EVALUATION OF SPIROMETRIC PARAMETERS AND MAXIMUM OXYGEN CONSUMPTION IN ATHLETES AND NON-ATHLETES

Original study

Department of Physiology, Novi Sad
Health Center Bečej
Department of Women and Children’s Health Care, Bečej

Sažetak

Uvod. Postoji velika zainteresovanost za identifikovanje faktora koji utiču na vrednost maksimalne potrošnje kiseonika. Cilj rada bio je procena telesnog sastava, respiratornih parametara i maksimalne potrošnje kiseonika kod osoba koji se bave različitim sportovima i osoba koje se ne bave sportom („nesportisti“).

Material i metode. Istraživanje je obuhvatalo 149 ispitanika muškog pola: aerobni sportovi (n = 55), anaerobni sportovi (n = 53) i „nesportisti“ (n = 41). Testiranje je sprovedeno na Zavodu za fiziologiju Medicinskog fakulteta Univerziteta u Novom Sadu. Izmereni su: antropometrijski parametri i izračunat je indeks telesne mase. Procent masne mase je određen bioelektričnom impedancom, respiratorni parametri pomoću spirometra, dok je vrednost maksimalne potrošnje kiseonika merena na bicikl-ergometru.

Rezultati. Najviše vrednosti indeksa telesne mase imale su osobe u grupi „nesportisti“ a u poređenju sa osobama iz grupe aerobnih sportova statistički se značajno razlikuju (p = 0,01). „Nesportisti“ su imali statistički značajno više vrednosti procenta telesnih masti u odnosu na sportiste (p < 0,001). U sve tri grupe ispitanika nije dobijeno postojanje statistički značajne razlike (p > 0,05) u vrednostima respiratornih parametara. Međutim u pogledu vrednosti maksimalne potrošnje kiseonika između sve tri posmatrane grupe ona postoji (aerobna grupa 53,75 ± 7,82 ml/kg/min; anaerobna grupa 48,04 ± 6,79 ml/kg/min; „nesportisti“ 41,95 ± 8,53 ml/kg/min) (p < 0,001). U sve tri grupe zabeležen je nizak stepen koeficijenta korelacije između vrednosti maksimalne potrošnje kiseonika i respiratornih parametara.

Zaključak. Telesna konstitucija ima uticaj na parametre plućne funkcije. Vrednost maksimalne potrošnje kiseonika zavisi od vrste sportskog treninga i tipa treninga i najvažnije je kod osoba koje se bave aerobnim sportovima. Postoji nizak stepen koeficijenta korelacije između vrednosti maksimalne potrošnje kiseonika i respiratornih parametara plućne funkcije unutar svih grupa.

Ključne reči: spirometrija; potrošnja kiseonika; sportisti; telesna kompozicija; indeks telesne mase; sport; anaerobni prag; testovi respiratorne funkcije

Originalni naučni rad

UDK 612.21:796 i 572.51.087
https://doi.org/10.2298/MPNS1806157R

Sažetak

Uvod. Postoji velika zainteresovanost za identifikovanje faktora koji utiču na vrednost maksimalne potrošnje kiseonika. Cilj rada bio je procena telesnog sastava, respiratornih parametara i maksimalne potrošnje kiseonika kod osoba koji se bave različitim sportovima i osoba koje se ne bave sportom („nesportisti“).

Material i metode. Istraživanje je obuhvatalo 149 ispitanika muškog pola: aerobni sportovi (n = 55), anaerobni sportovi (n = 53) i „nesportisti“ (n = 41). Testiranje je sprovedeno na Zavodu za fiziologiju Medicinskog fakulteta Univerziteta u Novom Sadu. Izmereni su: antropometrijski parametri i izračunan je indeks telesne mase. Procent masne mase je određen bioelektričnom impedancom, respiratorni parametri pomoću spirometra, dok je vrednost maksimalne potrošnje kiseonika merena na bicikl-ergometru.

Rezultati. Najviše vrednosti indeksa telesne mase imale su osobe u grupi „nesportisti“ a u poređenju sa osobama iz grupe aerobnih sportova statistički se značajno razlikuju (p = 0,01). „Nesportisti“ su imali statistički značajno više vrednosti procenta telesnih masti u odnosu na sportiste (p < 0,001). U sve tri grupe ispitanika nije dobijeno postojanje statistički značajne razlike (p > 0,05) u vrednostima respiratornih parametara. Međutim u pogledu vrednosti maksimalne potrošnje kiseonika između sve tri posmatrane grupe ona postoji (aerobna grupa 53,75 ± 7,82 ml/kg/min; anaerobna grupa 48,04 ± 6,79 ml/kg/min; „nesportisti“ 41,95 ± 8,53 ml/kg/min) (p < 0,001). U sve tri grupe zabeležen je nizak stepen koeficijenta korelacije između vrednosti maksimalne potrošnje kiseonika i respiratornih parametara.

Zaključak. Telesna konstitucija ima uticaj na parametre plućne funkcije. Vrednost maksimalne potrošnje kiseonika zavisi od vrste sportskog treninga i tipa treninga i najvažnije je kod osoba koje se bave aerobnim sportovima. Postoji nizak stepen koeficijenta korelacije između vrednosti maksimalne potrošnje kiseonika i respiratornih parametara plućne funkcije unutar svih grupa.

Ključne reči: spirometrija; potrošnja kiseonika; sportisti; telesna kompozicija; indeks telesne mase; sport; anaerobni prag; testovi respiratorne funkcije
Aerobic sports are dominant, while in anaerobic sports development of explosive strength is emphasized. This can explain the observed difference [9]. In non-athletes with a sedentary lifestyle, changes in body composition are unavoidable. In our study, non-athletes were statistically significantly heavier with higher values of BMI compared to the aerobic athletes. When it comes to body fat mass, non-athletes had significantly higher values of body fat mass than athletes, while the difference between aerobic and anaerobic athletes was not observed. Previous studies have shown that physical activity contributes to a reduction of body fat.

Parameters of the respiratory function: forced expiratory volume in the first second (FEV1), forced vital capacity (FVC) and percentage of the forced vital capacity (FVC%) were measured by spirometry (MIR Spirolab Enraf Nonius Holland).

Measurement of VO2max (ml/kg/min) was carried out by FITmate Pro device. In the first 2 minutes, respondents were pedaling a bike ergometer (Ergoselect 100 Cosmed, Ergoline GmbH, Germany) without any resistance, which was progressively increased by 25 W per minute thereafter. During the whole test subjects were supposed to maintain the cadence of 60 revolutions per minute (RPM). The heart rate was continuously monitored during the whole test by pulse meter.

The results were processed using the Jeffrey’s Amazing Statistical Program (JASP) 0.8.0.1. The arithmetic mean (X), standard deviation (SD), single-factor analysis of variance (ANOVA) and Pearson correlation coefficient (r) were used in this study.

Results

Average values of BW, BH, BMI, age, and sport experience of all participants are presented in Table 1. We noticed that there was a significant difference in terms of BW and BH between the groups of aerobic and anaerobic athletes (p = 0.03) and in terms of BW between non-athletes and aerobic athletes (p = 0.001).

Values of BMI significantly differed between non-athletes and aerobic athletes (p = 0.01). A significant difference was observed comparing the percentage of body fat mass in aerobic and anaerobic athletes with the group of non-athletes (p < 0.001). Average values of spirometric parameters are shown in Table 2. The values of FVC, FEV1 and FEV1% in all three groups were not significantly different (p > 0.05).

Analyzing the values of VO2 max significant difference (p < 0.01) between tested groups was found (Graph 1). Examining the relation between VO2 max and FVC, FEV1 and FEV1% in tested groups a low degree of correlation was determined.

Discussion

This research shows that the values of BW and BH in the anaerobic compared to aerobic athletes are statistically significantly high. Aerobic sports are characterized by activities where the endurance is dominant, while in anaerobic sports development of explosive strength is emphasized. This can explain the observed difference [9]. In non-athletes with a sedentary lifestyle, changes in body composition are unavoidable. In our study, non-athletes were statistically significantly heavier with higher values of BMI compared to the aerobic athletes. When it comes to body fat mass, non-athletes had significantly higher values of body fat mass than athletes, while the difference between aerobic and anaerobic athletes was not observed. Previous studies have shown that physical activity contributes to a reduction of body fat.

Abbreviations

ATP – adenosine triphosphate
VO2 max – maximum oxygen consumption
BW – body weight
BH – body height
BMI – body mass index
FEV1 – forced expiratory volume in the first second
FVC – forced vital capacity
FEV1% – percentage of the forced vital capacity

Introduction

Morphological characteristics and functional abilities change due to physical activity, as a result of adaptation of the body to different training and competition requirements, and depend on the type of sports activity [1]. Aerobic capacity is an integral indicator of functional capacities of all systems involved in supply, transportation and energetic oxygen transformation (cardio-respiratory and functional ability of muscles to create adenosine triphosphate (ATP) in the presence of oxygen) [2]. Maximum oxygen consumption (VO2 max) is the best indicator of aerobic capacity of an organism [3, 4]. Considering the usage of VO2 max in diagnostic and therapeutic purposes there is a great interest to identify factors that affect the degree of physical competence [5, 6]. Physiological factors that could limit the VO2 max are respiratory diffusion capacity, maximal minute heart volume, oxygen transport capacity of the blood, and skeletal muscles properties [7, 8].

The goal of this study was to evaluate the body composition, respiratory parameters and values of VO2 max in athletes and non-athletes, in various types of sports, as well as to evaluate the degree of correlation between values of VO2 max and parameters of respiratory function.

Material and Methods

This research included 149 male subjects who were divided into three groups: aerobic sports group (n = 55), anaerobic sports group (n = 53) and non-athletes (n = 41). The tests were conducted at the Department of Physiology, Faculty of Medicine of the University of Novi Sad. All participants were informed about the procedures, the purpose of the examination and the confidentiality of personal data and signed a written consent to participate in the research. The approval of the Ethics Committee of the Faculty of Medicine, University of Novi Sad was obtained for conducting this research.

A clinical examination was performed and anthropometric parameters, body fat percentage, respiratory parameters, and VO2 max were measured. Body weight (BW) was measured with a medical balance decimal beam scale (accuracy 0.1 kg), body height (BH) using anthropometer according to Martin’s technique with a precision of 0.5 cm, and body mass index (BMI) was calculated. Bioelectrical impedance, (OMRON BF300) was used for body composition analysis.

Average values of BW, BH, BMI, age, and sport experience of all participants are presented in Table 1. We noticed that there was a significant difference in terms of BW and BH between the groups of aerobic and anaerobic athletes (p = 0.03) and in terms of BW between non-athletes and aerobic athletes (p = 0.001).

Values of BMI significantly differed between non-athletes and aerobic athletes (p = 0.01). A significant difference was observed comparing the percentage of body fat mass in aerobic and anaerobic athletes with the group of non-athletes (p < 0.001). Average values of spirometric parameters are shown in Table 2. The values of FVC, FEV1 and FEV1% in all three groups were not significantly different (p > 0.05).

Analyzing the values of VO2 max significant difference (p < 0.01) between tested groups was found (Graph 1). Examining the relation between VO2 max and FVC, FEV1 and FEV1% in tested groups a low degree of correlation was determined.

Discussion

This research shows that the values of BW and BH in the anaerobic compared to aerobic athletes are statistically significantly high. Aerobic sports are characterized by activities where the endurance is dominant, while in anaerobic sports development of explosive strength is emphasized. This can explain the observed difference [9]. In non-athletes with a sedentary lifestyle, changes in body composition are unavoidable. In our study, non-athletes were statistically significantly heavier with higher values of BMI compared to the aerobic athletes. When it comes to body fat mass, non-athletes had significantly higher values of body fat mass than athletes, while the difference between aerobic and anaerobic athletes was not observed. Previous studies have shown that physical activity contributes to a reduction of body fat.
mass. The lowest values of body fat mass were recorded in aerobic sports (triathlon, marathon, cross-country skiing, cycling) [10–12].

It is known that parameters of the respiratory function vary depending on the age, height, weight, gender and ethnicity [13]. The parameters of the respiratory system were not significantly different in physically active individuals compared to the sedentary population as it was reported in earlier study [14]. However, according to recent literature, the respiratory volumes can vary considerably depending on the type, intensity, duration and frequency of sports activities [15, 16]. Durmić et al. showed that the type of sport has a significant impact on the adaptation of the respiratory system [17]. Athletes who are engaged in sports where the endurance is dominant (rowing and canoeing, swimming, long-distance running and marathon, cycling, triathlon) have higher values of respiratory functions compared to athletes who train sports where the development of explosive strength is most important [18]. Our results did not show a statistically significant difference in the values of respiratory parameters between athletes and non-athletes, as well as between different types of sports, compared to previous studies. These results can be explained by the difference in body composition of the participants.

Regular physical activity increases the values of \(VO_{2\text{max}} \) which is the main indicator of the fitness level [19, 20]. According to the literature data, the value of \(VO_{2\text{max}} \) can be increased by 20–30% during 8–10 weeks of training and even by 40–50% during the

Parameters/Parametri	Body weight (kg)/Telesna težina (kg)	Body height (cm)/Telesna visina (cm)	Body mass index (kg/m\(^2\))/Indeks telesne mase (kg/m\(^2\))	Body fat (%)/Telesna mast (%)	Age (years)/Starost (godine)	Sport experience (years)/Sportsko iskustvo (god)
Aerobic sports/Aerobni sportovi X±SD	74.77±8.89	178±0.06	23.40±2.39	11.11±4.66	21.98±5.65	8.09±4.84
Anaerobic sports Anaerobni sportovi X±SD	79.80±11.87†	182±0.06†	24.14±2.96	11.08±3.93	20.94±2.53	7.25±4.02
Non-athletes Nesportisti X±SD	82.6±10.78*	181±0.06	25.05±2.69*	14.78±5.39‡	21.19±1.72	/

Legend:† p < 0.05 between aerobic and anaerobic sports;* p < 0.05 between non-athletes and aerobic sports; ‡ p < 0.05 between non-athletes and anaerobic sports

Legend:† p < 0,05 između aerobnih i anaerobnih sportova;* p < 0,05 između nesportista i aerobnih sportova; ‡ p < 0,05 između nesportista i anaerobnih sportova

Graph 1. Maximum oxygen consumption in all three groups

Aerobic sports	Anaerobic sports	Non-athletes
FEV1 (L)	51.75	40.84
FEV1%	93.41±5.33	94.19±6.12

Legend: FEV1 - forced expiratory volume in the first second. FVC - forced vital capacity. FEV1% - percentage of the forced vital capacity (Tiffeneau index)

Legenda: FEV1 - forsirani ekspiratorni volumen u prvom sekundi, FVC - forsirani vitalni kapacitet i FEV1% - Tifnoov indeks
period of 1–4 years of intense physical activity [21–23].
Our results showed significantly lower values of VO$_2$max in non-athletes compared to athletes engaged in different types of sports. Intensive physical activity causes expansion of the heart chambers and muscle hypertrophy and increases the density of the capillary network and the number of mitochondria which leads to an increase of VO$_2$max [24]. Numerous studies showed that values of VO$_2$max are significantly lower in the group of non-athletes compared to the aerobic and anaerobic athletes, which is in agreement with our results [25–31].

Analyzing the values of VO$_2$max in this study, we found that participants from the aerobic sports group have significantly higher values compared to the anaerobic group. Ranković et al., also proved that the values of VO$_2$max were significantly higher in aerobic sports (football players 51.70 ml/kg/min) compared to the anaerobic sports (volleyball players 45.40 ml/kg/min) [25]. Other authors reported that rowers achieved the best results of VO$_2$max (55.8 ml/kg/min) compared to football players (53.6 ml/kg/min) and judo athletes (47.2 ml/kg/min), because it is a sport that requires high aerobic capacity. The lowest values of VO$_2$max were found in judo athletes, which can be attributed to the anaerobic character of this sport [26]. Lazović-Popović et al., showed that football players have significantly higher VO$_2$max values (57.1 ml/kg/min) compared to karate players (48.98 ml/kg/min) [27]. Other researchers showed that handball players (51.90 ml/kg/min) achieved significantly higher values of VO$_2$max compared to volleyball players (45.50 ml/kg/min) [28].

In this research, there is also a very low degree of correlation between the value of VO$_2$max and the parameters of the respiratory function in all tested groups. The same results were presented in previously conducted researches [27, 32]. MacAuley reported that there was a significant correlation between the respiratory function and physical activity, however, the relation between respiratory parameters and physical fitness has not been established. Our study included testing in the maximum load area, unlike other researches, which included testing in the mid-load zone. Previously, it was considered that there was a possibility that the degree of load may affect the respiratory function, and that the mid-load zone was not sufficient to push the respiratory function to the limits where it was a limiting factor in assessing physical capacity. However, our results showed that the degree of load was not a limiting factor. A low degree of correlation between VO$_2$max and respiratory parameters can be explained by the fact that the cardiovascular system actually limits VO$_2$max much more than the respiratory system [33, 34].

Conclusion

Considering values of the respiratory parameters, there was no significant difference between the tested groups. The value of maximum oxygen consumption in non-athletes was significantly lower compared to both groups of athletes. Subjects in the aerobic group had significantly higher values of maximum oxygen consumption compared to the anaerobic group. A low correlation between maximum oxygen consumption and respiratory parameters was observed in the tested groups.

Literatura

1. Dawson EA, Whyte GP, Black MA, Jones H, Hopkins N, Oxborough D, et al. Changes in vascular and cardiac function after prolonged strenuous exercise in humans. J Appl Physiol. 2008;105(5):1562-8.
2. Kenney WL, Wilmore J, Costill D. Physiology of sport and exercise. 6th ed. Champaign: Human kinetics; 2015.
3. Fleg JL, Piha IL, Balady GJ, Chaitman BR, Fletcher B, Lavie C, et al. Assessment of functional capacity in clinical and research applications. Circulation. 2000;102(13):1591-7.
4. Fletcher GF, Blair SN, Blumenthal J, Caspersen C, Chaitman B, Epstein S, et al. Statement on exercise: a statement for health professionals by Committee on exercise and cardiac rehabilitation of the Council on Clinical cardiology, American Heart Association. Circulation. 1992;86(1):340-4.
5. Hill AV, Lupton H. Muscular exercise, lactic acid, and the supply and utilization of oxygen. QJM: An International Journal of Medicine. 1923;5:1662(62):135-71.
6. Hill AV, Long CN, Lupton H. Muscular exercise, lactic acid, and the supply and utilisation of oxygen. Proc R Soc Lond B Biol Sci. 1924;97(68):84-138.
7. Gledhill N. The influence of altered blood volume and oxygen transport capacity on aerobic performance. Exerc Sport Rev. 1985;13(1):75-94.
8. Saltin B, Strange S. Maximal oxygen uptake: “old” and “new” arguments for a cardiovascular limitation. Med Sci Sports Exerc. 1992;24(1):30-7.
9. Popadić Gaćeša J. Komparativna analiza razvoja snage kod osobu različitih sportskih specijalnosti [magistarska teza]. Novi Sad: Univerzitet u Novom Sadu, Medicinski fakultet; 2003.
10. Heyward VH, Wagner DR. Applied body composition assessment. Champaign: Human Kinetics; 2004.
11. Mazic S, Djelic M, Suzic J, Suzic S, Dekleva M, Radovanovic D, et al. Overweight in trained subjects – are we looking at wrong numbers? (Body mass index compared with body fat percentage in estimating overweight in athletes.). Gen Physiol Biophys. 2009;28(Spec No):200-4.
12. Drinkwater DT, Maza JC. Body composition. In: Carter JEL, Ackland TR, editors. Kinanthropometry in aquatic sports: a study of world-class athletes. Champaign: Human Kinetics; 1994;5:102-37.
13. Quanjer PH, Stanojevic S, Cole TJ, Baur X, Hall GL, Culver BH, et al. Multi-ethnic reference values for spirometry for the 3–95-yr age range: the global lung function 2012 equations. Eur Respir J. 2012;40(6):1324-43.
14. Twisk JW, Staal BJ, Brinkman MN, Kemper HC, van Mechelen W. Tracking of lung function parameters and the longitudinal relationship with lifestyle. Eur Respir J. 1998;12(3):627-34.
15. Meylan CM, Cronin JB, Oliver JL, Hopkins WG, Contreras B. The effect of maturation on adaptations to strength training and detraining in 11–15-year-olds. Scand J Med Sci Sports. 2014;24(3):156-64.
16. Losnegard T, Hallén J. Elite cross-country skiers do not reach their running VO2max during roller ski skating. J Sports Med Phys Fitness. 2014;54(4):389-93.
17. Durmic T, Lazovic B, Djelic M, Lazic JS, Zikic D, Zugic V, et al. Sport-specific influences on respiratory patterns in elite athletes. J Bras Pneumol. 2015;41(6):516-22.
18. Lazovic B, Mazic S, Suzic-Lazic J, Djelic M, Djordjevic-Sararovic S, Durmic T, et al. Respiratory adaptations in different types of sport. Eur Rev Med Pharmacol Sci. 2015;19(12):2269-74.
19. Chatterjee S, Chatterjee P, Bandyopadhyay A. Cardiorespiratory fitness of obese boys. Indian J Physiol Pharmacol. 2005;49(3):353-7.
20. McArdle WD, Katch FI, Katch VL. Essentials of exercise physiology. Baltimore: Lippincott Williams & Wilkins; 2006.
21. Vaithiyanadane V, Sugapriya G, Saravanan A, Ramachandran C. Pulmonary function test in swimmers and non-swimmers: a comparative study. Int J Biol Med Res. 2012;3(2):1735-8.
22. Doherty M, Dimitriou L. Comparison of lung volume in Greek swimmers: land based athletes, and sedentary controls using allometric scaling. Br J Sports Med. 1997;31(4):337-41.
23. Babbs TG, Long KA, Rodarte JR. The relationship between maximal expiratory flow and increases of maximal exercise capacity with exercise training. Am J Respir Crit Care Med. 1997;156 (1):116-21.
24. Brandon LJ. Physiological factors associated with middle distance running performance. Sports Med. 1995;19(4):268-77.

Rad je primljen 5. II 2018.
Recenziran 22. II 2018.
Prihvaćen za štampu 2. III 2018.
BIBLID.0025-8105:(2018):LXXI:5-6:157-161.