Molecular basis of cholesterol efflux via ABCG subfamily transporters

Yingyuan Sun,1,2 Jin Wang,1,2 Tao Long,1,2 Xiaofeng Qi,1,2 Linda Donnelly,2 Nadia Elghobashi-Meinhardt,1 Leticia Esparza,2 Jonathan C. Cohen,1,3 Xiao-Song Xie,2 Helen H. Hobbs,2,4,5,6,7 Xiaochun Liu3,6,7

1Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390; 2Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390; 3Institute of Chemistry, Technical University Berlin, 10623 Berlin, Germany; 4Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX 75390; 5Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390; and 6Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390

Contributed by Helen H. Hobbs, July 1, 2021 (sent for review June 7, 2021; reviewed by Jue Chen, Alan R. Tall, and Peng Yuan)

The ABCG1 homodimer (G1) and ABCG5–ABCG8 heterodimer (G5G8), two members of the adenosine triphosphate (ATP)-binding cassette (ABC) transporter G family, are required for maintenance of cellular cholesterol levels. G5G8 mediates secretion of neutral sterols into bile and the gut lumen, whereas G1 transports cholesterol from macrophages to high-density lipoproteins (HDLs). The mechanisms used by G5G8 and G1 to recognize and export sterols remain unclear. Here, we report cryo-electron microscopy (cryo-EM) structures of human G5G8 in sterol-bound and human G1 in cholesterol- and ATP-bound states. Both transporters have a sterol-binding site that is accessible from the cytosolic leaflet. A second site is present midway through the transmembrane domains of G5G8. The Walker A motif of G8 adopts a unique conformation that accounts for the marked asymmetry in ATPase activities between the two nucleotide-binding sites of G5G8. These structures, along with functional validation studies, provide a mechanistic framework for understanding cholesterol efflux via ABC transporters.

ABCG5, ABCG8, ABCG1, plant sterol, sitosterolemia

Cholesterol is an essential constituent of cell membranes and can be synthesized from acetate by all nucleated cells in vertebrates. To maintain cholesterol homeostasis, the amount of cholesterol acquired by cells through de novo synthesis or lipoprotein uptake must be tightly coupled to the amount that is lost through degradation or excretion (1). The pathways by which cholesterol is synthesized, and the mechanisms by which these pathways are regulated, have been elucidated in considerable detail (1). Less is known about the molecular basis of cholesterol excretion. The observation that cholesterol flips rapidly between the inner and outer leaflets of phospholipid bilayers suggested that cholesterol efflux from cells does not require a protein mediator (2), but studies in humans with rare disorders of cholesterol metabolism provide evidence for active excretion of cholesterol from cells. Loss-of-function mutations in ABCA1 (adenosine triphosphate [ATP]-binding cassette transporter A1) cause Tangier disease, a disorder characterized by very low concentrations of circulating low-density lipoproteins and high-density lipoproteins (HDLs) and accumulation of cholesterol in macrophages (3–5). Mutations in ABCG5 (G5) or ABCG8 (G8) result in an autosomal recessive disorder, sitosterolemia, which is characterized by accumulation of both plant- (e.g., stigmasterol and campesterol) and animal-deriv ed sterols (e.g., cholesterol) as well as premature atherosclerosis (6, 7). Subsequently, genetic manipulation studies in mice indicated that ABCG1 (G1) also transports cholesterol (8).

Members of the G subfamily of ABC transporters are encoded as hemi-transporters and dimerize in order to function (9, 10). G5 and G8 heterodimerize before exiting the endoplasmic reticulum and trafficking to the apical membrane, where they mediate excretion of cholesterol into bile and the intestinal lumen (Fig. L4) (6, 11, 12). G1 is abundantly expressed in macrophages and exports cellular cholesterol to extracellular acceptors, especially HDL (8, 13–15). G1 has been reported to facilitate reverse cholesterol transport (16, 17), the pathway by which cholesterol made in peripheral tissues is transported back to the liver or to the gut for excretion (18).

A schematic of a canonical ABCG half-transporter is shown in Fig. 1B. Each half-transporter contains a Walker A (P loop), Q loop, Walker B, and signature motif (Leu-Ser-Gly-Gly-Gln). After dimerization, the full transporter contains two nucleotide-binding sites (NBSs) that are formed by the Walker A (P loop), Q loop, and Walker B motifs from one protomer coupled with the signature motif from the other (10, 19, 20). In G5G8 only a single active NBS (NBS2), the one formed by the Walker A and B motifs of G5 and the signature motif of G8, is required to support sterol transport; scrambling the consensus motifs of the other NBS (NBS1) does not impair sterol export (21, 22).

Previously, we determined the X-ray structure of G5G8 in bicelles at 3.9-Å resolution (23). The transmembrane helices (TMHs) of G5G8 have a folding pattern that is distinct from all other families of ABC transporters that have been characterized structurally (10, 24). No structural information is available for G1 and the structure of ABCA1, although determined in apo states at ~4-Å resolution (25), has not revealed the molecular significance of G1 in cholesterol transport by ABC transporters.

Author contributions: Y.S., J.W., J.C.C., X.-S.X., H.H.H., and X.L. designed research; Y.S., J.W., T.L., N.E.-M., J.C.C., X.-S.X., H.H.H., and X.L. analyzed data; Y.S., J.W., T.L., and X.Q. contributed equally to this work.

The authors declare no competing interest.

10.1073/pnas.2110483118

PNAS 2021 Vol. 118 No. 34 e2110483118
Published August 17, 2021

This article contains supporting information online at https://www.pnas.orglookup/suppl/doi:10.1073/pnas.2110483118/-/DCSupplemental.
basis of cholesterol transport. Notably, the structure of a multidrug exporter, ABCG2 (G2), in nanodiscs, revealed a sterol-like molecule bound to TMHs (26); however, there is no evidence to date that G2 can export sterols, so the function of the sterol in the TMHs remains unclear. Here, we report sterol-bound structures of G5G8 and apo-, cholesterol-, and ATP-bound structures of G1 by cryoelectron microscopy (cryo-EM). We have employed multiple strategies to establish a model of how ABC transporters mediate the translocation of neutral sterols across cell membranes.

Sterol Binding Site 1 of G5G8

G5G8 exhibits pseudosymmetry, which complicates structural determination by cryo-EM. To break this pseudosymmetry and capture the sterol-bound state of G5G8 in solution, we developed a series of monoclonal antibodies that bind human G5 or G8 in its native state. We identified an antibody (2C7) that bound G8 and inhibited ATP hydrolysis by G5G8 in vitro (Fig. 1D). We then incubated the Fab fragments of 2C7 (Fab2C7) with purified G5G8 and subjected the mixture to gel filtration (SI Appendix, Fig. S1A).

The structure of G5G8 expressed in HEK293 cells in complex with Fab2C7 was determined at 2.7-Å resolution. The transporter is in an inward-facing conformation that is free of bound nucleotides, which is similar to that observed previously (23) (Fig. 1D and SI Appendix, Figs. S1 B–E and S2A and Table S1). Fab2C7 binds the nucleotide-binding domain (NBD) of G8 (SI Appendix, Fig. S2B) and restrains the conformational changes required for ATP hydrolysis. G5 and G8 share a similar conformation with an rmsd of 1.6 Å, but only G5 has an intramolecular disulfide bond (Cys587–Cys600) in its extracellular region (Fig. 1E and SI Appendix, Fig. S1E). TMH1, TMH2, and TMH5 of G5 and G8 form the interface between the two transmembrane domains (TMDs) (Fig. 1E). Connections between the NBDs and TMDs of G5G8 are formed by two three-helix bundles that include the connecting helix (CnH), coupling helix (CpH), and E helix (a helix after the Q loop). Both bundles in G5 and G8 contain two buried salt bridges, presumably to confine the TMHs and NBDs in a conformation conducive to engagement of substrate (Fig. 1F). The salt bridges between CpH and CnH of G8 had not been observed in the X-ray crystal structure (23).

A sterol-like molecule was observed within the cytosolic leaflet, between the TMDs of G5 and G8, parallel to the TMHs (referred to as “site 1”) (Fig. 2A). The 3-hydroxy group of the sterol, which was presumed to be cholesterol, faces the central portion of the interface of G5 and G8, while the isocysteine side chain of cholesterol faces the cytoplasmic region of the protein (Fig. 2A). The cavity is large enough to accommodate other substrates of G5G8, such as campesterol or sitosterol (27), which both have a ring structure identical to that of cholesterol but have modifications in the side chains. Typically, the cavity has amphiphilic features (Fig. 2A), with the top being negatively charged and the bottom being hydrophobic. The cholesterol in site 1 is close to Ile529 in TMH5 of G5 and to Ile419 and Leu465 in TMH1 and TMH2 of G8, respectively.

The structure of G5G8 purified from Pichia pastoris was determined at 2.7-Å resolution (SI Appendix, Figs. S2C and D and S3 and Table S1). A sterol-like density was observed in site 1, which we assigned to be ergosterol, the most abundant endogenous sterol...
in yeast. To validate site 1, we took advantage of an in vivo functional reconstitution assay that was established in our laboratory (28). Inactivation of G5G8 in mice (G5^{−/−}G8^{−/−} mice) results in a marked reduction in the cholesterol content of bile (Fig. 2B). Biliary cholesterol secretion can be reconstituted by expressing recombinant G5 and G8 in G5^{−/−}G8^{−/−} mice using adenoviral expression vectors. G5^{−/−}G8^{−/−} mice were infected with adenoviruses expressing both wild-type G5 protein (G5_{WT}) and G8_{WT} or mutant G5(WT) and G8(mutant) (or vice versa). After 3 d, bile was collected, and the sterol content was quantified using liquid

![Fig. 2. Overall structure of G5G8 reveals an inward-facing cholesterol-binding site.](Image)

A Electrostatic surface representation of cholesterol-binding site 1 of G5G8 and the locations of interactions with cholesterol (yellow sticks). The residues that are involved in the interactions are shown as sticks. (B) Biliary cholesterol levels from G5^{−/−}G8^{−/−} mice infected with recombinant adeno viruses expressing G5 and G8 (RR5 is an adenovirus without an insert). The mean ± SD of biliary cholesterol for each group of mice (n = 3 or 4 per group) is shown. **P < 0.05, ***P < 0.001, t test using GraphPad Prism 7.** (C) Immunoblot analysis of G5 and G8 expression in liver membranes from adenovirus-treated mice. Calnexin served as an internal control.

![Fig. 3. Cholesterol binding to a second site in G5G8.](Image)

A Overall structure showing G5G8 bound to cholesterol (yellow sticks) viewed from the side of the membrane. (B) Electrostatic surface representation of G5G8 showing cholesterol bound to site 2. (C) The interaction details of cholesterol in site 2 with G5G8. The residues that are involved in binding cholesterol are shown as sticks. (D) Biliary cholesterol levels from G5^{−/−}G8^{−/−} mice infected with adenoviruses expressing G5 and G8. The mean ± SD of the biliary cholesterol levels (n = 3 to 5 per group) for each experiment is shown. **P < 0.001, ****P < 0.0001, t test using GraphPad Prism 7.** (E) Immunoblot analysis of G5 and G8 expression in liver membranes from G5^{−/−}G8^{−/−} mice expressing recombinant G5 and G8. CNX served as an internal control and was detected using an anti-CNXT antibody.

Sun et al.
Molecular basis of cholesterol efflux via ABCG subfamily transporters

https://doi.org/10.1073/pnas.2110483118
chromatography–mass spectrometry. Expression of G5WT and G8WT resulted in a >20-fold increase in cholesterol content in bile (Fig. 2B). When we disrupted the hydrophobic character of site 1 by introducing the I419E mutation into G8 or when we substituted a bulky residue for residue Ile529 (I529W) in G5 to provide steric hindrance, biliary cholesterol levels decreased by over 50 to 80%. The levels of expression of both the precursor (pG5; pG8) and mature, fully glycosylated forms of G5G8 (mG5, mG8) were similar between all groups of mice (Fig. 2C). Thus, the mutations do not interfere with the folding, heterodimerization, or intracellular trafficking of G5G8 to the biliary membrane. Furthermore, we purified G5I529W-G8 and G5G8I419E from HEK293 cells and determined their structures at 3.5- and 3.1-Å resolution, respectively (SI Appendix, Fig. S4 and Table S2). Although the cryo-EM maps of the sterol-like molecule that is attached to the protein surface in the vicinity of residue Phe433 of G8 are similar to the WT protein, no sterol-like density is present in site 1 of G5I529W-G8 and G5G8I419E (Fig. 2D). These results confirm the important roles of G5-I529 and G8-I419 in substrate binding and provide further support for the premise that sterol binding to site 1 is required for sterol transport by G5G8.

Sterol Binding Site 2 of G5G8

To further dissect the molecular mechanisms of G5G8-mediated sterol export, we supplemented purified recombinant G5G8 expressed in yeast with cholesterol (0.5 mM) to saturate the sterol-binding sites. The structure of cholesterol-bound G5G8 was determined at 3.0-Å resolution (Fig. 3A and SI Appendix, Fig. S5 and Table S1). Two sterol molecules were identified: one in site 1 and the other buried in a more hydrophobic cavity located midway through the TMHs and oriented in a plane that was parallel to the membrane (referred to as “site 2”) (Fig. 3B). Since no sterol molecule was identified in site 2 without cholesterol supplementation (Fig. 2A and SI Appendix, Fig. S2C), we assigned a cholesterol molecule to this position. One part of site 2 is hydrophilic, comprising the side chains of Gln425 in TMH2, Ile539 of TMH5 in G5, and Asn568 in TMH5 of G8, while the other part is hydrophobic, formed by the Ile395 and Phe399 of TMH2 and Tyr432 of TMH2 in G5 and the residue Phe561 of G8-TMH5 (Fig. 3C).

To further validate that site 2 is a bona fide sterol-binding site, we performed more extensive mutagenesis. Substitution of G5-I395 and G8-F561 with alanine resulted in an ~50% reduction in cholesterol export into bile. Substitution of both residues together resulted in almost complete inhibition of sterol transport (Fig. 3D). Neither of these mutations altered the expression or trafficking of G5 or G8 (Fig. 3E). Previously, we have found that substitution of alanine for tyrosine in position 432 of G5 (Fig. 3C) dramatically impaired cholesterol transport into bile (23). These experiments are consistent with the notion that site 2 plays a key role in cholesterol efflux.

Structure of Cholesterol-Bound G1

To further investigate how ABCG transporters mediate cholesterol efflux, we expressed G1WT in Sf9 cells and a catalytic mutant isoform E242Q (G1EQ) in HEK cells. The E242Q mutation abolishes ATP hydrolysis without interfering with ATP binding (29, 30). Basal ATPase activity of purified G1 was comparable to that seen for other ABC transporters (31-34). ATPase activity was stimulated by cholesterol but not its diastereomer, epicholesterol. This result is akin to other ABC transporters like G2 (33), ABCC1 (32), and NaAtm1 (35). As expected, no ATPase activity was detected for the catalytic mutant G1EQ (Fig. 4A).

The structure of the G1WT homodimer was determined at 3.7-Å resolution with C2 symmetry in an inward-facing conformation (Fig. 4 B and C and SI Appendix, Fig. S6 and Table S3). The overall fold of G1 is similar to that of G2 with an rmsd of 1.7 Å (SI Appendix, Fig. S7A) and G5G8 with an rmsd of 2.2 Å (SI Appendix, Fig. S7B), but very different from the folding pattern found in the A, B, and C subfamilies of ABC transporters, such as ABCA1 (25), P-glycoprotein (ABCB1) (36), and CFTR (ABCC7) (37) (SI Appendix, Fig. S7C). Residues Cys611 and Cys617 in the extracellular loop of each G1 protomer form an intramolecular disulfide bond (Fig. 4C). Similar disulfide bonds are present in the extracellular regions of G2 and G5, but not in G8. Unlike G2 (SI Appendix, Fig. S7A), G1 does not contain an intermolecular disulfide bond. The CnH, CpH, and E helix of each protomer form a three-helix bundle, as demonstrated previously in the other ABC transporters (Fig. 4D) (24). The transmembrane helices TMH2 and TMH5 of each G1 half-transporter form a hydrophobic cavity that is accessible to the cytosol (Fig. 4B).

We then determined the structure of G1EQ after incubating the protein with cholesterol, ATP, and MgCl2 prior to grid preparation. Two states of G1EQ were determined: One is inward-facing, similar to the conformation of G1WT (no nucleotide bound to NBSs), and the other is outward-facing and has ATP bound to both NBSs (SI Appendix, Fig. S8). A sterol-like density was present in the hydrophobic cavity of the inward-facing G1EQ (Fig. 5A and SI Appendix, Fig. S8D and Table S2). Since there is no notable density in the same position of G1WT, we assigned it as the cholesterol substrate. The residues Phe455, Met459, and Leu463 of G1EQ were disordered in the E helix (Fig. 5B), consistent with its orientation in G5G8 and G2 (Fig. 24 and SI Appendix, Fig. S9A) (26). The cholesterol-binding site in G2 accommodates a chemically similar modulator, thus preventing the binding of other substrates in the central site (SI Appendix, Fig. S9B) (38). We also observed a fatty acid chain-like density in the same cavity in cholesterol-bound G1EQ (SI Appendix, Fig. S9B), but this was not significant by the following pattern found in the A, B, and C subfamilies of ABC transporters.
activity (33, 39). Unlike G1WT, the ATPase activities of G1F455A in the substrate-binding site of G2 also decrease basal ATPase (Fig. 5).

showed that mutations in the cholesterol-binding site, including F455A, F555A, and P558A, decrease the basal activity of G1. The results showed that mutations in the cholesterol-binding site of G2 also decrease basal ATPase activity (33, 39). Unlike G1WT, the ATPase activities of G1F555A and G1P558A are not enhanced by cholesterol. A significant increase in ATPase activity was seen only in G1P558A upon incubation of the protein with 0.25 mM cholesterol (Fig. 5C).

To assess the effects of these mutations on G1-mediated sterol transport, we took advantage of an established assay that monitors the effect of G1 expression on cells: G1 expression in cells expressing G1WT was threefold higher than cells that were assayed in the substrate-binding site of G2 also decrease basal ATPase activity. We used an SREBP-2/luciferase reporter assay to measure G1-mediated intracellular cholesterol transport activity. Western blot analysis of total cell extracts. Actin served as an internal control. *P < 0.05, ***P < 0.001, ****P < 0.0001; n.s., not significant. Data are mean ± SD (n = 3 per group).

Structure of ATP-Bound G1

The structure of ATP-bound, outward-facing G1EQ was determined at 3.7-Å resolution (Fig. 6A and Table S3). Two ATP molecules were identified in the cryo-EM map. Residues Lys124, Thr126, Gln164, and Gln242 (Glu242 in G1WT) plus residues Ser216 and Gln221 of the contralateral G1EQ interact with ATP (Fig. 6B). In the ATP-bound form of G1, the cavity in the cytosolic leaflet is closed and another cavity appears in the extracellular leaflet (Fig. 6C). The distances between Cα of Leu463 and Gln551 change from 12 to 7 Å, while the distances between Cα of Gln444 and Phe571 increase by ∼2 Å to open the extracellular cavity (Fig. 6C). In the cholesterol-bound state, Phe447 in TMH2 and Phe570 and Phe571 in the C terminus of TM5b pack together through π–π interactions with the same residues of the contralateral G1 to form a plug that blocks the central conduit.

When ATP binds the NBS, the residues move ∼4 Å away from the core, opening an extracellular cavity (Fig. 6D). After binding ATP, the E helix of G1 is in the center of the protein, causing a 6-Å shift of the CnH (Fig. 6E). Residue Gln164 triggers the movement of β5, inducing an ∼3-Å shift of the CPH, which in turn results in movement of TMH3 into the center (Fig. 6F). These changes prompt TMH5a to move toward the center, thus closing the cavity in the cytosolic leaflet (Fig. 6D). ATP binding induces the extracellular regions of G1 to move 4 Å away from the center to the edge of the transporter (Fig. 6G).

Structural Comparison of G1, G5G8, G2, and ABCA1

Sterol-binding site 1 of G5G8 is similar in position to that of G1 (Fig. 7A). Taken together with the finding of a sterol-like lipid or
detergent in the cytosolic leaflet of ABCA1 (SI Appendix, Fig. S7C), it is tempting to speculate that the three cholesterol exporters are loaded with cholesterol in a similar fashion. In G1, TM1 does not engage the sterol substrate. In G5G8, TM1 of G8, but not of G5, engages the sterol substrate (Fig. 7B). Notably, there is no substrate-binding site in G2 that is equivalent to site 1 in G1 or G5G8 (SI Appendix, Fig. S9 B and D), presumably because G2 transports hydrophilic molecules that can access G2 directly from the cytosol. In contrast, neutral sterols require a binding site that is accessible to the cytosolic leaflet of the membrane so that it can physically engage with the transporter without contacting water or hydrophilic molecules. Although cholesterol can flip spontaneously between the inner and outer leaflets of membranes, even in the absence of proteins (2), it is not clear how the cholesterol in the bilayer would enter site 1. Alternatively, a carrier protein may deliver the sterol into the sterol-binding site. Like G2 and G5G8, G1 and ABCA1 might have a central cavity that serves as a midpoint along the
The P loop of G8, which is located in NBS1 of G5G8, is shifted laterally by ~10 Å relative to the P loops of G5 or G1. This shift is predicted to introduce a steric hindrance for ATP binding (Fig. 8 B and C). A broader comparison of this degenerate ATPase with other ABC transporters supports the notion that the change seen in NBS1 of G5G8 is distinct (Fig. 8D). Of the other 29 full-length or heterodimeric ABC transporters in the mammalian genome, 21 have one active and one degenerate NBD. In almost all cases, the glycine in the signature sequence is mutated or the “catalytic” glutamate in the Walker B motif is changed to aspartate (e.g., TAP1 and MRP1) or serine (e.g., CFTR) (41). These changes do not alter the overall structure of the NBS; ATP binding is retained but ATP hydrolysis is abolished (37). The changes are highly conserved in these transporters, indicating ongoing evolutionary pressure on the sequence of the degenerate NBD. In contrast, the sequence change in the P loop of the degenerate NBS of G5G8 dramatically alters the fold (Fig. 6B) and results in a marked decrease in ATP binding (22).

Cholesterol Transport by G1 and G5G8

How do rigid hydrophobic sterols get exported across the membrane by these two ABC transporters? Molecular dynamics simulations predicted that within 100 ns of simulation, sterol leaves site 2 of G5G8 in an orientation such that the 3'-hydroxyl group faces the extracellular space (Movie S1). When the transporter is in the inward-facing conformation, a cavity in the cytosolic leaflet engulfs the sterol substrate (site 1). The substrate may traffic from site 1 to the more hydrophobic site 2 in the center of the TMHs (Figs. 3A and 8E). It remains unclear how sterol trafficking in the channel in the TMHs is related to ATP binding or hydrolysis. G1 assumes a closed conformation when ATP binds the NBS, which collapses site 1 while simultaneously pushing the neutral sterol substrate to the extracellular cavity, where it binds extracellular lipid acceptors or enters the outer hemileaflet of the bilayer. Upon extracellular cholesterol release and ATP hydrolysis, the transporter returns to the resting state, ready to transport another cholesterol molecule (35, 42–44). Further structural analysis of G5G8 will be required to determine how ATP hydrolysis can rearrange the TMHs so that it flips from an inward- to an outward-facing state, as has been found to occur in other ABC transporters.

Materials and Methods

Generation of Anti-Human G5G8 Antibody. Immunoglobulin G (IgG)-2C7, a mouse monoclonal anti-human G5G8 antibody, was prepared by fusion of SP2-mIL6 mouse myeloma cells with splenic B lymphocytes obtained from BALB/c mice (n = 2). Mice were immunized with one primary and eight boosts of purified recombinant human G5G8 heterodimers (50 μg) in 10 mM Hepes (pH 7.5), 100 mM NaCl, 0.1% n-dodecyl-β-D-maltopyranoside (DDM), 0.05% cholate, and 0.1 mM tris(2-carboxyethyl)phosphine (TCEP) combined with the Sigma Adjuvant System. Hybridoma culture supernatants were screened by enzyme-linked immunosorbent assay (ELISA) and counter-screened by dot blot to select ELISA-positive, dot blot-negative clones. One such hybridoma, designated IgG-2C7 (subclasc 1, k), was subcloned by serial dilution three times and purified from hybridoma culture supernatant by gravity-affinity chromatography on protein G Sepharose 4 Fast Flow columns.

Protein Expression and Purification. The complementary DNA (cDNA) of human ABCG1 (GenBank accession no. BC029158.1) was cloned into pFastBac with an N-terminal Flag tag. The G1WT protein was expressed using similar mechanisms. First, they both have similarly positioned aromatic and hydrophobic residues in TMDs of G5G8 are indicated; the view and residues in G1 are consistent with that in Fig. 6D. (2) Structural comparison of buried salt bridges in cholesterol-bound G5G8 and G1EQ. The three-helix bundle is labeled, and the salt bridges are indicated by dashed lines.

**Fig. 7. Structural comparison of cholesterol-bound G5G8 with G1. (A) Overall structural comparison of cholesterol-bound G5G8 with cholesterol-bound G1EQ. (B) The extracellular view showing that TM1 of G8 is involved in binding cholesterol. (C) The structural comparison of the core residues in G5G8 with that in cholesterol-bound G1EQ. Aromatic and hydrophobic residues in TMDs of G5G8 are indicated; the view and residues in G1 are consistent with that in Fig. 6D. (2) Structural comparison of buried salt bridges in cholesterol-bound G5G8 and G1EQ. The three-helix bundle is labeled, and the salt bridges are indicated by dashed lines.

Unique Features of G8

Our previous study revealed a striking asymmetry in the ATPase activities of the two NBSs: Only the Walker A (P loop) and Walker B motifs of G5 and the signature motif of G8 are required for ATP-driven cholesterol export in vivo (22). Notably, a conserved lysine in the P loop, which is essential for engaging ATP (Lys124 of G1 and Lys92 of G5), is substituted by an arginine (Arg111) in G8. This mutation is not present in the degenerate sites of any of the other mammalian ABC transporters that have been sequenced (Fig. 8A).

**Cholesterol efflux pathway, although no such sites have been captured in the structural models available to date (SI Appendix, Fig. S9 D–F). In G5G8, the 3'-hydroxyl group of the sterol substrate is oriented toward the hydrophilic regions of sites 1 and 2 (Figs. 2A, 3B, and 7B). Sterols in site 1 may pivot to the midpoint of the translocation pathway (site 2) without flipping during the export process.

G5G8 and G1 share structural features in common, suggesting that these two transporters translocate sterols across membranes using similar mechanisms. First, they both have similarly positioned aromatic plugs, which in G1 modulates the core size of the cholesterol translocation pathway (Figs. 6D and 7C). Second, they have four buried salt bridges among the CnH–CpH–E helix bundles, which are required for coupling the energy generated from ATP hydrolysis to the conformational changes of TMDs (Fig. 7D).
eluted in 20 mM Hepes (pH 7.5), 150 mM NaCl, 100 μg/mL 3×Flag peptide, and 0.01% LMNG and concentrated. The concentrated protein was purified by a Superose 6 Increase size-exclusion chromatography column (GE Healthcare) in a buffer containing 50 mM Tris·HCl (pH 7.5), 60 mM NaCl, 30 mM KCl, 2.5 mM MgCl₂, and 0.06% digitonin (Calbiochem). The cDNA of the E242Q mutant was generated using the primers 5′-AGTCAT-GTTTCTGATGCCCACCGGCGCT-3′ and 5′-AGGGCGCTGGGTGGCTACG-AAGAACATGACT-3′. The expression of human G5G8 in mammalian HEK-293S cells (ATCC) was performed by cloning the cDNAs for human ABCG5 (National Center for Biotechnology Information [NCBI] accession no. NM_022436) and ABCG8 (NCBI accession no. NM_022437) into pEG BacMam with an N-terminal Flag tag. The protein was expressed using baculovirus-mediated transduction of mammalian HEK-293S GnTI cells (ATCC). The cells were harvested at 48 h post infection and the protein was purified the same way as G1.

The cloning and expression of recombinant human G5G8 in P. pastoris were described as performed previously (23). The expression of human G5G8 in mammalian HEK-293 cells was performed by cloning the cDNAs for human ABCG5 (National Center for Biotechnology Information [NCBI] accession no. NM_022436) and ABCG8 (NCBI accession no. NM_022437) into separate pEG BacMam, respectively, and they were coexpressed using baculovirus-mediated transduction of mammalian HEK-293S GntI± cells (ATCC). The cells were harvested at 48 h post infection and the protein was purified the same way as G1.

ATPase Assays. The ATPase activity of purified G5G8 was determined as described (23, 45). Briefly, 4 to 10 μg proteins was mixed with 100 μg liver polar lipids (Avanti), 5 mM dithiothreitol (DTT), and 1% sodium cholate for 10 min at room temperature. Reactions were carried out in a final volume of 100 μL containing 50 mM Tris HCl (pH 7.5), 60 mM NaCl, 30 mM KCl, 2.5 mM MgCl₂, and 2.5 mM γ-[32P]ATP at 37 °C for 30 min. Released inorganic [32P]phosphate was extracted by molybdate and the radioactivity was measured to calculate its specific activity in three independent experiments.

The ATPase activity of G1 was measured using an NADH consumption-coupled method (46, 47). The assay was performed at 37 °C in a 96-well plate with a total reaction volume of 100 μL. Absorbance at 340 nm was monitored to measure the concentration of NADH which was coupled to that of ATP. The final reaction included 0.3 to 0.5 μM G1, 0.2 mM NADH, 4 mM phosphoenolpyruvate, 60 μg/mL pyruvate kinase, 33 μg/mL lactate dehydrogenase, 1 mM DTT, 2 mM MgCl₂, 0.06% digitonin, 150 mM NaCl, and 20 mM Hepes (pH 7.5). For the ATP titration assay (Fig. 4A), 0.5 to 20 mM ATP was included in the final reaction, with the presence of 0.25 mM cholesterol and 0.25 mM epi-cholesterol or an equal volume of ethanol. Due to its instability, NADH was dissolved and added right before the start of the reaction. The plate and reaction stock solution were prewarmed before the different reacting components were mixed. The absorbance was measured every 20 s for 60 min using a BioTek Synergy Neo plate reader. The Vₘₐₓ of absorbance change (min⁻¹) was calculated by the built-in software using 20 to 30 points in the linear region, which was converted to the rate of ATP hydrolysis (nmol ATP·min⁻¹·mg protein⁻¹) by dividing the product of the extinction coefficient of NADH, the length of the light path, and the concentration of G1. An identical reaction containing buffer instead of G1 protein was measured in the same plate and was deducted from the corresponding experimental group.

In Vivo Functional Reconstitution Cholesterol Transport Assay. Point mutations were introduced into the human G5 and G8 cDNAs using the QuikChange II Site-Directed Mutagenesis Kit (Agilent). The recombinant adenoviruses expressing human WT or mutant were generated using the AdenoVator Adenoviral Vector System (QBiogene). Eight- to 12-wk-old total knockout (G5−/−G8−/−) mice were maintained on a regular chow diet (48). Adenoviral particles (5 × 10¹⁲ particles per kilogram), containing no external gene (RRS)
or WT or mutant human G5G8, were injected into the tail veins of the mice. After 72 h, the mice were fasted for 4 h, anesthetized with halothane, and killed by exsanguination. Bile was collected, and neutral sterol levels were measured using gas liquid chromatography and mass spectrometry as described (23). Liver tissue was snap-frozen in liquid nitrogen and stored at ~80 °C. All animal experiments described in this manuscript were approved and conducted under oversight of the UT Southwestern Institutional Animal Care and Use Committee.

Immunoblot Analysis of Expression of GSBG in Mouse Liver and G1 in CHO-K1 Cells. Mouse livers were cut into small pieces, washed with ice-cold buffer containing 0.2 M sucrose, 50 mM Tris-4-morpholinoethanesulfonic acid (MES) (pH 7.0), and 0.1 M NaCl, and homogenized in a 3x volume of buffer. The homogenate was centrifuged at 1,500 x g for 10 min. The resulting postnuclear membrane was centrifuged at 100,000 rpm in a TLA100.4 rotor (MES) (pH 7.0), and 0.1 M NaCl. An equal amount of each lane. After a high-speed centrifugation, the supernatant was incubated with solubilization buffer (62 mM Tris-HCl, pH 6.9, 15% sodium dodecyl sulfate, 8 M urea, 10% glycerol, and 100 mM DTT, at a 1:1 volume ratio) at 37 °C for 30 min. After electrophoresis the proteins were transferred to nitrocellulose filters. The filters were incubated with anti-G1 rabbit polyclonal antibodies (1:500; Novus Biologicals; NB400-132) at 4 °C overnight. Following a wash with TBS-T, the filters were incubated with horseradish peroxidase (HRP)-linked anti-rabbit IgG (1:5,000; Cell Signaling Technology) at room temperature for 30 min. HRP-conjugated β-actin antibody (1:5,000; Cell Signaling Technology) was used to visualize the proteins using a SuperSignal West Pico PLUS Chemiluminescent Substrate Kit (Thermo Fisher Scientific). Images were scanned and analyzed using an Odyssey Fc Imaging System (LI-COR Biosciences).

Luciferase Reporter Assay. The cDNA of human ABCG1 was cloned into pCDNA3.1 without a tag. Cells were transfected using FuGENE HD (Promega) according to the manufacturer’s instructions. On day 0, CHO-K1 cells were maintained in medium A, a 1:1 mixture of Ham’s F-12 medium and Dulbecco’s modified Eagle’s medium (DMEM) containing 2.5 mM l-glutamine, 100 μM penicillin, 100 μM streptomycin, and 5% fetal calf serum (FCS) at a density of 8 x 10^5 cells per well on 24-well plates. On day 1, monolayers were replaced with medium A and each well was transfected with 100 ng p535RE (Addgene), plus 5 ng of each expression plasmid, and 50 ng pRL-TK (Promega) as a control to normalize for changes in transfection efficiency according to a previously published protocol (40). After 5 h, the culture medium was switched to medium A with 10% FCS. On day 3, after being cultured for 22 h, cells were washed with phosphate-buffered saline. Firefly and Renilla luciferase activities were measured using the Dual-Luciferase Reporter Assay System (Promega). The data analysis was performed using Prism 7 (GraphPad Software). Results are shown as mean ± SD from three biologically independent experiments.

EM Imaging Processing, Three-Dimensional Refinement, and Molecular Dynamics Simulation. The details are in SI Appendix.

Data Availability. The three-dimensional cryo-EM density maps reported in this article have been deposited in the Electron Microscopy Data Bank under the accession nos. EMD-24315 (G1WT), EMD-24316 (cholesterol-bound G1G8), EMD-24317 (ATP-bound G1G8), EMD-24313 (HEK-expressed GSBG), EMD-24311 (HEK-expressed GSBG-G8), EMD-24314 (yeast-expressed GSBG), and EMD-24314 (cholesterol-bound GSBG). Atomic coordinates for the atomic model have been deposited in the Protein Data Bank under id codes 7R8C (G1WT), 7RBD (cholesterol-bound G1G8), 7RBE (ATP-bound G1G8), 7RBA (HEK-expressed GSBG), 7R8H (HEK-expressed GSBG-G8), 7R87 (HEK-expressed GSBG-G8), 7R89 (yeast-expressed GSBG), and 7R8B (cholesterol-bound GSBG). All study data are included in the article and/or supporting information.

ACKNOWLEDGMENTS. The data were collected at the Howard Hughes Medical Institute Janelia Research Campus and the University of Texas Southwestern Medical Center Cryo-EM Facility (funded in part by Cancer Prevention & Research Institute of Texas Core Facility Support Award RP170644). We thank D. Stoddard, R. Yan, and Z. Yu for assistance in data collection and M. Brown, E. Debler, R. DeBose-Boyd, J. Goldstein, and P. Schmiege for discussion during manuscript preparation. We also thank J. Lee for preparing the antigen that was used to generate the monoclonal antibodies, F. Xu for measuring sterol lipids, and C. Zhao for genotyping. This work was supported by NIH Grants P01 HL029948 (to H.H.L. and X.L.), R01 GM134700 (to X.L.), and R01 HL072304 (to H.H.L.) and the Welch Foundation (Grant I-1957) (to X.L.). X.Q. is the recipient of a DDBrown Fellowship of the Life Sciences Research Foundation. X.L. is a Damon Runyon-Rachleff Innovator supported by the Damon Runyon Cancer Research Foundation (Grant DRR-535-19).

1. L. J. Engelking et al., Schoenheimer effect explained—Feedback regulation of cholesterol synthesis in mice mediated by Inslg proteins. J. Clin. Invest. 115, 2489–2498 (2005).
2. T. L. Steck, J. Ye, Y. Lange, Probing red cell membrane cholesterol movement with cycloedrin. Biophys. J. 83, 2118–2125 (2002).
3. G. Schmitz, C. Aslanidis, K. J. Lackner, Recent advances in molecular genetics of cardiac-vascular disorders. Implications for atherosclerosis and diseases of cellular lipid metabolism. Pathol. Oncol. Res. 4, 152–160 (1998).
4. L. Yu-Van-Charet, N. Wang, A. R. Tall, Role of HDL, ABCA1, and ABCG1 transporters in cholesterol efflux and immune responses. Arterioscler. Thromb. Vasc. Biol. 30, 139–143 (2010).
5. R. M. Lawn et al., The Tangier disease gene product ABC1 controls the cellular apolipoprotein-mediated lipid removal pathway. J. Clin. Invest. 104, R25–R31 (1999).
6. K. E. Berge et al., Accumulation of dietary cholesterol in stenostomia caused by mutations in adjacent ABC transporters. Science 290, 1717–1719 (2000).
7. M. H. Lee et al., Identification of a gene, ABCGS, important in the regulation of dietary cholesterol absorption. Nat. Genet. 27, 79–83 (2001).
8. M. A. Kennedy et al., ABCG1 has a critical role in mediating cholesterol efflux to HDL and preventing cellular lipid accumulation. J. Clin. Invest. 117, 3900–3908 (2007).
9. X. Wang et al., Macrophage ABCA1 and ABCG1, but not SR-B1, promote macrophage reverse cholesterol transport in vivo. J. Clin. Invest. 117, 2216–2224 (2007).
10. J. A. Glomset, The plasma lecithin:cholesterol acyltransferase reaction. J. Lipid Res. 9, 155–167 (1968).
11. D. C. Rees, E. Johnson, O. Lewinson, ABC transporters: The power to change. Nat. Rev. Mol. Cell Biol. 10, 218–227 (2009).
12. K. P. Hopfner et al., Structural biology of Rad50 ATPase: ATP-driven conformational control in DNA double-strand break repair and the ABC-ATPase superfamily. Cell 101, 789–800 (2000).
13. J. Wang et al., Sequences in the nonconsensus nucleotide-binding domain of ABCG5/ABCG8 required for sterol transport. J. Biol. Chem. 286, 7308–7314 (2011).
14. D. H. Zhang, G. A. Graf, R. D. Gerard, J. C. Cohen, H. H. Hobbs, Functional asymmetry of nucleotide-binding domains in ABCG5 and ABCG8. J. Biol. Chem. 281, 4507–4516 (2006).
15. J. Y. Lee et al., Crystal structure of the human sterol transporter ABCG5/ABCG8. Nature 533, 561–564 (2016).
16. A. M. Plummer, A. T. Culbertson, M. Liao, The ABCs of sterol transport. Annu. Rev. Physiol. 83, 153–181 (2021).
17. H. Qian et al., Structure of the human lipid exporter ABCA1. Cell 169, 1228–1239 e10 (2017).
18. N. M. I. Taylor et al., Structure of the human multidrug transporter ABCG2. Nature 546, 504–509 (2017).
19. L. Yu, K. von Bergmann, D. Lutjohann, H. H. Hobbs, J. C. Cohen, Selective sterol accumulation in ABCG5/ABCG8-deficient mice. J. Lipid Res. 45, 301–307 (2004).
20. G. A. Graf et al., ABCG5 and ABCG8 are obligate heterodimers for protein trafficking and biliary cholesterol excretion. J. Biol. Chem. 278, 48275–48282 (2003).
29. F. Wang, G. Li, H. M. Gu, D. W. Zhang, Characterization of the role of a highly conserved sequence in ATP binding cassette transporter G (ABCG) family in ABCG1 stability, oligomerization, and trafficking. Biochemistry 52, 9497–9509 (2013).

30. J. E. Moody, L. Millen, D. Binns, J. F. Hunt, P. J. Thomas, Cooperative, ATP-dependent association of the nucleotide binding cassettes during the catalytic cycle of ATP-binding cassette transporters. J. Biol. Chem. 277, 21111–21114 (2002).

31. H. de Wet et al., Studies of the ATPase activity of the ABC protein SUR1. FEBS J. 274, 3532–3544 (2007).

32. Z. L. Johnson, J. Chen, Structural basis of substrate recognition by the multidrug resistance protein MRP1. Cell 168, 1075–1085.e9 (2017).

33. I. Manolaridis et al., Cryo-EM structures of a human ABCG2 mutant trapped in ATP-bound and substrate-bound states. Nature 563, 3532–3544 (2007).

34. Z. Zhang, J. Chen, Atomic structure of the cystic fibrosis transmembrane conductance regulator. Cell 167, 1586–1597.e9 (2016).

35. C. Fan, J. T. Kaiser, D. C. Rees, A structural framework for unidirectional transport by a bacterial ABC exporter. Proc. Natl. Acad. Sci. U.S.A. 117, 19228–19236 (2020).

36. M. S. Jin, M. L. Oldham, Q. Zhang, J. Chen, Crystal structure of the multidrug transporter P-glycoprotein from Caenorhabditis elegans. Nature 490, 566–569 (2012).

37. Z. Zhang, F. Liu, J. Chen, Conformational changes of CFTR upon phosphorylation and ATP binding. Cell 170, 483–491.e8 (2017).

38. S. M. Jackson et al., Structural basis of small-molecule inhibition of human multidrug transporter ABCG2. Nat. Struct. Mol. Biol. 25, 333–340 (2018).

39. G. Yu et al., Structures of ABCG2 under turnover conditions reveal a key step in the drug transport mechanism. Nat. Commun. 12, 4376, 10.1038/s41467-021-24651-2 (2021).

40. E. J. Tarling, P. A. Edwards, ATP binding cassette transporter G1 (ABCG1) is an intracellular sterol transporter. Proc. Natl. Acad. Sci. U.S.A. 108, 19719–19724 (2011).

41. E. Procko, M. L. O’Mara, W. F. Bennett, D. P. Tieleman, R. Gaudet, The mechanism of ABC transporters: General lessons from structural and functional studies of an antigenic peptide transporter. FASEB J. 23, 1287–1302 (2009).

42. G. Lu, J. M. Westbrook, A. L. Davidson, J. Chen, ATP hydrolysis is required to reset the ATP-binding cassette dimer into the resting-state conformation. Proc. Natl. Acad. Sci. U.S.A. 102, 17969–17974 (2005).

43. Z. L. Johnson, J. Chen, ATP binding enables substrate release from multidrug resistance protein 1. Cell 172, B1–B9.e10 (2018).

44. S. Hofmann et al., Conformation space of a heterodimeric ABC exporter under turnover conditions. Nature 571, 580–583 (2019).

45. J. Wang et al., Sterol transfer by ABCG5 and ABCG8: In vitro assay and reconstitution. J. Biol. Chem. 281, 27894–27904 (2006).

46. F. Liu, Z. Zhang, L. Csanády, D. C. Gadsby, J. Chen, Molecular structure of the human CFTR ion channel. Cell 169, 85–95.e8 (2017).

47. T. Vasanthakumar et al., Structural comparison of the vacuolar and Golgi V-ATPases from Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U.S.A. 116, 7272–7277 (2019).

48. J. Wang et al., Relative roles of ABCG5/ABCG8 in liver and intestine. J. Lipid Res. 56, 319–330 (2015).