The application of terrestrial laser scanner and SfM photogrammetry in measuring erosion and deposition processes in two opposite slopes in a humid badland area (Central Spanish Pyrenees)

Nadal Romero, E. (1), Revuelto, J. (2), Errea, P. (2), López Moreno, J.I. (2)

(1) Institute for Biodiversity and Ecosystem Dynamics. Earth Surface Science Research Group (IBED-ESS). University of Amsterdam, Amsterdam, Netherlands. M.E.NadalRomero@uva.nl

(2) Instituto Pirenaico de Ecología (CSIC). Procesos Geoambientales y Cambio Global, Zaragoza, Spain.

Abstract
Erosion and deposition processes in badland areas are usually estimated using traditional observations of topographic changes, measured by erosion pins or profile meters (invasive techniques). In recent times, remote-sensing techniques (non-invasive) have been routinely applied in geomorphology studies, especially in erosion studies. These techniques provide the opportunity to build high-resolution topographic models at centimeter accuracy. By comparing different 3D point clouds of the same area, obtained at different time intervals, the variations in the terrain and temporal dynamics can be analyzed. The aim of this study is to assess and compare the functioning of Terrestrial Laser Scanner (TLS, RIEGL LPM-321) and Structure-from-Motion photogrammetry (SfM) techniques (Camera FUJIFILM, Finepix x100 and Software PhotoScan by AgiSoft), to evaluate erosion and deposition processes in two opposite slopes in a humid badland area in the Central Spanish Pyrenees. Results showed that TLS data sets and SfM photogrammetry techniques provide new opportunities in geomorphological erosion studies. The data we recorded over one year demonstrated that north-facing slopes experienced more intense and faster changing geomorphological dynamics than south-facing slopes as well as the highest erosion rates. Different seasonal processes were observed, with the highest topographic differences observed during winter periods and the high intensity rainfalls in summer. While TLS provided the highest accuracy models, SfM photogrammetry was still a faster methodology in the field and precise at short distances. Both techniques present advantages and disadvantages, and do not require direct
contact with the soil and thus prevent the usual surface disturbance of traditional and invasive methods.

Keywords: badlands, remote sensing techniques, Terrestrial Laser Scanner, Structure-from-Motion photogrammetry, geomorphological processes

1. Introduction

1.1. Humid badlands: strong geomorphological dynamics

Previous studies defined badlands as areas with scarce or no vegetation, where human activities, especially agriculture, are not possible (e.g. Alexander, 1982; Bryan and Yair, 1982; Fairbridge, 1968; Howard, 1994). Although badlands are considered characteristics of arid and semiarid environments, they are also found in humid and subhumid areas (Gallart et al., 2013). Badlands are a landscape with a very high frequency and magnitude of geomorphological processes, resulting in rapid landscape evolution, which makes them “ideal field laboratories”. Sheet wash erosion, gullies and rills, landslides, and mudflows are often observed in badland areas; the constantly changing landscape makes it very difficult to analyze geomorphological dynamics and measure erosion.

In general badland areas show high erosion rates. The recorded values depend on the applied methodologies (Sirvent et al., 1997), on the spatial scale of measurement (Nadal-Romero et al., 2011, 2014) and also on the temporal scale, as erosion rates show high inter-annual variability (Garcia-Ruiz et al., 2015). A recent comprehensive review by Nadal-Romero et al. (2011, 2014) of the scale-dependency of sediment yields from badland areas in Mediterranean environments showed extensive variability in erosion rates and sediment yields. In the Tabernas Badlands, Cantón et al. (2001) measured very low erosion rates (0.08–0.35 mm yr\(^{-1}\)) due to the low frequency of rainfall. Lam (1977) obtained 17.36 mm yr\(^{-1}\) in the Hong Kong badlands. Higher values were registered in subhumid badland areas of southern Tuscany (15–20 mm yr\(^{-1}\)) (Cicacci et al., 2008) and the Prealps catchments in France, with erosion rates of over 30 mm yr\(^{-1}\) (Chodzko et al., 1991). Recently, Vericat et al. (2014), using a non-invasive technology, a Terrestrial Laser Scanner (TLS), measured an annual soil loss of around 60 mm yr\(^{-1}\) in the Eastern Pyrenees (Spain).

1.2. Review: Methodologies for analyzing geomorphological processes and erosion rates in badlands
The geomorphology of badlands has been extensively studied for the last 30 years, and there is a substantial body of literature on the subject. In this context, numerous methods have been used to understand geomorphological dynamics (erosion and deposition processes) and quantify erosion rates. The following presents an overview of the main methodologies for investigating erosion rates and sediment yields in badlands.

A total of 171 papers (starting from 1956) were identified using the Scopus and the ISI Web of Knowledge databases (search terms: “Badlands and erosion rates” and “Badlands and Sediment Yield”). The obtained information enables the classification of the studies according to the different methods (Figure 1).

The analysis showed that there is no standard protocol for measuring erosion and sediment yield in badland areas, with a variety of methods (at different temporal and spatial scales) being used, both conventional and new remote sensing techniques. The most commonly reported method is a gauging station (e.g. Nadal-Romero et al., 2008), seen by different authors as the best approach for measuring sediment transport (Walling, 1991). Remote sensing technologies (e.g. Martinez-Casasnovas and Ramos, 2009), rainfall simulations (e.g. Martinez-Murillo et al., 2013) and erosion models (e.g. Mathys et al., 2003) were recorded in about 20 studies. Topographic surveys (e.g. Sirvent et al., 1997), runoff plots (e.g. Gallart et al., 2013) and erosion pins (e.g. Vergari et al., 2013) were used a bit less often (approximately 15 studies each). On the other hand, dendrogeomorphological techniques (e.g. Ballesteros-Canovas et al., 2013), TLS data acquisition (e.g. Sáez et al., 2011; Vericat et al., 2014), radioisotopic measurements (e.g. Sadiki et al., 2007) and bathymetric surveys (e.g. Grauso et al., 2008) have been sporadically applied in badland studies (Figure 1).

The methods were classified as invasive tools (mostly traditional methods, e.g. gauging station, rainfall simulations, topographic surveys, runoff plots, erosion pins) and non-invasive tools (mostly new technologies, e.g. remote sensing, TLS, SfM photogrammetry, aerial pictures). The annual evolution of the different methods is represented in Figure 2 (data from 1980, n = 164). Figure 2 indicates that (i) during the last 30 years, studies on soil erosion in badlands have increased (see also Gallart et al., 2013); (ii) the few studies during the 1980s all used traditional invasive tools; and (iii) from 1996, non-invasive methods are starting to be used in erosion studies in badland areas, with the sharpest increase in 2007.

1.3. New remote-sensing techniques: Terrestrial Laser Scanner and SfM photogrammetry
Field methods for geomorphological processes analysis and soil erosion quantification have evolved from traditional methods (most of them invasive) to those that do not disturb the soil (non-invasive). In the last decades, techniques to rapidly acquire high-density topographic data have proliferated; however, the tools to adequately analyze change within these complex data sets have only now become accessible (Barnhart and Crosby, 2013).

Terrestrial Laser Scanners (TLS) are a non-intrusive, high precision tool, designed to retrieve information on the topographic characteristics of any surface. TLS use LiDAR technology (Light Detecting and Ranging), to accurately measure the distance from the device to the desired surface. By measuring the distance at thousands of points, 3D point clouds of a very high spatial resolution are obtained. This information makes it possible to generate Digital Elevation Models (DEMs) that accurately reproduce the topographic surfaces. TLS serves as a monitoring tool to observe changes in surface morphology, and the data collected with TLS can be used for both calculations of volumetric changes as well as documentation of surface conditions (development of rills, roughness etc.). The acquisition time is relatively short, and the precision is sufficient for detailed erosion studies in very active areas. The high-resolution topographical data already obtained with TLS in badland areas (e.g., Lucía et al., 2011; López-Saez et al., 2011; Vericat et al., 2014) encourage its application in other study sites.

Digital photogrammetry has generated an improvement in topographic methods, due to a better accessibility to a wider variety of users, its low cost, and also due to the increased automation of the photogrammetric routines (Fonstad et al., 2013). Recently, Structure for Motion (SfM) techniques, developed by the computer vision community, were adapted to generate high resolution and quality DTMs. Classical (stereoscopic) photogrammetry is based on 3D reconstruction models by superimposing two images of the same area from different perspectives. SfM is based on the reconstruction of the 3-dimensional geometry from the matching of multiples images generated from different points of view. Pictures can be taken at different scales, and the position, orientation and distortion can be unknown. SfM differs from stereoscopic photogrammetry, because it uses image matching algorithms to recover randomly acquired images and to detect points in common elements.

The biggest difference between both methods is the need to use GCPs for the 3D model resolution. In classical photogrammetry, the collinearity is solved after the introduction of the GCPs; in SfM, collinearity is solved from the common elements of the images. So, if there are errors in the measurements of the GCPs, they are propagated to the final result (Fonstad et
al., 2013). Through SfM, the final quality of the point cloud is based on a high number of common points (> 1000) that have been automatically generated.

The information from either aerial or terrestrial photographs is processed using one of a number of available software solutions, creating 3D point clouds from several images of one area. Today, this tool offers new possibilities and innovative procedures, like creating DEMs in automatic mode to reconstruct surfaces (Bitelli et al., 2004). During the past 20 years, intensive research was published on the automation of the information extraction from digital images (e.g. the continuous development of processing algorithms) (Baltsavias, 1999). Several scientific fields, like geoarcheology and architecture, have already accepted photogrammetry as a useful tool (e.g. Cardenal Escarcena et al., 2011; Verhoeven et al., 2012; Martínez et al., 2015; Nadel et al., 2015), and its advantages for geomorphological research have been long recognized (Castillo et al., 2012). In the last five years various studies have taken advantage of the possibilities offered by geomorphology to generate terrain models using SfM photogrammetry (Gómez-Gutierrez et al., 2014, Kaiser et al., 2014, Michetti et al., 2015, Westoby et al., 2012).

The main objective of this research is to assess and compare Terrestrial Laser Scanner (TLS) and Structure-from-Motion photogrammetry methods for the evaluation of geomorphological processes (erosion and deposition) and topographic changes in two opposite active slopes (north- and south-facing) in a humid badland area in the Central Spanish Pyrenees. Annual topographic changes will be evaluated and geomorphological processes will be spatially analyzed.

2. Materials and methods

2.1. Study area: The Araguás catchment

The Araguás catchment (0.45 km²) is a north-south orientated tributary of the Lubierre River, located in the Central Spanish Pyrenees. The altitude ranges from 780 to 1,105 m, and it has a substantially large badland area, spreading over 25% of the catchment (Figure 3).

The climate of the area is sub-Mediterranean with Atlantic and Continental influences (Creus, 1983). The average annual rainfall is about 800 mm, varying from 500 to 1,000 mm annually, and the average temperature is 10 °C.

Badlands occur on the Eocene marl of the Inner Pyrenean Depression (marls with interbedded decimeter-scale sandy layers). Nadal-Romero and Regüés (2010) demonstrated that the main causes of regolith development and weathering processes are the alternating
freeze-thaw and wetting-drying cycles (being maximum in winter and summer).

The Araguás catchment has been monitored since 2004 to study the hydrological and sedimentological dynamic in the badland area, using a gauging station at the outlet of the catchment. Previous studies showed that the dynamics of weathering and erosion processes are the principal factors controlling geomorphological development, showing extreme hydrological and sedimentological responses (Nadal-Romero and Regüés, 2010). The badlands are very active: intense sheet wash erosion, gully formation, and rilling, with heavy mudflows during the most intense rainstorms, produce substantial annual sediment yields (Nadal-Romero et al., 2008).

Two slopes with opposite aspect (facing north and south) were selected to apply the TLS and photogrammetric surveys (Figure 3). These slopes were chosen based on two criteria: (1) according to the different geomorphological processes that can be observed on the dry slope (south-facing) and on the more humid one (north-facing), and (2) according to the differences in the surveyed areas and on the working distances for data acquisition with both methods (TLS and SfM). The analyzed extension of the north and south slopes are 3,200 m² and 560 m², respectively. The average working distance for the TLS in the north-facing slope is 102 m, while for the south-facing slope is 25 m. The pictures for the SfM photogrammetry software were taken from an average distance of 100–150 m for the north-facing slope, and 40–60 m for the south-facing slope.

2.2. Terrestrial Laser Scanner

The device used in the present study is a long-range TLS (RIEGL LPM-321) (see Revuelto et al., 2014 for checking the technical characteristics of the TLS and the procedure used for scanning and for the post-processing information).

Indirect registration (target-based registration) was used to merge the information from the different scan station and for transforming the local coordinates of the obtained point clouds into a global coordinate system. The point cloud transformation makes it possible to compare scans made on different survey days. The indirect registration considers fixed reflective targets placed at reference points (metallic stakes), which are placed at the same positions at the study site. We installed 9 targets on the north-facing slope and 9 targets on the south-facing slope (the high number of targets increases the robustness of the experimental setup, see Revuelto et al., 2014), each was a cylindrical reflector 0.10 m in
diameter placed at a height of 0.10 m. TLS automatically obtains 3D point clouds, but with a main limitation, we have only work from a single position due to time restrictions.

Once the formal steps were completed (e.g. atmospheric correction, scan of targets, selection and delimitation of the area of interest), we started with the scan of the selected slopes.

In this study, on the north-facing slope the average resolution in point cloud acquisition was 625 points/m² (0.04 m linear distance between points), and the angular scanning resolution was 0.027º. On the south-facing slope the resolution was, 1,890 points/m² (0.023 m) and the angular scanning resolution was 0.054º. For the areas closer to the TLS, the point resolution increased while at longer distances decreased. This is one of the main limitations of the technology: it does not enable a consistent distribution of the acquired information.

Finally, when the scan was completed, photographs were taken using a digital camera coupled to the scanner, to capture useful RGB (Red, Green, Blue) information for each point.

2.3. Structure-from-Motion photogrammetry

Structure-from-Motion photogrammetry allows the creation of 3D models from multiple overlapping images taken at distinct triangulation angles. In this case, we used the FUJIFILM Finepix x 100 camera, with a focal length of 23 mm (equivalent to a fixed lens of 35 mm), with a resolution of 12 MP (4288 x 2848 pixels). In each survey, 17 pictures of the north-facing slope were taken at an approximate distance of 100-150 m; 15 pictures of the south-facing slope were taken, at an approximate distance 40–60 m. The pictures were taken by hand following a set-walking itinerary. The images were analyzed with Agisoft Photoscan Professional Edition® software, generating a 3D point cloud of the study area. Differences in lighting can cause problems during data processing, and Agisoft software is a helpful tool to overcome this risk, as it estimates the potential error and deletes questionable pictures. The spatial resolution of the generated point clouds depends on the quality of the model processed with the images obtained with the camera. In this study, we used higher resolution modes, which provided a spatial resolution of 970 points/m² for the north-facing slope, and 2800 points/m² for the south-facing slope. High resolution of original images would offer better texture and higher resolution to find keypoints in the photoset. Similarly, decreasing the distance between the camera and the feature of interest is related to increasing the spatial resolution of the photograph and would enhance the spatial density and resolution of the final point cloud (Westoby et al., 2012).
2.4. Data processing

In order to georeference both data sets (SfM photogrammetry and TLS point clouds) into the same coordinate system, we applied indirect registration (target-based) using the reference point coordinates of the targets (coordinates acquired with the TLS). Based on the target coordinates, a transformation matrix to a common coordinate system (which is named project coordinate system) using Riprofile 1.6.2 software is generated for the TLS point cloud. The standard deviation was lower than 0.015 m in all the TLS scans, which is in accordance to errors reported in other studies (Revuelto et al., 2014; Prokop, 2008). Similarly, the point cloud obtained from SfM photogrammetry is transformed onto the same coordinate system by a transformation matrix calculated in Agisoft Photoscan using the TLS-recorded target coordinates with standard deviation below 0.025 m. The transformation of the coordinates into a common coordinate system was carried out for the comparison of the information obtained with the two methods.

In both cases, the post-processing (comparing point clouds to determine the topographic differences between dates) was accomplished using CloudCompare software (Girardeau-Monaut et al., 2005), which generates maps of distances between clouds of points corresponding to different survey days.

Measurements were performed at similar intervals between July 2013 and July 2014; in total four topographic surveys of each study zone were conducted on the following dates: 24 July 2013, 12 November 2013, 26 March 2014 and 24 July 2014.

Rainfall data was recorded in the Araguás catchment (see Nadal-Romero and Regüés, 2010) and the volume and characteristics of rainfall during the study periods was also analyzed.

3. Results

Data analyses are conducted on different temporal scales – (i) survey/monitoring intervals, and (ii) at annual scale in both slopes (north- and south-facing slopes) – using both TLS and SfM photogrammetry. Monitoring intervals and rainfall data are presented in Table 1 and Figure 4. The length of the monitoring intervals ranged from 112 to 134 days. Maximum daily rainfall was from 24.6 to 77.2 mm, and the maximum 5-min rainfall intensity ranged from 14.4 to 148.8 mm h⁻¹.
The results are structured in 3 sections. First, the results obtained on the north-facing slopes are analyzed (Section 3.1), and then the results obtained on the south-facing slope are examined (Section 3.2). In both sections, spatial and temporal variability of topographic changes are described. Finally (Section 3.3), a comparison between both data analysis and methodologies is carried out.

3.1. North-facing slopes

Observed topographic changes over different monitoring survey intervals on the north-facing slope are presented in Figures 5 and 6 (TLS and SfM photogrammetry data respectively). Erosion and deposition values are summarized in Table 2. Negative values reflect erosion processes. On the other hand, positive values may reflect deposition processes; however, swelling processes can also influence these values (Vericat et al., 2014).

On north-facing slopes, period 2 (longest period, winter period) showed the strongest and most variable topographic changes (Figures 5 and 6): -0.046 m and -0.051 m with TLS and SfM photogrammetry respectively. Most sections of the slope showed signs of rills development. However, the biggest absolute differences were observed during period 1 (summer). It was the rainiest period (334.8 mm) due to convective storms with high rainfall intensities (148.8 mm h\(^{-1}\), see Table 1). During this period the maximum negative difference (-0.610 m and -0.43 m with TLS and SfM photogrammetry respectively) was registered due to small movements in the upper part of the slope. A small zone of regolith deposits was also evident just downhill of this movement (Period 1, Figures 5 and 6). Period 3 (spring) showed the lowest values, which is consistent with the low rainfall (198 mm).

3.2. South-facing slopes

On south-facing slopes, period 2 showed the biggest and most variable topographic changes (Figures 7 and 8, and Table 3): -0.037 m and -0.001 m (note the high standard deviation compared to the average difference in Table 1) with TLS and SfM photogrammetry respectively. An important movement was recorded on the lower part of the slope, showing high positive and negative values (both erosion and deposition).

The changes in periods 1 and 3 were smaller, although important rill development was observed in both periods. Small movements and deposition processes at footslopes were recorded (see Figures 7 and 8).
On the south-facing slope the biggest absolute differences were also observed during period 2, due to the important movement recorded at the lower part of the slope. The maximum negative difference was around -0.42 m, while the maximum positive difference was around 0.50 m.

3.3. Joint analysis

The magnitude of the annual erosion rates was higher on the north-facing slope than on the south-facing slope, -0.077 m and -0.032 m respectively, recorded using TLS point clouds (see Table 2 and 3). SfM photogrammetry yielded more moderate differences: -0.017 m and -0.002 m on the north-facing and south-facing slope respectively. Furthermore, on the south-facing slope the annual maximum negative and positive values are very similar (0.416 m and -0.453 m with TLS, and 0.48 m and -0.42 m with SfM photogrammetry); however, important differences were observed between the negative and positive absolute maximum values on north-facing slopes (0.250 m and -0.590 m with TLS, and 0.34 m and -0.46 m with SfM photogrammetry).

In both cases, the variability of topographic changes was very high, as indicated by the high standard deviations (which was even higher at the south-facing slope).

If differences between both methods are analyzed, we have to highlight that in south-facing slopes (short distance and small area) the values using both methodologies are really similar; however, on the north-facing slope (long distance and large area) the measurement differences between the two methodologies are remarkable.

Figures 9 and 10 showed a direct comparison of DEMs between techniques considering LiDAR (TLS) as the reference. Differences have been calculated for the first and last acquisition dates (23/07/13 and 23/07/14). Big differences occurred in small areas, where small vegetation patches were present (almost all vegetation was eliminated from the point clouds, but some influence can be appreciated in the exterior limits of the selected slopes). Small differences were observed in “deep” concavities (yellow colours in the comparison figures), because in these areas the SfM was not able to accurately reproduce a precise topography. Other errors were usually located in ridges, and the areas behind them, from the TLS perspective, showing one of the main TLS limitations: with only one point of view, some areas are hidden. Average differences (Table 4) were higher in north-facing slopes (also the highest standard deviation were recorded in this slope) in both surveys because the increase on distance of data acquisition and the presence of shadows.
4. Discussion

4.1. Geomorphological dynamics

Both techniques can produce high-resolution topographic models with centimeter accuracy. By comparing different point clouds of the same area, obtained at different time periods, we analyzed variations in the topographic characteristics of the terrain and the temporal geomorphological dynamics.

First, it must be highlighted that the variability of the recorded topographic changes was very high, as reflected by the high standard deviation (see Table 2 and 3). The detailed analysis of the point clouds showed the geomorphological dynamics of these severely eroded areas. The results indicated that the geomorphological dynamics on north-facing slopes were more intense than on south-facing slopes, except punctual high variations on the south-face. Various studies have highlighted terrain aspect as an important factor in the geomorphological development of badlands (e.g. Calvo-Cases and Harvey, 1996; Descroix and Olivry, 2002; Pulice et al., 2013).

The values presented in Table 2 and 3 also showed that highest topographic changes were recorded during winter periods. Also other studies highlighted that the development and weathering dynamics of regolith in north-facing slopes are more active in winter, due to the freeze–thaw weathering processes, while south-facing slopes are dominated by the development of crusts associated with wetting–drying processes (Nadal-Romero et al., 2007; Nadal-Romero and Regüés, 2010). It has to be noted that shrink–swelling and freeze–thaw processes may cause dilation of surface material, which results in a net surface elevation; however, this study did not take these small variations into account.

North-facing slopes experienced small mud or debris flows, although also south-facing slopes had these flows due to the high slope gradient (Figures 9 and 10), showing the importance of climate and topographic factors in badlands development. These types of movements have also been recorded in humid badlands in southeast France using a small portable camera in the Draix catchment (Miniature Debris Flows – MDF) (Yamakoshi et al., 2009). Nadal-Romero et al. (2007), based on field evidence and laboratory work, suggested that in these badland morphologies shallow landslides and small mudflows commonly occur during prolonged rainfall events. These erosion processes produced the development of fans at the base of slopes and near the main channels, processes also observed in different badland morphologies (Balasch, 1998; Regüés and Gallart, 2004; Desir and Marin, 2007). It is also
remarkable that during summer, convective storms of high intensity and short duration
overcome infiltration capacity and generate intense concentrated runoff. Rills and gully
development usually appear during these events and are significant in sediment production
(Nadal-Romero and Regüés, 2010). Both TLS and SfM photogrammetry captured these
processes, which confirms that both are good techniques for studying geomorphological
processes in badland areas.

TLS results on the north-facing slope indicated a negative difference of 77 mm yr\(^{-1}\), while
on the south-facing slope the negative values are lower, 32 mm yr\(^{-1}\). More moderate
differences are recorded using SfM photogrammetry point clouds with annual values of
17 mm yr\(^{-1}\) and 2 mm yr\(^{-1}\), on the north-facing and south-facing slopes respectively.
Nevertheless these values should be contextualized with the observed standard deviation of
38 mm for north-facing and 56 mm for south-facing slopes. Nadal-Romero et al. (2008)
estimated erosion rates (represented as a lowering of the soil surface) determined from the
suspended sediment loss measured at the outlet of the catchment (converted to centimeters)
and taking into account the specific weight of the marl (2.75 g/cm\(^{-3}\)). During the study period
(November 2005 to January 2007), March and September 2006 were particularly active in
terms of sediment transport, with a recorded drop in soil surface of 13 and 8 mm,
respectively. The estimate of annual erosion rates for the entire catchment was 27.5 mm yr\(^{-1}\).
High erosion rates, similar to the ones obtained in this study, were recorded in different
badland areas. Using similar methodology, Vericat et al. (2014) measured an annual change
of around minus 60 mm yr\(^{-1}\) in the Eastern Pyrenees (Spain). Lower values were registered in
subhumid badland areas of southern Tuscany (15–20 mm yr\(^{-1}\)) (Cicacci et al., 2008) and the
Prealps catchments in France (over 30 mm yr\(^{-1}\)) (Chodzko et al., 1991) using invasive
traditional methodologies.

4.2. New non-invasive tools
This study demonstrates that both methodologies adequately facilitate subsequent analysis –
both in a quantitative (metric) and qualitative (interpretive) way. Both offer a good
opportunity to safely measure landform without soil disturbance, with high spatial resolution
and in a relative short time period. Table 5 presents the advantages and disadvantages of both
methods.

Both methods allow fast and automatic image processing. Nevertheless, SfM
photogrammetry reduces the data collection effort in the field, although post-processing is
still labor-intensive. TLS is an expensive (and quite heavy) tool, while SfM photogrammetry
is relatively cheap and easy to use. Castillo et al. (2012) calculated the cost of TLS at 10
times the cost of 3D photogrammetry.

The comparison between both methods (Figures 9 and 10 and Table 4) showed that results
were similar in both cases, although significant differences can be observed in small points,
especially in the presence of shadows and vegetation.

Our study demonstrated that SfM delivers good accuracy and is really useful for field
application in geomorphological and soil erosion studies, for observing changes in the
centimeter scale (depending on the working distance). In our case, the quality of the images
should be improved in order to obtain better accuracy, paying special attention to illumination
changes during the acquisition of the images, which have been observed as an important
error-causing interference. The number of pictures could be a problem to be solved together
with the computer memory (a large memory is needed to process a large number of high
quality pictures). Nevertheless, if the image acquisitions locations are well established and
the image overlapping is done well, the number of needed images is not very high (5–10
pictures). Micheletti et al. (2015) carried out an analyses in similar areas and at the same
scale, and they obtained good and valid models with 13 pictures.

TLS shows better performance in differentiating small displacement of terrain (resolution
of surface models) (e.g. rills development). However, due to time restrictions we have
worked with one single scan position causing the shadowing effect of terrain (the so-called
sight shadowing), which does not allow to retrieve data from different areas of the site
originating missing information. This missing information due to terrain curvature observed
in some areas with the TLS (north-slope), is avoided with SfM photogrammetry because
different points of view of the study area were easily acquired (see differences in Figures 9
and 10). Nevertheless, in the presented analyses, and annual erosion rates these shadow areas
have been removed in SfM photogrammetry to consider exactly the same area with both
methods.

SfM photogrammetry performs better for the spatial distribution of the point cloud, for
areas closer to the TLS the point resolution is increased, while for longer distances it is
decreased, which is one of the main limitations of this technology. However, TLS does
provide higher resolution of surface models. Indeed, the high number of points obtained for
low distances to the TLS in comparison to these obtained for large distances is one limitation
for these devices. This has encouraged minimizing scan distances when possible (Heritage
and Hetherington, 2007). On the contrary, the SfM technique does not show this high
dependence on distance due to the multiple points of view of the surveyed area (Smith and Vericat, 2015). This is one of the main advantages when compared to TLS.

TLS and SfM photogrammetry data sets supported quantifiable data that previously had to be gathered through very labor- and time-intensive field measurement. Castillo et al. (2012) compared the accuracy, time and cost of the conventional and the new techniques. They observed that SfM photogrammetry is the method that produces the best approximation to the TLS. They also suggested that traditional methods (2D methods) can produce significant volume errors. Marzolff and Poesen (2009) suggested that compared to remote sensing imagery field methods have the disadvantages of time consuming measurements, thus usually covering rather small areas with a limited sampled density. Perroy et al. (2010) concluded that old methods (traditional and invasive) are time consuming, tedious, labor intensive and sometimes more expensive.

4.3. Future research

Further research needs to focus on analyzing geomorphological processes (erosion and deposition) and their controlling topographic (slope, aspect, roughness) and meteorological factors (rainfall and temperature) over a number of event–scale monitoring periods. During the new surveys a higher number of pictures will be taken, and TLS surveys will be taken from two single points. With this information we will check some of the observed limitations of both methodologies. The next stages of the project will focus also on the analysis and comparison of TLS and SfM photogrammetry data with data obtained with a new turbidimeter installed in the catchment at the beginning of 2015.

5. Conclusion

The study applied and compared the performance of the Terrestrial Laser Scanner and the photogrammetric technique in investigating the geomorphological dynamics and topographic changes on two active slopes in humid badland areas. TLS and SfM photogrammetry (non-intrusive methods) show high precision and obtain high-resolution topographic information. We used the combination of TLS and SfM photogrammetry to maximize their advantages while minimizing the disadvantages of each technique.

The results show that TLS and SfM photogrammetry data sets provide opportunities in the study of topographic change of very erosion-prone landscapes (e.g. badlands) where the use of conventional, invasive topographic technologies is limited. SfM photogrammetry is a powerful and low cost tool for evaluating the rate and spatial-temporal development of
denudation processes at short-distance and small areas. Small problems should be solved using a camera with higher resolution, or a higher number of pictures. In that way, we could consider that SfM photogrammetry would be a good opportunity in geomorphological studies when carried out taking pictures at short distances.

The data recorded in the course of a year at different seasonal intervals demonstrated that north-facing slopes experienced more intense and faster geomorphological dynamics than south-facing slopes. Different seasonal processes were observed: the biggest topographic differences coincided with the winter periods and the high intensity rainfall incidents in summer.

Acknowledgment

Support for this research was provided by the project HIDROCAES (CGL2011-27574-C02-01), INDICA (CGL2011-27753-C02-01) funded by the Spanish Ministry of Economy and Competition. E. Nadal-Romero was the recipient of a Marie Curie IEF grant (Seventh EU Framework Programme project “MED-AFFOREST” PIEF-GA-2013-624974). J. Revuelto was the recipient of a FPU grant (Spanish Ministry).

References

Alexander, R.W.: Difference between ‘calanchi’ and ‘biancane’ badlands in Italy, in: Badland Geomorphology and Piping, Bryan, R., Yair, A. (Eds.), Geobooks, Norwich, 71-88, 1982.

Balasch, J.C.: Resposta hidrològica i sedimentària d’una petita conca de muntanya analitzades at diferent escala temporal. PhD thesis, Universitat de Barcelona, 376 pp, 1998.

Ballesteros-Cánovas, J. A., Bodoque, J. M., Lucía, A., Martín-Duque, J. F., Diez-Herrero, A., Ruiz-Villanueva, V., Rubiales, J. M., and Genova, M.: Dendrogeomorphology in badlands: Methods, case studies and prospects, Catena, 106, 113-122, 2013.

Baltsavias, E. P.: A comparison between photogrammetry and laser scanning, ISPRS-J. Photogramm. Remote Sens., 54, 83-94, 1999.

Barnhart, T. B. and Crosby, B. T.: Comparing two methods of surface change detection on an evolving thermo karst using high-temporal-frequency Terrestrial Laser Scanning, Selawik River, Alaska, Remote Sens., 5, 2813-2837, 2013.
Bitelli, G., Dubbini, M., and Zanutta, A.: Terrestrial Laser Scanning and Digital Photogrammetry techniques to monitor landslide bodies, in: XXth ISPRS Congress: Proceedings of Commission V, Istanbul, Turkey, 246-251, 2004.

Bryan, R. and Yair, A.: Perspectives on studies of badland geomorphology, in: Badland Geomorphology and Piping, Bryan, R. and Yair, A. (Eds.), Geobooks, Norwich, 1-12, 1982.

Calvo-Cases, A. and Harvey, A.M.: Morphology and development of selected badlands in southeast Spain: Implications of climatic change, Earth Surf. Process. Landf. 21, 725-735, 1996.

Cantón, Y., Domingo, F., Solè-Benet, A., and Puigdefábregas, F.: Hydrological and erosion response of a badlands system in semiarid SE Spain, J. Hydrol., 252, 65-84, 2001.

Cardenal Escarnena, J., Mata de Castro, E., Pérez García, J.L., Mozas Calvache, A., Fernández del Castillo, T., Delgado García, J., Ureña Cámara, M., Castillo, J. C.: Integration of photogrammetric and terrestrial laser scanning techniques for heritage documentation, Virtual Archaeology Review, 2, 53-57.

Castillo, C., James, M.R., Redel-Macías, M.D., Pérez, R., and Gómez, J.A.: The SF3M approach to 3-D photo-reconstruction for non-expert users: application to a gully network, SOIL Discuss, 2, 371-399, 2015.

Castillo, C., Pérez, R., James, M.R., Quinton, J.N., Taguas, E.V., and Gómez, J.A.: Comparing the Accuracy of Several Field Methods for Measuring Gully Erosion, Soil Science Society of American Journal, 76 (4), 1319-1332, 2012.

Chodzko, J., Lecompte, M., Lhénaff, R., and Marre, A.: Vitesse de l’érosion dans les roubines des Baronnies (Drôme), Physio-Géo, 22-23, 21-28, 1991.

Ciccacci, S., Galiano, M., Roma, M. A., and Salvatore, M.C.: Morphological analysis and erosion rate evaluation in badlands of Radicofâni area (southern Tuscany - Italy), Catena, 74 (2), 87-97, 2008.

CloudCompare software. http://www.danielgm.net/cc/

Creus, J.: El clima del Alto Aragón Occidental. Monografías del Instituto de Estudios Pirenaicos 109. Consejo Superior de Investigaciones Científicas, Jaca, 1983.

Descroix, L. and Olivry, J.C.: Spatial and temporal factors of erosion by water of black marls in the badlands of the French Southern Alps, Hydrol. Sci. J. 47 (2), 227-242, 2002.

Desir, G., and Marin, C.: Factors controlling the erosion rates in a semi-arid zone (Bardenas Reales, NE Spain), Catena, 71, 31–40, 2007.
Fairbridge, R.W.: Encyclopedia of geomorphology, Stroudsburg, PA, Dowden, Hutchinson and Ross, 1968.

Fonstad, M.A., Dietrich, J., Courville, B.C., Jensen, J., and Carbonneau, E.: Topographic structure from motion: a new development in photogrammetric measurement, Earth Surface Processes and Landforms, 38, 421-430, 2013.

Gallart, F., Marignani, M., Pérez-Gallego, N., Santi, E., and Maccherini, S.: Thirty years of studies on badlands, from physical to vegetational approaches. A succinct review, Catena, 106, 4-11.

Gallart, F., Pérez-Gallego, N., Latron, J., Catari, G., Martínez-Carreras, N., and Nord, G.: Short- and long-term studies of sediment dynamics in a small humid mountain Mediterranean basin with badlands, Geomorphology, 196, 242-251, 2013.

García-Ruiz, J. M., Beguería, S., Nadal-Romero, E., González-Hidalgo, J. C., Lana-Renault, N., and Sanjuán, Y.: A meta-analysis of soil erosion rates across the world, Geomorphology, 239, 160-173, 2015.

Girardeau-Montaut, D., Roux, R.M., and Thibault, G.: Change detection on points cloud data acquired with a ground laser scanner, in: Workshop Laser Scanning 2005, ISPRS, Enschede, the Netherlands, pp. 6, 2005.

Gómez-Gutiérrez, A., Schnabel, S., Berenguer-Sempere, F., Lavado-Contador, F., and Rubio-Delgado, J.: Using 3D photo-reconstruction methods to estimate gully headcut erosion, Catena, 120, 91–101, 2014.

Grauso, S., Pagano, A., Fattoruso, G., De Bonis, P., Onori, F., Regina P., and Tebano, C.: Relations between climatic-geomorphological parameters and sediment yield in a Mediterranean semi-arid area (Sicily, southern Italy), Environ. Geol., 54 (2), 219-234, 2008.

Heritage, G., and Hetherington, D.: Towards a protocol for laser scanning in fluvial geomorphology, Earth Surface Processes and Landforms 32, 66–74, 2007.

Howard, A.D.: Badlands, in: Geomorphology of desert environments, Abrahams, A.D. and Parsons, A.J., eds., Chapman and Hall, London, 213-242, 1994.

James, M.R. and Robson, S.: Straightforward reconstruction of 3D surfaces and topography with a camera: Accuracy and geoscience application, J. Geophys. Res., 117, F03017, doi:10.1029/2011JF002289, 2012.

Kaiser, A., Neugirg, F., Rock, G., Mueller, C., Haas, F., Ries, J., and Schmidt, J.: Small-Scale Surface Reconstruction and Volume Calculation of Soil Erosion in Complex Mo-
rococan Gully Morphology Using Structure from Motion, Remote Sens., 6, 7050–7080, 2014.

Lam, K.: Patterns and rates of slope wash on the badlands of Hong Kong. Earth Surf. Process. Landf., 2, 319-332, 1977.

López-Saez, J., Corona, C., Stoffel, M., Rovéra, G., Astrade, L., and Berger, F.: Mapping of erosion rates in marly badlands based on a coupling of anatomical changes in exposed roots with slope maps derived from LiDAR data, Earth Surf. Process. Landf., 36, 1162-1171, 2011.

Lucía, A., Martín-Duque, J. F., Benjamin Laronne, J., and Sanz-Santos, M.A.: Geomorphic dynamics of gullies developed in Sandy slopes of Central Spain, Landform Analysis, 17, 91-97, 2011.

Martínez, S., Ortiz, J., and Gil, M. L.: Geometric documentation of historical pavements using automated digital photogrammetry and high-density reconstruction algorithms, Journal of Archaeological Science, 53, 1-11. 2015.

Martínez-Casasnovas, J. A. and Ramos, M. C.: Erosión por cárcavas y barrancos en el área de viña del Alt Penedés-Anoia (NE España), Cuadernos de Investigación Geográfica, 35 (2), 223-238, 2009.

Martínez-Murillo, J. F., Nadal-Romero, E., Regüés, D., Cerdà, A., and Poesen, J.: Soil erosion and hydrology of the western Mediterranean badlands throughout rainfall simulation experiments: A review, Catena, 106, 101-112, 2013.

Marzolff, I., and Poesen, J.: The potential of 3D gully monitoring with GIS using high-resolution aerial photography and a digital photogrammetry system, Geomorphology, 111, 48-60, 2009.

Mathys, N., Brochot, S., Meunier, M., and Richard, D.: Erosion quantification in the small marly experimental catchments of Draix (Alpes de Haute Provence, France). Calibration of the ETC rainfall-runoff-erosion model, Catena, 50 (2-4), 527-548, 2003.

Michetti, N., Chandler, J.H., and Lane, S.N.: Investigating the geomorphological potential of freely available and accessible structure-from-motion photogrammetry using a smartphone, Earth Surface Processes and Landforms, 40, 473-486, 2015.

Nadal-Romero, E., Martínez-Murillo, J.F., Vanmaercke, M., and Poesen, J.: Scale-dependency of sediment yield from badland areas in Mediterranean environments, Prog. Phys. Geogr., 35 (3), 297-332, 2011.
Nadal-Romero, E., Martínez-Murillo, J.F., Vanmaercke, M., and Poesen, J.: Corrigendum to “Scale-dependency of sediment yield from badland areas in Mediterranean environments” (Progress in Physical Geography 35 (3) (2011), 297-332), Prog. Phys. Geogr. 38 (3), 381-386, 2014.

Nadal-Romero, E. and Regüés, D.: Geomorphological dynamics of subhumid mountain badland areas – weathering, hydrological and suspended sediment transport processes: a case study in the Araguás catchment (Central Pyrenees) and implications for altered hydroclimatic regimes, Prog. Phys. Geogr. 34 (2), 123-150, 2010.

Nadal-Romero, E., Latron, J., Martí-Bono, C., and Regüés, D.: Temporal distribution of suspended sediment transport in a humid Mediterranean badland area: the Araguás catchment, Central Pyrenees, Geomorphology, 97, 601-616, 2008.

Nadal-Romero, E., Regüés, D., Martí-Bono, C., and Serrano, P.: Badland dynamics in the Central Pyrenees: temporal and spatial patterns of weathering processes. Earth Surface Processes and Landforms 32, 888-904, 2007.

Nadel, D., Filim S., Rosenberg, D., Miller, V.: Prehistoric bedrock features: Recent advances in 3D characterization and geometrical analyses, Journal of Archaeological Science, 53, 331-344, 2015.

Perroy, R.L., Bookhagen, B., Asner, G., Chadwick, O.A.: Comparison of gully erosion estimates using airborne and ground-based LiDAR on Santa Cruz Island, California, Geomorphology, 118, 288-300.

Prokop, A.: Assessing the applicability of terrestrial laser scanning for spatial snow depth measurements, Cold Regions Science and Technology, 54, 155-163, 2008.

Pulice, I., Di Leob, P., Robustellia, G., Scarigliais, F., Cavalcanteb, F., and Belvisob, C.: Control of climate and local topography on dynamic evolution of badland from southern Italy (Calabria), Catena 109, 83-95, 2013.

Regüés, D., and Gallart, F.: Seasonal patterns of runoff and erosion responses to simulated rainfall in a badland area in Mediterranean mountain conditions (Vallcebre, Southeastern Pyrenees), Earth Surface Processes and Landforms, 29, 755–67, 2004.

Revuelto, J., López-Moreno, J. I., Azorin-Molina, C., Zabalza, J., Arguedas, G., and Vicente-Serrano, S. M.: Mapping the annual evolution of snow depth in a small catchment in the Pyrenees using the long-range terrestrial laser scanning, J. Maps 0, 1-15, 2014.

Sadiki, A., Faleh, A., Navas, A., and Bouhlassa, S.: Assessing soil erosion and control factors by the radiometric technique in the Boussouab catchment, Eastern Rif, Morocco, Catena, 71 (1), 13-20, 2007.
Saez, J. L., Corona, C., Stoffe, M., Rovéra, G., Astrade, L., and Berger, F.: Mapping of erosion rates in marly badlands based on a coupling of anatomical changes in exposed roots with slope maps derived from LiDAR data, Earth Surf. Process. Landf., 36 (9), 1162-1171, 2011.

Sirvent, J., Desir, G., Gutierrez, M., Sancho, C., and Benito, G.: Erosion rates in badland areas recorded by collectors, erosion pins and profilometer techniques (Ebro Basin, NE-Spain), Geomorphology, 18 (2), 61-75, 1997.

Smith, M.W., and Vericat, D.: From experimental plots to experimental landscapes: topography, erosion and deposition in sub-humid badlands from Structure-from-Motion photogrammetry, Earth Surf. Process. Landforms DOI: 10.1002/esp.3747, 2015.

Vergari, F., Della Seta, M., Del Monte, M., Fredi, P., and Lupia Palmieri, E.: Long- and short-term evolution of several Mediterranean denudation hot spots: The role of rainfall variations and human impact, Geomorphology, 183, 14-27, 2013.

Verhoeven, G., Taelman, D., Vermeulen, F.: Computer Vision-based ortho photo mapping of complex archaeological sites: The ancient quarry of Pitaranha, Archaeometry, 54, 1114-1129, 2012.

Vericat, D., Smith, M. W., and Brasington, J.: Patterns of topographic change in sub-humid badlands determined by high resolution multi-temporal topographic surveys, Catena, 120, 164-176, 2014.

Walling, D. E.: Drainage basin studies, in: Field experiments and measurement programs in geomorphology, Slaymaker, O. (Eds.), Balkema, Rotterdam, 17-60, 1991.

Westoby, M.J., Brasington, J., Glasser, N.F., Hambrey, M.J., and Reynolds, J.M.: “Structure-from-Motion” photogrammetry: A low-cost, effective tool for geoscience application, Geomorphology, 179, 300-314, 2012.

Yamakoshi, T., Mathys, N., and Klotz, S.: Time-lapse video observation of erosion processes on the Black Marls badlands in Southern Alps, France, Earth Surface Processes and Landforms, 34, 314–18, 2009.
Table 1. Summary of time intervals and rainfall data recorded during the monitoring periods

Monitoring interval	Number of days	Total rainfall (mm)	Max. daily rainfall (mm)	Max. rainfall 5-min intensity (mm h⁻¹)
Period 1 23 July 2013-12 Nov. 2013	112	334.8	77.2	148.8
Period 2 12 Nov. 2013- 26 Mar. 2014	134	308.8	24.6	14.4
Period 3 26 Mar. 2014- 23 July 2014	119	198	30.2	33.6
Annual period 23 July 2013-23 July 2014	365	841.6	77.2	148.8
North-facing slope	Period 1	Period 2	Period 3	July 2013-July 2014
-------------------	----------------	----------------	----------------	---------------------
TLS				
Mean ± SD (m)	-0.020 ± 0.032	-0.046 ± 0.050	-0.012 ± 0.027	-0.077 ± 0.049
Max + (m)	0.31	0.25	0.14	0.25
Max - (m)	-0.61	-0.39	-0.28	-0.59
Photogrammetry				
Mean ± SD (m)	-0.035±0.044	-0.051 ± 0.042	-0.003 ± 0.025	-0.017 ± 0.038
Max + (m)	0.41	0.16	0.21	0.34
Max - (m)	-0.43	-0.39	-0.25	-0.46

Table 2. Mean differences, standard deviation and maximum differences (Max+, deposition; Max-, erosion) of point clouds obtained for different survey periods with TLS and photogrammetry on north-facing slopes.
South-facing slope	Period 1	Period 2	Period 3	July 2013-July 2014	
TLS	Mean ± SD (m)	-0.006±0.026	-0.037±0.066	0.011±0.027	-0.032±0.071
	Max + (m)	0.179	0.52	0.24	0.42
	Max - (m)	-0.194	0.416	-0.176	-0.45
Photogrammetry	Mean ± SD (m)	-0.010±0.025	0.001±0.055	0.011±0.0211	-0.002±0.056
	Max + (m)	0.18	0.48	0.22	0.48
	Max - (m)	-0.22	-0.42	-0.17	-0.42

Table 3. Mean differences, standard deviation and maximum differences (Max+, deposition; Max-, erosion) of point clouds obtained for different survey periods with TLS and photogrammetry on south-facing slopes.
	24/07/2013	24/07/2014
North-facing slopes (TLS-SfM) [m]	-0.013 ± 0.0308	-0.0201 ± 0.0326
South-facing slope (TLS-SfM) [m]	-0.002 ± 0.0202	-0.006 ± 0.0141

Table 4. Mean differences and standard deviation of point clouds obtained with both methods calculated for the first and last acquisition dates (23/07/13 and 23/07/14).
Methodology	Advantage	Disadvantage
TLS	• non-invasive	
 • pinpoint accuracy
 • high accuracy potential and automation level
 • high data acquisition
 • post-processing is fast | • high economic cost
 • heavy material (difficulties for portability)
 • longer measure time
 • problems with little misalignments of reference points
 • sight shadowing |
| **Photogrammetry** | • non-invasive
 • low costs
 • small format: low weight
 • reduce data collection time by ~80%
 • high number of photos to minimize missing areas | • centimetric accuracy
 • worse adaptation to survey large areas
 • post-processing is still labor-intensive
 • problems with illumination changes |

Table 5. Advantages and disadvantages of Terrestrial Laser Scanner (TLS) and Photogrammetry methodologies for studying geomorphological processes in badland areas.
Figure 1. Distribution of soil erosion studies in badland areas according to different methodologies.
Figure 2. Evolution of different methodologies and difference between invasive and non-invasive methods
Figure 3. Field site location, Araguás catchment. Detailed image of both selected slopes.
Figure 4. Daily rainfall and accumulated rainfall during the survey period (July 2013–July 2014).
Figure 5. Topographic changes observed at the monitoring intervals and at annual scale obtained with TLS on north-facing slopes (CloudCompare software).
Figure 6. Topographic changes observed at the monitoring intervals and at annual scale obtained with photogrammetry on north-facing slopes (CloudCompare software).
Figure 7. Topographic changes observed at the monitoring intervals and at annual scale obtained with TLS on south-facing slopes (CloudCompare software).
Figure 8. Topographic changes observed at the monitoring intervals and at annual scale obtained with SfM on south-facing slopes (CloudCompare software).
Figure 9. Comparison of DEMs between techniques, considering TLS as the reference, on north-facing slopes. Differences have been calculated for the first and last acquisition dates (23/07/13 and 23/07/14) (cloud compare software). A RGB colored points images is added in right panel as an overview of the north-facing slopes.
Figure 10. Comparison of DEMs between techniques, considering TLS as the reference, on south-facing slopes. Differences have been calculated for the first and last acquisition dates (23/07/13 and 23/07/14) (cloud compare software). A RGB colored points images is added in right panel as an overview of the south-facing slopes.