E-SUPER EDGE MAGIC LABELING ON SOME CLASSES OF GRAPHS

1M.Sindhu & 2S.Chandra Kumar

1 Research Scholar, Reg No-18213162092011,
Department of Mathematics,
Scott Christian College(Autonomous), Nagercoil-629003
Email:msindhu_87@yahoo.co.in

2Associate Professor, Department of Mathematics,
Scott Christian College(Autonomous), Nagercoil-629003.
Tamilnadu, India
Email:kumar.chandra82@yahoo.in

Abstract

A (p,q) graph G with p vertices and q edges, a bijection \(f: V(G) \cup E(G) \rightarrow \{1,2, \ldots , p + q\} \) is called edge magic labeling of G if \(f(u) + f(uv) + f(v) = k \), a constant for any edge \(uv \) of G.G is known as E-super edge magic if \(f(E(G)) = \{1,2, \ldots , q\} \).Herein, we explore some classes of E-super edge-magic graphs.

Keywords: Edge magic labeling, E-super edge magic labeling, E-super edge magic graphs.

INTRODUCTION

In this whole paper we deal with only a non-trivial simple undirected graphs.

Let G be a graph with vertex set \(V(G) \) and the edge set \(E(G) \) such that the order of G = \(|V(G)| = p \) and the size of G = \(|E(G)| = q \). Assigning of integers to vertices(edges) into a set of numbers is known as Graph Labeling.

Different kinds of labelings have been examined by several experts and an eminent survey of graph labelings can be found in[3]. In 1963, Sedláček[5] identified the concept of magic labeling in graphs. A graph G is magic if the edges of G can be labeled by a set of numbers\{1,2, \ldots , q\} so that the sum of labels of all the edges incident with any vertex is the same. In 1966, Stewart also worked on the concept of magic labeling[6].

In 1970, Kotzig and Rosa [4] defined a magic labeling of a graph G as a bijection \(f: V(G) \cup E(G) \rightarrow \{1,2, \ldots , p + q\} \) such that for all edges \(uv, f(u) + f(uv) + f(v) = k \), is constant. Enomoto[2] and Wallis[7] call an edge magic total labeling as super edge magic if set of vertex label is \{1,2, \ldots , p\}. R.M.Figueroa-Centeno et al[1] discussed the concept of super edge-magic labelings among other classes of labelings.
In 2018, U.VijayaNarayanan and P.Parthiban [8] discussed about Some classes of Super edge magic graphs. By using the definition of super edge magic labeling, we define a new labeling called E-super edge magic labeling. A (p,q) graph G with p vertices and q edges, a bijection \(f: V(G) \cup E(G) \rightarrow \{1,2,\ldots,p+q\} \) is called edge magic labeling of G if \(f(u) + f(uv) + f(v) = k \), a constant for any edge \(uv \) of G. G is said to be E-super edge magic if \(f(E(G)) = \{1,2,\ldots,q\} \). Here we observe that \(p = q \).

In this paper we find some graphs that admit E-super edge magic labeling.

E-SUPER EDGE MAGIC GRAPHS

Let \(C_y \) be a cycle with vertices \(v_1, v_2, \ldots, v_y \), where \(y \geq 3 \) is odd. The Graph \(C_y(1) \) is obtained from the cycle \(C_y \) by attaching a path of length 1 at the vertex \(v_1 \).

THEOREM 1

The graph \(C_y(1) \) is E-Super edge magic.

Proof:

We label the vertices of \(C_y(1) \) as follows:

Let the vertices of the graph \(v_1, v_2, \ldots, v_p \).

Define \(f: V(C_y(1)) \rightarrow \{p + 1, p + 2, \ldots, p + q\} \) by

\[
f(v_i) = \begin{cases}
\frac{(2p+1)+i}{2}, & \text{if } i \text{ is odd} \\
\frac{3p+i}{2}, & \text{if } i \text{ is even}
\end{cases}
\]

And \(f \left(E(C_y(1)) \right) = \{1,2,\ldots,q\} \)

Obviously \(\{f(u) + f(v): uv \in E(G)\} \) contains \(q \)-consecutive integers and \(f(u) + f(uv) + f(v) = k \), a constant. Hence \(f \) admits E-super edge magic labeling.

EXAMPLE 1

Consider the graph \(C_5(1) \). The vertices of the graph are \(v_1, v_2, \ldots, v_6 \).

Define \(f: V(C_5(1)) \rightarrow \{7,8,\ldots,12\} \) by
Let C_y be a cycle with vertices $v_1, v_2, ..., v_y$ where $y \geq 3$ is odd. The graph $C_y(n, n)$ is obtained from the cycle C_y by attaching a path of length $n - 1$ at the vertices $v\left(\frac{y+1}{2}\right)$ and $v\left(\frac{y+3}{2}\right)$.

THEOREM 2

The graph $C_y(n, n)$ is E-super edge magic, for all $n \geq 2$.

PROOF:

We label the vertices of the graph $C_y(n, n)$ as $v_1, v_2, ..., v_p$.

Define an onto map

$$f: V\left(C_y(n, n)\right) \to \{p + 1, p + 2, ..., p + q\}$$

$$f(v_i) = \begin{cases}
\frac{(2p+1)+i}{2}, & \text{if } i \text{ is odd} \\
\frac{(3p+1)+i}{2}, & \text{if } i \text{ is even}
\end{cases}$$

And $f\left(E(C_y(n, n))\right) = \{1, 2, ..., q\}$.

Fig 1: E-Super Edge magic labeling of $C_5(1)$ with $k = 23$.

212 Journal of Mathematical Sciences & Computational Mathematics
Obviously \(\{f(u) + f(v) : uv \in E(G)\} \) contains \(q \)-consecutive integers and
\[
f(u) + f(uv) + f(v) = k,
\]
a constant.
Hence \(f \) is E-super edge magic labeling.

EXAMPLE 2

Consider the graph \(C_5(3,3) \). The vertices of the graph are \(v_1, v_2, \ldots, v_9 \).
Define \(f : V(C_5(3,3)) \rightarrow \{10, 11, \ldots, 18\} \) by
\[
f(v_i) = \begin{cases}
\frac{19+i}{2}, & \text{if } i \text{ is odd} \\
\frac{28+i}{2}, & \text{if } i \text{ is even}
\end{cases}
\]
And \(f(E(C_5(3,3))) = \{1, 2, \ldots, 9\} \)

Obviously \(\{f(u) + f(v) : uv \in E(G)\} \) contains \(q \)-consecutive integers and
\[
f(u) + f(uv) + f(v) = 33.
\]
Hence \(G \) is E-super edge magic.

![Fig 2: E-Super Edge magic labeling of \(C_5(3,3) \) with \(k = 33 \)](image-url)
Let C_y be a cycle with vertices v_1, v_2, \ldots, v_y where $y \geq 3$ is odd. The graph $C_y(1, n, n)$ is obtained from the cycle C_y by attaching a path of length 1 at the vertex v_1, and a path of length $n - 1$ at the vertices $v_{\left(\frac{y+1}{2}\right)}$ and $v_{\left(\frac{y+3}{2}\right)}$.

THEOREM 3

The graph $C_y(1, n, n)$ is E-super edge magic, for all $n \geq 2$.

PROOF

We label the vertices of the graph $C_y(1, n, n)$ as v_1, v_2, \ldots, v_p.

Define an onto map

$$f: V(C_y(1, n, n)) \rightarrow \{p + 1, p + 2, \ldots, p + q\}$$

$$f(v_i) = \begin{cases}
\frac{(2p+1)+i}{2}, & \text{if } i \text{ is odd} \\
\frac{(3p)+i}{2}, & \text{if } i \text{ is even}
\end{cases}$$

And $f(E(C_y(1, n, n))) = \{1, 2, \ldots, q\}$

Obviously $\{f(u) + f(v): uv \in E(G)\}$ contains q-consecutive integers and $f(u) + f(uv) + f(v) = k$, a constant.

Hence f is E-super edge magic labeling.

EXAMPLE 3

Consider the graph $C_5(1, 4, 4)$. The vertices of the graph are v_1, v_2, \ldots, v_{12}.

Define $f: V(C_5(1, 4, 4)) \rightarrow \{13, 14, \ldots, 24\}$ by

$$f(v_i) = \begin{cases}
\frac{25+i}{2}, & \text{if } i \text{ is odd} \\
\frac{36+i}{2}, & \text{if } i \text{ is even}
\end{cases}$$

And $f(E(C_5(1, 4, 4))) = \{1, 2, \ldots, 12\}$

Obviously $\{f(u) + f(v): uv \in E(G)\}$ contains q-consecutive integers and $f(u) + f(uv) + f(v) = 44$.

Hence G is E-super edge magic.
CONCLUSION

In this paper, we have discussed some classes of graphs that admit E-Super Edge Magic Labeling. In future, we can prove different classes of graphs which satisfy E-Super Edge Magic Labeling.
REFERENCES:

1. R.M.Figueroa-Centeno, R.Ichishima, F.A.Muntaner-Batle, The place of super edge-magic labelings among other classes of labelings, Discrete Math. 231 (2001) 153-168.

2. H.Enomoto, A.S.Llado, T.Nakamigawa, G.Ringel, Super edge magic graphs, SUT J.Math 34 (1998) 105-109.

3. J.A.Gallian, A Dynamic survey of graph labeling, Electron J.Cobin. 17 (2014) #DS6.

4. A.Kotzig, A.Rosa, Magic valuation of finite graphs, Can.Math.Bull. 13 (1970) 451-461.

5. J.Sedlacek, On magic graphs, Math.Slov. 26 (1976) 329-335.

6. B.M.Stewart, Magic graphs, Can.J.Math. 18 (1966) 1031-1059.

7. W.D.Wallis, Magic Graphs, Birkhauser, Boston, 2001.

8. U.VijayaNarayanan, P.Parthiban, Some classes of super edge magic graphs, Journal of Analysis and Computation, Vol XI(1), 2018.