Effects of lycopene on abdominal fat deposition, serum lipids levels and hepatic lipid metabolism-related enzymes in broiler chickens

Xiaoli Wan¹, Zhengfeng Yang¹, Haoran Ji¹, Ning Li¹, Zhi Yang², Lei Xu¹, Haiming Yang¹, and Zhiyue Wang¹,²,*

Objective: The present study was conducted to investigate the effects of lycopene on growth performance, abdominal fat deposition, serum lipids levels, activities of hepatic lipid metabolism related enzymes and genes expression in broiler chickens.

Methods: A total of 256 healthy one-day-old male Arbor Acres broiler chicks were randomly divided into four groups with eight replicates of eight birds each. Birds were fed basal diet supplemented with 0 (control), 100, 200, and 400 mg/kg lycopene, respectively.

Results: Dietary 100 mg/kg lycopene increased the body weight at 21 day of age compared to the control group (p<0.05). Compared to the basal diet, broilers fed diet with 100 mg/kg lycopene had decreased abdominal fat weight, and broilers fed diet with 100 and 200 mg/kg lycopene had decreased abdominal fat percentage (p<0.05). Compared to control, diets with 100, 200, and 400 mg/kg lycopene reduced the levels of total triglyceride and total cholesterol in serum, and diets with 100 and 200 mg/kg lycopene reduced the level of serum low density lipoprotein cholesterol (p<0.05). The activity of fatty acid synthase (FAS) in 400 mg/kg lycopene treated broilers and the activity of acetyl-CoA carboxylase (ACC) in 100, 200, and 400 mg/kg lycopene treated broilers were lower than those fed basal diet (p<0.05). Lycopene increased the mRNA abundance of adenosine monophosphate activated protein kinase α (AMPK-α), whereas decreased the mRNA abundance of sterol regulatory element-binding protein 1, FAS, and ACC compared to the control group (p<0.05).

Conclusion: Dietary lycopene supplementation can alleviate abdominal fat deposition and decrease serum lipids levels, possibly through activating the AMPK signaling pathway, thereby regulating lipid metabolism such as lipogenesis. Therefore, lycopene or lycopene-rich plant materials might be added to poultry feed to regulate lipid metabolism.

Keywords: Lycopene; Abdominal Fat; Serum Lipid; Lipid Metabolism; Broiler Chicken

INTRODUCTION

The broiler industry has thrived, and broiler chicks have become one of the common meat species during the past few decades. However, excessive deposition of abdominal and subcutaneous fat resulting from the intensive production, not only leads to high occurrence of ascites syndrome and sudden death syndrome, but also has a negative impact on consumers’ healthy diet [1]. Studies have shown that dietary supplementation of specific natural or synthetic compounds had lipid lowering effect [2-4]. Consumers increasingly prefer natural to synthetic compounds in consideration of food safety and health. Thus, plant derived compounds or phytogenic products used as feed additives have received quite a bit of attention [5].

With the increase of natural source additives used in animal diets, carotenoids such as...
lycopene are gradually drawing the attention of the feed industry. Lycopene, which is a natural isoprene compound belonging to carotenoids, is present in vegetables, fruits, and flowers with red, yellow, or orange colors, especially in tomatoes, carrots, watermelons, pawpaws [6,7]. Furthermore, lycopene is a natural and efficient pigment used in food processing, and has the bioactivity of antioxidant activity, immunoregulation, anticancer, blood lipsid regulation and cardiovascular diseases prevention effects [7]. It has been identified as a class A nutrient by the United Nations Food and Agriculture Organization (FAO) and World Health Organization (WHO) [7]. Although lycopene is known for its antioxidant activity, the blood lipids regulation capacity is not neglectable. Studies in rats, mice or humans have shown that lycopene and lycopene enriched tomato products could reduce the risk of obesity and cardiovascular disease by regulating lipid metabolism [8-10]. Lycopene or lycopene-enriched plant materials in poultry diet also showed positive regulation effect on serum lipids levels [11-14].

In this study, we investigate the effects of dietary lycopene supplementation on abdominal fat deposition, serum lipids levels, activities of hepatic lipid metabolism enzymes, as well as mRNA expression levels of related enzymes and transcription factors in liver, to elucidate whether lycopene could influence lipid metabolism in broiler chickens. The results of this study will provide information for the application of lycopene-rich plant materials in animal feed.

MATERIALS AND METHODS

Animal and management
All animal experiments were conducted in accordance with the Institutional Animal Care and Use Committee of Yangzhou University, Yangzhou, China (No. SYXK(Su)2016-0020).

A total of 256 healthy one-day-old male Arbor Acres broilers chicks were obtained from a commercial hatchery (Nantong, Jiangsu Province, P. R. China). All birds were randomly divided into four groups with eight replicates per group, each replicate comprised eight birds, and kept in an environmentally controlled room. The room temperature was 32°C to 34°C for the first three days, then gradually decreased to 22°C±1°C by 2°C to 3°C per week and maintained until the end of the experiment. Broilers in the control group were offered the basal diet, whereas broilers in the other three groups were fed the basal diet supplemented with 100, 200, and 400 mg/kg lycopene, respectively. Lycopene (80% purity) was purchased from Shanghai yuanye Bio-Technology Co., Ltd (Shanghai, China). The basal corn-soybean meal diet was formulated based on the recommendation of NRC (1994) to meet the nutrient requirement of broilers (Table 1). All birds in the experimental period (1 to 42 day of age) enjoyed free access to feed and water with a lighting cycle of 23 h light and 1 h dark. The management procedures were conducted based on the commercial chicken farm feeding management procedures. Body weight (BW) and feed intake (FI) were recorded at 21 and 42 day of age by replicate and gain to feed ratio (G/F) was calculated by the ratio between body weight gain (BWG) and FI.

Sample collection
At the end of the experiment, one bird per replicate with an averaged BW of the replicate was selected after 12 h feed deprivation. Blood sample was obtained from the wing vein, then the serum was collected after centrifuged at 3,000×g for 10 min at 4°C. The serum samples were stored at −20°C for total triglyceride (TG), total cholesterol (TC), low density lipoprotein cholesterol (LDLC) and high density lipoprotein cholesterol (HDL-C) analysis. After bleeding, the broilers were euthanized by cervical dislocation. Immediately after death, the abdominal fat of each broiler was harvested and weighed. The liver samples were excised, washed with ice-cold sterilized saline, then snap-frozen in liquid nitrogen, and stored at −70°C before use.

Table 1. Composition and nutrient level of basal diet (as fed basis, %)

Items	1 to 21 d	22 to 42 d
Ingredients		
Corn	57.10	61.00
Soybean meal	31.00	28.00
Corn gluten meal	4.00	1.60
Soybean oil	3.00	1.30
Dicalcium phosphate	2.00	2.40
Limestone	1.20	4.00
L-lysine	0.20	0.25
DL-methionine	0.20	0.15
Premix¹	1.00	1.00
Sodium chloride	0.30	0.30
Total	100.00	100.00

¹ The premix provided per kilogram of diet: vitamin A (retinyl acetate), 12,000 IU; vitamin D₃ (cholecalciferol), 2,500 IU; vitamin E (DL-α-tocopherol acetate), 20 IU; menadione, 1.3 mg; thiamin, 2.2 mg; riboflavin, 8.0 mg; nicotinamide, 40 mg; choline chloride, 400 mg; calcium pantothenate, 10 mg; pyridoxine HCl, 4 mg; biotin, 0.04 mg; folic acid, 1 mg; vitamin B₁₂ (cobalamin), 0.013 mg; Fe (ferrous sulfate), 80 mg; Cu (from copper sulfate), 8.0 mg; Mn (from manganese sulfate), 110 mg; Zn (from zinc sulfate), 60 mg; I (from calcium iodate), 1.1 mg; Se (from sodium selenite), 0.3 mg.
Determination of abdominal fat deposition
The abdominal adipose deposition was expressed as abdominal fat percentage (AFP), which was calculated by the percentage of abdominal fat weight (AFW) to final BW.

Measurement of serum TG, TC, LDLC, and HDLC levels
The serum TC, TG, LDLC, and HDLC levels were determined using an automatic biochemical analysis system (UniCel Synchron DxC 800 synchron, Beckman Coulter, Inc., Fullerton, CA, USA). The results were expressed as millimole per litre (mmol/L).

Hepatic enzymatic activity
The commercial enzyme-linked immunosorbent assay kits of Shanghai Yu Bo Biotech Co., Ltd (Shanghai, China) were used to measure the hepatic activities of fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), lipoprotein lipase (LPL), and hepatic lipase (HL), and operated according to the instructions of the corresponding kits. The bicinchoninic acid assay was used to measure the protein concentration of liver [15]. The results were calculated based on the protein concentration of liver and expressed as units per gram of protein (U/g protein).

mRNA quantification
Total RNA isolation of liver sample was performed following the protocol of Uni-10 column Trizol total RNA extraction kit (Sangon Biotech Co. Ltd., Shanghai, China). The quality of the RNA was performed by agarose gel electrophoresis detection, and the quantity of the RNA was measured with a microspectrophotometer (NaroDrop 2000c, Thermo Scientific, Waltham, MA, USA). Immediately following the total RNA isolation, reverse transcription was performed using the PrimeScript RT Master Mix kit (TaKaRa Biotechnology Co. Ltd., Dalian, China) to synthesis cDNA. Real-time polymerase chain reaction (PCR) was performed with the 7500 Real-Time PCR System (Applied Biosystems, Foster City, CA, USA) with a TB Green Premix Ex Taq II kit (TaKaRa, China) following the instruction of the kit. The primer sequences for broiler adenosine monophosphate activated protein kinase α (AMPKα), sterol regulatory element-binding protein 1 (SREBP-1), FAS, ACC, and β-actin (as a reference gene) are listed in Table 2. The primers were synthesized by Sangon Biotech Co. Ltd (China). The relative expression level of each target gene mRNA was normalized to the mRNA level of β-actin, and the results were expressed as the fold difference between the treated groups and the control group using the $2^{-\Delta\Delta Ct}$ method [16].

Statistical analysis
Data are presented as mean±standard error of the mean, and statistical analyzed by SPSS (version 22 for windows, SPSS Inc, Chicago, IL, USA). Data were subjected to one-way analysis of variance using the general liner model procedure of SPSS, and Tukey test was used to assess the differences among the treatment means. Differences were considered significant when p<0.05.

RESULTS

Growth performance
Effects of various dietary lycopene supplementation on growth performance of broiler chickens are shown in Table 3. Compared to the control group, diet supplemented with 100 mg/kg lycopene increased the BW at 21 day of age (p<0.05). Dietary lycopene addition had no significant impact on FI, G/F, BWG from 22 to 42 days of age and BW at 42 day of age (p>0.05).

Abdominal fat deposition
Table 4 shows the effects of dietary lycopene inclusion on the AFW and AFP of broiler chickens. The AFW of broilers treated by 100 mg/kg lycopene was decreased in comparison to the basal diet (p<0.05). The AFP of broilers in 100 and 200 mg/kg lycopene supplementation groups were lower

Gene ID	Accession ID	Gene name	Primer sequence 5′-3′	Product length (bp)
396526	NM_205518	β-actin	Forward: TGTATTTGCTGCGCTCGTTG Reverse: ATACCTCTTTTGCTCTGG6CTT	183
427185	NM_001039603	AMPK-α	Forward: GATATTTGGAGCAGTGGGGTTA Reverse: GGAACACAGATTTTGGGAGGTTA	248
373915	NM_204126	SREBP-1	Forward: ACCGCTGCTCCACCTTCC Reverse: TGAAGCAGGTTGGCTCCTC	208
396061	NM_205155	FAS	Forward: GGTGGAGCCAGGGATTATGA Reverse: AAGGGAGCAGGTTGGGATTA	188
396504	NM_205505	ACC	Forward: GCTTGGTTAGGCCACTAATG Reverse: AAACCTGCAAGGACTGACAG	170

AMPKα, adenosine monophosphate activated protein kinase α; SREBP-1, sterol regulatory element-binding protein 1; FAS, fatty acid synthase; ACC, acetyl-CoA carboxylase.
than that of the control group (p<0.05).

Serum lipid level

The serum lipid parameters are presented in Table 5. Broilers fed diets supplemented with 100, 200, and 400 mg/kg lycopene reduced the levels of TG and TC in serum compared to control (p<0.05). Broilers fed diets supplemented with 100 and 200 mg/kg lycopene reduced the level of serum LDLC compared to control (p<0.05).

Hepatic enzymatic activity

As shown in Table 6, the hepatic activity of FAS in the 400 mg/kg lycopene group was lower than control group (p<0.05). The activity of ACC in the 100, 200, and 400 mg/kg lycopene treated broilers were lower than broilers fed basal diet (p<0.05). However, the activities of LPL and HL were similar among all experimental groups (p>0.05).

Relative mRNA expression level of gene

To investigate the potential mechanism of lycopene in lowering lipid, the gene expression of some key enzymes and factors in the hepatic lipid metabolism were determined. The mRNA expression levels of some genes that significantly changed can be seen from Figure 1. The mRNA expression level of AMPK-α in lycopene supplemented groups were increased compared to the control group (p<0.05). Where-
as, the mRNA expression levels of SREBP-1, FAS and ACC in lycopene supplemented groups were decreased compared to the control group (p<0.05).

DISCUSSION

A previous study suggested that broiler chickens’ diet with added 100 mg/kg lycopene from 14 to 35 days of age enhanced the final live weight [11]. According to the study of Lira et al [17], tomato waste might be used as an ingredient of broiler chickens’ diet (up to 20%) from 29 to 42 days of age with no negative effect on growth performance. Diet supplemented with 5% dried tomato pomace (lycopene enriched) increased body mass and decreased FI to weight gain ratio of broilers at 28 day of age [12]. Results in the present study showed that lycopene was beneficial to the early growth of broiler chickens. Although some discrepancies exist among these abovementioned studies due to species, ages, doses, or duration, it is convincible that there is no negative effect of lycopene on growth of broilers. Therefore, lycopene or lycopene enriched materials can be used as additives or ingredients in poultry feed.

Abdominal adipose mass is an important index used to measure lipid deposition in broilers. Serum TG, TC, LDLC, and HDLC levels are essential biochemical parameters reflecting the lipid metabolism status. TG, TC, and LDLC have been established as risk factors and elevated HDLC level possesses protective properties. Our present study revealed that dietary lycopene addition decreased abdominal fat mass, and reduced serum TG, TC, and LDLC levels. Similarly, lycopene enriched tomato-wine raised HDLC level and produced anti-obesity impact through inhibition of lipid biosynthesis in high-fat diet (HFD) fed rats [9]. Rats ingesting virgin olive oil and argan oil with lycopene had reduced serum TG, TC, LDLC concentrations and elevated serum HDLC concentration, and decreased hepatosomatic index, these indicated that lycopene could fight against hyperlipidemic and hypercholesterolemic-derived disorders [18]. Lycopene and tomato powder (both provided 10 mg lycopene/kg food/d) supplementation in mice diet reduced serum TG concentration,

Table 6. Effects of lycopene on hepatic enzymatic activity of broiler chickens

Items	Control	Lycopene (mg/kg)	p-value		
	100	200	400		
FAS (U/g protein)	121.91 ± 3.85^a	112.44 ± 5.30^{ab}	105.07 ± 5.09^c	99.88 ± 5.35^b	0.022
ACC (U/g protein)	25.43 ± 0.99^a	20.32 ± 1.17^b	18.64 ± 0.87^c	17.35 ± 0.67^b	<0.001
LPL (U/g protein)	19.48 ± 1.20	20.32 ± 1.00	20.55 ± 0.69	18.79 ± 1.05	0.591
HL (U/g protein)	68.17 ± 2.89	69.40 ± 2.34	70.06 ± 3.35	72.54 ± 3.22	0.770

Values are presented means ± standard error of the means, n = 8. FAS, fatty acid synthase; ACC, acetyl-CoA carboxylase; LPL, lipoprotein lipase; HL, hepatic lipase.

^{a,b} Means within a row with different superscripts differ significantly (p < 0.05).
addition, the activation of AMPK phosphorylates/inhibits activity of FAS through downregulating the mRNA expression of FAS and ACC. The activation of AMPK decreased the synthesis of fatty acid, cholesterol, triacylglycerol, and fatty acid biosynthesis, which is preferentially involved in the regulation of genes related to fatty acid synthesis, can regulate serum lipids levels in poultry. Diet with tomato juice could inhibit the activity of cholesterol synthesis rate-limiting enzyme, 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) [21]. The possible mechanism in the effect of lowering cholesterol of lycopene and tomato derivatives possibly via inhibiting the activity and expression of HMGCR, modulating the low density lipoprotein receptor (LDL-R) and inhibiting the activity of acyl-coenzyme A:cholesterol acyltransferase (ACAT) [22]. Therefore, lycopene might have a role in lipid metabolism.

In avian species, the liver accounts for about 95% of de novo fatty acid synthesis, making it the main organ of lipogenesis, and it is generally considered that most of the lipid that accumulate in adipose tissue is synthesized in the liver or provided by diet fat [23]. The liver is often used as target organ in the scientific research of exogenous materials treat diabetes and obesity. Therefore, regulation of the hepatic lipogenesis or steatolysis enzymes in relevant metabolic pathways play essential roles in lipid metabolism. The AMPK is a central regulator of energy metabolism and plays a crucial role in lipid metabolism regulation [24]. AMPK consists of three subunits (α, β, γ), α is the catalytic subunit, β and γ are the regulatory subunits, and α subunit is essential for AMPK activation [25]. In liver, the lipid metabolism regulation effect of AMPK acts through the regulation of SREBP-1 [26]. SREBP-1 is a key transcription factor in cholesterol and fatty acid biosynthesis, which is preferentially involved in the regulation of genes related to fatty acid synthesis, can directly stimulate the transcription of genes encoding FAS [27], and modulate the expression of enzymes involved in the synthesis of fatty acid, cholesterol, triacylglycerol, and phospholipid [28]. The activation of AMPK decreased the activity of FAS through downregulating the mRNA expression of SREBP-1, thereby inhibiting lipogenesis [29]. In addition, the activation of AMPK phosphorylates/inhibits ACC results in reduced malonyl-CoA, then inhibits the synthesis of fatty acid [24]. Plant-derived phytochemicals are indirect activators of AMPK [24]. Zeaxanthin, a kind of carotenoid, could play anti-obesity role by activating AMPK, thereby inhibiting lipogenesis [30]. Fenni et al [19] have recently shown that lycopene and tomato powder (both provided 10 mg lycopene/kg food/d) supplementation in HFD fed mice decreased the mRNA expression of hepatic ACC, FAS, and SREBP-1c. Similarly, in the present study, lycopene addition in broilers diet decreased the activities of FAS and ACC, upregulated the mRNA expression levels of SREBP-1, FAS, and ACC in liver. Thus, it is convincible that broilers fed diet supplemented with lycopene might activate the AMPK signaling pathway, thereby inhibiting lipid synthesis in liver. The reduced abdominal fat deposition and regulated serum lipid level might partly be attributable to the activated AMPK signaling pathway.

CONCLUSION

Compared to basal diet, dietary lycopene supplementation decreased abdominal fat deposition, reduced serum TG, TC, and LDLC levels, and reduced hepatic FAS and ACC activities of broilers. Furthermore, lycopene might activate the AMPK signaling pathway, thereby modulating lipid metabolism such as lipogenesis. The beneficial effects of lycopene appeared to be mainly mediated through inhibition of hepatic lipid biosynthesis, and the inclusion level of 100 mg/kg lycopene in broiler diet was recommended in this study. These findings can benefit our understanding on the supplementation of lycopene as a potential precaution to protect against hyperlipidemia, excessive abdominal fat deposition and associated diseases in poultry, as well as provide information for the application of lycopene-rich plant materials in animal feed.

CONFLICT OF INTEREST

We certify that there is no conflict of interest with any financial organization regarding the material discussed in the manuscript.

ACKNOWLEDGMENTS

The technical assistance of the members of our lab are gratefully acknowledged. This work was supported by the National Natural Science Foundation of China (31802095), the Poultry Genetics and Breeding Key Laboratory Open Project of Jiangsu Province (JQLAB-KF-201801), and Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).
REFERENCES

1. Li Q, Zhao XL, Gilbert ER, et al. Confining housing system increased abdominal and subcutaneous fat deposition and gene expressions of carbohydrate response element-binding protein and sterol regulatory element-binding protein 1 in chicken. Genet Mol Res 2015;14:1220-8. https://doi.org/10.4238/2015.February.6.24

2. Huang J, Zhang Y, Zhou Y, et al. Green tea polyphenols alleviate obesity in broiler chickens through the regulation of lipid-metabolism-related genes and transcription factor expression. J Agric Food Chem 2013;61:8656-72. https://doi.org/10.1021/jf402004x

3. Chen G, Gao Z, Chu W, Cao Z, Li C, Zhao H. Effects of dietary Spirulina on antioxidant status, lipid profile, immune response and performance characteristics of broiler chickens reared under high ambient temperature. Asian-Australas J Anim Sci 2018;31:556-63. https://doi.org/10.5713/ajas.17.0483

4. Windisch W, Schedle K, Plitzner C, Kroismayr A. Use of phytogenic products as feed additives for swine and poultry. J Anim Sci 2008;86(Suppl 14):E140-8. https://doi.org/10.2527/jas.2007-0459

5. Noreb BP, Palavra AF, Pessoa FLP, Mendes RL. Supercritical CO2 extraction of trans-lycopene from Portuguese tomato industrial waste. Food Chem 2009;116:680-5. https://doi.org/10.1016/j.foodchem.2009.03.011

6. Liang X, Ma C, Yan X, Liu X, Liu F. Advances in research on bioactivity, metabolism, stability and delivery systems of lycopene. Trends Food Sci Technol 2019;93:185-96. https://doi.org/10.1016/j.tifs.2019.08.019

7. Choi SK, Seo JS. Effect of lycopene supplementation on glucose and lipid metabolism in high fat diet-induced obese Mongolian gerbils. FASEB J 2012;26(Suppl 1):Lb301. https://doi.org/10.1096/fasebj.26.1_supplement.Lb301

8. Thies F, Mills LM, Moir S, Masson LF. Cardiovascular benefits of lycopene: fantasy or reality? Proc Nutr Soc 2017;76:122-9. https://doi.org/10.1017/S0029665116000744

9. Ševčíková S, Ševčík J, Dlouhá G. The effect of lycopene supplementation on lipid profile and meat quality of broiler chickens. Czech J Anim Sci 2008;53:431-40. https://doi.org/10.17221/350-CJAS

10. Hosseini-Vashan SJ, Golian A, Yaghobfar A. Growth, immune, antioxidant, and bone responses of heat stress-exposed broilers fed diets supplemented with tomato pomace. Int J Biometeorol 2016;60:1183-92. https://doi.org/10.1007/s00484-015-1112-9

11. Sahin K, Onderci M, Sahin N, Gursu MF, Khachik F, Kucuk O. Effects of lycopene supplementation on antioxidant status, oxidative stress, performance and carcass characteristics in heat-stressed Japanese quail. J Therm Biol 2006;31:307-12. https://doi.org/10.1016/j.jtherbio.2005.12.006

12. Sun B, Chen C, Wang W, et al. Effects of lycopene supplementation in both maternal and offspring diets on growth performance, antioxidant capacity and biochemical parameters in chicks. J Anim Physiol Anim Nutr 2015;99:42-9. https://doi.org/10.1111/jpn.12196

13. Aidoud A, Ammouche A, Garrido M, Rodriguez AB. Effect of lycopene-enriched olive and argan oils upon lipid serum parameters in wistar rats. J Sci Food Agric 2014;94:2943-50. https://doi.org/10.1002/jsfa.6638

14. Fenni S, Hammou H, Astier J, et al. Lycopene and tomato powder supplementation similarly inhibit high-fat diet induced obesity, inflammatory response, and associated metabolic disorders. Mol Nutr Food Res 2017;61:1601083. https://doi.org/10.1002/mnfr.201601083

15. Li Q, Zhao XL, Gilbert ER, et al. Confining housing system increased abdominal and subcutaneous fat deposition and gene expressions of carbohydrate response element-binding protein and sterol regulatory element-binding protein 1 in chicken. Genet Mol Res 2015;14:1220-8. https://doi.org/10.4238/2015.February.6.24

16. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 2008;3:1101-8. https://doi.org/10.1038/nprot.2008.73

17. Lira RC, Rabello CBV, Ludke MCM, Fernandes PV, Lana G IQ. Productive performance of broiler chickens fed tomato waste. Rev Bras Zootec 2010;39:1074-81. https://doi.org/10.1590/S1516-35982010000500018

18. Mirzaie S, Zirak-Khattab F, Hosseini SA, Donyaei-Darian H. Effects of dietary Chromium picolinate on fat deposition, activity and genetic expression of lipid metabolism-related enzymes in 21 day old ross broilers. Asian-Australas J Anim Sci 2018;31:569-78. https://doi.org/10.5713/ajas.17.0494

19. Palozza P, Catalano A, Simone RE, Mele MC, Cittadini A. Effect of tomato juice consumption on the plasmatic lipid profile, hepatic HMGCR activity, and fecal short chain fatty acid content of rats. Food Funct 2016;7:4460-7. https://doi.org/10.1039/C6FO00344C

20. Fenni S, Hammou H, Astier J, et al. Lycopene and tomato powder supplementation similarly inhibit high-fat diet induced obesity, inflammatory response, and associated metabolic disorders. Mol Nutr Food Res 2017;61:1601083. https://doi.org/10.1002/mnfr.201601083

21. Periago MJ, Martín-Pozuelo G, González-Barrio R, et al. Effect of tomato juice consumption on the plasmatic lipid profile, hepatic HMGCR activity, and fecal short chain fatty acid content of rats. Food Funct 2016;7:4460-7. https://doi.org/10.1039/C6FO00344C

22. Palozza P, Catalano A, Simone RE, Mele MC, Cittadini A. Effect of lycopene and tomato products on cholesterol metabolism. Ann Nutr Metab 2012;61:126-34. https://doi.org/10.1159/000342077

23. Griffin HD, Guo K, Windsor D, Butterworth SC. Adipose tissue lipogenesis and fat deposition in leaner broiler chickens. J Nutr 1992;122:363-8. https://doi.org/10.1093/jn/122.2.363

24. Cordero MD, Viollet B. AMP-activated protein kinase. Switzer-land: Springer, Cham; 2016. https://doi.org/10.1007/978-3-319-43589-3
25. Hardie DG. AMPK: positive and negative regulation, and its role in whole-body energy homeostasis. Curr Opin Cell Biol 2015;33:1-7. https://doi.org/10.1016/j.cceb.2014.09.004
26. Li Y, Xu S, Mihaylova MM, et al. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab 2011;13:376-88. https://doi.org/10.1016/j.cmet.2011.03.009
27. Khesht FA, Hassanabadi A. Effects of sterol regulatory element-binding protein (srebp) in chickens. Lipids Health Dis 2012;11:20. https://doi.org/10.1186/1476-511X-11-20
28. Eberle D, Hegarty B, Bossard P, Ferre P, Foufelle F. SREBP transcription factors: master regulators of lipid homeostasis. Biochimie 2004;86:839-48. https://doi.org/10.1016/j.biochi.2004.09.018
29. Angin Y, Beauloye C, Hormann S, Bertrand L. Regulation of carbohydrate metabolism, lipid metabolism, and protein metabolism by AMPK. In: Cordero MD, Viollet B, editors. AMP-activated protein kinase. Switzerland: Springer, Cham; 2016. pp. 23-43. https://doi.org/10.1007/978-3-319-43589-3_2
30. Liu M, Liu H, Xie J, et al. Anti-obesity effects of zeaxanthin on 3T3-L1 preadipocyte and high fat induced obese mice. Food Funct 2017;8:3327-38. https://doi.org/10.1039/C7FO00486A