Two patients with rare mixed adenoneuroendocrine carcinomas of the rectum

Safak Gül-Klein1, Marianne Sinn2, Philipp Sebastian Jurmeister3, Matthias Biebl1, Sascha Weiβ1, Beate Rau1, Hendrik Bläker3, Johann Pratschke1 and Felix Aigner1

Abstract
Mixed adenoneuroendocrine carcinomas of the gastrointestinal tract are until today poorly understood and thus very challenging for interdisciplinary therapy. We herewith report the first case series of patients with a primary mixed adenoneuroendocrine carcinoma of the rectum. Both cases were initially diagnosed as adenocarcinoma and only secondarily with mixed adenoneuroendocrine carcinoma and had a poor outcome due to a rapid tumor progression and resistance to chemotherapy. A 65-year-old female presented with local tumor recurrence and hepatopulmonary metastasis 1 year after primary surgery for adenocarcinoma of the rectum and consecutive radiochemotherapy regimen. Fluorouracil (5-FU) was followed by bevacizumab- and capecitabine-based chemotherapy but had to be discontinued due to side effects and progressive disease. Progressive local pain syndrome accompanied by recurrent bleeding episodes led to a local tumor-debulking operation. Afterward, mixed adenoneuroendocrine carcinoma as the underlying diagnosis in the final histopathological examination was detected. The patient died 3 months after the operation in the context of a fulminant tumor progress. A 63-year-old male patient underwent neoadjuvant radiochemotherapy and laparoscopic rectum resection. After 5 months, postoperative oxaliplatin/capecitabine-based adjuvant chemotherapy was switched to carboplatin/etoposid due to a progressive polyneuropathy and biopsy-proven pulmonary metastasis. The patient then had to be switched to local radiation of cerebral metastases and Topotecan due to cerebral bleeding episodes but died 18 months after the initial diagnosis. In conclusion of our case series, mixed adenoneuroendocrine carcinomas of the rectum should be considered as a rare but aggressive tumor entity. An early and detailed histopathological diagnosis is required in order to establish an individual interdisciplinary treatment concept.

Keywords
Mixed adenoneuroendocrine carcinoma, rectum

Date received: 1 November 2017; accepted: 18 January 2018

Introduction
The first description of a gastrointestinal tumor with a neuroendocrine and an exocrine component was published by Cordier1 in 1924. As defined by the World Health Organization in 2010, mixed adenoneuroendocrine carcinomas (MANECs) consist of at least 30% of each neuroendocrine and adenocarcinoma tumor cells. Until today, MANECs are poorly understood and thus remain especially challenging for interdisciplinary therapy. Previous case studies have reported MANECs of the esophagus, stomach, ampulla vateri, and colon.2-4 Reports of the characteristics of
occurrence, treatment concepts, or outcomes for MANECs of the rectum, however, remain scarce. To the best of our knowledge, we herewith report the first case series of two patients with a MANEC in the rectum with main focus on the interdisciplinary treatment and the further clinical course.

Case reports of two patients
Case report

We herewith present the case of a 65-year-old female patient with a history of 5-FU neoadjuvant radiochemotherapy and consecutive rectum resection with simultaneous atypical liver resection (Segment II) for hepatic metastasized rectal carcinoma (ypT3, pN1 (2/21), pM1, L0, V0, Pn0, R0). Initial surgical therapy was followed by 9 months of adjuvant chemotherapy based on folinic acid, fluorouracil, and oxaliplatin (FOLFOX). The patient was then presented to our tertiary referral center 1 month after the end of adjuvant chemotherapy with a suspected local tumor recurrence accompanied by progressive perianal pain and perianal hemorrhage. Computed tomography (CT) staging also revealed bilateral pulmonary metastases as a new diagnosis. In accordance with our interdisciplinary tumor board, a palliative cetuximab-, irinotecan-, and 5-FU-based chemotherapy was begun but had to be discontinued due to toxic dermatological side effects after completion of the first chemotherapy cycle. After a chemotherapy-free episode of 1 month, CT restaging revealed a low progression of bipulmonary metastases. A new chemotherapy regimen consisting of bevacizumab and capecitabine was thus begun.

After an uneventful course of 3 months of chemotherapy of this kind, CT examination was repeated and revealed a fulminant local tumor progression as well as progressive pulmonary metastases, new hepatic metastases, and pelvic lymphadenopathy.

Due to a progressive local pain syndrome accompanied by recurrent bleeding episodes we decide to perform a local tumor-debulking operation by means of a Hartmann procedure which revealed for the first time MANEC as the underlying diagnosis in the histopathological examination of the final specimen. After an initially uneventful postoperative course, the patient died 3 months after the debulking operation due to septic multi-organ failure in the context of a fulminant tumor progression.

Histopathological analysis. TNM classification showed a ypT3 pN1a (1/17) M0 R0 L1 V1 as high-grade malignant MANEC. Wild-type KRAS-Gen.

Pulmonary metastasis showed neuroendocrine components of a carcinoma with a MANEC of the rectum. Proliferative activity 70%–80%, positive for synaptophysin, negative for cytokeratin 20, CDX2, and TTF-1 (Figure 2).

In both patients, staging and restaging examinations were performed in accordance with our national guidelines and included positron emission tomography (PET)–CT scans of the thorax and abdomen, as well as laboratory controls of relevant parameters such as carcinoembryonic antigen (CEA). Relevant findings of the staging examinations are described within the case report for each patient.

Written informed consent for surgery as well as for the use and publication of clinical data were obtained from both patients, as required by our institutional review board.

Discussion

Gastrointestinal tumors which consist of both—an exocrine and a neuroendocrine component—were first described by Cardier1 in 1924 in “Les cellules argentaffines dans les tumeurs intestinales.” In the following, a different mix of carcinomas described as amphicrine tumors, mixed exocrine–endocrine tumors, and combined and collision tumors were reported and summarized as MANECs.5,6 It took 60 years, however, for a first systemic classification of mixed adenocarcinomas and neuroendocrine tumors by Lewin7 who differentiated composite/collision neoplasms (neuroendocrine and exocrine components occur in separate areas of the same lesion), combined neoplasms (mixed neuroendocrine and exocrine components), and amphicrine neoplasms (neuroendocrine and exocrine components are present in the same neoplastic cell, which shows a divergent immunophenotype). In 2000, the WHO then defined mixed exocrine–endocrine tumors as consisting of both at least
30% of neuroendocrine and a non-neuroendocrine glandular (adenocarcinomatous) component.8,9 Subsequently, the WHO Classification of Tumors of the Digestive System 2010 introduced the term MANECs which differentiates between adenoma–neuroendocrine tumor (NET), adenoma–neuroendocrine carcinoma (NEC), adenocarcinoma–NET, and adenocarcinoma–NEC depending on the histological appearance of each component.6,10,11 Capella et al.12 also reported that MANECs may be grouped into different prognostic categories based on the grade of malignancy of each component:

The mixed adenoneuroendocrine neoplasms (MANEC) include three entities: high-grade malignant mixed adenoma/adenocarcinoma–NEC, intermediate grade malignant mixed adenocarcinoma-G1/G2 NET, and amphicrine carcinoma.

The mixed adenoneuroendocrine tumor (MANET) includes three entities: low-grade malignant adenoma–NET, NEC (poorly differentiated neuroendocrine carcinoma), and neuroendocrine tumor (NET).7

Until now, the exact pathogenesis of MANEC remains unclear. Both a neuroendocrine development out of dedifferentiated adenocarcinomas and a bidirectional differentiation out of multipotential stem cells are being discussed.3,13,14 Vanacker et al.15 found an identical KRAS mutation as well as analogous somatic mutations in the exome sequencing in both components of MANEC which may support a clonal pathogenic relationship. Also mutations during chromothripsis or inactivation of SMARCA 4 have been reported.16–18

Several origins of gastrointestinal MANECs such as the colon, appendix, or stomach and biliary mixed MANECs of the ampullary region have been described.4,6,19,20 To the best of our knowledge, this is however the first case series of patients with a primary MANEC of the rectum.

An important factor for improving the outcome of MANEC is early and exact histopathological examination. As an example, in our first patient, the diagnosis of MANEC was only confirmed after exact examination of the recurrence specimen 15 months after the initial primary surgery. The importance of immunohistochemistry in the routine diagnostic surgical pathology has been proven in this context.6,21 It remains unclear whether MANECs are driven by the glandular or neuroendocrine tumor component but they tend to show a high potential for early distant metastasis which needs to be taken into consideration during the primary and further clinical diagnostic pathway in these patients.22–24 Overall prognosis of patients with gastrointestinal MANEC appears
to be poor with the reported median survival rates of 7–10 months after initial diagnosis.25,26

Ilett et al.27 recommended the use of somatostatin receptor scintigraphy (SRI) for diagnosis as well as follow-up, whereas Kadhim et al.28 reported peptide radionuclide receptor therapy as the second- or third-line therapy in patients with strong somatostatin receptor uptake. La Rosa et al.29 also recently reported no survival differences between patients with either colorectal NECs or colorectal MANECs. However, large and/or randomized case series on the treatment and prognosis of MANEC until today remain scarce.

An important step in the improvement of overall outcome in patients with MANEC is an early referral of patients to a high-volume center with a potential multidisciplinary expertise in the diagnosis and treatment of MANEC. The clinical course often appears to be driven by the neuroendocrine tumor component. However, there is a general agreement that the therapy management should be focused on the more aggressive tumor component as defined by the histopathological criteria. Accordingly, MANECs with poorly differentiated neuroendocrine components should be treated like NECs, while MANECs with well-differentiated neuroendocrine components but a rather aggressive glandular tumor appearance should be treated as common colorectal adenocarcinomas.5,30

The National Comprehensive Cancer Network recommends the use of cisplatin or carboplatin with etoposide31 in such patients in accordance with the “European and North American guidelines for neuroendocrine neoplasms” and also the “Nordic guidelines for neuroendocrine neoplasms in 2014” recommend cisplatin or carboplatin and etoposide.32,33

This first case series of patients with a MANEC in the rectum of course only includes the treatment and clinical course of two patients. It however underlines the aggressiveness of this rather rare tumor entity. An early and detailed histopathological diagnosis is required in order to establish a personalized multidisciplinary treatment concept. Increased awareness in the diagnosis and treatment of MANEC and the uptake of these cases in registers may lead to an accumulation of larger case series and thus hopefully further relevant evidence for treatment options and overall prognosis in patients with gastrointestinal MANEC.

Declaration of conflicting interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.
Ethical approval
Our institution does not require ethical approval for reporting individual cases or case series.

Funding
The author(s) received no financial support for the research, authorship, and/or publication of this article.

Informed consent
Written informed consent for surgery as well as for the use and publication of clinical data were obtained from both patients, as required by our institutional review board.

ORCID iD
Safak Gül-Klein https://orcid.org/0000-0003-1013-7126

References
1. Cordier R. Les cellules argentaffines dans les tumeurs intestinales. Arch Int Med Exp 1924; 1: 59–63.
2. Kusakabe J, Miki A, Kobayashi H, et al. A case of mixed adenoneuroendocrine carcinoma of the transverse colon. Gastrointest Endosc 2014; 71(2): 1826–1828.
3. Gurzu S, Kadar Z, Bara T, et al. Mixed adenoneuroendocrine carcinoma of gastrointestinal tract: report of two cases. World J Gastroenterol 2015; 21(4): 1329–1333.
4. Huang Z, Xiao WD, Li Y, et al. Mixed adenoneuroendocrine carcinoma of the ampulla: two case reports. World J Gastroenterol 2015; 21(7): 2254–2259.
5. Hervieu V and Scoazec JY. Mixed endocrine tumors. Ann Pathol 2005; 25(6): 511–528.
6. Rindi G, Klimstra DS, Arnold R, et al. Nomenclature and classification of neuroendocrine neoplasms of the digestive system. In: Bosman FT, Carneiro F, Huban RHI, et al. (eds) WHO classification of tumours of the digestive system. Lyon: IRAC Press, 2010, pp. 13–14.
7. Lewin K. Carcinoid tumors and the mixed (composite) glanular-endocrine cell carcinomas. Am J Surg Pathol 1987; 11(Suppl. 1): 71–86.
8. Solcia E, Klöppel G and Sobin LH. Histological typing of endocrine tumours (WHO international histological classification of tumours). 2nd ed. Berlin: Springer, 2000.
9. Jiao YF, Nakamura S, Ara T, et al. Adenoma, adenocarcinoma and mixed carcinoid-adenocarcinoma arising in a small lesion of the colon. Pathol Int 2003; 53(7): 457–462.
10. Max N, Rothe A and Langner C. Mixed adenoneuroendocrine carcinoma of the ampulla of Vater: a case report. Mol Clin Oncol 2016; 5(1): 95–98.
11. Wang Z, Li W, Chen T, et al. Retrospective analysis of the clinicopathological characteristics of gastrointestinal neuroendocrine neoplasms. Exp Ther Med 2015; 10(3): 1084–1088.
12. Capella C, La Rosa S, Uccella S, et al. Mixed endocrine-exocrine tumors of the gastrointestinal tract. Semin Diagn Pathol 2000; 17(2): 91–103.
13. Minaya-Bravo AM, Garcia Mahillo JC, Mendoza Moreno F, et al. Large cell neuroendocrine: adenocarcinoma mixed tumour of colon: collision tumour with peculiar behaviour.
14. Cheng H and Leblond CP. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian theory of the origin of the four epithelial cell types. Am J Anat 1974; 141: 537–561.
15. Vanacker L, Smeets D, Hoorens A, et al. Mixed adenoneuroendocrine carcinoma of the colon: molecular pathogenesis and treatment. Anticancer Res 2014; 34(10): 5517–5521.
16. Stephens PJ, Greenman CD, Fu B, et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 2011; 144(1): 27–40.
17. Wilson BG and Roberts CWM. SWI/SNF nucleosome remodelers and cancer. Nat Rev Cancer 2011; 11(7): 481–492.
18. Robinson G, Parker M, Kranenburg TA, et al. Novel mutations target distinct subgroups of medulloblastoma. Nature 2012; 488(7409): 43–48.
19. Li Y, Yau A, Schaeffer D, et al. Colorectal glandular-neuroendocrine mixed tumor: pathologic spectrum and clinical implications. Am J Surg Pathol 2011; 35(3): 413–425.
20. Musialik JA, Kohut MJ, Marek T, et al. Composite neuroendocrine and adenomatous carcinoma of the papilla of Vater. World J Gastroenterol 2009; 15(33): 4199–4200.
21. La Rosa S, Marando A, Sessa F, et al. Mixed adenoneuroendocrine carcinomas (MANECs) of the gastrointestinal tract: an update. Cancers 2012; 4(4): 11–30.
22. Van Krieken JHJM, Jung A, Kirchner T, et al. KRAS mutation testing for predicting response to anti-EGFR therapy for colorectal carcinoma: proposal for an European quality assurance program. Virchows Arch 2008; 453(5): 417–431.
23. Harada K, Sato Y, Ikeda H, et al. Clinicopathologic study of mixed adenoneuroendocrine carcinomas of hepatobiliary organs. Virchows Arch 2012; 460(3): 281–289.
24. Zhang L and DeMay RM. Cytological features of mixed adenoneuroendocrine carcinoma of the ampulla: two case reports with review of literature. Diagn Cytopathol 2014; 42(12): 1075–1084.
25. Ahlman H, Nilsson O, McNicol AM, et al. Poorly-differentiated endocrine carcinomas of midgut and hindgut origin. Neuroendocrinology 2008; 87(1): 40–46.
26. Marando A, Dainese E, La Rosa S, et al. Images in endocrine pathology: oncocytic differentiation in a mixed adenoneuroendocrine carcinoma of the colon. Endocr Pathol 2013; 24(1): 54–56.
27. Ilett EE, Langer SW, Olsen IH, et al. Neuroendocrine carcinomas of the gastroenteropancreatic system: a comprehensive review. Diagnat Cancer 2015; 5(2): 119–176.
28. Kadhim MMK, Jespersen ML, Pilegaard HK, et al. Mixed adenoneuroendocrine carcinoma is a rare but important tumour found in the oesophagus. Case Rep Gastrointest Med 2016; 2016: 9542687.
29. La Rosa S, Marando A, Furlan D, et al. Colorectal poorly differentiated neuroendocrine carcinomas and mixed adenoneuroendocrine carcinomas: insights into the diagnostic immunophenotype, assessment of methylation profile, and search for prognostic markers. Am J Surg Pathol 2012; 36(4): 601–611.
30. Uccella S, Sessa F and La Rosa S. Diagnostic approach to neuroendocrine neoplasms of the gastrointestinal tract and pancreas. Turk Patoloji Derg 2015; 31(Suppl. 1): 113–127.
31. Kulke MH, Shah MH, Benson AB, et al. Neuroendocrine tumors, version 1.2015. *J Natl Compr Cancer Netw* 2015; 13(1): 78–108.

32. Strosberg JR, Coppola D, Klimstra DS, et al. The NANETS consensus guidelines for the diagnosis and management of poorly differentiated (high-grade) extrapulmonary neuroendocrine carcinomas. *Pancreas* 2010; 39(6): 799–800.

33. Janson ET, Sorbye H, Welin S, et al. Nordic guidelines 2014 for diagnosis and treatment of gastroenteropancreatic neuroendocrine neoplasms. *Acta Oncol* 2014; 53(10): 1284–1297.