Meta-analysis of the association between short-term exposure to ambient ozone and respiratory hospital admissions

This content has been downloaded from IOPscience. Please scroll down to see the full text.
2011 Environ. Res. Lett. 6 024006
(http://iopscience.iop.org/1748-9326/6/2/024006)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 129.120.87.224
This content was downloaded on 31/12/2016 at 10:53

Please note that terms and conditions apply.

You may also be interested in:

The relationships between short-term exposure to particulate matter and mortality in Korea: impact of particulate matter exposure metrics for sub-daily exposures
Ji-Young Son and Michelle L Bell

Vulnerability to temperature-related mortality in Seoul, Korea
Ji-Young Son, Jong-Tae Lee, G Brooke Anderson et al.

Combined atmospheric oxidant capacity and increased levels of exhaled nitric oxide
Changyuan Yang, Huichu Li, Renjie Chen et al.

The relationship between air pollution and low birth weight: effects by mother’s age, infant sex, co-pollutants, and pre-term births
Michelle L Bell, Keita Ebisu and Kathleen Belanger

Air quality impacts of using overnight electricity generation to charge plug-in hybrid electric vehicles for daytime use
Tammy Thompson, Michael Webber and David T Allen

Future respiratory hospital admissions from wildfire smoke under climate change in the Western US
Jia Coco Liu, Loretta J Mickley, Melissa P Sulprizio et al.

Global health and economic impacts of future ozone pollution
N E Selin, S Wu, K M Nam et al.

Impact of the Volkswagen emissions control defeat device on US public health
Steven R H Barrett, Raymond L Speth, Sebastian D Eastham et al.
Meta-analysis of the association between short-term exposure to ambient ozone and respiratory hospital admissions

Meng Ji1, Daniel S Cohan2 and Michelle L Bell1,3

1 School of Forestry and Environmental Studies, School of Public Health, Yale University, New Haven, CT, USA
2 Department of Civil and Environmental Engineering, Rice University, Houston, TX, USA

Received 16 December 2010
Accepted for publication 8 April 2011
Published 3 May 2011
Online at stacks.iop.org/ERL/6/024006

Abstract
Ozone is associated with health impacts including respiratory outcomes; however, results differ across studies. Meta-analysis is an increasingly important approach to synthesizing evidence across studies. We conducted meta-analysis of short-term ozone exposure and respiratory hospitalizations to evaluate variation across studies and explore some of the challenges in meta-analysis. We identified 136 estimates from 96 studies and investigated how estimates differed by age, ozone metric, season, lag, region, disease category, and hospitalization type. Overall results indicate associations between ozone and various kinds of respiratory hospitalizations; however, study characteristics affected risk estimates. Estimates were similar, but higher, for the elderly compared to all ages and for previous day exposure compared to same day exposure. Comparison across studies was hindered by variation in definitions of disease categories, as some (e.g., asthma) were identified through ≥3 different sets of ICD codes. Although not all analyses exhibited evidence of publication bias, adjustment for publication bias generally lowered overall estimates. Emergency hospitalizations for total respiratory disease increased by 4.47% (95% interval: 2.48, 6.50%) per 10 ppb 24 h ozone among the elderly without adjustment for publication bias and 2.97% (1.05, 4.94%) with adjustment. Comparison of multi-city study results and meta-analysis based on single-city studies further suggested publication bias.

Keywords: ozone, hospital admissions, human health, air pollution, meta-analysis

Online supplementary data available from stacks.iop.org/ERL/6/024006/mmedia

1. Introduction
Ozone is a highly reactive air pollutant that can irritate airways and interfere with host defense mechanisms [1] and is associated with the risk of respiratory symptoms (e.g., coughing, wheezing), mortality, and hospital admissions [2, 3]. Time-series and case-crossover studies have examined the risk of respiratory hospitalizations or emergency room/department visits (emergency visits) as a function of short-term exposure to ambient ozone.

Many single-city studies observed associations between ozone and hospital admission for respiratory diseases [4–7], including total respiratory diseases or general respiratory illness [8–23] and cause-specific respiratory diseases such as pneumonia [10, 24–26], chronic obstructive pulmonary disease (COPD) [10–25, 27–32], and asthma [31, 33–50]. Other studies reported no association or inconsistent results for total or general respiratory illnesses [51–59] or specific respiratory diseases [58, 60–70]. Some studies found mixed results for different age groups or seasons [71–73]. Other potential confounders include co-pollutants, such as particulate matter (PM), with results differing by study [30, 32, 37, 75, 77].
Larger studies investigated multiple locations, reporting several individual-city estimates and/or a combined estimate across several locations. Many multi-city studies, such as the ‘Air Pollution and Health: A European Approach’ (APHEA) project, found significant associations between ozone and hospital admissions for certain disease categories (e.g., total respiratory diseases, COPD), age group (e.g., the elderly), or season (e.g., warm season) [78–83].

Although several studies identified links between ozone and risk of respiratory hospital admissions, several key questions remain, such as why study results differ, which would inform understanding of the overall scientific evidence for health risk and guide future research. Study and population characteristics such as location or age may impact effect estimates and thus hinder comparability across studies. For example, ozone was associated with increased respiratory hospitalizations among older people in Rotterdam but not Amsterdam [84], and was associated with increased COPD and pneumonia admissions in Minneapolis–St Paul, US, but significant associations were not observed in Birmingham, US [85]. Other study characteristics that may influence results include season, which can affect levels of ozone and other confounders, such as weather. Ozone levels are generally higher in summer due to photochemical formation [86]. Season can modify exposure patterns such as the use of open windows versus air conditioning, and these factors can differ by location. For instance, in analyses of 8 h maximum ozone and total respiratory hospitalization of persons >64 years in London and Hong Kong, both cities had associations for all year and for the warm season; however, in cool seasons, only Hong Kong had an association [77].

We investigated how various study characteristics impact results by using meta-analysis to integrate findings from previous studies with consideration of their uncertainty. Similar methods have been applied elsewhere, such as in the study of short-term ozone exposure and mortality [87–89]. The goals of this project are to: assess the overall state of scientific evidence on ozone and respiratory hospital admissions; explore variation in effect estimates, such as by study location or age; and investigate some of the challenges inherent in meta-analysis such as publication bias, which is caused by the tendency for authors to submit or journals to publish statistically significant results as opposed to null or uncertain results.

2. Methods

We identified previously conducted studies by searching PubMed for the following in the title and/or abstract: (1) ‘ozone’ or ‘O₃’, and (2) ‘hospital admission’*, ‘hospitalization’*, ‘emergency room’, ‘emergency department’, or ‘emergency visits’, where ‘*’ reflects truncation indicating acceptance of any value. We selected studies meeting the criteria that they: (1) investigated the association between short-term ozone exposure (a single day or a few days) and hospital admissions or emergency visits for respiratory diseases through time-series or case-crossover approaches; (2) provided quantitative results with quantitative measures of the estimate’s uncertainty; (3) included a non-linear function for temperature in the regression model, except for season-specific results (e.g., warm season); and (4) were peer-reviewed and published in English from 1990 to 2008. Some early time-series analysis used linear regression models [12, 33, 51, 90–95] and were excluded due to the non-normally distributed health data [96]. We excluded a study that applied logarithmic transformation to ozone exposures [97].

We recorded study characteristics including time frame and location of the study, disease categories (e.g., pneumonia, asthma), disease diagnosis codes (e.g., the International Classification of Disease ICD-9 codes), type of hospital visit (e.g., general hospital admissions, emergency visits), effect estimates with uncertainties in various formats (e.g., percentage change in risk of hospitalization and 95% confidence interval), ozone units (e.g., ppb, μg m⁻³), ozone temporal metric (e.g., 24 h mean), age of subjects (e.g., elderly), lag (e.g., same day as lag0, previous day as lag1, average of same and previous days as lag0–1), season of analysis (e.g., summer), and co-pollutants included in models. Many studies reported multiple estimates as they explored several disease categories, age groups, seasons, or other factors. For studies presenting results from several cities, the meta-analysis included one result per city per study. For multi-city studies that only reported a combined estimate across cities, we analyzed these results separately and did not include them in the meta-analysis, in order to compare single-city and multi-city results.

We used the standard chi-squared test, χ², to examine the homogeneity among effect estimates. Under homogeneity, the fixed-effect model was used to combine estimates; otherwise, the random-effect model was used [98]. We used statistical software R (version 2.9.2). We required at least four estimates to calculate an overall estimate in the meta-analysis. Results are presented as the percentage change in risk of hospital visit per 10 ppb increase in 24 h ozone. We also present key results based on the daily 8 h maximum ozone metric. Stratification was used to explore whether meta-analysis estimates differ by use of ozone metric, age, lag for exposure, season, or region.

Studies used different metrics and units for ozone concentrations. We converted all results in μg m⁻³ to ppb for comparison using standard pressure and temperature. We converted results in all other metrics (i.e., 8 h maximum, 8 h mean, 1 h maximum) to the 24 h mean, with an assumption of a proportional relationship between different metrics. The 8 h mean, corresponding to the 8 h average of a specific time period when ozone concentrations are anticipated to be high (e.g., 9 am–5 pm [11]), was assumed to approximate the 8 h maximum. We considered multiple conversion ratios of 1 h maximum:8 h maximum:24 h mean ozone as: (1) 2:1.5:1 as previously applied by the US Environmental Protection Agency (EPA) [99], (2) 1.76:1.53:1 from a national study of 78 US communities [100], and (3) a specific ratio for each community. The actual relationship among ozone metrics differs by community, ozone level, and season [100]. For the third approach, we used community-specific ratios based on data from a previously conducted study of 78 US communities [100] and a database of air pollution...
concentrations for European communities [101]. For cities not in these databases, a ratio of 1.76:1.53:1 was applied.

Positive findings are more likely to be submitted to or published in a journal than null or negative results [102], which can result in overestimation in meta-analysis. We investigated publication bias with funnel plots, as an asymmetric distribution indicates potential publication bias among the combined estimates [103]. We used the linear regression test developed by Egger et al [104] to examine publication bias [105]. On the basis of the Egger’s test results, we applied the ‘trim and fill’ approach [106] to generate overall estimates adjusted for publication bias. We compared meta-analysis results based on single-city estimates to multi-city study results, which are less subject to publication bias.

3. Results

We identified 96 articles meeting our protocol. Among these, 86 studies presented only estimates for an individual city, eight reported only combined estimates across multiple cities [21, 78–83, 107] and two gave both estimates for an individual city and combined results across cities [65, 108]. Results were categorized by age group, type of hospital visit (i.e., general hospital admissions, emergency hospital admissions, and emergency visits), and disease category (e.g., asthma). The most commonly reported disease categories were total or general respiratory diseases, pneumonia, COPD, and asthma.

We identified a key challenge in meta-analysis or other synthesis of results in that studies used different diagnostic codes to define a disease (figure 1). For example, total respiratory disease, respiratory infection, COPD, asthma, and pneumonia were each identified through three or more different sets of ICD codes. For the meta-analysis, we used the descriptions of diseases designated by the authors to categorize estimates by disease, although the somewhat different definitions present a difficulty in comparing across studies.

Within a study, for each individual city we selected one estimate for each hospital visit type (e.g., emergency visits), disease category (e.g., COPD), and age category, and grouped the main estimates by these categories. For cases in which researchers presented more than one such result, we selected the main result identified by the authors. This indicates another challenge in meta-analysis, as the authors’ choice of key result may be subject to publication bias. We generated overall estimates through meta-analysis for data groups with ⩾4 estimates.

3.1. Ozone metrics

We used the 24 h mean as the ozone metric for analysis and converted results in all other ozone metrics to the 24 h mean. Separate meta-analyses were performed using three methods of converting ozone metrics, yielding similar results (supplemental table 1 available at stacks.iop.org/ERL/6/024006/mmedia). Note that although 136 estimates were identified in our literature review, a far smaller number are available for a specific cause of hospitalization, age group, and hospital visit type (general, emergency
admission, or emergency visit). Compared with the US EPA metric conversion ratio [99], the study based on US communities [100] had a higher ratio of 8 h maximum:24 h average but a smaller value for 1 h maximum:24 h average. Results were also influenced by the magnitude of estimates in 8 h maximum and 1 h mean metrics. Combined estimates were more likely to be affected by choice of conversion ratio when study-specific central estimates were large. Although the true relationship among ozone metrics is not constant, our overall results show little influence from the choice of metric conversion method. We applied the ratio from the US study of 78 communities (1.76:1.53:1) for the remaining analyses, as this study was a systematic analysis particularly focused on approaches to converting ozone metrics, and location-specific conversion ratios were not available for all study locations. We also used the same ratios to generate results for key findings in the 8 h maximum ozone metric.

3.2. Summary effects of ozone and respiratory hospitalizations

Table 1 presents meta-analysis results in the form of 24 and 8 h maximum ozone. Most estimates in Table 1 were calculated by the random-effect model, which indicates heterogeneity across studies’ results. We observed associations between ozone and hospitalization or emergency visits for all disease categories: total or general respiratory disease, pneumonia, COPD or asthma. All estimates for a 10 ppb increase in the 24 h ozone were as large as or larger than those for a 10 ppb increase in the daily 8 h maximum ozone, although a 10 ppb increase in the 24 h metric corresponds to approximately a 15 ppb increase in the 8 h maximum metric. All analyses for the elderly showed associations (total respiratory disease, pneumonia, or COPD general hospital admissions; total respiratory disease emergency hospital admissions) with effect estimates ranging from a 2.47% to 4.47% increase in risk per 10 ppb 24 h ozone. Other observed associations were for all ages for COPD (general or emergency hospital admissions) and total respiratory disease (emergency hospital admissions or emergency visits). Results did not indicate associations for total respiratory disease for general hospital admissions for all ages or children, emergency hospital admissions for adults (15–64 years), or emergency visits for children. Associations were observed for asthma for hospital emergency admissions for all ages, and emergency visits for all ages and children. Asthma emergency hospital admissions were not associated with ozone levels for children or adults (15–64 years).

Some studies adjusted for PM, using a variety of particle size distributions. Results were generally similar with and without PM adjustment. In some cases, the central effect estimate for O₃ was slightly higher with PM adjustment (e.g., [74, 30] for the age group >25 years); however, in many cases it was slightly attenuated (e.g., [9, 32, 37, 75]), with results that were originally statistically significant remaining so. In a few cases, some results lost statistical significance with inclusion of PM (e.g., [30] for those aged >25 years [39], for days <25 °C [76]). Effect estimates became statistically significant with inclusion of PM in a few cases (e.g., [77]).
3.3. The age of the study subjects

The relationship between ozone and hospital admissions or emergency visits was influenced by the subjects’ age. Figure 2 compares overall effect estimates by age group for total or general respiratory emergency hospital admissions for the elderly; 4.14% (1.08, 2.83%) for general hospital COPD admissions for the elderly; 4.14% (−1.50, 10.12%) compared to −4.06% (−11.84, 4.43%) for general hospital asthma admissions for children; and 4.96% (2.05, 7.96%) compared to 2.10% (−1.00, 5.31%) for emergency visits for asthma for children. Central estimates at lag1 and lag0−1 were similar at 2.02% (1.09, 2.93%) compared to 1.88% (0.90, 2.90%) for total or general respiratory disease emergency hospital admissions for the elderly. Central estimates were similar for lag1 and lag0−2 at 4.75% (3.71, 5.81%) compared to 5.15% (1.01, 9.45%) for emergency hospital admissions for asthma for all ages.

3.4. The lag of the exposure

Studies considered different lag times between exposure and hospitalization. Data were insufficient for calculating overall effects for every lag structure; however, we were able to stratify lag selection for certain disease categories, hospitalization type, and age group combinations. Although effects were similar, effects at lag1 were consistently higher than those at lag0 for all comparisons. The increase in risk of hospital admissions for a 10 ppb increase in 24 h ozone for lag1 and lag0 was 2.51% (1.58, 3.45%) compared to 1.95% (1.08, 2.83%) for general hospital COPD admissions for the elderly; 4.14% (−1.50, 10.12%) compared to −4.06% (−11.84, 4.43%) for general hospital asthma admissions for children; and 4.96% (2.05, 7.96%) compared to 2.10% (−1.00, 5.31%) for emergency visits for asthma for children. Central estimates at lag1 and lag0−1 were similar at 2.02% (1.09, 2.93%) compared to 1.88% (0.90, 2.90%) for total or general respiratory disease emergency hospital admissions for the elderly. Central estimates were similar for lag1 and lag0−2 at 4.75% (3.71, 5.81%) compared to 5.15% (1.01, 9.45%) for emergency hospital admissions for asthma for all ages.

3.5. The exposure season

We classified estimates into three seasonal categories: (1) year round; (2) warm season (e.g., April–October, temperature >25°C); and (3) cold season (e.g., November–March, temperature ≤25°C). Studies in tropical or subtropical cities (e.g., Taipei) generally defined warm and cold time periods by temperature because of a lack of distinct seasons. We identified five estimates (four from Europe, one from Hong Kong) with results for all three seasonal categories for the same disease category, hospitalization type and age group, which were total or general respiratory emergency hospital admissions for the elderly. Associations were observed in all seasonal categories. The largest effect of a 3.13% (2.04, 4.23%) increase in risk per 10 ppb 24 h ozone was found for the warm season, while 1.98% (1.17, 2.80%) and 1.67% (0.26, 3.11%) were observed for all year and the cold season, respectively. For children’s asthma emergency visits the combined estimate for the warm season, 3.11% (1.08, 5.18%), was higher than that for all year round, 1.08% (3.78, 3.94%).

3.6. The study region

As most studies were conducted in North America, Europe and particular Asian cities (e.g., Hong Kong), we could make only limited comparisons by region. We combined summary estimates for asthma emergency hospital admissions among all ages in Europe and non-European countries separately. The overall estimate for the four non-European locations (Canada, Australia, two in Hong Kong) was an 8.89% (3.64, 14.45%) increase in risk per 10 ppb 24 h ozone, compared to 4.04% (−1.74, 10.16%) for the four European studies (The Netherlands, Spain, two in the UK). US and non-US estimates for children’s asthma ER/ED visits were similar at 2.27% (1.17, 3.38%), based on six US studies (Portland, Maine; District of Columbia; state of Maine; St Louis; two in Atlanta) and 3.55% (−1.14, 8.46%), based on seven non-US studies (Australia, Ireland, France, Mexico, UK, two in Canada). Stratifying these cities by North America versus non-North American locations yielded results of 2.64% (1.65, 3.66%) for North American locations compared to 3.06% (−6.36, 13.43%) for non-North American studies. Overall, our analysis indicates potential differences in some effects by region; however, our ability to investigate differences by region was hindered by a lack of studies from numerous locations.

3.7. Publication bias

For the Egger linear regression test, a non-zero intercept indicates the presence of publication bias. We found that most data groups from table 1 did not indicate a statistically significant non-zero intercept, indicating lack of evidence for publication bias. Considering the small number of estimates in each data group, we used 0.10 as the significance level, and identified only three data groups with potential indication of publication bias (table 2). Figure 3 shows an example funnel plot for the association between ozone and emergency hospital admissions for total or general respiratory disease, with and without adjustment for publication bias. If no publication bias
occurred, the plot of regression coefficients versus standard error would be approximately symmetrical. The ‘trim and fill’ approach estimates the number and results of hypothetical studies that would, if published, provide a more symmetrical distribution. In figure 3, open circles represent original studies’ estimates. Filled circles represent hypothetical estimates added by the ‘trim and fill’ method, and mirror a subset of the actual studies (open circles). The solid line reflects the central estimate by meta-analysis random model from the original estimates; the dashed line is the central estimate after the ‘trim and fill’, which is adjusted for publication bias. The mirror axis is very close to the dashed line and thus not shown.

Table 2 shows overall results with and without adjustment for publication bias. After adjusting for publication bias, central estimates became smaller and confidence intervals narrowed; however, associations with ozone remained. For all ages, for total or general respiratory emergency visits, the linear regression test showed an inverse bias as the individual estimates were small or even negative. Thus after adjustment, the central estimate increased slightly.

Several multi-city studies investigated short-term ozone exposure and respiratory hospital admissions or emergency visits. Here we define multi-city studies as those that present an overall estimate across several cities, as opposed to those that only present multiple single-city estimates without an overall estimate. The multi-city study design is less subject to publication bias or between-study variation due to differences in model design, as a uniform framework is applied to all cities separately. Supplemental table 2 (available at stacks.iop.org/ERL/6/024006/mmedia) summarizes the main results from multi-city studies. We used the same conversion ratio [100] as was applied in the meta-analysis to convert multi-city estimates to a 24 h mean metric. Multi-city studies were based in Canada, Australia, Europe, or the US. The largest was for 36 US cities [82].

We compared multi-city estimates to meta-analyses results by hospitalization type, disease category and age group, with close matches to lag selection and exposure season (table 3). In five of the six comparisons, meta-analysis results exceeded multi-city studies’ estimates, which provides further evidence of publication bias in single-city studies. For general hospital admissions for total or general respiratory disease among the elderly, the estimate from multi-city studies, 2.33% (0.55, 4.13%), was closer to the meta-analysis estimate adjusted for publication bias, 2.26% (0.89, 3.64%), than the unadjusted meta-analysis estimate, 2.47% (0.89, 4.07%).

4. Discussion

Several studies applied meta-analytical approaches to ozone and mortality [87–89]. To the best of our knowledge, no previous meta-analysis examined short-term ozone exposure and respiratory hospitalizations. Although multi-city studies have been conducted, our research aims to incorporate the value of previously conducted work by synthesizing evidence from single-city studies and investigating heterogeneity among study results.

We found that effects were similar by season, but higher for warm periods than year-round estimates, which were higher than cold season estimates. Individuals may have more outdoor activities in warm periods, resulting in higher exposure. Ozone’s impact on respiratory morbidity may be non-linear with different relative effects depending on ozone levels, which vary by season [86]. For instance, a U-shape relationship was reported for ozone and hospital admissions [109, 110]. A threshold effect, with no or little effect at low levels, would result in different effects by season. One study found evidence of a threshold of ~40–50 ppb for 8 h maximum ozone and hospitalizations [11]. However, others found increased risk of hospitalizations at 8 h maximum ozone <50 ppb, and the shape of the concentration–response function based on quintiles of
A meta-analysis of ozone and mortality found that the most statistically significant result, which may bias estimates upward [115]. However, if associations are observed in a multiple-day lag selection but not in a single-day lag selection, studies investigating single-day lag(s) might underestimate the effect [88].

Researchers applied different classifications of disease categories, even for identically worded categories (e.g., ‘pneumonia’). To generate overall estimates, we combined similar disease categories, although the actual diagnosis code(s) used in previous studies varied. Researchers also used different ozone metrics; thus results must be converted to a common metric for comparison, although the actual relationship among ozone metrics differs even within a community [100]. However, we found little difference among overall meta-analysis results based on the conversion ratio applied.

Table 3. Percentage increase (95% interval) in risk of hospital admissions or emergency visits per 10 ppb 24 h ozone for meta-analysis and multi-city studies. (Note: bold estimates are statistically significant.)

Disease	Type of result	Location	Lag selection	Age group	Season	Estimate (95% confidence interval)
General hospital admissions						
Total respiratory diseases	Meta-analysis result [53, 54, 59, 75, 116, 117]	6 single cities	Short-term lags	All ages	All or warm	2.03 (−0.21, 4.31)
Multi-city study [81]	from 6 studies					
Total respiratory diseases	Meta-analysis result [9, 10, 52, 54, 85, 117, 118]	16 Canadian cities	Lag1	All ages	Warm	2.50 (1.56, 3.45)
Multi-city study [81]	from 7 studies					
Asthma	Meta-analysis result [39, 53, 56, 119–121]	6 single cities	Short-term lags	All ages	All or warm	2.47 (0.89, 4.07)
Multi-city study [83]	from 6 studies					
COPD	Meta-analysis result [15, 16, 29, 84, 124]	5 cities in Europe	One-day lag	All	All	5.06 (1.24, 9.05)
Multi-city study [78]	from 6 studies					
Asthma	Meta-analysis result [6, 40, 43, 57, 71, 123]	6 cities from 6 studies	Short-term lags	Children	All	2.83 (−3.45, 9.52)
Multi-city study [79]	from 4 cities in Europe	Lag0 or lag1	Children	All	−0.77 (−4.14, 2.71)	

* Multiple short-term lags in different studies. * Adjusted for publication bias.

ozone concentration did not suggest a threshold [6]. Few studies considered a non-linear relationship between ozone and hospitalizations, although lack of a threshold was observed for ozone and mortality [111]. Interaction with or confounding by temporally varying factors such as weather and co-pollutants could also result in different effects by season.

A meta-analysis of ozone and mortality found that the overall result from studies reporting a single lag was higher than the overall result from studies providing estimates from multiple lags [89], implying that studies were more likely to report the lag with the largest effect. We were unable to explore lag structures in this manner due to a lack of available data; however, we examined publication bias in other ways. Although funnel plot results for some groups of estimates have an asymmetrically distributed shape, suggestive of publication bias, the Egger linear regression test provides evidence of an asymmetrically distributed shape, suggestive of publication bias. Our analysis revealed challenges in comparing across studies, in addition to publication bias. Many factors that could lead to heterogeneity across results were unreported or difficult to capture due to a small number of effect estimates, such as regional differences. Our protocol identified studies published over a time frame of almost 20 years. Associations between ozone and hospitalizations may have changed over this time frame, such as from changes in socioeconomic factors, and these temporal trends may vary by region. For example, prevalence of residential air conditioning, which affects exposure, has a diverse geographic distribution, is related to socioeconomic status, and is increasing [112]. Several studies demonstrated that air conditioning prevalence can modify health effect estimates for ozone [82, 113, 114].

Our ability to fully analyze differences by lag selection was limited, as many studies did not report results of all lag structures. Studies tend to report results for the lag(s) with the most statistically significant result, which may bias estimates upward [115]. However, if associations are observed in a multiple-day lag selection but not in a single-day lag selection, studies investigating single-day lag(s) might underestimate the effect [88].

Researchers applied different classifications of disease categories, even for identical categories (e.g., ‘pneumonia’). To generate overall estimates, we combined similar disease categories, although the actual diagnosis code(s) used in previous studies varied. Researchers also used different ozone metrics; thus results must be converted to a common metric for comparison, although the actual relationship among ozone metrics differs even within a community [100]. However, we found little difference among overall meta-analysis results based on the conversion ratio applied.
agencies, such as the US EPA and World Health Organization, that periodically review scientific evidence on how air pollution affects human health, and establish regulations and guidelines accordingly. Our findings that suggest publication bias in single-city estimates indicate that the use of multi-city studies may be particularly useful for providing evidence for policy decisions, although an overall assessment of scientific evidence also should consider single-city studies, especially as locally important factors, such as differences in population vulnerability, may play a role in how ozone affects health.

Acknowledgments

Funding was provided by the Yale University Carpenter Sperry Award, the Yale F&ES Summer 2008 Globalization Internships and Research Fund, the US Environmental Protection Agency STAR award (EPA R833665), and the National Institutes of Health (NIH) Outstanding New Environmental Scientist (ONES) Award (R01 ES 015028-02).

References

[1] Yassi A, Kjellström T, de Kok T and Guidotti T 2001 Basic Environmental Health (New York: Oxford University Press)
[2] Schwela D 2000 Air pollution and health in urban areas Rev. Environ. Health 15 13–42
[3] Lippmann M 1993 Health effects of tropospheric ozone: review of recent research findings and their implications to ambient air quality standards J. Expo. Anal. Environ. Epidemiol. 3 103–29
[4] Gouveia N and Fletcher T 2000 Respiratory diseases in children and outdoor air pollution in San Paulo, Brazil: a time series analysis Occup. Environ. Med. 57 477–83
[5] Gwynn R C, Burnett R T and Thurston G D 2000 A time-series analysis of acidic particulate matter and daily mortality and morbidity in the Buffalo, New York, region Environ. Health Perspect. 108 125–33
[6] Petrovetskevsky A, Simpson R W, Thalib L and Rutherford S 2001 Associations between outdoor air pollution and hospital admissions in Brisbane, Australia Arch. Environ. Health 56 37–52
[7] Martins L C, Latorre Mdo R, Saldiva P H and Braga A L 2002 Air pollution and emergency room visits due to chronic lower respiratory diseases in the elderly: an ecological time-series study in Sao Paulo, Brazil J. Occup. Environ. Med. 44 622–7
[8] Burnett R T, Dales R E, Raizenne M E, Krewski D, Summers P W, Roberts G R, Raad-Young M, Dann T and Brook J 1994 Effects of low ambient levels of ozone and sulfates on the frequency of respiratory admissions to Ontario hospitals Environ. Res. 65 172–94
[9] Schwartz J 1995 Short term fluctuations in air pollution and hospital admissions of the elderly for respiratory disease Thorax 50 531–8
[10] Schwartz J 1996 Air pollution and hospital admissions for respiratory disease Epidemiology 7 20–8
[11] Ponce de Leon A, Anderson H R, Bland J M, Strachan D P and Bower J 1996 Effects of air pollution on daily hospital admissions for respiratory disease in London between 1987–88 and 1991–92 J. Epidemiol. Commun. Health 50 s63–70
[12] Delfino R J, Murphy-Moulton A M, Burnett R T, Brook J R and Becklake M R 1997 Effects of air pollution on emergency room visits for respiratory illnesses in Montreal, Quebec Am. J. Respir. Crit. Care Med. 155 568–76
[13] Delfino R J, Murphy-Moulton A M and Becklake M R 1998 Emergency room visits for respiratory illnesses among the elderly in Montreal: association with low level ozone exposure Environ. Res. 76 67–77
[14] Cakmak S, Burnett R and Krewski D 1998 Adjusting for temporal variation in the analysis of parallel time series of health and environmental variables J. Expo. Anal. Environ. Epidemiol. 8 129–44
[15] Wong T W, Lau T S, Yu T S, Neller A, Wong S L, Tam W and Pang S W 1999 Air pollution and hospital admissions for respiratory and cardiovascular diseases in Hong Kong Occup. Environ. Med. 56 679–83
[16] Burnett R T, Smith-Doiron M, Stieb D, Cakmak S and Brook J R 1999 Effects of particulate and gaseous air pollution on cardiorespiratory hospitalizations Arch. Environ. Health 54 130–9
[17] Stieb D M, Beveridge R C, Brook J R, Smith-Doiron M, Burnett R T, Dales R E, Beaulieu S, Judek S and Mamedov A 2000 Air pollution, aerosol allergens and cardiorespiratory emergency department visits in Saint John, Canada J. Expo. Anal. Environ. Epidemiol. 10 461–77
[18] Burnett R T, Smith-Doiron M, Stieb D, Raizenne M E, Brook J R, Dales R E, Leech J A, Cakmak S and Krewski D 2001 Association between ozone and hospitalization for acute respiratory diseases in children less than 2 years of age Am. J. Epidemiol. 153 444–52
[19] Oftedal B, Na˚stad P, Magnus P, Bjerkly S and Skrondal A 2003 Traffic related air pollution and acute hospital admission for respiratory diseases in Drammen, Norway 1995–2000 Eur. J. Epidemiol. 18 671–5
[20] Yang Q, Chen Y, Shi Y, Burnett R T, McGrail K M and Krewski D 2003 Association between ozone and respiratory admissions among children and the elderly in Vancouver, Canada Inhal. Toxicol. 15 1297–308
[21] Dales R E, Cakmak S and Doiron M S 2006 Gaseous air pollutants and hospitalization for respiratory disease in the neonatal period Environ. Health Perspect. 114 1751–4
[22] Lin C A et al 1999 Air pollution and respiratory illness of children in Sao Paulo, Brazil Paediatrie. Perinat. Epidemiol. 13 475–88
[23] Tolbert P E, Klein M, Peel J L, Sarnat E and Sarnat J A 2007 Multipollutant modeling issues in a study of ambient air quality and emergency department visits in Atlanta J. Expo. Sci. Environ. Epidemiol. 17 829–35
[24] Schwartz J 1994 PM10, ozone, and hospital admissions for the elderly in Minneapolis–St Paul, Minnesota Arch. Environ. Health 49 366–74
[25] Schwartz J 1994 Air pollution and hospital admissions for the elderly in Detroit, Michigan Am. J. Respir. Crit. Care Med. 150 648–55
[26] Farhat S C, Paulo R L, Shimoda T M, Conceição G M, Lin C A, Braga A L, Warth M P and Saldiva P H 2005 Effect of air pollution on pediatric respiratory emergency room visits and hospital admissions Braz. J. Med. Biol. Res. 38 227–35
[27] Moolgavkar S H 2000 Air pollution and hospital admissions for chronic obstructive pulmonary disease in three metropolitan areas in the United States Inhal. Toxicol. 12 75–90
[28] Erbas B and Hyndman R J 2005 Sensitivity of the estimated air pollution–respiratory admissions relationship to statistical model choice Int. J. Environ. Health Res. 15 437–48
[29] Ko F W, Tam W, Wong T W, Chan D P, Tung A H, Lai C K and Hui D S 2007 Temporal relationship between air pollutants and hospital admissions for chronic obstructive pulmonary disease in Hong Kong Thorax 62 780–5
[30] Lee I M, Tsai S S, Chang C C, Ho C K and Yang C Y 2007 Air pollution and hospital admissions for chronic obstructive pulmonary disease in a tropical city: Kaohsiung, Taiwan Inhal. Toxicol. 19 393–8

[31] Tolbert P E, Klein M, Metzger K B, Peel J, Flanders W D, Todd K, Mutholland J A, Ryan P and Frumkin H 2000 Interim results of the study of particulates and health in Atlanta (SOPHA) J. Expo. Anal. Environ. Epidemiol. 10 446–60

[32] Yang C Y and Chen C J 2007 Air pollution and hospital admissions for chronic obstructive pulmonary disease in a subtropical city: Taipei, Taiwan J. Toxicol. Environ. Health A 70 1214–9

[33] Stieb D M, Burnett R T, Beveridge R C and Brook J R 1996 Association between ozone and asthma emergency department visits in Saint John, New Brunswick, Canada Environ. Health Perspect. 104 1354–60

[34] Sheppard L, Levy D, Norris G, Larson T V and Koenig J Q 1999 Effects of ambient air pollution on nonelderly asthma hospital admissions in Seattle, Washington, 1987–1994 Epidemiology 10 23–30

[35] Tobias A, Campbell M J and Saez M 1999 Modelling asthma epidemics on the relationship between air pollution and asthma emergency visits in Barcelona, Spain Eur. J. Epidemiol. 15 799–803

[36] Faureoux B, Sampil M, Quénel P and Lemoullec Y 2000 Ozone: a trigger for hospital pediatric asthma emergency room visits Pediatr. Pulmonol. 30 41–6

[37] Lee J T, Kim H, Song H, Hong Y C, Cho Y S, Shin S Y, Hyun Y J and Kim Y S 2002 Air pollution and asthma among children in Seoul, Korea Epidemiology 13 481–4

[38] Galán I, Toledo A, Banegas J R and Aránguez E 2003 Short-term effects of air pollution on daily asthma emergency room admissions Eur. Respir. J. 22 802–8

[39] Tsai S S, Cheng M H, Chiu H F, Wu T N and Yang C Y 2006 Air pollution and hospital admissions for asthma in a tropical city: Kaohsiung, Taiwan Inhal. Toxicol. 18 549–54

[40] Ko F W, Tam W, Wong T W, Lai C K, Wong G W, Leung T F, Ng S S and Hui D S 2007 Effects of air pollution on asthma hospitalization rates in different age groups in Hong Kong Clin. Exp. Allergy 37 1312–9

[41] Kim S Y, O’Neill M S, Lee J T, Cho Y, Kim J and Kim H 2007 Air pollution, socioeconomic position, and emergency hospital visits for asthma in Seoul, Korea Int. Arch. Occup. Environ. Health 80 701–10

[42] Villeneuve P J, Chen L, Rowe B H and Coates F 2007 Outdoor air pollution and emergency department visits for asthma among children and adults: a case–crossover study in northern Alberta, Canada Environ. Health 6 40

[43] Babin S M, Burkom H S, Holtry R S, Tabernero N R, Stokes L D, Davies-Cole J O, DeHaan K and Lee D H 2007 Pediatric patient asthma-related emergency department visits and admissions in Washington, DC, from 2001–2004, and associations with air quality, socio-economic status and age group Environ. Health 6 9

[44] Romieu I, Meneses F, Sienna-Monge J J, Huerta J, Ruiz Velasco S, White M C, Etzel R A and Hernandez-Avila M 1995 Effects of urban air pollutants on emergency visits for childhood asthma in Mexico City Am. J. Epidemiol. 141 546–53

[45] Tenias J M, Ballester F and Rivera M L 1998 Association between hospital emergency visits for asthma and air pollution in Valencia, Spain Occup. Environ. Med. 55 541–7

[46] Cassino C, Ito K, Bader I, Ciutoli C, Thurston G and Reibman J 1999 Cigarette smoking and ozone-associated emergency department use for asthma by adults in New York City Am. J. Respir. Crit. Care Med. 159 1773–9

[47] Carlin B P and Xia H 1999 Assessing environmental justice using Bayesian hierarchical models: two case studies J. Expo. Anal. Environ. Epidemiol. 9 66–78

[48] Tolbert P E et al 2000 Air quality and pediatric emergency room visits for asthma in Atlanta, Georgia, USA Am. J. Epidemiol. 151 708–810

[49] Szyszlowitz M 2008 Ambient air pollution and daily emergency department visits for asthma in Edmonton, Canada Int. J. Occup. Med. Environ. Health 21 25–30

[50] Paulu C and Smith A E 2008 Tracking associations between ambient ozone and asthma-related emergency department visits using case–crossover analysis J. Public Health Manag. Pract. 14 581–91

[51] Delfino R J, Becklake M R and Hanley J A 1994 The relationship of urgent hospital admissions for respiratory illnesses to photochemical air pollution levels in Montreal Environ. Res. 67 1–19

[52] Fung K Y, Khan S, Krewski D and Chen Y 2006 Association between air pollution and multiple respiratory hospitalizations among the elderly in Vancouver, Canada Inhal. Toxicol. 18 1005–11

[53] Fusco D, Forastiere F, Michelozzi P, Spada T, Ostro B, Arci M and Perucci C A 2001 Air pollution and hospital admissions for respiratory conditions in Rome, Italy Eur. Respir. J. 17 1143–50

[54] Luginaah I N, Fung K Y, Gorey K M, Webster G and Wills C 2005 Association of ambient air pollution with respiratory hospitalization in a government-designated ‘area of concern’: the case of Windsor, Ontario Environ. Health Perspect. 113 290–6

[55] Lin M, Stieb D M and Chen Y 2005 Coarse particulate matter and hospitalization for respiratory infections in children younger than 15 years in Toronto: a case–crossover analysis Pediatrics 116 e235–40

[56] Dab W et al 1996 Short term respiratory health effects of ambient air pollution: results of the APHEA project in Paris J. Epidemiol. Community Health 50 s42–6

[57] Atkinson R W et al 1999 Short-term associations between emergency hospital admissions for respiratory and cardiovascular disease and outdoor air pollution in London Arch. Environ. Health 54 398–411

[58] Ibabuca M et al 1999 Association between levels of fine particulate and emergency visits for pneumonia and other respiratory illnesses among children in Santiago, Chile J. Air Waste Manag. Assoc. 49 154–63

[59] Middleton N, Yiallouros P, Kleanthous S, Kolokotroni O, Schwartz J, Dockery D W, Demokritou P and Koutrakis P 2008 A 10-year time-series analysis of respiratory and cardiovascular morbidity in Nicosia, Cyprus: the effect of short-term changes in air pollution and dust storms Environ. Health 7 39

[60] Schwartz J 1994 Air pollution and hospital admissions for the elderly in Birmingham, Alabama Am. J. Epidemiol. 139 589–98

[61] Castellsague J, Sunyer J, Saez M and Antó J M 1995 Short-term association between air pollution and emergency room visits for asthma in Barcelona Thorax 50 1051–6

[62] Morgan G, Corbett S and Wlodeckycz J 1998 Air pollution and hospital admissions in Sydney, Australia, 1990 to 1994 Am. J. Public Health 88 1761–6

[63] Naumenberg E and Basu K 1999 Effect of insurance coverage on the relationship between asthma hospitalizations and exposure to air pollution Public Health Rep. 114 135–48

[64] Linn W S, Szlachcic Y, Gong H Jr, Kinney P L and Berhane K T 2000 Air pollution and daily hospital admissions in metropolitan Los Angeles Environ. Health Perspect. 108 427–34
[65] Jaffe D H, Singer M E and Rimm A A 2003 Air pollution and emergency department visits for asthma among Ohio Medicaid recipients, 1991–1996 Environ. Res. 91 21–8

[66] Prescott G J, Cohen G R, Elton R A, Fowkes F G and Agius R M 1998 Urban air pollution and cardiopulmonary ill health: a 14.5 year time series study Occup. Environ. Med. 55 697–704

[67] Voigt T, Bailey M and Abramson M 1998 Air pollution in the Latrobe Valley and its impact upon respiratory morbidity. Aust. NZ J. Public Health 22 556–61

[68] Dales R E, Cakmak S, Burnett R T, Judek S, Coates F and Brook J R 2000 Influence of ambient fungal spores on emergency visits for asthma to a regional children’s hospital Am. J. Respir. Crit. Care Med. 162 2087–90

[69] Lin M, Chen Y, Villeneuve P J, Burnett R T, Lemyre L, Hertzman C, McGrael K M and Krewski D 2004 Gaseous air pollutants and asthma hospitalization of children with low household income in Vancouver, British Columbia, Canada Am. J. Epidemiol. 159 294–303

[70] Yang Q, Chen Y, Krewski D, Burnett R T, Shi Y and McGrael K M 2005 Effect of short-term exposure to low levels of gaseous pollutants on chronic obstructive pulmonary disease hospitalizations Environ. Res. 99 99–105

[71] Anderson H R, Ponce de Leon A, Bland J M, Bower J S, Emberlin J and Strachan D P 1998 Air pollution, pollen, and daily admissions for asthma in London 1987–92 Thorax 53 842–8

[72] Braga A L, Saldívar P H, Pereira L A, Menezes J J, Conceição G M, Lin C A, Zanobetti A, Schwartz J and Dockery D W 2001 Health effects of air pollution exposure on children and adolescents in Sao Paulo, Brazil Pediatric. Pulmonol. 31 106–13

[73] Mohr L B, Luo S, Mathias E, Tobing R, Homans S and Sterling D 2008 Influence of season and temperature on the relationship of elemental carbon air pollution to pediatric asthma emergency room visits J. Asthma 45 936–43

[74] Gwynn R C and Thurston G D 2001 The burden of air pollution: impacts among racial minorities Environ. Health Perspect. 109 501–6

[75] Burnett R T, Cakmak S, Brook J R and Krewski D 1997 The role of particulate size and chemistry in the association between summertime ambient air pollution and hospitalization for cardiorespiratory diseases Environ. Health Perspect. 105 614–20

[76] Lee S L, Wong W H and Lau Y L 2006 Association between air pollution and asthma admission among children in Hong Kong Clin. Exp. Allergy 36 1138–46

[77] Wong C M, Atkinson R W, Anderson H R, Hedley A J, Ma S, Chau P Y and Lam T H 2002 A tale of two cities: effects of air pollution on hospital admissions in Hong Kong and London compared Environ. Health Perspect. 110 67–77

[78] Anderson H R et al 1997 Air pollution and daily admissions for chronic obstructive pulmonary disease in 6 European cites: results from the APHEA project Eur. Respir. J. 10 1064–71

[79] Sanyer J et al 1997 Urban air pollution and emergency admissions for asthma in four European cities: the APHEA Project Thorax 52 760–5

[80] Spix C et al 1998 Short-term effects of air pollution on hospital admissions of respiratory diseases in Europe: a quantitative summary of APHEA study results. Air Pollution and Health: A European Approach Arch. Environ. Health 53 54–64

[81] Burnett R T, Brook J R, Yung W T, Dales R E and Krewski D 1997 Association between ozone and hospitalization for respiratory diseases in 16 Canadian cities Environ. Res. 72 24–31

[82] Medina-Ramón M, Zanobetti A and Schwartz J 2006 The effect of ozone and PM10 on hospital admissions for pneumonia and chronic obstructive pulmonary disease: a national multicity study Am. J. Epidemiol. 163 579–88

[83] Cakmak S, Dales R E and Judek S 2006 Respiratory health effects of air pollution gases: modification by education and income Arch. Environ. Occup. Health 61 5–10

[84] Schouten J P, Vonk J M and de Graaf A 1996 Short term effects of air pollution on emergency hospital admissions for respiratory disease: results of the APHEA project in two major cities in The Netherlands, 1977–89 J. Epidemiol. Community Health 50 s22–9

[85] Moolgavkar S H, Luebeck E G and Anderson E L 1997 Air pollution and hospital admissions for respiratory causes in Minneapolis–St. Paul and Birmingham Epidemiology 8 364–70

[86] Logan J A 1985 Tropospheric ozone: seasonal behavior, trends, and anthropogenic influence J. Geophys. Res. 90 10 463–82

[87] Levy J I, Chemerynski S M and Sarnat J A 2005 Ozone exposure and mortality: an empiric Bayes metaregression analysis Epidemiology 16 458–68

[88] Ito K, De Leon S F and Lippmann M 2005 Associations between ozone and daily mortality: analysis and meta-analysis Epidemiology 16 446–57

[89] Bell M L, Dominici F and Samet J M 2005 A meta-analysis of time-series studies of ozone and mortality with comparison to the National Morbidity, Mortality, and Air Pollution Study Epidemiology 16 436–45

[90] Tseng R Y, Li C K and Spinks J A 1992 Particulate air pollution and hospitalization for asthma Ann. Allergy 68 425–32

[91] Thurston G D, Ito K, Hayes C G, Bates D V and Lippmann M 1994 Respiratory hospital admissions and summertime haze air pollution in Toronto, Ontario: consideration of the role of acid aerosols Environ. Res. 65 271–90

[92] Burnett R T, Dales R, Krewski D, Vincent R, Dann T and Brook J R 1995 Associations between ambient particulate sulfate and admissions to Ontario hospitals for cardiac and respiratory diseases Am. J. Epidemiol. 142 15–22

[93] Jones G N, Sletten C, Mandry C and Brantley P J 1995 Ozone level effect on respiratory illness: an investigation of emergency department visits South. Med. J. 88 1049–56

[94] Weisel C P, Cody R P and Liow P J 1995 Relationship between summertime ambient ozone levels and emergency department visits for asthma in central New Jersey Environ. Health Perspect. 103 97–102

[95] Hernández-Garduño E, Pérez-Neria J, Paccagnella A M, Piña-García M, Munguía-Castro M, Catalán-Vázquez M and Rojas-Ramos M 1997 Air pollution and respiratory health in Mexico City J. Occup. Environ. Med. 39 299–307

[96] Tobias A, Saéz M, Galán I and Campbell M J 2003 Sensitivity analysis of common statistical models used to study the short-term effects of air pollution on health Int. J. Biometeorol. 47 227–9

[97] Ponka A and Virtanen M 1994 Chronic bronchitis, emphysema, and low-level air pollution in Helsinki, 1987–1989 Environ. Res. 65 207–17

[98] Sutton A J, Abrams K R, Jones D R, Shelton T A and Song F 2000 Methods for Meta-analysis in Medical Research (Wiley Series in Probability and Statistics—Applied Probability and Statistics Section) (New York: Wiley)

[99] USEPA 2006 Air Quality Criteria for Ozone and Related Photochemical Oxidants (2006 Final) (Washington, DC: USEP Agency)
[100] Anderson G B and Bell M L 2008 Does one size fit all? The suitability of standard ozone exposure metric conversion ratios and implications for epidemiology J. Exp. Sci. Environ. Epidemiol. 20 2–11
[101] European Environmental Agency 2010 AirBase: The European Air Quality Database (available at: http://www.eea.europa.eu/themes/air/airbase)
[102] Easterbrook P J, Berlin J A, Gopalan R and Matthews D R 1991 Publication bias in clinical research Lancet 337 867–72
[103] Light R J and Pillemer D B 1984 Summing Up: The Science of Reviewing Research (Cambridge, MA: Harvard University Press)
[104] Egger M, Davey Smith G, Schneider M and Minder C 1997 Bias in meta-analysis detected by a simple, graphical test Brit. Med. J. 315 629–34
[105] Sterne J A C, Gavaghan D and Egger M 2000 Publication and related bias in meta-analysis: power of statistical tests and prevalence in the literature J. Clin. Epidemiol. 53 1119–29
[106] Duval S and Tweedie R 2000 Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis Biometrics 56 455–63
[107] Simpson R, Williams G, Petroeschevsky A, Best T, Morgan G, Denison L, Hinwood A and Neville G 2005 The short-term effects of air pollution on hospital admissions in four Australian cities Aust. NZ J. Public Health 29 213–21
[108] Lin S, Bell E M, Liu W, Walker R J, Kim N K and Hwang S A 2008 Ambient ozone concentration and hospital admissions due to childhood respiratory diseases in New York State, 1991–2001 Environ. Res. 108 42–7
[109] Buchdahl R, Parker A, Stebbings T and Babiker A 1996 Association between air pollution and acute childhood wheezy episodes: prospective observational study Brit. Med. J. 312 661–5
[110] Buchdahl R, Willems C D, Vander M and Babiker A 2000 Associations between ambient ozone, hydrocarbons, and childhood wheezy episodes: a prospective observational study in south east London Occup. Environ. Med. 57 86–93
[111] Bell M L, Peng R D and Dominici F 2006 The exposure–response curve for ozone and risk of mortality and the adequacy of current ozone regulations Environ. Health Perspect. 114 532–36
[112] Kinney P L, O’Neill M S, Bell M L and Schwartz J 2008 Approaches for estimating effects of climate change on heat-related deaths: challenges and opportunities Environ. Sci. Policy 11 87–96
[113] Medina-Ramón M and Schwartz J 2008 Who is more vulnerable to die from ozone air pollution? Epidemiology 19 672–9
[114] Bell M L and Dominici F 2008 Effect modification by community characteristics on the short-term effects of ozone exposure and mortality in 98 US communities Am. J. Epidemiol. 167 986–97
[115] Lumley T and Sheppard L 2000 Assessing seasonal confounding and model selection bias in air pollution epidemiology using positive and negative control analyses Environmetrics 11 705–17
[116] Hagen J A, Nafstad P, Skrondal A, Bjørksly S and Magnus P 2000 Associations between outdoor air pollutants and hospitalization for respiratory diseases Epidemiology 11 136–40
[117] Wong C M, Yang L, Thach T Q, Chau P Y, Chan K P, Thomas G N, Lam T H, Wong T W, Hedley A J and Peiris J S 2009 Modification by influenza on health effects of air pollution in Hong Kong Environ. Health Perspect. 117 248–53
[118] Schwartz J et al 1996 Methodological issues in studies of air pollution and daily counts of deaths or hospital admissions J. Epidemiol. Community Health 50 83–11
[119] Yang C Y, Chen C C, Chen C Y and Kuo H W 2007 Air pollution and hospital admissions for asthma in a subtropical city: Taipei, Taiwan J. Toxicol. Environ. Health A 70 111–7
[120] Erbas B, Chang J H, Dharmage S, Ong E K, Hyndman R, Newbiggin E and Abramson M 2007 Do levels of airborne grass pollen influence asthma hospital admissions? Clin. Exp. Allergy 37 1641–7
[121] Bell M L, Levy J K and Lin Z 2008 The effect of sandstorms and air pollution on cause-specific hospital admissions in Taipei, Taiwan Occup. Environ. Med. 65 104–11
[122] Lin M, Chen Y, Burnett R T, Villeneuve P J and Krewski D 2003 Effect of short-term exposure to gaseous pollution on asthma hospitalisation in children: a bi-directional case-crossover analysis J. Epidemiol. Community Health 57 50–5
[123] Anderson H R, Brenner S A, Atkinson R W, Harrison R M and Walters S 2001 Particulate matter and daily mortality and hospital admissions in the West Midlands conurbation of the United Kingdom: associations with fine and coarse particles, black smoke and sulphate Occup. Environ. Med. 58 504–10
[124] Hinwood A L, De Klerk N, Rodriguez C, Jacoby P, Runnion T, Rye P, Landau L, Murray F, Feldwick M and Spickett J 2006 The relationship between changes in daily air pollution and hospitalizations in Perth, Australia 1992–1998: a case-crossover study Int. J. Environ. Health Res. 16 27–46
[125] Peel J L, Tolbert P E, Klein M, Metzger K B, Flanders W D, Todd K, Mulholland J A, Ryan P B and Frumkin H 2005 Ambient air pollution and respiratory emergency department visits Epidemiology 16 104–11
[126] Wilson A M, Wake C P, Kelly T and Salloway J C 2005 Air pollution, weather, and respiratory emergency room visits in two northern New England cities: an ecological time-series study Environ. Res. 97 312–21
[127] Boutin-Forzano S, Adel N, Gratecos L, Jullian H, Garnier J M, Ramadour M, Lanteaume A, Hamon M, Lafay V and Charpin D 2004 Visits to the emergency room for asthma exacerbations and air pollutants in children living in Belfast, Northern Ireland Arch. Environ. Health 56 234–41
[128] Erbas B, Kelly A M, Physick B, Code C and Edwards M 2005 Air pollution and childhood asthma emergency hospital admissions: estimating intra-city regional variations Int. J. Environ. Health Res. 15 11–20
[129] Jayaraman G and Nidhi 2008 Air pollution and associated respiratory morbidity in Delhi Health Care Manag. Sci. 11 132–8