A PROOF OF THE GAN-LOH-SUDAKOV CONJECTURE

ZACHARY CHASE

Abstract. We prove that any max-degree \(d \) graph on \(n \) vertices has at most
\[q\left(\binom{d+1}{3}\right) + \binom{r}{3} \]
triangles, where \(n = q(d + 1) + r \), \(0 \leq r \leq d \). This resolves a conjecture of Gan, Loh, and Sudakov.

1. Introduction

Fix positive integers \(d \) and \(n \) with \(d + 1 \leq n \leq 2d + 1 \). Galvin [7] conjectured that the maximum number of cliques in an \(n \)-vertex graph with maximum degree \(d \) comes from a disjoint union \(K_{d+1} \cup K_r \) of a clique on \(d + 1 \) vertices and a clique on \(r := n - d - 1 \) vertices. Cutler and Radcliffe [4] proved this conjecture. Engbers and Galvin [6] then conjectured that, for any fixed \(t \geq 3 \), the same graph \(K_{d+1} \cup K_r \) maximizes the number of cliques of size \(t \), over all \((d + 1 + r) \)-vertex graphs with maximum degree \(d \). Engbers and Galvin [6]; Alexander, Cutler, and Mink [1]; Law and McDiarmid [11]; and Alexander and Mink [2] all made progress on this conjecture before Gan, Loh, and Sudakov [9] resolved it in the affirmative. Gan, Loh, and Sudakov then extended the conjecture to arbitrary \(n \geq 1 \) (for any \(d \)).

Conjecture (Gan-Loh-Sudakov Conjecture). Any graph on \(n \) vertices with maximum degree \(d \) has at most
\[q\left(\binom{d+1}{3}\right) + \binom{r}{3} \]
triangles, where \(n = q(d + 1) + r \), \(0 \leq r \leq d \).

They showed their conjecture implies that, for any fixed \(t \geq 4 \), any max-degree \(d \) graph on \(n = q(d + 1) + r \) vertices has at most
\[q\left(\binom{d+1}{t}\right) + \binom{r}{t} \]
cliques of size \(t \), so we have restricted attention to triangles.

The Gan-Loh-Sudakov conjecture (GLS conjecture) has attracted substantial attention. Cutler and Radcliffe [5] proved the conjecture for \(d \leq 6 \) and showed that a minimal counterexample, in terms of number of vertices, must have \(q = O(d) \). Gan [8] proved the conjecture if \(d + 1 - \frac{9}{4096}d \leq r \leq d \) (there are some errors in his proof, but they can be mended). Using fourier analysis, the author [3] proved the conjecture for Cayley graphs with \(q \geq 7 \). Kirsch and Radcliffe [10] investigated a variant of the GLS conjecture in which the number of edges is fixed instead of the number of vertices (with still a maximum degree condition).

In this paper, we fully resolve the Gan-Loh-Sudakov conjecture.

Theorem 1. For any positive integers \(n, d \geq 1 \), any graph on \(n \) vertices with maximum degree \(d \) has at most
\[q\left(\binom{d+1}{3}\right) + \binom{r}{3} \]
triangles, where \(n = q(d + 1) + r \), \(0 \leq r \leq d \).
Analyzing the proof shows that \(qK_{d+1} \sqcup K_r\) is the unique extremal graph if \(r \geq 3\), and that \(qK_{d+1} \sqcup H\), for any \(H\) on \(r\) vertices, are the extremal graphs if \(0 \leq r \leq 2\).

The heart of the proof is the following Lemma, of independent interest, which says that, in any graph, we can find a closed neighborhood whose removal from the graph removes few triangles. Theorem 1 will follow from its repeated application.

Lemma 1. In any graph \(G\), there is a vertex \(v\) whose closed neighborhood meets at most \(\binom{d(v) + 1}{3}\) triangles.

As mentioned above, Theorem 1, together with the work of Gan, Loh, and Sudakov [9], yields the general result, for cliques of any fixed size.

Theorem 2. Fix \(t \geq 3\). For any positive integers \(n, d \geq 1\), any graph on \(n\) vertices with maximum degree \(d\) has at most \(q(d+1) + \binom{r}{t}\) cliques of size \(t\), where \(n = q(d + 1) + r, 0 \leq r \leq d\).

Theorem 2 gives another proof of (the generalization of) Galvin’s conjecture (to \(n \geq 2d + 2\)) that a disjoint union of cliques maximizes the total number of cliques in a graph with prescribed number of vertices and maximum degree.

Finally, the author would like to point out a connection to a related problem, that of determining the minimum number of triangles that a graph of fixed number of vertices \(n\) and prescribed minimum degree \(\delta\) can have. The connection stems from a relation, observed in [2] and [9], between the number of triangles in a graph and the number of triangles in its complement:

\[
|T(G)| + |T(G^c)| = \binom{n}{3} - \frac{1}{2} \sum_v d(v)[n - 1 - d(v)].
\]

Lo [12] resolved this “dual” problem when \(\delta \leq \frac{4n}{5}\). His results resolve the GLS conjecture for regular graphs for \(q = 2, 3\), and the GLS conjecture implies his results, up to an additive factor of \(O(\delta^2)\), for \(q = 2, 3\), and yield an extension of his results for \(q \geq 4\) — these are the optimal results asymptotically, in the natural regime of \(\frac{\delta}{n}\) fixed, and \(n \to \infty\).

2. **Notation**

Denote by \(E\) the edge set of \(G\); for two vertices \(u, v\), we write “\(uv \in E\)” if there is an edge between \(u\) and \(v\) and “\(uv \not\in E\)” otherwise — in particular, for any \(u, uu \not\in E\). For a vertex \(v\), let \(|T_{N[v]}|\) denote the number of triangles with at least one vertex in the closed neighborhood \(N[v] := \{u : uv \in E\} \cup \{v\}\), and let \(|T(G - N[v])|\) denote the number of triangles with all vertices in the graph \(G - N[v]\) (the subgraph induced by the vertices not in \(N[v]\)). Finally, \(d(v)\) denotes the degree of \(v\).
3. Proof of Theorem 1

For a graph G, let $W(G) = \{(x, u, v, w) : ux, vx, wx \in E, uv, uw, vw \not\in E\}$.

Lemma 2. For any graph G, $6 \sum_v |T_{N[v]}| + |W(G)| = \sum_v d(v)^3$.

Proof. Let $\Omega = \{(z, u, v, w) : uw, uz \in E \text{ and } [zu \in E \text{ or } zv \in E \text{ or } zw \in E]\}$, $\Sigma = \{(x, u, v, w) : ux, vx, wx \in E\}$, and $W = W(G)$, and note that $\sum_v 6|T_{N[v]}| = |\Omega|$. Any 4-tuple in Σ, W or Ω gives rise to one of the induced subgraphs shown below, since one vertex must be adjacent to all the others. Recall that repeated vertices in the 4-tuples are allowed.

![Diagram of induced subgraphs](image)

It suffices to show that for each of the induced subgraphs above, the number of times it comes from a 4-tuple in Σ is the sum of the number of times it comes from 4-tuples in Ω and W. Any fixed copy of A, say on vertices u and v, comes 0 times from a 4-tuple in Ω (since it has no triangles), and 2 times from each of W and $\Sigma ((u, v, v, v), (v, u, u, u))$. Any fixed copy of B, say on vertices u, v, w with $vu, vw \in E$, comes 0 times from Ω, and 6 times from each of W and $\Sigma ((u, u, u, u), (v, u, w, w), (v, w, u, u), (v, w, u, w), (v, w, w, u), (v, w, u, w))$. Any fixed copy of C comes 18 times from each of Ω and Σ (3 choices for the first vertex and then 6 for the ordered triangle), and 0 times from W. Similarly, any fixed copy of D comes 6 times from each of W and Σ, and 0 times from Ω; finally, F, H, I come 6, 12, 24 times, respectively, from each of Ω and Σ, and 0 times from W. \qed

Lemma 1. In any graph G, there is a vertex v whose closed neighborhood meets at most $\left(\frac{d(v)+1}{3}\right)$ triangles, i.e. $|T_{N[v]}| \leq \left(\frac{d(v)+1}{3}\right)$.

Proof. By Lemma 2, since $|W(G)| \geq |\{(x, u, u, u) : ux \in E\}| = \sum_x d(x)$, we have $\sum_v |T_{N[v]}| \leq \sum_v \frac{1}{6}[d(v)^3 - d(v)]$. By the pigeonhole principle, there is some v with $|T_{N[v]}| \leq \frac{1}{6}[d(v)^3 - d(v)] = \left(\frac{d(v)+1}{3}\right)$.

Lemma 3. For any positive integers $a \geq b \geq 1$, it holds that $\frac{a}{3} + \frac{b}{3} \leq \frac{a+1}{3} + \frac{b-1}{3}$. Consequently, for any positive integers a, b and any positive integer c with $\max(a, b) \leq c \leq a + b$, it holds that $\frac{a}{3} + \frac{b}{3} \leq \frac{c}{3} + \frac{a+b-c}{3}$.

Proof. $(\frac{a+1}{3}) - (\frac{a}{3}) = (\frac{a}{2})$, and $(\frac{b}{3}) - (\frac{b-1}{3}) = (\frac{b-1}{2})$. Iterate to get the consequence. \qed

We now finish the proof of Theorem 1. With a fixed d, we induct on n. For $n = 1$, the result is obvious. Take some $n \geq 2$, and suppose the theorem holds for all
smaller values of \(n \). Let \(G \) be a max-degree \(d \) graph on \(n \) vertices. By Lemma 1, we may take \(v \) with \(|T_{N[v]}| \leq \binom{d(v)+1}{3} \). Write \(n = q(d+1) + r \) for \(0 \leq r \leq d \). Note \(|T(G)| = |T(G - N[v])| + |T_{N[v]}| \). Since \(G - N[v] \) has maximum degree (at most) \(d \), if \(d(v) + 1 \leq r \), then induction and Lemma 3 give
\[
|T(G)| \leq q \binom{d+1}{3} + \binom{r - (d(v) + 1)}{3} + \binom{d(v) + 1}{3} \leq q \binom{d+1}{3} + \binom{r}{3},
\]
and if \(d(v) + 1 > r \), then induction and Lemma 3 give
\[
|T(G)| \leq (q-1) \binom{d+1}{3} + \binom{d+1 + r - (d(v) + 1)}{3} + \binom{d(v) + 1}{3} \leq q \binom{d+1}{3} + \binom{r}{3}.
\]
The maximum degree condition ensured \(d + 1 + r - (d(v) + 1) \geq 0 \) and \(d(v) + 1 \leq d+1 \).

4. Acknowledgments

I would like to thank Po-Shen Loh for telling me the Gan-Loh-Sudakov conjecture and my advisor Ben Green for encouragement. I also thank Daniel Korandi for a cleaner proof of Lemma 2 and for helpful suggestions on the paper’s presentation.

References

[1] J. Alexander, J. Cutler, and T. Mink, Independent Sets in Graphs with Given Minimum Degree, Electr. J. Comb. 19 (2012), P37.
[2] J. Alexander and T. Mink, A new method for enumerating independent sets of a fixed size in general graphs, J. Graph Theory 81 (2016), no. 1, 57–72.
[3] Z. Chase, The Maximum Number of Three Term Arithmetic Progressions, and Triangles in Cayley Graphs, preprint, ArXiV:1809.03729, 2018
[4] J. Cutler and A. J. Radcliffe, The maximum number of complete subgraphs in a graph with given maximum degree, J. Combin. Theory Ser. B 104 (2014), 60–71.
[5] J. Cutler and A.J. Radcliffe, The maximum number of complete subgraphs of fixed size in a graph with given maximum degree, Journal of Graph Theory, 84(2):134–145, 2017.
[6] J. Engbers and D. Galvin, Counting independent sets of a fixed size in graphs with a given minimum degree, Journal of Graph Theory 76(2) (2014), 149–168.
[7] D. Galvin, Two problems on independent sets in graphs, Discrete Math. 311 (2011), no. 20, 2105–2112.
[8] W. Gan, Several Problems in Extremal Combinatorics, 2014, PhD Thesis
[9] W. Gan, P. Loh, and B. Sudakov, Maximizing the number of independent sets of a fixed size, Combinatorics, Probability and Computing 24 (2015), 521–527.
[10] R. Kirsch and A. J. Radcliffe, Many triangles with few edges, Electron. J. Combin., 26(2):Paper 2.36, 23, 2019.
[11] H. Law and C. McDiarmid, On Independent Sets in Graphs with Given Minimum Degree, Combinatorics, Probability and Computing 22 (2013), no. 6, 874–884.
[12] A. Lo, Cliques in graphs with bounded minimum degree, Combin. Probab. Comput. 21 (2012), 457–482.

Mathematical Institute, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, UK
E-mail address: zachary.chase@maths.ox.ac.uk