The patients in this manuscript have given written informed consent to publication of their case details.

References
1 Schwartz RA, Janniger CK. Generalized pustular figurate erythema. A newly delineated severe cutaneous drug reaction linked with hydroxychloroquine. Dermatol Ther 2020;33:e13380.
2 Galván Casas C, Catalá A, Carretero Hernández G et al. Classification of the cutaneous manifestations of COVID-19: a rapid prospective nationwide consensus study in Spain with 375 cases. Br J Dermatol 2020;183:71–77.
3 Almutairi N, Schwartz RA. COVID-19 with dermatologic manifestations and implications: an unfolding conundrum. Dermatol Ther 2020; e13544.
4 Szatkowski J, Schwartz RA. Acute generalized exanthematous pustulosis (AGEP): a review and update. J Am Acad Dermatol 2015;73:843–848.
5 Crespo J, Lainez-Nuez A, Cuevas-Bravo C et al. Acute generalized exanthematous pustulosis due to teicoplanin. J Investig Allergol Clin Immunol 2020;30:303–304.
6 Kostopoulos TC, Krishna SM, Brinster NK, Ortega-Loayza AG. Acute generalized exanthematous pustulosis: atypical presentations and outcomes. J Eur Acad Dermatol Venereol 2015;29:209–214.
7 Sidoroff A, Dunant A, Viboud C et al. Risk factors for acute generalized exanthematous pustulosis (AGEP) - results of a multinational case-control study (EuroSCAR). Br J Dermatol 2007;157:989–996.
8 Salman A, Yucelten D, Akin Cakici O, Kepenekli KE. Acute generalized exanthematous pustulosis due to ceftriaxone: report of a pediatric case with recurrence after positive patch test. Pediatr Dermatol 2019;36:514–516.

DOI: 10.1111/jdv.16903

How the use of surgical masks during COVID-19 pandemic can induce skin effects

Dear Editor,

During COVID-19 pandemic, it is necessary to use personal protective equipment (in particular, face masks) to avoid contracting the disease and, at the same time, the obligation to use it is imposed by some countries in an attempt to limit the spread. Despite the widespread use of masks and the role they can play in causing/aggravating skin diseases, both high-resolution studies and data on their structural alterations related to utilization are lacking. For this reason, as an independent academic group, we studied the immediate structural alterations on surgical masks (the most commonly utilized) after a short but continuous use, to ascertain if and how they can contribute to skin problems.

We performed environmental scanning electron microscopy (ESEM) analysis of internal part of a control mask (Zhi Shan – Standard Earloop Medical Mask, model no. ZSE001) to exclude alterations of the structure related to the manufacturer and/or storage (Fig. 1a,b), and of 10 masks worn continuously for 1.5 h by 10 volunteers (Fig. 2a,b).

The analysis revealed deformations in the structure of the 10 masks used (Fig. 2a), probably due to the manipulation of the wearers since the masks were perfectly intact before utilization (Fig. 1b). These deformations can reduce the porosity of the masks, thus going to explain the alterations in the levels of accumulation of oxygen and carbon dioxide in the space between the face and the masks themselves. These changes have already been reported as they can induce respiratory complications, and they affect not only the respiratory tract, but also the skin. To this must be added the changes in humidity and temperature between the masks and the skin, caused by the masks, which can involve a change in the skin microenvironment. Dysregulation of the skin microenvironment can cause inflammatory skin diseases, with cyclical alternation of initiation and propagation stages.

The presence of dirt and residual material on the internal surface of the masks (Fig. 2b) contributes to occluding the pores of the masks, worsening the alteration effect of the air between the masks and the skin.

A further aggravation of these modifications results from the prolonged duration of wearing the masks. After a month of

Figure 1 ESEM analysis of the control mask. (a) Three ply construction is evident, with the filter in the central layer presenting fibre of smaller diameter than the other layers and with a denser texture. (b) Central part of the internal surface presents fibres of different diameters (from 1.85 to 11.08 µm), with a non-regular braided path. There are no structural deformities, such as crushing or creasing.
using surgical masks, two out of 10 subjects of this study reported discomforts while wearing the mask. They described an increase in the itching sensation. Another subject reported acne rosacea at the cheek level. This person had never had this pathology, previously. Antibiotic therapy with Lymecycline was taken orally for 28 days, and an Ivermectin ointment was administered topically for 3 months to completely resolve the disease. Skin itching, irritations and infections related to the use of masks have already been documented\(^1\)–\(^7\) even after short periods of use of the devices.\(^8\)

To these aspects, we can add the abrasions of the mask at the nanometric level, related to the contact between the masks and the skin, which can cause contact dermatitis.\(^9\)–\(^10\)

Further considerations can be made about the fact that anallergic or hypoallergenic fabrics are not always guaranteed for the construction of the masks.

Since the suspension of masks use is currently unthinkable, considering that their surface is not smooth and uniform, their use can be associated with a progressive topical drug delivery in order to heal the mask-induced pathologies and/or prevent their onset.

The high-resolution ESEM can be a tool to provide further information for the creation and analysis of masks that are both protective, but also safe and useful for the skin.

Conflicts of interest
The authors have no conflict of interest to declare.

Funding sources
None.

References

1. World Health Organization. Advice on the use of masks in the context of COVID-19: interim guidance, 5 June 2020. World Health Organization; 2020. URL https://apps.who.int/iris/handle/10665/332293. License: CC BY-NC-SA 3.0 IGO.

2. Beder A, Büyükçoçak U, Sabuncuoğlu H, Kesikli ZA, Kesikli S. Preliminary report on surgical mask induced deoxygenation during major surgery. *Neurocirugia (Astur)* 2008; \(19\): 121–126.

3. Howard BE. High-risk aerosol-generating procedures in COVID-19: Respiratory protective equipment considerations. *Otolaryngol Head Neck Surg* 2020; \(163\): 98–103.

4. Dainichi T, Kito A, Otsuka A *et al*.
 The epithelial immune microenvironment (EIME) in atopic dermatitis and psoriasis. *Nat Immunol* 2018; \(19\): 1286–1298.

5. Szepietowski JC, Matusiak Ł, Szepietowska M, Krajewski P, Białyńcki-Birula R. Face mask-induced itch: A self-questionnaire study of 2,315 responders during the COVID-19 pandemic. *Acta Derm Venereol* 2020; \(100\): adv00152.

6. Donovan J, Kudla I, Holness LD, Skotnicki-Grant S, Nethercott JR. Skin reactions following use of N95 facial masks. *Dermatitis* 2007; \(18\): 104.

7. Lan J, Song Z, Miao X *et al*.
 Skin damage among health care workers managing coronavirus disease-2019. *J Am Acad Dermatol* 2020; \(82\): 1215–1216.

8. Hua W, Zuo Y, Wan R *et al*.
 Short-term skin reactions following use of N95 respirators and medical masks. *Contact Dermatitis* 2020; \(83\): 115–121.

9. Fowler JF. Formaldehyde as a textile allergen. *Curr Probl Dermatol* 2003; \(31\): 156–165.

10. Donovan J, Skotnicki-Grant S. Allergic contact dermatitis from formaldehyde textile resins in surgical uniforms and nonwoven textile masks. *Dermatitis* 2007; \(18\): 40–44.

DOI: 10.1111/jdv.16905