Deblending and classifying astronomical sources with Mask R-CNN deep learning

Colin J. Burke,1,2 Patrick D. Aleo,1,3 Yu-Ching Chen,1,2 Xin Liu,1,2 John R. Peterson,4 Glenn H. Sembroski4 and Joshua Yao-Yu Lin5

1Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801, USA
2National Center for Supercomputing Applications, 1205 West Clark Street, Urbana, IL 61801, USA
3Advanced Visualization Laboratory, National Center for Supercomputing Applications, 1205 West Clark Street, Urbana, IL 61801, USA
4Department of Physics and Astronomy, Purdue University, 525 Northwestern Avenue, West Lafayette, IN 47907, USA
5Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL 61801, USA

Accepted 2019 October 7. Received 2019 October 3; in original form 2019 August 6

ABSTRACT
We apply a new deep learning technique to detect, classify, and deblend sources in multiband astronomical images. We train and evaluate the performance of an artificial neural network built on the Mask Region-based Convolutional Neural Network image processing framework, a general code for efficient object detection, classification, and instance segmentation. After evaluating the performance of our network against simulated ground truth images for star and galaxy classes, we find a precision of 92 per cent at 80 per cent recall for stars and a precision of 98 per cent at 80 per cent recall for galaxies in a typical field with \(\sim 30 \) galaxies arcmin\(^{-2}\). We investigate the deblending capability of our code, and find that clean deblends are handled robustly during object masking, even for significantly blended sources. This technique, or extensions using similar network architectures, may be applied to current and future deep imaging surveys such as Large Synoptic Survey Telescope and Wide-Field Infrared Survey Telescope. Our code, ASTRO R-CNN, is publicly available at https://github.com/burke86/astro_r_cnn.

Key words: methods: data analysis – techniques: image processing – galaxies: general.

1 INTRODUCTION

The next generation of astronomical surveys such as the Large Synoptic Survey Telescope (LSST; Ivezić et al. 2019), the Wide-Field Infrared Survey Telescope (Spergel et al. 2013), and Euclid (Amiaux et al. 2012) will produce unprecedented amounts of imaging data throughout the 2020s. This quickly approaching era demands efficient, uniform, and robust techniques to detect, classify, and analyse sources in images.

The task of star/galaxy classification is a long-standing problem in astronomy, dating back to the likes of Messier (1781). Until recently, a technique known as morphological separation (Sebok 1979; Valdes 1982) was the popular choice, which involved a simple assumption: galaxies are resolved sources, and stars point sources. Sebok (1979) and Valdes (1982) pioneered a Bayesian approach focusing on classifying objects by maximizing the probability of object class models matching the observed pixel intensity distributions. In contrast, Jarvis & Tyson (1981) use a parametric method, where clustering of data points of measured pixel intensity distribution determines the classification.

Next-generation ground-based surveys, such as LSST, will detect numerous unresolved and marginally resolved galaxies, particularly near the photometric limit. In this regime, a strictly morphology-based approach will not be able to consistently differentiate between stars and galaxies (Kim, Brunner & Carrasco Kind 2015). Thus, several studies have introduced machine learning methods such as decision trees (Vasconcellos et al. 2011), a blend of different learning approaches (Kim et al. 2015; Soumagnac et al. 2015), and deep learning (Serra-Ricart et al. 1996; Kim & Brunner 2017). See Cheng et al. (2019) for an overview and comparison of different machine learning galaxy classification techniques.

As the both the sensitivity and depth of surveys increase, we will encounter larger numbers of blended (overlapping) sources due to line-of-sight projection or source interaction (i.e. galaxy–galaxy mergers). The detection of both fainter galaxies and more extended regions of objects will increase the probability of blending. If blends are not identified, they will bias results from pipelines that assume object isolation. Some important examples include photometric

* E-mail: colinjb2@illinois.edu
redshifts (Boucaud et al. 2019) and weak lensing (Arneson 2013). Once LSST begins its survey, efficient deblending techniques will be a necessity, and thus been recognized a high priority in the field.

Current estimates place the fraction of significantly blended galaxies (3″ centre-to-centre distance) in LSST images at roughly 50 per cent (Chang et al. 2013; Dawson & Schneider 2014; Dawson et al. 2016). Chang et al. (2013) estimate roughly 10 per cent of galaxies to be blends with a 1″ centre-to-centre distance in a typical region of the sky (around 37 galaxies per arcmin²). In all, if effective deblending algorithms are not put in place during the 10-yr LSST survey, roughly 200 million galaxies could be discarded each year according to Reiman & Göhr (2019).

Even in current surveys, such as the Dark Energy Survey (DES; Abbott et al. 2018), crowded fields are challenging for the current pipeline. For this reason, a deblending code was developed by Zhang et al. (2015) for DES images of clusters of galaxies. See Sevilla-Noarbe et al. (2018) for a summary of star/galaxy classification techniques used in DES. The Hyper Suprime-Cam (HSC) Subaru Strategic Program (Aihara et al. 2018) also suffers from poor photometry in crowded fields due to significant blending (Huang et al. 2018; Aihara et al. 2019). Several existing codes for source detection and classification incorporate simple deblending algorithms into their frameworks, such as FOCAS (Jarvis & Tyson 1981), SExtractor (Bertin & Arnouts 1996), and NEXT (Andreon et al. 2000). However, these approaches are highly sensitive to configuration parameters, such as the density of sources in the field. Additionally, these codes can be inefficient compared to machine learning approaches.

Recently, new algorithmic techniques have been developed in the context of LSST such as the work of Lupton (2014) and SCARLET (Melchior et al. 2018). Similar to ASTRO R-CNN, SCARLET takes advantage of multiband imaging when there are overlapping sources. It achieves this by utilizing non-negative matrix factorization, where one matrix factor stores the source colour and the other spatial shape. It extends earlier work of Fast/Faster R-CNN (Girshick 2015; Ren et al. 2015), a deep convolutional neural network framework for instance segmentation (Fig. 1). The Mask R-CNN framework is based on the U-Net (Ronneberger, Fischer & Brox 2015) architecture, and like ASTRO R-CNN, performs pixel-level classifications. Further, both codes uniquely identify source and background pixels, allowing for a singular, cohesive analysis of object detection and classification. Although, MORPHEUS utilizes user-supplied segmentation maps and utilizes the classic watershed transform algorithm (Couprie & Bertrand 1997) to separate source and background pixels. These source pixels are subsequently classified in terms of their morphology (background, disc, spheroid, irregular, point source/compact).

Some recent works have used more experimental artificial neural network techniques for deblending and shown promising results (González, Muñoz & Hernández 2018; Boucaud et al. 2019; Reiman & Göhr 2019). Zhang & Bloom (2019) used deep learning to mask cosmic rays. With recent ubiquity of powerful machines with multiple graphics processing units (GPUs) and a plethora of machine learning libraries, these techniques have never been more accessible or appealing.

Many classification and deblending codes operate monochromatically, not taking into account source colour gradient information. In the context of DES and LSST, their uniform, multiband data should be exploited to assist with source classification and deblending. In addition, the source spectral energy distribution (SED) information can be used to help discriminate between stars and unresolved galaxies or quasars. Multiband images can also be used with convolutional neural networks to estimate photometric redshifts of galaxies and quasars (D’Isanto & Polsterer 2018; Pasquet et al. 2019).

In this work, we develop a new deep learning method based on the Mask Region-based Convolutional Neural Network (Mask R-CNN) framework (He et al. 2017) to perform all tasks of source detection classification, and deblending in a single machine learning framework. We train and validate our network using simulated images and catalogues, and test its performance using DESCam Legacy Survey (DECaLS; Dey et al. 2019) images of a crowded field. After training, this method is extremely efficient, detecting, classifying, and segmenting a 512 × 512 pixel² image in ≤100 ms using a single NVIDIA Tesla V100 GPU. This work may be extended to other telescopes and surveys using transfer learning. The code is open source and available at the ASTRO R-CNN GitHub repository (Burke, Aleo & Chen 2019).

This paper is organized as follows. In Section 2, we introduce the Mask R-CNN framework and describe the architecture of our implementation. We also explain our training procedure using transfer learning and simulated images. In Section 3, we present the results of our trained neural network, validate the results using the simulated catalogue as a ground truth, and evaluate its performance. We present results using real DECam images. In Section 4, we discuss the implications of our method and its benefits and drawbacks compared to existing work. In Section 5, we summarize our findings and conclude.

2 NETWORK AND TRAINING

Object detection, classification, and instance segmentation is an active area of research in the field of computer vision. There are several machine learning-based solutions that perform semantic/instance segmentation, such as YOLO (Redmon et al. 2016), YOLACT (Bolya et al. 2019), PANet (Liu et al. 2018), and TernausNet (Iglovikov & Shvets 2018).

Recently, He et al. (2017) developed a novel and general framework for instance segmentation called Mask R-CNN. This extends earlier work of Fast/Faster R-CNN (Girshick 2015; Ren et al. 2015), a deep convolutional neural network for classification and bounding box recognition. Mask R-CNN adds a parallel branch for instance segmentation (Fig. 1). The Mask R-CNN framework is highly efficient and robust to occlusion. Several recent works have applied Mask R-CNN to different fields from cellular biology (Tsai et al. 2019) to remote sensing (Zhang et al. 2018). We select this framework for its recent ubiquity and maturity. Even more recent works have built upon Mask R-CNN (e.g. Mask Scoring R-CNN; Huang et al. 2019) and Zimmermann & Siems (2019), but are not explored in this work.

In this section, we describe our Mask R-CNN implementation for the purpose of star/galaxy detection, classification, and deblending. We also outline our training, validation, and test data set generation using simulated images. Our training procedure is a form of supervised learning where simulated images and labelled masks are used to train the network. We describe this process in detail below.
and resize implementation of Mask R-CNN from Abdulla (2017). This code is built on the Keras library (Chollet et al. 2015) using a TensorFlow (Abadi et al. 2016) backend. We allow multiband flexible image transport system (FITS) files (Pence et al. 2010) as image input.

2.1 Implementation

The code developed in this work extends the Python language implementation of Mask R-CNN from Abdulla (2017). This code is built on the Keras library (Chollet et al. 2015) using a TensorFlow (Abadi et al. 2016) backend. We allow multiband flexible image transport system (FITS) files (Pence et al. 2010) as image input during both the training and detection (inference) modes. The final segmentation masks are saved as multi-extension FITS files.

The problem of source detection, classification, and deblending in astronomical surveys is well suited to the Mask R-CNN framework which performs all tasks in one cohesive package.

Our Mask R-CNN implementation uses the standard 101-layer deep residual network (ResNet-101; He et al. 2016) architecture as its backbone. On its own, ResNet-101 is a feature extractor, wherein earlier layers detect low-level features (e.g. corners or edges) and later levels detect high-level features (e.g. galaxies or stars) using residual learning. By using shortcut connections in 3-layer deep residual blocks, ResNet-101 is able to solve the degrading accuracy problem: with increasing network depth, accuracy becomes saturated and degrades quickly (Bengio, Simard & Frasconi 1994; He et al. 2016). This occurs when back-propagating the gradient, where repeated multiplications involving small weights tend to create smaller and smaller gradients to the point of ineffectiveness (Huang et al. 2016). This is referred to as the vanishing gradient problem.

As with Faster R-CNN, Mask R-CNN is a feature pyramid network (FPN) which defines hierarchically sized anchors for multiscale object recognition. This FPN adds a second pyramid network that allows high-level features to be passed down to lower levels and vice versa, so that any layer has an awareness of both low- and high-end features (Lin et al. 2017). With a feature map at each level of the second pyramid (instead of a single backbone feature in the top layer of the first pyramid), the one most appropriate for the size of the object is chosen at runtime, ultimately enabling better feature extraction (Abdulla 2017; Lin et al. 2018).

Once the appropriate backbone feature map is chosen, this is fed to the region proposal network (RPN) for scanning (Ren et al. 2015). The RPN is a neural network which scans in a sliding window fashion over thousands of anchors – overlapping areas of different sizes and aspect ratios – to generate two outputs for each anchor: an associated anchor class and bounding box refinement. For anchor class, the anchor will be assigned as foreground/positive or background/negative, where the former suggests the existence of an object contained within it, and the latter does not (a third type, neutral, does not contribute to training). If assigned positive, the bounding box refinement will generate a suggested shifted bounding box to place the object at its centre. These predictions most likely to contain objects are called proposals and sent to the next stage as regions of interest (RoIs; Fig. 2).

In this work, we implement three RoIs classifications: star, galaxy, or background. However, the background class is trivial and will be ignored in our analysis. This essentially makes our model a simple binary classifier. Now, each RoI is assigned another bounding box. Unfortunately, RoI boxes are likely to be of all different sizes, which confuse classifiers. To circumvent this, RoIAlign samples the feature maps and applies bilinear interpolation1 such that there is a fixed input size (represented by the first layer after RoIAlign in Fig. 1). RoIs are aligned with the RoIAlign layer and piped through the CNN, a process founded by He et al. (2017) to improve AP scores over the standard RoIPool (Girshick 2015) due to its preservation of exact spatial locations critical to feature extraction (He et al. 2017).

In final instance segmentation (masking) stage, each pixel is assigned a class which can be used to mask sources and obtain (deblended) cut-outs from full-scale images. Mask shapes are stored at bounding box positions using the ‘mini masks’ feature to optimize the training. We use a fixed image size of 512×512 (image sub-region) $\times 3$ (g, r, z bands) pixel to simplify the training. These

1The code we adopted uses TensorFlow’s crop_and_resize function as a numerically efficient approximation.
image sub-regions are used in our extension of Mask R-CNN, and the output can be tiled to full-scale images or mosaics.

2.2 Training set

A common problem of artificial neural network techniques is the lack of a sufficiently sized, uniform, and unbiased training set. For example, one may wish to train on astronomical sources which are too faint for current surveys or too rarely observed. We alleviate these problems by using simulated images of crowded extragalactic fields. Importantly, using simulated images gives us a large training set of a known catalogue of stars and galaxies. This data is used as a truth to test our network’s performance without the misclassification errors in real catalogues.

We invoke The Photon Simulator (PhoSim; Peterson et al. 2015) to simulate DECam images. PhoSim is an ab initio photon Monte Carlo code originally developed for LSST. We use PhoSim with the Blanco 4-m DECam telescope/instrument options adapted from Flaugher et al. (2015). The PhoSim DECam implementation includes a full description of the optical prescription and focal plane, as described by Cheng (2017). PhoSim can quickly simulate images of pseudo-random star and galaxy catalogues under a distribution of typical observing conditions. PhoSim includes all relevant physics of the atmosphere, telescope and camera optics, and detector. Below, we detail our procedure for generating a large, uniform, and realistic training set of PhoSim DECam images.

Simulated galaxies are described using PhoSim’s sersic-Complex three-dimensional galaxy model. This model includes three-dimensional ellipsoidal Sérsic profiles (Sérsic 1963) for both the bulge and disc morphology, along with additional parameters for describing irregular knots and spiral structure and their three-dimensional orientations. By sampling these parameters from realistic distributions, PhoSim can simulate images with spiral, elliptical, or irregular galaxies. The approximate number density and population of galaxies is derived from the cosmic star formation history described in Madau & Dickinson (2014). Galaxies are given random, typical SEDs for the bulge and disc, derived from Mollá, García-Vargas & Bressan (2009). A simple model accounting for the different stellar ages and metallicities of the bulge and disc is considered (Peletier & Balcells 1996; Gallazzi et al. 2005).

Milky Way stars are simulated as point sources whose number density distribution varies as a function of galactic latitude. Thestellar population follows the initial mass function described in Kroupa (2001). Stellar SEDs are derived from Castelli & Kurucz (2003) and Kurucz (1993). Stellar metallicities and atmosphere parameters are derived from Allende Prieto et al. (2004) and Prugniel, Vauglin & Koleva (2011).

Next, we outline our procedure for generating the training set data. The only additional change made to PhoSim is to use an increased number density of galaxies to simulate a more dense extragalactic field, such as a cluster of galaxies. We use a 4× over-density of galaxies which works out to about 30 galaxies arcmin−2 in our images. We execute PhoSim in two stages, which are outlined as follows:

(i) Simulate 512×512 pixel2 (≈ 5 arcmin2) DECam images in three bands (g, r, z) of a pseudo-random crowded extragalactic field with a 150 s integration time. We simulate stars and galaxies according to PhoSim’s realistic distributions between the typical magnitude range $12 < g < 23$. This integration time and limiting magnitude roughly approximates typical DECaLs data release 7 coadds (Dey et al. 2019). Given the various observing conditions, the typical minimum signal-to-noise ratio limit for sources in our images is $S/N \sim 2$ fainter objects will ultimately contribute to objects missed in Mask R-CNN detection.

(ii) For every object in the field, simulate a 512×512 pixel2 g-band image with no background using the same catalogue from step (i). This second stage is used to produce the object masks. This way, occlusion can be handled from the simulated masks and the network can be trained to identify separate masks for blended sources. Multiple instances of PhoSim are run simultaneously to parallelize this stage.

To speed-up the simulations, we use PhoSim’s perfect optics configuration with a simple ~ 1 arcsec PSF model. This excludes all higher order optical perturbations and atmospheric effects. Although our simulations are idealized and do not capture all systematics, the neural network only needs to capture the basic morphology of objects and noise in reduced images. Instead, it is sufficient to employ data augmentation afterwards, described in Section 2.4, to vary the images and reduce overfitting. Each image has ~ 150 object masks corresponding to a star or galaxy.

We generate 1000 simulated DECam images in our training set, for a total training set of approximately 150 000 astronomical sources. An example of a typical PhoSim training set image with its galaxy and star masks is shown in Fig. 3. We show the distribution of object sizes (in pixels) in our images in Fig. 4.

An additional validation set with 250 images is generated using PhoSim in the same manner as the training set. The validation set is used to reduce overfitting and tune the hyperparameters to find the best model. During the training phase, the model is tested on the validation set to ensure that it is generalizing sufficiently. If the model is solely classifying well on the training set but not the validation set, this is a sign of overfitting. Similarly, we also generate a test data set of size 50 to get an unbiased evaluation of the performance of the network.

2.3 Data standardization

The colour values in each training image are assigned to re-scaled values in each band according to the z-score normalization prescription,

$$R = A(z - \bar{z})/\sigma_z,$$

$$G = A(r - \bar{r})/\sigma_r,$$

$$B = A(g - \bar{g})/\sigma_g,$$

(1)

where R is pixel values in the red channel, z is the z-band mean value, and σ_z is the z-band standard deviation (and similarly for the green G and blue B channels using the r and g bands, respectively). The scale factor A can be adjusted, for example to correct for exposure times or changes in the instrument sensitivity. We fix $A = 10^4$ for the training. It is important to preserve the relative values between colour channels so that the source colour information is retained. We perform this standardization on each set of images (an example is shown in Fig. 5), because the distribution of values can vary greatly in astronomical images depending on objects in the field and observing setup/conditions. This standardization of the image values means our network is not sensitive to the exposure time, gain of the detector, or the final normalization of the reduced images from an image reduction pipeline. This same data standardization is performed on real images during inferencing.
2.4 Data augmentation

We employ the technique of data augmentation (Krizhevsky, Sutskever & Hinton 2012; Dieleman, Willett & Dambre 2015) to reduce network overfitting. We perform several image transformations to increase the robustness of our network. These data augmentations preserve object masks and classes. In this work, we augment the data by randomly applying zero to four of the following augmentations:

(i) Rotate: The image and masks are rotated 90, 180, or 270 deg.
(ii) Mirror: The image and masks arrays are mirrored left–right or up–down.
(iii) Blur: Smooth the image using a two-dimensional Gaussian kernel with size σ (in pixels) sampled from a random uniform distribution in the interval [2.0, 6.0). This blurs the image and masks, mimicking different PSF sizes.
(iv) Add: Add or subtract random values element-wise to each image channel. The possible values are restricted to a range of ± 10 per cent times the maximum value in the image.

These simple augmentations mimic additional observing setups and conditions at little computational expense. With the addition to the random stars and galaxies in the PhoSim images, our network learns rotational invariance. These image augmentations help our network generalize its results to real images or images with slightly different features than the training set.

2.5 Transfer learning

Transfer learning is a technique in machine learning where networks can generalize knowledge of one task to complete a different but related task. [See Tan et al. (2018) for an overview of deep transfer learning.] In one example of transfer learning, pre-trained weights from one data set are used as initial conditions for training on another data set. This improves the speed of training and reduce overfitting of the network. We use Mask R-CNN weights provided by Abdulla (2017) trained on the Microsoft Common Objects in Context (MS COCO) data set (Lin et al. 2014) as the starting point for our training procedure. MS COCO is a data set of $\sim 328,000$ images with 91 classes of everyday objects (Fig. 6).
Our network is trained in two stages using stochastic gradient descent (Kingma & Ba 2015). Stochastic gradient descent updates the model parameters (weights) θ_j by minimizing the cost function $J(\theta)$ in the equation

$$\theta_{j+1} = \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_j),$$

where α is the learning rate. The learning rate is a hyperparameter that is fine-tuned so that the model avoids trapping in local minima and achieves convergence. The first stage performs a re-training of the head layers with a learning rate of $\alpha = 10^{-3}$. The second stage trains all layers with a learning rate starting at $\alpha = 10^{-4}$ which we decrease progressively to $\alpha = 10^{-6}$. We use 50 learning epochs in total (see Appendix A). Nearly all 1000 sets of training images and 250 validation images are processed per epoch. By re-scaling our training data to 16-bit integer arrays, we can read-in several sets of images and masks per GPU simultaneously using ResNet-101.

When training, each sampled RoI has an associated multitask loss, following the form $L = L_{\text{cls}} + L_{\text{box}} + L_{\text{mask}}$ (He et al. 2017). Here, L_{cls} is the classification loss $-\log p_u$ for ground-truth class u and discrete probability distribution per RoI $p = (p_0, \ldots, p_K)$ over $K + 1$ classes (Girshick 2015). L_{box} is the bounding-box loss as defined in Girshick (2015). Because the mask branch contains K binary masks of resolution $m \times m$ for each of the K classes, a per-pixel sigmoid is applied and thus defines L_{mask} as the average binary cross-entropy loss. This specific form of the loss was chosen by He et al. (2017) instead of the more commonly used per-pixel softmax and multinomial cross-entropy in fully convolutional network implementation to allow the network to generate masks across classes without competition between them. This is vital for decoupling class and mask prediction, a key feature of the Mask R-CNN architecture.

We use four state-of-the-art NVIDIA Tesla V100 GPUs (each with 5120 cores and 16 GB high bandwidth memory) to train on 1000 simulated colour images. To speed-up the training, we employ model-based parallelism. Our model is copied on to each GPU where the training workload is divided equally before the weights are brought back together. Our training took ~ 3 h to complete (wall time) and reached a total training set losses of $L_{\text{cls}} = 0.209 L_{\text{box}} = 0.208 L_{\text{mask}} = 0.311$. After this initial cost to train the network, detection and inference can be performed on images in less than a second. Our loss curve during training is shown in Appendix A.

3 RESULTS

To validate our trained Mask R-CNN network, we test its performance against simulated PhoSim images from the test data set. The test data set is not used in the training, thus it can be used to give an unbiased estimate of the network performance. Then, we assess our network using a real DECam image of a crowded field and present examples of deblending.

3.1 Network performance

We use our simulated PhoSim catalogue as a truth catalogue to validate and evaluate the performance of our Mask R-CNN implementation. Throughout this section we use the test data set, on which the network is not trained. Thus, we can avoid any misclassification bias that would come from using a real image and catalogue. However, there may be systematic differences between the simulated and real images that are not taken into account in this section.

To quantify the performance of our network’s classification capability, we calculate the precision and recall for each image in the test data set. The precision p (purity) and recall r (completeness) are defined as follows:

$$p = \frac{TP}{TP + FP},$$
$$r = \frac{TP}{TP + FN},$$

where $TP = \text{true positive}$, $TN = \text{true negative}$, $FP = \text{false positive}$, and $FN = \text{false negative}$. A detection is considered positive if its ranked output (detection confidence) is greater than a given minimum detection confidence threshold (this value can be adjusted, but we choose 0.5 throughout this work). Note that the detection confidence is not the same as the Bayesian significance given by an S/N calculation. By comparing our network’s classification results to the PhoSim catalogue, we can evaluate the precision at various recalls. In this analysis, we analyse the precision and recall for both star and galaxy classes as well as both classes jointly (combined).

We adopt a metric commonly used in the machine learning community called the average precision (AP) score2 (see Everingham et al. 2010). The AP score is simply the area under the precision–recall curve, averaged for each object in an image at discrete recall levels:

$$\text{AP} = \frac{1}{\Delta r} \sum_{r \in \{0.0, 0.02, \ldots, 1.0\}} p(r),$$

where $p(r)$ is maximum the precision in bin Δr. We average the precision–recall curves and mean AP scores for all 50 images in the test data set. This procedure is then done for the intersection over union (IOU) thresholds $\text{IOU} \in \{0.5, 0.55, \ldots, 0.95\}$. The IOU is defined as the area of the intersection of the predicted and ground

2The AP score has largely superseded the older area under the receiver operating characteristic (ROC) curve in the computer vision community in favour of the AP score’s greater sensitivity for high-performing networks.
Figure 7. Typical example of detection inference (red) and ground truth (green) in the PhoSim validation data set. The intersection over union is shown in white text near each positive detection. Note the successful recognition of the saturated star and several blended objects.

Figure 8. Precision–recall curves and mean AP scores calculated at varying IOU thresholds averaged over the test data set for stars. We find IOU = 0.5 gives a mean AP score of 86.8.

Figure 9. Precision–recall curves and mean AP scores calculated at varying IOU thresholds averaged over the test data set for galaxies. We find IOU = 0.5 gives a mean AP score of 83.9.

Figure 10. Precision–recall curves and mean AP scores calculated at varying IOU thresholds averaged over the test data set calculated jointly for both stars and galaxies. We find IOU = 0.5 gives a mean AP score of 84.2.

truth masks divided by the area of the union of the predicted and ground truth masks,

$$\text{IOU} = \frac{\text{area}(\text{mask}_{\text{predicted}} \cap \text{mask}_{\text{truth}})}{\text{area}(\text{mask}_{\text{predicted}} \cup \text{mask}_{\text{truth}})}.$$ (6)

An RoI detection is considered positive if its IOU is greater than the IOU threshold. We therefore expect fewer positive detections at greater IOU thresholds. We show an example of detection masks overlayed with ground truth masks in Fig. 7 in a simulated test image. The results shown in Figs 8–10 summarize the performance of our network against PhoSim ground truth images in the test data set. We also show the confusion matrix at IOU thresholds of 0.5 (Table 1) and 0.75 (Table 2).

In Table 3, we calculate various AP metrics to evaluate the performance of our work for stars, galaxies, and a joint star+galaxy

| Table 1. Confusion matrix calculated on the test data set for stars/galaxies at an IOU threshold of 0.5. |
|---|----------------|----------------|
| Predicted | Star | Galaxy |
| Truth | Star | 585 | 39 |
| | Galaxy | 78 | 6302 |

| Table 2. Confusion matrix calculated on the test data set for stars/galaxies at an IOU threshold of 0.75. |
|---|----------------|----------------|
| Predicted | Star | Galaxy |
| Truth | Star | 330 | 68 |
| | Galaxy | 333 | 6273 |
Table 3. Summary table of our AP score metrics calculated on the test data set. Note their definitions in the text. Although our network performs well for small sources, its performance rapidly decreases for larger sources. This is likely due to the scarcity of sources with area > 16² pixel² in the training images. All stars have bounding box sizes area < 16² pixel².

Class	AP	AP₅₀	AP₇₅	AP₅	AP₇	AP₉
Star	48.6	86.8	32.3	86.8	-	-
Galaxy	49.6	83.9	42.0	75.3	7.6	0.3
Combined	49.0	84.2	39.8	76.4	7.0	0.3

These metrics show how our Mask R-CNN implementation performs across mask accuracy (by varying the IOU threshold) and scales (by evaluating for different bounding box sizes), as well as facilitates comparison to other works. Note, that our definitions of parameters are different from those used by the MS COCO evaluation, because astronomical objects are generally much smaller in area than pixels.

3.2 Deblending

To test the deblending capability of our code, we simulate a PhoSim image with a high number density of galaxies to mimic the DECaLS images. One relevant inference configuration parameter is DETECTION_NMS_THRESHOLD. This parameter sets the intersection threshold for non-maximum suppression (NMS). Mask R-CNN and other sliding window-based approaches typically result in several high-confidence detections for individual objects. NMS rejects low-confidence bounding boxes that have high IOU overlaps with another bounding box. We use an IOU threshold of 0.3 for typical images, although this threshold may be lowered in very dense regions, such as the dense central nucleus of a cluster of galaxies, to increase the likelihood that close blends are identified as distinct objects.

In Fig. 11, we demonstrate several examples of deblending performed using our Mask R-CNN technique. The network recognizes close blends and generates segmentation maps that encompass each object. Additional post-processing may be done in some scenarios, such as an S/N cut-off or a smoothing refinement of the masks. Presently, we allow some pixels to overlap with multiple objects after NMS is applied. Ultimately, the pixels that lie inside each masked region can simply be used to isolate objects.

3.3 Inference on real images

To investigate the performance of our network on real images, we use the public data release 7 DECaLS coadds available on the NOAO science archive.⁴ We wish to assess our network in the limit of a crowded extragalactic field. Therefore, we use images centred on clusters of galaxies in the Abell Catalog (Olowin 1988; Abell, Corwin & Olowin 1989). Specifically, we use DECaLS images of ACO 1689. ACO 1689 is a rich (class 4; Abell et al. 1989) cluster with a type II–III Bautz–Morgan classification (Bautz & Morgan 1970) at z = 0.183. ACO 1689’s richness and the fact that it has been extensively studied (e.g. Tyson & Fischer 1995; Taylor et al. 1998) and imaged by DECam makes it a good target for our tests. We show the result of a detection/inference on a simulated image (Fig. 12) and a real image (Fig. 13) for comparison.

We note that the PSF appears significantly larger in the real images compared to the simulated images. This may be likely due to choosing idealized simulated images that excludes some atmospheric or optical perturbations that enlarge the PSF. Another contributing factor is the DECaLS images are coadds taken in varying seeing conditions, which may result in a larger PSF. Despite this, our neural network is not overly sensitive to the PSF size because we employ a Gaussian blur augmentation. However, very bright stars which have significant blooming can result in a badly fitting mask or misclassification as a galaxy and a low IOU score for that detection.

3.4 Ultra-deep fields

We investigate how the richness (source density) of the field affects our networks performance. In general, a deeper and more crowded field is likely to contain a larger number overlapping objects. Following the procedure outlined in Section 2.2, we simulate additional images with PhoSim using an exposure time of 30 h with galaxies as faint as g = 28. This deep field mimics the depth of

⁴http://archive.noao.edu
the Subrau HSC ultra-deep field or 10-yr LSST coadds, containing \(\sim 750\) galaxies arcmin\(^{-2}\). For these simulations, we turn off charge saturation and cosmic rays in PhoSim. The result is shown in Fig. 14. We then calculate the mean AP score in this image at an IOU threshold of 0.5, following the same procedure outlined in Section 3.1. We find \(\text{AP} = 52\) (stars) and \(\text{AP} = 7.6\) (galaxies). Our network is not sensitive to the number of density of sources in the image, because the number of objects detected increases in proportion to the number in the simulations. However, galaxies with redshifted SEDs that are too faint to appear in the training images are not detected. We could mitigate this effect and increase the AP score by training on images with longer exposure times with higher redshift galaxies or allowing a lower detection confidence threshold.

4 DISCUSSION

One of the main strengths of this technique is its speed and ease of use after training. After training is completed, we find individual images can be processed in 100 ms or less depending on the GPU(s) used (not including time to read/write the results). This and similar machine learning techniques have this important strength, which
is particularly relevant for large astronomical surveys. In addition, our Mask R-CNN package performs all tasks of object detection, classification, and segmentation in parallel in a simple conceptual framework. Finally, our package is insensitive to configuration parameters, such as the density of sources in the field, PSF size, and exposure time. Instead, a large and diverse set of training images and additional data augmentations is needed.

Here, we describe briefly the new and unique contributions of this work:

(i) Establish a novel technique for instance segmentation (masking) in astronomical images.

(ii) Show how existing deep learning techniques in the field of computer vision can be used to solve difficult problems such as deblending in astronomy.

(iii) Use of multiband information to perform star/galaxy classification and deblending.

(iv) Train a neural network on large, realistic simulated images approaching the size of whole CCDs.

There are several limitations to the machine learning techniques used in this work. First, it can be hard to correct for the systematic differences between simulated and real images. Issues arise if the real images do not mimic the simulated images. This can occur
if the data in one band is missing or noisy (confusing the colours of objects). However, transfer learning could be used to perform a fine-tuning re-training for these scenarios. Occasionally, the neural network will confuse bright galaxy bulges for stars if the network has not been trained to a sufficient loss. This can be solved by training more extensively, employing NMS to quickly reject these stars, or perhaps using simulated galaxies more brighter or more realistic bulges. Finally, it can be challenging to generate a realistic training set that accounts for the vast differences in images in different regions of the sky. For example, globular clusters, near the galactic centre of the Milky Way, or images of large/extended galaxies may be challenging regimes. However, we expect that these problems can be mitigated if these types of objects were added to the simulated training data. Although care must be taken when simulating images of these ultra-dense regions. Because PhoSim works by generating a catalogue from a three-dimensional space, we must not train for detections on sources that are completely obscured by another object.

In the future, we will explore masking additional features such as cosmic rays and bleed trails. These distinct features should be straightforward for Mask R-CNN to learn. We may also explore different network architectures for instance segmentation, such as
the popular U-Net (Ronneberger et al. 2015). U-Net may be better-
suited to full-scale astronomical images because it does not create
regions around each object, which can lead to inefficiencies in the
training. The downside is that U-Net can only inherently perform
semantic segmentation (i.e. not distinguishing masks of individual
objects of the same class). Therefore, these methods must eventually
fall-back on traditional techniques to handle mask occlusion, and
may suffer from the same issues current pipelines face in crowded
fields.

Moreover, we will explore (a) executing and tiling results on a
full-scale data set with images taken under a variety of conditions,
such as DES or HSC deep coadded images; (b) predicting probability
contours for objects by training using different mask sizes or IOU
cut-offs, add photometric redshift prediction, adding additional
galaxy classes in place of the generic ‘galaxy’ classification, such as
spiral, elliptical, irregular, and lensed; and (c) implementing a
more robust interface for training and configurations. Mask R-CNN
can also be used on video for real-time instance segmentation,
which may have interesting applications for LSST and time-domain
astronomy.

There may also be additional ways to optimize our Mask R-CNN
implementation (both training and detection) on astronomical image
data. For example, it is possible that different contrast stretching
such as Lupton et al. (2004) (see González et al. 2018) or backbone
architecture will produce better results on astronomical images. The
standard techniques adopted in this work (linear scaling with the
ResNet-101 backbone) used on terrestrial images in the MS COCO
data set may not be as optimal for astronomical data which typically
have smaller objects at lower S/N. Based on our evaluation, using
training images which are less realistic, but include a larger variety
of objects and with a more uniform distribution of sizes may be
appropriate.

Because our network works well on real images, this work also
acts as a unique and real-world validation of PhoSim itself. Several
additional telescopes/instruments are implemented in PhoSim, in-
cluding LSST and Subaru HSC. Therefore, extensions of this work
to other telescopes would be straightforward. We would welcome
further extensions of the ASTRO R-CNN code repository (Burke et al.
2019) to improve the training, performance, and usability. Transfer
learning from this work to other telescopes or surveys could also be
used to shorten training time and with little required GPU resources.

5 CONCLUSIONS

In this work, we develop a new deep-learning method for classifying
and deblending sources in astronomical images. Using PhoSim, we
generate simulated images and catalogues used as a ground truth
comparison for supervised machine learning. Our code, ASTRO R-
CNN efficiently performs all tasks of source detection, classification,
and deblending in one package. The network is robust to object
overlaps and mask occlusion, resulting in clean deblends for
significantly blended sources.

We evaluate the performance of our network using the AP score
metric, and show the precision and recall curves for stars and
galaxies. Our network performs well at moderate IOU thresholds.
We measure a precision of 92 per cent at 80 per cent recall for stars
and a precision of 98 per cent at 80 per cent recall for galaxies in
a typical field with 30 galaxies arcmin$^{-2}$ with an IOU threshold
of 0.5 and a minimum detection confidence threshold of 0.5. We
show multiple examples of deblending in real and simulated images,
including in the central nucleus of an Abell cluster of galaxies.
Because of the region-based nature of the Mask R-CNN neural

network, the results are insensitive to the density of sources in the
image therefore may be used at different galactic latitudes. If care is
taken to configure and train ASTRO R-CNN properly, it may be used
on a variety of real images. The depth and quantity of images in
current and future deep optical surveys demands efficient and robust
techniques such as this one. We suggest future endeavours use this
work as an example to apply even newer and rapidly advancing
techniques from the computer vision community to astronomy.

ACKNOWLEDGEMENTS

This work utilizes resources supported by the National Sci-
ence Foundation’s Major Research Instrumentation program, grant
#1725729, as well as the University of Illinois at Urbana-
Champaign. We thank Dr. Volodymyr Kindratenko and Dr. Dawei
Mu at the National Center for Supercomputing Applications for
their assistance with the GPU cluster used in this work. This work
is based on projects started during the 2019 graduate-level AI
seminar at the Department of Astronomy, University of Illinois at
Urbana-Champaign. We thank the anonymous referees for helpful
comments.

We acknowledge use of Matplotlib (Hunter 2007), a
community-developed PYTHON library for plotting. This research
made use of Astropy, a community-developed core PYTHON
package for Astronomy (Astropy Collaboration 2013; Price-Whelan
et al. 2018). This research has made use of NASA’s Astrophysics
Data System.

NOAO is operated by the Association of Universities for Research
in Astronomy (AURA) under a cooperative agreement with the
National Science Foundation.

This project used data obtained with the Dark Energy Camera
(DECam), which was constructed by the Dark Energy Survey (DES)
collaboration. Funding for the DES Projects has been provided
by the U.S. Department of Energy, the U.S. National Science
Foundation, the Ministry of Science and Education of Spain, the
Science and Technology Facilities Council of the United Kingdom,
the Higher Education Funding Council for England, the National
Center for Supercomputing Applications at the University of Illinois
at Urbana-Champaign, the Kavli Institute of Cosmological Physics
at the University of Chicago, Center for Cosmology and Astro-
Particle Physics at the Ohio State University, the Mitchell Institute
for Fundamental Physics and Astronomy at Texas A&M University,
Financiadora de Estudos e Projetos, Fundacao Carlos Chagas Filho
de Amparo, Financiadora de Estudos e Projetos, Fundacao Carlos
Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro,
Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and
the Ministerio da Ciencia, Tecnologia e Inovacao, the Deutsche
Forschungsgemeinschaft, and the Collaborating Institutions in the
Dark Energy Survey. The Collaborating Institutions are Argonne
National Laboratory, the University of California at Santa Cruz,
the University of Cambridge, Centro de Investigaciones Ener-
geicas, Medioambientales y Tecnologicas-Madrid, the University
of Chicago, University College London, the DES-Brazil Consor-
tium, the University of Edinburgh, the Eidgenossische Technische
Hochschule (ETH) Zurich, Fermi National Accelerator Laboratory,
the University of Illinois at Urbana-Champaign, the Institut de
Ciencies de l’Espai (IEEC/CSIC), the Institut de Fisica d’Altes
Energies, Lawrence Berkeley National Laboratory, the Ludwig-
Maximilians Universitat Munchen and the associated Excellence

\footnote{http://www.astropy.org}
We show the training loss versus epoch following the learning schedule described in Section 2.6 in Figs A1–A4. The total loss L is defined as the sum of the class, bounding box, and mask losses: $L = L_{\text{cls}} + L_{\text{box}} + L_{\text{mask}}$ (He et al. 2017). We stop training at 50 epochs. After ~50 epochs, the asymptotic loss curves show diminishing returns. We note that the validation loss is consistent with the training loss. Scheduling the learning rate to progressively decrease during the training enables refinement of the network performance without overfitting on the training set.

APPENDIX: LOSS CURVES

Figure A1. Mask R-CNN total loss versus training epoch.

Figure A2. Mask R-CNN class loss versus training epoch.

Figure A3. Mask R-CNN bounding box loss versus training epoch.

Figure A4. Mask R-CNN mask loss versus training epoch.