Correspondence

Serum Omentin-1 in Psoriasis

Ola Ahmed Bakry, Shawky El Farargy, Naglaa Ghanayem¹, Somia Galal

From the Departments of Dermatology, Andrology and STDs and ¹Medical Biochemistry, Faculty of Medicine, Menoufia University, Menoufia, Egypt.
E-mail: olabakry8@gmail.com

Sir,

Psoriasis is a chronic inflammatory skin disease that affects 2 to 3% of the population worldwide and causes significant morbidity.[1]

Although the exact cause remains unknown, the evolving evidences suggest that psoriasis is a complex disorder caused by the interaction of multiple genes, the immune system, and the environment.[2]

Adipokines are pharmacologically active, low molecular weight proteins that exert pleiotropic functions through several metabolic pathways.[3]

In psoriasis, adipokines may be implicated in disease onset, progression, severity as well as in the pathogenesis of comorbidities.[4]

Omentin-1 is a fat depot-specific adipokine that is synthesised by visceral stromal vascular cells.[5]

The aim of the present work is to investigate serum levels of omentin-1 in nonobese patients with psoriasis compared with healthy controls.

This study included 45 nonobese cases with chronic plaque psoriasis and 45 age, sex and body mass index-matched healthy controls. Clinical characteristics of selected cases are summarized in Table 1. A written informed consent was taken from every participant and the study was approved by the local ethical research committee. All cases and control participants with obesity, smoking, diabetes, acute and chronic infections, malignancy, autoimmune disorders, cardiac, hepatic and renal diseases, polycystic ovarian syndrome, and dermatological disease other than psoriasis were excluded from this study. Extent and severity of psoriasis were assessed according to Psoriasis Area and Severity Index (PASI) score.[6] Serum omentin-1 was measured by enzyme-linked immunosorbent assay.

Serum level of omentin-1 was significantly lower in patients than control group and was negatively correlated with PASI score [Figure 1]. No significant association was detected between serum omentin-1 level and other clinical data of selected cases.

Low serum omentin-1 in psoriatic cases compared with healthy controls was in agreement with Ismail and Mohamed and Turan et al.[7,8]

Patients with psoriasis display impaired endothelial-dependent relaxation which may correlate with the future development of atherosclerosis and cardiovascular events[9] with increased rate of myocardial infarction and stroke.[10] Increased carotid intima-media thickness, a measure of subclinical atherosclerosis, has been demonstrated repeatedly in patients with psoriasis.[11]

Some data suggest that the likelihood of endothelial dysfunction is correlated with disease severity and disease duration.[12]

Omentin-1 directly induces an endothelium-dependent relaxation that is caused by nitric oxide produced by the

Table 1: Clinical data of selected cases
Variable
Age (year) (mean±SD)
Age of onset (year)(mean±SD)
Disease duration (months) (mean±SD)
PASI (mean±SD)
Gender, n (%)
Male
Female
Family history, n (%)
Positive
Negative
Site of affection, n (%)
Axial
Extremities
Axial and extremities
Scalp affection, n (%)
Present
Absent
Palm and sole affection, n (%)
Present
Absent
Nail involvement, n (%)
Present
Absent
Joint involvement, n (%)
Present
Absent
Itching, n (%)
Positive
Negative
Koebnerisation, n (%)
Positive
Negative
Course of disease, n (%)
Progressive
Stationary
Remission and relapse

PASI: Psoriasis Area and Severity Index, SD: Standard deviation
Correspondence

Omentin-1 exhibits powerful anti-inflammatory properties by inhibiting the inflammatory cytokine network and downregulating tumour necrosis factor (TNF)-α-induced expression of endothelial adhesion molecules and TNF-α-induced cyclooxygenase-2 expression.

The primary effect of TNF-α in pathogenesis of psoriasis is the regulation of interaction between dendritic cells and antigen-specific T-cells that drives the stimulation of T-cell responses. Also TNF-α, by the induction of IL-23 production from dendritic cells, results in enhanced Th17 responses which has a key role in cytokine network of psoriasis.

Therefore, taking all aforementioned data together, low omentin-1 may enhance psoriasis development through increasing TNF-α. Cardiovascular comorbidity in psoriasis may be explained, at least in part, by low serum omentin-1.

Nonobese psoriatic cases are also at risk of developing cardiovascular morbidity. Follow-up of psoriatic cases is mandatory to guard against cardiovascular accidents even if these cases are nonobese.

The negative correlation between omentin-1 and PASI score went with Takahashi et al. and may indicate that omentin-1 could be a useful biomarker for disease severity or monitoring the response to therapy.

And now, a question arises; what is the therapeutic value of omentin-1 in psoriasis management? Could it induce disease control? Could it prevent the associated cardiovascular morbidity? Clinical trials are needed to get the answer.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

References

1. Fitch E, Harper E, Skorcheva J, Kurtz SE, Blauvelt A. Pathophysiology of psoriasis: Recent advances on IL-23 and Th17 cytokines. Curr Rheumatol Rep 2007;9:461-7.
2. Krueger JG. The immunologic basis for the treatment of psoriasis with new biologic agents. J Am Acad Dermatol 2002;46:1-23.
3. Gualillo O, González-Juanatey JR, Lago F. The emerging role of adipokines as mediators of cardiovascular function: Physiologic and clinical perspectives. Trends Cardiovasc Med 2007;17:275-83.
4. Dalamaga M, Papadavid E. Adipocytokines and psoriasis: Insights into mechanisms linking obesity and inflammation to psoriasis. World J Dermatol 2013:2:27-31.
5. Schäffler A, Neumeier M, Herfarth H, Fürst A, Schölmerich J, Büchler C, et al. Genomic structure of human omentin, a new adipocytokine expressed in omental adipose tissue. Biochim Biophys Acta 2005;1732:96-102.
6. Langley RG, Ellis CN. Evaluating psoriasis with psoriasis area and severity index, psoriasis global assessment, and lattice system physician’s global assessment. J Am Acad Dermatol 2004;51:563-9.
7. Ismail SA, Mohamed SA. Serum levels of visfatin and omentin-1 in patients with psoriasis and their relation to disease severity. Br J Dermatol 2012;167:436-9.
8. Turan H, Yaykasli KO, Soguktas H, Yaykasli E, Aliagaoglu C, Erdem T, et al. Omentin serum levels and omentin gene val109Asp polymorphism in patients with psoriasis. Int J Dermatol 2014;53:601-5.
9. Singh G, Aneja SP. Cardiovascular comorbiditiy in psoriasis. Indian J Dermatol 2011;56:553-6.
10. Mehta NN, Azfar RS, Shin DB, Neimann AL, Troxel AB, Gelfand JM, et al. Patients with severe psoriasis are at increased risk of cardiovascular mortality: Cohort study using the General Practice Research Database. Eur Heart J 2010;31:1000-6.
11. Brezinski EA, Follansbee MR, Armstrong EJ, Armstrong AW. Endothelial dysfunction and the effects of TNF inhibitors on the endothelium in psoriasis and psoriatic arthritis: A systematic review. Curr Pharm Des 2014;20:513-28.
12. Balci DD, Balci A, Karazincir S, Ucar E, Iyiぐn U, Yalcin F, et al. Increased carotid artery intima-media thickness and impaired endothelial function in psoriasis. J Eur Acad Dermatol Venereol 2009;23:1-6.
13. Yamawaki H, Tsubaki N, Mukohda M, Okada M, Hara Y. Omentin, a novel adipokine, induces vasodilation in rat isolated blood vessels. Biochem Biophys Res Commun
2010;393:668-72.
14. Shibata R, Ouchi N, Takahashi R, Terakura Y, Ohashi K, Ikeda N, et al. Omentin as a novel biomarker of metabolic risk factors. Diabetol Metab Syndr 2012;4:37.
15. Gerdes S, Rostami-Yazdi M, Mrowietz U. Adipokines and psoriasis. Exp Dermatol 2011;20:81-7.
16. Yamawaki H, Kuramoto J, Kameshima S, Usui T, Okada M, Hara Y, et al. Omentin, a novel adipocytokine inhibits TNF-induced vascular inflammation in human endothelial cells. Biochem Biophys Res Commun 2011;408:339-43.
17. Summers deLuca L, Gommerman JL. Fine-tuning of dendritic cell biology by the TNF superfamily. Nat Rev Immunol 2012;12:339-51.
18. Takahashi H, Tsuji H, Honma M, Ishida-Yamamoto A, Iizuka H. Increased plasma resistin and decreased omentin levels in Japanese patients with psoriasis. Arch Dermatol Res. 2013;305:113-6.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

Access this article online

Quick Response Code:	Website: www.e-ijd.org
	DOI: 10.4103/ijd.IJD_222_17

How to cite this article: Bakry OA, El Farargy S, Ghanayem N, Galal S. Serum Omentin-1 in psoriasis. Indian J Dermatol 2018;63:85-7.
Received: April, 2017. Accepted: January, 2018.

Sir,

Nail plate dermatoscopy is a simple, quick and quite helpful technique in the diagnosis and follow-up of onychomycosis. Dermatoscopy has also been used to identify the best location in the nail plate to obtain samples for mycological examination. The dermatoscopic findings that are considered specific for onychomycosis include jagged proximal edge of onycholysis with sharp structures called spikes directed to the proximal nail fold, white-to-yellow longitudinal striae, and parallel bands of different colours called the “Aurora Borealis” pattern. Jagged proximal edge is due to progression of dermatophytes proximally along longitudinal ridges of the nail bed. However, a thick nail plate [Figure 1] can obscure deeper dermatoscopic findings of longitudinal striae and jagged proximal edge when examined with a routine white light dermatoscope [Figure 2].

We used a multispectral dermatoscope which gives a 10x magnification (DermLite DL II Multispectral, 3Gen Inc., USA) which emits light at three wavelengths, namely, 470 nm, 580 nm and 660 nm corresponding to blue, yellow and red colours, respectively, to examine this case of onychomycosis confirmed with KOH microscopic examination. Images were captured using Nikon1 AW1 14.1 MP mirrorless camera (Nikon Corp., Tokyo, Japan) and ultrasound gel was used as interface fluid. Light penetrates deeper into the tissues as the wavelength increases. Depending on the tissue, light penetrates <1 mm at 400 nm, up to 2 mm at 514 nm, and up to 6 mm at 630 nm.

In our case, though spikes and white longitudinal striae are seen with white light, the delineation was better with yellow light (580 nm) as the light penetrates deeper to highlight the nail bed features excluding the superficial distractors seen with white light [Figure 3]. The same

Figure 2:
White light dermatoscopy showing spikes (short arrow) and longitudinal striae (black arrow) (×10)

Figure 1:
Onychomycotic thick nail plate viewed from front with white light dermatoscopy (×10)