Diamagnetic susceptibility of single micro-particles detected by free translational motions in field gradient

To cite this article: K Hisayoshi et al 2009 J. Phys.: Conf. Ser. 156 012021

View the article online for updates and enhancements.

Related content
- Quantum Chemistry: Symmetry and degeneracy
 A J Thakkar
- Attempt to improve sensitivity in measuring diamagnetic anisotropy by increasing duration of rotational oscillation in microgravity
 C Uyeda, S Kano, K Hisayoshi et al.

Recent citations
- Magnetization of a Single Carbonaceous Grain Obtained by Field-Induced Acceleration
 Keiji Hisayoshi and Chiaki Uyeda
- Magnetization measurement of a solid CO$_2$ grain based on its field-induced translation under microgravity conditions
 Wakana Yamaguchi et al
- Magnetic Ejection and Oscillation of Diamagnetic Crystals Observed in Microgravity
 Chiaki Uyeda et al
Diamagnetic Susceptibility of Single Micro-Particles Detected by Free Translational Motions in Field Gradient

K Hisayoshi, S Kano and C Uyeda
Institute of Earth and Space Science, Graduate School of Science, Osaka University, Osaka, Japan
E-mail: hisayoshi@ess.sci.osaka-u.ac.jp

Abstract. Free translational motion of a solid particle from magnetic-field centre, caused by a repulsive force due to field gradient dB/dx, was observed in microgravity μG with negligible effect of viscous drag. The translation was visually obtained for Rochelle salt and silicon carbide and corundum. Acceleration a was obtained for corundum by use of a high vision camera, and it was experimentally confirmed that diamagnetic susceptibility χ_{DIA} per unit mass of the particle was described as proportional to a. By using this method, χ_{DIA} of small particle becomes measurable since the new method does not require a sample holder.

1. Introduction
Necessity of detecting magnetic properties of a single particle has increased recently, in connection with the growing interest on nano-sized materials [1]. Diamagnetic susceptibility χ_{DIA} of small particles were detected recently by introducing large field gradient [1, 2]. Magnetic levitation of diamagnetic materials caused by field-gradient force was realized in strong field above 10 Tesla [3-6]. The above-mentioned effects were all observed in normal gravity in a presence of viscous drag. Field gradient force has been conventionally used in separating particles that possess ferromagnetic or paramagnetic susceptibility.

Free translational motion has been recently observed for a diamagnetic sample released in microgravity μG [7]. The sample was ejected from field center the motion in a course of observing field-induced rotational-oscillation of mm-sized sample; diamagnetic anisotropy $\Delta\chi_{\text{DIA}}$ of mm-sized sample was obtained with high sensitivity from period of the above oscillation. It is expected that χ_{DIA} of a small particle can be obtained from acceleration a of the above translation, provided that spatial field-distribution is known. In the present report, possibility of detecting χ_{DIA} on micron-sized particles is discussed based on observed results on mm-sized samples. χ_{DIA} and $\Delta\chi_{\text{DIA}}$ values are not obtained as yet for most of the inorganic materials. It is important to compile these values, since they are basic parameters that characterize various magnetic field effects that are recently reported on diamagnetic materials [8].

2. Experimental
Motion of translation from field center was observed for mm-sized crystals of Rochelle salt, silicon carbide and corundum that were released in microgravity. An apparatus that was newly developed to observe translation is shown in Fig.1, which is based on a system previously developed to measure magnetic anisotropy [7]. The system was composed of a permanent dipole magnet (NEOMAX X-
1466) which can produce a homogeneous field of $B = 1.18T$ in a spherical region of $1.5 \times 10^{-2} \text{ m}$ in diameter at center of pole pieces. Radial direction of dipole is defined hereafter as x-axis, whereas an axial direction (direction between the poles) is defined as z-axis; field centre is identical to origin. Spatial distribution of field intensity along x-axis was measured prior to transition experiment. Field intensity reduces monotonously along $\pm x$-axis.

![Figure 1. Schematic view of apparatus developed to observe motion of sample caused by field gradient force. Left image (a) is front view and right image (b) is side view.](image)

Crystal samples were placed on a mobile sample stage, at a position just out side above-mentioned homogeneous field along x-axis ($x = 1.73 \text{ cm}$) as described in figure 1. Experiment was performed in a reduced pressure of 10 Pa, in order to exclude viscous drag of the gas. The apparatus was loaded on a drop capsule at a μG facility; the μG experiments were performed at two facilities, namely at Micro Gravity Laboratory of Japan (MGLAB, Toki, Gifu, Japan) and at National Institute of Advanced Industrial Science and Technology, AIST, (Sapporo, Hokkaido, Japan). Duration of μG at MGLAB was 4.5 s with remaining gravitational acceleration of $2.0 \times 10^{-3} \text{ Gal}$ [9]. At AIST, the duration was 1.3 s with remaining gravitational acceleration of $5.0 \times 10^{-3} \text{ Gal}$ [10]. The stage was removed from its initial position with high velocity ($\sim 0.4 \text{ m/s}$) shortly after achievement of microgravity ($\sim 5 \times 10^{-3} \text{ s}$) following a procedure used in previous studies [7, 11]; this procedure was effective to minimize initial velocity of sample. Measured samples were synthetic single-crystals and their sizes were about $2x2x2\text{ mm}^3$. Concentration of magnetic ion was below 1 ppm for all samples according to magnetic and chemical analyses. Increase of χ value caused by paramagnetic susceptibility is below 10^8 emu/g when 1 ppm of magnetic ion is contained in a diamagnetic oxide. The translational motion of sample was visually observed using a video camera from a direction of x-axis and z-axis. In case of corundum, value of acceleration a was analyzed with static images transformed from moving images recorded by hi-vision video camera. The spatial resolution of static images was 0.08 mm and the time resolution between static images was 1/29.97 sec. The above resolution gives the upper limit of χ_{DIA} sensitivity, since χ_{DIA} is dependent on value of a obtained from the static images.

3. Results and Discussion

Examples of observed translations are shown in figure 2 for the three samples. It is seen that diamagnetic samples are accelerated by field gradient as expected. In a free space with negligibly
small effects of gravity and viscosity, acceleration a is described as $ma = \text{grad} \left(\frac{1}{2} m \chi_{\text{DIA}} B^2 \right)$ for diamagnetic particle of mass m. Accordingly χ_{DIA} is described as

$$a = \chi_{\text{DIA}} \left(\frac{dB}{dx} \right) B \tag{1}$$

χ_{DIA} of the particle is obtained by inserting measured values of a, B and dB/dx in the above equation.

Efficiency of the above method to obtain χ_{DIA} was quantitatively examined using numerical relationship between a and $(dB/dx)B$ observed for corundum. χ_{DIA} was obtained from gradient of a regression line of eq.(1) based on 11 sets of $[a, (dB/dx)B]$ data as described in figure 3. Numerical values of a, B and dB/dx used in the calculation are listed in Table 1. Correlation coefficient of between experimental data and regression lines using least-squares method was 9.7, which indicate that the observed translation is consistent with eq.(1) for corundum. Obtained χ value is $(-2.64 \pm 0.03) \times 10^{-7}$ emu/g which is rather small compared to a published value of corundum which is -3.63×10^{-7} emu/g; the deviation between measured and published χ_{DIA} may derive from a paramagnetic impurity grain that is accidentally attached to crystal during sample setting. In order to examine the generality of the relationship described in eq.(1), the above-mentioned experiment should be performed on many diamagnetic materials with different χ values, and in different field distributions. According to quantitative evaluations based on eq.(1) as well as on size of experimental area, it is expected that the new method is capable of detecting χ_{DIA} between 1×10^{-7} and 1×10^{-5} emu/g in microgravity with

Figure 2. Visual image of translational motion of (a) Rochelle salt, (b) silicon carbide and (c) corundum. The images are arranged in the order time from left to right; time intervals between the images are (a) 0.167sec, (b) and (c) 0.334sec. Length of scale bar is 1cm in (b) and (c). Magnetic field is applied in the vertical direction in all the figures. Upper side of the images is $B = 0$. High vision images were recorded only for corundum; acceleration a is obtained from these images.
Figure 3. Relationship between acceleration a and $(dB/dx)B$ for corundum. Error bar of acceleration derives from measurement of position.

Table 1. Numerical data measured for corundum.

position a (cm)	acceleration a (cm/s2)	B (G)	(dB/dx) (G/cm)	χ_{DIA} (x10$^{-7}$ emu/g)
2.19	3.4	11068.2	-1182	-2.63
2.22	3.9	11026.3	-1339	-2.66
2.31	4.2	10888.8	-1464	-2.64
2.35	4.5	10835.6	-1702	-2.44
2.40	4.9	10742.4	-1703	-2.69
2.46	5.3	10632.7	-2003	-2.47
2.49	6.0	10554.4	-2003	-2.86
2.57	6.1	10392.5	-2301	-2.55
2.63	6.7	10237.8	-2473	-2.66
2.71	7.3	10027.9	-2684	-2.71
2.78	7.9	9818.5	-2975	-2.69

a Distance from the centre of magnetic field along x-axis (see text).
duration of 4.5s. According to a Pascal rule, χ_{DIA} of a material is approximately equivalent to sum of diamagnetic susceptibility numerically assigned to individual atoms. An approximate χ_{DIA} value of unmeasured material is predicted from this rule; most of the calculated values are within the above-mentioned range. Sensitivity of susceptibility measurement in a conventional SQUID method is 10^{-8} emu. In contrast, this new method has sensitivity of 10^{-10} emu.

Lower limit of spatial resolution is improved to a level of an optical microscope for observing the above-mentioned translation. Hence χ_{DIA} becomes measurable on micron-sized sample. According to preliminary experiments in μg, a diamagnetic sample translate along a rigid pass having minimum magnetic potential. Hence motions of particle may be observed by a microscope with shallow focus depth. Field induced translational motion of micron-sized particle dispersed in fluid has been observed by an optical microscope. [1].

4. Conclusion
Detection of χ_{DIA} becomes possible on micron-sized sample by observing acceleration of free translation in field gradient as described in eq.(1). This is because the new method is free of a sample holder, and the observed motion is caused only by magnetic force; conventional magnetization measurements in normal gravity are generally prevented by background signal of sample holder when size of sample is smaller than 1mm in diameter.

References
[1] Suwa M and Watarai H 2002 Anal. Chem 74 5027-5032
[2] Tanimoto Y, Fujiwara M, Sueda M, Inoue K and Akita M 2005 Japan. J. Appl. Phys. 44 6801-6803
[3] Brant E H 1989 Science 243 349-355
[4] Beaugnon E and Tournier R 1991 Nature 349 470
[5] Berry M V and Geim A K 1997 Eur. J. Phys. 18 307-313
[6] Kitamura N, Makihara M, Sato T, Hamai M, Mogi I, Awaji S, Watanabe K, Motokawa M 2001 J. Non-Crystalline Solids 293-295 624-629
[7] Uyeda C, Mamiya M, Takashima R, Abe T, Nagai H and Okutani T 2006 Japan. J. Appl. Phys. 45 L124-127
[8] Various papers appering in Proc. Int. Symp. New Magneto-Sci. Tsukuba 1999 Jpn. Sci. and Tech. Corp., NIMS
[9] Iwakami T 2005 Proc. 7th Drop Tower Days (Berlin) p 137
[10] Okutani T, Minagawa H, Nagai H, Nakata Y, Ito Y, Tsurue T and Ikezawa K 1999 Ceram. Eng. Sci. Proc 20 215
[11] Uyeda C, Tanaka K and Takashima R 2003 Japan. J. Appl. Phys. 42 L1226