Gene organization and evolutionary history

Autophagy-related 8 proteins (Atg8s) are one of the 62 highly conserved eukaryote-specific protein families [1]. Whereas yeast and other fungal species have a single Atg8 gene, multicellular animals, green plants and some protists have several. Animal Atg8 proteins comprise three subfamilies: microtubule-associated protein 1 light chain 3 (MAP1LC3, hereafter referred to as LC3), γ-aminobutyric acid receptor-associated protein (GABARAP) and Golgi-associated ATPase enhancer of 16 kDa (GATE-16) (Figure 1a). Humans have a single GATE-16 gene, two GABARAP genes and four LC3 genes (Table 1). In addition, LC3A encodes two isoforms resulting from alternative splicing. All three subfamilies are also present in diverse other bilateral species and in the earlier diverging animals - cnidarians (such as sea anemones, corals and hydras) and sponges. Atg8 genes have been both duplicated and lost during evolution, leading to the extinction and expansion of some subfamilies in specific lineages (Table 2). One example is in arthropods: the blacklegged tick Ixodes scapularis (an arachnid) [2] has GATE-16, GABARAP and LC3 genes, but in insects, the honey bee Apis mellifera has only a GABARAP and an LC3 gene [3] and the fruit fly Drosophila has two GABARAP genes [4]. One of the fruit fly GABARAP genes has no coding region introns and could be the result of a retrotransposition of the other gene’s transcript during the emergence of the fruit flies. The human LC3 gene MAP1LC3B2 also lacks coding region introns and its coding region has 376 out of 378 bases identical with the human gene MAP1LC3B, which has three coding region introns and is more than 10 kb long (Table 1). The human genome also includes intron-less copies of all three ATG8 gene subfamilies, which are apparently inactive as a result of frameshifts and nonsense mutations.

Each Atg8 subfamily has some distinct sequence features (Figure 1b). For example, position 18 of the GATE-16 subfamily is typically a serine and sometimes an alanine residue. The corresponding position in the GABARAP subfamily, 18, is an invariant glycine residue, and in the LC3 subfamily the corresponding position, 20, is typically hydrophobic (a valine or alanine residue), and...
Figure 1. Evolution and sequence features of Atg8 genes. (a) Atg8 genes in fungi, animals and intermediate-branching species. A schematic tree, based on a sequence-derived phylogenetic tree, showing the three animal Atg8 subfamilies and their presence in key lineages. The subfamilies appear only in animals. Branching between animals and fungi are Atg8 proteins from the few known unicellular species that diverged after the emergence of fungi and before the emergence of multicellular animals. Shown here are Atg8 proteins from the choanoflagellate Monosiga brevicollis (Mbe) [6], the ichthyosporean Sphaeroforma arctica (Sar) and the amoeba Capsaspora owczarzaki (Cow) [111]. The scheme is based on a tree calculated from protein multiple alignment of Atg8 proteins from representative species with complete and almost complete genomic data. The alignment included 117 conserved amino acid positions. The tree was calculated using the PhyML program version 2.4.4, with 100 bootstrap replicates, four substitution rate categories, the HKY nucleotide substitution model and program-estimated Ts/Tv ratios, gamma shape parameters and invariant proportions as previously described [112]. The subfamily clusters are supported by bootstrap values ranging from 37/100 to 95/100 and also appeared with significant bootstrap values in other trees similarly calculated with different sets of Atg8 genes. The representative species for this scheme were: human, Danio rerio, Xenopus tropicalis, Branchiostoma floridae, Ciona savignyi, Oikopleura dioica, Strongylocentrotus purpuratus, Aplysia californica, Schistosoma mansoni, Schmidtea mediterranea, Drosophila melanogaster, Caenorhabditis elegans, Capitella teleta, Nematostella vectensis, Trichoplax adhaerens, Amphimedon queenslandica, Monosiga brevicollis, Sphaeroforma arctica, Capsaspora owczarzaki, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Allomyces macrogynus, and Tuber melanosporum. (b) Atg8 subfamily sequence features. Sequence logos [113] show the conservation (overall height) and residue prevalence of multiple alignment positions. The alignment includes the core conserved sequence regions, only excluding short non-conserved distal regions of some sequences. The subfamilies are numbered by the coordinates of the human GATE-16, GABARAP and LC3 proteins. Plus signs indicate similar positions between alignments of the GATE-16 and GABARAP subfamilies and between the GABARAP and LC3 subfamilies. Each of the three families is very well conserved across its entire length (apart from the few amino-terminal residues in LC3). The three families are also very similar to each other in most of their positions. The few positions that are only conserved in each family and different between the subfamilies may account for some of the functional differences between the subfamilies. The alignments and logos were constructed as previously described [112], taking into account sequence redundancy and expected amino acid frequencies. Sequences for the alignments were taken from the CDD [114] and PFAM [115] database entries cd01611 and PF02991, respectively, and sequences similar to ones in these entries, from protein sequences and translated genomic and EST sequences found in public sequence databases.
only sometimes a serine residue. Positions 40 in GABARAP and 42 in LC3 subfamilies are conserved and typically basic, whereas the GATE-16 family position corresponding to them, 40, is not well conserved and includes basic residues only in some proteins. At present it is unclear what functions, if any, are associated with these sequence features. Sponges, the oldest surviving basal multicellular animals [5], have genes from all three ATG8 subfamilies. Choanoflagellates, unicellular species that are the closest known relatives of animals [6], have ATG8 genes that do not belong to the three metazoan subfamilies (Figure 1a). It thus seems that the ATG8 gene family diverged into its three subfamilies during the emergence of multicellular animals, and that although the subfamilies underwent further expansion in some lineages, in other lineages some subfamilies were lost. In higher plants the ATG8 genes have also diverged, with <i>Arabidopsis thaliana</i> including eight such genes that can be grouped into three clusters. Different <i>A. thaliana</i> ATG8 genes showed distinct spatial and temporal expression patterns in different tissues [7].

Table 1. Human ATG8 genes

Subfamily	Gene names	Chromosome location	Gene size (kb)*	Coding region introns
GATE-16	GATE-16/GABARAPL2/GEF2	16q22.1	10.9	3
GABARAP	GABARAPL1/GEC1	12p13.31	8.7	3
GABARAP	17p13.1	1.5	3	
LC3	MAP1LC3A	20q11.22	1.0	3
LC3	MAP1LC3B	16q24.2	10.7	3
LC3	MAP1LC3B2	12q24.22	0.4	0
LC3	MAP1LC3C	1q43	2.8	3

*Gene sizes are given from the start to the end of the protein coding region, without 5' and 3' UTRs (because their distal ends can be difficult to determine).

Table 2. Atg8 subfamilies in metazoan lineages

Lineage	Representative species	Number of genes		
Mammals	Human	GATE-16	GABARAP	LC3
Amphibians	Xenopus tropicalis (Western clawed frog)	1	2	4
Fish	Danio rerio (zebrafish)	1	1	4
Cephalochordates	Branchiostoma floridense (amphioxus)	1	1	2
Tunicates	Ciona savignyi (Pacific transparent sea squirt)	1	1	2
Echinoderm	Strongylocentrotus purpuratus (California purple sea urchin)	2	1	2
Mollusks	Aplysia californica (California sea slug)	1	1	2
Flat worms	Schmidtea mediterranea (planarian)	1	1	1
Flat worms	Schistosoma mansoni (trematode)	1	1	-
Nematodes	Caenorhabditis elegans	-	1	1
Insects	Drosophila melanogaster	-	2	-
Insects	Apis mellifera (honey bee)	-	1	1
Segmented worms	Capitella teleta	1	1	2
Cnidarians	Nematostella vectensis (starlet sea anemone)	1	1	2
Sponges	Amphimedon queenslandica	2	1	2

Characteristic structural features

The structures of several Atg8 family members have been solved for mammals, yeast, invertebrates and the parasite <i>Trypanosoma brucei</i> [8-15]. These studies showed that all Atg8 proteins share a strong structural similarity to ubiquitin, despite the lack of similarity in amino acid sequence. GATE-16, the first Atg8 to be crystallized, contains two amino-terminal α-helices in addition to its carboxy-terminal ubiquitin core [13]. Subsequent studies confirmed that these features are a unique characteristic of all Atg8 proteins [8-15] (Figure 2). The two amino-terminal α helices differ between the various mammalian Atg8 proteins; thus, for example, the first α helix of the LC3 subfamily is strongly basic, whereas in the GABARAP and GATE-16 subfamilies this region is acidic [15]. The ubiquitin core of the Atg8 proteins consists of a four-stranded central β sheet, in which the two central strands are parallel to each other and the two outer strands are antiparallel to the central strands. Between these strands lie two α helices: α3 between β2 and β3, and α4 between β3 and β4 [16]. This domain contains a basic
feature that is conserved among family members and is suggested to have a role in protein-protein interactions. The molecular surface lying on the opposite side of the three-dimensional structure is poorly conserved and might mediate interactions specific to different Atg8 proteins [17], whereas the conserved domain is probably responsible for characteristic interactions of Atg8 proteins, such as binding to the conjugation machinery proteins.

During the autophagic process Atg8 proteins bind to numerous factors, such as proteins and possibly membranes [18]. A study by Coyle et al. [8] provides structural evidence for conformational changes resulting from protein-protein interactions. GABARAP was found to have two distinct conformations: a closed conformation, in which the α helices project down towards the surface of the ubiquitin core, and an open conformation, in which the ten amino-terminal amino acids are directed away from the ubiquitin core. The latter conformation is stabilized by the oligomeric state of the protein and points to flexibility in the Atg8 amino-terminal region. A conformational change was also reported in an in vitro reconstitution assay of yeast Atg8, in which accessibility of the amino terminus to antibody increased on conjugation of Atg8 to phosphatidylethanolamine (PE)-containing liposomes [19]. Taken together, these findings suggest that the Atg8 amino-terminal region has a crucial role in the functions of these proteins [20-22]. Differences between the various Atg8 proteins in this region might reflect their distinct functions. The amino-terminal region might also be a target for post-translational regulation.

Localization and function

Gene expression

Atg8 proteins seem to be ubiquitously expressed, although some subfamily members are expressed at increased levels in certain tissues. The signaling pathways and transcription factors regulating their expression are only partially characterized. Of the LC3 subfamily, LC3C, which is transcribed at lower levels than other members of this subfamily, is expressed predominantly in the lung [23,24]. Expression analysis of the different GABARAP proteins reveals a distinct pattern: GABARAP-L1 is expressed predominantly in the central nervous system, similar to GATE-16, which is strongly expressed in the brain, whereas the expression of GABARAP is more marked in the endocrine glands [25,26].

Upregulation of Atg8s is observed under various stress conditions [27-30]. Although the transcriptional regulation of Atg8 genes is largely unknown, several reports have shown that the transcription factors FoxO1, FoxO3 and E2F1 regulate Atg8s in this process in mammalian cells [31-34]. Deciphering the expression patterns of specific Atg8 genes at transcriptional and translational levels may shed new light on their different physiological roles.

The role of Atg8 in intracellular trafficking processes

Atg8s were originally implicated in membrane trafficking processes [35]. Members of this protein family were initially connected to the SNARE fusion machinery that mediates the vast majority of intracellular trafficking processes. The AAA ATPase N-ethylmaleimide sensitive factor (NSF) promotes the disassembly of the SNARE complex, a step essential for multiple membrane fusion events. GATE-16 was characterized as a factor essential for intra-Golgi protein transport and was later shown to modulate this process by coupling NSF activity and the Golgi SNARE factor GOS-28 [26,36,37]. LC3 was first characterized as a protein that co-purified with microtubule-associated proteins 1A and 1B [38,39], but no direct involvement of this protein in membrane trafficking processes has been reported. GABARAP, however, was identified as a cytosolic protein that is localized to transport vesicles, the Golgi network and the endoplasmic reticulum (ER) and that interacts with the γ2 subunit of GABA(A) receptors [40]. This interaction is thought to be essential for trafficking of the GABA(A) receptor to the plasma membrane [41]. A recent study showed that GABA(A) receptor trafficking is dependent...
GABARAP’s involvement in vesicle transport is not limited to the GABA(A) receptor; other plasma membrane proteins, such as the transferrin receptor, interact with GABARAP, although the role of GABARAP in their transport is not well established [43]. Moreover, ER-to-Golgi transport is also controlled by GABARAP, as it interacts with PX-RICS, which is involved in transport of synaptic proteins to the ER. It has been suggested that these factors mediate the transport of the transmembrane protein N-cadherin and its receptor β-catenin from the ER, thus controlling cell-cell adhesion [44]. The role of GABARAP in intracellular transport is also supported by its interaction with NSF, a component essential for SNARE-mediated fusion [41,45]. Similar to LC3, GABARAP binds to tubulin through its amino-terminal region, an interaction that regulates clustering of GABA(A) receptors [8,46,47].

Like GABARAP, GABARAP-L1 has been shown to interact with the GABA(A) receptor and tubulin in brain extracts, as well as with NSF [48,49]. GABARAP-L1 also binds directly to the G-protein-coupled κ-opioid receptor and mediates its transport in a manner dependent on modification of the carboxyl terminus [48,50,51]. The role of mammalian Atg8s in intracellular trafficking processes is depicted in Figure 3.

Consistent with the involvement of mammalian Atg8s in membrane fusion events, the yeast *Pichia pastoris* Atg8 was recently found to mediate vacuolar fusion during adaptation from glucose- to methanol-containing medium [52]. This activity might involve the previously reported interaction of Atg8 with SNAREs in the yeast system [53].

To summarize, the mammalian GABARAP and GATE-16 subfamilies and the yeast Atg8 have been implicated in intracellular protein trafficking, but their exact role in these processes is not fully understood. The current consensus suggests that these molecules mediate trafficking both by escorting individual cargo molecules and possibly as regulators of membrane fusion events.

Atg8 proteins are key cytoplasm-to-vacuole targeting and autophagic factors

The first link between Atg8 proteins and autophagy was established in *Saccharomyces cerevisiae*, where the single Atg8 protein was identified as an autophagy and cytoplasm-to-vacuole targeting essential factor [54-56]. Cytoplasm-to-vacuole targeting is responsible for transporting vacuolar protein residents, such as aminopeptidase I (Ape1) and α-mannosidase (Ams1), to the vacuole [57,58]. In yeast, Atg8 expression is upregulated during nitrogen starvation and is degraded in the vacuole following recruitment into autophagosomes [59]. Subsequent to its translation, Atg8 undergoes several modifications, starting with cleavage in its carboxy-terminal region to expose a glycine residue. This cleavage is
mediated by the cysteine protease Atg4, which is specific to Atg8 proteins [60,61]. The cleaved Atg8 is then processed by a ubiquitin-like conjugation machinery composed of Atg7, an E1-like enzyme [62], and Atg3, a specific E2-like ligase [63]. Unlike ubiquitin, which is conjugated to a protein, Atg8 is covalently conjugated to PE lipid through its carboxy-terminal exposed glycine residue [64]. Atg4 has a dual role, as it is also responsible for the de-conjugation of Atg8 from the autophagic membrane (Figure 4a) [64]. Similar to many other cytoplasm-to-vacuole targeting and autophagic factors, Atg8 is localized to the pre-autophagosomal structure under basal and nitrogen depletion conditions [65], a process dependent on the phagophore resident complex Atg5-Atg12-Atg16 [66]. The Atg5-Atg12 conjugate acts as an E3-like ligase, mediating the formation of Atg8-PE conjugate in vitro, suggesting a role for this complex in determining the Atg8 conjugation site in cells [67]. Recent evidence implicates Atg8 in both autophagic cargo recruitment and autophagosome biogenesis [18]. Atg8 has a key role in the cytoplasm-to-vacuole targeting process as it binds to the receptors Atg19 and Atg34, thereby mediating the recruitment of different cargo molecules into autophagosomes [57,58]. Atg8 also participates in formation of the autophagosome and is essential for elongation of the autophagic membrane [68,69]. This role was further established using an in vitro liposome-based system, where it can promote membrane fusion [20,22]. The roles of Atg8 in autophagosome biogenesis and in cargo recruitment overlap, as mutations that abolish Atg8
binding to Atg19 receptor also disrupt autophagosome biogenesis [70,71]. In addition to its interaction with the conjugation proteins, Atg8 also binds to other autophagic factors, such as Atg1, which might regulate its recruitment and activity on the autophagic membrane [60]. Other, more general trafficking factors interact with Atg8, including Shp1, a substrate that recruiting a cofactor of Cdc48. This interaction was suggested to control the formation of autophagosomes [72], indicating that Atg8 might provide a link between classical autophagic machinery and general trafficking factors that are crucial for autophagy.

Although mammalian Atg8 proteins were originally implicated in intracellular trafficking processes, they are all found within autophagosomes [73-75]. Collectively, they undergo similar post-translational modifications to those of yeast Atg8, but this is mediated by mammalian orthologs of Atg4, Atg7 and Atg3 [76]. It was suggested that Atg16L (the mammalian Atg16) determines the lipidation site of LC3 and serves as E3 ligase [77]. Arrival of Atg8 proteins at the autophagic membrane depends on the hierarchical recruitment of numerous autophagic factors, including phosphatidylinositol-3-phosphate-binding proteins [18].

Consistent with the presence of multiple Atg8 members in mammals, Atg4 also seems to have several homologs. These homologs show different specificities toward Atg8 proteins: Atg4B shows a broad spectrum for all family members [78,79], whereas Atg4A is specific to the GABARAP and GATE-16 subfamilies [80,81]. By contrast, Atg4C and Atg4D are less active and their role in the autophagic process has yet to be established [80]. Atg4 might function in pathways other than autophagy, as cleavage of Atg4D by caspase increases its activity and consequently promotes GABARAP-L1 processing [82]. Atg4 regulates a critical step in the autophagic process and is therefore subjected to regulation by reactive oxygen species, for example, which prevent it from reversing the conjugation of Atg8 proteins to PE during autophagy [83].

Among Atg proteins, the Atg8 family is the only one associated with mature autophagosomes and members therefore serve as bona fide markers for this unique organelle. Thus, transgenic mice and tissue-culture cells expressing GFP-LC3 have been used to investigate autophagy [84,85]. However, the existence of numerous mammalian Atg8 proteins has hindered investigation of their precise role in autophagy. Several approaches aimed at disrupting the functioning of Atg8 proteins by preventing their conjugation to PE have therefore been used, including the generation of Atg3-null mice and expression of a dominant-negative mutant of the promiscuous protease Atg4B. These have led to the conclusion that PE-conjugated Atg8 proteins are active during autophagosome formation and are essential for the elongation and closure of the initial autophagic membrane, the phagophore [86-88]. A recent report [22] implicates both the LC3 and the GABARAP subfamilies in membrane fusion following conjugation to PE. This study [22] revealed that the first amino-terminal α helix of the Atg8 proteins was both essential and sufficient for this activity. Moreover, different characteristics within the amino termini of the Atg8 subfamilies are involved in their fusion activities. The first attempt to investigate the role of each Atg8 subfamily in autophagosome biogenesis was prompted by a study in which individual Atg8 proteins were knocked down [89]. Apparently, both the LC3 and the GABARAP/GATE-16 subfamilies are essential for autophagy, as they act at different stages of autophagosome formation: members of the LC3 subfamily are responsible for the elongation of the autophagic membrane, whereas GABARAP/GATE-16 subfamily members act downstream in a step coupled to dissociation of the Atg12-Atg5-Atg16L complex [89]. In addition to their direct role in fusion events during autophagosome biogenesis, Atg8 proteins have an indirect role in which their binding to diabetes- and obesity-regulated protein (DOR) and to tumor protein 53-induced nuclear protein 1 (TP53INP2), two proteins that shuttle between the nucleus and the cytoplasm, regulates autophagosome biogenesis [90,91].

The crucial role of Atg8 proteins in autophagosome biogenesis is controlled by numerous factors and modifications, such as acetylation and phosphorylation. Acetylation of the autophagic factors Atg5, Atg7, Atg8 and Atg12 is mediated by the acetyltransferase p300 and negatively regulates their activity [92]. Phosphorylation of LC3 seems to have a similar effect, as it was recently reported to negatively regulate autophagy [93]. Overall, Atg8s serve as key factors in the autophagic process by directly mediating membrane-remodeling processes and interacting with an extensive repertoire of proteins. These features are indispensable for the formation of an intact autophagosome and are therefore tightly regulated.

Atg8 proteins are involved in recruiting cargo into autophagosomes

The role of Atg8s in autophagy extends beyond their function in autophagosome biogenesis. Like their Atg8 yeast ortholog, mammalian Atg8 proteins participate in cargo delivery into autophagosomes. Although the autophagic pathway in mammals has been referred to as a nonselective process, it seems that Atg8 proteins selectively target cytosolic components for lysosomal degradation [18]. Considerable progress in establishing this idea was achieved by the characterization of the ubiquitin-binding proteins p62/SQSTM1 [94], neighbor of Brca1 (Nbr1) [95], the Bcl2-related protein Nix [96,97],
autophagy-linked FYVE protein (Alfy) [98-100], nuclear dot protein 52 kDa (NDP52) [101], and Optineurin [102] as autophagic receptors. These adaptors bind simultaneously to Atg8 proteins and to ubiquitinated proteins, organelles, and in some cases pathogens [18,94,103]. The motif in p62 responsible for binding Atg8, the LC3-interacting region (LIR, also known as Atg8-interacting motif, AIM) [104,105], is common to other proteins that interact with Atg8 proteins, including Nbr1 [106], Atg3 [107], Nix [96] and the yeast cytoplasm-to-vacuole targeting receptor Atg19 [108].

Functional divergence of the Atg8 subfamilies is also inferred from specific interactions. Apparently, p62 binds both GATE-16 and LC3 in their soluble forms, but its interaction with LC3 but not with GATE-16 remains intact following their lipidation [21]. Thus, recruitment of p62 into autophagosomes specifically depends on LC3. This interaction, like other functions of Atg8 proteins, is dependent on the most variable region of these proteins, the amino terminus. Specificity of cargo recognition also applies to the GABARAP subfamily, as GABARAP-L1 binds to starch-binding-domain-containing protein 1, a carrier of glycogen. This interaction results in the arrival of glycogen at the lysosome and is therefore suggested to regulate cellular glucose levels [109]. The role of Atg8s during the autophagic process is depicted in Figure 4b.

Frontiers

Atg8 proteins act in diverse intracellular trafficking and autophagy processes. Although the number of Atg8 genes increases if one compares organisms that diverged early with those that diverged late in evolution, their conjugation to PE on the autophagic membrane remains a common feature conserved through evolution. Considerable scientific advancement over the past few years has revealed many Atg8 functions during autophagy, but has also raised many new questions. One major question is how these factors orchestrate their dual role in membrane fusion and cargo recruitment into autophagosomes. Although mammalian cells are thought to have as many as eight Atg8 proteins, the exact number is not clear, largely because these factors do not show a unique pattern of expression. Although the mammalian Atg8 subfamilies seem to act differently during the formation of autophagosomes, the need for up to four members from each subfamily has yet to be revealed. In particular, it is crucial to determine whether different members of each subfamily occupy the same autophagosomes or whether each member acts in a distinct autophagosome. This may help in deciphering whether autophagy, induced by different stress conditions, results in the formation of ‘specialized’ autophagosomes containing distinct Atg8 members. Moreover, substantial proteomic data are needed to establish the cargo specificity of each Atg8 member. Selectivity of autophagy was recently reported for many organelles, such as peroxisomes (pexophagy), mitochondria (mitophagy) and ribosomes (ribophagy) [18]. It is feasible that different members of the Atg8 family are crucial for selective autophagy. The role of Atg8s in intracellular trafficking has not been extensively studied. Some lines of evidence show that the conjugation of Atg8s, specifically GABARAPs, to PE is essential for their activity. This should be further investigated by testing the requirement of the Atg8 conjugation system for Golgi-to-plasma-membrane trafficking.

One major obstacle in studying the role of individual Atg8 family members is their high sequence similarity. This feature reduces the specificity of antibodies, as antibodies against GABARAP, for example, may interact with GABARAP-L1. It is therefore crucial to exploit unique epitopes within these proteins to construct novel specific antibodies. Furthermore, the overexpression approach is not optimal as LC3 proteins tend to form aggregates when transiently expressed [110]. To overcome this pitfall, species that contain one Atg8 representative from each subfamily could be used to elucidate their role. Moreover, knockout mice of specific Atg8 subfamily members will help in dissecting these proteins’ roles during development and in a tissue-specific manner. These are some of the questions and challenges that will be the focus of future studies.

References

1. Wood V, Guerrilla R, Rajandream MA, Lyne M, Lyne R, Stewart A, Souguros J, Peat N, Hayles J, Baker S, Basham D, Bowman S, Brooks K, Brown D, Brown S, Chillingworth T, Churcher C, Collins M, Connor R, Cronin A, Davis P, Feltwell T, Fraser A, Gentles S, Goble A, Hamlin N, Harris D, Hidalgo J, Hodgson G, Holroyd S, et al. The genome sequence of Schizosaccharomyces pombe. Nature 2002, 415:871-880.
2. VectorBase: I. scapularis [http://iscapularis.vectorbase.org/]
3. Insights into social insects from the genome of the honeybee Apis mellifera. Nature 2006, 443:931-949.
4. A Database of Drosophila Genes & Genomes [http://flybase.org/]
5. Srivastava M, Simakov O, Chapman J, Fahey B, Gauthier ME, Mitros T, Richards GS, Conaco C, Dacre M, Hellsten U, Larroux C, Putnam NH, Stanke M, Adamska M, Darling A, Degnan SM, Oakley TH, Plachetzkii DC, Zha Y, Adamski M, Calinao A, Cummins SF, Goodstein DM, Harris C, Jackson DJ, Leys SP, Shu S, Woodcroft BJ, Vervoort M, Kikis K, et al. The Amphimedon queenslandica genome and the evolution of animal complexity. Nature 2010, 466:720-726.
6. King N, Westbrook MJ, Young S, Kuo A, Abedin M, Chapman J, Fairclough S, Hellsten U, Iosogi Y, Letunic I, Marr M, Pinçud D, Putnam N, Rokas A, Wright KJ, Zuzow R, Dirks W, Good M, Goodstein D, Lemons D, Li W, Lyons JB, Morris A, Nicholls S, Richter DJ, Salamov A, Sequencing JG, Bork P, Lim WA, Manning G, et al. The genome of the choanoflagellate Monosiga brevisculis and the origin of metazoans. Nature 2008, 451:783-788.
7. Sláviková S, Shy G, Yao Y, Glozman R, Galili Z, Galili G. The autophagy-associated Atg8 gene family operates both under favorable growth conditions and under starvation stresses in Arabidopsis plants. J Exp Bot 2005, 56:2859-2869.
8. Coyle JE, Qamar S, Rajashankar KR, Nikolov DB. Structure of GABARAP in two conformations: implications for GABA(A) receptor localization and tubulin binding. Neuron 2002, 33:63-74.

9. Hu C, Zhang X, Teng YB, Hu HX, Li WF. Structure of autophagy-related protein Atg8 from the silkworm Bombyx mori. Acta Crystallogr Sect F Struct Biol CrystComm 2010, 66:787-790.

10. Koopmann R, Muhammad K, Perbandt M, Betzel C, Duszenko M. Trypanosoma brucei Atg8: structural insights into autophagic-like mechanisms in protozoa. Autophagy 2009, 5:1085-1091.

11. Kouno T, Mizuguchi M, Tanida I, Ueno T, Kametani T, Mori Y, Shinoda H, Hirata M, Komnani E, Kawano K. Solution structure of microtubule-associated protein light chain 3 and identification of its functional subdomains. J Biol Chem 2003, 278:24610-24617.

12. Kurneta H, Watanabe M, Nakatogawa H, Yamauchi M, Ogasawara K, Adachi W, Fujioya Y, Noda NN, Ohsumi Y, Inagaki F. The NMR structure of the autophagy-related protein Atg8. J Biol Chem 2010, 285:47237-47241.

13. Paz-Y, Elazar Z, Fass D. Structure of GATE-16, membrane transport modulator and mammalian ortholog of autophagocytosis factor Atg7p. J Biol Chem 2000, 275:25445-25450.

14. Schwartz M, Stoldt M, Mohrfrud J, Willbold D. Solution structure of Atg8 reveals conformational polymorphism of the N-terminal domain. Biochem Biophys Res Commun 2010, 395:426-431.

15. Sugavara K, Suzuki NN, Fujioya Y, Mizushima N, Ohsumi Y, Inagaki F. The crystal structure of microtubule-associated protein light chain 3, a mammalian homologue of Saccharomyces cerevisiae Atg8. Genes Cells 2004, 9:611-618.

16. Noda NN, Ohsumi Y, Inagaki F. ATG systems from the protein structural point of view. Chem Rev 2009, 109:1587-1598.

17. Bavro VN, Sola M, Bracher A, Kneussel M, Betz H, Weissenhorn W. Crystal structure of the GABA(A)-receptor-associated protein, GABARAP. EMBO Rep 2002, 3:183-189.

18. Weidberg H, Shvets E, Elazar Z. Biogenesis and cargo selectivity of autophagosomes. Annu Rev Biochem 2011, 80:125-156.

19. Ichimura Y, Imanura Y, Emoto K, Umeda M, Noda T, Ohsumi Y. In vivo and in vitro reconstitution of Atg8 conjugation essential for autophagy. J Biol Chem 2004, 279:40584-40592.

20. Nakatogawa H, Ichimura Y, Ohsumi Y. Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell 2007, 130:165-178.

21. Shvets E, Abada A, Weidberg H, Elazar Z. Dissecting the involvement of LC3B and GATE-16 in p62 recruitment into autophagosomes. Autophagy 2011, 7:683-688.

22. Weidberg H, Shpilka T, Shvets E, Abada A, Shimon F, Elazar Z. LC3 and GATE-16 N termini mediate membrane fusion processes required for autophagosome biogenesis. Dev Cell 2010, 18:444-454.

23. He H, Dang Y, Dai G, Guo Z, Wu J, She X, Pei Y, Chen Y, Zhang L, Liu H, Yu L. Post-translational modifications of three members of the human MAP1LC3 family and detection of a novel type of modification for MAP1LC3B. J Biol Chem 2003, 278:29278-29287.

24. Xin Y, Yu L, Chen Z, Zheng L, Fu Q, Jiang J, Zhang P, Gong R, Zhao S. Cloning, expression patterns, and chromosome localization of three human and two mouse homologues of GABA(A) receptor-associated protein. Genomics 2001, 74:408-413.

25. Nemos C, Mansuy V, Vernet-Magnin S, Fraichard A, Jouvenot M, Delage-Mourroux R. Expression of gect1/GATAP1L1 versus GATAPAR mRNAs in human: predominance of gect1/GATAP1L1 in the central nervous system. Brain Res Mol Brain Res 2003, 119:216-219.

26. Sargy V, Legesse-Miller A, Porat A, Elazar Z. GATE-16, a membrane transport modulator, interacts with NSF and the Golgi v-SNARE GOS-28. FEBS J 2000, 267:1499-1506.

27. Kuznetsova SA, Gelland V. 18 kDa microtubule-associated protein: identification as a new light chain (LC-3) of microtubule-associated protein 1 (MAP-1). FEBS Lett 1987, 212:145-148.

28. Mann SS, Hammarback JA. Molecular characterization of light chain 3. A microtubule binding subunit of MAP1A and MAP1B. J Biol Chem 1994, 269:11492-11497.

29. Wang H, Bedford FK, Brandon NJ, Moss SJ, Olsen RW. GABA(A)-receptor-associated protein links GABA(A) receptors and the cytoskeleton. Nature 1999, 397:69-72.

30. Leil TA, Chen ZW, Chang CS, Olsen RW. GABARAP receptor-associated protein traffics GABA receptors to the plasma membrane in neurons. J Neurosci 2004, 24:11429-11438.

31. Chen ZW, Chang CS, Leil TA, Olsen RW. C-terminal modification is required for GABARAP-mediated GABA(A) receptor trafficking. J Neurosci 2007, 27:6655-6663.

32. Green F, O’Hanlon C, Blackwell A, Enns CA. Association of human transferrin receptor with GABARAP. FEBS Lett 2002, 518:101-106.

33. Nakamura T, Hayashi T, Natsu-Nishimura Y, Sakae F, Morishita Y, Okabe T, Ohwada S, Matsuura K, Akiyama T. PX-RIC5 mediates ER-to-Golgi transport of the N-cadherin/beta-catenin complex. Genes Dev 2008, 22:1244-1256.

34. Kiritzer JT, Rosario P, Blazina G, Fritschi JM, Olsen R, Triller A, Moss SJ. The subcellular distribution of GABARAP and its ability to interact with NSF suggest a role for this protein in the intracellular transport of GABA(A) receptors. Mol Cell Neurosci 2001, 18:131-135.

35. Chen L, Wang H, Vicini S, Olsen RW. The gamma-amino-butyric acid type A (GABA) receptor-associated protein (GABARAP) promotes GABA(A) receptor clustering and modulates the channel kinetics. Proc Natl Acad Sci U S A 2000, 97:11537-11562.

36. Wang H, Olsen RW. Binding of the GABA(A) receptor-associated protein (GABARAP) to microtubules and microfilaments suggests involvement of the cytoskeleton in GABARAP(GABA(A) receptor) interaction. J Neurochem 2000, 75:644-655.

37. Chen C, Li JG, Chen Y, Huang P, Wang Y, Liu-Chen LY. GEC1 interacts with the kappa opioid receptor and enhances expression of the receptor. J Biol Chem 2006, 281:7983-7993.

38. Mansuy V, Boreau W, Fraichard A, Schlick JL, Jouvenot M, Delage-Mourroux R. GEC1, a protein related to GABARAP, interacts with tubulin and GABA(A) receptor. Biochem Biophys Res Commun 2004, 325:639-648.

39. Chen C, Wang Y, Huang P, Liu-Chen LY. Effects of C-terminal modifications of GEC1 Protein and (gamma-amino)-butyric acid type A (GABA) receptor-associated protein (GABARAP), two microtubule-associated proteins, on (kappa) opioid receptor expression. J Biol Chem 2011, 286:15106-15115.

40. Chen Y, Chen C, Kotsikouro E, Lynch DL, Reggio PH, Liu-Chen LY. GEC1-kappa opioid receptor binding involves hydrophobic interactions: GEC1 has chaperone-like effect. J Biol Chem 2009, 284:1673-1685.

41. Tamura N, Oku M, Sakai Y. Atg8 regulates vacuolar membrane dynamics in a lipidation-independent manner in Pichia pastoris. J Cell Sci 2010,
membrane depending on form-II formation. J Cell Sci 2004, 117:2805-2812.

76. Tanda I, Ueno T, Komnini E: LC3 conjugation system in mammalian autophagy. Int J Biochem Cell Biol 2004, 36:2503-2518.

77. Fujita N, Isho T, Orimo H, Fukuda M, Noda T, Yoshimori T: The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. Mol Cell 2008, 19:2002-2100.

78. Hemelar J, Lelyveld VS, Kessler BM, Ploegh HL: A single protease, Apg4B, is specific for the autophagy-related ubiquitin-like proteins GATE-16, MAP1-LC3, GABARAP, and Apg8L. J Biol Chem 2003, 278:51841-51850.

79. Tanda I, Ueno T, Komnini E: Human light chain 3/MAP1LC3B is cleaved at its carboxy-terminal Met121 to expose Gly120 for lipidation and targeting to autophagosomal membranes. J Biol Chem 2004, 279:47704-47710.

80. Li M, Hou Y, Wang J, Chen X, Shao ZM, Yin XM: Kinetics comparisons of mammalian Atg4 homologues indicate selective preferences toward diverse Atg8 substrates. J Biol Chem 2011, 286:7327-7338.

81. Scherz-Shouval R, Sagiv Y, Shorer H, Elazar Z: The COOH terminus of GATE-16, an intra-Golgi transport modulator, is cleaved by the human cysteine protease HsApg4A. J Biol Chem 2003, 278:14053-14058.

82. Betin VM, Lane JD: Caspase cleavage of Atg4D stimulates GABARAP-L1 processing and triggers mitochondrial targeting and apoptosis. J Cell Sci 2009, 122:2554-2566.

83. Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z: Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J 2007, 26:1749-1760.

84. Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y: In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Cell 2004, 15:1101-1111.

85. Tanda I, Waguri S: Measurement of autophagy in cells and tissues. Methods Mol Biol 2010, 648:193-214.

86. Fujita N, Hayashi-Nishino M, Fukumoto H, Orimo H, Yamamoto A, Noda T, Yoshimori T: An Atg4B mutant hampers the lipidation of LC3 paralogues and causes defects in autophagosome biogenesis. Mol Biol Cell 2008, 19:4651-4659.

87. Hayashi-Nishino M, Fujita N, Noda T, Yamaguchi A, Yoshimori T: Atg5: a subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat Cell Biol 2009, 11:1433-1437.

88. Sou YS, Waguri S, Wata J, Ueno T, Fujimura T, Hara T, Sawada N, Yamada A, Mizushima N, Uchiyama Y, Komnini E, Tanaka K, Komatsu M: The Atg8 conjugation system is indispensable for proper development of autophagic isolation membranes in mice. Mol Cell Biol 2008, 19:4762-4775.

89. Wedberg H, Shvets E, Shpilka I, Shimron I, Shinder V, Elazar Z: LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome formation. EMBO J 2010, 29:1809-1822.

90. Mauvezin C, Orpinell M, Francis VA, Mansilla F, Duran J, Ribas V, Palacin M, Boya P, Telean AA, Zorzano A: The nuclear cofactor DOR regulates autophagy in mammalian cells. EMBO Rep 2010, 11:57-40.

91. Nowak J, Archange C, Tardivel-Lacombe J, Pontarotti P, Pebusque MJ, Vaccaro M, Vallesco G, Dagorn JC, Iovanna JL: The TP53INP2 protein is required for autophagy in mammalian cells. Mol Cell Biol 2009, 29:870-871.

92. Lee H, Finkel T: Regulation of autophagy by the p300 acetyltransferase. J Biol Chem 2009, 284:6322-6328.

93. Cherra SJ, 3rd, Kulich SM, Ueki G, Balsalobre-Marin M, Moutzouris J, Day BW, Chu CT: Regulation of the autophagy protein LC3 by phosphorylation. J Cell Biol 2010, 190:553-539.

94. Bjorkoy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A, Stenmark H, Johansen T: p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 2005, 171:603-616.

95. Kirkin V, Lamark T, Sou YS, Bjørkøy G, Nunn JL, Bruun JA, Shvets E, McEwan DG, Johansen T: p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 2005, 171:603-616.

96. Kirkin V, Lamark T, Sou YS, Bjørkøy G, Nunn JL, Bruun JA, Shvets E, McEwan DG, Clausen TH, Wild P, Bilicic I, Theurillat JP, Øvervatn A, Ishii T, Elazar Z, Komatsu M, Dikic I, Johansen T: A role for NBR1 in autophagosome degradation of microtubule-associated substrates. Mol Cell 2009, 33:505-516.

97. Nowak J, Kirkin V, McEwan DG, Zhang J, Wild P, Rozenknap A, Rogov V, Lohn F, Popovic D, Occhipinti A, Reichert AS, Terzic J, Dötsch V, Ney PA, Dikic I: Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep 2010, 11:45-51.
98. Filimonenko M, Stuffers S, Raiborg C, Yamamoto A, Malerod L, Fisher EM, Isaacs A, Brech A, Stemmark H, Simonsen A. Functional multivesicular bodies are required for autophagic clearance of protein aggregates associated with neurodegenerative disease. J Cell Biol 2007, 179:485-500.

99. Clausen TH, Laman T, Isakson P, Finley K, Larsen KB, Brech A, Overvatn A, Stemmark H, Bjorkoy G, Simonsen A, Johansen T. p62/SQSTM1 and ALFY interact to facilitate the formation of p62 bodies/ALIS and their degradation by autophagy. Autophagy 2010, 6:330-344.

100. Filimonenko M, Isakson P, Finley KD, Anderson M, Jeong H, Melia TJ, Bartlett BJ, Myers KM, Birkeland HC, Lamark T, Krainc D, Brech A, Stemmark H, Simonsen A, Yamamoto A. The selective macroautophagic degradation of aggregated proteins requires the PI3P-binding protein Alfy. Mol Cell 2010, 38:265-279.

101. Thurston TL, Ryzhakov G, Bloor S, von Muhlinen N, Randow F. The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Nat Immunol 2009, 10:1215-1221.

102. Wild P, Farhan H, McEwan DG, Wagner S, Rogov VV, Brady NR, Richter B, Korac J, Wadmann O, Choudhary C, Ditsch V, Bumann D, Dikic I. Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 2011, 333:228-233.

103. Svets E, Fass E, Scherzer-Shoval R, Elazar Z. The N-terminus and Phe52 residue of LC3 recruit p62/SQSTM1 into autophagosomes. J Cell Sci 2008, 121:2685-2695.

104. Ichimura Y, Kumanomidou T, Sou YS, Mizushima T, Ezaki J, Ueno T, Kominami E, Yamane T, Tanaka K, Komatsu M. Structural basis for sorting mechanism of p62 in selective autophagy. J Biol Chem 2008, 283:22847-22857.

105. Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, Overvatn A, Bjorkoy G, Johansen T. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 2007, 282:24131-24145.

106. Kraft C, Peter M, Hofmann K. Selective autophagy: ubiquitin-mediated recognition and beyond. Nat Cell Biol 2010, 12:836-841.

107. Yamauchi M, Noda NN, Nakatogawa H, Kumeta H, Ohsumi Y, Inagaki F. Autophagy-related protein 8 (Atg8) family interacting motif in Atg3 mediates the Atg3-Atg8 interaction and is crucial for the cytoplasm-to-vacuole targeting pathway. J Biol Chem 2010, 285:29599-29607.

108. Noda NN, Kumeta H, Nakatogawa H, Satoh K, Adachi W, Iishi J, Fujioka Y, Ohsumi Y, Inagaki F. Structural basis of target recognition by Atg8/LC3 during selective autophagy. Genes Cells 2008, 13:1211-1218.

109. Jiang S, Heller B, Tagliabracci VS, Zhai L, Irimia AM, DePaoli-Roach AA, Wells CD, Skurat Al, Roach PJ. Starch binding domain-containing protein 1/ genetholin 1 is a novel participant in glycogen metabolism. J Biol Chem 2010, 285:34960-34971.

110. Kuma A, Matsu M, Mizushima N. LC3, an autophagosome marker, can be incorporated into protein aggregates independent of autophagy: caution in the interpretation of LC3 localization. Autophagy 2007, 3:523-528.

111. Ruiz-Trillo I, Roger AJ, Burger G, Gray MW, Lang BF. A phylogenomic investigation into the origin of metazoan. Mol Biol Evol 2008, 25:664-672.

112. Salzberg Y, Eldar T, Karminsky OD, Itach SB, Pietrokovski S, Don J. Meig1 deficiency causes a severe defect in mouse spermatogenesis. Dev Biol 2010, 338:158-167.

113. Schneider TD, Stephens RM. Sequence logos: a new way to display consensus sequences. Nucleic Acids Res 1990, 18:6097-6100.

114. Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Jackson JD, Ke Z, Lanzczak CY, Lu F, Marchler GH, Mullokkandov M, Omelchenko MV, Robertson CL, Song JS, Thakur N, Yamashita RA, Zhang D, Zhang N, Zheng C, Bryant SH. CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res 2011, 39:D225-D229.

115. Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL, Gunasekaran P, Ceric G, Forlund K, Holm L, Sonnhammer EL, Eddy SR, Bateman A. The Pfam protein families database. Nucleic Acids Res 2010, 38:D211-D222.

doi:10.1186/gb-2011-12-7-226

Cite this article as: Shpilka T, et al. Atg8: an autophagy-related ubiquitin-like protein family. Genome Biology 2011, 12:226.