Hom-Lie structures on 3-dimensional skew symmetric algebras

To cite this article: Elvice Ongong’ a et al 2019 J. Phys.: Conf. Ser. 1416 012025

View the article online for updates and enhancements.
Hom-Lie structures on 3-dimensional skew symmetric algebras

Elvice Ongonga1,2, Johan Richter3 and Sergei Silvestrov1

1 Division of Applied Mathematics, Mälardalen University, Box 833, Västerås 72123, Sweden
2 School of Mathematics, University of Nairobi, Box 30197-00100, Nairobi, Kenya
3 Department of Mathematics and Natural Sciences, Blekinge Institute of Technology, SE-371 79 Karlskrona, Sweden

E-mail: elvice.ongonga@mdh.se, johan.richter@bth.se, sergei.silvestrov@mdh.se

Abstract. We describe the dimension of the space of possible linear endomorphisms that turn skew-symmetric three-dimensional algebras into Hom-Lie algebras. We find a correspondence between the rank of a matrix containing the structure constants of the bilinear product and the dimension of the space of Hom-Lie structures. Examples from classical complex Lie algebras are given to demonstrate this correspondence.

1 Introduction

Hom-Lie algebras were first introduced by Hartwig, Larsson and Silvestrov in [1] by studying some examples of deformed Lie algebras which arise from twisted discretizations of vector fields. Hom-Lie algebras are therefore generalisations of Lie algebras by having an additional twist α, a linear endomorphism. The space of such linear endomorphisms that turn a skew symmetric algebra into a Hom-Lie algebra forms a vector subspace, known as Hom-Lie structures. In [3], it is proved that every 3-dimensional skew-symmetric algebra can be turned into a Hom-Lie algebra. The authors in [2] give results where the dimension of the space of such linear endomorphisms is 6.

This work gives results for the remaining dimensions of the Hom-Lie structures in 3-dimension case. The first section gives preliminaries on constructing polynomial equations from the Hom-Jacobi identity which are linear in structure constants of the linear map and gives specific equations for the dimension 3 case. The second section of this work proceeds to give results showing correspondence between the dimension of the space of possible linear endomorphisms and the rank of a 3 by 3 matrix of all structure constants of the bilinear map, denoted by C. The last section demonstrates the results obtained using examples from classical Lie algebras. The Hom-Lie structures for Simple Lie algebra $\mathfrak{sl}(2, \mathbb{C})$ have been studied previously, in for example, [7] and [8]. Hom-Lie structures for multiplicative Heisenberg Lie algebras have also been studied in [6].

2 Preliminaries

All algebras in this article are over an algebraically closed field, \mathbb{K}, of characteristic 0. We begin by giving the definition of a Hom-Lie algebra.
Definition 2.1. A Hom-Lie algebra is a triple $(V, [\cdot, \cdot], \alpha)$ consisting of a linear space V, bilinear map $[\cdot, \cdot] : V \times V \rightarrow V$ and a linear space homomorphism $\alpha : V \rightarrow V$ satisfying

\begin{align*}
[x, y] &= -[y, x] \quad \text{(skew-symmetry)} \quad (1) \\
[\alpha(x), [y, z]] + [\alpha(y), [z, x]] + [\alpha(z), [x, y]] &= 0 \quad \text{(Hom - Jacobi identity)} \quad (2)
\end{align*}

for all $x, y, z \in V$.

Let the structure constants associated to both the bilinear product and linear map be given by $\{C^{r}_{ij}\}_{i<j}$ and $\{a_{it}\}$ respectively. We have the following equations involving the structure constants in general for n-dimensional case:

\begin{equation}
[e_{i}, e_{j}] = \sum_{s=1}^{n} C^{s}_{ij} e_{s} \quad \text{and} \quad \alpha(e_{i}) = \sum_{t=1}^{n} a_{it} e_{t} \quad (3)
\end{equation}

Replacing equations in (3) in the Hom-Jacobi identity and writing the equations as linear in a_{it}, we have the following:

\begin{equation}
\sum_{t=1}^{n} a_{it} \left(\sum_{s=1}^{n} C^{s}_{jk} C^{r}_{ls} \right) + a_{jt} \left(\sum_{s=1}^{n} C^{s}_{kl} C^{r}_{ts} \right) + a_{kt} \left(\sum_{s=1}^{n} C^{s}_{il} C^{r}_{ts} \right) = 0 \quad (4)
\end{equation}

with $1 \leq i < j < k \leq n$, $r = 1, 2, \ldots, n$.

We denote the matrix of linear transformation with coefficients involving structure constants of the bilinear map by M and the column matrix involving the structure constants of linear map α by a_{α}. In n-dimensional case the matrix M has n^{2} columns and $\binom{n}{3}$ rows. The elements of M are the coefficients associated to a_{it}, a_{jt}, a_{kt} given in (4). A general construction of M is presented in [2].

Thus (4) can be written as $M a_{\alpha} = 0$ and the matrix M represents a linear transformation $L : \mathbb{K}^{9} \rightarrow \mathbb{K}^{3}$. In order to realize a Hom-Lie algebra, it is then required that $a_{\alpha} \in \ker L$. We have that $6 \leq \dim \ker L \leq 9$. Hom-Lie structures, denoted by $\text{HomLie}(\mu)$, is the space of all linear endomorphisms that satisfy the Hom-Jacobi identity for some skew symmetric algebra H. That is the vector subspace

\[\text{HomLie}(\mu) = \{ \alpha \in \text{End} V | \circ_{x,y,z} [\alpha(x), [y, z]] = 0 \} \]

where $\circ_{x,y,z} = [\alpha(x), [y, z]] + [\alpha(y), [z, x]] + [\alpha(z), [x, y]]$.

This study concerns describing the dimensions of the space of such Hom-Lie structures in 3-dimensional case. The matrix a_{α} is given as $a_{\alpha} = (a_{11} a_{21} a_{31} a_{12} a_{22} a_{32} a_{13} a_{23} a_{33})$ and matrix M associated to the bilinear product is given as

\[M = \begin{pmatrix}
M_{1,1} & M_{1,2} & M_{1,3} & M_{1,4} & M_{1,5} & M_{1,6} & M_{1,7} & M_{1,8} & M_{1,9} \\
M_{2,1} & M_{2,2} & M_{2,3} & M_{2,4} & M_{2,5} & M_{2,6} & M_{2,7} & M_{2,8} & M_{2,9} \\
M_{3,1} & M_{3,2} & M_{3,3} & M_{3,4} & M_{3,5} & M_{3,6} & M_{3,7} & M_{3,8} & M_{3,9}
\end{pmatrix} \quad (5)
\]

where

\begin{align*}
M_{r.1} &= (C^{2}_{23} C^{r}_{12} + C^{3}_{23} C^{r}_{13}) \quad , \quad M_{r.2} = (-C^{2}_{12} C^{r}_{13} - C^{3}_{13} C^{r}_{13}) \quad , \quad M_{r.3} = (C^{2}_{12} C^{r}_{13} + C^{3}_{13} C^{r}_{13}) \\
M_{r.4} &= (C^{3}_{23} C^{r}_{23} - C^{2}_{23} C^{r}_{23}) \quad , \quad M_{r.5} = (C^{1}_{13} C^{r}_{12} - C^{3}_{13} C^{r}_{23}) \quad , \quad M_{r.6} = (C^{1}_{13} C^{r}_{12} - C^{1}_{13} C^{r}_{12}) \\
M_{r.7} &= (-C^{1}_{23} C^{r}_{13} - C^{2}_{23} C^{r}_{23}) \quad , \quad M_{r.8} = (C^{1}_{13} C^{r}_{13} + C^{2}_{13} C^{r}_{23}) \quad , \quad M_{r.9} = (-C^{1}_{13} C^{r}_{13} - C^{2}_{13} C^{r}_{23})
\end{align*}
\[r = 1, 2, 3. \]

We denote by \(C \) the matrix of structure constants \(\{C_{ij}^k\}_{i<j} \) for \(i, j, k = 1, 2, 3 \) given as

\[
C = \begin{pmatrix}
C_{12}^1 & C_{12}^2 & C_{12}^3 \\
C_{13}^1 & C_{13}^2 & C_{13}^3 \\
C_{23}^1 & C_{23}^2 & C_{23}^3
\end{pmatrix},
\]

3 Hom-Lie structure dimension

In this section, we show that the dimension of HomLie(\(\mu \)) can be described by the matrix \(C \).

Proposition 3.1

Let \(H \) be a 3-dimensional skew symmetric algebra with structure constants \(\{C_{ij}^k\}_{i<j} \) and \(C \) be the matrix of structure constants. The dimension of the space of possible endomorphisms, HomLie(\(\mu \)), attains minimum dimension 6, if and only if \(\det C \) is non-zero.

From proposition 3.1, we see that if \(C \) is not of full rank then \(\dim H \mathcal{L}(\mu) \geq 7 \). For \(\dim H \mathcal{L}(\mu) = 7 \) we require that rank \(M = 2 \). Let us denote by \((m, n)_i\) any 2 by 2 sub-determinant of \(M \) involving columns \(m \) and \(n \) with \(1 \leq m < n \leq 9 \) and \(i = 1, 2, 3 \). We proceed to list all 108 such 2 by 2 sub-determinants of \(M \).

For \(i = 1, 2, 3 \)

\[
\begin{align*}
(1, 2, i) &= A_i \cdot D_3 & (1, 3, i) &= A_i \cdot B_3 & (2, 3, i) &= A_i \cdot A_3 & (4, 5, i) &= B_i \cdot D_2 & (4, 6, i) &= B_i \cdot B_2 \\
(5, 6, i) &= A_i \cdot A_2 & (7, 8, i) &= D_1 \cdot D_1 & (7, 9, i) &= D_1 \cdot B_1 & (8, 9, i) &= D_1 \cdot A_1 \\
(1, 4, i) &= C_{13}^1 C_{23} C_3 A_i + C_{23}^2 C_{23} B_i + (C_{33}^2 D_i) & (3, 5, i) &= -C_{13}^1 C_{12}^1 A_i - C_{12}^2 C_{13}^1 B_i - C_{12}^3 C_{13}^1 D_i \\
(1, 5, i) &= -C_{13}^1 C_{23}^3 A_i - C_{23}^2 C_{23}^1 B_i - C_{23}^3 C_{23}^1 D_i & (3, 6, i) &= C_{12}^1 C_{13}^2 A_i + C_{12}^2 C_{13}^2 B_i + (C_{32}^1 D_i) \\
(1, 6, i) &= C_{23}^1 C_{12}^3 A_i + C_{23}^2 C_{23}^1 B_i + C_{23}^3 C_{23}^1 D_i & (3, 7, i) &= -C_{23}^1 C_{13} D_i - C_{23}^2 C_{13} D_i + C_{23}^3 C_{13} D_i \\
(1, 7, i) &= -C_{13}^1 C_{12}^3 A_i - (C_{23}^2 B_i - C_{23}^3 C_{23} D_i) & (3, 8, i) &= C_{12}^1 C_{13} D_i + C_{12}^2 C_{13} D_i + C_{12}^3 C_{13} D_i \\
(1, 8, i) &= C_{13}^1 C_{12}^2 A_i + C_{12}^2 C_{13} D_i + (C_{32}^1 D_i) & (3, 9, i) &= -C_{12}^2 C_{13} D_i - (C_{32}^3 D_i) - C_{12}^3 C_{13} D_i \\
(1, 9, i) &= -C_{12}^1 C_{23}^3 A_i - C_{23}^2 C_{23} D_i - C_{23}^3 C_{23} D_i & (4, 7, i) &= (C_{12}^3 D_i) A_i + C_{12}^3 C_{23} D_i + C_{12}^3 C_{23} D_i \\
(2, 4, i) &= -C_{13}^1 C_{23}^3 A_i - C_{23}^2 C_{13} B_i - C_{23}^3 C_{13} D_i & (4, 8, i) &= -C_{13}^1 C_{13}^2 D_i - C_{13}^2 C_{13} B_i - C_{13}^3 C_{13} D_i \\
(2, 5, i) &= C_{13}^1 C_{13}^2 A_i + C_{13}^2 C_{13} D_i + (C_{32}^3 D_i) & (4, 9, i) &= C_{12}^2 C_{13} D_i + C_{12}^2 C_{13} D_i + C_{12}^3 C_{13} D_i \\
(2, 6, i) &= -C_{12}^1 C_{13}^2 A_i - C_{23}^2 C_{13} B_i - C_{23}^3 C_{13} D_i & (5, 7, i) &= -C_{13}^1 C_{13}^2 A_i - C_{13}^2 C_{23} B_i - C_{13}^3 C_{23} D_i \\
(2, 7, i) &= C_{13}^1 C_{23}^3 A_i + C_{23}^2 C_{23} D_i + C_{23}^3 C_{13} D_i & (5, 8, i) &= (C_{13}^3 D_i) A_i + C_{13}^3 C_{23} D_i + C_{13}^3 C_{23} D_i \\
(2, 8, i) &= -C_{13}^1 C_{23}^2 A_i - (C_{23}^2 B_i - C_{23}^3 C_{23} D_i) & (5, 9, i) &= -C_{13}^2 C_{13} D_i - C_{13}^2 C_{23} B_i - C_{13}^2 C_{23} D_i \\
(2, 9, i) &= C_{13} C_{13} A_i + C_{13} C_{23} B_i + C_{23}^3 C_{13} D_i & (6, 7, i) &= C_{13} C_{13}^2 A_i + C_{13} C_{23} B_i + C_{23}^3 C_{13} D_i \\
(3, 4, i) &= C_{13} C_{13} A_i + C_{23}^2 C_{13} B_i + C_{23}^3 C_{13} D_i & (6, 8, i) &= -C_{13} C_{13} A_i - C_{13} C_{23} B_i - C_{13} C_{23} D_i \\
& & (6, 9, i) &= (C_{13}^2 D_i) A_i + C_{13} C_{13}^2 B_i + C_{13} C_{13} D_i \\
\end{align*}
\]

where

\[
A_1 = \begin{pmatrix} C_{12}^1 C_{13} & C_{12}^2 C_{13} \\ C_{13} & C_{13} \end{pmatrix}, \quad A_2 = \begin{pmatrix} C_{12}^1 C_{13} & C_{12}^2 C_{13} \\ C_{13} & C_{13} \end{pmatrix}, \quad A_3 = \begin{pmatrix} C_{12}^2 C_{13} & C_{12}^3 C_{13} \\ C_{13} & C_{13} \end{pmatrix}
\]
\[
B_1 = \begin{vmatrix} C_{12}^1 & C_{12}^2 \\ C_{23}^1 & C_{23}^2 \end{vmatrix}, \quad B_2 = \begin{vmatrix} C_{12}^3 & C_{12}^2 \\ C_{23}^3 & C_{23}^2 \end{vmatrix}, \quad B_3 = \begin{vmatrix} C_{12}^3 & C_{12}^1 \\ C_{23}^3 & C_{23}^1 \end{vmatrix}
\]
\[
D_1 = \begin{vmatrix} C_{13}^1 & C_{13}^2 \\ C_{23}^1 & C_{23}^2 \end{vmatrix}, \quad D_2 = \begin{vmatrix} C_{13}^3 & C_{13}^2 \\ C_{23}^3 & C_{23}^2 \end{vmatrix}, \quad D_3 = \begin{vmatrix} C_{13}^3 & C_{13}^1 \\ C_{23}^3 & C_{23}^1 \end{vmatrix}
\]

Thus from the computations, we observe that all 2 by 2 minors of \(M \) are either factored into 2 by 2 minors of \(C \) or can be written as sums involving such minors of \(C \). We give the following proposition.

Proposition 3.2. Let \(H \) be a 3-dimensional skew symmetric algebra with structure constants \(\{C_{ij}^k\}_{i < j} \) and \(C \) be the matrix of structure constants. If rank \(C \) is 2 then the dimension of the space of possible endomorphisms, \(\text{HomLie}(\mu) \), is 7.

Proof. From previous result in proposition 3.1, \(M \) is of full rank if and only if \(\det C = 0 \). This implies that if rank \(C \) is 2 then \(M \) is not of full rank. We show that if rank \(C \) is 2 then there exists some non-zero 2 by 2 minor of \(M \). With rank \(C = 2 \) then it means that one of the rows can be written as a linear combination of the other two rows. That is Row \(i = \alpha \) Row \(j + \beta \) Row \(k \) for rows \(i, j, k \) and \(\alpha, \beta \in \mathbb{K} \). We consider all the possible cases.

Case 1: \(\alpha, \beta \neq 0 \).

We begin with the case where the first two rows are linearly independent.

If Row 3 = \(\alpha \) Row 1 + \(\beta \) Row 2 then

\[
D_i = -\alpha A_i \quad \text{and} \quad B_i = \beta A_i
\]

(6)

At least one of the 2 by 2 minors is non-zero since \(C \) is of rank 2. Thus since \(A_i \) is a common factor for both \(B_i \) and \(D_i \) for \(i = 1, 2, 3 \), it is enough to consider only \(A_i \). So at least one \(A_i \) must be non-zero. We consider all such possible cases.

(a) \(A_1 \neq 0 \implies (2,3)_1 = A_1 \cdot A_3 \neq 0 \).

(b) \(A_1 \neq 0, A_2 \neq 0, A_3 = 0 \implies (5,6)_1 = -B_1 \cdot A_2 \neq 0 \) since \(B_1 \neq 0 \).

(c) \(A_1 \neq 0, A_2 = 0, A_3 \neq 0 \implies (1,3)_3 = A_3 \cdot B_3 \neq 0 \) since \(B_3 \neq 0 \).

(d) \(A_1 = 0, A_2 \neq 0, A_3 \neq 0 \implies (2,3)_3 = A_3 \cdot A_3 \neq 0 \).

(e) \(A_1 = 0, A_2 = 0, A_3 \neq 0 \implies (2,3)_3 = A_3 \cdot A_3 \neq 0 \).

(f) \(A_1 = 0, A_2 \neq 0, A_3 = 0 \implies (5,6)_2 = A_2 \cdot A_2 \neq 0 \).

(g) \(A_1 \neq 0, A_2 = 0, A_3 = 0 \implies (8,9)_1 = D_1 \cdot A_1 \neq 0 \) since \(D_1 \neq 0 \).

If Row 2 = \(\alpha \) Row 1 + \(\beta \) Row 3 then

\[
D_i = \alpha B_i \quad \text{and} \quad A_i = \beta B_i \implies D_i = \alpha' A_i \quad \text{and} \quad B_i = \beta' A_i
\]

which is the same case as in (6) since \(\alpha', \beta' \neq 0 \).

Similarly, if Row 1 = \(\alpha \) Row 2 + \(\beta \) Row 3 then

\[
A_i = -\beta D_i \quad \text{and} \quad B_i = \alpha D_i \implies D_i = \beta' A_i \quad \text{and} \quad B_i = \alpha' A_i
\]

which is the same case shown from (6) since \(\beta', \alpha' \neq 0 \).

Case 2: Either \(\alpha = 0 \) or \(\beta = 0 \) but not both.
In this case, it implies we check the cases where one of the rows can be written as a scalar product of another row.

Row 2 = k Row 1

We have

\[D_i = kB_i \quad \text{and} \quad A_i = 0 \] \hspace{1cm} (7)

So at least one \(B_i \) must be non-zero. We consider all such possible cases.

(a) \(B_1 \neq 0 \implies (4,6)_1 = B_1 \cdot B_2 \neq 0 \).
(b) \(B_1 \neq 0, B_2 \neq 0, B_3 = 0 \implies (4,6)_1 = B_1 \cdot B_2 \neq 0 \).
(c) \(B_1 \neq 0, B_2 = 0, B_3 \neq 0 \implies (7,8)_1 = D_1 \cdot D_1 \neq 0 \) since \(D_1 \neq 0 \).
(d) \(B_1 = 0, B_2 \neq 0, B_3 = 0 \implies (4,5)_2 = -B_2 \cdot D_2 \neq 0 \) since \(D_2 \neq 0 \).
(e) \(B_1 = 0, B_2 = 0, B_3 \neq 0 \implies \) Either \((3,4)_3\) or \((1,6)_3\) is non-zero.
(f) \(B_1 = 0, B_2 \neq 0, B_3 = 0 \implies (4,5)_2 = -B_2 \cdot D_2 \neq 0 \) since \(D_2 \neq 0 \).
(g) \(B_1 \neq 0, B_2 = 0, B_3 = 0 \implies (7,8)_1 = D_1 \cdot D_1 \neq 0 \) since \(D_1 \neq 0 \).

Row 3 = k Row 1

We have

\[D_i = kA_i \quad \text{and} \quad B_i = 0 \] \hspace{1cm} (8)

So at least one \(A_i \) must be non-zero. We consider all such possible cases.

(a) \(A_i \neq 0 \implies (2,3)_1 = A_1 \cdot A_3 \neq 0 \).
(b) \(A_1 \neq 0, A_2 \neq 0, A_3 = 0 \implies (8,9)_1 = D_1 \cdot A_1 \neq 0 \) since \(D_1 \neq 0 \).
(c) \(A_1 \neq 0, A_2 = 0, A_3 \neq 0 \implies (8,9)_1 = D_1 \cdot A_1 \neq 0 \) since \(D_1 \neq 0 \).
(d) \(A_1 = 0, A_2 \neq 0, A_3 \neq 0 \implies (2,3)_2 = A_2 \cdot A_3 \neq 0 \).
(e) \(A_1 = 0, A_2 = 0, A_3 \neq 0 \implies (2,3)_3 = A_3 \cdot A_3 \neq 0 \).
(f) \(A_1 = 0, A_2 \neq 0, A_3 = 0 \implies \) Either \((3,5)_2\) or \((2,6)_2\) is non-zero.
(g) \(A_1 \neq 0, A_2 = 0, A_3 = 0 \implies (8,9)_1 = D_1 \cdot A_1 \neq 0 \) since \(D_1 \neq 0 \).

Row 3 = k Row 2

We have

\[B_i = kA_i \quad \text{and} \quad D_i = 0 \] \hspace{1cm} (9)

So at least one \(A_i \) must be non-zero. We consider all such possible cases.

(a) \(A_i \neq 0 \implies (2,3)_1 = A_1 \cdot A_3 \neq 0 \).
(b) \(A_1 \neq 0, A_2 \neq 0, A_3 = 0 \implies (5,6)_1 = -B_1 \cdot A_2 \neq 0 \) since \(B_1 \neq 0 \).
(c) \(A_1 \neq 0, A_2 = 0, A_3 \neq 0 \implies (1,3)_1 = -A_1 \cdot B_3 \neq 0 \) since \(B_3 \neq 0 \).
(d) \(A_1 = 0, A_2 \neq 0, A_3 \neq 0 \implies (2,3)_3 = A_3 \cdot A_3 \neq 0 \).
(e) \(A_1 = 0, A_2 = 0, A_3 \neq 0 \implies (2,3)_3 = A_3 \cdot A_3 \neq 0 \).
(f) \(A_1 = 0, A_2 \neq 0, A_3 = 0 \implies (5,6)_2 = -B_2 \cdot A_2 \neq 0 \) since \(B_2 \neq 0 \).
(g) \(A_1 \neq 0, A_2 = 0, A_3 = 0 \implies \) Either \((3,8)_1\) or \((2,9)_1\) is non-zero.

Case 3: \(\alpha, \beta = 0 \)

In this case, it implies we check the cases where one of the rows is zero while the other two are linearly independent.

Row 3 = 0
We have
\[B_i = D_i = 0 \text{ and } A_i \neq 0 \] (10)

So at least one \(A_i \) must be non-zero. We consider all such possible cases.

(a) \(A_1 \neq 0 \implies (2,3)_1 = A_1 \cdot A_3 \neq 0 \).
(b) \(A_1 \neq 0, A_2 \neq 0, A_3 = 0 \implies \) Either (6,9)_2 or (5,8)_2 is non-zero.
(c) \(A_1 \neq 0, A_2 = 0, A_3 \neq 0 \implies (2,3)_1 = A_3 \cdot A_3 \neq 0 \).
(d) \(A_1 = 0, A_2 \neq 0, A_3 \neq 0 \implies (2,3)_3 = A_3 \cdot A_3 \neq 0 \).
(e) \(A_1 = 0, A_2 = 0, A_3 \neq 0 \implies (2,3)_3 = A_3 \cdot A_3 \neq 0 \).
(f) \(A_1 = 0, A_2 \neq 0, A_3 = 0 \implies \) Either (6,9)_2 or (5,8)_2 is non-zero.
(g) \(A_1 \neq 0, A_2 = 0, A_3 = 0 \implies \) Either (3,8)_1 or (2,9)_1 is non-zero.

Row 2 = 0

We have
\[A_i = D_i = 0 \text{ and } B_i \neq 0 \] (11)

So at least one \(B_i \) must be non-zero. We consider all such possible cases.

(a) \(B_1 \neq 0 \implies (4,6)_1 = B_1 \cdot B_2 \neq 0 \).
(b) \(B_1 \neq 0, B_2 \neq 0, B_3 = 0 \implies (4,6)_1 = B_1 \cdot B_2 \neq 0 \).
(c) \(B_1 \neq 0, B_2 = 0, B_3 \neq 0 \implies \) Either (3,9)_3 or (1,7)_3 is non-zero.
(d) \(B_1 = 0, B_2 \neq 0, B_3 \neq 0 \implies (4,6)_3 = B_3 \cdot B_2 \neq 0 \).
(e) \(B_1 = 0, B_2 = 0, B_3 \neq 0 \implies \) Either (3,9)_3 or (1,7)_3 is non-zero.
(f) \(B_1 = 0, B_2 \neq 0, B_3 = 0 \implies (4,6)_2 = B_2 \cdot B_2 \neq 0 \).
(g) \(B_1 \neq 0, B_2 = 0, B_3 = 0 \implies \) Either (3,9)_1 or (1,7)_1 is non-zero.

Row 1 = 0

We have
\[A_i = B_i = 0 \text{ and } D_i \neq 0 \] (12)

So at least one \(D_i \) must be non-zero. We consider all such possible cases.

(a) \(D_1 \neq 0 \implies (7,8)_1 = D_1 \cdot D_1 \neq 0 \).
(b) \(D_1 \neq 0, D_2 \neq 0, D_3 = 0 \implies (7,8)_2 = D_2 \cdot D_1 \neq 0 \).
(c) \(D_1 \neq 0, D_2 = 0, D_3 \neq 0 \implies (7,8)_3 = D_3 \cdot D_1 \neq 0 \).
(d) \(D_1 = 0, D_2 \neq 0, D_3 \neq 0 \implies \) Either (4,8)_2 or (5,7)_2 is non-zero.
(e) \(D_1 = 0, D_2 = 0, D_3 \neq 0 \implies \) Either (1,8)_3 or (2,6)_3 is non-zero.
(f) \(D_1 = 0, D_2 \neq 0, D_3 = 0 \implies \) Either (4,8)_2 or (5,7)_2 is non-zero.
(g) \(D_1 \neq 0, D_2 = 0, D_3 = 0 \implies (7,8)_1 = D_1 \cdot D_1 \neq 0 \).

Thus we have shown that there always exists a non-zero \(2 \times 2 \) sub-determinant of \(M \) whenever rank \(C \) is 2. This implies that dimension of HomLie(\(\mu \)) is 7.

From the list of all \(2 \times 2 \) minors of \(M \) given, it follows that if rank \(C \) is 1 then all such minors are zero and hence the dimension of HomLie(\(\mu \)) > 7. So far, we have seen there is a correspondence between the rank of \(C \) and \(M \), for rank \(C = 2 \) and 3. However, if rank \(C = 1 \) this dimension can either be 8 or 9. It is obvious that if rank \(C = 0 \) then \(M \) is of rank 0 and consequently dim HomLie(\(\mu \)) = 9. We give possible cases for rank \(C = 1 \) with dim HomLie(\(\mu \)) = 9.
Proposition 3.3. If two skew-symmetric algebras \(\mathcal{A} = \mathcal{B} = \mathcal{A}(\alpha, \beta, \phi) \) of classical complex Lie algebras are isomorphic, then \(\mathcal{A} \rightarrow \mathcal{B} \) is isomorphic to \(\mathcal{B} \rightarrow \mathcal{A} \).

Proof. Let \(\phi : \mathcal{A} \rightarrow \mathcal{B} \) be the isomorphism of the algebras. Let \(\alpha \in \text{HomLie}(\mathcal{A}) \) and \(\beta \in \text{HomLie}(\mathcal{B}) \). The isomorphism between the Hom-Lie structures \(\varphi : \text{HomLie}(\mathcal{A}) \rightarrow \text{HomLie}(\mathcal{B}) \) is defined by \(\beta = \varphi(\alpha) := \phi \circ \alpha \circ \phi^{-1} \). Given \(x, y, z \in \mathcal{A} \), then there exists \(x', y', z' \in \mathcal{B} \) as images of \(x, y, z \) respectively under the isomorphism \(\phi \). That is, \(\phi(x) = x', \phi(y) = y' \) and \(\phi(z) = z' \). \(\beta = \phi \circ \alpha \circ \phi^{-1} \) implies \(\beta(x') = \phi(\alpha(x)), \beta(y') = \phi(\alpha(y)) \) and \(\beta(z') = \phi(\alpha(z)) \). We show that if \(\alpha \in \text{HomLie}(\mathcal{A}) \) then \(\beta \in \text{HomLie}(\mathcal{B}) \).

\[
\mu'(\beta(x'), \mu'(y', z')) + \mu'(\beta(y'), \mu'(z', x')) + \mu'(\beta(z'), \mu'(x', y'))
= \mu'(\alpha(\alpha(x)), \mu'(\phi(y'), \phi(z)) + \mu'(\phi(\alpha(y)), \mu(\phi(\alpha(z)), \mu(\phi(z), \phi(x))) + \mu'(\phi(\alpha(z)), \mu'(\phi(x), \phi(y)))
= \phi(\mu((\alpha(x), \mu(y, z)) + \mu((\alpha(y)), \mu(z, x)) + \mu((\alpha(z)), \mu(x, y)))
= 0
\]

Thus using proposition (3.3) we can describe dimension of all skew-symmetric algebras including Lie algebras by using representatives of such algebras.

4 3-dimensional Lie algebras
In this section, we use our results to deduce dim \(\text{HomLie}(\mathcal{A}) \) of classical complex Lie algebras. Such non-isomorphic representatives of all complex 3-dimensional Lie algebras can be seen in [4] and [5]. Let \(\{e_1, e_2, e_3\} \) be the basis of the 3-dimensional Lie algebras.
In [7] (proposition 7.1) the matrix of linear endomorphism α for all Hom-Lie algebras of $\mathfrak{sl}(2)$ type is in the form\[
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
2a_{13} & a_{22} & a_{31} \\
2a_{12} & a_{32} & a_{22}
\end{pmatrix},
\]
with 6 parameters $a_{11}, a_{12}, a_{13}, a_{13}, a_{22}, a_{32} \in \mathbb{K}$. Thus the space of HomLie(μ) for this case is of dimension 6.

Acknowledgments

Elvice Ongong’a is grateful to the International Science Program, Uppsala University for the financial support within the network of the Eastern Africa Universities Mathematics Programme (EAUMP) and to the research environment in Mathematics and Applied Mathematics (MAM), the Division of Applied Mathematics of the School of Education, Culture and Communication at Mälardalen University for hospitality and creating excellent conditions for research, research education and cooperation.

References

[1] Hartwig J T, Larsson D and Silvestrov S D 2006 Deformations of Lie algebras using $\sigma-$derivations J. Algebra 295 314-361
[2] Ongong’a E, Richter J, and Silvestrov S 2019 Classification of 3-dimensional Hom-Lie algebras J. Phys.: Conf Ser. 1194 012084
[3] Remm, E and Goze M 2017 On the algebraic variety of Hom-Lie algebras arXiv:1706.02484v1 [math.RA]
[4] Erdmann, K and Wildon, M J 2006 Introduction to Lie algebras, Springer Science & Business Media.
[5] Jacobson, N 1972 Lie algebras, Courier Corporation.
[6] Nejib, S 2018 Cohomology of Heisenberg Hom-Lie algebras, arXiv:1701.07090v4 [math.RA]
[7] Makhlouf A and Silvestrov S 2008 Hom-algebra structures J. Gen. Lie Theory Appl. 2 51-64
[8] Makhlouf A and Zusmanovich P 2018 Hom-Lie structures on Kac-Moody algebras. Journal of Algebra 515, 278-297