HYPERDETERMINANTAL POINT PROCESSES

STEVEN N. EVANS AND ALEX GOTTLIEB

Abstract. As well as arising naturally in the study of non-intersecting random paths, random spanning trees, and eigenvalues of random matrices, determinantal point processes (sometimes also called fermionic point processes) are relatively easy to simulate and provide a quite broad class of models that exhibit repulsion between points. The fundamental ingredient used to construct a determinantal point process is a kernel giving the pairwise interactions between points: the joint distribution of any number of points then has a simple expression in terms of determinants of certain matrices defined from this kernel. In this paper we initiate the study of an analogous class of point processes that are defined in terms of a kernel giving the interaction between \(2M\) points for some integer \(M\). The role of matrices is now played by \(2M\)-dimensional ‘hypercubic’ arrays, and the determinant is replaced by a suitable generalization of it to such arrays – Cayley’s first hyperdeterminant. We show that some of the desirable features of determinantal point processes continue to be exhibited by this generalization.

1. Introduction

Motivated by considerations of the behavior of fermions in quantum mechanics, determinantal point processes were introduced in [Mac75]. Surveys of their properties and numerous applications may be found in [DVJ88, Sos00, Lyo03, HKPV06, ST00, ST03a, ST03b, ST04].

We consider a certain extension of this class of point processes. In order to motivate our generalization, we first consider a particular case of the determinantal point process construction. Suppose that on some measure space \((\Sigma, \mathcal{A}, \mu)\) we have a kernel \(K : \Sigma^2 \to \mathbb{C}\) that defines an \(L\) dimensional projection operator for \(L^2(\mu)\).

That is,

- \(K(x; y) = \overline{K}(y; x)\) for all \(x, y \in \Sigma\),
- \(\sum_{i,j=1}^n K(x_i; x_j)z_i\overline{z}_j \geq 0\) for all \(x_1, \ldots, x_n \in \Sigma\) and \(z_1, \ldots, z_n \in \mathbb{C}\),
- \(\int_{\Sigma} K(x; y)K(y; z)\mu(dy) = K(x; z)\) for all \(x, z \in \Sigma\),
- \(\int_{\Sigma} K(x; x)\mu(dx) = L\).

The corresponding determinantal point process can then be thought of as an exchangeable random vector with values in \(\Sigma^L\). The distribution of this random vector is a probability measure that has the density

\[
(x_1, \ldots, x_L) \mapsto (L!)^{-1}\det(K(x_i; x_j))_{i,j=1}^L
\]

Date: February 2, 2022.

1991 Mathematics Subject Classification. Primary 15A15, 60G55; Secondary 15A60, 60E05.

Key words and phrases. fermionic point process, determinant, permanent, multi-dimensional array, hypercubic array, tensor, hyperdeterminant, symmetric group, factorial moment.

SNE supported in part by NSF grant DMS-0405778.

AG supported by the Vienna Science and Technology Fund, via the project “Correlation in quantum systems”.

1
with respect to the measure $\mu^\otimes L$.

One of the most agreeable things about this construction is that for $1 \leq N \leq L$ the N-dimensional marginal distributions of the random vector have (common) density

$$(x_1, \ldots, x_N) \mapsto (L(L-1) \cdots (L-N+1))^{-1} \det(K(x_i; x_j))_{i,j=1}^N$$

with respect to the measure $\mu^\otimes N$. Consequently, the conditional distribution of the $(N+1)$th component of the Σ^L-valued random vector given the first N components can be computed explicitly (as a constant multiple of a ratio of determinants). It is thus possible to simulate the entire Σ^L-valued random vector if one is able to simulate a general Σ-valued random variable from a knowledge of its probability density function.

Various generalizations of determinantal point processes have appeared in the literature. Note that $\det(K(x_i; x_j))_{i,j=1}^L = \sum_{\sigma \in \mathfrak{S}_L} \epsilon(\sigma) \prod_{k=1}^L K(x_k; x_{\sigma(k)})$, where \mathfrak{S}_L is the symmetric group of permutations of $\{1, \ldots, L\}$ and ϵ is the usual alternating character on the symmetric group (that is, the sign of a permutation). It is natural to replace ϵ by other class functions on the symmetric group (that is, by other functions that only depend on the cycle structure of a permutation and hence are constant on conjugacy classes of the symmetric group). The most obvious choice is to replace ϵ by the trivial character which always takes the value 1, thereby turning the determinant into a permanent. Permanental point processes arise in the description of bosons and are discussed in \cite{Mac75, HKPV06, DVJ88, ST03a, ST04}. Replacing ϵ by a general irreducible character gives the immanantal point processes of \cite{DE00}, while setting $\epsilon(\sigma) = \alpha^{L-\nu(\sigma)}$ for $-1 < \alpha < 1$ and $\nu(\sigma)$ the number of cycles of σ gives the alpha-permanental processes introduced in \cite{VJ97} and further studied in \cite{ST03a, HKPV06}.

All of these constructions have the feature that an exchangeable joint density is built up as a linear combination of products of pairwise interactions. In this paper we investigate the possibility of building up a tractable joint density as a linear combination of products of higher order interactions. In order to accomplish such a generalization, it is necessary to have higher order counterparts for both projection kernels and determinants.

Note that $K : \Sigma^2 \to \mathbb{C}$ is the kernel of an L-dimensional projection if and only if

$$K(y; z) = \sum_{\ell=1}^L \phi_\ell(y) \hat{\phi}_\ell(z),$$

where ϕ_1, \ldots, ϕ_L are orthonormal in $L^2(\mu)$. One possible $(2M)^{th}$ order extension of this second order definition is to suppose that:

- the underlying space Σ is a Cartesian product $\Sigma_1 \times \cdots \times \Sigma_M$,
- the measure μ on Σ is a product measure $\mu_1 \otimes \cdots \otimes \mu_M$,
- the functions $\phi_{m\ell} : \Sigma \to \mathbb{C}$, $1 \leq m \leq M$, $1 \leq \ell \leq L$, are given by $\phi_{m\ell}(x_1, \ldots, x_M) = \psi_{m\ell}(x_m)$, where for $1 \leq m \leq M$ the functions $\psi_{m\ell} : \Sigma_m \to \mathbb{C}$, $1 \leq \ell \leq L$, belong to $L^2(\mu_m)$ and are orthonormal in $L^2(\mu_m)$,
the kernel \(K : \Sigma^{2M} \to \mathbb{C} \) is given by
\[
K(y_1, \ldots, y_M; z_1, \ldots, z_M) := \sum_{\ell=1}^L \prod_{m=1}^M \phi_{m\ell}(y_m)\bar{\phi}_{m\ell}(z_m)
\]
\[
= \sum_{\ell=1}^L \prod_{m=1}^M \psi_{m\ell}(y_{mm})\bar{\psi}_{m\ell}(z_{mm}).
\]

Note that the integral
\[
\int_{\Sigma} \prod_{m=1}^M \phi_{m\ell'(m)}(x)\bar{\phi}_{m\ell'(m)}(x) \mu(dx)
\]
\[
= \prod_{m=1}^M \int_{\Sigma_m} \psi_{m\ell'(m)}(x_m)\bar{\psi}_{m\ell'(m)}(x_m) \mu_m(dx_m)
\]
is 1 if \(\ell'(m) = \ell''(m) \) for \(1 \leq m \leq M \), and the integral is 0 otherwise. This is analogous to the orthonormality of the functions \(\phi_1, \ldots, \phi_L \) appearing in the representation above of an \(L \)-dimensional projection, and when \(M = 1 \) we just recover that representation.

The appropriate generalization of the determinant is given by Cayley’s first hyperdeterminant that was introduced in [Cay43] and which we will describe shortly. Cayley later introduced other generalizations of the determinant that he also called hyperdeterminants and are more natural from the point of view of invariant theory — see [GKZ92, GKZ94]. Early treatments of the theory related to Cayley’s original definition may be found in [Pas00, Mui60, Ric18, Ric30, Old34c, Old34b, Old34a, Old36, Old40]. More recent works are [Sok60, Sok72]. We remark that Cayley’s first hyperdeterminant has been useful in matroid theory [Bar95, Gly] and we also note the interesting papers [LT03, LT04] in which the calculation of Selberg and Aomoto integrals is reduced to the evaluation of hyperdeterminants of suitable multi-dimensional arrays.

Suppose that
\[
A(i_1, \ldots, i_M; j_1, \ldots, j_M), \quad 1 \leq i_1, \ldots, i_M, j_1, \ldots, j_M \leq N.
\]
is a \(2M \)-way hypercubic matrix (that is, \(A \) is a a \(2M \)-dimensional array or tensor that is of the same length, namely \(N \), in each direction). Suppose further that \(K \) is a subset of \(\{1, \ldots, M\} \). We define the corresponding hyperdeterminant of \(A \) to be
\[
\text{Det}_K(A) := \frac{1}{N!} \sum_{\sigma_1 \in \mathfrak{S}_N} \cdots \sum_{\sigma_M \in \mathfrak{S}_N} \sum_{\tau_1 \in \mathfrak{S}_N} \cdots \sum_{\tau_M \in \mathfrak{S}_N} \prod_{k \in K} \epsilon(\sigma_k)\epsilon(\tau_k)
\]
\[
\times \prod_{n=1}^N A(\sigma_1(n), \ldots, \sigma_M(n); \tau_1(n), \ldots, \tau_M(n)),
\]
where \(\mathfrak{S}_N \) is the symmetric group of permutations of \(\{1, \ldots, N\} \) and, as above, \(\epsilon \) is the alternating character. This definition is just the usual definition of the hyperdeterminant of a general hypercubic matrix with a general “signancy”, except that we have imposed the restriction that the coordinate directions of the matrix are grouped in pairs, and each coordinate direction in a pair has the same signancy. When \(M = 1 \), so that \(A \) is just an \(N \times N \) matrix, \(\text{Det}_K(A) \) is either the usual determinant or the permanent, depending on whether \(K \) is \(\{1\} \) or \(\emptyset \).
Note: From now on we will assume that \mathcal{K} is non-empty.

We are now ready to define a family of exchangeable probability densities. For $1 \leq N \leq L$, define the function $p_N : \Sigma^N \rightarrow \mathbb{C}$ by

$$p_N(x_1, \ldots, x_N) := \left(\binom{L}{N} (N!)^M \right)^{-1} \det_{\mathcal{K}}(B),$$

where B is the 2M-way hypercubic matrix of length N given by

$$B(i_1, \ldots, i_M; j_1, \ldots, j_M) := K(x_{i_1}, \ldots, x_{i_M}; x_{j_1}, \ldots, x_{j_M}).$$

That is,

$$p_N(x_1, \ldots, x_N) = \left(\binom{L}{N} (N!)^M + 1 \right) \sum_{\sigma_1 \in \Sigma_N} \cdots \sum_{\sigma_M \in \Sigma_N} \sum_{\tau_1 \in \Sigma_N} \cdots \sum_{\tau_M \in \Sigma_N} \prod_{k \in \mathcal{K}} \epsilon(\sigma_k) \epsilon(\tau_k)$$

$$\times \prod_{n=1}^{N} K(x_{\sigma_1(n)}, \ldots, x_{\sigma_M(n)}; x_{\tau_1(n)}, \ldots, x_{\tau_M(n)}),$$

$$= \left(\binom{L}{N} (N!)^M + 1 \right) \sum_{\sigma_1 \in \Sigma_N} \cdots \sum_{\sigma_M \in \Sigma_N} \sum_{\tau_1 \in \Sigma_N} \cdots \sum_{\tau_M \in \Sigma_N} \prod_{k \in \mathcal{K}} \epsilon(\sigma_k) \epsilon(\tau_k)$$

$$\times \prod_{n=1}^{N} \prod_{\ell=1}^{L} \prod_{m=1}^{M} \psi_{m \ell}(x_{\sigma_1(n)m}) \bar{\psi}_{m \ell}(x_{\tau_1(n)m}).$$

We will prove the following theorem in Section 3.

Theorem 1.1. For $1 \leq N \leq L$, the function p_N is the density with respect to $\mu^{\otimes N}$ of an exchangeable probability measure on Σ^N. That is, $p_N \geq 0$,

$$\int_{\Sigma^N} p_N(x_1, \ldots, x_N) \mu^{\otimes N}(d(x_1, \ldots, x_N)) = 1,$$

and p_N is a symmetric function of its arguments. The probability measure associated with p_N is the common N-dimensional marginal of the probability measure associated with p_L. That is,

$$p_N(x_1, \ldots, x_N) = \int_{\Sigma^{(N-L)}} p_L(x_1, \ldots, x_N, x_{N+1}, \ldots, x_L) \mu^{\otimes (L-N)}(d(x_{N+1}, \ldots, x_L)).$$

The function p_L is the density with respect to $\mu^{\otimes L}$ of a probability measure on $\Sigma^L = (\Sigma_1 \times \cdots \times \Sigma_M)^L \simeq \Sigma_{1}^L \times \cdots \times \Sigma_{M}^L$. We show in Section 3 that the marginal of this probability measure on Σ_k^L is also given by a hyperdeterminantal construction (with the kernel K replaced by a suitable function of $2M'$ variables) as long as $\mathcal{K} \cap \{1, \ldots, M'\} \neq \emptyset$.

If we regard the exchangeable probability measure on Σ^L with density p_L, as the distribution of a point process on Σ, then it is natural to inquire about the distribution of the number of points that fall into a given subset of Σ. We find a relatively simple expression for the factorial moments of such distributions in Section 4.

The key observation behind many of our arguments is an expansion of suitable hyperdeterminants that is analogous to the Cauchy-Binet theorem for ordinary determinants. This result is an extension of a lemma from [Bar95], and we give the proof in Section 2.
2. A hyperdeterminant expansion

For $M = 1$, the following result is a consequence of the Cauchy-Binet expansion for determinants. (Recall our assumption that K is non-empty and so our hyperdeterminant for $M = 1$ is a determinant rather than a permanent – the Cauchy-Binet expansion for permanents is somewhat different and involves sums over possibly repeated indices.) When $M > 1$ and $K = \{1, 2, \ldots, M\}$, the result is given by Lemma 3.3 of [Bar95].

Proposition 2.1. Suppose that \mathbb{A} is a $2M$-way hypercubic matrix with length N in each direction that is of the form

$$
\mathbb{A}(i_1, \ldots, i_M; j_1, \ldots, j_M) = \sum_{\ell = 1}^{L} A^{(1)}(i_1, \ell) \cdots A^{(M)}(i_M, \ell) \bar{A}^{(1)}(j_1, \ell) \cdots \bar{A}^{(M)}(j_M, \ell),
$$

where $A^{(m)}$ is an $N \times L$ matrix and $\bar{A}^{(m)}$ is the $N \times L$ matrix obtained by taking the complex conjugates of the entries of $A^{(m)}$. Then $\text{Det}_K(\mathbb{A}) = 0$ if $L < N$ and otherwise

$$
\text{Det}_K(\mathbb{A}) = \sum_{\mathcal{L}} \left[\prod_{k \in K} \left| \text{det}(A^{(k)}_{\mathcal{L}}) \right| \prod_{k \notin K} \left| \text{per}(A^{(k)}_{\mathcal{L}}) \right| \right] \left[\prod_{k \in K} \left| \text{det}(\bar{A}^{(k)}_{\mathcal{L}}) \right| \prod_{k \notin K} \left| \text{per}(\bar{A}^{(k)}_{\mathcal{L}}) \right| \right],
$$

where the sum is over all subsets \mathcal{L} of $\{1, 2, \ldots, L\}$ with cardinality N and $A^{(k)}_{\mathcal{L}}$ is the $N \times N$ sub-matrix of the matrix $A^{(k)}$ formed by the columns of $A^{(k)}$ with indices in the set \mathcal{L}.
Proof. We have
\[
\det_K(A) = \frac{1}{N!} \sum_{\sigma_1 \in \Theta_N} \cdots \sum_{\sigma_M \in \Theta_N} \sum_{\tau_1 \in \Theta_N} \cdots \sum_{\tau_M \in \Theta_N} \prod_{k \in K} e(\sigma_k) e(\tau_k) \\
\times \prod_{n=1}^N A(\sigma_1(n), \ldots, \sigma_M(n); \tau_1(n), \ldots, \tau_M(n))
\]
\[
= \frac{1}{N!} \sum_{\sigma_1 \in \Theta_N} \cdots \sum_{\sigma_M \in \Theta_N} \sum_{\tau_1 \in \Theta_N} \cdots \sum_{\tau_M \in \Theta_N} \prod_{k \in K} e(\sigma_k) e(\tau_k) \\
\times \prod_{n=1}^L \sum_{\ell_1=1}^L \cdots \sum_{\ell_L=1}^L \prod_{n=1}^N A^{(1)}(\sigma_1(n), \ell_1) \cdots A^{(M)}(\sigma_M(n), \ell_L) \bar{A}^{(1)}(\tau_1(n), \ell_1) \cdots \bar{A}^{(M)}(\tau_M(n), \ell_L)
\]
\[
= \frac{1}{N!} \sum_{\sigma_1 \in \Theta_N} \cdots \sum_{\sigma_M \in \Theta_N} \sum_{\tau_1 \in \Theta_N} \cdots \sum_{\tau_M \in \Theta_N} \prod_{k \in K} e(\sigma_k) e(\tau_k) \\
\times \sum_{\ell_1=1}^L \cdots \sum_{\ell_L=1}^L \prod_{n=1}^N (A^{(1)}(\sigma_1(n), \ell_1) \cdots A^{(M)}(\sigma_M(n), \ell_L)) \\
\times (\bar{A}^{(1)}(\tau_1(n), \ell_1) \cdots \bar{A}^{(M)}(\tau_M(n), \ell_L))
\]
where
\[
S(\ell_1, \ell_2, \ldots, \ell_N) = \sum_{\sigma_1 \in \Theta_N} \cdots \sum_{\sigma_M \in \Theta_N} \sum_{\tau_1 \in \Theta_N} \cdots \sum_{\tau_M \in \Theta_N} \prod_{k \in K} e(\sigma_k) e(\tau_k) \\
\times \prod_{n=1}^N (A^{(1)}(\sigma_1(n), \ell_1) \cdots A^{(M)}(\sigma_M(n), \ell_N)) \bar{A}^{(1)}(\tau_1(n), \ell_1) \cdots \bar{A}^{(M)}(\tau_M(n), \ell_N).
\]

For \(\vec{\ell} = (\ell_1, \ldots, \ell_L) \in \{1, \ldots, L\}^N \) and \(m \in \{1, \ldots, M\} \) define an \(N \times N \) matrix \(B^{(m)}_{\vec{\ell}} \) by
\[
B^{(m)}_{\vec{\ell}}(i, j) := A^{(m)}(i, \ell_j).
\]

Then
\[
S(\vec{\ell}) = \left[\prod_{k \in K} \left(\sum_{\sigma \in \Theta_N} e(\sigma) \sum_{n=1}^N A^{(k)}(\sigma(n), \ell_n) \right) \left(\sum_{\tau \in \Theta_N} e(\tau) \prod_{n=1}^N \bar{A}^{(k)}(\tau(n), \ell_n) \right) \right]
\times \left[\prod_{k \in K} \left(\sum_{\sigma \in \Theta_N} \sum_{n=1}^N A^{(k)}(\sigma(n), \ell_n) \right) \left(\sum_{\tau \in \Theta_N} \prod_{n=1}^N \bar{A}^{(k)}(\tau(n), \ell_n) \right) \right]
\]
\[
= \prod_{k \in K} \left| \det(B^{(k)}_{\vec{\ell}}) \right| \prod_{k \in K} \left| \det(\bar{B}^{(k)}_{\vec{\ell}}) \right| \prod_{k \in K} \left| \det(B^{(k)}_{\vec{\ell}}) \right| \prod_{k \in K} \left| \det(\bar{B}^{(k)}_{\vec{\ell}}) \right|
\]
\[
= \prod_{k \in K} \left| \det(B^{(k)}_{\vec{\ell}}) \right|^2 \prod_{k \in K} \left| \det(\bar{B}^{(k)}_{\vec{\ell}}) \right|^2
\]
Note that the rightmost product is zero unless the entries of the vector \(\vec{\ell} \) are distinct, because in that case each of the matrices \(B^{(k)}_{\vec{\ell}} \) for \(k \in \mathcal{K} \) will have two equal columns and hence have zero determinant (recall that \(\mathcal{K} \) is non-empty). Moreover, if \(\vec{\ell} = (\ell_1', \ldots, \ell_N') \) and \(\vec{\ell}'' = (\ell_1'', \ldots, \ell_N'') \) are two vectors with distinct entries such that \(\{\ell_1', \ldots, \ell_N'\} = \{\ell_1'', \ldots, \ell_N''\} = \mathcal{L} \), then
\[
|\det(B^{(k)}_{\vec{\ell}})|^2 = |\det(A^{(k)}_{\mathcal{L}})|^2
\]
and
\[
|\per(B^{(k)}_{\vec{\ell}})|^2 = |\per(A^{(k)}_{\mathcal{L}})|^2
\]
for all \(k \), because permuting the columns of a matrix leaves the permanent unchanged and either leaves the determinant unchanged or alters its sign.

The result now follows, because for any subset \(\mathcal{L} \) of \(\{1, 2, \ldots, L\} \) with cardinality \(N \) there are \(N! \) vectors \(\vec{\ell} = (\ell_1, \ldots, \ell_N) \) with \(\{\ell_1, \ldots, \ell_N\} = \mathcal{L} \).

3. Proof of Theorem

By definition,
\[
\frac{L}{N} \binom{L}{N} (N!)^M p_N(x_1, \ldots, x_N) = \text{Det}_K(\mathbb{B}),
\]
where \(\mathbb{B} \) is the 2\(M \)-way hypercubic matrix of length \(N \) given by
\[
\mathbb{B}(i_1, \ldots, i_M; j_1, \ldots, j_M) = K(x_{i_1}, \ldots, x_{i_M}; x_{j_1}, \ldots, x_{j_M})
\]
\[
= \sum_{\ell=1}^{L} \prod_{m=1}^{M} \phi_{m\ell}(x_{i_m}) \bar{\phi}_{m\ell}(x_{j_m})
\]
\[
= \sum_{\ell=1}^{L} B^{(1)}(i_1, \ell) \cdots B^{(M)}(i_M, \ell) \bar{B}^{(1)}(j_1, \ell) \cdots \bar{B}^{(M)}(j_M, \ell),
\]
and the \(N \times L \) matrix \(B^{(m)} \) is given by
\[
B^{(m)}(n, \ell) := \phi_{m\ell}(x_n)
\]

By Proposition 2.1
\[
\frac{L}{N} \binom{L}{N} (N!)^M p_N(x_1, \ldots, x_N) = \sum_{\mathcal{L}} \left[\prod_{k \in \mathcal{K}} |\det(B^{(k)}_{\mathcal{L}})|^2 \right] \left[\prod_{k \notin \mathcal{K}} |\per(B^{(k)}_{\mathcal{L}})|^2 \right],
\]
where the sum is over all subsets \(\mathcal{L} \) of \(\{1, 2, \ldots, L\} \) with cardinality \(N \) and \(B^{(k)}_{\mathcal{L}} \) is the \(N \times N \) sub-matrix of the matrix \(B^{(k)} \) formed by the columns of \(B^{(k)} \) with indices in the set \(\mathcal{L} \).

It follows that \(p_N(x_1, \ldots, x_N) \geq 0 \). Also, since the value of the permanent a matrix is unchanged by a permutation of the rows and the value of a determinant is either unchanged or merely changes sign, the function \(p_N \) is unchanged by a permutation of its arguments.
We have
\[
\binom{L}{N} (N!)^M p_N(x_1, \ldots, x_N)
= \sum_{\mathcal{L}} \left[\prod_{k \in K} \sum_{\sigma_k} \sum_{\tau_k} \epsilon(\sigma_k) \epsilon(\tau_k) \prod_{n=1}^{M} \phi_{k \sigma_k(n)}(x_n) \bar{\phi}_{k \tau_k(n)}(x_n) \right]
\times \left[\prod_{k \notin K} \sum_{\sigma_k} \sum_{\tau_k} \prod_{n=1}^{N} \phi_{k \sigma_k(n)}(x_n) \bar{\phi}_{k \tau_k(n)}(x_n) \right]
= \sum \sum \ldots \sum \sum \ldots \sum \prod_{k \in K} \epsilon(\sigma_k) \epsilon(\tau_k) \prod_{m=1}^{M} \prod_{n=1}^{N} \phi_{m \sigma_m(n)}(x_n) \bar{\phi}_{m \tau_m(n)}(x_n),
\]
where \(\sigma_k\) and \(\tau_k\) in the summations range over bijective maps from \([1, \ldots, N]\) to \(\mathcal{L}\) and \(\epsilon\) is interpreted in the usual way for such a bijection.

Now the integral
\[
\int_{\prod_{m=1}^{M} \phi_{m \sigma_m(n)}(x_n) \bar{\phi}_{m \tau_m(n)}(x_n)} \mu(dx_n)
= \prod_{m=1}^{M} \int_{\prod_{m=1}^{M} \psi_{m \sigma_m(n)}(x_n) \bar{\psi}_{m \tau_m(n)}(x_n)} \mu(dx_{nm})
\]
is equal to 1 if and only if \(\sigma_m(n) = \tau_m(n)\) for \(1 \leq m \leq M\), and otherwise the integral is 0. Hence
\[
\int_{\prod_{m=1}^{M} \phi_{m \sigma_m(n)}(x_n) \bar{\phi}_{m \tau_m(n)}(x_n)} \mu(dx_n) = \int_{\prod_{m=1}^{M} \phi_{m \sigma_m(n)}(x_n) \bar{\phi}_{m \tau_m(n)}(x_n)} \mu(dx_n)
\]
and
\[
\int_{\prod_{m=1}^{M} \phi_{m \sigma_m(n)}(x_n) \bar{\phi}_{m \tau_m(n)}(x_n)} \mu(dx_n) = p_{N-1}(x_1, \ldots, x_{N-1}),
\]
as required.

4. VARYING THE ORDER \(M\)

Beginning with a suitable kernel \(K : \Sigma^{2^M} = (\Sigma_1 \times \cdots \times \Sigma_M)^{2^M} \to \mathbb{C}\), we have built a family of functions \(p_N, 1 \leq N \leq L\), where \(p_N\) is a probability density on \((\Sigma_1 \times \cdots \times \Sigma_M)^N \simeq \prod_{m=1}^{M} \Sigma_{\mu_m}\) with respect to the measure \((\bigotimes_{m=1}^{M} \mu_m)^{\otimes N} \simeq \bigotimes_{m=1}^{M} \mu_m^{\otimes N}\). For \(1 \leq M' < M\), it is natural to ask about the push-forward of the probability measure corresponding to the density \(p_N\) by the projection map from \(\bigotimes_{m=1}^{M} \mu_m^{\otimes N}\) to \(\bigotimes_{m=1}^{M'} \mu_m^{\otimes N}\), given by
\[
(x_{nm})_{1 \leq n \leq N, 1 \leq m \leq M} \mapsto (x_{nm})_{1 \leq n \leq N, 1 \leq m \leq M'}.
\]
The answer is given by repeated applications of the following result.

Theorem 4.1. Suppose that either \(M \notin \mathcal{K}\) or \(M \in \mathcal{K}\) and \(\mathcal{K} \setminus \{M\} \neq \emptyset\). Set \(\hat{K} := \mathcal{K} \setminus \{M\}\), \(\hat{\Sigma} := \prod_{i=1}^{M-1} \Sigma_m\), and \(\hat{\mu} = \bigotimes_{i=1}^{M-1} \mu_m\). Define a kernel \(\hat{K} : \Sigma^{2^{(M-1)}} \to \mathbb{C}\) by
\[
\hat{K}(y_1, \ldots, y_{M-1}; z_1, \ldots, z_{M-1}) := \sum_{\ell=1}^{L} \prod_{m=1}^{M-1} \phi_{m \ell}(y_m) \bar{\phi}_{m \ell}(z_m).
\]
The function
\[
(x_{nm})_{1 \leq n \leq N, 1 \leq m \leq M-1} \mapsto \hat{p}_N((x_{nm})_{1 \leq n \leq N, 1 \leq m \leq M-1})
\]
\[
:= \int_{\Sigma^N_M} p_N((x_{nm})_{1 \leq n \leq N, 1 \leq m \leq M}) \mu^N_M \left(d(x_{1M}, \ldots, x_{NM})\right)
\]
is a probability density with respect to the measure \(\mu^N_M \). The probability density \(\hat{p}_N \) is constructed from the kernel \(K \) and the set of indices \(\mathcal{K} \) in the same manner that the probability density \(p_N \) is constructed from the kernel \(K \) and the set of indices \(\mathcal{K} \).

Proof. As in the proof of Theorem 1.1,
\[
\binom{N}{M} \sum_{\mathcal{L}} \sum_{\sigma_1, \ldots, \sigma_M, \tau_1, \ldots, \tau_M} \prod_{k \in \mathcal{K}} \epsilon(\sigma_k) \epsilon(\tau_k) \prod_{m=1}^{N} \psi_{m\sigma_m(n)}(x_{nm}) \bar{\psi}_{m\tau_m(n)}(x_{nm}),
\]
where \(\sigma_k \) and \(\tau_k \) in the summations range over bijective maps from \(\{1, \ldots, N\} \) to \(\mathcal{L} \).

Observe that the integral
\[
\int_{\Sigma^N_M} \left[\prod_{n=1}^{N} \psi_{M\sigma_M(n)}(x_{nM}) \bar{\psi}_{M\tau_M(n)}(x_{nM}) \right] \mu^N_M \left(d(x_{1M}, \ldots, x_{NM})\right)
\]
is 1 if and only if \(\sigma_M(n) = \tau_M(n) \) for \(1 \leq n \leq N \) (that is, if and only if \(\sigma_M = \tau_M \)), and the integral is 0 otherwise. For each choice of the set \(\mathcal{L} \), there are \(N! \) choices of the pair of bijections \((\sigma_M, \tau_M) \) such that \(\sigma_M = \tau_M \), and for all of these choices we have, of course, that \(\epsilon(\sigma_M) = \epsilon(\tau_M) \) if \(M \in \mathcal{K} \).

It follows that
\[
\binom{N}{M} \sum_{\mathcal{L}} \sum_{\sigma_1, \ldots, \sigma_M-1, \tau_1, \ldots, \tau_M-1} \prod_{k \in \mathcal{K}} \epsilon(\sigma_k) \epsilon(\tau_k)
\]
\[
\times \prod_{m=1}^{M-1} \prod_{n=1}^{N} \psi_{m\sigma_m(n)}(x_{nm}) \bar{\psi}_{m\tau_m(n)}(x_{nm}),
\]
as claimed. □

5. The number of points falling in a set

Write \((X_1, \ldots, X_L)\) for a \(\Sigma^L \)-valued random variable that has the distribution possessing density \(p_L \) with respect to the measure \(\mu^{\otimes L} \). Given a set \(C \in \mathcal{A} \), let \(J_C := \#\{1 \leq \ell \leq L : X_\ell \in C\} \), so that \(J_C \) is a random variable taking values in the set \(\{0, 1, \ldots, L\} \). The distribution of the random variable \(J_C \) is determined by the factorial moments
\[
\mathbb{E}[J_C(J_C - 1) \cdots (J_C - N + 1)], \quad 1 \leq N \leq L.
\]
If we write I_ℓ for the indicator random variable of the event \{ $X_\ell \in C$ \}, then $J_C = I_1 + \cdots + I_L$. By the exchangeability of (X_1, \ldots, X_L), we have
\[
E[J_C(J_C - 1) \cdots (J_C - N + 1)] \\
= L(L - 1) \cdots (L - N + 1) E[I_1 \cdots I_N] \\
= L(L - 1) \cdots (L - N + 1) \int_{C_N} p_N(x_1, \ldots, x_N) \mu^{\otimes N}(d(x_1, \ldots, x_N)).
\]
Suppose now that $C = C_1 \times \cdots \times C_M$, with $C_m \subseteq \Sigma_m$, $1 \leq m \leq M$. Then
\[
E[J_C(J_C - 1) \cdots (J_C - N + 1)] \\
= (N!)^{-M+1} \sum_{\mathcal{L}} \sum_{\sigma_1} \cdots \sum_{\sigma_M} \sum_{\tau_1} \cdots \sum_{\tau_M} \prod_{k \in K} \epsilon(\sigma_k)\epsilon(\tau_k) \prod_{m=1}^{M} \prod_{n=1}^{N} H_{x_m(n), \tau_m(n)}^{(m)},
\]
where $H^{(m)}$ is the $L \times L$ matrix defined by
\[
H^{(m)}(\ell, \ell') := \int_{C_m} \psi_m(y) \psi_m(y) \mu_m(dy), \quad 1 \leq \ell, \ell' \leq L.
\]
Thus,
\[
E[J_C(J_C - 1) \cdots (J_C - N + 1)] = N! \sum_{\mathcal{L}} \left[\prod_{k \in K} \det(H_L^{(k)}) \right] \left[\prod_{\mathcal{L} \neq K} \text{per}(H_L^{(k)}) \right],
\]
where $H_L^{(k)}$ is the $N \times N$ sub-matrix of $H^{(k)}$ with rows and columns indexed by \mathcal{L}.

Remark 5.1. When $M = 1$ (so we are dealing with a determinantal point process), the last expression is just the trace of the $\binom{L}{N} \times \binom{L}{N}$ compound matrix consisting of the minors of $H^{(1)}$ with N rows and columns. This compound matrix has as its eigenvalues all the products of the eigenvalues of $H^{(1)}$ taken N at a time, and so its trace is the sum of all such products. This shows that J_C is distributed as the sum of L independent Bernoulli random variables that have the eigenvalues of $H^{(1)}$ as their respective success probabilities – a result that appears in [ST03, HKPV06]. We have been unable to find an analogous probabilistic representation for J_C for general M.

References

[Bar95] Alexander I. Barvinok, *New algorithms for linear k-matroid intersection and matroid k-party problems*, Math. Programming 69 (1995), no. 3, Ser. A, 449–470. MR MR1355790 (96j:05029)

[Cay43] A. Cayley, *On the theory of determinants*, Trans. Cambridge Philos. Soc. 8 (1843), 1–16.

[DE00] Persi Diaconis and Steven N. Evans, *Immanants and finite point processes*, J. Combin. Theory Ser. A 91 (2000), no. 1-2, 305–321, In memory of Gian-Carlo Rota. MR MR1780025 (2001m:15018)

[DVJ88] D. J. Daley and D. Vere-Jones, *An introduction to the theory of point processes*, Springer Series in Statistics, Springer-Verlag, New York, 1988. MR MR950166 (90c:60060)

[GKZ92] I. M. Gel’fand, M. M. Kapranov, and A. V. Zelevinsky, *Hyperdeterminants*, Adv. Math. 96 (1992), no. 2, 226–263. MR MR1196989 (94g:14023)

[GKZ94] ________, *Discriminants, resultants, and multidimensional determinants*, Mathematics: Theory & Applications, Birkhäuser Boston Inc., Boston, MA, 1994. MR MR1264417 (95e:14045)

[Gly] David G. Glynn, *Rota’s basis conjecture and Cayley’s first hyperdeterminant*, Available at http://homepage.mac.com/dglynn/.Public/Rota2.pdf
HYPERDETERMINANTAL POINT PROCESSES

[HKPV06] J. Ben Hough, Manjunath Krishnapur, Yuval Peres, and Bálint Virág, Determinantal processes and independence, Probab. Surv. 3 (2006), 206–229 (electronic).

[LT03] Jean-Gabriel Luque and Jean-Yves Thibon, Hankel hyperdeterminants and Selberg integrals, J. Phys. A 36 (2003), no. 19, 5267–5292. MR MR1985318 (2004d:15011)

[LT04] Jean-Gabriel Luque and Jean-Yves Thibon, Hyperdeterminantal calculations of Selberg’s and Aomoto’s integrals, Molecular Physics 102 (2004), no. 11-12, 1351–1359.

[Lyo03] Thomas Muir, A treatise on the theory of determinants, Revised and enlarged by William H. Metzler, Dover Publications Inc., New York, 1960. MR MR0114826 (22 #5644)

[Mac75] Odile Macchi, The coincidence approach to stochastic point processes, Publ. Math. Inst. Hautes Études Sci. (1975), no. 98, 167–212. MR MR0380979 (52 #1876)

[Mac76] Odile Macchi, The coincidence approach to stochastic point processes, Publ. Math. Inst. Hautes Études Sci. (1976), no. 99, 167–212. MR MR0413237 (54 #2511)

[Mac77] Odile Macchi, The coincidence approach to stochastic point processes, Publ. Math. Inst. Hautes Études Sci. (1977), no. 100, 167–212. MR MR0458467 (57 #880)

[Mev90] Odile Macchi, The coincidence approach to stochastic point processes, Publ. Math. Inst. Hautes Études Sci. (1990), no. 76, 167–212. MR MR1092822 (92d:60076)

[Old34a] Rufus Oldenburger, Composition and rank of n-way matrices and multilinear forms, Ann. of Math. (2) 35 (1934), no. 3, 622–653. MR MR1503183

[Old34b] Rufus Oldenburger, Composition and rank of n-way matrices and multilinear forms—supplement, Ann. of Math. (2) 35 (1934), no. 3, 654–657. MR MR1503184

[Old34c] Rufus Oldenburger, Transposition of Indices in Multiple-Labeled Determinants, Amer. Math. Monthly 41 (1934), no. 6, 350–356. MR MR1503184

[Old36] Rufus Oldenburger, Non-singular multilinear forms and certain p-way matrix factorizations, Trans. Amer. Math. Soc. 39 (1936), no. 3, 422–455. MR MR1501856

[Pas00] E. Pascal, Die Determinanten, Teubner-Verlag, Leipzig, 1900.

[Ric18] Lepine Hall Rice, P-Way Determinants, with an Application to Transvectants, Amer. J. Math. 40 (1918), no. 3, 242–262. MR MR1506358

[Ric30] Lepine Hall Rice, Introduction to higher determinants, Journal of Mathematics and Physics (Massachusetts Institute of Technology) 9 (1930), 47–70.

[Sok60] N. P. Sokolov, Prostranstvennye matritsy i ikh prilozheniya, Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1960. MR MR0130256 (24 #A122)

[Sok72] N. P. Sokolov, Vvedenie v teoriyu mnogomernykh matrits, Izdat. “Naukova Dumka”, Kiev, 1972. MR MR0352115 (50 #4602)

[Sos00] A. Soshnikov, Determinantal random point fields, Uspekhi Mat. Nauk 55 (2000), no. 5(335), 107–160. MR MR1799012 (2002f:60097)

[ST00] Tomoyuki Shirai and Yoichiro Takahashi, Fermion process and Fredholm determinant, Proceedings of the Second ISAAC Congress, Vol. 1 (Fukuoka, 1999) (Dordrecht), Int. Soc. Anal. Appl. Comput., vol. 7, Kluwer Acad. Publ., 2000, pp. 15–23. MR MR1940779 (2004f:28007)

[ST03a] Tomoyuki Shirai and Yoichiro Takahashi, Random point fields associated with certain Fredholm determinants. I. Fermion, Poisson and boson point processes, J. Funct. Anal. 205 (2003), no. 2, 414–463. MR MR2018415 (2004m:60104)

[ST03b] Tomoyuki Shirai and Yoichiro Takahashi, Random point fields associated with certain Fredholm determinants. II. Fermion shifts and their ergodic and Gibbs properties, Ann. Probab. 31 (2003), no. 3, 1533–1564. MR MR1989442 (2004k:60146)

[ST04] Tomoyuki Shirai and Yoichiro Takahashi, Random point fields associated with fermion, boson and other statistics, Stochastic analysis on large scale interacting systems, Adv. Stud. Pure Math., vol. 39, Math. Soc. Japan, Tokyo, 2004, pp. 345–354. MR MR2073340

[VJ97] D. Vere-Jones, Alpha-permanents and their applications to multivariate gamma, negative binomial and ordinary binomial distributions, New Zealand J. Math. 26 (1997), no. 1, 125–149. MR MR1450811 (98j:15007)

E-mail address: evans@stat.Berkeley.EDU

E-mail address: alex@alexgottlieb.com

DEPARTMENT OF STATISTICS #3860, UNIVERSITY OF CALIFORNIA AT BERKELEY, 367 EVANS HALL, BERKELEY, CA 94720-3860, U.S.A
