Fitting a logistic growth model to yield traits in lettuce cultivars growing in summer

Ajuste del modelo logístico para caracteres productivos de cultivares de lechuga en condiciones de verano

ABSTRACT

The objective of this study was to fit a logistic model to leaf fresh and dry matter and shoot fresh and dry matter in four lettuce cultivars to describe growth in summer. The cultivars Crocantela, Elisa, Rubinela, and Vera were evaluated in the summers of 2017 and 2018 in soil in a protected environment and in a soilless system. Seven days after transplanting, the leaf fresh and dry matter and shoot fresh and dry matter of 8 plants were weighed every 4 days. The model parameters were estimated using R software with the least squares method and iterative process of Gauss-Newton. This study also estimated the confidence intervals of the parameters, verified the assumptions of the models, calculated the goodness-of-fit measures and the critical points, and quantified the parametric and intrinsic nonlinearities. The logistic growth model fit well to the fresh and dry matter in the leaves and shoots in the cultivars Crocantela, Elisa, Rubinela, and Vera and described the growth of lettuce.

Additional key words: Lactuca sativa; plant models; crop modelling; non-linear models; vegetable crop.

1 Federal University of Santa Maria, Postgraduate Program in Agronomy, Santa Maria (Brazil). ORCID Carini, F.: 0000-0001-6000-7747; ORCID Souza, J.M.: 0000-0002-0856-9475; ORCID Pezzini, R.V.: 0000-0003-4134-2499; ORCID Ubessi, C.: 0000-0002-3378-883X
2 Federal University of Santa Maria, Department of Crop Science, Santa Maria (Brazil). ORCID Cargnelutti Filho, A.: 0000-0002-8608-9960
3 Federal University of Santa Maria, Graduate Agronomy, Santa Maria (Brazil). ORCID Kreutz, M.A.: 0000-0002-8998-7501
4 Corresponding autor. carini.fc@gmail.com
Lettuce is a leafy green vegetable in the Asteraceae family, consumed as raw salads, broths, and soups, that has high vitamin and mineral contents and few calories (Ntsoane et al., 2016). In Brazil, lettuce production has economic and social importance, generating jobs and income for family agriculture (Andriolo, 2017).

Since lettuce originated from a temperate climate, temperatures above 30ºC induce flowering, reducing the vegetative phase and number of leaves and affecting the formation of compact heads. The optimum temperature for this crop varies between 15.5 and 18.3°C, with a minimum of 7.2°C and a maximum of 23.9°C (Maynard and Hochmuth, 2007). Genetic improvement techniques have developed cultivars that are tolerant to early bolting with extended cultivation in other seasons and sites.

Lettuce cultivars are classified into groups according to the morphological characteristics of the leaves, head shape, and color, such as iceberg, looseleaf (lollo and oakleaf), butterhead, romaine, and others (Sala and Costa, 2012). The selection of cultivars adapted to the climatic conditions and the crop growing system are determining factors for production success. In addition, in protected environments, during the summer (December to March) in Rio Grande do Sul, high temperatures still affect the quality and palatability of lettuce leaves.

Nonlinear models are widely used in agricultural research (Archontoulis and Miguez, 2015). To describe the growth of plants and fruits, the accumulation of matter over time must be measured. Nonlinear models are important for the proper management and improvement of research methodologies related to lettuce (Terra et al., 2010). These tools evaluate the growth rate, stabilization, and reduction of production at the end of the cycle (Mischan and Pinho, 2014).

Empirical models are often used to estimate plant growth and their components, including the logistic model. These models have already been applied to describe the dry matter accumulation in *Allium sativum* (Reis et al., 2014), production of strawberry cultivars (Diel et al., 2018), production of tomato genotypes (Sari et al., 2019), production of *Cucurbita pepo* and *Capsicum annuum* (Lúcio et al., 2015), growth of coffee cultivar Rubi MG 1192 (Pereira et al., 2014), morphological characters of *Crotalaria juncea* (Bem et al., 2017), and growth of green dwarf coconut (Prado et al., 2013), cacao (Muniz et al., 2017), and Asian pear (Ribeiro et al., 2018).

For lettuce, the Gompertz, logistic, and Expolinear models were fit to the leaf dry matter of cultivars Grand Rapids, Regina, and Great Lakes in a hydroponic system in summer (Lyra et al., 2003). Studies were also carried out to analyze the growth...
of lettuce, variety Batavia, in saline soils, using the logistic model (Carranza et al., 2009). However, studies that describe growth using nonlinear models for other cultivars, traits, and goodness-of-fit measures were not found.

The objectives of this study were to adjust the logistic model to fit the leaf and shoot fresh and dry matter of four lettuce cultivars (Crocantela, Elisa, Rubinela, and Vera) and to describe the growth of these cultivars in summer.

MATERIALS AND METHODS

Two experiments on the lettuce crop were carried out, one in the summer of 2017 (experiment 1) and the other in the summer of 2018 (experiment 2) in Santa Maria-RS (Brazil) (29º42’S, 53º49’W and 95 m altitude) in a protected environment, of the rain shelter type. The climate of the region is humid subtropical Cfa, with hot summers and an undefined dry season, according to the Köppen classification (Alvares et al., 2013).

The evaluated cultivars were: Crocantela (iceberg - green leaves, consistent, crisp, loose, prominent ribs, non-heading); Elisa (butterhead - delicate leaves – loosely-formed head); Rubinela (lollo, loose purple leaves, non-heading), and Vera (lollo - green crisp - consistent, loose leaves, and non-heading). The selection of the genetic material was based on the meteorological characteristics of the cultivation site during the crop cycle and the seed companies’ recommendations. Seedlings were produced in 200-cell expanded polystyrene trays filled with commercial Plantmax® substrate in a floating system. Plants with four to five leaves were transplanted on 01/27/2017 (experiment 1) and 09/02/2018 (experiment 2).

The plants were grown on six benches made of corrugated fiber cement sheets, 3.66 m long, 1.10 m wide, 6 mm thick, with six troughs with a depth of 5 cm. The culture channels were waterproofed with 100 μm-thick, clear plastic film and filled with number two washed gravel. The troughs were covered with clear, 100-μm-thick plastic film and filled with number two washed gravel. The benches were raised (0.85 m) on fixed masonry blocks at both ends with a 2% slope. This slope allowed the nutrient solution to return to the 500 L plastic storage tank. The solution was pumped by a low-power submersible motor pump (with a timer) to a PVC pipe (25 mm diameter). This pipe had four drip hoses with pots placed under the drippers at a distance of 30 cm between plants in a row, with a plant density of 11.11 m². Each bench had four rows, totaling 44, with 3 L volume pots (11 pots per row) filled with washed sieved coarse sand with 0 dS m⁻¹ electrical conductivity.

The macronutrient composition of the nutrient solution was as follows (mmol L⁻¹): 10.36 NO₃⁻; 1.0 H₂PO₄⁻; 3.36 NH₄⁺; 1.0 SO₄²⁻; 4.0 de K⁺; 2.0 Ca²⁺; and 1.0 Mg²⁺; and the micronutrients were (mg L⁻¹): 1.0 Fe; 0.50 Mn; 0.22 Zn; 0.26 B; 0.06 Cu, and 0.03 Mo. The electrical conductivity (EC) was maintained at 1.33 dS m⁻¹, and the pH was between 5.5 and 6.5 in both experiments. The EC and pH were monitored during cultivation and corrected when they presented a variation of 20%, higher or lower, in relation to the standard EC and pH.

Seven days after transplantation, evaluations started with eight plants of each cultivar. Then, the evaluations took place every 4 d until the beginning of flowering. Ten evaluations were performed for the two experiments, totaling 80 plants of each cultivar, except for cultivar Elisa in experiment 1, which had 64 plants assessed in eight evaluations. There were 624 plants analyzed in the two experiments for the four cultivars. The fresh leaf matter (FLM, in g/plant), dry leaf matter (DLM, in g/plant), and dry shoot matter (DSM, in g/plant) were determined in these plants. To obtain the dry matter, the material was packed into paper bags and incubated in a forced circulation oven (60ºC ±5ºC) to constant matter.

The data on the indoor air temperature were recorded every three hours with a digital data logger (0.1°C resolution and 0.5°C accuracy) installed in a weather-proof shelter. With the data, the daily thermal sum was calculated with the method of Gilmore and Rogers (1958) and Arnold (1959), using equations (1) and (2)

\[\text{ATS} = \sum STd \]

where \(\text{ATS}\) is accumulated thermal sum, and \(\sum STd\) is the daily thermal sum.

\[STd = (T_{max} + T_{min}) / 2 - T_b \]
The fitting of the logistic model to each trait (dependent variable), with the repetitions of each evaluation, as a function of the accumulated thermal sum (ATS) (independent variable) was performed using the least squares method and the iterative process of Gauss-Newton. The equation was: \(y_i = \frac{a}{1 + \exp(-b - c x_i)} \) where, \(y_i \) is the \(i \)-th observation of the dependent variable with \(i = 1, 2, ..., n \); \(x_i \) is the \(i \)-th observation of the independent variable; \(a \) is the asymptotic value; \(b \) is a location parameter important for maintaining the sigmoidal shape of the model; and \(c \) is associated with growth, indicating the growth rate.

The assumptions of normality, independence, and homogeneity of the errors were verified using the Shapiro-Wilk, Durbin-Watson, and Breusch-Pagan tests, respectively. Traits that did not meet the assumptions were Box-Cox transformed with the statistical software Action.

The lower and upper limits of the 95% confidence interval were calculated, and, using the criterion of overlapping of the confidence intervals, the estimates of the parameters \((a, b, c) \) for each trait were compared between the experiments in each cultivar and between the cultivars in each experiment.

The goodness-of-fit of the model was assessed with an adjusted coefficient of determination \((R^2_{adj}) \), in which the best fit is the one closest to 1, the Akaike Information Criterion (AIC) and the residual standard deviation (RSD), in which the best fit for both is the one closest to zero. The intrinsic nonlinearity (IN) and the parameter-effects nonlinearity (PE) were quantified based on the geometric concept of curvature (Bates and Watts, 1988). The inflection point (IP), the maximum acceleration point (MAP), and the maximum deceleration point (MDP) were calculated according to the equations described by Mischan and Pinho (2014). Inferences about plant growth were made from these critical points. The calculations were made using Microsoft Office Excel® applications and the software R (R Development Core Team, 2018).

RESULTS AND DISCUSSION

In both experiments, the Shapiro-Wilk, Durbin-Watson, and Breusch-Pagan tests had \(p \)-values greater than or equal to 0.05 (Tab. 1). Thus, the assumptions of normality, independence, and homogeneity of errors were met for the residuals of the model for the

Table 1. \(p \)-value of the Shapiro-Wilk (SW), Durbin-Watson (DW), and Breusch-Pagan (BP) tests applied to Logistic residuals for characteristics as a function of cumulative thermal sum of four lettuce cultivars in two experiments.

Character	Cultivars	SW	DW	BP	SW	DW	BP
		Experiment 1			Experiment 2		
FLM	‘Crocantela’	0.92	0.10	0.12	0.17	0.69	0.57
	‘Elisa’	0.16	0.35	0.07	0.08	0.47	0.18
	‘Rubinela’	0.56	0.57	0.05	0.09	0.20	0.74
	‘Vera’	0.22	0.14	0.06	0.90	0.65	0.05
DLM	‘Crocantela’	0.42	0.30	0.07	0.28	0.57	0.07
	‘Elisa’	0.69	0.22	0.06	0.09	0.16	0.28
	‘Rubinela’	0.17	0.84	0.11	0.07	0.29	0.11
	‘Vera’	0.14	0.10	0.08	0.08	0.27	0.06
FSM	‘Crocantela’	0.89	0.24	0.14	0.19	0.72	0.89
	‘Elisa’	0.82	0.47	0.10	0.88	0.33	0.21
	‘Rubinela’	0.60	0.84	0.09	0.10	0.24	0.54
	‘Vera’	0.42	0.08	0.80	0.96	0.12	0.12
DSM	‘Crocantela’	0.30	0.16	0.06	0.19	0.36	0.07
	‘Elisa’	0.28	0.18	0.11	0.51	0.10	0.49
	‘Rubinela’	0.23	0.66	0.07	0.05	0.32	0.09
	‘Vera’	0.06	0.11	0.05	0.07	0.57	0.05

FLM: fresh leaf matter; DLM: dry leaf matter; FSM: fresh shoot matter; and DSM: dry shoot matter.
fresh and dry matter of the leaves and shoots of the lettuce cultivars. Similar results were found for a tomato crop, indicating that the estimation of the parameters with the method of ordinary least squares is adequate (Carini et al., 2019; Sari et al., 2019).

For each trait of the logistic model, the estimates of the parameters (a, b, and c) were compared between the experiments (Tab. 2) and between the cultivars (Tab. 3) with the criterion of overlapping confidence intervals. As an illustration of the use of the criterion of overlapping 95% confidence intervals (CI), the DLM of cv. Crocantela was selected to compare the estimate of parameter a with the logistic model between experiments 1 and 2 (Tab. 2). The estimate of parameter a (361.4624) in experiment 1 was found to lie outside the confidence interval of the estimate of parameter a in experiment 2 (375.3193 to 407.5963). However, the estimate of parameter a (391.4578) in experiment 2 is within the confidence interval of the estimate of parameter a of experiment 1 (312.2015 to 410.7332). Thus, when at least one of the estimates is within the CI of the other, the effect is non-significant. On the other hand, when two estimates lie outside the confidence interval, they differ between the experiments.

Character	Parameter	Estimates	CI95%	Estimates	CI95%		
		LL	UL		LL	UL	
		Experiment 1		Experiment 2			
'Crocantela'	a NS	361.4624	312.2015	410.7232	391.4578	375.3193	407.5963
	b *	-5.2352	-6.3805	-4.0899	-6.7770	-7.6323	-5.9217
	c *	0.0097	0.0071	0.0124	0.0160	0.0138	0.0182
'Elisa'	a NS	476.9038	394.2911	559.5165	457.3523	436.4133	478.2853
	b *	-5.1544	-6.1619	-4.1469	-6.6278	-7.4289	-5.8292
	c *	0.0089	0.0048	0.0099	0.0182	0.0139	0.0226
'Rubinela'	a NS	29.2298	14.6145	43.8450	18.0644	16.9789	19.1500
	b *	-5.1348	-6.0036	-4.2660	-7.1991	-8.6089	-5.7893
	c *	0.0072	0.0047	0.0097	0.0169	0.0133	0.0205

Continues...
Table 2. Comparison of the estimates of the parameters (a, b, and c) of the logistic model for the traits as a function of the accumulated thermal sum, based on the confidence interval (CI95%) between lettuce cultivars (Crocantela, Elisa, Rubinela and Vera) in two experiments in the summer.

Character	Parameter	Estimates	IC95%	Estimativa	IC95%		
		LL	UL		LL	UL	
		Experiment 1			Experiment 2		
‘Rubinela’	a_{HS}	290.3400	231.9672	348.7129	299.5631	280.2090	318.9172
	b	-4.5073	-5.1155	-3.8992	-6.5113	-7.2516	-5.7099
	c	0.0073	0.0057	0.0090	0.0138	0.0119	0.0157
	a_{HS}	24.2729	5.4084	43.1373	11.2546	10.3438	12.1655
	b	-4.5282	-4.9548	-4.1016	-7.1432	-8.8810	-5.4055
	c	0.0065	0.0039	0.0071	0.0164	0.0120	0.0208
‘Elisa’	a_{HS}	240.1027	318.3813	561.8241	349.3106	326.0222	372.5991
	b	-4.6709	-5.1383	-4.2035	-6.4519	-7.1002	-5.8036
	c	0.0068	0.0054	0.0082	0.0133	0.0117	0.0150
‘Vera’	a_{HS}	33.9705	1.7778	66.1632	12.8154	11.7420	13.8899
	b	-4.8280	-5.3390	-4.3170	-6.9138	-8.4208	-5.4068
	c	0.0055	0.0040	0.0070	0.0155	0.0117	0.0194

FLM: fresh leaf matter, as g/plant; DLM: dry leaf matter, as g/plant; FSM: fresh shoot matter, as g/plant; and DSM: dry shoot matter, as g/plant. Comparison of the estimates of the parameters (a, b, and c) between the experiments. *Significant effect at 0.05 probability level. NS: Non-significant.

Table 3. Comparison of the estimates of the parameters (a, b, and c) of the logistic model for the traits as a function of the accumulated thermal sum, based on the confidence interval (CI95%) between lettuce cultivars (Crocantela, Elisa, Rubinela and Vera) in two experiments in the summer.

Cultivars	Cultivars	FLM	DLM	FSM	DSM	FLM	DLM	FSM	DSM
		LL	UL	LL	UL	LL	UL	LL	UL
		Experiment 1				Experiment 2			
‘Crocantela’	‘Elisa’	*	*	*	*	*	*	NS	
‘Crocantela’	‘Rubinela’	*	NS	NS	NS	*	*	*	*
‘Crocantela’	‘Vera’	*	NS	*	NS	*	NS	NS	NS
‘Elisa’	‘Rubinela’	*	NS	*	NS	*	NS	NS	NS
‘Elisa’	‘Vera’	*	NS	*	NS	*	NS	*	NS
‘Rubinela’	‘Vera’	*	NS	*	NS	*	NS	*	NS

Continues...
In the logistic model, the behavior of the estimates of parameter a of the cultivars Crocantela and Rubinela was the same, with asymptotic values that did not differ between all traits. The opposite behavior was found for parameters b and c, which were different between the experiments (Tab. 2). The traits DLM, FSM, and DSM of cv. Elisa showed differences for all parameters, and the asymptotic values in experiment 2 were higher than those in experiment 1, indicating that the plants had a greater fresh matter production in experiment 2. All traits of cv. Vera differed in relation to the parameters a, b, and c. These findings showed that the growth models were different between experiments 1 and 2. Different models were also selected for different experiments for the production of tomato genotypes (Sari et al., 2019).

The comparison between cultivars in each experiment showed that, for the logistic model, in experiment 1, the traits DLM, FSM and DSM did not differ between ‘Crocantela’ and ‘Rubinela’, and the traits DLM and DSM did not differ between ‘Crocantela’ and ‘Vera’ or between ‘Rubinela’ and ‘Vera’ (Tab. 3). In experiment 2, the estimates of DLM, FSM and DSM did not differ between ‘Crocantela’ and ‘Vera’, and DSM did not differ between ‘Crocantela’ and ‘Elisa’ or between ‘Elisa’ and ‘Vera’. The other comparisons showed a difference in at least one of the three parameters of the logistic model. Differences predominated for the logistic model, indicating the need for specific models for each trait and cultivar. Different models were also needed to describe production in Cucurbita pepo and Capsicum annuum (Lúcio et al., 2015) and fruit production estimates in Lycopersicon esculentum var. cerasiforme (Lúcio et al., 2016).

Goodness-of-fit measures were used to determine the model that best fit the original data. The logistic model showed acceptable goodness-of-fit values (high R^2, low AIC, and intermediate RSD) that were close to each other (Tab. 4). Lyra et al. (2003) also reported high coefficients of determination but did not use other goodness-of-fit measures, which was seen as a limitation in the study.

Although the models showed satisfactory goodness-of-fit, a small overestimation occurred for the logistic model in ‘Rubinela’ in Experiment 1, with an asymptotic value of 440.1027 for FSM, and the maximum value of 368.30 g/plant was observed in the data set. The tendency for overestimations in the logistic model was also reported in the modeling of production during the formation of sugarcane (Batista et al., 2013). However the use of models to describe the accumulation of dry mass in garlic plant accessions did not present an overestimation of parameters for the Logistic model but did for the Brody, von Bertalanffy and Mitscherlich models (Puiatti et al., 2013).
Table 4. Coefficient of determination adjusted (R^2 aj), Akaike information criterion (AIC), residual standard deviation (RSD), intrinsic nonlinearity (IN), nonlinearity of the parameter effect (PE), inflection point (IP), maximum acceleration point (MAP), and maximum deceleration point (MDP) of the Logistic model for characters as a function of the accumulated thermal sum (in °C) of lettuce cultivars (Crocantela, Elisa, Rubinela and Vera) in two experiments.

Statistic	FLM Experiment 1	DLM	FSM	DLM Experiment 2	FSM	DSM			
R^2 aj	0.884	0.444	0.896	0.961	0.974	0.927	0.976	0.944	
AIC	7.668	1.727	7.933	1.926	6.488	1.139	6.674	1.147	
RSD	44.576	2.285	50.907	2.525	24.712	1.705	27.115	1.711	
PE	1.140	4.479	1.520	5.838	0.355	0.468	0.426	0.529	
IN	0.169	0.173	0.154	0.166	0.101	0.175	0.098	0.157	
IP	x 537.368	674.108	579.890	712.798	423.085	412.157	436.856	426.523	
	y 180.731	11.141	238.452	14.615	195.729	7.649	228.676	9.032	
MAP	x 402.188	494.667	431.726	529.982	340.868	339.933	350.051	348.498	
	y 76.386	4.709	100.782	6.177	82.725	3.233	96.650	3.817	
MDP	x 672.548	853.549	728.054	895.615	505.303	484.382	523.661	504.547	
	y 285.076	17.573	376.122	23.053	308.733	12.064	360.702	14.247	
Elisa	R^2 aj	0.864	0.722	0.934	0.784	0.814	0.817	0.935	0.895
AIC	6.579	1.121	6.589	1.308	7.786	1.836	7.412	1.770	
RSD	29.039	1.895	29.195	2.081	47.308	2.415	39.349	2.338	
PE	0.666	1.558	0.677	1.705	0.593	0.620	0.560	0.675	
IN	0.243	0.275	0.147	0.241	0.275	0.276	0.193	0.230	
IP	x 373.847	405.774	429.476	441.149	394.710	397.842	431.857	424.509	
	y 92.639	4.482	150.320	6.001	122.182	6.336	188.146	8.689	
MAP	x 300.309	295.063	334.422	326.310	331.133	331.678	364.331	352.692	
	y 39.154	1.894	63.533	2.536	51.640	2.678	79.520	3.684	
MDP	x 447.386	516.485	524.530	555.989	458.286	464.007	499.383	496.326	
	y 146.124	7.069	237.107	9.466	192.724	9.995	296.773	13.674	
Rubinela	R^2 aj	0.924	0.903	0.941	1.530	0.977	0.916	0.981	0.929
AIC	6.303	0.352	6.487	0.498	5.643	0.601	5.694	0.639	
RSD	22.542	1.150	24.732	1.237	16.199	1.303	16.613	1.327	
PE	1.964	13.526	3.135	19.553	0.665	0.755	0.696	0.816	
IN	0.108	0.101	0.093	0.096	0.091	0.197	0.081	0.176	

Intrinsic nonlinearity (IN) and parameter-effects nonlinearity (PE) are used to help in the determination of the model. The logistic model presented reduced values of IN and PE for all traits, cultivars, and experiments (Tab. 4). The lower values of IN and PE indicated better suitability of the logistic model. These criteria were also adopted to indicate the most appropriate model to describe production in strawberries (Diel et al., 2018) and salad tomato genotypes (Sari et al., 2019).
Analyzing the five goodness-of-fit measures (\(R^2\), AIC, RSD, IN, and PE) showed that the logistic model was suitable for all traits and experiments for the cultivars Crocantela, Elisa, Rubinela, and Vera, and the most suitable for describing growth in lettuce cultivars. The cultivar Crocantela in experiment 2 served as example of the shape of the logistic growth curve and the respective critical points for each trait (Fig. 1).

Critical points are used to describe crop growth (Tab. 4). The logistic model, for most of the cultivars in experiment 2, showed that the inflection point (IP) coincided with the plant stage closest to harvest, with the appearance of senescent outer leaves, which in practice is one of the criteria used for the commercial classification of the product. Also, the maximum acceleration point occurred at the beginning of the curve in experiment 2, with small plants still showing young leaves. In general, among the cultivars, cv. Elisa reached IP with the lowest ATS, independent of the experiment. However, ‘Rubinela’ required a greater accumulated thermal sum and showed lower values for the traits than the cultivars Vera (experiment 1) and Crocantela (experiment 2). These results indicate that the cultivars Vera and Crocantela were able to use the accumulated thermal sum efficiently.

The maximum deceleration points (MDP) referred to the final growth stage of the cultivars, in which the crop was close to the beginning of flowering. Therefore, the inflection point is an alternative for future projections related to crop planning.

In this study, the logistic model described the growth of the lettuce satisfactorily in order to assist in the selection of promising cultivars. In addition, the logistic model was used to describe the growth curve of pruned coffee trees (Pereira et al., 2016), the accumulation of macronutrients in an onion crop (Pôrto et al., 2006), the production of strawberry cultivars from different seedling origins grown on organic substrates (Diel et al., 2018), the production of tomato genotypes (Sari et al., 2019), and the length, diameter, and matter of cocoa fruits (Muniz et al., 2017) and Asian pears (Ribeiro et al., 2018).

Simulation and prediction (parameters \(a\), \(b\), and \(c\)) can be used in the research or production of the cultivars Crocantela, Elisa, Rubinela, and Vera in summer. However, the thermal sum of the growing site should be used to achieve conditions close to the real ones. Therefore, these models are a reference for further research, and the obtained values should maintain the pattern of the growth curve.
CONCLUSION

The logistic growth model fit well to the fresh and dry matter of the leaves and shoots of the cultivars Crocantela, Elisa, Rubinela, and Vera and describes the growth of lettuce.

Conflict of interests: The manuscript was prepared and reviewed with the participation of the authors, who declare that there exists no conflict of interest that puts at risk the validity of the presented results.

BIBLIOGRAPHIC REFERENCES

Alvares, C.A., J.L. Stape, P.C. Sentelhas, J.L.M. Gonçalves, and G. Sparovek. 2013. Köppen’s climate classification map for Brazil. Meteorol. Z. 22, 711-728. Doi: 10.1127/0941-2948/2013/0507

Andriolo, J.L. 2017. Olericultura geral. 3a ed. UFSM, Santa Maria, Brazil.

Archontoulis, S.V. and F.E. Miguez. 2015. Nonlinear regression models and applications in agricultural research. Agron. J. 107, 786-798. Doi: 10.2134/agronj2012.0506

Arnold, C.T. 1959. The determination and significance of the base temperature in a linear heat unit system. Proc. Am. Soc. Hort. Sci. 74, 430-455.

Bates, D.M. and D.G. Watts. 1998. Nonlinear regression analysis and its applications. John Wiley & Sons, New York, NY.

Batista, E.L.S., S. Zolnier, A. Ribeiro, G.B. Lyra, T. G.F. Silva, and D. Boehringer. 2013 Modelagem do crescimento de cultivares de cana-de-açúcar no período de formação da cultura. Rev. Bras. Eng. Agr. Amb. 17, 1080-1087. Doi: 10.1590/S1415-4359.2013v17n5p1080-1087

Bem, C.M., A. Cargnelutti Filho, G. Faccio, D.E. Schabbarum, D.L. Silveira, F.M. Simões, and D.B. Uliana. 2017. Growth models for morphological traits of sunn hemp. Semina: Cienc. Agrár. 38, 2933-2944. Doi: 10.5433/1679-0359.2017v38n5p2933

Brunini, O. 1976. Temperatura-base para alface cultivar “white boston”, em um sistema de unidades

Figure 1. Logistic model plot for fresh leaf matter (FLM, as g/plant), dry leaf matter (DLM, as g/plant), fresh shoot matter (FSM, as g/plant), and dry shoot matter (DSM, as g/plant) as a function of the accumulated thermal sum (ATS, as °C) for the cultivar Crocantela in experiment 2.
Carini, F., A. Cargnelutti Filho, C.T. Bandeira, I.M.M. Neu, R.V. Pezzini, M. Pacheco, and R.M. Tomasi. 2019. Growth models for lettuce cultivars growing in spring. J. Agric. Sci. 11, 147-159. Doi: 10.5539/jas.v11n6p147

Carranza, C., O. Lanchero, D. Miranda, and B. Chaves. 2009. Análisis del crecimiento de lechuga (Lactuca sativa L.) 'Batavia' cultivada en un suelo salino de la Sabana de Bogotá. Agron. Colomb. 27, 41-48.

Diel, M.I., B.G. Sari, D.K. Krysczun, T. Olivoto, M.V.M. Pinheiro, D. Meira, D. Schmidt, and A.D. Lúcio. 2018. Nonlinear regression for description of strawberry (Fragaria x ananassa) production. J. Hortic. Sci. Biotechnol. 94, 259-273. Doi: 10.1080/14620316.2018.1472045

Gilmore, E.C. and J.S. Rogers. 1958. Heat units as a method of measuring maturity in corn. Agron. J. 50, 611-615. Doi: 10.2134/agronj1958.00021962005000100014x

Lúcio, A.D., B.G. Sari, M. Rodrigues, L.M. Bevilaqua, H.M.G. Voss, D. Copetti, and M. Faé. 2016. Nonlinear models for estimating cherry tomato yield. Cienc. Rural 46, 233-241. Doi: 10.1590/0103-8478cr20150067

Lyra, G.B, S. Zolnier, L.C. Costa, G.C. Sediyama, and M.A.N. Sediyama. 2003. Modelos de crescimento para alface (Lactuca sativa L.) cultivada em sistema hidropônico sob condições de casa-de-vegetação. Rev. Bras. Agrometeorol. 11, 69-77.

Maynard, D.N. and G.J. Hochmuth. 2007. Knott’s handbook or vegetable growers. 5th ed. John Wiley e Sons, Hoboken, NJ. Doi: 10.1002/9780470121474

Mischan, M.M. and S.Z. Pinho. 2014. Modelos não lineares: funções assintóticas de crescimento. Cultura Acadêmica, São Paulo, Brazil.

Muniz, J.A, M.S. Nascimento, and T.J. Fernandes. 2017. Nonlinear models for description of cacao fruit growth with assumption violations. Rev. Caatinga 30, 250-257. Doi: 10.1590/1983-21252017v30n128rc

Ribeiro, T.D., T.V. Savian, T.J. Fernandes, and J.A. Muniz. 2018. The use of the nonlinear models in the growth of pears of ‘Shinseiki’ cultivar. Cienc. Rural 48, 1-7. Doi: 10.1590/0103-8478cr20161097

Sala, C.F and C.P Costa. 2012. Retrospectiva e tendência da alfaiçalicultura brasileira. Hortic. Bras. 30, 187-194. Doi: 10.1590/0103-8478cr20161097

Sari, B.G., A.D. Lúcio, C.S. Santana, and T.V. Savian. 2019. Describing tomato plant production using growth models. Sci. Hortic. 246, 146-154. Doi: 10.1016/j.scienta.2018.10.044

Terra, M.F., J.A. Muniz, and T.V. Savian. 2010. Ajuste dos modelos Logístico e Gompertz aos dados de crescimento de frutos de tamarind-anã (Phoenix roebelennii O’BRIEN). Magistra 22, 1-7.