Abstract

Coinfections with multiple pathogens can result in complex within-host dynamics affecting virulence and transmission. While multiple infections are intensively studied in solitary hosts, it is so far unresolved how social host interactions interfere with pathogen competition, and if this depends on coinfection diversity. We studied how the collective disease defences of ants – their social immunity – influence pathogen competition in coinfections of same or different fungal pathogen species. Social immunity reduced virulence for all pathogen combinations, but interfered with spore production only in different-species coinfections. Here, it decreased overall pathogen sporulation success while increasing co-sporulation on individual cadavers and maintaining a higher pathogen diversity at the community level. Mathematical modelling revealed that host sanitary care alone can modulate competitive outcomes between pathogens, giving advantage to fast-germinating, thus less grooming-sensitive ones. Host social interactions can hence modulate infection dynamics in coinfected group members, thereby altering pathogen communities at the host level and population level.

Keywords

Argentine ants, grooming, host–pathogen interactions, immune-mediated competition, infectious disease, *Metarhizium* fungus, multiple infections, pathogen competition, pathogen diversity, social insects.
theoretical and experimental research has made significant progress in understanding, on the one hand, some of the consequences of coinfections on virulence and pathogen epidemiology in individual hosts (Thomas et al. 2003; de Roode et al. 2005; Choisy & de Roode 2010; Cressler et al. 2014; Susi et al. 2015; Ramiro et al. 2016; Duncan et al. 2018) and on the other, how social immunity interferes with the course of infection in individual hosts and pathogen spread through the colony (Stroeymeyt et al. 2018; Pull et al. 2018b). However, how the social interactions between hosts could affect pathogen competition in infected individuals and how this may affect the overall pathogen community is largely unexplored.

We study ants as a model system to test for the effect of collective disease defences – their social immunity – on pathogen competition and success during coinfections. As pathogens, we use the entomopathogenic fungus *Metarhizium*, which is a generalist pathogen of arthropods, infecting ants and many solitary insects (Pull et al. 2013; Angelone & Bidochka 2018). *Metarhizium* fungi are obligate killers that actively penetrate the host’s cuticle, kill the host and grow out millions of new infectious stages (‘conidiospores’, hereafter ‘spores’) (Gillespie et al. 2000). Transmission to new hosts occurs via direct contact to sporulating cadavers (Hughes et al. 2002) or via spores shed into the environment (Gillespie et al. 2000).

To reflect natural pathogen diversity (Keller et al. 2003), we coinfect individual ants with two fungal strains from the same pathogen community isolated from the field (Steinwender et al. 2014). Coinfections comprised either two strains of the same *Metarhizium* species, or of two different *Metarhizium* species. Each coinfection combination was tested for pathogen success in two different host social contexts: (1) individually exposed ants and (2) exposed ants grouped with nestmates. Exposed ants are known to remove infectious particles from their body surface by grooming, but are additionally groomed by their nestmates (allogrooming), which represents one of the most common sanitary care behaviours in social insects, effectively reducing the risk of disease after exposure (Reber et al. 2011; Theis et al. 2015).

Aim of our study was to test how pathogen coinfection diversity and host social context may interact to affect pathogen virulence, competition success and transmission potential. We determined virulence as the rate of host killing and assessed the outcome of within-host pathogen interactions and transmission potential of both coinfecting strains by their spore production. To this end, we determined both, the spore quantity and diversity per cadaver, and the resulting pathogen diversity at the community level.

METHODS

Experimental procedures

We used the Argentine ant, *Linepithema humile* (Mayr, 1868), as host and three strains each of two species of *Metarhizium* fungi (Bischoff et al. 2009), *M. robertsi* and *M. brunneum* as pathogens (Table S1).

Host killing rate and spore production. We exposed individual Argentine ant workers to a 50:50 mix of two pathogens, in all possible combinations of the six strains (Table S1), leading to either same-species co-exposures (*M. robertsi*–*M. robertsi*, R1–R2, R1–R3, R2–R3, and *M. brunneum–M. brunneum*, B1–B2, B1–B3, B2–B3), or different-species co-exposures (*M. robertsi–M. brunneum*, R1–B1, R1–B2, R1–B3, R2–B1, R2–B2, R2–B3, R3–B1, R3–B2, R3–B3). Ants were either kept individually (n = 30/comination) or in groups with two unexposed workers (n = 50/comination). In our experimental system, death typically occurs in 4–8 days. To assure complete sporulation (taking up to 5 days after death), spores from ants dying within 8 days after exposure were collected at day 13. Sporulating cadavers (individual: n = 134, group: n = 133) were used to determine mortality (Fig. 1a), spore number (Fig. 1b) and spore identity (Fig. 2). Spore packages were collected from the cadavers, their DNA extracted, quantified and converted to spore numbers using a standard curve. Strains were identified using microsatellite markers (Enkerli et al. 2005; Oulevey et al. 2009).

Spore removal by grooming. We performed a grooming experiment to determine (1) the efficiency of sanitary care in spore removal and (2) whether grooming biases pathogen species on the cuticle. We exposed workers to a 50 : 50 pathogen mix (R2–B3) as above and analysed the spore number per strain remaining on the ant after 2 h of grooming in the group (self- and allogrooming, n = 22), compared to individual ants (self-grooming only, n = 21), and to the applied dose measured immediately after exposure (n = 21; Fig. 3). For pathogen quantification via real-time PCR, we developed primers and probes for each species for the cuticle-degrading protease PR1 (St. Leger et al. 1992).

Pathogen germination speed. We determined the duration of spore germination by incubating all six strains (n = 14 replicates/strain) in liquid fungal growth medium in a microplate reader (Synergy H1™ Hybrid Multi-Mode, BioTek) over 72 h with measurements of optical density every 20 min (modified from Milutinović et al. 2015). Time to germination was obtained as a breakpoint (in hours) at which the growth curve changes from the stationary to the exponential phase (Fig. 4).

Data analysis

All statistical analyses were performed in R version 3.5.1 (R Core Team 2018).

Host killing rate and spore production. We tested for the significance of our two main effects, pathogen ‘coinfection diversity’ (same species vs. different species) and host ‘social context’ (individual vs. group), as well as their interaction. We included ‘pathogen combination’ as random effect for all models (generalised linear mixed model with binomial error terms and logit-link function, GLMM: Figs 1a and 2a,b and linear mixed model, LMM: Fig. 1b), using the *lme4* package (Bates et al. 2015). For the analysis of strain-specific outgrowth (Fig. 2b), we further included ‘experimental dish’ in which the ants were kept as a random effect, and ‘focus strain’ (main effect) and its competitor as ‘non-focus strain’ (random effect) designated for each of the strains within a pathogen combination, to evaluate outgrowth success shifts within combinations and to infer a success hierarchy of the six strains (based on model intercepts, Table S2, Fig. S4). We
tested model assumptions (*influence.ME* package; Nieuwenhuis *et al*. 2012). As the untransformed data for spore number (Fig. 1b) did not meet model assumptions, we obtained normality by transforming the data (*Box-Cox normalisation, bestNormalize* package; Peterson 2017) (figure displays untransformed values). For all models, we first tested the significance of the overall model including the main effects and their interaction compared to a null model (intercept only) using likelihood ratio (LR) tests (Bolker *et al*. 2009). As all models were significant (*P* ≤ 0.003), we tested the significance of the interaction. We then performed separate models for the same-species and different-species coinfections to test the effect of host social context, and corrected with the Benjamini–Hochberg procedure (Benjamini & Hochberg 1995) to protect against a false discovery rate (FDR) of 5%. We report corrected *P* values.

Spore removal by grooming. We compared the quantity of spores retrieved from the ants’ body surface (1) directly after exposure (baseline) and after 2 h of (2) self-grooming (individual context) or (3) both self- and allogrooming (group context), by a Kruskal–Wallis test, followed by posthoc Benjamini–Hochberg corrected pairwise Mann–Whitney U tests (Fig. 3a; displaying proportion removal by grooming compared to the exposure dose). To test for a potential shift in the composition of pathogen species, we determined the proportion of *M. brunneum* compared to *M. robertsii* in all three groups and used a Kruskal–Wallis test (Fig. 3b) to test for differences between treatments.

Pathogen germination. Time to germination was determined by analysing strain growth curves using broken-line regression analysis and identification of the first breakpoint (change from stationary to exponential growth) using the *segmented*
1.19 grey dotted lines, revealing non-significant difference from 50:50). Data points show the proportion of Metarhizium robertsii corrected by 22% in the individual ants and by 30% in the presence of allogrooming nestmates. The zero line depicts the baseline exposure dose (median 1.57 sufficient to explain the relative outgrowth shift observed in 2015) to test whether the differences in germination speed between strains (Benjamini–Hochberg corrected). We formulated a stochastic competition model (Huang et al. 2013; Constable et al. 2015) to test whether the differences in germination speed between M. robertsii (R) and M. brunneum (B; Fig. 4) were sufficient to explain the relative outgrowth shift observed in groups (Fig. 2), given the differential grooming efficiencies of self-grooming only vs. self- and allogrooming (Fig. 3). The model distinguishes three qualitatively different periods. (1) Initially, spores from both species are removed from the cuticle at a constant rate \(a \) per hour, which is equal for both, M. robertsii (R \(\frac{a}{a} \), 0) and M. brunneum (B \(\frac{a}{a} \); Fig. 3b) but smaller for individuals than groups, with \(a_I < a_G \) (Fig. 3a). (2) Once the germination time \(t_B \) of M. brunneum has been reached, its spores enter the host and reproduce, that is, grow within the host’s body. During this period, spores of M. brunneum reproduce at a rate \(b_B \) (represented as \(B^{a_B} \rightarrow B^{2a_B} \)), and die at rate \(d_B \) (\(B^{a_B} \)). Moreover, we include the higher-order relationship \(B + B^{a_B} \) to describe within-species competition, reflecting limited host resources. In the meanwhile, spores of M. robertsii continue to be removed from the cuticle at rate \(a \). (3) Once the germination time \(t_R \) of M. robertsii has been reached at time \(t_R > t_B \), both pathogens compete within the host. Similar to M. brunneum, spores of M. robertsii reproduce at rate \(b_R \), die at rate \(d_R \), and they are subject to within-species competition at rate \(a_{RR} \). In addition, there is now also between-species competition, represented by the relationships \(R + B^{a_B} \) and \(R + B^{a_B} \) \(R \). Depending on how the within-species rates \(a_{RR} \) and \(a_{BB} \) compare to the between-species rates \(a_{RB} \) and \(a_{BR} \), the two species can either stably coexist (leading to mixed outgrowth in a cadaver), or one species drives the other one to extinction (Hofbauer & Sigmund 1998). We fitted these competition parameters to match the experimentally observed spore proportions after completed sporulation (Fig. 2), and used them equally for ants kept as individuals and in groups to determine whether the observed differences in the parasites’ germination time alone can explain any observed differences in spore outgrowth between host social contexts. We simulated the above-described process using the Gillespie algorithm (Gillespie 1976) to allow for stochastic effects (Gokhale et al. 2013; Constable et al. 2016). We include stochasticity to capture the experimental observation that identically exposed ants may result in different spore

Figure 3 Pathogen removal by ant grooming behaviour. (a) Grooming reduced the total number of spores on the ant’s cuticle after a 2-h grooming period by 22% in the individual ants and by 30% in the presence of allogrooming nestmates. The zero line depicts the baseline exposure dose (median 1.57 × 10^5 spores, interquartile range [IR]: 1.38 × 10^5–1.78 × 10^5). Data points give the proportional reduction from this baseline per ant (median number of spores retrieved from the ant in the individual context: 1.23 × 10^3 spores, IR: 1.20 × 10^3–1.25 × 10^3 and group context: 1.10 × 10^3 spores, IR: 1.08 × 10^3–1.19 × 10^3). The black lines indicate the median for each host social context and the boxes show 95% confidence intervals (CI). Benjamini–Hochberg corrected P value: *** denotes \(P < 0.001 \). (b) Host social context did not change the relative contribution of Metarhizium brunneum to Metarhizium robertsii from the baseline exposure with a 50:50 suspension (median proportion M. brunneum directly after exposure shown as black dotted line, IR as grey dotted lines, revealing non-significant difference from 50:50). Data points show the proportion of M. brunneum per ant, black lines the median for each social context and boxes the 95% CI. N.S. denotes a non-significant overall model.

Figure 4 Germination speed of the fungal strains. Each strain had a characteristic time to germination, yet all Metarhizium brunneum strains germinated significantly faster in fungal growth medium than all Metarhizium robertsii strains. Data points show replicates, with the median germination duration per strain depicted as black lines and boxes representing 95% CI (same colour scheme as in Fig. 2b). Significance groups revealing differences between strains (Benjamini–Hochberg corrected P values of all pairwise posthoc comparisons \(P < 0.001 \)) are denoted by different letters (a–f).
outgrowth, due to random fluctuations during spore removal and competition.

See supplement for more details on experimental procedures, data analysis and model.

RESULTS

Social immunity reduces pathogen virulence independent of coinfection diversity

The presence of nestmate ants reduced the pathogen-induced mortality in the exposed ants from 60% when kept individually to 32% when kept in groups, independent of coinfection diversity (Fig. 1a, Fig. S1; GLMM; interaction coinfection diversity*social context: \(\chi^2 = 6.452, \) d.f. = 1, \(P = 0.011 \)). Social immunity altered the proportion of mixed outgrowth only for different-species coinfections (effect of social context in same-species coinfection: \(\chi^2 = 0.107, \) d.f. = 1, \(P = 0.743 \); different-species coinfection: \(\chi^2 = 13.023, \) d.f. = 1, \(P < 0.001 \)). In groups, more than 30% of all cadavers showed outgrowth of both strains after different-species coinfections, in contrast to only 5% in individual ants (Fig. 2a). Therefore, social immunity over-proportionally favoured cadavers with co-sporulation of two pathogen species, increasing the likelihood of continued coinfections in the next hosts.

Social immunity maintains a diverse pathogen community otherwise lost in different-species coinfections

To determine the relative contribution of each of the six strains to the transmission pool for the next generation, we compared the number of cadavers showing outgrowth of each strain (co-sporulating cadavers counted for both strains) between our four experimental groups. Overall, \(M. \) robertsii and \(M. \) brunneum contributed equally to the next generation of spores (c. 50:50) in all experimental groups, except for the cadavers of different-species coinfections emerging from individual ants (Fig. 2b). Here, \(M. \) robertsii had a competitive advantage with the proportion of cadavers sporulating with \(M. \) robertsii amounting to 62% while the two species showed approximately equal contributions (49% \(M. \) robertsii) in the group context. Thereby, social immunity affected the population-wide pathogen community in different-species coinfections, but not in same-species coinfections (Fig. 2b; GLMM; trend-significant interaction focus strain*coinfection diversity*social context: \(\chi^2 = 10.209, \) d.f. = 5, \(P = 0.0695 \); effect of social context in same-species coinfection: \(\chi^2 = 14.796, \) d.f. = 11, \(P = 0.230 \); different-species coinfection: \(\chi^2 = 46.080, \) d.f. = 11, \(P < 0.001 \)). Within species, some strains were more successful than others (ranging from 8 to 27% of total contribution) and they were also differently affected by social immunity. Whereas \(M. \) robertsii strain R1 successfully produced the highest share of cadavers independent of host social context (Figs S3 and S4), other strains, for example, \(M. \) brunneum B1 and B3 gained advantage in the group vs. individual context. Overall, \(M. \) robertsii showed higher competitive abilities than \(M. \) brunneum in individual hosts, being over-represented in the spore community. However, social immunity interfered with the dominance of \(M. \) robertsii by creating conditions that strengthen \(M. \) brunneum, thereby maintaining higher pathogen diversity in the community.

Ant sanitary care unselectively reduces cuticle spore load

The gained advantage of \(M. \) brunneum under social immunity may result from ant behaviour and/or fungal growth patterns. To evaluate whether the ants remove \(M. \) robertsii over-proportionally, thereby directly biasing the spore composition on the ants’ cuticles by selective grooming, we exposed ants to a 50:50 mix of \(M. \) robertsii and \(M. \) brunneum (R2-B3; see supplement) and kept them for 2 h in the individual or group context. In this early period after exposure, preceding spore
germination (see below), *Metarhizium* spores only adhere lightly by hydrophobic bonds (Gillespie et al. 2000) and can be effectively removed by grooming (self-grooming only in the individual context vs. self- and allogrooming in the group context) (Vestergaard et al. 1999; Thomas & Read 2007; Walker & Hughes 2009). As expected (Hughes et al. 2002; Reber et al. 2011; Okuno et al. 2012), individual self-grooming alone clearly reduced the cuticle spore load of the ants compared to the applied load, and sanitary care by nestmates lead to an even stronger reduction (Fig. 3a; Kruskal–Wallis test $\chi^2 = 35.942$, d.f. = 2, $P < 0.001$; all pairwise posthoc comparisons $P < 0.002$). Yet, we found no significant change in the relative proportions of *M. brunneum* to *M. robertsii* on the ants’ cuticle in either social context (Fig. 3b; Kruskal–Wallis test $\chi^2 = 4.703$, d.f. = 2, $P = 0.096$). This suggests that the increased success of *M. brunneum* when competing with *M. robertsii* in grouped vs. individual ants (Fig. 2b) cannot be explained by spore proportion bias on the ants’ cuticles caused by selective grooming, assuming that the first 2 h are representative for all grooming.

Faster germination gives social immunity less time to act on *M. brunneum*

Even if performed unbiased, the spore removal efficiency of grooming will depend on the adherence strength of the spores, which increases with spore germination. Once the fungus has penetrated the host body, grooming is no longer efficient (Walker & Hughes 2009).

Depending on their germination speed, the different fungi may, hence, show different time windows during which grooming is efficient and they are susceptible to sanitary care. Determination of the in vitro germination periods of our six strains indeed revealed that all strains of *M. brunneum* germinated significantly faster than any strain of *M. robertsii* (Fig. 4; Kruskal–Wallis test $\chi^2 = 79.736$, d.f. = 5, $P < 0.001$; all pairwise posthoc comparisons $P < 0.001$). The variation in germination onset within species was small for all pairwise posthoc comparisons $P < 0.002$). Yet, we found no significant change in the relative proportions of *M. brunneum* to *M. robertsii* on the ants’ cuticle in either social context (Fig. 3b; Kruskal–Wallis test $\chi^2 = 4.703$, d.f. = 2, $P = 0.096$). This suggests that the increased success of *M. brunneum* when competing with *M. robertsii* in grouped vs. individual ants (Fig. 2b) cannot be explained by spore proportion bias on the ants’ cuticles caused by selective grooming, assuming that the first 2 h are representative for all grooming.

Model dynamics reveal a competitive advantage for fast-germinating pathogens under social immunity

Our experiments showed that social immunity did not only reduce overall (absolute) pathogen success (Fig. 1), but moreover shifted the balance between pathogen species (relative success; Fig. 2), despite the fact that we could not observe any selectively performed sanitary care (Fig. 3). We devised a model to determine whether the observed differential growth characteristics of the two pathogen species (Fig. 4) could suffice to explain the modulation of competitive success between the two pathogen species by social immunity. In particular, we were interested whether the combination of (1) larger spore removal efficiency in the group- vs. individual social context (Fig. 3b) and (2) the faster germination speed, that is, shorter time window for grooming of *M. brunneum* (Fig. 4) could explain why social immunity improves the competitive advantage of *M. brunneum*. Supporting our experimental data (Fig. 2b), our model resulted in higher outgrowth of *M. robertsii* in individual ants (Fig. 5a) while the two pathogens showed a balanced outgrowth in grouped ants (Fig. 5b). The model further revealed that both the higher grooming efficiency in the group and the difference in germination time between the coinfecting pathogens affect the outcome of the pathogen competition over a wide parameter range (Fig. 5c,d) and hence a wider range of biological scenarios than could be tested in our experiment. Importantly, no other parameters than the grooming efficiency differed between ants kept individually or in the group. In particular, the competition parameters of the model were set equal for both social contexts. Thus, our simulations confirm that the pure fact that *M. robertsii* spores have a longer germination time and are exposed to allogrooming for longer can explain the observed outgrowth patterns and the modulatory effect of social immunity on the outcome of pathogen competition.

DISCUSSION

Our work revealed that social host interactions can have a major influence on pathogen communities. Using multiple pathogen combinations, we identified robust and general patterns of how social immunity influences pathogen competition when ants are coinfeected with different fungal pathogen species, where we found it to (1) reduce spore production in combinations that otherwise showed high sporulation success in individual hosts (Fig. 1b), (2) increase the proportion of cadavers with simultaneous outgrowth of both pathogen species (Fig. 2a) and (3) induce a shift in the relative success of coinfecting pathogens (Fig. 2b, Fig. S3). Thereby, social immunity maintained a higher pathogen diversity at both, the cadaver level and the community level.

As expected by the reduction of exposure dose on the cuticle (Fig. 3) and dose-dependency of *Metarhizium* virulence (Hughes et al. 2002), social immunity greatly improved host survival (Rosengaus et al. 1998; Theis et al. 2015), independent of coinfection diversity (Fig. 1a). In our obligate-killer system (Gillespie et al. 2000), coinfection diversity did not affect virulence (Fig. 1a) while it altered the production of transmission stages. We found that individual hosts that were coinfeected by several different-species combinations showed increased spore production (Fig. 1b, Fig. S2), which is in line with previous work reporting increased transmission stage production under pathogen competition (Moss et al. 1995; Abu-Raddad et al. 2006; Lass et al. 2013; Louhi et al. 2015). This suggests different within-host dynamics depending on the within-host diversity of pathogens in our system, which could result from a less efficient immune response when fighting multiple enemies (de Roode et al. 2003), or from increased pathogen growth and competition for the same host resources after host death (López-Villavicencio et al. 2011). Social immunity interfered with this
increased spore production (Fig. 1b). We suggest this to be a consequence of additional nestmate allogrooming, which reduces the effective spore dose on the cuticle stronger than self-grooming alone (Fig. 3a). Reduced *Metarhizium* exposure doses lead to reduced spore production in ants (Hughes et al. 2004).

Not only did nestmates reduce the overall spore amount on the cuticle, this behaviour also changed the competitive success of the two pathogen species relative to one another. *M. robertsii*, which dominated the spore outgrowth in individual hosts, lost its dominance when nestmates provided sanitary care (Fig. 2b). We could not find any indication that this was caused by the ants actively biasing spore composition on the cuticle by selectively removing more *M. robertsii* from the exposed individual (Fig. 3). However, our model revealed that even in the absence of selective grooming, the slower germination of *M. robertsii* (Fig. 4) is sufficient to explain its lower competitive ability in individually kept ants, as the first pathogen needs to fight the host alone, for example, with the number of grooming nestmates (Hughes et al. 2002). Also, our findings may be similarly applicable to a variety of other pathogen combinations with differing germination time (Fig. 5d).

Faster germination benefited *M. brunneum* by reducing its sensitivity to grooming, but it did not provide a higher within-host competitive ability in individually kept ants, as found in other systems where the first-established pathogens gain competitive advantage over competitors that enter the host later (de Roode et al. 2005; Ben-Ami et al. 2008; Hoverman et al. 2013; Natsopoulou et al. 2014). This hints to a possible trade-off in our system between germination speed and competitiveness, both against other pathogens, or the host immune system (Mukherjee & Vilcinskas 2018). Prior residence may induce an over-proportional cost to *M. brunneum* as the first pathogen needs to fight the host alone, for example, by releasing factors modulating host immunity or toxins to kill the host (Gillespie et al. 2000; Beys-da-Silva et al. 2014; Mukherjee & Vilcinskas 2018), which may benefit the later-overcome by the immune system or competitors when in small numbers. Testing our model for a wide range of parameter values revealed that the predictions are robust to different allogrooming efficiencies (Fig. 5c), which can change, for example, with the number of grooming nestmates (Hughes et al. 2002).

![Figure 5](image-url) Modelling pathogen competition dynamics under varying host social contexts. Based on a stochastic model, we have repeatedly simulated the competition between *Metarhizium brunneum* (yellow) and *Metarhizium robertsii* (blue) for the individual (a) and group (b, c, d) context. (a, b) 30 representative sample paths (in light colours) as well as the resulting average values (in bold colours). In the first phase (0–8 h), grooming equally removes spores of both species from the ant’s cuticle until *M. brunneum* spores have germinated and entered the body. In the second phase (8–24 h), *M. brunneum* already establishes an infection in the host, and interacts with the host immune system, while *M. robertsii* is still being groomed off by the ants on the cuticle. In the third phase (>24 h), *M. robertsii* also enters the host (yet in lower numbers due to longer exposure to grooming), where the two fungi interact both with one another and the host immune system, grow and produce final spore outgrowth (day 13). Plots provide the timeline of pathogen success over the period of 13 days, with inserts showing details of the first two phases (model parameters: experimentally derived parameter values: $a_f = 0.1221/h$, $a_g = 0.1779/h$, $I_f = 8.1h$, $I_g = 23.9h$; fitted first two phases: model parameters: $a_f = a_g = 1.20$, $b_f = b_g = 1.26$, $a_{BB} = a_{RR} = 3 \times 10^{-6}$, $a_{BB} = 3.03 \times 10^{-4}$ and $a_{BB} = 3 \times 10^{-5}$). (c, d) Effect of different parameter values on the final proportion of *M. brunneum* (on total spore production) in the group context (c) with varying spore removal efficiency by the additional allogrooming by nestmates as compared to self-grooming only, and (d) with varying difference in germination speed between the two co-infecting pathogens. *M. brunneum* gains competitive advantage when social grooming is highly effective (c) and when there is a considerable lag in the two germination times (d). Each data point is based on 500 simulations. For (c), we used the same removal rate as in (a), $a_f = 0.217/h$, and we have continually increased a_g starting from a_f. For (d), we fixed the germination time of *M. robertsii* to $t_R = 23.9h$, and have continually decreased the germination time t_f.

© 2020 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd
incoming *M. robertsii* (Hughes & Boomsma 2004; Chouvenc et al. 2012).

We found that the presence of grooming nestmates induced more co-sporulation in cadavers after different-species coinfections, but not after same-species coinfections (Fig. 2a). The increased grooming efficiency in social groups, coupled with differences in pathogen germination speed (Fig. 4), could have prevented competitive exclusion of one of the strains, which is otherwise common for *Metarhizium* coinfections (Figs S2 and S3; Pauli et al. 2018). Cadavers producing spores of both species will lead to a higher probability that hosts will get coinfected by a single cadaver in the next round of transmission. Social immunity therefore increases pathogen diversity at both the cadaver level and at the community level so that the likelihood of continued coinfections with different pathogen species will remain high for future hosts.

Understanding the underlying mechanistic details of pathogen competition and the ecological context of disease spread is crucial for understanding processes that shape pathogen communities (Pedersen & Fenton 2007; Johnson et al. 2015). Altered pathogen communities could feedback to affect host-pathogen interactions and their evolution (Boots et al. 2009; Alizon et al. 2013). This could furthermore depend on the composition of the host community, that is, the number of solitary and social species present and their territorial and ecological overlap (Cremer et al. 2018; Cremer 2019a).

CONCLUSION

We find that social host interactions have the potential to change the dynamics of pathogen competition in social hosts compared to when hosts are fighting disease on their own. This phenomenon parallels the immune-mediated competition described for solitary hosts where host immunity mediates indirect advantage to one of the genotypes (Lysenko et al. 2005; Raberg et al. 2006) and could be described as ‘socially mediated competition’. Social interactions may affect disease outcomes in a variety of group-living species, and should be considered when modelling or experimentally testing epidemiological dynamics, especially for commercially important host species like the honeybee (Brosi et al. 2017), or ecologically relevant species, like invasive species (Ugelvig & Cremer 2012; Cremer 2019a).

ACKNOWLEDGEMENTS

We thank Bernhardt Steinwender and Jorgen Eilenberg for the fungal strains, Xavier Espadaler, Mireia Diaz, Christiane Wanke, Lumi Viljakainen and the Social Immunity Team at IST Austria, for help with ant collection, and Wanda Gorecka and Gertraud Stift of the IST Austria Life Science Facility for technical support. We are thankful to Dieter Ebert for input at all stages of the project, Roger Mundry for statistical advice, Hinrich Schubenl, Paul Schmid-Hempel, Yuko Ulrich and Joachim Kurtz for project discussion, Bor Kavic for advice on growth curves, Marcus Roper for advice on modelling work and comments on the manuscript, as well as Marjon de Vos, Weini Huang and the Social Immunity Team for comments on the manuscript.

FUNDING INFORMATION

This study was funded by the German Research Foundation (DFG) within the Priority Programme 1399 Host-parasite Coevolution (CR 118/3 to S.C.) and the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA grant agreement no 291734 (ISTFELLOW to B.M.).

ETHICS STATEMENT

Ant collection followed the rules for Access and Benefit-Sharing and was granted by the Spanish Ministry of Agriculture, Fisheries and Environment (ABSC/F-IRCC-ES-240056-1 number ESNC12), as well as the Provincial Government of Catalonia (SF/0558-0561). All experiments comply with European law and institutional ethical guidelines.

AUTHORS’ CONTRIBUTIONS

The experiments were conceived by SC, MS and BM and performed by MS, AVG, BM and EN. Data analysis was performed by BM and MS, the model developed by CH with input from BM and SC, and the manuscript written by SC, BM and CH. The manuscript was approved by all authors.

DATA AVAILABILITY STATEMENT

All data are accessible on Dryad: https://doi.org/10.5061/dryad.crjdfn318.

REFERENCES

Abu-Raddad, L.J., Patnaik, P. & Kublin, J.G. (2006). Dual infection with HIV and malaria fuels the spread of both diseases in sub-Saharan Africa. *Science*, 314, 1603–1606.

Alizon, S., de Roode, J.C. & Michalakis, Y. (2013). Multiple infections and the evolution of virulence. *Ecol. Lett.*, 16, 556–567.

Angelone, S. & Bidochna, M.J. (2018). Diversity and abundance of entomopathogenic fungi at ant colonies. *J. Invertebr. Pathol.*, 156, 73–76.

Balmer, O. & Tanner, M. (2011). Prevalence and implications of multiple-strain infections. *Lancet. Infect. Dis.*, 11, 866–878.

Bates, D., Maechler, M., Bolker, B. & Walker, S. (2015). Fitting linear mixed-effects models using lme4. *J. Stat. Softw.*, 67, 1–48.

Ben-Ami, F. & Routtu, J. (2013). The expression and evolution of virulence in multiple infections: the role of specificity, relative virulence and relative dose. *BMC Evol. Biol.*, 13, 97.

Ben-Ami, F., Mouton, L. & Ebert, D. (2008). The effects of multiple infections on the expression and evolution of virulence in a *Daphnia*-endoparasite system. *Evolution*, 62, 1700–1711.

Benjamini, Y. & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. *J. R. Stat. Soc. Ser. B.*, 57, 289–300.

Beys-da-Silva, W.O., Santi, L., Berger, M., Calzolari, D., Passos, D.O., Guimarães, J.A. et al. (2014). Secretome of the biocontrol agent *Metarhizium anisopliae* induced by the cuticle of the cotton pest *Dysdercus peruvianus* reveals new insights into infection. *J. Proteome Res.*, 13, 2282–2296.

Bischoff, J.F., Rehner, S.A. & Humber, R.A. (2009). A multilocus phylogeny of the *Metarhizium anisopliae* lineage. *Mycologia*, 101, 512–530.

Bolker, B.M., Brooks, M.E., Clark, C.J., Geange, S.W., Poulsen, J.R., Stevens, M.H.H. et al. (2009). Generalized linear mixed models: a
practical guide for ecology and evolution. *Trends Ecol. Evol.*, 24, 127–135.

Boos, M., Neuville, J., Pichon, S. & Kollicker, M. (2014). Maternal care provides antifungal protection to eggs in the European earwig. *Behav. Ecol.*, 25, 754–761.

Boots, M., Best, A., Miller, M.R. & White, A. (2009). The role of ecological feedbacks in the evolution of host defense: what does theory tell us? *Philos. Trans. R. Soc. B Biol. Sci.*, 364, 27–36.

Bose, J., Kloesener, M.H. & Schulte, R.D. (2016). Multiple-genotype infections and their complex effect on virulence. *Zoology*, 119, 339–349.

Brosi, B.J., Delaplane, K.S., Boots, M. & de Roode, J.C. (2017). Ecological and evolutionary approaches to managing honeybee disease. *Nat. Ecol. Evol.*, 1, 1250–1262.

Buckling, A. & Brockhurst, M.A. (2008). Kin selection and the evolution of virulence. *Hereditas (Edinb)*, 100, 484–488.

Choisy, M. & de Roode, J.C. (2010). Mixed infections and the evolution of virulence: Effects of resource competition, parasite plasticity, and impaired host immunity. *Ann. Nat.*, 175, E105–E118.

Chouvenc, T., Eftasthion, C.A., Elliott, M.L. & Su, N.-Y. (2012). Resource competition between two fungal parasites in subterranean termites. *Naturwissenschaften*, 99, 949–958.

Constable, G.W.A., Rogers, T., McKane, A.J. & Tarnita, C.E. (2016). Demographic noise can reverse the direction of deterministic selection. *Proc. Natl Acad. Sci.*, 113, E4745–E4754.

Cotter, S.C. & Kilner, R.M. (2010). Sexual division of antibacterial resource defence in breeding bumblebees, *Nicrophorus vespilloides*. *J. Anim. Ecol.*, 79, 35–43.

Cox, F.E. (2001). Concomitant infections, parasites and immune responses. *Parasitology*, 122, S23–38.

Cremer, S. (2019a). Pathogens and disease defense of invasive ants. *Proc. R. Soc. London. Ser. B Biol. Sci.*, 271, 104–106.

Hughes, W.O.H., Eilenberg, J. & Boomsma, J.J. (2002). Trade-offs in group living: transmission and disease resistance in leaf-cutting ants. *Proc. R. Soc. London. Ser. B Biol. Sci.*, 269, 1811–1819.

Hughes, W.O.H., Petersen, K.S., Ugelvig, L.V., Pedersen, D., Thomsen, L., Poulsen, M. et al. (2004). Density-dependence and within-host competition in a semelparous parasite of leaf-cutting ants. * BMC Evol. Biol.*, 4, 1–12.

Johnson, P.T.J., de Roode, J.C. & Fenton, A. (2015). Why infectious disease research needs community ecology. *Science*, 349, 125904–125904.

Keller, S., Kessler, P. & Schweizer, C. (2003). Distribution of insect pathogenic soil fungi in Switzerland with special reference to *Beauveria brongnarii* and *Metharhizium anisopliae*. *Biocontrol*, 48, 307–319.

Shahraz, S., Petersen, K.S., Ugelvig, L.V., Pedersen, D., Thomsen, L., Poulsen, M. et al. (2004). Density-dependence and within-host competition in a semelparous parasite of leaf-cutting ants. *BMC Evol. Biol.*, 4, 1–12.

Johnson, P.T.J., de Roode, J.C. & Fenton, A. (2015). Why infectious disease research needs community ecology. *Science*, 349, 125904–125904.

Keller, S., Kessler, P. & Schweizer, C. (2003). Distribution of insect pathogenic soil fungi in Switzerland with special reference to *Beauveria brongnarii* and *Metharhizium anisopliae*. *Biocontrol*, 48, 307–319.

Hughes, W.O.H., Eilenberg, J. & Boomsma, J.J. (2002). Trade-offs in group living: transmission and disease resistance in leaf-cutting ants. *Proc. R. Soc. London. Ser. B Biol. Sci.*, 269, 1811–1819.

Hughes, W.O.H., Petersen, K.S., Ugelvig, L.V., Pedersen, D., Thomsen, L., Poulsen, M. et al. (2004). Density-dependence and within-host competition in a semelparous parasite of leaf-cutting ants. *BMC Evol. Biol.*, 4, 1–12.

Johnson, P.T.J., de Roode, J.C. & Fenton, A. (2015). Why infectious disease research needs community ecology. *Science*, 349, 125904–125904.

Keller, S., Kessler, P. & Schweizer, C. (2003). Distribution of insect pathogenic soil fungi in Switzerland with special reference to *Beauveria brongnarii* and *Metharhizium anisopliae*. *Biocontrol*, 48, 307–319.

Konrad, M., Vyleta, M.L., Theis, F.J., Stock, M., Tragust, S., Klitt, M. et al. (2012). Social transfer of pathogenic fungus promotes active immunisation in ant colonies. *PLoS Biol.*, 10, e1001300.

Lass, S., Hudson, P.J., Thakar, J., Saric, J., Hlavick, E, Albert, R. et al. (2013). Generating super-shedders: co-infection increases bacterial load and egg production of a gastrointestinal helminth. *J. R. Soc. Interface*, 10, 20120588.

Liu, L., Wang, W., Liu, Y., Sun, P., Lei, C. & Huang, Q. (2019). The influence of allogrooming behavior on individual innate immunity in the subterranean termite *Reticulitermes chitensis* (Isoptera: Rhinotermitidae). *J. Insect. Sci.*, 19, 6–11.

López-Villavicencio, M., Courjol, F., Gibson, A.K., Hood, M.E., Jonot, O., Shykoff, J.A. et al. (2011). Competition, cooperation among kin, and virulence in multiple infections. *Evolution*, 65, 1357–1366.

Loui, K.-R., Sandberg, L.-R., Jokela, J. & Karvonen, A. (2015). Interactions among bacterial strains and fluke genotypes shape virulence of co-infection. *Proc. Biol. Sci.*, 282, 20152097.

Lysenko, E.S., Ratner, A.J., Nelson, A.L. & Weiser, J.N. (2005). The role of innate immune responses in the outcome of interspecies competition for colonization of mucosal surfaces. *PLoS Pathog.*, 1, e1.

Milutinović, B., Höfng, C., Futo, M., Scharsack, J.P. & Kurtz, J. (2015). Infection of *Tribolium castaneum* with *Bacillus thuringiensis*: quantification of bacterial replication within cadavers, transmission via cannibalism, and inhibition of spore germination. *Appl. Environ. Microbiol.*, 81, 8135–8144.

Moss, G.B., Overbaugh, J., Welch, M., Reilly, M., Bwayo, J., Plummer, F.A. et al. (1995). Human immunodeficiency virus DNA in urethral secretions in men: Association with gonococcal urethritis and CD4 cell depletion. *J. Infect. Dis.*, 172, 1469–1474.

Muggeo, V.M.R. (2008). Estimating regression models with unknown break-points. *Stat. Med.*, 22, 3055–3071.

Muggeo, V.M.R. (2003). Regressing models with unknown break-points. *Stat. Med.*, 22, 3055–3071.
Natsopoulou, M.E., McMahon, D.P., Doublet, V., Bryden, J. & Paxton, R.J. (2014). Interspecific competition in honeybee intracellular gut parasites is asymmetric and favours the spread of an emerging infectious disease. Proc. R. Soc. B Biol. Sci., 282, 20141896.

Nieuwenhuis, R., Grotenhuis, M. & Pelzer, B. (2012). influence.ME: Tools for detecting influential data in mixed effects models. R J., 4, 38–47.

Okuno, M., Tsuji, K., Sato, H. & Fujisaki, K. (2012). Plasticity of grooming behavior against entomopathogenic fungus *Metarhizium anisopliae* in the ant *Lasius japonicus*. J. Inh., 30, 23–27.

Oulevey, C., Widmer, F., Kolliker, R. & Enkerli, J. (2009). An optimized microsatellite marker set for detection of *Metarhizium anisopliae* diversity on field and regional scales. Mycol. Res., 113, 1016–1024.

Papkou, A., Gazella, T., Yang, W., Koepper, S., Pees, B., Schalkowski, R. et al. (2019). The genomic basis of Red Queen dynamics during rapid reciprocal host–pathogen coevolution. Proc. Natl Acad. Sci., 116, 923–928.

Pauli, G., Mascarin, G.M., Eilenberg, J. & Delalibera J. (2018). Molecular diversity of the entomopathogenic fungal *Metarhizium* community within an agroecosystem. J. Invertebr. Pathol., 123, 6–12.

St. Leger, R.J., Frank, D.C., Roberts, D.W. & Staples, R.C. (1992). Molecular cloning and regulatory analysis of the cuticle-degrading-protease structural gene from the entomopathogenic fungus *Metarhizium anisopliae*. Ent. J. Biochem., 204, 991–1001.

Stein, R.A. (2011). Super-spreaders in infectious diseases. Int. J. Infect. Dis., 15, e510–e513.

Steinwender, B.M., Enderli, J., Widmer, F., Eilenberg, J., Thorup-Kristensen, K. & Meyling, N.V. (2014). Molecular diversity of the entomopathogenic fungal *Metarhizium* community within an agroecosystem. J. Invertebr. Pathol., 116, 25–33.

Wale, N., Sim, D.G. & Read, A.F. (2017). A nutrient mediates immune-mediated apparent competition in genetically diverse malaria infections. Am. Nat., 188, 531–42.

Wale, N., Sim, D.G. & Read, A.F. (2017). A nutrient mediates immune-mediated apparent competition in genetically diverse malaria infections. Am. Nat., 188, 531–42.