Room-temperature spin-spiral multiferroicity in high-pressure cupric oxide

Xavier Rocquefelte1, Karlheinz Schwarz2, Peter Blaha2, Sanjeev Kumar3 & Jeroen van den Brink4,5

Multiferroic materials, in which ferroelectric and magnetic ordering coexist, are of fundamental interest for the development of multi-state memory devices that allow for electrical writing and non-destructive magnetic readout operation. The great challenge is to create multiferroic materials that operate at room temperature and have a large ferroelectric polarization $P$. Cupric oxide, CuO, is promising because it exhibits a significant polarization, that is, $P \sim 0.1 \mu C \cdot cm^{-2}$, for a spin-spiral multiferroic. Unfortunately, CuO is only ferroelectric in a temperature range of 20 K, from 210 to 230 K. Here, by using a combination of density functional theory and Monte Carlo calculations, we establish that pressure-driven phase competition induces a giant stabilization of the multiferroic phase of CuO, which at 20–40 GPa becomes stable in a domain larger than 300 K, from 0 to $T > 300$ K. Thus, under high pressure, CuO is predicted to be a room-temperature multiferroic with large polarization.
Since the first observation of multiferroicity in cupric oxide (CuO) by Kimura et al.3, it has been established that CuO is a type-II multiferroic, so that ferroelectricity occurs as a result of magnetic ordering and, therefore, the multiferroic ordering temperature equals the magnetic ordering temperature \( T_N = 230 \) K. Moreover, CuO is a quasi-one-dimensional (1D) magnetic system with a large magnetic coupling \( J_2 \approx 80 \text{ meV} \) (refs 5–7), which explains the high ordering temperature \( T_N \).

In addition, upon cooling, a polar incommensurate antiferromagnetic (AF) spin-spiral ordering, referred to as AF\(_S\), appears below \( T_N = 230 \) K and a non-polar commensurate AF spin structure, AF\(_P\), below the lock-in temperature \( T_L = 213 \) K. Finally, the Dzyaloshinskii–Moriya (DM) ‘cycloidal’ interactions have been shown to have a major role in the emergence of the electric polarization in CuO. Different aspects of the interplay between the magnetic, orbital and electronic degrees of freedom in CuO have been studied intensely. Recently, we have shown that by applying a pressure of 8.8 GPa to CuO, the magnetic exchange interactions can increase by 46%. This holds the promise that under pressure \( T_N \) will increase, perhaps even to room temperature (RT). Indeed, the monoclinic phase of CuO is known to be stable up to at least 70 GPa, even if detailed structural refinements are only available at pressures lower than 10 GPa. Establishing the stability of the multiferroic phase under pressure, this topic not only requires a calculation of the magnetic exchange parameters by density functional theory (DFT) but also a determination of \( T_N \), \( T_L \) and the temperature dependence of the polarization \( P \) by complementary methodologies.

Here we establish that pressure-driven phase competition renders CuO multiferroic at RT with a large \( P \). For this, we employ both a semi-empirical ansatz as well as unbiased classical Monte Carlo (MC) simulations. More specifically, using a combination of DFT and MC calculations, we demonstrate that upon applying pressure the effective magnetic dimensionality initially decreases, passes through a minimum and subsequently increases, the magneto-crystalline anisotropy (MAE) is reduced and the stability range of the multiferroic state strongly increases by lowering \( T_L \) and increasing \( T_N \).

Results

Pressure effect on the magnetic exchange parameters. CuO consists of corner- and edge-sharing square-planar Cu\(_2\)O\(_4\) units, which form \((-\text{Cu}--\text{O})_\infty\) zigzag chains running along the \([10–1]\) and \([101]\) directions of the unit cell. The low-T magnetic structure, AF\(_S\), consists of Cu moments arranged antiferromagnetically along \([10–1]\) and ferromagnetically along \([101]\), with the \([010]\) direction as the easy axis. The exchange interactions are captured by the Heisenberg Hamiltonian\( H = \sum_i J_i S_i \cdot S_i \) which, to properly describe the magnetic properties of CuO, requires at least five magnetic exchange coupling parameters, that is, four superexchange interactions \( J_{a,b}, J_{a,s} \) and \( J_{b,s} \) and one super-supersuperexchange interaction \( J_{2a} \) (see Fig. 1a). The pressure dependence of the unit cell volume and of the \( J \)-values is shown in Fig. 1b, c, respectively.

The predictive power of our DFT geometry optimization is confirmed by its capacity to reproduce the volume decrease with pressure as reported up to 17 GPa for nanocrystalline CuO samples. The pressure dependence of the \( J \)-values, determined for the optimized atomic structures, compare very well with previous calculations, that use the available experimental structures up to 8.8 GPa (ref. 16). Most importantly, \( J_s \) strongly increases, whereas \( J_{2a} \) is nearly constant for pressures up to \( \sim 20 \) GPa, after which they increase in a similar manner as \( J_s \). Of the three smaller \( J \)-values, \( J_a \) is most affected by pressure and becomes ferromagnetic beyond about 2 GPa. The magnetic frustration, that is, the competition between \( J_s \) and \( J_{b,s} \) (ref. 14), is therefore strongly enhanced by pressure. The change in ratio between the two largest \( J \)-values, that is, \( J_s/J_{2a} \), evidences that the

**Figure 1 | High-pressure evolution of the structural and magnetic properties of CuO.** (a) Schematic view of the tetrahedral environment of oxygen atoms in CuO and definition of the largest (\( J_s \)) and smaller magnetic superexchange couplings (\( J_a, J_{b,s} \) and \( J_{a,s} \)). The super-supersupersuperexchange magnetic coupling, \( J_{2a} \), corresponds to the second-neighbour interaction of the edge-sharing chains, defined by the first-neighbour interaction, \( J_a \). Oxygen atoms are represented by small red dots, and the Cu\(^{2+}\) sites are depicted as filled and open dots, representing up-spin and down-spin, respectively. (b) Pressure dependence of the volume of CuO. The experimental values, deduced from a Birch–Murnaghan equation of state fitted to data of nanocrystalline CuO up to a pressure of 17 GPa (ref. 21), are compared with those calculated by DFT. (c) Pressure dependence of the magnetic exchange couplings of CuO. Positive and negative values represent antiferromagnetic and ferromagnetic interactions, respectively. The \( J \)-s in the grey area are ferromagnetic. The uncertainty in the DFT \( J \)-values is between 1.2 and 2.5 meV (that is, smaller than the symbols).
effective magnetic dimensionality is also affected by pressure. As shown in Fig. 2a, the quasi-1D character of the magnetic structure is enhanced for pressures up to 20 GPa but then is reduced.

**Pressure effect on the Néel temperature.** Having determined the pressure dependence of the magnetic exchange coupling constants, we calculate the multiferroic ordering temperature $T_N$ up to 200 GPa. We first evaluate it using the semi-empirical random phase approximation (RPA) expression for the quasi-1D AF Heisenberg model on a cubic lattice with intrachain and interchain couplings $J$ and $J'$, respectively. The resulting $T_N$ is shown in Fig. 2b. Choosing the parameterization such that it reproduces the transition temperature shown in Fig. 2b, we observe a monotonic and substantial increase of $T_N$ with pressure. This result coincides with the experimental pressure dependence of $T_N$ as was measured up to 1.8 GPa (ref. 23) and reaches RT at $\sim 20$ GPa.

**Pressure effect on the magnetic anisotropy.** To substantiate this prediction, however, one needs to go beyond the semi-empirical approach. For this purpose, we employed a classical MC technique to explore the competition between the different magnetic states as a function of both pressure and temperature, with the Hamiltonian $H = H_H + H_{UA} + H_{DM} + H_{MA}$, where $H_H$ is the Heisenberg exchange, $H_{UA}$ is uniaxial anisotropy (UA), $H_{DM}$ the Dzyaloshinskii–Moriya (DM) term and $H_{MA}$ is the multiaxial (MA) anisotropy term. All these terms are relevant, but in particular the anisotropy terms are shown by our DFT calculations to be crucial for describing the effects of pressure. The relevant magneto-crystalline anisotropy energies (MAEs) of CuO have been calculated for the ground-state (GS) AF$_1$ magnetic structure with MAE = $E_{[uvw]} - E_{[010]}$, where $E_{[uvw]}$ is the energy deduced from spin–orbit (SO) calculations with the magnetization along the [uvw] crystallographic direction. Figure 3a shows the anisotropy energy surface for CuO in the AF$_1$ magnetic phase at a pressure of 0 GPa. Two minima are observed along the [010] direction and equivalently [0–10] direction. Thus, the SO DFT calculations properly predict that the $b$ axis is the easy axis of magnetization of CuO for the low-T magnetic phase AF$_1$. A similar result is obtained for the entire pressure domain, that is, from 0 to 200 GPa. However, the MAE values are rapidly decreasing with pressure as evidenced in Fig. 3b, in which the MAE in the (a,c) plane is plotted as a function of the angle $\phi$, such that $\phi = 0^\circ$ corresponds to the [101] direction. It also turns out that the hardest axis of magnetization (largest MAE value) is close to the [10–1] direction, that is, the antiferromagnetic direction. The pressure dependence of the MAE approximately follows an exponential decay, as is illustrated in Fig. 3c for the [−101] direction.

**Pressure effect on the electronic polarization.** Before discussing the MC data, we can estimate the order of magnitude of the ferroelectric polarization, $P$, by using the empirical formula proposed by Katsura et al. $P = (V/\lambda)^3$, where $V$ is the Cu–O electronic overlap integral and $\lambda$ is the p–d splitting. The experimental error bar of about ±2 K, estimated from a high-pressure neutron diffraction investigation, is shown using blue bars.
superexchange parameter is approximately given by, $J = V^4/\Delta^3$. The relevant superexchange interactions for the ferroelectric nature of CuO are $J_1$ and $J_6$. Therefore, taking $J = 5$ meV and $\Delta = 1.4$ eV (refs 7,26), we find $P = 0.15 \mu$C cm$^{-2}$, which is close to the experimental value$^{27}$ of about 0.1 $\mu$C cm$^{-2}$. Alternatively, we can estimate the ferroelectric polarization directly from our DFT calculations using the Berry phase method$^{28}$. As previously demonstrated theoretically$^8$, the lattice contribution to the polarization ($P_l$) is small compared with the electronic one ($P_e$) in CuO, that is, $P_l \approx 0.050 \mu$C cm$^{-2}$ and $P_e \approx 0.200 \mu$C cm$^{-2}$. Here, taking into account the SO coupling, $P_e$ was calculated to be $0.286 \mu$C cm$^{-2}$ at 0 GPa. It should be noted that we find an electronic polarization along the b direction ($P_e \approx 0$ along a and c directions), in good agreement with the experiments.

To determine the pressure effect on the value of $P_e$, we have considered two other pressure values, that is, 20 and 40 GPa. Our calculations show that $P_e = 0.286, 0.379$ and 0.455 $\mu$C cm$^{-2}$ at 0, 20 and 40 GPa, respectively, and at zero temperature. These polarization values are along the b direction, and under pressure the polarization along the $a$ and $c$ directions remains zero. This clearly confirms that applying pressure on CuO leads to an increase of the electric polarization, which is predicted to be along the $b$ direction only.

**Discussion**

The finite temperature MC simulations use the $J$-values obtained from the DFT calculations and, in particular, incorporate the $H_{\text{IA}}$ term that is rapidly decreasing with pressure. Figure 4a shows the resulting spin current as a function of pressure, which is a quantity that is directly proportional to $P$. We observe that at ambient pressure close to the paramagnetic to AF1 transition, a spontaneous polarization is induced. This polarization is found to be non-zero between $T_{\text{N}} = 200$ and $T_1 = 150$ K, which compares well with the experimentally observed stability domain of the incommensurate AF2 magnetic order, between $T_{\text{N}} = 230$ and $T_1 = 213$ K.

The fact that the calculated values are somewhat lower than the experimental ones is due to the model approximations involved and indicates that the MC results are conservative in the sense that they rather tend to underestimate the stability of the multiferroic phase. When the pressure is increased the polarization grows, in agreement with our DFT result for $P_e$ dependence with pressure, and extends to a larger temperature range. For instance, at 30 GPa an increase of about 20% is observed with respect to the polarization at 0 GPa, and the temperature range is larger and in between 245 and 115 K. At 200 GPa, the multiferroic phase (AF_2) extends down to zero temperature and the ferroelectric polarization is more than doubled. The MC results confirm the increase of $T_{\text{N}}$ with pressure, in accordance with the experimental observations for pressures up to 2 GPa and the results from the semi-empirical RPA expressions. We find good quantitative agreement for the values of the differential pressure increase of $T_{\text{N}}$ from experiment, 2.7 (0.2) K GPa$^{-1}$ (ref. 23), and from the RPA and MC results, 3.5 (0.3) K GPa$^{-1}$ and 3.0 (0.3) K GPa$^{-1}$, respectively. The calculated temperature–pressure phase diagram of CuO (see Fig. 4b) shows, in addition, a monotonic decrease of $T_1$ with pressure. As a consequence, the non-polar AF_1 phase disappears from the phase diagram with increasing pressure, at the benefit of the multiferroic AF_2 phase. The MC simulations indicate that $T_{\text{N}}$ reaches RT at $\sim 40$ GPa, which is higher than the $\sim 20$ GPa, obtained from the semi-empirical RPA expressions, underlining that the MC pressure of $\sim 40$ GPa is a conservative estimate for the critical pressure value.

Finally, the present temperature–pressure phase diagram of CuO evidences under high pressure a large increase of the stability range of the incommensurate multiferroic AF_2 phase, which is stable in a domain of only 20 K (from 210 to 230 K) at 0 GPa, and in a domain larger than 300 K (from 0 to $T > 300$ K) at 20–40 GPa. Such a giant stabilization of a multiferroic phase by pressure has never been observed or proposed. Indeed, except for CuO, all the reported pressure–temperature phase diagrams of multiferroic materials (Ni_3V_2O_8, MnWO_4, TbMnO_3 and RMn_2O_5 with R = Tb, Dy, Ho...) lead to the same conclusion, namely that the stability range of the incommensurate magnetic phase is reduced by pressure. The fact that our theoretical and predictive approach correctly reproduces the experimental low-pressure results gives considerable credit to our predictions. In contrast to the multiferroic compounds mentioned above, the geometrical modifications (bond distances and angles) under pressure in CuO induce an increase of the magnetic frustration, as previously demonstrated up to 8.8 GPa (ref. 14) and confirmed here for a larger pressure domain from 0 to 200 GPa. Further theoretical efforts on the dependence of the magnetic frustration versus pressure (chemical or physical) in CuO and the related compounds is clearly needed and will be of direct interest in the quest of type-II multiferroics with tunable ferroelectric and magnetic properties.

The first RT binary multiferroic material is thus within reach: CuO at pressures of 20–40 GPa. To be practical, for technical

**Figure 4** | Temperature–pressure phase diagram of the magnetic model of CuO. Magnetic and ferroelectric properties of CuO as determined by MC calculations, based on the microscopic magnetic interactions. (a) Temperature dependence of the ferroelectric polarization, which is proportional to the calculated spin current, for different values of hydrostatic pressure. (b) Temperature–pressure magnetic phase diagram of CuO. The RT is indicated by the horizontal white dashed line and the giant stabilization of the AF_2 ferroelectric phase of CuO is highlighted by the vertical yellow double arrow. PM stands for paramagnetic.
applications, the high-pressure form of CuO must be made stable at ambient conditions. To achieve this, there are at least two strategies. Very special for CuO is the possibility to stabilize its high pressure form at a nanoscale level by applying high-energy ion irradiation at high pressures\(^3^5\). In such experiments, the quenched high-pressure structure remains even after releasing pressure. Another promising strategy can be a core-shell synthesis\(^3^4\) according to which CuO nanoparticles are embedded in a shell material that has a negative thermal expansion coefficient, which then acts as an effective pressure medium for the CuO core.

**Methods**

**DFT calculations.** The DFT calculations have been carried out by using two different codes: Vienna Ab initio Simulation Package (VASP)\(^3^5\) for the geometry optimization at the different pressure values and WIEN2k programme\(^3^6\) for the calculation of the magnetic exchange, \(\text{J}_{\text{p}}\) and magneto-crystalline anisotropy energy, \(\text{MAE}\), values.

For the geometry optimizations, a 16 formula units cell has been used, that is, \(2a \times 2b \times 2c\), with \(a\), \(b\) and \(c\) being the crystallographic cell parameters. The GS magnetic order (AF1) has been considered for the geometry optimization. The parameters used in the VASP calculations are the following. We have used the GGA + \(U\) approach with \(U_{\text{eff}} = 6.5\) eV for the Cu(3d) states, as in our previous investigation\(^2^0\). It allows having a proper description of the structural properties of CuO. The wave functions are expanded in a plane wave basis set with kinetic energy below 500 eV. The VASP package is used with the projector augmented wave method of Blöchl\(^1^2\). The integration in the Brillouin Zone is done by the Methfessel–Paxton method\(^2^6\) on a \(3 \times 3 \times 3\) set of \(k\)-points determined by the Monkhorst–Pack scheme\(^3^9\). All atoms were then allowed to relax by following a conjugate gradient minimization of the total energy scheme \(3 \times 10^{-2}\) eV Å\(^{-1}\). The magnetic exchange parameters \((\text{J}_{\text{p}})\) values were estimated based on the optimized atomic structures and for each pressure \((0\) to \(200\) GPa), and using the WIEN2k programme package with the onsite PBE0 (ref. 40) hybrid functional for 8 and 32 f.u. cells. The \(\text{J}_{\text{p}}\) values have been deduced from a least-squares fit procedure and the quality of the fits is shown in Fig. 5a,b. It should be noticed that the choice of the PBE0 onsite hybrid functional in WIEN2k was motivated by its ability to properly reproduce the magnetic exchange coupling in a series of copper oxide compounds and its dependence with the Cu–O–Cu bond angle\(^1^4\).

The MAE value has been estimated for the AF1 GS magnetic structure, using the code WIEN2k with the onsite PBE0 (ref. 40) hybrid functional and including the SO coupling. The MAE corresponds to an energy difference between two directions of the magnetization density. Here we use the [010] direction, that is, the easy axis, as the reference:

\[
\text{MAE} = E[uvw] - E[010]
\]

\(E[uvw]\) is the energy deduced from SO calculations with magnetization along the \[uvw\] crystallographic direction. It should be noticed that MAE is very sensitive to the \(k\)-mesh. The quality of the \(k\)-mesh has been carefully chosen, leading to the use of a \(5 \times 12 \times 6\) set of \(k\)-points for the 8 f.u. cell.

The electronic contribution \((P_e)\) to the polarization \(P\) was evaluated using the Berry phase approach\(^2^8\). As previously shown\(^3^0\), the lattice contribution \((P_l)\) is small compared with the electronic one \((P_e)\) in CuO: \(P_e \approx 0.200\) \(\mu\text{C cm}^{-2}\) and \(P_l \approx 0.050\) \(\mu\text{C cm}^{-2}\). Here we have redone such calculations using the VASP code with the GGA + \(U\) formalism and a \(U_{\text{eff}}\) value of 7.5 eV, to match the \(P_e\) values obtained using the PBE0 hybrid functional in our WIEN2k calculations. The non-collinear magnetic structure, AF2, previously discussed in ref. 8 has been used. To have adequate electric polarization values, it was crucial to turn on the SO coupling during the structural relaxation. Indeed, at 0 GPa, \(P_e \approx 0.053\) and 0.286 \(\mu\text{C cm}^{-2}\), respectively, for the atomic structure relaxed without and with SO.

**Estimation of \(T_N\) based on the RPA formula**

\[
\gamma^* = T_N^*/\left[\text{Ar} \sqrt{\ln \left( \frac{2\gamma^*}{T_N^*} \right)} - \frac{1}{2} \ln \left( \frac{2\gamma^*}{T_N^*} \right) \right]
\]

The above equation has been developed for the estimation of \(T_N\) of a quasi-1D AF Heisenberg model on a cubic lattice with \(J'\) and \(J\), the intrachain and interchain couplings, respectively\(^2^2\). The related GS magnetic order leads to the following energy expression:

\[
E(\text{GS}) = J + 2J'
\]

Although CuO is a quasi-1D magnetic system, it exhibits a more complex magnetic order due to the low symmetry of its atomic structure (monoclinic space group: C2/c). As a consequence, its GS magnetic order (AF1) leads to the following energy expression:

\[
E(\text{AF1}) = J_z - J_x + J_2 \text{ with } J_x = J_{2a} + J_{2b} + J_{2c}
\]

\(J_2\) being the predominant super-superexchange interaction. For more details, see (refs 7 and 20). Considering \(E(\text{GS}) = E(\text{AF1})\) and \(J_x\) as the intrachain coupling, that is, \(J_x = J'\), we can define \(\gamma^*\) as:

\[
\gamma^* = J_x + J_2
\]

Our detailed results are illustrated in Fig. 6.

**Classical MC simulations.** The model Hamiltonian used in MC simulations is given by,

\[
H = H_{\text{Hi}} + H_{\text{UA}} + H_{\text{DM}} + H_{\text{MAA}}
\]

where, \(H_{\text{Hi}}\) is the Heisenberg part, \(H_{\text{UA}}\) is UA term, \(H_{\text{DM}}\) is DM term and \(H_{\text{MAA}}\) is the MA anisotropy. The Heisenberg term and the UA term can be written together as,

\[
H_{\text{Hi}} + H_{\text{UA}} = \sum_\theta I_\theta S_i \cdot S_j
\]

where \(I_\theta\) refer to exchange parameters at pressure \(P\). The various exchange parameters are \(J_x, J_y, J_{12}, J_y\) and \(J_b\) (see Fig. 1a). The UA term has been included in the Heisenberg part by making the following replacement:

\[
J_x S_i \cdot S_j \rightarrow J_x S_i \cdot S_j + (1 + \lambda S_i \cdot S_j + S_i \cdot S_j)
\]

This allows a lower energy for a collinear AF1 state in which all the spins are aligned along the \(y\) axis. The DM term is given by

\[
H_{\text{DM}} = D \sum \mathbf{S} \cdot \mathbf{S}
\]

As we are mainly interested in the competition between two magnetic states, the collinear AF1 and the non-collinear AF2, we restrict the spins to reside in \(x-y\) plane only. Therefore, we only introduce a DM vector pointing along \(x\) direction. The experimental observation that the AF2 state is stable in a narrow temperature window between 230 and 213 K is reproduced in an effective manner by introducing a MA anisotropy term, in the Hamiltonian of the form\(^4^4\):

\[
H_{\text{MAA}} = B \sum \left( \mathbf{S} \times \mathbf{S} \right)^2
\]

The Heisenberg term, \(H_{\text{Hi}}\), alone leads to a degeneracy of GSs. The GS manifold consists of perfectly ordered, interpenetrating sub-lattices with vector order parameters whose relative orientation is left completely undetermined by the

---

**Figure 5 | Quality of the DFT magnetic exchange parameters.** Graphical representation of the quality of the least-squares fit procedure for the 8 (a) and 32 (b) formula units models. \(\gamma_{\text{DFT}}\) and \(\gamma_{\text{expt}}\) are, respectively, the relative energies (with respect to AF1) deduced from the DFT calculations and the \(J\) parameters. The s.d. values are 0.12 and 0.25 meV, respectively, for the 8 and 32 f.u. models.
Heisenberg term alone. The UA term prefers a collinear magnetic state, where the two sub-lattice order parameters align along the y axis. This is precisely the experimentally observed AF$_1$ state of CuO$_2$. The DM coupling favours a non-collinear (but coplanar) state and, therefore, it competes with the $H_{coup}$. There is a critical strength of the DM coupling, $D_c$, above which the AF$_1$ is not the GS. Given that the AF$_1$ is the GS at ambient pressure, we conclude that $D < D_c$. We use the Metropolis algorithm to perform Markov Chain MC simulations on classical spins. The simulations are started with a completely random spin configuration at high temperature. Because of the presence of many competing interactions and nearly degenerate GSs, the simulations require a large number of equilibration and averaging steps. We use $\sim 10^6$ MC steps for equilibration and a similar number of steps for averaging at each temperature. The temperature is then reduced in small steps ($\sim 5$ K) and the system is allowed to anneal towards the GS spin configuration. The main quantity of interest is the spin current, which is defined as $J = \langle S_y \times (S_y + S_y) \rangle$, where $S_y$ is a vector connecting spins $S_i$ and $S_j$, and the angular brackets denote thermal as well as spatial average. The ferroelectric polarization is proportional to the spin current with a prefactor estimated to be 0.150 $\mu$C cm$^{-2}$ following Katsura et al.$^{25}$

The simulations are carried out on lattices with $N = 12^3$ sites. We have checked the stability of our results for larger sizes (up to $N = 32^3$) for selected values of pressure (Supplementary Fig. S1). The procedure used to estimate $T_N$ and $T_{S3}$ for 2 pressures (0 and 30 GPa) is shown in Fig. 7.

The UA parameter $\lambda = 0.02$ is kept constant. The MA anisotropy $B$ decreases exponentially with increasing pressure; we use $B = 500 e^{-P/100}$ ($B = 500$ for $P = 0$ and $B = 24.9$ for $P = 30$). The exponential decrease is motivated by the DFT results presented in Fig. 3. The large value of $B$ at $P = 0$ is required to obtain the narrow range of stability of AF$_2$ state at high temperatures. Although UA term is also decreasing with pressure, this does not lead to any crucial changes in the phase diagram shown in Fig. 4. We also keep the DM coupling fixed to $D = 0.8 D_c$. The choice of the parameter $D$ is not very crucial, as long as $D$ is smaller than $D_c$. To illustrate this point, we show the results for spin current for various values of $D$ at $P = 0$ GPa and $P = 30$ GPa in Supplementary Fig. S2.

References

1. Cheong, S. W. & Mostovoy, M. Multiferroics: a magnetic twist for ferroelectricity. Nat. Mater. 6, 13–20 (2007).
2. Scott, J. F. Applications of magnetoelectrics. J. Mater. Chem. 22, 4567–4574 (2012).
3. Kimura, T., Sekio, Y., Nakamura, H., Siegrist, T. & Ramirez, A. P. Cupric oxide as an induced-multiferroic with high-TC. Nat. Mater. 7, 291–294 (2008).
4. Mostovoy, M. Transition metal oxides: multiferroics go high-Tc. Nat. Mater. 7, 295–307 (2008).
5. Aın, M., Reichardt, W., Hennion, B., Pepy, G. & Wanklyn, B. M. Magnetic excitations in CuO. Phys. C 162–164, 1279–1280 (1989).
6. Boothroyd, A. T. High-Energy magnetic excitations in CuO. Phys. B 234–236, 731–733 (1997).
7. Rocquefelte, X. et al. Short-range magnetic order and temperature-dependent properties of cupric oxide. J. Phys. Condens. Matter 21, 045502 (2010).
8. Giovannetti, G. et al. High-TC ferroelectricity emerging from magnetic degeneracy in cupric oxide. Phys. Rev. Lett. 106, 026401 (2011).
9. Tóledano, P. et al. Theory of high-temperature multiferroicity in cupric oxide. Phys. Rev. Lett. 106, 257601 (2011).
10. Jin, G. et al. Origin of ferroelectricity in high-Tc magnetic ferroelectric CuO. Phys. Rev. Lett. 108, 187205 (2012).
11. Scagnoli, V. et al. Observation of orbital currents in CuO. Science 323, 696–698 (2011).
12. Johnson, S. L. et al. Femtosecond dynamics of the collinear-to-spiral antiferromagnetic phase transition in CuO. Phys. Rev. Lett. 108, 057203 (2012).
13. Villarel, R. et al. Magnetic phase diagram of CuO via high-resolution ultrasonic velocity measurements. Phys. Rev. Lett. 109, 167206 (2012).
14. Rocquefelte, X., Schwarz, K. & Blaha, P. Theoretical investigation of the magnetic exchange interactions in copper(II) oxides under chemical and physical pressures. Sci. Rep. 2, 759 (2012).
15. Bourne, L. C., Yu, P. Y., Zettl, A. & Cohen, M. L. High-pressure electrical conductivity measurements in the copper oxides. Phys. Rev. B 40, 10973 (1989).
16. Ehrenberg, H., McAllister, J. A., Marshall, W. G. & Allfield, J. P. Compressibility of copper-oxygen bonds: a high-pressure neutron powder diffraction study of CuO. J. Phys. Condens. Matter 11, 6501–6508 (1999).
17. Asbrink, S. & Norrby, L.-J. A refinement of crystal structure of copper(II) oxide with a discussion of some exceptional e.s.d.'s. Acta. Crystallogr. B 26, 8–15 (1970).
18. Forsyth, J. B., Brown, P. J. & Wanklyn, B. M. Magnetism in cupric oxide. J. Phys. C 21, 2917–2929 (1989).
19. Filippetti, A. & Fiorentini, V. Magnetic ordering in CuO from first principles: a cuprate antiferromagnet with fully three-dimensional exchange interactions. Phys. Rev. Lett. 95, 086405 (2005).
20. Rocquefelte, X., Schwarz, K. & Blaha, P. Comment on “High-Tc ferroelectricity emerging from magnetic degeneracy in cupric oxide". Phys. Rev. Lett. 107, 239701 (2011).
21. Wang, Z. et al. X-ray diffraction and Raman spectroscopic study of nanocrystalline CuO under pressures. Solid State Comm. 121, 275–279 (2002).
22. Yasuda, C. et al. Néel temperature of quasi-low-dimensional Heisenberg antiferromagnets. Phys. Rev. Lett. 94, 217201 (2005).
23. Chatterji, T., Brown, P. J. & Forsyth, J. B. High pressure neutron diffraction investigation of CuO. J. Phys. Condens. Matter 17, S3057–S3062 (2005).
24. Herak, M. Cubic magnetic anisotropy of the antiferromagnetically ordered Cu$_2$TeO$_6$. Solid State Comm. 151, 1588–1592 (2011).
25. Katsura, H., Nagaosa, N. & Balatsky, A. V. Spin current and magnetoelectric effect in noncollinear magnets. Phys. Rev. Lett. 95, 057205 (2005).
26. Ghijzen, J. et al. Electronic structure of Cu$_2$O and CuO. Phys. Rev. B 38, 11323–11330 (1988).
27. Babkevich, P. et al. Electric field control of chiral magnetic domains in the high-temperature multiferroic. Phys. Rev. B 85, 134428 (2012).
28. Malashchewich, A. & Vanderbilt, D. First principles study of improper ferroelectricity in TbMnO$_3$. Phys. Rev. Lett. 101, 037210 (2008).
29. Chaudhury, R. P. et al. Pressure-temperature phase diagram of multiferroic Ni$_2$V$_2$O$_7$. Phys. Rev. B 75, 012407 (2007).
30. Chaudhury, R. P. et al. Thermal expansion and pressure effect in MnWO$_4$. Phys. B 403, 1428–1430 (2008).
Acknowledgements
X.R. thanks the IMN (Nantes) and the CCIPL (Centre de Calcul Intensif des Pays de la Loire) for computing facilities. S.K. acknowledges the use of High Performance Computing Facility at IISER Mohali, and support from DST, India. P.B. was supported by the Austrian Science Foundation FWF (SFB F41 'Vicom').

Author contributions
X.R. designed and performed the DFT calculations. X.R. wrote the paper with contributions from all co-authors. S.K. performed the MC simulations. All co-authors contributed to analysing and discussing the results.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

How to cite this article: Rocquefelte, X. et al. Room-temperature spin-spiral multiferroicity in high-pressure cupric oxide. Nat. Commun. 4:2511 doi: 10.1038/ncomms3511 (2013).