Delineation of aquifer potential zones using hydraulic parameters in Gombe and environs, North-Eastern, Nigeria

I.A. Kwami a,*, J.M. Ishaku b, S. Mukkafa c, A.I. Harun d, B.A. Ankidawa e

a Department of Geology, Gombe State University, P.M.B.0127, Gombe, Nigeria
b Department of Geology, School of Physical Sciences, Modibbo Adama University of Technology, P.M.B 2076, Yola, Nigeria
c Department of Environmental Management and Toxicology, Federal University Dutse, P.M.B 7156, Dutse, Jigawa State, Nigeria
d Department of Applied Geology, Faculty of Science, Abubakar Tafawa Balewa University, Bauchi, Nigeria
e Department of Agricultural and Environmental Engineering, School of Engineering and Engineering Technology, Modibbo Adama University of Technology, P.M.B 2076, Yola, Nigeria

ARTICLE INFO

Keywords:
Hydrology
Dar Zarrouk
Gombe
Aquifer potentials
Hydraulic parameters
Groundwater

ABSTRACT

This research is aimed at delineating the groundwater potential zones in Gombe and environs using Dar Zarrouk parameters. The study area is located within longitudes 11°7′0″E to 11°14′0″E, and latitudes 10°15′0″N to 10°21′0″N, it is basically underlain by basement Complex rocks represented by Diorite and Granites, and Cretaceous sedimentary rocks represented by Bima, Yolde, Fika and Gombe Formations. Thirty two (32) vertical electric soundings (VES) using Schlumberger array method with the aid of ABEM Signal Averaging System (SAS) Terrameter was used for the data acquisition. The result of the interpretation shows four to six geo-electric layers. The geo-electric section revealed the major aquifers to be confined and semi confined and consist of Medium grain sandstones, with varying thicknesses. The aquifer hydraulic characteristics indicated that the transverse resistance, ranges from 235.2 Ωm² to 6317.87 Ωm² with an average value of 1789.50 Ωm². The Longitudinal conductance, S, ranges from 0.1415 Ωm to 31.933 Ωm with an average of 2.002 Ωm. The Hydraulic conductivity value range from 2.62m/day to 138.66 m/day with a mean value of 20.662 m/day. The transmissivity values obtained for the various layers range from 78.34 m²/day to 13284.02m²/day, with the average value been 893.57 m²/day. Four groundwater potential zones were delineated including medium grain sandstones, Sandstones, clayey sand and shaly sand.

1. Introduction

Increased demands for water by the world’s fast-growing population have stimulated the need to identify and establish the source of safe drinking water. Groundwater is that water found within the saturated voids beneath the ground (Abdulrahman et al., 2017). The source of groundwater is chiefly from precipitating atmospheric moisture which has percolated down into the soil and subsoil layers (Kwami et al., 2018).

The availability, quantity, and exploitability of groundwater depend on the porosity and permeability of the host rocks. Both parameters play important roles in ground water movement and recovery. The porosity of a geologic material is the amount of water (fluid) the material can hold. It is the volume ratio of the pore spaces to the total volume of soil, rock or sediment (Obiora et al., 2015). Geophysical investigations provide a rapid and cost-effective means of acquiring information on subsurface hydrogeology (Helaly, 2017). The application of electrical resistivity survey method using vertical electrical sounding was applied for the purpose of this research. Vertical electrical sounding is a geo-electrical method commonly used to measure vertical alterations of electrical resistivity. This method has been recognized to be more suitable for a hydro-geological survey of sedimentary basins than the other resistivity methods (Chambers et al., 2013).

The Dar Zarrouk Parameters derived from primary parameters (layer resistivity, and thickness) surface geo-electric soundings have proven to be important in understanding the spatial distribution of aquifer hydraulic parameters. Maillet (1947) first introduced the concept of Dar Zarrouk parameters, when the thickness and resistivity of subsurface layer is known, its transverse resistance and longitudinal conductance can be estimated. Nwosu et al., 2014 derived analytical relations between aquifer transmissivity and transverse resistance. Also, Heigold et al.
established the association of aquifer hydraulic conductivity with resistivity measurements.

2. Study area

The study area is located in Gombe State North eastern part of Nigeria, between longitudes 11°7′0″E to 11°14′0″E and latitudes 10°15′0″N to 10°21′0″N of the equator of the Greenwich meridian (Fig. 1). The topography of the area is generally hilly with some parts having elevations more than the other surroundings. The elevation of the study area ranges from about 400m to 600m above sea level and falls within the Upper Benue Basin. The outcrops generally consist of rocks which are made up of sandstones. Surface drainage systems in the study area comprises of numerous streams channels flowing in the direction of the river basin towards the southeast. The climatic condition in the study area is characterized by two seasons; a rainy season, which starts in May
Fig. 2. Geologic map of the study area (modified from Zaborski et al., 1997).
Table 1
Geoelectric parameters, lithologic delineation and aquifer systems in the study area.

VES No.	Location	Coordinates & Elevations	Layer No.	Resistivity (ohm-m)	Thickness (m)	Inferred Lithology	Curve Type	Aquifer System
VES01 METTAKO	N10° 15'50.7" E 11° 09'31.5"	ELEV. 477m	1	34.8	2.5	Clayey Top Soil	HKH	Medium Grained
			2	14.0	14.0	Clay	Sand	
			3	70.9	34.7	Radish Brown Sand		
			4	27.3	20.2	Medium Grained Sand		
			5	64.5	...	Clay		
VES02 JAURO ABDUL PANTAMI	N10° 16'26.5" E 11° 09'57.4"	ELEV. 462m	1	35.2	2.3	Clayey Sand Top Soil	KHK	Medium Grained
			2	119.9	12.0	Radish Brown Sand	Sand	
			3	47.1	37.1	Sandy Shale		
			4	55.1	16.6	Medium Grained Sand	Stone	
			5	242	...	Compacted Sand Stone		
VES03 JEKADAFARI JANKAI	N10° 15'25.77" E 11° 09'41.5"	ELEV. 485m	1	8.0	10	Clayey Top Soil	QH	Silty Sand
			2	41.3	11.0	Clayey Sand		
			3	89.5	51.9	Silty Sand		
			4	47.3	...	Clay		
VES04 GALDIMARI AREA II	N10° 15'25.77" E 11° 11'33.7"	ELEV. 432m	1	79.2	2.2	Sandy Top Soil	HKH	Silty Sand
			2	15.7	6.8	Clay		
			3	54.5	22.2	Sandy Clay		
			4	17.7	22.6	Silty Sand		
			5	21.4	...	Sand Stone		
VES05 BY PASS BARUNDE	N10° 15'50.2" E 11° 10'52.4"	ELEV. 435m	1	32.4	2.9	Clayey Top Soil	HKH	Medium Grained
			2	4.2	4.3	Clay	Sand	
			3	67.7	23.5	Radish Brown Sand		
			4	125	60.5	Medium Grained Sand		
			5	16.8	...	Clayey Sand		
VES06 AJIYA I	N10° 17'35" E 11° 10'32" ELEV. 450m		1	29.0	2.1	Clayey Top Soil	HKH	Medium Grained
			2	3.8	7.3	Clay		Sand Stone
			3	490.6	63.1	Silty/Sand Sand Stone		
			4	59.9	19.3	Medium Grained Sand Stone		
			5	171.0	...	Sand Stone		
VES07 AJIYA II	N10° 17'42.2" E 11° 10'7.4"	ELEV. 469m	1	11.0	12.8	Clayey Top Soil	HKH	Medium Grained
			2	53.7	10.0	Clayey Sand	Sand	Stone
			3	93.5	36.4	Silty Sand		
			4	22.5	28.3	Medium Grained Sand Stone		
			5	42.5	...	Clay		
VES08 KASUWAN KATAKO	N10° 16'52" E 11° 11'25" ELEV. 432m		1	8.4	5.3	Clayey Top Soil	HKH	Medium Grained
			2	219.9	19.0	Compacted Sand Stone	Sand	Stone
			3	37.1	28.9	Sand Stone		
			4	20.8	15.8	Medium Grained Sand Stone		
			5	38.1	...	Sandy Silt		
VES09 NEAR SPECIAL EDUCATION CENTRE	N10° 18'15.2" E 11° 09'29.3"	ELEV. 505m	1	84.8	0.7	Lateritic Top Soil	HKH	Medium Grained
			2	39.6	2.3	Clayey Sand	Sand	Stone
			3	114.1	7.2	Sand Stone		
			4	72.4	22.8	Medium Grained Sand Stone		
			5	131.3	...	Sand Stone		
VES10 NEAR TASHAN GONA	N10° 17'05.2" E 11° 09'24.1"	ELEV. 491m	1	69.5	2.3	Sandy Top Soil	HKH	Medium Grained
			2	7.7	10.5	Clay	Sand	Stone
			3	21.2	24.7	Clayey Sand		
			4	17.0	28.7	Medium Grained Sand Stone		
			5	23.7	...	Clay		
VES11 MALAMKURI	N10° 16'15.8" E 11° 10'07.2"	ELEV. 459m	1	89.5	1.2	Sandy Top Soil	HKH	Medium Grained
			2	11.3	17.2	Clayey Sand	Sand	Stone
			3	106.4	31.8	Silty Sand		
			4	46.6	19.1	Medium Grained Sand Stone		
			5	104.0	...	Sand Stone		
VES12 GABUIKKA PRL. SCH.	N10° 16'19.05" E 11° 09'49.21"	ELEV. 468m	1	15.1	2.4	Clayey Top Soil	HKH	Shale Sand
			2	2.0	5.0	Clay		
			3	42.3	33.8	Clayey Sand		
			4	14.6	34.3	Shale Sand		
			5	17.6	...	Clayey Shale		
VES13 RAFINSANYI	N10° 16'52.1" E 11° 10'44.1"	ELEV. 442m	1	80.7	4.6	Sandy Top Soil	HKH	Medium Grained
			2	15.7	9.5	Clay	Sand	Stone
			3	10.4	18.7	Clayey Sand		
			4	20.2	13.8	Medium Grained Sand Stone		
			5	57.8	...	Clayey Sand		

(continued on next page)
No.	Location	Coordinates & Elevations	Layer No.	Resistivity (ohm-m)	Thickness (m)	Inferred Lithology	Curve Type	Aquifer System
VES14	KUMBIYA KUMBIYA	E11°10'04.93" E 11°10'11.66" ELEV. 458m	1	32.7	2.9	Clayey Sand, Top Soil HKH	Medium Grained	Sand Stone
			2	12.8	12.6	Clay		
			3	48.1	41.4	Shale Intercalation		
			4	18.6	24.4	Medium Grained Sand Stone		
			5	41.8	...	Sand Stone		
VES15	OPP. ALH. MANGA HOUSE	E11°10'38.0" ELEV. 442m	1	56.6	1.6	Sandy Top Soil QOQ	Shale Sand	
			2	11.2	38.9	Clay		
			3	10.6	14.8	Shale		
			4	8.0	29.4	Clayey Sand		
			5	23.2	...	Sandey Shale		
VES16	ARAWA	E11°10'34.7" ELEV. 442m	1	27.8	6.8	Clayey Top Soil HKH	Medium Grained	Sand Stone
			2	17.4	14.7	Clay		
			3	64.7	42.3	Clayey silt		
			4	24.4	22.4	Medium Grained Sand Stone		
			5	54.8	...	Sand Stone		
VES17	GSU ZOO	E11°10'32.72" ELEV. 444m	1	91.0	5.9	Sandy Top Soil HKH	Medium Grained	Sand Stone
			2	29.2	8.1	Clayey Sand		
			3	215.9	22.8	Compacted Sand Stone		
			4	39.0	35.0	Medium Grained Sand Stone		
			5	62.6	...	Sand Stone		
VES18	YALANGURUZA	E11°10'42.39" ELEV. 417m	1	31.8	1.3	Top Soil, Sandy Clay HKH	Sandstone	
			2	3.7	16.1	Clay		
			3	177.6	107.5	Sandy Clay Intercalation		
			4	16.5	24.2	Shale		
			5	36.1	...	Sandstone		
VES19	NEAR UBAN DOMA HOUSE	E11°10'39.55" ELEV. 427m	1	20.0	5.8	Clayey Top Soil HKH	Silty Sand	
			2	5.3	10.6	Clay		
			3	154.3	56.8	Sandy Clay		
			4	23.8	18.1	Silty Sand		
			5	59.3	...	Sandiclsine		
VES20	BAGADAZA	E11°10'39.55" ELEV. 427m	1	82.3	1.4	Sandy Top Soil HKH	Medium Grained	Sand
			2	13.5	5.5	Clay		
			3	192.1	28.4	Reddish Brown Sand		
			4	36.6	25.6	Medium Grained Sand Stone		
			5	76.2	...	Clay		
VES21	JAURO JINGI	E11°10'39.55" ELEV. 427m	1	40.1	3	Clayey Top Soil HKH	Shale sand	
			2	3.4	5.3	Clay		
			3	78.8	25.3	Silty Stone		
			4	18.2	37.9	Shaley sand		
			5	17	...	Shale		
VES22	NAYINAWA	E11°10'39.55" ELEV. 427m	1	241.4	1.4	Sandy Top Soil HKHA	Sandstone	
			2	34.6	2.8	Clayey Sand		
			3	300.9	11.7	Compacted Sand Stone		
			4	36.6	27.6	Shale		
			5	60.9	57.9	Sand Stone Intercalation		
VES23	NEW GRA	E11°10'39.55" ELEV. 427m	1	231.7	1.5	Lateritic Sand Top Soil HKH	Sandstone	
			2	45.3	28.0	Sandy Clay		
			3	233.4	75.2	Sand, Silt		
			4	61.6	18.7	Sand Stone		
			5	134.4	...	Sand Stone		
VES24	NEAR RUNDE	E11°10'39.55" ELEV. 427m	1	227.4	6.3	Sandy Top Soil HKH	Silty Sand	
			2	114.4	17.8	Radish Brown Sand		
			3	152.6	19.7	Sandy Clay		
			4	132.6	27.4	Silty Sand		
			5	212.0	...	Sand Stone		
VES25	LIJI	E11°10'39.55" ELEV. 390m	1	173.9	9.1	Sandy Top Soil HA	Silty Sand	
			2	54.7	23.5	Clayey Sand		
			3	111.8	39.1	Silty Sand		
			4	208	...	Sand Stone		
VES26	KABA	E11°10'39.55" ELEV. 463m	1	36.7	4.9	Clayey Top Soil HKH	Medium Grained	Sand Stone
			2	2.0	9.3	Clay		
			3	352.0	93	Compacted Sand Stone		
			4	46.3	25.6	Medium Grained Sand Stone		
			5	218.3	...	Sand Stone		
VES27	TUMPURE BASHAR	E11°10'39.55" ELEV. 504m	1	521.0	7.1	Top Soil Laterite HKQH	Sandstone	
			2	197.8	19.5	Lateritic Sand		
			3	475.5	80.3	Compacted Sand Stone		
			4	423.2	50.3	Compacted Sand Stone		
			5	211.3	29.9	Sand Stone Intercalation		

(continued on next page)
and ends in October and the dry season, which normally spans between October and April. Most of the streams are seasonal overflowing their banks during rainy season. The rainy season is the period when tropical maritime air mass travels northwards over the study area from the Gulf of Guinea.

The mean annual rainfall is 1015mm for Gombe where the study area is situated while the dry season is characterized by an arid wind or tropical continental air mass originating from the Sahara Desert. During the period, there is little cloud cover and the temperature ranges from 14°C–32°C. The study area is mainly classified as a Sudan savannah region, which is characterized by grasses, shrubs and trees with large trunks. The grasses dry and trees shade off their leaves during dry season and flourish again when wet season returns.

Table 1 (continued)	VES No.	Location	Coordinates & Elevations	Layer No.	Resistivity (ohm-m)	Thickness (m)	Inferred Lithology	Curve Type	Aquifer System
VES28 ZAGAINA	6	N10°19′15″ E 11°09′04″ ELEV. 502m	1	378.5	...	Compacted Sand Stone	HKH	Sandstone	
	2			95.1	8.2	Sandy Top Soil	HKH	Sandstone	
	3			280.2	38.5	Compacted Sand Stone	HKH	Sandstone	
	4			119.6	22.5	Sand Stone	HKH	Sandstone	
	5			270.8	...	Compacted Sand Stone	HKH	Sandstone	
VES29 ALKAHIRA	1	N10°20′50″ E 11°09′44″ ELEV. 478m	1	384.8	3.2	Top Soil Laterite	HKH	Sandstone	
	2			152.6	9.0	Sandy Clay	HKH	Sandstone	
	3			765.6	35.8	Loos Sand	HKH	Sandstone	
	4			105.2	54.3	Sand Stone	HKH	Sandstone	
	5			294.0	...	Compacted Sand Stone	HKH	Sandstone	
VES30 LEGISLATIVE QTRS	1	N10°17′18″ E 11°07′31″ ELEV. 596m	1	530.6	3.9	Top Soil Laterite	HKQH Silty Sand	Silty Sand	
	2			172.3	12.1	Lateritic Sand	HKQH Silty Sand	Silty Sand	
	3			631.6	38.9	Loos Sand	HKQH Silty Sand	Silty Sand	
	4			211.5	39.7	Sand Stone	HKQH Silty Sand	Silty Sand	
	5			84.4	58.8	Silty Sand	HKQH Silty Sand	Silty Sand	
	6			186.2	...	Shale	HKQH Silty Sand	Silty Sand	
VES31 BEHIND GRAVE YARD	1	N10°20′35″ E 11°08′12″ ELEV. 481m	1	316.2	14.6	Top Soil Laterite	AKQH Medium Grained Sand	Medium Grained Sand Stone	
	2			504.0	10.1	Compacted Lateritic Sand	AKQH Medium Grained Sand Stone		
	3			947.2	30.5	Loos Sand	AKQH Medium Grained Sand Stone		
	4			279.8	41.8	Sand Stone intercalation.	AKQH Medium Grained Sand Stone		
	5			75.7	68.3	Medium Grained Sand Stone	AKQH Medium Grained Sand Stone		
	6			253.0	...	Sand Stone	AKQH Medium Grained Sand Stone		
VES32 NASARAWO	1	N10°16′45″ E 11°13′04″ ELEV. 395m	1	26.3	1.3	Clayey Top Soil	HKQH Shaley sand	Shaley sand	
	2			4.7	4.4	Clay	HKQH Shaley sand	Shaley sand	
	3			100.1	14.9	Sandy Clay	HKQH Shaley sand	Shaley sand	
	4			16.7	17.9	Sandy Shale.	HKQH Shaley sand	Shaley sand	
	5			3.0	95.8	Shaley Sand	HKQH Shaley sand	Shaley sand	
	6			10.7	...	Shale	HKQH Shaley sand	Shaley sand	

![Fig. 3. Cross section along Profile A-A’](image)

I.A. Kwami et al. Heliyon 5 (2019) e01927
2.1. Geology of the research area

The study area is underlain by Pre Cambrian Basement Complex rocks and Cretaceous sediments. The basement Complex rocks are represented by Diorite and Granites while the Cretaceous sediments are represented by Bima, Yolde, Fika and Gombe Formations (Fig. 2). Studies indicate that the rocks in the area were subjected to a wide range of tectonic disturbances involving Faulting. The orientation of the fault is mainly trending NW-SE.

The cross section A-B (Fig. 2) indicates (in younging order), the area constituted Basement rocks, Bima Formations, Yolde Formation, Fika Shales and Gombe Formation.

The Bima Sandstone, a continental Formation, is the basal part of the sedimentary successions in the study area. It lies unconformably on the
Table 2
Aquifer parameters of the study area (Dar-zarrouk parameter).

VES No	Locations	Layer Resistivity	Layer Thickness	Aquifer Conductivity	Longitudinal Conductance	Transverse Resistance	Hydraulic Conductivity (m/day)	Transmissivity (m²/day)
1	METTAKO	27.3	20.2	0.036630037	0.73992674	551.46	17.67427124	357.0202791
2	JAURO ABUD	27.3	20.2	0.73992674	551.46	17.67427124	357.0202791	
3	JIKA	55.1	16.6	0.031814882	0.301207417	914.66	9.17991525	152.3865932
4	GALDIMALI AREA II	89.5	51.9	0.011173184	0.579888267	464.055	5.838725201	303.0298837
5	BY PASS BARUNDE	17.7	22.6	0.056497175	1.276836158	400.02	26.47930715	598.4097416
6	AJIYA I	12.5	60.5	0.08	4.84	756.25	36.62743871	2215.9606427
7	AJIYA II	59.9	19.3	0.031694491	0.32203673	1156.07	8.491805826	163.9918524
8	KASUWAN KATAKO	22.8	28.3	0.0444444444	1.25777778	636.75	21.61804253	599.0556035
9	NEAR SPECIAL	20.8	15.8	0.048076923	0.759615385	328.64	22.77760708	359.8861919

A total of 32 vertical electrical soundings were carried out (Fig. 1). The electrode configuration used for the work was Schlumberger array. Field data acquisition was carried out rapidly since it requires mainly the movement (adjustment) of the current electrodes. Electrodes were laid out with non-conducting measuring tapes. The field procedure consists of expanding the current electrodes ‘AB’ while keeping the potential electrodes ‘MN’ relatively fixed. For each reading, the current was sent into the ground through A and B which set up the measured potential difference between the potential electrodes M and N, the magnitude of the potential difference developed is a measure of the electrical resistance between probes. The resistance is in turn a function of the geometrical configuration of the electrodes and the electrical parameters of the ground (Dobrin, 1976). The electrode separation (AB/2) is varied from 1 to 300 m. The SAS 4000 Terrameter was positioned half way between the potential electrodes M and N, and was connected to terminals P1 and P2 and to terminals M and N. The current electrodes A and B was connected to terminals C1 and C2 respectively, these cables were run in parallel adjacent to the SAS 4000 Terrameter and was arranged symmetrically with respect to the potential electrodes.

3. Materials and methods

3.1. Resistivity sounding

A total of 32 vertical electrical soundings were carried out (Fig. 1). The electrode configuration used for the work was Schlumberger array. Field data acquisition was carried out rapidly since it requires mainly the movement (adjustment) of the current electrodes. Electrodes were laid out with non-conducting measuring tapes. The field procedure consists of expanding the current electrodes ‘AB’ while keeping the potential electrodes ‘MN’ relatively fixed. For each reading, the current was sent into the ground through A and B which set up the measured potential difference between the potential electrodes M and N, the magnitude of the potential difference developed is a measure of the electrical resistance between probes. The resistance is in turn a function of the geometrical configuration of the electrodes and the electrical parameters of the ground (Dobrin, 1976). The electrode separation (AB/2) is varied from 1 to 300 m. The SAS 4000 Terrameter was positioned half way between the potential electrodes M and N, and was connected to terminals P1 and P2 and to terminals M and N. The current electrodes A and B was connected to terminals C1 and C2 respectively, these cables were run in parallel adjacent to the SAS 4000 Terrameter and was arranged symmetrically with respect to the potential electrodes.

3.2. Hydraulic parameters

The term “Dar Zarrouk” was introduced into the literature on electrical prospecting by Maillet (1947) for describing a relationship between the longitudinal unit conductance (Eq. 1) and transverse resistance (Eq. 2).

\[S_i = \frac{h_i}{\pi i} \quad (1) \]

And the transverse unit resistance,

\[T_i = \frac{h_i}{\pi i} \quad (2) \]

Where \(\pi i \) and \(h_i \) are the electrical resistivity and thickness of the ith layer, respectively.

DZ (Dar Zarrouk) curve for an \(n \)-layer section is a plot of the DZ...
resistivity.

\[
P_{mj} = \sqrt[3]{\frac{\sum_{i=1}^{j} T_i \cdot \sum_{i=1}^{n} S_i}{\sum_{i=1}^{n} S_i}}
\quad (3)
\]

Against the DZ depth

\[
L_{mj} = \frac{\sum_{i=1}^{j} T_i \cdot \sum_{i=1}^{n} S_i}{\sum_{i=1}^{n} S_i}
\quad (4)
\]

An n-layer DZ curve is composed of n branches, each of which terminates at a point whose coordinates, \(L_m\) and \(P_m\), represent the thickness and resistivity of a fictitious layer that replaces all the overlying layers. According to Eqs. (3) and (4), the coordinates of any given point on a DZ curve are a function of the thicknesses and resistivities of layers that exist above a given depth, D, but they are not related to the thicknesses and resistivities of layers beneath that depth. In contrast, on a VES (vertical electrical sounding) curve, the coordinates of a given point are calculated from an integral expression (Stefanesco et al., 1930) that involves all the thicknesses and resistivities in the section, and, therefore, they are not related to a particular depth.

The longitudinal conductance \(S\) is a measure of the impermeability of a rock layer (Billing, 1972). Electrical anisotropy is a measure of stratified rock which is generally more conductive in the parallel plane than in the perpendicular plane (Malick et al., 1973; Cihan et al., 2014). For a sequence of horizontal, homogeneous and isotropic layers of resistivity \(\sigma_i\) and thickness \(h_i\), Eqs. (5) and (6) defined the Dar Zarrouk parameters (longitudinal conductance \(S\) and transverse resistance \(R_T\)) as follows:

\[
S = \frac{h_1}{\sigma_1} + \frac{h_2}{\sigma_2} + \frac{h_3}{\sigma_3} + \ldots + \frac{h_n}{\sigma_n} = \sum_{i=1}^{n} \frac{h_i}{\sigma_i}
\quad (5)
\]

\[
R_T = \frac{e_1 h_1 + e_2 h_2 + \ldots + e_n h_n}{\sum_{i=1}^{n} e_i h_i}
\quad (6)
\]

Eq. (7) shows the relationship between aquifer transmissivity, and longitudinal conductance as proposed by Todd (1980).

\[
T_r = K \cdot R_T = K h
\quad (7)
\]

Where \(T_r\) = Aquifer Transmissivity, \(K\) = Hydraulic Conductivity, \(\sigma\) = Electrical Conductivity (reciprocal of resistivity), \(R_T\) = Traverse Resistance, \(S\) = Longitudinal Conductance and \(h\) = Aquifer Thickness.

The Hydraulic conductivity \(K\) was determined using Eq. (8) as given by Heigold et al. (1979).

\[
K = 386.40 \cdot R_{rw}^{0.928}
\quad (8)
\]

Where, \(K\) is the hydraulic conductivity and \(R_{rw}\) is the aquifer resistivity (Resistivity of the inferred aquiferous layer from the interpreted curves).
4. Result and discussion

Geo-electric parameters are interpreted from geophysical (electrical) resistivity survey data. Interpretations of vertical electrical sounding data using WIN-Resist2 software lead to the generation of geo-electrical layers. The information from these geo-electric layers enhances the identification and interpretation of layer parameters which includes number of layers and their apparent resistivities, thicknesses, depth, curve type and aquifer systems (Table 1).

About 11 curve types were identified in the study area (Table 1). Ground water is known to accumulate in the interconnected pores spaces within the Lithologic units. The shape of the VES curves (Appendix I) depends on the thickness of each layer, the number of layers in the subsurface and the ratio of the resistivity of the layer. The geo-electric characteristics give the respective layer resistivity values and thickness. The section gives a maximum of 9 layers with varying resistivity and thicknesses across each VES point. The first layer (Top soil) which composed of soil, loose sand and clay has resistivities ranges from 8 Ωm to 530.6 Ωm, and thickness varying from 0.7m to 14.6m. The second layer is composed of clay, clayey sand and sand silt intercalation in some places. This layer is characterized with resistivity values varying from 2 Ωm to 504 Ωm with thickness varying between 2.3m to 38.9m, the third layer which composed of clay sandstone intercalation, sandy clay, sandy silt and medium grained sandstones in some areas is characterized by resistivity values ranging between 10.4 Ωm to 947.2Ωm and thickness between 7.2m to 107.2m.

The fourth layer consists of Silty Sand and mostly medium grain sandstone with resistivity values ranging from 8 Ωm to 423.2Ωm and thickness ranging from 13.8m to 60.5m whereas the fifth layer consist of also clay and mostly sandstones characterized with resistivity values from 3 Ωm to 394 Ωm and thickness 29.9m-95.8m, also the sixth layer which is mostly clay has resistivity ranging from 10.7 Ωm to 378.5 Ωm.

The aquifer system comprises mostly of Medium grain sandstone accounting for about 16 VES locations, Sandstone 6 VES, Shaly and 4 VES points, and Silty Sand 6 VES points. This is inferred due to the high porosity and permeability characteristics of these Lithologic Formations attributed to their resistivity values.

4.1. Delineation of aquifer systems

A cross section of 3 bore holes with some VES points in the study area were used to correlate the borehole lithologic sections with the inferred lithologies observed from the Vertical Electrical Sounding interpretations (Fig. 1, above).

The profile A-A’ (Fig. 3) along East-West trends of the study area encountered 1 borehole (BH2) and 3 VES points (VES01, VES20 and VES05). The Lithologic log of the bore hole was correlated with the geoelectric sections, the aquiferous layer (medium grain sandstone) show thickness ranging from 20.2m to 60m with an average of 32.2m (Fig. 3). The second layer of the borehole lithologic section (reddish-brown sand) with thickness of about 4m appear in the sections of VES01 and VES20 and VES05 as third layer with 34.7m, 28.4m and 23.5m thickness.
Table 4
Protective capacity rating of aquifers in the study area using Oladapo and Akintorinwa 2007 rating.

No.	VES locations	Longitudinal conductance	Protective capacity rating
1	METTAKO	0.73992674	Good
2	JAURO ABDUL PANTAMI	0.30127047	Moderate
3	JEKADAFARI JANKAI	0.57988828	Moderate
4	GALDIMARI AREA II	1.27486158	Good
5	BY PASS BARUNDE	4.84	Good
6	AJIYA I	0.32200367	Moderate
7	AJIYA II	1.25777777	Moderate
8	KASUWAN KATARIO	0.75961538	Good
9	NEAR SPECIAL EDUCATION CENTRE	0.31934712	Moderate
10	NEAR TASHIN GONA	1.68823592	Good
11	MALAMKURI	0.40987124	Moderate
12	GABUKKA PRL SCH.	2.34931568	Good
13	RAFINSANYI	0.63186837	Moderate
14	KUMBIYA KUMBIYA	1.31182704	Good
15	OPP. ALIJ. MANGA HOUSE	3.675	Good
16	ARAWA	0.91802278	Good
17	GSI ZOO	0.89743589	Good
18	YALANGURUZA	1.46666667	Good
19	NEAR UBAN DOMA HOUSE	0.76505020	Good
20	BAGADAZA	0.69453555	Moderate
21	JAURO JINGI	2.08241758	Good
22	NAYI NAWA	0.95073891	Good
23	NEW GRA	0.30357143	Moderate
24	NEAR RUNDLE	0.26666501	Moderate
25	LIJI	0.34973164	Moderate
26	KABA	0.55291576	Moderate
27	TUNFURE BASHAR	0.14150496	Weak
28	ZAGAIMA	0.18812704	Weak
29	ALKAHIRA	0.51615969	Moderate
30	LEGISLATIVE QUARTERS	0.69668246	Moderate
31	BEHIND GRAVE YARD	0.90224570	Good
32	NASARAWO	31.93333333	Excellent

Table 5
Inferred aquifer potential rating using Transmissivity values.

VES Locations	Transmissivity (m²/day)	Aquifer Potentials
METTAKO	357.020791	Moderate Potential
JAURO ABDUL PANTAMI	152.386593	Moderate Potential
JEKADAFARI JANKAI	303.029837	Moderate Potential
GALDIMARI AREA II	598.409716	High Potential
BY PASS BARUNDE	2215.960442	High Potential
AJIYA II	163.891852	Moderate Potential
AJIYA II	599.055603	High Potential
KASUWAN KATARIO	359.866199	High Potential
NEAR SPECIAL EDUCATION CENTRE	162.237796	High Potential
NEAR TASHIN GONA	789.076917	High Potentials
MALAMKURI	204.986212	Moderate Potential
GABUKKA PRL SCH.	1086.895932	High Potentials
RAFINSANYI	323.031865	Moderate Potential
KUMBIYA KUMBIYA	616.860816	High Potentials
OPP. ALIJ. MANGA HOUSE	1632.882804	High Potentials
ARAWA	439.628951	Moderate Potential
GSI ZOO	443.519138	Moderate Potential
YALANGURUZA	684.143076	High Potentials
NEAR UBAN DOMA HOUSE	363.562869	Moderate Potential
BAGADAZA	344.263924	Moderate Potential
JAURO JINGI	977.786270	High Potentials
NAYI NAWA	484.140856	Moderate Potential
NEW GRA	154.709428	Moderate Potential
NEAR RUNDLE	110.870346	Moderate Potential
LIJI	185.509343	Moderate Potential
KABA	276.425357	Moderate Potential
TUNFURE BASHAR	78.3379698	Moderate Potential
ZAGAIMA	100.241985	Moderate Potential
ALKAHIRA	272.671617	Moderate Potential
LEGISLATIVE QUARTERS	362.630576	Moderate Potential
BEHIND GRAVE YARD	466.209177	Moderate Potential
NASARAWO	1328.02263	High Potentials

Table 6
Aquifer classification based on Transmissivity values (Offodile, 1983).

Transmissivity (m²/day)	Classification of well
>500	High Potentials
50-500	Moderate Potential
5-50	Low Potential
0.5-5	Very low Potential
<0.5	Negligible Potential

The profile B–B’ (Fig. 4) along NW-SE trends of the study area encountered 1 borehole (BH1) and 2 VES points (VES03 and VES13). The lithologic section of the borehole was correlated with the geoelectric sections, the aquiferous layer (medium grain sandstone) show thickness ranging from 10m to 51.9m, with an average of 25.2m (Fig. 4). The second layer of the borehole lithologic section (reddish-brown sand) with thickness of about 4m did not appear in geoelectric sections.

The third layer in the borehole lithologic section (Clayey Sand) with 10m thickness appeared as second layer in section of VES03 and 3rd layer in section of VES13 with thickness of 11m and 18.7m respectively. The 4th layer in VES 03 (Silty sand) with thickness of 51.9m did not appear in both VES13 and the lithologic section. The 5th layer in the borehole lithologic section (clay) with 7m thick did appear as 4th layer in section of VES03. The aquifer system delineated is semi confined to confined and have thickness ranging from 20.2m to 60m with an average of 32.2m.

The profile C–C’ (Fig. 5) along SW-NE trends of the study area encountered 2 VES points (VES10 and VES07) and 1 borehole (BH4) and the lithologic section was correlated with the geo-electric sections, the aquiferous layer (medium grain sand) show thickness ranging from 28.3m to 30m with an average of 29m (Fig. 5). The second layer of the borehole lithologic section (Clayey sand) with thickness of about 27m appear also as a second layer in VES07 and third layer in VES 10 geo-electric sections with thickness of 10m and 24.7m respectively. Clay appear as second layer in VES10 with 10.5m thickness. The third layer in the borehole lithologic section (Silty sand) with thickness of 27m appeared as a third layer in VES07 with thickness of 36.4. The 4th layer (clay) with 10m thickness did not appear in the geoelectric sections. Whereas the last layer in the bore hole (clay) did appear in both the VES10 and VES07. The aquifer system delineated is confined to semi confined to semi-confine and ranges in thickness from 28.3m to 30m with an average of 29m.

4.2. Dar-zarrouk parameters

Aquifer parameters such as Transmissivity, Hydraulic conductivity, longitudinal conductance, and transverse resistance were determined from the VES interpretation results using Dar Zarrouk Parameters (Table 2).

4.3. Transverse resistance and longitudinal conductance

The transverse resistance in the study area varies from 235.2Ωm² to 6317.87Ωm² with an average value of 1789.50Ωm². Thus indicating very low ground water development class (Ezeh, 2012). Ezeh (2012) went further to state that values of transverse resistance of less than 200,000Ωm² may not indicate absence of aquifer but may imply inadequate aquifer thickness or high mixed aquifer materials with finer sediments. The variation of transverse resistance in the study area is shown in Fig. 6 Thus areas of high transverse resistance occur in the western part of the
Fig. 8. Map of the study area showing variation in Transmissivity.

Fig. 9. Map of the study area showing variation in Hydraulic Conductivity.
study area.

4.4. Protective capacity

The values of the longitudinal conductance were used to evaluate the protective capacity of the aquifer using Oladapo and Akintorinwa 2007, protective capacity rating (Table 3). Values of longitudinal conductance in the study area ranges from 0.1415Ω to 31.933Ω with an average of 2.002Ω (Fig. 7). It revealed that in the study area Fifty percent 50% (VES 1, VES 4, VES 5, VES 7, VES7, VES10, VES12, VES 14, VES 15, VES 16, VES17, VES 18, VES19, VES21, VES 22, and VES 31) of the VES points have moderate protective capacity, Forty percent 40% (VES 2, VES 3, VES 6, VES 9, VES 11, VES 13, VES 20, VES 23, VES 24, VES 25, VES 26, VES 29 and VES 30) have Moderate Protective capacity, Six percent 6% (VES 27 and VES28) have Weak protective capacity, and Four percent 4% (VES32) have Excellent protective capacity (Table 4). Most of the VES points in the study area have values of Moderate to Good protective capacity, thus indicating that the aquifers are protected. This is a good indication that wells located at these points are not susceptible to contamination because of the presence of good natural filter to percolating fluids in the regions. Fig. 7 shows the variation of aquifer protective capacity within the study area, good to excellent protective capacity is dominant around the southern and northern parts of the area.

4.5. Transmissivity and hydraulic conductivity

The Transmissivity of the aquiferous layer in the study area were calculated and presented in Table 5. The Transmissivity values ranges from 78.34 m²/day to 13284.02m²/day, the average value been 893.57 m²/day. The Variation of the Transmissivity values in the study area was interpreted using Table 6 and it was observed that sixty nine percent (69%) of the VES points show Moderate Potential, thirty one percent (31%) show High Potentials (Table 5). Also the map of the study area showing variation in Transmissivity values is presented (Fig. 8). Fig. 8 shows that high aquifer potentials occur in the southern and northeastern part of the study area. The aquifer of the study area is generally of moderate to high potentials (Table 5).

The hydraulic conductivity values of the area range from 2.62m/day to 138.66 m/day at Tunfure Bashar and Nasarawo respectively, with mean value of 20.29 m/day, thus indicating hydraulic conductivity of fine, coarse sand and gravel (Bouwer, 1978). Fig. 9 shows map of the hydraulic conductivity values of the study area with variation of hydraulic conductivity values. Area with high hydraulic conductivity (around Nasarawo) would be highly susceptible to contamination because of the presence of good natural filter to percolating fluids in the regions. Fig. 9 shows the variation of aquifer protective capacity within the study area, good to excellent protective capacity is dominant around the southern and northern parts of the area.

5. Conclusion

The resistivity soundings results revealed that about11 curve types were identified in the study area namely HKH, HKH, HKH, HKH, QHA, QOH, HHHA, AH, HKOH, and AKOH with the lithologic layers varying from 4 to 6 consisting of varying resistivity and thicknesses across each VES point. The geo-electric sections revealed that the major aquifer systems in the area range from confined to semi-confined aquifers consisting of Medium grain sandstones with varying thicknesses. The longitudinal conductance computed indicates that the aquifers in the area have moderate to good protective capacity whereas transverse resistance indicates very low ground water development class. Hydraulic conductivity and transmissivity values moderate to high aquifer potentials. Four groundwater potential zones were delineated including medium grain sandstones, sandstones, clayey sand and shaly sand.

Declarations

Author contribution statement

I.A. Kwami: Conceived and designed the experiments; Performed the Experiments; Analyzed and Interpreted the data; Wrote the Paper.

J.M. Ishaku: Conceived and designed the experiments; Analyzed and Interpreted the data.

S. Mukkafa: Performed the Experiments.

B.A. Ankidawa and I. A. Haruna: Contributed reagents, materials, analysis tools or data.

Funding statement

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Competing interest statement

The authors declare no conflict of interest.

Additional information

Supplementary content related to this article has been published online at https://doi.org/10.1016/j.heliyon.2019.e01927.

References

Abdulrahman, A., Ahmad, D.S., Muhammad, A.U., 2017. Evaluation of soil corrosivity and aquifer protective capacity using secondary geoelectric parameters across Gombe metropolis in North-eastern Nigeria. Agric. Bus. Technol. J. 15, 29-51.

Allix, P., Gossidier, E., Jardine, S., Legouz, O., Popoff, M., 1981. Découverte d’Apennne supérieur a Albian inférieur date par microfossiles dans la série dréitaire cretacée du fossé de la Benoue (Nigeria). Cent. Rech. Acad. Sci., (Paris) 292, p1291–1294.

Billing, M.P., 1972. Structural Geology. In: Eaglewood Clifr. N., third ed. PrenticeHall, 1972.

Bouwer, H., 1978. Groundwater Hydrology. McGraw Hill book company, New York.

Chambers, J.F., Wilkinson, P.B., Penn, S., Meldrum, P.I., Kuras, O., Loke, M.H., Gunn, D.A., 2013. River terrace sand and gravel depositeserve estimation using three-dimensional electrical resistivity tomography forbedrock surface detection. J. Appl. Geophys. 93, pp25-32.

Cihan, A., Zhou, Q., Birkholzer, J., Kraemer, S., 2014. Flow in horizontally anisotropic multilayered aquifer systems with leaky well sand aquitards. Water Resour. Res. 50, 741-747, 2014.

Dobrin, M.B., 1976. Introduction to Geophysical Prospecting, third ed. McGraw-Hill, New York.

Eze, C.C., 2012. Hydro geophysical studies for the delineation of potential groundwater zones in Enugu state, Nigeria. Int. Res. J. Geol. Min. 2 (5), 103-112.

Heigold, P.C., Gilken, R.H., Cartwright, K., Reed, P.C., 1979. Aquifer transmissivity from surficial electrical methods. Gr. Water 17 (4), p328–345.

Helaly, A.S., 2017. Assessment of groundwater potentiality using geophysical techniques in Wadi Ilaqi basin, Eastern Desert, Egypt– Case study. NRIAG J. Astro. Geophy. 6, 408-421.

Kwami, I.A., Ishaku, J.M., Bello, A.M., Yusuf, A., Mukkafa, S., 2018. Assessment of water quality index for the groundwater in Gombe and environs, North-east Nigeria. IJQO J. Appl. Geol. Geophys. (IOSR-JAGG) 6.5 29-37.

Maillet, R., 1947. The fundamental equations of electrical prospecting. Geophy 12, 529-556.

Malick, S.B., Bhattacharya, D.C., Nag, S.K., 1972. Behaviour of fractures in hard rocks – A study by surface geology and radial VES methods. Geoexploration 1 (2), 529–556.

Nwosu, L.I., Nwankwo, C.N., Ekine, A.S., 2014. Delineating aquifer systems using electrical methods. Gr. Water 17 (4), p338–345.

Cihan, A., Zhou, Q., Birkholzer, J., Kraemer, S., 2014. Flow in horizontally anisotropic multilayered aquifer systems with leaky well sand aquitards. Water Resour. Res. 50, 741-747, 2014.

Dobrin, M.B., 1976. Introduction to Geophysical Prospecting, third ed. McGraw-Hill, New York.

Eze, C.C., 2012. Hydro geophysical studies for the delineation of potential groundwater zones in Enugu state, Nigeria. Int. Res. J. Geol. Min. 2 (5), 103-112.

Heigold, P.C., Gilken, R.H., Cartwright, K., Reed, P.C., 1979. Aquifer transmissivity from surficial electrical methods. Gr. Water 17 (4), p328–345.

Helaly, A.S., 2017. Assessment of groundwater potentiality using geophysical techniques in Wadi Ilaqi basin, Eastern Desert, Egypt– Case study. NRIAG J. Astro. Geophy. 6, 408-421.

Kwami, I.A., Ishaku, J.M., Bello, A.M., Yusuf, A., Mukkafa, S., 2018. Assessment of water quality index for the groundwater in Gombe and environs, North-east Nigeria. IJQO J. Appl. Geol. Geophys. (IOSR-JAGG) 6.5 29-37.

Maillet, R., 1947. The fundamental equations of electrical prospecting. Geophy 12, 529-556.

Malick, S.B., Bhattacharya, D.C., Nag, S.K., 1972. Behaviour of fractures in hard rocks – A study by surface geology and radial VES methods. Geoexploration 1 (2), 529–556.

Nwosu, L.I., Nwankwo, C.N., Ekine, A.S., 2014. Delineating aquifer systems using electrical methods. Gr. Water 17 (4), p338–345.

Oloff, M.L., 1983. The occurrence and exploitation of groundwater in Nigeria Basement Complex. J. Mining Geol. 20 (3), 131–146.

Oladapo, M.I., Akintorinwa, O.J., 2007. Hydro geophysical study if Ogbesse southwest, Nigeria. Global J. Pure Appl. Sci. 13 (1), 55–61.

Stefanescu, S.S., Schlumberger, Conrad, Schlumberger, Marcel, 1930. Sur la distribution electrique potentielle auours d’une prise de terre ponctuelle dansun terrain a couche horizontales, homogenes et isoforme: Jour. Physique et le Radium 11 (1), 132-140.

Tedd, K.D., 1980. Groundwater Hydrology, third ed. John Wiley and Sons, New York, p.5636.

Zaborski, P., Ugodu, F., Idornigie, A., Nnobi, P., Ike, K., 1997. Stratigraphy and Structure of the Cretaceous Gongha Basin, Northeast Nigeria. Elf exploration production, F-64018 Pau.