Distribution of 15N-Labeled Fertilizer Applied to Pecan: A Case Study

Rebecca A. Kramr, William C. Lindemann¹, and Esteban A. Herrera
Department of Agronomy and Horticulture, MSC 3Q, New Mexico State University, P.O. Box 30003, Las Cruces, NM 88003-8001

Abstract. From March through June 1996, 14N-labeled fertilizer was applied to mature pecan trees [Carya illinoinensis (Wangenh.) K. Koch] in a commercial orchard to determine the fate of fertilizer-N in the tree and in the soil directly surrounding the tree. The concentrations of 15N and total N were determined within various tissue components and within the soil profile to a depth of 270 cm. By Nov. 1996, elevated levels of 15N were greatest at depths just above the water table (280 cm), suggesting a substantial loss of fertilizer-N to leaching. Recoveries of 15N from tissue and soil at the end of 1996 were 19.5% and 35.4%, respectively. Harvest removed 4.0% of the fertilizer-N applied, while 6.5% was recycled with leaf and shuck drop. In 1997, with no additional application of labeled fertilizer, the tissue components continued to exhibit 15N enrichment. By the end of the 1997 growing season, 15N levels decreased throughout the soil profile, with the most pronounced reduction at depths immediately above the water table. Estimated recoveries of 15N from pecan tissue (excluding root) and soil at the end of 1997 were 8.4% and 12.5%, respectively. In 1996 and 1997, 15N determinations indicated an accumulation of fertilizer-N in the tissues and a loss of fertilizer-N to the groundwater. Early spring growth, flowering, and embryo development used fertilizer-N applied the previous year, as well as that applied during the current year.

Although N is a primary component of fertility management in pecan (Hunter and Lewis, 1942; Malstrom et al., 1983), it can produce dichotomous results in pecan production. Storey et al. (1986) found that excessive N application (436 kg·ha⁻¹) dramatically reduced yield while increasing both the nut size and the amount of abnormal shuck dehiscence. Worley (1974) suggested that high N application rates (90 and 134 kg·ha⁻¹) may keep trees more vegetative for longer periods, causing a delay in kernel maturity. Although Smith et al. (1985) found that an annual application of N (224 kg·ha⁻¹) improved tree appearance, shoot growth, and the number of new shoots produced, Worley (1990) observed a reduction in nut size and a lower percentage of fancy grade kernels with the same N application rate. In addition, this rate of application generally reduced the leaf concentrations of elemental K, P, and Zn (Smith et al., 1985).

Clearly, the amount of fertilizer-N considered optimal or excessive will depend on specific orchard conditions. Although Worley (1990) used the previous year’s leaf N concentration to determine N fertilizer application rates for pecan, most researchers (Kilby, 1982; McEachern, 1995; Sparks, 1968) addressed N requirements for the current year and did not consider the N status of both the soil and tree in the previous year (Conradie, 1983; Oland, 1959).

Leaching of fertilizer-N as NO₃ is often the most important cause of N loss from the soil/plant system (Cameron, 1983), but Broadbent and Carlton (1978) found that very little NO₃ derived from fertilizer escaped from the root zone unless fertilizer rates exceeded crop needs. Citrus growers in southern California adjusted the fertilizer-N input to a level that, when combined with good water management for maintenance of low salt levels in soils, minimized NO₃ in the drainage water (Pratt et al., 1972).

The use of 15N-labeled fertilizer can provide quantitative information about residual fertilizer-N from one growing season to the next, and is the only universal method that completely accounts for the added N, other than that lost in gaseous forms (Allison, 1966). Although 15N has been used successfully to study the movement and fate of fertilizer-N in other woody perennial crops such as apple [Malus sylvestris (L.) Mill. var. domestica (Borkh.) Mansf.] (Grasmann and Nicholas, 1971), grape [Vitis vinifera L.] (Conradie, 1983), and almond [Prunus dulcis (Mill.) D.A. Webb] (Weinbaum and Muraoka, 1986), no reports are known in which 15N has been applied to pecan.

A better understanding of the movement of fertilizer-N in the soil and tree is needed to maximize production while protecting the groundwater from fertilizer-NO₃. The objectives of this study were to quantify the distribution of fertilizer-N in the soil and in the tissues of pecan during both the year of fertilizer application and the following year.

Materials and Methods

The study was initiated in Mar. 1996 in a commercial orchard ≈12 km south of Las Cruces, N.M. The 15-year-old ‘Western’ trees were growing on a level, well-drained Aquora loam (fine-loamy over sandy, mixed (calcareous), thermic Typic Torrifluvent) that formed in mixed alluvium in the Rio Grande flood plain. The loam surface graded into a fine loamy sand at a depth of ≈45 cm. The orchard was flood-irrigated at a rate of 151.9 cm per year and received 11.4 and 19.3 cm of rainfall in 1996 and 1997, respectively. This amount of flood irrigation is the typical application rate for pecan in the southern Rio Grande Valley. The water table was ≈280 cm below the surface (determined by augering).

One tree was selected in each of three rows, and was representative of other trees in the orchard with respect to canopy cover, trunk diameter, and height (≈81.0 m², 33.6 cm, and 14.3 m, respectively). The three trees were managed as were those in the rest of the orchard except that 15N-labeled ammonium sulfate (221 kg·ha⁻¹) was applied instead of commercial ammonium sulfate. The trees were hedged in 1993 from north to south at 3 m from the trunk and a height of 12 m. Each of the trees selected was located in the middle of a designated area (≈4100 m²) where N fertilizer application was managed by the researchers, and each was the center of a 9 × 9-m plot. Before each 15N application, the three plots were rototilled to roughen the surface and to ensure quick entry of water and fertilizer. The 15N was uniformly hand-applied in the 9 × 9-m plots; rates and timing of both fertilizer application and irrigation are given in Table 1. The labeled fertilizer was immediately raked in, and the orchard was flood-irrigated within 24 h to minimize ammonia volatilization. A border 1.5 m wide, to which no N fertilizer was applied, surrounded the perimeter of each plot. The remainder of the designated area received nonlabeled (NH₄)₂SO₄ by hand application at the grower’s fertilization rate (N=373 kg·ha⁻¹) and schedule. The recommended N application rate for pecan in New Mexico is 168 to 224 kg·ha⁻¹ (Herrera, 1995). The 15N-labeled ammonium sulfate (ISOTEC, Miamisburg, Ohio) had a total N content of 20.9% and a 14N content of 10.4 atom percent.

Background concentrations of 15N for soil and tissue samples were randomly collected within the same orchard but outside the designated 4100-m² research area. Prior to the start of the experiment and three times during the 1996 and 1997 growing seasons, background soil samples were collected and similar depths composited; concentrations of 15N were averaged at each depth for use in calculations. Background leaf samples were collected 15 times during the course of the experiment and their 15N concentrations were averaged for use in calculations. Background 15N concentrations for other tissues (catkin, shoot, shuck, shell, kernel, wood, and root) were collected when the respective tissue was sampled from the three research trees.
Soil samples were collected with a 3.8-cm bucket auger at depths of 0–30, 30–60, 60–90, 90–180, and 180–270 cm within 10 d of irrigation. Three sample holes were augered within each research plot at random distances (ranging from 1 m to 4 m) from each tree. Same depth samples from each of the three holes were composited.

Tissue sampling time depended on the type of tissue sampled. Leaf samples were collected from the middle pair of leaflets at the middle position of the compound leaf of current-year growth on 12 dates in 1996 and seven dates in 1997. Shoots from the last 3 years of growth and catkin samples were collected in the spring (2 May 1996 and 26 Apr. 1997). Shuck, shell, and kernel samples were collected at fruit maturity. The wood (including bark) sample was collected (20 Jan. 1998) by coring to the center of the trunk during dormancy. Roots were removed from soil samples after augering at the end of the growing season (30 Oct. 1996) and brushed clean of soil particles before grinding. Root samples of varying sizes were collected at various depths (0 to 270 cm) from each tree; no attempt was made to distinguish roots collected from different depths.

Soil samples were air-dried for 48 h, then ground to pass a 150-µm sieve. Tissue samples were oven-dried (65 °C) for 48 h, then ground to pass a 180-µm sieve. Ground soil and tissue samples were sent to the U.S. Dept. of Agriculture–Agricultural Research Service (USDA–ARS) laboratory at the Univ. of Nebraska, Lincoln. Atom percent of 15N and total N were analyzed with the Tracermass Stable Isotope Mass Spectrometer (Europa Scientific, Crewe, Cheshire, U.K.).

Recovery of fertilizer-15N in the soil and tissue samples is described by the following equations.

\[
\% \text{ Recovery}_{\text{soil}} = \frac{(\text{total N})(15N_{\text{sample}} - 15N_{\text{back}})(D_b)(V)(100)}{15N_{\text{applied}}}
\]

\[
\% \text{ Recovery}_{\text{tissue component}} = \frac{(\text{total N})(15N_{\text{sample}} - 15N_{\text{back}})(\text{Biomass})(100)}{15N_{\text{applied}}}
\]

where total N = mean total N of three research trees (kg); 15N_{\text{sample}} = mean 15N of three research trees (atom %); 15N_{\text{back}} = mean 15N of background samples (atom %); \(D_b\) = bulk density (kg·m\(^{-3}\)); Volume = soil volume of research plot (m\(^3\)/plot); 15N_{\text{applied}} = 15N application rate (kg/plot); Biomass = mean mass of each tissue component of three research trees (kg/plot).

The estimation of aboveground biomass was needed to determine the biomass of each aboveground tissue component. The following model (King and Schnell, 1972) for black oak (*Quercus velutina* Lam.) was used to estimate above- and belowground biomass.

Total biomass:

\[
\text{LOG wt} = 1.00005 + 2.10621 \text{ LOG dbh};
\]

Root and stump biomass:

\[
\text{LOG wt} = 0.38000 + 2.12094 \text{ LOG dbh};
\]

where dbh = diameter of trunk at breast height (1.37 m aboveground) in inches; wt = oven-dried weight in pounds.

To confirm the validity of this model for pecan, a tree similar in size to the research trees was sacrificed and all aboveground tissues were collected on a component basis. The leaf and shuck components were dried (65 °C) and weighed directly. The shell and kernel components were also weighed directly. To determine the dry biomass of the wood tissue, representative samples of trunk, large branches (>7.6 cm diameter), medium branches (2.5 to 7.6 cm), small branches (<2.5 cm), and twigs (<1.3 cm) were dried (65 °C) and weighed. The measured aboveground biomass of the sacrificial tree was 8.6% less than its calculated biomass when the dbh of the sacrificed tree was substituted into the model equations and the aboveground biomass determined by difference.

The dbh of each research tree was used to calculate its aboveground biomass. The proportions of leaf, shuck, and wood tissue of the sacrificial tree were used to calculate the value of the mean aboveground biomass of the three research trees as described in the following example for the leaf component.

\[
\text{Biomass}_{\text{leaf(research)}} = \frac{\text{Biomass}_{\text{leaf(sacrificial)}}}{\text{AG Biomass}_{\text{research}}}
\]

where Biomass_{\text{leaf(sacrificial)}} = mean estimated leaf biomass of three research trees (kg); AG Biomass_{\text{research}} = mean aboveground biomass of three research trees (kg); Biomass_{\text{leaf(sacrificial)}} = leaf tissue in aboveground biomass of sacrificial tree (kg). The mean aboveground biomass was calculated by substituting the mean dbh of the three research trees into the model equations and determining the aboveground biomass by difference. Estimations of root biomass relied solely on the model equation. The kernel and shell components of the research trees were directly weighed.

Results and Discussion

Following the first application (25 Mar. 1996) of 15N-labeled ammonium sulfate (116.6 kg·ha\(^{-1}\)), the orchard was flood-irrigated with 9.9 cm of water (Table 1). Trace amounts of 15N had clearly moved to a depth just above the water table (280 cm) by 10 d after application (Fig. 1A). The highest concentration remained in the upper soil profile. The 15N recovery in the entire profile was 98.6%, with 85.8% and 82.5% remaining in the upper 90 and 60 cm, respectively. The 15N recovery of 98.6% fell within the range of those in previous reports (Chen et al., 1995).

A comparison of the 3 Mar. 1997 (Fig. 2A) and 21 Oct. 1997 (Fig. 2B) soil profiles showed diminished 15N concentrations at all depths in October. This suggests additional loss of fertilizer-N from the soil/plant system by leaching. The concentration of 15N near the surface may have resulted from the recycling of 1996 leaves and shucks. The 15N concentration approached background 15N levels with increasing depth below 90 cm. After two growing seasons, 22% of the 15N-labeled fertilizer applied in 1996 remained in the soil profile.

![Image](https://example.com/image.png)
consistent in corresponding tissues (shoot, leaf, catkin) from 1996 to 1997, but 15N enrichment was higher in 1997 (Fig. 3). This was attributed to the remaining applications of labeled fertilizer (598.8 kg·ha$^{-1}$) yet to be applied in May and June of 1996, after the 2 May 1996 sample date. At the end of the 1996 growing season, recovery of 15N from tissues was 19.5% (Table 2). 15N enrichment was evident in both perennial and annual tissues, with the total N concentrations of leaf, catkin, and current-year shoot closely agreeing with values of corresponding tissues in apple trees (Grasmanis and Nicholas, 1971). While the 1996 data show that spring growth in pecan uses N applied during the current year, the 1997 data show that early growth is also dependent upon N applied the previous year.

In 1996, 15N rapidly accumulated in leaf tissue (Fig. 4). Wallace et al. (1954) and Weinbaum et al. (1984b) found similar results when 15N was applied to ‘Washington Navel’ and ‘Valencia’ orange [Citrus sinensis (L.)

Table 2. Mean 15N recovery at the end of the 1996 and 1997 seasons following soil application of 15N-(NH$_4$)$_2$SO$_4$ to pecan trees.

Component (kg·ha$^{-1}$)	(atom %)	Component (kg·ha$^{-1}$)	(atom %)
Soil (0–270 cm)	8.1	Soil (0–270 cm)	2.9
Leaf	1.3	Leaf	0.6
Shuck	0.2	Shuck	0.1
Kernel	0.8	Kernel	0.2
Shell	0.1	Shell	0.0
Root	0.7	Root	---
Wooda	1.3	Tree (subtotal)	4.4
Total (soil + tree)	12.5	Total (soil + tree)	54.9

aBased on 15N contents of plant parts, measurement of kernel and shell biomass, and estimation of leaf, shuck, wood, and root biomass by the King and Schnell (1972) model. The 15N application rate used for recovery calculations was 23.03 kg·ha$^{-1}$.

Root data for 1997 were not recorded.

Wood sample includes bark.
Osbeck] and ‘Nonpareil’ almond [Prunus dulcis (Mill.) D.A. Webb], respectively. The growing leaf tissue effectively acts as a reservoir of nitrogenous compounds imported from the roots (Titus and Kang, 1982). By 15 June 1996, all of the 15N ammonium sulfate (1059 kg·ha$^{-1}$) had been applied, which explains the high 15N concentrations throughout the remainder of the growing season. The amount of N recycled to the soil through leaf fall was represented by the senescent leaf sample of 15 Nov. 1996.

In 1997, the grower applied commercial ammonium sulfate (1800 kg·ha$^{-1}$) in several split applications to the orchard, including the research plots. The concentration of 15N in the leaf was nearly constant throughout the growing season (Fig. 5), while the total N showed a trend similar to that in 1996 (Fig. 4). The 15N present in the 1997 leaf tissue represents either the fertilizer-N from 1996 that was translocated from reserve tissue or N absorbed from the soil. The latter includes newly absorbed fertilizer-N remaining in the rooting zone from the previous year and reabsorbed N from leaf and shuck decomposition.

At the end of the 1996 growing season, the total recovery of 15N was 54.9% (Table 2). Of this, 35.4% was in the soil and 19.5% in the tissue. Of the 15N recovered in the tissue, 4.0% (kernel + shell) was removed during harvest, 6.5% (leaf + shuck) was recycled, 3.2% remained in the root, and 5.8% remained in wood. The soil and tissue recovery values are lower than those reported by Allison (1966) and Bock (1984). However, Hunter (1956) also observed that little N is removed with the harvest of pecan. The unaccounted for N (45.1%) was presumably lost through leaching, denitrification, and ammonia volatilization. We suspect that leaching was the major cause of loss. Volatilization was kept to a minimum because the 15N fertilizer was incorporated by hand and the orchard irrigated within 24 h. Denitrification was probably low because of the low organic matter content of the soil; a readily available energy source is required for denitrification (Myrold, 1998).

In 1997, although root data were not obtained, the total recovery of fertilizer-N applied in 1996 was 20.9%. At the end of the growing season, 12.5% remained in the soil profile and 8.4% in the tissue. Of the latter, 0.9% was harvested, 3.1% was recycled, and 4.4% remained in the wood.

Our experiment was conducted under fertilization, irrigation, and other management practices typical of commercial pecan production in the Southwest. It has provided the first quantitative data describing the fate of 15N fertilizer applied to pecan during the year of application and the subsequent year. The data indicate that management of both N fertilizer and water are closely linked. The soil at depths greater than ≈30 cm remained near field capacity the entire growing season, as determined by neutron probe and tensiometer measurements (data not shown). However, irrigation water was applied numerous times during the growing season and during the winter to keep the top 30 cm moist. Our data clearly show 15N accumulation below 90 cm and its eventual loss from the profile, particularly after a winter irrigation. Although some leaching is required to control salinity, applications of smaller amounts of water would conserve both water and N fertilizer, and would reduce nitrate contamination of groundwater.

![Fig. 3. 15N excess and total N concentrations in pecan tree tissues sampled on (A) 2 May 1996 and (B) 26 Apr. 1997. Standard error of the mean (n = 3) is depicted by error bar.](image)

Literature Cited

Adams, M.A. and P.M. Attiwell. 1986. Nutrient cycling and nitrogen mineralization in eucalypt forests of southeastern Australia. Plant Soil 92:319–339.

Allison, F.E. 1966. The fate of nitrogen applied to soils, p. 219–258. In: A.G. Norman (ed.). Advances in agronomy, vol. 18. Academic, New York.

Bock, B.R. 1984. Efficient use of nitrogen in cropping systems, p. 273–294. In: R.D. Hauck (ed.). Nitrogen in crop production. ASA, CSSA, SSSA, Madison, Wis.

Broadbent, F.E. and A.B. Carlton. 1978. Field trials with isotopically labeled nitrogen fertilizer, p. 1–41. In: D.R. Nielson and J.G. MacDonald (eds.). Nitrogen in the environment. Academic, New York.

Cameron, K.C. 1983. Nitrate leaching: Some fundamentals, Proc. Ann. Conf. Agron. Soc. N.Z. 13:15–21.

Chen, D.L., P.M. Chalk, and J.R. Freney. 1995. Distribution of reduced products of 15N–labelled nitrate in anaerobic soils. Soil Biol. Biochem. 27:1539–1545.

Conradie, W.J. 1983. The uptake and distribution of 15N enriched nitrate by three rootstock cultivars grafted to chenin blanc. S. Afr. J. Enol. Viticult. 4:45–47.

Duynisveld, W.H.M., O. Strebel, and J. Bottcher. 1988. Are nitrate leaching from arable land and nitrate pollution of groundwater avoidable? Ecol. Bul. 39:116–125.

Grasmanis, V.O. and D.J.D. Nicholas. 1971. Annual uptake and distribution of N15-labeled ammonia and nitrate in young Jonathan/MM104 apple trees grown in solution cultures. Plant Soil 35:95–112.

Gustafson, A. 1988. Are nitrate leaching from arable land into groundwater in Sweden. Environ. Geol. 5:65–71.

Herrera, E.A. 1995. Pecan growing in the western...
Fig. 4. 15N excess and total N concentrations in pecan leaf, 1996. Standard error of the mean (n = 3) is depicted by error bar.

Fig. 5. 15N excess and total N concentrations in pecan leaf, 1997. Standard error of the mean (n = 3) is depicted by error bar.