Novel procedure for testing of soil field test kits involving paper strips

Karolina Golicz | Stephen Hallett | Ruben Sakrabani

Abstract
The need for facilitation of access to soil information has never been greater. Growing human population, shrinking land and water resources, soil pollution, climate change and unequal distribution of agriculture-oriented technology impact negatively on global food security. There has been a long-standing interest in developing low-cost and easily accessible soil field kits to measure different properties of agricultural soils in order to improve their agronomic capacity. Test strips in particular have provided a favoured method of obtaining soil nutrient status information since the 1970s. Today there is renewed interest in using semi-quantitative colorimetric methods in soil assessment due to incorporation of modern technological solutions, such as smartphones, which could in turn increase the accuracy and precision of the existing methods. In this paper, we propose streamlined testing procedures based on experience gathered that may be conducted prior to a field kit development involving test strips. Results from laboratory and field experiments are presented, highlighting important factors which ought to be taken into account at the commencement of test strip-oriented studies.

Keywords
field test kits, smartphone environmental sensing, soil testing methods, test strips

1 | INTRODUCTION

Soil testing is one of the oldest and best established tools in agricultural management (Sims, Edwards, Schoumans, & Simard, 2000). For decades, agronomists have used soil tests to stipulate fertilizer recommendations in order to safeguard economic viability of agricultural operations and to limit the environmental impacts associated with continuous use of commercial fertilizers (Dawson & Hilton, 2011; Gartley, Sims, Olsen, & Chu, 2002; Zhang et al., 2017). However, soil testing can prove costly, time-consuming, impractical to carry out as the crop season progresses, prone to sampling and laboratory errors, and often requiring the use of noxious chemicals as part of standard analytical procedures (Omran, 2017). These limitations can impede incorporation of soil testing as a method for soil health assessment and can further discourage agricultural workers from utilizing them at the recommended time intervals. This is important as, in the UK, there is an increased emphasis on soil health (Department for Environment Food and Rural Affairs, 2020) and the means to monitor contributory soil conditions. Tools are required for such assessments that are simple to use and widely accessible to landowners.

The lack of access to effective, low-cost and site-specific alternatives to current soil testing methods has been recognized as one of the factors contributing to mismanagement of fertilizer resources (Prager & McKee, 2014). In developed countries such as the United States and Australia, only about a quarter of farmers undertake soil testing, noted to be infrequent and conducted at low densities (Lobry de Bruyn & Andrews, 2016). In emerging economies, this rate is not only lower but is often arbitrary and not site-specific.
(Ju et al., 2009), with overfertilization being the common result, regardless of the severe consequences for agricultural productivity and the wider environment (Song, Zhao, Wang, & Li, 2009). Recently, there has been renewed interest in creation of soil test kits optimized for agronomical field use as a result of increasing access to technology such as portable sensors (Piikki et al., 2016). Key to this is the rising ubiquity of smartphones, which are being increasingly used in environmental management applications (Aitkenhead, Donnelly, Coull, & Hastings, 2014) and soil science (Aitkenhead et al., 2015; Delgado, Kowalski, & Tebbe, 2013; Stiglitz et al., 2017).

Semi-quantitative test strips, used in combination with a reflectometer able to quantify test strip colour has been proposed as a method of quick in-field assessment of soil nutrient status in the United States, Germany, Spain and Australia (Jemison & Fox, 1988; Schmidhalter, 2005; Thompson, Gallardo, & Peña-Fleitas, 2013; Wetselaar, Smith, & Angus, 1998). Such strips are therefore frequently included in field soil test kits. In developing countries, in particular, they constitute a favoured way by which extension workers can collect soil information to better inform the agronomic decisions of smallholder farmers (Nyi et al., 2017). Non-governmental organizations concerned with sustainable development such as Akvo (www.akvo.org) have shown interest in utilizing test strips in environmental analysis, employing smartphones to act as portable reflectometers to relate the colour of the test strip to the quantity of measured chemicals more precisely than is possible with the naked eye. This technology offers great prospects for soil testing for fertilizer recommendation purposes.

The aim of this work was to provide a comprehensive set of procedures that need consideration at the developmental stage of new in-field soil test kits involving semi-quantitative colorimetric test strips.

2 | METHODS

2.1 | Test strips and reflectometers

The set of procedures was developed based on metadata collected across two long-term (>2 years long) experiments undertaken at Cranfield University, UK, where laboratory work was conducted, and Nanjing Agricultural University, People’s Republic of China (PRC), where fieldwork was conducted. The UK laboratory provided the preparatory work, which supported the field study in PRC. The reason for considering field study in PRC, where soil samples were collected from smallholder vegetable farms, was because of the limited access to soil information there, resulting in sub-optimal fertilizer application use and associated diminished economic returns and potential for environmental damage resulting from overfertilization, especially in relation to multi-season horticultural crops. The experiments comprise part of an ongoing study testing the viability of employing smartphones and test strips as a practicable method of soil analysis.

Four test strips types were selected for use during those experiments:

- Quantofix® (reference number: 913 51) nitrate strips (range: 0–100 mg L⁻¹ of NO₃⁻);
- Quantofix® (reference number: 913 20) phosphate strips (range: 0–100 mg L⁻¹ of PO₄³⁻);
- Quantofix® (reference number: 913 15) ammonium strips (range: 0–400 mg L⁻¹ of NH₄⁺); and,
- Merck KGaA® (reference number: 117985) potassium strips (range: 0–1,500 mg L⁻¹ of K).

At the commencement of this study, another nitrate test strip (Hatch) was selected for testing; however, its production was discontinued and thus Quantofix® (reference number: 913 51) was given preference. Two types of reflectometers were employed during testing, that is Quantofix® Relax Test Strip Reader (Figure 1) and Akvo Caddisfly app (ver. 10) installed on a Samsung Galaxy S8 phone. Comparison between the commercial grade reflectometer and the smartphones application will not be explored in detail in this paper (Figure 2).

As the need for accurate in-field soil nutrient measurement is particularly great amongst small holder farmers, the test strips were tested in relation to the following:

- How well they agreed with standard solutions;
- The standard deviation expected for readings at different concentrations;
- Interferences to colour development caused by soil test extractants;
- Sensitivity to chemical interferences likely to be encountered in the soil media and other environmental factors.

2.2 | Laboratory study

Standards were prepared in accordance with standard operating procedures developed by Cranfield University. A set of 1,000 ppm stock solutions were prepared for nitrate using 6.068 g of oven-dry NaNO₃ (Sigma-Aldrich, CAS number: 7631-99-4) diluted to 1,000 ml, 1 ml of 1,000 µg of P (Fisher Scientific, Catalogue number: J829805), 3.819 g of NH₄Cl (Fisher Scientific, CAS number: 12125029) diluted to 1,000 ml, and 2.590 g of KNO₃ (Fisher Scientific, CAS number: 7757791) diluted to 1,000 ml. The stock solutions were then diluted to concentrations stipulated by the test strip manufacturer in matrix-matched solutions, which correspond to the extractants frequently used in soil analysis (Table 1).
The reflectometer was used to investigate the agreement with stock solutions in distilled water (dH₂O), the standard deviations associated with readings obtained via the reflectometer and the impact of different extractants on colour development on the test strips’ reactive pads. The stock solutions and extractants were made on the day of measurement. Employment of test strips during testing followed the manufacturer’s instructions. Readings were taken on the same day, under a constant laboratory temperature of 20.5°C. As temperature was identified as a significant factor influencing the reaction time and thus colour change of the test strip, a set of experiments was carried out to quantify its effect. Two test strip types, that is Quantofix nitrate and phosphate, were considered to have the highest potential for use in the context of soil science and thus, selected for the experiment conducted in a plant-growth chamber [Weiss Technik SGR Series of Fitotron walk-in rooms; model: SGR221 LED], which is part of the Agriculture Engineering Precision and Innovation (AgriEPI) Centre, located at Cranfield University. AgriEPI forms part of the national Agritech facilities in the UK. The humidity was set at 70%, and the investigated temperatures were 15, 20, 25, 30 and 35°C. Solution temperature was measured with a laboratory approved thermometer to confirm it matched the ambient temperature of the plant-growth chamber. Each standard solution for nitrate and phosphate was measured with 5 test strips at every temperature setting.

2.3 Field study

Furthermore, consideration was given to the field-ready practicality of the soil extraction process and the lack of precision and accuracy relating to reduced access to laboratory equipment in field conditions. Multiple soil to extractant ratios, that is 1:1, 1:2.5 and 1:5, were investigated with the latter having been found to be the most practical for field use, especially in relation to heavy clays. Two soil standard reference materials (Sigma-Aldrich CRM700 and CRM702) were used to investigate how dilution impacts the precision of the best performing test strip type. The samples were extracted with distilled water for 2 hr on a side-to-side shaker and then diluted. Sample dilution factors of 2, 3.3, 5 and 10 were used and then analysed with the reflectometer. A field sample was extracted and diluted in non-laboratory conditions, as part of the field study carried out in the People's Republic of China (see Golicz, Hallett, Sakrabani, & Pan, 2019 for details) with the results of in-field dilution being compared to results of in-laboratory dilution.

2.4 Statistical analysis

Particular care is needed when employing statistical tests such as correlations and ANOVA in method comparison studies, as the bias and absolute (Δ) difference between standard laboratory and ‘quick tests’ might be less likely to be highlighted. Bland and Altman (2003) advocated the use of Bland–Altman (B-A) plots to investigate the degree of agreement between two methods. The B-A analysis involves constructing a scatter plot, in which the difference between the paired measurements is plotted on y-axis and average of the measures of two methods on x-axis. The mean difference refers to the bias between two methods and is represented as a central horizontal line on the plot. Two additional lines
are derived from the standard deviation (SD) of differences between paired measurements and represent 95% limits of agreement (mean bias 1.96 SD). This approach should be employed alongside scaling the results from mg kg\(^{-1}\) to kg ha\(^{-1}\), which is more relevant for soil practitioners but is often overlooked in test strip studies.

TABLE 1 Stock standards diluted to concentrations stipulated by test strip manufacturers in matrix-matched solutions. Selected matrix solutions correspond to those frequently utilized in soil analysis

Standards	Unit	Matrix
Nitrate	5	ml L\(^{-1}\) dH\(_2\)O, 2 M KCl, 0.2 KCl, 0.02 KCl, M-1\(^a\)
Phosphate	3	ml L\(^{-1}\) dH\(_2\)O, M-1, Olsen-P\(^b\), MM\(^c\)
Ammonium	10	ml L\(^{-1}\) dH\(_2\)O, 0.2 KCl, 0.02 KCl, 0.02 M CaCl\(_2\)
Potassium	250	ml L\(^{-1}\) dH\(_2\)O, M-1, 1 M NH\(_4\)NO\(_3\)

\(^a\)Mehlich-1 \([0.05 \text{ N HCl} + 0.025 \text{ N H}_2\text{SO}_4]\).
\(^b\)Olsen-P \([0.5 \text{ N NaHCO}_3\text{ adjusted to pH 8.5}]\).
\(^c\)Modified Morgan \([0.62 \text{ M NH}_4\text{OH} + 1.25 \text{ M CH}_3\text{COOH}]\).
3 | RESULTS

3.1 | Laboratory-based evaluation and validation of four test strip types currently available for purchase

The agreement (±SD) between four test strip types and corresponding stock standards was assessed (Table 2). Test strips developed to measure nitrate and phosphate had the highest agreement with stock standards and the lowest standard deviation associated with reflectometer readings.

The level of agreement between test strips and stock standards was reduced when a soil extractant was utilized as a matrix (Figure 2a–d). Highly concentrated extractants were found to cause severe interferences with colour development in all test strip types. Interferences were also noted for extractants with low molar concentrations, such as Mehlich-1 (0.05 M HCl in 0.025M H₂SO₄) and 0.02 KCl, with distilled water consistently providing the best results.

Furthermore, test strips were found to be susceptible to environmental factors, particularly temperature effects. At high temperatures, the concentration of measured chemical present in the solution is severely overestimated, for example, at 35°C, reflectometer readings overestimate standard concentration by 25 mg L⁻¹ for NO₃⁻ (Figure 3a) and 30 mg L⁻¹ for PO₄³⁻ (Figure 3b).

3.2 | Insights from field experiments

When recently fertilized fields were sampled, test strips with low range, that is 0–100 ml L⁻¹ of NO₃⁻, required dilution. Dilution was shown to be effective in the laboratory environment where access to suitable equipment is facilitated (Figure 4a), but it reduced the accuracy of the method in the field conditions (Figure 4b).

Similarly, whereas filtration in controlled laboratory conditions is allowed to take up to a few hours when soil to

Standards (in dH₂O)	1	2	3	4	5	6
Deviation from the standard [Mean, N = 5]						
Nitrate	2	0	0	−2	−2	0
Ammonium	−7	1	−15	−83	−92	0
Phosphorus	3	0.6	−3.6	−1.2	0	N/A
Potassium	−42	−58	−50	−70	−213	−230

Standard deviation of reflectometer readings [STDV, N = 5]
Nitrate
Ammonium
Phosphorus
Potassium

TABLE 2 Deviation from the standard (in dH₂O). Red denotes deviation >5 ppm; green denotes deviation <5 ppm. Standard deviations of reflectometer readings for standards in dH₂O

Figure 3 (a–b) Impact of temperature on test strip colour development and subsequent reflectometer reading. At high temperatures, the readings are overestimated [Colour figure can be viewed at wileyonlinelibrary.com]
extractant ratio is high, this approach was highly impractical in field conditions (Figure 5a). Furthermore, during field trials, multiple issues with hardware, that is, the reflectometer, were identified, including (a) low resistance to humidity, (b) high battery consumption and (c) abrasion caused by sand (Figure 5b).

3.3 | Proposed procedure for preliminary testing of soil field test kits involving paper strips

Multiple variables were investigated to optimize choices for selection of soil field test kit apparatus during laboratory and
FIGURE 6 Proposed testing sequence of laboratory experiments to be undertaken as part of field test kit development. Additional chemicals encompass chemicals required for the test strip reaction to occur and chemicals used during the soil extraction process; environmental factors refer primarily to temperature and humidity. Acronyms used: SRM—soil reference material. [Colour figure can be viewed at wileyonlinelibrary.com]
field studies, which considered the viability of employing semi-quantitative colorimetric test strips in soil analysis. As the experiments were conducted throughout 2 years alongside other studies, there was a limited sequence to the actions taken.

Formulation of new methodologies for test strip use (for detailed examples see Hartz, 1994 and Jemison & Fox, 1988) will always involve an element of trial and error. A summary of organized actions designed to streamline testing procedures is described in Figure 6.

This set of procedures is presented as a decision support tool and was derived from the laboratory and field studies and field observations. Each step can be considered separately or as a sequence of steps aimed at identifying limitations at the developmental stage of new in-field soil test kits involving paper strips.

3.4 Limitations of current statistical methods used in method comparison studies

Table 3 shows a subset of results presented in test strip-oriented studies conducted between 1988 and 2018. WebPlotDigitizer (ver. 4.2) was used to extract the results from published charts. The errors, defined as the difference between the standard method and the test strip method, ranged between 19.9 mg kg$^{-1}$ and −55.7 mg kg$^{-1}$ or 35.9 kg ha$^{-1}$.
ha$^{-1}$ and -100.2 kg ha$^{-1}$ (assuming a sample depth of 15 cm and a bulk density of 1.2 g cm$^{-3}$), regardless of the reported range of R^2 values between 0.94 and 0.97.

4 | DISCUSSION

4.1 | Insights from laboratory work

Assessment of the agreement between test strips and stock standards alongside estimation of acceptable limits for standard deviation (SDs) of readings should be conducted at the beginning of any test strip-oriented study. This will facilitate the choice of the best strip types for further work. Furthermore, if SDs are high at higher concentration, this information can be used to inform the methodology selected, for example, by extracting lower quantities of soil but incorporating dilution factors. Ideally, test strips should be also checked against soil standard reference material (SRM) following initial testing with stock standards in dH$_2$O. SRM contains a series of compounds, which can be found in the soil media at concentrations likely to cause interference with the colour development of the test strip’s reactive pad. By using SRM for quality assurance of colorimetric strips, those that are highly sensitive to interference can be replaced with an alternative in a timely manner.

Test strips constitute a form of chromatography and are intrinsically prone to chemical interference (Xie, Xu, Tang, Baig, & Xu, 2013). Potential interferences are stipulated in the instruction manual provided by the manufacturer, for example nitrite is identified as interference-causing agent for Quantofix® strips (test strip reference number: 913 51) and silica is identified as interference-causing agent for Quantofix® strips (test strip reference number: 913 20). Both cause overestimation of readings; however, only the former’s impact on the test strips’ colour development can be easily discerned and thus neutralized (Wetselaar et al., 1998). It is also essential to consider the combinatorial effects of chemicals, for example the impact of individual substances might have been investigated by the manufacturer and specified in the manual, combining chemicals even at low concentrations can result in unexpected interferences to colour development of the reactive pad. An example is when even low-concentration extractants such as Mehlich-1 (0.05M HCl in 0.025M H$_2$SO$_4$) or 0.02 KCl were shown to have an impact on the agreement with standards.

4.2 | Insights from fieldwork

The accessibility of equipment such as reflectometers and test strips themselves requires careful consideration as selecting expensive or niche products, which require additional support in the form of removable parts or chemical compounds, might make the final product more difficult to use by interested parties. For example, Aguilera, Motavalli, Gonzales, and Valdivia (2014) reported issues with in-field application of Cardy nitrate meters in the highlands of Bolivia because of limited access to the standard solutions necessary to calibrate the tool. Similarly, over the course of this study, production of one of selected test strip types was discontinued. Additionally, certain test strips, for example Quantofix phosphate and ammonium test strips, might be supplied together with the chemical reagents necessary for the reaction to take place. It is considered essential to obtain the required amounts of chemicals and assess the likelihood of impact by time since opening and/or environmental factors such as temperature before commencement of any field-based experiments. The latter remains true for any potential extractant. In field conditions, weather might be unpredictable and high ambient temperatures could render certain solvents unusable.

Another factor, which impacts performance of test strips, involves environmental variables such as temperature and humidity. Temperature, in particular, affects the rate of reaction (Schmidhalter, 2005), which results in lower colour intensity at lower temperatures and higher colour intensity at higher temperatures. Different test strips might require separate temperature correction factors and thus should be investigated separately prior to any field study.

Finally, development of an in-field test kit involves an iterative learning process. Conducting experiments and analysis in the field conditions will result both in the discovery of unexpected drawbacks in the proposed analytical procedure, and the implementation of further improvements to the method. For example, it is essential to consider extraction, filtration and replicability of any proposed methodology across different soil types, especially with regard to soil texture. In laboratory conditions, extraction can be facilitated through the use of consistent mechanical shakers, whereas in field conditions manual shaking might prove to be limited by the user’s physical ability. Filtration in controlled laboratory conditions might take up to a few hours when soil to extractant ratio is high, as proposed in, for example, Jemison & Fox, 1988, but this approach would be highly impractical in field conditions. If an extractant is to be used, its impact on the test strip accuracy has to be accounted for and its longevity and accessibility considered in full. As lightly textured soils (sands and sandy loams) are easy to extract and filter, they should not be used to guide method development, with heavy clays being given a priority during final stages of in-field soil test kit evaluation. Finally, if a reflectometer is to be used, then it is important to consider certain factors, for example low resistance to humidity and dust, high battery consumption or difficulties in replacement of internal parts, that might make it impossible for use in field conditions.
4.3 Application of an appropriate statistical methodology to establish operational limits of agreement between field test kit and standard soil analytical methods

Robust statistical methods need to be employed to ensure that the results obtained via the in-field soil test kit can be used to inform management activities on farms or in similar settings. The most commonly used statistical methods in papers promoting test strips are regressions and correlations. However, these two methods look at the degree of association, not agreement (Bland & Altman, 2003). High correlation coefficients might obscure the lack of agreement between two methods expressed as high mean difference bias, unequal distribution of errors, for example greater differences at higher concentrations or vice versa, making it more difficult to assess the nature, size and frequency of errors. Alternative statistical approaches such as Bland–Altman plots (Bland & Altman, 2003; Phatak & Nimbalkar, 2017) can be used to highlight the differences between two methods and help either to modify an existing methodology or to adopt a more critical approach regarding test strip application in soil and plant tissue analysis. Papers that describe the use of in-field soil test kits ought to focus on the agreement between methods and associated operational limits, that is the point where the errors are too large to be of practical use for agronomic management purposes, whilst taking into account the need for sample replication. Furthermore, the variability of soil testing methodologies between laboratories, regions and countries must be considered. Therefore, more than one method of soil analysis should be employed to compare the results, in order to ensure transferability across regions. If the results agree only with certain country-specific methods, then more suitable alternatives might have to be sought.

5 CONCLUSIONS

Results obtained from experiments, involving test strips, conducted in the laboratory and field conditions were used to highlight important factors that are likely to influence the precision and accuracy of in-field soil analytical methods. The compilation of results allowed for development of a novel procedure for preliminary testing of soil field test kits involving paper strips. We have emphasized the need to employ robust statistical methodologies to explore and compare data obtained via the in-field and standard methods of soil analysis has been emphasized in order to improve current approach to assessment of practical limits to the use of in-field soil testing method.

ACKNOWLEDGEMENTS

The authors wish to acknowledge Akvo.org for facilitating funds for conducting test strip testing. This work was supported by the UK Natural Environment Research Council [NERC Ref: NE/M009009/1]. Data underlying this study are made accessible through Cranfield University’s repository at https://doi.org/10.17862/cranfield.rd.11193668.

CONFLICT OF INTERESTS

The authors declare no conflict of interest.

ORCID

Stephen Hallett https://orcid.org/0000-0002-8776-7049
Ruben Sakrabani https://orcid.org/0000-0003-1271-7044

REFERENCES

Aguilera, J., Motavalli, P., Gonzales, M., & Valdivia, C. (2014). Evaluation of a rapid field test method for assessing nitrogen status in potato plant tissue in rural communities in the Bolivian Andean highlands. Communications in Soil Science and Plant Analysis, 45, 347–361. https://doi.org/10.1080/00103624.2013.857680
Aitkenhead, M. J., Donnelly, D., Coull, M. C., & Hastings, E. (2014). Innovations in environmental monitoring using mobile phone technology – a review. International Journal of Interactive Mobile Technologies, 8, 50–58.
Aitkenhead, M. J., Donnelly, D., Sutherland, L., Miller, D. G., Coull, M. C., & Black, H. I. J. (2015). Predicting Scottish topsoil organic matter content from colour and environmental factors. European Journal of Soil Science, 66, 112–120. https://doi.org/10.1111/ ejss.12199
Bland, I. M., & Altman, D. G. (2003). Applying the right statistics: Analyses of measurement studies. Ultrasound in Obstetrics and Gynecology, 22, 85–93. https://doi.org/10.1002/uog.122
Dawson, C. J., & Hilton, J. (2011). Fertiliser availability in a resource-limited world: Production and recycling of nitrogen and phosphorus. Food Policy, 36, S14–S22. https://doi.org/10.1016/j. foodpol.2010.11.012
Delgado, J. A., Kowalski, K., & Tebbe, C. (2013). The first Nitrogen Index app for mobile devices: Using portable technology for smart agricultural management. Computers and Electronics in Agriculture, 91, 121–123. https://doi.org/10.1016/j. compag.2012.12.008
Department for Environment Food and Rural Affairs. (2020). Agriculture bill. London, UK: Department for Environment Food and Rural Affairs.
Gartley, K. L., Sims, J. T., Olsen, C. T., & Chu, P. (2002). Comparison of soil test extractants used in mid-Atlantic United States. Communications in Soil Science and Plant Analysis, 33, 873–895. https://doi.org/10.1081/CSS-120003072
Golicz, K., Hallett, S. H., Sakrabani, R., & Pan, G. (2019). The potential for using smartphones as portable soil nutrient analyzers on suburban farms in central East China. Scientific Reports, 9, 1–10. https://doi.org/10.1038/s41598-019-52702-8
Hartz, T. K. (1994). A quick test procedure for soil nitrate-nitrogen. Communications in Soil Science and Plant Analysis, 25, 511–515. https://doi.org/10.1080/00103629409369058
Jemison, J. M., & Fox, R. H. (1988). A quick-test procedure for soil and plant tissue nitrates using test strips and a hand-held reflectometer. *Communications in Soil Science and Plant Analysis, 19*, 1569–1582. https://doi.org/10.1080/00103628809368035

Ju, X. T., Xing, G. X., Chen, X. P., Zhang, S. L., Zhang, L. J., Liu, X. J., … Zhang, F. S. (2009). Reducing environmental risk by improving N management in intensive Chinese agricultural systems. *Proceedings of the National Academy of Sciences of the United States of America, 106*, 8077. https://doi.org/10.1073/pnas.0902655106

Lobry de Bruyn, L., & Andrews, S. (2016). Are Australian and United States Farmers Using Soil Information for Soil Health Management? *Sustainability, 8*, 304. https://doi.org/10.3390/su8040304

Loo, M. U., Cahn, J. M. D., & Deenik, J. (2017). A framework to improve nitrogen fertilizer use efficiency in intensive vegetable systems of Hawaii. Poster presented at: 2017 Annual Conference of American Society for Horticulture Science, Hawaii.

Nyi, T., Varughese, P., bin Hj Bujang, M. I., Ra, K., Irianta, B., Sengxua, P., … Soda, W. (2017). *ASEAN guidelines on soil and nutrient management*. Bangkok, Thailand: Association of Southeast Asian Nations (ASEAN).

Omran, E.-S. E. (2017). Will the Conventional Soil-Plant Analysis Pass into Oblivion? Rapid and Low-Cost Determination Using Spectroscopy. *Communications in Soil Science and Plant Analysis, 48*, 705–715. https://doi.org/10.1080/00103624.2017.1298782

Prager, K., & McKee, A. (2014). Use and awareness of soil data and information among local authorities, farmers and estate managers. 16. Schmidhalter, U. (2005). Development of a quick on-farm test to determine nitrate levels in soil. *Journal of Plant Nutrition and Soil Science, 168*, 432–438. https://doi.org/10.1002/jpln.200520521

Simons, J. T., Edards, A. C., Schoumans, O. F., & Simard, R. R. (2000). Integrating Soil Phosphorus Testing into Environmentally Based Agricultural Management Practices. *Journal of Environmental Quality, 29*, 60–71. https://doi.org/10.2134/jeq2000.00472425002900100008x

Song, X. Z., Zhao, C. X., Wang, X. L., & Li, J. (2009). Study of nitrate leaching and nitrogen fate under intensive vegetable production pattern in northern China. *Comptes Rendus – Biology, 332*, 385–392. https://doi.org/10.1016/j.crvi.2008.11.005

Stiglitz, R., Mikhailova, E., Post, C., Schlautman, M., Sharp, J., Pargas, R., … Mooney, J. (2017). Soil color sensor data collection using a GPS-enabled smartphone application. *Geoderma, 296*, 108–114. https://doi.org/10.1016/j.geoderma.2017.02.018

Thompson, B. R. M. P. F., Gallardo, M., & Peña-Fleitas, M. T. (2013). Improved nitrogen management practices for vegetable production Improving N Management – General Considerations. In K. D’Haene, B. Vandecasteele, R. De Vis, S. Crappé, D. Callens, E. Mechant & G. Hofman, S.D.N. (Eds.), *Nutrihort: Nutrient management, innovative techniques and nutrient legislation in intensive horticulture for an improved water quality* (p. 388). Ghent, Belgium: Book.

Wetselaar, R., Smith, G. D., & Angus, J. F. (1998). Field measurement of soil nitrate concentrations. *Communications in Soil Science and Plant Analysis, 29*, 729–739. https://doi.org/10.1080/00103629809369980

Xie, C., Xu, J., Tang, J., Baig, S. A., & Xu, X. (2013). Comparison of Phosphorus Determination Methods by Ion Chromatography and Molybdenum Blue Methods. *Communications in Soil Science and Plant Analysis, 44*, 2535–2545. https://doi.org/10.1080/00103624.2013.811518

Zhang, B., Li, Q., Cao, J., Zhang, C., Song, Z., Zhang, F., & Chen, X. (2017). Reducing nitrogen leaching in a subtropical vegetable system. *Agriculture, Ecosystems and Environment, 241*, 133–141. https://doi.org/10.1016/j.agee.2017.03.006