Connected-Sea Partons

Keh-Fei Liu,1 Wen-Chen Chang,2 Hai-Yang Cheng,2 and Jen-Chieh Peng3

1Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506, USA
2Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
3Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA

According to the path-integral formalism of the hadronic tensor, the nucleon sea contains two distinct components called connected sea (CS) and disconnected sea (DS). We discuss how the CS and DS are accessed in the lattice QCD calculation of the moments of the parton distributions. We show that the CS and DS components for \(\bar{u}(x) + d(x) \) can be extracted by using recent data on the strangeness parton distribution, the CT10 global fit, and the lattice result of the ratio of the strange to u(d) moments in the disconnected insertion. The extracted CS and DS for \(\bar{u}(x) + d(x) \) have distinct Bjorken-\(x \) dependence in qualitative agreement with expectation. The analysis also shows that the momentum fraction of the \(\bar{u}(x) + d(x) \) is about equally divided between CS and DS at \(Q^2 = 2.5 \text{GeV}^2 \). Implications on future global analysis for parton distributions are presented.

PACS numbers: 13.60.Hb,14.20.Dh,14.65.Bt,12.38Gc

There have been a number of developments in the understanding of the flavor content of the nucleon sea, such as the observation of the light-quark sea difference between \(\bar{d} \) and \(\bar{u} \) in Deep Inelastic Scattering (DIS) [1] and Drell-Yan processes [2], the extraction of strange quark content \(s + \bar{s} \) from semi-inclusive DIS [3], and the lattice QCD calculations of sea quark contributions to nucleon orbital angular momenta [4]. Evidence for the existence of intrinsic sea [5] of the light quarks has also been reported [6].

Many theoretical models, including the meson cloud model, have been suggested for describing the flavor structure of the nucleon sea [7]. In order to gain new insights on the origins of the flavor content of the nucleon sea, it is important to note that, according to the path-integral formalism, there are two distinct sources for nucleon sea, namely, the connected sea (CS) and the disconnected sea (DS) [8][9]. The CS and DS are expected to have different shapes in their Bjorken-\(x \) distribution, as well as distinct quark-flavor dependence. The first direct experimental evidence for the existence of CS came from the observation of large difference in the \(\bar{u}(x) \) and \(d(x) \) distributions [8]. In this paper we show that the two distinct contributions (CS and DS) to the \(\bar{u}(x) + d(x) \) can be separated based on existing experimental data and input from lattice QCD calculation.

The existence of the connected sea and disconnected sea can be illustrated in the path-integral formalism of the hadronic tensor. In the Euclidean path-integral formalism of the hadronic tensor \(W_{\mu \nu} \), there are three gauge invariant and topologically distinct diagrams, as shown in Fig. 1. The various lines in Fig. 1 represent the quark propagators from the source of the nucleon interpolation field at time \(t = 0 \) to the sink time at \(t \) and the currents are inserted at \(t_1 \) and \(t_2 \).

We first note that Fig. 1(b) where the quarks propagate backward in time between \(t_1 \) and \(t_2 \), corresponds to the connected-sea anti-partons \(\bar{u}^\ast \) and \(\bar{d}^\ast \). In contrast, the forward propagating quarks in Fig. 1(a) correspond to valence and CS partons \(u^\ast + c^\ast \) and \(d^\ast + s^\ast \), where valence is defined as \(q^\ast = q_{\nu} + q_{\bar{c}} \) and \(q_{\nu}(x) = q_{\nu}^c(x) \). Finally, Fig. 1(c) gives the DS \(q_{d}^{\ast} \) and \(\bar{q}_{d}^{\ast} \) for \(q = u, d, s, c \), since it contains both forward and backward propagating quarks. The nomenclature of connected and disconnected seas follows those in the time-ordered perturbation theory – CS is the higher Fock-state component in the Z-graph where the quark lines are connected and the DS corresponds to the vacuum polarization.

It is clear from Fig. 1 that the two sources of the sea quarks, CS and DS, have interesting quark-flavor dependence. For example, while \(u \) and \(d \) have both CS and DS, \(s \) and \(c \) have only DS. The small mass difference between the \(u \) and \(d \) quarks implies that the DS cannot account for the large \(d/\bar{u} \) difference observed in the DIS and Drell-Yan experiments. Rather, this difference must originate primarily from the CS diagram of Fig. 1(b) due to the fact that there are two \(u \)-valence quarks but only one \(d \). The absence of the CS component for the strange and charm quarks also implies that any difference between \(s(x) \) and \(\bar{s}(x) \) (or \(c(x) \) and \(\bar{c}(x) \)) distributions, as predicted in meson cloud [10] and intrinsic sea [11] models, must come from the DS diagram of Fig. 1(c). The classification of parton distribution functions in terms of flavor, CS and DS is given in Table I.

The CS and DS are also expected to have distinct distributions at the small-\(x \) region. Since there is only reggeon exchange for the flavor non-singlet valence and CS, the valence
and CS partons is $q^{u+cs}(x), q^{cs}(x) \propto x^{-1/2}$ at small x. For the DS partons, there is flavor-singlet pomeron exchange, thus its small-x behavior is $q^{ds}(x), q^{ds}(x) \propto x^{-1}$ in addition, there are also meson cloud contributions which are prominent in the medium-x range. Partons with these different small-x behaviors are considered as extrinsic and intrinsic distributions for charm [5] and the light quarks [6]. The distinct flavor and x-dependence of CS and DS remain to be checked experimentally.

TABLE I: Classification of PDF in the nucleon for different flavors.

Valence and Connected Sea	$u^{+cs}(x)$	$\bar{u}^{cs}(x)$	$d^{+cs}(x)$	$\bar{d}^{cs}(x)$
Disconnected Sea	$u^{ds}(x) + \bar{u}^{ds}(x)$	$d^{ds}(x) + \bar{d}^{ds}(x)$	$s(x) + \bar{s}(x)$	$c(x) + \bar{c}(x)$

FIG. 2: The three-point functions after the short-distance expansion of the hadronic tensor from Fig. 1. (a) The connected insertion (CI) is derived from Fig. 1(a) and Fig. 1(b). (b) The disconnected insertion (DI) originates from Fig. 1(c). O^n_q are local operators which are the same as derived from OPE.

Unfortunately, lattice calculations cannot calculate the parton x-distributions directly [9], only moments are accessible.

To delineate the flavor and x dependence of the parton distributions, it is important to have the CS and DS separated in the global fitting as they evolve differently in Q^2 [9]. Once they are separated in one Q^2, they will remain separated so that they can be used to fit experiments or make predictions at other Q^2. While the difference of $\bar{u}^{cs}(x)$ and $\bar{d}^{cs}(x)$ is obtained from the E866 Drell-Yan [2] and HERMES semi-inclusive [13] measurements of $(\bar{d}(x) - \bar{u}(x))$, there is not yet an established way to directly obtain $\bar{u}^{cs}(x) + \bar{d}^{cs}(x)$ from experiments. We shall show how to achieve this with a combination of experimental results and a lattice calculation of (x) for the DI in Fig. 2(b).

Recent HERMES semi-inclusive DIS experiment of kaon production on deuteron has produced the strangeness parton distribution function $s(x) + \bar{s}(x)$ at $Q^2 = 2.5$ GeV2 which is shown in Fig. 3. One notable feature is that the values at medium x around 0.1 are quite different from those obtained from the global fit of CT10 [14] (also drawn in Fig. 3), which did not include the HERMES data in the fit. Since s and \bar{s} are entirely due to DS, the HERMES $s(x) + \bar{s}(x)$ data provide valuable information on the shape of the x-distribution for DS, which is not available from the lattice calculation.

FIG. 3: The strange quark PDF from HERMES semi-inclusive DIS experiment of kaon production on deuteron. It is compared to CT10 results.

We can now proceed to separate the CS and DS components of the $u + \bar{d}$ sea with the following approach. First, we shall make the plausible ansatz that the distribution of $\bar{u}^{ds}(x) + \bar{d}^{ds}(x)$ is proportional to that of $s(x) + \bar{s}(x)$ and the proportionality is $\frac{1}{R}$, i.e., $\bar{u}^{ds}(x) + \bar{d}^{ds}(x) = \frac{1}{R} (s(x) + \bar{s}(x))$. As discussed below, a recent lattice calculation has obtained $R = 0.857 \pm 0.040$. We can then extract $\bar{u}^{cs}(x) + \bar{d}^{cs}(x)$ from the difference of the CT10 result on $\bar{u}(x) + \bar{d}(x)$ and the HERMES data weighted with $\frac{1}{R}$:

$$\bar{u}^{cs}(x) + \bar{d}^{cs}(x) = \bar{u}(x) + \bar{d}(x) - \frac{1}{R} (s(x) + \bar{s}(x)) \quad (1)$$
at $Q^2 = 2.5$ GeV2. The $\bar{u}(x) + \bar{d}(x)$ in Eq. 1 can be taken from the recent CT10 PDF.

A recent lattice calculation [15] of the momentum fraction $\langle x \rangle$ for the strange and $u(d)$ in the DI was carried out with $2+1$-flavour dynamical fermion gauge configurations with the improved gauge and Wilson fermion (clover) actions. The ratio of the momentum fraction between the strange and the $u(d)$ in the DI, where multiplicative renormalization constants and some systematic errors cancel, is extrapolated to the chiral limit with the lowest pion mass at 600 MeV and the result is

$$R = \frac{\langle x \rangle_{s+\bar{s}}}{\langle x \rangle_{u+\bar{d}}(DI)} = \frac{\langle x \rangle_{s+\bar{s}}}{\langle x \rangle_{u+\bar{d}}^{\text{E866}}} = 0.857(40).$$

The second equality is based on the premises of isospin symmetry of the DS, i.e., $\bar{u}^d = \bar{d}^s$ and that the parton-antiparton difference is negligible in the DS, i.e., $u^s = \bar{d}^s$.

It is interesting to note that the ratio R in Eq. (2) is close to unity, much larger than the globally fitted ratio of $\langle x \rangle_{s+\bar{s}} = 0.5$ as evidenced in the CT10 results in Fig. 3. The difference is due to the fact that $\bar{u} + \bar{d}$ has an additional contribution from CS which the strange partons do not have. Moreover, the ratio $R = 0.857$ is very close to that of the CT10 fit at small x (e.g., $x < 2 \times 10^{-2}$). This is consistent with the recent ATLAS measurement of the inclusive W and Z productions, where the strange-to-down quark ratio was determined to be $1.00^{+0.25}_{-0.28}$ at $x = 0.023$ and $Q^2 = 1.9$ GeV2 [16]. Since partons at small x are dominated by the DS, this shows that both the ratio of $\langle s(x) + \bar{s}(x) \rangle / \langle \bar{u}^d(x) + \bar{d}^s(x) \rangle$ of CT10 and ATLAS at small x is the same (i.e., of the ratio of their second moments from the lattice are practically the same. This supports the ansatz that $\bar{u}^d(x) + \bar{d}^s(x) = \frac{1}{2}(s(x) + \bar{s}(x))$.

We plot the distribution function evaluated with Eq. (1), multiplied by the momentum fraction, i.e., $x(\bar{u}(x) + d(x) - \frac{1}{2}(s(x) + \bar{s}(x)))$ in Fig. 4 together with $x(\bar{d}(x) - \bar{u}(x))$ from E866 Drell-Yan measurement [2] at $Q^2 = 54$ GeV2 and from SIDIS HERMES measurement [13] at $(Q^2) = 2.3$ GeV2. We see that $x(u^s(x) + \bar{d}^s(x))$ from Eq. (1) is peaked at medium $x \sim 0.1$, the same way as $x(\bar{d}(x) - \bar{u}(x))$ from E866 and HERMES. This is consistent with the expectation that the small-x of CS, like the valence, behaves as $x^{-1/2}$ as we alluded to earlier; so that, when CS is multiplied with x, it would be peaked at medium x, in contrast to that of the DS, e.g., $x(s(x) + \bar{s}(x))$ in Fig. 5. Furthermore, we note that $x(\bar{u}^s(x) + \bar{d}^s(x))$ is generally larger than $x(\bar{d}(x) - \bar{u}(x))$ in this x-range as it should and is larger by a factor ~ 4 at the peak.

We also plot $x(\bar{u}(x) + \bar{d}(x) - \frac{1}{2}(s(x) + \bar{s}(x)))$, $x(\bar{u}^d(x) + \bar{d}^s(x) = \frac{1}{2}x(s(x) + \bar{s}(x))$ and $x(\bar{u}(x) + \bar{d}(x))$ from CT10 in Fig. 5 to show that the CS and DS have very different x-dependence. The different shapes of CS and DS are in good agreement with the expectation discussed earlier. This agreement lends support for the approach we adopted. It is interesting to note that should a very different value of R be used, the x-dependence of CS and DS would no longer agree with expectation. In particular, if R were appreciably larger than the present value of 0.857, Eq. (1) would lead to a CS whose small x behavior would be $\sim x^{-1}$ which is inconsistent with the fact that CS is from the connected insertion. In this case, $x(\bar{u}^s(x) + \bar{d}^s(x))$ would approach a constant as $x \to 0$ as opposed to zero, as illustrated in Fig. 5. On the other hand, if R were appreciably smaller than 0.857, the CS from Eq. (1) would turn out to be negative and this would not be commensurate with the probability interpretation for CS.

In particular, $R = 0.857$ is very close to that of the CT10 fit at small x (e.g., $x < 2 \times 10^{-2}$). This is consistent with the recent ATLAS measurement of the inclusive W and Z productions, where the strange-to-down quark ratio was determined to be $1.00^{+0.25}_{-0.28}$ at $x = 0.023$ and $Q^2 = 1.9$ GeV2 [16]. Since partons at small x are dominated by the DS, this shows that both the ratio of $\langle s(x) + \bar{s}(x) \rangle / \langle \bar{u}^d(x) + \bar{d}^s(x) \rangle$ of CT10 and ATLAS at small x is the same (i.e., of the ratio of their second moments from the lattice are practically the same. This supports the ansatz that $\bar{u}^d(x) + \bar{d}^s(x) = \frac{1}{2}(s(x) + \bar{s}(x))$. We plot the distribution function evaluated with Eq. (1), multiplied by the momentum fraction, i.e., $x(\bar{u}(x) + d(x) - \frac{1}{2}(s(x) + \bar{s}(x)))$ in Fig. 4 together with $x(\bar{d}(x) - \bar{u}(x))$ from E866 Drell-Yan measurement [2] at $Q^2 = 54$ GeV2 and from SIDIS HERMES measurement [13] at $(Q^2) = 2.3$ GeV2. We see that $x(u^s(x) + \bar{d}^s(x))$ from Eq. (1) is peaked at medium $x \sim 0.1$, the same way as $x(\bar{d}(x) - \bar{u}(x))$ from E866 and HERMES. This is consistent with the expectation that the small-x of CS, like the valence, behaves as $x^{-1/2}$ as we alluded to earlier; so that, when CS is multiplied with x, it would be peaked at medium x, in contrast to that of the DS, e.g., $x(s(x) + \bar{s}(x))$ in Fig. 5. Furthermore, we note that $x(u^s(x) + \bar{d}^s(x))$ is generally larger than $x(\bar{d}(x) - \bar{u}(x))$ in this x-range as it should and is larger by a factor ~ 4 at the peak.

We also plot $x(\bar{u}(x) + \bar{d}(x) - \frac{1}{2}(s(x) + \bar{s}(x)))$, $x(u^d(x) + \bar{d}^s(x) = \frac{1}{2}x(s(x) + \bar{s}(x))$ and $x(\bar{u}(x) + \bar{d}(x))$ from CT10 in Fig. 5 to show that the CS and DS have very different x-dependence. The different shapes of CS and DS are in good agreement with the expectation discussed earlier. This agreement lends support for the approach we adopted. It is interesting to note that should a very different value of R be used, the x-dependence of CS and DS would no longer agree with expectation. In particular, if R were appreciably larger than the present value of 0.857, Eq. (1) would lead to a CS whose small x behavior would be $\sim x^{-1}$ which is inconsistent with the fact that CS is from the connected insertion. In this case, $x(u^s(x) + \bar{d}^s(x))$ would approach a constant as $x \to 0$ as opposed to zero, as illustrated in Fig. 5. On the other hand, if R were appreciably smaller than 0.857, the CS from Eq. (1) would turn out to be negative and this would not be commensurate with the probability interpretation for CS.
TABLE II: Values of various moments using the HERMES data, the lattice QCD result, and three different PDFs at $Q^2 = 2.5$ GeV2.

	CT10	CTEQ6	MSTW08
$\langle x \rangle_{\bar{d} + \bar{u}}$	0.0639(14)	0.0614(14)	0.0690(11)
$\langle x \rangle_{\bar{d}' + \bar{u}'}$	0.0294(54)	0.0281(54)	0.0347(53)
$\langle x \rangle_{\bar{d}'' + \bar{u}''}$	0.0344(52)	0.0332(52)	0.0342(52)
$\langle x \rangle_{\bar{d}''' + \bar{u}'''}$	0.86(29)	0.85(30)	1.02(32)

PDF and is quoted in the parentheses. The CS contributions $\langle x \rangle_{\bar{d}' + \bar{u}'}$ in Table II are then obtained from Eq. [1] with inputs of $d(x) + \bar{u}(x)$ from the different PDFs and integrated over the range $0.025 < x < 0.48$ plus a small contribution outside this range which is estimated to be 2% from the fractional contribution to $x(\bar{d}(x) - \bar{u}(x))$ outside this range based on CT10. The total uncertainty includes the contributions from HERMES data, the lattice calculation of R, the PDF, and the unresolved x region. The corresponding $\langle x \rangle_{\bar{d}''' + \bar{u}'''}$ in Table II is taken to be the difference between the respective $\langle x \rangle_{\bar{d} + \bar{u}}$ and $\langle x \rangle_{\bar{d}' + \bar{u}'}$. Finally, we give the ratio $\langle x \rangle_{\bar{d}''' + \bar{u}'''} / \langle x \rangle_{\bar{d}' + \bar{u}'}$. It is interesting that this ratio is close to unity, showing that the momentum fraction of $\bar{d} + \bar{u}$ is about equally divided between the CS and the DS at this low Q^2. Future lattice calculations could provide a direct check of the second moment of $\bar{d}(x) + \bar{u}(x)$ shown in Table II.

In order to gain deeper and more precise understanding of the PDF in terms of their flavor, x and Q^2 dependence, it is essential to have the CS and DS separately accommodated in the extended evolution equations. Only then will they remain separated at different Q^2 to facilitate global fitting, as they evolve differently with the CS evolving like the valence [9].

This work is partially supported by U.S. Department of Energy grant DE-FG05-84ER40154, National Science Foundation and the National Science Council of the Republic of China. We thank C.P. Yuan for fruitful discussion.

[1] P. Amaudruz et al. (New Muon Collaboration), Phys. Rev. Lett. 66, 2712 (1991).
[2] R.S. Towell et al. (FNAL E866/NuSea Collaboration), Phys. Rev. D64, 052002 (2001).
[3] A. Airapetian et al. (HERMES), Phys. Lett. B666, 446 (2008).
[4] K.F. Liu et al., PoS LATTICE2011, 164 (2011), [arXiv:1203.6388].
[5] S.J. Brodsky, P. Hoyer, C. Peterson, and N. Sakai, Phys. Lett. B 93, 451 (1980).
[6] W.C. Chang and J.C. Peng, Phys. Rev. Lett. 106, 252002 (2011); Phys. Lett. B 704, 197 (2011).
[7] G.T. Garvey and J.C. Peng, Prog. Part. Nucl. Phys. 47, 203 (2001).
[8] K.F. Liu and S.J. Dong, Phys. Rev. Lett. 72, 1790 (1994).
[9] K.F. Liu, Phys. Rev. D62, 074501 (2000).
[10] A.I. Signal and A.W. Thomas, Phys. Lett. B191, 205 (1987).
[11] S.J. Brodsky and B.Q. Ma, Phys. Lett. B381, 317 (1996).
[12] J. D. Pratt et al. (LHPC), Phys. Rev. D82, 094502 (2010); M. Göckeler et al. (QCDSF/UKQCD), PoS Lat2010, 163 (2010); M. Deketa et al. (χ QCD), Phys. Rev. D79, 054502 (2009).
[13] A. Wackerstaff et al. (HERMES), Phys. Rev. Lett. 81, 5519 (1998).
[14] H.L. Lai, M. Guzzi, J. Huston, Z. Li, P.M. Nadolsky, J. Pumplin, C.P. Yuan, Phys. Rev. D82, 074024 (2010), [arXiv:1007.2241].
[15] T. Doi et al. (χ QCD), PoS LATTICE2008, 163 (2008).
[16] The ATLAS Collaboration, Phys. Rev. Lett. 109, 012001 (2012).
[17] J. Pumplin, D.R. Stump, J. Huston, H.L. Lai, P.M. Nadolsky, W.K. Tung, JHEP 0207, 012 (2002).
[18] A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Eur. Phys. J. C63, 189 (2009).