Atypical electrical behavior of few layered WS$_2$ nanosheets based platform subject to heavy metal ion treatment

A Neog, S Deb, R Biswas*

Applied Optics and Photonics Lab, Department of Physics, Tezpur University, Tezpur-784028

*Corresponding author: rajib@tezu.ernet.in

Abstract

An atypical electrical behavior of WS$_2$ nanosheets deposited on Cu electrodes is reported here. The characteristic Raman peaks at 355 cm$^{-1}$ and 421.8 cm$^{-1}$ confirm the few-layer structure of WS$_2$. The addition of heavy metal ions of ~30µl on this platform results in non-ohmic behavior in I-V characteristics, accompanied by a dramatic rise of current from nA to µA. Additionally, this atypical behavior is found to be reversible. Subsequent to removal of these ions from the nanosheets, it again exhibits normal ohmic I-V characteristics. It is envisioned that this unusual characteristic will pave way for more research in the sensing direction as well as relevant fields.

Introduction

The advent of semimetal Graphene [1] and its exotic behavior [2], [3] have inspired the exploration of other 2D materials. Transition Metal Dichalcogenides (TMDC) are some of the post-graphene 2D layered materials having identical structural properties with Graphene [4]. TMDCs are characterized by formula MX$_2$ where M represents transition metals including Molybdenum (Mo), Tungsten (W) etc. with X denoting chalcogenides. In monolayer, the transition metals are sandwiched between the chalcogens thereby possessing strong intra-layer covalent bond in between them. Inter-layer weak Van der Waals attraction facilitates the exfoliation of these materials into single and few layers, analogous to Graphene [5-6]. WS$_2$ and MoS$_2$ are some of the most studied semiconductors, belonging to the family of bulk TMDCs [6]. WS$_2$ outsmarts MoS$_2$
in terms of thermal stability [7]. The exfoliation of these materials into mono- or few layers considerably preserves the bulk properties due to quantum confinement [8]. Consequently, WS₂ nanosheets have drawn more attention for exceptional electronic properties, with wide use in optoelectronics and sensing applications [9-10]. Because of large scale synthesis along with higher solubility, they are used in biomedical applications [10]. Additionally, WS₂ nanosheets find extensive use in the fields of Catalyst[11], field-effect transistor[12], lithium ion battery[13], gas sensors[14],[15], thermal battery [16], super capacitors[17], humidity sensor[18], photosensor[19]. Recently, Zuo et al reported detection of heavy metal ions Hg²⁺ and Ag⁺ with the detection limit of 3.3 nM and 1.2 nM, respectively [20]. Again, Jia Ge et al have used WS₂ nanosheets for the detection of Hg²⁺ ions with detection limit ~ 0.1 nM [21].

Generally, WS₂ possesses intrinsic S atoms being suitable coordination sites for certain heavy metal ions [22]. Very few studies address the basic affinity of WS₂ towards heavy metal ion treatment. Moreover, the I-V characteristics modulation of WS₂ due to heavy metal ion treatment is another unexplored domain. In the quest to look at these issues, we attempt to explore the sensing capability of WS₂ nanosheets towards the heavy metal ions through I-V characteristics with skipping other material functionalities. Accordingly, WS₂ nanosheets were uniformly drop casted on top of finger like structured copper electrodes.

Experimental details

Chemicals and apparatus

WS₂ (99.9%) was purchased from Sigma Aldrich. N-methly pyrrolidone, Acetone (99%), CoCl₂, FeCl₃ (98%) are purchased from Merck (USA). Deionised (DI) water was taken from a Millipore purification system. All reagents are of analytical grade and used as received without further purification. Ultrasonic bath Sonicator (UD100SH-2.8LQ), with power 100 W was used for sonication. Polypropylene centrifuge tubes (50ml) with conical bottom were used for
sonication. For centrifugation, Remi centrifuge was used. Raman Spectra of WS$_2$ nanosheets were obtained using a Raman Spectrometer (RENISHAW). I-V characteristics were done through I-V characterizer (Ketheley 2400).

Synthesis of WS$_2$ nanosheets

Bulk WS$_2$ at a concentration of 1.5mg ml$^{-1}$ was dispersed in N-methyl pyrrolidone. The dispersed WS$_2$ has been placed in a medium power bath sonicator and sonicated for 3 hours with periodic shaking. Afterwards, the solutions were centrifuged for 15 minutes with 3000 rpm with eventual settling of WS$_2$ at the bottom and walls of the polypropylene tubes. The obtained pellets were again dispersed in DI water and centrifuged, followed by 12 hours of drying to attain the desired nanosheets.

![Figure 1(a) Schematic of the fabricated finger like structured electrode device (b) Raman Spectra of atomically thin few layer WS$_2$ nanosheets](image)

Figure 1(a) Schematic of the fabricated finger like structured electrode device (b) Raman Spectra of atomically thin few layer WS$_2$ nanosheets

The as-synthesized WS$_2$ nanosheets were dispersed in DI water and ultrasonicated for 20 minutes and then drop casted on top of finger like Cu electrodes. The whole prototype was then kept in a clean chamber [see Figure 1(a)]. To investigate the effects of heavy metal ions on the drop casted WS$_2$ sheets, solution of ion was prepared. Concentrations of ions were maintained as
1 ppm throughout the experiment. All I-V characterizations of the devices were done at room temperature.

Result and Discussions

Raman Spectroscopy:

Figure 1 (b) shows the typical Raman Spectra of few layer WS$_2$ nanosheets, revealing two prominent peaks at 355 cm$^{-1}$ and 421.8 cm$^{-1}$ which correspond to E_{12g}^{Γ} and A_{1g}^{Γ} modes, respectively. It is also evident from the Raman Spectra that the intensity of A_{1g} is higher than that of E_{12g} mode with a Raman Shift of 66.8 cm$^{-1}$. This is a spectral fingerprint of differentiating single layer(65cm$^{-1}$) from bulk WS$_2$ (68.6cm$^{-1}$)[14, 23], thus confirming the as-synthesized nanosheets to be of few layers [24]

I-V analysis:

As per previous report, the I-V characteristics of WS$_2$ film deposited on quartz [14] and WS$_2$ nanosheets drop casted on two electrode devices [19] show linear features with currents in ranges of μA and nA, respectively. Our results corroborate those findings, exhibiting I-V characteristics of untreated WS$_2$ nanosheets based device to be linear in the voltage range of -9 to 9V (See Figure2). It is well evident that the scheme shows ohmic behavior. The current attained with respect to voltage variation emerges to be of nA and the maximum current attained was ~50nA.

![I-V characteristics of untreated WS$_2$ nanosheets](image-url)

Figure 2. I-V characteristics of untreated WS$_2$ nanosheets
Effect of heavy metal ions on I-V characteristics of WS$_2$ nanosheet based device:

Fe$^{3+}$ and Co$^{2+}$ ions of concentration 1ppm were added to the WS$_2$ nanosheets to observe the impact of the ions on the films with the help of I-V characteristics as shown in Figures 3 a and b. The effects were monitored up to 20 minutes at an interval of 5 min. It can be clearly observed that, as soon as the heavy metal ions were impinged on WS$_2$, the current rises from nA to µA with an abrupt change in the electrical behavior. In other words, response is more or less found to be atypical which is illustrated in Figure 3.
Figure 3. I-V characteristics of WS$_2$ nanosheets after adding a) Fe$^{3+}$ ions b) Co$^{2+}$ ions c) after removal of ions a and b corresponding to treatment with Fe$^{3+}$ and Co$^{2+}$ ions. Reversibly, removal of ions from this WS$_2$ nanosheet restores the original characteristics as depicted in Figure 3 (c). The maximum current attained after removal was \sim71-75nA. Though the current obtained in the latter is less, but the change is negligible. This reversible property of the device signifies the possibility of their use in different electrochemical sensing applications.

Conclusion:

In summary, we report atypical electrical behavior of WS$_2$ nanosheet on Cu platform. The cost-effective scheme shows ohmic behavior in absence of heavy metal ion. From IV characteristics, the current attained in pristine conditions is found to be nA range. However, subject to concentration of heavy metal ion as low as \sim30µl, the I-V characteristics shows atypical properties (non-ohmic). Subsequent removal of ions from the scheme restores original characteristics. This reversibility poses to be a unique platform for fabrication of sensitive devices based on I-V characteristics. Further addition of functionalities to this device can make it act as a selective heavy metal ion sensor.

References:

1. Bassani ,F. & Pastori Parravicini, G.(1985). *Electronic state and optical transitions in Solid*. Oxford: Pergamon

2. Novoselov ,K.S., Jiang, D., Schedin, F., Booth, T. J., Khotkevich, V. V., Morozov, S.V. & Geim, A.K., Proc. Natl Acad. Sci. USA 102,10451, 2005
3. Matthew J. Allen, Vincent C. Tung, and Richard B. Kaner, *Honeycomb Carbon: A Review of Graphene*, Chem. Rev. 110, 132–145, 2010.

4. H. S. S. Ramakrishna Matte, A. Gomathi, Arun K. Manna, Dattatray J. Late, Ranjan Datta, Swapan K. Pati, and C. N. R. Rao, *MoS2 and WS2 Analogues of Graphene*, Angew. Chem. Int. Ed. 49, 4059–4062, 2010.

5. Alexander V. Kolonov, Junji Tominaga, *Two Dimensional Transition-Metal Dichalcogenides*, Springer International Publishing Switzerland, 2016.

6. Sajedeh Manzeli, Dmitry Ovchinnikov, Diego Pasquier, Oleg V. Yazyev and Andras Kis, *2D transition metal dichalcogenides*, Nature Reviews Materials, volume 2, Article number 17033, 2017.

7. Huo, N. et al. *Photoresponsive and Gas Sensing Field-Effect Transistors Based on Multilayer WS2 Nanoflakes*. Sci. Rep. 4, 5209, 2014.

8. Wilson, J. A., Di Salvo, F. J. & Mahajan, S. *Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides*. Adv. Phys. 24, 117–201, 1975.

9. Manish Chhowalla, Hyeon Suk Shin, Goki Eda, Lain-Jong Li, Kian Ping Loh and Hua Zhang, *The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets*, Nature Chemistry, vol 5, April 2013.

10. Y.X. Yuan, R.Q. Li, Z.H. Liu, *Establishing water-soluble layered WS2 nanosheetas a platform for biosensing*, Anal. Chem. 86 3610–3615, 2014.

11. Xiangyong Zhang Hao Fei, Zhuangzhi Wu, Dezhi Wang, *A facile preparation of WS2 nanosheets as a highly effective HER catalyst*, Tungsten 1:101–109, 2019.

12. Hao Tang, Bowen Shi, Yuanyuan Pan, Jingzhen Li, Xiuying Zhang, Jiahuan Yan, Shiqi Liu, Jie Yang, Lianqiang Xu, Jinbo Yang, Mingbo Wu. *Schottky Contact in Monolayer WS2 Field-Effect Transistors* Adv. Theory Simul., 2, 1900001, 2019.
13. Masimukku Srinivaas, Cheng-Yu Wu, Jenq-Gong Duh, and Jyh Ming Wu, *Highly Rich 1T Metallic Phase of Few-Layered WS₂ Nanoflowers for Enhanced Storage of Lithium-Ion Batteries*, ACS Sustainable Chem. Eng., 7, 10363–10370, 2019

14. Dattatray J. Late1_ *, Rajesh V. Kanawade1, Padmanathan Karthick Kannan2, and Chandra Sekhar Rout, *Atomically Thin WS₂ Nanosheets Based Gas Sensor*, Sensor Letters Vol. 14, 1–6, 2016

15. Maurizio Donarelli and Luca Ottaviano, *2D Materials for Gas Sensing Applications: A Review on Graphene Oxide, MoS₂, WS₂ and Phosphorene*, Sensors, 18, 3638, 2018

16. S. Guo, H. Guo, X. Wang, Y. Zhu, M. Yang, Q. Zhang, Y. Chu, J. Wang, *Synthesis and electrochemical performance of WS₂ nanosheet for thermal batteries*, Materials Letters 2019

17. Si Liu, ac Yinxiang Zeng, Min Zhang, a Shilei Xie, Yexiang Tong, Faliang Cheng and Xihong Lu, *Binder-free WS₂ nanosheets with enhanced crystallinity as a stable negative electrode for flexible asymmetric supercapacitors*, J. Mater. Chem. A, 2017, 5, 21460

18. Ravindra Kumar Jha and Prasanta Kumar Guha, *Liquid exfoliated pristine WS₂ nanosheets for ultrasensitive and highly stable chemiresistive humidity sensors*, Nanotechnology 27 (2016) 475503 (11pp)

19. Néstor Perea-López, Ana Laura Elías, Ayse Berkdemir, Andres Castro-Beltran, Humberto R. Gutiérrez, Simin Feng, Ruitao Lv, Takuya Hayashi, Florentino López-Urías, Sujoy Ghosh, Baleeswaraiha Muchharla, Saikat Talapatra, Humberto Terrones, and Mauricio Terrones, *Photosensor Device Based on Few-Layered WS₂ Films*, Adv. Funct. Mater. 2013, 23, 5511–5517

20. XianweiZuo, HuigeZhang, QianZhu, WeifengWang, JieFeng, Xingguo Chen, *A dual-colorfluorescent biosensing platform based on WS₂ nanosheet for detection of Hg²⁺ and Ag⁺*, Biosensors and Bioelectronics, 85, 2016, 464–470
21. Jia Gea, Xin-Genga, Ya-Hui Dua, Jia-Jia Chena, Lin Zhanga, Dong-Mei Baia, Dan-Yang Jia, Ya-Lei Hua, Zhao-Hui Lia, Highly sensitive fluorescence detection of mercury(II) ions based on WS\textsubscript{2} nanosheets and T7 exonuclease assisted cyclic enzymatic amplification, Sensors and Actuators B 249 (2017) 189–194

22. Cosimo Anichini, Włodzimierz Czepa, Dawid Pakulski, Alessandro Aliprandi, Artur Ciesielski and Paolo Samorì, Chemical sensing with 2D materials, Chem. Soc. Rev., 2018, 47, 4860

23. Thripuranthaka M. and Dattatray J. Late, Temperature Dependent Phonon Shifts in Single-Layer WS\textsubscript{2}, ACS Appl. Mater. Interfaces 2014, 6, 1158–1163

24. Ayse Berkdemir, Humberto R. Gutierrez, Andres R. Botello-Mendez, Nestor Perea-Lopez, Ana Laura Elias, Chen-Ing Chia, Bei Wang, Vincent H. Crespi, Florentino Lopez-Urias, Jean-Christophe Charlier, Humberto Terrones & Mauricio Terrones, Identification of individual and few layers of WS\textsubscript{2} using Raman Spectroscopy, Scientific reports, 3, 1755, 2013
