Possibilities of Using Mobile Fans and the Parameters Conditioning the Effectiveness of Tactical Mechanical Ventilation

Możliwości wykorzystania mobilnych wentylatorów i parametry warunkujące skuteczność taktycznej wentylacji mechanicznej

ABSTRACT

Aim: The aim of the article is to indicate the possible scope of application of mobile fans during the execution of rescue actions and identification of the parameters conditioning the effectiveness of using this type of units.

Method Design: Mobile overpressure fans are a tool used during rescue operations mainly to remove hot gases and smoke, which accumulate in confined spaces covered by fire – primarily within the evacuation routes, but also in the rooms. In literature there are examples of other uses of the considered fans, e.g. to support the liquidation of fire hazards of free-standing objects (i.e. fires of cars or containers) and the rescue of trapped people in inaccessible spaces by supplying fresh air. This paper, which is based on literature review, is devoted to providing an approximation of the above applications. The effective use of mobile fans requires specialized theoretical and practical preparation. Therefore, the study also identified factors that may determine the successful implementation of the adopted tactical intent, which include in particular: the selection of appropriate openings (outlet and inlet), the selection of the gas exchange path and the proper positioning of a mobile fan.

Conclusions: Literature analysis of the problem presented in this paper will be a fundamental point of reference for the research work carried out in subsequent stages related to the evaluation of the efficiency of mobile fans. As part of this work, large-scale tests will be carried out using appropriately designed and constructed test benches to evaluate the effectiveness of mobile units in real conditions. The knowledge gained in this way is intended to serve as material for further considerations on the creation of concepts of both subsequent methodologies and test stands required for their implementation, enabling the verification of parameters characterizing the efficiency and reliability of mobile fans.

Keywords: mobile positive pressure fans, tactical mechanical ventilation, rescue operations
Introduction

The possibility of using mechanical ventilation with the use of mobile fans – especially in a situation where during a fire there is a risk of cutting off the escape routes from a building – is an important tool that can significantly assist in achieving the tactical intent adopted by the manager of the rescue operations. Using ventilation allows, above all, to remove hot and toxic fire gases that accumulate in the spaces covered by a fire and pose a real threat to the users of such an object, as well as arriving rescue teams on the scene. In this aspect, the primary area of application of mobile fans during rescue operations is smoke removal (ventilation) of horizontal and vertical escape routes. In large rooms, e.g. underground garages, appropriately prepared mobile fans may also considerably facilitate the access to the source of fire (e.g. a burning vehicle), supporting in this respect the fans may also considerably facilitate the access to the source of fire, e.g. underground garages, appropriately prepared mobile fans – especially in a situation where during a fire there is a risk of cutting off the escape routes from a building – is an important tool that can significantly assist in achieving the tactical intent adopted by the manager of the rescue operations. Using ventilation allows, above all, to remove hot and toxic fire gases that accumulate in the spaces covered by a fire and pose a real threat to the users of such an object, as well as arriving rescue teams on the scene. In this aspect, the primary area of application of mobile fans during rescue operations is smoke removal (ventilation) of horizontal and vertical escape routes. In large rooms, e.g. underground garages, appropriately prepared mobile fans may also considerably facilitate the access to the source of fire (e.g. a burning vehicle), supporting in this respect the smoke removal systems functioning in a given building. In order to achieve the desired results, it is also necessary to have good knowledge of the layout of the internal structure of the rooms in a facility, the fire protection equipment installed in it and the fire scenarios adopted by the designer and fire protection expert. The above examples of mobile fan applications do not exhaust their capabilities. Due to their functionality, these devices can also be used during the implementation of the literature mentions supporting fire suppression activities for free-standing objects, such as cars or containers for recycling materials. In addition, electric-powered fans are also mentioned for their use during rescue operations.

Using tactical mechanical ventilation requires proper theoretical and practical preparation, and – as can be seen from the analysis of the available literature data – so far no universal procedures have been developed to ensure effective aeration of objects and removal of smoke and fire gases from them. There is no doubt that this state of affairs is influenced by many factors, including spatial diversity of buildings, different locations of fires, the functioning of fire-fighting equipment installed in buildings, the realization of a project aimed at fire protection, to which it is necessary to add the occurrence of special fires that are apt to be classified as a burning vehicle, in order to support in this respect the fire protection expert (ventilation) of horizontal and vertical escape routes. In large rooms, e.g. underground garages, appropriately prepared mobile fans may also considerably facilitate the access to the source of fire, e.g. underground garages, appropriately prepared mobile fans – especially in a situation where during a fire there is a risk of cutting off the escape routes from a building – is an important tool that can significantly assist in achieving the tactical intent adopted by the manager of the rescue operations. Using ventilation allows, above all, to remove hot and toxic fire gases that accumulate in the spaces covered by a fire and pose a real threat to the users of such an object, as well as arriving rescue teams on the scene. In this aspect, the primary area of application of mobile fans during rescue operations is smoke removal (ventilation) of horizontal and vertical escape routes. In large rooms, e.g. underground garages, appropriately prepared mobile fans may also considerably facilitate the access to the source of fire (e.g. a burning vehicle), supporting in this respect the smoke removal systems functioning in a given building. In order to achieve the desired results, it is also necessary to have good knowledge of the layout of the internal structure of the rooms in a facility, the fire protection equipment installed in it and the fire scenarios adopted by the designer and fire protection expert. The above examples of mobile fan applications do not exhaust their capabilities. Due to their functionality, these devices can also be used during the implementation of the literature mentions supporting fire suppression activities for free-standing objects, such as cars or containers for recycling materials. In addition, electric-powered fans are also mentioned for their use during rescue operations.

Using tactical mechanical ventilation requires proper theoretical and practical preparation, and – as can be seen from the analysis of the available literature data – so far no universal procedures have been developed to ensure effective aeration of objects and removal of smoke and fire gases from them. There is no doubt that this state of affairs is influenced by many factors, including spatial diversity of buildings, different locations of fires, the functioning of fire-fighting equipment installed in buildings, the

Wstęp

Możliwość zastosowania wentylacji mechanicznej z wykorzystaniem mobilnych wentylatorów – w szczególności w sytuacjach, gdy w trakcie pożaru występuje ryzyko odcięcia drog ewakuacyjnych z obiektu – jest ważnym narzędziem, które może znacząco wspomóc osiągnięcie przyjętego przez kierującego akcji ratowniczej zamiaru taktycznego. Wykorzystanie wentylacji pozwala przede wszystkim na usunięcie gorących i toksycznych gazów pożarowych, które gromadzą się w przestrzeniach objętych pożarem i stanowią realne zagrożenie dla użytkowników takiego obiektu, a także przybywających na miejsce zdarzenia ewakuacji wentylatorów w trakcie działań ratowniczych i odmiany (przewietrzanie) pożarniczym przedstawiające większą wagę odządzać dostęp do źródła ogni (np. palącego się pojazdu), wspomagając w tym zakresie systemy odmiany funkcjonujące w danym obiekcie. W celu osiągnięcia pożądanych efektów konieczna jest również dobra znajomość składu struktury wewnętrznej pomieszczeń obiektu, zainstalowanych w nim urządzeń przeciwpożarowych oraz przyjętych przez projektanta i rzeczoznawcę do spraw zabezpieczeń przeciwpożarowych scenariuszy pożarowych. Powyższe przykłady zastosowań wentylatorów mobilnych nie wyczerpują ich możliwości. Urządzenia te, ze względu na swoją funkcjonalność, mogą być również wykorzystane podczas realizacji szeregu innych działań. W literaturze przedmiotu, wśród potencjalnych ich zastosowań, wymienia się m.in. wspomaganie działań związanych z likwidacją zagrożeń pożarowych obiektów wolnostojących, np. samochoǳów czy kontenerów na materiały przeznaczone do recyklingu. Ponadto, w przypadku wentylatorów z napędem elektrycznym, wspomina się również o ich wykorzystaniu w trakcie działań związanych z ratowaniem osób uwięzionych w trudno dostępnymi przestrzeniach ograniczonych (napowietrzanie tych przestrzeni).
Tactical ventilation

As mentioned earlier, the activities included in the area of tactical ventilation are a very important element of tactical-operational intentions which are to eliminate fire hazards. Over the past few years, firefighters have developed many methods to move thermal decomposition products out of a building space. Definitions of tactical ventilation, assigned to activities dedicated to firefighting, have been included in many training manuals, scientific publications, or fire industry journals. According to the definition presented by Paul Grimwood [1], tactical ventilation is a set of actions carried out by the rescuers to create conditions for gas exchange or fire isolation, aimed at taking control in the fire environment for the purpose of gaining tactical advantage during rescue and firefighting operations in buildings. The above definition captures the issues involved in controlling flows during a fire at a high level of generality, in a fairly broad context. It includes the following types of activities:

1. Anti-ventilation (fire isolation) – the action carried out to take control of gas exchange by total or partial restriction of the air flow into the fire area. The indicated technique reduces heat release in the fire environment and facilitates the removal of thermal decomposition products. The tactical ventilation method described herein involves controlling the gas exchange path and keeping air (and the oxygen it contains) out of the combustion zone. According to the guide [2] the indicated tactics is conducive to stabilize the dynamics of fire development, which often constitutes one of the first actions of the Rescue Operation Commander (KDR) and is the starting point for the implementation of further assumptions. Isolating the fire provides additional time to analyse the rescue scenarios. Anti-ventilation can be undertaken in a number of ways, including closing the door (if there is one) to the room where the fire originated or using a mobile smoke curtain designed to blind the building opening (window or door) connecting the fire environment to the outside. This technique is not directly related to the mechanical variability of atmospheric conditions, etc. Despite a wide range of variables mentioned above, it is possible to identify issues whose appropriate resolution will greatly affect the effectiveness of the implemented activities. These include, in particular, selecting the correct inlet and outlet openings, identifying the gas exchange path, and properly positioning the fan itself.

Stosowanie taktycznej wentylacji mechanicznej wymaga właściwego przygotowania teoretycznego i praktycznego, przy czym jak wynika z analizy dostępnych danych literaturoowych – dotychczas nie wypracowano uniwersalnych procedur gwarantujących efektywne napowietrzenie obiektów i usuwanie z nich dymu oraz gazów pożarowych. Nie ulega wątpliwości, że na ten stan rzeczy wpływa wiele czynników, m.in. różnorodność przestrzenna obiektów budowlanych, różne miejsca powstawania pożarów, funkcjonowanie zainstalowanych w obiektach urządzeń przeciwpożarowych, zmienność warunków atmosferycznych itp. Pomimo występowania szerokiego spektrum wspomnianych powyżej zmienności można wyodrębnić kwestie, których odpowiednie rozstrzygnięcie w dużym stopniu będzie wpływać na skuteczność realizowanych działań. Wśród nich należy wymienić w szczególności: dobranie właściwego otworu wlotowego i wylotowego, identyfikację toru wymiany gazowej oraz odpowiednie ustawienie samego wentylatora.

Wentylacja taktyczna

Jak wspomniano już wcześniej, działania wpisane w obszar wentylacji taktycznej stanowią bardzo ważny element zamierzeń taktyczno-operacyjnych służących likwidacji zagrożeń pożarowych. Przez ostatnie lata strażacy wypracowali wiele metod pozwalających na przemieszczanie produktów rozkładu termicznego z przestrzeni budynku. Definicje wentylacji taktycznej, przypisane działaniom dedykowanym do gaszenia pożarów, zostały zawarte w wielu podręcznikach szkoleniowych, publikacjach naukowych czy czasopismach branżowych poświęconych tematyce pożarnej. Zgodnie z definicją przedstawioną przez Paula Grimwooda [1] wentylacja taktyczna to zespół działań realizowanych przez ratowników, polegających na stworzeniu warunków do wymiany gazowej lub izolowaniu pożaru, mających na celu przejęcie kontroli w środowisku pożaru na potrzeby uzyskiwania przewagi taktycznej w trakcie działań ratowniczo-gaśniczych w obiektach budowlanych. Powyższa definicja ujmuje zagadnienia związane z kontrolowaniem przepływów w trakcie pożaru na wysokim poziomie ogólności, w dość szerokim kontekście. W jej ramach miesza się następujące typy działań:

1. Anty-wentylacja (izolowanie pożaru) – działanie realizowane celem przejęcia kontroli wymiany gazowej poprzez całkowite lub częściowe ograniczenie napływu powietrza do strefy objętej pożarem. Wskazana technika zmniejsza wydzielenie ciepła w środowisku pożaru oraz ułatwia usuwanie produktów rozkładu termicznego. Opisana metoda wentylacji taktycznej polega na kontrolowaniu toru wymiany gazowej i niedopuszczeniu powietrza (i zawartego w nim tlenu) do strefy spalania. Zgodnie z poradnikiem [2] wskazana taktyka sprzyja stabilizacji dynamiki rozwoju pożaru, przez co często stanowi jedno z pierwszych działań Kierującego Działaniem Ratowniczym (KDR) oraz jest punktem wyjścia do realizacji dalszych założeń. Odzisolowanie pożaru zapewnia dodatkowy czas potrzebny do przeanalizowania scenariuszy działań ratowniczych. Anty-wentylacja może być podjęta na wiele sposobów, m.in. przez zamknięcie drzwi
2. Gravity ventilation – the action of taking advantage of the difference in density of the fire gases resulting from the temperature difference between the combustion zone and the external environment. The principle of its operation is based on the phenomenon of convection, i.e. the rising of hot smoke and fire gases. Through heat exchange (initiated, for example, by opening a door to the fire room), air density and static pressure change, causing heated air of lower density to rise and air of higher density to fall. The more intense the heat exchange, the faster the air movement, which contributes to increased smoke removal efficiency. When using this type of ventilation, it must be remembered to provide compensating openings through which fresh air will flow, ensuring that the proportion of received and supplied gases is maintained. According to the manual of Main Headquarters of the State Fire Service (KG PSP) [2], to ensure adequate effectiveness of the indicated tactics, the area of inlet openings should be larger than the area of outlet openings – the amount of supplied air should be larger than the amount of discharged air. Moreover, inlet openings should be located lower than outlet openings to take advantage of thermal buoyancy, which is the basis of heat transfer (convection). When considering issues related to tactical gravity ventilation, it should be pointed out that this type of action involves the supply of oxygen with the incoming air to the fire focus, which consequently may lead to an increase in the dynamics of combustion. It is also worth mentioning that the use of gravity ventilation will not always be effective, especially in the case of smoke extraction of spaces where the smoke has already cooled, the combustion process has ended, and the action is only ventilation. During summer periods, when the outside air temperature is higher than the temperature inside a building, an unfavourable pressure distribution is present and warm air can be drawn into the building through the openings (windows or doors). This type of phenomenon is called reverse chimney draft. In practice, this phenomenon has a very unfavourable effect in the formation of smoke traps in the building, which may have a negative impact on the evacuation conditions or even make it impossible to carry it out in a safe manner. It should also be mentioned that a flagship example of (jeśli istnieje taka możliwość) to pomieszczenia, gdzie powstał pożar lub z wykorzystaniem mobilnej kurtyny dymowej, przeznaczonej do zaślepienia otworu budynku (okna lub drzwi) łączącego środowisko pożarowe z otoczeniem zewnętrznym. Technika ta nie jest bezpośrednio związana z samym procesem wentylacji mechanicznej, ale stanowi preludium do wprowadzenia wentylatorów do działań. Pozwala na zrozumienie zależności pomiędzy powietrzem napływającym do obiektu, gazami pożarowymi opuszczającymi strefę spalania a obecnością i wpływem na oddymianie torów wymiany gazowej oraz otworów w konstrukcji obiektu, mających wpływ na proces spalania i działania ratowniczo-gaśnicze.

2. Wentylacja grawitacyjna – działanie polegające na wykorzystaniu różnicy gęstości gazów pożarowych, wynikającej z różnicy temperatur pomiędzy strefą spalania a otoczeniem zewnętrznym. Zasada jej działania opiera się na zjawisku konwekcji, czyli unoszenia gorącego dymu i gazów pożarowych (tzw. efekt kominowy). W tym przypadku swobodna konwekcja wiąże się z ruchem powietrza wywołanym różnicą temperatur i – co za tym idzie – różnicą gęstości powietrza. Przez wymianę ciepła (zainicjowaną np. otwarciem drzwi do pomieszczenia objętego pożarem), dochodzi do zmiany gęstości powietrza oraz ciśnienia statycznego, przez co następuje unoszenie ogrzanego powietrza o mniejszej gęstości, a opadanie powietrza o większej gęstości. Im bardziej intensywna wymiana ciepła, tym szybszy jest ruch powietrza, co przyczynia się do zwiększenia efektywności oddymiania. Przy stosowaniu tego rodzaju wentylacji należy pamiętać o zapewnieniu otworów kompensacyjnych, przez które napływać będzie ścieśniej powietrze, gwarantujące zachowanie proporcji odbieranych i dostarczanych gazów. Zgodnie z poradnikiem KG PSP [2], aby zapewnić odpowiednią skuteczność działania wskażanej taktiki, należy dążyć do tego, aby powierzchnia otworów wlotowych była większa od powierzchni otworów wylotowych – ilość dostarczanego powietrza powinna być większa od wielkości powietrza odprowadzanego. Ponadto otwory wlotowe powinny być usytuowane niżej od otworów wylotowych celem wykorzystania zjawiska wyporu termalnego, będącego podstawą unoszenia ciepła (konwekcji). Rozpatrując zagadnienia dotyczące taktycznej wentylacji grawitacyjnej, należy wskazać, że tego typu działanie wiąże się z dostarczaniem tlenu wraz z napływającym powietrzem do ogni ska pożaru, co w konsekwencji może prowadzić do wzrostu dynamiki spalania. Warto również wspomnieć, że wykorzystanie wentylacji grawitacyjnej nie zawsze będzie efektywne, szczególnie w przypadku oddymiania przestrzeni, gdzie dym już oszedł proces spalania się zakończył, a działania polegają wyłącznie na prze wietrzaniu. W okresach letnich, gdy temperatura powietrza zewnętrznego jest wyższa niż temperatura panująca w budynku, obecny jest niekorzystny rozkład ciśnienia i ciepło powietrze może być zasypane do wnętrza...
such a situation are the activities related to the removal of toxic gases, vapours of hazardous substances or very often occurring on the burned area carbon monoxide.

3. Mechanical ventilation – this technique is based on the phenomenon related to water droplets delivered from a nozzle, which – dispersed into an area where fire gases of lower density are present – displace them from their flight path, causing the movement of gases [2]. When analysing the trajectory of a water droplet, it should be pointed out that just in front of the droplet, a positive pressure is created due to the momentum and dynamic pressure of the fluid set in motion, and just behind the droplet, a negative pressure is created. As the length of the distance increases, the dispersed water droplets decrease the value of the momentum force and at the same time set in motion the gas (including combustion products) in the area of influence of the water dispersion source, due to the resulting differences in the pressure values. The source in question mentions tactical solutions to direct the flow of the fire gases using short-circuit currents. They consist of applying a dense current of water, directed at the areas of the discharge opening. Another variant of hydraulic ventilation is a technique involving the application of diffused current from inside a smoky room through a window to the outside of the building. As a result of the created pressure difference, the smoke from inside the room will be sucked outside together with the water current. This technique is mostly used by emergency responders working on a fire scene to quickly improve visibility in a room.

4. Mechanical ventilation – a technique that allows the movement of thermal decomposition products and accumulated heat using mobile fans. Mechanical ventilation is divided into positive pressure and negative pressure ventilation. Vacuum ventilation is implemented using a fan located in the area of the outlet opening in the path of the gas exchange path in such a way that it forces the smoke through the rotor plane and blows the accumulated products of combustion outside a facility. On the other hand, positive pressure ventilation is carried out with a fan positioned near the inlet opening in such a configuration that the generated jet is directed at the surface of the inlet opening, forcing the air through the area of the gas exchange path. The purpose of positive pressure ventilation is to force the fire gases to move along a planned gas exchange path. As a result, they are pushed out of the object based on the phenomenon of overpressure created inside the object by a fan driven by an internal combustion engine, electric motor or water turbine with the use of appropriate technology for selecting the size of aeration and smoke extraction openings.

More information on the conditions and applicability of positive pressure mechanical ventilation is presented later in this article.
Selected possibilities of using mobile overpressure fans during rescue operations

When discussing the functionalities characterized by mobile fans, it should be emphasized that in addition to the already mentioned possibilities of their use in the area of mechanical underpressure or overpressure ventilation, there are also other, less conventional ways of using this type of units. As mentioned in the introduction, they can successfully provide a tool to help in the process of extinguishing fires of motor vehicles or tanks intended for waste. In this case, their use makes it possible to reduce the flow of hot fire gases onto the surfaces of adjacent objects (i.e. other cars, waste containers or building facades). An appropriately directed stream of clean air, created with the use of a fan driven by an electric motor, can in turn support the process of delivering air to the victims trapped in places which are difficult to access, such as sewage pits, tanks, wells, clogged cellars, etc.

The primary use of mobile fans remains Positive Pressure Ventilation (PPV), the purpose of which is to force air through an inlet opening, create positive pressure inside a facility, direct the flow of gases by properly sizing the aeration and outlet openings, and push them in the desired direction (through the outlet opening) out of the facility space.

This type of activity may be executed to achieve the following objectives, which are among others:
- removing thermal decomposition products and accumulated heat in the space of a building;
- maintaining a smoke-free space (by creating positive pressure in a certain area) to ensure evacuation or access for the rescue teams;
- supplying air to areas with reduced oxygen concentration where people may be present (ventilation for life);
- increasing the efficiency of search activities for the injured persons in a facility covered by fire;
- lowering the temperature by ventilating the burned area and allowing the rescuers to work without the need to wear breathing apparatus.

A schematic of the use of a mobile ventilator to conduct PPV is shown in Figure 1.

Wybrane możliwości stosowania mobilnych wentylatorów nadciśnieniowych podczas realizacji działań ratowniczych

Omawiając funkcjonalności, jakimi charakteryzują się wentylatory mobilne, należy podkreślić, że poza wspomnianymi już wcześniej możliwościami dotyczącymi ich wykorzystania w obszarze wentylacji mechanicznej podciśnieniowej lub nadciśnieniowej, istnieją również inne, mniej konwencjonalne sposoby użycia tego typu jednostek. Jak wspomniano już na wstępie, mogą one z powodzeniem stanowić narzędzie pomocne w procesie gaszenia pożarów pojazdów samochodowych czy zbiorników przeczynionych na odpady. W tym przypadku ich wykorzystanie pozwala ograniczyć napływ gorących gazów pożarowych na powierzchnię znajdujących obiektów (tj. innych samochodów, pojemników na odpady czy elewacji budynków). Odpowiednio ukierunkowany strumień czystego powietrza, tworzony z wykorzystaniem wentylatora napędzanego silnikiem elektrycznym, może z kolei wspomagać proces dostarczania powietrza dla osób poszkodowanych, uwieńczonych w trudnodostępnych miejscach, takich jak studzienki kanalizacyjne, zbiorniki, studnie, zagrudzone pomieszczenia piwnicze itp.

Podstawową formą wykorzystania mobilnych wentylatorów pozostaje wentylacja mechaniczna nadciśnieniowa (ang. Positive Pressure Ventilation, PPV), której celem jest wtłoczenie powietrza przez otwór wlotowy, utworzenie nadciśnienia wewnątrz obiektu, ukierunkowania przepływu gazów poprzez właściwe otwory wlotowe oraz wypchnięcia ich w pożądanym kierunku (przez otwór wylotowy) poza przestrzenią obiektu.

Tego typu działanie może być realizowane m.in. na potrzeby osiągnięcia następujących celów:
- usuwanie produktów rozkładu tlenicznego i nagromadzonego ciepła w przestrzeni obiektu budowlanego;
- utrzymanie kubatury wolnej od dymu (poprzez wytworzenie nadciśnienia w określonym obszarze) przez zapewnienie możliwości ewakuacji bądź zapewnienie dostępu ekipom ratowniczym;
- dostarczanie powietrza do miejsc o zmniejszonym stężeniu tlenu, gdzie mogą przebywać ludzie (wentylacja dla życia);
- zwiększenie efektywności działań poszukiwawczych osób poszkodowanych w obiekcie objętym pożarem;
- obniżenie temperatury poprzez przewietrzenie pogorzeliska i umożliwiające pracę ratownikom bez konieczności pracy w sprzęcie izolującym drogi oddechowe.

Schemat wykorzystania mobilnego wentylatora do prowadzenia wentylacji PPV został przedstawiony na rycinie 1.
There have been many published results in the literature regarding the feasibility of PPV ventilation. P. S. Ziesler et al. [3] demonstrated that positive pressure ventilation is an effective technique that can contribute to the effectiveness of rescue and firefighting operations when properly applied. In their paper, they detailed five major advantages of using positive pressure ventilation:

1. PPV lowers the temperature of the fire environment inside a building, which is beneficial with regard to the rescue operations associated with the evacuation of the injured, and also increases the comfort of the firefighters in the immediate vicinity of a fire.

2. PPV improves air quality by removing harmful carbon monoxide and providing oxygen.

3. Removing fire gases (smoke) is carried out in a dynamic manner, which contributes to rapid improvement of visibility and efficiency of the search of rooms, speed of location of the source of the fire and efficient evacuation of the victims.

4. Generated airflow can separate flames from the areas where emergency responders are working or for protection of adjacent spaces.

5. Positive pressure ventilation can also minimize damage resulting from damage caused by the spread of smoke and/or heat inside a building.

Other researchers, in addition to the benefits of PPV ventilation, have also pointed out some risks associated with it. For example, S. Svensson [4] emphasized that PPV can increase combustion dynamics and causes a risk of the fire spreading dynamically. In his paper, he mentioned the importance of coordination and command control during operations where positive pressure ventilation technology is used. The author pointed out that well organized PPV ventilation allows to increase the dynamics of search and rescue operations and operations aimed at eliminating the source of the fire.

Figure 1. Application of mechanical positive pressure ventilation in the space of a building
Rycina 1. Zastosowanie wentylacji mechanicznej nadciśnieniowej w przestrzeni obiektu budowlanego
Source: Own elaboration.
Źródło: Opracowanie własne.
Another way to use a mobile fan is for negative pressure ventilation. The operation is analogous to positive pressure ventilation with the difference that the fan unit is positioned in the outlet opening in such a way that it sucks the accumulated fire gases from the inside of the building and blows them outside. When applying this type of ventilation, it is necessary to determine the inlet and outlet openings, select the gas exchange path, and properly mount the fan unit. In order to achieve the desired effects of negative pressure ventilation, it is possible to locate the unit in the upper area of the outlet opening frame. This solution allows the hot fire gases accumulated in the ceiling space to be discharged efficiently. A graphical illustration of vacuum ventilation solutions is shown in Figures 2 and 3.

![Figure 2](image1.png)

Figure 2. Use of negative pressure mechanical ventilation for the evacuation of fire gases from a building

Rycina 2. Zastosowanie wentylacji mechanicznej podciśnieniowej do odprowadzania gazów pożarowych z obiektu budowlanego

Source: Own elaboration.

Źródło: Opracowanie własne.

![Figure 3](image2.png)

Figure 3. Setting up a fan for negative pressure ventilation

Rycina 3. Ustawienie wentylatora do wentylacji podciśnieniowej

Source: Own elaboration.

Źródło: Opracowanie własne.
Closing the topic of negative pressure ventilation, attention should still be drawn to the adverse phenomenon occurring in relation to the fans driven by an internal combustion engine. If an engine equipment is used in a smoke zone (extraction of smoke from the rooms), the engine may be throttled, the fan’s parameters may be lowered, and the equipment may even be completely disabled (e.g. due to blockage of the air filter). Fans driven by an electric motor or a water turbine are not affected by this issue.

Disabled (e.g. due to blockage of the air filter). Fans driven by an internal combustion engine. If an engine equipment is used in a smoke zone (extraction of smoke from the rooms), the engine may be throttled, the fan’s parameters may be lowered, and the equipment may even be completely disabled (e.g. due to blockage of the air filter). Fans driven by an electric motor or a water turbine are not affected by this issue.

Another possible way of using mobile units is Positive Pressure Attack (PPA), where the ventilation of the rooms is done before the firefighting action begins in the attack. The above is used to improve the conditions inside a facility. The indicated technique consists in combining rescue and extinguishing activities with mechanical overpressure ventilation. According to the information presented in the article, overpressure ventilation improves the conditions in which firefighters work, i.e. increases visibility by removing thermal decomposition products and reduces the temperature inside the rooms both in the place where the fire is present and in the entire building [5]. In a study by M. Łapicz et al. [6] it was indicated that the coordination of an attack with the use of PPA requires appropriate knowledge of the theory of fires and the ability to adapt techniques of the extinguishing operations. The authors, referring to the research results, specified the following benefits resulting from the use of the PPA techniques:

- extending the duration of the conditions enabling the survival of people in a danger zone by reducing the impact of toxic fire gases;
- contributing to a faster location of a fire, as well as reducing the need for extinguishing agents;
- reducing the likelihood of damage to property as a result of the impact of fire gases on a building, as a result of an appropriate direction of the air stream generated by the fan.

A diagram of the PPA technique is presented in Figure 4.

Figure 4: Scheme of using the technique of overpressure mechanical ventilation in attack

Rycina 4: Schemat stosowania techniki wentylacji nadciśnieniowej w natarciu

Source: Own elaboration based on [7]

Źródło: Opracowanie własne na podstawie [7].
According to the recommendations presented by K. Garcia [7], mobile fans can also be used to fight the threats of free-standing objects, e.g. fires of cars or garbage containers.

When referring to the issue of motor vehicle fires, one should be aware that due to the presence of large amounts of plastic materials in their construction, in the event of a fire, highly toxic products of thermal decomposition are intensively generated. Due to the use of a mobile ventilator, the rescuers can properly direct the air stream to the surface of the vehicle, which will reduce the inflow of toxic fire gases into the areas of firefighting activities (easier access), or where there may be bystanders who do not have respiratory protection. In addition, the use of PPV ventilation during a vehicle fire can improve visibility so that the source of the fire can be located more quickly. When using this technique, it is important to remember that the fan, whenever possible and reasonable to achieve the accepted tactical intent, should be positioned on the windward side so that the air stream is directed in the same direction as the wind. This will increase the efficiency of the used ventilation.

Another possibility, mentioned earlier, for the use of mobile fans is fires involving waste containers. According to the recommendations presented by K. Garcia et al. [7], the principle of implementing actions in this group of objects is similar to that of vehicles. One of the problems that can occur during a container fire is the inability to identify the burning material (and fire experience shows that very often materials that produce highly toxic smoke and fire gases are involved, i.e., plastics, industrial waste, etc.). Unfortunately, it happens that dishonest entrepreneurs carry out a kind of (for them “no-cost”) disposal of substances that are very dangerous to human health and life, as well as to the environment, intentionally causing a fire in such containers. In this context, the possibility of reducing the impact of the effects of combustion of these substances on the rescuers appears to be an extremely important factor, reducing the risk of loss of protective properties (contamination) by clothing and other personal protective equipment used during the operations.

These devices can be used not only to protect the rescuers and bystanders, but also to protect objects directly adjacent to the place of a fire. Appropriate positioning of the fan makes it possible to limit the inflow of hot fire gases towards these objects and their impact, for example, on the surface of the building’s façade. A diagram illustrating techniques to assist the elimination of fire hazards in waste containers is shown in Figure 5.

Zgodnie z rekomendacjami przedstawionymi przez K. Garcia [7] mobilne wentylatory mogą zostać również wykorzystane do walki z zagrożeniami obiektów wolnostojących np. pożarami samochodów lub kontenerów na śmieci.

Odnosząc się do problematyki pożarów pojazdów samochodowych, należy mieć świadomość, że ze względu na obecność w ich konstrukcji dużych ilości materiałów z tworzyw sztucznych, w przypadku zaistnienia pożaru, następuje intensywne generowanie silnie toksycznych produktów rozkładu termicznego. Dzięki wykorzystaniu mobilnego wentylatora ratownicy mogą odpowiednio ukierunkować strumień powietrza na powierzchnię pojazdu, co ogranicza napływ toksycznych gazów pożarowych w obszary prowadzonych działań gaśniczych (ułatwienie dostępu), bądź tam gdzie mogą przebywać osoby postronne, nie posiadające zabezpieczeń w postaci środków ochrony dróg oddechowych. Ponadto zastosowanie wentylacji PPV w trakcie pożaru pojazdu może poprawić widoczność, dzięki czemu istnieje możliwość szybszej lokalizacji źródła pożaru. Podczas stosowania omawianej techniki należy pamiętać, aby wentylator – jeśli jest to tylko możliwe i uzasadnione z punktu widzenia osiągnięcia przyjętego zamierku taktycznego – został ustawiony od strony nawietrznej, tak aby struga powietrza była skierowana w tym samym kierunku co wiatr. Dzięki temu efektywność zastosowania wentylacji będzie większa.

Kolejną, wspomnianą już wcześniej możliwością wykorzystania mobilnych wentylatorów są pożary pojazdów przeznaczonych na odpady. Zgodnie z rekomendacjami przedstawionymi przez K. Garcia i in. [7], zasada realizacji działań w tej grupie obiektów jest podobna do tej, jak w przypadku pojazdów. Jednym z problemów, jaki może wystąpić w trakcie pożaru kontenerów, jest brak możliwości identyfikacji palącego się materiału (a doświadczenia pożarnicze wskazują, że bardzo często w tym procesie biorą udział materiały wytwarzające silne toksyczne dymy i gazy pożarowe, tj. tworzywa sztuczne, odpady przemysłowe itd.). Niemniej zdarza się, że nieuczciwi przedsiębiorcy dokonują swego rodzaju, dla nich „bezkosztowej”, utylizacji substancji bardzo niebezpiecznych dla zdrowia i życia ludzi oraz środowiska, umyślnie wywołując pożar tych kontenerów. W tym kontekście możliwość ograniczenia oddziaływania skutków spalania tych substancji na ratowników jawnie się jako czynnik niezmiernie istotny, zmniejszający m.in. ryzyko utraty właściwości ochronnych (kontaminacji) przez używaną w trakcie działań odzież oraz pozostałe środki ochrony osobistej.

Omawiane urządzenia mogą być wykorzystywane nie tylko do ochrony ratowników oraz osób postronnych, ale również w celu zabezpieczenia obiektów sąsiadujących bezpośrednio z miejscem powstania pożaru. Odpowiednie usytuowanie wentylatora pozwala na ograniczenie napływu gorących gazów pożarowych w kierunku tych obiektów i ich oddziaływania np. na powierzchnię elewacji budynku. Schemat obrazujący techniki wspomagające likwidację zagrożeń pożarowych pojazdów przezznaczonych na odpady został przedstawiony na rycinie 5.
Another area of the rescue operations where the potential is recognized for the use of mobile ventilation is in rescuing people trapped in inaccessible spaces, such as wells, pipelines, tanks, and cluttered rooms, where an adverse environment may exist due to the reduced oxygen content or the presence of noxious vapours or gases. Proper use of a mobile ventilator, by directing a stream of air into these spaces, can in many cases allow fresh air to be supplied there, increasing the victim’s chances of survival. Only fans with electric or water drive are applicable in the above area. For obvious reasons (risk of contamination with toxic substances from the exhaust system of the supplied air stream) it is forbidden to use units driven by an internal combustion engine. A technique for delivering fresh portions of air to victims trapped in hard-to-reach spaces is illustrated in Figure 6.

Kolejnym obszarem działań ratowniczych, w którym dostrzega się potencjał związany z wykorzystywaniem wentylacji mobilnej, są działania dotyczące ratowania osób uwieńczonych w trudnodostępnym przestrzeniach, np. studniach, rurociągach, zbiornikach, zagruzowanych pomieszczeniach, gdzie może występować niekorzystne środowisko związane ze zmniejszoną zawartością tlenu lub obecnością szkodliwych par lub gazów. Odpowiednie użycie mobilnego wentylatora, poprzez skierowanie strugi powietrza do tych przestrzeni, w wielu przypadkach może umożliwić dostarczanie tam świeżego powietrza, co zwiększa szanse poszkodowanych na przeżycie. W powyższym obszarze zastosowanie znajduje jedynie wentylatory z napędem elektrycznym lub wodnym. Z oczywistych względów (ryzyko zanieczyszczenia substancjami tок- cazywnymi z układu wydechowego strugi dostarczanego powietrza) zabronione jest używanie jednostek napędzanych silnikiem spalinowym. Technika dostarczania świeżych porcji powietrza obojętnym w trudnodostępnych przestrzeniach, została zobrazowana na rycinie 6.
Parameters conditioning effectiveness of applied techniques of rescue operations with the use of mobile fans

Despite the apparent simplicity of the devices themselves and the principle of their operation, the effective use of mobile fans in rescue operations requires specialized theoretical and practical preparation. So far, no universal procedures have been developed, allowing to achieve the expected efficiency of smoke removal while maintaining an adequate level of safety for the rescuers and the bystanders. Therefore, it is reasonable to undertake further research work in this area. Based on the current state of knowledge, factors determining the successful implementation of the adopted tactical intention have been identified. In particular, the following issues are mentioned:

- which the air stream generated by a mobile fan will flow, proper location of the fan in front of the aeration opening (taking into account the appropriate distance from the opening and the angle of the impeller);
- ensuring a route for pumping air masses (as free as possible from obstacles that may adversely affect the achieved effectiveness of smoke removal);
- providing an exit port through which thermal decomposition products will be discharged;
- taking into account weather conditions, including the direction and strength of the wind occurring at the place and time of the incident.

When it comes to choosing the right inlet, the entrance door of the facility is most often used for this purpose – mainly due to its accessibility, which makes it possible to locate the fan unit in its light and at an optimal distance. Equally important is the fact that usually the door is the end element of the escape route from the facility, and maintaining conditions on these roads for the longest possible time, whether it is the evacuation of people and property, or the access of the rescuers, is the main reason for the use of the devices in question. Nevertheless, attention should be paid to the need for in-depth analysis in cases of operations in buildings where horizontal and vertical escape routes are protected by smoke extraction or anti-smoke devices (the so-called overpressure systems). Then the head of the rescue operations, in the adopted tactical intention, should take into account the priority in the form of as little disruption to the operation of the devices mentioned as possible, i.e. take care of carrying out these operations in accordance with the fire scenario adopted for a given facility. In such cases, the use of tactical ventilation should be considered only in the event of failure or inefficient operation of the aforementioned smoke extraction or smoke protection devices. Although the most common in practice, the use of the entrance door as an air supply opening is not the only solution used during rescue and firefighting operations. Depending on the place where the fire originates and how it spreads, it may be necessary to select a different aeration location, e.g. windows, gaps in the building partition (wall, ceiling), etc. When using the tactical overpressure ventilation technique with the use of the door opening, it should be remembered that in this case it is

 Parametry warunkujące skuteczność stosowanych technik realizacji działań ratowniczych z wykorzystaniem mobilnych wentylatorów

Pomimo pozornej prostoty samych urządzeń, jak i zasady ich działania, efektywne wykorzystanie wentylatorów mobilnych w działaniach ratowniczych wymaga specjalistycznego przygotowania teoretycznego oraz praktycznego. Dotychczas nie wypracowano uniwersalnych procedur postępowania, pozwalających osiągnąć oczekiwanej skuteczność oddymiania przy jednoczesnym zachowaniu odpowiedniego poziomu bezpieczeństwa dla ratowników i osób postronnych. Dlatego zasadne jest podejmowanie dalszych prac badawczych w tym zakresie. Bazaując na aktualnym stanie wiedzy, zidentyfikowano czynniki warunkujące pomyślną realizację przyjętego zamierze taktycznego. Wymienia się w szczególności następujące kwestie:

- właściwy dobór otworu napowietrzającego (wlotowego), przez który będzie napływać struga powietrza generowana przez mobilny wentylator, odpowiednie usytuowanie wentylatora przed otworem napowietrzającym (z uwzględnieniem odpowiedniej odległości od otworu oraz kąta nachylenia wiatru);
- zapewnienie drogi przetłaczania mas powietrza (w jak największym stopniu wolnej od przeszkód mogących negatywnie wpływać na osiąganą skuteczność oddymiania);
- zapewnienie otworu wlotowego, przez który usuwane będą produkty rozkładu termicznego;
- uwzględnienie warunków atmosferycznych, m.in. kierunku i siły wiatru, występujących w miejscu i czasie zdarzenia.

Jeśli chodzi o wybór odpowiedniego otworu wlotowego, najpierw wykorzystywane są do tego celu drzwi wejściowe obiektu – głównie ze względu na ich dostępność, stwarzającą możliwość usytygowania jednostki wentylatorowej w ich świetle i w optymalnej odległości. Nie mniej istotnym jest fakt, że zazwyczaj drzwi stanowią element końcowy drogi ewakuacyjnej z obiektu, a przecież utrzymanie przez jak najdłuższy czas na tych drogach warunków umożliwiających, czy to ewakuację osób i mienia, czy też dostęp ratowników, stanowi główny powód stosowania rozpatriwanych urządzeń. Niemniej należy zwrócić uwagę na potrzebę pogłębionej analizy w przypadkach prowadzenia działań w budynkach, w których poziome i pionowe drogi ewakuacyjne chronione są przez urządzenia oddymiające lub zapobiegające zadymieniu (tzw. systemy nadciśnieniowe). Wówczas kierujący działaniami ratowniczymi w przyjętym zamiarze taktycznym powinien uwzględnić priorytet w postaci najmniejszego zakłócania pracy wspomnianych urządzeń, czyli zadać o prowadzenie tych działań zgodnie z przyjętym dla danego obiektu scenariuszem pożarowym. W takich przypadkach zastosowanie wentylacji taktycznej należy brać pod uwagę jedynie w razie awarii lub nieefektywnego działania wspomnianych urządzeń oddymiających lub zapobiegających przed zadymieniem. Wykorzystanie drzwi wejściowych jako otworu nawiewnego, choć najczęściej spotykane w praktyce, nie jest jedynym rozwiązaniem stosowanym w trakcie prowadzenia
possible to adjust the size of the inlet opening to the conditions, e.g. with the available fan unit, of course in the context of reducing its surface. The application of the curtain minimizes the risk of secondary losses caused by smoke in the staircase, cutting off the communication or evacuation routes for people residing on the floors above the place of operation. When operations are conducted in laboratories, hospitals, museums, etc., the risk of loss due to damage to expensive equipment or objects of significant value is also minimized.

The next issue that needs to be addressed in terms of creating conditions for effective ventilation is the provision of an outlet opening of adequate size. Such an opening should be selected or constructed as close as possible to the source of the fire so that the path of transport of toxic combustion products is as short as possible. As for the size ratio of the inlet and outlet opening, as recommended in [8], it should be between 1:¾ and 1:1 ¾, respectively (see Figure 7). If the smoke discharge opening is too small, the migration of combustion products will be slower and some will move to other areas of the facility. According to U. Cimolino et al. [9] the size of the outlet opening should at least match the size of the inlet opening. However, It should be pointed out that when the discharge opening is too large, other hazards arise, such as failure to provide sufficient positive pressure in the path of gas movement and greater susceptibility to weather conditions.

![Figure 7. Overview of the ratio between supply air and extract air openings](image)

Rycina 7. Zestawienie proporcji pomiędzy otworem nawiewnym i wywiewnym

Source: Own elaboration.

Na przykład prowadzenia działań w laboratoriach, szpitalach, muzeach itp. minimalizuje się również ryzyko strat spowodowanych zniszczeniem kosztownego sprzętu lub obiektów znacznej wartości.

Następną kwestią wymagającą uwzględnienia w kontekście tworzenia warunków skutecznej wentylacji jest zapewnienie otworu wylotowego o odpowiedniej wielkości. Taki otwór powinien zostać wybrany lub wykonany możliwie jak najbliżej źródła pożaru, tak aby droga transportu toksycznych produktów spalania była możliwie jak najkrótsza. Jeśli chodzi o proporcje wielkości otworu wylotowego nadciśnieniowego w stosunku do powierzchni wlotowego, to — zgodnie z rekomendacjami przedstawionymi w publikacji [8] — powinny one wynosić odpowiednio od 1:¾ do 1:1 ¾ (zob. ryc. 7). W przypadku gdy otwór odprowadzający dym będzie zbyt mały, migrowanie produktów spalania będzie wolniejsze i część z nich będzie przemieszczala się w inne obszary obiektu. Według U. Cimolino i in. [9] wielkość otworu wylotowego powinna odpowiadać co najmniej wielkości wlotowego. Należy jednak wskazać, że gdy otwór odprowadzający jest zbyt duży, to powstają inne zagrożenia, jak np. niezapewnienie wystarczająco niewielkiego otworu zatrzymania na drodze przemieszczania gazów oraz większa podatność na wpływ warunków atmosferycznych.
When taking a pragmatic approach to caulking outlets and aeration holes, attention must be paid to effectively maintaining their patency. Ventilation is a dynamic process and depends on various parameters that may change during the operations. This requires constant supervision and control of the fan itself (it may be necessary to suddenly stop aeration of the object), as well as the outlet, the observation of which tells a lot about the development of the situation inside the object. Interrupting the ventilation process by, for example, closing doors or windows can completely change the situation for the rescuers in the smoke zone. Therefore, an additional important piece of equipment for a firefighter operating the ventilator should be wedges securing doors or windows through which controlled gas exchange is carried out. Random objects, such as a trashcan, can also be used to block the openings (see Figure 8), but their use does not provide the same assurance as using dedicated equipment.

Figure 8. Trashcan blocking the possibility of closing the aeration opening
Rycina 8. Kosz na śmieci blokujący możliwość zamknięcia otworu napowietrzającego
Source: Own elaboration.
Źródło: Opracowanie własne.

When analysing the issue concerning the positioning of a mobile fan and the process of pumping the air stream generated by this fan, it should be borne in mind that such an action should be implemented taking into account the size of the inlet opening and the size of the fan impeller. On the other hand, positioning the unit in front of the inlet opening should be done according to the geometric parameters indicated by the manufacturer of the particular unit. Such parameters include the following quantities [10]:
- \(s \) – being the horizontal distance of the rotor axis from the door opening, expressed in [m] or inches (depending on the country of the manufacturer for which the unit was manufactured)
and
- \(\alpha \) – indicating the angle between the impeller axis and the horizontal plane on which the mobile fan is situated [°].

Analizując zagadnienie dotyczące pozytjonowania wentylatora mobilnego i procesu tłoczenia strugi powietrza generowanej przez ten wentylator, należy mieć na uwadze, że takie działania powinno być realizowane z uwzględnieniem rozmiaru otworu wlotowego i wielkości wirnika wentylatora. Natomiast ustawienie jednostki przed otworem wlotowym, powinno odbywać się zgodnie z geometrycznymi parametrami wskazanymi przez producenta danego urządzenia. Do takich parametrów zaliczane są następujące wielkości [10]:
- \(s \) – stanowiąca poziomą odległość osi wirnika od otworu drzwiowego, wyrażana w [m] lub calach (w zależności od kraju producenta dla którego jednostka została wyprodukowana)
oż
- \(\alpha \) – wskazująca kąt pomiędzy osią wirnika a poziomą płaszczyzną na której usytuowaną mobilny wentylator [°].
The described parameters are the geometrical indications at which the fan, when tested based on a dedicated test [10], obtained the best result in terms of aerodynamic efficiency. In case when a given fan available on the market has not been tested based on a dedicated testing standard (such situations occur in reality), one can be supported by the results of empirical studies characterized in the literature [11–12] and recommendations developed on their basis for the location of such units. Lambert et al. [13] conducted a series of experiments related to the determining and evaluating the positioning distance of the fan in front of the door opening. In the course of the aforementioned work, it was shown that the effectiveness of smoke extraction increases as the distance between the unit and the door opening decreases.

The study Tactical Ventilation – Applied Ventilation Systems [9] indicates that for conventional fans, the distance from the supply opening should be approximately equal to the height of the unit, which the fan, when tested based on a dedicated test [10], uzyskał najlepszy wynik w zakresie wydajności aerodynamicznej.

W przypadku, gdy dany wentylator dostępny na rynku nie został zbadany w oparciu o dedykowany standard badawczy (takie sytuacje występują w rzeczywistości), można wspierać się scharakteryzowanymi w literaturze przedmiotu [11–12] wynikami badań empirycznych i opracowanymi na ich podstawie rekomendacjami dotyczącymi usuwania tego typu jednostek. Lambert i in. [13] przeprowadzili szereg eksperymentów związanych z określeniem i oceną odległości pozycjonowania wentylatora przed otworem drzwiowym. W trakcie realizacji ww. prac wykazano, że skuteczność oddymiania wzrasta wraz ze zmniejszaniem się odległości między jednostką a otworem drzwiowym.

In the available publications [12–17] a lot of information is present regarding the optimal positioning of both conventional and turbo units. For conventional fans (depending on the type of the unit), it is suggested that the considered distance should be between 2 and 5 m and the impeller angle between 15 and 30 degrees, so that the jet covers the entire opening – the cone technique. According to U. Cimolino et al. [9], changing the inlet angle can increase the flow rate by up to 30%.

The purpose of making a so-called tight cone is to properly direct the flow so that the smoke does not have the opportunity to move towards the inlet opening, where the fan was located. However, it should be noted that this type of solution is not completely free of disadvantages, because part of the air stream may not reach the interior of the object, because it is broken against the outer surface of a wall around the contour of the inlet opening.

In the context of fan positioning, it is also worth mentioning fan units referred to as “turbo” units, which generate a cylindrical air stream with less turbulent flow and discharge air masses at a higher speed. In the context of the positioning of a turbo fan, the literature recommends the following positioning parameters: distance 3–7 m, tilt angle 8–25 degrees.

Due to the fact that the jet produced by the turbo fan has a shape similar to a cylinder, and not a cone, in case of using smaller turbo fans (e.g. with a rotor diameter less than 450 mm) it becomes practically impossible to obtain the effect of a “tight cone”. However, the losses associated with this are compensated for in the effect of obtaining better momentum performance from the air stream. Provision may also be made for an additional smoke curtain, mounted in the upper area of the door, to increase the efficiency of this type of unit (see Figure 9).

Research for increasing the effectiveness of a smoke curtain, confirmed by numerical analyses (simulations), is presented in the article by P. Panindre et al. [11]. In this study, it was shown that the use of a smoke curtain when implementing smoke control in a 7-story building improved the flow rate by up to 30%.

Opisane parametry stanowią wskazania geometryczne, przy których wentylator podczas badań wykonywanych w oparciu o dedykowany test [10], uzyskał najlepszy wynik w zakresie wydajności aerodynamicznej.

In the context of positioning the wentylator warto również wspomnieć o jednostkach wentylatorowych określanych jako „turbo”, które generują strumienie powietrza w kształcie walca, charakteryzujące się mniejszą burzliwością przepływu i tłoczące masę powietrza z większą prędkością. W kontekście ustawiania wentylatorów typu turbo, w literaturze przedmiotu rekomenduje się następujące parametry pozycjonowania: dystans 3–7 m, kąt nachylania 6–25 stopni.

Z uwagi na fakt, że struga wytwarzana przez wentylator typu turbo posiada kształt zbliżony do walca, a nie stożka, w przypadku wykorzystania mniejszych turbo wentylatorów (np. o średnicy wimnika mniejszej niż 450 mm) uzyskanie efektu „szczelnego stożka” staje się praktycznie niemożliwe. Niemniej jednak straty z tym związane są kompensowane w efekcie uzyskiwanego lepszych osiągów w zakresie prędu, jakim charakteryzuje się struga powietrza. Można również przewidzieć zastosowanie dodatkowo kurtyny dymowej, zamocowanej w górnym obszarze drzwi, co pozwoli zwiększyć efektywność tego typu jednostki (zob. ryc. 9).

Badania pod kątem zwiększenia skuteczności zastosowań kurtyny dymowej, potwierdzone analizami (simulacjami)
It is worth noting that there are fan units available on the market that have graphics to facilitate their proper use, located on the impeller housing, showing recommendations for geometric parameters of fan positioning in front of the inlet opening. An example of such a graphic is presented in Figure 10.

When discussing aspects of fan positioning to increase fan efficiency, it is also important to mention that using more fans will allow more air mass to be forced into the building and reduce the time required for ventilation.

For situations where the door opening has standard dimensions (e.g. 0.9 m wide and 2.03 m high), according to the recommendations presented by K. Garcia et al. [7], two fans should be...
placed in front of the door in one line (axis). The first fan should be placed at a distance of 0.6–0.9 m from the door opening, and the second fan should be placed at a distance of 2.4–3.0 m from the door threshold. In the system described above, the first fan is responsible for pumping a stream of air into the interior of an object, while the second fan delivers another portion of air and seals the inlet opening, preventing backflow of products of combustion. A diagram of the location of the fans in the configuration described above is shown in Figures 11 and 12.

When using units with different capacities in a single-line configuration, it is recommended [7] to place the lower capacity fan near the door opening so that all of the compressed air is delivered to the building interior. In this situation, the larger fan should be placed far enough behind the first one to cover the entire opening with a cone of compressed air. According to the authors’ guidelines, placing two units, the larger of which is closer to the opening, will result in minimal reduction in overall operational efficiency. The results presented by}

W przypadku stosowania urządzeń o różnej wydajności w konfiguracji jednoliniowej rekomenduje się [7] umieszczenie wentylatora o mniejszej wydajności w pobliżu otworu drzwiowego, tak aby całe sprężane powietrze zostało dostarczone do wnętrza budynku. W takiej sytuacji większy wentylator powinien być umieszczony za pierwszym wystarczającą daleko, aby zakryć cały otwór stożkiem sprężonego powietrza. Według wytycznych autorów, umieszczenie dwóch jednostek, z których większa znajduje się bliżej otworu, spowoduje minimalne zmniejszenie
K. Garcia et al. [7] showed that adding another fan in the line will increase the air inflow volume by about 30%.

In the course of providing air to objects with larger cubic capacity, having openings of dimensions larger than standard (0.9 x 2.03 m), e.g. garage door opening, in accordance with the recommendations described in *Positive Pressure Attack for Ventilation and Firefighting* [7], it is recommended to place fans in a configuration parallel to the opening (one next to the other).

A diagram of such a solution is shown in Figure 13. According to the recommendations presented by U. Cimolino et al. [9], in such cases, setting the fans in parallel shows better results compared to the "one behind the other" configuration.

Figure 13. Use of mobile fans in a line parallel to the door opening (side-by-side configuration)

Still another way of positioning the fans is the so-called "V" configuration, where the fans can be placed at a 45° angle to the door opening [7]. In this method of positioning, the conical airflows generated by the mobile fans are directed at the door surface so that they intersect while covering the entire door opening (see Figure 14). In this technique it is possible to control the setting of the inlet angle of the impeller surface so that one fan covers the lower area of the inlet opening with the air stream and the other fan covers the upper area with the air stream. With regard to the "V 45°" configuration, it should be pointed out that, according to the results of a study by K. Garcia et al. [7], the described positioning of fans allows to inject 10% more air than in the case of perpendicular or parallel positioning using two fans. Kerber et al. [14], in a study published in the National Institute of Standard and Technology (USA) reports, showed that V-shaped positioning of fans allows more air to be forced into the object and creates more positive pressure than a series configuration.

Moreover, the authors of this study indicate that thanks to the specific fan arrangement, the described configuration provides greater access to a building, thus it does not impede other activities performed by the firefighters (e.g. hose line deployment).

In the trakcie napowietrzania obiektów o większej kubaturze, posiadających otwory o wymiarach większych niż standardowy (0.9 x 2.03 m), np. otwór bramy garażowej, zgodnie z rekomendacjami opisanymi w opracowaniu *Positive Pressure Attack for Ventilation and Firefighting* [7], zaleca się posadzenie wentylatorów w konfiguracji równoległej do otworu (jeden obok drugiego). Schemat takiego rozwiązania przedstawiono na rycinie 13. Według rekomendacji przedstawionych przez U. Cimolino i in. [9], w takich przypadkach ustawienie wentylatorów równolegle przynosi lepsze rezultaty w porównaniu do konfiguracji „jeden za drugim”.

Rycina 13. Zastosowanie mobilnych wentylatorów w linii równoległej do otworu drzwiowego (konfiguracja jeden obok drugiego)

Source: Own elaboration based on [7].

Źródło: Opracowanie własne na podstawie [7].

Jeszcze innym sposobem pozycjonowania wentylatorów jest tzw. konfiguracja „V”, gdzie wentylatory mogą zostać umieszczone pod kątem 45° względem otworu drzwiowego [7]. W takim usytuowaniu stożkowe strugi powietrza generowane przez mobilne wentylatory skierowane są na powierzchnię drzwi, tak aby się przecinały, a jednocześnie obejmowały cały otwór drzwiowy (zob. ryc. 14). We wskazanej technice istnieje możliwość sterowania nastawami kąta nawięwu powierzchni wirnika, tak aby jeden wentylator pokrywał strugą powietrza dolny obszar otworu wlotowego, a drugi – górny. W odniesieniu do konfiguracji „V 45°” należy wskazać, że – zgodnie z wynikami badań wykonanych przez K. Garcia i in. [7] – opisane pozycjonowanie wentylatorów pozwala wtłoczyć o 10% więcej powietrza niż w przypadku pozycjonowania prostopadłego czy równoległego z wykorzystaniem dwóch wentylatorów. Kerber i in. [14] w badaniach opublikowanych w raportach National Institute of Standard and Technology (USA) wykazali, że pozycjonowanie wentylatorów w kształcie litery V pozwala wtłoczyć do obiektu więcej powietrza i wytworzyć większe naciskanie niż w przypadku konfiguracji szeregowej.

Ponadto autorzy niniejszego opracowania wskazują, że dzięki specyficznaemu ustawieniu wentylatorów opisywana konfiguracja zapewnia większy dostęp do obiektu budowlanego, przez co nie utrudnia prowadzenia innych działań realizowanych przez strażaków (np. rozwinięcia linii wężyowej).
When considering aspects of implementing tactical ventilation operations in large-volume buildings, application of more fan units should be considered if possible. Kerber et al. [14] showed that for multi-story buildings, the use of a single fan may not be sufficient to create adequate positive pressure in the stairwell area.

Using a larger number of units to ensure effective ventilation should be considered in particular for buildings with large volumes (e.g. warehouse halls) and a proportionally larger ventilation opening. In such cases, the tactic of placing the fans in two lines, parallel to the inlet opening surface, can be used as such equipment becomes available. A schematic of such a solution is shown in Figure 15.

When approaching the problem of smoke removal from large-volume facilities, the results of a study by Lambert et al. [15] should also be cited. They evaluated the feasibility of using mobile fans in subway stations. During the study, an assessment of the flow rate was performed at the station facility measuring 3.17 m wide and 4.15 m high. In their study, the team demonstrated that the use of four positive pressure fans would allow the critical flow...
velocity in a subway tunnel to exceed that required for effective smoke removal. The authors emphasized that the best configuration of the fan use was achieved by placing three units on the platform and one at the top of the stairs.

Gas exchange path

Another element that allows to maintain the proper efficiency of mechanical ventilation is to ensure the proper path (route) of movement of products of combustion between the inlet and the outlet. When preparing this fire gas path, care should be taken to ensure that the area indicated is, as far as possible, free of obstructions that could adversely affect the flow phenomena generated by the fan during the removal of the combustion products. In addition, when preparing such a track, adjacent rooms must be isolated so that the pumped airflow can create the greatest possible static pressure inside a facility. At this point, it is also worth mentioning that in the process of pumping air into the volume of the facility, in any case, flow losses will be inevitable. This will in particular apply to buildings where there are leaks in the building structure (e.g. in the area of window openings) located in the path of the gas exchange path. In the actual operations, preparing the path of travel for fire gases may involve the use of ad hoc opening covers, e.g. furniture, countertops, whiteboards, etc., to increase the effectiveness and sometimes even allow positive pressure ventilation to begin (see Figure 16). Improper preparation of the object for the use of a fan usually results in the impossibility of obtaining overpressure in the object or – in case of conducting smoke removal by partitions – in the smoke extraction part of the object.

Tor wymiany gazowej

Kolejnym elementem składowym, umożliwiającym zachowanie właściwej efektywności stosowanej wentylacji mechanicznej, jest zapewnienie odpowiedniego toru (drogi) przemieszczania produktów spalania pomiędzy otworem wlotowym i wylotowym. Podczas przygotowania wspomnianej drogi przemieszczania gazów pożarowego należy dodać starań, aby wskazany obszar był – w miarę możliwości – wolny od przeszkód mogących negatywnie wpływać na generowane przez wentylator zjawiska przepływowe w trakcie procesu usuwania produktów spalania. Ponadto, podczas przygotowania takiego toru należy odizolować sąsiedujące pomieszczenia, tak aby tłoczona struga powietrza mogła wytworzyć jak największe ciśnienie statyczne wewnątrz obiektu. W tym miejscu warto również wspomnieć, że w procesie tłoczenia powietrza do kubatury obiektu w każdym przypadku straty przepływu będą nieuniknione. W szczególności dotyczyć to będzie obiektów, gdzie obecne są nieszczelności w konstrukcji budynku (np. w obszarze otworów okiennych) zlokalizowanych na drodze toru wymiany gazowej. W przypadku rzeczywistych działań przygotowania drogi przemieszczania się gazów pożarowych polegać może na wykorzystaniu doraźnych osłon otworów, np. mebli, blatów, tablic itp., w celu zwiększenia skuteczności, a czasami wręcz umożliwienia rozpoczęcia prowadzenia wentylacji nadciśnieniowej (zob. ryc. 16). Niewłaściwe przygotowanie obiektu do wykorzystania wentylatora skutkuje przeważnie brakiem możliwości uzyskania nadciśnienia w obiekcie lub – w przypadku prowadzenia oddymiania strefy – w oddymianej części obiektu.

Figure 16. Use of a school board to achieve an overpressure effect in a part of a building during zonal smoke extraction

Rycina 16. Wykorzystanie tablicy szkolnej do uzyskania efektu nadciśnienia w części obiektu w trakcie oddymiania strefowego

Source: Own elaboration.

źródło: Opracowanie własne.
Weather conditions

With regard to the last group of factors considered in the context of their influence on the efficiency of smoke removal, i.e. weather conditions, wind is mentioned as the most important one. Other factors, such as sub-freezing temperatures or increased humidity, may reduce the ability of smoke to rise, but will not usually significantly affect the effectiveness of smoke control. The occurrence of wind during the process of pumping the air stream constitutes an additional air flow, which – depending on its direction – may favour or hinder the ventilation process. Therefore, if the conditions during an event allow it, mobile fans should be located in such a way that the direction of the air stream generated by the fan is consistent with the direction of the wind. Unfortunately, this will not always be possible. Therefore, in this area of operations it is necessary to calculate the risk of unfavourable conditions, e.g. in the situation of direct wind blowing on the surface of the outlet. In this case, it may be more effective to use negative pressure ventilation instead of positive pressure ventilation.

In order to lower the temperature and reduce the intensity of heat transfer inside the stairwells, devices to reduce the effect of wind on the fire environment are recommended. According to the recommendations presented in the study on smoke ventilation techniques [9], it has been shown that wind pressure (acting at a speed of 25 km/h) will significantly reduce the effectiveness of ventilation. However, in light of the information presented in the article [8], positive pressure ventilation may be effectively carried out against the wind provided that its speed does not exceed 40 km/h. The study also notes that at lower wind speeds, ventilation efficiency will decrease if the wind acts directly on the surface of the smoke opening.

At the University of Greenwich, the effect of wind on the efficiency of smoke extraction using mobile fans was determined from CFD studies and simulations [16]. In the referenced study, the authors showed that there is a critical wind speed (corresponding to the average discharge velocity generated by a mobile fan in a smoke-filled volume) at which airflow is attenuated. On the other hand, when considering the issue of differences in the sensitivity of buildings to wind impact depending on their construction and location, it should be taken into account that it will be greatest for free-standing buildings located in open spaces. The impact of the considered factor is also significant in relation to multi-storey buildings – the higher the storey, the greater the impact. In 2017 P. Panindre et al. [11] evaluated the application of PPV in fires of high-rise buildings including the effect of wind. It was shown in this study that for fires where wind action is present, the effectiveness of PPV decreases as wind speed increases.

Analysing the problem of wind influence on the efficiency of the rescue operations with the use of mobile fans, one should be aware that this type of factor is not always possible to eliminate. However, this effect should be limited, e.g. by reducing the smoke extraction opening in order to increase the overpressure inside a building (generated by the air flow of the fan). This over-pressure value can also be increased by using a portable curtain screen equipped with 4 ropes for optimal adjustment at the location of the fire.

Warunki atmosferyczne

W odniesieniu do ostatniej grupy czynników rozpatrywanych w kontekście ich wpływu na skuteczność oddymiania, tj. warunków atmosferycznych, jako najistotniejszy z nich wymienia się wiatr. Inne czynniki, takie jak ujemne wartości temperatury lub zwiększone wilgotność, mogą ograniczać zdolność dymu do unoszenia, niezmiennie zazwyczaj nie będą znacznie wpływać na skuteczność oddymiania. Wystąpienie wiatru podczas procesu tłoczenia strugi powietrza stanowi dodatkowy strumień powietrza, który – w zależności od jego kierunku – może sprzyjać procesowi wentylacji lub go utrudniać. Stąd, jeśli tylko warunki występujące podczas zdarzenia to umożliwiają, należy dążyć do takiego ulokowania wentylatorów mobilnych, aby kierunek strumienia powietrza generowany przez wentylator był zgodny z kierunkiem wiatru. Niestety, nie zawsze będzie to możliwe. W związku z tym, w przedmiotowym obszarze działań konieczne jest wskazawanie, że wpływ wiatru na skuteczność oddymiania jest zależny od wielu czynników, takich jak prędkość wiatru, jego kierunek oraz odległość od miejsca pożarowego. W przypadku wiatrów o prędkości do 40 km/h wiatru, efektywność wentylacji może być znacznie zwiększona, co jest szczególnie istotne dla budynków wielokondygnacyjnych.

3. Analiza problematycznej wpływu wiatru na efektywność działań ratowniczych z wykorzystaniem wentylatorów mobilnych, należy mieć świadomość, że tego typu czynnik nie zawsze jest...
Conclusion

Every fire is a challenge for the emergency services. Fires in high-rise buildings and buildings with a complex layout of rooms and escape routes, or multi-storey underground garages, pose particular problems associated with locating the source of the fire, finding the location of the injured people and conducting an efficient evacuation. The effectiveness of actions depends on many factors, including: the use of the object, its construction, used fire-fighting equipment, including detection and fire alarm. Fortunately, in most cases (more than 90% of fires recorded in the records of the National Fire Service), these factors allow to undertake effective rescue and firefighting action, so the size of these fires does not exceed the contractual limits of a small fire. There is no doubt that high level of training of the rescuers as well as quality and ability of proper use of the rescue equipment, which is in their disposal, also influences the achieving of such effects. In this context, not without significance is the fact of equipping rescue and firefighting units with equipment, which has properly verified technical parameters in the process of research. Knowledge of the functionality of the equipment and knowledge of proper techniques for its use ensures the achievement of the assumed objectives of the rescue operations. As attempted to demonstrate, in certain cases mobile fans used by fire protection units are a useful rescue tool, suitable for use in a wide range of possible to eliminate. However, the impact should be reduced, e.g., by reducing the outlet size, in order to increase the internal pressure caused by the windstream acting on the fan. The obtained pressure value can also be increased by using a mobile curtain that can be adjusted on the surface of the door opening (see Figure 17). This tool is manufactured using non-flammable materials, so it can be used even on the surface of a window, whose glass has degraded as a result of thermal exposure. Research confirming the effectiveness of the indicated solution was conducted in the United States by the National Institute of Standards and Technology (NIST).

Source: [17].
Źródło: [17].

Wnioski

Każdy pożar jest wyzwaniem dla służb ratowniczych. Pożary obiektów wysokich i wysokościowych oraz o skomplikowanym układzie pomieszczeń i dróg ewakuacyjnych, czy też wielokondygnacyjnych garaży podziemnych, stwarzają szczególne problemy związane z lokalizacją źródła pożaru, odnalezieniem miejsca pobytu osób poszkodowanych oraz przeprowadzeniem sprawnej ewakuacji. Skuteczność działań zależy od wielu czynników, m.in.: od sposobu użytkowania obiektu, jego konstrukcji, zastosowanych urządzeń przeciwpożarowych, w tym wykrywania oraz alarmowania o pożarze. Na szczęście w większości przypadków (ponad 90% pożarów odnotowywanych w ewidencji Państwowej Straży Pożarnej) wspomniane czynniki pozwalają na podjęcie skutecznej akcji ratowniczo-gaśniczej, dzięki czemu rozmiały tych pożarów nie przekraczają umownych granic pożaru małego. Nie ulega wątpliwości, że na osiąganie takich efektów wpływa też wysoki poziom wyszkolenia ratowników oraz jakość i umiejętność właściwego wykorzystania sprzętu ratowniczego, będącego w ich dyspozycji. W tym kontekście nie bez znaczenia pozostaje fakt wyposażania jednostek ratowniczo-gaśniczych w sprzęt, który posiada odpowiednio zeryfikowane w procesie badań parametry techniczne. Wiedza o funkcjonalnościach sprzętu oraz znajomość właściwych technik postępowania się nim gwarantuje osiągnięcie założonych celów podejmowanych czynności ratowniczych. Jak starano się...
operations. Its skilful use during rescue operations – both in the phase of attack on the fire and after extinguishing, in the phase of smoke removal from the object – makes it possible to:

- significantly reduce the temperature and smoke in a fire compartment and adjacent compartments;
- improve visibility resulting in the reduction of the time needed to search the object, locate the injured and their evacuation and locate the source of fire and smoke, thus minimizing the time needed to extinguish the fire;
- reduce the total temperature of the site;
- increase safety of the rescuers and the victims;
- reduce the risk of flare-ups;
- implement the ventilation process – both in horizontal and vertical arrangement – in an object of virtually any size;
- reduce the concentration of toxic and life-threatening gases;
- in certain situations, even work without respiratory protection equipment.

The current state of art presented in this paper and its conclusions will be an essential point of reference in the implementation of further research work, allowing to explore techniques to increase the efficiency of mobile positive pressure fans. In the next stage, field tests (large scale) will be carried out to evaluate the effectiveness of the fan units on a test stand in the form of a staircase, allowing to change its actual volume and number of floors (in the range of 1–7). The fan units currently available on the market (with different impeller sizes, efficiencies, generating different jet shapes) will be comprehensively examined for effectiveness of their use, including different configurations and ventilation techniques characterized in this paper. The knowledge acquired in this way will allow the development of further concepts of methodologies and test stands, enabling the study of the parameters characterizing the efficiency and reliability of mobile fans. The authors hope that the results of the work mentioned above will also allow to propose better tactical solutions, whose improvement will be possible during training courses on techniques for fighting internal fires or smoke removal of objects, whose improvement will be possible during training courses on techniques for fighting internal fires or smoke removal of objects, which might have occurred in a building. The authors hope that the results of the work mentioned above will also allow to propose better tactical solutions, whose improvement will be possible during training courses on techniques for fighting internal fires or smoke removal of objects, which might have occurred in a building.

The research presented in the article was carried out as part of the Ministry of Education and Science programme "Implementation Doctorate" executed in 2020–2024 (agreement no. DWD/4/22/2020).

wykazać, mobilne wentylatory stosowane przez jednostki ochrony przeciwpożarowej, w określonych przypadkach stanowią użytkowe narzędzie ratownicze, nadające się do wykorzystania w szerokim spektrum działań. Jego umiejętnie wykorzystanie podczas działań ratowniczych – zarówno w fazie natarcia na pożar, jak i po zakończeniu gaszenia, w fazie odsylenia obiektu – umożliwia:

- znaczące obniżenie temperatury i redukcję zadymienia w pomieszczeniach objętych pożarem i pomieszczeniach sąsiednich;
- polepszenie widoczności skutkujące zmniejszeniem czasu potrzebnego na przeszukanie obiektu, lokalizację poszkodowanych i ich ewakuację oraz lokalizację źródeł pożaru i zadymienia, a przez to minimalizację czasu potrzebnego do ugaszenia pożaru;
- zmniejszenie całkowitej wartości temperatury panującej na terenie obiektu;
- zwiększenie bezpieczeństwa ratowników i poszkodowanych;
- zmniejszenie ryzyka wystąpienia rozgorzenia;
- realizację procesu wentylacji – zarówno w układzie poziomym, jak i pionowym – w obiekcie o praktycznie dowolnych rozmiarach;
- redukcję stężenia gazów toksycznych i niebezpiecznych dla życia i zdrowia;
- w okolicznych sytuacjach nawet pracę bez konieczności stosowania sprzętu ochrony dróg oddechowych.

Zaprezentowany w artykule aktualny stan wiedzy w omawianym zakresie i wypływające z niego wnioski stanowić będą zasadniczy punkt odniesienia w realizacji dalszych prac badawczych, pozwalających zgłębić techniki zwiększające efektywność działania mobilnych wentylatorów nadciśnieniowych. W kolejnym etapie przeprowadzone zostaną testy polygonowe (w dużej skali), pozwalające ocenić skuteczność jednostek wentylatorowych na stanowisku badawczym w postaci klatki schodowej, umożliwiającej zmianę jej rzeczywistej kubatury oraz ilości kondygnacji (w zakresie 1–7). Dostępne obecnie na rynku jednostki wentylatorowe (o różnej wielkości wirnika, wydajności, generujące zróżnicowane kształty strugi) zostaną wsródzie pod kątem efektywności ich stosowania, m.in. przy uwzględnieniu różnych konfiguracji oraz technik wentylacji, scharakteryzowanych w niniejszym opracowaniu. Pozyskana w ten sposób wiedza pozwoli na wypracowanie dalszych koncepcji metod i stanowisk budowlanych, umożliwiających zbadanie parametrów charakteryzujących skuteczność i niezawodność działania mobilnych wentylatorów. Autory mają nadzieję, że wyniki wspomnianych prac pozwalą także na zaproponowanie lepszych rozwiązań taktycznych, których doskonalenie będzie możliwe na szkoleniach dotyczących technik zwalczania pożarów wewnętrznych lub odsylenia obiektów, w których wentylacja mechaniczna jest niezbędna do realizacji działań ratowniczych – oczywiście z wykorzystaniem wytworzonych w ich ramach stanowisk budowlanych.
Literature / Literatura

[1] Grimwood P., Euro firefighter. Global Fighting Strategy and Tactics, Command and Control and Firefighter Safety, Jeremy Mills Publishing 2008.

[2] Kokot-Góra Sz., Materiale dydaktyczne przeznaczone do realizacji „Szkolenia z zakresu gashenia pożarów wewnętrznych”, 2020.

[3] Ziesler P. S., Gunnerson F. S., Williams S. K., Advances in positive pressure ventilation: Live fire tests and laboratory simulation, “Fire Technology” 1994, 30(2), 269–277, https://doi.org/10.1007/BF01040006.

[4] Svensson S., Experimental study of fire ventilation during fire fighting operations, “Fire Technology” 2021, 37(1), 69–85, https://doi.org/10.1023/A:1011653603104.

[5] Bugaj G., Wentylacja nadciśnieniowa (cz. 1), „Przegląd Pożarniczy” 2013, 12, 27–31, https://www.ppoz.pl/images/dokumenty/pp/ppw/122013pw.pdf.

[6] Lapicz M., Makowski R., Jędrejas J., Increased effectiveness of fire suppression with the use of positive pressure attack, MATEC Web of Conferences, vol. 247:00036, 2018, DOI:10.1051/matecconf/201824700036.

[7] Garcia K., Kaufmann R., Schelble R., Positive pressure attack for ventilation & firefighting, PennWell Books 2006.

[8] Bugaj G., Wentylacja nadciśnieniowa (cz. 2), „Przegląd Pożarniczy”, https://www.ppoz.pl/czytelnia/warsztat-ratownika/Wentylacja-nadciśnieniowa-cz.2/id:927.

[9] Cimolino U., Emrich C., Svensson S., Taktische Ventilation: Be- und Entlüftungssysteme im Einsatz, Ecomed-Storck GmbH 2012.

[10] ANSI/AMCA Standard 240-15 Laboratory Methods of Testing Positive Pressure Ventilators for Aerodynamic Performance Rating.

[11] Panindre P., Moussavi N. S., Kumar S., Positive pressure ventilation for fighting wind-driven high-rise fires: simulation-based analysis and optimization, “Fire Safety Journal” 2017, 87, 57–64, https://doi.org/10.1016/j.firesaf.2016.11.005.

[12] Kerber S., Walton W.D., Effect of positive pressure ventilation on a room fire. Gaithersburg, US Department of Commerce, National Institute of Standards and Technology 2005, https://www.govinfo.gov/content/pkg/GOVPOUB-\-C-13-c343e6873147b69465bad279479bb4de/pdf/GOVPOUB-\-C13-c343e6873147b69465bad279479bb4de.pdf.

[13] Lambert K., Merci B., Experimental study on the use of positive pressure ventilation for fire service interventions in buildings with staircases, “Fire Technology” 2014, 50(6), 1517–1534, https://doi.org/10.1007/s10694-013-0359-0.

[14] Kerber S., Madrzykowski D., Evaluating Positive Pressure Ventilation In Large Structures: School Pressure and Fire Experiments, National Institute of Standards and Technology, Building and Fire Research Laboratory 2008.

[15] Lambert K., Welch S., Merci B., The use of positive pressure ventilation fans during firefighting operations in underground stations: an experimental study, “Fire Technology” 2018, 54(3), 625–647, https://doi.org/10.1007/s10694-018-0700-8.

[16] Mahalingam A., Patel M. K., Galea E. R., Simulation of the flow induced by positive pressure ventilation fan under wind driven conditions, Proceedings of Interflam 2010, 1, 913–924.

[17] https://fire.engineering.nyu.edu/home/windDrivenFires-3a.html [dostęp: 12.03.2022].

[18] Kerber, S. Kerber S., Madrzykowski D., Evaluating positive pressure ventilation in large structures: high-rise fire experiments, US Department of Commerce, National Institute of Standards and Technology 2007.

[19] Li M., Gao Z., Ji J., Li K., Modeling of positive pressure ventilation to prevent smoke spreading in sprinklered high-rise buildings, “Fire Safety Journal” 2018, 95, 87–100, https://doi.org/10.1016/j.firesaf.2017.11.004.

[20] Lougheed G.D., McBride P.J., Carpenter D.W., Positive pressure ventilation for high-rise buildings, National Research Council Canada, Institute for Research in Construction 2002, https://doi.org/10.4224/20378500.

[21] Panindre P., Moussavi N.S., Kumar S., Improvement of Positive Pressure Ventilation by optimizing stairwell door opening area, „Fire Safety Journal” 2017, 92, 195–198, https://doi.org/10.1016/j.firesaf.2017.06.007.

[22] Kokot-Góra S., Poznaj swoje narzędzia pracy (cz. 1), „Przegląd Pożarniczy” 2014, 8, 16.

[23] Panindre P., Moussavi N. S., Kumar S., Improvement of Positive Pressure Ventilation by optimizing stairwell door opening area, „Fire Safety Journal” 2017, 92, 195–198, https://doi.org/10.1016/j.firesaf.2017.06.007.

POIĘT KACZMARZYK, M.SC. ENG. – a graduate of the Fire Safety Engineering Department at the Main School of Fire Service. Graduate of postgraduate studies in Building Smoke Detection Systems – Fire Ventilation; Faculty of Construction Installations, Hydrotechnics and Environmental Engineering. Student of the Doctoral School at the Poznan University of Technology, Faculty of Mechanical Engineering. Since 2015 he has been working in Laboratory of Combustion Processes and Explosions in Scientific and Research Centre for Fire Protection – National Research Institute. The author’s professional activity is related to such issues as: reaction to fire of...
construction materials, tactical ventilation, fire and explosion protection systems of buildings, performance evaluation of ventilation systems and devices using CFD tools. He is the author of many publications, technical standards and studies related to fire safety in buildings. A member of the Technical Subcommittee PT 1 for Smoke and Heat Control KT 180 for Fire Safety of Buildings. FPC auditor.

SENIOR BRIG. PAWEL JANIK, PH.D. ENG. – he completed his master’s studies at the Main School of Fire Service in Warsaw and doctoral studies at the Poznań University of Economics (now Poznań University of Economics), as well as post-graduate studies in IT at the Łódź University of Technology and crisis management at the Central School of the Fire Service. Since 2018, he has been the director of CNBOP-PIB. Specialty: safety science.

JUNIOR BRIG. WOJCIECH KŁAPSA, M.SC. ENG. – a graduate of the Main School of Fire Service in Warsaw and the Military University of Technology in Warsaw, Faculty of Chemistry. Currently, he serves at Scientific and Research Centre for Fire Protection – National Research Institute in the Laboratory of Combustion Processes and Explosions as a manager. Author or co-author of articles on fire safety and flammable properties of building materials. At CNBOP-PIB, he deals with the subject of technical expertise of buildings, court opinions in the field of determining the causes of fires and research in the field of reaction to fire of construction products, as well as determining the explosive parameters of flammable substances. A speaker at national and international conferences, as well as a lecturer during exercises, workshops and training during training courses and other course.

SENIOR BRIG. GRZEGORZ BUGAJ, M.SC. ENG. – a graduate of the Main School of Fire Service, Master Engineer of Firefighting. Completed: postgraduate studies in Safety and Protection of Workers in the Work Environment – (Central Institute for Labour Protection in Warsaw), postgraduate studies in Emergency Medicine (Poznan Medical Academy), postgraduate studies in Nuclear Power Safety (Main School of Fire Service), postgraduate studies in CBRN Security Manager (Faculty of Biology and Environmental Protection, University of Łódz). For many years commander of the Specialised Group for Chemical and Ecological Rescue and member of the „CBRNDet Module” of the European Civil Protection Mechanism. Former Deputy Vice-Rector for Operations at the Main School of Fire Service.

ST. BRYG. DR INŻ. PAWEL JANIK – ukończył studia magisterskie w Szkole Głównej Służby Pożarnej w Warszawie oraz studia doktoranckie w Akademii Ekonomicznej w Poznaniu (obecnie Uniwersytet Ekonomiczny w Poznaniu), a także studia podyplomowe z zakresu informatyki na Politechnice Łódzkiej oraz zarządzania kryzysowego w SGSP. Od 2018 r. jest dyrektorem CNBOP-PIB. Specjalność: nauki o bezpieczeństwie.

ML. BRYG. MGR INŻ. WOJCIECH KŁAPSA – absolwent Szkoły Głównej Służby Pożarnej w Warszawie i Wydziału Chemii na Wojskowej Akademii Technicznej w Warszawie. Obecnie pełni służbę w Centrum Naukowo-Badawczym Ochrony Przeciwpożarowej – Państwowym Instytucie Badawczym w Zespole Laboratoriów Procesów Spalania i Wybuchowości na stanowisku Kierownika.Autor lub współautor artykułów o tematyce bezpieczeństwa pożarowego oraz właściwościach palnych materiałów budowlanych. W CNBOP-PIB zajmuje się tematyką ekspertyz technicznych budynków, opinii sądowych w zakresie ustalania przyczyn pożarów oraz badaniami w zakresie reakcji na ogień wyrobów budowlanych, jak również wyznaczaniem parametrów wybuchowych substancji palnych. Prelegent na konferencjach krajowych i zagranicznych, a także wykładowca podczas ćwiczeń oraz warsztatów i treningów na szkoleniach i kursach.

ST. BRYG. MGR INŻ. GRZEGORZ BUGAJ – absolwent Szkoły Głównej Służby Pożarnej, magister inżynier pożarnictwa. Ukończył: studia podyplomowe bezpieczeństwo i ochrona człowieka w środowisku pracy (Centralny Instytut Ochrony Pracy w Warszawie), studia podyplomowe medycyna ratunkowa (Akademia Medyczna w Poznaniu), studia podyplomowe bezpieczeństwo energetyki jądrowej (Szkoła Główna Służby Pożarnej), studia podyplomowe CBRN security manager (Wydział Biologii i Ochrony Środowiska, Uniwersytet Łódzki). Wieloletni dowódca Specjalistycznej Grupy Ratownictwa Chemiczno-Ekologicznego oraz członek „Modułu CBRNDet” w ramach europejskiego mechanizmu ochrony ludności. Były Prorektor-Zastępca Komendanta ds. Operacyjnych Szkoły Głównej Służby Pożarnej.