem 21. In the PAC realizable case, Algorithm 2 outputs a hypothesis h of error at most ϵ with probability at least $1 - \delta$ under isotropic s-concave distribution. The label complexity is $M(\epsilon/2, \delta/4, n^2) + \max \{2m_2/\epsilon, (2/\epsilon^2) \log(4/\delta)\}$, where $M(\epsilon, \delta, m)$ is defined by $M(\epsilon, \delta, n) = O \left(\frac{n}{\epsilon} \log \frac{1}{\epsilon} + \frac{1}{\epsilon} \log \frac{1}{\delta} \right)$, $m_2 = M(\max \{\delta/(4eK m_1), \epsilon/2\}, \delta/4, n)$, $K = \beta_1(3, \kappa) \frac{B(-1/\kappa-3,3)}{(-\kappa^2(3,\kappa)^3)^{3+1/\kappa}}$, $d = (1 + \gamma)^{-1/\gamma} \frac{1+3\beta}{3+3\beta}$, $h(\kappa) = \left(\frac{1}{2}((2 - 2^{-4\kappa})^{-1} - 1) + 1 \right)^{\frac{1}{2}} (4e\pi)^{\frac{3}{2}} \left(\frac{1 + 3/\kappa}{1 + 3/\kappa} \sqrt{3(1+\gamma)^{3/\gamma}2^{2+3/\gamma}} \right)^{-1/\kappa}$, $\beta = \frac{\kappa}{1+2\kappa}$, $\gamma = \frac{\kappa}{1+\kappa}$, and $\kappa = \frac{s}{1+(n-3)s}$. In particular, when $s \to 0$ (a.k.a. log-concave), K is an absolute constant.

5 Lower Bounds

In this section, we give lower bounds on the label complexity of passive and active learning of homogeneous halfspace under s-concave distributions. Our lower bounds are information-theoretic, meaning that they apply to any algorithm that might not be necessarily computationally efficient. We defer the proofs to Appendix M.

Theorem 22. For a fixed value $-\frac{1}{2n+3} \leq s \leq 0$ we have: (a) For any s-concave distribution D in \mathbb{R}^n whose covariance matrix is of full rank, the sample complexity of learning origin-centered linear separators under D in the passive learning scenario is $\Omega \left(\frac{n f_1(s,n)}{\epsilon} \right)$; (b) The label complexity of active learning of linear separators under s-concave distribution is $\Omega \left(n \log \left(\frac{f_1(s,n)}{\epsilon} \right) \right)$.

If the covariance matrix of D is not of full rank, then the intrinsic dimension is less than d. So our lower bounds essentially apply to all s-concave distributions. According to Theorem 22, it is possible to have an exponential improvement of label complexity w.r.t. $1/\epsilon$ over passive learning by active sampling, even though the underlying distribution is the fat-tailed s-concave distribution. This phenomenon is captured by Theorems 18 and 19.

6 Conclusions

In this paper, we study the geometric properties of s-concave distributions. Our work advances the state-of-the-art results on the margin-based active learning, disagreement-based active learning, and learning intersections of halfspaces w.r.t. the distributions over the instance space. When $s \to 0$, our results reduce to the best-known results for log-concave distributions. The geometric properties of s-concave distributions can be potentially applied to other learning algorithms, which might be of independent interest as well. It would be interesting to see in the future if similar geometric properties are available for broader range of s that goes beyond $-\frac{1}{2n+3}$.
Acknowledgments We thank Pranjal Awasthi and Nika Haghtalab for useful discussions. This work was supported in part by grants NSF CCF-1535967, NSF CCF-1422910, NSF CCF-1451177, a Sloan Fellowship, and a Microsoft Research Fellowship.

References

[AB09] Martin Anthony and Peter L Bartlett. Neural network learning: Theoretical foundations. Cambridge University Press, 2009.

[ABHU15] Pranjal Awasthi, Maria-Florina Balcan, Nika Haghtalab, and Ruth Urner. Efficient learning of linear separators under bounded noise. In Annual Conference on Learning Theory, pages 167–190, 2015.

[ABHZ16] Pranjal Awasthi, Maria-Florina Balcan, Nika Haghtalab, and Hongyang Zhang. Learning and 1-bit compressed sensing under asymmetric noise. In Annual Conference on Learning Theory, pages 152–192, 2016.

[ABL14] Pranjal Awasthi, Maria-Florina Balcan, and Philip M Long. The power of localization for efficiently learning linear separators with noise. In ACM Symposium on Theory of Computing, pages 449–458, 2014.

[ABL17] Pranjal Awasthi, Maria-Florina Balcan, and Philip M Long. The power of localization for efficiently learning linear separators with noise. Journal of the ACM, 63(6):50, 2017.

[AK91] David Applegate and Ravi Kannan. Sampling and integration of near log-concave functions. In ACM Symposium on Theory of Computing, pages 156–163, 1991.

[Arn08] Barry C Arnold. Pareto and generalized Pareto distributions. In Modeling Income Distributions and Lorenz Curves, pages 119–145. 2008.

[Bau90] Eric B Baum. A polynomial time algorithm that learns two hidden unit nets. Neural Computation, 2(4):510–522, 1990.

[BBL05] Olivier Bousquet, Stéphane Boucheron, and Gabor Lugosi. Theory of classification: A survey of recent advances. ESAIM: Probability and Statistics, 9(9):323–375, 2005.

[BBL09] Maria-Florina Balcan, Alina Beygelzimer, and John Langford. Agnostic active learning. Journal of Computer and System Sciences, 75(1):78–89, 2009.

[BBZ07] Maria-Florina Balcan, Andrei Broder, and Tong Zhang. Margin based active learning. In Annual Conference on Learning Theory, pages 35–50, 2007.

[BEHW89] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K Warmuth. Learnability and the Vapnik-Chervonenkis dimension. Journal of the ACM, 36(4):929–965, 1989.

[BFKV96] Avrim Blum, Alan Frieze, Ravi Kannan, and Santosh Vempala. A polynomial-time algorithm for learning noisy linear threshold functions. In IEEE Symposium on Foundations of Computer Science, pages 330–338, 1996.
[BHLZ10] Alina Beygelzimer, Daniel J Hsu, John Langford, and Tong Zhang. Agnostic active learning without constraints. In Advances in Neural Information Processing Systems, pages 199–207, 2010.

[BHLZ16] Alina Beygelzimer, Daniel J Hsu, John Langford, and Chicheng Zhang. Search improves label for active learning. In Advances in Neural Information Processing Systems, pages 3342–3350, 2016.

[BL76] Herm Jan Brascamp and Elliott H Lieb. On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation. Journal of Functional Analysis, 22(4):366–389, 1976.

[BL13] Maria-Florina Balcan and Philip M Long. Active and passive learning of linear separators under log-concave distributions. In Annual Conference on Learning Theory, pages 288–316, 2013.

[Bob07] Sergey G Bobkov. Large deviations and isoperimetry over convex probability measures with heavy tails. Electronic Journal of Probability, 12:1072–1100, 2007.

[BV04] Dimitris Bertsimas and Santosh Vempala. Solving convex programs by random walks. Journal of the ACM, 51(4):540–556, 2004.

[BZ16] Maria-Florina Balcan and Hongyang Zhang. Noise-tolerant life-long matrix completion via adaptive sampling. In Advances in Neural Information Processing Systems, pages 2955–2963, 2016.

[CAL94] David Cohn, Les Atlas, and Richard Ladner. Improving generalization with active learning. Machine Learning, 15(2):201–221, 1994.

[CDV09] Karthekeyan Chandrasekaran, Amit Deshpande, and Santosh Vempala. Sampling s-concave functions: The limit of convexity based isoperimetry. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, pages 420–433, 2009.

[CM04] Constantine Caramanis and Shie Mannor. An inequality for nearly log-concave distributions with applications to learning. In Annual Conference on Learning Theory, pages 534–548, 2004.

[CM07] Constantine Caramanis and Shie Mannor. An inequality for nearly log-concave distributions with applications to learning. IEEE Transactions on Information Theory, 53(3):1043–1057, 2007.

[Dan16] Amit Daniely. Complexity theoretic limitations on learning halfspaces. In ACM Symposium on Theory of computing, pages 105–117, 2016.

[Das04] Sanjoy Dasgupta. Analysis of a greedy active learning strategy. In Advances in Neural Information Processing Systems, volume 17, pages 337–344, 2004.

[DHM07] Sanjoy Dasgupta, Daniel J Hsu, and Claire Monteleoni. A general agnostic active learning algorithm. In Advances in Neural Information Processing Systems, pages 353–360, 2007.

[DKM05] Sanjoy Dasgupta, Adam Tauman Kalai, and Claire Monteleoni. Analysis of perceptron-based active learning. In Annual Conference on Learning Theory, pages 249–263, 2005.
[DV04] John Dunagan and Santosh Vempala. A simple polynomial-time rescaling algorithm for solving linear programs. In *ACM Symposium on Theory of computing*, pages 315–320, 2004.

[Fri09] Eric Friedman. Active learning for smooth problems. In *Annual Conference on Learning Theory*, 2009.

[FSST93] Yoav Freund, H Sebastian Seung, Eli Shamir, and Naftali Tishby. Information, prediction, and query by committee. *Advances in Neural Information Processing Systems*, pages 483–483, 1993.

[GR09] Venkatesan Guruswami and Prasad Raghavendra. Hardness of learning halfspaces with noise. *SIAM Journal on Computing*, 39(2):742–765, 2009.

[H+14] Steve Hanneke et al. Theory of disagreement-based active learning. *Foundations and Trends in Machine Learning*, 7(2-3):131–309, 2014.

[Han07] Steve Hanneke. A bound on the label complexity of agnostic active learning. In *International Conference on Machine Learning*, pages 353–360, 2007.

[HW16] Qiyang Han and Jon A Wellner. Approximation and estimation of s-concave densities via Rényi divergences. *The Annals of Statistics*, 44(3):1332–1359, 2016.

[KK14] Adam Klivans and Pravesh Kothari. Embedding hard learning problems into gaussian space. *International Workshop on Approximation Algorithms for Combinatorial Optimization Problems*, 28:793–809, 2014.

[KKMS08] Adam Tauman Kalai, Adam R Klivans, Yishay Mansour, and Rocco A Servedio. Agnostically learning halfspaces. *SIAM Journal on Computing*, 37(6):1777–1805, 2008.

[KL93] Michael Kearns and Ming Li. Learning in the presence of malicious errors. *SIAM Journal on Computing*, 22(4):807–837, 1993.

[KLS09] Adam R Klivans, Philip M Long, and Rocco A Servedio. Learning halfspaces with malicious noise. *Journal of Machine Learning Research*, 10:2715–2740, 2009.

[KLT09] Adam R Klivans, Philip M Long, and Alex K Tang. Baum’s algorithm learns intersections of halfspaces with respect to log-concave distributions. In *Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques*, pages 588–600, 2009.

[KMT93] Sanjeev R Kulkarni, Sanjoy K Mitter, and John N Tsitsiklis. Active learning using arbitrary binary valued queries. *Machine Learning*, 11(1):23–35, 1993.

[KOS02] Adam R Klivans, Ryan O’Donnell, and Rocco A Servedio. Learning intersections and thresholds of halfspaces. In *IEEE Symposium on Foundations of Computer Science*, pages 177–186, 2002.

[KSS94] Michael J Kearns, Robert E Schapire, and Linda M Sellie. Toward efficient agnostic learning. *Machine Learning*, 17(2-3):115–141, 1994.

[KV94] Michael J Kearns and Umesh Virkumar Vazirani. *An introduction to computational learning theory*. MIT press, 1994.
[KV06] Adam Tauman Kalai and Santosh Vempala. Simulated annealing for convex optimization. *Mathematics of Operations Research*, 31(2):253–266, 2006.

[Lit88] Nick Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm. *Machine Learning*, 2(4):285–318, 1988.

[Lon95] Philip M Long. On the sample complexity of pac learning half-spaces against the uniform distribution. *IEEE Transactions on Neural Networks*, 6(6):1556–1559, 1995.

[LV07] László Lovász and Santosh Vempala. The geometry of logconcave functions and sampling algorithms. *Random Structures & Algorithms*, 30(3):307–358, 2007.

[MP87] Marvin Minsky and Seymour Papert. Perceptrons–extended edition: An introduction to computational geometry, 1987.

[Ser01] Rocco A Servedio. *Efficient algorithms in computational learning theory*. PhD thesis, Harvard University, 2001.

[SSSS10] Shai Shalev-Shwartz, Ohad Shamir, and Karthik Sridharan. Learning kernel-based halfspaces with the zero-one loss. *arXiv preprint arXiv:1005.3681*, 2010.

[Tsy04] Alexandre B Tsybakov. Optimal aggregation of classifiers in statistical learning. *The Annals of Statistics*, pages 135–166, 2004.

[Vap82] Vladimir Vapnik. *Estimations of dependences based on statistical data*. Springer, 1982.

[Vap13] Vladimir Vapnik. *The nature of statistical learning theory*. Springer Science & Business Media, 2013.

[Wan11] Liwei Wang. Smoothness, disagreement coefficient, and the label complexity of agnostic active learning. *Journal of Machine Learning Research*, 12(Jul):2269–2292, 2011.

[ZC14] Chicheng Zhang and Kamalika Chaudhuri. Beyond disagreement-based agnostic active learning. In *Advances in Neural Information Processing Systems*, pages 442–450, 2014.

[ZLZ16] Hongyang Zhang, Zhouchen Lin, and Chao Zhang. Completing low-rank matrices with corrupted samples from few coefficients in general basis. *IEEE Transactions on Information Theory*, 62(8):4748–4768, 2016.
A Additional Related Work

Active Learning of Halfspace under Uniform Distribution: Learning halfspace has been extensively studied in the past decades [BFKV96, KOS02, DV04, KKMS08, SSSS10, KV94, KSS94, KL93]. Probably one of the most famous results is the VC argument. Vapnik [Vap82] and Blumer et al. [BEHW89] showed that any hypothesis that is consistent with $\tilde{O}(n/\epsilon)$ labeled examples has error at most ϵ, if the VC dimension of the hypothesis class is n. The algorithm works under any data distribution and runs in polynomial time when the consistent hypothesis can be found efficiently, e.g., by linear programming in the realizable case. Other algorithms such as Perception [MP87], Winnow [Lit88], and Support Vector Machine [Vap13] provide better guarantees if the target vector has low ℓ_1 or ℓ_2 norm. All these results form the basis of passive learning.

To explore the possibility of further improving the label complexity, several algorithms were later proposed in the active learning literature [BHLZ10, BHLZ16] under the uniform distributions [DKM05, FSST93], among which disagreement-based active learning and margin-based active learning are two typical approaches. In the disagreement-based active learning, the algorithm proceeds in rounds, requesting the labels of instances in the disagreement region among the current candidate hypotheses. Cohn et al. [CAL94] provided the first disagreement-based active learning algorithm in the realizable case. Balcan et al. [BBL09] later extended such an algorithm to the agnostic setting by estimating the confidence interval of disagreement region. The analysis technique was further generalized thanks to Hanneke [Han07] by introducing the concept of disagreement coefficient, which is a new measure of complexity for active learning problems and serves as an important element for bounding the label complexity. However, this seminal work only focused on the disagreement coefficient under the uniform distribution.

Margin-based active learning is another line of research in the active learning literature. The algorithm proceeds in rounds, requesting labels of examples aggressively in the margin area around the current guess of hypothesis. Balcan et al. [BBZ07] first proposed an algorithm for margin-based active learning under the uniform distribution in the realizable case. They also provided guarantees under the Tsybakov noise model [Tsy04], but the algorithm is inefficient. To mitigate the issue, Awasthi et al. [ABHU15] considered a subclass of Tsybakov noise — Massart noise [BBL05]. The algorithm runs in polynomial time by doing a sequence of hinge loss minimizations on the labeled instances. However, it was not clear then whether the analysis works for other distributions instead of the uniform one.

Geometry of Log-Concave Distribution: Log-concave distribution, a class of probability distributions such that the logarithm of density function is concave, is a common generalization of uniform distribution over the convex set [LV07]. Bertsimas and Vempala [BV04] and Kalai and Vempala [KV06] noticed that efficient sampling, integration, and optimization algorithms for this distribution class rely heavily on the good isoperimetry of density functions. Informally, a function has good isoperimetry if one cannot remove a small-measure set from its domain and partition the domain into two disjoint large-measure sets. The isoperimetry is commonly believed as a characteristic of good geometric properties. To see this, Lovász and Vempala [LV07] proved the isoperimetric inequality for the log-concave distribution, and provided a bunch of refined geometric properties for this distribution class. Going slightly beyond the log-concave distribution, Caramanis and Mannor [CM07] showed good isoperimetry for nearly log-concave distributions, but more refined geometry was not provided there.

Active learning of halfspace under (nearly) log-concave distribution has a natural connection to the geometry of that distribution (a.k.a. admissible distribution). The connection was first introduced by [BL13], and is sufficient for the success of disagreement-based and margin-based active learning under log-concave distribution [BL13]. To resolve the computational issue, Awasthi et al. [ABL14] studied the probability of
disagreement outside the margin under the log-concave distribution, and proposed an efficient algorithm for the challenging adversarial noise. More recently, Awasthi et al. [ABHZ16] provided stronger guarantees for efficient learning of halfspace in the Massart noise model under log-concave distribution.

S-Concave Distribution: The problem of extending the log-concave distribution to the broader one for provable learning algorithms has received significant attention in recent years. Although some efforts have been devoted to generalizing the probability distribution, e.g., to the nearly log-concave distribution [BL13], the analysis is intrinsically built upon the geometry of log-concave distribution. Moreover, to the best of our knowledge, there is no efficient, noise-tolerant active learning algorithm that goes beyond the log-concave distribution. As a candidate extension, the class of s-concave distributions has many appealing properties that one can exploit [CDV09, HW16]: (a) The distribution class is much broader than the log-concave distributions as $s = 0$ implies the log-concavity; (b) The s-concave function mapping from \mathbb{R}^n to \mathbb{R}_+ has good isoperimetry if $s \geq -1/(n-1)$; (c) Efficient sampling, integration, and optimization algorithms are available for such distribution class. All these properties inspire our work.

B Proof of Lemma 9

Lemma 9 (restated) Let X be a random variable drawn from a one-dimensional distribution with s-concave density for $-1/2 \leq s \leq 0$. Then

$$\Pr(X \geq \mathbb{E}X) \geq (1 + \gamma)^{-1/\gamma},$$

for $\gamma = s/(1 + s)$.

Proof. Without loss of generality, we assume that $\mathbb{E}X = 0$ and $|X| \leq K$. The general case then follows by translation transformation and approximating a general distribution with s-concave density by such bounded distributions.

Let $G(x) = \Pr(X \leq x)$ be the CDF of the s-concave density. We first prove that $\Pr(X \leq \mathbb{E}X) \geq (1 + \gamma)^{-1/\gamma}$. By Theorem 6, $G(x)$ is γ-concave, monotone increasing such that $G(x) = 0$ for $x \leq -K$ and $G(x) = 1$ for $x \geq K$, where $-1 \leq \gamma = \frac{s}{1+s} \leq 0$. Notice that the assumption of centroid 0 implies that $\int_{-K}^{K} xG'(x)dx = 0$, which equivalently means $\int_{-K}^{K} G(x)dx = K$ by integration by parts. Our goal is to prove that $G(0) \geq (1 + \gamma)^{-1/\gamma}$.

The function G^γ is concave for $\gamma < 0$. Thus it lies above its tangent at 0. This means that $G(x) \leq G(0)(1 + \gamma cx)^{\frac{\gamma}{2}}$, where $c = G'(0)/G(0) > 0$. We now set K large enough so that $1/c < K$. Then

$$G(x) \leq \begin{cases} G(0)(1 + \gamma cx)^{\frac{\gamma}{2}}, & \text{if } x \leq 1/c, \\ 1, & \text{if } x > 1/c. \end{cases}$$

So

$$K = \int_{-K}^{K} G(x)dx$$

$$\leq \int_{-K}^{1/c} G(0)(1 + \gamma cx)^{\frac{\gamma}{2}}dx + \int_{1/c}^{K} 1dx$$

$$= \frac{G(0)}{c(\gamma + 1)}[(1 + \gamma)^{\frac{\gamma}{2} + 1} - (1 - \gamma cK)^{\frac{\gamma}{2} + 1}] + K - \frac{1}{c}$$

$$\leq \frac{G(0)(1 + \gamma)^{\frac{1}{2}}}{c} + K - \frac{1}{c},$$
Lemma 23. Let \(s : \mathbb{R}_+ \to \mathbb{R}_+ \) be an integrable function. Define \(M_n(g) = \int_0^\infty t^n g(t) dt \), and suppose it exists. Then

(a) The sequence \(\{ M_n(g) : n = 0, 1, \ldots \} \) is log-convex, which means \(\log M_n(g) \) is convex w.r.t. variable \(n \), or equivalently \(M_n(g) M_{n+2}(g) \geq M_{n+1}(g)^2 \) for any \(n \in N \).

(b) If \(g \) is monotone decreasing, then the sequence defined by

\[
M'_n(g) = \begin{cases}
 nM_{n-1}(g), & \text{if } n > 0, \\
 g(0), & \text{if } n = 0,
\end{cases}
\]

is log-convex.

(c) If \(g \) is \(s \)-concave \((s > -1/(n+1)) \), then the sequence \(T_n(g) \triangleq M_n(g) / B(-1/s - n - 1, n + 1) \) is log-concave, which means \(\log T_n(g) \) is concave w.r.t. \(n \), or equivalently \(T_n(g)T_{n+2}(g) \leq T_{n+1}(g)^2 \) for any \(n \in N \).

(d) If \(g \) is \(s \)-concave, then \(g(0)M_1(g) \leq M_0(g)^2 \frac{1+s}{1+2s} \).

Proof. The proofs of Parts (a) and (b) are from [LV07].

(c) The intuition behind the proof is to choose a baseline \(s \)-concave function \(h \) which is at the “boundary” between the family of \(s \)-concave function and that of the non \(s \)-concave function. We show that \(h \) satisfies the equation

\[
T_n(h)T_{n+2}(h) = T_{n+1}^2(h).
\]

Then by the facts that \(h \) is at the “boundary” and \(g \) is any \(s \)-concave function, we have

\[
T_{n+1}(h) \leq T_{n+1}(g).
\]

The conclusion follows from (4) and (5), and from our choice of \(h \) such that \(T_n(h) = T_n(g) \) and \(T_{n+2}(h) = T_{n+2}(g) \), by adjusting the slope and intercept of the linear function.

Formally, let \(h(t) = \beta(1 + \gamma t)^{1/s} \) be the above-mentioned baseline \(s \)-concave function \((\beta, \gamma > 0) \) such that

\[
M_n(h) = M_n(g) \quad \text{and} \quad M_{n+2}(h) = M_{n+2}(g).
\]

(This holds because there are two parameters \(\beta, \gamma \) and two equations). That means

\[
\int_0^\infty t^n(h(t) - g(t)) dt = 0 \quad \text{and} \quad \int_0^\infty t^{n+2}(h(t) - g(t)) dt = 0.
\]

Then it follows that the graph of \(h \) must intersect the graph of \(g \) at least twice. Since \(g \) is \(s \)-concave, which implies the uni-modality, the graphs of \(h \) and \(g \) intersect exactly at two points \(0 \leq a < b \). Moreover, \(h \leq g \) in the interval \([a, b]\) and \(h \geq g \) outside the interval. That is to say, \((t-a)(t-b)\) has the same sign as \(h - g \). Thus

\[
\int_0^\infty (t-a)(t-b)t^n(h(t) - g(t)) dt \geq 0.
\]
Namely,
\[0 = \int_0^\infty t^{n+2}(h(t) - g(t))dt + ab \int_0^\infty t^n(h(t) - g(t))dt \geq (a + b) \int_0^\infty t^{n+1}(h(t) - g(t))dt. \]
This implies that
\[M_{n+1}(h) = \int_0^\infty t^{n+1}h(t)dt \leq \int_0^\infty t^{n+1}g(t)dt = M_{n+1}(g). \]
Since
\[M_n(h) = \int_0^\infty t^n(1 + \gamma t)^{1/s}dt = B(-1/s - n - 1, n + 1) \frac{\beta}{\gamma^{n+1}} \]
for \(s > -1/(n + 1) \), we have
\[
\frac{M_n(g)}{B(-1/s - n - 1, n + 1)} \cdot \frac{M_{n+2}(g)}{B(-1/s - n - 3, n + 3)} = \frac{M_n(h)}{B(-1/s - n - 1, n + 1)} \cdot \frac{M_{n+2}(h)}{B(-1/s - n - 3, n + 3)} = \frac{\beta}{\gamma^{n+1}} \cdot \frac{\beta}{\gamma^{n+3}} = \left(\frac{M_{n+1}(h)}{B(-1/s - n - 2, n + 2)} \right)^2 \leq \left(\frac{M_{n+1}(g)}{B(-1/s - n - 2, n + 2)} \right)^2,
\]
as desired.

(d) The proof is almost the same as that of Part (c). Let \(h(t) = \beta(1 + \gamma t)^{1/s} \) be an \(s \)-concave function \((\beta, \gamma > 0)\) such that
\[h(0) = g(0) \quad \text{and} \quad M_1(h) = M_1(g). \]
So the graphs of \(h \) and \(g \) intersect exactly at two points 0 and \(a > 0 \), and hence
\[\int_0^\infty t(t - a)t^{-1}(h(t) - g(t))dt \geq 0. \]
That means
\[0 = \int_0^\infty t(h(t) - g(t))dt \geq a \int_0^\infty (h(t) - g(t))dt, \]
or equivalently,
\[M_0(h) \leq M_0(g). \]
Note that \(h(0)M_1(h) = M_0(h)^2 \frac{1 + s}{1 + 2s} \) by (C). Then the conclusion follows by the fact
\[g(0)M_1(g) = h(0)M_1(h) = M_0(h)^2 \frac{1 + s}{1 + 2s} \leq M_0(g)^2 \frac{1 + s}{1 + 2s}. \]
\[\square \]

Now we are ready to prove Lemma 10.

Lemma 10 (restated) Let \(g : \mathbb{R} \to \mathbb{R}_+ \) be an isotropic \(s \)-concave density function and \(s > -1/3 \).

(a) For all \(x \), \(g(x) \leq \frac{1 + s}{1 + 3s} \).

(b) We have \(g(0) \geq \sqrt{\frac{1}{3(1 + \gamma)^{3/\gamma}}} \), where \(\gamma = \frac{s}{s+1} \).
Proof. (a) Let z be the maximum point of function g. Intuitively, if the value of the function g evaluated at z is too large, the corresponding distribution has a small deviation from z (Second part of the proof below). However, the moment property of Lemma 23 restricts that the second moment cannot be too small (First part of the proof below), which leads to a contradiction.

Formally, suppose that $g(z) > 1 + s$. Define

$$M_i = \int_z^\infty (x - z)^i g(x) dx, \quad \text{and} \quad N_i = \int_{-\infty}^z (x - z)^i g(x) dx.$$

By the isotropicity of function g, we have

$$M_0 + N_0 = 1, \quad N_1 - M_1 = z, \quad M_2 + N_2 = 1 + z^2.$$

Thus

$$M_2 + N_2 = (M_0 + N_0)^2 + (M_1 - N_1)^2$$

$$= (M_0 - M_1)^2 + (N_0 - N_1)^2 + 2(M_0N_0 - M_1N_1) + 2(M_0M_1 + N_0N_1)$$

$$\geq 2(M_0M_1 + N_0N_1),$$

where the last inequality holds since, by Lemma 23 (d), we have $M_1 \leq \frac{M_0^2}{g(z)} \frac{1 + s}{1 + 2s} \leq M_0^2 \leq M_0$ and $N_1 \leq \frac{N_0^2}{g(z)} \frac{1 + s}{1 + 2s} \leq N_0^2 \leq N_0$.

On the other hand, by Lemma 23 (c) (d),

$$M_2 \leq \frac{2M_1^2}{M_0^2} \frac{1 + 2s}{1 + 3s} \leq \frac{2M_1M_0}{g(z)} \frac{1 + s}{1 + 3s} < 2M_1M_0,$$

and similarly, $N_2 < 2N_1N_0$. That means

$$M_2 + N_2 < 2(M_0M_1 + N_0N_1),$$

and we obtain a contradiction.

(b) The proof is by Lemma 23 (b) which lower bounds $g(0)$ by the second order moment of g, which is 1 according to isotropicity.

Specifically, without lose of generality, assume that $g(x)$ is monotone decreasing for $x \geq 0$ (otherwise consider $g(-x)$, since function g is uni-modal). Define g_0 as the restriction of g to the non-negative semi-line. Then by Lemma 23 (b), we have

$$M_1'(g_0)^3 \leq M_0'(g_0)^2M_3'(g_0),$$

which implies

$$g(0) \geq \sqrt{\frac{M_0'(g_0)^3}{3M_2'(g_0)}}.$$

Note that $M_2(g_0) \leq M_2(g) = 1$, and by Lemma 9,

$$M_0(g_0) = \int_0^\infty g(t) dt = \Pr[X \geq \mathbb{E}X] \geq (1 + \gamma)^{-1/\gamma}.$$

Thus we have

$$g(0) \geq \sqrt[3]{\frac{1}{3(1 + \gamma)^{3/\gamma}}},$$

where $\gamma = s/(1 + s)$. \qed
D Proof of Theorem 12

Theorem 12 (restated) Let $f: \mathbb{R}^n \to \mathbb{R}_+$ be an isotropic s-concave density.

(a) Let $d = (1 + \gamma)^{-1/\gamma} \frac{1+3\beta}{3+\beta}$, where $\beta = \frac{s}{1+(n-1)s}$ and $\gamma = \frac{\beta}{1+\beta}$. For any $u \in \mathbb{R}^n$ such that $\|u\| \leq d$, we have $f(u) \geq \left(\frac{\|u\|}{d} \left((2 - 2^{-(n+1)s})^{-1} - 1 \right) + 1 \right)^{1/s} f(0)$.

(b) $f(x) \leq f(0) \left[\left(\frac{1+3\beta}{1+\beta} \sqrt{3(1+\gamma)^{3/\gamma} 2^{n-1} + 1/s} \right)^s - 1 \right]^{-1/s}$ for every x such that $\|x\| \geq \frac{1}{2n+3}$.

(c) There exists an $x \in \mathbb{R}^n$ such that $f(x) > (4e\pi)^{-n/2}$.

(d) We have $(4e\pi)^{-n/2} \left[\left(\frac{1+3\beta}{1+\beta} \sqrt{3(1+\gamma)^{3/\gamma} 2^{n-1} + 1/s} \right)^s - 1 \right]^{-1/s} \leq f(0) \leq (2 - 2^{-(n+1)s})^{1/s} \frac{n!}{2\pi^{n/2}} d^n$.

(e) $f(x) \leq (2 - 2^{-(n+1)s})^{1/s} \frac{n!}{2\pi^{n/2}} d^n$ for every x.

(f) For any line ℓ through the origin, $\int_{\ell} f \leq (2 - 2^{-(n+1)s})^{1/s} \frac{n!}{2\pi^{n/2}} d^n$ for any x such that $x_1 \geq a$. We will prove that this implies that the 1-dimensional marginal is not flat.

Denote by g the first marginal of the n-dimensional function f. Then g is isotropic and $\beta = \frac{s}{1+(n-1)s}$-concave by Theorem 4, and $g(x) \leq \frac{1+3\beta}{1+\beta} x$ for all x by Lemma 10 (a). We prove that

$$g(2b) < \frac{g(b)}{4}$$

for any $b \geq a$, which means that the 1-dimensional function is not flat. To see this, by the s-concavity of function f, we have that, for every x such that $x_1 \geq a$,

$$f(2x)^s \geq 2f(x)^s - f(0)^s > 2^{-(n+1)s} f(x)^s.$$

Namely, $f(2x) < 2^{-(n+1)s} f(x)$. Hence

$$g(2b) = \int_{(x_1=2b)} f(x)dx_2...dx_n < 2^{-(n+1)s} \int_{(x_1=b)} f(x)dx_2...dx_n = \frac{g(b)}{4}.$$

So

$$\int_a^\infty g(y)dy = \int_a^{2a} g(y)dy + \int_{2a}^\infty g(y)dy < \int_a^{2a} g(y)dy + \frac{1}{2} \int_a^\infty g(y)dy.$$
Namely, by Lemma 10 (a),
\[
\int_{a}^{\infty} g(y) dy < 2 \int_{a}^{2a} g(y) dy \leq 2a \frac{1 + \beta}{1 + 3\beta}.
\]
So
\[
\int_{0}^{\infty} g(y) dy = \int_{0}^{a} g(y) dy + \int_{a}^{\infty} g(y) dy < 3a \frac{1 + \beta}{1 + 3\beta} \leq 3d \frac{1 + \beta}{1 + 3\beta} = (1 + \gamma)^{-1/\gamma},
\]
which leads to a contradiction with Lemma 9.

(b) If \(f(w) \leq f(0) \) for every \(w \), then the conclusion holds true. Otherwise, let \(w \) be the point such that \(f(w) > f(0) \). Let \(H_0 \) be the hyperplane through 0 which supports the convex set \(\{ x \in \mathbb{R}^n : f(x) \geq f(0) \} \).

By defining an orthogonal system, we may set \(f \) which leads to a contradiction with Lemma 9. Namely, by Lemma 10 (a),
\[
\text{vol}_{n} \gamma = 1 + \frac{1 + \beta}{1 + 3\beta} \frac{1}{3(1 + \gamma)^{3/\gamma}},
\]
where \(\gamma = \beta/(1 + \beta) \). Note that \(s \geq -\frac{1}{2n+3} \) implies \(\frac{1 + \beta}{1 + 3\beta} 2^{-n-1} \sqrt{3(1 + \gamma)^{3/\gamma}} < 1 \). So
\[
f(w) \leq f(0) \left(\frac{1 + \beta}{1 + 3\beta} \sqrt{3(1 + \gamma)^{3/\gamma} 2^{-n-1}} \right)^{s} - 1 \right]^{1/s}.
\]

(c) The proof of Part (c) follows from [LV07].

(d) The proof of lower bound follows from Parts (b) and (c).

For the upper bound, by Part (a), we have
\[
1 = \int_{\mathbb{R}^n} f(x) dx \geq \int_{\|x\| \leq d} f(x) dx \geq d^{n} \text{vol}(B_{n-1})(2 - 2^{-(n+1)s})^{-1/s} f(0),
\]
where \(\text{vol}(B_{n-1}) \) represents the volume of \(n - 1 \)-dimensional unit ball. So
\[
f(0) \leq \frac{(2 - 2^{-(n+1)s})^{1/s}}{d^{n} \text{vol}(B_{n-1})} = (2 - 2^{-(n+1)s})^{1/s} \frac{n! \Gamma(n/2)}{2^{n/2} d^{n}}.
\]
(e) The proof of (e) follows from Parts (b) and (d).
(f) Define an orthogonal coordinate system in which \(\ell \) is the \(x_n \)-axis. Let \(h \) be the marginal of function \(f \) over first \(n - 1 \) variables, namely,
\[
h(x_1, ..., x_{n-1}) = \int f(x_1, ..., x_{n-1}, x_n) \, dx_n.
\]
Then
\[
\int_\ell f = h(0) \leq (2 - 2^{-ns})^{1/s} \frac{(n-1)}{2\pi^{n-1} d^{n-1}} \frac{\Gamma((n-1)/2)}{\Gamma(n/2)}.
\]

\[
\square
\]

E Proof of Lemma 13

Lemma 13 (re-stated) Let \(f : \mathbb{R}^n \to \mathbb{R}_+ \) be an isotropic \(s \)-concave density. Then \(f(x) \leq \beta_1(n, s)(1 - s \beta_2(n, s) \|x\|)^{1/s} \) for every \(x \in \mathbb{R}^n \), where
\[
\beta_1(n, s) = (2 - 2^{-(n+1)s}) \frac{1}{2\pi^{n/2} d^n} (1-s)^{-s} n \Gamma(n/2) \left(\frac{1 + \beta}{1 + 3\beta} \sqrt{3(1 + \gamma)^{3/2}} 2^{n-1 + 1/s} \right)^{s} - 1
\]
and
\[
\beta_2(n, s) = \frac{2\pi^{(n-1)/2} d^{n-1}}{(n-1) \Gamma((n-1)/2)} (2 - 2^{-ns})^{-1/s} \frac{(a + (1-s) \beta_1(n, s))^{1 + 1/s} - a^{1+1/s}}{\beta_1(n, s)(1+s)(1-s)}
\]
\(d = (1 + \gamma)^{-\frac{1}{3}} \frac{1 + \beta}{3 + 3\beta}, \quad \beta = \frac{s}{1 + (n-1)s}, \quad \gamma = \frac{\beta}{1 + \beta}, \quad a = (4\pi)^{-\frac{3}{2}} \left(\frac{1 + \beta}{1 + 3\beta} \sqrt{3(1 + \gamma)^{3/2}} 2^{n-1 + 1/s} \right)^{s} - 1^{-1} \).

Proof. We first note that when \(\|x\| \leq 1/\beta_2, \beta_1(1-s \beta_2 \|x\|)^{1/s} \geq \beta_1(1-s)^{1/s} \geq f(x) \) by Theorem 12 (e). So the conclusion holds.

We now assume that there is a point \(v \) such that \(\|v\| > 1/\beta_2 \) but \(f(v) > \beta_1(1-s \beta_2 \|v\|)^{1/s} \). Denote by \([0, v]\) the line segment between the origin 0 and the point \(v \), and let \(\ell \) be the line through \(v \) and 0. We will prove that
\[
\int_\ell f > (2 - 2^{-ns})^{1/s} \frac{(n-1)}{2\pi^{n-1} d^{n-1}} \frac{\Gamma((n-1)/2)}{\Gamma(n/2)}
\]
which leads to a contradiction with Theorem 12 (f). Let \(x \) be the convex combination of points 0 and \(v \), i.e.,
\[
x = (1 - \|x\|/\|v\|)0 + (\|x\|/\|v\|)v, \quad 0 \leq \|x\| \leq \|v\|.
\]
Then by the \(s \)-concavity of \(f \) and Theorem 12 (d),
\[
f(x) \geq \left[\left(1 - \frac{\|x\|}{\|v\|} \right) f(0)^{s} + \frac{\|x\|}{\|v\|} f(v)^{s} \right]^{1/s}
\]
\[
> \left[f(0)^{s} + \frac{\|x\|}{\|v\|} f(v)^{s} \right]^{1/s}
\]
\[
> \left[f(0)^{s} + \frac{\|x\|}{\|v\|} \beta_1^s - s \beta_1^s \beta_2 \|x\| \right]^{1/s}
\]
\[
> \left[f(0)^{s} + (1-s) \beta_1^s \beta_2 \|x\| \right]^{1/s}
\]
\[
> \left\{ (4\pi)^{-ns/2} \left[\frac{1 + \beta}{1 + 3\beta} \sqrt{3(1 + \gamma)^{3/2}} 2^{n-1 + 1/s} \right]^{s} - 1 \right\}^{-1} + (1-s) \beta_1^s \beta_2 \|x\| \right\}^{1/s}.
\]
Thus
\[
\int f \geq \int_{[0,v]} f = \int_0^{||v||} \left(4e\pi\right)^{-ns/2} \left\{ \left(\frac{1 + \beta}{1 + 3\beta} \sqrt{3(1 + \gamma)\beta^{3/2}2^{n-1+1/s}} \right)^s - 1 \right\}^{1/s} dr \\
> \int_0^{1/\beta} \left(4e\pi\right)^{-ns/2} \left\{ \left(\frac{1 + \beta}{1 + 3\beta} \sqrt{3(1 + \gamma)\beta^{3/2}2^{n-1+1/s}} \right)^s - 1 \right\}^{1/s} dr \\
\geq (2 - 2^{-ns})^{1/s} \frac{(n - 1)\Gamma(((n - 1)/2)}{2\pi^{(n-1)/2}d^{n-1}}.
\]

So the proof is completed.

\[\Box\]

F Proof of Theorem 14

Theorem 14 (restated) Let \mathcal{D} be an isotropic s-concave distribution in \mathbb{R}^n. Denote by $f_3(s,n) = 2(1 + ns)/(1 + (n + 2)s)$. Then for any unit vector w,

\[
\Pr_{x \sim \mathcal{D}}[|w \cdot x| \leq t] \leq f_3(s,n)t.
\]

(6)

Moreover, if $t \leq d = \left(\frac{1 + 2\gamma}{1 + \gamma} \right)^{-\frac{1+\gamma}{\gamma}} \left(\frac{1 + 3\gamma}{3 + 3\gamma} \right)$ where $\gamma = \frac{s}{1 + (n-1)s}$, then

\[
\Pr_{x \sim \mathcal{D}}[|w \cdot x| \leq t] > f_2(s,n)t,
\]

(7)

where $f_2(s,n) = 2(2 - 2^{-2\gamma})^{-1/\gamma}(4e\pi)^{-1/2} \left(2 \left(\frac{1 + \gamma}{1 + 3\gamma} \sqrt{3} \left(\frac{1 + 2\gamma}{1 + \gamma} \right)^{\frac{3 + 3\gamma}{2\gamma}} \right) - 1 \right)^{-1/\gamma}$.

Proof. Define an orthogonal coordinate system in which w is an axis. Then the distribution of $w \cdot x$ is equal to the first marginal of the distribution \mathcal{D}, with isotropic $\gamma = \frac{s}{1 + (n-1)s}$-concave density g by Theorem 4. According to the upper bound given by Lemma 10 (a),

\[
\Pr_{x \sim \mathcal{D}}[|w \cdot x| \leq t] = \int_{-t}^{t} g(x)dx \leq \frac{1 + \gamma}{1 + 3\gamma} \int_{-t}^{t} dx = 2 \frac{1 + ns}{1 + (n + 2)s}t.
\]

We now prove the later part of the theorem by a similar argument. By Theorem 12 (a) (d), for 1-dimensional γ-concave density $f(u)$ and $\|u\| \leq d$, we have

\[
f(u) \geq (2 - 2^{-2\gamma})^{-1/\gamma} f(0) > (2 - 2^{-2\gamma})^{-1/\gamma}(4e\pi)^{-1/2} \left(2 \left(\frac{1 + \gamma}{1 + 3\gamma} \sqrt{3} \left(\frac{1 + 2\gamma}{1 + \gamma} \right)^{\frac{3 + 3\gamma}{2\gamma}} \right) - 1 \right)^{-1/\gamma}
\]

\[\triangleq \frac{f_2(s,n)}{2}.
\]

Therefore,

\[
\Pr_{x \sim \mathcal{D}}[|w \cdot x| \leq t] = \int_{-t}^{t} g(x)dx > \frac{f_2(s,n)}{2} \int_{-t}^{t} dx = f_2(s,n)t.
\]

\[\Box\]

26
G Proof of Theorem 16

Theorem 16 (restated) Let u and v be two vectors in \mathbb{R}^n and assume that $\theta(u, v) = \theta < \pi/2$. Let \mathcal{D} be an isotropic s-concave distribution. Then for any absolute constant $c_1 > 0$ and any function $f_1(s, n) > 0$, there exists a function $f_4(s, n) > 0$ such that

$$\Pr_{x \sim \mathcal{D}} \left[\text{sign}(u \cdot x) \neq \text{sign}(v \cdot x) \text{ and } |v \cdot x| \geq f_4(s, n)\theta \right] \leq c_1 f_1(s, n)\theta,$$

where $f_4(s, n) = \frac{4 \beta(2, \alpha) B(-1/\alpha - 3, 3)}{(s/n)^{\alpha - 1} \beta_2(2, \alpha)^n}$, $B(\cdot, \cdot)$ is the beta function, $\alpha = s/(1 + (n - 2)s)$, $\beta_1(2, \alpha)$ and $\beta_2(2, \alpha)$ are given by Lemma 13.

Proof. Let E be the event that we want to bound. Theorem 4 implies that, without loss of generality, we can focus on the case when $n = 2$. Then the projected distribution \mathcal{D}_2 has an α-concave density, where $\alpha = \frac{s}{1 + (n-2)s}$.

We first claim that each member x of E satisfies $\|x\| \geq f_4$. To see this, without loss of generality, we assume that $v \cdot x$ is positive. Then for any $x \in E$, $u \cdot x < 0$, i.e., $\theta(u, x) \geq \pi/2$. Hence $\theta(x, v) \geq \theta(u, x) - \theta(u, v) \geq \pi/2 - \theta$. Since $|v \cdot x| \geq f_4\theta$ implies $\|x\| \cos \theta(v, x) \geq f_4\theta$, we must have $\|x\| \cos(\pi/2 - \theta) \geq f_4\theta$, namely, $\|x\| \geq f_4\theta / \sin(\theta) \geq f_4$. Let $\text{ball}(r)$ denote the ball of radius r centered at the origin. This implies that

$$\Pr[E] = \sum_{i=1}^{\infty} \Pr[E \cap (\text{ball}((i + 1)f_4) - \text{ball}(if_4))].$$

Denote by $f(x_1, x_2)$ the α-concave density function of \mathcal{D}_2. For any term $i \geq 1$, by Lemma 13, we have

$$\Pr[E \cap (\text{ball}((i + 1)f_4) - \text{ball}(if_4))]$$

$$= \int_{(x_1, x_2) \in \text{ball}((i + 1)f_4) - \text{ball}(if_4)} 1_E(x_1, x_2) f(x_1, x_2) dx_1 dx_2$$

$$\leq \int_{(x_1, x_2) \in \text{ball}((i + 1)f_4) - \text{ball}(if_4)} 1_E(x_1, x_2) \beta_1(2, \alpha)(1 - \alpha \beta_2(2, \alpha)\|x\|)^{1/\alpha} dx_1 dx_2$$

$$\leq \beta_1(2, \alpha)(1 - \alpha \beta_2(2, \alpha)if_4)^{1/\alpha} \int_{(x_1, x_2) \in \text{ball}(if_4) - \text{ball}(if_4)} 1_E(x_1, x_2) dx_1 dx_2$$

$$\leq \beta_1(2, \alpha)(1 - \alpha \beta_2(2, \alpha)if_4)^{1/\alpha} \int_{(x_1, x_2) \in \text{ball}(if_4)} 1_E(x_1, x_2) dx_1 dx_2.$$

Denote by B_1 the unit ball in \mathbb{R}^2. Notice that

$$\int_{(x_1, x_2) \in \text{ball}(if_4)} 1_E(x_1, x_2) dx_1 dx_2 \leq \text{vol}(B_1)(i + 1)^2 f_4^2 \theta / \pi.$$
Thus

\[\Pr[E] \leq \sum_{i=1}^{\infty} \beta_1(2, \alpha) (1 - \alpha \beta_2(2, \alpha) i f_4)^{1/\alpha} \frac{\text{vol}(B_1)(i+1)^2 f_4^2}{\pi} \]

\[\leq \frac{4f_4^2}{\pi} \text{vol}(B_1)\beta_1(2, \alpha) \theta \sum_{i=1}^{\infty} (1 - \alpha \beta_2(2, \alpha) i f_4)^{1/\alpha} i^2 \]

\[\leq \frac{4f_4^2}{\pi} \text{vol}(B_1)\beta_1(2, \alpha) \theta \int_{0}^{\infty} x^2 \log(1 - x) dx \]

\[= \frac{4f_4^2}{\pi} \text{vol}(B_1)\beta_1(2, \alpha) \frac{B(-1/\alpha - 3, 3)}{(-\alpha \beta_2(2, \alpha) f_4)^3} \times \theta \]

\[= 4\beta_1(2, \alpha) \frac{B(-1/\alpha - 3, 3)}{-\alpha^3 \beta_2(2, \alpha)^3 f_4} \times \theta. \]

Choosing \(f_4(s, n) = \frac{4\beta_1(2, \alpha) B(-1/\alpha - 3, 3)}{-c_1 f_1(s, n) \alpha^3 \beta_2(2, \alpha)^3} \), the proof is completed. \(\square \)

H Proof of Theorem 17

Before proceeding, we first prove the following lemma which is critical to the proof of Theorem 17.

Lemma 24. For \(d \) given by Theorem 12 (a), there exist such that for any isotropic \(s \)-concave distribution \(\mathcal{D} \), for any \(a \) such that \(\|a\| \leq 1 \) and \(\|u - a\| \leq r \), for any \(0 < t \leq d \), and for any \(K \geq 4 \), we have

\[\Pr_{x \sim \mathcal{D}_{u, t}} ([a \cdot x] > K \sqrt{r^2 + t^2}) \leq \frac{4\beta_1(2, \eta)}{f_2(s, n) \beta_2(2, \eta)} \frac{1}{\eta + 1} \left(1 - c\eta \beta_2(2, \eta) K \left(1 + \left(\frac{1}{r} \right)^2 \right)^{\frac{\eta+1}{w}} \right), \]

where \(\beta_1(2, \eta), \beta_2(2, \eta), \) and \(Q(\gamma) \), are given by Lemma 13 and Theorem 14, respectively, \(\eta = \frac{s}{1+(\alpha-2)s} \), and \(c \) is an absolute constant.

Proof. Without loss of generality, we assume that \(u = (1, 0, \ldots, 0) \). Let \(a' = (0, a_2, \ldots, a_d) \) and \(X = (x_1, x_2, \ldots, x_d) \sim \mathcal{D}_{u, t} \). So the probability that we want to bound is

\[\Pr_{x \sim \mathcal{D}_{u, t}} ([a \cdot x] > K \sqrt{r^2 + t^2}) = \frac{\Pr_{x \sim \mathcal{D}} ([a \cdot x] > K \sqrt{r^2 + t^2}, |x_1| \leq t)}{\Pr_{x \sim \mathcal{D}} (|x_1| \leq t)}. \]

According to Theorem 14, there is a function \(Q(\gamma) \) such that the denominator obeys the following lower bound when \(t \leq d \):

\[\Pr_{x \sim \mathcal{D}} (|x_1| \leq t) \geq f_2(s, n)t. \]

So the remainder of the proof is to bound the numerator. Note that we have

\[\Pr_{x \sim \mathcal{D}} ([a \cdot x] > K \sqrt{r^2 + t^2}, |x_1| \leq t) \leq \Pr_{x \sim \mathcal{D}} ([a' \cdot x] > K \sqrt{r^2 + t^2} - t, |x_1| \leq t) \]

\[\leq \Pr_{x \sim \mathcal{D}} ([a' \cdot x] > (K - 1) \sqrt{r^2 + t^2}, |x_1| \leq t). \]
Denote by $a'' = \frac{a'}{\|a'\|}$. Define random variable Y as $a'' \cdot x$ and Z as x_1 where $x \sim \mathcal{D}$. Then the joint distribution of Y and Z is isotropic β-concave with $\eta = \frac{\beta}{1+(n-2)s}$. Let $f(y, z)$ be the density of such a distribution. Then we can bound the numerator by

$$4 \Pr_{x \sim \mathcal{D}}(a' \cdot x > (K - 1)\sqrt{r^2 + t^2}, 0 \leq x_1 \leq t) = 4 \Pr_{x \sim \mathcal{D}}(a'' \cdot x > \frac{(K - 1)\sqrt{r^2 + t^2}}{\|a'\|}, 0 \leq x_1 \leq t) \leq 4 \int_0^t \int_{(K - 1)\sqrt{r^2 + t^2}}^{\infty} f(y, z) dy dz.$$

By Lemma 13, we note that

$$f(y, z) \leq \beta_1(2, \eta)(1 - \eta \beta_2(2, \eta)\sqrt{y^2 + z^2})^{1/\eta}.$$

Therefore, the numerator can be upper bounded by

$$4\beta_1(2, \eta) \int_0^t \int_{(K - 1)\sqrt{r^2 + t^2}}^{\infty} (1 - \eta \beta_2(2, \eta)\sqrt{y^2 + z^2})^{1/\eta} dy dz \leq 4\beta_1(2, \eta) \int_0^t \int_{(K - 1)\sqrt{r^2 + t^2}}^{\infty} (1 - \eta \beta_2(2, \eta)y)^{1/\eta} dy dz = 4t\beta_1(2, \eta) \int_{(K - 1)\sqrt{r^2 + t^2}}^{\infty} (1 - \eta \beta_2(2, \eta)y)^{1/\eta} dy = 4t\beta_1(2, \eta) \frac{1}{\beta_2(2, \eta)} \frac{1}{\eta + 1} \left(1 - \eta \beta_2(2, \eta)\frac{(K - 1)\sqrt{r^2 + t^2}}{\|a'\|}\right)^{\frac{\eta + 1}{\eta}}.$$

Note that $\|a'\| \leq r$. Finally, we have

$$\Pr_{X \sim \mathcal{D}_{u,t}}(\|a \cdot x\| > K\sqrt{r^2 + t^2}) \leq \frac{4\beta_1(2, \eta)}{f_2(s, n)\beta_2(2, \eta)} \frac{1}{\eta + 1} \left(1 - \eta \beta_2(2, \eta)\frac{(K - 1)\sqrt{r^2 + t^2}}{r}\right)^{\frac{\eta + 1}{\eta}} \leq \frac{4\beta_1(2, \eta)}{f_2(s, n)\beta_2(2, \eta)} \frac{1}{\eta + 1} \left(1 - c\eta \beta_2(2, \eta)\frac{K\sqrt{r^2 + t^2}}{r}\right)^{\frac{\eta + 1}{\eta}},$$

for an absolute constant c. \hfill \Box

Theorem 17 (restated) Assume that \mathcal{D} is isotropic s-concave. For d given by Theorem 12 (a), there is an absolute C_0 such that for all $0 < t \leq d$ and for all a such that $\|a - u\| \leq r$ and $\|a\| \leq 1$, $\mathbb{E}_{X \sim \mathcal{D}_{u,t}}[(a \cdot x)^2] \leq f_5(s, n)(r^2 + t^2)$, where $f_5(s, n) = 16 + C_0 \frac{8\beta_1(2, \eta)B(1/\eta - 3, 2)}{f_2(s, n)\beta_2(2, \eta)^{3/2}\eta^3\eta^2}, (\beta_1(2, \eta), \beta_2(2, \eta))$ and $f_2(s, n)$ are given by Lemma 13 and Theorem 14, respectively, and $\eta = \frac{\beta}{1+(n-2)s}$.

29
Proof. Denote by \(z = \sqrt{t^2 + \ell^2} \). Then we have
\[
E_{x \sim D_{u,t}}[(a \cdot x)^2] = \int_0^\infty \Pr_{x \sim D_{u,t}}[(a \cdot x)^2 \geq z] dz
\]
\[
\leq 16z^2 + \int_{16z}^{\infty} \Pr_{x \sim D_{u,t}}[(a \cdot x)^2 \geq z] dz
\]
\[
\leq 16z^2 + \frac{4\beta_1(2, \eta)}{f_2(s, n)\beta_2(2, \eta)} \frac{1}{\eta + 1} \int_0^\infty \left(1 - \eta \beta_2(2, \eta) \frac{c\sqrt{z}}{r}\right)^{\frac{\eta + 1}{\eta}} dz
\]
\[
= 16z^2 + \frac{8\beta_1(2, \eta)}{f_2(s, n)\beta_2(2, \eta)} \frac{1}{\eta + 1} \int_0^\infty y \left(1 - \eta \beta_2(2, \eta) \frac{cy}{r}\right)^{\frac{\eta + 1}{\eta}} dy
\]
\[
(9)
\]
\[
= 16z^2 + \frac{8\beta_1(2, \eta)}{f_2(s, n)\beta_2(2, \eta)} \frac{1}{\eta + 1} C_0 B(-1/\eta - 3, 2) \frac{r^2}{\eta^2 \beta_2(2, \eta)^2}
\]
\[
= \left(16 + C_0 \frac{8\beta_1(2, \eta)B(-1/\eta - 3, 2)}{f_2(s, n)\beta_2(2, \eta)^3(\eta + 1)\eta^2}\right) r^2 + 16t^2
\]
\[
\leq \left(16 + C_0 \frac{8\beta_1(2, \eta)B(-1/\eta - 3, 2)}{f_2(s, n)\beta_2(2, \eta)^3(\eta + 1)\eta^2}\right) (r^2 + t^2),
\]
where \(c, C_0 \) are absolute constants.

\[\square\]

I Proof of Theorem 18

Theorem 18 (restated) In the realizable case, let \(D \) be an isotropic \(s \)-concave distribution in \(\mathbb{R}^n \). There exist constants \(C \) and \(c \) such that for any \(0 < \epsilon < 1/4 \) and \(\delta > 0 \), Algorithm 3 with \(b_k = \min\{\Theta(2^{-k} f_4 f_1^{-1}), d\} \) and \(m_k = C \left(\frac{f_{sb_k}}{2-k} \left(n \log \frac{f_{sb_k}}{2-k} + \log \frac{1+s-k}{\delta} \right) \right) \), after \(T = \lceil \log \frac{1}{\epsilon} \rceil \) iterations, outputs a linear separator of error at most \(\epsilon \) with probability at least \(1 - \delta \).

Proof. We will show by induction that for all \(k \leq s \), with probability at least \(1 - \frac{\delta}{2} \sum_{i<k} \frac{1}{(1+s-i)^2} \), any \(w \) that is consistent with the examples in \(W(k) \), e.g. \(w_k \), has error at most \(c2^{-k} \).

The case of \(k = 1 \) follows from the VC theory (Theorem 31). Assume now that the claim is true for \(k-1 \). We now consider the \(k \)-th iteration. Denote by \(S_{k-1} = \{x : |w_{k-1} \cdot x| \leq b_{k-1}\} \) and \(\bar{S}_{k-1} = \{x : |w_{k-1} \cdot x| > b_{k-1}\} \). By the induction hypothesis, with probability at least \(1 - \frac{\delta}{2} \sum_{i<k} \frac{1}{(1+s-i)^2} \), any \(w \) that is consistent with \(W(k-1) \), including \(w_{k-1} \), has error at most \(c2^{-(k-1)} \). For such a hypothesis \(w \) and \(w_{k-1} \), by Theorem 15, we have \(\theta(w, w^*) \leq cf_1^{-1/2-(k-1)} \) and \(\theta(w_{k-1}, w^*) \leq cf_1^{-1/2-(k-1)} \). Thus \(\theta(w_{k-1}, w) \leq \theta(w_{k-1}, w^*) + \theta(w^*, w) \leq 4c f_1^{-1/2-(k-1)} \). By Theorem 16, there is a choice of band width \(b_{k-1} = \min\{\Theta(f_4 f_1^{-1} 2^{-k}), d\} \) such that \(\Pr[\text{sign}(w \cdot x) \neq \text{sign}(w_{k-1} \cdot x), x \in \bar{S}_{k-1}] \leq \frac{c^2}{4} \) and \(\Pr[\text{sign}(w_{k-1} \cdot x) \neq \text{sign}(w^* \cdot x), x \in \bar{S}_{k-1}] \leq \frac{c^2}{4} \). Therefore, \(\Pr[\text{sign}(w \cdot x) \neq \text{sign}(w^* \cdot x), x \in \bar{S}_{k-1}] \leq \frac{c^2}{2} \).

We now consider the case when \(x \in S_{k-1} \). By Algorithm 3, we label \(m_k \) data points in \(S_{k-1} \) at the \((k-1)\)-th iteration. So according to the VC theory (Theorem 31), with probability at least \(1 - \frac{\delta}{4}(1+s-k) \), for all \(w \) that is consistent with the examples in \(W(k) \), \(\text{err}(w|S_{k-1}) = \Pr[\text{sign}(w \cdot x) \neq \text{sign}(w^* \cdot x)|x \in S_{k-1}] \leq \frac{c^2}{8}\sum_{i=k}^{s-k} \frac{1}{f_{3i}} \). Finally, note that Theorem 14 implies that \(\Pr(S_{k-1}) \leq f_3 b_{k-1} \). So we have \(\text{err}(w) = \Pr[\text{sign}(w \cdot x) \neq \text{sign}(w^* \cdot x), x \in S_{k-1}] + \Pr[\text{sign}(w \cdot x) \neq \text{sign}(w^* \cdot x), x \in S_{k-1}] \leq \frac{c^2}{2} + c^2 \times f_3 b_{k-1} = c2^{-k} \). The proof is completed.

\[\square\]
Lemma 25. \(L_{\tau_k}(w^*, D_{w_{k-1}, b_{k-1}}) \leq \kappa/6 \), if \(\kappa \geq \frac{6f_5\tau_k}{f_2 b_{k-1}} \) and \(b_{k-1} \leq d \).

Proof. Note that \(y(w^* \cdot x) \) cannot be negative on any clean example \((x, y)\). So we have \(\ell(w^*, x, y) = \max\{0, 1 - y(w^* \cdot x)/\tau_k\} \leq 1 \) and \(w^* \) pays a non-zero hinge loss only inside the margin \(\{x : |w^* \cdot x| \leq \tau_k\} \). Thus \(L_{\tau_k}(w^*, D_{w_{k-1}, b_{k-1}}) \leq \Pr_D(|w^* \cdot x| \leq \tau_k, |w_{k-1} \cdot x| \leq b_{k-1})/\Pr_D(|w_{k-1} \cdot x| \leq b_{k-1}) \). Notice that the numerator can be bounded by \(\Pr_D(|w^* \cdot x| \leq \tau_k) \leq f_3\tau_k \) according to Theorem 14. As for the denominator, by Theorem 14 we have \(\Pr_D(|w_{k-1} \cdot x| \leq b_{k-1}) \geq f_2 \min\{b_{k-1}, d\} \). So we have \(L_{\tau_k}(w^*, D_{w_{k-1}, b_{k-1}}) \leq f_3\tau_k/(f_2 \min\{b_{k-1}, d\}) \leq \kappa/6 \).

Let \(\widetilde{P}_k \) be the noisy distribution of \((x, y)\) where \(x \sim D_{w_{k-1}, b_{k-1}} \) and \(y \) obeys the adversarial noise model, and denote by \(P_k \) the clean distribution of \((x, y)\) where \(x \sim D_{w_{k-1}, b_{k-1}} \) and \(y = \text{sign}(w^* \cdot x) \). The following key lemma bounds the distance of expected loss w.r.t. the distributions \(\widetilde{P}_k \) and \(P_k \).

Lemma 26. There exists an absolute constant \(c \) such that for any \(w \in \text{ball}(w_{k-1}, r_k) \), we have that
\[
\left| \mathbb{E}_{(x, y) \sim P_k} \ell(w, x, y) - \mathbb{E}_{(x, y) \sim \widetilde{P}_k} \ell(w, x, y) \right| \leq \frac{2}{\tau_k} \sqrt{\frac{\eta f_5(r_k^2 + b_{k-1}^2)}{f_2 b_{k-1}}}.
\]

Proof. Denote by \(N \) the set of noisy examples. Let \(\widetilde{P}_k \) be the noisy distribution of \((x, y)\) where \(x \sim D \) and \(y \) obeys the adversarial noise model. We have
\[
\left| \mathbb{E}_{(x, y) \sim \widetilde{P}_k} \left[\ell_{\tau_k}(w^*, x, y) \right] - \mathbb{E}_{(x, y) \sim P_k} \left[\ell_{\tau_k}(w^*, x, y) \right] \right|
\leq \left| \mathbb{E}_{(x, y) \sim \widetilde{P}_k} \left[1_{x \in N} \left(\ell_{\tau_k}(w^*, x, y) - \ell_{\tau_k}(w^*, x, \text{sign}(w^* \cdot x)) \right) \right] \right|
\leq 2 \mathbb{E}_{(x, y) \sim \widetilde{P}_k} \left[1_{x \in N} \left(\frac{|w^* \cdot x|}{\tau_k} \right) \right]
\leq \frac{2}{\tau_k} \sqrt{\frac{\Pr_{(x, y) \sim \widetilde{P}_k}[x \in N]}{\eta}} \times \sqrt{\mathbb{E}_{(x, y) \sim \widetilde{P}_k}[|w^* \cdot x|^2]} \quad \text{(By Cauchy Schwarz)}
\leq \frac{2}{\tau_k} \sqrt{\frac{\eta}{\Pr_{\widetilde{P}_k}[|w_{k-1} \cdot x| \leq b_{k-1}]}} \times \sqrt{f_5(r_k^2 + b_{k-1}^2)} \quad \text{(By Theorem 17)}
\leq \frac{2}{f_2 b_{k-1}} \frac{\eta f_5(r_k^2 + b_{k-1}^2)}{f_2 b_{k-1}}. \quad \text{(By Theorem 14)}
\]

Lemma 27. Denote by \(W \) the samples drawn from the noisy distribution \(\widetilde{P}_k \) and suppose that \(|W| = O \left(\frac{\log(1 + n\delta)}{\kappa^2 \tau_k^2 \delta^2} \right) \). Then with probability at least \(1 - \frac{\delta}{\kappa + k\tau} \), for all \(w \in \text{ball}(w_{k-1}, r_k) \), we have
\[
\left| \mathbb{E}_{(x, y) \sim \widetilde{P}_k} \ell(w, x, y) - \ell(w, W) \right| \leq \kappa/16.
\]
Proof. To establish the lemma, we apply some standard VC tools (Theorem 32). Note that the pseudo-dimension of \(\{ \ell(w, \cdot) : w \in \mathbb{R}^n \} \) is at most \(n \) [ABL14]. To use Theorem 32, we first provide the upper bound on the loss. On one hand, note that
\[
\ell(w, x, y) \leq 1 + \frac{|w \cdot x|}{\tau_k} \leq 1 + \frac{|w_{k-1} \cdot x| + \|w - w_{k-1}\||x|}{\tau_k}
\leq 1 + \frac{b_{k-1} + \|x\|}{\tau_k}.
\]
On the other hand, by Theorem 8 and the union bound, with probability at least \(1 - \frac{\delta}{k+k^2} \), we have that \(\max_{x \in W} \|x\| \leq C \left(\frac{(1+ns)\sqrt{n}}{s} \right)^{s/(1+ns)} \left(1 - \left(\frac{\delta}{s(k+k^2)|W|} \right)^{s/(1+ns)} \right) \), for an absolute constant \(C \). The conclusion then follows from Theorem 32.

Lemma 28. Let \(k \leq \lfloor \log(1/(ce)) \rfloor \) where \(c \) is an absolute constant. If \(\kappa = \max \left\{ \frac{f_3 \tau_k}{f_2 \min(b_{k-1}, T_f)}, \frac{b_{k-1} \sqrt{f_2}}{r_k} \right\} \), \(r_k \leq O(b_{k-1}), \eta \leq O(b_{k-1}), m_k = O \left(\left| b_{k-1} + \tau_k (1+ns) \sqrt{n} \left(1 - \left(\frac{\delta}{s(k+k^2)} \right)^{s/(1+ns)} \right) \right| + \tau_k n \right) \), and \(b_{k-1} \leq d \), then with probability at least \(1 - \frac{\delta}{k+k^2} \), we have \(\text{err}_{D^w_{w_{k-1}, b_{k-1}}} (w_k) \leq \kappa \).

Proof. With probability at least \(1 - \frac{\delta}{k+k^2} \), we have
\[
\text{err}_{D^w_{w_{k-1}, b_{k-1}}} (w_k) = \text{err}_{D^w_{w_{k-1}, b_{k-1}}} (v_k)
\leq \mathbb{E}_{(x,y) \sim \mathcal{P}_k} \ell(v_k, x, y)
\leq \mathbb{E}_{(x,y) \sim \mathcal{P}_k} \ell(w_k, x, y) + \frac{2}{\tau_k} \sqrt{\frac{\eta f_5 \left(r_k^2 + b_{k-1}^2 \right)}{f_2 b_k} \left(\frac{\eta f_5 \left(r_k^2 + b_{k-1}^2 \right)}{f_2 b_k} + \frac{\kappa}{16} \right)}
\leq \ell(w_k, W) + \frac{2}{\tau_k} \sqrt{\frac{\eta f_5 \left(r_k^2 + b_{k-1}^2 \right)}{f_2 b_k} \left(\frac{\eta f_5 \left(r_k^2 + b_{k-1}^2 \right)}{f_2 b_k} + \frac{\kappa}{16} \right)}
\leq \ell(w^*, W) + \frac{4}{\tau_k} \sqrt{\frac{\eta f_5 \left(r_k^2 + b_{k-1}^2 \right)}{f_2 b_k} \left(\frac{\eta f_5 \left(r_k^2 + b_{k-1}^2 \right)}{f_2 b_k} + \frac{\kappa}{8} \right)}
\leq \mathbb{E}_{(x,y) \sim \mathcal{P}_k} \ell(w^*, x, y) + \frac{4}{\tau_k} \sqrt{\frac{\eta f_5 \left(r_k^2 + b_{k-1}^2 \right)}{f_2 b_k} \left(\frac{\eta f_5 \left(r_k^2 + b_{k-1}^2 \right)}{f_2 b_k} + \frac{\kappa}{4} \right)}
\leq \mathbb{E}_{(x,y) \sim \mathcal{P}_k} \ell(w^*, x, y) + \frac{6}{\tau_k} \sqrt{\frac{\eta f_5 \left(r_k^2 + b_{k-1}^2 \right)}{f_2 b_k} \left(\frac{\eta f_5 \left(r_k^2 + b_{k-1}^2 \right)}{f_2 b_k} + \frac{\kappa}{4} \right)}
\leq \frac{6}{\tau_k} \sqrt{\frac{\eta f_5 \left(r_k^2 + b_{k-1}^2 \right)}{f_2 b_k} \left(\frac{\eta f_5 \left(r_k^2 + b_{k-1}^2 \right)}{f_2 b_k} + \frac{\kappa}{2} \right)}
\leq \kappa,
\]
where the last inequality holds because \(\kappa \tau_k \sqrt{\frac{f_2}{f_5}} \geq \Theta(b_{k-1}), r_k \leq O(b_{k-1}), \) and \(\eta \leq O(b_{k-1}) \).
Theorem 19 (restated) Let \(D \) be an isotropic \(s \)-concave distribution in \(\mathbb{R}^n \) and the label \(y \) obeys the adversarial noise model. If the rate \(\eta \) of adversarial noise satisfies \(\eta < c_0 \varepsilon \) for some absolute constant \(c_0 \), then there exists an absolute constant \(c \) such that for any \(0 < \varepsilon < 1/4 \) and \(\delta > 0 \), Algorithm 1 with \(b_k = \min\{\Theta(2^{-k}f_k f_{k-1}^{-1}), \tau_k \} \), \(\tau_k = \Theta(2^{-k}f_k^{-1}) \), \(r_k = \Theta(2^{-k}f_k^{-1}) \), \(m_k = O\left(\frac{|b_{k-1} + \tau_k s_T|}{(1-s_T)^{k/2}}(1-\delta^{1/(1+s_T)}) + \tau_k s_T^s\right) \), and \(\kappa = \max\left\{\frac{f_k \tau_k}{f_k \min|b_{k-1} d_k|^{1/2}}, \frac{|b_{k-1} \sqrt f_k|}{\tau_k f_k^{1/2}}\right\} \), after \(T = \lceil \log \frac{1}{\tau_k} \rceil \) iterations, outputs a linear separator \(w_T \) such that \(\Pr_{x \sim D}[\text{sign}(w_T \cdot x) \neq \text{sign}(w^* \cdot x)] \leq \varepsilon \) with probability at least \(1 - \delta \).

Proof. The case of \(k = 1 \) is obvious. Assume now that the claim is true for \(k - 1 \). We now consider the \(k \)th iteration. Denote by \(S_{k-1} = \{x : |w_{k-1} \cdot x| \leq b_{k-1}\} \) and \(\bar{S}_{k-1} = \{x : |w_{k-1} \cdot x| > b_{k-1}\} \). By the induction hypothesis, with probability at least \(1 - \frac{1}{2} \sum_{i<k-1} \frac{1}{(1+s)^{i}} \), \(w_{k-1} \) has error at most \(c2^{-k} \).

Then by Theorem 15, we have \(\theta(w_{k-1}, w^*) \leq c f_k^{-1} 2^{-k} \). On the other hand, since \(\|w_{k-1}\| = 1 \) and \(v_k \in B(w_{k-1}, r_k) \), we have \(\theta(w_{k-1}, v_k) \leq r_k \). This in turn implies \(\theta(w_{k-1}, w_k) \leq 2^{-k} f_{k-1}^{-1} \). So by Theorem 16, there is a choice of band width \(2b_{k-1} = f_k f_{k-1}^{-1} - 2^{-k} \) such that \(Pr(\text{sign}(w_k \cdot x) \neq \text{sign}(w_{k-1} \cdot x), x \in \bar{S}_{k-1}) \leq \frac{c}{2} f_k^{-1} \) and \(Pr(\text{sign}(w_k \cdot x) \neq \text{sign}(w^* \cdot x), x \in \bar{S}_{k-1}) \leq \frac{c}{2} f_k^{-1} \). Therefore, \(\Pr[\text{sign}(w_k \cdot x) \neq \text{sign}(w^* \cdot x), x \in \bar{S}_{k-1}] \leq \frac{c}{2} f_k^{-1} \). Finally, note that Theorem 14 implies that \(\Pr(S_{k-1}) \leq f_k b_{k-1} \). So we have \(\text{err}_D(w_k) = \Pr[\text{sign}(w_k \cdot x) \neq \text{sign}(w^* \cdot x), x \in \bar{S}_{k-1}] + \Pr[\text{sign}(w_k \cdot x) \neq \text{sign}(w^* \cdot x), x \in S_{k-1}] = \Pr[\text{sign}(w_k \cdot x) \neq \text{sign}(w^* \cdot x), x \in \bar{S}_{k-1}] + \text{err}_P_{w_{k-1}, b_{k-1}}(w_k) \Pr(x \in S_{k-1}) \leq \frac{c}{2} f_k^{-1} + \kappa \times f_k b_{k-1} \leq c2^{-k} = \varepsilon \), where the penultimate inequality follows from Lemma 28. The proof is completed.

K Proof of Theorem 20

Theorem 20 (restated) Let \(D \) be an isotropic \(s \)-concave distribution over \(\mathbb{R}^n \). Then for any \(w^* \in \mathbb{R}^n \) and \(r \) > 0, the disagreement coefficient is \(\Theta_{w^*, D}(\varepsilon) = O\left(\sqrt{n} f(s)^{-1} (1 - \varepsilon^{s/(1+s)}) \right) \), where \(f(s) \) is given by Theorem 15. In particular, when \(s \to 0 \) (a.k.a. log-concave), \(\Theta_{w^*, D}(\varepsilon) = O\left(\sqrt{n} \log(1/\varepsilon) \right) \).

Proof. Consider any \(w \) such that \(d_D(w, w^*) \leq r \). According to Theorem 15, we have \(\|w - w^*\| < \theta(w, w^*) \leq d_D(w, w^*)/f(s) \leq r/f(s) \). Thus for any \(x \) such that \(\|x\| \leq O\left(\sqrt{n} f(s)^{-1} (1 - \varepsilon^{s/(1+s)}) \right) \), we have \(w \cdot x - w^* \cdot x \leq \|w - w^*\| \cdot \|x\| < r \sqrt{n} f(s)^{-1} (1 - \varepsilon^{s/(1+s)}) \). So as soon as \(|w^* \cdot x| \geq r \sqrt{n} f(s)^{-1} (1 - \varepsilon^{s/(1+s)}) \), we will have \(\text{sign}(w \cdot x) = \text{sign}(w^* \cdot x) \), i.e., \(w \) and \(w^* \) agree with each other. We now evaluate the probability. By Theorem 14, \(\Pr_{x \sim D} \left[|w^* \cdot x| \geq r \sqrt{n} f(s)^{-1} (1 - \varepsilon^{s/(1+s)}) \right] \leq 2 \frac{1+n}{1+(n+2)s} f(s)^{-1} \sqrt{n} f(s)^{-1} (1 - \varepsilon^{s/(1+s)}) \). Moreover, \(\Pr_{x \sim D} \left[\|x\| \geq c \sqrt{n} f(s)^{-1} (1 - \varepsilon^{s/(1+s)}) \right] \leq C \) by Theorem 8. Thus

\[
\text{cap}_{w^*, D}(r) \leq \frac{\Pr_{x \sim D} \left[|w^* \cdot x| \geq r \sqrt{n} f(s)^{-1} (1 - \varepsilon^{s/(1+s)}) \right]}{r} + \frac{\Pr_{x \sim D} \left[\|x\| \geq c \sqrt{n} f(s)^{-1} (1 - \varepsilon^{s/(1+s)}) \right]}{r}.
\]

Therefore, \(\Theta_{w^*, D}(\varepsilon) = \sup_{r \geq c} [\text{cap}_{w^*, D}(r)] = O\left(\sqrt{n} f(s)^{-1} (1 - \varepsilon^{s/(1+s)}) \right) \).

□
L Proof of Theorem 21

Lemma 29. Denote by \(R \) the intersections of three origin-centered halfspaces in \(\mathbb{R}^n \). Suppose that the instance \(x \) in \(\mathbb{R}^n \) is drawn from an isotropic \(s \)-concave distribution. Then \(\Pr[x \in -R] \leq K \Pr[x \in R] \), where \(K = \beta_1(3, \kappa) B(1/\kappa-3/2,3) h(\kappa) d^{1+3\kappa, \beta_1(3, \kappa), \beta_2(3, \kappa), \text{and } a(3, \kappa) \text{ are as in Lemma 13}} \), \(h(\kappa) = \left(\frac{1}{d}((2 - 2^{-4\kappa})^{-1} - 1) + 1 \right)^{-1/\kappa} \), \(d = (1+\gamma)^{-1/\gamma} 1+3\beta \), \(\beta = \frac{\kappa}{1+2\kappa}, \gamma = \frac{\kappa}{1+\kappa} \), and \(\kappa = s/(1+(n-3)s) \).

Proof. Let \(u_1, u_2, \) and \(u_3 \) be normals to the hyperplanes bounding the region \(R \), namely \(R = \{ x \in \mathbb{R}^n : u_1 \cdot x \geq 0 \text{ and } u_2 \cdot x \geq 0 \text{ and } u_3 \cdot x \geq 0 \} \). Denote by \(U \) the linear span of vectors \(u_1, u_2, \) and \(u_3 \), and let \((e_1, e_2, e_3) \) be an orthogonal basis of \(U \) and \((e_1, e_2, e_3, ..., e_n) \) be an extension of basis \((e_1, e_2, e_3) \) to \(\mathbb{R}^n \). Represent the components of \(x, u_1, u_2, \) and \(u_3 \) in terms of basis \((e_1, e_2, e_3, ..., e_n) \) as

\[
\begin{align*}
x &= (x_1, x_2, x_3, x_4, ..., x_n), \\
u_1 &= (u_{1,1}, u_{1,2}, u_{1,3}, 0, ..., 0), \\
u_2 &= (u_{2,1}, u_{2,2}, u_{2,3}, 0, ..., 0), \\
u_3 &= (u_{3,1}, u_{3,2}, u_{3,3}, 0, ..., 0).
\end{align*}
\]

Denote by \(\text{proj}_U(x) \triangleq (x_1, x_2, x_3) \) the projection of \(x \) onto subspace \(U \), and let \(\text{proj}_U(R) \) be the projection of \(R \) onto \(U \). Because the dot products of a point with normal vectors of \(R \) are all that is needed to determine the membership in \(R \), we have

\[
x \in R \iff u_{j,1}x_1 + u_{j,2}x_2 + u_{j,3}x_3 \geq 0 \text{ for all } j \in \{1, 2, 3\} \iff \text{proj}_U(x) \in \text{proj}_U(R).
\]

Let \(f \) be the density of the isotropic \(s \)-concave distribution and \(g \) be the marginal density of \(f \) w.r.t. \((x_1, x_2, x_3) \). Thus by (10),

\[
\Pr[x \in R] = \int \cdots \int_R f(x_1, x_2, x_3, x_4, ..., x_n) dx_1 ... dx_n = \int \int \int_{\text{proj}_U(R)} g(x_1, x_2, x_3) dx_1 dx_2 dx_3.
\]

Note that \(f \) is isotropic and \(s \)-concave. So according to Theorem 4, \(g \) is isotropic and \(\kappa \)-concave with \(\kappa = s/(1+(n-3)s) \). We now use Theorem 12 and Lemma 13 to bound \(g \). Specifically, let \(u \triangleq (x_1, x_2, x_3) \). On one hand, according to Theorem 12 (a) and (d), for any \(u \in \mathbb{R}^3 \) such that \(\|u\| \leq d \),

\[
g(u) \geq \left(\frac{\|u\|}{d}((2 - 2^{-4\kappa})^{-1} - 1) + 1 \right)^{1/\kappa} f(0)
\]

\[
> \left(\frac{\|u\|}{d}((2 - 2^{-4\kappa})^{-1} - 1) + 1 \right)^{1/\kappa} (4e\pi)^{-3/2} \left[\left(\frac{1 + \beta}{1 + 3\beta} \sqrt{3(1+\gamma)^{3/2} 2 + 1/\kappa} \right)^{-1/\kappa} \right]
\]

\[
\triangleq \|u\|^{1/\kappa} h(\kappa),
\]

34
where \(d = (1 + \gamma)^{-1/\gamma} \frac{1+3\beta}{3+3\beta}, \beta = \frac{\gamma}{1+2\alpha}, \gamma = \frac{\gamma}{1+\alpha}, \) and

\[
h(\kappa) = \left(\frac{1}{d}((2 - 2 - 4\kappa)^{-1} - 1) + 1 \right)^{1/\kappa} \left(4e^\pi \right)^{-3/2} \left[\left(\frac{1 + \beta}{1 + 3\beta} \sqrt{3(1 + \gamma)^{3/\gamma} 2^{1+1/\kappa}} \right)^{\frac{1}{\kappa}} - 1 \right]^{-1/\kappa}.
\]

On the other hand, by Lemma 13, for every \(u \in \mathbb{R}^3,\)

\[
g(u) \leq \beta_1(3, \kappa)(1 - \kappa\beta_2(3, \kappa)||u||)^{1/\kappa},
\]

where

\[
\beta_1(3, \kappa) = (2 - 2 - 4\kappa)^{1/\kappa} \frac{1}{2\pi^{3/2}d^3} (1 - \kappa)^{-1/\kappa} 3\Gamma(3/2) \left[\left(\frac{1 + \beta}{1 + 3\beta} \sqrt{3(1 + \gamma)^{3/\gamma} 2^{1+1/\kappa}} \right)^{\frac{1}{\kappa}} - 1 \right]^{1/\kappa},
\]

\[
\beta_2(3, \kappa) = \frac{2\pi d^2}{2} (2 - 2 - 3s)^{-1/s} \frac{((a + (1 - s)\beta_1(3, \kappa)^{1+1/\kappa} - a^{1+1/\kappa})\kappa}{\beta_1(3, \kappa)^{s}(1 + \kappa)(1 - \kappa)},
\]

and

\[
a = (4e^\pi)^{-3\kappa/2} \left[\left(\frac{1 + \beta}{1 + 3\beta} \sqrt{3(1 + \gamma)^{3/\gamma} 2^{1+1/\kappa}} \right)^{\frac{1}{\kappa}} - 1 \right]^{-1}.
\]

Denote by \(R' = \text{proj}_U(R) \cap \text{ball}(0, d),\) and \(\text{ball}(0, d)\) is the origin-centered ball of radius \(d\) in \(\mathbb{R}^3.\) Thus we have

\[
\int \int \int_{R'} ||u||^{1/\kappa} h(\kappa) d\nu_1 d\nu_2 d\nu_3 \leq \Pr[x \in R]
\]

\[
\leq \int \int \int_{\text{proj}_U(R)} \beta_1(3, \kappa)(1 - \kappa\beta_2(3, \kappa)||u||)^{1/\kappa} d\nu_1 d\nu_2 d\nu_3.
\]

Let \(A \triangleq \int_{\text{proj}_U(R) \cap \mathbb{R}^2} \sin \theta d\varphi d\theta.\) Note that

\[
\int \int \int_{R'} ||u||^{1/\kappa} h(\kappa) d\nu_1 d\nu_2 d\nu_3 = A \int_0^d r^{2\gamma^{1/\kappa} h(\kappa)} dr = Ah(\kappa) \frac{1}{3 + 1/\kappa} d^{3+1/\kappa},
\]

and

\[
\int \int \int_{\text{proj}_U(R)} \beta_1(3, \kappa)(1 - \kappa\beta_2(3, \kappa)||u||)^{1/\kappa} d\nu_1 d\nu_2 d\nu_3
\]

\[
= A\beta_1(3, \kappa) \int_0^\infty r^2 (1 - \kappa\beta_2(3, \kappa)r)^{1/\kappa} dr
\]

\[
= A\beta_1(3, \kappa) B(-1/\kappa - 3, 3) \frac{1}{(-\kappa\beta_2(3, \kappa))^{3}}.
\]

So we have

\[
Ah(\kappa) \frac{1}{3 + 1/\kappa} d^{3+1/\kappa} \leq \Pr[x \in R] \leq A\beta_1(3, \kappa) B(-1/\kappa - 3, 3) \frac{1}{(-\kappa\beta_2(3, \kappa))^{3}},
\]

and by symmetry,

\[
Ah(\kappa) \frac{1}{3 + 1/\kappa} d^{3+1/\kappa} \leq \Pr[x \in -R] \leq A\beta_1(3, \kappa) B(-1/\kappa - 3, 3) \frac{1}{(-\kappa\beta_2(3, \kappa))^{3}}.
\]
Therefore,
\[
\Pr[x \in -R] \leq \Pr[x \in R] \beta_1(3, \kappa) \frac{B(-1/\kappa - 3, 3)}{(-\kappa \beta_2(3, \kappa))^3} \frac{3 + 1/\kappa}{h(\kappa)d^{3+1/\kappa}}.
\]

\[\square\]

Theorem 21 (restated) *In the PAC realizable case, Algorithm 2 outputs a hypothesis \(h \) of error at most \(\epsilon \) with probability at least \(1 - \delta \) under isotropic \(s \)-concave distribution. The label complexity is \(M(\epsilon/2, \delta/4, n^2) + \max\{2m_2/\epsilon, (2/\epsilon^2) \log(4/\delta)\} \), where \(M(\epsilon, \delta, m) \) is defined by \(M(\epsilon, \delta, n) = O\left(\frac{n^2}{\epsilon^2} \log \frac{1}{\epsilon} + \frac{1}{\epsilon} \log \frac{1}{\delta} \right) \), \(m_2 = M(\max\{\delta/(4eKm_1), \epsilon/2\}, \delta/4, n) \), \(K = \beta_1(3, \kappa) \frac{B(-1/\kappa - 3, 3)}{(-\kappa \beta_2(3, \kappa))^3} \frac{3 + 1/\kappa}{h(\kappa)d^{3+1/\kappa}} \), \(d = (1 + \gamma)^{-1/\gamma} (1 + 3/3^\gamma) \). In particular, when \(s \to 0 \) (a.k.a. log-concave), \(K \) is an absolute constant.

Proof. Denote by \(p \) the probability of observing a positive example. We discuss the following three cases.

1. \(r < m_2 \) and \(p < \epsilon \).

 In this case, the hypothesis that labels every examples as negative has error less than \(\epsilon \). Therefore, the algorithm behaves with error at most \(\epsilon \) when \(r < m_2 \).

2. \(r < m_2 \) and \(p \geq \epsilon \).

 By the Hoeffding inequality,
 \[
 \Pr(r < m_2) \leq \Pr \left(\frac{r}{m_3} < \frac{\epsilon}{2} \right) \leq \Pr \left(\frac{r}{m_3} < \frac{p}{2} \right) \leq e^{-m_3p^2/2} \leq \delta/4.
 \]
 So the probability that this case happens is at most \(\delta/4 \).

3. \(r \geq m_2 \).

 We note that
 \[
 \text{err}(h) = \Pr(-H') \Pr(H_u \cap H_v| - H') + \Pr(H') \Pr(h_{xor}(x) \neq c(x)|x \in H'),
 \]
 where \(c : \mathbb{R}^n \to \{-1, 1\} \) is the hypothesis w.r.t. \(H_u \cap H_v \). Observe that
 \[
 \Pr(-H') \Pr(H_u \cap H_v| - H') = \Pr(H_u \cap H_v) \Pr(-H'|H_u \cap H_v),
 \]
 where \(\Pr(-H'|H_u \cap H_v) \) is the error of \(H' \) over the distribution conditioned on \(H_u \cap H_v \). Since the VC argument works for any distribution, and \(H' \) contains all \(r \geq m_2 \) positive examples according to Step 5 in Algorithm 2, by the VC argument, with probability at least \(1 - \delta/4 \),
 \[
 \Pr(-H'|H_u \cap H_v) \leq \max \left\{ \frac{\delta}{4(1 + \gamma)^{1/\gamma}Km_1}, \frac{\epsilon}{2} \right\}.
 \]
 So \(\Pr(-H') \Pr(H_u \cap H_v| - H') \leq \Pr(-H'|H_u \cap H_v) \leq \max \left\{ \frac{\delta}{4(1 + \gamma)^{1/\gamma}Km_1}, \frac{\epsilon}{2} \right\} \leq \frac{\epsilon}{2} \).

 We now bound the second term in (11). According to Lemma 29,
 \[
 \Pr((-H_u) \cap (-H_v) \cap H') \leq K \Pr(H_u \cap H_v \cap (-H')) \leq \frac{\delta}{4(1 + \gamma)^{1/\gamma}m_1}.
 \]

36
On the other hand, by Lemma 11, \(\Pr(H') \geq (1 + \gamma)^{-1/\gamma} \) with \(\gamma = s/(1 + ns) \). Thus

\[
\Pr((-H_u) \cup (-H_v)|H') = \frac{\Pr((-H_u) \cap (-H_v))}{\Pr(H')} \leq \frac{\delta}{4m_1}.
\]

That is to say, each point in \(S \) has probability at most \(\delta/(4m_1) \) of being in \((-H_u) \cap (-H_v) \). So by the union bound, with probability at least \(1 - \delta/4 \), none of points in \(S \) is in \((-H_u) \cup (-H_v) \). Therefore, Step 6 in Algorithm 2 is able to find \(h_{xor} \) that is consistent with all the instances in \(S \). Then by the VC argument, we have

\[
\Pr(h_{xor}(x) \neq c(x)|x \in H') \leq \frac{\epsilon}{2},
\]

with probability at least \(1 - \delta/4 \). In summary, we have

\[
err(h) = \Pr(-H') \Pr(H_u \cap H_v) - H') + \Pr(H') \Pr(h_{xor}(x) \neq c(x)|x \in H') \leq \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon,
\]

with failure probability at most \(\delta/4 + \delta/4 + \delta = \delta \) by the union bound. Therefore, the proof is completed. □

M Proof of Lower Bounds

The proof of our lower bounds essentially depends on a lower bound on the packing number of all homogeneous linear separators \(C \) under distribution \(D \). Remind that the \(\epsilon \)-packing number, denoted by \(M_D(C, \epsilon) \), is the maximal cardinality of an \(\epsilon \)-separated set with classifiers from \(C \), where we say \(N \) classifiers \(w_1, \ldots, w_N \) are \(\epsilon \)-separated w.r.t. \(D \) if \(d_D(w_i, w_j) \leq \Pr_{x \sim D}[\text{sign}(w_i \cdot x) \neq \text{sign}(w_j \cdot x)] > \epsilon \) for any \(i \neq j \).

Lemma 30. Suppose that \(D \) is \(s \)-concave in \(\mathbb{R}^n \), and that its covariance matrix is of full rank. Then for all sufficiently small \(\epsilon \), we have \(M_D(C, \epsilon) \geq \frac{\sqrt{n}}{2} \left(\frac{H(s,n)}{2\epsilon} \right)^{n-1} - 1 \).

Proof. We begin with proving the lemma in the case of isotropic \(D \). Our proof inspries from proofs for the special case of uniform and log-concave distributions by [Lon95] and [BL13], respectively.

Denote by \(\text{UBALL}_n \) the uniform distribution on the sphere in \(\mathbb{R}^n \). According to Theorem 15, for any two unit vectors \(u \) and \(v \) in \(\mathbb{R}^n \), we have \(f_1(s, n) \theta(u, v) \leq d_D(u, v) \). Thus for a fixed \(u \) the probability that a uniformly chosen \(v \) obeys \(d_D(u, v) \leq \epsilon \) is upper bounded by the volume of those points in the interior of unit ball whose angle is at most \(\epsilon/f_1(s, n) \) divided by the volume of unit ball in \(\mathbb{R}^n \). By known bound on this ratio [Lon95], we have \(\Pr_{v \in \text{UBALL}_n}[d_D(u, v) \leq \epsilon] \leq \frac{1}{\sqrt{n}} \left(\frac{2e}{f_1(s,n)} \right)^{n-1} \). So \(\Pr_{u,v \in \text{UBALL}_n}[d_D(u, v) \leq \epsilon] \leq \frac{1}{\sqrt{n}} \left(\frac{2e}{f_1(s,n)} \right)^{n-1} \), meaning that if we select a set \(S \) of \(s \) normalized vectors uniformly from the unit sphere, the expected number of pairs of vectors that are \(\epsilon \)-close in the sense of \(d_D \) is at most \(\frac{s^2}{\sqrt{n}} \left(\frac{2e}{f_1(s,n)} \right)^{n-1} \).

Removing one vector from each pair of \(S \) yields a set of \(s - \frac{s^2}{\sqrt{n}} \left(\frac{2e}{f_1(s,n)} \right)^{n-1} \) homogeneous linear separators that are \(\epsilon \)-separated. The proof for isotropic \(D \) is completed when we set \(s = \frac{\sqrt{n}}{(2e/f_1(s,n))^{n-1}} \).

We now discuss the case when \(D \) is non-isotropic. Denote by \(\Sigma \) the covariance matrix of \(D \) and let isotropic \(D' \) be the whitened version of \(D \), namely, the distribution obtained by first sampling \(x \) from \(D \) and then computing \(\Sigma^{-1/2}x \). Notice that \(d_{D'}(u,v) = d_D(u\Sigma^{1/2},v\Sigma^{1/2}) \). Therefore, we can apply an \(\epsilon \)-packing w.r.t. \(D' \) to construct an \(\epsilon \)-packing w.r.t. \(D' \) of the same size. □
Now we are ready to prove Theorem 22.

Theorem 22 (restated) For a fixed value $-\frac{1}{2n+3} \leq s \leq 0$ we have: (a) For any s-concave distribution \mathcal{D} in \mathbb{R}^n whose covariance matrix is of full rank, the sample complexity of learning origin-centered linear separators under \mathcal{D} in the passive learning scenario is $\Omega\left(\frac{nf_1(s,n)}{\epsilon}\right)$; (b) The label complexity of active learning of linear separators under s-concave distribution is $\Omega\left(n \log \left(\frac{n}{\epsilon}\right)\right)$.

Proof. It is known that for any distribution \mathcal{D} in \mathbb{R}^n, the sample complexity of (passive) PAC learning of homogeneous linear separators under \mathcal{D} is at least $n - 1 + \frac{M_{\mathcal{D}}(C,2\epsilon)}{4}^{1/(n-1)}$ [Lon95]. By Lemma 30, we have an $\Omega\left(\frac{nf_1(s,n)}{\epsilon}\right)$ lower bound of sample complexity for passive learning homogeneous halfspace.

We now discuss the label complexity lower bound in the active learning scenario. By [KMT93], any active learning algorithm that is allowed to make arbitrary binary queries must take at least $\Omega\left(\log M_{\mathcal{D}}(C,\epsilon)\right)$ so as to output a hypothesis of error at most ϵ with high probability. Applying Lemma 30, we obtain the desired result. \qed

N Additional Related Algorithms

Algorithm 3 Margin Based Active Learning under S-Concave Distributions (Realizable Case)

\begin{algorithm}
\caption{Margin Based Active Learning under S-Concave Distributions (Realizable Case)}
\begin{algorithmic}[1]
\STATE \textbf{Input:} $b_k = \min\{\Theta(2^{-k}f_4f_1^{-1}), d\}$, $m_k = C\left(\frac{f_3b_{k-1}}{2^{-k}}\left(n \log \frac{f_3b_{k-1}}{2^{-k}} + \log \frac{1+s-k}{\delta}\right)\right)$, and $T = \lceil \log \frac{1}{\epsilon} \rceil$.
\STATE 1: Draw m_1 examples from \mathcal{D}, label them and put them into $W(1)$.
\STATE 2: For $k = 1, 2, ..., T$
\STATE 3: \hspace{1em} Find a hypothesis w_k with $\|w_k\|=1$ that is consistent with $W(k)$.
\STATE 4: \hspace{1em} $W(k+1) \leftarrow W(k)$.
\STATE 5: \hspace{1em} While m_{k+1} additional data points are not labeled
\STATE 6: \hspace{2em} Draw sample x from \mathcal{D}.
\STATE 7: \hspace{2em} If $|w_k \cdot x| \geq b_k$
\STATE 8: \hspace{3em} Reject x.
\STATE 9: \hspace{2em} Else
\STATE 10: \hspace{3em} Ask for label of x and put into $W(k+1)$.
\STATE 11: \hspace{1em} End If
\STATE 12: \hspace{1em} End While
\STATE 13: End For
\STATE \textbf{Output:} Hypothesis w_T.
\end{algorithmic}
\end{algorithm}

O A Collection of Concentration Results

Theorem 31 ([Vap82, BEHW89]). Denote by \mathcal{C} a class of concepts from a set X to $\{-1, 1\}$ with VC dimension n. Let $c \in \mathcal{C}$, and assume that

$$M(\epsilon, \delta, n) = O\left(\frac{n}{\epsilon \log \frac{1}{\epsilon}} + \frac{1}{\epsilon \log \frac{1}{\delta}}\right)$$

38
examples \(x_1, \ldots, x_M \) are sampled from any probability distribution \(D \) over \(X \). Then any hypothesis \(h \in C \) which is consistent with \(c \) on \(x_1, \ldots, x_M \) has error at most \(\epsilon \), with probability at least \(1 - \delta \).

Theorem 32 ([AB09]). Let \(F \) be a set of functions mapping from domain \(X \) to \([a, b]\), and let \(n \) be the pseudo-dimension of \(F \). Then for any distribution \(D \) over \(X \) and

\[
m = O \left(\frac{(b-a)^2}{\kappa^2} (d + \log(1/\delta)) \right),
\]

if \(x_1, \ldots, x_m \) are drawn independently from \(D \), with probability at least \(1 - \delta \), for all \(f \in F \),

\[
\left| \mathbb{E}_{x \sim D} f(x) - \frac{1}{m} \sum_{i=1}^{m} f(x_i) \right| \leq \kappa.
\]