Identification of chondritic krypton and xenon in Yellowstone gases and the timing of terrestrial volatile accretion
Michael Broadley, Peter Barry, David Bekaert, David Byrne, Antonio Caracausi, Christopher Ballentine, Bernard Marty

To cite this version:
Michael Broadley, Peter Barry, David Bekaert, David Byrne, Antonio Caracausi, et al.. Identification of chondritic krypton and xenon in Yellowstone gases and the timing of terrestrial volatile accretion. Proceedings of the National Academy of Sciences of the United States of America, National Academy of Sciences, 2020, 117 (25), pp.13997-14004. 10.1073/pnas.2003907117. hal-02956845

HAL Id: hal-02956845
https://hal.archives-ouvertes.fr/hal-02956845
Submitted on 3 Oct 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Identification of chondritic krypton and xenon in Yellowstone gases and the timing of terrestrial volatile accretion

Michael W. Broadley*,1, Peter H. Barryb, David V. Bekaerta, David J. Byrnee, Antonio Caracausic, Christopher J. Ballented, and Bernard Martya

*Centre de Recherches Pétrographiques et Géochimiques, UMR 7358 CNRS—Université de Lorraine, BP 20, F-54501 Vandoeuvre-lès-Nancy, France; bMarine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543; cInstituto Nazionale di Geofisica e Vulcanologia, 90146 Palermo, Italy; and dDepartment of Earth Sciences, University of Oxford, OX1 3AN Oxford, United Kingdom

Identifying the origin of noble gases in Earth’s mantle can provide crucial constraints on the source and timing of volatile (C, N, H2O, noble gases, etc.) delivery to Earth. It remains unclear whether the early Earth was able to directly capture and retain volatiles throughout accretion or whether it accreted anhydrously and subsequently acquired volatiles through later additions of chondritic material. Here, we report high-precision noble gas isotopic data from volcanic gases emanating from, in and around, the Yellowstone caldera (Wyoming, United States). We show that the He and Ne isotopic and elemental signatures of the Yellowstone gas require an input from an undegassed mantle plume. Coupled with the distinct ratio of 129Xe to primordial Xe isotopes in Yellowstone compared with mid-ocean ridge basalt (MORB) samples, this confirms that the deep plume and shallow MORB mantles have remained distinct from one another for the majority of Earth’s history. Krypton and xenon isotopes in the Yellowstone mantle plume are found to be chondritic in origin, similar to the MORB source mantle. This is in contrast with the origin of neon in the mantle, which exhibits an isotopic dichotomy between solar plume and chondritic MORB mantle sources. The occurrence of solar and chondritic noble gases in the deep mantle is thought to reflect the heterogeneous nature of Earth’s volatile accretion during the lifetime of the protosolar nebula. It notably implies that the Earth was able to retain its chondritic volatiles since its earliest stages of accretion, and not only through late additions.

Significance

Volatiles play a critical role in the evolution of Earth. Nevertheless, the mechanism(s) by which Earth acquired, and was able to preserve its volatile budget throughout its violent accretionary history, remains uncertain. In this study, we analyzed noble gas isotopes in volcanic gases from the Yellowstone mantle plume, thought to sample the deep primordial mantle, to determine the origin of volatiles on Earth. We find that Kr and Xe isotopes within the deep mantle have a similar chondritic origin to those found previously in the upper mantle. This suggests that the Earth has retained chondritic volatiles throughout the accretion and, therefore, terrestrial volatiles cannot not solely be the result of late additions following the Moon-forming impact.

Author contributions: M.W.B., P.H.B., and B.M. designed research; M.W.B., D.V.B., D.J.B., A.C., C.J.B., and B.M. performed research; M.W.B., F.H.B., D.V.B., D.J.B., A.C., C.J.B., and B.M. analyzed data; and M.W.B. wrote the paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission.

This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

*To whom correspondence may be addressed. Email: broadley@crpg.cnrs-nancy.fr.

This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2003907117/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.2003907117

PNAS Latest Articles | 1 of 8
remains unknown. Krypton and xenon in the mantle are dominated by recycled atmosphere (16), rendering any evidence of accretionary signatures difficult to resolve. In order to circumvent this issue, large quantities of magmatic gas have been previously analyzed (6, 16, 17) to determine the primordial Kr and Xe signature of the mantle. Furthermore, a new protocol has been developed to accumulate mantle noble gases from highly vesicular basaltic MORB glass samples (18), which has enabled for the first time the primordial Kr and Xe signature from basaltic glass samples to be determined. The Kr and Xe isotopic data obtained from these studies supports a chondritic origin for heavy noble gases in the upper MORB source mantle (6, 18).

To date, no primordial heavy noble gas signatures have been identified in plume-influenced basaltic glass and olivine samples, with the light nonradiogenic 124,126,128Xe isotopes being, for the most part, isotopically indistinguishable from atmosphere (19, 20). The lack of isotopic anomalies in these samples is most likely a function of the lower noble gas concentrations and therefore higher degree of atmospheric contamination compared with highly vesicular MORB glass (18). Recent attempts to determine the primordial heavy noble gas signature of the deep mantle have therefore been focused on the analysis of Xe in magmatic gases (23, 25). The large range of 3He/4He is attributed to assemblage of crustal-derived4He from the surrounding Archean material, rich in radiogenic 4He, to an original high 3He/4He plume mantle source (25). This would also have the effect of increasing the 21Ne/22Ne through the addition of crustal-derived nucleogenic 21Ne, likely accounting for why the Brimstone Basin samples are offset from the Ne isotopic trend defined by the Mud Volcano samples (Fig. 2).

The mantle noble gases from Brimstone Basin could also have originated from the MORB mantle reservoir, the subcontinental lithospheric mantle (SCLM), or a mixture between these reservoirs, and, therefore, regardless of the original mantle source, the low 3He/4He measured in Brimstone Basin requires an additional crustal noble gas component enriched in radiogenic 4He (25). As the addition of crustal 4He should also

Results and Discussion

The 3He/4He of samples analyzed here range between 2.3 and 16.3 R_A ($R_A = ^4$He/3He of atmosphere), which is within the range of previously reported values for Yellowstone magmatic gases (23, 25). The large range of 3He/4He is attributed to assimilation of crustal-derived 4He from the surrounding Archean crust during magmatic gas migration (25). Assuming that magmatic gases originated from a mantle source with 3He/4He of 16.3 R_A (highest value measured in this study at Mud Volcano), then the crustal component would contribute up to 85% of the total He within the samples originating from Turbid Lake and Brimstone Basin (SI Appendix). Samples from Mud Volcano which exhibit high 3He/4He (>13 R_A), show a strong linear correlation for Ne isotopes, reflecting two-component mixing between the atmosphere and a high 20Ne/22Ne mantle component (Fig. 2). The steep slope of this mantle–air mixing line is characteristic of a mantle source enriched in primordial 22Ne relative to nucleogenic 21Ne. The trend defined by the samples is statistically distinct from the mass-dependent fractionation line, falling along a mixing line similar to that defined by samples from the Loihi Seamount, Hawaii (26). The Mud Volcano sample with the highest measured 20Ne/22Ne ratio (Giggenbach sample 1B) is also offset from the mass-dependent fractionation line when 20Ne/22Ne is plotted against 38Ar/36Ar (SI Appendix, Fig. S5), indicating that measured Ne isotopic ratios are unlikely to be the result of mass fractionation and likely representative of the Yellowstone mantle source. This, taken together with high 3He/4He values, indicates the Yellowstone mantle source has preserved a high volatile to U+Th ratio and has therefore undergone less degassing of primordial noble gases compared with the MORB mantle source (30).

Samples from Brimstone Basin, which are characterized by the lowest 3He/4He, do not follow the same Ne isotopic trend as the other samples (Fig. 2). They exhibit higher 21Ne/22Ne and plot near the MORB–air mixing line, potentially indicating that the Brimstone Basin samples contain a secondary component in addition to that sampled at Mud Volcano. Brimstone Basin is situated outside the Yellowstone Caldera (Fig. 2), where low 3He/4He have previously been attributed to the incorporation of Archean-aged crustal material, rich in radiogenic 4He, to an original high 3He/4He plume mantle source (25). This would also have the effect of increasing the 21Ne/22Ne through the addition of crustal-derived nucleogenic 21Ne, likely accounting for why the Brimstone Basin samples are offset from the Ne isotopic trend defined by the Mud Volcano samples (Fig. 2).

Fig. 1. Map of Yellowstone National Park. The locations of the three sampling sites that make up this study (Mud Volcano, Turbid Lake, and Brimstone Basin) are denoted as hexagons. Other thermal sites within the National Park are shown as red circles.
be associated with the addition of nucleogenic 21Ne, the slope of the air–mantle mixing line that passes through the Brimstone Basin samples should represent a minimum, as the addition of 21Ne would serve to lower the steepness of the slope of the mixing line. Given that the Brimstone Basin samples plot along or slightly above the MORB–air mixing line in Fig. 2, this would rule out the SCLM as the primary mantle source for Brimstone Basin, despite the fact that volcanic products attributed to the Yellowstone plume are known to contain significant SCLM contributions (33). To reconcile the MORB-like Ne isotopes with the presumed high levels of crustal He present within Brimstone Basin requires the mantle source to contain a third, less-radiogenic component, which we surmise is the Yellowstone mantle plume component (as sampled at Mud Volcano).

To further determine whether the low 4He/20Ne Brimstone Basin and high 4He/20He Mud Volcano samples share a similar mantle component, we evaluate the relationship between primordial He and Ne isotopes in the samples. When 20Ne/22Ne is plotted against 3He/22Ne (Fig. 3), all of the samples in excess of parent in other noble gas elemental ratios such as 4He/40Ar* from the addition of crustal-derived nucleogenic 21Ne, while samples from Turbid Lake are similar to atmosphere. The SCLM–air mixing line (28, 29) and mass-dependent fractionation line are shown for reference. Uncertainties are displayed at 1 σ.

The linear correlation exhibited in Fig. 3 can therefore be considered to represent a mixing line between atmosphere and a common mantle component. Extrapolating the correlation line to the plume 20Ne/22Ne endmember value of \sim13.4 (4) gives a 4He/22Ne ratio of 1.4 to 2.5 (Fig. 3). The 4He/22Ne of the Yellowstone mantle source therefore falls within the range previously published for plume-influenced samples (1.5 to 3) (14, 20) but is clearly distinct from MORB and SCLM values (>4.6) (34–36). Extrapolating to the MORB 20Ne/22Ne endmember (5) would result in an even lower 3He/22Ne, therefore further distinguishing the Yellowstone mantle source from MORB. These observations suggest that the noble gases in Brimstone Basin and Mud Volcano originate from the same plume-derived mantle source and that the higher 21Ne/22Ne measured in Brimstone Basin is simply the consequence of higher crustal 21Ne contributions (25).

The 40Ar/36Ar of the Brimstone Basin samples reach values greater than 1,400, which are the highest values yet measured in Yellowstone magmatic gas samples (37) and significantly higher than that measured in Mud Volcano and Turbid Lake (SI Appendix, Table S2). Importantly, crustal Ar contributions in the Brimstone Basin samples can be accounted for to derive the underlying mantle argon compositions (SI Appendix). Following correction for crustal 40Ar* contribution, the 40Ar/36Ar of Brimstone Basin sample 4B is 1,001 ± 42, which is still in excess of atmosphere. The corrected 40Ar/36Ar of Brimstone Basin remains higher than the other samples, suggesting that Brimstone Basin has the lowest degree of air contamination and greatest contribution of mantle-derived Ar. Unlike Mud Volcano and Turbid Lake, Brimstone Basin is not a thermal area but is still a significant degassing site (38). The low temperature of the Brimstone Basin system is considered to have limited boiling and therefore gas loss during transit toward the surface, potentially explaining why the diffusive magmatic CO$_2$ flux is so large for a
This study revealed that not only did the Brimstone Basin sample 4B show resolvable excesses in fissiogenic Xe isotopes in Brimstone Basin sample 4B, it also that the Yellowstone gas is unlikely to be sourced from a mantle reservoir with a lower $\text{Xe}_{\text{Pr}}/\text{Xe}_{\text{Primordial}}$ than MORB. Uncertainties in the measurements are displayed at 1σ confidence intervals fitted through all of the data minus the outlier sample 4A. Uncertainties on the measurements are displayed at 1 σ.

The Brimstone Basin samples analyzed in this study were found to contain excesses in $^{129}\text{Xe}/^{130}\text{Xe}$ (Fig. 4) relative to atmosphere. Excesses in $^{129}\text{Xe}/^{130}\text{Xe}$ relative to atmosphere typically signify the addition of mantle-derived ^{129}Xe, produced from the decay of short-lived radiogenic ^{129}I, therefore further confirming the lower degree of atmospheric contamination in this sample. Assuming the Yellowstone magmatic source originated from the primitive mantle, the 20Ne/AIDS value of 13.4 gives the 3He/22Ne ratio of the Yellowstone mantle source. The extrapolated 3He/22Ne of the Yellowstone mantle source is estimated relative to the Icelandic plume mantle endmember, as defined by the Iceland mantle source (6.98 ± 0.07) (20), and the $^{129}\text{Xe}/^{130}\text{Xe}$ and $^{128}\text{Xe}/^{130}\text{Xe}$ of the Yellowstone mantle source to be estimated. The extrapolated $^{124}\text{Xe}/^{130}\text{Xe}$, $^{126}\text{Xe}/^{130}\text{Xe}$, and $^{128}\text{Xe}/^{130}\text{Xe}$ ratios of the Yellowstone mantle source are shown to be generally higher than the extrapolated values determined for the MORB mantle source. The extrapolated $^{124}\text{Xe}/^{130}\text{Xe}$, $^{126}\text{Xe}/^{130}\text{Xe}$, and $^{128}\text{Xe}/^{130}\text{Xe}$ ratios suggest that the Yellowstone mantle reservoirs are typically enriched in Pu-derived Xe relative to U, considering Pu/U-derived Xe utilized to infer the degassing state of different mantle reservoirs (20). However, measured excesses in fissiogenic Xe isotopes in Brimstone Basin sample 4B are higher than would be expected for a mantle-derived sample, containing up to 12% mantle-derived Xe (Fig. 4). The fissiogenic Xe signature in Brimstone Basin therefore contains an additional Xe component produced from the decay of ^{234}Pu in the surrounding Archean crust (SI Appendix, Fig. S9), which precludes using the fissiogenic Xe isotopes to gain further insights into the Yellowstone mantle source.

No significant production pathways exist for primordial ^{124}Xe, ^{126}Xe, ^{128}Xe, and ^{130}Xe within the mantle. These isotopes are considered to be a remnant of accretionary volatiles preserved since Earth’s formation. The primordial Xe isotopes measured within the Brimstone Basin samples can therefore be used to make further inferences on the nature and composition of the Yellowstone mantle source. In Fig. 5, we show that the Yellowstone mantle source exhibits different $^{129}\text{Xe}/^{124,126,128}\text{Xe}$ ratios from that measured in MORB-derived samples (16–18). Although the difference is slight, the Brimstone Basin sample 4B has lower $^{129}\text{Xe}/^{124,126,128}\text{Xe}$ ratios than any previously measured MORB-derived sample. The lower $^{129}\text{Xe}/^{124,126,128}\text{Xe}$ measured in Yellowstone compared with MORB provides further evidence that the Yellowstone gas is unlikely to be sourced from a mantle reservoir with a MORB-like Xe isotopic signature.

Extrapolating the air–Yellowstone mixing line in Fig. 5 to the $^{129}\text{Xe}/^{130}\text{Xe}$ plume mantle endmember, as defined by the Iceland mantle source (6.98 ± 0.07) (20), gives the $^{129}\text{Xe}/^{130}\text{Xe}$, $^{128}\text{Xe}/^{130}\text{Xe}$, and $^{126}\text{Xe}/^{130}\text{Xe}$ of the Yellowstone mantle source to be estimated. The extrapolated $^{124}\text{Xe}/^{130}\text{Xe}$, $^{126}\text{Xe}/^{130}\text{Xe}$, and $^{128}\text{Xe}/^{130}\text{Xe}$ ratios of the Yellowstone mantle source are shown to be generally higher than the extrapolated values determined for the MORB mantle source. The extrapolated $^{124}\text{Xe}/^{130}\text{Xe}$, $^{126}\text{Xe}/^{130}\text{Xe}$, and $^{128}\text{Xe}/^{130}\text{Xe}$ ratios suggest that the Yellowstone gas is unlikely to be sourced from a mantle reservoir with a MORB-like Xe isotopic signature.

The Brimstone Basin samples analyzed in this study were found to contain excesses in $^{129}\text{Xe}/^{130}\text{Xe}$ (Fig. 4) relative to atmosphere. Excesses in $^{129}\text{Xe}/^{130}\text{Xe}$ relative to atmosphere typically signify the addition of mantle-derived ^{129}Xe, produced from the decay of short-lived radiogenic ^{129}I, therefore further confirming the lower degree of atmospheric contamination in this sample. Assuming the Yellowstone magmatic source originated from the primitive mantle, the 20Ne/AIDS value of 13.4 gives the 3He/22Ne ratio of the Yellowstone mantle source to be between 1.4 and 2.5. A similarly low 3He/22Ne for the Yellowstone mantle source (3.6) is found following the method set out in ref. 34. The 3He/22Ne of the Yellowstone mantle source is within the range previously determined for other plume influenced samples (1.5 to 3.0) (14, 20) but clearly distinct from that of MORB (4–6) (34, 35). The higher 3He/22Ne ratio in the copper tube (CT) sample 4A is the result of He and Ne not being adequately cryoseparated during sample preparation. The Gigenbach (GIG) sample of the same gas falls along the same mixing line as the other samples, and we therefore do not consider the higher 3He/22Ne measured in 4A to be representative of the mantle source. The dashed lines are the 1σ confidence intervals fitted through all of the data minus the outlier sample 4A.

Fig. 3. $^{20}\text{Ne}/^{22}\text{Ne}$ versus $^{3}\text{He}/^{22}\text{Ne}$ of Yellowstone volcanic gas. The He and Ne isotopic signature of the Yellowstone samples, with the exception of one outlier, are correlated, yielding a linear mixing array between atmosphere and the Yellowstone mantle source. Extrapolating the correlation line to the primitive mantle $^{20}\text{Ne}/^{22}\text{Ne}$ value of 13.4 gives the $^{3}\text{He}/^{22}\text{Ne}$ ratio of the Yellowstone mantle source to be between 1.4 and 2.5. A similarly low $^{3}\text{He}/^{22}\text{Ne}$ for the Yellowstone mantle source (3.6) is found following the method set out in ref. 34. The $^{3}\text{He}/^{22}\text{Ne}$ of the Yellowstone mantle source is within the range previously determined for other plume influenced samples (1.5 to 3.0) (14, 20) but clearly distinct from that of MORB (4–6) (34, 35). The higher $^{3}\text{He}/^{22}\text{Ne}$ ratio in the copper tube (CT) sample 4A is the result of He and Ne not being adequately cryoseparated during sample preparation. The Gigenbach (GIG) sample of the same gas falls along the same mixing line as the other samples, and we therefore do not consider the higher $^{3}\text{He}/^{22}\text{Ne}$ measured in 4A to be representative of the mantle source. The dashed lines are the 1σ confidence intervals fitted through all of the data minus the outlier sample 4A. Uncertainties on the measurements are displayed at 1 σ confidence intervals fitted through all of the data minus the outlier sample 4A. Uncertainties on the measurements are displayed at 1 σ confidence intervals fitted through all of the data minus the outlier sample 4A.

Fig. 4. Xenon isotopic spectrum of Yellowstone volcanic gas (sample 4B). Data are normalized to the isotopic composition of atmosphere and ^{136}Xe. Sample 4B is the least air-contaminated sample from Brimstone Basin. It shows resolvable $^{129}\text{Xe}/^{130}\text{Xe}$ excesses, confirming the contribution from mantle-derived xenon. Comparing the $^{129}\text{Xe}/^{130}\text{Xe}$ with that of the Iceland plume source, we calculate the amount of mantle-derived Xe present within the sample to be between 7 and 12%. The Xe isotopic spectrum corresponding to this estimated mantle contribution is shown by the shaded area (SI Appendix). The estimated heavy isotope composition (orange shaded area) is estimated relative to the Iceland plume mantle source (20), while the expected light xenon isotope signature (purple shaded area) is calculated based on the amount of primordial Xe present within the MORB source, as no previous estimates for the plume source mantle exist for light Xe isotopes. The excesses in heavy xenon isotopes in the sample are greater than expected for mantle-derived gases, indicating the sample contains an excess fissiogenic Xe component inherited from the surrounding Archean crust. The $^{129}\text{Xe}/^{130}\text{Xe}$, $^{126}\text{Xe}/^{130}\text{Xe}$, and $^{128}\text{Xe}/^{130}\text{Xe}$ ratios measured in Yellowstone are higher than would be expected from a MORB source given the excess in $^{129}\text{Xe}/^{130}\text{Xe}$, indicating that Yellowstone volcanism originates from mantle reservoir with a lower $^{129}\text{Xe}/^{130}\text{Xe}$ than MORB. Uncertainties represent 1 SE.
mantle source has a slightly higher ratio of primordial (Average Carbonaceous Chondrites [AVCC]) to recycled atmospheric Xe than the MORB mantle source (Fig. 5). However, with the exception of 124Xe/130Xe, the estimated amount of recycled atmospheric Xe isotopic in the Yellowstone plume and MORB mantle sources are within uncertainty of each other (Fig. 5), as has been previously suggested (42).

These estimates are dependent on the 129Xe/130Xe ratios chosen as the mantle endmember, so if, for instance, the 129Xe/130Xe endmember for Yellowstone was greater than that determined for the Iceland mantle source, and more similar to MORB, then the ratio of primordial to recycled Xe within the Yellowstone mantle source would be even higher (Fig. 5). Despite the large uncertainties, the Yellowstone mantle source appears to contain similar, if not slightly lower, proportions of recycled atmospheric Xe compared with the MORB mantle source. Comparable estimates for the amount of recycled Xe in the plume and MORB mantle sources (42), despite the plume source being less degassed of its volatiles, suggest that volatiles may be more efficiently recycled to the deep plume source mantle.

Although it is difficult to reach definitive conclusions based on a single determination of light isotopes in plume-influenced samples, we suggest that to account for both the high proportion of recycled Xe and the lower 129Xe/124,126,128Xe of the Yellowstone samples require that the Yellowstone mantle source have a lower 129Xe/130Xe, similar to that measured in Iceland (Fig. 5 and ref. 20). These observations confirm that the plume and MORB mantle reservoirs evolved with different ratios of 129Xe to primordial Xe isotopes (20). Since primordial Xe isotopes did not change during 129Xe production from the decay of extinct 129I over the first 100 My of Earth’s history, the differences between the two mantle reservoirs are a function of
their different initial I/Xe ratios (20). The Yellowstone mantle source, as well as that feeding other mantle plumes (20, 43), must therefore have been separated from the MORB source mantle early in Earth’s history (before 4.5 Ga), with limited mixing occurring between the two reservoirs since.

The plume origin of the noble gases from Brimstone Basin (Figs. 2, 3, and 5), coupled with their resolvable light Xe isotope compositions, suggests the plume is separated from the MORB source mantle early in Earth’s history (before 4.5 Ga), with limited mixing occurring between the two reservoirs since.

The diagram and figure captions are as follows:

Fig. 6. Primordial light xenon isotopes in the Yellowstone mantle source. The 126Xe/130Xe (A) and 128Xe/130Xe (B) versus 124Xe/130Xe of Brimstone Basin gases plot along the same trend defined previously for magmatic CO2 well gases (6, 18), upper magmatic CO2 well gases (16), and solar and chondritic noble gases (1). The yellowstone samples have been corrected for crustal U fission production of 84Kr and 86Kr. The mass-dependent fractionation line and values for Phase Q (1), AVCC (41), and Solar Wind (2) compositions are shown for reference. Uncertainties for sample 4B represent 1 SE.

Fig. 7. Chondritic krypton and xenon isotopes in the deep mantle. Brimstone Basin falls along the same trend as magmatic CO2 well gases (6) in 124Xe/130Xe (A) and 128Xe/130Xe (B) versus 86Kr/84Kr space. Magmatic CO2 well gas and Yellowstone samples have been corrected for crustal U fission production of 84Kr and 86Kr. The curvature of the mixing hyperbola between air and the original mantle composition is defined by 130Xe mant/130Xe air and is calculated performing a total least-square hyperbolic fit (SI Appendix). The trajectory of the mantle-air mixing line for both the magmatic CO2 well gas and MORB mantle sources is shown for reference. Uncertainties of Brimstone 4B represent 1 SE.
The identification of chondritic Kr and Xe in the deep plume mantle source is therefore in line with the chondritic origin of noble gases in the MORB mantle but in contrast with the convincing evidence for solar neon in plume-influenced samples (4). To account for the Ne isotopic dichotomy between the plume and MORB mantle reservoirs, it has been suggested that the MORB mantle originated from the plume mantle but was subsequently modified by additions of chondritic material following the dispersion of the solar nebula (4). This scenario is based on the fact that, in 20Ne/22Ne versus 36Ar/22Ne or 130Xe/22Ne space, plume-influenced basalts and MORBs lie along a mixing line between the solar nebula composition and a chondritic component similar to CI chondrites and/or ocean water values. Both mantle reservoirs would have hence originated with a solar noble gas composition, before being modified to variable extents by the latter addition of chondritic material (4).

To account for the chondritic Kr and Xe signature in the deep plume mantle, while preserving the solar Ne signature, therefore requires a mechanism that could overprint solar heavy noble gases without affecting solar light noble gases. Two main scenarios have been proposed to date to account for the origin of chondritic noble gases in Earth’s mantle: 1) introduction of chondritic noble gases into the mantle through time via subduction of surface material and/or 2) direct injection of chondritic material to the growing Earth following the dissipation of the solar nebula, with impacting chondritic bodies preferentially populating the MORB mantle relative to the plume mantle (4).

The subduction of chondritic volatiles from Earth’s surface could potentially introduce chondritic Kr and Xe to the plume source, considering the efficient recycling of Ar, Kr, and Xe (relative to Ne) to both the deep plume and MORB mantle sources (16, 42). However, subduction of atmospheric Xe to the mantle could not account for the chondritic Xe signature in the lower mantle. This is because the ancient atmospheric Xe component (U–Xe) was not solely chondritic but also contained up to 27% cometary Xe (3). The addition of cometary noble gases appears to be limited to the atmosphere (3), with no evidence of a U–Xe signature in the present-day mantle (18, 21). Furthermore, the efficient recycling of atmospheric Xe is not thought to continue until the atmosphere reached a modern isotopic composition, some 2.5 Ga (18, 44).

The second scenario concerning the direct addition of chondritic material to the mantle, could be related to the purported late veneer, whereby the addition of ~0.5% of the Earth’s mass was added following core formation and the moon-forming impact (45). A late veneer in the form of carbonaceous chondrite-like material could potentially have supplied the major chondritic component in the solar nebula (4). However, differences in 126Xe/124Xe (24, 28) between plume (Fig. 5) and MORB mantle reservoirs (20) require that the two reservoirs have experienced limited mixing over the last 4.45 Gt, including during the Moon-forming impact. Furthermore, Archean-aged komatiites that sample the ancient deep mantle are depleted in siderophile elements relative to the modern mantle (46), indicating that siderophile elements added to the Earth during the late veneer were not directly injected into the deep mantle but were progressively mixed in through time via mantle convection (47). The chondritic heavy noble gas component in the deep plume mantle source is therefore unlikely to have been introduced via top-to-bottom mixing of chondritic material arriving to Earth during the late veneer.

Further constraints on the timing of volcanic accretion can be provided by examining differences in 3He/22Ne between the plume and MORB mantle reservoirs (Fig. 3). During ingassing of a gravitationally captured nebular atmosphere, He and Ne are expected to elementally fractionate in accordance with their different solubilities (34, 48). This results in the 3He/22Ne of the mantle rising from the nebular value of 1.5 to ~2 to 3 (similar to values observed for primitive plumes; Fig. 3 and ref. 34). It has been suggested that, in order to increase the 3He/22Ne from the primitive plume reservoir value to that of the MORB mantle (6.6 ± 2.0) would require at least two further episodes of giant impact-driven atmospheric loss and magma ocean outgassing (34). The preservation of low 3He/22Ne within the deep mantle reservoir (as sampled here by the Yellowstone plume, with 3He/22Ne of 1.4 to 2.5) therefore indicates that it has remained at least partially isolated following the ingassing of the protosolar nebula and that subsequent giant impacts did not significantly affect its volatile element budget. This is consistent with the observed correlation between 182W anomalies and 3He/4He in mantle plumes, which suggests that the plume mantle reservoir and its noble gas budget were generated no later than 60 My after the formation of the Solar System (49). We therefore conclude from the complementary constraints brought from 3He/22Ne and Xe isotope systematics that the chondritic heavy noble gases in the Yellowstone plume mantle, at the very least, predate the Moon-forming impact and are unrelated to the chondritic component in the MORB mantle.

The existence of solar Ne in the plume mantle requires that the Earth grew to Mars-sized within the lifetime of the solar nebula (4). The Mars-sized proto-Earth was likely to have retained chondritic volatiles, as has been shown to be the case for other early accreting planetary embryos (50), prior to the ingassing of a nebular atmosphere. Ingassing of nebular volatiles to Earth’s mantle would then preferentially alter the isotopic signature of Ne, relative to Kr and Xe (10, 11), due to the much higher 2Ne/13Ne ratio of the solar nebula compared with CI chondrites (8, 9) and greater solubility of Ne in basaltic melts in comparison with Xe (48). We calculate that to raise the 20Ne/22Ne of the mantle from CI chondrites-like values (9.03 ± 2.46) to its estimated primordial value of 13.23 ± 0.22 (4) would result in a negligible contribution of solar Kr (2%) and Xe (<1%) to the mantle inventory (SI Appendix, Fig. S10). These estimates would be even lower if the starting 20Ne/22Ne composition of the mantle was taken to be the chondritic Ne–B endmember (~12.7) (7).

The preservation of primordial chondritic Kr and Xe in the deep Yellowstone mantle source has broad implications regarding the origin and timing of volatile element delivery to Earth. Notably indicates that the Earth has been retentive to chondritic volatiles throughout accretion and that, contrary to the commonly held view, terrestrial volatiles were not solely inherited from Earth’s latest stages of accretion (Moon-forming impact and late veneer). Our results imply that the dichotomy between the main sources of heavy (chondritic) and light (solar) noble gases in the deep mantle was already established within the proto-Earth’s mantle during the lifetime of the protosolar nebula.

Materials and Methods

Samples were collected in August 2018 from three localities within Yellowstone National Park: Mud Volcano, Turbid Lake, and Brimstone Basin (Fig. 1 and SI Appendix, Table S1). The sites consisted of both hot (Mud Volcano [85 °C], Turbid Lake [80 °C] and cold (Brimstone Basin [21 °C]) degassing features, which were specifically chosen as they previously showed 40Ar/36Ar values in excess of air (38), thus providing the highest probability of finding mantle-derived Kr and Xe signatures. Gas samples were collected in both refrigeration-grade copper tubes and Giggenbach bottles (i.e., preevacuated 200-cm3 glass flasks filled with 50 to 80 cm3 of 7N NaOH solution) (51). Prior to the samples being sealed, volcanic gas was flushed through the Tygon tubing and copper tubes for a minimum of 30 min to limit air contamination. Sample 4B from Brimstone Basin was flushed with gas overnight for a minimum of 12 h. Giggenbach samples were analyzed for He, Ne, Ar, and high-precision Kr and Xe (SI Appendix, Tables S3 and S4) isotopic analysis at the Centre de Recherches Pétrographiques et Géochimiques (CRPG) noble gas analytical facility, using the ThermoFisher Scientific Helix SFT for helium and Helix MC+ for neon, argon, krypton, and xenon (13). Noble gas concentrations and He, Ne, and Ar isotopes were measured in the copper tube samples in the Noble Laboratory at...
1. H. Busemann, H. Baur, R. Wieler, Primordial noble gases in “phase Q” in carbonaceous and ordinary chondrites studied by closed-system stepped etching. Meteorit. Planet. Sci. 35, 549–973 (2000).
2. A. Meshik, C. Hohenberg, O. Pravdivtseva, D. Burnett, Heavy noble gases in solar wind delivered by Genesis mission. Geochim. Cosmochim. Acta 77, 326–347 (2014).
3. B. Marty et al., Xenon isotopes in 67P/Churyumov-Gerasimenko show that comets contributed to Earth’s atmosphere. Science 356, 1069–1072 (2017).
4. C. D. Williams, S. Mukhopadhyay, Capture of nebular gases during Earth’s accretion is preserved in deep-mantle neon. Nature 565, 78–81 (2019).
5. C. J. Ballentine, B. Marty, S. Shenwood Lollor, M. Cassidy, Neon isotopes constrain convection and volatilisation in the Earth’s mantle. Nature 433, 33–38 (2005).
6. G. Holland, M. Cassidy, C. J. Ballentine, Meteorite Kr in Earth’s mantle suggests a late accretionary source for the atmosphere. Science 326, 1522–1525 (2009).
7. M. Moreira, S. Charoz, The origin of the neon isotopes in chondrites and on Earth. Earth Planet. Sci. Lett. 433, 249–256 (2016).
8. E. Mazor, D. Heymann, E. Anders, Noble gases in carbonaceous chondrites. Geochim. Cosmochim. Acta 34, 781–824 (1970).
9. V. S. Heber et al., Noble gas composition of the solar wind as collected by the Genesis mission. Geochim. Cosmochim. Acta 73, 7414–7432 (2009).
10. H. Mizuno, K. Nakazawa, C. Hayashi, Dissolution of the primordial rare gases into the molten Earth’s material. Earth Planet. Sci. Lett. 50, 202–210 (1980).
11. C. L. Harper, B. S. Jacobsen, Noble gases and Earth’s accretion. Science 273, 1814–1818 (1996).
12. H. Wang et al., Lifetime of the solar nebula constrained by meteorite paleomagnetism. Science 355, 623–627 (2017).
13. R. Yokochi, B. Marty, A determination of the neon isotopic composition of the deep mantle. Earth Planet. Sci. Lett. 225, 77–88 (2004).
14. S. Péron et al., Neon isotopic composition of the mantle constrained by single vesicle analyses. Earth Planet. Sci. Lett. 449, 145–154 (2016).
15. A. Raquin, M. Moreira, Atmospheric 36Ar/32Ar in the mantle: Implications for the nature of the terrestrial parent bodies. Earth Planet. Sci. Lett. 287, 551–558 (2009).
16. H. Kiselev, K. Nakazawa, C. Hayashi, Dissolution of the primordial rare gases into the molten Earth’s material. Earth Planet. Sci. Lett. 185, 161–166 (2000).
17. D. V. Bekarda, M. W. Broadley, A. Caracausi, B. Marty, Novel insights into the degassing history of Earth’s mantle from high precision noble gas analysis of magmatic gas. Earth Planet. Sci. Lett. 525, 115766 (2019).
18. S. Péron, M. Moreira, Onset of volatile recycling into the mantle determined by xenon anomalies. Geochim. Geophys. Geosyst. 9, 21–25 (2018).
19. M. Trèlof, J. Kunz, D. A. Clague, D. Harrison, C. J. Allegre, The nature of pristine noble gases in mantle plumes. Science 288, 1036–1039 (2000).
20. S. Mukhopadhyay, Early differentiation and volatile accretion recorded in deep-mantle neon and xenon. Nature 486, 101–104 (2012).
21. A. Caracausi, G. Avici, P. G. Burnard, E. Füri, B. Marty, Chondritic xenon in the Earth’s mantle. Nature 533, 82–85 (2016).
22. F. Albárdé, Volatilisation history of the terrestrial planets and dynamic implications. Nature 461, 1227–1233 (2009).
23. J. C. Ballentine, W. C. Evans, D. Bergfeld, A. G. Hunt, W. Shanks, Anomalous helium isotopic composition in basaltic glasses from Loihi Seamount, Hawaii. Earth Planet. Sci. Lett. 219, 61–76 (2004).
24. D. V. Bekarda, M. W. Broadley, A. Caracausi, B. Marty, Novel insights into the degassing history of Earth’s mantle from high precision noble gas analysis of magmatic gas. Earth Planet. Sci. Lett. 525, 115766 (2019).
25. J. M. Day et al., The helium flux from the continents and ubiquity of low 3He/4He recycled crust and lithosphere. Geochim. Cosmochim. Acta 153, 116–133 (2015).
26. M. S. Wang, M. B. Hanan, J. W. Shervais, Yellowstone hotspot-continent lithospheric interaction. Earth Planet. Sci. Lett. 399, 119–131 (2014).
27. J. B. Bergfeld, A. G. Hunt, W. Shanks, E. Evans, “Gas and isotope chemistry of thermal features in Yellowstone National Park,” Wyoming” (Scientific Investigations Report 2011-5012, US Geological Survey, 2011).
28. M. W. Broadley, D. V. Bekarda, E. Furi, B. Marty, Chondritic xenon in the Earth’s mantle. Nature 533, 82–85 (2016).
29. J. Hopp, M. Tieloff, R. Alther, Neon isotopes in mantle rocks from the Red Sea region reveal large-scale plume-lithosphere interaction. Earth Planet. Sci. Lett. 219, 61–76 (2004).
30. D. W. Graham, Noble gas isotope geochemistry of mid-ocean ridge and ocean island basalts: Characterization of mantle source reservoirs. Rev. Mineral. Geochem. 47, 247–317 (2002).
31. C. Gautheron, M. Moreira, Helium signature of the subcontinental lithospheric mantle. Earth Planet. Sci. Lett. 199, 39–47 (2002).
32. J. M. Day et al., The helium flux from the continents and ubiquity of low 3He/4He recycled crust and lithosphere. Geochim. Cosmochim. Acta 153, 116–133 (2015).
33. J. B. Bergfeld, A. G. Hunt, W. Shanks, E. Evans, “Gas and isotope chemistry of thermal features in Yellowstone National Park, Wyoming” (Scientific Investigations Report 2011-5012, US Geological Survey, 2011).
34. D. Bergfeld, W. C. Evans, J. B. Lowenstern, S. Hurwitz, Carbon dioxide and hydrogen sulfide degassing and cryptic thermal input to Brimstone Basin, Yellowstone National Park, Wyoming. Chem. Geol. 330, 233–243 (2012).
35. J. Labidi et al., Hydrothermal artificial N abundances constrain the origins of mantle nitrates. Nature 580, 367–371 (2020).
36. J. C. Ballentine, P. G. Burnard, Production, release and transport of noble gases in the continental crust. Rev. Mineral. Geochem. 47, 481–538 (2002).
37. R. O. Pepin, On noble gas processing in the solar accretion disk. Space Sci. Rev. 106, 211–230 (2003).
38. R. Parai, S. Mukhopadhyay, The evolution of MORB and plume mantle volatile budgets: Constraints from fission Xe isotopes in southwestern Indian ridge basalts. Geochim. Geophys. Geosyst. 16, 719–735 (2015).
39. M. K. Peto, S. Mukhopadhyay, K. A. Kelley, Heterogeneities from the first 100 million years recorded in deep mantle noble gases from the Northern Lau Back-arc Basin. Earth Planet. Sci. Lett. 369, 13–23 (2013).
40. R. Parai, S. Mukhopadhyay, Xenon isotopic constraints on the history of volatile recycling into the mantle. Nature 560, 223–227 (2018).
41. T. S. Kruiver, C. Karle, F. Fischer-Gödde, P. Sprung, Lunar tectonic isotopic evidence for the late veneer. Nature 520, 534–537 (2015).
42. S. Marschi, R. M. Canup, R. J. Walker, Heterogeneous delivery of silicate and metal to the Earth by large planetesimals. Nat. Geosci. 11, 77–81 (2018).
43. W. D. Maier, Progressive mixing of meteoritic veneer into the early Earth’s deep mantle. Nature 460, 620–623 (2009).
44. G. Lu, The behavior of noble gases in silicate liquids: Solution, diffusion, bubbles and surface effects, with applications to natural samples. Geochim. Cosmochim. Acta 81, 1549–1560 (1987).
45. A. Mundell et al., Tungsten-182 heterogeneity in modern ocean island basalts. Science 356, 66–69 (2017).
46. M. W. Broadley, D. V. Bekarda, B. Marty, A. Yamaguchi, J. A. Barrat, Noble gas variations in urielites and their implications for urielite parent body formation. Geochim. Cosmochim. Acta 270, 325–337 (2020).
47. W. F. Gogebian, R. L. Goguel, Methods for the Collection and Analysis of Geochemical and Volcanic Water and Gas Samples, (Chemistry Division, Department of Scientific and Industrial Research, 1988).
48. P. H. Barry et al., Noble gases solubility models of hydrocarbon charge mechanisms in the Sleipner Vest gas field. Geochim. Cosmochim. Acta 194, 291–309 (2016).