Lifshitz transition and frustration of magnetic moments in infinite-layer NdNiO$_2$ upon hole-doping

I. Leonov,1,2 S. L. Skornyakov,1,2 and S. Y. Savrasov3

1M.N. Miheev Institute of Metal Physics, Russian Academy of Sciences, 620108 Yekaterinburg, Russia
2Ural Federal University, 620002 Yekaterinburg, Russia
3University of California, Davis

Motivated by the recent discovery of superconductivity in the infinite-layer (Sr,Nd)NiO$_2$ films with Sr content $x \approx 0.2$ [Li et al., Nature (London) 572, 624 (2019)], we examine the effects of electron correlations and Sr-doping on the electronic structure, Fermi surface topology, and magnetic correlations in (Nd,Sr)NiO$_2$ using a combination of dynamical mean-field theory of correlated electrons and band-structure methods. Our results reveal a remarkable orbital selective renormalization of the Ni 3d bands, with $m^*/m \sim 3$ and 1.3 for the $d_{x^2-y^2}$ and $d_{x^2+y^2}$ orbitals, respectively, that suggests orbital-dependent localization of the Ni 3d states. We find that upon hole doping (Nd,Sr)NiO$_2$ undergoes a Lifshitz transition of the Fermi surface which is accompanied by a change of magnetic correlations from the three-dimensional (3D) Néel G-type (111) to the quasi-2D C-type (110). We show that magnetic interactions in (Nd,Sr)NiO$_2$ demonstrate an unanticipated frustration, which suppresses magnetic order, implying the importance of in-plane spin fluctuations to explain its superconductivity. Our results suggest that frustration is maximal for Sr-doping $x \approx 0.1$–0.2, which is in agreement with an experimentally observed doping value Sr $x \approx 0.2$ of superconducting (Nd,Sr)NiO$_2$.

The recent discovery of superconductivity in the infinite-layer Sr-doped NdNiO$_2$ films (Nd$_{0.8}$Sr$_{0.2}$NiO$_2$) with the critical temperature up to $T_c \sim 15$ K has attracted a lot of attention from researchers around the world [1]. NdNiO$_2$ has a similar planar crystal structure to that of the parent “infinite layer” superconductor CaCuO$_2$, which exhibits superconductivity below $T_c \approx 110$ K upon hole doping [2,3]. As Ni is isoelectronic to copper in NdNiO$_2$, it has a nominal d^9 configuration. Based on this, it was expected that analogous to cuprates the low energy physics of Sr-doped NdNiO$_2$ is dominated by electrons in the planar Ni z^2–y^2 states. However, unlike cuprates, in the infinite-layer nickelate the Ni x^2–y^2 states are found to experience strong hybridization with the Nd 5d orbitals (primarily the 3d^2–s^2 and xy orbitals), yielding a non-cuprate-like Fermi surface [5,6]. While the electronic structure of NdNiO$_2$ has recently been widely studied using various band structure methods [7,9], model techniques [10,11], and DFT+dynamic mean-field theory (DFT+DMFT) [12,13] methods [14,15], the properties of Sr-doped NdNiO$_2$ are still poorly understood. For NdNiO$_2$, DFT+DMFT calculations reveal significant correlation effects within the Ni 3d orbitals, which are complicated by large hybridization with the Nd 5d states [14,15]. Moreover, based on the experiments two features that are central to copper oxides—the Zhang-Rice singlet and large planar spin fluctuations—were claimed to be absent (or diminished) in (Nd,Sr)NiO$_2$ [11,6].

Here we explore the effects of electronic correlations and Sr-doping on the electronic structure of (Nd,Sr)NiO$_2$ using a fully self-consistent in charge density DFT+DMFT method [12,13] implemented with plane-wave pseudopotentials [20,21]. DFT+DMFT has been proved to be among the most advanced theoretical methods for studying the electronic properties of strongly correlated materials, such as correlated transition metal oxides, heavy-fermions, Fe-based superconductors, e.g., to study the phenomena of a Mott transition, collapse of local moments, large orbital-dependent renormalizations, etc. [22] We use this advanced computational method to study the Fermi surface topology and magnetic correlations, as well as their impact on magnetism of (Nd,Sr)NiO$_2$ upon Sr-doping.

We adopt the experimental lattice parameters measured for the Nd$_{0.8}$Sr$_{0.2}$NiO$_2$ film grown on the SrTiO$_3$ substrate (space group P4/mmm, lattice parameters $a = 3.91$ Å and $c = 3.37$ Å) [1]. Following the literature, to avoid the numerical instabilities arising from the Nd 4f electrons we focus on La$^{3+}$ instead of Nd$^{3+}$ (4f^3) ion [5,11,15]. (Hereafter, we assume La by saying Nd in our calculations.) To explore the effect of Sr-doping on the electronic structure of (Nd,Sr)NiO$_2$ we employ a rigid-band shift of the Fermi level within DFT. In our DFT+DMFT calculations we explicitly include the Ni 3d, Nd 5d, and O 2p valence states, by constructing a basis set of atomic-centered Wannier functions within the energy window spanned by these bands [22]. This allows us to take into account a charge transfer between the partially occupied Ni 3d, Nd 5d, and O 2p states, accompanied by the strong on-site Coulomb correlations of the Ni 3d electrons. We use the continuous-time hybridization expansion (segment) quantum Monte Carlo algorithm in order to solve the realistic many-body problem [24]. We take the average Hubbard $U = 6$ eV and Hund’s exchange $J = 0.95$ eV as previously employed for rare-earth nickelates NiO$_2$ [25]. We use the fully localized double-counting correction, evaluated from the self-consistently determined local occupations, to account for the electronic interactions already described by DFT.

In Fig. 1 we display our results for the k-resolved spectra of paramagnetic (PM) (Nd,Sr)NiO$_2$ obtained by...
DFT+DMFT as a function of Sr doping x. Overall, our results agree well with those published previously [11][15][18]. For $x = 0$ we observe a band formed by the strongly mixed Ni and Nd $3z^2 - r^2$ states crossing the Fermi level near the Γ point. Upon Sr doping these states are seen to shift above the Fermi level, resulting in a change of the electronic structure of $(\text{Nd},\text{Sr})\text{NiO}_2$.

Our DFT+DMFT calculations reveal a remarkable orbital-selective renormalization of the partially occupied Ni $x^2 - y^2$ and $3z^2 - r^2$ bands (shown in Fig. 2). In particular, for $x = 0$ the Ni $x^2 - y^2$ states exhibit a large mass renormalization of $m^*/m \sim 3$, while correlation effects in the $3z^2 - r^2$ band are significantly weaker, $m^*/m \sim 1.3$. This behavior is consistent with sufficiently different occupations of the Ni $x^2 - y^2$ and $3z^2 - r^2$ orbitals. In fact, the $x^2 - y^2$ orbital occupancy for $x = 0$ is close to half-filling (~ 0.58 per spin-orbit), while the $3z^2 - r^2$ orbitals are nearly fully occupied (~ 0.84). In addition, our analysis of the local spin susceptibility $\chi(\tau) = \langle \hat{m}_z(\tau)\hat{m}_z(0) \rangle$ (see Fig. S1) suggests the proximity of the Ni $x^2 - y^2$ states to localization, while the Ni $3z^2 - r^2$ electrons are delocalized. Indeed, $\chi(\tau)$ for the Ni $3z^2 - r^2$ states is seen to decay fast to zero with the imaginary time τ, which is typical for itinerant behavior. In contrast to that $\chi(\tau)$ for the $x^2 - y^2$ states is sufficiently larger, $\chi(0) = 0.72 \mu_B^2$, slowly decaying to $\sim 0.07 \mu_B^2$ as $\tau = \beta/2$. Our results therefore suggest that magnetic correlations in NdNiO$_2$ are at the verge of orbital-dependent formation of local magnetic moments [14]. In agreement with this the calculated (instantaneous) magnetic moment of Ni is about $\sqrt{\langle m_z^2 \rangle} \approx 1.1 \mu_B$, which is consistent with nearly a $S = 1/2$ state of nickel.

Upon hole doping the Ni 3d occupations slightly decrease to 0.52 and 0.80 (per spin-orbital) for the Ni $x^2 - y^2$ and $3z^2 - r^2$ orbitals, respectively, for $x = 0.5$. This corresponds to a ~ 0.17 decrease of the total Wannier Ni 3d occupation, whereas the Nd 5d and O 2p states occupancies drop by ~ 0.21 and 0.06. In addition, we observe a gradual decrease of mass renormalization of the $x^2 - y^2$ states to $m^*/m \sim 2.3$ at $x = 0.5$. In contrast to that for the $3z^2 - r^2$ orbital m^*/m slightly increases to ~ 1.5. We notice no qualitative change in the self-energy upon changing of the Sr content x. The Ni 3d states obey a Fermi-liquid-like behavior with a weak damping at the Fermi energy. Moreover, doping with Sr does not affect much magnetic moments in the paramagnetic phase of $(\text{Nd},\text{Sr})\text{NiO}_2$. Thus, the instantaneous magnetic moments $\sqrt{\langle m_z^2 \rangle}$ tend to increase only by about 5%. Interestingly in our model calculations (with absent self-consistency over the charge density, i.e., for the fixed tight-binding parameters of the DFT Wannier Hamiltonian) this increase is more significant, about 63%, suggesting the proximity to spin freezing, in accordance to recent model DMFT calculations [13].

Our DFT+DMFT calculations reveal a remarkable orbital-selective renormalization of the partially occupied Ni $x^2 - y^2$ and $3z^2 - r^2$ bands (shown in Fig. 2). In particular, for $x = 0$ the Ni $x^2 - y^2$ states exhibit a large mass renormalization of $m^*/m \sim 3$, while correlation effects in the $3z^2 - r^2$ band are significantly weaker, $m^*/m \sim 1.3$. This behavior is consistent with sufficiently different occupations of the Ni $x^2 - y^2$ and $3z^2 - r^2$ orbitals. In fact, the $x^2 - y^2$ orbital occupancy for $x = 0$ is close to half-filling (~ 0.58 per spin-orbit), while the $3z^2 - r^2$ orbitals are nearly fully occupied (~ 0.84). In addition, our analysis of the local spin susceptibility $\chi(\tau) = \langle \hat{m}_z(\tau)\hat{m}_z(0) \rangle$ (see Fig. S1) suggests the proximity of the Ni $x^2 - y^2$ states to localization, while the Ni $3z^2 - r^2$ electrons are delocalized. Indeed, $\chi(\tau)$ for the Ni $3z^2 - r^2$ states is seen to decay fast to zero with the imaginary time τ, which is typical for itinerant behavior. In contrast to that $\chi(\tau)$ for the $x^2 - y^2$ states is sufficiently larger, $\chi(0) = 0.72 \mu_B^2$, slowly decaying to $\sim 0.07 \mu_B^2$ as $\tau = \beta/2$. Our results therefore suggest that magnetic correlations in NdNiO$_2$ are at the verge of orbital-dependent formation of local magnetic moments [14]. In agreement with this the calculated (instantaneous) magnetic moment of Ni is about $\sqrt{\langle m_z^2 \rangle} \approx 1.1 \mu_B$, which is consistent with nearly a $S = 1/2$ state of nickel.

Upon hole doping the Ni 3d occupations slightly decrease to 0.52 and 0.80 (per spin-orbital) for the Ni $x^2 - y^2$ and $3z^2 - r^2$ orbitals, respectively, for $x = 0.5$. This corresponds to a ~ 0.17 decrease of the total Wannier Ni 3d occupation, whereas the Nd 5d and O 2p states occupancies drop by ~ 0.21 and 0.06. In addition, we observe a gradual decrease of mass renormalization of the $x^2 - y^2$ states to $m^*/m \sim 2.3$ at $x = 0.5$. In contrast to that for the $3z^2 - r^2$ orbital m^*/m slightly increases to ~ 1.5. We notice no qualitative change in the self-energy upon changing of the Sr content x. The Ni 3d states obey a Fermi-liquid-like behavior with a weak damping at the Fermi energy. Moreover, doping with Sr does not affect much magnetic moments in the paramagnetic phase of $(\text{Nd},\text{Sr})\text{NiO}_2$. Thus, the instantaneous magnetic moments $\sqrt{\langle m_z^2 \rangle}$ tend to increase only by about 5%. Interestingly in our model calculations (with absent self-consistency over the charge density, i.e., for the fixed tight-binding parameters of the DFT Wannier Hamiltonian) this increase is more significant, about 63%, suggesting the proximity to spin freezing, in accordance to recent model DMFT calculations [13].

Upon hole doping the Ni 3d occupations slightly decrease to 0.52 and 0.80 (per spin-orbital) for the Ni $x^2 - y^2$ and $3z^2 - r^2$ orbitals, respectively, for $x = 0.5$. This corresponds to a ~ 0.17 decrease of the total Wannier Ni 3d occupation, whereas the Nd 5d and O 2p states occupancies drop by ~ 0.21 and 0.06. In addition, we observe a gradual decrease of mass renormalization of the $x^2 - y^2$ states to $m^*/m \sim 2.3$ at $x = 0.5$. In contrast to that for the $3z^2 - r^2$ orbital m^*/m slightly increases to ~ 1.5. We notice no qualitative change in the self-energy upon changing of the Sr content x. The Ni 3d states obey a Fermi-liquid-like behavior with a weak damping at the Fermi energy. Moreover, doping with Sr does not affect much magnetic moments in the paramagnetic phase of $(\text{Nd},\text{Sr})\text{NiO}_2$. Thus, the instantaneous magnetic moments $\sqrt{\langle m_z^2 \rangle}$ tend to increase only by about 5%. Interestingly in our model calculations (with absent self-consistency over the charge density, i.e., for the fixed tight-binding parameters of the DFT Wannier Hamiltonian) this increase is more significant, about 63%, suggesting the proximity to spin freezing, in accordance to recent model DMFT calculations [13].

FIG. 2: Orbitally resolved quasiparticle mass enhancement m^*/m together with the instantaneous $\sqrt{\langle m_z^2 \rangle}$ and fluctuating magnetic moments $M_{\text{loc}} = [T \int_0^{\beta/T} \langle \hat{m}_z(\tau)\hat{m}_z(0) \rangle]^{1/2}$ of Sr-doped NdNiO$_2$ calculated by DFT+DMFT for the paramagnetic state, at $T = 290$ K. M_z: DFT+DMFT results for magnetization per Ni site for the N´eel (111), C-type (110), and ($1\frac{1}{2}$) AFM states at $T = 290$ K.

FIG. 3: Quasiparticle Fermi surface of Sr-doped NdNiO$_2$ for Sr $x = 0$, 0.2, and 0.4 calculated by DFT+DMFT for the paramagnetic state at $T = 290$ K.
the dependence of the calculated FS’s as a function of Sr x. We note that our results for $x = 0$ are in qualitative agreement with previous band-structure studies \[5, 7\]. In particular, we obtain that the FS consists of three FS sheets, with the elliptical FS centered at the Brillouin zone (BZ) center (Γ point), originating from the mixed Ni 3d and Nd 3$z^2 - r^2$ states. The electron FS pockets centered at the A-point are mainly of the Ni xz/yz character. Similarly to the cuprates, the FS of NdNiO$_2$ is dominated by the quasi-two-dimensional (quasi-2D) holelike FS sheet with a predominant Ni $x^2 - y^2$ character, centered at the A-M BZ edge. In close similarity to the cuprates, our results for the FS topology imply an in-plane nesting with magnetic vector $q_m = (110)$ (M-point).

Upon increase of the Sr content, we observe a remarkable change of the electronic structure of (Nd,Sr)NiO$_2$ which is associated with an entire reconstruction of the FS topology, i.e., a Lifshitz transition. Thus, at $x = 0.2$ the elliptical FS centered at the Γ point vanishes. In addition, the holelike quasi-2D FS sheets at the top and the bottom of the BZ merge near the R point to a quasi-3D electron-like FS that forms a neck at the top and the bottom of the BZ. Overall, this suggests that the Lifshitz transition is accompanied by a reconstruction of magnetic correlations in infinite-layer (Nd,Sr)NiO$_2$ that appears near to the experimentally observed doping Sr $x \simeq 0.2$.

We proceed with analysis of the symmetry and strength of magnetic correlations in (Nd,Sr)NiO$_2$. For this purpose we compute the momentum-dependent static magnetic susceptibility $\chi(q)$ within DFT+DMFT using the particle-hole bubble approximation. Orbital contributions of $\chi(q)$ along the BZ path and their dependence on the Sr content x are shown in Fig. 4. Our results for the total $\chi(q)$ as a function of Sr doping x are summarized in Fig. 5. Interestingly for $x = 0$ our results for $\chi(q)$ exhibit two well defined maxima at the M and A points of the tetragonal BZ. This suggests the existence of (at least) two leading magnetic instabilities due to the Ni $x^2 - y^2$ states (for $x = 0$) with a wave vector near to $q_m = (110)$ and (111), that corresponds to the C-type and the Néel AFM ordering, respectively. In the same time $\chi(q)$ for the $3z^2 - r^2$ states is seen to be small and nearly q-independent. We notice that $\chi(q)$ appears to be somewhat larger in the A than that in the M point. We therefore expect that the three-dimensional Néel AFM state is more energetically favorable than the quasi-2D C-type (for Sr $x = 0$). In fact, this qualitative analysis agrees well with our total-energy calculations within the spin-polarized DFT and DFT+DMFT methods (see Fig. S3). Both reveal that for Sr $x = 0$ the Néel AFM ordering is more energetically favorable by about 3-4 meV/f.u. with respect to the C-type AFM and the PM state within DFT+DMFT, at $T = 290$ K. We note that within DFT the Néel and the staggered dimer ($11\frac{1}{2}$) and C-type (110) states are differ by about 5-7 meV/f.u., while the non-magnetic state appears much above, by about 85 meV/f.u.

Our results for $\chi(q)$ and total energies suggest that various types of spin order are competing (nearly energetically degenerate) in (Nd,Sr)NiO$_2$. Indeed, for Sr $x = 0.2$, $\chi(q)$ is seen to be nearly flat and degenerate at around the M and A points (see Fig. 4), implying possible frustration of the Ni 3d moments. Upon further increase of Sr x, our results provide a clear evidence of an entire reconstruction of magnetic correlations, with the $3z^2 - r^2$ states now playing a major role. While for Sr $x = 0.4$ $\chi(q)$ for the $x^2 - y^2$ orbital is seen to be nearly flat (degenerate for different q_i), suggesting in-plane frustration of the Ni 3d moments. The out-of-plane $3z^2 - r^2$ orbital contribution reveals a flat maximum near the M point.

![Graph](https://example.com/graph.png)

FIG. 4: Orbitally resolved static spin susceptibility $\chi(q)$ of Sr-doped NdNiO$_2$ calculated by DFT+DMFT at $T = 290$ K.

![Graph](https://example.com/graph.png)

FIG. 5: Long-range ordered magnetic moments of Ni as a function of hole doping calculated for NdNiO$_2$ by DFT (empty symbols), DFT+DMFT results for the Néel, C-type (110), single stripe (100), and staggered dimer (11$\frac{1}{2}$) AFM states at $T = 290$ K are shown by filled symbols.

In Fig. 5 we show our results for the long-range ordered magnetic moments of nickel calculated within the spin-polarized DFT and DFT+DMFT. The latter are about 0.67 μ_B/Ni as obtained by DFT+DMFT for the Néel (111), C-type (110), and staggered dimer (11$\frac{1}{2}$) AFM states for Sr $x = 0$, at $T = 290$ K. Notably, we observe a sharp suppression of the calculated magnetization M_z and hence of the Néel temperature evaluated from the spin-polarized DFT+DMFT calculations with Sr x. In particular, for Sr $x = 0.2$ we find no evidence for a mag-
netically ordered state at $T \geq 290$ K. Thus, all magnetic configurations discussed here, namely, the (100), (110), (111) and (11 $\frac{1}{2}$) AFM and FM configurations collapse in the PM state. That is, for Sr $x = 0.2$ the Néel (Curie) temperature is much below the room temperature that suggests rising of quantum spin fluctuations with x.

We note, however, that analysis of the finite-temperature DFT+DMFT results may often be problematic. For example, the single stripe (100) AFM and ferromagnetic orderings are found to be unstable at $T = 290$ K, i.e., both collapse to the PM state. We therefore first perform the spin-polarized DFT calculations of the ground state energy differences between different magnetic states (see Fig. [S3]). In fact, the DFT calculations give qualitatively similar results to those obtained by DFT+DMFT with significantly larger values of the total energy difference (with respect to the non-magnetic state) of ~ 85 meV/f.u., and 8 meV/f.u. for the C-type, Néel, and staggered dimer (11 $\frac{1}{2}$), and single stripe (100) magnetic states, respectively. Both spin-polarized DFT and DFT+DMFT calculations reveal a near degeneracy of various types of spin orders, implying frustration of magnetic correlations in (Nd,Sr)NiO$_2$. The latter is most notable for the Sr content of about $x \approx 0.2-0.3$, which is close to the experimental Sr doping $x \approx 0.2$. Moreover, the calculated magnetization for the various AFM states tends to decrease in both the DFT and DFT+DMFT calculations upon increase of Sr x (see Fig. [5]). In addition, within DFT+DMFT magnetization is found to sharply collapse to the PM state for Sr $x > 0.1$ at $T = 290$ K, suggesting a sharp increase of spin fluctuations with x.

Our results point out an anomalous sensitivity of the electronic structure and magnetic correlations of (Nd,Sr)NiO$_2$ with respect to the Sr x doping. In particular, we found a remarkable frustration of (orbital-dependent) magnetic moments of Ni sites near to the optimal Sr doping $x \approx 0.2$. To help check these results, we computed magnetic exchange couplings within the spin-polarized DFT and DFT+DMFT using the magnetic force theorem [26]. Our findings for the Néel AFM state are summarized in Fig. [6]. We observe that for Sr $x = 0$ the interlayer couplings J_{1} is small and weakly antiferromagnetic, $J_{\perp} \sim -23$ K [27]. The in-plane couplings J_{1} (nearest-neighbor) and J_{2} (next-nearest-neighbor) are both antiferromagnetic and are sufficiently higher by modulus, ~ 198 K and -45 K, respectively. Interestingly that for pure NdNiO$_2$, $|J_{1}| = 198$ K is comparable to that found experimentally in infinite-layer CaCuO$_2$. [3]. Most importantly, our results reveal a remarkable change of the J_{2}/J_{1} ratio with respect to Sr x, which is increasing from ~ 0.36 to 0.56 for $x = 0.1-0.3$, i.e., near to the experimental doping Sr $x \approx 0.2$. While in DFT+DMFT magnetization is found to quickly collapse to the PM state for Sr $x > 0.1$, the exchange couplings evaluated from the spin-polarized DFT+DMFT calculations do follow the same trend, with $J_{2}/J_{1} \approx 0.26$ for Sr $x = 0$, which is found to increase to 0.87 for Sr $x = 0.1$.

Our findings resemble us the behavior of the spin-1/2 frustrated J_{1}-J_{2} Heisenberg model on the two-dimensional (2D) square lattice, with an unusual quantum spin liquid ground state to appear in the highly frustrated region $J_{2}/J_{1} \approx 0.4-0.5$, sandwiched between the Néel and stripe type (or valence-bond solid) ordered states [28]. This analogy is very striking, taking into account our results for the change of the electronic structure and magnetic couplings J_{2}/J_{1} ratio in (Nd,Sr)NiO$_2$ with Sr x. Thus, the frustration region is sandwiched between the two different (long- or short-range ordered) antiferromagnets [28]. We find that magnetic couplings in (Nd,Sr)NiO$_2$ near to the optimal doping demonstrate an unanticipated frustration, which suppresses a long-range magnetic order (resulting in a drastic drop of the Néel temperature), and can lead to formation of unusual quantum spin liquid ground states. Moreover, our results suggest that frustration is maximal for Sr-doping $x = 0.1-0.2$ that corresponds to the highly frustrated region of the spin-1/2 frustrated J_{1}-J_{2} Heisenberg model. Overall, our results suggest the importance of in-plane spin fluctuations to explain superconductivity in (Nd,Sr)NiO$_2$, in contrast to the previous claims [1]. We point out that strong frustration of magnetic interactions in (Nd,Sr)NiO$_2$ suggests that superconductivity in infinite-layer (Nd,Sr)NiO$_2$ appears to be similar to that observed in iron chalcogenides and pnictides [29].

In conclusion, we employed the DFT+DMFT computational approach to study the effects of electronic correlations and Sr-doping on the electronic structure and magnetic properties of (Nd,Sr)NiO$_2$. We show that upon hole doping it undergoes a Lifshitz transition of the Fermi surface which is accompanied by a reconstruction of magnetic correlations. Most importantly, magnetic interactions in (Nd,Sr)NiO$_2$ are found to demonstrate an unanticipated frustration. We find that frustration is maximal for Sr-doping $x = 0.1-0.2$ that nearly corresponds to the experimentally observed doping value of (Nd,Sr)NiO$_2$. Our results for (Nd,Sr)NiO$_2$ reveal a fea-

![FIG. 6: Exchange interaction parameters (in-plane nearest-neighbor (NN) J_1, next-nearest-neighbor J_2, 3-rd NN J_3, 4-th NN J_4 and interlayer coupling $J_{1\perp}$) of Sr-doped NdNiO$_2$ calculated within spin-polarized DFT (empty symbols) and DFT+DMFT (filled symbols).]
ture that is central to copper oxides as well as to iron chalcogenides and pnictides – large in-plane spin fluctuations. We propose that superconductivity in nickelates is strongly influenced, or even induced, by in-plane spin fluctuations.

Acknowledgments

We acknowledge support by the state assignment of Minobrnauki of Russia (theme “Electron” No. AAAA-

A18-118020190098-5). Theoretical analysis of the electronic structure and Fermi surface topology was supported by Russian Foundation for Basic Research (Project No. 18-32-20076). S.Y.S. was supported by National Science Foundation DMR Grant No. 1832728.

[1] D. Li, K. Lee, B. Y. Wang, M. Osada, S. Crossley et al., Nature (London) 572, 624 (2019).
[2] M. Azuma, Z. Hiroi, M. Takano, Y. Bando, and Y. Takeya, Nature (London) 356, 775 (1992).
[3] Y. Y. Peng, G. Dellea, M. Minola, M. Conni, A. Amorese et al., Nat. Phys. 13, 1201 (2017).
[4] S. Y. Savrasov and O. K. Andersen, Phys. Rev. Lett. 77, 4430 (1996).
[5] V. I. Anisimov, D. Bukhvalov, T. M. Rice, Phys. Rev. B 59, 7901 (1999); K.-W. Lee and W. E. Pickett, Phys. Rev. B 70, 165109 (2004); M.-Y. Choi, K.-W. Lee, and W. E. Pickett, Phys. Rev. B 101, 020503(R) (2020).
[6] M. Hepting et al., Nat. Mater. https://doi.org/10.1038/s41563-019-0585-z (2020).
[7] P. Jiang, L. Si, Z. Liao, and Z. Zhong, Phys. Rev. B 100, 201106 (2019); Y. Nomura, M. Hirayama, T. Tanada, Y. Yoshimoto, K. Nakamura, and R. Arita, Phys. Rev. B 100, 205138 (2019); M. Jiang, M. Berciu, and G. A. Sawatzky, arXiv: 1909.02557 (2019); J. Gao, Z. Wang, C. Fang, and H. Weng, arXiv: 1909.04657 (2019); H. Zhang, L. Jin, S. Wang, B. Xi, X. Shi, F. Ye, and J.-W. Mei, arXiv: 1909.07427 (2019); E. Been, W.-S. Lee, H. Y. Hwang, Y. Cui, J. Zaanen et al., arXiv:2002.12300 (2020).
[8] A. S. Botana and M. R. Norman, Phys. Rev. X. 10, 011024 (2020).
[9] B. Geisler and R. Pentecheva, arXiv: 2001.03762
[10] G.-M. Zhang, Y.-F. Yang, and F.-C. Zhang, Phys. Rev. B 101, 020501(R) (2020); X. Wu, D. Di Sante, T. Schwemmer, W. Hanke, H. Y. Hwang, S. Raghu, and R. Thomale, arXiv: 1909.03115 (2019).
[11] H. Sakakibara, H. Usui, K. Suzuki, T. Kotani, H. Aoki, and K. Kuroki, arXiv: 1909.00060 (2019).
[12] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996); G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O. Parcollet, and C. A. Marianetti, Rev. Mod. Phys. 78, 865 (2006).
[13] K. Haule, Phys. Rev. B 75, 155113 (2007); L. V. Pourovskii, B. Amadon, S. Biermann, and A. Georges, Phys. Rev. B 76, 235101 (2007); B. Amadon, F. Lechermann, A. Georges, F. Jollet, T. O. Wehling, and A. I. Lichtenstein, Phys. Rev. B 77, 205112 (2008); M. Aichhorn, L. Pourovskii, V. Vildosola, M. Ferrero, O. Parcollet et al., Phys. Rev. B 80, 085101 (2009); I. Leonov, L. Pourovskii, A. Georges, and I. A. Abrikosov, Phys. Rev. B 94, 155135 (2016).
[14] Ph. Werner and S. Hoshino, Phys. Rev. B 101, 041104(R) (2020).
[15] S. Ryeew, H. Yoon, T. J. Kim, M. Y. Jeong, and M. J. Han, arXiv: 1909.05824 (2019).
[16] Y. Gu, S. Zhu, X. Wang, J. Hu, and H. Chen, arXiv: 1911.00814 (2019).
[17] L. Si, W. Xiao, J. Kaufmann, J. M. Tomczak, Y. Lu, Z. Zhong, and K. Held, arXiv: 1911.06917 (2019); M. Kitatani, L. Si, O. Janson, R. Arita, Z. Zhong, K. Held, arXiv: 2002.12230 (2020).
[18] F. Lechermann, arXiv: 1911.11521 (2019).
[19] J. Karp, A. S. Botana, M. R. Norman, H. Park, M. Zingl, A. Mills, arXiv: 2001.06441 (2020).
[20] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car et al., J. Phys.: Condens. Matter 21, 395502 (2009).
[21] I. Leonov, N. Binggeli, D. Vollhardt, V. I. Anisimov, N. Stojic and, D. Vollhardt, Phys. Rev. Lett. 101, 096405 (2008); I. Leonov, D. Vollhardt, N. Binggeli, V. I. Anisimov, and D. Vollhardt, Phys. Rev. B 81, 075109 (2010).
[22] Z. P. Yin, K. Haule, and G. Kotliar, Nat. Mater. 10, 932 (2011); Nat. Phys. 7, 294 (2011); L. de’ Medici, J. Mravlje, and A. Georges, Phys. Rev. Lett. 107, 256401 (2011); P. Werner, M. Casula, T. Miyake, F. Aryasetiawan, A. J. Millis, and S. Biermann, Nat. Phys. 8, 331 (2012); I. Leonov, S. L. Skornyakov, V. I. Anisimov, and D. Vollhardt, Phys. Rev. Lett. 115, 106402 (2015); S. L. Skornyakov, V. I. Anisimov, D. Vollhardt, and I. Leonov, Phys. Rev. B 96 035137 (2017); P. V. Arribi and L. de’ Medici, Phys. Rev. Lett. 121, 197001 (2018); E. Greenberg, I. Leonov, S. Layek, Z. Konopkova, M. P. Fasternak et al., Phys. Rev. X 8, 031059 (2018); I. Leonov, G.-K. Rozenberg, L.A. Abrikosov, npj Comput. Mater. 5, 90 (2019); X. Deng, K. M. Stadler, K. Haule, A. Weichselbaum, J. von Delft, and G. Kotliar, Nat. Commun. 10, 2721 (2019).
[23] N. Marzari, A. A. Mostofi, J. R. Yates, I. Souza, and D. Vanderbilt, Rev. Mod. Phys. 84, 1419 (2012); V. I. Anisimov, D. E. Kondakov, A. V. Kozhevnikov, I. A. Nekrasov, Z. V. Pchelkina et al., Phys. Rev. B 71, 125119 (2005).
[24] E. Gull, A. J. Millis, A. I. Lichtenstein, A. N. Rubtsov, M. Troyer, and P. Werner, Rev. Mod. Phys. 83, 349 (2011).
[25] H. Park, A. J. Millis, and C. A. Marianetti, Phys. Rev. B 89, 245133 (2014); E. A. Nowadnick, J. P. Ruf, H. Park, P. D. C. King, D. G. Schlom, and D. Pourovskii, Phys. Rev. B 92, 245109 (2015); I. Leonov, A. S. Belozerozov, and S. L. Skornyakov, Phys. Rev. B 100, 161112(R) (2019).
[26] A. I. Lichtenstein, M. I. Katsnelson, V. P. Antropov, and
[27] Here we adopt the following notation for the Heisenberg model
\[H = -\sum_{ij} J_{ij} \mathbf{e}_i \cdot \mathbf{e}_j \]
where \(\mathbf{e}_{i,j} \) are the unit vectors.

[28] S.-S. Gong, W. Zhu, D. N. Sheng, O. I. Motrunich, and
M. P. A. Fisher, Phys. Rev. Lett. 113, 027201 (2014); S. Morita, R. Kaneko, and M. Imada, J. Phys. Soc. Jpn. 84, 024720 (2015); L. Wang and A. W. Sandvik, Phys. Rev. Lett. 121, 107202 (2018).

[29] Q. Si and E. Abrahams, Phys. Rev. Lett. 101, 076401 (2008); C. Fang, H. Yao, W.-F. Tsai, J. P. Hu, and S. A. Kivelson, Phys. Rev. B 77, 224509 (2008); C. Xu, M. Müller, and S. Sachdev, Phys. Rev. B 78, 020501(R) (2008); M. J. Han, Q. Yin, W. E. Pickett, and S. Y. Savrasov, Phys. Rev. Lett. 102, 107003 (2009); J. K. Glassbrenner, I. I. Mazin, H. O. Jeschke, P. J. Hirschfeld, R. M. Fernandes, and R. Valentí, Nat. Phys. 11, 953 (2015); A. Baum, H. N. Ruiz, N. Lazarević, Y. Wang, T. Böhm et al., Commun. Phys. 2, 14 (2019).

Supplementary Material

![Supplementary Material](image_url)

FIG. S1: Orbitally resolved local spin correlation functions \(\chi(\tau) = \langle \hat{m}_z(\tau) \hat{m}_z(0) \rangle \) of Sr-doped NdNiO\(_2\) as a function of hole doping Sr \(x \) calculated by DFT+DMFT at \(T = 290 \) K.

FIG. S2: Static spin susceptibility \(\chi(q) \) of Sr-doped NdNiO\(_2\) as a function of hole doping Sr \(x \) calculated by DFT+DMFT at \(T = 290 \) K.
FIG. S3: Total energy difference $\Delta E = E_{\text{mag}} - E_{\text{NM}}$ between the long-range magnetically ordered and non-magnetic states of NdNiO$_2$ as a function of hole doping calculated by DFT (empty symbols). Ferromagnetic (FM), Néel (111), C-type (110), (101) and single stripe (100), and staggered dimer (11½) states are shown. DFT+DMFT results for the total energy difference between the Néel and C-type AFM states and the paramagnetic state at $T = 290$ K are depicted by filled symbols.