Prognostic and predictive value of DAMPs and DAMP-associated processes in cancer

Jitka Fucikova1,2, Irena Moserova1,2, Linda Urbanova1,2, Lucillia Bezu3,4,5,6,7, Oliver Kepp3,4,5,6,7, Isabelle Cremer5,6,8, Cyril Salek9, Pavel Strnad10, Guido Kroemer3,4,5,6,7,11†, Lorenzo Galluzzi3,4,5,6,12*† and Radek Spisek1,2*†

1 Soto, Prague, Czech Republic, 2 Department of Immunology, 2nd Faculty of Medicine, University Hospital Motol, Charles University, Prague, Czech Republic, 3 Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France, 4 U1138, INSERM, Paris, France, 5 Sorbonne Paris Cité, Université Paris Descartes, Paris, France, 6 Université Pierre et Marie Curie, Paris, France, 7 Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France, 8 Equipe 13, Centre de Recherche des Cordeliers, Paris, France, 9 Institute of Hematology and Blood Transfusion, Prague, Czech Republic, 10 Department of Gynecology and Obstetrics, 2nd Faculty of Medicine, University Hospital Motol, Charles University, Prague, Czech Republic, 11 Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France, 12 Gustave Roussy Comprehensive Cancer Institute, Villejuif, France

It is now clear that human neoplasms form, progress, and respond to therapy in the context of an intimate crosstalk with the host immune system. In particular, accumulating evidence demonstrates that the efficacy of most, if not all, chemotherapeutic and radiotherapeutic agents commonly employed in the clinic critically depends on the (re)activation of tumor-targeting immune responses. One of the mechanisms whereby conventional chemotherapeutics, targeted anticancer agents, and radiotherapy can provoke a therapeutically relevant, adaptive immune response against malignant cells is commonly known as “immunogenic cell death.” Importantly, dying cancer cells are perceived as immunogenic only when they emit a set of immunostimulatory signals upon the activation of intracellular stress response pathways. The emission of these signals, which are generally referred to as “damage-associated molecular patterns” (DAMPs), may therefore predict whether patients will respond to chemotherapy or not, at least in some settings. Here, we review critical data indicating that DAMPs and DAMP-associated stress responses might have prognostic or predictive value for cancer patients.

Keywords: ATP, autophagy, calreticulin, ER stress response, HSPs, type I interferon

Abbreviations: AGER, advanced glycosylation end product-specific receptor; AML, acute myeloid leukemia; APC, antigen-presenting cell; ATP6, activating transcription factor 6; BECN1, beclin 1; C1q, complement component 1, q subcomponent; CALR, calreticulin; CLEC9A, C-type lectin domain family 9, member A; CLI, chronic lymphocytic leukemia; CRC, colorectal carcinoma; CXCL10, chemokine (C-X-C motif) ligand 10; CXCR4, chemokine (C-X-C motif) receptor 4; DAMP, damage-associated molecular pattern; EIF2A, eukaryotic translation initiation factor 2A; EIF2AK2, eukaryotic translation initiation factor 2-alpha kinase 2; ENTPD1, ectonucleoside triphosphate diphosphohydrolase 1; FPR1, formyl peptide receptor 1; HCC, hepatocellular carcinoma; HMGB1, high mobility group box 1; HSP, heat-shock protein; HSP90AA1, heat shock protein 90 kDa alpha (cytosolic), class A member 1; HSP90AB1, heat shock protein 90 kDa beta (Grp94), member 1; ICD, immunogenic cell death; IFN, interferon; IFNA8, interferon, alpha 8; IFNAR1, interferon (alpha, beta and omega) receptor 1; IL-6, interleukin-6; KLRC1, killer cell lectin-like receptor subfamily D, member 1; LMAN1, lectin, mannose-beta (Grp94), member 1; HSPA1A, heat shock 70 kDa protein 1A, alpha (cytosolic), class A member 1; HSPA1B, heat shock 70 kDa protein 1B; HSPA6, heat shock 70 kDa protein 5; HSPA8, heat shock protein 90 kDa beta (Grp94), member 1; KIT, proto-oncogene tyrosine-protein kinase; KITLG, kit ligand; KLRK1, killer cell lectin-like receptor subfamily K, member 1; MAGED1, membrane attack complex; MAP1LC3, microtubule-associated protein 1 light chain 3; MX1, MX dynamin-like GTPase 1; MYD88, myeloid differentiation primary response gene 88; NSCLC, non-small cell lung carcinoma; NK, natural killer; NT5E, ecto 5′-nucleotidase; P2RY2, purinergic receptor P2Y, G-protein coupled, 2; PLSCR1, phospholipid scramblase 1; PS, phosphatidylserine; TAA, tumor-associated antigen; THBS1, thrombospondin 1; TICAM1, Toll-like receptor adaptor molecule 1; TLR, Toll-like receptor; TM173, transmembrane protein 173; TNF, tumor necrosis factor alpha; UPR, unfolded protein response; XBP1, X-box binding protein 1.
Introduction

For a long time, tumors were considered as highly homogenous entities resulting from the clonal expansion of a single cell with specific genetic or epigenetic defects (1). Now, it is clear that both hematopoietic and solid neoplasms are highly heterogenous, not only because malignant cells with distinct phenotypic and behavioral features generally co-exist, but also because multiple non-transformed cells are co-opted by growing cancers to support their needs. This is especially true for solid tumors, which contain an abundant non-malignant cellular compartment encompassing stromal, endothelial, and immune components (2, 3). The immune compartment of the tumor mass is per se very heterogenous, varying not only with tumor type, stage, and therapeutic regimen, but also on an inter-individual basis (4). Evidence accumulating over the last decade indicates indeed that human tumors form, progress, and respond to therapy in the context of an intimate, bidirectional interaction with the immune system (5, 6). Thus, clinically manifest neoplasms can develop only when they are able to escape immunosurveillance (7, 8), and they do so by evolving under the selective pressure imposed by the immune system (6, 9). Moreover, the composition, density, and intratumoral localization of the immune infiltrate have been associated with a robust prognostic or predictive value in several cohorts of cancer patients (10–12). Finally, the efficacy of most, if not all, therapeutic regimens commonly employed in cancer patients has been etiologically linked to the (re)elicitation of an adaptive immune response targeting malignant cells (13, 14).

Conventional chemotherapeutics and targeted anticancer agents can favor the (re)elicitation of anticancer immune responses through several mechanisms (13–15). A precise description of all these immunostimulatory pathways goes largely beyond the scope of this review, and can be found in Ref. (13, 14). However, it is useful to note that anticancer therapy can boost immunosurveillance by either of two mechanisms. First, it can directly modulate the functions of immune cells, including dendritic cells (DCs), myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs), CD8+ cytotoxic T lymphocytes (CTLs), and CD4+CD25+FOXP3+ regulatory T (TReg) cells (14). Second, it can promote the immunogenicity or adjuvanticity of cancer cells as it subjects them to a state of stress (which sometimes leads to their death) (14, 16). In particular, some chemotherapeutic agents like anthracyclines, oxaliplatin, and bortezomib, as well as specific forms of radiation therapy and photodynamic therapy, are able to trigger a functionally peculiar variant of caspase-dependent cell death that per se is perceived as immunogenic by the immune system (17–21). This means that, upon inoculation in immunocompetent hosts, cells succumbing to such an immunogenic form of cell death are sufficient to elicit an adaptive immune response against dead cell-associated antigens associated with the establishment of immunological memory (22, 23).

Mechanistically, immunogenic cell death (ICD) relies on the pre-mortem activation of several stress response pathways that are associated with the emission of a well-defined set of danger signals by dying cancer cells (24–26). When delivered in the correct spatiotemporal order, such damage-associated molecular patterns (DAMPs) recruit specific cellular components of the innate and adaptive immune system to the tumor bed and activate them, ultimately resulting in the elicitation of a tumor-targeting immune response (22, 26). Conversely, in physiological conditions DAMPs are generally inaccessible to the immune system, and serve metabolic, structural, or enzymatic functions (26–28). Of note, DAMPs are not only involved in ICD-associated anticancer immunosurveillance, but also play a key role in the etiology of shock conditions triggered by trauma and other non-microbial stimuli (29, 30).

So far, four DAMPs have been ascribed a non-redundant, essential function in the context of anthracycline-induced ICD, namely (1) the pre-apoptotic exposure of the endoplasmic reticulum chaperone calreticulin (CALR) and various heat-shock proteins (HSPs) on the outer leaflet of the plasma membrane, which ensues the activation of an ER stress response orchestrated around the phosphorylation of eukaryotic translation initiation factor 2A, 65 kDa (EIF2A) and the overgeneration of reactive oxygen species (ROS) (31–36); (2) the production of type I interferons (IFNs), which depends on Toll-like receptor 3 (TLR3) signaling (37–40); (3) the secretion of ATP, which relies on the activation of autophagy (41, 42); and (4) the release of the non-histone chromatin-binding protein high mobility group box 1 (HMGB1) into the extracellular space, which correlates with cell death induction (43, 44). The role of other DAMPs such as mitochondrial DNA (mtDNA), N-formylated peptides, cardiolipin, and filamentous (F)-actin in ICD signaling has not yet been investigated in detail (30, 45).

Accumulating preclinical evidence indicates that monitoring DAMPs or DAMP-associated stress responses in cancer patients may have prognostic or predictive value. Here, we review clinical data lending further support to this hypothesis.

Calreticulin, HSPs, and the ER Stress Response

Cancer cells undergoing ICD exhibit several manifestations of the so-called unfolded protein response (UPR) (34, 46), i.e., the ensemble of mechanisms aimed at the re-establishment of intracellular homeostasis following the accumulation of unfolded proteins within the ER lumen (47). In particular, ICD is etiologically associated with the phosphorylation of EIF2A on S51 (48), and this appears to be required for the exposure of CALR and HSPs on the surface of dying cells (34). On the cell surface, CALR, heat shock 70 kDa protein 1A (HSPA1A, best known as HSP70) and heat shock protein 90 kDa alpha (cytosolic), class A member 1 (HSP90AA1, best known as HSP90) play partially overlapping (but not identical) immunostimulatory functions. Indeed, CALR, HSP70 and HSP90 all bind to low density lipoprotein receptor-related protein 1 (LRP1, best known as CD91) on antigen-presenting cells (APCs), hence stimulating the uptake of dead cell-associated antigens in the form of apoptotic bodies (32, 33). HSP70 and HSP90 favor CTL cross-priming by APCs upon interaction with Toll-like receptor 4 (TLR4) and CD14 (33, 49–51). In some settings, soluble HSPs and CALR operate as cytokines, stimulating the NF-kB-dependent secretion of pro-inflammatory mediators like interleukin-6 (IL-6) and...
tumor necrosis factor α (TNFα) (52, 53). HSP70 boosts the cytotoxic functions of natural killer (NK) cells by binding to killer cell lectin-like receptor subfamily D, member 1 (KLRRD1, best known as CD94) (54, 55). Moreover, ecto-HSP70 binds to phosphatidylserine (PS), a phospholipid that is exposed in the course of regulated cell death owing to the caspase-dependent activation of phospholipid scramblase 1 (PLSCR1) (56). The actual relevance of this interaction for ICD, however, has not been determined yet. Along similar lines, it remains obscure whether additional CALR receptors such as CD69; thrombospondin 1 (THBS1); complement component 1, q subcomponent (C1q); lectin, mannose-binding, I (LMAN1); and various integrins of the CD49 family are etiologically implicated in the perception of ICD (57). Of note, ecto-CALR has been suggested to act as a DC receptor for the tumor-associated antigen (TAA) NY-ESO-1, hence facilitating the interaction between DCs and malignant cells (58). To the best of our knowledge, however, this finding has not been confirmed by independent investigators.

Accumulating clinical evidence indicates that various parameters linked to ICD-associated CALR and HSP signaling may have prognostic or predictive value for cancer patients (Table 1). In addition, the results of multiple clinical trials suggest that HSPs can be harnessed as a means to boost the efficacy of anticancer vaccines. High CALR levels in malignant cells have been shown to correlate with favorable disease outcome in a cohort of 68 neuroblastoma patients (irrespective of treatment) (59), and in a

Parameter	Cancer	Treatment	No	Note(s)	Reference
CALR	AML	Anthracyclines-based chemotherapy	20	CALR exposure on blasts correlated with improved RFS	(63)
	Bladder carcinoma	Surgery	195	High CALR levels correlated with poor disease outcome	(67)
	Breast carcinoma	Surgery	23	High CALR levels correlated with poor MFS	(68)
	CRC	Surgical resection and chemotherapy	68	High CALR levels correlated with improved 5-y survival rate	(61)
Gastric carcinoma	Gastroctomy and lymphadenectomy	79	High CALR levels correlated with poor disease outcome	(69)	
Lung carcinoma	n.a.	Radiotherapy	58	High CALR levels correlated with malignancy and tumor grade	(64)
Mantle cell lymphoma	Surgery	23	High CALR levels correlated with prolonged OS	(60)	
Neuroblastoma	Surgery alone or combined with chemotherapy	163	High CALR levels correlated with poor disease outcome	(67)	
Non–Hodgkin’s lymphoma	Autologous cancer cell-based vaccine	729	High CALR levels correlated with poor disease outcome	(67)	
Ovarian carcinoma	Paclitaxel-based chemotherapy	220	High CALR levels correlated with prolonged DFS and OS	(60)	
CD47	AML	n.a.	137	High CD47 levels correlated with shortened OS	(70)
	Esophageal carcinoma	Surgery	102	High CD47 levels correlated with shortened OS	(71)
	Ovarian carcinoma	Surgery	86	Low CD47 levels correlated with improved disease outcome	(72)
CD91	Melanoma	n.a.	16	High CD91 levels were associated with slow progression	(73)
ER stress	AML	Anthracycline-based chemotherapy	105	XBP1 splicing correlated with prolonged DFS and OS	(74)
	Breast carcinoma	Anthracycline-based chemotherapy	60	Cancer cells from non-responders had high phosphorylation of EIF2A	(75)
	Surgical resection and/or hormonotherapy	100	XBP1 splicing correlated with improved RFS	(76)	
DLBCL	Bortezomib		119	High HSPA5 levels correlated with worsened OS	(77)
HNC	Surgery	79	High HSPA5 levels correlated with improved OS	(78)	
Lung cancer	Surgery	132	High HSPA5 levels correlated with improved disease outcome	(79)	
NSCLC	Surgery	193	PKR activation and EIF2A phosphorylation correlated with improved OS	(80)	
HSP90	CRC	n.a.	182	Increased serum levels were associated with oncogenesis	(65)
	Non–Hodgkin’s lymphoma	Autologous cancer cell-based vaccine	18	CALR exposure was associated to clinical responses	(62)
HSPA1A	Gastric carcinoma	n.a.	39 patients	SNPs in HSPA1A affected disease incidence	(81)
LMAN1	Ovarian carcinoma	n.a.	289 patients	SNPs in LMAN1 affected disease incidence	(82)
THBS1	Gastric carcinoma	n.a.	275 patients	SNPs in THBS1 affected disease incidence	(83)

AML, acute myeloid leukemia; CRC, colorectal carcinoma; DFS, disease-free survival; DLBCL, diffuse large B-cell lymphoma; ER, endoplasmic reticulum; HNC, head and neck cancer; ICD, immunogenic cell death; MFS, metastasis-free survival; NSCLC, non-small cell lung carcinoma; n.a., not applicable or not available; OS, overall survival; RFS, relapse-free survival; SNP, single nucleotide polymorphism.
cohort of 23 lung cancer patients and 220 ovarian cancer patients treated with ICD inducers (i.e., radiotherapy and paclitaxel, respectively) (60). Moreover, increased CALR expression by cancer cells has been associated with tumor infiltration by CD45RO⁺ memory T cells and improved 5-year overall survival amongst 68 subjects with Stage IIIB colorectal carcinoma (CRC) (61). Elevated levels of HSP90 and CALR on the surface of neoplastic cells have been associated with clinical responses amongst 18 patients with relapsed indolent non-Hodgkin’s lymphoma treated with an autologous cancer cell-based vaccine (62). Moreover, CALR exposure by malignant blasts has been linked to prolonged relapse-free (but not overall) survival in a cohort of 20 individuals with acute myeloid leukemia (AML) (63). Of note, the blasts of some of these patients exposed CALR spontaneously, and this correlated not only with the degree of EIF2A phosphorylation in malignant cells, but also with the ability of autologous T cells to secrete IFNγ on stimulation (63). Along similar lines, healthy individuals have been shown to differ from lung carcinoma patients with respect to the circulating levels of soluble CALR, as well as to the amount of CALR expressed on the surface of pulmonary (normal versus malignant) cells (64). Moreover, increased concentrations of soluble HSP90 have been detected in the serum of CRC patients (n = 172) as compared to healthy individuals (n = 10) (65). Interestingly, soluble HSP90 appears to activate cancer cell-intrinsic signaling pathways that promote disease progression (65, 66). These data indicate that cancer cells expose and/or shed CALR as well as HSPs even in the absence of chemotherapy (at least to some degree), possibly as a result of oncogenic stress and/or adverse microenvironmental conditions. Moreover, they suggest that membrane-bound CALR and HSPs have a different biological activity than their soluble counterparts.

Apparently at odds with the abovementioned clinical findings, total CALR levels have been positively associated with accelerated disease progression and poor outcome in a cohort of 79 gastric cancer patients (69), in 23 women with breast carcinoma upon surgery (68), as well in large cohorts of neuroblastoma (n = 729), bladder carcinoma (n = 195) and mantle cell lymphoma (n = 163) patients, irrespective of treatment type (67). Moreover, CALR expression by malignant cells failed to affect overall survival in 88 patients with esophageal squamous cell carcinoma treated with neo-adjuvant chemoradiotherapy and surgical resection (84). These results may reflect the intracellular functions of CALR in the preservation of reticular homeostasis, which is particularly important for malignant cells owing to their highly accelerated anabolic metabolism (85), or the fact that CALR exposure is generally associated with an increased expression of CD47, a very potent anti-phagocytic signal (67).

The phosphorylation of EIF2A as well as the activation of eukaryotic translation initiation factor 2-alpha kinase 2 (EIF2AK2, best known as PKR) have been associated with favorable disease outcome in a cohort of 193 non-small cell lung carcinoma (NSCLC) patients (80). On the contrary, elevated degrees of EIF2A phosphorylation in neoplastic cells have been correlated with nuclear size (a surrogate marker of DNA content), preferential tumor infiltration by Tregs cells, and poor disease outcome in a cohort of 60 breast carcinoma patients treated with anthracycline-based chemotherapy and tested longitudinally (75).

Other manifestations on an ongoing UPR have been ascribed with prognostic or predictive value, including (but not limited to): (1) the expression levels of the ER chaperone heat shock 70 kDa protein 5 (HSPA5, best known as GRP78), as demonstrated in cohorts of 132 lung carcinoma patients (79), 79 individuals with head and neck cancer (78) and 119 patients with diffuse large B-cell lymphoma treated with the proteasome inhibitor bortezomib (which is a bona fide ICD inducer) (77); and (2) the splicing of X-box binding protein 1 (XBP1) (48), as demonstrated in a cohort of 105 AML patients tested at diagnosis (74). Of note, both CALR and GRP78 expression levels are also indirect manifestations of the activation of another branch of the ER stress response, i.e., the derepression of activating transcription factor 6 (ATF6) (74, 86). Finally, some studies have associated markers of an ongoing UPR with dismal disease outcome. For instance, Davies and colleagues have linked low levels of unspliced XBP1 as well as a high spliced/unspliced XBP1 ratio with poor disease outcome in 100 primary breast carcinoma patients treated with adjuvant hormonal therapy (76). The apparent discrepancy in these observations may reflect the differential reliance of distinct tumor types (or similar tumors at distinct stages of progression) on the ER stress response for survival in adverse microenvironment conditions (87).

Other processes and parameters linked to CALR and/or HSP exposure and their immunostimulatory effects have been shown to influence disease outcome in cancer patients. For instance, high CD47 levels have been reported to constitute an independent negative prognostic factor in cohorts of 86 patients with ovarian clear cell carcinoma (72), 102 individuals with esophageal squamous cell carcinoma (71), and 137 subjects with karyotypically normal AML (70). Along similar lines, the monocyes of 8 advanced melanoma patients progressing in an unusually slow fashion have been found to express increased amounts of CD91 as compared to those of 8 patients progressing normally (73). Moreover, single nucleotide polymorphisms (SNPs) affecting HSPA1A have been linked to an increased incidence of gastric carcinoma (as determined in a cohort of 39 patients and 186 controls) (81), a SNP affecting THBS1 has been correlated with gastric cancer occurrence and progression in a cohort of 275 patients and 275 healthy individuals (83), while a SNP in LMAN1 as well as the consequent decrease in LMAN1 levels appear to be associated with an increased risk for ovarian carcinoma (as determined in a cohort of 289 women seen in gynecologic oncology practice and 126 healthy volunteers) (82).

The robust immunostimulatory activity of HSPs has been harnessed to develop various anticancer vaccines that are nowadays in clinical development. These preparations generally consist in HSP-enriched (autologous or heterologous) cancer cell lysates that are administered directly to patients, in the presence of adequate immunological adjuvants (88, 89). The most common of these approaches relies on heat shock protein 90 kDa beta (Grp94), member 1 (HSP90B1, best known as GP96) and is often referred to as HSPPC-96 (Oncoophage® or Vitespen®) (90). So far, the safety and clinical profile of HSPPC-96 have been tested in cohorts of patients with metastatic melanoma (n = 36–322) (91–94), CRC (n = 29) (95), non-Hodgkin’s lymphoma (n = 20) (96); pancreatic adenocarcinoma (n = 10) (97), metastatic renal cell carcinoma (n = 84–409) (98, 99), glioma (n = 12) (100), recurrent
glioblastoma \((n = 41)\) (101), and assorted advanced malignancies \((n = 16)\) (102). These studies demonstrate that the administration of HSPPC-96 to cancer patients is safe and is generally associated with markers of immunostimulation. However, most often such effects are weak and unable to mediate long-term therapeutic activity (99). Thus, further studies are required for translating the well-established ability of HSPs to stimulate the priming of TAA-specific immune responses into a therapeutic reality.

Taken together, these clinical observations suggest that CALR, HSPs and various processes associated with their exposure, secretion and signaling functions may have prognostic, predictive and therapeutic value.

Type I IFN and TLR3 Signaling

Cancer cells responding to anthracyclines secrete type I IFNs as a consequence of TLR3 activation (39), and this is required for cell death to initiate adaptive immunity (39). By binding to homodimeric or heterodimeric receptors expressed on several immune effector cells, type I IFNs mediate multipronged immunostimulatory effects (40). In particular, type I IFNs promote cross-priming (103), boost the cytotoxic functions of CTLs and NK cells (104), and increase the survival of memory CTLs (105). Moreover, type I IFNs can protect antigen-activated CD8+ CTLs from elimination by NK cells (106, 107), trigger the secretion of pro-inflammatory mediators by macrophages (108), and counteract the immunosuppressive functions of T\(_{\text{REG}}\) cells (109). Besides such immunostimulatory effects, type I IFNs can ignite a cancer cell-intrinsic signal transduction pathway leading, amongst various effects, to the synthesis of the chemotactic factor chemokine (C–X–C motif) ligand 10 (CXCL10) (39). Indeed, at odds with their wild-type counterparts, \(\text{Ifnar}^{-/-}\) cancer cells succumbing to anthracyclines are unable to prime adaptive immune responses, even upon inoculation in wild-type hosts (39). Thus, type I IFN signaling in cancer cells appears to be critical for anthracycline-induced cell death to be perceived as immunogenic (39). Conversely, the efficacy of other immunotherapeutic agents such as the TLR7 agonist imiquimod requires type I IFN signaling in the host (110).

So far, only a few studies addressed the prognostic or predictive value of parameters reflecting the proficiency or activation status of TLR3 or type I IFN signaling (Table 2). High expression levels of TLR3 and/or toll-like receptor adaptor molecule 1 (TICAM1, a component of the TLR3 signaling apparatus best known as TRIF) have been associated with improved disease outcome in two cohorts of 85 and 172 subjects with hepatocellular carcinoma (HCC) (111, 112), as well as amongst 99 patients with neuroblastoma (113). Along similar lines, TLR3 expression levels have been shown to predict the response of 194 breast carcinoma patients treated with adjuvant radiotherapy plus a TLR3 agonist (114). SNPs affecting TLR3 have been shown to influence prognosis in cohorts of 582 patients with CRC, especially among untreated individuals.

Table 2 | Clinical studies assessing the prognostic and predictive value of TLR3 status and type I IFN signaling in cancer patients.

Parameter	Cancer	Treatment	No	Note(s)	Reference
IFNAR1	CRC	n.a.	1327 patients 758 controls 304 patients	A SNP in IFNAR1 was linked to increased risk for oncogenesis	(122)
	Glioma	n.a.	2309 patients 2915 controls	A SNP in IFNAR1 was shown to affect patient OS	(123)
TLR3	Breast carcinoma	n.a.	102 patients 72 controls 194 controls	A SNP in TLR3 was linked to increased risk for oncogenesis	(118)
	Cervical carcinoma	polyA:U plus radiotherapy	130 patients 200 controls	High TLR3 levels predicted clinical responses to therapy	(114)
	CRC	n.a.	582 patients 2309 patients 2915 controls	SNPs in TLR3 were shown to influence disease outcome	(115)
	HCC	n.a.	466 patients 482 controls 172 controls	SNPs in TLR3 were linked to increased disease incidence	(121)
	Neuroblastoma	Surgery	85 patients	High TLR3 levels correlated with prolonged OS	(111)
	NSCLC	Surgery	99 patients	High TLR3 levels correlated with prolonged OS	(112)
	Oral squamous cell carcinoma	n.a.	568 patients 93 patients 104 controls 240 patients 223 controls	SNPs in TLR3 were shown to influence disease outcome	(116)
TRIF	HCC	Surgery	85 patients	High TRIF levels correlated with prolonged OS	(112)
Type I IFN	Breast carcinoma	Anthracycline-based chemotherapy	50 patients	A type I IFN-related signature predicted improved disease outcome	(39)
	CRC	n.a.	483 patients	A SNP in IFNA7 was shown to affect patient OS	(122)
	Glioma	n.a.	304 patients	A SNP in IFNA8 was shown to affect patient OS	(123)

CRC, colorectal carcinoma; HCC, hepatocellular carcinoma; NSCLC, non-small cell lung carcinoma; n.a., not applicable or not available; OS, overall survival; SNP, single nucleotide polymorphism.
with Stage II disease (115) and 568 NSCLC patients (116). Along similar lines, TLR3 SNPs have been associated with an altered risk for cervical cancer amongst 330 Tunisian women (117), breast carcinoma amongst 174 African-American women (118), oral squamous cell carcinoma amongst 197 individuals (119) HCC amongst 948 subjects (120), and CRC amongst more than 5,000 individuals (121). A type I IFN-related transcription signature centered around the expression of MX dynamin-like GTPase 1 (MX1) has been shown to predict the likelihood of 50 breast carcinoma patients to respond to neo-adjuvant anthracycline-based chemotherapy (39). Moreover, SNPs affecting interferon (alpha, beta and omega) receptor 1 (IFNAR1) have been associated with an increased risk for the development of CRC amongst 2085 individuals (122), as well as with significantly reduced overall survival in a cohort of 304 glioma patients (123). Similar results have been obtained for SNPs affecting the genes coding for two variants of IFNo (i.e., IFNA7 and IFNA8) (122, 123).

The results of these studies suggest that monitoring biomarkers of TLR3 and type I IFN signaling may not only have prognostic/predictive relevance for cancer patients, but also inform on the risk for cancer development in healthy subjects. Of note, recombinant IFN-α2a (Roferon-A®) is approved by the US Food and Drug Administration and other regulatory agencies worldwide for use in subjects with hairy cell leukemia and Philadelphia chromosome-positive chronic myelogenous leukemia upon minimal pretreatment, while recombinant IFN-α2b (Intron A®) is currently employed for the treatment of hairy cell leukemia, AIDS-related Kaposi's sarcoma, follicular lymphoma, multiple myeloma, melanoma, condyloma acuminata and cervical intraepithelial neoplasms. It remains to be determined to which extent, if any, the therapeutic efficacy of type I IFNs reflects their ability to promote the initiation of adaptive immune responses against dying cancer cells.

Extracellular ATP and Autophagy

ATP is secreted during ICD through a mechanism that involves pannexin 1 (PANX1) channels and lysosomal exocytosis (127, 128). Importantly, autophagy is required for cancer cells succumbing to anthracyclines to release ATP in immunostimulatory amounts (42, 129, 130). Thus, the ability of anthracyclines to cause bona fide ICD is lost when cancer cells are rendered autophagy-deficient by genetic manipulations or engineered to overexpress ectonucleoside triphosphate diphosphohydrolase 1 (ENTPD1, best known as CD73), an enzyme that degrades extracellular ATP (42, 129). In line with this notion, the administration of CD39 inhibitors or CD39-neutralizing monoclonal antibodies reportedly relieves tumor-mediated immunosuppression (131), and (at least in some models) allows autophagy-deficient cells treated with anthracyclines to elicit normal immune responses upon inoculation in immunocompetent mice (42, 129). Extracellular ATP exerts immunostimulatory functions via at least three mechanistically distinct pathways: (1) by promoting the recruitment of APCs or APC precursors to sites of cell death, upon binding to purinergic receptor P2Y, G-protein coupled, 2 (P2RY2) (132–134); (2) by activating the so-called NLRP3 inflammasome and hence triggering the secretion of pro-inflammatory IL-1β (135, 136), an effect that relies on purinergic receptor P2X, ligand gated ion channel, 7 (41); and (3) by boosting the proliferation and cytotoxic activity of NK cells (26). Notably, extracellular ATP is sequentially metabolized by CD39 and 5′-nucleotidase, ecto-NT5E, best known as CD73) into ADP, AMP and adenosine, the latter of which has robust immunosuppressive effects (137).

Accumulating clinical evidence ascribes to parameters linked to the capacity of cancer cells to recruit and activate immune effectors (through extracellular ATP) a prognostic or predictive value for cancer patients (Table 3). A SNP compromising the function of P2RX7 has been associated with decreased time-to-metastasis in a cohort of 225 breast carcinoma patients treated with adjuvant anthracycline-based chemotherapy (41), with worsened clinicopathological parameters amongst 121 subjects with papillary thyroid cancer (138), and with an increased risk for the development of chronic lymphocytic leukemia (CLL), as determined in a cohort of 40 patients and 46 age-matched healthy individuals (139). Contrasting with these latter findings, however, the same SNP has been associated with increased overall survival in a cohort of 170 subjects with CLL (140), or found to have no correlation with disease incidence and/or outcome in independent cohorts of 144 CLL patients and 348 healthy controls (141), 121 individuals with CLL (142) 111 CLL patients and 97 controls (143), and 136 subjects with multiple myeloma (144). These apparently discrepant observations may reflect the cancer cell-intrinsic functions of P2RX7, which is known to control proliferation and regulated cell death (145). Of note, increased P2RY2 mRNA levels have also been detected in gastric cancer biopsies from 14 patients (as compared to the adjacent healthy mucosa) (146), but these findings do not allow to determine whether gastric neoplasms were infiltrated by P2RY2+ immune cells or whether they overexpressed P2RY2.

Further corroborating the advantage conferred to malignant cells by an increased ability to convert immunostimulatory extracellular ATP into immunosuppressive AMP and adenosine, several studies ascribed a negative prognostic or predictive value to increased CD39 or CD73 levels. For instance, elevated amounts of CD39 and CD73 have been detected in 29 endometrial tumor samples as compared to the adjacent non-malignant tissues, and expression levels correlated with tumor grade (152). Along similar lines, CD39 (but not CD73) levels on the surface of CD4+ and CD8+ T cells have been shown to positively correlate with disease stage in two independent cohorts of 34 and 62 patients with CLL (150, 151), while CD73 downregulation has been associated with prolonged disease-free survival amongst 500 individuals with glioblastoma (154). At stark contrast with these findings, high levels of CD39 mRNA have been linked to improved disease outcome in a cohort of 28 pancreatic cancer patients treated with surgery (153). The reasons underlying this discrepancy have not yet been clarified.

Of note, quantifying functional autophagy in tissue biopsies is rather complex, because most autophagic markers accumulate both when the autophagic flux is increased and when lysosomal degradation is blocked (155). Moreover, autophagy often serves a dual role in the course of tumor progression: (1) on the one hand it favors the survival of cancer cells exposed to adverse microenvironmental conditions (including nutritional, metabolic and therapeutic cues); (2) on the other hand, it is required for...
According to current models, HMGB1 gets released in the course of cell death passively, upon the breakdown of the nuclear and plasma membrane (145, 159). Thus, besides differences in expression level, the extent of HMGB1 release generally correlates with the degree of cell death (160). However, changes in the oxidation status of extracellular HMGB1 have been suggested to dramatically alter its biological activity (161–163). Indeed, while reduced HMGB1 efficiently dimerizes with CXCL12 and mediates potent chemotactic functions upon binding to chemokine (C–X–C motif) receptor 4 (CXCR4) (164, 165), its oxidized counterpart fails to do so (162). Rather, oxidized HMGB1 signal via TLR2, TLR4 and advanced glycosylation end product-specific receptor (AGER, best known as RAGE) to stimulate the production of pro-inflammatory cytokines (162, 166–168). In addition, TLR4 signaling promotes cross-priming by inhibiting the fusion of antigen-containing endosomes with lysosomes (169). Interestingly, HMGB1 also binds to TLR9 (170) and hepatitis A virus cellular receptor 2 (HAVCR2, best known as TIM-3) (171), in particular when complexed with DNA. However, while TLR9 promotes cytokine secretion by plasmacytoid DCs and B cells (170), TIM-3 signaling blunts the ability of DCs to respond efficiently to inflammatory stimuli (171). Thus, extracellular HMGB1 mediates multipronged and context-dependent immunomodulatory functions.

Various clinical studies indicate that monitoring parameters linked to HMGB1 release and signaling may convey prognostic or predictive information for cancer patients (Table 4). High expression levels of HMGB1 in malignant cells have been shown to correlate with improved overall survival in 88 patients with
TABLE 4 | Clinical studies assessing the prognostic and predictive value of HMGB1 release and extracellular HMGB1 signaling in cancer patients.

Parameter	Cancer	Treatment	No	Note(s)	Reference
CASP3	Endometrial carcinoma	n.a.	1028 patients 1003 controls	A SNP in CASP3 was linked to increased risk for oncogenesis	(182)
CASP7	Endometrial carcinoma	n.a.	1028 patients 1003 controls	SNPs in CASP7 were linked to increased risk for oncogenesis	(182)
CASP9	CRC	n.a.	402 patients 480 controls	SNPs in CASP9 were linked to decreased risk for oncogenesis and improved disease outcome	(183)
HMGB1	Bladder carcinoma	n.a.	164	High HMGB1 levels correlated to worsened disease outcome	(175)
Breast carcinoma	Anthracycline-based chemotherapy		232	Loss of nuclear HMGB1 positively correlated with tumor size	(173)
CRC	n.a.	219 patients 75 controls	High levels of serum HMGB1 correlated with disease incidence	(185)	
n.a.	Radioembolization therapy		192	High HMGB1 levels correlated with worsened disease outcome	(177)
Surgery			49	High levels of serum HMGB1 correlated with decreased OS	(186)
Esophageal carcinoma	Chemoradiotherapy and surgery		88	High HMGB1 levels correlated with improved OS	(64)
Gastric adenocarcinoma	Surgery		76	High HMGB1 levels in malignant cells correlated with improved OS	(172)
HCC	n.a.	208	High HMGB1 levels correlated with worsened disease outcome	(179)	
Malignant mesothelioma	n.a.	50 patients 103 controls	High levels of serum HMGB1 correlated with disease incidence	(189)	
Nasopharyngeal carcinoma	n.a.	61 patients 45 controls	High HMGB1 levels correlated with worsened disease outcome	(180)	
Pancreatic carcinoma	Multicomponent chemotherapy		78	High circulating HMGB1 correlated with poor therapy response	(189)
Prostate carcinoma	n.a.	70	High levels of serum HMGB1 correlated with decreased OS	(190)	
Solid tumors	Virotherapy		17	Increases in circulating HMGB1 levels were linked to clinical response	(191)
MYD88	CRC	Surgery	108	High MYD88 levels correlated with shortened DFS and OS	(193)
Lymphoma	Conventional chemotherapy		29	MYD88 mutations were involved in the pathogenesis of the disease	(194)
Ovarian carcinoma	Surgery		123	High MYD88 levels correlated with worsened disease outcome	(195)
RAGE	Breast carcinoma	n.a.	509 patients 504 controls 120 patients 92 controls	A SNP in AGER was linked to increased risk for oncogenesis	(197)
Gastric carcinoma	Surgery		180	High levels of circulating RAGE correlated with advanced disease stage but improved outcome	(198)
HCC	Transarterial chemoembolization		71	High RAGE levels were associated with worsened disease outcome	(199)
NSCLC	Platinum-based chemotherapy		562 patients 764 controls	SNP in AGER were linked to improved clinical response	(200)
Ovarian carcinoma	n.a.	190 patients 210 controls	A SNP in AGER was linked to increased risk for oncogenesis	(201)	
TLR2	CRC	n.a.	2309 patients 2915 controls	SNPs in TLR2 were associated with decreased 5-year survival rate	(121)
Gastric carcinoma	n.a.	289 patients 400 controls	A SNP in TLR2 was linked to increased risk for oncogenesis	(203)	
HCC	n.a.	211 patients 232 controls	SNPs in TLR2 were linked to increased risk for oncogenesis	(204)	
Lymphoma	n.a.	710 patients 710 controls	A SNP in TLR2 was linked to increased risk for oncogenesis	(205)	
Prostate carcinoma	n.a.	195 patients 250 controls	A SNP in TLR2 was linked to increased risk for oncogenesis	(206)	

(Continued)
esophageal squamous cell carcinoma subjected to neo-adjuvant chemoradiotherapy and surgical resection (84), as well as in 76 subjects with resectable gastric adenocarcinoma (172). In a cohort of 232 breast carcinoma patients treated with anthracycline-based adjuvant chemotherapy, loss of nuclear HMGB1 has been positively associated with tumor size (173). Along similar lines, the co-expression of HMGB1 in the nucleus and in the cytoplasm of malignant cells has been shown to inversely correlate with tumor infiltration by CD45RO+ memory T cells and 5-year survival rate in 72 individuals with Stage IIIB CRC (174). Finally, HMGB1 overexpression has been shown to correlate with advanced clinical stage or decreased disease-free and/or overall survival amongst 164 patients with bladder carcinoma (175), 166 individuals with nasopharyngeal carcinoma (176), 192 CRC patients (177), 208 and 161 individuals with HCC (178, 179), 103 subjects with head and neck squamous cell carcinoma (180), as well as 85 patients with prostate cancer (181).

Notably, circulating HMGB1 and RAGE levels have been intensively investigated for their predictive or prognostic value. Elevations of HMGB1 in the serum have been correlated with incidence, progression or unfavorable disease outcome in cohorts of 49 individuals with CRC, or 219 CRC patients and 75 healthy controls (185, 186), 70 individuals with pancreatic adenocarcinoma (190), 71 laryngeal squamous cell carcinoma patients and 50 healthy controls (187), 61 subjects with malignant pleural mesothelioma (188), and 78 pancreatic carcinoma patients (189). Conversely, a treatment-related increase in the circulating levels of HGMB1 has been associated with pathological complete response or partial remission amongst 41 breast carcinoma patients treated with neo-adjuvant chemotherapy based on epirubicin (an ICD inducer) (184), as well as amongst 17 and 202 subjects with chemotherapy-refractory tumors treated with oncolytic virotherapy (191, 192). High levels of RAGE in the serum have been linked to advanced tumor stage but improved clinical outcome amongst 120 patients with breast carcinoma (198). Along similar lines, serum RAGE concentrations were significantly higher in 32 individuals with HCC who favorably responded to transarterial chemoembolization therapy than in 39 patients who progressed upon treatment (200).

Thus, in many (but not all) clinical settings high intratumoral and circulating levels of HMGB1 have a negative prognostic or predictive value. These findings may reflect the ability of some tumors to retain HMGB1 in the course of stress response, the intrinsic resistance of such tumors to the induction of cell death, or the cancer cell-intrinsic functions of HMGB1 (213). In other settings, however, circulating HMGB1 and RAGE levels appear to reflect well the death of cancer cells exposed to immunogenic treatment modalities (184, 191, 192). Possibly, the timing of detection plays a critical role in this setting, calling for the development of optimized monitoring procedures.

SNPs in TLR2, TLR4 and AGER, as well as the circulating levels of a soluble RAGE variant have been shown to affect cancer susceptibility as well as disease outcome in several studies. In particular, TLR2 polymorphisms have been linked to an increased risk for lymphoma (as determined in 710 patients and as many healthy subjects) (205), gastric carcinoma (as assessed in 289 patients and more than 400 controls) (203), prostate carcinoma (as investigated in 195 patients and 250 healthy individuals) (206), HCC (as tested in 211 patients and 232 controls) (204), and CRC (as assessed in 2,309 patients and 2,915 healthy individuals) (121). Loss-of-function variants of TLR4 have been associated with decreased time-to-metastasis amongst 280 women with non-metastatic breast carcinoma treated with surgery followed by anthracycline-based chemotherapy and local irradiation (43), with reduced disease-free and overall survival amongst 188 head and neck cancer patients receiving adjuvant systemic therapy (207), amongst 72 melanoma patients vaccinated with a heat-shocked allogeneic melanoma cell line (208), and amongst 622 melanoma patients subjected to various treatment modalities (209). Along similar lines, SNPs affecting TLR4 or AGER have been positively associated with risk variations and increased OS (121) and with shortened DFS and OS (207).
been linked to an increased risk for prostate cancer (as determined in multiple studies collectively testing more than 1,000 patients and as many age-matched controls) (124, 210–212), ovarian cancer (as assessed in a study testing 190 patients and 210 controls) (202), breast carcinoma (as investigated in 509 patients and 504 healthy women) (197), CRC (as determined in a large cohort encompassing 2,309 patients and 2,915 healthy individuals) (121), and NSCLC (as tested in 562 patients and 764 controls) (201). Notably, this latter study also identified a specific AGER SNP associated with a differential response of NSCLC patients to chemotherapy (201).

Conversely, elevated expression levels of RAGE, TLR4 and/or components of the TLR signaling machinery like myeloid differentiation primary response gene 88 (MYD88) by malignant tissues have been correlated with shortened disease-free and overall survival in 2 cohorts of 109 and 123 ovarian carcinoma patients subjected to surgery (195, 196), in a cohort 108 subjects with CRC (193), and amongst 180 individuals with gastric carcinoma (199). Along similar lines, activating mutations in MYD88 have been linked to the pathogenesis of primary central nervous system lymphomas (194). Most likely, these findings reflect the advantage conferred to malignant cells by the expression of RAGE and TLR4, which can activate robust pro-survival pathways via NF-κB (214).

Finally, distinct SNPs affecting caspase-7 (CASP7) and one affecting caspase-3 (CASP3) have been associated with an altered risk for endometrial carcinoma (as investigated in a cohort of 1,028 patients and 1,003 healthy women) (182), whereas SNPs affecting caspase-9 (CASP9) have been linked to reduced CRC incidence or improved disease outcome (as determined in a cohort of 402 patients and 480 healthy controls) (183). It remains to be determined whether these SNPs truly compromise the ability of cancer cells to emit DAMPs (and hence trigger immnosurveillance mechanisms).

FIGURE 1 | Prognostic and predictive value of DAMPs and DAMP-associated processes. (A,B). Monitoring the emission of damage-associated molecular patterns (DAMPs) or DAMP-associated processes may have a multifaceted impact on the clinical management of cancer patients. First, it may allow for a prognostic assessment and permit the stratification of patients in different risk groups (A). Second, it may allow for the identification of patients who are intrinsically capable or incapable to respond to a specific treatment, and amongst the latter, those who may benefit from combinatorial therapeutic approaches aimed at restoring normal DAMP signaling (B).

Other DAMPs

The abovementioned molecules and processes may constitute only the tip of an iceberg, meaning that several other DAMPs may contribute to the immunogenicity of cell death, at least in some circumstances. These DAMPs include (but are not limited to) various mitochondrial products like mtDNA, cardiolipin and N-formylated peptides (30) as well as cytosolic proteins like filamentous F-actin (45). Robust preclinical evidence implicates mtDNA in the etiology of septic and non-septic shock as well as in heart failure (29, 215). Cytosolic, extra-cytosolic and extracellular mtDNA molecules have indeed robust pro-inflammatory effects as they trigger type I IFN synthesis via transmembrane protein 173 (TM173, best known as STING) (216) or TLR9 activation (215). In line with this notion, circulating mtDNA levels have been shown to reflect the degree of inflammation and the extent of tissue damage in patients under maintenance hemodialysis (217). Moreover, mtDNA concentrations in the plasma of severe sepsis patients admitted to the emergency room have been ascribed robust predictive value on disease outcome (218). Upon binding to formyl peptide receptor 1 (FPR1), N-formylated peptides reportedly attract neutrophils, stimulate their degranulation, activate monocytes and favor the production of pro-inflammatory cytokines (219–223). Cardiolipin, a lipid that is specifically contained in the inner mitochondrial membrane, binds CD1D on the surface of APC, thus endowing them with the ability of priming CD1D-restricted γδ T cells (224). Finally, F-actin becomes accessible upon disruption of the plasma membrane and promotes the elicitation of adaptive immune responses against dead cell-associated antigens by binding to C-type lectin domain family 9, member A (CLEC9A, best known as DNGR1) on the surface of DCs (45). Studies elucidating the actual contribution of these DAMPs to ICD are urgently awaited.
Concluding Remarks

It is now clear that the emission of DAMPs according to a specific spatiotemporal pattern is an absolute requirement for the elicitation of immune responses against malignant cells succumbing to treatment, and that such responses are necessary for the full-blown efficacy of most (if not all) anticancer therapeutic regimens. In many settings, however, neoplastic cells exposed to conventional chemotherapeutics, radiotherapy or targeted anti-cancer agents fail to emit DAMPs in a manner compatible with the activation of the immune system, calling for the development of complementation strategies (16). Several approaches are being conceived to address this issue, including the implementation of combinatorial therapeutic regimens including (1) ER stressors, recombiant CALR or recombinant HSPs, to complement for defects in the CALR or HSP exposure pathway; (2) TLR3 agonists or recombinant type I IFNs, to correct problems in the secretion of type I IFN; (3) autophagy inducers or inhibitors of extracellular ATP-degrading enzymes, to maximize the amount of ATP secreted in the course of cell death; and (4) recombiant HMGB1, TLR4 agonists or cytotoxic agents, to restore HMGB1-dependent immunostimulation (225). Besides, consistent efforts are being devoted to the identification of additional strategies that per se induce ICD, in vitro (with direct therapeutic purposes), and in vivo (for instance, for the development of anticancer vaccines) (20). Monitoring DAMPs and DAMP-associated processes may therefore have a dual clinical relevance (Figure 1). First, it may improve patient stratification by allowing for the identification of individuals with different prognosis and/or subjects who are likely to respond (or are responding) to a particular therapeutic regimen. Second, it may instruct therapeutic choices by spotting specific molecular or cellular defects that may be corrected pharmacologically. We surmise that the prognostic and/or predictive value of DAMPs and DAMP-associated processes will have a significant impact on the clinical management of cancer patients.

Acknowledgments

GK is supported by the Ligue contre le Cancer (équipe labellisée); Agence Nationale de la Recherche (ANR) – Projets blancs; ANR under the frame of E-Rare-2, the ERA-Net for Research on Rare Diseases; Association pour la recherche sur le cancer (ARC); Cancéropôle Ile-de-France; Institut National du Cancer (INCa); Fondation Bettencourt-Schueller; Fondation de France; Fondation pour la Recherche Médicale (FRM); the European Commission (ArtForce); the European Research Council (ERC); the LabEx Immuno-Oncology; the SIRIC Stratified Oncology Cell DNA Repair and Tumor Immune Elimination (SOCRATE); the SIRIC Cancer Research and Personalized Medicine (CARPEM); and the Paris Alliance of Cancer Research Institutes (PACRI). RS is supported by the Ministry of Health of Czech Republic, grant numbers: IGA NT 14533-3 and IGA NT 11 404-5.

References

1. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell (2000) 100:57–70. doi:10.1016/S0092-8674(00)81683-9
2. Whiteside TL. The tumor microenvironment and its role in promoting tumor growth. Oncogene (2008) 27:5904–12. doi:10.1038/onc.2008.271
3. Meacham CE, Morrison SJ. Tumour heterogeneity and cancer cell plasticity. Trends Immunol (2011) 32:13–25. doi:10.1016/j.it.2013.06.005
4. Fucikova J, Moserova I, Truxova I, Hermanova I, Vancurova I, Partlova S, Cremer I, et al. Trial watch: chemotherapy with immunogenic cell death inducers. Oncotarget (2013) 4:12472–508.
5. Vacchelli E, Prada N, Kepp O, Galluzzi L. Current trends of anticancer immunotherapy. Oncoimmunology (2013) 2:e25396. doi:10.4161/onci.25396
6. Senovilla L, Aranda F, Galluzzi L, Kroemer G. Impact of myeloid cells on the efficacy of anticancer chemotherapy. Curr Opin Immunol (2014) 30:24–31. doi:10.1016/j.coi.2014.05.009
7. Zitvogel L, Senovilla L, Zitvogel L, Kroemer G. The secretory machinery of cancer cells: cell death, DAMPs, and immunity's roles in cancer suppression and promotion. Annu Rev Immunol (2011) 29:991–7. doi:10.1146/annurev-immunol-032712-100008
8. Senovilla L, Vacchelli E, Galon J, Adjemian S, Eggermont A, Fridman WH, et al. Trial watch: prognostic and predictive value of DAMPs in cancer. Oncoimmunology (2012) 1:1323–43. doi:10.4161/onci.22009
9. Becht E, Goc J, Germain C, Giraldo NA, Dieu-Nosjean MC, Sautes-Fridman C, et al. The CD4+ T cells’ role in cancer immunosurveillance: an update. Oncoimmunology (2013) 2:e23510. doi:10.4161/onci.23510
10. Senovilla L, Aranda F, Galluzzi L, Kroemer G. Impact of myeloid cells on the efficacy of anticancer chemotherapy. Curr Opin Immunol (2014) 30:24–31. doi:10.1016/j.coi.2014.05.009
11. Zitvogel L, Senovilla L, Zitvogel L, Kroemer G. The secretory machinery of cancer cells: cell death, DAMPs, and immunity’s roles in cancer suppression and promotion. Annu Rev Immunol (2011) 29:991–7. doi:10.1146/annurev-immunol-032712-100008
12. Senovilla L, Aranda F, Galluzzi L, Kroemer G. Impact of myeloid cells on the efficacy of anticancer chemotherapy. Curr Opin Immunol (2014) 30:24–31. doi:10.1016/j.coi.2014.05.009
13. Zitvogel L, Senovilla L, Zitvogel L, Kroemer G. The secretory machinery of cancer cells: cell death, DAMPs, and immunity’s roles in cancer suppression and promotion. Annu Rev Immunol (2011) 29:991–7. doi:10.1146/annurev-immunol-032712-100008
14. Zitvogel L, Senovilla L, Zitvogel L, Kroemer G. The secretory machinery of cancer cells: cell death, DAMPs, and immunity’s roles in cancer suppression and promotion. Annu Rev Immunol (2011) 29:991–7. doi:10.1146/annurev-immunol-032712-100008
15. Zitvogel L, Senovilla L, Zitvogel L, Kroemer G. The secretory machinery of cancer cells: cell death, DAMPs, and immunity’s roles in cancer suppression and promotion. Annu Rev Immunol (2011) 29:991–7. doi:10.1146/annurev-immunol-032712-100008
16. Senovilla L, Aranda F, Galluzzi L, Kroemer G. Impact of myeloid cells on the efficacy of anticancer chemotherapy. Curr Opin Immunol (2014) 30:24–31. doi:10.1016/j.coi.2014.05.009
17. Zitvogel L, Senovilla L, Zitvogel L, Kroemer G. The secretory machinery of cancer cells: cell death, DAMPs, and immunity’s roles in cancer suppression and promotion. Annu Rev Immunol (2011) 29:991–7. doi:10.1146/annurev-immunol-032712-100008
18. Senovilla L, Aranda F, Galluzzi L, Kroemer G. Impact of myeloid cells on the efficacy of anticancer chemotherapy. Curr Opin Immunol (2014) 30:24–31. doi:10.1016/j.coi.2014.05.009
19. Zitvogel L, Senovilla L, Zitvogel L, Kroemer G. The secretory machinery of cancer cells: cell death, DAMPs, and immunity’s roles in cancer suppression and promotion. Annu Rev Immunol (2011) 29:991–7. doi:10.1146/annurev-immunol-032712-100008
20. Fucikova J, Moserova I, Truxova I, Hermanova I, Vancurova I, Partlova S, Cremer I, et al. Trial watch: chemotherapy with immunogenic cell death inducers. Oncotarget (2013) 4:12472–508.
21. Vacchelli E, Prada N, Kepp O, Galluzzi L. Current trends of anticancer immunotherapy. Oncoimmunology (2013) 2:e25396. doi:10.4161/onci.25396
22. Senovilla L, Aranda F, Galluzzi L, Kroemer G. Impact of myeloid cells on the efficacy of anticancer chemotherapy. Curr Opin Immunol (2014) 30:24–31. doi:10.1016/j.coi.2014.05.009
23. Zitvogel L, Senovilla L, Zitvogel L, Kroemer G. The secretory machinery of cancer cells: cell death, DAMPs, and immunity’s roles in cancer suppression and promotion. Annu Rev Immunol (2011) 29:991–7. doi:10.1146/annurev-immunol-032712-100008
24. Senovilla L, Aranda F, Galluzzi L, Kroemer G. Impact of myeloid cells on the efficacy of anticancer chemotherapy. Curr Opin Immunol (2014) 30:24–31. doi:10.1016/j.coi.2014.05.009
25. Zitvogel L, Senovilla L, Zitvogel L, Kroemer G. The secretory machinery of cancer cells: cell death, DAMPs, and immunity’s roles in cancer suppression and promotion. Annu Rev Immunol (2011) 29:991–7. doi:10.1146/annurev-immunol-032712-100008
23. Kepp O, Senovilla L, Vitale I, Vaccelli E, Adjemian S, Agostinis P, et al. Consensus guidelines for the detection of immunogenic cell death. *Oncoimmunology* (2014) 3:e955691. doi:10.4161/21624011.2014.955691

24. Matzinger P. Tolerance, danger, and the extended family. *Annu Rev Immunol* (1994) 12:991–1045. doi:10.1146/annurev.im.12.040194.005015

25. Kepp O, Galluzzi L, Martins I, Schlemmer F, Adjemian S, Michaud M, et al. Molecular determinants of immunogenic cell death elicited by anticancer chemotherapy. *Cancer Metastasis Rev* (2011) 30:61–9. doi:10.1007/s10555-011-9273-4

26. Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele P. Immunogenic cell death and DAMPs in cancer therapy. *Nat Rev Cancer* (2012) 12:860–75. doi:10.1038/nrc3380

27. Garg AD, Dudek AM, Agostinis P. Cancer immunogenicity, danger signals, and DAMPs: what, when, and how? *Biofactors* (2013) 39:355–67. doi:10.1002/biof.1125

28. Garg AD, Martin S, Golab J, Agostinis P. Danger signalling during cancer cell death: origins, plasticity and regulation. *Cell Death Differ* (2014) 21:26–38. doi:10.1038/cdd.2013.48

29. Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W, et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. *Nature* (2010) 464:104–7. doi:10.1038/nature08780

30. Galluzzi L, Kepp O, Kroemer G. Mitochondria: master regulators of danger signaling. *Nat Rev Mol Cell Biol* (2012) 13:780–8. doi:10.1038/nrm3479

31. Korbelik M, Sun J, Cecic I. Photodynamic therapy-induced cell surface expression and release of heat shock proteins: relevance for tumor response. *Cancer Res* (2005) 65:108–26.

32. Obeid M, Tesniere A, Ghiringhelli F, Fimia GM, Apetoh L, Perfettini JL, et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. *Nat Med* (2007) 13:54–61. doi:10.1038/nm1523

33. Spisek R, Charalambous A, Mazumder A, Vesole DH, Jagannath S, Dhodapkar MV. Bortezomib enhances dendritic cell (DC)-mediated induction of immunity to human myeloma via exposure of cell surface heat shock protein 90 on dying tumor cells: therapeutic implications. *Blood* (2007) 109:4839–45. doi:10.1182/blood-2006-10-054221

34. Panaretakis T, Kepp O, Brockmeier U, Tesniere A, Bjorklund AC, Chapman DC, et al. Mechanisms of pre-apoptotic calreticulin expression in immunogenic cell death. *EMBO J* (2009) 28:578–90. doi:10.1038/embj.2009.1

35. Krysko DV, Agostinis P, Krysko O, Garg AD, Bachert C, Lambrecht BN, et al. Emerging role of damage-associated molecular patterns derived from mitochondria in inflammation. *Trends Immunol* (2011) 32:157–64. doi:10.1016/j.it.2011.01.005

36. Garg AD, Krysko DV, Verfaillie T, Kaczmarek A, Ferreira GB, Marysael T, et al. A novel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer cell death. *EMBO J* (2012) 31:1062–79. doi:10.1038/embj.2011.497

37. Galluzzi L, Vacchelli E, Eggermont AM, Fridman WH, Galon J, Sautes-Fridman C, et al. Molecular determinants of immunogenic cell death elicited by anticancer immunity. *Nat Rev Cancer* (2015). doi:10.1038/ncan.2015.02.004

38. Binder RJ, Blachere NE, Srivastava PK. Heat shock protein-chaperoned peptides but not free peptides introduced into the cytosol are presented efficiently by major histocompatibility complex I molecules. *J Biol Chem* (2001) 276:17163–71. doi:10.1074/jbc.M111547200

39. Doody AD, Kovalchin JT, Mihalyo MA, Hagymasi AT, Drake CG, Adler AJ. Glycophorin 96 can chaperone both MHC class I- and class II-restricted epitopes for in vivo presentation, but selectively primes CD8+ T cell effector function. *Immunity* (2004) 17:6087–92. doi:10.1016/j.immuni.2004.10.060

40. Spisec R, Dhodapkar MV. Towards a better way to die with chemotherapy: role of heat shock protein exposure on dying tumor cells. *Cell Cycle* (2007) 6:1962–5. doi:10.4161/cc.6.16.4601

41. Basu S, Binder RJ, Suto R, Anderson KM, Srivastava PK. Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway. *Int Immunol* (2000) 12:1539–46. doi:10.1093/interimm/12.11.1539

42. Duo CC, Gong FY, He XY, Li YM, Wang I, Zhang JP, et al. Soluble calreticulin induces tumor necrosis factor-alpha (TNF-alpha) and interleukin (IL)-6 production by macrophages through mitogen-activated protein kinase (MAPK) and NFkappaB signaling pathways. *Int J Mol Sci* (2014) 15:2916–28. doi:10.3390/ijms1502916

43. Multilhöf G, Botzler C, Wiesnet M, Eissner G, Issels R. CD3- large granular lymphocytes recognize a heat-inducible immunogenic determinant associated with the 72-kD heat shock protein on human sarcoma cells. *Blood* (1995) 86:1374–82.

44. Multilhöf G, Botzler C, Jennen L, Schmidt J, Ellwart J, Issels R. Heat shock protein 72 on tumor cells: a recognition structure for natural killer cells. *J Immunol* (1997) 158:4341–50.

45. Segawa K, Kurata S, Yanagishashi Y, Brummelkamp TR, Matsuda F, Nagata S. Caspase-mediated cleavage of phospholipid flipase for apoptotic phosphatidylinerine exposure. *Science* (2014) 344:1164–8. doi:10.1126/science.1252809

46. Gold LI, Eggleton P, Sweetmyre MT, Van Duyun LB, Greives MR, Naylor SM, et al. Calreticulin: non-endoplasmic reticulum functions in physiology and disease. *FASEB J* (2010) 24:665–83. doi:10.1096/fj.09-145482

47. Zeng G, Aldridge ME, Tian X, Seiler D, Zhang X, Jin Y, et al. Dendritic cell surface calreticulin is a receptor for NY-ESO-1: direct interactions between tumor-associated antigen and the innate immune system. *J Immunol* (2006) 177:3582–9. doi:10.4049/jimmunol.177.6.3582

48. Hsu WM, Heisch FJ, Jing YM, Kuo ML, Chen CN, Lai DM, et al. Calreticulin expression in neuroblastoma – a novel independent prognostic factor. *Ann Oncol* (2005) 16:314–21. doi:10.1093/annonc/mdi062

49. Garg AD, Elen, S Krysko DV, Vandenabeele P, De Witte P, Agostinis P. Resistance to anticancer vaccination effect is controlled by a cancer cell-autonomous phenotype that disrupts immunogenic phagocytic removal. *Oncotarget* (2015).

50. Peng RQ, Chen YB, Ding Y, Zhang R, Zhang X, Yu XJ, et al. Expression of calreticulin is associated with infiltration of T-cells in stage IIIB colon cancer. *World J Gastroenterol* (2010) 16:2428–34. doi:10.3748/wjg.v16.i19.2428
vaccinated with autologous tumor cells experiencing immunogenic death. Cancer Res (2010) 70:9062–72. doi:10.1158/0008-5472.CAN-10-1825

63. Wenneau M, Kepp O, Tesniere A, Panaretakis T, Flament C, De Botton S, et al. Calreticulin expression on malignant blasts predicts a cellular anti-cancer immune response in patients with acute myeloid leukemia. Cell Death Dis (2010) 1:e104. doi:10.1038/cddis.2010.82

64. Liu R, Gong J, Chen CC, Su TE, Hu MY, Chen LL, Lee CC, Huang TS. Secreted heat shock protein 90alpha induces colorectal cell cancer invasion through CD91/LRP-1 and NF-kappaB-mediated integrin alphaV expression. J Biol Chem (2010) 285:25458–66. doi:10.1074/jbc.M110.139345

65. Chen JS, Hsu YM, Chen LL, Lee CC, Huang TS. Secreted heat shock protein 90alpha (HS90alpha) induces nuclear factor-kappaB-mediated TCF12 protein expression to down-regulate E-cadherin and to enhance colorectal cancer cell migration and invasion. J Biol Chem (2013) 288:9001–10. doi:10.1074/jbc.M112.437897

66. Chao MP, Jaiswal S, Weissman-Tsukamoto R, Alizadeh AA, Gentles AJ, Volkmer J, et al. Calreticulin is a prognostic marker and angiogenic regulator in human gastric cancer. Ann Surg Oncol (2009) 16:524–33. doi:10.1245/s10434-008-0243-1

67. Majeti R, Chao MP, Alizadeh AA, Pang WW, Jaiswal S, Gibbs KD Jr, et al. Effects of humoral immunity and calreticulin overexpression on postoperative course in breast cancer. Pathol Oncol Res (2009) 15:89–90. doi:10.1007/s12253-008-9112-2

68. Senovilla L, Vitale I, Martins I, Tailler M, Pailleret C, Michaud M, et al. An analysis of human colorectal cancer cell lines and their tumorigenicity in 5'-untranslated regions with the development and progression of gastric cancer. Biomed Rep (2015) 3:207–14. doi:10.1089/biomedrep.2015.00414

69. Suzuki Y, Mimura K, Yoshimoto Y, Watanabe M, Ohkubo Y, Izawa S, et al. Immunogenic tumor cell death induced by chemoradiotherapy in patients with esophageal squamous cell carcinoma. Cancer Res (2012) 72:3967–76. doi:10.1158/0008-5472.CAN-12-0851

70. Galluzzi L, Kepp O, Vander Heiden MG, Kroemer G. Metabolic targets for cancer therapy. Nat Rev Drug Discov (2013) 12:829–46. doi:10.1038/nrd4145

71. Schardt JA, Mueller BU, Pabst T. Activation of the unfolded protein response in human acute myeloid leukemia. Methods Enzymol (2011) 489:227–43. doi:10.1016/B978-0-12-374878-0.00013-3

72. Wang H, Tan M, Zhang S, Li X, Gao J, Zhang D, et al. Expression and significance of CD44, CD47 and c-met in ovarian clear cell carcinoma. Int J Mol Sci (2015) 16:3391–404. doi:10.3390/ijms16023391

73. Schardt JA, Mueller BU, Pabst T. Activation of the unfolded protein response in human acute myeloid leukemia. Methods Enzymol (2011) 489:227–43. doi:10.1016/B978-0-12-374878-0.00013-3

74. Wood CG, Mulders P, Vitespen: a preclinical and clinical review. J Clin Oncol (2009) 27:635–41. doi:10.1200/JCO.2008.18.0080

75. Testori A, Richards J, Whitman E, Mann GB, Lutzky J, Camacho L, et al. Trial watch: peptide vaccines in cancer therapy. Oncology (2012) 1:1557–76. doi:10.1161/onci.2012.022428

76. Pilla L, Patuzzo R, Rivoltini L, Maio M, Andreola G, Sotelli MR, et al. Vaccination of metastatic melanoma patients with autologous tumor-derived heat shock protein gp96-peptide complexes: clinical and immunologic findings. J Clin Oncol (2002) 20:4169–80. doi:10.1200/JCO.2002.09.134

77. Jonasch E, Wood C, Tamboli P, Pagliaro LC, Tu SM, Kim J, et al. Vaccination of metastatic renal cell carcinoma patients with autologous tumour-derived vitespen vaccine: clinical findings. Br J Cancer (2008) 99:1336–41. doi:10.1038/sj.bjc.6604266
99. Wood C, Srivastava P, Bukowski R, Lacombe L, Gorelov AI, Gorelov S, et al. An adjuvant autologous therapeutic vaccine (HSPPC-96; vitexen) versus observation alone for patients at high risk of recurrence after nephrectomy for renal cell carcinoma: a multicentre, open-label, randomised phase III trial. *Lancet* (2008) 372:145–54. doi:10.1016/S0140-6736(08)66067-2

100. Crane CA, Han SJ, Ahn B, Ohejile J, Kivett V, Fedoroff A, et al. Individual patient-specific immunity against high-grade glioma after vaccination with autologous tumor-derived peptides bound to the 96 KD chaperone protein. *Clin Cancer Res* (2013) 19:205–14. doi:10.1158/1078-0432.CCR-11-3358

101. Bloch O, Crane CA, Fuks Y, Kaur R, Aghi MK, Berger MS, et al. Heat shock protein peptide complex-96 vaccination for recurrent glioblastoma: a phase I/II single-arm trial. *Neuro Oncol* (2014) 16:274–9. doi:10.1093/neuonc/noz203

102. Janetzki S, Palla D, Rosenhauer V, Lochs H, Lewis JJ, Srivastava PK. Immunization of cancer patients with autologous cancer-derived heat shock protein gp96 preparations: a pilot study. *Int J Cancer* (2000) 88:2328–8. doi:10.1002/1097-0215(20001015)88:2<232::AID-IJC14>3.0.CO;2-8

103. Papewalis C, Jacobs B, Wuttke M, Ullrich E, Baehring T, Fenk R, et al. IFN-α functional activities in vitro and in vivo. *Immuno*(2008) 180:1462–70. doi:10.4049/jimmunol.180.3.1462

104. Guillot B, Portales P, Thanh AD, Merlet S, Dereure O, Clot J, et al. The activating receptor NCR1. *Br J Dermatol* (2005) 152:690–6. doi:10.1111/j.1365-2133.2005.06512.x

105. Ilander M, Kreutzman A, Rohon P, Melo T, Faber E, Porkka K, et al. Enlarged memory T-cell pool and enhanced Th1-type responses in chronic myeloid leukemia patients who have successfully discontinued IFN-α monotherapy. *PLoS One* (2014) 9:e87794. doi:10.1371/journal.pone.0087794

106. Crousse J, Bedenikovic G, Wiesel M, Ibberson M, Xenarios I, Von Laer D, et al. Type I interferons protect T cells against NK cell attack mediated by the activating receptor NCR1. *Immunity* (2014) 40:961–73. doi:10.1016/j.immuni.2014.05.003

107. Xu HC, Grusd at M, Pandrya AA, Pol R, Huang J, Sharma P, et al. TLR3 expression correlates with apoptosis, proliferation and angiogenesis in hepatocellular carcinoma. *J Immunol* (2012) 188:232–8. doi:10.4049/jimmunol.1100926

108. Vacchelli E, Aranda F, Obrist F, Eggermont A, Galon J, Cremer I, et al. Type I interferons protect T cells against NK cell attack mediated by the activating receptor NCR1. *Immunity* (2014) 40:949–60. doi:10.1016/j.immuni.2014.05.004

109. Novakov A, Cardone M, Thompson R, Shenderov K, Kirschman KD, Mayer-Barber KD, et al. Mycobacterium tuberculosis triggers host type I IFN signaling to regulate IL-1beta production in human macrophages. *J Immunol* (2011) 187:2540–7. doi:10.4049/jimmunol.1000926

110. Salyer CM, Raker V, Hofmann G, Graulich E, Schwenk M, Baumgrass R, et al. Interferon-alpha suppresses cAMP to disarm human regulatory T cells. *Cell Death Dis* (2013) 4:e2547. doi:10.1038/cddis.2013.115

111. Drobits B, Holcmann M, Amberg N, Swiecki M, Grundtner R, Hammer M, et al. Nucleotides released by apoptotic cells act as a find-me signal to promote their immunosuppressive activity. *EMBO J* (2015) 34:1589–94. doi:10.1002/embj.201490784

112. Slattery ML, Herrick JS, Bondurant KL, Wolff RK. Toll-like receptor genes and their association with colon and rectal cancer development and prognosis. *Int J Cancer* (2012) 130:2974–80. doi:10.1002/ijc.26314

113. Vacchelli E, Eggermont A, Fridman WH, Galon J, Zitvogel L, Kroemer G, et al. Trial watch: immunostimulatory cytokines. *Oncoimmunology* (2013) 2:24850. doi:10.4161/onci.24850

114. Vacchelli E, Aranda F, Obrist F, Eggermont A, Galon J, Cremer I, et al. Trial watch: immunostimulatory cytokines in cancer therapy. *Oncoimmunology* (2014) 3:e29930. doi:10.4161/onci.29930

115. Martins I, Tesniere A, Kepp O, Michaud M, Schlemmer F, Senovilla L, et al. Chemotherapy induces ATP release from tumor cells. *Cell Cycle* (2009) 8:3723–8. doi:10.1089/cc.2009.002002

116. Martins I, Wang Y, Michaud M, Ma Y, Sukkruwala AQ, Shen S, et al. Mechanisms of ATP secretion during immunogenic cell death. *Cell Death Differ* (2014) 21:79–91. doi:10.1038/cdd.2013.75

117. Michaud M, Sukkruwala AQ, Martins I, Shen S, Zitvogel L, Kroemer G. Subversion of the chemotherapy-induced antitumor immune response by the ecto-ATPase CD39. *Oncoimmunology* (2012) 1:393–5. doi:10.4161/onci.19070

118. Galluzzi L, Pietrocola F, Bravo-San Pedro JM, Amaravadi RK, Bachelette EH, Ceconi C, et al. Autophagy in malignant transformation and cancer progression. *EMBO J* (2015) 34:8586–80. doi:10.15252/embj.201490784

119. Barot R, Regairaz A, Bonnefoy N, Dejou C, Giustiniani J, Laheurte C, et al. Autophagy in malignant transformation and cancer progression. *Cancer Cell* (2014) 25:354–65. doi:10.1016/j.cccr.2014.05.008

120. Martens I, Tesniere A, Kepp O, Michaud M, Schlemmer F, Senovilla L, et al. Chemotherapy induces ATP release from tumor cells. *Cell Cycle* (2009) 8:3723–8. doi:10.1089/cc.2009.002002

121. Martens I, Wang Y, Michaud M, Ma Y, Sukkruwala AQ, Shen S, et al. Mechanisms of ATP secretion during immunogenic cell death. *Cell Death Differ* (2014) 21:79–91. doi:10.1038/cdd.2013.75

122. Michaud M, Sukkruwala AQ, Martins I, Shen S, Zitvogel L, Kroemer G. Subversion of the chemotherapy-induced antitumor immune response by the ecto-ATPase CD39. *Oncoimmunology* (2012) 1:393–5. doi:10.4161/onci.19070

123. Galluzzi L, Pietrocola F, Bravo-San Pedro JM, Amaravadi RK, Bachelette EH, Ceconi C, et al. Autophagy in malignant transformation and cancer progression. *EMBO J* (2015) 34:8586–80. doi:10.15252/embj.201490784

124. Barot R, Regairaz A, Bonnefoy N, Dejou C, Giustiniani J, Laheurte C, et al. Inhibition of CD39 enzymatic function at the surface of tumor cells alleviates their immunosuppressive activity. *Cancer Immunol Res* (2015) 3:254–65. doi:10.1158/2326-6066.CIR-14-0018

125. Elliott MR, Chekeni FB, Trampont PC, Lazarowski ER, Kadzi A, Walk SF, et al. Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. *Nature* (2009) 461:282–6. doi:10.1038/nature08296

126. Ma Y, Adjemian S, Mattarolo SR, Yamazaki T, Aymeric L, Yang H, et al. Anticancer chemotherapy-induced intratumoral recruitment and differentiation of antigen-presenting cells. *Immunity* (2013) 38:729–41. doi:10.1016/j.immuni.2013.03.003

127. Ma Y, Adjemian S, Yang H, Catani JP, Hannani D, Martins I, et al. ATP-dependent recruitment, survival and differentiation of dendritic cell precursors in the tumor bed after anticancer chemotherapy. *Oncoimmunology* (2013) 2:e24568. doi:10.4161/onci.24568
135. Ajmeryc L, Apetlo L, Ghiringhelli F, Tesniere A, Martins I, Kroemer G, et al. Tumor cell death and ATP release prime dendritic cells and efficient antitumor immunity. Cancer Res (2010) 70:855–8. doi:10.1158/0008-5472. CR-09-3655.

136. Zitvogel L, Kepp O, Galluzzi L, Kroemer G. Inflammammasomes in carcinogenesis and antitumor immune responses. Nat Immunol (2012) 13:343–51. doi:10.1038/ni.2224.

137. Beavis PA, Stagg J, Darcy PK, Smyth MJ. CD73: a potent suppressor of antitumor immunity. Trends Immunol (2012) 33:231–7. doi:10.1016/j.ti.2012.02.009.

138. Dardano A, Falzoni S, Caracci N, Polimi A, Tognini S, Solini A, et al. 1513A/C polymorphism in the P2X7 receptor gene in patients with papillary thyroid cancer: correlation with histological variants and clinical parameters. J Clin Endocrinol Metab (2009) 94:695–8. doi:10.1210/jc.2008-1332.

139. Wiley JS, Dao-Ung LP, Gu BJ, Wang N, Shenon AM, Li C, et al. A loss-of-function polymorphic mutation in the cytoplasmic P2X7 receptor gene and chronic lymphocytic leukemia: a molecular study. Lancet (2002) 359:1114–9. doi:10.1016/S0140-6736(02)08156-4.

140. Thunberg U, Tobin G, Johnson A, Soderberg O, Padyukov L, Hultdin M, et al. Polymorphism in the P2X7 receptor gene and survival in chronic lymphocytic leukamia. Lancet (2002) 360:3935–9. doi:10.1016/s0140-6736(02)11917-9.

141. Zhang LY, Ibbotson RE, Orchard JA, Gardiner AC, Seear RV, Chase AJ, et al. The 1513A/C polymorphism of the cytolytic P2X7 receptor gene 1513A does not affect CD39 expression in human endometrial cancer specimens. Am J Physiol Gastrointest Liver Physiol (2010) 299:G2223–30. doi:10.1152/ajpgi.00299.2006.

142. Xu S, Shao QQ, Sun JT, Yang N, Xie Q, Wang DH, et al. Synergy between the ectoenzymes CD93 and CD73 contributes to adenosinergic immuno-suppression in human malignant gliomas. Neuro Oncol (2013) 15:1160–72. doi:10.1093/neucom/not067.

143. Klonowsky DJ, Abdalla FC, Abelovich H, Abraham RT, Acevedo-Arozena A, Adeli K, et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy (2012) 8:445–54. doi:10.4161/auto.19496.

144. Ma Y, Galluzzi L, Zitvogel L, Kroemer G. Autophagy and cellular immune responses. Immunity (2013) 39:211–27. doi:10.1016/j.immuni.2013.07.017.

145. Ko A, Kanheisha A, Martins I, Senovilla L, Chargari C, Dugue D, et al. Autophagy inhibition radiosensitizes in vitro, yet reduces radioreponses in vivo due to deficient immunogenic signalling. Cell Death Differ (2014) 21:92–9. doi:10.1038/cdd.2013.124.

146. Ladoire S, Chaka K, Martins I, Sukkurwala QA, Adjemian S, Michaud M, et al. Immunohistochemical detection of cytoplasmic LC3 puncta in human cancer specimens. Autophagy (2012) 8:175–84. doi:10.4161/auto.20353.

147. Scafidi F, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature (2002) 418:191–5. doi:10.1038/nature00858.

148. Martins I, Kepp O, Menger L, Michaud M, Adjemian S, Sukkurwala QA, et al. Fluorescent biosensors for the detection of HMGB1 release. Methods Mol Biol (2013) 1004:43–56. doi:10.1007/978-1-62034-383-1_4.

149. Liu A, Fang H, Dirsch O, Jin H, Dahmen U. Oxidation of HMGB1 causes attenuation of its pro-inflammatory activity and occurs during liver ischemia and reperfusion. PLoS One (2012) 7:e33579. doi:10.1371/journal.pone.0033579.

150. Venereau E, Casalgrandi M, Schiraldi M, Antione DC, Cattaneo A, De Marchis F, et al. Mutually exclusive redox forms of HMGB1 promote cell recruitment or proinflammatory cytokine release. J Exp Med (2012) 209:1519–28. doi:10.1084/jem.2012189.

151. Yu Y, Tang D, Kang R. Oxidative stress-mediated HMGB1 biology. Front Physiol (2015) 6:93. doi:10.3389/fphys.2015.00093.

152. Dumitriu IE, Bianchi ME, Bacci M, Manfredi AA, Rovere-Querini P. The secretion of HMGB1 is required for the migration of maturing dendritic cells. J Leukoc Biol (2007) 81:84–91. doi:10.1189/jlb.0606317.

153. Schiraldi M, Raucci A, Munoz LM, Livoti E, Celona B, Venerale E, et al. HMGB1 promotes recruitment of inflammatory cells to damaged tissues by forming a complex with CXCL12 and signaling via CXCR4. J Exp Med (2012) 209:551–63. doi:10.1084/jem.20111739.

154. Rovere-Querini P, Cappelletti M, Scafidi P, Valentinis B, Catalani M, et al. HMGB1 is an endogenous immune adjuvant released by necrotic cells. EMBO Rep (2004) 5:825–30. doi:10.1038/sj.embor.7400205.

155. Apetlo L, Ghiringhelli F, Tesniere A, Criollo A, Ortiz C, Liderue R, et al. The interaction between HMGB1 and TLR4 dictates the outcome of anti-cancer chemotherapy and radiotherapy. Immunol Rev (2007) 212:47–59. doi:10.1111/j.1600-065X.2007.00573.x.

156. Sims GP, Rowe DC, Riedijk ST, Herbst R, Coyle AJ. HMGB1 and RAGE in inflammation and cancer. Annu Rev Immunol (2010) 28:367–88. doi:10.1146/annurev.immunol.020908.123603.

157. Shiratsuchi A, Watanabe I, Takeuchi O, Akira S, Nakanishi Y. Inhibitory effect of toll-like receptor 4 on fusion between phagosomes and endosomes/ lysosomes in macrophages. J Immunol (2004) 172:2039–47. doi:10.4049/ immunol.172.4.2039.

158. Tian J, Avalos AM, Mao SY, Chen B, Senthil K, Wu H, et al. Toll-like receptor 4-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat Immunol (2007) 8:487–96. doi:10.1038/nri2147.

159. Chiba S, Baghdadi M, Akiba H, Yoshizawa H, Kinoshita I, Dosaka-Akita H, et al. Tumor-infiltrating DCs suppress nucleic acid-mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1. Nat Immunol (2012) 13:832–42. doi:10.1038/ni.2376.

160. Bao G, Qiao Q, Zhao H, He X. Prognostic value of HMGB1 overexpression in resectable gastric adenocarcinomas. World J Surg Oncol (2010) 8:52. doi:10.1186/1477-7819-8-52.
Damage signaling in cancer patients

Fucikova et al.

1. Yamazaki T, Hannani D, Poirier-Colame V, Ladoire S, Locher C, Sistigu A, et al. Defective immunogenic cell death of HMGB1-deficient tumors: compensatory therapy with TLR4 agonists. Cell Death Dis (2014) 21:69–78. doi:10.1038/cdd.2013.72

2. Peng RQ, Wu XJ, Ding Y, Li CY, Yu XJ, Zhang X, Li et al. Co-expression of nuclear and cytoplasmic HMGB1 is inversely associated with infiltration of CD45RO+ T cells and prognosis in patients with stage IIIB colon cancer. BMC Cancer (2010) 10:496. doi:10.1186/1471-2407-10-496

3. Yang GL, Zhang LH, Bo JJ, Huo XJ, Chen HG, Cao M, et al. Increased expression of HMGB1 is associated with poor prognosis in human bladder cancer. J Surg Oncol (2012) 106:57–61. doi:10.1002/jso.23040

4. Wu D, Ding Y, Wang S, Zhang Q, Liu L. Increased expression of high mobility group box 1 (HMGB1) is associated with progression and poor prognosis in human nasopharyngeal carcinoma. J Pathol (2008) 216:167–75. doi:10.1002/path.2391

5. Yao X, Zhao G, Yang H, Hong X, Bie L, Liu G. Overexpression of high-mobility group box 1 correlates with tumor progression and poor prognosis in human colorectal carcinoma. J Cancer Res Clin Oncol (2010) 136:677–84. doi:10.1007/s00432-009-0706-1

6. Liu F, Zhang Y, Peng Z, Gao H, Xu L, Chen M. High expression of high mobility group box 1 (HMGB1) is associated with progression and poor prognosis in human nasopharyngeal carcinoma. J Pathol (2008) 216:167–75. doi:10.1002/path.2391

7. Fucikova et al. Damage signaling in cancer patients. Mol Ther (2013) 21:1212–23. doi:10.1038/mt.2013.51

8. Lukman I, Koski A, Merisalo-Sokkeli M, Hemminki O, Oksanen M, Aikemo K, et al. Serum HMGB1 is a predictive and prognostic biomarker for oncolytic immunotherapy. Oncovirology (2015) 4:e0087771. doi:10.1186/2044-7147-4-88

9. Wang EL, Qian ZR, Nakasomo M, Tanahashi T, Yoshimoto K, Bando Y, et al. High expression of toll-like receptor 4/myeloid differentiation factor 88 signals correlates with poor prognosis in colorectal cancer. Br J Cancer (2010) 102:908–15. doi:10.1038/sj.bjc.6605558

10. Gonzalez-Aguilar A, Ibdah A, Boisselier B, Habibta N, Rossetto M, Laurens E, et al. Recurrence patterns of MYD88 and TBL1XR1 in primary central nervous system lymphomas. Clin Cancer Res (2012) 18:5203–11. doi:10.1158/1078-0432.CCR-12-0845

11. Kim KH, Jo MS, Suh DS, Yoon MS, Shin DH, Lee JH, et al. Expression and significance of the TLR4/MYD88 signaling pathway in ovarian epithelial cancers. World J Surg Oncol (2010) 10:193. doi:10.1186/1477-7819-10-193

12. Zhu Y, Huang JM, Zhang GN, Zha X, Deng BF. Prognostic significance of MYD88 expression by human epithelial ovarian carcinoma cells. J Transl Med (2011) 9:189. doi:10.1186/1479-5876-10-77

13. Pan H, He L, Wang B, Niu W. The relationship between RAGE gene four common polymorphisms and breast cancer risk in northeastern Han Chinese. Sci Rep (2014) 4:3435. doi:10.1038/srep03435

14. Tesarova P, Kalousova M, Jachymova M, Mestek O, Petruzelka L, Zima T. Receptor for advanced glycation end products (RAGE) – soluble form (sRAGE) and gene polymorphisms in patients with breast cancer. Cancer Invest (2007) 25:720–5. doi:10.1080/07357907001560521

15. Wang D, Li T, Ye G, Shen Z, Hu Y, Mou T, et al. Overexpression of the receptor for advanced glycation endproducts (RAGE) is associated with poor prognosis in gastric cancer. PLoS One (2015) 10:e0122697. doi:10.1371/journal.pone.0122697

16. Kohles N, Nagel D, Jungst D, Stieber P, Holdeneried S, Predictive value of immunogenic cell death biomarkers HMGB1, sRAGE, and DNase in liver cancer patients receiving transarterial chemoembolization therapy. Tumour Biol (2012) 33:2401–9. doi:10.1007/s13277-012-0504-2

17. Wang X, Cui E, Zeng H, Hua F, Wang B, Mao W, et al. RAGE genetic polymorphisms are associated with risk, chemotherapy response and prognosis in patients with advanced NSCLC. PLoS One (2012) 7:e43734. doi:10.1371/journal.pone.0043734

18. Zhang S, Hou X, Zi S, Wang Y, Chen L, Kong B. Polymorphisms of receptor for advanced glycation end products and risk of epithelial ovarian cancer in Chinese patients. Cell Physiol Biochem (2013) 31:525–31. doi:10.1159/000350073

19. Takahashi T, Kato A, Hattori M, Kajiyama T, Shiba T, Tsuchiya T, et al. Toll-like receptor 2 -196 to 174del polymorphism influences the susceptibility of Japanese people to gastric cancer. Cancer Sci (2007) 98:1790–4. doi:10.1111/j.1349-7006.2007.00590.x

20. Junjie X, Songyao J, Minmin S, Yanyan S, Baiyong S, Xiaxing D, et al. The association between toll-like receptor 2 single-nucleotide polymorphisms and hepatocellular carcinoma susceptibility. BMC Cancer (2012) 12:57. doi:10.1186/1471-2407-12-57

21. Nieters A, Beckmann L, Deeg E, Becker N. Gene polymorphisms in toll-like receptors, interleukin-10, and interleukin-10 receptor alpha and lymphoma risk. Genes Immun (2006) 7:615–24. doi:10.1038/sj.gen.6003437

22. Mandal RK, George GP, Mittal RD. Association of toll-like receptor (TLR) 2, 3 and 9 genes polymorphism with prostate cancer risk in North Indian population. Mol Biol Rep (2012) 39:7263–9. doi:10.1007/s11033-012-1556-5

23. Bergmann C, Bachmann HS, Bankfalvi A, Lotfi R, Putter C, Wild CA, et al. Toll-like receptor 4 -196 to 174del polymorphism influences the susceptibility of Japanese people to gastric cancer. Cancer Sci (2007) 98:1790–4. doi:10.1111/j.1349-7006.2007.00590.x

24. Junjie X, Songyao J, Minmin S, Yanyan S, Baiyong S, Xiaxing D, et al. The association between toll-like receptor 2 single-nucleotide polymorphisms and hepatocellular carcinoma susceptibility. BMC Cancer (2012) 12:57. doi:10.1186/1471-2407-12-57

25. Nieters A, Beckmann L, Deeg E, Becker N. Gene polymorphisms in toll-like receptors, interleukin-10, and interleukin-10 receptor alpha and lymphoma risk. Genes Immun (2006) 7:615–24. doi:10.1038/sj.gen.6003437

26. Mandal RK, George GP, Mittal RD. Association of toll-like receptor (TLR) 2, 3 and 9 genes polymorphism with prostate cancer risk in North Indian population. Mol Biol Rep (2012) 39:7263–9. doi:10.1007/s11033-012-1556-5

27. Bergmann C, Bachmann HS, Bankfalvi A, Lotfi R, Putter C, Wild CA, et al. Toll-like receptor 4 -196 to 174del polymorphisms Asp299Gly and Thr399Ile in head and neck squamous cell carcinomas. J Transl Med (2011) 9:139. doi:10.1186/1475-2174-9-139

28. Tittarelli A, Gonzalez FE, Pereda C, Mora G, Munoz L, Saffie C, et al. Toll-like receptor 4 gene polymorphisms influence dendritic cell in vitro function and clinical outcomes in vaccinated melanoma patients. Cancer Immunol Immunother (2012) 61:2067–77. doi:10.1007/s00262-012-1267-7

29. Gast A, Bermejo JL, Claus R, Brandt A, Weires M, Weber A, et al. Association of inherited variation in toll-like receptor genes with malignant melanoma
Damage signaling in cancer patients

17. Chen YC, Giovannucci E, Lazarus R, Kraft P, Kettler S, Hunter DJ. Sequence variants of toll-like receptor 4 and susceptibility to prostate cancer. Cancer Res (2005) 65:11771–8. doi:10.1158/0008-5472.CAN-05-2078

18. Wang MH, Helzlsouer KJ, Smith MW, Hoffman-Bolton JA, Clipp SL, Grinberg V, et al. Association of IL10 and other immune response- and obesity-related genes with prostate cancer in CLUE II. Prostate (2009) 69:874–85. doi:10.1002/pros.20933

19. Song J, Kim DY, Kim CS, Kim HJ, Lee DH, Lee HM, et al. The association between toll-like receptor 4 (TLR4) polymorphisms and susceptibility to prostate cancer in Korean men. Cancer Genet Cytogenet (2009) 190:88–92. doi:10.1016/j.cancergencyto.2008.12.011

20. Kang R, Zhang Q, Zeh HJ III, Lotze MT, Tang D. HMGB1 in cancer: good, bad, or both? Clin Cancer Res (2013) 19:4046–57. doi:10.1158/1078-0432.CCR-13-0495

21. Galluzzi L, Bravo-San Pedro JM, Kroemer G. Organelle-specific initiation of cell death. Nat Cell Biol (2014) 16:728–36. doi:10.1038/ncb3005

22. Oka T, Hikoso S, Yamaguchi O, Taneike M, Takeda T, Tamai T, et al. Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature (2012) 485:251–5. doi:10.1038/nature10992

23. West AP, Khoury-Hanold W, Staron M, Tal MC, Pineda CM, Lang SM, et al. Mitochondrial DNA stress primes the antiviral innate immune response. Nature (2015) 520:553–7. doi:10.1038/nature14156

24. Cao H, Ye H, Sun Z, Shen X, Song Z, Wu X, et al. Circulatory mitochondrial DNA is a pro-inflammatory agent in maintenance hemodialysis patients. PLoS One (2014) 9:e113179. doi:10.1371/journal.pone.0113179

25. Kung CT, Hsiao SY, Tsai TC, Su CM, Chang WN, Huang CR, et al. Plasma nuclear and mitochondrial DNA levels as predictors of outcome in severe sepsis patients in the emergency room. J Transl Med (2012) 10:130. doi:10.1186/1479-5876-10-130

26. Carp H. Mitochondrial N-formylmethionyl proteins as chemotactants for neutrophils. J Exp Med (1982) 155:264–75. doi:10.1084/jem.155.1.264

27. Rabiet MJ, Huet E, Boulay F. Human mitochondria-derived N-formylated peptides are novel agonists equally active on FPR and FPRL1, while Listeria monocytogenes-derived peptides preferentially activate FPR. Eur J Immunol (2005) 35:2486–95. doi:10.1002/eji.200526338

Conflict of Interest Statement: Jitka Fucikova, Irena Moserova, Linda Urbanova, and Radek Spisek are employees of Sotio (Prague, Czech Republic). The other co-authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. The handling editor, Fabrizio Mattei declares that, despite having co-authored a paper with the manuscript’s authors within the past two years, the review process was handled objectively.

Copyright © 2015 Fucikova, Moserova, Urbanova, Bezu, Kepp, Cremer, Salek, Strnad, Kroemer, Galluzzi and Spisek. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.