Hydrothermal Synthesis and Structural Properties of V$_2$O$_5$ Nanoflowers at Low Temperatures

N.M. Abd-Alghafour1, Naser. M. Ahmed2, Z. Hassan3, Munirah Abdullah Almessiere4

1Iraqi Ministry of Education, Al-Anbar, Iraq
2University of Al-Anbar, College of Science, Al-Anbar, Iraq
3School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
4Institute of Nano Optoelectronics Research and Technology (INOR), Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
5Physics Department, College of Science, University of Dammam, Saudi Arabia

Abstract. Vanadium pentoxide nanoflowers were synthesized through a simple hydrothermal method at low temperatures. The structure was fabricated by using NH$_4$VO$_3$ and oxalic acid as precursors with 0.1 M solution concentration. The morphology and structural properties of the nanoflowers were characterized using FESEM, XRD, Raman, and UV-Visible spectroscopy. The results reveal an orthorhombic structure with preferred orientation along (001) plane of the prepared V$_2$O$_5$ nanoflowers. Raman peaks also expressed the same structural features. FESEM images showed the V$_2$O$_5$ nanoflower with diameters in the range of 60-80 nm and length in 600-800 nm. A red-shift was observed in the characteristic absorption peak of V$_2$O$_5$ nanoflowers, which are attributed to the decrease of the bandgap of the samples.

1. Introduction

V$_2$O$_5$ has been gained significant interest in the applied research to range of applications [1]. V$_2$O$_5$ is the most stable among all vanadium oxides and has high oxidation state [2, 3]. The outstanding properties such as a direct band gap in the visible-light region ($E_g = 2.2$ to 2.7 eV) [4], multi-valance, good chemical and thermal stability, excellent thermoelectric property make V$_2$O$_5$ nanostructure is a suitable material for solar cells [5], gas sensor [6], optical-electrical switches [7], chemical sensing [8], electrochromic devices [9], and optoelectronic devices [10]. Therefore, one dimensional (1D) nanostructures of V$_2$O$_5$ are considered to be more appropriate for the device applications as compared with its other forms. Among these, V$_2$O$_5$ nanoflowers are being considered for applications in optoelectronic and electrochemical devices [11]. V$_2$O$_5$ nanostructures have been prepared by different techniques including chemical vapor deposition [12], magnetron sputtering [13], sol-gel method [14], pulsed laser deposition [15], electron beam evaporation [16], electrospinning [17], spray pyrolysis [18], and hydrothermal synthesis [19]. Among the various deposition techniques for the preparation of vanadium oxide nanostructures, hydrothermal technique is a relatively simple, cost-effective and environmental friendly route to prepare metal oxide nanostructures at low temperature and short reaction time [20].

Many researchers in the field have been developed to obtain 1D-V$_2$O$_5$ nanostructures. Parida et al. [21] synthesized of the V$_2$O$_5$ nanoflowers by a simple and novel cost-effective low temperature