Isolation Period of 131I Administered Patients at NIMRA Jamshoro Pakistan

Abstract

Objectives: Since 1940s, the clinical use of unsealed radioisotopes has been in practice and after that the radioiodine’s oral administration became a gold standard for treating thyroid cancers. To protect the patients’ family members/caregivers and general public from unacceptably high radiation exposures, the therapeutic dosage of 131I administered patients are mandatory hospitalized in special isolation room until the exposure rate at one meter meets international and national limits. The current study was focused to measure the isolation duration of inpatients treated with radioiodine.

Material and Methods: The current study presents the duration of hospitalization of patients treated with 131I therapeutic dosages at Nuclear Institute of Medicine & Radiotherapy (NIMRA) Jamshoro, Pakistan from 2011 to 2013. Thirty Five patients (age range from 18 to 70 years) with cancer of thyroid administered with different activities (50 to 200 mCi (milliCurie)) of 131I admitted in special isolated room at different times were included in this study.

Results: The results indicated that only one (2.86%) of total patients discharged from hospital within first 24 hours of 131I administration whereas 17(48.57%), 11(31.43%) and 3(8.57%) patients were hospitalized in isolation room for 48, 72 and 96 hours after the administration of activity. Eleven percent of total isolated patients (n=4) stayed for 120 to 144 hours at the hospital.

Conclusion: The stay duration of 131I administered patients at NIMRA shows wide-ranging pattern. Due to rapid clearance of radioiodine form their bodies, more than half of patients stayed only 48 hours.

Keywords: Exposure; Hospitalization; Isolation room; Radioiodine; Stay duration

Introduction

After the radioiodine production by neutrons bombardment on stable iodine by Enrico Fermi in the Ernest O. Lawrence’s constructed cyclotron in 1930s [1], the first usage of radioiodine for treating hyperthyroidism was done by Saul Hertz and Arthur Roberts in 1940s [2] since then it became the milestone for treating thyroid cancer. 131I primarily emits 610 keV β particle which initiate the emission of 364 keV γ ray [3]. As 131I administered patients may likely be potential sources of adverse high radiation exposure to close family members/caregivers [4], so for protection of family members/caregivers and general public, the patients are discharged when the exposure rate level at one meter from the patients’ body falls to tolerable levels [5-7]. To regulate the discharge of hospitalized 131I administered patients, numerous standards and policies have been established [4]. The patients’ releasing criteria is set to ensure that no family member/caregiver or general public receives exposures above the regulatory dose limits [3,5,8-11] This study was initiated to discuss the isolation period of inpatients treated with radioiodine.

Material and Methods

The stay period of radioiodine administered patients solely depends upon the exposure rate measurement [4] by which the dose to others may be minimized [12,13]. If the administered radioiodine to the patient is more than 30 mCi, isolated hospitalization is necessary until the reduction of residual activity to 30 mCi or decline of the exposure rate to 50µSv/hr (micro Sievert) at one meter from patient [14,15]. Total 35, 71.43% (n=25) females and 28.57% (n=10) males treated with radioiodine at Nuclear Institute of Medicine and Radiotherapy (NIMRA) Jamshoro from 2011 to 2013 were included in the current study. The ages of patients were from 18 to 70 years and the administered activities of 131I were from 50 mCi to 200 mCi. Data of patients (age, sex, activity administered, date and time of 131I administration) were recorded [4,16]. Exposures rates at one meter from patients’ bodies on the first day (at the time of activity administration), then consecutive days until the patients’ hospital discharging day [3,9,17] were done with calibrated RM1001-RD LAMSE survey meter. Oral and written instructions about patients’ isolation at hospital and at home were given for minimization of dose to others [4,5,9,16,18-20]. The instructions were

a. During hospital stay, the patient will be alone in the isolated room;

b. Family members/ caregivers will be allowed for very short span of time for providing meals and water to the isolated patient;

c. Ensuring increased liquids intake;

d. Lemon/orange candies chewing to minimizing salivary glands dose;
e. Lactating mothers advised to complete cessation of breast milk to their babies to prevent radioiodine excreted to the babies;
f. Pregnancy avoidance for 4–6 months period after radioiodine administration;
g. Keeping maximum distance from family members/caregivers and general public, separate sleeping arrangements, avoiding of public transport travel and visiting public places (grocery stores, shopping centers, restaurants and theatres);
h. Instructing the patients and their caregivers to follow the instructions at home as maintained in isolation after discharge for one to two weeks for reduction of caregivers’/family members’ dose.

The patients’ releasing criteria from hospital’s isolation room was based on international and national regulatory agencies [4,5,10,11,16], that indicate that the patients may be discharged from hospital as exposure rate drops below 50µSv/hr at one meter [21] and this limit is PNRA’s regulatory requirements [5]; however, to avoid radiation dose to family members/caregivers, most patients were discharged from the hospital at exposure rate around 20–30µSv/hr.

Results

Amongst 35 patients who have administered 131I, 2.86% (n=1) stayed for just 24 hours in isolation room whereas 48.57% (n=17), 31.43% (n=11) and 8.57% (n=3) patients were stayed in isolation room at NIMRA for 48, 72 and 96 hours after the administration of radioiodine respectively. Remaining 4 patients (11.43%) stayed for 120 to 144 hours at the hospital as shown in Figure 1.

Continuous reduction in exposure rate shows the radioiodine excretion from the patients and we observed a mixed pattern of patients’ exposure rates. The exposure rate of radioiodine patients dropped to around initial exposure rate’s 50% within first 24 hours, and after each succeeding 24 hour period, the exposure rates dropped to 16.35%, 11.70% and 9.77% as expressed in Figure 2.

Overall, more than 80% fall in the initial exposure rate was recorded during patients’ stay at the hospital. From daily exposure rate measurements, the doses of caregivers during patients’ stay (providing meals and water to patients in a minute time span) were estimated from 0.0517 to 0.2125mSv (average 0.132mSv) and the majority of caregivers (more than 80%) received doses between 0.03mSv and 0.09mSv.

Discussion

The stay of patient in isolation room at the institute depends on many factors [4]
a. Activity administered,
b. Removal of activity from the patient,
c. Behavior of exposure rate.

The hospitalization of patient in isolation room for a 1-3 days or more till fall of the radioactivity in their bodies or the exposure rate at one meter to acceptable levels play major role to avoid unsuitable high radiation exposure to patients’ family members/caregivers [9,22]. The radioiodine uptake and exposure rate differs from patient to patient so their stay at hospital may differ also. The exposure rate, patients’ socioeconomic conditions and institution’s available resources must be considered as the majority of patients are financially poor and the institution has limited resources [4,23]. The studies [3,4,15,24-38] on % age excretion of 131I activity by researchers and, dose to caregivers/family members including current study are summarized in Table 1 & 2.

The studies conducted by Driver & Memon [3,4] and current study reveals that dearance of 131I from patients’ bodies is about 50% in first 24 hours where as 30% to 75% radioiodine excretion in first 24 hours observed by Tuntawiroon et al. & Parthasarathy et al. [25,26]. Tavakoli [27] reported that about 70% of activity cleared within first 24 hours. The study conducted by Markou P et al. [28] indicated that more than 60% of administered activity excreted within first 24 hours whereas 50-60% excretion administered activity was studied by Hamizah NMZ et al. [29] in the first 24 hours. Table 1 concludes that in all studies the excretion rate of 131I activity from patients is more than 75% within 72 hours of activity administration. Figure 1 shows the
Isolation Period of 131I Administered Patients at NIMRA Jamshoro Pakistan

%age excretion of 131I activity from isolated patients at NIMRA Jamshoro Pakistan.

Table 2 shows the radiation dose levels to family members/caregivers of radiiodine patient which pointed out that the doses to masses in various studies [4,30-38] including current report were in the magnitude of annual limit to general public (1mSv) which wrapping up that the patients treated with 131I do not share a significant radiation dose to the public [4,16,39]. Table 3 presents the data of patients’ stay at hospital including current study. Memon SA et al. [4] studied that stay duration of only 1.2% patients was 24 hours and 33.73%, 25.3% & 21.67% were discharged from hospital after 48, 72 & 96 hours. Al Haj [9] revealed that only 7% of the total patients were stayed just for 24 hours where as 76% and 14% of patients stayed for 48 and 72 hours. Culver et al. [21] reported that 26% of the treated patients were released after 24 hours from hospital whereas 67% and 7% were stayed for 48 and 72 hours respectively, Markou P et al. [28] studied that 75% of patients stayed for 48 hours and only 25% discharged from hospital within 72 hours. The study commenced by Lee JH et al. [40] reveals that 28% of patients discharged from hospital within 24 hours whereas stay of 60% patients in hospital was 48 hours. This study expressed that the patients’ stay at the hospital were in the magnitude of 2.86% for 24 hours whereas 48.57%, 31.43% and 8.57% of patients discharged after 48, 72 and 96 hours respectively. Figure 2 indicates the data of patients’ stay duration at NIMRA Jamshoro Pakistan.

Table 1: Summary of studies including current for % age of excretion of 131I activity from patients.

Study	% Age of Excretion 131I Activity from Patients			
	24 hours	48 hours	72 hours	96 hours
Driver et al. [3]	51	17	8.5	5
Memon SA et al.[4]	50	14.95	10.32	8.67
Thompson MA [15]	80			
Massimiliano P et al. [24]	80			
Tuntawiroon M et al. [25]	30 to 75			
Parthasanthy et al. [26]	30 to 75			
Tavakoli [27]	70	20	6	
Markou P et al. [28]	61.37	24.9		
Hamizah NMZ et al. [29]	50-60			
Current	48.7	17.65	11.7	9.77

Table 2: Different studies for dose to caregivers/family members of 131I administered patients.

Study	Average Dose to Caregivers/ Family Members mSv
Memon SA et al. [4]	0.134
Grigsby et al. [30]	0.55
Willegaignon J et al.[31]	< 1
AlMaskery et al. [32]	< 1
Rutar et al. [33]	2.13
Tonnchiong et al. [34]	< 1
Marriott et al. [35]	0.283
Sapienza MT et al. [36]	< 1
Reiners C et al. [37]	< 1
Cappelen T et al. [38]	< 1
Current	0.132

Citation: Memon SA, Laghari NA, Mangi FH, Hussain MM, Nohario SH (2017) Isolation Period of 131I Administered Patients at NIMRA Jamshoro Pakistan. Int J Radiol Radiat Ther 2(1): 00011. DOI: 10.15406/ijrrt.2017.02.00011
Table 3: Studies regarding % age of stay duration of 131I administered patients.

Study	% Age of Patients’ Stay Duration			
	24 hours	48 hours	72 hours	96 hours
Memon SA et al [4]	1.2	33.73	25.3	21.67
Al Haj [9]	7	76	14	
Culver et al. [21]	26	67	7	
Mariou P et al [28]	75	25		
Lee JH et al. [40]	28	68		
Current	2.86	48.57	31.43	8.57

Conclusion
Like other studies [4,9,21,28,40], the present study as well shows the mixed behaviour for stay of radiiodine administered patients concluding that more than 50% of hospitalized patients discharged within first 48 hours of administration of radiiodine.

Acknowledgement
The authors wish to thank Mr. Asif Raza Stenotypist, Mr. Khalid Hussain Hot Lab technician, the ward staff for their help and assistance, without their help this study could not be completed successfully.

References
1. Thomas SR (2002) Options for radionuclide therapy: from fixed activity to patient-specific treatment planning. Cancer Biother Radiopharm 17(1): 71-82.
2. Green R, Kodimer K (2001) Comparison of exposure rates from various iodine 131Therapeutic capsule lead shields: improved designs utilizing tungsten. J Am Pharm Assoc 41(2).
3. Driver I, Packer S (2001) Radioactive waste exchange quantities for patients undergoing radioactive iodine therapy for thyroid carcinoma. Nucl Med Commun 22(10): 29-32.
4. Memon SA, Laghari NA, Qureshi ST, Ahmad A, Khan AA, et al. (2014) Hospital discharge of patients with thyroid carcinoma. Nucl Med Commun 22(10): 29-32.
5. PNRA (2004) Regulations on radiation protection. Pakistan Nuclear Regulatory Authority.
6. https://rpopiae.org/RPoP/RPoP/Content/index.htm
7. (1998) Radiation Protection 97: Radiation protection following iodine 131I therapy European Commission, Brussels, Luxembourg.
8. Venencia CD, Germaner AG, Bustos S, Giovannini AA, Wyse EP (2002) Hospital discharge of patients with thyroid carcinoma treated with 131I. J Nucl Med 43(3): 61-65.
9. Al-Haj AN, Lagarde C, Lobriguito AM (2007) Patient parameters and other radiation safety issues in 131I therapy for thyroid cancer treatment. Health Phys 93(6): 656-666.
10. ARPNSA (2008) Radiation protection safety guide: Safety guide for radiation protection in nuclear medicine. Australian Radiation Protection and Nuclear Safety Agency.
11. IAEA (2004) Safety standards series no. RSG1.7: Application of the concepts of exclusion, exemption and clearance. International Atomic Energy Agency, Vienna, Austria.
12. ICRP (2007) The 2007 Recommendations of the International Commission on Radiological Protection. In: Valentin J (Eds.), International Commission on Radiological Protection, Elsevier Oxford, UK.
13. Willegaignon J, Guimaraes ML, Sapienza MT, Sabin MG, Malvestiti LF, et al. (2006) A new proposal for monitoring patients in nuclear medicine. Health Phys 91(6): 624-629.
14. Thompson MA (2001) Radiation safety precautions in the management of the hospitalized 131I therapy patient. J Nucl Med Technol 29(2): 61-66.
15. Grigsby PW, Siegel BA, Baker S, Eichling JO (2000) Radiation exposure from outpatient radioactive iodine (131I) therapy for thyroid carcinoma. J Am Med Assoc 283(17): 2272-2274.
16. Memon SA, Laghari NA, Qureshi ST, Ahmad A, Khan AA, et al. (2014) Public exposure from I-131 hospitalized isolated patients in NIMRA Jamshoro Pakistan. Int J Cancer Ther Oncol 2(2): 020214.
17. Willegaignon J, Sapienza M, Ono C, Watanabe T, Guimaraes ML, et al. (2011) Outpatient radioiodine therapy for thyroid cancer: a safe nuclear medicine procedure. Clin Nucl Med 36(6): 440-445.
18. ARPNSA (2002) Radiation protection series no. 4: Recommendation for the discharge of patients undergoing treatment with radioactive substances. Australian Radiation Protection and Nuclear Safety Agency.
19. Durre S (2006) Treatment of thyrotoxicosis with radioactive iodine. Recommendations of the consensus group on nuclear medicine protocols (Pakistan). World J Nucl Med 5(4): 214-217.
20. (1997) Regulatory analysis on criteria for the release of patients administered radioactive materials (NUREG1492). US Nuclear Regulatory Commission, USA.
21. Culver CM, Dworkin HJ (1992) Radiation safety considerations for post iodine131thyroid cancer therapy. J Nucl Med 33(7): 1402-1405.
22. (1997) Regulatory Guide 8.39: Release of patients administered radioactive materials Rev. US Nuclear Regulatory Commission, DC, Washington, USA.
23. Meier DA, Brill DR, Recker DV, Clarke SE, Silberstein EB, et al. (2002) Procedure guideline for therapy of thyroid disease with 131Iodine. J Nucl Med 43(6): 856-861.
Isolation Period of 131I Administered Patients at NIMRA Jamshoro Pakistan

24. Massimiliano P, Luciano B, Vincenzo P, Giovanni A, Cesidio C (2005) Management of 131I therapy for thyroid cancer: Cumulative dose from inpatients, discharge planning and personnel requirements. Nucl Med Commun 26(7): 623-631.

25. Tuntawirroon M, Sritongkul N, Pusuwan P, Chaudakshetrin P (2008) Radiation exposure from liquid discharges from 131I therapy rooms into the piping system of a hospital building. In vivo therapeutics. World J Nucl Med 7: 122-125.

26. Parthasarathy KL, Crawford ES (2002) Treatment of thyroid carcinoma: Emphasis on high dose 131I outpatient therapy. J Nucl Med Technol 30(4): 165-171.

27. Tavakoli MB (2005) Radioactive discharge from patients with thyroid cancer under 131I treatment and its safe disposal to the public sewer system. Contemp Oncol 9(1): 38-41.

28. Markou P, Chatzopoulos D (2004) Isolation period prediction in patients with differentiated thyroid carcinoma treated after thyroidectomy by radiiodine-131. Hell J Nucl Med 7(3): 195-198.

29. Hamizah NMZ, Juliana MR, Waidi AI, Ismalina SNI, Ahmad Z (2012) Surface contamination in skin and room during hospitalization of thyroid cancer patient receiving radioiodine ablation. IOSR J Dent and Med Sci 2(1): 27-33.

30. Grigsby PW, Siegel BA, Baker S, Eichling JO (2000) Radiation exposure from outpatient radioactive iodine (131I) therapy for thyroid carcinoma. J Am Med Assoc 283(17): 2272-2274.

31. Willegaignon J, Sapienza M, Ono CR, Watanabe T, Guimaraes MI, et al. (2011) Outpatient radiiodine therapy for thyroid cancer: a safe nuclear medicine procedure. Clin Nucl Med 36(6): 440-445.

32. Al-Maskery I, Bererhi H (2009) Radiation exposure levels in family members of Omani patients with thyrotoxicosis treated with radiiodine (131I) as outpatients. SQU Med J 9(2): 148-152.

33. Rutar FJ, Augustine SC, Colcher D, Siegel JA, Jacobson DA, et al. (2001) Outpatient treatment with (131I)-Anti-B1 antibody: Radiation exposure to family members. J Nucl Med 42(6): 907-915.

34. Tonnonchirg C, Sritongkul N, Chaudakshetrin P, Tuntawirroon M (2012) Radiation exposure to relatives of patients treated with iodine131 for thyroid cancer at Siriraj hospital. J Med Assoc Thai 99(2): 220-224.

35. Marriott QJ, Webber CR, Gulenchyn KY (2007) Radiation exposure for caregivers during high dose outpatient radiiodine therapy. Radiat Prot Dosimetry 123(1): 62-67.

36. Sapienza MT, Willegaignon J, Ono CR, Watanabe T, Guimaraes MI, et al. (2009) Radiiodine therapy of differentiated thyroid cancer: radiologic impact of out-patient treatment with 100 to 150 mCi iodine-131 activities. Arq Bras Endocrinol Metabol 53(3): 318-325.

37. Reiners C, Lasmann M (1999) Radioiodine (131I) treatment of hyperthyroidism: radiation protection and quality assurance. Eur J Nucl Med 26(7): 683-685.

38. Cappelen T, Unhjem JF, Amundsen AL, Kravdal G, Folling I (2006) Radiation exposure to family members of patients with thyrotoxicosis treated with iodine-131. Eur J Nucl Med Mol Imaging 33(1): 81-86.

39. Sulaiman BT, Clarke SE (1996) Radiation doses to patient’s relatives following radiiodine therapy. Med J Malaysia 51(1): 131-133.

40. Lee JH, Park SG (2010) Estimation of the Release Time from Isolation for Patients with Differentiated Thyroid Cancer Treated with High-dose I-131. Nucl Med Mol Imaging 44(4): 241-245.