On some properties of symplectic Grothendieck polynomials

Eric Marberg*HKUST
br.pawlowski@gmail.com

Brendan PawlowskiUniversity of Southern California

Abstract

Grothendieck polynomials, introduced by Lascoux and Schützenberger, are certain K-theory representatives for Schubert varieties. Symplectic Grothendieck polynomials, described more recently by Wyser and Yong, represent the K-theory classes of orbit closures for the complex symplectic group acting on the complete flag variety. We prove a transition formula for symplectic Grothendieck polynomials and study their stable limits. We show that each of the K-theoretic Schur P-functions of Ikeda and Naruse arises from a limiting procedure applied to symplectic Grothendieck polynomials representing certain “Grassmannian” orbit closures.

Contents

1 Introduction 2

2 Preliminaries 3

2.1 Permutations 3

2.2 Divided difference operators 4

2.3 Grothendieck polynomials 4

2.4 Symplectic Grothendieck polynomials 5

3 Transition equations 6

3.1 Lenart’s transition formula 6

3.2 Fixed-point-free Bruhat order 8

3.3 Symplectic transitions 8

4 Stable Grothendieck polynomials 14

4.1 K-theoretic Schur functions 14

4.2 Stabilization 15

4.3 K-theoretic Schur P-functions 17

4.4 Grassmannian formulas 18

*The first author was supported by Hong Kong RGC Grant ECS 26305218.
1 Introduction

Let \(n \) be a positive integer. The \(K \)-theory ring of the variety \(\text{Fl}_n \) of complete flags in \(\mathbb{C}^n \) is isomorphic to a quotient of a polynomial ring [11] \(\mathbb{Z}[\beta][x_1, x_2, \ldots] \). Under this correspondence, the Grothendieck polynomials \(G_w \) represent the classes of the structure sheaves of Schubert varieties. The results in this paper concern a family of symplectic Grothendieck polynomials \(G_{\text{Sp}z} \) which similarly represent the \(K \)-theory classes of the orbit closures of the complex symplectic group acting on \(\text{Fl}_n \).

The Grothendieck polynomials \(G_w \) lie in \(\mathbb{Z}[\beta][x_1, x_2, \ldots] \), where \(\beta, x_1, x_2, \ldots \) are commuting indeterminates, and are indexed by elements \(w \) of the group \(S_\infty \) of permutations of the positive integers \(\mathbb{P} := \{1, 2, 3, \ldots\} \) with finite support. Lascoux and Schützenberger first defined these polynomials in [13, 15]. Setting \(\beta = 0 \) transforms Grothendieck polynomials to Schubert polynomials, which represent the Chow classes of Schubert varieties.

Lenart [17], extending work of Lascoux [14], proved a “transition formula” expressing any product \(x_k G_w \) as a finite linear combination of Grothendieck polynomials; the Bruhat order on \(S_\infty \) controls which terms appear. A nice corollary of Lenart’s result is that the set of Grothendieck polynomials form a \(\mathbb{Z}[\beta] \)-basis for the polynomial ring \(\mathbb{Z}[\beta][x_1, x_2, \ldots] \) (see Corollary 3.3).

For \(w \in S_\infty \) and \(m \geq 0 \), let \(1^m \times w \in S_\infty \) denote the permutation sending \(i \mapsto i \) for \(i \leq m \) and \(m + i \mapsto m + w(i) \) for \(i > m \). The stable Grothendieck polynomial of \(w \) is then given by

\[
G_w := \lim_{m \to \infty} \mathcal{G}_{1^m \times w} \in \mathbb{Z}[\beta][[x_1, x_2, \ldots]].
\] (1.1)

Results of Fomin and Kirillov [4] show that this limit converges in the sense of formal power series to a well-defined symmetric function. Despite its name, \(G_w \) is a power series rather than a polynomial.

Of particular interest are the stable Grothendieck polynomials \(G_\lambda := G_{w_\lambda} \) where \(w_\lambda \) is the Grassmannian permutation associated to an integer partition \(\lambda \) (see [11]). The \(G_\lambda \)’s represent structure sheaves of Schubert varieties in a Grassmannian [2] and are natural “\(K \)-theoretic” generalizations of Schur functions. One can deduce from the transition formula for \(\mathcal{G}_w \) that \(G_w \) is an \(\mathbb{N}[\beta] \)-linear combination of \(G_\lambda \)’s, and the Hecke insertion algorithm of [3] leads to a combinatorial description of the coefficients in this expansion.

The symplectic Grothendieck polynomials \(\mathcal{G}_{\text{Sp}z} \) are a second family of polynomials in \(\mathbb{Z}[\beta][x_1, x_2, \ldots] \), which now represent the \(K \)-theory classes of the orbit closures of the complex symplectic group acting on \(\text{Fl}_n \) for even \(n \). They are indexed by elements \(z \) of the set \(I^{\text{FPF}}_{\infty} \) of bijections \(z : \mathbb{P} \to \mathbb{P} \) such that \(z \) is a fixed-point-free involution of the positive integers with “finite support.”) Wyser and Yong first considered these polynomials in [23], but their definition differs from ours by a minor change of variables. Setting \(\beta = 0 \) gives the fixed-point-free involution Schubert polynomials studied in [6, 9, 23].

Our first main result, Theorem 5.8, is an analogue of Lenart’s transition
formula for symplectic Grothendieck polynomials. This is somewhat more complicated than Lenart’s identity, involving multiplication of $G_{z_k}^{sp}$ by two indeterminates x_k and $x_{z(k)}$; the corresponding proof is also more involved. Nevertheless, there is a surprising formal similarity between the two transition equations. A variant of Bruhat order again plays a key role.

This paper is a sequel to [20], where we showed that the natural analogue of the stable limit (1.1) for symplectic Grothendieck polynomials defines a symmetric formal power series GP_z^{sp} for each $z \in I_{\text{FPF}}^\infty$. Results of the first author [19] show that GP_z^{sp} is a finite $N[\beta]$-linear combination of Ikeda and Naruse’s K-theoretic Schur P-functions GP_λ^{sp}. Here we prove an important related fact: each GP_λ occurs as GP_z^{sp} where $z_\lambda \in I_{\text{FPF}}^\infty$ is the FPF-Grassmannian involution corresponding to λ. See Theorem 4.17 for the precise statement.

Every symmetric power series in $Z[\beta][x_1, x_2, \ldots]$ can be written as a possibly infinite $Z[\beta]$-linear combination of stable Grothendieck polynomials. Results in [5, 22] imply that each K-theoretic Schur P-function GP_λ is a (possibly infinite) sum of G_μ’s with coefficients in $N[\beta]$. One application of the preceding paragraph, which does not seem to follow from prior work, is a proof that these sums are always finite; see Corollary 4.18.

A brief outline of the rest of this article is as follows. Section 2 covers some background material on permutations, divided difference operators, and Grothendieck polynomials. In Section 3 we review Lenart’s transition formula for G_w and then prove its symplectic analogue. Section 4 finally, contains our results on symplectic stable Grothendieck polynomials.

2 Preliminaries

This section includes a few preliminaries and sets up most of our notation. We write $N = \{0, 1, 2, \ldots\}$ and $P = \{1, 2, 3, \ldots\}$ for the sets of nonnegative and positive integers, and define $[n] := \{1, 2, \ldots, n\}$ for $n \in N$. Throughout, the symbols β, x_1, x_2, \ldots denote commuting indeterminates.

2.1 Permutations

For $i \in P$, define $s_i = (i, i + 1)$ to be the permutation of P interchanging i and $i + 1$. These simple transpositions generate the infinite Coxeter group $S_\infty := \langle s_i : i \in P \rangle$ of permutations of P with finite support, as well as the finite subgroups $S_n := \langle s_1, s_2, \ldots, s_{n-1} \rangle$ for each $n \in \mathbb{P}$. The length of $w \in S_\infty$ is $\ell(w) := \{((i, j) \in P \times P : i < j \text{ and } w(i) > w(j))\}$. This finite quantity is also the minimum number of factors in any expression for w as a product of simple transpositions.

We represent elements of S_∞ in one-line notation by identifying a word $w_1 w_2 \cdots w_n$ that has $\{w_1, w_2, \ldots, w_n\} = [n]$ with the permutation $w \in S_\infty$ that has $w(i) = w_i$ for $i \in [n]$ and $w(i) = i$ for all integers $i > n$. 3
2.2 Divided difference operators

Let \(L = \mathbb{Z}[\beta][x_1^{\pm 1}, x_2^{\pm 1}, \ldots] \) denote the ring of Laurent polynomials in the variables \(x_1, x_2, \ldots \) with coefficients in \(\mathbb{Z}[\beta] \). Given \(i \in \mathbb{P} \) and \(f \in L \), write \(s_if \) for the Laurent polynomial formed from \(f \) by interchanging the variables \(x_i \) and \(x_{i+1} \). This operation extends to a group action of \(S_\infty \) on \(L \). For \(i \in \mathbb{P} \), the divided difference operators \(\partial_i \) and \(\partial_i^{(\beta)} \) are the maps \(L \to L \) given by

\[
\partial_i f = \frac{x_i - s_i f}{x_i - x_{i+1}} \quad \text{and} \quad \partial_i^{(\beta)} f = \partial_i((1 + \beta x_{i+1})f) = -\beta f + (1 + \beta x_i)\partial_i f. \tag{2.1}
\]

Both operators preserve the subring of polynomials \(\mathbb{Z}[\beta][x_1, x_2, \ldots] \subset L \).

Some identities are useful for working with these maps. All formulas involving \(\partial_i^{(\beta)} \) reduce to formulas involving \(\partial_i \) on setting \(\beta = 0 \). Fix \(i \in \mathbb{P} \) and \(f, g \in L \). Then

\[
\partial_i^{(\beta)}(fg) = s_i f \cdot (\partial_i^{(\beta)}g + \beta g) + \partial_i^{(\beta)}f \cdot g \tag{2.2}
\]

and we have \(\partial_i f = 0 \) and \(\partial_i^{(\beta)} f = -\beta f \) if and only if \(s_i f = f \), in which case

\[
\partial_i(fg) = f \cdot \partial_i g \quad \text{and} \quad \partial_i^{(\beta)}(fg) = f \cdot \partial_i^{(\beta)} g. \tag{2.3}
\]

Moreover, one has \(\partial_i \partial_i = 0 \) and \(\partial_i^{(\beta)} \partial_i^{(\beta)} = -\beta \partial_i^{(\beta)} \). Both families of operators satisfy the usual braid relations for \(S_\infty \), meaning that we have

\[
\partial_i^{(\beta)} \partial_j^{(\beta)} = \partial_j^{(\beta)} \partial_i^{(\beta)} \quad \text{and} \quad \partial_i^{(\beta)} \partial_{i+1}^{(\beta)} \partial_i^{(\beta)} = \partial_{i+1}^{(\beta)} \partial_i^{(\beta)} \partial_{i+1}^{(\beta)} \tag{2.4}
\]

for all \(i, j \in \mathbb{P} \) with \(|i - j| > 1 \). If \(w \in S_\infty \) then we can therefore define

\[
\partial_w := \partial_{i_1} \partial_{i_2} \cdots \partial_{i_t} \quad \text{and} \quad \partial_w^{(\beta)} := \partial_{i_1}^{(\beta)} \partial_{i_2}^{(\beta)} \cdots \partial_{i_t}^{(\beta)}
\]

where \(w = s_{i_1} s_{i_2} \cdots s_{i_t} \) is any reduced expression, i.e., a minimal length factorization of \(w \) as a product of simple transpositions.

2.3 Grothendieck polynomials

The following definition of Grothendieck polynomials originates in \cite{4}.

Theorem-Definition 2.1 (Fomin and Kirillov \cite{4}). There exists a unique family \(\{ \mathcal{G}_w \}_{w \in S_\infty} \subset \mathbb{Z}[\beta][x_1, x_2, \ldots] \) with \(\mathcal{G}_{n \cdots 321} = x_1^{n-1} x_2^{n-2} \cdots x_{n-1}^{1} \) for all \(n \in \mathbb{P} \) and such that \(\partial_i^{(\beta)} \mathcal{G}_w = \mathcal{G}_{ws_i} \) for \(i \in \mathbb{P} \) with \(w(i) > w(i+1) \).

Note that it follows that \(\partial_i^{(\beta)} \mathcal{G}_w = -\beta \mathcal{G}_w \) if \(w(i) < w(i+1) \).

Example 2.2. The Grothendieck polynomials for \(w \in S_3 \) are

\[
\begin{align*}
\mathcal{G}_{123} &= 1, & \mathcal{G}_{132} &= x_1 + x_2 + \beta x_1 x_2, & \mathcal{G}_{312} &= x_1^2, \\
\mathcal{G}_{213} &= x_1, & \mathcal{G}_{231} &= x_1 x_2, & \mathcal{G}_{321} &= x_1^2 x_2.
\end{align*}
\]
We typically suppress the parameter \(\beta \) in our notation, but for the moment write \(\mathcal{G}_w^{(i)} = \mathcal{G}_w \) for \(w \in S_\infty \). The Schubert polynomial \(\mathcal{G}_w \) of a permutation \(w \in S_\infty \) (see [18] Chapter 2) is then \(\mathcal{G}_w^{(0)} \). The polynomials \(\{\mathcal{G}_w\}_{w \in S_\infty} \) are a \(\mathbb{Z}[\beta] \)-basis for \(\mathbb{Z}[\beta][x_1, x_2, \ldots] \) [18] Proposition 2.5.4 so the Grothendieck polynomials are linearly independent.

Some references use the term “Grothendieck polynomial” to refer to the polynomials \(\mathcal{G}_w^{(-1)} \). One loses no generality in setting \(\beta = -1 \) since one can show by downward induction on permutation length that

\[
(-\beta)^{i(w)}\mathcal{G}_w^{(\beta)} = \mathcal{G}_w^{(-1)}(-\beta x_1, -\beta x_2, \ldots).
\]

Thus, it is straightforward to translate formulas in \(\mathcal{G}_w^{(-1)} \) to formulas in \(\mathcal{G}_w^{(\beta)} \).

2.4 Symplectic Grothendieck polynomials

Let \(\Theta : \mathbb{P} \rightarrow \mathbb{P} \) be the map sending \(i \mapsto i - (-1)^i \), so that \(\Theta = (1, 2)(3, 4)(5, 6) \cdots \). Define \(I^\text{FPF}_\infty := \{ w^{-1}\Theta w : w \in S_\infty \} \). The elements of \(I^\text{FPF}_\infty \) are the involutions of the positive integers that have no fixed points and that agree with \(\Theta \) at all sufficiently large values of \(i \). We represent elements of \(I^\text{FPF}_\infty \) in one-line notation by identifying a word \(z_1 z_2 \cdots z_n \), satisfying \(\{ z_1, z_2, \ldots, z_n \} = [n] \) and \(z_i = j \) if and only if \(z_j = i \neq j \), with the involution \(z \in I^\text{FPF}_\infty \) that has \(z(i) = z_i \) for \(i \in [n] \) and \(z(i) = \Theta(i) \) for \(i > n \).

The symplectic analogues of \(\mathcal{G}_w \) introduced below were first studied by Wyser and Yong in a slightly different form; see [24] Theorems 3 and 4]. The characterization given here combines [20] Theorem 3.10 and Proposition 3.11.

Theorem-Definition 2.3 ([20] [23]). There exists a unique family \(\{\mathcal{G}_z^{Sp}\}_{z \in I^\text{FPF}_\infty} \subset \mathbb{Z}[\beta][x_1, x_2, \ldots] \) with \(\mathcal{G}_z^{Sp} = \prod_{1 \leq i < j \leq n-1} (x_i + x_j + \beta x_i x_j) \) for all \(n \in 2\mathbb{P} \) and such that \(\partial_i^{(\beta)} \mathcal{G}_z^{Sp} = \mathcal{G}_{z_i z_i}^{Sp} \), for \(i \in \mathbb{P} \) with \(i + 1 \neq z(i) \neq z(i+1) \neq i \).

The elements of this family are the symplectic Grothendieck polynomials described in the introduction. If \(i \in \mathbb{P} \) is such that \(z(i) < z(i+1) \) or \(i + 1 = z(i) > z(i+1) = i \) then \(\partial_i^{(\beta)} \mathcal{G}_z^{Sp} = -\beta \mathcal{G}_z^{Sp} \) [20] Proposition 3.11.

Example 2.4. The polynomials for \(z \in I^\text{FPF}_4 := \{ w\Theta w^{-1} : w \in S_4 \} \) are

\[
\mathcal{G}_z^{Sp} = \begin{cases}
1, & z = 2143 \\
1 + x_1 x_2 + \beta x_1 x_2, & z = 3124 \\
1 + x_1 x_2 + x_1 x_3 + 2\beta x_1 x_2 x_3 + \beta x_1^2 x_2 + \beta x_1^2 x_3 + \beta^2 x_1^2 x_2 x_3, & z = 3214
\end{cases}
\]

Setting \(\beta = 0 \) transforms \(\mathcal{G}_z^{Sp} \) to the fixed-point-free involution Schubert polynomials \(\mathcal{G}_z^{Sp} \), studied in [6] [7] [8] [23]. Since the family \(\{\mathcal{G}_z^{Sp}\}_{z \in I^\text{FPF}_\infty} \) is linearly independent, \(\{\mathcal{G}_z^{Sp}\}_{z \in I^\text{FPF}_\infty} \) is also linearly independent.

We need one other preliminary result concerning the polynomials \(\mathcal{G}_z^{Sp} \). The symplectic Rothe diagram of an involution \(z \in I^\text{FPF}_\infty \) is the set of pairs

\[
D^\text{Sp}(z) := \{(i, z(j)) : (i, j) \in [n] \times [n] \text{ and } z(i) > z(j) < i < j\}.
\]
An element $z \in I^\text{FPP}_\infty$ is Sp-dominant if $D_{\text{Sp}}(z) = \{(i+j,j) \in \mathbb{P} \times [k] : 1 \leq i \leq \mu_j \}$ for a strict partition $\mu = (\mu_1 > \mu_2 > \cdots > \mu_k > 0)$. This condition holds, for example, when $z = n \cdots 321$ for any $n \in 2\mathbb{P}$.

Theorem 2.5 ([20] Theorem 3.8]). If $z \in I^\text{FPP}_\infty$ is Sp-dominant then

$$\mathfrak{S}^\text{Sp}_2 = \prod_{(i,j) \in D_{\text{Sp}}(z)} (x_i + x_j + \beta x_i x_j).$$

3 Transition equations

Lenart [17] derives a formula expanding the product $x_k \mathfrak{S}_v$ for $k \in \mathbb{P}$ and $v \in S_\infty$ in terms of other Grothendieck polynomials. In this section, we prove a similar identity for symplectic Grothendieck polynomials.

3.1 Lenart’s transition formula

We recall Lenart’s formula to motivate our new results. Given $v \in S_\infty$ and $k \in \mathbb{P}$, define $P_k(v)$ to be the set of all permutations in S_∞ of the form

$$w = v(a_1, k) (a_2, k) \cdots (a_p, k) (k, b_1) (k, b_2) \cdots (k, b_q)$$

where $p, q \in \mathbb{N}$ and $a_1 < \cdots < a_p < a_1 < b_1 < b_2 < \cdots < b_q < b_1$, and the length increases by exactly one upon multiplication by each transposition. Differing slightly from the convention in [17], we allow the case $p = q = 0$ so $w \in P_k(v)$. Given $w \in P_k(v)$ define $\epsilon_k(w, v) = (-1)^p$. This notation is well-defined since p can be recovered from $w \in P_k(v)$ as the number of indices $i < k$ with $v(i) \neq w(i)$.

Theorem 3.1 ([17] Theorem 3.1]). If $v \in S_\infty$ and $k \in \mathbb{P}$ then

$$(1 + \beta x_k) \mathfrak{S}_v = \sum_{w \in P_k(v)} \epsilon_k(w, v) \beta^{\ell(w) - \ell(v)} \mathfrak{S}_w.$$

The cited theorem of Lenart applies to the case when $\beta = -1$, but this is equivalent to the given identity for generic β by (2.4).

Example 3.2. Taking $v = 13452 \in S_\infty$ and $k = 3$ in Theorem 3.1 gives

$$(1 + \beta x_3) \mathfrak{S}_{13452} = \mathfrak{S}_{13452} + \beta \mathfrak{S}_{13542} - \beta \mathfrak{S}_{14352} - \beta^2 \mathfrak{S}_{14352} + \beta^2 \mathfrak{S}_{34152} + \beta^3 \mathfrak{S}_{34512} + \beta^3 \mathfrak{S}_{34251} + \beta^4 \mathfrak{S}_{34521}.$$

This reduces to [17] Example 3.9] on setting $\beta = -1$.

Lenart’s formula implies that $x_k \mathfrak{S}_v$ is a finite $\mathbb{Z}[\beta]$-linear combination of \mathfrak{S}_w’s. By starting with $v = 1$ so that $\mathfrak{S}_v = 1$, we deduce that any monomial in $\mathbb{Z}[\beta][x_1, x_2, \ldots]$ is a finite linear combination of Grothendieck polynomials. Since these functions are also linearly independent, the following holds:

Corollary 3.3. The set $\{\mathfrak{S}_w \}_{w \in S_\infty}$ is a $\mathbb{Z}[\beta]$-basis for $\mathbb{Z}[\beta][x_1, x_2, \ldots]$.

Remark 3.4. This corollary is nontrivial since S_w is an inhomogeneous polynomial of the form $S_w + (\text{terms of degree greater than } \ell(w) \text{). Since } \{S_w\}_{w \in S}^\infty \text{ is a } \mathbb{Z}\text{-basis for } \mathbb{Z}[x_1, x_2, \ldots], \text{ it follows that any polynomial in } \mathbb{Z}[\beta][x_1, x_2, \ldots] \text{ can be inductively expanded in terms of Grothendieck polynomials. However, it is not clear a priori that such an expansion will terminate in a finite sum.}

For $v, w \in S^\infty$, write $v \widesim w$ if $\ell(w) = \ell(v) + 1$ and $v^{-1}w = (i, j)$ is a transposition for some positive integers $i < j$. It is well-known that if $w \in S^\infty$ and $i, j \in \mathbb{P}$ are such that $i < j$, then $w \widesim w(i, j)$ if and only if $w(i) < w(j)$ and no integer e has $i < e < j$ and $w(i) < w(e) < w(j)$.

For distinct integers $i, j \in \mathbb{P}$, let t_{ij} be the linear operator, acting on the right, with $S_w t_{ij} = S_{w(i,j)}$ for $w \in S^\infty$. We can restate Theorem 3.1 as the following identity:

Theorem 3.5. Fix $v \in S^\infty \text{ and } k \in \mathbb{P}$. Suppose

\[1 \leq j_1 < j_2 < \cdots < j_p < k < l_q < \cdots < l_2 < l_1 \]

are the integers such that $v \widesim v(j, k)$ and $v \widesim v(k, l)$. Then

\[(1 + \beta x_k) \left[S_v \cdot (1 + \beta t_{j_1}) \cdots (1 + \beta t_{j_p}) \right] = S_v \cdot (1 + \beta t_{k_1}) \cdots (1 + \beta t_{k_q}). \]

Proof. After setting $\beta = -1$, this is a slight generalization of [17, Corollary 3.10] (which is the main result of [14]), and has nearly the same proof. Let $J = \{j_1, j_2, \ldots, j_p\}$ and $L = \{l_1, l_2, \ldots, l_q\}$. For subsets $E = \{e_1 < e_2 < \cdots < e_m\} \subset J$ and $F = \{f_n < \cdots < f_2 < f_1\} \subset L$ define $t_{E,k}, t_{k,F} \in S^\infty$ by

\[t_{A,k} = (e_1, k)(e_2, k) \cdots (e_m, k) \quad \text{and} \quad t_{k,B} = (k, f_1)(k, f_2) \cdots (k, f_n). \]

One has $\ell(v t_{E,k}) = \ell(v) + |E|$ and $\ell(v t_{k,F}) = \ell(v) + |F|$ for all choices of $E \subset J$ and $F \subset L$. Hence, by Theorem 3.1, we must show that

\[\sum_{E \subset J} \sum_{w \in P_k(v t_{E,k})} e_k(w, v t_{E,k}) \beta^{\ell(w) - \ell(v)} S_w = \sum_{F \subset L} \beta^{|F|} S_{v t_{k,F}}. \]

(3.1)

Each permutation w indexing the sum on the left can be written as

\[w = v(i_1, k)(i_2, k) \cdots (i_m, k)(i_{m+1}, k) \cdots (i_{n}, k)(k, i_{n+1}) \cdots (k, i_r) \]

for some indices with $i_1 < i_2 < \cdots < i_m > i_{m+1} > \cdots > i_n$ and $i_{n+1} > \cdots > i_r > k$ and $\{i_1, i_2, \ldots, i_m\} \subset J$. Here, the set indexing the outer sum on the left side of (3.1) is $E = \{i_1, i_2, \ldots, i_m\}$. If $n > 0$ then each such w appears twice with opposite associated signs $e_k(w, v t_{E,k})$; the two appearances correspond to $E = \{i_1, \ldots, i_m\}$ and $E = \{i_1, \ldots, i_{m-1}\}$. The permutations w that arise with $n = 0$, alternatively, are exactly the elements $v t_{k,F}$ for $F \subset L$, so (3.1) holds. □
3.2 Fixed-point-free Bruhat order

For each involution \(z \in I_{\infty}^{\text{FPF}} \), let

\[
\ell_{\text{FPF}}(z) = |\{(i, j) \in \mathbb{P} \times \mathbb{P} : z(i) > z(j) < i < j\}|. \tag{3.2}
\]

One can check that if \(z \in I_{\infty}^{\text{FPF}} \) and \(i \in \mathbb{P} \) then

\[
\ell_{\text{FPF}}(s_i z s_i) = \begin{cases}
\ell_{\text{FPF}}(z) + 1 & \text{if } z(i) < z(i + 1) \\
\ell_{\text{FPF}}(z) & \text{if } i + 1 = z(i) > z(i + 1) = i \\
\ell_{\text{FPF}}(z) - 1 & \text{if } i + 1 \neq z(i) > z(i + 1) \neq i.
\end{cases} \tag{3.3}
\]

It follows by induction that

\[
\ell_{\text{FPF}}(z) = \min \{ \ell(w) : w \in S_\infty \text{ and } w^{-1} \Theta w = z \}.
\]

For \(y, z \in I_{\infty}^{\text{FPF}} \), we write \(y \prec_F y \) if \(\ell_{\text{FPF}}(z) = \ell_{\text{FPF}}(y) + 1 \) and \(z = tyt \) for a transposition \(t \in S_\infty \). The transitive closure of this relation is the Bruhat order on \(I_{\infty}^{\text{FPF}} \) from \([9, \S 4.1]\). One can give a more explicit characterization of \(\prec_F \):

Proposition 3.6 ([7, Proposition 4.9]). Suppose \(y \in I_{\infty}^{\text{FPF}} \), \(i, j \in \mathbb{P} \), and \(i < j \).

(a) If \(y(i) < i \) then \(y \prec_F (i, j)y(i, j) \) if and only if these properties hold:

- Either \(y(i) < i < j < y(j) \) or \(y(i) < y(j) < i < j \).
- No integer \(e \) has \(i < e < j \) and \(y(i) < y(e) < y(j) \).

(b) If \(j < y(j) \) then \(y \prec_F (i, j)y(i, j) \) if and only if these properties hold:

- Either \(y(i) < i < j < y(j) \) or \(i < j < y(i) < y(j) \).
- No integer \(e \) has \(i < e < j \) and \(y(i) < y(e) < y(j) \).

Remark 3.7. Let \(y \in I_{\infty}^{\text{FPF}} \) and \(i < j \) and \(t = (i, j) \in S_\infty \). The cases when \(y \prec_F tyt \) correspond to the following pictures, in which the edges indicate the cycle structure of the relevant involutions restricted to \(\{i, j, y(i), y(j)\} \):

\[
\begin{align*}
y &= \begin{array}{c} \circ \end{array} \xleftarrow{i} \begin{array}{c} \circ \end{array} \xleftarrow{j} \begin{array}{c} \circ \end{array} \prec_F \begin{array}{c} \circ \end{array} \xleftarrow{i} \begin{array}{c} \circ \end{array} \xleftarrow{j} \begin{array}{c} \circ \end{array} = tyt, \\
y &= \begin{array}{c} \circ \end{array} \xleftarrow{i} \begin{array}{c} \circ \end{array} \xleftarrow{j} \begin{array}{c} \circ \end{array} \prec_F \begin{array}{c} \circ \end{array} \xleftarrow{i} \begin{array}{c} \circ \end{array} \xleftarrow{j} \begin{array}{c} \circ \end{array} = tyt, \\
y &= \begin{array}{c} \circ \end{array} \xleftarrow{i} \begin{array}{c} \circ \end{array} \xleftarrow{j} \begin{array}{c} \circ \end{array} \prec_F \begin{array}{c} \circ \end{array} \xleftarrow{i} \begin{array}{c} \circ \end{array} \xleftarrow{j} \begin{array}{c} \circ \end{array} = tyt.
\end{align*}
\]

3.3 Symplectic transitions

For distinct \(i, j \in \mathbb{P} \), define \(u_{ij} \) to be the linear operator with \(\Theta^\text{Sp}_z u_{ij} = \Theta^\text{Sp}_{z(i,j)} u_{ij} \) for \(z \in I_{\infty}^{\text{FPF}} \). One cannot hope for a symplectic version of Theorem 3.1 since products of the form \((1 + \beta x_k) \Theta^\text{Sp}_z \) may fail to be linear combinations of symplectic Grothendieck polynomials. There is an analogue of Theorem 3.5 however:
Theorem 3.8. Fix $v \in \mathcal{I}_\infty^{\text{FF}}$ and $j, k \in \mathbb{P}$ with $v(k) = j < k = v(j)$. Suppose

$$1 \leq i_1 < i_2 < \cdots < i_p < j < k < l_q < \cdots < l_2 < l_1 \tag{3.4}$$

are the integers such that $v \prec_F (i,j) v(i,j)$ and $v \prec_F (k,l) v(k,l)$. Then

$$(1 + \beta x_j)(1 + \beta x_k)
\left[\mathcal{G}^S_v \cdot (1 + \beta u_{i_1 j})(1 + \beta u_{i_2 j}) \cdots (1 + \beta u_{i_p j})\right] \tag{3.5}$$

is equal to

$$\mathcal{G}^S_v \cdot (1 + \beta u_{k l_1})(1 + \beta u_{k l_2}) \cdots (1 + \beta u_{k l_q}). \tag{3.6}$$

This is a generalization of [7, Theorem 4.17], which one recovers by subtracting \mathcal{G}^S_v from (3.5) and (3.6), dividing by β, and then setting $\beta = 0$. These results belong to a larger family of similar formulas related to Schubert calculus; see also [1, 12, 21]. Before giving the proof, we present one example.

Example 3.9. If $v = (1, 2)(3, 5)(4, 8)(6, 7) \in \mathcal{I}_\infty^{\text{FF}}$ and $(j, k) = (3, 5)$, then we have $\{i_1 < i_2 < \cdots < i_p\} = \{2\}$ and $\{l_1 > l_2 > \cdots > l_q\} = \{6, 8\}$ and Theorem 3.8 is equivalent, after a few manipulations, to the claim that $\sum_{i, j} \mathcal{G}^S_v \cdot (1 + \beta u_{i_1 j})(1 + \beta u_{i_2 j}) \cdots (1 + \beta u_{i_p j})$ is equal to $\mathcal{G}^S_v \cdot (1 + \beta u_{k l_1})(1 + \beta u_{k l_2}) \cdots (1 + \beta u_{k l_q})$.

Proof of Theorem 3.8. The proof is by downward induction on $\ell_{\text{FF}}(v)$. As a base case, suppose $v = n \cdots 321 \in \mathcal{I}_\infty$ where $n \in 2\mathbb{P}$, so that $j = n + 1 - k$. Then $p = 0$, $q = 1$, $l_1 = n + 1$, and the theorem reduces to the claim that

$$(x_j + x_{n+1-j} + \beta x_j x_{n+1-j}) \mathcal{G}^S_{v_{321-N}} = \mathcal{G}^S_{v_{321}}$$

for $w := (k, n + 1)v(k, n + 1)$. This follows from Theorem 2.5 since w is S-dominant with $D^S(w) = D^S(v) \cup \{(n + 1 - j, j)\}$.

Now let $v \in \mathcal{I}_\infty^{\text{FF}} \setminus \{\Theta\}$ and $j, k \in \mathbb{P}$ be arbitrary with $v(k) = j < k = v(j)$. It is helpful to introduce some relevant notation. Define

$$\Pi^-(v, j, k) := \mathcal{G}^S_v \cdot (1 + \beta u_{i_1 j})(1 + \beta u_{i_2 j}) \cdots (1 + \beta u_{i_p j})$$

and let $\text{Asc}^-(v, j, k) = \{i_1, i_2, \ldots, i_p\}$ and $\text{Asc}^+(v, j, k) = \{l_1, l_2, \ldots, l_q\}$ where the indices i_1, i_2, \ldots, i_p and l_1, l_2, \ldots, l_q are as in (3.4). For each nonempty subset $A = \{a_1 < a_2 < \cdots < a_m\} \subset \text{Asc}^-(v, j, k)$, define

$$\tau_A^-(v, j, k) = \sigma v \sigma^{-1}, \quad \text{where } \sigma := (a_1, a_2, \ldots, a_m, j) \in S_\infty.$$

For each nonempty subset $B = \{b_m < \cdots < b_2 < b_1\} \subset \text{Asc}^+(v, j, k)$, define

$$\tau_B^+(v, j, k) = \sigma v \sigma^{-1}, \quad \text{where } \sigma := (b_1, b_2, \ldots, b_m, k) \in S_\infty.$$

For empty sets, we define $\tau_\emptyset^+(v, j, k) = v$. It then follows from Proposition 3.6 that $\ell_{\text{FF}}(\tau_\emptyset^+(v, j, k)) = \ell_{\text{FF}}(v) + |S|$ for all choices of S, and we have

$$\Pi^+(v, j, k) = \sum_{S \subset \text{Asc}^+(v, j, k)} \beta^{|S|} \mathcal{G}^S_v \tau_\emptyset^+(v, j, k) \tag{3.7}$$
If we represent elements of I^FPF_∞ as arc diagrams, i.e., as perfect matchings on the positive integers with an edge for each 2-cycle, then the elements $\tau^\pm_S(v, j, k)$ can be understood as follows. The arc diagram of $\tau^+_S(v, j, k)$ is formed from v by cyclically shifting up the endpoints $S \cup \{j\}$. The arc diagram of $\tau^-_S(v, j, k)$ is formed from v by cyclically shifting down the endpoints $\{k\} \cup S$.

Suppose the theorem holds for a given $v \in I^\text{FPF}_\infty \setminus \{\Theta\}$ in the sense that $(1 + \beta x_j)(1 + \beta x_k)\Pi^-(w, j, k) = \Pi^+(w, j, k)$ for all choices of $v(k) = j < k = v(j)$. Let $d \in \mathbb{P}$ be any positive integer with $d + 1 \neq v(d) > v(d + 1) \neq d$ and set

$$w := s_d v s_d \in I^\text{FPF}_\infty.$$

Choose integers $j, k \in \mathbb{P}$ with $v(k) = j < k = v(j)$; note that we cannot have $j = d < d + 1 = k$. In view of the first paragraph, it is enough to show that

$$(1 + \beta x_j)(1 + \beta x_k)\Pi^-(w, j, k) = \Pi^+(w, j, k),$$

where $j' = s_d(j)$ and $k' = s_d(k)$. There are seven cases to examine:

- **Case 1:** Assume that $d + 1 < j$. We must show that

 $$(1 + \beta x_j)(1 + \beta x_k)\Pi^-(w, j, k) = \Pi^+(w, j, k).$$

 It suffices by (2.3) to prove that $\partial_d^{(\beta)} \Pi^+(v, j, k) = \Pi^+(w, j, k)$. The + form of this claim is straightforward from Proposition 3.6 and (3.7); in particular, it holds that $\text{Asc}^+(w, j, k) = \text{Asc}^+(v, j, k)$. For the other form, there are four subcases to consider:

 1a) Assume that $d, d + 1 \notin \text{Asc}^-(v, j, k)$. Since $v(d) > v(d + 1)$, it is again straightforward from Proposition 3.6 and (3.7) to show that $\text{Asc}^-(w, j, k) = \text{Asc}^-(v, j, k)$ and $\partial_d^{(\beta)} \Pi^-(v, j, k) = \Pi^-(w, j, k)$.

 1b) Assume that $d \in \text{Asc}^-(v, j, k)$ and $d + 1 \notin \text{Asc}^-(v, j, k)$. Then

 $$\text{Asc}^-(w, j, k) = \text{Asc}^-(v, j, k) \setminus \{d\} \cup \{d + 1\}$$

 and $d + 1 \neq \tau^-_S(v, j, k)(d) > \tau^-_S(v, j, k)(d + 1) \neq d$ for all subsets $S \subset \text{Asc}^-(v, j, k)$, so we again have $\partial_d^{(\beta)} \Pi^-(v, j, k) = \Pi^-(w, j, k)$.

 1c) Assume that $d \notin \text{Asc}^-(v, j, k)$ and $d + 1 \in \text{Asc}^-(v, j, k)$. This can only occur if $d < k < v(d)$, so we have

 $$\text{Asc}^-(w, j, k) = \text{Asc}^-(v, j, k) \setminus \{d + 1\} \cup \{d\}. $$

 From here, we deduce that $\partial_d^{(\beta)} \Pi^-(v, j, k) = \Pi^-(w, j, k)$ by an argument similar to the one in case (1b).

 1d) Assume that $d, d + 1 \in \text{Asc}^-(v, j, k)$. Three situations are possible for the relative order of $d, d + 1, v(d)$, and $v(d + 1)$. First suppose $v(d + 1) < d < d + 1 < v(d)$. Then

 $$\text{Asc}^-(w, j, k) = \text{Asc}^-(v, j, k) \setminus \{d\}$$

 (3.8)
and every \(i \in \text{Asc}^-(v, j, k) \) with \(i < d \) must have \(v(d) < v(i) < k \). It follows that if \(S \subset \text{Asc}^-(v, j, k) \) then

\[
\partial_d^{(\beta)} \mathcal{O}_{\tau_\Delta^+}^{S}(v,j,k) = \begin{cases}
\mathcal{O}_{\tau_\Delta^+}^{S}(v,j,k) & \text{if } d, d + 1 \in S \\
-\beta \cdot \mathcal{O}_{\tau_\Delta^+}^{S}(v,j,k) & \text{if } d \notin S, \ d + 1 \in S \\
\mathcal{O}_{\tau_\Delta^+}^{S}(v,j,k) & \text{if } d, d + 1 \notin S \\
\mathcal{O}_{\tau_\Delta^+}^{S}(v,j,k) & \text{if } d \in S, \ d + 1 \notin S.
\end{cases}
\]

(3.9)

If we have \(v(d + 1) < v(d) < d \) or \(j < v(d + 1) < v(d) < k \) then (3.8) and (3.9) both still hold and follow by similar reasoning. Combining these identities with (3.7) gives \(\partial_d^{(\beta)} \Pi^-(v, j, k) = \Pi^-(w, j, k) \).

We conclude from this analysis that \(\partial_d^{(\beta)} \Pi^*(v, j, k) = \Pi^*(w, j, k) \).

- **Case 2:** Assume that \(d + 1 = j \), so that \(k < v(j - 1) \). We must show that

\[
(1 + \beta x_{j-1})(1 + \beta x_k)\Pi^-(w, j - 1, k) = \Pi^+(w, j - 1, k).
\]

It follows from (2.2) that \(\partial_{j-1}^{(\beta)} ((1 + \beta x_j)(1 + \beta x_k)\Pi^-(v, j, k)) \) is equal to

\[
(1 + \beta x_{j-1})(1 + \beta x_k)\partial_{j-1}^{(\beta)} \Pi^-(v, j, k) - \beta \cdot \Pi^+(v, j, k)
\]

and it is easy to see that \(\partial_{j-1}^{(\beta)} \Pi^-(v, j, k) = \Pi^-(w, j - 1, k) \). Thus, it suffices to show that

\[
(\partial_{j-1}^{(\beta)} + \beta)\Pi^+(v, j, k) = \Pi^+(w, j - 1, k). \tag{3.10}
\]

It follows from Proposition 3.6 that \(\text{Asc}^+(w, j - 1, k) = \{ l \in \text{Asc}^+(v, j, k) : l < v(j - 1) \} \cup \{ v(j) \} \). We deduce that if \(S \subset \text{Asc}^+(v, j, k) \) then

\[
\partial_{j-1}^{(\beta)} \mathcal{O}_{\tau_\Delta^+}^{S}(v,j,k) = \begin{cases}
\mathcal{O}_{\tau_\Delta^+}^{S}(w, j - 1, k) & \text{if } S \subset \text{Asc}^+(w, j - 1, k) \\
-\beta \cdot \mathcal{O}_{\tau_\Delta^+}^{S}(v,j,k) & \text{otherwise.}
\end{cases}
\]

If \(v(j) \in S \subset \text{Asc}^+(w, j - 1, k) \) then \(\tau_\Delta^+(w, j - 1, k) = \tau_\Delta^+(v, j, k) \). Combining these identities with (3.7) shows the needed claim (3.10).

- **Case 3:** Assume that \(d = j \), so that either \(v(j + 1) < j < j + 1 < k \) or \(j < j + 1 < v(j + 1) < k \). We must show that

\[
(1 + \beta x_{j+1})(1 + \beta x_k)\Pi^-(w, j + 1, k) = \Pi^+(w, j + 1, k).
\]

It follows from (2.2) that \(\partial_j^{(\beta)} ((1 + \beta x_j)(1 + \beta x_k)\Pi^-(v, j, k)) \) is equal to

\[
(1 + \beta x_{j+1})(1 + \beta x_k)(\partial_j^{(\beta)} + \beta)\Pi^-(v, j, k).
\]
It is easy to deduce that \(\partial_d^{(\beta)} \Pi^+(v, j, k) = \Pi^+(w, j + 1, k) \) from Proposition 3.6, so it suffices to show that
\[
(\partial_d^{(\beta)} + \beta) \Pi^-(v, j, k) = \Pi^-(w, j + 1, k). \tag{3.11}
\]

First assume \(v(j + 1) < j < j + 1 < k \). Then every \(i \in \text{Asc}^-(v, j, k) \) with \(i < v(j + 1) \) must have \(j + 1 < v(i) < k \), and \(\text{Asc}^-(w, j + 1, k) \) is equal to \(\{ i \in \text{Asc}^-(v, j, k) : v(j + 1) < v(i) \} \) if \(v(j + 1) \leq i < j \} \cup \{ j \} \).

As in Case 2, we deduce that if \(S \subset \text{Asc}^-(v, j, k) \) then
\[
\partial_d^{(\beta)} \mathcal{S}_G^{(\tau_G(w, j, k))} = \begin{cases}
\mathcal{S}_G^{(\tau_G(w, j + 1, k))} & \text{if } S \subset \text{Asc}^-(w, j + 1, k) \\
-\beta \cdot \mathcal{S}_G^{(\tau_G(v, j, k))} & \text{otherwise.}
\end{cases} \tag{3.12}
\]

On the other hand, if \(j \in S \subset \text{Asc}^-(w, j + 1, k) \) then
\[
\tau_G(w, j + 1, k) = \tau_G(w, j, k). \tag{3.13}
\]

Combining these identities with (3.6) gives (3.11) as desired. Alternatively, if we have \(j < j + 1 < v(j + 1) < k \), then

\[
\text{Asc}^-(w, j + 1, k) = \{ i \in \text{Asc}^-(v, j, k) : v(j + 1) < v(i) < k \} \cup \{ j \}
\]

and we deduce by similar reasoning that the identities (3.12) and (3.13) both still hold, so (3.11) again follows.

- **Case 4:** Assume that \(j < d \) and \(d + 1 < k \). We must show that
\[
(1 + \beta x_j)(1 + \beta x_k) \Pi^-(w, j, k) = \Pi^+(w, j - 1, k).
\]

It suffices by (2.3) to prove that \(\partial_d^{(\beta)} \Pi^+(v, j, k) = \Pi^+(w, j, k) \). There are three subcases to consider:

1. **(4a)** If \(j < v(d) < k \) or \(j < v(d + 1) < k \) or \(v(d + 1) < j < k < v(d) \) then the desired identities are straightforward from Proposition 3.6.

2. **(4b)** Assume that \(v(d + 1) < v(d) < j \). In this case it is easy to see that \(\partial_d^{(\beta)} \Pi^+(v, j, k) = \Pi^+(w, j, k) \) and if \(v(d + 1) \notin \text{Asc}^-(v, j, k) \), then we likewise deduce that \(\partial_d^{(\beta)} \Pi^-(v, j, k) = \Pi^-(w, j, k) \). Suppose instead that \(v(d + 1) \in \text{Asc}^-(v, j, k) \). We then also have \(v(d) \in \text{Asc}^-(v, j, k) \), but no \(i \in \text{Asc}^-(v, j, k) \) is such that \(v(d + 1) < i < v(d) \), and

\[
\text{Asc}^-(w, j, k) = \text{Asc}^-(v, j, k) \setminus \{ v(d + 1) \}.
\]

It follows that if \(S \subset \text{Asc}^-(v, j, k) \) then
\[
\partial_d^{(\beta)} \mathcal{S}_G^{(\tau_G(w, j, k))} = \begin{cases}
\mathcal{S}_G^{(\tau_G(v(d), j, k))} & \text{if } v(d), v(d + 1) \in S \\
-\beta \cdot \mathcal{S}_G^{(\tau_G(v, j, k))} & \text{if } v(d) \notin S, \ v(d + 1) \in S \\
\mathcal{S}_G^{(\tau_G(w, j, k))} & \text{if } v(d + 1) \notin S.
\end{cases}
\]

12
Combining this with (3.7) gives \(\partial_d^{(\beta)}\Pi^-(v, j, k) = \Pi^-(w, j, k) \).

(4c) Assume that \(k < v(d+1) < v(d) \). This is the mirror image of (4b) and we get \(\partial_d^{(\beta)}\Pi^+(v, j, k) = \Pi^+(w, j, k) \) by symmetric arguments.

- **Case 5:** Assume that \(d + 1 = k \), so that either \(j < k - 1 < k < v(k-1) \) or \(j < v(k-1) < k - 1 < k \). We must show that
 \[
 (1 + \beta x_j)(1 + \beta x_{k-1})\Pi^-(w, j, k-1) = \Pi^+(w, j, k-1).
 \]
 It follows from (2.2) that \(\partial_{k-1}^{(\beta)}((1 + \beta x_j)(1 + \beta x_k)\Pi^-(v, j, k)) \) is equal to
 \[
 (1 + \beta x_j)(1 + \beta x_k)\Pi^-(v, j, k) - \beta \cdot \Pi^+(v, j, k)
 \]
 and it is easy to deduce that \(\partial_{k-1}^{(\beta)}\Pi^-(v, j, k) = \Pi^-(w, j, k-1) \). It therefore suffices to show that \((\partial_{k-1}^{(\beta)} + \beta)\Pi^+(v, j, k) = \Pi^+(w, j, k-1) \). The required argument is the mirror image of Case 3; we omit the details.

- **Case 6:** Assume that \(d = k \). We must show that
 \[
 (1 + \beta x_j)(1 + \beta x_{k-1})\Pi^-(w, j, k+1) = \Pi^+(w, j, k+1).
 \]
 It follows from (2.2) that \(\partial_k^{(\beta)}((1 + \beta x_j)(1 + \beta x_k)\Pi^-(v, j, k)) \) is equal to
 \[
 (1 + \beta x_j)(1 + \beta x_{k+1})(\partial_k^{(\beta)} + \beta)\Pi^-(v, j, k)
 \]
 and it is easy to see that \(\partial_k^{(\beta)}\Pi^+(v, j, k) = \Pi^+(w, j, k+1) \). Thus, it suffices to show that \((\partial_k^{(\beta)} + \beta)\Pi^-(v, j, k) = \Pi^-(w, j, k+1) \). The required argument is the mirror image of Case 2; we omit the details.

- **Case 7:** Finally, assume that \(k < d \). We must show that
 \[
 (1 + \beta x_j)(1 + \beta x_k)\Pi^-(w, j, k) = \Pi^+(w, j, k).
 \]
 It suffices by (2.3) to prove that \(\partial_k^{(\beta)}\Pi^+(v, j, k) = \Pi^+(w, j, k) \). The required argument is the mirror image of Case 1; we omit the details.

This case analysis completes our inductive proof. \(\square \)

Corollary 3.10. Suppose \(v \in I_\infty^{\text{FPF}} \) and \(j, k \in \mathbb{P} \) have \(j < k = v(j) \). Then
\[
(1 + \beta x_j)(1 + \beta x_k)\mathfrak{G}^\text{Sp}_v \in \mathbb{Z}[\beta]\text{-span}\{\mathfrak{G}^\text{Sp}_z : z \in I_\infty^{\text{FPF}}\}.
\]

Proof. It follows by induction from Theorem 3.8 that \((1 + \beta x_j)(1 + \beta x_k)\mathfrak{G}^\text{Sp}_y \) is a possibly infinite \(\mathbb{Z}[\beta]\)-linear combination of \(\mathfrak{G}^\text{Sp}_z \)'s. This combination must be finite by Corollary 3.3 since no Grothendieck polynomial \(\mathfrak{G}_w \) appears in the expansion of \(\mathfrak{G}^\text{Sp}_y \) and \(\mathfrak{G}^\text{Sp}_z \) for distinct \(y, z \in I_\infty^{\text{FPF}} \) by [20] Theorem 3.12. \(\square \)

A visible descent of \(z \in I_\infty^{\text{FPF}} \) is an integer \(i \) such that \(z(i+1) < \min\{i, z(i)\} \).
Corollary 3.11. Let $k \in \mathbb{P}$ be the last visible descent of $z \in I_{\infty}^{\text{FPF}}$. Define l to be the largest integer with $k < l$ and $z(l) < \min\{k, z(k)\}$, and set

$$v = (k, l)z(k, l) \quad \text{and} \quad j = v(k).$$

Let $1 \leq i_1 < i_2 < \cdots < i_p < j$ be the integers with $v \trianglerighteq F(i, j)v(i, j)$. Then

$$\beta G_{\text{Sp}}z = (1 + \beta x_j)(1 + \beta u_{i_1})\cdots (1 + \beta u_{i_p}) - G_{\text{Sp}}v.$$

Note that one could rewrite the right side without using any minus signs.

Proof. It suffices by Theorem 3.8 to show that $\text{Asc}^+(v, j, k) = \{l\}$. This is precisely [9, Lemma 5.2], but also follows as a self-contained exercise.

4 Stable Grothendieck polynomials

The limit of a sequence of polynomials or formal power series is defined to converge if the coefficient sequence for any fixed monomial is eventually constant.

Given $n \in \mathbb{N}$ and $w \in S_\infty$, write $1^n \times w \in S_\infty$ for the permutation that maps $i \mapsto i$ for $i \leq n$ and $i + n \mapsto w(i) + n$ for $i \in \mathbb{P}$. The stable Grothendieck polynomial of $w \in S_\infty$ is defined as the limit

$$G_w := \lim_{n \to \infty} \Theta_{1^n \times w}^v.\quad (4.1)$$

Remarkably, this always converges to a well-defined symmetric function [2, §2]. Given $n \in \mathbb{N}$ and $z \in I_{\infty}^{\text{FPF}}$, we similarly write $(21)^n \times z \in I_{\infty}^{\text{FPF}}$ for the involution mapping $i \mapsto i - (-1)^i$ for $i \leq 2n$ and $i + 2n \mapsto z(i) + 2n$ for $i \in \mathbb{P}$. Following [20], the symplectic stable Grothendieck polynomial of $z \in I_{\infty}^{\text{FPF}}$ is defined as

$$GP_{\text{Sp}}z := \lim_{n \to \infty} \Theta_{(21)^n \times z}^{\text{Sp}}.\quad (4.2)$$

The next lemma is a consequence of [20, Theorem 3.12 and Corollary 4.7]:

Lemma 4.1 (20). The limit (4.2) converges for all $z \in I_{\infty}^{\text{FPF}}$. Moreover, the resulting power series $GP_{\text{Sp}}z$ is the image of Θ_{z}^{Sp} under the linear map $\mathbb{Z}[\beta][x_1, x_2, \ldots] \to \mathbb{Z}[\beta][[x_1, x_2, \ldots]]$ with $\Theta_w \mapsto G_w$ for $w \in S_\infty$.

It follows that $GP_{\text{Sp}}z$ is also a symmetric function. These power series have some stronger symmetry properties, which we explore in this section.

4.1 K-theoretic Schur functions

Besides permutations and involutions, there is also a notion of stable Grothendieck polynomials for partitions, though these would more naturally be called K-theoretic Schur functions. The precise definition is as follows.
If \(\lambda = (\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_k > 0) \) is an integer partition, then a \textit{set-valued tableau} of shape \(\lambda \) is a map \(T : (i, j) \mapsto T_{ij} \) from the Young diagram
\[
D_\lambda := \{(i, j) \in \mathbb{P} \times \mathbb{P} : j \leq \lambda_i \}
\]
to the set of finite, nonempty subsets of \(\mathbb{P} \). For such a map, define
\[
x^T := \prod_{(i, j) \in D_\lambda} \prod_{k \in T_{ij}} x_k \quad \text{and} \quad |T| := \sum_{(i, j) \in D_\lambda} |T_{ij}|.
\]
A set-valued tableau \(T \) is \textit{semistandard} if one has \(\max(T_{ij}) \leq \min(T_{i+1,j}) \) and \(\max(T_{ij}) < \min(T_{i+1,j}) \) for all relevant \((i, j) \in D_\lambda \).

Let \(\text{SetSSYT}(\lambda) \) denote the set of semistandard set-valued tableaux of shape \(\lambda \).

Definition 4.2 ([2]). The \textit{stable Grothendieck polynomial} of a partition \(\lambda \) is
\[
G_\lambda := \sum_{T \in \text{SetSSYT}(\lambda)} \beta^{|T| - |\lambda|} x^T \in \mathbb{Z}[[x_1, x_2, \ldots]].
\]

This definition sometimes appears in the literature with the parameter \(\beta \) set to \(\pm 1 \), but if we write \(G_\lambda^{(\beta)} = G_\lambda \) then \(-\beta)^{|\lambda|} G_\lambda^{(\beta)} = G_\lambda^{(\beta)}(-\beta x_1, -\beta x_2, \ldots) \).

Setting \(\beta = 0 \) transforms \(G_\lambda \) to the usual Schur function \(s_\lambda \). For example, if \(\lambda = (1) \) then \(G_{(1)} = s_{(1)} + \beta s_{(1,1)} + \beta^2 s_{(1,1,1)} + \ldots \).

The functions \(G_\lambda \) are related to \(G_w \) for \(w \in S_\infty \) by the following result of Buch [2]. For a partition \(\lambda \) with \(k \) parts, define \(w_\lambda \in S_\infty \) to be the permutation with \(w_\lambda(i) = i + \lambda_{k+1-i} \) for \(i \in [k] \) and \(w_\lambda(i) < w_\lambda(i+1) \) for all \(i > k \).

Theorem 4.3 ([2] Theorem 3.1). If \(\lambda \) is any partition then \(G_{w_\lambda} = G_\lambda \).

Write \(\mathscr{P} \) for the set of all partitions.

Theorem 4.4 ([3] Theorem 1). If \(w \in S_\infty \) then \(G_w \in \mathbb{N}[\beta] \text{-span} \{G_\lambda : \lambda \in \mathscr{P} \} \).

A symplectic analogue of Theorem 4.4 is already given in [19]. Our goal in the rest of this section is to prove a symplectic analogue of Theorem 4.4.

4.2 Stabilization

We refer to the linear map \(\mathbb{Z}[\beta][x_1, x_2, \ldots] \to \mathbb{Z}[\beta][[x_1, x_2, \ldots]] \) with \(\Theta_w \mapsto G_w \) as \textit{stabilization}. It will be useful in the next two sections to have a description of this operation in terms of divided differences.

As in Section 2.2, let \(\mathcal{L} = \mathbb{Z}[\beta][x_1^{\pm 1}, x_2^{\pm 1}, \ldots] \). For \(i \in \mathbb{P} \), write \(\pi_i^{(\beta)} \) for the \textit{isobaric divided difference operator} defined by the formula
\[
\pi_i^{(\beta)} f = \partial_i^{(\beta)}(x_i f) = f + x_{i+1}(1 + \beta x_i) \partial_i f \quad \text{for} \quad f \in \mathcal{L}. \tag{4.3}
\]

We have \(\pi_i^{(\beta)} f = f \) if and only if \(s_i f = f \), in which case \(\pi_i^{(\beta)}(fg) = f \cdot \pi_i^{(\beta)} g \). These operators are idempotent with \(\pi_i^{(\beta)} \pi_i^{(\beta)} = \pi_i^{(\beta)} \) for all \(i \in \mathbb{P} \), and we have
\[
\pi_i^{(\beta)} \pi_j^{(\beta)} = \pi_j^{(\beta)} \pi_i^{(\beta)} \quad \text{and} \quad \pi_i^{(\beta)} \pi_{i+1}^{(\beta)} = \pi_i^{(\beta)} \pi_{i+1}^{(\beta)} = \pi_{i+1}^{(\beta)} \pi_i^{(\beta)}. \tag{4.4}
\]
for all $i, j \in \mathbb{P}$ with $|i - j| > 1$. For $w \in S_\infty$ we can therefore define

$$\pi_w^{(\beta)} = \pi_{i_1}^{(\beta)} \pi_{i_2}^{(\beta)} \cdots \pi_{i_\ell}^{(\beta)}$$

where $w = s_{i_1} \cdots s_{i_\ell}$ is any reduced expression.

Given $f \in \mathbb{Z}[\beta][[x_1, x_2, \ldots]]$ and $n \in \mathbb{N}$, write $f(x_1, \ldots, x_n)$ for the polynomial obtained by setting $x_{n+1} = x_{n+2} = \cdots = 0$ and let $w_n = n \cdots 321 \in S_n$.

Proposition 4.5. If $v \in S_n$ then $\mathfrak{G}_{1N \times v}(x_1, \ldots, x_n) = \pi_{w_n}^{(\beta)} \mathfrak{G}_v$ for all $N \geq n$.

Proof. Fix $v \in S_n$ and define $\tau_N := \pi_1^{(\beta)} \pi_2^{(\beta)} \cdots \pi_{n-1}^{(\beta)}$. We then have

$$\tau_{n+1} \mathfrak{G}_v = \partial_1^{\beta} \partial_2^{(\beta)} \cdots \partial_n^{(\beta)} (x_1 x_2 \cdots x_n \mathfrak{G}_v).$$

Let $u = (v_1 + 1)(v_2 + 2) \cdots (v_n + 1)1 \in S_{n+1}$. Since

$$x_1 x_2 \cdots x_n \mathfrak{G}_v = x_1 x_2 \cdots x_n \partial_{v_{n+1}} \mathfrak{G}_{w_n} = \partial_{v_1}^{(\beta)} \partial_{v_2}^{(\beta)} \cdots \partial_{v_{n+1}}^{(\beta)} \mathfrak{G}_{w_n} = \mathfrak{G}_u,$$

it follows that $\tau_{n+1} \mathfrak{G}_v = \mathfrak{G}_{11 \times v}$ and $\mathfrak{G}_{1N \times v} = \tau_{n+N} \cdots \tau_{n+2} \tau_{n+1} \mathfrak{G}_v$ for all $N \in \mathbb{P}$. Define $r_n(f) := f(x_1, x_2, \ldots, x_n)$. Then (4.3) implies that

$$r_n(\pi_i^{(\beta)} f) = \begin{cases} r_n(f) & \text{if } n \leq i \\ \pi_i^{(\beta)} r_n(f) & \text{if } i < n \end{cases}$$

(4.5)

so $r_n(\tau_{N} f) = \tau_n r_N(f)$ for $n \leq N$ and $r_n(\tau_{N} f) = \tau_N r_n(f)$ for $N < n$. Since $r_n(\mathfrak{G}_v) = \mathfrak{G}_v$ and $(\tau_n)^n = \pi_{w_n}^{(\beta)}$, we have $r_n(\mathfrak{G}_{1N \times v}) = \pi_{w_n}^{(\beta)} \mathfrak{G}_v$ for $N \geq n$. \qed

Corollary 4.6. If $v \in S_\infty$ and $z \in I_\infty^{\mathbb{P}}$ then

$$G_v = \lim_{N \to \infty} \pi_{w_N}^{(\beta)} \mathfrak{G}_v \quad \text{and} \quad GP_{z}^{\mathbb{P}} = \lim_{N \to \infty} \pi_{w_N}^{(\beta)} \mathfrak{G}_z^{\mathbb{P}}.$$

Proof. These identities are clear from Lemma 4.1 and Proposition 4.5 \qed

For any polynomials x and y, let

$$x \oplus y := x + y + \beta xy \quad \text{and} \quad x \odot y := \frac{x - y}{1 + \beta y}$$

(4.6)

For integers $0 < a \leq b$, define

$$\partial_{b \setminus a}^{(\beta)} := \partial_{b-1}^{(\beta)} \partial_{b-2}^{(\beta)} \cdots \partial_a^{(\beta)} \quad \text{and} \quad \partial_{b \setminus a}^{(\beta)} := \partial_{b-1}^{(\beta)} \partial_{b-2}^{(\beta)} \cdots \partial_a^{(\beta)}$$

so that $\partial_{a \setminus a} = \partial_{a \setminus a}^{(\beta)} = 1$. Finally, let $\Delta_{m,n}^{(\beta)}(x) := \prod_{j=2}^n (1 + \beta x_{m+j})^{-1}$.

Lemma 4.7. If $m \in \mathbb{N}$ and $n \in \mathbb{P}$ then

$$\partial_{1 \setminus w}^{(\beta)} f = \partial_{1 \setminus w} \Delta_{m,n}^{(\beta)}(x) f = \sum_{w \in S_n} w \left(\frac{f}{\prod_{1 \leq i < j \leq n} x_{m+i} \odot x_{m+j}} \right)$$

where in the last sum S_n acts by permuting the variables $x_{m+1}, x_{m+2}, \ldots, x_{m+n}$. 16
Proof. The second equality is \cite{18} Proposition 2.3.2. The first equality follows by induction: the base case when \(n = 1 \) holds by definition, and if \(n > 1 \) then \(\partial^{(\beta)}_{1 \times w_n} = \partial^{(\beta)}_{(m+n) \times (m+1)} \partial^{(\beta)}_{1 \times w_{n-1}} \) and the desired identity is easy to deduce using the fact that \(\partial^{(\beta)}_{b \times a} f = \partial_{b, a} ((1 + \beta x_k) \cdots (1 + \beta x_{a+2}) (1 + \beta x_{a+1}) f) \).

For any integer sequence \(\lambda = (\lambda_1, \lambda_2, \ldots) \) with finitely many nonzero terms, define \(x^\lambda := x_{\lambda_1} x_{\lambda_2} \cdots \). Let \(\delta_n := (n-1, n-2, \ldots, 2, 1, 0) \) for \(n \in \mathbb{P} \).

Lemma 4.8. If \(n \in \mathbb{P} \) then \(\pi^{(\beta)} w_n f = \partial^{(\beta)} w_n (x^{\delta_n} f) \) for all \(f \in \mathcal{L} \).

Proof. The expression \(w_n = (s_1)(s_2s_1)(s_3s_2s_1) \cdots (s_{n-1} \cdots s_3s_2s_1) \) is reduced and one can check, noting that \(\partial^{(\beta)}_1 (x_1 x_2 \cdots x_n f) = x_1 x_2 \cdots x_n \partial^{(\beta)} f \) for \(i < n \), that \(\partial^{(\beta)}_{n-1} \cdots \partial_2 \partial_1 (x^{\delta_n} f) = x^{\delta_n-2} x^{\delta_n-1} \cdots \partial_2 \partial_1 (x^{\delta_n} f) \). The lemma follows by induction from these identities. \qed

Corollary 4.9. If \(\lambda \) is a partition then \(G_\lambda = \lim_{n \to \infty} \pi^{(\beta)} w_n (x^\lambda) \).

Proof. Apply Lemmas 4.7 and 4.8 to \cite{10} Eq. (2.14)], for example. \qed

4.3 K-theoretic Schur P-functions

The natural symplectic analogues of Theorems 4.3 and 4.4 involve shifted versions of the symmetric functions \(G_\lambda \), which we review here.

Define the **marked alphabet** to be the totally ordered set of primed and unprimed integers \(\mathbb{M} := \{ 1' < 1 < 2' < 2 < \ldots \} \), and write \(|i'| := |i| = i \) for \(i \in \mathbb{P} \). If \(\lambda = (\lambda_1 > \lambda_2 > \cdots > \lambda_k > 0) \) is a strict partition, then a **shifted set-valued tableau** of shape \(\lambda \) is a map \(T: (i, j) \mapsto T_{i,j} \) from the shifted diagram

\[
SD_\lambda := \{(i, i+j-1) \in \mathbb{P} \times \mathbb{P} : 1 \leq j \leq \lambda_i \}
\]

to the set of finite, nonempty subsets of \(\mathbb{M} \). Given such a map \(T \), define

\[
x^T := \prod_{(i,j) \in SD_\lambda} \prod_{k \in T_{i,j}} x_{|k|} \quad \text{and} \quad |T| := \sum_{(i,j) \in SD_\lambda} |T_{i,j}|.
\]

A shifted set-valued tableau \(T \) is **semistandard** if for all relevant \((i, j) \in SD_\lambda \):

(a) max(\(T_{i,j} \)) \leq \min(\(T_{i,j+1} \)) and \(T_{i,j} \cap T_{i,j+1} \subset \{1, 2, 3, \ldots \} \).

(b) max(\(T_{i,j} \)) \leq \min(\(T_{i+1,j} \)) and \(T_{i,j} \cap T_{i+1,j} \subset \{1', 2', 3', \ldots \} \).

In such tableaux, an unprimed number can appear at most once in a column, while a primed number can appear at most one in a row. Let SetSSMT(\(\lambda \)) denote the set of semistandard shifted set-valued tableaux of shape \(\lambda \).

Definition 4.10 (\cite{10}). The **K-theoretic Schur P-function** of a strict partition \(\lambda \) is the power series \(GP_\lambda := \sum_T \beta^{|T|} x^T \) where the summation is over tableaux \(T \in \text{SetSSMT}(\lambda) \) with no primed numbers in any position on the main diagonal.
This definition is due to Ikeda and Naruse \[10\], who also show that each GP_λ is symmetric in the x_i variables \[10\] Theorem 9.1. Setting $\beta = 0$ transforms GP_λ to the classical Schur P-function P_λ.

Proposition 4.11. If λ is a strict partition with r parts then

$$GP_\lambda = \lim_{n \to \infty} \pi_{w_n}^{(\beta)} \left(x^\lambda \prod_{i=1}^r \prod_{j=i+1}^n \frac{x_i \oplus x_j}{x_t} \right)$$

where we set $x \oplus y := x + y + \beta xy$ as in (4.6).

Proof. As in (4.6), set $x \ominus y := x - y + \frac{\beta - 1}{1 + \beta y}$. Fix a strict partition λ with r parts. Ikeda and Naruse’s first definition of GP_λ (see \[10\] Definition 2.1) is

$$GP_\lambda = \lim_{n \to \infty} \frac{1}{(n-r)!} \sum_{w \in S_n} w \left(x^\lambda \prod_{i=1}^r \prod_{j=i+1}^n \frac{x_i \oplus x_j}{x_t} \right) \left(\prod_{r+1 \leq i < j \leq n} x_i \ominus x_j \right). \ (4.7)$$

We can rewrite this as

$$GP_\lambda = \lim_{n \to \infty} \sum_{w \in S_{n-r}} w \left(x^\lambda \prod_{i=1}^r \prod_{j=i+1}^n \frac{x_i \oplus x_j}{x_t} \right) \left(\prod_{r+1 \leq i < j \leq n} x_i \ominus x_j \right) \ (4.8)$$

where S_{n-r} acts on the variables $x_{r+1}, x_{r+2}, \ldots, x_n$. Lemma 4.7 implies that

$$1 = \sum_{w \in S_{n-r}} w \left(\prod_{r+1 \leq i < j \leq n} x_i \ominus x_j \right) \text{ since the left side is } \delta_{1 \times w_{n-r}}^{(\beta)} 1_{r \times w_{n-r}} = 1.$$

Multiplying the right side of (4.8) by this expression gives

$$GP_\lambda = \lim_{n \to \infty} \sum_{w \in S_n} w \left(\prod_{1 \leq i < j \leq n} x_i \ominus x_j \cdot x^\delta \prod_{i=1}^r \prod_{j=i+1}^n \frac{x_i \oplus x_j}{x_t} \right) \ (4.9)$$

which is equivalent to the desired formula by Lemmas 4.7 and 4.8.

4.4 Grassmannian formulas

We are ready to state the main new results of this section. Fix $z \in I_\infty^{\mathbb{F}_2}$. The *symplectic code* of z is the sequence of integers

$$\epsilon^{s_p}(z) = (c_1, c_2, \ldots), \text{ where } c_i := |\{ j \in \mathbb{P} : z(i) > z(j) < i < j \}|.$$

The *symplectic shape* $\lambda^{s_p}(z)$ of z is the transpose of the partition sorting $\epsilon^{s_p}(z)$.

For example, if $n \in 2\mathbb{P}$ and $z = n \cdots 321 \in I_\infty^{\mathbb{F}_2}$ then

$$D^{s_p}(z) = \{(i, j) \in \mathbb{P} \times \mathbb{P} : j < i \leq n - j \},$$

$$c^{s_p}(z) = (0, 1, 2, \ldots, \frac{n}{2} - 1, \frac{n}{2} - 1, \ldots, 2, 1, 0, 0, \ldots),$$

$$\lambda^{s_p}(z) = (n - 2, n - 4, n - 6, \ldots, 2).$$
Proposition 4.14. Suppose \(n \) visible descent \(\lambda \in I_{\infty} \) for some integers \(1 \leq x \leq \infty \) where \(x \). This means that \(y(i) = i \) if \(z(i) = i \pm 1 \). In the sequel, we set \(\text{dearc}(z) = y \).

The operation \(\text{dearc} \) is easy to understand in terms of the arc diagram \(\{ \{ i, z(i) \} : i \in \mathbb{P} \} \) of \(z \in I_{\infty}^{\text{FFP}} \). The arc diagram of \(\text{dearc}(z) \) is formed from that of \(z \) by deleting each edge \(\{ i < j \} \) with \(e < z(e) \) for all \(i < e < j \).

Recall that \(i \) is a visible descent of \(z \in I_{\infty}^{\text{FFP}} \) if \(z(i + 1) < \min \{ i, z(i) \} \).

Definition 4.12 ([2, §4]). An element \(z \in I_{\infty}^{\text{FFP}} \) is \(\text{FFP-Grassmannian} \) if

\[
\text{dearc}(z) = (\phi_1, n + 1)(\phi_2, n + 2) \cdots (\phi_r, n + r)
\]

for a sequence of integers \(1 \leq \phi_1 < \phi_2 < \cdots < \phi_r \leq n \). In this case, one has

\[
\lambda^{\text{Sp}}(z) = (n - \phi_1, n - \phi_2, \ldots, n - \phi_r)
\]

by [2, Lemma 4.16], and \(n \) is the last visible descent of \(z \).

We allow \(r = 0 \) in this definition; this corresponds to the FPF-Grassmannian involution \(\Theta \in I_{\infty}^{\text{FFP}} \) with \(\text{dearc}(\Theta) = 1 \). For a given strict partition \(\lambda \) with \(r < n \) parts, there is exactly one FPF-Grassmannian involution \(z \in I_{\infty}^{\text{FFP}} \) with shape \(\lambda^{\text{Sp}}(z) = \lambda \) and last visible descent \(n \).

Example 4.13. The involution \(z = 47816523 = (1, 4)(2, 7)(3, 8)(5, 6) \in I_{\infty}^{\text{FFP}} \) is FPF-Grassmannian with \(\text{dearc}(z) = (2, 7)(3, 8) \) and \(\lambda^{\text{Sp}}(z) = (4, 3) \).

Define \(\pi_{a}^{(b)} := \pi_{b-1}^{(b)} \pi_{b-2}^{(b)} \cdots \pi_{a}^{(b)} \) for \(0 < a \leq b \), with \(\pi_{i}^{(b)} \) given by [1, 3].

Proposition 4.14. Suppose \(z \in I_{\infty}^{\text{FFP}} - \{ \Theta \} \) is FPF-Grassmannian with last visible descent \(n \) and shape \(\lambda^{\text{Sp}}(z) = (n - \phi_1, n - \phi_2, \ldots, n - \phi_r) \), so that

\[
\text{dearc}(z) = (\phi_1, n + 1)(\phi_2, n + 2) \cdots (\phi_r, n + r)
\]

for some integers \(1 \leq \phi_1 < \phi_2 < \cdots < \phi_r \leq n \). Then

\[
\Theta_{\text{Sp}_{z}} = \pi_{\phi_1}^{(\beta)} \pi_{\phi_2}^{(\beta)} \cdots \pi_{\phi_r}^{(\beta)} \left(x^{\lambda^{\text{Sp}}(z)} \prod_{i=1}^{n} \prod_{j=i+1}^{n} \frac{x_{i} \oplus x_{j}}{x_{i}} \right)
\]

where \(x_{i} \oplus x_{j} := x_{i} + x_{j} + \beta x_{i}x_{j} \).

We need two lemmas to prove this proposition.

Lemma 4.15. If \(a \leq b \) then \(\phi_{b-a}^{(b)} (x_{a}^{e}) = (-\beta)^{b-a-e} \) for \(e \in \{0, 1, 2, \ldots, b - a\} \).
Proof. Since $\partial_t^{(3)}(1) = -\beta$, it is enough to check that $\partial_{b \setminus a}^{(3)}(x_{a}^{b-a}) = 1$. As

$$\partial_a^{(3)}(x_{a}^{b-a}) = -\beta x_{a}^{b-a} + (1 + \beta x_a) \partial_a(x_{a}^{b-a})$$

we have $\partial_{b \setminus a}^{(3)}(x_{a}^{b-a}) = (-\beta x_a)^{b-a} + (1 + \beta x_a) \partial_{b \setminus (a+1)}^{(3)}(\partial_a x_{a}^{b-a})$. By induction

$$\partial_{b \setminus (a+1)}^{(3)}(\partial_a x_{a}^{b-a}) = \partial_{b \setminus (a+1)}^{(3)} \left(\sum_{i=0}^{b-a-1} x_a^{i} x_{a+1}^{b-a-1-i} \right) = \sum_{i=0}^{b-a-1} (-\beta x_a)^i$$

so the lemma follows.

Lemma 4.16. If $a \leq b$ and $s_i f = f$ for $a < i < b$, then $\pi^{(3)}_{b \setminus a}(f) = \partial_{b \setminus a}^{(3)}(x_{a}^{b-a} f)$. Proof. Assume $a < b$. It holds by induction that

$$\pi^{(3)}_{b \setminus a}(f) = \pi^{(3)}_{b \setminus (a+1)}(\pi^{(3)}_a f) = \partial_{b \setminus (a+1)}^{(3)} \left(\sum_{i=0}^{b-a-1} \pi^{(3)}_a \cdot \partial_{b \setminus (a+1)}^{(3)}(f) \right).$$

Since $\partial_a^{(3)}(x_{a}^{b-a} f) = x_{a+1}^{b-a-1} \left(\pi^{(3)}_a f + \beta x_a f \right) + x_a f \cdot \partial_a^{(3)}(x_{a}^{b-a-1})$, we have

$$\pi^{(3)}_{b \setminus a}(f) = \partial_{b \setminus (a+1)}^{(3)}(x_{a}^{b-a} f) - x_a f \left(\beta \cdot \partial_{b \setminus (a+1)}^{(3)}(x_{a+1}^{b-a-1}) + \partial_{b \setminus (a+1)}^{(3)}(x_{a}^{b-a-1}) \right).$$

From here, it suffices to show that $\beta \cdot \partial_{b \setminus (a+1)}^{(3)}(x_{a+1}^{b-a-1}) + \partial_{b \setminus (a+1)}^{(3)}(x_{a}^{b-a-1}) = 0$ and this is immediate from Lemma 4.15.

Proof of Proposition 4.14. Setting $\beta = 0$ recovers Lemma 4.18; the proof for generic β is similar. Let $\Psi_{n,r}(x) = \prod_{i=1}^{n} \prod_{i=1}^{r} x_i \otimes x_{x_i}$. Then $x^{\lambda^{\psi}(z)} \Psi_{n,r}(x)$ is symmetric in $x_{r+1}, x_{r+2}, \ldots, x_n$. For any $j \in [r]$, the expression

$$\theta_j := \pi^{(3)}_{\phi_j \setminus \lambda} \pi^{(3)}_{\phi_j \setminus \lambda}(j+1) \cdots \pi^{(3)}_{\phi_r \setminus \lambda} \left(x^{\lambda^{\psi}(z)} \Psi_{n,r}(x) \right)$$

is symmetric in $x_j, x_{j+1}, \ldots, x_{\phi_j}$ since if $i \in \{j, j+1, \ldots, \phi_j - 1\}$ then either $i = \phi_j - 1$ and $\pi_{\phi_j}^{(3)} \theta_j = \theta_j$ or $i < \phi_j - 1$ and

$$\pi_{\phi_j}^{(3)} \theta_j = \pi_{\phi_j}^{(3)} \pi_{\phi_j \setminus \lambda}^{(3)} \theta_j = \pi_{\phi_j \setminus \lambda}^{(3)} \pi_{\phi_{j+1}}^{(3)} \pi_{\phi_j \setminus \lambda} \theta_j = \pi_{\phi_j \setminus \lambda}^{(3)} \theta_{j+1} = \theta_j$$

by the braid relations for $\pi_{\phi_j}^{(3)}$ and induction. Using Theorem 2.3 we can rewrite

$$x^{\lambda^{\psi}(z)} \Psi_{n,r}(x) = x_1^{1-\phi_1} x_2^{2-\phi_2} \cdots x_r^{r-\phi_r} \prod_{i=1}^{r} \prod_{i=1}^{n} x_i \otimes x_{x_i}$$

where $w \in F_{\infty}^{PF}$ is the Sp-dominant involution satisfying $d_{\text{arc}}(w) = (1, n+1)(2, n+2) \cdots (r, n+r)$. Hence by Lemma 4.16 we have

$$\pi_{\phi_1 \setminus \lambda}^{(3)} \pi_{\phi_2 \setminus \lambda}^{(3)} \cdots \pi_{\phi_r \setminus \lambda}^{(3)} \left(x^{\lambda^{\psi}(z)} \Psi_{n,r}(x) \right) = \partial_{\phi_1 \setminus \lambda}^{(3)} \partial_{\phi_2 \setminus \lambda}^{(3)} \cdots \partial_{\phi_r \setminus \lambda}^{(3)} \left(\Psi_{w}^{\psi} \right).$$

It is straightforward from Theorem-Definition 2.3 to show that this is Ψ_{w}^{ψ}. □
We can now prove the obvious identity suggested by the notation \(GP^\text{Sp}_{\infty}\):

Theorem 4.17. If \(z \in I^\text{FPF}_{\infty}\) is FPF-Grassmannian then \(GP^\text{Sp}_z = GP^\text{Sp}_{\lambda^z(x)}\).

Proof. Assume \(z \in I^\text{FPF}_{\infty}\) is as in Proposition 4.14 Then

\[
\pi_{\mu}^{(\beta)} \ast^\text{Sp} = \pi_{\mu}^{(\beta)} \cdot \pi_{\mu}^{(\beta)} \cdot \cdots \cdot \pi_{\mu}^{(\beta)} (x^\lambda y^z (x) \Psi_{n,r}(x)) = \pi_{\mu}^{(\beta)} (x^\lambda y^z (x) \Psi_{n,r}(x))
\]

so \(GP^\text{Sp}_z = \lim_{n \to \infty} \pi_{\mu}^{(\beta)} \ast^\text{Sp} = GP^\text{Sp}_{\lambda^z(x)}\) by Corollary 4.10 and Proposition 4.11 \(\square\)

Let \(P_{\text{strict}}\) denote the set of strict partitions.

Corollary 4.18. If \(\lambda \in P_{\text{strict}}\) then \(GP^\text{Sp}_\lambda \in \mathbb{N}[\beta]\)-span \(\{G_\mu : \mu \in P\}\).

Proof. If \(\lambda \in P_{\text{strict}}\) then there is an FPF-Grassmannian \(z \in I^\text{FPF}_{\infty}\) with \(\lambda^z(x) = \lambda\), and [20, Corollary 4.7] shows that \(GP^\text{Sp}_z \in \mathbb{N}[\beta]\)-span \(\{G_\mu : w \in S_z\}\). The corollary therefore follows from Theorems 4.4 and 4.17 \(\square\)

There is a “stable” version of the transition equation for \(\ast^\text{Sp}\). Let \(S_Z\) denote the group of permutations of \(Z\) with finite support. Write \(\Theta_Z\) for the permutation of \(Z\) with \(i \mapsto i - (-1)^i\) and let

\[
I^\text{FPF}_Z = \{w \cdot \Theta_Z \cdot w^{-1} : w \in S_Z\}.
\]

Define \(\ell^\text{FPF}(z)\) for \(z \in I^\text{FPF}_{\infty}\) by modifying the formula 4.12 to count pairs \((i, j) \in Z \times Z\) then \(\ell^\text{FPF}(\Theta_Z) = 0\) and 4.13 still holds. We again write \(y \ll z\) for \(y, z \in I^\text{FPF}_Z\) if \(\ell^\text{FPF}(z) = \ell^\text{FPF}(y) + 1\) and \(z = t y z\) for a transposition \(t \in S_Z\).

Identify \(I^\text{FPF}_{\infty}\) with the subset of \(z \in I^\text{FPF}_Z\) with \(z(i) = \Theta_Z(i)\) for all \(i \leq 0\). Let \(\sigma : Z \to Z\) be the map \(i \mapsto i + 2\). Conjugation by \(\sigma\) preserves \(I^\text{FPF}_Z\), and every \(z \in I^\text{FPF}_Z\) has \(\sigma^n z \sigma^{-n} \in I^\text{FPF}_{\infty}\) for all sufficiently large \(n \in \mathbb{N}\). We define

\[
GP^\text{Sp}_z := \lim_{n \to \infty} GP^\text{Sp}_{\sigma^n z \sigma^{-n}} \quad \text{for} \quad z \in I^\text{FPF}_{\infty}.
\]

Also let \(GP^\text{Sp}_{u_{ij}} := GP^\text{Sp}_{(i)z(i,j)}\) for \(i < j\) and extend by linearity. In this context, \(u_{ij}\) is a formal symbolic operator, not a well-defined linear map.

Corollary 4.19. Fix \(v \in I^\text{FPF}_Z\) and \(j, k \in Z\) with \(v(k) = j < k = v(l)\). Suppose

\[
i_1 < i_2 < \cdots < i_p < j < k < l_q < \cdots < l_2 < l_1
\]

are the integers such that \(v \ll (i, j) v(i, l)\) and \(v \ll (k, l) v(k, l)\). Then

\[
GP^\text{Sp}_v (1 + \beta u_{i_1,j}) \cdots (1 + \beta u_{i_p,j}) = GP^\text{Sp}_v (1 + \beta u_{k_1,l}) \cdots (1 + \beta u_{k_q,l}).
\]

Proof. Define \(\text{Asc}^{-}(v, j, k) = \{i_1, i_2, \ldots, i_p\}\) and \(\text{Asc}^{+}(v, j, k) = \{l_1, l_2, \ldots, l_q\}\). If \(m \in \mathbb{N}\) is sufficiently large then \(\text{Asc}^{\pm}(\Theta^{2m} v, 2m + j, 2m + k) = 2m + \text{Asc}^{\pm}(v, j, k)\), so we obtain this result by taking the limit of Theorem 3.8 \(\square\)

The preceding corollary is a \(K\)-theoretic generalization of [9, Theorem 3.6]. The latter result has an “orthogonal” variant given by [8, Theorem 3.2].

21
Corollary 4.20. Let \(k \in \mathbb{P} \) be the last visible descent of \(z \in \mathcal{I}_{\infty}^{\text{FPF}} \). Define \(v \in \mathcal{I}_{\infty}^{\text{FPF}} \) as in Corollary 3.11 and let \(I = \{ i_1 < i_2 < \cdots < i_p \} \) be the (possibly nonpositive) integers with \(i < j := v(k) \) and \(v \leq_F (i, j) v(i, j) \). Then

\[
GP_{\mathcal{I}_{\infty}^{\text{FPF}}} z = \sum_{\emptyset \neq A \subset I} \beta^{|A| - 1} GP^\mathcal{P}_{v} u_{A_j}
\]

where if \(A = \{ a_1 < a_2 < \cdots < a_q \} \subset I \) then \(u_{A_j} := u_{a_1} u_{a_2} \cdots u_{a_q} \).

Proof. The proof is the same as for Corollary 3.11 now using Corollary 4.19.

This gives a positive recurrence for \(GP_{\mathcal{I}_{\infty}^{\text{FPF}}} z \). We expect that one could use this recurrence and the inductive strategy in [1, 9, 16] to prove the following theorem. However, a direct bijective proof is already available in [19]:

Theorem 4.21 ([19 Theorem 1.9]). If \(z \in \mathcal{I}_{\infty}^{\text{FPF}} \) then

\[
GP_{\mathcal{I}_{\infty}^{\text{FPF}}} z \in \mathbb{N}[\beta]-\text{span}\{GP_{\lambda} : \lambda \in \mathcal{P}_{\text{strict}} \}.
\]

Combining Theorems 4.17 and 4.21 gives this corollary:

Corollary 4.22. If \(z \in \mathcal{I}_{\infty}^{\text{FPF}} \) then

\[
GP_{\mathcal{I}_{\infty}^{\text{FPF}}} z \in \mathbb{N}[\beta]-\text{span}\{GP_{\mathcal{I}_{\infty}^{\text{FPF}}} y : y \in \mathcal{I}_{\infty}^{\text{FPF}} \text{ is FPF-Grassmannian} \}.
\]

References

[1] S. Billey, Transition equations for isotropic flag manifolds, *Discrete Math.* \textbf{193} (1998), 69–84.

[2] A. S. Buch, A Littlewood-Richardson rule for the \(K \)-theory of Grassmannians, *Acta Math.* \textbf{189} (2002), no. 1, 37–78.

[3] A. S. Buch, A. Kresch, M. Shimozono, H. Tamvakis, and A. Yong, Stable Grothendieck polynomials and \(K \)-theoretic factor sequences, *Math. Ann.* \textbf{340} (2) (2008), 359–382.

[4] S. Fomin and A. Kirillov, Grothendieck polynomials and the Yang-Baxter equation, Proceedings of the Sixth Conference in Formal Power Series and Algebraic Combinatorics, DIMACS (1994), 183–190.

[5] Z. Hamaker, A. Keilthy, R. Patrias, L. Webster, Y. Zhang, and S. Zhou, Shifted Hecke insertion and the \(K \)-theory of \(OG(n, 2n + 1) \), *J. Combin. Theory Ser. A* \textbf{151} (2017), 207–240.

[6] Z. Hamaker, E. Marberg, and B. Pawlowski, Involution words: counting problems and connections to Schubert calculus for symmetric orbit closures, *J. Combin. Theory Ser. A* \textbf{160} (2018), 217–260.
[7] Z. Hamaker, E. Marberg, and B. Pawlowski, Transition formulas for involution Schubert polynomials, *Selecta Math.*, 24 (2018), 2991–3025.

[8] Z. Hamaker, E. Marberg, and B. Pawlowski, Schur P-positivity and involution Stanley symmetric functions, *IMRN* (2017), rnx274.

[9] Z. Hamaker, E. Marberg, and B. Pawlowski, Fixed-point-free involutions and Schur P-positivity, *J. Combinatorics*, to appear.

[10] T. Ikeda and H. Naruse, K-theoretic analogues of factorial Schur P- and Q-functions, *Adv. Math.*, 243 (2013), 22–66.

[11] A. Knutson and E. Miller, Gröbner geometry of Schubert polynomials, *Annals of Math.*, 161 (2005), 1245–1318.

[12] T. Lam and M. Shimozono, A Little bijection for affine Stanley symmetric functions, *Sém. Lothar. Combin.*, 54A (2006), B54Ai.

[13] A. Lascoux, Anneau de Grothendieck de la variété de drapeaux, in: The Grothendieck Festschrift, Vol. III, Progress on Mathematics, Birkhäuser, Boston, 1990, pp. 134.

[14] A. Lascoux, Transition on Grothendieck polynomials, A. Kirillov, N. Liskova (Eds.), Proceedings of Nagoya Workshop on Physics and Combinatorics (2000), World Scientific, Singapore, 2001, pp. 164–179.

[15] A. Lascoux and M.-P. Schützenberger, Symmetry and flag manifolds, in: Invariant Theory, *Lecture Notes in Math.*, 996 (1983), 118–144.

[16] A. Lascoux and M.-P. Schützenberger, Schubert polynomials and the Littlewood-Richardson rule, *Lett. Math. Phys.*, 10 (1985), no. 2, 111–124.

[17] C. Lenart, A K-theory version of Monk’s formula and some related multiplication formulas, *Journal of Pure and Applied Algebra*, 179 (2003), 137–158.

[18] L. Manivel, *Symmetric Functions, Schubert Polynomials, and Degeneracy Loci*, American Mathematical Society, 2001.

[19] E. Marberg, A symplectic refinement of shifted Hecke insertion, preprint (2019), *arXiv*:1901.06771.

[20] E. Marberg and B. Pawlowski, K-theory formulas for orthogonal and symplectic orbit closures, preprint (2019), *arXiv*:1906.00907

[21] E. Marberg and Y. Zhang, Affine transitions for involution Stanley symmetric functions, preprint (2018), *arXiv*:1812.04880.

[22] R. Patrias and P. Pylyavskyy, Combinatorics of K-theory via a K-theoretic Poirier-Reutenauer bialgebra, *Discrete Math.*, 339 (3) (2016), 1095–1115.

[23] B. J. Wyser and A. Yong, Polynomials for symmetric orbit closures in the flag variety, *Transform. Groups*, 22 (2017), 267–290.