Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Bacteria can be used for the production of valuable bioproducts, such as polyhydroxyalkanoates (PHAs), which are microbial polyesters. PHAs are polymeric substances produced by bacteria as an energy storage system. They are of great interest in nanomedicine due to their tunable properties, which can be adjusted through metabolic or genetic engineering. These properties include biodegradability, biocompatibility, and tunable surface properties, making them suitable for a wide range of applications in biomedicine.

The ability to edit and redirect bacterial cell systems through metabolic or genetic engineering enables the construction of platforms to produce versatile materials carrying wide range of functional groups which confer desired properties to the polymer. Alternatively, the direct use of highly structured natural PHA nanoparticulate entities formed within bacterial cells opened new avenues for attractive biomaterial design. Tailor-made beads are functionalized using intrinsic bacterial granule producing system, which allows customizing and fine tuning to improve polymer performance for each specific application.

Functionalized PHA nanobeads have been used as nanocarriers for protein delivery, diagnostics, and drug targeting. The implementation of these new assets, aside from broadening the potential, allows customizing and fine tuning to improve polymer performance for each specific application.

In summary, the use of PHA nanobeads in nanomedicine represents a promising approach for the development of new therapeutic strategies. Further research is needed to explore the full potential of these materials in various biomedical applications.
as a toolbox to display molecules carrying out specific function (Figure 4). Under a wide scope of applications the performance of such engineered PHA beads has been demonstrated in high-affinity bioseparation, enzyme immobilization, protein delivery to natural environments, diagnostics, as an antigen delivery system and many others (Table 1).

Herein, we revise the diversity of cell systems available to produce functionalized PHA nanobeads and underline specific properties in context of their suitability for different applications. We highlight the advantages of different granule-associated proteins (GAPs) and address the possible gaps that need to be fulfilled. Importantly, powerful combination of synthetic biology and microengineering can create appropriate framework for future application of PHA nanobeads. Finally, we compare the properties of nanoparticles based on bacterial and selected synthetic polyesters.

In vivo vs. in vitro assets

Despite the fact naturally occurring nanoparticles have been present for millions of years, nanotechnology is first and
Figure 3. *Pseudomonas putida* KT2440 mcl-PHA granule producing cell with the schematic representation of PHA granule structure composed of a PHA core coated with phospholipid monolayer where granule-associated proteins GAPs (phasins, synthases, depolymerase, ACS1) are embedded or attached (modified from 9).

Figure 4. Schematic representation of the currently used strategies for PHA functionalization centered around added-value PHA production. *In vivo* PHA modification based on peptide functionalization of PHA nano-beads using GAPs for recombinant protein anchoring to the PHA granule or nonspecific binding and *in vivo* chemical modification through incorporation of functional group in the side chain of the polymer applying metabolic engineering and systems biology approach. Similarly to *in vivo*, *in vitro* approach for peptide functionalization can be based on the use of GAPs or nonspecific binding, while the underlying principle of *in vitro* chemical modification might be based on polymer synthesis or modification.
foremost focused on in vitro man-made particles. Nevertheless, dependently on the target application, in vivo biological or in vitro synthetic approach for fusion protein immobilization to the PHA granule surface might better meet the requirements (Table 2). The in vivo PHA granule functionalization consists of GAP fusion immobilization onto the granule surface simultaneously with the granule formation inside the PHA-producing host (Figure 4). On the other hand, the production of these bioinspired constructs in vitro is based on PHA extraction, followed by in vitro bead production and in vitro GAP fusion protein immobilization via GAP-bead interaction (Figure 4). The main advantages of this in vitro cell-free system are: i) the possibility of tight control of nanoparticle disassembly and reassembly process; ii) absence of competition among the recombinant GAP-fusion and wild type proteins; iii) tight control over particle size and immobilized protein/active agent concentration; iv) possibility of endotoxin removal, crucial for the design of every biomedical setup. Nevertheless, PHA isolation and in vitro nanobead production require more tedious methodology (e.g., to avoid PHA particle aggregation) in comparison to isolation of in vivo produced PHA granules. Also, the use of non-environmentally friendly solvents is needed for in vitro technology. All mentioned significantly increase the costs of in vitro PHA nanobead production and make the

PHA	Functionalization	GAP	Bacterial strain	Ref.	
Diagnostics	PHB	Mouse interleukin 2 IL2/myelin oligodendrocyte glycoprotein MOG	PhaP phasin PhaC synthase	E. coli	18,21
	PHA	EFG/RFG/Severe acute respiratory syndrome corona virus SARS-CoV envelop protein	PhA depolymerase	A. faecalis	22
	PHB	Tuberculosis antigens, ESTAT6, CFP10, and Rv3615c	PhaC synthase	E. coli	23
	PHB	Anti-β-galactosidase single-chain antibody variable fragment scFv	PhaC synthase	E. coli	24
Vaccines	PHB	M. tuberculosis antigen Ag85A-ESTAT-6	PhaC synthase	E. coli, L. lactis	19,25-28
	PHB	Hepatitis C virus core antigen HeC	PhaC synthase	E. coli/L. lactis	29
Drug delivery	PHBHHx	Mannosylated human α1-acid glycoprotein (hAGP)/human epidermal growth factor (hEGF)	PhaP phasin	In vitro	30
	PHB	RGD	PhaC synthase	In vitro	31
	PHB/PHBHHx	Rhodamine B isothiocyanate RBITC	Non	In vitro	32
	PHB	Rifampicin	Non	In vitro	33
	PHBHHx	Triaminolone Acetonide	Non	In vitro	34
	PHB	Lomustine CCNU	Non	In vitro	35
	PHBHHx	Heparazine-A	Non	In vitro	36
	PHB	Diclofenac, dexamethasone	Non	In vitro	37
	PHBHHx	Etoposide and attached folic acid	Non	In vitro	38
	PHBHHx	Platelet-derived growth factor-BB (PDGF-BB)	Non	In vitro	39
	PHBHHx	Polymethylmethacrylate coating	Non	In vitro	40
	PHB	GFP/HcRed	PhaC synthase/PhaP phasin	E. coli	41,42
	PHB	GFP	PhaC synthase	P. putida	8,9
	PHB	Inorganic material binding peptide, antibody binding ZZ domain	PhaC synthase	E. coli	43
	PHO	Cry1Ab	PhaP phasin	P. putida	16
	PHB	ZZ	PhaC synthase	E. coli	13,44,45
	PHB	Streptavidin	PhaC synthase	E. coli	46
	PHB	EGFP/Maltose binding protein MBP/β-galactosidase (lacZ)-intein	PhaP phasin	R. eutropha	47
	PHB	GFP, LacZ	PhaP phasin	R. eutropha	48
	PHB	Intein self-cleaving affinity tag, EGFP, MBP, LacZ	PhaP phasin	E. coli	49
	PHB	Lys	PhaC synthase	P. aeruginosa	14
	PHB	α-amylase variant (Termamy1™)	PhaC synthase	E. coli	17
	PHB	Organophosphohydrolase OpdA	PhaC synthase	E. coli	51
	PHB	PhaA-PhaB	PhaC synthase	E. coli	51
	PHB	Lipopolysaccharide binding protein	PhaP phasin	In vitro	52

Table 1
Summary of the developments on PHA nanobead protein functionalization for various applications.
Dependent on protein release treatment, up to the BioF-protein fusions are obtained as the end product. Production conditions is accomplished, granules decorated with fusion proteins in vivo, late entities can be used in a straightforward manner. 16 approach where bacterial naturally produced nanoscale particulate can acquire endotoxin free PHA and can benefit from an economic advantage over those produced chemically. Particle functionalization is achieved through the recombinant expression of fusion proteins, where natural GAPs are used as anchoring tag for foreign protein immobilization. Perfect example is BioF tag from Pseudomonas putida based on the use of intrinsic P. putida PHA granules as scaffold to immobilize fusion proteins in vivo. Once fermentation under optimal PHA production conditions is accomplished, granules decorated with the BioF-protein fusions are obtained as the end product (Figure 5). 8,16 Dependently on protein release treatment, up to 100% of fusion protein can be recovered with a good purity, since the phasins represent major GAPs. 7 Additionally, the possibility of minimizing the presence of GAP proteins to increase the yield of fusion protein binding and purity has been investigated. 8 BioF system was proven efficient for in vivo coating of mcl-PHA granules with Cry1Ab derived insect-specific toxin protein. Generation of bioplastic-BioF-insect specific toxin complex indicated excellent performance of BioF tag as a device for spreading active polypeptides to the environment without the need for active agent release and purification. 16 Similarly, organophosphohydrolase from Agrobacterium radiobacter immobilized on polyester inclusions of recombinant Escherichia coli was shown suitable for bioremediation applications. 17 Testing this new in vivo assets and analyzing their limits, indicated the possible room for improvement. Current trends deal with implementation of new methodological platforms, as synthetic biology, to improve the production process and productivity. 57 This highlights the importance of re-programming approaches to optimize the system and design strategies focused on meeting the necessities of each specific application. In the line of fine tuning of biological interfaces and the machinery permitted overcoming biological barriers to reach maximal in vivo coating of PHA nanobead and at the same time avoid side effects concerning disordered granule biodistribution after cell division (see below). 8

Table 2

Production and processing	In vivo	In vitro
Production by bacteria	Synthetic production	2,20
Use of renewable sources for production	Harsh chemical needed for polymer isolation and particle production	30,53
Simultaneous production and functionalization	Functionalization posterior	8,20,30
Nanobead assembly and disassembly cannot be tightly controlled	Tight control over bead assembly and disassembly	10,54
Competition of recombinant and wild type GAPs	Functionalization with target protein only, no other GAPs	8,30,54
Particle size can be controlled by biotechnological production process	Tight control over particle size	32,54
Immobilized protein concentration	Tight control over immobilized protein concentration	7,30
variation might represent challenge	Endotoxin removal possible and needed	2,25,55
In the case of Gram- strains endotoxins cannot be removed, while if produced in Gram+ endotoxins absent		

Applications

Suitable for environmental applications; Insecticide delivery	Suitable for biomedical applications; Drug delivery	14,16,30,45
Protein purification	Diagnostics	2,20
Endotoxin removal	Vaccines	2,25,20,25,52

Production cost

| Total production cost includes in vivo particle production and cost and particle purification, lower production cost compared to in vitro produced particles, since additional functionalization is not needed | Higher production costs compared to in vivo produced particles, total price accounts for polymer synthesis, isolation, endotoxin removal, in vivo particle synthesis and functionalization | 30,54,56 |

Different GAPs – different advantages: Hydrophobic vs. covalent binding

The diversity of GAPs offers gentle alternatives through flexible and highly tunable design of specific tags suitable for personalized requirements of different application. Thus, the window of possibilities that each specific GAP offers implies different modes to connect recombinant protein and PHA.
nanobeads (covalent, hydrophobic or non-specific) (Figure 4). Although so far very little is known about their structure and interaction with the PHA granules,\(^{58}\) phasins are highly attractive among GAPs, largely due to the wide assortment of structurally different compositions compared to other GAPs (Figure 4). Phasins have been utilized as affinity tags and through protein engineering designed to build recombinant protein purification system. This provides low cost method for production and purification of high added value proteins in a continuous way.\(^{49}\) Significant improvements in bio-separation technology were made by upgrading the system interconnecting phasins and target proteins via self-cleaving intein.\(^{47}\) This approach enabled \textit{in vivo} recombinant protein immobilization onto the granule and the release of purified proteins once the native scl-PHA particles were recovered, which in turn pushed bio-separation technology several steps ahead, toward convenience and economic production.\(^{49}\) Phasin-PHA interaction usually results in a slow non-triggered protein release over time under physiologic conditions. Moreover, specific environmental conditions can alter release rates.\(^{64}\) In contrast, covalent attachment enables unique natural cross-linking of a protein and polymeric support and allows better control over protein release kinetics. PHA synthase offers the possibility of covalent protein-PHA conjugation. Both N- and C- terminal of PHA synthase were shown suitable for \textit{in vivo} assembly of functionalized polyester cell sorting (FACS) based diagnostics.\(^{18}\)

In completely different context to \textit{in vivo} tag binding, \textit{in vitro} synthesized PHA nanoparticles and \textit{in vitro} hydrophobic binding of PhaP fusion proteins with protein ligands (e.g., mannosylated human \(\alpha_1\)-acid glycoprotein (hAGP) and human epidermal growth factor (hEGF)) have been reported as another outstanding application of phasins for receptor-mediated drug delivery.\(^{30}\) Mostly utilized phasins are PhaP of \textit{Ralstonia eutropha} that bind scl-PHA,\(^{20}\) while the exclusive example of mcl-PHA binding \textit{P. putida} PhaP phasin is for environmental application (BioF system).\(^{8,16}\) Other identified phasins as PhaP proteins of \textit{Aeromonas hydrophila}, PhaP of \textit{Halofexx mediterranei}, \textit{Paracoccus denitrificans}, \textit{Bacillus megaterium}, and others (revised in \(^{10}\)) have not been deeply studied for nanobiotechnology purposes. Likewise, applying the \textit{in vitro} approach the substrate binding domain of PHA depolymerase has been used to hydrophobically anchor fusion proteins to PHA nano and microbeads.\(^{30,59,60}\)

A different strategy to \textit{in vivo} immobilize recombinant proteins onto PHA nanobead surface relays on the advantage of covalent GAP-PHA binding using \textit{P. aeruginosa}, \textit{P. putida}, \textit{R. eutropha} or \textit{B. megaterium} PHA synthase as a tag.\(^{14,61-63}\) Phasin-PHA interaction usually results in a slow non-triggered protein release over time under physiologic conditions. Moreover, specific environmental conditions can alter release rates.\(^{64}\) In contrast, covalent attachment enables unique natural cross-linking of a protein and polymeric support and allows better control over protein release kinetics. PHA synthase offers the possibility of covalent protein-PHA conjugation. Both N- and C- terminal of PHA synthase were shown suitable for \textit{in vivo} assembly of functionalized polyester cell sorting (FACS) based diagnostics.\(^{18}\)

In this article, the approach based on PHA nanobead functionalization through PhaC helps to circumvent the washing off of non-covalently bound fusion proteins during the process.\(^{67}\) The particles with an intrinsic label can be tailored to covalently display proteins for applications in antibody capture-based diagnostic (e.g., immunochromato- graphic strips or batch-and-elute bioseparation applications). The modular arrangement of the protein domains provides a large

Figure 5. \textit{In vivo} immobilization of fusion proteins to bioplastics by BioF tag. The procedure consists of: 1, the fermentation in \textit{P. putida} under optimal PHA production conditions; 2, 3, isolation of the granules carrying the BioF-proteins fusions from the crude cell lysate by a simple centrifugation step; 4, release of fusion proteins via detergent treatment (modified from \(^{15}\)).
design space for the production of custom-made materials. By introducing enterokinase digestion site between the tag and target protein the latter can be efficiently released from polymer support providing efficient and cost-effective methodology to obtain added value product. Similarly, to facilitate target protein release from bio-bead, thrombin cleavage site was used as a linker, as well as previously mentioned autolytic intein. This enables straightforward liberation of target protein.

In addition, proteins can be unspecifically absorbed to PHA. An alternative route to intracellularly produce enzyme decorated PHA beads consists of simultaneous synthesis of insoluble protein inclusion bodies and PHA granules. Charged particles are created by introducing acidic coil via N-terminal of PhaC. This structure has been used to capture an enzyme of interest that was co-expressed in the same host cell and contains a basic coil fused to its C-term. Coils are held together by hydrophobic and electrostatic interactions.

Therefore, it follows that understanding protein-PHA interactions from a biophysical point of view will undoubtedly widen the biotechnological and clinical potential of these bioplastics. In fact, in some cases there are indications that phasin–PHA interaction is influenced not only by the nature of these two components but also by the presence of other GAPs that interfere and play the role of mediation elements facilitating the binding. For instance, the optimization of BioF system by minimizing the dosage of natural phasins in P. putida KT2440 illustrates the importance of understanding the molecular basis underlying the PHA–phasin interaction and its biological consequences. Also, the mechanistic study of the PHA granule producing machinery functioning, the dynamics and factors that direct GAP-PHA binding together assist in overcoming technical hurdles and indicate bottlenecks important for the design of bioinspired nanoparticles (see “Editing, streamlining and refactoring wild type strains for enhancement of protein immobilization” section for details).

Bug systems for scaling up: Wild type over recombinant cells

Success in producing PHA naturally or recombinantly in broad range of bacteria showed that many microorganisms with desirable properties could perform the function of cell factory for production of functionalized PHA beads. E. coli is default host microorganism for recombinant protein production and often the first choice. The fact that this strain serves as a workhorse of basic and applied research worldwide is largely due to the possibility of high recombinant protein yield achievement. Remarkably, E. coli, a previous non-PHA producer, through pathway engineering has been set up to produce up to 150 g/L cell dry weight (CDW) with final PHA content of more than 80%. This was used to co-produce several tagged proteins (maltose binding protein (MBP), β-galactosidase (LacZ), chloramphenicol acetyltransferase (CAT)) with polyhydroxy-butyrate (PHB) granules in the E. coli cells. Proteins were purified with yields of 3.17-7.96 mg/g CDW. Currently applying recombinant E. coli cells allows covering of the granule surface up to 20% of total proteins associated with the bead, while using wild type such as P. putida strain as much as 2% can be achieved. It should be noted that different bacterial strains have different PHA producing capacities regarding polyester type (scl- or mcl-PHA) and relative amount to CDW. Besides, the cause of altered final recombinant protein yield might be the consequence of the type of GAPs used to immobilize recombinant protein, affecting the specific recombinant protein–PHA interaction. Importantly, R. eutropha naturally produces more than 200 g/L of PHB, which gets to 80% of CDW similarly to recombinant production in E. coli, while yields of mcl-PHA obtained with P. putida reach 65%. P. putida productivity can be upgraded to 84% of intracellular mcl-PHA, incorporating knock-out mutations of beta-oxidation genes fadA and fadB. Recombinant E. coli is able to produce 20% of mcl-PHA when beta-oxidation is impaired due to the deletion of fadB, whereas Qi et al. used metabolic routing strategy to inhibit fatty acid beta-oxidation by acryl acid in recombinant E. coli (fadR) and produce 60% mcl-PHA. Additionally, phaI encoding (R)-specific enoyl-CoA hydratase, was demonstrated to supply 3-hydroxyacyl-CoA of C4-C6 for PHA biosynthesis via beta-oxidation pathway. Its co-expression with phaC in E. coli led to production of PHA with monomer composition containing C4, C6, C8, and C10 from unrelated carbon source.

Though, E. coli remains the most commercially valuable host for PHB large-scale production as the polymer degradation is avoided, the down sides as endotoxin contamination and previously mentioned relatively low yields of mcl-PHA, substantially limit its use for biomedical purposes. Also, the overexpression of foreign genes over physiological rates usually triggers a spectrum of conformational stress responses and causes the accumulation of insoluble protein versions that do not reach their native conformation. These pseudospherical protein aggregates, inclusion bodies, are considered undesired by-products of protein production processes. Other bottlenecks as the loss of the plasmid due to the instability of introduced genes, use of antibiotics and gene expression expensive inducers have been partially solved, however they still represent a challenge (reviewed in). Taking all this together, the advantages of using wild type strains as host should not be overlooked. Specific strategies applied on the components of PHA machinery can drive productivities of high contents of PHA immobilized recombinant proteins in wild type strains as reported for E. coli. On the positive side, a great understanding of PHA synthesis in model mcl-PHA producer strains such as P. putida, has been gained through systems biology (“omics” data, genome-scale metabolic models, etc.). Powerful genetic tools based on synthetic biology support bottom-up approaches and might be used to design P. putida strains that generate added-value bioproducts, such as active mcl-PHA based nanobeads. The great value of this bacterium as an autolytic specialized strain for mcl-PHA production has also been demonstrated. Due to its broad metabolic versatility and genetic plasticity, which allow a variety of renewable carbon sources to be used for PHA production, P. putida is one of the most prominent candidates for protein production. Aside from Pseudomonas, many other Gram-positive and Gram-negative eubacterial genera such as Bacillus, Ralstonia, Aeromonas, Rhodobacter, Rhodospirillum, Rhodococcus were shown suitable for production of PHA nanobeads.
Editing, streamlining and refactoring wild type strains for enhancement of protein immobilization

Complex subcellular architecture and self-organizing nano- and micro-compartments of bacterial cell hold great promise, largely due to the possibility for their biofunctionalization. Disturbing these highly coordinated systems might easily imbalance the physiology of the bacterial cell. PHA granules take over the control of the carbon and energy storage and thus represent important element of bacterial metabolic network.\(^{53}\) Thereafter, from an energy flow and survival physiology standpoint, balanced distribution of PHA between daughter cells after division has fundamental importance as competitive setting. Understanding the PHA machinery and interplay of its components was shown crucial for optimization of the in vivo system for production of protein functionalized PHA nanobeads.\(^{8,9}\) Different scenarios involving different molecular events and interactions as well as granule localization have been proposed by Micelle, Budding and Scaffold model of granule formation.\(^{7}\) In contrast to a Micelle model where PHA granules are assumed to be randomly distributed in the cytoplasm, Budding and Scaffold model suggests defined localization proposing granule–cell membrane interaction or PhaC-scaffold molecule interplay, respectively. Recently proposed Scaffold model suggest cooperative work of PhaC and phasins in granule formation. Since, phasins–PhaC interaction has been spotted in some bacterial strains (e.g., PhaM, phasin-like protein that interacts with PhaC in R. eutropha), phasins were proposed as the main components forming network that interconnects granules, DNA and enzymes involved in PHA metabolism.\(^{9,67,88}\) This network should serve as a mediation element responsible for granule localization within the cell and their balanced segregation between daughter cells during cell division. On some of GAP interactions depends their activity, while the function of others is still to be discovered. For instance, homo-oligomerization of R. eutropha PhaC1\(^{89,90}\) and PhaR\(^{89,90}\) and P. putida PhaC1 and hetero-oligomerization of PhaC\(^{Bmeg}\) with PhaR\(^{Bmeg}\) are known to be essential for accomplishing the function. Meanwhile, the interaction of certain phasins with other PHA players was identified,\(^{39}\) but their exact function is to be unraveled. Namely, P. putida PhaF was proposed to form homo- and hetero-tetramers interacting with PhaI through short leucine zipper.\(^{58}\) Another suggested role of phasins is the control of the access of PHA depolymerases. Indeed, weak PhaP2–PhaZ interaction was reported in R. eutropha.\(^{89}\) All these interactions are taught to contribute to the formation of net-like structure found in the vicinity of PHA granules\(^{91}\) and provide a window into the system functioning. PhaF has been shown to have a role as a central player in the machinery, controlling PHA granule segregation and localization in the cell, since it shows a unique ability to bind at least two ligands (the PHA granules and the nucleoid).\(^{7,9,58,92}\) The peculiar structural organization of PhaF into two domains performing diverse functions (i.e., C-terminal histon-like domain, N-terminal phasin-like domain) supplies an explanation to its biological role.\(^{8,8}\) Moreover, whether or not P. putida cytoskeletal or other GAP proteins facilitate the organization of granules in needle array like structure (Figure 4), by direct or indirect interaction with PhaF, is still an open question and currently the precise mechanisms by which intermediary PhaF positions the PHA granules are still unknown.\(^{9}\) Similarly, PhaM of R. eutropha can bind both DNA and PHA.\(^{93}\) Therefore, to refine the system it is needed to unravel the puzzle of how functionally diverse, or even a multifunctional set of GAPs, should be combined to generate an optimal yield of in vivo immobilized protein onto the granule surface and engender a coherent cell phenotype.

In a further step toward the use of PHA granules as nanocarriers decorated with functionalized phasins, the information on phasin physiological function provided important insights into the critical factors needed to be targeted to improve existing models.\(^{8,9}\) For instance, phasin binding prevents unspecific attachment of not only proteins unrelated to the PHA metabolism to the granules surface, but also limits the space for recombinant proteins to anchor.\(^{94}\) Therefore, the absence of wild-type phasins favors binding of recombinant tagged protein molecules anchoring to the granule surface.\(^{8,9}\) This could be explained by limited surface for recombinant proteins to anchor wild-type PHA granules and the need to compete with natural phasins. In this respect, the key phasin factors have been identified for optimal PHA production in P. putida addressing the minimum amount of complete phasin proteins necessary to achieve adequate PHA production and higher yield of immobilized recombinant protein.\(^{8}\) Applying this strategy maximum BioF (N-terminal of PhaF) fusion protein concentration was in vivo immobilized onto the PHA beads (2.2% of recombinant protein/PHA) without compromising phasins’ intrinsic function.\(^{8}\) Also, this demonstrated the swappable nature of PhaI phasin and BioF PHA binding modules in terms of their physiological function and illustrated the utility of the PhaF/PhaI structure redundancy, being autonomous modular cooperatively working units.\(^{8,58}\) Altogether, these examples show that the escalating drive to identify the connections within the complex system of GAPs network is fueled by the need to develop new strategies that will lead to improvement of protein immobilization onto the PHA beads. Metabolic and biotechnology capacities of P. putida, as well as global understanding of the capabilities of this strain are facilitated by metabolic models that enabled integration of experimental along with genomic and high-throughput data.\(^{57}\)

Endotoxin free PHA nanobead production

Bacterial lipopolysaccharides (LPS) or endotoxins, also designated as pathogen associated molecular patterns (PAMPs) recognized by innate immune system are most potent identified microbial mediators implicated in the pathogenesis of sepsis and septic shock. LPS is the most prominent ‘alarm molecule’ sensed by the host’s early warning system of innate immunity presaging the threat of invasion by Gram-negative bacterial pathogens.\(^{95}\) Thus, presence of lipopolysaccharide (LPS) endotoxins in PHA nanobeads produced in Gram-negative bacteria makes these in vivo naturally produced particles unsuitable for biomedical applications.\(^{96,97}\) The problem occurs because co-purification of pyrogenic outer LPS together with PHA granules cannot be avoided. In vitro approach on the other hand offers the possibility
of endotoxin removal from PHA polymer. The concentration of endotoxins in PHA is greatly influenced by purification strategy and might vary from more than 10^4 EU/g to less than 1 EU/g.55,98 The methodology for endotoxin elimination depends on type of PHA (e.g., scl-PHA, mcl-PHA, presence of functional groups, etc.) and each results in different rates of polymer recovery.55,98 However, \textit{in vitro} strategy remains hampered by the necessity of extensive and tedious purification methodology to achieve the levels in compliance with the endotoxin requirements for biomedical application according to the U.S. Food and Drug Administration (FDA). Generally, for products that directly or indirectly contact the cardiovascular system and lymphatic system the limit is 0.5 EU/mL or 20 EU/device, while for devices in contact with cerebrospinal fluid the limit is 0.06 EU/mL or 2.15 EU/device.99 All mentioned factors together with the bacteria growth conditions significantly influence the total cost of the production of endotoxin-free polymer. To get around this limitation, alternative sources of functionalized PHA granules free of LPS contamination are Gram-positive bacteria. They offer a platform for production of LPS free tailored beads due to the difference in the structure of their cell envelopes compared to Gram-negative bacteria.100 Even so, other PAMPS, such as lipoteichoic acid (LTA) and peptidoglycan (PG), found in Gram-positive bacterial pathogens are now appreciated to activate many of the same or similar host defense networks induced by LPS.95 Subsequently their presence in PHAs isolated from Gram-positive bacteria might have immunogenic activities similar to LPS.101 Among PAMPS, LTA predominates in the \textit{Bacillus}, whereas actinomyzete bacteria typically synthesize lipoglycans.102 Importantly, certain Gram-positive PHA producing strains (e.g., \textit{Bacillus circulans}, \textit{Bacillus polymyxa}) lack both, LTA and lipoglycans.103 \textit{Clostridium} and \textit{Staphylococcus citreus} were reported to lack LTA and may be considered for recombinant PHA production.104 Hence, emerging area to be investigated are the mechanisms triggered by PAMPS of Gram-positive PHA producing bacteria regarding mammalian immune system. Remarkably, Gram-positive genera \textit{Corynebacterium}, \textit{Nocardia} and \textit{Rhodococcus} are the only wild-type bacteria, which naturally synthesize the commercially important copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate), P(3HB-co-3HV), from simple carbon sources such as glucose.105,106 The genus \textit{Bacillus}, in common with many other PHA-accumulating bacteria, accumulates co-polymers of 3HB when grown on different substrates.98 For instance, copolymers of P(3HB-co-3HV) are accumulated when the cultures are fed with odd-chain-length n-alkanoic acids such as propionic acid, valeric acid and heptanoic acid.107,108

The generally-regarded-as-safe (GRAS) bacterium \textit{Lactococcus lactis} has been genetically engineered to produce PHA beads. Unfortunately this recombinant strain did not show feasibility for commercial-scale production, since the beads were both smaller in size and contributed less PHA per CDW (6%) than other PHA producing bacteria.29 Therefore, this platform was designated for added value medical product synthesis (e.g., vaccine development) instead the large scale production.25 The improvement of the yield would likely require re-engineering metabolic flux to push carbon utilization away from lactate production and toward the PHA biosynthesis pathway.29 Interestingly, the platform based on PHA functionalized granules was used to develop a PhaP-based system for endotoxin removal from protein solution. An endotoxin receptor protein was fused with \textit{R. eutropha} phasin, \textit{in vitro} attached to PHB beads and used to remove LPS from the solution.108

Functionalized PHA nanobead \textit{in vivo} performance, cytotoxicity and biocompatibility

Numerous \textit{in vivo} studies have clearly demonstrated that endotoxin and bacterial protein free PHAs provoke mild host reactions in different animal models,96 which is not surprising when considering the fact that \([R]-3\text{-hydroxybutyric acid}\) is a normal blood constituent109 and is found in the cell envelope of eukaryotes.110 \textit{In vitro} based approaches have focused on enhancing growth of different eukaryotic cell lines using arginyl-glycyl-aspartic acid (RGD) tailored PHA in form of a scaffold. As such, it showed excellent \textit{in vitro} performance on supporting and promoting neural stem cell, human bone marrow mesenchymal stem cell and fibroblasts adhesion and growth.111-113 PhaP-RGD fusion immobilization allowed evading tedious cross-linking processes and chemical immobilization that easily damage the biological activity of attached protein. New approaches based on nanoparticulate carriers with targeting capability for imaging and drug delivery to cancer cells are slowly replacing longstanding concepts. With this aim, posterior to synthesis of loaded PHA particles, surface modification was performed via hydrophobic interaction between particle surface and growing PHA chain from PhaC enzyme fusion with RGD that stabilized core-shell structure.31 However, little attention was placed on endotoxin removal and scaffold performance \textit{in vivo}. Alternatively, the PHA micelles synthesis was performed \textit{in vitro} by mixing PhaC-RGD and 3HB-CoA and therefore avoiding the incorporation of endotoxins.66

Bacterial polyester inclusions have been also engineered to display fusion protein of PhaC and the components involved in immune response to the infectious agent and used as a vaccine delivery system.119 Remarkably, particle-based carriers very closely mimic the physiochemical characteristics of natural pathogens, enhancing particle-displayed protein delivery to the immune system.114-116 However, very few \textit{in vivo} studies address essential issue of immunogenicity of soluble and PHA granule bound GAPs, considering that the main objective when using biomaterials and nanocarriers is to generate the most appropriate beneficial cellular or tissue response without eliciting any undesirable local or systemic effects in the recipient of the therapy. As the immune response and repair functions in the body are exceptionally complex, the biocompatibility of a material should not be described in relation to a single cell type or tissue. Nevertheless, it is essential to consider \textit{in vitro} and \textit{in vivo} cellular behavior for further comprehensive biocompatibility evaluation of biopolymers.

Several studies report no toxic nor pyrogenic effect of wild type or functionalized non endotoxin free PHA beads in mice,19 which suggests that due to the profound differences between mice and human immune systems another animal model should
be considered for these type of studies.117 Given the breadth of these functional differences, the discrepancies surely limit the usefulness of mouse models in mentioned studies and as such should be taken into account when choosing preclinical animal models.118 The results of the study comparing immune response of PHA-beads for vaccine application produced in \textit{L. lactis} and \textit{E. coli} support this hypothesis since no higher inflammation was spotted for \textit{E. coli} produced particles.26,29 However, this might be due to the PAMPs, present in both Gram-positive and Gram-negative bacteria that induce similar immune reaction. In addition, overall impact of functionalized PHA nanobeads on eukaryotic organism including levels of ketone bodies and other possible secondary effects are unknown. In vivo tracking of PHA nanocarriers might give insight into environmentally-triggered structural changes of nanoparticles and provide additional information about their localization and pathway.

PHA in mammalian cells

In a very different context, complexed PHAs (cPHAs) were discovered representing different type of PHA structures. Unlike bacterial PHAs that play a major role in carbon and energy storing, these cPHAs found in mammalian cells are assumed to be involved in regulation of various cell functions through modification of target molecules.119 Complex of cPHA with Ca2+ and inorganic polyphosphate is involved in formation of ion-conducting channels in mitochondrial membranes.120 Furthermore, cPHA can interact with membrane proteins through hydrophobic and perhaps covalent interactions.121,122 It has been suggested that in case of protein channels these interactions might play an important role in regulation of channel function and selectivity.125 Previous studies indicate that cPHA can be found in various subcellular compartments of the eukaryotic organisms124 as well as associated with specific proteins.125,126 Although, these structures are still not profoundly explored and are in very early stage of investigation, they definitely offer great possibility for functionalization and exploitation. Additionally, they might give the critical piece of information on PHA metabolism, their uptake and pathway inside the eukaryotic cell essential when dealing with functionalized PHA nanobeads designed for biomedical application.

Bacterial polyesters and their synthetic competitors

Besides natural polyesters such as PHA, several synthetic polyesters have attracted considerable attention as materials for biomedical purposes due to their attractive properties (e.g., biocompatibility and biodegradability). Currently majority of synthetic polyesters systems used in medicine are based on poly(lactic acid) PLA, poly(glycolic acid) PGA and their copolymer poly(lactic-co-glycolic acid) PLGA. This is mainly due to their well described formulations and methods for production, as well as their low toxicity and immunogenicity. Even though such polyesters have been extensively used for resorbable sutures, bone implants, screws and others,127 only small number of commercially available products are designed for nanoparticle based drug delivery.128 Nevertheless, synthetic polyesters such as PLGA have been profoundly tested for this application (reviewed in128,129). Synthetic polyesters are considered promising candidates for development of the nanoparticle delivery systems to release, target, uptake, retain, activate and localize the drugs at the right time, place and dose.130 Although natural and synthetic polyesters share many common properties (e.g., biocompatibility and biodegradability), due to their specific characteristic one or the other might be more suitable dependently on the application. The main characteristic of synthetic and natural polyesters, significant for nanoparticle production and drug delivery systems are outlined in Table 3. Degradation of both, synthetic and natural polyesters, results in biologically compatible and metabolizable moieties. However, their degradation rates and patterns differ considerably. Thereby, synthetic polyesters are suitable for sustained release due to their slow degradation rates. Importantly, in the case of natural polyesters the drug release kinetics can be more easily controlled via conventionally engineering the PHA matrix parameters to reach desired degradation rates. For instance, scl-PHAs are crystalline and hydrophobic, but many pores are formed on the surface and the drugs are released quickly without any polymer degradation. Mcl-PHA copolymers on the other hand, have low melting point and low crystallinity, therefore they are more suitable for drug delivery.

PLGA found many applications in biomedical field, such as treatment of cancer, inflammation diseases, cerebral diseases, cardio-vascular disease as well as in regenerative medicine, infection treatment, vaccination and many others.128,133 They were also used for diagnostic purposes for magnetic resonance, cancer-targeted imaging136,137 and as ultrasound contrast agent.138 Similarly, the good performance of PHAs for variety of biomedical applications has been proven (Table 1). Nevertheless, the main advantage of synthetic PLGA over natural PHAs is its FDA approval as drug delivery platform and lower production costs. Currently, the only FDA approved PHA is poly(4-hydroxybutyrate) P(4HB) for suture application, which might open the possibility for other PHAs to be tested and enter the investigations for FDA approval. This would significantly influence the development of PHA based drug delivery systems and enhance their application.

At present, due to its large availability on the market and its relatively low price, PLA shows one of the highest potential among polyesters, particularly for packaging and medical applications. For instance, Cargill has developed processes that use corn and other feedstock to produce different PLA grades (NatureWorks).139 In this company, the actual production is estimated to be 140,000 tons/year. Presently, it is the highest and worldwide production of biodegradable polyester. Its price is lower than \(2\ \text{€/kg} \).140 Although, the cost of production of PHAs is still quite high (3-5 \(\text{€/kg} \)), current advances in fermentation, extraction and purification technology as well as the development of superior bacterial strains are likely to lower the price of PHAs, close to that of other biodegradable polymers such as poly lactide and aliphatic polyesters.141
Table 3
Comparison of synthetic and natural polyesters production, processing, properties and application.

Production and processing	Synthetic polyesters	Bacterial polyesters (PHA)	Ref.
Bio-production of LA and chemical synthesis of PLA, PLGA	In vivo functionalization; One-step production of active agent and carrier, no need to produce, purify and conjugate active agent	Completely biosynthesized	4,96,131
No possibility of in vivo production and functionalization	Similar to bioprocesses for PHA production; Certain difficulties to scale-up		26,54,131
Use of harsh chemicals for production	Production from renewable sources		4,132
Difficulty to scale-up	Similar to bioprocesses for PHA production; Certain difficulties to scale-up		132,133
Production cost comparable with conventional plastics like PET	High cost of production; at least twice that of PLA		4,131
High risk due to flammable and toxic solvents	Low risk level		132
Production completed within days	Production duration 1-2 weeks		132
Endotoxin contamination less probable due to synthetic origin	Endotoxins can be efficiently removed; Use of Gram+ strains allows endotoxin free production		20
Properties			
Lower number of copolymers that can be produced; Only D- and L-lactic acids (LA)	More than 150 monomeric building blocks for polymer design		4,131
Approved by FDA and European Medicine Agency as drug delivery system	Not approved by FDA as drug delivery system		131,133,3
Low drug loading	No limitations regarding drug loading		32,131,133
Protection of drug from degradation	Protection of drug from degradation		133,13,134
Biodegradable, biocompatible, low cytotoxicity	Biodegradable, biocompatible, low cytotoxicity		30,32,96,3
Material properties poor, could be adjusted by regulating D- and L-LA ratios	Good thermomechanical properties from brittle, flexible to elastic, fully controllable, easy processability		4,30,96,135
Degradation rate can be controlled	Degradation rate can be controlled		130,3
Drug delivery kinetics can be controlled	Drug delivery kinetics can be controlled		32,130
Easy particle size control	Size of in vitro produced particles might be controlled, in vivo production limits control over particle size		30,32,34,134
Application			
Wind variety of biomedical applications	Applicable to a range of diseases		26,133
Lowering pH at the site of implantation that might lead to sterile sepsis	No detected side effect of PHA degradation		130,131
Best chance for clinical application due to FDA approval. Packaging, printing, coating, yet limited by Tg of 65-75 °C	Almost all areas of conventional plastic industry, limited by current higher cost and availability		4,20,131,134

Conclusions

Engineering biomaterial nanobeads has attracted much attention of the research community. Ongoing efforts to push the boundaries are reflected in the design of wide range of nanostructured bacterial materials for innovative medicines. Apart from PHA, biologically produced nanoparticles are highly diverse and omnipresent in prokaryotic (magnetosomes, storage particles, etc.), but also in eukaryotic (e.g., exosomes, lipoproteins, etc.) systems giving the ground to the further development of bionanotechnology. Smart PHA nanoparticles described in this review provide grounds on how these bacterial polymers, traditionally considered for industrial or conventional clinical applications, are progressively entering the most innovative biomedical fields as promising and highly flexible materials. The fact that PHA can be produced from inexpensive waste carbon sources enhanced commercial interest in these polymers. On the other hand, interest in functionalized PHA nanobead technology has been hampered by existing legislation in terms of endotoxin concentration allowed for biomedical application. Importantly, these technical hurdles were successfully surmounted following in vitro approach or using certain Gram-positive strains for in vivo functionalized bead assembly. Nevertheless, up-to-date PHAs are produced on the large-scale exclusively using Gram-negative bacteria. For simplicity and cost control the goal is to adapt the approach to a system in which maximal covering of PHA granule surface with recombinant protein is achieved. Different module swapping strategies and fine tuning were proven effective to reach this goal. To meet the challenges new tendencies suggest multi-functionality. The concept behind multi-functional beads would allow the design of variety of biomedical systems with unique advantage of adaptability and subsequently responding to current trends of biomedicine. PHA nanoparticles allow multifunctional tuning due to the possibility of the use of variety of GAPs, as well as their both N- and C-terminal domains, to immobilize diverse proteins simultaneously. Nevertheless, many nanotoxicological tests on their safety have to be performed before they can overtake the current stage of synthetic polyesters. Aside from FDA approval for biomedical applications, the production costs should be reduced.
The big challenges that PHA industry has to overcome to lead to PHA nanobeads successfully commercialization are: i) reduction of production costs; ii) construction of functional PHA production strains to precisely control the structure of PHA molecules increasing the consistency of structure and properties to reach the level of competitor synthetic polymers; iii) reach the simplicity of synthetic polymer processing; iv) use of alternative renewable sources for production to avoid use of expensive glucose; v) development of high value added applications.

References

1. Rodríguez-Carmona E, Villaverde A. Nanostructured bacterial materials for innovative medicines. Trends Microbiol 2010;18:423-30.

2. Draper JL, Rehm BH. Engineering bacteria to manufacture functionalized polyester beads. Bioengineered 2012;3:203-8.

3. Panay J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 2003;55:329-47.

4. Chen GQ. A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chem Soc Rev 2009;38:2434-46.

5. TORTAJADA M, DA SILVA LF, PRIETO MA. Second-generation functionalized medium-chain-length polyhydroxyalkanoates: the gateway to high-value bioplastic applications. Int Microbiol 2013;16:1-15.

6. Dinjaski N, Fernández-Gutiérrez M, Selvam S, Parra-Ruiz FJ, Lehman SM, San Román J, et al. PHACOS, a functionalized bacterial polymer with bactericidal activity against methicillin-resistant S. aureus. Biomaterials 2014;35:14-24.

7. Molds C, García P, García JL, Prieto MA. In vivo immobilization of fusion proteins on bioplastics by the novel tag BioF. Appl Environ Microbiol 2004;70:3205-12.

8. Dinjaski N, Prieto MA. Swapping of phasin modules to optimize the in vivo immobilization of proteins to medium-chain-length polyhydroxyalkanoate granules in Pseudomonas putida. Biomacromolecules 2013;14:3285-93.

9. Galán B, Dinjaski N, Maestro B, de Eugenio LI, Escapa IF, Sanz JM, et al. Nucleoid-associated PhaF phasin drives intracellular location and segregation of polyhydroxyalkanoate granules in Pseudomonas putida KT2442. Mol Microbiol 2011;79:402-18.

10. Jendrossek D, Pfeiffer D. New insights in formation of polyhydroxyalkanoate (PHA) granules (carbonosomes) and novel functions of poly(3-hydroxybutyrate) (PHB). Environ Microbiol 2013, http://dx.doi.org/10.1111/1462-2920.12356.

11. Stanley S. Biological nanoparticles and their influence on organisms. Curr Opin Biotechnol 2014;28:69-74.

12. Jendrossek D. Polyhydroxyalkanoate granules are complex subcellular organelles (carbonosomes) and novel functions of poly(3-hydroxybutyrate) (PHB). Environ Microbiol 2013, http://dx.doi.org/10.1111/1462-2920.12356.

13. Lewis JG, Rehm BHJ. ZZ polyester beads: an efficient and simple method for purifying IgG from mouse hybridoma supernatants. Immunol Methods 2009;346:71-4.

14. Peters V, Rehm BH. In vivo enzyme immobilization by use of engineered polyhydroxyalkanoate synthase. Appl Environ Microbiol 2006;72:1777-83.

15. Chen SY, Chien YW, Chao YP. In vivo immobilization of d-hydoantoine in Escherichia coli. J Biosci Bioeng 2014;118:78-81.

16. Moldes C, Farínos GP, de Eugenio LI, García P, García JL, Ortego F, et al. New tool for spreading proteins to the environment: Cry1Ab toxin immobilized to bioplastics. Appl Microbiol Biotechnol 2006;72:88-93.

17. Blatchford PA, Scott C, French N, Rehm BH. Immobilization of organophosphohydrolase OpaD from Agrobacterium radiobacter by overproduction at the surface of polyester inclusions inside engineered Escherichia coli. Biotechnol Bioeng 2012;109:1101-8.

18. Bäckström BT, Brockelbank JA, Rehm BHA. Recombinant Escherichia coli produces tailor-made biopolyester granules for applications in fluorescence activated cell sorting: functional display of the mouse interleukin-2 and myelin oligodendrocyte glycoprotein. BMC Biotechnol 2007;7:3.

19. Parlane NA, Wedlock DN, Buddle BM, Rehm BH. Bacterial polyester inclusions engineered to display vaccine candidate antigens for use as a novel class of safe and efficient vaccine delivery agents. Appl Environ Microbiol 2009;75:7739-44.

20. Grage K, Jahns AC, Parlane N, Palanisamy R, Raisah IA, Atwood JA, et al. Bacterial polyhydroxyalkanoate granules: biogenesis, structure, and potential use as nano-micro-beads in biotechnological and biomedical applications. Biomacromolecules 2009;10:660-9.

21. Atwood JA, Rehm BH. Protein engineering towards biotechnological production of bifunctional polyester beads. Biotechnol Lett 2009;31:131-7.

22. Lee SJ, Park JP, Park TJ, Lee SY, Lee S, Park JK. Selective immobilization of fusion proteins on poly(hydroxyalkanoate) microbeads. Anal Chem 2005;77:5755-9.

23. Chen S, Parlane NA, Lee J, Wedlock DN, Buddle BM, Rehm BH. New skin test for detection of bovine tuberculosis on the basis of antigen-displaying polyester inclusions produced by recombinant Escherichia coli. Appl Environ Microbiol 2014;80:2526-35.

24. Grage K, Rehm BH. In vivo production of scFv-displaying biopolymer beads using a self-assembly-promoting fusion partner. Bioconjug Chem 2008;19:254-62.

25. Mifune J, Grage K, Rehm BH. Production of functionalized biopolyester granules by recombinant Lactococcus lactis. Appl Environ Microbiol 2009;75:4668-75.

26. Parlane NA, Rehm BH, Wedlock DN, Buddle BM. Novel particulate vaccines utilizing polyester nanoparticles (bio-beads) for protection against M. bovis infection-A review. Vet Immunol Immunopathol 2014;158:8-13.

27. Parlane NA, Grage K, Mifune J, Basaraba RJ, Wedlock DN, Rehm BH, et al. Vaccines displaying mycobacterial proteins on biopolyester beads stimulate cellular immunity and induce protection against tuberculosis. Clin Vaccine Immunol 2012;19:37-44.

28. Rice-Ficht AC, Arenas-Ganboa AM, Kahl-McDonagh MM, Ficht TA. Polymeric particles in vaccine delivery. Curr Opin Microbiol 2010;13:106-12.

29. Parlane NA, Grage K, Lee JW, Buddle BM, Denis M, Rehm BH. Production of a particulate hepatitis C vaccine candidate by an engineered Lactococcus lactis strain. Appl Environ Microbiol 2011;77:8516-22.

30. Yao YC, Zhan XY, Zhang J, Zou XH, Wang ZH, Xiong YC, et al. A specific drug targeting system based on polyhydroxyalkanoate granule binding protein PhaP fused with targeted cell ligands. Biomaterials 2008;29:4823-30.

31. Lee J, Jung SG, Park CS, Kim HY, Batt CA, Kim YR. Tumor-specific hybrid polyhydroxybutyrate nanoparticle: surface modification of nanoparticle by enzymatically synthesized functional block copolymer. Bioorg Med Chem Lett 2011;21:2941-4.

32. Xiong YC, Yao YC, Zhan XY, Chen GQ. Application of polyhydroxyalkanoate nanoparticles as intracellular sustained drug-release vectors. J Biomed Sci 2010;17:2-15.

33. Kassab AC, Xu K, Denkba EB, Dou Y, Zhao S, Pişkin E, Rifampicin carrying polyhydroxybutyrate microspheres as a potential chemoembolization agent. J Biomed Sci Polym Ed 2011:77:8516-22.

34. Yao YC, Zhan XY, Zhang J, Zou XH, Wang ZH, Xiong YC, et al. Tumor-specific hybrid polyhydroxybutyrate nanoparticle: surface modification of nanoparticle by enzymatically synthesized functional block copolymer. Bioorg Med Chem Lett 2011;21:2941-4.

35. Biessy MC, Valeriote F, Thies C. Fate and effect of CCNU-loaded chemo-resistant tumor vectors. J Biotechnol 2008;133:213-20.

36. Heathman TR, Webb WR, Han J, Dan Z, Chen GQ, Forsyth NR, et al. Controlled production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) nanoparticles for targeted and sustained drug delivery. J Pharm Sci 2014;103:2498-508.
37. Murueva AV, Shershneva AM, Shishatskaya EI, Volova TG. The use of polymeric microcarriers loaded with anti-inflammatory substances in the therapy of experimental skin wounds. Bull Exp Biol Med 2014;157:597-602.

38. Kiliçay E, Demirbilek M, Türk M, Güven E, Hazer B, Denkbas EB. Preparation and characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBBHHX) based nanoparticles for targeted cancer therapy. Eur J Pharm Sci 2011;44:310-20.

39. Dong CL, Webb WR, Peng Q, Tang JZ, Forsyth NR, Chen GQ, et al. Sustained PDGF-BB release from PHBBHHX loaded nanoparticles in 3D hydrogel/stem cell model. J Biomed Mater Res A 2014, http://dx.doi.org/10.1002/jbmr.35149.

40. Wu LP, Wang D, Parhamifar L, Hall A, Chen GQ, Moghimi SM. Poly(3-hydroxybutyrate-co-R-3-hydroxyhexanoate) nanoparticles with polyethyleneimine coat as simple, safe, and versatile vehicles for cell targeting: population characteristics, cell uptake, and intracellular trafficking. Adv Healthc Mater 2014;3:817-24.

41. Peters V, Rehm BH. In vivo monitoring of PHA granule formation using GFP-labeled PHA synthases. FEMS Microbiol Lett 2005;248:93-100.

42. Peters V, Becher D, Rehm BH. The inherent property of polyhydroxyalkanoate synthase to form spherical PHA granules at the cell poles: the core region is required for polar localization. J Biotechnol 2007;132:238-45.

43. Jahns AC, Haverkamp RG, Rehm BH. Multifunctional inorganic-binding beads self-assembled inside engineered bacteria. Biocatalyss Chem 2008;19:2072-80.

44. Jahns AC, Rehm BH. Tolerance of the Raistonia eutropha class I polyhydroxyalkanoate synthase for translational fusions to its C terminus reveals a new mode of functional display. Appl Environ Microbiol 2009;75:5461-6.

45. Brockelbank JA, Peters V, Rehm BH. Recombinant Escherichia coli strain produces a ZZ domain displaying biopolyester granules suitable for immunoglobulin G purification. Appl Environ Microbiol 2006;72:7394-7.

46. Peters V, Rehm BH. Protein engineering of streptavidin for in vivo assembly of streptavidin beads. J Biotechnol 2008;134:266-74.

47. Banki MR, Gerngross TU, Wood DW. Novel and economical purification of recombinant proteins: intein-mediated purification using in vivo polyhydroxybutyrate (PHB) matrix association. Protein Sci 2005;14:1387-95.

48. Barnard GC, McCoold JD, Wood DW, Gerngross TU. Integrated recombinant protein expression and purification platform based on Raistonia eutropha. Appl Environ Microbiol 2005;71:5735-42.

49. Wang Z, Wu H, Chen J, Zhang J, Yao Y, Chen GQ. A novel self-cleaving phasin tag for purification of recombinant proteins based on hydrophobic polyhydroxyalkanoate nanoparticles. Lab Chip 2008;8:1957-62.

50. Rasiah IA, Rehm BH. One-step production of immobilized alpha-amylase in recombinant Escherichia coli. Appl Environ Microbiol 2009;75:2012-6.

51. Mullaney JA, Rehm BH. Design of a single-chain multi-enzyme fusion protein establishing the polyhydroxybutyrate biosynthesis pathway. J Biotechnol 2010;147:31-6.

52. Li Y. Self-cleaving fusion tags for recombinant protein production. Biotechnol Lett 2011;33:869-81.

53. Leong YK, Show PL, Ooi CW, Ling TC, Lan JC. Current trends in polyhydroxyalkanoates (PHAs) biosynthesis: insights from the recombinant Escherichia coli. J Biotechnol 2014;180:52-65.

54. Rehm BH. Biogenesis of microbial polyhydroxyalkanoate granules: a platform technology for the production of tailor-made biopolymers. Curr Issues Mol Biol 2007;9:41-62.

55. Furrer P, Panke S, Zinn M. Efficient recovery of low endotoxin medium-chain-length poly(3-hydroxyalkanoate) from bacterial biomass. J Microbiol Methods 2007;69:206-13.

56. Rehm BH. Bacterial polymers: biosynthesis, modifications and applications. Nat Rev Microbiol 2010;8:578-92.

57. Nogales J, Palsson BO, Thiele I. A genome-scale metabolic reconstruction of Pseudomonas putida KT2440: iJN746 as a cell factory. BMC Syst Biol 2008;2:79, http://dx.doi.org/10.1186/1752-0509-2-79.

58. Maestro B, Galán B, Alfonso C, Rivas G, Prieto MA, Sanz JM. A new family of intrinsically disordered proteins: structural characterization of the major phasin PhaF from Pseudomonas putida KT2440. PLoS One 2013;8:e56904.

59. Ihssen J, Magnani D, Thöny-Meyer L, Ren Q. Use of extracellular medium chain length polyhydroxyalkanoate depolymerase for targeted binding of proteins to artificial poly(3-hydroxyoctanoate)-co-(3-hydroxyhexanoate) granules. Biomacromolecules 2009;10:1854-64.

60. Park TJ, Yoo SM, Keum KC, Lee SY. Microarray of DNA-protein complexes on poly-3-hydroxybutyrate surface for pathogen detection. Anal Bioanal Chem 2009;393:1639-47.

61. Muniasamy G, Pérez-Guevara F. Use of SNAREs for the immobilization of poly-3-hydroxyalkanoate polymerase type II of Pseudomonas putida CA-3 in secretory vesicles of Saccharomyces cerevisiae ATCC 9763. J Biotechnol 2014;172:77-9.

62. Hooks DO, Blatchford PA, Rehm BH. Bioengineering of bacterial polymer inclusions catalyzing the synthesis of N-acetylenuraminic acid. Appl Environ Microbiol 2013;79:3116-21.

63. McCoool GJ, Cannon MC. PhaC and PhaR are required for polyhydroxyalkanoic acid synsize activity in Bacillus megaterium. J Bacterial 2001;183:4235-43.

64. Molino NM, Wang SW. Caged protein nanoparticles for drug delivery. Curr Opin Biotechnol 2014;28:75-82.

65. Steinmann B, Christmann A, Heiseler T, Fritz J, Kolmar H. In vivo enzyme immobilization by inclusion body display. Appl Environ Microbiol 2010;76:5563-9.

66. Kim HN, Lee J, Kim HY, Kim YR. Enzymatic synthesis of a drug delivery system based on polyhydroxyalkanoate-protein block copolymer. Chem Commun (Camb) 2009;46:104-6.

67. Grage K, Peters V, Rehm BH. Recombinant protein production by in vivo polymer inclusion display. Appl Environ Microbiol 2011;77:6706-7.

68. Geng Y, Wang S, Qi Q. Expression of active recombinant human tissue-type plasminogen activator by using in vivo polyhydroxybutyrate granule display. Appl Environ Microbiol 2010;76:7226-30.

69. Chen GQ, Whang ZG. A method and kit for purification of recombinant proteins using self-cleaving protein intein; 2011 [PTC/CN2008/001066].

70. Kim DY, Kim HC, Kim SY, Rhe KH. Molecular characterization of extracellular medium-chain-length poly(3-hydroxyalkanoate) depolymerase genes from Pseudomonas alcaligenes strains. J Microbiol 2005;43:285-94.

71. Prieto MA, de Eugenio LI, Galán B, Luengo JM, Witholt B. Pseudomonas: a model system in biology. In: Ramos JL, Filloux A, editors. Pseudomonas, vol. 6. Springer; 2007.

72. Ouyang SP, Luo RC, Chen SS, Liu Q, Chung A, Wu Q, et al. Production of polyhydroxyalkanoates with high 3-hydroxydecanoate monomer content by fastB and fadA knockout mutant of Pseudomonas putida KT2442. Biomacromolecules 2007;8:2504-11.

73. Qi Q, Steinbüchel A, Rehm BH. Metabolic routing towards polyhydroxyalkanoic acid synthesis in recombinant Escherichia coli (fadR): inhibition of fatty acid beta-oxidation by acrylic acid. FEMS Microbiol Lett 1998;167:89-94.

74. Lu XY, Wu Q, Zhang WJ, Zhang G, Chen GQ. Molecular cloning of polyhydroxyalkanoate synthesis operon from Aeromonas hydrophila and its expression in Escherichia coli. Biotechnol Prog 2004;20:1332-6.

75. Tsuge T, Taguchi K, Seichi T, Doi Y. Molecular characterization and properties of (R)-specific enoyl-CoA hydratases from Pseudomonas aeruginosa: metabolic tools for synthesis of polyhydroxyalkanoates via fatty acid beta-oxidation. Int J Biol Macromol 2003;31:195-205.
89. Pfeiffer D, Jendrossek D. Interaction between poly(3-hydroxybutyrate) (PHB) synthase (PhaC1) from Pseudomonas aeruginosa in Escherichia coli results in poly(3-hydroxyalkanoate) synthesis. FEMS Microbiol Lett 1997;150:303-9.

90. Gasser B, Salóheimo M, Rinas U, Dragosits M, Rodríguez-Carmona E, Baumann K, et al. Protein folding and conformational stress in microbial cells producing recombinant proteins: a host comparative overview. Microb Cell Fact 2008;7:11.

91. Poblete-Castro I, Becker J, Dohnt K, dos Santos VM, Wittmann C. Industrial biotechnology of Pseudomonas putida and related species. Appl Microbiol Biotechnol 2012;93:2279-90.

92. Poblete-Castro I, Escapa IF, Jäger C, Puchalla J, Lam CM, Schomburg D, et al. The metabolic response of P. putida KT2442 producing high levels of poly(hydroxyalkanoate) under single- and multiple-nutrient-limited growth: highlights from a multi-level omics approach. Microb Cell Fact 2012;11:34, http://dx.doi.org/10.1186/1475-2859-11-34.

93. Poblete-Castro I, Binger D, Rodrigues A, Becker J, Martina D, dos Santos VA, Wittmann C. In-silico-driven metabolic engineering of Pseudomonas putida for enhanced production of poly-(3-hydroxyalkanoates). C Metab Eng 2013;15:113-23.

94. Follonier S, Escapa IF, Fonseca PM, Henes B, Panke S, Zinn M, et al. New insights on the reorganization of gene transcription in Pseudomonas putida KT2440 at elevated pressure. Microb Cell Fact 2013;12:30, http://dx.doi.org/10.1186/1475-2859-12-30.

95. Escapa IF, García JL, Bühler B, Blank LM, Prieto MA. The polyhydroxyalkanoate metabolism controls carbon and energy spillage in Pseudomonas putida. Environ Microbiol 2012;14:1049-63.

96. Silva-Rocha R, Martínez-García E, Ballo C, Chavarria M, Arce-Rodríguez A, de las Heras A, et al. The Standard European Vector Architecture (SEVA): a coherent platform for the analysis and deployment of complex prokaryotic phenotypes. Nucleic Acids Res 2013;41:D666-75.

97. Martínez V, García P, García JL, Prieto MA. Controlled autolysis facilitates the polyhydroxyalkanoate recovery in Pseudomonas putida KT2440. Microb Biotechnol 2011;4:533-47.

98. Rehm BH, Steinbüchel A. Biochemical and genetic analysis of PHA synthase. In: Mäder P, Steglich W, editors. PHA synthase. Int J Biol Macromol 1999;25:3-19.

99. Pfeiffer D, Wahl D, Jendrossek D. Identification of a multifunctional protein, PhaM, that determines number, surface to volume ratio, subcellular localization and distribution to daughter cells of poly(3-hydroxybutyrate), PHB, granules in Ralstonia eutrophora H16. Mol Microbiol 2011;82:936-51.

100. Pfeiffer D, Jendrossek D. PhaM is the physiological activator of poly(3-hydroxybutyrate) (PHB) synthase (PhaC1) in Ralstonia eutrophora. Appl Environ Microbiol 2014;80:555-63.

101. Stubble J, Tian J. Polyhydroxyalkanoate (PHA) hemoestasis: the role of PHA synthase. Nat Prod Rep 2003;20:445-57.

102. Pfeiffer D, Jendrossek D. Interaction between poly(3-hydroxybutyrate) granule-associated proteins as revealed by two-hybrid analysis and identification of a new pha in Ralstonia eutrophora H16. Microbiology 2011;157:2795-807.

103. Dennis D, Sein V, Martínez E, Augustine B. PhaP involved in the formation of a network on the surface of polyhydroxyalkanoate inclusions in Cupriavidus necator H16. J Bacteriology 2008;190:555-63.

104. Prieto MA, Buehler B, Jung K, Witholt B, Kessler B. PhaF, a polyhydroxyalkanoate-granule-associated protein of Pseudomonas oleovorans GPO1 involved in the regulatory expression system for pha genes. J Bacteriology 1999;181:858-68.

105. Wahl A, Schuth N, Pfeiffer D, Nussberger S, Jendrossek D. PHB granules are attached to the nucleoid via PhaM in Ralstonia eutrophora. BMC Microbiol 2012;12:262.
113. Dong Y, Li P, Chen CB, Wang ZH, Ma P, Chen GQ. The improvement of fibroblast growth on hydrophobic biopolymers by coating with poly(3-hydroxyalkanoate) granule binding protein PhaP fused with cell adhesion motif RGD. *Biomaterials* 2010;31:8921-30.

114. Rosenthal JA, Chen L, Baker JL, Putnam D, DeLisa MP. Pathogen-like particles: biomimetic vaccine carriers engineered at the nanoscale. *Curr Opin Biotechnol* 2014;28:51-8.

115. Newman KD, Samuel J, Kwon G. Ovalbumin peptide encapsulated in poly(d,l lactate-co-glycolic acid) microspheres is capable of inducing a T helper type 1 immune response. *J Control Release* 1998;54:49-59.

116. Singh M, Chakrapani A, O’Hagan D. Nanoparticles and microparticles as vaccine-delivery systems. *Expert Rev Vaccines* 2007;6:797-808.

117. Mestas J, Hughes CCW. Of mice and not men: differences between mouse and human immunology. *J Immunol* 2004;172:2731-8.

118. Roep BO, Atkinson M. Animal models have little to teach us about type 1 diabetes: 1. In support of this proposal. *Diabetologia* 2004;47:1650-6.

119. Elustondo P, Zakharian E, Pavlov E. Identification of the polyhydroxybutyrate granules in mammalian cultured cells. *Chem Biodivers* 2012;9:2597-604.

120. Pavlov E, Zakharian E, Bladen C, Diao CT, Grimbly C, Reusch RN, et al. Low molecular weight complexed poly(3-hydroxybutyrate) granules in mammalian cultured cells. *Chem Microbiol* 1995;41:50-4.

121. Reusch RN. Posttranslational modification of E. coli histone-like protein H-NS and bovine histones by short-chain poly-(R)-3-hydroxybutyrate (cPHB). *FEBS Lett* 2002;527:319-22.

122. Negoda A, Xian M, Reusch RN. Insight into the selectivity and gating functions of Streptomyces lividans KcsA. *Proc Natl Acad Sci U S A* 2007;104:4342-6.

123. Reusch RN. Poly-beta-hydroxybutyrate/calcium polyphosphate complexes in eukaryotic membranes. *Proc Soc Exp Biol Med* 1989;191:377-81.

124. Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug delivery devices. *J Control Release* 2001;70:1-20.

125. Park H, Yang J, Seo S, Kim K, Suh J, Kim D, et al. Multifunctional nanoparticles for photothermally controlled drug delivery and magnetic resonance imaging enhancement. *Small* 2008;4:192-6.

126. Kim J, Lee EJ, Lee SH, Yu JH, Lee JH, Park TG, et al. Designed fabrication of a multifunctional polymer nanomedical platform for simultaneous cancer-targeted imaging and magnetically guided drug delivery. *Adv Mater* 2008;20:478-83.

127. Gomes ME, Reis RL. Biodegradable polymers and composites in biomedical applications: from catgut to tissue engineering. Part 1. Available systems and their properties. *Int Mater Rev* 2004;49:261-73.

128. Bala I, Harirhan S, Kumar MN. PLGA nanoparticles in drug delivery: the state of the art. *Crit Rev Ther Drug Carrier Syst* 2004;21:387-422.

129. Moharanj VJ, Chen Y. Nanoparticles—a review. *Trop J Pharm Res* 2006;5:561-73.

130. Hazer DB, Kılçay E, Hazer B. Poly(3-hydroxyalkanoate): diversification and biomedical applications. *A state of the art review. Mater Sci Eng C* 2012;32:637-47.

131. Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V. PLGA-based nanoparticles: an overview of biomedical applications. *Curr Opin Biotechnol* 2014;30C:59-65.

132. Akaraonye E, Keshavarz T, Roy I. Polyhydroxyalkanoates: biodegradable polymers with a range of applications. *J Chem Technol Biotechnol* 2007;82:233-47.

133. Park H, Yang J, Seo S, Kim K, Suh J, Kim D, et al. Multifunctional nanoparticles for photothermally controlled drug delivery and magnetic resonance imaging enhancement. *Small* 2008;4:192-6.

134. Kim J, Lee EJ, Lee SH, Yu JH, Lee JH, Park TG, et al. Designed fabrication of a multifunctional polymer nanomedical platform for simultaneous cancer-targeted imaging and magnetically guided drug delivery. *Adv Mater* 2008;20:478-83.

135. Liu JM, Wang X, Marin-Muller C, Wang H, Lin PH, Yao Q, et al. Current advances in research and clinical applications of PLGA-based nanotechnology. *Expert Rev Mol Diagn* 2009;9:325-41.

136. Seebach D, Brunner A, Bürger HM, Schneider J, Reusch RN. Isolation and 1H-NMR spectroscopic identification of poly(3-hydroxybutyanoate) from prokaryotic and eukaryotic organisms. Determination of the absolute configuration (R) of the monomeric unit 3-hydroxybutanoic acid from Escherichia coli and spinach. *Eur J Biochem* 1994;224:317-28.

137. Zakharian E, Thyagarajan B, French RJ, Pavlov E, Rohacs T. Inorganic polyphosphate modulates TRPM8 channels. *PLoS One* 2009;4(4):e5404, http://dx.doi.org/10.1371/journal.pone.0005404.