Management of Secondary Angle Closure Glaucoma

Parivadhini Annadurai, Lingam Vijaya

ABSTRACT

Secondary angle closure glaucomas are a distinct entity from primary angle closure glaucoma (PACG). Unlike PACG, secondary angle closure glaucoma’s have an identifiable contributory factor/s for angle closure and obstruction of aqueous flow which is usually unrelieved by iridotomy. The treatment of each type of secondary angle closure glaucoma is varied, so identification of the primary cause aids in its effective management.

Keywords: Pupillary block, Neovascular glaucoma, Iridocorneal endothelial syndrome, Aqueous misdirection syndrome, Ciliary body swelling.

INTRODUCTION

In secondary angle closure glaucoma, the underlying cause can close the angle directly by local iris and angle factors or by acting to move the crystalline lens forward causing pupillary block (secondary pupillary block). This is important since some of these patients with secondary pupillary block will respond to laser iridotomy. They are common causes of glaucoma and can produce high elevations of intraocular pressure (IOP) and ocular morbidity.

This review will discuss the risk factors, signs and symptoms, pathophysiology, imaging and the treatment modalities of secondary angle closure glaucomas.

Secondary angle closure glaucoma’s can be categorized by the existence of pupillary block or not though some overlap can be seen (Table 1).

Aqueous Misdirection Syndrome

The aqueous misdirection syndrome is a form of secondary angle closure glaucoma occurring postsurgery with raised intraocular pressure (IOP), shallow or flat anterior chamber (AC) in the presence of a patent peripheral iridectomy/iridotomy. Fifty percent success rate has been noted with this therapy. Additionally, topical steroids, aqueous suppressants are used to reduce inflammation and IOP. Osmotics help to lower the IOP as well as to reduce the vitreous volume. Conservative treatment is advised for 5 days to see for resolution.

YAG hyaloidotomy disrupts the anterior hyaloid face allowing aqueous to drain out of the vitreous. It’s an elective
In cases of medical and laser therapy failure, vitreous surgery almost always cures this condition. The surgery is intended to establish an opening through the anterior hyaloid membrane and the vitreous body for aqueous humour to escape forward to the posterior and anterior chambers. Pars plana vitrectomy \(^2,3\) is done in pseudophakic and aphakic eyes and IOP control is achieved in 67 to 100% of cases. Vitrectomy-phacoemulsification-vitrectomy \(^11\) was studied in 5 phakic eyes, the preliminary vitrectomy was limited to core vitrectomy to debulk the vitreous, the residual vitrectomy, zonulohyaloidectomy and peripheral iridectomy was performed to create a free communication between the anterior and posterior chambers. Cycloidiode laser photocoagulation has also been proposed in patients with failed medical therapy to break the cycle of aqueous misdirection and prevent future recurrences.\(^12\)

YAG PI done preoperatively in occludable eyes can reduce aqueous misdirection. In patients with increased risk like in decompression related shallowing of the anterior chamber, using viscoelastics during surgery, tighter closure and cycloplegics after surgery prevents aqueous misdirection. It must be remembered that recurrence can occur so vigorous follow-up and chronic atropine drops may be necessary. The fellow eye is also at a high-risk for aqueous misdirection.

Neovascular Glaucoma

Neovascular glaucoma (NVG) arises in response to retinal ischemia, the common predisposing factors being central retinal vein occlusion and diabetic retinopathy. An NVG patient requires a broad diagnostic workup to determine the underlying cause\(^13\) and also a predisposed patient requires careful monitoring to detect NVG in its earliest stages.

The pathogenesis of NVG is retinal ischemia which produces angiogenic factors (VEGF, angiogenin, PDGF, TGF-\(\alpha, \beta, \text{TNF}-\alpha\)) which in turn causes new vessel formation on the iris and angle leading to formation of fibrovascular membrane which eventually contracts to form peripheral

With pupillary block	Without pupillary block
Aqueous misdirection	Neovascular glaucoma
Iriscomeral endothelial syndromes (ICE)	Inflammatory glaucoma
Ciliary body cysts, tumors	Ciliary body swelling secondary to:
Scleral buckling and postvitreoretinal procedures	a. Central retinal vein occlusion (CRVO)
Ciliary body swelling secondary to:	b. Panretinal photocoagulation (PRP)
a. Central retinal vein occlusion (CRVO)	c. Drugs or inflammation

Surgical Therapy

![Fig. 1A: Aqueous misdirection post filtering surgery showing a patent surgical iridectomy](image1)

![Fig. 1B: Slit photo showing shallow anterior chamber](image2)

![Fig. 1C: UBM showing shallow anterior chamber with anterior rotation of ciliary processes](image3)

procedure done in pseudophakics and aphakics through the surgical iridectomy, first perforating the posterior lens capsule and then the hyaloid face. Slight deepening of the anterior chamber is noticeable immediately, dramatic deepening is noticeable after 12 to 24 hours.
The clinicopathologic course and treatment may be described in the following stages. The trabeculectomy with mitomycin-C may offer better intermediate-term success than trabeculectomy alone concluded that IVB significantly reduces postoperative hyphema and controls early postoperative IOP with no difference in long-term results. GDDS have gained wide acceptance as a primary procedure for NVG patients because the tube bypasses the fibrovascular membrane. The aqueous tube shunts have reported success rates of 22 to 97% in these patients. Molteno tube shunts, Ahmed glaucoma valve and Baerveldt glaucoma implants have shown comparable success rates. Successful IOP control was achieved with combined pars plana vitrectomy and glaucoma drainage implant in selected patients with refractory NVG.

In eyes with little or no visual potential, treatment is mainly with topical cycloplegics, steroids and aqueous suppressants. Ablation of the ciliary body is undertaken in cases of symptomatic patients. Bloom et al reported a mean IOP reduction of 53% in 25 patients with diode laser for refractory glaucoma. However of note is the study by Ramli et al that underlying NVG was a significant risk factor for hypotony post transscleral cyclophotocoagulation. A less aggressive energy setting and a more limited treatment was advised to prevent hypotony.

Iridocorneal Endothelial Syndromes

Iridocorneal endothelial (ICE) syndrome is a spectrum of ocular diseases characterized by corneal endothelial abnormalities, unilateral glaucoma and iris stromal abnormalities. They include progressive iris atrophy, Chandler syndrome and Cogan-Reese syndrome (Figs 2A to C). They may be regarded as different manifestations of the same disease process. It is caused by an abnormal corneal endothelium which forms a membrane (ICE membrane) over the anterior surface of the iris and the angle structures, which on contraction distorts the iris, forms peripheral anterior synechiae and closes the angle leading to glaucoma. Half of all the patients of ICE syndrome develop glaucoma.

Management of glaucoma in ICE syndromes is difficult and medical therapy is restricted to aqueous suppressants which is often unsuccessful. The success rate of filtering surgery is also lower than most other forms of glaucoma. A study of surgical outcome of trabeculectomy with MMC in 10 ICE syndrome patients showed 8 of 10 patients having adequate IOP control after filtering surgery with mitomycin-C, with a mean follow-up of 14.9 months. The results of their study suggested that trabeculectomy with adjunctive mitomycin-C may offer better intermediate-term success than trabeculectomy alone or trabeculectomy with 5-fluorouracil. Failure of filtering surgery is often due to the continued growth of the endothelial membrane over the filtration site.

Anterior synechiae (PAS) and ultimately complete closure of the angle. VEGF levels are elevated to 40 to 100 times normal in aqueous and vitreous of patients with rubeosis and NVG. The IOP is usually normal, rubeosis is seen as fine randomly oriented vessels near pupillary border or may be first seen in the angle in diabetic and CRVO patients. Pan retinal photocoagulation (PRP) is indicated which decreases the retinal oxygen demand, thereby reducing the stimulus for release of angiogenesis factors.

Open-angle Glaucoma Stage

The rubeosis is more florid in this stage with elevated IOP and open angles with intense neovascularization of the angle. PRP can reverse IOP elevation in this stage. Aqueous suppressants, topical corticosteroids and atropine are used.

Angle Closure Glaucoma Stage

PAS formation can eventually close the angle with ectropion uveae formation resulting in severe glaucoma requiring surgical intervention. PRP is still useful in this stage to reduce IOP if synechial closure is less than 270° and even if the angle is closed for more than 270° PRP is useful in reducing anterior segment neovascularization before any surgical intervention.

Filtering surgery is rarely successful because of the risk of bleeding and postoperative progression of fibrovascular membrane. In a study in NVG patients, mitomycin C (MMC) augmented trabeculectomy yielded success rates of 62.6, 58.2 and 51.7% at 1, 2 and 5 years respectively. Modified trabeculectomy can be performed with intraocular bipolar cautery of peripheral iris and ciliary processes to prevent bleeding. Intracameral Bevacizumab (avastin) has been tried in NVG patients resulting in rapid regression of the iris and angle neovascularization and could act as an adjunct in the surgical treatment of these patients. Preoperative intravitreal bevacizumab combined with mitomycin C augmented trabeculectomy has been studied to be a safe and effective method for controlling IOP in NVG, though long-term effects are not known. Even comparative studies between combined intravitreal bevacizumab (IVB) and trabeculectomy with MMC verses trabeculectomy with mitomycin C alone concluded that IVB significantly reduces postoperative hyphema and controls early postoperative IOP with no difference in long-term results.

GDDS have gained wide acceptance as a primary procedure for NVG patients because the tube bypasses the fibrovascular membrane. The aqueous tube shunts have reported success rates of 22 to 97% in these patients. Molteno tube shunts, Ahmed glaucoma valve and Baerveldt glaucoma implants have shown comparable success rates. Successful IOP control was achieved with combined pars plana vitrectomy and glaucoma drainage implant in selected patients with refractory NVG.

In eyes with little or no visual potential, treatment is mainly with topical cycloplegics, steroids and aqueous suppressants. Ablation of the ciliary body is undertaken in cases of symptomatic patients. Bloom et al reported a mean IOP reduction of 53% in 25 patients with diode laser for refractory glaucoma. However of note is the study by Ramli et al that underlying NVG was a significant risk factor for hypotony post transscleral cyclophotocoagulation. A less aggressive energy setting and a more limited treatment was advised to prevent hypotony.

Iridocorneal Endothelial Syndromes

Iridocorneal endothelial (ICE) syndrome is a spectrum of ocular diseases characterized by corneal endothelial abnormalities, unilateral glaucoma and iris stromal abnormalities. They include progressive iris atrophy, Chandler syndrome and Cogan-Reese syndrome (Figs 2A to C). They may be regarded as different manifestations of the same disease process. It is caused by an abnormal corneal endothelium which forms a membrane (ICE membrane) over the anterior surface of the iris and the angle structures, which on contraction distorts the iris, forms peripheral anterior synechiae and closes the angle leading to glaucoma. Half of all the patients of ICE syndrome develop glaucoma.

Management of glaucoma in ICE syndromes is difficult and medical therapy is restricted to aqueous suppressants which is often unsuccessful. The success rate of filtering surgery is also lower than most other forms of glaucoma. A study of surgical outcome of trabeculectomy with MMC in 10 ICE syndrome patients showed 8 of 10 patients having adequate IOP control after filtering surgery with mitomycin-C, with a mean follow-up of 14.9 months. The results of their study suggested that trabeculectomy with adjunctive mitomycin-C may offer better intermediate-term success than trabeculectomy alone or trabeculectomy with 5-fluorouracil. Failure of filtering surgery is often due to the continued growth of the endothelial membrane over the filtration site.
the tube should be left long in the anterior chamber away
from the potential source of ICE cells and entry through
pars plana can be used in pseudophakic vitrectomized eyes.
Cyclophotocoagulation is indicated in eyes with refrac-
tory glaucoma who have failed trabeculectomy or shunt
surgery.

Inflammatory Glaucoma

Glaucoma is a potentially devastating complication of uveitis
and remains a therapeutic challenge despite availability of
new modalities of treatment in both the conditions.43
Inflammation can produce secondary angle closure
 glaucoma with pupillary block mechanism due to posterior
synechiae formation or without pupillary block due to
inflammatory peripheral iris swelling, exudates in the angle
contracting to form PAS or due to forward rotation of the
ciliary body. PAS form easily in eyes with shallow anterior
chamber and in eyes with chronic inflammatory processes.
Inflammatory glaucoma can occur after trauma, surgery,
idiopathic inflammatory condition or due to specific uveitic
entities.

Principles of Management

Usually control of inflammation alone leads to normaliza-
tion of IOP. Management of inflammation is done by topical
or systemic corticosteroids, mydriatics-cycloplegics and
systemic immunosuppressives. Medical therapy to control
IOP basically involves aqueous suppressants. Intracameral
tissue plasminogen activator has been reported to be of use
in impending pupillary block glaucoma due to acute fibrin-
ous HLA-B27 uveitis.44
YAG PI is done for pupillary block glaucomas, although
fibrin can close small iridotomies in an inflamed eye.45
When this is unsuccessful surgical iridectomy is useful if less than
75% of the angle is closed by PAS.46
If medical or laser therapy is unable to control the IOP
then filtration surgery has to be considered. Trabeculectomy
in uveitic eyes generally carries less success due to accelera-
tion of wound healing by postoperative fibrinous and cellular
responses.47 Antimetabolites like 5FU and Mitomycin
C are used to increase the success of trabeculectomy in
uveitic eyes (5FU, MMC). A success of 95\% (IOP less than
21 mm Hg with 1 or no medication) was achieved with MMC
augmented trabeculectomy.48 Aggressive anti-inflammatory
therapy should be given before and after trabeculectomy in
these patients.
All the three glaucoma drainage implants (Molteno,
Baerveldt and Ahmed valve) have been tried with a success
of 79\% with Molteno implants,49 94\% with Ahmed valve50,51
and 91.7\% with Baerveldt implant.52

With GDDs the growth of ICE membrane over the
ostium is bypassed. A long-term study of 10 patients with
ICE syndrome42 showed IOP control of less than 21 mm Hg
in four patients and in three required tube repositioning due
to membrane formation. They proposed that in ICE patients
Trabeculodialysis (a modified goniotomy) was studied in children with inflammatory glaucomas with a success of 60%. Goniotomy in chronic childhood uveitis was reported to be successful in 75% of their patients by Freedman et al. Transscleral diode cyclophotocoagulation is considered in low visual potential eyes; however, the rate of hypotony in uveitis eyes can be higher (19%) than other refractory glaucomas.

Ciliary Body Cysts
Benign iris/ciliary body cysts can cause glaucoma if they are multiple by pushing the peripheral iris forward to close the angle and cause raised intraocular pressure. The onset of glaucoma can mimic acute angle closure glaucoma. It is also called as pseudoplateau iris since it produces a clinical picture identical to plateau iris. Cysts should be suspected when plateau iris configuration appears more in one segment of the angle giving a characteristic bumpy contour to the peripheral iris. They are often multiple and diffusely distributed. Around 10% of the iris cysts can be caused by glaucoma associated with or without pupillary block glaucoma. They can be confirmed and their extent can be noted by UBM.

Laser iridotomy, Argon laser iridoplasty, Laser cystostomy and intermittent pilocarpine therapy have been described as therapeutic approaches.

Glaucoma following Scleral Buckling Procedures
Here angle closure glaucoma is produced by swelling of the ciliary body due to impaired venous drainage from the vortex veins by the scleral buckle. The incidence of angle closure glaucoma after scleral buckling procedures range from 1.4 to 4.4%. The risk factors are pre-existing narrow angles, use of an encircling band, placement of the band anterior to the equator and high myopia.

It usually resolves spontaneously over several days to weeks. Cycloplegics are used to shift the lens-iris diaphragm posteriorly by relaxing the ciliary muscle and topical steroids to reduce the inflammation. IOP is reduced by means of aqueous suppressants. Miotics should be avoided. Laser PI is not beneficial; rather laser iridoplasty is useful in opening the angle in some of these patients.

GDDs offer an alternative approach in uncontrolled glaucoma as evidenced by the study done by Scott Ingrid U et al with Baerveldt glaucoma implant in eyes with pre-existing episcleral bands where IOP control was achieved in all 16 patients with or without medications during the follow-up period of 19.1 to 45.5 months with none of the usual complications reported with glaucoma drainage devices (GDD).

Intraocular gases have been increasingly used in vitreoretinal surgeries for tamponade effect on the retinal breaks. The gases used are air, Perfluoropropane (C3F8), sulphur hexafluoride (SF6). SF6 expands to twice its volume within 24 to 48 hours and stays in the eye for 10 to 14 days, C3F8 expands to four times its volume in 48 to 72 hours and stays for 55 to 65 days. The increase in the volume of the gas causes anterior displacement of the lens-iris diaphragm even when prone position is maintained. The IOP rise is high during the period of maximum expansion of gas. The incidence of IOP elevation with SF6 has been reported to range from 6.1 to 67%, maximum with 100% SF6 and minimum with 20% SF6. C3F8 causes IOP elevation of 18 to 59%, minimum when 14% of C3F8 is used. Patients should be instructed to maintain head down position to prevent forward movement of iris lens diaphragm. They should be warned against air travel due to IOP variation during atmospheric changes.

Medical therapy consists of aqueous suppressants. If IOP is not responsive to medical therapy then aspiration of a portion of gas may be performed to lower IOP. Laser PI is useful in pupillary block.

Glaucoma after Silicone Oil Injection
Silicone oil is used as a vitreous substitute for retinal tamponade. It can produce glaucoma by pupillary block, inflammation, synechial closure, neovascularization, migration of oil into anterior chamber or by open angle mechanism.

Secondary glaucoma after silicone oil injection has been reported to be in 6 to 30% of eyes. Angle closure glaucoma can occur after silicone oil injection due to synechial closure. Overfilling of the oil in the eye has to be avoided to prevent secondary glaucoma. Inferior prophylactic iridectomy prevents pupillary block in pseudophakic and aphakic eyes. Medical therapy consists of aqueous suppressants, corticosteroids and cycloplegics. Postoperative closed iridectomies due to fibrin can be relieved by laser PI.

Silicone oil removal with or without concurrent glaucoma surgery has been performed to lower IOP, but oil removal carries some risk of retinal detachment. In patients with complete synechial closure silicone oil removal alone cannot be expected to lower IOP, rather glaucoma surgery is indicated in such cases and the decision to remove silicone oil or not depends on the relative risk of detachment on oil removal and emulsification of oil. If silicone oil remains in the eye, the GDD should be positioned in the inferior quadrant.

Cyclophotocoagulation by transscleral cytophotocoagulation (TSC) or endo cytophotocoagulation (ECP) can be used in refractory cases. Eyes with relatively intact central
visual acuity are appropriate candidates for ECP and can be combined with intraocular surgery.

Ciliary Body Swelling

Secondary angle closure glaucoma can occur due to ciliary body (CB) swelling secondary to vortex vein obstruction (venous stasis), drugs or inflammation.

Vortex vein obstruction occurs secondary to extensive PRP or CRVO producing angle closure glaucoma similar to scleral buckling procedures. It is a self-limiting condition and will resolve with or without medical therapy. Laser PI has no role in this condition.

Ciliary body swelling secondary to drug use is an idiosyncratic reaction causing relaxation of zonules, anterolateral rotation of the ciliary body leading to anterior displacement of iris—lens diaphragm producing induced myopia. Cho-roidal detachment and supraciliary effusions are frequently present detected by UBM. Sulfa-based drugs are associated with this type of secondary angle closure glaucomas like topiramate (Figs 3A and B), acetazolamide, hydrochlorothiazide and contrimoxazole. It presents as bilateral angle closure glaucoma. The management requires stopping of the drug, instituting aqueous suppressants and cycloplegics. Miotics, topical and systemic carbonic anhydrase inhibitors are contraindicated and laser PI has no role.

CONCLUSION

Secondary angle closure glaucomas require meticulous history taking, clinical examination, if necessary anterior segment imagings like UBM to identify the specific cause if possible and formulate a treatment plan to avoid ocular morbidity.

REFERENCES

1. Luntz MH, Rosenblatt M. Malignant glaucoma. Surv Ophthalmol 1987 Sep-Oct;32(2):73-93.
2. Harbour JW, Rubsamen PE, Palmberg P. Pars plana vitrectomy in the management of phakic and pseudophakic malignant glaucoma. Arch Ophthalmol 1996 Sep;114(9):1073-1078.
3. Lynch MG, Brown RH, Michels RG, Pollack IP, Stark WJ. Surgical vitrectomy for pseudophakic malignant glaucoma. Am J Ophthalmol 1986 Aug;102(2):149-153.
4. DiSclafani M, Liebmann JM, Ritch R. Malignant Glaucoma following argon laser release of scleral flap sutures after trabeculectomy. Am J Ophthalmol 1989 Nov;108(5):597-598.
5. Greenfield DS, Tello C, Budenz DL, Liebmann JM, Ritch R. Aqueous misdirection after glaucoma drainage device implantation. Ophthalmology 1999 May;106(5):1035-1040.
6. Cashwell LF, Martin TJ. Malignant glaucoma after laser iridotomy. Ophthalmology 1992 May;99(5):651-659.
7. Epstein, DL. The malignant glaucoma syndromes. In: Epstein DL, Allingham RR, Schuman JS, editors. Chandler and Grant’s Glaucoma. 4th ed. Baltimore: Williams & Wilkins; 1997. p. 285-303.
8. Lieberman, MF.; Lee, DA. Diagnosis and management of malignant glaucoma. In Higginbotham EJ, Lee DA, editors. Clinical guide to glaucoma management, Woburn, MA, Butterworth Heinemann/ Elsevier, 2004.
9. Trope GE, Pavlin CJ, Bua A, Baumal CR, Foster FS. Malignant glaucoma: Clinical and ultrasound biomicroscopic features. Ophthalmology 1994 Jun;101(6):1330-1335.
10. Chandler PA, Grant WM. Mydriatic-cycloplegic treatment in malignant glaucoma. Arch Ophthalmol 1962 Sep;68:353-359.
11. Sharma A, Sii F, Shah P, Kirkby GR. Vitrectomy-phacoemulsification-vitrectomy for the management of aqueous misdirection syndromes in phakic eyes. Ophthalmology 2006 Nov;113(11):1968-1973.
12. Stumpf TH, Austin M, Bloom PA, McNaught A, Morgan JE. Transscleral cyclodiode laser photocoagulation in the treatment of aqueous misdirection syndrome. Ophthalmology 2008 Nov;115(11):2058-2061.
13. Sivak-Callcott JA, O’Day DM, Gass JD, Tsai JC. Evidence-based recommendations for the diagnosis and treatment of neovascular glaucoma. Ophthalmology 2001 Oct;108(10): 1767-1776.
14. Tripathi RC, Li J, Tripathi BJ, Chalam KV, Adamis AP. Increased level of vascular endothelial growth factor in aqueous humour of patients with neovascular glaucoma. Ophthalmology 1998 Feb;105(2):232-237.
15. Allingham, RR.; Karim, F.; Sharon DF, et al. Shields Textbook of Glaucoma. New Delhi, India: Wolters Kluwer Pvt Ltd; 2011. Chapter 19, Glaucoma associated with disorder of the retina, vitreous and choroid.
16. Browning DJ. Risk of missing angle neovascularization by omitting angle screening gonioscopy in patients with diabetes mellitus. Am J Ophthalmol 1991 Aug 15;112(2):212.
31. Bloom PA, Tsai JC, Sharma K, Miller MH, Rice NS, Hitchings
glaucoma. Ophthalmology 1997 Sep;104(9):1508-1520.

32. Scott IU, Alexandrakis G, Flynn HW Jr, Smiddy WE, Murray
combined intravitreal bevacizumab and bevacizumab (Avastin) for neovascular
effects of pan–retinal photocoagulation on rubeosis iridis. Am
ocular endotheliopathy with iris abnormalities. The iridocorneal
neovascular glaucoma. Arch Ophthalmology 1979 May;86(3):317-324.

33. Mermoud A, Salmon JF, Alexander P, Straker C, Murray AD.
uncontrolled uveitic glaucoma. Ocul Immunol Inflamm 1998

34. Ramli N, Hoon HM, Ho CL, Aung T, Perera S. Risk factors
for hypotony after transscleral diode cyclophotocoagulation. J

35. Eagle RC Jr, Font RL, Yanoff M, Fine BS. Proliferative
endotheliopathy with iris abnormalities. The iridocorneal

36. Campbell DG, Shields MB, Smith TR. The corneal endothelium
and the spectrum of essential iris atrophy. Am J Ophthalmol 1978

37. Flanagan DW, Blach RK. Place of panretinal photocoagulation
in 6 patients. J Glaucoma 2009 May;14(7):912-918.

38. Duch S, Buchacra O, Milla E, Andreu D, Tellez J. Intracameral
plasminogen activator to treat impending pupillary block
syndrome. Ophthalmology 1991 Mar;98(3):314-316.

39. Kidd M, Hetherington J, Magee S. Surgical results in Iridocorneal
effect of pan–retinal photocoagulation on rubeosis iridis. Am

40. Wright MM, Grajewski AL, Cristol SM, Parrish RK. 5-Fluorouracil
for uveitic glaucoma with Ahmed glaucoma valve implantation. Ophthalmology 1999 Nov;106(11): 2168­

41. Skolnick CA, Fiscella RG, Tessler HH, Goldstein DA. Tissue
endotheliopathy with iris abnormalities. The iridocorneal
endothelial syndrome. Arch Ophthalmol 1979 Nov;97(11):2104­2111.

42. Kim DK, Aslanides IM, Schimdt CM Jr, Spaeth GL, Wilson
Augustine syndrome. Ophthalmology 1993 Mar­Apr;41(5):361­394.

43. Moorthy RS, Mermoud A, Baerveldt G, Minckler DS, Lee PP,
and trabeculectomy in the management of neovascular
syndrome. Ophthalmology 1991 Mar;98(3):314-316.

44. Ramli N, Hoon HM, Ho CL, Aung T, Perera S. Risk factors
for hypotony after transscleral diode cyclophotocoagulation. J

45. Eagle RC Jr, Font RL, Yanoff M, Fine BS. Proliferative
endotheliopathy with iris abnormalities. The iridocorneal

46. Kim DK, Aslanides IM, Schimdt CM Jr, Spaeth GL, Wilson
Augustine syndrome. Ophthalmology 1993 Mar­Apr;41(5):361­394.

47. Moorthy RS, Mermoud A, Baerveldt G, Minckler DS, Lee PP,
and trabeculectomy in the management of neovascular
syndrome. Ophthalmology 1991 Mar;98(3):314-316.

48. Skolnick CA, Fiscella RG, Tessler HH, Goldstein DA. Tissue
endotheliopathy with iris abnormalities. The iridocorneal
endothelial syndrome. Arch Ophthalmol 1979 Nov;97(11):2104­2111.

49. Hill RA, Nguyen QH, Baerveldt G, Forster DJ, Minckler DS,

50. Gil-Carrasco F, Salinas-VarOrman E, Recillas-Gispert C, Paczka
and trabeculectomy with mitomycin-C versus trabeculectomy with
the iridocorneal endothelial syndrome. Ophthalmology 1999

51. Lanzl IM, Wilson RP, Dudley D, Augsburger JJ, Aslanides IM,

52. Wright MM, Grajewski AL, Cristol SM, Parrish RK. 5-Fluorouracil
for uveitic glaucoma with Ahmed glaucoma valve implantation. Ophthalmology 1999 Nov;106(11): 2168­

53. Wright MM, Grajewski AL, Cristol SM, Parrish RK. 5-Fluorouracil
for uveitic glaucoma with Ahmed glaucoma valve implantation. Ophthalmology 1999 Nov;106(11): 2168­

54. Skolnick CA, Fiscella RG, Tessler HH, Goldstein DA. Tissue
endotheliopathy with iris abnormalities. The iridocorneal
endothelial syndrome. Arch Ophthalmol 1979 Nov;97(11):2104­2111.

55. Wright MM, Grajewski AL, Cristol SM, Parrish RK. 5-Fluorouracil
for uveitic glaucoma with Ahmed glaucoma valve implantation. Ophthalmology 1999 Nov;106(11): 2168­

56. Wright MM, Grajewski AL, Cristol SM, Parrish RK. 5-Fluorouracil
for uveitic glaucoma with Ahmed glaucoma valve implantation. Ophthalmology 1999 Nov;106(11): 2168­

57. Wright MM, Grajewski AL, Cristol SM, Parrish RK. 5-Fluorouracil
for uveitic glaucoma with Ahmed glaucoma valve implantation. Ophthalmology 1999 Nov;106(11): 2168­

58. Wright MM, Grajewski AL, Cristol SM, Parrish RK. 5-Fluorouracil
for uveitic glaucoma with Ahmed glaucoma valve implantation. Ophthalmology 1999 Nov;106(11): 2168­

59. Wright MM, Grajewski AL, Cristol SM, Parrish RK. 5-Fluorouracil
for uveitic glaucoma with Ahmed glaucoma valve implantation. Ophthalmology 1999 Nov;106(11): 2168­

60. Wright MM, Grajewski AL, Cristol SM, Parrish RK. 5-Fluorouracil
for uveitic glaucoma with Ahmed glaucoma valve implantation. Ophthalmology 1999 Nov;106(11): 2168­

61. Wright MM, Grajewski AL, Cristol SM, Parrish RK. 5-Fluorouracil
for uveitic glaucoma with Ahmed glaucoma valve implantation. Ophthalmology 1999 Nov;106(11): 2168­

62. Wright MM, Grajewski AL, Cristol SM, Parrish RK. 5-Fluorouracil
for uveitic glaucoma with Ahmed glaucoma valve implantation. Ophthalmology 1999 Nov;106(11): 2168­
52. Ceballos EM, Parrish RK 2nd, Schiffman JC. Outcome of Baerveldt glaucoma drainage implants for the treatment of uveitic glaucoma. Ophthalmology 2002 Dec;109(12):2256-2260.
53. Kanski JJ, McAllister JA. Trabeculodialysis for inflammatory glaucoma in children and young adults. Ophthalmology 1985 Jul;92(7):927-930.
54. Freedman SF, Rodriguez-Rosa RE, Rojas MC, Enyedi LB. Goniotomy for glaucoma secondary to chronic childhood uveitis. Am J Ophthalmol 2002 May;133(5):617-621.
55. Murphy CC, Burnett CA, Spry PG, Broadway DC, Diamond JP. A two centre study of the dose-response relation for transscleral diode laser cyclophotocoagulation in refractory glaucoma. Br J Ophthalmol 2003 Oct;87(10):1252-1257.
56. Azuara-Blanco A, Spaeth GL, Araujo SV, Augsburger JJ, Terebuh AK. Plateau iris syndrome associated with multiple ciliary body cysts. Report of three cases. Arch Ophthalmol 1996 Jun;114(6):666-668.
57. Ritch R, Liebmann JM. Role of ultrasound biomicroscopy in the differentiation of block glaucomas. Curr Opin Ophthalmol 1998 Apr;9(2):39-45.
58. Bron AJ, Wilson CB, Hill AR. Laser treatment of primary ring-shaped epithelial iris cyst. Br J Ophthalmol 1984 Dec;68(12):859-865.
59. Crowston JG, Medeiros FA, Mosaed S, Weinreb RN. Argon laser iridoplasty in the treatment of plateau-like iris configuration as result of numerous ciliary body cysts. Am J Ophthalmol 2005 Feb;139(2):381-383.
60. Lois N, Shields CL, Shields JA, Mercado G. Primary cysts of the iris pigment epithelium. Clinical features and natural course in 234 patients. Ophthalmology 1998 Oct;105(10):1877-1885.
61. Vela A, Rieser JC, Campbell DG. The heredity and treatment of angle-closure glaucoma secondary to iris and ciliary body cysts. Ophthalmology 1984 Apr;91(4):332-337.
62. Kuchenbecker J, Motschmann M, Schmitz K, Behrens-Baumann W. Laser iridocystotomy for bilateral acute angle-closure glaucoma secondary to iris cysts. Am J Ophthalmol 2000 Mar;129(3):391-393.
63. Kreiger AE, Hodgkinson BJ, Frederick AR Jr, Smith TR. The results of retinal detachment surgery: Analysis of 268 operations with a broad scleral buckle. Arch Ophthalmol 1971 Oct;86(4):385-394.
64. Burton TC, Folk JC. Laser iris retraction for angle-closure glaucoma after retinal detachment surgery. Ophthalmology 1988 Jun;95(6):742-748.
65. Scott IU, Gedde SJ, Budenz DL, Greenfield DS, Flynn HW Jr, Feuer WJ, Mello MO Jr, Krishna R, Godfrey DG. Baerveldt drainage implants in eyes with a preexisting scleral buckle. Arch Ophthalmol 2000 Nov;118(11):1509-1513.
66. Chang, S. Intraocular gases. In: Ryan SJ, editor. Retina. St Louis, MO: Mosby; 1994. p. 2115-2129.
67. Lincoff A, Haft D, Liggett P, Reifer C. Intravitreal expansion of perfluorocarbon bubbles. Arch Ophthalmol 1980 Sep;98(9):1646.
68. Lean JS, Boone DC, Azen SP, et al. Vitrectomy with silicone oil or sulfur hexafluoride gas in eyes with severe proliferative vitreoretinopathy: Results of a randomized clinical trial. Silicone Study Report 1. Arch Ophthalmol 1992 Jun;110(6):770-779.
69. McCuen B, Azen SP, Boone DC, et al. Vitrectomy with silicone oil or perfluoropropane gas in eyes with severe proliferative vitreoretinopathy: results of a randomized clinical trial. Silicone Study Report 2. Arch Ophthalmol 1992 Jun;110(6):780-792.
70. Mills MD, Devenyi RG, Lam WC, Berger AR, Beijer CD, Lam SR. An assessment of intraocular pressure rise in patients with gas-filled eyes during simulated air flight. Ophthalmology 2001 Jan;108(1):40-44.
71. Honavar SG, Goyal M, Majji AB, Sen PK, Naduvilath T, Dandona L. Glaucoma after pars plana vitrectomy and silicone oil injection for complicated retinal detachments. Ophthalmology 1999 Jan;106(1):169-177.
72. Budenz DL, Taba KE, Feuer WJ, Eliezer R, Cousins S, Henderer J, Flynn HW Jr. Surgical management of secondary glaucoma after pars plana vitrectomy and silicone oil injection for complex retinal detachment. Ophthalmology 2001 Sep;108(9):1628-1632.
73. Nguyen QH, Lloyd MA, Heuer DK, Baerveldt G, Minckler DS, Lean JS, Liggett PE. Incidence and management of glaucoma after intravitreal silicone oil injection for complicated retinal detachments. Ophthalmology 1992 Oct;99(10):1520-1526.
74. Gedde SJ. Management of glaucoma after retinal detachment surgery. Curr Opin Ophthalmol 2002 Apr;13(2):103-109.
75. Lima FE, Magacho L, Carvalho DM, Susanna R Jr, Avila MP. A prospective, comparative study between endoscopic cryophotocoagulation and the Ahmed drainage implant in refractory glaucoma. J Glaucoma 2004 Jun;13(3):233-237.
76. Uram M. Combined phacoemulsification, endoscopic ciliary process photocoagulation and intraocular lens implantation in glaucoma management. Ophthalmic Surg 1995 Jul-Aug;26(4):346-352.
77. Fraunfelder FW, Fraunfelder FT. Topiramate-induced glaucoma. Asian J Ophthalmol 2007;9(5):213-215.
78. Narayanaswamy AK, Antrolilak M, Vijaya L. Acetazolamide-induced glaucoma. Asian J Ophthalmol 2007;9(5):213-215.