Huperzine A - An Interesting Anticholinesterase Compound from the Chinese Herbal Medicine

Jiří Patočka
Purkyně Military Medical Academy, Hradec Králové; (Head: doc. MUDr. S. Býma, CSc.)

Summary: Huperzine A, alkaloid from the Chinese herbal medicine Qian Ceng Ta, which is prepared from the moss Huperzia serrata, has been used in China for centuries to treat fever and inflammation. Huperzine A is a strong inhibitor of cholinesterases with high selectivity to acetylcholinesterase and in China is developed as therapeutic against Alzheimer’s disease. May be that huperzine A will be better than other centrally active anticholinesterases in treating this neurodegenerative disorder. Huperzine A appears to have additional pharmacological properties that make it an attractive candidate therapy for clinical trials.

Key words: Huperzine A, Alkaloid, Inhibitor of Acetylcholinesterase, Alzheimer’s Disease, Treatment

Introduction

The alkaloid compound, huperzine A, was discovered in the Chinese herbal medicine called Qian Ceng Ta (14). This traditional remedy, which is prepared from the moss Huperzia serrata, has been used in China for centuries to treat fever and inflammation.

Chemistry

Huperzine A is an unsaturated sesquiterpenic compound with pyridone moiety and primary amino group (Fig. 1) C15H18N2O, MW = 242.32. Chemically 9-amino-13-ethylidene-11-methyl-4-azatricyclo[7.3.1.0(3.8)]trideca-3(8),6,11-trien-5-one. Compound is optically active and in the moss is present only its (-)-enantiomer. The pyridone ring is planar and the stereochemistry of the C(11)-C(12) double bond is E. It is white solid soluble in aqueous acids and CHCl₃ (3).

![Chemical structure of huperzine A](image)

Biochemistry

Huperzine A is a potent reversible inhibitor of cholinesterases, i.e. acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) with on- and off-rates that depend on both the type and the source of enzyme. A low dissociation constants Ki was obtained for mammalian-AChE-huperzine A (20-40 nM) compared to mammalian BuChE-huperzine A (20-40 µM) (1). This indicates that the thermodynamic stability of huperzine-cholinesterase complex may depend on the number and type of aromatic amino acid residues in the catalytic pocket region of the enzyme molecule. The mechanism of the inhibition of acetylcholinesterase (AChE) is stereoselective. (-)-Huperzine A, which is in drug, was the more potent enantiomer with a Ki value of 8 nM. (+)-Huperzine A inhibited the enzyme 38-fold less potently with a Ki value of 300 nM. Racemic huperzine A was about two-fold less potent than the more active enantiomer. The mechanism of inhibition of rat cortical AChE for all three compounds was of the mixed linear competitive type (9). Very similar results were obtained with enzymes from other sources (13). The crystal structure of the complex of AChE with optically pure huperzine A at 2.5 Å resolution shows an unexpected orientation for the inhibitor with surprisingly few strong direct interactions with protein residues to explain its high affinity. An analysis of the affinities of structural analogues of huperzine A, correlated with their interactions with the protein, shows the importance of individual hydrophobic interactions between huperzine A and aromatic residues in the active-site gorge of AChE (12, 13). Based on docking studies and the pharmacologi-
Huperzine A was assessed in rats after acute and chronic ad-
ministration of huperzine A. Forty-five min after a single in-
jection of huperzine A (0.5 mg/kg, i.p.) the activity of ACHe was significantly decreased by 15-30 per cent in hip-
pocampus, striatum and septum. The activity of cholinea-
transferylase (ChAT) was not altered. In the hippocampus high affinity choline transport (HACT) was altered by 25 per cent, whereas no effect in the striatum was observed. After 90 min, both inhibition of ACHe and atte-
nuation of HACT had returned to control values. After 7 days chronic application of huperzine A (twice a day) at 0.5 mg/kg, the activity of ACHe was significantly reduced by 20-30 per cent in every region of the brain studied. HACT in the hippocampus was reduced by 28 per cent, 45 min after injection, but in the striatum there was no such effect. The activity of ChAT was not affected in any region of the brain studied (8).

Tang et al. (15) show that huperzine A can produce a long-term inhibition of ACHe activity in the acetylcholi-
ne levels up to 40 per cent at 60 min. There is considerab-
le regional variation in the degree of acetylcholine eleva-
tion after huperzine A with maximal values seen in fronto (125 per cent) and parietal (105 per cent) cortex and smaller increases (22.65 per cent) in other brain regi-
ons. A comparable effect was also observed in studies, in which, over a range of 0.1-0.2 mg/kg of huperzine A admi-
istered i.p., significantly inhibits of ACHe activity in all brain region tested (hippocampus, striatum and frontal cortex) and decreases level of brain acetylcho-
line (16).

Pharmacology

Huperzine Aconcentrations of 100 pM does not significantly alter the electrically evoked release of [3H]Acetyl-
choline from cortical slices. With the exception of the high-
histostimulated (600 M) the displacement effect of huperzine Aon its agonist is competitive for [3H]Neu-
cotine than for [3H]QNB. Autoradiographic study in the mouse shows that 60 min after i.v. injection (138 pg/kg) huper-
zine A is particularly concentrated in certain areas such as frontoparietal cortex, nucleus accumbens, hippocampal, and striatal cortex. Radioactivity is practically absent in the whole body at 12 hr (15).

Huperzine A in doses from 0.4 to 0.5 mg/kg, i.p., signi-
ficantly ameliorated the AF64A-induced memory deficit in rats in the radial maze. These results suggest that disrup-
ting working memory induced by cholinotoxine AF64A can be
effectively ameliorated by huperzine A (18). Very simi-
lar effects were obtained with huperzine A in doses from 0.1 to 0.4 mg/kg, p.o., on memory impairments induced by scopolamine. The comparison with other ACHe inhibitors shows that huperzine A is the most selective ACHe inhibi-
tor, and improved the working memory significantly better than did tacrine or donepezil (2). The results with na-
tural (+)-huperzine A and synthetic (+/-)-huperzine A indi-
cate a similar biological effects, but the racemic mixture of (+/-)-huperzine A has a weaker biological activity than the natural product (6).

Huperzine A in dose 0.1 mg/kg in conscious rabbits produced, already 30 sec after i.v. administration, an alert EEG pattern, which showed increases of lower frequency components and the total EEG power in cortical area, and the dominant frequency transferred from delta rhythm to theta rhythm in hippocampus and the same effec-
tives were observed with physostigmine in the dose of 0.1 mg/kg. Intravenously administered huperzine A in dose 0.2 mg/kg has also similar effects of scopolamine (0.3 mg/kg i.v.). Those results indicate that the effects of huperzine A are clo-
se related to the action on the central cholinergic system (5).

Huperzine A appears to have additional pharmacologi-
ocal properties that make it an attractive candidate for therapy for clinical trials. In studies using cell cultures from the hippocampus and cerebellum of rat embryos, have been shown that huperzine A decreases neuronal cell death cau-
sed by toxic level of glutamate (14). In addition to the loss of cholinergic function in patients with AD, glutamatergic and GABAergic neurotransmitter systems may also be compromised. Glutamate activates N-methyl-D-aspartate receptors and increases the flux of calcium into the neurons, which in sufficient concentration can kill the neuronal cells.

Huperzine A has been also testing as a prophylactic drug against soman and other nerve gas poisoning with very good effect (4).

Pharmacokinetics

Pharmacokinetic of huperzine A was studied in six vo-
lunteers after a single oral dose of 0.99 mg and drug con-
centrations were assayed by reverse phase HPLC from 0.5 to 10 hrs. The time course of plasma concentrations con-
firmed to a one-compartment open model with a first or-
er order absorption with $T_{1/2}$ $= 12.6$ min, $T_{1/2}$ $= 288.5$ min, $T_{max} = 59.6$ min, $C_{max} = 8.4$ g/litre, AUC $= 4.1$ mg/lit-
re.min. From this result is clear that huperzine A is absor-
bed rapidly, distributed widely in the body, and eliminated at a moderate rate (11).

Medical use

Huperzine A has similar action to the drugs currently ap-
proved to treat Alzheimer’s disease - tacrine (Cognex) and donepezil (Aricept), i.e. inhibits brain ACHe and blocks the breakdown of acetylcholine, a chemical mes-
senger in the brain that is important to memory function (14, 19). Reports from China, where perhaps 100,000 peo-
ple have used huperzine A, suggest that it at least as safe as the two approved Alzheimer’s drugs. Not all informati-
ones from China are available and trustworthy. It is evident that huperzine A in China was not only clinically tested, but this compound is used as remedy in the form of tablets in Alzheimer’s disease (17). Nevertheless, huperzine A is probably a still a long way to make use in Europe in (12).

The ability of huperzine A to decrease neuronal cell de-
ath caused by toxic level of glutamate may make this com-
pound a potential drug for reducing neuronal injury from strokes, epilepsy, and other disorders.

Huperzine A is a candidate drug against organophospho-
hate nerve agent toxicity for its long-lasting anticholinergic ef-
cacy and low toxicity (4). Prophylactic study make this drug promising as a protective agent against chemical we-
apons.

References

1. Ashani Y, Piggins JO, Doctor BP. Mechanism of inhibi-
tion of cholinesterases by huperzine A. Biochem Biophys Res Commun 1992;184:719-26.
2. Cheng DH, Ren H, Tang XC. Huperzine A, a novel pro-
mising acetylcholinesterase inhibitor. Neuroreport 1995:29:87-91.
3. Gerh SJ, Tuckmantel W, Kozikowski AP. Huperzine A - a potent acetylcholinesterase inhibitor of use in the treat-
ment of Alzheimer’s disease. Acta Crystallogr C 1991; 47:824-7.
4. Grunwald J, Raveh L, Doctor BP, Ashani Y. Huperzine A as a pretreatment candidate drug against nerve agent tox-
icity Life Sci 1994;54:991-7.
5. Guan LC, Chen SS, Lu WH, Tang XC. Effects of huper-
zine A on electroencephalography power spectrum in rab-
bits. Chung Kuo Yao Li Hsueh Pao 1989;10:496-500.
6. Hanin I, Tang XC, Kindel GL, Kozikowski AP. Natural and synthetic huperzine A effect on cholinergic function in vitro and in vivo. Ana N Y Acad Sci 1993;695:304-6.
7. Kozikowski AP, Miller CP, Yamada F et al. Delineating the pharmacophoric elements of huperzine A: importance of the unsaturated three-carbon bridge to its ACHe inhibi-
tory activity. J Med Chem 1991;34:3393-402.
8. Laganaris J, Corey J, Tang X, Wolpert E, Hanin I. Acute and chronic studies with the anticholinesterase hu-
perzine A effect on central nervous system cholinergic pa-
rameters. Neuropsychopharmacology 1991;30:763-74.
9. McKinney M, Miller JH, Yamada F, Tuckmantel W, Kozikowski AP. Potencies and stereoselectivities of enanti-
omers of huperzine A for inhibition of rat cortical acetyl-
cholinesterase. Eur J Pharmacol 1991;203:305-5.
10. Pang YP, Kozikowski AP. Prediction of the binding site of huperzine A in acetylcholinesterase by docking studies. J Comput Aided Mol Des 1998:3:669-81.
11. Qian BC, Wang M, Zhou ZF, Chen K, Zhou RR, Chen GS. Pharmacokinetics of tablet huperzine A in six volunte-
ers. Chung Kuo Yao Li Hsueh Pao 1995;16:396-8.
12. Raves ML, Harel M, Pang YP, Silman I, Kozikowski AP, Sussman JL. Structure of acetylcholinesterase complexed with the nootropic alkaloid (-)-huperzine A. Nat Struct Biol 1997;1:57-63.
13. Saxena A, Qian N, Kovach JM et al. Identification of amino acid residues involved in the bonding of huperzine A to cholinesterases. Protein Sci 1994;3:1770-8.
14. Skolnick AA. Traditional Chinese herbal medicine lo-
ses promising. JAMA 1997;277:776.
15. Tang XC. De Sarro F, Sugaya K, Giacobini E. Effect of huperzine A, a new cholinesterase inhibitor, on the central cholinergic system of the rat. J Neurosci Res 1989;24:276-85.
16. Tang XC, Kindel GH, Kozikowski AP, Hanin I. Comparison of the effect of natural and synthetic huperzi-
ne A on rat brain cholinergic function in vitro and in vivo. J Ethnopharmacol 1994;4:47-55.
17. Xu SG, Guo ZX, Wang Z et al. Efficacy of tablet huperzi-
ne-A on memory, cognition, and behavior in Alzheimer’s di-
ce. Chung Kuo Yao Li Hsueh Pao 1996;3:391-5.
18. Zhi QX, Yi FH, Xi CT. Huperzine Aameliorates the spatial working memory impairments induced by AF64A. Neuroreport 1995;13:2221-4.
19. Zhi QX, Yi FH, Xi CT. Huperzine A - a novel promising acetylcholinesterase inhibitor. Neuroreport 1996;8:97-101.

Submitted September 1998. Accepted November 1998.
cal results reported for huperzine A and its analogues, it was predicted that huperzine A binds to the bottom of the binding cavity of AChE with its ammonium group interacting with Trp84, Phe330 and Asp72 and to the gorge of the gorge with its ammonium group partially interacting with Trp279. At the catalytic site, three partially overlapping subsites of huperzine A were identified which might provide a dynamic view of binding of huperzine A to the catalytic site (7, 10).

Neurochemistry

AChE was assessed in rats after acute and chronic administration of huperzine A. Forty-five min after a single injection of huperzine A (0.5 mg/kg, i.p.) the activity of AChE was significantly decreased by 15 -30 per cent in hippocampus, striatum and septum. The activity of choline-acetyltransferase (ChAT) was not altered. In the hippocampus high affinity choline transport (HACT) was altered by 25 per cent, whereas no effect in the striatum was observed. After 90 min, both inhibition of AChE and attenuation of HACT had returned to control values. After 7 days chronic application of huperzine A (twice a day) at 0.5 mg/kg, the activity of AChE was significantly reduced by 20-30 per cent in every region of the brain studied. HACT in the hippocampus was reduced by 28 per cent, 45 min after i.v. injection, but in the striatum there was no effect. The activity of ChAT was not affected in any region of the brain studied (8).

Tang et al. (15) show that huperzine A can produce a long-term inhibition of AChE activity in the acetylcholine levels up to 40 per cent at 60 min. There is considerabile reduction in the degree of acetylcholine elevation after huperzine A with maximal values seen in frontal (125 per cent) and parietal (105 per cent) cortex and smaller increases (22-65 per cent) in other brain regions. A comparable effect was also observed in studies, in which over a range of 0.1-2.0 mg/kg of huperzine A administered i.p., significantly inhibits of AChE in all brain regions tested (hippocampus, striatum and frontal cortex) and decreases level of brain acetylcholine (16).

Pharmacology

Huperzine A at concentrations 1 to 100 μM does not significantly alter the electrically evoked release of [3H]Acetylcholine from cortical slices. With the exception of the highest concentrations (600 M) the displacement effect of huperzine A is stronger in the presence of [3H]Acetylcholine than for [3H]QNB. Autoradiographic study in the mouse shows that 60 min after i.v. injection (18 μg/kg) huperzine A is particularly concentrated in certain areas such as frontaloparietal cortex, nucleus accumbens, hippocampus, and striatal cortex. Radioactivity is practically absent in the whole body at 12 hr (15).

Huperzine A in doses from 0.4 to 0.5 mg/kg, i.p., significantly ameliorated the Aβ42-induced memory deficit in rats in the radial maze. These results suggest that disrupting working memory induced by cholinotoxin Aβ42 can be effectively ameliorated by huperzine A (18). Very similar effects were obtained with huperzine A in doses from 0.1 to 0.4 mg/kg, p.o., on memory impairments induced by scopolamine. The comparison with other AChE inhibitors shows that huperzine A is the most selective AChE inhibitor, and improved the working memory significantly better than did tacrine or donepezil (2). The results with natural (+)-huperzine A and synthetic (+/-)-huperzine A indicate a similar biological effects, but the racemic mixture of (+/-)-huperzine A has a weaker biological activity than the natural product (6).

Huperzine A in dose 0.1 mg/kg, in conscious rabbits produced, already 30 sec after i.v. administration, an alert EEG pattern, which showed decreases of lower frequency components and the total EEG power in cortical area, and the dominant frequency transferred from delta rhythm to theta rhythm in hippocampus and the same effects were observed with physostigmine in the dose of 0.1 mg/kg. Intravenously administered huperzine A in dose 0.2 mg/kg as well as physostigmine in dose 0.3 mg/kg antagonized the EEG effects of scopolamine (0.3 mg/kg i.v.). That results indicate that the effects of huperzine A are closely related to the action on the central cholinergic system (5).

Huperzine A appears to have additional pharmacological properties that make it an attractive candidate as a therapy for clinical trials. In studies using cell cultures from the hippocampus and cerebellum of rat embryos, have been shown that hyperzine A decreases neuronal cell death caused by toxic level of glutamate (14). In addition to the loss of cholinergic function in patients with AD, glutamatergic and GABAAergic neurotransmitter systems may also be compromised. Glutamate activates N-methyl-D-aspartate receptors and increases the flux of calcium ions into the neurons, which in sufficient concentration can kill the neurons (8).

Huperzine A has been also tested as a prophylactic drug against soman and other nerve gas poisoning with very good effect (4).

Pharmacokinetics

Pharmacokinetic of huperzine A was studied in six volunteers after a single oral dose of 0.99 mg and drug concentrations were assayed by reverse phase HPLC from 0.5 to 10 hrs. The terminal half-life conform to a one-compartment open model with a first order absorption with T1/2 α = 12.6 min, T1/2 β = 288.5 min, T max = 59.6 min, C max = 4.1 μg/ml, AUE = 41.2% of C max. From this result is clear that huperzine A is absorbed rapidly, distributed widely in the body, and eliminated at a moderate rate (11).

Medical use

Huperzine A has similar action to the drugs currently approved to treat Alzheimer’s disease - tacrine (Cognex) and donepezil (Aricept), i.e. inhibits brain AChE and blocks the breakdown of acetylcholine, a chemical messenger in the brain that is important to memory function (14, 19). Reports from China, where perhaps 100,000 people have used huperzine A, suggest that it at least as safe as the two approved Alzheimer’s drugs. Not all information from China are available and trustworthy. It is evident that huperzine A in China was not only clinically tested, but this compound is used as remedy in the form of tablets in Alzheimer’s disease (17). Nevertheless, huperzine A is probably still a long way to medical use in Europe (18).

The ability of huperzine A to decrease neuronal cell death caused by toxic level of glutamate may make this compound a potential drug for reducing neuronal injury from strokes, epilepsy, and other disorders.

Huperzine A is a candidate drug against organophosphate nerve agent toxicity for its long-lasting antidotal efficacy and low toxicity (4). Prophylactic study make this drug promising as a protective agent against chemical weapons.

References

1. Ashani Y, Piggins JD, Doctor BP. Mechanism of inhibition of cholinesterases by huperzine A. Biochem Biophys Res Commun 1992;184:719-26.
2. Cheng DH, Ren H, Tang XC. Huperzine A, a novel promising acetylcholinesterase inhibitor. Neuroreport 1996;7:287-90.
3. Geh R, Tuckmantel W, Kozikowski AP. Huperzine A: a potent acetylcholinesterase inhibitor of use in the treatment of Alzheimer’s disease. Acta Crystallogr C 1991; 47:824-7.
4. Grunwald J, Raveh L, Doctor BP, Ashani Y. Huperzine A as a pretreatment candidate drug against nerve agent toxicity. Life Sci 1994;54:991-7.
5. Guan LC, Chen SS, Lu WH, Tang XC. Effects of huperzine A on electroencephalography power spectrum in rats. Chung Kuo Yao Li Hsueh Pao 1989;10:496-500.
6. Hani I, Tang XC, Kindel GL, Kozikowski AP. Natural and synthetic huperzine A effect on cholinergic function in vitro and in vivo. Ana N Y Acad Sci 1993;695:304-6.
7. Kozikowski AP, Miller CP, Yamada F et al. Deriving the pharmacometric elements of huperzine A: importance of the unsaturated three-carbon bridge to its AChE inhibitory activity. J Med Chem 1991;34:3393-402.
8. Laganase S, Corey J, Tang XC, Wulfert E, Hani I. Acute and chronic studies with the anticholinesterase huperzine A: effect on central nervous system cholinergic parameters. Neuropharmacology 1997;36:63-74.
9. McKinney M, Miller JH, Yamada F, Tuckmantel W, Kozikowski AP. Potencies and stereoselectivities of entantiomers of huperzine A for inhibition of rat cortical acetylcholinesterase. Eur J Pharmacol 1991;202:303-5.
10. Pang YP, Kozikowski AP. Prediction of the binding site of huperzine A in acetylcholinesterase by docking studies. J Comput Aided Mol Des 1994;8:669-81.
11. Qian BC, Wang M, Zhou ZF, Chen K, Zhou RR, Chen GS. Pharmacokinetics of tablet huperzine A in six volunteers. Chung Kuo Yao Li Hsueh Pao 1995;16:396-8.
12. Raves ML, Harel M, Pang YP, Silman I, Kozikowski AP, Sussman JL. Structure of acetylcholinesterase complexed with the nortopical alkaloid, (+/-)huperzine A. Nat Struct Biol 1997;1:57-63.
13. Saxena A, Qian N, Kovach IM et al. Identification of amino acid residues involved in the binding of huperzine A to cholinesterases. Protein Sci 1994;3:1770-8.
14. Skolnick AA. Traditional Chinese herbal medicine looks promising. JAMA 1997;277:776.
15. Tang XC. De Sarno P, Sugaya K, Giacobini E. Effect of huperzine A, a new cholinesterase inhibitor, on the central cholinergic system of the rat. J Neurosci Res 1989;24:276-85.
16. Tang XC, Kindel GH, Kozikowski AP, Hani I. Comparison of the effects of natural and synthetic huperzine A on rat brain cholinergic function in vitro and in vivo. J Ethnopharmacol 1994;44:147-55.
17. Xu SS, Gao ZX, Weng Z et al. Efficacy of tablet huperzine A on memory, cognition, and behavior in Alzheimer’s disease. Chung Kuo Yao Li Hsueh Pao 1995;16:391-5.
18. Zhi QX, Yi FH, Xi CT. Huperzine A: an novel promising acetylcholinesterase inhibitor. Neuroreport 1996;8:97-101.

Submitted September 1998. Accepted November 1998.