Infection fatality rate of COVID-19 inferred from seroprevalence data

John P A Ioannidis

Meta-Research Innovation Center at Stanford (METRICS), Stanford University, 1265 Welch Road, Stanford, California 94305, United States of America.

Correspondence to John P A Ioannidis (email: jioannid@stanford.edu).

(Submitted: 13 May 2020 – Revised version received: 13 September 2020 – Accepted: 15 September 2020 – Published online: 14 October 2020)

Abstract

Objective To estimate the infection fatality rate of coronavirus disease 2019 (COVID-19) from seroprevalence data.

Methods I searched PubMed and preprint servers for COVID-19 seroprevalence studies with a sample size \(\geq 500 \) as of 9 September, 2020. I also retrieved additional results of national studies from preliminary press releases and reports. I assessed the studies for design features and seroprevalence estimates. I estimated the infection fatality rate for each study by dividing the number of COVID-19 deaths by the number of people estimated to be infected in each region. I corrected for the number of antibody types tested (immunoglobin, IgG, IgM, IgA).

Results I included 61 studies (74 estimates) and eight preliminary national estimates. Seroprevalence estimates ranged from 0.02% to 53.40%. Infection fatality rates ranged from 0.00% to 1.63%, corrected values from 0.00% to 1.54%. Across 51 locations, the median COVID-19 infection fatality rate was 0.27% (corrected 0.23%): the rate was 0.09% in locations with COVID-19 population mortality rates less than the global average (< 118 deaths/million), 0.20% in locations with 118–500 COVID-19 deaths/million people and 0.57% in locations with > 500 COVID-19 deaths/million people. In people < 70 years, infection fatality rates ranged from 0.00% to 0.31% with crude and corrected medians of 0.05%.

Conclusion The infection fatality rate of COVID-19 can vary substantially across different locations and this may reflect differences in population age structure and case-mix of infected and deceased patients and other factors. The inferred infection fatality rates tended to be much lower than estimates made earlier in the pandemic.

Introduction

The infection fatality rate, the probability of dying for a person who is infected, is one of the most important features of the coronavirus disease 2019 (COVID-19) pandemic. The expected total mortality burden of COVID-19 is directly related to the infection fatality rate. Moreover,
justification for various non-pharmacological public health interventions depends on the infection fatality rate. Some stringent interventions that potentially also result in more noticeable collateral harms may be considered appropriate, if the infection fatality rate is high. Conversely, the same measures may fall short of acceptable risk–benefit thresholds, if the infection fatality rate is low.

Early data from China suggested a 3.4% case fatality rate and that asymptomatic infections were uncommon, thus the case fatality rate and infection fatality rate would be about the same. Mathematical models have suggested that 40–81% of the world population could be infected, and have lowered the infection fatality rate to 1.0% or 0.9%. Since March 2020, many studies have estimated the spread of the virus causing COVID-19 – severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) – in various locations by evaluating seroprevalence. I used the prevalence data from these studies to infer estimates of the COVID-19 infection fatality rate.

Methods

Seroprevalence studies
The input data for calculations of infection fatality rate were studies on the seroprevalence of COVID-19 done in the general population, or in samples that might approximately represent the general population (e.g. with proper reweighting), that had been published in peer-reviewed journals or as preprints (irrespective of language) as of 9 September 2020. I considered only studies with at least 500 assessed samples because smaller data sets would result in large uncertainty for any calculations based on these data. I included studies that made seroprevalence assessments at different time intervals if at least one time interval assessment had a sample size of at least 500 participants. If there were different eligible time intervals, I selected the one with the highest seroprevalence, since seroprevalence may decrease over time as antibody titres decrease. I excluded studies with data collected for more than a month that could not be broken into at least one eligible time interval less than one month duration because it would not be possible to estimate a point seroprevalence reliably. Studies were eligible regardless of the exact age range of participants included, but I excluded studies with only children.

I also examined results from national studies from preliminary press releases and reports whenever a country had no other data presented in published papers or preprints. This inclusion allowed these countries to be represented, but information was less complete than information in published papers or preprints and thus requires caution.
I included studies on blood donors, although they may underestimate seroprevalence and overestimate infection fatality rate because of the healthy volunteer effect. I excluded studies on health-care workers, since this group is at a potentially high exposure risk, which may result in seroprevalence estimates much higher than the general population and thus an improbably low infection fatality rate. Similarly, I also excluded studies on communities (e.g. shelters or religious or other shared-living communities). Studies were eligible regardless of whether they aimed to evaluate seroprevalence in large or small regions, provided that the population of reference in the region was at least 5000 people.

I searched PubMed® (LitCOVID), and medRxiv, bioRxiv and Research Square using the terms “seroprevalence” OR “antibodies” with continuous updates. I made the first search in early May and did monthly updates, with the last update on 9 September, 2020. I contacted field experts to retrieve any important studies that may have been missed.

From each study, I extracted information on location, recruitment and sampling strategy, dates of sample collection, sample size, types of antibody measured (immunoglobulin G (IgG), IgM and IgA), the estimated crude seroprevalence (positive samples divided by all samples tested), adjusted seroprevalence and the factors that the authors considered for adjustment.

Inferred infection fatality rate

If a study did not cover an entire country, I collected information on the population of the relevant location from the paper or recent census data so as to approximate as much as possible the relevant catchment area (e.g. region(s) or county(ies)). Some studies targeted specific age groups (e.g. excluding elderly people and/or excluding children) and some estimated numbers of people infected in the population based on specific age groups. For consistency, I used the entire population (all ages) and, separately, the population 0–70 years to estimate numbers of infected people. I assumed that the seroprevalence would be similar in different age groups, but I also recorded any significant differences in seroprevalence across age strata so as to examine the validity of this assumption.

I calculated the number of infected people by multiplying the relevant population size and the adjusted estimate of seroprevalence. If a study did not give an adjusted seroprevalence estimate, I used the unadjusted seroprevalence instead. When seroprevalence estimates with different adjustments were available, I selected the analysis with largest adjustment. The factors adjusted for included COVID-19 test performance, sampling design, and other factors such as age,
sex, clustering effects or socioeconomic factors. I did not adjust for specificity in test performance when positive antibody results were already validated by a different method.

For the number of COVID-19 deaths, I chose the number of deaths accumulated until the date 1 week after the midpoint of the study period (or the date closest to this that had available data) – unless the authors of the study had strong arguments to choose some other time point or approach. The 1-week lag accounts for different delays in developing antibodies versus dying from infection. The number of deaths is an approximation because it is not known when exactly each patient who died was infected. The 1-week cut-off after the study midpoint may underestimate deaths in places where patients are in hospital for a long time before death, and may overestimate deaths in places where patients die soon because of poor or even inappropriate care. Whether or not the health system became overloaded may also affect the number of deaths. Moreover, because of imperfect diagnostic documentation, COVID-19 deaths may have been both overcounted and undercounted in different locations and at different time points.

I calculated the inferred infection fatality rate by dividing the number of deaths by the number of infected people for the entire population, and separately for people < 70 years. I took the proportion of COVID-19 deaths that occurred in people < 70 years old from situational reports for the respective locations that I retrieved at the time I identified the seroprevalence studies. I also calculated a corrected infection fatality rate to try and account for the fact that only one or two types of antibodies (among IgG, IgM, IgA) might have been used. I corrected seroprevalence upwards (and inferred infection fatality rate downwards) by one tenth of its value if a study did not measure IgM and similarly if IgA was not measured. This correction is reasonable based on some early evidence, although there is uncertainty about the exact correction factor.

Data synthesis

The estimates of the infection fatality rate across all locations showed great heterogeneity with \(I^2 \) exceeding 99.9%; thus, a meta-analysis would be inappropriate to report across all locations. Quantitative synthesis with meta-analysis across all locations would also be misleading since locations with high COVID-19 seroprevalence would tend to carry more weight than locations with low seroprevalence. Furthermore, locations with more studies (typically those that have attracted more attention because of high death tolls and thus high infection fatality rates) would be represented multiple times in the calculations. In addition, poorly conducted studies with fewer adjustments would get more weight because of spuriously narrower confidence intervals than
more rigorous studies with more careful adjustments which allow for more uncertainty. Finally, with a highly skewed distribution of the infection fatality rate and with large between-study heterogeneity, typical random effects models would produce an incorrectly high summary infection fatality rate that approximates the mean of the study-specific estimates (also strongly influenced by high-mortality locations where more studies have been done); for such a skewed distribution, the median is more appropriate.

Therefore, in a first step, I grouped estimates of the infection fatality rate from studies in the same country (or for the United States of America, the same state) together and calculated a single infection fatality rate for that location, weighting the study-specific infection fatality rates by the sample size of each study. This approach avoided inappropriately giving more weight to studies with higher seroprevalence estimates and those with seemingly narrower confidence intervals because of poor or no adjustments, while still giving more weight to larger studies. Then, I used the single summary estimate for each location to calculate the median of the distribution of location-specific infection fatality rate estimates. Finally, I explored whether the location-specific infection fatality rates were associated with the COVID-19 mortality rate in the population (COVID-19 deaths per million people) in each location as of 12 September 2020; this analysis allowed me to assess whether estimates of the infection fatality rate tended to be higher in locations with a higher burden of death from COVID-19.

Results

Seroprevalence studies
I retrieved 61 studies with 74 eligible estimates published either in the peer-reviewed literature or as preprints as of 9 September 2020. Furthermore, I also considered another eight preliminary national estimates. This search yielded a total of 82 eligible estimates (Fig. 1).

The studies varied substantially in sampling and recruitment designs (Table 1; available at: http://www.who.int/bulletin/volumes/##/##/##-#####). Of the 61 studies, 24 studies explicitly aimed for random sampling from the general population. In principle, random sampling is a stronger design. However, even then, people who cannot be reached (e.g. by email or telephone or even by visiting them at a house location) will not be recruited, and these vulnerable populations are likely to be missed. Moreover, several such studies focused on geographical locations with high numbers of deaths,
higher than other locations in the same city or country, and this emphasis would tend to select eventually for a higher infection fatality rate on average.

Eleven studies assessed blood donors, which might underestimate COVID-19 seroprevalence in the general population. For example, 200 blood donors in Oise, France showed 3.00% seroprevalence, while the seroprevalence was 25.87% (171/661) in pupils, siblings, parents, teachers and staff at a high school with a cluster of cases in the same area; the true population seroprevalence may be between these two values.

For other studies, healthy volunteer bias may underestimate seroprevalence, attracting people with symptoms may overestimate seroprevalence, and studies of employees, grocery store clients or patient cohorts risk sampling bias in an unpredictable direction.

All the studies tested for IgG antibodies but only about half also assessed IgM and few assessed IgA. Only seven studies assessed all three types of antibodies and/or used pan-Ig antibodies. The ratio of people sampled versus the total population of the region was more than 1:1000 in 20 studies (Table 2; available at: http://www.who.int/bulletin/volumes/##/##/##-##).

Seroprevalence estimates
Seroprevalence for the infection ranged from 0.02% to 53.40% (58.40% in the slum subpopulation in Mumbai; Table 3). Studies varied considerably depending on whether or not they tried to adjust their estimates for test performance, sampling (to get closer to a more representative sample), clustering (e.g. when including household members) and other factors. The adjusted seroprevalence occasionally differed substantially from the unadjusted value. In studies that used samples from multiple locations, between-location heterogeneity was seen (e.g. 0.00–25.00% across 133 Brazilian cities).

Inferred infection fatality rate
Inferred infection fatality rate estimates varied from 0.00% to 1.63% (Table 4). Corrected values also varied considerably (0.00–1.54%).

For 15 locations, more than one estimate of the infection fatality rate was available and thus I could compare the infection fatality rate from different studies evaluating the same location. The estimates of infection fatality rate tended to be more homogeneous within each location, while
they differed markedly across locations (Fig. 2). Within the same location, infection fatality rate estimates tend to have only small differences, even though it is possible that different areas within the same location may also have real differences in infection fatality rate. France is one exception where differences are large, but both estimates come from population studies of outbreaks from schools and thus may not provide good estimates of population seroprevalence and may lead to an underestimated infection fatality rate.

I used summary estimates weighted for sample size to generate a single estimate for each location. Data were available for 51 different locations (including the inferred infection fatality rates from the eight preliminary additional national estimates in Table 5).

The median infection fatality rate across all 51 locations was 0.27% (corrected 0.23%). Most data came from locations with high death tolls from COVID-19 and 32 of the locations had a population mortality rate (COVID-19 deaths per million population) higher than the global average (118 deaths from COVID-19 per million as of 12 September 2020; Fig. 3). Uncorrected estimates of the infection fatality rate of COVID-19 ranged from 0.01% to 0.67% (median 0.10%) across the 19 locations with a population mortality rate for COVID-19 lower than the global average, from 0.07% to 0.73% (median 0.20%) across 17 locations with population mortality rate higher than the global average but lower than 500 COVID-19 deaths per million, and from 0.20% to 1.63% (median 0.71%) across 15 locations with more than 500 COVID-19 deaths per million. The corrected estimates of the median infection fatality rate were 0.09%, 0.20% and 0.57%, respectively, for the three location groups.

For people < 70 years old, the infection fatality rate of COVID-19 across 40 locations with available data ranged from 0.00% to 0.31% (median 0.05%); the corrected values were similar.

Discussion

The infection fatality rate is not a fixed physical constant and it can vary substantially across locations, depending on the population structure, the case-mix of infected and deceased individuals and other, local factors. The studies analysed here represent 82 different estimates of the infection fatality rate of COVID-19, but they are not fully representative of all countries and locations around the world. Most of the studies are from locations with overall COVID-19 mortality rates that are higher than the global average. The inferred median infection fatality rate in locations with a COVID-19 mortality rate lower than the global average is low (0.09%). If one
could sample equally from all locations globally, the median infection fatality rate might be even substantially lower than the 0.23% observed in my analysis.

COVID-19 has a very steep age gradient for risk of death. Moreover, many, and in some cases most, deaths in European countries that have had large numbers of cases and deaths and in the USA occurred in nursing homes. Locations with many nursing home deaths may have high estimates of the infection fatality rate, but the infection fatality rate would still be low among non-elderly, non-debilitated people.

Within China, the much higher infection fatality rate estimates in Wuhan compared with other areas of the country may reflect widespread nosocomial infections, as well as unfamiliarity with how to manage the infection as the first location that had to deal with COVID-19. The very many deaths in nursing homes, nosocomial infections and overwhelmed hospitals may also explain the high number of fatalities in specific locations in Italy and New York and neighbouring states. Poor decisions (e.g. sending COVID-19 patients to nursing homes), poor management (e.g. unnecessary mechanical ventilation) and hydroxychloroquine may also have contributed to worse outcomes. High levels of congestion (e.g. in busy public transport systems) may also have exposed many people to high infectious loads and, thus, perhaps more severe disease. A more aggressive viral clade has also been speculated. The infection fatality rate may be very high among disadvantaged populations and settings with a combination of factors predisposing to higher fatalities.

Very low infection fatality rates seem common in Asian countries. A younger population in these countries (excluding Japan), previous immunity from exposure to other coronaviruses, genetic differences, hygiene etiquette, lower infectious load and other unknown factors may explain these low rates. The infection fatality rate is low also in low-income countries in both Asia and Africa, perhaps reflecting the young age-structure. However, comorbidities, poverty, frailty (e.g. malnutrition) and congested urban living circumstances may have an adverse effect on risk and thus increase infection fatality rate.

Antibody titres may decline with time and this would give falsely low prevalence estimates. I considered the maximum seroprevalence estimate when multiple repeated measurements at different time points were available, but even then some of this decline cannot be fully accounted for. With four exceptions, the maximum seroprevalence value was at the latest time point.
Positive controls for the antibody assays used were typically symptomatic patients with positive polymerase chain reaction tests. Symptomatic patients may be more likely to develop antibodies.87–91 Since seroprevalence studies specifically try to reveal undiagnosed asymptomatic and mildly symptomatic infections, a lower sensitivity for these mild infections could lead to substantial underestimates of the number of infected people and overestimate of the inferred infection fatality rate.

A main issue with seroprevalence studies is whether they offer a representative picture of the population in the assessed region. A generic problem is that vulnerable people at high risk of infection and/or death may be more difficult to recruit in survey-type studies. COVID-19 infection is particularly widespread and/or lethal in nursing homes, in homeless people, in prisons and in disadvantaged minorities.92 Most of these populations are very difficult, or even impossible, to reach and sample and they are probably under-represented to various degrees (or even entirely missed) in surveys. This sampling obstacle would result in underestimating the seroprevalence and overestimating infection fatality rate.

In principle, adjusted seroprevalence values may be closer to the true estimate, but the adjustments show that each study alone may have unavoidable uncertainty and fluctuation, depending on the type of analysis chosen. Furthermore, my corrected infection fatality rate estimates try to account for undercounting of infected people when not all three antibodies (IgG, IgM and IgA) were assessed. However, the magnitude of the correction is uncertain and may vary in different circumstances. An unknown proportion of people may have responded to the virus using immune mechanisms (mucosal, innate, cellular) without generating any serum antibodies.93–97

A limitation of this analysis is that several studies included have not yet been fully peer-reviewed and some are still ongoing. Moreover, despite efforts made by seroprevalence studies to generate estimates applicable to the general population, representativeness is difficult to ensure, even for the most rigorous studies and despite adjustments made. Estimating a single infection fatality rate value for a whole country or state can be misleading, when there is often huge variation in the population mixing patterns and pockets of high or low mortality. Furthermore, many studies have evaluated people within restricted age ranges, and the age groups that are not included may differ in seroprevalence. Statistically significant, modest differences in seroprevalence across some age groups have been observed in several studies.10,13,15,23,27,36,38
Lower values have been seen in young children and higher values in adolescents and young adults, but these patterns are inconsistent and not strong enough to suggest major differences extrapolating across age groups.

Acknowledging these limitations, based on the currently available data, one may project that over half a billion people have been infected as of 12 September, 2020, far more than the approximately 29 million documented laboratory-confirmed cases. Most locations probably have an infection fatality rate less than 0.20% and with appropriate, precise non-pharmacological measures that selectively try to protect high-risk vulnerable populations and settings, the infection fatality rate may be brought even lower.

Funding:
METRICS has been supported by a grant from the Laura and John Arnold Foundation.

Competing interests:
I am a co-author (not principal investigator) of one of the seroprevalence studies.

References
1. Melnick ER, Ioannidis JPA. Should governments continue lockdown to slow the spread of covid-19? BMJ. 2020 Jun 3;369:m1924. https://doi.org/10.1136/bmj.m1924 PMID:32493767
2. WHO Director-General’s opening remarks at the media briefing on COVID-19 – 3 March 2020. Geneva: World Health Organization; 2020. Available from: https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---3-march-2020 [cited 2020 May 10].
3. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19) 16–24 February 2020. Geneva: World Health Organization; 2020. Available from: https://www.who.int/publications-detail/report-of-the-who-china-joint-mission-on-coronavirus-disease-2019-(covid-19) [cited 2020 May 10].
4. McGinty JC. How many people might one person with coronavirus infect? Wall Street Journal. February 14, 2020. Available from: https://www.wsj.com/articles/how-many-people-might-one-person-with-coronavirus-infect-11581676200 [cited 2020 Feb 27].
5. Ferguson NM, Laydon D, Nedjati-Gilani G, Imai N, Ainslie K, Baguelin M, et al. Report 9: Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand. London: Imperial College; 2020. Available from: https://www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-fellowships/Imperial-College-COVID19-NPI-modelling-16-03-2020.pdf [cited 2020 May 10].
6. Meyerowitz-Katz G, Merone L. A systematic review and meta-analysis of published research data on COVID-19 infection-fatality rates. [online ahead of print]. Int J Infect Dis. 2020 Sep 29;S1201(20):32180–9. PMID:33007452

7. Garcia-Basteiro AL, Moncunill G, Tortajada M, Vidal M, Guinovart C, Jiménez A, et al. Seroprevalence of antibodies against SARS-CoV-2 among healthcare workers in a large Spanish reference hospital. Nat Commun. 2020 Jul 8;11(1):3500. https://doi.org/10.1038/s41467-020-17318-x PMID:32641730

8. Shakiba M, Nazari S, Mehrabian F, Rezvani SM, Ghasempour Z, Heidarzadeh A. Seroprevalence of COVID-19 virus infection in Guilan province, Iran [preprint]. Cold Spring Harbor: medRxiv; 2020. https://doi.org/10.1101/2020.04.26.20079244

9. Bryan A, Pepper G, Wener MH, Fink SL, Morishima C, Chaudhary A, et al. Performance characteristics of the Abbott Architect SARS-CoV-2 IgG assay and seroprevalence in Boise, Idaho. J Clin Microbiol. 2020 Jul 23;58(8):e00941-20. https://doi.org/10.1128/JCM.00941-20 PMID:32381641

10. Stringhini S, Wisniaik A, Piumatti G, Azman AS, Lauer SA, Baysson H, et al. Seroprevalence of anti-SARS-CoV-2 IgG antibodies in Geneva, Switzerland (SEROCoV-POP): a population-based study. Lancet. 2020 Aug 1;396(10247):313–9. https://doi.org/10.1016/S0140-6736(20)31304-0 PMID:32534626

11. Doi A, Iwata K, Kuroda H, Hasuie T, Nasu S, Kanda A, et al. Estimation of seroprevalence of novel coronavirus disease (COVID-19) using preserved serum at an outpatient setting in Kobe, Japan: a cross-sectional study [preprint]. Cold Spring Harbor: medRxiv; 2020. https://doi.org/10.1101/2020.04.26.20079822

12. Erikstrup C, Hother CE, Pedersen OBV, Mølbak K, Skov RL, Holm DK, et al. Estimation of SARS-CoV-2 infection fatality rate by real-time antibody screening of blood donors. Clin Infect Dis. 2020 Jun 25; ciaa849. https://doi.org/10.1093/cid/ciaa849 PMID:32584966

13. Fontanet A, Tondeur L, Madec Y, Grant R, Besombes C, Jolly N, et al. Cluster of COVID-19 in northern France: a retrospective closed cohort study [preprint]. Cold Spring Harbor: medRxiv; 2020. https://doi.org/10.1101/2020.04.18.20071134

14. Wu X, Fu B, Chen L, Feng Y. Serological tests facilitate identification of asymptomatic SARS-CoV-2 infection in Wuhan, China. J Med Virol. 2020 Apr 20;92(10):1795–6. https://doi.org/10.1002/jmv.25904 PMID:32311142

15. Slot E, Hogema BM, Reusken CBEM, Reimerink JH, Molier M, Karregat HM, et al. Herd immunity is not a realistic exit strategy during a COVID-19 outbreak [preprint]. Durham: Research Square; 2020. https://doi.org/10.21203/rs.3.rs-25862/v1

16. Streeck H, Schulte B, Kümmerer BM, Richter E, Höller T, Fuhrmann C, et al. Infection fatality rate of SARS-CoV-2 infection in a German community with a superspreading event [preprint]. Cold Spring Harbor: medRxiv; 2020. https://doi.org/10.1101/2020.05.04.20090076

17. Silveira MF, Barros AJD, Horta BL, Pellanda LC, Victora GD, Dellagostin OA, et al. Population-based surveys of antibodies against SARS-CoV-2 in Southern Brazil.
18. Thompson C, Grayson N, Paton RS, Lourenco J, Penman BS, Lee L. Neutralising antibodies to SARS coronavirus 2 in Scottish blood donors – a pilot study of the value of serology to determine population exposure [preprint]. Cold Spring Harbor: medRxiv; 2020. https://doi.org/10.1101/2020.04.13.20060467

19. Bendavid E, Mulaney B, Sood N, Shah S, Ling E, Bromley-Dulfano R, et al. COVID-19 Antibody Seroprevalence in Santa Clara County, California [preprint]. Cold Spring Harbor: medRxiv; 2020. https://doi.org/10.1101/2020.04.14.20062463

20. Snoeck CJ, Vaillant M, Abdelrahman T, Satagopam VP, Turner JD, Beaumont K, et al. Prevalence of SARS-CoV-2 infection in the Luxembourghish population: the CON-VINCE study [preprint]. Cold Spring Harbor: medRxiv; 2020. https://doi.org/10.1101/2020.11.12.20092916

21. Kraehling V, Kern M, Halwe S, Mueller H, Rohde C, Savini M, et al. Epidemiological study to detect active SARS-CoV-2 infections and seropositive persons in a selected cohort of employees in the Frankfurt am Main metropolitan area [preprint]. Cold Spring Harbor: medRxiv; 2020. https://doi.org/10.1101/2020.05.20.20107730

22. Sood N, Simon P, Ebner P, Eichner D, Reynolds J, Bendavid E, et al. Seroprevalence of SARS-CoV-2-specific antibodies among adults in Los Angeles County, California, on April 10–11, 2020. JAMA. 2020 06 16;323(23):2425–7. https://doi.org/10.1001/jama.2020.8279 PMID:32421144

23. Rosenberg ES, Tesoriero JM, Rosenthal EM, Chung R, Barranco MA, Styer LM, et al. Cumulative incidence and diagnosis of SARS-CoV-2 infection in New York. Ann Epidemiol. 2020 Aug;48:23–29.e4. https://doi.org/10.1016/j.annepidem.2020.06.004 PMID:32648546

24. Ng D, Goldgof G, Shy B, Levine A, Balcerek J, Bapat SP, et al. SARS-CoV-2 seroprevalence and neutralizing activity in donor and patient blood from the San Francisco Bay Area [preprint]. Cold Spring Harbor: medRxiv; 2020. https://doi.org/10.1101/2020.05.19.20107482

25. Hallal PC, Hartwig FP, Horta BL, Victora GD, Silveira MF, Struchiner CJ, et al. Remarkable variability in SARS-CoV-2 antibodies across Brazilian regions: nationwide serological household survey in 27 states [preprint]. Cold Spring Harbor: medRxiv; 2020. https://doi.org/10.1101/2020.05.30.20117531

26. Jerkovic I, Ljubic T, Basic Z, Kruzic I, Kunac N, Bezic J, et al. SARS-CoV-2 antibody seroprevalence in industry workers in Split-Dalmatia and Sibenik-Knin County, Croatia [preprint]. Cold Spring Harbor: medRxiv; 2020. https://doi.org/10.1101/2020.11.05.20095158

27. Reifer J, Hayum N, Heszkel B, Klagsbald I, Streva VA. SARS-CoV-2 IgG antibody responses in New York City [preprint]. Cold Spring Harbor: medRxiv; 2020. https://doi.org/10.1101/2020.05.23.20111427

28. Emmenegger M, De Cecco E, Lamparter D, Jacquat RPB, Ebner D, et al. Early plateau of SARS-CoV-2 seroprevalence identified by tripartite immunoassay in a
29. Takita M, Matsumura T, Yamamoto K, Yamashita E, Hosoda K, Hamaki T, et al. Geographical profiles of COVID-19 outbreak in Tokyo: an analysis of the primary care clinic-based point-of-care antibody testing. J Prim Care Community Health. 2020 Jan-Dec;11:2150132720942695. https://doi.org/10.1177/2150132720942695 PMID:32674696

30. Crovetto F, Crispi F, Llurba E, Figueras F, Gomez-Roig MD, Gratacos E. Seroprevalence and clinical spectrum of SARS-CoV-2 infection in the first versus third trimester of pregnancy [preprint]. Cold Spring Harbor: medRxiv; 2020. https://doi.org/10.1101/2020.06.17

31. Fiore JR, Centra M, De Carlo A, Granato T, Rosa A, Sarno M, et al. Results from a survey in healthy blood donors in South Eastern Italy indicate that we are far away from herd immunity to SARS-CoV-2. J Med Virol. 2020 Aug 13;jmv.26425. https://doi.org/10.1002/jmv.26425 PMID:32790086

32. Ling R, Yu Y, He J, Zhang J, Xu S, Sun R, et al. Seroprevalence and epidemiological characteristics of immunoglobulin M and G antibodies against SARS-CoV-2 in asymptomatic people in Wuhan, China [preprint]. Cold Spring Harbor: medRxiv; 2020. https://doi.org/10.1101/2020.06.16.20132423

33. Chamie G, Marquez C, Crawford E, Peng J, Petersen M, Schwab D, et al. SARS-CoV-2 community transmission during shelter-in-place in San Francisco [preprint]. Cold Spring Harbor: medRxiv; 2020. https://doi.org/10.1101/2020.06.15.20132233

34. Gomes CC, Cerutti C, Zandonade E, Maciel EKN, Carvalho de Alencar FE, Almada GL, et al. A population-based study of the prevalence of COVID-19 infection in Espírito Santo, Brazil: methodology and results of the first stage [preprint]. Cold Spring Harbor: medRxiv; 2020. https://doi.org/10.1101/2020.06.13.20130559

35. Havers FP, Reed C, Lim T, Montgomery JM, Klena JD, Hall AJ, et al. Seroprevalence of Antibodies to SARS-CoV-2 in 10 Sites in the United States, March 23-May 12, 2020. JAMA Intern Med. 2020 Jul 21. https://doi.org/10.1001/jamaexternmed.2020.4130 PMID:32692365

36. Pollán M, Pérez-Gómez B, Pastor-Barriuso R, Oteo J, Hernán MA, Pérez-Olmeda M, et al.; ENE-COVID Study Group. Prevalence of SARS-CoV-2 in Spain (ENE-COVID): a nationwide, population-based seroepidemiological study. Lancet. 2020 08 22;396(10250):535–44. https://doi.org/10.1016/S0140-6736(20)31483-5 PMID:32645347

37. Feehan AK, Fort D, Garcia-Diaz J, Price-Haywood E, Velasco C, Sapp E, et al. Seroprevalence of SARS-CoV-2 and infection fatality ratio, Orleans and Jefferson Parishes, Louisiana, USA, May 2020. Emerg Infect Dis. 2020 Jul 30;26(11). https://doi.org/10.3201/eid2611.200309 PMID:32731911

38. Herzog S, De Bie J, Abrams S, et al. Seroprevalence of IgG antibodies against SARS coronavirus 2 in Belgium – a prospective cross sectional study of residual samples [preprint]. Cold Spring Harbor: medRxiv; 2020. https://doi.org/10.1101/2020.06.08.20125179
39. Fontanet A, Grant R, Tondeur L, et al. SARS-CoV-2 infection in primary schools in northern France: A retrospective cohort study in an area of high transmission [preprint]. Cold Spring Harbor: medRxiv; 2020. https://doi.org/10.1101/2020.06.25.20140178

40. Xu X, Sun J, Nie S, Li H, Kong Y, Liang M, et al. Seroprevalence of immunoglobulin M and G antibodies against SARS-CoV-2 in China. Nat Med. 2020 08;26(8):1193–5. https://doi.org/10.1038/s41591-020-0949-6 PMID:32504052

41. Amorim Filho L, Szwarcwald CL, Mateos SOG, Leon ACMP, Medronho RA, Veloso VG, et al.; Grupo Hemorio de Pesquisa em Covid-19. Seroprevalence of anti-SARS-CoV-2 among blood donors in Rio de Janeiro, Brazil. Rev Saude Publica. 2020;54:69. PMID:32638883

42. Tess BH, Granato CFH, Alves MC, Pintao MC, Rizzatti E, Nunes MC, et al. SARS-CoV-2 seroprevalence in the municipality of São Paulo, Brazil, ten weeks after the first reported case [preprint]. Cold Spring Harbor: medRxiv; 2020. https://doi.org/10.1101/2020.06.29.20142331

43. Torres JP, Piñera C, De La Maza V, Lagomarcino AJ, Simian D, Torres B, et al. SARS-CoV-2 antibody prevalence in blood in a large school community subject to a Covid-19 outbreak: a cross-sectional study. Clin Infect Dis. 2020 Jul 10;ciaa955. https://doi.org/10.1093/cid/ciaa955 PMID:32649743

44. Uyoga S, Adetifa IMO, Karanja HK, Nyagwange J, Tuju J, Wankiku P, et al. Seroprevalence of anti-SARS-CoV-2 IgG antibodies in Kenyan blood donors [preprint]. Cold Spring Harbor: medRxiv; 2020. https://doi.org/10.1101/2020.07.27.20162693

45. Nesbitt DJ, Jin D, Hogan JW, Chan PA, Simon MJ, Vargas M, et al. Low seroprevalence of SARS-CoV-2 in Rhode Island blood donors determined using multiple serological assay formats [preprint]. Cold Spring Harbor: medRxiv; 2020. https://doi.org/10.1101/2020.07.20.20157743

46. McLaughlin CC, Doll MK, Morrison KT, McLaughlin WL, O’Connor T, Sholukh AM, et al. High community SARS-CoV-2 antibody seroprevalence in a ski resort community, Blaine County, Idaho, US. preliminary results [preprint]. Cold Spring Harbor: medRxiv; 2020. https://doi.org/10.1101/2020.07.19.20157198

47. Figar S, Pagotto V, Luna L, Salto J, Manslau MW, Mistchenko AS, et al. Community-level SARS-CoV-2 seroprevalence survey in urban slum dwellers of Buenos Aires City, Argentina: a participatory research [preprint]. Cold Spring Harbor: medRxiv; 2020. https://doi.org/10.1101/2020.07.14.20153858

48. Nawa N, Kuramochi J, Sonoda S, Yamaoka Y, Nukui Y, Miyazaki Y, et al. Seroprevalence of SARS-CoV-2 IgG antibodies in Utsunomiya City, Greater Tokyo, after first pandemic in 2020 (U-CORONA): a household- and population-based study [preprint]. Cold Spring Harbor: medRxiv; 2020. https://doi.org/10.1101/2020.07.20.20155945

49. Nisar I, Ansari N, Amin M, Khalid F, Hotwani A, Rehman N, et al. Serial population based serosurvey of antibodies to SARS-CoV-2 in a low and high transmission area of Karachi, Pakistan [preprint]. Cold Spring Harbor: medRxiv; 2020. https://doi.org/10.1101/2020.07.28.20163451
50. Skowronska DM, Sekirov I, Sabaïduc S, Zou M, Morshed M, Lawrence D, et al. Low SARS-CoV-2 sero-prevalence based on anonymized residual sero-survey before and after first wave measures in British Columbia, Canada, March–May 2020 [preprint]. Cold Spring Harbor: medRxiv; 2020. https://doi.org/10.1101/2020.07.13.20153148

51. Abu Raddad LJ, Chemaitelly H, Ayoub HH, Al Kanaani Z, Al Khal A, Al Kuwari E, et al. Characterizing the Qatar advanced-phase SARS-CoV-2 epidemic [preprint]. Cold Spring Harbor: medRxiv; 2020. https://doi.org/10.1101/2020.07.16.20155317

52. Petersen MS, Strøm M, Christiansen DH, Fjallsbak JP, Eliassen EH, Johansen M, et al. Seroprevalence of SARS-CoV-2-Specific Antibodies, Faroe Islands. Emerg Infect Dis. 2020 Jul 29;26(11). https://doi.org/10.3201/eid2611.202736 PMID:32726200

53. Biggs HM, Harris JB, Breakwell L, Dahlgren FS, Abedi GR, Szablewski CM, et al.; CDC Field Surveyor Team. Estimated community seroprevalence of SARS-CoV-2 antibodies - two Georgia counties, April 28–May 3, 2020. MMWR Morb Mortal Wkly Rep. 2020 Jul 24;69(29):965–70. https://doi.org/10.15585/mmwr.mm6929e2 PMID:32701941

54. Menachemi N, Yiannoutsos CT, Dixon BE, Duszenski TJ, Fadel WF, Wools-Kaloustian KK, et al. Population point prevalence of SARS-CoV-2 infection based on a statewide random sample – Indiana, April 25–29, 2020. MMWR Morb Mortal Wkly Rep. 2020 Jul 24;69(29):960–4. https://doi.org/10.15585/mmwr.mm6929e1 PMID:32701938

55. Chang L, Hou W, Zhao L, Zhang Y, Wang Y, Wu L, et al. The prevalence of antibodies to SARS-CoV-2 among blood donors in China [preprint]. Cold Spring Harbor: medRxiv; 2020. https://doi.org/10.1101/2020.07.13.20153106

56. Meyers K, Liu L, Lin W-H, Luo Y, Yin M, Wu Y, et al. Antibody testing documents the silent spread of SARS-CoV-2 in New York prior to the first reported case [preprint]. Durham: Research Square; 2020. https://doi.org/10.21203/rs.3.rs-39880/v1

57. Merkely B, Szabó AJ, Kosztin A, Berényi E, Sebestyén A, Lengyel C, et al.; HUNgarian COronaVirus-19 Epidemiological Research (H-UUNCOVER) investigators. Novel coronavirus epidemic in the Hungarian population, a cross-sectional nationwide survey to support the exit policy in Hungary. Geroscience. 2020 Aug;42(4):1063–74. https://doi.org/10.1007/s11357-020-00226-9 PMID:32677025

58. Gudbjartsson DF, Norddahl GL, Melsted P, Gunnarsdottir K, Holm H, Eythorsson E, et al. Humoral immune response to SARS-CoV-2 in Iceland. N Engl J Med. 2020 Sep 1.NEJMoa2026116. [online ahead of print]. https://doi.org/10.1056/NEJMo2026116 PMID:32871063

59. Noh JY, Seo YB, Yoon JG, Seong H, Hyun H, Lee J, et al. Seroprevalence of anti-SARS-CoV-2 antibodies among outpatients in southwestern Seoul, Korea. J Korean Med Sci. 2020 Aug 24;35(33):e311. https://doi.org/10.3346/jkms.2020.35.e311 PMID:32830472

60. Xu R, Huang J, Duan C, Liao Q, Shan Z, Wang M, et al. Low prevalence of antibodies against SARS-CoV-2 among voluntary blood donors in Guangzhou,
61. Malani A, Shah D, Kang G, Lobo GN, Shastri J, Mohanan M, et al. Seroprevalence of SARS-CoV-2 in slums and non-slums of Mumbai, India, during June 29–July 19, 2020 [preprint]. Cold Spring Harbor: medRxiv; 2020. https://doi.org/10.1101/2020.08.27.20182741

62. Bogogiannidou Z, Vontas A, Dadouli K, Kyritsi MA, Soteriades S, Nikoulis DJ, et al. Repeated leftover serosurvey of SARS-CoV-2 IgG antibodies, Greece, March and April 2020. Euro Surveill. 2020 Aug;25(31):2001369. https://doi.org/10.2807/1560-7917.ES.2020.25.31.2001369 PMID:32762796

63. Feehan AK, Velasco C, Fort D, Burton JH, Price-Haywood E, Katzmarzyk PT, et al. Racial and workplace disparities in seroprevalence of SARS-CoV-2 in Baton Rouge, Louisiana, 4 July 15–31, 2020 [preprint]. Cold Spring Harbor: medRxiv; 2020. https://doi.org/10.1101/2020.08.06.20180968

64. Westerhuis BM, de Bruin E, Chandler FD, Ramakers CRB, Okba NMA, Li W, et al. Homologous and heterologous antibodies to coronavirus 229E, NL63, OC43, HKU1, SARS, MERS and SARS-CoV-2 antigens in an age stratified cross-sectional serosurvey in a large tertiary hospital in The Netherlands [preprint]. Cold Spring Harbor: medRxiv; 2020. https://doi.org/10.1101/2020.08.21.20177857

65. Ward H, Atchinson C, Whitaker M, Ainslie KED, Elliott J, Okell L, et al. Antibody prevalence for SARS-CoV-2 following the peak of the pandemic in England: REACT2 study in 100,000 adults [preprint]. Cold Spring Harbor: medRxiv; 2020. https://doi.org/10.1101/2020.08.12.20173690

66. Javed W, Baqar J, Abidi SHB, Farooq W. Sero-prevalence findings from metropoles in Pakistan: implications for assessing COVID-19 prevalence and case-fatality within a dense, urban working population [preprint]. Cold Spring Harbor: medRxiv; 2020. https://doi.org/10.1101/2020.08.13.20173914

67. Khan MS, Quirieshi MA, Haq I, Majid S, Akbar A. Seroprevalence of SARS-CoV-2 specific IgG antibodies in District Srinagar, northern India – a cross-sectional study [preprint]. Cold Spring Harbor: bioRxiv; 2020. https://doi.org/10.1101/2020.09.04.282640

68. Da Silva A, Lima-Neto L, de Azevedo C, da Costa L, Braganca M, Filho A, et al. Population-based seroprevalence of SARS-CoV-2 is more than halfway through the herd immunity threshold in the State of Maranhão, Brazil [preprint]. Cold Spring Harbor: medRxiv; 2020. https://doi.org/10.1101/2020.08.28.20180463

69. [Weekly report of the population serology survey of the corona epidemic.] Helsinki: Finland Department of Health and Welfare; 2020. [Finnish]. Available from: https://www.thl.fi/roko/cov-vaestoserologia/sero_report_weekly.html [cited 2020 Jul 12].

70. [First results on antibodies after review of covid-19 in blood donors.] Solna: Swedish Public Health Agency; 2020. [Swedish]. Available from: https://www.folkhalsomyndigheten.se/nyheter-och-press/nyhetsarkiv/2020/juni/forsta-resultaten-om-antikroppar-efters-genomgangen-covid-19-hos-blodgivare/ [cited 2020 Jul 12].
71. [Studie SARS-CoV-2-CZ-Preval.] Prague: Institute of Health Information and Statistics of the Czech Republic; 2020. [Czech]. Available from: https://covid-imunita.uzis.cz/res/file/prezentace/20200506-dusek.pdf [cited 2020 Jul 12].

72. Jaffe-Hoffman M. Coronavirus herd immunity? Not in Israel, according to a serological study. Jerusalem Post. 2020 Jun 2. Available from: https://www.jpost.com/israel-news/coronavirus-herd-immunity-not-in-israel-according-to-a-serological-study-630059 [cited 2020 Jul 12].

73. First study carried out on herd immunity of the population in the whole territory of Slovenia. Ljubljana: Republic of Slovenia; 2020. Available from: https://www.gov.si/en/news/2020-05-06-first-study-carried-out-on-herd-immunity-of-the-population-in-the-whole-territory-of-slovenia/ [cited 2020 Jul 12].

74. [Popova declared immunity to coronavirus in 14% of those tested]. Interfax. 2020 Jun 10. [Russian]. Available from: https://www.interfax.ru/russia/712617 [cited 2020 Aug 12].

75. Gul A. Ten million Afghans likely infected and recovered: COVID-19 survey. VOA. 2020 Aug 5. Available from: https://www.voanews.com/south-central-asia/10-million-afghans-likely-infected-and-recovered-covid-19-survey [cited 2020 Aug 12].

76. Preliminary results of seroprevalence study in Tbilisi: 10 out of 1068 residents have coronavirus antibodies. Agenda.ge. 2020 Jun 29. Available from: https://agenda.ge/en/news/2020/2055 [cited 2020 Aug 12].

77. Genot L. In Brazil, COVID-19 hitting young people harder. The Jakarta Post. 2020 May 22. Available from: https://www.thejakartapost.com/news/2020/05/22/in-brazil-covid-19-hitting-young-people-harder.html [cited 2020 Jul 12].

78. COVID-19 pandemic in Croatia [internet]. Wikipedia; 2020. Available from https://en.wikipedia.org/wiki/COVID-19_pandemic_in_Croatia [cited 2020 Jul 12].

79. COVID-19 coronavirus pandemic [internet]. Dover: Worldometer; 2020. Available from: https://www.worldometers.info/coronavirus/ [cited 2020 Sep 12].

80. Ioannidis JPA, Axfors C, Contopoulos-Ioannidis DG. Population-level COVID-19 mortality risk for non-elderly individuals overall and for non-elderly individuals without underlying diseases in pandemic epicenters. Environ Res. 2020 Sep;188:109890. https://doi.org/10.1016/j.envres.2020.109890 PMID:32846654

81. Booth R. Half of coronavirus deaths happen in care homes, data from EU suggests. The Guardian. 2020 Apr 13. Available from: https://www.theguardian.com/world/2020/apr/13/half-of-coronavirus-deaths-happen-in-care-homes-data-from-eu-suggests [cited 2020 Apr 27].

82. American Geriatrics Society. American Geriatrics Society Policy Brief: COVID-19 and nursing homes. J Am Geriatr Soc. 2020 May;68(5):908–11. https://doi.org/10.1111/jgs.16477 PMID:32267538

83. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020 Mar 17;323(11):1061–9. https://doi.org/10.1001/jama.2020.1585 PMID:32031570
84. Boccia S, Ricciardi W, Ioannidis JPA. What other countries can learn from Italy during the COVID-19 pandemic. JAMA Intern Med. 2020 Jul 1;180(7):927–8. https://doi.org/10.1001/jamainternmed.2020.1447 PMID:32259190

85. Brufsky A. Distinct viral clades of SARS-CoV-2: Implications for modeling of viral spread. J Med Virol. 2020 Apr 20;92(9):1386–90. https://doi.org/10.1002/jmv.25902 PMID:32311094

86. Rosado J, Cockram C, Merkling SH, Demeret C, Meola A, Kerneis S, et al. Serological signatures of SARS-CoV-2 infection: implications for antibody-based diagnostics [preprint]. Cold Spring Harbor: medRxiv; 2020. https://doi.org/10.1101/2020.05.07.20093963

87. Long QX, Tang XJ, Shi QL, Li Q, Deng HJ, Yuan J, et al. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nat Med. 2020 Aug;26(8):1200–4. https://doi.org/10.1038/s41591-020-0965-6 PMID:32555424

88. Wu F, Wang A, Liu M, Wang Q, Chen J, Xia S, et al. Neutralizing antibody responses to SARS-CoV-2 in a COVID-19 recovered patient cohort and their implications [preprint]. Cold Spring Harbor: medRxiv; 2020. https://doi.org/10.1101/2020.03.30.20047365

89. Seow J, Graham C, Merrick B, Acors S, Steel KJA, Hemmings O, et al. Longitudinal evaluation and decline of antibody responses in SARS-CoV-2 infection [preprint]. Cold Spring Harbor: medRxiv; 2020. https://doi.org/10.1101/2020.07.09.20148429

90. Edouard S, Colson P, Melenotte C, De Pinto F, Thomas L, La Scola B, et al. Evaluating the serological status of COVID-19 patients using an indirect immunofluorescent assay, France [preprint]. Cold Spring Harbor: medRxiv; 2020. https://doi.org/10.1101/2020.05.30.20111393

91. Solbach W, Schifflner J, Backhaus I, Burger D, Staiger R, Tiemer B, et al. Antibody profiling of COVID-19 patients in an urban low-incidence region in northern Germany [preprint]. Cold Spring Harbor: medRxiv; 2020. https://doi.org/10.1101/2020.05.30.20111393

92. Ioannidis JPA. Global perspective of COVID-19 epidemiology for a full-cycle pandemic. Eur J Clin Invest. 2020 Oct 7;e13421. https://doi.org/10.1111/eki.13423 PMID:33026101

93. Kikkert M. Innate immune evasion by human respiratory RNA viruses. J Innate Immun. 2020;12(1):4–20. https://doi.org/10.1159/000503030 PMID:31610541

94. Krammer F. The human antibody response to influenza A virus infection and vaccination. Nat Rev Immunol. 2019 Jun;19(6):383–97. https://doi.org/10.1038/s41577-019-0143-6 PMID:30837674

95. Cervia C, Nilsson J, Zurbuchen Y, Valaperti A, Schreiner J, Wolfensberger A, et al. Systemic and mucosal antibody secretion specific to SARS-CoV-2 during mild versus severe COVID-19 [preprint]. Cold Spring Harbor: bioRxiv. 2020. https://doi.org/10.1101/2020.05.21.108308

96. Gallais F, Velay A, Wendling M-J, Nazon C, Partisani M, Sibilia J, et al. Intrafamilial exposure to SARS-CoV-2 induces cellular immune response without
97. Sekine T, Perez-Potti A, Rivera-Ballesteros O, Strålin K, Gorin J-B, Olsson A, et al.; Karolinska COVID-19 Study Group. Robust T cell immunity in convalescent individuals with asymptomatic or mild COVID-19. Cell. 2020 10 1;183(1):158–168.e14. https://doi.org/10.1016/j.cell.2020.08.017 PMID:32979941
Table 1. **Eligible seroprevalence studies on COVID-19 published or deposited as preprints as of 9 September 2020: dates, sampling and recruitment**

Author	Country (location)	Dates	Sampling and recruitment
Figar et al.	Argentina (Barrio Padre Mugica)	10–26 June	Probabilistic sampling of a slum neighbourhood, sampling from people 14 years or older across households
Herzog et al.	Belgium	30 March–5 April and 20–26 April	Residual sera from 10 private diagnostic laboratories in Belgium, with fixed numbers per age group, region and periodical sampling, and stratified by sex
Hallal et al.	Brazil	15–22 May	Sampling from 133 cities (the main city in each region), selecting 25 census tracts with probability proportionate to size in each sentinel city, and 10 households at random in each tract. Aiming for 250 participants per city
Gomes et al.	Brazil (Espírito Santo)	13–15 May	Cross-section of major municipalities with houses as the sampling units
Da Silva et al.	Brazil (Maranhao)	27 July–8 August	Three-stage cluster sampling stratified by four state regions in the state of Maranhao; the estimates took clustering, stratification and non-response into account
Amorim Filho et al.	Brazil (Rio de Janeiro)	14–27 April (eligible: 24–27 April)	Blood donors without flulike symptoms within 30 days of donation; had close contact with suspected or confirmed COVID-19 cases in the 30 days before donation; or had travelled abroad in the past 30 days
Silveira et al.	Brazil (Rio Grande do Sul)	9–11 May (third round, after 11–13 April, and 25–27 April)	Multistage probability sampling in each of nine cities to select 500 households, from which one member was randomly chosen for testing
Tess et al.	Brazil (Sao Paulo)	4–12 May	Randomly selected adults and their cohabitants sampled from six districts of Sao Paulo City with high numbers of cases
Skowronski et al.	Canada (British Columbia)	15–27 May (after baseline in 5–13 March)	Specimens from patients attending one of about 80 diagnostic service centres of the only outpatient laboratory network in the Lower Mainland
Torres et al.	Chile (Vitacura)	4–19 May	Classroom stratified sample of children and all staff in a community placed on quarantine after school outbreak
Chang et al.	China	January–April weekly: 3–23 February (Wuhan); 24 February–15 March (Shenzhen); 10 February–1 March (Shijiazhuang)	38 144 healthy blood donors in Wuhan, Shenzhen and Shijiazhuang who met the criteria for blood donation during the COVID-19 pandemic in China
Wu et al.	China (Wuhan)	3–15 April	People applying for a permission to resume work (n = 1 021) and hospitalized patients (n = 381)
Ling et al.	China (Wuhan)	26 March–28 April	Age 16–64 years, going back to work, with no fever, headache or other symptoms of COVID-19
Xu et al.	China (Guangzhou)	23 March–2 April	Healthy blood donors in Guangzhou
Author(s)	Country/Region	Date Range	Description
--------------	-------------------------	------------------	---
Xu et al.	China (several regions)	30 March–10 April	Voluntary participation by public call for haemodialysis patients ($n = 979$ in Zhengzhou, Ubei and $n = 563$ in Guangzhou/Foshun, Guangdong) and outpatients in Chingqing ($n = 993$), and community residents in Chengdu, Sichuan ($n = 9,442$), and required testing for factory workers in Guangzhou, Guandong ($n = 442$)
Jerkovic et al.	Croatia	23–28 April	DIV Group factory workers in Split and Sibenik-Knin invited for voluntary testing
Erikstrup et al.	Denmark	6 April–3 May	All Danish blood donors aged 17–69 years giving blood. Blood donors are healthy and must comply with strict eligibility criteria; they must self-defer for two weeks if they develop fever with upper respiratory symptoms
Petersen et al.	Denmark (Faroe Islands)	27 April–1 May	1500 randomly selected residents invited to participate, samples collected from 1 075
Fontanet et al.	France (Crepy-en-Valois)	28–30 April	Pupils, their parents and relatives, and staff of primary schools exposed to SARS-CoV-2 in February and March 2020 in a city north of Paris
Fontanet et al.	France (Oise)	30 March–4 April	Pupils, their parents and siblings, as well as teachers and non-teaching staff of a high-school
Streeck et al.	Germany (Gangelt)	30 March–6 April	600 adults with different surnames in Gangelt were randomly selected; all household members were asked to participate in the study
Kraehling et al.	Germany (Frankfurt)	6–14 April	Employees of Infraserv Höchst, a large industrial site operator in Frankfurt am Main. No exclusion criteria
Bogogiannidou et al.	Greece	March and April (April data used)	Leftover blood samples collected from a nationwide laboratory network, including both private and public hospital laboratories (27 laboratories in total)
Merkely et al.	Hungary	1–16 May	Representative sample ($n = 17,787$) of the Hungarian population ≥ 14 years living in private households ($8,283,810$)
Gudbjatsson et al.	Iceland	Several cohorts between April and June	30,576 people in Iceland, including those documented to be infected, those quarantined and people not known to have been exposed.
Malani et al.	India (Mumbai)	29 June–19 July	Geographically-spaced community sampling of households, one individual per household was tested in slum and non-slum communities in three wards, one each from the three main zones of Mumbai
Khan et al.	India (Srinagar)	1–15 July	Adults (≥ 18 years) who visited selected hospitals across the Srinagar District
Shakiba et al.	Islamic Republic of Iran (Guilan)	April (until 21 April)	Population-based cluster random sampling design through telephone call invitation, household-based
Fiore et al.	Italy (Apulia)	1–31 May	Blood donors 18–65 years old free of recent symptoms possibly related to COVID-19, no close contact with confirmed cases, symptom-free in the preceding 14 days, no contact with suspected cases
Doi et al.	Japan (Kobe)	31 March–7 April	Randomly selected patients who visited outpatient clinics and received blood testing for any reason. Patients who visited the emergency department or the designated fever consultation service were excluded
Takita et al.	Japan (Tokyo)	21 April–20 May	Two community clinics in the main railway stations in Tokyo (Navitas Clinic Shinjuku and Tachikawa)
Authors	Country (City)	Dates	Study Details
------------------	---------------------------------	--------------------	---
Nawa et al.	Japan (Utsunomiya City)	14 June–5 July	Invitations enclosed with a questionnaire were sent to 2,290 people in 1,000 households randomly selected from Utsunomiya City's basic resident registry; 742 completed the study.
Uyoga et al.	Kenya	30 April–16 June	Residual blood donor serum samples from donors aged 16–65 years in four sites (Mombasa, Nairobi, Eldoret and Kisumu).
Snoeck et al.	Luxembourg	16 April–5 May	Representative sample (no details how ensured), 1,807 of 2,000 contacted provided data, were <79 years and had serology results.
Slot et al.	Netherlands	1–15 April	Blood donors. Donors must be completely healthy, but they may have been ill in the past, provided that they recovered at least 2 weeks before.
Westerhuis et al.	Netherlands (Rotterdam)	Early March and early April	Left-over plasma samples from patients of nine age categories in Erasmus Medical Center in Rotterdam: 879 samples in early March and 729 in early April.
Nisar et al.	Pakistan (Karachi)	25 June–11 July	Cross-sectional household surveys in a low- (district Malir) and high-transmission (district East) area of Karachi with households selected using simple random sampling (Malir) and systematic random sampling (East).
Javed et al.	Pakistan (urban Karachi, Lahore, Multan, Peshawar and Quetta)	06-Jun	Adult, working population aged 18–65 years, recruited from dense, urban workplaces including factories, businesses, restaurants, media houses, schools, banks, hospitals (health-care providers), and from families of positive cases in cities in Pakistan.
Abu Raddad et al.	Qatar	12 May–12 July	Convenience sample of residual blood specimens collected for routine clinical screening or clinical management from 32,970 outpatient and inpatient departments for a variety of health conditions (n = 937 in 12–31 May).
Noh et al.	Republic of Korea	25–29 May	Outpatients who visited two hospitals in south-west Seoul which serve six administrative areas.
Pollan et al.	Spain	27 April–11 May	35,883 households selected from municipal rolls using two-stage random sampling stratified by province and municipality size, with all residents invited to participate (75.1% of all contacted individuals participated).
Croveto et al.	Spain (Barcelona)	14 April–5 May	Consecutive pregnant women for first trimester screening or delivery in two hospitals.
Stringhini et al.	Switzerland (Geneva)	6 April–9 May	Randomly selected previous participants of the Bus Santé study with an email (or telephone contact, if email unavailable); participants were invited to bring all members of their household aged 5 years and older.
Emmenegger et al.	Switzerland (Zurich)	Prepandemic until June (patients) and May (blood donors)	Patients at the University Hospital of Zurich and blood donors in Zurich and Lucerne.
Ward et al.	United Kingdom (England)	20 June–13 July	Random population sample of 100,000 adults over 18 years.
Thompson et al.	United Kingdom (Scotland)	21–23 March	Blood donors. Donors should not have felt unwell in the past 14 days; some other deferrals also applied regarding travel and COVID-19 symptoms.
Havers et al.35 USA (10 states) 23 March–1 April (Washington, Puget Sound and New York, New York City), 1–8 April (Louisiana), 5–10 April (Florida, south), 13–25 April (Pennsylvania, Philadelphia, metropolitan area), 20–26 April (Missouri), 23–27 April (California, San Francisco Bay Area), 20 April–3 May (Utah), 26 April–3 May (Connecticut), 30 April–12 May (Minnesota, Minneapolis) Convenience samples using residual sera obtained for routine clinical testing (screening or management) by two commercial laboratory companies

Ng et al.24 USA (California, Bay Area) March 1000 blood donors in diverse Bay Area locations (excluding those with self-reported symptoms or abnormal vital signs)

Sood22 USA (California, Los Angeles) 10–14 April Proprietary database representative of the county. A random sample of these residents was invited, with quotas for enrolment for subgroups based on age, sex, race and ethnicity distribution

Chamie et al.33 USA (California, San Francisco) 25–28 April United States census tract 022 901 population-dense area (58% Latin American) in San Francisco Mission district, expanded to neighbouring blocks on 28 April

Bendavid et al.19 USA (California, Santa Clara) 2–3 April Facebook advertisement with additional targeting by zip code

Biggs et al.53 USA (Georgia, DeKalb and Fulton) 28 April–3 May Two-stage cluster sampling design used to randomly select 30 census blocks in DeKalb county and 30 census blocks in Fulton county, with a target of seven participating households per census block

McLaughlin et al.46 USA (Idaho, Blaine county) 4–19 May Volunteers who registered via a secure web link, using prestratification weighting to the population distribution by age and sex within each zip code

Bryan et al.5 USA (Idaho, Boise) Late April People from the Boise, Idaho metropolitan area, part of the Crush the Curve initiative

Menachemi et al.54 USA (Indiana) 25–29 April Stratified random sampling among all persons aged ≥ 12 years using Indiana’s 10 public health preparedness districts as sampling strata

Feehan et al.63 USA (Louisiana, Baton Rouge) 15–31 July Representative sample in a method developed by Public Democracy
Study	Location	Time Period	Methods
Feehan et al.	USA (Louisiana, Orleans and Jefferson Parish)	9–15 May	Pool of potential participants reflecting the demographics of the parishes was based on 50 characteristics, then a randomized subset of 150,000 people was selected, and 25,000 were approached with digital apps, and 2,640 were recruited
Rosenberg et al.	USA (New York)	19–28 April	Convenience sample of people ≥ 18 years living in New York State, recruited consecutively on entering 99 grocery stores and through an in-store flyer
Meyers et al.	USA (New York)	2–30 March (Columbia University Medical Center, New York City); 13–28 March (CareMount central laboratory)	Discarded clinical samples in Columbia Medical Center, New York City (n = 814 in 24 February–30 March, 742 of those in the period 2–30 March) and samples from CareMount central laboratory (960 samples on 13 and 14 March, 505 samples on 20/21 March, and 376 samples on 27/28 March) from its network of clinics in five counties north of New York City
Reifer et al.	USA (New York, Brooklyn)	Early May	Patients seen in an urgent care facility in Brooklyn
Nesbitt et al.	USA (Rhode Island)	27 April–11 May	Consecutive blood donors

COVID-19: coronavirus disease-19; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2.

*a Sample collection time for some sub-cohorts may have exceeded 1 month, but more than half of the cases were already documented by polymerase chain reaction testing before any antibody testing and the last death occurred on 20 April.

Note: Some studies included additional data sets that did not fulfil the eligibility criteria (e.g. had sample size < 500 or were health-care workers) and they are not presented here.
Table 2. **Sample size, types of antibodies assessed and population size in the studies included to assess COVID-19 infection fatality rate, 2020**

Country (location)	Sample size\(^a\), no.	Antibody	Population\(^b\), no.	% of population 70 years\(^c\)
Argentina (Barrio Padre)	873	IgG	49 983	99
Múgica\(^7\)				
Belgium\(^38\)	3 391 (20–26 April)	IgG	11 589 623	86
Brazil (133 cities)\(^25\)	24 995	IgG and IgM	74 656 499	94 (Brazil)
Brazil (Espírito Santo)\(^34\)	4 608	IgG and IgM	4 018 650	94 (Brazil)
Brazil (Maranhão)\(^98\)	3 156	IgG and IgM	7 114 598	92
Brazil (Rio de Janeiro), blood donors\(^1\)	669 (24–27 April)	IgG and IgM	17 264 943	94 (Brazil)
Brazil (Rio Grande do Sul)\(^17\)	4 500	IgG	11 377 239	91
Brazil (Sao Paulo)\(^42\)	517	IgG and IgM	298 240 (6 districts)	94 (Brazil)
Canada (British Columbia)\(^50\)	885	IgG, IgM and IgA	5 071 000	94
Chile (Vitacura)\(^13\)	1 244	IgG and IgM	85 000	92 (Chile)
China, blood donors\(^55\)				
Wuhan	930 (3–23 February)	IgG and IgM	11 210 000	93 (China)
Shenzhen	3 507 (24 February–15 March)	IgG and IgM	13 030 000	93 (China)
Shijiazhuang	6 455 (10 February–1 March)	IgG and IgM	11 030 000	93 (China)
China (Wuhan)\(^14\)	1 401	IgG and IgM	11 080 000	93 (China)
China (Wuhan)\(^32\)	1 196 (4–8 April)	IgG and IgM	11 080 000	93 (China)
China (Guangzhou), blood donors\(^60\)	2 199	IgG, IgM and IgA	115 210 000 (Guangdong)	93 (China)
China (several regions)\(^40\)				
Hubei (not Wuhan)	979	IgG and IgM	48 058 000	93 (China)
Chongqing	993	IgG and IgM	31 243 200	93 (China)
Sichuan	9 442	IgG and IgM	83 750 000	93 (China)
Guangdong	1 005	IgG and IgM	115 210 000	93 (China)
Croatia\(^26\)	1 494	IgG and IgM	4 076 000	86
Denmark blood donors\(^12\)	20 640	IgG and IgM	5 771 876	86
Denmark (Faroe Islands)\(^52\)	1 075	IgG and IgM	52 428	86
France (Crepy-en-Valois)\(^39\)	1 340	IgG	5 978 000 (Hauts-de-France)	89
France (Oise)\(^13\)	661	IgG	5 978 000 (Hauts-de-France)	89
Germany (Gangelt)\(^16\)	919	IgG and IgA	12 597	86
Germany (Frankfurt)\(^21\)	1 000	IgG	2 681 000\(^d\)	84 (Germany)
Greece\(^62\)	6 586 (4 511 in April)	IgG	10 412 967	84
Hungary\(^57\)	10 504	IgG (also had PCR)	9 657 451	88
Iceland\(^66\)	30 576	Pan-Ig	366 854	90
India (Mumbai)\(^61\)	6 904 (4 202 in slums, 2 702 not in slums)	IgG	1 414 917 (705 523 in slums, 709 394 in non-slums) in the 3 ward areas	98
India (Srinagar)\(^67\)	2 906	IgG	1 500 000	97
Islamic Republic of Iran (Guilan)\(^9\)	551	IgG and IgM	2 354 848	95
Italy (Apulia), blood donors\(^31\)	909	IgG and /IgM	4 029 000	84
Japan (Kobe)\(^11\)	1 000	IgG	1 518 870	79 (Japan)
Japan (Kanto)\(^29\)	1 071	IgG	13 902 077	79 (Japan)
Japan (Utsunomiya City)\(^18\)	742	IgG	518 610	79 (Japan)
Kenya, blood donors\(^44\)	3 098	IgG	47 564 296	99
Luxembourg\(^20\)	1 807	IgG and IgA\(^e\)	615 729	90
Netherlands blood donors\(^15\)	7 361	IgG, IgM and IgA	17 097 123	86
Netherlands (Rotterdam)\(^64\)	729 (early April)	IgG	17 097 123 (Netherlands)	86
Pakistan (Karachi)\(^49\)	1 004	IgG and IgM	16 700 000	98 (Pakistan)
Pakistan (urban)\(^56\)	24 210	IgG and IgM	79 000 000 (urban)	98
Country/Region	Number of Subjects	Test Type	Number of Positive Cases	Percentage
---------------	-------------------	-----------	--------------------------	------------
Qatar	937	IgG	2,800,000	99
Republic of Korea	1,500	IgG	2,667,341	90 (southern Republic of Korea)
Spain	61,075	IgG	46,940,000	85
Switzerland (Geneva)	874	IgG, IgM and IgA	7,566,000 (Catalonia)	86
Switzerland (Zurich)	1,644 patients (1–15 April)	IgG	1,520,968 (Zurich canton)	88
Switzerland (Zurich)	1,640 blood donors (May)	IgG	1,930,525 (Zurich and Lucerne)	88
United Kingdom (England)	109,076	IgG	56,287,000	86
United Kingdom (Scotland), blood donors	500	IgG	5,400,000	88
USA (10 states)				
Washington, Puget Sound	3,264	Pan-Ig	4,273,548	90 (Washington)
Utah	1,132	Pan-Ig	3,282,120	92
New York, New York City	2,482	Pan-Ig	9,260,870	89
Missouri	1,882	Pan-Ig	6,110,800	88
Florida, south	1,742	Pan-Ig	6,345,345	86 (Florida)
Connecticut	1,431	Pan-Ig	3,562,989	88
Louisiana	1,184	Pan-Ig	4,644,049	92
California, San Francisco Bay	1,224	Pan-Ig	2,173,082	90
Pennsylvania, Philadelphia	824	Pan-Ig	4,910,139	90
Minnesota, Minneapolis	860	Pan-Ig	3,857,479	90
USA (California, Bay Area)	1,000	IgG	7,753,000	90
USA (California, Los Angeles)	863	IgG and IgM	7,892,000	92
USA (California, San Francisco)	3,953	IgG (also PCR testing)	5174 (in census tract 022 901)	95
USA (California, Santa Clara)	3,300	IgG and IgM	1,928,000	90
USA (Idaho, Boise)	4,856	IgG	481,587 (Ada county)	92
USA (Georgia, DeKalb and Fulton counties)	696	Total Ig	1,806,672	88 (Georgia)
USA (Idaho, Blaine county)	917	IgG	23,089	92
USA (Indiana)	3,629	IgG (also RT–PCR done)	6,730,000	89
USA (Louisiana, Baton Rouge)	138	IgG	699,200 (East Baton Rouge, West Baton Rouge, Ascension, Livingston)	92 (Louisiana)
USA (Louisiana, Orleans and Jefferson Parish)	2,640	IgG	825,057	92 (Louisiana)
USA (New York)	15,101	IgG	19,450,000	90
USA, New York	742 (2–30 March)	IgG and IgM	9,260,870	89
Columbia University Medical Center, New York City	1,841	IgG and IgM	10,189,130 (New York state excluding New York City)	89
CareMount central laboratory, five New York state counties	11,092	IgG	2,559,903	91
USA (New York, Brooklyn)	1,996	IgG and IgM	1,059,000	88

COVID-19: coronavirus disease-19; Ig: immunoglobin; RT–PCR: real-time polymerase chain reaction.

a Dates in brackets are the specific dates used when seroprevalence was evaluated at multiple consecutive time points or setting.

b Some studies focused on age-restricted populations of the specific location under study, for example: people 17–70 years in the Denmark blood donor study (n = 3,800,000); people 18–79-years in the Luxembourg study (n = 483,000);
people < 70 years in the Netherlands blood donor study (n = 13 745 768); people ≥ 18 years in the New York state study (n = 15 280 000); people > 19 years in the Utah population of the 10-state United States study (n = 2 173 082); people ≥ 18 years in Blaine county, Idaho (n = 17 611); people 15–64 years in the Kenya blood donor study (n = 27 150 165); people > 14 years living in private premises in Hungary; people > 18 years (n = 551 185) in Baton Rouge, Louisiana; people 18–65 years working in urban locations in Pakistan (n = 22 100 000); and people > 18 years in Srinagar District, India (n = 1 020 000). In this table and subsequent analyses, the entire population in the location is considered for consistency across studies.

Information in parenthesis specify the population.

Participants were recruited from a large number of districts, but most districts had very few participants; here I included the population of the nine districts with > 1:10 000 sampling ratio (846/1000 participants came from these nine districts).

Considered positive if both IgG and IgA were positive; in the other studies, detection of any antibody was considered positive.
Table 3. Prevalence of COVID-19 and estimated number of people infected, 2020

Country (location)	Seroprevalence (%)	Estimated no. of people infected	
	Crude	Adjusted (adjustments)	
Argentina (Barrio Padre Mugica)⁴⁷	ND	53.4 (age, sex, household, non-response)	26 691
Belgium³⁸	5.7	6.0 (sampling, age, sex, province)	695 377
Brazil (133 cities)²⁵	1.39	1.62 overall, varying from 0 to 25.0 across 133 cities (test, design)	1 209 435^a
Brazil (Espírito Santo)³⁴	2.1	ND	84 391
Brazil (Maranhão)⁶⁸	37	40.4 (clustering, stratification, non-response)	2 877 454
Brazil (Rio de Janeiro), blood donors⁴¹	6	4.7 (age, sex, test)	811 452
Brazil (Rio Grande do Sul)¹⁷	0.222	0.222 (sampling)^b	25 283
Brazil (São Paulo)⁴²	5.2	4.7 (sampling design)	14 017
Canada (British Columbia)⁵⁰	0.45	0.55 (age)	27 890
Chile (Vitacura)⁴³	11.2	ND	9 500
China, blood donors⁵⁵			
Wuhan	3.8	ND	433 827
Shenzhen	0.06	ND	7 818
Shijiazhuang	0.02	ND	2 206
China (Wuhan)¹⁴	10	ND	1 108 000
China (Wuhan)³²	8.36 (3.53 for entire period)	ND (2.80 (age, sex, test) for entire period)	926 288
China (Guangzhou), blood donors⁶⁰	0.09	ND	104 783
China (several regions)⁴⁰			
Hubei (not Wuhan)	3.6	ND	1 718 110
Chongqing	3.8	ND	11 956 109
Sichuan	0.6	ND	487 847
Guangdong	2.2	ND	2 522 010
Croatia²⁶	1.27^c	ND	51 765
Denmark, blood donors¹²	2	1.9 (test)	109 665
Denmark (Faroe Islands)⁵²	0.6	0.7 (test)	365
France (Crepy-en-Valois)³⁹	10.4	ND	620 105
France (Oise)¹³	25.9	ND	1 548 000
Germany (Gangelt)¹⁶	15	20.0 (test, cluster, symptoms)	2 519
Germany (Frankfurt)²¹	0.6	ND	16 068
Greece⁶²	0.42 (April)	0.49 (age, sex, region)^d	51 023
Hungary⁵⁷	0.67	0.68 (design, age, sex, district)	65 671
Iceland⁵⁸	2.3	0.9 (including those positive by PCR)	3 177
Indonesia⁶¹			
India (Mumbai)⁶⁷	54.1 in slum areas, 16.1 in non-slum areas	58.4 in slum areas, 17.3 in non-slum areas (test, age, sex)	534 750
Indonesia (Srinagar)⁶⁷	3.8	3.6 (age, sex)	54 000
Islamic Republic of Iran (Guilan)⁸	22	33.0 (test, sampling)	770 000
Italy (Apulia), blood donors³¹	0.99	ND	39 887
Japan (Kobe)¹¹	3.3	2.7 (age, sex)	40 999
Japan (Tokyo)²⁹	3.83	ND	532 450
Japan (Utsunomiya City)⁴⁸	0.4	1.23 (age, sex, distance to clinic, district, cohabitants)	6 378
Kenya, blood donors⁴⁴	5.6	5.2 (age, sex, region, test)	2 783 453
Luxembourg²⁰	1.9	2.1 (age, sex, district)	12 684
Netherlands, blood donors¹⁵	2.7	ND	461 622
Netherlands (Rotterdam)⁶⁴	3	ND	512 910
Country (City)	COVID-19	Death Rate	Notes
---------------	----------	------------	-------
Pakistan (Karachi)	16.3 (20.0 in East, 12.7 in Malir)	11.9 (age, sex; 15.1 in East, 8.7 in Malir)	1987 300
Pakistan (urban)	17.5	ND	13 825 000
Qatar	30.4 (24.0 for entire period)	ND	851 200
Republic of Korea	0.07	ND	1 867
Spain	ND	5.0 (sampling, age, sex, income)	2 347 000
Spain (Barcelona)	14.3	ND	1 081 938
Switzerland (Geneva)	10.6	10.9 (test, age, sex)	54 500
Switzerland (Zurich)	Unclear	1.3 in patients during 1–15 April and 1.6 in blood donors in May (multivariate Gaussian conditioning)	19 773 (Zurich); 30 888 (Zurich and Lucerne)
United Kingdom (England)	5.6	6.0 (test, sampling)	3 360 000
United Kingdom (Scotland) blood donors	1.2	ND	64 800
USA (six states)	0.4 (blood donors)	0.1 (test and confirmation)	7 753
USA (California, Los Angeles)	4.06	4.65 (test, sex, race and ethnicity, income)	367 000
USA (California, San Francisco)	4.3 in the census track	6.1 (age, sex, race and ethnicity, test)	316
USA (California, Santa Clara)	1.5	2.6 (test, sampling, cluster)	51 000
USA (Idaho, Boise)	1.79	ND	8620
USA (Georgia, DeKalb and Fulton counties)	2.7	2.5 (age, sex, race and ethnicity)	45 167
USA (Idaho, Blaine county)	22.4	23.4 (test, age, sex, household)	5 403
USA (Indiana)	2.3 (IgG or PCR)	2.8 (age, race, Hispanic ethnicity)	187 802
USA (Louisiana, Baton Rouge)	6	6.6 (census, race, parish) including PCR positives	46 147
USA (Louisiana, Orleans and Jefferson Parish)	6.9 (IgG or PCR)	6.9 for IgG (census weighting, demographics)	56 578
USA (New York)	12.5	14.0 (test, sex, age race and ethnicity, region)	2 723 000
USA, New York	5	ND	463 044
Columbia University Medical Center, New York City	1.8	ND	183 404
CareMount central laboratory, five New York state counties	47	ND	1 203 154
USA (New York, Brooklyn)	3.9	ND	41 384

COVID-19: coronavirus disease 2019; ND: no data available; PCR: polymerase chain reaction; test: test performance.

The authors calculated 760 000 to be infected in the 90 cities that had 200–250 samples tested, but many of the other 43 cities with < 200 samples may be equally or even better represented since they tended to be smaller than the 90 cities (mean population 356 213 versus 659 326).
An estimate is also provided adjusting for test performance, but the assumed specificity of 99.0% seems inappropriately low, since as part of the validation process the authors found that several of the test-positive individuals had household members who were also infected, thus the estimated specificity was deemed by the authors to be at least 99.95%.

1.20% in workers in Split without mobility restrictions, 3.37% in workers in Knin without mobility restrictions, 1.57% for all workers without mobility restrictions; Split and Knin tended to have somewhat higher death rates than nationwide Croatia, but residence of workers is not given, so the entire population of the country is used in the calculations.

An estimate is also provided adjusting for test performance resulting in adjusted seroprevalence of 0.23%, but this seems inappropriately low, since the authors report that all positive results were further validated by ELISA.

5.0% with point of care test, 4.6% with immunoassay, 3.7% with both tests positive, 6.2% with at least one test positive.

Notes: Of the studies where seroprevalence was evaluated at multiple consecutive time points, the seroprevalence estimate was the highest in the most recent time interval with few exceptions, for example: in the Switzerland (Geneva) study, the highest value was seen 2 weeks before the last time interval; in the Switzerland (Zurich) study, the highest value was seen in the period 1–15 April for patients at the university hospital and in May for blood donors; and in the China (Wuhan) study, the highest value was seen about 3 weeks before the last time interval.
Table 4. Deaths from COVID-19 and inferred infection fatality rates, overall and in people younger than 70 years, by location, 2020

Location	Deaths from COVID-19, no. (date)	Inferred infection fatality rate (corrected), %	% of deaths from COVID-19 in people <70 years	Infection fatality rate in people <70 years (corrected), %		
Argentina (Barrio Padre Mugica)	44 (1 July)	0.16 (0.13)	~70	0.11 (0.09)		
Belgium	7594 (30 April)	1.09 (0.87)	10	0.13 (0.10)		
Brazil (133 cities)	−b	Median 0.30 (0.27)	31 (<60 years)	0.10 (0.9)		
Brazil (Espírito Santo)	363 (21 May)	0.43 (0.39)	31 (Brazil, < 60 years)	0.14 (0.13)		
Brazil (Maranhão)	4272 (8 August)	0.15 (0.14)	23	0.04 (0.03)		
Brazil (Rio de Janeiro), blood donors	1019 (3 May)	0.12 (0.11)	31 (Brazil, < 60 years)	0.04 (0.04)		
Brazil (Rio Grande do Sul)	124 (14 May)	0.49 (0.39)	31 (Brazil, < 60 years)	0.19 (0.15)		
Brazil (São Paulo)	Unknown (15 May)	Unknown, but likely	>0.4	Unknown, but likely		
Canada (British Columbia)	164 (28 May)	0.59 (0.59)	13	0.08 (0.08)		
Chile (Vitacura)	Unknown (18 May)	Unknown, but likely	<0.2	Unknown, but likely		
China, blood donors	Wuhun	1935 (20 February)	0.45 (0.41)	50		
	Shenzhen	1 (5 March)	0.01 (0.01)	About 50 (if similar to Wuhan)		
	Shijiazhuang	1 (27 February)	0.05 (0.04)	About 50 (if similar to Wuhan)		
China (Wuhan)	3869 (2 May)	0.35 (0.31)	50	0.19 (0.15)		
China (Wuhan)	3869 (13 April)	0.42 (0.38)	50	0.23 (0.21)		
China (Guangzhou), blood donors	8 (5 April)	0.00 (0.00)	About 50 (if similar to Wuhan)	0.00 (0.00)		
China (several regions)	Hubei (not Wuhan)	643 (12 April)	0.04 (0.03)	About 50 (if similar to Wuhan)		
	Chongqing	6 (12 April)	0.00 (0.00)	About 50 (if similar to Wuhan)		
	Guangdong	8 (12 April)	0.00 (0.00)	About 50 (if similar to Wuhan)		
	Sichuan	3 (12 April)	0.00 (0.00)	About 50 (if similar to Wuhan)		
Croatia	79 (3 May)	0.15 (0.14)	13	0.02 (0.02)		
Denmark, blood donors	370 (21 April)	0.34 (0.27)	12	0.05 (0.04)		
Faroe Islands	0 (5 May)	0.00 (0.00)	0	0.00 (0.00)		
France (Crepy-en-Valois)	2325 (5 May)	0.37 (0.30)	7 (France, < 65 years)	0.04 (0.03)		
France (Oise)	932 (7 April)	0.06 (0.05)	7 (France, < 65 years)	0.01 (0.01)		
Germany (Gangelt)	7 (15 April)	0.28 (0.25)	0	0.00 (0.00)		
Germany (Frankfurt)	42 (17 April)	0.26 (0.21)	14 (Germany)	0.04 (0.03)		
Greece	121 (22 April)	0.24 (0.19)	30	0.09 (0.07)		
Hungary	442 (15 May)	0.67 (0.54)	No data	No data		
Iceland	10 (1 June)	0.30 (0.30)	30	0.10 (0.10)		
India (Mumbai)	495 (13–20 July)	0.09 (0.07)	50 (<60 years, India)	0.04 (0.03)		
India (Srinagar)	35 (15 July)	0.06 (0.05)	50 (<60 years, India)	0.03 (0.03)		
Islamic Republic of Iran (Guilan)	617 (23 April)	0.08 (0.07)	No data	No data		
Italy (Apulia), blood donors	530 (22 May)	1.33 (1.20)	15 (Italy)	0.24 (0.22)		
Japan (Kobe)	10 (mid-April)	0.02 (0.02)	21 (Japan)	0.01 (0.01)		
Japan (Tokyo)	189 (11 May)	0.04 (0.03)	21 (Japan)	0.01 (0.01)		
Japan (Utsunomiya City)	0 (14 June)	0.00 (0.00)	0	0.00 (0.00)		
Country	Location	Date	Proportion	Age group	COVID-19 deaths	Notes
---------	----------	------	------------	-----------	-----------------	-------
Kenya, blood donors	64	31 May	0.00	< 60 years	58	0.00
Luxembourg	92	2 May	0.73	9	0.07	
Netherlands, blood donors	3134	15 April	0.68	11	0.09	
Netherlands (Rotterdam)	3134	15 April	0.65	11	0.08	
Pakistan (Karachi)	~1500	9 July	0.08	70	0.06	
Pakistan (urban)	5266	13 July	0.04	70	0.03	
Qatar	93	19 June	0.01	74	0.01	
Republic of Korea	2	3 June	0.10	0	0.00	
Spain	26920	11 May	1.15	13	0.18	
Spain (Barcelona)	5137	2 May	0.48	13 (Spain)	0.07	
Switzerland (Geneva)	243	30 April	0.45	8	0.04	
Switzerland (Zurich)	107	15 April	0.51	8 (Switzerland)	0.05	
England	38854	9 July	1.16	20	0.27	
Scotland, blood donors	47	1 April	0.07	9 (< 65 years)	0.01	
USA (10 states)	Washington, Puget Sound	207	4 April	0.43	10 (state, < 60 years)	0.05
Utah	58	4 May	0.08	28 (< 60 years)	0.03	
New York	4146	4 April	0.65	34 (state)	0.25	
Missouri	329	30 April	0.20	23	0.05	
Florida, south	295	15 April	0.25	28 (state)	0.08	
Connecticut	2718	6 May	1.54	18	0.31	
Louisiana	806	11 April	0.30	32	0.10	
California, San Francisco Bay	321	1 May	0.50	25	0.14	
Pennsylvania, Philadelphia	697	26 April	0.45	21 (state)	0.10	
Minnesota, Minneapolis	436	13 May	0.48	20 (state)	0.10	
USA (California, Bay Area)	12	22 March	0.15	25	0.04	
USA (California, Los Angeles)	724	19 April	0.20	24 (< 65 years)	0.06	
USA (California, San Francisco)	0	4 May	0.00	0	0.00	
USA (California; Santa Clara)	94	22 April	0.18	35	0.07	
USA (Idaho, Boise)	14	24 April	0.16	14 (Idaho)	0.02	
USA (Georgia)	198	7 May	0.44	30	0.15	
USA (Idaho, Blaine county)	5	19 May	0.10	14 (Idaho)	0.02	
USA (Indiana)	1099	30 April	0.58	24	0.16	
USA (Louisiana, Baton Rouge)	420	30 July	0.91	32 (Louisiana)	0.32	
USA (Louisiana, Orleans and Jefferson Parish)	925	16 May	1.63	32	0.57	
USA (New York)	18610	30 April	0.68	34	0.26	
USA (New York, Brooklyn)	4894	19 May	0.41	34 (New York state)	0.15	
USA (New York, Rochester, blood donors)	430	11 May	1.04	17	0.20	

COVID-19: coronavirus disease 2019.

a Whenever the number or proportion of COVID-19 deaths at age < 70 years was not provided in the paper, I retrieved the proportion of these deaths from situation reports of the relevant location. If I could not find this information for the specific location, I used a larger geographic area. For Brazil, the closest information that I found was from a news report.77 For Croatia, I retrieved data on age 45/103 deaths through Wikipedia.78
Data are provided by the authors for deaths per 100,000 population in each city along with inferred infection fatality rate in each city, with wide differences across cities; the infection fatality rate shown here is the median across the 36 cities with 200–250 samples and at least one positive sample (the interquartile range for the uncorrected infection fatality rate is 0.20–0.60% and across all cities is 0–2.4%, but with very wide uncertainty in each city). A higher infection fatality rate is alluded to in the preprint, but the preprint also shows a scatter diagram for survey-based seroprevalence versus reported deaths per population with a regression slope that agrees with an infection fatality rate of 0.3%.

Information on deaths was not available for the specific locations. In the Sao Paulo study, the authors selected six districts of Sao Paulo most affected by COVID-19, they do not name the districts and the number of deaths as of mid-May is not available, but using data for death rates across all Sao Paulo would give an infection fatality rate of >0.4% overall. In the Vitacura study, similarly one can infer from the wider Santiago metropolitan area that the infection fatality rate in the Vitacura area would probably be <0.2% overall.

For France, government situation reports provide the number of deaths per region only for in-hospital deaths; therefore, I multiplied the number of in-hospital deaths by a factor equal to: total number of deaths/in-hospital deaths for all of France.

Estimated from no. of deaths in Hesse province on 17 April × proportion of deaths in the nine districts with key enrolment (enrolment ratio >1:10,000) in the study among all deaths in Hesse province.

I calculated the approximate number of deaths assuming the same case fatality ratio in the Srinagar district as in the Jammu and Kashmir state where it is located.

For Karachi, it is assumed that about 30% of COVID-19 deaths in Pakistan are in Karachi (since about 30% of the cases are there).

The number of deaths across all Pakistan; I assumed that this number is a good approximation of deaths in urban areas (most deaths occur in urban areas and there is some potential underreporting).

I calculated the approximate number of deaths from the number of cases in the study areas in south-western Seoul, assuming a similar case fatality as in Seoul overall.

Confirmed COVID-19 deaths; inclusion of probable COVID-19 deaths would increase the infection fatality rate estimates by about a quarter.
Country	Sample size (antibody)	Date	Reported seroprevalence (%)	Population, no.	Deaths, no. (date)	Inferred infection fatality rate (corrected), %
Afghanistan?	9 500 (IgG?)	August?	31.5	39 021 453	1300 (8 May)	0.01 (0.01)
Czechia?	26 549 (IgG)	23 April–1 May	0.4	10 710 000	252 (4 May)	0.59 (0.47)
Finland?	674 (IgG)	20–26 April?	2.52	5 541 000	211 (30 April)	0.15 (0.12)
Georgia?	1 068 (IgG?)	18–27 May	1	3 988 264	12 (30 May)	0.03 (0.03)a
Israel?	1 709 (IgG?)	May	2–3	9 198 000	299 (10 June)	0.13 (0.10)b
Russian Federation?	650 000 (IgG?)	June?	14	145 941 776	5859 (7 June)	0.03 (0.03)c
Slovenia?	1368 (IgG?)	April	3.1	2 079 000	92 (1 May)	0.14 (0.11)
Sweden?	1 200 (IgG)	18–24 May	6.3	10 101 000	4501 (28 May)	0.71 (0.57)

COVID-19: coronavirus disease 2019; Ig: immunoglobin.

a The seroprevalence was slightly lower in subsequent weeks.
b The survey was done in Tbilisi, the capital city with a population 1.1 million. I could not retrieve the count of deaths in Tbilisi, but if more deaths happened in Tbilisi, then the infection fatality rate may be higher, but still < 0.1%.
c Assuming a seroprevalence of 2.5%.

Notes: These are countries for which no eligible studies were retrieved in the literature search. The results of these studies have been announced to the press and/or in preliminary reports, but are not yet peer reviewed and published. The question marks indicate that the antibody type or date were not clear.
Fig. 1. **Flowchart for selection of seroprevalence studies on severe acute respiratory syndrome coronavirus 2, 2020**

Items identified through literature searches:
LITCOVID (seroprevalence OR antibodies) 1391 items
medRxiv (seroprevalence OR antibodies) 2302 items
bioRxiv ((seroprevalence OR antibodies) AND (SARS-CoV-2 OR COVID-19)) 1147 items
Research Square (seroprevalence OR antibodies) 380 items

5108 items excluded during first screening of titles and abstracts

112 items evaluated in depth

1 item added from communication with experts

52 items excluded during in-depth full-article screening

61 eligible articles for the analysis with a total of 74 eligible seroprevalence estimates

8 added from identifying unpublished national

82 eligible seroprevalence estimates from 51 different locations

COVID-19: coronavirus disease 2019; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2.
Fig. 2. Estimates of infection fatality rates for COVID-19 in locations that had two or more estimates, 2020

COVID-19: coronavirus disease 2019.

Notes: Locations are defined at the level of countries, except for the USA where they are defined at the level of states and China is separated into Wuhan and non-Wuhan areas. Corrected infection fatality rate estimates are shown (correcting for what types of antibodies were assayed).
Fig. 3. Corrected estimates of COVID-19 infection fatality rate in each location plotted against COVID-19 mortality rate as of September 12, 2020 in that location