BDDT-SCC: A Task-parallel Runtime for Non Cache-Coherent Multicores

Alexandros Labrineas¹, Polyvios Pratikakis¹, Dimitrios S. Nikolopoulos², and Angelos Bilas¹

¹ Foundation for Research and Technology - Hellas
² Queens University of Belfast

Abstract. This paper presents BDDT-SCC, a task-parallel runtime system for non cache-coherent multicore processors, implemented for the Intel Single-Chip Cloud Computer. The BDDT-SCC runtime includes a dynamic dependence analysis and automatic synchronization, and executes OpenMP-Ss tasks on a non cache-coherent architecture. We design a runtime that uses fast on-chip intercore communication with small messages. At the same time, we use non coherent shared memory to avoid large core-to-core data transfers that would incur a high volume of unnecessary copying. We evaluate BDDT-SCC on a set of representative benchmarks, in terms of task granularity, locality, and communication. We find that memory locality and allocation plays a very important role in performance, as the architecture of the SCC memory controllers can create strong contention effects. We suggest patterns that improve memory locality and thus the performance of applications, and measure their impact.

Keywords: Scheduling, Task Parallelism, Runtime System, Distributed Memory

1 Introduction

The rising core counts of modern processors trend towards hundreds of cores in the near future. However, the performance of cache-coherent shared memory does not scale well with the number of cores, leading to systems with high core counts that have either expensive cache-coherent, non-uniform memory access (cc-NUMA) or no cache-coherence at all [1][2][3]. The Single-chip Cloud Computer (SCC) is a manycore processor that represents this trend. It consists of 48 cores, placed in a tile formation with two cores per tile. Tiles are connected by a mesh, which also links with four memory controllers that address the external system memory. The memory address space can be either private to each core or shared by all cores, although access to shared memory is not cache coherent. As there is no OS that can currently use such a manycore processor, the SCC cores are completely independent: each core runs an individual OS.

Programming such systems requires careful consideration of memory allocation, layouts, locality and access patterns, as not all memory accesses are equally expensive. The common abstraction of shared memory can greatly hurt performance and even break program correctness (for non cache-coherent systems). More importantly, this trend seems to continue strong in the future: recent work from Intel predicts future manycores will not have fully coherent caches [25] and will require a change in runtimes and operating system design.
Traditional threaded programming is not portable in future manycores. Implicit communication between threads using shared memory does not work through non-coherent memories and can hurt performance on cc-NUMA memory. Moreover, clusters and systems like the SCC require explicit communication among cores, which is complex for the programmer to handle. For these reasons, the “threads & shared memory” model is not suitable for these systems. Conversely, task-parallel programming models are better fit for such architectures because they lift the effort required for explicit communication from the programmer to the runtime system.

Task-based parallelism is expressed via annotations in the code that identify certain procedure calls as concurrent tasks. This is a more abstract way to express parallelism. The programmer describes all parallelism without having to manually manage thread or process communication and execution. The runtime extracts the best parallelism automatically according to the system load and the available hardware resources.

Parallel programs require synchronization mechanisms to produce correct executions. In early task parallel systems [6,7,8], the programmer must use such mechanisms to avoid conflicting memory accesses. Recent task-parallel systems introduce implicit synchronization using dependence analysis to order task execution and avoid conflicts [9,10,11,12,13]. In contrast to statically expressed parallelism, dynamic dependence analysis only synchronizes tasks that actually have conflicting memory footprints allowing the runtime to discover more parallelism. However, existing task-parallel runtimes target either shared-memory multiprocessors [6,14,9] or clusters of nodes that communicate over a network [7,11], both very different architectures to non-coherent manycores like the SCC.

Overall, this paper makes the following contributions:

– We design and implement BDDT-SCC, a task-parallel runtime system with implicit synchronization, for the SCC, a non-coherent manycore architecture.

– We evaluate BDDT-SCC using a set of representative benchmarks and find that memory contention and task granularity play a very important role in the scalability of the benchmarks.

2 The SCC processor

Figure 1 shows the architecture of the SCC many-core processor [15]. The SCC chip consists of 48 cores, placed in a tile formation with two cores in each tile. Each core has a unique ID ranging from 0 to 47. A 6×4 mesh connects the tiles to each other and to four memory controllers that address the external system memory. Each core has a private L1 instruction cache of 16KB, a private L1 data cache of 16KB and a private unified L2 cache of 256KB. Each dual-core tile has 16KB of SRAM dedicated to message passing. This amounts to an on-chip message-passing buffer (MPB) of 8KB for each core. The MPBs are memory-mapped and accessible from all cores. The chip features extensive frequency and voltage control on a per tile and voltage island basis. For all measurements in this paper the cores are clocked at 533MHz, the mesh network at 800MHz and the memory controllers at 800MHz.

The SCC processor uses four Memory Controllers (MCs) to address off-chip memory. The controllers addresses external DRAM using a physical-to-physical translation through programmable LUTs. By default, each core gets a separate partition of the available DRAM and runs a separate instance of the Linux kernel. The on-chip LUTs
can also be programmed so that all cores in the SCC can physically address a set of shared 16MB pages, split among the four memory controllers. These can be memory-mapped by user-level processes running on separate cores so that they share up to 512MB of DRAM. However, the SCC does not implement cache coherency, so it is the programmer’s responsibility to flush the write-combine buffers (equivalent to a write fence) and invalidate the caches (equivalent to a read fence) of cores that access shared memory so that written values become visible to readers correctly.

3 Design and Implementation

3.1 Programming model

BDDT-SCC, like BDDT, implements the OmpSs programming model for the SCC processor. In OmpSs, the programmer specifies function calls as tasks to be spawned using compiler pragma directives. A master core executes the main program and creates tasks to be executed in parallel by worker cores. The programmer also specifies task footprints as memory address ranges or multidimensional array tiles. Every task argument is described with a specific data access attribute, corresponding to three access patterns: read (IN), write (OUT) and read/write (INOUT). Dynamic analysis uses these attributes to discover task footprints that overlap in memory and detects dependencies between tasks.

Unfortunately, the 512MB shared-memory configuration of the SCC overlaps some physical pages used by the Linux kernel of four cores causing these kernels to panic. We omit the crashed Linux kernel cores from our benchmarks.
To detect dependencies, BDDT-SCC performs block-level dependence analysis on the task arguments, similarly to BDDT. The block-level dependence analysis uses a custom allocator to split all allocated memory into blocks and discovers task dependencies by detecting whether any arguments of any two tasks contain the same block.

Every task spawned by the application creates a new task instance which goes through four stages in the runtime:

- Task initiation, in which the master creates a new task descriptor, detects its dependencies and either adds it to the task graph to wait for its arguments, or marks it as ready to run if it has no dependencies.
- Task scheduling, in which the master assigns a ready task to an available worker.
- Task execution, in which the worker runs the task to completion on its specified arguments and marks it as complete.
- Task release, in which the runtime removes any dependencies on the completed task —possibly creating new ready tasks— and recycles its descriptor data.

For example, the lower left part of Figure 2 shows a task dependency graph with two immediately ready tasks (T1 and T2) and four dependent tasks (T7, T8, T9 and T10) that cannot run before T1 and T2 have completed.

3.2 Memory Management

Within BDDT-SCC, each instance of a spawned task corresponds to a task descriptor: a struct that includes a reference to the spawned function, its arguments, and a representation of the task footprint. To keep track of tasks throughout their lifetime, BDDT-SCC inserts each task descriptor into an appropriate data structure. The ready queue of the master core contains descriptors of tasks that are ready to run but have not been scheduled for execution to any of the worker cores. The completion queue of the master core contains task descriptors of executed tasks, whose dependencies are not yet released. The task graph of the master core contains descriptors of tasks with unresolved data dependencies, that cannot be executed before these dependencies are
released. BDDT-SCC allocates the ready queue, completion queue and task graph in the master core’s private memory.

In the example of Figure 2, tasks T1 and T2 are in the completion queue of the master core after they are finished executing on workers 1 and 2 and before their dependencies have been released. When the dependencies of T1 are released, tasks T7 and T8 enter the ready queue of the master. When T2 is released, T9 and T10 enter the ready queue of the master.

BDDT-SCC allocates a queue of task descriptors per worker core. We allocate a task queue as an array in each worker’s Message-Passing Buffer. As all cores’ MPBs are accessible from all other cores, the master core writes directly to each worker’s MPB to enqueue tasks to that worker’s queue or collect tasks that have finished executing. Note that each MPB consists of 512 32-byte cache lines and writing a single byte in an MPB will update all 32 bytes of that cache line. So, we align task descriptors to MPB cache lines to avoid false sharing among the master and worker cores.

For example, the middle part of Figure 2 shows the message-passing buffers of two worker cores. In MPB of worker 1 the master core has scheduled tasks T1, T3 and T5, whereas in MPB of worker 2 the master core has scheduled T2, T4 and T6. In the state shown, when tasks T1 and T2 finish executing at workers 1 and 2, they are marked as complete. Then, the master core will collect T1 and T2 into its completion queue and reuse their position in MPBs 1 and 2.

Unlike task queues and runtime metadata, application data is often much larger than the available on-chip memory. This means that core-to-core message passing of application data will result in DRAM-to-core (cache misses), synchronous core-to-core communication, and core-to-DRAM (cache evicts) communication. Instead, BDDT-SCC allocates all application data in SCC shared memory, using a custom slab allocator. For instance, the right part of Figure 2 shows the contents of a task descriptor. Each argument of the task references several blocks of data allocated in the shared memory.

3.3 Task initiation

To spawn a new task, BDDT-SCC allocates and initializes a new task descriptor. To avoid the overhead of allocating and deallocating task descriptors and also improve the locality and cache performance of the runtime system, BDDT-SCC uses a pre-allocated memory pool of task descriptors and recycles deallocated tasks. If there are no free task descriptors, the master core blocks until a task is complete. After creating a new task descriptor, the BDDT dependence analysis detects any data dependencies between the new task and previous tasks. If the new task depends on existing tasks that have not completed yet, its task descriptor is added to the dependence graph to wait until all the dependencies are resolved. If there are no dependencies, then the task is ready to run.

To detect dependencies, BDDT-SCC uses the BDDT block-based dependence analysis. In short, BDDT-SCC uses a custom allocator to split the application memory into memory blocks and keeps metadata for each block. The runtime creates block metadata for each task that operates on any given block and uses the metadata to order tasks that use the same data. When a task is first in this ordering for all the blocks of its argu-

4 An early version of the runtime used solely message passing; we found this scenario caused unnecessary memory traffic, limiting performance.
ments, it has no dependencies and it is ready to run. For details on the BDDT block dependence analysis, we refer the reader to the corresponding technical report [17].

3.4 Task scheduling

The master core can be in one of two modes: (i) running, or (ii) polling. Initially in running mode, the master core starts executing the main program and schedules spawned tasks that are immediately ready to worker cores. To schedule a task to a worker core in this mode, the master core tries to append the task to the task queue in the worker’s MPB. To do that, the master keeps a local index of the next available entry in the MPB queue for each worker and checks the state of this entry. If the entry is empty, the master writes the task descriptor in that entry. If the entry holds a completed task, the master enqueues the completed task in the completion queue and replaces it with the ready task. If the next available entry is full, the master adds the task to a local queue of ready tasks and continues with main program execution. This way, the master never blocks at a spawn and will resume the application execution until either all tasks are spawned and it reaches a synchronization point, or it runs out of task descriptors.

At all points where the execution of the main program blocks, the master enters the polling mode. This can happen at synchronization points, which include explicit barriers and the end of the main program, or during task creation, if there are no available task descriptors. During its polling mode, the master performs three functions: (i) It removes ready tasks from the ready queue, as long as it is not empty, and schedules them; (ii) it polls the queue entries of each worker to discover task descriptors marked as completed; and (iii) it removes completed tasks from the completion queue and releases their dependencies.

When on polling mode, scheduling is similar to that on running state. The master appends the descriptor to the next available entry. However, if this entry is full, the master does not return the task back in the ready queue as during the running mode, but continues with the next worker. If all worker queues are full the master dequeues a completed task from its completion queue, releases its dependencies and then retries scheduling of the first task.

3.5 Task execution

To execute a scheduled task, the worker core reads the next ready task descriptor from its local MPB and executes the task. Task execution is simply a call of the task function on the task arguments. The task arguments are allocated in the external shared memory and are thus accessible by all cores. Note that the shared memory is cacheable, but the SCC caches are not coherent. Thus, BDDT-SCC requires every worker core to invalidate its L2 cache before task execution and flush it after it, to make the task output visible to all subsequent tasks running on other cores and maintain program correctness.

After the worker executes the task function, it marks the task descriptor as completed in the worker’s MPB buffer task queue and continues with the next ready task in the queue. To avoid a race between the master and the worker on the MPB task queue of the worker, we use L1 invalidation as a read barrier and flushing the write-combine buffer as a write barrier. Specifically, the worker invalidates its L1 cache before polling for a task in the remote MPB. This communication is asynchronous: the master core writes directly to the remote MPB without blocking or interrupting the worker.

5 This communication is asynchronous: the master core writes directly to the remote MPB without blocking or interrupting the worker.
each task entry in the queue, and flushes its write-combine buffer after changing a task descriptor from \textit{ready} to \textit{completed}. Conversely, the master invalidates its L1 cache before reading a worker’s queue. As an optimization, the master does not flush its write-combine buffer after putting a ready task in a worker’s queue. This may mean that the worker will not observe the transition from \textit{completed} to \textit{ready} or from \textit{empty} to \textit{ready} for that entry immediately. That is not an issue, however, since it can only cause the worker to poll its queue again.

3.6 Task release

The master core locates completed tasks in workers’ task queues during scheduling of newer ready tasks, or during polling its mode. To avoid extending the critical path, the master core does not process the completed tasks immediately, but collects them in its completed queue, recycling that space in the workers’ queues into new task descriptors. When the master core idles because all worker queues are full, it has reached a barrier, or it needs to recycle the task resources, it iterates the completed queue and lazily releases the completed tasks’ dependencies. Releasing a completed task decrements a dependency counter for each of its dependent tasks. If a counter reaches zero, the master removes the newly ready task from the dependency graph and marks it as ready to run.

4 Evaluation

4.1 Core Placement

The SCC architecture results in a different latency for accessing DRAM depending on a core’s distance from the respective memory controller \cite{18,19}. We measured the impact of the latency difference using a microbenchmark that repeatedly accesses a 16MB array allocated to take exactly one shared memory page managed by controller 0. Figure 3 shows the total execution time depending on how many hops away the core running the microbenchmark was from the controller. Similarly, the MPB access latency varies depending on the core’s distance from the respective MPB.

We took the variable latency into account when placing the cores in BDDT-SCC, so that (i) the master core is one of the middle cores, having almost uniform distance from all memory controllers and worker cores, and (ii) each worker core is placed as close as possible to the master. Therefore, every additional worker has higher communication cost with the master and its distance from the memory controllers deviates from uniform. For instance, a configuration with 31 workers uses all the cores of one with 30 workers, plus an additional core that is as close to the master as possible.
We placed the master at core 16, one of the middle cores on the SCC (cores 16, 17, 18 and 19 in Figure 1). This position minimizes the maximum distance to worker cores to 5 hops and the sum of hops from the master to all remote MPBs at full chip utilization to 120 hops. Similarly, the closest memory controller is 4 hops away from the master and the furthest is 5 hops away. The total distance from the master core to all memory controllers is 18 hops. Placing the master at any other position results into a higher number of total hops and increases the runtime’s communication overhead.

We found that the latency for accessing DRAM increases with the number of cores performing concurrent accesses. We use the same microbenchmark to measure the impact of concurrent memory accesses through the same memory controller. Figure 4 shows the total execution time (y-axis) of the microbenchmark run on a reference core, while the same microbenchmark is running on various other cores (x-axis). We select the reference core to be the most distant (9 hops) from the memory controller 0 as a worst-case scenario. The total execution time on the reference core increases with the number of accessing cores, due to contention effects at the memory controllers. This effect does not occur at the default configuration of the SCC, where each core has access to a disjoint part of the physical memory, accessible only via the nearest memory controller. With shared-memory, however, contention effects become more pronounced, as all cores access all memory controllers.

4.2 Benchmarks

We use 5 well-known applications to evaluate the runtime. *Black-Scholes* is a financial application; we use a data set of 2M options, split into tasks of 512 options. *Matrix Multiply* is a tiled parallel implementation of matrix multiplication; we used $1K \times 1K$ floats, split into 64×64 tiles. *Fast Fourier Transform* computes the FFT of a 2D matrix; we used 1M complex doubles, split into blocks of 32 rows at the transformation phase and 32×32 tiles at the transposition phase. *Jacobi Method* computes a Jacobian determinant; we used $4K \times 4K$ floats, split into 512×512 tiles, for 16 iterations. *Cholesky Decomposition* computes a matrix factorization; we used $2K \times 2K$ doubles, split into 128×128 tiles. All applications except for *Black-Scholes* have task dependencies. Some benchmarks have small, concentrated datasets that fit within the shared-memory segment of a single memory controller. This creates strong contention effects when all cores access memory through the same memory controller. In these cases, we use padding and non-unit strides during allocation, to distribute application data across all memory controllers as uniformly as possible.

4.3 Results

Figure 5 shows the execution time (left y-axis) and scalability (right y-axis) for each benchmark. The x-axis shows the number of worker cores used (i.e., we do not count the master core). We show the performance of the original, sequential program at point 0. The sequential program runs at the master core and allocates all its memory at the nearest memory controller. We exclude initialization time from all measurements and report total time of parallel execution. Black-Scholes and Matrix Multiply scale to $16 \times$ and $33 \times$ speedups, respectively, compared to the sequential execution.

For each application, we present execution time breakdowns for the worker cores. We break down the execution of each worker in three parts: (i) time waiting the master
(a) Black-Scholes
(b) Matrix Multiply
(c) Fast Fourier Transform
(d) Jacobi
(e) Cholesky

Fig. 5. Benchmark execution time and speedup

(idle), (ii) time spent in application code, and (iii) time spent for L2 cache flush and invalidation. Figure 6 shows the cumulative breakdowns for all participating cores. FFT, Jacobi and Cholesky feature strong memory contention effects. The cumulative time spent in application code grows as core count increases, since each individual memory access or cache miss costs more.
Figure 6 shows the load balance per worker for the configuration with 43 workers for each benchmark. Again, we show the breakdown of the total time spent by each worker, into: (i) time waiting the master (idle), (ii) time spent in application code, and (iii) time spent for L2 cache flush and invalidation. Note that idle time in the workers is always caused by too fine a task granularity, where the master cannot spawn and schedule tasks fast enough to keep all workers busy.
Black-Scholes scales linearly to all the available worker cores (Figure 5(a)). However, its speedup is not equal to the number of cores, due to the high flush time to execution time ratio (Figure 6(a)). In this case the master core is idle most of its time, waiting for the workers to finish. Black-Scholes also produces a very balanced schedule, where all workers perform an almost equal amount of work (Figure 7(a)).
Similarly, Matrix Multiply scales proportionally to the number of workers (Figure 5(b)), achieving better speedup than Black-Scholes as the constant overhead of cache flushing is minimal compared to execution time (Figure 6(b)). Matrix Multiply is also very well balanced, with all workers performing an almost equal amount of work. On the other hand, the rest of the applications do not exhibit similar scalability. In all cases, their scalability is limited by the memory contention effects shown above.

FFT scales to 16 worker cores (Figure 5(c)), with performance being almost unaffected by a larger number of workers. Figure 6(c) demonstrates the effect of contention: the total execution time increases with the number of workers because memory accesses become more expensive, although the total actual work remains the same. The flush time is also slightly affected by the same contention effect, although the number of flushes is constant, equal to the total number of tasks. Also, the total idle time starts increasing when the number of workers reaches 10, indicating that the master core is not fast enough to serve all workers beyond that point. This also affects load balancing (Figure 7(c)), as the master core cannot keep up with workers that execute faster tasks.

Similarly, Jacobi and Cholesky reach a maximum speedup at 22 worker cores (Figures 5(d) and 5(e)). Again, this is a combination of memory contention that increases the total task execution time with the number of workers, although the total work remains the same (Figures 6(d) and 6(e), and also of the master becoming a bottleneck at 13 and 3 worker cores, respectively, increasing the worker’s idle time. In turn, this reduce the load balancing of the problem for high core counts (Figures 7(d) and 7(e), as the master cannot schedule more tasks fast to workers that finish early.

5 Related Work

Task-parallel programming models have risen as a high-level alternative to thread programming. Task-parallelism allows the programmer to specify scoped regions of atomic code without specifying synchronization or communication during a task. Early task-parallel programming models do not perform dependence analysis or implicit synchronization [8,6,20,7]. Recent task-parallel systems add either static [21,13] or dynamic dependence analysis [22,23,11]. Most systems target shared memory architectures, where cache-coherency automates most of the communication, or clusters, where everything is communicated through message-passing. In comparison, BDDT-SCC targets the SCC, a manycore processor without cache coherency or asynchronous message-passing communication, although all cores can share physical memory.

The SCC processor relaxes hardware cache-coherency to improve scalability and energy consumption [12,41,8,15]. Early runtimes treat the SCC as a message-passing system [16,25], use distributed and cluster languages to program it [26], or implement software cache-coherency [27]. However, these approaches fail to take advantage of the non-coherent shared memory of the SCC and also the granularity of tasks that does not require coherence traffic for individual loads and stores.

6 Conclusions

We present BDDT-SCC, a runtime system for executing task-parallel programs written in the OmpSs programming model on the SCC. We demonstrate that BDDT-SCC scales up to a factor of 33× in applications where the memory traffic is balanced.
over the four memory controllers of the chip and the tasks’ footprint features good cache locality (i.e., Matrix Multiply). We found that applications with dense, stencil computations reach a scalability limit due to strong memory contention effects before taking full advantage of the chip. We conclude that task-parallel programs can take advantage of non cache coherent architectures such as the SCC manycore processor through careful consideration of locality and data placement, and load balancing of data across memory controllers. We project that scalability could be greatly improved by (i) a mechanism for asynchronous bulk communication between processors, lifting the limit of 8KB through-MPB messages; (ii) hardware support for fine-grained management of the cache, reducing the amount of cache misses and consequently contention effects: the SCC uses an older P54C core that does not support L2 partial flushing or separate invalidation. Overall, the SCC performs better on data-parallel applications and coarse-grained parallel programs. Although fine-grained parallelism has greater potential for speed-up, in our current design, a too-fine granularity could make scheduling tasks the bottleneck, limiting scalability.

References

1. Howard, J., et al.: A 48-core ia-32 message-passing processor with DVFS in 45nm cmos. In: Solid-State Circuits Conference Digest of Technical Papers (ISSCC). (2010) 108–109
2. Carter, N.P., Agrawal, A., Borkar, S., Cledat, R., David, H., Dunning, D., Fryman, J., Ganev, I., Golliver, R.A., Knauerhase, R., Lethin, R., Meister, B., Mishra, A.K., Pinfold, W.R., Teller, J., Torrellas, J., Vasilache, N., Venkatesh, G., Xu, J.: Runnemede: An architecture for ubiquitous high-performance computing. In: HPCA. (2013)
3. Lyberis, S., Kalokairinos, G., Lygerakis, M., Papaefstathiou, V., Tsaliagkos, D., Katevenis, M., Pnevmatikatos, D., Nikolopoulos, D.: Formic: Cost-efficient and scalable prototyping of manycore architectures. In: FCCM. (2012)
4. Lyberis, S.: Myrmics: A Scalable Runtime System for Global Address Spaces. PhD thesis, University of Crete (August 2013)
5. Knauerhase, R., Cledat, R., Teller, J.: For extreme parallelism, your os is sooooo last-millennium. In: HotPar. (2012)
6. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., Zhou, Y.: Cilk: an efficient multithreaded runtime system. In: PPoPP. (1995)
7. : The sequoia programming language. http://http://sequoia.stanford.edu
8. Dagum, L., Menon, R.: OpenMP: An industry-standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5 (January 1998)
9. Tzenakis, G., Papatriantafyllou, A., Vandierendonck, H., Pratikakis, P., Nikolopoulos, D.: BDDT: Block-level dynamic dependence analysis for task-based parallelism. In: APPT. Lecture Notes in Computer Science (2013)
10. Pop, A., Cohen, A.: OpenStream: Expressiveness and data-flow compilation of OpenMP streaming programs. TACO 9(4) (January 2013) 53:1–53:25
11. Bauer, M., Treichler, S., Slaughter, E., Aiken, A.: Legion: expressing locality and independence with logical regions. In: SC. (2012)
12. Pratikakis, P., Vandierendonck, H., Lyberis, S., Nikolopoulos, D.S.: A programming model for deterministic task parallelism. In: MSPC. (2011)
13. Jenista, J.C., Eom, Y.H., Demsky, B.: OoOJava: Software out-of-order execution. In: PPoPP. (2011)
14. Duran, A., Ayguade, E., Badia, R.M., Labarta, J., Martinell, L., Martorell, X., Planas, J.: OmpSs: A proposal for programming heterogeneous multi-core architectures. Parallel Processing Letters 21(02) (2011) 173–193
15. Intel Labs: SCC external architecture specification (2010)
16. van der Wijngaart, R.F., Mattson, T.G., Haas, W.: Light-weight communications on intel’s single-chip cloud computer processor. SIGOPS Oper. Syst. Rev. 45(1) (February 2011) 73–83
17. Tzenakis, G., Papatriantafyllou, A., Zakkak, F., Vandierendonck, H., Pratikakis, P., Nikolopoulos, D.S.: BDDT: Block-level dynamic dependence analysis for deterministic task-based parallelism. Tech Report 426, FORTH (February 2012)
18. Intel Labs: The SCC programmer’s guide (2012)
19. Mattson, T.G., Riepen, M., Lehning, T., Brett, P., Haas, W., Kennedy, P., Howard, J., Vangal, S., Borkar, N., Ruhl, G., Dighe, S.: The 48-core scc processor: the programmer’s view. In: SC. (2010)
20. Reinders, J.: Intel threading building blocks. First edn. O’Reilly & Associates, Inc., Sebastopol, CA, USA (2007)
21. Best, M.J., Mottishaw, S., Mustard, C., Roth, M., Fedorova, A., Brownword, A.: Synchronization via scheduling: Techniques for efficiently managing shared state. In: PLDI. (2011)
22. Pérez, J.M., Badia, R.M., Labarta, J.: Handling task dependencies under strided and aliased references. In: International Conference on Supercomputing. (2010)
23. : SMP Superscalar (SMPSs) v2.3 User’s Manual. (2010)
24. Baron, M.: The single-chip cloud computer
25. Ureña, I.A.C., Riepen, M., Konow, M., Gerndt, M.: Invasive mpi on intel’s single-chip cloud computer. In: International Conference on Architecture of Computing Systems, ARCS’12 (2012)
26. Chapman, K., Hussein, A., Hosking, A.L.: X10 on the single-chip cloud computer: porting and preliminary performance. In: ACM SIGPLAN X10 Workshop. X10’11 (2011)
27. Kim, J., Seo, S., Lee, J.: An efficient software shared virtual memory for the single-chip cloud computer. In: Asia-Pacific Workshop on Systems, APSys’11 (2011)