Unifying The Evaluation Criteria Of Many Objectives Optimization Using Fuzzy Delphi Method

Rawia Tahrir Mohammed1,2 Razali Yaakob3*, Nurfadhлина Mohd Sharef1, Rusli Abdullah1

1Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, Selangor, Malaysia
2Geomatika University College, Kuala Lumpur, Malaysia.
3Corresponding author: razaliv@upm.edu.my
E-mails: rawiatahirs@gmail.com , nurfadhлина@upm.edu.my , rusli@upm.edu.my

Received 15/10/2021, Accepted 14/11/2021, Published 20/12/2021

Abstract: Many objective optimizations (MaOO) algorithms that intends to solve problems with many objectives (MaOP) (i.e., the problem with more than three objectives) are widely used in various areas such as industrial manufacturing, transportation, sustainability, and even in the medical sector. Various approaches of MaOO algorithms are available and employed to handle different MaOP cases. In contrast, the performance of the MaOO algorithms assesses based on the balance between the convergence and diversity of the non-dominated solutions measured using different evaluation criteria of the quality performance indicators. Although many evaluation criteria are available, yet most of the evaluation and benchmarking of the MaOO with state-of-art algorithms perform using one or two performance indicators without clear evidence or justification of the efficiency of these indicators over others. Thus, unify a set of most suitable evaluation criteria of the MaOO is needed. This study proposed a distinct unifying model for the MaOO evaluation criteria using the fuzzy Delphi method. The study followed a systematic procedure to analyze 49 evaluation criteria, sub-criteria, and its performance indicators, a penal of 23 domain experts, participated in this study. Lastly, the most suitable criteria outcomes are formulated in the unifying model and evaluate by experts to verify the appropriateness and suitability of the model in assessing the MaOO algorithms fairly and effectively.

Keywords: Evaluation Criteria, Fuzzy Delphi, Many Objectives Optimization, Unifying Model.

Introduction: In many-objective optimization algorithms (MaOO), the performance evaluation considers a critical matter in determining the accuracy of the results. Many evaluation criteria were proposed in the context of MaOO to evaluate the MaOO algorithms. However, MaOO evaluation performance considers a primary challenge in the optimization process due to the complexity of MaOPs and the ambiguity of criteria selection that depend mainly on one or two of the evaluation criteria metrics. Despite the fact that some of these criteria have been criticised in the literature, they are still chosen at random and used to evaluate the performance of MaOO algorithms. In addition, the process of selecting any of these criteria and its metrics for evaluation remains an open question. This study aims to unify the most suitable evaluation criteria for evaluating the MaOO performance using the fuzzy Delphi method.

Fuzzy Delphi Method (FDM), proposed based on integrating the Delphi method into fuzzy theory to overcome the Delphi method drawbacks. FDM has proven effectiveness in widely employed for unifying, screening and forecasting, assessment, standardization, and criteria identification in various domains. Mainly, FDM provides appropriate results when making decisions regarding objective issues needed, while the involving criteria are not unified. The FDM provides a resilient framework that can handle the lack of precision and clarity. The incomplete or inaccurate information is considered an issue in decision making.

Furthermore, subjectivity in the decisions made by the decision-makers caused uncertain results. FDM is tailored to the fuzzy environment to
handle imprecise descriptions and human subjectivity15. Employing fuzzy numbers can leave the impression of using an appropriate method for decision-making8. Therefore, FDM is the best method for assessing and unifying the most effective criteria with high flexibility scale8,9,13. Moreover, all vital information will be considered without any missing because the membership degree effectively considers all experts' preferences9,14,15.

Methodology:

The process for unifying the evaluation criteria model in the context of MaOO is introduced in this section. The process comprises three steps, as shown in Figure 1, which are: (1) MaOO criteria identification and analysis, (2) fuzzy Delphi analysis, (3) development and validation of the proposed MaOO criteria evaluation model.

Based on Figure 1, the first step for unifying the MaOO criteria is collecting, identifying, and analysing all MaOO evaluation criteria to criticize and categorize them based on their group. According to study16 there are 49 criteria, sub-criteria, and indicators are used and developed to assess the performance of the MaOO algorithms, which are classified and presented as will present in the results section; Second step is Fuzzy Delphi Analysis (FDM) which consists of five stages. **Stage 1:** First, the panelist of experts from the domain are selected, while the recommended number of experts range is between (10-15)17; this range is sufficient when their backgrounds are the same, and uniformity is high. However, some studies included 50 specialists18. **Stage 2:** formulate the expert evaluation form (questionnaire) to collect the expert consensus over the studied criteria using the five Likert scale19,20. **Stage 3:** Data dissemination and data collection: the experts’ feedback was collected through the developed questionnaire using an online survey21. **Stage 4:** the collected data of expert evaluation per criteria convert from linguistic scale to triangular fuzzy number using table 1. Lastly, **stage 5:** in this step, the degree of agreement for each criterion based on expert consensus are computed. Three acceptance conditions are employed, which are, a) the results of applying vertex method to find d value for each criterion should be less or equal to 0.222; b) the percentage consensus for each sub-criterion and overall should be greater than 75%23; and c) the average of the
fuzzy number for each criterion should be greater than α-cut of 0.5 value. This value supports the sensible reasoning that only those elements from the fuzzy support set with ‘sufficiently large’ group grades are included24. Consequently, the results of the criterion must pass all three conditions13,14, then this criterion gains the expert consensus and will be included in the unified model; otherwise, it will be omitted. Lastly, the validation step as demonstrated in Figure 1.

Results and Discussion:

Many performance indicators proposed to evaluate objective optimization algorithms. Some of them gradually decayed as it’s inefficient to work with more than three objectives, while many others are developing to assess MaOO algorithms’ performance. However, there is still an issue in evaluating the MaOO algorithms when it’s come to select the evaluation criteria for benchmarking or assessing the MaOO algorithms, as there is no clear evidence of the reason behind using specific one or two indicators amongst others. Thus, proposing an evaluation criteria model is a necessity that aims to unify the most suitable criteria for MaOO. As present in the methodology section, the process of developing an evaluation criteria model comprises three steps:

1. **Identify the evaluation criteria for MaOO:** In this section, all criteria, sub-criteria, and indicators are collected, combined, and categorized from literature. A summary of them recalled and listed down here as shown in Table 1.

2. **fuzzy Delphi analysis:** As mentioned in methodology section, the fuzzy Delphi method was employed to analyze the experts’ consensus on “MaOO evaluation criteria” to identify the most suitable criteria. This step started by developing a questionnaire for fuzzy Delphi analysis as an instrument for collecting expert opinions over the 49 criteria, sub-criteria and its indicators identified, collected and analysed in the previous step and ending with testing the acceptance conditions on the output criteria set. The processing results of these steps are presented in detail as following: Step 1: Expert selection is a critical task: For expert selection, the non-probability purposive sampling was used based on the following inclusion criteria: (a) MaOO developer specialist either industrial or academician (b) Those who have possessed a remarkable research work in the field of MaOO. (c) Minimum 5 years of experience in the study field. About 250 experts from around the world contacted and invited to participate through LinkedIn or their official email address; 50 of them expressed their readiness for participating in this research study.

Step 2: Developing the expert questionnaire; Parallely, the fuzzy Delphi analysis questionnaire formulated for the 49 criteria, sub-criteria, and indicators items. The face and content validity were utilized to check the validity and reliability level of the expert questionnaire before conducting the actual study. The content validity index (CVI) results were between 0.857 (6/7) to 1 (7/7), shows that all questionnaire items are relevant and valid. While the average item level (S-CVI/Ave) and Universal Agreement (UA) among experts (S-CVI/UA) were 0.994 and 0.960, respectively. Thus, the developed instrument of this study is valid25,26. The first version of the fuzzy Delphi analysis questionnaire was sent for a pilot study to test its reliability. Twenty participants from University Putra Malaysia (UPM) and the University of Baghdad were invited to answer the survey. The collected responses were analyzed using SPSS to compute the reliability level. The accepted Cronbach’s alpha is 0.75, the Cronbach’s alpha for the fuzzy Delphi instrument was 0.944.
Step 3: Survey dissemination and data collection; The online survey was distributed using email tool and weblink on Smartsurvey.com and shared with the experts from around the world, who were instructed to use a five Likert scale to express their agreement level for each criterion, subcriterion, and indicator. Twenty-three experts submitted a completed response, the response data exported from the questionnaire as an input to analyse in fuzzy Delphi method. Step 4: In this step, all experts’ collected results are converted into fuzzy triangular numbering from the linguistic variables as shown in Table 2, the process of converting the main criteria data to fuzzy numbers. The exact process applied to the rest of the subcriteria and indicators.

Step 5: The last step is testing the acceptance conditions for each item (i.e., criteria, subcriteria, and indicators). Table 3 shows the results of the three conditions representing the experts’ consensus on the main criteria, the same process applied to the rest of the subcriteria and indicators.

Main Criteria	Sub-criteria	Indicator	Citation	
Pareto	Single Direction	Convergence	Generation_Distance	[8]
			Norm	[9]
			Local_Generation_Distance (LGD)	[10]
			The_additive_epsilon	[11]
			The_Power_Mean_of_Generational_Distance	[12]
			Pertinence_Metric	[13]
			Convergence_Metric	[14]
			MinSum_SumMin	[15]
		Uniformity	Spacing_metric	[16]
		Diversity	The_Pure_Diversity	[17]
			Maximum_Spread	[9]
			The_Diversity_Measure	[18]
			The_Sigma_Diversity_metric	[19]
		Uncertainty	Imprecision	[20]
		Distribution	Spread_Metric (S or Δ metric)	[20]
			Diversity_Comparision_Indicator	[18]
			R2_Indicator	[19]
			The_Generalized_Spread	[21]
			The_Hierarchical_Cluster_Counting	[13]
			Hypervolume_metric	[22]
			Inverted_Generation_Distance	[23]
			Inverted_Generation_Distance_Plus	[24]
			Local_Inverted_Generation_Distance	[10]
			Polar_Metric	[25]
			Power_mean_Inverted_Generation_Distance	[26]
			Two_Set_Converage	[8]
			Hyperarea_Ratio	[19]
		Cardinality	Averaged_Hausdorff_Distance	[27]
			G_Indicator	[19]
			Changed_Pareto_Domination_Ratio	[28]
			Success_Rate	[29]
			Sigma_metric	[30]
			Final Nondominated Population Size in the Target Region (PS-T)	[5]
			Pareto Subset (PS)	[12]
			Error_ratio	[5]
		Time	No._of_Comparision	[31]
			Total_run_time	[32]
			T_Metric	[20]
			Algorithm Running Efficiency (ARE)	[33]
			Performance_Score	[34]

Table 2. Linguistic variables for five scales

Likert Scale	Linguistic term	Fuzzy Scale
1	Strongly Disagree	(0.0,0.0,0.2)
2	Disagree	(0.0,0.2,0.4)
3	Moderate	(0.2,0.4,0.6)
4	Agree	(0.4,0.6,0.8)
5	Strongly Agree	(0.6,0.8,1.0)

Table 3. The summary of the criteria list of MaOO and its indicators
Table 3. The conditions result of the main criteria of the fuzzy Delphi method

Expert Number	Pareto Criterion	Cardinality Criterion	Time Criterion
1	0.04	0.07	0.1
2	0.04	0.07	0.1
3	0.04	0.42	0.1
≥		≥	≥
23	0.16	0.42	0.1

The value d of each item:

1. The value d of for all items:
 - Accepted
 - Accepted
 - Accepted

1st Condition:
- Accept each item has d ≤ 0.2
- Percentage of Each Item (d ≤ 0.2):
 - 87%
 - 78%
 - 91%
- The overall percentage:
 - 86%
- Accept each item has ≥ 75%@
 - Accepted
 - Accepted
 - Accepted

2nd Condition:
- Average of fuzzy numbers (expert response):
 - 0.443
 - 0.643
 - 0.843
 - 0.261
 - 0.443
 - 0.643
 - 0.322
 - 0.522
 - 0.722
- Average of fuzzy numbers:
 - 0.64
 - 0.45
 - 0.52
- Rank:
 - 1
 - 3
 - 2
- Accept each item has ≥ 0.5:
 - Accepted
 - Rejected
 - Accepted

As shown in Table 3, the cardinality criterion passed the first two conditions, but the third condition didn’t pass, in conclude, this criterion is rejected, and consequently, the indicators of this criterion will be rejected, as well. The unified model of MaOO evaluation criteria, subcriteria, and indicators analysis results based on fuzzy Delphi analysis is demonstrated in Table 4.

Table 4 demonstrates the unified model result based on the fuzzy Delphi process of the acceptance conditions for all tested criteria, subcriteria, and indicators. Out of three main criteria, two criteria passed all three conditions namely the Pareto and Time, while the cardinality criterion rejected. For time criterion’s indicators, two indicators are accepted, which are ARE and Performance score. For Pareto criterion, all other subcriteria with single and multi-directions got the experts’ consensus on its suitability for evaluating the MaOO algorithms. However, the accepted indicators per each subcriterion were as following: For convergence criterion out of eight indicators, six indicators were accepted: generation distance, LGD, the additive epsilon, the power mean of generational distance, pertinence metric, and convergence metric. For the uniformity criterion, spacing metric accepted. For Diversity criterion, out of four indicators, three accepted the pure diversity, maximum spread and the diversity measure; under uncertainty criterion, the imprecision indicator was accepted. While four indicators of distribution criterion accepted, which are Spread_Metric (S or Δ metric), Diversity Comparison indicator, R2 Indicator, The Generalized Spread. Lastly, six indicators of comprehensive criterion accepted Hypervolume metric, Inverted Generation Distance, Inverted Generation Distance Plus, Local Inverted Generation Distance, Hyperarea Ratio and Averaged Hausdorff Distance.

(3) The Validation of the Proposed Most Suitable Criteria Model: The absent of unified set (set of the most suitable criteria) considered one of the main issues in evaluating and comparing the competitive MaOO algorithms, while no evidence on the propriety of the selected criteria for assessing the performance of MaOO algorithms [27]. Thus, unifying a model for the set of most suitable evaluation criteria is a necessity. It’s worth mentioning here that the development of new indicators is continuing task. The researchers might continue developing new indicators as natural progress to fulfil the needs and align with the MaOO sector's improvement. The unifying MaOO criteria model is designed to be a reference for evaluating MaOO competitive algorithms' performance. In addition, it is flexible enough to provide a systematic work shed for any new related indicator of MaOO to be added. For validation, a survey was sent with the results of most suitable criteria set (the proposed model) to the MaOO experts to validate the unified criteria set. For model validity and suitability in the context of MaOO the proposed model has been sent to the experts for validation. To avoid any bias or influence, the consulting expert kept anonymous for the truth and fairness evaluation.
Table 4. The Unified model of evaluation criteria of MaOO

Criteria	Generation_Distance	Local_Generation_Distance (LGD)	The_additive_epsilon	The_Power_Mean_of_Generational_Distance	Pertinence_Metric	Convergence_Metric
Single Direction	Convergence					
Uniformity	Spacing_metric					
Diversity	The_Pure_Diversity					
	Maximum_Spread					
	The_Diversity_Measure					
Distribution	Diversity_Comparision_Indicator					
Multi Directions	Distribution					
Comprehensive						
Time	Algorithm Running Efficiency (ARE)					
	Performance_Score					

As shown in Figure 2, the experts have been asked to validate the proposed model and show their level of acceptance, and the results of their responses support for the proposed model and its validity, out of 21 experts who participated in the validation process (14; 66.67%) show their acceptance and (6; 28.57%) was strongly accepted, while 4.76% (1 expert) request to revise the model and replace the abbreviation or acronym name with the full name and the researcher already applied that, and the final approved model presented in Table 4.

Figure 2. The acceptance of the validity of the proposed model

Conclusion:
The Many Objective Optimization algorithms (MaOO) evaluation criteria play a critical role in evaluating the competition MaOO algorithms. Although these criteria have been criticized in literature, they are employed in the evaluation randomly, and the process of selecting them remains unclear. Thus, the need for unifying the criteria set became inevitable. This study presents the processing results of developing criteria model for many objectives optimization algorithms. The fuzzy Delphi analysis test and refine the 49 criteria, subcriteria, and its indicators. The fuzzy Delphi method's final results narrowed the criteria set down to 31 of the most suitable criteria set. The statistical analysis of the experts' evaluation proved the validity of the proposed criteria model and its suitability for evaluating the MaOO algorithms. These results contribute to the body of knowledge and provide a flexible unified model of evaluation criteria for MaOO algorithms. In future work and to provide an exhaustive evaluation methodology, the importance level of each of these suitable criteria set needs to study and determine accordingly.

Authors' declaration:
- Conflicts of Interest: None.
- We hereby confirm that all the Figures and Tables in the manuscript are mine ours. Besides, the Figures and images, which are not mine ours, have been given the permission for re-publication attached with the manuscript.
- The author has signed an animal welfare statement.
- Ethical Clearance: The project was approved by the local ethical committee in University of Putra Malaysia.

Authors' contributions:

Rawia Tahir Mohammed conceived of the presented idea in addition and performed the computations.

Razali Yaakob, Nurfarhлина Mohd Sharef, and Rusli Abdullah verified the analytical methods.

Rawia Tahir Mohammed, Razali Yaakob, Nurfarhлина Mohd Sharef, and Rusli Abdullah contributed to the design and implementation of the research, to the analysis of the results and to the writing of the manuscript.

References:

1. Y. Zhang, D.-w. Gong, J.-y. Sun, and B.-y. Qu, "A decomposition-based archiving approach for multi-objective evolutionary optimization," Information Sciences, vol. 430–431, pp. 397-413, 2018.
2. X. Yu and Y. Lu, "Evaluation of Many-Objective Evolutionary Algorithms by Hesitant Fuzzy Linguistic Term Set and Majority Operator," Int. J. Fuzzy Syst., vol. 20, no. 6, pp. 2043-2056, 2018.
3. J. Wang, J. Liu, H. Wang, and C. Mei, "Approaches to Multi-Objective Optimization and Assessment of Green Infrastructure and Their Multi-Functional Effectiveness: A Review," Water, vol. 12, no. 10, p. 2714, 2020.
4. C. A. C. Coello, S. G. Brambila, J. F. Gamboa, M. G. C. Tapia, and R. H. Gómez, "Evolutionary multiobjective optimization: open research areas and some challenges lying ahead," Complex & Intelligent Systems, vol. 6, no. 2, pp. 221-236, 2020.
5. Z. He and G. G. Yen, "Visualization and performance metric in many-objective optimization," IEEE Transactions on Evolutionary Computation, vol. 20, no. 3, pp. 386-402, 2016.
6. N. Riquelme, C. Von Lücken, and B. Baran, "Performance metrics in multi-objective optimization," in Computing Conference (CLEI), 2015 Latin American, 2015, pp. 1-11: IEEE.
7. T. Y. Pham, H. M. Ma, and G. T. Yeo, "Application of Fuzzy Delphi TOPSIS to locate logistics centers in Vietnam: The Logisticians' perspective," The Asian Journal of Shipping and Logistics, vol. 33, no. 4, pp. 211-219, 2017.
8. E. Rahimianzarif and M. Moradi, "Designing integrated management criteria of creative ideation based on fuzzy delphi analytical hierarchy process," International Journal of Fuzzy Systems, vol. 20, no. 3, pp. 877-900, 2018.
9. S. K. Manakandan, I. Rosnah, R. J. Mohd, and R. Priya, "Pesticide applicators questionnaire content validation: A fuzzy delphi method," Med J Malaysia, vol. 72, no. 4, pp. 228-235, 2017.
10. A. Morovati Sharifabadi, A. Naser Sadrabadi, F. Dehghani Bezagabadi, and S. Peirow, "Presenting a model for evaluation and selecting suppliers using interpretive structure modeling (ISM)," International Journal of Industrial Engineering & Production Research, vol. 27, no. 2, pp. 109-120, 2016.
11. I. Sultana, I. Ahmed, and A. Azeem, "An integrated approach for multiple criteria supplier selection combining Fuzzy Delphi, Fuzzy AHP & Fuzzy TOPSIS," Journal of Intelligent & Fuzzy Systems, vol. 29, no. 4, pp. 1273-1287, 2015.
12. N. Kamarulzaman, N. Jomhari, N. M. Raus, and M. Z. M. Yusoff, "Applying the fuzzy delphi method to analyze the user requirement for user centred design process in order to create learning applications," Indian Journal of Science and Technology, vol. 8, no. 32, pp. 1-7, 2015.
13. K. H. Abdulkareem et al., "A new standardisation and selection framework for real-time image dehazing algorithms from multi-foggy scenes based on fuzzy Delphi and hybrid multi-criteria decision analysis methods," Neural Computing and Applications, vol. 33, pp. 1029-1054, 2021.
14. K. A. Dawood, K. Y. Sharif, A. A. Ghani, H. Zulzalil, A. Zaidan, and B. Zaidan, "Towards a unified criteria model for usability evaluation in the context of open source software based on a fuzzy Delphi method," Information and Software Technology, vol. 130, p. 106453, 2021.
15. L.-C. Wu, K.-L. Chang, and S.-K. Liao, "A hybrid MCDM model to select optimal hosts of variety shows in the social media era," Symmetry, vol. 12, no. 1, p. 125, 2020.
16. R. Mohammed et al., "Determining Importance of Many-Objective Optimisation Competitive Algorithms Evaluation Criteria Based on a Novel Fuzzy-Weighted Zero-Inconsistency Method," International Journal of Information Technology & Decision Making, pp. 1-47, 2021.
17. M. Adler and E. Ziglio, Gazing into the oracle: The Delphi method and its application to social policy and public health. Jessica Kingsley Publishers, 1996.
18. H. Jones and B. C. Twiss, "Forecasting technology for planning decisions," 1978.
19. C. Powell, "The Delphi technique: myths and realities," Journal of advanced nursing, vol. 41, no. 4, pp. 376-382, 2003.
20. C. Duffield, "The Delphi technique: a comparison of results obtained using two expert panels," International Journal of nursing studies, vol. 30, no. 3, pp. 227-237, 1993.
21. J. B. B. Abdullah and S. I. B. M. Yusof, "A Fuzzy Delphi Method-Developing High-Performance Leadership Standard For Malaysian School Leaders," Journal of Education and Social Sciences, 2018.
22. C.-H. Cheng and Y. Lin, “Evaluating the best main battle tank using fuzzy decision theory with linguistic criteria evaluation,” European journal of operational research, vol. 142, no. 1, pp. 174-186, 2002.

23. H.-C. Chu and G.-J. Hwang, “A Delphi-based approach to developing expert systems with the cooperation of multiple experts,” Expert systems with applications, vol. 34, no. 4, pp. 2826-2840, 2008.

24. S. Bodjanova, “Median alpha-levels of a fuzzy number,” Fuzzy Sets and Systems, vol. 157, no. 7, pp. 879-891, 2006.

25. J. Shi, X. Mo, and Z. Sun, "Content validity index in scale development," Zhong nan da xue xue bao. Yi xue ban= Journal of Central South University. Medical sciences, vol. 37, no. 2, pp. 152-155, 2012.

26. I. B. Rodrigues, J. D. Adachi, K. A. Beattie, and J. C. MacDermid, "Development and validation of a new tool to measure the facilitators, barriers and preferences to exercise in people with osteoporosis," BMC Musculoskeletal disorders, vol. 18, no. 1, pp. 1-9, 2017.

27. H. Wang, Y. Jin, and X. Yao, "Diversity assessment in many-objective optimization," IEEE transactions on cybernetics, vol. 47, no. 6, pp. 1510-1522, 2017.

28. A. Drzezga, W. Obidzinski, and J. Sosnowski, "Improving the best main battle tank using fuzzy decision theory with linguistic criteria evaluation," Expert systems with applications, vol. 39, no. 3, pp. 2714-2721, 2012.

29. S. Ray, "Fuzzy decision making in multi-criteria decision making problems," Fuzzy sets and systems, vol. 158, no. 12, pp. 1370-1380, 2007.

30. M. Delgado and M. L. Gutiérrez, "Fuzzy decision making with incomplete information," Fuzzy sets and systems, vol. 143, no. 2, pp. 181-190, 2004.

31. M. Delgado and M. L. Gutiérrez, "Fuzzy decision making with incomplete information," Fuzzy sets and systems, vol. 143, no. 2, pp. 181-190, 2004.

32. M. Delgado and M. L. Gutiérrez, "Fuzzy decision making with incomplete information," Fuzzy sets and systems, vol. 143, no. 2, pp. 181-190, 2004.

33. M. Delgado and M. L. Gutiérrez, "Fuzzy decision making with incomplete information," Fuzzy sets and systems, vol. 143, no. 2, pp. 181-190, 2004.

34. M. Delgado and M. L. Gutiérrez, "Fuzzy decision making with incomplete information," Fuzzy sets and systems, vol. 143, no. 2, pp. 181-190, 2004.

35. M. Delgado and M. L. Gutiérrez, "Fuzzy decision making with incomplete information," Fuzzy sets and systems, vol. 143, no. 2, pp. 181-190, 2004.

36. M. Delgado and M. L. Gutiérrez, "Fuzzy decision making with incomplete information," Fuzzy sets and systems, vol. 143, no. 2, pp. 181-190, 2004.

37. M. Delgado and M. L. Gutiérrez, "Fuzzy decision making with incomplete information," Fuzzy sets and systems, vol. 143, no. 2, pp. 181-190, 2004.

38. M. Delgado and M. L. Gutiérrez, "Fuzzy decision making with incomplete information," Fuzzy sets and systems, vol. 143, no. 2, pp. 181-190, 2004.

39. M. Delgado and M. L. Gutiérrez, "Fuzzy decision making with incomplete information," Fuzzy sets and systems, vol. 143, no. 2, pp. 181-190, 2004.

40. M. Delgado and M. L. Gutiérrez, "Fuzzy decision making with incomplete information," Fuzzy sets and systems, vol. 143, no. 2, pp. 181-190, 2004.

41. M. Delgado and M. L. Gutiérrez, "Fuzzy decision making with incomplete information," Fuzzy sets and systems, vol. 143, no. 2, pp. 181-190, 2004.

42. M. Delgado and M. L. Gutiérrez, "Fuzzy decision making with incomplete information," Fuzzy sets and systems, vol. 143, no. 2, pp. 181-190, 2004.

43. M. Delgado and M. L. Gutiérrez, "Fuzzy decision making with incomplete information," Fuzzy sets and systems, vol. 143, no. 2, pp. 181-190, 2004.

44. M. Delgado and M. L. Gutiérrez, "Fuzzy decision making with incomplete information," Fuzzy sets and systems, vol. 143, no. 2, pp. 181-190, 2004.

45. M. Delgado and M. L. Gutiérrez, "Fuzzy decision making with incomplete information," Fuzzy sets and systems, vol. 143, no. 2, pp. 181-190, 2004.

46. M. Delgado and M. L. Gutiérrez, "Fuzzy decision making with incomplete information," Fuzzy sets and systems, vol. 143, no. 2, pp. 181-190, 2004.

47. M. Delgado and M. L. Gutiérrez, "Fuzzy decision making with incomplete information," Fuzzy sets and systems, vol. 143, no. 2, pp. 181-190, 2004.

48. M. Delgado and M. L. Gutiérrez, "Fuzzy decision making with incomplete information," Fuzzy sets and systems, vol. 143, no. 2, pp. 181-190, 2004.

49. M. Delgado and M. L. Gutiérrez, "Fuzzy decision making with incomplete information," Fuzzy sets and systems, vol. 143, no. 2, pp. 181-190, 2004.

50. M. Delgado and M. L. Gutiérrez, "Fuzzy decision making with incomplete information," Fuzzy sets and systems, vol. 143, no. 2, pp. 181-190, 2004.

51. M. Delgado and M. L. Gutiérrez, "Fuzzy decision making with incomplete information," Fuzzy sets and systems, vol. 143, no. 2, pp. 181-190, 2004.

52. M. Delgado and M. L. Gutiérrez, "Fuzzy decision making with incomplete information," Fuzzy sets and systems, vol. 143, no. 2, pp. 181-190, 2004.

53. M. Delgado and M. L. Gutiérrez, "Fuzzy decision making with incomplete information," Fuzzy sets and systems, vol. 143, no. 2, pp. 181-190, 2004.

54. M. Delgado and M. L. Gutiérrez, "Fuzzy decision making with incomplete information," Fuzzy sets and systems, vol. 143, no. 2, pp. 181-190, 2004.

55. M. Delgado and M. L. Gutiérrez, "Fuzzy decision making with incomplete information," Fuzzy sets and systems, vol. 143, no. 2, pp. 181-190, 2004.