A Note on Polynomial Identity Testing for Depth-3 Circuits

V. Arvind∗ Abhranil Chatterjee † Rajit Datta †
Partha Mukhopadhyay§
May 22, 2018

Abstract

Let C be a depth-3 arithmetic circuit of size at most s, computing a polynomial $f \in \mathbb{F}[x_1, \ldots, x_n]$ (where $\mathbb{F} = \mathbb{Q}$ or \mathbb{C}) and the fan-in of the product gates of C is bounded by d. We give a deterministic polynomial identity testing algorithm to check whether $f \equiv 0$ or not in time $2^d \text{poly}(n, s)$.

Over finite fields, for $\text{Char}(\mathbb{F}) > d$ we give a deterministic algorithm of running time $2^{\gamma d} \text{poly}(n, s)$ where $\gamma \leq 5$.

1 Introduction

Polynomial Identity Testing (PIT) is the following problem: Given an arithmetic circuit C computing a polynomial in $\mathbb{F}[x_1, \ldots, x_n]$, determine whether C computes an identically zero polynomial or not. The problem can be presented either in the white-box model or in the black-box model. In the white-box model, the arithmetic circuit is given explicitly as the input. In the black-box model, the arithmetic circuit is given black-box access, and the circuit can be evaluated over any point in \mathbb{F}^n (or \mathbb{F}^n where $\mathbb{F} \subseteq F$ is an extension field). Over the years, the problem has played pivotal role in many important results in complexity theory and algorithms: Primality Testing [AKS04], the PCP Theorem [ALM+98], IP = PSPACE [Sha90], graph matching algorithms [Lov79, MVV87]. The problem PIT admits a co-RP algorithm

∗Institute of Mathematical Sciences, Chennai, India, email: arvind@imsc.res.in
†Institute of Mathematical Sciences, Chennai, India, email: abhranilc@imsc.res.in
‡Chennai Mathematical Institute, Chennai, India, email: rajit@cmi.ac.in
§Chennai Mathematical Institute, Chennai, India, email: partham@cmi.ac.in
via the Schwartz-Zippel-Lipton-DeMillo Lemma [Sch80,Zip79,DL78], but an efficient deterministic algorithm is known only in some special cases. An important result of Impagliazzo and Kabanets [KI04] (also, see [HS80,Agr05]) shows a connection between the existence of a subexponential time PIT algorithm and arithmetic circuit lower bounds. We refer the reader to the survey of Shpilka and Yehudayoff [SY10] for the exposition of important results in arithmetic circuit complexity, and polynomial identity testing problem.

In a surprising result, Agrawal and Vinay [AV08] show that an efficient deterministic PIT algorithm only for depth-4 $\Sigma\Pi\Sigma\Pi$ circuits is sufficient for obtaining an efficient deterministic PIT algorithm for the general arithmetic circuits. The main technical ingredient in their proof is an ingenious depth-reduction technique. Over characteristic zero fields, derandomization of PIT even for depth-3 $\Sigma\Pi\Sigma$ circuits suffices [GKKS13].

Motivated by the results of [KI04,Agr05,AV08], a large body of research consider the polynomial identity testing problem for restricted classes of depth-3 and depth-4 circuits. A particularly popular model in depth three arithmetic circuits is $\Sigma\Pi\Sigma(k)$ circuit, where the fan-in of the top Σ gate is bounded by k. Dvir and Shpilka have shown a white-box quasi-polynomial time deterministic PIT algorithm for $\Sigma\Pi\Sigma(k)$ circuits [DS07]. Kayal and Saxena have given a deterministic $\text{poly}(d^k, n, s)$ white-box algorithm for the same problem [KS07]. Following the result of [KS07] (also see [AM10] for a different analysis), Karnin and Shpilka have given the first black-box quasi-polynomial time algorithm for $\Sigma\Pi\Sigma(k)$ circuits [KST11]. Later, Kayal and Saraf [KS09] have shown a polynomial-time deterministic black-box PIT algorithm for the same class of circuits over \mathbb{Q} or \mathbb{R}. Finally, Saxena and Sheshadhri have settled the situation completely by giving a deterministic polynomial-time black-box algorithm for $\Sigma\Pi\Sigma(k)$ circuits [SS12] over any field. Recently, Oliveira et al. have given a sub-exponential PIT-algorithm for depth-3 and depth-4 multilinear formulas [dOSlV16].

For general depth-3 $\Sigma\Pi\Sigma$ circuits with \times-gate fan-in bounded by d no deterministic algorithm with running time better than $\min\{d^n, n^d\} \text{poly}(n, d)$ is known. Our main results are the following.

Theorem 1. Let C be a depth-3 $\Sigma\Pi\Sigma$ circuit of size at most s, computing a polynomial $f \in \mathbb{F}[x_1, \ldots, x_n]$ (where $\mathbb{F} = \mathbb{Q}$ or \mathbb{C}) and the fan-in of the product gates of C is bounded by d. We give a white-box deterministic polynomial time identity testing algorithm to check whether $f \equiv 0$ or not in time $2^d \text{poly}(n, s)$.

As an immediate corollary we get the following.
Corollary 1. Let C be a depth-3 $\Sigma\Pi\Sigma$ circuit of size at most s, computing a polynomial $f \in \mathbb{F}[x_1, \ldots, x_n]$ (where $\mathbb{F} = \mathbb{Q}$ or \mathbb{C}) and the fan-in of the product gates of C is bounded by $O(\log n)$. We give a deterministic $\text{poly}(n, s)$ time identity testing algorithm to check whether $f \equiv 0$ or not.

Over the fields of positive characteristics, we show the following result.

Theorem 2. Let C be a depth-3 $\Sigma\Pi\Sigma$ circuit of size at most s, computing a polynomial $f \in \mathbb{F}[x_1, \ldots, x_n]$ and the fan-in of the product gates of C is bounded by d. For $\text{Char}(\mathbb{F}) > d$, we give a white-box deterministic polynomial time identity testing algorithm to check whether $f \equiv 0$ or not in time $2^{\gamma d} \text{poly}(n, s)$. The constant γ is at most 5.

2 Organization

The paper is organized as follows. Section 3 contains preliminary materials. In Section 4 we prove Theorem 1. Theorem 4 is proved in Section 5.

3 Preliminaries

For a monomial m and a polynomial f, let $[m]f$ denote the coefficient of the monomial m in f. We denote the field of rational numbers as \mathbb{Q}, and the field of complex numbers as \mathbb{C}. The depth-3 $\Sigma\Pi\Sigma(s, d)$ circuits compute polynomials of the following form:

$$C(x_1, \ldots, x_n) = \sum_{i=1}^{s} \prod_{j=1}^{d} L_{i,j}(x_1, \ldots, x_n).$$

where $L_{i,j}$’s are affine linear forms over \mathbb{F}. The following observation is well-known and it says that for PIT purpose it is sufficient to consider homogeneous circuits.

Observation 1. Let $C(x_1, \ldots, x_n)$ be a $\Sigma\Pi\Sigma(s, d)$ circuit. Then $C \equiv 0$ if and only if $z^d C(x_1/z, \ldots, x_n/z) \equiv 0$ where z is a new variable.

We use the notation $\Sigma[s]\Pi[d]\Sigma$ to denote homogeneous depth-3 circuits of top Σ gate fan-in s, product gates fan-in bounded by d.

We recall the definition of Hadamard Product of two polynomials. The concept of Hadamard product is particularly useful in noncommutative computations [AJ09, AS18].

3
Definition 1. Given two degree d polynomials $f, g \in \mathbb{F}[x_1, x_2, \ldots, x_n]$, the Hadamard Product $f \circ g$ is defined as

$$f \circ g = \sum_{m: \deg(m) \leq d} ([m]f \cdot [m]g) \cdot m.$$

For the PIT purpose in the commutative setting, we adapt the notion of Hadamard Product suitably and define a scaled version of Hadamard Product of two polynomials.

Definition 2. Given two degree d polynomials $f, g \in \mathbb{F}[x_1, x_2, \ldots, x_n]$, the scaled version of the Hadamard Product $f \circ^s g$ is defined as

$$f \circ^s g = \sum_{m: \deg(m) \leq d} (m! \cdot [m]f \cdot [m]g) \cdot m$$

where $m = x_1^{e_1} x_2^{e_2} \cdots x_r^{e_r}$ for some $r \leq d$ and by abusing the notation we define $m! = e_1! \cdot e_2! \cdot \cdots \cdot e_r!$.

For the purpose of PIT over \mathbb{Q}, it is enough to be able to compute $f \circ^s f(1, 1, \ldots, 1)$. As $f \circ^s f$ has only non-negative coefficients, we will see a non-zero value when we compute $f \circ^s f(1, 1, \ldots, 1)$ if and only if $f \not\equiv 0$. Over \mathbb{C} it is enough to compute $f \circ^s \overline{f}(1, 1, \ldots, 1)$ where \overline{f} denotes the polynomial obtained by conjugating every coefficient of f.

We also recall a result of Ryser [Rys63] that gives a $\Sigma^{[2^n]} \Pi^{[n]} \Sigma$ circuit for the Permanent polynomial of $n \times n$ symbolic matrix.

Lemma 1 (Ryser [Rys63]). For a matrix X with variables $x_{ij} : 1 \leq i, j \leq n$ as entries,

$$\text{Perm}(X) = (-1)^n \sum_{S \subseteq [n]} (-1)^{|S|} \prod_{i=1}^n \left(\sum_{j \in S} x_{ij} \right).$$

Lemma 2. For a monomial $m = x_{i_1} x_{i_2} \cdots x_{i_d}$ (i_1, \ldots, i_d need not be distinct) and a homogeneous $\Pi \Sigma$ circuit $C = \prod_{j=1}^d L_j$ we have:

$$[m]C = \frac{1}{m!} \sum_{\sigma \in S_d} \prod_{j=1}^d ([x_{i_j}] L_{\sigma(j)}).$$

Proof. The monomial m can be obtained from C by first fixing a bijection $\sigma : [d] \rightarrow [d]$ and considering the coefficient $[m]C_\sigma = \prod_{j=1}^d [x_{i_{\sigma(j)}}] L_j = \prod_{j=1}^d [x_{i_j}] L_{\sigma^{-1}(j)}$. This is one way of generating this monomial and this
monomial \(m \) can be generated in many different orders. The final \([m]C\) is the sum of all coefficients \([m]C_\sigma\) generated in all distinct orders.

Now if \(m = x_{i_1}^{e_1} x_{i_2}^{e_2} \ldots x_{i_r}^{e_r} \) for some \(r \leq d \) then for a fixed \(\sigma \) one can obtain \(m! \) different bijections that do not change the string \(x_{i_{\sigma(1)}} x_{i_{\sigma(2)}} \ldots x_{i_{\sigma(d)}} \) and these will generate the same coefficient \(\prod_{j=1}^{d} [x_{i_{\sigma(j)}}] L_j \). Thus only the bijections that produce a different string from \(x_{i_{\sigma(1)}} x_{i_{\sigma(2)}} \ldots x_{i_{\sigma(d)}} \) are relevant. To account for the coefficients produced by the extra bijections we divide by \(m! \)

Now we are ready to prove the main theorems.

4 The results over zero characteristics

To prove Theorem 1, the following theorem is sufficient.

Theorem 3. Given a homogeneous \(\Sigma^{[s]} \Pi^{[d]} \Sigma \) circuit \(C \) computing a degree \(d \) polynomial in \(\mathbb{F}[x_1, x_2, \ldots, x_n] \) (where \(\mathbb{F} = \mathbb{Q} \) or \(\mathbb{C} \)), we can test whether \(C \equiv 0 \) or not deterministically in \(2^d \text{poly}(s, n) \) time.

Proof. For simplicity, we present the proof only over \(\mathbb{Q} \). Over \(\mathbb{C} \), we need a minor modification as explained in Remark 1. Given the circuit \(C \) we compute \(C \circ^s C \) and evaluate at \((1, 1, \ldots, 1)\) point. Notice that over rationals, \(C \circ^s C \) has non-negative coefficients. This also implies that \(C \equiv 0 \) if and only if \(C \circ^s C(1, 1, \ldots, 1) = 0 \). So it is sufficient to show that \(C \circ^s C(1, \ldots, 1) \) can be computed deterministically in time \(2^d \text{poly}(s, n) \). Since the scaled Hadamard Product distributes over addition, we only need to show that the scaled Hadamard Product of two \(\Pi \Sigma \) circuits can be computed efficiently.

Lemma 3. Given two homogeneous \(\Pi^{[d]} \Sigma \) circuits \(C_1 = \prod_{i=1}^{d} L_i \) and \(C_2 = \prod_{i=1}^{d} L'_i \); we have:

\[
C_1 \circ^s C_2 = \sum_{\sigma \in S_d} \prod_{i=1}^{d} (L_i \circ^s L'_{\sigma(i)}).
\]

Proof. We prove the formula monomial by monomial. Let \(m = x_{i_1} x_{i_2} \ldots x_{i_d} \) be a monomial in \(C_1 \) (Note that \(i_1, i_2, \ldots, i_d \) need not be distinct).
Now let \(m \) be a monomial that appears in both \(C_1 \) and \(C_2 \). From Lemma \(\ref{lemma2} \) the coefficients are

\[
[m] C_1 = \alpha_1 = \frac{1}{m!} \left(\sum_{\sigma \in S_d} \prod_{j=1}^{d} \left[x_{i_j} \right] L_{\sigma(j)} \right)
\]

and

\[
[m] C_2 = \alpha_2 = \frac{1}{m!} \left(\sum_{\pi \in S_d} \prod_{j=1}^{d} \left[x_{i_j} \right] L'_{\pi(j)} \right)
\]

respectively.

From the definition \(\ref{definition2} \) we have

\[
[m](C_1 \circ^s C_2) = m! \cdot \alpha_1 \cdot \alpha_2.
\]

Now let us consider the matrix \(T \) where \(T_{ij} = L_i \circ^s L_j' : 1 \leq i, j \leq d \) and

\[
\text{Perm}(T) = \sum_{\sigma \in S_d} \prod_{i=1}^{d} L_i \circ^s L'_{\sigma(i)}.
\]

The coefficient of \(m \) in \(\text{Perm}(T) \) is

\[
[m] \text{Perm}(T) = \sum_{\sigma \in S_d} [m] \left(\prod_{j=1}^{d} L_j \circ^s L'_{\sigma(j)} \right).
\]

Similar to Lemma \(\ref{lemma2} \) we notice the following.

\[
[m] \text{Perm}(T) = \sum_{\sigma \in S_d} \frac{1}{m!} \sum_{\pi \in S_d} \prod_{j=1}^{d} \left[x_{i_j} \right] (L_{\pi(j)} \circ^s L'_{\sigma(\pi(j))})
\]

\[
= \frac{1}{m!} \sum_{\sigma \in S_d} \sum_{\pi \in S_d} \prod_{j=1}^{d} \left(\left[x_{i_j} \right] L_{\pi(j)} \right) \cdot \left(\left[x_{i_j} \right] L'_{\sigma(\pi(j))} \right)
\]

\[
= \frac{1}{m!} \sum_{\sigma \in S_d} \sum_{\pi \in S_d} \prod_{j=1}^{d} \left(\left[x_{i_j} \right] L_{\pi(j)} \right) \cdot \prod_{j=1}^{d} \left(\left[x_{i_j} \right] L'_{\sigma(\pi(j))} \right)
\]

\[
= \sum_{\pi \in S_d} \left(\prod_{j=1}^{d} \left(\left[x_{i_j} \right] L_{\pi(j)} \right) \cdot \frac{1}{m!} \sum_{\sigma \in S_d} \prod_{j=1}^{d} \left(\left[x_{i_j} \right] L'_{\sigma(\pi(j))} \right) \right)
\]

\[
= m! \cdot \frac{1}{m!} \sum_{\pi \in S_d} \left(\prod_{j=1}^{d} \left(\left[x_{i_j} \right] L_{\pi(j)} \right) \cdot \frac{1}{m!} \sum_{\sigma \in S_d} \prod_{j=1}^{d} \left(\left[x_{i_j} \right] L'_{\sigma(\pi(j))} \right) \right).
\]

Clearly, for any fixed \(\pi \in S_d \), we have that \(\sum_{\sigma \in S_d} \prod_{j=1}^{d} \left[x_{i_j} \right] L'_{\sigma(\pi(j))} = m! \alpha_2 \). Hence, \([m] \text{Perm}(T) = m! \cdot \alpha_1 \cdot \alpha_2 \) and the lemma follows.

\(\square \)
Lemma 4. Given two $\Pi[d]\Sigma$ circuits C_1 and C_2 we can compute a $\Sigma[2^d]\Pi[d]\Sigma$ for $C_1 \circ^s C_2$ in time $2^d \text{poly}(n, d)$.

Proof. From Lemma 3 we observe that $\text{Perm}(T)$ gives a circuit for $C_1 \circ^s C_2$. A $\Sigma[2^d]\Pi[d]\Sigma$ circuit for $\text{Perm}(T)$ can be computed in $2^d \text{poly}(n, d)$ time using Lemma 1.

Now we show how to take the scaled Hadamard Product of two $\Sigma\Pi\Sigma$ circuits.

Lemma 5. Given two $\Sigma\Pi[d]\Sigma$ circuits $C = \sum_{i=1}^{s} P_i$ and $\tilde{C} = \sum_{i=1}^{\tilde{s}} \tilde{P}_i$ We can compute a $\Sigma[2^d\tilde{s}]\Pi[d]\Sigma$ circuit for $C \circ^s \tilde{C}$ in time $2^d \text{poly}(s, \tilde{s}, d, n)$.

Proof. We first note that by distributivity,

$$C \circ^s \tilde{C} = \sum_{i=1}^{s} \sum_{j=1}^{\tilde{s}} P_i \circ^s \tilde{P}_j.$$

Using Lemma 4 for each pair $P_i \circ^s \tilde{P}_j$ we get a $\Sigma[2^d]\Pi[d]\Sigma$ circuit P_{ij}. Now the formula $\sum_{i=1}^{s} \sum_{j=1}^{\tilde{s}} P_{ij}$ is a $\Sigma[2^d\tilde{s}]\Pi[d]\Sigma$ formula which can be computed in $2^d \text{poly}(s, \tilde{s}, d, n)$ time.

Remark 1. To adapt the algorithm over \mathbb{C}, we need to just compute $C \circ^s \tilde{C}$ where \tilde{C} is the polynomial obtained from C by conjugating each coefficient. Note that a circuit computing \tilde{C} can be obtained from C by just conjugating the scalars that appear in the linear forms of C. This follows from the fact that the conjugation operation distributes over addition and multiplication. Now we have $[m](C \circ^s \tilde{C}) = [m](C)^2$, so the coefficients are all positive and thus evaluating $C \circ^s \tilde{C}(1, 1, \ldots, 1)$ is sufficient for the PIT algorithm.
5 The results over finite fields

In this section we extend the PIT results over the finite fields. Now we state the main theorem of the section.

Theorem 4. Let C be a depth-3 $\Sigma\Pi\Sigma$ circuit of size at most s, computing a polynomial $f \in \mathbb{F}[x_1, \ldots, x_n]$ and the fan-in of the product gates of C is bounded by d. For $\text{Char}(\mathbb{F}) > d$, we give a white-box deterministic polynomial time identity testing algorithm to check whether $f \equiv 0$ or not in time $2^{\gamma d} \text{poly}(n, s)$. The constant γ is at most 5.

Proof. Consider first the case when $p = \text{Char}(\mathbb{F}) > d$. From Lemma 2, notice that for any $\Pi[d] \Sigma$ circuit P,

$$[m]P = \frac{1}{m!} \sum_{\sigma \in S_d} \prod_{j=1}^{d} ([x_{i_j}] L_{\sigma(j)}).$$

and $m! \neq 0 \mod p$. Now define the $d \times d$ matrix T_P such that each row of T_P is just the linear forms $L_1 L_2 \ldots L_d$ appearing in P. Clearly the following is true.

$$\text{Perm}(T_P) = \sum_{\sigma \in S_d} \prod_{j=1}^{d} L_{\sigma(j)}.$$

Use Ryser’s formula given by Lemma 1 to express $\text{Perm}(T_P)$ as a depth-3 $\Sigma[2^d] \Pi[d] \Sigma$ circuit. If $C = P_1 + \ldots + P_s$, consider the polynomial $f_C = \sum_{i=1}^{s} \text{Perm}(T_{P_i})$. Notice that f_C can be expressed as $\Sigma[2^d, s] \Pi[d] \Sigma$ circuit. Consider the noncommutative version of the polynomial f_C which we denote as f_C^{nc}. Clearly we have a noncommutative ABP for f_C^{nc} of width $w = 2^d \cdot s$ and d many layers.

Now we make an important observation from the proof of Lemma 2. Suppose \mathcal{M} be the set of all monomials of degree d over x_1, \ldots, x_n. For a fixed monomial $m \in \mathcal{M}$ of form $x_{i_1} x_{i_2} \ldots x_{i_d}$ where $i_1 \leq i_2 \leq \ldots \leq i_d$ and $\sigma \in S_d$, define $m^\sigma = x_{i_{\sigma(1)}} x_{i_{\sigma(2)}} \ldots x_{i_{\sigma(d)}}$. The monomial m can be present in f_C^{nc} in different orders m^σ. We claim that $f \equiv 0$ if and only if $f_C^{nc} \equiv 0$. To see the claim, the following simple lemma suffices.

Lemma 6. Let $f = \sum_{m \in \mathcal{M}} [m] f \cdot m$ where $[m] f \in \mathbb{F}$ for all monomials $m \in \mathcal{M}$. Then

$$f_C^{nc} = \sum_{m \in \mathcal{M}} \sum_{\sigma \in S_d} m! \cdot [m] f \cdot m^\sigma.$$

\[\text{Again, we identify the linear forms as } L_1, L_2, \ldots, L_d \text{ where } L_1, \ldots, L_{e_1} \text{ are the same, } L_{e_1+1}, \ldots, L_{e_1+e_2} \text{ are the same and so on.}\]
Proof. Let $x_{i_1} \ldots x_{i_d}$ be a fixed ordering of a monomial m appearing in f_C^{nc}. The coefficient of $x_{i_1} \ldots x_{i_d}$ in $\text{Perm}(T_p) = \sum_{\sigma \in S_d} \prod_{j=1}^{d} L_{\sigma(j)}$ is simply $\sum_{\sigma \in S_d} \prod_{j=1}^{d} [x_{i_j}] L_{\sigma(j)}$. But from Lemma 2, $\sum_{\sigma \in S_d} \prod_{j=1}^{d} [x_{i_j}] L_{\sigma(j)}$ is exactly $m! \cdot [m] P$. Since $[m] f = \sum_{i=1}^{s} [m] P_i$, the lemma follows.

Now we apply the identity testing algorithm of Raz and Shpilka for noncommutative ABPs on the ABP of f_C^{nc} to get the desired result [RS05]. The bound on γ comes from Theorem 4 of their paper [RS05].

As an immediate application of Theorem 4, we state the following corollary.

Corollary 2. Let C be a depth-3 $\Sigma\Pi\Sigma$ circuit of size at most s, computing a polynomial $f \in \mathbb{F}[x_1, \ldots, x_n]$ and the fan-in of the product gates of C is bounded by d. Suppose that $\text{Char}(\mathbb{F}) > d$. For $d = O(\log n)$, we give a deterministic $\text{poly}(n, s)$ time identity testing algorithm to check whether $f \equiv 0$ or not.

References

[Agr05] Manindra Agrawal. Proving lower bounds via pseudo-random generators. In *FSTTCS 2005: Foundations of Software Technology and Theoretical Computer Science, 25th International Conference*, pages 92–105, 2005.

[AJ09] Vikraman Arvind and Pushkar S. Joglekar. Arithmetic circuits, monomial algebras and finite automata. In *Mathematical Foundations of Computer Science 2009, 34th International Symposium, MFCS 2009, Novy Smokovec, High Tatras, Slovakia, August 24-28, 2009. Proceedings*, pages 78–89, 2009.

[AKS04] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. PRIMES is in P. *Ann. of Math.*, 160(2):781–793, 2004.

[ALM+98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof verification and the hardness of approximation problems. *J. ACM*, 45(3):501–555, 1998.
[AM10] Vikraman Arvind and Partha Mukhopadhyay. The ideal membership problem and polynomial identity testing. *Inf. Comput.*, 208(4):351–363, 2010.

[AS18] Vikraman Arvind and Srikanth Srinivasan. On the hardness of the noncommutative determinant. *Computational Complexity*, 27(1):1–29, 2018.

[AV08] Manindra Agrawal and V Vinay. Arithmetic circuits: A chasm at depth four. In *Proceedings-Annual Symposium on Foundations of Computer Science*, pages 67–75. IEEE, 2008.

[DL78] Richard A. DeMillo and Richard J. Lipton. A probabilistic remark on algebraic program testing. *Inf. Process. Lett.*, 7:193–195, 1978.

[dOSlV16] Rafael Mendes de Oliveira, Amir Shpilka, and Ben lee Volk. Subexponential size hitting sets for bounded depth multilinear formulas. *Computational Complexity*, 25(2):455–505, 2016.

[DS07] Zeev Dvir and Amir Shpilka. Locally decodable codes with two queries and polynomial identity testing for depth 3 circuits. *SIAM J. Comput.*, 36(5):1404–1434, 2007.

[GKKS13] Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Saptharishi. Arithmetic circuits: A chasm at depth three. In *FOCS*, pages 578–587, 2013.

[HS80] Joos Heintz and Claus-Peter Schnorr. Testing polynomials which are easy to compute (extended abstract). In *Proceedings of the 12th Annual ACM Symposium on Theory of Computing*, 1980, pages 262–272, 1980.

[KI04] Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial identity tests means proving circuit lower bounds. *Computational Complexity*, 13(1-2):1–46, 2004.

[KS07] Neeraj Kayal and Nitin Saxena. Polynomial identity testing for depth 3 circuits. *Computational Complexity*, 16(2):115–138, 2007.

[KS09] Neeraj Kayal and Shubhangi Saraf. Blackbox polynomial identity testing for depth 3 circuits. In *50th Annual IEEE Symposium on Foundations of Computer Science*, pages 501–510, 2009.
sium on Foundations of Computer Science, FOCS 2009, pages 198–207, 2009.

[KS11] Zohar Shay Karnin and Amir Shpilka. Black box polynomial identity testing of generalized depth-3 arithmetic circuits with bounded top fan-in. *Combinatorica*, 31(3):333–364, 2011.

[Lov79] László Lovász. On determinants, matchings, and random algorithms. In *FCT*, pages 565–574, 1979.

[MVV87] Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani. Matching is as easy as matrix inversion. *Combinatorica*, 7(1):105–113, 1987.

[RS05] Ran Raz and Amir Shpilka. Deterministic polynomial identity testing in non-commutative models. *Computational Complexity*, 14(1):1–19, 2005.

[Rys63] H.J. Ryser. *Combinatorial Mathematics*. Carus mathematical monographs. Mathematical Association of America, 1963.

[Sch80] Jacob T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. *J. ACM*, 27(4):701–717, 1980.

[Sha90] Adi Shamir. IP=PSPACE. In *31st Annual Symposium on Foundations of Computer Science, St. Louis, Missouri, USA, October 22-24, 1990, Volume I*, pages 11–15, 1990.

[SS12] Nitin Saxena and C. Seshadhri. Blackbox identity testing for bounded top-fanin depth-3 circuits: The field doesn’t matter. *SIAM J. Comput.*, 41(5):1285–1298, 2012.

[SY10] Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent results and open questions. *Foundations and Trends in Theoretical Computer Science*, 5(3-4):207–388, 2010.

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. In *Symbolic and Algebraic Computation, EUROSAM ’79, An International Symposium on Symbolic and Algebraic Computation*, pages 216–226, 1979.