Decoding Evolution of Native Fishes in Garhwal Himalaya using Molecular Markers and DNA Barcoding

Madhu Thapliyal, Bipin Sati, Ashish Thapliyal, K. K. Joshi

Abstract: As we are moving forward into the modern era of science, several new technologies have revolutionized various branches of science. Techniques of biodiversity conservation, fish biology etc. has also adapted to modern techniques. For a long time, most of the researches in taxonomy, including fisheries science were based on morphology and traditional methods. After the decade of 90’s, slowly several molecular markers like RFLP, RAPD, SNP’s etc. made inroad into taxonomy and fisheries. Molecular markers have several applications in the field of livestock improvement and understanding population dynamics to name a few. Since the 2004, a specific molecular marker, generally known as DNA Bar-coding for species identification, came up. This molecular marker is a part of mitochondrial genome that encodes for Cytochrome C Oxidase Unit I (also called as COX or COI). It is advantageous because it has been tested across several animal species and it can differentiate species very well. This marker has also been used as a forensic tool to identify the species. In the current paper, we have used this molecular marker to decode evolution of native fishes of Garhwal Himalayan region. Over 350 barcodes were developed and these barcodes were used to for phylogenetic analysis.

Key words- Molecular Markers, DNA Bar-coding, Evolution, Himalaya, Breeding, livestock

I. INTRODUCTION

Himalaya has diverse and extensive network of fresh water rivers, streams, lakes etc. All these fresh water bodies harbor diverse aquatic fauna with fishes being the most extensively studied. There are many fish species reported by many authors in Uttarakhand. It is suggested that the native fish species of Himalayan region might be one of the earliest inhabitant of these fresh water systems and hence they are a good model to study evolution unfolding. These fishes have been well documented. However, prior to the year 2000, most of the studies were based on morphological characters and books like “Day Fauna” were served as the “KEY” for identification of fishes. All these so called “KEYS” were extensive illustrations of each species. About 2500 species of fishes have been reported in India and approximately 930 of these are fresh water fishes. The Himalayan region of India harbor’s about 225 of these fresh water fishes. Various researchers have reported up to 50 different fish species from Garhwal Himalayan region.

In Uttarakhand, most of the fresh water fishery resources are contributed by the River Yamuna or River Ganges. Fishes of Rivers Ganges (and is tributaries) has been well documented by fishes of River Yamuna in Garhwal Himalaya have not been well known except some contributions. There are numerous morphological based studies but there are only few report investigating fish species using molecular markers. Molecular markers are also being used used for assessing biodiversity using environmental DNA and meta-genomics (Krehenwinkel et. al., 2019; Adams et. al., 2019; Xing et. al. 2020). In about last three decades, the scenario of most of the Himalayan region as changed due to fast changing ecology of upland waters. Impact of anthropogenic activity on genome of fish species is among the interest in Himalayan region. The genetic variation in Himalayan region due to the regular floods in rivers and Dam constructions still not reported. Attempts have also been made to generate the DNA barcode & Population genetics of fishes, but most of the attempts are limited to major rivers i.e. the Ganges and the Yamuna (Thapliyal et al., 2013). The molecular markers based on DNA are helpful to provide evolutionary relationship among different populations and cryptic species identification. The current paper is an attempt to investigate these changes using molecular markers specially focusing on DNA barcoding.

II. WHY MOLECULAR MARKERS

During several studies on morphological characters, research encountered a dilemma. There were several individuals which looked alike or had only small variations. A good example is that of Schizothorax species. It needs an expert to identify (ID) the two species of Schizothorax namely S. progastus and S. richardsonii and even after identification there could be queries about the ID. This happens in several species that they look alike but they are actually different species genetically. The latest example is of Giraffe (Petzold&Hassanin, 2020). To solve this issue, molecular markers emerged and as they are specific sequences of DNA, these studies when coupled with morphometric studies were considered better option for species level identification. Introduction of molecular biology techniques in fisheries had a huge impact on the entire fishery research. Through application of these techniques we can figure out the variations in specific regions of genome. We can also develop a marker for desired characters and identify species based on DNA Barcode which is somewhat similar or just like a product barcode.

Revised Manuscript Received on August 10, 2019.

*Corresponding Author
Madhu Thapliyal, Associate Professor and Head, Department of Zoology, Govt. PG College, Maldevta, Raipur, Dehradun, India.
Bipin Sati, USERC, Govt. of UttarKhand, Dehradun, India.
Ashish Thapliyal, Professor, Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, India.
K. K. Joshi, Department of Environment Science, Graphic Era Hill University, Dehradun, India.

Retrieved Number: J100408810S219/2019©BEIESP
DOI: 10.35940/ijitee.J1004.08810S219

Published By: Blue Eyes Intelligence Engineering & Sciences Publication
III. MOLECULAR MARKERS

Molecular marker is a specific sequence located on a specific gene. During the process of new progeny formation, inheritance of specific character occurs and these molecular markers stay together with the desired character. Hence the name molecular markers as the desired character can be followed by just following the molecular marker sequence. The interest in the DNA sequence based molecular markers had started as soon as the DNA model was presented by Watson and Crick and this model was awarded a Nobel Prize. This was followed by a rapid development of new technologies and methods like Polymerase Chain Reaction and DNA Sequencing. Once the sequencing of genome started, it opened an entire new ear of molecular markers and even a change in single nucleotide in a gene could be followed – technically called as Single Nucleotide Polymorphism.

IV. WHY MITOCHONDRIAL MARKER:

Besides the nuclear DNA, the eukaryotic mitochondria also has an extra DNA. This mitochondrial genome codes for 37 genes (two rRNAs, 22 tRNAs and 13 polypeptides).Mitochondrial DNA is of interest because of its unique features. These features are: a) This DNA is maternally inherited, b) it is a haploid molecule, c) there is no recombination process, d) there is no repair mechanism during DNA replication process e) there are several mitochondria in a cell and so it can be isolated and targeted easily, f) there are no introns in mitochondrial genome and g) mitochondrial genome is not too big and the optimum size makes it a favorite h) The COI marker can be used as a universal marker across entire animal species.The COI marker was first reported by Dr. Paul Hebert from University of Guelph, Canada as a molecular marker that can be used effectively to develop molecular database based catalogue of various animals inhabiting different regions (Hebert et al., 2003; Hebert et al., 2004). The sequences of these markers can also be compared using different available software’s of sequence alignment and analysis.

V. STUDIES IN GARHWAL HIMALAYAN REGION OF UTTARAKHAND :-

As Garhwal Himalayan region is the origin point of River Ganges and River Yamuna, it is important to understand the evolutionary context of fauna inhabiting these river. Attempts have been made to generate the DNA barcode & study population genetics of fishes in these rivers. Besides these river, there are several small tributaries that also inhabited by many species. In the entire study – one of the molecular marker called as COI – Cytochrome C Oxidase Unit I has been used. A specific region of this gene is sequenced and the bases are represented as colour codes and hence the name DNA Barcode (Fig. 1).

Example: GenBank Accession numbers **NCBI ID JN965201**

![Fig 1. The concept of DNA Barcode. A sequence is converted to a barcode.](Image)
Table 1 – Molecular markers and their description

S.No.	Marker	Details
1.	**RFLP** (Restriction Fragment Length Polymorphism)	In this method, one or more restriction enzyme(s) are used to cut a DNA isolated from the desired samples. The DNA digested by these restriction enzymes is then run on a gel which gives a unique banding pattern. These patterns are used in an analysis called as RFLP (Restriction Fragment Length Polymorphism). RFLP analysis is used in population studies (Ferguson et al., 1995).
2.	**RAPD** (Random Amplification of Polymorphic DNA)	RAPD technique is a PCR based technique. Several primers are used on the same DNA sample and then the amplified regions profile is developed. (Hadrys et al., 1992).
3.	Dloop region	There is a region in mitochondrial region which is a non-coding region. This region is called as The D-loop region. Variations of this region are mapped in case of studies using D-loop as a marker.
4.	**VNTRs** (Variable number tandem repeats)	When the eukaryote genome was analyzed, it was surprising to note that there were several unique segments of sequences that were repeated several times (from 10 to 100 or more, O'Reilly and Wright, 1995). These repeated units can be of two types – first one called as mini-satellite DNA (9–65 bp long), and second called as microsatellite DNA (4–8 bp long). (Magoulas, 1998).
5.	COI	The mitochondrial genome COI gene is an approximate 656 bp region. The gene encodes part of the terminal enzyme of the respiratory chain of mitochondria.
6.	Cytocrome b	Cytocrome b is a component of electron transport gene and is used in some studies. This gene is too long (about 1,140 bp) and sometimes the DNA sequencing data of longer genes is cumbersome to handle.
7.	16s rRNA	16S rRNA gene has been used extensively for bacterial identification.
8.	ATPase 6/8	A region of mitochondrial ATPase gene

Table 2. Some of research papers in the Uttarakhand region on molecular marker.

Species	References	Marker used	Year	Place/Area
Dawkinsia Tambraparniei	karuppiahkannan	Cytocrome b	2014	Uttarakhand
Labeogonius	Grishma Tewari.	RAPD	2013	Uttarakhand
S. richardsonii, T. putitora, B. Bendelisis and G. Gotyla, Danio	Thapliyal M	COI	2013	Uttarakhand
S. richardsonii, T. putitora, B. Bendelisis and G. Gotyla	Himani Pandey.	16SRNA	2013	Uttarakhand
Barilius bendelisis	A. K. Mishra.	RAPD	2012	Uttarakhand
S. richardsonii and S. progastus.	Suresh Chandra.	COI	2012	Uttarakhand
Golden Mahseer Tor putitora, Snow trout, Schizothorax richardsonii, Indian trout, Raimamus bola Garra, Garragotyla	G.K. Sivaraman.	RAPD, 12S rRNA	2012	Uttarakhand
Barilius bendelisis	Seema Sah.	cytocrome b	2011	Uttarakhand
Schizothorax richardsonii	Ashoktaru Barat.	cytocrome b	2011	Uttarakhand
Eutropichthys vacha	Gyan Chandra.	RAPD	2010	Uttarakhand
Tor putitora	Mamta Singh.	45S and 5S	2009	Uttarakhand

VI. MATERIAL AND METHODS

Study site: The present study was a 200 kilometre radius of Garhwal Himalaya (30N; 78E approx.) Uttarakhand. Sampling sites included Bakot to Ponta Sahib in River Yamuna and from Bhatwari to Rishikesh in river Ganges.
The DNA was isolated from fish fin (Wizard Genomic DNA Purification Kit, Cat# A1120, Qiagen Integrity). The isolated DNAs was then checked on 1% Agarose gel and quantified (Nanodrop 1000 spectrophotometer, Applied bio system). Method used was as per Thapliyal et. al., 2013. In short, Samples were subjected to PCR using universal primers (FF2d (forward): TTCTCCACCAACCACARGAYATYGGFR, FF1d (reverse): CACCTCAAGGTGTCCGAARAAYCARAA) The thermal cycler program was initial Denaturation at 95°C for 5min followed by 35 cycles of 95°C for 30sec of Denaturation, 55°C of annealing for 30sec and 72°C of extension for 1min and final extension of 72°C for 7min and then the samples were stored at 4°C. The samples were then run at 1.5% of Agarose gel for their quality check. The sample showing one clear band after PCR samples were sorted and purified with EXO1-SAP (Exonuclease1 and Shrimp Alkaline Phosphatase: USB Corp) with the temperature conditions suggested by manufacturer. The purified PCR amplicons were then ladled with Big Dye Terminator v3.1 (Applied Bio systems) by cycle sequencing, with each side labelled separately. The cycle sequencing PCR reaction contained Ready reaction mix (2.5x) 0.5µL, Dilution Buffer 1.75µL, Template (200ug/µL)1µL, Primer (0.8pMol/µL). The cycle sequenced amp icons were then purified with Big Dye (R) X Terminator (TM)(Big Dye Terminator v3.1 clean up Applied Bio systems, USA) each side labelled separately and were sequences on ABI 3130 DNA genetic analyser.2µL, MQ Water4.75µL. The cycle sequencing conditions was Initial Denaturation of 960C for 1min followed by 35 cycles of Denaturation 960C for 10sec, annealing 500C for 5sec, extension 600C for 4min and then the samples were stored at storage temperature of 40C. The sequences were then obtained and analysed in the Sequence Scape software v2.7 for possibilities of indels(Applied Biosystems 3130 Genetic Analyzers).

VII. DATA ANALYSIS

DNA sequence were also submitted to Gene bank (accession numbers included in appendix online tools). MEGA program (XXX) was used for sequence alignment and further interpretation.

VIII. RESULTS

About 350 GenBank submissions have been made during the entire period of study starting from 2013. There were some interesting observations that are becoming evident from our study that the distribution pattern of species, especially the *Schizothorax* species, needs to be redefined based on molecular data. More data is also being added so that statistical validation can be carried out.Some of these submissions of various molecular markers are:
S.No.	Name of the Species	Voucher No	NCBI Accession No
1	Bariliusbarna	RS05	JN965191
2	Bariliusbarna	GM01	JN965190
3	Bariliusbendelisis	KR01	JN965192
4	Bariliusbendelisis	KR07	JN965196
5	Bariliusbendelisis	KR06	JN965195
6	Bariliusbendelisis	KR02	JN965194
7	Bariliusbendelisis	GM02	JN965204
8	Bariliusbendelisis	KR04	JN965212
9	Bariliusbendelisis	KR03	JN965193
10	Bariliustileo	GM07	JN965198
11	Bariliustileo	GM08	JQ692874
12	Chaguniuschagunio	GM10	JN965199
13	Garragotyla	BS55	JN965210
14	Garragotyla	HD09	JN965211
15	Garragotyla	HD10	KC473939
16	Garragotylagotyla	RS07	JN965200
17	Macrognathusspancalus	BS123	KC473940
18	Puntiustrochomus	KR10	JN965201
19	Puntiusticto	GM12	JN965202
20	Puntiusticto	GM11	JN965203
21	Schizothorax progestus	UM01	JN965205
22	Schizothorax progestus	UM02	JQ692872
23	Schizothorax progestus	RS01	JQ692870
24	Schizothorax progestus	HD08	JQ692873
25	Schizothorax sp.	HD07	JQ692871
26	Tor chelynoides	UM04	JN965207
27	Tor chelynoides	RS04	JN965206
28	Tor putitora	GM05	JN965209
29	Tor putitora	UM05	JN965197
30	Tor sp.	BSS01	KC473941
31	Tor tor	BS153	KC473942
32	Tor tor	GM06	JN965208
33	Acanthocobitisbotia	GPCR 281AB	KR809714
34	Acanthocobitisbotia	GPCR1AB	KU043312
35	Acanthocobitisbotia	GPCR2AB	KU043313
36	Acanthocobitisbotia	GPCR3AB	KU043314
37	Acanthocobitisbotia	GPCR4AB	KU043315
38	Badisbadis	GPCR 141BB	KR809715
39	Badisbadis	GPCR 282BB	KR809716
40	Badisbadis	GPCR 284BB	KR809717
41	Badisbadis	GPCR 287BB	KR809718
42	Badisbadis	GPCR5BB	KU043316
43	Badisbadis	GPCR6BB	KU043317
44	Badisbadis	GPCR7BB	KU043318
45	Badisbadis	GPCR8BB	KU043319
46	Bariliusbarna	GPCR 435BB	KR809719
47	Bariliusbarna	GPCR9BB	KU043320
48	Bariliusbarna	GPCR10BB	KU043321
49	Bariliusbarna	GPCR11BB	KU043322
50	Bariliusbarna	GPCR12BB	KU043323
51	Bariliusbendelisis	GPCR 113BB	KR809720
52	Bariliusbendelisis	GPCR 114BB	KR809721
53	Bariliusbendelisis	GPCR13BB	KU043324
54	Bariliusbendelisis	GPCR14BB	KU043325
	Species	Accession Number	GenBank ID
---	----------------------	------------------	------------
55	Bariliusbendelisis	GPCR15BB	KU043326
56	Barilusiavagra	GPCR112BV	KR809722
57	Barilusiavagra	GPCR115BV	KR809723
58	Barilusiavagra	GPCR270BV	KR809724
59	Barilusiavagra	GPCR272BV	KR809725
60	Barilusiavagra	GPCR273BV	KR809726
61	Barilusiavagra	GPCR274BV	KR809727
62	Barilusiavagra	GPCR385BV	KR809728
63	Channagachua	GPCR142CG	KR809729
64	Channagachua	GPCR16CG	KU043327
65	Channagachua	GPCR17CG	KU043328
66	Channagachua	GPCR18CG	KU043329
67	Channagachua	GPCR19CG	KU043330
68	Channapunctata	GPCR146CP	KR809730
69	Channapunctata	GPCR20CP	KU043331
70	Channapunctata	GPCR21CP	KU043332
71	Channapunctata	GPCR22CP	KU043333
72	Channapunctata	GPCR23CP	KU043334
73	Cyprinuscarpio	GPCR223CC	KR809731
74	Cyprinuscarpio	GPCR225CC	KR809732
75	Cyprinuscarpio	GPCR293CC	KR809733
76	Cyprinuscarpio	GPCR294CC	KR809734
77	Cyprinuscarpio	GPCR295CC	KR809735
78	Cyprinuscarpio	GPCR50CC	KR809736
79	Danioodevario	GPCR236DD	KR809737
80	Danioodevario	GPCR237DD	KR809738
81	Danioodevario	GPCR24DD	KU043335
82	Danioodevario	GPCR25DD	KU043336
83	Danioodevario	GPCR26DD	KU043337
84	Garragotyla	GPCR144GG	KR809739
85	Garragotyla	GPCR27GG	KU043338
86	Garragotyla	GPCR28GG	KU043339
87	Garragotyla	GPCR29GG	KU043340
88	Garragotyla	GPCR30GG	KU043341
89	Garralamta	GPCR145GL	KR809740
90	Garralamta	GPCR31GL	KU043342
91	Garralamta	GPCR32GL	KU043343
92	Garralamta	GPCR33GL	KU043344
93	Garralamta	GPCR34GL	KU043345
94	Lepidocephalichthysguntea	GPCR280LG	KR809741
95	Lepidocephalichthysguntea	GPCR147LG	KR809742
96	Lepidocephalichthysguntea	GPCR35LG	KU043346
97	Lepidocephalichthysguntea	GPCR36LG	KU043347
98	Lepidocephalichthysguntea	GPCR37LG	KU043348
99	Lepidocephalichthys sp.	GPCR289Lsp.	KR809743
100	Lepidocephalichthys sp.	GPCR38Lsp.	KU043349
101	Lepidocephalichthys sp.	GPCR39Lsp.	KU043350
102	Lepidocephalichthys sp.	GPCR40Lsp.	KU043351
103	Lepidocephalichthys sp.	GPCR41Lsp.	KU043352
104	Mystusvittatus	GPCR288MV	KR809744
105	Mystusvittatus	GPCR42MV	KU043353
106	Mystusvittatus	GPCR43MV	KU043354
107	Mystusvittatus	GPCR44MV	KU043355
108	Mystusvittatus	GPCR45MV	KU043356
109	Nemacheilusmontana	GPCR58NM	KR809745
110	Nemacheilusmontana	GPCR46NM	KU043357
111	Nemacheilusmontana	GPCR47MV	KU043358
112	Nemacheilusmontana	GPCR48MV	KU043359
	Species	Accession	Accession
-----	------------------------------	-------------	-------------
113	Nemacheilus montana	GPCR49MV	KU043360
114	Pseudecheneis salutaca	GPCR197PS	KR809746
115	Pseudecheneis salutaca	GPCR292PS	KR809747
116	Pseudocheneis salutaca	GPCR63PS	KR809748
117	Pseudocheneis salutaca	GPCR50PS	KU043361
118	Pseudocheneis salutaca	GPCR51PS	KU043362
119	Pseudocheneis salutaca	GPCR52PS	KU043363
120	Puntius chelynoiides	GPCR196PC	KR809749
121	Puntius chelynoiides	GPCR170PC	KR809750
122	Puntius chelynoiides	GPCR171PC	KR809751
123	Puntius chelynoiides	GPCR172PC	KR809752
124	Puntius chelynoiides	GPCR195PC	KR809753
125	Puntius chelynoiides	GPCR221PC	KR809754
126	Puntius chelynoiides	GPCR262PC	KR809755
127	Puntius chelynoiides	GPCR263PC	KR809756
128	Puntius chelynoiides	GPCR267PC	KR809757
129	Puntius chelynoiides	GPCR331PC	KR809758
130	Puntius chelynoiides	GPCR387PC	KR809759
131	Puntius chelynoiides	GPCR390PC	KR809760
132	Puntius chelynoiides	GPCR430PC	KR809761
133	Puntius chelynoiides	GPCR431PC	KR809762
134	Puntius chelynoiides	GPCR432PC	KR809763
135	Salmotrutta	GPCR121BT	KR809764
136	Salmotrutta	GPCR124BT	KR809765
137	Salmotrutta	GPCR126BT	KR809766
138	Salmotrutta	GPCR128BT	KR809767
139	Salmotrutta	GPCR1BT	KR809768
140	Schizothorax plagiosomus	GPCR101SP	KR809769
141	Schizothorax plagiosomus	GPCR53SP	KU043364
142	Schizothorax plagiosomus	GPCR54SP	KU043365
143	Schizothorax plagiosomus	GPCR55SP	KU043366
144	Schizothorax plagiosomus	GPCR56SP	KU043367
145	Schizothorax progastus	GPCR105SP	KR809770
146	Schizothorax progastus	GPCR162SP	KR809771
147	Schizothorax progastus	GPCR356SP	KR809772
148	Schizothorax progastus	GPCR4SP	KR809773
149	Schizothorax progastus	GPCR9SP	KR809774
150	Schizothorax progastus	GPCR100SP	KR809775
151	Schizothorax progastus	GPCR131SP	KR809776
152	Schizothorax progastus	GPCR160SP	KR809777
153	Schizothorax progastus	GPCR227SP	KR809778
154	Schizothorax progastus	GPCR374SP	KR809779
155	Schizothorax progastus	GPCR97SP	KR809780
156	Schizothorax sinnatus	GPCR110SS	KR809781
157	Schizothorax sinnatus	GPCR111SS	KR809782
158	Schizothorax sinnatus	GPCR57SS	KU043368
159	Schizothorax sinnatus	GPCR58SS	KU043369
160	Schizothorax sinnatus	GPCR59SS	KU043370
161	Schizothorax richardsonii	GPCR1SR	KU695217
162	Schizothorax richardsonii	GPCR2SR	KU695218
163	Schizothorax richardsonii	GPCR3SR	KU695219
164	Schizothorax richardsonii	GPCR4SR	KU695220
165	Schizothorax richardsonii	GPCR5SR	KU695221
166	Tor putitora	GPCR151TP	KR809783
167	Tor putitora	GPCR382TP	KR809784
168	Tor putitora	GPCR383TP	KR809785
169	Tor putitora	GPCR384TP	KR809786
170	Tor putitora	GPCR51TP	KR809787
Decoding Evolution of Native Fishes in Garhwal Himalaya using Molecular Markers and DNA Barcoding

Acknowledgments Our humble Acknowledgments to the, Graphic Era Deemed to be University, Dehradun for encouragement.

REFERENCES

1. Adams, C.I.; Knapp, M.; Gemmell, N.J.; Jeunen, G.-J.; Bunce, M.; Lamare, M.D.; Taylor, H.R. (2019) Beyond Biodiversity: Can Environmental DNA (eDNA) Cut It as a Population Genetics Tool? Genes, 10, 192.
2. Barat A, et al., (2011). Phylogenetic analysis of fishes of the subfamily Schizothoracinae (Teleostei: Cyprinidae) from Indian Himalayas using cytochrome b gene, Indian J. Fish., 59(1): 43-47.
3. Chandra S et al., (2012). DNA Bar-Coding of Indian Coldwater Fishes of Genus Schizothorax (Family: Cyprinidae) from Western Himalaya. World Journal of Fish and Marine Sciences 4 (4): 430-435, 2012 ISSN 2078-4589 © IDOSI Publications,
4. Ferguson, A., Taggart, J.B., Prodohl, P.A., McMeel, O., Thompson, C., Stone, C., McGinnity, P. and Hynes, R.A. (1995). The application of molecular markers to the study and conservation of fish populations with special reference to Salmo. Journal of Fish Biology, 47(A), 103-126.
5. Hadrys, H., Balick, M. and Schierwater, B. (1992). Applications of random amplified polymorphic DNA (RAPD) in molecular ecology. Mol. Ecol., 1: 55–63.
6. Hansen, M.M. (2003). Application of molecular markers in population and conservation genetics, with special emphasis on fishes. DSc Thesis, Faculty of Natural Sciences, University of Aarhus, 68 pp.
7. Hebert, P. D., Cywinska, A., Ball, S. L., &Dewaard, J. R. (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(1512), 313-321.
8. Hebert, P. D., Stoeckle, M. Y., Zemlak, T. S., & Francis, C. M. (2004). Identification of birds through DNA barcodes. PLoS biology, 2(10).
9. Krehenwinkel, H.; Pomerantz, A.; Prost, S. (2019) Genetic Biomonitoring and Biodiversity Assessment Using Portable Sequencing Technologies: Current Uses and Future Directions. Genes, 10, 858.
10. Magoulas, A. (1998). Application of molecular markers to aquaculture and broodstock management with special emphasis on microsatellite DNA. Cahiers Options Mediterrannes, 34: 153-168.
11. McConnell, S.K., O’Reilly, P., Hamilton, L., Wright, J.N. and Bentzen, P. (1995). Polymorphic microsatellite loci from Atlantic salmon (Salmo salar) – genetic differentiation of North American and European populations. Can. J. Fish. Aquat. Sci., 52: 1863–1872.
12. Parker, Patricia G. et al., (1998). “What Molecules Can Tell Us about Populations: Choosing and Using a Molecular Marker”. Ecology 79 (2): 361–382.
13. Petzold, A., & Hassain, A. (2020). A comparative approach for species delimitation based on multiple methods of multi-locus DNA sequence analysis: A case study of the genus Giraffa (Mammalia, Cetartiodactyla). PloS one, 15(2), e0217956.
14. Siozios, S., Massa, A., Parr, C. L., Verspoor, R. L., & Hurst, G. D. (2020). DNA barcoding reveals incorrect labelling of insects sold as food in the UK. PeerJ, 8, e8496.
15. Thapliyal M., Satu B.K., Kumar R., Chandra T., Thapliyal A., (2013). Molecular taxonomy of fresh water fishes from song river Utrakhand using mitochondrial cytochrome-c oxidase-1 gene, Environment Conservation Journal, 14(3).
16. Xing, B., Zhang, Z., Sun, R., Wang, Y., Lin, M., & Wang, C. (2020). Mini-DNA barcoding for the identification of commercial fish sold in the markets along the Taiwan Strait. Food Control, 107143.