Reconstructing Aerosol Vertical Profiles with Aggregate Output Learning

Sofija Stefanović, Shahine Bouabid, Philip Stier, Athanasios Nenes, Dino Sejdinović
Motivation

GEOS-5 10km resolution
Red: Dust Blue: Sea Salt Green: Smoke White: Sulfate

William Putman, NASA/Goddard
Motivation

IPCC 2013
Motivation

2D proxies (vertically aggregated data) often insufficient to understand aerosol distribution
e.g. aerosol optical depth from satellites \[\text{AOD} = \int_0^H b_{\text{ext}}(h) \, dh \]
Problem Statement

General setup:

- Collection of bagged observations: \(\{ \{ x^{(i)}_j \} \}_{i=1}^n; y_j; z_j \}_{j=1}^n \)
- Function to disaggregate: \(f : \mathbb{R}^d_x \rightarrow \mathbb{R} \)
- Aggregation operator over column height: \(\text{Agg}_j : f \mapsto \int_{\text{column}} f(x) \, dh(x) \)
- Aggregate observation model:

\[
 z_j = \text{Agg}_j(f) + \varepsilon_j
\]

Specific problem to develop a proof of concept for the methodology:

Reconstruct vertical profiles of sulfate concentrations from aggregated column mass density + chemical and meteorological covariates

\[
 \sigma_{SO_4} = \int_0^H [SO_4](h) \, dh
\]
Dataset

NASA’s GEOS-5 Nature Run output used as dataset basis.

	Name	Notation	Units
2D	SO$_4$ column density	σ_{SO_4}	kg·m$^{-2}$
	Liquid water path	LWP	kg·m$^{-2}$
3D	SO$_4$ mass mixing ratio	r_{SO_4}	kg·kg$^{-1}$
	SO$_2$ mass mixing ratio	r_{SO_2}	kg·kg$^{-1}$
	Relative Humidity	RH	1
	Air temperature	T	K
	Vertical velocity	w	m·s$^{-1}$
	Cloud liquid water	q	kg·kg$^{-1}$
	Moist air density	ρ	kg·m$^{-3}$

Table 1. Dataset variables, “2D” corresponds to variables indexed by time, latitude and longitude while “3D” corresponds to variables that also have a height dimension.
Initial Solutions - Baseline 1

Input 3D covariates: \[x = (\text{latitude, longitude, altitude, } r_{SO_2}, RH, T, w, q) \]

Objective:
\[\min_{f} \sum_{i=1}^{n} \left(\sigma_{SO_4} - \int_{1^{th \text{ column}}} f(x) dh(x) \right)^2 \]

Hypothesis:
\[f(x) = \beta^\top x \]

Solution: Closed form ridge regressor of column-aggregate inputs against AOD
Initial Solutions - Baseline 2

Input 3D covariates: $x = (\text{latitude, longitude, altitude, } r_{\text{SO}_2}, \text{RH}, T, w, q)$

Input 2D covariates: $y = (\text{latitude, longitude, } \sigma_{\text{SO}_4}, \text{LWP})$

Step 1: Fit $g : y_i \mapsto \int_{\text{ith column}} f(x) dh(x)$
Step 2: $\min_f \sum_{i=1}^{n} (\sigma_{\text{SO}_4} i - g(y_i))^2$

Hypothesis: $f(x) = \beta^T x$
$g(y) = \gamma^T y$

Solution: Closed form two-stage ridge regressor
Experiments

	RIDGE	TWO-STAGE
RMSE (10^{-6})	3.47	3.52
2D MAE (10^{-6})	3.39	3.39
Corr. (%)	93.5	87.5
RMSE (10^{-10})	2.71	2.50
3D MAE (10^{-10})	1.07	1.10
Corr. (%)	62.5	63.9

Table 2. Evaluation scores on vertical profile reconstruction; “2D” refers to evaluation against aggregate σ_{SO_2} targets used for training; “3D” refers to evaluation against vertical groundtruth.
Discussion & future work

- Two-stage regression shows a slight increase in performance over simple kernel ridge regression with metrics used
- Unclear why the influence of SO2 profiles (important sulfate precursor gas) on predictions varies in experiments
- Metrics more suited to the problem should be developed
- Next step: use specialised aerosol models with lidar simulator and develop kernel-based model to tackle the AOD disaggregation problem:

Reconstruct vertical profiles $b_{\text{ext}}(h)$ from aggregated observations of the AOD and chemistry + meteorological covariates

Code and data available at:
https://github.com/shahineb/aerosols-vertical-profiles