Antihypertensive Assay-Guided Fractionation of Syzygium polyanthum Leaves and Phenolics Profile Analysis Using LC-QTOF/MS

Azlini Ismail1,*, Erlena Nor Asmira Abdul Rahim2, Muhammad Nor Omar2, Wan Amir Nizam Wan Ahmad3

ABSTRACT
Introduction: Syzygium polyanthum leaves extract that contains gallic acid as the major phenolic compound has shown significant antihypertensive effect, however the amount of gallic acid was inversely-related with magnitude of this effect. This study aimed to conduct bioassay-guided fractionation of S. polyanthum leaves with gallic acid as a reference compound, and to screen for other possible compounds responsible for the antihypertensive effect. Methods: S. polyanthum leaves were extracted using n-hexane, ethyl acetate, methanol, and water. The most active crude extract was fractionated using column chromatography and analyzed for total phenolic content (TPC) (n=3). Crude extracts and the derived fractions were intravenously administered into pentobarbital-anaesthetized Spontaneously Hypertensive Rats (n=5) for recording of blood pressure parameters. Liquid Chromatography-Quadrupole Time-Off-Flight/Mass Spectrometry was used for determination of chemical composition. One-way and two-way ANOVA were used for statistical analysis using GraphPad® PRISM Version 6. Results: Fractionation of aqueous S. polyanthum leaves extract (ASP) afforded nine fractions, later combined into three fractions (F1ASP, F2ASP, and F3ASP) based on the thin-layer chromatography profiles. ASP has the highest TPC while F2ASP has the lowest TPC. All fractions exhibited significant antihypertensive property, but F2ASP was the most active fraction. Few phenolics with related antihypertensive effects such as 1-galloyl glucose (a gallic acid-derivative majorly found in F2ASP and F3ASP), and other compounds such as polysatins, sesamol, brazillins, eugenol, ellagic acid, kukoamine A, and cyclocurcumin were found across all active fractions. Conclusion: These phenolics may partly contribute to the antihypertensive effect of S. polyanthum leaves, thus further isolation study is recommended. Key words: Antihypertensive, Bioassay-guided, LCMS, Syzygium polyanthum, Total phenol content (TPC).

INTRODUCTION
Hypertension is a major public health problem. According to the World Health Organization,1 an uncontrolled rise in blood pressure may predispose a patient to a heart attack which will eventually lead to heart and kidney failures, stroke, and cognitive impairment. It was estimated that the worldwide prevalence of hypertension exceeded 1.3 billion, representing 31 % of all adults.2 Throughout the years, the condition of raised blood pressure among the hypertensive patients was uncontrolled.3 While there are available antihypertensive drugs in the market, the global condition remains stagnant since the treatment is expensive, thus an average or a poor society did not afford to receive the best treatment regime. In addition, the concomitant drugs’ side effects such as dizziness, abnormal heart rate, sore throat, sexual dysfunction, thrombocytopenia, and hyperglycemia1 are undesirable, and this untoward reaction actually occurs more easily when drugs are used in combination.3 The expensive cost and the side effects of the currently-available antihypertensive drugs have enforced the research for new alternative antihypertensive drugs which should be at least equally effective, but yet inexpensive.

Some natural compounds from medicinal plants were found to exhibit significant antihypertensive effect, however, there is also a huge number of potential medicinal plants with antihypertensive properties that remains to be explored. Syzygium polyanthum (Wight) Walp, also known as ‘salam’ or ‘serai kayu’ is one of the medicinal herbs that is traditionally consumed as an alternative treatment for reducing blood pressure among Malay folks. S. polyanthum has been known as an antihypertensive medicinal plant and this is strongly supported by previous findings. Sukrasno et al7 reported the hypotensive effect of orally-administered aqueous extract of S. polyanthum leaves in normotensive Wistar rats. S. polyanthum leaves extracts have shown a significant reduction in blood pressure of anaesthetized Spontaneously Hypertensive Rats (SHR) and normal Wistar Kyoto (WKY) when intravenously administrated.8 When fed orally, S. polyanthum leaves extract significantly reduced the systolic blood pressure in SHR.9-10 Histological studies showed significant improvement in Bowman’s capsule and glomerulus morphology of

Cite this article: Ismail A, Rahim ENAA, Omar MN, Wan Ahmad WAN. Antihypertensive Assay-Guided Fractionation of Syzygium polyanthum Leaves and Phenolics Profile Analysis Using LC-QTOF/MS. Pharmacogn J. 2020;12(6)Suppl:1670-92.
treated SHR’s kidney, comparable to normal kidney structure and slight improvement of pedicels and thoracic aorta.10,11

Ramli et al11 suggested that the reduction in systolic blood pressure (SBP) in hypertensive rats might be due to the major composition of phenolics in the extract. Ismail et al11 showed the presence of gallic acid, a major phenolic compound present in S. polyanthum leaves extract. Gallic acid was previously reported to normalize blood pressure of diabetic rats12 and attenuate hypertension in NG-nitro-L-arginine methyl ester-induced hypertensive rats.13 However, our previous study showed there was no correlation between the amount of gallic acid with the magnitude of antihypertensive effect for the tested S. polyanthum leaves extracts, suggestive of the presence of synergism between compounds that contributes to the net antihypertensive effect.9 Therefore, this study aimed to perform bioassay-guided fractionation of S. polyanthum leaves to screen for other potential bioactive compounds responsible for its antihypertensive effect.

MATERIALS AND METHODS

Plant authentication

The leaves, flowers, buds, and stem parts of S. polyanthum were sent for authentication at UKMB Herbarium, Faculty of Science and Technology, Universiti Kebangsaan Malaysia. The plant was verified as Syzygium polyanthum Wight Walp. on 2nd May 2017. The voucher herbarium specimen (PIUM 0282) was deposited in Herbarium, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Pahang, Malaysia.

Animal

Seventy-five of 3-month old male Spontaneously Hypertensive Rats (SHR), weighing around 250 to 280 grams were placed in standard rat cages and acclimatized for 7 days in standard environmental conditions (25 °C with 60-70 % humidity) on a 12-hour light-dark cycle. Tap water and rat pellet were given ad libitum and the animal bedding was changed once a week. All experimental protocols regarding the animal study were approved by the Animal Ethics Committee, Universiti Sains Malaysia (UMS/Animal Ethics Approval/2016/102) (757).

Sample extraction

Two kg of S. polyanthum leaves were collected from Taman Pertanian Jubli Perak Kuantan, Pahang, Malaysia. The leaves were left dried in a drying cabinet for a week at 50 °C. After a week, the dried leaves were ground into powder using a laboratory blender prior to extraction. The powdered sample was extracted using ultra-sound assisted extraction (UAE) method as described by Rahim et al.14 This method enhances solvent penetration through plant cells with the aid of sound waves,15, 16 and usually provides sufficient yield for phenolic compounds.17

Hot distilled water (80 °C) and also solvents with varying polarities including n-hexane, ethyl acetate, and methanol were used to prepare a mixture of methanol and water (50:50) to enhance the solubility of compounds.9 These spraying reagents were % sulphuric acid spraying reagent, vanillin-sulphuric acid reagent and a drop of formic acid. The spots were visualized using a UV lamp, 50 % sulphuric acid spraying reagent, vanillin-sulphuric acid reagent and ferric chloride spraying detection reagent. These spraying reagents were used to enhance the separation of the four spots. Galactic acid was used as a reference compound (standard) based on finding from our previous study that gallic acid was found as a major phenolic compound in the aqueous and methanolic extracts of S. polyanthum leaves.9 The spots and the standard were visualized under UV lamp (Leybold Didactic GmbH, Germany) of short and long wave and by ferric chloride spraying detection reagent.

For fractionation, a 30 cm-height of silica column using a 25 mm glass column was prepared by mixing 35 g of silica gel 60 (0.063-0.200 mesh) with 100 % ethyl acetate. The column was allowed to stand overnight for complete packing. ASP slurry was prepared in a combined solvent mixture of methanol and water (50:50) to enhance the solubility of methoxylated and hydroxylated compounds.19 Then, the ASP slurry was run in the column chromatography using a gradient elution technique with a binary solvent system of ethyl acetate and methanol, allowing polarity changes during the fractionation. Gradient elution usually offers better speed, separation, and retention reproducibility compared to isocratic elution for wide range polarities of organic compounds.20

The gradient solvent system of ethyl acetate (100 %), ethyl acetate: methanol (7:3), ethyl acetate: methanol (5:5), ethyl acetate: methanol (3:7), and methanol (100 %) were sequentially employed and finally, the column was washed with 100 % methanol. Nine fractions were collected in a 15 ml centrifuge tube and characterized by TLC profiling with a solvent system of ethyl acetate: methanol (9:5.0:5.5) with a drop of formic acid. The spots were visualized using a UV lamp, 50 % sulphuric acid spraying reagent, vanillin-sulphuric acid reagent and ferric chloride spraying detection reagent. These spraying reagents were

Bioassay-guided fractionation

Since ASP was the crude extract with the most prominent antihypertensive effect, it was then subjected to fractionation. Before fractionation, the thin layer chromatography (TLC) is performed to study the characteristics of the extract and to optimize the solvent system to achieve a good separation during fractionation.14 TLC plates (8 x 8”) were firstly cut into a measurement of 10 cm x 2 cm and were allowed to dry overnight at 37 °C in an incubator oven (Memmert, Germany). The crude extract was firstly developed with 100 % n-hexane, ethyl acetate, dichloromethane, methanol, and acetonitrile. The crude extract was then run with the solvent system of ethyl acetate: methanol: acetonitrile (8:1:1) with an additional one drop of formic acid. The additional one drop of formic acid was used to enhance the separation of the four spots. Galactic acid was used as a reference compound (standard) based on finding from our previous study that gallic acid was found as a major phenolic compound in the aqueous and methanolic extracts of S. polyanthum leaves.9

For fractionation, a 30 cm-height of silica column using a 25 mm glass column was prepared by mixing 35 g of silica gel 60 (0.063-0.200 mesh) with 100 % ethyl acetate. The column was allowed to stand overnight for complete packing. ASP slurry was prepared in a combined solvent mixture of methanol and water (50:50) to enhance the solubility of methoxylated and hydroxylated compounds.19 Then, the ASP slurry was run in the column chromatography using a gradient elution technique with a binary solvent system of ethyl acetate and methanol, allowing polarity changes during the fractionation. Gradient elution usually offers better speed, separation, and retention reproducibility compared to isocratic elution for wide range polarities of organic compounds.20

The gradient solvent system of ethyl acetate (100 %), ethyl acetate: methanol (7:3), ethyl acetate: methanol (5:5), ethyl acetate: methanol (3:7), and methanol (100 %) were sequentially employed and finally, the column was washed with 100 % methanol. Nine fractions were collected in a 15 ml centrifuge tube and characterized by TLC profiling with a solvent system of ethyl acetate: methanol (9:5.0:5.5) with a drop of formic acid. The spots were visualized using a UV lamp, 50 % sulphuric acid spraying reagent, vanillin-sulphuric acid reagent and ferric chloride spraying detection reagent. These spraying reagents were

Pharmacognosy Journal, Vol 12, Issue 6(Suppl), Nov-Dec, 2020
prepared according to the methods stated in Pirring and Mohrig et al. Similar fractions (similar TLC profile) were pooled and combined to give the final three fractions designated as F1ASP, F2ASP, and F3ASP. These fractions were then dried in an incubator oven (Memmert, Germany) and stored at -20 °C in a refrigerator (SuperFreezer 340W, 1D, Korea) for further analysis.

Determination of antihypertensive effect of crude extracts and fractions

This in vivo antihypertensive study was conducted based on several previous studies. A BIOPAC Data Acquisition System, attached to an arterial pressure transducer with an amplifier recorder (MP30, BIOPAC Data Acquisition System) was employed for measurement of blood pressure parameters and the data were displayed using BIOPAC Student Lab Pro™ v3.6.7.

Each rat was weighed using a laboratory weighing balance and anaesthetized with 60 mg/kg sodium pentobartal via intraperitoneal injection. The reflex of the rat was checked by pinching the tail and the toe. The rat was placed in a rat's container until no reflex reaction occurred. Later, the rat was brought to the surgery table before performing a tracheotomy. An additional amount of 10 mg/kg sodium pentobartal was given throughout the experiment to maintain the anaesthetic condition whenever necessary. The body temperature of rats was maintained at 37 ± 1 °C using an overhead lamp. The skin on the anterior side of the neck was carefully cut-off using a surgical scissor. A small incision was made (1.5-2 cm) on the skin layers of the anterior side of the neck. A slit incision was made on the rat platysma muscles. By using two forceps with teeth, the skin was separated via blunt dissection technique while taking extra precautions not to disturb the larynx, hyoid bone, and thyroid cartilage. The trachea was then identified and forceps were used to slightly pull up the trachea and then a thread was eventually passed underneath it. The front part of the trachea was then half-incised for the insertion of modified intravenous drip tubing. The tube was thick with a length around 3 to 4 cm. The thread under the trachea was then used to fix the inserted tube to the trachea. Tracheotomy was performed to aid the respiration process since the employed sodium pentobartal usually increases the bronchial secretion. Continuous monitoring of the rats' respiration was performed throughout the experiment.

After tracheotomy, cannulation of the carotid artery was performed. The dark red, elastic, rounded, and thick vessel of the carotid artery was identified along the vagus nerve which was white-in-color on either side of the trachea. Separation of the vagus nerve, connective tissue, and longus capitis (a longitudinal bundle of muscle located adjacent to the trachea) was carried out. The cephalic end of the carotid artery was identified along the vagus nerve which was white-in-color on either side of the neck. A slit incision was made on the rat platysma muscles. By using two forceps with teeth, the skin was separated via blunt dissection technique while taking extra precautions not to disturb the larynx, hyoid bone, and thyroid cartilage. The trachea was then identified and forceps were used to slightly pull up the trachea and then a thread was eventually passed underneath it. The front part of the trachea was then half-incised for the insertion of modified intravenous drip tubing. The tube was thick with a length around 3 to 4 cm. The thread under the trachea was then used to fix the inserted tube to the trachea. Tracheotomy was performed to aid the respiration process since the employed sodium pentobartal usually increases the bronchial secretion. Continuous monitoring of the rats' respiration was performed throughout the experiment.

The total phenolic content of the ASP crude extract and the three derived fractions (F1ASP, F2ASP, and F3ASP) were determined using Folin–Ciocalteau assay with AC5 reagent grade gallic acid as a standard. Two-hundred µl of sample for ASP, F1ASP, F2ASP, and F3ASP, and gallic acid (as a standard) were pipetted into individual test tubes. Eight-hundred µl of distilled water and 500 µl of Folin’s Reagent were added together into the test tubes containing-samples and standard. Each sample was prepared in triplicates. The standard was prepared from 30 to 200 µg/ml of gallic acid dissolved in AR methanol. All samples (ASP, F1ASP, F2ASP, and F3ASP) were prepared in 1 mg/ml of AR methanol. All of them were allowed to stand in the dark for 5 minutes. After that, 1.5 ml of 20 % w/v sodium carbonate (Na₂CO₃) was added and all the mixtures were incubated at room temperature in a dark condition for 2 hours. Two ml of prepared mixtures of samples (ASP, F1ASP, F2ASP, and F3ASP) and standard (gallic acid, 30 to 200 µg/ml) were then transferred into a plastic cuvette for measurement. The absorbance was measured at the wavelength of 760 nm against a blank (distilled water) using a UV–VIS spectrophotometer (Perkin Elmer, Malaysia). Blainski et al. reported that the maximum absorption can be produced at this specific wavelength. Moreover, the long-wavelength absorption of the chromophores minimizes the interference of the sample matrix that is often coloured. The measured absorbance for standard (gallic acid, 30 to 200 µg/ml) and each respective sample in triplicates were averaged and a standard curve graph was plotted.

LC-QTOF/MS analysis for identification of phenolic compounds in the most active crude extract and active fractions

Identification of the compounds in the ASP, F1ASP, F2ASP, and F3ASP were conducted using a modified method described by Terpinc et al. LC-MS instrument used was a Waters, VION Ion Mobility QTOF MS. HPLC system was a binary pump with solvent gradient of water (A) and
Statistical analysis

The recorded MAP, SBP and DBP changes were expressed as mean percent changes ± standard error of mean (S.E.M.). All statistical tests were analyzed using GraphPad Prism version 6 software. A two-way ANOVA test was performed to determine the significant differences between multiple doses of extracts and fractions. Unpaired T-test was done only to ensure there was no significant difference (P>0.05) if the plateau effect occurred on high dosages. A post-hoc Sidak test was performed for multiple pairwise comparisons between the doses. The ED₅₀ values for MAP, SBP, and DBP reductions by ASP and fractions were computed by the software based on the constructed dose-response plateau effect occurred on high dosages. A post-hoc Sidak test was done only to ensure there was no significant difference (P>0.05) if the plateau effect occurred on high dosages. A post-hoc Sidak test was performed for multiple pairwise comparisons between the doses. The ED₅₀ values for MAP, SBP, and DBP reductions by ASP and fractions were computed by the software based on the constructed dose-response curves. TPC was analyzed by one way ANOVA, followed by post-hoc Sidak multiple comparison test between the doses. All tests were two-tailed and a P value less than 0.05 was considered significant (P<0.05).

RESULTS AND DISCUSSION

Yield of extraction

In total, 1.45 kg of dried S. polyanthum leaves used in this study. The mean average yield for HSP, ESP, MSP and ASP were 1.72 ± 0.83 %, 6.39 ± 1.25 % and 5.00 ± 2.59 %, respectively. It was observed that methanol gave the highest yield among the four extracts whereas the hexane gave the lowest yield. In agreement with this finding, Jumaat et al. reported that their extraction with n-hexane, a solvent with a polarity index (P') of 0.1 gave low extraction yield as compared to methanol. Extraction with n-hexane is crucial to break down the cell wall which is coated with the non-polar phospholipids. Ethyl acetate, a solvent with a polarity index (P') of 4.4, dissolves any hydrophilic, lipophilic compounds and hydrophobic chain lipids such as waxes and fats while methanol is a solvent with a polarity index (P') of 5.1 that partially dissolves some other non-water soluble compounds and extracts polar compounds like sugars, amino acids, glycosides and phenolic compounds with low and medium polarity. Water, on the other hand, is a universal solvent that is widely being used in extracting phytochemicals from traditional medicine. It mostly dissolves proteins, carbohydrates, and glycosides. The extraction with water, a solvent with a polarity index (P') of 10.2 usually did not dissolve any hydrophobic hydrocarbon compound. This is perhaps the reason that the yield of water extract was lower as compared to methanol. Thus, optimal temperature (80 °C) and ultrasound wave from sonication in the ultrasound-assisted extraction technique plays an important role to enhance water as a solvent to permeate the plant cell wall. Do et al. and Dhawan and Gupta also showed a lower percentage yield of water extract compared to methanol. This was probably due to the non-solubility of neutral lipids (non-polar hydrophobic) in water, while methanol dissolves a higher amount of polyphenols compared to water due to its inherent efficiency to degrade cell wall comprising of non-polar components. Tiwari et al. suggested the presence of active polyphenol oxidase enzyme in water extract which may be responsible for degradation of some polyphenols in water extract, whereas the enzyme is non-active in methanol extract. This may justify the higher yield in methanol extract as compared to water extract.

Bioassay-guided fractionation

Fractionation was done on ASP, the most prominent crude extract found in the first phase of the antihypertensive study. When ASP crude extract and the reference compound (gallic acid) was run with TLC using a solvent system of ethyl acetate: methanol: acetonitrile (8:1:1) with one drop of formic acid, four different spots were visualized with good separation when viewed under the UV lamp and sprayed with FeCl₃ reagent (Figure 1). These spots were identified with Rₖ values of 0.21, 0.24, 0.66, and 0.70. Only a spot with an Rₖ value of 0.21 appeared to be slightly-tailing. The reference compound, gallic acid resulted

![Figure 1: TLC profiles of ASP crude extract and reference (standard) gallic acid with the mobile system of ethyl acetate: methanol: acetonitrile (8:1:1) with one drop of formic acid with detection using A) UV short wave (254 nm), B) UV long wave (365 nm) and C) FeCl₃ reagent.](image-url)
in a very huge spot at R$_f$ = 0.68. In comparison to that, from the four spots developed for the crude ASP extract, two spots with R$_f$ = 0.66 and R$_f$ = 0.7 were very close to gallic acid spots, and they were probably pyrogallic acid, a derivative of gallic acid which was later identified in LC-MS chromatogram of ASP crude extract and F1ASP. Pyrogallic acid is a compound that can be derived from gallic acid via decarboxylation reaction. Based on these TLC profiles, a combination of ethyl acetate and methanol were selected as the binary solvent system for fractionation of ASP using column chromatography.

When the sample was loaded with the starting solvent system (25 ml of 100% ethyl acetate), three different colours of bands of brown, green, and yellow started to appear. The first (25 ml of 100% ethyl acetate) and the second ratio solvent system (50 ml of 70% ethyl acetate and 30% methanol mixture) allowed the bands to separate. However, the brown and green bands were strongly attracted to the silica column even though the third ratio solvent system (50 ml of 50% ethyl acetate and 50% methanol mixture) has been added. The strong attraction was most probably due to the strong polarity of compounds. For the third ratio solvent system (50 ml of 50% ethyl acetate), three different colours of bands of brown, green, and yellow started to appear. The first (25 ml of 100% ethyl acetate) as F1, F2, F3, and F4 were eluents collected when the ratio of solvent system used was ethyl acetate: methanol (3:7); F6, F7, and F8 were eluents collected when the ratio of the solvent system used was ethyl acetate: methanol (5:5); F3, F4, and F5 were eluents collected when the ratio of solvent system used was ethyl acetate: methanol (7:3); F6, F7, and F8 were eluents collected when the ratio of the solvent system was 100% methanol; while F9 was an eluent collected by washing the column again with 100% methanol. The yield of each fraction was shown in Table 1.

Table 1: Yield of fractions derived from ASP crude extract.

Solvents (Gradient elution)	Ethyl acetate (100%)	Ethyl acetate: methanol (7:3)	Ethyl acetate: methanol (5:5)	Ethyl acetate: methanol (3:7)	Methanol (100%)	Methanol (Wash) (100%)					
Volume of binary solvent (ml)	25	50	50	50	50	100					
Fractions (Weight in grams)	-	-	F1 (0.34)	F2 (0.84)	F3 (0.48)	F4 (0.45)	F5 (0.76)	F6 (0.64)	F7 (0.88)	F8 (0.52)	F9 (2.57)
New fractions after pooling	-	-	Fraction 1 (F1ASP) (2.11g)	Fraction 2 (F2ASP) (2.80g)	-	-	-	-	-	-	
Percentage yield (%)	-	-	7.03 %	9.33 %	8.57 %	-	-	-	-	-	-

Table 2: Summary of the spots developed on TLC profiles of F1 to F9 and reference (standard) gallic acid under different visualization agents.

Visualization methods/reagents	Description	S1 (R$_f$ = 0.20 ± 0.01 cm)	S2 (R$_f$ = 0.10 ± 0.02 cm)	S3 (R$_f$ = 0.30 ± 0.01 cm)	S4 (R$_f$ = 0.31 ± 0.02 cm)	S5 (R$_f$ = 0.50 ± 0.04 cm)	S6 (R$_f$ = 0.64 ± 0.03 cm)	S7 (R$_f$ = 0.76 ± 0.03 cm)	Gallic acid (R$_f$ = 0.68 ± 0.03 cm)
UV 254	Visualization of the quenched organic compounds including aromatic and conjugated double bonds.	-	-	-	-	-	-	-	-
UV 365	Visualization of most polycyclic compounds.	-	-	-	-	-	-	-	-
FeCl$_3$ reagent	General detection on phenolic compounds.	-	-	-	-	-	-	-	-
50 % sulphuric acid	General detection on sterols.	-	-	-	-	-	-	-	-
Vanillin-sulphuric acid	General detection on higher alcohol, aldehydes, and ketones.	-	-	-	-	-	-	-	-
an Rf value of 0.76 ± 0.03 cm. After pooling, F2ASP gave the highest yield of 2.80 g while F1ASP gave the lowest yield of 2.11 g (Table 1).

Antihypertensive effects of S. polyanthum leaves crude extracts and fractions

Three blood pressure parameters were measured in this study which includes mean arterial pressure (MAP), systolic blood pressure (SBP), and diastolic blood pressure (DBP). MAP is the average arterial pressure throughout one cardiac cycle and it is usually influenced by cardiac output and systemic vascular resistance. SBP is the pressure measured during systole or heart contraction, while DBP is a pressure during diastole or relaxation period. While MAP is a better indicator of perfusion to vital organs than systolic blood pressure (SBP), SBP is a bigger risk factor than DBP for cardiovascular disease in elderly patients. Considering the individual importance of each parameter, this study includes all these three blood pressure parameters.

Figure 3 shows dose-response curves for MAP, SBP, and DBP of SHR when administered with HSP, ESP, MSP, and ASP crude extracts. The mean baselines for MAP, SBP, and DBP (n=20) before intravenous administration of these crude extracts were 185.77 ± 5.05 mmHg, 218.41 ± 5.86 mmHg, and 157.04 ± 5.27 mmHg, respectively. The negative control (vehicle that dissolved the extracts) did not give any significant changes to the baseline of all blood pressure parameters (n = 5).

ASP crude extract caused significant reductions in MAP at 40 mg/kg and 70 mg/kg by 16.66 ± 1.51 % (P<0.001) and 20.12 ± 1.19 % (P<0.001), respectively. ESP crude extract only caused a significant reduction in MAP only at the highest dose of 70 mg/kg by 15.39 ± 3.58 %. On the other hand, there was no significant reduction of MAP for HSP crude extract.

There were also significant reductions in SBP by ASP crude extract at 10 mg/kg, 40 mg/kg and 70 mg/kg by 21.97 ± 3.79 % (P<0.05), 35.76 ± 4.74 % (P<0.001) and 73.75 ± 6.93 % (P<0.001), respectively (Figure 3B). On the other hand, MSP crude extract caused a significant reduction in SBP at 40 mg/kg and 70 mg/kg by 20.58 ± 1.50 % (P<0.001) and 16.19 ± 1.80 % (P<0.001), respectively. Similar to reductions in MAP, ESP crude extract only caused a significant reduction in SBP of SHR only at the highest dose of 70 mg/kg by 16.51 ± 3.82 % (P<0.001) while HSP gave no significant reduction in SBP at all.

Meanwhile for DBP, both ASP and MSP crude extracts gave significant reductions in DBP at 40 mg/kg and 70 mg/kg. ASP significantly reduced DBP by 37.31 ± 4.21 % (P<0.001) at 40 mg/kg and by 72.94 ± 7.76 % (P<0.001) at 70 mg/kg (Figure 3C). While for MSP, it significantly reduced DBP by 17.79 ± 2.24 % (P<0.001) at 40 mg/kg and by 21.84 ± 1.23 % (P<0.001) at 70 mg/kg. ESP crude extract could only give a significant reduction (P<0.01) at 70 mg/kg by 15.39 ± 3.58 %. However, there was no significant difference observed in DBP when administered with HSP crude extract at all dosages.

From the pattern of dose-response curves in Figure 3, HSP crude extract did not exhibit any significant antihypertensive effect and since it only extracted non-polar compounds, this has suggested that non-polar compounds did not significantly contribute to the antihypertensive effect of S. polyanthum leaves.
effect for S. polyanthum leaves. On the other hand, it was observed that ASP crude extract has the most prominent antihypertensive effect as it caused more reduction in all blood pressure parameters, especially at dosages of 40 mg/kg and 70 mg/kg when compared to other crude extracts. In summary, though ESP and MSP have significantly reduced the blood pressure of SHR, the antihypertensive effects by these two extracts were not as prominent as ASP. Besides the fact that ASP showed the most prominent antihypertensive effect, aqueous extraction is usually advantageous from the pharmacological point of view. Aqueous extract usually is the safest solvent with less toxicity for animal study40, and at the same time it is cost-effective and is usually used to mimics the traditional preparation. Considering all these findings, ASP was further fractionated in the subsequent study.

The subsequent antihypertensive study was conducted to identify the most active fraction. By using the same blood pressure parameters, the effect of fractions (F1ASP, F2ASP, F3ASP) was evaluated and compared with the original crude ASP extract. Normal saline (0.90 %) was used as the negative control while captopril (5 mg/kg) was used as the positive control. Figure 4 shows the magnitude of changes in MAP, SBP, and DBP when administered with the three fractions, in comparison with those exhibited by negative and positive controls as well as with the original ASP crude extract.

The mean baselines for MAP, SBP, and DBP (n=20) of SHR in this experiment were 171.19 ± 4.54 mmHg, 198.71 ± 4.09 mmHg, and 144.51 ± 3.94 mmHg, respectively. As shown in Figure 4A, there was no significant reduction observed on MAP of SHR with normal saline. Crude ASP extract at doses of 30, 40, 50, and 60 mg/kg significantly reduced MAP of SHR by 23.30 ± 1.08 % (P<0.01), 32.85 ± 3.75 % (P<0.001), 25.78 ± 7.09 % (P<0.01), and 29.24 ± 9.10 % (P<0.01), respectively. Meanwhile for the fractions, F1ASP at doses of 30, 40, 50, and 60 mg/kg significantly reduced MAP by 25.41 ± 3.57 % (P<0.01), 32.05 ± 6.66 % (P<0.001), 25.46 ± 4.55 % (P<0.05), and 27.39 ± 2.42 % (P<0.001), respectively. F2ASP at dosages of 20, 30, 40, 50, and 60 mg/kg significantly reduced MAP by 30.87 ± 6.70 % (P<0.001), 37.94 ± 5.84 % (P<0.001), 36.66 ± 5.41 % (P<0.001), 35.45 ± 0.93 % (P<0.001), and 27.65 ± 9.98 % (P<0.001), respectively. Nevertheless, for F3ASP, the MAP was significantly reduced only at two doses of 30 and 40 mg/kg by 25.64 ± 5.67 % (P<0.001) and 33.70 ± 5.45 % (P<0.001), respectively. In addition, 5 mg/kg of captopril (positive control) has significantly reduced MAP by 29.29 ± 3.18 % (P<0.001, Figure 4A). In comparison to positive control, the significant reduction in MAP by ASP (30, 40, 50 and 60 mg/kg), F1ASP (30, 40, 50, and 60 mg/kg), F2ASP (20, 30, 40, 50, and 60 mg/kg), and F3ASP (30 and 40 mg/kg) was not significantly different with the reduction by captopril at 5 mg/kg. This finding has indicated a comparable reduction in MAP between the positive control with ASP and the fractions at these dosages.

Meanwhile for SBP, ASP crude extract at dosages of 30, 40 and 50 mg/kg significantly reduced SBP by 27.16 ± 3.02 % (P<0.01), 32.80 ± 3.55 % (P<0.001), and 26.19 ± 4.09 % (P<0.01), respectively (Figure 4B).
For the fractions, F1ASP only significantly reduced SBP at two dosages of 40 and 60 mg/kg by 33.79 ± 7.35 % (P<0.001) and 24.25 ± 3.78 % (P<0.05), respectively. Meanwhile F2ASP at dosages of 20, 30, 40, 50, and 60 mg/kg significantly reduced SBP by 28.72 ± 6.78 % (P<0.01), 38.54 ± 7.26 % (P<0.001), 36.92 ± 5.53 % (P<0.001), 30.56 ± 3.08 % (P<0.05), and 30.93 ± 15.17 % (P<0.01), respectively. With the similar pattern observed for MAP changes, the SBP was significantly reduced by F3ASP only at two dosages of 30 and 40 mg/kg by 32.87 ± 10.32 % (P<0.05), and 30.93 ± 15.17 % (P<0.01), respectively. In spite of that, for F3ASP, DBP was not significantly different than the reduction by captopril (5 mg/kg) (Figure 4C). These significant reductions in DBP by ASP (30, 40, 50, and 60 mg/kg), F1ASP (30, 40, 50, and 60 mg/kg), F2ASP (20, 30, 40, 50, and 60 mg/kg), and F3ASP (30 and 40 mg/kg) for all dosages were not significantly different than the reduction by positive control (captopril) at 5 mg/kg (Figure 4B). These findings showed a comparable reduction in SBP of SHR by the positive control with ASP and the fractions at these dosages.

As illustrated in Figure 4C, ASP at doses of 30, 40, and 60 mg/kg significantly reduced DBP by 26.30 ± 3.45 % (P<0.001), 35.08 ± 4.37 % (P<0.001), and 27.04 ± 9.65 % (P<0.05), respectively. For the fractions, only two dosages of F1ASP at 40 and 60 mg/kg significantly reduced DBP by 26.36 ± 6.99 % (P<0.001) and 23.67 ± 3.06 % (P<0.01), respectively. F2ASP at dosages of 20, 30, 40, 50, and 60 mg/kg significantly reduced DBP by 30.37 ± 6.83 % (P<0.001), 35.48 ± 5.01 % (P<0.001), 35.81 ± 4.86 % (P<0.001), 29.78 ± 6.343 % (P<0.01), and 28.52 ± 10.48 % (P<0.001), respectively. In spite of that, for F3ASP, DBP was also significantly reduced only at two doses of 30 and 40 mg/kg by 22.73 ± 4.98 % (P<0.01), and 31.80 ± 5.33 % (P<0.001), respectively. Five mg/kg of captopril (positive control) significantly reduced DBP by 28.52 ± 10.48 % (P<0.001) (Figure 4C). These significant reductions in DBP by ASP (30, 40, 50, and 60 mg/kg), F1ASP (40, 50, and 60 mg/kg), F2ASP (20, 30, 40, 50, and 60 mg/kg), and F3ASP (30 and 40 mg/kg) were not significantly different than the reduction by captopril (5 mg/kg). This finding has also indicated a comparable reduction in DBP by the positive control with ASP and the fractions at these dosages.

Dose-response curves for the effect of each fraction on MAP, SBP, and DBP were then constructed and then compared with ASP crude extract (Figure 5). Both ASP and F1ASP started to cause significant reductions in MAP, SBP, and DBP at 30 mg/kg, then it caused a maximum reduction in MAP, SBP, and DBP at 40 mg/kg, and then the curve has started to become plateau afterward. In contrast to ASP and F1ASP, F2ASP started to produce significant MAP, SBP and DBP reduction at a low dose of 20 mg/kg, and then the effect has become plateau from 30 mg/kg until 60 mg/kg. In fact, the maximum reduction in MAP by F2ASP at 30 mg/kg was actually higher (P<0.05) than the other fractions and also ASP crude extract (Figure 5A). F3ASP showed the same trend as ASP and

Figure 4: Effects of ASP, F1ASP, F2ASP, F3ASP, captopril (positive control), and normal saline (negative control) on A) MAP, B) SBP, and C) DBP of anaesthetized SHR (n=5). Mg/kg: Milligram per kilogram, MAP: Mean arterial pressure, SBP: Systolic blood pressure, DBP: Diastolic blood pressure, mmHg: Millimeters Mercury, a: P<0.05, b: P<0.01, c: P<0.001, all vs. normal saline and #P>0.05, all vs. Captopril, 5 mg/kg (this shows comparable effect with positive control drug). All data were analyzed using two-way ANOVA with post-hoc Sidak multiple comparison test.
F1ASP at low dosages, and then the effects became reduced at 50 mg/kg and maintained at 60 mg/kg. It is postulated that for F3ASP, there are different receptors involved at low and high dosages. When the reduction in blood pressure has reached maximum through activating the first receptor, then at the higher dosages, the fraction might activate another receptor system that causes attenuation of the antihypertensive effect. The involvement of receptors can be further investigated through in-depth pharmacodynamics studies.

To analyze the potency of the ASP crude extract and fractions, their ED$_{50}$ was then determined using GraphPad® Prism Version 6.00 software based on the constructed dose-response curves. ED$_{50}$ is an effective dose that produces 50% of the maximal effect. The ED$_{50}$ values for MAP, SBP and DBP reduction by F2ASP were 14.16 mg/kg, 19.17 mg/kg and 13.80 mg/kg, respectively. These ED$_{50}$ values were actually lower than the ED$_{50}$ values for ASP crude extract (29.48 mg/kg, 29.18 mg/kg and 30.15 mg/kg, respectively). On the other hand, F3ASP's pattern of reduction in blood pressure differed from the other fractions. After the antihypertensive effect by F3ASP reached maximum, then the effect was significantly reduced at subsequent dosages (50 mg/kg and 60 mg/kg). Thus, the ED$_{50}$ value of F3ASP could not be determined in this study. Altogether, F2ASP was more potent as compared to ASP and F1ASP and thus was considered as the most active fraction. The high potency of F2ASP might be due to the high concentration of the bioactive compound in this fraction compared to its crude extract itself. In agreement, Idris et al also found a higher antihypertensive effect of the fraction compared to crude extract and suggested the probability of an increased concentration of active compounds during the partitioning process.

Total phenolic content

This study examined the total phenolic content of the crude ASP extract and the three derived fractions (F1ASP, F2ASP, and F3ASP) by using Folin-Ciocalteu assay. Folin-Ciocalteu assay was generally a modified method from analysis of protein and is widely used for determination of the total phenolic content of various plant extracts. This assay was chosen to be used in this study as it is commercially available and has a standard procedure. This assay utilizes Folin-Ciocalteau reagent that determine phenols and easily-oxidized substances by forming a blue color complex form, reducing the yellow color of heteropoly phosphomolibdate-tungstate anions. The concentration of phenols can be determined by the blue color formed. However, this reaction's mechanism is not solely used for specific determination of only phenolics, instead, it can be used for determining any reducing compounds that can react with the phosphotungstic reagent.

Figure 6 shows the standard curve of gallic acid with an R2 value of 0.992. The TPC for ASP, F1ASP, F2ASP, and F3ASP is shown in Table 3. ASP crude extract had the highest total phenolic content (232.81 ± 0.67 mg GAE/g), followed by F1ASP (76.15 ± 3.75 mg GAE/g), F3ASP (36.45 ± 1.35 mg GAE/g) and lastly F2ASP (30.52 ± 5.83 mg GAE/g). These TPCs were significantly different (P< 0.001) than ASP, in which all of them have lower TPC than ASP.
of both F2ASP and F3ASP were not significantly different. Thus, the order of TPC of S. polyanthum leaves from the highest to the lowest order was ASP>F1ASP>F3ASP>F2ASP. Since the reaction of Folin’s reagent also based on a redox reaction, the TPC assay would detect all substances that were oxidized, and this may include several potential reductants such as the reducing sugars glucose and fructose. This might cause significant effect on the accuracy of the TPC assay. Note that from LC-MS analyses, the ASP crude extract and all fractions contained a lot of glucosides (glucose bounded to another functional group) in which the glucose part may affect the reactions. Besides, this assay involves an oxidation reaction where the blue chromophore is formed by a phosphotungstic-phosphomolybdenum complex in which the maximum absorption depends on the alkaline solution and the concentration of phenolic compounds oxidized. Thus, the TPC assay would only detect phenolics that can function as reductants in a redox-linked colorimetric method. In addition, less availability of hydroxyl group or non-oxidized phenolics could also contribute to the low concentration of phenolics and eventually affected the total phenolic content analyzed.

In comparison with previous studies on the TPC of S. polyanthum leaves, it was found that the TPC of water extract of S. polyanthum leaves collected in Singapore was 11.21 mg GAE, a value which was lower than our present finding. Safriani et al. also reported a lower TPC of water extract (=40.0 mg GAE/g) compared to the current findings. However, Har and Ismail found that the methanolic extract of S. polyanthum leaves contained 1,125 mg GAE/g, which indicated for higher TPC than our ASP crude extract (232.81 ± 0.67 mg GAE/g). The higher phenolic content of methanol extract compared to the water extract used in our current study was probably due to the higher efficiency of methanol in extracting polyphenol. Methanol actually causes cell wall degradation causing more polyphenols to be released from the cells.

Phenolic compounds identified using LC-QTOF/MS

The different magnitude of antihypertensive effects by the extracts and the fractions may be affected by their varying phytochemical composition. Thus, LC-QTOF/MS analyses were then run for the most prominent crude extract, ASP, as well as for the three derived fractions (F1ASP, F2ASP, and F3ASP). Since this LC-QTOF/MS analysis was conducted in negative mode, only compounds with negative ions at high pH were detected. Figure 7 showed the LC-MS chromatograms of the blank (methanol) and ASP crude extract while Table 4 listed all the eluted compounds. In total, there were 216 peaks eluted out using the binary gradient elution with some redundant compounds detected as different peaks and at different retention times. Thus, in total, only 93 single compounds were actually detected in this analysis. In terms of composition, ASP crude extract was composed of gallotannins, phenolic acids, glucosides, flavonoids, and simple phenols. The highest intensity compound (highest percent response) was 2,4,7-trihydroxy-9,10-dihydrophenanthrene which was eluted at 11.90 min with an intensity of 14.36 %. Another two highest intensity compounds were oshmannside H (4.33 %) and sinapaldehyde (3.56 %). Meanwhile compound with the least intensity was 3, 4-dihydroxyphenethyl-3-O-β-D-glucopyranoside by 0.06 %.

Figure 8 shows LC-MS chromatograms for the blank methanol and F1ASP while Table 5 listed all the eluted compounds. In total, there were 76 peaks eluted out using the binary gradient elution with some redundant compounds. To be exact, only 46 single compounds that were detected in this analysis. The highest intensity compound (highest percent response) was ferroxin A at 5.76 min with an intensity of 8.44 %. Another two highest intensity compounds were 2,4,7-trihydroxyhydro-9,10-dihydrophenanthrene (7.79 %) and 1-galloyl-glucose (6.90 %). Meanwhile, the compound with the least intensity was cyclocurcumin with an intensity of 0.38 %.

Figure 9 shows the LC-MS chromatogram for the blank methanol and F2ASP while Table 6 listed all the eluted compounds. There were 13 peaks present in the chromatogram with few compounds that occurred in redundancy. Thus, there were only six compounds to be exact in F2ASP. These phytochemical compounds were either gallotannins, simple phenols, or isoflavonoids. The highest intensity of compound (highest percent response) in F2ASP was 1-galloyl-glucose; it was eluted at 1.33 min with an intensity of 20.24 %. Another two highest

Table 3: Total phenolic content of ASP crude extract and fractions.

No.	Sample	Total phenolic content (GAE mg/gram)	Mean± SD		
		Trial 1	Trial 2	Trial 3	
1	F1ASP	78.60	71.83	78.012	76.15 ± 3.75***
2	F2ASP	25.01	36.63	29.907	30.52 ± 5.83 ***
3	F3ASP	38.01	35.67	35.674	36.45 ± 1.35 **
4	ASP	232.04	232.083	233.29	232.81 ± 0.67

Note: Symbol*** showing P<0.001, all vs ASP using one way ANOVA with post-hoc Sidak multiple comparison test.
Ismail, et al.: Antihypertensive Assay-Guided Fractionation of *Syzygium polyanthum* Leaves and Phenolics Profile Analysis Using LC-QTOF/MS

Figure 7: Chromatogram of blank methanol and crude ASP extract.

Figure 8: Chromatogram of blank methanol and F1ASP.
Figure 9: Chromatogram of blank methanol and F2ASP.

Table 4: Phytochemical compounds in ASP crude extract using LC-MS.

No.	Compound	Molecular Formula	RT (min)	Chemical Classes	Response %	[M’]
1	1-Galloyl-glucose	C_{13}H_{16}O_{10}	0.43	Gallotannin	0.15	331.07
2	Cassialactone	C_{16}H_{16}O_{6}	0.44	Simple phenol	0.12	349.09
3	Pyrogallic acid	C_{6}H_{6}O_{3}	0.53	Phenolic acid derivative	0.11	125.02
4	Pyrogallic acid	C_{6}H_{6}O_{3}	0.79	Phenolic acid derivative	0.07	125.02
5	1-Galloyl-glucose	C_{13}H_{16}O_{10}	0.91	Gallotannin	0.35	331.07
6	2,3-(S)-Hexahydroxydiphenol-D-glucose	C_{20}H_{18}O_{14}	1.05	Glucoside	0.35	481.06
7	Pyrogallic acid	C_{6}H_{6}O_{3}	1.19	Phenolic acid derivative	0.26	125.02
8	Cassialactone	C_{16}H_{16}O_{6}	1.26	Simple phenol	0.10	349.09
9	Pyrogallic acid	C_{6}H_{6}O_{3}	1.42	Phenolic acid derivative	0.07	125.02
10	Methyl-β-orsellinate	C_{9}H_{10}O_{4}	1.53	Ester phenol	0.11	181.05
11	3,4-Dihydroxy phenethyl-3-O-β-D-glucopyranoside	C_{12}H_{16}O_{8}	2.01	Glucoside	0.06	333.08
12	2,4,5Trihydroxy benzaldehyde	C_{12}H_{16}O_{8}	2.07	Simple phenol	0.11	153.02
13	Cassialactone	C_{16}H_{16}O_{6}	2.19	Simple phenol	0.08	349.09
14	1-Galloyl-glucose	C_{13}H_{16}O_{10}	2.24	Gallotannin	0.18	331.07
15	1-Galloyl-glucose	C_{13}H_{16}O_{10}	2.31	Gallotannin	0.67	331.07
16	Caesalpins J	C_{17}H_{16}O_{6}	2.96	Simple phenol	1.21	361.09
17	Osmanthuside H	C_{19}H_{28}O_{11}	3.07	Glycoside phenol	0.92	431.16
18	Feroxin A	C_{17}H_{24}O_{8}	3.26	3-O Glucose	0.19	401.14
19	3’-O-Methylbrazilin	C_{17}H_{16}O_{8}	3.36	Simple phenol	0.20	345.10
20	Feralolide	C_{19}H_{28}O_{11}	3.42	Dihydro-isocoumarin	0.10	343.08
21	Darendoside A	C_{17}H_{28}O_{11}	3.88	Phenethyl alcohol glycosides	2.99	431.16
22	Caesalpins J	C_{17}H_{16}O_{8}	3.93	Simple phenol	1.18	361.09
23	Tachioside	C_{17}H_{16}O_{8}	3.98	Phenolic glycoside	0.09	301.09
24	Tachioside	C_{17}H_{16}O_{8}	3.98	Phenolic glycoside	0.11	301.09
25	Dendroandrins B	C_{13}H_{16}O_{10}	4.05	Bibenzyl phenols	0.09	481.19
26	Osmanthuside H	C_{19}H_{28}O_{11}	4.33	Glycoside Phenols	4.33	431.16
27	Odorilavene	C_{17}H_{24}O_{8}	4.36	Isoflavene	0.22	345.10
28	Sesamol	C_{7}H_{6}O_{3}	4.40	Hydroquinone derivative	0.24	183.03
29	2,4,6-Tetrahydroxy-benzophenone	C_{19}H_{16}O_{8}	4.40	Benzophenone	0.22	245.05
No.	Compound	Molecular Formula	Retention Time	Concentration	Mass (Da)	
-----	-----------------------------------	-------------------	----------------	---------------	-----------	
30	Haematoxylin	C_{16}H_{14}O_{6}	4.41	Phenocyanin	347.08	
31	Feroxin A	C_{16}H_{14}O_{6}	4.42	3-O Glucoside	401.14	
32	Caesalpins J	C_{17}H_{24}O_{8}	4.49	Simple phenol	361.09	
33	Cistanoside H	C_{16}H_{22}O_{13}	4.55	Glucoside	503.18	
34	Polydactin	C_{16}H_{16}O_{6}	4.58	Glucoside	435.13	
35	Caesalpins J	C_{17}H_{16}O_{6}	4.79	Simple phenol	361.09	
36	10-O-Methyl protosappanin B	C_{16}H_{14}O_{6}	4.85	Dibenzoxxocin derivative	363.11	
37	Moracin F	C_{16}H_{14}O_{6}	4.86	2-arylbenzofuran flavanoid	285.08	
38	2,3,5,6-Tetrahydroxystilbene-2,3-O-β-Dglucopyranoside	C_{26}H_{32}O_{14}	4.93	Glucoside	567.17	
39	Methyl-β-orsellinate	C_{16}H_{12}O_{6}	4.94	Ester phenol	227.06	
40	Protosappanin C	C_{16}H_{14}O_{6}	5.02	Dibenzoxxocin derivative	347.08	
41	2,4,7-Trihydroxy-9,10-dihydrophenanthrene	C_{17}H_{24}O_{8}	5.27	Phenanthrene phenol	273.08	
42	Kakool	C_{16}H_{16}O_{6}	5.33	Prophiophenone derivative	239.06	
43	Kakool	C_{16}H_{16}O_{6}	5.71	Prophiophenone derivative	239.06	
44	Aspidinol	C_{17}H_{20}O_{8}	5.79	Simple phenols	269.10	
45	Feroxin A	C_{16}H_{14}O_{6}	5.80	3-O Glucoside	401.14	
46	Feroxin A	C_{16}H_{14}O_{6}	5.80	3-O Glucoside	401.14	
47	Feroxin A	C_{16}H_{14}O_{6}	5.80	3-O Glucoside	401.14	
48	Macurin	C_{17}H_{16}O_{6}	5.92	Benzoanoid phenolic	261.04	
49	4-(4'-Hydroxy-3',5'-dimethoxyphenyl)-3-buten-2-one	C_{16}H_{14}O_{6}	6.01	Simple phenol	267.09	
50	Moracin M-3'-O-β-Dglucopyranoside	C_{16}H_{14}O_{6}	6.07	Glycoside	449.11	
51	Protosappanin A	C_{16}H_{14}O_{6}	6.09	Dibenzoxxocin derivative	317.07	
52	Methyl-5-Ocaffeoylquinic acid	C_{16}H_{14}O_{6}	6.15	Phenolic acid derivative	413.11	
53	3,4-Dihydroxy phenethanol	C_{16}H_{16}O_{6}	6.26	Simple phenol	153.06	
54	Cimidahurine	C_{16}H_{14}O_{6}	6.27	Phenylpropanoid glycoside	315.11	
55	Cimidahurine	C_{16}H_{14}O_{6}	6.27	Phenylpropanoid glycoside	315.11	
56	Aspidinol	C_{16}H_{14}O_{6}	6.29	Simple phenols	223.10	
57	Protosappanin C	C_{16}H_{14}O_{6}	6.30	Dibenzoxxocin derivative	347.08	
58	10-O-Methyl-protosappanin B	C_{16}H_{14}O_{6}	6.41	Dibenzoxxocin derivative	363.11	
59	Cassialactone	C_{16}H_{14}O_{6}	6.43	Simple phenol	349.09	
60	2,7-Dihydroxy-4-methoxyphenanthrene-2-O-glucoside	C_{16}H_{14}O_{6}	6.43	Phenanthrene phenol	447.13	
61	1-O-Methyl-3,5 Odcificoeyquinic acid methyl ester	C_{16}H_{14}O_{6}	6.45	Phenolic acid	589.16	
62	Kakool	C_{16}H_{14}O_{6}	6.47	Prophiophenone derivative	239.06	
63	Aspidinol	C_{16}H_{14}O_{6}	6.49	Simple phenols	223.10	
64	Dihydroeugenol	C_{16}H_{14}O_{6}	6.53	Simple phenols	211.10	
65	Ciwujiatone	C_{16}H_{14}O_{6}	6.59	Lignan	433.15	
66	Phenol	C_{16}H_{14}O_{6}	6.91	Simple phenols	139.04	
67	2,7-Dihydroxy-4-methoxyphenanthrene-2-O-glucoside	C_{16}H_{14}O_{6}	6.96	Phenanthrene phenol	447.13	
68	Nobilin D	C_{16}H_{14}O_{6}	6.97	Prenol lipid	305.10	
69	3,7-Dihydroxy-2,4-dimethoxyphenanthrene-3-O-glucoside	C_{16}H_{14}O_{6}	6.99	Phenanthrene phenol	477.14	
70	Cimidahurine	C_{16}H_{14}O_{6}	7.05	Phenylpropanoid glycoside	315.11	
71	Kakool	C_{16}H_{14}O_{6}	7.13	Prophiophenone derivative	239.06	
72	Kakool	C_{16}H_{14}O_{6}	7.13	Prophiophenone derivative	239.06	
73	Phenol	C_{16}H_{14}O_{6}	7.14	Simple phenols	139.04	
74	Phenol	C_{16}H_{14}O_{6}	7.14	Simple phenols	139.04	
75	Kakool	C_{16}H_{14}O_{6}	7.14	Prophiophenone derivative	239.06	
76	Tachioside	C_{16}H_{14}O_{6}	7.15	Phenolic glycoside	301.09	
77	Phenol	C_{16}H_{14}O_{6}	7.15	Simple phenols	139.04	
No.	Compound Name	Structure	pKa	Molecular Formula	pIC50	Molecular Weight
-----	---	----------------------------------	-----	------------------	-------	-----------------
78	Moracin F	C_{16}H_{14}O_{5}	7.16	2-arylbenzofuran flavanoid	0.69	285.08
79	Gingerone	C_{11}H_{14}O_{3}	7.26	Simple phenols	0.41	239.09
80	Dihydroeugenol	C_{10}H_{14}O_{2}	7.28	Simple phenols	0.53	211.10
81	2,3,5,4'-Tetrahydroxystilbene-2-O-β-D-glucopyranoside	C_{20}H_{22}O_{9}	7.39	Glucoside	0.07	405.12
82	Cassialactone	C_{16}H_{14}O_{5}	7.41	Simple phenol	0.16	249.09
83	Nobilone	C_{14}H_{10}O_{4}	7.42	Simple phenols	0.22	287.06
84	Gingerone	C_{11}H_{14}O_{3}	7.42	Simple phenols	0.18	287.06
85	Nobilone	C_{14}H_{10}O_{4}	7.45	Simple phenols	0.67	239.09
86	Homeorbutin	C_{10}H_{14}O_{2}	7.47	Simple phenols	0.96	287.06
87	Apocynin B	C_{10}H_{14}O_{6}	7.50	Simple phenols	0.09	331.10
88	Dihydroeugenol	C_{10}H_{14}O_{2}	7.55	Simple phenols	0.42	211.10
89	3,4-Dimethoxyphenol	C_{10}H_{14}O_{2}	7.56	Simple phenol	0.33	153.06
90	Kakuo	C_{16}H_{14}O_{5}	7.56	Simple phenol	0.35	239.09
91	Cimicidurine	C_{10}H_{12}O_{2}	7.59	Simple phenol	1.39	315.11
92	Echinacoside	C_{10}H_{12}O_{2}	7.60	Simple phenol	1.60	287.06
93	Sinapaldehyde	C_{10}H_{12}O_{2}	7.60	Simple phenol	2.42	211.10
94	3,4-Dimethoxyphenol	C_{10}H_{14}O_{2}	7.60	Simple phenol	1.19	285.08
95	Tachioside	C_{10}H_{14}O_{2}	7.64	Simple phenol	0.70	301.09
96	2-Hydroxy-4-methoxybenzaldehyde	C_{16}H_{16}O_{5}	7.70	Simple phenol	0.34	151.04
97	Ellagic acid	C_{16}H_{14}O_{5}	7.72	Phenolic acid	1.39	300.99
98	Aspidinol	C_{12}H_{16}O_{4}	7.81	Simple phenol	0.09	269.10
99	Moracin F	C_{16}H_{14}O_{5}	7.83	Flavanoid	0.22	285.08
100	Tachioside	C_{13}H_{18}O_{8}	7.84	Simple phenol	0.19	301.09
101	Phenol	C_{13}H_{18}O_{8}	7.84	Simple phenol	0.16	153.06
102	Renifolin	C_{14}H_{20}O_{8}	8.02	Glucoside	0.25	397.15
103	Nobilone	C_{16}H_{14}O_{5}	8.12	Simple phenol	0.22	287.06
104	Protosappanin C	C_{16}H_{14}O_{5}	8.16	Dibenzoxyacid	0.09	301.07
105	3,4-Dihydroxybenzamide	C_{16}H_{14}O_{5}	8.18	Amide phenol	0.09	152.04
106	3,4-Dihydroxybenzamide	C_{16}H_{14}O_{5}	8.18	Amide phenol	0.09	152.04
107	(±)-Isoduartin	C_{16}H_{14}O_{5}	8.24	Isolavanan	0.26	372.12
108	Renifolin	C_{16}H_{14}O_{5}	8.31	Glucoside	0.10	397.15
109	Aspidinol	C_{16}H_{14}O_{5}	8.42	Simple phenol	0.21	269.10
110	Eugenol	C_{16}H_{14}O_{5}	8.47	Simple phenol	0.12	209.08
111	Gingerone	C_{16}H_{14}O_{5}	8.53	Simple phenol	3.48	239.09
112	Obovatol	C_{16}H_{14}O_{5}	8.55	Biphenolic	0.07	327.12
113	3,4-Dihydroxy-2,4-dimethoxyphenanthrene e-3-O-glucoside	C_{16}H_{14}O_{5}	8.64	Glucoside	0.52	477.14
114	3,7-Dihydroxy-2,4-dimethoxyphenanthrene e-3-O-glucoside	C_{16}H_{14}O_{5}	8.64	Phenanthrene glucoside	0.16	477.14
115	2,4,7-Trihydroxy-9,10-dihydrophenanthrene 4-(4'-Hydroxy-3,5'-dimethoxyphenyl)-3-buten-2-one	C_{16}H_{14}O_{5}	9.02	Simple phenol	0.24	267.09
116	Torachrysone-8-O-β-D-glucopyranoside	C_{16}H_{14}O_{5}	9.04	Glucoside	0.12	407.14
117	Brazilein	C_{16}H_{14}O_{5}	9.08	Simple phenol	0.10	285.08
118	Moracin F	C_{16}H_{14}O_{5}	9.09	2-arylbenezofuran flavanoid	0.16	269.10
119	Apocynin B	C_{16}H_{14}O_{5}	9.15	Simple phenol	0.68	269.10
No.	Compound Name	Molecular Formula	Retention Time	Structure Type	Area %	M/z
-----	--	-------------------	----------------	----------------------------	--------	--------
127	4-(4'-Hydroxy-3',5'-dimethoxyphenyl)-3-buten-2-one	C₁₂H₁₄O₄	9.24	Simple phenols	0.10	267.09
128	4-(4'-Hydroxy-3',5'-dimethoxyphenyl)-3-buten-2-one	C₁₂H₁₄O₄	9.26	Simple phenols	0.07	267.09
129	Polydatin	C₁₀H₁₃O₄	9.42	Glycoside	0.12	435.13
130	Echinacoside	C₁₂H₁₄O₄	9.42	Phenyl propanoid glucoside	1.57	631.26
131	Sinapaldehyde	C₁₂H₁₄O₄	9.42	Lignin intermediate	1.80	253.07
132	3,4-Dimethoxyphenol	C₁₀H₁₄O₄	9.43	Simple phenol	0.06	153.06
133	Cimifugoside	C₁₂H₁₄O₄	9.43	Phenylpropanoid glucoside	0.36	315.11
134	(+)-Isoduartin	C₁₀H₁₃O₄	9.43	Isoflavan	1.38	377.12
135	Nobilone	C₁₂H₁₄O₄	9.51	Simple phenols	0.11	267.06
136	4-(4'-Hydroxy-3',5'-dimethoxyphenyl)-3-buten-2-one	C₁₂H₁₄O₄	9.53	Simple phenol	0.12	267.09
137	4-(4'-Hydroxy-3',5'-dimethoxyphenyl)-3-buten-2-one	C₁₂H₁₄O₄	9.54	Simple phenol	0.60	267.09
138	Kuzubutenolide A	C₁₀H₁₃O₄	9.64	Glucoside	0.10	459.13
139	Moracin C	C₁₀H₁₃O₄	9.65	Glucoside	0.26	355.12
140	Albaspidin AA	C₁₂H₁₄O₄	9.76	Phloroglucinol derivative	0.24	449.15
141	Renifolin	C₁₂H₁₄O₄	9.81	Glucoside	0.16	397.15
142	Aspidinol	C₁₂H₁₄O₄	9.86	Simple phenol	1.23	269.10
143	Gingerone	C₁₂H₁₄O₄	9.87	Simple phenol	0.70	239.09
144	Nobilin B	C₁₂H₁₄O₄	10.07	Prenol lipid	0.11	319.12
145	Torachrysone-8-O-β-D glucopyranoside	C₁₂H₁₄O₄	10.10	Glucoside	0.12	407.14
146	Nobilin C	C₁₂H₁₄O₄	10.10	Prenol lipid	0.16	379.14
147	1-Galloyl-glucose	C₁₂H₁₄O₄	10.14	Gallotannin	0.09	331.07
148	Asebotin	C₁₂H₁₄O₄	10.15	Dihydrochalcone glucoside	0.24	449.15
149	Renifolin	C₁₂H₁₄O₄	10.20	Glucoside	0.21	397.15
150	3,4-O-Dicaffeoylquinic acid	C₁₂H₁₄O₄	10.33	Phenolic acid	0.09	561.13
151	2-((3R,4R)-7-Hydroxy-4-(4-hydroxy-5-((R)-7-hydroxychroman-3-yl)-2-methoxyphenyl)-5-methylocyclohexa-1,4-diene-1,4-dione	C₁₂H₁₄O₄	10.36	Simple phenol	0.09	555.17
152	Asebotin	C₁₀H₁₃O₄	10.49	Dihydrochalcone glucoside	0.09	449.15
153	Sinapaldehyde	C₁₂H₁₄O₄	10.59	Lignin intermediate	0.43	253.07
154	4,4'-Dihydroxy-9,10-dihydrophenanthrene	C₁₀H₁₃O₄	10.59	Phenanthrene phenol	2.99	273.08
155	p-Tolualdehyde	C₁₀H₁₃O₄	10.59	Benzenoid	0.07	167.04
156	Ciwujianone	C₁₀H₁₃O₄	10.66	Lignan	0.13	433.15
157	Ccaroin	C₁₀H₁₃O₄	10.66	Simple phenol	0.29	289.07
158	Albaspidin AA	C₁₂H₁₄O₄	10.67	Phloroglucinol derivative	0.11	403.14
159	Torachrysone-8-O-β-D glucopyranoside	C₁₂H₁₄O₄	10.75	Glucoside	0.54	407.14
160	Ciwujianone	C₁₂H₁₄O₄	10.81	Lignan	0.10	433.15
161	Cassialactone	C₁₀H₁₃O₄	10.84	Simple phenol	0.08	349.09
162	Renifolin	C₁₂H₁₄O₄	10.90	Glucoside	0.34	397.15
163	4-(4'-Hydroxy-3',5'-dimethoxyphenyl)-3-buten-2-one	C₁₂H₁₄O₄	10.91	Simple phenol	0.12	267.09
164	Sinapaldehyde	C₁₀H₁₃O₄	10.97	Lignin intermediate	0.64	253.07
165	4,4'-Dihydroxy-3,5-dimethoxybenzyl	C₁₀H₁₃O₄	11.03	Simple phenol	0.28	319.12
166	Protosappanin A	C₁₀H₁₃O₄	11.07	Dibenzoxocin derivative	0.34	271.06
167	Sinapaldehyde	C₁₂H₁₄O₄	11.13	Simple phenols	0.33	223.10
168	Thannilignan	C₁₀H₁₃O₄	11.15	Lignan	0.34	329.14
169	Sinapaldehyde	C₁₀H₁₃O₄	11.17	Lignin intermediate	0.64	253.07
170	Cistanoside H	C₁₂H₁₃O₄	11.26	Glucoside	0.20	503.18
171	Renifolin	C₁₂H₁₄O₄	11.30	Glucoside	0.15	397.15
No.	Compound Description	Molecular Formula	Retention Time (min)	Mass (m/z)	Relative Intensity	Molecular Mass
-----	--	-------------------	----------------------	------------	-------------------	---------------
172	Protosappanin A	C_{15}H_{10}O_{5}	11.43	271.06	1.18	
173	2,3,5,4′-Tetrahydroxystilbene-2-O-(6′-O-α-d-glucopyranosyl)-β-Dglucopyranoside	C_{19}H_{12}O_{14}	11.53	Glucoside	0.17	567.17
174	Dendrocandin C	C_{16}H_{10}O_{5}	11.55	Bibenzyl phenols	0.38	289.11
175	3,4′-Dihydroxybenzamide	C_{17}H_{12}NO_{4}	11.57	8380	0.27	152.04
176	Thannilignan	C_{19}H_{12}O_{5}	11.78	Lignan	0.18	375.15
177	Cistanoside H	C_{16}H_{12}O_{5}	11.80	Glucoside	0.08	503.18
178	p-Tolualdehyde	C_{17}H_{12}O_{5}	11.88	Benzenoid	0.57	167.04
179	2,4,7-Trihydroxy-9,10-dihydrophenanthrene	C_{19}H_{12}O_{7}	11.90	Phenanthrene phenol	14.36	273.08
180	Tachioside	C_{17}H_{12}O_{5}	11.90	Phenolic glycoside	0.21	301.09
181	Eugenol	C_{19}H_{12}O_{7}	11.96	Simple phenol	0.17	209.08
182	3,4-Dimethoxyphenol	C_{17}H_{12}O_{7}	11.97	Simple phenol	0.45	153.06
183	Sinapaldehyde	C_{17}H_{12}O_{7}	11.97	Lignin intermediate	0.72	253.07
184	2,3,5,4′-Tetrahydroxystilbene-2-O-(6′-O-α-d-glucopyranosyl)-β-Dglucopyranoside	C_{19}H_{12}O_{14}	12.04	Glucoside	0.12	567.17
185	Phenol	C_{17}H_{12}O_{7}	12.09	Simple phenols	1.15	139.04
186	10-O-Methyl protosappanin B	C_{17}H_{12}O_{7}	12.16	Dibenzoxocin derivative	0.08	363.11
187	Phenol	C_{17}H_{12}O_{7}	12.36	Simple phenols	0.09	139.04
188	1,4-Dihydroxy-2-methoxybenzene	C_{20}H_{14}O_{5}	12.37	Benzenoid	1.10	139.04
189	tran-Ferulaldehyde	C_{22}H_{22}O_{3}	12.37	Aldehyde	0.10	223.06
190	(3R)-3′,8-Dihydroxyvestitol	C_{23}H_{22}O_{9}	12.51	Isoflavane	0.15	349.09
191	Caesalpins J	C_{17}H_{12}O_{7}	12.59	Simple phenol	0.08	361.09
192	Polydatin	C_{17}H_{12}O_{7}	12.67	Glucoside	0.08	435.13
193	2,3,5,4′-Tetrahydroxystilbene-2,3-O-β-Dglucopyranoside	C_{21}H_{14}O_{14}	12.80	Glucoside	0.16	567.17
194	Aspidinol	C_{17}H_{12}O_{7}	12.88	Simple phenol	0.12	233.10
195	Aspidinol	C_{17}H_{12}O_{7}	12.88	Simple phenol	0.35	233.10
196	Protosappanin A	C_{17}H_{12}O_{7}	13.10	Dibenzoxocin derivative	0.35	271.06
197	Darendoside A	C_{19}H_{20}O_{11}	13.15	Phenethyl alcohol glycosides	0.41	431.16
198	Moracin M-3′-O-β-Dglucopyranoside	C_{16}H_{12}O_{7}	13.38	Glucoside	0.12	403.10
199	Dendrocandin C	C_{17}H_{12}O_{7}	13.43	Bibenzyl phenols	0.09	289.11
200	7,2′,3′-Trihydroxy-4′-methoxy-isoflavan	C_{16}H_{12}O_{7}	14.14	Isoflavane	0.28	287.09
201	2,3,5,4′-Tetrahydroxystilbene-2-O-(6′-O-α-d-glucopyranosyl)-β-Dglucopyranoside	C_{19}H_{12}O_{14}	14.27	Glucoside	0.10	567.17
202	Dendrocandin C	C_{17}H_{12}O_{7}	14.59	Bibenzyl phenols	0.10	335.11
203	Aspidinol	C_{17}H_{12}O_{7}	15.01	Simple phenol	1.05	223.10
204	Moracin M-3′-O-β-Dglucopyranoside	C_{16}H_{12}O_{7}	16.84	Glucoside	0.08	403.10
205	Dendrocandin E	C_{17}H_{12}O_{7}	16.87	Bibenzyl phenols	0.13	321.10
206	Xanthohumol	C_{19}H_{20}O_{6}	16.91	Chalcone	0.08	399.15
207	2,7-Dihydroxy-4′-methoxyphenanthrene-2-O-glucoside	C_{19}H_{20}O_{7}	16.91	Phenanthrene phenol	0.15	447.13
208	Kuzubutenolide	C_{19}H_{20}O_{6}	17.26	Glucoside	0.07	505.13
209	Cyclocurcumin	C_{19}H_{20}O_{6}	17.26	Diarylheptanoid	0.10	413.12
210	Dendrocandin E	C_{17}H_{12}O_{7}	17.26	Bibenzyl phenols	0.15	321.10
211	Nobilin A	C_{17}H_{12}O_{7}	17.26	Prenol lipid	0.09	349.13
212	Syringylethanol	C_{17}H_{12}O_{7}	17.26	Lignin	0.10	241.07
213	Dendrocandin C	C_{17}H_{12}O_{7}	17.36	Bibenzyl phenols	0.07	335.11
214	Polydatin	C_{17}H_{12}O_{7}	17.56	Glucoside	0.08	435.13
215	Moracin O	C_{17}H_{12}O_{7}	17.89	Glucoside	0.17	371.11
216	Gigantol	C_{17}H_{12}O_{7}	17.95	Bibenzyl phenols	0.07	305.10

Note: RT: Retention Time, \([M+]:\) Molecular ion mass (m/z)
Table 5: Phytochemical compounds in F1ASP using LC-MS.

No.	Compound	Molecular Formula	RT (min)	Chemical Classes	Response %	[M+]
1	1-Galloyl-glucose	C_{13}H_{16}O_{10}	0.44	Gallotannin	2.25	331.07
2	1-Galloyl-glucose	C_{13}H_{16}O_{10}	0.74	Gallotannin	0.38	331.07
3	Pyrogallic acid	C_{6}H_{10}O_{5}	0.80	Phenolic acid	0.49	
4	1-Galloyl-glucose	C_{13}H_{16}O_{10}	1.01	Gallotannin	0.99	331.07
5	1-Galloyl-glucose	C_{13}H_{16}O_{10}	1.27	Gallotannin	2.46	331.07
6	1-Galloyl-glucose	C_{13}H_{16}O_{10}	1.58	Gallotannin	6.90	331.07
7	1-Galloyl-glucose	C_{13}H_{16}O_{10}	2.22	Gallotannin	0.49	331.07
8	2,4,5-Trihydroxybenzaldehyde	C_{5}H_{6}O_{3}	2.34	Benzaldehyde	0.43	153.02
9	2,6-Di-O-galloyl-β-D-glucose	C_{20}H_{20}O_{14}	3.03	Gallotannin	0.70	483.08
10	Polydatin	C_{16}H_{16}O_{8}	3.33	Glucoside	0.73	435.13
11	2,6-Di-O-galloyl-β-D-glucose	C_{20}H_{20}O_{14}	3.77	Gallotannin	1.64	483.08
12	Polydatin	C_{16}H_{16}O_{8}	3.84	Glucoside	2.57	435.13
13	2,6-Di-O-galloyl-β-D-glucose	C_{20}H_{20}O_{14}	4.22	Gallotannin	0.63	483.08
14	Tetrahydroxystilbene-2, 3-O-β-D-glucoypyranside	C_{16}H_{20}O_{14}	4.32	Glucoside	0.53	568.17
15	Sesamol	C_{7}H_{6}O_{3}	4.34	Hydroquinone derivative	2.75	183.03
16	2,3,5,4'-Tetrahydroxystilbene-2, 3-O-β-D-glucoypyranside	C_{16}H_{20}O_{14}	4.44	Glucoside	0.38	567.17
17	2,6-Di-O-galloyl-β-D-glucose	C_{20}H_{20}O_{14}	4.65	Gallotannin	0.86	483.08
18	2,6-Di-O-galloyl-β-D-glucose	C_{20}H_{20}O_{14}	4.88	Gallotannin	2.63	483.08
19	2,6-Di-O-galloyl-β-D-glucose	C_{20}H_{20}O_{14}	4.95	Gallotannin	3.15	483.08
20	2,6-Di-O-galloyl-β-D-glucose	C_{20}H_{20}O_{14}	5.16	Gallotannin	0.50	483.08
21	6'-O-Galloylhomoarbutin	C_{16}H_{16}O_{8}	5.19	Galloglucoside	0.52	483.08
22	Darendoside A	C_{21}H_{22}O_{11}	5.48	Phenylen alcohol glucosides	0.39	431.16
23	Aspidinol	C_{12}H_{16}O_{4}	5.76	Simple phenols	0.78	269.10
24	Feroxin A	C_{12}H_{16}O_{4}	5.76	3-O Glucoside	8.44	401.14
25	Feroxin A	C_{12}H_{16}O_{4}	5.76	3-O Glucoside	0.44	401.14
26	Moracin M-3'-O-β-D-glucopyranoside	C_{12}H_{16}O_{4}	5.82	Glucoside	0.77	449.11
27	Meliadanoside B	C_{16}H_{16}O_{4}	5.87	Glucoside	1.86	373.11
28	1,3,6-Trigalloyl-β-D-glucose	C_{20}H_{20}O_{14}	6.38	Gallotannin	2.99	635.09
29	Feroxinid	C_{16}H_{16}O_{4}	6.99	Simple phenol	1.98	329.14
30	Thannilignan	C_{16}H_{16}O_{4}	8.54	Lignan	0.47	
31	3,7-Dihydroxy-2,4-dimethoxyphenanthren	C_{16}H_{20}O_{14}	8.54	Phenanthrene glucoside	0.62	477.14
32	Thannilignan	C_{16}H_{16}O_{4}	8.68	Lignan	0.38	329.14
33	Kurzubutenolide A	C_{20}H_{16}O_{7}	8.82	Glucoside	1.88	459.13
34	Smilaxin	C_{16}H_{16}O_{4}	9.09	Steroid glucoside	0.50	315.09
35	Polydatin	C_{16}H_{16}O_{4}	9.09	Glucoside	0.52	435.13
36	Renifolin	C_{16}H_{16}O_{4}	9.27	Glucoside	0.44	397.15
37	Protosappanin A	C_{16}H_{16}O_{4}	9.45	Dibenzoazocin derivative	0.37	271.06
38	1-O-Methyl-3,5-O-dicaffeoylquinic acid	C_{12}H_{18}O_{12}	9.67	Phenolic acid	3.35	543.15
39	Polydatin	C_{16}H_{16}O_{4}	9.76	Glycoside	0.79	435.13
40	Feroxinid	C_{16}H_{16}O_{4}	9.78	Simple phenol	2.06	
41	2,3,5,4-Tetrahydroxystilbene-2-O-β-D-glucopyranoside	C_{16}H_{20}O_{14}	9.94	Glucoside	0.37	405.12
42	1-O-Methyl-3,5-O-dicaffeoylquinic acid	C_{12}H_{18}O_{12}	9.96	Phenolic acid	0.47	543.15
43	2,4,7-Trihydroxy-9,10-dihydrophenanthrene	C_{16}H_{20}O_{14}	10.20	Phenanthrene phenol	0.87	273.08
44	Polydatin	C_{16}H_{16}O_{4}	10.20	Glycoside	0.47	435.13
Phytochemical compounds in F2ASP using LC-MS.

No.	Compound	Molecular Formula	RT (min)	Chemical Classes	Responses %	
1	1-Galloyl-glucose	C_{13}H_{16}O_{10}	0.43	Gallotannin	8.34	331.07
2	1-Galloyl-glucose	C_{13}H_{16}O_{10}	0.80	Gallotannin	4.44	331.07
3	1-Galloyl-glucose	C_{13}H_{16}O_{10}	1.06	Gallotannin	6.27	331.07
4	1-Galloyl-glucose	C_{13}H_{16}O_{10}	1.33	Gallotannin	20.24	331.07
5	1-Galloyl-glucose	C_{13}H_{16}O_{10}	1.57	Gallotannin	17.05	331.07
6	1-Galloyl-glucose	C_{13}H_{16}O_{10}	2.21	Gallotannin	2.41	331.07
7	Sesamin	C_{15}H_{13}O_{3}	3.47	Hydroquinone derivative	7.73	183.03
8	Feroxin A	C_{14}H_{12}O_{8}	5.56	3-O Glucoside	5.60	401.14
9	Feroxin A	C_{14}H_{12}O_{8}	5.75	3-O Glucoside	11.84	401.14
10	Sinapaldehyde	C_{14}H_{12}O_{8}	7.03	Lignin intermediate	4.90	253.07
11	Sinapaldehyde	C_{14}H_{12}O_{8}	9.00	Lignin intermediate	3.49	253.07
12	7,2′,3′-Trihydroxy-4′-methoxy-isoflavan	C_{16}H_{15}O_{5}	12.48	Isoflavane	5.37	287.09
13	Kukoamine A	C_{13}H_{12}N_{4}O_{3}	16.97	Benzenoid	2.32	529.30

Note. RT: Retention Time, [M+]: Molecular ion mass (m/z)
intensity compounds were feroxin A (11.84 %) and sesamol (7.73 %). Apart from that, the compound with the lowest intensity in F2ASP was kukoamine A (2.32 %), eluted at 16.97 min.

F3ASP eluted the minimum number of compounds as compared to ASP, F1ASP, and F3ASP. Only 5 peaks eluted out including some that existed in redundant as can be seen in Figure 10 while Table 7 listed all the eluted compounds. To be exact, only 3 compounds were identified in F3ASP with negative mode ionization of LC-MS. Only the phenolic groups of gallotannin and simple phenols were identified in this fraction. Again, as in F2ASP, 1-galloyl-glucose was observed with the highest intensity of 34.45 % at 4.14 min. Another highest intensity compound was polydatin (30.51 %). The compound with the lowest intensity was feroxin A, by 16.39 %.

Table 8 summarizes the phytochemical compounds related to antihypertensive activity which were present in the ASP crude extract and the three derived fractions (F1ASP, F2ASP, and F3ASP). The possible phenolic compounds that have potential in contributing to the antihypertensive effect by S. polyanthum are 1-galloyl glucose, polydatin, sesamol, brazillian, eugenol, ellagic acid, kukoamine A and cyclocurcurmin. 1-galloyl glucose or glucogallin is a compound that is present across all fractions as well as in the crude ASP extract. In fact, it becomes the major compound in F2ASP and F3ASP, whereby the concentration of this compound intensified by 30 times as compared to its original crude extract. Previously, this compound was shown to inhibit the angiotensin-converting enzyme 1 (ACE-1) activity by the formation of chelate complexes within the active site of ACE-1.47 Inhibition of this enzyme indicates huge potential in reducing blood pressure and this is actually the mechanism of action of captopril, the positive control drug used in this study. Polydatin is a major compound found in F3ASP, while it is also present in smaller amounts in ASP and F1ASP. Polydatin, a glucoside of resveratrol can upregulate the level of nitric oxide (NO) and it also decreases the levels of endothelin (ET) and angiotensin II and thus depresses blood pressure in pressure-overload rats.48 Sesamol which was found in ASP crude extract, F1ASP, and F2ASP was found to exhibit an antihypertensive effect in uninephrectomized deoxycorticosterone acetate (DOCA)-salt-induced hypertensive rats at a specific dosage of 50 mg/kg.49 Other than sesamol, brazillian which was found only in ASP crude extract was previously reported to induce vasorelaxation in rat aortic rings through both endothelium-dependent and independent pathway50 by activating calcium dependent nitric oxide synthesis.51 Vasorelaxation is one of the main mechanisms of actions that may result in an antihypertensive effect.

Not only these, eugenol which was also found in ASP crude extract was previously reported to relax mesenteric arteries, and thus reducing systemic blood pressure by activating endothelial cell TRPV4 channels.52 It was also reported to have significant inhibition on ACE activity by 28 % in the serum of untreated diabetic rats.53 Ellagic acid, another phenolic acid compound found in ASP crude extract was

Table 7: Phytochemical compounds in F3ASP using LC-MS.

No.	Compound	Molecular Formula	RT (min)	Chemical Classes	Response %	[M+]
1	1-Galloyl-glucose	C\textsubscript{10}H\textsubscript{16}O\textsubscript{10}	0.43	Gallotannin	9.37	331.07
2	1-Galloyl-glucose	C\textsubscript{10}H\textsubscript{16}O\textsubscript{10}	0.80	Gallotannin	9.28	331.07
3	1-Galloyl-glucose	C\textsubscript{10}H\textsubscript{16}O\textsubscript{10}	1.43	Gallotannin	34.45	331.07
4	Polydatin	C\textsubscript{20}H\textsubscript{22}O\textsubscript{8}	4.14	Glucoside	30.51	435.13
5	Feroxin A	C\textsubscript{20}H\textsubscript{22}O\textsubscript{8}	5.74	3-O Glucoside	16.39	401.14

Note. RT: Retention Time, [M+]: Molecular ion mass (m/z)
Table 8. Bioactive phenolic compounds in the crude aqueous extract of *S. polyanthum* leaves and its derived fractions with previous reported activities related to antihypertensive effect.

Compound	Chemical Structure	Highest intensity (%)	ASP	F1ASP	F2ASP	F3ASP	
1-galloyl-glucose		0.67 %	6.90 %	20.24 %	34.35 %	(major compound)	
Polydatin		0.29 %	2.57 %	-	-	30.51 %	(major compound)
Sesamol		0.24 %	2.75 %	7.73 %	-		
Brazilin		1.19 %	-	-	-		
Eugenol		0.17 %	-	-	-		
Ellagic acid		0.08 %	-	-	-		
Kukoamine A		-	-	-	2.32 %		
Cyclo-curcumin		0.10 %	0.38 %	-	-		
able to attenuate β-nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunit p47phox expression which is responsible for increased vascular oxygen radical, and this can eventually prevent any oxidative stress and reinstate nitric oxide bioavailability.34 Nitric oxide is an important endothelium-derived relaxing factor that might cause vasorelaxation, reducing the total peripheral resistance, and this might have contributed to the antihypertensive effect. Furthermore, kukoamine A which was found only in F2ASP was shown to induce hypotension in rats at a dose of 5 mg/kg when administered intravenously.35 Other than that, cyclocurcumin that was found in ASP crude extract and F1ASP in the current study, were previously shown to significantly inhibit the contraction of the vascular muscle of isolated rat aorta ring.36

CONCLUSION

This study found 1-galloyl glucose as the major compound with several other phenolic compounds such as polydatin, sesamol, brazilin, eugenol, ellagic acid, kukoamine A, and cyclocurcumin in the active antihypertensive crude extract and fractions of Syzygium polyanthum leaves. These phenolic compounds have proven biological activities related to the antihypertensive effect, thus they may be in part, responsible for the antihypertensive effect by Syzygium polyanthum leaves and thus further isolation is recommended.

ACKNOWLEDGEMENT

This research is funded by the Ministry of Higher Education, Malaysia with grant number FRGS1/2018/SKK10/UiTM/02/1. The authors would like to acknowledge the staff at Natural Product Laboratory, Kulliyyah of Science, International Islamic University Malaysia, and the staff from Biomedicine Unit, School of Health Sciences and Animal Research and Service Centre, Universiti Sains Malaysia for providing technical support in carrying out this experiment.

REFERENCES

1. World Health Organization. A global brief on hypertension: silent killer, global public health crisis. World Health Day 2013. World Health Organization, 2013.
2. Bloch MJ. Worldwide prevalence of hypertension exceeds 1.3 billion. J Am Soc Hypertens 2016;10(10):753-54.
3. Yusufali AM, Khatib R, Islam S, Alhabib KF, Bahonar A, Swidan HM, et al. Global burden of hypertension and its trends from 1990 to 2010: a systematic analysis. Circulation 2013;128(14):1487-61.
4. Blainski A, Lopes GC, De Mello JCP. Application and analysis of the folin–phenol method for determination of gallic acid using HPLC analysis. Pharmacogn J 2018;10(4):663-71.
5. Nuryadi E, Mulyono B, Setianegara T. Antihypertensive effect of Syzygium polyanthum var. polyanthum leaves ethanolic extract on Wistar rats. J Pharmacol Pharmacother 2012;3(2):172-77.
6. Abdulazeez MA, Ibrahim S, Ameen DA, Ayo JO, Carvalho L, Manosra J, et al. Bioassay-guided fractionation and antihypertensive properties of fractions and crude extracts of Peristrophe bicalyculata. Nees Acta Pol Pharm 2015;72(2):319-28.
7. Blainski A, Lopes GC, De Mello JCP. Antioxidant and free radical scavenging activities of Prosopis juliflora leaves. J Photochem Photobiol B Biol 2016;153:231-40.
8. Weller MG. A unifying review of bioassay-guided fractionation, effect-directed analysis and related techniques. Sensors 2012;12(7):9181-209.
9. Md Shah F, Nordin R, Zakaria Z, Zainal H, Hashim MA, et al. Effect of β-nicotinamide adenine dinucleotide phosphate on hemodynamics and excitability of rat aortae. J Pharm Anal 2016;6(3):283-86.
10. Abubakar AS, Fasuyi FA, Iwaye OA, Abubakar IA, Olanrewaju TO, et al. Antihypertensive activity of Vincetoxicum ruphanum extract in Wistar rat. J Med Plants Res 2014;8(2):286-90.
DeMers D, Wachs D. Physiology, Mean Arterial Pressure. StatPearls: StatPearls Publishing; 2020.

Habib GB. Chapter 44 - Hypertension. In: Levine GN, editor. Cardiology Secrets (Third Edition). Philadelphia: Mosby; 2010. p. 285-92.

Lufuluabo LG, Moke LE, Bongo GN, Liyongo CI, Ashande CM, Sapo BS, et al. A review on the Phytochemistry and Pharmacology of Psidium guajava L.(Myrtaceae) and future direction. Discovery Phytomedicine 2018;5(2):7-13.

Iridis B, Asemawi MZ, Nasiba US, Mahmud R, Abubakar K. Antihypertensive and vasorelaxant effect of Alstonia scholaris stem bark extracts and fractions. Int J Pharmacol 2015;11(4):327-34.

López-Frolán R, Hernández-Ledesma B, Câmara M, Pérez-Rodríguez ML. Evaluation of the antioxidant potential of mixed fruit-based beverages: a new insight on the folin-ciocalteu method. Food Anal Methods 2018;11(10):2897-906.

Sánchez-Rangel JC, Benavides J, Heredia JB, Cisneros-Zevallos L, Jacobo-Velázquez DA. The Folin–Ciocalteu assay revisited: improvement of its specificity for total phenolic content determination. Anal Methods 2013;5(21):E990-99.

Wong SP, Leong LP, Koh JHV. Antioxidant activities of aqueous extracts of selected plants. Food Chemistry 2006;99:775-83.

Safriani N, Arpi N, Erfiza NM. Potency of curry (Murayya koenigi) and salam (Eugenia polyantha) leaves as natural antioxidant sources. Pak J Nutr 2015;14(3);131.

Har L, Ismail I. Antioxidant activity, total phenolics and total flavonoids of Syzygium polyanthum (Wight) Walp leaves. International Journal of Medicinal Aroma Plants 2012;2(2):219-28.

Ahmed ZB, Yousfi M, Viaene J, Dejaegher B, Demeyer K, et al. Potentially antidiabetic and antihypertensive compounds identified from Pistacia atlantica leaf extracts by LC fingerprinting. J Pharm Biomed Anal 2018;149:547-56.

Du Q-H, Peng C, Zhang H. Polydatin: a review of pharmacology and pharmacokinetics. Pharm Biomed Anal 2013;51(11):1347-54.

Hemalatha G, Pugalendi KV, Saravanan R. Modulatory effect of sesamol on DOCA-salt-induced oxidative stress in uninephrectomized hypertensive rats. Mol Cell Biochem 2013;379(1-2):255-65.

Yan Y, Chen Yc, Lin Yh, Guo J, Niu Zr, Li L, et al. Brazilin isolated from the heartwood of Caesalpinia sappan L induces endothelium-dependent and independent relaxation of rat aortic rings. Acta pharmacologica Sinica 2015;36(11):1318-26.

Nirmal NP, Rajput MS, Prasad RG, Ahmad M. Brazilin from Caesalpinia sappan heartwood and its pharmacological activities: a review. Asian Pac J Trop Med 2015;8(6):421-30.

Peixoto - Neves D, Wang Q, Leal - Cardoso JH, Rossoni LV, Jaggar JH. Eugenol dilates mesenteric arteries and reduces systemic BP by activating endothelial cell TRPV 4 channels. Br J Pharmacol 2015;172(14):3484-94.

Mnafgui K, Kaanich F, Derballa K, Hadj Derballa S, Slamet S, et al. Inhibition of key enzymes related to diabetes and hypertension by eugenol in vitro and in alloxan-induced diabetic rats. Arch Physiol Biochem 2013;119(5):225-36.

Berkban T, Boumout P, Bunbupha S, Welbat JU, Kukongviriyapan U, Kukongviriyapan V, et al. Ellagic acid prevents L-NAME-induced hypertension via restoration of eNOS and p47phox expression in rats. Nutrients 2015;7(7):5265-80.

Funayama S, Yoshida K, Konno C, Hikino H. Structure of kukoamine A, a hypotensive principle of Lycium chinense root barks. Tetrahedron 1980;21(14):1355-66.

Kim K, Kim J-J, Jung Y, Noh J-Y, Syed AS, Kim CY, et al. Cyclocurcumin, an antivasoconstrictive constituent of Curcuma longa (Turmeric). J Nat Prod 2017;80(1):196-200.
ABOUT AUTHORS

Azlini Ismail: Azlini Ismail is an Assistant Professor (senior lecturer) at Department of Fundamental Dental and Medical Sciences, Kulliyyah of Dentistry, International Islamic University Malaysia (IIUM). Her research interests include cardiovascular pharmacology, pharmacognosy, natural product, and traditional medicine.

Erlena Nor Asmira Abdul Rahim: Erlena Nor Asmira is an MSc Biotechnology (IIUM) and Bsc Chemistry (UTM Pahang) holder currently working as Sales Executive cum. Biotechnologist at Asia Botanicals Sdn Bhd. Her current work is related with food supplement, natural products and traditional medicine.

Muhammad Nor Omar: Muhammad Nor Omar is a professor at Department of Biotechnology, Kulliyyah (Faculty) of Science, International Islamic University Malaysia (IIUM). He focus his research in the area of natural products besides developing products from palm oil oleochemicals.

Wan Amir Nizam Wan Ahmad: Wan Amir Nizam Wan Ahmad is currently a Senior Lecturer at School of Health Sciences, Universiti Sains Malaysia. His research interest include natural product pharmacology, cardiovascular disease and animal model of disease.

Cite this article: Ismail A, Rahim ENAA, Omar MN, Wan Ahmad WAN. Antihypertensive Assay-Guided Fractionation of Syzygium polyanthum Leaves and Phenolics Profile Analysis Using LC-QTOF/MS. Pharmacogn J. 2020;12(6)Suppl:1670-92.