Long-range electronic reconstruction to a $d_{xz, yz}$-dominated Fermi surface below the LaAlO$_3$/SrTiO$_3$ interface

A. P. Petrović1, A. Paré1, T. R. Paudel2, K. Lee1,3, S. Holmes4, C. H. W. Barnes2, A. David1, T. Wu1, E. Y. Tsymbal2 & C. Panagopoulos1,3

1School of Physical and Mathematical Sciences, Division of Physics and Applied Physics, Nanyang Technological University, 637371 Singapore, 2Department of Physics and Astronomy, University of Nebraska Lincoln, Nebraska 68588-0299, USA, 3Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom, 4Toshiba Research Europe Ltd., Cambridge Research Laboratory, 208 Cambridge Science Park, Milton Road, Cambridge CB4 0GZ, United Kingdom.

Received 11 February 2014
Accepted 27 May 2014
Published 18 June 2014

Correspondence and requests for materials should be addressed to A. P. P. (appetovic@ntu.edu.sg) or C. P. (christos@ntu.edu.sg)

Low dimensionality, broken symmetry and easily-modulated carrier concentrations provoke novel electronic phase emergence at oxide interfaces. However, the spatial extent of such reconstructions - i.e. the interfacial "depth" - remains unclear. Examining LaAlO$_3$/SrTiO$_3$ heterostructures at previously unexplored carrier densities $n_{2D} \geq 6.9 \times 10^{14}$ cm$^{-2}$, we observe a Shubnikov-de Haas effect for small in-plane fields, characteristic of an anisotropic 3D Fermi surface with preferential $d_{xz, yz}$ orbital occupancy extending over at least 100 nm perpendicular to the interface. Quantum oscillations from the 3D Fermi surface of bulk doped SrTiO$_3$ emerge simultaneously at higher n_{2D}. We distinguish three areas in doped perovskite heterostructures: narrow (<20 nm) 2D interfaces housing superconductivity and/or other emergent phases, electronically isotropic regions far (>120 nm) from the interface and new intermediate zones where interfacial proximity renormalises the electronic structure relative to the bulk.

Ever since the discovery of a conducting channel in LaAlO$_3$/SrTiO$_3$ and the subsequent observations of magnetism2 and superconductivity3, the vast majority of oxide interface research has focussed on synthesising intrinsically-doped heterostructures featuring narrow conducting channels (<20 nm) with two-dimensional carrier densities n_{2D} in the 10^{12}–10^{14} cm$^{-2}$ range4–9. At such interfaces, it has been shown4–8 that symmetry-lowering and quantum confinement lift the Tit_{2g} degeneracy, so that the d_{xy} orbital lies at lower energy than the $d_{xz, yz}$ orbitals. X-ray absorption spectroscopy9 reveals a band splitting of ~50 meV for $n_{2D} \sim 10^{13}$ cm$^{-2}$ and theoretical approaches indicate that this increases with n_{2D}, reaching ~0.25 eV at 3×10^{14} cm$^{-2}$ 10. Regardless of the total n_{2D}, the splitting should gradually vanish below the interface, until the electronic structure resembles that of bulk SrTiO$_3$ with degenerate $d_{xz, yz}$ orbitals creating a Fermi surface at the centre of the Brillouin zone6–8. The lengthscale over which this degeneracy is regained - i.e. the total distance over which the interface induces electronic reconstruction - remains unknown, despite being a vital prerequisite for building layered 3D oxide devices.

Probing this lengthscale requires the synthesis of LaAlO$_3$/SrTiO$_3$ heterostructures with significantly more carriers (and correspondingly deeper conducting channels) than the norm. Previously, high n_{2D} heterostructures have only been grown in reducing environments16,17, creating bulk-like conducting layers hundreds of microns thick ($n_{2D} \geq 10^{16}$ cm$^{-2}$) in which the broken symmetry of the interface plays no role. However, interfaces with $5 \times 10^{14} \leq n_{2D} \leq 5 \times 10^{15}$ cm$^{-2}$ have until now remained unexplored: at these intermediate n_{2D}, electrons “spill over” from the interface and begin to occupy states lying deeper within the SrTiO$_3$. The principal focus of our work is therefore to track the evolution of the electronic structure and its crossover from 2D interfacial to 3D bulk-like behaviour within this range of carrier densities. For $n_{2D} \geq 6.9 \times 10^{14}$ cm$^{-2}$, we report the first instance of Shubnikov-de Haas (SdH) oscillations from an ultra-high mobility electron gas ($\mu_H \sim 10^4$ cm2V$^{-1}$s$^{-1}$) for small magnetic fields parallel to the interface. The absence of such oscillations from the low-field perpendicular magnetoresistance indicates that these carriers originate from an anisotropic 3D Fermi surface (FS); our first-principles calculations of the sub-interfacial electronic structure reveal dominant $d_{xz, yz}$ orbital occupancy, which is consistent with our experimental data. Superconductivity remains confined within 20 nm of the interface, while the 3D FS characteristic of bulk doped SrTiO$_3$ gradually emerges with increasing n_{2D}. Together, our results...
imply the existence of a region below the interface whose electronic structure differs from that of the bulk, with a minimum thickness of 100 nm imposed by the cyclotron radius. This discovery has important implications for oxide devices seeking to functionalise interfacial electronic reconstructions.

Results

During sample growth, three mechanisms exist for carrier-doping the LaAlO3/SrTiO3 interface: (a) intrinsic self-doping via the polar catastrophe18 (leading to a maximum $n_{2D} = 3.3 \times 10^{14}$ cm$^{-2}$), (b) oxygen vacancy doping19 (contributing 2e$^-$ per O$^-$ vacancy) and (c) cation intermixing20 (an unbalanced switching of Sr$^{3+}$ for Sr$^{2+}$ and Al$^{3+}$ for Ti$^{4+}$). Since our principal aim is to explore the evolution of the electronic structure for $n_{2D} > 5 \times 10^{14}$ cm$^{-2}$ (far beyond the upper limit imposed by the polar catastrophe) and cation intermixing is difficult to control in a pulsed laser deposition (PLD) chamber, we use O$^-$ vacancy doping to achieve the high n_{2D} values necessary for this project. To this end, we synthesise LaAlO3/SrTiO3 heterostructures at an intermediate O$_2$ pressure (10^{13} cm$^{-2}$, without any post-annealing procedure (further growth and characterisation details may be found in the Methods and Supplementary Material). The lack of annealing guarantees a high O$^-$ vacancy concentration and hence a large n_{2D}, while the intermediate growth pressure ensures that these vacancies do not penetrate far into the SrTiO$_3$ substrate. Low pressure growth (10^{13} cm$^{-2}$) without annealing20 has previously been shown to result in macroscopic substrate conduction, with $n_{2D} \approx 5 \times 10^{15}$ cm$^{-2}$; in contrast, our method of synthesis consistently yields heterostructures with as-grown Hall carrier densities in the 10^{14}–10^{15} cm$^{-2}$ range, which will we refer to as “series B”.

For comparative purposes, we have also annealed certain heterostructures (“series A”) at high O$_2$ pressures, yielding $n_{2D} \sim 10^{13}$ cm$^{-2}$. A-type interfaces are comparable to the majority of those previously studied in the literature5,6, in which carrier injection is dominated by the polar catastrophe. Both series exhibit coexistent superconductivity (SC) and ferromagnetism (FM), a comprehensive analysis of which may be found in ref. 20. For quantitative details in the present work, we focus on two specific samples A and B, with as-grown $n_{2D} = 2.3 \times 10^{13}$ cm$^{-2}$, 6.9 $\times 10^{14}$ cm$^{-2}$ at $T = 0.1$ K and SC channel thicknesses $d = 18 \pm 1$ nm, 9 ± 1 nm respectively. Sample B has a back gate beneath the SrTiO$_3$ substrate; n_{2D} increases to 2.4×10^{15} cm$^{-2}$ (d = 19 ± 2 nm) at gate voltage $V_g = 350$ V. The heterostructure withstands $V_g = 500$ V with no discernible leakage current and the substrate capacitance ~ 1 nF is comparable to values measured in annealed LaAlO$_3$/SrTiO$_3$ heterostructures with lower n_{2D}6,20 (see Supplementary section 1). Such conditions can only be achieved if the bulk of the SrTiO$_3$ substrate is insulating: this confirms that O$^-$ vacancies have not penetrated deep into the SrTiO$_3$ and are restricted to the neighbourhood of the interface.

We probe the electronic structure and FS geometry using SdH oscillations in the magnetoresistance (MR) $R_{xx}(H)$ (Fig. 1a). Two magnetic field orientations are principally considered: $H \perp (001)$ (H_{\perp}) and $H//[110]$ ($H_{//}$), where the [100] directions correspond to the crystallographic axes of the SrTiO$_3$ substrate and [001] points out-of-plane. Sample A does not display any SdH effect for either orientation. In contrast, sample B exhibits strong oscillations for $H_{//}$ as low as 2.5 T, with faint oscillations also emerging for $H_{\perp} > 6$ T. However, data acquired with an in-plane field $H_{//}$[110] do not show any oscillations up to 4 T. Symmetry dictates that the plane of a 2D FS in LaAlO$_3$/SrTiO$_3$ must lie parallel to the interface; any such FS will therefore lack states with out-of-plane momenta and cannot exhibit any SdH effect in its confined form. It is therefore immediately clear that the oscillations which we observe with $H_{//}[110]$ must originate from an anisotropic 3D FS.

For $H_{//}[110]$, the SdH oscillations in sample B are sufficiently pronounced for us to extract the effective mass m^* and the Dingle temperature T_D (a measure of the scattering) from their temperature-dependent amplitude (Fig. 1b). The magnitude of the oscillatory resistance is given by:

$$R_{xx}(H,T) - R_{bg}(H,T)/4R_{bg} = \exp(-2\pi^2 m^* k_B T_D/eH) \frac{2\pi^2 m^* k_B T}{eH} \sinh\left(\frac{2\pi^2 m^* k_B T}{eH}\right)$$

where R_{bg} is the background resistance. Fitting this equation to the oscillation amplitude (Fig. 1c) yields $m^* = 1.24 \pm 0.1 m_e$ and $T_D =$
1.4 ± 0.4 K. \(m^* \) is similar to values previously reported for the LaAlO\(_3\)/SrTiO\(_3\) 2DEG\(^{18}\), although our \(T_D \) is lower which implies a higher carrier mobility in our heterostructures. To estimate this mobility, we initially calculate the Hall mobility \(\mu_H = \frac{1}{n} \frac{n_d \pi^2 k_B T_D}{e} \) where \(R_{\text{xx}}(V_g = 0) = 0.28 \ \Omega \\square \) and we assume single-band transport. This yields an exceptionally high Hall mobility \(\mu_H \approx 32000 \ \text{cm}^2\text{V}^{-1}\text{s}^{-1} \), setting a new record for pure LaAlO\(_3\)/SrTiO\(_3\) and rivalling the best epitaxial SrTiO\(_3\) films\(^{31}\).

In order to justify such a high mobility, we evaluate the Drude scattering time \(\tau_d = \frac{m^*}{\mu_H e} = 23 \ \text{ps} \), which is more than an order of magnitude greater than the Dingle scattering time \(\tau_D = \frac{h}{2\pi n_d k_B T_D} = 0.87 \ \text{ps} \). An alternative estimate of the scattering time in sample B may be extracted from the field at which a SdH effect first appears, using the quantum oscillation emergence condition \(\omega_{\text{SDH}} \approx \frac{1}{10^6} \) (where \(\omega_{\text{SDH}} = Be/m^* \) is the cyclotron frequency and \(B \) the magnetic field strength). For \(H//\{110\} \), oscillations are visible above 2.5 T: this corresponds to \(\tau_{\text{SDH}} = 2.8 \ \text{ps} \), which is also shorter than \(\tau_d \) suggested by our high \(\mu_H \). It is likely that four factors contribute to this disparity: firstly, all scattering events suppress quantum oscillations and contribute to \(\tau_D \), while only back-scattering influences \(\tau_d \) and the Drude conductivity. Similar variance between \(\tau_D \) and \(\tau_d \) can be seen in other LaAlO\(_3\)/SrTiO\(_3\) heterostructures\(^{5} \). Secondly, the finite thickness of the conducting channel in our heterostructures may postpone the emergence of any SdH effect, until the applied field is sufficiently large for the diameter of the cyclotron orbits to fall below this thickness. Thirdly, superconducting fluctuations at fields below \(\approx 2.5 \ \text{T} \) effectively "short-circuit" our heterostructures, reducing our ability to probe transport from carriers deeper below the interface. Finally, our single-band estimate for \(\mu_H \) is an oversimplification, since multiband transport is expected for carrier densities above the Lifshitz transition in LaAlO\(_3\)/SrTiO\(_3\)\(^{23,24}\). A three-band approximation to the field-dependent Hall coefficient (see Supplementary section 2) suggests a minority contribution from a high-mobility band with \(\mu_H \approx 8000 \ \text{cm}^2\text{V}^{-1}\text{s}^{-1} \). The total number of conduction bands in our heterostructures and their field-dependent mobilities remain unknown, so we cannot obtain a more precise value for the mobility of these quantum-oscillating carriers. However, it is clear that our SdH effect, resistivity and Hall data all indicate the presence of a high-mobility band with an anisotropic FS and \(\mu_H \approx 10^8 \ \text{cm}^2\text{V}^{-1}\text{s}^{-1} \).

The fact that our measured \(T_D \) is lower than those reported for the LaAlO\(_3\)/SrTiO\(_3\) 2DEG\(^{18}\) also suggests that the band whose FS generates the in-plane oscillations lies within an extremely clean region of our heterostructures, far from the cation defects and magnetic scattering expected at oxygen-deficient PLD-grown LaAlO\(_3\)/SrTiO\(_3\) interfaces. To determine the location of these high-mobility carriers more precisely, we examine the evolution of the SdH oscillations with field-effect doping, obtained from the peaks in fast Fourier transforms (FFTs) of \(R_{\text{xx}}(H_{1,1}) \) (Fig. 2a,b). The Onsager relation links the peak frequency \(F \) with the extremal area \(S \) of the FS normal to the applied field via \(F = \frac{S}{2 \pi e} \), since the size of the FS should be proportional to the carrier density, it is useful to compare \(F(V_g) \) with our experimentally-determined total \(n_{2D} \) as well as the superconducting critical temperature \(T_c \) (which varies strongly with the local three-dimensional carrier density \(n_{3D} \)). Once the interfacial carrier density exceeds \(n_{3D} \approx 10^{26} \ \text{cm}^{-2} \) we expect a gradual suppression of SC leading to a dome in \(T_c(V_g) \); this is indeed observed (Fig. 2c). However, the in-plane oscillation frequency \(F_{1,1} \) is independent of \(V_g \), implying that the FS area \(S \perp [110] \) responsible for these oscillations remains roughly constant upon field-effect doping. Furthermore, \(F_{1,1}(V_g) \) displays no correlation with \(T_c(V_g) \) or \(n_{2D}(V_g) \); the FS (and hence the density of states) of the SC band(s) is being influenced by field-effect doping, but the FS of the high-mobility band is not. Field-effect doping should have a similar effect on all occupied bands within the same spatial region.

Figure 2 Evolution of the Shubnikov-de Haas oscillations and carrier density with increasing gate voltage. (a), Variation of the oscillating component of \(R_{\text{xx}}(H_{1,1}) \) for sample B (left panel) at \(V_g \approx 0 \), with FFTs of the raw data (right panel). For \(V_g < 0 \) the noise level rises and it is not possible to identify oscillations: this is a well-known phenomenon and has been attributed to emergent inhomogeneity\(^{26}\). (b), Oscillating components of \(R_{\text{xx}}(H_{1,1}) \) for \(V_g \approx -100 \ \text{V} \) in sample B (left panel) with associated FFTs (right panel). The two peaks in the FFTs are indicated by grey and red arrows; for \(V_g = -100 \ \text{V} \), the peaks merge. (c), \(V_g \) dependence of various properties of sample B, including \(T_c \) (above), SdH frequencies \(F_{1,1} \) and \(n_{2D} \) (below). \(T_c \) is measured from \(R_{\text{xx}}(T) \) data (see Supplementary Fig. S2) and the errors in \(F_{1,1} \) correspond to the FFT peak widths at 80\% of their maximum height (from (a),(b)). \(n_{2D}(V_g) \) obtained from the Hall coefficient follows the values expected from the sample capacitance \(C(V_g) \) (see Supplementary Figs. S1b,S2b for raw capacitance and Hall data). We attribute the fall in \(n_{2D} \) above \(V_g = 350 \ \text{V} \) to charge-trapping deep within the SrTiO\(_3\): \(T_c(V_g) \) forms a dome: since \(d = 19 \ \text{nm} \) at \(V_g \approx 350 \ \text{V} \) and SrTiO\(_3\) is SC for \(5.5 \times 10^4 \ \text{cm}^{-2} \leq n_{2D} \leq 5 \times 10^5 \ \text{cm}^{-2} \), we estimate a maximum conducting channel thickness \(W = 20 \ \mu\text{m} \) due to the combination of carrier injection and electron gas compression\(^\text{13}\). In practice, we anticipate \(W \leq 1 \mu\text{m} \) due to the extremely high \(n_{2D} \) at the interface which will locally suppress SC even at \(V_g = 350 \ \text{V} \), every carrier in sample B could be accommodated in merely \(3 \ \text{nm} \) of SrTiO\(_3\) doped at \(0.5\% \) unit cell.

Therefore, the only possible explanation for this decoupling between \(T_c(V_g) \) and \(F_{1,1}(V_g) \) is that the SdH-oscillating electron gas must be spatially separated from superconductivity, i.e. the high-mobility carriers lie below the SC channel.

The gate evolution of \(R_{\text{xx}}(H_{1,1}) \) is very different from \(R_{\text{xx}}(H_{1,1}) \), with two \(V_g \)-dependent peaks appearing in the FFTs (Fig. 2b). One of these (\(F_{1,1} \), grey arrows) lies below 20 T and is suppressed for large
The 40 T mode from de Haas-van Alphen experiments has been shown to be responsible for the 40 T oscillation. This mode is only occupied in bulk SrTiO₃; however, the light 3D band whose spherical FS was deepened into the SrTiO₃. It is therefore tempting to link this peak with increases, saturating and broadening at low n. Not only to n, but also to the occupation of this light band. We therefore propose a spherical FS for simplicity, obtaining 2rg ~ 140 nm at 2.5 T.

To understand the origin of these in-plane SdH oscillations, we calculate the evolution of the sub-interfacial orbital occupancy (which determines the FS symmetry) with increasing n₂D. The majority of electronic structure calculations for LaAlO₃/SrTiO₃ to date have only considered the first few layers below the interface for n₂D ≤ 10¹⁴ cm⁻² and are of limited use in our heterostructures. We have therefore performed first-principles calculations of the depth-dependent band structure in LaAlO₃/SrTiO₃ for n₂D = 3 × 10¹⁵, 3 × 10¹⁴ and 8 × 10¹⁴ cm⁻², specifically chosen to approach our experimental n₂D in samples A, B (Vg ~ 0) and B (Vg > 0) respectively. Our calculated orbital occupancies are plotted in Fig. 3a-b, which is sufficient to reveal the FS anisotropy responsible for our in-plane SdH effect.

The central result from these calculations is a crossover from dx₂–y₂ to dₓz,ᵧz occupancy as we move away from the interface. Close to the interface and for small n₂D, dₓz,ᵧz states dominate due to quantum confinement, as expected. The absence of a clear SdH signal from the 2D dₓz,ᵧz interfacial FS in sample A is due to scattering from local moments and the large Rashba spin-orbit coupling; we note that there are no reports of a 2D SdH effect in FM LaAlO₃/SrTiO₃ in the literature. The important new result from our calculations is the formation of a conducting “tail” deeper below the interface for large n₂D, with a disproportionate occupation of dₓz,ᵧz orbitals. For large n₂D the interfacial dₓz,ᵧz FS is also shown (dashed brown line). (d), Effective mass variation (thick lines). The FS are calculated using a tight-binding model in which the parameters are fitted to bands calculated from first principles (see Supplementary Material for the band structure). For simplicity, our diagram ignores the hybridization which lifts the degeneracy at the band crossing points; taking this into account would split the doubly-degenerate FS into two.

Figure 3 | Orbital occupancy and Fermiology calculations at high carrier densities in LaAlO₃/SrTiO₃. (a), Layer-dependent orbital populations for n₂D = 3 × 10¹⁴, 3 × 10¹⁵ and 8 × 10¹⁴ cm⁻². Data are plotted on a logarithmic scale with a lower cut-off of 10⁻³ electrons per Ti atom. (b),(c), Fermi surfaces of the interfacial dₓz (red) and dₓz,ᵧz bands (green) projected onto the (001) and (110) planes for n₂D = 8 × 10¹⁴ cm⁻² (thin lines) and 3 × 10¹⁴ cm⁻² (thick lines). The FS are calculated using a tight-binding model in which the parameters are fitted to bands calculated from first principles (see Supplementary Material for the band structure). For simplicity, our diagram ignores the hybridization which lifts the degeneracy at the band crossing points; taking this into account would split the doubly-degenerate FS into two. (d), Effective mass variation m_F(k_F) for dₓz electrons within the (001) and (110) planes: thin and thick lines denote results at n₂D = 8 × 10¹⁴ and 3 × 10¹⁴ cm⁻². The planar angles are measured from the [100] and [001] axes respectively. m_F(k_F) for dₓz electrons in the (001) plane is equivalent to m_F(k_F) for the dₓz FS rotated by 90° around [001]. A sketch of the mass variation expected in the (110) plane for a bulk degenerate dₓz,ᵧz FS is also shown (dashed brown line). (e),(f), Schematics illustrating the extremal FS orbits normal to magnetic fields along [001], [010] and [110] for a degenerate dₓz,ᵧz–dominated FS (f). Only H||[110] in the dₓz,ᵧz–dominated case probes the small, light FS cross-section whose presence we infer from our in-plane SdH oscillations.
example, the $d_{x^2-y^2}$: d_{xy} ratio in layer 9 for $n_{2D} = 8 \times 10^{14}$ cm$^{-2}$ is 2.8:1, significantly greater than the 2:1 expected in bulk SrTiO$_3$. A recent study of top-gated SrTiO$_3$ also hints at a low density “tail” of carriers persisting over at least 50 TiO$_2$ layers, independently of the total n_{2D}.

While the majority of carriers occupy tightly-bound bands close to the interface, the back-gate field in our sample B should reduce the quantum confinement and expand the “tail” still further into the SrTiO$_3$: this competition between confinement and decomposition is responsible for the weak variation of $F(\nu_g)$ (Fig. 2c). We therefore identify a $d_{x^2-y^2}$-dominated FS as the source of our in-plane SDH effect.

The strong asymmetry in our observed SDH effect (i.e. the absence of oscillations for small H_z) may be explained by considering the FS geometry. In Fig. 3b,c, we plot the calculated (001) and (110) extremal cross-sections of the interfacial FS at $n_{2D} = 3 \times 10^{14}$ and 8×10^{14} cm$^{-2}$. The elliptical cross-section of the $d_{x^2-y^2}$ FS implies that our previously-calculated t_g will be scaled by $k_{[001]}^2/k_{[110]}^2 = 0.73$, reducing the minimum thickness over which the electronic structure deviates from that of bulk SrTiO$_3$ to ~ 100 nm. Furthermore, the variation in $|k_\parallel|$ across the FS drives a corresponding modulation in the effective band mass m^*_c, shown for the (001) and (110) planes in Fig. 3d. Electrons in the (001) plane are significantly heavier and hence more easily scattered: therefore, SDH oscillations will only emerge for $H_z \gg H_\perp$. Our measured $F(\nu_g)$ at 25 T is clearly too small to originate from the large interfacial FS projections in Fig. 3c; instead, our in-plane oscillations are generated by a similarly-shaped smaller FS deeper below the interface, where n_{3D} is lower. The overall symmetry of the $d_{x^2-y^2}$ FS does not vary significantly with depth and hence our effective mass argument justifying the suppression of oscillations for H_z remains valid. In the (110) plane, the average band mass of the carriers is $m^* = 2(m^*_{[110]} + m^*_{[001]})/[m^*_{[110]} + m^*_{[001]}] = 0.7 m_0$, which only allows for a small electron-phonon coupling $\lambda \sim 0.8$ when compared with our measured $m^* = 1.24 m_0$ (since $m^* = (1 + \lambda) m^*_c$). However, we note that SDH experiments on both LaAlO$_3$/SrTiO$_3$ and n-type SrTiO$_3$ heterostructures have persistently yielded small effective masses.

Identifying the role of $m^*_c(k_\parallel)$ in determining the emergence of SDH oscillations allows us to make a profound statement regarding the shape of the in-plane oscillating FS. In Fig. 3d, we sketch the approximate m^*_c dependence in the (110) plane expected for a degenerate (bulk-like) $d_{x^2-y^2}$ FS. Here, the m^*_c variation is similar to that in the (001) plane, though with a 180° rather than 90° period. We attribute the absence of oscillations for small H_z to the presence of heavy carriers in the (001) plane: therefore, the emergence of oscillations at small H_z implies that m^*_c cannot rise significantly at 0°. Consequentially, the FS within this ± 100 nm sub-interfacial region must be flattened along the [001] direction in comparison with the bulk, i.e. the d_{xy,x^2-y^2} degeneracy is lifted and the $d_{x^2-y^2}$ orbitals are shifted to lower energy. To illustrate this point further, in Fig. 3e,f we sketch $d_{x^2-y^2}$ and d_{xy,z^2}-dominated Fermi surfaces, comparing the shapes of their extremal orbits perpendicular to [001], [010] and [110]. The low-frequency SDH oscillations which we observe with $H/\parallel[110]$ must originate from a FS whose extremal orbits are composed exclusively of light carriers (i.e. the FS cross-sectional area must be small): it is clear that this condition is only satisfied for the $d_{x^2-y^2}$-dominated FS.

Discussion

What is the physical origin of this change in the FS? We note that the shape of our $d_{x^2-y^2}$ FS is similar to that calculated by Mattheiss [using a crystal-field parameter D which was subsequently shown to be too large] since D is related to the tetragonal structure of SrTiO$_3$, our renormalised electronic structure may result from strain effects at the interface - such as the compression from the LaAlO$_3$ layer - which are known to influence the 2DEG. Studies of the 2D–3D crossover in δ-doped SrTiO$_3$ films (in which strain should be absent) have not revealed the $d_{x^2-y^2}$-dominated intermediate FS which we observe; nevertheless it remains unclear whether a long-range interface-induced change in D or the spin-orbit coupling is responsible for our results. Finally, our determination of the FS orbital character assumes the SrTiO$_3$ tetragonal c-axis lies parallel to [001]: since orthogonal tetragonal domains are expected for $T < 105$ K, this may not initially seem plausible. However, an offset surface potential exists between domains with $c//[001]$ and $c//[100]$ in LaAlO$_3$/SrTiO$_3$, requiring substantial charge transfer to equalise the chemical potential. This increases the carrier density in domains with $c//[001]$, so transport predominantly occurs within these regions. Previous transport studies of La-doped SrTiO$_3$ have also indicated a prevalence of [001]-oriented domains.

We summarise the evolution of the LaAlO$_3$/SrTiO$_3$ interface with n_{2D} in Fig. 4, where we schematically represent the spatial distribution of SC together with the approximate n_{3D} variation and our calculated depth-dependent d_{xy} and $d_{x^2-y^2}$ orbital occupancies (Fig. 4a–c). At low carrier densities (Fig. 4a), d_{xy} orbitals dominate and the charge is concentrated within a few unit cells of the interface. Electrons in the top TiO$_2$ layer tend to localise, creating an inhomogeneous patchwork of FM zones above a narrow ≈ 20 nm SC channel.

As n_{2D} increases (Fig. 4b), FM and SC both remain present at the interface. However, a high-mobility $d_{x^2-y^2}$ “tail” of minimum thickness ≈ 100 nm develops below the interface, generating an anisotropic 3D FS which exhibits SDH oscillations for small in-plane fields. Together, the appearance of this SDH effect, its independence from n_{2D} and $T(\nu_g)$, and its absence in small perpendicular fields indicate that $d_{x^2-y^2}$ orbital occupancy is favoured over d_{xy} to a depth of at least 120 nm below the interface. Unfortunately, it is not possible to accurately determine the maximum depth reached by this “tail”, since the carrier density very close to the interface (where we expect the majority of the carriers to reside) is unknown. However, our data do enable us to comment on the O$^-$ vacancy penetration depth, which we already believe to be small since the capacitance of our B-type samples is comparable to values seen in annealed heterostructures. The high electron mobility within the “tail” region is primarily a consequence of the low carrier density (which leads to a small FS and low effective mass), but a lack of crystal defects (e.g. O$^-$ vacancies) below the interface may also play an important role. Recently, ultra-high mobility carriers ($\mu_{\parallel,\perp} \sim 50,000$ cm2/Vs) have been observed in SrCuO$_2$-capped LaAlO$_3$/SrTiO$_3$ heterostructures, in which O$^-$ vacancy formation is suppressed. This suggests that although the carriers in our B-type heterostructures originate from O$^-$ vacancies, these vacancies may be confined close to the interface (or in the LaAlO$_3$ layer) while the electrons which they donate are redistributed deeper within the SrTiO$_3$. This concept is supported by the absence of any parasitic SrTiO$_3$ surface conduction in our heterostructures (whose presence would be expected in the case of deep O$^-$ vacancy penetration), as well as theoretical work which indicates that O$^-$ vacancies preferentially inhabit the LaAlO$_3$ surface rather than the interface13. Ideally, future theoretical work should examine the evolution of the electronic structure in the “tail” as a function of O$^-$ vacancy density and location. It also remains to be determined whether the absence of superconductivity from the “tail” region is merely due to a sub-critical carrier density, or if the $d_{x^2-y^2}$ orbital character also plays some role.

At the maximum n_{2D} which we are able to simulate (Fig. 4c), only the top TiO$_2$ monolayer at the interface still has a d_{xy} character, with $d_{x^2-y^2}$ states dominating below. We illustrate the effects of a back-gate electric field in Fig. 4d: as V_g increases, the carrier density in the superconducting channel rises and a shift to the overdoped side of the superconducting dome occurs (as seen in Fig. 2c). In parallel, electrons in the “tail” decompress away from the interface due to band-bending from the electric field, migrating hundreds of nano-
metres into the bulk. This migration creates the 3D FS responsible for the SdH oscillations which we observe with \(H \perp (001) \), whose frequency scales with the total carrier density. Between the interface and the bulk, the carrier density of the \(d_{xy} \)-dominated region remains roughly constant: electrons which it “loses” to deeper-lying bulk states are replaced by electrons from the interface. The presence of a large carrier population below the interface results in a screening of the electric field, thus explaining the relatively small increase of \(d \) to 19 nm at \(V_g = 350 \) V compared to \(d \geq 40 \) nm reported at much smaller back-gate fields in the literature 34. Finally, Figs. 4e,f display exaggerated sketches illustrating the evolution of the FS as we move deeper into the SrTiO3 from \(d_{xy} \) domination (Fig. 4e) to a gradual recovery of \(d_{xy,yz} \) degeneracy (Fig. 4f) over a lengthscale \(\approx 120 \) nm. While the microscopic origins of this long-distance evolution are still unclear, our work shows that functional oxide devices can reliably profit from a renormalised electronic structure tens of nano-metres away from a symmetry-breaking interface.

Methods

Two series of LaAlO3/SrTiO3 heterostructures, “A” and “B”, were grown using a standard pulsed laser deposition system manufactured by Twente Solid State Technology B.V., equipped with a reflection high-energy electron diffraction (RHEED) facility. We use 0.5 mm thick commercial 5 × 5 mm SrTiO3 (001) “STEP” substrates from Shinkosha: these are HF-treated for TiO2 termination and cleaned by the manufacturer, then vacuum-packed for shipping. We do not perform any additional surface cleaning or annealing prior to deposition: the substrates are loaded directly into our PLD chamber, which is subsequently evacuated to base pressure (<10⁻⁸ mbar) prior to back-filling with 10⁻⁷ mbar O₂. The substrate is then heated to growth temperature (800°C). Series A and B both feature 10 unit cells of LaAlO3, deposited using a total incident laser energy of 9 mJ focussed onto a 6 mm² rectangular spot. The O₂ pressure and substrate temperature were maintained at 10⁻³ mbar and 800°C respectively for both sample series throughout the deposition process. Subsequently, A-type samples underwent an annealing stage: after cooling to 500°C at 10⁻³ mbar, the O₂ pressure was increased to 0.1 bar. The temperature was held at 500°C for 30 minutes before natural cooling to 20°C in 0.1 bar O₂. In contrast, B-type samples were cooled naturally to 20°C in 10⁻³ mbar O₂.

To fabricate Hall bars on these LaAlO3/SrTiO3 films, we first defined contact pad areas using photolithography with AZ5214 photoresist. 2 nm Ti followed by 8 nm Au were evaporated directly onto the LaAlO3 surface; the remaining photoresist was then removed by soaking in acetone for 30 minutes, then rinsed in IPA. Sample B also had an Au-Ti back gate deposited across the entire base of the SrTiO3 substrate prior to fabrication. The Hall bars were defined using a similar photolithography process and the Hall bar mesas etched using a dry Ar ion technique (at a slow rate of 1 Å s⁻¹ to avoid any substrate heating). The Hall bar width was 80 μm and the voltage contact separation 660 μm. Multiple Hall bars were fabricated on each 5 mm substrate: tests showed that the Hall bars were electrically isolated from each other (thus ruling out any parasitic conduction from the SrTiO3 surface) and displayed similar transport properties (indicating that our heterostructures are homogeneous). Prior to measurement, the Hall bars were mounted in thermally-conductive chip-carriers, with electrical contacts made using 10 μm Au wires ball-bonded to the Au-Ti contact pads.

Transport data were acquired in a cryogen-free dilution refrigerator, using an AC technique with two digital lock-in amplifiers and a current source outputting 500 nA at 19 Hz. This value was chosen to maximise the signal-to-noise ratio whilst minimising sample heating below 0.1 K. Our noise threshold is approximately 1 nV. The substrate capacitance was measured with femtoFarad sensitivity for gate voltages up to 500 V using a General Radio 1621 manual capacitance bridge. All results presented in this work were qualitatively reproducible over a 6-month period comprising
 numerous cool-downs of both samples. A total of 6 “A-type” and 4 “B-type” heterostructures were fabricated in our laboratory using identical “recipes” to those detailed above: all samples displayed similar behaviour to those discussed in the present work.

1. Obtorno, A. & Hwang, H. Y. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427, 404 (2004).

2. Brinkman, A. et al. Magnetic effects at the interface between non-magnetic oxides. Nature Mater. 6, 493 (2007).

3. Reyren, N. et al. Superconducting Interfaces Between Insulating Oxides. Science 317, 1196 (2007).

4. Salluzzo, M. et al. Orbital Reconstruction and the Two-Dimensional Electron Gas at the LaAlO3/SrTiO3 Interface. Phys. Rev. Lett. 102, 166804 (2009).

5. Caviglia, A. D. et al. Electric field control of the LaAlO3/SrTiO3 interface ground state. Nature 456, 624 (2008).

6. Delugas, P. et al. Domain Mobility Modulation by the Electric Field Effect at the LaAlO3/SrTiO3 Interface. Phys. Rev. Lett. 103, 226802 (2009).

7. Bell, C. et al. Dimensional Quantum Oscillations of the Conductance at LaAlO3/SrTiO3 Interfaces. Phys. Rev. Lett. 105, 236802 (2010).

8. Ben Shalom, M., Ron, A., Palevski, A. & Dagan, Y. Shubnikov-De Haas oscillations in SrTiO3/LaAlO3 interface. Phys. Rev. Lett. 105, 206401 (2010).

9. Chambers, S. A. et al. Instability, intermixing and electronic structure at the epitaxial LaAlO3/SrTiO3(001) heterojunction. Surf. Sci. Rep. 65, 317 (2011).

10. Popović, Z., Satpathy, S. & Martin, R. M. Origin of the Two-Dimensional Electron Gas at the LaAlO3 on SrTiO3 interface. Phys. Rev. Lett. 101, 256801 (2008).

11. Pentcheva, R. et al. Parallel Electron-Hole Bilayer Conductivity from Electronic Interface Reconstruction. Phys. Rev. Lett. 104, 166804 (2010).

12. Delugas, P. et al. Spontaneous 2-Dimensional Carrier Confinement at the n-Type SrTiO3/LaAlO3 Interface. Phys. Rev. Lett. 107, 166807 (2011).

13. Khalsa, G. & MacDonald, A. H. Theory of the SrTiO3 surface state two-dimensional electron gas. Phys. Rev. B 86, 121521 (2012).

14. Santander-Syro, A. F. et al. Two-dimensional electron gas with universal subbands at the surface of SrTiO3. Nature 469, 189 (2011).

15. van der Marel, D., van Mechelen, J. L. M. & Mazin, I. I. Common Fermi-liquid origin of T* resistivity and superconductivity in n-type SrTiO3. Phys. Rev. B 84, 205111 (2011).

16. Herranz, G. et al. High Mobility in LaAlO3/SrTiO3 Heterostructures: Origin, Dimensionality, and Perspectives. Phys. Rev. Lett. 98, 216803 (2007).

17. Basletic, M. et al. Mapping the spatial distribution of charge carriers in LaAlO3/SrTiO3 heterostructures. Nature Mater. 7, 621 (2008).

18. Nakagawa, N., Hwang, H. Y. & Muller, D. Why some interfaces cannot be sharp. Nature Mater. 5, 284 (2006).

19. Pavlenko, N., Kopp, T., Tsyambl, E. Y., Mannhart, J. & Sawatzky, G. A. Oxygen vacancies at titanate interfaces: Two-dimensional magnetism and orbital reconstruction. Phys. Rev. B 86, 064431 (2012).

20. Petrovic, A. P. et al. The Vortex Signature of Discrete Ferromagnetic Dipoles at the LaAlO3/SrTiO3 Interface. arXiv:1311.2323 (2013).

21. Son, J. et al. Epitaxial SrTiO3 films with electron mobilities exceeding 30000 cm2/V s. Nature 492 (2010).

22. Joshua, A., Pecker, S., Ruhman, J., Altman, E. & Ilani, S. A Universal Critical Density Underlying the Physics of Electrons at the LaAlO3/SrTiO3 Interface. Nat. Commun. 3, 1129 (2012).

23. Khalsa, G. & MacDonald, A. H. Theory of the SrTiO3 surface state two-dimensional electron gas. Phys. Rev. B 86, 121521 (2012).

24. Petrovic, A. P. et al. Long-range electronic reconstruction to a da3s3-dominated Fermi surface below the LaAlO3/SrTiO3 interface. Sci. Rep. 4, 5338; DOI:10.1038/srep05338 (2014).

Acknowledgments
The authors gratefully acknowledge discussions with H. Hilgenkamp, A. Fujimori and I. Martin. This work was supported by the National Research Foundation, Singapore, through Grant NRF-CRP4-2008-04. The research was supported by the National Science Foundation through the Materials Research Science and Engineering Center (Grant No. DMR-0820521) and the Designing Materials to Revolutionize and Engineer our Future (DMREF) Program (Grant No. DMR-1254096). Computations were performed at the UNL Holland Computing Center and the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy.

Author contributions
A.P.P. and C.P. conceived the project. A.D. and T.W. grew the heterostructures. K.L. and C.B. fabricated and tested the Hall bars. A.P.P. and A.P. set up and performed the experiments. T.P. and E.T. contributed the band structure and Fermi surface calculations. A.P.P. and C.P. wrote the paper. C.P. supervised the entire study. All authors discussed the results and manuscript.

Additional information
Supplementary information accompanies this paper at http://www.nature.com/srep

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Petrovic, A. P. et al. Long-range electronic reconstruction to a da3s3-dominated Fermi surface below the LaAlO3/SrTiO3 interface. Sci. Rep. 4, 5338; DOI:10.1038/srep05338 (2014).

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/