WHERE DO THEY GO? YEAR-ROUND MOVEMENTS REVEAL A SHIFT IN THE DISTRIBUTION OF SOUTHERN GIANT PETRELS DURING WINTER

Lucas Krüger1*, Elisa de Souza Petersen2 & Maria Virginia Petry3

1MARE - Centro do Mar e Ambiente, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, 3004-517 Coimbra, Portugal.
2Laboratório de Química Inorgânica Marinha, Instituto Oceanográfico da Universidade de São Paulo, Praça do Oceanográfico, 191, Cidade Universitária, 05508-120, São Paulo, Brasil.
3Universidade do Vale do Rio dos Sinos – UNISINOS, Laboratório de Ornitologia e Animais Marinhs, Av.Unisinos, 950, CristoRei, 93.022-000, São Leopoldo, Rio Grande do Sul, Brasil.

*e-mail: biokruger@gmail.com
https://doi.org/10.4322/apa.2016.004

Abstract: We aimed to evaluate the year-round distribution of an Antarctic population of the Southern Giant Petrel Macronectes giganteus. Twelve BAS MK9 geolocators were recovered in November 2011 from animals tagged in January 2011. We applied month Fixed Kernel Densities and compared the geographical positions of individuals between breeding and non-breeding periods. During breeding, petrels remained predominantly above the 60ºS parallel, but during the non-breeding period they used mostly the areas below 60ºS, with many individuals using the coat of Argentina, west of Falkland Islands. The results are exciting in the sense that now the information on where the Southern Giant Petrels spend the winter will allow the understanding of the influences of climate and fisheries over the population dynamics.

Keywords: Geolocation, Migration, Seabird Tracking, Year-Round Distribution.

Introduction

Home ranges of seabirds are very large over their entire annual cycle, but they may vary differently during breeding and non-breeding periods (Birdlife International, 2004). Areas vary according to the resource needs during such periods. The movements and foraging behavior of sub-Antarctic populations of the Southern Giant Petrel Macronectes giganteus is poorly known (González-Solís et al., 2008; Copello et al., 2011), although some information about movements of Antarctic populations exist. Southern Giant Petrels that breed in sub-Antarctic islands do not tend to disperse from breeding foraging areas, but clear variations in movements at-sea are apparent during incubation, hatching and chick rearing periods (González-Solís et al., 2008; Copello et al., 2011). Immature Southern Giant Petrels banded in Antarctic (Sander et al., 2010) have been recovered in most south hemisphere continents, at distances far wide from breeding grounds. However, no evaluation of movements of adults from Antarctic populations exists so far. Our objective is to investigate the year-round distribution of adult Southern Giant Petrels that use an Antarctic Island as breeding area.

Materials and Methods

The study was conducted in Stinker Point, at Elephant Island, maritime Antarctic Peninsula (61°13'20.5"S, 55°21'35"W). We tagged 20 birds with British Antarctic Survey (BAS) MK9 geolocators at the nests in January 2011. Tags were recovered (n=12) in November, in the same year. Geographical data from geolocators were processed using BAS Track Package. Points were excluded when the estimated velocity of the animal was above 45 km/h, as well as points one week pre- and post-equinoxes. We calculated month Fixed Kernel Density to evaluate the habitat used by the population in ArcGIS 9.3. The search radius
was 2.5° and the cell size was set to 0.05°. We compared geographic position among individuals and among breeding and non-breeding periods and the interaction between individuals and periods through factorial ANOVA assuming significance at $p<0.05$. Latitudinal and longitudinal positions presented Gaussian distribution.

Results

Year-round distribution of Southern Giant Petrels covered three core areas: the extreme north of Antarctic Peninsula, south of the Elephant Island; the edge of the Antarctic zone, north of the Elephant Island; and the area between Falkland Islands and south Argentina coastal waters. Distribution varied over the year, but Petrels always foraged preferentially above the 60°S parallel during the breeding period (from October to March). During the non-breeding period (from April to September), they used predominantly waters below 60°S, with many birds using Argentina Coastal waters (Figure 1).

There were significant differences in the latitude and longitude among individuals (Longitude $F_{7,3059} = 51.6$, $p<0.001$; Latitude $F_{7,3059} = 7.5$, $p<0.001$), between breeding and non-breeding periods (Longitude $F_{1,3075} = 466.3$, $p<0.001$; Latitude $F_{1,3075} = 960.8$, $p<0.001$) and a significant

![Figure 1. Month Fixed Kernel Density for Southern Giant Petrels recovered in late November at Striker Point.](image-url)
interaction between period and individuals for longitude ($F_{3,3059} = 41.1, p < 0.001$) and latitude ($F_{3,3059} = 18.5, p < 0.001$). During the breeding period, most of the individuals were concentrated between 60°S-65°S and 53°W-56°W (with the exception of the individual 924) (Figure 2). During the non-breeding period, most of the individuals moved north and west, with the exception of the individual 938 that moved east (Figure 2).

Discussion and Conclusion

As expected for a pelagic large seabird, the Stinker Point Southern Giant Petrel population presented a large year-round home range, despite this is not as large as one could suppose at a first when inferring adult movements based on immature band recovery (Sander et al., 2010). In the other hand, the comparison of the present study with Gonzáles-Solís et al. (2008) findings showed similar trends of foraging near breeding colonies during egg laying and incubation (October/November), hatching and rearing periods (January/February) followed by a northward dispersion during the non-breeding period. At the end of the breeding season (March), the Petrels moved to high latitudes just before moving to wintering grounds. This trend was also verified in populations of Cory’s Shearwater in the North Atlantic, which moved north in direction of the Arctic waters, before moving south. However, in the case of Cory’s Shearwaters, individuals move farther distances than the Giant Petrels (Catry et al., 2011). Authors believe this is explained by a pre-migration behaviour when seabirds recover physical conditions in highly productive waters before starting long travels over low productive waters. Such trend, although plausible for Giant Petrels, still needs to be empirically tested. However, during the non-breeding period, part of the population dispersed northwards, to the coast of Argentina, and part remained near the Antarctic border, probably by the ice-edges.

The present results are extremely important because they allow us to evaluate how climate, productivity and fisheries on wintering areas are affecting the population dynamics at Stinker Point. Particularly, understanding how climate change affects the behaviour of birds is of interest because the increase of the Stinker Point population is somehow related to an increase in the temperature (Krüger et al., 2012). Fisheries are usually intense at productive waters of Argentina coast, especially during the months in which

![Figure 2. Mean (± SE), Latitudinal (Top) and Longitudinal (Bottom) position of each Tagged Southern Giant Petrel during the breeding (B) and non-breeding (NB) period.](image-url)
Southern Giant Petrels use the region. This may lead to competition for resources with fisheries, or may cause Southern Giant Petrels to be caught on fishing gears.

Acknowledgement

This work is part of the National Institute of Science and Technology for Antarctic Environmental Research (INCT-APA) that receives scientific and financial support from the National Council for Research and Development (CNPq process: n° 574018/2008-5) and from the Carlos Chagas Research Support Foundation of the State of Rio de Janeiro (FAPERJ n° E-16/170.023/2008). The authors also acknowledge the support of the Brazilian Ministry of Science, Technology and Innovation (MCTI), Ministry of Environment (MMA) and Inter-Ministry Commission for Sea Resources (CIRM).

References

BirdLife International. (2004). Tracking ocean wanderers: the global distribution of albatrosses and petrels. In Results from the Global Procellariiform Tracking Workshop. Cambridge: BirdLife International. 116 p.

Catry, P., Dias, M. P., Phillips, R. A., & Granadeiro, J. P. (2011). Different means to the same end: long-distance migrant seabirds from two colonies differ in behavior, despite common wintering grounds. PLoS One, 6, e26079.

Copello, S., Dogliotti, A. I., Gagliardini, D. A., & Quintana, F. (2011). Oceanographic and biological landscapes used by Southern Giant Petrel during the breeding season at the Patagonian Shelf. Marine Biology, 158, 1247-1257.

González-Solis, J., Croxall, J. P., & Afanasyev, V. (2008). Offshore spatial segregation in giant petrels Macronectes spp.: differences between species, sexes and seasons. Aquatic Conservation, 17, S22-S23.

Krüger, L., Sander, M., & Petry, M. V. (2012). Responses of an Antarctic Southern Giant Petrel Population to Climate Change. In Y.Y. Valentin, A. G. Dalto & H. P. Lavrado. Annual Activity Report of National Institute for Science and Technology Antarctic Environmental Research (Pp 75-79). São Carlos: Cubo

Sander, M., Garcia, S. A., Carneiro, A. P. B., Cristófoli, S. I., & Polito, M. J. (2010). Band recoveries and juvenile dispersal of Southern Giant Petrels Macronectes giganteus marked as chicks in Antarctica by the Brazilian Antarctic Program (1984-1993). Marine Ornithology, 38, 119-124.