Flavonols and dihydroflavonols inhibit the main protease activity of SARS-CoV-2 and the replication of human coronavirus 229E

Yue Zhu¹, Frank Scholle², Samantha C. Kisthardt² De-Yu Xie¹*

¹, Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA.

², Department of Biology, North Carolina State University, Raleigh, NC, USA.

* Corresponding author, dxie@ncsu.edu
Abstract

Since December 2019, the deadly novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the current COVID-19 pandemic. To date, vaccines are available in the developed countries to prevent the infection of this virus, however, medicines are necessary to help control COVID-19. Human coronavirus 229E (HCoV-229E) causes the common cold. The main protease (Mpro) is an essential enzyme required for the multiplication of these two viruses in the host cells, and thus is an appropriate candidate to screen potential medicinal compounds. Flavonols and dihydroflavonols are two groups of plant flavonoids. In this study, we report docking simulation with two Mpro enzymes and five flavonols and three dihydroflavonols, \textit{in vitro} inhibition of the SARS-CoV-2 Mpro, and \textit{in vitro} inhibition of the HCoV 229E replication. The docking simulation results predicted that (+)-dihydrokaempferol, (+)-dihydroquercetin, (+)-dihydromyricetin, kaempferol, quercetin, myricentin, isoquercetin, and rutin could bind to at least two subsites (S1, S1’, S2, and S4) in the binding pocket and inhibit the activity of SARS-CoV-2 Mpro. Their affinity scores ranged from -8.8 to -7.4. Likewise, these compounds were predicted to bind and inhibit the HCoV-229E Mpro activity with affinity scores ranging from -7.1 to -7.8. \textit{In vitro} inhibition assays showed that seven available compounds effectively inhibited the SARS-CoV-2 Mpro activity and their IC50 values ranged from 0.125 to 12.9 µM. Five compounds inhibited the replication of HCoV-229E in Huh-7 cells. These findings indicate that these antioxidative flavonols and dihydroflavonols are promising candidates for curbing the two viruses.

Keywords: (+)-dihydrokaempferol, (+)-dihydroquercetin, (+)-dihydromyricetin, kaempferol, quercetin, myricentin, isoquercetin, rutin, flavan-3-ols
1. Introduction

SARS-CoV-2 is the abbreviation of the novel severe acute respiratory syndrome coronavirus. This virus was firstly reported to cause a severe pneumonia in December of 2019 in Wuhan, China [1-3]. On February 11, 2020, the World Health Organization (WHO) designated this pneumonia as coronavirus disease 2019 (COVID-19). COVID-19 rapidly spread different countries. On March 11, 2020, WHO announced the COVID-19 pandemic [4,5]. This pandemic has rapidly spread across all over the world. By June 21, 2021, based on the COVID-19 Dashboard by Center for Systems Science and Engineering at Johns Hopkins Coronavirus Resource Center, 117,553,726 infected cases and 3,867,641 deaths have been reported from more than 200 countries or regions. No strategy to stop the spread of this virus was available until January 2021, when several vaccines started to be approved for vaccination in several countries [6-11]. On one hand, since the start of vaccination, the number of infections has started to decrease. On the other hand, due to the insufficient vaccine quantities and vaccine hesitancy even where available, in the first week of February, 2021, the daily infection cases and deaths were still more than 400,000 and 11,000, respectively. By Feb. 9, the case numbers still increased by more than 300,000 daily. Meanwhile, the use of vaccines has also indicated that developing effective medicines is necessary to stop COVID-19. A recent study showed that mutations in the spike protein of SARS-CoV-2 might cause the escape of new variants from antibody [12]. The variant B.1.351 found in South Africa was reported to be able to escape vaccines developed by AstraZeneca, Johnson & Johnson (J&J), and Novavax [13]. Merck & Co has stopped their race for vaccines due to the
lack of effectiveness of their products, instead, they continue to focus on antiviral drug
development [14]. Unfortunately, to date, effective medicines are still under screening.
Although chloroquine and hydroxychloroquine were reported to be potentially effective in
helping to improve COVID-19 [15], the use of these two anti-malarial medicines has been
arguable in USA because of potential risk concerns [16]. Other potential candidate medicines
are the combination of α-interferon and anti-HIV drugs lopinavir/ritonavir [17], and
remdesivir [15,18]. Given that the efficacy of all these medicines being repurposed has not
been conclusive, further studies are necessary to apply them for treating COVID-19.

SARS-CoV-2 is a single stranded RNA virus. Its genomic RNA contains around 30,000
nucleotides and forms a positive sense strand with a 5′ methylated cap and a 3′
polyadenylated tail that encodes at least six open reading frames (ORF) [19,20]. This feature
allows it to be able to use the ribosomes of the host cells to translate proteins. The longest
ORF (ORF1a/b) translates two polyproteins, which are cleaved by one main protease (Mpro, a
3C-like protease, 3CLpro) and another papain-like protease (PL2pro) into 16 nonstructural
proteins (NSPs), which include RNA-dependent RNA polymerase (RdRp, nsp12), RNA
helicase (nsp13), and exoribonuclease (nsp14). The NSPs subsequently produce structural
and accessory proteins. The structural proteins include an envelope protein, membrane
protein, spike (S) protein, and nucleocapsid protein (Fig.1) [21,22]. The S protein is a type of
glycoprotein and plays an essential role in the attachment and the infection of the host cells
[23]. It binds to the human angiotensin converting enzyme 2 to help the virus enter the human
cells [24,25]. Since May 2020, the mutations of amino acids of the S protein has created a
large number of variants, of which the emergence of alpha, beta, gamma, and delta variants has shown more pathogenic and transmissible, thus caused potential challenges to use vaccines to completely control the pandemic [26-30].

Human coronavirus 229E (HCoV-229E) is a pathogenic virus in the genus Alphacoronavirus [31]. It is one of the causative viral agents of the common cold [32,33]. Its genome consists of a positive sense and single-stranded RNA with 27,317 nucleotides (nt). Its genome size commonly varies in different clinical isolates. For example, HCoV-229E strains 0349 and J0304 were two clinical isolates causing the common cold [34]. The entire genome of these two clinical isolates were reported to be about 27, 240 nt, which included 38.07 % GC content is in 0349 and 38.13 % GC content in J0304. In general, the genome of HCoV-229E is characterized with a gene order of 5’-replicase ORF1a/b, spike (S), envelope (E), membrane (M), nucleocapsid (N)-3’ [35], Like SARS-CoV-2, the spike protein is the determinant of infections to host cells [36]. The ORF1a/b of HCoV-229E encodes 16 non-structural proteins (NSPs). The NSP5 encodes the Mpro that is required for the replication in the host cells [34]. Given that HCoV-229E is allowed to be studied in BSL2 laboratories, this pathogenic virus is an appropriate model to screen therapeutics for the treatment of both common cold and COVID-19.

Given that the SARS-CoV-2 Mpro not only plays a vital role in the cleavage of polyproteins, and there is no human homolog, it is an ideal target for anti-SARS-CoV-2 drug screens and development [37,38]. It belongs to the family of cysteine proteases and has a Cys-His catalytic
A dyad, which is an appropriate site to design and screen antiviral drugs [39]. Its high-resolution crystal structure was elucidated in April 2020 [40]. Based on the crystal structure, screening the existing antiviral medicines or designed chemicals revealed that cinanserin, ebselen, GC376, 11a, and 11b showed inhibitory effects on the M_{pro} activity [39-43]. A common feature is that these molecules deliver their carbonyl group (aldehyde group or ketone group) to the thiol of the 145 cysteine residue to form a covalent linkage, thus inhibit the M_{pro} activity. The potential application of these molecules is still under studies to evaluate their effectiveness and side effects. In addition, we recently found that flavan-3-ol gallates, such as (-)-epigallotechin-3-gallate, (-)-catechin-3-gallate, and (-)-epicatechin-3-gallate, and dimeric procyanidins promisingly inhibited the M_{pro} activity [44]. Docking simulation indicated that their inhibitory activity likely resulted from the formation of hydrogen bonds between these compounds and several amino acids in the binding domain of M_{pro}.

Flavonols and dihydroflavonols (Fig. 2) are two main groups of plant flavonoids [45,46]. Quercetin, kaempferol, and myricetin are three flavonol molecules widely existing in plants. Likewise, dihydroquercetin, dihydrokaempferol, and dihydromyricetin are three dihydroflavonol molecules in plants [47,48]. In general, flavonols and dihydroflavonols are strong antioxidants with multiple benefits to human health [49-58]. Furthermore, studies have reported that quercetin and its derivatives have antiviral activity [59-61]. Based on these previous findings, we hypothesized that flavonols and dihydroflavonols might inhibit the M_{pro} activity of SARS-CoV-2 and HCoV-229E. In this study, to test this hypothesis, we performed docking simulation for three dihydroflavonols, three flavonols, and two glycosylated...
quercetins. Then, we tested these compounds’ inhibition against the recombinant M$^{\text{pro}}$ activity of SARS-CoV-2 in vitro. More importantly, five available compounds were evaluated to determine their inhibitive activity against the replication of HCoV-229E in Huh-7 cells. The resulting data showed eight compounds effectively inhibited the M$^{\text{pro}}$ activity of SARS-CoV-2 and five tested compounds inhibited the replication of HCoV-229E in Huh-7 cells.

2. Materials and methods

2.1 Dihydroflavonols, flavonols, cell line, and coronavirus

Flavonols used in this study included kaempferol, quercetin, myricetin, quercetin-3-O-glycoside, and rutin. Dihydroflavonols used were (+)-taxifolin (dihydroquercetin, DHQ), (+)-dihydrokaempferol (DHK), and (+)-dihydromyricetin (DHM). Two flavan-3-ols, (-)-epicatechin and (+)-catechin, were used as compound controls. The ebselen was used as a positive control. These compounds were purchased from Sigma-Aldrich (https://www.sigmaaldrich.com/)

Huh-7 cells, a human hepatocellular carcinoma cell line, are appropriate to study the replication of different viruses [62–66]. This cell line was used for infection and propagation of virus and for testing antiviral activity of compounds. Human coronavirus 229E (HCoV-229E) is a positive sense and single-stranded RNA virus that infects the human respiratory system
HCoV-229E was propagated on Huh-7 cells and tittered by TCID50 assay.

2.2 Docking simulation of the SARS-CoV-2 M\(^{\text{pro}}\)

We recently reported the docking simulation of flavan-3-ols, such as epicatechin and catechin (Fig. 2) [44]. Herein, we used the same steps for docking simulation of flavonols and dihydroflavonols in this experiment. In brief, three main steps were completed, protein preparation, ligand preparation, and protein-ligand docking. The first step was protein preparation. The SARS-CoV-2 M\(^{\text{pro}}\) was used as a receptor to test ligands. Its ID is PDB ID: 6LU7 at Protein Data bank (https://www.rcsb.org/), from which its 3D structure was downloaded to a desktop computer and then was prepared as a receptor of ligand via the Dock Prep tool of UCSF-Chimera (https://www.cgl.ucsf.edu/chimera/). Because M\(^{\text{pro}}\) contains the inhibitor peptide N3, we removed N3 prior to docking simulation. Hydrogens and charges were added and optimized to allow determining the histidine protonation state.

The second step was ligand preparation. The 3D structures of compounds (Fig. 2) were obtained from PubChem (https://pubchem.ncbi.nlm.nih.gov/) and then used as ligands. All structures were minimized by using the minimize structure tool of UCSF-Chimera.

Hydrogens and charges were added to the ligands, which were then saved as mol2 format for the protein-ligand docking simulation. The third step was protein-ligand docking. The modeling of protein-ligand docking was performed via the publically available AutoDock Vina (http://vina.scripps.edu/) software. The protein and ligand files were loaded to the AutoDock Vina through the UCSF-Chimera surface binding analysis tools. A working box
was created to contain the whole receptor. The box center was set at x = -27, y = 13, and z = 58. The box size was set as x = 50, y = 55, and z = 50, which framed the entire receptor to allow free position changes and ligand binding to the receptor at any potential positions.

2.3 Docking simulation of the HCoV-229E M^{pro}

HCoV-229E needs a M^{pro} (3C-like protease) for its replication in the host cells [72-74]. The M^{pro} is also a target for screening anti-HCoV-229E medicines [75-77]. The sequence of the HCoV-229E M^{pro} was obtained from the GenBank and then used for an alignment and docking simulation. The steps of simulation were the same as described above.

2.4 Inhibition assay of the SARS-CoV-2 M^{pro} activity

(+)-DHQ, (+)-DHK, (+)-DHM, quercetin, kaempferol, myricetin, quercetin-3-O-glycoside, rutin, (-)-epicatechin, and (+)-catechin were dissolved in DMSO to prepare a 1.0 M solution. A SARS-CoV-2 Assay Kit (BPS bioscience, https://bpsbioscience.com/) was used to test the inhibitory activity of these compounds. The steps of in vitro assay followed the manufacturer’s protocol as performed in our recent report [44]. In brief, each reaction was carried out in a 25 µl volume in 384-well plates. Each reaction solution contains 150 ng recombinant M^{pro} (6 ng/µl), 1 mM DDT, 50 µM fluorogenic substrate, and one compound (0, 0.02, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100, 150, and 200 µM) in pH 8.0 mM Tris-HCl and 5 µM EDTA buffer. GC376 (50 µM) was used as a positive control, while (-)-epicatechin and...
(+)-catechin were used as two negative controls. The reaction mixtures were incubated for 2 hrs at room temperature. The fluorescence intensity of each reaction was measured and recorded on a microtiter plate-reading fluorimeter (BioTek's Synergy H4 Plate Reader for detect fluorescent and luminescent signals). The excitation wavelength was 360 nm and the detection emission wavelength was 460 nm. Each concentration of every compound was tested five times. A mean value was calculated with five individual replicates. Plots were built with the percentiles of catalysis versus log [µM] values of concentrations to show the effect of each compound on the Mpro activity. Statistical evolution is described below.

2.5 Inhibition assay of Human coronavirus 229E

Huh-7 cells were grown in Dulbecco's Modified Eagle Medium (DMEM) supplemented with 10% fetal bovine serum (10% FBS) and 1% antibiotics. HCoV-229E was propagated on Huh-7 cells. Virus containing supernatants were harvested 72h post infection and stored at -80°C. The virus titer was determined by the Median Tissue Culture Infectious Dose 50 (TCID50) assay in Huh-7 cells.

Then, we performed virus inhibition assays. Huh-7 cells were seeded in 96 well plates at a density of 25,000 cells/well and incubated overnight. HCoV 229-E was diluted in MEM with 1% FBS, 1% HEPES buffer, and 1% antibiotic solution (MEM 1+1+1). The cells were inoculated with HCoV-229E at an MOI of 1 in a total volume of 50 µl. The infected plates were incubated at 35°C with 5% CO2 for one hour. Phytochemicals dissolved in DMSO were
added in cell culture medium to the following concentrations: 0 µM, 2.5 µM, 5 µM, 10 µM, 20 µM, and 50 µM.

After one hour, virus and medium were removed from the infected cells and washed once with 200ul of PBS. 100 µl of each compound master mix was added to triplicate wells for each concentration. Virus was allowed to grow in the presence of each compound at 35 °C and 5% CO2 for 24 hours. Supernatants were harvested and virus titers on Huh-7 cells were determined by TCID50 assay [78]. Plates were incubated at 37°C and 5% CO2 for 96 hours, inspected visually for cytopathic effect (CPE) and TCID50/mL was calculated using the Spearman-Kaerber method [79,80]. A mean value was calculated using three replicates. Plots were built with TCID50/mL versus concentrations to show the effect of each compound on the replication of virus in Huh-7 cells. The minimum level of detection in this assay was 632 TCID50/ml.

2.6 Statistical evaluation

One-way analysis of variance (ANOVA) was performed to evaluate the statistical significance. The P-value less than 0.05 means significant differences.

3. Results

3.1 Ligand-receptor docking of flavonols and dihydroflavonols to the M^pres of
Docking simulation was completed with the UCSF-Chimera and AutoDock Vina software to evaluate the binding abilities of flavonols and dihydroflavonols to the SARS-CoV-2 Mpro.

The Mpro structure is featured with a substrate-binding pocket (Fig. 3). When the 3D structure of the protein was downloaded from the public database, the peptide inhibitor N3 was shown to bind to this pocket. During protein preparation, N3 was removed for docking. The simulation results showed that (+)-DHQ, (+)-DHK, (+)-DHM, quercetin, kaempferol, myricetin, quercetin-3-O-glycoside, rutin, (-)-epicatechin, (+)-catechin, and ebselen bound to the binding pocket (Fig. 3). The resulting affinity scores for (+)-DHQ, (+)-DHK, (+)-DHM, quercetin, kaempferol, myricetin, quercetin-3-O-glycoside, and rutin ranged from -8.8 to -7.4, lower and better than the score of ebselen (-6.6) (Table 1). The scores among the aglycones of (-)-epicatechin, (+)-catechin, three dihydroflavonols, and three flavonol aglycones were close, either -7.4 or -7.5. These data suggested that dihydroflavonols, flavonols, and glycosylated flavonols could potentially inhibit the Mpro activity.

3.2 Docking features at the binding pocket of the SARS-CoV-2 Mpro

As we reported recently [44], the Mpro substrate-binding pocket includes four subsites, S1’, S1, S2, and S4. Cys145 is a critical residue located at the space among subsites S1, S1’, and S2 (Fig. 4a) [39,40]. Several studies have reported that the thiol of the Cys145 residue is crucial for the catalytic activity of Mpro and if a compound binds to this residue, it can inhibit the
M^pro^ activity [21,39,42]. When ebselen was used as our positive compound for simulation, as we reported recently [44], it bound to this residue featured by three rings facing to the S1 and S1’ subsites (Fig. 4 b). The docking simulation results showed that three dihydroflavonols, three flavonols aglycones, and two glycosylated flavonols bound to 2 to 4 subsites via the Cys145 residue. In three dihydroflavonols tested, (+)-DHK and (+)-DHQ showed a difference in their occupation in the binding site. The A and B rings of (+)-DHK and (+)-DHQ dwelled in the S1’ and S2 subsites and their heterocycle C ring resided in the space between the S1 and S2 subsites (Fig. 4 c-d). The A and B rings of DHM occupied the S1 and S4 subsites and the heterocycle C ring resided in the space between the S1 and S2 subsites (Fig. 4 e). In three flavonol aglycones tested, the occupation of kaempferol was different from that of quercetin and myricetin. The A-ring, B-ring, and heterocycle C-ring of kaempferol resided in the S1’, S2, and the space between S1 and S2, respectively (Fig. 4f). The A-ring, B-ring, and the heterocycle C-ring of quercetin and myricetin dwelled in the S1, S4, and the space between S1 and S2 (Fig. 4 g-h). In comparison, the residing positions of isoquercitrin and rutin were more complicated. The A-ring, B-ring, heterocycle C-ring, and 3-glucose of isoquercitrin occupied the S2, S1’, the space between S1 and S2, and S1 (Fig. 2 i). The A-ring, B-ring, heterocycle C-ring, 6-β-glucopyranose, and 1-L-α-rhamnopyranose of rutin occupied S4, S1’, the space between S1/S2, S1, and S4 (Fig. 4 j). These occupations in the binding sites suggested that these compounds might have an inhibitive activity against M^pro^.

3.3 Ligand-receptor docking of flavonols and dihydroflavonols to the M^pro^ of HCoV-229E
The M\textsubscript{Pro} of HCoV-229E was also used for docking simulation. A sequence alignment revealed that the identity of between the two M\textsubscript{Pro} homologs of HCoV-229E and SARS-CoV-2 was 42.81\% (Figure 5 a). The binding domains were highly conserved. Furthermore, a 3D modeling revealed that the conformation and binding pocket of the HCoV-229E M\textsubscript{Pro} were similar to those of SARS-CoV-2 M\textsubscript{Pro} (Fig. 5 b and c). The simulation results were the same as those of the M\textsubscript{Pro} of SARS-CoV-2 described above. (+)-DHQ, (+)-DHK, (+)-DHM, quercetin, kaempferol, myricetin, quercetin-3-O-glycoside, rutin, (-)-epicatechin, (+)-catechin, and ebselen could bind to the binding pocket of the HCoV-229E M\textsubscript{Pro} (Fig. 6). The affinity scores of these compounds ranged from -7.8 to - 7.1 (Table 1). The scores of rutin and isoquercitrin (two glycosides) binding to the HCoV-229E M\textsubscript{Pro} were -7.8 and -7.5, higher than -8.8 and -8.7, the scores of the two compounds binding to the SARS-CoV-2 M\textsubscript{Pro} (Table 1). This result indicates that compared with the affinity score of quercetin, these two types of glycosylation reduce the affinity scores binding to the SARS-CoV-2 M\textsubscript{Pro}, but do not affect the affinity scores binding to the HCoV-229E M\textsubscript{Pro}.

3.4 In vitro inhibitory effects of five flavonols and two dihydroflavonols on the SARS-CoV-2 M\textsubscript{Pro} activity

(+)-DHQ, (+)-DHM, quercetin, kaempferol, myricetin, isoquercetin (quercetin-3-O-glycoside), and rutin were used to test their inhibitory effects on the M\textsubscript{Pro} activity. In addition, based on our recent report [44], (-)-epicatechin and (+)-catechin were
used as negative controls. The resulting data showed that (+)-DHQ, (+)-DHK, (+)-DHM, quercetin, kaempferol, myricetin, isoquercetin (quercetin-3-O-glycoside), and rutin inhibited the SARS-CoV-2 Mpro activity. The half maximum inhibitory concentrations (IC\textsubscript{50}) were 0.125-12.94 µM (Fig. 7). Among the tested seven compounds, rutin had the lowest IC\textsubscript{50} value with the most effectiveness to inhibit the Mpro activity (Fig. 7 g), while (+)-DHQ had the highest IC\textsubscript{50} value with the lowest inhibitive activity (Fig. 7 d). One hundred µM was used to further compare the inhibitive effects of these compounds on the Mpro activity in a given time. The resulting data showed the most effectiveness of rutin (Fig. 7 h). In addition, as we reported previously, (+)-catechin and (-)-epicatechin did not show an inhibitory effect on the Mpro activity in the range of concentrations from 0-200 µM. For example, the two compounds did not inhibit the catalytic activity of the Mpro at 100 µM (Fig. 7 h).

3.5 Inhibitory effects of five compounds on the replication of HCoV-229E in Huh-7 cells

Quercetin, isoquercetin, taxifolin, were tested their inhibitory effects on the replication of HCoV-229E in Huh-7 cells. In addition, epigallocatechin gallate (EGCG), and epicatechin two examples of flavan-3-ols, were tested. The reason was that we recently reported that EGCG effectively inhibited the SARS-CoV-2 Mpro activity, while epicatechin could not [44], however whether they could inhibit coronavirus replication in the host cells was untested. It was essential to test them. The resulting data indicated that all five compounds showed an inhibition against the replication of HCoV-229E in Huh-7 cells (Figure 8). Based on TCID\textsubscript{50}/ml values, taxifolin started to show its inhibition at 2.5 µM and its inhibitory activity
increased as its concentration was increased. Quercetin started to have inhibition at 5 µM. As
its concentrations were increased, its inhibitive activities were more effective. At a
concentration tested higher 10 µM, quercetin could strongly inhibit the replication of the
virus. Its EC50 value was estimated to be 4.88 µM (Figure 8 b). Isoquercitrin strongly
inhibited the replication starting with 2.5 µM. EGCG started to show its inhibition against the
replication of the virus at 2.5 µM and its inhibition became stronger as its concentrations
were increased. It was interesting that epicatechin could strongly inhibit the replication
starting at 20 µM.

4. Discussion

The development of medicines is necessary to complement the use of vaccines to control
COVID-19. The SARS-CoV-2 Mpro is one of the targets to screen, repurpose, or develop
drugs to treat or prevent SARS-CoV-2 [21,22,39]. One strategy is to inhibit the Mpro activity
via delivering a compound to the Cys145 residue at the space across the region of S1’ and S1
subsites [39]. Ebselen is a small molecule candidate that has been found to inhibit the Mpro
activity with an IC50 0.46 µM [40]. Its structure featured with three rings was revealed to be
an effective vessel to deliver its carbonyl group to the CYS145 residue (Fig. 4 b). We recently
reported another strategy. We have found that epicatechin gallate, epigallocatechin gallate,
gallocatechin gallate, catechin gallate, and procyanidin B2 could effectively inhibited the
activity of Mpro via the formation of hydrogen bonds with different amino acids in the binding
pocket [44]. Our findings indicated that the formation of peptide bonds was effective to screen
more flavonoids to intervene COVID-19. Quercetin and other flavonols are common nutraceuticals with antiviral activities, such as influenza virus, hepatitis B virus, Zika virus, and Ebola viruses [59,81-83]. In this study, we took advantage of our recent strategy to perform this docking simulation of flavonols and dihydroflavonols. These two groups of compounds (Figs. 2 and 4) have C4 keto and 3-OH structures in the heterocycle C-ring. Like flavan-3-ol gallates, the structures of these two groups might have a potential to reside in the space S1 and S2 subsites. In the present study, our ligand-docking simulation showed that these two groups of compounds could bind to the substrate-binding pocket of M\(^\text{pro}\) and occupied their heterocyclic C ring in the crossing region between S1 and S2. Furthermore, the docking results predicted the A-ring and B-ring of two, three, two, and one compounds could bind to S1’ and S2, S1 and S4, S2 and S1’, and S4 and S1’, respectively (Fig. 4). The docking results further showed that a glycosylation of quercetin increased the dwelling capacity in the binding site. Rutin was predicted to occupy all four subsites (Fig. 4 j). The increase of binding subsites was also reflected by the affinity scores of M\(^{\text{pro}}\)-ligands. Rutin and isoquercitrin had the lowest and second lowest score values (Table 1). These data indicated that not only might these compounds have an inhibitive activity but also a lower and better affinity score might indicate a strong inhibition against the M\(^{\text{pro}}\) activity. Further \textit{in vitro} assays substantiated the prediction of docking simulation. Seven available compounds inhibited the activity of M\(^{\text{pro}}\) with IC5 values from 0.125 to 12.9 \mu M. These data imply that these compounds might be potential therapeutics.

Given that SARS-CoV-2 can be only handled in the BSL-3 laboratories, we cannot access
this deadly virus to test the effects of these compounds on its replication in host cells. Instead, we selected the less pathogenic HCoV-229E to test the inhibitory activity of these compounds. We hypothesized that inhibitory compounds screened against this virus might be appropriate for the potential therapy of COVID-19. The reason is that like SARS-CoV-2, the replication of HCoV-229E also depends on its M_{pro} activity in human cells and the active site is highly conserved between HCoV229E and SARS-CoV-2. Accordingly, the resulting data might help design medicines for the therapy of both COVID-19 and HCoV-229E respiratory diseases. An amino sequence alignment revealed that the identity of HCoV-229E and SARS-CoV-2 M_{pro} homologs was approximately 48%. The binding domain of substrates between the two homologs was conserved. Docking simulation and the resulting affinity scores further indicated that these compounds could reside in the binding pocket to potentially inhibit the activity of the M_{pro} of HCoV-229E (Fig. 4 and Table 1). Based on these data, we could test five compounds with HCoV-229E. In tested concentrations, taxifolin and isoquercitrin starting from 2.5 µM showed a significant inhibition of HCoV-229E replication in Huh-7 cells. Quercetin could slightly reduce the replication of HCoV-229E at 2.5 µM and significantly inhibited the replication of this virus at higher concentrations (Fig. 8 a). These positive results not only supported the docking simulation results that these compounds bound to the M_{pro} of HCoV-229E (Table 1), but also substantiated the results of in vitro assays that these compounds effectively inhibited the SARS-CoV-2 M_{pro} activity (Fig. 7). We previously demonstrated that EGCG could effectively inhibit the activity of the SARS-CoV-2 M_{pro} [44]. Herein, we used it as a positive control. The resulting data showed that EGCG starting with 2.5 µM could significantly inhibit the replication of HCoV-229E in Huh-7 cells.
This positive control result further supported that taxifolin, isoquercitrin and quercetin inhibited the replication of HCoV-29E via the reduction of the Mpro activity. In addition, we tested epicatechin, which was not shown to have an inhibitive activity against the SARS-CoV-2 Mpro in our in vitro assays. It was interesting that epicatechin starting with 20 µM tested could inhibit the replication of HCoV-229E (Fig. 8a), which was supported by the results of the docking simulation and its affinity score (Fig. 6 and Table 1). Accordingly, this datum indicates the difference between HCoV-229E and SARS-CoV-2. Taken together, these data indicate that HCoV-229E is an appropriate substitute to screen inhibitors of SARS-CoV-2 by targeting the Mpro of these two viruses.

Quercetin, isoquercitrin and rutin are three common supplements, given that their nutritional values benefit human health [84-89]. Our data suggest that quercetin, isoquercitrin, and rutin might be helpful to intervene COVID-19. These compounds are plant natural flavonoids that their bio-availability, metabolism, and toxicity have been studied extensively [46]. In general, these compounds are safe nutrients sold as supplements or in food products such as onion and common dinner table fruits [90-95]. More importantly, quercetin can be absorbed into the human body from the intestines. A large number of human health studies have reported the presence of quercetin and its derivatives in the blood plasma and their nutritional benefits after consumption [96-99]. For example, the quercetin concentration in plasma was reported to reach 5.0±1.0 µM after the intake of 150 mg in one hour [100,101]. In addition, these compounds are potent antioxidants [102,103]. The intake of quercetin can inhibit the oxidation of LDL and prevent the cardiovascular diseases [101,104] [105]. Moreover, quercetin and its
derivatives have strong anti-inflammation activity [106-110]. All of these functions can benefit people’s health.

Figure legends

Figure 1 A diagram showing the function of the SARS-CoV-2 main protease in the virus replication in the host cells. Once the virus enters into the host cells. Its positive sense and single stranded RNA uses the ribosomes to translate open reading frames 1a and 1b to polyproteins (PP), in which the main protease and papain-like protease cleaves PPs to non-structural proteins (NSPs). Three NSPs, RNA dependent RNA polymerase (RdRp), RNA helicase, and exoribonuclease, are involved in the transcription of the positive RNA to negative sense and single stranded RNA, which is further transcribed to positive sense and single stranded RNA. Finally, structural proteins and a positive single stranded RNA assembly together to form a virus progeny.

Figure 2 Structures of ebselen and 10 flavonoids. Two flavan-3-ols: (-)-epicatechin and (+)-catechin; three dihydroflavonol aglycones: (+)-dihydroquercetin, (+)-dihydrokaempferol, and (+)-dihydroquercetin; three flavonols aglycones, kaempferol, quercetin, and myricetin; two glycosylated flavonols: quercetin-3-O-glycoside (isoquercitrin), and rutin.

Figure 3 Ligand-receptor docking modeling showing the binding of eleven compounds to the substrate pocket of the SARS-CoV-2 main protease (M\text{pro}). The first image shows the 3D
surface view of the SARS-CoV-2 Mpro, on which the red rectangular frame indicates the
substrate-binding pocket. Eleven flavonoids and ebselen bind to this pocket. Two flavan-3-ols:
(+)-catechin (CA) and (-)-epicatechin (EC); three dihydroflavonol aglycones:
(+)-dihydroquercetin (DHQ), (+)-dihydrokaempferol (DHK), and (+)-dihydroquercetin
(DHM); three flavonols aglycones, kaempferol, quercetin, and myricetin; two glycosylated
flavonols: quercetin-3-O-glycoside (isoquercitrin), and rutin.

Figure 4 Orientation features of compounds binding to subsites. a, a surface image shows the
four subsites in the binding pocket. b-j, images show the binding positions of nine
compounds. Two flavan-3-ols: (+)-catechin (CA) and (-)-epicatechin (EC); three
dihydroflavonol aglycones: (+)-dihydroquercetin (DHQ), (+)-dihydrokaempferol (DHK), and
(+)-dihydroquercetin (DHM); three flavonols aglycones, kaempferol, quercetin, and myricetin; two glycosylated
flavonols: quercetin-3-O-glycoside (isoquercitrin), and rutin.

Figure 5 Amino acid sequence alignment of the SARS-CoV-2’s and HCoV-229E’s Mpro
homologs and comparison of their three dimensional (3D) models. a, amino sequence
alignment, in which three rectangle frames highlight three conserved domains forming the
substrate binding pocket; b, a comparison of the 3D models of the SARS-CoV-2’s (bronze
color) and HCoV-229E’s (blue color) Mpro homologs; c, yellowish, orange, and reddish colors
showing the binding pocket formed from three conserved binding domains highlighted with
three rectangle frames in a, in which the reddish and yellowish spaces include Cys-His
catalytic dyad.
Figure 6 Ligand-receptor docking modeling showing the binding of eleven compounds to the substrate pocket of the HCoV-229E main protease. The first image shows the 3D surface view of the HCoV-229E Mpro, on which the red rectangular frame indicates the substrate-binding pocket. Eleven flavonoids and ebselen bind to this pocket. Two flavan-3-ols: (+)-catechin (CA) and (-)-epicatechin (EC); three dihydroflavonol aglycones: (+)-dihydroquercetin (DHQ), (+)-dihydrokaempferol (DHK), and (+)-dihydroquercetin (DHM); three flavonols aglycones, kaempferol, quercetin, and myricetin; two glycosylated flavonols: quercetin-3-O-glycoside (isoquercitrin), and rutin.

Figure 7 Inhibitory effects of nine compounds on the Mpro activity of SARS-CoV-2. a-g, seven plots show the inhibitory curves of seven compounds against the Mpro activity. All dots in each plot are an average value calculated from five replicates. IC\textsubscript{50} value for each compound is inserted in each plot. “95% CI” means 95% confidence interval. “(value 1, value 2)” means values in the range with 95% CI. h, a comparison shows the inhibitory effects of 11 compounds at 100 µM on the Mpro activity. GC376 is an inhibitor used as positive control. (+)-catechin, (-)-epicatechin, and water are used as negative controls. Two flavan-3-ols: (+)-catechin (Ca) and (-)-epicatechin (Ep); three dihydroflavonol aglycones: (+)-dihydroquercetin (DHQ), (+)-dihydrokaempferol (DHK), and (+)-dihydroquercetin (DHM); three flavonols aglycones, kaempferol (Ka), quercetin (Qu), and myricetin (My); two glycosylated flavonols: quercetin-3-O-glycoside (isoquercitrin, Iso), and rutin.
Figure 8 Inhibition of five compounds on the replication of HCoV-229E in Huh-7 cells. a, plots were built with TCID50/mL versus concentrations of each compound. b, this plot was built with the inhibition rate (%) versus log [µM] values to estimate the EC50 of quercetin. “95% CI” means 95% confidence internal. “(value 1, value 2)” means values in the range with 95% CI. Bars labeled with “*” means were significant difference compared with control without adding compounds (P-value less than 0.05).
Table 1 Affinity scores of 11 compounds binding to the main proteases of SARS-CoV-2 and HuCoV-229E

Compounds	Affinity score (SARS-CoV-2)	Affinity score (229E)	Molecular weight (Da)
Rutin	-8.8	-7.8	610.5
Isoquercitrin	-8.7	-7.5	464.1
Kaempferol	-7.7	-7.6	286.2
DHK	-7.6	-7.6	288.2
DHM	-7.5	-7.6	320.2
Myricetin	-7.4	-7.1	318.2
Quercetin	-7.4	-7.7	302.2
(+)-Taxifolin	-7.4	-7.8	304.2
(+)-catechin	-7.5	-7.6	290.2
(-)-epicatechin	-7.5	-7.6	290.2
Ebselen	-6.6	-6.0	274.2
Reference

1. Wang, C.; Horby, P.W.; Hayden, F.G.; Gao, G.F. A novel coronavirus outbreak of global health concern. *Lancet* 2020, 395, 470-473, doi:10.1016/S0140-6736(20)30185-9.

2. Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R., et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. *N Engl J Med* 2020, 382, 727-733, doi:10.1056/NEJMoa2001017.

3. Ding, Q.; Lu, P.; Fan, Y.; Xia, Y.; Liu, M. The clinical characteristics of pneumonia patients coinfected with 2019 novel coronavirus and influenza virus in Wuhan, China. *J Med Virol* 2020, 10.1002/jmv.25781, doi:10.1002/jmv.25781.

4. WHO. *Statement on the second meeting of the International Health Regulations (2005) Emergency Committee regarding the outbreak of novel coronavirus (2019-nCoV)*; World Health Organization: 2020.

5. WHO. Director-General’s opening remarks at the media briefing on COVID-19-11 March 2020. 2020.

6. Kim, J.H.; Marks, F.; Clemens, J.D. Looking beyond COVID-19 vaccine phase 3 trials. *Nature Medicine* 2021, 10.1038/s41591-021-01230-y, doi:10.1038/s41591-021-01230-y.

7. Knoll, M.D.; Wonodi, C. Oxford-AstraZeneca COVID-19 vaccine efficacy. *The Lancet* 2021, 397, 72-74, doi:10.1016/S0140-6736(20)32623-4.

8. Painter, E.M.; Ussery, E.N.; Patel, A.; Hughes, M.M.; Zell, E.R.; Mouia, D.L.; Scharf, L.G.; Lynch, M.; Ritchey, M.D.; Toblin, R.L., et al. Demographic Characteristics of Persons Vaccinated During the First Month of the COVID-19 Vaccination Program — United States, December 14, 2020–January 14, 2021. *Morbidity and Mortality Weekly Report* 2021, 70,
9. Dooling, K.; Marin, M.; Wallace, M.; McClung, N.; Chamberland, M.; Lee, G.M.; Talbot, H.K.; Romero, J.R.; Bell, B.P.; Oliver, S.E. The Advisory Committee on Immunization Practices' Updated Interim Recommendation for Allocation of COVID-19 Vaccine — United States, December 2020. *Morbidity and Mortality Weekly Report* 2021, 69, 1657–1660.

10. CDC; FDA. Allergic Reactions Including Anaphylaxis After Receipt of the First Dose of Moderna COVID-19 Vaccine — United States, December 21, 2020–January 10, 2021. *Morbidity and Mortality Weekly Report* 2021, 70, 125–129.

11. Gharpure, R.; Guo, A.; Bishnoi, C.K.; Patel, U.; Gifford, D.; Tippins, A.; Jaffe, A.; Shulman, E.; Stone, N.; Mungai, E., et al. Early COVID-19 First-Dose Vaccination Coverage Among Residents and Staff Members of Skilled Nursing Facilities Participating in the Pharmacy Partnership for Long-Term Care Program — United States, December 2020–January 2021. *Morbidity and Mortality Weekly Report* 2021, 70(), 178–182.

12. McCarthy, K.R.; Rennick, L.J.; Nambulli, S.; Robinson-McCarthy, L.R.; Bain, W.G.; Haidar, G.; Duprex, W.P. Natural deletions in the SARS-CoV-2 spike glycoprotein drive antibody escape. *bioRxiv* 2020, 10.1101/2020.11.19.389916, 2020.2011.2019.389916, doi:10.1101/2020.11.19.389916.

13. Cohen, J. South Africa suspends use of AstraZeneca’s COVID-19 vaccine after it fails to clearly stop virus variant. *Science* 2021.

14. Kenilworth, N.J. Merck discontinues development of SARS-CoV2/COVID-19 vaccine candidates; continues development of two investigational therapeutic candidates. *BUSINESS WIRE* 2021.
15. Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G.

Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. *Cell Res* **2020**, *30*, 269-271, doi:10.1038/s41422-020-0282-0.

16. Bull-Otterson, L.; Gray, E.B.; Budnitz, D.S.; Strosnider, H.M.; Schieber, L.Z.; Courtney, J.; García, M.C.; Brooks, J.T.; Kenzie, W.R.M.; Gundlapalli, A.V. Hydroxychloroquine and Chloroquine Prescribing Patterns by Provider Specialty Following Initial Reports of Potential Benefit for COVID-19 Treatment — United States, January–June 2020. *Morbidity and Mortality Weekly Report* **2020**, *69*, 1210–1215.

17. Cao, B.; Wang, Y.; Wen, D.; Liu, W.; Wang, J.; Fan, G.; Ruan, L.; Song, B.; Cai, Y.; Wei, M., et al. A Trial of Lopinavir-Ritonavir in Adults Hospitalized with Severe Covid-19. *N Engl J Med* **2020**, *382*, 1787-1799, doi:10.1056/NEJMoa2001282.

18. Holshue, M.L.; DeBolt, C.; Lindquist, S.; Lofy, K.H.; Wiesman, J.; Bruce, H.; Spitters, C.; Ericson, K.; Wilkerson, S.; Tural, A., et al. First Case of 2019 Novel Coronavirus in the United States. *N Engl J Med* **2020**, *382*, 929-936, doi:10.1056/NEJMoa2001191.

19. Chen, Y.; Liu, Q.; Guo, D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. *J Med Virol* **2020**, 10.1002/jmv.26234, doi:10.1002/jmv.26234.

20. Hussain, S.; Pan, J.; Chen, Y.; Yang, Y.; Xu, J.; Peng, Y.; Wu, Y.; Li, Z.; Zhu, Y.; Tien, P., et al. Identification of novel subgenomic RNAs and noncanonical transcription initiation signals of severe acute respiratory syndrome coronavirus. *J Virol* **2005**, *79*, 5288-5295, doi:10.1128/JVI.79.9.5288-5295.2005.

21. Ramajayam, R.; Tan, K.P.; Liang, P.H. Recent development of 3C and 3CL protease inhibitors for anti-coronavirus and anti-picornavirus drug discovery. *Biochem Soc Trans* **2011**, *39,*
22. Ren, Z.; Yan, L.; Zhang, N.; Guo, Y.; Yang, C.; Lou, Z.; Rao, Z. The newly emerged SARS-like coronavirus HCoV-EMC also has an "Achilles' heel": current effective inhibitor targeting a 3C-like protease. *Protein Cell* **2013**, *4*, 248-250, doi: 10.1007/s13238-013-2841-3.

23. Zhao, P.; Prassman, J.L.; Grant, O.C.; Cai, Y.; Xiao, T.; Rosenbalm, K.E.; Aoki, K.; Kellman, B.P.; Bridger, R.; Barouch, D.H., et al. Virus-receptor interactions of glycosylated SARS-CoV-2 spike and human ACE2 receptor. *Cell Host Microbe* **2020**, *28*, 586-601.e586, doi: 10.1016/j.chom.2020.08.004.

24. Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrier, T.; Erichsen, S.; Schiergens, T.S.; Herrier, G.; Wu, N.-H.; Nitsche, A., et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. *Cell* **2020**, *181*, 271-280.e278, doi: https://doi.org/10.1016/j.cell.2020.02.052.

25. Yan, R.; Zhang, Y.; Li, Y.; Xia, L.; Guo, Y.; Zhou, Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. *Science* **2020**, *367*, 1444-1448, doi:10.1126/science.abb2762.

26. Abdool Karim, S.S.; de Oliveira, T. New SARS-CoV-2 variants — Clinical, Public Health, and Vaccine Implications. *New England Journal of Medicine* **2021**, *384*, 1866-1868, doi:10.1056/NEJMc2100362.

27. Walensky, R.P.; Walke, H.T.; Fauci, A.S. SARS-CoV-2 Variants of Concern in the United States—Challenges and Opportunities. *JAMA* **2021**, *325*, 1037-1038, doi:10.1001/jama.2021.2294.

28. Fontanet, A.; Autran, B.; Lina, B.; Kieny, M.P.; Karim, S.S.A.; Sridhar, D. SARS-CoV-2
variants and ending the COVID-19 pandemic. *The Lancet* 2021, 397, 952-954, doi:10.1016/S0140-6736(21)00370-6.

29. Altmann, D.M.; Boyton, R.J.; Beale, R. Immunity to SARS-CoV-2 variants of concern. *Science* 2021, 371, 1103-1104, doi:10.1126/science.abg7404.

30. Petra, M.; Steven, K.; Mahesh Shanker, D.; Guido, P.; Bo, M.; Swapnil, M.; Charlie, W.; Thomas, M.; Isabella, F.; Rawlings, D., et al. SARS-CoV-2 B.1.617.2 Delta variant emergence and vaccine breakthrough. *Nature Portfolio* 2021, 10.21203/rs.3.rs-637724/v1, doi:10.21203/rs.3.rs-637724/v1.

31. Woo, P.C.Y.; Huang, Y.; Lau, S.K.P.; Yuen, K.-Y. Coronavirus genomics and bioinformatics analysis. *Viruses* 2010, 2, 1804-1820.

32. Gaunt, E.R.; Hardie, A.; Claas, E.C.J.; Simmonds, P.; Templeton, K.E. Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method. *J. Clin. Microbiol.* 2010, 48, 2940-2947, doi:10.1128/jcm.00636-10.

33. Shirato, K.; Kanou, K.; Kawase, M.; Matsuyama, S. Clinical isolates of human coronavirus 229E bypass the endosome for cell entry. *Journal of Virology* 2017, 91, 12, doi:10.1128/jvi.01387-16.

34. Farsani, S.M.J.; Dijkman, R.; Jubbink, M.F.; Goossens, H.; leven, M.; Deij, M.; Molenkamp, R.; van der Hoek, L. The first complete genome sequences of clinical isolates of human coronavirus 229E. *Virus Genes* 2012, 45, 433-439, doi:10.1007/s11262-012-0807-9.

35. Fehr, A.R.; Perlman, S. Coronaviruses: An Overview of Their Replication and Pathogenesis. In *Coronaviruses: Methods and Protocols*, Maier, H.J., Bickerton, E., Britton, P., Eds. Springer.
36. Shirato, K.; Kawase, M.; Watanabe, O.; Hirokawa, C.; Matsuyama, S.; Nishimura, H.; Taguchi, F. Differences in neutralizing antigenicity between laboratory and clinical isolates of HCoV-229E isolated in Japan in 2004-2008 depend on the S1 region sequence of the spike protein. *J. Gen. Virol.* **2012**, *93*, 1908-1917, doi:10.1099/vir.0.043117-0.

37. Yang, H.; Xie, W.; Xue, X.; Yang, K.; Ma, J.; Liang, W.; Zhao, Q.; Zhou, Z.; Pei, D.; Ziebuhr, J.; et al. Design of wide-spectrum inhibitors targeting coronavirus main proteases. *PLoS Biol.* **2005**, *3*, e324, doi:10.1371/journal.pbio.0030324.

38. Kim, Y.; Liu, H.; Galasiti Kankanamalage, A.C.; Weerasakara, S.; Hua, D.H.; Groutas, W.C.; Chang, K.O.; Pedersen, N.C. Reversal of the Progression of Fatal Coronavirus Infection in Cats by a Broad-Spectrum Coronavirus Protease Inhibitor. *PLoS Pathog* **2016**, *12*, e1005531, doi:10.1371/journal.ppat.1005531.

39. Dai, W.; Zhang, B.; Jiang, X.M.; Su, H.; Li, J.; Zhao, Y.; Xie, X.; Jin, Z.; Peng, J.; Liu, F.; et al. Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. *Science* **2020**, *368*, 1331-1335, doi:10.1126/science.abb4489.

40. Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; et al. Structure of M(pro) from SARS-CoV-2 and discovery of its inhibitors. *Nature* **2020**, *582*, 289-293, doi:10.1038/s41586-020-2223-y.

41. Ye, G.; Wang, X.; Tong, X.; Shi, Y.; Fu, Z.F.; Peng, G. Structural Basis for Inhibiting Porcine Epidemic Diarrhea Virus Replication with the 3C-Like Protease Inhibitor GC376. *Viruses* **2020**, *12*, doi:10.3390/v12020240.

42. Chen, L.; Gui, C.; Luo, X.; Yang, Q.; Gunther, S.; Scandella, E.; Drosten, C.; Bai, D.; He, X.;
Ludewig, B., et al. Cinanserin is an inhibitor of the 3C-like proteinase of severe acute respiratory syndrome coronavirus and strongly reduces virus replication in vitro. *J Virol* 2005, 79, 7095-7103, doi: 10.1128/JVI.79.11.7095-7103.2005.

43. Zhang, L.; Liu, Y. Potential interventions for novel coronavirus in China: A systematic review. *J Med Virol* 2020, 92, 479-490, doi: 10.1002/jmv.25707.

44. Zhu, Y.; Xie, D.-Y. Docking characterization and in vitro inhibitory activity of flavan-3-ols and dimeric proanthocyanidins against the main protease activity of SARS-CoV-2. *Front. Plant Sci.* 2020, 11, doi: 10.3389/fpls.2020.601316.

45. Fowler, Z.L.; Koffas, M.A. Biosynthesis and biotechnological production of flavanones: current state and perspectives. *Appl Microbiol Biotechnol* 2009, 83, 799-808, doi: 10.1007/s00253-009-2039-z.

46. Hostetler, G.L.; Ralston, R.A.; Schwartz, S.J. Flavones: Food Sources, Bioavailability, Metabolism, and Bioactivity. *Adv Nutr* 2017, 8, 423-435, doi: 10.3945/an.116.012948.

47. Xie, D.-Y.; Jackson, L.A.; Cooper, J.D.; Ferreira, D.; Paiva, N.L. Molecular and biochemical analysis of two cDNA clones encoding dihydroflavonol-4-reductase from *Medicago truncatula*. *Plant Physiol* 2004, 134, 979-994, doi: 10.1104/pp.103.030221.

48. Xie, D.-Y.; Dixon, R.A. Proanthocyanidin biosynthesis - still more questions than answers? *Phytochemistry* 2005, 66, 2127-2144.

49. Moon, J.H.; Tsushida, T.; Nakahara, K.; Terao, J. Identification of quercetin 3-O-beta-D-glucuronide as an antioxidative metabolite in rat plasma after oral administration of quercetin. *Free Radic. Biol. Med.* 2001, 30, 1274-1285, doi: 10.1016/s0891-5849(01)00522-6.

50. Murata, K.; Terao, J. Antioxidative flavonoid quercetin: implication of its intestinal absorption
and metabolism. *Archives of Biochemistry an Biophysics* **2003**, *417*, 12-17.

51. Egert, S.; Wolffram, S.; Bosy-Westphal, A.; Boesch-Saadatmandi, C.; Wagner, A.E.; Frank, J.; Rimbach, G.; Mueller, M.J. Daily quercetin supplementation dose-dependently increases plasma quercetin concentrations in healthy humans. *J. Nutr.* **2008**, *138*, 1615-1621.

52. Chopra, M.; Fitzsimons, P.E.E.; Strain, J.J.T.; Thurnham, D.I.; Howard, A.N. Nonalcoholic red wine extract and quercetin inhibit LDL oxidation without affecting plasma antioxidant vitamin and carotenoid concentrations. *Clin. Chem.* **2000**, *46*, 1162-1170.

53. Hertog, M.G.L.; Feskens, E.J.M.; Hollman, P.C.H.; Katan, M.B.; Kromhout, D. Dietary antioxidant flavonols and risk of coronary heart disease- the Zutphen elderly study. *Lancet* **1993**, *342*, 1007-1011.

54. de Vries, J.H.M.; Hollman, P.C.H.; Meyboom, S.; Buysman, M.; Zock, P.L.; van Slaveren, W.A.; Katan, M.B. Plasma concentrations and urinary excretion of the antioxidant flavonols quercetin and kaempferol as biomarkers for dietary intake. *Am. J. Clin. Nutr.* **1998**, *68*, 60-65.

55. Kolhir, V.K.; Bykov, V.A.; Baginskaja, A.I.; Sokolov, S.Y.; Glazova, N.G.; Leskova, T.E.; Sakovich, G.S.; Tjukavkina, N.A.; Kolesnik, Y.A.; Rulenko, I.A. Antioxidant activity of a dihydroquercetin isolated from Larix gmelinii (Rupr) Rupr wood. *Phytother. Res.* **1996**, *10*, 478-482.

56. Teselkin, Y.O.; Babenkova, I.V.; Tjukavkina, N.A.; Rulenko, I.A.; Kolesnik, Y.A.; Kolhir, V.K.; Eichholz, A.A. Influence of dihydroquercetin on the lipid peroxidation of mice during post-radiation period. *Phytother. Res.* **1998**, *12*, 517-519, doi:10.1002/(sici)1099-1573(199811)12:7<517::aid-ptr342>3.0.co;2-d.

57. Teselkin, Y.O.; Babenkova, I.V.; Kolhir, V.K.; Baginskaya, A.I.; Tjukavkina, N.A.; Kolesnik,
Y.A.; Selivanova, I.A.; Eichholz, A.A. Dihydroquercetin as a means of antioxidative defence in rats with tetrachloromethane hepatitis. *Phytother. Res.* **2000**, *14*, 160-162, doi:10.1002/(sici)1099-1573(200005)14:3<160::aid-ptr555>3.0.co;2-y.

58. Weidmann, A.E. Dihydroquercetin: More than just an impurity? *Eur. J. Pharmacol.* **2012**, *684*, 19-26, doi:10.1016/j.ejphar.2012.03.035.

59. Mehrbod, P.; Hudy, D.; Shyntum, D.; Markowski, J.; Los, M.J.; Ghavami, S. Quercetin as a natural therapeutic candidate for the treatment of influenza virus. *Biomolecules* **2021**, *11*, 29, doi:10.3390/biom11010010.

60. dos Santos, A.E.; Kuster, R.M.; Yamamoto, K.A.; Salles, T.S.; Campos, R.; de Meneses, M.D.F.; Soares, M.R.; Ferreira, D. Quercetin and quercetin 3-O-glycosides from Bauhinia longifolia (Bong.) Steud. show anti-Mayaro virus activity. *Parasites Vectors* **2014**, *7*, 7, doi:10.1186/1756-3305-7-130.

61. Cheng, Z.K.; Sun, G.; Guo, W.; Huang, Y.Y.; Sun, W.H.; Zhao, F.; Hu, K.H. Inhibition of hepatitis B virus replication by quercetin in human hepatoma cell lines. *Virol. Sin.* **2015**, *30*, 261-268, doi:10.1007/s12250-015-3584-5.

62. Nakabayashi, H.; Taketa, K.; Yamane, T.; Miyazaki, M.; Miyano, K.; Sato, J. Phenotypical stability of a human hepatoma-cell line, Huh-7, in long-term culture with chemically defined medium. *Gann* **1984**, *75*, 151-158.

63. Shih, C.M.; Lo, S.C.J.; Miyamura, T.; Chen, S.Y.; Lee, Y.H.W. Suppression of hepatitis-B virus expression and replication by hepatitis-C virus core protein in Huh-7 cells. *Journal of Virology* **1993**, *67*, 5823-5832, doi:10.1128/jvi.67.10.5823-5832.1993.

64. Dewi, B.E.; Desti, H.; Ratniningpoeti, E.; Sudiro, M.; Fithriyah, Angelina, M.; Iop. Effectivity of
quercetin as antiviral to dengue virus-2 strain New Guinea C in Huh 7-it 1 cell line. In *3rd International Conference on Natural Products and Bioresource Sciences*, Iop Publishing Ltd: Bristol, 2020; Vol. 462.

65. Thongsri, P.; Se-ngiamsuntorn, K.; Sithisarn, P.; Chomnawang, M.T.; Thirapanmethee, K. Cladogynos orientalis Zipp. extracts inhibit cell culture-derived hepatitis C virus genotype 2a replication in Huh-7 cells through NS5B inhibition. *Asian Pac. Trop. Biomed.* **2019**, *9*, 346-352, doi:10.4103/2221-1691.262079.

66. Logue, J.; Licona, W.V.; Cooper, T.K.; Reeder, B.; Byrum, R.; Qin, J.; Murphy, N.D.; Cong, Y.; Bonilla, A.; Sword, J., et al. Ebola virus isolation using Huh-7 cells has methodological advantages and similar sensitivity to isolation using other cell types and suckling BALB/c laboratory mice. *Viruses-Basei* **2019**, *11*, 14, doi:10.3390/v11020161.

67. Bucknall, R.A.; Chanock, R.M.; Kapikian, A.Z.; King, L.M. Studies with human coronaviruses. 2. Some properties of strains 229E and OC43. *Proc. Soc. Exp. Biol. Med.* **1972**, *139*, 722-8.

68. Kennedy, D.A.; Johnsonlussenburg, C.M. Isolation and morphology of internal component of human coronavirus, strain 229E. *Intervirology* **1976**, *6*, 197-206.

69. Hierholzer, J.C. Purification and biophysical properties of human coronavirus 229E. *Virology* **1976**, *75*, 155-165, doi:10.1016/0042-6822(76)90014-3.

70. Macnaughton, M.R.; Madge, M.H. Genome of human coronavirus strain 229E. *J. Gen. Virol.* **1978**, *39*, 497-504, doi:10.1099/0022-1317-39-3-497.

71. Friedman, N.; Jacob-Hirsch, J.; Drori, Y.; Eran, E.; Kol, N.; Nayshool, O.; Mendelson, E.; Rechavi, G.; Mandelboim, M. Transcriptomic profiling and genomic mutational analysis of Human coronavirus (HCoV)-229E-infected human cells. *PLoS One* **2021**, *16*, 15.
705 doi:10.1371/journal.pone.0247128.

706 72. Ziebuhr, J.; Heusipp, G.; Siddell, S.G. Biosynthesis, purification, and characterization of the
707 human coronavirus 229E 3C-like proteinase. Journal of Virology 1997, 71, 3992-3997,
708 doi:10.1128/jvi.71.5.3992-3997.1997.

709 73. Ziebuhr, J.; Herold, J.; Siddell, S.G. Characterization of a human coronavirus (strain 229E)
710 3C-like proteinase activity. Journal of Virology 1995, 69, 4331-4338,
711 doi:10.1128/jvi.69.7.4331-4338.1995.

712 74. Ziebuhr, J.; Heusipp, G.; Seybert, A.; Siddell, S.G. Substrate specificity of the human
713 coronavirus 229E 3C-like proteinase. In Coronaviruses and Arteriviruses, Enjuanes, L., Siddell,
714 S.G., Spaan, W., Eds. Plenum Press Div Plenum Publishing Corp: New York, 1998; Vol. 440,
715 pp. 115-120.

716 75. Prior, A.M.; Kim, Y.J.; Weerasekara, S.; Moroze, M.; Alliston, K.R.; Uy, R.A.Z.; Groutas, W.C.;
717 Chang, K.O.; Hua, D.H. Design, synthesis, and bioevaluation of viral 3C and 3C-like protease
718 inhibitors. Bioorg. Med. Chem. Lett. 2013, 23, 6317-6320, doi: 10.1016/j.bmcl.2013.09.070.

719 76. Chuck, C.P.; Chen, C.; Ke, Z.H.; Wan, D.C.C.; Chow, H.F.; Wong, K.B. Design, synthesis and
720 crystallographic analysis of nitrile-based broad-spectrum peptidomimetic inhibitors for
721 coronavirus 3C-like proteases. Eur. J. Med. Chem. 2013, 59, 1-6,
722 doi:10.1016/j.ejmech.2012.10.053.

723 77. Lee, C.C.; Kuo, C.J.; Ko, T.P.; Hsu, M.F.; Tsui, Y.C.; Chang, S.C.; Yang, S.; Chen, S.J.; Chen,
724 H.C.; Hsu, M.C., et al. Structural Basis of Inhibition Specificities of 3C and 3C-like Proteases
725 by Zinc-coordinating and Peptidomimetic Compounds. J. Biol. Chem. 2009, 284, 7646-7655,
726 doi:10.1074/jbc.M807947200.
727 78. Barrett, P.N.; Meyer, H.; Wachtel, I.; Eibl, J.; Dorner, F. Determination of the inactivation kinetics of hepatitis A virus in human plasma products using a simple TCID50 assay. J. Med. Virol. 1996, 49, 1-6, doi:10.1002/(sici)1096-9071(199605)49:1<1:Aid-jmv1>3.0.Co;2-a.

729 79. Kärber, G. Beitrag zur kollektiven Behandlung pharmakologischer Reihenversuche. Naunyn-Schmiedebergs Archiv für experimentelle Pathologie und Pharmakologie 1931, 162, 480-483, doi:10.1007/BF01863914.

732 80. Spearman, C. The method of "Right and Wrong Cases" ('Constant stimuli') without Gauss's formulae. Br. J. Psychol. 1908, 2, 227-242, doi:10.1111/j.2044-8295.1908.tb00176.x.

734 81. Parvez, M.K.; Al-Dosari, M.S.; Arbab, A.H.; Al-Rehaily, A.J.; Abdelwahid, M.A.S. Bioassay-guided isolation of anti-hepatitis B virus flavonoid myricetin-3-O-rhamnoside along with quercetin from Guiera senegalensis leaves. Saudi Pharm. J. 2020, 28, 550-559, doi:10.1016/j.jsps.2020.03.006.

738 82. Wong, G.; He, S.H.; Siragam, V.; Bi, Y.H.; Mbikay, M.; Chretien, M.; Qiu, X.G. Antiviral activity of quercetin-3-beta-O-D-glucoside against Zika virus infection. Virol. Sin. 2017, 32, 545-547, doi:10.1007/s12250-017-4057-9.

740 83. Qiu, X.G.; Kroecker, A.; He, S.H.; Kozak, R.; Audet, J.; Mbikay, M.; Chretien, M. Prophylactic Efficacy of Quercetin 3-beta-O-D-Glucoside against Ebola Virus Infection. Antimicrob. Agents Chemother. 2016, 60, 5182-5188, doi:10.1128/aac.00307-16.

744 84. Xu, Z.; Li, X.Q.; Yang, H.; Poolsawat, L.; Wang, P.; Leng, X.J. Dietary rutin promoted the growth, serum antioxidant response and flesh collagen, free amino acids contents of grass carp (Clenopharyngodon idella). Aquac. Nutr. 2021, 27, 544-555, doi:10.1111/anu.13205.

748 85. Ragheb, S.R.; El Wakeel, L.M.; Nasr, M.S.; Sabri, N.A. Impact of rutin and vitamin C
combination on oxidative stress and glycemic control in patients with type 2 diabetes. *Clin. Nutr.* **2020**, *35*, 128-135, doi:10.1016/j.clnesp.2019.10.015.

86. da Silva, E.R.; Brogi, S.; Lucon, J.F.; Campiani, G.; Gemma, S.; Maquiaveli, C.D. Dietary polyphenols rutin, taxifolin and quercetin related compounds target Leishmania amazonensis arginase. *Food Funct.* **2019**, *10*, 3172-3180, doi:10.1039/c9fo00265k.

87. Kolarevic, A.; Pavlovic, A.; Djordjevic, A.; Lazarevic, J.; Savic, S.; Kocic, G.; Anderluh, M.; Smeloerovic, A. Rutin as Deoxyribonuclease I Inhibitor. *Chem. Biodivers.* **2019**, *16*, 9, doi:10.1002/cbdv.201900069.

88. Seifert, J. *Role of Quercetin in Sports Nutrition*, Elsevier Academic Press Inc.: San Diego, 2013; 10.1016/b978-0-12-396454-0.00052-7 pp. 497-500.

89. Amanzadeh, E.; Esmaeili, A.; Rahgozar, S.; Nourbakhshnia, M. Application of quercetin in neurological disorders: from nutrition to nanomedicine. *Rev. Neurosci.* **2019**, *30*, 555-572, doi:10.1515/revneuro-2018-0080.

90. Burak, C.; Brull, V.; Langguth, P.; Zimmermann, B.F.; Stoffel-Wagner, B.; Sausen, U.; Stehle, P.; Wolffram, S.; Egert, S. Higher plasma quercetin levels following oral administration of an onion skin extract compared with pure quercetin dihydrate in humans. *Eur. J. Nutr.* **2017**, *56*, 343-353, doi:10.1007/s00394-015-1084-x.

91. Egert, S.; Wolffram, S.; Schulze, B.; Langguth, P.; Hubbermann, E.M.; Schwarz, K.; Adolphi, B.; Bosy-Westphal, A.; Rimbach, G.; Muller, M.J. Enriched cereal bars are more effective in increasing plasma quercetin compared with quercetin from powder-filled hard capsules. *Br. J. Nutr.* **2012**, *107*, 539-546, doi:10.1017/s0007114511003242.

92. Careri, M.; Corradini, C.; Elviri, L.; Nicoletti, I.; Zagnoni, I. Direct HPLC analysis of quercetin
and trans-resveratrol in red wine, grape, and winemaking byproducts. *J Agric Food Chem* 2003, *51*, 5226-5231.

93. Meng, X.F.; Maliakal, P.; Lu, H.; Lee, M.J.; Yang, C.S. Urinary and plasma levels of resveratrol and quercetin in humans, mice, and rats after ingestion of pure compounds and grape juice. *J. Agric. Food Chem.* 2004, *52*, 935-942, doi:10.1021/jf030582e.

94. Erlund, I.; Silaste, M.L.; Alftan, G.; Rantala, M.; Kesaniemi, Y.A.; Aro, A. Plasma concentrations of the flavonoids hesperetin, naringenin and quercetin in human subjects following their habitual diets, and diets high or low in fruit and vegetables. *Eur. J. Clin. Nutr.* 2002, *56*, 891-898, doi:10.1038/sj.ejcn.1601409.

95. Snyder, S.M.; Zhao, B.X.; Luo, T.; Kaiser, C.; Cavender, G.; Hamilton-Reeves, J.; Sullivan, D.K.; Shay, N.F. Consumption of Quercetin and Quercetin-Containing Apple and Cherry Extracts Affects Blood Glucose Concentration, Hepatic Metabolism, and Gene Expression Patterns in Obese C57BL/6J High Fat-Fed Mice. *J. Nutr.* 2016, *146*, 1001-1007, doi:10.3945/jn.115.228817.

96. Day, A.J.; Williamson, G. Biomarkers for exposure to dietary flavonoids: a review of the current evidence for identification of quercetin glycosides in plasma. *Br. J. Nutr.* 2001, *86*, S105-S110, doi:10.1017/s0007114515005310.

97. Shi, Y.L.; Williamson, G. Quercetin lowers plasma uric acid in pre-hyperuricaemic males: a randomised, double-blinded, placebo-controlled, cross-over trial. *Br. J. Nutr.* 2016, *115*, 800-806, doi:10.1017/s0007114515005310.

98. Mohammadi-Sartang, M.; Mazloom, Z.; Sherafatmanesh, S.; Ghorbani, M.; Firoozi, D. Effects of supplementation with quercetin on plasma C-reactive protein concentrations: a systematic
review and meta-analysis of randomized controlled trials. *Eur. J. Clin. Nutr.* 2017, 71, 1033-1039, doi:10.1038/ejcn.2017.55.

99. Huang, H.H.; Liao, D.; Dong, Y.; Pu, R. Effect of quercetin supplementation on plasma lipid profiles, blood pressure, and glucose levels: a systematic review and meta-analysis. *Nutr. Rev.* 2020, 78, 615-626, doi:10.1093/nutrit/nuz071.

100. Olthof, M.R.; Hollman, P.C.; Vree, T.B.; Katan, M.B. Bioavailabilities of quercetin-3-glucoside and quercetin-4'-glucoside do not differ in humans. *J Nutr 2000*, 130, 1200-1203, doi:10.1093/jn/130.5.1200.

101. de Whalley, C.V.; Rankin, S.M.; Hoult, J.R.; Jessup, W.; Leake, D.S. Flavonoids inhibit the oxidative modification of low density lipoproteins by macrophages. *Biochem Pharmacol* 1990, 39, 1743-1750, doi: 10.1016/0006-2952(90)90120-a.

102. Justino, G.; Santos, M.; Mira, L. Plasma metabolites of quercetin and their antioxidant potential. *Free Radic. Biol. Med.* 2002, 33, S203-S203.

103. Terao, J.; Yamaguchi, S.; Shirai, M.; Miyoshi, M.; Moon, J.H.; Oshima, S.; Inakuma, T.; Tsushida, T.; Kato, Y. Protection by quercetin and quercetin 3-O-beta-glucuronide of peroxynitrite-induced antioxidant consumption in human plasma low-density lipoprotein. *Free Radic. Res.* 2001, 35, 925-931, doi:10.1080/1071576010301421.

104. Hertog, M.G.; Feskens, E.J.; Hollman, P.C.; Katan, M.B.; Kromhout, D. Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study. *Lancet* 1993, 342, 1007-1011, doi:10.1016/0140-6736(93)92876-u.

105. Manach, C.; Morand, C.; Crespy, V.; Demigne, C.; Texier, O.; Regerat, F.; Remesy, C. Quercetin is recovered in human plasma as conjugated derivatives which retain antioxidant
properties. *FEBS Lett.* **1998**, *426*, 331-336, doi: 10.1016/s0014-5793(98)00367-6.

106. Sato, S.; Mukai, Y. Modulation of chronic inflammation by quercetin: The beneficial effects on obesity. *J. Inflamm. Res.* **2020**, *13*, 421-431, doi: 10.2147/jir.S228361.

107. Carullo, G.; Cappello, A.R.; Frattarulo, L.; Badolato, M.; Armentano, B.; Aiello, F. Quercetin and derivatives: useful tools in inflammation and pain management. *Future Med. Chem.* **2017**, *9*, 79-93, doi:10.4155/fmc-2016-0186.

108. Tejada, S.; Nabavi, S.M.; Capo, X.; Martorell, M.; Bibiloni, M.D.; Tur, J.A.; Pons, A.; Sureda, A. Quercetin effects on exercise induced oxidative stress and inflammation. *Curr. Org. Chem.* **2017**, *21*, 348-356, doi:10.2174/1385278206666161017122202.

109. Li, Y.; Yao, J.Y.; Han, C.Y.; Yang, J.X.; Chaudhry, M.T.; Wang, S.N.; Liu, H.N.; Yin, Y.L. Quercetin, Inflammation and Immunity. *Nutrients* **2016**, *8*, 14, doi:10.3390/nu8030167.

110. Chen, S.; Jiang, H.M.; Wu, X.S.; Fang, J. Therapeutic Effects of Quercetin on Inflammation, Obesity, and Type 2 Diabetes. *Mediat. Inflamm.* **2016**, *2016*, 5, doi:10.1155/2016/9340637.
a

hCov-229E	SARS-Cov-2
hCov-229E	SARS-Cov-2

b

c

The copyright holder for this preprint (which this version posted July 9, 2021) is the author/funder. All rights reserved. No reuse allowed without permission. doi: bioRxiv preprint
a

- **Taxifolin concentration**
 - Virus only
 - 2.5 μM
 - 5 μM
 - 10 μM
 - 20 μM
 - 50 μM

- **Quercetin concentration**
 - Virus only
 - 2.5 μM
 - 5 μM
 - 10 μM
 - 20 μM
 - 50 μM

- **Isoquercitrin concentration**
 - Virus only
 - 2.5 μM
 - 5 μM
 - 10 μM
 - 20 μM
 - 50 μM

- **EGCG concentration**
 - Virus only
 - 2.5 μM
 - 5 μM
 - 10 μM
 - 20 μM
 - 50 μM

- **Epicatechin concentration**
 - Virus only
 - 2.5 μM
 - 5 μM
 - 10 μM
 - 20 μM
 - 50 μM

b

- **Quercetin**
 - EC50 = 4.88 μM
 - 95% CI (2.11, 9.61)

Inhibit rate (%)

- **Log[μM]**
 - 0.0
 - 0.5
 - 1.0
 - 1.5
 - 2.0

- Inhibit rate (%)
 - 0
 - 20
 - 40
 - 60
 - 80
 - 100