ITGA1 polymorphisms and haplotypes are associated with gastric cancer risk in a Korean population

Dong-Hyuk Yim, Yan-Wei Zhang, Sang-Yong Eom, Sun In Moon, Hyo-Yung Yun, Young-Jin Song, Sei-Jin Youn, Taisun Hyun, Joo-Seung Park, Byung Sik Kim, Jong-Young Lee, Yong-Dae Kim, Heon Kim

Dong-Hyuk Yim, Sang-Yong Eom, Sun In Moon, Yong-Dae Kim, Heon Kim, Department of Preventive Medicine and Medical Research Institute, College of Medicine, Chungbuk National University, Cheongju 361-763, South Korea
Yan-Wei Zhang, Key Laboratory of Molecular Biology of Guangdong Province, Center for Disease Control and Prevention, Shenzhen 518020, Guangdong Province, China
Hyo-Yung Yun, Young-Jin Song, Department of Surgery, College of Medicine, Chungbuk National University, Cheongju 361-763, South Korea
Sei-Jin Youn, Department of Food and Nutrition, Chungbuk National University, Cheongju 361-763, South Korea
Joo-Seung Park, Department of Surgery, College of Medicine, Eulji University, Daejon 301-746, South Korea
Byung Sik Kim, Department of Surgery, Asan Medical Center, College of Medicine, Ulsan University, Seoul 680-749, South Korea
Jong-Young Lee, Center for Genome Science, National Institute of Health, Chungcheongbuk-do 363-951, South Korea

Author contributions: Lee JY, Kim YD and Kim H designed the study protocol; Eom SY, Yim DH, Moon SI and Zhang YW performed the statistical analysis and data interpretation; Song YJ, Yun HY, Park JS, Youn SJ, Kim BS and Hyun T contributed equally to this study through the selection of subjects, sampling, and clinical data acquisition; Yim DH, Kim YD and Kim H drafted the manuscript.

Supported by The National R and D Program for Cancer Control, Ministry of Health and Welfare, South Korea, No. 1120330

Correspondence to: Dr. Heon Kim, Department of Preventive Medicine and Medical Research Institute, College of Medicine, Chungbuk National University, 52 Naesudong-ro, Hungdok-gu, Cheongju, Chungbuk 361-763, South Korea. kimheon@cbu.ac.kr
Telephone: +82-43-2612864 Fax: +82-43-2742965
Received: April 4, 2013 Revised: July 15, 2013
Accepted: August 4, 2013
Published online: September 21, 2013

Abstract

AIM: To evaluate the association between the genetic polymorphisms and haplotypes of the ITGA1 gene and the risk of gastric cancer.

METHODS: The study subjects were 477 age- and sex-matched case-control pairs. Genotyping was performed for 15 single nucleotide polymorphisms (SNPs) in ITGA1. The associations between gastric cancer and these SNPs and haplotypes were analyzed with multivariate conditional logistic regression models. Multiple testing corrections were carried out following methodology for controlling the false discovery rate. Gene-based association tests were performed using the versatile gene-based association study (VEGAS) method.

RESULTS: In the codominant model, the ORs for SNPs rs2432143 (1.517; 95%CI: 1.144-2.011) and rs2447867 (1.258; 95%CI: 1.051-1.505) were statistically significant. In the dominant model, polymorphisms of rs1862610 and rs2447867 were found to be significant risk factors, with ORs of 1.337 (95%CI: 1.029-1.737) and 1.412 (95%CI: 1.061-1.881), respectively. In the recessive model, only the rs2432143 polymorphism was significant (OR = 1.559, 95%CI: 1.150-2.114). The C-C type of ITGA1 haplotype block 2 was a significant protective factor against gastric cancer in the both codominant model (OR = 0.602, 95%CI: 0.212-0.709, p < 0.021) and the dominant model (OR = 0.653, 95%CI: 0.483-0.894). The ITGA1 gene showed a significant gene-based association with gastric cancer in the VEGAS test. In the dominant model, the A-T type of ITGA1 haplotype block 2 was a significant risk factor (OR = 1.341, 95%CI: 1.034-1.741). SNP rs2447867 might be related to the severity of gastric epithelial injury due to inflammation and, thus, to the risk of developing gastric cancer.

CONCLUSION: ITGA1 gene SNPs rs1862610, rs2432143, and rs2447867 and the ITGA1 haplotype block that includes SNPs rs1862610 and rs2432143 were significantly associated with gastric cancer.
INTRODUCTION

Gastric cancer is the second most common cancer in South Korea and represents the second leading cause of cancer death for both men and women worldwide[1,2]. Approximately one million new cases of stomach cancer are estimated to have occurred (989000 cases, 7.8% of the total), currently making it the fourth most common malignancy in the world, following cancers of the lung, breast and colo-rectum[3-7]. Epidemiological studies have provided evidence that a high intake of salt and nitrite-rich foods and Helicobacter pylori infection are associated with a high incidence of gastric cancer in South Korea[8-10]. The risk of developing gastric cancer is estimated to be increased 2-6 fold in patients with H. pylori infection[8]. The risk of gastric cancer among individuals infected with H. pylori virulence factors is the cag (cytotoxin-associated gene) antigens[9]. Compared to individuals infected with cagA-negative H. pylori strains, those infected with cagA-positive H. pylori strains show a higher risk of developing gastric cancer[10]. To introduce cagA into host cells, the cagL protein of H. pylori binds to integrins on the basolateral surface of gastric epithelial cells[11,12].

Integrins are members of a family of heterodimeric cell-surface proteins that mediate cell-matrix and cell-cell interactions. The 18 integrin α-subunits and 8 β-subunits together form at least 25 different integrins[13]. Integrins mediate signaling events that are essential for stable cell adhesion, spreading, migration, survival, proliferation and differentiation. Several integrins, including α1β1, bind to extracellular matrix proteins present in the basal membrane of mature vessels[14,15]. The tumor progression and metastasis of various cancers are associated with integrins[16].

The ITGA1 gene, located on chromosome 5q11.2, encodes the integrin α1 subunit, which is involved in the adhesion of gastric cancer cells to the peritoneum. The adhesion of integrin α1-positive gastric cancer cells to the extracellular matrix is a critical process in peritoneal dissemination[17,18]. There are few studies addressing the roles of integrins in the development of gastric cancer. An association with an increased risk of gastric cancer has only been reported for the ITGA2 C807T polymorphism in a Chinese population[19]. As the level of integrin α1β1 is up-regulated in association with inflammation of the gastrointestinal tract mucosa, which is the first step in gastric carcinogenesis[20], it is possible that the integrin α1 subunit plays an important role in gastric cancer development.

The purpose of this study was to evaluate the association between the genetic polymorphisms and haplotypes of the ITGA1 gene and the risk of gastric cancer.

MATERIALS AND METHODS

Study subjects

This subjects included in this study consisted of 477 newly diagnosed gastric cancer patients and an equal number of age- (within 3 years) and sex-matched controls. The diagnoses of the gastric cancer patients were all histologically confirmed at Chungbuk National University Hospital and Euiji University Hospital, which are located in a geographically central region of South Korea. Controls were selected from individuals receiving routine medical examinations in these hospitals, and individuals with a previous diagnosis of any type of cancer were excluded. Trained interviewers used a structured questionnaire including questions about demographic factors, smoking habits, alcohol consumption and dietary habits to interview all subjects who provided written informed consent. Peripheral blood samples were collected from all subjects. This study was approved by the institutional review boards of Chungbuk National University Hospital, South Korea (IRB No. 2011-09-071).

Selection of single nucleotide polymorphisms in ITGA1

At the International HapMap Project website (http://hapmap.ncbi.nlm.nih.gov/), tag SNPs were selected using a cut-off minimum minor allele frequency in the JPT population of 0.05 and pairwise tagging \((r^2 = 1-0.8) \). SNPs that significantly deviated from Hardy-Weinberg equilibrium were discarded.

Genomic DNA was extracted from whole blood using the QuickGene-810 nucleic acid isolation system (Fujifilm, Tokyo, Japan) and the QuickGene DNA Whole Blood Kit (Kuraray, Osaka, Japan), in accordance with the manufacturer’s instructions. DNA was stored at 4 °C until use. SNP genotyping was performed using a GoldenGate Genotyping Assay with VeraCode technology (Illumina, San Diego, CA, United States). A custom GoldenGate assay was designed for the analysis of the selected SNPs in the ITGA1 gene. Those SNPs were then assessed for suitability for the GoldenGate genotyping platform, and
the analysis was carried out on the validated SNPs. The average call rate was 99.2%. Genotyping was carried out by Macrogen (Seoul, South Korea).

Statistical analysis

The study power was calculated using the “case-control for discrete traits” mode in the Genetic Power Calculator. The following parameters were applied: risk allele frequency -0.4, alpha error -0.01, and disease prevalence -0.1%. The power of a codominant model was 0.7768 when the heterozygous OR was set to 1.5. For a dominant model, when the OR for a genotype with one or 2 risk allele(s) was taken as 2, the power was 0.8821. When a value of 2 was input for the OR for a genotype with 2 risk allele(s), the power of a recessive model was 0.8182.

Testing for deviation from the HWP was performed for each SNP in both cases and in controls using Pearson’s χ² test. D values were measured using Lewontin’s method for all combinations of biallelic loci, and linkage disequilibrium blocks were structured using Haplovieview version 4.2. The common haplotypes (frequency > 10%) in each block accounted for 84.2%, 99.8%, 91.6% and 99.9% for the cases and 85.7%, 99.8%, 91.2% and 99.9% for the controls.

The observed associations between the genetic polymorphisms in the ITGA1 gene and the risk of gastric cancer are shown in Table 3. In the codominant model, the OR of 1.517 obtained for SNP rs2432143 (95%CI: 1.144-2.011; P = 0.003; FDR Q = 0.045) was statistically significant, even after controlling the FDR, and that for rs2447867, of 1.258 (95%CI: 1.051-1.505; P = 0.012; FDR Q = 0.090), was marginally significant. In the dominant model, the rs1862610 and rs2447867 polymorphisms were not statistically significant risk factors for gastric cancer, displaying ORs of 1.337 (95%CI: 1.029-1.737; P = 0.029; FDR Q = 0.217) and 1.412 (95% CI: 1.061-1.881; P = 0.018; FDR Q = 0.217), respectively. Only the rs2432143 polymorphism was marginally significant in the recessive model, exhibiting an OR of 1.559 (95%CI: 1.150-2.114; P = 0.004; FDR Q = 0.060).

When the P values for the minor alleles of the codominant, dominant and recessive models were subjected to the VEGAS test, no significant gene-based associations were found. However, when the lower P value generated by the dominant and recessive models was input for every SNP, the value of the test statistic was 29.622, which was statistically significant (P = 0.037).

Four haplotype blocks were constructed using SNP Analyzer version 2.0. These blocks were evaluated for significance according to the risk of gastric cancer (Table 4).

RESULTS

Patient characteristics are summarized in Table 1. No significant difference was observed between the distributions of the age, sex, and smoking and drinking habits of the cases and controls.

Table 2 lists and provides the frequencies of the 15 selected SNPs in the study subjects. None of the polymorphisms were significantly deviated from Hardy-Weinberg equilibrium. All the minor allele frequencies of the cases and controls were greater than 10%.

The haplotype linkage disequilibrium blocks and haplotype frequencies for ITGA1 are shown in Figure 1. D values were measured using Lewontin’s method. Four block haplotypes were constructed using Haplovieview version 4.2. The common haplotypes (frequency > 10%) in each block accounted for 84.2%, 99.8%, 91.6% and 99.9% for the cases and 85.7%, 99.8%, 91.2% and 99.9% for the controls.

The observed associations between the genetic polymorphisms in the ITGA1 gene and the risk of gastric cancer are shown in Table 3. In the codominant model, the OR of 1.517 obtained for SNP rs2432143 (95%CI: 1.144-2.011; P = 0.003; FDR Q = 0.045) was statistically significant, even after controlling the FDR, and that for rs2447867, of 1.258 (95%CI: 1.051-1.505; P = 0.012; FDR Q = 0.090), was marginally significant. In the dominant model, the rs1862610 and rs2447867 polymorphisms were not statistically significant risk factors for gastric cancer, displaying ORs of 1.337 (95%CI: 1.029-1.737; P = 0.029; FDR Q = 0.217) and 1.412 (95% CI: 1.061-1.881; P = 0.018; FDR Q = 0.217), respectively. Only the rs2432143 polymorphism was marginally significant in the recessive model, exhibiting an OR of 1.559 (95%CI: 1.150-2.114; P = 0.004; FDR Q = 0.060).

When the P values for the minor alleles of the codominant, dominant and recessive models were subjected to the VEGAS test, no significant gene-based associations were found. However, when the lower P value generated by the dominant and recessive models was input for every SNP, the value of the test statistic was 29.622, which was statistically significant (P = 0.037).

Four haplotype blocks were constructed using SNP Analyzer version 2.0. These blocks were evaluated for an association with the risk of gastric cancer (Table 4). The C-C type of ITGA1 haplotype block 2 was marginally significant in the codominant model (OR = 0.602, 95% CI: 0.212-0.709; P = 0.021; FDR Q = 0.063) and was a significant protective factor against gastric cancer in the dominant model (OR = 0.653, 95% CI: 0.483-0.884; P = 0.006; FDR Q = 0.018). In the dominant model, the A-T type of ITGA1 haplotype block 2 was a significant risk factor (OR = 1.341, 95% CI: 1.034-1.741; P = 0.027; FDR Q = 0.045). No haplotype block was found to be significant in the recessive model.
Table 2 Frequency of ITGA1 polymorphisms in cases and controls

SNP	Chromosomal position	Amino acid change	Genotype case/control	Case Frequency	HWE	Control Frequency	HWE
rs13183662	2686006	AA	GG	0.280	0.573	0.276	0.597
rs11740785	2707341	AA	AC	0.241	0.866	0.229	0.259
rs1820167	2713715	AA	GG	0.435	0.806	0.420	0.904
rs1862610	2722239	CC	AC	0.369	0.861	0.387	0.484
rs2432143	2725674	TT	TC	0.104	0.671	0.146	0.658
rs2447967	2751733	C/C	TC	0.490	0.742	0.430	0.769
rs4865745	2770258	TT	GG	0.270	0.892	0.268	0.124
rs13163497	2773367	GG	AG	0.110	0.409	0.108	0.515
rs1904163	2780355	CC	TC	0.298	0.196	0.272	0.698
rs1466445	2789486	CC	TT	0.460	0.783	0.455	0.696
rs16880453	2789866	CC	TT	0.466	0.914	0.465	0.424
rs2452864	2796757	TT	TC	0.367	0.874	0.369	0.368
rs1275659	2828018	AA	AG	0.257	0.185	0.278	0.864
rs1871186	2828974	TT	CC	0.466	0.914	0.465	0.424
rs988574	2835169	E/G		0.180	0.723	0.183	0.674

1P value for deviation from Hardy-Weinberg Equilibrium (HWE). SNP: Single nucleotide polymorphism.

Figure 1 Haplotype linkage disequilibrium blocks and haplotype frequencies for ITGA1. A: Linkage disequilibrium (LD) blocks among ITGA1 polymorphisms. Black squares indicate a statistically significant allelic association between a pair of single nucleotide polymorphisms, as measured by the D statistic; darker gray indicate higher values of D; B: Haplotype frequencies of ITGA1 polymorphisms in cases (top) and controls (bottom).
Table 3 Association between *ITGA1* polymorphisms and gastric cancer in a case-control study of a Korean population

SNP	Chromosomal position	Codominant	Dominant	Recessive
	OR (95% CI)	P value	OR (95% CI)	P value
rs13186862	266806	0.161	0.160	0.866
rs11740785	270734	0.956	1.006	0.866
rs1820167	271375	0.964	1.115	0.946
rs1862610	272229	0.980	1.337	0.992
rs2432143	272667	1.002	1.800	0.988
rs2447867	275173	1.902	2.142	0.986
rs4865745	2770258	1.965	0.967	0.963
rs13163497	2773367	0.965	1.064	0.986
rs1904163	2800355	1.014	1.093	0.946
rs1466445	287489	0.965	1.032	0.983
rs16880453	2789866	0.979	1.079	0.983
rs2452364	2786757	0.947	0.947	0.983
rs1276599	2820818	1.192	1.122	0.992
rs1871186	2820974	1.043	1.072	0.997
rs988574	2835169	0.985	0.927	0.866

VEGAS statistics (P) = 29.622 (P = 0.037)

Table 4 Association between *ITGA1* haplotypes and gastric cancer

Haplotypes	Codominant	Dominant	Recessive	
	OR (95% CI)	P value	OR (95% CI)	P value
ITGA1	0.711 (0.510-1.016)	0.414	0.860 (0.666-1.112)	0.250
Haplotype	1.039 (0.643-1.678)	0.973	1.030 (0.799-1.328)	0.819
block 1	0.992 (0.599-1.760)	0.768	1.088 (0.839-1.410)	0.525
ITGA1	0.982 (0.688-1.407)	0.640	1.072 (0.800-1.437)	0.641
Haplotype	1.316 (0.686-1.407)	0.806	1.341 (1.034-1.741)	0.027
block 2	0.602 (0.212-0.709)	0.021	0.653 (0.483-0.884)	0.006
ITGA1	1.023 (0.707-1.480)	0.677	0.934 (0.705-1.256)	0.631
Haplotype	0.973 (0.641-1.475)	0.314	0.986 (0.761-1.278)	0.916
block 3	1.418 (0.446-5.071)	0.794	1.084 (0.792-1.505)	0.627
ITGA1	0.938 (0.641-1.370)	0.907	0.928 (0.658-1.314)	0.671
Haplotype	0.985 (0.536-1.803)	0.803	1.079 (0.832-1.400)	0.567
block 4	1.619 (0.698-3.756)	0.320	0.925 (0.708-1.209)	0.569

VEGAS statistics (P) = 18.732 (P = 0.260)

DISCUSSION

The present study focused on the association of genetic polymorphisms and haplotypes of the *ITGA1* gene with gastric cancer risk. It has been suggested that the integrin α1 subunit could be involved in gastric cancer carcinogenesis. Integrins on gastric epithelial cells have been reported to serve as a portal for the entry of *H. pylori* cagA. Additionally, the integrin α1 subunit is involved in the adhesion and dissemination of gastric cancer cells to the peritoneum, and an *ITGA2* polymorphism has been reported to be associated with an increase in the risk of gastric cancer. However, to our knowledge, no previous study has examined the association between *ITGA1* polymorphisms and the risk of gastric cancer.

The SNPs rs1862610, rs2432143 and rs2447867 were significantly associated with an increase in the risk of gastric cancer. After controlling the FDR, only SNP rs2432143 in the codominant model was statistically significant. In a gene-based association test, the *ITGA1* gene was found to be significantly associated with gastric cancer.

The C-C type of *ITGA1* haplotype block 2, which includes rs1862610 and rs2432143 in intron 1 of the *ITGA1* gene, was found to be a significant protective factor and the A-T type to be a risk factor for gastric cancer. This statistical significance was maintained after controlling the FDR. However, the precise molecular mechanism related to these SNPs is not clear. Based on SNP function prediction using computational methods, SNPs rs1862610 and rs2432143 are not predicted to be involved in any structural or functional changes in the integrin α1 subunit. However, we cannot rule out the possibility that these SNPs are either associated with the stability of *ITGA1* mRNA, or in linkage disequilibrium with an as yet unknown functional polymorphism affecting the expression.
pression or function of the integrin α1 subunit.

We used public databases of SNPs related to gastric cancer and assessed the potential functions of selected SNPs with SNP function prediction software. Among the 15 selected SNPs, only two were located in exons, and one was non-synonymous. The potential function was not predicted for any of these SNPs, except for rs2447867, which was predicted to be an exonic splicing enhancer (ESE). ESEs are clinically significant because synonymous point mutations in ESEs that were previously thought to be silent mutations can lead to exon skipping and the production of a non-functional protein. As loss of integrin α1β1 has been observed in some other malignancies[26], non-functional integrin α1β1 could be associated with gastric cancer.

The increased expression of integrin molecules by epithelial cells during inflammation of the underlying lamina propria is probably an adaptive response to prevent extensive epithelial cell sloughing caused by inflammatory mediators. Loss of epithelial integrity due to a decrease in the function of integrin results in more severe injury of the epithelium[21]. At these sites of tissue injury, bone marrow-derived cells are recruited, and these cells can be a potential source of malignancy[27]. Because chronic infection with H. pylori also induces repopulation of the stomach with bone marrow-derived cells, there is a possibility that a non-functional integrin α1 subunit and H. pylori infection would have a synergistic effect in increasing the risk of gastric cancer. The major limitation of the present study is that we did not test for the presence of antibodies against H. pylori and the cagA antigen in the sera of the case and control subjects.

The OR obtained for SNPs rs1862610, rs2432143, and rs2447867 were all below 1.6, while the OR for the ITGA1 C807T polymorphism in relation to gastric cancer in a Chinese population is 1.57[20]. These relatively small values can be explained by the promiscuity and redundancy of integrins: one integrin can bind several different ligands, and many different integrins can bind to the same ligand[29]. Therefore, if an integrin is not functioning, other integrins can compensate for at least some of its function.

In conclusion, the ITGA1 gene SNPs rs2432143 and rs2447867 and the ITGA1 haplotype block that includes SNP rs2432143 are significantly associated with gastric cancer risk.

COMMENTS

Background

Integrins mediate signaling events that are essential for stable cell adhesion, cell spreading, migration, survival, proliferation and differentiation. Several integrins, including α1β1, bind to extracellular matrix proteins present in the basal membranes of mature vessels. Tumor progression and the metastasis of various cancers are associated with integrins. The ITGA1 gene, located on chromosome 5q11.2, encodes the integrin α1 subunit, which is involved in the adhesion of gastric cancer cells to the peritoneum. Adhesion of integrin α1positive gastric cancer cells to the extracellular matrix is a critical process in peritoneal dissemination. As integrin α1β1 is up-regulated during inflammation in the gastrointestinal tract mucosa, which is the first step in gastric carcinoma-genesis, it is possible that the integrin α1 subunit plays an important role in the development of gastric cancer. It has been suggested that the integrin α1 subunit could be involved in gastric cancer carcinogenesis. Integrins on gastric epithelial cells have been reported to serve as a portal for the entry of Helicobacter pylori (H. pylori) cagA. As integrin α1β1 is up-regulated during inflammation in the gastrointestinal tract mucosa, which is the first step in the gastric carcinogenesis, it is possible that the integrin α1 subunit plays an important role in the development of gastric cancer.

Research frontiers

There are few studies addressing the role of integrins in the development of gastric cancer. An association with an increased risk of gastric cancer has only been reported previously for the ITGA2 C807T polymorphism in a Chinese population. No earlier study has focused on the association of ITGA1 gene single nucleotide polymorphisms (SNPs) and haplotypes with gastric cancer risk.

Innovations and breakthroughs

To the best of the authors’ knowledge, this present study is the first to suggest a significant association of the genetic polymorphisms and haplotypes of ITGA1 gene with an increased gastric cancer risk.

Applications

Integrins on gastric epithelial cells have been reported to serve as a portal of entry for H. pylori cagA, and loss of epithelial integrity due to a decrease in the function of integrins results in more severe injury of the epithelium. Studies are needed addressing the interaction of non-functional integrin α1 subunit and H. pylori infection in increasing the risk of gastric cancer.

Peer review

This paper is focused on the ITGA1 polymorphisms and haplotypes, and gastric cancer risk in a Korean population. The results showed the SNPs rs1862610, rs2432143, and rs2447867, and the ITGA1 haplotype block which includes SNPs rs1862610 and rs2432143 were significantly associated with gastric cancer. It is interesting.

REFERENCES

1. The Korea Central Cancer Registry, National Cancer Center. Annual report of cancer statistics in Korea in 2009. Seoul: Ministry of Health and Welfare, 2011
2. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 2010; 127: 2993-2971 [PMID: 21351269 DOI: 10.1002/ijc.25516]
3. Kim JH, Chang WK, Kim MK, Lee SS, Choi BY. Dietary factors and gastric cancer in Korea: a case-control study. Int J Cancer 2002; 97: 531-535 [PMID: 11802218 DOI: 10.1002/ijc.10111]
4. Lee JK, Park BJ, Yoo KY, Ahn YO. Dietary factors and stomach cancer: a case-control study in Korea. Int J Epidemiol 1995; 24: 33-41 [PMID: 7797354]
5. Kim JH, Kim HY, Kim NY, Kim SW, Kim JC, Kim J, Roe IH, Seo JK, Sim JC, Ahn H, Yoon BC, Lee SW, Lee YC, Chang IS, Jung HY, Hong WS, Choi KW. Seroepidemiological study of Helicobacter pylori infection in asymptomatic people in South Korea. J Gastroenterol Hepatol 2001; 16: 969-975 [PMID: 11595059 DOI: 10.1046/j.1440-1746.2001.02586.x]
6. Nan HM, Park JW, Song YJ, Yun HY, Park JS, Hyun T, Youn SJ, Kim YD, Kang JW, Kim H. Kimchi and soybean pastes are risk factors of gastric cancer. World J Gastroenterol 2005; 11: 3175-3181 [PMID: 15920164]
7. Zhang YW, Eom SY, Kim YD, Song YJ, Yun HY, Park JS, Youn SJ, Kim BS, Kim H, Heun DW. Effects of dietary factors and the NAT2 acetylator status on gastric cancer in Koreans. Int J Cancer 2009; 125: 139-145 [PMID: 19350634 DOI: 10.1002/ijc.23438]
8. Edlick GD, Lim LL, Byles JE, Xia HH, Talley NJ. Association of Helicobacter pylori infection with gastric carcinoma: a meta-analysis. Am J Gastroenterol 1999; 94: 2373-2379 [PMID: 10483994 DOI: 10.1111/j.1572-0241.1999.01360.x]
9. Covacci A, Censini S, Bugnoli M, Petraccia R, Burroni D, Macchia G, Massone A, Papini E, Xiang Z, Figura N. Molecular characterization of the 128-kDa immunodominant anti-
Yim DH et al. ITGA1, polymorphism, haplotype, and gastric cancer risk

gen of Helicobacter pylori associated with cytotoxicity and duodenal ulcer. Proc Natl Acad Sci USA 1993; 90: 5791-5795 [PMID: 8516329]

10 Arents NL, van Zwaet AA, Thij Jc, Kooistra-Smid AM, van Slochteren KR, Degener JE, Keldkeuter JH, van Doorn LJ. The importance of vacA, cagA, and iceA genotypes of Helicobacter pylori infection in peptic ulcer disease and gastrosophageal reflux disease. Am J Gastroenterol 2001; 96: 2603-2608 [PMID: 11569862 DOI: 10.1111/j.1572-0241.2001.01404.x]

11 Kwok T, Zabler D, Urman S, Rohde M, Hartig R, Wessler S, Misselwitz R, Berger J, Sewald N, König W, Backert S. Helicobacter exploits integrin for type IV secretion and kinase activation. Nature 2007; 449: 862-866 [PMID: 17943123 DOI: 10.1038/nature06187]

12 Backert S, Meyer TF. Type IV secretion systems and their effectors in bacterial pathogenesis. Curr Opin Microbiol 2006; 9: 207-217 [PMID: 16529981 DOI: 10.1016/j.mib.2006.02.008]

13 Hood JD, Cheres DA. Role of integrins in cell invasion and migration. Nat Rev Cancer 2002; 2: 91-100 [PMID: 12635172 DOI: 10.1038/nrc727]

14 Rüegg C, Dormond O, Mariotti A. Endothelial cell integrins and COX-2: mediators and therapeutic targets of tumor angiogenesis. Biochim Biophys Acta 2004; 1654: 51-67 [PMID: 14984767 DOI: 10.1016/j.bjca.2003.09.003]

15 Stupack DG, Cheres DA. Get a ligand, get a life: integrins, signaling and cell survival. J Cell Sci 2002; 115: 3729-3738 [PMID: 12352583 DOI: 10.1242/jcs.00071]

16 Ura H, Denno R, Hirata K, Yamaguchi K, Yasoshima T. Separate functions of alpha2beta1 and alpha3beta1 integrins in the metastatic process of human gastric carcinoma. Surg Today 1998; 28: 1001-1006 [PMID: 9786570 DOI: 10.1016/S0039-6011(98)00037-1]

17 Matsuoka T, Yashiro M, Nishimura S, Inoue T, Fujiwara T, Sawada T, Kato Y, Seki S, Hirakawa-Ys Chung K. Increased expression of alpha2beta1-integrin in the peritoneal dissemination of human gastric carcinoma. Int J Mol Med 2000; 5: 21-25 [PMID: 10601569]

18 Fukuda K, Saikawa Y, Yagi H, Wada N, Takahashi T, Kitagawa Y. Role of integration alpha 1 subunits in gastric cancer patients with peritoneal dissemination. Mol Med Rep 2012; 5: 336-340 [PMID: 22021051]

19 Orr FW, Wang HH, Lafrenie RM, Scherbarth S, Nance DM. Interactions between cancer cells and the endothelium in metastasis. J Pathol 2010; 220: 310-329 [PMID: 20885065]

20 Chen J, Liu NN, Li JQ, Yang L, Zeng Y, Zhao XM, Xu LL, Luo X, Wang B, Wang XR. Association between ITGA2 C807T polymorphism and gastric cancer risk. World J Gastroenterol 2011; 17: 2860-2866 [PMID: 21734795]

21 MacDonald TT, Horton MA, Choy MY, Richman PI. Increased expression of laminin/collagen receptor (VLA-1) on epithelium of inflamed human intestine. J Clin Pathol 1990; 43: 313-315 [PMID: 2341567 DOI: 10.1136/jcp.43.4.313]

22 Purell S, Cherry SS, Sham PC. Genetic Power Calculator: design of linkage and association genetic mapping studies of complex traits. Bioinformatics 2003; 19: 149-150 [PMID: 12499305]

23 Hedrick PW. Gametic disequilibrium measures: proceed with caution. Genetics 1987; 117: 331-341 [PMID: 3666445]

24 Lee HJ, Kim SY, Koh JM, Bok J, Kim KJ, Kim KS, Park MH, Shin HD, Park BL, Kim TH, Hong JM, Park EK, Kim DJ, Oh B, Kimn K, Kim GS, Lee YJ. Polymorphisms and haplotypes of integrinalpha1 (ITGA1) are associated with bone mineral density and fracture risk in postmenopausal Koreans. Bone 2007; 41: 979-986 [PMID: 17931993]

25 Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 1995; 57: 289-300

26 Liu JZ, McRae AF, Nyholt DR, Medland SE, Wray NR, Brown KM, Hayward NK, Montgomery GW, Visscher PM, Martin NG, Macgregor S. A versatile gene-based test for genome-wide association studies. Am J Hum Genet 2010; 87: 139-145 [PMID: 20598278 DOI: 10.1016/j.ajhg.2010.06.009]

27 Su AI, Welsh JB, Sapinoso LM, Kern SG, Dimitrov P, Lapp H, Schultz PG, Powell SM, Moskaluk CA, Frierson HF, Hampton GM. Molecular classification of human carcinomas by use of gene expression signatures. Cancer Res 2001; 61: 7388-7393 [PMID: 11606367]

28 Houghton J, Stoico C, Nomura S, Rogers AB, Carlson J, Li H, Cai X, Fox JC, Goldenring JR, Wang TC. Gastric cancer originating from bone marrow-derived cells. Science 2004; 306: 1568-1571 [PMID: 15568666]

29 Hynes RO. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 1992; 69: 11-25 [PMID: 1555235 DOI: 10.1016/0092-8674(92)00115-S]

P- Reviewers Du J, Lu JC S- Editor Gou SX L- Editor A E- Editor Ma S
