Implementing time-domain 1H-Nuclear Magnetic Resonance relaxometry to investigate recovery and stability of vegetative oil in bioenergy crops following feedstock preprocessing

Shraddha Maitra1, Bruce Dien2, Stephen P. Long3 and Vijay Singh1*

1Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA

2Bioenergy Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, Peoria, IL 61604, USA

3Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

*Corresponding author

Email: vsingh@illinois.edu

Abstract

Background: The bioenergy crops energycane, miscanthus and, sorghum are being genetically modified using state of the art synthetic biotechnology techniques to accumulate energy-rich molecules such as triacylglycerides (TAGs) in their vegetative cells to enhance their utility for biofuel production. Typically, measuring and analyzing vegetative lipid contents at each step of feedstock preprocessing requires tedious sample preparation and extraction with an organic solvent. In the present study, proton nuclear magnetic resonance (1H-NMR) spectroscopy was successfully adapted for non-invasive and rapid quantification of vegetative oil in untreated and pretreated cellulosic biomass.
Results: We show that the establishment of a precise and specific NMR calibration for each biomass with a distinct oil composition is key for accurate quantification of vegetative oil. The values obtained with 1H-NMR were validated using a conventional solvent extraction method and cross-referenced values were within 10% deviation. 1H-NMR relaxation time distribution provided insight into the proton environment associated with the vegetative oil in the biomass. $T1T2$ correlation spectra resolved two distinct populations of proton molecules based on their ‘molecular tumbling’ rate. The population of protons with short and long relaxation times was characterized as bound and free oil in the biomass sample, respectively. Besides, we show that biomass pretreated with two-staged hydrothermal and mechanical pretreatment can be directly used for NMR analysis unlike dilute acid and alkaline pretreated biomass which needs an additional step for neutralization of sample.

Conclusion: Time-domain 1H-NMR provides a chemical-free and one-step analysis of in situ vegetative oil in transgenic cellulosic biomass. $T1T2$ correlation spectra facilitated the resolution of the influence of various pretreatment procedures typical of cellulosic bioprocessing on the chemical composition of molecular and local 1H population in each sample, hence yield information on the stability and oil recovery subsequent to each step of feedstock preprocessing.

Keywords

Time-domain 1H-Nuclear Magnetic Resonance (1H-NMR), $T1T2$ relaxation time, Biofuel, Biodiesel, Vegetative oil, Non-invasive quantification, Bioenergy crops, Energycane, pretreatment
Background

Bioenergy crops like energycane, sugarcane, miscanthus, and sorghum have immense potential for biofuel production. These bioenergy crops primarily produce structural carbohydrates that can be extracted as sugars and further bio-processed to biofuels (especially bioethanol) and value-added bio-products. However, biodiesel production in the U.S.A. is predominantly dependent on oil seeds like soybean and corn, which are also marketed as food and feed. Hence, to expand the supply of biodiesel without impacting food production, cellulosic biomass, especially bioenergy crops, are being genetically modified to accumulate energy-rich triacylglyceride (TAG) and fatty acids, which are rich in short, unbranched, and unsaturated side chains. Andrianov et al (2010) and Sanjaya et al (2013) have successfully achieved an increase in TAG accumulation as high as 20 and 25-fold in *Nicotiana tabacum* and *Arabidopsis thaliana*, respectively [1,2]. Recently, Zale et al (2016) reported a 1.5 to 9.5 fold increase in TAG accumulation in vegetative tissues of sugarcane [3,4]. Energycane is a specially bred high fiber hybrid of sugarcane and is a promising bioenergy crop because it is more tolerant than the later to extreme weather and drought conditions. Research efforts are now underway to engineer energycane to convert solar energy into energy-rich storage chemicals in the form of TAGs in leaf and stem tissues.

Research to develop and learn to process energy crops with *in situ* oil requires rapid and convenient analytical methods to characterize and quantify their oil contents. Sample processing is particularly complicated because new, likely multistep, processes will be needed to recover the oil and optimizing the process necessities measuring oil recoveries and losses at each step. Traditional organic solvent-based methods are too slow and tedious.
Analytical studies with Nuclear Magnetic Resonance (NMR) have been reported in various research fields since mid-1950’s [5]. The application of NMR has expanded remarkably since then, specifically in oil chemistry, for quantitative and qualitative analysis of fatty compounds, identification of vegetable oils, determination of fatty acid composition and, other constituents [6–9]. Its application has been extended towards cellulosic biomass conversion to biofuels. NMR is employed to probe the compositions of polysaccharides, crystallinity index of cellulose, porosity, and lignin characterization as a measure of biomass recalcitrance [10–13]. Recently, Berman et al. (2013) proposed NMR based method for the quality assessment of biodiesel [14].

In cellulosic related studies, 1H-NMR has been used to explore water mobility within untreated and pretreated biomasses [15–17]. Therefore, it was of interest to see if it could be used for the measurement of vegetative oil within non-seed biomass- the future of biodiesel production. In this study, besides quantification, 1H-NMR technology has been used to differentiate between bound and free oil present in the biomass and investigate their fate after three distinct feedstock preprocessing i.e., two-staged hydrothermal and mechanical, dilute acid and alkaline pretreatment to confirm their suitability for bioenergy crops with in situ oil.

The present study is proof of the above-mentioned concept using ground energycane bagasse soaked in crude corn oil as model biomass. The model biomass was used to investigate the fate of vegetative oil during pretreatment procedures. It helped in analyzing the accuracy of measured values and the correlation between the NMR quantification and relaxometry spectra as the concentration of oil per gram of dry biomass was known. A two-way validation that involved two distinct biomasses (soyhull and transgenic lipidcane- having in situ oil) and the conventional oil extraction method i.e., organic solvent extraction was performed to validate 1H-NMR spectroscopy for quantification of vegetative oil in cellulosic biomass. This study aims to
develop an analytical method based on td-1H-NMR spectroscopy for non-invasive, chemical-free, and rapid quantification of vegetative oil in cellulosic biomass. Moreover, we also investigated proton relaxometry correlation spectra associated with oil to understand the fate of oil in biomass during different pretreatment.

Results

1H-NMR T1T2 relaxometry correlation allocates the bound and free oil in cellulosic biomass

1H-NMR relaxation time distribution of energycane (control), energycane sample soaked in crude corn oil, transgenic lipidcane 1566, and soyhull were analyzed. The samples exhibited the presence of two distinct populations of proton molecules, one with shorter relaxation time and others with longer relaxation time for each T1 and T2 relaxation time (Table 1).

Table 1 T1 (spin-lattice) and T2 (spin-spin) relaxation times for various concentrations of energycane-oil mixtures, energycane test sample, transgenic lipidcane 1566, and soy hull. Shorter and longer relaxation times correspond to lesser and higher fluidity of molecule and hence, indicates bound and free oil in the biomass sample

Biomass (g oil/ g dry biomass)	T1 (ms)	T2 (ms)		
0 (Control)	6 ± 1	80 ± 3	0	0
0.096	25 ± 5	150 ± 10	46 ± 3	192 ± 4
0.198	39 ± 6	200 ± 10	60 ± 1	234 ± 3
0.309	44 ± 6	220 ± 10	73 ± 1	265 ± 3
0.393	48 ± 6	230 ± 10	78 ± 1	277 ± 3
0.501	53 ± 6	240 ± 10	81 ± 1	283 ± 2
Sample Type	T_1 (s)	T_2 (s)	T_1 (s)	T_2 (s)
-----------------------------	-----------	-----------	-----------	-----------
Energycane (test sample)a	37 ± 6	200 ± 10	60 ± 2	235 ± 3
Transgenic lipidcane	18 ± 4	125 ± 5	11 ± 3	54 ± 9
1566	17 ± 3	108 ± 8	14 ± 2	94 ± 3

Average ± Standard Deviation

a Ground energycane bagasse with ~ 20% crude corn oil per g dry biomass. Energycane test sample has been used for all the pretreatment studies.

Shorter relaxation time represented the population of proton molecules in biomass samples with restricted movement likewise, longer relaxation time represented the population of proton molecules with a higher degree of freedom of molecules. As depicted in the schematic diagram (Fig. 1b), the shorter relaxation times were assigned to the proton molecules associated with bound oil, similarly, longer relaxation times were assigned to the proton molecules associated with free oil in the biomass sample. The existence of bound oil can be attributed to either entrapment of oil molecules in the porous structure of cellulosic biomass or the formation of weak bonds between oil molecules and biomolecules of cellulosic biomass.

Relaxometry analysis of representative/model biomass showed that increasing the concentration of oil in the energycane-oil mixture increases the magnitudes of both $T1$ and $T2$ relaxation time (Table 1). This implies that variation in the magnitude of relaxation time is associated with the concentration of oil in the biomass provided other respective parameters are kept constant. The lower rate of increase of the magnitude relaxation time associated with bound oil was low as compared to the relaxation time associated with free oil on doubling the concentration of external
oil indicates that entrapment of oil molecules in pores or formation of bonds with cellulosic biomass is a rare event.

Surface chemistry and local environment of sample influence relaxation time distribution

The influence of surface chemistry or local environment on $T1$/$T2$ relaxometry correlation spectra of oil in cellulosic biomass was investigated by comparing for two distinct sets of biomasses. Set 1 was comprised of biomass having *in situ* oil, for instance, soy hull and transgenic lipidcane 1566, and Set 2 was comprised of ground energycane bagasse with externally added crude corn oil (Table 1). Ground energycane bagasse without oil served as control. Interestingly, biomasses from Set 1 and Set 2 presented contrasting results. Dry biomass of soy hull exhibited $T1(1)$ 17 ± 3 ms and $T1(2)$ 108 ± 8 ms, and $T2(1)$ 14 ± 2 ms and $T2(2)$ 94 ± 3 ms. Likewise, dry biomass of transgenic lipidcane 1566 exhibited $T1(1)$ 18 ± 4 ms and $T1(2)$ 125 ± 5 ms and $T2(1)$ 11 ± 3 ms and $T2(2)$ 54 ± 9. On the contrary, ground energycane bagasse with externally added crude corn oil exhibited a reverse trend i.e, higher magnitude of $T2$ relaxation times as compared to $T1$ relaxation time. Data presented in Table 1 show that increasing the concentration of externally added oil from 0.096 g oil per g dry biomass to 0.501 g oil per g dry biomass increases the magnitude of $T2(1)$ and $T2(2)$ from 46 ± 3 ms and 192 ± 4 ms to 60 ± 2 ms and 235 ± 3 ms, respectively, while the magnitude of $T1(1)$ and $T1(2)$ increased from 19 ± 3 ms and 70 ± 10 ms to 31 ± 6 ms and 120 ± 10 ms (after deducting control), respectively. The significant effect of externally added oil on $T2$ relaxation time as compared to $T1$ relaxation time implies that the dephasing of the spinning electron is influenced by the local environment of the sample to be analyzed. Although the magnitude of $T2$ was greater than $T1$ for the biomass samples in Set 2,
they followed the thumb rule of NMR physics i.e., $T_2 \leq 2T_1$, thereby, confirming the validity of NMR relaxometry correlation analysis.

NMR spectroscopy for quantification of vegetative oil in cellulosic biomass

To this end, having confirmed the population of bound and free oil in the representative cellulosic samples, calibration curves were constructed for the quantification of oil. Specifically, separate curves were constructed for energycane-crude corn oil mixture and soybean hull. The difference in the slopes of NMR calibration curves of crude corn and soybean oil (Fig. 2 a and b) show that crude corn and crude soybean oil has a significantly different percentage of hydrogen molecule which corresponds to a different composition of TAGs and fatty acid profile. NMR calibration for each oil showed excellent predictive capabilities as validated by the very high correlations ($r > 99.5\%$). Specific calibration curves were used to measure the oil contents of energycane test samples containing corn oil and soy hull pellets. For the energycane test sample made up using 0.20 g crude corn oil per gram dry biomass, the td-1H-NMR method predicted 0.182 g oil per g dry biomass, which corresponds to 9% deviation. Soy hull pellets contained 0.017 g oil per g of dry biomass as measured using NMR spectroscopy calibrated with crude soybean oil. The percentage of hydrogen in oil is critical for the absolute quantification of oil using NMR spectroscopy. The hydrogen content in different oil varies significantly depending on their fatty acid profile. Therefore, each transgenic biomass containing oil require a separate calibration based on the composition of TAGs and fatty acid profile [18].

The oil contents measured using NMR spectroscopy were further compared with the values obtained using the classical organic solvent extraction gravimetric method for further validation.
Comparison of NMR quantification with conventional organic solvent extraction method

Fig. 3 compares the NMR and solvent extraction methods for quantifying oil content in energycane test sample and soy hull pellets. Oil contents measured using both the methods were not significantly different for both the samples ($p \geq 0.05$).

Since feedstock preprocessing is indispensable for biofuel production using lignocellulosic biomass, energycane test sample containing ~0.20 g crude corn oil per g dry biomass was pretreated with two-staged hydrothermal and mechanical milling, dilute acid, and alkaline procedures and examined for oil recovery. A comparison of NMR spectroscopy and organic solvent extraction methods for quantification of total oil content in pretreated energycane test samples are presented in Fig. 4. Comparable numbers for total oil content per g dry biomass were obtained for the biomass samples processed with two-staged hydrothermal and mechanical, and alkaline pretreatment in contrast to results for the dilute-acid pretreated biomass. Control energycane biomass (without oil) also exhibited increased NMR values on dilute acid pretreatment (Additional file, Table S1). The higher NMR reading in dilute acid pretreated biomass can be attributed to an increase in the concentration of hydronium ions during acid pretreatment which did not get completely cleansed even after thorough washing [19,20]. Data in Table 2 presents the percent variance in the measured total oil content of untreated and pretreated biomass between 1H-NMR and the conventional organic solvent method. The percent variance between the two methods is least when the pH of the sample after pretreatment is close to neutral i.e., 7. Dilute acid pretreated sample (pH 1-2) showed maximum variance in measurement i.e., 74.6%.

The minimum oil content was observed in alkaline pretreated biomass. Most likely this resulted from alkali catalyzed saponification of the oil [21]. The alkali pretreated biomass had a soapy
texture and produced frothing while washing with deionized water (Additional file, Fig. S2). A decline in total oil content subsequent to each type of feedstock preprocessing was observed (Fig. 4). The decline can be ascribed to either extraction of the free oil or release of bound oil during pretreatment and hence, was further investigated using NMR relaxometry study.

Table 2 Comparision of organic solvent extraction and NMR spectroscopy method for total oil content in biomass samples before and after feedstock preprocessing

Feedstock	pH of sample	Organic solvent extraction	NMR Spectroscopy	Percent variance
Untreated (test sample)	6.6-7.2	0.205 ± 0.015	0.182 ± 0.001	11.2
HT	6.1-6.8	0.156 ± 0.011	0.168 ± 0.002	7.6
HT + DM	6.1-6.8	0.099 ± 0.011	0.099 ± 0.0002	0.4
DA^a	1.0-2.0	0.083 ± 0.003	0.145 ± 0.0003	74.6[*]
Alkaline^a	12.5-13.5	0.023 ± 0.004	0.028 ± 0.001	21.7

Average ± Standard Deviation

HT- Hydrothermal pretreatment at 180 °C
HT + DM- Hydrothermal pretreatment at 180 °C followed by disk milling
DA- Dilute acid pretreatment.

^a The pH of the sample was measured after washing.
[*] denotes significant difference (p ≤ 0.05)

Evaluation of the fate of oil during feedstock preprocessing

1. Suitability of different feedstock processing for oil containing cellulosic biomass
T1T2 relaxometry correlation analysis was performed for pretreated biomasses to understand the effectiveness of different feedstock preprocessing for the extraction of oil from cellulosic biomass. Results listed in Table 3 show the change in relaxation time distribution which corresponds to change in the fluidity/degree of freedom of proton molecules in the biomasses on various pretreatment procedures. As observed previously (Table 1), the magnitude of relaxation time is also associated with the concentration of oil in the biomass. Therefore, a reduction in the magnitude of T1 and T2 relaxation time of the pretreated sample is directly correlated with the extraction of corresponding bound and free oil from the biomass on pretreatment. Interestingly, hydrothermal pretreatment at 180 °C followed by disk milling reduced the magnitude of T1 and T2 relaxation time from T1 (1) \(37 \pm 6\), T1 (2) \(200 \pm 10\) and T2 (1) \(60 \pm 2\), T2 (2) \(235 \pm 5\) to T1 (1) \(19 \pm 2\), T1 (2) \(110 \pm 7\) and T2 (1) \(8.9 \pm 0.4\), T2 (2) \(41.5 \pm 0.8\), respectively. Acid pretreated biomass also exhibited a loss of bound and free oil i.e., from T1 (1) \(37 \pm 6\), T1 (2) \(200 \pm 10\) and T2 (1) \(60 \pm 2\), T2 (2) \(235 \pm 5\) to T1 (1) \(26 \pm 3\), T1 (2) \(151 \pm 9\) and T2 (1) \(25 \pm 1\), T2 (2) \(140 \pm 3\), respectively. However, as mentioned previously, biomass pretreated with dilute acid exhibit a higher proton signal due to the increased concentration of \(H^+\) ions, thus, the magnitudes of T1 and T2 might vary for the neutralized sample.

In contrast, pretreatment of biomass containing oil with alkali at high temperature had an adverse effect. Alkali likely reacted with the oil present in biomass to form soap and alcohol [21]. The alteration in biomass composition led to the inconsistency of NMR values (Table 3).

2. The fate of vegetative oil during two-stage hydrothermal and mechanical pretreatment

The biomass pretreated with two-staged hydrothermal and mechanical pretreatment showed promising results with \(^1\)H-NMR analysis without sample preparation hence, it was studied in detail. Analysis of total oil content (Fig. 5 a and b) and T1T2 relaxometry correlation spectra (Table...
Table 3) of pretreated biomass provided insight into the stability and percent recovery of bound and free oil during the pretreatment processes. The T_2 relaxometry study presented in Table 3 indicates that hydrothermal pretreatment at 180 °C resulted in the reduction of approximately 50% of the oil associated fluidity (degree of freedom of molecular movement) of the biomass sample as compared to untreated biomass while coupling hydrothermal pretreatment with disk milling process reduced the fluidity of pretreated biomass by 80%. The mechanical refining by disk milling extracted a considerable amount of oil from the cellulosic biomass sample (reduced the oil associated fluidity of biomass by approximately 65%). The extent of bound and free oil extracted from cellulosic biomass at each step of pretreatment can be interpreted from Fig. 5 a. Free oil in biomass is more accessible than bound oil and hence, was extracted efficiently. comparatively Combination of hydrothermal treatment and disk milling recovered approximately 50% of total oil per g dry biomass. The two-staged pretreatment helped in the enrichment of bound oil by defibrillating the cellulosic matrix that makes the vegetative oil easily extractable from cellulosic biomass. Comparable values of oil recovery were obtained using 1H-NMR and organic solvent method at each step of pretreatment (Fig. 5 b).

Discussion

Implication of T_1/T_2 Relaxometry correlation spectra

In 1H-NMR, the relaxation time of an object represents the time taken by proton molecules to reach the equilibrium state by losing the pulsed energy. In most of the liquid, the relaxation time is inversely proportional to the viscosity. The correlation between viscosity and relaxation time can be explained by the equation

\[\tau_c \ll 1/\nu_o \]

(1)
where τ_c and ν_o represent correlation time associated with Brownian motion of protons in the sample and Larmor frequency, respectively. $T1$ relaxation take place along fluctuation in the magnetic field, most effectively at Larmor frequency (ν_o) indicating that $T1$ relaxation is field-dependent, while, $T2$ relaxation is induced by fluctuation in any field, mainly due to molecular motion [22]. The schematic diagram in Fig. 1 a illustrates the correlation of relaxation time and viscosity of the liquid sample (adapted from Bloembergen et al, 1947 [23]). Similarly, in solids, the 1H-NMR relaxometry spectra of the sample correlate the degree of freedom of proton molecules in the sample and facilitate the resolution of different populations of proton molecules in samples based on their ‘molecular tumbling’ rate. Typically, in solid samples, the motion of the molecules is restricted and exhibits a shorter relaxation time. The magnitude of relaxation time of solids can vary significantly from the relaxation time of liquids by a factor of 10’s or 100’s depending on the viscosity of the liquid [24]. A solid sample containing fluidized elements, for instance, free oil or, high moisture exhibits multiple distinct relaxation times based on the molecular tumbling rate of each population of proton molecules in the sample. Therefore, in the present study, it is convenient to assign the population of proton molecules associated with oil in the biomass sample exhibiting short and long relaxation time as bound and free oil provided the moisture of sample is kept minimum ($\leq 2\%$ moisture content was maintained in all the samples). A background proton signal was obtained in dry biomass without oil i.e., control energycane biomass. $T1$ analysis of control biomass displayed $T1$ (1) $6 \pm 1 \text{ ms}$ and $T1$ (2) $80 \pm 3 \text{ ms}$ which can be attributed to the spin of proton nuclei of biomolecules including proteins, carbohydrates, and any remaining water molecules. However, a zero value of $T2$ in control implies a highly restricted movement of proton molecules with no interference of the local environment (a very solid surface with the least molecular movement).
$T1T2$ relaxation times of transgenic lipidcane 1566 with $in\ situ$ oil exhibited a higher magnitude of free oil. The analysis was in agreement with the study reported by Parajuli et al. (2020) on hyperaccumulation of lipids in the form of droplets inside the vegetative tissues of transgenic lipidcane 1566 [4]. A $T2 \geq T1$ (but $T2 \leq 2T1$—validating the NMR relaxometry spectra) in energycane and crude corn oil mixture provides insight into the impact of local chemistry of sample affecting the spin dephasing of oil-associated proton molecules.

Consequence of bioprocessing on NMR analysis

For the first time, we demonstrated 1H-NMR relaxometry correlation spectra for examining bound and free oil in cellulosic biomass subsequent to pretreatment procedures. Time-domain 1H-NMR spectroscopy measures the percentage of hydrogen present in the sample. A significant variation in hydrogen molecules during pretreatment procedures due to certain chemicals limits the usage of NMR spectroscopy for oil quantification. Data presented in Table 2 and Additional file, Table 1 show that acid pretreated samples exhibit a significantly higher magnitude on NMR analysis as compared to the conventional organic solvent method. The acidic pH of the sample confirmed increased H^+ molecules after pretreatment. The observation is in agreement with the reports by other research groups that acid treatment interferes with the overall charge of the slurry and needs a neutralization process [25,26]. Moreover, Zhu et al., 2019 reported that the pretreatment liquor from acid pretreated biomass possesses a good catalytic activity that can be recycled to obtain reducing sugars from additional cellulosic biomass [27].

The degradation of oil and inconsistency in relaxometry analysis (Table Table 3) suggest that alkaline pretreatment is unsuitable for biomass containing oil. The main chemical reactions during alkaline pretreatment involve solvation and saponification, resulting in the swelling of the biomass, making the cellular parts susceptible to react with the external agent
Thus, biomass pretreated with dilute acid and alkali cannot be directly used for NMR analysis. Further investigations are required to develop methodologies to analyze acid and alkali pretreated samples by 1H-NMR possibly either by neutralizing or derivatizing the analytes.

Although the analysis of oil composition is critical, however, from the NMR relaxometry analysis and corresponding quantification of oil, it can be inferred that hydrothermal pretreatment at 180 °C followed by disk milling maintains the stability and quality of vegetative oil in biomass.

Analyzing the effectiveness of feedstock preprocessing

The assessment of water-associated proton molecules for their mobility in biomass structure has been successfully established using NMR relaxometry correlation spectra. The moisture content of biomass is maintained ≥ 10% to study the water-associated relaxometry spectra. Foston and Ragauskas (2010) used a combination of 1H and 2H NMR techniques to demonstrate the pore expansion of cellulosic fibril bundle on acid pretreatment of Populus [17]. Jeoh et al. (2017) performed 2D 1H-NMR on SO$_2$ catalyzed thermal pretreated Spruce biomass to establish microstructure of the water environment within pretreated biomass [10]. In both cases, improvement in the porosity of biomass on pretreatment corresponds to an increase in $T2$ relaxation time of water-associated proton molecules in biomass as it suggests more space for the water molecules in the porous biomass to have a higher molecular tumbling. In contrast, for analysis of oil in cellulosic biomass using 1H-NMR, it is necessary to minimize the contribution of water molecules by keeping the moisture content to a minimum. The pretreatment of biomass containing oil resulted in a decrease in $T2$ relaxation time (Fig. 6 and Table 3), unlike the observations for water-associated $T2$ relaxation time. In this case, the decrease in the magnitude of $T2$ relaxation time signifies a decrease in the concentration of oil-associated proton molecules.
which in turn corresponds to the extraction of oil from biomass. The relaxometry correlation holds with the quantification of oil in pretreated biomass. Furthermore, Kiemle et al (2003) have thoroughly demonstrated the absolute quantification of major monosaccharides in the acid hydrolysate of lignocellulosic biomass using 1H-NMR without sample derivatization [12]. Hence, the understanding of NMR relaxometry facilitates concurrent analysis of the effectiveness of biomass pretreatment protocol by investigating the critical parameters such as biomass recalcitrance, sugar, and oil recovery during bioprocessing.

Conclusion

Time-domain 1H-NMR is a useful non-invasive technique for the analysis of complex biological or chemical samples. It is not only responsive towards the chemical nature and functionality of the molecules to be analyzed but also the surface chemistry, chemical connectivity, and local environment. T_1/T_2 1H-NMR spectroscopy is a powerful analytical tool for qualitative and quantitative analysis of cellulosic bio-oil. The relaxometry study of the lignocellulosic biomass supported the qualitative reasoning of the consequences of various physical and chemical feedstock preprocessing on the fate of vegetative oil. NMR analysis provides absolute quantification of vegetative oil at each step of two-staged hydrothermal and mechanical pretreatment without sample preparation.

1H-NMR based quantification of oil is quick, convenient, and lends itself to high sample throughput measurements. Sample measurements for oil quantification and relaxometry analysis take as little as 10 minutes. No chemical reagents are required, and the sample can be preserved for further analysis. There is also a negligible background signal even with complex sample matrices such as lignocellulosic biomass. This robustness lends its use to analyzing processed
samples and it is expected the convenience will lend itself to being used for continuous process optimization. However, chemicals that ionize into H\(^+\) ions such as acids, bases, or buffers restrict the absolute quantification using \(^1\)H-NMR spectroscopy. Excess H\(^+\) ions interfere with the NMR readings and hence, would require sample preparation (e.g. sample neutralization). Further investigations with lipidcane (genetically modified sugarcane for \textit{in situ} oil production in leaves and stems) are in progress.

Materials and Methods

Feedstock and Chemicals

- **Energycane UFCP82-1655**: Energycane UFCP82-1655 bagasse was obtained from the experimental research station located at the University of Florida, Gainesville, Florida, USA.
- Energycane juice was extracted and bagasse was dried at 50 °C. Dried energycane bagasse was cut into smaller pieces of 1 to 2 inches with pruning shears and ground in a hammer mill (W-8-H, Schutte-Buffalo Hammermill, Buffalo, NY) equipped with a round hole sieve sized at 2 mm.
- Ground energycane without vegetative oil served as negative control and backbone material for creating representative biomass.

Representative/Model biomass for NMR studies: Research efforts are still underway for the development of energycane with elevated levels of bio-oil. As a proof of concept for the NMR based analytical method, representative biomass samples containing vegetative oil have been prepared that simulate the oil-producing cane. The ground energycane was soaked in crude corn or crude soybean oil of known concentrations. Crude corn and soybean oil were obtained from One Earth Energy LLC (Gibson City, Illinois, USA) and Incobrasa Industries Limited (Gilman,
Illinois, USA), respectively. Oil soaked energycane biomasses were incubated at 32 °C for 1 to 2 months. Representative biomass samples having six different oil concentrations were prepared using corn and soybean oils. The final oil concentrations of the soak energy cane samples were 0, 0.096, 0.198, 0.309, 0.393, and 0.501 g corn oil per g dry biomass (Additional file 1, Fig. S1 a), and 0, 0.101, 0.216, 0.333, 0.400, and 0.533 g soybean oil per g dry biomass. Experiments were performed using the energycane test sample containing 20% crude corn oil per g dry biomass (Additional file 1, Fig S1 b) unless mentioned otherwise.

Soybean hull: Soy hull pellets were obtained from Incobrasa Industries Limited, Gilman, Illinois, USA. Soybean hulls are obtained as the coproduct of soybean meal production (Additional file 1, Fig. S1 c). It consists of pelletized soybean seed coats and is mixed with external crude soybean oil to provide higher energy values for ruminant animal rations.

Transgenic lipidcane 1566: Transgenic lipidcane 1566 having elevated levels of in situ oil in vegetative tissues obtained from the Center of Advanced Bioenergy and Bioproducts (CABBI), University of Illinois at Urbana-Champaign, IL, USA. Lipidcane stems were processed the same as energycane.

Feedstock preprocessing

Pretreated biomass samples were prepared using three methods (two-staged hydrothermal and mechanical, dilute acid, and alkaline) to determine if pretreated biomass can be analyzed for oil content using NMR spectroscopy. All chemicals were of analytical quality.

Two-staged hydrothermal and mechanical pretreatment: A fluidized sand bath (IFB-51 Industrial Fluidized Bath, Techne Inc., Burlington, NJ) was used for the liquid-hot water pretreatment. Energycane test sample was mixed with deionized water at 20% w/w solid loading and loaded in
a capped pipe reactor (316 stainless reactors: 10.478 cm length×1.905 cm outer diameter×0.165 cm wall thickness tubing, SS-T12-S-065–20, Swagelok, Chicago Fluid system Technologies, Chicago, IL, 316 stainless steel caps: SS-1210-C, Swagelok, Chicago Fluid system Technologies, Chicago, IL). The \textit{in situ} reaction temperature during pretreatment was monitored using a thermocouple (Penetration/Immersion Thermocouple Probe Mini Conn (-418 to 1652°F), Mc Master-Carr, Robbinsville, NJ) inserted into one reactor and connected to a data logger (HH306/306A, Datalogger Thermometer, Omega, Stamford, CT). After holding the tubes at 180 ºC for 10 minutes, the reaction was immediately quenched by submerging the pipe reactors into a cold water bath. Liquid hot water pretreatment was followed by three passes of disk milling (Quaker City grinding mill model 4E, Straub Co., Philadelphia, PA) [29]. The biomass samples were filtered after each pretreatment step and solid residues were oven-dried at 50 ºC.

\textbf{Alkaline pretreatment:} The energy cane test sample was mixed with 1N NaOH solution to obtain 20% w/w solid loading in stainless steel reactors (same set as used for the hydrothermal pretreatment). The pretreatment reactors were heated in a fluidized sand bath (same as used for the hydrothermal pretreatment) at 100 ºC for 30 min [30]. The pretreated biomass was cooled and thoroughly washed with deionized water to remove NaOH. The washed sample was oven-dried at 50 ºC.

\textbf{Dilute acid pretreatment:} A low severity dilute acid pretreatment was performed as outlined by Sidhu et al. (2011) [31] with slight modifications. The energy cane test sample was mixed with 2.0% w/w H$_2$SO$_4$ solution to obtain 20% w/w solid loading in autoclavable glass reactors. The mixture was heated at 121 ºC for 60 minutes under 15 psi pressure. The sample was cooled and thoroughly washed with deionized water to remove the acid and dried at 50 ºC.

\textit{TD-}1H-Nuclear Magnetic Resonance (NMR) spectroscopy
A time-domain one-dimensional benchtop nuclear magnetic resonance system (Minispec mq20, Bruker, Massachusetts, USA) equipped with an 18 mm thermostat 1H-probe operating at 0.47 T/20 MHz was used for the analysis of T_1T_2 relaxation times and quantification of vegetative oil contents. The moisture contents of all the biomass samples were kept consistent and below 2% w/w to abate the contribution of proton signals from water molecules. For the consistency of analysis, 1 g of dry biomass was used for all analyses.

Analysis of T_1T_2 relaxation time (relaxometry study): The spin-spin or transverse (T_2) relaxation time for the biomass samples were obtained by using Carr-Purcell-Meiboom-Gill (CPMG) application [32] with a 180° pulse separator of 2.00 ms over 800 echoes fitted to a bi-exponential equation of order two. A full decay was obtained for T_2 relaxation time. The spin-lattice or longitudinal (T_1) relaxation time was analyzed using the inversion recovery method [33]. The inverse recovery method was started after 2 ms (to avoid receiver artifacts) and run over a duration of 800 ms for each data point. A set of 10 data points were obtained for each sample and fitted to a bi-exponential equation of order two.

Non-invasive quantification of vegetative oil: NMR was calibrated with specific oil corresponding to each type of biomass for absolute quantification of total oil content. A six-point calibration curve was established for each type of biomass i.e., energycane test sample and soy hull. Typically, a regression value of above 99.5% ($R^2 = 0.995$) is recommended for NMR analysis. The weight of the biomass to be analyzed was recorded for each sample as NMR spectroscopy measures total oil present in the biomass sample and generate a report as a percentage of oil per gram dry biomass.

Organic solvent extraction and quantification of oil
Total lipid content of untreated and pretreated biomass was extracted using the organic solvent method reported by Huang et al., 2017 [34]. Briefly, 1.00 g of the dry biomass sample was mixed with 10 ml isopropanol and 15 ml hexane in a 50-ml screw-top tube and homogenized 2 x 1 min with a homogenizer (LabGen 700, Cole Parmer, Vernon Hills, IL) at a speed of 5000 rpm. The homogenized mixture was agitated with a wrist action shaker (HB-1000 Hybridizer, UVP LLC, Upland, CA) at room temperature for 10 min. The slurry was mixed with 16 ml of (6.7%, w/v) sodium sulfate solution agitated for 10 min and centrifuged at 200 rpm for 20 min. The top phase was collected in a new tared screw-capped tube and the solvent was evaporated by passing over a gentle stream of nitrogen. Once the solvent was removed, the recovered oil was weighed on an analytical balance. Gravimetric oil measurements were compared with the values obtained using NMR spectroscopy.

Statistical analysis

All the samples were analyzed in triplicate. Standard deviation was calculated to measure the deviation of experimental replicates from the mean value. Regression analysis between NMR intensity and total oil content was performed to determine the accuracy of the NMR calibration. ANOVA (ANalysis Of VAriance) was performed using R statistical software (i386 3.6.2) using values obtained with NMR spectroscopy and the organic solvent method for oil quantification using a significance threshold of $p \leq 0.05$.

List of Symbols/Abbreviations

Symbol	Abbreviation
DA	Dilute acid pretreatment
DM	Disk milling
HT: Hydrothermal pretreatment

HT + DM: Hydrothermal pretreatment followed by disk milling

NMR: Nuclear Magnetic Resonance

td-1H-NMR: Time domain-proton associated Nuclear Magnetic Resonance

T1/T2 relaxometry: T1 relaxation time and T2 relaxation time

Declarations

Ethics approval and consent to participate
Not applicable

Consent for publication
Not applicable

Availability of data and materials
All data generated or analyzed during this study are included in this published article [and its supplementary information files].

Competing interests
The authors declare that they have no competing interests.

Funding
The information, data, or work presented herein was funded in part by the Biological and Environmental Research (BER) program, U.S. Department of Energy, under Award Number DE-
SC0018254. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Authors’ contributions

VS and SM conceived the study. SM performed the experiments and drafted the manuscript. VS, SM, BD, and SL analyzed the data and edited the manuscript. All authors read and approved the final manuscript.

Acknowledgments

Not applicable

References

1. Andrianov V, Borisjuk N, Pogrebnyak N, Brinker A, Dixon J, Spitsin S, et al. Tobacco as a production platform for biofuel: Overexpression of Arabidopsis DGAT and LEC2 genes increases accumulation and shifts the composition of lipids in green biomass. Plant Biotechnol J. 2010;8:277–87.

2. Sanjaya, Miller R, Durrett TP, Kosma DK, Lydic TA, Muthan B, et al. Altered Lipid Composition and Enhanced Nutritional Value of Arabidopsis Leaves following Introduction of an Algal Diacylglycerol Acyltransferase 2. Plant Cell [Internet]. 2013;25:677–93. Available from: http://www.plantcell.org/lookup/doi/10.1105/tpc.112.104752

3. Zale J, Jung JH, Kim JY, Pathak B, Karan R, Liu H, et al. Metabolic engineering of sugarcane to accumulate energy-dense triacylglycerols in vegetative biomass. Plant Biotechnol J. 2016;14:661–9.

4. Parajuli S, Kannan B, Karan R, Sanahuja G, Liu H, Garcia-Ruiz E, et al. Towards oilcane:
Engineering hyperaccumulation of triacylglycerol into sugarcane stems. GCB Bioenergy [Internet]. 2020;in press. Available from: http://doi.wiley.com/10.1111/gcbb.12684

5. Becker ED. A brief history of nuclear magnetic resonance. Anal Chem. 1993;65:295–302.

6. Knothe G, Kenar JA. Determination of the fatty acid profile by 1H-NMR spectroscopy. Eur J Lipid Sci Technol [Internet]. 2004;106:88–96. Available from: http://doi.wiley.com/10.1002/ejlt.200300880

7. Miyake Y, Yokomizo K, Matsuzaki N. Determination of unsaturated fatty acid composition by high-resolution nuclear magnetic resonance spectroscopy. J Am Oil Chem Soc [Internet]. 1998;75:1091–4. Available from: http://doi.wiley.com/10.1007/s11746-998-0118-4

8. Zverev L V., Prudnikov SM, Vityuk BY, Dzhioev TE, Panyushkin VT. Determination of the main fatty acids in sunflower-seed oil by a nuclear magnetic relaxation technique. J Anal Chem. 2001;56:1029–31.

9. Sacco A, Brescia MA, Liuzzi V, Reniero F, Guillou G, Ghelli S, et al. Characterization of Italian olive oils based on analytical and nuclear magnetic resonance determinations. J Am Oil Chem Soc [Internet]. 2000;77:619–25. Available from: http://doi.wiley.com/10.1007/s11746-000-0100-y

10. Jeoh T, Karuna N, Weiss ND, Thygesen LG. Two-Dimensional 1H-Nuclear Magnetic Resonance Relaxometry for Understanding Biomass Recalcitrance. ACS Sustain Chem Eng. 2017;5:8785–95.

11. Park S, Johnson DK, Ishizawa CI, Parilla PA, Davis MF. Measuring the crystallinity index of cellulose by solid state 13C nuclear magnetic resonance. Cellulose. 2009;16:641–7.
12. Kiemle DJ, Stipanovic AJ, Mayo KE. Proton NMR Methods in the Compositional Characterization of Polysaccharides. ACS Symp Ser [Internet]. 2003. p. 122–39. Available from: https://pubs.acs.org/doi/abs/10.1021/bk-2004-0864.ch009

13. Pu Y, Cao S, Ragauskas AJ. Application of quantitative 31P NMR in biomass lignin and biofuel precursors characterization. Energy Environ Sci [Internet]. 2011;4:3154. Available from: http://xlink.rsc.org/?DOI=c1ee01201k

14. Berman P, Leshem A, Etziony O, Levi O, Parmet Y, Saunders M, et al. Novel 1H low field nuclear magnetic resonance applications for the field of biodiesel. Biotechnol Biofuels [Internet]. 2013;6:55. Available from: http://biotechnologyforbiofuels.biomedcentral.com/articles/10.1186/1754-6834-6-55

15. Ibbett R, Wortmann F, Varga K, Schuster KC. A morphological interpretation of water chemical exchange and mobility in cellulose materials derived from proton NMR T2 relaxation. Cellulose [Internet]. 2014;21:139–52. Available from: http://link.springer.com/10.1007/s10570-013-0106-1

16. Karuna N, Zhang L, Walton JH, Couturier M, Oztop MH, Master ER, et al. The impact of alkali pretreatment and post-pretreatment conditioning on the surface properties of rice straw affecting cellulose accessibility to cellulas. Bioresour Technol [Internet]. 2014;167:232–40. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0960852414008402

17. Foston M, Ragauskas AJ. Changes in the Structure of the Cellulose Fiber Wall during Dilute Acid Pretreatment in Populus Studied by 1 H and 2 H NMR. Energy & Fuels [Internet]. 2010;24:5677–85. Available from: https://pubs.acs.org/doi/10.1021/ef100882t

18. Luthria D, Krygsman P, Barrett A, Burk W, Todt H. Simple Methods for Measuring Total
Oil Content by Benchtop NMR. Oil Extr Anal. 2004;

19. Speight JG. Hydrolysis. In: Speight JG, editor. React Mech Environ Eng [Internet]. Elsevier; 2018. Available from: https://linkinghub.elsevier.com/retrieve/pii/C2013016045X

20. Lloyd TA, Wyman CE. Predicted Effects of Mineral Neutralization and Bisulfate Formation on Hydrogen Ion Concentration for Dilute Sulfuric Acid Pretreatment. Appl Biochem Biotechnol. 2004;113–116:1013–22.

21. Brown HL. The Velocity of Saponification of Fats and Oils by Potassium Hydroxide in Different Solvents. J Phys Chem [Internet]. 1916;20:195–213. Available from: https://pubs.acs.org/doi/10.1021/j150165a003

22. Pfeifer H. NMR of Solid Surfaces. ChemInform [Internet]. 1994. p. 31–90. Available from: http://doi.wiley.com/10.1002/chin.199520302

23. Bloembergen N, Purcell EM, Pound R V. Nuclear magnetic relaxation. Nature [Internet]. 1947;160:475–6. Available from: http://www.nature.com/articles/160475a0

24. E. M. Purcell RVPNB. Relaxation Effects in Nuclear Magnetic Resonance Absorption. Phys Rev [Internet]. 1948;73:679–712. Available from: https://link.aps.org/doi/10.1103/PhysRev.73.679

25. Nazari L, Sarathy S, Santoro D, Ho D, Ray MB, Xu C (Charles). Recent advances in energy recovery from wastewater sludge. Direct Thermochem Liq Energy Appl [Internet]. Elsevier; 2018. p. 67–100. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780081010297000114

26. Ariunbaatar J, Panico A, Esposito G, Pirozzi F, Lens PNL. Pretreatment methods to enhance
anaerobic digestion of organic solid waste. Appl Energy [Internet]. 2014;123:143–56. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0306261914001718

27. Zhu Y, Huang J, Sun S, Wu A, Li H. Effect of Dilute Acid and Alkali Pretreatments on the Catalytic Performance of Bamboo-Derived Carbonaceous Magnetic Solid Acid. Catalysts [Internet]. 2019;9:245. Available from: https://www.mdpi.com/2073-4344/9/3/245

28. Chen H, Wang L. Pretreatment Strategies for Biochemical Conversion of Biomass. Technol Biochem Convers Biomass [Internet]. Elsevier; 2017. p. 21–64. Available from: https://linkinghub.elsevier.com/retrieve/pii/B978012802417100003X

29. Kim SM, Dien BS, Singh V. Promise of combined hydrothermal/chemical and mechanical refining for pretreatment of woody and herbaceous biomass. Biotechnol Biofuels. 2016;9:1–15.

30. Maryana R, Ma’rifatun D, Wheni IA, K.w. S, Rizal WA. Alkaline pretreatment on sugarcane bagasse for bioethanol production. Energy Procedia [Internet]. Elsevier B.V.; 2014;47:250–4. Available from: http://dx.doi.org/10.1016/j.egypro.2014.01.221

31. Sindhu R, Kuttiraja M, Binod P, Janu KU, Sukumaran RK, Pandey A. Dilute acid pretreatment and enzymatic saccharification of sugarcane tops for bioethanol production. Bioresour Technol [Internet]. 2011;102:10915–21. Available from: https://linkinghub.elsevier.com/retrieve/pii/S096085241101354X

32. Atta-ur-Rahman, Choudhary MI, Atia-tul-Wahab. Spin-Echo and Polarization Transfer. Solving Probl with NMR Spectroscc [Internet]. 2nd ed. Elsevier; 2016. p. 133–90. Available from: http://www.sciencedirect.com/science/article/pii/B9780124115897000048

33. Loening NM, Thripleton MJ, Keeler J, Griffin RG. Single-scan longitudinal relaxation
measurements in high-resolution NMR spectroscopy. 2003;164:321–8.

34. Huang H, Moreau RA, Powell MJ, Wang Z, Kannan B, Altpeter F, et al. Evaluation of the quantity and composition of sugars and lipid in the juice and bagasse of lipid producing sugarcane. Biocatal Agric Biotechnol [Internet]. Elsevier Ltd; 2017;10:148–55. Available from: http://dx.doi.org/10.1016/j.bcab.2017.03.003
Table 3 \(^1\)H-NMR relaxometry spectra for the evaluation of percent loss of bound and free oil in biomass samples after three distinct feedstock preprocessing i.e., two-staged hydrothermal and mechanical, dilute acid and alkaline procedures.

Feedstock preprocess	Bound oil T1 (ms)	Bound oil T2 (ms)	Free oil T1 (ms)	Free oil T2 (ms)	% loss of Bound oil (T1)	% loss of Free oil (T1)	% loss of Bound oil (T2)	% loss of Free oil (T2)
Untreated	37 ± 6	60 ± 2	235 ± 3	200 ± 10	00	00	00	00
energycane								
HT	26 ± 4	22.9 ± 0.6	125 ± 2	147 ± 9	29.72	26.50	61.83	46.80
HT + DM	19 ± 2	8.9 ± 0.4	41.5 ± 0.8	110 ± 7	48.64	45.00	85.16	82.34
DA	26 ± 3	25 ± 1	140 ± 3	151 ± 9	29.72	24.50	58.33	40.43
Alkaline	12 ± 2	100 ± 300	-	86 ± 2	67.56	57.00	ND	0

Average ± Standard Deviation

HT- Hydrothermal pretreatment at 180 °C
HT + DM- Hydrothermal pretreatment at 180 °C followed by disk milling
DA- Dilute acid pretreatment
ND- Not determined
Figure legends

Fig. 1 Schematic diagram illustration of one-dimensional NMR relaxometry correlation spectra. a) Typically relaxation time (T_1/T_2) of an object varies inversely proportional to the viscosity of that object i.e., highly viscose liquids have shorter relaxation time [23]. b) Objects with lower relaxation time have a lesser degree of freedom of molecules i.e., tightly packed molecules than the objects with longer relaxation time. In the present study with 1H-NMR, the population of protons with shorter and longer relaxation time (T_1 or T_2) in each biomass sample represent tightly packed and relatively free proton molecules corresponding to bound and free oil in the sample, respectively.

Fig. 2 Calibration of td 1H-NMR spectroscopy with energycane soaked in a) crude corn oil and, b) crude soybean oil for quantification of vegetative oil in cellulosic biomass sample.

Fig. 3 Validation of vegetative oil measured by td-1H-NMR using hexane extraction. The measured values from both the methods were not significantly different i.e., $p \geq 0.05$.

Fig. 4 Comparison of total oil content measured in biomass samples pretreated with various feedstock preprocessing namely hydrothermal (HT), hydrothermal + disk milling (HT + DM), dilute acid (DA), and alkaline using organic solvent extraction and 1H-NMR spectroscopy.

Fig. 5 a) NMR relaxometry spectra demonstrate the release of the bound and free oil with each step of two-staged hydrothermal and mechanical pretreatment. b) Assessment of an average percentage recovery of oil from the cellulosic sample after each step of pretreatment using organic solvent extraction and 1H-NMR spectroscopy.
Fig. 6 The distribution of $T2$ relaxation times of oil within untreated and pretreated energycane biomass. The vertical dashed lines are drawn to demonstrate the shifts in the peak position due to various pretreatment procedures.