A study of the $f_0(1370)$, $f_0(1500)$, $f_0(2000)$ and $f_2(1950)$ observed in the centrally produced 4 final states

The WA102 Collaboration

D. Barberis, F. G. Binon, F. E. Close, K. M. Danielsen, S. V. Donskov, B. C. Earl, D. Evans, B. R. French, T. Hino, S. Inaba, A. Jacholkowski, T. Jacobsen, G. V. Khaustov, J. B. Kinson, A. Kirk, A. A. Kondashov, A. A. Lednev, V. Lentz, I. M. Inashvili, J. P. Peigneux, V. Romanovsky, N. Russakovich, A. Semenov, P. M. Shagin, H. Shimizu, A. V. Singovsky, A. Sobol, M. Stassinaki, J. P. Stroot, K. Takamatsu, T. Tsumi, O. Villalobos Ballie, M. F. Votruba, Y. Yasu.

Abstract

The production and decay properties of the $f_0(1370)$, $f_0(1500)$, $f_0(2000)$ and $f_2(1950)$ have been studied in central pp interactions at 450 GeV/c. The dP_T and jj distributions of these resonances are presented. For the $J = 0$ states, the $f_0(1370)$ and $f_0(2000)$ have similar dP_T and dependences. These are different to the dP_T and dependences of the $f_0(980)$, $f_0(1500)$ and $f_0(1710)$. For the $J = 2$ states the $f_2(1950)$ has different dependences to the $f_2(1270)$ and $f_2(1520)$. This shows that the dP_T and dependences are not just J phenomena.

Submitted to Physics Letters
The WA102 collaboration has recently published a study of the centrally produced 4 non-final states \([3]\). In this paper the production and decay properties of the resonances observed in these channels will be presented. In previous publications the properties of the \(f_1(1285)\) \([2]\), \(2(1645)\) and \(2(1870)\) \([3]\) have already been presented. In this paper the properties of the \(f_0(1370)\), \(f_0(1500)\), \(f_0(2000)\) and \(f_2(1950)\) will be discussed.

In previous analyses it has been observed that when the centrally produced system has been analyzed as a function of the parameter \(dP_T\), which is the difference in the transverse momentum vectors of the two exchange particles \([3, 4]\), all the undisputed \(0^+\) states (i.e. \(J^P = 0^+\)) are suppressed at all \(dP_T\) relative to large \(dP_T\), whereas the glueball candidates \(f_0(1500)\), \(f_0(1710)\) and \(f_2(1950)\) are prominent \([3]\).

In addition, an interesting e ect has been observed in the azimuthal angle which is defined as the angle between the \(p_T\) vectors of the two outgoing protons. For the resonances studied to date which are compatible with being produced by DPE, the data \([3]\) are consistent with the Pomeron transforming like a non-conserved vector current \([3]\). In order to determine the dependence for the resonances observed, a spin analysis has been performed on the \(0^+\) and \(1^+\) channels in four different intervals each of 45 degrees. As an example, g. 2 shows the \(J^P = 0^++\) wave from the \(0^+\) channel in the four intervals. The waves have been fitted in each interval with the parameters of the resonances used to those obtained from the fits to the total data as described in ref \([3]\). The distributions found are consistent for the two channels and the fraction of each resonance as a function of the \(0^+\) channel is plotted in g. 2. The distributions observed for the \(f_0(1370)\) and \(f_0(1500)\) are similar to what was found in the analysis of the \(1^+\) nal state \([3]\).

In order to calculate the contribution of each resonance as a function of \(dP_T\), the waves have been fitted in three \(dP_T\) intervals with the parameters of the resonances used to those obtained from the fits to the total data as described in ref \([3]\). Table 1 gives the percentage of each resonance in three \(dP_T\) intervals together with the ratio of the number of events for \(dP_T < 0.2\) GeV to the number of events for \(dP_T > 0.5\) GeV for each resonance considered. The dependences found for the \(f_0(1370)\) and \(f_0(1500)\) are similar to what was found in the analysis of the \(1^+\) nal state \([3]\).

The fact that the \(f_0(1370)\) and \(f_0(1500)\) have different \(dP_T\) dependences on \(J^P\) that these are not simply \(J^P\) dependent phenomena. This is also true for the \(J = 2\) states, where the \(f_2(1950)\) has different dependences to the \(f_2(1270)\) and \(f_2(1520)\) \([3]\).

In order to determine the four momentum transfer dependence \((t, q^2)\) of the resonances observed in the \(0^+\) channel the waves have been fitted in 0.1 GeV \(^2\) bins of \((t, q^2)\) within the parameters of the resonances used to those obtained from the fits to the total data as described in ref \([3]\). Fig. 2 shows the four momentum transfer from one of the proton vertices for these resonances. The distributions have been fitted with a single exponential of the form \(\exp(-bq^2)\) and the values of \(b\) found are given in table 2. The values of \(b\) for the \(f_0(1370)\) and \(f_0(1500)\) are similar to what was found in the analysis of the \(1^+\) nal state \([3]\).

The distribution, the \(dP_T\) and \(t\) dependence of the \(f_2(1950)\) are different to what has been observed for other \(J^P = 2^+\) resonances \([3]\) but are similar to what was observed for the \([1]\) and \(K(892)\) \([1]\) nal states which were both found to have \(J^P = 2^++\). In order to see if the \(f_2(1950)\) and \(K(892)\) nal states could be due to the \(f_2(1950)\), the
parameters of the f_2 (1950) have been used as input to a Breit-Wigner function which has been modified to take into account the di event thresholds.

Superimposed on the mass spectrum in Fig. 3a is the distribution that could be due to the f_2 (1950). As can be seen, although the f_2 (1950) can describe most of the spectrum, there is an excess of events in the 2.3 GeV mass region. Including a Breit-Wigner to describe the f_2 (2340), which has previously been observed decaying to $[12]$, with $M = 2330$ 15 MeV and $= 130$ 20 MeV gives the distribution in Fig. 3b. Assuming that the f_2 (1950) has a decay mode then correcting for the unseen decay modes the branching ratio of the f_2 (1950) to f_2 (1270) $= 0.80$ was found to be 29.

Superimposed on the $K^0\pi^0$ mass spectrum in Fig. 3c is the distribution that could be due to the f_2 (1950). As can be seen, the f_2 (1950) can describe all the $K^0\pi^0$ mass spectrum. Assuming that the f_2 (1950) has a $K^0\pi^0$ decay mode then correcting for the unseen decay modes the branching ratio of the f_2 (1950) to f_2 (1270) $= 0.80$ was found to be 33. In addition, the branching ratio of the f_2 (1950) to $= 0.80$ above the threshold is 0.8 0.14.

We have previously published a paper describing the decays of the f_0 (1370) and f_0 (1500) to K^+K^- and KK [3]. In ref. [1] a t has been performed to the and nal states and the contributions of the f_0 (1370) and f_0 (1500) has been determined. After correcting for the unseen decay modes and the f_0 (1500) decay mode the branching ratio of the f_0 (1500) to $4 = 0.80$ found to be 1.37 0.16. In the initial Crystal Barrel publication this value was 34 0.8 [15]. In the latest preliminary analysis [14] of the Crystal Barrel data the value is 1.54 0.6. Hence although the experiments disagree about the relative am ourt of and in the 4 decay mode [3], the overall measured branching ratio is consistent.

After correcting for the unseen decay modes and taking into account the above uncertainties the branching ratio of the f_0 (1370) to $4 = 34^{+22}_{-5}$. The large error is due to the fact that there is considerable uncertainty in the amount of f_0 (1370) in the nal state due to the possible contribution from the high mass side of the f_0 (1000). In the latest preliminary analysis [14] of the Crystal Barrel data the value is 12.2 5.4. A coupled channel t of the KK, and $K^0\pi^0$ nal states is in progress and will be reported in a future publication.

In summary, the dP_T, and jj distributions for the f_0 (1370), f_0 (1500), f_0 (2000) and f_2 (1950) have been presented. For the $J = 0$ states the f_0 (1370) and f_0 (2000) have similar dP_T and jj dependences. These are different to the dP_T and jj dependences of the f_0 (980), f_0 (1500) and f_0 (1710). For the $J = 2$ states the f_2 (1950) has different dependences to the f_2 (1270) and f_2^0 (1520). This shows that the dP_T and jj dependences are not just J phenomena.

Acknowledgments

This work is supported, in part, by grants from the British Particle Physics and Astronomy Research Council, the British Royal Society, the Ministry of Education, Science, Sports and Culture of Japan (grants no. 07044098 and 10041010), the French Programme International de Cooperation Scientifique (grant no. 576) and the Russian Foundation for Basic Research (grants 96-15-9663 and 98-02-22032).
References

[1] D. Barberis et al., hep-ex/9912005 To be published in Phys. Lett.
[2] D. Barberis et al., Phys. Lett. B 440 (1998) 225.
[3] D. Barberis et al., hep-ex/9911038 To be published in Phys. Lett.
[4] D. Barberis et al., Phys. Lett. B 397 (1997) 339.
[5] F. E. Close and A. Kirk, Phys. Lett. B 397 (1997) 333.
[6] A. Kirk, Yad. Fiz. 62 (1999) 439.
[7] D. Barberis et al., hep-ex/9909013 To be published in Phys. Lett.
[8] F. E. Close and G. Schuler, Phys. Lett. B 464 (1999) 279.
[9] D. Barberis et al., Phys. Lett. B 462 (1999) 462.
[10] D. Barberis et al., Phys. Lett. B 432 (1998) 436.
[11] D. Barberis et al., Phys. Lett. B 436 (1998) 204.
[12] Particle Data Group, European Physical Journal C 3 (1998) 1.
[13] A. Abele et al., Phys. Lett. B 380 (1996) 453.
[14] U. Thoma, Proceedings of the Hadron 99, Beijing, China 1999.
Table 1: Production of the resonances as a function of dP_T expressed as a percentage of their total contribution and the ratio (R) of events produced at $dP_T = 0.2$ GeV to the events produced at $dP_T = 0.5$ GeV.

	$dP_T = 0.2$ GeV	$dP_T = 0.5$ GeV	$dP_T = 0.5$ GeV	$R = \frac{dP_T = 0.2\text{ GeV}}{dP_T = 0.5\text{ GeV}}$
$f_0(1370)$	11.0 2.0	32.9 3.0	56.1 4.9	0.19 0.04
$f_0(1500)$	23.8 2.5	47.3 4.5	28.8 2.9	0.83 0.12
$f_0(2000)$	11.9 1.3	37.7 3.2	50.2 4.1	0.23 0.03
$f_2(1950)$	27.4 2.4	45.5 5.1	27.1 2.4	1.01 0.12

Table 2: The slope parameter b from a single exponential fit to the jj distributions.

	$f_0(1370)$	$f_0(1500)$	$f_0(2000)$	$f_2(1950)$
b/GeV^2	5.8 0.5	5.1 0.4	5.6 0.4	5.9 0.4
Figures

Figure 1: The $J^{PC} = 0^{++}$ wave from the $^{+}^{+}$ channel as a function of η. a) < 45 degrees, b) $45 < \theta < 90$ degrees, c) $90 < \theta < 135$ degrees and d) $135 < \theta < 180$ degrees. The superimposed curves are the resonance contributions coming from the processes described in the text.

Figure 2: The four momentum transfer squared (t) distributions for a) the $f_0(1370)$, b) the $f_0(1500)$, c) the $f_0(2000)$ and g) the $f_2(1950)$.

Figure 3: a) and b) The $K^{+}K^{-}$ mass spectra with the processes described in the text.
Figure 1
Figure 2
Figure 3