Antiplasmodial, antimalarial activities and toxicity of African medicinal plants: a systematic review of literature

Elahe Tajbakhsh1, Tebit Emmanuel Kwenti2,3,4, Parya Kheyri5, Saeed Nezaratizade5, David S. Lindsay6 and Faham Khamesipour7,8*

Abstract

Background: Malaria still constitutes a major public health menace, especially in tropical and subtropical countries. Close to half a million people mainly children in Africa, die every year from the disease. With the rising resistance to frontline drugs (artemisinin-based combinations), there is a need to accelerate the discovery and development of newer anti-malarial drugs. A systematic review was conducted to identify the African medicinal plants with significant antiplasmodial and/or anti-malarial activity, toxicity, as well as assessing the variation in their activity between study designs (in vitro and in vivo).

Methods: Key health-related databases including Google Scholar, PubMed, PubMed Central, and Science Direct were searched for relevant literature on the antiplasmodial and anti-malarial activities of African medicinal plants.

Results: In total, 200 research articles were identified, a majority of which were studies conducted in Nigeria. The selected research articles constituted 722 independent experiments evaluating 502 plant species. Of the 722 studies, 81.9%, 12.4%, and 5.5% were in vitro, in vivo, and combined in vitro and in vivo, respectively. The most frequently investigated plant species were Azadirachta indica, Zanthoxylum chalybeum, Picrilia nitida, and Nauclea latifolia meanwhile Fabaceae, Euphorbiaceae, Annonaceae, Rubiaceae, Rutaceae, Meliaceae, and Lamiaceae were the most frequently investigated plant families. Overall, 248 (34.3%), 241 (33.4%), and 233 (32.3%) of the studies reported very good, good, and moderate activity, respectively. Alchornea cordifolia, Flueggea virosa, Cryptolepis sanguinolenta, Zanthoxylum chalybeum, and Maytenus senegalensis gave consistently very good activity across the different studies. In all, only 31 (4.3%) of studies involved pure compounds and these had significantly ($p = 0.044$) higher antiplasmodial activity relative to crude extracts. Out of the 198 plant species tested for toxicity, 52 (26.3%) demonstrated some degree of toxicity, with toxicity most frequently reported with Azadirachta indica and Vernonia amygdalina. These species were equally the most frequently inactive plants reported. The leaves were the most frequently reported toxic part of plants used. Furthermore, toxicity was observed to decrease with increasing antiplasmodial activity.

Conclusions: Although there are many indigenous plants with considerable antiplasmodial and anti-malarial activity, the progress in the development of new anti-malarial drugs from African medicinal plants is still slothful, with only one clinical trial with Cochlospermum planchonii (Bixaceae) conducted to date. There is, therefore, the need to scale up anti-malarial drug discovery in the African region.

Keywords: Malaria, Medicinal plants, Antiplasmodial activity, Antimalarial activity

*Correspondence: faham.khamesipour@yahoo.com
7 Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
Full list of author information is available at the end of the article

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
Background

Malaria still constitutes a major public health menace, especially in tropical and subtropical countries. Various species of *Plasmodium*, transmitted through the bite of an infected female *Anopheles* mosquito, cause malaria, including *Plasmodium falciparum*, *Plasmodium malariae*, *Plasmodium ovale*, *Plasmodium vivax*, and *Plasmodium knowlesi*. Among these species, *P. falciparum* is the most virulent, responsible for the highest morbidity and mortality. It is also the predominant species in sub-Saharan Africa (SSA), a region with the highest number of malaria cases and deaths in the world. According to the World Health Organization (WHO), there were 228 million cases, and 405,000 malaria attributed deaths in 2018 [1]. In SSA, children and pregnant women are the most at-risk groups [1–3].

Malaria can be treated using chemotherapy but there is widespread resistance to many of the drugs. The first case of resistance to artesinin was reported in Cambodia in 2006 and has then spread to most of South-East Asia [4, 5]. The safety of chemoprophylaxis is also a major concern; for instance, primaquine, atovaquone, and doxycycline are contraindicated in pregnant women and children [6]. All these shortcomings necessitate the discovery and production of new drugs to treat malaria.

In the past 50 years, natural compounds including plant products, have played an important role in drug discovery and have provided value to the pharmaceutical industry [7]. For instance, therapeutics for various infectious diseases, cancer, and other debilitation diseases caused by metabolic disorders have all benefited from many drug classes that were initially developed based on active compounds from plant sources [8]. Furthermore, quinine and artemisinin, and their synthetic derivatives which are the mainstay of anti-malarial chemotherapy, were also derived from plant sources. In malaria-endemic areas, especially in Africa, many people rely on herbal medicines as the first line of treatment [9]. The common reasons for their preference vary from the cost of standard drugs, availability and accessibility, perceived effectiveness, low side effect, and faith in traditional medicines [10].

Reviews of the antiplasmodial and anti-malarial activities of medicinal plants are needed to drive research into the discovery and production of new anti-malarial drugs. Only a few reviews of the antiplasmodial or anti-malarial activity of medicinal plants have been published in the scientific literature [11–16]. These reviews focused only on studies with high antiplasmodial or anti-malarial activity and hardly report on their toxicity. The purpose of this study was to review medicinal plants with moderate to very good antiplasmodial and anti-malarial activities, as well as assess the variation in the activities between different methods. Furthermore, the toxicity of plant species is highlighted.

Methods

The literature was reviewed in search of scientific articles reporting antiplasmodial activities (IC$_{50}$, ED$_{50}$, LD$_{50}$, and parasite suppression rate) of medicinal plants used in Africa to treat malaria. The current study conforms to the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines [17].

Search strategy and selection criteria

Relevant articles were searched in health-related electronic databases including PubMed, PubMed Central, Google Scholar, and ScienceDirect using the keywords: Traditional herbs or Medicinal plants or Antiplasmodial activity or Antimalarial activity or Herbal medicine or *Plasmodium*.

The search was limited to studies published in English or containing at least an abstract written in English until May 2020. The titles and abstracts were subsequently examined by two reviewers, independently (parallel method) to identify articles reporting the antiplasmodial activity of medicinal plants. In the case of any discrepancy in their reports, a third reviewer was brought in to resolve the issue. Relevant papers were equally manually cross-checked to identify further references. The following data were extracted from the selected articles by the reviewers: plant species, plant family, place of collection, parts of the plant used, type of study (whether in vitro, in vivo, or human), the extraction solvent used, IC$_{50}$ or ED$_{50}$ values, parasite suppression rate, isolated compounds, interaction with known malarial drugs (whether synergistic or antagonistic), and toxicity. Articles that did not report antiplasmodial or anti-malarial activity of medicinal plants as well as review articles were excluded. The entire selection process is presented in Fig. 1.

In this study, antiplasmodial activity pertains to studies performed in vitro using different strains of *Plasmodium falciparum*, meanwhile, anti-malarial activity is reserved for in vivo studies performed using mice and various parasite models (including *Plasmodium berghei*, *Plasmodium yoelii*, and *Plasmodium chabaudi*) and reporting parasite suppression rate.

Categorization of antiplasmodial and anti-malarial activities

For in vitro studies, the antiplasmodial activity of an extract was considered very good if IC$_{50}$ < 5 µg/ml, good 5 µg/ml ≤ IC$_{50}$ < 10 µg/ml, and moderate 10 µg/ml ≤ IC$_{50}$ < 20 µg/ml [18]. For in vivo studies, the anti-malarial activity of an extract is considered very good if the suppression is ≥ 50% at 100 mg/kg body weight/day, good if the suppression is ≥ 50% at 250 mg/kg body weight/day, and moderate if the suppression is ≥ 50% at 500 mg/kg body weight/day [18]. Antiplasmodial activities of 20 µg/ml and above for in vitro studies and
anti-malarial ≥ 50% at > 500 mg/kg body weight/day for in vivo studies, were considered inactive.

Risk of bias in individual studies
The level of risk of bias for the study was likely to be high mainly because of differences in the studies and the methods used to determine the antiplasmodial or anti-malarial activity. The stains of Plasmodium used to assess the antiplasmodial or anti-malarial activity of the medicinal plants equally varied between studies. Furthermore, the extraction solvent, as well as the extraction yield of the plants in the different studies, was not the same, which may have accounted for the variation in the antiplasmodial and anti-malarial activities for the same plants but in the different studies.

Results
The PRISMA flowchart (Fig. 1) presents a four-phase study selection process in the present systematic review study. A total of 25,159 titles were identified in the initial search. After the title and abstract screening, 228 full-text
articles were retrieved. Of these, a final 200 articles were identified for the review.

For this review, the evaluation of the individual plant species was considered as an independent study, so it is common for one article to have more than one study depending on the number of plant species evaluated. In all, there were 722 independent studies. Five hundred and ninety-one (81.9%) of the independent studies were in vitro (Table 1), 90 (12.4%) were in vivo (Table 2) and 40 (5.5%) were both in vitro and in vivo (Table 3). There was only one human study (clinical trial) conducted so far (Table 4). The selected research articles were from 31 African countries. Out of the 200 research articles reviewed, most of them were from Nigeria (29.0%), Kenya (24.0%), Ethiopia (6.5%), Cameroon (5.0%), Ivory Coast (5.5%), D.R. Congo (5.0%), and Burkina Faso (3.5%) (Fig. 2). The studies cover the period from 1989 to 2020.

Family and species distribution of plants evaluated
From 722 studies, the most frequent plant families studied included Fabaceae 47 (6.5%), Euphorbiaceae 45 (6.2%), Annonaceae 37 (5.1%), Rubiaceae 37 (5.1%), Rutaceae 37 (5.1%), Meliaceae 30 (4.2%), and Lamiaceae 12 (1.7%). Five hundred and two (502) plant species were investigated in this study. Of them, the most investigated were: Azadirachta indica, Zanthoxylum chalybeum, Picrilima nitida, and Nauclea latifolia. The most frequent parts of the plants tested were the leaves, roots, root bark, stems, and the whole plant. A majority of the studies used the crude extracts of the plants compared to pure compounds (95.7% vs. 4.3%). In descending order, methanol 322 (44.7%), dichloromethane 207 (28.7%), ethanol 103 (14.3%), water 85 (11.7%) and ethyl acetate 62 (8.6%) were the most frequent extraction solvent used.

In vitro and in vivo activities of the plants evaluated
Overall, 248 (34.3%) of the studies reported activity that was very good (IC$_{50}$ values < 5 µg/ml or suppression rate of $\geq 50\%$ at 100 mg/kg body weight/day), 241 (33.4%) reported good activity and 233 (32.3%) reported moderate activity. For the in vitro studies, a majority 228 (38.6%) reported very good activity; 206 (34.9%) reported good activity and 187 (31.6%) reported moderate activity. Meanwhile for the in vivo studies, a majority 19 (21.1%) reported moderate activity, 16 (17.8%) reported very good activity and 13 (14.4%) reported good activity. For studies reporting both the in vitro and in vivo activity, a majority of 17 (42.5%) reported only moderate activity, 13 (32.5%) studies reported very good activity and 10 (25.0%) reported good activity. Among the plants with very good activity, only one species demonstrated very good activity both in vitro and in vivo (Table 3).

Among the studies, the most frequent plant species demonstrating very good antiplasmodial activity were: Alchornea cordifolia [3/3, 100%], Flueggea virosa [3/3, 100%], Cryptolepis sanguinolenta [9/4, 75%], Zanthoxylum chalybeum [4/5, 80%] and Maytenus senegalensis [3/6, 50%]. Plant families with the most active species include Rutaceae [13/25, 52.0%], Apocynaceae [13/26, 50%], Celastraceae [7/15, 46.7%], Annonaceae [17/37, 45.9%], Euphorbiaceae [21/48, 43.8%], Combretaceae [7/16, 43.8%], Fabaceae [18/47, 38.3%], Lamiaceae [8/23, 34.8%], Asteraceae [23/69, 33.3%], and Rubiaceae [8/37, 21.6%]. The fractions are derived from the count of studies reporting very good antiplasmodial activity (numerator) divided by the total number of studies that assessed the activity of that plant species (denominator).

Azadirachta indica and Vernonia amygdalina were the most frequently reported inactive species (Additional file 1: Table S1). Furthermore, Fabaceae, Rubiaceae, Euphorbiaceae, and Asteraceae were the plant families containing the most frequently reported inactive plants. A majority of 95.7% (691/722) of the studies used the crude extract of the plants. The antiplasmodial and/or anti-malarial activity was significantly higher ($p = 0.044$) in studies using pure compounds compared to those using crude preparations.

Toxicity of plants evaluated for their antiplasmodial and anti-malarial activity
Out of the 198 plants evaluated in toxicity assays, 52 (26.3%) were found to demonstrate some degree of toxicity. The most frequently reported plants with toxicity were Azadirachta indica and Vernonia amygdalina. Plant families harboring the most toxic species were Lamiaceae, Anacardiaceae, Moraceae, Meliaceae, Asteraceae, and Fabaceae. Approximately 33% of the plants tested demonstrated some toxicity in vitro and 26.7% had some degree of toxicity in vivo. Among plants with very good, good, and moderate antimalarial activity, 17.8%, 28.3%, and 35.4% had some degree of toxicity, respectively. The leaf was the plant part with the most frequently reported toxicity. Albino mice and Vero E6 cells were the most commonly used assays for the assessment of the toxicity of the plants.

Discussion
Resistance to the frontline anti-malarial drugs is increasing and is now a global concern. With this rising rate of resistance, there is a need to accelerate research into the discovery and development of new anti-malarial drugs. Unfortunately, from this study, it is evident that the progress into the discovery of a new anti-malarial drug in
Table 1 In vitro antiplasmodial activity of African medicinal plants

Plant species	Plant family	Country of study	Part of plant used	Extraction solvent	Antiplasmodial Activity	IC50 or ED50 or LD50	Strain of Plasmodium Tested	Toxicity (value; assay)
Dicoma anomala subsp. Gerrardii	Compositae	South Africa	Whole plant	Methanol, Water, Hexane, Dichloromethane	Very Good*	1.865 µM IC50	Plasmodium falciparum	Nd
Abutilon grandiflorum	Malvaceae	Tanzania	Roots	Ethyl Acetate	Moderate	10 µg/ml IC50	Plasmodium falciparum	Nd
Acacia nilotica	Fabaceae	Kenya	Inner Barks	Methanol	Very Good	4.48 µg/ml IC50	Plasmodium falciparum	No
Acacia nilotica	Fabaceae	South Africa	Twigs	Dichloromethane/Methanol	Moderate	13 µg/ml IC50	Plasmodium falciparum	Nd
Acacia polyantha	Fabaceae	Tanzania	Root Barks	Ethyl Acetate	Moderate	13 µg/ml IC50	Plasmodium falciparum	Nd
Acacia tortilis	Fabaceae	Kenya	Stem Barks	Methanol	Moderate	13.4 µg/ml IC50	Plasmodium falciparum	Nd
Acacia xanthoploea	Fabaceae	South Africa	Whole Plant	Dichloromethane/Methanol	Very Good	4.8 µg/ml IC50	Plasmodium falciparum	Nd
Acacia xanthoploea	Fabaceae	South Africa	Stem Barks	Acetone	Moderate	10.1 µg/ml IC50	Plasmodium falciparum	Nd
Amorpha fruticosa	Euphorbiaceae	Kenya	Leaves	Methanol	Moderate	13.8 µg/ml IC50	Plasmodium falciparum	Nd
Acanthospermum hispidum DC	Compositae	Kenya	Leaves	Ethyl Acetate	Moderate	11 µg/ml IC50	Plasmodium falciparum	Nd
Acanthospermum hispidum DC	Compositae	Burkina Faso	Stems, Leaves	Crude Alkaloid	Good	4–10 µg/ml IC50	Plasmodium falciparum	Nd
Acanthospermum hispidum DC	Compositae	Ivory Coast	Stems and Leaves	Ethanol	Moderate	13.7 µg/ml IC50	Plasmodium falciparum	Nd
Acridocarpus chloropetanus	Malpighiaceae	Republic of Congo	Leaves	Methanolic, Ethanol	Very Good	2.8 µg/ml IC50	Plasmodium falciparum	No
Achnanthus aspera	Amaranthaceae	South Africa	Whole plant	Dichloromethane/Methanol	Good	9.9 µg/ml IC50	Plasmodium falciparum	Nd
Acmella cauliflora	Compositae	Kenya	Whole plant	Dichloromethane	Good	5.201–9.939 µg/ml IC50	Plasmodium falciparum	Nd
Adenia cissampeloides	Passifloraceae	Ghana	Whole plant	Ethanol	Good	8.521 µg/ml IC50	Plasmodium falciparum	Nd
Adhatoda latibracteata	Acanthaceae	Gabon	Stems	Dichloromethane	Very Good	0.7–1.6 µg/ml IC50	Plasmodium falciparum	No
Aerva javanica	Amaranthaceae	Sudan	Whole plant	Petroleum Ether/Chloroform	Very Good	<5 µg/ml IC50	Plasmodium falciparum	Nd
Aerva lanata	Amaranthaceae	Tanzania	Whole plant	Ethyl Acetate	Good	8.6 µg/ml IC50	Plasmodium falciparum	Nd
Aframomum giganteum	Zingiberaceae	Gabon	Stems	Dichloromethane	Moderate	8.3–13.5 µg/ml IC50	Plasmodium falciparum	No

Very Good indicates an IC50 value of 1.865 µM or less; *Moderate* indicates an IC50 value of 10 µg/ml or less; *Good* indicates an IC50 value of 4–10 µg/ml; *Very Good* indicates an IC50 value of <5 µg/ml; No indicates no activity detected.
Plant species	Plant family	Source	Country of study	Part of plant used	Extraction solvent	Antiplasmodial Activity	Strain of Plasmodium Tested	Toxicity (value; assay)	
Agathosma apiculata	Rutaceae	[22] South Africa	Whole plant	Dichloromethane/Methanol	Good 5.2 µg/ml IC₅₀	Plasmodium falciparum D10	Nd		
Ageratum conyzoides	Compositae	Kenya	Whole plant	Methanol	Moderate 11.5–12.1 µg/ml IC₅₀	Plasmodium falciparum D6, W2	Nd		
Ajuga remota	Lamiaceae	Kenya	Whole plant	Dichloromethan	Very Good 2.15–3.444 µg/ml IC₅₀	Plasmodium falciparum W2, D6	Nd		
Alafia barteri	Apocynaceae	[36] Nigeria	Leaves	Water	Very Good 1.5 µg/ml IC₅₀	Plasmodium falciparum	Nd		
Albizia coriaria	Fabaceae	Kenya	Stem barks	Dichloromethane	Good 6.798–10.679 µg/ml IC₅₀	Plasmodium falciparum W2, D6	Nd		
Albizia gummifera	Fabaceae	Kenya	Stem barks	Methanol	Moderate 15.2–16.8 µg/ml IC₅₀	Plasmodium falciparum D6, W2	Nd		
Alchornea cordifolia	Euphorbiaceae	[39] Ivory Coast	Leaves	Ethanol	Very Good 0.2–0.5 µM IC₅₀	Plasmodium falciparum	No		
Alstonia boonei	Apocynaceae	[42] Nigeria	Stem barks	Ethanol	Moderate 15 µg/ml IC₅₀	Plasmodium falciparum K1	Nd		
Alstonia congensis	Apocynaceae	[44] D.R. Congo	Leaves, Barks	N-Hexane, Chloroform, Acetone.	4.84 µg/ml IC₅₀	Plasmodium falciparum K1	No		
Aloe marlothii	Xanthorrhoeaceae	South Africa	Whole plant	Dichloromethane/Athanol	Moderate 12.5 µg/ml IC₅₀	Plasmodium falciparum D10	Nd		
Aloe maculata	Xanthorrhoeaceae	South Africa	Whole plant	Dichloromethane/Athanol	Good 3.5 µg/ml IC₅₀	Plasmodium falciparum D10	Nd		
Aloe pulcherrima	Xanthorrhoeaceae	South Africa	Whole plant	Dichloromethane/Athanol	Moderate 8 µg/ml IC₅₀	Plasmodium falciparum D10	Nd		
Aloe ferox	Xanthorrhoeaceae	South Africa	Whole plant	Dichloromethane/Athanol	Moderate 12.4 µg/ml IC₅₀	Plasmodium falciparum D10	Nd		
Aloe pulcherrima	Xanthorrhoeaceae	South Africa	Whole plant	Dichloromethane/Athanol	Moderate 18.6 µg/ml IC₅₀	Plasmodium falciparum	No		
Aloe Newspina	Xanthorrhoeaceae	South Africa	Whole plant	Methanol	Moderate 15.4 µg/ml IC₅₀	Plasmodium falciparum CQ-S	No		
Aloe secundiflora	Xanthorrhoeaceae	Nigeria	Leaves	Ethanol	Moderate 12.3 µg/ml IC₅₀	Plasmodium falciparum FCB1	Nd		
Aloe pulcherrima	Xanthorrhoeaceae	Egypt	Leaves, Barks	Water, Methanol	Very Good 2—5 µg/ml IC₅₀	Plasmodium falciparum K1	Nd		
Plant species	Plant family	Source	Country of study	Part of plant used	Extraction solvent	Antiplasmodial Activity	IC50 or ED50 or LD50	Strain of Plasmodium Tested	Toxicity (value; assay)
-----------------------------	--------------	-------------------	------------------	--------------------	--------------------	-------------------------	----------------------	-----------------------------	------------------------------
Ampelocissus africana	Vitaceae	[20] Kenya	Whole plant	Ethyl Acetate	Good	9.0 µg/ml IC50		Plasmodium falciparum K1	Nd
Andrographis paniculata	Acanthaceae	[45] Cambodia	Whole plant	Dichloromethane	Moderate	12.7 µg/ml IC50		Plasmodium falciparum W2	Nd
Annona cunerae	Annonaceae	[31] Tanzania	Leaves	Methanol	Very Good	0.12 µg/ml IC50		Plasmodium falciparum K1	No
Annona chinensis	Compositae	[46] D.R. Congo	Whole plant	Methanolic and dichloromethane	Good	6.3 ± µg/ml IC50		Plasmodium falciparum (3D7, W2), Plasmodium berghei berghei	No
Annona reticulata	Annonaceae	[47] Cameroon	Roots	Ethanol	Very good	1.90 ± µg/ml IC50		Plasmodium falciparum W2	Nd
Annona muriata	Annonaceae	[48] Ivory Coast	Leaves	Pentane	Moderate	8–18 ± µg/ml IC50		Plasmodium falciparum (CQ-5, (Nigerian)	Nd
Anogeissus leiocarpus	Combretaceae	[50] Nigeria	Ns	Methanol, Water, Butanol, Ethyl Acetate	Moderate	10.94–13.77 ± µg/ml IC50		Plasmodium falciparum 3D7, K1	Nd
Annonidium munnii	Annonaceae	[49] Cameroon	Leaves	Methylene Chloride	Very Good	3.8 ± µg/ml IC50		Plasmodium falciparum K1	No
Ansellia africana	Orchidaceae	[20] Tanzania	Leaves	Ethyl Acetate	Moderate	10 ± µg/ml IC50		Plasmodium falciparum W2	Nd
Anthocleista grandiflora	Gentianaceae	[37] South Africa	Stem barks	Dichloromethane	Good	8.69 ± µg/ml IC50		Plasmodium falciparum NF54	Nd
Anthocleista nobilis	Gentianaceae	[52] Burkina Faso	Leaves	Dichloromethane	Moderate	10 ± µg/ml IC50		Plasmodium falciparum	Nd
Anthocleista vogelli	Gentianaceae	[53] Nigeria	Roots	Petroleum Ether	Good	9.5 ± µg/ml IC50		Plasmodium falciparum D10	Nd
Arenga engleri	Arecaceae	[25] South Africa	Stem barks	Dichloromethane	Very Good	1.7 ± µg/ml IC50		Plasmodium falciparum UP1 (CQ-R)	Yes (SI = 121; mouse [NBMH])
Artabotrys monteiroae	Annonaceae	[22] South Africa	Twigs	Dichloromethylene/Methanol/Butanol	Good	8.7 ± µg/ml IC50		Plasmodium falciparum D10	Nd
Artemisia afra	Asteraceae	[54] Zimbabwe	Leaves	Petroleum/Ethyl Acetate	Moderate	8.9–15.3 ± µg/ml IC50		Plasmodium falciparum D10	Nd
Artemisia annua	Asteraceae	[22] South Africa	Leaves	Dichloromethane	Good	5 ± µg/ml IC50		Plasmodium falciparum D6, W2	Nd
Artocarpus communis	Moraceae	[24] Kenya	Leaves	Methanol	Good	3.9–9.1 ± µg/ml IC50		Plasmodium falciparum D6, W2	Nd
Asparagus virgatus	Asparagaceae	[22] South Africa	Whole plant	Dichloromethane/Methanol	Good	8 ± µg/ml IC50		Plasmodium falciparum D10	Nd
Aspilia africana	Asteraceae	[56] Uganda	Shoots	Ethyl Acetate	Moderate	9.3–11.5 ± µg/ml IC50		Plasmodium falciparum D10, K1	Nd
Table 1 (continued)

Plant species	Plant family	Source	Country of study	Part of plant used	Extraction solvent	Antiplasmodial Activity	IC$_{50}$ or ED$_{50}$ or LD$_{50}$	Strain of Plasmodium Tested	Toxicity (value; assay)
Aspilia prulista	Compositae	[24] Kenya	Root barks	Methanol	Good	6.8–9.7 µg/ml C$_{50}$	Plasmodium falciparum D6, W2	No	
Acanthospermus gregoritica	Acanthaceae	[22] South Africa	Twigs	Dichloromethane/Methanol	Moderate	16 µg/ml IC$_{50}$	Plasmodium falciparum D10	No	
Azadirachta indica	Meliaceae	[57] India, Pakistan	Stems, leaves	Water	Very Good	2.35–6.8 µg/ml IC$_{50}$	Plasmodium falciparum Fcb1 & F32	No	
Azadirachta indica	Meliaceae	[45] Cambodia	Barks	Dichloromethane	Very Good	4.7 µg/ml IC$_{50}$	Plasmodium falciparum W2	No	
Azadirachta indica	Meliaceae	[58] Sudan	Leaves	Methanol	Very Good	1.7–5.8 µg/ml IC$_{50}$	Plasmodium falciparum 3D7, Dd5	No	
Azadirachta indica	Meliaceae	[59] Togo	Leaves	Ethanol	Very Good	2.48–2.5 µg/ml IC$_{50}$	Plasmodium falciparum W2, D6	No	
Balanites aegyptiaca	Zygophyllaceae	[24] Kenya	Root barks	Methanol	Good	8.9 µg/ml C$_{50}$	Plasmodium falciparum D6, W2	No	
Balanites aegyptiaca	Zygophyllaceae	[21] Kenya	Root barks	Methanol	Very Good	3.49 µg/ml IC$_{50}$	Plasmodium falciparum D6	No	
Balkanites maughamhi	Zygophyllaceae	[25] South Africa	Stem barks	Dichloromethane	Very good	1.94 µg/ml IC$_{50}$	Plasmodium falciparum UP1 (CQ-R)	No	
Barringtonia racemosa	Lecythidaceae	[22] South Africa	Twigs	Dichloromethane/Methanol	Good	5.7 µg/ml IC$_{50}$	Plasmodium falciparum D10	No	
Berberis holsti	Berberidaceae	[61] Malawi	Roots	Dichloromethane/Methanol	Very Good	0.17 µg/ml IC$_{50}$	Plasmodium falciparum 3D7	No	
Berberis holsti	Berberidaceae	[24] Kenya	Root barks	Methanol	Very Good	< 5 µg/ml C$_{50}$	Plasmodium falciparum D6, W2	No	
Berberis holsti	Berberidaceae	[24] Kenya	Root barks	Methanol	Good	19.53 µg/ml IC$_{50}$	Plasmodium falciparum 3D7, W2	No	
Berula erecta	Apioideae	[22] South Africa	Whole plant	Dichloromethane	Moderate	6.6 µg/ml IC$_{50}$	Plasmodium falciparum D10	No	
Berula erecta	Apioideae	[24] Kenya	Leaves	Methanol	Good	9.9 µg/ml IC$_{50}$	Plasmodium falciparum D6, W2	No	
Berula erecta	Apioideae	[22] South Africa	Leaves	Methanol	Good	5 µg/ml IC$_{50}$	Plasmodium falciparum D10	No	
Berula erecta	Apioideae	[63] Senegal	Leaves	Petroleum ether	Moderate	9–18 µg/ml IC$_{50}$	Plasmodium falciparum Fcb1, F32	Yes (IC$_{50}$ = 10 µg/ml; Vero cells)	
Bixa orellana	Bixaceae	[45] Cambodia	Leaves	Water	Good	9.3 µg/ml IC$_{50}$	Plasmodium falciparum W2	No	
Boscia angustifolia	Capparaceae	[24] Kenya	Stem barks	Water	Very good	1.4–4.7 µg/ml C$_{50}$	Plasmodium falciparum D6, W2	No	
Boscia salicifolia	Capparaceae	[26] Kenya	Stem barks	Methanol	good	1.1–8.8 µg/ml IC$_{50}$	Plasmodium falciparum D6, W2	No	
Boswellia dalubieli	Buxaceae	[50] Nigeria	Ns	Methanol, Water, Butanol, Ethyl Acetate	Moderate	14.59–15.1 µg/ml IC$_{50}$	Plasmodium falciparum 3D7, K1	Yes (SI \geq 101; Mouse [NBMH])	
Boswellia dalubieli	Buxaceae	[62] Burkina Faso	Leaves	Methanol	Moderate	18.85 µg/ml IC$_{50}$	Plasmodium falciparum 3D7 & W2	No	
Bridelia micranthera	Phylanthaceae	[26] Kenya	Stem barks	Methanol	Moderate	14.2–19.4 µg/ml IC$_{50}$	Plasmodium falciparum D6, W2	No	
Bridelia mollissutch	Phylanthaceae	[37] South Africa	Roots	Dichloromethane	Very good	3.06 µg/ml IC$_{50}$	Plasmodium falciparum NHF4	No	
Brucea javanica	Simaroubaceae	[45] Cambodia	Roots	Dichloromethane	Very good	1.0 µg/ml IC$_{50}$	Plasmodium falciparum W2	No	
Bruguiera gymnorrhiza	Rhizophoraceae	[22] South Africa	Twigs	Dichloromethane/Methanol	Moderate	11.7 µg/ml IC$_{50}$	Plasmodium falciparum D10	No	
Plant species	Plant family	Source	Country of study	Part of plant used	Extraction solvent	Antiplasmodial Activity	IC50 or ED50 or LD50	Strain of Plasmodium Tested	Toxicity (value; assay)
-------------------------------	--------------	---------------------------------	------------------	-------------------	-----------------------------	-------------------------	------------------------	-----------------------------	---
Burchellia bubalina	Rubiaceae	[22] South Africa	Twigs	Dichloromethane/Methanol	Moderate	18 µg/ml IC50	Plasmodium falciparum D10	Nd	
Caesalpinia bonducella	Fabaceae	[64] Nigeria	Aerial Parts	Ethyl Acetate	Moderate	16 µg/ml EC50	Plasmodium falciparum	Nd	Yes (SI = 0.29–0.69; mouse mammary tumour [FM3A])
Canthium setosum	Rubiaceae	[65] Benin	Aerial Parts	Dichloromethane	Very good	2.77–4.80 µg/ml IC50	Plasmodium falciparum D10	Nd	
Capparis tomentosa Lam	Capparaceae	[37] South Africa	Whole Plant	Dichloromethane/Methanol	Moderate	20 µg/ml IC50	Plasmodium falciparum D10	Nd	
Carica papaya	Caricaceae	[66] Nigeria	Leaves	Ethyl Acetate	Very good	2.96 µg/ml IC50	Plasmodium falciparum D10	No	
Carissa edulis	Apocynaceae	[21] Kenya	Root barks	Methanol	Good	6.41 µg/ml IC50	Plasmodium falciparum	No	
Carpolobia alba	Polygalaceae	[53] Nigeria	Roots	Dichloromethane	Good	7.10 µg/ml IC50	Plasmodium falciparum D10	Nd	
Cassia abbreviata	Fabaceae	[60] Malawi	Roots	Dichloromethane	Very Good	2.88 µg/ml IC50	Plasmodium falciparum V/5	Nd	
Cassia alata	Fabaceae	[67] D.R.Congo	Leaves	Ethanol, Methanol, Petroleum Ether, Chloroform	Very Good	<0.1—5.4 µg/ml IC50	Plasmodium Falciparum	Nd	
Senna occidentalis L	Fabaceae	[68] Mozambique And Portugal	Roots	N-Hexane	Moderate	19.3 µg/ml IC50	Plasmodium falciparum 3D7	Nd	
Cassia siamea	Fabaceae	[26] Kenya	Root Barks	Methanol	Moderate	18.8 µg/ml IC50	Plasmodium falciparum D6, W2	Nd	
Cassia tara	Fabaceae	[23] Sudan	Aerial parts	Methanol	Good	4–10 µg/ml IC50	Plasmodium falciparum W2	Nd	
Catha edulis	Celastraceae	[22] South Africa	Roots	Dichloromethane	Very Good	3.3–5.2 µg/ml IC50	Plasmodium falciparum 3D7, Dd2	No	
Cedrelopsis greeri	Rutaceae	[71] Madagascar	Leaves	Water	Moderate	0.68 µg/ml IC50	Plasmodium falciparum D10	Nd	
Celtis integrifolia	Cannabaceae	[52] Burkina Faso	Leaves	Dichloromethane	Very Good	3.7 µg/ml IC50	Plasmodium falciparum	Yes (SI ≥ 0.5; HepG2 cells)	
Centella asiatica	Apioaceae	[22] South Africa	Leaves	Dichloromethane/Methanol	Good	8.3 µg/ml IC50	Plasmodium falciparum D10	Nd	
Cephalanthus natalensis	Rubiaceae	[22] South Africa	Twigs	Dichloromethane/Methanol	Moderate	14–15 µg/ml IC50	Plasmodium falciparum K1, NF54	Nd	
Ceratotheca sesamoides	Pedaliaceae	[63] Senegal	Leaves	Petroleum ether	Moderate	15–23 µg/ml IC50	Plasmodium falciparum FcM29, FcB1, Plasmodium vinckei petter	Yes (IC50 = 50 µg/ml; Vero cells)	
Table 1 (continued)

Plant species	Plant family	Source	Country of study	Part of plant used	Extraction solvent	Antiplasmodial Activity	IC50 or ED50 or LD50	Strain of Plasmodium Tested	Toxicity (value; assay)
Chrysophyllum perpulchrum	Sapotaceae	[43]	Ivory Coast	Stem Barks	Ethanol	Moderate	12.8 µg/ml IC50	Plasmodium falciparum Fcb1	Nd
Cinchona succirubra	Rubiaceae	[73]	S. Tome' And Prí 'Niçoipe	Barks	Petroleum Ether, Dichloromethane, Ethyl Acetate, Methanol	Good	< 10 µg/ml IC50	Plasmodium falciparum 3D07 And Dd2	Nd
Cinnamomum camphora	Lauraceae	[57]	Ivory Coast	Cortex	Water	Moderate	9.37–16.6 µg/ml IC50	Plasmodium falciparum Fcb1 & F32	Nd
Cissampelos mucronata	Menispermaceae	[20]	Tanzania	Roots	Ethyl Acetate	Very Good	0.38 µg/ml IC50	Plasmodium falciparum K1	Nd
Cissampelos pareira	Menispermaceae	[26]	Kenya	Leaves	Methanol	Very Good	4.4 µg/ml IC50	Plasmodium falciparum D6, W2	Nd
Cissus populnea	Vitaceae	[50]	Nigeria	Ns	Methanol, Water, Butanol, Ethyl Acetate	Moderate	15.81–19.91 µg/ml IC50	Plasmodium falciparum 3D07, K1	Yes (SI ≥ 84, Mouse [NBMH])
Citropsis articulata	Rutaceae	[75]	Uganda	Root Barks	Ethyl Acetate	Nd	nd	Plasmodium falciparum Fcb1	Nd
Clausena anisota	Rutaceae	[24]	Kenya	Stem Barks	Methanol	Good	8.4–9.2 µg/ml IC50	Plasmodium falciparum D6, W2	Nd
Clematis braschiata Thunb	Ranunculaceae	[37]	South Africa	Twigs	Dichloromethane/Methanol	Moderate	18 µg/ml IC50	Plasmodium falciparum D10	Nd
Clerodendrum eriophyllum	Lamiaceae	[21]	Kenya	Root Barks	Methanol	Very Good	4.15 µg/ml IC50	Plasmodium falciparum NF54	Nd
Clerodendrum gloribum E. Mey	Lamiaceae	[72]	Kenya	Root Barks	Dichloromethane	Very Good	2.7–5.3 µg/ml IC50	Plasmodium falciparum K1, NF54	Nd
Clerodendrum gloribum var. gloribum	Lamiaceae	[24]	South Africa	Leaves	Dichloromethane	Moderate	8.89 µg/ml IC50	Plasmodium falciparum NF54	Nd
Clerodendrum johnstonii	Lamiaceae	[24]	Kenya	Root Barks	Methanol	Good	8.5 µg/ml IC50	Plasmodium falciparum D6, W2	Nd
Clusia abyssinica	Peraceae	[24]	Tanzania	Roots	Ethyl Acetate	Moderate	19 µg/ml IC50	Plasmodium falciparum D10	Nd
Clusia rotundifolia	Lamiaceae	[76]	Kenya	Root Barks	Methanol	Good	4.7–8.3 µg/ml IC50	Plasmodium falciparum D6, W2	Nd
Clovea myriocaroides	Lamiaceae	[20]	Tanzania	Root Barks	Ethyl Acetate	Moderate	11 µg/ml IC50	Plasmodium falciparum K1	Nd
Clusia rotundifolia	Lamiaceae	[72]	Kenya	Root Barks	Dichloromethane	Moderate	10.9–15.8 µg/ml IC50	Plasmodium falciparum K1, NF54	Nd
Clusia rotundifolia	Lamiaceae	[24]	Kenya	Leaves	Dichloromethane	Good	3.9–15.7 µg/ml IC50	Plasmodium falciparum D6, W2	Nd
Clusia rotundifolia	Lamiaceae	[77]	Uganda	Leaves	Ethyl Acetate	Very Good	0.03–0.21 µg/ml IC50	Plasmodium falciparum NF54 & FCR3	Nd
Clusia rotundifolia	Lamiaceae	[24]	Kenya	Leaves	Methanol	Moderate	7.8–11.3 µg/ml IC50	Plasmodium falciparum D6, W2	Nd
Plant species	Plant family	Source	Country of study	Part of plant used	Extraction solvent	Antiplasmodial Activity	IC_{50} or ED_{50} or LD_{50}	Strain of Plasmodium Tested	Toxicity (value; assay)
----------------------	-----------------	-------------------------	------------------	--------------------	--------------------	-------------------------	----------------------------	-----------------------------	-------------------------
Clivia hirsuta	Peraceae	[22] South Africa	Whole Plant	Dichloromethane/Methanol	Moderate	15 µg/ml IC_{50}	Plasmodium falciparum	D10	Nd
Clivia robusta	Peraceae	[24] Kenya	Leaves	Methanol	Good	3.4–7.5 µg/ml IC_{50}	Plasmodium falciparum	D6, W2	Nd
Cochlospermum	Bixaceae	[78] Burkina Faso	Rhi-zomes	Methanol, Dichloromethane	Good*	2.4–11.5 µg/ml IC_{50}	Plasmodium falciparum	3D7	Nd
Cochlospermum	Bixaceae	[51] Ivory Coast	Roots	Methylene Chloride	Very Good	4.4 µg/ml IC_{50}	Plasmodium falciparum	K1	No
Coula edulis	Olacaceae	[24] Cameroon	Stem, Leaves	Water	Very Good	0.4–1.56 µg/ml IC_{50}	Plasmodium falciparum	CFCb1 & F32	Nd
Copaifera	Malvaceae	[48] Ivory Coast	Leaves	Ethyl Acetate	Good	6.5 µg/ml IC_{50}	Plasmodium falciparum	K1	Nd
Combretum col-	Combretaceae	[52] Burkina Faso	Leaves	Dichloromethane	Very Good	0.2 µg/ml IC_{50}	Plasmodium falciparum		Nd
Combretum micran-	Combretaceae	[57] Ivory Coast	Stem, Leaves	Water	Very Good	0.88–1.7 µg/ml IC_{50}	Plasmodium falciparum		Nd
Combretum psid-	Combretaceae	[20] Tanzania	Root Barks	Ethyl Acetate	Good	6.63 µg/ml IC_{50}	Plasmodium falciparum		Nd
Combretum zeyheri	Combretaceae	[22] South Africa	Twigs	Dichloromethane/Methanol	Moderate	15 µg/ml IC_{50}	Plasmodium falciparum	D10	Nd
Coniphora africana	Bursenaceae	[24] Kenya	Stem Barks	Methanol	Good	9.6–10.2 µg/ml IC_{50}	Plasmodium falciparum	D6, W2	Nd
Coniphora schimperi	Bursenaceae	[26] Kenya	Stem Barks	Methanol	Very Good	3.9–5.2 µg/ml IC_{50}	Plasmodium falciparum		Nd
Conyza alba	Asteraceae	[21] Kenya	Inner Barks	Methanol	Very Good	4.63 µg/ml IC_{50}	Plasmodium falciparum		Nd
Conyza podocepha	Asteraceae	[22] South Africa	Whole Plant	Dichloromethane/Methanol	Very Good	2 µg/ml IC_{50}	Plasmodium falciparum	D10	Nd
Conyza scabrida	Asteraceae	[22] South Africa	Whole Plant	Dichloromethane/Methanol	Good	6.8 µg/ml IC_{50}	Plasmodium falciparum	D10	Nd
Copalifera religiosa	Fabaceae	[33] Gabon	Leaves	Dichloromethane	Good	8.5–13.4 µg/ml IC_{50}	Plasmodium falciparum	FCB, 3D7	Yes (IC_{50} = 4.87 µg/ml human embryonic lung cells [MRC-5])
Cordia myxa	Boraginaceae	[52] Burkina Faso	Leaves	Dichloromethane	Good	6.2 µg/ml IC_{50}	Plasmodium falciparum		Nd
Coula edulis	Olacaceae	[80] Cameroon	Stem Barks	Methanol	Good	5.79–13.8 µg/ml IC_{50}	Plasmodium falciparum	3D7, DD2	No
Crossocentrs lembiuga	Rubiaceae	[27] Burkina Faso	Leaves	Crude Alkaloid	Good	4–10 µg/ml IC_{50}	Plasmodium falciparum	W2	Nd
Croton bukeana	Fabaceae	[22] South Africa	Roots	Dichloromethane	Good	9.5 µg/ml IC_{50}	Plasmodium falciparum	D10	Nd
Croton gratissimus var. subgratissimus	Euphorbiaceae	[22] South Africa	Leaves	Dichloromethane	Very Good	3.5 µg/ml IC_{50}	Plasmodium falciparum	D10	Nd
Croton labatus	Euphorbiaceae	[65] Benin	Roots	Methanol	Good	2.80–6.56 µg/ml IC_{50}	Plasmodium falciparum	3D7 & K1	Nd
Croton macrostachyus	Euphorbiaceae	[30] Kenya	Leaevs, Stems	Dichloromethane	Very Good	2.72 µg/ml IC_{50}	Plasmodium falciparum	W2, D6	Nd
Plant species	Plant family	Source	Country of study	Part of plant used	Extraction solvent	Antiplasmodial Activity	IC50 or ED50 or LD50	Strain of Plasmodium Tested	Toxicity (value; assay)
-------------------------------	--------------	-----------------	------------------	-------------------	-------------------	------------------------	---------------------	---------------------------	------------------------
Croton menghartii	Euphorbiaceae	[22] South Africa	Leaves	Dichloromethane/Methanol	Very Good	1.7 µg/ml IC50	Plasmodium falciparum D10	Nd	
Croton pseudopulchellus	Euphorbiaceae	[25] South Africa	Stem Barks	Chloroform	Very Good	3.45 µg/ml IC50	Plasmodium falciparum UP1 (CQ-R)	Nd	
Croton zambesiiclus	Euphorbiaceae	[55] Cameroon	Stem Barks	Ethanol, Water, Dichloromethane, Methanol, Hexane	Good	0.88–9.14 µg/ml IC50	Plasmodium falciparum W2	Nd	
[34] Sudan	Fruits	Petroleum Ether/Chloroform	Very Good	< 5 µg/ml IC50	Plasmodium falciparum	Nd			
Cryptolepis sanguinolenta	Apocynaceae	[81] Guinea-Bissau	Leaves, Roots	Chloroform	Very Good	3.45 µg/ml IC50	Plasmodium falciparum K1, T996	Nd	
[34] Sudan	Fruits	Petroleum Ether/Chloroform	Very Good	< 5 µg/ml IC50	Plasmodium falciparum	Nd			
Cussonia spicata Thunb	Araliaceae	[22] South Africa	Fruits	Dichloromethane/Methanol	Moderate	14 µg/ml IC50	Plasmodium falciparum D10	Nd	
Cussonia zimmermannii	Araliaceae	[37] South Africa	Root Barks	Dichloromethane	Very Good	3.25 µg/ml IC50	Plasmodium falciparum NF54	Nd	
Cussonia zimmermannii	Araliaceae	[20] Tanzania	Root Barks	Petroleum Ether	Very Good	3.3 µg/ml IC50	Plasmodium falciparum K1	Nd	
Cuviera longiflora Rubiaceae	[80] Cameroon	Leaves	Dichloromethane/Methanol	Moderate	13.91–20.24 µg/ml IC50	Plasmodium falciparum 3D7, DD2	No		
Cyathula prostrate	Amaryanthaceae	[43] Ivory Coast	Whole Plant	Ethanol	Moderate	12.4 µg/ml IC50	Plasmodium falciparum FC81	Nd	
Cyathula schimperiens	Amaryanthaceae	[24] Kenya	Root Barks	Methanol	Moderate	5–17.6 µg/ml C50	Plasmodium falciparum D6, W2	Nd	
Cymbopogon validus	Poaceae	[22] South Africa	Whole Plant	Dichloromethane/Methanol	Good	5.8 µg/ml IC50	Plasmodium falciparum D10	Nd	
Cyperus articulatus	Cyperaceae	[24] Kenya	Tubers	Methanol	Good	4.8–8.7 µg/ml C50	Plasmodium falciparum D6, W2	Nd	
Cyphostemma spp	Vitaceae	[86] Namibia	Whole Plant	Methanol	Very Good	3.276 µg/ml IC50	Plasmodium falciparum 3D7	Nd	
Dacryodes edulis	Bursaracaeae	[80] Cameroon	Leaves	Dichloromethane/Methanol	Good	6.45–8.62 µg/ml IC50	Plasmodium falciparum 3D7, DD2	No	
Dacryodes edulis	Bursaracaeae	[85] Cameroon	Root Barks	Methylene Chloride/Methanol	Very Good	0.37 µg/ml IC50	Plasmodium falciparum	Nd	
Dichapetalum guineense	Dicapetalaceae	[65] Benin	Leaves	Methanol	Moderate	7.35–20 µg/ml IC50	Plasmodium falciparum 3D7 & K1	Nd	
Dichrostachys cinerea Wight et Arn	Fabaceae	[37] South Africa	Roots	Dichloromethane	Very Good	2.1 µg/ml IC50	Plasmodium falciparum NF54	Nd	
Table 1 (continued)

Plant species	Plant family	Source	Country of study	Part of plant used	Extraction solvent	Antiplasmodial Activity	IC_{50} or ED_{50} or LD_{50}	Strain of Plasmodium Tested	Toxicity (value; assay)
Dicoma tomentosa	Asteraceae	[62]	Burkina Faso	Whole plant	Dichloromethane, Methanol	Good	7.04–7.90 µg/ml IC_{50}	Plasmodium falciparum 3D7 & W2	Nd
		[87]	Burkina Faso	Whole plant	Dichloromethane	Very Good	1.9–3.4 µg/ml IC_{50}	Plasmodium Falciparum 3D7, W2, Plasmodium berghei	Nd
Diospyros abyssinica	Ebenaceae	[75]	Uganda	Leaves	Ethyl Acetate	Nd	nd	Plasmodium falciparum Fcb2	Nd
Diospyros mespiliformis	Ebenaceae	[86]	Namibia	Leaves, Roots	Methanol	Very Good	3.179–3.523 µg/ml IC_{50}	Plasmodium falciparum 3D7	Nd
Diospyros monbutensis	Ebenaceae	[37]	South Africa	Roots	Dichloromethane	Very Good	4.40 µg/ml IC_{50}	Plasmodium falciparum NF54	Nd
Dombeya shupangae	Malvaceae	[20]	Tanzania	Roots	Ethyl Acetate	Good	7.5 µg/ml IC_{50}	Plasmodium falciparum K1	Nd
Dorstenia convesa	Moraceae	[56]	Cameroon	Twigs	Ethanol, Water, Dichloromethane, Methanol, Hexane	Good	0.28–8.95 µg/ml IC_{50}	Plasmodium falciparum W2	Nd
Dorstenia klaineana	Moraceae	[33]	Gabon	Stems	Methanol	Moderate	16.7–17.0 µg/ml IC_{50}	Plasmodium falciparum Fcbm, W2	Yes (SI = 16.2–28.89; human embryonic lung cells [MRC-SI])
Dracaena cambodiabia	Asparagaceae	[45]	Cambodia	Stems	Dichloromethane	Good	8.7 µg/ml IC_{50}	Plasmodium falciparum W2	Nd
Drypetes natalensis	Putranjivaceae	[31]	Tanzania	Roots	Ethanol	Very Good	1.06 µg/ml IC_{50}	Plasmodium falciparum K1	No
Ekebergia capensis	Meliaceae	[22]	South Africa	Fruits	Dichloromethane/Methanol	Moderate	10 µg/ml IC_{50}	Plasmodium falciparum D10	Nd
Ekebergia capensis	Meliaceae	[76]	Kenya	Stem Barks	Chloroform	Good	3.9—13.4 µg/ml IC_{50}	Plasmodium falciparum K39, ENT30, NF54, V1/S	Nd
Elaeis guineensis	Arecaceae	[21]	Kenya	Inner Barks	Methanol	Very Good	3.97 µg/ml IC_{50}	Plasmodium falciparum D6	No
Elaeodendron buchananii	Celastraceae	[24]	Ghana	Leaves	Ethanol	Very Good	1.195 µg/ml IC_{50}	Plasmodium falciparum 3D7	Nd
Enantia chlorantha	Annonaceae	[24]	Kenya	Stem Barks	Methanol	Moderate	17.1 µg/ml IC_{50}	Plasmodium falciparum D6, W2	Nd
		[55]	Cameroon	Stem Barks	Ethanol, Water, Dichloromethane, Methanol, Hexane	Good	0.68–14.72 µg/ml IC_{50}	Plasmodium falciparum W2	Nd
		[40]	DR Congo	Stem Barks	Water	Good	7.77 µg/ml IC_{50}	Plasmodium falciparum K1	Yes (CC_{50} = 3.0 µg/ml; human embryonic lung cells [MRC-SI])
Entandrophyagna angolense	Meliaceae	[89]	Cameroon	Stem Barks	Dichloromethane/Methanol	Moderate	18.4 µg/ml IC_{50}	Plasmodium falciparum W2	Nd
Entandrophyagna caudatum	Meliaceae	[25]	South Africa	Stem Barks	Dichloromethane	Very Good	2.9 µg/ml IC_{50}	Plasmodium falciparum UP1 (CQ-R)	No
Plant species	Plant family	Source	Country of study	Part of plant used	Extraction solvent	Antiplasmodial Activity	Strain of Plasmodium Tested	Toxicity (value; assay)	
----------------------------	--------------	---------------	------------------	--------------------	--------------------	--------------------------	-------------------------------	--------------------------	
Entandrophragma palustre	Meliaceae	D.R. Congo	Stem barks	Methanol	Moderate	15.84 µg/ml IC50	Plasmodium falciparum 3D7, W2, Plasmodium berghei berghei	Nd	
Erigeron floribundus	Asteraceae	Ivory Coast	Leaves	Pentane	Good	4.3-10 µg/ml IC50	Plasmodium falciparum FCM29, Plasmodium falciparum CQ-5 (Nigerian)	Nd	
Eriooglossum edule	Sapindaceae	Cambodia	Barks	Dichloromethane	Very Good	1.7 µg/ml IC50	Plasmodium falciparum	Nd	
Erythrina abyssinica	Fabaceae	Uganda	Barks	Ethyl Acetate	Nd	nd	Plasmodium falciparum Fcb3	Nd	
Erythrina lysistemon	Fabaceae	South Africa	Stem Barks	Acetone	Very Good	4.8 µg/ml IC50	Plasmodium falciparum (CQ-R)	Nd	
Erythrina sacleuxii	Fabaceae	Tanzania	Root Barks	Ethyl Acetate	Very Good	3.0 µg/ml IC50	Plasmodium falciparum K1	Nd	
Erythrococca anomata	Euphorbiaceae	Ivory Coast	Leaves	Ethanol	Moderate	13.1 µg/dl IC50	Plasmodium falciparum FCB1	Nd	
Euclia divinorum	Ebenaceae	Kenya	Root Barks	Methanol	Good	6.9–12.4 µg/ml IC50	Plasmodium falciparum D6, W2	Nd	
Euclia natalensis	Ebenaceae	South Africa	Twigs	Dichloromethane/Methanol	Very Good	4.6 µg/ml IC50	Plasmodium falciparum D10	Nd	
Eucomis autumnalis	Asparagaceae	South Africa	Bulbs	Dichloromethane/Methanol	Good	9.5 µg/ml IC50	Plasmodium falciparum D10	Nd	
Euphorbia hirta	Euphorbiaceae	D.R. Congo	Aerial Parts	Methanol, Ethanol	Gooda	1.1—5.4 µg/ml IC50	Plasmodium falciparum	No	
			Whole Plant	Petroleum Ether	Very Good	1.2 µg/ml IC50	Plasmodium falciparum	Nd	
Euphorbia triculli	Euphorbiaceae	South Africa	Leaves	Dichloromethane	Moderate	12 µg/ml IC50	Plasmodium falciparum D10	Nd	
Fadogia agrestis	Rubiaceae	Burkina Faso	Leaves	Crude Alkaloid	Good	4–10 µg/ml IC50	Plasmodium falciparum W2	Nd	
Fagara macrophylla	Rutaceae	Ivory Coast	Stem Barks	Ethanol	Very Good	2.3 µg/ml IC50	Plasmodium falciparum Fcb1/Colombia Strain	No	
Fagapanis angolensis	Rutaceae	Kenya	Stem Barks	Methanol	Good	4.2–6.9 µg/ml IC50	Plasmodium falciparum D6, W2	Nd	
Fagraea fragrans	Gentianaceae	Cambodia	Stems	Dichloromethane	Moderate	12.8 µg/ml IC50	Plasmodium falciparum W2	Nd	
Ficus capraefolia	Moraceae	Burkina Faso	Leaves	Dichloromethane	Very Good	1.8 µg/ml IC50	Plasmodium falciparum	Yes (SI ≥ 77; mouse [NBMH])	
Ficus platyphylla	Moraceae	Nigeria	Ns	Methanol, Water, Butanol, Ethyl Acetate	Moderate	13.77–15.28 µg/ml IC50	Plasmodium falciparum 3D7, K1	Yes (SI = 0.4; HepG2 cells)	
Ficus sur	Moraceae	Kenya	Stem Barks	Methanol	Moderate	8.5–15.9 µg/ml IC50	Plasmodium falciparum D6, W2	Nd	
		Kenya	Stem Barks	Chloroform, Hexane	Moderate	9.0–19.2 µg/ml IC50	Plasmodium falciparum K39 (CQ-S), ENT30, NF54, V1/S	Nd	
Ficus thornningii	Moraceae	Republic Of Congo	Leaves	Methanol, Ethanol	Good	9.61 µg/ml IC50	Plasmodium falciparum	No	
		Nigeria	Ns	Methanol, Water, Butanol, Ethyl Acetate	Moderate	14.09–25.06 µg/ml IC50	Plasmodium falciparum 3D7, K1	Yes (SI ≥ 103; mouse [NBMH])	
Plant species	Plant family	Source	Country of study	Part of plant used	Extraction solvent	Antiplasmodial Activity	IC50 or ED50 or LD50	Strain of Plasmodium Tested	Toxicity (value; assay)
----------------------	-------------------	------------------	------------------	-------------------	-------------------	-------------------------	------------------------	---------------------------	---------------------------
Ficus sycomorus	Moraceae	Burkina Faso	[27]	Leaves	Crude Alkaloid	Good	4–10 µg/ml IC50	Plasmodium falciparum W2	Nd
Flueggea virosa	Phyllanthaceae	Comoros	[91]	Leaves	Water/Methanol	Very Good	2 µg/ml IC50	Plasmodium falciparum W2	No
		Kenya	[26]	Stem Barks	Methanol	Very Good	2.2–3.6 µg/ml IC50	Plasmodium falciparum D6, W2	Nd
		South Africa	[22]	Leaves, Twigs	Water	Moderate	11.4 µg/ml IC50	Plasmodium falciparum D10	Nd
Fuerstia africana	Lamiaceae	Rwanda	[92]	Leaves, Stems	Methanol	Good	4.1–6.9 µg/ml IC50	Plasmodium falciparum 3D7, W2	Yes (SI = 1.9; human normal foetal lung fibroblast [WI-38])
		Kenya	[21]	Leaves	Methanol	Very Good	3.75 µg/ml IC50	Plasmodium falciparum D6	No
		Kenya	[24]	Whole Plant	Methanol	Very Good	0.9–2.4 µg/ml IC50	Plasmodium falciparum D6, W2	Nd
Funtumia elastica	Apocynaceae	Ivory Coast	[43]	Stem Barks	Ethanol	Very Good	3.6 µg/ml IC50	Plasmodium falciparum FCB1	Nd
		Ivory Coast	[28]	Stem Barks	Ethanol	Very Good	3.3 µg/ml IC50	Plasmodium falciparum Fcb4/ Colombia Strain	No
Funtumia latifolia	Apocynaceae	Uganda	[75]	Leaves	Ethyl Acetate	Nd	nd	Plasmodium falciparum Fcb4	Nd
Garcinia kola	Clusiaceae	D.R. Congo	[67]	Seeds	Ethanol, Methanol, Petroleum Ether, Chloroform	Good	1.02—15.75 µg/ml IC50	Plasmodium falciparum	Nd
Gardenia lutea	Rubiaceae	Sudan	[69]	Stem Barks	Petroleum Ether	Very Good	1.6 µg/ml IC50	Plasmodium falciparum	Nd
Gardenia sakotensis	Rubiaceae	Burkina Faso	[23]	Leaves	Methanol	Good	3.3–5.2 µg/ml IC50	Plasmodium falciparum 3D7, D2	No
Glirussus oppositi‑	Malluginaceae	Mali	[62]	Aerial parts	Dichloromethane	Moderate	14.01 µg/ml IC50	Plasmodium falciparum 3D7 & W2	Nd
folius			[93]		Chloroform	Moderate	15.52–18.70 µg/ml IC50	Plasmodium falciparum W2 & 3D7	No
Gloriosa superba	Colchicaceae	South Africa	[22]	Whole plant	Dichloromethane/Methanol	Moderate	17 µg/ml IC50	Plasmodium falciparum D10	Nd
Gnidia cuneata	Thymeleaceae	South Africa	[22]	Stems	Dichloromethane	Moderate	15.9 µg/ml IC50	Plasmodium falciparum D10	Nd
Gnidia kraussiana var. kraussiana	Thymeleaceae	South Africa	[22]	Leaves, Twigs	Dichloromethane/Methanol	Moderate	10.8 µg/ml IC50	Plasmodium falciparum D10	Nd
Gomphrena celosoides	Amaranthaceae	Benin	[65]	Aerial Parts	Methanol	Good	4.26–14.97 µg/ml IC50	Plasmodium falciparum 3D? & K1	Nd
		Togo	[70]	Aerial Parts	Water	Moderate	< 15 µg/ml IC50	Plasmodium falciparum K1	Nd
		Tanzania	[20]	Whole plant	Ethyl Acetate	Moderate	15 µg/ml IC50	Plasmodium falciparum K1	Nd
Guiera senegalensis	Combretaceae	Ivory Coast	[57]	Stem, Leave	Water	Good	0.79–7.03 µg/ml IC50	Plasmodium falciparum Fcb1 & F32	Nd
		Mali	[94]	Roots	Chloroform	Very Good	< 4 µg/ml IC50	Plasmodium falciparum	Nd
Gutenbergia cordifolia	Asteraceae	Kenya	[21]	Leaves	Methanol	Very Good	4.40 µg/ml IC50	Plasmodium falciparum D6	No
Gynandropsis gynandra	Cleomaceae	Tanzania	[20]	Roots	Ethyl Acetate	Moderate	14 µg/ml IC50	Plasmodium falciparum K1	Nd
Plant species	Plant family	Source	Country of study	Part of plant used	Extraction solvent	Antiplasmodial Activity	IC50 or ED50 or LD50	Strain of Plasmodium Tested	Toxicity (value; assay)
---------------------	-------------------	-----------------	------------------	--------------------	--------------------	-------------------------	------------------------	-----------------------------	--------------------------
H. suaveolens	Lamiaceae	Nigeria	[53]	Leaves	Petroleum Ether	Very Good	2.54 µg/ml IC50	Plasmodium falciparum	Nd
Haplophyllum	Rutaceae	Sudan	[23]	Aerial Parts	Methanol	Very Good	1.2–1.5 µg/ml IC50	Plasmodium falciparum	No
Harrisonia abys-	Rutaceae	Sudan	[58]	Stem Barks	Methanol	Good	4.7–10 µg/ml IC50	Plasmodium falciparum	Nd
Harrisonia perforata	Rutaceae	Cambodia	[45]	StemS	Dichloromethane	Good	6.0 µg/ml IC50	Plasmodium falciparum W2	Nd
Harungana mad-	Hypericaceae	D.R.Congo	[40]	Stem Barks	Water	Good	9.64 µg/ml IC50	Plasmodium falciparum K1	No
Harrisonia	Hypericaceae	Tanzania	[20]	Roots	Ethyl Acetate	Very Good	4.0 µg/ml IC50	Plasmodium falciparum K1	Nd
Helichrysum	Asteraceae	Madagascar	[96]	Leaves	Essential Oil	In Active	25 mg/l	Plasmodium falciparum Fcb1	Nd
Heli-	Asteraceae	South Africa	[97]	Leaves	Water, Essential Oil	Very Good	1.25 µg/ml IC50	Plasmodium falciparum FCR-3	Yes
Heli-	Asteraceae	South Africa	[22]	Whole plant	Dichloromethane/Methanol	Good	6.8 µg/ml IC50	Plasmodium falciparum D10	Nd
Hermannia	Malvaceae	South Africa	[22]	Whole plant	Dichloromethane/Methanol	Good	6.9 µg/ml IC50	Plasmodium falciparum D10	Nd
Hexalobus	Annonaceae	Cameroon	[98]	Stem Barks	Water	Very Good	2.0 µg/ml IC50	Plasmodium falciparum W6	Nd
Hippobromus	Sapindaceae	South Africa	[22]	Twigs	Dichloromethane/Methanol	Good	5.9 µg/ml IC50	Plasmodium falciparum D10	Nd
Holanthera	Apocynaceae	Cameroon	[99]	Stem Barkss	Water, Ethanol	Good	1.02 – 18.53 µg/ml IC50	Plasmodium falciparum W2, D6, FCR-3, 3D7	Nd
Hoslandia	Lamiaceae	Tanzania	[20]	Root Barks	Petroleum Ether	Moderate	10 µg/ml IC50	Plasmodium falciparum K1	Nd
Hunteria eburnea	Apocynaceae	Uganda	[75]	Leaves	Methanol	Moderate	15.2–25.6 µg/ml IC50	Plasmodium falciparum D6, W2	Nd
Hunteria	Apocynaceae	Ivory Coast	[43]	Stem Barks	Ethanol	Very Good	2.2 µg/ml IC50	Plasmodium falciparum Fcb5	Nd
Hybanthus	Violaceae	Benin	[65]	Aerial Parts	Methanol	Moderate	2.57–> 20 µg/ml IC50	Plasmodium falciparum 3D7 & K1	Nd
Hybrus	Phyllanthaceae	Ivory Coast	[51]	Leaves	Methylene Chloride	Good	6.9 µg/ml IC50	Plasmodium falciparum K1	Yes (SI = 6–10; rat skeletal muscle myoblast [L6])
Hypericum	Hypericaceae	South Africa	[22]	Leaves/ Flowers	Dichloromethane/Methanol	Very Good	1.4 µg/ml IC50	Plasmodium falciparum D10	Nd
Hypericum	Hypericaceae	Cameroon	[80]	Stem Barks	Methanol, N-Hexane, Ethyl Acetate, N-Butanol	Very Good	3.98 µg/ml IC50	Plasmodium falciparum W2, SHF4	Nd
Plant species	Plant family	Source	Country of study	Part of plant used	Extraction solvent	Antiplasmodial Activity	IC50 or ED50 or LD50	Strain of Plasmodium Tested	Toxicity (value; assay)
------------------------	------------------	-------------------	------------------	--------------------	-------------------------------------	-------------------------	-----------------------	---------------------------	--------------------------
Hypoestes forskoalli	Acanthaceae	[24] Kenya	Root Barks	Methanol	Good	4.3–6.7 µg/ml IC50	Plasmodium falciparum D6, W2	Nd	
Hyptis pectinata	Lamiaceae	[22] South Africa	Leaves, Stem, Flower	Dichloromethane/Methanol	Moderate	17.3 µg/ml IC50	Plasmodium falciparum D10	Nd	
Icacinia senegalensis	Icacinaceae	[100] Senegal	Leaves	Methanol	Good	4.7–8 µg/ml IC50	Plasmodium falciparum 3D7, 7G	No	
Isolona hexaloba	Annonaceae	[40] D.R. Congo	Root Barks	Water	Moderate	15.28 µg/ml IC50	Plasmodium falciparum K1	No	
Khaya grandifoliola	Meliaceae	[101] Nigeria	Ns	Methanol-Methylene Chloride	Gooda	1.25—9.63 µg/ml IC50	Plasmodium falciparum W2	Nd	
Khaya senegalensis	Meliaceae	[50] Nigeria	Ns	Methanol, Water, Butanol, Ethyl Acetate	Moderate	15.46–28.12 µg/ml IC50	Plasmodium falciparum 3D7, K1	Yes (SI ≥ 69; mouse [NBMH])	
Kigelia africana	Bignoniaceae	[24] Kenya	Leaves	Methanol	Moderate	15.9 µg/ml IC50	Plasmodium falciparum D6, W2	Nd	
Kirkia wilmsii	Kirkiaecae	[80] Cameroon	Stem Barks	Ethyl Acetate	Moderate	11.15 µg/ml IC50	Plasmodium falciparum W2	No	
Kniphofia foliosa	Xanthorrhoeaceae	[102] Ethiopia	Roots	Dichloromethane	Very Good	3.7 µg/ml IC50	Plasmodium falciparum D10	Nd	
Landolphia tanceolata	Apocynaceae	[103] Congo Brazzaville	Roots	Dichloromethane	Moderate	11 µg/ml IC50	Plasmodium falciparum Fcm29-Cameroon	Nd	
Lannea edulis	Anacardiaceae	[20] Kenya	Whole Plant	Ethyl Acetate	Moderate	17 µg/ml IC50	Plasmodium falciparum K1	Nd	
Lantana camara	Verbenaceae	[22] South Africa	Leaves, Twigs	Dichloromethane/Methanol	Moderate	11 µg/ml IC50	Plasmodium falciparum D10	Nd	
Leonotis mollisima	Lamiaceae	[20] Tanzania	Leaves	Ethyl Acetate	Good	9 µg/ml IC50	Plasmodium falciparum K1	Nd	
Leonotis africana	Lamiaceae	[33] Gabon	Stems	Dichloromethane	Moderate	15.2–27.1 µg/ml IC50	Plasmodium falciparum Fcbm W2	Yes (SI = 6.07–6.82; human embryonic lung cells [MRC-5])	
Leonotis leonurus	Lamiaceae	[22] South Africa	Leaves, Twigs	Dichloromethane/Methanol	Good	5.4 µg/ml IC50	Plasmodium falciparum D10	Nd	
Leonotis nepetifolia	Lamiaceae	[22] South Africa	Whole Plant	Dichloromethane/Methanol	Moderate	15 µg/ml IC50	Plasmodium falciparum D10	Nd	
Leonotis acymifolia	Lamiaceae	[22] South Africa	Leaves	Dichloromethane/Methanol	Good	6.1 µg/ml IC50	Plasmodium falciparum D10	Nd	
Leptadenia madagas-	Apocynaceae	[91] Comoros	Ns	Dichloromethane	Good	9 µg/ml IC50	Plasmodium falciparum W2	No	
cascanensis									
Leucas calostachys	Lamiaceae	[95] Kenya	Whole Plant	Water	Very Good	0.79 µg/ml IC50	Plasmodium Knowlesi	Nd	
Leucas martiniensis	Lamiaceae	[22] South Africa	Whole Plant	Dichloromethane/Methanol	Moderate	13.3 µg/ml IC50	Plasmodium falciparum D10	Nd	
Plant species	Plant family	Source	Country of study	Part of plant used	Extraction solvent	Antiplasmodial Activity	IC$_{50}$ or ED$_{50}$ or LD$_{50}$	Strain of Plasmodium Tested	Toxicity (value; assay)
---------------------	-------------------	-------------	------------------	-------------------	-------------------------------------	-------------------------	--------------------------------------	-------------------------------	--------------------------
Lippia javanica	Verbenaceae	[24] Kenya	Root barks	Methanol	Good	5.9 µg/ml IC$_{50}$	Plasmodium falciparum D6, W2	Nd	
		[104] Kenya	Roots	Dichloromethanol/ Ethyl Acetate	Moderate	16.7—19.2 µg/ml IC$_{50}$	Plasmodium falciparum K39, V1/S	Nd	
		[22] South Africa	Roots	Dichloromethane	Very Good	3.8 µg/ml IC$_{50}$	Plasmodium falciparum D10	Nd	
		[25] South Africa	Leaves	Acetone	Very Good	4.26 µg/ml IC$_{50}$	Plasmodium falciparum UP1 (CQ-R)	Nd	
Lippia multiflora	Verbenaceae	[57] Ivory Coast	Leaves	Water	Very Good	1.18—2.34 µg/ml IC$_{50}$	Plasmodium falciparum Fcb1 & F32	Nd	
Lophira lanceolata	Ochnaceae	[52] Burkina Faso	Leaves	Dichloromethanol	Very Good	4.7 µg/ml IC$_{50}$	Plasmodium falciparum	Nd	
Ludwigia erecta	Onagraceae	[24] Kenya	Whole plant	Methanol	Very Good	0.9—1.6 µg/ml IC$_{50}$	Plasmodium falciparum D6, W2	Nd	
Macroystis squarrosa	Rutaceae	[22] South Africa	Stems	Dichloromethanol/Methanol	Moderate	16 µg/ml IC$_{50}$	Plasmodium falciparum D6, W2	Nd	
Maesa lanceolata	Primulaceae	[22] South Africa	Twigs	Dichloromethanol/Methanol	Good	5.9 µg/ml IC$_{50}$	Plasmodium falciparum D10	Nd	
Markhamia lutea	Bignoniaceae	[76] Uganda	Leaves	Ethyl Acetate	Nd	Nd	Plasmodium falciparum Fcb6	Nd	
Maytenus heterophylla	Celastraceae	[24] Kenya	Root barks	Methanol	Very Good	1.8—3.9 µg/ml IC$_{50}$	Plasmodium falciparum D6, W2	Nd	
Maytenus obtusifolia	Celastraceae	[24] Kenya	Root barks	Methanol	Good	<1.9—5.8 µg/ml IC$_{50}$	Plasmodium falciparum D6, W2	Nd	
Maytenus pitterlioides	Celastraceae	[26] Kenya	Root barks	Methanol	Good	4.4—10.2 µg/ml IC$_{50}$	Plasmodium falciparum D6, W2	Nd	
Maytenus senegalensis	Celastraceae	[58] Sudan	Stem barks	Methanol	Nd	3.9—10 µg/ml IC$_{50}$	Plasmodium falciparum D37, Dd9	Nd	
		[26] Kenya	Root barks	Methanol	Good	4.7—9.8 µg/ml IC$_{50}$	Plasmodium falciparum D6, W2	Nd	
		[22] South Africa	Roots	Dichloromethanol	Moderate	15.5 µg/ml IC$_{50}$	Plasmodium falciparum D10	Nd	
		[20] Tanzania	Stem barks	Ethyl Acetate	Very Good	0.16 µg/ml IC$_{50}$	Plasmodium falciparum K1	Nd	
		[31] Tanzania	Roots	Ethanol	Very Good	2.05 µg/ml IC$_{50}$	Plasmodium falciparum K1	No	
Maytenus undata	Celastraceae	[26] Kenya	Leaves	Water	Very Good	0.95—1.9 µg/ml IC$_{50}$	Plasmodium falciparum D6, W2	Nd	
Melia azedarach	Meliaceae	[46] D.R. Congo	Leaves	Dichloromethanol	Moderate	19.14 µg/ml IC$_{50}$	Plasmodium falciparum 3D7, W2, Plasmodium berghei berghei	Nd	
Microdesmis keeyana	Pandaceae	[51] Ivory Coast	Leaves	Methylene Chloride	Moderate	12.2 µg/ml IC$_{50}$	Plasmodium falciparum K1	No	
Microglossa pynfolia	Asteraceae	[24] Kenya	Leaves	Methanol	Moderate	10.4 µg/ml IC$_{50}$	Plasmodium falciparum D6, W2	Nd	
		[77] Uganda	Leaves	Ethyl Acetate	Very Good	0.03—0.05 µg/ml IC$_{50}$	Plasmodium falciparum NF54 & FCR3	Nd	
		[92] Rwanda	Leaves	Dichloromethane	Very Good	1.5—2.4 µg/ml IC$_{50}$	Plasmodium falciparum 3D7, W2, Yes (SI = 3.2; human normal foetal lungfibroblast [WI-38])	Nd	
Mikania cordata	Compositae	[20] Tanzania	Leaves	Ethyl Acetate	Moderate	14 µg/ml IC$_{50}$	Plasmodium falciparum K1	Nd	
Table 1 (continued)

Plant species	Plant family	Source of study	Part of plant used	Extraction solvent	Antiplasmodial Activity	IC50 or ED50 or LD50	Strain of Plasmodium Tested	Toxicity (value; assay)	
Millettia zechiana	Fabaceae	[28] Ivory Coast	Stem Barks	Ethanol	Moderate	16.1 µg/ml IC50	Plasmodium falciparum Fcb1/Colombia Strain	Nd	
		[43] Ivory Coast	Stem Barks	Ethanol	Moderate	14.1 µg/ml IC50	Plasmodium falciparum Fcb1	Nd	
Momordica balsamina	Cucurbitaceae	[22] South Africa	Stems	Dichloromethane/Methanol	Good	5.3 µg/ml IC50	Plasmodium falciparum D10	Nd	
		[68] Mozambique	Aerial Parts	ns	Very Good*	1 µM	Plasmodium berghei, Plasmodium falciparum	Nd	
Momordica charantia	Cucurbitaceae	[88] Nigeria	Leaves	Methanol	Very Good	12.5 nM	Plasmodium falciparum	Nd	
Momordica foetida	Cucurbitaceae	[77] Uganda	Leaves	Water	Good	0.35–6.16 µg/ml IC50	Plasmodium falciparum NF54 & FCR3	Nd	
Monodora myristica	Annonaceae	[33] Gabon	Stem	Methanol	Good	5.5–6.1 µg/ml IC50	Plasmodium falciparum Fcbm W2	No	
		[49] Cameroon	Leaves	Methanol	Good	9.03 µg/ml IC50	Plasmodium falciparum W2	Nd	
Morinda lucida	Rubiaceae	[74] S. Tome’ & Pr Inc	Barks	Ethanol	Good < 10 µg/ml IC50	Plasmodium falciparum D37 and Dd2	Nd		
		[88] Nigeria	Leaves	Methanol	Very Good	25 nM	Plasmodium falciparum	Nd	
		[53] Nigeria	Roots	Dichloromethane	Moderate	13.37 µg/ml IC50	Plasmodium falciparum D10	Nd	
Morinda marindoides	Rubiaceae	[43] Ivory Coast	Leaves	Ethanol	Good	9.8 µg/ml IC50	Plasmodium falciparum Fcb1	Nd	
		[28] Ivory Coast	Leaves	Ethanol	Moderate	11.6 µg/ml IC50	Plasmodium falciparum Fcb1/Colombia Strain	Nd	
Moringa oleifera	Moringaceae	[26] Kenya	Leaves	Methanol	Moderate	9.8 µg/ml IC50	Plasmodium falciparum D6, W2	Nd	
Motandra guineensis	Apocynaceae	[43] Ivory Coast	Leaves	Ethanol	Moderate	16.3 µg/ml IC50	Plasmodium falciparum Fcb1	Nd	
Mundulea seneca	Fabaceae	[86] Namibia	Leaves, Shoots	Methanol	Very Good	3.279–3.352 µg/ml IC50	Plasmodium falciparum D37	Nd	
Mitragyna inermis	Rubiaceae	[93] Mali	Leaves	Chloroform	Very Good	4.36–4.82 µg/ml IC50	Plasmodium falciparum W2 & 3D7	No	
Nauclea latifolia	Rubiaceae	[93] Mali	Barks	Chloroform	Good	5.36–6.2 µg/ml IC50	Plasmodium falciparum W2 & 3D7	Yes (IC50 = 50 µg/ml; BALB/C mouse)	
		[28] Ivory Coast	Barks	Ethanol	Good	8.9 µg/ml IC50	Plasmodium falciparum D37	No	
		[106] Ivory Coast	Roots, Stem	Water	Good	0.6–7.5 µg/ml IC50	Plasmodium falciparum Fcb1-Colombian And Nigerian Strains	Nd	
		[43] Ivory Coast	Roots, Barks	Ethanol	Good	7.3 µg/ml IC50	Plasmodium falciparum Fcb1	Nd	
Nauclea pobe- gounii	Rubiaceae	[107] D.R.Congo	Stem Barks	Ethanol	In Active	32 µg/ml IC50	Plasmodium falciparum, Plasmodium yeoli, Plasmodium berghei	No	
Plant species	Plant family	Source	Country of study	Part of plant used	Extraction solvent	Antiplasmodial Activity	IC50 or ED50 or LD50	Strain of Plasmodium Tested	Toxicity (value; assay)
-------------------------------	----------------	-------------------	------------------	-------------------	-------------------	-------------------------	------------------------	----------------------------	--------------------------
Neoboutonia glabrescens	Euphorbiaceae	Cameroon	[55]	Leaves	Ethanol, Water, Dichloromethylene, Methanol, Hexane	Good	7.56 µg/ml IC50	Plasmodium falciparum W2	Nd
Neorautanenia mits	Fabaceae	Tanzania	[31]	Tubers	Ethanol	Very Good	1.58 µg/ml IC50	Plasmodium falciparum K1	No
Neopokaba laevis	Bignognaceae	Togo	[108]	Leaves	Ethanol	Moderate	12.6 µg/ml IC50	Plasmodium falciparum	Nd
Newbouldia laevis	Fabaceae	Nigeria	[109]	Leaves	Water	Moderate	19.5 µg/ml IC50	Plasmodium falciparum	Nd
		Nigeria	[53]	Roots	Dichloromethylene	Good	5.00 µg/ml IC50	Plasmodium falciparum D10	Nd
Ocimum americana	Lamiaceae	Kenya	[24]	Whole Plant	Methanol	Moderate	8.9–12.1 µg/ml IC50	Plasmodium falciparum D6, W2	Nd
Ocimum basilicum	Lamiaceae	D.R. Congo	[159]	Leaves	Ethanol, Methanol, Petroleum Ether, Chloroform	Good	< 0.35–18 µg/ml IC50	Plasmodium falciparum	Nd
Ocimum gratissimun	Lamiaceae	Kenya	[26]	Leaves	Methanol	Moderate	16.4 µg/ml IC50	Plasmodium falciparum D6, W2	Nd
Ocimum kilimandschwaricum	Lamiaceae	Kenya	[30]	Leaves, Twigs	Dichloromethane	Good	8.616 µg/ml IC50	Plasmodium falciparum D6, W2	Nd
Olax gambeckola	Olacaceae	Ivory Coast	[43]	Whole Plant	Ethanol	Good	5.2 µg/ml IC50	Plasmodium falciparum FCB1	Nd
Olea europaea	Oleaceae	Kenya	[24]	Stem Barks	Methanol	Moderate	17.3 µg/ml IC50	Plasmodium falciparum D6, W2	Nd
		Kenya	[21]	Inner Barks	Methanol	Good	9.48 µg/ml IC50	Plasmodium falciparum D6	No
		South Africa	[22]	Leaves	Dichloromethane/Methanol	Moderate	12.0 µg/ml IC50	Plasmodium falciparum D10	Nd
Opilia celidifolia	Opiliaceae	Burkina Faso	[52]	Leaves	Dichloromethane	Very Good	2.8 µg/ml IC50	Plasmodium falciparum	Yes (SI = 0.4; HepG2 cells)
Ormocarpum trachycarpum	Fabaceae	Kenya	[77]	Stem Barks	Dichloromethane/Ethyl Acetate	Moderate	17.5—19.6 µg/ml IC50	Plasmodium falciparum K39, V1/S	Nd
Osteospermum imbricatum	Asteraceae	South Africa	[22]	Stems	Dichloromethane/Methanol	Good	7.3 µg/ml IC50	Plasmodium falciparum D10	Nd
Phyllanthus amarus	Phyllanthaceae	Nigeria	[53]	Leaves	Petroleum Ether	Very Good	4.99 µg/ml IC50	Plasmodium falciparum D10	Nd
Pachypodanthium confine	Annonaceae	Cameroon	[98]	Stem Barks	Water	Moderate	16.6 µg/ml IC50	Plasmodium falciparum W3	Nd
Pappea capensis	Sapindaceae	South Africa	[37]	Twigs	Dichloromethane	Good	5.47 µg/ml IC50	Plasmodium falciparum NF54	Nd
Plant species	Plant family	Source	Country of study	Part of plant used	Extraction solvent	Antiplasmodial Activity	IC50 or ED50 or LD50	Strain of Plasmodium Tested	Toxicity (value; assay)
-----------------------	-------------------	--------------	------------------	-------------------	--------------------------------	-------------------------	-----------------------	-----------------------------	--------------------------
Parinari curatellifolia	Chrysobalanaceae	[22] South Africa	Roots	Dichloromethane	Good	5.3 µg/ml IC50	Plasmodium falciparum D10	Nd	
		[24] Kenya	Root Barks	Methanol	Good	3.9–7.9 µg/ml IC50	Plasmodium falciparum D6, W2	Nd	
		[37] South Africa	Stem Barks	Dichloromethane	Good	6.99 µg/ml IC50	Plasmodium falciparum NF54	Nd	
Parinari excelsa	Chrysobalanaceae	[20] Tanzania	Stem Barks	Ethyl Acetate	Moderate	10 µg/ml IC50	Plasmodium falciparum K1	Nd	
		[75] Uganda	Barks	Ethyl Acetate	Nd	Nd			
Parkinsonia aculeata	Fabaceae	[22] South Africa	Twigs	Dichloromethane/Methanol	Good	9 µg/ml IC50	Plasmodium falciparum D10	Nd	
Pavetta corymbosa	Rubiaceae	[65] Benin	Aerial parts	Methanol	Moderate	5.54–20 µg/ml IC50	Plasmodium falciparum 3D7 & K1	Nd	
		[110] Togo	Aerial parts	Methanol	Very Good	2.042 µg/ml IC50	Plasmodium falciparum	Nd	
Pavetta crassipes	Rubiaceae	[27] Burkina Faso	Leaves	Crude Alkaloid	Very Good	<4 µg/ml IC50	Plasmodium falciparum W2	Nd	
		[71] Togo	Aerial parts	Water	Good	<7 µg/ml IC50	Plasmodium falciparum	Nd	
Pelargonium alchemilloides	Geraniaceae	[22] South Africa	Whole plant	Dichloromethane/Methanol	Moderate	15 µg/ml IC50	Plasmodium falciparum D10	Nd	
Pentas lanceolata	Rubiaceae	[21] Kenya	Root Barks	Methanol	Good	5.15 µg/ml IC50	Plasmodium falciparum D6	No	
Pentas longiflora	Rubiaceae	[26] Kenya	Root Barks	Methanol	Moderate	13.3 µg/ml IC50	Plasmodium falciparum D6, W2	Nd	
Pentzia globosa	Asteraceae	[22] South Africa	Roots	Dichloromethane	Good	8 µg/ml IC50	Plasmodium falciparum D10	Nd	
Phyllanthus amarus	Phyllanthaceae	[111] Ghana	Whole Plant	Ethanol	Moderate	11.7 µg/ml IC50	Plasmodium falciparum Dd2	No	
Phyllanthus fraternus	Phyllanthaceae	[112] Ghana	Whole Plant	Methanol	Very Good	0.44 µg/ml IC50	Plasmodium falciparum 3D7, W2	No	
Phyllanthus muellinenus	Phyllanthaceae	[28] Ivory Coast	Leaves	Ethanol	Good	9.4 µg/ml IC50	Plasmodium falciparum Fcb1/ Colombia Strain	No	
		[43] Ivory Coast	Leaves	Ethanol	Moderate	10.3 µg/ml IC50	Plasmodium falciparum Fcb1	Nd	
Phyllanthus niruri	Phyllanthaceae	[69] D.R.Congo	Whole Plant	Petroleum Ether	Very Good	1.3 µg/ml IC50	Plasmodium falciparum	Nd	
Phyllanthus uniflora	Phyllanthaceae	[45] Cambodia	Whole Plant	Water	Very Good	2.4 µg/ml IC50	Plasmodium falciparum W2	Nd	
Physalis angulata	Solanaceae	[28] Ivory Coast	Whole Plant	Ethanol	Good	7.9 µg/ml IC50	Plasmodium falciparum Fcb1/ Colombia Strain	Nd	
		[43] Ivory Coast	Whole Plant	Ethanol	Good	7.9 µg/ml IC50	Plasmodium falciparum FC1	Nd	
		[44] D.R. Congo	Leaves	Methanol and dichloromethane	Very good	1.27 µg/ml IC50	Plasmodium falciparum 3D7, W2, Plasmodium berghei	No	
Plant species	Plant family	Source	Country of study	Part of plant used	Extraction solvent	Antiplasmodial Activity	IC50 or ED50 or LD50	Strain of Plasmodium Tested	Toxicity (value; assay)
-------------------------------	---------------	----------------	------------------	--------------------	--------------------	------------------------	----------------------	-----------------------------	-------------------------
Picralima nitida	Apocynaceae	Nigeria	Roots	Ethanol	Good	6.29 µg/ml IC50	Plasmodium falciparum D10	Nd	
		[53]							
		Nigeria	Stems	Methanol	Good	6.0–6.3 µg/ml IC50	Plasmodium falciparum W2	No	
		Cameroon	Seeds	Methanol	Moderate	10.9 µg/ml IC50	Plasmodium falciparum W2	Nd	
		[89]							
		Ivory Coast	Root, Stem, Barks	Ns	Very Good	0.188–1.581 µg/ml IC50	Plasmodium falciparum	Nd	
		[114]							
Piper capense	Piperaceae	Comoros	Ns	Dichloromethane	Good	7 µg/ml IC50	Plasmodium falciparum W2	No	
		[91]							
Piptadeniastrum afric anus	Leguminosae	D.R. Congo	Stem, Barks	Water had	Good	6.11 µg/ml IC50	Plasmodium falciparum K1	Yes (SI = 1.4–1.5, human embryonic lung cells [MRC-5])	
		[40]							
		D.R. Congo	Stem, Barks	Water had	Good	6.11 µg/ml IC50	Plasmodium falciparum K1	No	
		Cameroon	Leaves	Methanol	Good	6.72 µg/ml IC50	Plasmodium falciparum W2	No	
		[49]							
		Kenya	Leaves	Methanol	Moderate	17.6–18.9 µg/ml IC50	Plasmodium falciparum D6, W2	No	
		[24]							
		South Africa	Whole Plant	Dichloromethane	Very Good	3 µg/ml IC50	Plasmodium falciparum D10	No	
		[22]							
		South Africa	Leaves	Dichloromethane	Very Good	3 µg/ml IC50	Plasmodium falciparum D10	No	
		[22]							
		Kenya	Root, Barks	Methanol	Good	6.43 µg/ml IC50	Plasmodium falciparum D6	No	
		[21]							
		South Africa	Twigs	Dichloromethane-Methanol	Good	6.8 µg/ml IC50	Plasmodium falciparum D10	No	
		[22]							
		Ghana	Stem, Barks	Ethanol, N-Hexane, Dichloromethane, Methanol-Ethyl Acetate	Good	3–6 µg/ml IC50	Plasmodium falciparum K1	No	
		[115]							
		Ghana	Stem, Barks	Methanol, Chloroform, Cyclohexane, Ethyl Acetate	Good	4.53–10.17 µM IC50	Plasmodium falciparum D10	No	
		[116]							
		Cameroon	Stem, Barks	Ethanol, Water, Dichloromethane, Methanol, Hexane	Very Good	4.30 µg/ml IC50	Plasmodium falciparum W2	No	
		[55]							
		Cameroon	Stem, Barks	Methanol	Very Good	3.43 µg/ml IC50	Plasmodium falciparum W2	No	
		[49]							
		Cameroon	Twigs	Methanol	Very Good	3.23 µg/ml IC50	Plasmodium falciparum W2	No	
		[49]							
		Kenya	Rhizome	N-Hexane, Chloroform	Very Good	2.33—4.62 µg/ml IC50	Plasmodium falciparum	No	
		[117]							
		Kenya	Leaves	Methanol	Moderate	11.1 µg/ml IC50	Plasmodium falciparum D6, W2	No	
		[26]							
		Nigeria	Ns	Methanol, Water, Butanol, Ethyl Acetate	Moderate	14.97–15.28 µg/ml IC50	Plasmodium falciparum 3D7, K1	Yes (SI ≥ 99; mouse heart-derived cells [NBH])	
Plant species	Plant family	Source	Country of study	Part of plant used	Extraction solvent	Antiplasmodial Activity	Strain of Plasmodium Tested	Toxicity (value; assay)	
------------------------	--------------	--------	------------------	--------------------	--------------------	-------------------------	----------------------------	--------------------------	
Prunus africana	Rosaceae	[24]	Kenya	Stem Barks	Methanol	Moderate	Plasmodium falciparum D6, W2	Nd	
Pseudospondias	Anacardiaceae	[31]	Tanzania	Roots	Ethanol	Very Good	Plasmodium falciparum K1	No	
Psidium guajava	Myrtaceae	[40]	DR Congo	Leaves	Water	Good	Plasmodium falciparum K1	No	
Psiadia punctata	Asteraceae	[22]	South Africa	Twigs	Dichloromethane	Good	Plasmodium falciparum D10	Nd	
Pterocarpus angolensis	Fabaceae	[22]	South Africa	Roots	Dichloromethane	Moderate	Plasmodium falciparum K1	Nd	
Pterocarpus erinaceus	Fabaceae	[118]	Burkin Faso	Leaves	Ethanol, Chloroform	Good	Plasmodium falciparum D10	Nd	
Psorospermum senegalense	Hypericaceae	[63]	Burkina Faso	Leaves	Dichloromethane	Moderate	Plasmodium falciparum 3D, W2	No	
Psidium guajava	Myrtaceae	[20]	Tanzania	Leaves	Ethyl Acetate	Moderate	Plasmodium falciparum K1	Nd	
Pycnanthus angolensis	Mynsticacae	[28]	Ivory Coast	Stem Barks	Ethanol	Moderate	Plasmodium falciparum Fcm29-Colombia Strain	Nd	
Quassia africana	Simaroubaceae	[103]	Congo Brazzaville	Leaves	Water, Ethanol, Dichloromethane	Very Good	Plasmodium falciparum Fcm29-Colombia Strain	Yes (IC_{50} = 6.7 µg/ml KB cells)	
Ranunculus multifidus	Ranunculaceae	[22]	D.R. Congo	Root Barks	Water	Very Good	Plasmodium falciparum K1	No	
Rauvolfia caffra Sand	Apocynaceae	[37]	South Africa	Roots	Dichloromethane	Very Good	Plasmodium falciparum NF54	Nd	
Rauvolfia oblongifolia	Apocynaceae	[26]	Kenya	Root Barks	Methanol	Good	Plasmodium falciparum D6, W2	Nd	
Rauvolfia vomitoria	Apocynaceae	[53]	Nigeria	Roots	Dichloromethane	Very Good	Plasmodium falciparum D10	Nd	
Quassia africana	Simaroubaceae	[21]	Kenya	Root Barks	Methanol	Very Good	Plasmodium falciparum D6	Nd	
Rheum officinale	Rhamnaceae	[77]	Kenya	Root Barks	Methanol	Moderate	Plasmodium falciparum K39 (CQ-S), ENT30, NF54, V1/S	Nd	
Rheum officinale	Rhamnaceae	[22]	South Africa	Twigs	Dichloromethane/Methanol	Good	Plasmodium falciparum D10	Nd	
Plant species	Plant family	Source	Country of study	Part of plant used	Extraction solvent	Antiplasmodial Activity	IC₅₀ or ED₅₀ or LD₃₀	Strain of Plasmodium Tested	Toxicity (value; assay)
----------------------	------------------	-----------------	------------------	--------------------	--------------------	--------------------------	-----------------------	-----------------------------	--------------------------
Rumex abyssinicus	Polygonaceae	[92]	Rwanda	Roots	Water	Good	8.0 µg/ml IC₅₀	Plasmodium falciparum D10	Nd
Rubia cordifolia	Rubiaceae	[95]	Kenya	Leaves/Seeds/Stems	Methanol	Very Good	1.20 µg/ml IC₅₀	Plasmodium Knowlesi	Nd
Ricinus communis	Euphorbiaceae	[22]	South Africa	Stems	Water	Good	3.1–4.3 µg/ml IC₅₀	Plasmodium falciparum D6, W2	Nd
Salvia radula	Lamiaceae	[22]	South Africa	Aerial Parts	Methanol	Good	8.713 µg/ml IC₅₀	Plasmodium falciparum FCR-3	Nd
Salvia australis	Lamiaceae	[120]	South Africa	Aerial Parts	Methanol/Chloroform	Moderate	15.863 µg/ml IC₅₀	Plasmodium falciparum FCR-3	Nd
Salvia bioculata	Lamiaceae	[120]	South Africa	Aerial Parts	Methanol/Chloroform	Moderate	15.833 µg/ml IC₅₀	Plasmodium falciparum FCR-3	Nd
Salvia carnea	Lamiaceae	[20]	Tanzania	Roots	Petroleum Ether	Very Good	0.8 µg/ml IC₅₀	Plasmodium falciparum K1	Nd
Salvia corymbosa	Lamiaceae	[22]	South Africa	Aerial Parts	Methanol	Good	6.235 µg/ml IC₅₀	Plasmodium falciparum FCR-3	Nd
Salvia dolomitica	Lamiaceae	[120]	South Africa	Aerial Parts	Methanol/Chloroform	Moderate	13.953 µg/ml IC₅₀	Plasmodium falciparum FCR-3	Nd
Salvia divinorum	Lamiaceae	[22]	South Africa	Whole Plant	Methanol/Chloroform	Moderate	11.873 µg/ml IC₅₀	Plasmodium falciparum FCR-3	Nd
Salvia radula	Lamiaceae	[120]	South Africa	Aerial Parts	Methanol/Chloroform	Very Good	3.913 µg/ml IC₅₀	Plasmodium falciparum FCR-3	Yes (IC₅₀ = 20.12 µg/ml Kidney cells)
Salvia repens	Lamiaceae	[120]	South Africa	Aerial Parts	Methanol/Chloroform	Good	8.253 µg/ml IC₅₀	Plasmodium falciparum FCR-3	Nd
Salvia runcinata	Lamiaceae	[22]	South Africa	Whole Plant	Methanol/Chloroform	Moderate	10.8 µg/ml IC₅₀	Plasmodium falciparum D10	Nd
Salvia schultenii	Lamiaceae	[120]	South Africa	Aerial Parts	Methanol/Chloroform	Moderate	16.613 µg/ml IC₅₀	Plasmodium falciparum FCR-3	Nd
Salvia stenotaphyllum	Lamiaceae	[120]	South Africa	Aerial Parts	Methanol/Chloroform	Moderate	17.513 µg/ml IC₅₀	Plasmodium falciparum FCR-3	Nd
Sonchus schwantesii	Compositae	[95]	Kenya	Barks/ Roots	Methanol	Very Good	2.10 µg/ml IC₅₀	Plasmodium Knowlesi	Nd
Scaevola plumieri	Goodeniaceae	[22]	South Africa	Twigs	Dichloromethane	Moderate	11 µg/ml IC₅₀	Plasmodium falciparum D10	Nd
Schefflera umbellifera	Araliaceae	[22]	South Africa	Leaves	Dichloromethane	Very Good	3.7 µg/ml IC₅₀	Plasmodium falciparum D10	Nd
Schizogygia cofaeoides	Apocynaceae	[26]	Kenya	Leaves	Methanol	Moderate	10.5 µg/ml IC₅₀	Plasmodium falciparum D6, W2	Nd
Schkhunia pinnata	Compositae	[24]	Kenya	Whole Plant	Methanol	Good	1.3–6.8 µg/ml IC₅₀	Plasmodium falciparum D6, W2	Nd
Schrankia leptocarpa	Fabaceae	[65]	Benin	Aerial Parts	Methanol	Moderate	3.38–20 µg/ml IC₅₀	Plasmodium falciparum 3D7 & K1	Nd
Plant species	Plant family	Source	Country of study	Part of plant used	Extraction solvent	Antiplasmodial Activity	IC50 or ED50 or LD50	Strain of Plasmodium Tested	Toxicity (value; assay)
---------------------	-------------------	------------------	------------------	--------------------	----------------------	-------------------------	------------------------	---------------------------	--------------------------
Scolocarya birrea	Anacardiaceae	[24]	Kenya	Stem Barks	Methanol	Moderate	5.9–24.9 µg/ml IC50	Plasmodium falciparum D6, W2	Nd
Secamone azelii	Apocynaceae	[65]	Benin	Aerial Parts	Methanol	Moderate	6.48–20 µg/ml IC50	Plasmodium falciparum 3D7 & K1	Nd
Securidaca longipedunculata	Polygalaceae	[121]	Mali	Leaves	Dichloromethane	Good	6.9 µg/ml IC50	Plasmodium falciparum 3D7	Nd
Securinea virosa	Phyllanthaceae	[52]	Burkina Faso	Leaves	Dichloromethane	Good	7.1 µg/ml IC50	Plasmodium falciparum	Nd
Senecio oxyriifolius	Asteraceae	[22]	South Africa	Whole plant	Dichloromethane/Methanol	Moderate	13 µg/ml IC50	Plasmodium falciparum D10	Nd
Senecio stuhlmannii	Asteraceae	[56]	Uganda	Shoots	Ethyl Acetate	Moderate	14.0–15.2 µg/ml IC50	Plasmodium falciparum D10, K1	Nd
Senega didymobotrya	Fabaceae	[22]	South Africa	Twigs	Dichloromethane/Methanol	Good	9.5 µg/ml IC50	Plasmodium falciparum D10	Nd
Senna petersiana	Fabaceae	[22]	South Africa	Twigs	Dichloromethane/Methanol	Moderate	13 µg/ml IC50	Plasmodium falciparum D10	Nd
Sida acuta	Malvaceae	[118]	Burkina Faso	Whole Plant Ns	Ethanol, Chloroform, Water	Very Good	0.87–0.92 µg/ml IC50	Plasmodium falciparum 3D7 And Dd2	Nd
Solanum panduriforme	Solanaceae	[25]	South Africa	Leaves	Acetone	Very Good	3.62 µg/ml IC50	Plasmodium falciparum UP1 (CQ-R)	Nd
Solanecia mannii	Asteraceae	[92]	Rwanda	Leaves	Dichloromethane	Moderate	12.7–18.2 µg/ml IC50	Plasmodium falciparum 3D7, W2	Nd
Spilanthes mauritiana	Asteraceae	[22]	South Africa	Stems	Dichloromethane/Methanol	Good	5.3 µg/ml IC50	Plasmodium falciparum D10	Nd
Staudia gabonensis	Myristicaceae	[33]	Gabon	Stems	Methanol	Very Good	0.8 µg/ml IC50	Plasmodium falciparum Fcbm W2	Nd
Stephania abyssinica	Menispermaceae	[24]	Kenya	Root Barks	Methanol	Good	4.7–6.1 µg/ml IC50	Plasmodium falciparum D6, W2	Nd
Stephania rotundata	Menispermaceae	[45]	Cambodia	Tubers	Dichloromethane	Very Good	1.0 µg/ml IC50	Plasmodium falciparum W2	Nd
Struchagia sparganophorum	Asteraceae	[73]	S. Torn, And Pri 'Ncipe	Leaves	Petroleum Ether	Good	< 10 µg/ml IC50	Plasmodium falciparum 3D7 And Dd2	Nd
Stynchonopsis thouarsii	Menispermaceae	[122]	Madagascar	Stem Barks	Methanol	Very Good	3.1—4.2 µM	Plasmodium falciparum NF54, Plasmodium yoelli 265 BY	No
Stynchos henningi	Loganiaceae	[72]	Kenya	Twigs	Methanol	Moderate	14.6–17.9 µg/ml IC50	Plasmodium falciparum K1, NF54	Nd
Stynchos pungens	Loganiaceae	[22]	South Africa	Leaves	Dichloromethane	Moderate	12.6 µg/ml IC50	Plasmodium falciparum D10	Nd
Stynchos spinosa	Loganiaceae	[123]	Senegal	Leaves, Stem	Methanol, Water	Moderate	15 µg/ml IC50	Plasmodium falciparum	Nd
Stynchos icaja	Loganiaceae	[46]	D.R. congo	Root barks	Methanolic and dichloromethane	Very good	0.69 µg/ml IC50	Plasmodium falciparum 3D7, W2, Plasmodium berghei berghei	Nd
Plant species	Plant family	Source	Country of study	Part of plant used	Extraction solvent	Antiplasmodial Activity	\(IC_{50} \) or \(ED_{50} \) or \(LD_{50} \)	Strain of Plasmodium Tested	Toxicity (value; assay)
-------------------------------	----------------------	-----------------	------------------	-------------------	--------------------	--------------------------	---------------------------------	-----------------------------	--------------------------
Suregada zanzibaricensis	Euphorbiaceae	[26] Kenya	Leaves	Methanol	Good	5.8–6.7 µg/ml IC\(_{50}\)	Plasmodium falciparum D6, W2	Nd	
			[124] Kenya	Leaves	Methanol	Very Good	1.82–4.66 µg/ml IC\(_{50}\)	Plasmodium falciparum D6, W2	Nd
Syzygium cordatum subsp. cordatum	Myrtaceae	[22] South Africa	Twigs	Dichloromethane/Methanol	Moderate	14.7 µg/ml IC\(_{50}\)	Plasmodium falciparum D10	Nd	
			[37] South Africa	Leaves	Dichloromethane	Good	6.15 µg/ml IC\(_{50}\)	Plasmodium falciparum NF54	Nd
Tabernaemon tana elegans	Apocynaceae	[37] South Africa	Roots	Dichloromethane	Very Good	0.33 µg/ml IC\(_{50}\)	Plasmodium falciparum NF54	Nd	
Tabernaemon tana pachysiphon	Apocynaceae	[26] Kenya	Flower	Methanol	Very Good	4.4–4.8 µg/ml IC\(_{50}\)	Plasmodium falciparum D6, W2	Nd	
Tagetes minuta	Asteraceae	[75] Uganda	Leaves	Ethyl Acetate	Nd	Nd	Plasmodium falciparum Fcb8	Nd	
Tamarindus indica	Fabaceae	[23] Sudan	Stem, Barks	Methanol	Moderate	10 µg/ml IC\(_{50}\)	Plasmodium falciparum 3D7, Dd2	No	
			[110] Togo	Fruits	Water	Very Good	4.786 µg/ml IC\(_{50}\)	Plasmodium falciparum	Nd
Tapinanthus dodoneliformus	Loranthaceae	[52] Burkina Faso	Leaves	Methanol	Good	5.2 µg/ml IC\(_{50}\)	Plasmodium falciparum	Nd	
Taraxanthus camphoratus	Asteraceae	[22] South Africa	Whole Plant	Dichloromethane/Methanol	Good	6 µg/ml IC\(_{50}\)	Plasmodium falciparum D10	Nd	
Teclea nobilis	Rutaceae	[24] Kenya	Stem, Barks	Methanol	Moderate	3.9–20.4 µg/ml IC\(_{50}\)	Plasmodium falciparum D6, W2	Nd	
			[75] Uganda	Barks	Ethyl Acetate	Nd	Nd	Plasmodium falciparum Fcb9	Nd
Tecoma capensis	Bignoniaceae	[22] South Africa	Twigs	Dichloromethane/Methanol	Moderate	12.28–14.09 µg/ml IC\(_{50}\)	Plasmodium falciparum 3D7, K1	Yes (SI \(\geq\) 114; mouse heart-derived cells [NBMH])	
			[52] Burkina Faso	Leaves	Methanol	Very Good	1.9 µg/ml IC\(_{50}\)	Plasmodium falciparum	Nd
Terminalia avicennioides	Combretaceae	[50] Nigeria	Ns	Methanol, Water, Butanol, Ethyl Acetate	Moderate	12.28–14.09 µg/ml IC\(_{50}\)	Plasmodium falciparum 3D7, K1	Yes (SI \(\geq\) 114; mouse heart-derived cells [NBMH])	
			[92] Ghana	Leaves	Methanol	Moderate	11.7–26.3 µg/ml IC\(_{50}\)	Plasmodium falciparum 3D7, W2	No
Terminalia macroptera	Combretaceae	[27] Burkina Faso	Roots	Water	Very Good	1 µg/ml IC\(_{50}\)	Plasmodium falciparum W2	No	
Terminalia mollis	Combretaceae	[26] Kenya	Stem, Barks	Methanol	Moderate	7.9 µg/ml IC\(_{50}\)	Plasmodium falciparum 3D7, W2	No	
Terminalia spinosa	Combretaceae	[69] DR Congo	Leaves	Petroleum Ether	Very Good	1.7 µg/ml IC\(_{50}\)	Plasmodium falciparum	No	
Tetrapleura tetraptera	Fabaceae	[33] Gabon	Leaves	Dichloromethane	Moderate	10.1–13.0 µg/ml IC\(_{50}\)	Plasmodium falciparum FCb, 3D7	No	
Plant species	Plant family	Source	Country of study	Part of plant used	Extraction solvent	Antiplasmodial Activity	IC₅₀ or ED₅₀ or LD₅₀	Strain of Plasmodium Tested	Toxicity (value; assay)
---------------------	-------------------	-----------------	------------------	--------------------	--------------------	-------------------------	-----------------------	-----------------------------	--------------------------
Thalia geniculata	Marantaceae	[65] Benin	Roots	Methanol	Moderate	2.83 - > 20 µg/ml IC₅₀	Plasmodium falciparum	Nd	
Tinospora bakis	Menispermaceae	[34] Sudan	Whole Plant	Petroleum Ether/ Chloroform	Very Good	< 5 µg/ml IC₅₀	Plasmodium falciparum	Nd	
Tithonia diversifolia	Asteraceae	[73] S. Tomé’ And Pri ‘Ncipe	Aerial Parts	Petroleum Ether, Dichloromethane	Good	< 10 µg/ml IC₅₀	Plasmodium falciparum	Nd	
Todalia asiatica	Rutaceae	[26] Kenya	Root Barks	Methanol	Good	< 0.5 µg/ml IC₅₀	Plasmodium falciparum	Nd	
Trichilia emetica	Meliaceae	[121] Mali	Leaves	Dichloromethane	Moderate	11.9 µg/ml IC₅₀	Plasmodium falciparum	Nd	
Triclisia dictyo-	Menispermaceae	[40] D.R. Congo	Leaves	Water	Good	5.13 µg/ml IC₅₀	Plasmodium falciparum	No	
Tridax procumbens	Asteraceae	[22] South Africa	Whole Plant	Dichloromethane/Methanol	Moderate	17 µg/ml IC₅₀	Plasmodium falciparum	Nd	
Trimumfetta welwitschii var. hirsuta	Malvaceae	[22] South Africa	Leaves	Dichloromethane/Methanol	Very Good	3.6 µg/ml IC₅₀	Plasmodium falciparum	Nd	
Turraea floribunda	Meliaceae	[22] South Africa	Leaves	Dichloromethane/Methanol	Good	8.8 µg/ml IC₅₀	Plasmodium falciparum	Nd	
Turraea robusta	Meliaceae	[26] Kenya	Stem Barks	Methanol	Good	5.5 µg/ml IC₅₀	Plasmodium falciparum	Nd	
Tylosolea fassoglenis	Fabaceae	[30] Kenya	Tubers	Dichloromethane	Very Good	0.77–0.896 µg/ml IC₅₀	Plasmodium falciparum	Nd	
Uapaca paludosa	Phyllanthaceae	[103] Congo Brazzaville	Barks	Dichloromethane	Good	8 µg/ml IC₅₀	Plasmodium falciparum	Nd	
Uvaria acuminata	Annonaceae	[26] Kenya	Root Barks	Methanol	Good	6.9–8.9 µg/ml IC₅₀	Plasmodium falciparum	Nd	
Uvaria scheffleri	Annonaceae	[26] Kenya	Leaves	Methanol	Good	6.8 µg/ml IC₅₀	Plasmodium falciparum	Nd	
Uvaria afzelii	Annonaceae	[48] Ivory Coast	Roots	Pentane	Moderate	9–22 µg/ml IC₅₀	Plasmodium falciparum	No	
Uvariastrum zenkeri	Annonaceae	[49] Cameroon	Twigs	Ethanol	Very Good	1.89 µg/ml IC₅₀	Plasmodium falciparum	Nd	
Uvariodendron molundense	Annonaceae	[49] Cameroon	Twigs	Methanol	Very Good	4.79 µg/ml IC₅₀	Plasmodium falciparum	Nd	
Plant species	Plant family	Source	Country of study	Part of plant used	Extraction solvent	Antiplasmodial Activity	IC₅₀ or ED₅₀ or LD₅₀	Strain of Plasmodium Tested	Toxicity (value; assay)
----------------------------	-------------------	-------------------	------------------	-------------------	-------------------	-------------------------	----------------------	---------------------------	--------------------------
Uvariopsis congolana	Annonaceae	[55]	Cameroon	Stems	Ethanol, Water, Dichloromethane, Methanol, Hexane	Very Good	4.47 µg/ml IC₅₀	Plasmodium falciparum W2	Nd
Vangueria infausta Burch. subsp. Infausta	Rubiaceae	[37]	South Africa	Roots	Dichloromethane	Very Good	1.84 µg/ml IC₅₀	Plasmodium falciparum K1	Nd
Vepris lanceolata	Rutaceae	[20]	Kenya	Roots	Ethyl Acetate	Good	7.0 µg/ml IC₅₀	Plasmodium falciparum 3D7 And Dd2	Nd
Vernonia amygdalina	Asteraceae	[74]	S. Tome’ And Príñancipe	Leaves	Ethyl Acetate	Moderate	10 µg/ml IC₅₀	Plasmodium falciparum 3D7 And Dd2	Nd
Vernonia brachycalyx	Asteraceae	[104]	Kenya	Leaves	Dichloromethane	Moderate	8.72–11.27 µg/ml IC₅₀	Plasmodium falciparum 3D7, DD2	No
Vernonia cinerea	Asteraceae	[45]	Cambodia	Whole Plant	Dichloromethane	Good	18.3 µg/ml IC₅₀	Plasmodium falciparum W2	Nd
Vernonia coloata	Asteraceae	[57]	Ivory Coast	Stems, Leaves	Water	Good	2.35–9.38 µg/ml IC₅₀	Plasmodium falciparum Pow, Dd2	Nd
Vernonia fastigiata	Asteraceae	[22]	South Africa	Leaves	Dichloromethane/Methanol	Very Good	4.7 µg/ml IC₅₀	Plasmodium falciparum D10	Nd
Vernonia guineensis	Asteraceae	[128]	Cameroon	Leaves	Dichloromethane	Very Good	1.635—2.253 µg/ml IC₅₀	Plasmodium falciparum No	No
Vernonia lasiopus Compositae	Compositae	[12]	Kenya	Leaves	Chloroform, Ethylacetate, Methanol	Very Good	1.0–3.2 µg/ml IC₅₀	Plasmodium falciparum K39, (CQ-S), EN730, NF54, V1/S	Nd
Vernonia myrianthra	Asteraceae	[22]	South Africa	Leaves	Dichloromethane	Very Good	4.7–4.9 µg/ml IC₅₀	Plasmodium falciparum K1, NF54	Nd
Vernonia oligocephala	Asteraceae	[22]	South Africa	Leaves	Dichloromethane/Methanol	Very Good	3.5 µg/ml IC₅₀	Plasmodium falciparum D10	Nd
Vismia guineensis	Hypericaceae	[48]	Ivory Coast	Leaves	Pentane	Moderate	15–20 µg/ml IC₅₀	Plasmodium falciparum FC929, CQ-S (Nigerian)	Nd
Warburgia ugandensis	Canellaceae	[72]	Kenya	Stem Barks	Dichloromethane	Very Good	1.4–2.2 µg/ml IC₅₀	Plasmodium falciparum K1, NF54	Nd
		[24]	Kenya	Root Barks	Methanol	Good	4.1–6.1 µg/ml IC₅₀	Plasmodium falciparum D6, W2	Nd
Plant species	Plant family	Source	Country of study	Part of plant used	Extraction solvent	Antiplasmodial Activity	Strain of Plasmodium Tested	Toxicity (value; assay)	
-------------------------	-------------------	---------------	------------------	--------------------	--------------------	-------------------------	----------------------------	--------------------------	
Warburgia stuhlmannii	Canellaceae	[26] Kenya	Stem Barks	Methanol	Very Good	1.8–2.3 µg/ml IC$_{50}$	Plasmodium falciparum D6, W2	Nd	
Ximenia americana	Olacaceae	[57] Ivory Coast	Stem, Leave	Water	Very Good	0.6–2.6 µg/ml IC$_{50}$	Plasmodium falciparum Fcb1 & F32	Nd	
Xylopia aethiopica	Annonaceae	[98] Cameroon	Stem Barks	Methanol	Very Good	3.75 µg/ml IC$_{50}$	Plasmodium falciparum W5	Nd	
Xylopia africana	Annonaceae	[49] Cameroon	Stem Barks	Methanol	Very Good	1.07 µg/ml IC$_{50}$	Plasmodium falciparum W2	Nd	
Xylopia parviflora	Annonaceae	[37] South Africa	Roots	Dichloromethane	Very Good	2.19 µg/ml IC$_{50}$	Plasmodium falciparum NF54	Nd	
Xylopia phloiodora	Annonaceae	[98] Cameroon	Stem Barks	Water	Moderatea	17.9 µg/ml IC$_{50}$	Plasmodium falciparum W2	Nd	
Xysmalobium undulatum	Apocynaceae	[22] South Africa	Whole Plant	Dichloromethane/Methanol	Good	6 µg/ml IC$_{50}$	Plasmodium falciparum D10	Nd	
Zanthoxylum chalybeum	Rutaceae	[137] Kenya	Root Barks	Water	Good	2.32–5.52 µg/ml IC$_{50}$	Plasmodium falciparum NF54, ENT30	Nd	
Zanthoxylum gilletii	Rutaceae	[43] Ivory Coast	Stem Barks	Ethanol	Very Good	2.8 µg/ml IC$_{50}$	Plasmodium falciparum FCB1	Nd	
Zanthoxylum heitzii	Rutaceae	[129] Republic Of Congo	Barkss	Hexane	Very Gooda	0.0089 µg/ml IC$_{50}$	Plasmodium falciparum, Plasmodium berghei	Nd	
Zanthoxylum tsihanimposa	Rutaceae	[130] Madagascar	Stem Barks	Dichloromethane+Methanol	Very Gooda	98.4 µM IC$_{50}$	Plasmodium falciparum FCM29	Nd	
Zanthoxylum usambarensis	Rutaceae	[24] Kenya	Root Barks	Methanol	Good	3.2–5.5 µg/ml IC$_{50}$	Plasmodium falciparum D6, W2	Nd	
Zea mays	Poaceae	[131] Nigeria	Leaves	Ethanol, ethyl acetate	Good	3.69–9.31 µg/ml IC$_{50}$	Plasmodium falciparum 3D7, INDO, Plasmodium berghei	Nd	
Zeheria scabra	Cucurbitaceae	[22] South Africa	Whole Plant	Dichloromethane/Methanol	Good	5.6 µg/ml IC$_{50}$	Plasmodium falciparum D10	Nd	
Ziziphus abbyssica	Rhamnaceae	[24] Kenya	Leaves	Methanol	Moderate	17.5 µg/ml IC$_{50}$	Plasmodium falciparum D6, W2	Nd	
Ziziphus mucronata	Rhamnaceae	[22] South Africa	Leaves	Dichloromethane	Moderate	12 µg/ml IC$_{50}$	Plasmodium falciparum D10	Nd	
Ziziphus cambodiana	Rhamnaceae	[45] Cambodia	Stems	Dichloromethane	Very Good	4.13 µg/ml IC$_{50}$	Plasmodium falciparum UP1 (CQ-R)	Nd	

Nd Not done, Ns Not specified, SI Selectivity index

*a Activity determined using pure compounds isolated from plant
Table 2 In vivo antimalarial activity of African medicinal plants

Plant species	Plant family	Source	Country of study	Part of plant used	Extraction solvent	Antimarial activity	Parasite suppression rate	Strain of Plasmodium tested	Toxicity (value; assay)
Acacia nilotica	Fabaceae	[132]	Nigeria	Roots	Water	Moderate	79.5% at 400 mg/kg/day	Plasmodium berghei NK65	No
		[133]	Nigeria	Roots	Methanol	Very good	62.59% at 150 mg/kg/day	Plasmodium berghei NK65	No
Adansonia digitata	Malvaceae	[134]	Nigeria	Stem barks	Methanol	Moderate	90.18% at 400 mg/kg/day	Plasmodium berghei	Nd
		[135]	Kenya	Stem barks	Ethanol	Very good	>60% at 100 mg/kg/day	Plasmodium berghei	No
		[135]	Kenya	Stem barks	Water	Very good	60.47% at 100 mg/kg/day	Plasmodium berghei	No
Ageratum conyzoides	Asteraceae	[136]	Nigeria	Leaves	Water	Moderate	89.87% at 400 mg/kg/day	Plasmodium berghei NK65	Nd
Alvizia gummifera	Fabaceae	[137]	Kenya	Root barks	Methanol	Very good	72.9% at 20 mg/kg/day	Plasmodium falciparum NF54 and ENT36	Nd
Allophylus africanus	Sapindaceae	[138]	Nigeria	Stems, roots	Ns	Very good	92.82–97.81 at 50 mg/kg/day	Plasmodium berghei NK65	Nd
Aloe pulcherrima	Xanthorrhoeaceae	[139]	Ethiopia	Leaves	Methanol	Good	56.2 at 200 mg/kg/day	Plasmodium berghei	No
Anthocleista djallonensis	Gentianaceae	[140]	Nigeria	Roots	Chloroform, ethyl acetate, methanol	Moderate	64.81–78.66% at 500 mg/kg/day	Plasmodium berghei ANKA	No
Artemisia macivarae	Asteraceae	[141]	Nigeria	Whole plant	Chloroform	Very good	80% at 100 mg/kg	Plasmodium berghei	Nd
Aspilia africana	Asteraceae	[142]	Nigeria	Leaves	Ethanol	Moderate	92.23% at 400 mg/kg/day	Plasmodium berghei NK65	No
Azadirachta indica	Meliaceae	[143]	Kenya	Leaves	Methanol	Good	83.48% at 250 mg/kg/day	Plasmodium falciparum D6 and W2	No
Balanites rotundifolia	Zygophyllaceae	[146]	Ethiopia	Leaves	Methanol	Moderate	69.28% at 300 mg/kg/day	Plasmodium berghei NK65	No
Blighia sapida	Sapindaceae	[147]	Nigeria	Leaves	Ethanol	Good	57% at 200 mg/kg/day	Plasmodium berghei ANKA	No
Table 2 (continued)

Plant species	Plant family	Source	Country of study	Part of plant used	Extraction solvent	Antimalarial activity	Parasite suppression rate	Strain of Plasmodium tested	Toxicity (value; assay)
Bombax buonopozense	Malvaceae	Nigeria	Root barks	Water	Good	93% at 200 mg/kg/day	Plasmodium berghei	Nd	
Brassica nigra	Brassicaceae	Ethiopia	Seeds	Methanol	Moderate	53.13% at 400 mg/kg/day	Plasmodium berghei	Nd	
Calpurnia aurea	Fabaceae	Ethiopia	Leaves	Hydroalcohol	Very good	51.15% at 60 mg/kg	Plasmodium berghei	No	
Carica papaya	Caricaceae	Nigeria	Leaves	Ethanol	Good	59.29% at 200 mg/kg	Plasmodium berghei	Nd	
Senna occidentalis	Fabaceae	D.R. Congo	Root barks	Ethanol	Good	68% at 200 mg/kg	Plasmodium berghei	No	
Cassia sieberiana	Fabaceae	Nigeria	Stems	Ethanol	Good	63.9% at 300 g/kg/day	Plasmodium berghei	No	
Cassia sanguinea	Fabaceae	Nigeria	Root barks	Methanol	Good	79.06% at 200 mg/kg/day	Plasmodium berghei	Yes (LD₅₀ = 847 mg/kg; mice)	
Chrozophora senegalensis	Euphorbiaceous	Nigeria	Whole plant	Methanol	Very good	51.8% at 75 mg/kg/day	Plasmodium berghei	Nd	
Chrysophyllum albiflorum	Sapotaceae	Nigeria	Seeds, pulp	Ethanol	Moderate	72.97% at 500 mg/kg	Plasmodium berghei	No	
Clausena anisota	Rutaceae	Nigeria	Leaves	Ethanol	Very good	82.02% at 78 mg/kg/day	Plasmodium berghei	Yes (LD₅₀ = 393.7 mg/kg; albino mice)	
Combretum molle	Combretaceae	Ethiopia	Seeds	Methanol	Good	63.5% at 250 mg/kg/day	Plasmodium berghei	Nd	
Commiphora africana	Burseraceae	Tanzania	Stem barks	Dichloromethane	Moderate	64.24% at 400 mg/kg/day	Plasmodium falciparum	No	
Crossopteryx febrifuga	Rubiaceae	Nigeria	Stem barks	Ethanol	Good	63.65% at 200 mg/kg/day	Plasmodium berghei var.	Nd	
Croton macrostachyus	Euphorbiaceous	Kenya	Stem barks	Ethyl acetate	Moderate	82% at 500 mg/kg/day	Plasmodium berghei	Nd	
Cryptolepis sanguinolenta	Apocynaceae	Congo	Root barks	Ethanol	Moderate	75.07% at 400 mg/kg/day	Plasmodium falciparum, Plasmodium berghei	Nd	
Cucumis metuliferus	Cucurbitaceae	Tanzania	Leaves	Chloroform	Moderate	70.69% at 600 mg/kg/day	Plasmodium berghei	Nd	
Plant species	Plant family	Source	Country of study	Part of plant used	Extraction solvent	Antimalarial activity	Parasite suppression rate	Strain of Plasmodium tested	Toxicity (value; assay)
--------------------	----------------	----------	------------------	--------------------	-------------------	-----------------------	--------------------------	-----------------------------	-----------------------
Dichrostachys cinerea	Fabaceae	[159]	Tanzania	Stem barks	Methanol	Moderate	53.12% at 400 mg/kg/day	Plasmodium falciparum (D6, Dd2), Plasmodium berghei	No
Dodonaea angustifolia	Sapindaceae	[164]	Ethiopia	Roots	N-butanol	Moderate	55.8% at 400 mg/kg/day	Plasmodium berghei	Nd
Enantia chlorantha Oliv	Annonaceae	[165]	Nigeria	Stem barks	Ethanol	Moderate	75.23% at 500 mg/kg	Plasmodium berghei NK-65	Nd
Erigeron floribundus	Asteraceae	[144]	Cameroon	Whole plant	Ethanol	Good	62.4% at 240 mg/kg/day	Plasmodium berghei NK65	No
Euphorbia cordifolia	Euphorbiaceae	[166]	Cameroon	Whole plant	Aqueous	Very good	94.70% at 200 mg/kg/day	Plasmodium berghei	No
Euphorbia hirta L	Euphorbiaceae	[162]	Congo	Whole plant	Ethanol	Moderate	69.44% at 400 mg/kg/day	Plasmodium falciparum, Plasmodium berghei NK65	Nd
Faidherbia albida	Fabaceae	[167]	Nigeria	Stem barks	Ethanol	Moderate	89.5 at 400 mg/kg/day	Plasmodium berghei NK65	Nd
Grewia plagiocephyla	Malvaceae	[143]	Kenya	Leaves	Methanol	Moderate	77.9 at 250 mg/kg/day	Plasmodium falciparum D6 and W2	Nd
Grewia trichocarpa	Malvaceae	[168]	Kenya	Root	Water	Good	35.8% at 10 mg/kg/day	Plasmodium berghei	Yes (LD₅₀ = 2449 mg/kg; mice)
Garcinia kola	Clusiaceae	[169]	Nigeria	Seeds	Petroleum ether	Very good*	93% at 200 mg/kg/day	Plasmodium berghei	Nd
Hippocratea africana	Celastraceae	[170]	Nigeria	Nd	Ethanol	Moderate	90.9% at 600 mg/kg/day	Plasmodium berghei	Yes (LD₅₀ = 2449 mg/kg; mice)
Hostuldia opposita	Lamiaeceae	[143]	Kenya	Leaves	Methanol	Moderate	79.67% at 250 mg/kg/day	Plasmodium falciparum D6 and W2	Yes (IC₅₀ = 37 µg/ml; Vero E6 cells)
Icacina senegalensis	Icacinaceae	[171]	Nigeria	Leaves	Methanol	Very good	80% at 100 mg/kg/day	Plasmodium berghei	Yes (LD₅₀ > 2000 mg/kg; mice)
Indigofera spicata	Fabaceae	[172]	Ethiopia	Roots	Methanol	Moderate	53.42% at 600 mg/kg/day	Plasmodium berghei ANKA	Nd
Lannea schweinfurthii	Anacardiaceae	[143]	Kenya	Leaves	Methanol	Moderate	83.48% at 250 mg/kg/day	Plasmodium falciparum D6 and W2	Yes (IC₅₀ = 76 µg/ml; Vero E6 cells)
Lippia kitulensis	Verbenaceae	[163]	Tanzania	Leaves	Ethyl acetate	Moderate	70.14% at 600 mg/kg/day	Plasmodium berghei ANKA	Nd
Lophira lanceolata	Ochnaceae	[173]	Nigeria	Leaves	Methanol	Moderate	80% at 400 mg/kg/day	Plasmodium berghei	No
Maerua crassifolia	Capparaceae	[174]	Nigeria	Leaves	Methanol	Moderate	86% at 400 mg/kg/day	Plasmodium berghei NK65	No
Plant species	Plant family	Source	Country of study	Part of plant used	Extraction solvent	Antimalarial activity	Parasite suppression rate	Strain of Plasmodium tested	Toxicity (value; assay)
-------------------------------	-----------------	----------------------	------------------	--------------------	--------------------	------------------------	-------------------------------	------------------------------------	------------------------
Maytenus senegalensis	Celastraceae	[175]	Tanzania	Root barks	Ethanol	Very good	98.1% at 100 mg/kg/day	Plasmodium berghei	No
Morinda morindoides	Rubiaceae	[152]	D.R. Congo	Leaves	Dichloromethane	Good	74% at 200 mg/kg/day	Plasmodium berghei	No
Mucuna pruriens	Fabaceae	[176]	Nigeria	Leaves	Water	Good	71.75% at 270 mg/kg/day	Plasmodium berghei	No
Nauclea latifolia	Rubiaceae	[177]	Nigeria	Leaves	Ethanol	Moderate	60.63% at 500 mg/kg/day	Plasmodium berghei	No
		[165]	Nigeria	Roots	Ethanol	Moderate	71.15% at 500 mg/kg/day	Plasmodium berghei	Nd
Oldenlandia affinis	Rubiaceae	[178]	Nigeria	Aerial parts	Methanol, water, dichloromethane	Moderate	75% at 400 mg/kg/day	Plasmodium berghei	No
Peschiera fuchsiaeufolia	Apocynaceae	[179]	Madagascar	Stem barks	Ns	Good*	43.4% at 10 mg/kg/day	Plasmodium yoelii N67, Plasmodium falciparum FMC29	Nd
Phyllanthus amarus	Phyllanthaceae	[180]	Nigeria	Whole plant	Water and ethanol	Good	79% at 1600 mg/kg/day	Plasmodium yoelii	Nd
Phyllanthus niruri	Phyllanthaceae	[152]	D.R. Congo	Whole plant	Ethanol	Good	73% at 200 mg/kg/day	Plasmodium berghei	No
		[181]	Nigeria	Aerial parts	Methanol/chloroform	Very good	90.48% at 100 mg/kg/day	Plasmodium berghei	Nd
Phytolacca dodonandra	Phytolaccaceae	[182]	Ethiopia	Leaves	Methanol	Moderate	55.24% at 400 mg/kg/day	Plasmodium berghei	Nd
Picralima nitida	Apocynaceae	[183]	Nigeria	Seeds	Ethanol	Good	73% at 115 mg/kg/day	Plasmodium berghei	No
Pilostigma thonningii	Fabaceae	[184]	Nigeria	Leaves	Ethanol	Moderate	91% at 400 mg/kg/day	Plasmodium berghei	Nd
Premna chrysantha	Lamiaceae	[143]	Kenya	Leaves	Methanol	Good	65.08% at 250 mg/kg/day	Plasmodium falciparum D6 and W2	Nd
Pseudocedrela kotschyi	Meliaceae	[185]	Nigeria	Leaves	Ethanol	Moderate	90% at 400 mg/kg/day	Plasmodium berghei	No,
Rhus natalensis	Anacardiaceae	[143]	Kenya	Leaves	Methanol	Moderate	82.7% at 250 mg/kg/day	Plasmodium falciparum D6 and W2	Nd
Salacia nitida	Celastraceae	[165]	Nigeria	Roots	Ethanol	Moderate	71.15% at 250 mg/kg/day	Plasmodium berghei	Nd
Stachytarpheta cayennensis	Verbenaceae	[186]	Nigeria	Leaves	Ethanol	Good	78.2% at 270 mg/kg/day	Plasmodium berghei	Yes (LD$_{50}$ = 938.08 mg/kg, albino mice)
Plant species	Plant family	Source	Country of study	Part of plant used	Extraction solvent	Antimarial activity	Parasite suppression rate	Strain of Plasmodium tested	Toxicity (value; assay)
---------------------	---------------	--------	------------------	--------------------	-------------------	---------------------	--------------------------	-----------------------------	--------------------------
Telfairia occidentalis	Cucurbitaceae	[187] Nigeria	Leaves	Water	Good	72.17% at 200 mg/kg/day	Plasmodium berghei ANKA	No	
Tithonia diversifolia	Asteraceae	[160] Nigeria	Aerial parts	Ethanol	Good	74.97% at 200 mg/kg/day	Plasmodium berghei var. ANKA	Nd	
Todalia asiatica	Rutaceae	[188] Kenya	Root barks	Methanol	Moderate	59.3% at 500 mg/kg/day	Plasmodium berghei NK66	Nd	
Trema orientalis	Cannabaceae	[189] Nigeria	Stem barks	Methanol	Good	70% at 200 mg/kg/day	Plasmodium berghei	Nd	
Trichilia megalantha	Meliaceae	[190] Nigeria	Stem barks	Methanol, chloroform	Good	89.1–100% at 200 mg/kg/day	Plasmodium berghei ANKA	Nd	
Triphophyllium peltatum	Diancophyllaceae	[191] Ivory Coast	Roots, stem barks	Dichloromethane	Very good*	99% at 50 mg/kg/day	Plasmodium berghei ANKA	Nd	
Uvaria acuminate	Annonaceae	[143] Kenya	Roots	Methanol	Good	27.0% at 250 mg/kg/day	Plasmodium falciparum D6 and W2	Nd	
Uvaria chamae P. Beauv	Annonaceae	[170] Nigeria	Nd	Ethanol	Moderate	72.2% at 600 mg/kg/day	Plasmodium berghei	Yes (LD_{50} = 3464 mg/kg; mice)	
Verbena hastata	Verbenaceae	[192] Nigeria	Leaves	Ethanol	Moderate	70% at 400 mg/kg/day	Plasmodium berghei	No	
Vernonia amygdalina	Asteraceae	[193] Uganda	Leaves	Water	Good	73% at 200 mg/kg/day	Plasmodium berghei	No	
		[194] Nigeria	Leaves	Water	Good	50.78—62.66% at 125 mg/kg/day	Plasmodium berghei ANKA	Nd	
		[195] Botswana	Leaves and root barks	Ethanol	Moderate	67% at 500 mg/kg/day	Plasmodium berghei	Nd	
Vernonia lasiopus	Asteraceae	[188] Kenya	Root barks	Methanol	Moderate	59.3% at 500 mg/kg/day	Plasmodium berghei NK67	Nd	
Withania somnifera	Solanaceae	[196] Ethiopia	Leaves	Methanol	Moderate	57% at 300 mg/kg/day	Plasmodium berghei ANKA	Nd	
Xylopia aethiopica	Annonaceae	[141] Nigeria	Fruits	Chloroform	Very good	60% at 100 mg/kg/day	Plasmodium berghei	Nd	
Artemisia abyssinica	Asteraceae	[197] Ethiopia	Aerial parts	Hydroalcohol	Good	64.7% at 200 mg/kg/day	Plasmodium berghei	Nd	
Rotheca myricoides	Lamiaceae	[198] Ethiopia	Leaves	Methanol	Good	54.14% at 200 mg/kg/day	Plasmodium berghei	No	
Dodonaea angustifolia	Sapindaceae	[198] Ethiopia	Roots	Methanol	Good	57.74% at 200 mg/kg/day	Plasmodium berghei	No	
Africa is slothful. Despite a considerable number of plant species that have demonstrated significant antiplasmodial activity in vitro, fewer plants have been evaluated in vivo and only one clinical trial with *Cochlospermum planchonii* (Bixaceae) has been conducted so far. This reinforces the need for basic and clinical research in the region. Van Wyk [213] had also arrived at the same conclusion.

This review revealed research articles from 31 African countries. Most of the articles were from Nigeria. This is suggestive that Nigeria is leading the podium in research on anti-malarial drug discovery and development, deservedly so, because she is probably the most affected country in the world. It is noteworthy that South Africa which is generally more technologically advanced than Nigeria had very few (8) articles. The African region is the most affected in the world recording the greatest number of cases and malaria attributed deaths. However, the distribution of malaria in Africa is not even, with sub-Saharan Africa harboring disproportionately the greatest number of cases. This is suggestive that research to identify new anti-malarial drugs may be related to the burden of the disease, thus the government policy to control the disease. There is, therefore, the need for policy-driven research into new anti-malarial all across the African region. In this review, IC50 values of < 20 µg/ml were considered as the cutoff of significant anti-malarial activity. This cutoff is considered the minimum to qualify as a first-pass “hit” in anti-malarial drugs screening [214]. Five hundred and two (502) plant species from 169 families were observed to have moderate to very good anti-malarial activity. The most investigated plant families were *Euphorbiaceae, Fabaceae, Rubiaceae*, and *Annonaceae*. However, the plant families containing the most active plants were *Apocynaceae, Celestraceae*, and *Rutaceae*. This finding suggests that more emphasis should be given to plants in these families for anti-malarial drug discovery. Besides, the most investigated plant species were *Azadirachta indica, Nauclea latifolia, Picrodina nitida*, and *Zanthoxylum chalybeum*. *Alchornea cordifolia*, *Flueggea virosa*, *Cryptolepis sanguinolenta*, and *Zanthoxylum chalybeum* were the only plant species with consistently very good antiplasmodial and anti-malarial activities between studies. This is very surprising that no clinical trial using any of these plants has been conducted. Further studies on these plant species should be performed.

This study revealed that overall, a majority of the plants investigated had very good antiplasmodial activity in vitro. That activity decreases as you move to in vivo in most studies, with a majority of plants demonstrating only moderate activity. For example, Gathirwa et al. [146] showed that the activity of *Uvaria acuminate* decreased from good activity in vitro to inactive in vivo. However, a few studies show that plant activity could also increase from in vitro to in vivo analysis. Other examples include studies by Muthaura et al. [20] using *Boscia angustifolia*, Kweyamba et al. [162] using *Commiphora Africana*, and Ajaiyeoba et al. [204] using *Annona senegalensis*. This suggests that plants could still have significant anti-malarial activity in vivo although they failed to in vitro. Most investigators usually progress to in vivo studies only when they observe significant antiplasmodial activity in vitro. This may explain the findings of a smaller number of in vivo studies in the current study. The investigation of the anti-malarial activities of plants should continue in vivo despite the dismal performance of the plants in vitro.

Plant species	Plant family	Source	Country of study	Part of plant used	Extraction solvent	Antimalarial activity	Parasite suppression rate	Strain of Plasmodium tested	Toxicity (value; assay)
Clutia abysinica	Peraceae	[199]	Kenya	Leaves	Methanol	Moderate	40.45% at 100 mg/kg/day	*Plasmodium falciparum, Plasmodium berghei ANKA*	No
Pittosporum viridiflorum	Pittosporaceae	[199]	Kenya	Leaves	Methanol	Moderate	54.77% at 100 mg/kg/day	*Plasmodium falciparum D6 & W2, Plasmodium berghei ANKA*	Yes (SI = 2.5; Vero E6 cells)

Nd Not done, Ns Not specified, SI Selectivity index

* Activity determined using pure compounds isolated from plant
| Plant species | Plant family | Source | Country of study | Part of plant used | Extraction solvent | Overall activity | In vitro IC50 or ED50 or LD50 | In vivo IC50 or LD50 | Strain of Plasmodium tested | parasite suppression rate | Toxicity (value; assay) |
|-----------------------------|--------------|----------------|------------------|--------------------|--------------------------|-----------------|-------------------------------|------------------------|--------------------------|--------------------------|--------------------------|
| *Sphaeranthus suaveolens* | Compositae | Kenya | Whole plant | Methanol | Moderate | Moderate In active | 7.93–56.73 µg/ml IC50 | 46.74% at 100 mg/kg/day | *Plasmodium falciparum D6 and W2, Plasmodium berghei ANKA* | 46.74% at 100 mg/kg/day | No |
| *Abutilon grandiflorum* | Malvaceae | Tanzania | Roots | Ethyl acetate | Good | Moderate Very good | 9–14 µg/mL IC50 | 83–87% at 20 µg/ml/day | *Plasmodium falciparum HB3 and FCB, Plasmodium vinckeigen* | Yes (IC50 = 36 µg/mL; human colon carcinoma cell line [HT29]) | No |
| *Alchornea laxiflora* | Euphorbiaceae| Nigeria | Roots | Ethyl acetate, dichlo-romethane | Good | Inactive Very good | 38.44—40.17 µg/mL IC50 | 65.73% at 150 mg/kg/day | *Plasmodium falciparum 3D2, INDO, Plasmodium berghei* | >57% at 100 mg/kg/day | No |
| *Annona senegalensis* | Annonaceae | Nigeria | Leaves | Methanol | Moderate | In active Very good | 28.8 µg/mL IC50 | <57% at 100 mg/kg/day | *Plasmodium berghei* | >57% at 100 mg/kg/day | No |
| *Boscia angustifolia* | Capparaceae | Kenya | Stem barks | Methanol | Moderate | Moderate Very good | 7.43–35.93 µg/mL IC50 | 60.12% at 100 mg/kg/day | *Plasmodium falciparum D6 & W2, Plasmodium berghei ANKA* | No |
| *Chrozophora senegalensis* | Euphorbiaceae| Senegal | Leaves | Water | Very good | Very good Very good | 1.6–1.9 µg/mL IC50 | 65% at 10 mg/kg/day | *Plasmodium falciparum FcM29, Fcb1, Plasmodium vinckeigen petteri* | No |
| *Clerodendrum etophyllum* | Lamiaceae | Kenya | Root barks | Methanol | Moderate | Good | 9.51–10.56 µg/mL IC50 | 90.13% at 100 mg/kg/day | *Plasmodium falciparum D6 & W2, Plasmodium berghei ANKA* | No |

Table 3: In vitro and in vivo studies on African medicinal plants.
Plant species	Plant family	Source	Country of study	Part of plant used	Extraction solvent	Overall activity	In vitro IC50 or ED₅₀ or LD₅₀	Strain of Plasmodium tested	parasite suppression rate		
Cocos nucifera	Arecaceae	[202] Nigeria	Husk	Ethyl acetate	Moderate	Moderate	10.94 µg/ml IC₅₀	Plasmodium falciparum W2, Plasmodium berghei NK65	98.6% at 125 mg/kg/day		
Commiphora africana	Burseraceae	[159] Tanzania	Stem bark	Dichloromethane	Moderate	Very good	4.54 µg/ml IC₅₀	Plasmodium falciparum D6, Dd2, Plasmodium berghei	64.24% at 400 mg/kg/day		
Ficus thomningii	Moraceae	[203] Nigeria	Whole plant	Hexane	Moderate	Good	2.7–10.4 µg/ml IC₅₀	Plasmodium falciparum NF54, K1, Plasmodium berghei NK65	84.5% at 500 mg/kg/day		
Flueggea virosa	Phyllanthaceae	[199] Kenya	Leaves	Methanol	Very good	Very good	2.28–3.64 µg/ml IC₅₀	Plasmodium falciparum D6 and W2, Plasmodium berghei ANKA	70.91% at 100 mg/kg/day		
Fuerstia africana	Lamiaceae	[199] Kenya	Whole plant	Methanol	Very good	Very good	0.98–2.40 µg/ml IC₅₀	Plasmodium falciparum D6 and W2, Plasmodium berghei ANKA	61.85% at 100 mg/kg/day		
Harungana madagascariensis	Hypericaceae	[199] Kenya	Leaves	Water	Moderate	Inactive	39.07–43.7 µg/ml IC₅₀	Plasmodium falciparum D6 and W2, Plasmodium berghei ANKA	88.04% at 100 mg/kg/day		
		[204] Nigeria	Stem bark	Ethanol	Very good	Inactive	0.052–0.517 µg/ml IC₅₀	Plasmodium yoelii nigeriensis N67, Plasmodium falciparum	28.6–44.8% Nd		
Plant species	Plant family	Source	Country of study	Part of plant used	Extraction solvent	Overall activity	In vitro IC₅₀ or ED₅₀ or LD₅₀	Strain of Plasmodium tested	Parasite suppression rate	Toxicity (value; assay)	
------------------------	------------------	--------	------------------	--------------------	--------------------	------------------	----------------------------	-----------------------------	---------------------------	--------------------------	
Lannea schweinfurthii	Anacardiaceae	[205]	Kenya	Stem barks	Methanol	Moderate	Moderate	Very good	Plasmodium falciparum D₆, W₂, Plasmodium berghei	91.37% at 100 mg/kg/day	Yes (SI = 6.21–19.79; Vero cells)
Lophira alata	Ochnaceae	[203]	Nigeria	Whole plant	Hexane	Good	Moderate	Very good	Plasmodium falciparum NF₅₄, K₁, Plasmodium berghei NK₆₅	74.45% at 500 mg/kg/day	No
Ludwigia erecta	Onagraceae	[199]	Kenya	Whole plant	Water	Very good	Very good	In active	Plasmodium falciparum D₆ & W₂, Plasmodium berghei ANKA	49.64% at 100 mg/kg/day	No
Maytenus putterlickioides	Celastraceae	[199]	Kenya	Root barks	Methanol	Good	Good	Very good	Plasmodium falciparum D₆ and W₂, Plasmodium berghei ANKA	78.66% at 100 mg/kg/day	No
Maytenus undata	Celastraceae	[199]	Kenya	Leaves	Methanol	Good	Good	Very good	Plasmodium falciparum D₆ and W₂, Plasmodium berghei ANKA	76.29% at 100 mg/kg/day	No
Mimusops caffra	Sapotaceae	[206]	South Africa	Leaves	Dichloromethane	Good	Good	Very good	Plasmodium falciparum D₁₀, Plasmodium berghei ANKA	94.01% at 400 mg/kg/day	Nd
Schkuhria pinnata	Compositae	[199]	Kenya	Whole plant	Methanol	Good	In active	1.3–6.83 µg/ml IC₅₀	Plasmodium falciparum D₆ & W₂, Plasmodium berghei ANKA	49.9% at 100 mg/kg/day	No
Plant species	Plant family	Source	Country of study	Part of plant used	Extraction solvent	Overall activity	In vitro	Strain of Plasmodium tested	IC50 or ED50 or LD50	parasite suppression rate	Toxicity (value; assay)
-------------------------------	------------------	-----------------	------------------	--------------------	-------------------	------------------	--------------	----------------------------	------------------------	--------------------------	------------------------
Sclerocarya birrea	Anacardiaceae	[205] Kenya	Stem barks	Methanol	Moderate	Moderate	Very good	Plasmodium falciparum D6, W2, Plasmodium berghei	5.91–24.96 µg/ml IC50	63.49% at 100 mg/kg/day	No
Toddalia asiatica	Rutaceae	[117] Kenya	Fruits	Ethyl acetate	Very good	Moderate	Very good	Plasmodium falciparum W2 & D6, Plasmodium berghei	1.87 µg/ml IC50	81.34% at 500 mg/kg/day	No
Turraea robusta	Meliaceae	[205] Kenya	Root barks	Methanol	Good	Good	Very good	Plasmodium falciparum D6, W2, Plasmodium berghei	2.09–10.32 µg/ml IC50	78.2% at 100 mg/kg/day	Yes (SI = 2.36–11.67; Vero cells)
Uapaca nitida	Phyllanthaceae	[207] Tanzania	Root barks	Ethanol	Moderate*	Inactive	Inactive	Plasmodium falciparum K1, T9-96 & Plasmodium berghei	19.6–25.9 µg/mL IC50	poor	No
Vernonia ambigua	Asteraceae	[208] Nigeria	Ns	Water	Very good	Inactive	Very good	Plasmodium berghei, Plasmodium falciparum	31.26–50 µg/ml IC50	60% at 100 mg/kg/day	No
[209] Republic of Congo	Leaves	Methanol	Moderate	Very good	Plasmodium falciparum, Plasmodium yoelii	3.58 µg/ml IC50	No				
Warburgia stuhlmannii	Camellaceae	[199] Kenya	Stem barks	Water	Very good	Moderate	Very good	Plasmodium falciparum D6 and W2, Plasmodium berghei, ANKA	1.81–2.33 µg/ml IC50	84.95% at 100 mg/kg/day	No
Azadirachta indica	Meliaceae	[143] Kenya	Leaves	Methanol	Good	Good	Good	Plasmodium falciparum D6 and W2	6.24–7.53 µg/ml IC50	83.48% at 250 mg/kg/day	No
Table 3 (continued)

Plant species	Plant family	Source	Country of study	Part of plant used	Extraction solvent	Overall activity	In vitro IC50 or ED50 or LD50	Strain of Plasmodium tested	parasite suppression rate	Toxicity (value; assay)
Dichrostachys cinerea	Fabaceae	Tanzania	Stem barks	Methanol	Moderate	Good	Moderate	Plasmodium falciparum D6, Dd2, Plasmodium berghei	53.12% at 400 mg/kg/day	No
Grewia plagiophylla	Malvaceae	Kenya	Leaves	Methanol	Moderate	Moderate	Good	Plasmodium falciparum D6 and W2	77.9% at 250 mg/kg/day	Nd
Hoslundia opposita	Lamiaceae	Kenya	Leaves	Methanol	Moderate	Good	Good	Plasmodium falciparum D6 and W2	79.67% at 250 mg/kg/day	Yes (SI = 0.58; Vero E6 cells)
Lannea schweinfurthii	Anacardiaceae	Kenya	Leaves	Methanol	Moderate	Inactive	Good	Plasmodium falciparum D6 and W2	83.48% at 250 mg/kg/day	Yes (SI = 1.4; Vero E6 cells)
Premna chrysocodia	Lamiaceae	Kenya	Leaves	Methanol	Good	Good	Good	Plasmodium falciparum D6 and W2	65.08% at 250 mg/kg/day	Nd
Rhus natalensis	Anacardiaceae	Kenya	Leaves	Methanol	Moderate	Inactive	Good	Plasmodium falciparum D6 and W2	82.7% at 250 mg/kg/day	Nd
Triphyophyllium peltatum	Dioncophylaceae	Ivory coast	Roots, stem barks	Dichloromethane	Very good*	Very good	Very good	Plasmodium falciparum ANKA CRS	99% at 50 mg/kg/day	Nd
Uvaria acuminatea	Anonaceae	Kenya	Roots	Methanol	Good	Inactive	Good	Plasmodium falciparum D6 and W2	27.0% at 250 mg/kg/day	Nd

Nd Not done, Ns Not specified, SI Selectivity index

* Activity determined using pure compounds isolated from plant
Table 4 Clinical trial on African medicinal plants

Plant species	Plant family	Source	Country of study	Part of plant used	Extraction solvent	Crude extract?	Antimalarial activity	Parasite suppression rate	Strain of Plasmodium tested	Toxicity
Cochlospermum planchonii	Bixaceae	[210] Burkina Faso	Roots	Ns	Yes	Moderate	52 at 600 ml/day	Plasmodium falciparum	No	

Nd Not done, Ns Not specified
The current study revealed substantial inter-study variation in the antiplasmodial activity of several plant species. For example, considerable variation in the antiplasmodial activity was observed for *Senna occidentalis*, *Adansonia digitata*, *Acanthospermum hispidum*, *Rotheca myricoides*, *Anogeissus leocarpus*, *Annona muricata*, *Ageratum conyzoides*, *Albizia coriaria*, *Ekebergia capensis*, *Flueggea virosa*, *Lippia javanica*, *Maytenus senegalensis*, *Morinda lucida*, *Picralima nitida*, *Trichilia emetica*, *Vernonia amygdalina*, and *Vernonia colorata*. The factors that could have accounted for these differences may include differences in the extraction solvent thus the extraction yield and extracted metabolite. With dichloromethane, mainly the apolar metabolites are extracted. In contrast, with methanol, from polar to moderate apolar metabolites are extracted.

Most (95.7%) of the studies used crude extract for their investigation and rarely the pure compounds (Additional file 1: Table S2 presents a summary of active compounds that have been identified from some of the plants). The finding of a majority of studies in Africa using only the crude extract of plants may be attributed to the absence of the necessary infrastructure to process the plant materials to get the pure compounds. Furthermore, there may be geographical differences in the areas where the plants were collected and this may also affect the activity of the same plant species. For example, despite using the same extraction solvent, the antiplasmodial activity of *Acacia nilotica* was moderate in South Africa and very good in Sudan. There was also variation between the different assay types. For example, the activities of *Vernonia ambigua* [211] and *Annona senegalensis* [204] have been reported to increase from inactive in vitro to very good in vivo. However, a few plant species including *Alchornea cordifolia*, and *Zanthoxylum chalybeum*, were observed to be consistently very good between studies. These plant species should be exploited further for their antiplasmodial activity. The activities of the plants were equally observed to increase with the isolation of the active compounds thus reinforcing the need for research into identifying the active compounds of African medicinal plants. The marked difference in the antiplasmodial activity of
the crude extract of *Artemisia annua* and the pure compounds points out the issue that even the compounds which show only low potency and may be discarded from the initial screen for further development may still have active components with therapeutic potential [215]. The strain of the *Plasmodium* used may also be another factor accounting for the inter-study variation observed; studies using chloroquine-sensitive strains of the parasite like *P. falciparum* 3D7, D6, NF54 tend to report higher antiplasmodial activity compared to studies using chloroquine-resistant strains like *P. falciparum* W2, Dd5, K1 or D10.

This study revealed that only a few (26.3%) of the plants demonstrated some degree of toxicity. The families hosting the most toxic plant species were Lamiacaeae, Anacardiaceae, Moraceae, and Meliaceae. The most toxic plants were *Azadirachta indica* and *Vernonia amygdalina*. The former [168] is one of the few plant species that demonstrated very good antimalarial activity in some studies. Other plants with high toxicity but very good antimalarial/anti-malarial activities include *Arenge engleri* [25], *Celtis integrifolia* [52], *Ficus platyhylla* [50], *Gutenbergia cordifolia* [21], *Helchrysum cymosum* [97], *Microglossa pyrifolia* [92], *Opilia celtidiformia* [52], *Quassia Africana* [103], *Rumex abyssinicus* [92], *Clausena anisota* [157], *Icacina senegalensis* [171], *Abutilon grandiflorum* [200], and *Lannea schweinfurthii* [205]. The isolation of the active compounds, which has to be done, could eliminate the toxicity, if not all, to a certain degree. For example, *Salvia radula* crude extract (of aerial parts) has been shown to demonstrate some degree of toxicity, but betulafolientriol oxide isolated from the plant was very active with little or no toxicity against human kidney epithelial cells [120]. There was also considerable variation in the toxicity between the assay types (in vitro or in vivo). As many as 32.8% of the plants demonstrated some level of toxicity in vitro meanwhile 26.7% were toxic in vivo. Since it is customary to evaluate toxicity at the in vitro level and toxic plants are discarded before in vivo evaluation, that may explain why fewer plants were toxic in vivo. Toxicity varied within the same plant species from study to study and could be attributed to differences in the study design as well as differences in the parts of the plants used for testing. From this study, the most toxicity was observed with the leaves. Also, a relationship could be established between toxicity and antimalarial activity; as the activity of the plant increases, the toxicity, on the other hand, was observed to decrease. Furthermore, albino mice and Vero E6 cells were the most commonly used assays in the evaluation of toxicity. Unfortunately, the authors could not make a meaningful relationship between the type of assay and toxicity because of the fewer studies assessing the toxicity of the medicinal plants.

This study, however, is limited in that the analyses may have been compounded by the substantial inter-study variation in the methodologies used by different independent studies for the extraction of plant material, the overall extraction yield, the diversity of extracted metabolites as well as the geographical variations in the different sites used in the plant collection. However, the study has provided important baseline data that may be exploited by researchers in the field for the discovery and development of new anti-malarial drugs.

Conclusion

This study has revealed the slothful progress in the discovery and development of new anti-malarial drugs from African medicinal plants. Despite the encouraging activities demonstrated by the plants in vitro, fewer plants have been evaluated in vivo and just one clinical trial has been conducted so far with *Cochlospermum planchonii* (Bixaceae). The study also revealed considerable inter-study variation in the antimalarial activities of the plants, however, the activity of some plants including *Alchornea cordifolia*, *Azadirachta indica*, and *Zanthoxylum chalybeum* was consistently very good. The study demonstrates a relationship between antimalarial activity and toxicity whereby the toxicity of the plants decreases as the antimalarial activity increases. Besides, the active compounds were identified in just a handful of the plants. Therefore, there is a need for a policy-driven approach in the discovery and development of new anti-malarial drugs to subvert the rising resistance to the frontline anti-malarial drugs in the world.

Abbreviations

PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-analysis; SI: Selectivity Index; LD50: Median lethal dose; IC50: Half-maximal inhibitory concentration; CC50: 50% Cytotoxic concentration; LC50: Lethal concentration.

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1186/s12936-021-03966-0.

Additional file 1: Table S1. In vitro and in vivo studies reporting inactive antimalarial or antimalarial activity. Table S2. List of active compounds identified from plants.

Acknowledgements

I would like to express my special appreciation and thanks to Professor Dr. Wanderley de Souza for his helpful comments.

Authors’ contributions

All authors contributed equally to the study. All authors read and approved the manuscript.
References

1. WHO. World malaria report 2019. Geneva: World Health Organization; 2019. Accessed on 28/06/2021 at https://www.who.int/publications-detail/world-malaria-report-2019.

2. Kientzi ET. Malaria and HIV coinfection in sub-Saharan Africa: prevalence, impact, and treatment strategies. Res Rep Trop Med. 2019;12:33–36.

3. Kientzi ET, Kukwah TA, Kientzi TBD, Nyassa BR, Dilonga MH, Enow-Orock, et al. Comparative analysis of IgG and IgG subclasses against Plasmodium falciparum MSP-1, in children from five contrasting biocological zones of Cameroon. Malar J. 2019;18:16.

4. Dondorp AM, Nosten F, Yi P, Das D, Phyo AP, Tarning J, et al. Arte-

5. Murray CJ, Rosenfeld LC, Lim SS, Andrews KG, Foreman KJ, Haring D, et al. Global malaria mortality between 1980 and 2010: a systematic approach. Part V. Evaluation of the antimalarial activity of plants used by the Maasai of Kenya. J Ethnopharmacol. 2005;101:95–9.

6. Malebo HM, Tanja W, Cal M, Swaleh SAM, Omolo MO, Hassanali A, et al. In vitro antimalarial activity of medicinal plants native to or naturalised in South Africa. J Ethnopharmacol. 2004;92:177–91.

7. Newman DJ, Cragg GM. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod. 2012;75:311–35.

8. Cragg GM, Grothaus PG, Newman DJ. Impact of natural products on traditional plant-based malaria prophylaxis. J Intercult Ethnopharmacol. 2017;6:36–41.

9. Newman DJ, Cragg GM. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod. 2012;75:311–35.

10. Suswadyani DL, Sibbritt DW, Supardi S, Pardosi JF, Chang S, Adams J. A comparative prospective field study to evaluate the efficacy of a traditional plant-based prophylactic. J Interdiscipl Ethnopharmacol. 2017;6:36–41.

11. Wilcoxon ML. A clinical trial of "AM", an Ugandan herbal remedy for malaria. J Public Health Med. 1999;21:318–24.

12. Zofou D, Kuete V, Titian VPK. Antimalarial and other antiprotozoal products from African Medicinal plants. In: Medicinal plant research in Africa: pharmacology and chemistry. Kuete V, Ed. Chapt. 17. Amster-
dam, Elsevier, 2013;661–709.

13. Lawal B, Shittu OK, Kabiru AV, Jigam AA, Umar MB, Berninyu BE, et al. Potential antimalarials from African natural products: a review. J Inter-
cult Ethnopharmacol. 2015;4:318–43.

14. Van Wyk BE. A review of commercially important African medicinal plants. J Ethnopharmacol. 2015;176:118–34.

15. Kaur R, Kaur H. Plant derived antimalarial agents. J Med Plants Studies. 2017;5:436–63.

16. Lemma MT, Ahmed AM, Elhady MT, Ngo HT, Yu TL, Sang TK, et al. Medicinal plants for in vitro antiparasitological activities: a systematic review of literature. Parasitol Int. 2017;66:713–20.

17. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: the PRISMA statement. PLoS Med. 2009;6:e1000097.

18. Mohd D, Liberati A, Tetzlaff J, Altman DG. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: the PRISMA statement. PLoS Med. 2009;6:e1000097.

19. Cragg GM, Grothaus PG, Newman DJ. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod. 2012;75:311–35.

20. Gessler MC, Nkunya MH, Mwasumbi LB, Heinrich M, Tanner M. Screening of Tanzanian medicinal plants for antimalarial activity. Acta Trop. 1994;56:65–77.

21. Koch A, Tames P, Pezzuto J, Soejarto D. Evaluation of plants used for antimalarial treatment by the Maasai of Kenya. J Ethnopharmacol. 2005;101:95–9.

22. Clarkson C, Maharaj VJ, Crouch NR, Grace OM, Pillay P, Matsabisa MG, et al. In vitro antiparasitological activity of medicinal plants native to or naturalised in South Africa. J Ethnopharmacol. 2004;92:177–91.

23. El Tahir A, Satti GM, Khalid SA. Antiplasmodial activity of selected Sudanese medicinal plants with emphasis on Maytenus senegalensis (Lam.) Excell. J Ethnopharmacol. 1999;64:227–33.

24. Muthura CN, Keriko JM, Mutai C, Yenevesay A, Gathirwa JW, Irungu BN, et al. Antiplasmodial potential of traditional phytotherapy of some remedies used in treatment of malaria in Meru-Tharaka Nithi County of Kenya. J Ethnopharmacol. 2015;175:315–31.

25. Prozesky EA, Meyer JJ, Louw AI. In vitro antiparasitological activity and cytotoxicity of ethnotobonically selected South African plants. J Ethnopharmacol. 2001;76:239–45.

26. Muthura CN, Keriko JM, Mutai C, Yenevesay A, Gathirwa JW, Irungu BN, et al. Antiplasmodial potential of traditional antimalarial phytotherapy remedies used by the Kwale community of the Kenyan Coast. J Ethnopharmacol. 2015;170:468–72.

27. Ounon S, Ollivier E, Azas N, Mahiou V, Gasquet M, Ouattara CT, et al. Ethnobotanical survey and in vitro antiparasitological activity of plants used in traditional medicine in Burkina Faso. J Ethnopharmacol. 2003;86:143–7.

28. Zirh-Guedé N, Mambu L, Guédé-Guina F, Bodo B, Goller P. In vitro antiparasitological activity of medicinal plants native to or naturalised in South Africa. J Ethnopharmacol. 2003;86:281–5.

29. Kowalczylik-Kousoudou E, Abena AA, Nzouangi A, Mombo Ali, Ouamba JM, Kun J, et al. In vitro evaluation of antiparasitological activity of extracts of Acanthopermum hispidum DC (Asteraceae) and Ficus thonninii (Blume) (Moraceae), two plants used in traditional medicine in the Republic of Congo. Afr J Tradit Complement Altern Med. 2012;10:270–6.

30. Owuor BO, Ochanda JO, Kokwaro JO, Cheruyot AC, Yeda RA, Okudo CA, et al. In vitro antiparasitological activity of selected Luo and Kuria medicinal plants. J Ethnopharmacol. 2012;144:779–81.

31. Malebo HM, Tanja W, Cal M, Swaleh SAM, Omolo MO, Hassanali A, et al. Antiplasmodial, anti-trypanosomal, anti-leishmanial and cytotoxicity activity of selected Tanzanian medicinal plants. Tanzan J Health Res. 2009;11:226–34.

32. Annan K, Sarpong K, Asare C, Dickson R, Amponsah KL, Gyan B, et al. In vitro anti-plasmodial activity of three herbal remedies for malaria in...
35. Kuria KA, Chepkwony H, Govaerts C, Roets E, Busson R, De Witte P, et al. Phytochemical composition, cytotoxicity and in vitro antimalarial activity of fractions from *Alafia bari* olive (Hook F. Icono)-Apocynaceae. *J. Saud Chem Soc.* 2016;20:2–6.

36. Lasisi AA, Olayiwola MA, Balogun SA, Akinloye OA, Ojo DA. Phytochemical composition and cytotoxic activity of some medicinal plants used in Sudanese folk-medicine. *Environ Health Insights*. 2010;4:1–6.

37. Bapela MJ, Meyer JJ, Kaiser M. *In vitro* antimalarial activity of extracts from *Tetrapleura tetraptera* and *Copaifera retusa* (BMC Res Notes). 2011;4:506.

38. Banzouzi JT, Prado R, Menan H, Valentin A, Roumestan C, Mallie M, et al. *In vitro* antimalarial activity of extracts of *Alchornea cordifolia* and identification of an active constituent: ellagic acid. *J. Ethnopharmacol.* 2002;81:399–401.

39. Mustofa, Valentin A, Benoit-Vical F, Pélissier Y, Koné-Bamba D, Mallié M. *In vitro* antimalarial activity of *Tetrapleura tetraptera*, *Gedunia pulcherrima* and *Acacia nilotica* under conditions of acidosis. *Phytother Res.* 2010;24:92–5.

40. Lumpu SL, Kikueta CM, Tshodi ME, Mbenza AP, Kambu OK, Mbamu BM, et al. Antiplasmodial activity of some medicinal plants used in Sudanese folk-medicine. *J. Nat Prod.* 2010;73:589–93.

41. Iyiola OA, Tijani AY, Lateef KM. Antimalarial activity of ethanolic fractions from *Alstonia boonei* stem barks extract of *Aloe pulcherrima* in mice. *Asian J Biol Sci.* 2016;9:91–3.

42. Hout S, Chea A, Bun SS, Elias R, Gasquet M, Timon-David P, et al. Screening and in vivo antimalarial and cytotoxic activity of 33 ethnopharmacologically selected medicinal plants from Democratic Republic of Congo. *J. Ethnopharmacol.* 2012;141:301–8.

43. Boyom FF, Fokou PV, Yamthe LR, Mfopa AN, Kemgne EM, Mbacham WF, et al. Antimalarial effects of eight African medicinal plants. *J. Ethnopharmacol.* 2011;134:717–24.

44. Ramalhete C, Lopes D, Mulhovo S, Rosário VE, Ferreira MJU. Antimalarial and cytopathic effects of some medicinal plants from western Burkina Faso. *Mol. Med. Rep.* 2013;7:321–5.

45. Shuaibu MN, Wuyep PA, Yanagi T, Hirayama K, Tanaka T, Kouno I. The use of microfluorometric method for activity-guided isolation of antimalarial compound from plant extracts. *Parasitol. Res.* 2008;102:1191–27.

46. Vonthron-Sénéchaux C, Weniger B, Moudachirou M, et al. Evaluation of ethnobotanically selected Benin medicinal plants for their in vitro antimalarial activity. *J. Ethnopharmacol.* 2010;130:143–50.

47. Lanquar H, Thierard A, Pigeaud T, Graton N, Hinari S, Oukabri L, et al. Antimalarial activity of some medicinal plants used in the Democratic Republic of Congo. *J. Ethnopharmacol.* 2004;93:27–32.

48. Gbeassor M, Kossou Y, Amegbo K, de Souza C, Koumaglo K, Denke A. Antimalarial effects of *Tetrapleura tetraptera* and *Vitex agnus-castus* extracts. *Phytother Res.* 2010;24:92–5.

49. Boyom FF, Soh PN, Saély M, Harguem L, Poupaut C, Nongonierma R. Evaluation of Senegalese plants used in malaria treatment: focus on *Chrozophora senegalensis*. *J. Ethnopharmacol.* 2008;116:43–8.

50. Ogunlanaa OO, Küm Ab-S, Watayab Y, Olagunjuc JO, Akindahunsid D. *In vitro* antiplasmodial and cytotoxic properties of some medicinal plants from western Burkina Faso. *Mol. Med. Rep.* 2013;7:321–5.

51. Boyom FF, Kambu OK, Njoroge M, Ng'ombe M, et al. Antimalarial activity of some medicinal plants used in malaria treatment in Cameroon. *J. Ethnopharmacol.* 2009;123:483–8.

52. Waako PJ, Katuwa E, Smith P, Folb P. East African medicinal plants as a source of lead compounds for the development of new antimalarial drugs. *Afr. J Ecol.* 2007;45:102–6.

53. Chukwujekwu JC, van Staden J, Smith P, Meyer JIM. Antibacterial, anti-inflammatory, and antimalarial activities of some Nigerian medicinal plants. *S Afr J Bot.* 2005;71:516–25.

54. Kraft C, Jenett-Siemens K, Siemons J, Jakupovic J, Mavi S, Bienzle U, et al. In vitro antiparasitic activity of medicinal plants from Zimbabwe. *Phytother Res.* 2003;17:123–8.

55. Roets E, Busson R, De Witte P, et al. *In vitro* antimalarial activity of extracts from seven medicinal plants used in malaria treatment in Cameroon. *J. Ethnopharmacol.* 2009;123:483–8.

56. Roets E, Busson R, De Witte P, et al. Antimalarial activity of extracts from seven medicinal plants used in malaria treatment in Cameroon. *J. Ethnopharmacol.* 2009;123:483–8.

57. Roets E, Busson R, De Witte P, et al. Antimalarial activity of extracts from seven medicinal plants used in malaria treatment in Cameroon. *J. Ethnopharmacol.* 2009;123:483–8.

58. Roets E, Busson R, De Witte P, et al. Antimalarial activity of extracts from seven medicinal plants used in malaria treatment in Cameroon. *J. Ethnopharmacol.* 2009;123:483–8.
115. Gbedema SY, Bayor MT, Annan K, Wright CW. Clerodane diterpenes from Polyalthia longifolia (sonn) Thw. Var. Pendula: potential antimalarial agents for drug resistant Plasmodium falciparum infection. J Ethnopharmacol. 2015;169:176–82.

117. Orwa JA, Ngemy L, Mwikwabe NM, Ondicho J, Jondiko IJ. Antimalarial and safety evaluation of extracts from Todalia asiatica (L.) Lam. (Rutaceae). J Ethnopharmacol. 2013;145:587–90.

121. Carraz M, Jossang A, Franetich J-F, Siau A, Ciceron L, Hannoun L, et al. Antimalarial activity of Sida acuta Burm. F. (Malvaceae) and Pterocarpus erinaceus (Fabaceae). J Ethnopharmacol. 2003;89:1–9.

125. Gakunju DM, Mberu EK, Dossaji SF, Gray AI, Waigh RD, Waterman PG, et al. In vitro antiplasmodial activity of some plants used in Kenya against malaria and their chloroquine potentiating effects. J Ethnopharmacol. 2003;84:235–9.

127. Shaa KK, Oguche S, Watila IM, Ikpa TF. Antimalarial, antiplasmodial and remediation effect of Vernonia amygdalina (Asteraceae). J Ethnopharmacol. 2003;84:235–9.
of Nigella sativa seeds (black cumin) in mice infected with Plasmodium yoelii nigeriensis. Parasitol Res. 2011;108:1507–12.

238. Girma S, Giday M, Erko B, Mamo H. Effect of crude leaf extract of Osyris quadrifolia in mice infected with Plasmodium berghei in Swiss albino mice. BMC Complement Altern Med. 2015;15:184.

239. Kabiru AY, Iliakunle GF, Innalegyu DA, Bola BM, Madaki FM. In vivo antiparasitic and analgesic effect of crude ethanol extract of Piper guineense leaf extract in Albino Mice. Scientifica (Cairo). 2016; 8687313.

240. Hibben MG, Sibhat GG, Fanta BS, Gebrezgi HD, Tesema SB. Evaluation of Senna singueana leaf extract as an alternative or adjuvant therapy for malaria. J Tradit Complement Med. 2015;6:112–7.

241. Tadesse SA, Wühnek ZB. Antimalarial activity of Syzygium guineense during early and established Plasmodium infection in rodent models. BMC Complement Alternative Med. 2017;17:21.

242. Adepiti AO, Irawila EO. Evaluation of the combination of Uvaria champae (P. Beauv) and amodiaquine in murine malaria. J Ethnopharmacol. 2016;193:30–5.

243. Masaba SC. The antimalarial activity of Vernonia amygdalina Del (Compositae). Trans R Soc Trop Med Hyg. 2000;94:694–5.

244. Omorogie ES, Pal A. Antiplasmodial, antioxidant and immunomodulatory activities of ethanol extract of Vernonia amygdalina del. leaves in Swiss mice. Avicenna J Phytomed. 2016;6:236–7.

245. Challand S, Willcox M. A Clinical trial of the traditional medicine Vernonia amygdalina in the treatment of uncomplicated Malaria. J Altern Complement Med. 2009;15:1231–7.

246. Ajayi BB, Ogunsola JO, Olatoye OI, Antia RE, Agbedea S. Effects of pituitary extract, ovaprim, and bitter leaves (Vernonia amygdalina) on the histopathology of African catfish (Clarias gariepinus) Aquacult. Fish. 2018;3:232–7.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.