Rosiglitazone use and post-discontinuation glycaemic control in two European countries, 2000–2010

V Ehrenstein,1 R K Hernandez,2,3 S P Ulrichsen,1 J Rungby,4 T L Lash,1,5 A H Riis,1 L Li,2 H T Sørensen,1 S S Jick2

ABSTRACT

Objectives: To evaluate the impact of risk minimisation policies on the use of rosiglitazone-containing products and on glycaemic control among patients in Denmark and the UK.

Design, setting and participants: We used population-based data from the Aarhus University Prescription Database (AUPD) in northern Denmark and from the General Practice Research Database (GPRD) in the UK.

Main outcome measures: We examined the use of rosiglitazone during its entire period of availability on the European market (2000–2010) and evaluated changes in the glycated haemoglobin (HbA1c) and fasting plasma glucose (FPG) levels among patients discontinuing this drug.

Results: During 2000–2010, 2321 patients with records in AUPD used rosiglitazone in northern Denmark and 25428 patients with records in GPRD used it in the UK. The proportion of rosiglitazone users among all users of oral hypoglycaemic agents peaked at 4% in AUPD and at 15% in GPRD in May 2007, the month of publication of a meta-analysis showing increased cardiovascular morbidity associated with rosiglitazone use. 12 months after discontinuation of rosiglitazone-containing products, the mean change in HbA1c was −0.16% (95% CI −3.4% to 3.1%) in northern Denmark and −0.17% (95% CI −0.21% to 0.13%) in the UK. The corresponding mean changes in FPG were 0.01 mmol/L (95% CI −7.3 to 7.3 mmol/L) and 0.03 mmol/L (95% CI −0.22 to 0.28 mmol/L).

Conclusions: Publication of evidence concerning the potential cardiovascular risks of rosiglitazone was associated with an irreversible decline in the use of rosiglitazone-containing products in Denmark and the UK. The mean changes in HbA1c and FPG after drug discontinuation were slight.

INTRODUCTION

Since it was first marketed in the European Union in 2000, rosiglitazone has been subjected to several risk-benefit assessments, especially concerning cardiovascular safety.1–9 In a May 2007 meta-analysis published in the New England Journal of Medicine, Nissen and Wolski10 reported increased cardiovascular morbidity associated with rosiglitazone use. In 2008, the European Medicines Agency (EMA) amended the rosiglitazone product label, adding coronary syndrome to the list of contraindications and inserting a warning about the potentially increased risk of ischaemic events.10 At the time of this label amendment, EMA concluded “that the benefits of [...] rosiglitazone [...] in the treatment of type 2 diabetes continue to outweigh their risks”.11 In June 2010, Nissen and Wolski12 updated their meta-analysis, confirming the finding of an increased risk of myocardial infarction (but not the original finding of increased all-cause mortality) in association with rosiglitazone use. In July 2010, Graham et al.9 published a paper in JAMA, based on data from the US Medicare beneficiaries, showing increased risks of several cardiovascular events, as well as all-cause mortality, in a comparison of rosiglitazone users with pioglitazone users. Following these two publications, on 22 September 2010, the EMA recommended the suspension of use of all rosiglitazone-containing products in the European Union.13 The European Commission subsequently mandated the suspension of the drug, citing the absence of unique therapeutic benefits outweighing its risks.14
We report the results of an EMA-commissioned study on the impact of labelling changes and findings reported in scientific publications on the utilisation of rosiglitazone-containing products in Europe. On the population level, we examined changes in the use of rosiglitazone-containing products over the entire period when rosiglitazone was available on the European market. On the patient level, we assessed the impact of rosiglitazone discontinuation on glycaemic control and reported oral hypoglycaemic agents (OHAs) prescribed after the postuspension discontinuation of rosiglitazone.

METHODS
Setting and study population
This study was based on routinely collected data in medical databases in Denmark and in the UK. In Denmark, the study population included users of OHAs identified in the Aarhus University Prescription Database (AUPD). The database’s catchment area covers the North and Central Regions of Denmark (hereafter referred to as ‘northern Denmark’), with a combined population in mid-2010 of 1.8 million persons, which is about one-third of the Danish population. AUPD captures reimbursed prescriptions redeemed in the regions’ outpatient pharmacies since 1998. In the UK, OHA users were identified from the General Practice Research Database (GPRD), currently also known as the Clinical Practice Research Datalink.

We identified patients in each database with a prescription for any OHA between 1 January 2000 and 31 December 2010, encompassing the entire period of rosiglitazone availability in Europe. We defined OHA users as persons who received at least one prescription for any OHA during the study period. Prescriptions for OHAs were identified using Anatomical Therapeutic Chemical codes in AUPD and Multilex codes in GPRD. People could receive prescriptions for multiple OHAs, including rosiglitazone, during the study period. Our use of the term ‘rosiglitazone’ includes all preparations of the drug.

The start of rosiglitazone use was defined as the date of the first-recorded prescription for a rosiglitazone-containing product. Patients were assumed to have discontinued rosiglitazone therapy in the absence of a record of a rosiglitazone prescription refill during a period encompassing the estimated length of at least two prescriptions. The prescription length was estimated at 45 days in AUPD and 130 days in GPRD, based on the observed intervals between prescriptions and knowledge about typical prescribing practice in Denmark, as well as on the prescribing instructions in the British Monthly Index of Medications in the UK.

To describe the study population, we obtained data on patients’ clinical and demographic characteristics, including sex, age, body mass index (BMI), smoking, medical diagnoses and use of other medications (lipid-lowering agents, antihypertensive agents, diuretics, nitrates and antiplatelet agents). These characteristics were measured as of 1 January 2000 for patients who started an OHA before 2000 and on the date of the first OHA prescription for those who started thereafter. We used records from routine laboratory tests to obtain data on the measured glycated haemoglobin (HbA1c) and fasting plasma glucose (FPG) levels.

Data sources
In northern Denmark, data on hospital-based medical diagnoses, prescription medications and laboratory test results, respectively, were obtained from the Danish National Registry of Patients, AUPD, and the Laboratory Information Systems of the North and the Central Denmark Regions (the LABKA database). The LABKA database stores the results of laboratory tests performed at hospital-based laboratories. Patients are referred to these laboratories by hospitals, general practitioners and specialists. Data on smoking and BMI were obtained from the

Figure 1 Proportion of users of rosiglitazone among all users of oral hypoglycaemic agents (OHA), 2000–2010 in northern Denmark and in the UK. The maximum points of both graphs correspond to May 2007, the month of publication of the first meta-analysis by Nissen and Wolski.2
Danish National Indicator Project diabetes database. All data were linked on the individual level using the universal personal identifier. In the UK, all data were obtained from GPRD. GPRD is a longitudinal database that has collected data from over 450 general practices in the UK since 1987, covering a representative 6% sample of the UK population. GPRD captures prescriptions issued to patients by general practitioners, and it also includes information on patient demographics, diagnoses, referrals, hospitalisations and laboratory test results.

Statistical analysis

First, we examined changes in the proportion of rosiglitazone users among all users of OHAs in the two countries between 2000 and 2010. Second, we compared distributions of demographic and clinical characteristics between rosiglitazone users and users of other OHAs. Third, we examined changes in the HbA1c and FPG levels, comparing values before and after the discontinuation of rosiglitazone treatment. The prediscontinuation value of a laboratory parameter was the value closest in time to the estimated

Table 1 Baseline characteristics of patients treated with rosiglitazone and other oral hypoglycaemic agents from 1 January 2000 to 31 December 2010 in northern Denmark and the UK

Characteristic	Northern Denmark (n=67 525)	UK (n=191 276)		
	Users of rosiglitazone (n=2321)	Users of other oral hypoglycaemic agents (n=65 204)	Users of rosiglitazone (n=25 428)	Users of other oral hypoglycaemic agents (n=165 848)
Age group (years)	N (%)	N (%)	N (%)	N (%)
<35	83 (3.6)	3999 (6.1)	589 (2.3)	9358 (5.6)
35–44	286 (12)	4967 (7.6)	2469 (9.7)	13 192 (8.0)
45–54	595 (26)	10 219 (16)	5513 (22)	25 023 (15)
55–64	757 (33)	16 751 (26)	7661 (30)	38 668 (23)
65–74	444 (19)	15 724 (24)	6434 (25)	42 030 (25)
75–84	147 (6.3)	10 423 (16)	2426 (9.5)	28 430 (17)
≥85	9 (0.39)	3121 (4.8)	336 (1.3)	9147 (5.5)
Sex				
Female	976 (42)	30 845 (47)	11 259 (44)	78 772 (48)
Male	1345 (58)	34 359 (53)	14 169 (56)	87 076 (53)
Charlson comorbidity index				
0	1694 (73)	41 183 (63)	16 646 (65)	95 607 (58)
1–2	561 (24)	19 470 (30)	7925 (31)	57 984 (35)
3+	66 (2.8)	4551 (7.0)	857 (3.4)	12 257 (7.4)
History of OHA use before baseline*				
Metformin	2279 (98)	51 022 (78)	23 836 (94)	144 881 (87)
Sulfonylurea	1730 (74)	39 931 (61)	19 489 (77)	90 682 (55)
Pioglitazone	81 (3.5)	196 (0.30)	9297 (37)	14 194 (8.6)
DPP 4 inhibitor	517 (22)	4149 (6.4)	2242 (8.8)	5882 (3.6)
Other oral glucose-lowering drugs†	497 (21)	5530 (8.5)	2582 (10)	5725 (3.5)
History of other medication use				
Lipid-lowering agents	1939 (84)	40 327 (62)	22 223 (87)	114 378 (69)
Antihypertensive agents	1991 (86)	48 016 (74)	21 846 (86)	126 897 (77)
Diuretics	1404 (60)	34 650 (53)	13 516 (53)	73 225 (44)
Nitrates	351 (15)	9456 (14)	52 (0.20)	322 (0.19)
Antiplatelet agents	1409 (61)	33 060 (51)	2878 (11)	15 223 (9.2)
Smoking				
Current	175 (7.5)	2451 (3.8)	4499 (18)	28 120 (17)
Former	215 (8.9)	3121 (4.8)	6102 (24)	43 985 (27)
Never	258 (11)	3534 (5.4)	11 699 (46)	75 119 (45)
Missing	1673 (72)	56 098 (86)	3126 (12)	18 624 (11)
Body mass index category (kg/m²)				
<18.5	2 (0.09)	32 (0.05)	35 (0.14)	623 (0.38)
18.5–<25	51 (2.2)	1257 (1.9)	2675 (11)	21 634 (13)
25–<30	177 (7.6)	3257 (5.0)	7458 (29)	49 463 (30)
≥30	462 (20)	5454 (8.4)	11 225 (44)	66 725 (40)
Missing	1629 (70)	55 204 (85)	4035 (16)	27 403 (17)

*Baseline date was 1 January 2000 or date of first OHA prescription, whichever came later.
†Other glucose-lowering drugs excluding insulins are acarbose, repaglinide, exenatide and liraglutide.
OHA, oral hypoglycaemic agent.
Table 2 Glycated haemoglobin (HbA1c; %) before and after discontinuation of rosiglitazone among patients with available prediscontinuation and postdiscontinuation measurements, in northern Denmark and in the United Kingdom, 2000–2011

Characteristic	Northern Denmark	United Kingdom
	3 months (n=1242)	3 months (n=9448)
	6 months (n=1496)	6 months (n=12 439)
	12 months (n=1162)	12 months (n=8635)
Baseline mean (SD)	7.8 (1.7)	8.7 (2.2)
Follow-up mean (SD)	7.7 (1.5)	8.1 (1.7)
Change from baseline, mean (95% CI)	-0.10 (-3.0 to 2.8)	-0.57 (-0.62 to -0.53)
	7.7 (1.5)	-0.30 (-0.34 to -0.26)
	-0.16 (-3.4 to 3.1)	-0.17 (-0.21 to -0.13)
Proportion with a clinically meaningful* increase,	26 (24 to 29)	23 (22 to 24)
per cent (95% CI)		28 (27 to 28)
Proportion with a clinically meaningful* decrease,	28 (25 to 30)	40 (39 to 41)
per cent (95% CI)		36 (35 to 37)
N with HbA1c level >7.5% after baseline/N with	160 (670)	1026 (3286)
baseline HbA1c ≤7.5%		179 (610)
New postdiscontinuation onset of loss of glycaemic	24 (21 to 27)	1026 (3286)
control with HbA1c >7.5%, per cent (95% CI)†		179 (610)

*Clinically meaningful change defined using the European Medicines Agency’s definition as change of more than 0.6% (% is the test unit).
† Assessed in patients without evidence of loss of glycaemic control before discontinuing rosiglitazone.

Glycaemic control after discontinuation of rosiglitazone

Among all rosiglitazone users in AUPD, 1776 patients who discontinued the drug had HbA1c measurements recorded before the discontinuation date within 24 months before that date. We defined three non-overlapping postdiscontinuation periods as follows: 1) 0–6 months, 2) 6–12 months, and 3) 12 months or more. The utilization of rosiglitazone and patient characteristics are described in Table 1.

RESULTS

Utilization of rosiglitazone and patient characteristics

Table 1 compares the demographic and clinical characteristics of users of rosiglitazone-containing products. Rosiglitazone users were more likely than other OHA users to have a BMI of ≥30 kg/m². BMI data for patients in Denmark were sparser (Table 1).

Table 1 shows the proportion of patients with clinically meaningful changes in HbA1c levels in patients who discontinued the drug on or after 23 September 2010, presumably in response to the EMA’s suspension of the drug. We also reported the distribution of the first OHA prescribed after rosiglitazone suspension. The algorithms used to define postdiscontinuation treatment failure/loss of glycaemic control before discontinuation were based on the EMA’s definition as change of more than 0.6% (HbA1c is the test unit).

Table 1

Characteristic	Northern Denmark	United Kingdom
	3 months (n=1242)	3 months (n=9448)
	6 months (n=1496)	6 months (n=12 439)
	12 months (n=1162)	12 months (n=8635)
Baseline mean (SD)	7.4 (1.5)	8.2 (1.7)
Follow-up mean (SD)	7.6 (1.5)	8.2 (1.8)
Change from baseline, mean (95% CI)	-0.16 (-3.4 to 3.1)	-0.17 (-0.21 to -0.13)
Proportion with a clinically meaningful* increase,	26 (24 to 29)	23 (22 to 24)
per cent (95% CI)		28 (27 to 28)
Proportion with a clinically meaningful* decrease,	28 (25 to 30)	40 (39 to 41)
per cent (95% CI)		36 (35 to 37)
N with HbA1c level >7.5% after baseline/N with	160 (670)	1026 (3286)
baseline HbA1c ≤7.5%		179 (610)
New postdiscontinuation onset of loss of glycaemic	24 (21 to 27)	1026 (3286)
control with HbA1c >7.5%, per cent (95% CI)†		179 (610)

*Clinically meaningful change defined using the European Medicines Agency’s definition as change of more than 0.6% (% is the test unit).
† Assessed in patients without evidence of loss of glycaemic control before discontinuing rosiglitazone.
Among these patients, the median duration of rosiglitazone use was 19 months (quartiles 6–38 months), and the median time from the last prediscontinuation HbA1c measurement until discontinuation of rosiglitazone was 44 days (quartiles 21–78 days). In GPRD, there were 21 145 rosiglitazone users with HbA1c measurements. Among these patients, the median duration of rosiglitazone use was 24 months (quartiles 8–47 months) and the median time from the last prediscontinuation HbA1c measurement until discontinuation of rosiglitazone was 70 days (quartiles 25–153 days). Table 2 shows changes in HbA1c at 3, 6 and 12 months after discontinuation of rosiglitazone treatment at any time during the study period. At 12-month postdiscontinuation, a change of similar magnitude in the mean HbA1c was observed in both databases: −0.16% (95% CI −3.4% to 3.1%) in northern Denmark, and −0.17% (95% CI −0.21% to −0.13%) in the UK. Loss of glycaemic control, defined by the new onset of HbA1c>7.5%, was registered for up to 29% of patients during the 12-month follow-up period in Denmark and for up to 37% of patients in the UK. Similar proportions of patients had HbA1c values consistent with a clinically meaningful decrease (>0.6%) at 12-month postdiscontinuation.

Table 3 shows changes in HbA1c among patients who discontinued rosiglitazone-containing products on or after 23 September 2010 (date of EMA’s recommendation to suspend rosiglitazone), in northern Denmark and in the United Kingdom.

Table 4 shows changes in FPG at 3, 6 and 12 months after discontinuation of rosiglitazone. At 12 months, there was virtually no change seen in either of the databases: mean change of 0.01 mmol/L (95% CI −7.3 to 7.3 mmol/L) in northern Denmark, and mean change of 0.03 mmol/L (95% CI −0.22 to 0.28 mmol/L) in the UK. Treatment failure, defined by the new onset of FPG>10 mmol/L during one of the follow-up periods, was observed in a maximum of 23% of patients in northern Denmark and 20% in the UK. The number of persons with available measurements for northern Denmark, however, was small (table 4). Table 5 shows the distribution of OHA prescribed to patients who discontinued rosiglitazone on or after 23 September 2010. The majority of the patients switched to another OHA (82% in northern Denmark; 97% in the UK) after the last recorded rosiglitazone prescription. The majority of patients—57% in Denmark and 42% in the UK—received a prescription for metformin. In the UK, 24% of patients had a prescription for pioglitazone, and 14% for pioglitazone and metformin. Pioglitazone was prescribed only to 4.4% of the patients in northern Denmark.

DISCUSSION

We examined the use of rosiglitazone-containing products over the entire period of their availability in Europe (2000–2010) using routinely collected data in medical databases in Denmark and in the UK. Overall, the drug was more widely used in the UK than in Denmark, with the proportion of rosiglitazone users among all users of OHA peaking at 15% and 4%, respectively, in the two countries. The timing of both peaks, which marked the beginning of a steep decline in use, coincided with the May 2007 publication of the meta-analysis by Nissen and Wolski and subsequent regulatory warnings from the EMA. This decline occurred...
Table 4 Fasting plasma glucose (FPG; mmol/L) before and after discontinuation of rosiglitazone among patients with available prediscontinuation and postdiscontinuation laboratory measurements, in northern Denmark and in the United Kingdom, 2000–2011

Characteristic	Northern Denmark	United Kingdom				
	3 months (n=95)	6 months (n=109)	12 months (n=77)	3 months (n=820)	6 months (n=1256)	12 months (n=800)
Baseline mean (SD)	9.5 (3.6)	9.3 (3.4)	9.1 (3.5)	8.6 (3.2)	8.7 (3.2)	8.7 (3.4)
Follow-up mean (SD)	9.2 (3.7)	9.0 (3.4)	9.1 (3.5)	8.8 (3.2)	8.8 (3.1)	8.7 (3.1)
Change from baseline, mean (95% CI)	−0.38 (−9.0 to 8.2)	−0.27 (−8.2 to 7.6)	0.01 (−7.3 to 7.3)	0.27 (0.04 to 0.49)	0.08 (−0.12 to 0.27)	0.03 (−0.22 to 0.28)
Proportion with a clinically meaningful* increase, per cent (95% CI)	40 (31 to 50)	35 (26 to 44)	32 (23 to 43)	39 (36 to 43)	40 (38 to 43)	40 (37 to 44)
Proportion with a clinically meaningful* decrease, per cent (95% CI)	39 (30 to 49)	35 (26 to 44)	40 (30 to 51)	30 (27 to 33)	33 (31 to 36)	34 (31 to 38)
N with FPG >10 mmol/L after baseline/N with baseline FPG ≤10 mmol/L	14/65	18/79	8/54	98/610	182/911	99/583
New postdiscontinuation onset of treatment failure, FPG >10 mmol/L, per cent (95% CI)	22 (13 to 33)	23 (15 to 33)	15 (7.3 to 26)	16 (13 to 19)	20 (18 to 23)	17 (14 to 20)

*Clinically meaningful change defined using the European Medicines Agency’s definition as change of more than 10 mmol/L.
†Assessed in patients without evidence of treatment failure before discontinuing rosiglitazone.

Meaning of the findings

While on the market, rosiglitazone represented a larger proportion of all OHA use in the UK than in Denmark. This may reflect conservative recommendations issued in Denmark, suggesting that treatment first be attempted with metformin, sulfonylurea and insulin. Guidelines from the National Institute for Health and Clinical Excellence in the UK have stated that rosiglitazone should only be prescribed if other classes of OHAs were not effective in lowering plasma glucose concentrations. Therefore, rosiglitazone was recommended only as second-line or third-line therapy. The high prediscontinuation level of HbA1c in UK patients who discontinued rosiglitazone following the drug suspension is also consistent with this guideline. Among patients terminating rosiglitazone after the drug was suspended, a larger proportion of UK patients compared with their Danish counterparts experienced a clinically meaningful decrease in glycated haemoglobin. The pre-discontinuation values among the UK patients were substantially higher, probably reflecting heightened medical attention drawn to patients with poor glycaemic control.

Strengths and weaknesses

The data presented here were obtained from medical databases containing data on routine and independent registration of health-related events in two European countries. Such data are therefore likely to reflect typical clinical practice. The data from the two data systems are also complementary. AUPD records purchased prescriptions while GPRD records prescriptions issued by general practitioners. Furthermore, the databases draw on different health sectors for information on patient characteristics: in Denmark, data on diagnoses originate from hospital discharge summaries, while in the UK, data on diagnoses originate from general practitioner records. Despite these differences, the results obtained in the two Danish regions included here mirror the nationwide pattern of use for the two Danish regions included here mirror the nationwide pattern of use for the two Danish regions included here. The pattern of use for the two Danish regions included here mirror the nationwide pattern of use for the two Danish regions included here. As OHAs are distributed by prescription only and need to be taken in the long term, the information we present on rosiglitazone utilisation over calendar time is likely to be accurate. The pattern of use for the two Danish regions included here mirror the nationwide pattern of use for the two Danish regions included here.
pattern reported by the Danish Medicines Agency. However, because automated prescription records provide no information on the exact timing of drug intake, we had to make assumptions about the timing of rosiglitazone discontinuation and prescription length. We speculate that short-term changes in laboratory parameters following the discontinuation of rosiglitazone are subject to more misclassification due to errors in assigning the discontinuation status than long-term changes in these parameters. Therefore, our 12-month estimates of postdiscontinuation change in laboratory parameters may be more robust than the 3-month estimates. The information on HbA1c and on FPG originated from routinely collected laboratory data, although patients with laboratory measurements may differ from the entire population of rosiglitazone-treated patients. For example, physicians may be less likely to collect laboratory data routinely for patients with less severe diabetes.

CONCLUSION

In summary, a decline in use of rosiglitazone occurred immediately following the May 2007 publication of a meta-analysis describing the adverse cardiac side effects of this drug. Changes in glycaemic control were, on average, small during 12 months after discontinuation of rosiglitazone, although about one-third of the patients had evidence of loss of glycaemic control on discontinuation. Most patients who discontinued rosiglitazone after EMA-mandated suspension were switched to a metformin-containing regimen.

Table 5 Oral hypoglycaemic agents (OHA) prescribed to patients after terminating rosiglitazone on 23 September 2010 or later

	Aarhus University Prescription Database, northern Denmark (n=474*)	General Practice Research Database, United Kingdom (n=2810†)		
	Number	Per cent (95% CI)	Number	Per cent (95% CI)
Metformin	269	57 (52 to 61)	1136	42 (40 to 44)
Glimepiride	84	18 (14 to 21)	57	2.1 (1.6 to 2.7)
Metformin+sitagliptin	49	10 (7.6 to 13)	103	3.8 (3.1 to 4.6)
Sitagliptin	45	9.5 (6.9 to 12)	641	24 (22 to 25)
Metformin+vildaglpirt	35	7.4 (5.0 to 9.7)	394	14 (13 to 16)
Liraglutide	26	5.5 (3.4 to 7.5)	351	13 (12 to 14)
Pioglitazone	21	4.4 (2.6 to 6.3)	641	24 (22 to 25)
Pioglitazone+metformin	17	3.6 (1.9 to 5.3)	394	14 (13 to 16)
Gliclazide	17	3.6 (1.9 to 5.3)	351	13 (12 to 14)
Glibenclamide	8	1.7 (0.5 to 2.8)	16	0.6 (0.4 to 1.0)
Saxagliptin	8	1.7 (0.5 to 2.8)	9	0.3 (0.2 to 0.6)
Glipizide	4	0.8 (0.1 to 1.7)	4	0.8 (0.1 to 1.7)
Vildaglpirt	4	0.8 (0.1 to 1.7)	3	0.6 (0.1 to 1.3)
Repaglirnide	3	0.6 (0.1 to 1.3)	3	0.6 (0.1 to 1.3)
Exenatide	3	0.6 (0.1 to 1.3)	2	0.1 (0.0 to 0.3)
Acarbose	2	0.4 (0.1 to 1.0)	4	0.2 (0.1 to 0.4)
Tolbutamide	1	0.2 (0.1 to 0.6)	9	0.3 (0.2 to 0.6)

*Eighty-three patients had no record of another OHA after the last rosiglitazone prescription.
†Eighth-eight patients had no record of another OHA after the last rosiglitazone prescription.

Author affiliations

1Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
2Boston Collaborative Drug Surveillance Program (BCDSP), Boston University School of Public Health, Lexington, Massachusetts, USA
3Center for Observational Research, Amgen, Inc, Thousand Oaks, California, USA
4Department of Biomedicine—Pharmacology, Aarhus University, Aarhus, Denmark
5Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA

Acknowledgements The authors would like to thank the Pharmacovigilance Working Party (PhVWP) at the European Medicines Agency for helpful comments. They are grateful to Hanne Kjeldahl Schlosser, Helle Vester and Kathleen Jick for outstanding administrative support.

Contributors VE participated in the conception and design of the study, led the writing and contributed to the data analysis. RKH contributed to the study design and data analysis in GPRD. SPU conducted the data analyses in Denmark; JR contributed to the study design and analysis and provided clinical expertise; TLL participated in the conception and design of the study; AHR contributed to the data analysis of the AUPD data; LL contributed to the data analysis of the GPRD data; HTS oversaw the study and provided clinical expertise; and SSJ participated in the conception and design of the study. All authors participated in revisions of the draft manuscript for intellectual content.

Funding This study was commissioned and funded by the European Medicines Agency (Procurement Procedure No. EMA/2010/38/CN). This study has received the ENCePP Study Seal (Reference number ENCEPP/SDPP/1777).

Competing interests None.

Ethics approval This study was approved by the Danish Data Protection Agency (record number 2009-41-3866) and by the Independent Scientific Advisory Committee of GPRD.

Provenance and peer review Not commissioned; externally peer reviewed.
Data sharing statement Additional unpublished data from the study relate to changes in glycaemic control before suspension of rosiglitazone in the EU. The data are available to the investigators and from the investigators on request.

Open Access This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 3.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/3.0/

REFERENCES

1. Home PD, Pocock SJ, Beck-Nielsen H, et al. Rosiglitazone evaluated for cardiovascular outcomes—an interim analysis. N Engl J Med 2007;357:28–38.
2. Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med 2007;356:2457–71.
3. Psaty BM, Furberg CD. Rosiglitazone and cardiovascular risk. N Engl J Med 2007;356:2522–4.
4. Margolis DJ, Hoffstad O, Strom BL. Association between serious ischemic cardiac outcomes and medications used to treat diabetes. Pharmacoepidemiol Drug Saf 2008;17:753–9.
5. EMEA statement on recent publication on cardiac safety of rosiglitazone (Avandia, Avandamet, Avaglim). 2009. http://www.emea.europa.eu/docs/en_GB/document_library/Press_release/2009/11/WC500013467.pdf (accessed Aug 2013).
6. Home PD, Pocock SJ, Beck-Nielsen H, et al. Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD): a multicentre, randomised, open-label trial. Lancet 2009;373:2125–35.
7. Graham DJ, Ouellet-Hellstrom R, MaCurdy TE, et al. Risk of acute myocardial infarction, stroke, heart failure, and death in elderly Medicare patients treated with rosiglitazone or pioglitazone. JAMA 2010;304:411–18.
8. Nissen SE. The rise and fall of rosiglitazone. Eur Heart J 2010;31:773–6.
9. Blind E, Duncker K, de Graeff PA, et al. A European regulatory perspective. Diabetologia 2011;54:213–18.
10. EMEA recommends new warnings and contraindications for rosiglitazone. 2009. http://www.emea.europa.eu/docs/en_GB/document_library/Press_release/2009/11/WC500015420.pdf (accessed Aug 2013).
11. European Medicines Agency confirms positive benefit-risk balance for rosiglitazone and pioglitazone. 2009. http://www.emea.europa.eu/docs/en_GB/document_library/Press_release/2009/11/WC500011009.pdf (accessed Aug 2013).
12. Nissen SE, Wolski K. Rosiglitazone revisited: an updated meta-analysis of risk for myocardial infarction and cardiovascular mortality. Arch Intern Med 2010;170:1191–201.
13. European Medicines Agency recommends suspension of Avandia, Avandamet and Avaglim. 2010. http://www.ema.europa.eu/docs/en_GB/document_library/Press_release/2010/09/WC500096996.pdf (accessed Aug 2013).
14. The European Commission, Commission Decision of 3.12.2010 suspending, under Article 20 of Regulation (EC) No 726/2004 of the European Parliament and of the Council, the marketing authorisation, granted by Decision C(2000)1799, for “Avandia—Rosiglitazone” a medicinal product for human use.
15. Ehrenstein V, Antonsen S, Pedersen L. Existing data sources for clinical epidemiology: Aarhus University Prescription Database. Clin Epidemiol 2010;2:273–9.
16. Clinical Practice Research Datalink. http://www.cprd.com (accessed Aug 2013).
17. Lynge E, Sandegaard JL, Rebolj M. The Danish National Patient Register. Scand J Public Health 2011;39:30–3.
18. Grahn AF, Erichsen R, Nielsen AG, et al. Existing data sources for clinical epidemiology: the clinical laboratory information system (LABKA) research database at Aarhus University, Denmark. Clin Epidemiol 2011;3:153–8.
19. Danish National Indicator Project. http://www.nip.dk (accessed Aug 2013).
20. Pedersen GB, Gotzsche H, Moller JO, et al. The Danish Civil Registration System. A cohort of eight million persons. Dan Med Bull 2006;53:441–8.
21. Jick H, Jick SS, Derby LE. Validation of information recorded on general practitioner based computerised data resource in the United Kingdom. BMJ 1991;302:766–8.
22. Garcia Rodriguez LA, Perez Guthann S. Use of the UK general practice research database for pharmacoepidemiology. Br J Clin Pharmacol 1998;45:419–25.
23. Jick SS, Kaye JA, Vasilakis-Scaramozza C, et al. Validity of the general practice research database. Pharmacotherapy 2003;23:868–9.
24. Slin ND, Montori VM, Krumholz HM, et al. Responding to an FDA warning—geographic variation in the use of rosiglitazone. N Engl J Med 2010;363:2081–4.
25. http://hjertedoktor.dk/content/pdf/dsams%20vejledning%20for%20type2%20diabetes.pdf (accessed May 2013).
26. National Collaborating Centre for Chronic Conditions. London: Royal College of Physicians, 2009.
27. The Danish Medicines Agency. Polypharmacy in diabetes care. http://www.dkma.dk/1024/visUKLSArtikel.asp?artikelID=1665 (accessed May 2013).

Ehrenstein V, Hernandez RK, Ulrichsen SP, et al. BMJ Open 2013;3:e003424. doi:10.1136/bmjopen-2013-003424
Correction

Ehrenstein V, Hernandez RK, Ulrichsen SP, et al. Rosiglitazone use and post-discontinuation glycaemic control in two European countries, 2000–2010. BMJ Open 2013;3:e003424. In the section ‘Ethics approval’ the record number with the Danish Data Protection Agency is incorrect. The sentence should read: ‘Ethics approval This study was approved by the Danish Data Protection Agency (record number 2004-41-4693) and by the Independent Scientific Advisory Committee of the GPRD.’

BMJ Open 2014;4:e003424corr1. doi:10.1136/bmjopen-2013-003424corr1