Does body mass index affect restoration of femoral offset, leg length and cup positioning after total hip arthroplasty? A prospective cohort study

Bariq Al-Amiry, Georgios Pantelakis, Sarwar Mahmood, Bakir Kadum, Torkel B. Brismar and Arkan S. Sayed-Noor

Abstract

Background: In obese patients, total hip arthroplasty (THA) can be technically demanding with increased perioperative risks. The aim of this prospective cohort study is to evaluate the effect of body mass index (BMI) on radiological restoration of femoral offset (FO) and leg length as well as acetabular cup positioning.

Methods: In this prospective study, patients with unilateral primary osteoarthritis (OA) treated with THA between September 2010 and December 2013 were considered for inclusion. The perioperative plain radiographs were standardised and used to measure the preoperative degree of hip osteoarthrits, postoperative FO, leg length discrepancy (LLD), acetabular component inclination and anteversion.

Results: We included 213 patients (74.5% of those considered for inclusion) with a mean BMI of 27.7 (SD 4.5) in the final analysis. The postoperative FO was improper in 55% and the LLD in 15%, while the cup inclination and anteversion were improper in 13 and 23% of patients respectively. A multivariable logistic regression model identified BMI as the only factor that affected LLD. Increased BMI increased the risk of LLD (OR 1.14, 95% CI 1.04 to 1.25). No other factors included in the model affected any of the primary or secondary outcomes.

Conclusion: Increased BMI showed a negative effect on restoration of post-THA leg length but not on restoration of FO or positioning of the acetabular cup. Age, gender, OA duration or radiological severity and surgeon’s experience showed no relation to post-THA restoration of FO, leg length or cup positioning.

Keywords: BMI, Hip arthroplasty, Femoral offset, Leg length discrepancy, Cup positioning

Background

Total hip arthroplasty (THA) is a cost-effective and successful surgical intervention for patients with hip osteoarthritis (OA) complaining of persistent pain and disability [1]. Apart from alleviating pain and improving function and quality of life, THA aims to restore the biomechanical forces around the hip with appropriate femoral offset (FO) and leg length [2–4]. Failure to restore FO, for instance, might result in worse functional outcome, and prosthetic instability while post-THA leg length discrepancy (LLD) can give rise to patient dissatisfaction, limping, gait disorders and increased use of shoe lifts [5–10]. Furthermore, inadequate positioning of the acetabular cup may be associated with impingement and prosthetic dislocation [11].

The prevalence of obesity among children and adults is increasing worldwide [12]. In obese patients undergoing THA, the thick fatty tissue may obscure bony landmarks, deteriorate optimal implant positioning and prolong operative time. The effect of body mass index (BMI) on THA functional outcome, quality of life and complication rate has been investigated in a number of clinical studies [13–16]. As BMI increases, the functional improvement and quality of life after THA may deteriorate and the rate
of postoperative complications increases [17]. A number of studies have also investigated the relation between BMI and cup positioning and showed contradictory results [18–20]. Nevertheless, there is paucity of knowledge in regard to how BMI can affect the restoration of FO and leg length after THA.

The aim of this prospective cohort study is to evaluate the effect of BMI on post-THA radiological restoration of FO and leg length as well as acetabular cup positioning. We hypothesized that BMI would increase the risk for improper radiological restoration of FO and leg length as well as acetabular cup positioning.

Methods

Between September 2010 and December 2013, patients with radiological symptomatic unilateral primary OA treated with THA due to conservative treatment failure were considered for inclusion. Exclusion criteria were secondary OA, previous vertebral, pelvic, or lower limb fractures or surgeries. At the outpatient’s visit before the operation, we documented each patient’s BMI (weight (kg) / [height (m)]²) and the duration of OA symptoms as less or longer than 3 years. As per our department’s routine, preoperative plain radiographs were adequate for the operation if they were taken within 3 months preoperatively, to measure the degree of radiological OA [Kellgren-Lawrence (KL) classification, divided into 2 categories: mild OA (KL 1–2) and severe OA (KL 3–4)] [21].

The operative approach was the postero-lateral with the patient in the lateral decubitus position. Two THA types were used, cemented Lubinus SP II system (Link, Germany) or cementless Spotorno (CLS) stem and Trilogy cup (Zimmer, USA). The Lubinus stem has a center collum diaphyseal (CCD) angle of 126°, 32 mm head, and 3 neck lengths (47.5, 51.5, and 55 mm). The CLS stem has a CCD angle of 125°, 32 mm head, and 4 neck lengths (−4, 0, 4, and 8 mm). We used the Mdesk system (RSA Biomedical, Umeå, Sweden) for preoperative templating. However, the final choice of prosthetic component combinations depended on the surgeon’s intraoperative evaluation. Two to three days after the operation, postoperative plain radiographs were taken in supine position and 15° internal rotation of both legs while the X-ray beam centered on the pubic symphysis with a film to focus distance of 115 cm. A calibration 30-mm radiopaque standardized metal sphere (30 mm) was put between the upper thighs to assess the degree of magnification. Acceptable radiographs were visually evaluated in each patient and considered adequate if centred with equally sized obturator foramina. When apparent or suspected difference existed, we used the program to calculate the difference and when more than 10%, new radiographs were ordered (n = 8). Radiographs were monitored using the Picture Archiving and Communication System (PACS) (Impax: Agfa, Antwerp, Belgium) on a 19-in. LCD monitor.

The global FO of the THA side was measured as the distance between the longitudinal axis of the femur, at the upper 1/3 to ½ of the diaphysis, where the thickness of the cortices is even, to the center of rotation (stem offset) plus the distance from the center of hip rotation to a vertical line of the medial edge of the ipsilateral teardrop point of the pelvis (cup offset) (Fig. 1), [5]. When within 5 mm compared to the contralateral healthy side, the THA hip FO was considered proper. If it was less or more than 5 mm, the THA hip FO was considered improper.

The radiological LLD was calculated as the difference in vertical distance between the lower margins of the teardrop points to the corresponding tips of the lesser trochanters (Fig. 2), [7]. Lengthening or shortening of the THA hip compared to the contralateral healthy side within 10 mm was considered proper. Measures outside this range were considered improper.

Cup inclination was measured on the AP view as the angle between a line of the angle of the cup rim and the line between the lowest points of the ischial tuberosities [22]. Operated cup inclination of 45 ± 10° was considered proper. Measures outside this range were considered improper. Also, cup anteversion was calculated on the lateral radiograph as the angle between a line across
the face of the acetabulum and a line perpendicular to
the horizontal plane [23]. The THA cup anteversion of
15 ± 10° was considered proper. More or less than this
was considered improper.

The clinical research work was conducted in accord-
ance with the Declaration of Helsinki and the regional
ethics committee approved it. All patients gave informed
consent before participation.

Statistical analysis
We used the method of Peduzzi et al. to estimate the
required sample size and study power [24]. Based on the
FO and LLD, considered as our primary outcome mea-
sures, with an expected incidence of abnormal outcome
of 30% of patients (0.30), the minimum number of pa-
tients required was 200, calculated as 10 x number of
cofounders (n = 6) divided by the proportion of expected
abnormal cases (0.30).

A multivariate logistic regression analysis was fitted
for each outcome measure to test if there is any cause-
effect relationship between BMI and outcome measures.
We adjusted this for priori confounding factors, includ-
ing age, sex, surgeon’s experience, KL class, and symp-
tom duration. We chose these factors as we anticipated
these to be related both to exposure and outcome, and
that they would not be in the causal pathway. The odds
ratio (OR) and 95% confidence interval (95% CI) are
presented. A p-value < 0.05 was considered statistically
significant.

Results
We considered 286 patients for inclusion during the
study period. We excluded 21 (7.3%) who had one or
more exclusion criteria. Fifteen patients (5.2%) did not
agree to participate in the study and 37 patients (13%)
had no prospectively measured or documented BMI.
This left the analysis with 213 (74.5%) patients. There
were 118 females (55%) and 105 males (45%) with a
mean age of 68 years (SD 10). The mean BMI was 27.7
(SD 4.5), 60 patients with BMI < 25, 94 patients with
BMI between 25 and 29.99 and 59 patients with BMI ≥
30. Regarding the radiological OA severity, there were
73 patients in the mild OA group and 143 patients in
the severe OA group. Regarding symptom duration,
there were 97 patients in the group with symptom
duration < 3 years and 116 patients in the group with
symptom duration > 3 years.

The mean FO in the cohort was −2 mm (SD 9). There
were 118 patients (55%) with improper FO: 73 patients
with decreased FO and 45 patients with increased FO.

The mean LLD in the cohort was 2 mm (SD 7). There
were 32 patients (15%) with improper LLD: 9 patients
with shortening and 23 patients with lengthening.

The mean cup inclination in the cohort was 47° (SD 7).
There were 27 patients (13%) with improper cup in-
clination: 9 patients with increased inclination and 16
patients with decreased inclination.

The mean cup anteversion in the cohort was 17° (SD 8).
There were 50 patients (23%) with improper cup ante-
version: 32 patients with increased anteversion and 18
patients with decreased anteversion.

The multivariable logistic regression model identified
BMI as the only factor that affected LLD (Table 1).
Increased BMI increased the risk of LLD (OR 1.14, 95%
CI 1.04 to 1.25). No other factors included in the model
affected any of the primary or secondary outcomes
(Table 2).

Discussion
This study revealed no effect of BMI on postoperative
restoration of global FO or positioning of the cup. How-
ever, increased BMI was associated with LLD, mainly
lengthening of the operated leg. Age, sex, surgeon’s ex-
perience, KL class, and symptom duration did not
affect any of the outcome parameters. This study could
be the first one in the literature to report the relation
between BMI and the restoration of FO and LLD after
THA. We chose the above-mentioned confounders
because we evaluated old age, high grade OA, long
lasting OA and less experienced surgeons to possibly
affect the risk of improper FO and leg length restoration
and cup positioning. Gender was also considered since
anatomical differences between males and females may
have influence on the outcomes.

The measurement of FO is an essential perioperative
radiological step in THA. Femoral offset is commonly
defined as the distance between the femoral head center
of rotation and the long axis of the femoral shaft [25]. However, this measurement does not consider the possible changes caused by variations of the cup positioning. This variation can be calculated as the cup offset and defined as the distance between the center of the femoral head and a perpendicular line passing through the medial edge of the ipsilateral acetabular teardrop [26]. The global FO is obtained as the summation of FO and cup offset. In this study, the contralateral healthy hip was used as a reference. We used the 5-mm cut-off to determine the proper from improper FO, because previous reports showed that this value could influence the functional outcome [4, 27, 28]. We anticipated that increased BMI would jeopardize proper FO restoration because of the intra-operative mechanical difficulty caused by the extensive adipose tissue and obscured osseous landmarks. About 55% of our cases had an improperly restored FO. However, none of the included confounders had any effect. In our clinical practice, we do not use any intra-operative method to check for the FO. We think the available methods need to be assessed to prove their validity and reliability. It would be interesting to include such intra-operative methods in future studies to determine their effect on FO restoration [29].

The degree of tolerated LLD after THA varies widely in the literature [30, 31]. Commonly, inadequate femoral neck osteotomy and positioning of the stem result in post THA LLD [32]. Less than 10 mm of postoperative

Table 1	Comparison of the effect of gender, age, BMI, the surgeon’s experience, OA grade and OA symptom duration on the primary outcome measurements, FO and LLD			
Femoral-offset restoration	OR	95% CI	p-value	
Gender				
Male	1.00	Ref		
Female	0.70	0.39 to 1.27	0.24	
Age	0.99	0.96 to 1.02	0.71	
BMI	1.01	0.95 to 1.01	0.71	
Surgeon				
Consultant	1.00	Ref		
Resident	1.56	0.79 to 3.10	0.19	
OA grade				
K-L grade 1–2	1.00	Ref		
K-L grade 3–4	0.90	0.50 to 1.60	0.72	
OA duration				
< 3 years	1.00	Ref		
≥ 3 years	0.73	0.40 to 1.33	0.31	
Leg length discrepancy OR 95% CI p-value				
Gender				
Male	1.00	Ref		
Female	0.66	0.28 to 1.54	0.34	
Age	0.99	0.95 to 1.05	0.88	
BMI	1.14	1.04 to 1.25	**0.005**	
Surgeon				
Consultant	1.00	Ref		
Resident	0.90	0.33 to 2.44	0.84	
OA grade				
K-L grade 1–2	1.00	Ref		
K-L grade 3–4	0.75	0.33 to 1.69	0.49	
OA duration				
< 3 years	1.00	Ref		
≥ 3 years	0.94	0.41 to 2.20	0.89	

Table 2	Comparison of the effect of gender, age, BMI, the surgeon’s experience, OA grade and OA symptom duration on the secondary outcome measurements, cup inclination and anteversion			
Cup inclination OR 95% CI p-value				
Gender				
Male	1.00	Ref		
Female	1.18	0.50 to 2.75	0.71	
Age	0.98	0.94 to 1.03	0.41	
BMI	1.02	0.93 to 1.16	0.67	
Surgeon				
Consultant	1.00	Ref		
Resident	1.11	0.42 to 2.94	0.84	
OA grade				
K-L grade 1–2	1.00	Ref		
K-L grade 3–4	1.17	0.51 to 2.68	0.70	
OA duration				
< 3 years	1.00	Ref		
≥ 3 years	1.68	0.68 to 4.14	0.26	
Cup anteversion OR 95% CI p-value				
Gender				
Male	1.00	Ref		
Female	1.10	0.55 to 2.18	0.79	
Age	0.97	0.94 to 1.01	0.13	
BMI	0.97	0.90 to 1.05	0.49	
Surgeon				
Consultant	1.00	Ref		
Resident	0.63	0.27 to 1.45	0.28	
OA grade				
K-L grade 1–2	1.00	Ref		
K-L grade 3–4	0.88	0.45 to 1.72	0.71	
OA duration				
< 3 years	1.00	Ref		
≥ 3 years	0.94	0.47 to 1.88	0.85	
LLD is often considered acceptable by most clinicians. Therefore, we used this cut-off to determine proper from improper restoration. Approximately 15% of our cases had improper LLD, 72% of them with lengthening > 10 mm. To ensure minimal intraoperative LLD, we compare the knee and heel level of the operated leg to the other leg and by applying axial traction on the operated hip to evaluate the tension of the surrounding soft tissues and the jumping distance of the prosthetic head after the insertion of prosthetic trial components. Our results showed that increased BMI was associated with LLD (OR 1.14, 95% CI 0.04 to 0.25, p < 0.005). This association could be explained by the intra-operative difficulty in comparing the two legs and assessing the soft tissue tension in obese patients.

The effect of BMI on the acetabular cup positioning has been examined in a number of previous studies. We used the Woo and Morrey method [23] for measuring cup anteversion because it is commonly used in the literature and we had studied its reliability in our material in a previous study [33]. This would also allow us to compare our results with others. We chose the cut-off values for cup inclination of 45 ± 10° and cup anteversion of 15 ± 10° because these values are generally accepted as the proper safe zone positioning for prosthetic stability. However, we are aware of the debate in the literature about the validity of these values [34]. Agreed with our results, Bosker et al. Pirard et al. and Todkar reported no association between BMI and cup anteversion or inclination [17, 35, 36]. Bosker et al. [34], found that patient’s age and surgeon’s experience significantly influenced cup positioning, while Callanan et al. revealed that the surgical approach, surgeon volume, body mass index > 30 to independently predict malpositioned cups, both inclination and anteversion [37]. Also, Elson et al. reported a significant correlation between morbid obesity (BMI > 35) and under-anteversion [20]. Of all variables considered, high BMI was the most significant risk factor leading to malpositioning in their study. In a case-control study, Brodt et al. showed that BMI correlated with reduced cup anteverision but not with inclination [38].

The present study has limitations. Plain radiographs can be compromised by alterations in pelvis positioning and the X-ray beams divergence. We used a standardized positioning protocol to ensure correct positioning, even though we could not guarantee this 100%. Also, plain radiographs might underestimate the change in FO and LLD. As we calculated the bilateral differences, we considered this underestimation to be negligible. Computerized tomography (CT) scans would certainly have improved the accuracy of our radiological measurements. However, CT-scans are not suitable as a routine perioperative evaluation method for THA patients, owing to their high cost, limited availability and high radiation dose. Furthermore, the validity and reliability of plain radiographic methods have also been investigated and found to be clinically acceptable [33]. The sample size of this study could be underpowered to elicit an effect of BMI on the relatively low incidence of improper cup positioning. Also, the relatively limited number of obese patients with BMI ≥ 30 (n = 59) did not allow us to make further analysis in regard to the influence of different grades of obesity on the studied parameters.

Conclusion
This study showed that increased BMI had a negative effect on restoration of post-THA leg length but not on restoration of FO or positioning of the acetabular cup. Age, gender, OA duration or radiological severity and surgeon’s experience showed no relation to post-THA restoration of FO, leg length or cup positioning. These results can help THA surgeons to improve their preoperative planning and patient’s information to get the best possible restoration of the operated hip geometry, especially in patients with high BMI where intraoperative measures to correct LLD could be considered.

Abbreviations
BMI: Body mass index; CCD: Center collum diaphyseal; CI: Confidence interval; FO: Femoral offset; LLD: Leg length discrepancy; OA: Osteoarthritis; OR: Odds ratio; PACS: Picture archiving and communication system; THA: Total hip arthroplasty

Acknowledgements
Not applicable.

Authors’ contributions
BA study design, data collection and analysis, writing the manuscript. GP study design, data analysis, writing the manuscript. SM study design, data collection and analysis. BK study design, writing the manuscript. TB study design, data analysis, writing the manuscript. ASN study design, data collection and analysis, writing the manuscript. All authors have read and approved the manuscript.

Funding
No specific funding was received.

Availability of data and materials
All data is stored in the trial registry. And the datasets used or analysed during the current study are available from the corresponding author on reasonable request.

Ethics approval and consent to participate
The study was conducted in accordance with the ethical principles of the Helsinki declaration and was approved by the regional Ethics Committee of Umeå University. All included patients provided written consent before being admitted into the study.

Consent for publication
N/A.

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Surgical and Perioperative Sciences, Umeå University, 901 85 Umeå, Sweden. 2Institutionen för klinisk och experimentell medicin,
References

1. Judge A, Arden NK, Kiran A, et al. Interpretation of patient-reported outcomes for hip and knee replacement surgery: identification of thresholds associated with satisfaction with surgery. J Bone Joint Surg Br. 2012;94-B(3):412.

2. Innmann MM, Maier MW, Streit MR, et al. Additive influence of hip offset and leg length reconstruction on postoperative improvement in clinical outcome after Total hip arthroplasty. J Arthroplast. 2018;33(1):156–61.

3. Meermans G, Doorn JV, Kats JJ. Restoration of the Centre of rotation in Total Hip Arthroplasty. ANZ J Surg. 2013;83(3):171–8.

4. D’Ambrosio R, Macciardi L, Frediani PV, Facchinii RM. Uncemented total hip arthroplasty in patients younger than 20 years. J Orthop Sci. 2016;21(4):500–6.

5. Mahmood SS, Mukka SS, Crnalic S, et al. Association between changes in global femoral offset after total hip arthroplasty and function, quality of life, and abductor muscle strength. A prospective cohort study of 222 patients. Acta Orthop. 2016;87(1):126–41.

6. Mahmood SS, Mukka SS, Crnalic S, et al. The influence of leg length discrepancy after total hip arthroplasty on function and quality of life: a prospective cohort study. J Arthroplast. 2015;30:1638.e42.

7. Mahmood SS, Mukka SS, Crnalic S, et al. Association between changes in global femoral offset after total hip arthroplasty and function, quality of life, and abductor muscle strength. A prospective cohort study of 222 patients. Acta Orthop. 2016;87(1):126–41.

8. Whitehouse MR, Stefanovich-Laxbury NS, Brunton LR, et al. The impact of leg length discrepancy on patient satisfaction and functional outcome following total hip arthroplasty. J Arthroplast. 2013;28(14):1081–7.

9. Konyves A, Bannister GC. The importance of leg length discrepancy after total hip arthroplasty. J Bone Joint Surg Br. 2005;87:155–7.

10. Renkawitz T, Doorn JV, Kats JJ. Restoration of the Centre of rotation in Total Hip Arthroplasty. ANZ J Surg. 2013;83(3):171–8.

11. Higa M, Tanino H, Abo M, Kukin S, Banks SA. Effect of acetabular component anteverversion on dislocation mechanisms in total hip arthroplasty. J Biomech. 2011;44(9):1810–5.

12. Arroyo Johnson C, Mincey KD. Obesity epidemiology worldwide. Gastroenterol Clin N Am. 2016;45(4):571–9.

13. Haynes J, Nam D, Barrack RL. Obesity in total hip arthroplasty: does it make a difference? Bone Joint J. 2017;99-B(Suppl A):31–6.

14. Jeschke E, Cikat M, Günstner C, et al. Obesity increases the risk of postoperative complications and revision rates following primary total hip arthroplasty: an analysis of 131,576 total hip arthroplasty cases. J Arthroplast. 2018;33(7):2287–92.

15. Liu W, Wahafu T, Cheng M, et al. The influence of obesity on primary total hip arthroplasty outcomes: a meta-analysis of prospective cohort studies. Orthop Traumatol Surg Res. 2015;101(2):289–96.

16. Workgroup of the American Association of Hip & Knee Surgeons Evidence Based Committee. Obesity and total joint arthroplasty: a literature based review. J Arthroplast. 2013;28(5):714–21.

17. Smith TO, Aboel-Magd T, Hing CB, et al. Does bariatric surgery prior to total hip or knee arthroplasty reduce post-operative complications and improve clinical outcomes for obese patients? Systematic review and meta-analysis. Bone Joint J. 2016;98-B(11):1160–6.

18. Todkar M. Obesity does not necessarily affect the accuracy acetabular cup implantation in total hip replacement. Acta Orthop Belg. 2008;74(2):206–9.

19. McBride A, Flynn J, Miller G, et al. Body mass index and acetabular component position in total hip arthroplasty. ANZ J Surg. 2013;83(3):171–4.

20. Elson LC, Barr CI, Chandran SE, et al. Are morbidly obese patients undergoing total hip arthroplasty at an increased risk for component malpositioning? J Arthroplast. 2013;28(8 Suppl):41–4.

21. Terjesen T, Gunderson RB. Radiographic evaluation of osteoarthritis of the hip: an inter-observer study of 61 hips treated for late-detected developmental hip dislocation. Acta Orthop. 2012;83:185–9.