ESO 215-G?009: AN EXTREME H I–RICH DWARF IRREGULAR GALAXY

BRADLEY E. WARREN* AND HELMUT JERJEN

Research School of Astronomy and Astrophysics, Australian National University, Mount Stromlo Observatory, Cotter Road, Weston, ACT 2611, Australia; bewarren@mso.anu.edu.au, jerjen@mso.anu.edu.au

AND

BÄRBEL S. KORIBALSKI

Australia Telescope National Facility, CSIRO, P.O. Box 76, Epping, NSW 1710, Australia; Baerbel.Koribalski@csiro.au

Received 2004 April 21; accepted 2004 May 26

ABSTRACT

We present deep BVRI band images and H i line observations of the nearby, low surface brightness galaxy ESO 215-G?009, which were obtained with the Australian National University 2.3 m telescope and the Australia Telescope Compact Array, respectively. ESO 215-G?009 was selected from the HIPASS Bright Galaxy Catalog because it has the second highest H i mass-to-light ratio of the galaxies with measured B-band apparent magnitudes. We find that it is an isolated dwarf irregular galaxy with an old stellar population. We place an upper limit on the current star formation rate of \(\lesssim 2.5 \times 10^{-7} \, M_\odot \, yr^{-1} \). The extended H i disk shows regular rotation (\(\left(v_{rot} = 51 \pm 8 \, km \, s^{-1} \right) \) and, at a column density of \(\sim 5.0 \times 10^{10} \, atoms \, cm^{-2} \), can be traced out to over 6 times the Holmberg radius of the stellar component (radius at \(\mu_g = 26.6 \, mag \, arcsec^{-2} \)). After foreground star subtraction, we measure a B-band apparent magnitude of 16.13 ± 0.07 mag within a radius of 80\(\prime \). The H i flux density is 122 ± 4 Jy km s\(^{-1}\) within a radius of 370\(\prime \). Given a Galactic extinction of \(A_B = 0.95 \pm 0.15 \, mag \), we derive an H i mass-to-light ratio of 22 ± 4 \(M_\odot / L_{\odot, B} \) for ESO 215-G?009. To our knowledge this is the highest \(M_{HI} / L_B \) ratio for a galaxy to be confirmed by accurate measurement to date.

Key words: galaxies: dwarf — galaxies: evolution — galaxies: individual (ESO 215-G?009) — galaxies: irregular — galaxies: ISM — galaxies: kinematics and dynamics — galaxies: photometry

1. INTRODUCTION

One way to investigate aspects of star formation and galaxy evolution is to study galaxies that appear to have done little of either, those with large quantities of unprocessed neutral hydrogen (H i) compared with their stellar content. The high quantities of H i gas in some low-luminosity galaxies suggest that star formation within these galaxies has been impaired or halted, has lacked stimulation, or has only recently begun.

The H i mass-to-light ratio of a galaxy is a distance-independent quantity that compares the H i mass with the luminosity in a particular photometric band. As the B-band magnitude of galaxies has been in the past the most commonly available (from photographic studies), the H i mass-to-light ratio is usually expressed with the B-band luminosity:

\[
\frac{M_{HI}}{L_B} = 1.5 \times 10^{-7} F_{HI} 10^{0.4(m_B - A_B)} \frac{M_\odot}{L_{\odot, B}},
\]

where \(M_{HI} \) is the H i mass in \(M_\odot \), \(L_B \) is the B-band luminosity in \(L_{\odot, B} \), \(F_{HI} \) is the integrated H i flux density in Jy km s\(^{-1}\), \(m_B \) is the B-band apparent magnitude, and \(A_B \) is the B-band Galactic extinction. Extinction correction from the host galaxy is not included (see § 6.3).

For most galaxies \(M_{HI} / L_B \) is typically less than 1 \(M_\odot / L_{\odot, B} \), with late-type galaxies having a larger spread than early types. Roberts & Haynes (1994) performed a statistical study of physical parameters along the Hubble sequence. For late-type galaxies they found a general trend of lower luminosity, surface brightness, and H i mass and higher \(M_{HI} / L_B \) and H i to total mass ratio than for early-type spirals; e.g., for the RC3 local supercluster sample they find a median \(M_{HI} / L_B \) of 0.78 \(M_\odot / L_{\odot, B} \) in type Sm/Irr galaxies, with an inner quartile range of 0.44 \(M_\odot / L_{\odot, B} \) to 1.32 \(M_\odot / L_{\odot, B} \) and a median \(M_{HI} / M_{tot} \) of 0.15. However, some low surface brightness dwarf irregular galaxies are known to have H i mass-to-light ratios that are significantly higher than this quartile range.

One of the best known dwarf galaxies with a high \(M_{HI} / L_B \) is DDO 154, for which Hoffman et al. (1993) measured \(M_{HI} / L_B = 11 \, M_\odot / L_{\odot, B} \). DDO 154, a dwarf galaxy of type Sm, has a very extended H i disk compared with its optical size, stretching to \(\sim 6 \) times the Holmberg radius (Carignan & Burton 1998). Another example is the blue compact dwarf (BCD) galaxy NGC 2915, which has a moderately high \(M_{HI} / L_B \) of 2.6 \(M_\odot / L_{\odot, B} \) (Meurer et al. 1994, 1996). The H i disk of this object extends to over 5 times the Holmberg radius and has distinct spiral arm structure (see Bureau et al. 1999).

We do not consider \(M_{HI} / L_B \) ratios in tidal tails or bridges near galaxies, such as H i 1225+01, a tidally disturbed irregular galaxy described in detail by Chengalur et al. (1995). Likewise, massive gas-rich low surface brightness galaxies such as Malin 1 (Bothun et al. 1987; Impey & Bothun 1998) are not comparable to low surface brightness dwarf systems with high \(M_{HI} / L_B \) ratios.

To date the largest study of galaxies with higher than average H i mass-to-light ratios is that of gas-rich low surface brightness dwarf galaxies by van Zee et al. (1997) and van Zee (2000, 2001), and references therein. This study included some galaxies with \(M_{HI} / L_B \) up to 7 \(M_\odot / L_{\odot, B} \), as well as more “normal” higher surface brightness dwarf irregular galaxies (excluding BCDs). Van Zee et al. (1997) found that the star formation
process in the low surface brightness and normal galaxies was inefficient, with the overall gas density well below the Toomre (1964) instability threshold. They measured some localized H i peaks that approached the threshold and found that these were associated with local star-forming regions. Many of the galaxies in the later studies (van Zee 2000, 2001) are isolated, with no neighbors found within ~200–400 kpc. Van Zee (2001) concluded that, unlike blue compact dwarfs, star formation within these galaxies was occurring at a slow, constant rate across the galaxy disk with few major concentrations of activity and that gas depletion timescales for these galaxies were on the order of 20 Gyr.

While many galaxies with relatively high M_{HI}/L_B have been found, many more have gone unnoticed, in part because of a bias toward optically selected samples and the limitations of past blind H i surveys. The H i Parkes All-Sky Survey (HIPASS) has provided the first ever blind survey of extragalactic neutral hydrogen in the local universe ($v_{\text{sys}} < 12–700$ km s$^{-1}$) over the entire southern sky (Barnes et al. 2001). One of its first products is the HIPASS Bright Galaxy Catalog (hereafter BGC, Koribalski 2001; Koribalski et al. 2004), which lists the 1000 H i brightest sources in the southern hemisphere (selected by H i peak flux density). This catalog gives us the opportunity to select interesting galaxies for detailed examination based on H i and optical properties, rather than entirely on optical characteristics.

Photometric and structural parameters for the BGC’s optical counterparts were obtained in 2002 from the Lyon-Meudon Extragalactic Database (LEDA, Paturel et al. 1997 and references therein) to study the statistical properties and various correlations of these galaxies. First estimates of H i mass-to-light ratios were obtained for 789 BGC galaxies that had mean photometric B-band apparent magnitudes in LEDA. Figure 1 shows the log (M_{HI}/L_B) distribution for these galaxies as a function of their absolute B magnitude:

$$M_{B,0} = m_B - A_B - 5 \log (D) - 25 \text{ mag},$$

where the galaxy distances, D (Mpc), were calculated from the Local Group velocities given in the BGC. Throughout this paper we adopt $H_0 = 75$ km s$^{-1}$ Mpc$^{-1}$.

Figure 1 shows a general trend for low-luminosity galaxies in the BGC to have high M_{HI}/L_B. The low-luminosity and low-M_{HI}/L_B region of Figure 1 is underpopulated, as optically faint galaxies with little gas (dwarf elliptical galaxies) are not detected by HIPASS. We note that overall dwarf galaxies (those with the lowest luminosity) have a large spread in H i mass-to-light ratios. The lack of high-M_{HI}/L_B bright galaxies, which should be easily detected, suggests that there is a physical limit to the H i mass-to-light ratio for a galaxy of a certain luminosity (stellar mass). Of the 148 galaxies in the BGC less luminous than $M_{B,0} = -16.5$ (hereafter referred to as dwarfs), 50 have $M_{\text{HI}}/L_B \geq 3$, $M_{\odot}/L_{\odot,B}$. Of these, seven galaxies have initial ratios greater than 10, $M_{\odot}/L_{\odot,B}$ and three have ratios in excess of 20, $M_{\odot}/L_{\odot,B}$. To understand the nature of these galaxies, their abundance of neutral hydrogen gas and low stellar content, we have started a multiwavelength study of the galaxies with the highest H i mass-to-light ratios in the southern sky, selected from the BGC. The filled circle in Figure 1 marks one of our sample galaxies, ESO 215-G?009, with $M_{\text{HI}}/L_B = 24 \pm 12$, $M_{\odot}/L_{\odot,B}$, the second largest ratio in the BGC.

In this paper, § 2 looks at what was previously known about ESO 215-G?009. Section 3 summarizes our observations. Sections 4 and 5 present the new results and properties of ESO 215-G?009, while § 6 contains the discussion. Section 7 gives our conclusions.

2. THE GALAXY ESO 215-G?009

ESO 215-G?009 was first cataloged on ESO(B) Atlas photographic plates (Lauberts 1982) and classified “?,” a potential galaxy. It is necessary to retain the full original designation for ESO galaxies (including question marks) because of confusions that can sometimes arise between objects (such as with ESO 174-G?001, ESO 174-G?001, and ESO 174-G?001). ESO 215-G?009 is a dwarf irregular galaxy with a very low surface brightness. Because of its low Galactic latitude, $b = 10.5$, Galactic extinction, $A_B = 0.95 \pm 0.15$ mag (Schlegel et al. 1998), is relatively high. Foreground star density in the field surrounding the galaxys is also high. No optical velocity is available to date. Lauberts & Valentijn (1989) measured a total blue magnitude of $m_B = 16.03 \pm 0.09$ mag from photographic plates. No previous H i observations are available other than those derived from HIPASS. Huchtmeier et al. (2001) published an M_{HI}/L_B for this galaxy (under the name KKs40) which was calculated using the H i flux density from an early public data release of HIPASS and the Lauberts & Valentijn (1989) photographic blue magnitude. They found a high M_{HI}/L_B of ~ 12, $M_{\odot}/L_{\odot,B}$, comparable to DDO 154. Unfortunately, their H i flux density is an underestimate, as the public data release spectrum is off center and does not cover the entire galaxy.

Table 1 summarizes the properties of ESO 215-G?009 from previous studies, values derived from those quantities, and some of the results of this study. Koribalski et al. (2004) measured a systemic velocity of $v_{\text{sys}} = 598 \pm 1$ km s$^{-1}$, a velocity width of $w_{20} = 83 \pm 3$ km s$^{-1}$, and an integrated H i flux density of $F_{\text{HI}} = 104.4 \pm 11.5$ Jy km s$^{-1}$. We adopt a distance to ESO 215-G?009 of $D = 4.2$ Mpc from the Local Group velocity of 312 ± 1 km s$^{-1}$ using $D = v_{\text{LG}}/H_0$ (see also § 6.3).
The proximity and isolation of ESO 215-G?009 make it an excellent candidate for a study of the nature of high H i mass-to-light ratio galaxies and of galaxy evolution in general. Using deep optical BVRI-band images and H i data of ESO 215-G?009 we will examine the stellar and H i distribution, stellar population, isolation, and the H i kinematics to search for the physical reasons why ESO 215-G?009 could maintain such a high fraction of H i gas, while other galaxies processed most of their gas into stars.

3. OBSERVATIONS AND DATA REDUCTION

The galaxy ESO 215-G?009 was observed in two different wavelength regimes. Optical photometry was obtained with the Australian National University (ANU) 2.3 m Telescope at the Siding Springs Observatory. H i line and radio continuum data were obtained with the Australia Telescope Compact Array (ATCA).

3.1. Optical Photometry

Optical BVRI-band (Cousins filters) images were taken as a series of 300 s exposures in 2002 April/June and 2003 May using the Nasmyth Imager (SIIt 1124×1024 thinned CCD). The imager has a circular field of view with a diameter of 6.6′ and a pixel size of 0.059. The total exposure time in the four bands is 50, 40, 30, and 30 minutes, respectively. The typical seeing in the final images for the different bands was ∼1.9, 1.9, 1.8, and 2.0, respectively, and most observations were taken at low air mass. Twilight sky flat fields in all bands and bias images were obtained at the same time. Several Landolt (1992) standard stars were taken together with shallow 120 s BVRI images of the galaxy field on a photometric night to perform the photometric calibration of the deeper images.

Data reduction and analysis was carried out with IRAF, using standard procedures. After overscan subtraction, bias subtraction, and flat fielding, individual 300 s images were registered to each other and the sky level was subtracted. The images for each band were then combined into a single image (to increase signal-to-noise ratio, remove cosmic rays, etc.) and the photometric calibration applied.

Foreground stars were removed by replacing them with the surrounding sky so that only the galaxy remained. Special care was taken to restore the light distribution under stars superposed onto the galaxy, using the mirror image from across the galaxies center. Figure 2 shows the resulting BVRI images before and after star subtraction. We measured the luminosity-weighted center of the galaxy (averaged between the four bands) to be at α, δ(J2000.0) = 10h57m29s, −48°10′07″(±2″), consistent with Lauberts (1982; see Table 1).

3.2. Radio Observations

H i line and 20 cm radio continuum observations of ESO 215-G?009 were obtained between 2002 June and 2003 March with the EW352, 750A, and 6A arrays for ∼12 hr each. The band was centered at a frequency of 1417 MHz with a bandwidth of 8 MHz, divided into 512 channels. The channel width is 3.3 km s⁻¹, and the velocity resolution is ∼4 km s⁻¹. The primary and secondary calibrators were PKS 1934–638 (14.88 Jy) and PKS 1215–457 (4.8 Jy), respectively.

Data reduction and analysis was performed with the MIRIAD, AIPS, and KARMA packages, using standard procedures. Channels with Galactic emission were discarded. After continuum subtraction, the H i data were Fourier-transformed using “natural” weighting and a channel width of 4 km s⁻¹. The data were cleaned and restored with a synthesized beam of 38″×35″. We measure an rms noise of 1.6 mJy per channel, close to the theoretical value. Primary beam correction was applied. H i moment maps were obtained using cutoffs of 4 mJy beam⁻¹ (H i distribution) and 6 mJy beam⁻¹ (mean velocity field and dispersion).

Low-resolution 20 cm radio continuum maps were produced using multifrequency synthesis and “natural” weighting, resulting in a synthesized beam of 18″×17″ and an rms of

Table 1

Property	Previous Value	Reference	This Paper
Names	ESO 215-G?009	Lauberts (1982)	
	HIPASS J1057–48	BGC	
	PGC 490287	LEDA	
	Kks40	Karachenteva & Karachentsev (2000)	
Center position	10h57m29.37	Lauberts (1982)	
α, δ (J2000.0)	–48°10′07″(±2″)	Optical: 10h57m29.9	
		H i: 10h57m300	
		−48°10′47″(±10″)	
Galactic coordinates, l, b	284'1, 10'5		
Systemic velocity, vsys	598 ± 1 km s⁻¹	BGC	
50% velocity width, w50	67 ± 2 km s⁻¹	BGC	
20% velocity width, w20	83 ± 3 km s⁻¹	BGC	
Local group velocity, vLG	312 ± 1 km s⁻¹	BGC	
Distance, D	4.2 Mpc		
Apparent R magnitude, mR	15.02 ± 0.09 mag	Lauberts & Valentijn (1989)	
Apparent B magnitude, mB	16.03 ± 0.09 mag	Lauberts & Valentijn (1989)	
Extinction, A_B	0.95 ± 0.15 mag	Lauberts & Valentijn (1989)	
Absolute B magnitude, M_B	–12.64 ± 0.4 mag	16.13 ± 0.07 mag	
H i flux density, FHI	104.4 ± 11.5 Jy km s⁻¹	BGC	
H i mass, M_HI	(4.3 ± 0.5) × 10¹⁰ Mʘ	BGC	
M_HI/L_B	24 ± 12 Mʘ/L☉, B	BGC + LEDA	
~0.13 mJy. Primary beam correction was applied. We do not find any radio continuum emission associated with ESO 215-G?009. We estimate the 20 cm flux density to be less than 1 mJy over the optical extent of the galaxy. To obtain the star formation rate we used the relation by Condon (1992) and Haarsma et al. (2000):

\[
\text{SFR} = 0.14D^2S_{20\text{cm}} M_\odot \text{yr}^{-1},
\]

where \(D\) is the distance in megaparsecs and \(S_{20\text{cm}}\) is the 20 cm radio continuum flux density in janskys. We calculate an upper limit to the star formation rate for ESO 215-G?009 to be \(\sim 2.5 \times 10^{-3} M_\odot \text{yr}^{-1}\).

4. OPTICAL PROPERTIES

Figure 2 shows the deep BVRI-band images of ESO 215-G?009 before and after subtraction of the foreground stars. A growth curve of the galaxy was measured for the star-subtracted images from the center in 2 pixel (~172) circular aperture rings to obtain the total intensity. We are confident that the sky background subtraction was successful, as the growth curves for all bands flattened out beyond the galaxy at around the same radius. From these the empirical apparent magnitude, effective radius, and effective surface brightness for each band were calculated. The main error for the apparent magnitude is the uncertainty in the background sky level. The derived B-band magnitude of \(m_B = 16.13 \pm 0.07\) mag (within 80'' of the center) is consistent with Lauberts & Valentijn (1989; see Table 1). The R-band magnitude of \(m_R = 14.38 \pm 0.11\) mag is however 0.64 mag brighter than that from Lauberts & Valentijn (1989). From \(m_B\) and our adopted distance, ESO 215-G?009 has an absolute magnitude of \(M_B = -12.9 \pm 0.2\) mag. The B luminosity is given by

\[
L_B = D^210^{10-0.4(m_B-M_B)} L_\odot,B,
\]

where the absolute solar B magnitude, \(M_{B,\odot}\), is taken as 5.48 mag (Bessell et al. 1998). We derive a B-band luminosity.

![Fig. 2.—Deep BVRI images of ESO 215-G?009 before and after subtraction of the foreground stars. East is to the left and north is up for all images in this paper.](image-url)
of $L_B = (2.3 \pm 0.4) \times 10^7 \ L_{\odot,B}$, a factor of ~ 80 below the median B luminosity of $1.9 \times 10^9 \ L_{\odot,B}$ for Sm/Im galaxies in Roberts & Haynes (1994).

We then obtain surface brightness profiles from all four bands, shown in Figure 3. A Sérsic profile (Sérsic 1968), which is a generalized version of an exponential profile, was fitted to all the surface brightness profiles. The Sérsic law, in terms of surface brightness $\mu(r)$, is defined by

$$\mu(r) = \mu_0 + 1.086(r/r_0)^n \ \text{mag arcsec}^{-2}, \quad (5)$$

where r is the radius from the center in arcseconds, μ_0 is the central surface brightness in magnitudes per square arcsecond, r_0 is the scale radius in arcseconds, and n is the shape parameter (where $n = 1$ gives an exponential profile). These profiles are not normally fitted to dwarf irregular galaxies as they commonly have clumpy H ii regions on top of an exponential disk, but as ESO 215-G?009 is much smoother than most late-type galaxies it is well described by a Sérsic model. The Sérsic fits were used to extrapolate beyond the detection limit to get the total apparent magnitude. The magnitudes are consistent with the empirical magnitudes derived from the total counts above the sky level, and the empirical values are adopted for the remainder of the paper. The radial extent of ESO 215-G?009 at an extinction-corrected B-band surface brightness of 26.6 mag arcsec$^{-2}$ (the Holmberg radius) is $57.6'$.

To the north in the optical images ($\sim 2.5'$ from the center) there is a diffuse patch of stars that may be related to star formation in the galaxy, which is on the eastern edge of the strongest peak in the H i distribution. Unfortunately, there is also a strong concentration of foreground stars on the eastern side of this patch, including the brightest star in the field, which makes the star subtraction here more difficult and increases the uncertainty for any luminosity determination.

Table 2 gives a summary of the photometric results obtained from these profiles. No Galactic extinction correction was
applied to the apparent magnitude and surface brightness. Column (1) gives the Cousins broadband filters used. Column (2) gives the empirically derived total apparent magnitude. Column (3) gives the total apparent magnitude as extrapolated from the Sérsic profile fit. Column (4) gives the central surface brightness. Column (5) gives the effective surface brightness, the average surface brightness out to the half light radius, and Column (6) gives the half light (effective) radius. Column (7) gives the radii out to \(\mu = 26.6 \text{ mag arcsec}^{-2} \) (which is the Holmberg radius in the \(B \) band, extinction corrected). Column (8) gives the Galactic extinction correction from Schlegel et al. (1998).

We obtained six colors from the photometry, which are shown at the end of Table 3 (discussed in § 6.6 below). From these colors it seems that ESO 215-G?009 is very red for a late-type galaxy, suggesting that the stellar population is older than that typically seen in dwarf irregulars (see discussion in § 6.4). Figure 4 shows the color profiles for each of these six color combinations.

5. RADIO PROPERTIES

5.1. \(\text{H} \ \alpha \) Structure

Figure 5 shows the \(\text{H} \ \alpha \) channel maps of ESO 215-G?009. \(\text{H} \ \alpha \) line emission was detected in the velocity range 547 to 647 km s\(^{-1}\). The emission has a resemblance to a slowly rotating gas disk, except that the pattern is not as sharply defined as might be seen in a larger disk (see the example in Giovanelli & Haynes 1988). In addition, the structure throughout the channels is not evenly distributed, but instead has several concentrations and voids. In particular, to the north of the galaxy center the gas has two strong peaks close to the systemic velocity, and to the southeast of the center a depression is visible around 609 km s\(^{-1}\). We find no companion galaxies within the ATCA primary beam (33\(^{\prime} \)) and the velocity range of 200–1300 km s\(^{-1}\).

Figure 6 shows the \(\text{H} \ \alpha \) spectra of ESO 215-G?009 as obtained from the HIPASS BGC and the ATCA. There is a resemblance to a double-horn profile, characteristic of a rotating disk, although the central dip is not pronounced (which may be partially due to the low inclination of the source). Notably, the ATCA spectrum is inconsistent with the single-dish result and measures a higher flux density. The HIPASS BGC flux density may be underestimated because of the large extent and high peak flux density of the source (see Barnes et al. 2001).

Figure 7 shows the integrated \(\text{H} \ \alpha \) distribution, the mean \(\text{H} \ \alpha \) velocity field, and the \(\text{H} \ \alpha \) velocity dispersion of ESO 215-G?009. From the \(\text{H} \ \alpha \) distribution we measure the dimensions of the \(\text{H} \ \alpha \) disk as 730\(^{\prime\prime} \times 640^{\prime\prime} \) (±40\(^{\prime\prime} \)) at a position angle of \(\text{P.A.} \approx 120^{\circ} \). Figure 8 shows the azimuthally averaged radial \(\text{H} \ \alpha \) density profile of ESO 215-G?009. The profile was measured with rings 10\(^{\prime\prime} \) wide, assuming an inclination of 36\(^{\circ} \) and P.A. = 119\(^{\circ} \) (§ 5.2). Here 1 Jy beam\(^{-1} \) km s\(^{-1}\) corresponds to a column density of 8.32 \times 10\(^{20} \) atoms cm\(^{-2}\). \(\text{H} \ \alpha \) can be traced out to a column density of ~5.0 \times 10\(^{19} \) atoms cm\(^{-2}\) at a radius of 370\(^{\prime\prime} \) ± 20\(^{\prime\prime} \). We obtain an \(\text{H} \ \alpha \) flux density of \(\text{F}_{\text{HI}} = 122\pm4 \) Jy km s\(^{-1}\). This is higher than the \(\text{F}_{\text{HI}} = 104.4\pm11.5 \) Jy km s\(^{-1}\) obtained in the BGC (Koribalski et al. 2004). Using the adopted distance of 4.2 Mpc we derive an \(\text{HI} \) mass of \(\text{M}_{\text{HI}} = (5.1\pm0.2)\times10^{10} \) M\(_{\odot}\). This is less than half the median \(\text{HI} \) mass of 1.27 \times 10\(^{10} \) M\(_{\odot}\) for Sm/Im galaxies in Roberts & Haynes (1994), but it is still well within the range of \(\text{HI} \) masses seen in this sample (see Table 3).

5.2. \(\text{H} \ \alpha \) Gas Dynamics

Overall the mean \(\text{H} \ \alpha \) velocity field (Fig. 7c) is remarkably regular, especially for a late-type galaxy, in which the velocity field is usually extensively disturbed (see examples in Côté et al. 2000; Stil & Israel 2002b). There are few asymmetries between the two sides of the galaxy. The last contour on the approaching side is closed, while the receding side contours are still open, which suggests the rotation curve on the approaching side may turn down. There is also some asymmetry across the major axis of the galaxy, most clearly seen in the channel maps (Fig. 5) around \(r_{\text{hel}} \sim 609 \) km s\(^{-1}\), where the southern portion of the galaxy curves around more than the northern portion. However, on the whole this is one of the most

Band	\(m_{F} \) (mag)	\(m_{\text{Sersic}} \) (mag)	\(\mu_{0} \) (mag arcsec\(^{-2}\))	\((\mu)_{\text{e}0} \) (mag arcsec\(^{-2}\))	\(r_{\text{e}0} \) (arcsec)	\(r_{26.6} \) (arcsec)	\(A_{G} \) (mag)
\(B \)	16.13 ± 0.07	16.03 ± 0.07	24.97 ± 0.03	25.48 ± 0.02	29.7 ± 0.6	57.6 ± 0.6	0.95 ± 0.15
\(V \)	14.89 ± 0.06	14.83 ± 0.06	23.65 ± 0.03	24.14 ± 0.02	28.3 ± 0.6	65 ± 2	0.73 ± 0.12
\(R \)	14.38 ± 0.11	14.31 ± 0.11	23.16 ± 0.02	23.64 ± 0.03	28.4 ± 0.6	68 ± 2	0.59 ± 0.09
\(I \)	13.76 ± 0.13	13.70 ± 0.13	22.91 ± 0.04	23.40 ± 0.04	33.9 ± 0.6	85 ± 10	0.43 ± 0.07

\(^{a} \) Galactic extinction not applied.
Through most of the galaxy the velocity dispersion (see Fig. 7d) is between about 4 and 10 km s$^{-1}$. In the central region around the stellar component of the galaxy, and extending to the north toward the strongest H i concentration, the velocity dispersion is largest. This is reflected in Figure 9, which shows the azimuthally averaged radial H i velocity dispersion profile of ESO 215-G?009. The velocity dispersion is highest in the center of the galaxy where the profile is peaked. In the outer galaxy the dispersion is lower, with a slightly declining profile. Figure 10 shows an H i position-velocity diagram along the major axis of ESO 215-G?009, emphasizing the symmetry between the approaching and receding sides of the galaxy. On the receding side there are two gaps in the gas distribution accompanied by a large spread in velocity. These features could be expanding bubbles, which have been recognized in other face-on galaxies (such as the large H i “superbubble” in M101, Kamphuis et al. 1991). They correspond to the low-density regions in Figure 7b to the southeast. There is no evidence of a central H i bar in Figure 10; however, a weak bar on the scale of the optical component of the galaxy would be difficult to pick up from this diagram with our current resolution.

We obtained a rotation curve from the mean H i velocity field of ESO 215-G?009 using the tilted ring algorithm in AIPS (Begeman 1989, ROCUR). Using all data within a radius of 5$, we derive the dynamical center of the galaxy at $\alpha = 11^{h}20^{m}00^{s}, 48^{\circ}10^{\prime}47^{\prime\prime}$ (±10$^{\prime\prime}$) and its systemic heliocentric velocity, $v_{sys} = 597 ± 1$ km s$^{-1}$. This is consistent with Koribalski et al. (2004), and the position agrees with that derived from the center of the stellar component. The center and systemic velocity were fixed for the fitting of the remaining parameters for which we used 12 rings of 35° width.

We found the position angle of ESO 215-G?009 to be constant with radius and over both receding and approaching sides at PA = 119° ± 2°, and thus it was fixed for the remainder of the fitting. The inclination angle i varied between 34° and 44° beyond 180° but remained mostly around 36° and was fixed at this angle to fit the rotation curve. The resulting rotation curve is shown in Figure 11.

Individual analysis of the approaching and receding sides of the galaxy revealed some differences. The inclination for the best fit to the outer part of the galaxy on the receding side was $i = 40° ± 6°$ (beyond 150°), while for the approaching side it was $i = 31° ± 4°$. Figure 11 includes the rotation curves for both sides fitted with the same inclination angle as the overall fit, 36°. There is a slight turn down on the approaching side, while the receding side continues rising slightly. Overall the three rotation curves are reasonably flat beyond 150°.

With $i = 36° ± 10°$ we find a rotational velocity of $v_{max} = 51 ± 8$ km s$^{-1}$ out to a radius of 370° ± 20° (~7.5 kpc). We derive a total dynamical mass of $M_{tot} = (4.5 ± 1.6) \times 10^{9} M_{\odot}$. This gives an H i to dynamical mass ratio of $M_{HI}/M_{tot} = 0.11 ± 0.04$, at the low end of what Roberts & Haynes (1994) found for Sm/Im galaxies (median value 0.15).

6. DISCUSSION

6.1. Comparing Optical and H i Properties

Using equation (1), we can now recalculate M_{HI}/L_{B} using the ATCA integrated H i flux density of 122 ± 4 Jy km s$^{-1}$, the B-band apparent magnitude of 16.13 ± 0.07 mag, and the Schlegel et al. (1998) Galactic extinction of 0.95 ± 0.15 mag. We derive an H i mass-to-light ratio for ESO 215-G?009 of 22 ± 4 M_{HI}/L_{B}. A large portion of the uncertainty is due to the uncertainty in the Galactic extinction. This is in good agreement with the preliminary ratio from the BGC of 24 ± 12 M_{HI}/L_{B}. To our knowledge ESO 215-G?009 has one of the highest (if not the highest) M_{HI}/L_{B} to be confirmed by accurate measurement to date for any galaxy system, being

![Table 3: Comparison of ESO 215-G?009 Properties with Those of Other Late-Type Dwarf Galaxies](image)
approximately double the M_{HI}/L_B of DDO 154 (Hoffman et al. 1993). Using $M_{\text{tot}} = (4.5 \pm 1.6) \times 10^9 M_\odot$ and $L_B = (2.3 \pm 0.4) \times 10^7 L_\odot$, the dynamical mass-to-light ratio is $M_{\text{tot}}/L_B = 200 \pm 110 M_\odot/L_\odot$, making ESO 215-G?009 an extremely dark matter–dominated galaxy. If we assume a stellar mass-to-light ratio of $\sim 1 M_\odot/L_\odot$, we estimate a baryonic mass to total mass ratio of $M_{\text{bary}}/M_{\text{tot}} = 0.12$.

Figure 7a shows that the H I envelope extends out much further than the main stellar component of the galaxy. For ESO 215-G?009 the H I gas can be traced out to $370'' \pm 20''$, while the Holmberg radius is only $57''6 \pm 0''6$ (at the extinction-corrected surface brightness of 26.6 mag arcsec$^{-2}$). Therefore, the gas extends to 6.4 ± 0.4 times the Holmberg radius, comparable to the extent of DDO 154 (Carignan & Purton 1998).

The brightest part of the central stellar region (see Fig. 2) is slightly elongated in a direction aligned much closer to the rotational minor axis ($\sim 40°$). As the galaxy is seen at a low inclination, this feature is potentially a weak central bar. The optical morphology of ESO 215-G?009 is otherwise rather smooth and featureless for a dwarf irregular, although its slightly mottled appearance in color images, the slowly rotating H I disk, and possible H II regions (see § 6.4) imply it is a late-type dwarf galaxy. The stellar distribution is located in the center of the H I disk at the position of a shallow depression in the H I distribution.

6.2. The Importance of Accurate Multiwavelength Measurements

To demonstrate the great uncertainties that can arise in determining H I mass-to-light ratios we will briefly discuss the Orion dwarf galaxy (H I 0542+05). In their initial study of H I envelopes around low-luminosity galaxies, van Zee et al. (1995) included 33 galaxies, mostly taken from the Uppsala General Catalog, which they believed to have high M_{HI}/L_B ($> 5 M_\odot/L_\odot$). One of these galaxies is the Orion dwarf, for which they derived an extreme M_{HI}/L_B of 84.1 M_\odot/L_\odot, using their measured Arecibo flux density of $F_{\text{HI}} = 74.16$ Jy km s$^{-1}$ and an extinction-corrected B magnitude of 17.1 mag. They did not discuss this galaxy further. The optical magnitude for this galaxy, and for many others objects in their sample, had been obtained by eye. Unfortunately, many were underestimates. Van Zee et al. (1997) state that “the catalogued magnitudes of these systems were a severe underestimate of their true luminosity (by ~ 1.5 mag); however, the revised values of M_{HI}/L_B are still more than a factor of 2 higher than typical for dwarf galaxies.” In later investigations (van Zee et al. 1996, 1997; van Zee 2000, 2001) no galaxies with $M_{\text{HI}}/L_B > 7 M_\odot/L_\odot$ were found. In addition, the Galactic extinction correction used for the Orion dwarf galaxy (~ 0.9 mag, Burstein & Heiles 1978, although it is not clearly stated) is possibly also a severe underestimate, as recent measurements give $A_B = 3.17 \pm 0.51$ mag (Schlegel et al. 1998), and Burstein & Heiles (1982) give 2.84 mag. They may have mistaken A_B for $E(B-V)$. Karachentsev & Musella (1996) performed the first CCD photometry on this galaxy, getting a new m_B of 15.7 mag and using an extinction of 2.7 mag derived $M_{\text{HI}}/L_B = 2.6 M_\odot/L_\odot$. Barazza et al. (2001) found a similar B magnitude of 15.41 mag. Combined with the rise in the Galactic extinction, this galaxy appears approximately 5 mag brighter than in van Zee et al. (1995), which means M_{HI}/L_B is overestimated by a factor of around 100. Using the Barazza et al. (2001) B magnitude, the Schlegel et al. (1998) Galactic extinction, and the H I flux density from HIPASS ($F_{\text{HI}} = 73 \pm 4$ Jy km s$^{-1}$), a more accurate H I mass-to-light ratio for the Orion dwarf (HIPASS J0545+05) is $0.9 \pm 0.5 M_\odot/L_\odot$.

Problems can also arise with the H I observations. O’Neil et al. (2000) find four galaxies in the range $10 M_\odot/L_\odot < M_{\text{HI}}/L_B < 50 M_\odot/L_\odot$ as part of an Arecibo follow-up of a group of low surface brightness galaxies, as well as six galaxies that deviated from the Tully-Fisher relationship. These were the first extragalactic observations taken after an upgrade at Arecibo. Later Chung et al. (2002) found that many of the galaxies observed by O’Neil et al. (2000) had been contaminated by other neighboring objects within the sidelobes (see Heiles et al. 2001).
Fig. 5.—H\textsc{i} channel maps of ESO 215-G7009. For display purposes we show channels smoothed to a velocity resolution of 8 km s-1. The contour levels are ± 3.15 ($\sim 3 \sigma$), 8.4, 15.75, 26.25, 42, and 63 mJy beam-1. The gray scale ranges from -6 to 95 mJy beam-1. Negative contours are marked with dashed lines. The cross marks the dynamical center of the galaxy. The synthesized beam is displayed in the bottom left corner of each panel. The central heliocentric velocity for each panel is displayed in the top left corner.
We conclude that to obtain accurate H I mass-to-light ratios it is vitally important that the H I flux density, the B-band apparent magnitude, and the Galactic extinction are well determined; error bars on all are essential and should always be quoted. Galaxies located near the Galactic plane, where the extinction is high and uncertainty increases, are particularly difficult and should be treated with extra care.

6.3. Other Uncertainties to Consider

How well do we know the distance to ESO 215-G?009? While we have adopted the Hubble flow distance to ESO 215-G?009 of 4.2 Mpc using the Local Group velocity in this paper, the relative uncertainty in such a distance can be large for nearby galaxies. This is mostly due to peculiar motions and the difficulty in measuring the Hubble constant in the local universe. Alternatively, we can calculate a distance from the baryonic Tully-Fisher relationship (McGaugh et al. 2000) by first estimating a baryonic mass for ESO 215-G?009 from the relationship given the galaxy’s rotation velocity of 51 ± 8 km s\(^{-1}\). We estimate \(M_{\text{bary}} = 2.1 \times 10^8\, M_\odot\). Given the H I flux density and the B-band apparent magnitude then ESO 215-G?009 would have to be at a distance of 2.6 Mpc to have this baryonic mass, almost half the Hubble flow distance. At the Hubble flow distance ESO 215-G?009 would lie above the baryonic Tully-Fisher relationship. Table 4 gives examples of the effect of this uncertainty on the main distance-dependent properties in this paper. It shows the derived quantities at both distances, with the quoted uncertainty accounting for all other sources of error. Uncertainty in the estimated distance can have a large effect on properties such as B-band luminosity and H I mass, both of which change by a factor of \(\sim 2.5\) between the two estimates. The baryonic Tully-Fisher distance was not adopted in this paper, as there is currently large uncertainty at the low-mass end of the relation.

Galactic dust extinction can strongly affect the final \(M_{\text{HI}}/L_B\) result, as we have seen in § 6.2. The relatively high Galactic extinction in the direction of ESO 215-G?009 and the large number of foreground stars may mean that we could ultimately miss some very faint components of the galaxy, and so underestimate the total apparent magnitude. There is also the question of whether the value of Galactic extinction we are using is completely wrong. The Schlegel et al. (1998) Galactic extinction is measured over large scales, and there may be smaller scale variation. The redder color of the galaxy may suggest stronger extinction than we are accounting for. To test this we looked at the extinction correction for galaxies in the surrounding field to see if there was a large extinction gradient in the area. We found that out to a radius of 1\(^\circ\) the variation was between 0.8 and 1.1 mag, within the uncertainties of the extinction at ESO 215-G?009’s position, and so we are confident that \(A_B\) is not too far from the Schlegel et al. (1998) value. However, we note that close to the Galactic plane the dust distribution can be patchy, and it is entirely possible that the extinction could be much higher at the position of ESO 215-G?009 than current measurements indicate.

Extinction from within ESO 215-G?009 itself must also be considered, as that may reduce the total light we receive and redden the galaxy. It is not possible currently to estimate what the dust extinction could be in this galaxy as internal extinction is poorly understood in dwarf irregular galaxies, though it is often assumed to be low. The inclination of the galaxy is quite low as seen from the rotation curve analysis, and assuming that most of the galaxy’s dust is in the plane of the H I, we find it unlikely that internal dust extinction has a large effect on the luminosity of ESO 215-G?009.

6.4. Stellar Population and Star Formation

The photometric colors (see end of Table 3) are all fairly red for a dwarf irregular galaxy, suggesting that ESO 215-G?009 contains a mainly old stellar population, which is uncommon in late-type galaxies. Parodi et al. (2002) find the mean color for late-type galaxies in their sample is \((B - R)_{\text{Late}} = 0.90\), while for the small number of early types in their sample it is \((B - R)_{\text{Early}} = 1.21\). Their reddest late-type galaxy is ESO 006-G001 with \(B - R = 1.24\), a galaxy they claim has an intermediate morphology (both late- and early-type). ESO 215-G?009’s value of \((B - R)_b = 1.39 \pm 0.22\) is closer to the colors of the dwarf ellipticals and the more extreme late-type dwarfs in the sample. The median \(B - V\) color for 210 Sm/Im galaxies in the Local Supercluster from Roberts & Haynes (1994) is 0.42. Again ESO 215-G?009 has a much redder color, \((B - V)_b = 1.02 \pm 0.21\). It should be noted that the uncertainties in these colors are quite high because of the position of the galaxy close to the Galactic plane. Unfortunately, these higher uncertainties due to Galactic extinction prevent us from performing a detailed analysis of the age and metallicity of the underlying stellar population.

Several of the color profiles (Fig. 4) show slight gradients between the inner and outer regions of the galaxy. The \((B - I)_b\), \((V - I)_b\), and \((R - I)_b\) profiles all have shallow but distinct positive gradients going out from the galaxy center, meaning that the outer region of the galaxy is redder than the center. \((B - V)_b\), \((B - R)_b\), and \((V - R)_b\) had mostly flat trends, with the first two turning slightly to the blue at the outer edges. Parodi et al. (2002) also find that dwarf galaxies often have a positive color gradient, with younger/bluer stars in the inner regions and the older/redder population in the outer regions. This is the opposite of larger spiral systems, where spiral density waves drive star formation in the outer disk and the central region is dominated by an older red bulge. Of the late-type galaxies in the Parodi et al. (2002) sample only eight show a positive gradient in \(B - R\), while a further eight showed a
flat profile and a few showed negative profiles. In this color ESO 215-G?009 also shows a mostly flat trend. It appears that there may be a slightly higher proportion of younger stars in the center of ESO 215-G?009, but as we do not see it in all colors this trend is unlikely to be strong. Van Zee (2001) find that color gradients in dwarf irregular galaxies in a quiescent phase (non-starbursting) are generally not as pronounced as those of starburst galaxies (such as BCDs, where there is strong star formation confined to a small central region).

During the star subtraction of the optical images (Fig. 2) several bright slightly extended objects close to the galaxy, which we believe are H\textsc{n} regions, were not removed. The two most prominent can be seen best in the B image, on the outer northeastern edge of the galaxy and close in on the northwestern side. These regions appear to be rather blue compared with the rest of the galaxy. However, they may be background galaxies or foreground features rather than H\textsc{n} regions associated with ESO 215-G?009. To try and confirm that these are indeed star-forming regions we examined the SuperCOSMOS H-alpha Survey (SHS) image of the field around ESO 215-G?009 (Hambly et al. 2001 and references therein). The image can be seen in Figure 12 with the contours from our 20 cm radio continuum observation of the field overlaid. The two regions mentioned show up distinctly as diffuse objects, while the main galaxy is barely visible at all. Two further diffuse regions are visible well beyond the optical galaxy and almost to the edge of the H\textsc{i} disk on the southeastern side. However, none of these diffuse regions in the H\textsc{i} image correspond to any of the 20 cm continuum sources in the field. All of these objects could be H\textsc{n} regions in ESO 215-G?009, but this needs to be confirmed with follow up spectra and H\textsc{α} imaging.

The upper limit for the star formation rate as derived from the 20 cm radio continuum flux density measurement within the optical galaxy region, $\sim 2.5 \times 10^{-3} \, M_\odot \, yr^{-1}$, is on the lower side even when compared with other quiescent dwarf irregular galaxies such as the sample of van Zee (2001). As is described...
in that paper, deriving a past star formation rate to compare with the present rate can be problematic for dwarf irregular galaxies. A rough estimate of the average past star formation rate for ESO 215-G?009 can be derived by dividing the total mass of stars formed by the length of time for which the galaxy has been forming stars, which can be expressed as (Tinsley 1980)

\[
\text{SFR}_{\text{past}} = \frac{\Gamma_B L_B}{T_{\text{sf}} (1 - R)} \, M_\odot \, \text{yr}^{-1},
\]

where \(\Gamma_B \) is the \(B \)-band stellar mass-to-light ratio in \(M_\odot / L_\odot B \). \(T_{\text{sf}} \) is the time for which the galaxy has been forming stars in years, and \(R \) is the recycling fraction (essentially the proportion of the stars formed within the galaxy that are no longer visible).

\(\Gamma_B \) is poorly understood for dwarf irregular galaxies (see van Zee 2001 and references therein), and as a conservative estimate we used \(\Gamma_B \sim 1 \, M_\odot / L_\odot B \) for ESO 215-G?009, although the actual value is probably higher given the seemingly older stellar population of the galaxy. For the other parameters in equation (6) we use the assumptions made in van Zee (2001) of \(T_{\text{sf}} = 13 \, \text{Gyr} \) and \(R = 0.33 \). Using \(L_B = (2.3 \pm 0.5) \times 10^7 \, L_\odot B \) we derive \(\langle \text{SFR} \rangle_{\text{past}} \sim 2.7 \times 10^{-3} \, M_\odot \, \text{yr}^{-1} \). Although this finding is uncertain, it is close to our upper limit for current star formation rate, suggesting either that star formation has been more or less constant throughout ESO 215-G?009’s history or that it may have been slightly higher in the past. It certainly implies that there have not been any major starburst events in ESO 215-G?009 during its history, consistent with the galaxy being spatially isolated and possibly never having interacted...
with another galaxy. The minimum gas depletion timescale for ESO 215-G?009 given the current star formation rate upper limit and using the same recycling fraction as above is \(\sim 300 \) Gyr.

6.5. The Star Formation Threshold

Kennicutt (1989, hereafter K89) and Martin & Kennicutt (2001, hereafter MK01) have found that gravitational instability may determine the star formation law for galactic disks. K89 found that a modified Toomre (1964) \(Q \) criterion, a simple thin-disk gravitational stability condition, could satisfactorily describe the star formation threshold gas surface densities in active star-forming galaxies. From this criterion they derived a critical gas surface density \(\mu_{\text{crit}}(r) \), given by (MK01):

\[
\mu_{\text{crit}}(r) = \alpha Q \frac{\sigma(r) \kappa(r)}{\pi G},
\]

where \(\sigma(r) \) is the gas velocity dispersion, \(\kappa(r) \) is the epicyclic frequency, and \(\alpha Q \) is a constant close to unity, which includes gravitational stability for a more realistic disk (i.e., thicker disk, embedded stellar population). K89 derive \(\alpha Q = 0.63 \) while for the MK01 sample (which was larger and had more detailed input parameters) they found \(\alpha Q = 0.69 \). If \(\mu_{\text{gas}}(r) \), the surface density of the gas in the disk, exceeds \(\mu_{\text{crit}}(r) \) then the disk will be unstable to axisymmetric disturbances and large scale star formation can occur. MK01 also found that the simple Toomre criterion breaks down in some circumstances, such as low shear rates and stellar bars, and that there may be a weak trend for late-type galaxies to have higher \(\alpha Q \).

We have examined the star formation threshold throughout ESO 215-G?009 as a function of radius to determine if a subcritical gas density is preventing the galaxy from large-scale star formation. The gas velocity dispersion \(\sigma(r) \) comes from our azimuthally averaged \(\text{H} \) velocity dispersion radial profile. The epicyclic frequency \(\kappa(r) \) can be determined from our \(\text{H} \) rotation curve using (MK01):

\[
\kappa^2(r) = 2 \left(\frac{V^2}{R^2} + \frac{V}{R} \frac{dV}{dR} \right) \text{ s}^{-2},
\]

where \(V \) is the rotation velocity in kilometers per second, and \(R \) is the radius in kilometers. The derivative was determined with a forward difference method. We have assumed \(\alpha Q = 1 \). Only the azimuthally averaged \(\text{H} \) surface density \([\mu_{\text{H}}(r)] \) was available for the gas surface density. We have made no estimate of the molecular hydrogen content (as was done in K89) for ESO 215-G?009 at this stage.

From these data we have estimated the ratio \(\mu_{\text{H}}(r)/\mu_{\text{crit}}(r) \) as a function of radius, which can be seen in Figure 13. Over all radii the ratio is less than the MK01 value of \(\alpha Q = 0.69 \), strongly suggesting that the \(\text{H} \) gas surface density of ESO 215-G?009 is not high enough to induce large-scale star formation within the disk. The profile is similar to the galaxies in both K89 and MK01 with low levels of star formation. However, the majority of those galaxies are early-type spiral galaxies (Sa to Sb), not dwarf galaxies. The exclusion of molecular gas from our estimate may have caused a significant underestimate of

Footnotes

1 Adjusted as in MK01.
Several regions of the galaxy have H I excitation are low). It is important to note also that, as MK01 mention, using the azimuthally averaged H I surface density may not be appropriate for ESO 215-G?009 or other dwarf irregular galaxies, so the only way to resolve this issue would be to obtain CO observations to estimate the H2 content (which may be problematic for ESO 215-G?009 if the metallicity and excitation are low). It is important to note also that, as MK01 mention, using the azimuthally averaged H I surface density may not be appropriate for galaxies like ESO 215-G?009, where the variation in density at a particular radius can be large. Several regions of the galaxy have H I densities much higher than the azimuthal average at their location (such as the region to the north of the galaxy center), and local densities may approach or exceed the threshold density.

6.6. Possible Causes of a High M_{HI}/L_B

Table 3 gives a summary of the major properties of ESO 215-G?009, and how they compare with literature values for “typical” late-type dwarf galaxies. Column (1) gives the property. Column (2) gives the value we have derived for ESO 215-G?009. Column (3) gives the typical range for this property in late-type dwarf galaxies as found in various literature sources. Column (4) gives the reference for the column (3) value, and column (5) gives the galaxy types within the sample from that reference. The results from Roberts & Haynes (1994) are given as the interquartile range for Sm and Im galaxies, while other results cover the full range of the sample given in the reference. When compared with the Roberts & Haynes (1994) sample, the total mass of ESO 215-G?009 is at the low end of the quartile range, and we can use this as an anchor point for comparing the other parameters. We see that the H I mass is also at the low end of the quartile range (along with other parameters not dependent on the luminosity) and in general is consistent with the literature values for late-type galaxies. However, along with ESO 215-G?009’s M_{HI}/L_B, parameters such as luminosity (and therefore absolute magnitude) and total mass-to-light ratio can differ from the typical dwarfs by an order of magnitude or more. Galaxies with such low luminosities/absolute magnitudes are still in other dwarf irregular samples (see Lee et al. 2003; Stil & Israel 2002a) but are generally among the outliers. This suggests that ESO 215-G?009 has a normal H I content for its type but is underluminous.

ESO 215-G?009 shows no signs that it has been perturbed by a neighbor. No nearby galaxies were found within the H I data cube. We searched the field around the galaxy in LEDA out to approximately 13.6 (1 Mpc at our assumed distance of 4.2 Mpc) within the velocity range 200 km s$^{-1}$ < v_{sys} < 1300 km s$^{-1}$. We found nine galaxies, all with M_B < −17.5 mag, all but one being a late-type spiral or irregular. Only one galaxy, ESO 264-G035, had a systemic velocity close to ESO 215-G?009’s of v_{sys} = 770 km s$^{-1}$, which is still much higher than ESO 215-G?009’s velocity. Karachentsev et al. (2002) include ESO 215-G?009 (KSs 40) in their list of galaxies around the Centaurus A group (26.16 away). While this is the nearest group, assuming that they are the same distance from us (the Cen A group is ~4 Mpc away, Jerjen et al. 2000), then ESO 215-G?009 is well outside the group at a projected distance of 1.9 Mpc. From our current knowledge of the field around it ESO 215-G?009 is a very isolated system. If ESO 215-G?009 were still in its first episode of collapse that may explain why it has been able to hold onto its H I. For the rotational velocity at the outer edge of the H I disk (see § 5.2) the dynamical timescale of ESO 215-G?009 is 9.1 × 10^8 yr. This is a much shorter timescale than a Hubble time and is similar to that which van Zee et al. (1996) found for UGC 020 (~8 × 10^8 yr). For most of the galaxies in van Zee et al. (1995) the free fall timescale was less than ~7 × 10^8 yr. In contrast, Giovannelli et al. (1991) investigated the dynamically young “evolving” system H I 1225+01 and found the free-fall timescale to be on the order of 5 × 10^9 yr and the dynamical timescale to be even longer (~1 × 10^10 yr). This suggests that ESO 215-G?009 is not currently in the process of collapsing for the first time. Instead, van Zee et al. (1996) suggest that this indicates the evolution process has been inhibited in some way.

This possibility is supported by the stellar population, which suggests that while some star formation is continuing today the majority of stars in ESO 215-G?009 are from past star formation events. It certainly is not undergoing any vigorous star formation activity currently, and the past star formation rate suggests that it may never have undergone such a phase. The stellar population and star formation rate (present and past) are consistent with the galaxy having a low, more or less constant star formation rate since its formation. As the galaxy shows no sign of disturbance, a slow, constant star formation rate is also consistent with the isolation of the galaxy. Finally, the analysis of H I gas surface density compared with the star formation threshold density derived from the Toomre stability criterion shows that gas density is probably too low for efficient star formation, although further analysis of ESO 215-G?009’s molecular gas content and of the validity of this criterion in dwarf irregulars is required. Verde et al. (2002) propose that if angular momentum is conserved during gas contraction, low-mass dark matter halos may form Toomre stable disks and therefore remain “dark” galaxies with little star formation. ESO 215-G?009 is potentially such a galaxy, and if these dark galaxies do exist in sufficient numbers, it could go some way to explain the current discrepancy between observed galaxy counts and the predictions from theoretical models such as ΛCDM.
7. CONCLUSIONS

In summary, we have examined the optical and radio properties of the gas-rich low surface brightness dwarf irregular galaxy ESO 215-G?009. We find that:

1. ESO 215-G?009 does have an unusually high $M_{H\alpha}/L_B$ of $22 \pm 4 \ M_\odot/L_\odot,B$. To our knowledge this is the highest $M_{H\alpha}/L_B$ for a stellar system to be confirmed by accurate measurement to date.

2. The $H\alpha$ disk extends well beyond the stellar distribution, 6.4 ± 0.4 times the Holmberg radius ($r_{26.9}$ in the B band) at a column density of $\sim 5.0 \times 10^{19}$ atoms cm$^{-2}$.

3. The galaxy is very isolated, with no neighbors identified out to 1 Mpc.

4. Optical colors suggest that the stellar population is older than is usually found in dwarf irregular galaxies. Some shallow positive color gradients are observed between the inner and outer parts of the optical galaxy, suggesting that there are slightly more younger stars in the center of the galaxy. However, the large uncertainty caused by the high Galactic extinction prevents further analysis of the underlying stellar population.

5. ESO 215-G?009 has a relatively normal $H\alpha$ content for a late-type dwarf galaxy but is underluminous.

6. Star formation in ESO 215-G?009 is currently low and may have remained relatively constant throughout the galaxy’s existence.

REFERENCES

Barazza, F. D., Binggeli, B., & Prugniel, P. 2001, A&A, 373, 12
Barnes, D. G., et al. 2001, MNRAS, 322, 486
Begeman, K. G. 1989, A&A, 223, 47
Bessell, M. S., Castelli, F., & Plez, B. 1998, A&A, 333, 231
Bothun, G. D., Impey, C. D., Malin, D. F., & Mould, J. R. 1987, AJ, 94, 23
Bureau, M., Freeman, K. C., Pfützner, D. W., & Meurer, G. R. 1999, AJ, 118, 2158
Burstein, D., & Heiles, C. 1978, ApJ, 225, 40
———. 1982, AJ, 87, 1165
Carignan, C., & Purton, C. 1998, ApJ, 506, 125
Chengalur, J. N., Giovannelli, R., & Haynes, M. P. 1995, AJ, 109, 2415
Chung, A., van Gorkom, J. H., O’Neil, K., & Bothun, G. D. 2002, AJ, 123, 2387
Condon, J. J. 1992, ARA&A, 30, 575
Côté, S., Carignan, C., & Freeman, K. C. 2000, AJ, 120, 3027
Giovanelli, R., & Haynes, M. P. 1988, in Galactic and Extragalactic Radio Astronomy, ed. G. L. Verschuur & K. I. Kellermann (New York: Springer), 522
Giovanelli, R., Williams, J. P., & Haynes, M. P. 1991, AJ, 101, 1242
Haarsma, D. B., Partridge, R. B., Windhorst, R. A., & Richards, E. A. 2000, ApJ, 544, 641
Heiles, C., et al. 2001, PASP, 113, 1247
Hambly, N. C., et al. 2001, MNRAS, 326, 1279, http://www-wfau.roe.ac.uk/sw/halpfa
Hoffman, G. L., Lu, N. Y., Salpeter, E. E., Farhat, B., Lamphier, C., & Roos, T. 1993, AJ, 106, 39
Huchtmeier, W. K., Karachentsev, I. D., & Karachentseva, V. E. 2001, A&A, 377, 801
Impey, C. D., & Bothun, G. D. 1989, ApJ, 341, 89
Jerjen, H., Freeman, K. C., & Binggeli, B. 2000, AJ, 119, 166
Kamphuis, J., Sancisi, R., & van der Hulst, T. 1991, A&A, 244, L29
Karachentsev, I. D., & Musella, I. 1996, A&A, 315, 348
Karachentsev, I. D., et al. 2002, A&A, 385, 21

Karachentseva, V. E., & Karachentsev, I. D. 2000, A&A, 146, 359
Kennicutt, R. C. 1989, ApJ, 344, 685 (K89)
Koribalski, B. S. 2001, in ASP Conf. Proc. 240, Gas and Galaxy Evolution, ed. J. E. Hibbard, M. Rupen, & J. H. van Gorkom (San Francisco: ASP), 439
Koribalski, B. S., et al. 2004, AJ, 128, 16
Landolt, A. U. 1992, AJ, 104, 340
Lauberts, A. 1982, ESO-Uppsala Survey of the ESO(B) Atlas (Garching: ESO)
Lauberts, A., & Valentijn, E. A. 1989, The Surface Photometry Catalogue of the ESO-Uppsala Galaxies (Garching: ESO)
Lee, H., McCall, M. L., Kingsburgh, R. L., Ross, R., & Stevenson, C. C. 2003, AJ, 125, 146
Martin, C. L., & Kennicutt, R. C. 2001, ApJ, 555, 301 (MK01)
McGaugh, S. S., Schombert, J. M., Bothun, G. D., & de Blok, W. J. G. 2000, ApJ, 533, L99
Meurer, G. R., Carignan, C., Beaulieu, S. F., & Freeman, F. C. 1996, AJ, 111, 1551
Meurer, G. R., Mackie, G., & Carignan, C. 1994, AJ, 107, 2021
O’Neil, K., Bothun, G. D., & Schombert, J. 2000, AJ, 119, 136
Parodi, B. R., Barazza, F. D., & Binggeli, B. 2002, A&A, 388, 29
Paturel, G., et al. 1997, A&AS, 124, 109, http://cismbdm.univ-lyon1.fr/~leda/Roberts, M. S., & Haynes, M. P. 1994, ARA&A, 32, 115
Schlegel, D. J., Finkbeiner, D. P., & Davis, M. 1998, ApJ, 500, 525
Sérén, J.-L. 1968, Atlas de galaxias australes (Cordoba: Obs. Astron.)
Stil, J. M., & Israel, F. P. 2002a, A&A, 388, 29
———. 2002b, A&A, 389, 42
Tinsley, B. M. 1980, Fundam. Cosmic Phys., 5, 287
Toomre, A. 1964, ApJ, 139, 1217
van Zee, L., Haynes, M. P., & Giovanelli, R. 1995, AJ, 109, 900
van Zee, L., Haynes, M. P., Salzer, J. J., & Broeils, A. H. 1996, AJ, 112, 129
———. 1997, AJ, 113, 1618
Verde, L., Oh, S. P., & Jimenez, R. 2002, MNRAS, 336, 541

7. The H i surface density of ESO 215-G?009 may be too low for the galaxy to efficiently form stars if the Toomre stability criterion determines the star formation threshold.

We are grateful for the assistance of Ken Freeman and Lister Staveley-Smith in this project, especially for their detailed comments on this paper before submission. We would like to thank Agris Kalnajs for his assistance with the star formation threshold analysis and Frank Briggs for his suggestions for H i flux density calculation. We would also like to thank the anonymous referee for useful comments. The 2.3 m telescope is run by the Australian National University as part of Research School of Astronomy and Astrophysics. The Australia Telescope Compact Array and the Parkes Radio Telescope are part of the Australia Telescope which is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO. This research has made use of the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. The Digitized Sky Survey (DSS) was produced at the Space Telescope Science Institute under US Government grant NAGW-2166, based on photographic data obtained using the UK Schmidt Telescope.