UAV-Assisted Relaying and Edge Computing: Scheduling and Trajectory Optimization

Xiaoyan Hu, Student Member, IEEE, Kai-Kit Wong, Fellow, IEEE, Kun Yang, Senior Member, IEEE, and Zhongbin Zheng

Abstract—In this paper, we study an unmanned aerial vehicle (UAV)-assisted mobile edge computing (MEC) architecture, in which a UAV roaming around the area may serve as a computing server to help user equipment (UEs) compute their tasks or act as a relay for further offloading their computation tasks to the access point (AP). We aim to minimize the weighted sum energy consumption of the UAV and UEs subject to the task constraints, the information-causality constraints, the bandwidth allocation constraints and the UAV’s trajectory constraints. The required optimization is nonconvex, and an alternating optimization algorithm is proposed to jointly optimize the computation resource scheduling, bandwidth allocation, and the UAV’s trajectory in an iterative fashion. Numerical results demonstrate that significant performance gain is obtained over conventional methods. Also, the advantages of the proposed algorithm are more prominent when handling computation-intensive latency-critical tasks.

Index Terms—UAV, mobile edge computing, resource scheduling, bandwidth allocation, trajectory optimization.

I. INTRODUCTION

A. Motivation and Prior Works

With the popularization of Internet of things (IoT) and the increasingly complex mobile applications, such as virtual and augmented reality, online gaming, automatic driving, etc., the computing demands at user equipment (UEs) are reaching an unprecedented level. Mobile edge computing (MEC), widely regarded as the technology to help the resource-limited UEs handle computing-intensive latency-critical tasks, has attracted great attention from both the academia and the industry. The standardization organizations and industry associations such as ETSI and 5GAA have identified several use cases for MEC, from the intelligent video acceleration and application-aware performance optimization to vehicle-to-everything and massive machine-type communications, etc. [1, 2].

The rationale behind MEC is that UEs’ computing tasks can be offloaded and completed at the edge of wireless networks by deploying cloud servers at the access points (APs), so as to liberate the UEs from heavy computing workloads and prolong their battery lifetime [3, 4]. Recently, MEC has been widely used in cellular networks, focusing on improving the energy efficiency or reducing the latency of various cellular-based MEC systems [5–12]. A multiple-input multiple-output (MIMO) multicell MEC system was studied in [5], where the total energy consumption was minimized by jointly optimizing the radio and computational resources. In [6], the resource allocation for minimizing the weighted sum energy consumption of users was addressed, and a threshold-based optimal policy was given with respect to (w.r.t.) the offloading priority function. Later in [7], the scenario of a UE with multiple tasks was considered, where multiple APs assisted the UE to reduce its total tasks’ execution latency and energy consumption. A two-tier heterogeneous network with the coexistence of edge and central cloud computing was studied in [8], and the cloud selection was optimized to minimize the network’s energy consumption. In addition, the works in [9–12] introduced the use of energy harvesting or wireless power transfer (WPT) technologies into the cellular-based MEC systems, which has enabled the UEs to have sustainable energy support to their transmissions and computation, but at the cost of increasing the computational complexity of the systems.

Due to the attractive advantages of unmanned aerial vehicle (UAV) for its easy deployment, flexible movement, and line-of-sight (LoS) connections, and so on, UAV-enabled wireless communication networks have been much researched in recent years [13–16]. For instance, an energy-efficient UAV communication was investigated in [14], in which an UAV flew at a fixed altitude and had the initial and final locations preset on its trajectory design. Both rate-maximization and energy-minimization were addressed simultaneously to improve the system energy efficiency. Recently, [15] proposed a generic framework for the analysis and optimization of the air-ground systems, and an optimum altitude for UAV in maximizing the coverage region with a guaranteed minimum outage performance was derived. WPT technology was considered for UAV wireless networks in [16], and the UAV trajectory was optimized to maximize the sum energy or the minimum energy transferred to all the UEs. It was revealed that UAV-enabled WPT can significantly enhance the WPT performance over the traditional WPT system with fixed energy transmitters.

It is a great attempt to leverage the technology of the UAV in MEC systems, and the performance improvement of the UAV-enabled MEC architecture has been shown to be substantial [17–19]. A UAV-based MEC system was investigated in [17], where a moving UAV equipped with a processing server was considered to help UEs compute their offloaded tasks. The total mobile energy consumption was minimized by optimizing the task-bit allocation and the UAV trajectory jointly using
the successive convex approximation (SAC) methods. Later in [18], a wireless powered UAV-enabled MEC system was studied, where the UAV was endowed with an energy transmitter and an MEC server to provide energy as well as MEC services for the UEs. The computation rate maximization problems were addressed under both the partial and binary computation offloading modes by alternating algorithms. In another study [19], the UAV acted as a UE rather than an MEC server, which was served by multiple cellular ground base stations to compute its offloaded tasks. The UAV’s mission completion time was minimized by optimizing the resource allocation as well as the UAV trajectory through an SCA algorithm.

B. Our Contributions

The aforementioned MEC works concentrate either on the cellular-based MEC networks, where the UEs’ tasks are completed by using the computing resources at the APs; or the UAV-enabled MEC architectures by exploiting the computing capability of the UAV processing server. However, for the UEs with seriously degraded links to the AP due to severe blockage, it is impossible to take full use of the computing resources at the AP directly. Besides, due to the size-constrained resource-limited property of the UAVs, it is risky to rely only on the UAVs to assist the UEs for completing their computation-intensive latency-critical tasks. For these reasons, this paper studies a UAV-assisted MEC architecture, where the computing resources at the UAV and the AP are utilized at the same time. In addition, the energy-efficient LoS transmissions of the UAV have been fully exploited since the UAV is not only served as a mobile computing server to help the UEs compute their tasks but also as a relay to further offload UEs’ tasks to the AP for computing. To our best knowledge, this is the first work considering the UAV-assisted MEC architecture by letting the UAV act as an MEC server and a relay simultaneously.

Our main contributions are summarized as follows:

- **UAV-Assisted MEC Architecture**—We consider a UAV-assisted MEC architecture where the cellular-connected UAV is served as a mobile computing server as well as a relay to help the UEs complete their computing tasks or further offload their tasks to the AP for computing. This architecture takes full advantages of UAV’s energy-efficient LoS transmissions, and makes proper use of the computing resources at both the UAV and the AP.

- **Problem Formulation with Joint Computation Resource Scheduling, Bandwidth Allocation and UAV’s Trajectory Optimization**—Our aim is to minimize the weighted sum energy consumption (WSEC) of the UAV and the UEs subject to the UEs’ task constraints, the information-causality constraints, the bandwidth allocation constraints and the UAV’s trajectory constraints, by jointly optimizing the computation resource scheduling, the bandwidth allocation and UAV’s trajectory iteratively. The formulated problem is complicated and non-convex due to the coupled optimization variables.

- **Alternating Algorithm with Guaranteed Convergence**—An alternating optimization algorithm is devised to decouple the optimization variables, through which the formulated problem can be properly solved by addressing three subproblems iteratively. Note that the computation resource scheduling parameters, including the offloading/downloading task sizes and the CPU frequencies at each UE and the UAV, as well as the bandwidth allocation parameters are obtained in closed form by leveraging the Lagrange duality method, and that the corresponding Lagrange multipliers associated with the inequality constraints can be obtained using the subgradient method while those associated with the equality constraints can be obtained through bi-section search. The subproblem relating to the UAV’s trajectory optimization can also be efficiently solved by CVX [20]. Besides, the convergence of the proposed algorithm can be guaranteed, and the required complexity appears to be acceptable.

- **Considerable Performance Improvement**—Simulation results are presented to show the optimized trajectories of the UAV under different scenarios and the significant performance enhancement by leveraging the proposed algorithm when compared to existing schemes, such as the one with a preset UAV trajectory, the scheme with task offloading only, and the scheme with equal bandwidth allocation. Moreover, the proposed algorithm is capable of providing more stable performance in adapting to the change in the operating environment, and its advantages will become much more prominent when dealing with the computation-intensive and latency-critical tasks.

The rest of this paper is organized as follows. In Section II, we introduce our system model and then formulate the optimization problem. The proposed method that decouples the problem into three subproblems then solving it iteratively is presented in Section III. Section IV provides the simulation results. Finally, we conclude the paper in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

As shown in Fig. 1, a UAV-assisted MEC system is considered, which consists of an AP, a cellular-connected UAV, and
The AP as well as the UEs are assumed to be dominated by and endowed with an ultra-high performance processing server. It is also assumed that each UE has a bit-wise-independent computation-intensive task, and the UAV acts as an assistant to help the UEs complete their computation tasks by providing both MEC and relaying services. For providing MEC service, the UAV shares its computing resources with the UEs to help compute their tasks; while for the relaying service, the UAV forwards part of the UEs’ offloaded tasks to the AP for helping compute their tasks; while for the relaying service, the AP is the amount of required computing resource for computing 1-bit of input data (i.e., the number of CPU cycles required), $O_k \in (0, 1)$ is the ratio of task-output data size to that of the task-input data, i.e., the output data size should be $O_k I_k$, and T_k is the maximum tolerable latency with $T_k \leq T, k \in \mathcal{K}$. In this paper, we only consider the case that $T_k = T$ for all $k \in \mathcal{K}$. It should be noted that the UEs’ task-input bits are bit-wise independent and can be arbitrarily divided to facilitate parallel trade-offs between local computing at the UEs and computation offloading to the UAV or further to the AP with the assistance of the UAV. In other words, the UEs can accomplish their computation tasks in a partial offloading fashion with the following three ways.

1) Local Computing at UEs: Each UE can perform local computing and computation offloading simultaneously since local computing at the UEs does not need radio resources such as bandwidth. To efficiently use the energy for local computing, the UEs use a dynamic voltage and frequency scaling (DVFS) technique, and thus the energy consumed for local computing can be adaptively controlled by adjusting the UEs’ CPU frequency during each time slot [21]. The CPU frequency of UE k during slot n is denoted as $f_k[n]$ (cycles/second). Thus, the computation bits and energy consumption of UE k during time slot n for local computing can be, respectively, expressed as

$$E_k^{\text{local}}[n] = \tau f_k[n] / C_k, \quad k \in \mathcal{K}, n \in \mathcal{N}, \quad (4)$$

$$E_k^{\text{local}}[n] = \tau \kappa_k f_k^3[n], \quad k \in \mathcal{K}, n \in \mathcal{N}, \quad (5)$$

where κ_k is the effective capacitance coefficient of UE k that depends on its processor’s chip architecture.

2) Task Offloaded to the UAV for Computing: The UEs’ remaining task-input data should be computed remotely, first by offloading to the UAV, and then one part of the data being computed at the UAV while the other part further offloaded to the AP for computing. In order to avoid interference among the UEs during the offloading process, we adopt the time-division multiple access (TDMA) protocol. Each slot is further divided into K equal durations $\delta = T / (NK)$, and UE k offloads its task-input data in the k-th duration. Let $l_k[n]$ denote the offloaded bits of UE k in its allocated duration at time slot n.

The general case with direct links between the UEs and the AP will be considered as one of our future works.
and thus the corresponding energy consumption of UE \(k \) at slot \(n \) for computation offloading can be calculated as

\[
E_{k,n}^{\text{off}} = \frac{\delta p_k[n]}{h_k[n]} \left(2^{\frac{f_{L_{k,n}}[n]}{C_k}} - 1 \right), \quad k \in \mathcal{K}, n \in \mathcal{N},
\]

where \(p_k[n] \) is the transmit power of UE \(k \) for offloading \(f_{L_{k,n}}[n] \) computation bits to the UAV at time slot \(n \), \(B_{k,n}^{\text{off}}[n] \) is the corresponding allocated bandwidth for UE \(k \), and \(N_0 \) denotes the noise power at the UAV.\(^2\)

Assume that the UAV also adopts the DVFS technique to improve its energy efficiency for computing, and its adjustable CPU frequency in the \(k \)-th duration of slot \(n \) for computing UE \(k \)’s offloaded task is denoted as \(f_{L_{k,n}}[n] \). Hence, the completed computation bits and the energy consumption of the UAV for computing UE \(k \)’s task at slot \(n \) can be, respectively, given by

\[
L_{U,k,n} = \frac{\delta f_{L_{k,n}}[n]}{C_k}, \quad k \in \mathcal{K}, n \in \mathcal{N},
\]

\[
E_{U,k,n} = \frac{\delta f_{L_{k,n}}[n]}{C_k}, \quad k \in \mathcal{K}, n \in \mathcal{N},
\]

where \(\eta_k \) is the effective capacitance coefficient of the UAV. Note that computing \(L_{U,k,n} \) bits of UE \(k \)’s task-input data will produce \(O_k L_{U,k,n} \) bits of task-output data, which should be downloaded from the UAV to the UE \(k \) later.

3) Task Offloaded to the AP for Computing: Part of the UEs’ offloaded task-input data at the UAV will be offloaded to the AP’s processing server for computing. To better distinguish the offloading signals from different UEs, the TDMA protocol with \(K \) equal time division (\(\delta = T/(NK) \)) is also adopted in this case. Let \(l_{u_{k,n}}^{\text{off}}[n] \) denote the number of UE \(k \)’s task-input bits being offloaded from the UAV to the AP at time slot \(n \). Thus, the corresponding energy consumption of the UAV for offloading UE \(k \)’s task at slot \(n \) can be calculated as

\[
E_{U,k,n}^{\text{off}} = \frac{\delta p_{U,k,n}^{\text{off}}}{h_{U,k,n}} \left(2^{\frac{l_{u_{k,n}}^{\text{off}}[n]}{C_k}} - 1 \right), \quad k \in \mathcal{K}, n \in \mathcal{N},
\]

where \(p_{U,k,n}^{\text{off}}[n] \) and \(B_{U,k,n}^{\text{off}}[n] \) are respectively the transmit power and the allocated bandwidth of the UAV for offloading UE \(k \)’s tasks to the AP at time slot \(n \). After computing the \(l_{u_{k,n}}^{\text{off}}[n] \) input bits at the AP, \(O_k l_{u_{k,n}}^{\text{off}}[n] \) bits of computation results for UE \(k \) will be generated. As the AP is integrated with an ultra-high-performance processing server, the computing time is negligible. The AP will send the computation results back to the UAV in the TDMA manner using a separate bandwidth. Since the AP is supplied with grid power and can support ultra-high transmission rate, the download transmission time from the AP to the UAV is also assumed negligible.\(^3\)

For the later two offloading methods, the generated computation results at the UAV (including the results from UAV’s computing and received from the AP) will then be downloaded back to the corresponding UEs. It is assumed that the UAV is equipped with a data buffer with sufficiently large size, and it is capable of storing each UE’s offloaded data and the corresponding computation results separately. Besides, we assume that the UAV operates in a frequency-division-duplex (FDD) mode in each UE’s operation duration \(\delta \) with separate bandwidths allocated for task reception from UEs (\(\{ B_{k,n}^{\text{up}}[n] \} \)), task offloading transmission to the AP (\(\{ B_{k,n}^{\text{off}}[n] \} \)), and task results downloading transmission to the UEs (\(\{ B_{U,k,n}^{\text{down}}[n] \} \)), with a total bandwidth \(B \) satisfying the constraint

\[
B_{k,n}^{\text{off}}[n] + B_{U,k,n}^{\text{up}}[n] + B_{U,k,n}^{\text{down}}[n] = B, \quad k \in \mathcal{K}, n \in \mathcal{N}.
\]

The UEs’ computation results are subsequently transmitted by the UAV using TDMA similar to the UEs’ offloading process, each with an equal duration \(\delta \) in each time slot. Let \(l_{U,k,n}^{\text{down}}[n] \) denote the bits of task-output data being downloaded from the UAV to UE \(k \) at time slot \(n \). Hence, the corresponding energy consumption of the UAV can be calculated as

\[
E_{U,k,n}^{\text{down}} = \frac{\delta p_{U,k,n}^{\text{down}}}{h_{U,k,n}} \left(2^{\frac{l_{U,k,n}^{\text{down}}[n]}{C_k}} - 1 \right), \quad k \in \mathcal{K}, n \in \mathcal{N},
\]

where \(p_{U,k,n}^{\text{down}}[n] \) is the transmit power of the UAV for downloading UE \(k \)’s tasks at time slot \(n \).

Note that at each time slot \(n \), the UAV can only compute or forward the task-input data that has already been received from the UEs. By assuming that the processing delay, e.g., the delay for decoding and computing preparation, at the UAV is one time slot, then we have the following information-causality constraint:

\[
\sum_{i=2}^{n} \left(\frac{\delta f_{U,k,i}}{C_k} + l_{u_{k,i}}^{\text{off}}[i] \right) \leq \sum_{i=1}^{n-1} l_{k,i},
\]

for \(n \in N_2 \) and \(k \in \mathcal{K} \) where \(N_2 = \{ 2, \ldots, N-1 \} \). Similarly, at each time slot \(n \), the UAV can only transmit the task-output data corresponding to the task-input data that has already been computed at the UAV or offloaded for computing at the AP. Thus, we have another information-causality constraint:

\[
\sum_{i=3}^{n} l_{u_{k,i}}^{\text{down}}[i] \leq O_k \sum_{i=2}^{n-1} \left(\frac{\delta f_{U,k,i}}{C_k} + l_{u_{k,i}}^{\text{off}}[i] \right),
\]

for \(n \in N_3 \) and \(k \in \mathcal{K} \) where \(N_3 = \{ 3, \ldots, N \} \). It is clear that the UEs should not offload at the last two slots, while the UAV should not compute or forward the received input data of UEs’ at the first and the last slots as well as not transmit the output data to the UEs in the first two slots. Hence, we have \(l_{k}[N-1] = l_{k}[N] = 0 \), \(f_{U,k}[1] = f_{U,k}[N] = 0 \), \(r_{U,k}^{\text{off}}[1] = r_{U,k}^{\text{off}}[N] = 0 \), and \(l_{U,k}^{\text{down}}[1] = l_{U,k}^{\text{down}}[2] = 0 \).

C. Problem Formulation

Considering the fact that the traditional battery-based UEs and UAVs are usually power-limited, one major problem the UAV-assisted MEC system faces will be energy. Hence, in this paper, we try to minimize the WSEC of the UAV as well as
all the UEs during the whole task completion time T. In the previous subsection, we have obtained the energy consumption of the UEs and the UAV for task offloading/downloading and computation. In fact, the energy consumption for UAV’s propulsion is also considerable which is greatly affected by the UAV’s trajectory, and hence should be taken into account. Similar to the works in [17, 22], the propulsion energy consumption model at the UAV due to flying at time slot n can be expressed as

$$E_{U}^{\text{fly}}[n] = \theta \|v[n]\|^2, \ n \in \mathcal{N},$$

(14)

where $\theta = M \tau / 2$ and M is the mass of the UAV. Combining with the above analysis, we obtain the total energy consumption of UE k and the UAV in each time slot n as

$$E_k[n] = E_k^{\text{local}}[n] + E_k^{\text{off}}[n], \ k \in \mathcal{K}, n \in \mathcal{N},$$

(15)

$$E_U[n] = \sum_{k=1}^{K} \left(E_{U,k}[n] + E_{U,k}^{\text{off}}[n] + E_{U,k}^{\text{down}}[n] \right) + E_{U}^{\text{fly}}[n], \ n \in \mathcal{N}. \quad (16)$$

In our considered scenario, the UEs’ CPU computing frequencies $\{f_k[n]\}$, their offloading task-input bits $\{I_k[n]\}$ and the corresponding allocated bandwidth $\{B_k^{\text{eff}}[n]\}$; the UAV’s CPU computing frequencies $\{f_{U,k}[n]\}$, its forwarding (further offloading) task-input bits $\{I_{U,k}^{\text{off}}[n]\}$ and downloading task-output bits $\{I_{U,k}^{\text{down}}[n]\}$ as well as the corresponding allocated bandwidths $\{B_{U,k}^{\text{eff}}[n]\}$, $\{B_{U,k}^{\text{down}}[n]\} for different UEs; along with the UAV’s trajectory $\{u[n]\}$ will be optimized to minimize the WSEC. To this end, the WSEC minimization problem can be formulated as problem (P1) given below:

$$\min_{z,B,U} \sum_{n=1}^{N} \left(w_U E_U[n] + \sum_{k=1}^{K} w_k E_k[n] \right)$$

(17a)

s.t. $$\sum_{n=1}^{N} \left(f_{U,k} \frac{\delta f_k[n]}{C_k} + I_{U,k}^{\text{off}}[n] \right) \leq \sum_{n=1}^{N} I_k[n], \ n \in \mathcal{N}_2,$$

(17b)

$$\sum_{i=3}^{N} l_{U,k}^{\text{down}}[i] \leq O_k \sum_{i=1}^{N} \left(\frac{\delta f_{U,k}[n]}{C_k} + I_{U,k}^{\text{off}}[n] \right), \ n \in \mathcal{N}_3,$$

(17c)

$$\sum_{n=2}^{N} \frac{\delta f_{U,k}[n]}{C_k} + I_{U,k}^{\text{off}}[n] = \sum_{n=1}^{N-2} I_k[n],$$

(17d)

$$\sum_{n=3}^{N} I_{U,k}^{\text{down}}[n] = O_k \sum_{n=2}^{N-1} \frac{\delta f_{U,k}[n]}{C_k} + I_{U,k}^{\text{off}}[n],$$

(17e)

$$\sum_{n=1}^{N} \frac{\tau}{C_k} f_k[n] + \sum_{n=1}^{N-2} I_k[n] = I_k,$$

(17f)

$$B_{k}^{\text{off}}[n] + B_{U,k}^{\text{off}}[n] + B_{U,k}^{\text{down}}[n] = B, \ n \in \mathcal{N},$$

(17g)

$$l_k[n] \geq 0, \ n \in \mathcal{N},$$

(17h)

$$l_k[N-1] = l_k[N] = 0, \ n \in \mathcal{N}_1,$$

(17i)

$$f_{U,k}[1] = f_{U,k}[N] = 0, \ n \in \mathcal{N}_2,$$

(17j)

$$I_{U,k}^{\text{off}}[1] = I_{U,k}^{\text{off}}[N] = 0, \ n \in \mathcal{N}_2,$$

(17k)

Note that the constraints in (17b)-(17l) should be satisfied by all UEs $k \in \mathcal{K}$, and we omit $k \in \mathcal{K}$ due to space limitation.

where $z \triangleq \{z_k[n]\}_{k \in \mathcal{K}, n \in \mathcal{N}}$ and $B \triangleq \{B_k[n]\}_{k \in \mathcal{K}, n \in \mathcal{N}}$, with $z_k[n] \triangleq \{f_k[n], I_k[n], f_{U,k}[n], I_{U,k}^{\text{off}}[n], I_{U,k}^{\text{down}}[n]\}$ and $B_k[n] \triangleq \{B_k^{\text{off}}[n], B_{U,k}^{\text{off}}[n], B_{U,k}^{\text{down}}[n]\}$, respectively, denote the sets of the computational resource scheduling variables and the bandwidth allocation variables for UE k in time slot n, $u \triangleq \{u[n]\}_{n \in \mathcal{N}}$ denotes the set of the UAV’s horizontal locations for all the slots, i.e., the trajectory of the UAV, and $\mathcal{N}_i = \{1, \ldots, N - 2\}$. In (P1), (17a) is the objective function for minimizing the WSEC where w_U and $\{w_k\}_{k \in \mathcal{K}}$ represent the weights of the UAV and UEs, respectively, which trade-offs between the UAV and UEs, and the priority/fairness among the UEs. Also, (17b) and (17c) are the two information-causality constraints, while (17d)–(17f) are the UEs’ computation task constraints to make sure that all the UEs’ computation task-input data have been computed and the task-output data have been received. The bandwidth constraints are in (17g), while (17h)–(17l) ensure the non-negativity of the optimization variables. (17p) and (17q) specify the UAV’s initial and final horizontal locations, and its maximum speed constraints.

III. ALGORITHM DESIGN

The problem (P1) is a complicated non-convex optimization problem because of the non-convex objective function where non-linear couplings exist among the variables $l_k[n]$ and $B_{U,k}[n], I_{U,k}^{\text{off}}[n]$ and $B_{U,k}^{\text{off}}[n], I_{U,k}^{\text{down}}[n]$ for $k \in \mathcal{K}, n \in \mathcal{N}$, and these variables are also strongly coupled with the trajectory of the UAV, i.e., $u[n]$. To address these issues, we propose a three-step alternating optimization algorithm to solve the problem. In the first step, the computation resource scheduling variables in z are optimized by solving the problem with given UAV trajectory u and bandwidth allocation B; and then in the second step, the bandwidth allocation variables in B will be optimized with the same given UAV trajectory u and the optimized z obtained in the first step; and finally in the third step, we focus on designing the UAV trajectory u with the optimized variables z and B. The details for the three steps of the algorithm are presented as follows.

A. Computation Resource Scheduling with Fixed UAV Trajectory and Bandwidth Allocation

A sub-problem of (P1) is the computation resource scheduling problem (P1.1), where the UAV’s trajectory u and bandwidth allocation B are given as fixed. In this case, the time-dependent channels $\{h_{AP}[n]\}_{n \in \mathcal{N}}$ and $\{h_k[n]\}_{k \in \mathcal{K}, n \in \mathcal{N}}$ defined in (2) and (3) are also known. Besides, the non-linear couplings among the offloading/downloading task-input/task-output bits $\{I_k[n], I_{U,k}^{\text{off}}[n], I_{U,k}^{\text{down}}[n]\}$ with their corresponding allocated bandwidths ($B_{k}^{\text{off}}[n], B_{U,k}^{\text{off}}[n], B_{U,k}^{\text{down}}[n]$) no longer
\[f'_k[n] = \sqrt{\frac{\beta_k}{3C_k w_k c_k}}, \quad n \in \mathcal{N}, \]
\[t'_k[n] = \begin{cases} \delta_k^{\text{off}}[n] \left(\eta_k[n] + \log_2 \left(\sum_{i=n+1}^{N-1} \lambda_{k,i}^* + \beta_k^* - \eta_k[n] \right) \right)^+, \quad n \in \mathcal{N}_1, \\
0, \quad n = N - 1 \text{ or } N, \end{cases} \]
\[f^*_{U,k}[n] = \sqrt{\frac{\left(\eta_k^* - O_k \rho_k^* + O_k \sum_{i=n+1}^{N} \mu_{k,i}^* - \sum_{i=n}^{N-1} \lambda_{k,i}^* \right)}{3C_k w_k K_{U}}}, \quad n \in \mathcal{N}_2, \]
\[t^\text{off}_{U,k}[n] = \begin{cases} \delta_k^{\text{off}}[n] \left(\eta_k[n] + \log_2 \left(\eta_k^* - O_k \rho_k^* + O_k \sum_{i=n+1}^{N} \mu_{k,i}^* - \sum_{i=n}^{N-1} \lambda_{k,i}^* \right) \right)^+, \quad n \in \mathcal{N}_2, \\
0, \quad n = 1 \text{ or } N, \end{cases} \]
\[t^\text{down}_{U,k}[n] = \begin{cases} \delta_k^{\text{down}}[n] \left(\eta_k[n] + \log_2 \left(\rho_k^* - \sum_{i=n}^{N} \mu_{k,i}^* \right) \right)^+, \quad n \in \mathcal{N}_3, \\
0, \quad n = 1 \text{ or } 2, \end{cases} \]

exist. The resource scheduling problem (P1.1) is convex with a convex objective function, which is expressed as

\[
\begin{align*}
\text{(P1.1)} : \min_{\mathbf{z}} & \quad \sum_{n=1}^{N} \left(w_U E_{U}^{(1)}[n] + \sum_{k=1}^{K} w_k E_k[n] \right) \\
\text{s.t.} & \quad (17b) - (17f), (17h) - (17l),
\end{align*}
\]

where \(E_{U}^{(1)}[n] = \sum_{k=1}^{K} \left(E_{U,k}[n] + E_{U,k}^{\text{off}}[n] + E_{U,k}^{\text{down}}[n] \right) \). In order to gain more insights of the solution, we leverage the Lagrange method [23] to solve problem (P1.1), and the optimal solution of problem (P1.1) is given in the following theorem.

Theorem 1. The optimal solution of problem (P1.1) related to UE \(k \in \mathcal{K} \) is given in (19)–(23), where

\[
\begin{align*}
\varphi_k[n] &= \log_2 \frac{B_{U,k}^\text{off}[n] h_k[n]}{u_k N_0 \ln 2}, \quad n \in \mathcal{N}_1, \\
\varphi_{U,k}[n] &= \log_2 \frac{B_{U,k}^\text{off}[n] h_{AP}[n]}{u_k N_0 \ln 2}, \quad n \in \mathcal{N}_2, \\
\varphi_{\text{down},U,k}[n] &= \log_2 \frac{B_{U,k}^\text{down}[n] h_k[n]}{u_k N_0 \ln 2}, \quad n \in \mathcal{N}_3,
\end{align*}
\]

are denoted as the offloading/downloading priority indicators for the UEs in each given slot. Also, \(\lambda_{k,n}^* \geq 0 \) and \(\mu_{k,n}^* \geq 0 \) for \(k \in \mathcal{K}, n \in \mathcal{N} \) are respectively the optimal Lagrange multipliers (dual variables) associated with the inequality constraints (17b) and (17c) in problem (P1.1) (or P1), while \(\eta_k^*, \rho_k^* \) and \(\beta_k^* \) are respectively the optimal Lagrange multipliers associated with the equality constraints (17d)–(17f) for \(k \in \mathcal{K} \).

Proof. See Appendix A.

Remark 1. (Intuitive Explanation). From the expressions relating to the computation resource scheduling parameters in Theorem 1, we observe that \(\{t'_k[n]\}, \{t^\text{off}_{U,k}[n]\}, \{t^\text{round}_{U,k}[n]\} \) are monotonically increasing with \(\{\varphi_k[n]\}, \{\varphi_{U,k}[n]\}, \{\varphi_{\text{down},U,k}[n]\} \) when they are positive. It coincides with the intuition that more input (or output) data should be offloaded (or downloaded) with larger \(\{\varphi_k[n]\}, \{\varphi_{U,k}[n]\}, \{\varphi_{\text{down},U,k}[n]\} \) corresponding to the scenarios with larger bandwidths, channel power gains and smaller weights for energy consumption.

Remark 2. (Decreasing Offloading and Increasing Downloading Data Size). Theorem 1 sheds light on the fact that \(t'_k[n] \) decreases with the time slot index \(n \) while \(t^\text{down}_{U,k}[n] \) increases with \(n \) for the reason that \(\sum_{i=n+1}^{N} \lambda_{k,i}^* \) and \(\sum_{i=n}^{N-1} \mu_{k,i}^* \) in (20) and (23) decrease with \(n \) as \(\lambda_{k,i}^* \geq 0 \) and \(\mu_{k,i}^* \geq 0 \). This indicates that the resource allocated for UEs’ task offloading gradually decreases while that for UAV’s downloading gradually increases as time goes by.

It is necessary to obtain the optimal values of the Lagrange multipliers, i.e., \(\lambda^* = \{\lambda_{k,n}^*\}_{k \in \mathcal{K}, n \in \mathcal{N}}, \mu^* = \{\mu_{k,n}^*\}_{k \in \mathcal{K}, n \in \mathcal{N}}, \eta^* = \{\eta_k^*\}_{k \in \mathcal{K}}, \rho^* = \{\rho_k^*\}_{k \in \mathcal{K}} \) and \(\beta^* = \{\beta_k^*\}_{k \in \mathcal{K}} \) since they play important roles in determining the optimal computation resource scheduling \(z^* \) according to Theorem 1. In this paper, we adopt a subgradient-based algorithm to obtain the optimal dual variables in \(\lambda^* \) and \(\mu^* \) related to the inequality constraints (17b), (17c), as described in the following Lemma 1.

Lemma 1. The dual variables \(\{\lambda_{k,n}\} \) and \(\{\mu_{k,n}\} \) obtained at the \((j+1)\)-th \((j = 1, 2, \ldots) \) iteration of the subgradient-based algorithm are expressed as

\[
\begin{align*}
\lambda_{k,n+1} &= \lambda_{k,n} - \varepsilon^\lambda_j \Delta \lambda_{k,n}^+, \quad k \in \mathcal{K}, n \in \mathcal{N}_2, \\
\mu_{k,n+1} &= \mu_{k,n} - \varepsilon^\mu_j \Delta \mu_{k,n}^+, \quad k \in \mathcal{K}, n \in \mathcal{N}_3,
\end{align*}
\]

with the corresponding subgradients given as

\[
\begin{align*}
\Delta \lambda_{k,n} &= \sum_{i=1}^{n-1} \frac{\delta f_{U,k,i}^{\text{off}}[i]}{C_k} + t_{U,k,i}^\text{off}[i], \\
\Delta \mu_{k,n} &= \sum_{i=1}^{n-1} \frac{\delta f_{U,k,i}^{\text{down}}[i]}{C_k} + t_{U,k,i}^\text{down}[i],
\end{align*}
\]
\[\Delta \mu_{k,n,j} = O_k \sum_{i=2}^{n} \left(\frac{\delta f_{U,k,j}[i]}{C_k} + \epsilon_{U,k,j}[i] \right) - \sum_{i=3}^{n} t_{U,k,j}^{down}[i], \]

(30)

where \(\epsilon_{(\mu)} \) and \(\epsilon_{(\mu)} \) respectively denote the iterative steps for obtaining the dual variables in \(\lambda \) and \(\mu \) at the j-th iteration. Also, \(\{\lambda_{U,k,j}[i]\}, \{f_{U,k,j}[i]\}, \{\epsilon_{U,k,j}[i]\}, \{\delta_{U,k,j}[i]\} \) are the computation resource scheduling variables obtained through Theorem 1 with the dual variables obtained at the j-th iteration, i.e., \(\lambda_j = \{\lambda_{k,n,j}|k \in \mathbb{K}, n \in \mathbb{N} \}, \mu_j = \{\mu_{k,n,j}|k \in \mathbb{K}, n \in \mathbb{N} \}, \eta_j = \{\eta_{k,n,j}|k \in \mathbb{K} \}, \rho_j = \{\rho_{k,n,j}|k \in \mathbb{K} \} and \beta_j = \{\beta_{k,n,j}|k \in \mathbb{K} \} \).

Proof. See Appendix B.

Besides, the bi-section search method is used to obtain the optimal dual variables in \(\eta^*, \rho^* \) and \(\beta^* \) related to the equality constraints (17d)–(17f), as summarized in Lemma 2.

Lemma 2. With the obtained \(\lambda_{j+1} \) and \(\mu_{j+1} \) above, the corresponding \(\eta_{j+1}, \rho_{j+1} \) and \(\beta_{j+1} \) can be obtained by bi-section search of \(\{\beta_{k,j+1}|k \in \mathbb{K} \} \in [0, \beta_{k,max}) \) where \(\beta_{k,max} = 3C_k^{\uparrow} \beta_{U,k} \left(\frac{1}{2} \right)^2 \). For each given \(\beta_{k,j+1} \in [0, \beta_{k,max}) \), the corresponding \(\eta_{k,j+1} \) and \(\rho_{k,j+1} \) can be obtained with another two bi-section searches within \(\eta_{k,j+1} \in [\eta_{low}^{up}, \eta_{low}^{up}] \) and \(\rho_{k,j+1} \in [\rho_{low}^{up}, \rho_{low}^{up}] \) to make (C.1)(C.2) and (C.1)(C.3), respectively, in Appendix C, where the expressions of \(\eta_{low}^{up}, \eta_{low}^{up}, \rho_{low}^{up}, \rho_{low}^{up} \) are given in (C.5)(C.8) in Appendix C. The optimal \(\beta_{k,j+1} \), \(\eta_{k,j+1} \) and \(\rho_{k,j+1} \) should satisfy (C.1)(C.4).

Proof. See Appendix C.

The optimal dual variables \(\lambda^*, \mu^* \) and \(\eta^*, \rho^* \) can be finitely obtained when the subgradient algorithm converges, and the bi-section searches terminate. Note that the corresponding convergence can be guaranteed according to [23].

B. Bandwidth Allocation with Fixed UAV Trajectory and Computation Scheduling

Here, another sub-problem of (P1), denoted as the bandwidth allocation problem (P1.2) is considered to optimize B with the same given UAV’s trajectory u and the optimized computation resource scheduling parameters in z. The bandwidth allocation problem (P1.2) is expressed as

\[
\begin{align*}
\text{(P1.2)} : \min_B & \sum_{n=1}^{N} \left(w_U E_{U}^{(2)}[n] + \sum_{k=1}^{K} w_k E_{k}^{off}[n] \right) \\
\text{s.t.} & \quad (17g), (17m) - (17o),
\end{align*}
\]

(31a)

(31b)

where \(E_{U}^{(2)}[n] = \sum_{k=1}^{K} (E_{off}^{U}[n] + E_{k}^{down}[n]) \). It can be easily proved that problem (P1.2) is convex with convex objective function and constraints. To gain more insights on the structure of the optimal solution, we again leverage the Lagrange method [23] to solve this problem, and the optimal solution of problem (P1.2) is given in the following theorem.

Theorem 2. The optimal solution of problem (P1.2) related to UE \(k \in \mathbb{K} \) is given by

\[
\begin{align*}
B_{k}^{off*}[n] &= \begin{cases} \\
\frac{\ln 2}{2} & \text{if } l_k[n] > 0, t_{k,n}^{down}[n] = 0, \\
0 & \text{if } l_k[n] > 0, t_{k,n}^{down}[n] = 0, \end{cases} & n \in N_1, \\
B_{k}^{off*}[n] &= \begin{cases} \\
\frac{\ln 2}{2} & \text{if } l_k[n] > 0, t_{k,n}^{down}[n] = 0, \\
0 & \text{if } l_k[n] > 0, t_{k,n}^{down}[n] = 0, \end{cases} & n \in N_2, \\
B_{k}^{down*}[n] &= \begin{cases} \\
\frac{\ln 2}{2} & \text{if } l_k[n] > 0, t_{k,n}^{down}[n] = 0, \\
0 & \text{if } l_k[n] > 0, t_{k,n}^{down}[n] = 0, \end{cases} & n \in N_3, \\
\end{align*}
\]

(32)

(33)

(34)

where \(\phi_{k,n} = \frac{\nu_{k,n}^{U}}{\sqrt{N_k} \ln 2} \) with \(\{\nu_{k,n}^{U}\} k \in \mathbb{K}, n \in \mathbb{N} \) being the optimal Lagrange multipliers (dual variables) associated with the equality constraints in (17g) of problem (P1.2) (or P1), and \(W_0(x) \) is the principal branch of the Lambert W function defined as the solution of \(W_0(x) e^{W_0(x)} = x \) [24].

Proof. See Appendix D.

Lemma 3. (Exclusive Bandwidth Allocation). According to the optimal bandwidth allocation results in Theorem 2 combining with the equality constraints in (17g), we have

\[
\begin{align*}
B_{k}^{off*}[n] &= B, \quad \text{if } l_k[n] > 0, t_{k,n}^{down}[n] = 0, \\
B_{k}^{off*}[n] &= B, \quad \text{if } l_k[n] > 0, t_{k,n}^{down}[n] = 0, \\
B_{k}^{down*}[n] &= B, \quad \text{if } l_k[n] > 0, t_{k,n}^{down}[n] = 0, \\
\end{align*}
\]

(35)

(36)

(37)

where the whole bandwidth is exclusively occupied when only one of \(l_k[n], t_{k,n}^{up}[n], t_{k,n}^{down}[n] \) is positive for any \(k \in \mathbb{K}, n \in \mathbb{N} \). Also, it always sure that

\[
B_{k}^{off*}[1] = B, \quad B_{k}^{down*}[N] = B, \quad k \in \mathbb{K}.
\]

(38)

The optimal Lagrange multipliers \(\{\nu_{k,n}^{U}\} \) for obtaining the optimal bandwidth allocation in Theorem 2 correspond to \(\{\phi_{k,n}\} \), which should make the equality constraints in (17g) satisfied. In fact, \(\phi_{k,n} \) can be obtained effectively with the bi-section search when the bandwidth is not exclusively occupied, i.e., at least two of \(l_k[n], t_{k,n}^{up}[n], t_{k,n}^{down}[n] \) are positive, since \(\{B_{k}^{off*}[n]\} n \in N_1, \{B_{k}^{off*}[n]\} n \in N_2 \) and \(\{B_{k}^{down*}[n]\} n \in N_3 \) are all monotonically decreasing functions w.r.t. \(\{\phi_{k,n}\} \) according to the property of the \(W_0 \) function. Besides, we can obtain tight search ranges using the results in Lemma 4.

Lemma 4. A tight bi-section search range of \(\phi_{k,n} (k \in \mathbb{K}) \) for any slot \(n \in \mathbb{N} \) with non-exclusive bandwidth is given as \(\phi_{k,n} \in [\phi_{k,n}^{\min}, \phi_{k,n}^{\max}] \) where

\[
\begin{align*}
\phi_{k,n}^{\min} \text{ (or } \phi_{k,n}^{\max} \text{) } &= \min \text{ (or } \max \text{) } \\
\{\phi_{UE,k,n}(B/3), \phi_{UE,k,n}(B/3), \phi_{UE,k,n}(B/3)\}, & \text{ case 1} \\
\{\phi_{UE,k,n}(B/2), \phi_{UE,k,n}(B/2)\}, & \text{ case 2} \\
\{\phi_{UE,k,n}(B/2), \phi_{UE,k,n}(B/2)\}, & \text{ case 3} \\
\{\phi_{UE,k,n}(B/2), \phi_{UE,k,n}(B/2)\}, & \text{ case 4}
\end{align*}
\]

(39)

where case 1-case 4 are distinguished by the values of \(l_k[n], t_{k,n}^{up}[n] \) and \(t_{k,n}^{down}[n] \) for each \(n \in \mathbb{N} \). For case 1, all the three
parameters have positive values; for case 2, \(l_{U,k}^{\text{down}}[n] = 0 \); for case 3, \(L_{U,k}^{\text{off}}[n] = 0 \); and for case 4, \(l_{k,n} = 0 \). In (39),

\[
\phi_{U,k,n}(x) = \frac{w_{k,n} l_{k,n}[n]}{\delta^2 x_{k,n}^2} \left[\frac{l_{k,n}[n]}{\delta^2 x_{k,n}^2} \right] + k \in \mathcal{K}, n \in \mathcal{N},
\]

which are the value of \(\phi_{k,n} \) obtained by letting the expressions of \(B_{k,n}^{\text{off}}[n] \), \(B_{k,n}^{\text{off}}[n] \), and \(B_{k,n}^{\text{down}}[n] \) in (32)–(34) equal to \(x \).}

C. UAV Trajectory Design With Fixed Computation Resource Scheduling and Bandwidth Allocation

Here, the sub-problem for designing the UAV’s trajectory \(u \) is considered, which we refer to it as the UAV trajectory design problem (P1.3), by assuming that the computation resource scheduling \(z \) and bandwidth allocation \(B \) are given as fixed with the previously optimized values. Hence, the UAV trajectory design problem (P1.3) can be rewritten as

\[
(P1.3) : \min_{u} \sum_{n=1}^{N} \left(w_{U} E_{U}^{(3)}[n] + \sum_{k=1}^{K} w_{k} E_{k}^{\text{off}}[n] \right)
\]

s.t. \((17p), (17q)\),

where \(E_{U}^{(3)}[n] = E_{U}^{\text{off}}[n] + \sum_{k=1}^{K} \left(E_{k}^{\text{off}}[n] + E_{k}^{\text{down}}[n] \right) \). According to the UAV’s maximum speed constraint (17q), we know that the UAV’s locations in different slots are coupled with each other, and thus it is difficult to obtain a closed-form solution of \(u \). However, we note that the objective function and the constraints are convex w.r.t. the UAV’s location vector \(u \) under the given \(z \) and \(B \), and thus problem (P1.3) is convex which can be readily solved by using CVX [20].

D. Algorithm, Convergence and Complexity

Based on the aforementioned analysis of the alternating optimization for the computation resource scheduling \(z \), the bandwidth allocation \(B \) and the UAV trajectory \(u \) in each subproblem, Algorithm 1 is proposed to solve the original problem (P1) for obtaining the solution \(\{z^*, B^*, u^*\} \).

The convergence of Algorithm 1 is easy to prove in light of the guaranteed convergence of the loop Repeat 1.1 in Step 1, the bi-section search in Step 2 and the CVX solving process in Step 3 [23]. The lower-bounded objective function of problem (P1) will monotonically decrease with the iteration index \(\xi \) by optimizing \(z \), \(B \) and \(u \) alternately, which further guarantees the convergence of the algorithm.

Algorithm 1 is easy to implement, and the corresponding complexity is acceptable. In Step 1, the complexity mainly comes from the subgradient method for obtaining \(\{\lambda_{k,n}\}, \{\mu_{k,n}\}, \) and the bi-section searches of \(\{\beta_{k}\}, \{\rho_{k}\} \) and \(\{\eta_{k}\} \) in each iteration of Repeat 1.1. Let \(\xi_{\text{sub}} > 0 \), and \(\xi_{\beta}, \xi_{\rho}, \xi_{\eta} > 0 \) denote the computational accuracies of the subgradient method and the bisectional searches for \(\{\beta_{k}\}, \{\rho_{k}\} \) and \(\{\eta_{k}\} \). Thus, the corresponding complexity can be calculated as \(O\left(1/\xi_{\text{sub}} + \log_{2}(1/\xi_{\beta})(\log_{2}(1/\xi_{\rho}) + \log_{2}(1/\xi_{\eta}))\right) \). In Step 2, the complexity is from the bisection search of \(\{v_{k,n}\} \), which is calculated as \(O\left(\log_{2}(1/\xi_{\beta})\right) \), where \(\xi_{\beta} \) is the corresponding computational accuracy. In Step 3, the UAV trajectory design problem (P1.3) can be efficiently solved by CVX, and thus the generated complexity appears to be acceptable.

IV. Simulation Results

In this section, simulation results are presented to evaluate the performance of the proposed algorithm against the benchmarking schemes. The effects of the key parameters will be analyzed, including the relative location of the AP (\(v_{0} \)), the computation task sizes of UEs (\(I_{k} \) for \(k \in \mathcal{K} \)), the task completion time for UEs (\(T \)), the weight for energy consumption of the UAV (\(w_{U} \)), and the size ratio of task-output data to task-input data (\(O_{k} \) for \(k \in \mathcal{K} \)). The basic simulation parameters are listed in Table I unless specified otherwise.

A. Trajectory of the UAV

In this subsection, numerical results for the trajectory of the UAV are given to shed light on the effects of the task sizes of

\[O(1/\xi_{\text{sub}} + \log_{2}(1/\xi_{\beta})(\log_{2}(1/\xi_{\rho}) + \log_{2}(1/\xi_{\eta})))\]. In Step 2, the complexity is from the bisection search of \(\{v_{k,n}\} \), which is calculated as \(O\left(\log_{2}(1/\xi_{\beta})\right) \), where \(\xi_{\beta} \) is the corresponding computational accuracy. In Step 3, the UAV trajectory design problem (P1.3) can be efficiently solved by CVX, and thus the generated complexity appears to be acceptable.

In order to properly show the effects of the relative location of the AP to UEs on UAV’s trajectory and the performance, we fix the locations of the UEs and vary the location of AP even though AP is usually fixed in practice.
of the UEs’ task sizes plays an important role on the UAV’s trajectory, while the effect of the AP’s location will become more dominant when the UEs’ total task size becomes larger, which coincides with the intuition that more task-input data will be offloaded to the AP in this situation so as to reduce the WSEC through making use of the super computing resources at the AP. For the scenario of $v_0 = (10, 5)$, the AP is located outside the distributed area of the UEs and its average distance to the UEs is relatively larger than the above scenario. In this situation, the effects of AP’s location on the trajectories are more prominent for the cases with moderate total task size, where the comparison between (a) and (d), (c) and (f) can properly explain this. On the other hand, for the case with larger total task size as case (e), the UAV’s trajectory will be slightly moved closer to the UEs with large task sizes which can be seen from the comparison between (d) and (e).

The reason behind these results in Fig. 2 is that there exists a tradeoff between the distribution of UEs’ task sizes and the relative location of the AP to the UEs. In other words, getting close to the UEs with large task sizes can reduce UEs’ offloading and UAV’s downloading energy consumption, while being closer to the AP will reduce the UAV’s offloading energy consumption, and thus the UAV has to find a balance between these two factors meanwhile taking its own flying energy consumption into consideration, so as to minimize the WSEC through optimizing its flying trajectory.

B. Performance Improvement

Here, we focus on the performance gain of the proposed algorithm. The performance of the baselines is also provided for comparison, including the “Direct Trajectory” scheme where the UAV flies from its initial location to the final location directly with an average speed; the “Offloading Only” scheme where the UEs just rely on task offloading to the UAV and the AP for computing without local computing by the UEs themselves; the “Equal Bandwidth” scheme indicating the solution with equal bandwidth allocation, i.e., the whole bandwidth is equally divided by the active $B_{U, k}^m[n]$, $B_{U, k}^H[n]$.
and $B_{\text{down}}[n]$, for $n \in \mathcal{N}$ and $k \in \mathcal{K}$ without bandwidth optimization. To better illustrate the effects of AP’s relative location on the performance, we present all the results in two scenarios given in Fig. 2, i.e., $v_0 = (0, 0)$ and $v_0 = (10,5)$.

Fig. 3 shows the WSEC results versus the uniform task size $I = I_k$ for $k \in \mathcal{K}$. All the curves in the figures increase with I as expected since more energy will be consumed by completing tasks with more input data. It can be seen that great performance improvement can be achieved by leveraging the proposed solution in comparison with all the baseline schemes in both scenarios. Specifically, the WSECs of the proposed solution are half less than those of the “Equal Bandwidth” scheme and they are almost quarter less than those of the “Direct Trajectory” and “Offloading Only” schemes, which verifies that the proposed optimization on bandwidth allocation and UAV’s trajectory, as well as making full use of the computing resources at UEs have great effect on minimizing the WSEC of the UAV and UEs. Note that the gaps between the proposed solution and the baselines become larger when I increases, indicating that the proposed algorithm is more capable of handling the computation-intensive tasks.

In Fig. 4, the WSEC w.r.t. the total task completion time T is depicted. We can see that the WSECs of all the schemes decrease with T, coinciding with the intuition that a tradeoff exists between the energy consumption and time consumption for completing the same tasks, and the energy consumption will decrease when the consumed time increases. It is notable that the proposed solution is superior than the three baseline schemes in both scenarios, and the performance improvement is even more prominent with strict time restriction (small T), which further confirms that the proposed algorithm is good at dealing with the latency-critical computation tasks. Besides, some similar insights can also be obtained as from Fig. 3.

Results for the WSEC versus the UAV’s weight w_U are shown in Fig. 5. We see that the proposed scheme outperforms the baselines in both scenarios as in Fig. 3 and Fig. 4. All the curves in Fig. 5 increase with w_U since larger proportion of UAV’s energy consumption will be calculated into the WSEC with a larger w_U. It should be noted that the gaps between the proposed solution and the “Direct Trajectory” scheme decrease as w_U increases, while the gaps between the proposed solution and the “Offloading Only” scheme become obviously larger as w_U increases in both scenarios, while the gaps between the proposed solution and the “Equal Bandwidth” schemes are almost unchanged in the scenario of $v_0 = (0, 0)$, and just become slightly larger in the scenario of $v_0 = (10,5)$ as w_U increases. This is because the UAV plays a more important role in the “Offloading Only” scheme than the other schemes, and thus its WSEC increases relatively faster than the other schemes w.r.t. w_U.

Fig. 6 depicts the WSEC w.r.t. the uniform size ratio of the task-output data to the task-input data $O = O_k$ for $k \in \mathcal{K}$. It is clear that the proposed scheme still performs best in both scenarios. The WSECs of all the schemes increase with O, since more output date will be downloaded to the UEs in the cases with larger O. However, the curves of the “Equal Bandwidth” scheme are almost unchanged for $O \in [0.2,0.8]$ due to the fact the equally allocated bandwidth to the downloading transmissions should be sufficient to complete the downloading missions, and its performance is much worst than the other schemes because of the irrational bandwidth allocation. Note that the gaps between the proposed solution and the “Direct Trajectory” scheme decrease as O increases since it becomes more difficult to balance the tradeoff between UEs’ task sizes and the relative location of the AP. In comparison, the gaps
The WSEC of the UAV and UEs versus the uniform size ratio of task-output data to task-input data: \(O = O_k \) for \(k \in K \).

between the proposed solution and the “Offloading Only” scheme become large as \(O \) increases for the reason that local computing may be an energy-saving way when with a large \(O \). In the scenario of \(v_0 = (10, 5) \), the “Offloading Only” scheme performs even worse than the “Equal Bandwidth” scheme when \(O = 1 \), which further verifies that the effect of local computing in minimizing the WSEC.

From the above results, we can observe that the WSEC for the scenario of \(v_0 = (10, 5) \) is higher than that for the scenario of \(v_0 = (0, 0) \) for all the schemes. It is easy to understand that more energy will be used for UAV’s offloading transmission and flying because of the farther average distance between the AP and UEs. The performance of the proposed scheme is also more stable than that of the baseline schemes considering the changing of the relative location of the AP to UEs since its relative WSEC increment is the smallest among the schemes.

V. CONCLUSION

This paper investigated the UAV-assisted MEC architecture, where the UAV acts as an MEC server and a relay to assist the UEs to compute their tasks or further offload their tasks to the AP for computing. We minimized the WSEC of the UAV and the UEs under some practical constraints, using an alternating algorithm iteratively optimizing the computation resource scheduling, bandwidth allocation, and the UAV’s trajectory. The simulation results have confirmed that the UAV’s trajectory is greatly affected by the relative location of the AP and the distribution of UEs’ task sizes. Besides, significant performance improvement and more stable performance can be achieved by the proposed algorithm over the baseline schemes.

APPENDIX A: PROOF OF THEOREM 1

The partial Lagrange function of (P1.1) can be expressed as

\[
\mathcal{L}^{(1)}(z, \lambda, \mu, \eta, \rho, \beta) = \sum_{k=1}^{K} \left\{ \sum_{n=1}^{N} \left(w_k \left(E_{k}^{local}[n] + E_{k}^{off}[n] \right) \right. \right. \\
+ \left. \left. w_U \left(E_{U,k}[n] + E_{U,k}^{off}[n] + E_{U,k}^{down}[n] \right) \right) \right. \\
+ \left. \left(\sum_{n=2}^{N} \frac{\lambda_k,n}{C_k} \left(\delta f_{U,k}[n] + t_{U,k}^{off}[n] \right) \right. \right. \\
+ \left. \left. \sum_{n=3}^{N} \frac{\lambda_k,n}{C_k} \left(\delta f_{U,k}[n] + t_{U,k}^{off}[n] \right) \right) \right. \\
+ \left. \left(\sum_{n=1}^{N-1} \left(\frac{\delta f_{U,k}[n]}{C_k} + t_{U,k}^{off}[n] \right) \right) \right. \\
+ \left. \left(\sum_{n=1}^{N-1} \left(\frac{\delta f_{U,k}[n]}{C_k} + t_{U,k}^{off}[n] \right) \right) \right. \\
+ \left. \left(\sum_{n=1}^{N-1} \left(\frac{\delta f_{U,k}[n]}{C_k} + t_{U,k}^{off}[n] \right) \right) \right. \\
+ \left. \left(\sum_{n=1}^{N-1} \left(\frac{\delta f_{U,k}[n]}{C_k} + t_{U,k}^{off}[n] \right) \right) \right. \\
+ \left. \left(\sum_{n=1}^{N-1} \left(\frac{\delta f_{U,k}[n]}{C_k} + t_{U,k}^{off}[n] \right) \right) \right. \\
+ \left. \left(\sum_{n=1}^{N-1} \left(\frac{\delta f_{U,k}[n]}{C_k} + t_{U,k}^{off}[n] \right) \right) \right. \\
+ \left. \left(\sum_{n=1}^{N-1} \left(\frac{\delta f_{U,k}[n]}{C_k} + t_{U,k}^{off}[n] \right) \right) \right. \\
\text{subject to} \begin{align} \\
\lambda_k,n \geq 0, & \quad \mu_k,n \geq 0, \quad k \in K, n \in N, \\
\sum_{n=1}^{N-1} \frac{\lambda_k,n}{C_k} \left(\delta f_{U,k}[n] + t_{U,k}^{off}[n] \right) = N \sum_{n=3}^{N} \frac{\tau_{U,k,n}}{C_k} + t_{U,k}^{off}[n], & \quad k \in K, \\
\sum_{n=2}^{N} \frac{\lambda_k,n}{C_k} \left(\delta f_{U,k}[n] + t_{U,k}^{off}[n] \right) = \sum_{n=3}^{N} \frac{\tau_{U,k,n}}{C_k} + t_{U,k}^{off}[n], & \quad k \in K, \\
\sum_{n=1}^{N} \frac{\tau_{U,k,n}}{C_k} + t_{U,k}^{off}[n] = I_k, & \quad k \in K, \\
\end{align}
\]

where (B.3)–(B.5) are given to make sure that the obtained \(\eta, \rho^{*} \) and \(\beta^{*} \) based on the \(\lambda^{*} \) and \(\mu^{*} \) can make the optimal solution of problem (P1.1) satisfy the equality constraints (17d)-(17f). The optimal \(\lambda^{*} \) and \(\mu^{*} \) associated with the...
inequality constraints (17b)–(17c) can be obtained through the
subgradient-based algorithm, which gives the results of \(\lambda_{j+1} \)
and \(\mu_{j+1} \) at the \((j+1) \)-th iteration as shown in Lemma 1.

APPENDIX C: PROOF OF LEMMA 2

With the achieved \(\lambda_{j+1} \) and \(\mu_{j+1} \) in Lemma 1, we can then
obtain the \(\eta_{j+1} \), \(\rho_{j+1} \) and \(\beta_{j+1} \) correspondingly. According
to the expressions of the optimal solution in Theorem 1 and the
equality constraints in (B.3)–(B.5), we can express the value of
\(\sum_{n=1}^{N-2} l_{k,j+1}^n \) in the following forms in (C.1)–(C.4)

\[
\sum_{n=1}^{N-2} l_{k,j+1}^n = I_k - \frac{T}{C_k} \sqrt{\beta_{k,j+1}}
3C_k w_k \kappa_k \quad \text{(C.1)}
\]

\[
= \delta \sum_{n=1}^{N-2} B_{k,n}^\text{off} \left[\varphi_{k,n} + \log_2 \left(\lambda_{k,n,j+1} + \beta_{k,j+1} - \eta_{k,j+1} \right) \right] + \quad \text{(C.2)}
\]

\[
= \frac{\delta}{O_k} \sum_{n=3}^{N} B_{U,k,n}^\text{down} \left[\varphi_{U,k,n} + \log_2 \left(\rho_{k,j+1} - \mu_{k,j+1} \right) \right] + \quad \text{(C.3)}
\]

\[
= \frac{\delta}{O_k} \sum_{n=2}^{N-1} \left[\varphi_{k,n} + \log_2 \left(\rho_{k,j+1} - \mu_{k,j+1} \right) \right] + \quad \text{(C.4)}
\]

where \(\lambda_{k,n,j+1}, \lambda_{k,n,j+1}, k,j \), and \(\mu_{k,n,j+1} \) are defined
similar to \(\lambda_{k,n}, \bar{\lambda}_{k,n}, \bar{\mu}_{k,n}, \) and \(\bar{\mu}_{k,n} \) in Appendix A. The
expression (C.1) is obtained from (B.5), (C.2) comes from
the expression of \(\sum_{n=1}^{N-2} l_{k,j+1}^n \), (C.3) is derived from (B.3) and
(B.4) with equation \(\sum_{n=1}^{N-2} l_{k,j+1}^n = \sum_{n=1}^{N-2} \sum_{k,j}^\text{down} \lambda_{k,n,j+1}^n \), and
(C.4) is obtained from (B.3).

According to (C.1) and the facts that \(\sum_{n=1}^{N-2} l_{k,j+1}^n \in [0, I_k] \), \(f_k^+ \geq 0 \), we can derive the range of \(\beta_{k,j+1} \) in
\([0, \beta_{k,\max}] \) with \(\beta_{k,\max} = 3C_k w_k \kappa_k \left(\frac{2}{C_k} \right) \) for \(k \in K \). It is
observed from (C.1)–(C.3) that \(\eta_{k,j+1} \) and \(\rho_{k,j+1} \) are respectively
monotonic non-decreasing and non-increasing implicit functions of \(\beta_{k,j+1} \), which further shows that (C.4) is also a
monotonic non-decreasing function of \(\beta_{k,j+1} \). Hence, with the
obtained \(\lambda_{j+1} \) and \(\mu_{j+1} \), and a given \(\beta_{k,j+1} \), we can derive the corresponding \(\eta_{k,j+1} \) and \(\rho_{k,j+1} \) from the
equations constituted by (C.1) in company with (C.2) and
(C.3), respectively, also using the bi-section search method
with the ranges of \(\eta_{k,j+1} \) and \(\rho_{k,j+1} \) in
\([\eta_{k,j+1}^\text{low}, \eta_{k,j+1}^\text{up}] \) and \([\rho_{k,j+1}^\text{low}, \rho_{k,j+1}^\text{up}] \) where

\[
\eta_{k,j+1}^\text{low} = \lambda_{k,n,j+1} - \frac{T}{C_k} \sqrt{\beta_{k,j+1}}
3C_k w_k \kappa_k \quad \text{(C.5)}
\]

\[
\eta_{k,j+1}^\text{up} = \lambda_{k,n,j+1} + \beta_{k,\max}, \quad \text{(C.6)}
\]

\[
\rho_{k,j+1}^\text{low} = \mu_{k,n,j+1}, \quad \text{(C.7)}
\]

\[
\rho_{k,j+1}^\text{up} = \mu_{k,n,j+1} + \frac{T}{C_k} \sqrt{\beta_{k,j+1}}
3C_k w_k \kappa_k \quad \text{(C.8)}
\]

which are obtained from (C.2) and (C.3) in combination with
the definitions of \(\hat{\lambda}_{k,n,j+1} \) and \(\hat{\mu}_{k,n,j+1} \), and the range of
\(\beta_{k,j+1} \). The optimal \(\beta_{k,j+1} \) and the corresponding \(\eta_{k,j+1} \),
\(\rho_{k,j+1} \) should make the equation formed by (C.1) and (C.4)
satisfied, which indicates the termination of the bi-section
search of \(\beta_{k,j+1}, k \in K \).

APPENDIX D: PROOF OF THEOREM 2

The partial Lagrange function of (P.2) is defined as
\(\mathcal{L}^{(2)}(\mathbf{B}, \nu) = \sum_{k=1}^{K} \sum_{n=1}^{N} \left(w_k E_k^\text{off}[n] + w_u \left(E_{U,k}^\text{off}[n] + E_{U,k}^\text{down}[n] \right) \right) + \sum_{k=1}^{K} \sum_{n=1}^{N} \nu_{k,n} (B - B_{k,n}^\text{off}[n] - B_{U,k}^\text{off}[n] - B_{U,k}^\text{down}[n]), \) (D.1)

where \(\nu = \{ \nu_{k,n} \}_{k \in K, n \in N} \). The Lagrangian dual function of
problem (P.2) can be presented as
\(d^{(2)}(\nu) = \min_{B} \mathcal{L}^{(2)}(\mathbf{B}, \nu) \) \hspace{1cm} \text{subject to} \hspace{1cm} (17m) – (17o).

Hence, the optimal solution of \(\mathbf{B} \) with optimal dual variables
\(\nu^* \) can be obtained by solving (D.2). This problem can also be
equivalently divided in to \(K \) subproblems w.r.t. each UE
\(k \in K \) to facilitate parallel execution. It is easy to note that
the expressions of \(E_{k,n}^\text{off} \), \(E_{U,k}^\text{off} \) and \(E_{U,k}^\text{down} \) can have similar
structures w.r.t. \(B_{k,n}^\text{off} \), \(B_{U,k}^\text{off} \) and \(B_{U,k}^\text{down} \), and thus the
optimal solution of \(B_{k,n}^\text{off} \), \(B_{U,k}^\text{off} \) and \(B_{U,k}^\text{down} \) can have similar
structures according to problem (D.2). Next, we will task \(B_{k,n}^\text{off} \) as an example to obtain its closed-form
optimal solution versus \(\nu_{k,n} \) for \(k \in K, n \in N \). Applying
the KKT conditions [23] leads to the following necessary and
sufficient condition of \(B_{k,n}^\text{off} \):

\[
\frac{\partial \mathcal{L}(\mathbf{B}, \nu)}{\partial B_{k,n}^\text{off}} = \nu_{k,n} - \frac{\lambda_{k,n^*}(k) N_0 \log 2}{(B_{k,n}^\text{off}[n])^{2}} \leq 0, \quad \text{(D.3)}
\]

where the optimal dual variable \(\nu_{k,n}^* \) can make sure that the
equality constraint \(B_{k,n}^\text{off}[n] + B_{U,k}^\text{off}[n] + B_{U,k}^\text{down}[n] = B \) is
satisfied. It is not easy to obtain the closed-form solution of
\(B_{k,n}^\text{off} \) through (D.3) directly. By defining \(\xi = \frac{\nu_{k,n}^*}{B_{k,n}^\text{off}[n]} \),
the equation in (D.3) can be re-expressed as
\(\xi^2 - 2 \xi = \frac{\nu_{k,n}^*}{B_{k,n}^\text{off}[n]} \leq \Gamma \). \hspace{1cm} \text{(D.4)}

By applying the natural logarithm at the both sides of (D.4)
leads to
\[\ln \xi + \frac{2}{2} \xi = \ln \Gamma \]
\[\ln \xi + \frac{2}{2} \xi = \ln \Gamma \] \hspace{1cm} \text{(D.5)}

Then applying the exponential operation at both sides of (D.5),
we can obtain that
\[\frac{2}{2} \xi = \ln \frac{\Gamma}{\xi} \] \hspace{1cm} \text{(D.6)}
where e is the base of the natural logarithm. According to the definition and property of Lambert function \cite{24}, we have \[
\frac{\ln 2}{\ln 2} = W_{0}\left(\frac{\ln 2}{\ln 2}\right)^{2},
\] and finally we can express $B_{k}^{\text{off}}[n]$ as
\[
B_{k}^{\text{off}}[n] = \frac{\ln 2 l_k[n]}{\delta_w \ln 2 \left(\frac{v_k}{w_k} h_k[n] l_k[n]\right)^{2}}, \quad n \in N_1.
\] (D.7)
Integrating with the cases $B_{k}^{\text{off}}[N-1] = B_{k}^{\text{off}}[N] = 0$, the complete solution of $B_{k}^{\text{off}}[n]$ in (32) can be obtained. The solution of $B_{k}^{\text{on}}[n]$ and $B_{k}^{\text{on}}[n]$ in (33) and (34) can be obtained in a similar way.

\section*{References}

\begin{thebibliography}{1}

\bibitem{1} Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, "Mobile edge computing: a key technology towards 5G," \textit{ETSI white paper}, vol. 11, no. 11, pp. 1–16, 2015.
\bibitem{2} 5GAA White Paper: "Toward fully connected vehicles: Edge computing for advanced automotive communications", Dec. 2017.
\bibitem{3} P. Mach and Z. Becvár, "Mobile edge computing: A survey on architecture and computation offloading," \textit{IEEE Commun. Surveys Tuts.}, vol. 19, no. 3, pp. 1628–1656, third quarter 2017.
\bibitem{4} Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, "A survey on mobile edge computing: The communication perspective," \textit{IEEE Commun. Surveys Tuts.}, vol. 19, no. 4, pp. 2322–2358, Fourth quarter 2017.
\bibitem{5} S. Sardellitti, G. Scutari, and S. Barbarossa, "Joint optimization of radio and computational resources for multicell mobile-edge computing," \textit{IEEE Signal Inf. Process. Netwo.}, vol. 1, no. 2, pp. 89–103, Jun. 2015.
\bibitem{6} C. You, K. Huang, H. Chae, and B. H. Kim, "Energy-efficient resource allocation for mobile-edge computation offloading," \textit{IEEE Trans. Wireless Commun.}, vol. 16, no. 3, pp. 1397–1411, Mar. 2017.
\bibitem{7} T. Q. Dinh, J. Tang, Q. D. La, and T. Q. S. Quek, "Offloading in mobile edge computing: Task allocation and computational frequency scaling," \textit{IEEE Trans. Commun.}, vol. 65, no. 8, pp. 3571–3584, Aug. 2017.
\bibitem{8} X. Hu, L. Wang, K.-K. Wong, Y. Zhang, Z. Zheng, and M. Tao, "Edge and central cloud computing: A perfect pairing for high energy efficiency and low-latency," 2018.
\bibitem{9} C. You, K. Huang, and H. Chae, "Energy efficient mobile cloud computing powered by wireless energy transfer," \textit{IEEE J. Sel. Areas Commun.}, vol. 34, no. 5, pp. 1757–1771, May 2016.
\bibitem{10} Y. Mao, J. Zhang, and K. B. Letaief, "Dynamic computation offloading for mobile-edge computing with energy harvesting devices," \textit{IEEE J. Sel. Areas Commun.}, vol. 34, no. 12, pp. 3590–3605, Dec. 2016.
\bibitem{11} X. Hu, K. Wong, and K. Yang, "Wireless powered cooperation-assisted mobile edge computing," \textit{IEEE Trans. Wireless Commun.}, vol. 17, no. 4, pp. 2375–2388, Apr. 2018.
\bibitem{12} F. Wang, J. Xu, X. Wang, and S. Cui, "Joint offloading and computing optimization in wireless powered mobile-edge computing systems," \textit{IEEE Trans. Wireless Commun.}, vol. 17, no. 3, pp. 1784–1797, Mar. 2018.
\bibitem{13} Y. Zeng, R. Zhang, and T. J. Lim, "Wireless communications with unmanned aerial vehicles: opportunities and challenges," \textit{IEEE Commun. Mag.}, vol. 54, no. 5, pp. 36–42, May 2016.
\bibitem{14} Y. Zeng and R. Zhang, "Energy-efficient uav communication with trajectory optimization," \textit{IEEE Trans. Wireless Commun.}, vol. 16, no. 6, pp. 3747–3760, Jun. 2017.
\bibitem{15} M. M. Azari, F. Rosas, K. Chen, and S. Pollin, "Ultra reliable uav communication using altitude and cooperation diversity," \textit{IEEE Trans. Commun.}, vol. 66, no. 1, pp. 330–344, Jan. 2018.
\bibitem{16} J. Xu, Y. Zeng, and R. Zhang, "Uav-enabled wireless power transfer: Trajectory design and energy optimization," \textit{IEEE Trans. Wireless Commun.}, vol. 17, no. 8, pp. 5092–5106, Aug. 2018.
\bibitem{17} S. Jeong, O. Simeone, and J. Kang, "Mobile edge computing via a uav-mounted cloudlet: Optimization of bit allocation and path planning," \textit{IEEE Trans. Veh. Technol.}, vol. 67, no. 3, pp. 2049–2063, Mar. 2018.
\bibitem{18} F. Zhou, Y. Wu, R. Q. Hu, and Y. Qian, "Computation rate maximization in uav-enabled wireless powered mobile-edge computing systems," \textit{arXiv preprint arXiv:1806.04589}, 2018.
\bibitem{19} X. Cao, J. Xu, and R. Zhang, "Mobile edge computing for cellular-connected uav: Computation offloading and trajectory optimization," in \textit{proc. IEEE SPAWC}, Kalamata, Greece, Jun. 2018.
\bibitem{20} M. Grant, S. Boyd, and Y. Ye, "Cvx: Matlab software for disciplined convex programming," 2008.
\bibitem{21} W. Zhang, Y. Wen, K. Guan, D. Kilper, H. Luo, and D. O. Wu, “Energy-optimal mobile cloud computing under stochastic wireless channel,” \textit{IEEE Trans. Wireless Commun.}, vol. 12, no. 9, pp. 4569–4581, Sep. 2013.
\bibitem{22} A. Chakrabarty and J. Langelaar, “Energy maps for long-range path planning for small- and micro-uavs,” in \textit{AIAA Guidance, Navigation, and Control Conference}, 2009, p. 6113.
\bibitem{23} S. Boyd and L. Vandenberghe, \textit{Convex optimization}. Cambridge university press, 2004.
\bibitem{24} R. M. Corless, G. H. Gonnet, D. E. Hare, D. J. Jeffrey, and D. E. Knuth, “On the lambertw function,” \textit{Advances in Computational mathematics}, vol. 5, no. 1, pp. 329–359, 1996.
\end{thebibliography}