Neutronic analysis of mixed thorium-uranium fuel bundle for CANDU reactors

M Oettingen, K Skolik, M Malicki

1 AGH University of Science and Technology, Mickiewicza Av. 30, 30-059 Krakow, Poland

E-mail: moettin@agh.edu.pl

Abstract. The paper shows neutronic analysis of the CANDU (CANada Deuterium Uranium) nuclear reactor fuel channel with mixed thorium-uranium fuel bundles. The numerical model of the fuel channel was designed using The Monte Carlo Continuous Energy Burn-up Code – MCB developed at the AGH University of Science and Technology, Faculty of Energy and Fuels, Department of Nuclear Energy. The super-computer Prometheus available in the frame of the PI-Grid Infrastructure at the Academic Computer Centre Cyfronet AGH was used for multi-scale calculations. The fuel bundles are composed of two clusters of fuel rods. The neutronic analysis considers detailed numerical simulation of neutron transport in fully heterogeneous geometry of the fuel channel. Moreover, burnup simulations were performed using Transmutation Trajectory Analysis method implemented in the MCB code. In the analysis we mainly consider time evolutions of neutron multiplication factor, fissile 233U, 235U, 239Pu and fertile 238U and 232Th. The simulations were performed for eight scenarios with various fuel composition.

1. Introduction

The concept of using heavy water (deuterium oxide, D$_2$O) as a moderator in nuclear reactors was investigated since the very beginning of commercial utilization of nuclear power. The research on heavy water reactors were conducted in Canada, France, Germany, Italy, Japan, Sweden, Switzerland, the UK, the USA and the former USSR. All of the research and prototype reactors used heavy water as a moderator, however the designs were different, e.g. pressure tube heavy water cooled, pressure tube light water cooled, pressure vessel heavy water cooled and pressure tube gas cooled.

In the end only Canada reached the stage of commercial operation with its heavy water moderated heavy water cooled pressure tube reactor named CANDU. The first one of this type was Nuclear Power Demonstration (NPD), which was ran successfully from 1962 to 1987 in Rolphton, Ontario, generating 22 MW$_c$. The second CANDU with electric power of about 200 MW was Douglas Point reactor and it has started its operation in 1968. After some improvements of the design and further power increase the first multi-unit station was constructed in Pickering, Ontario, with 8 CANDU reactors, each generating above 500 MW$_c$. Last units came in operation in 1983. The Pickering design was the base for CANDU-6 reactor that is operated successfully in Canada and other countries since that time.
With its unique and reliable reactor design Canada entered the international nuclear market. It has assisted the Indian Department of Atomic Energy (DAE) in the construction of two 200 MW$_e$ reactors (Douglas Point type) - Rajasthan 1 and 2. However, Indian first atomic bomb detonation in 1974 ended the nuclear cooperation between these countries. Since then India worked on its own CANDU-like designs and it now has about 20 heavy water reactors in operation. Canada has sold the CANDU design to Argentina, Romania, South Korea, Pakistan and China, which results in 10 such reactors being operated in these countries. In Canada there are 19 CANDU reactors running, most of them in Ontario [1].

2. Technology
The main purpose of using heavy water instead of common light water as a moderator is reduced neutron absorption rate in deuterium oxide. Thanks to that lower concentration of fissile atoms is required to maintain the chain reaction and natural uranium fuel can be used as well as some alternative fuels like MOX (mix of uranium and plutonium oxides), RU (“recovered uranium” from used Light Water Reactor’s fuel (LWR)) or thorium. Using natural uranium eliminates the cost of enrichment process and the risk of proliferation. However, additional cost is generated by the need for pure heavy water to fill the core and heat transfer system. What is more, D$_2$O is less effective as a moderator and greater amount of water is required for the same amount of fuel. Natural or recovered uranium fuel has to be reloaded more frequently.

To deal with the specificity of heavy water coolant and moderator a different constructions of the reactor core were designed in comparison to the typical LWR. In CANDU the core is contained in a cylindrical austenitic stainless steel containment called Calandria where the heavy water is maintained in low temperature (~80˚C) and low pressure (~0.1 MPa) – see (Figure 1). In such containment there are about 380-480 horizontal pressure tubes, each containing 12 half-meter fuel assemblies lying end to end. Placing the fuel in individual tubes allows for online refuelling which improves the capacity factor [2].

![Figure 1. Schematic diagram of a CANDU reactor [3].](image)

3. Thorium fuel cycle
Thorium occurs in nature in a single form of 232Th and is about three times more abundant than uranium. It is a fertile isotope which captures a neutron and transmutes to the fissile 233U. For this reason thorium fuel has to be combined with another fissile material able to provide sufficient neutron flux, such as 233U, 235U or 239Pu. Introduction of thorium to the general use in nuclear power plants would increase fuel diversification and safety of supply. It would also vastly prolong the sufficiency of estimated conventional nuclear fuel, which is about 100 years for today. The advantages of thorium fuel cycle together with its drawbacks comparing to traditional uranium cycle are presented below in Table 1 [4, 5].
Table 1. Advantages and disadvantages of thorium fuel cycle.

Advantages	Disadvantages
Good chemical and physical properties: higher melting point, higher thermal conductivity and chemical stability, lower coefficient of thermal expansion, less gas fission products released.	Difficult and costly fuel fabrication for potential close fuel cycle because of high γ radiation from 232U.
Less minor actinides and plutonium in spent fuel.	Likelihood of using 233U for nuclear weapon.
Proliferation resistance: irradiated fuel contaminated with easily detectable 232U.	Neutron source required to produce fissile 233U from 232Th.
Thorium is more abundant, safer and more effective in mining.	Relatively long time of 232Th breeding to 233U due to 233Pa half-life of 27 day.
Possibility of breeding fuel in thermal reactors.	Need of many costly researches and licensing processes before starting industrial use.

The CANDU reactors are capable of operating on many types of nuclear fuels [6]. Such versatility makes them unique among other types of nuclear reactors. The need for proliferation-resistance, burnup extension, reduction of plutonium inventory as well as in situ use of bred fissile material has followed to interest in thorium based fuel cycles [7]. The channel design, excellent neutron economy, on-power refuelling, and simple fuel bundle design of CANDU reactors significantly facilitate the introduction of thorium fuel in this nuclear system. To sum up, the CANDU reactors offer a proven, safe and reliable reactor technology for thorium fuel cycles.

4. Methodology

The MCB code available at the supercomputer Prometheus of the Academic Computer Centre Cyfronet of the AGH University was used for all numerical simulations [8, 9]. The code was validated with post-irradiation assay of the PWR spent fuel assembly, which proofed its reliability for calculations of isotopic changes in neutron flux [10]. In addition, the code was merged with other numerical tools, especially for coupled neutron-thermo-hydraulic-burnup calculations [11]. Firstly, the 3D fully heterogeneous model of the CANDU-6 fuel channel was designed using available data [12]. Then, the model was verified in the series of short-time numerical simulations. All detected bugs in coding were corrected and the checked input file was saved for further research. Eight cases listed in Table 2 were simulated using established numerical set-up. The first case without thorium component in fuel - just with natural uranium is a reference case because reflects behaviour of the real fuel channel of CANDU-6 reactor. The fuel channels contains 12 fuel bundles with 37 fuel rod each. The length of the fuel equals about 50 and the dimeter of the pin about 1.2 cm. The mass of fuel per bundle depends on density and fraction of all fuel components i.e. ThO$_2$ and UO$_2$. The fuel bundle was divided into two fuel regions: the outer region containing 30 fuel rods and inner region containing 7 fuel rods. The division allows implementation of different fuel types in each region. Therefore, it was possible to design the considered fuel bundle using so called seed-blanket concept, where more reactive driver fuel (outer region) provides neutrons for fertile fuel (inner region). The fuel channel was surrounded numerically by the reflective boundary conditions, which means that in numerical simulations we do not take into account neutron leak age outside fuel channels, and thus we estimated infinite neutron multiplication factor (K_{inf}) instead of effective neutron multiplication factor (K_{eff}). The fuel channel from both ends was surrounded by stainless steel walls with inner tube filled with D$_2$O, which is a good approximation of side reflector. In practice its design in extremely complicated due to structural elements necessary for operation of fuelling machine. In the simulations we consider isotopic changes due to neutron interactions in nuclear fuel for one year of irradiation on average power of 5.4 MW$_{th}$, divided into 12 steps of 30 days except of case C1 were additional discretisation of 10 days periods for first 100 days were applied. Figure 2 shows cross section of the numerical model plotted by the VISED utility available with MCNP family codes. The MATLAB software were
used for data post-processing. The ENDF 7.1 libraries were linked to the Monte Carlo solver. The average time for 3·10^6 neutron histories equals about 3h using 2 nodes of 24 cores each (Xeon E5-2680v3 12C 2.5 GHz), which gives precision of K_{inf} of about 25 pcm.

Table 2. Investigated scenarios.

Index	Case	Description
C1	NAT	Natural uranium in both zones. Reference case.
C2	5-U	5 % enriched uranium in both zones.
C3	NAT-TH	Natural uranium in outer zone. Thorium in inner zone.
C4	5-TH	5 % enriched uranium in outer zone. Thorium in inner zone.
*C5	20-TH	20 % enriched uranium in outer zone. Thorium in inner zone.
C6	NAT-NAT-TH	Natural uranium in outer zone. 40% natural uranium and 60% thorium in inner zone.
C7	5-40-5-TH	5% enriched uranium in outer zone. 40% of 5% enriched uranium and 60% thorium in inner zone.
*C8	20-40-20-TH	20% enriched uranium in outer zone. 40% of 20% enriched uranium and 60% thorium in inner zone.

* The maximal allowed enrichment level for commercial nuclear reactors equals 5% while for research reactors 20%.

Figure 2. Cross sections of designed numerical model.

5. Results

In the analysis we consider time evolutions of infinite neutron multiplication factor K_{inf}, fissile isotopes 233U, 235U, 239Pu, fertile isotopes 235U, 232Th and dependences between presented parameters. Figure 3 presents evolution of K_{inf} for eight considered scenarios. The initial value of K_{inf} depends strongly on the content of fissile and fertile material in the fuel. The higher the initial content of fissile material is the higher is K_{inf}, which is shown in Table 3. The K_{inf} drops almost linearly except of first month of irradiation. During this time its behavior depends on mass and type of fertile material. The initial increases for cases C3 and C6 is a result of high mass of fertile material and low mass of fissile material in the initial fuel. The increase is strictly related to the enhanced breeding of 239Pu from 238U and 233U from 232Th, which is shown in Figure 4. In general, the breeding of fissile material depends on the content of fertile material in the initial fuel – see Table 4. As it is shown in Figure 4, even in case C2, where enrichment equals 5% the 239Pu breeding is strongly limited comparing to scenarios with natural uranium fuel and uranium-thorium fuel. The worst breeding capabilities were achieved for the high enriched fuels(C5 and C8) because the initial mass of fissile 235U is sufficient for the system operation. To sum up, the value of the K_{inf} depends on the ratio of fissile to fertile material. The low magnitude of the ratio corresponds to the good breeding and thus to low value of K_{inf} and vice versa. In addition, in Figure 5 we present the initial decrees in K_{inf} and increase at about 40 days of
irradiation for case C1. The first effect occurs due to the formation of absorbing 135Xe form fission while second from enhanced breeding of plutonium called plutonium peak. The breeding of fissile isotopes depends on the content of fertile isotopes in the initial fuel. The highest production of 239Pu and 233U was obtained for cases C3 and C6 with natural uranium and thorium components. In the first case 700 grams of fissile material was produced while in the second one about 600 grams after one year of irradiation. The conversion ratio for the considered nuclear system is below unity because no surplus mass of fissile isotopes was produced. The lowest difference between initial and final mass of fissile isotopes was obtained for case C3. In principle, fuel for cases C2, C5, C7, C8 is too reactive, which will cause problems in reactivity control while fuel for case C3 shows subcriticality. The mentioned cases are the numerical cases necessary in the first stage of parametric studies to assess system neutronic characteristics for proper choice of nuclear fuel for further investigations.

Table 3. Masses of fissile isotopes.

Case	235U [g]	239Pu [g]	239Pu+233U [g]	235U [g]	Fissile Material [g]							
	EOL	EOL	EOL	BOL	EOL	DIF	BOL	EOL	DIF	BOL	EOL	DIF
C1 NAT	NA	458	458	1647	478	1168	1647	936	711			
C2 5-U	NA	363	363	11292	8961	2331	11292	9324	1968			
C3 NAT-TH	318	374	691	1335	344	991	1335	1035	300			
C4 5-TH	116	319	434	9155	6857	2298	9155	7291	1864			
C5 20-TH	48	201	250	36683	34145	2538	36683	34395	2288			
C6 NAT-NAT-TH	202	406	608	1450	392	1058	1450	1000	450			
C7 5-40-5-TTH	68	337	406	9952	7637	2314	9952	8043	1909			
C8 20-40-20-TTH	29	210	238	39870	37328	2542	39870	37566	2304			

BOL – Beginning of life
EOL – End of life
DIF=BOL-EOL

Table 4. Masses of fertile isotopes.

Case	238U [g]	232Th [g]	Fertile Material [g]						
	BOL	EOL	DIF						
C1 NAT	226930	224920	2010	NA	NA	NA	226930	224920	2010
C2 5-U	217190	216570	620	NA	NA	NA	217190	216570	620
C3 NAT-TH	184000	182150	1850	38510	37907	603	222510	220057	2453
C4 5-TH	176100	175510	590	38510	38360	150	214610	213870	740
C5 20-TH	148310	148030	280	38510	38452	58	186820	186482	338
C6 NAT-TH	200000	198090	1910	24177	23799	378	224177	221889	2288
C7 5-40-5-TH	191410	190820	590	24178	24091	87	215588	214911	677
C8 20-40-20-TH	161190	160910	280	24198	24163	35	185388	185073	315

BOL – Beginning of life
EOL – End of life
DIF=BOL-EOL
Figure 3. Evolution of infinite neutron multiplication factor.

Figure 4. Evolution of 239Pu and 233U.
6. Conclusions
In the study we have presented neutronic analysis of the CANDU-6 reactor fuel channel with mixed thorium-uranium fuel. The designed numerical model in a good way describes neutronic effects, which occurs in the heavy-water moderated systems. The results were verified with the results obtained by other scientific groups and the general outcomes shows good consistency [13,14]. The study gives outlook on the neutronic characteristic of the fuel channel, especially:

- The fuel with large fertile material fraction shows better breeding capabilities of 239Pu and 233U.
- The best breeding capabilities were obtained for mixed natural uranium and thorium fuel (C3).
- The initial evolution of K_{inf} depends on the fissile to fertile ratio in the initial fuel.

Additionally, the obtained evolutions of K_{inf} as well as fissile and fertile isotopes show some hints for improvements towards effective utilisation of thorium-uranium fuels. The enhanced parametric study on fuel density, fraction of fissile and fertile material, geometry of fuel bundle and reactivity coefficients is recommended. Thus, the study cannot be treated as a final approach towards modelling of CANDU-type systems at the level of the fuel channel. Therefore some improvements may be outlined towards future research:

- modelling with reactivity control devices.
- modelling of fuel bundle on-power refuelling.
- modelling on full core level.

Acknowledgements

The research was supported in part by PL Grid Infrastructure available at Academic Computer Centre CYFRONET AGH. In addition, partial financial support of this study through the funds of the Polish Ministry of Science and Higher Education is kindly acknowledged (grant number 11.11.210.377).

References
[1] Canadian Nuclear Association, [online], [access: 25-07-2017], Available in World Wide Web: https://cna.ca/technology/energy/candu-technology/
[2] International Atomic Energy Agency, 2002, Heavy Water Reactors: Status and Projected Development Technical Reports Series 407
[3] Wikipedia [online], [access: 25-07-2017], Available in World Wide Web: https://commons.wikimedia.org/wiki/File:CANDU_Reactor_Schematic.svg

[4] International Atomic Energy Agency, 2005, Thorium fuel cycle – Potential benefits and challenges, IAEA-TECDOC-1450

[5] Oettingen M, Skolik K, 2016, E3S Web of Conferences 10

[6] Gholamzadeh Z, Mirvakili S M, Khalafi H, 2015, Nucl Eng Technol 47 85–93

[7] Yang B, Shi J, Bi G, Tang C, 2016, Ann Nucl Energy 91 195–202

[8] Oettingen M, Cetnar J, Mirowski T, 2015, CSCI 16 329-350

[9] Cetnar J, 2006, Ann Nucl Energy 33 640-645

[10] Królikowski I, Cetnar J, 2015, Nukleonika 60 531-536

[11] Oettingen M, 2016 Validation of fuel burnup modelling with MCB Monte Carlo system using destructive assay data from Ohi-2 PWR, ISBN: 978-83-7464-806-6

[12] Sahin S, Kadir Y, Acır A, 2004, Nucl Eng Des 232 7–18

[13] St-Aubin E, Marleau G, 2015, Nucl Eng Des 293 371–384

[14] Sahin S, Kadir Y, Sahin H M, Acır A, 2006, Energ Convers Manage 47 1661–1675