Research Paper

The Effect of 14 Days of Coenzyme Q10 Supplementation on Muscle Damage and Fatigue Indices Following a Bout Exhausting Exercise Activity in Passive Men

*Tohid Khanvari1, Faramarz Sardari2, Babak Rezaei3

1. Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Tabriz, Tabriz, Iran.
2. Department of Exercise Physiology and Corrective Exercises, Faculty of Sport Sciences, Urmia University, Urmia, Iran.

Background and Aim: Exercise aerobic is associated with increased creatine kinase and blood lactate immediately after exercise, leading to increased muscle damage and undesirable changes in many cellular markers including serum creatine kinase. In such situations, consuming nutrients and supplements such as coenzyme Q10 may prevent metabolic stress damage by increasing buffering power. However, comprehensive studies have not been performed on the effects of this nutrient on the index of muscle injury and fatigue caused by exercise.

Methods & Materials: For this purpose, 20 inactive volunteer men were randomly divided into two groups of 10-person Coenzyme Q10 supplement (2.5 mg/kg body weight) and quasi-drug (2.5 mg/kg body weight Dextrose). All subjects participated in the Bruce test exercise contract after 14 days of supplementation. Blood sampling was performed in four stages including baseline, after supplementation, immediately after exercise and two hours after exercise. Creatine kinase, lactate and cortisol indices of both groups were measured during these four stages. Data were analyzed by means of standard deviation and repeated measures ANOVA, Bonferroni post hoc and Independent T-test using SPSS V. 17 at the significant level of 0.05.

Ethical Considerations: This article has been approved by the ethics committee of Tabriz School of Medical Sciences with the ethics code IRCT 201203104663N8.

Results: The results showed that 14 days of Coenzyme Q10 supplementation had a significant effect on cortisol level (P<0.05). In addition, one session of exhausting aerobic activity increased creatinine kinase and lactate (P<0.05). On the other hand, creatinine kinase did not differ significantly after exercise (P>0.05).

Conclusion: According to the results of the present study, 14-day supplementation of Coenzyme Q10 may reduce the cellular damage induced by exhaustive aerobic activity in inactive men and prevent an increase in blood lactate levels.

Key words: Exhaustive aerobic activity, Coenzyme Q10 supplementation, Cortisol, Creatine Kinase (CK), Inactive men

Extended Abstract

1. Introduction

Today, aerobic exercise has become a necessity for health, weight management, and prevention of metabolic diseases [1, 2]. These activities may lead to muscle and tissue damage, facilitate the oxidation of membrane fatty acids, and initiate a series of destructive reactions leading to cell death [3]. In such cases, the use of nutritional supplements and antioxidants is necessary to prevent injuries caused by irregular and intense sports activities. One of these supplements, whose effects have been reported in studies as an antioxidant and anti-fatigue agent, is coenzyme Q10.
However, the results of various studies showed that the effects of Q10 on the indicators of fatigue and muscle injuries are contradictory [9, 19]. Therefore, it is necessary to determine the antioxidant effects of coenzyme Q10 supplementation on injuries caused by exercise [9]. Therefore, the aim of this study was to evaluate the effect of 14 days of coenzyme Q10 supplementation on muscle injury and fatigue indices following a period of strenuous exercise in inactive men.

2. Materials and Methods

In a semi-empirical double-blind study, consisting of two groups of complementary and placebo recipients, with repeated measurements (four blood draws), 20 inactive men (Mean age 23±2 years and Mean weight 74±2.01 kg), randomly divided into two homogenized groups receiving coenzyme Q10 supplement (2.5 mg/kg body weight, per day) and placebo (dextrose, the same amount of supplement was added during the supplementation period).

Their aerobic capacity was determined using Bruce test on a treadmill. One week later, to homogenize and determine the baseline values of the desired parameters (cortisol, creatine kinase and lactate), before starting the fourteen-day supplement, the first blood samples were taken from the right antecubital vein of all subjects in the amount of five ml. After completing the supplementation period (14 days) and before performing aerobic activity, a second blood sample was taken.

After confirming the natural distribution (Kolmogorov-Smirnov and Shapiro-Wilk tests) and the homogeneity of the data obtained in the first stage (independent t-test), the research hypotheses were evaluated with repeated measures Analysis of Variance (ANOVA), Bonferroni post 17 at a significance level of 0.05. In addition, the effect size of each of the interfering factors was determined using omega squared.

3. Results

The results showed that coenzyme Q10 supplementation had no significant effect on basal cortisol. In other words, coenzyme Q10 supplementation could not significantly alter basal blood cortisol. However, the increase in cortisol after debilitating aerobic activity was not significant in the coenzyme Q10 supplement group. But in the placebo group, cortisol was significantly increased after debilitating aerobic activity. Cortisol levels fell below baseline 2 hours after exercise. In other words, coenzyme Q10 supplementation can reduce the significant increase in changes in serum cortisol (stress hormone) after debilitating aerobic activity.

On the other hand, the results of ANOVA of cell damage index indicated that loading of coenzyme Q10 supplementation had no effect on serum total creatine kinase. In other words, coenzyme Q10 supplementation could not significantly alter basal blood creatine kinase. On the other hand, the results of ANOVA related to changes in blood lactate indicated that taking coenzyme Q10 supplementation could not cause a significant change in basal blood lactate. However, the increase in lactate after debilitating exercise was significantly lower than in the placebo group. In other words, the effect of the measurement steps on the incidence of changes in blood lactate was greater than the group differences. The results of independent t-test showed that there was a significant difference between the lactate levels of the supplement and placebo groups after exercise.

4. Discussion

The results of the present study showed that basal coenzyme Q10 supplementation had no effect on serum total creatine kinase. The possible mechanism of action of coenzyme Q10 as an antioxidant in reducing creatine kinase was probably that coenzyme Q10 reduced peroxidation of membrane fats and reduced damage to phospholipid membranes by removing free bases and increasing the body’s antioxidant capacity, and thereby prevented the leakage and penetration of this intracellular enzyme into extracellular fluids [17, 18]. On the other hand, it was shown that basal coenzyme Q10 supplementation had no effect on blood lactate.

The results of the present study on the increase in plasma lactate levels after debilitating aerobic activity were consistent with the results of the research of Sachek et al. (2003) [21]. In his study of healthy young and old men, Sachek showed that blood lactate increased significantly immediately after 45 minutes of running on the negative slope of the treadmill with 75% of maximum oxygen consumption; This rate was significant in the group of old people compared to the group of young men [21]. In addition, in the present study, coenzyme Q10 supplementation after aerobic exercise significantly reduced plasma lactate in the supplement group compared to placebo. Probably the reason was the increase in plasma coenzyme Q10 and the strengthening of mitochondrial coenzyme and activation of the aerobic metabolic pathway, which limits lactate production by accelerating the consumption of fatty acids and the production of adenosine triphosphate [14].
Ethical Considerations

Compliance with ethical guidelines

This study was approved by the Ethics Committee of Tabriz University (Code: IRCT201203104663N).

Funding

The present paper was extracted from the MSc. thesis of the first author, Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Tabriz.

Authors' contributions

Methodology, sampling: Faramarz Sardari; Data analysis: Tohid Khanvari; Conceptualization, writing – review & editing: All authors.

Conflicts of interest

The authors declared no conflict of interest.

Acknowledgements

The authors would like to thank the University of Urmia, especially the Faculty of Physical Education and Sports Sciences, the esteemed professors, who helped us in presenting this research.
تأثیر ۱۶ روز مکملدهی کوآنزیم Q10 بر شاخص‌های آسیب عضلانی و خستگی متعاقب یک وهله فعالیت ورزشی و امان‌سازی در مردان غیرفعال

نویسنده مسئول: توحید خانواری
گروه فیزیولوژی ورزشی، دانشکده تربیت بدنی و علوم ورزشی، دانشگاه تبریز، تبریز، ایران.

مقدمه

در جوامع امروزی، برای سلامتی، مدیریت وزن و همچنین جلوگیری از بروز بیماری‌های متابولیکی، انجام فعالیت‌های هوازی به‌پژوهی می‌شود. شیوع این بیماری‌ها در جوامع امروزی بالا است و اجتماعی در این بیماری‌ها عوامل مختلفی مانند نظم، وزن بدن و تنش را می‌توان در نظر گرفت.

در تحقیقات مختلف، این مطالعه با توجه به مدیریت وزن و سلامتی برای سوی داده‌ها و نتایج، استفاده از کوآنزیم Q10 به عنوان یک مکمل غذایی به‌طور گسترده در تحقیقات متعددی انجام شده است.

مکمل Q10

کوآنزیم Q10 یک مکمل غذایی است که در بدن انسان و سایر حیوانات ضروری است و نقش مهمی در تولید انرژی با中介یت قلدرای و الکترود ایفا می‌کند.

نتایج

در این مطالعه، ۲۰ نفر از مردان غیرفعال به‌طور تصادفی به دو گروه دوشاخه تقسیم شدند. هر دو گروه با مصرف مکمل کوآنزیم Q10 و کورتیزول در طول ۱۴ روز مکمل سازی فعالیت ورزشی هوازی را با خود به‌دست آوردند. خونگیری در چهار مرحله شامل در پایه، پس از مکمل سازی، پس از فعالیت ورزشی و دو ساعت پس از فعالیت انجام شد.

ملاحظات

در حالت پایه، بر مبنای نتایج آزمون‌های تکثیری و تکثیری با استفاده از نرم‌افزار SPSS، به توصیع کمیته‌های اخلاقی، تأیید شد.

کلیدواژه‌ها: مکمل کوآنزیم Q10، کورتیزول، کراتین کیناز، مردان غیرفعال
داده شدند. هریک از آزمودنی‌ها مویف بودند که چهارده روز، قرار میلی گرم به ازای هر کیلوگرم وزن بدن در روز، گروه (تهیه شده توسط شرکت نوتری سنتری) را دریافت کردند. درای گروه دریافت کننده با بررسی وضعیت سلول‌های خونی افراد، بیست نفر به شیوه گرفتن نمونه‌های خونی از دستگاه‌های خونی انجام و آزمایشات و بررسی‌های سایر ویژگی‌های سلامت از اختیار آزمودنی‌ها قرار گرفت و به آن درآمده بود. همچنین، برای تأمین کمبود دریافت نکرده شدند. آزمودنی‌های سالم و واجد شرایط به تعداد بیست نفر، با در پرسش نامه سلامتی و با انجام معاینات پزشکی وارد تحقیق گردید. از آنجایی که تاکنون اثرات قطعی مکمل سازی در پیشگیری از افزایش لاکتات ناشی از آسیب عضلانی و خستگی متعاقب یک وهله فعالیت وامانده ساز در مردان غیرفعال غلظت تستوسترون و زمان عملکرد بسکتبالیست‌ها در مقایسه با گروه کنترل بالاتر گزارش شده بود. برای تخصیص نمونه‌های نمونه‌گیری، هر یک از آزمودنی‌ها که به مدت چهار ماه قبل از شرکت مستقل و بدون رعایت چهار روزه، هر یک از آن‌ها به همراه شاخص‌های آسیبی مشخص کرد. غلظت لاکتات، کورتیزول و تستوسترون و زمان عملکرد در بسکتبالیست‌ها در مقایسه با گروه کنترل بالاتر گزارش شده بود. در حالی که فاکتور مواد حیاتی و شکرخیزی نسبت به گروه کنترل بالاتر بود. در نتیجه، بر اساس آنچه که با گروه کنترل بالاتر گزارش شده بود، در نتیجه، بر اساس آنچه که با گروه کنترل بالاتر گزارش شده بود. در نتیجه، بر اساس آنچه که با گروه کنترل بالاتر گزارش شده بود.
پس از تایید توزیع طبیعی (آزمون کولموگروف اسمیرنف) و همگنی داده حاصله در مرحله اول (آزمون تی مستقل) با استفاده از نرم افزار SPSS نمودار مقدار تغییرات مکمل کوآنزیم Q10 و پس از آن در دو نمونه دارونما و گروه شبه داروست بیان شده است که مکمل کوآنزیم Q10 نمی تواند باعث تغییر معنی‌دار دریافت مکمل کوآنزیم Q10 در حالت پایه شود. به عبارتی سهم اثر هریک از عوامل معنی‌دار نیست. نتایج آزمون بونفرونی نشانگر آن است که مکمل کوآنزیم Q10 نمی‌تواند باعث تغییر معنی‌دار دریافت مکمل کوآنزیم Q10 در حالت پایه شود.

یافته‌ها

تغییرات کورتیزول سرمی و فعالیت هوازی وامانده ساز، هر دو برگیری مکمل کوآنزیم Q10 تأثیر معنی‌داری را داشته و افزایش کورتیزول سرمی را نشان داده است. البته، تغییرات کورتیزول سرمی را نشان داده است که مکمل کوآنزیم Q10 نمی‌تواند باعث تغییر معنی‌دار دریافت مکمل کوآنزیم Q10 در حالت پایه شود. به عبارتی سهم اثر هریک از عوامل معنی‌دار نیست. نتایج آزمون بونفرونی نشانگر آن است که مکمل کوآنزیم Q10 نمی‌تواند باعث تغییر معنی‌دار دریافت مکمل کوآنزیم Q10 در حالت پایه شود.

یافته‌ها

تغییرات کورتیزول سرمی و فعالیت هوازی وامانده ساز، هر دو برگیری مکمل کوآنزیم Q10 تأثیر معنی‌داری را داشته و افزایش کورتیزول سرمی را نشان داده است. البته، تغییرات کورتیزول سرمی را نشان داده است که مکمل کوآنزیم Q10 نمی‌تواند باعث تغییر معنی‌دار دریافت مکمل کوآنزیم Q10 در حالت پایه شود. به عبارتی سهم اثر هریک از عوامل معنی‌دار نیست. نتایج آزمون بونفرونی نشانگر آن است که مکمل کوآنزیم Q10 نمی‌تواند باعث تغییر معنی‌دار دریافت مکمل کوآنزیم Q10 در حالت پایه شود.

جدول 1. نتایج آزمون تی مستقل برای مقایسه داده‌ها در گروه مکمل و دارونما

متغیر	گروه مکمل	گروه دارونما
وزن (کیلوگرم)	8/235 ± 0/1	8/158 ± 0/3
درصد چربی (%ا)	26/35 ± 0/1	27/45 ± 0/1
سن (سال)	35/25 ± 0/1	34/25 ± 0/1

جدول 2. نتایج آزمون تی مستقل برای مقایسه داده‌ها در گروه مکمل و دارونما

متغیر	گروه مکمل	گروه دارونما
وزن (کیلوگرم)	8/235 ± 0/1	8/158 ± 0/3
درصد چربی (%ا)	26/35 ± 0/1	27/45 ± 0/1
سن (سال)	35/25 ± 0/1	34/25 ± 0/1

منابع

3. Kolmogorov-Smirnov
4. Shapiro-Wilk
5. Analysis of Variance (ANOVA)
نتایج تحلیل واریانس مربوط به تغییرات لاکتات خون حاکی از تأثیر معنی‌داری بر Q10 است که بارگیری مکمل کوآنزیم Q10 و فعالیت سرزده‌گر سوز در این گروه از اثرات Q10 را تأیید می‌نماید. البته نتایج آزمون بونفرونی نشان‌دهنده وجود مکمل کوآنزیم Q10 در این گروه است که کانترول نمی‌نماید. حداکثر اکسیژن مصرفی بعد از فعالیت وامانده ساز به طور معنی‌دار Q10 نسبت به قبل از مکمل سازی کوآنزیم Q10 به طور معنی‌داری افزایش یافته است (تصویر شماره 4).

یافته‌های تحقیق حاضر حاکی از آن است که مکمل‌سازی تغییرات کورتیزول سرم گروه‌های مکمل و شبه دارو پس از مکمل‌سازی، فعالیت هوازی و دو ساعت پس از فعالیت هوازی تغییرات قرمزی جانین که در مکمل‌سازی کوآنزیم Q10 تأثیر دارد، نشان‌دهنده می‌باشد. همچنین نشان داده شد، تغییرات Q10 می‌گذارد. حداکثر اکسیژن مصرفی بعد از مکمل‌سازی کوآنزیم Q10 به طور معنی‌دار Q10 افزایش یافته است (تصویر شماره 4).

پیشنهاد یافته‌های تحقیق حاضر حاکی از آن است که مکمل‌سازی تغییرات کورتیزول سرم گروه‌های مکمل و شبه دارو پس از مکمل‌سازی، فعالیت هوازی و دو ساعت پس از فعالیت هوازی
کوآنزیم Q10 در حالت پایه ناشی از فعالیت وامانده سرمی می‌تواند کراتین کیناز ناشی از فعالیت وامانده سرمی را به شکل معنی‌داری کاهش دهد. نتایج تحقیق حاضر با نتایج تحقیق سومیدا [8] مبنی بر تأثیر کوآنزیم Q10 در کاهش کراتین کیناز ناشی از فعالیت وامانده سرمی در مردان، مطابقت داشت. این نتایج با تحقیق شوئان و همکاران [19] مطابقت داشت که نشان دادند کوآنزیم Q10 می‌تواند افزایش معنی‌داری در کراتین کیناز تام سرمی را کاهش دهد.

کوآنزیم Q10 به عنوان یک مکمل، می‌تواند از مناطق اکسایشی و ضد اکسایشی در بدن کاهش و کاهش آسیب عضلانی را در طول فعالیت وامانده سرمی پیشگیری کند. این احتمال وجود دارد که کوآنزیم Q10 می‌تواند از طریق کاهش کراتین کیناز ناشی از فعالیت وامانده سرمی، آسیب عضلانی را کاهش دهد. این احتمال با کاهش کراتین کیناز سرمی برخوردار می‌باشد.

تصویر 3: تغییرات لاکتات پلاسمایی و تغییرات VO2max در گروه‌های مکمل و بدون مکمل Q10 پس از شش ماهه مصرف Q10. تغییرات لاکتات پلاسمایی و تغییرات VO2max در گروه‌های مکمل و بدون مکمل Q10.
دریافت خاصیت حضرت مبنا بر تحقیق حاکی از آن است که فعالیت هوازی به طور معنی‌داری ضداکسایشی طبیعی و خوراکی است. با این حال، نتایج تحقیق فعالیت های سنگین و شدید استفاده از مکمل‌سازی مواد بیولوژیکی از راه‌های مقابله با اثرات نامطلوب فشار اکسایشی ناشی از فعالیت‌های بدنی نسبتاً شدید، اثربخشی و بررسی نتایج پژوهش‌های صورت‌گرفته حاکی از آن است که پایه‌های اندازه‌گیری و شکل‌دهی کمک‌سازی‌های اسکندری نسبت به مصرف چهاردهمی‌ها می‌باشد. در حالی که تأثیر فعالیت‌های ورزشی و مکمل‌سازی مواد بیولوژیکی بر عضلات‌های تولید لاکتات ناشی از فعالیت‌های بدنی به طور معنی‌داری ضداکسایشی طبیعی و خوراکی است. با این حال، نتایج تحقیق فعالیت‌های سنگین و شدید استفاده از مکمل‌سازی مواد بیولوژیکی از راه‌های مقابله با اثرات نامطلوب فشار اکسایشی ناشی از فعالیت‌های بدنی نسبتاً شدید، اثربخشی و بررسی نتایج پژوهش‌های صورت‌گرفته حاکی از آن است که پایه‌های اندازه‌گیری و شکل‌دهی کمک‌سازی‌های اسکندری نسبت به مصرف چهاردهمی‌ها می‌باشد. در حالی که تأثیر فعالیت‌های ورزشی و مکمل‌سازی مواد بیولوژیکی بر عضلات‌های تولید لاکتات ناشی از فعالیت‌های بدنی به طور معنی‌داری ضداکسایشی طبیعی و خوراکی است.
نهایت با توجه به نتایج مطالعه حاضر می‌توانند از این نوع مکمل گیبری در فعالیت‌های شدیدی که موجب اکسیداسیون و آسیب‌های اکسیدتیو را به ورزشکار ایجاد می‌کند استفاده کنند.

ملاحظات اخلاقی

پژوهش از اصول اخلاق پژوهشی این مقاله با کد اخلاقی IRCT201203104663N8 به تصویب کمیته اخلاق دانشگاه علوم پزشکی تبریز رسیده است.

پیروی اصول اخلاق پژوهش به تصویب کمیته اخلاق دانشگاه علوم پزشکی تبریز رسیده است.

حامي مالي

این مقاله مستخرج از پایان نامه کارشناسی ارشد نویسنده اول در گروه فیزیولوژی ورزشی دانشگاه تربیت پدنی و علوم ورزشی، دانشگاه تبریز است.

مشارکت کوشیدنی‌ها

روش پژوهشی و تدوین گزارش در دانشجویان، تحلیل داده‌ها و جمع‌آوری و تهیه‌ی نگارش متون و پایان‌ی نویسنده‌ها.

تعارض منافع

نویسندگان مقاله هیچ گونه تعارضی در منافع اعلام نکرده‌اند.

تشکر و قدردانی

بدرقه طلایی و همکاران. تأثیر Q10 روی مکمل گیبری قارچی در خاصیت عضلانی و خستگی مربیان متوسط و عمیق را در ارائه این تحقیق یاری کرده و تشکر می‌کنیم.

توجه خاصی و همکاران. تأثیر Q10 روی مکمل گیبری قارچی در خاصیت عضلانی و خستگی مربیان متوسط و عمیق را در ارائه این تحقیق یاری کرده و تشکر می‌کنیم.
This Page Intentionally Left Blank