Rotatable Random Sequences in Local Fields

Daniel C Raban (danielraban@berkeley.edu)
UC Berkeley [Mentor: Steven Evans]

Abstract of Report Talk: An infinite sequence of real random variables (ξ_1, ξ_2, \ldots) is said to be rotatable if every finite subsequence (ξ_1, \ldots, ξ_n) has a spherically symmetric distribution. A classical theorem of David Freedman says that (ξ_1, ξ_2, \ldots) is rotatable if and only if $\xi_j = \sigma \eta_j$ for all j, where (η_1, η_2, \ldots) is a sequence of independent standard Gaussian random variables and σ is an independent nonnegative random variable. We establish the analogue of Freedman's result for sequences of random variables taking values in local fields and analogues of other related results.

[Joint work with Steven Evans]
Received: July 22, 2018