Collision with Gondwana or with Baltica? Ordovician magmatic arc volcanism in the Marmarosh Massif (Eastern Carpathians, Ukraine)

Aleksandra Gawęda1 · Krzysztof Szopa1 · Jan Golonka2 · David Chew3 · Leonid Stepanyuk4 · Volodymir Belskyy4 · Anna Waśkowska2 · Laurynas Siliauskas1 · Foteini Drakou3

Received: 5 April 2022 / Accepted: 4 July 2022 / Published online: 16 July 2022 © The Author(s) 2022

Abstract
The pre-Alpine Marmarosh Massif is a tectonically complex unit of the crystalline basement within the Eastern Outer Carpathians. In the eastern (Ukrainian) segment of this massif, two units have been identified—the Bilyi Potok Nappe and the Dilove Nappe. Petrological investigations coupled with zircon U–Pb dating were performed on metavolcanic rocks (porphyroids) and their phyllite host rocks, sampled from three locations within the Dilove Nappe. The geochemical characteristics of the meta-rhyodacite porphyroids revealed a volcanic arc affinity of the protolith, with U–Pb zircon ages of 452.8 ± 1.5 Ma and 461.5 ± 1.6 Ma and zircon saturation temperatures in the range of 823–892 °C. The phyllite host rocks (meta-tuff) yield a U–Pb zircon maximum estimate for the eruption age at 584.7 ± 2.9 Ma. Peak amphibolite-facies metamorphism (M1) was estimated at the pressure of 600–900 MPa with a temperature range of 560–600 °C. Retrogression (M2), possibly related to Alpine nappe stacking and shearing, is assumed to have taken place at 200–250 MPa and 384–222 °C. The volcanic arc is interpreted as an early Caledonian arc that was subsequently accreted to the margin of Baltica during the closure of the easternmost Tornquist Ocean rather than Cenerian (early Paleozoic) orogenic events on the margin of East Gondwana.

Keywords Ukraine · East Carpathians · Tornquist ocean · Caledonian volcanism

Introduction
The arcuate Carpathian mountain belt in Central Europe, extends for more than 1300 km from Vienna Basin to the Iron Gate gorge on the Danube (Fig. 1a). Traditionally, the Carpathians are divided into the internides, deformed mainly in the Mesozoic and containing crystalline cores of pre-Alpine (mostly Variscan) basement (Schmidt et al. 2008; Golonka et al. 2021a and references therein), and the exter- nides that were deformed in the Cenozoic (Golonka et al. 2006; Schmidt et al. 2008). Geographically, the Carpathian orogen is divided into the Western, Eastern and Southern Carpathians. The extermines consist of a complex nappe system, that developed during Cretaceous to Neogene times...
as a result of the collision of several microplates with the consolidated European Plate. The nappes generally verge towards the outer part of the arc (Golonka et al. 2021a and references therein). The polyphase-deformed basement on which the Outer Carpathian basins developed is termed the Protocarpathian Massif or simply the Protocarpathians. In the Western Outer Carpathians (Czech Republic, Slovakia and Poland), the Protocarpathian basement is covered by several kilometres of marine Mesozoic to Cenozoic clastic sediments of the Carpathian basins. The nature of the basement is therefore known only from olistoliths and exotic pebbles redeposited in these clastic sequences (e.g., Poprawa et al. 2006; Gawęda et al. 2019 and references therein; Gawęda et al. 2021; Golonka et al. 2021b).

However, the crystalline basement of the Protocarpathians is exposed in the Eastern Outer Carpathians in Ukraine, Fig. 1 a Simplified geological map of the Carpathian Chain. b The location of the Marmarosh massif and its relationship to the Rodna Horst (modified after Balintoni and Balica 2013). c Geological map of the Ukrainian part of the Marmarosh Massif with the sampling localities indicated (modified after Matskiv et al. 2006)
in the Marmarosh Massif (Fig. 1b). This massif is thus key to understanding the tectonic affinity of this eastern part of the Protocarpathian basement. It is composed of pre-Alpine crystalline rocks, mostly metamorphic basement, overlain by sedimentary rocks that were thrust northwards during the Alpine closure of the Carpathian branch of Tethys. The basement remnants likely represent a fragment of the North European Platform that rifted away during the Jurassic opening of the Protosilesian-Severin-Moldavidic Basin (Golonka et al. 2021a and references therein). The Ukrainian Outer Carpathian crystalline rocks extend southeastwards into the Eastern Carpathians of Romania, forming the Median Facies, which are in turn divided into the Bucovinian, Sub-Bucovinian and Infra-Bucovinian nappes. Recent petrological and isotope dating studies on the Romanian crystalline basement (Balintoni and Balica 2013; Balintoni et al. 2014) enable the correlation of these rocks with their Ukrainian equivalents. The correlation of the Marmarosh Massif with the Protocarpathian basement in the Western Outer Carpathians is quite speculative (see Ślączka et al. 2006). However, several studies (e.g. Bonova et al. 2019; Oszczyk et al. 2005, 2020) argue for the Marmarosh Massif as a source for clastic material in the various flysch deposits of eastern Slovakia and even in the central part of the Polish Outer Carpathians.

This study combines geochemical and petrological information, U–Pb LA-ICP-MS zircon dating and P–T constraints on meta-igneous rocks from three localities within the Dilove Nappe of the Marmarosh Massif. These data are then used to test correlations with the Romanian segment of the Eastern Carpathians, and to interpret the paleotectonic setting of protolith rocks with respect to the evolution of the Baltic and Gondwana margins during the early Paleozoic.

Geological setting and sampling

The crystalline Marmarosh Massif is situated northeast of the Pieniny Klippen Belt and the Magura Nappe (Ślączka et al. 2006). The Pieniny Klippen Belt constitutes the boundary between the Carpathian internides and externides, while the Magura Nappe is the innermost Outer Carpathian unit in the Western Outer Carpathians and the adjacent segments of the Eastern Outer Carpathians in Ukraine and Romania (Fig. 1a). Northeast of the Marmarosh Massif (Fig. 1b) is a broad belt of nappes which are from southwest to northeast: the Kaminnyi Potik, Rachiv, Porkulets, Dukla, Chornohora, Krosno, Skole-Skyba and Boryslav-Pokuttya nappes. These nappes can be correlated with Outer Dacides and Moldavides in Romania (Ślączka et al. 2006). They are composed of clastic sedimentary rocks that were originally deposited in the Protosilesian-Severin-Moldavidic Basin, a continuation of the Protosilesian Basin of the Western Carpathians, which developed within the North European Platform as a rift and/or back-arc basin. Its basement is believed to represent the attenuated crust of the North European Platform (the Ceahlau-Severin Ocean, see Schmidt et al. 2008; Matenco et al. 2010).

The Ukrainian part of Marmarosh Massif consists of two units (nappes): the Bilyi Potik Nappe and the Dilove Nappe (Fig. 1c). Both nappes can be broadly correlated with Bucovinian Nappe and Sub-Bucovinian Nappe in Romania, including the Rodna Horst, with which it shares a similar structural configuration (Balintoni et al. 2009; Culshaw et al. 2012).

The Bilyi Potik Nappe (Sub-Bucovinian Nappe) is composed mostly of amphibolite-facies schists and schists, locally garnet- and staurolite-bearing, intercalated with amphibolites (Bilyi Potik Suite) and overthrust by late Paleozoic greenschist-facies phyllites with marble and dolomitic marble lenses (Rozin Suite).

The greenschist-facies Dilove Nappe (Bucovinian Nappe) is comprised of the Dilove Suite of porphyroblastic schists, mica-bearing porphyroids (sometimes with relics of garnet), layers of marble and lenses of amphibolites (total thickness of more than 1000 m), the Berlebash Suite of calcareous schists and quartzites and metavolcanics of rhyolite-dacite composition (total thickness 1100–1400 m) and the Megura Suite consisting of quartzites, quartzite shales, intercalated with quartz-chlorite-sericite shales and with a thickness of 400–460 m. All these components are covered by weakly metamorphosed rocks of the Cuzyn Suite, which is comprised of phyllites, carbonaceous shales, quartzites, dolomites and marbles with jasper lenses with a total thickness of 360–550 m, and non-metamorphosed Cretaceous-Paleogene sediments.

For the purposes of our study, we sampled three rock types from Berlebash suite of the Dilove Nappe, all showing the same metamorphic grade and interpreted as metavolcanics/metatuffs (Fig. 1c). These samples are: (1) a gneissic porphyroid, interpreted as a meta-rhyolite (archive sample UM-104a from the L. Stepanyuk collection and three new samples (SR1, SR2 and SR3) from an outcrop in Kostylivka village sampled on the right side of the Tysa river (48°09′10″N and 24°11′12″E), (2) a gneissic porphyroid that forms a stock-like body (Boyko et al., 1970) (two samples: SR10, SR11) and sampled near the road at Rakhiv-Kosivska Polana (47°59′29″N and 24°06′11″E) and (3) a strongly folded medium-grained mica schist (phyllite, sample SR25C), interpreted as meta-tuff (Stepanyuk 1986) and sampled from an outcrop located 1.5 km south of the railway bridge over the Tysa River in Kostylivka village, on the west side of the Rakhiv-Dilove highway (47°59′17.6″N and 24°11′53.5″E) (Fig. 1c).
Analytical techniques

Microscopy

Petrographic analyses of thin sections were undertaken at the Faculty of Earth Sciences at the University of Silesia using Olympus BX-51 and SX-10 microscopes to constrain textural and microstructural relationships and to determine the presence of zircon.

Electron probe micro-analyses (EPMA)

Microprobe analyses of the main rock-forming and accessory minerals were carried out at the Inter-Institutional Laboratory of Microanalyses of Minerals and Synthetic Substances, Warsaw, using a CAMECA SX-100 electron microprobe. The analytical conditions employed an accelerating voltage of 15 kV, a beam current of 20 nA, counting times of 4 s for peak and background and a beam diameter of 1–5 μm. Reference materials, analytical lines, differentiating crystals, mean detection limits (in wt%) and uncertainties were as follows: rutile—Ti (Kα, PET, 0.03, 0.10), diopside—Mg (Kα, TAP, 0.02, 0.11), Si—(Kα, TAP, 0.02, 0.21), Ca—(Kα, PET, 0.03, 0.16), orthoclase—Al (Kα, TAP, 0.02, 0.08), and K (Kα, PET, 0.03, 0.02), albite—Na (Kα, TAP, 0.01, 0.08), hematite—Fe (Kα, LIF, 0.09, 0.47), rhodonite—Mn (Kα, LIF, 0.03, 0.10), phlogopite—F (Kα, TAP, 0.04, 0.32), turgutite—Cl (Kα, PET, 0.02, 0.04), Cr₂O₃—Cr (Kα, PET, 0.04, 0.01), ZirconED2—Zr (Lα, PET, 0.01, 0.01), Nb₂O₅—MAC—Nb (Lα, PET, 0.09, 0.01), V₂O₅—V (Kα, LIF, 0.02, 0.01), YPO₄—Y (Lα, TAP, 0.05, 0.05), CeP₅O₁₄—Ce (Lα, LPET, 0.09, 0.02), NdGaO₃—Nd (Lβ, LIF, 0.31, 0.24), ThO₂—Th (Mα, LPET, 0.09, 0.09), UO₂—U (Mα, LPET, 0.16, 0.13).

Whole-rock chemical analyses

Whole-rock analyses were undertaken by X-Ray fluorescence (XRF) for major and large ion lithophile trace elements (LILE), and by fusion and ICP-MS for high field strength elements (HFSE) and rare earth elements (REE) at Bureau Veritas Minerals (Canada). Preparation involved lithium borate fusion and dilute digestions for XRF and lithium borate decomposition or aqua regia digestion for ICP-MS. LOI was determined at 1000 °C. Uncertainties for most of the major elements are 0.01%, except for SiO₂ which is 0.1%. REE were normalized to C1 chondrite (McDonough and Sun 1995).

Mineral separation and imaging

Zircon crystals were separated using standard density separation techniques (crushing, sieving, washing and panning). This separation was carried out at the Institute of Geological Sciences at the Polish Academy of Sciences, Kraków, Poland. The zircons were hand-picked under a binocular microscope, cut in 25 mm diameter epoxy resin mounts, and then ground and polished to expose the grain interiors. Internal mineral textures were then imaged using back-scattered electron (BSE) and cathodoluminescence (CL) detectors on a FEI Philips 30 scanning electron microscope with a 15 kV accelerating voltage and a beam current of 1 nA at the Faculty of Natural Sciences, University of Silesia in Katowice, Poland.

Zircon LA-ICP-MS U–Pb dating

LA-ICPMS U–Pb age data were acquired using a Photon Machines Analyte Excite 193 nm ArF excimer laser-ablation system with a HelEx 2-volume ablation cell coupled to an Agilent 7900 ICPMS at the Department of Geology, Trinity College Dublin. The instruments were tuned using NIST612 standard glass to yield Th/U ratios of unity and low oxide production rates (ThO⁺/Th⁺ typically < 0.15%). A repetition rate of 11 Hz and a circular spot of 24 μm were employed. A quantity of 0.4 l min⁻¹ He carrier gas was fed into the laser cell, and the aerosol was subsequently mixed with 0.6 l min⁻¹ Ar make-up gas and 11 ml min⁻¹ N₂. Each analysis comprised 27 s of ablation and 12 s washout, the latter portions of which were used for the baseline measurement. For zircon, eleven isotopes (⁴⁹Ti, ⁹¹Zr, ¹⁷⁵Lu, ²⁰²Hg, ²⁰⁶Pb, ²⁰⁷Pb, ²⁰⁸Pb, ²³²Th, ²³⁵U and ²³⁸U) were acquired during each analysis. The data reduction of raw U-Th-Pb isotopic data was undertaken using the freeware IOLITE package (Paton et al. 2011), using the “VizualAge” data reduction scheme (Petrus and Kamber 2012). Conventional sample-standard bracketing was then applied to account for both downhole fractionation and long-term drift in isotopic or elemental ratios by normalising all ratios to those of the U-Th-Pb reference materials. Final age calculations were made using the Isoplot add-in for Excel (Ludwig 2012). The primary U–Pb zircon calibration standard was 91,500 zircon (⁴⁹Ti, ²⁰⁶Pb, ²³⁸U age of 1065.4 ± 0.6 Ma; Wiedenbeck et al. 1995; Wiedenbeck et al. 2004) and the secondary standards were Plešovice zircon (²⁰⁶Pb, ²³⁸U age of 337.13 ± 0.37 Ma; Sláma et al. 2008) which yielded a concordia age of 340.69 ± 0.99 Ma, and WRS 1348 zircon (²⁰⁶Pb, ²³⁸U age of 526.26 ± 0.70; Poinot et al. 2012) which yielded a concordia age of 525.2 ± 2.5 Ma.

Results

Petrography and mineral chemistry

The presence of blue quartz, quartz-feldspar aggregates, K-feldspars (Kfs₁) and plagioclase porphyroclasts are
characteristic features of the porphyroid samples (Fig. 2a, b, d). They are interpreted as remnants of primary phenocrysts that recrystallized during metamorphism. The metamorphic minerals can be grouped into two assemblages, representing two stages of development. The M1 assemblage is composed of biotite exhibiting brick-red to yellow pleochroism (#fm = 0.58–0.61; Ti = 0.19–0.24 a.p.f.u.; Table 1), ilmenite, Ms1 muscovite rich in Mg and poor in Ti (#mg = 0.49–0.55 a.p.f.u; Ti = 0.02–0.03 a.p.f.u; Table 2), in addition to recrystallized phenocrysts (quartz, Kfs1 and plagioclase). The M2 assemblage is represented by Ms2 muscovite (#Mg = 0.27–0.40 a.p.f.u and Ti 0.06–0.07; Table 2), chlorite, titanite, zoizite (Supplementary Table 1), K-feldspar (Kfs2) and tourmaline [dravite(0.47)∗s
chorite(0.02)∗Mg-foite(0.12)∗olenite(0.07)∗ulvite(0.07)∗foite(0.05)∗feruite(0.03)] (Supplementary Table 2). Titanite and rutile form pseudomorphs after ilmenite (Fig. 3a), while epidote, Kfs2 and titanite form pseudomorphs after unknown mineral phases and are dispersed throughout the rock (Figs. 2d, 3b). Chlorite (#mg = 0.585–0.570; Table 3) defines bands parallel to the foliation, while rare tourmaline (Fig. 2f) is mostly oriented along the metamorphic lineation. Zircon and apatite are accessory components, while fractures are filled by secondary calcite (Figs. 2g, 3b).

In phyllite (SR25C; Fig. 2i, j) the M1 metamorphic assemblage is represented only by Ms1 + Ilm + Qtz, while the M2 episode is defined by Ms2 + Chl + Ttn + Rt. Ms1 muscovite, rich in a phengite component (Table 2) and

Fig. 2 Textures and microtextures of metavolcanic rock from the Marmarosh Massif. a field photograph showing the sampling locality for U104a and SR1 samples (J.Golonka, A. Gawęda and A.Waśkowska as the scales) with insert of the rock surface; b and c deformed quartz (Qtz) porphyrocrysts within a fine-grained matrix in samples 104a (b) and SR10 (c) (crossed polars); d deformed muscovite-rich (Ms1) domains in sample SR10 (crossed polars); e rotated Kfs porphyrocryst from sample SR1 within a matrix rich in MS1 muscovite (crossed polars); f domain rich in dispersed epidote (Ep) (crossed polars); g tourmaline (Tur) crystal within a domain rich in muscovite and chloritized (Chl) biotite (Bt; plane polars); h tectonic fissure filled by calcite (Cc), cutting the main foliation (sample 104a, crossed polars); i macrophotograph of the folded SR25C phyllite sample; j microphotograph of the folded mica/chlorite-rich and quartz/feldspar-rich domains in phyllite (sample SR25C, crossed polars); k axial part of crenulation with chlorite nest in phyllite (sample SR25C)
interleaved with quartz-albite layers, defines the strongly folded foliation (Fig. 2h). Primary ilmenite is replaced by intergrowths of titanite and rutile (Fig. 3d; Table 1). Chlorite (#mg = 0.547–0.542; Table 3) interleaved with Ms2 muscovite (Fig. 3c) with a minor phengite component (Table 2) replaces primary biotite and lies along the axial planes of crenulations, probably crystallizing in pressure shadows (Fig. 2i). Deformed apatite (Fig. 3c), zircon and monazite (partly decomposed) are the accessory mineral phases. The chlorite in all investigated samples contains 55–81% of the clinochlore (Mg5Al)(Si3Al)O10(OH) end-member, 11–45% of the chamosite (Fe2+5Al)(Si3Al)O10(OH) end-member and up to 5% of the pennite (Mn5Al)(Si3Al)O10(OH) end-member (classification after Bailey 1980) (Table 3).

Whole rock geochemistry

All samples show a narrow range of SiO2 contents (64.72–68.06 wt.%) and are strongly peraluminous in composition (ASI = 1.23–2.82; Table 4). The only elements that vary significantly in concentration between samples are the alkalis, with K2O/Na2O ratios ranging from 0.8 to 4.25, although their sum is relatively constant (Table 4). The meta-porphyroids as well as the phyllite host rock (interpreted as a meta-tuff; Stepanyuk 1986) plot in the rhyodacite-dacite field on the Winchester and Floyd (1977) discrimination diagram and belong to the high-K calc-alkaline to shoshonitic series with VAG characteristics (Fig. 4a, b). Total REE contents vary from 170 to 234 ppm and their C1-normalized REE patterns are flat with a strongly negative Eu anomaly (CeN/YbN = 4.75–7.08 for the porphyroids and CeN/YbN = 12.87 for the phyllitic sample SR25C; Eu/Eu* = 0.40–0.61; Fig. 5a; Table 4).

Zircon petrology and U–Pb data

Zircon crystals from sample UM-104a and SR-10 are euhedral to subhedral, and short- to long-prismatic (aspect ratios from 3:1 to 1:1). Cathodoluminescence (CL) imaging reveals the presence of magmatic oscillatory zoning, locally overgrowing inherited cores exhibiting both bright and dark CL responses, in both cases.

Table 1 Chemical composition and crystal-chemical formulae of representative biotite crystals from sample U-104a

Component	LoD	Bt1	Bt2	Bt3	Bt4	Bt5	Bt6	
SiO2	0.04	34.83	36.00	36.34	36.19	36.99	35.84	
TiO2	0.06	1.67	1.88	1.99	2.06	1.83	1.66	
Al2O3	0.03	17.14	17.39	17.28	17.04	16.79	17.08	
Cr2O3	0.01	0.34	0.01	0.07	0.05	b.d.l	b.d.l	
FeO	0.08	23.43	22.52	22.31	22.27	22.06	22.46	
MgO	0.02	8.98	8.45	8.49	8.16	8.64	8.57	
MnO	0.02	0.36	0.40	0.40	0.43	0.36	0.33	
Na2O	0.04	0.11	0.12	0.12	0.19	b.d.l	0.05	0.15
K2O	0.05	7.54	8.98	9.24	9.41	9.68	9.01	
BaO	0.01	0.11	0.19	0.13	0.11	0.05	0.20	
Total	94.50	95.93	96.42	95.727	96.449	95.307	95.307	

Crystal-chemical formulae recalculated for 22 O2−

Si	5.421	5.526	5.546	5.571	5.639	5.544
Al⁴⁺	2.579	2.474	2.454	2.429	2.361	2.456
Al⁵⁺	0.564	0.672	0.654	0.662	0.655	0.658
Ti	0.196	0.217	0.228	0.238	0.21	0.193
Cr	0.041	0.001	0.008	0.007	-	-
Fe	3.05	2.891	2.847	2.867	2.812	2.905
Mg	2.083	1.934	1.931	1.874	1.963	1.976
Mn	0.047	0.052	0.052	0.056	0.047	0.044
Na	0.032	0.036	0.055	-	0.014	0.046
K	1.496	1.758	1.799	1.847	1.883	1.778
Ba	0.007	0.011	0.008	0.007	0.003	0.012
#mg	0.067	0.064	0.066	0.062	0.411	0.405
T_wu2015	563	584	594	601	579	559
T_wuch2015	562	594	601	613	587	573

b.d.l. below detection limit, #mg Mg/(Mg + Fe); T_wu temperature of crystallization (after Henry et al. 2005)
with local truncations (Fig. 6a). In sample UM-104a, 38 spot analyses were undertaken on 30 zircon grains. 17 grains with oscillatory zonation yield a concordia age of 452.8 ± 1.5 Ma (MSWD = 1.6, probability of concordance 0.21; Supplementary Table 3; Fig. 7a, b). Two inherited cores with oscillatory zoning yielded concordant ages of 624 ± 13 Ma and 673 ± 14 Ma, four inherited cores yielded concordant ages in the 1605–1637 Ma age range and two inherited cores yielded concordant ages of 2879 ± 24 Ma and 2880 ± 10 Ma (Supplementary Table 3; Fig. 7a).

In sample SR10, 34 spot analyses were undertaken on 28 zircon grains. 14 grains showing oscillatory zonation yielded a concordia age of 461.5 ± 1.6 Ma (MSWD = 1.8, probability of concordance = 0.18; Fig. 7c, d). One rim yielded a concordant age of 440.9 ± 6.7 Ma (Supplementary Table 3). Eight inherited cores with oscillatory internal zoning yielded discordant to slightly discordant ages ranging from 585 to 1100 Ma. One inherited core yielded a concordia age of 2675 Ma (Supplementary Table 3). Ten discordant analyses were obtained both from the rims and the cores (Fig. 7c).

Zircon crystals from sample SR25C are translucent, euhedral, short- to long-prismatic (aspect ratios from 2:1 to 4:1) and are 80 to 300 μm long. Most of the crystals show magmatic zoning in CL and 96 spot analyses were undertaken on 64 crystals. 16 analyses were discordant (Fig. 6b; Supplementary Table 4). Inherited cores with a weak CL response yielded a broad spectrum of ages: 2602 Ma, 1991–1920 Ma, four cores which together yield a concordia age of 1862 ± 11 Ma and six cores which yielded ages of 1093–940 Ma. 48 oscillatory zoned crystals, showing moderate CL response yielded a broad spectrum of concordant Neoproterozoic ages from 893 to 596 Ma, (including nine crystals with a concordia age of 636.1 ± 4.0 Ma; Fig. 7e). 13 oscillatory zoned rims with a bright CL response yielded a concordia age of 584.7 ± 2.9 Ma (Fig. 7f), while two rims yielded ages 550.6 and 560.4 Ma (Supplementary Table 4).

Sample No.	104a	104a	104a	SR2	SR2	SR2C	SR2C	SR2C	SR2C	SR2C
Component	LoD	Ms1-1	Ms1-2	Ms2-1	Ms1-1	Ms1-2	Ms2-1	Ms2-1	Ms2-2	Ms2-3
SiO₂	0.04	50.85	48.10	47.82	50.10	47.11	49.28	50.29	49.28	50.29
TiO₂	0.04	0.25	0.36	0.44	0.34	0.65	0.40	0.34	0.65	0.40
Al₂O₃	0.03	27.96	30.45	31.73	28.31	33.39	29.82	28.24	33.39	29.82
Cr₂O₃	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
V₂O₅	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02
MgO	0.02	2.48	2.00	1.70	2.76	1.37	2.37	2.68	1.21	0.55
FeO	0.10	3.21	3.77	2.73	2.66	1.78	2.72	3.06	1.82	1.13
MnO	0.02	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07
BaO	0.05	0.32	0.61	0.67	0.17	0.30	0.16	0.20	0.31	0.44
Na₂O	0.03	0.19	0.21	0.39	0.39	0.60	0.62	0.44	0.66	0.95
K₂O	0.04	10.55	10.57	10.76	10.10	10.29	9.99	9.99	10.31	9.70
Total	95.83	96.16	96.18	94.89	95.51	95.24	95.46	95.46	94.59	94.10

Crystalline formulae recalculated for 22 O²⁻:

Component	Si	Al⁴⁺	Al⁶⁺	Ti	Cr	V	Mg	Fe	Mn	Ba	Na	K	#mg
	6.782	1.218	3.177	0.025	–	0.003	0.493	0.358	0.001	0.017	0.049	1.794	0.579
	6.453	1.547	3.269	0.036	–	0.003	0.400	0.423	0.001	0.032	0.056	1.809	0.481
	6.389	1.611	3.385	0.034	0.001	0.005	0.339	0.305	0.009	0.035	0.084	1.834	0.526
	6.718	1.282	3.192	0.273	0.001	0.001	0.552	0.298	0.016	0.011	0.102	1.728	0.569
	6.718	1.721	3.523	0.471	–	0.005	0.527	0.178	0.008	0.008	0.102	1.749	0.649
	6.581	1.419	3.274	0.535	–	0.005	0.471	0.304	0.011	0.016	0.154	1.703	0.857
	6.731	1.269	3.185	0.241	–	0.005	0.535	0.333	0.016	0.016	0.161	1.756	0.703
	6.262	1.738	3.555	0.241	–	0.005	0.535	0.203	0.016	0.023	0.113	1.660	0.537
	6.122	1.878	3.713	0.110	–	0.005	0.535	0.127	0.017	0.026	0.113	1.661	0.537
	6.076	1.924	3.723	0.105	–	0.005	0.535	0.113	0.017	0.026	0.113	1.661	0.537

b.d.l. below detection limit, #mg Mg/(Mg + Fe)
Discussion

Metamorphic conditions

Peak metamorphic temperature estimates in the porphyroid samples were undertaken using Ti-in-biotite geothermometry (Henry et al. 2005; Wu and Chen 2015) and are in the c. 560 – 600 °C range (Table 1). The amount of phengite substitution in Ms1 muscovite (Table 2), coexisting with K-feldspar (Kfs1) and quartz, was used to constrain the peak metamorphic pressure (Massone and Schreyer 1987). Pressure estimates based on the muscovite (Ms1) chemistry are c. 600–900 MPa (M1; Fig. 8). In the case of the phyllite sample (SR25C), only phengite-based barometry can be applied, due to a lack of other mineral phase suitable for geothermometry and yields pressure estimates of 700–900 MPa (Fig. 8).

In the porphyroid samples the low phengite component both in the rims of muscovite and in muscovite interlayering with chlorite (Ms2) in pseudomorphs after biotite implies a pressure of c. 200–250 MPa. Ternary feldspar geothermometry (Fuhrman and Lindsley 1988) yielded a temperature range of 222–384 °C (Table 5).

In addition to standard geothermometry and geobarometry, a stable phase diagram for porphyroid (U104a sample) was constructed using the THERIAK DOMINO software (de Capitani and Brown 1987; de Capitani and Petrakakis 2010) in an NCKFMASH system under fully water-saturated conditions. The THERMOCALC database (Powell et al. 1998) and the November 2004 (ds55) update of the Holland and Powell (1998) dataset were used. The following phases and a–X models were implemented: feldspar (Baldwin et al. 2005), biotite, garnet, ilmenite, spinel and melt (White et al. 2007), amphibole, cordierite, and epidote (Holland and Powell 1998), clinopyroxene (Holland and Powell 1996), chlorite (Holland et al. 1998) and white mica (Coggon and Holland 2002). Quartz, titanite, sillimanite, andalusite, kyanite, and water were treated as pure phases. The Ms2 + zoizite + titanite + rutile + K-feldspar (Kfs2) assemblage implies the presence of a fluid with high oxygen fugacity and high Ca activity (Broska et al. 2007) during M2 metamorphism (Fig. 8). In the same P–T range ilmenite breakdown to titanite started,
however, titanite formation replacing ilmenite was also possible at higher temperatures and pressures on M1 → M2 retrograde path (Fig. 8). Ep + Kfs₂ + Ttn + Rt pseudomorphs (Fig. 3a) could be interpreted as a result of amphibole or pyroxene breakdown during retrogression.

Chlorite flakes are aligned along the foliation in the porphyroids while in the phyllite sample SR25C chlorites and Ms₂ muscovite define the foliation and crystallized in the axial planes of crenulations (Figs. 2k, 3c). The temperature of chlorite growth was calculated using three various empirical chlorite geothermometers proposed by Cathelineau and Nieva (1985), Kranidiotis and MacLean (1987), and Jowett (1991), which are well suited to constraining chlorite temperatures in various geological environments (e.g. Janeczek et al. 2020; Szopa et al. 2020). The temperatures obtained by the various chlorite geothermometers in the porphyroids range from 280 to 360 °C (Table 3), which is in agreement with the phase diagram constraints (Fig. 8). In the phyllite sample SR25C, a temperature of c. 335 °C was determined. In all investigated samples the chlorite geothermometry estimates together with pressure estimates from the low degree of phengite substitution in Ms₂ muscovite (Table 2) define the conditions of M2 retrogression (Fig. 8). This retrogression episode can be correlated with the Romanian part of the

Table 3 Selected chlorite EMP analysis with their chemical formulae based on 28 oxygens and with Fe²⁺/Fe³⁺ and OH calculated assuming full site occupancy

Samples	Sr1	Sr25	104a												
1 2 3 4 5	6 7 8 9 10	11 12 13 14 15													
SiO₂ (wt%)	26.73	26.24	26.53	25.11	26.71	26.07	25.56	25.23	26.32	25.73	26.78	25.11	26.74	26.51	26.75
TiO₂	0.05	0.06	0.04	b.d.l.	0.07	b.d.l.	0.07	b.d.l.	0.09	0.14	0.05	0.06	b.d.l.	0.06	b.d.l.
Al₂O₃	19.40	19.07	19.38	16.73	19.49	20.43	22.53	21.92	20.35	21.58	19.53	16.73	19.61	19.18	19.81
Cr₂O₃	0.06	0.08	b.d.l.	0.10	0.04	b.d.l.									
Fe₂O₃	0.82	0.26	0.91	b.d.l.	0.91	0.92	0.72	0.33	0.76	0.71	0.57	b.d.l.	0.63	0.60	0.61
FeO	20.71	22.08	20.49	21.32	20.76	26.84	22.55	23.35	26.95	23.30	21.11	21.81	21.64	21.80	21.75
MnO	0.49	0.44	0.44	0.38	0.46	0.16	0.20	0.24	0.29	0.23	0.50	0.39	0.44	0.39	0.46
MgO	16.74	16.65	16.70	17.12	16.77	13.02	15.70	15.53	12.93	15.25	17.10	16.43	16.93	16.68	16.86
CaO	0.10	0.08	0.07	b.d.l.	0.07	b.d.l.	b.d.l.	b.d.l.	b.d.l.	0.08	b.d.l.	0.06	0.06	b.d.l.	
Na₂O	0.07	0.10	b.d.l.	0.09	b.d.l.										
K₂O	11.25	11.17	11.18	10.59	11.22	11.26	11.50	11.34	11.28	11.39	11.33	10.55	11.34	11.21	11.37
H₂O*	56.80	56.20	56.60	56.70	56.70	56.40	56.30	56.30	56.40	56.30	56.50	56.90	56.60	56.40	56.30
Al iv	2.32	2.38	2.32	2.34	2.33	2.44	2.68	2.67	2.42	2.59	2.35	2.31	2.36	2.34	2.37
Al vi	2.55	2.55	2.57	2.13	2.56	2.71	2.86	2.79	2.53	2.18	2.53	2.49	2.49	2.49	
Ti	0.01	0.01	0.01	–	0.01	–	0.01	–	0.01	–	0.01	–	0.01	–	
Cr	0.01	0.01	0.01	–	0.02	0.01	–	–	–	–	–	–	–	–	
Fe³⁺	0.13	0.04	0.15	–	0.14	0.15	0.11	0.05	0.15	0.11	0.09	–	0.10	0.10	
Fe²⁺	3.68	3.96	3.67	4.11	3.69	4.79	3.93	4.12	4.78	4.09	3.73	4.20	3.82	3.89	
Mn	0.09	0.08	0.08	0.07	0.03	0.03	0.04	0.05	0.04	0.04	0.09	0.08	0.08	0.07	
Mg	5.30	5.32	5.32	5.76	5.31	4.14	4.87	4.89	4.09	4.78	5.38	5.55	5.33	5.31	
Ni	–	–	–	–	0.04	–	0.02	–	–	–	–	–	–	–	
Ca	0.02	0.02	0.02	–	0.02	–	–	–	0.02	–	0.00	0.02	0.01	–	
Na	0.06	0.08	–	0.08	–	–	–	0.05	–	0.09	0.07	–	–	–	
K	–	–	–	–	–	–	–	–	0.02	0.04	–	0.02	–	–	0.02
OH*	16.00	16.00	16.00	16.00	16.00	16.00	16.00	16.00	16.00	16.00	16.00	16.00	16.00	16.00	
ΣCations	35.85	35.98	35.81	36.16	35.82	35.81	35.86	35.95	35.81	35.87	35.92	36.12	35.87	35.88	35.88

b.d.l. below detection limit, T₁ temperature by Cathelineau and Nieva (1985), T₂ temperature by Jowett (1995), T₃ temperature by Kranidiotis and MacLean (1987)

Table 3 Selected chlorite EMP analysis with their chemical formulae based on 28 oxygens and with Fe²⁺/Fe³⁺ and OH calculated assuming full site occupancy
Marmarosh Massif and in the other parts of the Eastern Carpathians, and is related to Alpine nappe staking and shearing (Munteanu and Tatu, 2003). It has been dated at c. 95 Ma by 40Ar/39Ar geochronology (Culshaw et al. 2012) in the neighbouring Rodna Mountains (Fig. 1b). No direct dating of this retrogressive metamorphic episode in the Ukrainian

Sample No.	LoD 104a	SR1	SR2	SR3	SR10	SR11	SR25C	
SiO$_2$	0.01	66.00	66.26	64.72	66.24	65.99	68.06	69.65
TiO$_2$	0.01	0.83	0.83	0.93	0.87	0.87	0.75	0.67
Al$_2$O$_3$	0.01	14.90	16.67	14.9	15.13	15.13	14.92	14.08
Fe$_2$O$_3$	0.04	5.67	5.7	6.19	6.59	5.37	4.72	4.02
MnO	0.01	0.08	0.6	0.8	0.5	0.06	0.05	0.05
MgO	0.01	2.04	1.7	2.05	2.03	2.2	2.21	1.9
CaO	0.01	2.20	0.26	2.89	0.3	0.29	1.23	0.49
Na$_2$O	0.01	3.41	2.29	2.89	3.68	0.16	3.21	3.53
K$_2$O	0.01	2.79	3.33	3.09	2.95	4.93	2.84	2.12
P$_2$O$_5$	0.01	0.20	0.13	0.22	0.23	0.22	0.34	0.2
Trace elements [ppm]								
Sr	0.5	173.50	82.6	217.9	27.5	32	119.5	75.1
Ba	1.0	773.00	620	748	673	790	745	460
Rb	0.1	91.20	133.6	113	107.5	194.5	89.7	74.1
Th	0.2	17.00	16.6	13.3	15	13.7	16.3	13.4
U	0.1	3.90	2.7	3.4	2.4	3.1	3.5	2.4
Ga	0.5	19.60	5.1	3.1	3.6	19.7	16.8	15.2
Ni	0.1	19.40	35.1	17.6	17.9	26.2	17.5	23.5
Zr	0.1	290.40	288.5	262.4	264.5	270	251.1	260.1
Hf	0.1	8.30	7.8	7.2	7	6.9	6.5	6.6
Y	0.1	35.40	36.6	36.5	31.5	29	36.5	18.8
Nb	0.1	14.10	15.3	15.3	14.9	13.6	13.8	13.0
Ta	0.1	1.10	1	1	1	1	1	0.8
La	0.1	46.60	51.4	44.2	42.3	20.6	47.2	42.2
Ce	0.1	94.50	101	87	79	55.2	92.3	78.4
Pr	0.02	10.98	11.21	10.05	9.21	4.67	10.51	8.91
Nd	0.30	44.80	41.3	38.6	35.1	18	41.1	31.9
Sm	0.05	8.60	7.77	7.78	6.9	3.45	8.04	5.9
Eu	0.02	1.48	1.52	1.37	1.18	0.74	1.26	1.09
Gd	0.05	7.60	7.16	7.25	6.77	3.84	7.31	5.18
Tb	0.01	1.18	1.08	1.15	0.99	0.68	1.12	0.73
Dy	0.05	6.61	6.34	6.66	5.96	4.64	6.68	3.95
Ho	0.02	1.36	1.32	1.39	1.14	1	1.37	0.72
Er	0.03	3.75	3.64	3.86	3.41	2.93	3.79	1.77
Tm	0.01	0.54	0.55	0.55	0.49	0.43	0.53	0.26
Yb	0.05	3.55	3.47	3.63	3.22	3.01	3.42	1.6
Lu	0.01	0.53	0.53	0.53	0.5	0.44	0.53	0.26
ASI	1.23	2.21	1.16	1.64	2.82	1.48	1.65	1.65
Rb/Sr	0.53	1.62	0.52	3.91	6.08	0.75	0.98	0.98
Nd/Th	2.64	2.49	2.90	2.34	1.31	2.52	2.38	2.38
ΣREE	175.93	232.08	233.87	169.61	225.16	182.87	182.87	182.87
Eu/Eu*	0.40	0.56	0.52	0.62	0.50	0.60	0.60	0.60
Ce$_N$/Yb$_N$	4.75	6.99	6.25	6.36	7.09	12.87	12.87	12.87
T$_{Zr}$ [°C]	845	892	823	869	891	852	868	
Carpathians has been undertaken, but as there is a continuation in the nappe structure we assume a similar origin and timing for M2 retrogression (Fig. 8), marked by crystallization of Ms2 muscovite, chlorite and rare tourmaline defining the lineation.

Protoliths of the porphyroid and phyllite samples

The porphyroids can be interpreted as acidic, peraluminous metavolcanics (rhyodacite-dacite; Fig. 4a). The magmatic protolith, with a high K-calc-alkaline to shoshonitic chemistry (Fig. 4b), is likely associated with an arc-related tectonic setting (Fig. 4c, d), which is supported by the negative Ta and Nb anomalies shown on a primitive mantle–normalized multielement plot (Fig. 5b). The negative Ti and slightly positive Th anomalies can imply a crustal component for the parent magma. Negative Eu anomalies (Fig. 5a; Table 4) suggest the fractional crystallization of the rhyodacite-dacite magmas. The zircon saturation temperatures (after Watson and Harrison 1983) vary from 823 to 892 °C (Table 4). Due to the presence of inherited zircon the magma temperature may be slightly overestimated. The inherited zircon component also supports the presence of a crustal component in the early Paleozoic magmas, with the majority of the inherited cores being Neoproterozoic in age, similar to those found in the host meta-tuff (SR25C), along with some Mesoproterozoic and Archean inherited zircon cores (Supplementary Tables 3 and 4). The porphyroids are dated in this study at 453 and 461 Ma (Fig. 7b, d; Supplementary Table 3) and partly overlap in age with similar meta-igneous bodies dated in the Romanian segment of the Eastern Carpathians (Balintoni and Balica 2013 and references therein), including the neighbouring Rodna Mountains metagranitoids (468 – 465 Ma; Panã et al. 2002) as well as with rhyodacite
metavolcanics in the southern Gemicum basement of the Central Western Carpathians (466–464 Ma; Vozárová et al. 2010).

Phyllite sample SR25C shares similar geochemical signatures and consequently can be interpreted as VAG-related rhyodacite-dacite, calc-alkaline to high-K calc-alkaline meta-tuff (Fig. 4a–c). The Zr saturation temperature was calculated at 868 °C (Table 4). However, the youngest zircon population exhibits typical magmatic zoning (Fig. 6b) and yielded a concordia age of 584.7 ± 2.9 Ma with two outermost rims dated at c. 550 and c. 560 Ma (Fig. 7d). The broad spectrum of older zircon ages implies significant incorporation of inherited or detrital zircon. The sample is interpreted as a Neoproterozoic tuff with a volcanic-arc protolith, with negative Eu anomalies on C1-normalized REE whole rock diagrams (Fig. 5a). The U–Pb zircon concordia age of 584.7 ± 2.9 Ma is interpreted as the maximum estimate for the eruption age.

Geotectonic significance of the data

The Ordovician magmatic arc setting, together with the dominance of Neoproterozoic inherited components, allow us to speculate on possible tectonic scenarios (primarily a Baltic vs Gondwanan affinity).

In the first scenario, the arc is interpreted as a terrane of a peri-Gondwanan affinity (cf. Balintoni and Balica 2013; Balintoni et al. 2014). These authors, working in the Romanian Carpathians, suggested the magmatic arc developed on the margins of Gondwana as a back-arc basin, and subsequently docked onto Gondwana in the Early Ordovician. A similar interpretation of back-arc basin closure as a result of Cenozoic (early Palaeozoic; Zurbriggen 2017) orogenic events along the eastern margin of Gondwana has been applied to many pre-Alpine crystalline complexes in the Alps (Zurbriggen 2017 and references therein) and Central Western Carpathians (Putiš et al. 2008; Vozárová et al. 2010; Burda et al. 2021). In such a scenario, the Marmarosh Massif, as well as the whole Bucovinian nappe, can be linked to the Central Western Carpathians and Alps. Balintoni and Balica (2013) assumed that Nd TDM model ages of c. 2.0 Ga in the arc-related magmatic rocks imply an east (peri-) Gondwanan provenance. However, the southern portions of Baltica (i.e. Sarmatia), also show similar c. 2.0 Ga mantle extraction ages (Bogdanova et al. 2015 and references therein) and hence could also represent the melt source, as discussed below.
The second scenario assumes the pre-Alpine Eastern Carpathian terranes represent the eastern prolongation of East Avalonia arc terranes related to the closure of the Tornquist Ocean (Munteanu and Tatu 2003; Balintoni et al. 2010; Gawęda and Golenka 2011) (Fig. 9). This eastern branch of the Caledonian orogen has been a matter of debate since the ...
first half of the twentieth century (see Kossmat 1936; Köberl 1959). In Central Europe, Avalonia-Baltica convergence is assumed to represent a “zipper” tectonics style (progressive closure of an ocean from one end to the other), with Baltica being progressively thrust under Avalonia due to the “soft” closure of the Tornquist Ocean (e. g. Mazur et al. 2018 and references therein). In this scenario, the eastern edge of the Tornquist Ocean can be interpreted as an active continental
margin during Caledonian orogenic events, with the magmatic arc containing remnants of Neoproterozoic, Mesoproterozoic and Archean crust (Supplementary Table 3; Fig. 7a, c) and docking to Baltica during Caledonian times. In this model the Nd T_{DM} model ages of c. 2.0 Ga discussed by Balintoni and Balica (2013) can be interpreted as inherited from a Sarmatian-type crustal component, typical of many Avalonian terranes (see Thompson et al. 2012 and references therein for comparison).
3. The petrochronological data allow also a correlation
2. The Neoproterozoic country rocks are meta-tuffs with a
Permian–Triassic (280–200 Ma on the basis of 40Ar/39Ar
rock dates; Krautner 1991 and references therein; and c.
been found. The late Variscan (c. 310 Ma Rb–Sr whole-
sode (see Franke et al. 2021 and references therein). How-
plausible timing for docking is during the Variscan cycle,
was not during the Caledonian orogenesis, the only other
plausible timing for docking is during the Variscan cycle,
which is considered a hot and magma-rich orogenic epi-
sode (see Franke et al. 2021 and references therein).
However, both in the Ukrainian and Romanian portions of
the Marmarosh Massif no Variscan granitoids/volcanics have
been found. The late Variscan (c. 310 Ma Rb–Sr whole-
rock dates; Krautner 1991 and references therein; and c.
318 Ma CHIME monazite dates; Reiser et al. 2019) or
Permian–Triassic (280–200 Ma on the basis of 40Ar/39Ar
laser single-grain dating; Culshaw et al. 2012) ages for
greenschist-facies metamorphism in the Marmarosh Mas-
sif may be the result of distant Variscan orogenic events
(e.g. overthrusting and nappe formation, Mazur et al.,
2020) or post-Variscan, pre-Cimmerian extension, basalt-
derunderplating and the formation of the Meliata Ocean
(Stüve and Schuster, 2010; Culshaw et al., 2012). All these
facts thus support the second scenario, with an Avalonian
provenance for the Marmarosh Massif (Fig. 9) which
docked with Laurussia during the Caledonian orogeny.

Conclusions

1. The porphyroid rocks of the Dilove Nappe in the Mar-
marosh Massif represent an Ordovician volcanic arc-
related rhyodacite sequence, dated at 452.8 ± 1.5 Ma and
461.5 ± 1.6 Ma. The data imply the volcanic arc repres-
ts early Caledonian igneous activity and subsequent
closure of the easternmost Tornquist Ocean on the mar-
gin of Baltica rather than Cenerian orogenic events
on the margin of East Gondwana.
2. The Neoproterozoic country rocks are meta-tuffs with a
maximum estimate for the eruption of 584.7 ± 2.9 Ma.
3. The petrochronological data allow also a correlation of
the Dilove Nappe with the Bucovinia Nappe of the
Romanian part of Marmarosh Massif. Peak (M1) meta-
metamorphism took place at pressures of 600–900 MPa and
pressures of 250–200 MPa and tempera-
tures of 384–222 °C.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s00531-022-02228-8.

Acknowledgements We thank Dr Beata Marciniak-Maliszewska for
her help during microprobe analyses. Comments of the editor Ulrich
Riller, reviewer Marian Munteanu and an anonymous reviewer led to
a clearer presentation of the paper and are gratefully acknowledged.
This study was supported by National Science Centre (NCN) grant
2016/23/B/ST10/01896 given to JG. AG & KSz acknowledged sup-
port from University of Silesia internal sources 2018. D.C. acknowl-
edges past and present support from Science Foundation Ireland (SFI)
through research grants 12/IP/1663, 13/RC/2092 and 13/RC/2092_P2
(icRAG Research Centre), and 15/1A/3024. iCRAG is funded under
the SFI Research Centres Programme.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Bailey SW (1980) Structures of layer silicates: in crystal structures
of clay minerals and their X-ray identification. In: Brindley GW,
Brown G (Eds) Mineralogical Society, London, pp 1–123
Baldwin JA, Powell R, Brown M, Fuc R (2005) Modelling of min-
eral equilibria in ultrahigh- temperature metamorphic rocks from
the Anapolis-Itaucu Complex, central Brazil. J Metamorph Geol
23:511–531. https://doi.org/10.1111/j.1525-1314.2005.00591.x
Balintoni I, Balica C (2013) Carpathian peri-Gondwanan terranes in
the East Carpathians (Romania): a testimony of an Ordovician,
North-African orogeny. Gondwana Res 23:1053–1070. https://doi.
org/10.1016/j.gr.2012.07.013
Balintoni I, Balica C, Ducea MN, Chen F, Hann H-P, Šablíovcs V
(2009) Late Cambrian-early Ordovician gondwanan terranes in
the Romanian carpathians: a zircon U-Pb provenance study. Gond-
wana Res 16:119–133. https://doi.org/10.1016/j.gr.2009.01.007
Balintoni I, Balica C, Seghedì A, Ducea MN (2010) Avalonian and
Cadomian terranes in North Dobrogea, Romania. Precambrian
Res 182:217–229
Balintoni I, Balica C, Ducea MN, Hann H-P (2014) Peri-Gondwanan
terranes in the Romanian carpathians: a review of their spatial
distribution, origin, provenance, and evolution. Geosci Front
5:395–411. https://doi.org/10.1016/j.gsf.2013.09.002
Bogdanova S, Gorbatschev R, Skridlajte G, Soesoo A, Taran L, Kur-
lovich D (2015) Trans-Baltic Palaeoproterozoic correlations
(towards the reconstruction of supercontinent Columbia/Nuna.
Precambrian Res 259:5–33
Bonová K, Bóna J, Pańczyk M, Kovacik M, Mikus T, Laurinc D
(2019) Origin of deep-sea clastics of the Magura Basin (Eocene
Makovica sandstones in the Outer Western Carpathians) with constraints of framework petrography, heavy mineral analysis and zircon geochronology. Palaeogeogr Palaeoclim 514:768–784. https://doi.org/10.1016/j.palaeo.2018.09.025

Boyko AK (1970) Pre–Upper Paleozoic complex of the northwestern end of the Marmorosh massif (Eastern Carpathians). Publishing House of Lviv University, Lviv 1970:246 (in Russian)

Broska I, Harlow D, Tropper P, Siman P (2007) Formation of magmatic titanite and titanite-ilmenite phase relations during granite alteration in the Tribeč Mountains, Western Carpathians, Slovakia. Lithos 95:58–71. https://doi.org/10.1016/j.lithos.2006.07.012

Burdz J, Klózzi U, Majka J, Chew D, Li Q-L, Liu Y, Gawęda A, Wiedenbeck M (2021) Tracing proto-Rheic—Qaidam Ocean vestiges into the Western Tatra Mountains and implications for the Palaeozoic palaeogeography of Central Europe. Gondwana Res 91:188–204. https://doi.org/10.1016/j.gres.2020.12.016

Cathelineau M, Nieva D (1985) A chlorite solid solution geothermometer. The Los Azufres (Mexico) geothermal system. Contrib Mineral Petr 91:235–244

Coggan R, Holland TJB (2002) Mixing properties of phengitic micas and revised garnet-phengite thermobarometers. J Metamorph Geol 20:683–696. https://doi.org/10.1046/j.1525-1314.2002.00395.x

Culshaw N, Mosonyi M, Reynolds P (2012) New 40Ar/39Ar laser single-grain ages of muscovites from mylonitic schists in the Rodna Mountains, Eastern Carpathians, Romania: correlations with microstructure. Int J Earth Sci 101:291–306. https://doi.org/10.1007/s00531-011-0674-y

de Capitani C, Brown TH (1987) The computation of chemical equilibrium in complex systems containing non-ideal solutions. Geochem Cosmochim Ac 51:2639–2652. https://doi.org/10.1016/0016-7037(87)90145-1

de Capitani C, Petrackakis K (2010) The computation of equilibrium assemblage diagrams with Theriak/Domino software. Am Mineral 95:1006–1016. https://doi.org/10.2138/am.2010.3354

Franke W, Ballèvre M, Cox LRM, Torsvik TH, Zelaźniewicz A (2021) Variscan orogeny. In: Alderon D, Elias SA (eds) Encyclopedia of geology, 2nd ed. Elsevier, Amsterdam, pp 338–349

Fuhrman ML, Lindsey DH (1988) Ternary feldspars modelling and thermometry. Am Mineral 73:201–215

Gawęda A, Golonka J (2011) Variscan plate dynamics in the circum-Carpathian Region. In: Alderon D, Elias SA (eds) Encyclopedia of geology, 2nd ed. Elsevier, Amsterdam, pp 372–381. Doi: https://doi.org/10.1016/B978-0-12-409548-9.12384-X

Harris NBW, Pearce JA, Tindle AG (1986) Geochemical characteristics of collision-zone magmatism. Geol Soc Spec Publ 19:67–81. https://doi.org/10.1144/GSL.SP.1986.019.01.04

Henry DJ, Guidotti CV, Thomson JA (2005) The Ti-saturation surface for low-to-medium pressure metapelitic biotites: Implications for geothermometry and Ti substitution mechanism. Am Mineral 90:316–328

Holland T, Powell R (1996) Thermodynamics of order-disorder in minerals: III. Symmetric formalism applied to solid solutions. Am Mineral 81:1425–1437

Holland TJB, Powell R (1998) An internally consistent thermodynamic dataset for phases of petrological interest. J Metamorph Geol 16:309–343. https://doi.org/10.1111/j.1525-1314.1998.00140.x

Holland TJB, Baker JM, Powell R (1998) Mixing properties and activity-composition relationships of chlorites in the system MgO-FeO-AI2O3-SiO2-H2O. Eur J Mineral 10:395–406. https://doi.org/10.1127/ejmin/10/3/0395

Janczezk J, Szopa K, Fabianiska M (2020) Ancylite-(Ce) from quartz-calcite-chlorite veins in phyllite of the Opava Mountains (SW Poland). Geol Q 64(3):801–806

Jowett E (1991) Fitting iron and magnesium into the hydrothermal chlorite geothermometer. In: Proceedings of the GAC/MAC/SEG Joint Annual Meeting, Toronto, ON, Canada, 27–29 May 1991; vol 16, p A62

Köberl H (1959) Stand und Ergebnisse der Kartierung des tieferen Untergrundes Nordostdeutschlands und angrenzender Gebiete. Berl Geol Gessellschaft 4(2–3):115–156

KossMAT F (1936) Paliografie und Tektonik. Berlin.

Kranidiotis P, MacLean WH (1987) Systematics of chlorite alteration at the Phelps Dodge massive sulfide deposit, Matagami, Quebec. Econ Geol 82:1898–1911

Krautner HG (1991) Pre-Alpine geological evolution of the East Carpathian metamorphics: some common trends with the West Carpathians. Geol Carpath 42:209–217

Ludwig KR (2012) Isoplot/Ev, v. 3.75. Berkeley Geochronology Center Special Publication, p 5

Massone HJ, Schreyer W (1987) Phengite geobarometry based on the limited assemblage with K-feldspar, phlogopite and quartz. Contrib Mineral Petrol 96:212–224

Matenco L, Krezsek C, Merten S, Cloetingh S, Andriessen M, Botor D, Pietsch K, Słomka T (2019) Palaeozoic palaeogeography of the East European Craton (Poland) in the framework of the European Variscides. Terra Nova 30:8–16. https://doi.org/10.1111/ter.12302

Matskiv BV, Pukach BD, Vorobkanych VM, Pastukhanova SV, Hnylko OM (2006) Geological structure and minerals of the upper reaches of the Tisza, Prut and Cheremosh rivers. Beregovo, 2006. F. ZGRE. p 314. (in Ukrainian)

Matskiv BV, Pukach BD, Vorobkanych VM, Hnylko OM (2009) State geological map of Ukraine. Scale 1: 200 000. Carpathian series. Sheets: M-34-XXX (Khust), L-34-VI (Baiia Mare), M-35-XXXI (Nadvirna), L-35-I (Vichy De Sus) Kyiv, UkrDGRI, pp 185 (in Ukrainian)

Mazur S, Porebski SJ, Kędzierz A, Paskowski M, Podhalańska T, Poprawa P (2018) Refined timing and kinematics for Baltica-Avalonia convergence based on the sedimentary record of a foreland basin. Terra Nova 30:8–16. https://doi.org/10.1111/ter.12302

Mazur S, Aleksandrowski P, Gagala L, Krzywiec P, Żaba J, Gaidzik K, Sikora R (2020) Late Palaeozoic strike-slip tectonics versus oroclinal bending at the SW outskirts of Baltica: case of the Variscan belt’s eastern end in Poland. Int J Earth Sci 109:1133–1160. https://doi.org/10.1007/s00531-019-01814-7
McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253
Middlemost EAK (1985) Magmas and magmatic rocks. An introduction to igneous petrology. Longman Group Ltd, London, p 266
Munteanu M, Tatu M (2003) The East-Carpathian crystalline Mesozoic zone (Romania): Paleozoic amalgamation of Gondwana- and East European craton-derived terranes. Gondwana Res 6(2):185–196
Oszczypko N, Oszczypko-Clowes M, Golonka J, Krolicki M (2005) Position of the Maramarosh Fliesch (Eastern Carpathians) and its relation to the Magura Nappe (Western Carpathians). Acta Geol Hungarica 48(3):259–282
Oszczypko N, Oszczypko-Clowes M, Olszewska B (2020) Geological setting and lithological inventory of the Czarna Woda conglomerates (Magura Nappe, Polish Outer Carpathians). Acta Geol Pol 70:397–418. https://doi.org/10.24425/agp.2020.132254
Pana D, Balintoni I, Heaman L, Creaser R (2002) The U/Pb and Sm–Nd dating of the main lithotectonic assemblages of the Eastern Carpathians, Romania. Geol Carpathica 53:177–180
Paton C, Hellstrom J, Paul B, Woodhead J, Hergt J (2011) Iolite: Free-ware for the visualisation and processing of mass spectrometric data. J Anal Spectrom 26(12):2508–2518
Pearce JA, Harris NBW, Tindle AG (1984) Trace elements discrimination diagram for the tectonic interpretation of granitic rocks. J Petrol 25:956–983
Peccerillo A, Taylor SR (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contr Mineral Petrol 58:63–81
Petrus JA, Kamber BS (2019) Post-Variscan metamorphism in the Apuseni and Rodna Mountains (Romania): evidence from Cadomian fragments in the West-Carpathian basement dated by SHRIMP on zircons: a record from the Gondwana active continent or ocean? Geology 38:175–178
Szopa K, Pacholiuk I, Wachowska K, Chmielewski M, Paderin I (2008) Cambrian-Ordovician metaigneous rocks associated with Cadomian fragments in the West-Carpathian basement dated by SHRIMP on zircon: a record from the Gondwana active margin setting. Geol Carpath 59(1):3–18
Reiser MK, Säbiß G, Negulescu E, Schuster R, Tropper P, Fugenschuh B (2019) Post-Variscan metamorphism in the Apuseni and Rodna Mountains (Romania): evidence from Sm–Nd garnet and U-Th–Pb monazite dating. Swiss J Geosci 112:101–120. https://doi.org/10.1007/s00015-018-0323-7
Schmidt SM, Bernoulli D, Fugenschuh B, Matenco L, Scheffer S, Schuster R, Tischler M, Ustaszewski K (2008) The Alpine-Carpathian-Dinaridic orogenic system: correlation and evolution of tectonic units. Swiss J Geosci 101:139–183. https://doi.org/10.1007/s00015-008-1247-3
Ślączka A, Kruglow S, Golonka J, Oszczypko N, Popadyuk I (2006) The General Geology of the Outer Carpathians, Poland, Slovakia, and Ukraine. In: Golonka J and Picha F (ed) The Carpathians and their foreland: Geology and hydrocarbon resources: Am Assoc Petr Geol Memoir 84:221–258.
Sláma J, Koller J, Condon DJ, Crowley JL, Gerdes A, Hanchar JM, Schaltegger U (2008) Plésovice zircon—a new natural reference material for U-Pb and Hf isotopic microanalysis. Chem Geol 249(1–2):1–35
Stepanyuk LM (1986) Geochemistry of the acid crystalline rocks in north-west part of the Maramaros Massif. PhD thesis, unpublished, Institute of Geochemistry and Mineral Physics, Ukrainian Academy of Sciences SSR, Kiev (in Russian).
Stüve K, Schuster R (2010) Initiation of subduction in the Alps: continent or ocean? Geology 38:175–178
Szopa K, Salacińska A, Gumsley AP, Chew D, Petrov P, Gawęda A, Zagórska A, Deput E, Gospodinov N, Banasik K (2020) Two-stage Late Jurassic to early cretaceous hydrothermal activity in the Sakar unit of southeastern Bulgaria. Minerals 10(3):1–15
Thompson MD, Barr SM, Gronow AM (2012) Avalonian perspectives on Neoproterozoic paleogeography: Evidence from Sm-Nd isotope geochemistry and detrital zircon geochronology in SE New England, USA. GSA Bull 124(3/4):517–531. https://doi.org/10.1130/B30529.1
Vozárová A, Šardinová K, Larianov A, Presnyakov S, Sergeyev S (2010) Late Cambrian/Ordovician magmatic arc type volcanism in the Southern Gemenicum basement, Western Carpathians, Slovakia: U-Pb (SHRIMP) data from zircons. Int J Earth Sci 99:17–37. https://doi.org/10.1007/s00531-009-0454-0
Watson TM, Harrison EB (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64:295–304
White RW, Powell R, Holland TJB (2007) Progress relating to calculation of partial melting equilibria for metapelites. J Metamorph Geol 25:511–527. https://doi.org/10.1111/jmg.2007.25.issue-5
Wiedenbeck MAPC, Alle P, Corfu F, Griffin WL, Meier M, Oberli FV, Spiegel W (1995) Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostandards Geoanalytical Res 19(1):1–23
Wiedenbeck M, Hanschart JM, Peck WH, Sylvester P, Valley J, Whitehouse M, Kronz A, Morishita Y, Nasdala L, Fiebig J, Franchi I, Girard J-P, Greenwood RC, Hinton R, Kita N, Mason PRD, Norman M, Ogusawara M, Piccoli PM, Rhede D, Satoh H, Schulz-Dobrick B, Skär Ö, Spicuzza MJ, Terada K, Tindle A, Togashi S, Vennemann T, Xie Q, Zheng Y-F (2004) Further characterization of the 91500 zircon crystal. Geostand Geoanal Res 28:9–39
Winchester JA, Floyd PA (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem Geol 20:325–343
Wu C-M, Chen H-X (2015) Revised Ti-in-biotite geothermometer for amphibolites. Chem Geol 20:325–343
Zurbriggen R (2017) The Cenerian orogeny (early Paleozoic) from the perspective of the Alpine region. Int J Earth Sci 106:517–529. https://doi.org/10.1007/s00531-016-1438-5