Unusual Oropharyngeal Asymptomatic Manifestations Caused by Atypical Pathogens Detected by PCR into Altered Ecosystems of an Infertile Couple

Giovanni Di Bonaventura¹, Marco Del Boccio¹, Alfonso Pennelli¹, Marcello Rapinese¹, Raffaele Tenaglia¹, Pier Enrico Gallenga¹, Giampiero Neri² and Gilberto Del Boccio¹

¹Department of Experimental and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy.
²Department of Neurosciences and Imaging, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy.

Authors’ contributions

This work was carried out in collaboration among all authors. Author GDBOC designed the study. Authors GDBON and GDBOC wrote the protocol and the first draft of the manuscript, and managed literature searches. Author GDBON performed the statistical analysis. Authors MDB, MR, RT, PEG, and GN managed the clinical evaluations. Authors GDBON, MDB, AP, and GDBOC managed laboratory evaluations of the study. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/BMRJ/2015/13082

Editors:
(1) Eggehard Holler, Cedars-Sinai Medical Center, Department of Neurosurgery, Los Angeles, USA and University of Regensburg, Germany.

Reviewers:
(1) Anonymous, University of Delhi, India.
(2) Fernando M. Guerra-Infante, National School of Biological Sciences, Instituto Politécnico Nacional, DF, Mexico Department of Infectology, Instituto Nacional de Perinatología, DF, Mexico.
(3) Anonymous, Mangosuthu University of Technology, South Africa.

Complete Peer review History: http://www.sciencedomain.org/review-history.php?id=826&id=8&aid=7129

Received 2nd August 2014
Accepted 1st October 2014
Published 8th December 2014

ABSTRACT

The young couple casually arrived at our observation presented two different and painless altered ecosystems. The female partner exhibited inflamed lingual surface, while the man manifested several genital ulceration areas. Microbiological analysis of several sites belonging to each ecosystem revealed a latent dismicrobic ecosystem, as also confirmed by altered pH values.

*Corresponding author: E-mail: gdibonaventura@unich.it;
Interestingly, microbiological analysis for *Mycoplasma hominis*, *Ureaplasma urealyticum*, and *Chlamydia trachomatis* gave different results in both ecosystems, highlighting that each partner was differently infected by the same "silent infections". The frequency of Ear Nose and Throat (ENT) chronic morbidity for these atypical infections increases, in the couple, the probability that mycoplasmosis and chlamydiasis serve as a reservoir of infection and/or reinfection for the urogenital tract. Although it is well known that several common bacteria and “atypical pathogens” - like mycoplasmas and *C. trachomatis* - can colonize both oral and urogenital ecosystems, rarely happens that they can clinically manifest their presence by unusual clinical manifestations we observed in different ecosystems investigated, hiding the unique true problem of infertility in the young couple. In this regard, our results showed that only starting from an accurate anamnesis, using an adequate sampling modality, adopting a new procedure to quantify microbial populations into asymptomatic ecosystems, and introducing the constant use of PCR analysis, it will be possible to disclose similar precocious problems of couple infertility, in genetically predisposed subjects.

Keywords: Young couple infertility; atypical pathogens; *Chlamydia trachomatis*; Mycoplasma spp.; *Ureaplasma* spp.; altered ecosystems; PCR analysis.

ABBREVIATIONS

ENT, Ear Nose and Throat; PSA, prostatic specific antigen; VDRL, Venereal Disease Research Laboratory; TPHA, Treponema pallidum haemoagglutination assay; FVU, first void urine; SF, seminal fluid; UAMP, urine sample emitted after prostatic massage; HPV, human papilloma virus; GU, genital ulcer; TMC, total microbial charge; CFU, colony-forming unit; Hd-DNA, *Haemophilus ducreyi*-DNA; Tp-DNA, *T. pallidum*-DNA; HPV-DNA, human papilloma virus-DNA; Ng-DNA, *Neisseria gonorrhoeae*-DNA; Ct-DNA, *Chlamydia trachomatis*-DNA; CCU, color-changing unit.

1. **INTRODUCTION**

A young caucasian couple (woman: 26 years old; man: 30 years old) manifested different inflamed ecosystems together with a referred infertility problem. At the urological visit, the male partner declared the presence of inflamed areas on the glans that periodically peeled without any particular pain (Fig. 1A). Previous local treatment with gentamicin-betamethasone had not given any significant stable improvement. Furthermore, after sexual activity the patient referred for a sudden burning into meatus with acute pain that spontaneously regressed in 2-3 days (Fig. 1B). This clinical manifestation resulted to be ever more persistent during the first emiction of the morning. Urine culture carried out during these clinical manifestations resulted negative, and urine analysis showed no erythrocytes and leucocytes in the sediment. He presented ulcerations on both sides of glans and on scrotum since about 3 months (Figs. 1A, 1C). No other symptoms were referred for other ecosystems.

The female partner showed a furry tongue with intense viscous salivation highly suggestive for a clinically altered lingual ecosystem (Fig. 2). No particular sign or pharyngeal alteration could be observed in both partners, although the male partner referred for infrequent pharyngitis episodes during the year. On demand, the couple confirmed a frequent oral intercourse in their sexual ménage.

From clinical history - collected by an Ear Nose and Throat (ENT) specialist team together with an expert of “atypical infections” - emerged that the infertility of the young couple represented, at that moment, the sole early and important reversible problem.

2. **MATERIALS AND METHODS**

Patients were studied according to the declaration of Helsinki, obtaining written informed consent from each partner. No personal hygiene was carried out by both partners before microbial investigations.

2.1 **Prostatic and Urological Evaluation**

According to National Institutes of Health guidelines (NIHCPPSI: Chronic Pelvic Pain Symptom Index) [1], the patient was classified as belonging to category IV of asymptomatic inflammatory prostatitis.
Fig. 1. Macroscopic aspect of male genital tract

A) Inflamed areas of glans. On the left, several lesions are observable. B) Urinary meatus presenting the inflamed areas sampled for cellular living material resulted strongly positive to C. trachomatis-DNA.

Trans-rectal ultrasound scan imaging showed few disreactive fibrous-calcific parenchymal areas into the prostatic gland, suggestive for chronic inflammation probably secondary to an infection. No evidences for lymph node swelling or discharge were observed. A blood sample was taken for Prostatic Specific Antigen (PSA), Venereal Disease Research Laboratory (VDRL), and Treponema pallidum Haemoagglutination Assay (TPHA) measurements. First void urine (FVU), seminal fluid (SF) - collected by masturbation after four days of sexual abstinence - and urine sample emitted after prostatic massage (UAMP) were collected and immediately processed for detecting the presence of bacteria, yeasts, Trichomonas vaginalis, Chlamydia trachomatis, Neisseria gonorrhoeae, and Human Papilloma Virus (HPV) [2].

Briefly, 1.0 µL each of FVU, SF, and UAMP was plated onto chromID CPS agar (bioMerièux) and Columbia CNA agar + 5% sheep blood (bioMerièux), and incubated at 37°C for allowing growth of common bacterial and fungal pathogens. Remaining FVU and UAMP was centrifuged (5,000 rpm, 5 min, 4°C), and the pellet resuspended at 1.0 mL with supernatant for molecular analyses.
SF was incubated at 37°C for 15 min to speed up its fluidification. Sample was then observed for the presence of leucocytes and sperm agglutination phenomenon, and finally diluted in sterile saline for measuring pH. Fifty microliters of SF were used for *Mycoplasma* detection by *Mycoplasma IST2* (bioMérieux).

Urethra was also sampled for cellular material by introducing a sharp Dacron swab into urinary meatus for 1 cm and turning it once. Sample was dispersed by stirring in 1.0 mL of concentrated urine, and this suspension was used for culture and molecular analyses.

2.2. Genital Ulcer Evaluation

The cutaneous ulcer observed on scrotum (genital ulcer, GU) was sampled by scraping. Sample was dispersed into 1.0 mL of sterile saline and assayed for the presence of three major agents of genital ulcer disease (*T. pallidum, Haemophilus ducreyi, C. trachomatis*), and *N. gonorrhoeae* by molecular analyses, as previously reported [2-4].

2.3 Urethral and Cervicovaginal Evaluation

Urethral and cervical scraping were carried out in the female partner. A 30 ml-aliquot of FVU was collected for desquamating cells, while other 20 mL of urine to remove living urethral cells. Urethral scraping was performed by Dacron swab introducing it for 2.5 cm and turning twice. Cervical scraping was carried out by Cytyc-brush (Cytyc Corp., Massachusetts, USA). The suspension was microscopically observed for assessing cellular adequacy for molecular assay. Only samples showing at least 3-5 epithelial cells/hpf were considered.

Secretion around the vaginal fornix was sampled thrice by cotton swab, and samples were then pooled into 1.0 mL sterile saline. This suspension was assayed for pH, and observed for leucocytes counting and the presence of *Mobiluncus, Lactobacilli* and *Trichomonas vaginalis*. An aliquot was Gram stained to evaluate the presence of "clue cells" and microbial morphotypes. One microliter of the same suspension was plated onto chromID CPS - for isolation, enumeration and immediate identification of *E. coli, Proteus* and KESC (*Klebsiella, Enterobacter, Serratia, Citrobacter*) - and onto Columbia CNA agar for Gram-positive cocci.

2.4 Lingual and Pharyngeal Evaluation

Samples obtained by lingual and pharyngeal scraping were suspended into 1.0 mL sterile
saline, then immediately evaluated for the oropharyngeal ecosystems by culture analysis for saprophytic flora, common pathogens and atypical ones (C. trachomatis, M. hominis, and U. urealyticum). One microliter of this suspension was plated onto chromID CPS and Columbia CNA agar 5% sheep blood agar, then incubated under both aerobic and anaerobic atmosphere. Cultures were monitored daily up to 72 h for total colony counting. Total microbial charge (TMC), expressed as colony-forming unit per milliliter (CFU/mL), was calculated by adding the number of colonies developed onto chromID CPS agar to that anaerobically grown onto Columbia CNA agar. The relative abundance of each species was reported as percentage of TMC (considered as 100%). Since the oropharyngeal ecosystem is directly exposed to external environment, we could accept that this ecosystem present a TMC > 10^7 CFU/mL. By this way, the threshold of pathogenicity for a monoresident pathogen could be considered as ≥ 10^5 CFU/mL. The presence of mycoplasma was detected as above described. An aliquot of 0.1 mL of the initial suspension was used for pH measurement of each ecosystem investigated, while 0.5 mL was used for molecular assays.

2.5 Molecular Assays

Each sample was centrifuged (5,000 rpm, 5 min, 4°C), then the pellet was suspended in 0.025 M buffer phosphate (pH 7.0) + proteinase K, and incubated at 56°C for overnight. DNA was precipitated by absolute ethanol, filtered, washed and finally eluted. H. ducreyi-DNA, HPV-DNA, N. gonorrhoeae-DNA (Ng-DNA), and C. trachomatis-DNA (Ct-DNA) detection was carried out by PCR (BioAesissrl, Jesi, Italy), as previously described [2,5]. Molecular analysis was performed in duplicate.

3. RESULTS

3.1 Serologic Evaluations

VDRL test was negative for man, but positive for woman; both partners were negative at TPHA evaluation. Total PSA was 0.87 ng/mL (95%-ile of health population: 0.60 ± 0.35).

3.2 Oral and Pharyngeal Ecosystems

Culture and molecular analyses of different samples collected from the male partner showed that common microbial flora was differently distributed. Lingual scraping revealed the presence of C. ulcerans only (1.0 x 10^6 CFU/mL), while pharyngeal scraping revealed positivity for S. faecalis, C. ulcerans, E. coli, and K. pneumoniae (20%, 40%, 30%, and 10% of TMC, respectively; TMC: 0.5 x 10^7 CFU/mL), (Table 1). Mycoplasmas were present at low concentrations (10^6 CCU/mL), although differently distributed. Particularly, U. urealyticum was present in both lingual and pharyngeal scraping samples, while M. hominis was observed in lingual scraping samples only (Table 1). The pH value measured in the lingual ecosystem of female partner resulted to be higher than the physiologic one measured in the male partner (pH: 8.9 vs 6.2, respectively).

Pharyngitis episode is one of the most common clinical evidence in patients at the consulting room of the ENT clinic [5,6]. Although female partner appeared in good health and without clinical pharyngeal history, the characteristic oral ecosystem observed led us to investigate the pharynx too. Ecosystems showed different microbial pattern for saprophytes and common opportunistic pathogens (Table 2). In particular, lingual scraping revealed the presence of C. ulcerans only (6.0 x 10^5 CFU/mL), contrarily to the polymicrobial growth observed onto pharyngeal mucosa, consisting of S. milleri, S. faecalis, C. ulcerans, K. pneumoniae (10%, 20%, 50%, and 20% of TMC, respectively; TMC: >10^7 CFU/mL). The two ecosystems differed as well when compared for atypical bacteria. In fact, only the lingual one showed the presence of M. hominis and U. urealyticum (both at >10^4 CCU/mL), and C. trachomatis. With regard to common microbial patterns, no significant differences were observed between different samples collected from the pharyngeal ecosystem. Pharyngeal swab resulted to be positive for S. milleri, C. ulcerans, E. coli, and K. pneumoniae (30%, 20%, 20%, and 30% of TMC, respectively; TMC: >10^7 CFU/mL), but negative for sexual common atypical pathogens (C. trachomatis, M. hominis, and U. urealyticum).

Pharyngeal scraping sample was positive for S. milleri, S. faecalis, C. ulcerans, and K. pneumoniae (10%, 20%, 50%, and 20% of TMC, respectively; TMC: > 10^7 CFU/mL). Pharyngeal scraping revealed the presence of M. hominis and U. urealyticum (both at 10^3 CCU/mL), although it was negative for C. trachomatis.
Table 1. Culture and molecular analyses of specimens collected from different ecosystems of the male partner

Microorganism	Lingual scraping	Pharyngeal scraping	First voiding urine	Genital ulcers	Seminal fluid	Urine after prostatic massage
S. pyogenes	absent	absent	ND	ND	ND	ND
Streptococci	absent	S. faecalis 20%	S. faecalis 40%	ND	S. faecalis40%	absent
S. pneumoniae	ND	absent	ND	ND	ND	ND
Staphylococci	absent	S. epidermidis20%	S. epidermidis40%	S. epidermidis20%	absent	
Corynebacteria	C. ulcerans 100%	C. ulcerans 40%	C. ulcerans 40%	C. ulcerans 30%	C. ulcerans 40%	absent
E. coli	absent	30%	absent	20%	absent	absent
K. pneumoniae	absent	10%	absent	10%	absent	absent
Yeasts	absent	absent	absent	absent	absent	absent
T. vaginalis	ND	ND	ND	ND	ND	ND
M. hominis	10^3 CCU/mL	absent	10^4 CCU/mL	10^4 CCU/mL	10^4 CCU/mL	>10^4 CCU/mL
U. urealyticum	10^3 CCU/mL	10^4 CCU/mL	10^4 CCU/mL	10^4 CCU/mL	>10^4 CCU/mL	>10^4 CCU/mL
Hd-DNA	ND	ND	ND	absent	ND	ND
Tp-DNA	ND	ND	ND	absent	ND	ND
Ng-DNA	ND	ND	ND	absent	ND	ND
Ct-DNA	weak present	weak present	present	highly present	present	highly present
HPV-DNA	absent	ND	ND	absent	ND	ND

Percentage values show the relative abundance of each species in that ecosystem. ND, not detected, because clinically or scientifically not indicated. Hd, H. ducrey; Tp, T. pallidum. Ng, N. gonorrhoeae; Ct, C. trachomatis; HPV, human papilloma virus.
Table 2. Culture and molecular analyses of specimens collected from different ecosystems of the female partner

Micrororganism	Lingual scraping	Pharyngeal swab	Pharyngeal scraping	First voiding urine	Cervico-vaginal secretion
S. pyogenes	absent	absent	absent	ND	ND
Streptococci	absent	S. milleri 30%	S. milleri 30%	S. faecalis 10%	S. faecalis 10%
S. pneumoniae	ND	absent	absent	ND	ND
Staphylococci	absent	absent	absent	S. epidermidis 40%	absent
Corynebacteria	C. ulcerans 100%	C. ulcerans 20%	C. ulcerans 50%	C. ulcerans 50%	C. ulcerans 70%
E. coli	absent	20%	absent	absent	10%
K. pneumoniae	absent	30%	20%	absent	10%
G. vaginalis	absent	absent	absent	absent	absent
Yeasts	absent	absent	absent	absent	absent
L. acidophylus	ND	ND	ND	ND	3 x 10^5 CFU/ml
T. vaginalis	ND	ND	ND	ND	absent
M. hominis	> 10^4 CCU/mL	absent	10^3 CCU/mL	absent	> 10^4 CCU/mL
U. urealyticum	> 10^6 CCU/mL	absent	10^3 CCU/mL	> 10^6 CCU/mL	> 10^6 CCU/mL
Ng-DNA	ND	ND	ND	ND	ND
Ct-DNA	present	absent	present	present	present
HPV-DNA	absent	ND	absent	absent	absent

Percentage values show the relative abundance of each species in that ecosystem. ND, not detected, because clinically or scientifically not indicated. Ng, N. gonorrhoeae; Ct, C. trachomatis; HPV, human papilloma virus.
3.3 Urogenital Ecosystem

The male urogenital ecosystem, assayed by both culture and molecular analyses, showed a polymicrobial resident flora in each of different sites investigated (Table 1). FVU resulted to be positive for *S. epidermidis*, *S. faecalis*, and *C. ulcerans* (20%, 40%, and 40% of TMC, respectively; TMC: 3.7 x 10^4 CFU/mL). *M. hominis* and *U. urealyticum* were both present at 10^4 CCU/mL, while PCR resulted to be positive for *C. trachomatis* only. Microbiological evaluation of genital ulcer revealed the presence of *S. epidermidis*, *E. coli*, *K. pneumoniae*, and *C. ulcerans* (40%, 20%, 10%, and 30% of TMC, respectively; TMC: 2.3 x 10^4 CFU/mL), while *M. hominis* and *U. urealyticum* were both at 10^3 CCU/mL. PCR was positive for *C. trachomatis* only (Table 1). SF showed a pH value of 8.7 (reference range: 7.2-8.0), while microscopic observation revealed 70-120 leucocytes/hpf, some of which degenerated. Nemasperms concentration was higher than normal (72.7 x 10^6 nemasperms/mL; reference range: > 20 x10^6 nemasperms/mL), while vitality was reduced to 30% (reference range: 50-80%). A remarkable sperm agglutination phenomenon was also observed in 60-70% of total nemasperms. SF was positive for *S. faecalis*, *S. epidermidis*, and *C. ulcerans* (40%, 20%, and 40% of TMC; TMC: 7.0 x 10^4 CFU/mL) (Table 1). *C. trachomatis* was also detected, as well as *M. hominis* and *U. urealyticum* (both at >10^4 CCU/mL) (Table 1). UAPM was positive for *M. hominis* and *U. urealyticum* (both at >10^4 CCU/mL), as well as for *C. trachomatis*.

FVU collected from the female partner resulted positive for a polymicrobial bacterial growth, consisting of *S. faecalis*, *S. epidermidis*, and *C. ulcerans* (10%, 40%, and 50% of TMC, respectively; TMC: 5.0 x 10^3 CFU/mL). Microscopic observation was negative for *T. vaginalis*. *M. hominis* was absent, while *U. urealyticum* was found at 10^3 CCU/mL. PCR was positive for *C. trachomatis* only.

The yellow-mucous secretion sampled in cervicovaginal ecosystem showed a pH value of 5.7, higher than normal (physiological range: 3.8-4.5), while observation revealed a count of 50-60 leucocytes/hpf, some of which degenerated. TMC of this ecosystem was of about 1.0 x 10^3 CFU/mL, lower than physiological value (from 1.0 x 10^3 to 1.0 x 10^5, depending on age). *S. faecalis*, *C. ulcerans*, *E. coli*, and *K. pneumoniae* (10%, 70%, 10%, and 10% of TMC, respectively) were found into this ecosystem (Table 2). *L. acidophilus* concentration was decreased (3.0 x 10^5 CFU/mL; physiological concentration: > 1.0 x 10^5 CFU/mL). *C. trachomatis* was present, as well as *M. hominis* and *U. urealyticum* (both at>10^4 CCU/mL)(Table 2).

4. DISCUSSION AND CONCLUSION

In this study we investigated all the ecosystems involved in sexual activity of a young couple presenting a latent infertility problem only. In the male patient, lingual pH and PSA values, added to negative VDRL, were highly suggestive for apparent physiological conditions, despite of oropharyngeal and urogenital asymptomatic clinical pictures. However, culture analysis of lingual ecosystem highlighted the exclusive presence of *C. ulcerans*, while molecular analysis revealed the presence of *M. hominis*, *U. urealyticum*, and *C. trachomatis*. The bacterial load we observed in male pharyngeal ecosystem, lower than that observed in the lingual one, might reflect an apparent “physiologic status” at pharyngeal site, as supported by lack of clinical picture. Furthermore, this evidence of polymicrobial growth in pharyngeal ecosystem is in accordance with methodological preparation and standardization of the samples we carried out. Quantitative microbiological analyses allowed us to ascribe to the higher mycoplasmal lingual presences compared to pharyngeal site, the major clinical evidence of an asymptomatic condition of silent and/or low-grade inflammatory status. If lingual and pharyngeal weak evidence for *C. trachomatis* infection observed in male partner could explain asymptomatic conditions, on the other side it is possible to involve both the direct modality of lingual contagion and different cellular typology to colonize.In our previous studies [2,7], we have never found these situations because the patients were affected by chronic oropharyngeal and conjunctival inflammation. Alternatively, it is possible to evoke for both patients both different genetic individual susceptibility [8], and the always possible “time difference” with respect to contagion.

The high pH value observed in the female lingual ecosystem and its clinical manifestation are indicative of the altered microbial ecosystem observed in the oral cavity (Fig. 2). On the contrary, no demonstrated pharyngeal mucosae inflammation was noted. Considering microbiological findings obtained from lingual samples – that is the presence of *C. ulcerans*,
the high mycoplasmas (*U. urealyticum*, and *M. hominis*) concentrations and the presence of *C. trachomatis* - it is plausible to hypothesize that this site would be the first one to be colonized during sex oral behaviour [8], while *C. ulcerans* could be considered as a microbiological marker of the altered lingual ecosystem following urogenital contamination.

With regard to the pharyngeal ecosystem, while swab samples suggested the absence of “atypical infections”, *M. hominis* and *U. urealyticum* were observed, although at low concentrations, in scraping samples, thus demonstrating the latter as the best sampling modality. Additionally, microbiological evaluation of the female pharyngeal ecosystem by means of different sampling modalities showed a noteworthy overlapping of bacterial species, thus suggesting the marginal role of these bacteria in triggering inflammation of the pharyngeal ecosystem. They might, however, contribute in altering, together with mycoplasmas, the nutritional state of colonized cells, thus favouring the development of the critical condition of inflammatory status [9,10], triggering the unbalance of cellular potential redox state [11]. The absence of *Chlamydia* at this uninflammed site could be explained by both an initial phase of contagion from tongue and a chlamydial condition not detectable by PCR [12-14]. In this regard, it is noteworthy to remember that during renewal of chlamydial infection in a patient with asymptomatic chronic infection, each reticular body produces much more progeny from a single inclusion, assuring a new potential infecting load for contiguous tissue or its diffusion in intestinal habitat.

It is known that higher pH value, increased number of leucocytes/hpf, and sperm agglutination are some of causes of asymptomatic inflammatory prostatitis, often incidentally diagnosed during infertility or prostate cancer evaluation [15-18]. Together with an accurate anamnesis and prostatic investigation, adequate evaluations concerning SF demonstrated an altered fertility due to low vitality test and high agglutination phenomenon in the presence of an adequate nemasperms concentration.

The presence of asymptomatic recurrent genital ulcers, suggestive for chlamydial and/or mycoplasma infections, together with increasing trend of PSA value [19], were justified by microbiological evaluation of urogenital ecosystems. Considering culture and molecular analyses of FVU, GU, SF, and UAPM, it is highlighted that the positivity for mycoplasma infections are distributed differently on the several sources, indicating a major presence of these infections in parenchymal prostatic tissue compared to FVU, GU, and SF. In the same sources, chlamydial infection presented a different behaviour, being more positive in GU and UAPM, indicating in *C. trachomatis* the true aetiologic agent of ulcered areas, while the parenchymal prostatic tissue represents a major reservoir of chlamydial infection [9].

In our operative conditions, the polymicrobial colonization found in each ecosystem was highly suggestive for saprophytic flora. Lastly, yellow-mucous secretion, high pH value, relevant presence of leucocytes/hpf, very low *L. acidophilus* concentration, replaced with an abundant presence of *C. ulcerans*, characterized an altered female genital environment due to asymptomatic chronic mycoplasma and chlamydial infections. Although *C. ulcerans* has been increasingly isolated as an emerging zoonotic agent of diphtheria and other infections from companion animals [20,21], we believe that in our case it has to be considered as an opportunistic pathogen [5], a biomarker of altered oral, as well as ocular, ecosystems as already found in previous studies [6-8,22]. The relevant presence of *C. ulcerans* we observed in the female patient might in fact indicate that it concurred to the pathogenic determinism by increasing pH level and, therefore, favouring the decrease of cellular redox state [5]. Furthermore, toxigenic *C. ulcerans* could have contribute in developing the evidence of a “patinated whitish tongue” with mucoid salivation we observed.

There is currently no direct evidence of person-to-person transmission of *C. ulcerans*. Although our findings rise the possibility of a sexual transmission, unfortunately strains from both partners were not subjected to genetic fingerprinting to demonstrate their clonal relatedness.

The female patient also showed VDRL positive test, indicating an early condition triggering of autoimmune diseases [23]. We have recently reported that these atypical infections - being “silent and/or at low grade inflammatory” - might developed, in patient genetically susceptible, a VDRL positivity after decades from contagion, indicating the first biochemical marker of silent mycoplasma infection, developed itself in any
ecosystem of the host [2, 7, 9, 24, 25]. It is interesting to note that silent atypical chronic infections by *M. hominis, U. urealyticum*, and *C. trachomatis* determine several health problems on genital female reproductive system [23-27], but one of which, such as the precocious infertility of a susceptible genetically young couple [9], was solved following the holistic vision of “Human Being” and carrying out a double sampling modality. Gavazzi et al. [28] stated that “ageing may be the cause of infection but infection can also be the cause of ageing”, considering the holistic vision “Human Being” as the best way to approach the human problems before these become irreversible decline. Franceschi et al. described the “inflammaging” phenomenon [29, 30], caused by innate immune system chronically stressed. Furthermore, Chang et al. [31] reported that chronic mycoplasma infections are responsible of subsequent risk of cancer among elderly adults. In a recent study, Gallenga et al. [32] demonstrated that the standardization of sampling methodology by scraping of living cellsis crucial in establishing *C. trachomatis* presence in the ocular ecosystem during the early phase of conjunctivitis.

Results we obtained by adopting these two different sampling modalities, we also used in our previous studies [2, 7, 9, 24, 32], have borne out our beliefs regarding asymptomatic patients during initial chronic phase of infections. To correctly interpret this assertion it is necessary to highlight that this initial phase could last for decades. It is interesting to note as the two sampling modalities led to opposite results for *C. trachomatis* presence, nourishing once again the enigmatic behaviour of chlamydial infection. The failure of a laboratory diagnosis in clinically asymptomatic patients would underestimate these atypical and silent infections, keeping out control by any control program of public health.

ETHICAL APPROVAL

All authors hereby declare that all experiments have been examined and approved by the appropriate ethics committee and have therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Clemens JQ, Calhoun EA, Litwin MS, Mc Naughton-Collins M, Dunn RL, Crowley EM, Landis JR. Rescoring the NIH chronic prostatitis symptom index (NIH-CPSI): Nothing new. Prostate Cancer Prostatic Dis. 2009;12:285-287.

2. Del Boccio M, Lobefalo L, Pennelli A, Toniato E, Martinotti S, Tenaglia R, Neri G, Del Boccio G, Gallenga PE. Can latent synergism of intestinal pathogens be responsible for inflammaging process causing Reiter’s syndrome in a young patient HLA-B27 infected by atypical pathogens? A holistic view and clinical biochemical reinterpretation. J Biol Regul Homeost Agents. 2012;25(4):741-755.

3. Palmer HM, Higgins SP, Herring AJ, Kingston MA. Use of PCR in the diagnosis of early syphils in the United Kingdom. Sex Transm Infect. 2003;79:479-483.

4. Kulkarni K, Lewis DA, Ison CA. Expression of the cytolethal distending toxin in a geographically diverse collection of *Haemophilus ducreyi* clinical isolates. Sex Transm Infect. 2003;79:294-297.

5. Neri G, Citraro L, Martinotti S, Toniato E, Castriotta A, De Rosa M, Filograna Pignatelli G, Croce A. The role of atypical microorganisms in chronic oropharyngeal phlogosis. Eur J Inflamm. 2010;8:201-210.

6. Wikstrom A, Røtzen-Ostlund M, Marions. Occurrence of pharyngeal *Chlamydia trachomatis* is uncommon in patients with a suspected or confirmed genital infection. Acta Obstet Gynecol Scand. 2010;89(1):78-81.

7. Neri G, Del Boccio M, Pennelli A, Martinotti S, Tenaglia R, Pugliese M, Toniato E, Croce A, Gallenga PE. Jugulodigastric lymph node inflammation derived from chronic atypical oropharyngeal phlogosis recurrent annually after the flu virus vaccination: A holistic vision of clinical case solved after chlamydial antibiotic therapy. Int J Immunopathol. Pharmacol. 2012;25(4):835-847.

8. Gallenga PE, Del Boccio M, Rapinesi M, Di Iorio A, Toniato E, Martinotti S. Molecular approach by PCR is the best method to detect the presence of *Chlamydia trachomatis* and to define the true agent of ocular bacterial inflammation.

456
Int J Immunopathol Pharmacol. 2011;24:285-296.

9. Gallenga PE, Del Boccio M, Neri G, Tenaglia R, Martinotti S. Conjunctival chronic pain by Chlamydia trachomatis solved after asymptomatic chronic prostatitis treatment with echoguided drugs infiltration: A case report. IJMCR. 2011;2(2):93-97.

10. De la Fuente M, Miquel J. An update of the oxidation-inflammation theory of aging: The involvement of the immune system in oxi-inflamm-aging. Curr Pharm Des. 2009;15(26):3003-3026.

11. Sessa R, Di Pietro M, Schiavoni G, Santino I, Zagaglia C, Del Piano M, Cipriani P. Chlamydia pneumoniae induces T cell apoptosis through glutathione redox imbalance and secretion of TNF-alpha. Int J Immunopathol Pharmacol. 2009;22(3):659-668.

12. Hammerschlag M. The intracellular life of Chlamydia trachomatis. Pediatr Infect Dis. 2002;13:239-248.

13. Byrne GI, Ojcius DM. Chlamydia and apoptosis: Life and death decisions of an intracellular pathogen. Nat Rev Microbiol. 2004;2(10):802-808.

14. Ying S, Pettengill M, Ojcius DM, Häcker G. Host-cell survival and death during chlamydia infection. Curr Immunol Rev. 2007;3(1):31-40.

15. Hosseinzadeh S, Eley A, Pacey AA. Semen quality of men with asymptomatic chlamydial infection. J Androl. 2004;25(1):104-109.

16. Bezold G, Politch JA, Kiviat NB, Kuypers JM, Wolff H, Anderson DJ. Prevalence of sexually transmissible pathogens in semen from asymptomatic male infertility patients with and without leukocytospermia. Fertil Steril. 2007;87(5):1087-1097.

17. Gallegos G, Ramos B, Santiso R, Goyanes V, Gosálvez J, Fernández JL. Sperm DNA fragmentation in infertile men with genitourinary infection by Chlamydia trachomatis and Mycobacteria. Fertil Steril. 2008;90(2):328-334.

18. Murphy AB, Macejco A, Taylor A, Nadler RB. Chronic prostatitis: Management strategies. Drugs. 2009;69(1):71-84.

19. Wu XJ, Yang LY, Zhang XZ. A clinical analysis of benign prostatic hyperplasia with chronic prostatitis. Zhonghua NanKe Xue. 2008;14(6):527-529.

20. Sangal V, Nieminen L, Weinhardt B, Raeside J, Tucker NP, Florea CD, Pollock KG, Hoskisson PA. Diphtheria-like disease caused by toxigenic Corynebacterium ulcerans strain. Emerg Infect Dis. 2014;20(7):1257-1258.

21. Urakawa T, Seto J, Yamamoto A, Nakajima T, Goto S. Subcutaneous abscess formation in the upper extremity caused by toxigenic Corynebacterium ulcerans. J Med Microbiol. 2013;62(Pt 3):489-493.

22. Koneman EW. In: Color atlas and textbook of diagnostic microbiology. Lippincott JB Company, Philadelphia; 1992.

23. Waite KB, Katz B, Schelonka RL. Mycoplasmas and Ureaplasmas as neonatal pathogens. Clin Microbiol Rev. 2005;18(4):757-789.

24. Del Boccio M, Pennelli A, Toniato E, Martinotti S, Tenaglia R, Croce A, Pugliese G, Del Boccio G, Gallenga PE, Neri G. Enigmatic question of early reactive arthritis disclosed after researches of Mycoplasmas, Chlamydia trachomatis and enteropathogens following the holistic vision of “Human being”. J Biol Regul Homeost Agents. 2013;27(3):933-946.

25. Mornè SA, Karimi O, Ouburg S. Chlamydia trachomatis: Identification of susceptibility markers for ocular and sexually transmitted infections by immunogenetics. FEMS Immunol Med Microbiol. 2009;55:140-153.

26. Debbattista J, Gazzard CM, Wood R N, Allan JA, Allan JM, Scarman A, Mortlock M, Timms P, Knox CL. Interaction of microbiology and pathology in women undergoing investigations for infertility. Infect Dis Obstet Gynecol. 2004;12:135-145.

27. Kobayashi Y, Takeuchi H, Kitade M, Kikuchi I, Sato Y, Kinoshita K. Pathological study of Fitz-Hugh-Curtis syndrome evaluated from fallopian tube damage. J Obstet Gynecol Res. 2006;32(3):280-285.

28. Gavazzi G, Krause KH. Ageing and infection. Lancet Infect Dis. 2002;2(11):659-666.

29. Franceschi C, Bonafè M, Valensin S, Olivieri F, De Luca M, Ottaviani E, De Benedictis G. Inflammaging. An evolutionary perspective on immune-senescence. Ann NY Acad Sci. 2000;908:244-254.
30. Biagi E, Candela M, Fairweather-Tait S, Franceschi C, Brigidi P. Ageing of the human metaorganism: The microbial counterpart. Age (Dordr.). 2012;34:247-267.

31. Chang CM, Warren JL, Engels EA. Chronic fatigue syndrome and subsequent risk of cancer among elderly US adults. Cancer. 2012;118(23):5929-5936.

32. Gallenga PE, Del Boccio M, Rapinese M, Pennelli A, Martinotti S. Ocular clinical pictures disclosed by molecular diagnosis of Chlamydia trachomatis infection performed following the appropriate sampling modality in ocular ecosystem. Int J Immunopathol Pharmacol. 2012;25(4):1099-1105.

Peer-review history:
The peer review history for this paper can be accessed here:
http://www.sciencedomain.org/review-history.php?id=826&id=8&aid=7129