A microscopic model for a class of mixed-spin quantum antiferromagnets

J.V. Alvarez, Roser Valentí, A. Zheludev

1 Fakultät 7, Theoretische Physik, University of the Saarland, 66041 Saarbrücken, Germany.
2 Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6393, USA.

PACS numbers: 75.25.+z, 75.10.Jm, 75.50.Ee

Low-dimensional (low-D) quantum magnetism remains at the forefront of condensed matter research for almost two decades. This is primarily because this field deals with simple models of magnetism that demonstrate a broad spectrum of complex quantum-mechanical phenomena of a general and fundamental nature. The simplicity of the Hamiltonians involved, as well as the low dimensionality, often allow accurate theoretical and numerical treatment. On the other hand, the discovery of real low-D materials allows experimental studies for direct comparison with theory on the quantitative level. A particular area of great recent interest is the co-existence of “quantum” and “classical” properties in systems composed of weakly coupled quantum spin chains. One good example is the interplay between continuum and spin-wave dynamics in gapless quasi-one-dimensional (quasi-1D) Heisenberg systems such as KCuF$_3$ and BaCu$_2$Si$_2$O$_6$. At the focus of the present work is a more complex phenomenon: the seemingly paradoxical co-existence of 3D magnetic long-range order and 1D quantum gap excitations in rare earth nickelates with the general formula R$_2$BaNiO$_5$ (R= magnetic rare earth).

R$_2$BaNiO$_5$ species have two types of spin carriers. S = 1 Ni$^{2+}$ ions form distinct antiferromagnetic chains running along the a-axis of the crystal structure. If these chains were perfectly isolated, they would be a classic example of a Haldane antiferromagnet with no long-range order even at $T=0$ and a gap in the magnetic excitation spectrum. Long-range ordering that occurs in R$_2$BaNiO$_5$ at low temperatures is driven by the magnetic s = $\frac{1}{2}$ R$^{3+}$ ions, positioned in-between the chains. 3D magnetic order involves both the R$^{3+}$ and Ni$^{2+}$ spins. What is particularly interesting though, is that Haldane-gap excitations associated with the Ni-chains persist in the ordered state and co-exist with conventional order-parameter excitations (spin waves). By now, a wealth of experimental data on several R$_2$BaNiO$_5$ compounds has been accumulated. Most theoretical work, however, was based on a simple Mean Field (MF) or Random Phase Approximation (RPA) treatment of the interactions between Ni-chain and rare earth subsystems. The existing numerical studies were aimed at calculating the “bare” properties of the Ni-chains, needed to complete the MF/RPA equations. While the MF/RPA approach turned out to be an extremely useful tool in understanding the basic physics involved, it has numerous intrinsic limitations, particularly for dilute (R$_{1-x}$Y$_x$)$_2$BaNiO$_5$ systems or in the case of strong Ni-R coupling. In the present work we abolish the MF/RPA framework and construct a microscopic model for R$_2$BaNiO$_5$ compounds. We then employ this model in a systematic first-principle numerical study of these interesting materials.

In order to construct the microscopic model we will use the available experimental results to design an appropriate description for the magnetic ions and interactions in the system: (i) A good understanding of the Ni-subsystem can be drawn from the known properties of Y$_2$BaNiO$_5$, a material where the magnetic rare earths have been replaced by non-magnetic Y$^{3+}$. The Yttrium-nickelate is an almost perfect physical realization of the Haldane gap antiferromagnet. Neutron scattering data show a large gap $\Delta \sim 10 \text{meV}$ and well characterized Haldane excitations. This suggests that the intrachain Ni-Ni exchange coupling in the chains running along the a-axis has to be $J \sim 25 \text{meV}$. Furthermore, there is no evidence of 3D long range order even at the lowest temperatures. Any residual direct coupling between the chains, both in b or c direction, is smaller than the critical value necessary to establish AF order at low enough temperatures. This critical value depends quadratically on the gap and it is expected to be large in this family of nickelates due to the magnitude of the gap. Therefore we will consider the direct Ni-Ni interchain coupling irrelevant for a physical description of the material.

(ii) When Y, located between the chains, is completely substituted by a magnetic rare earth R, the system orders antiferromagnetically. The Néel temperature is typically smaller than the gap energy. For example, in the case R=Nd the $T_N = 48 \text{K}$ and $\Delta \sim 11 \text{meV}$ ($\sim 127 \text{K}$). In the paramagnetic phase ($T > T_N$), the Ni-chain excitations in R$_2$BaNiO$_5$ are virtually indistinguishable from those in the Yttrium compound at the same temperature, implying that very little should change in the model of the $S = 1$ chains while the ordering should be driven by some kind of exchange Ni-R that induces an indirect coupling between the chains.

(iii) In the magnetically ordered phase, the staggered magnetization of the Ni sublattice has as $T \to 0$ saturation values of 1.0 – 1.6μ_B per ion in all the R$_2$BaNiO$_5$...
studied to date. These values are clearly smaller than the classical result 2μ_B. This observation signals that the model describing these compounds has to properly retain the quantum fluctuations in the ordered phase.

(iv) Unlike Ni-R interactions, that are vital in order to induce a static magnetization on the Ni sites below T_N, direct R-R magnetic coupling can be disregarded in our model. Indeed, the ordering temperatures in R_2BaNiO_5 compounds are typically several tens of Kelvin. Direct coupling strength between rare earths in insulators is much weaker, usually of the order of one Kelvin. This is due to the fact that in rare earth species the magnetic f-electrons are strongly localized, what prevents efficient superexchange coupling. Unlike the case of $\text{Y}_{2-x}\text{Ca}_x\text{BaNiO}_5$, where doping with Ca introduces hole carriers in the Ni-chains, this localized nature of f-electrons in the rare-earth keeps the $S=\frac{1}{2}$ chains free from charge carriers.

(v) In the crystal structure of R_2BaNiO_5, the site-symmetry for R^{3+} is very low. As a result, for each rare earth ion the degeneracy of its magnetic multiplet is lifted by crystal field effects. To investigate the low-energy part of the spectrum we only need to consider the lowest-energy orbital levels. In the case of the rare earth being a Kramers ion with half-integer total angular momentum, we shall model the magnetic rare earths by effective spin-1/2 (R^{3+}) ions. In order to decide about the type of coupling between the Ni and the R sublattices, we rely on the experimental observation of the absence of dispersion in the crystal field excitations associated with R^{3+} ions. This fact suggests that the coupling between the R and Ni sublattices is very anisotropic and can be approximated by an Ising-type term in the Hamiltonian.

With all the ingredients above, we propose now the following Hamiltonian:

$$H = J \sum_{ij} s_{i,2j}s_{i+1,2j} + J_c \sum_{ij} s_{i,2j}^z(s_{i+2j-1}^z + s_{i+2j+1}^z)$$

with J and J_c both positive. The first term in H is a $S=1$ Heisenberg model along the Ni chains, the second is an Ising-like coupling with strength J_c between the $S=1$ Ni ions and the $s = \frac{1}{2}$ magnetic moment in the rare earth. The index i runs along the chain direction and j in the direction perpendicular to the chains. A sketch of the model is shown in Fig. (1). When $J_c = 0$, H should reproduce the physics of the Y_2BaNiO_5, i.e. basiclly independent $S = 1$ chains.

We have studied this model numerically with the Quantum Monte Carlo (QMC) method using a quantum cluster algorithm, the Loop Algorithm. This method allows for an efficient sampling of the configuration space giving a specific prescription of how to perform global updates in quantum systems. Such updates involve clusters of spins with a size of the correlation length. The Hamiltonian we studied is not frustrated and does not show the sign problem. All the Boltzmann weights can be taken positive after the conventional rotation around the z-axis of all the spins in one of the two sublattices of the $S=1$ system. The difficulty in reaching extremely low temperatures is a drawback of the QMC method when one is interested in characterizing exotic ground states, mostly near quantum critical points or strongly frustrated systems. None of these cases affects our calculations since our main goal is to compare with experimental results at temperatures, as we will see, perfectly accessible for QMC. We have measured various magnitudes that can be directly compared with the available experimental data and which, in some cases, are not accessible for other approaches like the MF/RPA approximations or the zero temperature Density Matrix Renormalization Group (DMRG) calculations. These magnitudes are: (i) Magnetizations in both sublattices (ii) Néel temperatures (iii) Correlation lengths and gaps in both subsystems.

Before discussing the results, we present a brief technical description of the numerical work and data treatment. QMC simulations are performed in finite lattices therefore an exhaustive finite size analysis of the results is necessary to compare with real experiments. We used periodic boundary conditions. The magnetization (M) was computed by directly measuring $|M|$ in order to avoid the averaging between configurations around the two ground states of the model in the ordered phase, and by using the relation $M = \lim_{L \to \infty} |M|$. We considered for this extrapolation $L \times L$ lattices of size $L=8,16,24,32,48,64$ spins. The Néel temperature was then determined by using the Binder parameter B which is the fourth cumulant of the order parameter distribution. At T_N this cumulant is independent of the size of the system, apart from subdominant corrections. We have observed that for values of J_c smaller than $\sim 0.1J$ these corrections are due to the anisotropy in the scaling (i.e. different number of spins in a and c directions). We have checked this point by studying systems with different sizes $L_a = 32, 48$ spins and $L_c = 24, 32, 48$ spins. For values of $J_c \sim 0.3$ and

![FIG. 1. Microscopic model for R_2BaNiO_5. The big circles denote $S=1$ Ni spins and the small circles denote the $s = \frac{1}{2}$ R spins. J and J_c are the Ni-Ni and the Ni-R exchange couplings respectively.](image-url)
the precision needed for comparison with the experiment,
T_N can be computed by extrapolation from isotropic lattices. The statistical error bars are always smaller than the symbol sizes in all the figures presented. We measured all the magnitudes in 10^5 Monte Carlo steps after thermalization. We have used units $\mu_B = k_B = \hbar = 1$.

The staggered magnetizations obtained from the QMC computations for both the Nickel (M_{Ni}) and rare earth (M_R) sublattices are in good agreement with the experimental results for Nd$_2$BaNiO$_5$ for a suitable choice of the model parameters in the Hamiltonian. For instance, for a value of the transverse coupling $J_c = 0.31J$, we have that $M_{Ni}(T \to 0) = 0.79$ that corresponds to the value $1.6\mu_B$ observed experimentally. The Néel temperature for this value of J_c is $T_N = 0.163J$. We can take the gap in a single $S = 1$ chain, $\Delta = 0.410J$ and compute the ratio between the two main energy scales in the system $r = \frac{\Delta}{T_N}$. We observe that r is very similar in the material ($r=2.59$) and in the model ($r=2.51$). In Fig. (2) we present the temperature dependence of the staggered magnetizations in the $S = 1$ (open squares) and the $s = \frac{1}{2}$ (open circles) sublattices, M_{Ni} and M_R respectively, for the selected value of J_c obtained from the QMC simulations. The magnetization results have been rescaled with respect to the maximum saturation values, i.e. 1 for the $S = 1$ system and 0.5 for the $s = \frac{1}{2}$ system. The results can be compared with the experimental magnetic moment in the Ni (filled squares) and Nd systems (filled circles). Note the good agreement between the theoretical and experimental results at low temperatures. We also observe that the staggered magnetization in the $S = 1$ sublattice is nearly temperature independent for $T \leq \frac{T_N}{2}$. At $T=40K$, the Nd$_2$NiBaO$_5$ undergoes a magnetic structural transition and therefore we expect only qualitative agreement with our model at temperatures near T_N.

![FIG. 2. M_{Ni} (squares) and M_R (circles) vs. T. Open symbols are the results obtained with the model Hamiltonian for $J_c=0.31J$ and filled symbols are the experimental data. Both magnetizations are given in units of μ_B and have been rescaled with respect to the saturation values 1 and 0.5 respectively.](image)

Both sublattices behave qualitatively different in the ordered phase. While in the Ni sublattice the reduction of the staggered magnetization by purely quantum fluctuations is important, the R sublattice is fully saturated to the classical value $M_R = 0.5$ at $T=0$.

In order to understand the origin of the ordered phase of this quantum model we have studied the relation between the magnetizations in both sublattices for different values of J_c. In Fig. (3)(a) we show a plot of the QMC results at $T < T_N$ for M_R as a function of M_{Ni} for various values of J_c. We observe that the behavior of the magnetizations is well reproduced by the function:

$$M_R = M_0 \tanh(\alpha \beta M_{Ni})$$

where $\beta = 1/k_BT$, M_0 is the effective moment of the rare earth ion and α is a linear function of J_c in the range $0.09 < J_c < 0.5J$ as observed from our QMC results. Eq. (1) can be obtained by a mean-field approach as shown by Zheludev et al. These authors considered that the behavior of the R$_2$BaNiO$_5$ compounds in the ordered phase could be described in terms of a $S = 1$ chain of Ni ions in a staggered magnetic field induced by the $s = \frac{1}{2}$ magnetic rare earth ions and, reciprocally, the otherwise free spins $s = \frac{1}{2}$ see the mean field produced by the neighboring $S = 1$ chains.

![FIG. 3. QMC results for (a) M_R vs. M_{Ni} for various values of the coupling constant J_c. The solid lines correspond to the function Eq. (1). (b) M_{Ni} vs. the 'effective' field on the Ni-subsystem induced by M_R for various T values. The squares correspond to the DMRG results at $T=0$.](image)

The excellent agreement between this mean-field approach and our QMC results indicates that our micro-
scopic model also fulfills the property of viewing the effect of the staggered magnetization on the rare earth ions as an effective magnetic field on the Ni subsystem and vice versa.

In Fig. (3)(b) we show the relation between M_{Ni} and the staggered magnetic field induced by M_R obtained by our QMC calculations for various T values. The extrapolation $T \to 0$ reproduces the DMRG results for one $S = 1$ chain obtained by Yu et al.14 Since the R sublattice is fully polarized at $T = 0$ no rescaling is necessary to compare our data with the DMRG results. The quality of the fits in Fig. (3)(a) and the data collapse in Fig. (3)(b) suggests a technical procedure to extrapolate QMC data down to zero temperature. This procedure is obvious for magnetizations but could be extended for other thermodynamic magnitudes for Hamiltonians similar to the one proposed here.

In the context of the effective field interpretation, an analysis of the temperature dependence of M_R obtained with our QMC simulations indicates that though M_R saturates to the classical value at $T = 0$ (see Fig. (3)(a)), as expected if we consider this subsystem as a sublattice of free spins in the presence of an external field, this behavior cannot be reproduced by a purely classical mean field model in the R sublattice, namely mean field just proportional to the magnetization in the R sublattice and independent of the Ni magnetization. This fact is signaling that quantum fluctuations in the Ni sublattice are essential to describe the magnetization in the R sublattice.

FIG. 4. Inverse correlation length vs. temperature for the Ni-chain subsystem (circles), the R-subsystem along a (squares) and for a single $S = 1$ chain (triangles). Solid lines correspond to the law $\xi^{-1} \sim (T - T_N)^{\eta}$. At higher T, the Ni-subsystem behaves like a Haldane $S = 1$ chain.

We discuss now the spatial spin-spin correlations in the paramagnetic phase. In Fig. (4) we plot the inverse of the correlation length ξ^{-1} along the Ni chains (circles) and along the R chains parallel to the Ni chains (squares) for $T < \Delta^c_4$. For comparison, we present ξ^{-1} in a single $S = 1$ spin chain (triangles). In this range of temperatures it is well known that the correlation length in the $S = 1$ chain is $\xi = \frac{c}{T}$ where c is the spin-excitation velocity. The correlation length is computed in all the cases by fitting the z-component of the spin-spin correlation function to the law24

$$\langle S_z^0 S_z^l \rangle = A \exp (-\frac{l}{\xi})^{1-\eta}$$

(A and η are fitting parameters) directly in a lattice of 64×64 spins and for $J_c = 0.18$ to keep T_N and Δ well separated in energy. Near T_N, the critical modes become gapless and we observe how the gap closes in both subsystems following a law $\xi^{-1} = K(T - T_N)^{\eta}$. K is the only free parameter in the fit presented in Fig. (4) as a solid line, since T_N is computed independently. As the temperature increases, the correlation length in the Ni subsystem approaches the correlation length of a single chain.

The behavior of η is completely different in both sublattices. While in the R sublattice the correlation function $\langle S_z^0 S_z^l \rangle$ can be fitted with $\eta = 0$ for all the temperatures showed in Fig. (4), in the Ni sublattice η approaches the value 0.5 in Eq. (2) as the temperature is reduced in the paramagnetic phase. We have analyzed this behavior and observed that the temperature dependence of $\eta(T)$ in the spin-spin correlation function Eq. (3) is very similar to that of η in a single chain in which Eq. (3) shows a slow crossover from $\eta = \frac{1}{2}$ at $T = 0$, more precisely $\langle S_z^0 S_z^l \rangle$ is then described by the modified Bessel function $K_{\eta}(\xi)$, to $\eta = 0$ when $T > \Delta^c_4$. The temperature dependence of $\eta(T)$ is shown in Fig. (5).

FIG. 5. Temperature dependence of the fitting parameter $\eta(T)$ in Eq. (3) for the Ni-subsystem.

The picture arising from the study of the spin-spin correlation functions is that the modes becoming gapless at T_N can be described at a mean field level. Moreover, since both the value of the correlation length and the power law corrections to the exponential behavior are very similar for the Ni subsystem and for an independent $S = 1$ chain, we can conclude that the modes remaining gapped in the system are very much like the conventional Haldane excitations.

In summary, we have shown that QMC calculations based on the proposed microscopic model are able to re-
produce the observed behavior of R_2BaNiO$_5$ mixed-spin quantum antiferromagnets remarkably well. They provide a solid numerical basis for the MF/RPA model, and make additional predictions regarding the magnetic nature of both spin species that go beyond the simplistic picture of a MF/RPA model. We hope that the proposed approach will be particularly useful in the study of dilute $(R_xY_{1-x})_2$BaNiO$_5$ compounds in the limit of small x, where the MF model becomes totally inadequate.

It is a pleasure for us to acknowledge discussions with C. Gros, F. Mila and H. Rieger. Oak Ridge National Laboratory is managed by UT-Battelle, LLC for the U.S. Department of Energy under contract DE-AC05-00OR22725.

*Previous address: Physics Department, Brookhaven National Laboratory, Upton, NY 11973-5000, USA.

1 D. A. Tennant, S.E. Nagler, D. Welz, G. Shirane, and K. Yamada, Phys. Rev. B 52, 13381 (1995); B. Lake, D. A. Tennant, and S. E. Nagler, Phys. Rev. Lett. 85, 832 (2000).
2 A. Zheludev M. Kenzelmann, S. Raymond, E. Ressouche, T. Masuda, K. Kakurai, S. Maslov, I. Tsukada, K. Uchinokura and A. Wildes, Phys. Rev. Lett. 85, 4799 (2000).
3 E. García-Matres, J.L. García-Munoz, J.L. Martínez, and J. Rodríguez-Carvajal, J. Magn. Magn. Mater. 149, 363 (1995).
4 A. Zheludev, E. Ressouche, S. Maslov T. Yokoo S. Raymond J. Akimitsu Phys. Rev. Lett. 80, 3630 (1998).
5 F.D.M. Haldane, Phys. Rev. Lett. 50, 1153 (1983).
6 S. Raymond, T. Yokoo, A. Zheludev, S. E. Nagler, A. Wildes and J. Akimitsu, Phys. Rev. Lett. 82, 2382 (1999).
7 A. Zheludev, S. Maslov, T. Yokoo, S. Raymond, S. E. Nagler and J. Akimitsu J. Phys.: Condens. Matter 13, R525 (2001).
8 J. Lou, X. Dai, S. Qin, Z. Su, L. Yu. Phys. Rev. B 60, 4357 (1999).
9 T. Yokoo, S. Raymond, A. Zheludev, S. Maslov, E. Ressouche, I. Zaliznyak, R. Erwin, M. Nakamura and J. Akimitsu, Phys. Rev. B 58, 14424 (1998).
10 J. Darriet and L. P. Regnaut, Solid State Commun. 86, 409 (1993); T. Yokoo, T. Sakaguchi, K. Kakurai and J. Akimitsu, J. Phys. Soc. Japan 64, 3651, (1995); G. Xu, J. F. DiTusa, T. Ito, K. Oka, H. Takagi, C. Broholm, G. Aeppli, Phys. Rev. B 54, R6827 (1996).
11 I. Affleck. Phys. Rev. Lett. 62, 474 (1989).
12 T. Sakai, M. Takahashi. Phys. Rev. B 42, 4357 (1990).
13 A. Zheludev, J. M. Tranquada, T. Vogt, D. J. Buttrey, Phys. Rev. B. 54, 7210 (1996).
14 J.A. Alonso, J. Amador, J.L. Martínez, I. Rasines, J. Rodríguez-Carvajal, R. Saez-Puche, Solid State Commun. 76, 467 (1990).
15 E. García-Matres, J.L. Martínez, J. Rodríguez-Carvajal, A. Salinas-Sánchez, Solid State Commun. 85, 553 (1993).
16 For a review, see Optical Spectra of Transparent Rare Earth Compounds S. Hüfner (Academic Press, London, 1978).
17 J.F. DiTusa, S-W. Cheong, J.-H Park, G. Aeppli, G. Broholm, and C.T. Chen, Phys. Rev. Lett. 73, 1857 (1994).
18 E. Dagotto, J. Riera, A. Sanvit and A. Moreo 76 1731 (1996).
19 C.D. Batista, A. A. Aligia and J. Eroles, Europhys. Lett. 43 71 (1998).
20 S. Maslov and A. Zheludev, Phys. Rev. Lett. 80, 5786 (1998).
21 H.G. Evertz, G. Lana and M. Marcu, Phys. Rev. Lett. 70, 875 (1993).
22 Monte Carlo Simulations in Statistical Physics D. P. Landau and K. Binder (Cambridge University Press, 2000).
23 E. García-Matres, J.L. Martínez and J. Rodríguez-Carvajal, Physica (Amsterdam) 234-236B, 567 (1997).
24 S. R. White and D. A. Huse, Phys. Rev. B 48, 3844 (1993).
25 E.S. Sorensen and I. Affleck, Phys. Rev. B 51, 16615 (1995).
26 Y. J. Kim and R. J. Birgeneau, Phys. Rev. B 62, 6378 (2000).
βM_{Ni}

Fit $M_R = M_0 \text{th}(\alpha \beta M_{Ni})$