Duality in percolation via outermost boundaries III: Plus connected components

Ghurumuruhan Ganesan *

New York University, Abu Dhabi

Abstract
Tile \mathbb{R}^2 into disjoint unit squares $\{S_k\}_{k \geq 0}$ with the origin being the centre of S_0 and say that S_i and S_j are star adjacent if they share a corner and plus adjacent if they share an edge. Every square is either vacant or occupied. In this paper, we use the structure of the outermost boundaries derived in Ganesan (2015) to alternately obtain duality between star and plus connected components in the following sense: There is a star connected cycle of vacant squares attached to and surrounding the finite plus connected component containing the origin.

Key words: Star and plus connected components, duality.

AMS 2000 Subject Classification: Primary: 60J10, 60K35; Secondary: 60C05, 62E10, 90B15, 91D30.

1 Introduction
Tile \mathbb{R}^2 into disjoint unit squares $\{S_k\}_{k \geq 0}$ with origin being the centre of S_0. Every square in $\{S_k\}$ is assigned one of the two states, occupied or vacant and the square S_0 containing the origin is always occupied. For $i \neq j$, we say that S_i and S_j are adjacent or star adjacent if they share a corner between them. We say that S_i and S_j are plus adjacent, if they share an edge between them. Here we follow the notation of Penrose (2003).

*E-Mail: gganesan82@gmail.com
Model Description

We first discuss star connected components. We say that the square S_i is connected to the square S_j by a star connected S-path if there is a sequence of distinct squares $(Y_1, Y_2, ..., Y_t), Y_l \subset \{S_k\}, 1 \leq l \leq t$ such that Y_l is star adjacent to Y_{l+1} for all $1 \leq l \leq t - 1$ and $Y_1 = S_i$ and $Y_t = S_j$. If all the squares in $\{Y_l\}_{1 \leq l \leq t}$ are occupied, we say that S_i is connected to S_j by an occupied star connected S-path.

Let $C(0)$ be the collection of all occupied squares in $\{S_k\}$ each of which is connected to the square S_0 by an occupied star connected S-path. We say that $C(0)$ is the star connected occupied component containing the origin. Throughout we assume that $C(0)$ is finite and we study the outermost boundary for finite star connected components containing the origin. By translation, the results hold for arbitrary finite star connected components.

Let G_0 be the graph with vertex set being the set of all corners of the squares of $\{S_k\}$ in the component $C(0)$ and edge set consisting of the edges of the squares of $\{S_k\}$ in $C(0)$. Two vertices in the graph G_0 are said to be adjacent if they share an edge between them. Two edges in G_0 are said to be adjacent if they share an endvertex between them.

Let $P = (e_1, e_2, ..., e_t)$ be a sequence of distinct edges in G_0. We say that P is a path if e_i and e_{i+1} are adjacent for every $1 \leq i \leq t - 1$. Let a be the endvertex of e_1 not common to e_2 and let b be the endvertex of e_t not common to e_{t-1}. The vertices a and b are the endvertices of the path P.

We say that P is a self avoiding path if the following three statements hold: The edge e_1 is adjacent only to e_2 and no other $e_j, j \neq 2$. The edge e_t is adjacent only to e_{t-1} and no other $e_j, j \neq t - 1$. For each $1 \leq i \leq t - 1$, the edge e_i shares one endvertex with e_{i-1} and another endvertex with e_{i+1} and is not adjacent to any other edge $e_j, j \neq i - 1, i + 1$.

We say that P is a circuit if $(e_1, e_2, ..., e_{t-1})$ forms a path and the edge e_t shares one endvertex with e_1 and another endvertex with e_{t-1}. We say that P is a cycle if $(e_1, e_2, ..., e_{t-1})$ is a self avoiding path and the edge e_t shares one endvertex with e_1 and another endvertex with e_{t-1} and does not share an endvertex with any other edge $e_j, 2 \leq j \leq t - 2$. Any cycle C contains at least four edges and divides the plane \mathbb{R}^2 into two disjoint connected regions. As in Bollobás and Riordan (2006), we denote the bounded region to be the interior of C and the unbounded region to be the exterior of C.

We use cycles to define the outermost boundary of star connected components. Let e be an edge in the graph G_0 defined above. We say that e
is adjacent to a square S_k if it is one of the edges of S_k. We say that e is a \textit{boundary edge} if it is adjacent to a vacant square and is also adjacent to an occupied square of the component $C(0)$. Let C be any cycle of edges in G_0. We say that the edge e lies in the interior (exterior) of the cycle C if both the squares in $\{S_j\}$ containing e as an edge lie in the interior (exterior) of C.

We have the following definition.

Definition 1. We say that the edge e in the graph G_0 is an \textit{outermost boundary edge} of the component $C(0)$ if the following holds true for every cycle C in G_0: either e is an edge in C or e belongs to the exterior of C.

We define the outermost boundary ∂_0 of $C(0)$ to be the set of all outermost boundary edges of G_0.

The following result combines Theorems 1 and 2 from Ganesan (2017).

Theorem 1. Suppose $C(0)$ is finite. The outermost boundary ∂_0 of $C(0)$ is the union of a unique set of cycles C_1, C_2, \ldots, C_n in G_0 with the following properties:

(i) Every edge in $\bigcup_{1 \leq i \leq n} C_i$ is an outermost boundary edge.

(ii) The graph $\bigcup_{1 \leq i \leq n} C_i$ is a connected subgraph of G_0.

(iii) If $i \neq j$, the cycles C_i and C_j have disjoint interiors and have at most one vertex in common.

(iv) Every occupied square $J_k \in C(0)$ is contained in the interior of some cycle C_j.

(v) If $e \in C_j$ for some j, then e is a boundary edge adjacent to an occupied square of $C(0)$ contained in the interior of C_j and also adjacent to a vacant square lying in the exterior of all the cycles in ∂_0.

If the component $C(0)$ is plus connected, then the outermost boundary is a single cycle satisfying all the above conditions.

The following result is Lemma 6 of Ganesan (2017) and collects the necessary properties regarding outermost boundary cycles.

Lemma 2. Let $C(0) = \bigcup_{1 \leq k \leq M} J_k \subset \{S_j\}$ be finite. For every occupied square $J_k \in C(0), 1 \leq k \leq M$, there exists a unique cycle D_k in the graph G_0 satisfying the following properties.

(a) The square J_k is contained in the interior of D_k.

(b) Every edge in the cycle D_k is a boundary edge adjacent to one occupied square of $C(0)$ in the interior and one vacant square in the exterior.

(c) If C is any cycle in G_0 that contains J_k in the interior, then every edge
Figure 1: The sequence of vacant squares \((U_1, U_2, U_3, U_4)\) form the vacant star connected \(S\)–cycle \(H_{out}\) (see Theorem \(3\)) surrounding the plus connected component \(C^+(0) = S_0\).

\(in C \) either belongs to \(D_k\) or is contained in the interior.

\(d\) Every edge in \(D_k\) is an outermost boundary edge in the graph \(G_0\).

We denote \(D_k\) to be the outermost boundary cycle containing the square \(J_k \in C(0)\).

Duality

To study duality between star and plus connected components, we first define plus connected \(S\)–cycles. Let \(\{J_i\}_{1 \leq i \leq m}\) be a set of squares in the set \(\{S_k\}\). We say that the sequence \(L_J = (J_1, \ldots, J_m)\) is a plus connected \(S\)–path if for each \(1 \leq i \leq m - 1\), we have that the square \(J_i\) is plus adjacent i.e., shares an edge, with the square \(J_{i+1}\). We say that \(L^+\) is a plus connected \(S\)–cycle if \((J_1, \ldots, J_{m-1})\) is a plus connected \(S\)–path and in addition, the square \(J_m\) is plus adjacent to both \(J_{m-1}\) and \(J_1\).

We have an analogous definition for star connected \(S\)–cycle. As before, let \(\{Q_i\}_{1 \leq i \leq n}\) be a set of distinct squares in the set \(\{S_k\}\). We say that the sequence \(L_Q = (Q_1, \ldots, Q_n)\) is a star connected \(S\)–path if for each \(1 \leq i \leq n - 1\), we have that \(Q_i\) is star adjacent, i.e., shares a corner with \(Q_{i+1}\). We say that \(L_Q\) is a star connected \(S\)–cycle if \(n \geq 3\), the sequence \((Q_1, \ldots, Q_{n-1})\) forms a star connected \(S\)–path and in addition \(Q_n\) is also star adjacent to \(Q_1\). We consider only star \(S\)–cycles containing at least three squares.
Let \(\Lambda_0^+ \) denote the set of all vacant squares that is plus adjacent, i.e. shares an edge, with some occupied square in the plus connected component \(C^+(0) \). We have the following result.

Theorem 3. Suppose \(C^+(0) \) is finite. There exists a unique star connected \(S- \)cycle \(H_{out} = (U_1, ..., U_q) \) with the following properties:

(i) For every \(i, 1 \leq i \leq q \), the square \(U_i \) is in \(\Lambda_0^+ \).

(ii) The outermost boundary of \(H_{out} \) is a single cycle \(\partial_H \). Every square in \(H_{out} \) has an edge in \(\partial_H \).

(iii) Every occupied square in the component \(C^+(0) \) is contained in the interior of \(\partial_H \). Every vacant square in \(\Lambda_0^+ \) is contained in the interior of \(\partial_H \).

Thus the corresponding sequence of squares \((U_1, ..., U_q) \) form a star connected cycle of vacant squares containing all squares of \(C(0) \) in the interior. In Figure 1, the sequence of dotted squares \(U_1, U_2, U_3 \) and \(U_4 \) form the star connected sequence \(H_{out} \) of vacant squares surrounding the plus connected component \(C^+(0) = S_0 \), denoted by the dark grey square. The sequence of points \(ABCDEF\)GH\(IJKLA \) forms the outermost boundary \(\partial_H \).

Auxiliary Results

In this subsection, we state three results that are of independent interest and are used for the proof of Theorem 3. The results are intuitive and for completeness we provide the proofs in Section 2 and 4.

Let \(G \) be the graph with vertex set as the vertices of corners of the squares in \(\{S_k\} \) and edge set as the edges of \(\{S_k\} \). In the first result, we determine the outermost boundary of a star connected \(S- \)cycle (we refer to previous subsection for definition). We recall that any star connected \(S- \)cycle is a star connected component containing at least three distinct squares. From Theorem 1 of Ganesan (2017) we have that the outermost boundary of any star connected component is a connected union of cycles. For the particular case of star \(S- \)cycles, we have the following slightly stronger result.

Theorem 4. Let \(L_H = (H_1, ..., H_n), \{H_i\} \subseteq \{S_k\}, n \geq 3 \) be a star connected \(S- \)cycle containing at least three squares. The outermost boundary \(\partial_0(L_H) \) of \(L_H \) is a single cycle.

For a plus connected \(S- \)cycle, the above result is true directly by Theorem 2 of Ganesan (2017).
Figure 2: The segments uxs and uys of the dotted cycle $C = uxsyu$ are bridges for the solid cycle $D = urstu$. The base for both the bridges is the segment urs.

The second result is regarding the union of the squares contained in a cycle. Consider a cycle C in the graph G and suppose that $\{Y_i\}_{1 \leq i \leq k} \subseteq \{S_j\}$ are the squares contained in the interior of C.

Theorem 5. The union of the squares $\bigcup_i Y_i$ contained in the interior of a cycle $C \subset G$ is a plus connected component whose outermost boundary is C.

The final result concerns the merging of two cycles with mutually disjoint interiors. Suppose that C and D are two cycles with mutually disjoint interiors that share more than one vertex in common. From Theorem 3 of Ganesan (2017), there exists a unique cycle E, consisting only of edges of C and D, that contains both C and D in its interior. We recall that the merging algorithm in Theorem 3 of Ganesan (2017) proceeds iteratively using paths of C that lie in the exterior of D.

The above merging algorithm is general and holds even for cycles with intersecting interiors. In case the cycles C and D have mutually disjoint interiors, we have a slightly stronger result. Suppose that P is a path of edges contained in the cycle C. We say that $P \subset C$ is a bridge for D if its endvertices lie in D and every other vertex in P lies in the exterior of D. Similarly we define bridges for the cycle C. In Figure 2, the segments uxs and uys of the dotted cycle $C = uxsyu$ are bridges for the solid cycle $D = urstu$.

We have the following result.
Theorem 6. Suppose that cycles C and D are two cycles with mutually
 disjoint interiors that contain more than one vertex in common. There is a
unique cycle E satisfying the following properties.
(i) The cycle $E = P_1 \cup P_2$ where $P_1 \subset D$ is a bridge for cycle C and $P_2 \subset C$
is the bridge for D.
(ii) The bridges P_1 and P_2 are unique and the interior of cycles C and D
lies in the interior of E.

We define $E = P_1 \cup P_2$ to be the \textit{bridge decomposition} of the cycle E. In
Figure 2, the union of the bridges $P_1 = uts$ and $P_2 = uys$ contains both the
cycles $C = uyswx$ and $D = urstu$ in its interior and is the desired bridge
decomposition.

The paper is organized as follows: We prove the auxiliary results of The-
orem 4 in Section 2, Theorem 5 in Section 3 and Theorem 6 in Section 4.
Finally, we prove the Theorem 3 in 5.

2 Proof of Theorem 4

We label the squares in the sequence L_Y as with label 1 and every other square
with label 0. We then apply Theorem 1 of Ganesan (2017) with “occupied”
replaced by label 1 and “vacant” replaced by label 0.

We first see that there cannot be three or more cycles in the outermost
boundary $\partial_0 (L_Y)$. We eliminate the two cycle case later. Suppose $\partial_0 (L_Y) = \cup_{i=1}^{q} C_i$ where each $C_i, 1 \leq i \leq q$ is a cycle and $q \geq 3$. The cycles \{C_i\} satisfy
the conditions of Theorem 1 of Ganesan (2017) and so they have mutually
disjoint interiors and C_i and C_j intersect at at most one point for $i \neq j$.

We recall the construction of the cycle graph H_{cyc} of $\partial_0 (L_Y)$. The vertex
set of H_{cyc} is $\{1, 2, \ldots, q\}$ and we draw an edge between i and j if the corre-
sponding cycles C_i and C_j intersect. From (3.1) of Ganesan (2017) we have
that H_{cyc} is acyclic.

We use the cycle graph H_{cyc} to arrive at a contradiction. Without loss of
generality, we assume that the first square Y_1 lies in the interior of cycle C_1.
Let j_1 be the smallest index $j \geq 1$ such that Y_j does not belong to the interior
of C_1. Again without loss of generality, we assume that Y_{j_1} belongs to the
interior of the cycle C_2. Thus the cycles C_1 and C_2 meet at some point $v \in \mathbb{R}^2$
and there is an edge between vertices 1 and 2 in H_{cyc}. Also, the squares Y_{j_1-1}
and Y_{j_1} meet at the point v and since no other cycle $C_i, 3 \leq i \leq q$ meets C_1
or C_2 at v, we have that no other square of L_Y contains v. 7
For the next step suppose that j_2 is the smallest index $j > j_1$ such that the square Y_j does not belong to the interior of C_2. There exists such an index j_2 since any S–cycle contains at least three distinct squares. The square Y_{j_2} cannot belong to the interior of C_1. Because if Y_{j_2} belongs to the interior of C_1, then $Y_{j_2 - 1}$ and Y_{j_2} necessarily meet at v. Since $j_1 \leq j_2 - 1 < j_2$ there are at least three distinct vacant squares in the set $\{Y_{j_1 - 1}, Y_{j_1}, Y_{j_2 - 1}, Y_{j_2}\}$ each containing the point v. This is a contradiction to the last line of the previous paragraph.

From the above paragraph, we therefore have that the square Y_{j_2} does not belong to the interior of the cycle C_1 and does not belong to the interior of the cycle C_2. As before, without loss of generality, we assume that Y_{j_2} is contained in the interior of the cycle C_3. Correspondingly, the cycle graph H_{cyc} contains an edge between the vertices 2 and 3. In the next step of the iteration, suppose that j_3 is the smallest index $j > j_2$ such that Y_j does not belong to the interior of C_3.

Suppose that Y_{j_3} belongs to the interior of the cycle C_{k_4}. Arguing as above, we again have that three vacant squares cannot meet at a point and so $k_4 \neq 2$. If $k_4 = 1$ we have a contradiction since this means that vertices 1 and 3 are connected by an edge and so H_{cyc} contains a cycle. Else without loss of generality we let $k_4 = 4$.

Continuing this way, we obtain cycles $C_{k_j}, j \geq 5$ and at each step of the iteration we check if we obtain a cycle in the graph H_{cyc}. Suppose the iteration continues until the final square Y_n of the sequence L_Y and suppose without loss of generality that Y_n belongs to the final cycle C_q. By our iterative process, we have that the path $P = (1, 2, \ldots, q)$ is contained in the cycle graph H_{cyc}. Since Y_n and Y_1 are star adjacent, the cycles C_1 and C_q share a corner. Therefore there is an edge between vertices 1 and q in H_{cyc} and so again we obtain a cycle in H_{cyc}, a contradiction.

From the above discussion we have that the outermost boundary $\partial_0(L_Y)$ cannot have three or more cycles. Suppose now that $\partial_0(L_Y) = C_1 \cup C_2$ contains exactly two cycles C_1 and C_2. Suppose C_1 and C_2 meet at $v \in \mathbb{R}^2$. From Theorem 1 of Ganesan (2017), the cycles C_1 and C_2 do not have any other vertex in common. As before, we assume that the first square Y_1 lies in the interior of cycle C_1. Let j_1 be the smallest index $j > 1$ such that Y_j does not belong to the interior of C_1. Since there are two cycles, we have that $j_1 < n$ strictly and the square Y_{j_1} belongs to the interior of the cycle C_2.

Let j_2 be the smallest index $j > j_1$ such that Y_j does not belong to the interior of C_2. If no such j exists, then all the remaining squares $\{Y_j\}_{j_1 \leq j \leq n}$
of the sequence L_Y belong to the interior of the cycle C_2. In particular, the square Y_n is star adjacent to Y_1. But this leads to a contradiction since Y_1 shares a corner $v \in \mathbb{R}^2$ with Y_{j_1} and is not star adjacent to any other square contained in the interior of C_2.

If on the other hand suppose that $j_2 < n$ strictly. We then have that the square Y_{j_2-1} (contained in the interior of the cycle C_2) is star adjacent to Y_{j_2} (contained in the interior of the cycle C_1). This means that Y_{j_2-1} meets Y_{j_2} at the point v. Arguing as above, we have a contradiction since there are at least three distinct vacant squares in the set $\{Y_{j_1-1}, Y_{j_1}, Y_{j_2-1}, Y_{j_2}\}$. Therefore the outermost boundary $\partial_0(L_Y)$ is a single cycle.

\section{Proof of Theorem 5}

We prove by induction on the number n of squares contained in the interior of a cycle C. Strictly speaking, we apply induction assumption only on cycles containing the origin in the interior. The statement is true for arbitrary cycles by translation.

The statement is true for cycles containing a single square in the interior. Suppose it is true for all cycles containing n squares in the interior. Let C be any cycle containing $n+1$ cycles in its interior. Label all squares in the interior of C with label 1 and all other squares with label 0. Let $\{J_i\}_{0 \leq i \leq n}, J_i \subset \{S_k\}$ be the squares contained in the interior of C. Let J_0 be the topmost rightmost square contained in the interior of C obtained as follows. If $z_k = (x_k, y_k)$ denotes the centre of square J_k, then $y_0 = \max_{0 \leq k \leq n} y_k$. Further if $S \supset J_0$ is the set of squares in $\{J_i\}$ whose centre has $x-$coordinate y_0, then $x_0 = \max_{J_i \in S} x_i$.

Let $h_0(t), h_0(r), h_0(l)$ and $h_0(b)$ be the top, right, left and bottom edges of the square J_0. We have the following properties.

(t1) An edge e belongs to the cycle C if and only if it is adjacent to a square J_k in the interior of C and a square $Q_k \notin \{J_i\}$ in the exterior of C.

(t2) If (x_i, y_i) is the centre of the square J_i in the interior of the cycle C, then $y_i \leq y_0$. Also if $y_i = y_0$, then $x_i \leq x_0$.

(t3) The edges $h_0(t)$ and $h_0(r)$ belong to the cycle C and $(h_0(t), h_0(r))$ is a subpath in C.

\textit{Proof of (t1) – (t3):} To see property (t1) is true, let $e \in C$ be an edge
common to two squares in \(\{S_k\}\). Exactly one of the squares is contained in
the interior of the cycle \(C\) and the other is contained in the exterior of \(C\).
This proves property \((t_1)\) and property \((t_2)\) is also true by definition.

We prove \((t_3)\) by contradiction. Suppose that \(h_0(t)\) does not belong to
the cycle \(C\). The centre of the square \(J_0\) is \((x_0, y_0)\) and so the centre of
the top edge \(h_0(t)\) is \((x_0, y_0 + \frac{1}{2})\). Since \(J_0\) is contained in the interior of \(C\),
the edge \(h_0(t)\) is contained in the interior of \(C\). Therefore some edge \(e\) in \(C\) cuts
the line \(x = x_0\) at some point \((x_0, y)\) where \(y \geq y_0 + \frac{3}{2}\). The final statement
is true since edges of squares in \(\{S_k\}\) intersect the line \(x = x_0\) at \(y_0 + \frac{k}{2}\) for
integer \(k \neq 0\).

The edge \(e\) is adjacent to some square \(J_k\) in the interior of the cycle \(C\)
and the centre \((x_k, y_k)\) of \(J_k\) satisfies \(y_k \geq y_0 + 1\). This contradicts the first
statement of property \((t_2)\) above. An analogous analysis using the second
statement of property \((t_2)\) proves that the edge \(h_0(r)\) also belongs to \(C\). Since
the edges \(h_0(t)\) and \(h_0(r)\) have a common endvertex, they are consecutive
edges in \(C\).

\[\]

To apply the induction assumption, we modify the cycle \(C\) and obtain
a cycle \(C_1\) containing exactly \(n\) squares in the interior. To do this, we use
property \((t_3)\) above to determine that at least two edges \((h_0(t)\) and \(h_0(r)\)) of
the square \(J_0\) belong to \(C\). All four edges of \(J_0\) cannot belong to \(C\) since this
would mean that \(C\) contains only \(J_0\) in its interior.

We therefore consider two possible cases: \((a)\) Exactly three edges of the
square \(J_0\) belong to the cycle \(C\) and \((b)\) Exactly two edges of \(J_0\) belong to \(C\).

Case \((a)\): We suppose that the edges \(h_0(l), h_0(t)\) and \(h_0(r)\) belong to the
cycle \(C\). An analogous analysis holds if \(h_0(t), h_0(r)\) and \(h_0(b)\) belong to \(C\).

We modify the cycle \(C\) and define
\[
C_1 = (C \setminus \{h_0(l), h_0(t), h_0(r)\}) \cup h_0(b).
\]

We have the following properties.
\((t_4)\) The graph \(C_1\) is a cycle and the top most right most square \(J_0\) lies in
the exterior of \(C_1\).
\((t_5)\) The cycle \(C_1\) contains exactly exactly \(n\) squares \(\{J_i\}_{1 \leq i \leq n}\) in its interior.

\textit{Proof of \((t_4) - (t_5)\):} We prove that \(C_1\) is a cycle as follows. From property
\((t_3)\) above, we have that \((h_0(t), h_0(r))\) is a subpath of the cycle \(C\).
Since \(h_0(l)\) and \(h_0(t)\) share a common endvertex, we have that the sequence
...
of edges \((h_0(l), h_0(t), h_0(r))\) form a subpath in \(C\). Therefore the bottom edge \(h_0(b)\) of the square \(J_0\) cannot belong to the cycle \(C\) since this would mean that \(C\) consists only one square \(J_0\) in its interior, a contradiction.

Let \(x\) and \(y\) be the endvertices of the bottom edge \(h_0(b)\). The subpath of edges
\((h_0(l), h_0(t), h_0(r))\) also has endvertices \(x\) and \(y\) and therefore the set
\(C \setminus \{h_0(l), h_0(t), h_0(r)\}\) is a path of edges with endvertices \(x\) and \(y\). Since
\(h_0(b) \notin C\) (see previous paragraph), we have that \(C_1\) as defined above is a

To see that the square \(J_0\) lies in the exterior of the cycle \(C_1\), let \(z_0 = (x_0, y_0)\) be the centre of the square \(J_0\). If \(J_0\) lies in the interior of \(C_1\), then
some edge \(e\) in the cycle \(C_1\) intersects the line \(x = x_0\) at \((x_0, y)\) for some
\(y \geq y_0 + \frac{1}{2}\). Since the edge \(h_0(t) \notin C_1\), we have that \(e \neq h_0(t)\) and so
\(y \geq y_0 + \frac{3}{2}\).

The edge \(e\) also necessarily belongs to the original cycle \(C\) and is therefore
adjacent to some square \(J_k\) contained in the interior of \(C\). The centre \((x_k, y_k)\)
of \(J_k\) satisfies \(y_k \geq y_0 + 1\). This contradicts property \((t2)\) above. Thus \(J_0\) lies
in the exterior of \(C_1\) and this proves \((t4)\).

We prove \((t5)\) as follows. The square \(J_0\) shares only the edge \(h_0(b)\) with
the cycle \(C_1\) and no other endvertex with \(C_1\). Thus every point in the interior
of \(C\) either belongs to \(C_1\) or the square \(J_0\). This means that \(C_1\) has exactly \(n\)

We now apply the induction assumption on the cycle \(C_1\). The set of
squares contained in \(C_1\) form a plus connected component and so the squares
\(\{J_i\}_{1 \leq i \leq n}\) form a plus connected component. The square \(J_0\) in the exterior
of \(C_1\) shares the edge \(h_0(b)\) with some square \(J_k, k \geq 1\) lying in the interior
of \(C_1\). This means that \(J_0 \cup \{J_i\}_{1 \leq i \leq n}\) form a plus connected component. This
proves the theorem for the case where exactly three edges of the square \(J_0\)
belong to the cycle \(C\).

Case \((b)\): We now consider the other possibility where there are exactly two
edges of the square \(J_0\) in the cycle \(C\). Using property \((t3)\) above, we have
that the only edges of \(J_0\) belonging to \(C\) are \(h_0(t)\) and \(h_0(r)\).

We modify the cycle \(C\) and define
\[C_2 = (C \setminus \{h_0(t), h_0(r)\}) \cup \{h_0(l), h_0(b)\}.\]

Let \(z_{lb}\) be the endvertex common to \(h_0(l)\) and \(h_0(b)\). We consider two subcases
separately depending on whether \(z_{lb} \in C \) are not.

(b1) If the vertex \(z_{lb} \) does not belong to the cycle \(C \), then the argument is analogous to Case (a) above. We have that properties \((t4) − (t5)\) above are true for the graph \(C_2 \) also. Therefore \(C_2 \) is a cycle and the squares \(\{J_i\}_{1 \leq i \leq n} \) in the interior of \(C_2 \) form a plus connected component. The square \(J_0 \) shares an edge \(h_0(b) \) with \(C_2 \) and so the squares \(J_0 \cup \{J_i\}_{1 \leq i \leq n} \) form a plus connected component.

(b2) If the vertex \(z_{lb} \) belongs to the cycle \(C \), then the modified graph \(C_2 \) is a union of two cycles \(D_1 \) and \(D_2 \) sharing a common vertex \(z_{lb} \). We apply induction assumption on each of \(D_1 \) and \(D_2 \). Without loss of generality assume that squares \(\{J_i\}_{1 \leq i \leq p} \) belong to the interior of \(D_1 \) and the rest \(\{J_i\}_{p+1 \leq i \leq n} \) belong to the interior of \(D_2 \). The square \(J_0 \) shares an edge with some square \(J_{i_1}, 1 \leq i_1 \leq p \) lying in the interior of \(D_1 \) and another square \(J_{i_2}, p+1 \leq i_2 \leq n \) lying in the interior of \(D_2 \).

By induction assumption the squares \(\{J_i\}_{1 \leq i \leq p} \) form a plus connected component. Thus \(J_0 \cup \{J_i\}_{1 \leq i \leq p} \) forms a plus connected component. Similarly, the squares \(J_0 \cup \{J_i\}_{p+1 \leq i \leq n} \) also form a plus connected component. Thus the squares \(\{J_i\}_{0 \leq i \leq n} \) form a plus connected component. This proves case (b).

To prove the statement regarding the outermost boundary, we argue as follows. From Theorem 2 of Ganesan (2017), we have that the outermost boundary of the plus connected component \(\{J_i\}_{0 \leq i \leq n} \) is a single cycle \(C_J \). Also, every square \(J_i, 0 \leq i \leq n \) belongs to the interior of \(C_J \). Since the cycle \(C \) contains only of edges of \(\{J_i\}_{0 \leq i \leq n} \), we have that every edge in the cycle \(C \) either belongs to or lies in the interior of \(C_J \). If \(C_J \neq C \), then there exists an edge \(e \in C_J \), belonging to the exterior of \(C \). The edge \(e \) is the edge of some square \(J_k, 0 \leq k \leq n \) and so \(J_k \) lies in the exterior of \(C \), a contradiction.

\[\boxed{4 \text{ Proof of Theorem 6}} \]

Let \(\{P_i\}_{1 \leq i \leq t} \subset C \) be the set of all bridges for the cycle \(D \), contained in the cycle \(C \). Fix \(1 \leq i \leq t \) and suppose that \(a_i \) and \(b_i \) are the endvertices of the path \(P_i \) and let \(Q_i \) and \(R_i \) be the two subpaths in the cycle \(D \) with endvertices \(a_i \) and \(b_i \). Among the two cycles \(Q_i \cup P_i \) and \(R_i \cup P_i \), exactly one
of them contains no squares of D in its interior. Suppose

$$g(P_i, D) = Q_i \cup P_i$$

contains no squares of D in its interior. We define $g(P_i, D)$ to be the gap between the bridge P_i and the cycle D. We also define $Q_i = Ba(P_i, D)$ to be the base for the bridge P_i contained in the cycle D. By definition, the union of the paths $P_i \cup R_i$ contains both the cycles $g(P_i, D)$ and D in its interior.

In Figure 2, the cycles C and D are denoted by the dotted and solid curves, $uxsyu$ and $urstu$, respectively. The segments $P_i = uxs$ and $P_2 = uys$ are bridges with the same base $Q_1 = Q_2 = urs$. The gap $g(P_i, D)$ is the union of the segments uxs and urs. The paths $R_1 = R_2 = uts$ and union of the paths $P_i \cup R_i = \{uxs\} \cup \{uts\}$ contains both the cycles $g(P_i, D) = uxsru$ and $D = ursstu$ in its interior.

Let $\{J_j\}_{1 \leq j \leq n} \subset \{S_k\}$ be the squares in the interior of C. We first prove the result of the Theorem when $t = 1$, i.e., there is exactly one bridge, P_1. In this case, the desired bridge decomposition is $P_1 \cup R_1$ and we argue as follows. The interior of the cycle $P_1 \cup R_1$ contains the interior of the cycle D in its interior. If there exists a square J_k that lies in the interior of C but in the exterior of $P_1 \cup R_1$, then there exists an edge $e \notin P_1$ of the cycle C lying in the exterior if $P_1 \cup R_1$. Since the interior of the cycle D is contained in the interior of $P_1 \cup R_1$, the edge e also lies in the exterior of D. But this is a contradiction, since the path P_1 contains all edges of the cycle C, lying in the exterior of the cycle D.

We henceforth assume that $t \geq 2$ and therefore there are at least two distinct bridges and two (not necessarily distinct) bases. We have the following properties.

1. If edge $e \in C$ lies in the exterior of the cycle D, then $e \in \cup_{i=1}^t P_i$. If $i \neq j$, the path P_i has no edges in common with the cycle $g(P_j, D)$.
2. For every $1 \leq i \leq t$, the gap $g(P_i, D)$ and the cycle D have mutually disjoint interiors. Either all the squares $\{J_k\}_{1 \leq k \leq n}$ contained in the interior of the cycle C also lie in the interior of the cycle $g(P_i, D)$ or all the squares $\{J_k\}_{1 \leq k \leq n}$ lie in the exterior of $g(P_i, D)$.

Proof of $(w1) - (w2)$: The first part property $(w1)$ and the first part of property $(w2)$ is true by construction. We prove the second part of property $(w1)$ as follows. We fix $i \neq j$ and show separately that P_j is edge disjoint with P_i and with Q_i. Let $P_i = (e_1, \ldots, e_k)$ and suppose $e_1 \in P_i \cap P_j$. Traversing the path P_i let f be the smallest index such that the edges $e_l, 1 \leq l \leq f$ belong to $P_i \cap P_j$ and the edge $e_{f+1} \in P_i \setminus P_j$.

13
The edges e_f and e_{f+1} share an endvertex v_f. Moreover, there is also an edge $g \in P_j$ with endvertex v_f and $g \notin \{e_f, e_{f+1}\}$. This is a contradiction since the edges e_f, e_{f+1} and g all belong to the cycle C and every vertex in C is adjacent to exactly two edges of C. This proves that P_i and P_j are edge disjoint. The path Q_i is a subpath of the cycle D and every edge in the path P_j, by definition, lies in the exterior of D. So the paths P_j and Q_i are also disjoint. This proves the second part of $(w1)$.

We prove the second part of $(w2)$ for $i = 1$ and an analogous proof holds for all i. Suppose that the gap $g(P_1, D) = P_1 \cup Q_1$ where Q_1 is the base for the bridge P_1 as defined in (4.1). From Theorem 5, we have that the squares $\{J_j\}_{1 \leq j \leq n}$ contained in the interior of the cycle C form a plus connected component.

If there exists a square J_{i_1} of C in the interior of $g(P_1, D)$ and a square J_{i_2} in the exterior, then there is a plus connected path from J_{i_1} to J_{i_2} consisting only of squares in $\{J_j\}$. In particular some edge e of the cycle $g(P_1, D)$ is common to a square J_{k_1} contained in the interior of $g(P_1, D)$ and a square J_{k_2} in the exterior of $g(P_1, D)$. If $e \in P_1$, this is a contradiction since $P_1 \subset C$ and every edge in the cycle C is adjacent to one square in the interior of C and one square in the exterior of C.

If $e \in Q_1 \subseteq D$, then e is adjacent to one square in the interior of D and one square in the exterior of D. Thus one of the squares J_{k_1} or J_{k_2} lies in the interior of D. But this is a contradiction since C and D have mutually disjoint interiors and so no square $J_m, 1 \leq m \leq n$ is contained in the interior of the cycle $g(P_1, D)$. This proves the second part of $(w2)$.

We have the following Lemma regarding the interior of the gaps.

Lemma 7. There exists $1 \leq i_0 \leq t$ such that the gap $g(P_{i_0}, D)$ contains the cycle C in its interior.

Our argument is by contradiction. Suppose every gap is empty, i.e., if $1 \leq i \leq t$, then the gap $g(P_i, D)$ contains no square of $\{J_k\}_{1 \leq k \leq n}$ in its interior. We recall that $\{J_k\}_{1 \leq k \leq n}$ are the squares contained in the interior of the cycle C. Consider two bridges P_i and $P_j, i \neq j$ and the corresponding bases Q_i and Q_j. We have the following property.

Every edge of P_j is contained in the exterior of the cycle $g(P_i, D)$.

Every edge of Q_j is contained in the exterior of $g(P, D)$.

(4.2)
In other words, the cycles \(g(P_i, D) \) and \(g(P_j, D) \) are edge disjoint and have mutually disjoint interiors.

Proof of (4.2): To see that the first statement is true, we assume that some edge \(e \) in \(P_j \) is contained in the interior of the cycle \(g(P_i, D) = P_i \cup Q_i \). The edge \(e \) is the edge of a square \(J_k \) contained in the interior of the cycle \(C \). Thus the square \(J_k \) lies in the interior of the cycle \(g(P_i, D) \) and from property (w2), we have that all squares \(\{J_k\}_{1 \leq k \leq n} \) are contained in the interior of the cycle \(g(P_i, D) \), a contradiction.

We prove the second statement of (4.2) as follows. Suppose some edge \(f \) in \(Q_j \) lies in the interior of the cycle \(g(P_i, D) \). The edge \(f \) is the edge of a square \(S_k \) lying in the interior of the cycle \(D \). The square \(S_k \) lies in the interior of the cycle \(g(P_i, D) \) which contradicts the construction of the gap defined above.

Thus every edge in \(Q_j \) either belongs to \(g(P_i, D) \) or lies in the exterior of \(g(P_i, D) \). In particular, the cycles \(g(P_i, D) \) and \(g(P_j, D) \) have mutually disjoint interiors. Suppose some edge \(e \in Q_j \) belongs to \(g(P_i, D) \). The edge \(e \in Q_j \) is an edge of the cycle \(D \) and by definition, every edge in the path \(P_i \) lies in the exterior of \(D \). Thus \(e \in P_i \) and let \(A_1 \) and \(A_2 \) be the two squares containing \(e \) as an edge. Suppose \(A_1 \) lies in the interior of \(g(P_i, D) \) and \(A_2 \) lies in the interior of \(g(P_j, D) \). One of the squares in \(\{A_1, A_2\} \) lies in the interior of the cycle \(D \) and this contradicts the definition of the gaps in (4.1).

From the above discussion, we have that every edge in \(Q_j \) lies in the exterior of \(g(P_i, D) \). This proves (4.2). \(\square \)

Merging bridges with \(D \)

To prove Lemma 7, we first merge the bridges \(\{P_k\}_{1 \leq k \leq t} \) with the cycle \(D \) one by one to obtain a final cycle \(D_{fin} \). Since we have assumed that the gaps \(\{g(P_i, D)\} \) are all empty, we obtain that the final cycle \(D_{fin} \) does not contain the cycle \(C \) in its interior. This contradicts Theorem 3 of Ganesan (2017), where we obtain that the cycles obtained by merging \(C \) and \(D \) is unique and contains both \(C \) and \(D \) in its interior.

At the beginning of the iteration, we set \(E_0 = D \) and in the first iteration we consider the bridge \(P_1 \). We write \(P_1 = B(P_1, E_0) \) to emphasize the fact that \(P_1 \) is a bridge for the cycle \(E_0 \). Every edge in the bridge \(B(P_1, E_0) \) lies in the exterior of \(E_0 \) and the endvertices of \(B(P_1, E_0) \) belong to the cycle \(E_0 \).
We set $E_1 = P_1 \cup R_1$ to be the cycle obtained in the first iteration after merging $B(P_1, E_0)$ with the cycle E_0. Here $R_1 = E_0 \setminus Q_1$ is a subpath of E_0 and the path $Q_1 = Ba(P_1, E_0)$ is base for the bridge P_1 contained in the cycle E_0.

For $i = 1$, the cycle E_i has the following properties.

(f1) The cycle $E_i = (\cup_{k=1}^{i} P_k) \cup T_i$, where $T_i = D \setminus (\cup_{k=1}^{i} Q_k)$.

(f2) The interior of the cycle E_i is the union of the interior of the cycle E_{i-1} and the interior of the cycle $g(P_i, E_{i-1}) = g(P_i, E_0)$. Thus every square in the interior of E_i either belongs to the interior of D or belongs to the interior of one of the cycles in $\cup_{k=1}^{i} g(P_k, E_0)$.

(f3) All squares in the interior of the cycle C are contained in the exterior of E_i.

(f4) For $1 \leq i \leq t - 1$, we have that $P_{i+1} = B(P_{i+1}, E_i)$ and $Q_{i+1} = Ba(P_{i+1}, E_i)$. Also every square in the interior of the cycle $g(P_{i+1}, E_i) = g(P_{i+1}, E_0)$ lies in the exterior of E_i.

From the final property we obtain that the path P_{i+1} is also a bridge for the new cycle E_i, the path Q_{i+1} is still the base for P_{i+1} contained in the cycle E_i and the gap between P_{i+1} and E_i remains unchanged and lies in the exterior of E_i. This allows us to proceed to the next step of the iteration.

Proof of (f1) – (f4) for $i = 1$: The properties (f1) and (f2) are true by construction. The property (f3) is true by the definition of E_i.

To prove (f4), we first verify the following properties.

(a) The subpath Q_{i+1} is contained in the cycle E_i.

(b) Every edge in the path P_{i+1} lies in the exterior of the cycle E_i.

(c) The cycle $g(P_{i+1}, E_0) = P_{i+1} \cup Q_{i+1}$ and the cycle E_i have mutually disjoint interiors.

For (a) we use the fact that Q_j and Q_k are edge disjoint (see (1.1) and (1.2)) for $j \neq k$ and so $T_i = D \setminus \cup_{l=1}^{i} Q_l \subset E_i$ contains the subpath Q_{i+1}.

We prove (b) as follows. Using (f2), we obtain that the interior of the cycle E_i is the union of the interiors of the cycle D and the interiors of the cycles $g(P_k, D), 1 \leq k \leq i$. By definition, every edge in the path P_{i+1} lies in the exterior of the cycle D. From property (4.2) of the gaps, every edge in P_{i+1} lies in the exterior of the cycle $g(P_k, D)$ for $1 \leq k \leq i$. Thus every edge in P_{i+1} lies in the exterior of the cycle E_i. This proves (b).

For (c), we first use property (f3) to obtain that every square in the interior of the cycle E_i either belongs to the interior of one of the cycles in $\cup_{k=1}^{i} g(P_k, E_0)$ or belongs to the interior of the cycle $E_0 = D$. From (1.2),
we have that the cycle \(g(P_{i+1}, E_0) \) has mutually disjoint interior with every cycle \(g(P_k, E_0), 1 \leq k \leq i \) and from property \((w2)\), we have that the cycle \(g(P_{i+1}, E_0) \) and \(D \) have mutually disjoint interiors. Thus \((c)\) is also true.

We prove \((f4)\) now. The endvertices \(a_{i+1} \) and \(b_{i+1} \) of the path \(Q_{i+1} \) are also the endvertices of \(P_{i+1} \). Using \((a)\) and \((b)\), we have that the path \(P_{i+1} \) is also a bridge for the new cycle \(E_i \). Also using \((c)\), we have that the path \(Q_{i+1} = Ba(P_{i+1}, E_i) \) is the base for \(P_{i+1} \) contained in the cycle \(E_i \). Statements \((a) - (c)\) also obtain that the gap \(g(P_{i+1}, E_i) = g(P_{i+1}, E_0) \). \(\blacksquare \)

Using property \((f4)\), we proceed to the next step of the iteration and merge \(P_2 \) with \(E_1 \) to get a new cycle \(E_2 \) which again satisfies properties \((f1) - (f4)\). This procedure continues and after \(n \) steps, we obtain the final cycle \(E_n \). We use the properties of the cycle \(E_n \) to prove Lemma \([7]\).

Proof of Lemma \([7]\) From property \((w1)\), we have that every edge of the cycle \(C \) lying in the exterior of the cycle \(D \) belongs to one of the bridges in \(\{P_i\}_{1 \leq i \leq t} \). Therefore the cycle \(E_n \) is precisely the cycle obtained by the merging algorithm of Theorem 3 of Ganesan (2017). From Theorem 3 of Ganesan (2017), we also have that the cycle \(E_n \) contains the cycles \(C \) and \(D \) in its interior. But this contradicts property \((f2)\), which states that every square in the interior of cycle \(C \) lies in the exterior of the cycle \(E_n \). This proves Lemma \([7]\). \(\blacksquare \)

Proof of Theorem \([6]\) From Lemma \([7]\) we obtain that there exists \(1 \leq i_0 \leq t \) such that the gap \(g(P_{i_0}, D) = P_{i_0} \cup Q_{i_0} \) (see \([4.1]\)) contains the cycle \(C \) in its interior. We recall that the path \(Q_{i_0} \) is a subset of the cycle \(D \) and the path \(R_{i_0} = D \setminus Q_{i_0} \) is such that the union of the paths \(P_{i_0} \cup R_{i_0} \) is a cycle that contains both the cycles \(g(P_{i_0}, D) \) and \(D \) in its interior. In particular, the union \(P_{i_0} \cup R_{i_0} \) is a cycle containing both the cycles \(C \) and \(D \) in its interior. The path \(P_{i_0} \subseteq C \) is a bridge for cycle \(D \). Reversing the roles of \(C \) and \(D \) in the above proof, we obtain that \(R_{i_0} \subseteq D \) is also a bridge for cycle \(C \). \(\blacksquare \)
Figure 3: The solid curve denotes the outermost boundary cycle ∂_0^+ and the vacant squares labelled $i, 1 \leq i \leq 7$, share an edge with ∂_0^+ and lie in the exterior of ∂_0^+.

5 Proof of Theorem 3

Proof of Theorem 3: Let G_C^+ denote the graph with vertex set as corners of squares of $C^+(0)$ and edge set as edges of such squares. Let

$$\partial_0^+ = (e_1, ..., e_t)$$

be the outermost boundary cycle in G_C^+ for the component $C^+(0)$ obtained from Theorem 2 of Ganesan (2017). Every edge e_i is adjacent to a vacant square Y_i contained in the exterior of ∂_0^+ and an occupied square W_i contained in the interior of ∂_0^+.

For $i \neq j$, the squares Y_i and Y_j need not be distinct. This is illustrated in Figure 3 where the solid curve represents the outermost boundary cycle ∂_0^+. The vacant squares labelled $i, 1 \leq i \leq 7$ share an edge with ∂_0^+ and lie in the exterior of ∂_0^+. The edges e and f of the outermost boundary cycle ∂_0^+ are both edges of the same vacant square labelled 1.

Let $\Lambda^+ = \bigcup_{i=1}^{t} \{Y_i\}$ be the set of all vacant squares lying in the exterior of ∂_0^+ and sharing an edge with ∂_0^+.

Outline of the Proof

The proof consists of seven steps. In the first step, we merge vacant squares in Λ^+ one by one with the outermost boundary ∂_0^+ in an iterative manner.
to obtain a final cycle D_{fin}. This cycle D_{fin} is in fact the desired outermost boundary ∂_H in the statement of the Theorem. To see this, we extract a star connected component L of vacant squares by exploring D_{fin} edge by edge. We show that the outermost boundary of L is D_{fin} and D_{fin} contains at least one edge from every square in L. This forms the second step in the proof.

If we establish that L is a star connected S-cycle, then we are done since L would be the desired H_{out}. Indeed, in the third step of our proof, we see that the component L contains a star connected S-cycle. In the remaining three steps, we assume that L is not a star S-cycle and arrive at a contradiction. In the fourth step, we let $L_1 \neq L$ be an S-cycle contained in L and prove that the outermost boundary $\partial_0(L_1)$ of L_1 is a single cycle that lies in the exterior of the outermost boundary cycle ∂_0^+ and shares edges with ∂_0^+. We also enumerate the relevant properties of $\partial_0(L_1)$ needed for future use.

Our aim is to use the S-cycle L_1 to obtain the required contradiction. In the fifth step in the proof, we merge the cycles $\partial_0(L_1)$ and ∂_0^+ to obtain a bigger cycle ∂_{temp} and again list the properties of ∂_{temp} needed for the next step. In the sixth crucial step, we use the properties of $\partial_0(L_1)$ and ∂_{temp} obtained above to prove that there is a vacant square Z_j of L_1 all of whose edges lie in the interior of ∂_{temp}.

In the seventh final step, we argue that ∂_{temp} is precisely the “intermediate” cycle obtained in the iterative algorithm of the first step, after merging only vacant squares in the subsequence L_1 with the cycle ∂_0^+. Merging the remaining squares in $L \setminus L_1$ with ∂_{temp} we get D_{fin}. All edges of the vacant square $Z_j \in L_1 \subset L$ are contained in the interior of ∂_{temp} and therefore also in the interior of D_{fin}. This is a contradiction since D_{fin} contains at least one edge from each square in L.

We provide the details below.

1. **Merge all vacant squares in Λ^+ with ∂_0^+**.

Setting $C_0 := \partial_0^+$, we merge the vacant squares in Λ^+ with C_0 in an iterative manner to obtain a finite sequence of cycles $\{C_i\}_{i \geq 1}$.

In the first step of our iterative procedure, we choose the square Y_1 and merge it with ∂_0^+ as in Theorem 3 of Ganesan (2017) to get the new cycle C_1. For $i = 1$, the cycle C_i has the following properties:

(a1.1) Every occupied square of $C^+(0)$ lies in the interior of C_i.
(a1.2) If edge $e \in C_i$, then either $e \in \partial_0^+$ or e is an edge of the square Y_i
for some $1 \leq l \leq t$. Every edge in ∂^+_0 either belongs to the cycle C_i or is contained in the interior of C_i. The edge e_j of ∂^+_0 belongs to C_i if and only if the corresponding vacant square Y_j lies in the exterior of C_i.

(a1.3) The vacant squares $Y_l, 1 \leq l \leq i$ and the edges $\{e_l, 1 \leq l \leq i\} \subseteq \partial^+_0$ are contained in the interior of the cycle C_i.

Proof of (a1.1) – (a1.3) for C_1: From Theorem 3 of Ganesan (2017), the interior of the new cycle C_1 contains the interior of the cycle C_0 and the interior of the square Y_1. Also the cycle C_1 consists only of edges of C_0 and Y_1. Thus (a1.1) and the first statement of (a1.2) are true.

The second statement in (a1.2) is true by construction. To prove the third statement, suppose that edge e_j of ∂^+_0 belongs to C_1. We recall that e_j is common to the occupied square $W_j \in C^+(0)$ and the vacant square $Y_j \in \Lambda^+$. Therefore either W_j or Y_j lies in the interior of C_1 but not both. Since W_j lies in the interior of C_1 (property (a1.1)), we have that Y_j lies in the exterior of C_1.

Conversely, suppose that $e_j \notin C_1$. From the first statement of (a1.2), we have that e_j is contained in the interior of C_1. Thus both the squares containing e_j as an edge belong to the interior of C_1. This proves (a1.2). To see (a1.3) is true, we have from (a1.2) that if $e_1 \in C_1$, then Y_1 lies in the exterior of C_1. But as mentioned above, the cycle C_1 contains Y_1 in its interior. Thus (a1.3) is true.

Using property (a1.2), we proceed to the next step of the iteration. Fix the least index j such that the edge e_j of ∂^+_0 belongs to the cycle C_1. If there is no such j, we stop the procedure. If there exists such an index j, then from property (a1.2) above, the corresponding vacant square Y_j lies in the exterior of C_1. Merge Y_j and C_1 using Theorem 3 of Ganesan (2017) to get the new cycle C_2.

The new cycle C_2 also satisfies properties (a1.1) – (a1.3).

Proof of (a1.1) – (a1.3) for C_2: It suffices to verify that Y_1 and Y_2 both belong to the interior of C_2. The rest of the proof is as above. Since C_1 satisfies (a1.1) – (a1.3) we have that Y_1 is contained in the interior of C_1 and therefore contained in the interior of C_2. If Y_2 is also contained in the interior of C_1, then we are done.

If not, then Y_2 is in the exterior of C_1 and in our iteration, we choose the least index j such that the edge e_j belongs to C_1. Since Y_2 is in the exterior of C_1, we have from property (a1.2) of cycle C_1 that the edge $e_2 \in C_1$. Thus $j = 2$ here and we merge Y_2 with C_1 to get C_2. Thus Y_2 lies in the interior
of C_2.

As before, we use property (a1.2) of cycle C_2 to proceed to the next step of iteration. This process proceeds for a finite number of steps and the cycle C_i obtained at iteration step $i \geq 1$ satisfies properties (a1.1) – (a1.3). Let D_{fin} denote the final cycle obtained after the procedure stops. The cycle D_{fin} satisfies the following properties.

(b1.1) The cycle D_{fin} contains only edges of vacant squares in Λ^+.
(b1.2) If e is an edge of the outermost boundary cycle ∂^+_0, then $e \notin D_{\text{fin}}$ and e lies in the interior of D_{fin}.
(b1.3) Every square in $C^+ (0) \cup \Lambda^+$ lies in the interior of D_{fin}.
(b1.4) The cycle D_{fin} is unique in the sense that if a cycle C satisfies the above mentioned properties (b1.1) – (b1.3), then $C = D_{\text{fin}}$.

We recall that we say an edge e lies in the interior of a cycle C if both the squares containing e lie in the interior of C.

Proof of (b1.1) – (b1.4): Properties (b1.1) – (b1.2) and (b1.5) follow by construction of the cycle D_{fin}. To see (b1.3), we have from (b1.2) that the outermost boundary cycle ∂^+_0 and therefore all squares contained in the interior of ∂^+_0, are also in the interior of D_{fin}. By construction every (vacant) square in Λ^+ is contained in the interior of D_{fin}.

To see (b1.4), we suppose there is a cycle C distinct from D_{fin} that satisfies (b1.1) – (b1.3) and suppose that C contains an edge e in the exterior of D_{fin}. This means that some vacant square $Y_j \in \Lambda^+$ lies in the exterior of D_{fin}, a contradiction to the fact that D_{fin} satisfies property (b1.3).

2. Obtaining the star connected sequence L from D_{fin}

In this subsection, we use the cycle D_{fin} obtained above to construct the star connected $S-$cycle H_{out}. Letting $D_{\text{fin}} = (f_1, \ldots, f_r)$, there exists a unique vacant square $Z_1 \in \Lambda^+$ that contains the edge f_1. Indeed if two vacant squares Z_1 and Z'_1 in Λ^+ both contain the edge f_1, then necessarily one of them is in the exterior of D_{fin}. This contradicts property (a3) of D_{fin}.

Similarly there exists a unique vacant square $Z_2 \in \Lambda^+$ that has edge f_2. If $Z_2 = Z_1$, we proceed to f_3, else Z_2 is star adjacent to Z_1 and we add Z_2 to the existing sequence and obtain (Z_1, Z_2). Continuing this way, we obtain a final sequence of squares $L = (Z_1, \ldots, Z_s)$ such that Z_i is star adjacent to Z_{i+1}.
for $1 \leq i \leq s - 1$.

By construction, the sequence L obtained is unique and has the following property.

(a2.1) The outermost boundary $\partial_0(L)$ of L is D_{fin}.
(a2.2) Every square in the sequence $L = (Z_1, \ldots, Z_s)$ contains an edge in D_{fin}.

Proof of (a2.1) – (a2.2): Property (a2.2) is true by construction. We prove (a2.1) below. Let G^*_V denote the graph with vertex set as corners of vacant squares in Λ^+ and edge set being the edges of squares in Λ^+. From Theorem 1 of Ganesan (2017), the outermost boundary $\partial_0(L)$ is a connected union of cycles in G^*_V and every square in the component L is contained in the interior of some cycle in $\partial_0(L)$.

By property (b1.3), all squares of Λ^+ are contained in the interior of D_{fin}. Since the sequence L consists of squares in Λ^+, we have that every edge in the outermost boundary $\partial_0(L)$ either belongs to the cycle D_{fin} or is contained in its interior. If there exists an edge e of D_{fin} not in $\partial_0(L)$, then the edge e necessarily lies in the interior of all cycles in $\partial_0(L)$. Any square containing e as an edge also lies in the exterior of all cycles in $\partial_0(L)$.

By construction, there is a vacant square $Z_j \in L$ that contains e as an edge and this square Z_j lies in the exterior of all cycles of $\partial_0(L)$, a contradiction.

3. The sequence L contains a S–cycle

We construct the vacant square graph G_V whose vertex set consists of the centres of the vacant squares in Λ^+. Suppose v_1 and v_2 are two vertices in G_V and let $Y_{i_1} \in \Lambda^+$ and $Y_{i_2} \in \Lambda^+$ be the vacant squares with centres v_1 and v_2, respectively. We draw an edge between v_1 and v_2 if and only if Y_{i_1} and Y_{i_2} are star adjacent (i.e., share a corner).

For the sequence L, let H_L be the subgraph of G_V obtained in the same manner above but using only squares in the sequence $L = (Z_1, \ldots, Z_s)$; in other words, the vertex set of H_L consists of the centres of the (vacant) squares in L. Suppose u_1 and u_2 are two vertices in H_L that are centres of the squares Z_{j_1} and Z_{j_2}. We draw an edge between u_1 and u_2 if and only if Z_{j_1} and Z_{j_2} are star adjacent.

The following is the main Lemma we prove in this subsection.

Lemma 8. The graph $H_L \subset G_V$ contains a cycle.
If H_L is itself a cycle, then the component L is an S-cycle and we are done. In Steps $4-7$, we assume this is not the case and arrive at a contradiction.

We prove the above Lemma by using induction on induced tree subgraphs of the graph G_V. We have the following properties.

(a3.1) The graph H_L is a connected induced subgraph of G_V.

Suppose X is a tree and an induced subgraph of G_V. Every vertex in X is the centre of a vacant square in Λ^+. For vertex $v \in X$, let J_v be the vacant square in Λ^+ containing v as its centre. Since X is connected, the union of the squares $\{J_v\}_{v \in X}$ is also connected and forms a star connected component C_X. We denote the outermost boundary of C_X as $\partial_0(X)$.

(a3.2) The outermost boundary $\partial_0(X)$ does not contain any (occupied) square of the plus connected component $C^+(0)$ in its interior.

The properties (a3.1) and (a3.2) imply Lemma.

Proof of (a3.1): By construction, the set of squares $\{Z_i\}_{1 \leq i \leq s}$ form a star connected component and so the corresponding graph H_L is a connected subgraph of G_V. To see that H_L is also an induced subgraph of G_V, we let u_1 and u_2 be two vertices in H_L. For $i = 1, 2$ let Z_i be the vacant square in L with u_i as centre. If there is an edge between the vertices u_1 and u_2 in the graph G_V, then Z_{i1} and Z_{i2} are star adjacent. Since both Z_{i1} and Z_{i2} belong to L, there is also an edge between u_1 and u_2 in the graph H_L.

In what follows we prove (a3.2) using induction.

Proof of (a3.2): Let $\#X$ denote the number of vertices in X. If $\#X = 1$ so that $X = \{u\}$ for some vertex $u \in G_V$, then the outermost boundary $\partial_0(X)$ is simply the union of all four edges of the square J_u. Thus (a3.2) is true for $\#X = 1$.

For $\#X \geq 2$, we proceed in two steps. In the first step, we apply induction and obtain the outermost boundary $\partial_0(X_1)$ for a subtree X_1 containing one less vertex than X. In the next step, we construct the outermost boundary $\partial_0(X)$ for the tree X using $\partial_0(X_1)$ and use induction assumption to obtain (a3.2).
Defining the subtree X_1 and obtaining $\partial_0(X_1)$

Suppose (a3.2) is true for all induced tree subgraphs of G_V containing at most n vertices and consider an induced tree $X \subset G_V$ with $n + 1$ vertices. Let u be any leaf of the tree X that is adjacent to a vertex $v \in X$. Writing $X = X_1 \cup \{u\}$ where $X_1 = X \setminus \{u\}$, we have that X_1 is an induced tree subgraph of G_V containing n vertices.

Let $G(X_1)$ be the graph formed by the squares $\{J_w\}_{w \in X_1}$. From Theorem 1 we have that the outermost boundary $\partial_0(X_1) = \bigcup_{i=1}^{r} D_i$ is a connected union of cycles in $G(X_1)$ with mutually disjoint interiors. We have the following properties regarding the square J_u and the cycles $\{D_i\}$.

(b3.1) The vacant square $J_u \in \Lambda^+$ containing u as the centre is star adjacent only to the square J_v containing v as the centre and no other square having centre in the tree X_1.

(b3.2) Every square J_w with centre $w \in X_1$ is contained in the interior of some cycle $D_i, 1 \leq i \leq r$. If $i \neq j$ then D_i and D_j have mutually disjoint interiors and share at most one vertex in common. No cycle in $\{D_i\}_{1 \leq i \leq r}$ contains an (occupied) square of $C^+(0)$ in its interior.

(b3.3) The square J_v lies in the interior of a unique cycle $D_{i_0}, 1 \leq i_0 \leq r$. Without loss of generality, we assume that $i_0 = r$.

(b3.4) No cycle $D_i, 1 \leq i \leq r - 1$, contains a vertex of the square J_u.

Proof of (b3.1) – (b3.4): The property (b3.1) is true since the original tree X is an induced subgraph of G_V. The first and second statements of property (b3.2) are true by Theorem 1. The final statement of property (b3.2) is true by induction assumption. Property (b3.3) is true since the cycles $\{D_i\}$ have mutually disjoint interiors.

To prove (b3.4), we argue by contradiction. Suppose some vertex $z \in D_i, i \neq r$ shares an endvertex with J_u. The vertex z belongs to an edge $e_z \in D_i$ and by Theorem 1 the edge e_z is the edge of a square $J_{v(z)}$ lying in the interior of D_i. Also, the centre $v(z)$ of the square $J_{v(z)}$ belongs to X_1. We have that

$$J_{v(z)} \neq J_v$$

and so the square J_u shares endvertices with two squares $J_{v(z)}$ and J_v, both containing centres in X_1. This contradicts property (b3.1) and so (b3.4) is true. The property (5.4) is a consequence of the following two statements. From (b3.2), the cycles D_i and D_r have mutually disjoint interiors. The square $J_{v(z)}$ is contained in the interior of the cycle $D_i, i \neq r$ and the square J_v.
is contained in the interior of the cycle D_r. □

Constructing $\partial_0(X)$ from $\partial_0(X_1)$

We now construct the outermost boundary $\partial_0(X)$ using the cycles $\{D_i\}_{1 \leq i \leq r}$. We consider three possible cases and see that (a3.2) is satisfied in each case; i.e., no cycle of the outermost boundary $\partial_0(X)$ contains any occupied square of the plus connected component $C^+(0)$ in its interior.

Case I: The first case we consider is when the square J_u lies in the interior of some cycle D_i, $1 \leq i \leq r$. We have the following properties.

(I.1) The square J_u lies in the strict interior of the cycle D_r in the sense that J_u lies in the interior of D_r and no edge of D_r belongs to J_u.

(I.2) The outermost boundary $\partial_0(X) = \partial_0(X_1) = \bigcup_{i=1}^r D_i$.

Thus by induction assumption, we have that $\partial_0(X)$ contains no occupied square of the component $C^+(0)$ in its interior. This proves (a3.2) for Case I.

Proof of (I.1): Suppose first that the square J_u lies in the interior of the cycle D_i, $1 \leq i \leq r - 1$. We recall that the square J_u also shares an endvertex with the square J_v, which in turn lies in the interior of the cycle D_r (property (b3.3)). The cycles D_i and D_r have at most one vertex in common and have mutually disjoint interiors (property (b3.2)). Therefore D_i and D_r have exactly one vertex z in common and the vertex z is also common to J_u and J_v. But this means that D_i contains a vertex of the square J_u contradicting property (b3.4) above. Therefore, we have that the square J_u lies in the interior of the cycle D_r.

The second part regarding strict interior containment is true because, every edge in the cycle $D_r \in \partial_0(X_1)$ belongs to a square with centre in $X_1 = X \setminus \{u\}$ and contained in the interior of D_r (property (iv), Theorem [I]). In other words, any square $J_w, w \in X$, lying in the interior of D_r and containing an edge in D_r, necessarily has its centre $w \in X_1 = X \setminus \{u\}$. □

Proof of (I.2): We recall that $G(X_1)$ is the graph formed by the union of the squares $\{J_w\}_{w \in X_1}$ with centres in $X_1 = X \setminus \{u\}$. The union of the cycles $\bigcup_{1 \leq j \leq r} D_j$ as a subgraph of $G(X_1)$ satisfy properties (i) – (v) of Theorem [I]. Therefore, in the graph $G(X)$, the cycles $\bigcup_{1 \leq j \leq r} D_r$ satisfy proper-
ties (ii) – (v). It only remains to see that property (i) is true; i.e., every edge in \(\bigcup_{1 \leq j \leq r} D_j \) is also an outermost boundary edge in the graph \(G(X) \).

Fix an edge \(e \in D_i, 1 \leq i \leq r \). We arrive at a contradiction supposing that \(e \) is not an outermost boundary edge in the graph \(G(X) \). Using the fact that the cycle \(D_i \) is an outermost boundary cycle in \(G(X_1) \), we have that the edge \(e \) is the edge of a square \(J_{v(e)} \) with centre \(v(e) \in X_1 = X \ \setminus \{u\} \). The above statement follows from the fact that the cycle \(D_i \) satisfies property (b), Lemma [2].

Let \(E_e \) be the outermost boundary cycle in the graph \(G(X) \) containing the square \(J_{v(e)} \) in its interior. We recall that we have only assumed that the edge \(e \) is not an outermost boundary edge in the graph \(G(X) \). Intuitively, this also implies that the outermost boundary cycle \(E_e \neq D_i \) and we state related properties.

\[\text{(I.3)} \] The square \(J_{v(e)} \) lies in the interior of the cycle \(D_i \). Every edge of the cycle \(D_i \) either belongs to \(E_e \) or lies in the interior of \(E_e \). Also \(E_e \neq D_i \) and so at least one edge of \(E_e \) lies in the exterior of \(D_i \).

\[\text{(I.4)} \] At least one edge of \(E_e \setminus D_i \) belongs to the square \(J_u \) and the square \(J_u \) lies in the interior of the cycle \(E_e \).

We recall from property (I.1) that the square \(J_u \) lies in the interior of the cycle \(D_r \).

\[\text{(I.5)} \] The cycles \(D_r \) and \(E_e \) have more than one vertex in common and at least one edge of \(D_r \) lies in the exterior of \(E_e \).

We use property (I.5) to prove the property (I.2) regarding the outermost boundary \(\partial_0(X) \).

\textbf{Proof of (I.3) – (I.5):} The first statement of (I.3) is true as follows. The cycle \(D_i \) is the outermost boundary cycle containing the square \(J_{v(e)} \) in its interior, in the graph \(G(X_1) \). Therefore \(D_i \) satisfies property (b), Lemma [2] and so \(J_{v(e)} \) lies in the interior of \(D_i \). For the second statement, we argue as follows. The cycle \(E_e \) is the outermost boundary cycle containing the square \(J_{v(e)} \) in its interior, in the graph \(G(X) \). So \(E_e \) satisfies property (c), Lemma [2] and so every edge in \(D_i \) either belongs to \(E_e \) or lies in the interior of \(E_e \).

The final statement of (I.3) is true as follows. Since the edge \(e \) is not an outermost boundary edge in the graph \(G(X) \), some cycle \(C \subset G(X) \) contains the edge \(e \) and therefore the square \(J_{v(e)} \) containing \(e \) as an edge, in its interior. The cycle \(D_i \) also contains the square \(J_{v(e)} \) in its interior and
so merging D_i and C if necessary, we assume that every edge of D_i either belongs to or lies in the interior of C. Since the edge e belongs to D_i and lies in the interior of C, we also have that $C \neq D_i$. Finally, the outermost boundary cycle E_e satisfies property (c), Lemma 2 and so every edge of C either belongs to or lies in the interior of E_e. In other words $E_e \neq D_i$.

To prove (I.4), we argue as follows. Using properties (b3.4) and (I.1), we have that the cycle D_i consists only edges of squares with centre in $X_1 = X \setminus \{u\}$. Suppose that all the edges in $E_e \setminus D_i$ also belong to squares with centres in $X_1 = X \setminus \{u\}$. This means that all edges of the cycle E_e belong to squares with centres in $X_1 = X \setminus \{u\}$. But $E_e \neq D_i$ and E_e contains at least one edge in the exterior of the cycle D_i (property (I.3)). This contradicts the fact that D_i is the outermost boundary cycle containing the square $J_{v(e)}$ in the graph $G(X_1)$ and satisfies property (c), Lemma 2.

From the above paragraph, we have that there exists at least one edge $f \in E_e \setminus D_i$ which belongs to the square J_u. If J_u lies in the exterior of E_e, we would merge E_e and J_u using Theorem 3 of Ganesan (2017) to obtain a bigger cycle E_{eu} in $G(X)$ with the following property. The cycle E_{eu} would contain E_e in its interior and at least one edge of E_{eu} would lie in the exterior of E_e. This would contradict the fact that E_e is an outermost boundary cycle in the graph $G(X)$ and satisfies property (c), Lemma 2. Thus the square J_u lies in the interior of E_e and this proves (I.4).

We prove (I.5) as follows. From (I.1), we have that the cycle D_r contains no edge of J_u and the square J_u lies in the interior of D_r. From (I.4), we obtain that the cycle E_e contains at least one edge of the square J_u and the square J_u lies in the interior of E_e. So there exists at least one edge of D_r lying in the exterior of E_e. The cycles E_e and D_r cannot have mutually disjoint interiors since they both contain the square J_u in their respective interiors and so E_e and D_r have more than one vertex in common.

Using property (I.5), we merge paths of D_r lying in the exterior of E_e in an iterative manner as in Theorem 3 of Ganesan (2017) to obtain a final cycle E''_e containing both the cycles E_e and D_r in its interior. The cycle $E''_e \neq E_e$ and this contradicts the fact that E_e is the outermost boundary cycle containing the square $J_{v(e)}$. This proves that $E_e = D_i$ and so every edge in D_i is an outermost boundary cycle in the graph $G(X)$. This completes the proof of (I.2).

Case II: In this case, the square J_u shares only a corner with the square J_v.
and lies in the exterior of all cycles \(\{D_i\}_{1 \leq i \leq r} \). We have the following property.

(II.1) The square \(J_u \) shares a unique vertex with the cycle \(D_r \) and does not share a vertex with any other cycle \(D_i, 1 \leq i \leq r - 1 \). The square \(J_u \) does not share an edge with any cycle \(D_i, 1 \leq i \leq r \).

(II.2) The outermost boundary \(\partial_0(X) = \bigcup_{i=1}^{r} D_i \cup \{J_u\} \).

In other words, the outermost boundary for the squares with centres in \(X \) is simply the union of the outermost boundary \(\partial_0(X_1) \) and the cycle formed by the four edges of \(J_u \). Since \(J_u \) is vacant, we have from property (b3.2) that \(\partial_0(X) \) contains no occupied square of the component \(C^+(0) \) in its interior. This proves (a3.2) for Case (II).

Proof of (II.1): From property (b3.3), we have that the square \(J_u \) sharing a vertex with the square \(J_v \) lies in the interior of the cycle \(D_r \). In this Case II, we have assumed that \(J_v \) and \(J_u \) share a single vertex \(z \) and the square \(J_u \) lies in the exterior of all cycles \(\{D_j\}_{1 \leq j \leq r} \). In particular, the square \(J_u \) lies in the exterior of \(D_r \) and so shares the vertex \(z \) with \(D_r \).

To see that the square \(J_u \) does not share any other vertex with the cycle \(D_r \), we argue as follows. Suppose that some vertex \(y \in D_r \) also belongs to \(J_u \) and \(y \neq z \). The vertex \(y \) belongs to an edge \(e_y \in D_r \) which is also the edge of a square \(J_{v(y)} \) with centre \(v(y) \in X_1 = X \setminus \{u\} \). The final statement is true since \(D_r \) is the outermost boundary cycle in the graph \(G(X_1) \) and so satisfies property (b), Lemma 2.

If \(J_{v(y)} = J_v \), we then obtain that \(J_u \) shares an edge with \(J_v \), a contradiction. If \(J_{v(y)} \neq J_v \), then \(J_u \) shares vertices with two distinct squares with centres in \(X_1 = X \setminus \{u\} \), a contradiction to the fact that \(u \) is a leaf in \(X \). From the above argument, we also obtain that \(J_u \) does not share an edge with the cycle \(D_r \). Finally, from property (b3.4), we obtain that \(J_u \) does not share a vertex with any other cycle \(D_i, 1 \leq i \leq r - 1 \). This proves (II.1).

Proof of (II.2): It suffices to see that properties (i) – (v) in the statement of Theorem 1 of Ganesan (2017) holds. We first prove properties (ii) – (v).

Property (ii) holds since \(\partial_0(X_1) \) is connected and the square \(J_u \) shares a vertex with the cycle \(D_r \in \partial_0(X_1) \) (see property (II.1) above).

Property (iii) holds since the square \(J_u \) shares a single vertex with \(D_r \) and does not share a vertex with any other cycle \(D_i, 1 \leq i \leq r - 1 \) (prop-
erty (II.1)). Property (iv) is true since every square with centre in \(X_1 = X \setminus \{ u \} \) is contained in some cycle \(D_i, 1 \leq i \leq r \) (property (b3.2)) and the square \(J_u \) with centre \(u = X \setminus X_1 \) is contained in the cycle formed by the four edges of \(J_u \).

To see property (v) is true, we must see that every edge in \(\cup_{1 \leq i \leq r} D_i \cup \{ J_u \} \) is a boundary edge in the graph \(G(X) \). Let \(e \in D_i, 1 \leq i \leq r \), be any edge. Applying Theorem 1, property (iv), to the outermost boundary \(\partial_0(X_1) = \cup_{1 \leq j \leq r} D_j \), we have that \(e \) is a boundary edge in the graph \(G(X_1) \) and so \(e \) is adjacent to a square \(J_{v(e)} \) with centre \(v(e) \in X_1 \) and a square \(Q_e \) with centre not in \(X_1 \). We recall that \(G(X_1) \) is the graph formed by the squares \(\{ J_w \}_{w \in X_1} \) with centres in \(X_1 \). Moreover, the square \(J_{v(e)} \) lies in the exterior of \(D_i \) and the square \(Q_e \) lies in the exterior of all cycles \(\{ D_j \}_{1 \leq j \leq r} \).

We recall that to prove that property (v) holds for \(\cup_{1 \leq j \leq r} D_j \cup \{ J_u \} \), we need to show that the square \(Q_e \) lies in the exterior of all the cycles in \(\cup_{1 \leq j \leq r} \{ D_i \} \cup \{ J_u \} \) and also that \(Q_e \) does not have centre in \(X \). Since \(Q_e \) lies in the exterior of the cycles \(\{ D_j \}_{1 \leq j \leq r} \) (see final statement, previous paragraph), it is therefore enough to see that \(Q_e \neq J_u \) and we argue as follows. The square \(Q_e \) shares the edge \(e \) with the square \(J_{v(e)}, v(e) \in X_1 \). Since the square \(J_u \) shares only a vertex with the square \(J_v \) and does not share an edge with any square in \(\{ J_w \}_{w \in X_1} \), we have \(Q_e \neq J_u \). This proves that property (v) of Theorem 1 is true for every edge \(e \in D_i, 1 \leq i \leq r \); i.e., every edge in \(\cup_{1 \leq j \leq r} D_j \) is a boundary edge in the graph \(G(X) \).

Consider now an edge \(f \in J_u \). The edge \(f \) is also the edge of a square \(Q_f \) and since \(J_u \) does not share an edge with a square having centre in \(X_1 = X \setminus \{ u \} \), we have that \(Q_f \) does not have its centre in \(X \). Suppose now that \(Q_f \) lies in the interior of some cycle \(D_j, 1 \leq j \leq r \). Since the square \(J_u \) lies in the exterior of all cycles \(\{ D_j \}_{1 \leq j \leq r} \), by assumption, the cycle \(D_j \) and the square \(J_u \) must share an edge. But by property (II.1), the square \(J_u \) does not share an edge with any cycle \(D_i, 1 \leq i \leq r \) and so we obtain a contradiction. Thus the square \(Q_f \) lies in the exterior of all cycles \(\{ D_j \}_{1 \leq j \leq r} \cup \{ J_u \} \). So every edge in \(J_u \) is also a boundary edge in the graph \(G(X) \).

It remains to see that property (i) of Theorem 1 holds; i.e., every edge \(e \in \cup_{1 \leq i \leq r} D_i \cup \{ J_u \} \) is an outermost boundary edge in the graph \(G(X) \). Fix an edge \(e \in D_i, 1 \leq i \leq r \). As in Case I, we arrive at a contradiction supposing that \(e \) is not an outermost boundary edge (in the graph \(G(X) \)). We use the fact that the cycle \(D_i \) is an outermost boundary cycle in \(G(X_1) \) and so the edge \(e \) is the edge of a square \(J_{v(e)} \) with centre \(v(e) \in X_1 = X \setminus \{ u \} \). The above statement follows from the fact that the cycle \(D_i \) satisfies property (b),
Lemma 2. Let \(E_e \) be the outermost boundary cycle in the graph \(G(X) \) containing the square \(J_{v(e)} \) in its interior. Intuitively, as in Case I, we must have \(E_e \neq D_i \) and we state related properties.

\((II.3)\) The square \(J_{v(e)} \) lies in the interior of the cycle \(D_i \). Every edge of the cycle \(D_i \) either belongs to \(E_e \) or lies in the interior of \(E_e \). Also \(E_e \neq D_i \) and so at least one edge of \(E_e \) lies in the exterior of \(D_i \).

\((II.4)\) At least one edge of \(E_e \setminus D_i \) belongs to the square \(J_u \) and the square \(J_u \) lies in the interior of the cycle \(E_e \).

\((II.5)\) The squares \(J_{v(e)} \) and \(J_u \) are distinct and the cycle \(E_e \) contains both \(J_{v(e)} \) and \(J_u \) in its interior.

We use property \((II.5)\) to prove the property \((II.2)\) regarding the outermost boundary \(\partial_0(X) \).

Proof of \((II.3)\) – \((II.5)\): The proof of \((II.3)\) – \((II.4)\) is the same as the corresponding proofs of \((I.3)\) – \((I.4)\). The square \(J_u \neq J_{v(e)} \) since the square \(J_{v(e)} \) lies in the interior of the cycle \(D_i \) and by assumption, the square \(J_u \) lies in the exterior of all cycles \(\{D_j\}_{1 \leq j \leq r} \). This proves that \(J_{v(e)} \neq J_u \).

From property \((II.4)\), we have that the square \(J_u \) lies in the interior of the cycle \(E_e \). By definition, the square \(J_{v(e)} \) also lies in the interior of \(E_e \). This proves the second part of \((II.5)\).

Using \((II.3)\) – \((II.5)\) we arrive at a contradiction as follows. Suppose now that the cycle \(E_e \) contains only the two squares \(J_u \) and \(J_{v(e)} \) in its interior. This means that \(J_u \) shares an edge with the square \(J_{v(e)} \), a contradiction since we have assumed in this Case II that the square \(J_u \) shares only a vertex with \(J_i \) and does not share an edge with any square in \(\{J_w\}_{w \in X_1} \).

Suppose now that \(E_e = (g_1, \ldots, g_t) \) contains more than two squares in its interior. Let \(g_1 = f \) be an edge belonging to the square \(J_u \). We refer to Figure 4 where the square \(J_u \) has corners \(a, b, c \) and \(d \) and has label \(u \). Let \(g_1 = ad \) be the left edge of the square \(J_u \). By property \((b)\), Lemma 2, every edge in \(E_e \) is the edge of some square with centre in \(X \) and a square with centre not in \(X \). Therefore, we have the following property.

The square labelled 3 in Figure 4 does not have its centre in \(X \). \((5.5)\)

Let \(i_1 \geq 2 \) be the smallest index such that the edge \(g_{i_1} \in E_e \) belongs to a square \(J_{q_1} \) whose centre \(q_1 \in X_1 = X \setminus \{u\} \). Similarly let \(i_2 \leq t \) be the largest
index such that the edge $g_{i_2} \in E_e$ belongs to a square $J_{q_2}, q_2 \in X_1 = X \setminus \{u\}$. The square J_u shares a vertex with both J_{q_1} and J_{q_2}.

If $q_1 \neq q_2$, we obtain a contradiction, since the vertex u is a leaf in X and so the square J_u shares only a vertex with the square $J_v, v \in X_1$ and does not share a vertex with any other square with centre in X_1. If $q_1 = q_2$, then we have the following property.

The squares J_{q_1} and J_u share the edge bc. \hfill (5.6)

The statement (5.6) is again a contradiction since we have assumed in this Case II that the square J_u shares only a vertex with J_v and does not share an edge with any square with centre in X. So every edge $e \in D_i, 1 \leq i \leq r$ is an outermost boundary edge in the graph $G(X)$.

Proof of (5.6): Referring to Figure 4, we first see that the subpath formed by the segments ab, ad and dc belongs to E_e; i.e., we must have $g_2 = ab$ and $g_t = cd$.

Suppose $g_2 \neq ab$ and $g_t \neq cd$. This means that either $g_2 = ae$ or $g_2 = ad$. In either case, the edge g_2 belongs to a square J_{q_1} that shares the vertex a with J_u. Arguing similarly, the square J_{q_2} shares the vertex d with J_u. If $q_1 = q_2$, then J_{q_1} necessarily contains the edge ad as an edge and so J_q is the square labelled 3 in Figure 4. This contradicts property (5.5).

From the discussion in the above paragraph, we have that either $g_2 = ab$ or $g_t = cd$. Suppose now that $g_2 = ab$ but $g_t \neq cd$. Arguing as before,
the square J_{q_1} then contains the vertex b and the square J_{q_2} contains the vertex d. But since $q_1 = q_2$ and $q_1 \neq u$, this is a contradiction. An analogous contradiction is obtained if we assume that $g_2 \neq ab$ and $g_t = cd$. From the above two paragraphs, we therefore obtain that $g_2 = ab$ and $g_t = cd$. Thus the square $J_{q_1} = J_{q_2}$ contains both b and c as vertices and so the square J_{q_1} is the square labelled 6 in Figure 3.

It remains to see that every edge in the square J_u is also an outermost boundary edge in the graph $G(X)$. Suppose $e \in J_u$ is not an outermost boundary edge in $G(X)$ and let E_u be the outermost boundary cycle in $G(X)$, containing the square J_u in its interior. We have the following properties.

(II.6) The cycle $E_u \neq J_u$ and at least one edge of the cycle E_u belongs to the square J_u.

(II.7) The cycle E_u contains J_u and at least one other square $J_w, w \in X_1$ in its interior.

Proof of (II.6) – (II.7): By definition, there is a cycle C in the graph $G(X)$ containing the edge e in its interior. The cycle C therefore contains the square J_u in its interior. Also the other square Q_u containing e as an edge also lies in the interior of C. Since E_u satisfies property (c), Lemma 2, we have that C itself is contained in the interior of E_u and so $E_u \neq J_u$.

We prove the remaining part of (II.6) as follows. Suppose that the cycle E_u contains no edge of the square J_u. We then have that E_u contains only edges of squares with centres in X_1. Fix an edge $f \in E_u$. Since E_u satisfies property (b), Lemma 2, the edge f belongs to a square $J_{v(f)}$ with centre in X. Moreover, the square $J_{v(f)}$ lies in the interior of E_u. Since $f \notin J_u$, we have that $J_{v(f)} \neq J_u$. Therefore $J_{v(f)}$ has its centre $v(f) \in X_1 = X \setminus \{u\}$. From property (d), Theorem 1, we have that the square $J_{v(f)}$ is contained in the interior of one of the cycles $D_{j_0}, 1 \leq j_0 \leq r$ of the outermost boundary $\partial_0(X_1)$. From property (d) following Lemma 2, we have that the outermost boundary cycle in the graph $G(X_1)$ containing $J_{v(f)}$ in its interior, is also D_{j_0}.

The cycle D_{j_0} satisfies property (c), Lemma 2 and so the cycle E_u containing J_u in its interior, must itself lie in the interior of D_{j_0}. This means that the square J_u is contained in the interior of D_{j_0}, a contradiction to our assumption that J_u lies in the exterior of all cycles $\{D_j\}_{1 \leq j \leq r}$. Thus E_u contains at least one edge of the square J_u and this proves (II.6).

We prove property (II.7) as follows. Using property (II.6), let $g \in E_u \setminus J_u$ be any edge. Since E_u satisfies property (b), Lemma 2, the edge g is the edge of a square $J_{v(g)}$ with centre $v(g) \in X_1 = X \setminus \{u\}$. The square $J_{v(g)}$ lies in
the interior of E_u. Since $g \notin J_u$, we have that $J_{v(g)} \neq J_u$.

Using (II.6) – (II.7) and an analogous analysis as following (II.3) – (II.5), we obtain a contradiction and so every edge in J_u is an outermost boundary edge in the graph $G(X)$. Finally, every other edge of $G(X)$ not present in $\cup_{1 \leq j \leq r} D_j \cup \{J_u\}$ necessarily lies in the interior of one of the cycles in $\{D_j\}$. This proves property (i) and therefore (II.2).

Case III: In this case, the square J_u shares an edge e_{uv} with the square J_v and lies in the exterior of all cycles $D_i, 1 \leq i \leq r$. We have the following property.

(III.1) The edge e_{uv} belongs to the cycle $D_r \in \partial_r(X)$ and does not belong to any other cycle $D_i, 1 \leq i \leq r - 1$. Apart from the endvertices of e_{uv}, the square J_u does not share any other vertex with D_r.

Using property (III.1), we construct $\partial_0(X)$ from $\partial_0(X)$ as follows. We set $E_i = D_i$ for $1 \leq i \leq r - 1$ and let

$$E_r = (D_r \setminus e_{uv}) \cup (J_u \setminus e_{uv}).$$

(5.7)

Here $J_u \setminus e_{uv}$ is the path formed by the three edges of the square J_u apart from the edge e_{uv}. We have the following additional properties.

(III.2) The graph E_r is a cycle and contains the square J_u in its interior. The interior of the cycle E_r is the union of the interior of the cycles D_r and J_u.

(III.3) The outermost boundary $\partial_0(X) = \cup_{1 \leq i \leq r} E_i$.

In this case, a square Q belongs to the interior of a cycle of $\partial_0(X)$ if and only if either $Q = J_u$ or Q lies in the interior of a cycle of $\partial_0(X)$. The square J_u is vacant and so by induction assumption, the outermost boundary $\partial_0(X)$ contains no occupied square of the component $C^+(0)$ in its interior. This proves (a3.2) for Case (III).

Proof of (III.1) – (III.2): To prove (III.1), we argue as follows. From property (b3.3) above, we have that the square J_v lies in the interior of D_r and by assumption, the square J_u lies in the exterior of all the cycles $\{D_i\}_{1 \leq i \leq r}$ and shares an edge with the square J_v. Therefore, the cycle D_r contains the edge $e_{uv} \in D_r$. Moreover, the cycle D_r shares at most one vertex with $D_j, 1 \leq j \leq r - 1$ (property (b3.2)) and so we have that $e_{uv} \notin D_j, 1 \leq j \leq r - 1$. Also, arguing as in the proof of property (b3.4), we obtain that the square J_u does not share any other vertex with D_r.

To see the first part of (III.2) that the graph E_r is a cycle, we argue as follows. The square J_u does not share an endvertex with $J_w, w \neq v, w \in X_1$. 33
Therefore apart from the endvertices, the path $D_r \setminus e_{uv}$ does not share any other vertex with the square J_u and so E_r is a cycle. The final statement is true since every vertex of the path $J_u \setminus e_{uv}$ lies in the exterior of the cycle D_r.

Proof of (III.3): As before, we first prove properties (ii) – (v) of Theorem 3. Property (ii) is true as follows. The union $\bigcup_{i=1}^{r-1} D_i = \partial_0(X_1)$ is connected and we remove an edge e_{uv} belonging to the cycle D_r. Therefore the graph $\bigcup_{i=1}^{r-1} D_i \cup (D_r \setminus e_{uv})$ is still connected. We then add the path $J_u \setminus e_{uv}$ with same endvertices as the edge e_{uv}. Therefore, $\bigcup_{i=1}^{r-1} D_i \cup (D_r \setminus e_{uv}) \cup (J_u \setminus e_{uv})$ is also connected.

We prove property (iii) as follows. Fix $1 \leq i \neq j \leq r - 1$. The cycles $E_i = D_i$ and $E_j = D_j$ have disjoint interiors and have at most one vertex in common (see property (b3.2)). Suppose $1 \leq i \leq r - 1$ and $j = r$. The cycle D_r shares at most one endvertex with D_i and so $D_r \setminus e_{uv}$ shares at most one endvertex with D_i. From property (b3.4), the square J_u shares no endvertex in common with D_i. Therefore $E_r = (D_r \setminus e_{uv}) \cup (J_u \setminus e_{uw})$ shares at most one endvertex with D_i.

To see property (iv) is true we argue as follows. Let J_w be any square with centre $w \in X$. If $w = u$, then J_u is contained in the interior of the cycle E_r by property (III.2). If $w \neq u$, then $w \in X_1 = X \setminus \{u\}$ and so the square J_w is contained in the interior of one of the cycles $D_i, 1 \leq i \leq r$. This is seen by applying Theorem 1 property (iv) to the outermost boundary $\partial_0(X_1) = \bigcup_{1 \leq i \leq r} D_j$. If $1 \leq i \leq r - 1$, then J_w is also contained in the interior of the cycle $E_i = D_i$. If $i = r$, then J_w is contained in the interior of the cycle D_r, which in turn is contained in the interior of the cycle E_r (property (III.2)).

To see property (v) is true, we need to see that every edge in $\bigcup_{1 \leq j \leq r} E_j$ is a boundary edge adjacent to one square with centre in X and one square with centre not in X. Suppose first that $e \in E_i \cap D_i$ for some $1 \leq i \leq r$; i.e., either $e \in D_i = E_i$ for some $1 \leq i \leq r - 1$ or $e \in E_r \cap D_r = D_r \setminus e_{uv}$. We use the fact that $D_j, 1 \leq j \leq r$ is an outermost boundary cycle in the graph $G(X_1)$. Here $G(X_1)$ is the graph formed by the edges of squares with centres in X_1.

Applying Theorem 1 property (v) to the edge e of the outermost boundary $\partial_0(X_1)$, we have that e belongs to a square $J_{v(e)}$ with centre $v(e) \in X_1$ and a square Q_e with centre not in X_1. We have the following properties.

The square $J_{v(e)}$ lies in the interior of the cycles D_i and E_i.

(5.8)
The square Q_e lies in the exterior of all the cycles $\{D_j\}_{1 \leq j \leq r}$ and in the exterior of all the cycles $\{E_j\}_{1 \leq j \leq r}$.

From the above two properties, we have that e is a boundary edge in the graph $G(X)$ and so satisfies property (v) of Theorem 1.

Proof of (5.8): From property (v), Theorem 1 applied to the outermost boundary $\partial_0(X_1) = \cup_{1 \leq i \leq r} D_i$, we have that the square $J_{v(e)}$ lies in the interior of the cycle D_i. To see that $J_{v(e)}$ also lies in the interior of the cycle E_i, we argue as follows. If $1 \leq i \leq r - 1$, then $J_{v(e)}$ lies in the interior of the cycle $E_i = D_i$. If $i = r$, then $J_{v(e)}$ lies in the interior of the cycle D_r, which in turn lies in the interior of the cycle E_r (property $(III.2)$).

Proof of (5.9): From property (v), Theorem 1 applied to the outermost boundary $\partial_0(X_1) = \cup_{1 \leq i \leq r} D_i$, we have that the square Q_e lies in the interior of all the cycles $\{D_i\}_{1 \leq i \leq r}$. Since $E_j = D_j$ for $1 \leq j \leq r - 1$, the square Q_e also lies in the exterior of the cycles $\{E_j\}_{1 \leq j \leq r - 1}$. The square Q_e lies in the exterior of the cycle D_r.

If $Q_e \neq J_u$, then Q_e also lies in the exterior of the cycle E_r, since the interior of the cycle E_r is the union of the interiors of the cycle D_r and the square J_u (property $(III.1)$). To see that the square $Q_e \neq J_u$, we argue as follows. The square J_u shares only the edge e_{uv} with the cycle D_r and does not any other vertex with D_r (see property $(b3.4)$). Since Q_e shares the edge $e \neq e_{uv}$ with D_r, we have that $Q_e \neq J_u$.

We now consider the case $e \in E_r \setminus D_r = J_u \setminus e_{uv}$. The edge e is then the edge of the square J_u and a square Q_e lying in the exterior of the cycle E_r. If the square Q_e lies in the interior of some cycle $E_j = D_j$, $1 \leq j \leq r - 1$, then the square J_u would share an edge with the cycle D_j, a contradiction to property $(b3.4)$. Thus Q_e lies in the exterior of the cycles $\{E_j\}_{1 \leq j \leq r}$ and so property (v), Theorem 1 is also satisfied in this case.

It remains to see that property (i) holds, i.e., every edge in $\cup_{1 \leq j \leq r} E_j$ is an outermost boundary edge in the graph $G(X)$. We assume otherwise and arrive at a contradiction. Suppose that some edge $e \in \cup_{1 \leq j \leq r} E_j$ is not an outermost boundary edge in the graph $G(X)$. We first consider the case that $e \notin J_u$. Using property (v) proved above, the edge e is adjacent to a square $J_{v(e)}$ with centre in $v(e) \in X_1 = X \setminus \{u\}$ and a square Q_e with centre not in X. Let E_e be the outermost boundary cycle for the square $J_{v(e)}$ in the
graph $G(X)$. As before, we must have $E_e \neq D_i$ and we state the related properties.

(III.4) The square $J_{v(e)}$ lies in the interior of the cycle D_i. Every edge of the cycle D_i either belongs to E_e or lies in the interior of E_e. Also $E_e \neq D_i$ and so at least one edge of E_e lies in the exterior of D_i.

(III.5) At least one edge of $E_e \setminus D_i$ belongs to the square J_u and the square J_u lies in the interior of the cycle E_e.

(III.6) The square $J_{v(e)} \neq J_u$ and the cycle E_e contains both $J_{v(e)}$ and J_u in its interior.

Proof of (III.4) – (III.6): The proof of (III.4) – (III.5) is the same as before. To prove (III.6), we argue as follows. The square $J_{v(e)} \notin \{J_u\}$ since the edge e does not belong to J_u.

By definition, the square $J_{v(e)}$ lies in the interior of the cycle E_e. Suppose that the square J_u lies in the exterior of E_e. Since the square J_u lies in the interior of E_e (property (III.5)), we then have that the edge e_{uv} common to J_u and J_v belongs to E_e. Merging E_e and J_v we then get a bigger cycle C_e in the graph $G(X)$ containing E_e in its interior, a contradiction to the fact that E_e is the outermost boundary cycle in the graph $G(X)$ and satisfies property (c), Lemma 2. Thus the square J_v also lies in the interior of the cycle E_e.

Using properties (III.4) – (III.6), we arrive at a contradiction. Let $E_e = (g_1, \ldots, g_t)$ and let $g_1 = f$ be the edge belonging to the square J_u represented by the edge ad in Figure 5.6. Arguing as in Case (II), we obtain that the square labelled 6 is the square J_v sharing an edge with the square J_u and the remaining edges ad, ab and cd belong to the cycle E_e. We illustrate this in Figure 5 where we have shown only the squares labelled u and 6 representing the squares J_u and J_v, respectively. The outermost boundary cycle E_e is the wavy curve $abqcd$ and the edge bc is the edge e_{uv} common to the squares J_u and J_v.

Consider now the graph $D_{mod} = (E_e \setminus \{ab, ad, dc\}) \cup \{bc\}$ obtained by removing the subpath formed by the edges ab, ad and dc and adding the edge bc. The graph D_{mod} is also a cycle and consists only of edges belonging to squares with centres in X_1. By construction, the graph D_{mod} is a cycle in
Figure 5: The squares $J_{q_1} = J_v$ (labelled 6) and J_u (labelled u) contained in the interior of the outermost boundary cycle E_e represented by the wavy curve $abqcdna$.

the graph $G(X_1)$ and we also have the following property.

The edge $bc = e_{uv}$ and the cycle $D_{mod} = D_r$, the outermost boundary cycle in $\partial_0(X_1)$ containing the square J_v in its interior.

(5.10)

Proof of (5.10): From the discussion in the previous paragraph, we have that the edge $bc = e_{uv}$. To prove the second part we argue as follows. By construction the cycle D_{mod} is a cycle in the graph $G(X_1)$ and contains the square J_v in its interior. Therefore D_{mod} lies in the interior of the cycle D_r, since the square J_v lies in the interior of the cycle D_r and D_r is the outermost boundary cycle containing J_v in its interior (property (e) following Lemma 2).

If the cycle $D_{mod} \neq D_r$, then the merging of D_r with the square J_u would result in a cycle $C_e \neq E_e$ which contains E_e in its interior. We recall that the square $J_{v(e)}$ also lies in the interior of D_{mod} and therefore also lies in the interior of C_e. But this is a contradiction since the cycle E_e is the outermost boundary cycle containing the square $J_{v(e)}$ in its interior and so satisfies property (c), Lemma 2.

\[E_r = (D_r \setminus \{e_{uv}\}) \cup (J_u \setminus \{e_{uv}\}) \]

is also obtained by merging D_r with the square J_u. From property (d) following Lemma 2, we obtain that e is an outermost boundary edge in the
It remains to see that every edge in $E_r \setminus D_r = J_u \setminus \{e_{uv}\}$ is also an outermost boundary edge in the graph $G(X)$. Suppose $e \in J_u$ is not an outermost boundary edge in $G(X)$ and let E_u be the outermost boundary cycle in $G(X)$, containing the square J_u in its interior. Arguing as in Case (II), we have the following properties.

(III.6) The cycle $E_u \neq J_u$ and at least one edge of the cycle E_u belongs to the square J_u.

(III.7) The cycle E_u contains J_u and at least one other square J_w, $w \in X_1$ in its interior.

Using (III.6) – (III.7) and an analogous analysis as following (III.3) – (III.5), we obtain a contradiction and so every edge in $J_u \setminus \{e_{uv}\}$ is also an outermost boundary edge in the graph $G(X)$. Finally, every other edge of $G(X)$ not present in $\bigcup_{1 \leq j \leq r} E_j$ necessarily lies in the interior of one of the cycles in $\{E_j\}$. This proves property (i) and therefore (III.2).

4. Outermost boundary $\partial_0(L_1)$ of a sub-S–cycle $L_1 \subset L$

We recall the iterative process followed in obtaining the sequence L of vacant squares from the outermost boundary $\partial_0(L) = D_{fin} = (f_1, \ldots, f_r)$ and suppose that i_2 is the “first time” we obtain a S–cycle; i.e.,

$$i_2 = \min\{i \geq 2 : (Z_i, Z_{i-1}, \ldots, Z_j) \text{ form an } S \text{–cycle for some } j < i\}.$$

Let i_1 be the largest index such that $(Z_{i_2}, Z_{i_2-1}, \ldots, Z_{i_1})$ is a S–cycle.

For convenience let $L_1 = (Z_{i_1}, Z_{i_1+1}, \ldots, Z_{i_2})$ be the S–cycle and suppose L_1 does not contain all squares of the sequence L. The sequence L_1 is a star connected component and let $\partial_0(L_1)$ denote its corresponding outermost boundary. We use the following properties of $\partial_0(L_1)$ in the remaining steps.

(a4.1) There are at least three distinct squares in the sequence L_1. The outermost boundary $\partial_0(L_1)$ of the sequence L_1 is a cycle and is not equal to the outermost boundary $D_{fin} = \partial_0(L)$ of the sequence L obtained in Step 1.

(a4.2) Every vacant square Z_j, $i_1 \leq j \leq i_2$ of the sequence L_1 is contained in the interior of the cycle $\partial_0(L_1)$ and every edge $e \in \partial_0(L_1)$ belongs to a unique vacant square $Z_{j(e)}$, $i_0 \leq j(e) \leq i_1$ of the sequence L_1. Moreover, the square $Z_{j(e)}$ lies in the interior of $\partial_0(L_1)$.

38
(a4.3) Suppose two edges $f_1, f_2 \in \partial_0(L_1)$ belong to some vacant square $Z_j \in L_1$ but do not share an endvertex; i.e., they are “opposite” edges of Z_j. If g_1 and g_2 denote the remaining edges of Z_j, then either (f_1, g_1, f_2) or (f_1, g_2, f_2) is a subpath of $\partial_0(L_1)$.

We recall that $C^+(0)$ is the plus connected occupied component containing the origin and the outermost boundary $\partial_0^+ = (e_1, \ldots, e_t)$ (see (5.3)). The relation between $C^+(0), \partial_0^+$ and the cycle $\partial_0(L_1)$ is as follows.

(b4.1) All (occupied) squares in $C^+(0)$ lie in the exterior of the cycle $\partial_0(L_1)$.
(b4.2) The outermost boundary cycle ∂_0^+ of the component $C^+(0)$ and the cycle $\partial_0(L_1)$ have mutually disjoint interiors.
(b4.3) There are three distinct edges $\{e_{jk}\}_{1 \leq k \leq 3} \subset \partial_0^+$ and three distinct squares $\{Z_{jk}\}_{1 \leq k \leq 3} \subset L_1$ with the following property. For $k = 1, 2, 3$, the edge e_{jk} belongs to $\partial_0(L_1)$ and is an edge of the square Z_{jk}.

The final property says that there are at least three distinct edges belonging to both ∂_0^+ and $\partial_0(L_1)$. Moreover, these edges belong to distinct vacant squares of L_1.

Proof of (a4.1) – (a4.2): For the first statement of (a4.1), we let H_{L_1} be the subgraph of G_{V} obtained for the sequence L_1 in the same manner as the subgraph H_{L}. Since H_{L_1} is a cycle in G_{V}, there are at least three vertices in H_{L_1} and so there are at least three distinct squares in L_1.

For the second statement of (a4.1), we label the vacant squares in the sequence L_1 as with label 1 and every other square with label 0. We then apply Theorem [1] with “occupied” replaced by label 1 and “vacant” replaced by label 0. From Theorem [4] we obtain that the outermost boundary $\partial_0(L_1)$ of the $S-$cycle L_1 is a single cycle. To see that $D_{fin} \neq \partial_0(L_1)$, we recall from property (a2.1) above that the cycle D_{fin} is the outermost boundary of the sequence $L = (Z_1, \ldots, Z_s)$. Moreover, by construction D_{fin} has at least one edge from every $Z_i, 1 \leq i \leq s$ (see property (b1.5) of D_{fin} in Step 1). Since the sequence L_1 does not contain all the squares of the sequence L, we obtain the second statement of (a4.1).

The first statement (a4.2) follows from property (iv), Theorem [1]. To see the uniqueness of $Z_{j(e)}$, suppose that there are two squares $Z_{j(e)}$ and Z_q belonging to L_1 and containing e as an edge. We then have that exactly one of $Z_{j(e)}$ or Z_q lies in the interior of $\partial_0(L_1)$ but not both. This contradicts the first statement of (a4.2).

■
Figure 6: Opposite edges ad and bc of the vacant square $Z_k = abcd$ in the sequence L_1 belonging to the outermost boundary cycle $\partial_0(L_1) = axbcyda$. The cycles $C_1 = axba$ and $C_2 = cydc$ have mutually disjoint interiors and share an edge each, with the square $Z_k = abcd$.

Proof of (a4.3): Suppose that two opposite edges of a vacant square $Z_k \in L_1$ belong to the outermost boundary cycle $\partial_0(L_1)$. We arrive at a contradiction assuming that the remaining two edges of Z_k do not belong to $\partial_0(L_1)$.

The square Z_k lies in the interior of the cycle $\partial_0(L_1)$ (property (a4.2)) and so the edges of Z_k not in $\partial_0(L_1)$ lie in the interior of $\partial_0(L_1)$. This is illustrated in Figure 6, where the outermost boundary cycle $\partial_0(L_1)$ is denoted by the cycle $axbcyda$. The vacant square Z_k denoted by the square $abcd$ has opposite edges ad and bc in the cycle $\partial_0(L_1)$. The remaining edges ab and cd lie in the interior of $\partial_0(L_1)$.

The subpath $P_1 = axb \subset \partial_0(L_1)$ together with the edge $ab \notin \partial_0(L_1)$ forms a cycle $C_1 = axba$. Similarly, the subpath $P_2 = dybc \subset \partial_0(L_1)$ and the edge $cd \notin \partial_0(L_1)$ form a cycle $C_2 = cydc$. We have the following properties.

(c4.1) The cycles C_1 and C_2 have non empty mutually disjoint interiors and do not share any vertex in common. Moreover, for $i = 1, 2$, the square Z_k lies in the exterior of C_i and shares exactly one edge with C_i. In Figure 6, the cycle C_1 shares the edge ab with the square $Z_k = abcd$ and the cycle C_2 shares the edge cd with Z_k.

(c4.2) If a square Q lies in the interior of the cycle $\partial_0(L_1)$, then either $Q = Z_k$ or Q lies in the interior of either C_1 or C_2. In particular, for $i = 1, 2$, the only square in L_1 lying in the exterior of C_i and sharing a vertex with C_i is Z_k.

(c4.3) Each cycle C_i, $i = 1, 2$ contains at least one vacant square belonging to
the $S-$cycle L_1. Without loss of generality, suppose that the square $Z_{i_1} \in L_1$ lies in the interior of C_1.

(c4.4) All the squares $\{Z_j\}_{i_1 \leq j \leq k-1} \subset L_1$ lie in the interior of C_1 and all the squares $\{Z_j\}_{k+1 \leq j \leq i_2}$ lie in the interior of C_2.

Proof of (c4.1) – (c4.4): Properties (c4.1) – (c4.2) are true by construction. We prove property (c4.3) as follows. Since the $S-$cycle L_1 contains at least three distinct squares (property (a4.1)), at least one of the cycles C_1 or C_2 contains a (vacant) square of L_1 in its interior. Without loss of generality, we assume that the square Z_{i_1} lies in the interior of C_1.

The cycle C_2 has non empty interior and every edge of $C_2 \setminus \{cd\}$ belongs to the outermost boundary cycle $\partial_0(L_1)$. Fix an edge $e \neq cd$ of the cycle C_2. From Theorem II property (v), the edge e is the edge of a square $Z_j \in L_1$. The square Z_j lies in the interior of the cycle $\partial_0(L_1)$. From property (c4.2), the square Z_j therefore either equals Z_k or lies in the interior of the cycle C_1 or lies in the interior of the cycle C_2.

The square $Z_j \neq Z_k$ since $e \neq cd$ and the square Z_k shares only the edge cd with C_2 (property (c4.1)). Also the edge $e \in C_1$ and the cycles C_1 and C_2 share no vertex in common (property (c4.1)). Thus Z_j does not lie in the interior of C_1 and so lies in the interior of C_2. This proves (c4.3).

To prove property (c4.4), we use the following additional property.

(c4.5) Let $P_{i_2} = (Z_{j_1}, Z_{j_1+1}, \ldots, Z_{j_2})$, be a subpath of the $S-$cycle L_1. If Z_{j_1} lies in the interior of C_1 and Z_{j_2} lies in the interior of C_2, then $Z_k \in P_{i_2}$ and so $\min(j_1, j_2) < k < \max(j_1, j_2)$.

Proof of (c4.5): We assume that $j_1 < j_2$ and an analogous argument holds otherwise. Since the cycles C_1 and C_2 have mutually disjoint interiors (property (c4.1)), the path P_{i_2} crosses the cycle C_1 at some point, in the sense that some square $Z_y \in P_{i_2}$ lies in the exterior of C_1. From property (c4.1), we have that $Z_k = Z_y$ and this proves (c4.5).

We prove (c4.4) by applying property (c4.5) repeatedly. First, applying (c4.5), we obtain that all squares $Z_j, i_1 \leq j \leq k-1$ lie in the interior of C_1. Using property (c4.3), suppose that some square $Z_r, k < r \leq i_2$ belonging to L_1 lies in the interior of the cycle C_2. If a square $Z_j, r < j \leq i_2$ of L_1 lies in the interior of C_1, we apply property (c4.5) with $j_1 = r$ and $j_2 = j$ to get that $r < k < j$, a contradiction. Thus all squares $Z_j, r \leq j \leq i_2$ lie in the interior of C_2. Finally, if some square $Z_j, k+1 \leq j \leq r-1$ belongs to the interior of C_1, then we again apply property (c4.5) to get that $j < k < r$, a
contradiction. This proves (c4.4).

Using property (c4.4) and the fact that cycles C_1 and C_2 do not have any vertex in common (property (c4.1)), we must have that Z_{i_1} and Z_{i_2} do not share any vertex in common. But this is a contradiction since L_1 is a star connected S—cycle and so the first and the last squares of L_1, Z_{i_1} and Z_{i_2}, are star connected; i.e., they share a vertex. We recall that we have obtained the above contradiction assuming that both the edges ab and cd in Figure 6 do not belong to the cycle $\partial_0(L_1)$. Thus either the edge ab or cd belongs to $\partial_0(L_1)$ and this proves (a4.3).

Proof of (b4.1) – (b4.3): To see (b4.1), we first suppose there is an occupied square $S_{k_1} \in C^+(0)$ lying in the interior of the cycle $\partial_0(L_1)$ and another occupied square $S_{k_2} \in C^+(0)$ lying in the exterior of $\partial_0(L_1)$. There is a plus connected S—path $P = (S_{k_1} = J_1, J_2, \ldots, J_{t-1}, J_t = S_{k_2})$, $J_i \in C^+(0)$ of occupied squares connecting S_{k_1} and S_{k_2}. This path P necessarily crosses the cycle $\partial_0(L_1)$ in the sense that there is an integer $m \geq 1$ such that the following three statements hold. The square $J_m \in P$ lies in the interior of the cycle $\partial_0(L_1)$. The square $J_{m+1} \in P$ lies in the exterior of $\partial_0(L_1)$. The edge e common to J_m and J_{m+1} belongs to $\partial_0(L_1)$. But by property (a4.2), this means that the square J_m is vacant, a contradiction.

From the above paragraph, we therefore have that either all squares of $C^+(0)$ lie in the exterior of the cycle $\partial_0(L_1)$ or all squares of $C^+(0)$ lie in the interior of $\partial_0(L_1)$. Suppose that all occupied squares of $C^+(0)$ lie in the interior of $\partial_0(L_1)$. We arrive at a contradiction by showing that $\partial_0(L_1) \neq D_{fin}$ satisfies the properties (b1.1) – (b1.3) of the cycle D_{fin} (see Step 1).

Property (b1.1) holds for $\partial_0(L_1)$ since $\partial_0(L_1)$ contains only edges of the (vacant) squares $\{Z_j\}_{i_0 \leq j \leq i_1} \subset \Lambda^+$ (see property (a4.2) above). To see that the cycle $\partial_0(L_1)$ also satisfies property (b1.2), we argue as follows. By assumption, all the occupied squares of the component $C^+(0)$ lie in the interior of the cycle $\partial_0(L_1)$ and by Theorem 1, property (iv), every edge of the outermost boundary ∂_0^+ belongs to some occupied square in $C^+(0)$. Thus every edge of ∂_0^+ either belongs to or lies in the interior of $\partial_0(L_1)$.

Suppose $e \in \partial_0^+$ also belongs to the cycle $\partial_0(L_1)$ and let V_e be the square containing the edge e lying in the interior of $\partial_0(L_1)$. Applying Theorem 1, property (iv) to ∂_0^+, we obtain that V_e is an occupied square of $C^+(0)$. Applying Theorem 1, property (iv) to $\partial_0(L_1)$, we obtain that V_e is a vacant square belonging to the sequence L_1. This is a contradiction and so e lies in the
interior of \(\partial_0(L_1) \) and so \(\partial_0(L_1) \) also satisfies property (b.1.2) of cycle \(D_{\text{fin}} \).

To see that the cycle \(\partial_0(L_1) \) satisfies property (b.1.3), it is enough to see that all squares in \(\Lambda^+ \) lie in the interior of \(\partial_0(L_1) \). We recall that \(\Lambda^+ \) is the set of all vacant squares sharing an edge with some occupied square of the component \(C^+(0) \). We assume otherwise and arrive at a contradiction. Suppose some square \(Y_j \in \Lambda^+ \) lies in the exterior of \(\partial_0(L_1) \). By definition, the square \(Y_j \) contains an edge \(e_j \in \partial_0^+ \) and the edge \(e_j \) also belongs to an occupied square \(A_j \in C^+(0) \) (Theorem [1] property (v)).

If the square \(A_j \) lies in the interior of \(\partial_0(L_1) \), then the edge \(e_j \) belongs to \(\partial_0(L_1) \) and this contradicts property (a.4.2). Thus \(A_j \) lies in the exterior of \(\partial_0(L_1) \) and this contradicts the assumption that all occupied squares of \(C^+(0) \) lie in the interior of \(\partial_0(L_1) \). So all squares in \(\Lambda^+ \) lie in the interior of \(\partial_0(L_1) \) and therefore \(\partial_0(L_1) \) also satisfies property (b.1.3) of the cycle \(D_{\text{fin}} \).

Since \(D_{\text{fin}} \neq \partial_0(L_1) \) (see property (a.4.1) above) we obtain a contradiction to the uniqueness property (b.1.4) of the cycle \(D_{\text{fin}} \) and so all occupied squares of the component \(C^+(0) \) lie in the exterior of \(\partial_0(L_1) \). This proves property (b.1.1).

We prove property (b.4.2) as follows. We first have from property (b.4.1) above that every occupied square of \(C^+(0) \) lies in the exterior of the cycle \(\partial_0(L_1) \). Therefore every edge in the outermost boundary \(\partial_0^+ \) either belongs to or lies in the exterior of \(\partial_0(L_1) \). If \(\partial_0^+ \) and \(\partial_0(L_1) \) do not have mutually disjoint interiors, then \(\partial_0(L_1) \) lies in the interior of \(\partial_0^+ \); i.e., every edge of \(\partial_0(L_1) \) either belongs to or lies in the interior of \(\partial_0^+ \).

This leads to a contradiction as follows. From property (b.1.2) of the cycle \(D_{\text{fin}} \) (see Step 1), we recall that every edge in the outermost boundary \(\partial_0^+ \) lies in the interior of \(D_{\text{fin}} \). In particular, no edge of \(\partial_0^+ \) belongs to \(D_{\text{fin}} \). From the above paragraph, we therefore have that every edge in \(\partial_0(L_1) \) also lies in the interior of \(D_{\text{fin}} \). From Theorem [1] property (ii) applied to the outermost boundary cycle \(\partial_0(L_1) \), we have that all squares \(\{Z_i\}_{i_1 \leq i \leq i_2} \subset \Lambda_1 \) lie in the interior of \(\partial_0(L_1) \). In particular, this means that every edge of the square \(Z_{i_1} \) is contained in the interior of \(D_{\text{fin}} \). This contradicts the property (b.1.5) of \(D_{\text{fin}} \) that every edge in the sequence \(L = (Z_1, \ldots, Z_s) \) contains at least one edge in \(D_{\text{fin}} \). Thus the cycles \(\partial_0^+ \) and \(\partial_0(L_1) \) have mutually disjoint interiors and this proves (b.4.2).

It remains to prove property (b.4.3). We recall that every vacant square \(Z_k, i_1 \leq k \leq i_2 \) of the \(S \)-cycle \(L_1 \) belongs to \(\Lambda^+ \) and so by definition, shares an edge \(f_{k} \) with the outermost boundary cycle \(\partial_0^+ \) of the plus connected component \(C^+(0) \). From property (a.4.1), we have that there are at least three distinct squares in \(L_1 \). Thus \(f_{i_1}, f_{i_1+1} \) and \(f_{i_1+2} \) exist. We first prove
that each \(f_j; i_1 \leq j \leq i_1 + 2 \) also belongs to the cycle \(\partial_0(L_1) \) and then show that they are distinct.

First, applying Theorem [1] property (iv), to the outermost boundary cycle \(\partial_0^+ \), we have that the edge \(f_{i_1} \) is also the edge of an occupied square \(A_1 \in C^+(0) \) lying in the interior of \(\partial_0^+ \). So \(f_{i_1} \) cannot lie in the interior of the cycle \(\partial_0(L_1) \) since if it does, then the occupied square \(A_1 \in C^+(0) \) also would also lie in the interior of \(\partial_0(L_1) \), contradicting property (b4.1). Thus \(f_{i_1} \in \partial_0(L_1) \) and similarly \(f_{i_1+1} \) and \(f_{i_1+2} \) also belong to \(\partial_0(L_1) \).

To see that the edges \(\{ f_j \}_{i_1 \leq j \leq i_1+2} \) are all distinct, we argue as follows. Suppose \(f_{i_1} \) belongs to two distinct squares \(Z_{i_1} \) and \(Z_k \), both belonging to \(L_1 \). Since \(f_{i_1} \in \partial_0(L_1) \), exactly one of the squares in \(\{ Z_{i_1}, Z_k \} \) lies in the interior of \(\partial_0(L_1) \) and the other square lies in the exterior of \(\partial_0(L_1) \). This is a contradiction to property (a4.2) that all squares of the sequence \(L_1 \) lie in the interior of \(\partial_0(L_1) \). Thus the edges \(\{ f_j \}_{i_1 \leq j \leq i_1+2} \) are all distinct and this proves (b4.3).

\[\text{5. Merging cycles } \partial_0(L_1) \text{ and } \partial_0^+ \text{ to get cycle } \partial_{\text{temp}} \]

In this step of our argument, we merge the cycles \(\partial_0(L_1) \) and \(\partial_0^+ \). From property (b4.3), there is at least one edge common to the \(\partial_0(L_1) \) and \(\partial_0^+ \). Since the cycles \(\partial_0(L_1) \) and \(\partial_0^+ \) have mutually disjoint interiors (property (b4.2)), we have from Theorem [6] that the merged cycle \(\partial_{\text{temp}} \) is the union of two unique bridges \(A_{\text{out}} \) and \(B_{\text{out}} \) such that \(A_{\text{out}} \subset \partial_0^+ \) is a bridge for \(\partial_0(L_1) \) and \(B_{\text{out}} \subset \partial_0(L_1) \) is a bridge for \(\partial_0^+ \).

We use the cycle \(\partial_{\text{temp}} \) to arrive at a contradiction in the next step. In this step, we state and prove the properties of the cycle \(\partial_{\text{temp}} \) needed for future use.

(a5.1) The interior of the cycles \(\partial_0^+ \) and \(\partial_0(L_1) \) is contained in the interior of the cycle \(\partial_{\text{temp}} = A_{\text{out}} \cup B_{\text{out}} \). Every vacant square of the sequence \(L_1 \) and every occupied square of the component \(C^+(0) \) lies in the interior of \(\partial_{\text{temp}} \). Every edge in \(\partial_{\text{temp}} \) belongs to either \(A_{\text{out}} \subset \partial_0^+ \) or \(B_{\text{out}} \subset \partial_0(L_1) \) but not both.

(a5.2) Every edge in the path \(B_{\text{in}} = \partial_0(L_1) \setminus B_{\text{out}} \) lies in the interior of the cycle \(\partial_{\text{temp}} \). At most two edges of \(B_{\text{in}} \) contain an endvertex in \(\partial_{\text{temp}} \) and every other edge of \(B_{\text{in}} \) has both its endvertices in the interior of \(\partial_{\text{temp}} \).

The above two properties are used to prove the following crucial property used in the next step.

44
There are three edges $h_1, h_2, h_3 \in B_{in}$ satisfying the following properties. For $i = 1, 2, 3$, the edge h_i belongs to $\partial_0^+ \cap \partial_0(L_1)$ and is the edge of a vacant square $Z_{j_i} \in L_1$. The indices $j_1 \neq j_2 \neq j_3$ and the edge h_1 has both its endvertices in the interior of the cycle ∂_{temp}.

Proof of (a5.1) – (a5.3): Property (a5.1) and the first statement of property (a5.2) follow from the properties of the merged cycle in Theorem 3, Ganesan (2017). To see the second statement, let $h \in B_{in}$ be any vertex that shares an endvertex with $\partial_{temp} = A_{out} \cup B_{out}$. All four paths A_{in}, A_{out}, B_{in} and B_{out} have common endvertices and have no other vertex in common. Therefore the edge h necessarily contains an endvertex of the path B_{in}. Since B_{in} has two endvertices, there are at most two possible choices for h. Every other edge of B_{in} has both its endvertices in the interior of ∂_{temp}. This proves (a5.2).

To prove (a5.3), we first prove the following property. (a5.4) If an edge $e \in \partial_0^+ \cap \partial_0(L_1)$, then $e \in B_{in}$.

Proof of (a5.4) consider an edge $e \in \partial_0^+ \cap \partial_0(L_1)$. Applying Theorem 1 property (iv) to $e \in \partial_0^+$, we have that the edge e is the edge of an occupied square K_e of the plus connected component $C^+(0)$ and is also the edge of a vacant square Y_e. Applying Theorem 1 property (iv) to $e \in \partial_0(L_1)$, we obtain that the vacant square Y_e belongs to the sequence L_1. Therefore if $e \in \partial_{temp}$, then necessarily one of K_e or Y_e lies in the exterior of the cycle ∂_{temp}, contradicting property (a5.1). Thus $e \in B_{in}$.

The first statement of (a5.3) follows from property (b4.3) of Step 4 which states that there are at least three distinct edges $h_1, h_2, h_3 \in \partial_0^+ \cap \partial_0(L_1)$, each adjacent to a distinct vacant square of the sequence L_1. From property (a5.4), the edges $h_i, 1 \leq i \leq 3$ belong to B_{in}. From the final statement of property (a5.2), we have that at least one of edges in $\{h_1, h_2, h_3\}$ contains both its endvertices in the interior of ∂_{temp}.

6. A vacant square of L_1 in the interior of ∂_{temp}

We prove the following property in this subsection. We recall that ∂_{temp} is the cycle obtained in Step 5 by merging the cycles ∂_0^+ and $\partial_0(L_1)$.

(a6.1) There is a vacant square Z_{j_0} belonging to the sequence L_1 all of whose edges lie in the interior of the cycle ∂_{temp}.
Figure 7: The edge \(ax \) belongs to the vacant square \(Z_{j_1} = abcd \in L_1 \) and has both its endvertices in the interior of the merged cycle \(\partial_{\text{temp}} \).

Proof of \((a6.1)\): From property \((a5.3)\), there exists an edge \(e \in \partial_0^+ \cap \partial_0(L_1) \) that has both its endvertices in the interior of the cycle \(\partial_{\text{temp}} \). Suppose that the edge \(e \) belongs to the vacant square \(Z_{j_1} \in L_1 \) and has both its endvertices in the interior of the merged cycle \(\partial_{\text{temp}} \). We illustrate this in Figure 7 where the square \(Z_{j_1} \) is the square labelled 1 and the edge \(e = ax \).

The edges \(ab \) and \(xc \) share the endvertices \(a \) and \(x \), respectively, with the edge \(e = ax \). Since vertices \(a \) and \(x \) lie in the interior of the cycle \(\partial_{\text{temp}} \), the edges \(ab \) and \(xc \) also lie in the interior of \(\partial_{\text{temp}} \). If the edge \(bc \) also is in the interior of \(\partial_{\text{temp}} \), then the square \(Z_{j_1} \) has all its edges in the interior of \(\partial_{\text{temp}} \) and the property \((a6.1)\) is true in this case.

We now assume that the edge \(bc \) does not lie in the interior of \(\partial_{\text{temp}} \) and proceed with the argument. We recall that the edge \(e = ax \) belongs to \(\partial_0^+ \cap \partial_0(L_1) \subset \partial_0(L_1) \). We use the following additional properties.

\((b6.1)\) The edge \(bc \) belongs to the cycles \(\partial_{\text{temp}} \) and \(\partial_0(L_1) \). In general, if an edge \(e \) belongs to a vacant square of the sequence \(L_1 \) and does not lie in the interior of \(\partial_{\text{temp}} \), then \(e \) belongs to both the cycles \(\partial_{\text{temp}} \) and \(\partial_0(L_1) \).

\((b6.2)\) Either \((ax, ab, bc)\) or \((ax, xc, bc)\) forms a subpath in the cycle \(\partial_0(L_1) \) but not both. If \((ax, ab, bc)\) is a subpath of \(\partial_0(L_1) \), then the edge \(cx \) lies in the interior of \(\partial_0(L_1) \).

Suppose that \((ax, ab, bc)\) forms a subpath of \(\partial_0(L_1) \). We recall that the cycle \(\partial_{\text{temp}} \) is the union of two bridges \(A_{\text{out}} \subset E_0^+ \) and \(B_{\text{out}} \subset \partial_0(L_1) \).

\((b6.3)\) The vertex \(b \) is an endvertex of the bridge \(B_{\text{out}} \subset \partial_{\text{temp}} \) and therefore \(b \) is also an endvertex for the path \(B_{\text{in}} = \partial_0(L_1) \setminus B_{\text{out}} \).
The first two edges in the path $B_{in} = \partial_0(L_1) \setminus B_{out}$ are ab and ax.

Figure 8: (a) The cycle ∂_{temp} represented by the cycle $byzcb$. The bridge $B_{out} = bcz$ and the path B_{in} represented by the dotted curve $baxz$ lies entirely in the interior of ∂_{temp}. (b) If the edge ed belongs to the cycle $\partial_{temp} = bcwdeyb$, then the path $B_{in} = baxe$ contains only edges of two distinct vacant squares of the sequence L_1, represented by labels 1 and 2 (see proof of Property (c6.2) below). The bridge B_{out} is represented by the path $bcwde$.

The above properties are illustrated in Figure 8(a), where the merged cycle $\partial_{temp} = bczyb$. The bridge $B_{out} = bcz$ and the path $B_{in} = baxz$ contains the two edges ab and ax. We use property (b6.4) along with the fact that the path B_{in} contains edges from three distinct vacant squares of the sequence L_1 (see property (a5.3) of Step 5) to arrive at a contradiction.

Proof of (b6.1) – (b6.2): To see (b6.1) is true, we argue as follows. The edge bc belongs to the vacant square Z_{j_1} of the sequence L_1 and the square Z_{j_1} lies in the interior of the cycle ∂_{temp} (property (a5.1) of Step 5). Since the edge bc does not lie in the interior of ∂_{temp}, we have that bc belongs to ∂_{temp}.

Suppose now that the edge bc does not belong to the outermost boundary cycle $\partial_0(L_1)$. The edge bc belongs to the vacant square $Z_{j_1} \in L_1$ and the square Z_{j_1} lies in the interior of the outermost boundary cycle $\partial_0(L_1)$ (see property (a4.1) of Step 4). Thus the edge bc lies in the interior of $\partial_0(L_1)$ and so lies in the interior of the bigger cycle ∂_{temp} (property (a5.1)). This is a contradiction since $bc \in \partial_{temp}$ and so the edge bc belongs to $\partial_0(L_1)$. This
proves the first statement of (b6.1) and the proof of the second statement is analogous.

We prove (b6.2) as follows. Using property (b6.1) we have that the opposite edges ax and bc of the vacant square $Z_{j_1} \in L_1$ belong to the outermost boundary cycle $\partial_0(L_1)$. From property (a4.3) in Step 4 regarding opposite edges of the cycle $\partial_0(L_1)$, we then have that either (ax, ab, bc) or (ax, xc, bc) forms a subpath in the cycle $\partial_0(L_1)$. If both the subpaths belong to $\partial_0(L_1)$, then the sequence L_1 contains the single square Z_{j_1} in its interior. This contradicts the property (a4.1) of $\partial_0(L_1)$ which states that the sequence L_1 has at least three distinct vacant squares. This proves the first statement of (b6.2).

Suppose now that the path (ax, ab, bc) is a subpath of $\partial_0(L_1)$. The edge cx does not belong to $\partial_0(L_1)$ and since the square Z_{j_1} containing the edge cx lies in the interior of the cycle $\partial_0(L_1)$, (see property (a4.1) of $\partial_0(L_1)$ in Step 4) we have that the edge cx also lies in the interior of $\partial_0(L_1)$.

To prove (b6.3), we argue as follows. Using the fact that $bc \in \partial_{\text{temp}}$ (property (b6.1)), there are two edges in the cycle ∂_{temp} containing the vertex b, one of which is the edge bc. Let $g \in \partial_{\text{temp}}$ be the other edge containing b as an endvertex. The cycle ∂_{temp} is obtained by merging the cycles ∂_0^+ and $\partial_0(L_1)$ and so the edge g therefore belongs to either ∂_0^+ or $\partial_0(L_1)$ (property (a5.1) of ∂_{temp}). The edge bc belongs to $\partial_0(L_1)$ (property (b6.1)) and by assumption, the edge ab also belongs to $\partial_0(L_1)$. So the edge g cannot belong to the cycle $\partial_0(L_1)$ and therefore belongs to ∂_0^+. This also means that the vertex b is an endvertex of the bridge $B_{\text{out}} \subset \partial_0(L_1)$. This proves (b6.3).

We prove (b6.4) as follows. By assumption, the edges ab and ax are consecutive edges of the cycle $\partial_0(L_1)$ and also, the vertices a and x lie in the interior of the merged cycle ∂_{temp}. This means that both ax and ab lie in the interior of ∂_{temp} and therefore necessarily belong to the path $B_{\text{in}} = \partial_0(L_1) \setminus B_{\text{out}}$.

From property (b6.3), the vertex b is an endvertex of the bridge B_{out} and is therefore also the endvertex of the path B_{in} i.e., the paths B_{out} and B_{in} meet at b. Therefore the edges ab and ax are the first two edges of B_{in}. This proves (b6.4).

From property (b6.4), we have that the edges ab and ax form consecutive edges of the path B_{in}. Let h_{next} be the “next” edge in B_{in}; i.e., the edge in $B_{\text{in}} \setminus \{ax\}$ containing x as an endvertex. The right edge cx of the square Z_{j_1} lies in the interior of $\partial_0(L_1)$ (property (b6.2)) and so cannot belong
to $B_{in} \subset \partial_0(L_1)$. Thus $h_{next} \in \{gx, xe\}$ and we discuss each case separately.

Case (i): The edge $h_{next} = xe$. We then have the following properties.

1. The square labelled 2 in Figure [7] is vacant and belongs to the sequence L_1.

We call the vacant square labelled 2 as $Z_{j_2} \in L_1$.

2. All four edges of Z_{j_2} lie in the interior of the cycle ∂_{temp}.

Proof of (c6.1)−(c6.2): To see (c6.1), we argue as follows. Since (ax, ab, bc) is a subpath of $\partial_0(L_1)$, the edge cx lies in the interior of $\partial_0(L_1)$ (see property (b6.2)). This means that the square labelled 2 in Figure [7] also lies in the interior of $\partial_0(L_1)$. In this Case (i), the edge $xe \in B_{in} \subset \partial_0(L_1)$ also belongs to $\partial_0(L_1)$ and so the square labelled 3 lies in the exterior of $\partial_0(L_1)$. Applying Theorem 1 (property (v)) to the edge $xe \in \partial_0(L_1)$, we obtain the square labelled 2 belongs to the sequence L_1 and is therefore vacant.

We prove (c6.2) as follows. By assumption, the edge xe belongs to the path B_{in} and from property (a5.2), every edge in B_{in} lies in the interior of the merged cycle ∂_{temp}. In particular, so does xe. From property (b6.2), the edge cx lies in the interior of the cycle $\partial_0(L_1)$ and the merged cycle ∂_{temp} contains $\partial_0(L_1)$ in its interior (property (a5.1) of Step 5) and so the edge cx also lies in the interior of ∂_{temp}.

Suppose that the edge cd does not lie in the interior of ∂_{temp}. We arrive at a contradiction as follows. The edge cd belongs to the vacant square $Z_{j_2} \in L_1$ and so from property (b6.1), we have that cd belongs to the cycles ∂_{temp} and $\partial_0(L_1)$. By assumption, the edge $xe \in B_{in} \subset \partial_0(L_1)$. In particular, this means that the opposite edges xe and cd both belong to $\partial_0(L_1)$. From property (a4.3) of $\partial_0(L_1)$ in Step 4, this means that either (xe, cx, cd) or (xe, de, cd) forms a subpath of $\partial_0(L_1)$. But from property (b6.2), we have that the edge cx lies in the interior of the cycle $\partial_0(L_1)$ and so $cd \notin \partial_0(L_1)$. This means $de \in \partial_0(L_1)$ and the edges (xe, de, cd) form a subpath of $\partial_0(L_1)$.

We recall that we have assumed that (ax, ab, bc) already forms a subpath of $\partial_0(L_1)$. From the final statement in the above paragraph, we then have that $\partial_0(L_1) = (ax, xe, ed, de, cd, ba)$; i.e., the cycle $\partial_0(L_1) = axedcba$ and there are exactly two squares in the interior of $\partial_0(L_1)$. But this is a contradiction since the outermost boundary cycle $\partial_0(L_1)$ contains all squares of the sequence L_1 in its interior and the sequence L_1 contains at least three distinct vacant squares (property (a4.1), Step 4). Thus the edge cd also lies in the interior of the cycle ∂_{temp}.
Finally, suppose that the edge ed does not lie in the interior of the cycle ∂_{temp}. Using property (b6.1) again, we have that ed belongs to the cycles ∂_{temp} and $\partial_0(L_1)$. Since $\partial_0(L_1)$ is the union of the path $B_{in} \cup B_{out}$, the edge ed belongs to either B_{in} or B_{out}. But from property (a5.2), every edge of B_{in} lies in the interior of the cycle ∂_{temp}. This necessarily means that the edge ed belongs to the bridge $B_{out} \subset \partial_0(L_1)$. But from property (a5.2), every edge of B_{in} lies in the interior of the cycle ∂_{temp}. This necessarily means that the edge ed belongs to the bridge $B_{out} \subset \partial_0(L_1)$. But the edge xe belongs to the path B_{in} and so e is an endvertex of the path B_{in} (and B_{out}).

From property (b6.3), we already have that vertex b is also an endvertex of B_{in}. From (b6.4), we also have that the first two edges of B_{in} are ab and ax. Thus we must have $B_{in} = (ab, ax, xe)$. We refer to Figure 8(b) for illustration.

The path $B_{in} = baxe$ and the bridge $B_{out} = bcwde$. The merged cycle ∂_{temp} is the union of B_{out} and the wavy path bye. The square labelled 2 is the vacant square Z_{j2} and as proved above, has its edges cx, xe and cd in the interior of ∂_{temp}.

From the above paragraph, we obtain that the path B_{in} contains only edges of two distinct vacant squares of the sequence L_1. In Figure 8, the vacant squares are represented by $axcb$ and $cged$. This is a contradiction to property (a5.3) of Step 5 which states that the path B_{in} contains edges of at least three distinct squares of the sequence L_1. So the edge ed also lies in the interior of ∂_{temp}.

We now consider the case (ii).

Case (ii): The edge $h_{next} = xg$. We then have the following properties.

(d6.1) The square labelled 3 in Figure 7 is vacant and belongs to the sequence L_1.

We call the vacant square labelled 3 as $Z_{j3} \in L_1$.

(d6.2) All four edges of Z_{j3} lie in the interior of the cycle ∂_{temp}.

Proof of (d6.1) – (d6.2): To see (d6.1), we argue as follows. We recall that the edge $ax \in \partial_0(L_1) \cap \partial_0^+$ and the square labelled 4 is occupied and the square Z_{j1} labelled 1 is vacant and belongs to the sequence L_1. Since $gx \in B_{in} \subset \partial_0(L_1)$, the square labelled 3 in Figure 7 is also vacant and belongs to the sequence L_1. This is seen by applying Theorem 1 property (v) to the edge gx. This proves (d6.1).

To prove (d6.2), we argue as follows. The edge $gx \in B_{in}$ lies in the interior of ∂_{temp} (property (a5.2)).

To prove that the edge xe lies in the interior of the cycle ∂_{temp}, we argue as follows. The edge gx also belongs to the outermost boundary cycle ∂_0^+.
because if not, then the square $Z_{ja} \in L_1$ would lie in the interior of ∂_0^+ contradicting property (b4.2). From the discussion in the previous paragraphs, we therefore have that both the edges ax and gx belong to $\partial_0^+ \cap \partial_0(L_1)$. Thus the edge $ex \notin \partial_0^+ \cup \partial_0(L_1)$ and therefore does not belong to ∂_{temp}. Since the square Z_{ja} containing ex as an edge lies in the interior of ∂_{temp}, the edge xe also lies in the interior of ∂_{temp}.

If the edge $gf \in \partial_{temp}$, then it belongs to either ∂_0^+ or $\partial_0(L_1)$ but not both (property (a5.1)). If it belongs to ∂_0^+, then the square above gf is occupied and since $Z_{ja} \in L_1$ (property (a6.1)), this would mean that gf also belongs to $\partial_0(L_1)$. Because if gf lies in the interior of $\partial_0(L_1)$, then the (occupied) square above gf would also lie in the interior of $\partial_0(L_1)$, a contradiction to property (b4.1). Thus $gf \in \partial_0(L_1)$ and since by assumption the edge gf also belongs to ∂_0^+, this contradicts the first statement of this paragraph.

From the above paragraph, we have that $gf \notin \partial_0^+$. If $gf \in \partial_0(L_1)$, then $gf \in \partial_0(L_1) \setminus \partial_0^+$ and so necessarily belongs to B_{out}. This is because using properties (a5.1) and (a5.2) we obtain that every edge in $\partial_0(L_1) \cap \partial_0^+$ belongs to $B_{in} \subset \partial_0(L_1)$. Since the edge gx belongs to B_{in}, the vertex g is an endvertex of B_{out} and B_{in} and so B_{in} in this case is the path (ba, ax, xg). This is a contradiction since B_{in} contains edges from at least three distinct squares of the sequence L_1 (property (a5.3)) and the path (ba, ax, xg) contains only edges from the squares $Z_{ja} \in L_1$ (labelled 1 in Figure 7) and the square $Z_{ja} \in L_1$ (labelled 3 in Figure 7).

From the discussion in the above paragraph, the edge gf belongs to the interior of ∂_{temp}. We then finally consider the edge fe. If $fe \in \partial_{temp}$, then arguing as in the case of the edge gf above, we have that $fe \notin \partial_0(L_1) \setminus \partial_0^+$ and so $fe \in B_{out} \subset \partial_0(L_1)$. We recall that we have assumed that $gx \in B_{in} \subset \partial_0(L_1)$ in this case and so in particular the opposite sides fe and gx of the square $Z_{ja} \in L_1$ belong to $\partial_0(L_1)$.

Using the opposite sides property (property a4.3), the edge gf or xe also must belong to $\partial_0(L_1)$. But xe cannot belong to $\partial_0(L_1)$ since both the edges ax and gx belong to $B_{in} \subset \partial_0(L_1)$. This $gf \in \partial_0(L_1)$ and arguing as in two paragraphs above, we get that $gf \in B_{out}$ and that $B_{in} = (ba, ax, xg)$. Again using property (a5.3) that B_{in} contains edges of at least three distinct squares in the sequence L_1, we obtain a contradiction. Thus $fe \notin \partial_{temp}$ and since the square $Z_{ja} \in L_1$ containing fe as an edge lies in the interior of ∂_{temp}, the edge fe also lies in the interior of ∂_{temp}. ■
7. Arriving at a contradiction

We use the above properties of the cycles \(\partial_0(L_1) \) and \(\partial_{\text{temp}} \) to arrive at a contradiction. We recall the iterative merging procedure in Step 1 of the proof. Following the same procedure, we merge the vacant squares \(\{Z_i\}_{i=0}^{n} \) in the sequence \(L_1 \) one by one in an iterative fashion with the outermost boundary cycle \(\partial_0^+ \). We start with \(Z_{i_0} \) merge with \(\partial_0^+ \) to get a new cycle. We then merge \(Z_{i_0+1} \) with the new cycle and so on. Let \(R_1, R_2, \ldots, R_T \) denote the intermediate cycles obtained with \(R_1 = \partial_0^+ \) and \(R_T \) denoting the final cycle.

The cycles \(\{R_i\}_{1\leq i \leq T} \) satisfy properties \((x1)-(x3)\) (see Step 1) with \(\{Y_i\}_{1\leq i \leq T} \) replaced with \(\{Z_i\}_{i=0}^{n} \). The final cycle \(R_T \) therefore satisfies the following properties.

\((a7.1)\) Every occupied square of \(C^+(0) \) is contained in the interior of \(R_T \). Every vacant square in the sequence \(L_1 \) is contained in the interior of \(R_T \).

\((a7.2)\) If edge \(e \in R_T \), then either \(e \in \partial_0^+ \) or \(e \) belongs to some vacant square in the sequence \(L_1 \).

\((a7.3)\) The cycle \(R_T \) is unique in the sense that if some cycle \(C \) satisfies properties \((a7.1)-(a7.2)\) above, then \(C = R_T \).

\textit{Proof of \((a7.1)-(a7.3)\):} Properties \((a7.1)-(a7.2)\) follow from properties \((a1.1)-(a1.3)\) of Step 1. It suffices to prove \((a7.3)\). If \(C \neq R_T \), suppose there exists an edge \(e \) of \(C \) in the exterior of \(R_T \). From property \((a7.2)\), we have that \(e \in \partial_0^+ \) or \(e \) belongs to a vacant square \(Z_j \in L_1 \). This means that either some occupied square of \(C^+(0) \) or some vacant square of \(L_1 \) lies in the exterior of \(R_T \), a contradiction to property \((a7.1)\). An analogous argument holds if \(R_T \) contains an edge in the exterior of \(C \). \(\square \)

From property \((a5.1)\) of the cycle \(\partial_{\text{temp}} \) in Step (5) above, we have that \(\partial_{\text{temp}} \) satisfies properties \((a7.1)-(a7.2)\) and so \(\partial_{\text{temp}} = R_T \). We recall that \(\Lambda^+ \) denotes the set of all vacant squares sharing an edge with some occupied square of the component \(C^+(0) \) and that all the squares in the sequence \(L_1 \subset L \subset \Lambda^+ \). If we now continue the iterative procedure starting with \(R_T = \partial_{\text{temp}} \) and merge the vacant squares in \(\Lambda^+ \setminus L_1 \) one by one, then arguing as above, we have that the final cycle obtained \(R_{\text{fin}} \) satisfies properties \((b1.1)-(b1.3)\) of the cycle \(D_{\text{fin}} \) mentioned in Step 1. Thus using the uniqueness property \((b1.4)\), we have that \(R_{\text{fin}} = D_{\text{fin}} \).

The interior of \(\partial_{\text{temp}} \) is contained in the interior of \(R_{\text{fin}} = D_{\text{fin}} \) and so by property \((a6.1)\), the vacant square \(Z_{j_0} \) of the sequence \(L_1 \subset L \) has all
its edges in the interior of D_{fin}. But by construction, every vacant square in
the original sequence $L = (Z_1, \ldots, Z_s)$ contains an edge in D_{fin} (see prop-
erty (a2.2) in Step 2 above). This is a contradiction and so the assumption
we made in Step 4 that $L_1 \neq L$ is false. Thus the sequence L is itself a
$S-$cycle. This completes the proof of Theorem 3.

\begin{flushright}
\textbf{Acknowledgement}
\end{flushright}

I thank Professors Rahul Roy and Federico Camia for crucial comments and
for my fellowships. I also thank NISER for my fellowship.

\begin{flushright}
\textbf{References}
\end{flushright}

[1] B. Bollobas. (2001). \textit{Modern Graph Theory}. Springer.

[2] B. Bollobas and O. Riordan. (2006). \textit{Percolation}. Academic Press.

[3] G. Ganesan. (2017). Duality in pecolation via outermost boundaries I:
Bond percolation. \textit{Arxiv Link}: https://arxiv.org/abs/1704.00461.

[4] M. Penrose. (2003). \textit{Random Geometric Graphs}. Oxford.