Isoform-selective induction of human p110δ PI3K expression by TNFα: identification of a new and inducible PIK3CD promoter

Maria A. WHITEHEAD*, Michele BOMBARDIERIT, Costantino PITZALIS† and Bart VANHAESEBROECK*1,2

*Centre for Cell Signalling, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, U.K., and †Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, U.K.

P110δ (phosphoinositide 3-kinases) are signalling molecules and drug targets with important biological functions, yet the regulation of P110δ gene expression is poorly understood. Key P110δs are the class IA P110δs that consist of a catalytic subunit (p110α, p110β and p110γ) in complex with a p85 regulatory subunit. Whereas p110α and p110β are ubiquitously expressed, high levels of p110γ are mainly found in white blood cells, with most non-leucocytes expressing low levels of p110δ. In the present paper we report that TNFα (tumour necrosis factor α) stimulation induces p110δ expression in human ECs (endothelial cells) and synovial fibroblasts, but not in leucocytes, through transcription start sites located in a novel promoter region in the p110δ gene (PIK3CD). This promoter is used in all cell types, including solid tumour cell lines that express p110δ, and is activated by TNFα in ECs and synovial fibroblasts. We further present a detailed biochemical and bioinformatic characterization of p110δ gene regulation, demonstrating that PIK3CD has distinct promoters, some of which can be dynamically activated by pro-inflammatory mediators. This is the first molecular identification of a P110δ promoter under the control of acute extracellular stimulation.

Key words: bioinformatics, cytokine, inflammation, promoter, PIK3CD, tumour necrosis factor α (TNFα).

INTRODUCTION

P110δs (phosphoinositide 3-kinases) phosphorylate inositol lipids in cellular membranes in response to a variety of stimuli. The involvement of P110δs in immunity, inflammation and cancer has made these enzymes important new targets for drug development [1–3]. This also applies to p110δ, a P110δ isoform mainly expressed in leucocytes [4,5], and Phase I/II trials with p110δ inhibitors are currently in progress for allergy and haematological malignancies [6,7].

Previous studies have started to uncover the molecular mechanism of the selective enrichment of p110δ in the haematopoietic lineage. p110δ expression is mainly regulated at the transcriptional level with the protein being produced from transcripts with different 5′-UTRs (untranslated regions) as a consequence of the presence of multiple TSSs (transcription start sites) in the p110δ gene (PIK3CD in humans and Pik3cd in mice) [8]. The 5′-UTR of most p110δ transcript types contains two untranslated exons, referred to as exons −1 and −2. Of the latter, two distinct species have been found in humans (−2a and −2b) and four in mice (−2a, −2b, −2c and −2d), with only exon −1 and a region of exon −2a being conserved between humans and mice [8]. In both human and mouse leucocytes, the p110δ transcript containing exons −2a and −1 is the most abundant, in line with the presence of a conserved region of predicted binding sites for leucocyte-specific TFs (transcription factors) in the proximal promoter region of the TSS of exon −2a. Upon transient transfection this region of the murine genome has a higher promoter activity in leucocytes than in non-leucocytes, and therefore probably contributes to the high expression of p110δ in haematopoietic cells [8].

In addition to leucocytes, some non-leucocytes such as melanocytes, breast cells and their transformed equivalents [8,10], neurons [11], ECs (endothelial cells) [12] and lung fibroblasts [13] also express p110δ, albeit at lower levels than in leucocytes. It is unclear how the expression of p110δ is controlled in these cells. In addition, p110δ expression can be increased in some non-leucocytes such as in rat aortic tissue upon long-term treatment (2–4 weeks) with hypertension-inducing agents [DOCA (deoxycorticosterone acetate) or N−nitro-L-arginine] [14], in rat and mouse cardiac fibroblasts upon a more acute stimulation (30–60 min) with aldosterone [15] and in the aortas of diabetic mice [16]. These studies, however, did not address the regulatory mechanism underlying the observed increase in p110δ levels.

We report in the present paper that TNFα (tumour necrosis factor α) stimulation induces the expression of p110δ in human ECs and synovial fibroblasts. We describe a novel and inducible human PIK3CD promoter region that gives rise to p110δ transcripts with previously unidentified 5′-UTRs. We further analyse and discuss these observations in the broader context of the distinct PIK3CD promoters that direct p110δ expression in different cell types.

EXPERIMENTAL

Antibodies and reagents

Antibodies were as follows: anti-p110α (C73F8) (catalogue number 4249), anti-p110β (C33D4) (catalogue number 3011), anti-p58 MAPK (mitogen-activated protein kinase) (phospho-Thr180/Tyr182) (3D7) (catalogue number 9215) and anti-NF-κB

Abbreviations used: ActD, actinomycin D; ChIP, chromatin immunoprecipitation; ChIP-seq, ChIP sequencing; DMEM, Dulbecco’s modified Eagle’s medium; EC, endothelial cell; ENCODE, Encyclopedia of DNA Elements; EST, expressed sequence tag; FBS, fetal bovine serum; H3K27Ac, histone 3 Lys27 acetylation; H3K4Me1, monomethylation of histone 3 Lys4; H3K4Me3, trimethylation of histone 3 Lys4; HUGEC, human umbilical vein EC; IaB, inhibitory αβ; IKK, IκB kinase; IL, interleukin; NF-κB, nuclear factor κB; PI3K, phosphoinositide 3-kinase; qPCR, quantitative PCR; 5′RACE, rapid amplification of 5′ cDNA ends; SV40, simian virus 40; TF, transcription factor; TNFα, tumour necrosis factor α; TSS, transcription start site; UCSC, University of California Santa Cruz; UTR, untranslated region.

1 Bart Vanhaesebroeck is a consultant to GlaxoSmithKline (Stevenage, U.K.) and is a founder of and consultant to Activiomics (London, U.K.).

2 To whom correspondence should be addressed (email bart.vanh@qmul.ac.uk).
were maintained at 37°C and 5% CO₂, and MCF-7 cells, RPMI 1640 supplemented with 10% FBS were grown on plastic coated with human fibronectin (10 μg/ml; Sigma). HUVECs were purchased from Lonza and cultured in EGM-2 medium (Lonza). HUVECs were used for experiments between passages 3 and 5. Synovial fibroblasts were cultured in DMEM/Ham’s F12 media (Invitrogen) and used for experiments after informed consent (local research ethics committee reference number 05/Q0703/198) and used for isolation of synovial fibroblasts as described previously [17]. Synovial fibroblasts were cultured in DMEM/Ham’s F12 supplemented with 10% FBS and 10 mM Hepes and used for experiments between passages 6 and 9 when the culture is devoid of contaminating lymphocytes and macrophages [18]. All cells were maintained at 37°C and 5% CO₂. All cytokine stimulations were performed in complete culture medium, defined as medium containing FBS and antibiotics.

Western blotting

Cells were collected and lysed in lysis buffer [50 mM Tris/HCl (pH 7.4), 150 mM NaCl, 1 mM EDTA and 1% (v/v) Triton X-100] supplemented with protease inhibitors. Equal amounts of protein were separated by SDS/PAGE (8% gels), immunoblotted with primary antibodies and HRP (horseradish peroxidase)-conjugated species-specific secondary antibodies and exposed to X-ray film. A Bio-Rad Laboratories GS-800 calibrated densitometer was used to quantify Western blot signals.

qPCR (quantitative PCR)

Total RNA was isolated using RNeasy Mini Kit (Qiagen). Equal amounts of RNA were transcribed to cDNA with SuperScript II reverse transcriptase using random primers (Invitrogen). TaqMan Gene Expression Assays were from Applied Biosystems: Hs00180679 (p110α), Hs00178872_m1 (p110β), Hs00192399_m1 (p110δ), Hs00933163 (p85α), Hs00178181_m1 (p85β), Hs99999034_m1 (IL-8), eukaryotic 18S rRNA (4310893E) and β-actin (4326315E). Custom-designed assays were used for specific human p110α transcripts (sequences provided in Supplementary Table S1). The FirstChoice RLM-RACE kit (Ambion) was used to mutate the NF-κB site in p1103-exon-2e (primer sequences shown in Supplementary Table S1).

Cloning of pGL3 reporter constructs

pGL3-Basic (E1751), pGL3-SV40 (E1761), pRL-SV40 (Renilla; E2231) were from Promega. Regions surrounding human PIK3CD exons −2a and −2e (−139 to +92 and −385 to +197 relative to the start sites of exons −2a and −2e respectively) were PCR-amplified and inserted into pGL3-Basic using the MluI/BglII sites (primer sequences shown in Supplementary Table S1). The sequence surrounding exon −2c [−640 to +310 relative to start site of exon −2c according to EST (expressed sequence tag) DB216922] with flanking 5′ MluI and 3′ BglII sites was synthesized by OriGene Technologies and subcloned into pGL3-Basic using the MluI/BglII sites. The QuikChange Site-Directed Mutagenesis Kit (Stratagene) was used to mutate the NF-κB site in pGL3-exon-2e (primer sequences shown in Supplementary Table S1).

Transfection and reporter gene assays

Cells in 12-well plates were co-transfected in triplicate with 0.5 μg/well pGL3-luc plasmid and 0.25 μg/well pRL-SV40 using FuGENE. Cells received complete medium with TNFα (10 ng/ml) or complete medium only (unstimulated control) 24 h after transfection. Lysates were prepared 48 h after transfection using the Dual-Luciferase Reporter Assay System (Promega) and luciferase activity was analysed using a Wallac 1420 VICTORⅢ Multilabel Counter (PerkinElmer). Renilla luciferase activity was used to normalize transfection efficiency. Promoter activity was expressed as the percentage of the activity of the pGL3-SV40 reporter. The promoter of the Vav gene [20] cloned into the pGL2 luciferase reporter was used as control for leucocyte-specific promoter activity [8].

Bioinformatic analysis of the human PIK3CD locus

The sequences of the p110δ exons −2c, −2d and −2e identified in 5′RACE clones were queried against the EST database using NCBI Blast (http://blast.ncbi.nlm.nih.gov/Blast.cgi). The Ensembl genome database (GRCh37 assembly, release 64) was used to inspect annotated human p110δ transcripts. The TFSEARCH programme v.1.3 was used to predict NF-κB-binding sites using the vertebrate matrix with a threshold of 90 points (http://www.cbrc.jp/research/db/TFSEARCH.html).

The PIK3CD locus (chr1:9,605,000-9,715,721) was analysed in the Human March 2006 (NCBI36/hg18) Assembly of the UCSC (University of California Santa Cruz) genome browser (http://genome.ucsc.edu/) for the presence of transcriptional regulatory elements using the genome-wide data generated by the ENCODE (Encyclopedia of DNA Elements) consortium [21]. Sequence conservation is depicted in the form of a multiple sequence alignment of the corresponding genomic sequences of chimp, mouse, rat, cow and dog generated using the MultiZ
track. The DNase Clusters track shows DNase I-hypersensitivity sites known to be associated with gene-regulatory regions. The Tmx Factor ChIP track shows TF binding to DNA as assessed by ChIP-seq [ChIP (chromatin immunoprecipitation)-sequencing]. The data for the DNase Clusters and Tmx Factor ChIP tracks was from Gm12878 and K562 cells. The CpG islands track shows predictions of CpG islands using the following criteria: GC content >50%; >200 bp length; observed/expected CG dinucleotides ratio >0.6. The Eponine track shows TSS predictions and the FirstEF track predictions of 5′-terminal exons and associated promoters. The track containing ChIP-seq data of promoter and enhancer-associated histone modifications [H3K4Me1 (monomethylation of histone 3 Lys4) and H3K4Me3 (trimethylation of histone 3 Lys4)] and H3K27Ac (histone 3 Lys27 acetylation) was divided into leukocytes [Gm12878 (transformed human B-lymphocyte) and K562 (chronic myelogenous leukaemia)] and non-leucocytes [H1 ES (undifferentiated embryonic stem cells), HMECs (human mammary epithelial cells), HSMMs (normal human skeletal muscle myoblasts), HUVECs, NHEKs (normal human epidermal keratinocytes), NHLFs (normal human lung fibroblasts) and HepG2 cells (human hepatocellular carcinoma cells; not included in the H3K4Me1 track)]. The data tracks were exported from the UCSC genome browser and compiled using Adobe Illustrator.

Bioinformatic analysis of the mouse Pik3cd locus

The Ensembl database (NCBI37 assembly, release 64) was inspected for annotated mouse p110δ transcripts. The mouse Pik3cd locus was inspected in the UCSC genome browser (NCBI37/mm9 assembly). ChIP-seq data from the histone modification track [ENCODER/ILCR (Ludwig Institute for Cancer Research)] for the promoter-associated H3K4Me4 modification in different tissue and cell types are shown in Figure 4, and Supplementary Figures S3 and S4 at http://www.BiochemJ.org/bj/443/bj4430857add.htm). The data tracks were exported from the UCSC genome browser and compiled using Adobe Illustrator.

RESULTS

TNFα stimulation increases p110δ expression in human ECs and synoviocytes

The expression of Pik3cd mRNA was also increased upon IL-1β stimulation of HUVECs and synovial fibroblasts (Supplementary Figure S2 at http://www.BiochemJ.org/bj/443/bj4430857add.htm), but not EA.hy926 (results not shown), in line with the notion that EA.hy926 cells are not responsive to IL-1β [24,25]. To determine whether TNFα-induced p110δ expression was a common phenomenon or limited to ECs and synovial fibroblasts, we extended our analysis to include different human and murine cell types. To our surprise, TNFα stimulation had only a minor or no effect on p110δ mRNA or protein levels in the other cell types that we tested (Supplementary Table S2 at http://www.BiochemJ.org/bj/443/bj4430857add.htm). Interestingly, p110δ expression was not induced in murine ECs (primary lung or cardiac ECs) upon stimulation with TNFα (results not shown).

TNFα regulates cellular mRNA levels by inducing de novo transcription and/or by stabilizing existing transcripts. To determine whether TNFα increased cellular p110δ levels through a transcriptional mechanism, we pre-treated ECs with the transcriptional inhibitor ActD prior to stimulation with TNFα. The only way in which TNFα stimulation could increase Pik3cd mRNA levels in ActD-treated cells would be through enhancing the stability of existing p110δ transcripts. However, TNFα stimulation did not significantly alter the stability of p110δ transcripts in ActD-treated HUVECs or EA.hy926 cells (Figure 1E), demonstrating that TNFα induces p110δ expression by stimulating the transcription of Pik3cd.

Bioinformatic analysis of the mouse Pik3cd locus

The Ensembl database (NCBI37 assembly, release 64) was inspected for annotated mouse p110δ transcripts. The mouse Pik3cd locus was inspected in the UCSC genome browser (NCBI37/mm9 assembly). ChIP-seq data from the histone modification track [ENCODER/ILCR (Ludwig Institute for Cancer Research)] for the promoter-associated H3K4Me4 modification in different tissue and cell types are shown in Figure 4, and Supplementary Figures S3 and S4 at http://www.BiochemJ.org/bj/443/bj4430857add.htm). The data tracks were exported from the UCSC genome browser and compiled using Adobe Illustrator.

TNFα stimulation induces expression of Pik3cd mRNA transcripts that contain novel 5′ untranslated exons

Baseline p110δ transcripts in ECs contained exon 1, without 2 exons (results not shown). We next used 5′RACE to identify the structure of the 5′-UTR of Pik3cd mRNA transcripts induced by TNFα stimulation of HUVECs and EA.hy926 cells (Figure 2A). A single PCR product was present in unstimulated cells, whereas TNFα stimulation led to the appearance of additional PCR products (Figures 2B and 2C). Cloning and sequencing of these PCR products revealed previously unidentified Pik3cd 5′-UTRs containing three new untranslated exons, located in close proximity to each other in the human genome, approximately 3 kb upstream of exon 1 (Figures 2D and 3A). In line with the nomenclature of currently known first exons of human Pik3cd (exon 2 and 2b), the new exons were named exons 2c, 2d and 2e (Figure 2D). All of the 2 exons identified contain a canonical splice donor site, with exon 2d also containing a splice acceptor site (Figure 2D and Table 1). Accordingly, each 2 exon was spliced to the 5′-end of exon 1 that is common to all Pik3cd transcripts (shown schematically in Figure 2D). In addition, a further 5′RACE product with exon 2d spliced between exons 2e and 1 was found in TNFα-stimulated EA.hy926 cells (Figures 2D and 3A).

Mouse Pik3cd transcripts with 5′ untranslated exons with a genomic location corresponding to that of human exons 2c, 2d and 2e were present in the Ensembl database (Figure 3B, transcripts E, G, H and I), with the first exon of transcripts E, G, H and I, with the first exon of transcripts E, G, H and I corresponding to that of human exons 2c, 2d and 2e (Figure 3B). All of the 2 exons identified contain a canonical splice donor site, with exon 2d also containing a splice acceptor site (Figure 2D and Table 1). Accordingly, each 2 exon was spliced to the 5′-end of exon 2e and 1 was found in TNFα-stimulated EA.hy926 cells (Figures 2D and 3A).

Mouse Pik3cd transcripts with 5′ untranslated exons with a genomic location corresponding to that of human exons 2c, 2d and 2e were present in the Ensembl database (Figure 3B, transcripts E, G, H and I), with the first exon of transcripts E, G, H and I corresponding to that of human exons 2c, 2d and 2e (Figure 3B). All of the 2 exons identified contain a canonical splice donor site, with exon 2d also containing a splice acceptor site (Figure 2D and Table 1). Accordingly, each 2 exon was spliced to the 5′-end of exon 2e and 1 was found in TNFα-stimulated EA.hy926 cells (Figures 2D and 3A).

The expression of Pik3cd mRNA was also increased upon IL-1β stimulation of HUVECs and synovial fibroblasts (Supplementary Figure S2 at http://www.BiochemJ.org/bj/443/bj4430857add.htm), but not EA.hy926 (results not shown), in line with the notion that EA.hy926 cells are not responsive to IL-1β [24,25]. To determine whether TNFα-induced p110δ expression was a common phenomenon or limited to ECs and synovial fibroblasts, we extended our analysis to include different human and murine cell types. To our surprise, TNFα stimulation had only a minor or no effect on p110δ mRNA or protein levels in the other cell types that we tested (Supplementary Table S2 at http://www.BiochemJ.org/bj/443/bj4430857add.htm). Interestingly, p110δ expression was not induced in murine ECs (primary lung or cardiac ECs) upon stimulation with TNFα (results not shown).

TNFα regulates cellular mRNA levels by inducing de novo transcription and/or by stabilizing existing transcripts. To determine whether TNFα increased cellular p110δ levels through a transcriptional mechanism, we pre-treated ECs with the transcriptional inhibitor ActD prior to stimulation with TNFα. The only way in which TNFα stimulation could increase Pik3cd mRNA levels in ActD-treated cells would be through enhancing the stability of existing p110δ transcripts. However, TNFα stimulation did not significantly alter the stability of p110δ transcripts in ActD-treated HUVECs or EA.hy926 cells (Figure 1E), demonstrating that TNFα induces p110δ expression by stimulating the transcription of Pik3cd.
Bioinformatic analysis of the PIK3CD/Pik3cd locus supports the existence of a novel PIK3CD/Pik3cd promoter, active in both leucocytes and non-leucocytes

We previously showed that a conserved genomic region of mouse Pik3cd exon −2a has higher promoter activity in leucocytes than in non-leucocytes, which is probably due to a cluster of binding sites for leucocyte-specific TFs in this region [8]. The promoters associated with the other known mouse TSSs and with the human PIK3CD TSSs have not been identified to date.

To gain more insight into the regulation of p110δ expression, we analysed the nature of potential regulatory elements associated with the different TSSs in both the human and mouse PIK3CD/Pik3cd genes. To this end, we used genome-wide data on regulatory elements compiled by the ENCODE project [21], available in the UCSC genome browser. Figure 4 shows the human PIK3CD locus in the UCSC genome browser and a selection of regulatory elements. The 5′-UTR in the PIK3CD reference mRNA transcript (RefSeq) is formed of exons −2a and −1. We extended the region of analysis approximately 25 kb upstream of exon −2a in order to include the TSS of exon −2b. A multiple species alignment showed that in addition to the coding region of PIK3CD, selected areas in the upstream genomic region showed conservation across mammals (Figure 4, sequence conservation panel). Interestingly, we found that cis- and trans-acting regulatory elements commonly associated with transcriptional regulation, including chromatin accessibility (DNase clusters), occupied TF-binding sites (Txn Factor ChIP) and Epinephrine and FirstEF promoter predictions, clustered in three regions (Figure 4, regions 1–3). As expected, two of these regions were associated with the previously identified exons −2b and −2a (Figure 4, regions 1 and 2). Interestingly, the location of the third cluster of regulatory elements (Figure 4, region 3) coincided with that of the newly identified exons −2c, −2d and −2e. This genomic region upstream of exon −1 was not known previously to contain a promoter.

Specific covalent modifications of histones have been shown to be associated with gene regulatory regions such as promoters and enhancers [21,26]. The ENCODE data on histone modifications (H3K4Me1, H3K27Ac and H3K4Me3) have been compiled from different human cell types (Figure 4 and Supplementary Figure S3 at http://www.BiochemJ.org/bj/443/bj4430857add.htm, represented by different colours). As the expression of p110δ is highly polarized depending on the cell type, we analysed histone
Table 1 Summary of 5′ untranslated exons in human PIK3CD

Exon	bp	TSS distance from ATG (kb)	Splice acceptor	5′-end of exon	3′-end of exon	Splice donor
−2e	41	23	ggctgccg	CTCTCCGCGG	GTGCCGGCGG	gttaggcc
−2d	183	22	tttccttg	GCCGAGGAAG	TGTGCGCAAG	gtgggttt
−2c	124	21	cccgggc	CCCTCGCGGC	GGCACCGCGG	gttagggg
−2c (EST)	177	21	ccggccg	CTCCTCGCGG	GGGAGCCCGC	gtaggggc
−2c (EST)	250	81	cgggggtgc	GAGGCCCGCA	ACTCTGACAG	gtgggta
−2a	59	58	ggcgccag	GCAGTCGTCT	CGCCGCGGACG	gtgaaggt
−1	105	19	ccccaatag	ATAGGAGTC	TTTCCAGAGAG	gtaggggg

TNFα-stimulated expression of distinct PIK3CD transcripts

Given that our bioinformatic analysis strongly suggested that a functional promoter was associated with the TSSs of exons −2c, −2d and −2e, we analysed PIK3CD transcript expression by qPCR with primer/probe sets specific for the distinct untranslated exon–exon boundaries (Figure 5A), under basal conditions and after TNFα stimulation.

In ECs, basal levels of PIK3CD transcripts with exons −2c, −2d and −2e were low but increased upon TNFα stimulation (Figures 5B and 5C), in line with our 5′RACE results. Exon
Figure 3 Human and mouse PIK3CD/Pik3cd transcripts identified to date

(A) Human PIK3CD transcripts identified by 5′RACE in ECs or different human cell types [8] (upper panel) or found in the Ensembl database (lower panel). The PIK3CD transcripts in the Ensembl database are labelled as follows: A, PIK3CD-202; B, PIK3CD-001; C, PIK3CD-002; D, PIK3CD-201; E, PIK3CD-003; F, PIK3CD-005; G, PIK3CD-006; H, PIK3CD-203; and I, PIK3CD-004. Transcripts C, D and E lack the canonical exon −1 and instead contain an alternative exon −1 (indicated with an arrow). Evidence for a PIK3CD transcript with an additional upstream exon that is spliced between exons −2a and −1 and that is located 23 kb upstream of exon −2e in the genome was found in an EST isolated from pre-B-cell acute lymphoblastic leukaemia cells (GenBank® accession number BE246970; not shown). (B) Mouse Pik3cd transcripts identified by 5′RACE [8] (upper panel) or found in the Ensembl database (lower panel). The Pik3cd transcripts in the Ensembl database are labelled as follows: A, Pik3cd-001; B, Pik3cd-003; C, Pik3cd-012; D, Pik3cd-201; E, Pik3cd-007; F, Pik3cd-002; G, Pik3cd-008; H, Pik3cd-005; I, Pik3cd-004; J, Pik3cd-009; K, Pik3cd-010; L, Pik3cd-011; and M, Pik3cd-006. The first 5′ exon in transcripts E and G is homologous with human exon −2c (indicated with an asterisk). Exons are shown as boxes and introns are shown as connecting lines.

Figure 3 Human and mouse PIK3CD/Pik3cd transcripts identified to date

(A) Human PIK3CD transcripts identified by 5′RACE in ECs or different human cell types [8] (upper panel) or found in the Ensembl database (lower panel). The PIK3CD transcripts in the Ensembl database are labelled as follows: A, PIK3CD-202; B, PIK3CD-001; C, PIK3CD-002; D, PIK3CD-201; E, PIK3CD-003; F, PIK3CD-005; G, PIK3CD-006; H, PIK3CD-203; and I, PIK3CD-004. Transcripts C, D and E lack the canonical exon −1 and instead contain an alternative exon −1 (indicated with an arrow). Evidence for a PIK3CD transcript with an additional upstream exon that is spliced between exons −2a and −1 and that is located 23 kb upstream of exon −2e in the genome was found in an EST isolated from pre-B-cell acute lymphoblastic leukaemia cells (GenBank® accession number BE246970; not shown). (B) Mouse Pik3cd transcripts identified by 5′RACE [8] (upper panel) or found in the Ensembl database (lower panel). The Pik3cd transcripts in the Ensembl database are labelled as follows: A, Pik3cd-001; B, Pik3cd-003; C, Pik3cd-012; D, Pik3cd-201; E, Pik3cd-007; F, Pik3cd-002; G, Pik3cd-008; H, Pik3cd-005; I, Pik3cd-004; J, Pik3cd-009; K, Pik3cd-010; L, Pik3cd-011; and M, Pik3cd-006. The first 5′ exon in transcripts E and G is homologous with human exon −2c (indicated with an asterisk). Exons are shown as boxes and introns are shown as connecting lines.

Figure 3 Human and mouse PIK3CD/Pik3cd transcripts identified to date

(A) Human PIK3CD transcripts identified by 5′RACE in ECs or different human cell types [8] (upper panel) or found in the Ensembl database (lower panel). The PIK3CD transcripts in the Ensembl database are labelled as follows: A, PIK3CD-202; B, PIK3CD-001; C, PIK3CD-002; D, PIK3CD-201; E, PIK3CD-003; F, PIK3CD-005; G, PIK3CD-006; H, PIK3CD-203; and I, PIK3CD-004. Transcripts C, D and E lack the canonical exon −1 and instead contain an alternative exon −1 (indicated with an arrow). Evidence for a PIK3CD transcript with an additional upstream exon that is spliced between exons −2a and −1 and that is located 23 kb upstream of exon −2e in the genome was found in an EST isolated from pre-B-cell acute lymphoblastic leukaemia cells (GenBank® accession number BE246970; not shown). (B) Mouse Pik3cd transcripts identified by 5′RACE [8] (upper panel) or found in the Ensembl database (lower panel). The Pik3cd transcripts in the Ensembl database are labelled as follows: A, Pik3cd-001; B, Pik3cd-003; C, Pik3cd-012; D, Pik3cd-201; E, Pik3cd-007; F, Pik3cd-002; G, Pik3cd-008; H, Pik3cd-005; I, Pik3cd-004; J, Pik3cd-009; K, Pik3cd-010; L, Pik3cd-011; and M, Pik3cd-006. The first 5′ exon in transcripts E and G is homologous with human exon −2c (indicated with an asterisk). Exons are shown as boxes and introns are shown as connecting lines.

TNFα stimulation induces the activity of an exon −2e-associated NF-κB-dependent PIK3CD promoter in ECs

TNFα mediates most of its effects on the transcriptome via the NF-κB family of TFs. An in silico analysis of TF-binding sites in the PIK3CD locus identified four putative NF-κB-binding sites [κB(1)–(4)] in the genomic region surrounding exons −2c, −2d and −2e (Figure 6A) with sequences similar to that of the NF-κB consensus sequence [27] (Figure 6B).

We next assessed the TNFα-responsiveness of promoters of the newly identified PIK3CD TSSs. The genomic regions surrounding exons −2e and −2c (Figure 6A) were inserted into the promoterless pGL3-Basic luciferase reporter plasmid and their activities were analysed after transient transfection in unstimulated or TNFα-stimulated EA.hy926 cells. The basal activity of the exon −2e promoter was comparable with that of the SV40 (simian virus 40)‐driven positive control promoter (Figure 6C, white bars) and, importantly, was further enhanced upon TNFα stimulation.
The human PIK3CD locus (chromosome 1, bp 9605000–9715721) in the UCSC genome browser is shown. The RefSeq PIK3CD transcript (on top) contains the untranslated exons −2a and −1 and all of the protein coding exons. The approximate genomic locations of exons −2b, −2c, −2d and −2e are indicated with arrows on top of the RefSeq transcript. Sequence conservation shows a Multiz sequence alignment for the indicated species. For DNase clusters and TF ChIP data, a grey box indicates signal strength so that the darkness of the box is proportional to the maximum signal strength observed. ChIP-seq data for H3K4Me3 are shown separately for non-leucocytes and leucocytes, with data from individual cell types shown in different colours (lower panel). The approximate genomic locations of exons −2b, −2a, −2c, −2d and −2e are indicated with arrows on top of the RefSeq transcript. Sequence conservation shows a Multiz sequence alignment for the indicated species.

Figure 4 Three human PIK3CD promoter regions revealed by bioinformatic analysis of functional regulatory elements

The human PIK3CD locus (chromosome 1, bp 9605000–9715721) in the UCSC genome browser is shown. The RefSeq PIK3CD transcript (on top) contains the untranslated exons −2a and −1 and all of the protein coding exons. The approximate genomic locations of exons −2b, −2c, −2d and −2e are indicated with arrows on top of the RefSeq transcript. Sequence conservation shows a Multiz sequence alignment for the indicated species. For DNase clusters and TF ChIP data, a grey box indicates signal strength so that the darkness of the box is proportional to the maximum signal strength observed. ChIP-seq data for H3K4Me3 are shown separately for non-leucocytes and leucocytes, with data from individual cell types shown in different colours (lower panel). The approximate genomic locations of exons −2b, −2a, −2c, −2d and −2e are indicated with arrows on top of the RefSeq transcript. Sequence conservation shows a Multiz sequence alignment for the indicated species.

Figure 4 Three human PIK3CD promoter regions revealed by bioinformatic analysis of functional regulatory elements

The human PIK3CD locus (chromosome 1, bp 9605000–9715721) in the UCSC genome browser is shown. The RefSeq PIK3CD transcript (on top) contains the untranslated exons −2a and −1 and all of the protein coding exons. The approximate genomic locations of exons −2b, −2c, −2d and −2e are indicated with arrows on top of the RefSeq transcript. Sequence conservation shows a Multiz sequence alignment for the indicated species. For DNase clusters and TF ChIP data, a grey box indicates signal strength so that the darkness of the box is proportional to the maximum signal strength observed. ChIP-seq data for H3K4Me3 are shown separately for non-leucocytes and leucocytes, with data from individual cell types shown in different colours (lower panel). The approximate genomic locations of exons −2b, −2a, −2c, −2d and −2e are indicated with arrows on top of the RefSeq transcript. Sequence conservation shows a Multiz sequence alignment for the indicated species.

Figure 4 Three human PIK3CD promoter regions revealed by bioinformatic analysis of functional regulatory elements

The human PIK3CD locus (chromosome 1, bp 9605000–9715721) in the UCSC genome browser is shown. The RefSeq PIK3CD transcript (on top) contains the untranslated exons −2a and −1 and all of the protein coding exons. The approximate genomic locations of exons −2b, −2c, −2d and −2e are indicated with arrows on top of the RefSeq transcript. Sequence conservation shows a Multiz sequence alignment for the indicated species. For DNase clusters and TF ChIP data, a grey box indicates signal strength so that the darkness of the box is proportional to the maximum signal strength observed. ChIP-seq data for H3K4Me3 are shown separately for non-leucocytes and leucocytes, with data from individual cell types shown in different colours (lower panel). The approximate genomic locations of exons −2b, −2a, −2c, −2d and −2e are indicated with arrows on top of the RefSeq transcript. Sequence conservation shows a Multiz sequence alignment for the indicated species.

Figure 4 Three human PIK3CD promoter regions revealed by bioinformatic analysis of functional regulatory elements

The human PIK3CD locus (chromosome 1, bp 9605000–9715721) in the UCSC genome browser is shown. The RefSeq PIK3CD transcript (on top) contains the untranslated exons −2a and −1 and all of the protein coding exons. The approximate genomic locations of exons −2b, −2c, −2d and −2e are indicated with arrows on top of the RefSeq transcript. Sequence conservation shows a Multiz sequence alignment for the indicated species. For DNase clusters and TF ChIP data, a grey box indicates signal strength so that the darkness of the box is proportional to the maximum signal strength observed. ChIP-seq data for H3K4Me3 are shown separately for non-leucocytes and leucocytes, with data from individual cell types shown in different colours (lower panel). The approximate genomic locations of exons −2b, −2a, −2c, −2d and −2e are indicated with arrows on top of the RefSeq transcript. Sequence conservation shows a Multiz sequence alignment for the indicated species.
DISCUSSION

The functional role of the p110δ PI3K isoform has been widely studied in cells of the haematopoietic lineage in which p110δ expression is highly enriched. However, some non-leucocytes also express p110δ at moderate levels. Our results show that pro-inflammatory cytokines induce the expression of p110δ in human ECs and synovial fibroblasts, both important stromal cell types not often associated with p110δ expression or activity. In addition, we have identified a novel promoter region for human PIK3CD that gives rise to transcripts with previously unidentified 5′-UTRs. Figure 8 summarizes how this new promoter region compares with the other p110δ transcriptional elements known to date.

We previously showed that the exon – 2a promoter allows high basal expression of p110δ in mouse leucocytes [8]. Our results in human cells on exon – 2a transcript expression, reporter gene assay (Supplementary Figure S6 at http://www.BiochemJ.org/bj/443/bj4430857add.htm) and analysis of promoter-associated histone modifications demonstrate that the promoter of exon – 2a (Figure 8, promoter 2) is used to generate high basal expression of p110δ also in human leucocytes. In addition, expression of human exon – 2b transcripts was highly restricted to leucocytes and the exon – 2b promoter region (Figure 8, promoter 1) showed similar leucocyte-specific enrichment of H3K4Me3 as seen in the exon – 2a promoter, suggesting that transcription from the exon – 2b TSS also contributes to high p110δ expression in leucocytes. It is likely that a combination of regulatory mechanisms together allow enrichment of p110δ in leucocytes while keeping its expression low in other cell types. First, there is evidence to suggest that the exon – 2a promoter region might be subject to active silencing, in a lineage-dependent manner. Indeed, a recent study demonstrated an inverse correlation between methylation of the genomic region upstream of PIK3CD exon – 2a and p110δ expression in haematopoietic cells [28], suggesting that leucocyte-dependent hypomethylation contributes to the enrichment of p110δ in these cells while keeping p110δ expression low during early development and in non-haematological cells [28]. It is not known whether the exon – 2b promoter is also regulated by cell-lineage-dependent methylation. Secondly, the expression of leucocyte-specific transcription factors have been shown to be involved in driving high p110δ expression from the exon – 2a promoter [8,9]. In addition, the proteinase MT1-MMP (membrane-type 1 matrix metalloproteinase) was recently found to act as a TF that increases p110δ expression in macrophages through association with the genomic region upstream exon – 1 [9]. Thirdly, recent genome-wide studies have highlighted the importance of enhancers in driving cell-type-specific gene expression [30]. The role of enhancers in regulating lineage-dependent PIK3CD transcription has not been investigated to date, but is likely to be of importance. However, there is evidence to suggest that the usage of the – 2a and – 2b promoters might not be completely restricted to leucocytes, as a modest enrichment of H3K4Me3 at these promoters was also observed in human and mouse non-leucocytes (Figure 4 and Supplementary Figure S4 respectively) and expression of exon – 2a transcripts was detected in synovial fibroblasts and human breast cancer cells.

In addition to the exon – 2a and – 2b human PIK3CD promoters, we now report an alternative third PIK3CD promoter region (associated with exons – 2c, – 2d and – 2e; Figure 8, promoter 3) that contributes to basal p110δ expression in all human cell types. Importantly, transcription starting from this promoter region can give rise to high p110δ expression as was seen in the glioblastoma cell line U-87 MG that does not express PIK3CD transcripts from the exon – 2a and – 2b promoters that are active in leucocytes (Figure 7). A corresponding mouse Pik3cd promoter has not been identified to date, but is likely to exist as mouse Pik3cd transcripts with 5′ untranslated exons in non-leucocytic cancer cell lines that express high levels of p110δ.

Figure 5 qPCR analysis of human PIK3CD transcript expression upon TNFα stimulation

(A) Schematic representation of the distinct human p110δ 5′-UTR structures. The binding sites of the primer/probe sets used to amplify each transcript are depicted with black bars. (B–F) Quantitative analysis of PIK3CD transcript expression measured by qPCR in EA.hy926 cells (B), HUVECs (C), synovial fibroblasts (D), Jurkat cells (E) and THP-1 cells (F) before and after 8 h of stimulation with 10 ng/ml TNFα. Transcription was normalized to β-actin and expressed as the percentage of p110δ-coding transcripts in unstimulated cells. Results are means ± S.E.M. for three independent experiments for HUVECs, EA.hy926 cells, Jurkat cells and THP-1 cells and the mean for one experiment for synovial fibroblasts; experiments were conducted in triplicate. n.d., not detected.
The expression of each transcript was normalized to 18S rRNA. Results are the mean ± S.E.M. for three independent experiments. *P < 0.05, **P < 0.01, ***P < 0.001 by two-tailed unpaired Student’s t test.

Figure 6 TNFα-induced exon −2e promoter activity in ECs requires an intact NF-κB site
(A) A schematic representation of the genomic region upstream of human PIK3CD exon −1 (not drawn to scale). PIK3CD exons are depicted as boxes and the genomic regions surrounding exons −2e and −2c that were inserted into pGL3-Basic are depicted as black bars. The arrows indicate the locations of predicted NF-κB sites (labelled xB(1)−(4)). (B) The consensus NF-κB DNA-binding sequence (top row, in bold) and the sequences of xB(1)−(4) sites are shown. The bottom row shows the nucleotides that were mutated to disrupt NF-κB binding to the predicted xB(1) in the exon −2e-mut construct. (C and D) EA.hy926 cells were transfected with the indicated PIK3CD promoter reporters and stimulated for 24 h with 10 ng/ml TNFα. The promoter activity of each reporter is expressed relative to the activity of the SV40 promoter in unstimulated cells (set as 100%). Results are means ± S.E.M. for three independent experiments. *P < 0.05, **P < 0.01, ***P < 0.001 by two-tailed unpaired Student’s t test.

Our attempts to uncover a function for TNFα-induced p110δ protein expression in human cancer cell lines. Shown is a representative immunoblot of two independent experiments. (B) qPCR analysis of PIK3CD transcript expression in human cancer cell lines. Binding sites of the primer/probe sets used to amplifying each transcript are shown schematically in Figure 5(A). The expression of each transcript was normalized to β-actin and expressed as the percentage of p110δ-coding transcripts. Results are means ± S.E.M. for three independent experiments. n.d., not detected.

Figure 7 p110δ expression under basal conditions in human cancer cell lines
(A) A schematic representation of the genomic region upstream of human PIK3CD exon −1 (not drawn to scale). PIK3CD exons are depicted as boxes and the genomic regions surrounding exons −2e and −2c that were inserted into pGL3-Basic are depicted as black bars. The arrows indicate the locations of predicted NF-κB sites (labelled xB(1)−(4)). (B) The consensus NF-κB DNA-binding sequence (top row, in bold) and the sequences of xB(1)−(4) sites are shown. The bottom row shows the nucleotides that were mutated to disrupt NF-κB binding to the predicted xB(1) in the exon −2e-mut construct. (C and D) EA.hy926 cells were transfected with the indicated PIK3CD promoter reporters and stimulated for 24 h with 10 ng/ml TNFα. The promoter activity of each reporter is expressed relative to the activity of the SV40 promoter in unstimulated cells (set as 100%). Results are means ± S.E.M. for three independent experiments. *P < 0.05, **P < 0.01, ***P < 0.001 by two-tailed unpaired Student’s t test.
Figure 8 Overview of the three human PIK3CD promoters

An overview of human PIK3CD promoters identified to date. The top panel shows a schematic representation of the three promoter regions (highlighted with boxes) and their associated exons with 5′ untranslated exons depicted as white boxes and the first protein-coding exon as a black box (not drawn to scale). The bottom panel summarizes the characteristics of each promoter. Promoters 1 and 2 are highly active in leucocytes, whereas promoter region 3 has low basal activity in all cell types which can be further enhanced by TNFα in some cell types.

of p110α and p110β relative to p110δ in ECs, we noted an increase in the contribution of p110δ to the basal p85-associated PI3K activity in HUVECs upon TNFα stimulation (results not shown). It is possible, however, that activity from the TNFα-induced p110δ might be required to synergize with other PI3K isoforms as is the case in HepG2 cells where insulin-stimulated PKB phosphorylation is dependent on both p110α and p110δ activity [34]. Alternatively, TNFα-induced p110δ activity could be functionally important in a subcellularly localized manner and thus would not require expression levels similar to p110α or p110β. Indeed, p110δ activity has been demonstrated to be important for membrane fission in the trans-Golgi network in mouse macrophages [35]. Unfortunately, the lack of specific and high-affinity antibodies against p110δ, together with the low expression of p110δ in ECs, prevented our attempts to examine the subcellular localization of TNFα-induced p110δ. It was also of interest to note that TNFα stimulation did not increase the expression of p110γ, the other class I PI3K isoform whose expression is low in non-leucocytes. In fact, p110γ expression was reduced upon exposure of HUVECs to TNFα (results not shown).

Taken together, we have identified a third functional human PIK3CD promoter associated with the upstream exons −2c, −2d and −2e that has basal activity in both leucocytes and non-leucocytes, but TNFα-inducible activity only in selected human non-leucocytes. The differential enrichment of promoter- and enhancer-associated histone modifications support cell-type-specific usage of PIK3CD TSSs in line with the polarized expression of p110δ in different cell types. The fact that p110δ is a non-essential PI3K isoform in the organism (as opposed to p110α and p110β) might explain the observed versatility in transcriptional and post-transcriptional regulation of this PI3K isoform. In addition to the different PIK3CD transcripts generated through alternative TSS usage and splicing at the 5′-end, the role of alternative splicing in the p110δ protein-coding region is underexplored. Interestingly, a novel splice variant of human PIK3CD was recently identified in human leucocytes [36]. This splice variant, generated by usage of an alternative splice site in intron 5, encodes a C-terminally truncated variant of p110δ (designated p37δ) that is functionally distinct from the full-length p110δ protein [36]. Flexible use of exon assembly allows cells to dynamically respond to their environment, including therapy, as was recently shown for drug-resistant B-Raf [37], highlighting the importance of a thorough understanding of the transcriptional regulation of drug targets.

AUTHOR CONTRIBUTION

Maria Whitehead and Bart Vanhaesebroeck designed and analysed the experiments and wrote the paper. Maria Whitehead performed the experiments. Michele Bombardieri and Costantino Pitzalis provided human synovial fibroblasts and the relevant expertise. Bart Vanhaesebroeck obtained the funding.

ACKNOWLEDGEMENTS

We thank members of the Cell Signalling group for feedback on the paper, and Yvonne Kam (William Harvey Research Institute, Queen Mary University of London, London, U.K.) for providing human synovial fibroblasts.

FUNDING

This work was supported by Cancer Research UK [grant number C23338/A10200], the Ludwig Institute for Cancer Research and Queen Mary University of London.
support to M.A.W. was provided by an EU Marie Curie Actions Early-Stage Training fellowship, International Graduate Program in Molecular Medicine [grant number 20386]. Part of this work was supported by Arthritis Research UK [project grant number 18399 (to M.B. and C.P.)].

REFERENCES

1 Engelmann, A. J. (2009) PI3K signalling in cancer: opportunities, challenges and limitations. Nat. Rev. Cancer 9, 550–562

2 Holmes, D. (2011) PI3K pathway inhibitors approach junction. Nat. Rev. Drug Discovery 10, 563–564

3 Jarvis, L. M. (2011) PI3K at the clinical crossroads. Chem. Eng. News 89, 15–19

4 Vanhaesebroeck, B., Welham, M. J., Kotani, K., Stein, R., Warne, P. H., Zvelebil, M. J., Hipkiss, K., Volinia, S., Downward, J. and Waterfield, M. D. (1997) p110δ, a novel phosphoinositide 3-kinase in leukocytes. Proc. Natl. Acad. Sci. U.S.A. 94, 4330–4335

5 Chantry, D., Voitek, A., Kashishian, A., Holtzman, D. A., Wood, C., Gray, P. W., Cooper, J. A. and Hoekstra, M. F. (1997) p110δ, a novel phosphatidylinositol 3-kinase catalytic subunit that associates with p85 and is expressed predominantly in leukocytes. J. Biol. Chem. 272, 19236–19241

6 Furman, R. R., Byrd, J. C., Brown, J. R., Coutré, S. E., Benson, Jr, D. M., Wagner-Johnston, N. D., Flinn, I. W., Kahl, B. S., Spugnino, S. E., Lannutti, B. et al. (2010) CAL-101, an isoform-selective inhibitor of phosphatidylinositol-3-kinase p110δ, demonstrates clinical activity and pharmacodynamic effects in patients with relapsed or refractory chronic lymphocytic leukemia. http://ash.confexion.com/ash/2010/webprogram/Paper32870.html (Abstract)

7 Fruman, D. A. and Rommel, C. (2011) PI3Kδ inhibitors in cancer: rationale and serendipity merge in the clinic. Cancer Discovery 1, 562–572

8 Kok, K., Nock, E. E., Verrall, E. A., Mitchell, M. P., Hommes, D. W., Peppelenbosch, M. P. and Vanhaesebroeck, B. (2009) Regulation of p110δ PI 3-kinase gene expression. PLoS ONE 4, e5145

9 Shimizu-Hirata, R., Xiong, W., Baxter, B. T., Kunkel, S. L., Maillard, I., Chen, X. W., Sableh, F., Liu, R., Li, X. Y. and Weiss, J. S. (2012) MT1-MMP regulates the PI3K-MI-2/Nur77-dependent control of macrophage immune function. Genes Dev. 26, 395–413

10 Sawyer, C., Sturgeon, J., Bennett, D. C., O’Hare, M. J., Allen, W. E., Bain, J., Jones, G. E. and Vanhaesebroeck, B. (2003) Regulation of breast cancer cell chemotaxis by the phosphoinositide 3-kinase p110δ. Cancer Res. 63, 1667–1675

11 Eickholt, B. J., Ahmed, A. I., Davies, M., Papakonstanti, E. A., Pearce, W., Starkey, M. L., Puri, K. D., Doggett, T. A., Douangpanya, J., Hou, Y., Tino, W. T., Wilson, T., Graf, T., Northcott, C. A., Poy, M. N., Najjar, S. M. and Watts, S. W. (2002) Phosphoinositide 3-kinase mediated enhanced spontaneous and agonist-induced contraction in aorta of deoxycorticosterone acetate-salt hypertensive rats. Circ. Res. 91, 1284–1291

12 Poy, M. N., Santos, A., Trujillo, L., Cavenagh, B. J., Slaughter, B. J., Hart, P. M., Bourque, J. E., Maccioce, S., Schroder, K. and Low, P. C. (2013) Shedding light on class I phosphoinositide 3-kinase activity in endothelium. Blood 111, 4827–4828

13 Bartok, B., Boyle, D. L., Liu, Y., Ren, P., Ball, S. T., Bugbee, W. D., Rommel, C. and Low, P. C. (2012) A promoter DNA demethylation landscape of human hematopoietic differentiation. Nucleic Acids Res. 40, 116–131

14 Edwards, H., Xie, C., Li, F., Moscat, J. and Firestein, G. S. (2012) P3Kδ kinase: a key regulator of synoviocyte function in rheumatoid arthritis. Am. J. Pathol. doi:10.1016/j.ajpath.2012.01.030

15 Zabel, U., Schreck, R. and Baueerre, P. A. (1991) DNA binding of purified transcription factor NF-κB. Affinity, specificity, Zn2+ dependence, and differential half-site recognition. J. Biol. Chem. 266, 252–260

16 Cahane, V., Fernandez, A. F., Urdinguio, R. G., Suarez-Alvarez, B., Mangas, C., Perez-Garcia, V., Bueno, C., Montes, R., Ramos-Mejía, V., Martinez-Cambier, P. et al. (2012) A promoter DNA demethylation landscape of human hematopoietic differentiation. Nucleic Acids Res. 40, 116–131

17 Heintzmann, R., Cleften, V., Visvader, J., Bath, M. L., Harris, A. W. and Adams, J. M. (2002) Phosphatidylinositol 3-kinase-delta in promoting neutrophil trafficking into inflamed tissue. Blood 103, 3448–3456

18 Otto, D., Grompe, M., Yang, D., Yang, L. and Hescheler, J. (2002) Phosphatidylinositol 3-kinase delta in myocardial ischemia and reperfusion injury. Circ. Res. 91, 360–369

19 Tsybouleva, N., Zhang, L., Chen, S., Patel, R., Luttun, A., Nemoz, S., DeFreitas, G., Enn答, M., Carabelli, B. A., Roberts, R. and Marian, A. J. (2004) Aldosterone, through novel signaling proteins, is a fundamental molecular bridge between the genetic defect and the cardiac phenotype of hypertrophic cardiomyopathy. Circulation 109, 1284–1291

20 Pinho, J. F., Medeiros, M. A., Capelletti, L. S., Rezende, B. A., Campos, P. P., Andrade, S. P., Cortes, S. F., Cruz, J. S. and Lemos, V. S. (2010) Phosphatidylinositol 3-kinase-delta up-regulates L-type Ca2+ currents and increases vascular contractility in a mouse model of Type 1 diabetes. Br. J. Pharmacol. 161, 1459–1471

21 Bombardieri, M., Kam, N. W., Brontano, F., Choi, F., Kiley, A., Kyburz, D., McInnes, I. B., Gay, S., Buckley, C. and Pitzalis, C. (2011) A BAFF/APRIL-dependent TLR3-stimulated pathway enhances the capacity of rheumatoid synovial fibroblasts to induce AID expression and Ig class-switching in B cells. Ann. Rheum. Dis. 70, 1857–1865
SUPPLEMENTARY ONLINE DATA

Isoform-selective induction of human p110δ PI3K expression by TNFα: identification of a new and inducible PIK3CD promoter

Maria A. WHITEHEAD*, Michele BOMBARDIERI†, Costantino PIZZALIS† and Bart VANHAESBROECK*1,2

*Centre for Cell Signalling, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, U.K., and †Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, U.K.

Figure S1 Comparison of p110δ expression levels in TNFα-stimulated ECs and unstimulated THP-1 cells

p110δ protein expression in unstimulated and TNFα-stimulated (10 ng/ml for 18 h) HUVECs and EA.hy926 cells compared with basal expression levels in THP-1 cells. Equal amounts (60 μg) of total cell lysate from each sample were analysed by Western blotting for the indicated proteins.

Figure S2 IL-1β stimulates PIK3CD mRNA expression in HUVECs and synovial fibroblasts

PIK3CD mRNA expression was analysed by qPCR in HUVECs that were stimulated with 20 ng/ml IL-1β for 12 h (A) and synovial fibroblasts with 10 ng/ml IL-1β for 18 h (B). PIK3CD transcript expression was normalized to 18S RNA and shown as fold increase over unstimulated levels. Results are means for two experiments for HUVECs and the means ± S.E.M. for four independent experiments for synovial fibroblasts. *P < 0.05 by two-tailed unpaired Student’s t test.

1 Bart Vanhaesebroeck is a consultant to GlaxoSmithKline (Stevenage, U.K.) and is a founder of and consultant to Activiomics (London, U.K.).
2 To whom correspondence should be addressed (email bart.vanh@qmul.ac.uk).
Figure S3 Three human PIK3CD promoter regions revealed by bioinformatic analysis of functional regulatory elements

The human PIK3CD locus in the UCSC genome browser as described in the legend to Figure 4 of the main text including ChIP-seq data for enhancer-associated H3K4Me1 and H3K27Ac shown separately for non-leucocytes and leucocytes.
Inducible expression of p110δ PI3K

Figure S4 Bioinformatics analysis of the mouse Pik3cd locus

ChIP-seq data for the enrichment of H3K4Me3 in the mouse Pik3cd locus in the UCSC genome browser. The RefSeq Pik3cd mRNA transcript (on top) contains the untranslated exons −2a and −1 and all the protein-coding exons. The approximate locations of the untranslated exons −2c, −2d and −2e are indicated with arrows. The boxed regions surrounding exons −2a and −1 correspond to the human PIK3CD promoter regions 2 and 3 respectively (Figure 4 of the main text). Data collected from the indicated tissue and cell types are shown as separate tracks.

Figure S5 IKK inhibitor VII prevents TNFα-stimulated NF-κB activation and IL-8 expression in EA.hy926 cells

(A) EA.hy926 cells were pre-treated for 1 h with the indicated concentrations of IKK inhibitor VII or DMSO and stimulated with TNFα (10 ng/ml) for 6 h. Expression of IL-8 mRNA was analysed by qPCR and normalized to 18S rRNA. Results are expressed as fold increase over unstimulated DMSO-treated cells and shown as means ± S.E.M. for three independent experiments. *P < 0.05 by two-tailed unpaired Student’s t test. (B) EA.hy926 cells were pre-treated for 1 h with the indicated concentrations of IKK inhibitor VII or DMSO and stimulated for 10 min with 10 ng/ml TNFα. Levels of the indicated proteins were analysed by Western blot.

© 2012 The Author(s)
The author(s) has paid for this article to be freely available under the terms of the Creative Commons Attribution Non-Commercial Licence (http://creativecommons.org/licenses/by-nc/2.5/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.
Human PIK3CD exon – 2a promoter has higher activity in leucocytes than non-leucocytes

Promoter activity of the genomic DNA containing human PIK3CD exon – 2a and its immediate upstream sequence (−139 to +92 relative to the start sites of exon – 2a) was analysed in a leucocyte (Jurkat) and a non-leucocyte [HEK (human embryonic kidney)-293T] cell line. The leucocyte-specific Vav promoter was used as positive control. Promoter activity is expressed as a percentage of that of the SV40 promoter (set as 100%) in each cell type. Results are means ± S.E.M. for three independent experiments. *P < 0.05, **P < 0.01 by two-tailed unpaired Student's t test.

Table S1 Primer details

Sequence details of all the PCR primers and TaqMan qPCR assays used in the present study. The left-hand column indicates the experiment in which a given primer was used. FAM, 6-carboxyfluorescein.

Experiment	Primer name	Primer sequence (5’→3’)
PIK3CD-specific primers for 5’RACE	OP2 (outer primer)	TCGCTGCCCTCAAAACTTAACGTT
	IP2 (inner primer)	AATGGTACCAAGAGTCAACACACACACACACTGACTGAGG
Cloning pGL3-exon-2a reporter	pGL3-exon-2a for	GACTCTGAGGCCCTGGAGGACCTGTT
	pGL3-exon-2a rev	GACTAGATCTGAGTGAGCCTCGAGGGAGGG
Cloning pGL3-exon-2e reporter	R1-F6 for	ATTAACCGCGTGAGGAAATGGGAGGAGG
	R1-R2 rev	ATAAGATCTGAGTCACACACACACACACTGAA
κB site mutation in pGL3-exon-2e reporter	R1_M1_for	TGGCTGATTTCCTACTCTTGGCTACCAAGGAGCCTGGGGGGATCCGGTG
	R1_M1_rev	ACCGGACCCCAGGGGGCTCTCTGAACCAAGATAGAGAAATCAAAGCAGC
PIK3CD exon – 1/1 TaqMan assay	Forward primer	ACTCTTGATCTGAAAGCATT
	Reverse primer	GCATCTGCTGTTGTTCCT
	Probe (FAM)	ACTCTTGATCTGAAAGCATT
PIK3CD exon – 2a/1 TaqMan assay	Forward primer	CGAGGAGAGACGCGCCACA
	Reverse primer	AGAGATGTCTAGGAAATCAGGAGT
	Probe (FAM)	AGCTGGCACGGAGATAGAGAAATG
PIK3CD exon – 2c/1 TaqMan assay	Forward primer	CCCGGGAACACTGCT
	Reverse primer	CGGCGCTGGCCCTG
	Probe (FAM)	CCGCTGCTGGGGCTG
PIK3CD exon – 2d/1 TaqMan assay	Forward primer	CGCACCCCGGCTTCCTC
	Reverse primer	TGTTTCTATGAAATGAGGGTCAAT
	Probe (FAM)	CCTGACTCTGTATCCCT
PIK3CD exon – 2e/1 TaqMan assay	Forward primer	CCCGAGGATCTGGAAGAAG
	Reverse primer	CGCCTGCCGTGACT
	Probe (FAM)	CCTTATCGGCGCAGCAGCC
Table S2 Different cell types analysed for p110δ expression upon TNFα stimulation

Listed are all the different human and mouse cell types that were analysed for the expression of p110δ upon stimulation with TNFα.

Cell name	Cell type	Effect of TNFα on p110δ expression
THP-1	Human acute monocytic leukaemia cell line	2-Fold increase (mRNA), no effect (protein)
Jurkat	Human immortalized T-cell line	No effect (protein)
RAW264.7	Mouse macrophage-like cell line	No effect (protein)
4T1	Mouse mammary tumour cell line	No effect (protein)
MDA-MB-468	Human breast cancer cell line	No effect (mRNA)
MDA-MB-231	Human breast cancer cell line	No effect (protein)
MCF-7	Human breast cancer cell line	2-Fold increase (mRNA, protein)
HeLa	Human cervical cancer cell line	No effect (protein)
HEK-293T	Human embryonic kidney cell line	No effect (mRNA, protein)
BMM	Mouse primary bone marrow macrophage	No effect (mRNA, protein)
pCEC	Mouse primary cardiac endothelial cells	No effect (protein)
iCEC	Mouse immortalized cardiac endothelial cell line	No effect (mRNA, protein)
Lung EC	Mouse primary lung endothelial cells	No effect (mRNA, protein)
bEND5	Mouse brain endothelial cell line	No effect (mRNA, protein)
MEF	Mouse primary embryonic fibroblasts	2-Fold increase (mRNA), no effect (protein)
NIH-3T3	Mouse fibroblast cell line	No effect (mRNA, protein)