Supplementary to “Inference of Random Effects for Linear Mixed-Effects Models with a Fixed Number of Clusters”

Chih-Hao Chang1, Hsin-Cheng Huang2 and Ching-Kang Ing3

1National University of Kaohsiung; 2Academia Sinica
3National Tsing Hua University

Supplementary Material

The supplementary materials consist of three appendices that prove all the theoretical results except for Theorem 2, whose proof is straightforward and is hence omitted. Appendix A contains auxiliary lemmas that are required in the proofs. Appendix B provides proofs for Example 1 and Theorems 1 and 3–5. Appendix C gives proofs for all the lemmas.

A Auxiliary Lemmas

We start with the following matrix identities, which will be repeated applied:

\begin{align*}
\det(A + cd') &= \det(A)(1 + d'A^{-1}c), \quad (A.1) \\
(A + cd')^{-1} &= A^{-1} - \frac{A^{-1}cd'A^{-1}}{1 + d'A^{-1}c}, \quad (A.2)
\end{align*}

where A is an $n \times n$ nonsingular matrix, and c and d are $n \times 1$ column vectors. Note that (A.2) is applied iteratively to establish the decomposition of the precision matrix $H_{i}^{-1}(\gamma, \theta)$, where

\begin{equation}
H_{i}(\gamma, \theta) \equiv \sum_{k \in \gamma} \theta_{k}z_{i,k}z_{i,k}' + I_{n_i}. \quad (A.3)
\end{equation}

Heuristically speaking, let $z_{i,(s)}$; $s = 1, \ldots, q(\gamma)$ be the s-th column of $Z_{i}(\gamma)$ and

\begin{equation}
H_{i,t}(\gamma, \theta) = \sum_{s=1}^{t} \theta_{(s)}z_{i,(s)}z_{i,(s)}' + I_{n_i}; \quad t = 1, \ldots, q(\gamma), \quad (A.4)
\end{equation}

where $\theta_{(s)}$ denotes the s-th element of θ; $s = 1, \ldots, q(\gamma)$. Suppose that $q(\gamma) = q$. Then by (A.2),

\begin{equation}
H_{i,q}^{-1}(\gamma, \theta) = H_{i,q-1}^{-1}(\gamma, \theta) - \frac{\theta_{q}H_{i,q-1}^{-1}(\gamma, \theta)z_{i,q}z_{i,q}'H_{i,q-1}^{-1}(\gamma, \theta)z_{i,q}}{1 + \theta_{q}z_{i,q}'H_{i,q-1}^{-1}(\gamma, \theta)z_{i,q}}. \quad (A.5)
\end{equation}

Applying (A.2) iteratively, we obtain the decomposition

\begin{equation}
H_{i,q}^{-1}(\gamma, \theta) = I_{n_i} - \sum_{k=1}^{q} \frac{\theta_{k}H_{i,k-1}^{-1}(\gamma, \theta)z_{i,k}z_{i,k}'H_{i,k-1}^{-1}(\gamma, \theta)z_{i,k}}{1 + \theta_{k}z_{i,k}'H_{i,k-1}^{-1}(\gamma, \theta)z_{i,k}}. \quad (A.6)
\end{equation}
note that $H_{1,0}(\gamma, \theta) = I_n$. The proofs of Lemmas 2, 3, and 4 are then based on the induction and the decomposition of (A.6).

The proofs of theorems in Section 3 heavily rely on the asymptotic properties of the quadratic forms, $x_{i,j}^t H_{i}^{-1}(\gamma, \theta) x_{i,j} - z_{i,k} H_{i}^{-1}(\gamma, \theta) z_{i,k}$, $\varepsilon_{i}^t H_{i}^{-1}(\gamma, \theta) \varepsilon_{i}$, and $x_{i,j}^t H_{i}^{-1}(\gamma, \theta) \varepsilon_{i}$, with $H_i(\gamma, \theta)$ defined in (A.3), for $i = 1, \ldots, m$; $j, j' = 1, \ldots, p$ and $k, k' = 1, \ldots, q$. The following lemmas give their convergence rates.

Lemma 2 Consider the linear mixed-effects model (α, γ) of (2.4). Suppose that (A0)–(A3) hold. Then for $H_i(\gamma, \theta)$ defined in (A.3), we have

(i) For $i = 1, \ldots, m$ and $j, j' = 1, \ldots, p$,

$$\sup_{\theta \in (0, \infty)^q} |x_{i,j}^t H_i^{-1}(\gamma, \theta) x_{i,j'}| = \begin{cases} d_{i,j} n_{i}^{\xi} + o(n_{i}^{\xi}); & \text{if } j = j', \\ o(n_{i}^{\xi - \tau}); & \text{if } j \neq j'. \end{cases}$$

(ii) For $i = 1, \ldots, m$, $j = 1, \ldots, p$ and $k \notin \gamma$,

$$\sup_{\theta \in (0, \infty)^q} |x_{i,j}^t H_i^{-1}(\gamma, \theta) z_{i,k}| = o(n_{i}^{(\xi + \ell)/2 - \tau}).$$

(iii) For $i = 1, \ldots, m$, $j = 1, \ldots, p$ and $k \in \gamma$,

$$\sup_{\theta \in (0, \infty)^q} \theta_k |x_{i,j}^t H_i^{-1}(\gamma, \theta) z_{i,k}| = o_p(n_{i}^{(\xi - \ell)/2 - \tau}),$$

$$\sup_{\theta \in (0, \infty)^q} |x_{i,j}^t H_i^{-1}(\gamma, \theta) z_{i,k}| = o(n_{i}^{(\xi - \ell)/2 - \tau}).$$

Lemma 3 Consider the linear mixed-effects model (α, γ) of (2.4). Suppose that (A0) and (A2) hold. Then for $H_i(\gamma, \theta)$ defined in (A.3), we have

(i) For $i = 1, \ldots, m$ and $k, k^* \notin \gamma$,

$$\sup_{\theta \in (0, \infty)^q} |z_{i,k}^t H_i^{-1}(\gamma, \theta) z_{i,k^*}| = \begin{cases} c_{i,k} n_{i}^{\xi} + o(n_{i}^{\xi}); & \text{if } k = k^*, \\ o(n_{i}^{\xi - \tau}); & \text{if } k \neq k^*. \end{cases}$$

(ii) For $i = 1, \ldots, m$ and $k \in \gamma$,

$$\sup_{\theta \in (0, \infty)^q} |\theta_k^2 z_{i,k}^t H_i^{-1}(\gamma, \theta) z_{i,k} - \theta_k| = O(n_{i}^{-\ell}),$$

$$\sup_{\theta \in (0, \infty)^q} |z_{i,k}^t H_i^{-1}(\gamma, \theta) z_{i,k}| = O(n_{i}^{\ell}).$$

(iii) For $i = 1, \ldots, m$ and $k, k^* \in \gamma$ with $k \neq k^*$,

$$\sup_{\theta \in (0, \infty)^q} \theta_k \theta_{k^*} |z_{i,k}^t H_i^{-1}(\gamma, \theta) z_{i,k^*}| = o(n_{i}^{-\ell - \tau}),$$

$$\sup_{\theta \in (0, \infty)^q} \theta_k |z_{i,k}^t H_i^{-1}(\gamma, \theta) z_{i,k^*}| = o(n_{i}^{-\tau}),$$

$$\sup_{\theta \in (0, \infty)^q} |z_{i,k}^t H_i^{-1}(\gamma, \theta) z_{i,k^*}| = o(n_{i}^{\ell - \tau}).$$

(iv) For $i = 1, \ldots, m$, $k \in \gamma$ and $k^* \notin \gamma$,

$$\sup_{\theta \in (0, \infty)^q} \theta_k |z_{i,k}^t H_i^{-1}(\gamma, \theta) z_{i,k^*}| = o(n_{i}^{-\tau}),$$

$$\sup_{\theta \in (0, \infty)^q} |z_{i,k}^t H_i^{-1}(\gamma, \theta) z_{i,k^*}| = o(n_{i}^{\ell - \tau}).$$
Lemma 4 Consider the linear mixed-effects model (α, γ) of (2.4). Suppose that (A0)–(A3) hold. Then for $H_i(\gamma, \theta)$ defined in (A.3), we have

(i) For $i = 1, \ldots, m$ and $k \in \gamma,$
\[\sup_{\theta \in [0, \infty)^{q(\gamma)}} \theta_k \cdot |z_{i,k}^T H^{-1}_i(\gamma, \theta) \epsilon_i| = O_p(n_i^{-\ell/2}), \]
\[\sup_{\theta \in [0, \infty)^{q(\gamma)}} |z_{i,k}^T H^{-1}_i(\gamma, \theta) \epsilon_i| = O_p(n_i^{\ell/2}). \]

(ii) For $i = 1, \ldots, m$ and $k \notin \gamma,$
\[\sup_{\theta \in [0, \infty)^{q(\gamma)}} |z_{i,k}^T H^{-1}_i(\gamma, \theta) \epsilon_i| = O_p(n_i^{\ell/2}). \]

(iii) For $i = 1, \ldots, m$ and $j = 1, \ldots, p,$
\[\sup_{\theta \in [0, \infty)^{q(\gamma)}} |x_{i,j}^T H^{-1}_i(\gamma, \theta) \epsilon_i| = O_p(n_i^{\ell/2}). \]

In addition,
\[\sup_{\theta \in [0, \infty)^{q(\gamma)}} \left| \sum_{i=1}^m x_{i,j}^T H^{-1}_i(\gamma, \theta) \epsilon_i \right| = O_p \left(\left(\sum_{i=1}^m n_i^\ell \right)^{1/2} \right). \]

(iv) For $i = 1, \ldots, m,$
\[\sup_{\theta \in [0, \infty)^{q(\gamma)}} \epsilon_i^T H^{-1}_i(\gamma, \theta) \epsilon_i = \epsilon_i^T \epsilon_i + O_p(q). \]

Note that Lemma 2 (i) implies that, for $(\alpha, \gamma) \in A \times \mathcal{G},$
\[\sum_{i=1}^m X_i(\alpha)^T H^{-1}_i(\gamma, \theta) X_i(\alpha) = \left(\sum_{i=1}^m n_i^\ell \right) T(\alpha) + \left\{ a \left(\sum_{i=1}^m n_i^{-\tau} \right) \right\} p(\alpha) \times p(\alpha) \]
\[= \left(\sum_{i=1}^m n_i^\ell \right) T(\alpha) + \left\{ a \left(n_{\min}^{-\tau} \sum_{i=1}^m n_i^\ell \right) \right\} p(\alpha) \times p(\alpha) \]
uniformly over $\theta \in [0, \infty)^{q(\gamma)},$ where $\{a\}_{k \times j}$ denotes a $k \times j$ matrix with elements equal to a and $T(\alpha)$ is a diagonal matrix with diagonal elements bounded away from 0 and $\infty.$ Hence by (A.2) with $p(\alpha)$-vectors $c = \{o(n_{\min}^{-\tau/2})\} p(\alpha) \times 1$ and $d = \{o(n_{\min}^{-\tau})\} p(\alpha) \times 1,$ and a $p(\alpha) \times p(\alpha)$ diagonal matrix $A = T(\alpha),$ we have, for $(\alpha, \gamma) \in A \times \mathcal{G},$
\[\left(\sum_{i=1}^m \frac{X_i(\alpha)^T H^{-1}_i(\gamma, \theta) X_i(\alpha)}{n_i^\ell} \right)^{-1} = \left(T(\alpha) + \left\{ o(n_{\min}^{-\tau}) \right\} p(\alpha) \times p(\alpha) \right)^{-1} \]
\[= T^{-1}(\alpha) + \left\{ o(n_{\min}^{-\tau}) \right\} p(\alpha) \times p(\alpha) \]
uniformly over $\theta \in [0, \infty)^{q(\gamma)},$ which plays a key role in proving lemmas for theorems.

The following lemma shows that θ_k does not converge to 0 in probability for $k \in \gamma \cap \gamma_0,$ which allows us to restrict the parameter space of θ from $[0, \infty)^{q(\gamma)}$ to
\[\Theta_\gamma = \{ \theta \in [0, \infty)^{q(\gamma)} : \theta(\gamma \cap \gamma_0) \in (0, \infty)^{q(\gamma \cap \gamma_0)} \}. \]
Lemma 5 Under the assumptions of Theorem 1, let $\theta_{0,i}^j$ be θ except that $\{\theta_{k,0} : k \in \gamma \cap \gamma_0\}$ are replaced by $\{\theta_{k,0} : k \in \gamma \cap \gamma_0\}$. Then for any $(\alpha, \gamma) \in \mathcal{A} \times \mathcal{G}$, $\nu^2 > 0$, and $\theta \in [0, \infty) \cap \gamma$, with $\theta_k \rightarrow 0$ for some $k \in \gamma \cap \gamma_0$, we have

$$-2 \log L(\theta, \nu^2; \alpha, \gamma) - \{ -2 \log L(\theta_{0,i}^j, \nu^2; \alpha, \gamma) \} \to \infty$$

as $N \to \infty$, where $-2 \log L(\theta, \nu^2; \alpha, \gamma)$ is given in (2.7).

Based on Lemma 5, the following lemma is needed to develop the convergence rates of components of the likelihood equations given in (B.1) and (B.2), uniformly over Θ_γ defined in (A.8).

Lemma 6 Consider a mixed-effects model $(\alpha, \gamma) \in \mathcal{A} \times \mathcal{G}$ with $H(\gamma, \theta)$ defined in (2.5) and Θ_γ defined in (A.8). Suppose that (A0)–(A3) hold. Then

(i) For $i, i^* = 1, \ldots, m$, $(\alpha, \gamma) \in \mathcal{A} \times \mathcal{G}$ and $k, k^* \in \gamma$,

$$\sup_{\theta \in \Theta_\gamma} \theta_k \theta_{k^*} \left| h_{i,k}^{i,j} H^{-1}(\gamma, \theta) M(\alpha, \gamma; \theta) h_{i^*,k^*} \right| = o \left(\frac{n_i^{(\xi - \ell)/2} (\xi - \ell)/2}{\sum_{i=1}^{m} n_i^\gamma} \right),$$

(ii) For $i, i^* = 1, \ldots, m$, $(\alpha, \gamma) \in \mathcal{A} \times \mathcal{G}$, $k \in \gamma$ and $k^* \notin \gamma$,

$$\sup_{\theta \in \Theta_\gamma} \theta_k \left| h_{i,k}^{i,j} H^{-1}(\gamma, \theta) M(\alpha, \gamma, \gamma; \theta) h_{i^*,k^*} \right| = o \left(\frac{n_i^{(\xi - \ell)/2} (\xi - \ell)/2}{\sum_{i=1}^{m} n_i^\gamma} \right),$$

(iii) For $i = 1, \ldots, m$, $(\alpha, \gamma) \in \mathcal{A} \times \mathcal{G}$ and $k \in \gamma$,

$$\sup_{\theta \in \Theta_\gamma} \theta_k \left| h_{i,k}^{i,j} H^{-1}(\gamma, \theta) M(\alpha, \gamma; \theta) \epsilon \right| = o_p(n_i^{-\ell/2}),$$

(iv) For $i = 1, \ldots, m$, $(\alpha, \gamma) \in (\mathcal{A} \setminus \mathcal{A}_0) \times \mathcal{G}$ and $k \in \gamma$,

$$\sup_{\theta \in \Theta_\gamma} \theta_k \left| h_{i,k}^{i,j} H^{-1}(\gamma, \theta) M(\alpha, \gamma; \theta) X(\alpha \setminus \alpha) \beta(\alpha \setminus \alpha) \right| = o(n_i^{(\xi - \ell)/2 - \gamma}),$$

(v) For $i = 1, \ldots, m$ and $(\alpha, \gamma) \in \mathcal{A} \times \mathcal{G}$,

$$\sup_{\theta \in \Theta_\gamma} \epsilon \left| h_{i,k}^{i,j} H^{-1}(\gamma, \theta) M(\alpha, \gamma; \theta) \epsilon \right| = O_p(p(\alpha)).$$

(vi) For $i = 1, \ldots, m$, $(\alpha, \gamma) \in \mathcal{A} \times \mathcal{G}$ and $k \notin \gamma$,

$$\sup_{\theta \in \Theta_\gamma} \left| h_{i,k}^{i,j} H^{-1}(\gamma, \theta) M(\alpha, \gamma; \theta) \epsilon \right| = o_p(n_i^{\ell/2}).$$
Estimation of linear mixed-effects models

(vi) For \((\alpha, \gamma) \in (A \setminus A_0) \times \mathcal{G}\),

\[
\sup_{\theta \in \Theta} \left| e^H(\gamma, \theta) M(\alpha, \gamma; \theta) X(\alpha_0 \setminus \alpha) \beta(\alpha_0 \setminus \alpha) \right| = o_p \left(\left(\sum_{i=1}^{m} n_i \right)^{1/2} \right).
\]

(viii) For \(i, i' = 1, \ldots, m, (\alpha, \gamma) \in A \times \mathcal{G}\) and \(k, k' \notin \gamma\),

\[
\sup_{\theta \in \Theta} \left| h_{i,k}^H(\gamma, \theta) M(\alpha, \gamma; \theta) h_{i',k'} \right| = o_p \left(\frac{n_{i+k} \cdot (\xi + \ell)^2 / n_{i+k}^{\xi + \ell} / 2 - \tau}{\sum_{i=1}^{m} n_i^{\xi - \tau}} \right).
\]

(ix) For \(i = 1, \ldots, m, (\alpha, \gamma) \in (A \setminus A_0) \times \mathcal{G}\) and \(k \notin \gamma\),

\[
\sup_{\theta \in \Theta} \left| h_{i,k}^H(\gamma, \theta) M(\alpha, \gamma; \theta) X(\alpha_0 \setminus \alpha) \beta(\alpha_0 \setminus \alpha) \right| = o_p \left(\frac{n_{i+k} \cdot (\xi + \ell)^2 / n_{i+k}^{\xi + \ell} / 2 - \tau}{\sum_{i=1}^{m} n_i^{\xi - \tau}} \right).
\]

(x) For \((\alpha, \gamma) \in (A \setminus A_0) \times \mathcal{G}\),

\[
\sup_{\theta \in \Theta} \left| \beta(\alpha_0 \setminus \alpha)' X(\alpha_0 \setminus \alpha)' H^{-1}(\gamma, \theta) \times M(\alpha, \gamma; \theta) X(\alpha_0 \setminus \alpha) \beta(\alpha_0 \setminus \alpha) \right| = o_p \left(\sum_{i=1}^{m} n_i^{\xi - \tau} \right).
\]

B Theoretical Proofs

B.1 Proof of Theorem 1

We shall focus on the asymptotic properties of \(\hat{\epsilon}^2(\alpha, \gamma)\) and \(\{\hat{\theta}_k(\alpha, \gamma) : k \in \gamma\}\), and derive the asymptotic properties of \(\{\hat{\sigma}_k^2(\alpha, \gamma) : k \in \gamma\}\) via \(\hat{\epsilon}^2(\alpha, \gamma) = \hat{\epsilon}^2(\alpha, \gamma) \hat{\theta}_k(\alpha, \gamma); k \in \gamma\).

If \(\hat{\epsilon}^2(\alpha, \gamma) > 0\) and \(\hat{\theta}_k(\alpha, \gamma) > 0; k \in \gamma\), then we can derive them using the likelihood equations. Differentiating the profile log-likelihood function of (2.7) with respect to \(\epsilon^2\) and \(\{\hat{\theta}_k : k \in \gamma\}\), we obtain

\[
\frac{\partial}{\partial \epsilon^2} \left(-2 \log L(\theta, \epsilon^2; \alpha, \gamma) \right) = \frac{N}{\epsilon^2} - \frac{y' H^{-1}(\gamma, \theta)(I_N - M(\alpha, \gamma; \theta)) y}{\epsilon^4} \tag{B.1}
\]

and

\[
\frac{\partial}{\partial \theta_k} \left(-2 \log L(\theta, \epsilon^2; \alpha, \gamma) \right) = \sum_{i=1}^{m} \left[z_{i,k}^H M(\alpha, \gamma; \theta) z_{i,k} - \frac{\{h_{i,k}^H M(\alpha, \gamma; \theta) y\}^2}{\epsilon^2} \right]. \tag{B.2}
\]

To derive \(\hat{\epsilon}^2(\alpha, \gamma)\) and \(\{\hat{\theta}_k(\alpha, \gamma) : k \in \gamma\}\), we must study the convergence rate of each term on the right-hand sides of both (B.1) and (B.2) by Lemmas 2–4 and Lemma 6.

We first prove (3.1) using (B.1). Consider the following decomposition of \(y' H^{-1}(\gamma, \theta)(I_N - M(\alpha, \gamma; \theta)) y\) in (B.1):

\[
y' H^{-1}(\gamma, \theta)(I_N - M(\alpha, \gamma; \theta)) y \\
= \mu_0' H^{-1}(\gamma, \theta)(I_N - M(\alpha, \gamma; \theta)) \mu_0 \\
+ 2 \mu_0' H^{-1}(\gamma, \theta)(I_N - M(\alpha, \gamma; \theta)) Z(\gamma_0) b(\gamma_0) + \epsilon \tag{B.3} \\
+ (Z(\gamma_0) b(\gamma_0) + \epsilon)' H^{-1}(\gamma, \theta)(I_N - M(\alpha, \gamma; \theta)) Z(\gamma_0) b(\gamma_0) + \epsilon \\
- (Z(\gamma_0) b(\gamma_0) + \epsilon)' H^{-1}(\gamma, \theta) M(\alpha, \gamma; \theta) Z(\gamma_0) b(\gamma_0) + \epsilon.
\]
The first two terms of (B.3) are zeros because
\[(I_N - M(\alpha, \gamma; \theta)) \mathbf{u}_0 = 0; \quad \alpha \in A_0, \quad (B.4)\]
which is obtained by treating \(\mathbf{u}_0 = X(\alpha) \beta(\alpha)\) for some \(\beta(\alpha) \in \mathbb{R}^b(\alpha)\) under \(\alpha \in A_0\), where note that by (2.9), \(M(\alpha, \gamma; \theta) X(\alpha) = X(\alpha)\). By Lemma 3 (ii)–(iii), Lemma 4 (i), and Lemma 4 (iv), the third term of (B.3) can be written as
\[\sum_{i=1}^{m} \mathbf{Z}_i(\gamma_0) \mathbf{b}_i(\gamma_0) + \mathbf{e}_i' \mathbf{H}^{-1}(\gamma, \theta) \mathbf{Z}_i(\gamma_0) \mathbf{b}_i(\gamma_0) + \mathbf{e}_i\]
uniformly over \(\theta \in \Theta_\gamma\). Note that by the Cauchy–Schwarz inequality,
\[\left(\sum_{i=1}^{m} \mathbf{n}_i^{(\gamma-\ell)/2} \right)^2 = O\left(\sum_{i=1}^{m} \mathbf{n}_i^{\ell} \sum_{i=1}^{m} \mathbf{n}_i^{\ell} \right). \quad (B.5)\]
Hence, by Lemma 6 (i), Lemma 6 (iii), and Lemma 6 (v), the last term of (B.3) can be written as
\[\mathbf{y}' \mathbf{H}^{-1}(\gamma, \theta)(I_N - M(\alpha, \gamma; \theta))\mathbf{y} = \mathbf{e}'\mathbf{e} + o_p\left(\sum_{k,k' \in \gamma_0} \frac{m}{\theta_k \theta_{k'}} \right) + O_p\left(\sum_{k \in \gamma_0} \frac{m}{\theta_k} \right) + O_p\left(p + mq \right).
\]
It follows from (B.1) that for \(\nu^2 \in (0, \infty)\),
\[\nu^2 \{ \frac{\partial}{\partial \nu} [-2 \log \psi(\theta, \nu^2; \alpha, \gamma)] \} = N\left(\nu^2 - \frac{\mathbf{e}'\mathbf{e}}{N} \right) + o_p\left(\sum_{k,k' \in \gamma_0} \frac{m}{\theta_k \theta_{k'}} \right) + O_p\left(\sum_{k \in \gamma_0} \frac{m}{\theta_k} \right) + O_p\left(p + mq \right).
\]
uniformly over \(\theta \in \Theta_\gamma\). This and Lemma 5 imply that
\[\nu^2(\alpha, \gamma) = \frac{\mathbf{e}'\mathbf{e}}{N} + O_p\left(\frac{p + mq}{N} \right). \quad (B.6)\]
Thus (3.1) follows by applying the law of large numbers to \(\mathbf{e}'\mathbf{e}/N\). In addition, the asymptotic normality of \(\nu^2(\alpha, \gamma)\) follows by \(p + mq = o(N^{1/2})\) and an application of the central limit theorem to \(\mathbf{e}'\mathbf{e}/N\) in (B.6).

Next, we prove (3.2), for \(k \in \gamma \cap \gamma_0\), using (B.2). By Lemma 6 (i) and Lemma 6 (iii), we have, for \(k \in \gamma \cap \gamma_0\),
\[\theta_k \mathbf{h}_k' \mathbf{H}^{-1}(\gamma, \theta) M(\alpha, \gamma; \theta) (\mathbf{Z}_i(\gamma_0) \mathbf{b}_i(\gamma_0) + \mathbf{e}) = \theta_k \mathbf{h}_k' \mathbf{H}^{-1}(\gamma, \theta) M(\alpha, \gamma; \theta) \mathbf{e} + o_p\left(\sum_{k \in \gamma_0} \frac{m}{\theta_k} \right)
\]
uniformly over \(\theta \in \Theta_{\gamma} \). This and (B.4) imply that for \(k \in \gamma \cap \gamma_0 \),
\[
\theta_k h_{i,k}^* H^{-1}(\gamma, \theta)|_{\Theta_{\gamma} - M(\alpha, \gamma; \theta)} y
\]
\[
= \theta_k h_{i,k}^* H^{-1}(\gamma, \theta)|_{\Theta_{\gamma} - M(\alpha, \gamma; \theta)} (Z(\gamma_0) b(\gamma_0) + \epsilon)
\]
\[
= \theta_k h_{i,k}^* H^{-1}(\gamma, \theta)|_{\Theta_{\gamma} - M(\alpha, \gamma; \theta)} (Z(\gamma_0) b(\gamma_0) + \epsilon)
\]
\[
+ o_p \left(\sum_{k^* \in \gamma_0} \frac{n_i}{\theta_{k^*} \sum_{i=1}^m n_i^*} \right) + o_p(n_i^{-\ell/2})
\]
\[
= \theta_k z_{i,k}^* H^{-1}(\gamma, \theta)|_{\Theta_{\gamma} - M(\alpha, \gamma; \theta)} b(\gamma_0) + \epsilon_i
\]
\[
+ o_p \left(\sum_{k^* \in \gamma_0} \frac{n_i}{\theta_{k^*} \sum_{i=1}^m n_i^*} \right) + o_p(n_i^{-\ell/2})
\]
\[
= b_{i,k} + O_p(n_i^{-\ell/2}) + o_p \left(\sum_{k^* \in \gamma_0} \frac{n_i}{\theta_{k^*} \sum_{i=1}^m n_i^*} \right)
\]
uniformly over \(\theta \in \Theta_{\gamma} \), where the last equality follows from Lemma 3 (ii)–(iii) and Lemma 4 (i). Hence, for \(k \in \gamma \cap \gamma_0 \),
\[
\theta_k^2 (h_{i,k}^* H^{-1}(\gamma, \theta)|_{\Theta_{\gamma} - M(\alpha, \gamma; \theta)} y)^2
\]
\[
= b_{i,k}^2 + O(n_i^{-\ell/2}) + o_p \left(\sum_{k^* \in \gamma_0} \frac{n_i \ell}{\theta_{k^*} \sum_{i=1}^m n_i^*} \right)
\]
uniformly over \(\theta \in \Theta_{\gamma} \). This together with Lemma 3 (ii) and (B.2) imply that for \(k \in \gamma \cap \gamma_0 \),
\[
\theta_k^2 \left\{ \frac{\partial}{\partial \theta_k} \left(-2 \log L(\theta, \nu; \alpha, \gamma) \right) \right\}
\]
\[
= m \left(\theta_k - \frac{1}{m} \sum_{i=1}^m \frac{\beta_{i,k}^2}{\nu_i^2} \right) + o_p \left(\sum_{i=1}^m n_i^{-\ell/2} \right)
\]
\[
+ o_p \left(\sum_{k^* \in \gamma_0} \frac{m}{\theta_{k^*} \sum_{i=1}^m n_i^*} \right)
\]
uniformly over \(\theta \in \Theta_{\gamma} \). By (B.5), Lemma 5 and setting (B.8) to 0, we obtain
\[
\hat{\theta}_k(\alpha, \gamma) = \frac{1}{m} \sum_{i=1}^m \frac{\beta_{i,k}^2}{\nu_i^2(\alpha, \gamma)} + o_p \left(\frac{1}{m} \sum_{i=1}^m n_i^{-\ell/2} \right), \quad k \in \gamma \cap \gamma_0.
\]
This proves (3.2), for \(k \in \gamma \cap \gamma_0 \). It remains to prove (3.2), for \(k \in \gamma \setminus \gamma_0 \). We prove by showing that (B.2) is asymptotically nonnegative, for \(\theta_k \in \{\mu_{\max}, \infty\} \); \(k \in \gamma \setminus \gamma_0 \) using a recursive argument. Let \(\theta^1 \) be \(\theta \) except that \(\{\theta_k : k \in \gamma \cap \gamma_0\} \) are replaced by \(\{\theta_k(\alpha, \gamma) : k \in \gamma \cap \gamma_0\} \). By Lemma 6 (i) and Lemma 6 (iii), we have, for \(k \in \gamma \setminus \gamma_0 \),
\[
\theta_k h_{i,k}^* H^{-1}(\gamma, \theta^1)|_{\Theta_{\gamma} - M(\alpha, \gamma; \theta^1)} (Z(\gamma_0) b(\gamma_0) + \epsilon)
\]
\[
= \theta_k h_{i,k}^* H^{-1}(\gamma, \theta^1)|_{\Theta_{\gamma} - M(\alpha, \gamma; \theta^1)} (Z(\gamma_0) b(\gamma_0) + \epsilon)
\]
\[
= \theta_k h_{i,k}^* H^{-1}(\gamma, \theta^1)|_{\Theta_{\gamma} - M(\alpha, \gamma; \theta^1)} \left(\sum_{i=1}^m \sum_{i=1}^m b_{i,k}^+ h_{i,k}^+ \right)
\]
\[
= o_p \left(\frac{n_i \ell}{\theta_{k^*} \sum_{i=1}^m n_i^*} \right) + o_p(n_i^{-\ell/2})
\]
uniformly over \(\theta(\gamma \setminus \gamma_0) \in [0, \infty)^{(\gamma \setminus \gamma_0)} \). This and (B.4) imply that for \(k \in \gamma \setminus \gamma_0 \),

\[
\begin{aligned}
\theta h_k' H^{-1}(\gamma, \theta^1)(I_N - M(\alpha, \gamma; \theta^1))y \\
= \theta h_k' H^{-1}(\gamma, \theta^1)(I_N - M(\alpha, \gamma; \theta^1))(Z(\gamma_0)b(\gamma_0) + \varepsilon) \\
= \theta h_k' H^{-1}(\gamma, \theta^1)(Z(\gamma_0)b(\gamma_0) + \varepsilon) \\
+ o_p\left(\frac{n_1^{(\xi-\ell)/2} \sum_{i=1}^m n_i^{(\xi-\ell)/2}}{\sum_{i=1}^m n_i^{\xi}}\right) + o_p(n_i^{\ell/2}) \\
= \theta h_k' H^{-1}(\gamma, \theta^1)\left(\sum_{k' \in \gamma_0} z_{i,k'} b_{i,k'} + \varepsilon_i\right) \\
+ o_p\left(\frac{n_1^{(\xi-\ell)/2} \sum_{i=1}^m n_i^{(\xi-\ell)/2}}{\sum_{i=1}^m n_i^{\xi}}\right) + o_p(n_i^{\ell/2}) \\
= O_p(n_i^{\ell/2}) + o_p\left(\frac{n_1^{(\xi-\ell)/2} \sum_{i=1}^m n_i^{(\xi-\ell)/2}}{\sum_{i=1}^m n_i^{\xi}}\right)
\end{aligned}
\]

(B.9)

uniformly over \(\theta(\gamma \setminus \gamma_0) \in [0, \infty)^{(\gamma \setminus \gamma_0)} \), where the last equality follows from Lemma 3 (iii) and Lemma 4 (i). Hence by (B.5), Lemma 3 (ii), and (B.2), we have, for \(\theta(\gamma \setminus \gamma_0) \in [0, \infty)^{(\gamma \setminus \gamma_0)} \) and \(k \in \gamma \setminus \gamma_0 \),

\[
\begin{aligned}
\left\{\frac{\partial}{\partial \theta_k} \{-2 \log L(\theta^1, \nu^2; \alpha, \gamma)\}\right\} \\
= m \theta_k + o_p\left(\sum_{i=1}^m n_i^{\ell}\right) + o_p\left(\frac{\sum_{i=1}^m n_i^{(\xi-\ell)/2} \sum_{i=1}^m n_i^{(\xi-\ell)/2}}{\sum_{i=1}^m n_i^{\xi}}\right) \\
= m \theta_k + o_p\left(\sum_{i=1}^m n_i^{\ell}\right) \\
= m \theta_k + o_p(m \log(n_{\text{min}})n_i^{-\ell})
\end{aligned}
\]

This implies that \(-2 \log L(\theta^1, \nu^2; \alpha, \gamma)\) is an asymptotically nondecreasing function on \(\theta_k \in (\log(n_{\text{min}})n_i^{-\ell}, \infty) \), for \(k \in \gamma \setminus \gamma_0 \) given other \(\theta(\gamma \setminus \gamma_0) \in [0, \infty)^{(\gamma \setminus \gamma_0)} \). It follows that \(\theta_k(\alpha, \gamma) \in [0, \log(n_{\text{min}})n_i^{-\ell}) \), \(k \in \gamma \setminus \gamma_0 \). The above convergence rate can be recursively improved. Without loss of generality, assume that \(n_{\text{min}} = n_1 \leq n_2 \leq \cdots \leq n_m = n_{\text{max}} \). We can restrict the parameter space of \(\theta_k \) in the next step to

\[
\theta_{\gamma,k,i} = \left\{\theta(\gamma \setminus \gamma_0) \in [0, \infty)^{(\gamma \setminus \gamma_0)} : \theta_k \leq \log(n_{\text{min}})n_i^{-\ell}\right\}
\]

(B.10)

with \(i = 1 \). Then, by Lemma 6 (i) and Lemma 6 (iii), we have, for \(k \in \gamma \setminus \gamma_0 \),

\[
\begin{aligned}
\theta h_k' H^{-1}(\gamma, \theta^1)M(\alpha, \gamma; \theta^1)(Z(\gamma_0)b(\gamma_0) + \varepsilon) \\
= o_p\left(\frac{n_1^{(\xi-\ell)/2} \sum_{i=1}^m n_i^{(\xi-\ell)/2}}{\sum_{i=1}^m n_i^{\xi}}\right) + o_p(\theta_k n_i^{\ell/2})
\end{aligned}
\]
uniformly over $\theta(\gamma \setminus \gamma_0) \in \Theta_{\gamma, k, 1}$. This and (B.4) imply that for $k \in \gamma \setminus \gamma_0$,

$$\theta_k h'_{1,k} H^{-1}(\gamma, \theta^1)(I_N - M(\alpha, \gamma; \theta^1))y$$

$$= \theta_k h'_{1,k} H^{-1}(\gamma, \theta^1)(I_N - M(\alpha, \gamma; \theta^1))(Z(\gamma_0)b(\gamma_0) + \epsilon)$$

$$= \theta_k z'_{1,k} H^{-1}(\gamma, \theta^1)(Z(\gamma_0)b(\gamma_0) + \epsilon)$$

$$+ o_p \left(\frac{n_1(\xi^{-\ell}/2 \sum_{i=1}^m n_i^{\xi^{-\ell}/2}} {\sum_{i=1}^m n_i^{\xi^{-\ell}/2}} \right) + o_p(\theta_k n_1^{\xi^{-\ell}/2})$$

$$= O_p(\theta_k n_1^{\xi^{-\ell}/2}) + o_p \left(\frac{n_1(\xi^{-\ell}/2 \sum_{i=1}^m n_i^{\xi^{-\ell}/2}} {\sum_{i=1}^m n_i^{\xi^{-\ell}/2}} \right)$$

uniformly over $\theta(\gamma \setminus \gamma_0) \in \Theta_{\gamma, k, 1}$, where the last equality follows from Lemma 3 (iii) and Lemma 4 (i). Hence by (B.5), Lemma 3 (ii), (B.2), and (B.9), we have

$$\theta_k^2 \left\{ \frac{\partial}{\partial \theta_k} \{-2 \log L(\theta^1, \nu^2, \alpha, \gamma) \} \right\}$$

$$= (m - 1) \theta_k + O_p(\theta_k^2 n_1^{i^{-\ell}}) + O_p \left(\sum_{i=2}^m n_i^{i^{-\ell}} \right) + o_p \left(\sum_{i=1}^m n_i^{i^{-\ell}} \right)$$

uniformly over $\theta(\gamma \setminus \gamma_0) \in \Theta_{\gamma, k, 1}$. Hence, setting the above equation equal to 0, we have

$$\theta_k^2 = \frac{1}{m - 1 + O_p(\log(n_{\text{min}}))} O_p \left(\sum_{i=2}^m n_i^{i^{-\ell}} \right) = O_p(n_2^{-\ell}).$$

Now we can further restrict the parameter space of θ_k to $\Theta_{\gamma, k, 2}$ in (B.10). Continuing this procedure, we can recursively obtain $\hat{\theta}_k(\alpha, \gamma) = O_p(n_i^{-\ell})$; $k \in \gamma \setminus \gamma_0$, for $i = 3, \ldots, m$. This completes the proof of (3.2), for $k \in \gamma \setminus \gamma_0$. Hence the proof of Theorem 1 is complete.

B.2 Proof of Example 1

Note that for $q = 1$, $Z_0 = z_{1,1}$ and $b_1 = b_{1,1}$. Note that by Lemma 5, we consider the sample space $(\sigma^2_1, \nu^2) \in (0, \infty)^2$. We first derive the explicit forms of the ML estimators $\hat{\theta}_1$ and $\hat{\nu}^2$.
By (B.2), we have
\[
\frac{\partial}{\partial \theta_1} \{-2 \log L(\theta_1, \bar{v}^2)\} = \sum_{i=1}^{m} \frac{z_{i,1}' z_{i,1}}{1 + \hat{\theta}_1 z_{i,1}' z_{i,1}} - \frac{1}{v \cdot b} \sum_{i=1}^{m} \left\{ z_{i,1}' \left(I_n - \frac{\theta_1 z_{i,1} z_{i,1}'}{1 + \theta_1 z_{i,1} z_{i,1}'} \right) y_i \right\}^2
= \sum_{i=1}^{m} \frac{z_{i,1}' z_{i,1}}{1 + \hat{\theta}_1 z_{i,1}' z_{i,1}} - \frac{1}{v \cdot b} \sum_{i=1}^{m} \left\{ z_{i,1}' z_{i,1} b_{i,1} + \frac{z_{i,1}' e_i}{1 + \theta_1 z_{i,1} z_{i,1}} \right\}^2
= \sum_{i=1}^{m} \left\{ \frac{1}{\hat{\theta}_1} - \frac{1}{\theta_1 (1 + \theta_1 z_{i,1}' z_{i,1})} \right\}
- \frac{1}{v \cdot b} \sum_{i=1}^{m} \frac{b_{i,1} - b_{i,1}}{\theta_1 (1 + \theta_1 z_{i,1}' z_{i,1})} + \frac{z_{i,1}' e_i}{1 + \theta_1 z_{i,1} z_{i,1}} \right\}^2
= \sum_{i=1}^{m} \frac{m}{\theta_1} \sum_{i=1}^{m} b_{i,1}^2 \frac{1}{v \cdot b^2 \theta_1^2} + 2 \sum_{i=1}^{m} \frac{b_{i,1} z_{i,1}' e_i}{v^2 \theta_1 (1 + \theta_1 z_{i,1}' z_{i,1})} + R(\sigma_1^2, \bar{v}^2),
\]
where \(\sigma_1^2 = \theta_1 v^2\) and
\[
R(\sigma_1^2, \bar{v}^2) = - \sum_{i=1}^{m} \frac{1}{\theta_1 (1 + \theta_1 z_{i,1}' z_{i,1})} - \sum_{i=1}^{m} \frac{(z_{i,1}' e_i)^2}{v^2 (1 + \theta_1 z_{i,1}' z_{i,1})^2} + \sum_{i=1}^{m} \frac{2 b_{i,1} z_{i,1}' e_i}{v^2 \theta_1 (1 + \theta_1 z_{i,1}' z_{i,1})^2}
+ \sum_{i=1}^{m} \frac{2 b_{i,1}^2}{v^2 \theta_1^2 (1 + \theta_1 z_{i,1}' z_{i,1})} - \sum_{i=1}^{m} \frac{b_{i,1} z_{i,1}' e_i}{v^2 \theta_1 (1 + \theta_1 z_{i,1}' z_{i,1})^2}.
\]
Note that ML estimators \(\hat{\sigma}_1^2 = \hat{\theta}_1 \bar{v}^2\) and \(\hat{\bar{v}}^2\) satisfy
\[
0 = \frac{m}{\hat{\theta}_1} - \sum_{i=1}^{m} \frac{b_{i,1}^2}{v^2 \theta_1^2} + \sum_{i=1}^{m} \frac{2 b_{i,1} z_{i,1}' e_i}{v^2 \theta_1 (1 + \theta_1 z_{i,1}' z_{i,1})} + R(\hat{\sigma}_1^2, \hat{\bar{v}}^2),
\]
which implies that
\[
\hat{\sigma}_1^2 = \hat{\theta}_1 \hat{\bar{v}}^2 = \frac{1}{m} \sum_{i=1}^{m} b_{i,1}^2 + \frac{1}{m} \sum_{i=1}^{m} \frac{2 b_{i,1} z_{i,1}' e_i}{1 + \theta_1 z_{i,1}' z_{i,1}} + \frac{\hat{\bar{v}}^2}{m} R(\hat{\sigma}_1^2, \hat{\bar{v}}^2)
= \frac{1}{m} \sum_{i=1}^{m} b_{i,1}^2 + \frac{1}{m} \sum_{i=1}^{m} \frac{2 b_{i,1} z_{i,1}' e_i}{z_{i,1}' z_{i,1}} - \frac{1}{m} \sum_{i=1}^{m} \frac{2 b_{i,1} z_{i,1}' e_i}{(1 + \theta_1 z_{i,1}' z_{i,1}) z_{i,1}' z_{i,1}} + \frac{\hat{\bar{v}}^2}{m} R(\hat{\sigma}_1^2, \hat{\bar{v}}^2)
= \frac{1}{m} \sum_{i=1}^{m} b_{i,1}^2 + \frac{1}{m} \sum_{i=1}^{m} \frac{2 b_{i,1} z_{i,1}' e_i}{z_{i,1}' z_{i,1}} + R^*(\hat{\sigma}_1^2, \hat{\bar{v}}^2),
\]
where
\[
R^*(\hat{\sigma}_1^2, \hat{\bar{v}}^2) = - \frac{1}{m} \sum_{i=1}^{m} \frac{2 b_{i,1} z_{i,1}' e_i}{(1 + \theta_1 z_{i,1}' z_{i,1}) z_{i,1}' z_{i,1}} + \frac{\hat{\bar{v}}^2}{m} R(\hat{\theta}_1, \hat{\bar{v}}^2)
\]
with \(R(\sigma_1^2, \bar{v}^2)\) defined in (B.11). By (B.12), we have
\[
\frac{\sum_{i=1}^{m} b_{i,1}^2}{\hat{\sigma}_1^2} = O_p(1),
\]
\[
\frac{b_{i,1}^2}{\hat{\sigma}_1^2} = O_p(1),
\]
\[
\frac{(b_{i,1} z_{i,1}' e_i)^2}{1 + \theta_1 z_{i,1}' z_{i,1}} = O_p(1).
\]
By (B.13) and (B.14), we have

\[R^*(\hat{\sigma}^2, \hat{\nu}^2) = o_p(n^{-1}). \]

(B.15)

Similarly, by (B.1), we have

\[
\frac{\partial}{\partial \nu^2} (\hat{\theta}_1, \hat{\nu}^2) = \frac{N}{\nu^2} \sum_{i=1}^{m} \left(I_n - \theta_1 z_{i,1} z_{i,1} \right) y_i
\]

\[
= \frac{N}{\nu^2} \sum_{i=1}^{m} z_{i,1} b_{i,1} + \epsilon_i \epsilon_i \left(I_n - \theta_1 z_{i,1} z_{i,1} \right) (z_{i,1} b_{i,1} + \epsilon_i)
\]

\[
= \frac{N}{\nu^2} \sum_{i=1}^{m} \left(b_{i,1} z_{i,1} + \epsilon_i \epsilon_i + \frac{2 b_{i,1} z_{i,1} \epsilon_i}{1 + \theta_1 z_{i,1} z_{i,1}} + \epsilon_i \epsilon_i - \frac{\theta_1 (z_{i,1} \epsilon_i)^2}{1 + \theta_1 z_{i,1} z_{i,1}} \right)
\]

The ML estimators \(\hat{\theta}_1 \) and \(\hat{\nu}^2 \) satisfy

\[
0 = \frac{N}{\nu^2} \sum_{i=1}^{m} \left(b_{i,1} z_{i,1} + \epsilon_i \epsilon_i + \frac{2 b_{i,1} z_{i,1} \epsilon_i}{1 + \theta_1 z_{i,1} z_{i,1}} + \epsilon_i \epsilon_i - \frac{\theta_1 (z_{i,1} \epsilon_i)^2}{1 + \theta_1 z_{i,1} z_{i,1}} \right)
\]

which implies that

\[
\hat{\nu}^2 = \frac{1}{N} \sum_{i=1}^{m} \epsilon_i \epsilon_i + R^!(\hat{\sigma}^2, \hat{\nu}^2), \]

(B.16)

with

\[
R^!(\hat{\sigma}^2, \hat{\nu}^2) = \frac{1}{N} \sum_{i=1}^{m} \left(b_{i,1} z_{i,1} + \epsilon_i \epsilon_i + \frac{2 b_{i,1} z_{i,1} \epsilon_i}{1 + \theta_1 z_{i,1} z_{i,1}} + \epsilon_i \epsilon_i - \frac{\theta_1 (z_{i,1} \epsilon_i)^2}{1 + \theta_1 z_{i,1} z_{i,1}} \right).
\]

This together with (B.14) yields

\[
R^!(\hat{\sigma}^2, \hat{\nu}^2) = O_p(n^{-1}). \]

(B.17)

We are now ready to compare the asymptotic behaviors between the LS predictors and the empirical BLUPs. Note that for \(i = 1, \ldots, m \), we have

\[
\hat{b}_{i,1} = (\hat{\sigma}_i^2 z_{i,1} z_{i,1})^{-1} z_{i,1} y_i,
\]

\[
\hat{b}_{i,1}(\hat{\sigma}_i^2, \hat{\nu}^2) = \frac{\hat{\nu}^2}{\hat{\sigma}_i^2} z_{i,1} (\hat{\sigma}_i^2 z_{i,1} z_{i,1} + \hat{\nu}^2 I_n)^{-1} y_i
\]

Hence

\[
\hat{z}_{i,1}(\hat{b}_{i,1} - b_{i,1}) = \frac{\hat{\sigma}_i^2 z_{i,1} \epsilon_i}{z_{i,1} \epsilon_i}, \]

(B.18)

and

\[
\hat{b}_{i,1}(\hat{\sigma}_i^2, \hat{\nu}^2) - b_{i,1} = \frac{\hat{\sigma}_i^2 z_{i,1} (\hat{\sigma}_i^2 z_{i,1} z_{i,1} + \hat{\nu}^2 I_n)^{-1} (z_{i,1} b_{i,1} + \epsilon_i) - b_{i,1}}{1 + (\hat{\sigma}_i^2 / \hat{\nu}^2) z_{i,1} \epsilon_i}, \]

\[
= \left(\frac{\hat{\sigma}_i^2 z_{i,1} \epsilon_i}{1 + (\hat{\sigma}_i^2 / \hat{\nu}^2) z_{i,1} \epsilon_i} \right) \epsilon_i + \left(\frac{\hat{\sigma}_i^2 / \hat{\nu}^2}{z_{i,1} \epsilon_i} \right) \epsilon_i
\]

\[
= \frac{(\hat{\sigma}_i^2 / \hat{\nu}^2) z_{i,1} \epsilon_i}{1 + (\hat{\sigma}_i^2 / \hat{\nu}^2) z_{i,1} \epsilon_i}
\]
which implies that
\[
\mathbf{e}_{i,1} (b_{i,1} (\sigma_i^2, \sigma^2) - b_{i,1}) = \frac{\mathbf{e}_{i,1} \left(\left(\sigma_i^2 / \sigma^2 \right) \mathbf{e}_{i,1} - b_{i,1} \right)}{1 + (\sigma_i^2 / \sigma^2) \mathbf{e}_{i,1}^2}.
\] (B.19)

Note that by (B.18),
\[
\sum_{i=1}^{m} \left\| \mathbf{e}_{i,1} (b_{i,1} - b_{i,1}) \right\|^2 = \sum_{i=1}^{m} (b_{i,1} - b_{i,1})^2 \mathbf{e}_{i,1}^2 = \sum_{i=1}^{m} \left(\mathbf{e}_{i,1}^2 \mathbf{e}_{i,1}^2 \right)^2
\]
and by (B.19),
\[
\sum_{i=1}^{m} \left\| \mathbf{e}_{i,1} (b_{i,2} (\sigma_i^2, \sigma^2) - b_{i,1}) \right\|^2 = \sum_{i=1}^{m} \left(\left(\sigma_i^2 / \sigma^2 \right) \mathbf{e}_{i,1}^2 - b_{i,1} \right)^2 \mathbf{e}_{i,1}^2 \mathbf{e}_{i,1}^2 = \sum_{i=1}^{m} \left((\sigma_i^2 / \sigma^2) \mathbf{e}_{i,1}^2 - b_{i,1} \right)^2 \mathbf{e}_{i,1}^2.
\]
which implies that
\[
D_1 (\sigma_1^2, \sigma^2) = \sum_{i=1}^{m} \left(\mathbf{e}_{i,1}^2 \mathbf{e}_{i,1}^2 \right)^2 \left((\sigma_i^2 / \sigma^2) \mathbf{e}_{i,1}^2 - b_{i,1} \right)^2 \mathbf{e}_{i,1}^2 = \sum_{i=1}^{m} \left((\sigma_i^2 / \sigma^2) \mathbf{e}_{i,1}^2 - b_{i,1} \right)^2 \mathbf{e}_{i,1}^2.
\]
we have
\[
D_1 (\sigma_1^2, \sigma^2) = \sum_{i=1}^{m} \left(\mathbf{e}_{i,1}^2 \mathbf{e}_{i,1}^2 \right)^2 \left((\sigma_i^2 / \sigma^2) \mathbf{e}_{i,1}^2 - b_{i,1} \right)^2 \mathbf{e}_{i,1}^2 = \sum_{i=1}^{m} \left((\sigma_i^2 / \sigma^2) \mathbf{e}_{i,1}^2 - b_{i,1} \right)^2 \mathbf{e}_{i,1}^2.
\]
with
\[
R_1 (\sigma_1^2, \sigma^2) = \sum_{i=1}^{m} \left(\mathbf{e}_{i,1}^2 \mathbf{e}_{i,1}^2 \right)^2 \left((\sigma_i^2 / \sigma^2) \mathbf{e}_{i,1}^2 - b_{i,1} \right)^2 \mathbf{e}_{i,1}^2 = \sum_{i=1}^{m} \left((\sigma_i^2 / \sigma^2) \mathbf{e}_{i,1}^2 - b_{i,1} \right)^2 \mathbf{e}_{i,1}^2.
\]
Note that by (B.14),
\[
R_1 (\sigma_1^2, \sigma^2) = O_p (n^{-3/2}).
\]

Further, by (B.12) and (B.16), we have

\[
\frac{2(\varepsilon_{i,1}', \varepsilon_i)^2}{(\varepsilon_{i,1}', \varepsilon_i) \sigma_i} \equiv \frac{2(\varepsilon_{i,1}', \varepsilon_i)^2}{(\zeta_{i,1}', \zeta_i) \sigma_i} \left(\frac{\sum_{k=1}^{m} \epsilon_k^2/e_k}{N}\right) \quad \text{and} \quad \frac{2(\varepsilon_{i,1}', \varepsilon_i)^2}{(\varepsilon_{i,1}', \varepsilon_i) \sigma_i} \equiv \frac{2(\varepsilon_{i,1}', \varepsilon_i)^2}{(\zeta_{i,1}', \zeta_i) \sigma_i} \left(\frac{\sum_{k=1}^{m} \epsilon_k^2/e_k}{N}\right)
\]

Similarly,

\[
\frac{2b_{k,1} \varepsilon_{i,1}' \epsilon_i}{(\sigma_1^2/\hat{\nu}^2)(\varepsilon_{i,1}', \varepsilon_i)\sigma_i} = \frac{2b_{k,1} \varepsilon_{i,1}' \epsilon_i \sum_{k=1}^{m} \epsilon_k^2/e_k}{n(\sum_{k=1}^{m} b_{k,1}^2 + 2 \sum_{k=1}^{m} b_{k,1} \varepsilon_{k,1}' \epsilon_k/(m \varepsilon_{k,1}' \varepsilon_k))} + R_{1,2}(\hat{\sigma}_1^2, \hat{\nu}^2), \quad \text{(B.24)}
\]

with

\[
R_{1,2}(\hat{\sigma}_1^2, \hat{\nu}^2) = \frac{2b_{k,1} \varepsilon_{i,1}' \epsilon_i \sum_{k=1}^{m} \epsilon_k^2/e_k}{n(\sum_{k=1}^{m} b_{k,1}^2 + 2 \sum_{k=1}^{m} b_{k,1} \varepsilon_{k,1}' \epsilon_k/(m \varepsilon_{k,1}' \varepsilon_k))} \times \left\{ R^1(\hat{\sigma}_1^2, \hat{\nu}^2) \left(\frac{\sum_{k=1}^{m} \epsilon_k^2}{m} + \sum_{k=1}^{m} \frac{b_{k,1}^2 \varepsilon_{k,1}' \epsilon_k}{m \varepsilon_{k,1}' \varepsilon_k} \right) - \hat{\nu}^2 \sum_{k=1}^{m} \frac{\epsilon_k^2}{N} \right\}.
\]

Hence by (B.14), (B.15), and (B.17), we have

\[
R_{1,1}(\hat{\sigma}_1^2, \hat{\nu}^2) = O_p(n^{-3/2}), \quad i = 1, 2, 3. \quad \text{(B.26)}
\]
Furthermore, we have

\[\frac{1}{n} \left\{ \sum_{k=1}^{m} b_{k,1}^2 + 2 \sum_{k=1}^{m} b_{k,1} z_{k,1} \epsilon_k / (m z_{k,1} z_{k,1}) \right\} \left(z_{i,1} - \hat{z}_{i,1} \right) \]

\[\frac{1}{n(z_{i,1} - \hat{z}_{i,1})} \left\{ \sum_{k=1}^{m} b_{k,1}^2 + 2 \sum_{k=1}^{m} b_{k,1} z_{k,1} \epsilon_k / (m z_{k,1} z_{k,1}) \right\} \left(z_{i,1} - \hat{z}_{i,1} \right) \]

\[= \frac{1}{n(z_{i,1} - \hat{z}_{i,1})} \left\{ \sum_{k=1}^{m} b_{k,1}^2 + 2 \sum_{k=1}^{m} b_{k,1} z_{k,1} \epsilon_k / (m z_{k,1} z_{k,1}) \right\} \left(z_{i,1} - \hat{z}_{i,1} \right) \]

\[+ R_{i,4}, \quad (B.27) \]

with

\[R_{i,4} = \frac{1}{n(z_{i,1} - \hat{z}_{i,1})} \left\{ \sum_{k=1}^{m} b_{k,1}^2 + 2 \sum_{k=1}^{m} b_{k,1} z_{k,1} \epsilon_k / (m z_{k,1} z_{k,1}) \right\} \left(z_{i,1} - \hat{z}_{i,1} \right) \]

Note that

\[R_{i,4} = O_p(n^{-3/2}). \quad (B.28) \]

By (B.21), (B.23), (B.24), (B.25), and (B.27), we have

\[nD(\hat{\theta}_i^2, \hat{v}_i^2) = A_{n,m} + nR_1(\hat{\theta}_i^2, \hat{v}_i^2) + n \sum_{i=1}^{m} \left\{ R_{i,1}(\hat{\theta}_i^2, \hat{v}_i^2) + R_{i,2}(\hat{\theta}_i^2, \hat{v}_i^2) - R_{i,3}(\hat{\theta}_i^2, \hat{v}_i^2) + R_{i,4} \right\} \]

\[\equiv A_{n,m} + O_p(n^{-1/2}) \]

with

\[A_{n,m} = \sum_{i=1}^{m} \left\{ \frac{2(z_{i,1} - \hat{z}_{i,1})^2 \sum_{k=1}^{m} b_{k,1}^2 + 2b_{k,1} z_{k,1} \epsilon_k / (m z_{k,1} z_{k,1}) \sum_{k=1}^{m} b_{k,1}^2}{n(z_{i,1} - \hat{z}_{i,1})} \right\} \]

where the last equality follows from (B.22), (B.26), and (B.28). Note that \((\sum_{k=1}^{m} b_{k,1} \sigma^2_{i,1})^{-1} \) follows the inverse-chi-squared distribution with \(m \) degrees of freedom. We have

\[E\left(\frac{1}{\sum_{k=1}^{m} b_{k,1}^2} \right) = \frac{1}{(m-2)\sigma^2_{i,1}}, \quad \text{provided } m > 2, \]

\[E\left(b_{k,1}^2 / (\sum_{k=1}^{m} b_{k,1}^2)^2 \right) = \frac{1}{m(m-2)\sigma^2_{i,1}}, \quad \text{provided } m > 4. \quad (B.29) \]

By (B.29) and

\[E\left(\left\{ \sum_{i=1}^{m} \epsilon_i^2 \right\}^2 \right) = (2mn + m^2 n^2)\sigma^2_{i,1}, \]

\[E(\epsilon_i^2(z_{i,1} - \hat{z}_{i,1})) = 0, \]

\[E(\epsilon_i^2(z_{i,1} - \hat{z}_{i,1})^2) = n^2 \sigma^2_{i,1} + o(n^2). \]
we have that for \(m > 0 \),

\[
E(A_{n,m}) = E \sum_{i=1}^{m} \left(\frac{2(z_{i,1}' \epsilon_i)^2 \sum_{k=1}^{m} \epsilon_i' \epsilon_k - b_{1,1}' \sum_{k=1}^{m} \epsilon_i' \epsilon_k}{n \sum_{k=1}^{m} b_{k,1}' b_{k,1}'} x_{i,1}' \frac{x_{i,1}'}{x_{i,1}' x_{i,1}} \right) + 2b_{1,1}' \sum_{k=1}^{m} \epsilon_i' \epsilon_k \sum_{k=1}^{m} b_{k,1}' b_{k,1}'
- 4b_{1,1}' \sum_{k=1}^{m} \epsilon_i' \epsilon_k \left(\sum_{k=1}^{m} b_{k,1}' b_{k,1}' \frac{x_{i,1}'}{x_{i,1}'} \right)
\]

\[
= 2m^2v_0^4 - \frac{m^2v_0^4}{(m-2)\sigma_{1,0}^2} + o(1)
\]

\[
= 2m^2v_0^4 - \frac{m^2v_0^4}{(m-2)\sigma_{1,0}^2} - E \left(\sum_{i=1}^{m} 4b_{i,1}' \sum_{k=1}^{m} \epsilon_i' \epsilon_k \left(\sum_{k=1}^{m} b_{k,1}' b_{k,1}' \frac{x_{i,1}'}{x_{i,1}'} \right) \right) + o(1)
\]

\[
= 2m^2v_0^4 - \frac{m^2v_0^4}{(m-2)\sigma_{1,0}^2} - \frac{4m^2v_0^4}{(m-2)\sigma_{1,0}^2} + o(1)
\]

\[
= \frac{m(m-4)v_0^4}{(m-2)\sigma_{1,0}^2} + o(1).
\]

This completes the proofs.

\section*{B.3 Proof of Theorem 5}

In this section, we first prove Theorem 5 to simplify the proofs of Theorems 3 and 4. As with the proof of Theorem 1, we shall focus on the asymptotic properties of \(\hat{v}^2(\alpha, \gamma) \) and \(\{\hat{\theta}_k(\alpha, \gamma) : k \in \gamma\} \), and derive them by solving the likelihood equations directly.

We first prove (3.11) using (B.1). For \((\alpha, \gamma) \in (A \setminus A_0) \times G\), we have

\[
(I_N - M(\alpha, \gamma; \theta))\mu_0 = (I_N - M(\alpha, \gamma; \theta))X(a_0 \setminus \alpha)\beta_0(a_0 \setminus \alpha),
\]

where \(\beta_0(a_0 \setminus \alpha) \) denotes the sub-vector of \(\beta_0 \) corresponding to \(a_0 \setminus \alpha \). Note that by the Cauchy–Schwarz inequality, we have

\[
\left(\sum_{i=1}^{m} \left(z_i \xi_i^0 + \xi_i^0 / \sqrt{2} \right)^2 \right)^2 = O \left(\sum_{i=1}^{m} \frac{m}{n_i^0} \sum_{i=1}^{m} n_i^0 \right).
\]
Hence by (B.31) and Lemma 6, we have
\[
\begin{align*}
(X(a_0 \backslash a)\beta_0(a_0 \backslash a) + Z(\gamma_0)b(\gamma_0) + \epsilon)'H^{-1}(\gamma, \theta)M(\alpha, \gamma; \theta) \\
\times (X(a_0 \backslash a)\beta_0(a_0 \backslash a) + Z(\gamma_0)b(\gamma_0) + \epsilon)
\end{align*}
\]
\[
= \beta_0(a_0 \backslash a)'(X(a_0 \backslash a)'H^{-1}(\gamma, \theta)M(\alpha, \gamma; \theta)X(a_0 \backslash a)\beta_0(a_0 \backslash a)
\]"
by (B.1), we have, for v^2 uniformly over θ, the last equality follows from (B.5) and Lemmas 2–4. Hence by (B.1), we have, for $v^2 \in (0, \infty),\vphantom{\sum_{i=1}^{m} x_i}$

$$
\begin{align*}
\psi^4 \left\{ \frac{\partial}{\partial \nu^2} \{-2 \log L(\theta, \nu^2; \alpha, \gamma)\} \right\} &= N \left(v^2 - \frac{\epsilon^T \epsilon}{N} + \frac{1}{N} \sum_{i=1}^{m} \sum_{j \in \alpha \setminus \alpha} \beta_{i,0}^T d_{i,j} n_i^2 \epsilon + \frac{1}{N} \sum_{i=1}^{m} \sum_{k \in \theta_0 \setminus \gamma} b_{i,k}^T c_{i,k} n_i^2 \right) \\
&+ o_p \left(\sum_{i=1}^{m} n_i^2 \right) + \frac{m-1}{N} \sum_{i=1}^{m} n_i^2 + o_p \left(\frac{m}{N} \sum_{i=1}^{m} n_i^2 \right) + O_p(p + mq)
\end{align*}
$$

uniformly over $\theta \in \Theta$. This and Lemma 5 imply that

$$\hat{\psi}^2(\alpha, \gamma) = \frac{\epsilon^T \epsilon}{N} + \frac{1}{N} \sum_{i=1}^{m} \sum_{j \in \alpha \setminus \alpha} \beta_{i,0}^T d_{i,j} n_i^2 \epsilon + \frac{1}{N} \sum_{i=1}^{m} \sum_{k \in \theta_0 \setminus \gamma} b_{i,k}^T c_{i,k} n_i^2$$

$$+ o_p \left(\sum_{i=1}^{m} n_i^2 \right) + \frac{m-1}{N} \sum_{i=1}^{m} n_i^2 + o_p \left(\frac{m}{N} \sum_{i=1}^{m} n_i^2 \right) + O_p(p + mq). \tag{B.32}$$

Thus (3.11) follows by applying the law of large numbers to $\epsilon^T \epsilon/N$. In addition, if $(\xi, \ell) \in (0, 1/2) \times (0, 1/2)$, the asymptotic normality of $\hat{\psi}^2(\alpha, \gamma)$ follows by $p + mq = o(N^{1/2})$ and an application of the central limit theorem to $\epsilon^T \epsilon/N$ in (B.32).

Next, we prove (3.12), for $k \in \gamma \cap \gamma_0$, using (B.2). By (B.31) and Lemma 6 (i)–(iv), we have, for $k \in \gamma \cap \gamma_0$.

$$\begin{align*}
\theta_{h_{i,k}^T H^{-1}(\gamma, \theta)} M(\alpha, \gamma; \theta) (X(\alpha \setminus \alpha) b(\alpha \setminus \alpha) + Z(\gamma_0) b(\gamma_0) + \epsilon) \\
= \theta_{h_{i,k}^T H^{-1}(\gamma, \theta)} M(\alpha, \gamma; \theta) \\
\times (X(\alpha \setminus \alpha) b(\alpha \setminus \alpha) + \sum_{i^* = 1}^{m} \sum_{k^* \in \gamma_0} b_{i^*, k^*} h_{i^*, k^*} + \epsilon) \\
= o_p \left(\frac{n_i^{(\ell-\ell)/2}}{\sum_{i=1}^{m} n_i^{(\xi+\ell)/2}} \right) + o_p (n_i^{(\xi+\ell)/2}) + o_p (n_i^{\ell/2}) \\
= o_p \left(\frac{n_i^{(\ell-\ell)/2}}{\sum_{i=1}^{m} n_i^{(\xi-\ell)/2}} \right) + o_p (n_i^{(\ell-\ell)/2}) + o_p (n_i^{\ell/2})
\end{align*}$$
uniformly over $\theta \in \Theta_\gamma$. This and (B.30) imply that for $k \in \gamma \cap \gamma_0$,

$$
\theta_k h_{i,k}^t H^{-1}(\gamma, \theta)(I_N - M(\alpha, \gamma, \theta)) y
\leq \theta_k h_{i,k}^t H^{-1}(\gamma, \theta)(I_N - M(\alpha, \gamma, \theta))
\times (X(\alpha_0 \setminus \alpha) b_0(\alpha_0 \setminus \alpha) + Z(\gamma_0) b(\gamma_0) + \epsilon)
= \theta_k h_{i,k}^t H^{-1}(\gamma, \theta)(X(\alpha_0 \setminus \alpha) b_0(\alpha_0 \setminus \alpha) + Z(\gamma_0) b(\gamma_0) + \epsilon)
\leq \theta_k h_{i,k}^t H^{-1}(\gamma, \theta)(X(\alpha_0 \setminus \alpha) b_0(\alpha_0 \setminus \alpha) + \sum_{k' \in \gamma_0} z_{i,k'} b_{i,k'} + \epsilon)
\leq b_{i,k} + o_p(n_i^{(\xi - \ell)/2}) + o_p(n_i^{(\xi - \ell)/2}) + o_p(1)
$$

uniformly over $\theta \in \Theta_\gamma$, where the last equality follows from Lemma 2 (iii), Lemma 3 (ii)–(iv), and Lemma 4 (i). It follows that for $k \in \gamma \cap \gamma_0$,

$$
\theta_k^2 [h_{i,k}^t H^{-1}(\gamma, \theta)(I_N - M(\alpha, \gamma, \theta)) y]^2
\leq b_{i,k}^t + o_p(n_i^{(\xi - \ell)/2}) + o_p(n_i^{(\xi - \ell)/2}) + o_p(1)
$$

uniformly over $\theta \in \Theta_\gamma$. Hence by Lemma 3 (ii) and (B.2), we have, for $k \in \gamma \cap \gamma_0$,

$$
\frac{\partial}{\partial \theta_k} \left(-2 \log L(\theta, \gamma, \alpha, \gamma) \right)
= m \left(\theta_k - \frac{1}{m} \sum_{i=1}^m b_{i,k}^t \frac{1}{\gamma^2(\alpha, \gamma)} \right) + o_p \left(\frac{1}{m} \sum_{i=1}^m n_i^{(\xi - \ell)/2} \left(1 + \frac{\sum_{i=1}^m n_i^{(\xi - \ell)/2}}{\gamma^2(\alpha, \gamma)} \right) + o_p(m) \right)
$$

uniformly over $\theta \in \Theta_\gamma$. This implies that for $k \in \gamma \cap \gamma_0$,

$$
\hat{\theta}_k(\alpha, \gamma) = \frac{1}{m} \sum_{i=1}^m b_{i,k}^t \frac{1}{\gamma^2(\alpha, \gamma)} + o_p \left(\frac{1}{m} \sum_{i=1}^m n_i^{(\xi - \ell)/2} \left(1 + \frac{\sum_{i=1}^m n_i^{(\xi - \ell)/2}}{\gamma^2(\alpha, \gamma)} \right) + o_p(1) \right)
$$

This proves (3.12), for $k \in \gamma \cap \gamma_0$.

It remains to prove (3.12), for $k \in \gamma \setminus \gamma_0$. Let θ^k be θ except that $\{\theta_k : k \in \gamma \cap \gamma_0\}$ are replaced by $\{\theta_k(\alpha, \gamma) : k \in \gamma \cap \gamma_0\}$. By (B.31) and Lemma 6 (i)–(iv), we have, for $k \in \gamma \setminus \gamma_0$,

$$
\theta_k h_{i,k}^t H^{-1}(\gamma, \theta^k) M(\alpha, \gamma, \theta^k)(X(\alpha_0 \setminus \alpha) b_0(\alpha_0 \setminus \alpha) + Z(\gamma_0) b(\gamma_0) + \epsilon)
= \theta_k h_{i,k}^t H^{-1}(\gamma, \theta^k) M(\alpha, \gamma, \theta^k)
\times (X(\alpha_0 \setminus \alpha) b_0(\alpha_0 \setminus \alpha) + \sum_{i', k' \in \gamma_0} b_{i',k'} h_{i',k'} + \epsilon)
\leq \theta_k h_{i,k}^t H^{-1}(\gamma, \theta^k)(X(\alpha_0 \setminus \alpha) b_0(\alpha_0 \setminus \alpha) + Z(\gamma_0) b(\gamma_0) + \epsilon)
\leq \theta_k h_{i,k}^t H^{-1}(\gamma, \theta^k)(X(\alpha_0 \setminus \alpha) b_0(\alpha_0 \setminus \alpha) + \sum_{i', k' \in \gamma_0} z_{i',k'} b_{i',k'} + \epsilon)
\leq b_{i,k} + o_p(n_i^{(\xi - \ell)/2}) + o_p(n_i^{(\xi - \ell)/2}) + o_p(1)
$$

This proves (3.12), for $k \in \gamma \setminus \gamma_0$. It follows that (3.12) holds for all k. Thus (3.12) holds.
uniformly over \(\theta \in [0, \infty)^{\theta(\gamma \setminus \gamma_0)} \). This and (B.30) imply that for \(k \in \gamma \setminus \gamma_0 \),

\[
\theta_k \left| H_k^{-1}(\gamma, \theta^\dagger)(I_N - M(\alpha, \gamma; \theta^\dagger))y \right. \\
= \theta_k \left| H_k^{-1}(\gamma, \theta^\dagger)(I_N - M(\alpha, \gamma; \theta^\dagger))(X(a_0 \setminus \alpha)\beta_0(a_0 \setminus \alpha) \\
+ Z(\gamma_0)b(\gamma_0) + \epsilon) \\
= \theta_k \left| H_k^{-1}(\gamma, \theta^\dagger)(X(a_0 \setminus \alpha)\beta_0(a_0 \setminus \alpha) + Z(\gamma_0)b(\gamma_0) + \epsilon) \\
+ o_p(1) \\
= \theta_k \left| Z_k^{-1}(\gamma, \theta^\dagger)(X_i(a_0 \setminus \alpha)\beta_0(a_0 \setminus \alpha) + \sum_{i^* = 1}^{m} \sum_{k^* \in \gamma_0} b_{i^*, k^*}h_{i^*, k^*} + \epsilon_i) \\
+ o_p \left(\left(\sum_{i=1}^{m} n_i \right)^{1/2} \left(\sum_{i=1}^{m} n_i \right)^{1/2} \right) \\
= o_p \left(n_i^{\xi-\ell} \left(\sum_{i=1}^{m} n_i \right) \right) + o_p(1)
\]

uniformly over \(\theta \in [0, \infty)^{\theta(\gamma \setminus \gamma_0)} \), where the last equality follows from Lemma 2 (iii), Lemma 3 (iii)-(iv), and Lemma 4 (i). Therefore,

\[
\theta_k^2 \left| h_k \left| H_k^{-1}(\gamma, \theta^\dagger)(I_N - M(\alpha, \gamma; \theta^\dagger))y \right. \right. \\
= o_p \left(n_i^{\xi-\ell} \left(\sum_{i=1}^{m} n_i \right) \right) + o_p(1)
\]

uniformly over \(\theta \in [0, \infty)^{\theta(\gamma \setminus \gamma_0)} \). Hence by Lemma 3 (ii) and (B.2), we have for \(k \in \gamma \setminus \gamma_0 \),

\[
\theta_k^2 \left(\frac{\partial}{\partial \theta_k} \left\{ -2 \log L(\theta^\dagger, \nu^2; \alpha, \gamma) \right\} \right. \\
= m \theta_k + o_p \left(\sum_{i=1}^{m} n_i^{\xi-\ell} \left(1 + \sum_{i=1}^{m} n_i \right) \right) + o_p(m)
\]

uniformly over \(\theta \in [0, \infty)^{\theta(\gamma \setminus \gamma_0)} \). This implies that for \(k \in \gamma \setminus \gamma_0 \),

\[
\hat{\theta}_k(\alpha, \gamma) = o_p \left(\frac{1}{m} \sum_{i=1}^{m} n_i^{\xi-\ell} \left(1 + \sum_{i=1}^{m} n_i \right) \right) + o_p(1).
\]

This completes the proof of (3.12). Thus the proof of Theorem 5 is complete.

B.4 Proof of Theorem 3

As with the proof of Theorem 1, we shall focus on the asymptotic properties of \(\hat{\theta}^2(\alpha, \gamma) \) and \(\{\hat{\theta}_k(\alpha, \gamma) : k \in \gamma \} \), and derive them by solving the likelihood equations directly.
We first prove (3.7) using (B.1). Hence by (B.31), Lemma 6 (i)–(iii), Lemma 6 (v)–(vi), and Lemma 6 (viii), we have
\[
(Z(\gamma_0)b(\gamma_0) + e)'H^{-1}(\gamma, \theta)M(\alpha, \gamma; \theta)(Z(\gamma_0)b(\gamma_0) + e)
\]
\[
= \left(\sum_{i=1}^{m} \sum_{k \in \gamma_0} b_{i,k} + e \right)'H^{-1}(\gamma, \theta)M(\alpha, \gamma; \theta) \left(\sum_{i=1}^{m} \sum_{k \in \gamma_0} b_{i,k} + e \right)
\]
\[
= o_p \left(\sum_{i=1}^{m} n_i^{\ell} \right) + o_p \left(\sum_{i=1}^{m} n_i^{\ell/2} \right) + O_p(p)
\]
\[
= o_p \left(\sum_{i=1}^{m} n_i^{\ell} \right) + O_p(p)
\]
uniformly over \(\theta \in \Theta_\gamma \).

This and Lemma 5 imply that for \((z, \ell) \in (0, 1] \times (0, 1],\)
\[
v^\ell \left\{ \frac{\partial}{\partial v} \{-2 \log L(\theta, v^2; \alpha, \gamma)\} \right\}
\]
\[
= N \left(v^2 - \frac{e^\ell}{N} + \frac{1}{N} \sum_{k \in \gamma_0} b_{i,k}^2 c_{i,k} n_i^{\ell} \right) + o_p \left(\sum_{i=1}^{m} n_i^{\ell} \right)
\]
\[
+ O_p \left(\sum_{k \in \gamma_0} \frac{m}{\theta_k} \right) + o_p \left(\sum_{k \in \gamma_0} \frac{m}{\theta_k} \right) + O_p(p + mq)
\]
uniformly over \(\theta \in \Theta_\gamma \).

This and Lemma 5 imply that for \((z, \ell) \in (0, 1] \times (0, 1],\)
\[
\hat{v}^\ell(\alpha, \gamma) = \frac{e^\ell}{N} + \frac{1}{N} \sum_{i=1}^{m} \sum_{k \in \gamma_0} b_{i,k}^2 c_{i,k} n_i^{\ell}
\]
\[
+ o_p \left(\frac{1}{N} \sum_{i=1}^{m} n_i^{\ell} \right) + O_p \left(\frac{p + mq}{N} \right).
\]
Thus (3.7) follows by applying the law of large numbers to \(e^\ell / N\).

In addition, if \(\ell \in (0, 1/2),\)
the asymptotic normality of \(\hat{v}^\ell(\alpha, \gamma)\) follows by \(p + mq = o(N^{1/2})\) and an application of the central limit theorem to \(e^\ell / N\) in (B.33).
Next, we prove (3.8), for $k \in \gamma \cap \gamma_0$, using (B.2). By (B.31) and Lemma 6 (i)–(iii), we have, for $k \in \gamma \cap \gamma_0$,

$$\theta_k h_{i,k}^i H^{-1}(\gamma, \theta) M(\alpha, \gamma; \theta) (Z(\gamma_0) b(\gamma_0) + \epsilon)$$

$$= \theta_k h_{i,k}^i H^{-1}(\gamma, \theta) M(\alpha, \gamma; \theta) \left(\sum_{i=1}^m \sum_{k' \in \gamma_0} b_{i,k,k'} h_{i,k,k'} + \epsilon \right)$$

$$= o_p \left(n_i^{(\xi-\ell)/2} \left(\frac{\sum_{i=1}^m n_i^k}{\sum_{i=1}^m n_i^k} \right)^{1/2} \right) + o_p(n_i^{\ell/2})$$

$$= o_p \left(n_i^{(\xi-\ell)/2} \left(\frac{\sum_{i=1}^m n_i^k}{\sum_{i=1}^m n_i^k} \right)^{1/2} \right) + o_p(1)$$

uniformly over $\theta \in \Theta_\gamma$. This and (B.4) imply that for $k \in \gamma \cap \gamma_0$,

$$\theta_k h_{i,k}^i H^{-1}(\gamma, \theta) (I_N - M(\alpha, \gamma; \theta)) y$$

$$= \theta_k h_{i,k}^i H^{-1}(\gamma, \theta) (I_N - M(\alpha, \gamma; \theta)) (Z(\gamma_0) b(\gamma_0) + \epsilon)$$

$$= \theta_k h_{i,k}^i H^{-1}(\gamma, \theta) (Z(\gamma_0) b(\gamma_0) + \epsilon) + o_p \left(n_i^{(\xi-\ell)/2} \left(\frac{\sum_{i=1}^m n_i^k}{\sum_{i=1}^m n_i^k} \right)^{1/2} \right) + o_p(1)$$

$$= \theta_k z_{i,k}^i H^{-1}(\gamma, \theta) \left(\sum_{k' \in \gamma_0} z_{i,k,k'} + \epsilon_i \right)$$

$$+ o_p \left(n_i^{(\xi-\ell)/2} \left(\frac{\sum_{i=1}^m n_i^k}{\sum_{i=1}^m n_i^k} \right)^{1/2} \right) + o_p(1)$$

$$= b_{i,k} + o_p \left(n_i^{(\xi-\ell)/2} \left(\frac{\sum_{i=1}^m n_i^k}{\sum_{i=1}^m n_i^k} \right)^{1/2} \right) + o_p(1)$$

uniformly over $\theta \in \Theta_\gamma$, where the last equality follows from Lemma 3 (ii)–(iv) and Lemma 4 (i). Hence, for $k \in \gamma \cap \gamma_0$,

$$\theta_k^2 \left(h_{i,k}^i H^{-1}(\gamma, \theta) (I_N - M(\alpha, \gamma; \theta)) y \right)^2$$

$$= b_{i,k}^2 + o_p \left(n_i^{\xi-\ell} \left(\frac{\sum_{i=1}^m n_i^k}{\sum_{i=1}^m n_i^k} \right) \right) + o_p(1)$$

uniformly over $\theta \in \Theta_\gamma$. Hence by Lemma 3 (ii) and (B.2), we have, for $k \in \gamma \cap \gamma_0$,

$$\theta_k^2 \left(\frac{\partial}{\partial \theta_k} \left(-2 \log L(\theta, v^2; \alpha, \gamma) \right) \right)$$

$$= m \left(\theta_k - \frac{1}{m} \sum_{i=1}^m \frac{b_{i,k}^2}{\ell^2} \right) + o_p \left(\frac{m}{n_i^k} \left(\frac{\sum_{i=1}^m n_i^k}{\sum_{i=1}^m n_i^k} \right) \right) + o_p(m)$$

uniformly over $\theta \in \Theta_\gamma$. Hence we have, for $k \in \gamma \cap \gamma_0$,

$$\theta_k(\alpha, \gamma) = \frac{1}{m} \sum_{i=1}^m \frac{b_{i,k}^2}{\ell^2(\alpha, \gamma)} + o_p \left(\frac{1}{m} \sum_{i=1}^m n_i^{\xi-\ell} \left(\frac{\sum_{i=1}^m n_i^k}{\sum_{i=1}^m n_i^k} \right) \right) + o_p(1).$$

This completes the proof of (3.8), for $k \in \gamma \cap \gamma_0$.
It remains to prove (3.8), for \(k \in \gamma \setminus \gamma_0 \). Let \(\theta^1 \) be \(\theta \) except that \(\{ \tilde{\theta}_k : k \in \gamma \cap \gamma_0 \} \) are replaced by \(\{ \tilde{\theta}_k(\alpha, \gamma) : k \in \gamma \cap \gamma_0 \} \). By (B.31) and Lemma 6 (i)–(iii), we have, for \(k \in \gamma \setminus \gamma_0 \),

\[
\theta_k h_{i,k} H^{-1}(\gamma, \theta^1)M(\alpha, \gamma; \theta^1)(I_N - M(\alpha, \gamma; \theta^1))\{Z(\gamma_0)b(\gamma_0) + \epsilon\}
\]

\[
= \theta_k h_{i,k} H^{-1}(\gamma, \theta^1)M(\alpha, \gamma; \theta^1) \left(\sum_{i=1}^{m} \frac{n_i^*}{n_i} \right) + o_p(1)
\]

uniformly over \(\theta(\gamma \setminus \gamma_0) \in [0, \infty)^{q(\gamma \setminus \gamma_0)} \), where this equality follows from Lemma 3 (iii)–(iv) and Lemma 4 (i). Therefore,

\[
\theta_k^2 \{ h_{i,k} H^{-1}(\gamma, \theta^1)(I_N - M(\alpha, \gamma; \theta^1))y \}^2 = o_p \left(\frac{n_{\epsilon}^2 \sum_{i=1}^{m} n_i^*}{\sum_{i=1}^{m} n_i^*} \right) + o_p(1)
\]

uniformly over \(\theta(\gamma \setminus \gamma_0) \in [0, \infty)^{q(\gamma \setminus \gamma_0)} \). Hence by Lemma 3 (ii) and (B.2), we have, for \(k \in \gamma \setminus \gamma_0 \),

\[
\frac{\partial}{\partial \theta_k} \left(-2 \log L(\theta^1; \nu^2; \alpha, \gamma) \right) = m \theta_k + o_p \left(\frac{m n_{\epsilon}^2 \sum_{i=1}^{m} n_i^*}{\sum_{i=1}^{m} n_i^*} \right) + o_p(m)
\]

uniformly over \(\theta(\gamma \setminus \gamma_0) \in [0, \infty)^{q(\gamma \setminus \gamma_0)} \). This implies that, for \(k \in \gamma \setminus \gamma_0 \),

\[
\tilde{\theta}_k(\alpha, \gamma) = o_p \left(\frac{1}{n_0} \sum_{i=1}^{m} n_i^2 \sum_{i=1}^{m} n_i^* \right) + o_p(1).
\]

This completes the proof of (3.8). Hence the proof of Theorem 3 is complete.

B.5 Proof of Theorem 4

As with the proof of Theorem 1, we shall focus on the asymptotic properties of \(\tilde{\nu}^2(\alpha, \gamma) \) and \(\{ \tilde{\theta}_k(\alpha, \gamma) : k \in \gamma \} \), and derive them by solving the likelihood equations directly.
We first prove (3.9) using (B.1). By Lemma 6 (i), Lemma 6 (iii)–(v), Lemma 6 (vii), and Lemma 6 (x), we have

\[
\begin{aligned}
&\left(X(\alpha_0 \setminus \alpha) \beta_0(\alpha_0 \setminus \alpha) + Z(\gamma_0) b(\gamma_0) + \epsilon \right)' H^{-1}(\gamma, \theta) M(\alpha, \gamma; \theta) \\
&\times \left(X(\alpha_0 \setminus \alpha) \beta_0(\alpha_0 \setminus \alpha) + Z(\gamma_0) b(\gamma_0) + \epsilon \right) \\
&= \left(X(\alpha_0 \setminus \alpha) \beta_0(\alpha_0 \setminus \alpha) + \sum_{i=1}^{m} \sum_{k \in \gamma_0} b_{i,k} h_{i,k} + \epsilon \right)' H^{-1}(\gamma, \theta) M(\alpha, \gamma; \theta) \\
&\times \left(X(\alpha_0 \setminus \alpha) \beta_0(\alpha_0 \setminus \alpha) + \sum_{i=1}^{m} \sum_{k \in \gamma_0} b_{i,k} h_{i,k} + \epsilon \right) \\
&= o\left(\sum_{i=1}^{n} n_i^\xi \right) + o_p \left(\sum_{k,k' \in \gamma_0} m \frac{\theta_{k,k'}}{\theta_k^{\gamma}} \right) + o_p \left(\sum_{k \in \gamma_0} m \frac{\theta_k^{\gamma}}{\theta_k} \right) + O_p(p)
\end{aligned}
\]

uniformly over \(\theta \in \Theta_\gamma \). This and (B.30) imply

\[
\begin{aligned}
y' H^{-1}(\gamma, \theta) (I_N - M(\alpha, \gamma; \theta)) y \\
&= \left(X(\alpha_0 \setminus \alpha) \beta_0(\alpha_0 \setminus \alpha) + Z(\gamma_0) b(\gamma_0) + \epsilon \right)' H^{-1}(\gamma, \theta) \\
&\times \left(X(\alpha_0 \setminus \alpha) \beta_0(\alpha_0 \setminus \alpha) + Z(\gamma_0) b(\gamma_0) + \epsilon \right) \\
&+ o\left(\sum_{i=1}^{n} n_i^\xi \right) + o_p \left(\sum_{k,k' \in \gamma_0} m \frac{\theta_{k,k'}}{\theta_k^{\gamma}} \right) + o_p \left(\sum_{k \in \gamma_0} m \frac{\theta_k^{\gamma}}{\theta_k} \right) + O_p(p)
\end{aligned}
\]

uniformly over \(\theta \in \Theta_\gamma \), where the last equality follows from Lemma 3 (ii)–(iv) and Lemma 4. Hence by (B.1), we have, for \(\nu^2 \in (0, \infty) \),

\[
\begin{aligned}
\nu^4 \left\{ \frac{\partial}{\partial \nu^2} \left[-2 \log L(\theta, \nu^2; \alpha, \gamma) \right] \right\} \\
= \nu^2 \left[- \epsilon' \epsilon + \frac{1}{N} \sum_{i=1}^{m} \sum_{j \in \alpha_0 \setminus \alpha} \beta_{j0}^2 d_{i,j} n_i^\xi \right] + o_p \left(\sum_{i=1}^{n} n_i^\xi \right) \\
+ o_p \left(\sum_{k,k' \in \gamma_0} m \frac{\theta_{k,k'}}{\theta_k^{\gamma}} \right) + O_p(p + mq)
\end{aligned}
\]
uniformly over $\theta \in \Theta_\gamma$. This and Lemma 5 imply that for $(\xi, \ell) \in (0, 1] \times (0, 1],$
\[
\hat{v}^2(\alpha, \gamma) = \frac{e^\ell}{N^2} + \frac{1}{N} \sum_{i=1}^m \sum_{j \in \alpha_i} \beta_{ij}^2 d_{ij} n_i^\xi
\]
\[+ o_p \left(\frac{1}{N} \sum_{i=1}^m n_i^\xi \right) + O_p \left(\frac{p + mq}{N} \right). \tag{B.34}\]

Thus (3.9) follows by applying the law of large numbers to e^ℓ/N. In addition, if $\xi \in (0, 1/2)$, the asymptotic normality of $\hat{v}^2(\alpha, \gamma)$ follows by $p + mq = o(N^{1/2})$ and an application of the central limit theorem to e^ℓ/N in (B.34).

Next, we prove (3.10), for $k \in \gamma \cap \gamma_0$, using (B.2). By Lemma 6 (i) and Lemma 6 (iii)–(iv), we have, for $k \in \gamma \cap \gamma_0$,
\[
\theta_k h_{i,k}^\ell H^{-1}(\gamma, \theta) M(\alpha, \gamma; \theta)(X_0(\alpha \setminus \alpha) - b_0(\alpha_0 \setminus \alpha) + Z(\gamma_0) b(\gamma_0) + \epsilon)
\]
\[= \theta_k h_{i,k}^\ell H^{-1}(\gamma, \theta) M(\alpha, \gamma; \theta)
\times \left(X_0(\alpha \setminus \alpha) - b_0(\alpha_0 \setminus \alpha) + \sum_{k^* \in \gamma_0} b_{i,k^*} - b_{i,k^*} + \epsilon \right)
\]
\[= o_p \left(\sum_{k^* \in \gamma_0} n_i^\xi_{k^*} \right) + o_p(1)
\]
uniformly over $\theta \in \Theta_\gamma$. This and (B.30) imply that for $k \in \gamma \cap \gamma_0$,
\[
\theta_k h_{i,k}^\ell H^{-1}(\gamma, \theta)(I_N - M(\alpha, \gamma; \theta)) y
\]
\[= \theta_k h_{i,k}^\ell H^{-1}(\gamma, \theta)(I_N - M(\alpha, \gamma; \theta))
\times \left(X_0(\alpha \setminus \alpha) - b_0(\alpha_0 \setminus \alpha) + Z(\gamma_0) b(\gamma_0) + \epsilon \right)
\]
\[= \theta_k h_{i,k}^\ell H^{-1}(\gamma, \theta) X_0(\alpha \setminus \alpha) - b_0(\alpha_0 \setminus \alpha) + Z(\gamma_0) b(\gamma_0) + \epsilon
\]
\[+ o_p \left(\sum_{k^* \in \gamma_0} n_i^\xi_{k^*} \right) + o_p(1)
\]
\[= \theta_k h_{i,k}^\ell H^{-1}(\gamma, \theta) X_0(\alpha \setminus \alpha) - b_0(\alpha_0 \setminus \alpha) + \sum_{k^* \in \gamma_0} z_{i,k^*} b_{i,k^*} + \epsilon_i
\]
\[+ o_p \left(\sum_{k^* \in \gamma_0} n_i^\xi_{k^*} \right) + o_p(1)
\]
\[= \theta_k h_{i,k}^\ell H^{-1}(\gamma, \theta) X_0(\alpha \setminus \alpha) - b_0(\alpha_0 \setminus \alpha) + \sum_{k^* \in \gamma_0} z_{i,k^*} b_{i,k^*} + \epsilon_i
\]
\[+ o_p \left(\sum_{k^* \in \gamma_0} n_i^\xi_{k^*} \right) + o_p(1)
\]
uniformly over $\theta \in \Theta_\gamma$, where the last equality follows from Lemma 2 (iii), Lemma 3 (ii)–(iii), and Lemma 4 (i). Hence, for $k \in \gamma \cap \gamma_0$,
uniformly over $\theta \in \Theta_\gamma$. Hence by Lemma 3 (ii) and (B.2), we have, for $k \in \gamma \cap \gamma_0$,

$$
\theta_k' \left\{ \frac{\partial}{\partial \theta} \left\{ -2 \log L(\theta, \nu^2 ; \alpha, \gamma) \right\} \right\} \\
= m \theta_k - \frac{1}{m} \sum_{i=1}^m \bar{b}_{i,k}^2 \frac{1}{v^2} + o_p \left(\sum_{i=1}^m \sum_{k,k^* \in \gamma_0} \frac{\alpha_i - \epsilon}{\theta_k \theta_{k^*}} \right) + o_p(1)
$$

uniformly over $\theta \in \Theta_\gamma$. This and Lemma 5 imply that for $k \in \gamma \cap \gamma_0$,

$$
\theta_k(\alpha, \gamma) = m \frac{1}{m} \sum_{i=1}^m \bar{b}_{i,k}^2 \frac{1}{v^2} + o_p \left(\sum_{i=1}^m \sum_{k,k^* \in \gamma_0} \frac{\alpha_i - \epsilon}{\theta_k \theta_{k^*}} \right) + o_p(1).
$$

This completes the proof of (3.10) when $k \in \gamma \cap \gamma_0$.

It remains to prove (3.10), for $k \in \gamma \setminus \gamma_0$. Let θ^1 be θ except that $\{\theta_k : k \in \gamma \cap \gamma_0\}$ are replaced by $\{\hat{\theta}_k(\alpha, \gamma) : k \in \gamma \cap \gamma_0\}$. By Lemma 6 (i) and Lemma 6 (iii)–(iv), we have, for $k \in \gamma \setminus \gamma_0$,

$$
\theta_k h_k H^{-1}(\gamma, \theta^1) M(\alpha, \gamma ; \theta^1) \left(X(\alpha_0 \setminus \alpha) \beta_0(\alpha_0 \setminus \alpha) + Z(\gamma_0) b(\gamma_0) + \epsilon \right)
$$

$$
= \theta_k h_k H^{-1}(\gamma, \theta^1) M(\alpha, \gamma ; \theta^1)
$$

$$
\times \left(X(\alpha_0 \setminus \alpha) \beta_0(\alpha_0 \setminus \alpha) + \sum_{i=1}^m \sum_{k,k^* \in \gamma_0} b_{i,k^*} h_k h_{k^*} + \epsilon \right)
$$

$$
= o_p \left(n_i(\xi - \ell) / 2 - \tau \right) + o_p \left(n_i - \ell / 2 \right)
$$

$$
= o_p \left(n_i(\xi - \ell) / 2 + o_p(1) \right)
$$

uniformly over $\theta(\gamma \setminus \gamma_0) \in [0, \infty)^{\gamma \setminus \gamma_0}$. This and (B.30) imply that for $k \in \gamma \setminus \gamma_0$,

$$
\theta_k h_k h_k^* H^{-1}(\gamma, \theta^1) (I_N - M(\alpha, \gamma ; \theta^1)) y
$$

$$
= \theta_k h_k h_k^* H^{-1}(\gamma, \theta^1) (I_N - M(\alpha, \gamma ; \theta^1))
$$

$$
\times \left(X(\alpha_0 \setminus \alpha) \beta_0(\alpha_0 \setminus \alpha) + Z(\gamma_0) b(\gamma_0) + \epsilon \right)
$$

$$
= \theta_k h_k h_k^* H^{-1}(\gamma, \theta^1) \left(X(\alpha_0 \setminus \alpha) \beta_0(\alpha_0 \setminus \alpha) + Z(\gamma_0) b(\gamma_0) + \epsilon \right)
$$

$$
+ o_p \left(n_i(\xi - \ell) / 2 + o_p(1) \right)
$$

$$
= \theta_k z_k^* h_k^* H^{-1}(\gamma, \theta^1) \left(X_i(\alpha_0 \setminus \alpha) \beta_0(\alpha_0 \setminus \alpha) + \sum_{k \in \gamma_0} z_i,k^* h_{i,k^*} + \epsilon_i \right)
$$

$$
+ o_p \left(n_i(\xi - \ell) / 2 + o_p(1) \right)
$$

$$
= o_p \left(n_i(\xi - \ell) / 2 + o_p(1) \right)
$$

uniformly over $\theta(\gamma \setminus \gamma_0) \in [0, \infty)^{\gamma \setminus \gamma_0}$, where the last equality follows from Lemma 2 (iii), Lemma 3 (iii), and Lemma 4 (i). Therefore,

$$
\theta_k^2 \left\{ \frac{\partial}{\partial \theta} \left\{ -2 \log L(\theta^1, \nu^2 ; \alpha, \gamma) \right\} \right\} = m \theta_k + o_p \left(\sum_{i=1}^m n_i \right) + o_p(m)
$$

uniformly over $\theta(\gamma \setminus \gamma_0) \in (0, \infty)^{\gamma(\gamma \setminus \gamma)}$. Hence by Lemma 3 (ii) and (B.2), we have, for $k \in \gamma \setminus \gamma_0$,

$$
\theta_k^2 \left\{ \frac{\partial}{\partial \theta} \left\{ -2 \log L(\theta^1, \nu^2 ; \alpha, \gamma) \right\} \right\} = m \theta_k + o_p \left(\sum_{i=1}^m n_i \right) + o_p(m)
$$
uniformly over $\theta(\gamma \setminus \gamma_0) \in [0, \infty)^q(\gamma \setminus \gamma_0)$. This and Lemma 5 imply that for $k \in \gamma \setminus \gamma_0$,

$$
\hat{\alpha}_k(\alpha, \gamma) = o_p\left(\frac{1}{m} \sum_{i=1}^{m} n_i^{\xi-\ell} \right) + o_p(1).
$$

This completes the proof of (3.10), for $k \in \gamma \setminus \gamma_0$. Hence the proof of Theorem 4 is complete.

C Proofs of Auxiliary Lemmas

C.1 Proof of Lemma 2

Let $z_{i,s} := s = 1, \ldots, q(\gamma)$ be the s-th column of $Z_i(\gamma)$ and $H_i,\ell(\gamma, \theta)$ defined in (A.4). For Lemma 2 (i)–(ii) to hold, it suffices to prove that for $k \notin \gamma$ and $j, j^* = 1, \ldots, p$,

$$
x'_{i,j} H_i^{-1}(\gamma, \theta) z_{i,j} = d_{i,j} n_i^\xi + o(n_i^\xi) + o(t n_i^{\xi-2\tau}), \quad (C.1)
$$

$$
x'_{i,j} H_i^{-1}(\gamma, \theta) z_{i,j^*} = o(n_i^{\xi-\tau}) + o(t n_i^{\xi-2\tau}), \quad (C.2)
$$

$$
x'_{i,j} H_i^{t}(\gamma, \theta) z_{i,k} = o(n_i^{(\xi + \ell)/2-\tau}) + o(t n_i^{(\xi + \ell)/2-2\tau}) \quad (C.3)
$$

uniformly over $\theta \in [0, \infty)^q(\gamma)$. We prove (C.1)–(C.3) by induction. For $j = 1, \ldots, p$ and $t = 1$, by (A.2) and (A1)–(A3), we have

$$
x'_{i,j} H_i^{-1}(\gamma, \theta) x_{i,j} = x'_{i,j} x_{i,j} - \frac{\theta(1)x'_{i,j} z_{i,1}(1)x'_{i,1}(1)x_{i,j}}{1 + \theta(1)x'_{i,1}(1)x_{i,1}(1)} = d_{i,j} n_i^\xi + o(n_i^\xi) + o(t n_i^{\xi-2\tau})
$$

uniformly over $\theta \in [0, \infty)^q(\gamma)$. For $j, j^* = 1, \ldots, p$, $j \neq j^*$ and $t = 1$, by (A.2) and (A1)–(A3), we have

$$
x'_{i,j} H_i^{-1}(\gamma, \theta) x_{i,j^*} = x'_{i,j} x_{i,j^*} - \frac{\theta(1)x'_{i,j} z_{i,1}(1)x'_{i,1}(1)x_{i,j^*}}{1 + \theta(1)x'_{i,1}(1)x_{i,1}(1)} = o(n_i^{\xi-\tau}) + o(n_i^{\xi-2\tau})
$$

uniformly over $\theta \in [0, \infty)^q(\gamma)$. For $j = 1, \ldots, p$, $k \notin \gamma$ and $t = 1$, by (A.2) and (A1)–(A3), we have

$$
x'_{i,j} H_i^{-1}(\gamma, \theta) z_{i,k} = x'_{i,j} z_{i,k} - \frac{\theta(1)x'_{i,j} z_{i,1}(1)x'_{i,1}(1)z_{i,k}}{1 + \theta(1)x'_{i,1}(1)x_{i,1}(1)} = o(n_i^{\xi-\tau}) + o(n_i^{(\xi + \ell)/2-\tau})
$$

uniformly over $\theta \in [0, \infty)^q(\gamma)$. Now suppose that (C.1)–(C.3) hold for $t = r$. Then for

$$
x'_{i,j} H_i^{t}(\gamma, \theta) z_{i,j} = x'_{i,j} H_i^{-1}(\gamma, \theta) z_{i,j} - \frac{\theta(r+1)x'_{i,j} H_i^{-1}(\gamma, \theta) z_{i,(r+1)} x'_{i,(r+1)} H_i^{t}(\gamma, \theta) z_{i,(r+1)}}{1 + \theta(r+1)x'_{i,(r+1)} H_i^{t}(\gamma, \theta) z_{i,(r+1)}} = d_{i,j} n_i^\xi + o(n_i^\xi) + o(t n_i^{\xi-2\tau})
$$

uniformly over $\theta \in [0, \infty)^q(\gamma)$. Hence the proof of Lemma 5 is complete.
uniformly over $\theta \in [0, \infty)^q(\gamma)$. For $j, j^* = 1, \ldots, p$, $j \neq j^*$, and $t = r + 1$, by (A.2) and (C.1)–(C.3) with $t = r$, and Lemma 3 (i), we have

$$x'_{i,j} H^{-1}_{r,t+1}(\gamma, \theta) x_{i,j^*} = \frac{\theta_r x'_{i,j} H^{-1}_{r,t}(\gamma, \theta) z_{i,(r+1)} x'_{i,j^*} H^{-1}_{r,t+1}(\gamma, \theta) z_{i,(r+1)}}{1 + \theta_r x'_{i,j} H^{-1}_{r,t}(\gamma, \theta) z_{i,(r+1)} x'_{i,j^*} H^{-1}_{r,t+1}(\gamma, \theta) z_{i,(r+1)}},$$

$$= o(n^{\xi-\tau}) + o((r+1)n^{\xi-2\tau})$$

uniformly over $\theta \in [0, \infty)^q(\gamma)$. For $j, j^* = 1, \ldots, p$, $k \not\in \gamma$, and $t = r + 1$, by (A.2) and (C.1)–(C.3) with $t = r$, and Lemma 3 (i), we have

$$x'_{i,j} H^{-1}_{r,t+1}(\gamma, \theta) z_{i,k} = \frac{\theta_r x'_{i,j} H^{-1}_{r,t}(\gamma, \theta) z_{i,(r+1)} x'_{i,j^*} H^{-1}_{r,t+1}(\gamma, \theta) z_{i,(r+1)}}{1 + \theta_r x'_{i,j} H^{-1}_{r,t}(\gamma, \theta) z_{i,(r+1)} x'_{i,j^*} H^{-1}_{r,t+1}(\gamma, \theta) z_{i,(r+1)}},$$

$$= o(n^{(\xi+\ell)/2-\tau}) + o((r+1)n^{(\xi+\ell)/2-2\tau})$$

uniformly over $\theta \in [0, \infty)^q(\gamma)$. This completes the proofs of (C.1)–(C.3). Hence the proofs of Lemma 2 (i)–(ii) are complete.

We finally prove Lemma 2 (iii). Without loss of generality, we assume that $q(\gamma) = q$, $t = q$, and $k = q$. Then by (A.2),

$$\theta(q) x'_{i,j} H^{-1}_{i,q}(\gamma, \theta) z_{i,(q)} = \theta(q) x'_{i,j} H^{-1}_{r,q-1}(\gamma, \theta) z_{i,(q)}$$

$$- \frac{\theta(q) x'_{i,j} H^{-1}_{r,q}(\gamma, \theta) z_{i,(q)} x'_{i,j^*} H^{-1}_{r,q-1}(\gamma, \theta) z_{i,(q)}}{1 + \theta(q) x'_{i,j} H^{-1}_{r,q}(\gamma, \theta) z_{i,(q)} x'_{i,j^*} H^{-1}_{r,q-1}(\gamma, \theta) z_{i,(q)}},$$

$$= \theta(q) x'_{i,j} H^{-1}_{i,q}(\gamma, \theta) z_{i,(q)}$$

where we note that $\theta(q)$ can be arbitrarily small and the dominant term of the denominator of the last equation can be equal to (i) $\theta(q) x'_{i,j} H^{-1}_{i,q-1}(\gamma, \theta) z_{i,(q)}$ or (ii) 1. For the case of (i), $\theta(q)n^{\xi}_q \to \infty$ by Lemma 3 (i); hence, using Lemma 2 (ii) and Lemma 3 (i), we have

$$\theta(q) x'_{i,j} H^{-1}_{i,q}(\gamma, \theta) z_{i,(q)} = o(n^{(\xi-\ell)/2-\tau}),$$

and thus

$$x'_{i,j} H^{-1}_{i,q}(\gamma, \theta) z_{i,(q)} = o(n^{(\xi+\ell)/2-\tau}).$$

For the case of (ii), $\theta(q) = O(n^{\xi}_q)$ by Lemma 3 (ii); hence, using Lemma 3 (i), we have

$$\theta(q) x'_{i,j} H^{-1}_{i,q}(\gamma, \theta) z_{i,(q)} = o(n^{(\xi+\ell)/2-\tau}),$$

which also gives the following two results:

$$x'_{i,j} H^{-1}_{i,q}(\gamma, \theta) z_{i,(q)} = o(n^{(\xi+\ell)/2-\tau}),$$

$$\theta(q) x'_{i,j} H^{-1}_{i,q}(\gamma, \theta) z_{i,(q)} = o(n^{(\xi-\ell)/2-\tau}).$$

In conclusion, we have

$$\theta(q) x'_{i,j} H^{-1}_{i,q}(\gamma, \theta) z_{i,(q)} = o(n^{(\xi-\ell)/2-\tau}),$$

$$x'_{i,j} H^{-1}_{i,q}(\gamma, \theta) z_{i,(q)} = o(n^{(\xi+\ell)/2-\tau})$$

uniformly over $\theta \in [0, \infty)^q(\gamma)$. This completes the proof.
C.2 Proof of Lemma 3

Let \(z_{i,(s)} : s = 1, \ldots, q(\gamma) \) be the \(s \)-th column of \(Z_i(\gamma) \) and \(H_{i,t}(\gamma, \theta) \) defined in (A.4). We first prove Lemma 3 (i). By (A.4), it suffices to prove that for \(k \notin \gamma \),

\[
 z_{i,k}^{-1}H_{i,t}^{-1}(\gamma, \theta)z_{i,k} = c_{i,k}n_k^t + o(n_k^t) + o(tn_k^{t-2\gamma}) \tag{C.5}
\]

and for \(k, k^* \notin \gamma \) and \(k \neq k^* \),

\[
 z_{i,k}^{-1}H_{i,t}^{-1}(\gamma, \theta)z_{i,k^*} = o(n_k^{t-\gamma}) + o(tn_k^{t-2\gamma}) \tag{C.6}
\]

uniformly over \(\theta \in [0, \infty)^{q(\gamma)} \) by induction. For \(t = 1 \) and \(k \notin \gamma \), by (A.2) and (A2), we have

\[
 z_{i,k}^{-1}H_{i,1}^{-1}(\gamma, \theta)z_{i,k} = z_{i,k}^{-1} \left(I_{n_k} - \frac{\theta(1)z_{i,(1)}^T z_{i,(1)}}{1 + \theta(1)z_{i,(1)}^T z_{i,(1)}} \right) z_{i,k} = z_{i,k}^{-1} - \frac{\theta(1)z_{i,k}^T z_{i,k} z_{i,(1)}^T z_{i,(1)}}{1 + \theta(1)z_{i,(1)}^T z_{i,(1)}} c_{i,k}n_k^1 + o(n_k^1) + o(n_k^{1-2\gamma})
\]

uniformly over \(\theta \in [0, \infty)^{q(\gamma)} \). For \(k, k^* \notin \gamma \) and \(k \neq k^* \), by (A.2) and (A2), we have

\[
 z_{i,k}^{-1}H_{i,1}^{-1}(\gamma, \theta)z_{i,k^*} = z_{i,k}^{-1} \left(I_{n_k} - \frac{\theta(1)z_{i,k^*}^T z_{i,k^*} z_{i,(1)}^T z_{i,(1)}}{1 + \theta(1)z_{i,(1)}^T z_{i,(1)}} \right) z_{i,k^*} = c_{i,k}n_k^1 + o(n_k^1) + o(n_k^{1-2\gamma})
\]

uniformly over \(\theta \in [0, \infty)^{q(\gamma)} \). Now suppose that (C.5) and (C.6) hold for \(t = r + 1 \), by (A.2), and (C.5) and (C.6) with \(t = r \), we have

\[
 z_{i,k}^{-1}H_{i,r+1}^{-1}(\gamma, \theta)z_{i,k} = z_{i,k}^{-1} \left(I_{n_k} - \frac{\theta(r+1)z_{i,(r+1)}^T z_{i,(r+1)}}{1 + \theta(r+1)z_{i,(r+1)}^T z_{i,(r+1)}} \right) z_{i,k} - \frac{\theta(r+1)z_{i,k}^T z_{i,k} z_{i,(r+1)}^T z_{i,(r+1)}}{1 + \theta(r+1)z_{i,(r+1)}^T z_{i,(r+1)}} c_{i,k}n_k^t + o(n_k^t) + o(tn_k^{t-2\gamma})
\]

uniformly over \(\theta \in [0, \infty)^{q(\gamma)} \). For \(k, k^* \notin \gamma \) and \(t = r + 1 \), by (A.2), and (C.5) and (C.6) with \(t = r \), we have

\[
 z_{i,k}^{-1}H_{i,r+1}^{-1}(\gamma, \theta)z_{i,k^*} = z_{i,k}^{-1} \left(I_{n_k} - \frac{\theta(r+1)z_{i,k^*}^T z_{i,k^*} z_{i,(r+1)}^T z_{i,(r+1)}}{1 + \theta(r+1)z_{i,(r+1)}^T z_{i,(r+1)}} \right) z_{i,k^*} = o(n_k^{t-\gamma}) + o(tn_k^{t-2\gamma})
\]

uniformly over \(\theta \in [0, \infty)^{q(\gamma)} \). This completes the proof of (C.5) and (C.6). Hence Lemma 3 (i) follows from (C.5), (C.6) with \(t = q(\gamma) \) and \(q = o(n_k^{\min}) \). This completes the proof of Lemma 3 (i).
We now prove Lemma 3 (ii). Without loss of generality, we assume that \(q(\gamma) = q \) and \(k = q \). Then by Lemma 3 (i) and (A.2),

\[
\theta^2(q)z'_{i,(q)}H_{i,q}^{-1}(\gamma, \theta)z_{i,(q)} = \theta^2(q) \left\{ z'_{i,(q)}H_{i,q}^{-1}(\gamma, \theta)z_{i,(q)} - \frac{\theta(q)z'_{i,(q)}H_{i,q}^{-1}(\gamma, \theta)z_{i,(q)}}{1 + \theta(q)z'_{i,(q)}H_{i,q}^{-1}(\gamma, \theta)z_{i,(q)}} \right\}
\]

\[
= \frac{\theta^2(q)z'_{i,(q)}H_{i,q}^{-1}(\gamma, \theta)z_{i,(q)}}{1 + \theta(q)z'_{i,(q)}H_{i,q}^{-1}(\gamma, \theta)z_{i,(q)}} - \frac{\theta(q)z'_{i,(q)}H_{i,q}^{-1}(\gamma, \theta)z_{i,(q)}}{1 + \theta(q)z'_{i,(q)}H_{i,q}^{-1}(\gamma, \theta)z_{i,(q)}} = O(\theta^2(q)n_i^\ell)
\]

uniformly over \(\theta \in [0, \infty)^q \). Again, by Lemma 3 (i), we have

\[
\theta^2(q)z'_{i,(q)}H_{i,q}^{-1}(\gamma, \theta)z_{i,(q)} = \frac{\theta^2(q)z'_{i,(q)}H_{i,q}^{-1}(\gamma, \theta)z_{i,(q)}}{1 + \theta(q)z'_{i,(q)}H_{i,q}^{-1}(\gamma, \theta)z_{i,(q)}}
\]

\[
= \frac{\theta(q)}{1 + \theta(q)z'_{i,(q)}H_{i,q}^{-1}(\gamma, \theta)z_{i,(q)}} = \theta(q) + O(n_i^\ell)
\]

uniformly over \(\theta \in [0, \infty)^q \). This completes the proof of Lemma 3 (ii).

We now prove Lemma 3 (iii). Without loss of generality, we assume that \(q(\gamma) = q \), \(k = q \), and \(k^\tau = (q - 1) \). Then by (A.2),

\[
\begin{align*}
\theta(q)\theta(q-1)z'_{i,(q)}H_{i,q}^{-1}(\gamma, \theta)z_{i,(q-1)} &= \theta(q)\theta(q-1)z'_{i,(q)}H_{i,q}^{-1}(\gamma, \theta)z_{i,(q-1)} \\
&= \theta(q)\theta(q-1)z'_{i,(q)}H_{i,q}^{-1}(\gamma, \theta)z_{i,(q-1)} \\
&= \frac{\theta(q)\theta(q-1)z'_{i,(q)}H_{i,q}^{-1}(\gamma, \theta)z_{i,(q-1)}}{1 + \theta(q)z'_{i,(q)}H_{i,q}^{-1}(\gamma, \theta)z_{i,(q-1)}}
\end{align*}
\]

where we note that \(\theta(q) \) and \(\theta(q-1) \) can be arbitrarily small and the dominant term of the denominator of the last equation can be equal to

(i) \(\frac{\theta(q)\theta(q-1)z'_{i,(q)}H_{i,q}^{-1}(\gamma, \theta)z_{i,(q-1)}}{1 + \theta(q-1)z'_{i,(q-1)}H_{i,q}^{-1}(\gamma, \theta)z_{i,(q-1)}} \)

(ii) \(\frac{\theta(q)\theta(q-1)z'_{i,(q)}H_{i,q}^{-1}(\gamma, \theta)z_{i,(q-1)}}{1 + \theta(q-1)z'_{i,(q-1)}H_{i,q}^{-1}(\gamma, \theta)z_{i,(q-1)}} \)

(iii) \(\frac{\theta(q)\theta(q-1)z'_{i,(q)}H_{i,q}^{-1}(\gamma, \theta)z_{i,(q-1)}}{1 + \theta(q-1)z'_{i,(q-1)}H_{i,q}^{-1}(\gamma, \theta)z_{i,(q-1)}} \)

For the case of (i), \(\theta(q)n_i^\ell \rightarrow \infty \) and \(\theta(q-1)n_i^\ell \rightarrow \infty \) by Lemma 3 (i); hence, using Lemma 3 (i), we have

\[
\theta(q)\theta(q-1)z'_{i,(q)}H_{i,q}^{-1}(\gamma, \theta)z_{i,(q-1)} = \text{op}(n_i^{\ell - \tau}),
\]

which also gives the following two results:

\[
\theta(q)z'_{i,(q)}H_{i,q}^{-1}(\gamma, \theta)z_{i,(q-1)} = \text{op}(n_i^{\ell - \tau}),
\]

\[
z'_{i,(q)}H_{i,q}^{-1}(\gamma, \theta)z_{i,(q-1)} = \text{op}(n_i^{\ell - \tau}).
\]
For the case of (ii), \(\theta(q) n_i \rightarrow \infty \) and \(\theta(q) = O(n_i^{-\xi}) \) (or vice versa) by Lemma 3 (i); hence, using Lemma 3 (i), we have

\[
\theta(q) \theta(q-1) z_{i,q}^{-1}(\gamma, \theta) z_{i,q-1}(q) = o_p(\theta(q-1) n_i^{-\xi}),
\]

which gives the following three results:

\[
\theta(q) \theta(q-1) z_{i,q}^{-1}(\gamma, \theta) z_{i,q-1}(q) = o_p(n_i^{-\xi}),
\]

\[
\theta(q) \theta(q-1) z_{i,q}^{-1}(\gamma, \theta) z_{i,q-1}(q) = o_p(n_i^{-\xi}),
\]

\[
\theta(q) \theta(q-1) z_{i,q}^{-1}(\gamma, \theta) z_{i,q-1}(q) = o_p(n_i^{-\xi}).
\]

For the case of (iii), \(\theta(q) = O(n_i^{-\xi}) \) and \(\theta(q) = O(n_i^{-\xi}) \) by Lemma 3 (i); hence, using Lemma 3 (i), we have

\[
\theta(q) \theta(q-1) z_{i,q}^{-1}(\gamma, \theta) z_{i,q-1}(q) = o_p(\theta(q) \theta(q-1) n_i^{-\xi}),
\]

which also gives the following three results:

\[
\theta(q) \theta(q-1) z_{i,q}^{-1}(\gamma, \theta) z_{i,q-1}(q) = o_p(n_i^{-\xi}),
\]

\[
\theta(q) \theta(q-1) z_{i,q}^{-1}(\gamma, \theta) z_{i,q-1}(q) = o_p(n_i^{-\xi}),
\]

\[
\theta(q) \theta(q-1) z_{i,q}^{-1}(\gamma, \theta) z_{i,q-1}(q) = o_p(n_i^{-\xi}).
\]

In conclusion, we have

\[
\theta(q) \theta(q-1) z_{i,q}^{-1}(\gamma, \theta) z_{i,q-1}(q) = o_p(n_i^{-\xi}),
\]

\[
\theta(q) \theta(q-1) z_{i,q}^{-1}(\gamma, \theta) z_{i,q-1}(q) = o_p(n_i^{-\xi}),
\]

\[
\theta(q) \theta(q-1) z_{i,q}^{-1}(\gamma, \theta) z_{i,q-1}(q) = o_p(n_i^{-\xi}).
\]

uniformly over \(\theta \in [0, \infty]^q \). This completes the proof of Lemma 3 (iii).

We finally prove Lemma 3 (iv). Without loss of generality, it suffices to prove Lemma 3 (iv) by replacing \(H_i(\gamma, \theta) \) with \(H_i, q-1(\gamma, \theta) \) with \(q(\gamma) = q, k = (q - 1) \), and \(k^* = (q) \). Then by (A.2),

\[
\theta(q-1) z_{i,q}^{-1}(\gamma, \theta) z_{i,q-1}(q) = \theta(q-1) \left\{ \left(z_{i,q}^{-1}(\gamma, \theta) z_{i,q-1}(q) - \theta(q-1) z_{i,q}^{-1}(\gamma, \theta) z_{i,q-1}(q) \right) \cdot \left(H_i, q-1(\gamma, \theta) z_{i,q-1}(q) + \theta(q-1) z_{i,q}^{-1}(\gamma, \theta) z_{i,q-1}(q) \right) \right\}
\]

\[
= \theta(q-1) z_{i,q}^{-1}(\gamma, \theta) z_{i,q-1}(q) + \theta(q-1) z_{i,q}^{-1}(\gamma, \theta) z_{i,q-1}(q) \cdot H_i, q-1(\gamma, \theta) z_{i,q-1}(q).
\]

Hence, Lemma 3 (iv) follows from Lemma 3 (i) and arguments similar to the proof of (C.4). This completes the proof.

C.3 Proof of Lemma 4

Note that for \(k = 1, \ldots, q \) and \(j = 1, \ldots, p \),

\[
\epsilon_j^* z_{i,k} = O_p(n_i^{1/2}),
\]

\[
\epsilon_j^* z_{i,j} = O_p(n_i^{1/2}).
\]
Lemma 4 (ii)-(iii) then follow arguments similarly from the induction and the proofs of Lemma 2 (i) are hence omitted.

We next prove Lemma 4 (iv). Let $\mathbf{z}_{i,(s)}$ be the s-th column of $\mathbf{Z}_i(\gamma)$ and $\mathbf{H}_{i,t}(\gamma, \theta)$ be defined in (A.4). Without loss of generality, we assume $q(\gamma) = q$. Hence by (A.6), Lemma 3 (i), and Lemma 4 (ii), we have

$$
epsilon_i'\mathbf{H}^{-1}_{i,q}(\gamma, \theta)\mathbf{e}_i = \epsilon_i'\mathbf{e}_i - \sum_{k=1}^{q} \frac{\theta(k)\epsilon_i'\mathbf{H}^{-1}_{i,k-1}(\gamma, \theta)\mathbf{z}_{i,(k)}'\mathbf{e}_i}{1 + \theta(k)\epsilon_i'\mathbf{z}_{i,(k)}\mathbf{H}^{-1}_{i,k-1}(\gamma, \theta)\mathbf{e}_i} = \epsilon_i'\mathbf{e}_i + O_p(q)$$

uniformly over $\theta \in [0, \infty)^q$. This completes the proof of Lemma 4 (iv).

It remains to prove Lemma 4 (i). Again, without loss of generality, it suffices to prove Lemma 4 (i) for $q(\gamma) = q$ and $k = (q)$. Then by (A.2),

$$\theta(q)\epsilon_i'\mathbf{H}^{-1}_{i,q}(\gamma, \theta)\mathbf{z}_{i,(q)} = \frac{\theta(q)\epsilon_i'\mathbf{H}^{-1}_{i,q-1}(\gamma, \theta)\mathbf{z}_{i,(q)}}{1 + \theta(q)\epsilon_i'\mathbf{z}_{i,(q)}\mathbf{H}^{-1}_{i,q-1}(\gamma, \theta)\mathbf{e}_i}.$$

Hence, Lemma 4 (i) follows from Lemma 3 (i), Lemma 4 (ii), and arguments similar to the proof of (C.4). This completes the proof.

C.4 Proof of Lemma 5

We show the lemma for $(\alpha, \gamma) \in \mathcal{A}_0 \times \mathcal{G}_0$, where the proofs with respect to the remaining models are similar and hence omitted.

Let $\mathbf{z}_{i,(s)}$ be the s-th column of $\mathbf{Z}_i(\gamma)$ and $\mathbf{H}_{i,t}(\gamma, \theta)$ be defined in (A.4). Without loss of generality, we assume that $q(\gamma) = q$ and $\mathbf{Z}_i(\gamma_0)b_i(\gamma_0) = \sum_{s=q-q_0+1}^{q} \mathbf{z}_{i,(s)}b_{i,(s)}$. It then suffices to prove that for $(\alpha, \gamma) \in \mathcal{A}_0 \times \mathcal{G}_0$ and $v^2 > 0$

$$-2 \log L(\theta, v^2; \alpha, \gamma) - \{ -2 \log L(\theta^0, v^2; \alpha, \gamma) \} \xrightarrow{p} \infty, \quad (C.8)$$

as both $N \to \infty$ and $\theta(k) \to 0$ for some $k \in \{ q-q_0+1, \ldots, q \}$, where $\theta^0 \equiv (0, \ldots, 0, \theta_{(q-q_0+1)}, 0, \ldots, \theta_{(q)}, 0)'$, and $\theta_{(s),0}$ being the true value of $\theta_{(s)}$; $s = q-q_0+1, \ldots, q$. Note that by (A.3) and (A.1), we have

$$\det(\mathbf{H}_i(\gamma, \theta)) = \det \left(\mathbf{I}_{q_i} + \sum_{s=1}^{q} \theta_{(s)}\mathbf{z}_{i,(s)}\mathbf{z}_{i,(s)}' \right)$$

$$= \det(\mathbf{H}_{i,q-1}(\gamma, \theta) + \theta(q)\mathbf{z}_{i,(q)}\mathbf{z}_{i,(q)}')$$

$$= \det(\mathbf{H}_{i,q-1}(\gamma, \theta))(1 + \theta(q)\mathbf{z}_{i,(q)}(\gamma, \theta)\mathbf{z}_{i,(q)}).$$

Continuously expanding the above equation by (A.1) yields

$$\log \det(\mathbf{H}_i(\gamma, \theta)) = \log \left\{ \prod_{s=1}^{q} (1 + \theta_{(s)}\mathbf{z}_{i,(s)}'\mathbf{H}^{-1}_{i,s-1}(\gamma, \theta)\mathbf{e}_i) \right\}$$

$$= \sum_{s=1}^{q} \log(1 + \theta_{(s)}\mathbf{z}_{i,(s)}'\mathbf{H}^{-1}_{i,s-1}(\gamma, \theta)\mathbf{e}_i).$$
\[-2 \log L(\theta, v^2; \alpha, \gamma) \]
\[= N \log(2\pi) + N \log(v^2) + \log \det(H(\gamma, \theta)) + \frac{y' H^{-1}(\gamma, \theta) A(\alpha, \gamma; \theta)y}{v^2} \]
\[= N \log(2\pi) + N \log(v^2) + \sum_{i=1}^{m} \sum_{s=q-90+1}^{q} \log(1 + \theta(s) z_{i,s}(H_{i,s-1}^{-1}(\gamma, \theta)z_{i,s}(s))) \]
\[+ \left(Z(\tau_0) b(\tau_0) + \epsilon \right)' \left(H^{-1}(\gamma, \theta)(I_N - M(\alpha, \gamma; \theta)) \right) Z(\tau_0) b(\tau_0) + \epsilon. \]

Hence, we have, for \((\alpha, \gamma) \in A_0 \times G_0\),
\[-2 \log L(\theta, v^2; \alpha, \gamma) = \sum_{i=1}^{m} \sum_{s=q-90+1}^{q} \log \left(1 + \theta(s) z_{i,s}(H_{i,s-1}^{-1}(\gamma, \theta)z_{i,s}(s)) \right) \]
\[+ \frac{1}{v^2} \left(Z(\tau_0) b(\tau_0) + \epsilon \right)' \left(H^{-1}(\gamma, \theta)(I_N - M(\alpha, \gamma; \theta)) \right) Z(\tau_0) b(\tau_0) + \epsilon, \]

where
\[\left(Z(\tau_0) b(\tau_0) + \epsilon \right)' \left(H^{-1}(\gamma, \theta)(I_N - M(\alpha, \gamma; \theta)) \right) Z(\tau_0) b(\tau_0) + \epsilon \]
\[= b(\tau_0)' Z(\tau_0)' \left(H^{-1}(\gamma, \theta)(I_N - M(\alpha, \gamma; \theta)) \right) Z(\tau_0) b(\tau_0) \]
\[= b(\tau_0)' Z(\tau_0)' \left(H^{-1}(\gamma, \theta)(I_N - M(\alpha, \gamma; \theta)) \right) Z(\tau_0) b(\tau_0) \]
\[+ 2b(\tau_0)' Z(\tau_0)' \left(H^{-1}(\gamma, \theta)(I_N - M(\alpha, \gamma; \theta)) \right) \epsilon \]
\[+ \epsilon' \left(H^{-1}(\gamma, \theta)(I_N - M(\alpha, \gamma; \theta)) \right) \epsilon. \]

Hence, for (C.8) to hold, it suffices to prove
\[\epsilon' \left(H^{-1}(\gamma, \theta)(I_N - M(\alpha, \gamma; \theta)) \right) \]
\[- H^{-1}(\gamma, \theta)' \left(H^{-1}(\gamma, \theta)(I_N - M(\alpha, \gamma; \theta)) \right) \epsilon = O_p(m) \]
(C.9)

uniformly over \(\theta \in [0, \infty)^q\) and
\[\sum_{i=1}^{m} \sum_{s=q-90+1}^{q} \log \left(1 + \theta(s) z_{i,s}(H_{i,s-1}^{-1}(\gamma, \theta)z_{i,s}(s)) \right) \]
\[+ \frac{1}{v^2} \left(b(\tau_0)' Z(\tau_0)' \left(H^{-1}(\gamma, \theta)(I_N - M(\alpha, \gamma; \theta)) \right) \right) \]
\[- H^{-1}(\gamma, \theta)' \left(H^{-1}(\gamma, \theta)(I_N - M(\alpha, \gamma; \theta)) \right) Z(\tau_0) b(\tau_0) \]
\[+ O_p(m) \rightarrow_{p} \infty, \]
(C.10)

as both \(N \to \infty\) and \(\theta(k) \to 0\) for some \(k \in \{q-90+1, \ldots, q\}\). Before proving (C.9) and (C.10), we prove the following equations, for \(H_{i,k}^{\text{th}}\) being defined in (2.5) and \(k = \ldots, q\).
uniformly over $\theta \in [0, \infty)^q$. It suffices to prove (C.11)–(C.14) for $k = q$. For (C.11) with $k = q$, we have

$$e' H^{-1}(\gamma, \theta)_{1:k} h_{1:i}(k) h'_{1:i}(k) H^{-1}(\gamma, \theta)_{1:k} M(\alpha, \gamma; \theta) = O_p(1) \quad (C.11)$$

and

$$e' H^{-1}(\gamma, \theta_{1:k}) X(\alpha) (X(\alpha)' H^{-1}(\gamma, \theta) X(\alpha))^{-1} \times X(\alpha)' H^{-1}(\gamma, \theta_{1:k}) h_{1:i}(k) H^{-1}(\gamma, \theta_{1:k}) X(\alpha) = O_p(1) \quad (C.13)$$

uniformly over $\theta \in [0, \infty)^q$, where the second last equality follows from Lemma 3 (i) and Lemma 4 (i)–(ii). For (C.12) with $k = q$, we have

$$e' H^{-1}(\gamma, \theta)_{1:k} h_{1:i}(q) h'_{1:i}(q) H^{-1}(\gamma, \theta)_{1:k} M(\alpha, \gamma; \theta) = O_p(1) \quad (C.12)$$

and

$$e' H^{-1}(\gamma, \theta_{1:k}) X(\alpha) (X(\alpha)' H^{-1}(\gamma, \theta) X(\alpha))^{-1} \times X(\alpha)' H^{-1}(\gamma, \theta_{1:k}) h_{1:i}(k) H^{-1}(\gamma, \theta_{1:k}) X(\alpha) = O_p(1) \quad (C.14)$$

uniformly over $\theta \in [0, \infty)^q$, where the second last equality follows from (2.9) and (A.5) and the third equality follows from (A.7), Lemma 2 (iii), and Lemma 4 (ii)–(iii). For (C.15) with
$k = q$, we have

$$
\epsilon' H^{-1}(\gamma, \theta_0^i) X(\alpha) (\epsilon' H^{-1}(\gamma, \theta) X(\alpha))^{-1}
\times X(\alpha)' H^{-1}(\gamma, \theta_0^i) h_{i,q}(\theta) H_{i,q}^{-1}(\gamma, \theta) \epsilon
= \left(\sum_{i=1}^{m} \epsilon' H_{i,q}^{-1}(\gamma, \theta_0^i) X_i(\alpha) \right) \left(\sum_{i=1}^{m} X_i(\alpha)' H_{i,q}^{-1}(\gamma, \theta) X_i(\alpha) \right)^{-1}
\times \left(\sum_{i=1}^{m} \epsilon' H_{i,q}^{-1}(\gamma, \theta_0^i) z_{i,q} \right) \left(\sum_{i=1}^{m} X_i(\alpha)' H_{i,q}^{-1}(\gamma, \theta_0^i) z_{i,q} \right)^{-1}
\times \left(\sum_{i=1}^{m} X_i(\alpha)' H_{i,q}^{-1}(\gamma, \theta_0^i) z_{i,q} \right)
= \{O_p(1)\}_{1 \times p(\alpha)} \{T^{-1}(\alpha) + \{o(n_{\min}^{-r})\}_{p(\alpha) \times p(\alpha)} \{o(n_{\min}^{\ell/2-r})\}_{p(\alpha) \times 1}\}
\times \{O_p(n_{i,q})\}_{1 \times 1}
= o_p(1)
$$

uniformly over $\theta \in [0, \infty)^q$, where the second equality follows from (A.7), Lemma 2 (iii), and Lemma 4 (ii)–(iii). For (C.14) with $k = q$,

$$
\epsilon' H^{-1}(\gamma, \theta_0^i) X(\alpha) (\epsilon' H^{-1}(\gamma, \theta_0^i) X(\alpha))^{-1} X(\alpha)' H^{-1}(\gamma, \theta_0^i) h_{i,q}(\theta) H_{i,q}^{-1}(\gamma, \theta) \epsilon
= \left(\sum_{i=1}^{m} \epsilon' H_{i,q}^{-1}(\gamma, \theta_0^i) X_i(\alpha) \right) \left(\sum_{i=1}^{m} X_i(\alpha)' H_{i,q}^{-1}(\gamma, \theta_0^i) X_i(\alpha) \right)^{-1}
\times \left(\sum_{i=1}^{m} \epsilon' H_{i,q}^{-1}(\gamma, \theta_0^i) z_{i,q} \right) \left(\sum_{i=1}^{m} X_i(\alpha)' H_{i,q}^{-1}(\gamma, \theta_0^i) z_{i,q} \right)^{-1}
\times \left(\sum_{i=1}^{m} X_i(\alpha)' H_{i,q}^{-1}(\gamma, \theta_0^i) z_{i,q} \right)
= \{O_p(1)\}_{1 \times p(\alpha)} \{T^{-1}(\alpha) + \{o(n_{\min}^{-r})\}_{p(\alpha) \times p(\alpha)} \{o(n_{\min}^{\ell/2-r})\}_{p(\alpha) \times 1}\}
\times \{O_p(n_{i,q})\}_{1 \times 1}
= o_p(1)
$$

uniformly over $\theta \in [0, \infty)^q$, where the second equality follows from (A.7), Lemma 2 (ii)–(iii), and Lemma 4 (iii). This completes the proofs of (C.11)–(C.14). We now prove (C.9). Note
that

\[
\epsilon' \{ \mathbf{H}^{-1}(\gamma, \theta_0^*) \mathbf{M}(\alpha, \gamma; \theta_0^*) - \mathbf{H}^{-1}(\gamma, \theta) \mathbf{M}(\alpha, \gamma; \theta) \} \epsilon \\
= \epsilon' \{ \mathbf{H}^{-1}(\gamma, \theta_0^*) \mathbf{M}(\alpha, \gamma; \theta_0^*) - \mathbf{H}^{-1}(\gamma, \theta_0^*) \mathbf{M}(\alpha, \gamma; \theta_0^*) \} \epsilon \\
+ \epsilon' \{ \mathbf{H}^{-1}(\gamma, \theta_0^*) \mathbf{M}(\alpha, \gamma; \theta_0^*) - \mathbf{H}^{-1}(\gamma, \theta_0^*) \mathbf{M}(\alpha, \gamma; \theta_0^*) \} \epsilon \\
= \epsilon' \mathbf{H}^{-1}(\gamma, \theta_0^*) \{ \mathbf{M}(\alpha, \gamma; \theta_0^*) - \mathbf{M}(\alpha, \gamma; \theta_0^*) \} \epsilon + o_p(m) \\
= \epsilon' \mathbf{H}^{-1}(\gamma, \theta_0^*) \{ \mathbf{M}(\alpha, \gamma; \theta_0^*) - \mathbf{M}(\alpha, \gamma; \theta_0^*) \} \epsilon + o_p(m) \\
= o_p(m)
\]

uniformly over \(\theta \in [0, \infty)^9 \), where the second equality follows from (C.12) that

\[
\epsilon' \{ \mathbf{H}^{-1}(\gamma, \theta_0^*) - \mathbf{H}^{-1}(\gamma, \theta) \} \mathbf{M}(\alpha, \gamma; \theta) \epsilon \\
= \epsilon' \mathbf{H}^{-1}(\gamma, \theta_0^*) \{ \mathbf{H}(\gamma, \theta) - \mathbf{H}(\gamma, \theta_0^*) \} \mathbf{H}^{-1}(\gamma, \theta_0^*) \mathbf{M}(\alpha, \gamma; \theta) \epsilon \\
= \sum_{i=1}^{m} \sum_{k=q}^{q_0, q+1} (\theta(k) - \theta(k), 0) \epsilon' \mathbf{H}^{-1}(\gamma, \theta) h_{i,(k)} h_{i,(k)}' \mathbf{H}^{-1}(\gamma, \theta_0^*) \mathbf{M}(\alpha, \gamma; \theta) \epsilon \\
= o_p(m)
\]

uniformly over \(\theta \in [0, \infty)^9 \), the second last equality follows from (C.13) that

\[
\epsilon' \mathbf{H}^{-1}(\gamma, \theta_0^*) \{ \mathbf{M}(\alpha, \gamma; \theta_0^*) - \mathbf{M}(\alpha, \gamma; \theta_0^*) \} \epsilon \\
= \epsilon' \mathbf{H}^{-1}(\gamma, \theta_0^*) \{ \mathbf{M}(\alpha, \gamma; \theta_0^*) - \mathbf{M}(\alpha, \gamma; \theta_0^*) \} \epsilon \\
= \sum_{i=1}^{m} \sum_{k=q}^{q_0, q+1} (\theta(k) - \theta(k), 0) \epsilon' \mathbf{H}^{-1}(\gamma, \theta_0^*) \mathbf{M}(\alpha, \gamma; \theta_0^*) \epsilon \\
= o_p(m)
\]
uniformly over $\theta \in [0, \infty)^q$, and the last equality follows from (C.14) that

$$
epsilon' H^{-1}(\gamma, \theta_0) \{M(\alpha, \gamma; \theta_0) - X(\alpha)X(\alpha)' H^{-1}(\gamma, \theta_0) \} \epsilon
= e'H^{-1}(\gamma, \theta_0) X(\alpha) X(\alpha)' H^{-1}(\gamma, \theta_0) X(\alpha) - 1
= e'H^{-1}(\gamma, \theta_0) X(\alpha) X(\alpha)' H^{-1}(\gamma, \theta_0) X(\alpha) - 1
= H^{-1}(\gamma, \theta_0) X(\alpha) X(\alpha)' H^{-1}(\gamma, \theta_0) X(\alpha) - 1
= \sum_{i=1}^m \sum_{k=q-00+1}^q (\theta(k), 0 - \theta(k)) e'H^{-1}(\gamma, \theta_0) h_{1, (k)} h_{1, (k)} H^{-1}(\gamma, \theta_0) X(\alpha) X(\alpha)' H^{-1}(\gamma, \theta_0) X(\alpha) - 1
= \epsilon \{H^{-1}(\gamma, \theta) - H^{-1}(\gamma, \theta_0)\} \epsilon
= e'H^{-1}(\gamma, \theta_0) H(\gamma, \theta_0) - H(\gamma, \theta) H^{-1}(\gamma, \theta_0) \epsilon
= e'H^{-1}(\gamma, \theta_0) \epsilon
= ε' \{H^{-1}(\gamma, \theta) - H^{-1}(\gamma, \theta_0)\} \epsilon
= e'H^{-1}(\gamma, \theta_0) H(\gamma, \theta_0) - H(\gamma, \theta) H^{-1}(\gamma, \theta_0) \epsilon
= e'H^{-1}(\gamma, \theta_0) \epsilon
= O_p(m)
uniformly over $\theta \in [0, \infty)^q$. Also, by (C.11),

$$
epsilon' H^{-1}(\gamma, \theta) \epsilon
= e'H^{-1}(\gamma, \theta_0) H(\gamma, \theta_0) - H(\gamma, \theta) H^{-1}(\gamma, \theta_0) \epsilon
= e'H^{-1}(\gamma, \theta_0) \epsilon
= ε' \{H^{-1}(\gamma, \theta) - H^{-1}(\gamma, \theta_0)\} \epsilon
= e'H^{-1}(\gamma, \theta_0) H(\gamma, \theta_0) - H(\gamma, \theta) H^{-1}(\gamma, \theta_0) \epsilon
= e'H^{-1}(\gamma, \theta_0) \epsilon
= O_p(m)
uniformly over $\theta \in [0, \infty)^q$. This together with (C.15) gives (C.9). We now prove (C.10). As with the proof of (C.15), we have

$$
b(\gamma_0)' Z(\gamma_0)' \{H^{-1}(\gamma, \theta_0) M(\alpha, \gamma; \theta_0) - H^{-1}(\gamma, \theta) M(\alpha, \gamma; \theta)\} Z(\gamma_0) b(\gamma_0) = O_p(m)
uniformly over $\theta \in [0, \infty)^q$. Hence

$$
b(\gamma_0)' Z(\gamma_0)' \{H^{-1}(\gamma, \theta) (I_N - M(\alpha, \gamma; \theta))
- H^{-1}(\gamma, \theta_0) (I_N - M(\alpha, \gamma; \theta_0))\} Z(\gamma_0) b(\gamma_0)
= b(\gamma_0)' Z(\gamma_0)' \{H^{-1}(\gamma, \theta) - H^{-1}(\gamma, \theta_0)\} Z(\gamma_0) b(\gamma_0) + O_p(m)
= \sum_{i=1}^m \sum_{s=q-00+1}^q (\theta(s), 0 - \theta(s)) b(\gamma_0)' Z(\gamma_0)' H^{-1}(\gamma, \theta) h_{1, (s)}
\times h_{1, (s)} H^{-1}(\gamma, \theta_0) Z(\gamma_0) b(\gamma_0) + O_p(m)
uniformly over $\theta \in [0, \infty)^q$. Hence, for (C.10) to hold, it suffices to prove that for $k = q - q_0 + 1, \ldots, q$ and $i = 1, \ldots, m$,

$$
\log \left(\frac{1 + \theta(k) z_{i, (k)} H^{-1}(\gamma, \theta) z_{i, (k)}}{1 + \theta(k) z_{i, (k)} H^{-1}(\gamma, \theta_0) z_{i, (k)}} \right)
= O_p \left(b(\gamma_0)' Z(\gamma_0)' H^{-1}(\gamma, \theta) h_{1, (k)} h_{1, (k)} H^{-1}(\gamma, \theta_0) Z(\gamma_0) b(\gamma_0) \right)
\quad (C.16)
as both $N \to \infty$ and $\theta(k) \to 0$ for some $k \in \{q - q_0 + 1, \ldots, q\}$. It suffices to prove (C.16) for $k = q$. By Lemma 3 (ii)–(iii), we have

\[
\begin{align*}
\frac{b(\gamma_0)'}{Z(\gamma_0)'H^{-1}(\gamma, \theta)h_{i,(q)}H^{-1}(\gamma, \theta)Z(\gamma_0)b(\gamma_0)} &= \left(\frac{b_{i,(q)}'z_{i,(q)}'H_{i,q}^{-1}(\gamma, \theta)z_{i,(q)}H_{i,q}^{-1}(\gamma, \theta)}{1 + \theta(q)z_{i,(q)}'H_{i,q}^{-1}(\gamma, \theta)z_{i,(q)}}\right)
\end{align*}
\]

Hence, for (C.16) with $k = q$ to hold, it suffices to prove that

\[
\log \left(1 + \theta(k)z_{i,(q)}'H_{i,q}^{-1}(\gamma, \theta)z_{i,(q)}\right) \frac{z_{i,(q)}'}{z_{i,(q)}'} \left(1 + \theta(q)z_{i,(q)}'H_{i,q}^{-1}(\gamma, \theta)z_{i,(q)}\right)^{-1} \to 0,
\]

as both $N \to \infty$ and $\theta(q) \to 0$, which follows from Lemma 3 (i) and L’Hospital’s rule. This completes the proof of (C.16). This completes the proof.

C.5 Proof of Lemma 6

We first prove Lemma 6 (i). For $i, i^* = 1, \ldots, m$, $(\alpha, \gamma) \in A \times G$ and $k, k^* \in \gamma$, we have

\[
\begin{align*}
\frac{\partial \theta_{k,k^*}H_{i,k}^{-1}(\gamma, \theta)X_i(\alpha)}{\sum_{i=1}^m n_i} &= \left(\frac{\sum_{i=1}^m X_i(\alpha)'H_{i,q}^{-1}(\gamma, \theta)X_i(\alpha)}{\sum_{i=1}^m n_i} \right)^{-1} \\
&\times \left(\frac{\sum_{i=1}^m n_i}{\sum_{i=1}^m n_i} \right)^{-1} \\
\end{align*}
\]

\[
\begin{align*}
&= \left\{o\left(n_i^\xi \tau/2 - \tau\right)\right\}_1 \times \left\{T^{-1}(\alpha) + \left\{o\left(n_{\min}^\tau\right)\right\}_p(\alpha) \times \left\{o\left(n_i^\tau\right)\right\}_p(\alpha)\right\} \\
&\times \left\{o\left(n_i^\xi \tau/2 - \tau\right)\right\}_1 \\
&= \left\{o\left(n_i^\xi \tau/2 - \tau\right)\right\}_1 \\
&= \left\{o\left(n_i^\xi \tau/2 - \tau\right)\right\}_1
\end{align*}
\]
uniformly over \(\theta \in \Theta_\gamma\), where the second equality follows from (A.7) and Lemma 2 (iii). Similarly, by (A.7) and Lemma 2 (iii), we have

\[
\begin{align*}
\theta_k h_{i,k}^* & = \left(\theta_k z_{i,k}^* h_{i,k}^{-1} (\gamma, \theta) X_i(\alpha) \right) \left(\sum_{i=1}^m X_i(\alpha)' H_{i,k}^{-1} (\gamma, \theta) X_i(\alpha) \right)^{-1} \\
& \quad \times \left(\frac{X_i(\alpha)' h_{i,k}^{-1} (\gamma, \theta) z_{i,k}^*}{\sum_{i=1}^m n_i^\xi} \right) \\
& = \{ o(n_i^{(\xi+\ell)/2-\tau}) \}_{1 \times p(\alpha)} \left(T^{-1}(\alpha) + \{ o(n_i^{1}) \}_{p(\alpha) \times p(\alpha)} \right) \\
& \quad \times \left\{ o\left(\frac{n_i^{(\xi+\ell)/2-\tau}}{\sum_{i=1}^m n_i^\xi} \right) \right\}_{p(\alpha) \times 1} \\
& = o\left(\frac{n_i^{(\xi+\ell)/2-\tau}}{\sum_{i=1}^m n_i^\xi} \right)
\end{align*}
\]

uniformly over \(\theta \in \Theta_\gamma\). Further, by (A.7) and Lemma 2 (iii), we have

\[
\begin{align*}
h_{i,k}^* & = \left(\theta_k z_{i,k}^* h_{i,k}^{-1} (\gamma, \theta) X_i(\alpha) \right) \left(\sum_{i=1}^m X_i(\alpha)' H_{i,k}^{-1} (\gamma, \theta) X_i(\alpha) \right)^{-1} \\
& \quad \times \left(\frac{X_i(\alpha)' h_{i,k}^{-1} (\gamma, \theta) z_{i,k}^*}{\sum_{i=1}^m n_i^\xi} \right) \\
& = \{ o(n_i^{(\xi+\ell)/2-\tau}) \}_{1 \times p(\alpha)} \left(T^{-1}(\alpha) + \{ o(n_i^{1}) \}_{p(\alpha) \times p(\alpha)} \right) \\
& \quad \times \left\{ o\left(\frac{n_i^{(\xi+\ell)/2-\tau}}{\sum_{i=1}^m n_i^\xi} \right) \right\}_{p(\alpha) \times 1} \\
& = o\left(\frac{n_i^{(\xi+\ell)/2-\tau}}{\sum_{i=1}^m n_i^\xi} \right)
\end{align*}
\]

uniformly over \(\theta \in \Theta_\gamma\). This completes the proof of Lemma 6 (i).

We now prove Lemma 6 (ii). For \(i, i^* = 1, \ldots, m, (\alpha, \gamma) \in A \times G\), \(k \in \gamma\) and \(k^* \notin \gamma\),

\[
\begin{align*}
\theta_k h_{i,k}^* & = \left(\theta_k z_{i,k}^* h_{i,k}^{-1} (\gamma, \theta) X_i(\alpha) \right) \left(\sum_{i=1}^m X_i(\alpha)' H_{i,k}^{-1} (\gamma, \theta) X_i(\alpha) \right)^{-1} \\
& \quad \times \left(\frac{X_i(\alpha)' h_{i,k}^{-1} (\gamma, \theta) z_{i,k}^*}{\sum_{i=1}^m n_i^\xi} \right) \\
& = \{ o(n_i^{(\xi+\ell)/2-\tau}) \}_{1 \times p(\alpha)} \left(T^{-1}(\alpha) + \{ o(n_i^{1}) \}_{p(\alpha) \times p(\alpha)} \right) \\
& \quad \times \left\{ o\left(\frac{n_i^{(\xi+\ell)/2-\tau}}{\sum_{i=1}^m n_i^\xi} \right) \right\}_{1 \times p(\alpha)} \\
& = o\left(\frac{n_i^{(\xi+\ell)/2-\tau}}{\sum_{i=1}^m n_i^\xi} \right)
\end{align*}
\]
uniformly over \(\theta \in \Theta_\gamma \), where the second equality follows from Lemma 2 (ii–(iii)) and (A.7). Similarly, by (A.7) and Lemma 2 (ii–(iii)), we have

\[
\begin{align*}
\hat{h}_{i,k} H^{-1}(\gamma, \theta) M(\alpha, \gamma; \theta) \hat{h}_{i,k}^* \\
= \left(\theta_k z_{i,k} H_{i,k}^{-1}(\gamma, \theta) X_i(\alpha) \right) \left(\sum_{i=1}^m X_i(\alpha)' H_{i,k}^{-1}(\gamma, \theta) X_i(\alpha) \right)^{-1} \\
\times \left(\frac{X_i(\alpha)' H_{i,k}^{-1}(\gamma, \theta) z_{i,k}^*}{\sum_{i=1}^m n_i^2} \right) \\
= \left\{ o(n_i^{(\ell+\ell)/2-\tau}) \right\}_{1 \times p(\alpha)} \left\{ T^{-1}(\alpha) + \{ o(n_{\gamma \min}^{-\tau}) \}_{p(\alpha) \times p(\alpha)} \right\} \{ O_p(1) \}_{p(\alpha) \times 1} \\
= o_p(n_i^{-\ell/2})
\end{align*}
\]

uniformly over \(\theta \in \Theta_\gamma \). This completes the proof of Lemma 6 (ii).

We now prove Lemma 6 (iii). For \((\alpha, \gamma) \in \mathcal{A} \times \mathcal{G}\) and \(k \in \gamma\),

\[
\begin{align*}
\theta_k \hat{h}_{i,k}^* H^{-1}(\gamma, \theta) M(\alpha, \gamma; \theta) \epsilon \\
= \left(\theta_k z_{i,k}^* H_{i,k}^{-1}(\gamma, \theta) X_i(\alpha) \right) \left(\sum_{i=1}^m X_i(\alpha)' H_{i,k}^{-1}(\gamma, \theta) X_i(\alpha) \right)^{-1} \\
\times \left(\frac{X_i(\alpha)' H_{i,k}^{-1}(\gamma, \theta) \epsilon_i}{\sum_{i=1}^m n_i^2} \right) \\
= \left\{ o(n_i^{(\ell+\ell)/2-\tau}) \right\}_{1 \times p(\alpha)} \left\{ T^{-1}(\alpha) + \{ o(n_{\gamma \min}^{-\tau}) \}_{p(\alpha) \times p(\alpha)} \right\} \{ O_p(1) \}_{p(\alpha) \times 1} \\
= o_p(n_i^{-\ell/2})
\end{align*}
\]

uniformly over \(\theta \in \Theta_\gamma \), where the second equality follows from (A.7), Lemma 2 (iii), and Lemma 4 (iii). Similarly, by (A.7), Lemma 2 (iii), and Lemma 4 (iii), we have

\[
\begin{align*}
\hat{h}_{i,k} H^{-1}(\gamma, \theta) M(\alpha, \gamma; \theta) \epsilon \\
= \left(\frac{z_{i,k}^* H_{i,k}^{-1}(\gamma, \theta) X_i(\alpha)}{\sum_{i=1}^m n_i^2} \right)^{1/2} \left(\sum_{i=1}^m X_i(\alpha)' H_{i,k}^{-1}(\gamma, \theta) X_i(\alpha) \right)^{-1} \\
\times \left(\frac{X_i(\alpha)' H_{i,k}^{-1}(\gamma, \theta) \epsilon_i}{\sum_{i=1}^m n_i^2} \right)^{1/2} \\
= \left\{ o(n_i^{(\ell+\ell)/2-\tau}) \right\}_{1 \times p(\alpha)} \left\{ T^{-1}(\alpha) + \{ o(n_{\gamma \min}^{-\tau}) \}_{p(\alpha) \times p(\alpha)} \right\} \{ O_p(1) \}_{p(\alpha) \times 1} \\
= o_p(n_i^{-\ell/2})
\end{align*}
\]

uniformly over \(\theta \in \Theta_\gamma \). This completes the proof of Lemma 6 (iii).
We now prove Lemma 6 (iv). For \((\alpha, \gamma) \in (A \setminus A_0) \times G, k \in \gamma,\)

\[
\theta_k h^i_{i,k} H^{-1}(\gamma, \theta) M(\alpha, \gamma; \theta) X(\omega_k \setminus \alpha) \beta(\omega_0 \setminus \alpha) \\
= \left(\theta_k z^i_{i,k} H^{-1}(\gamma, \theta) X_i(\alpha) \right) \left(\sum_{i=1}^{m} X_i(\alpha)' H^{-1}_i(\gamma, \theta) X_i(\alpha) \right)^{-1} \\
\times \left(\sum_{i=1}^{m} \sum_{j \in \omega_k \setminus \alpha} X_i(\alpha)' H^{-1}_i(\gamma, \theta) x_{i,j} \beta, 0 \right) \\
= \{o(n_1(\xi + \ell)/2 - \tau)\}_1 \times (\alpha) \left\{ T^{-1}(\alpha) + \{o(n_{\text{min}}^-)\}_1 \times (\alpha) \} \{o(n_{\text{min}}^-)\}_1 \times (\alpha) \right\} \\
= o_p(n_1(\xi + \ell)/2 - \tau)
\]

uniformly over \(\theta \in \Theta_\gamma,\) where the second equality follows from (A.7), Lemma 2 (i), and Lemma 2 (iii). Similarly, by (A.7) and Lemma 2 (i) and (iii), we have

\[
h^i_{i,k} H^{-1}(\gamma, \theta) M(\alpha, \gamma; \theta) X(\omega_k \setminus \alpha) \beta(\omega_0 \setminus \alpha) \\
= \left(\theta_k z^i_{i,k} H^{-1}(\gamma, \theta) X_i(\alpha) \right) \left(\sum_{i=1}^{m} X_i(\alpha)' H^{-1}_i(\gamma, \theta) X_i(\alpha) \right)^{-1} \\
\times \left(\sum_{i=1}^{m} \sum_{j \in \omega_0 \setminus \alpha} X_i(\alpha)' H^{-1}_i(\gamma, \theta) x_{i,j} \beta, 0 \right) \\
= \{o(n_1(\xi + \ell)/2 - \tau)\}_1 \times (\alpha) \left\{ T^{-1}(\alpha) + \{o(n_{\text{min}}^-)\}_1 \times (\alpha) \} \{o(n_{\text{min}}^-)\}_1 \times (\alpha) \right\} \\
= o_p(n_1(\xi + \ell)/2 - \tau)
\]

uniformly over \(\theta \in \Theta_\gamma.\) This completes the proof of Lemma 6 (iv).

We now prove Lemma 6 (v). For \((\alpha, \gamma) \in A \times G,\) we have

\[
e^i H^{-1}(\gamma, \theta) M(\alpha, \gamma; \theta) e^i \\
= \left(\sum_{i=1}^{m} e^i_{i,k} H^{-1}_i(\gamma, \theta) X_i(\alpha) \right) \left(\sum_{i=1}^{m} X_i(\alpha)' H^{-1}_i(\gamma, \theta) X_i(\alpha) \right)^{-1} \\
\times \left(\sum_{i=1}^{m} X_i(\alpha)' H^{-1}_i(\gamma, \theta) e^i \right) \\
= \{O_p(1)\}_1 \times (\alpha) \left\{ T^{-1}(\alpha) + \{o(n_{\text{min}}^-)\}_1 \times (\alpha) \} \{O_p(1)\}_1 \times (\alpha) \right\} \\
= O_p(\alpha)
\]

uniformly over \(\theta \in \Theta_\gamma,\) where the second equality follows from (A.7) and Lemma 4 (iii). This completes the proof of Lemma 6 (v).
We now prove Lemma 6 (vii). For \((\alpha, \gamma) \in \mathcal{A} \times \mathcal{G}\) and \(k \neq \gamma\), we have

\[
\begin{align*}
& h_{i,k} H^{-1}(\gamma, \theta) M(\alpha, \gamma; \theta) \epsilon \\
& = \left(z_{i,k}^T H^{-1}(\gamma, \theta) X_i(\alpha) \right) \left(\sum_{i=1}^m X_i(\alpha)^T H^{-1}(\gamma, \theta) X_i(\alpha) \right)^{-1} \\
& \times \left(\sum_{i=1}^m \frac{X_i(\gamma)^T H_{i,-1}^{-1}(\gamma, \theta) x_i}{n_k} \right) \\
& = \left\{ o\left(\frac{n_i^{\xi / 2}}{\xi} \right) \right\} \left\{ o\left(\frac{n_i^{-\tau}}{\tau} \right) \right\} \left\{ o\left(\frac{n_i^{\xi}}{\xi} \right) \right\} \left\{ o\left(\frac{n_i}{\tau} \right) \right\} \\
& = o_p\left(\frac{n_i^{\xi / 2}}{\xi} \right)
\end{align*}
\]
uniformly over \(\theta \in \Theta_n\), where the second equality follows from (A.7), Lemma 2 (ii), and Lemma 4 (iii). This completes the proof of Lemma 6 (vii).

We now prove Lemma 6 (viii). For \((\alpha, \gamma) \in (\mathcal{A} \setminus \mathcal{A}_0) \times \mathcal{G}\), we have

\[
\begin{align*}
e^{-T}(\gamma, \theta) M(\alpha, \gamma; \theta) X(\alpha) & = \left(\sum_{i=1}^m \frac{X_i(\alpha)'^T H^{-1}(\gamma, \theta) X_i(\alpha)}{n_k} \right)^{-1} \\
& \times \left(\sum_{i=1}^m \sum_{j \in \mathcal{A}_0 \setminus \mathcal{A}_0} X_i(\alpha)'^T H_{i,-1}^{-1}(\gamma, \theta) x_i, j \beta_j \theta \right) \\
& = \left\{ o_p\left(\frac{1}{\xi} \right) \right\} \left\{ o\left(\frac{n_i^{\xi / 2}}{\xi} \right) \right\} \left\{ o\left(\frac{n_i^{-\tau}}{\tau} \right) \right\} \left\{ o\left(\frac{n_i^{\xi}}{\xi} \right) \right\} \left\{ o\left(\frac{n_i}{\tau} \right) \right\} \\
& = o_p\left(\frac{1}{\xi} \right)
\end{align*}
\]
uniformly over \(\theta \in \Theta_n\), where the second equality follows from (A.7), Lemma 2 (i), and Lemma 4 (iii). This completes the proof of Lemma 6 (vii).

We now prove Lemma 6 (viii). For \(i, i^* = 1, \ldots, m\), \((\alpha, \gamma) \in \mathcal{A} \times \mathcal{G}\) and \(k, k^* \neq \gamma\), we have

\[
\begin{align*}
h_{i,k} H^{-1}(\gamma, \theta) M(\alpha, \gamma; \theta) h_{i^*, k^*} & = \left(z_{i,k}^T H_{i,-1}^{-1}(\gamma, \theta) X_i(\alpha) \right) \left(\sum_{i=1}^m \frac{X_i(\alpha)'^T H_{i,-1}^{-1}(\gamma, \theta) X_i(\alpha)}{n_k} \right)^{-1} \\
& \times \left(\frac{X_{i^*}(\gamma)'^T H_{i^*, -1}^{-1}(\gamma, \theta) x_{i^*, k^*}}{n_{i^*}} \right) \\
& = \left\{ o\left(\frac{n_i^{\xi / 2}}{\xi} \right) \right\} \left\{ o\left(\frac{n_i^{-\tau}}{\tau} \right) \right\} \left\{ o\left(\frac{n_i^{\xi / 2}}{\xi} \right) \right\} \left\{ o\left(\frac{n_i^{\xi / 2}}{\xi} \right) \right\} \left\{ o\left(\frac{n_i^{-\tau}}{\tau} \right) \right\} \\
& = o_p\left(\frac{n_i^{\xi / 2}}{\xi} \right)
\end{align*}
\]
uniformly over \(\theta \in \Theta_n\), where the second equality follows from (A.7) and Lemma 2 (ii). This completes the proof of Lemma 6 (viii).
We now prove Lemma 6 (ix). For \((\alpha, \gamma) \in (A \setminus A_0) \times G\), \(k \notin \gamma\), we have

\[
\begin{align*}
 h_{i,k}' H_i^{-1}(\gamma, \theta) M(\alpha, \gamma; \theta) X(\alpha \setminus \alpha) \beta(\alpha \setminus \alpha) \\
 &= (z_{i,k}' H_i^{-1}(\gamma, \theta) X_i(\alpha)) \left(\sum_{i=1}^m X_i(\alpha)' H_i^{-1}(\gamma, \theta) X_i(\alpha) \right)^{-1} \\
 &\quad \times \left(\sum_{i=1}^m \sum_{j \in \alpha \setminus \alpha} X_i(\alpha)' H_i^{-1}(\gamma, \theta) x_{i,j} \beta_{i,j} \right) \\
 &= \left\{ o(n_1^\xi/2^{-\tau}) \right\}_1 \times (T^{-1}(\alpha) + \{ o(n_{min}^-) \} p(\alpha) \times p(\alpha)) \\
 &\quad \times \{ o(n_{min}^-) \} p(\alpha) \times 1 \\
 &= o(n_1^\xi/2^{-\tau}) \}
\end{align*}
\]

uniformly over \(\theta \in \Theta_\gamma\), where the second equality follows from (A.7) and Lemma 2 (i)–(ii). This completes the proof of Lemma 6 (ix).

We finally prove Lemma 6 (x). For \((\alpha, \gamma) \in (A \setminus A_0) \times G\), we have

\[
\begin{align*}
 \beta(\alpha \setminus \alpha)' X(\alpha \setminus \alpha)' H_i^{-1}(\gamma, \theta) M(\alpha, \gamma; \theta) X(\alpha \setminus \alpha) \beta(\alpha \setminus \alpha) \\
 &= \left(\sum_{i=1}^m \sum_{j \in \alpha \setminus \alpha} \beta_{i,j} x_{i,j}' H_i^{-1}(\gamma, \theta) X_i(\alpha) \right) \left(\sum_{i=1}^m X_i(\alpha)' H_i^{-1}(\gamma, \theta) X_i(\alpha) \right)^{-1} \\
 &\quad \times \left(\sum_{i=1}^m \sum_{j \in \alpha \setminus \alpha} X_i(\alpha)' H_i^{-1}(\gamma, \theta) x_{i,j} \beta_{i,j} \right) \\
 &= \left\{ o\left(\sum_{i=1}^m n_1^{-\xi-\tau} \right) \right\}_1 \times (T^{-1}(\alpha) + \{ o(n_{min}^-) \} p(\alpha) \times p(\alpha)) \times \{ o(n_{min}^-) \} p(\alpha) \times 1 \\
 &= o\left(\sum_{i=1}^m n_1^{-\xi-\tau} \right)
\end{align*}
\]

uniformly over \(\theta \in \Theta_\gamma\), where the second equality follows from (A.7) and Lemma 2 (i). This completes the proof.