Original Research Article

Low serum vitamin D associated with prediabetes

Recep Ayhan¹, Betül Çavuşoğlu Türker², Süleyman Ahbab², Fatih Türker³, Hayriye Esra Ataoğlu²

¹Van Bağcıl State Hospital, Internal Medicine Clinic, Van, Turkey
²University of Health Sciences, Haseki Health Training and Research Hospital, Internal Medicine Clinic, Istanbul, Turkey
³Arnavutköy State Hospital, Internal Medicine Clinic, İstanbul, Turkey

Received: 22 June 2018
Revised: 26 July 2018
Accepted: 27 July 2018

*Correspondence:
Dr. Betül Çavuşoğlu Türker,
E-mail: cavusoglutabetul@hotmail.com

ABSTRACT

Background: This study is performed to evaluate vitamin D levels and metabolic parameters in patients with prediabetes, compared to healthy controls.

Methods: This study was conducted between October and December 2013 in Istanbul Haseki Training and Research Hospital, internal medicine department. We enrolled total 247 individuals, 122 prediabetic (PreDM) patients (79 female, 43 male) and 125 control healthy individuals (94 female, 31 male) between 20-65 ages who admitted randomly to the outpatient clinic with non specific complaints. FPG, urea, creatinine, calcium, phosphate, albumin, alkaline phosphatase, thyroid stimulant hormon (TSH), 25 hydroxy vitamin D (25[OH]D), parathormon (PTH), c-peptide, insulin were analyzed.

Results: Pre DM patients’ mean plasma 25[OH]D level (25.7±14.9 nmol/l) was statistically lower than the control group (31.4±17.8 nmol/l). Pre DM patients’ mean plasma insulin, c-peptide, calcium, PTH, HOMA-IR (10.8±8.7 IU/ml, 3.3±2.0 ng/ml, 9.7±0.4 mg/dl, 56.5±22.5 pg/ml, 3.0±2.68, respectively) levels were statistically higher than the control group’s (6.3±3.8 IU/ml, 2.4±1.0 ng/ml, 9.5±0.5 mg/dl, 44.0±16.0 pg/ml, 1.4±0.8, respectively) mean levels. There were negative correlations between 25[OH]D and BMI (r: -0.13, p=0.03), FBG (r: -0.14, p=0.02) and plasma insulin (r:-0.16, p:0.01) values. A multivariate logistic regression model for prediabetes was performed and variables as female gender, age, HOMA-IR and lower 25[OH]D values were risk factors for pre DM.

Conclusions: Serum low 25[OH]D level correlated with insulin resistance and metabolic parameters in prediabetic patients. Also, it may play an important role in the development of type 2 diabetes.

Keywords: Serum 25[OH] vitamin D, Prediabetes, Metabolic syndrome

INTRODUCTION

Prediabetes is the important predisposition to the development of type 2 diabetes mellitus. It is associated with increased cardiovascular risk and mortality. Prevention of prediabetes is important for protection from microvascular and macrovascular complications. According to Turkey Diabetes, Hypertension, Obesity and Endocrinological Diseases Prevalence Study (TURDEP-II) data, the incidence of prediabetes in Turkish adult population has reached 30.4%.¹ The incidence of prediabetes increases because of obesity, physical inactivity and metabolic syndrome. Up to 70% of prediabetic patients will develop diabetes mellitus in time.² Impaired fasting glucose (IFG) defined as fasting glucose levels between 100 and 125 mg/dl and impaired
glucose tolerance (IGT) as 2nd hour plasma glucose after 75 grams OGTT levels between 140 and 199 mg/dl. Vitamin D deficiency can increase the risk of developing prediabetes, osteopenia, osteoporosis, cancer, hypertension, dementia and metabolic syndrome. Moreover, vitamin D is a risk factor for progression from prediabetes to diabetes. There are several hypothesis for vitamin D in pancreatic beta-cell function and regulation of insulin secretion. Regulation of insulin secretion by vitamin D is associated with calcium concentration because vitamin D effects indirectly regulation of calcium flux through the beta cells. Vitamin D stimulates the expression of insulin receptors and provides insulin sensitivity. Vitamin D deficiency can cause to glucose intolerance, decrease insulin secretion via inflammation. There is a strict relationship between serum vitamin D concentrations, diabetes and metabolic syndrome. The aim of this study was to evaluate vitamin D levels and metabolic parameters in patients with prediabetes, compared to healthy controls.

METHODS

Study participants

This study was conducted between October and December 2013 in Istanbul Haseki Training and Research Hospital, internal medicine department. We enrolled total 247 individuals, 122 prediabetic (PreDM) patients (79 female, 43 male) and 125 control healthy individuals (94 female, 31 male) between 20-65 ages who admitted randomly to the outpatient clinic with non specific complaints. Informed consent of patients and hospital’s local ethics committee approval were provided before the study. The American Diabetes Association (ADA) criteria for impaired fasting glucose were used to define PreDM as a fasting plasma glucose (FPG) level between 100 and 125 mg/dl. Individuals who had a chronic disease, infection, malabsorption, pregnants, drug addicts and smokers were excluded.

Anthropometric and laboratory measurements

Anthropometric measurements such as height (m), weight (kg), waist circumference (cm) were measured. Weight was measured with light clothing and without shoes. Waist circumference (WC) was measured between the lowest rib and the crista iliaca superior. Body mass index (BMI) was calculated as weight (kg) divided by height (m²). Systolic and diastolic blood pressure was measured twice with a mercury sphygmomanometer from the right arm of patients in a sitting position after 5 minutes of rest and average value was calculated. Blood sample parameters were analyzed after a 8 hours fasting in the morning for all participants. FPG, urea, creatinine, calcium, phosphite, albumin, alkaline phosphatase were measured by using Beckman Coulter AU-2700 analyzer, UK. Thyroid stimulan hormon (TSH), 25 hydroxy vitamin D (25(OH)D), parathormon (PTH), c-peptide, insulin were measured by using Beckman Coulter Dxi 800 analyzer, UK. Serum 25(OH)D levels were classified as: >75 nmol/l vitamin D sufficiency; 50–75 nmol/l vitamin D insufficiency and <50 nmol/l vitamin D deficiency. Within the deficiency category serum levels of 25(OH)D were further classified as; 25-49 nmol/l deficiency, <25 nmol/l severe deficiency. The homeostasis model assessment for insulin resistance (HOMA-IR) was calculated with the following formula; fasting blood glucose (mg/dl) × fasting insulin (mU/ml)/405.

Statistical analysis

Statistical analysis was carried out by using SPSS for Windows version 17.0. Results were expressed as mean ± standard deviation. Kolmogorov Smirnov Z test was performed to determine the distribution of variables for each patients group. Regular variances were assessed with t test and irregulars with Mann-Whitney U test. The Pearson and the Spearman tests were performed to analyze the correlation between variables. Chi square test was used to evaluate categorical variables. A p value <0.05 was statistically significant.

RESULTS

Participants were divided into four groups according to 25(OH)D and displayed a significant decrease in plasma 25(OH)D values (Table 1).

25 hydroxy vitamin D levels	Patient groups	Patient groups	Total
Patient groups	Control		
Prediabetics (n)	71	52	123
Severe deficiency (<25 nmol/L)	43	53	96
Deficiency (25-49 nmol/L)			
Insufficiency (50-74 nmol/L)	7	13	20
Sufficiency (>75 nmol/L)	1	2	3
Total	122	125	247

Age was higher in prediabetic patients. Systolic and diastolic blood pressure, WC, BMI mean values were statistical significant increased in PreDM group according to controls, (Table 2). PreDM patients’ mean plasma 25(OH)D level (25.7±14.9 nmol/l) was statistically lower than the control group (31.4±17.8 nmol/l). PreDM patients’ mean plasma insulin, c-peptide, calcium, PTH, HOMA-IR (respectively;10.8±8.7 IU/ml, 3.3±2.0 ng/ml, 9.7±0.4 mg/dl, 56.5±22.5 pg/ml, 3.0±2.68) levels were statistically higher than the control group’s (6.3±3.8 IU/ml, 2.4±1.0 ng/ml, 9.5±0.5 mg/dl, 44.0±16.0 pg/ml, 1.4±0.8, respectively) mean levels, (Table 3). Insulin, HOMA-IR, c-peptide and PTH levels
significantly elevated in female and male patients with PreDM (Table 4 and 5). There were negative correlations between 25[OH]D and BMI (r: 0.13, p: 0.03), FBG (r: 0.14, p: 0.02) and plasma insulin (r: 0.16, p: 0.01) values (Table 6). A multivariate logistic regression model for prediabetes was performed and variables as female gender, age, HOMA-IR and lower serum 25[OH]D were risk factors for PreDM (Table 7).

Table 2: Comparison of age, anthropometric and blood pressure measurements to each groups.

Parameters	Groups	Mean value	Std. deviation	P value
Age (years)	Control	33.3	8.0	<0.001
	Prediabetics	39.9	8.8	
SBP (mmHg)	Control	106.0	6.4	<0.001
	Prediabetics	123.8	12.4	
DBP (mmHg)	Control	67.2	6.2	<0.001
	Prediabetics	76.8	9.5	
WC (cm)	Control	82.0	10.2	<0.001
	Prediabetics	95.5	10.7	
BMI	Control	24.4	4.1	<0.001
	Prediabetics	30.3	5.5	

(SBP: systolic blood pressure, DBP: diastolic blood pressure, WC: waist circumference, BMI: body mass index, Std: standard)

Table 3: Comparison of the laboratory parameters between each groups.

Parameters	Groups	Mean	Std. deviation	P value
FBG (mg/dl)	Control	87.26	7.60	<0.001
	Prediabetics	109.01	6.93	
Urea (mg/dl)	Control	24.93	7.33	0.058
	Prediabetics	26.69	6.95	
Creatinine (mg/dl)	Control	0.63	0.13	0.01
	Prediabetics	0.68	0.17	
25[OH]D (nmol/l)	Control	31.46	17.80	0.007
	Prediabetics	25.72	14.98	
insulin (IU/ml)	Control	6.31	3.58	<0.001
	Prediabetics	10.85	8.76	
C-peptide (ng/ml)	Control	2.45	1.04	<0.001
	Prediabetics	3.32	2.06	
Calcium (mg/dl)	Control	9.51	0.55	0.02
	Prediabetics	9.79	0.48	
Albumin (g/dl)	Control	4.41	0.32	0.38
	Prediabetics	4.33	0.30	
Phosphate (mg/dl)	Control	3.46	0.64	0.69
	Prediabetics	3.50	0.51	
ALP (mg/dl)	Control	67.34	20.87	<0.001
	Prediabetics	80.29	28.60	
PTH (pg/ml)	Control	44.05	16.03	0.001
	Prediabetics	56.52	22.58	
HOMA-IR	Control	1.47	0.82	<0.001
	Prediabetics	3.02	2.68	
TSH (mIU/L)	Control	1.69	0.87	0.26
	Prediabetics	1.85	1.33	

(Std: Standard, FBG: fasting blood glucose, 25[OH]D: 25 hydroxy vitamin D, ALP: alkaline phosphatase, PTH: parathormon, HOMA-IR: homeostasis model assessment for insulin resistance, TSH: thyroid stimulating hormon).

Table 4: Comparison of parameters of female participants.

Parameters	Groups	Mean	Std. deviation	P value
FBG (mg/dl)	Control	87.69	7.25	<0.001
	Prediabetics	107.96	6.26	
Urea (mg/dl)	Control	23.22	6.68	0.36
	Prediabetics	24.56	6.27	
Table 5: Comparison of parameters of male participants.

Parameters	Groups	Mean	Std. deviation	P value
Creatinine (mg/dl)	Control	0.58	0.09	0.42
	Prediabetics	0.58	0.10	
25(OH)D (nmol/l)	Control	28.34	16.07	0.002
	Prediabetics	21.28	13.36	
İnsulin (IU/ml)	Control	6.23	3.04	<0.001
	Prediabetics	10.96	7.78	
C-peptide (ng/ml)	Control	2.40	0.91	<0.001
	Prediabetics	3.11	1.32	
Calcium (mg/dl)	Control	9.54	0.53	0.17
	Prediabetics	9.66	0.42	
Albumin (g/dl)	Control	4.48	0.35	0.07
	Prediabetics	4.35	0.30	
Phosphate (mg/dl)	Control	3.42	0.51	0.45
	Prediabetics	3.52	0.54	
ALP (mg/dl)	Control	64.06	20.48	<0.001
	Prediabetics	81.24	32.31	
PTH (pg/ml)	Control	45.13	16.63	<0.001
	Prediabetics	59.30	21.15	
Homa-IR	Control	1.34	0.75	<0.001
	Prediabetics	3.09	2.36	
TSH (mIU/L)	Control	1.70	0.87	0.06
	Prediabetics	1.91	1.29	

(Sd: Standard, FBG: fasting blood glucose, 25(OH)D: 25 hydroxy vitamin D, ALP: alkaline phosphatase, PTH: parathormon, HOMA-IR: homeostasis model assessment for insulin resistance, TSH: thyroid stimulating hormon)
Table 6: Correlation between 25(OH)D and age with metabolic variables for all patients.

25(OH)D	Age	BMI	WC	FBG	c-peptide	Insulin	
	r	P					
25(OH)D	-0.091	0.154	-0.135	0.022	-0.149	-0.120	-0.162

Table 7: A multivariate logistic regression analysis for prediabetes with associated risk factors for all patients.

Gender (female)	P value	OR	95% CI
Age	0.0001	1.10	1.06 – 1.15
HOMA-IR	0.0001	3.51	2.26 – 5.45
25(OH)D	0.008	0.97	0.94 – 0.99

(OR: odds ratio, 95% CI: confidence interval, HOMA-IR: homeostasis model assessment for insulin resistance, 25(OH)D: 25 hydroxy vitamin D).

DISCUSSION

The frequency of diabetes mellitus increases rapidly due to industrial life and nutrition. Prediabetes is the predisposition to the development of type 2 diabetes mellitus. Recent studies have shown a relationship between vitamin D deficiency and development of type 2 diabetes mellitus (DM). Lower serum vitamin D levels may play role in the pathogenesis of prediabetes. Its protective effects perform through the immunological system and calcium metabolism. PTH levels were statistically higher in prediabetic patients and parathormone increases as negative feedback to low vitamin D level. Lower serum vitamin D levels effect glucose homeostasis and parathyroid hormone concentrations in patients with prediabetes. In this study, serum 25-OH vitamin D levels were sufficient in 5 patients (20.05), insufficient in 20 patients (8.2), deficient in 96 patients (39.36), severe deficient in 123 patients (50.43). Plasma PTH, HOMA-IR, systolic and diastolic blood pressure, waist circumference and BMI values were statistically higher in PreDM patients compared to control group. There was an increase in the presence of metabolic parameters in patients with prediabetes. Gupta et al, suggested that 25(OH)D levels were lower in prediabetic patients and affected by age, sex and BMI. There were negative correlations between serum 25(OH)D level and BMI and fasting blood glucose in the study. Moreover, low serum 25(OH)D level was strictly correlated with elevated insulin level (r: 0.162, p: 0.012). The risk of insulin resistance was increased in patients with vitamin D deficiency. Forouhar et al demonstrated that there is negative correlation between insulin resistance and 25(OH)D level. In prediabetic patients, pancreatic early phase insulin release is impaired, together with increased serum insulin levels. This situation accelerates the development of insulin resistance and overt diabetes in prediabetic patients. In our study, the risk of developing insulin resistance in prediabetic subjects was found to be 3.5-fold increased. Female gender, age and 25(OH)D level were another additional risks for prediabetes.

REFERENCES

1. Satman I, Omer B, Tutuncu Y, Kalaca S, Gedik S, Dinccag N, et al. Study Group twelve year trends in the prevalence and risk factors of diabetes and prediabetes in Turkish adults. Eur J Epidemiol. 2013;28(2):169-80.
2. Tabak AG, Herder C, Rathmann W, Brunner EJ, Kivimäki M. Prediabetes: A high-risk state for diabetes development. Lancet. 2012;379:2279–90.
3. Abbasi F, Blasey C, Feldman D, Caulfield MP, Hantash FM, Reaven GM. Low circulating 25-hydroxyvitamin D concentrations are associated with defects in insulin action and insulin secretion in persons with prediabetes. J Nutr. 2015;145(4):714–9.
4. Mansuri S, Badawi A, Kayaniyil S, Cole DE, Harris SB, Mamakeesick M, et al. Associations of circulating 25 (OH) D with cardiometabolic disorders underlying type 2 diabetes mellitus in an Aboriginal Canadian community. Diabetes Res Clin Pract. 2015;109(2):440–9.
5. Carlsson M, Wanby P, Brudin L, Lexne E, Mathold K, Nobin R, et al. Older Swedish adults with high self-perceived health show optimal 25-hydroxyvitamin D levels whereas vitamin D status is low in patients with high disease burden. Nutrients. 2016;8(11):717.
6. Lim S, Kim MJ, Choi SH, Shin CS, Park KS, Jang HC, et al. Association of vitamin D deficiency with

CONCLUSION

Increase in serum vitamin D levels enhances the progression of prediabetes affecting insulin resistance. Low 25(OH)D levels might have contributed to the incidence of prediabetes.

Funding: No funding sources
Conflict of interest: None declared
Ethical approval: The study was approved by the Institutional Ethics Committee
incidence of type 2 diabetes in high-risk Asian subjects. Am J Clin Nutr. 2013;97:524–30.
7. Sergeev IN, Rhoten WB. 1,25-Dihydroxyvitamin D3 evokes oscillations of intracellular calcium in a pancreatic beta-cell line. Endocrinol. 1995;136(7):2852-61.
8. Gupta, AK, Brashear MM, Johnson WD. Prediabetes and prehypertension in healthy adults are associated with low vitamin D levels. Diabetes Care. 2011;34(3):658-60.
9. Joergensen C, Gall MA, Schmedes A, Tarnow L, Parving HH, Rossing P. Vitamin D levels and mortality in type 2 diabetes. Diabetes Care. 2010;33:2238-43.
10. Ford ES, Ajani UA, McGuire LC, Liu S. Concentrations of serum vitamin D and the metabolic syndrome among U.S. adults. Diabetes Care. 2005;28:1228-30
11. Maestro B, Dávila N, Carranza MC, Calle C. Identification of a Vitamin D response element in the human insulinreceptor gene promoter. J Steroid Biochem Mol Biol. 2003;84(2-3):223-30.
12. Zhang M, Gao Y, Tian L, Zheng L, Wang X, Liu W, et al. Association of serum 25-hydroxyvitamin D3 with adipokines and inflammatory marker in persons with prediabetes mellitus. Clin Chim Acta. 2017;468:152-8.
13. Karras SN, Anagnostis P, Antonopoulou V, Tsekmekidou X, Koufakis T, Goulias DG, et al. The combined effect of vitamin D and parathyroid hormone concentrations on glucose homeostasis in older patients with prediabetes: A cross-sectional study. Diab Vasc Dis Res. 2018;15(2):150-3.
14. Gandhe MB, Jain K, Gandhe SM. Evaluation of 25 (OH) vitamin D with reference to magnesium status and insulin resistance in T2DM. J Clin Diagn Res. 2013;7(11):2438-41.
15. Gupta AK, Brashear MM, Johnson WD. Low vitamin D levels, prediabetes and prehypertension in healthy African American adults. Nutr Metab Cardiovascul Dis. 2012;22(10):877-82.
16. Forouhi NG, Luan JE, Cooper A, Boucher BJ, Wareham NJ. Baseline serum 25-hydroxy vitamin D in the future glycemic status and insulin resistance medical research council ely prospective study 1990-2000. Diabetes. 2008;57(10):2619-25.
17. Khetan AK, Rajagopalan S. Prediabetes. Can J Cardiol. 2018;34(5):615-23.
18. Mitri J, Muraru MD, Pittas AG. Vitamin D and type 2 diabetes: a systematic review. Europ J Clin Nutr. 2011;65:1005–15.
19. Kim CH, Kim HK, Kim EH, Bae SJ, Choe J, Park JY. Longitudinal Changes in Insulin Resistance, Beta-Cell Function and Glucose Regulation Status in Prediabetes. Am J Med Sci. 2018;355(1):54-60.