IL-7 Immunotherapy in a Non-Immunocompromised Patient with Intractable Fungal Wound Sepsis

Isaiah R. Turnbull,1* Monty B. Mazer,2,3* Mark H. Hoofnagle,1 John P. Kirby,1 Jennifer M. Leonard,1 Carlos Mejia-Chew,4 Andrej Spec,4 Jane Blood,2 Sydney M. Miles,2 Eric M. Ransom,5 Robert F. Potter,5 Joseph P. Gaut,5 Kenneth E. Remy,3,4 Richard S. Hotchkiss1,2,4

Departments of 1Surgery, 2Anesthesiology, 3Pediatrics, 4Medicine, and 5Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA

- IRT and MBM contributed equally to this work.

Reprints or correspondence: Dr. Richard S. Hotchkiss, Department of Anesthesiology, Washington University School of Medicine, 660 South Euclid Ave., St Louis, MO, USA 66110.

Email: richardshotchkiss@wustl.edu

Alternate corresponding author: Dr. Isaiah R. Turnbull, Department of Surgery, Washington University School of Medicine, 660 South Euclid Ave., St Louis, MO, USA 66110.

Email turnbulli@wustl.edu

Author contributions: IRT, MBM, MHH, JPK, JML, CMC, AS, JB, SMM, EMR, RFP, JPG, KER, RSH contributed to collection of clinical and laboratory data, performance of ancillary laboratory tests and contributed to clinical care of the patient. All authors contributed to the drafting and editing of the manuscript. All authors read and approved the final manuscript.

© The Author(s) 2021. Published by Oxford University Press on behalf of Infectious Diseases Society of America.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
Abstract

A non-immunocompromised patient developed life-threatening soft-tissue infection with *Trichosporon asahii*, *Fusarium*, and *Saksenaea* that progressed despite maximum anti-fungal therapies and aggressive debridement. IL-7 immunotherapy resulted in clinical improvement, fungal clearance, reversal of lymphopenia, and improved T-cell function. Immunoadjuvant therapies to boost host immunity may be efficacious in life-threatening fungal infections.

Keywords: Immunotherapy, interleukin-7, fungal infection, wound infection, *Trichosporon*
Introduction

Invasive fungal infections are a growing complication following major traumatic injuries that result in extensive soft tissue damage [1,2]. The Department of Defense has identified combat wound infections due to invasive fungi as an emerging threat and a high priority [1,2]. Despite aggressive surgical debridement and antimicrobial therapy that is active against the particular fungal pathogens, many infections progress with resultant substantial morbidity and/or mortality. Progression of infection despite optimal therapy is consistent with the hypothesis that impaired host immunity may be an important pathophysiologic mechanism that renders the fungus refractory to therapy [3,4].

Drugs that boost the host immune system are increasingly being tested in various infectious disorders in both immunosuppressed and immunocompetent patients. These immune adjuvant therapies include IFN-γ, checkpoint inhibitors (anti-programmed cell death 1 (anti-PD-1)), GM-CSF, and IL-7 [5-8]. In some cases, these immune adjuvant therapies have restored indices of immune function and lead to control of refractory infections [5-8]. Herein, we describe the use of IL-7 in a patient with life-threatening soft tissue necrotizing fungal infection that was refractory to maximal available therapy.

Patient Case

A previously healthy 21-year-old man presented to the hospital after suffering a high-velocity motorcycle accident. He suffered severe pelvic injuries including comminuted pelvic fractures, multiple extremity fractures, and a catastrophic degloving injury of the buttocks and perineum with gross wound soilage. He also suffered vascular injuries that required angioembolization of his bilateral iliac arteries for hemorrhage control. On post-injury day 7 he was noted to have a rapidly progressing necrotizing soft tissue infection of his buttocks and perineum. Tissue cultures at that time demonstrated a polymicrobial infection including abundant Acinetobacter spp., abundant Pseudomonas spp. (not Pseudomonas aeruginosa) and moderate Stenotrophomonas maltophilia. His wound cultures also grew Trichosporon asahii, Saksenaea spp., and Fusarium spp. The Saksenaea isolate was initially identified using conventional fungal identification methods and the sporulation inducement method for Saksenaea as described by Padhye and Ajello [9]. The isolate was then referred to Mayo Clinic (Rochester, MN) for a species-level identification, but only a genus-level could be determined. The Saksenaea isolate underwent susceptibility testing at the University of Texas Health San Antonio using the Clinical and Laboratory Standards Institute (CLSI) broth
dilution antifungal reference method. Drug sensitivities were as follows: amphotericin B less than 0.03 mcg/ml, posaconazole 0.25 mcg/ml; isavuconazole 1 mcg/ml. The Fusarium was identified by phenotype and microscopy. Trichosporon asahii was identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). No sensitivities were performed on Fusarium or Trichosporon asahii.

He was aggressively treated with daily or alternating day operative debridement, broad-spectrum parenteral and topical antibacterial and antifungal therapies. Antimicrobial therapy included ceftazidime, metronidazole, trimethoprim-sulfamethoxazole, micafungin, amphotericin B and posaconazole (Figure 2), as well as VERAFL0 vac instillation of antimicrobials into the wound bed. The patient’s polymicrobial soft tissue infection continued to advance and was accompanied multisystem organ failure and shock. Over a four-week period, he required debridement of over 3,000 cm² of skin, subcutaneous tissue and muscle involving the entire perineum, bilateral thighs, buttocks, and circumferential abdominal wall (Fig. 1B). Although bacterial pathogens were rapidly eradicated from the patient’s wound, cultures were persistently positive for both Trichosporon asahii and Saksenaea species despite triple anti-fungal therapies consisting of Posaconazole, amphotericin B, and micafungin. Histopathological exam of wound biopsies showed invasive fungal elements (Fig. 1E).

Despite aggressive antimicrobial and surgical management over the course of 7 weeks after the identification of the polymicrobial infection, his condition continued to worsen. The patient initially had an increased lymphocyte count up to 2x10³/µL, but had persistent lymphopenia with neutrophilia as high as 50x10³/µL. Therefore, immune adjuvant therapy with recombinant human IL-7 was considered. IL-7 induces proliferation, maturation, and activation of CD4 and CD8 T-cells which are severely depleted and poorly functional in patients with life threatening infections including those due to fungal pathogens [6,7].

Informed consent was obtained from the patient and family and a test dose of IL-7 (3 µg/kg ideal body weight, intramuscularly) (kindly provided by Dr. Michel Morre, RevImmune) was administered on day 59 post-injury which was well-tolerated (Fig. 1A). Twenty-four hours later, the dosage was increased to 10 µg/kg and continued every 3-4 days for 7 doses. The patient’s clinical status showed significant improvement beginning at 4-7 days after initiation of IL-7. As illustrated by serial pictures of the wound, the most notable change following
initiation of IL-7 was to slow the progression of the invasive soft tissue necrosis (Fig. 1B, green arrows).

In addition to decreased infectious spread and fungal proliferation, with improved wound healing and healthier appearing tissue margins, clinical indicators of severity of disease improved within days of IL-7 treatment initiation with improvement to fever curve, tachycardia and tachypnea (supplemental figure 1). Laboratory evidence of resolution of the fungal invasion included progressive decreases in total white blood cell count and increasing absolute lymphocyte counts (Fig. 1A). The patient’s absolute lymphocyte count increased over six-fold from a low of 600 lymphocytes/µL blood to over 4,000 lymphocytes/µL (upper limit of normal for absolute lymphocyte counts is 3,500). Of note, the increase in the patient’s absolute lymphocyte count was likely due both to the effect of IL-7 to induce lymphocyte proliferation and to the resolution of the fungal infection.

The patient had demonstrated persistent fungal growth with rapidly extending tissue boarders requiring surgical debridement over the course of 52 days prior to initiation of IL-7 (Supplemental table 1). After initiation of IL-7 therapy, an increasing number of tissue cultures did not identify fungal elements and by the 5th dose of IL-7, the patient had persistently negative cultures. Tissue histology also became negative for fungus at the approximate same time as tissue cultures (Fig. E).

After completing IL-7 therapy the wound beds qualitatively improved with development of healthy granulation tissue facilitating skin grafting. The patient’s blood, wound, and bone cultures were negative for bacterial or fungal pathogens for 40 days after completing IL-7 therapy (see supplemental Table 1 for complete lists of cultures). The resolution in wound fungal infection facilitated definitive closure of over 90% (>700 cm²) of open wounds. Currently, the patient has a small region of exposed pelvic bone and a persistent perineal wound that remains open due to disruption of his urethra and ongoing urine drainage that is pending reconstruction. A recent biopsy of the exposed pelvic bone and the open wound margin were positive for Trichosporon asahii. This is being treated with an extended course of isavuconazonium. There has been no recurrence of the life-threatening necrotizing fasciitis that resolved with IL-7 therapy.

The effect of IL-7 to improve the patient’s T cell function was evaluated by an ex vivo stimulation assay using anti-CD3 and anti-CD28 antibodies (BioLegend, San Diego, CA) on an IFN-γ ELISPOT assay (Cellular Technologies Limited, Shaker Heights, OH) which was
performed as previously described [10,11]. The total number of activated, IFN-γ producing T cells progressively increased from baseline (prior to IL-7 therapy) accompanied by a 1.4 fold increase in the proportion of activated T cells (Fig. 1D).

A beneficial effect of IL-7 in infectious disorders is to increase expression of lymphocyte adhesion molecules and induce lymphocyte trafficking to sites of infection [6]. Consequently, immunohistochemical staining using the lymphocyte marker (anti-CD3) was performed and demonstrated a marked increase in the number of lymphocytes in the biopsies from the infected wound (Fig. 1F, right hand panel).

To measure the specific molecular effects underlying the increased T-cell responsiveness induced by IL-7, we measured intracellular levels of phospho-STAT5 (pSTAT5) in CD4 and CD8 T-cells using mass cytometry. STAT5 is the primary T cell differentiation signal downstream of the IL-7 receptor [12]. T-cells were identified based on surface marker staining (CD45+/CD15-/CD66b-/CD56-/CD3+). We then measured the pSTAT5 signal intensity. IL-7 was associated with a 3-fold increase in activated STAT5 in CD4-T cells and a 2-fold increase in CD8-T cells (Fig. 1C). These data provide a putative molecular mechanism for the increase T-cell function induced by IL-7.

**Patient Consent Statement**

Informed consent was obtained from the patient and the patient’s parents for therapy using IL-7 and for publication of this case report including images of the patient’s wounds.

**Discussion**

Critically-ill patients with protracted sepsis typically develop profound and persistent immunosuppression [13]. Numerous pathophysiologic mechanisms drive the immune suppression including apoptosis-induced lymphocyte depletion, increased myeloid-derived suppressor cells, and T-cell exhaustion. Based upon a growing number of case reports, there is increasing recognition that therapies that boost patient immunity may be beneficial in patients with intractable infections that are non-responsive to conventional therapies [5,8,13]. Particularly relevant to the present case is use of the immune adjuvants Nivolumab (anti-PD-1) and IFN-γ in a Belgian bomb blast victim who was dying of refractory mucormycosis [5].
Immune-adjuvant therapy resulted in rapid clinical improvement, enhanced immune phenotypic markers, and fungal elimination.

Although a number of immuno-adjuvants are likely to be beneficial, IL-7 is particularly attractive because of its effects on a broad array of immune effector cells that play key roles in pathogen elimination including CD4 and CD8 T cells, mucosally associated invariant T cells, and innate lymphoid cells [8,13]. Although not presently approved for clinical use, IL-7 is under investigation in multiple clinical trials in infectious and oncologic disorders [6-8]. IL-7 has an excellent safety profile and has been used in over 450 patients with both severe infections and various cancers. A double-blind, randomized, phase 2 trial of IL-7 in patients with sepsis showed that IL-7 was well-tolerated, reversed sepsis-induced lymphopenia, and enhanced T-cell activation [6]. IL-7 has also been shown to prevent lymphocyte apoptosis, improve immune function, and increase survival in a two-hit animal model of fungal sepsis. IL-7’s primary effect is on lymphocytes but it will have indirect effects to enhance macrophage and neutrophil anti-microbial properties as well. IL-7 increases T cell production of IFN-γ, a potent activator of macrophages. IL-7 also increases T-cell IL-17 production that plays a critical role in fungal infections by enhancing neutrophil migration to sites of infection [6]. IL-7 should be particularly advantageous in patients with profound and persistent lymphopenia because of its effects to prevent lymphocyte apoptosis and induce lymphocyte proliferation.

Although the patient in this report had no previous history of recurrent fungal infections to suggest an underlying immune deficiency, persistent or recurrent mucocutaneous or invasive fungal infections developing in a “normal” host may be indicative of genetic defects in innate or adaptive immunity [14,15]. Recently, defects in the caspase recruitment domain containing protein 9 (CARD9) have been reported to occur in patients with severe fungal infections [15].

Recently, immuno-adjuvant therapy to boost host immunity has been proposed as a potential additional powerful weapon in the armamentarium in infectious diseases [8]. The authors believe that the rather remarkable turnaround in the patient’s hospital course in the current report provides further support for the concept of augmenting the integrity of the host
immune system in life-threatening infections. The ability to evaluate the functional status of the patient’s immune system, such as the use of the ELISpot assay in the present case (Fig. 1D), will greatly facilitate the advance of this field by identifying patients who are immunosuppressed and enabling investigators to follow patient response to immuno-adjuvant therapies. Patients with intractable hospital-acquired infections involving multi-drug resistant bacteria or patients with invasive fungal infections are likely good candidates for immuno-adjuvant therapies because they are almost invariably immunosuppressed and have high mortality. Use of IL-7, checkpoint inhibitors, or other immune adjuvant therapies might be considered on a compassionate basis in patients dying of these intractable fungal infections. If immunotherapy does prove to be an effective new approach in infectious diseases, it could usher in a novel path forward in the battle against increasingly deadly foes.
Funding
This work was supported by the National Institute of Health, National institute of General Medical Sciences [R35-GM126928], and [R35-GM133756].

Acknowledgements
Author contributions. The authors thank Dr. Michel Morre, Chief Scientific Officer, RevImmune, for kindly providing the recombinant human IL-7 and for advice on the dosing regimen. The authors thank the patient and his family for permission to include all clinical data and photographs. The authors also express gratitude to the intensive care unit and other hospital nurses at Barnes Jewish Hospital for their dedication and caring spirit in this highly challenging case.

Potential conflicts of interest. R.S.H. is the principal investigator for a study of IL-7 in patients with sepsis being conducted by RevImmune. R.S.H. is also the principal investigator in the United States for a multicenter international trial of IL-7 in patients with COVID-19 being conducted by RevImmune. R.S.H. has received research funding from Transgene and has been a consultant to Transgene. No other authors have conflicts of interest relevant to the content of this manuscript.
REFERENCES

1. Thompson KB, Krispinsky LT, and Stark RJ. Late immune consequences of combat trauma: a review of trauma-related immune dysfunction and potential therapies. Mil Med Res. 2019;6(1):11.
2. Kronen R, Liang SY, Bochicchio G, Bochicchio K, Powderly WG, and Spec A. Invasive Fungal Infections Secondary to Traumatic Injury. Int J Infect Dis. 2017;62:102-11.
3. Unsinger J, Burnham CA, McDonough J, Morre M, Prakash PS, Caldwell CC, et al. Interleukin-7 ameliorates immune dysfunction and improves survival in a 2-hit model of fungal sepsis. J Infect Dis. 2012;206(4):606-16.
4. Spec A, Shindo Y, Burnham CA, Wilson S, Ablordeppey EA, Beiter ER, et al. T cells from patients with Candida sepsis display a suppressive immunophenotype. Crit Care. 2016;20:15.
5. Grimaldi D, Pradier O, Hotchkiss RS, and Vincent JL. Nivolumab plus interferon-gamma in the treatment of intractable mucormycosis. Lancet Infect Dis. 2017;17(1):18.
6. Francois B, Jeannet R, Daix T, Walton AH, Shotwell MS, Unsinger J, et al. Interleukin-7 restores lymphocytes in septic shock: the IRIS-7 randomized clinical trial. JCI Insight. 2018;3(5).
7. Hotchkiss RS, Colston E, Yende S, Crouser ED, Martin GS, Albertson T, et al. Immune checkpoint inhibition in sepsis: a Phase 1b randomized study to evaluate the safety, tolerability, pharmacokinetics, and pharmacodynamics of nivolumab. Intensive Care Med. 2019;45(10):1360-71.
8. Hotchkiss RS, and Opal SM. Activating Immunity to Fight a Foe - A New Path. N Engl J Med. 2020;382(13):1270-2.
9. Padhye AA, Ajello L. Simple method of inducing sporulation by Apophysomyces elegans and Saksenaea vasiformis. J Clin Microbiol. 1988; 26(9):1861-3.
10. Mazer MB, C CC, Hanson J, Mannion D, Turnbull IR, Drewry A, et al. A Whole Blood Enzyme-Linked Immunospot Assay for Functional Immune Endotyping of Septic Patients. J Immunol. 2021;206(1):23-36.
11. Remy KE, Mazer M, Striker DA, Ellebedy AH, Walton AH, Unsinger J, et al. Severe immunosuppression and not a cytokine storm characterizes COVID-19 infections. JCI Insight. 2020;5(17).
12. Pallard C, Stegmann AP, van Kleffens T, Smart F, Venkitaraman A, and Spits H. Distinct roles of the phosphatidylinositol 3-kinase and STAT5 pathways in IL-7-mediated development of human thymocyte precursors. Immunity. 1999;10(5):525-35.
13. Hotchkiss RS, Monneret G, and Payen D. Immunosuppression in sepsis: a novel understanding of the disorder and a new therapeutic approach. Lancet Infect Dis. 2013;13(3):260-8.
14. Lionakis MS; Genetic susceptibility to fungal infections in humans. Curr Fungal Infect Rep. 2012; 6(1):11-22.
15. Vaezi A, Fakhim H, Abtahian Z, Khodavaisy S., Geramishoar M, Alizadeh A, et al. Frequency and geographic distribution of CARD9 mutations in patients with severe fungal infections. Front Microbiol. 2018; 1-7.
**Figure 1. Serial clinical, anatomic, immunologic, and pathologic changes in IL-7 treated patient with invasive fungal infection**

**A)** Changes in white blood cell counts (WBC) and absolute lymphocyte counts (ALC) during patient’s hospital course. Days of hospitalization indicated on X axis; IL-7 was initiated on day 59. Red arrows identify administration of IL-7;

**B)** Color photographs of lower back and gluteal region demonstrating necrotic and infected areas; there was serial progression of the infection with necrotic regions which resolved following initiation of IL-7, Green arrows in second photo from the left shows necrotic and poorly perfused margins;

**C)** IL-7 mediates its effects to increase T cell IFN-γ production via STAT5 signaling; CyTOF demonstrated that there was a doubling of STAT5 expression in lymphocytes obtained after initiation of IL-7 compared to pre-treatment; CyTOF data are reported at the geometric mean raw signal intensity for the gated population. All three samples were barcoded and run in a single experiment. The data presented are the geometric mean of the raw values for the gated populations (not normalized), as reported by the cytometer.

**D)** Decreased T-cell IFN-γ production is a hallmark of T cell exhaustion; ELISpot analysis on peripheral blood mononuclear cells (PMCs) were performed serially; the far-left ELISpot well had 47 IFN-γ producing lymphocytes (depicted as spot-forming units (SFU)) per 1,000 lymphocytes plated; the middle and far-right wells show a progressive increase in the both the number of lymphocytes in the PBMCs fraction as well as an increase in the proportion of active IFN-γ producing lymphocytes following CD3/CD28 stimulation;

**E)** Immunohistochemical staining of wound margins: **left panel**- Gomori’s methanamine silver stain highlighting invasive fungal hyphae (arrows), 400X; **middle panel**- hematoxylin and eosin stain showing necroinflammatory debris and refractile appearing fungal hyphae (arrows), 400X; **right panel**- Gomori’s methanamine silver stain highlighting shows clearance of invasive fungal microorganisms following IL-7 treatment; soft tissue necrosis is present, 400X.

**F)** Immunohistochemical staining for CD3+ T cells. Note the marked increase in the number of lymphocytes in the wound margins that occurred after initiation of IL-7, 100X.

**Abbreviations** – spot forming units, SFU; absolute lymphocyte count, ALC; white blood cell count, WBC;

**Figure 2. Time course of antimicrobial and surgical therapy**

Graphical depiction of a timeline from the date of admission through the fourth month of his hospital course. This timeline demonstrates the surgical debridement occurrences, positive tissue cultures, antimicrobial therapies as well as doses of recombinant human IL-7.
Figure 1.
Figure 2

[Diagram showing wound cultures and antibiotics used with annotations: Debridement and IL-7 dose indicated.]

- Wound Cultures:
  - + Acinetobacter
  - + Saksensaea
  - + Trichosporon
  - + Trichosporon Asahii
  - + Alboatrachelosporium
  - + Paecilomyces
  - + Fusarium
  - + Trichosporon Asahii
  - + Pseudomonas

- Antibiotics:
  - Cefepime
  - Ceftazidime
  - Ceftriaxone
  - Gentamicin
  - Levofloxacin
  - Metronidazole
  - Piperacillin/Tazobactam
  - Minocycline
  - Trimethoprim/Sulfamethoxazole
  - Vancomycin
  - Amphotericin B
  - Itraconazole
  - Micafungin
  - Posaconazole
  - Voriconazole

Annotations:
- Debridement
- IL-7 dose