Search for CP violation in the $D^+ \to \pi^+ \pi^0$ decay at Belle

V. Babu, K. Trabelsi, G. B. Mohanty, T. Aziz, D. Greenwald, D. M. Asner, H. Atmacan, I. Badhrees, A. M. Bakich, P. Behera, V. Bhardwaj, B. G. Fulsom, P. Krokovny, I. Badhrees, S. Uno, C. P. Shen, M. Masuda, V. Babu, J-PARC Branch, KEK Theory Center, High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801

K. T. Kim, B. G. Cheon, P. Pakhlov, M. Starič, R. Itoh, K. Trabelsi, S. E. Vahsen, M. Ritter, T.-A. Shibata, C. Schwanda, V. Gaur, D. Matvienko, K. Kinoshita, P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991

Search for CP violation in the $D^+ \to \pi^+ \pi^0$ decay at Belle

Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589

Korea Institute of Science and Technology Information, Daejeon 305-806

Korea University, Seoul 136-713

École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015

P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991

Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana

Faculty of Mathematics and Physics, Charles University, 121 16 Prague

Korea Institute of Science and Technology Information, Daejeon 305-806

Indian Institute of Technology Madras, Chennai 600036

University of Cincinnati, Cincinnati, Ohio 45221

University of Hawaii, Honolulu, Hawaii 96822

High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801

Advanced Science Research Center, Japan Atomic Energy Agency, Naka 319-1195

IKERBASQUE, Basque Foundation for Science, 48013 Bilbao

SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193

University of the Basque Country UPV/EHU, 48013 Bilbao

Beihang University, Beijing 100191

Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090

Faculty of Mathematics and Physics, Charles University, 121 16 Prague

University of Ljubljana, 1000 Ljubljana

Institute of High Energy Physics, Vienna 1050

University of Mississippi, University, Mississippi 38677

INFN - Sezione di Torino, 10125 Torino

Institute of Physics, Faculty of Science, King Abdullah University of Science and Technology, Jeddah 21589

Kanagawa University, Yokohama 221-8686

Kennesaw State University, Kennesaw, Georgia 30144

King Abdullah City for Science and Technology, Riyadh 11442

Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana

Ludwig Maximilians University, 80539 Munich

University of Maribor, 2000 Maribor

Max-Planck-Institut für Physik, 80805 München

School of Physics, University of Melbourne, Victoria 3010

(The Belle Collaboration)

1 University of the Basque Country UPV/EHU, 48080 Bilbao
2 Beihang University, Beijing 100191
3 Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090
4 Faculty of Mathematics and Physics, Charles University, 12116 Prague
5 University of Cincinnati, Cincinnati, Ohio 45221
6 SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193
7 Hunag University, Seoul 133-791
8 University of Hawaii, Honolulu, Hawaii 96822
9 High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
10 J-PARC Branch, KEK Theory Center, High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801
11 IKERBASQUE, Basque Foundation for Science, 48013 Bilbao
12 Indian Institute of Science Education and Research Mohali, SAS Nagar, 140306
13 Indian Institute of Technology Bhubaneswar, Sattya Nagar 751007
14 Indian Institute of Technology Hyderabad, Telangana 502285
15 Indian Institute of Technology Madras, Chennai 600036
16 Indian University, Bloomington, Indiana 47408
17 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049
18 Institute of High Energy Physics, Vienna 1050
19 Institute for High Energy Physics, Protvino 142281
20 University of Mississippi, University, Mississippi 38677
21 INFN - Sezione di Napoli, 80126 Napoli
22 INFN - Sezione di Torino, 10125 Torino
23 Advanced Science Research Center, Japan Atomic Energy Agency, Naka 319-1195
24 J. Stefan Institute, 1000 Ljubljana
25 Kanagawa University, Yokohama 221-8686
26 Institut für Experimentelle Kernphysik, Karlsruher Institut für Technologie, 76131 Karlsruhe
27 Kennesaw State University, Kennesaw, Georgia 30144
28 King Abdullah City for Science and Technology, Riyadh 11442
29 Department of Physics, Faculty of Science, King Abdullah University, Jeddah 21589
30 Korea Institute of Science and Technology Information, Daejeon 305-806
31 Korea University, Seoul 136-713
32 École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015
33 P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991
34 Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana
35 Ludwig Maximilians University, 80539 Munich
36 University of Maribor, 2000 Maribor
37 Max-Planck-Institut für Physik, 80805 München
38 School of Physics, University of Melbourne, Victoria 3010
Within the standard model (SM), the violation of charge-parity (CP) symmetry in the charm system is expected to be small $|\mathcal{O}(10^{-9})|$ owing to suppression from the GIM mechanism [1]. These order-of-magnitude estimates [2] suffer from large uncertainties [3] due to nonperturbative long-distance effects resulting from a finite charm-quark mass. The problem came to the fore in 2012, when the world average of the difference in CP violating asymmetries between $D^0 \rightarrow K^+K^-$ and $D^0 \rightarrow \pi^+\pi^-$ decays was measured to be $\Delta A_{CP} = (-0.656 \pm 0.154)\%$ [4]; here, each asymmetry is

$$A_{CP}(D \rightarrow f) = \frac{\Gamma(D \rightarrow f) - \Gamma(\bar{D} \rightarrow \bar{f})}{\Gamma(D \rightarrow f) + \Gamma(\bar{D} \rightarrow \bar{f})},$$

(1)

where $\Gamma(D \rightarrow f)$ and $\Gamma(\bar{D} \rightarrow \bar{f})$ are the decay rates for a given process and its CP conjugate, respectively. This led to much discussion as to whether the result was consistent with the SM or a signature of new physics (NP). Though the current ΔA_{CP} value is consistent with zero [5], it is important to study those decay channels expected by the SM to exhibit negligible CP violation.

Singly Cabibbo-suppressed decays like $D^+ \rightarrow \pi^+\pi^0$ [6] are excellent candidates to probe CP violation in the charm sector [7]. Such decays require additional strong and weak phases besides those in the tree diagram to have a sizeable CP asymmetry. The phases can appear in either a strong or an electroweak loop (e.g., box diagram). As the former produces only isospin singlets, it cannot contribute to the $I = 2$ final state of $\pi^+\pi^0$. On the other hand, electroweak loop diagrams have too small an amplitude of $\mathcal{O}(10^{-6})$ for the interference to manifest CP violation. Any CP asymmetry found in these channels would therefore point to NP [7]. In particular, Ref. [7] suggests looking for CP violation in $D^+ \rightarrow \pi^+\pi^0$ as well as verifying a sum rule that relates individual asymmetries of the three isospin-related $D \rightarrow \pi\pi$ decays as potential NP probes. The sum rule, which reduces the
Theoretical uncertainty due to strong interaction effects, can be characterized by the ratio
\[
R = \frac{|A_1|^2 - |A_1|^2 + |A_2|^2 - |A_2|^2 - 2 \left((|A_3|^2 - |A_3|^2)\right)}{|A_1|^2 + |A_1|^2 + |A_2|^2 + |A_2|^2 + 2 \left((|A_3|^2 + |A_3|^2)\right)},
\]
where A_1, A_2, and A_3 are the amplitudes of $D^0 \rightarrow \pi^+ \pi^-$, $D^0 \rightarrow \pi^0 \pi^0$, and $D^+ \rightarrow \pi^+ \pi^0 \pi^0$, respectively; A_1, A_2, and A_3 are those of their CP conjugates. The amplitudes are normalized so that
\[
|A_k|^2 \propto \frac{B_k}{\tau_{0(+)} p_k},
\]
where B_k is the branching fraction of the decay $D \rightarrow \pi^0 \pi j$, $\tau_{0(+)}$ is the appropriate D^0 (D^+) lifetime, and
\[
p_k = \frac{(m_D^2 - (m_i + m_j)^2)(m_D^2 + (m_i - m_j)^2)}{2 m_D},
\]
is the breakup momentum in the D rest frame. The indices i and j correspond to the pion daughters. As the masses of the charged and neutral species of the D or π mesons are close to each other, we consider all p_k values to be equal. We use Eqs. (3-4) and the relation
\[
|A_k|^2 \propto (|A_1|^2 + |A_2|^2) = A_{CP} (|A_1|^2 + |A_2|^2)
\]
rewrites Eq. (2) as
\[
R = \frac{A_{CP}(D^0 \rightarrow \pi^+ \pi^-)}{1 + \frac{3 \tau_{0(+)}}{3 \tau_{0(+)}} \left(\frac{B_2}{B_1} + \frac{2 B_3}{3 \tau_{0(+)}}\right)} + \frac{A_{CP}(D^0 \rightarrow \pi^0 \pi^0)}{1 + \frac{3 \tau_{0(+)}}{3 \tau_{0(+)}} \left(\frac{B_2}{B_1} + \frac{2 B_3}{3 \tau_{0(+)}}\right)}
\]
where $\tau_0(+) = (5 \pm 1) \times 10^6$ s is the appropriate D^0 (D^+) lifetime, and
\[
\tau_0(+) = (5 \pm 1) \times 10^6\text{ s}.
\]
If the value of R is consistent with zero while the CP asymmetry in $D^+ \rightarrow \pi^+ \pi^0$ is nonzero [7], it would be an NP signature.

A test of the above sum rule requires the measurement of the time-integrated CP asymmetries $A_{CP}(D^0 \rightarrow \pi^+ \pi^-)$, $A_{CP}(D^0 \rightarrow \pi^0 \pi^0)$, and $A_{CP}(D^+ \rightarrow \pi^+ \pi^0 \pi^0)$. The current world average of $A_{CP}(D^0 \rightarrow \pi^+ \pi^-)$ is $(+0.13 \pm 0.14)%$ [9]. Three years ago, Belle measured $A_{CP}(D^0 \rightarrow \pi^0 \pi^0)$ as $[-0.03 \pm 0.64(\text{stat.}) \pm 0.10(\text{syst.})%]$ [10]. However, the charged-mode asymmetry measured by CLEO has an uncertainty of 2.9% [11] and therefore limits the precision with which the above sum rule can be tested.

We present herein an improved measurement of CP asymmetry for the channel $D^+ \rightarrow \pi^+ \pi^0$ using the full e^+e^- collision data sample recorded by the Belle experiment [12] at the KEKB asymmetric-energy collider [13]. The data sample was recorded at three different center-of-mass energies: at the $\Upsilon(4S)$ and $\Upsilon(5S)$ resonances and 60 MeV below the $\Upsilon(4S)$ peak, with corresponding integrated luminosities of 711 fb$^{-1}$, 121 fb$^{-1}$, and 89 fb$^{-1}$, respectively.

The detector components relevant for the study are a tracking system comprising a silicon vertex detector and a 50-layer central drift chamber (CDC), a particle identification device that consists of a barrel-like arrangement of time-of-flight scintillation counters (TOF) and an array of aerogel threshold Cherenkov counters (ACC), and a CsI(Tl) crystal electromagnetic calorimeter (ECL). All these components are located inside a superconducting solenoid that provides a 1.5 T magnetic field.

For the measurement, we consider an exclusive sample of D^\pm mesons tagged by $D^{*\pm} \rightarrow D^{\pm} \pi^0$ decays, and another that is not tagged by the $D^{*\pm}$ decays. The former sample has a better signal-to-noise ratio while the latter has more events. For optimal sensitivity, we combine their asymmetry measurements.

A fit to the invariant-mass (M_D) distributions of the $\pi^\pm \pi^0$ samples, we determine the raw asymmetry
\[
A_{\text{raw}}^{\pi\pi} = \frac{N(D^+ \rightarrow \pi^+ \pi^0) - N(D^- \rightarrow \pi^- \pi^0)}{N(D^+ \rightarrow \pi^+ \pi^0) + N(D^- \rightarrow \pi^- \pi^0)},
\]
where $N(D^+ \rightarrow \pi^+ \pi^0)$ and $N(D^- \rightarrow \pi^- \pi^0)$ are the yields for the signal and its CP-conjugate process, respectively. $A_{\text{raw}}^{\pi\pi}$ has three contributing terms:
\[
A_{\text{raw}}^{\pi\pi} = A_{\text{raw}}^{\pi\pi} + A_{FB}^{\pi\pi} + A_{\pi\pi}^{\pi\pi}.
\]
The first term, $A_{\text{raw}}^{\pi\pi}$, is the true asymmetry. The forward-backward asymmetry, A_{FB}, arises due to interference between the amplitudes mediated by a virtual photon, Z^0 boson, and higher order effects [14] in $e^+e^- \rightarrow c\bar{c}$. The pion-detection efficiency asymmetry, $A_{\pi\pi}^{\pi\pi}$, is a function of the π^\pm momentum and polar angle.

We make use of the high-statistics normalization channel $D^+ \rightarrow K^0_S \pi^0$ to correct the measured asymmetry for A_{FB} and $A_{\pi\pi}^{\pi\pi}$. As both signal and normalization decays arise from the same underlying process, A_{FB} should be identical for them. Further, we expect $A_{\pi\pi}^{\pi\pi}$ to be the same if the two channels have similar pion momentum and polar-angle distributions. The angle distributions for the two channels are found to be identical. Though there is a small difference between the momentum distributions, it has been verified to have a negligible impact on the measurement. The raw asymmetry for the normalization channel is thus
\[
A_{\text{raw}}^{K\pi} = A_{\text{raw}}^{\pi\pi} + A_{FB}^{\pi\pi} + A_{\pi\pi}^{\pi\pi},
\]
where $A_{\text{raw}}^{K\pi}$ is the CP asymmetry of $D^+ \rightarrow K^0_S \pi^+$; this has been measured to be $[-0.363 \pm 0.094(\text{stat.}) \pm 0.067(\text{syst.})\%]$ [17], including the CP asymmetry induced by K^0/\bar{K}^0 mixing and the difference in interactions of K^0 and \bar{K}^0 mesons with the detector material. The difference in the raw asymmetries is
\[
\Delta A_{\text{raw}} = A_{\text{raw}}^{\pi\pi} - A_{\text{raw}}^{K\pi} = A_{\text{raw}}^{\pi\pi} - A_{\text{raw}}^{K\pi},
\]
which leads to

\[A_{CP}^{\pi^0} = A_{CP}^{\pi^0} + \Delta A_{\text{raw}}. \]

(11)

Monte Carlo (MC) simulated events are used to devise and optimize the selection criteria; the size of the MC sample corresponds to an integrated luminosity six times that of the data. We perform the optimization by maximizing the signal significance, \(N_{\text{sig}}/\sqrt{N_{\text{sig}}+N_{\text{bkg}}}, \) where \(N_{\text{sig}} \) (\(N_{\text{bkg}} \)) is the number of signal (background) events expected within a \(\pm 3 \sigma \) window (\(\sigma = 15.3 \ \text{MeV}/c^2 \)) around the nominal \(D \) mass \[9\]. The branching fraction of the signal channel used in the \(N_{\text{sig}} \) calculation is the current world average, \(1.24 \times 10^{-3} \) \[9\]. The background level is corrected for a possible data-MC difference by comparing yields in the \(M_D \) sidebands of 1.70 – 1.76 GeV/c\(^2\) and 1.92 – 2.00 GeV/c\(^2\).

Charged-track candidates must originate from near the \(e^+e^- \) interaction point (IP), with an impact parameter along the \(z \) axis and in the transverse plane of less than 3.0 cm and 1.0 cm, respectively. (The \(z \) axis is the direction opposite the \(e^+ \) beam.) They must have a momentum greater than 840 MeV/c. They are treated as pions if the likelihood ratio, \(L_\pi/(L_\pi + L_K) \), is greater than 0.6, where \(L_\pi \) and \(L_K \) are the pion and kaon likelihoods, respectively. These are calculated with information from the CDC, TOF and ACC. This requirement, when applied to charged particles with a momentum distribution similar to that of the signal decay, yields a pion identification efficiency of approximately 88% and a kaon-to-pion misidentification probability of about 7%.

The high-momentum (‘hard’) \(\pi^0 \) candidates that would originate from two-body \(D \) decay are reconstructed from pairs of photons by requiring the di-photon invariant mass to be within \(\pm 16 \ \text{MeV}/c^2 \) of the nominal \(\pi^0 \) mass \[9\]. The hard \(\pi^0 \) daughter photons in the barrel, forward- and backward-endcap regions of the ECL are required to have an energy greater than 50, 100 and 150 MeV, respectively. (The barrel, forward- and backward-endcap regions span polar angle ranges 32.2 – 128.0°, 12.4 – 31.4° and 130.7 – 155.1°, respectively.) The thresholds for the endcap photons are higher due to the higher beam background. The hard \(\pi^0 \) must have a momentum greater than 1.06 GeV/c.

Charged \(D \) meson candidates are formed by combining a charged-pion with a hard-\(\pi^0 \) candidate, and requiring the resultant \(M_D \) distribution to lie within \(\pm 200 \ \text{MeV}/c^2 \) of the nominal \(D \) mass \[9\]. For \(D^{\ast+} \) reconstruction in the tagged sample, low-momentum (‘soft’) \(\pi^0 \) candidates are reconstructed from a pair of photon candidates whose energy criteria are optimized for each ECL region; the corresponding values are listed in Table 1. The soft-\(\pi^0 \) invariant mass is required to be within an optimized window, 125 – 143 MeV/c\(^2\). It is verified during optimization that the \(\pi^0 \) mass distributions in simulations are in agreement with control data consisting of a high-statistics sample of \(D^+ \rightarrow K^-\pi^+\pi^+ \) decays, with the \(D^+ \) arising from \(D^{\ast+} \rightarrow D^+\pi^0 \).

Case	\(E_{\ast 1} \) criterion	\(E_{\ast 2} \) criterion
1	\(> 46 \ \text{MeV} \) (barrel)	\(> 46 \ \text{MeV} \) (barrel)
2	\(> 36 \ \text{MeV} \) (barrel)	\(> 68 \ \text{MeV} \) (forward endcap)
3	\(> 30 \ \text{MeV} \) (barrel)	\(> 44 \ \text{MeV} \) (backward endcap)

For the tagged sample, \(D^\ast \) candidates are formed by combining \(D \) mesons with soft \(\pi^0 \) candidates such that the mass difference between the \(D^\ast \) and \(D \) candidates, \(\Delta M \), lies within an optimized window of 139–142 MeV/c\(^2\). This corresponds approximately to a \(\pm 1.5 \sigma \) signal region, where \(\sigma \) is the \(\Delta M \) resolution. For the fit to extract \(A_{CP} \) (described below), two intervals of \(D^\ast \) center-of-mass momentum with different signal-to-background ratio are chosen: \(p^\ast_D > 2.95 \ \text{GeV}/c \) and 2.50 GeV/c < \(p^\ast_D < 2.95 \ \text{GeV}/c \). The first corresponds to an optimized \(p^\ast_D \) criterion with maximal signal significance. The second interval is added to increase the statistical sensitivity of the measurement, while ensuring that the lower bound excludes \(D^\ast \) mesons from a \(B \)-meson decay, as the latter might introduce a nontrivial \(CP \) asymmetry.

After the above selection criteria are applied, we find that about 3% of events have multiple \(D^\ast \) candidates. We perform a best-candidate selection (BCS) to remove spurious \(D^\ast \) candidates formed from fake soft-\(\pi^0 \) mesons. This is done by retaining, for each event, the candidate whose \(\Delta M \) value lies closest to the mean of the \(\Delta M \) distribution, 140.69 MeV/c\(^2\). For events with multiple \(D^\ast \) candidates, with at least one of them being the true candidate, the BCS successfully identifies the correct one around 65% of the time. As the spurious \(D^\ast \) candidates also correspond to true \(D \) candidates, this component peaks in the \(M_D \) distribution. By performing the BCS, we ensure that only one \(D \) candidate is selected per event, and so avoid overestimating the signal component in the \(M_D \) fits.

If there are no suitable \(D^\ast \) candidates found in an event, the charged \(D \) candidates, if any, are considered for the untagged sample. Here, we require that the \(D \) center-of-mass momentum be above an optimized threshold of 2.65 GeV/c. In case there are multiple \(D \) candidates in the event, the one with the daughter \(\pi^0 \) candidate having a reconstructed mass closest to the nominal \(\pi^0 \) mass \[9\] is chosen. If there are still multiple surviving candidates, the one whose charged-pion daughter has the smallest transverse impact parameter is retained. About 2% of events in the untagged sample have multiple \(D \) candidates; for such events, with at least one of them being the true candidate, the BCS successfully identifies the
correct one around 66% of the time.

For the normalization channel, we reconstruct K_S^0 candidates from pairs of oppositely charged tracks that have an invariant mass within 30 MeV/c^2 ($\pm 5\sigma$) of the nominal K_S^0 mass. The transverse impact parameter of the track candidates is required to be larger than 0.02 cm for high-momentum (> 1.5 GeV/c) and 0.03 cm for low-momentum (< 1.5 GeV/c) K_S^0 candidates. The $\pi^+\pi^-$ vertex must be displaced from the IP by a minimum (maximum) transverse (longitudinal) distance of 0.22 cm (2.40 cm) for high-momentum candidates and 0.08 cm (1.80 cm) for the remaining candidates. The direction of the K_S^0 momentum must be with 0.03 (0.10) rad of the direction between the IP and the vertex for high-momentum (remaining) candidates. The surviving K_S^0 candidates are kinematically constrained to their nominal masses. Candidate events for the $D^+ \to K_S^0\pi^+$ channel are selected with essentially the same requirements as for signal, except that we require the D candidate mass to lie within ± 80 MeV/c^2 of the nominal D mass; the tighter criterion is due to the better mass resolution with an all-charged final state. Similar to the signal channel described earlier, non-overlapping tagged and untagged samples are formed.

A fitting range of 1.68 – 2.06 GeV/c^2 in M_D is chosen for the signal $D \to \pi\pi$ channel. For the tagged sample, a simultaneous unbinned maximum-likelihood fit of the two p_T^D intervals and oppositely-charged D meson candidates is performed. Similarly, for the untagged sample, a simultaneous binned maximum-likelihood fit of oppositely-charged D meson candidates is done. We use a combination of a Crystal Ball (CB) and a Gaussian function to model the signal peak for both tagged and untagged fits. The background in the tagged fit is parameterized by the sum of a reversed CB and a linear polynomial, while that for the untagged fit uses a quadratic rather than a linear polynomial. All signal shape parameters for the tagged fit are fixed to MC values except for an overall mean and a width scaling factor, which are floated. We introduce the scaling factor to account for the possible difference between data and simulations. For the untagged fit, all shape parameters are fixed to MC values, aside from the overall mean, which is floated, and the width scaling factor, which is fixed from the tagged-data fit. For the background, the cut-off and tail parameters of the reversed CB are fixed from MC events, and all other shape parameters are floated. For the tagged fit, the two p_T^D intervals are required to have a common signal asymmetry but have separate background asymmetries. For the tagged sample, the total signal yield obtained from the fit is $6,632 \pm 256$ with $A_T^{\pi\pi} = (+0.52 \pm 1.92)\%$; the corresponding results for the untagged sample are $100,934 \pm 1,952$ and $(-3.77 \pm 1.60)\%$. The quoted uncertainties are statistical. Figures 1 and 2 show the projections of the simultaneous fit performed on the tagged and untagged data samples, respectively.

For the $D^+ \to K_S^0\pi^+$ normalization channel, a fitting range of 1.80 – 1.94 GeV/c^2 is chosen and the simultaneous fits for the tagged sample, with two p_T^D, intervals, and the untagged sample are performed as for the $D \to \pi\pi$ signal channel. The narrower fitting range can be afforded because of the better D-mass resolution. The signal peak is modeled with the sum of a Gaussian and an asymmetric Gaussian function, with all shape parameters floated. The background shape is parameterized with a first-order polynomial, whose slope is floated. The total signal yield obtained from the tagged fit is $68,434 \pm 308$ with $A_T^{K\pi} = (-0.29 \pm 0.44)\%$; the corresponding results for the untagged sample are $982,029 \pm 1,797$ and $(-0.25 \pm 0.17)\%$. The quoted uncertainties are again statistical. Figure 3 shows the projections of the simultaneous fit performed on the tagged and untagged data samples.

From the results of the fit to the signal and normalization channels, we calculate ΔA_{raw} (tagged) = $(+0.81 \pm 1.97 \pm 0.19)\%$ and ΔA_{raw} (untagged) = $(+4.02 \pm 1.61 \pm 0.19)\%$.

![Figure 1](image1.png)

FIG. 1. Invariant mass distributions for the $\pi^+\pi^0$ system for the tagged $D \to \pi\pi$ sample in the intervals $p_T^D > 2.95$ GeV/c (top) and 2.50 GeV/$c < p_T^D < 2.95$ GeV/c (bottom). Left (right) panels correspond to $D^+ (D^-)$ samples. Points with error bars are the data. The solid blue curves are the results of the fit. The red dashed, blue dotted and green dash-dotted curves show the signal, total- and peaking-background contributions, respectively. The normalized residuals are shown below each distribution, and the post-fit χ^2 per degree of freedom (χ^2/DoF) is given in each panel.
0.32\%$. The first uncertainty quoted in each measurement is statistical and the second is systematic (see below). A combination of the two results gives

$$\Delta A_{\text{raw}} = (+2.67 \pm 1.24 \pm 0.20)\%,$$

which, in conjunction with the world average of $A_{\text{CP}}(D^+ \to K^0 \pi^+)$ [9], results in

$$A_{\text{CP}}(D^+ \to \pi^+ \pi^0) = (+2.31 \pm 1.24 \pm 0.23)\%.$$

The major sources of systematic uncertainty for the A_{CP} measurement are: (i) uncertainty in the signal and background shapes for the $D \to \pi \pi$ fits, (ii) uncertainty in modeling the peaking-background shape, and (iii) uncertainty in the A_{CP} measurement for the normalization channel. Source (i) arises from fixing some of the shape parameters to MC values. Its contribution to the systematic uncertainties is estimated by constructing an ensemble of fits, randomizing the fixed parameters with Gaussian distributions whose mean and width are set to MC values and then extracting the RMS of the A_{raw} distribution obtained from the fits. The peaking background of source (ii) is due to misreconstructed D or D_s meson decays and exhibits a broad peaking structure shifted to the left of the signal peak (Figs. 1 and 2). As it is only partially present in the fitting range, the reversed-CB shape is subject to uncertainty. We vary the lower M_D threshold between 1.68 to 1.72 GeV/c^2 in steps of 10 MeV/c^2 and then refit to assess the impact on the signal’s A_{CP} determination. For source (iii), we rely on the world average of $A_{\text{CP}}(D^+ \to K^0 \pi^+)$ [9]. The various sources of systematic uncertainties and their values are
listed in Table II. The total uncertainty is ±0.23%.

Source	$D \to \pi\pi$ tagged	$D \to \pi\pi$ untagged	$\Delta A_{C\bar{C}}(D \to K^0\pi)$ measurement	Total (combined $A_{C\bar{C}}$ measurement)
Signal shape	±0.02	±0.23	±0.19	±0.12
Peaking background shape	±0.19	±0.22	±0.19	±0.12
ΔA_{raw} measurement	±0.19	±0.32	±0.19	±0.12

In summary, we have measured the CP violating asymmetry $A_{C\bar{C}}$ for the $D^+ \to \pi^+\pi^0$ decay using 921 fb$^{-1}$ of data, with the combined result from two disjoint samples: one tagged by the decay $D^{*-} \to D^{+}\pi^0$ and the other untagged. After correcting for the forward-backward asymmetry and detector-induced efficiency asymmetry, based on the normalization channel $D^+ \to K^0\pi^+$, we obtain $A_{C\bar{C}}(D^+ \to \pi^+\pi^0) = [+2.31 \pm 1.24(\text{stat.}) \pm 0.23(\text{syst.})] \%$. The result is consistent with the SM expectation of null asymmetry and improves the precision by more than a factor of two over the previous measurement [11]. Inserting this result into Eq. (6) along with the current world averages of $A_{C\bar{C}}$ and B for $D^0 \to \pi^+\pi^-$ [9] and $D^0 \to \pi^0\pi^0$ [10] decays, as well as $\tau_D(\pm)$ [9], we obtain $R = (-2.2 \pm 2.7) \times 10^{-3}$. The isospin sum rule holds to a precision of three per mille, putting constraints on the NP parameter space [4]. As the statistical error of $A_{C\bar{C}}(D^0 \to \pi^0\pi^0)$, as well as of our result, dominate the total uncertainty on R, we expect a substantial improvement in testing the sum rule from the upcoming Belle II experiment [20].

We thank the KEKB group for the excellent operation of the accelerator; the KEK cryogenics group for the efficient operation of the solenoid; and the KEK cryogenics group for valuable knowledge support from the Ministry of Education, Culture, Sports, Science, and Technology Information; the Polish Ministry of Science and Higher Education and the National Science Center; the Ministry of Education and Science of the Russian Federation and the Russian Foundation for Basic Research; the Slovenian Research Agency; Ikerbasque, Basque Foundation for Science and MINECO (Juan de la Cierva), Spain; the Swiss National Science Foundation; the Ministry of Education and the Ministry of Science and Technology of Taiwan; and the U.S. Department of Energy and the National Science Foundation.

[1] S.L. Glashow, J. Iliopoulos, and L. Maiani, Phys. Rev. D 2, 1285 (1970).
[2] G. Isidori, J.F. Kamenik, Z. Ligeti, and G. Perez, Phys. Lett. B 711, 46 (2012).
[3] J. Brod, A. Kagan, and J. Zupan, Phys. Rev. D 88, 014023 (2013).
[4] Y. Amhis et al. (Heavy Flavor Averaging Group), arXiv:1207.1158 [hep-ex].
[5] Y. Amhis et al. (Heavy Flavor Averaging Group), arXiv:1612.07233 [hep-ex].
[6] Unless stated otherwise, the inclusion of charge-conjugate reactions are implied.
[7] Y. Grossman, A.L. Kagan, and J. Zupan, Phys. Rev. D 85, 114036 (2012); J. Zupan (private communications).
[8] F. Buccella et al., Phys. Lett. B 302, 319 (1993).
[9] C. Patrignani et al. (Particle Data Group), Chin. Phys. C 40, 100001 (2016).
[10] N.K. Nisar et al. (Belle Collaboration), Phys. Rev. Lett. 112, 211601 (2014).
[11] H. Mendez et al. (CLEO Collaboration), Phys. Rev. D 81, 052013 (2010).
[12] A. Abashian et al. (Belle Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 479, 117 (2002); also, see the detector section in J. Brodzicka et al., Prog. Theor. Exp. Phys., 04D001 (2012).
[13] S. Kurokawa and E. Kikutani, Nucl. Instrum. Methods Phys. Res., Sect. A 499, 1 (2003), and other papers in this volume; T. Abe et al., Prog. Theor. Exp. Phys., 03A001 (2013), and following articles up to 03A011.
[14] F.A. Berends, K.J.F. Gaemers, and R. Gastmans, Nucl. Phys. B 63, 381 (1973).
[15] R.W. Brown, K.O. Mikaelian, V.K. Cung, and E.A. Paschos, Phys. Lett. B 43, 403 (1973).
[16] R.J. Cashmore, C.M. Hawkes, B.W. Lynn, and R.G. Stu-
art, Z. Phys. C 30, 125 (1986).
[17] B.R. Ko et al. (Belle Collaboration), Phys. Rev. Lett. 109, 021601 (2012); 109, 119903(E) (2012).
[18] T. Skwarnicki, Ph.D. Thesis, DESY F31-86-02 (1986), Appendix E.
[19] J. Erler, Eur. Phys. J. C 75, 453 (2015).
[20] T. Abe et al. (Belle II Collaboration), arXiv:1011.0352 [physics.ins-det].