Boundary Manifolds of Line Arrangements

Eriko Hironaka *

March 19, 2022

Abstract

In this paper we describe the complement of real line arrangements in the complex plane in terms of the boundary three-manifold of the line arrangement. We show that the boundary manifold of any line arrangement is a graph manifold with Seifert fibered vertex manifolds, and depends only on the incidence graph of the arrangement. When the line arrangement is defined over the real numbers, we show that the homotopy type of the complement is determined by the incidence graph together with orderings on the edges emanating from each vertex.

1 Introduction

Let \mathcal{L} be a finite union of lines in the complex plane \mathbb{C}^2. Two line arrangements \mathcal{L}_1 and \mathcal{L}_2 are said to be topologically equivalent if there is a homeomorphism of pairs

$$(\mathbb{C}^2, \mathcal{L}_1) \rightarrow (\mathbb{C}^2, \mathcal{L}_2).$$

The incidence graph $\Gamma_{\mathcal{L}}$ associated to \mathcal{L} is the bipartite graph with line-vertices corresponding to the set of lines \mathcal{A} in \mathcal{L}, point-vertices corresponding to the set of points of intersection \mathcal{P} on \mathcal{L} and edges $e(p, L)$ and $e(L, p)$ whenever $p \in L$. A morphism between incidence graphs is a morphism of graphs preserving the vertex labelings, so that line-vertices go to line-vertices and point-vertices go to point-vertices. Two line arrangements \mathcal{L}_1 and \mathcal{L}_2 are said to be combinatorially equivalent if there is an isomorphism of incidence matrices $\Gamma_{\mathcal{L}_1} \rightarrow \Gamma_{\mathcal{L}_2}$.

Our motivation is to understand, given a line arrangement \mathcal{L} in the complex plane \mathbb{C}^2, to what extent the topology of the pair $(\mathbb{C}^2, \mathcal{L})$ is determined by the combinatorics of \mathcal{L}. It is known that the cohomology of the complement $E_\mathcal{L} = \mathbb{C}^2 \setminus \mathcal{L}$ only depends on the incidence graph $\Gamma_\mathcal{L}$ [D-T], [G-M], while the homotopy type and fundamental group of $E_\mathcal{L}$ depend on more information [Ryb].

In this paper, we describe the homotopy type of the complement $E_\mathcal{L}$, when \mathcal{L} is defined over the real numbers, in terms of the boundary 3-manifold $M_\mathcal{L}$ of a regular neighborhood

*Research partially supported by N.S.E.R.C. grant OGP0170260
of \mathcal{L} in \mathbb{C}^2. We do this by describing $M_\mathcal{L}$ and $E_\mathcal{L}$ in terms of a graph of manifolds over the incidence graph $\Gamma_\mathcal{L}$.

Let $\Gamma = \{V, E\}$ be a directed graph, with vertices V and edges E. Assume that for each oriented edge $e \in E$ its opposite \overline{e} is also contained in E. Denote by $i(e)$ the initial point of e and $t(e)$ the terminal point of e. Thus, $i(e) = t(\overline{e})$ and $t(e) = i(\overline{e})$. A graph manifold $\{M_v, M_e, \phi_e\}$ over a directed graph Γ is a collection of connected vertex manifolds M_v, for $v \in V$, connected edge manifolds M_e, with $M_e = M_{\overline{e}}$, for $e \in E$, and inclusions $\phi_e : M_e \to M_{t(e)}$ which are isomorphisms onto a boundary component of $M_{t(e)}$, and which induce endomorphisms on fundamental groups (cf. [Wal]). A morphism of graph manifolds over a given graph Γ is a collection of continuous maps between corresponding vertex and edge manifolds which commute with the maps ϕ_e. The manifold associated to a graph manifold is the space obtained by gluing the M_v together along their boundary components according to the maps ϕ_e.

Theorem 1 If \mathcal{L} is a complex line arrangement, and $M_\mathcal{L}$ is the boundary 3-manifold of \mathcal{L}, then $M_\mathcal{L}$ has the structure of a graph manifold over $\Gamma_\mathcal{L}$ whose vertex manifolds are Seifert fibered 3-manifolds. Furthermore, if \mathcal{L}_1 and \mathcal{L}_2 are two line arrangements and

$$\alpha : \Gamma_{\mathcal{L}_1} \to \Gamma_{\mathcal{L}_2},$$

is an isomorphism of incidence graphs, then there is a compatible isomorphism

$$\beta : M_{\mathcal{L}_1} \to M_{\mathcal{L}_2}$$

of graph manifolds.

Any decomposition of a 3-manifold by incompressible surfaces gives rise to a presentation of the manifold as a graph manifold. Let H_d be a thickened d-component oriented Hopf link in S^3, where each pair of component links having linking number 1. Then $S^3 \setminus H_d$ is a 3-manifold with boundary 2-tori and each boundary torus has a natural framing (μ, λ). Theorem 1 is a consequence of the following more explicit description of $M_\mathcal{L}$. The omitted case is treated separately in the beginning of Section 2.

Theorem 2 Let \mathcal{L} be any line arrangement in \mathbb{C}^2 so that each line $L \in \mathcal{A}$ contains at least one point in \mathcal{P}. Then the boundary 3-manifold $M_\mathcal{L}$ has a torus decomposition into pieces

$$M_v = S^3 \setminus H_d,$$

where v ranges over vertices in $\Gamma_\mathcal{L}$. If v is a point-vertex, there is a one-to-one correspondence between the d boundary components of M_v and the edges emanating from v in $\Gamma_\mathcal{L}$. If v is a line-vertex, there is a one-to-one correspondence between $d - 1$ of the d boundary components of M_v and the edges emanating from v in $\Gamma_\mathcal{L}$. Given an edge $e = e(p, L)$, the corresponding boundary components $T_{L,p} \subset M_{v_p}$ and $T_{p,L} \subset M_{v_L}$ are identified by ϕ_e and $\phi_{\overline{e}}$ according to the relation:

$$\mu_{p,L} = \lambda_{L,p},$$

$$\lambda_{p,L} = \mu_{L,p} + \lambda_{L,p},$$

2
where \((\mu_{L,p}, \lambda_{L,p})\) is the induced framing of \(T_{L,p}\) and \((\mu_{p,L}, \lambda_{p,L})\) is the induced framing of \(T_{p,L}\).

Theorem 2, proved in Section 2, implies that the fundamental group of \(M_L\) is torsion free and residually finite \([\text{Ser}],[\text{Hemp}]\) (see Corollary 2.4).

Given two topological space \(X \subset Y\), let \(Y/X\) be the space \(Y\) with \(X\) collapsed to a point. For real line arrangements, the homotopy type of the complement can be described as follows.

Theorem 3 Let \(\mathcal{L}\) be a real line arrangement. Then there is a continuous map

\[f : \Gamma_{\mathcal{L}} \to M_{\mathcal{L}} \]

such that \(f(v) \in M_v\) for all vertices \(v\) of \(\Gamma_{\mathcal{L}}\), and the complement \(E_{\mathcal{L}} = \mathbb{C}^2 \setminus \mathcal{L}\) is homotopy equivalent to \(M_{\mathcal{L}}/f(\Gamma_{\mathcal{L}})\).

The map \(f\) of Theorem 3 depends on the ordered incidence graph \(\tilde{\Gamma}_{\mathcal{L}}\) of \(\mathcal{L}\), the incidence graph \(\Gamma_{\mathcal{L}}\) together with an ordering of the edges emanating from each vertex. (An ordered graph is similar to a fat graph \([\text{Pen}]\).) A morphism of ordered incidence graphs is a morphism of incidence graphs which preserves orderings of edges. Let \(\mathcal{L}\) be a line arrangement defined over the real numbers. We construct a model for the homotopy type of \(E_{\mathcal{L}}\) which only depends on the ordered graph \(\tilde{\Gamma}_{\mathcal{L}}\) associated to \(\mathcal{L}\) and is simple to describe (cf. \([\text{Falk}],[\text{Lib}],[\text{O-T}],[\text{Ran}],[\text{Sal}]\)).

Theorem 4 Let \(\mathcal{L}\) be a real line arrangement. Choose basepoints \(b_v \in M_v\) for each vertex \(v\) of \(\Gamma_{\mathcal{L}}\). For each edge \(e\) in \(\Gamma_{\mathcal{L}}\), let \(\tau_e\) be a path on \(M_{v(e)} \cup M_{i(e)}\) from \(b_{v(e)}\) to \(b_{i(e)}\) which intersects \(M_e\) in one point. Identify \(\Gamma_{\mathcal{L}}\) with its associated singular 1-complex. Then there is a continuous mapping

\[f : \Gamma_{\mathcal{L}} \to M_{\mathcal{L}} \]

satisfying the following conditions:

(i) \(f(v) = b_v\) for all vertices \(v\) of \(V\);

(ii) if \(p_1, \ldots, p_s\) are the ordered points on \(L \cap P\), \(e = e(L,p)\), and \(p = p_j\), then

\[
 f(e) = \begin{cases}
 \tau_e & \text{if } j = 1, 2 \\
 g_{L,p_2} \cdots g_{L,p_{j-1}} \tau_e & \text{if } j > 2,
 \end{cases}
\]

where \(L_1, \ldots, L_r\) are the ordered lines through \(p\), and

\[
 g_{L_j,p} = \mu_{L_1,p} \cdots \mu_{L_j,p}^{-1} \mu_{L_{j-1},p}^{-1} \cdots \mu_{L_1,p}^{-1};
\]

(iii) \(f(e) = f(\overline{e})^{-1}\) for all edges \(e\); and

(iv) \(E_{\mathcal{L}}\) is homotopy equivalent to the space \(M_{\mathcal{L}}/f(\Gamma_{\mathcal{L}})\).

Section 3 contains proofs of Theorem 3 and Theorem 4. In Section 4 we show why the construction fails for general complex line arrangements and algebraic plane curves. The author thanks P. Orlik and M. Falk for helpful discussions during the writing of this paper.
2 Boundary manifolds

Let \(\mathcal{L} \) be a line arrangement in the complex plane \(\mathbb{C}^2 \), let \(\mathcal{A} \) be the set of lines in \(\mathcal{L} \) and let \(\mathcal{P} \) be the points of intersection on \(\mathcal{L} \). In this section we describe the boundary manifold of \(\mathcal{L} \) in terms of the incidence graph \(\Gamma_\mathcal{L} \).

Case of disconnected incidence graph. Consider the case when \(\mathcal{L} \) consists of \(k \) non-intersecting lines. This is the only case where \(\Gamma_\mathcal{L} \) is not a connected graph and is a finite union of vertices, one for each line in \(\mathcal{A} \). The boundary 3-manifold \(M_\mathcal{L} \) is then a disjoint union of \(k \) solid tori. The complement \(E_\mathcal{L} \) is equal to the product \(\mathbb{C} \setminus \{k \text{ points}\} \times \mathbb{C} \).

Thus, \(M_\mathcal{L} / f(\Gamma_\mathcal{L}) \) is homotopy equivalent to \(E_\mathcal{L} \) for any map \(f : \Gamma_\mathcal{L} \to M_\mathcal{L} \) which sends each \(v_L \) to a point on the line \(L \).

Throughout this paper, unless otherwise stated we will assume that \(\mathcal{P} \) is non-empty and therefore \(\Gamma_\mathcal{L} \) is connected.

Incidence graph. The \((\text{point/line}) \text{ incidence graph} \) \(\Gamma_\mathcal{L} \) of \(\mathcal{L} \) is a bipartite graph with

- **point-vertices** \(v_p, \ p \in \mathcal{P} \)
- **line-vertices** \(v_L, \ L \in \mathcal{A} \).

The edges of \(\Gamma_\mathcal{L} \) are of the form

\[e(p, L) \text{ or } e(L, p), \quad p \in \mathcal{P}, L \in \mathcal{A}, \text{ and } p \in L. \]

The graph \(\Gamma_\mathcal{L} \) is a directed graph. The **initial point** of \(e = e(p, L) \) is defined to be \(i(e) = v_p \) and the **terminal point** is defined to be \(t(e) = v_L \). Similarly, if \(e = e(L, p) \), then \(i(e) = v_L \) and \(t(e) = v_p \). We say that \(e(L, p) \) and \(e(p, L) \) are **conjugates** of each other and write \(e(L, p) = e(p, L) \).

We will also think of \(\Gamma_\mathcal{L} \) as a singular 1-complex whose zero cells map to the vertices and whose one cells map to the edges so that \(e \) and \(\overline{e} \) are identified but with opposite orientations. The endpoints of each edge \(e \) are attached to \(i(e) \) and \(t(e) \) in the obvious way.

Graph manifold. Let \(\Gamma = \{\mathcal{V}, \mathcal{E}\} \) be a directed graph such that for each edge \(e \in \mathcal{E} \), there is a conjugate edge \(\overline{e} \in \mathcal{E} \) so that \(i(e) = t(\overline{e}) \) and \(t(e) = i(\overline{e}) \). A **graph manifold** \(\mathcal{M} \) over \(\Gamma \) is a collection \((\{M_v\}, \{M_e\}, \{\phi_e\}) \) where

(i) \(M_v \) is a connected manifold with boundary for all \(v \in \mathcal{V} \);
(ii) \(M_e \) is a connected compact manifold without boundary for all \(e \in \mathcal{E} \);
(iii) \(M_e = M_{\overline{e}} \) for all \(e \in \mathcal{E} \);
(iv) \[\phi_e : M_e \to M_{t(e)} \]

is an embedding of \(M_e \) onto a boundary component of \(M_{t(e)} \);

(v) the map \(\phi_e \) induces an endomorphism \[\phi_{e*} : \pi_1(M_e) \to \pi_1(M_{t(e)}) \]
on fundamental groups.

The underlying space \(M \) associated to a graph manifold \(\mathcal{M} \) is defined to be the space obtained by gluing together the vertex manifolds \(M_v \) along their boundary components so that \(\phi_e(M_e) \) is identified with \(\phi_e(M_{t(e)}) \) by \(\phi_e(q) = \phi_e(q) \) for all \(q \in M_e \). Any connect sum of manifolds glued along incompressible boundary components can be thought of as a graph of manifolds.

Graphs of groups. As with graph complexes, one can talk about the graph of groups associated to a graph manifold. A graph of groups \(\mathcal{G} \) over a directed graph \(\Gamma \) is a collection of groups \(G_v \) for each vertex \(v \in V \), groups \(G_e = G_{e'} \) for each edge \(e \in E \), and group endomorphisms \[\psi_e : G_e \to G_{t(e)}. \]
The collection of fundamental groups of the vertex and edge manifolds of a graph of manifolds is a graph of groups. The underlying group of a graph of groups is obtained from the vertex and edges groups by a combination of amalgamated products and HNN extensions. If \(\mathcal{G} \) is the graph of groups associated to a graph of manifolds \(\mathcal{M} \) then the underlying group of \(\mathcal{G} \) is the fundamental group of the underlying manifold \(M \) of \(\mathcal{M} \).

Regular neighborhood. Consider \(\mathbb{C}^2 \) as a metric space with the usual distance function \[d((x_1, y_1), (x_2, y_2)) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}. \]

Let \(\epsilon > 0 \) be such that \(d(p, L) > 2\epsilon \) for all pairs \((p, L) \in \mathcal{P} \times \mathcal{A} \) such that \(p \notin L \).

For each \(p \in \mathcal{P} \), let \(N_p \) be the ball of radius \(\epsilon \) around \(p \) in \(\mathbb{C}^2 \) and let \(S_p \) be the boundary of \(N_p \). Then \(N_p \) is a Milnor ball around \(p \) and the pair \((N_p, N_p \cap L)\) is a cone over \((S_p, S_p \cap L)\) (see [Mil]). Note that \(L \cap N_p \neq \emptyset \) if and only if \(p \in L \). Let \[\delta_p = \min\{d(L_1 \cap S_p, L_2 \cap S_p)\} \]
where the minimum is taken over \(L_1, L_2 \in \mathcal{A} \) and \(p \in L_1 \cap L_2 \). Take \(\delta > 0 \) such that \(\delta_p > 2\delta \) for all \(p \in \mathcal{P} \). For each line \(L \in \mathcal{A} \), let \[N_L = \{q \in \mathbb{C}^2 : d(q, L) \leq \delta\}. \]

By choosing \(\delta \) smaller if necessary, we can assume that for each edge \(e(p, L) \) in \(\Gamma_L \), \(N_L \) meets \(S_p \) transversally. Let \[N_L = \bigcup_{p \in \mathcal{P}} N_p \cup \bigcup_{L \in \mathcal{A}} N_L. \]
We call N_L a regular neighborhood of L in \mathbb{C}^2.

Boundary manifold. Consider the projective compactification \mathbb{P}^2 of \mathbb{C}^2 and let L_∞ be the line at infinity, so that $\mathbb{P}^2 = \mathbb{C}^2 \cup L_\infty$. Let Q be a point on L_∞ not on the projective closure \overline{L} of L. Let $\overline{\mathbb{P}}^2$ be the projective closure of L for all $L \in \mathcal{L}$.

For each $L \in \mathcal{A}$, let B_L be the closure of N_L in \mathbb{P}^2. Then B_L is a closed tubular neighborhood of \overline{L} in \mathbb{P}^2. Let B_∞ be a closed tubular neighborhood of L_∞ not containing any element of \mathcal{P}. Let S_L, S_∞ be the boundaries of B_L and B_∞, respectively.

The boundary M_L of N_L has a deformation retraction onto $M_L \setminus B_\infty$. Hereafter, for simplicity, we will replace M_L by $M_L \setminus B_\infty$.

For each $p \in \mathcal{P}$, note that

$$\bigcup_{L \in \mathcal{A}} N_L$$

intersects S_p transversally in disjoint 2-tori. Set

$$M_p = S_p \setminus \bigcup_{L \in \mathcal{A}} N_L.$$

For each $L \in \mathcal{A}$, let

$$M_L = S_L \setminus (B_\infty \cup \bigcup_{p \in \mathcal{P}} N_p).$$

Then M_L is a connect sum of the M_p and M_L.

By our construction we have the following.

Lemma 2.1 The submanifolds M_p and M_L in M_L intersect in a boundary component if and only if $e(p, L)$ is an edge in Γ_L, and this intersection is a 2-dimensional torus.

Recall that a Hopf fibration $h : S^3 \to S^2$ is an oriented circle bundle such that the fibers have intersection number 1. Given any d points Q in S^2, the preimage $h^{-1}(Q)$ is called a d-component Hopf link (see Figure 1). The pair $(S^3, h^{-1}(Q))$ does not depend on which d points are chosen. Let H_d be a thickening of $h^{-1}(Q)$.

![Figure 1. 3-component Hopf link.](image)

Lemma 2.2 For each $p \in \mathcal{P}$ there is a natural identification of the pair (S_p, M_p) with $(S^3, S^3 \setminus H_d)$, where d is the degree of v_p. For each $L \in \mathcal{A}$, there is a natural identification of the pair (S_L, M_L) with the pair $(S^3, S^3 \setminus H_{d+1})$, where d is the degree of v_L.

6
Proof. We begin with M_p. Identify S_p with the 3-sphere S^3 and L_∞ with S^2. Then the pencil of lines through p determines a projection $\rho : S_p \to L_\infty$ giving a commutative diagram

$$
\begin{array}{c}
S_p & \xrightarrow{=} & S^3 \\
\downarrow \rho & & \downarrow h \\
L_\infty & \xrightarrow{=} & S^2
\end{array}
$$

where h is the standard Hopf fibration.

![Diagram](image.png)

Figure 2. Neighborhood of a point $p \in \mathcal{P}$.

Let $L_1, \ldots, L_d \subset \mathcal{L}$ be the lines passing through p. Under the identification of S_p with S^3, M_p is identified with the complement in S^3 of

$$
h^{-1}(\bigcup_{i=1}^d D_i),
$$

where each D_i is a small disk around the point in S^2 corresponding to $\overline{L_i} \cap L_\infty$. We thus have a natural identification of the pair (S_p, M_p) with $(S^3, S^3 \setminus H_d)$.

Describing M_L is for the most part the dual picture to the above. Let S_L be the boundary of a tubular neighborhood of \overline{P}. Let B_Q be a ball neighborhood of Q in \mathbb{P}^2 and let S_Q be its boundary 3-sphere. Then S_L and S_Q are canonically identified as 3-spheres fibering over a 2-sphere. The pencil of lines through Q defines a commutative diagram

$$
\begin{array}{c}
S_Q & \xrightarrow{=} & S^3 \\
\downarrow \rho & & \downarrow h \\
\overline{P} & \xrightarrow{=} & S^2
\end{array}
$$

where again h is the standard Hopf fibration. Under the identification of S_Q with S_L, B_∞ equals $h^{-1}(D_\infty)$ where D_∞ is a small disk neighborhood of $\overline{P} \cap L_\infty$.

Let $p_1, \ldots, p_d \in \mathcal{P}$ be the points in \mathcal{P} which lie on L. Then the identification of S_L with
Figure 3. Neighborhood of a line $L \in \mathcal{A}$.

S_Q gives an identification of M_L with

$$S_Q \setminus h^{-1}(D_\infty \cup \bigcup_{i=1}^{d} D_i),$$

where each D_i is a small disk neighborhood of p_i in \overline{L}. This identifies (S_L, M_L) with $(S^3, S^3 \setminus H_{d+1})$.

Lemma 2.1 and Lemma 2.2 imply the following.

Proposition 2.3 For any line arrangement \mathcal{L}, $M_\mathcal{L}$ is a Haken 3-manifold with a torus decomposition into Seifert fibered manifolds. This torus decomposition gives $M_\mathcal{L}$ the structure of a graph manifold over $\Gamma_{\mathcal{L}}$.

Proof. We only need to check when the torus boundary components of $S^3 \setminus H_d$ are incompressible. This is true as long as $d > 1$, which holds unless \mathcal{L} is a union of parallel lines.

Corollary 2.4 The fundamental group $\pi_1(M_\mathcal{L})$ is torsion free and residually finite.

Proof. The fundamental group of $\pi_1(M_\mathcal{L})$ is a graph of groups whose vertex groups are $\pi_1(S^3 \setminus H_d) = \mathbb{Z} \times F_d$, where F_d is a free group on $d - 1$ generators, and are torsion free. It follows that $\pi_1(M_\mathcal{L})$ is also torsion free (see, for example, Section 1.3, Corollary 2 and Section 1.4, Proposition 5 of [Ser]).

Since $M_\mathcal{L}$ is a 3-manifold with a torus decomposition along incompressible tori into Seifert fibered pieces, by [Hemp], Theorem 1.1, the fundamental is residually finite.
The gluing maps.

Let T be a 2-dimensional torus. A framing (μ, λ) on T is a choice of generators for its fundamental group $\pi_1(T)$.

As stated in Proposition 2.3, the edge manifolds of M_L considered as a graph manifold are all 2-dimensional tori, so they are isomorphic to T. To prove Theorem 2, we need to describe the gluing maps

$$\phi_e : T \to M_p$$

and

$$\phi_{\pi} : T \to M_L$$

for each edge $e = e(p, L)$ on the graph Γ_L.

By Lemma 2.2, the vertex manifolds M_p and M_L are naturally identified with $E_d = S^3 \setminus H_d$ for some integer $d \geq 2$. Furthermore, the complex structure on M_p and M_L determines an orientation on the core loops of H_d. The oriented pair (S^3, H_d) determines a framing on the boundary components of E_d and hence on the boundary components of M_p and M_L.

Let T be a boundary component of E_d and let ℓ be its core curve in S^3. The framing (μ, λ) on T is given as follows. Choose a basepoint x on T. The loop μ is a positively oriented meridian loop around the core curve based at x. If one considers T as an S^1-bundle over ℓ, then μ is a loop going once in the positive direction around the fiber of the bundle. The loop λ is a loop based at x “parallel” to the core curve. That is, it is a positively oriented loop whose linking number with the core curve is zero. These definitions uniquely determine μ and λ up to homotopy.

Let $p \in P$, $L \in A$ be such that $p \in L$. We will write $T_{L,p}$ for the boundary component on M_p corresponding to L, and $T_{p,L}$ for the boundary component on M_L corresponding to p. Let $(\mu_{L,p}, \lambda_{L,p})$ be the framing on $T_{L,p}$ and $(\mu_{p,L}, \lambda_{p,L})$ be the framing on $T_{p,L}$.

To describe ϕ_e up to homotopy, it suffices to describe what it does to the framings.

Lemma 2.5 Let $e = e(L, p)$ be an edge of Γ_L. If we identify T with $T_{L,p}$ by the map

$$\phi_e : T \to T_{L,p} \subset M_p$$

$$\phi_e(\mu) = \mu_{L,p}$$

$$\phi_e(\lambda) = \lambda_{L,p},$$

then

$$\phi_{\pi} : T \to T_{p,L} \subset M_L$$

$$\phi_{\pi}(\mu) = \mu_{p,L} + \lambda_{p,L}$$

$$\phi_{\pi}(\lambda) = \mu_{p,L},$$

gives the gluing map for the graph manifold M_L.

Proof. We will study how S_L and S_p meet by changing coordinates so that L is given by the equation $y = 0$, the point p is the origin, $p = (0, 0)$. Then S_L and S_p are given by

$$S_L = \{(x, y) \in \mathbb{C}^2 : |y| = 1\},$$

and

$$S_p = \{(x, y) \in \mathbb{C}^2 : |x| \leq 1, |y| = 1\} \cup \{(x, y) \in \mathbb{C}^2 : |x| = 1, |y| \leq 1\} = T_1 \cup T_2$$

as shown in Figure 4. Then $S_L \cap S_p = T$, where T is the 2-torus

$$T = \{(x, y) \in \mathbb{C}^2 : |x| = 1, |y| = 1\}$$

and is the common boundary of T_1 and T_2.

As before let $T_{L,p}$ be the boundary component of S_p corresponding to L and $T_{p,L}$ be the boundary component of S_L corresponding to p. Since the components of the Hopf link are all unknots, the framing on the link boundary components is given as follows. Each link component has a solid torus neighborhood N in S^3. The complement of N is also a solid torus N^c. The framing on the boundary of N is given by (μ, λ) where μ contracts in N and λ contracts in N^c.

Thus, $T_{L,p}$ has the framing

$$\mu_{L,p} = (1, \exp(2\pi it))$$
$$\lambda_{L,p} = (\exp(2\pi it), 1)$$

and $T_{p,L}$ has the framing

$$\mu_{p,L} = (\exp(2\pi it), 1)$$
$$\lambda_{p,L} = (\exp(2\pi it), \exp(2\pi it)).$$

This implies $\mu_{p,L} = \lambda_{L,p}$ and $\lambda_{p,L} = \mu_{L,p} + \lambda_{L,p}$, as illustrated in Figure 5.
Proof of Theorem 2.
We have shown that $M_\mathcal{L}$ is a graph manifold whose vertex manifolds are $S^3 \setminus H_d$, where d is the degree of the vertex if the vertex is a point-vertex and $d-1$ is the degree of the vertex if the vertex is a line-vertex. The identifications of the edge manifolds with the boundary components of the vertex manifolds can be described in terms of the natural framings on the boundary components of $S^3 \setminus H_d$ by the edge maps described in Lemma 2.5. This completes the proof of Theorem 2.

3 Real line arrangements

In this section, we concentrate on real line arrangements, and will assume that \mathcal{L} is defined by equations of the form

$$y = a_i x + b_i, \quad i = 1, \ldots, k,$$

where $a_i, b_i \in \mathbb{R}$. We will show how to reconstruct the homotopy type of the complement of \mathcal{L} in terms of the ordered graph of \mathcal{L}.

Ordered graphs.

The ordered graph associated to \mathcal{L} is the incidence graph $\Gamma_\mathcal{L}$ together with some extra structure. For real line arrangements, we will order the edges emanating from each vertex of the incidence graph $\Gamma_\mathcal{L}$ as follows. If v_p is the point-vertex associated to the point $p \in \mathcal{P}$, then we order the edges $e(p, L_1), \ldots, e(p, L_r)$ emanating from p by the slopes of L_1, \ldots, L_r in decreasing order. If v_L is the line-vertex associated to the line $L \in \mathcal{A}$, we order the edges $e(L, p_1), \ldots, e(L, p_s)$ emanating from v_L by the x-coordinates of p_1, \ldots, p_s in decreasing order. Since we assume that none of the lines are parallel to the y-axis, this is well-defined. The incidence graph $\Gamma_\mathcal{L}$ of \mathcal{L} endowed with these orderings on the edges emanating from vertices is called the ordered graph associated to \mathcal{L}. For example, Figure 6 gives the ordered graph of the Ceva arrangement.
The global ordering of the points in P by their x-coordinate and the lines in A by their slope determines the ordered graph. The orderings near v_{L_1} and v_{p_5} are given are given in Figure 6.

The skeleton of a line arrangement.

Let M_L be the boundary manifold of L and let

$$\alpha : M_L \to L$$

be the natural projection map, well-defined up to homotopy. Let Σ_L be the real part of L with all infinite ends removed. We will call Σ_L the skeleton of L. Figure 7 gives the skeleton of the Ceva arrangement.

![Skeleton of the Ceva arrangement](image)

Figure 7. Skeleton associated to the Ceva arrangement.

We start by describing the homotopy type of E_L in terms of M_L and Σ_L.

Lemma 3.1 There is an embedding

$$g : \Sigma_L \to M_L$$

so that
(i) $\alpha \circ g$ is the identity map;
(ii) the image of g contracts in E_L; and
(iii) $E_L = M_L/g(\Sigma_L)$.

Proof. The embedding g is given as follows. If $(x, y) \in N_p$, for some $p = (x_p, y_p) \in P$, then

$$g(x, y) = (x, y + i \max\{ \sqrt{\epsilon^2 - (y - y_p)^2}, \delta \}),$$

otherwise

$$g(x, y) = (x, y + i\delta).$$

The image $g(\Sigma_L)$ contracts in E_L, since in E_L it is isotopic to $\Sigma_L + (0, i\epsilon) \subset \mathbb{R}^2 + (0, i\epsilon)$. No point $(x, y + i\epsilon) \in \mathbb{R}^2 + (0, i\epsilon)$ satisfies an equation of the form

$$y = ax + b$$

where a and b are real numbers. Thus, $\mathbb{R}^2 + (0, i\epsilon)$ is contained in E_L. Since $\mathbb{R}^2 + (0, i\epsilon)$ is contractable, we see that $g(\Sigma_L)$ is also contractable.

Now let us consider the projection of $\rho : \mathbb{C}^2 \to \mathbb{C}$ onto the first coordinate. Let ρ_L be the restriction of ρ to E_L. Then ρ_L is a topological fibration over the complement of $Q = \rho(P)$.

![Figure 8. Contraction of the x-coordinate plane to V_Q.](image)

For each $q \in Q$ let

$$D_q = \{ x \in \mathbb{C} : |x - q| \leq 1 \}$$

and let S_q be the boundary of D_q. Assume (by expanding coordinates if necessary) that the S_q do not intersect one another. Let W_Q be the union of the S_q and real line segments joining the S_q, and let V_Q be the union of W_Q and the D_Q as in Figure 8.

The deformation retraction of \mathbb{C} onto V_Q extends to a deformation retraction of E_L onto $\rho_L^{-1}(V_Q)$.

The fibers of ρ_L over V_Q split up into 3 types: those over the line segments in W_Q; those over S_q; and those over the q. These retract to the outlined and shaded regions shown in Figure 8 which we will write as F_x, for $x \in I$, F_s, for $s \in S$ and F_q, respectively.

We reconstruct the homotopy type of E_L from this picture as follows. First notice that the space $\rho^{-1}|_{M_L}(D_q)$ has a deformation retraction to

$$F_{D_q} = D_q \times F_q \cup \bigcup_{s \in S_q} F_s.$$
Under this retraction $g(\Sigma_L)$ maps to the right most points of the circles in F_s, F_x and F_q union the line segments depicted on F_{s_1} and F_{s_2}. The union of the right-most points of the circles on F_s as s ranges in S_q bounds a 2-disk

$$\{p + (0,iy) : |y| \leq \epsilon\} = D_q \times \{p + (0,i\epsilon)\}$$

in the deformation of $\rho^{-1}_L(D_q)$. Thus, if we include all right-most points of circles in the fibers over F_x, F_s, and F_q, union the line segments on F_{s_1} and F_{s_2}, we obtain a set G which retracts onto $g(\Sigma_L)$ in E_L.

Proof of Theorem 4.

The existence of a map $f : \Gamma_L \to M_L$ with property (iii) of Theorem 4 follows from Lemma 3.1, since Γ_L can be continuously deformed to Σ_L. One can see this by noting that the figures in Figure II are homotopy equivalent.

We will explicitly describe the homotopy type of a map $f : \Gamma_L \to M_L$ satisfying the conditions of Theorem 4 in terms of the ordered graph.

We begin by defining a map $\sigma : \Gamma_L \to \Sigma_L$. For the point-vertices, we simply send v_p to the point p on Σ_L. For the line vertices, there is no canonical choice.

Let $L \in A$. If $\deg(v_L) = 1$, then let $\sigma(v_L) = p$ where $p = P \cap L$. Otherwise, let p_1, p_2, \ldots, p_r be the points in $P \cap L$. Choose a point on the line segment on Σ_L strictly between p_1 and p_2 and map v_L to this point.
For the edges of Γ_L, once we have determined where the vertices go, the edges map to the unique straight line segment on Σ_L connecting the endpoints. This defines a continuous map $\sigma : \Gamma_L \to \Sigma_L$. The composition $f = g \circ \sigma$ gives a map satisfying properties (i),(iii) and (iv) of Theorem 4.

For each vertex v on Γ, let $z_v = f(v)$. (We will write $z_p = z_{v_p}$ and $z_L = z_{v_L}$.) To describe the homotopy type of the map f, it suffices to describe the homotopy type of $f(e)$ for each edge e in Γ. The path $\sigma(e)$ breaks up into segments each passing over one point $p \in P$. Let $I_{L,p}$ be a straight line segment on $\Sigma_L \cap L$ such that $I_{L,p} \cap P = p$. We will describe the homotopy type of $g(I_{L,p})$.

First fix L. Consider the path γ_L on the complex plane shown in Figure 11. Here $Q = \{q_1, \ldots, q_s\} = \rho(P \cap L)$. The projection map ρ is one-to-one when restricted to L. Since $\rho^{-1}(\gamma_L) \cap L$ is contained in L_0, $b_L = \rho^{-1}(\gamma_L) \cap L$ defines a contractable subset of L_0. Let $h : \gamma_L \to M_L$ be defined by

$$h(x,y) = \rho|_{L}^{-1}(x,y) + (0, \delta i),$$

for each $(x,y) \in \gamma_L$. Then $h(\gamma_L)$ defines a contractible subset of M_L. We can assume that the image contains the basepoint z_L.

Figure 10. Incidence graph and skeleton.

Figure 11. Path γ_L lifting to L_0.

Figure 12. Generators for M_p.

15
Now fix \(p \in L \cap \mathcal{P} \). Let \(q = \rho(p) \) and let \(J_p \) be the arc segment of \(\gamma_L \) near \(q \). For each fiber \(F_s \) over points \(s \in J_p \), \(h(J_p) \cap F \) is the rightmost point in the circle (see Figure 13) on \(F \) corresponding to \(L \cap F \). As noted in the proof of Lemma 3.1, the path \(g(I_p) \) is isotopic to the path whose intersection with each fiber \(F_s \) over an interior point \(s \) of \(J_p \) is the right-most point of the large circle and whose intersection with the fibers \(F_{s_1} \) and \(F_{s_2} \) is a path from the right-most point of the large circle to the right-most point of the inner circle associated to \(L \) (see Figure fig:fibers). The large disk in the fiber \(F_s \) over \(s \in J_p \) rotates in the counter-clockwise direction by 180 degrees as \(s \) moves from right to left on \(J_p \), as illustrated in Figure 13.

Note that the basepoint \(z_p \) for \(M_p \) is the right-most point on the large circle on \(F_{s_1} \) and that \(b_L \cap F_s \) is the right-most point on the inner circle corresponding to \(L \) for all \(s \in J_p \).

Let \(\tau_{L,p} \) be the straight line segment from \(b_L \cap F_{s_1} \) to \(z_p \) (see Figure 13).

Let \(\mu_{L_1,p}, \ldots, \mu_{L_r,p} \) be the generators for \(\pi_1(M_p) \) as in Figure 12. Then \(g(I_p)h(J_p)^{-1} \) is homotopy equivalent to the path \(abc \) on \(F_{s_1} \) pictured in Figure 14. In this example \(L_1, L_2, L_3 \) are the lines passing through \(p \) in the order of their slopes and \(L = L_2 \), then \(h(J_p) \) is homotopy equivalent to \(g(I_p)h(J_p)^{-1} = abc = \tau_{L,p}\mu_{L_3,p}^{-1}\mu_{L_2,p}\mu_{L_3,p}\tau_{L,p}^{-1} \).

In the general case, we have the following lemma.

Lemma 3.2 Let \(p \in \mathcal{P} \) and let \(I_p \) be a line segment on \(\Sigma_L \cap L \) such that \(I_p \cap \mathcal{P} = \{ p \} \) and \(p \) lies in the interior of \(I_p \). Let \(L_1, \ldots, L_r \) be an ordering by slope of the lines in \(\mathcal{A} \) passing through \(p \). Let \(j \) be such that \(L_j = L \). Then the homotopy class of the difference \(g(I_p)h(J_p)^{-1} \) on \(M_L \) is given by the element

\[
g_{L,p} = \tau_{L,p}\mu_{L_r,p}^{-1}\mu_{L_{r-1},p}^{-1}\ldots\mu_{L_j,p}\mu_{L_{j+1},p}^{-1}\ldots\mu_{L_r,p}\tau_{L,p}^{-1}.
\]
We now describe the homotopy type of the map
\[f : \Gamma_L \to M_L \]
in terms of the ordered graph \(\Gamma_L \).

Fix \(p \in \mathcal{P} \) and let \(e(p, L_1), \ldots, e(p, L_r) \) be the ordered edges emanating from \(v_p \). For each line \(L \in \mathcal{A} \), let \(e(L, p_1), \ldots, e(L, p_s) \) be the ordered edges emanating from \(v_L \).

For any edge \(e(L, p) \) in \(\Gamma_L \), replace \(\tau_{L,p} \) by the path from \(z_L \in M_L \) to \(z_p \in M_p \) which goes along \(h(\gamma_L) \) and the original \(\tau_{L,p} \). This does not change the homotopy type of \(\tau_{L,p} \).

Note that the choices of \(\tau_{L,p}, z_p, z_L \) define a continuous map \(\ell : \Gamma_L \to M_L \) where \(\ell(v) = z_v \), for vertices \(v \) and \(\ell(e(L, p)) = \tau_{L,p} \) for edges \(e(L, p) \). We will call this map \(\ell \) the lifting of \(\Gamma_L \) in \(M_L \) defined by the collection \(\tau_{L,p} \).

Let \(g_{L,p} \in \pi_1(M_p, z_p) \) be defined as in Lemma 3.2, except that its basepoint is at \(z_L \). We have shown the following.

Lemma 3.3 Let
\[f : \Gamma_L \to M_L \]
be the continuous map on \(\Gamma_L \) considered as a 1-complex defined by the following data:
(i) for the point-vertex \(v_p \), \(f(v_p) = z_p \);
(ii) for the line-vertex \(v_L \), \(f(v_L) = z_L \); and
(iii) for the edge \(e(L, p) \), if \(e(L, p_1), \ldots, e(L, p_s) \) are the ordered edges emanating from \(v_L \), and \(p = p_j \), then
\[f(e(L, p)) = \begin{cases} \tau_{L,p} & \text{if } j = 1, 2; \\ g_{L,p_2} \cdots g_{L,p_{j-1}} \tau_{L,p} & \text{if } j > 2 \end{cases} \]
and \(f(e(p, L)) = f(e(L, p))^{-1} \). Then \(E_L \) is homotopy equivalent to \(M_L / f(\Gamma_L) \).

For each pair \((p_0, L_0) \in \mathcal{P} \times \mathcal{A} \) with \(p_0 \in L_0 \), the element \(g_{L_0, p_0} \) depends on the ordering of the edges \(e(p_0, L) \) emanating from \(v_{p_0} \) and \(f(e(L_0, p_0)) \) depends on the ordering the edges \(e(L_0, p) \) emanating from \(v_{L_0} \). This completes the proof of Theorem 4.

\[\square \]

Fundamental group.

Choose a vertex v of Γ_L. We present the fundamental group $G_L = \pi_1(M_L, f(v))$ in the notation of [Ser] (p. 41). For each edge $e = e(L, p)$ in Γ_L, let $\tau_e = \tau_{L,p}$ and let $\tau_e = \tau_e^{-1}$.

The corresponding lifting of Γ_L into M_L determines a presentation of $\pi_1(M_L)$ as follows.

Any element of G_L can be written as a word

$$\gamma_1 \tau_{e_1} \cdots \gamma_k \tau_{e_k} \gamma_{k+1}$$

satisfying

(i) $t(e_i) = i(e_{i+1})$, for $i = 1, \ldots, k$;

(ii) $t(e_k) = t(e_1) = v$;

(iii) each γ_i is an element of $\pi_1(M_{i(e_i)})$.

The relations on G_L are generated by elements of the form

$$\tau_e \gamma \tau_e (\gamma')^{-1},$$

where $\gamma = \phi_e(\kappa)$ and $\gamma' = \phi_e(\kappa)$ for some $\kappa \in G_e$. A word of the form (1) is said to have length k. The length thus depends on the word and not its equivalence class in G_L.

A word of the form (1) is *reduced* if whenever $e_i = e_{i+1}$, for some $i = 1, \ldots, k - 1$, then $\gamma_{i+1} \notin \phi_{e_i}(\pi_1(M_{e_i}))$.

The following theorem is useful for determining properties of groups which are graphs of groups.

Proposition 3.4 ([Ser], Theorem 11.) A reduced word of the form (1) is trivial if and only if it has length 1 and $\gamma_1 = 1$.

For example, we have the following result.

Corollary 3.5 The map $f : \Gamma_L \to M_L$ induces an endomorphism on fundamental groups.

Proof. Let G_L be the image of

$$f_* : \pi_1(\Gamma_L, v) \to \pi_1(M_L, f(v)).$$

Then G_L consists of elements of the form

$$f(e_1) \cdots f(e_k) = f_*(e_1 \cdots e_k)$$

where $e_1 \cdots e_k$ is a closed loop on Γ_L and $i(e_1) = t(e_k) = v$. Suppose an element of the form (2) is trivial in G_L and $k > 1$. We will show that we can write the same element in the form (2) with smaller k. By Theorem 5, $k \geq 2$ and there is at least one i so that $e_i = \overline{e_{i+1}}$. In this case $e_i e_{i+1} = 1$, so the element can be represented with smaller k.

\[\blacksquare\]
We will now present the fundamental groups of M_L and of E_L purely from the ordered graph Γ_L.

Take any ordered bipartite graph $\tilde{\Gamma}$ with “line” and “point” vertices, such that each directed edge $e(p, L)$ (or $e(L, p)$) joins a point-vertex v_p to a line-vertex v_L (or vice versa.) Choose a vertex v_0 on $\tilde{\Gamma}$. For v, a vertex on $\tilde{\Gamma}$, let $e_v, 1, \ldots, e_v, d$ be the ordering of edges emanating from v. Set

$$G_v = \langle \lambda_v, \mu_{1,v}, \ldots, \mu_{d,v} : \lambda_v \mu_{j,v} = \mu_{j,v} \lambda_v, \quad j = 1, \ldots, d \rangle.$$

(Note that in the previous notation $\lambda_{j,v} = \lambda_v \mu_{j,v},$ for each $j = 1, \ldots, \text{degree}(v)$.) Let T_{Γ} be the collection of closed loops on Γ based at v_0. Then, for any $\tau \in T_{\Gamma}$, $\tau = e_1 \ldots e_r$, where $t(e_j) = i(e_{j+1}),$ for $j = 1, \ldots, r - 1$ and $i(e_1) = t(e_r) = v_0$.

The following is a corollary of Theorem 2.

Corollary 3.6 Let \mathcal{L} be a complex line arrangement. Then $\pi_1(M_L)$ can be presented as follows: each element of $\pi_1(M_L)$ can be written as

$$\gamma_0 e_1 \gamma_1 e_2 \ldots e_s \gamma_s,$$

where $e_1 \ldots e_s \in T_{\Gamma_L}$ and $\gamma_j \in G_{t(e_j)},$ for $j = 1, \ldots, s$, and the relations are generated by

$$\alpha e(p, L) \mu_{k,v_L} e(L, p) \beta = \alpha \lambda_{v_p} \mu_{j,v_p}^{-1} \beta;$$

$$\alpha e(p, L) \lambda_{v_L} \mu_{k,v_L}^{-1} e(L, p) \beta = \alpha \lambda_{v_p} \beta,$$

if $e(p, L)$ is the jth edge emanating from v_p, and $e(L, p)$ is the kth edge emanating from v_L.

Note that the indexing of the edges at each vertex does not effect the isomorphism class of the group presented.

By Theorem 4, $\pi_1(E_L)$ is a quotient of $\pi_1(M_L)$ and we have the following presentation of $\pi_1(E_L)$.

Corollary 3.7 Let \mathcal{L} be a real line arrangement. Then the fundamental group of the complement $\pi_1(E_L)$ is $\pi_1(M_L)$ with the additional relations

$$f(e_1) \ldots f(e_s) = 1$$

where f is as in Theorem 4 and $e_1 \ldots e_s \in T_{\Gamma}$.

4 Complex line arrangements

Let \mathcal{L} be an arbitrary complex line arrangement consisting of lines \mathcal{A} and points of intersection \mathcal{P}. The proofs of Theorem 3 and Theorem 4 given in Section 3 rely on the existence of a continuous map

$$g : \Sigma_L \to M_L$$
from the skeleton $\Sigma_\mathcal{L}$ of \mathcal{L} to the boundary 3-manifold $M_\mathcal{L}$ whose image contracts in $E_\mathcal{L}$.

We will show that Theorem 3 and Theorem 4 cannot be applied to arbitrary complex line arrangements. To do this we extend the definition of skeleton for complex line arrangements, and show that the map g and hence the map

$$f : \Gamma_\mathcal{L} \to M_\mathcal{L}$$

with the required properties does not exist in general.

Knotted 1-complexes.

Let $\Sigma \subset \mathbb{R}^3$ be a compact 1-complex. We will call Σ a graph knot. Let N_Σ be a thickening of Σ in \mathbb{R}^3 and let M_Σ be its boundary. Then N_Σ is a handlebody and M_Σ is an oriented surface. Let $\alpha' : N_\Sigma \to \Sigma$ be the contraction map and let $\alpha : M_\Sigma \to \Sigma$ be the restriction of α' to M_Σ. We say Σ is unknotted if there is an embedding

$$g : \Sigma \to M_\Sigma$$

such that $\alpha \circ g$ is the identity on Σ, and the image of g contracts in \mathbb{R}^3. We say that Σ is knotted otherwise.

Dehn’s Lemma ([Rolf], p. 101) implies the following.

Lemma 4.1 A graph knot $\Sigma \subset \mathbb{R}^3$ is knotted if there is an embedding

$$\sqcup S^1 \to \Sigma$$

whose image is a nontrivial knot or link in \mathbb{R}^3.

Skeleta for complex arrangements.

Let \mathcal{L} be an arbitrary complex line arrangement and let

$$\rho : \mathbb{C}^2 \to \mathbb{C}$$

be projection onto the x-coordinate. Assume that $\rho|_L$ is one-to-one for all lines $L \in \mathcal{A}$. Let $Q = \rho(P)$.

Given an ordering of the points $q_1 \ldots, q_s \in Q$, let $I = I_1 \cup \ldots \cup I_{s-1}$ be a union of embedded line segments in \mathbb{C} such that each I_i has endpoints q_i and q_{i-1} and no pair I_i and I_j intersect except possibly at their endpoints. We will call $\Sigma_\mathcal{L}(I) = \rho^{-1}(I) \cap \mathcal{L}$ the skeleton of \mathcal{L} associated to I. (The 1-complex $\Sigma_\mathcal{L}(I)$ considered as a subset of $\mathbb{R}^2 \times I$ is also known as a braided wiring diagram and has been used to describe the fundamental group and homotopy type of the complement of arbitrary complex line arrangements and algebraic plane curves [Arv], [CS].)

The skeleton $\Sigma_\mathcal{L}$ defined for real line arrangements comes from ordering the q_i in the order in which they lie on the real line \mathbb{R} and taking I to be the line segment on \mathbb{R} connecting the smallest to the largest. We will call this $\Sigma_\mathcal{L}$ the standard skeleton for the real line arrangement \mathcal{L}.

As with real line arrangements, we have the following.
Lemma 4.2 For any complex line arrangement \mathcal{L} and any ordering of Q, the 1-complex $\Sigma_{\mathcal{L}}(I)$ is homotopy equivalent to the graph $\Gamma_{\mathcal{L}}$.

We can think of $\Sigma_{\mathcal{L}}(I)$ as a subset of $\mathbb{R}^3 = \mathbb{R}^2 \times \mathbb{R}$ by embedding $I \in \mathbb{R}$. This makes $\Sigma_{\mathcal{L}}(I)$ a graph knot. When \mathcal{L} is a real line arrangement and $\Sigma_{\mathcal{L}}$ is the standard skeleton $\Sigma_{\mathcal{L}}$ is unknotted. Conversely, if \mathcal{L} is a complex line arrangement such that for all orderings the associated skeleton $\Sigma_{\mathcal{L}}(I)$ is knotted, then \mathcal{L} is not topologically equivalent to a real line arrangement.

Lemma 3.1 then generalizes as follows.

Theorem 5 Let \mathcal{L} be a complex line arrangement and let $\alpha : M_\mathcal{L} \to \mathcal{L}$ be the natural projection map of the boundary manifold $M_\mathcal{L}$ onto \mathcal{L}. Then for some choice of I, $\Sigma_{\mathcal{L}}(I)$ is unknotted if and only if there is an embedding

$$g : \Sigma_{\mathcal{L}}(I) \to M_\mathcal{L},$$

such that

(i) $\alpha \circ g$ is the identity map; and

(ii) the complement $E_\mathcal{L}$ is homotopy equivalent to

$$M_\mathcal{L}/g(\Sigma_{\mathcal{L}}(I)).$$

Proof. The proof is the same as for Lemma 3.1.

It follows that if $\Sigma_{\mathcal{L}}(I)$ is knotted for all choices of I, then Theorem 4 cannot be extended to \mathcal{L}. For general algebraic plane curves, one can also describe the boundary 3-manifold $M_\mathcal{C}$ as a graph of manifolds over a suitably defined incidence graph $\Gamma_\mathcal{C}$, but Theorem 5 provides an obstruction for mimicking Theorem 4 in this setting.

References

[Arv] W. Arvola. The fundamental group of the complement of an arrangement of complex hyperplanes. *Topology* 31(1992), 757–765.

[C-S] D. Cohen and A. Suciu. Braided monodromy of plane algebraic curves and hyperplane arrangements. *Comm. Math. Helv.* 72(1997), 285–315.

[Falk] M. Falk. Homotopy Types of Line Arrangements. *Invent. Math.* 111(1993), 139–150.

[G-M] M. Goresky and R. Macpherson. *Stratified Morse Theory*, volume 14 of *Ergebnisse der Mathematik und ihrer Grenzgebiete (3)*. Springer-Verlag, Berlin, 1988.
[Hemp] J. Hempel. Residual finiteness for 3-manifolds. In Combinatorial group theory and topology (Alta, Utah, 1984), volume 111 of Ann. of Math. Stud., pages 379–396. Princeton University Press, 1987.

[Lib] A. Libgober. On the homotopy type of the complement to plane algebraic curves. J. Reine Angew. Math. 367(1986), 103–114.

[Mil] J. Milnor. Singular Points of Complex Hypersurfaces, volume 61 of Annals of Math. Studies. Princeton Univ. Press, Princeton, 1968.

[O-T] P. Orlik and H. Terao. Arrangement of Hyperplanes, volume 300 of Grundlehren der math. Wissenschaften. Springer-Verlag, Berlin, 1992.

[Pen] R. Penner. Perturbative series and the moduli space of Riemann surfaces. J. Diff. Geo. 27(1988), 35–53.

[Ran] R. Randell. The fundamental group of the complement of a union of complex hyperplanes (Correction). Invent. Math. 69 (80)(1982 (1985)), 103–108 (467–468).

[Rolf] Rolfsen. Knots and Links.

[Ryb] G. Rybnikov. On the fundamental group of the complement of a complex hyperplane arrangement. DIMACS: Technical Report (1994), 33–50.

[Sal] M. Salvetti. Topology of the complement of real hyperplanes in \mathbb{C}^N. Invent. Math. 88(1987), 603–618.

[Ser] J-P. Serre. Trees. Springer-Verlag, Berlin, 1980.

[Wal] F. Waldhausen. Eine Klasse von 3-dimensionalen Mannigfaltigkeiten I. Invent. Math. 3(1967), 308–333.