Prioritizing COVID-19 vaccination efforts and dose allocation within Madagascar

Fidisoa Rasambainarivo 1,2, Tanjona Ramiadantsoa 3,4,5, Antso Raherinandrasana 6,7, Santatra Randrianarisoa 2, Benjamin L. Rice 1,8, Michelle V. Evans 5, Benjamin Roche 5, Fidiniaina Mamy Randriatsarafara 7,9, Amy Wesolowski 10 and C. Jessica Metcalf 1,11.

1. Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
2. Mahaliana Labs SARL, Antananarivo, Madagascar
3. Department of Life Science, University of Fianarantsoa, Madagascar
4. Department of Mathematics, University of Fianarantsoa, Madagascar
5. MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France
6. Surveillance Unit, Ministry of Health of Madagascar
7. Faculty of Medicine, University of Antananarivo
8. Madagascar Health and Environmental Research (MAHERY), Maroantsetra, Madagascar
9. Direction of preventive Medicine, Ministry of Health of Madagascar
10. Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
11. Princeton School of Public and International Affairs, Princeton University, NJ, USA

Abstract

Background: While mass COVID-19 vaccination programs are underway in high-income countries, limited availability of doses has resulted in few vaccines administered in low and middle income countries (LMICs). The COVID-19 Vaccines Global Access (COVAX) is a WHO-led initiative to promote vaccine access equity to LMICs and is providing many of the doses...
available in these settings. However, initial doses are limited and countries, such as Madagascar, need to develop prioritization schemes to maximize the benefits of vaccination with very limited supplies. There is some consensus that dose deployment should initially target health care workers, and those who are more vulnerable including older individuals. However, questions of geographic deployment remain, in particular associated with limits around vaccine access and delivery capacity in underserved communities, for example in rural areas that may also include substantial proportions of the population.

Methods: To address these questions, we developed a mathematical model of SARS-CoV-2 transmission dynamics and simulated various vaccination allocation strategies for Madagascar. Simulated strategies were based on a number of possible geographical prioritization schemes, testing sensitivity to initial susceptibility in the population, and evaluating the potential of tests for previous infection.

Results: Using cumulative deaths due to COVID-19 as the main outcome of interest, our results indicate that distributing the number of vaccine doses according to the number of elderly living in the region or according to the population size results in a greater reduction of mortality compared to distributing doses based on the reported number of cases and deaths. The benefits of vaccination strategies are diminished if the burden (and thus accumulated immunity) has been greatest in the most populous regions, but the overall strategy ranking remains comparable. If rapid tests for prior immunity may be swiftly and effectively delivered, there is potential for considerable gain in mortality averted, but considering delivery limitations modulates this.

Conclusion: At a subnational scale, our results support the strategy adopted by the COVAX initiative at a global scale.
Introduction

The COVID-19 pandemic has resulted in a global health crisis resulting in an estimated 198 million cases and 4.2 million deaths (as of 31 July 2021) globally [1]. Until recently, non-pharmaceutical interventions, including social distancing, mask wearing, and travel restrictions were the primary mitigation measures. However, the development, approval, and distribution of several highly effective COVID-19 vaccines has resulted in a new era of public health response. The overall impact of mass vaccination on the global pandemic will depend on access to vaccines and ability to rapidly vaccinate populations [2]. There has been global competition to procure COVID-19 vaccines, and many low and middle income countries (LMICs) have been less successful than richer countries in securing vaccines [3] despite the COVAX initiative. COVAX is a World Health Organization (WHO) led initiative to promote vaccine access equity to LMICs and is set up to provide enough doses to immunize 20% of the population through distribution of multiple smaller batches [4]. Such efforts have provided essential baseline doses to LMICs, but even with vaccines in hand, countries face a number of logistical challenges. Some COVID-19 vaccines have extreme cold chain requirements and relatively short vaccine shelf-life that adds difficulties in avoiding vaccine wastage [4]. Likewise, achieving equity in vaccine coverage is always affected by heterogeneity in access to care [5] and may be further complicated by vaccine hesitancy [6]. However, many LMICs have more recent experience with mass vaccination campaigns (e.g., polio, measles) [7], which may provide an advantage in implementation relative to wealthier settings where mass vaccination campaigns have been less frequent in recent history.

Policy makers in LMICs face the central question of how COVID-19 vaccine doses should be allocated among populations in the face of these constraints and considerations of burden. So far, mathematical models developed to address the question of vaccine dose allocation have
predominantly focused on the tradeoffs between prioritizing younger high contact individuals
(which would reduce transmission) vs older high risk individuals (which would reduce mortality
on infection). Previous work suggests that priority should be given to healthcare workers (HCW)
and then to older adults, in line with rankings and guidelines provided by the WHO [8–10].
However, it should also be considered that focusing on distribution across age may neglect
other drivers of inequity, such as geography and ethnicity [11]. For LMICs, a further important
issue is local availability of personnel who can deliver doses, as numbers of HCWs may be
limited.

Here, we explore the question of how regional vaccine dose distribution might be designed to
minimize the burden of COVID-19 in Madagascar in the light of these features. We leverage
data collected as part of a dashboard (www.covid19mg.org) that collates official reported cases
of COVID-19 and census information. To date, Madagascar has officially reported a total of x
cases and y deaths since March 20th 2020. Most cases (x) and deaths (y) are reported from the
capital region of Analamanga, also the most populated region in the country with approximately
3 620 000 people representing 14% of the population. However, there is considerable
uncertainty as to the burden of the disease on the Malagasy population to date, especially in
rural areas where reporting rates are likely to be low and limited access to testing [12]. As prior
infection by SARS-CoV-2 does generate immunity likely to be protective [13] against disease if
not reinfection [14, 15], subnational variation in the trajectory of the pandemic to this point could
influence the dose deployment strategy among regions that minimizes burden. However,
inevitable uncertainties call for a focus on vaccine deployment efforts that are robust in the face
of this underlying subnational variation rather than hinging on its characteristics.

On April 3rd 2021, Madagascar initiated the necessary steps to re-join COVAX and distributed
the first doses of vaccines to healthcare workers and vulnerable populations on May 10th. As of
July 20th 2021, 197 000 doses of an initial batch comprising 250 000 ChAdOx1-nCOV (Covishield™) vaccines were administered representing 0.73% of the national population (ourworldindata.org). These doses were distributed between the 22 different regions based on population size of each region. To inform the next steps in vaccine dose allocation strategies in Madagascar, we synthesize data on the regional distribution of elderly population and the number of reported cases and deaths in the country. Building from this background, we develop a mathematical model to investigate the optimal vaccine deployment strategy in the context of realistic constraints for mass vaccination campaigns based on health care worker availability, and known features of the burden of infection over age. We contrast four possible strategies for distribution based on a) population size, b) number of individuals over 60 years old, c) the number of reported cases, and d) the number of COVID-19 deaths by region. These strategies weigh different factors, i.e. those most at risk versus areas with the highest burden of the disease, and allow for a comparison of implementable strategies by weighing the overall number of deaths averted through each approach. Since deployment of vaccines to areas that had experienced large-scale outbreaks in the first waves of the infection might be less beneficial than deployment to less affected regions as a result of existing immunity in the population, we also evaluate sensitivity of our predictions to underlying susceptibility in the population, and explore the potential of rapid tests for seropositivity to guide vaccine distribution and avert mortality.

Methods

Data sources: demography, HCWs, and SARS-CoV-2 case distribution

Regional population size and age distribution were obtained from the 2018 census (Madagascar Institute of Statistics, INSTAT). The number of healthcare workers in each region was obtained.
from UNICEF database for Madagascar. SARS-CoV-2 cases and COVID-19 deaths were obtained from a dashboard (www.covid19mg.org) which compiles data communicated by the Ministry of Health on a daily basis. These data comprise PCR-confirmed cases, deaths per region as well as the number of tests performed nationally. Using these data, we ranked each region based on the size and the age distribution of the population and the number of healthcare workers in the region on the one hand and the situation with regards to the COVID-19 epidemic (officially reported cases and deaths) on the other hand.

SARS-CoV-2 transmission model of Madagascar

We constructed an age-structured, stochastic SEAIR (susceptible, exposed, asymptomatic infection, symptomatic infection, and removed) transmission model by expanding previous work [16, 17] (see Supplementary figure S1). With this model, we simulated the trajectory of SARS-CoV-2 cases in each of the 22 regions of Madagascar under different assumptions about vaccination deployment among the regions (detailed below). For each region, the demography (age-structure and population size) was defined based on INSTAT statistics described above, while contact matrices were based on the social mixing patterns in the Mozambican population [18], since there is no contact matrix data available for Madagascar. We set R0 (the number of new infections per infectious individual in a completely susceptible population) to 2.5 as in [16] and simulated our model for a year. To quantify the burden of infection, we used the age-specific mortality risk (infection fatality rate by age) [19, 20], and each vaccination scenario was compared to a ‘no vaccination’ scenario. We explored a range of different starting proportions of the population susceptible, to reflect potentially varied histories of infection in each region. We initiated the outbreak by seeding 10 individuals in each region.
To compare the impact of varying vaccine distribution among the 22 regions of Madagascar on total mortality, we assumed that the country received a single batch of COVID-19 vaccines that was sufficient to vaccinate 20% of the population. In our baseline scenario, we assume that 70% of those eligible for vaccination, regardless of age, will accept to be vaccinated with their full scheduled doses (Transparency International, unpublished). We initially do not assume that any information regarding previous infection status would be available, i.e. individuals who were previously infected may be vaccinated. The vaccine is assumed to work uniformly across age groups and be transmission and infection blocking with an efficacy of 76%, chosen to approximate the clinical vaccine efficacy against symptomatic infection seen for the ChAdOx1 nCoV-19 (AZD1222) [21, 22]. Finally, we assume that 50% of healthcare workers in each region would be mandated to vaccinate 20 people a day, based on experience of vaccination programs in Antananarivo. Vaccination follows an oldest-first strategy where vaccines are administered to individuals aged 60 years or older first. After all accepting individuals in the eligible group are vaccinated, individuals from the next (younger) age group are vaccinated and so on until all available doses are administered.

We then considered five allocation strategies of available doses:

1. Doses are distributed to regions uniformly (each region receives 4.5% of available vaccines)
2. Doses are distributed to regions based on population size (pro-rata),
3. Doses are allocated based on the distribution of people aged over 60 years between the regions (age),
4. Doses are distributed to regions based on the number of cases reported (cases),
5. Doses are distributed to regions based on the number of deaths reported (deaths)
The number of cases and deaths per region was obtained from the Madagascar COVID-19 dashboard (www.covid19mg.org) which collates the reported confirmed cases and deaths per region daily. For each allocation strategy, we then estimated the number of deaths and compared this value to a scenario without vaccination to calculate the number of averted deaths.

For each allocation strategy, we also varied the number of total doses available nationally (from 0 to 26 million covering 0-100% of the population), the vaccine acceptance rate (from 0-100%), the speed of rollout which is equivalent to the number of vaccinators per region (10-100% of healthcare workers in the region) and when the vaccination campaign began (0-200 days).

To investigate the effect of any potential existing immunity from prior infections, we considered two sets of initial conditions. In the first instance we assumed that 100% of the population was susceptible, all locations included at least 10 infected individuals, and the vaccination campaign would begin soon after the beginning of the simulation (within 10 days). In the second instance, we assumed that there is a baseline level of population-level immunity based on a uniform value for the entire country (0 - 40%) or proportional to reported cases (0-20%, see Supplementary Information).

To assess the benefit of targeting seronegative individuals through rapid testing, we included age-stratified seroprevalence and simulated different approaches to vaccine distribution.

Results

Considering either population size, number of health-care workers (Figure 1A,B), number of reported cases, or numbers of confirmed deaths (Figure 1C,D) provides broadly similar overall
priority rankings of regions (colours), with the region of Analamanga (AN, which contains the capital city, Antananarivo), consistently ranking highest, and the smaller, less densely populated regions (e.g., MK: Melaky) ranking lower.

Figure 1: Demography, distribution of health care workers, SARS-CoV-2 cases, and deaths across Madagascar. A) The ranking for vaccine distribution based on the population size and number of healthcare workers per region. B) Using the population size and number of healthcare workers, each of the 22 regions was prioritized with regions with a large population size and high number of healthcare workers ordered first (yellow) and those with the smallest population size and number of healthcare workers ranked last (purple). The size of the point corresponds to the proportion of people over 60 years old. C) In contrast, the rankings for regions based on D) the number of confirmed SARS-CoV-2 cases (March 20, 2020 – July 30, 2021) based on the number of reported cases and confirmed COVID-19 deaths. Regions would receive doses first if they had the largest reported outbreaks (yellow) and last (purple) if they
had few reported cases and deaths. The size of points indicates the number of healthcare
workers per capita.

To probe this simple ranking by additionally evaluating the underlying dynamics of infection and
vaccine distribution, we simulated five different vaccine distribution scenarios among the 22
regions of Madagascar assuming availability of a single batch of vaccines sufficient to vaccinate
20% of the population, and distributing doses uniformly (uniform), based on population size
(pro-rata), the distribution of older individuals, defined as individuals 60+ years of age (age),
reported cases (cases), and deaths (deaths). As expected based on Figure 1, there was a
strong correlation between the strategies, and in all scenarios, Analamanga (the region
containing the capital city) receives the largest number of vaccines (Figure 2) since it is the
highest in all categories considered. We note that this initial prioritization assumes equal starting
population immunity, further evaluated below.
Figure 2: The proportion of total doses distributed by region. Assuming that the total vaccine supply is 20% of the entire population, we explored various distribution strategies. The proportion of doses per region is shown based on each prioritization scheme: (A) doses are distributed to regions based on population size (pro-rata), (B) doses are allocated based on the distribution of people aged over 60 years between the regions (age), (C) doses are distributed to regions based on the number of cases reported (cases), (D) doses are distributed to regions based on the number of deaths reported (deaths).
Figure 3 - The estimated reduction in mortality for each vaccine allocation strategy. The reduction in mortality by allocation strategy for A) stochastic simulations assuming vaccine acceptance of 70%, rollout speed where 50% of health care workers were mandated to vaccinate 20 people a day, start day of 10 days following initial seeding event, and the number of total doses equals 20% of the population; B) by varying the total vaccine supply (other assumptions assumed to be the base scenario, see Materials and Methods); C) using a range of vaccine acceptance rates; D) various roll out speeds; and E) the start date of vaccination. The median and 50 stochastic simulations are shown per sensitivity analysis.
Overall, under the baseline scenario modeled (Figure 3A, assuming enough doses to immunize 20% of the population using a 76% efficacious vaccine with an acceptance rate of 70%, and assume that the population is fully susceptible at the start), any vaccination allocation strategy reduces the estimated number of deaths by 30-40% (Figure 3), and allocating available vaccines between regions based on the population size (pro rata) or the distribution of elderly generally outperform the other strategies (up to 10% more, Figure 3A). This is consistent across a spectrum of vaccine supply, vaccine acceptance, and speed of vaccine rollout (Figure 3B-D). The pro rata distribution of vaccines between regions or allocating doses according to the regional distribution of older people outperform distribution according to numbers of cases (or deaths) since all else equal, weighting by numbers of older individuals (which correlates with number of individuals) targets doses towards the most vulnerable [8]. As this quantity correlates with the number of Health Care Workers across regions (Figure 1B), formally modeling dose delivery does not reverse this relationship. However, if the vaccination campaign starts relatively late during the outbreak, all strategies perform equally to reduce mortality compared to a scenario without vaccination (Figure 3E) as the gains are relatively slight at this stage.
Figure 4: The impact of baseline population-level seropositivity on the reduction in mortality. A) The reduction in mortality by allocation strategy if population seropositivity varies between 0-40%. Two scenarios were considered: if seropositivity was distributed uniformly (solid) and by the reported number of cases (dashed lines). To avoid more than 100% seropositivity in regions with the highest number of reported cases, the case distribution maximum population-level seropositivity explored was 20% (see Supplementary Information). B) We further explored strategies where only susceptible individuals arrived at vaccination sites (dotted line) versus those with no prior information about immune status (solid line) for a range
of seropositivity values (distributed uniformly). Vaccinating only susceptible individuals has the
greatest reduction in mortality. C) We also investigated if testing at a vaccination site was done
prior to vaccination with only seronegative individuals vaccinated (dotted line) or no prior
information about immune status (solid line). These two scenarios performed similarly.

As the impact of previous waves of SARS-CoV-2 (www.covid19mg.org) on population immunity
is not completely characterized [23], we evaluate two extreme scenarios: even levels of existing
immunity across the country (Figure 4A, solid lines, assuming for simplicity that seropositivity
and immunity are equivalent), and levels of immunity defined by reported numbers of cases
(Figure 4A dashed lines). As population immunity increases (Figure 4A, x axis) the proportion of
deaths averted relative to a scenario of no vaccination declines since fewer vaccines are
delivered to individuals who are susceptible; however, the pro-rata and population based
allocation still out-perform the other strategies. Allocation by cases and deaths performs much
worse if it is assumed that immunity is distributed according to population or deaths, since
doses are then targeted predominantly to the regions with lower proportions of susceptible
individuals due to existing immunity (Figure 4A, pink and purple dashed lines fall fastest).

Rapid testing for sero-status (indicative of immunity) is a potential strategy to direct the
deployment of doses towards those who more urgently require vaccination, as they lack prior
natural immunity. We explore this by evaluating the percentage of deaths averted if only
susceptible individuals are vaccinated (Figure 4B). By contrast with a scenario where vaccine
doses are distributed uniformly (Figure 4B, dashed lines), when only susceptible individuals are
vaccinated, the percent of deaths averted relative to the no-vaccination case increases with the
proportion of the population initially immune (Figure 4B, dotted lines, gains of up to 40%), since
vaccines are targeted to those who need them. However, this scenario requires all individuals to
know their immune status prior to going to the health centres for vaccination (and the serological
tests to be perfect), which is likely to be unrealistic. If, instead, we assume that testing occurs at
health centres, thus consuming some proportion of available health care worker time, and
slowing down the overall speed of vaccination (although still assuming the tests are perfect),
this strategy outperforms distribution regardless of serostatus; however, initial gains in terms of
deaths averted drop off as the proportion of the population immune increases (Figure 4C, dotted
lines start falling at around 25% of the population immune). The gains eventually even fall below
the percent of deaths averted under the uniform distribution of doses once the proportion
seropositive is greater than 30%, since so many individuals will be turned away from health
centres.

Discussion

High levels of SARS-CoV-2 transmission continues to cause a global public health crisis. Mass
vaccination of populations is the most effective strategy to prevent unnecessary morbidity and
mortality. However, limited global vaccine supplies compel countries to prioritize among
populations, and to do so in the context of an array of logistical constraints (expiration dates,
healthcare worker availability, cold chains, etc.). Here, we use a stochastic age-structured
model to identify dose allocation strategies that have the potential to minimize COVID-19 related
deaths in Madagascar given vaccines provided by the COVAX initiative, and accounting for
health care worker distribution across the country.

At a subnational scale, our results support a regional distribution strategy based on
demographic parameters (population size) to allocate available doses of SARS-CoV 2 vaccines
in order to achieve the highest reduction in mortality. A distribution policy based on the
population size of each region is intuitively appealing as it is equitable and straightforward to
implement. Indeed, pro-rata distribution of critical medicines has been used during a number of previous health crises. For example, during the 2009 H1N1 pandemic, the US Health and Human Services Pandemic Influenza Plan recommended that the different states of the USA receive pandemic vaccines in proportion to the size of its population. Additionally, researchers found that a simpler pro-rata allocation of antiviral drugs is as effective as optimal strategies targeting specific high risk groups in each region, and easier to implement [24, 25].

Given that Madagascar has now experienced multiple waves of infection (www.covid19mg.org) and that estimates of seroprevalence from blood donors in Madagascar show elevated population immunity [23], we also investigated strategies to take previous infection and thus immunity into account. Unsurprisingly, vaccinating only seronegative individuals allows for doses to be reallocated and expand protection to a larger population [8, 26, 27]. However, we note that assessing seropositivity via rapid testing at health facilities could slow the speed of vaccine delivery, which, in situations of high seropositivity, could reduce benefits in terms of mortality reductions. The benefit of additional testing to identify seronegative individuals must be weighed against the logistical challenges of testing, test accuracy [28], and ethical issues for the allocation of doses based on serostatus.

While allocating doses based on population size reduced mortality more effectively than allocation based on cases (or deaths), large heterogeneity in testing capacity between regions, and reporting issues have likely resulted in underestimates of the true burden of the pandemic, and, importantly, in a possibly spatially biased way. Although our analysis suggests that allocation based on size is robust to a number of assumptions about underlying population immunity, additional investigation, including analysing mortality records available in the capital city of Madagascar [29] and other regions, could improve estimates of transmission and identify communities where the pandemic has been particularly severe. Our analysis assumes similar
starting dates for the outbreak in each of the 22 regions and neglects potential subnational heterogeneity in connectivity and contact within them [30]. The latter assumption leads to unrealistically rapid growth in case numbers within each region, such that estimates of reductions in mortality, although comparable, may be overly pessimistic. We also did not take into account time-varying estimates of transmission (Rt) resulting from the introduction of non-pharmaceutical interventions in Madagascar, given uncertainty around the magnitude of these effects emerging from data sparseness. Additional analyses that integrate data streams to better bound temporal and spatial variation in transmission could further elucidate how different allocation strategies would perform. Further, we only explored a single dose vaccination strategy, and did not evaluate the impact of various vaccines being distributed simultaneously, since only ChAdOx1-nCOV (Covishield™) is currently available in Madagascar. Finally, we assumed that seropositivity and immunity were equivalent, but decision making around the value of rapid tests for vaccine allocation will be shaped by their sensitivity and specificity [28], which may be population specific [31]) and requires careful evaluation in Madagascar.

To conclude, it is clear that the speed of vaccine deployment will shape the burden of SARS-CoV-2. However, logistical limitations associated with healthcare worker numbers lead to inevitable limits associated with speed, complicating allocation across regions. Our analysis probes approaches of dose allocation across regions that most reduce mortality assuming vaccination occurs as fast as possible given these constraints, finding that allocation by population yields consistently high benefits. However, Madagascar, and many other countries worldwide fundamentally require access to more vaccine doses. Vaccine equity is the largest global issue of the present moment.
Declarations:

Ethics approval and consent to participate: Not applicable

Consent for publication: Not applicable

Availability of data and materials: The datasets generated and/or analysed during the current study are available in the author's github repository, www.github.com/fidyras/vaccination

Competing interests: The authors declare that they have no competing interests

Authors Contributions: FR, TR, BLR, CJEM, AW conceived and designed the paper, FR and TR wrote and performed the analyses. FR, BLR, CJEM, AW, MVE, BR, AHR, SR, and FMR wrote the manuscript.

Funding: FR is supported by Princeton High Meadows Environmental Institute; CJEM is supported by the Center for Health and Wellbeing, Princeton University.

Acknowledgments: Authors would like to thank INSTAT for providing 2018 census data for Madagascar, the Ministry of Health for providing data on SARS-CoV2 cases and COVID-19 deaths in Madagascar. Authors would like to thank Malavika Rajeev for support in building the COVID-19 Madagascar dashboard (www.covid19mg.org).
It is made available under a CC-BY-NC-ND 4.0 International license.
The core of the model is similar to that of Roche et al. 2020. The same model has been applied to understanding the covid dynamics and the effectiveness of NPI at a national level in Madagascar (Evans et al. 2020). The stochastic simulation includes eight states: Susceptible (S), Exposed (E), Infected (symptomatic, I), Infected (Asymptomatic, A), and recovered from asymptomatic (U), recovered from symptomatic (R) infected symptomatic individuals who become severely ill (M) and infected symptomatic individuals who die (D) [17]. The population is divided into seven age classes (0-9;10-19;20-29;30-39;40-49;50-59; 60+). Susceptible individuals in an age class i (S_i) can get the infection according to the
basal transmission rate (β), the number of infectious (symptomatic and asymptomatic) individuals in each age class, and the contact rate among age classes. Once infected, an individual becomes infectious after an incubation period of 3 days, i.e. at a rate $\varepsilon = 1/3$ days. Infectious individuals can be symptomatic (I) with a probability of p (assumed to be 40%) or asymptomatic (A) otherwise. Infectious individuals (I and A) can recover at a rate $\sigma = 1/5$ days. Infectious symptomatic have a probability α to become severely ill and a probability (π_i) dependent on their age class to die from the disease (D).

We included vaccination into the model. The daily number of people vaccinated (n) depends on the number of healthcare workers and the total number of individual vaccinated is limited by the acceptance (η_i). Individuals in the compartment S, E, A, U, and R can be vaccinated. However, vaccinating non-susceptible individuals would lead to vaccine wastage. Thus, we only track the number of susceptibles n_S that are vaccinated. Without testing, n_S is drawn from a binomial distribution $\text{Binomial}(n, S/(S + E + A + U + R))$. We consider two scenarios to test for seroprevalence and thus avoid vaccine wastage (see main text). Additionally, vaccination can prioritize older individuals or distribute the doses randomly in each age class according to a multinomial distribution where the vector of probabilities are given by the frequency of the individuals in each age-class. Vaccinated individuals gain protection after a lag of 6-days according to the vaccine efficacy (ν) which we assumed to be at 76% to approximate the clinical vaccine efficacy against symptomatic infection seen for the ChAdOx1 nCoV-19 (AZD1222). The actual number of people gaining protection is $\text{Binomial}(n_S, \nu)$.

References

1. Ritchie H, Ortiz-Ospina E, Beltekian D, Mathieu E, Hasell J, Macdonald B, et al. Coronavirus Pandemic (COVID-19). Our World in Data. 2020. https://ourworldindata.org/coronavirus. Accessed 31 Jul 2021.

2. Acharya KP, Ghimire TR, Subramanya SH. Access to and equitable distribution of COVID-19 vaccine in low-income countries. Npj Vaccines. 2021;6:54.

3. Kupferschmidt K. Unprotected African health workers die as rich countries buy up COVID-19 vaccines. Science. 2021.

4. Wouters OJ, Shadlen KC, Salcher-Konrad M, Pollard AJ, Larson HJ, Teerawattananon Y, et al. Challenges in ensuring global access to COVID-19 vaccines: production, affordability, allocation, and deployment. Lancet. 2021;397 N Engl J Med 383 2020:1023–34.

5. Metcalf CJE, Tatem A, Bjornstad ON, Lessler J, O’Reilly K, Takahashi S, et al. Transport networks and inequities in vaccination: remoteness shapes measles vaccine coverage and prospects for elimination across Africa. Epidemiol Infect. 2015;143:1457–66.

6. Nachega JB, Sam-Agudu NA, Masekela R, Zalm MM van der, Nsanzimana S, Condo J, et al. Addressing challenges to rolling out COVID-19 vaccines in African countries. Lancet Global Heal. 2021.

7. Graham M, Winter AK, Ferrari M, Grenfell B, Moss WJ, Azman AS, et al. Measles and the canonical path to elimination. Science. 2019;364:584–7.

8. Bubar KM, Reinholt K, Kissler SM, Lipsitch M, Cobey S, Grad YH, et al. Model-informed COVID-19 vaccine prioritization strategies by age and serostatus. Science. 2021;371:916–21.

9. Castro MC, Singer B. Prioritizing COVID-19 vaccination by age. Proc National Acad Sci. 2021;118:e2103700118.

10. Goldstein JR, Cassidy T, Wachter KW. Vaccinating the oldest against COVID-19 saves both the most lives and most years of life. Proc National Acad Sci. 2021;118:e2026322118.
11. Wrigley-Field E, Kiang MV, Riley AR, Barbieri M, Chen Y-H, Duchowny KA, et al. Geographically-targeted COVID-19 vaccination is more equitable than age-based thresholds alone. Medrxiv. 2021;2021.03.25.21254272.

12. Rakotonanahary RJL, Andriambolamanana H, Razafinjato B, Raza-Fanomezananjahary EM, Ramanandraitsiory V, Ralaivavikoa F, et al. Integrating Health Systems and Science to Respond to COVID-19 in a Model District of Rural Madagascar. Frontiers Public Heal. 2021;9:654299.

13. Turner JS, Kim W, Kalaidina E, Goss CW, Rauseo AM, Schmitz AJ, et al. SARS-CoV-2 infection induces long-lived bone marrow plasma cells in humans. Nature. 2021;1–5.

14. Saad-Roy CM, Wagner CE, Baker RE, Morris SE, Farrar J, Graham AL, et al. Immune life history, vaccination, and the dynamics of SARS-CoV-2 over the next 5 years. Science. 2020;370:811–8.

15. Lavine JS, Bjornstad ON, Antia R. Immunological characteristics govern the transition of COVID-19 to endemicity. Science. 2021;371:741–5.

16. Evans MV, Garchitorena A, Rakotonanahary RJL, Drake JM, Andriamihaja B, Rajaonarifara E, et al. Reconciling model predictions with low reported cases of COVID-19 in Sub-Saharan Africa: insights from Madagascar. Global Health Action. 2020;13:1816044.

17. Roche B, Garchitorena A, Roiz D. The impact of lockdown strategies targeting age groups on the burden of COVID-19 in France. Epidemics-neth. 2020;33:100424.

18. Prem K, Cook AR, Jit M. Projecting social contact matrices in 152 countries using contact surveys and demographic data. Plos Comput Biol. 2017;13:e1005697.

19. Salje H, Kiem CT, Lefrancq N, Courtejoie N, Bosetti P, Paireau J, et al. Estimating the burden of SARS-CoV-2 in France. Science. 2020;369:208–11.

20. O’Driscoll M, Santos GRD, Wang L, Cummings DAT, Azman AS, Paireau J, et al. Age-specific mortality and immunity patterns of SARS-CoV-2. Nature. 2020.

21. Voysey M, Clemens SAC, Madhi SA, Weckx LY, Folegatti PM, Aley PK, et al. Single-dose
administration and the influence of the timing of the booster dose on immunogenicity and
efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine: a pooled analysis of four randomised trials.
Lancet. 2021;397:881–91.

22. Emary KRW, Golubchik T, Aley PK, Ariani CV, Angus B, Bibi S, et al. Efficacy of ChAdOx1
nCoV-19 (AZD1222) vaccine against SARS-CoV-2 variant of concern 202012/01 (B.1.1.7): an
exploratory analysis of a randomised controlled trial. Lancet. 2021;397:1351–62.

23. Schoenhals M, Rabenindrana N, Rakotondramanga JM, Dussart P, Randremanana R,
Heraud J-M, et al. SARS-CoV-2 antibody seroprevalence follow-up in Malagasy blood donors
during the 2020 COVID-19 Epidemic. Ebiomedicine. 2021;68:103419.

24. Dimitrov N, Goll S, Hupert N, Pourbohloul B, Meyers L. Optimizing Tactics for use of the
U.S. Antiviral Strategic National Stockpile for Pandemic (H1N1) Influenza, 2009. Plos Curr Influ.
2009;1:ecurrents.RRN1127.

25. Araz OM, Galvani A, Meyers LA. Geographic prioritization of distributing pandemic influenza
vaccines. Health Care Manag Sc. 2012;15:175–87.

26. Pearson CAB, Clifford S, Pulliam JRC, Eggo RM. Pre-vaccination testing could expand
coverage of two-dose COVID vaccines. Wellcome Open Res. 2021;6:105.

27. Tran TN-A, Wikle N, Albert J, Inam H, Strong E, Brinda K, et al. Optimal SARS-CoV-2
vaccine allocation using real-time seroprevalence estimates in Rhode Island and
Massachusetts. Medrxiv. 2021;;2021.01.12.21249694.

28. Takahashi S, Greenhouse B, Rodríguez-Barraquer I. Are Seroprevalence Estimates for
Severe Acute Respiratory Syndrome Coronavirus 2 Biased? J Infect Dis. 2020;222:jiaa523.

29. Rasambainarivo F, Rasoanomenjanahary A, Rabarison JH, Ramiadantsoa T, Ratovoson R,
Randremanana R, et al. Monitoring for outbreak associated excess mortality in an African city:
Detection limits in Antananarivo, Madagascar. Int J Infect Dis. 2020.

30. Rice BL, Annapragada A, Baker RE, Bruijning M, Dotse-Gborgbortsi W, Mensah K, et al.
Variation in SARS-CoV-2 outbreaks across sub-Saharan Africa. Nat Med. 2021;;1–7.
31. Wiens KE, Mawien PN, Rumunu J, Slater D, Jones FK, Moheed S, et al. Seroprevalence of Severe Acute Respiratory Syndrome Coronavirus 2 IgG in Juba, South Sudan, 2020 - Volume 27, Number 6—June 2021 - Emerging Infectious Diseases journal - CDC. Emerg Infect Dis. 2021;27:1598–606.
Figure S1: Modeling framework. The core of the model is similar to that of Roche et al. 2020. The same model has been applied to understanding the covid dynamics and the effectiveness of NPI at a national level in Madagascar (Evans et al. 2020). The stochastic simulation includes eight states: Susceptible (S), Exposed (E), Infected (symptomatic, I), Infected (Asymptomatic, A), and recovered from asymptomatic (U), recovered from symptomatic (R) infected symptomatic individuals who become severely ill (M) and infected symptomatic individuals who die (D) [17]. The population is divided into seven age classes (0-9;10-19;20-29;30-39;40-49;50-59; 60+) . Susceptible individuals in an age class i (S_i) can get the infection according to the basal transmission rate (\(\beta \)), the number of infectious (symptomatic and asymptomatic) individuals in each age class, and the contact rate among age classes. Once infected, an individual becomes infectious after an incubation period of 3 days, i.e. at a rate \(\epsilon = 1/3 \) days. Infectious individuals can be symptomatic (I) with a probability of \(\rho \) (assumed to be 40%) or asymptomatic (A) otherwise. Infectious individuals (I and A) can recover at a rate \(\sigma = 1/5 \) days. Infectious symptomatic have a probability \(\alpha \) to become severely ill and a probability (\(\pi_i \)) dependent on their age class to die from the disease (D).

We included vaccination into the model. The daily number of people vaccinated (\(n \)) depends on the number of healthcare workers and the total number of individual vaccinated is limited by the acceptance (\(\eta_i \)). Individuals in the compartment S, E, A, U, and R can be vaccinated. However, vaccinating non-susceptible individuals would lead to vaccine wastage. Thus, we only track the number of susceptibles \(n_S \) that are vaccinated. Without testing, \(n_S \) is drawn from a binomial distribution Binomial(\(n, S/(S + E + A + U + R) \)). We consider two scenarios to test for seroprevalence and thus avoid vaccine wastage (see main text). Additionally, vaccination can prioritize older individuals or distribute the doses randomly in each age class according to a multinomial distribution where the vector of probabilities are given by the frequency of the individuals in each age-class. Vaccinated individuals gain protection after a lag of 6-days.
according to the vaccine efficacy (ν) which we assumed to be at 76% to approximate the clinical vaccine efficacy against symptomatic infection seen for the ChAdOx1 nCoV-19 (AZD1222). The actual number of people gaining protection is $\text{Binomial}(n_s, \nu)$.