BioCompatibility of Acellular Dermal Matrix Graft Evaluated in Culture of Murine Macrophages

ANNA PAULA VENDRAMINI, RAFAELA FERNANDA MELO, ROSEMARY ADRIANA CHIÉRICI MARCANTONIO, IRACILDA ZEPONE CARLOS

INTRODUCTION

Several techniques have been developed to solve gingival aesthetic problems. The techniques can be grouped as pediculated grafts and autogenous grafts (epithelial free grafts and connective tissue graft)\(^\text{16,22}\). Aiming at reducing the problems with these treatments, new techniques and materials have been developed\(^\text{9,18-22,24,26,31}\).

A recent material developed for soft tissue grafting was the acellular dermal matrix (AlloDerm®, Lifecore Biomedical, Oral Restorative Division, Chaska,MN)\(^\text{14,25,30,32}\). This allograft material has advantages to reduce surgical complications, decrease donor site discomfort and improve esthetic tissue. This graft is obtained from an allograft donor skin and produced by a carefully controlled process that removes the epidermis and dermis cells without altering the extracellular matrix structure, reducing the possible immune response and the transmission of diseases.

The need for biocompatible materials implies the necessity of in vitro toxicity tests, animal experimentation usage tests and clinical studies in humans\(^\text{33}\). The biological system used in in vitro cytotoxicity testing of some materials...
are cells in culture. Thus, culture of macrophage cells can be used to evaluate the biocompatibility of materials. These cells participate in many aspects of host defense, inflammation and immunity, partly through their ability to undergo adaptive responses to the conditions or stimuli that prevail at sites to which they have been attracted2.

Among the numerous secretory products of macrophages there are two groups of inorganic compounds with a high degree of chemical reactivity: the ROI (including super oxide, hydrogen peroxide, and in some populations of mononuclear phagocytes, the products of myeloperoxidase), and the RNI including nitrite (NO₂⁻) and highly related reactive oxides such as nitric oxide and nitrogen dioxide1. Macrophage-derived RNI are of interest for at least three reasons: their production is under strict immunological control17,28, they are synthesized by enzymes novel to mammalian biochemistry, which have not been yet well characterized13, and they appear to play an important role in some of the carcinogenic13,15, antitumor12,29 and immunological control27,28, they are synthesized by enzymes novel to mammalian biochemistry, which have not been yet well characterized13, and they appear to play an important role in some of the carcinogenic13,15, antitumor12,29 and antitumor12,29 and antimicrobial1 actions of the activated macrophage.

Although AlloDerm® is tested before being released for sale; we assume that it is important to evaluate the biocompatibility in macrophages culture.

MATERIAL AND METHODS

This study was approved by the Institutional Committee on Animal Research, School of Pharmaceutical Science.

Animals

The Animals Laboratory of the School of Pharmaceutical Science, UNESP (State University of São Paulo) Araraquara, SP, BRAZIL supplied six-week old male Swiss mice weighing 18 to 25 g.

Acellular dermal matrix samples

Samples of acellular dermal matrix (ADM), commercially known as AlloDerm®, measuring 4x4 mm, from different batches were obtained at the Department of Periodontology of Araraquara Dental School UNESP-Araraquara, São Paulo, Brazil.

Cell macrophage

Mice were injected i.p. 3 to 4 days before harvesting with 3 ml of thioglycollate broth. Macrophages were obtained after killing the mice with chloroform, and the peritoneum was exposed using sterile scissors. Saline solution (0.85% NaCl) was introduced into the peritoneum and after digital massage, the suspension was removed by aspiration. This suspension of peritoneal cells and saline was placed in a Neubauer chamber and counted in order to obtain the ideal concentration for each test. The adherent was placed in a Neubauer chamber and counted in order to obtain the ideal concentration for each test. The adherent aspirates were removed from conditioned medium and incubated with an equal volume of Griess reagent (1% sulfanilamide, 0.1% naphthylthylenediamine dihydrochloride, 0.25% H₂PO₄) at room temperature for 10 minutes. The absorbance at 550 nm was determined in a micro plate reader. The tests were made in quadruplicate and the results were expressed in micromoles of NO / 5 x 10⁶ peritoneal cells, from a standard curve established in each test, constituted of known molar concentrations of NO in RPMI – 1640 medium.

H₂O₂ release

The method depends on the determination of hydrogen peroxide (H₂O₂) release in the culture of peritoneal macrophages from Swiss mice. Suspensions of peritoneal cells were performed using a concentration of 2 x 10⁶ cells/ml in a solution of phenol red, containing 140 mM NaCl, 10 mM potassium phosphate, pH 7.0; 5.5 mM dextrose; 0.56 mM phenol red and type II horseradish peroxidase 0.01 mg/ml (Sigma). Aliquots of 0.1 m were transferred to culture plates, flat bottomed containing 96 wells (Corning). The acellular dermal matrix or 50 mL of Zymosan solution (5 mg/ml, Sigma) were added to each well. The samples were incubated for one hour at 37°C in a 5% CO₂ atmosphere. After the period of incubation, the reaction was interrupted by addition of 10 mL of NaOH 4N. Experiments were done in quadruplicate and the absorbance was determined in an ELISA automatic photometer, with a 620 nm filter. The results were expressed in nanomols of H₂O₂ released per 10⁶ peritoneal cells, from a standard curve established in each test, constituted of known molar concentrations of H₂O₂ in buffered phenol red.

Statistical Analysis

Comparisons between groups were performed using Student’s T test. P values <0.05 were considered statistically significant.

RESULTS

Figures 1 and 2 illustrate the release of nitric oxide and hydrogen peroxide when macrophages were exposed to...
acellular dermal matrix, respectively. Statistical analysis showed no significant difference ($p \leq 0.05$) when compared with negative control. However, the level of release of these mediators in positive control was statistically different ($p \geq 0.05$).

DISCUSSION

This study evaluated the cell inflammatory response of in vitro macrophages in contact with the acellular dermal matrix measuring the release of nitric oxide and hydrogen peroxide. The positive control using zymosan-SIGMA to H$_2$O$_2$ release and LPS-SIGMA to NO release showed a high potential of macrophages activation and liberation of H$_2$O$_2$ and NO, respectively. The acellular dermal matrix was not able to stimulate macrophage liberation of hydrogen peroxide (H$_2$O$_2$) and nitric oxide (NO).

In respect to these results we pointed out that Liversey, et al. (1994) evaluating immunohistochimically the material AlloDerm® did not find any antigen that could develop an immune reaction.

Cellular events were evaluated in some human studies with ADM grafts for root coverage4,10,11,33. In 1998, Harris10, using acellular dermal matrix graft in treatment of gingival recessions in patients, obtained complete root coverage on two of three defects. In histological analysis, the AlloDerm® had incorporated and became part of the gingival tissue in the area. The same author11 in 2001 reported a comparative clinical study of root coverage obtained with ADM versus connective tissue. Biopsy of the grafted area revealed elastin fibers. The author stated that the presence of these fibers implied that the ADM was being incorporated into the host tissue.

In a recent study Cummings, et al.4 (2005) histologically evaluated the acellular dermal matrix graft. The findings of the study showed new fibroblast, vascular elements, and collagen were present throughout the ADM, with retention of the transplanted elastin fibers.

All of these results can be directly related with the laboratory processing of human skin obtained in tissue banks with the removal of all cells without altering the connective tissue structure, composed of type I collagen fibers14. In this respect, the AlloDerm® matrix is rigorously controlled by the FDA according to the guidelines of the American Association of Tissue Banks. Apart from the selection of possible donors, serologic and microbiologic exams are also performed to screen for diseases such as AIDS, syphilis, hepatitis, etc. The patented process of preparation and lyophilization removes all cells, preserving the collagen structure of the connective tissue. In the manufactured controls, histological and immunohistochemistry tests are carried out to check the complete removal of all cellular components.

Within the limits of this study the present results show that there was no release of hydrogen peroxide (H$_2$O$_2$) and nitric oxide (NO), suggesting that the acellular dermal matrix did not activate the cell inflammatory response, although new studies should be accomplished with Alloderm® use.

REFERENCES

1- Callan DP. Use of acellular dermal matrix allograft material in dental implant treatment. Dent Surg Products. 1996;14-7.

2- Chan ED, Winston BW, Uh ST, Wynes MW, Rose DM, Riches DW. Evaluation of the role of mitogen-activated protein kinases in the expressions of inducible nitric oxide synthase by IFN-γ and TNF-α in mouse macrophages. J Immunol. 1999;162(1):415-22

3- Cotton FA, Wilkinson G. Advanced inorganic chemistry, a comprehensive text, 4th ed. New York: Wiley-Interscience; 1980. p. 422-30.

4- Cummings LC, Kaldahl WB, Allen EP. Histologic evaluation of autogenous connective tissue and acellular dermal matrix graft in humans. J Periodontol. 2005;76(2):178-86.
5. Ding AH, Nathan CF, Stuehr DJ. Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production. J Immunol. 1988;141(7):2407-12.

6. Dodge JD, Henderson R, Greenwell H. Root coverage without a palatal donor site, using an cellular dermal graft. Periodontal Insights. 1998:5-8.

7. Granger DL, Hibbs JB Jr, Perfect JR, Durack DT. Specific amino acid (L-arginine) requirement for the microbiostatic activity of murine macrophages. J Clin Invest. 1988;81(4):1129-36.

8. Harris RJ. The connective tissue with partial thickness double pedicle graft: the results of 100 consecutively treated defects. J Periodontol. 1994;65(5):448-61.

9. Harris RJ. A comparative study of root coverage obtained with guided tissue regeneration utilizing a bioabsorbable membrane versus the connective tissue with partial-thickness double pedicle graft. J Periodontol. 1997;68(8):779-90.

10. Harris RJ. Root coverage with a connective tissue with partial thickness double pedicle graft and an acellular dermal matrix graft: A clinical and histological evaluation of a case report. J Periodontol. 1998;69(11):1305-11.

11. Harris RJ. Gingival augmentation with an acellular dermal matrix: Human histological evaluation of a case – placement of the graft on bone. Int J Periodontics Restorative Dent. 2001;21(1):69-75.

12. Hibbs JB Jr, Taintor RR, Vavrin Z. Macrophage citotoxicity: role for L-arginine deaminase and imino nitrogen oxidation to nitrite. Science. 1987 Jan 23;235(4787):473-6.

13. Iyengar R, Stuehr DJ, Marletta MA. Macrophage synthesis of nitrite, nitrate and N-nitrosamines: precursors and role of burst respiratory. Proc Natl Acad Sci Acad USA. 1987 Nov;82(22):7738-42.

14. Livesey S, et al. An acellular dermal transplant processed from human allograft skin retains normal extracellular matrix components and ultrastructural characteristics (poster). AATB Conference; 1994 august.

15. Miwa M, Stuehve DJ, Marletta MA, Wishnok JS, Tannenbaum SR. Nitrosation of amines by stimulated macrophages. Carcinogenesis. 1987;8(7):955-8.

16. Miller PD Jr. Root coverage using the free soft tissue autograft following citric acid application III. A successful and predictable procedure in areas of deep-wide recession. Int J Periodontics Restorative Dent 1985;5(2):14-37.

17. Pini Prato G, Tinti C, Vincenzi G, Masmani C, Cortellini P, Clauser C. Guided tissue regeneration versus mucogingival surgery in the treatment of human buccal gingival recession. J Periodontol. 1992;63(11):919-28.

18. Pini Prato G, Clauser C, Cortellini P, Tinti C, Vincenzi G, Pagliaro U. Guided tissue regeneration versus mucogingival surgery in the treatment of human buccal recessions. A 4-year follow-up study. J Periodontol. 1996;67(11):1216-23.

19. Pini Prato GP, Clauser C, Cortellini P. Periodontal plastic and mucogingival surgery. Periodontol 2000 1995;9:90-105.

20. Rachlin G, Koubi G, Dejou J, Franquin JC. The use of a resorbable membrane in mucogingival surgery. Case series. J Periodontol. 1996;67(6):621-6.

21. Ricci G, Silvestri M, Tinti C, Rasperini G. A clinical/ statistical comparison between the subpedicle connective tissue graft method and the guided tissue regeneration technique in root coverage. Int J Periodontics Restorative Dent. 1996;16(6):539-45.

22. Sbordone L, Ramaglia L, Spagnuolo G, De Luca M. A comparative study of free gingival auto graft and free gingival and subepithelial; connective tissue grafts. Periodontal Case Reports. 1988;10(1):8-12.

23. Schmalz G. Use of cell cultures for toxicity testing of dental materials-advantages and limitations. J Dent. 1994;22(Suppl 2):S6-11.

24. Shieh AT, Wang HL, O’Neal R, Glickman GN, MacNeil RL. Development and clinical evaluation of a root coverage procedure using a collagen barrier membrane. J Periodontol. 1997;68(8):770-8.

25. Silverstein LH, Callan DP. An acellular dermal matrix allograft substitute for palatal donor tissue. Postgrad Dent. 1996;3:14-21.

26. Silverstein LH. Fundamentally changing soft tissue grafting. Dentistry Today. 1997;16: 1-3.

27. Stuehr DJ, Marletta MA. Mammalian nitrate biosynthesis: mouse macrophages produce nitrite and nitrate in response to Escherichia coli lypopolysaccharide. Proc Natl Acad Sci USA. 1985 Nov;82(22):7738-42.

28. Stuehr DJ, Marletta MA. Induction of nitrite/nitrate synthesis in murine macrophages by BCG infection, lymphokines, or interferon. J Immunol. 1987;139(2):518-25.

29. Stuehr DJ, Marletta MA. Cytostasis from nitrite, a product of activated macrophages. Cancer Res. 1987;47(21):5590-4.

30. Tal H. Subgingival acellular dermal matrix allograft for the treatment of gingival recession: A case report. J Periodontol. 1999;70:1018-24.

31. Vernino AR, Young SK, Tow HD. Histologic evaluation following intraoral use of freeze-dried skin in humans. Int J Periodontics Restorative Res. 1986;6(4):57-65.

32. Wainwright DJ. Use of a acellular dermal allograft dermal matrix (AlloDerm®) in manegemet of full- thickness burns. Burns. 1995;22(4):243-8.

33. Wei P, Laurell L, Lingen MW, Geivelis M. Acellular Dermal Matrix allografts to achieve increased attached gingival. Part 2. A histological comparative study. J Periodontol. 2002;73(3):257-65.