Somatic mutations and progressive monosomy modify \textit{SAMD9}-related phenotypes in humans

Federica Buonocore, … , Annette Grüters, John C. Achermann

\textit{J Clin Invest.} 2017;127(5):1700-1713. \url{https://doi.org/10.1172/JCI91913}.

It is well established that somatic genomic changes can influence phenotypes in cancer, but the role of adaptive changes in developmental disorders is less well understood. Here we have used next-generation sequencing approaches to identify de novo heterozygous mutations in sterile α motif domain–containing protein 9 (\textit{SAMD9}, located on chromosome 7q21.2) in 8 children with a multisystem disorder termed MIRAGE syndrome that is characterized by intrauterine growth restriction (IUGR) with gonadal, adrenal, and bone marrow failure, predisposition to infections, and high mortality. These mutations result in gain of function of the growth repressor product SAMD9. Progressive loss of mutated \textit{SAMD9} through the development of monosomy 7 (–7), deletions of 7q (7q–), and secondary somatic loss-of-function (nonsense and frameshift) mutations in \textit{SAMD9} rescued the growth-restricting effects of mutant SAMD9 proteins in bone marrow and was associated with increased length of survival. However, 2 patients with –7 and 7q– developed myelodysplastic syndrome, most likely due to haploinsufficiency of related 7q21.2 genes. Taken together, these findings provide strong evidence that progressive somatic changes can occur in specific tissues and can subsequently modify disease phenotype and influence survival. Such tissue-specific adaptability may be a more common mechanism modifying the expression of human genetic conditions than is currently recognized.

\textbf{Find the latest version:}

\url{https://jci.me/91913/pdf}
Somatic mutations and progressive monosomy modify SAMD9-related phenotypes in humans

Federica Buonocore,1 Peter Kühnen,2 Jenifer P. Suntharalingham,1 Ignacio Del Valle,1 Martin Digweed,3 Harald Stachelscheid,4 Noushafarin Khajavi,2 Mohammed Didi,5 Angela F. Brady,6 Oliver Blankenstein,2 Annie M. Procter,7 Paul Dimitri,8 Jerry K.H. Wales,9 Paolo Ghirri,10 Dieter Knöbl,10 Brigitte Strahm,12 Miriam Erlacher,12,13 Marcin W. Wlodarski,12,13 Wei Chen,14 George K. Kokai,15 Glenn Anderson,16 Deborah Morrogh,17 Dale A. Moulding,18 Shane A. McKee,19 Charlotte M. Niemeyer,12,13 Annette Grütters,2 and John C. Achermann1

1Genetics and Genomic Medicine, University College London (UCL) Great Ormond Street Institute of Child Health, London, United Kingdom. 2Institute of Experimental Pediatric Endocrinology and Department of Pediatric Endocrinology, Charité, Berlin, Germany. 3Department of Human and Medical Genetics, Charité, Berlin, Germany. 4Berlin Institute of Health, Berlin, Germany, and Berlin-Brandenburg Centrum for Regenerative Therapies, Charité, Berlin, Germany. 5Department of Paediatric Endocrinology, Alder Hey Children’s NHS Foundation Trust, Liverpool, United Kingdom. 6North West Thames Regional Genetics Service, Northwick Park Hospital, Harrow, United Kingdom. 7Institute of Medical Genetics, University Hospital of Wales, Cardiff, United Kingdom. 8Academic Unit of Child Health, University of Sheffield, Sheffield, United Kingdom. 9Department of Endocrinology, Children’s Health Queensland Clinical Unit, University of Queensland, Brisbane, Australia. 10Department of Neonatology, University of Pisa, Pisa, Italy. 11Pediatric Endocrinology, Kielhrupe, Germany. 12Institute of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany. 13German Cancer Consortium (DKTK) and German Research Center (DKFZ), Heidelberg, Germany. 14Max Delbrück Center for Molecular Medicine, Berlin, Germany. 15Department of Paediatric Histopathology, Alder Hey Children’s NHS Foundation Trust, Liverpool, United Kingdom. 16Histopathology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom. 17North East Thames Regional Genetics Laboratory Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom. 18Developmental Biology and Cancer, UCL Great Ormond Street Institute of Child Health, London, United Kingdom. 19Department of Genetic Medicine, Belfast City Hospital, Belfast, United Kingdom.

It is well established that somatic genomic changes can influence phenotypes in cancer, but the role of adaptive changes in developmental disorders is less well understood. Here we have used next-generation sequencing approaches to identify de novo heterozygous mutations in sterile α motif domain–containing protein 9 (SAMD9, located on chromosome 7q21.2) in 8 children with a multisystem disorder termed MIRAGE syndrome that is characterized by intrauterine growth restriction (IUGR) with gonadal, adrenal, and bone marrow failure, predisposition to infections, and high mortality. These mutations result in gain of function of the growth repressor product SAMD9. Progressive loss of mutated SAMD9 through the development of monosomy 7 (~7), deletions of 7q (7q~), and secondary somatic loss-of-function (nonsense and frameshift) mutations in SAMD9 rescued the growth-restricting effects of mutant SAMD9 proteins in bone marrow and was associated with increased length of survival. However, 2 patients with ~7 and 7q~ developed myelodysplastic syndrome, most likely due to haploinsufficiency of related 7q21.2 genes. Taken together, these findings provide strong evidence that progressive somatic changes can occur in specific tissues and can subsequently modify disease phenotype and influence survival. Such tissue-specific adaptability may be a more common mechanism modifying the expression of human genetic conditions than is currently recognized.

Introduction
Sterile α motif domain–containing protein 9 (SAMD9, OMIM 610456) is a 1,589–amino acid protein that is encoded by a gene on the long arm of chromosome 7 (7q21.2) (1). SAMD9 has little homology to other proteins except for SAMD9L, also on 7q21.2, with which it shares 58% identity (1–3). SAMD9 and SAMD9L are likely to act as growth suppressors, and overexpression of SAMD9 suppresses tumor progression in non–small cell lung cancer cells (4). In contrast, reduced SAMD9 expression has been reported in several tumor tissues, cisplatin chemoresistance, and normophosphatemic familial tumoral calcinosis (5–7). Similarly, loss of SAMD9 and SAMD9L by monosomy 7 or monosomy 7q (~7/7q~) is well established in myeloid lineage malignancies (8, 9), and disruption of SAMD9L has been shown to be associated with the development of myelodysplastic syndrome (MDS) in mice and humans (10, 11). These growth-regulating effects are potentially mediated by altered endosomal degradation of the EGF receptor (EGFRI) (10).

Three case reports of children with intrauterine growth restriction (IUGR), congenital adrenal insufficiency, gonadal failure, and monosomy 7 have been published in the last 20 years (12–14). These children also developed MDS, presumably sec-

Authorship note: F. Buonocore and P. Kühnen are co-first authors. A. Grüters and J.C. Achermann are co-senior authors.

Conflict of interest: The authors have declared that no conflict of interest exists.

License: This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Submitted: November 28, 2016; Accepted: January 26, 2017.

Reference information: J Clin Invest. 2017;127(5):1700–1713. https://doi.org/10.1172/JCI91913.
Results

**SAMD9 mutations cause a multisystem growth restriction disorder.** Eight patients with marked IUGR and severe testicular dysfunction leading to female external genitalia in six children and atypical (“ambiguous”) external genitalia in 2 children were referred to our centers for treatment and precise genetic analysis (Table 1). Testes were undescended in most (7 of 8) patients with preserved structure but decreased testosterone, where assessed (Figure 1A and Supplemental Tables 1 and 2; supplemental material available online with this article; https://doi.org/10.1172/JCI91913DS1). Neonatal-onset severe adrenal insufficiency was diagnosed in 6 of 8 children, whereas 1 had mild adrenal dysfunction and another had normal adrenal function into adolescence (Figure 1A and Supplemental Tables 1 and 2). All children were delivered preterm and were severely ill in the neonatal period and needed intensive care. Other features included severe pulmonary infections and a bron-
mutations in the patients show clustering in a key hotspot, which is often reported in gain-of-function changes (16). Immunohistochemistry of human fetal adrenal tissue showed generalized localization of SAMD9 in the cytoplasm of cells in the definitive and fetal zones, with strong expression in cells positive for the nuclear receptor NR5A1 (also known as steroidogenic factor 1, or SF-1) (Figure 2A). In the testis, SAMD9 was present in interstitial (Leydig) cells and seminiferous cords (Supplemental Figure 1). Using quantitative reverse transcriptase PCR of human fetal and adult tissues, SAMD9 expression was highest in the fetal adrenal gland, with high expression also in the colon, bone marrow, fetal liver, thymus, spleen, lung, liver, and fetal testis (Figure 2B). This expression pattern correlates very well with the clinical phenotype seen in the patients (Table 1).

SAMD9 is a growth repressor, and SAMD9 mutations further reduce cell proliferation. Stable selection of HEK293 cells transfected with SAMD9 mutant constructs was undertaken and cell proliferation studied. Transfection of WT SAMD9 resulted in decreased cell proliferation, consistent with a role for SAMD9 as a growth repressor (Figure 2C). Transfection of SAMD9 harboring the mutations found in our patients resulted in further repression of cell proliferation, consistent with the variants having a gain-
samples of these 3 patients and identified a reduced expression pattern compared with that of samples from 3 healthy control individuals (Figure 2E and Supplemental Figure 2).

**Progressive loss of chromosome 7 occurs in patients surviving beyond early infancy.** Follow-up of patients surviving the first 3 months of life showed that all of them had evidence of monosity 7 (–7) or partial deletions of its long arm (7q–) (Table 1 and Figure 3A). Most importantly, by analyzing serial samples available in 3 patients by whole-genome array, we could demonstrate that –7/7q– was not present at early time points but these changes were acquired later (Figure 3A; patients 4–6). Furthermore, in the 2 patients with MDS at the time of diagnosis, significant –7/7q– ratios were detected (patients 7 and 8). By studying chromatogram profiles, single-nucleotide primer extension assays, and DNA subcloning, we showed that the development of –7 removed the allele harboring the gain-of-function \( \text{SAMD9} \) mutation (Table 1; Figure 3, A–C; and Supplemental Figures 3 and 4). Furthermore, in patient 6, bone marrow cells with –7 were predominant initially but were later replaced by cells with 7q–, resulting in more specific removal of the locus containing the mutated \( \text{SAMD9} \) (Figure 3B).

**Demonstration of a dynamic evolution of secondary loss-of-function mutations in \( \text{SAMD9} \) that rescue growth repression.** In addition to the chromosomal changes identified, 4 children had evidence of somatic nonsense (stop gain) or frameshift (single nucleotide deletion) loss-of-function mutations in \( \text{SAMD9} \) in their hematopoietic compartment (Table 1 and Figure 3A; and Supplemental Figures 3 and 4). Two of these changes were not detected using standard Sanger sequencing, but were present in a proportion of deep sequencing reads (Figure 4A). All changes were confirmed and quantified using single-nucleotide primer extension assays and by subcloning and sequencing of PCR-amplified DNA (Figure 4B and Supplemental Figures 5 and 6).

**Figure 2. SAMD9 is expressed in key tissues and represses cell growth.** (A) Immunohistochemistry showing \( \text{SAMD9} \) expression in human fetal adrenal gland at 9 weeks postconception (red) with NR5A1 (also known as steroidogenic factor 1) shown in green and DAPI-stained nuclei in blue. C, capsule; DZ, definitive zone; FZ, fetal zone. Scale bar: 100 μm. (B) \( \text{SAMD9} \) expression in different human fetal and adult tissues showing high expression in fetal adrenal as well as in tissues affected in the clinical phenotype. Tissues especially relevant to the phenotype are highlighted (*). Data are shown as relative expression compared with \( \text{GAPDH} \). Representative data are shown as mean ± SEM for a single study performed with triplicate technical replicates. Similar patterns were seen in independent studies using both \( \text{GAPDH} \) and \( \text{ACTB} \) as housekeeping genes. (C) Growth of HEK293 cells was reduced following stable transfection of WT \( \text{SAMD9} \) (mean ± SD; mock vs. WT, \( P < 0.001 \)) and reduced further by the gain-of-function mutations found in patients (WT vs. samples, \( P < 0.0001 \), black bars). Data represent mean ± SD for the absolute cell number in 3 independent studies, each performed in triplicate \((n = 9; 2\text{-tailed } \text{t} \text{ tests})\). (D) BrdU assays showing significantly reduced growth of patient fibroblasts (patients 4, 6, and 8) compared with fibroblasts from 3 independent controls. Data represent mean ± SD cell proliferation for 3 independent studies, each with 6 technical replicates (unless specified, \( n = 18; 1\text{-way ANOVA with Tukey’s multiple comparison test, controls vs. patients, } P < 0.0001 \)). (E) qRT-PCR analysis of fibroblast samples from 3 patients with a \( \text{SAMD9} \) gene mutation revealed a significant reduction of gene expression compared with \( \text{SAMD9} \) expression in fibroblasts derived from 3 healthy control individuals. Data represent mean ± SEM relative expression for 4 independent studies, each with 2 replicates (Mann-Whitney test, controls vs. patients, \( P < 0.05 \)).

of-function effect (Figure 2C). Cell proliferation assays were also performed in fibroblasts from 3 patients. These fibroblasts express the mutated alleles and showed significantly decreased proliferation in comparison with control cells (Figure 2D). Additionally, we analyzed the \( \text{SAMD9} \) protein and mRNA expression in fibroblast
structures) was identified in 2 of the patient cell lines (patients 6 and 8), as shown in representative images (Figure 6B) and in quantitative analysis of early endosome size (Figure 6, C and D).

Induced pluripotent stem cells containing SAMD9 mutations can be differentiated into intermediate mesoderm. In order to determine the effects of SAMD9 mutants on cellular differentiation and function, induced pluripotent stem cells (iPSCs) were generated from fibroblasts of 2 of the patients (patients 6 and 8). Cells harboring the primary gain-of-function SAMD9 mutations showed iPSC differentiation characteristics similar to those of controls based on pluripotency tests, stem cell markers, and hierarchical clustering of RNA expression data (Figure 7, A–C, and Supplemental Figure 8). Cells could be differentiated into intermediate mesoderm with profiles similar to those of control cells (Figure 7C). Gene expression analysis of the cells followed by hierarchical clustering showed that patient-derived cells (fibroblasts, iPSCs, intermediate mesoderm) did cluster with each other and were distinct from control cells (Figure 7C). This finding likely represents an effect of the underlying SAMD9 mutation, potentially influencing EGFR signaling and other biologically relevant pathways (e.g., urogenital development) (Supplemental Table 3). Interestingly, apoptotic and inflammatory signals seem to be deregulated during mesoderm differentiation, suggesting that, in 6). Functional studies were performed in HEK293 cells transfected with SAMD9 containing the primary gain-of-function mutant together with the relevant loss-of-function change. These cells showed increased proliferation, suggesting that the growth-repressing effects of gain-of-function mutations in SAMD9 can be “rescued” by these secondary loss-of-function changes (Figure 5, A and B).

These data show that the expression of the mutant SAMD9 protein was abrogated in most children by more than 1 mechanism. In patients 5, 7, and 8, –7/7q– occurred together with a loss-of-function point mutation (Table 1). In patient 6, bone marrow cells showed progressive monosomic loss of the SAMD9 locus (Figure 3, B and C).

SAMD9 mutations produce subtle changes in early endosome size. Electron microscopy of patient fibroblasts compared with control cells showed that a small subpopulation of patient cells contained multiple large vesicles (>1.5 μm) as well as dilated endoplasmic reticulum and enlarged mitochondria, but these changes were heterogeneous, and extensive areas of cytoplasm containing large vesicles were not seen (Figure 6, A and B, and Supplemental Figure 7). No marked differences in late endosome structure were seen between patient and control fibroblasts (Figure 6B, green structures). A modest increase in the size of early endosomes (red structures) was identified in 2 of the patient cell lines (patients 6 and 8), as shown in representative images (Figure 6B) and in quantitative analysis of early endosome size (Figure 6, C and D).

Induced pluripotent stem cells containing SAMD9 mutations can be differentiated into intermediate mesoderm. In order to determine the effects of SAMD9 mutants on cellular differentiation and function, induced pluripotent stem cells (iPSCs) were generated from fibroblasts of 2 of the patients (patients 6 and 8). Cells harboring the primary gain-of-function SAMD9 mutations showed iPSC differentiation characteristics similar to those of controls based on pluripotency tests, stem cell markers, and hierarchical clustering of RNA expression data (Figure 7, A–C, and Supplemental Figure 8). Cells could be differentiated into intermediate mesoderm with profiles similar to those of control cells (Figure 7C). Gene expression analysis of the cells followed by hierarchical clustering showed that patient-derived cells (fibroblasts, iPSCs, intermediate mesoderm) did cluster with each other and were distinct from control cells (Figure 7C). This finding likely represents an effect of the underlying SAMD9 mutation, potentially influencing EGFR signaling and other biologically relevant pathways (e.g., urogenital development) (Supplemental Table 3). Interestingly, apoptotic and inflammatory signals seem to be deregulated during mesoderm differentiation, suggesting that, in
addition to defective proliferation, excessive stress signals might also contribute to hematopoietic failure.

Discussion

Using a combination of whole-exome sequencing and targeted capture, we have identified a severe multisystem disorder caused by heterozygous \textit{SAMD9} mutations in eight 46,XY patients with marked IUGR, severe testicular dysfunction, congenital adrenal insufficiency, thrombocytopenia/anemia, persistent diarrhea, and severe infections resulting in a life-threatening course. Three children died in utero or in the first 3 months of life, 3 children died between 3 months of age and 2 years, and 2 children were diagnosed with MDS and survived following bone marrow transplantation. Detailed studies in a panel of fetal and adult tissues show that \textit{SAMD9} expression closely mirrors the features of the clinical syndrome.

An independent study has very recently reported a similar, though distinct, phenotype caused by \textit{SAMD9} mutations (15), characterized by IUGR, infections, enteropathy, adrenal hypoplasia, and underdeveloped external genitalia (MIRAGE syndrome) (15). Only 2 of the 11 patients reported had monosomy 7 and developed myelodysplasia. In contrast, all children in our study had a 46,XY karyotype, and significantly more marked gonadal dysfunction with female-appearing external genitalia in 6 of them, as well as other additional features such as hydrocephalus, cerebellar hypoplasia, small thymus, and short phalanges, and severe neonatal disease with higher mortality in early infancy. Therefore, this cohort represents a significantly different subset of the phenotypical spectrum. Although a small increase in early endosome size was seen in fibroblasts from 2 of our patients, as well as some enlarged vesicles and organelles, we were unable to detect the large late endosomes or large destructive vesicles described in the other report (15).

Whereas only 2 of the 11 patients reported by Narumi et al. had evidence of mosaic monosomy 7, 6 of the 8 patients in our cohort had evidence of complex and dynamic somatic events in hematopoietic cells that would be predicted to abrogate the growth-repressing gain-of-function mutations in \textit{SAMD9}.

Using several different approaches, it was possible to show consistently that the development of –7 removed the allele harboring the \textit{SAMD9} mutation. This has been termed “adaption by aneuploidy,” but examples of this phenomenon influencing disease mechanism in humans are so far limited to \textit{SAMD9}/\textit{SAMD9L} (11, 15). For the first time, to our knowledge, we are now able to

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure4}
\caption{Additional loss-of-function mutations occurring in \textit{SAMD9}. (A) Low-copy-number nonsense (stop gain) mutations were found in 2 infants who died in the first year of life (patients 3 and 5). These changes were not seen on chromatograms but were detected by deep sequencing and by subcloning of DNA amplicons and sequencing of 50–100 clones. Both patients with a milder phenotype (patients 7 and 8) had loss-of-function mutations detected on chromatograms. A single nucleotide variant causing a nonsense mutation was found in patient 7 (chromatogram and deep sequencing reads shown). A single nucleotide deletion (arrowhead) causing a frameshift was found in patient 8. Control and patient forward sequence is shown in the upper panels and the patient’s reverse sequence shown below. Note: The reverse-direction nucleotide sequence is shown in the next-generation sequencing reads. Patient age at sampling is indicated. (B) Single-nucleotide primer extension assays confirming the WT and mutant allele percentage of additional \textit{SAMD9} loss-of-function changes in the patients described above.}
\end{figure}
show that the development of −7/7q− was progressive in 3 patients, with 1 child (patient 6) showing even complex dynamic cytogenetic changes involving first −7 and then 7q− over time.

Furthermore, 4 children additionally had evidence of the development of somatic nonsense (stop gain) or frameshift (single nucleotide deletion) mutations in SAMD9 in their hematopoietic compartment. In the 2 children with the mildest phenotype, these somatic changes could be detected by traditional Sanger sequencing. However, 2 other children had evidence of second somatic loss-of-function changes that were only detected by deep sequencing and confirmed by single-nucleotide primer extension assays or by subcloning of PCR-amplified DNA. These changes would not have been detected by traditional sequencing approaches.

As a consequence of these events, the expression of the mutant SAMD9 protein progressively became abrogated in most children by more than 1 mechanism. These observations indicate that bone marrow cells that lost the mutated SAMD9 allele had a clonal advantage. The coexistence of different second-hit mutations all affecting the mutated SAMD9 allele strongly suggests that the putative gain-of-function germline mutation imposed severe growth restriction on the hematopoietic system reflected by the clinical symptoms of the patients, who suffered from anemia, thrombocytopenia, and infections from early infancy. As a consequence, the pressure of cells to lose the mutated SAMD9 gene seemed to be exceptionally high. The genetic heterogeneity of bone marrow cells found in patients 5, 6, 7, and 8 gave evidence that a second hit occurred early and simultaneously in different hematopoietic stem and progenitor cells, all giving rise to clones with increased competitiveness (−7/7q−). However, this phenomenon was associated with the risk of malignant transformation. It has to be assumed that MDS in these patients was polyclonal rather than monoclonal, at least during the initial disease stages. Under certain circumstances and depending on the additional somatic hits, 1 single clone might have overgrown the others, as observed for the 7q− clone in patient 6. Therefore, the detection of multiple genomes in an individual might not only represent random occurring events, but could also reflect clonal expansion of cells with deletions and loss-of-function mutations that have a selection and proliferation advantage over cells carrying deleterious gain-of-function changes.

The outcome (length of survival) seemed to correlate with the progressive development of −7/7q− and of second hits in the bone marrow. Notably, the 2 children (patients 7 and 8) with the mildest phenotypes had non-arginine primary mutations, large clones with −7 or 7q− present at time of diagnosis of MDS, and the highest somatic load of the additional nonsense or frameshift change. Therefore, −7 and the other second-hit changes affecting the SAMD9 locus provided a partial rescue of growth suppression, but paved the way for malignant transformation again limiting survival. Early detection of SAMD9 mutations in patients with IUGR, adrenal and gonadal failure, and severe neonatal infections is important, because bone marrow transplantation may be necessary for survival. As all of the children in our study who could be tested (7 of 8) had de novo changes, it seems likely that recurrence would only occur if a parent carried a germline mosaicism. This has been reported to be the case in 1 patient (15). Furthermore, SAMD9 has many single-nucleotide polymorphisms. Some of these have been shown to have no functional consequence by Narumi et al. (15), so careful analysis of potential gain of function will be required.

Although the association between childhood MDS and −7/7q− is well established, the molecular basis of this condition has until
The Journal of Clinical Investigation

RESEARCH ARTICLE

1707

jci.org Volume 127 Number 5 May 2017

that for SAMD9 is emerging, although it is so far not possible to define whether the primary cause of the malignant transformation is SAMD9L, SAMD9, or other genes in the locus.

In addition to the dynamic somatic changes, genomic regulation of SAMD9 may also be important in controlling the balance of cell proliferation. By studying patient fibroblasts compared with controls, we were initially surprised to detect reduced SAMD9 expression at both the RNA and protein levels. This finding may represent reduced transcriptional regulation of SAMD9 in the context of a gain-of-function change. This hypothesis is supported by the report of increased SAMD9 mRNA in fibroblasts from patients with normophosphatemic familial tumoral calcinosis, a condition that occurs due to loss of SAMD9 function (7). Indeed, previous work has suggested that the SAMD9 promoter can be regulated by inflammatory cytokines such as TNF-α and IFN-γ (18, 19), so genomic regulation with possible feedback mechanisms might recently not been well understood, as many candidate tumor suppressor genes have been identified on chromosome 7, and functional losses of these genes have been implicated in disease initiation and/or progression (9, 17). One putative tumor suppressor is the homolog of SAMD9, SAMD9L. SAMD9L and SAMD9, together with the HEPACAM2 gene, are located on 7q21.1 (Figure 1B), a region that has been found to be deleted in a subset of patients with myeloid leukemia and myelodysplastic syndromes (9). Although targeted deletion of Samd9l in the mouse results in myeloid neoplasia, the exact role of SAMD9L in transformation is still unclear (10). Very recently, heterozygous mutations causing a putative gain of function of the growth-suppressing effects of SAMD9L have been reported in human ataxia-pancytopenia syndrome (11). Two of these children developed myeloid malignancies, with evidence of monosomy 7 in the bone marrow or in derived cell lines from several of these patients. Therefore, a very similar mechanism to

Figure 6. Analysis of the effect of SAMD9 mutations on cell structure and endosomes. (A) Electron microscopy of fibroblasts from controls and patients showed a modest increase in the number and size of cytoplasmic vesicles (V) and mildly dilated rough endoplasmic reticulum (ER) in a small subpopulation of patient cells, but the effects were very heterogeneous (see also Supplemental Figure 7). Nu, nucleus. Scale bars: 2 μm. (B) Patient fibroblasts showing early endosomes (Rab5a, red) and late endosomes (Rab7a, green). Scale bars: 10 μm. (C) Early endosome volumes were greater in fibroblasts from patients 6 and 8 compared with controls, with greater variability in patients’ samples. Mean endosome volume for 10 independent cells was analyzed for each group. Data are shown as mean values with a whiskers plot to show the range (1-way ANOVA and Tukey’s post hoc test, P < 0.05). (D) A distribution analysis of early endosome volume for all cells studied also showed a shift toward larger early endosome volume for patients 6 and 8. Data are shown as mean ± SEM for 10 independent cells in each group. Mean number of endosomes quantified per cell, n = 2,248.
also serve to regulate cellular SAMD9 activity in the context of gain- or loss-of-function changes.

In order to study the underlying pathogenic basis of this condition further, the effects of SAMD9 gain of function on the derivation of iPSCs from fibroblasts, and subsequent differentiation of iPSCs into intermediate mesoderm, were studied in 2 of the patients (patients 6 and 8). iPSCs and intermediate mesoderm were successfully generated, suggesting that SAMD9 does not have a marked effect on early differentiation events. However, the patient samples did cluster together compared with the controls, suggesting changes in gene expression that may involve biologically relevant pathways. Indeed, RNA expression data revealed potential changes in developmental programs, general transcription, and apoptotic and inflammatory signals, all pathways that possibly contribute to the developmental and bone marrow failure phenotype. Even though our results are preliminary, exploiting iPSC technology will provide potentially important disorder- and patient-specific model systems for further studying the mechanisms of developmental conditions. Future studies to try to differentiate intermediate mesoderm, for example into adrenal-like cells, might be informative in revealing SAMD9-related effects, and potentially to study the development and effects of dynamic secondary somatic changes in a relevant in vitro model system.

Based on our observations, SAMD9 is a growth-restricting protein that plays a major role in the development of many systems and leads to intrauterine growth retardation but has a marked effect on adrenal gland and testes differentiation. A similar growth restriction condition causing adrenal hypoplasia is IMAGe syndrome, due to gain-of-function changes in the paternally imprinted cell cycle regulator CDKN1C (20). Children with IMAGe syndrome also have prenatal growth restriction and adrenal insufficiency, but the gonadal phenotype seems less severe, and we are unaware of features such as enteropathies, bone marrow failure, or infections.

Immunohistochemistry of human fetal adrenal gland and testis showed widespread localization of SAMD9 in the cytoplasm of inter-
that dynamic changes within the genome can influence development clearly demonstrates, for the first time to our knowledge, that SAMD9 does not have the growth-restrictive effects of SAMD9. Thus mice may be able to adapt in these situations, as they are more resistant than humans to the disruptive effects of NR5A1, which colocalizes with SAMD9 in many cells (22).

It is also emerging that during embryogenesis a fine balance between cell number and differentiation of cells is a prerequisite for normal organ development and size. Several models have been proposed for the adrenal gland and testis, whereby adequate proliferation of cells must occur prior to differentiation (23–26). Organ hypoplasia could result if inadequate proliferation occurs prior to differentiation, or if differentiation occurs too rapidly without sufficient proliferation or outside a critical window. We propose that SAMD9 is essential for controlling cell proliferation to maintain this balance (Figure 8). Gain-of-function mutations in SAMD9 might lead to a significant reduction of cells that could subsequently undergo differentiation/hyperplasia. In this context it is important that SAMD9 has been lost during evolution of the mouse (5). We speculate that this may be one reason why mice are more resistant than humans to the disruptive effects of developmental regulators such as NR5A1 and DAX-1 (also known as NR0B1). Haploinsufficiency of NR5A1 and hemizygosity of DAX-1 cause profound gonadal and adrenal phenotypes, respectively, in humans, but mice do not show such marked features (22, 27–29). Thus mice may be able to adapt in these situations, as they do not have the growth-restrictive effects of SAMD9.

In addition to shedding light on SAMD9 and growth, this study clearly demonstrates, for the first time to our knowledge, that dynamic changes within the genome can influence developmental mechanisms, phenotypes, and even outcome. More than half of the patients studied had evidence of chromosomal changes of the relevant genomic region and/or second mutations in the gene, with complex changes far beyond just “adaptation by aneuploidy.” While somatic variability and adaptation are well studied in cancer, there is considerably less evidence to date for these changes influencing development and developmental disorders. Such somatic rescue mechanisms may be most evident in trophic systems with rapid turnover, such as the hematopoietic system. Here, we were able to detect these dynamic changes by analyzing serial DNA samples from leukocytes. However, other dynamic systems might be subject to similar rescue mechanisms, but these changes would never be detected unless serial tissue samples were studied, which, in humans, is often challenging. For example, the absence of an adrenal phenotype in patient 8 may have been due to an adrenal-specific rescue, but obtaining tissue for deep sequencing is not possible. Furthermore, in the presence of aneuploidy, evidence for the primary genetic “driver” may be lost, especially if Sanger sequencing is used. Consequently, dynamic somatic variation of the genome could be present more frequently than appreciated and might contribute to the variable penetrance of phenotypes and even reversibility of certain disorders at a tissue level. Random loss-of-function events might be especially common modifiers when the primary driver is a gain-of-function change, such as shown here for SAMD9.

**Methods**

**Patients and samples.** DNA samples were obtained with permission from children referred primarily for the diagnosis of congenital adrenal insufficiency or morphological adrenal abnormalities. One baby had died in utero, and 1 child presented late and was included given the similarity of the phenotype and presence of monosomy 7. DNA samples were obtained from blood leukocytes at different time points using standard methods. Where documented in the article, DNA was also extracted from liver (postmortem), bone marrow, or fibroblasts. Parental DNA samples were obtained from blood or saliva for 7 of 8 children. The clinical characteristics of the cohort are shown in Table 1. Biochemical, endocrine, and cytogenetic investigations were undertaken using standard clinical protocols, and histology of bone marrow, adrenal glands, gonads, and other tissues was confirmed by pathological review.
Whole-exome sequencing and analysis. Five micrograms of genomic DNA (gDNA) was enriched using the Agilent Human All Exon V4 kit (Agilent Technologies) following the manufacturer’s protocol. Whole-exome libraries were sequenced on an Illumina HiSeq 2000 system for 1x101 cycles following the manufacturer’s instructions (Illumina). All raw sequencing reads were mapped onto UCSC hg19 using BWA 0.5.9-r16, and mappings were converted into BAM file format using SAMtools (v0.1.18). Initial mappings were postprocessed using Genome Analysis Toolkit (GATK) 1.3-21 following the “best practices V3.” In brief, reads were realigned around sites of known insertions and deletions (INDELS), and likely PCR duplicates were detected using Picard 1.48. Finally, raw base quality scores were empirically recalibrated. Single-nucleotide polymorphisms (SNPs) and short INDELS were identified using the UnifiedGenotyper from GATK and in parallel with the variant caller in SAMtools. Variants were classified as novel or known variants deposited in dbSNP 135. Functional consequences of each variant were annotated using snpEff 2.0.5d for UCSC hg19 RefSeq genes and ENSEMBL 65 human gene models. The potential deleterious effect was evaluated using PolyPhen 2, SIFT, PhyloP, and OMIM if available. Candidate INDELs were identified using SureDesign software (www.agilent.com/genomics/suredesign) to capture all coding exons and 100 bp of intronic flanking sequence of genes of interest. The entire custom design covered 160 genes involved in adrenal development and function, for a total size of 497,956 kbp. The total number of amplicons was 21,612 with predicted target coverage of 98.7%. gDNA samples (225 ng each) were prepared for Illumina sequencing according to the HaloPlex Target Enrichment System protocol (version D.5, Agilent Technologies) (30). Libraries were sequenced on the Illumina MiSeq platform following the manufacturer’s instructions (Illumina). FAST-Q files were analyzed using SureCall (v3.0.1.4) software (Agilent Technologies).

Variant analysis and validation. To confirm the presence and identity of the variants, Sanger sequencing was performed on PCR amplicons from gDNA covering the variant position. Direct sequencing was carried out using Big Dye Terminator v1.1 Cycle Sequencing Kit (Applied Biosystems) on an ABI 3130 sequencer (Applied Biosystems) and visualized using Sequencher v5.2.4 (Gene Codes Corp.). Novel missense variants were absent in at least 100 control samples studied as well as the housekeeping genes ACTB and GAPDH. The presence of SAMD9 mRNA expression in fibroblasts, samples were studied from 3 healthy control individuals and 3 patient samples (patients 4, 6, and 8). RNA was extracted from 4 × 10^6 cells using the Trizol method. DNase digestion and cDNA synthesis were performed according to standard protocols (NEB, Promega). qRT-PCR reactions for SAMD9 as well as the housekeeping genes ACTB and GAPDH were established according to standard protocols using an iCycler (Bio-Rad). Oligonucleotide sequences are shown in Supplemental Table 4. Results represent 4 independent experiments each performed in 2 replicates. The results were analyzed using the ΔΔCt method, and statistical analysis was performed using the Mann-Whitney test.

Immunohistochemistry. Human fetal adrenal gland and testis tissue (9 weeks postconception) was provided with approval from the HDJR. Following cryosection, tissue sections (12 μm) were fixed briefly in 4% paraformaldehyde in TBS, rinsed in TBS, and blocked in 1% BSA in TBS-Tween (0.5% Tween) for 1 hour before incubation overnight with mouse monoclonal anti-human SF-1 antibody (Invitrogen, N1665; 1:200 dilution) and rabbit polyclonal anti-human SAMD9 antibody (Sigma-Aldrich, HPA021319; 1:200 dilution). Sections were washed in TBS-Tween and incubated for 1 hour with the relevant secondary antibodies: Alexa Fluor 488–goat anti-mouse (Invitrogen, A11001; 1:400) and Alexa Fluor 555–goat anti-rabbit (Invitrogen, A21429; 1:400), respectively. Nuclei were counterstained with DAPI (Sigma-Aldrich). Slides were washed with TBS and mounted using ProLong Gold Antifade Mountant (Life Technologies). Images were collected on a Zeiss LSM 710 confocal microscope (Carl Zeiss) and analyzed using Zeiss Zen 2009 and ImageJ (NIH).

Whole-genome array. Chromosomal microarray copy number analysis was performed on gDNA and analyzed versus a reference (Affymetrix Reference Model file created from microarrays using 284 HapMap samples representing Yoruba, Asian, and Caucasian ethnic groups and 96 samples from phenotypically healthy males and females). The DNA was digested with NspI, amplified, fragmented to 25–125 bp, and biotin-labeled before hybridization to Affymetrix Cytochip 750K arrays in a GeneChip Hybridization Oven 645 in accordance with the manufacturer’s instructions (user’s guide; Cytoscan Assay Rev 4, Affymetrix). The microarrays were washed and stained in a GeneChip Fluidics Station 450 and scanned using a GeneChip Scanner 3000 (Affymetrix). Raw data were processed in Chromosome Analysis Suite v2 (Affymetrix) and examined using the high-resolution setting providing an estimated practical resolution of 200 kb.

Single-nucleotide primer extension reactions. Primers were designed to flank the specific patient mutations and sequence variants (Supple-
mental Table 5). After treatment with shrimp alkaline phosphatase and exonuclease I, PCR products were used in single-nucleotide primer extension reactions using the ABI Prism SNaPshot Multiplex kit (Applied Biosystems) and appropriate specific 35-mer forward primers to detect the nucleotide at the position of interest. After removal of unincorporated dideoxynucleotides (ddNTPs), the fluorescently labeled single-stranded DNAs were analyzed on the ABI 3730 sequencer (Applied Biosystems) together with the GeneScan 500 ROX dye size standard. Relative proportions of alleles were derived from the peak areas in the electropherograms. In pilot experiments, allele ratios were compared for PCR reactions conducted between 24 and 30 cycles to ensure that alleles were being independently amplified. For subsequent analyses, PCRs were run for 28 cycles.

Subcloning studies. Validation of low-copy-number variants and quantification of mutations were also performed by subcloning of DNA and screening of multiple independent colonies. In brief, gDNA from patients was PCR-amplified with a high-fidelity Taq polymerase, Elongase (Life Technologies). PCR products were ligated into the pCRI-XL-TOPO vector and transformed into One Shot TOP10 chemically competent cells (Life Technologies). Plasmid DNA was extracted and the region of interest sequenced, as described above. Between 50 and 100 independent clones were studied in each experiment.

Functional studies of SAMD9 WT and mutant activity. A pCMV6-Entry vector containing human SAMD9 cDNA was obtained from Ori- gene (SC304503). All 7 single and 4 double SAMD9 mutations were introduced into the cDNA by site-directed mutagenesis using the QuikChange Multi Site-Directed Mutagenesis Kit (Agilent Technologies), and well as the 4 secondary changes alone (total n = 15). All vectors were sequenced to validate the mutations.

For functional studies of cell proliferation, 2 × 10^3 HEK293 cells (ATCC CRL-1573) were transfected with the pCMV6-Entry vector with the 17 different SAMD9 variants (15 mutants, WT, or empty vector) using Lipofectamine 3000 (Thermo Fisher Scientific) following the manufacturer’s protocol. All cells were negative for mycoplasma. Stably transfected cells were selected with G418 (500 μg/ml) (Gibco) for 14 days and collected once the controls reached confluence. Representative images of cell density were taken by bright-field microscopy using an Olympus 1X71 inverted microscope. Cells were trypsinized, pelleted, and resuspended before being counted on a FACSCalibur (BD Biosciences) using propidium iodide to exclude dead cells. Pelleted, and resuspended before being counted on a FACSCalibur (BD Biosciences) using propidium iodide to exclude dead cells. Pelleted, and resuspended before being counted on a FACSCalibur (BD Biosciences) using propidium iodide to exclude dead cells. Pelleted, and resuspended before being counted on a FACSCalibur (BD Biosciences) using propidium iodide to exclude dead cells.

For functional studies of cell proliferation, 2 × 10^3 HEK293 cells (ATCC CRL-1573) were transfected with the pCMV6-Entry vector with the 17 different SAMD9 variants (15 mutants, WT, or empty vector) using Lipofectamine 3000 (Thermo Fisher Scientific) following the manufacturer’s protocol. All cells were negative for mycoplasma. Stably transfected cells were selected with G418 (500 μg/ml) (Gibco) for 14 days and collected once the controls reached confluence. Representative images of cell density were taken by bright-field microscopy using an Olympus 1X71 inverted microscope. Cells were trypsinized, pelleted, and resuspended before being counted on a FACSCalibur (BD Biosciences) using propidium iodide to exclude dead cells. Pelleted, and resuspended before being counted on a FACSCalibur (BD Biosciences) using propidium iodide to exclude dead cells.

Ultrathin sections were examined using a JEOL 1400 transmission electron microscope (JEOL). Independent images from 20 randomly selected control or patient fibroblasts were studied.

Endosome studies. Fibroblasts were grown on a sterile tissue culture dish with a cover glass bottom (FD35-100, Fluoro Dish, World Precision Instruments) and were cotransfected with the RFP-Rab5a-expressing vector and the GFP-Rab7a-expressing vector (CellLight Late Endosomes-GFP, Life Technologies). Live cells were imaged for 48 hours after transfection using a Zeiss LSM 710 confocal microscope (Carl Zeiss) and analyzed using Zeiss Zen 2009 and ImageJ (NIH). For quantitative studies of early endosome volume, fibroblasts were cotransfected with the RFP-Rab5a vector as above, and after 48 hours culture medium was removed and cells were washed with PBS. Cells were fixed for 20 minutes with 4% paraformaldehyde in PBS at room temperature, and then washed 3 times with PBS. Ten images/cells per patient and control were collected using a Zeiss LSM 710 confocal microscope (Carl Zeiss). Deconvolution of raw images was carried out using Huygens Software (Scientific Volume Imaging); endosome volume was measured using Imaris Software (Bitplane). Statistical analysis was performed in Prism (GraphPad), using 1-way ANOVA and Tukey’s post hoc test (P < 0.05). These studies were done in a blind fashion by the investigator.

Reprogramming. Reprogramming of patient and control fibroblasts was performed using Sendai virus vectors (CytoTune-iPS 2.0 Reprogramming Kit, Thermo Fisher Scientific). In brief, 5 × 10^4 cells were seeded in 1 well of a 24-well plate and cultured in proliferation medium that consisted of DMEM supplemented with 10% FCS, 1× GluAtAX with 100 U/ml penicillin, and 100 μg/ml streptomycin (all from Thermo Fisher Scientific). Cells were transduced using the 3 Sendai polycistronic vectors KLF4–OCT3/4–SOX2, c-Myc, and KLF4 (CytoTune-iPS 2.0 Sendai Reprogramming Kit, Thermo Fisher Scientific). After addition of the virus, the plate was centrifuged at 800 g for 20 minutes at room temperature. On the next day, medium was exchanged with fresh proliferation medium. Cells were cultured for 7 days with medium changes every other day. On day 8 after transduc-
tion, cells were passaged using TrypLE Select (Thermo Fisher Scientific) and seeded with a density of $3 \times 10^4$ cells per well in proliferation medium onto a 6-well plate coated with Geltrex (Thermo Fisher Scientific). On the next day, medium was changed to Essential 8 (E8) medium (Thermo Fisher Scientific) supplemented with 100 U/ml penicillin and 100 μg/ml streptomycin. The E8 medium was replaced every day until human iPSC colonies appeared. Individual colonies were picked using a pipette tip and expanded in E8 medium on plates coated with Geltrex. Cell lines generated from the 2 patients are named CUBi001-A (patient 6) and CUBi002-B (patient 8). Detailed information on the generated cell lines is available in the Human Pluripotent Stem Cell Registry (https://hpscreg.eu/).

**Culture of iPSCs.** The iPSCs were cultured in E8 medium supplemented with 100 U/ml penicillin and 100 μg/ml streptomycin in 6-well dishes coated with Geltrex and routinely passaged using 0.5 mM EDTA (Thermo Fisher Scientific) in PBS (without calcium and magnesium) every 5–7 days at a splitting ratio of about 1:20. The iPSC lines BHI001-A (control 1) and BHI004-A (control 2) (both lines derived from fibroblasts of healthy donors) were used as controls in the differentiation and gene expression analysis experiments. Details of these lines are available at https://hpscreg.eu/.

**Immunofluorescence staining for pluripotency markers.** For staining, iPSCs were grown in 96-well imaging plates (CellCarrier, PerkinElmer) in E8 medium. After 3 days, cells were fixed with Cytofix reagent, followed by blocking and permeabilization with PermWash reagent (both from BD Biosciences). Then, cells were incubated with the dye-conjugated antibodies anti–TRA-1–60–Vio488 (Miltenyi Biotec, REA157, 130-106-872), anti–SSEA4–PerCP-Vio700 (Miltenyi Biotec, REA101, 130-105-053), anti–OCT3/4–APC (Miltenyi Biotec, REA338, 130-105-555), and anti–NANOG (D73G4)–PE (Cell Signaling Technology, 14955). Nuclei were stained with Hoechst 33342 (2.5 μg/ml in PBS; Invitrogen). Images were captured using an Operetta high-content imaging system (PerkinElmer).

**Karyotyping of iPSCs.** Karyotyping was carried out using KaryoLite BobS (PerkinElmer). From each sample at least 240 ng of gDNA was used as a starting material. The samples were processed according to the manufacturer’s instructions. Briefly, gDNA was labeled with biotin, purified, and hybridized to beads with complementary BAC probes. After washing and reporter (streptavidin-PE) binding, the fluorescent signals were measured with a Bio-Plex 200 system (Bio-Rad). Results were analyzed using BoBsoft analysis software (PerkinElmer). As references, female and male gDNA (Promega) was used. A sample was defined as “normal disomic” when the fluorescent ratio was approximately 1.0 for all loci analyzed.

**Differentiation of iPSCs into intermediate mesoderm cells.** iPSCs were differentiated into intermediate mesodermal cells using a protocol described by Lam et al. (31). iPSCs were harvested as single cells using Accutase (Thermo Fisher Scientific) and $4 \times 10^4$ cells seeded in each well of a Geltrex-coated 6-well plate in E8 medium. Medium was changed after 3 days to advanced RPMI, 1× GlutaMAX (both from Thermo Fisher Scientific), 5 μM CHIR99021 (Reagents Direct), 100 U/ml penicillin, and 100 μg/ml streptomycin for 36 hours. For the next 72 hours, the differentiation medium was changed to advanced RPMI, 1× GlutaMAX, 100 ng/ml bFGF (PeproTech), 2 μM retinoic acid (Miltenyi Biotec), 100 U/ml penicillin, and 100 μg/ml streptomycin. The cells were harvested using Accutase, and total RNA for gene expression analysis was extracted as described above.

**Expression profiling.** Total RNA was isolated using the RNeasy Kit (Qiagen) from the 2 patient iPSC lines (patients 6 and 8) and the control iPSC line (control 1), as well as from the primary fibroblasts these lines were derived from. In addition, RNA was isolated from the 2 patient intermediate mesoderm cell lines (patients 6 and 8) and 2 control intermediate mesoderm cell lines (controls 1 and 2). Biotin-labeled cRNA was generated using the Illumina TotalPrep RNA Amplification Kit (Ambion, USA) with 300 ng of quality-checked total RNA as input. cRNA samples were hybridized on HumanHT-12 v4 Expression BeadChips (Illumina). Data analysis was performed using Genome Studio Software v2011.1 (Illumina) and Bioconductor (32). Functional enrichment analysis was performed using DAVID (http://david.abcc.ncifcrf.gov). Validation of pluripotency was carried out via the Web-based PluriTest open access software, a bioinformatics assay of pluripotency in human cells based on gene expression profiles (33).

**Statistics.** Statistical analysis was performed using GraphPad Prism and is described in the relevant sections. Student’s t tests were 2-tailed. A P value less than 0.05 was considered significant. Microarray data were analyzed using Bioconductor.

**Data availability.** All relevant data are available from the authors upon request. Microarray data are available through ArrayExpress (https://www.ebi.ac.uk/arrayexpress/) (accession code E-MTAB-5145).

**Study approval.** Written informed consent of the parents was obtained for research and diagnosis prior to inclusion in the study (UK IRB 07/Q0508/24; HD8R 08/H0712/34+35).

**Author contributions** FB and PK designed studies, conducted and supervised data generation and analysis, and provided input in the manuscript preparation. JPS, IDV, M Digweed, HS, NK, WC, GKK, GA, DM, and DAM conducted data generation and analysis and were involved in study design. M Didi, AFB, OB, AMP, PD, JKHW, PG, DK, and BS all provided clinical input, samples, and discussions about the phenotypes. SAM, ME, MWW, and CMN contributed to the interpretation of the mechanisms leading to the emerging hematological phenotype or disease mechanisms and provided clinical data and samples. AG and JCA designed the studies, supervised data generation, interpreted the results, and wrote the manuscript.

**Acknowledgments** We are grateful to Dianne Gerrelli, Suzanne Drury, Stephanie Canning, Rich Skillbeck, Susan McNERLAN, Rita OELTJEN, Gabrielle Hildebrand, and Sebastian Fröhler for technical support and clinical information as well as for performing next-generation sequencing, FACS analysis, and bioinformatics. The human embryonic and fetal material was provided by the Joint Medical Research Council/Wellcome Trust (grant 099175/Z/12/Z) Human Developmental Biology Resource. Imaging and analysis were performed at the UCL Institute of Child Health Cell Imaging Facility. JCA is a Wellcome Trust Senior Research Fellow in Clinical Science (grant 098513/Z/12/Z) with support from the National Institute for Health Research Biomedical Research Centre at Great Ormond Street Hospital for Children NHS Foundation Trust and UCL. PK and AG received research grants from the German Research Foundation (DFG, KU2673/2-1). PK was supported by a clinical scientist grant from Charité/Berlin Institute of Health.
1. Lemos de Matos A, Liu J, McFadden G, Esteves PJ. Evolution and divergence of the mammalian SAMD9/SAMD9L gene family. BMC Evol Biol. 2013;13:121.

2. Li Q, et al. Identification of a common micro-deletion in SAMD9 with myeloid leukemia and myelodysplastic syndrome. J Hum Genet. 2016;34(7):781–789.

3. Asou H, et al. Haploinsufficiency of SAMD9L, an endosome fusion facilitator, causes myeloid malignancies in mice mimicking the human SAMD9, the gene mutated in normophosphatemic familial tumoral calcinosis. J Hum Genet. 2008;53(9):510–516.

4. Wu L, et al. miR-96 induces cisplatin chemoresistance in non-small cell lung cancer cells by down-regulating SAMD9. Oncol Lett. 2014;8:92.

5. Honda H, Nagamachi A, Inaba T. -7 /7q− syn-drome is caused by missense mutations in SAMD9L. Am J Hum Genet. 2006;79(4):759–764.

6. Li Q, et al. Mouse Samd9l is not a functional paralog of the human SAMD9, the gene mutated in normophosphatemic familial tumoral calcinosis. Exp Dermatol. 2012;21(7):554–556.

7. Honda H, Nagamachi A, Inaba T. -7 /7q− syn-drome is caused by missense mutations in SAMD9L. Am J Hum Genet. 2006;79(4):759–764.

8. Asou H, et al. Haploinsufficiency of SAMD9L, an endosome fusion facilitator, causes myeloid malignancies in mice mimicking the human SAMD9L gene family. BMC Evol Biol. 2013;13:121.

9. Nagamachi A, et al. Haploinsufficiency of the mammalian SAMD9/SAMD9L gene family. BMC Evol Biol. 2013;13:121.

10. Li Q, et al. Mouse Samd9l is not a functional paralog of the human SAMD9, the gene mutated in normophosphatemic familial tumoral calcinosis. Exp Dermatol. 2012;21(7):554–556.

11. Jiang Q, et al. The Samd9l gene: transcriptional regulation and tissue-specific expression in mouse development. J Invest Dermatol. 2011;131(17):1428–1434.

12. Qu L, et al. Mouse Samd9l is not a functional paralog of the human SAMD9, the gene mutated in normophosphatemic familial tumoral calcinosis. J Hum Genet. 2006;53(9):510–516.

13. Asou H, et al. Identification of a common micro-deletion in SAMD9 with myeloid leukemia and myelodysplastic syndrome. J Hum Genet. 2016;34(7):781–789.

14. Wu L, et al. miR-96 induces cisplatin chemoresistance in non-small cell lung cancer cells by down-regulating SAMD9. Oncol Lett. 2014;8:92.

15. Honda H, Nagamachi A, Inaba T. -7 /7q− syn-drome is caused by missense mutations in SAMD9L. Am J Hum Genet. 2006;79(4):759–764.

16. Li Q, et al. Identification of a common micro-deletion cluster in subband among patients with myeloid leukemia and myelodysplastic syndrome. Biochem Biophys Res Commun. 2009;383(2):245–251.

17. Honda H, Nagamachi A, Inaba T. -7 /7q− syn-drome in myeloid-lineage hematopoietic malignancies: attempts to understand this complex disease entity. Oncogene. 2015;34(19):2413–2425.

18. Topaz O, et al. A deleterious mutation in SAMD9 causes normophosphatemic familial tumoral calcinosis. Am J Hum Genet. 2006;79(4):759–764.

19. Asou H, et al. Identification of a common micro-deletion cluster in subband among patients with myeloid leukemia and myelodysplastic syndrome. Biochem Biophys Res Commun. 2009;383(2):245–251.

20. Honda H, Nagamachi A, Inaba T. -7 /7q− syn-drome in myeloid-lineage hematopoietic malignancies: attempts to understand this complex disease entity. Oncogene. 2015;34(19):2413–2425.

21. Nagamachi A, et al. Haploinsufficiency of SAMD9L, an endosome fusion facilitator, causes myeloid malignancies in mice mimicking human diseases with monosomy 7. Cancer Cell. 2013;24(3):305–317.

22. Chen DH, et al. Ataxia-Pancytopenia Syndrome is caused by missense mutations in SAM9L. Am J Hum Genet. 2016;98(6):1146–1158.