Resistive properties and phase diagram of the organic antiferromagnetic metal \(\kappa-(\text{BETS})_2\text{FeCl}_4\)

Michael Kunz,\(^1,2\) Werner Biberacher,\(^1\) Natalia D. Kushch,\(^3\) Akira Miyazaki,\(^4\) and Mark V. Kartsovnik\(^1\)\(^*\)

\(^1\)Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, Garching, Germany
\(^2\)Physik-Department, Technische Universität München, Garching, Germany
\(^3\)Institute of Problems of Chemical Physics, Chernogolovka, Russia
\(^4\)Faculty of Engineering, University of Toyama, Toyama, Japan

(Dated: April 20, 2018)

The low-temperature electronic state of the layered organic charge-transfer salt \(\kappa-(\text{BETS})_2\text{FeCl}_4\) was probed by interlayer electrical resistance measurements under magnetic field. Both above and below \(T_N = 0.47\) K, the temperature of antiferromagnetic ordering of 3d-electron spins of \(\text{Fe}^{3+}\) localized in the insulating anion layers, a non-saturating linear \(R(T)\) dependence has been observed. A weak superconducting signal has been detected in the antiferromagnetic state, at temperatures \(\lesssim 0.2\) K. Despite the very high crystal quality, only a tiny fraction of the sample appears to be superconducting. Besides a small kink feature in the resistivity, the impact of the antiferromagnetic ordering of localized \(\text{Fe}^{3+}\) spins on the conduction \(\pi\)-electron system is clearly manifested in the Fermi surface reconstruction, as evidenced by Shubnikov-de Haas oscillations. The ”magnetic field – temperature” phase diagrams for the field directions parallel to each of the three principal crystal axes have been determined. For magnetic field along the easy axis a spin-flop transition has been found. Similarities and differences between the present material and the sister compound \(\kappa-(\text{BETS})_2\text{FeBr}_4\) are discussed.

PACS numbers: 74.70.Kn, 75.30.Kz, 71.18.+y

I. INTRODUCTION

Bifunctional organic charge transfer salts combining nontrivial electrical conduction and magnetic properties gained significant attention in the past two decades. Of special interest have been the isomeric families \(\lambda\) and \(\kappa\)-(BETS)\(_2\)FeX\(_4\), where BETS stands for bis(ethylenedithio)tetrathiafulvalene and X = Cl or Br [1]. The members of this family can be considered as natural nanoscale heterostructures in which two-dimensional (2D) conducting layers of organic BETS donors (the Greek symbols \(\lambda\) and \(\kappa\) denote different packing motifs of BETS molecules [2]) are alternated with magnetic insulating layers of anions \(\text{FeX}_2^-\). The electronic ground states of these compounds are determined by the interplay of two main factors. On the one hand, electronic correlations in the relatively narrow \(\frac{1}{2}\)-filled conduction band formed by \(\pi\)-electrons in the BETS layers give rise to the insulating Mott instability. On the other hand, there is significant exchange interaction between localized \(d\)-electron spins of neighboring \(\text{Fe}^{3+}\) ions in the insulating anion layers as well as between the localized \(d\)-electrons of \(\text{Fe}^{3+}\) and itinerant \(\pi\)-electrons of BETS layers. A spectacular manifestation of the role of magnetic interactions in forming the electronic ground state has been found in \(\lambda\)-(BETS)\(_2\)FeCl\(_4\). At low temperatures this salt is in an insulating state with both the \(d\)- and \(\pi\)-electron spin subsystems being antiferromagnetically ordered [3]. Application of a magnetic field first leads to a re-entrance to the paramagnetic (PM) metallic state at about 10 T [4] and – most exciting – to a field-induced superconducting (SC) state at even higher fields, starting from 17 T [5]. The latter is caused by the Jaccarino-Peter compensation effect [7], which is a direct consequence of the \(\pi\)-\(d\) exchange.

The isomer salt \(\kappa-(\text{BETS})_2\text{FeCl}_4\) (hereafter referred to as \(\kappa\)-Cl) and its sister compound \(\kappa-(\text{BETS})_2\text{FeBr}_4\) (\(\kappa\)-Br) also show antiferromagnetic (AFM) ordering in the \(\text{Fe}^{3+}\) \(d\)-electron spin subsystem [3, 8]. However, by contrast to the above-mentioned \(\lambda\)-phase salt, they were found to stay metallic and even become superconducting in the AFM state [4, 10]. A likely reason for that is weaker magnetic interactions. Indeed, the Néel temperatures here are considerably lower: \(T_N = 0.45\) K and 2.4 K, for \(\kappa\)-Cl [11] and \(\kappa\)-Br, [11] respectively. For the latter salt the \(\pi\)-\(d\) exchange field has been estimated as \(\approx 12\) T [12], which is about 3 times lower than for \(\lambda-(\text{BETS})_2\text{FeCl}_4\) [12, 14]. Although this exchange field is not strong enough for driving the conduction system into the spin-ordered insulating state, it is clearly manifested in the Fermi surface reconstruction [15] and in the field-induced SC transition [3, 10].

For the \(\kappa\)-Cl salt the available experimental data is much more limited, probably due to considerably lower characteristic temperatures \(T_N\) and \(T_c\). As mentioned above, \(\kappa\)-Cl is also reported to be an AFM superconductor with \(T_c \sim 0.1\) K according to a.c.-susceptibility measurements [10]. Muon spin rotation experiment [17] has also revealed an anomaly between 0.1 and 0.2 K, which was attributed to a SC transition. However, no other experiments, e.g. transport or specific heat have been able to detect superconductivity in this compound as yet.
The π-d exchange field is predicted to be even lower than for κ-Br [12]. However, its experimental evaluation is still lacking.

While the magnetization anisotropy seems to be characterized by the same principal axes as in κ-Br [10], no detailed study of the influence of the magnetic field on the electronic properties and ground state has been done, to the best of our knowledge.

In order to gain more information on the interplay between the conducting and magnetic subsystems of the κ-Cl salt and compare it with the other compounds of the (BETS)$_2$FeX$_4$ family, we have carried out measurements of its interlayer resistance at temperatures down to 22 mK. While no signature of a bulk SC transition has been found, a weak deviation of the resistance from the otherwise monotonic linear $R(T)$ dependence detected at $T < 0.21$ K is most likely caused by superconductivity arising in a minor part of the sample. The π-d coupling is manifested in a clear resistive anomaly accompanying the AFM transition both in the temperature and in the magnetic field sweeps. We have used this anomaly for delineating the magnetic phase diagram of κ-Cl for fields along all three principal axes of magnetization. We also report on Shubnikov-de Haas (SdH) oscillations in the AFM state. Similarly to the case of the κ-Br salt, the oscillations clearly point to a Fermi surface reconstruction caused by the AFM ordering.

II. EXPERIMENTAL

Crystals of κ-(BETS)$_2$FeCl$_4$ were synthesized by an electrocrystallization procedure as described by Kobayashi et al. [8]. The crystals grew as regular rhombohedric plates with lengths of the diagonals up to 0.8 mm in the plane of the conducting layers (crystallographic ac-plane) and a thickness of < 0.1 mm. The longer diagonal was along the crystallographic a-axis, the shorter along the c-axis. For measuring the interlayer (parallel to the b-axis) resistance, annealed 20 μm thick platinum wires were attached to the samples in the conventional 4-probe configuration by carbon paste. Contact resistances below 15 Ω were achieved. The samples were then mounted at the cold finger of a home-built dilution refrigerator, which provided a cooling power of 5.1 μW at $T = 100$ mK and end temperatures of about 20 mK. Due to a considerable temperature dependence of the sample resistance till the lowest temperatures (see Section III), a heating effect of the measurement current I_s could be properly evaluated. At low temperatures different values of the current were applied, ranging from 0.2 to 10 μA. A comparison of the $R(T)$ curves for the different currents showed that the sample was overheated to 180 mK at $I_s = 10$ μA, at the base temperature of the refrigerator. For $I_s = 1$ μA already no overheating above 40 mK was detected. Zero-field measurements were conducted at $I_s = 1$ μA. For a typical sample resistance of 20 mΩ the relative noise level was $\sim 2\%$. For measurements in magnetic fields this accuracy was not sufficient to clearly resolve the transition anomalies. Therefore, the measurements of the phase diagram and of the SdH effect were done at $I_s = 10$ μA. Thus, for those measurements the lowest temperature was limited to 180 mK and an appropriate correction for the overheating was made.

For studying the angle-dependent magnetoresistance the crystals were placed in the center of a two-axes vector magnet with the maximal vertical and horizontal field components $\mu_0 H_{c,max} = 1.8$ T and $\mu_0 H_{h,max} = 0.4$ T, respectively, allowing rotation of the field in a vertical plane as depicted by the red lines in Fig. 1(a). Additionally, the crystat with the vector magnet could be turned manually against the dilution unit with the sample stage, as shown by the blue arrows in Fig. 1(a) thus changing the sample orientation with respect to the horizontal component of the field. In the first measurement run the sample was oriented with its b-axis along the axis of the vertical coil. In this geometry the inplane field orientation can be set with a high accuracy: $\Delta \theta < 0.1^\circ$ and $\Delta \varphi < 1^\circ$, where θ is the polar angle and φ is the azimuthal angle inside the ac-plane, as shown in Fig. 1(b). However, the maximal inplane field in this case is limited to $B_{h,max} = 0.4$ T.

In two subsequent runs the crystal was aligned with its c- and a-axis parallel to the vertical field, respectively. In this geometry the error bar for the azimuthal orientation was slightly worse, $\Delta \varphi \leq 2^\circ$.

In total two different samples of κ-Cl were cooled down to lowest temperatures showing very similar behaviour to changes of temperature and perpendicular magnetic field. All the further studies on the phase diagram over...
several cooling cycles were done on only one of the samples. Therefore, only data from this sample are presented in this paper.

III. TEMPERATURE DEPENDENCE OF THE INTERLAYER RESISTANCE

Figure 2 shows the temperature dependence of the sample resistance. The overall behavior, see Fig. 2(b), is very similar to the data reported earlier [8]. The resistance monotonically decreases at cooling, showing a broad shallow hump between 100 and 200 K but no peak characteristic of most κ-(BEDT-TTF)$_2$X salts [2, 18] and also observed in the sister compound κ-Br [10, 11, 12]. The room- to low-temperature resistance ratio is among the highest obtained for organic charge transfer salts, reaching values $R(293\text{K})/R(0.5\text{K}) \approx 15,000$ for the samples studied. In Fig. 2(a) the black and red curves show the low-temperature $R(T)$ dependence of the same sample during two cooling cycles. After the first cycle a part of the sample was broken off so that it had to be re-contacted. The difference in the absolute resistance value is caused by the reduced cross-section area of the sample in the second cycle. Both curves show a clear resistance drop (a "kink") by about 5% at $T_N = 0.47\text{K}$, indicating the transition to the AFM state [10].

Remarkably, a considerable linear temperature dependence of the resistance, $\Delta \ln R/dT = 0.15\text{K}^{-1}$ and 0.37K^{-1} for the black and red curves, respectively, is observed down to the AFM transition temperature. Moreover, it is even enhanced by about a factor of two below T_N. The linear dependence, persisting down to lowest temperatures without saturation, is known for a number of other materials with strongly correlated electrons, including organic metals, heavy fermion compounds and high-T_c superconductors, and interpreted as a signature of the non-Fermi-liquid behavior in the vicinity of a quantum critical point, see, e.g., Refs. 21–22. It is, therefore, possible that the present salt is also close to a quantum phase transition. Indeed, on the one hand, the conduction system may be close to magnetic ordering triggered or assisted by the ordering of the adjacent d-electron system. On the other hand, the dimerized structure of the BETS layers and hence effectively half-filling of the conduction band can obviously lead to a Mott-insulating instability typical of many κ-type salts [13, 23]. It is, however, not clear whether electron correlations are sufficiently strong to cause a considerable Mott instability in the present case: the monotonic $R(T)$ dependence observed in the whole temperature range and particularly the very high resistance ratio observed would rather point to a good metallic character of the charge carriers. Further purposeful studies are needed to clarify this issue.

Despite the high crystal quality, evidenced, e.g., by the high resistance ratio, no clear manifestation of bulk superconductivity has been found in our measurements. In the first measurement run [black curve in Fig. 2(b)] no sign of a SC transition has been observed. In the second run [red curve in Fig. 2(a)] a weak downturn from the linear dependence can be seen below 0.21 K (reproduced after thermal cycling between room and low temperatures). This downturn can be suppressed by a weak magnetic field below 10 mT applied perpendicular to the layers, as shown in Fig. 2(c). The onset temperature $T_0 \approx 0.21\text{K}$ is consistent with the temperature range in which the a.c. susceptibility [10] and μSR [17] anomalies suggesting a SC transition were observed. Therefore, it is likely associated with a formation of an inhomogeneous, filamentary SC state. If so, this is, to the best of our knowledge, the first manifestation of superconductivity in resistive properties of this compound. For example Otsuka et al. [10] report $R(T)$ measurements down to 60 mK without any sign of a SC transition. In our studies this feature was only seen in one sample.

It thus appears that superconductivity is extremely sensitive to minor crystal imperfections. In the sister compound κ-Br the SC transition also shows a con-

![Figure 2](image-url)
considerable dependence on crystal quality, as it follows from comparing the data obtained by several groups. A possible reason for this is a nodal SC order parameter, which can be suppressed even by a small amount of nonmagnetic impurities. This scenario, extensively debated in relation to the κ-(BEDT-TTF)$_2$X salts, see, e.g., Refs. 18, 23 also looks plausible for the present κ-(BETS)$_2$X salts. Indeed, if, as noted above, the conducting system is close to an AFM quantum phase transition, this should favor a d-wave SC pairing mediated by AFM fluctuations. On the other hand, one should not disregard a possible role of internal strains. A very strong dependence of superconductivity on pressure is a general feature of organic superconductors 18. Taking into account the very low T_c, it is not excluded that strains appearing at cooling due to different thermal contraction of the sample and the electrical contacts (graphite paste) have a strong impact on superconductivity in this material. To check whether this is the case, it would be interesting to perform comparative studies of one and the same crystal using different techniques, e.g., with and without electrical contacts.

IV. MAGNETORESISTANCE AND SHUBNIKOV-DE HAAS EFFECT

A. Manifestations of the AFM state in magnetoresistance

In Fig. 3, the magnetic field dependence of the interlayer resistance for the field direction perpendicular to the layers is shown for $T = 0.18$ K. At $\mu_0H_k = 1.3$ T a resistance step similar to the kink feature in the temperature sweep [Fig. 2(a)] is observed. Because of the similarity to the feature in $R(T)$, we suggest that this is the transition from the AFM to the paramagnetic (PM) state. This guess is substantiated by the observation of Shubnikov-de Haas (SdH) oscillations which exist below and abruptly vanish above H_k, as will be presented in the next Section.

The field-dependent resistance in the low-field AFM state is characterized by a strong hysteresis, implying the presence of a domain structure. The hysteresis loop is fully reproducible by sweeping the field up to H_k and back to zero. However, if the sweep direction is inverted at a field within the hysteresis range, the resistance shows a reversible behavior, continuously changing between the upper and lower branches of the full hysteresis loop, as shown by the red line in Fig. 3. The exact trace $R(H)$ is thereby only determined by the value of the highest field applied in the sequence.

A hysteresis in the interlayer magnetoresistance has also been reported for the κ-Br salt 22. As opposed to our case, in that salt a clear difference between the initial up-sweep and the following down-sweep of the field was observed all the way from H_k down to the SC transition at which the resistance dropped to zero. Furthermore, in consecutive field cycles the resistance traces fully reproduced the first down-sweep, showing that the "memory" of the high-field state was preserved even in zero field. In our case the memory is obviously lost at fields below ≈ 0.25 T, where the hysteresis vanishes, see inset in Fig. 3.

For the κ-Br salt it was proposed that the hysteresis originates from additional scattering on domain walls, which may appear upon entering the AFM state from the high-field PM state with saturated Fe$^{3+}$ spins 27. On the other hand, our data in Fig. 3 shows that crossing H_k is not necessary for producing the hysteresis: the domains apparently arise already at cycling the field within the spin-canted AFM phase. Despite the above-mentioned small differences in the hysteresis behavior, it is most likely that the origin of the hysteresis is common for the two salts while exact details are determined by the crystal imperfections and particular domain distribution in the sample.

We note that the resistance is lower in the down-sweep than in the up-sweep both in κ-Br 27 and in κ-Cl. At first glance, this contradicts the suggested enhancement of scattering in the down-sweeps. However, taking into account a very high anisotropy of the present compounds, it is possible that defects like domain walls provide an additional, incoherent channel to the interlayer conductivity in parallel to the conventional coherent one 28, 29. Thus, such defects can lead to a decrease of the interlayer resistivity, as observed in the experiment.
B. SdH oscillations in the AFM state

Thanks to the very high crystal quality, we were able to observe slow SdH oscillations starting from below 1 T. Examples of the oscillatory resistance recorded at several temperatures are shown in Fig. 4. One can see that the oscillations only exist below \(H_k \) and thus are an inherent feature of the AFM state. The oscillation frequency, \(F = 58 \text{ T} \), corresponds to a small Fermi surface cross section occupying 1.4% of the first Brillouin zone area.

With increasing temperature the transition field \(H_k \) decreases, as we can see in Fig. 4, so the window for the observation of the SdH oscillations becomes more narrow. As a result, the determination of the effective cyclotron mass, from the temperature dependence of the oscillation amplitude [90], is only possible in a very restricted field and temperature range: 0.8 to 1.1 T and 0.18 to 0.27 K, respectively. The corresponding plot based on the data presented in the inset in Fig. 4 is shown in Fig. 5(a). Fitting the data by the standard Lifshitz-Kosevich formula, we obtain a cyclotron mass value of \(m^* = 0.82 \pm 0.1 \), expressed in units of the free electron mass. This mass is very high for such a small Fermi surface. It implies that many-body interactions and correlation effects are important in this system, which is in line with the linear temperature dependence at low temperatures discussed in the previous section.

The field dependence of the oscillation amplitude at \(T = 0.18 \text{ K} \) is presented in Fig. 5(b) in the form of a Dingle plot for a quasi-2D metal [30–32]. The up-sweep data, except one highest-field point [33], shows a conventional behavior which can be fitted by a straight line with the slope \(K \approx \frac{a m^* (T + T_D)/\mu_0 H}{2 h \pi k_B} \), where \(a = 14.69 \text{ T/K} \) and \(T_D = h/2 \pi k_B \tau \) is known as the Dingle temperature. By fitting the data, we obtain a very low Dingle temperature \(T_D = 0.14 \text{ K} \). This corresponds to a long scattering time, \(\tau = h/2 \pi k_B T = 8.6 \text{ ps} \), another evidence of a very high crystal quality. On the down-sweep, the amplitude is considerably lower and clearly violates the conventional behavior. This enhanced damping of the oscillations in the down-sweep is obviously caused by the same additional, field-dependent scattering that causes the hysteresis of the nonoscillating magnetoresistance presented above.

SdH oscillations very similar to those presented here have also been observed in the AFM state of the \(\kappa \)-Br salt [13, 27]. The magnetic ordering in \(\kappa \)-Br is more robust: in the field perpendicular to the layers it survives up to 5.5 T, see, e.g. ref. [13]. That is 4 times higher than for the present compound. Nevertheless, the main oscillation parameters, \(F = 62 \text{ T} \) and \(m^* = 1.1 \), are close to what we find for \(\kappa \)-Cl.

The fact that the present oscillations only exist in the AFM state implies that the Fermi surface is reconstructed by the magnetic superstructure. This is also corroborated by the absence of small pockets, which could give rise to the experimentally obtained low SdH frequency, in the calculated original, nonmagnetic Fermi surface [8]. Konoike et al. [13] have proposed a plausible reconstruction based on the theoretically predicted superstructure wave vector \(Q_{AFM} = (0, 0, \pi/c) \). They, indeed, have obtained small Fermi pockets consistent with the observed SdH frequency.
A. Magnetic field along the easy axis

According to the a.c.-susceptibility measurements [10], the easy axis of magnetization is along the crystallographic a-axis. In Fig. 6 temperature sweeps at different values of magnetic field aligned in this direction are presented, showing two notable features. Firstly, the transition temperature rapidly decreases at increasing the field till 0.28 T. However, the monotonic decrease is interrupted in the field interval between 0.28 and 0.33 T where the transition shifts up by ≈ 40 mK. Secondly, the resistance anomaly decreases in size for increasing fields and becomes unresolvable between 0.33 T and 0.45 T. At 0.45 T it reappears with an inverted sign.

For this direction of magnetic field the magnetoresistance is quite high [see Fig. 7(a)], showing an approximately H-squared dependence in the present field range. The anomaly due to the phase transition is hard to resolve, mainly because of the strong monotonic background. However, after subtracting the field-dependent signal recorded at $T = 0.5$ K, i.e. immediately above the zero-field transition temperature, clear features are observed, as shown in Fig. 7(b).

Near the Néel temperature, for example at 0.41 K, the field-induced AFM – PM transition is manifested by a distinct increase of the resistance. This is of course con-

V. PHASE DIAGRAM

The pronounced steplike anomaly in the interlayer resistance at the AFM – PM transition (see Figs. 2 and 3) can be utilized for establishing the magnetic phase diagram. For each of the three crystal axes the transition was studied in isothermal magnetic field sweeps at different temperatures starting with the lowest temperature up to $0.9 T_N$. In addition, the phase boundary was studied by doing temperatures sweeps at different magnetic fields.

FIG. 6. (Color online) Temperature sweeps at different magnetic fields parallel to the a-axis. All the curves, except one at zero field, have been shifted for better visibility. The red lines are guides to the eye, showing the slope above the transition. The arrows mark the points taken as transition points.

FIG. 7. (Color online) (a) Example of a magnetic field sweep at $H \parallel a$. The AFM–PM transition is hardly visible. (b) Field-sweep curves at $H \parallel a$ after subtraction of the curve taken at $T = 0.5$ K $> T_N$. Up- and down-sweeps are colored black and red, respectively, as marked by the horizontal arrows. The vertical arrows mark the transition points.
sistent with the character of the resistance change in the zero- and low-field temperature sweeps through the transition. There seems to be a small hysteresis between the up- and down-sweeps at the transition step for temperatures near T_N. But it is too weak to judge whether it has physical reasons. Away from the transition step no hysteresis was detected in the $R(H)$ sweeps. At low temperatures we see a second significant step also marked by an arrow in Fig. 7(b), e.g. at $\mu_0 H = 0.59$ T in the 0.18 K curve.

In the narrow temperature range $0.25 K \leq T \leq 0.31 K$ even a third feature can be resolved [see the curve for $T = 0.28 K$ in Fig. 7(b)]. This additional feature is most likely a spin-flop field. When going to higher temperatures, this upper transition moves to lower fields while the spin-flop field stays approximately constant until the bicritical point. The third feature in the fields sweeps made immediately above T^* is obviously associated with the reentrant transition from the PM state to the spin-flopped AFM$_1$ state. For temperatures above 0.32 K the AFM$_1$ phase vanishes completely.

In Fig. 9 there is a gap in the data set delineating the highest-temperature part of the AFM$_1$/PM phase boundary. The corresponding field interval, between 0.33 and 0.45 T, is exactly where the resistance becomes practically insensitive to the transition. As mentioned at the beginning of this Section, this happens because the kink feature in the $R(T)$ dependence is changing its sign: at lower fields the resistance decreases upon entering the AFM state, whereas a weak increase is detected at $\mu_0 H \geq 0.45$ T, see Fig. 6. An explanation of this behavior should obviously lie in the coupling of the charge transport to the spin system. The resistance decrease observed at low fields seems to be a natural consequence of a reduced spin-dependent scattering in a magnetically ordered state. The effect of increasing field is to align localized spins in one direction, which leads to a decrease in

FIG. 8. A field sweep, up to 0.4 T, at a precise field orientation, $H \parallel a$. There are two transitions close to each other, as indicated by the vertical arrows. The second one is the reentrant transition into the spin-flopped AFM$_1$ state, see Fig. 7.

FIG. 9. H-T phase diagram for $H \parallel a$-axis. Empty and filled symbols correspond to H- and T-sweeps, respectively. Arrows schematically illustrate the arrangement of the staggered Fe$^{3+}$ electron spins with respect to the external field in the low-field AFM$_0$ and high-field AFM$_1$ antiferromagnetic states, respectively. The vertical dashed line shows the section of the phase diagram by the field sweep in Fig. 8.
the spin-dependent scattering even in the PM state and thereby to a decreasing difference between the resistances in the PM and AFM states. It could then happen that the resistance in the AFM state becomes even somewhat higher in the AFM state because of disorder in the magnetic structure. This all seems to be consistent with the data in Fig. 8. However, at present we have no convincing explanation why the inversion of the kink feature is not observed, for example, at $H\|b$: in the latter case the resistance always drops on entering the AFM state, as one can see in Fig. 10.

The H–T phase diagram in Fig. 9 shows notable differences from that reported for κ-Br. For the latter salt no clear evidence of a spin-flop transition has been found, see, e.g., Ref. 8. In principle, in resistive properties the spin-flop transition could be hidden inside the zero- or low-resistance SC state. In magnetic torque measurements two distinct features observed at 1.7 T and 1.9 T, for $H\|a$, were suggested to originate from the spin-flop and AFM–PM transitions, respectively. If this is true, the relative field range of the spin-flopped phase is much more narrow for κ-Br than for κ-Cl. This is likely a consequence of a higher inplane anisotropy of the κ-Br salt, as will be demonstrated below.

For a more quantitative comparison between the phase diagrams of the two sister compounds, which will be done in the following Section, it is convenient to introduce reduced temperature and magnetic field: $t = T/T_N$, $h = \mu_0 H / k_B T_N$. In Fig. 9 these reduced coordinates are given on the top and right-hand axes, respectively. Now one can estimate that in our salt the spin-flop transition occurs at $h_{sf}^a \approx 0.4$, which is close to the critical value h_{sf}^a for the AFM–PM transition in κ-Br at $t = 0.5$ [8]. At the same time the transition to the PM state in our salt has approximately double this value, $h_{sf}^c = 0.78$.

B. Other field orientations

Next we consider the influence of a magnetic field applied parallel to the crystallographic b- and c-axes. Like in the previous case, the AFM state is suppressed by a sufficiently high field, which is reflected in the kink feature in the temperature- and field-dependent resistance. However, since now the field is perpendicular to the easy magnetization axis, no spin flop takes place. At $H\|b$ the AFM–PM transition is clearly seen in raw temperature and field sweeps, as demonstrated, for example, in Fig. 11 for $H\|c$. The kink is well pronounced at low fields; examples are shown in Fig. 10. With increasing the field the kink becomes weaker. Therefore, background subtraction has been applied in order to determine the transition point at fields $\gtrsim 0.5$ T, see e.g., inset in Fig. 11. However, unlike for the $B\|a$ orientation, the kink feature does not change its sign.

The transition points determined for $H\|c$ and for $H\|b$ are shown in Fig. 11(a) by triangles and diamonds, respectively; open symbols were obtained from H-sweeps and filled symbols from T-sweeps. Taken together with those plotted in Fig. 9 the data reveal a considerable anisotropy of the magnetic field effect in all three directions. At $T = 0.5 T_N$ the ratio between the corresponding critical field values is: $H_{c}^a : H_{c}^b : H_{c}^c \approx 1 : 2.2 : 3.1$. The obtained results can be compared with the reported data on the κ-Br salt [9,10,20], which are shown in Fig. 11(b). To facilitate the comparison, axes with the normalized coordinates t and h are added to both graphs in Fig. 11. One can immediately see that in these coordinates the phase lines for $H\|c$ are very similar for the two compounds, whereas for the other directions they are quite different.

As mentioned above, for $H\|a$ the normalized critical field of the AFM–PM transition in the κ-Cl salt is considerably higher than in κ-Br at low temperatures. Thus, the difference between the critical fields along the two in-plane principal axes, h_{c}^a and h_{c}^c, is smaller in κ-Cl. This is most likely the reason for the existence of the spin-flop transition in the present salt, by contrast to κ-Br.

The weaker inplane anisotropy of κ-Cl seems to be in line with the theoretically predicted larger role of π–d coupling in the AFM order [12]: the dominant π–d interaction (J_0 in notations of Ref. 12) provides coupling in both the a- and the c-directions, whereas the direct d–d coupling is obviously much stronger along the a-axis.

One may expect that a relatively large role of π–d inter-
actions in \(\kappa\)-Cl should also result in a stronger coupling in the third, interlayer direction. However, a comparison of the anisotropies in the \(b\)-\(c\) plane apparently contradicts this expectation. While the critical fields along the \(b\)- and \(c\)-axes are practically the same for the \(\kappa\)-Br salt, in \(\kappa\)-Cl the \(b\)-axis critical field is \(\approx 70\%\) higher than \(h^*_c\), which suggests weaker interlayer magnetic correlations.

Furthermore, a careful inspection of the transition temperature at low fields for \(B\parallel b\) reveals its slight increase at increasing field from 0 to 0.2 T, see Fig. 11(a). The effect is small, \(\Delta T/t \approx 8\) mK or 1.7\% of \(T_N\), but definitely exceeds the experimental error bar. Only for \(\mu_0 H > 0.3\) T the phase boundary line acquires the conventional negative slope. A similar effect has been observed in the quasi-2D antiferromagnet \([\text{Cu}(\text{HF})_2(\text{pyz})_2]\text{BF}_4\) and attributed to a suppression of phase fluctuations by a magnetic field \([40]\). In zero field, the transition temperature of a quasi-2D antiferromagnet is diminished compared to the value one would obtain from mean field calculations. The reason for this are phase fluctuations, which suppress long range ordering. The fluctuations are reduced, when a magnetic field is applied and therefore \(T_N\) increases. At higher fields the suppression of the AFM state due to the increasing Zeeman energy becomes the dominant mechanism, leading to a restoration of the conventional negative slope of the phase line \([40]\).

Comparing the \(\kappa\)-Cl and \(\kappa\)-Br salts, in the latter compound the \(h(t)\) dependence is very steep near \(t = 1\), both for \(H\parallel b\) and for \(H\parallel c\). However, no increase of the transition temperature at low fields can be inferred from the data in Fig. 11(b). Thus, we conclude that the fluctuations are relatively weak and the interlayer coupling is stronger in the \(\kappa\)-Br salt.

VI. SUMMARY

Aimed at a better understanding of the interplay of the magnetic and conducting subsystems in \(\kappa\)-(BETS)$_2\text{FeCl}_4$, we have performed detailed studies of its low-temperature interlayer resistance. A non-saturating, linear \(R(T)\) dependence has been observed below 1 K, which might be a signature of strong correlations in the conduction system in the vicinity of a magnetic quantum critical point. The samples investigated did not show a bulk SC transition. However, in one experiment a small downturn of the \(R(T)\) curve below 0.2 K, originating most likely from superconductivity arising in a tiny sample fraction, has been found. Thus, the resistive experiment corroborates the earlier reports \([10, 17]\) on a SC transition in this compound, pointing, however, that superconductivity is very weak and sample dependent.

Slow SdH oscillations found at fields below 1.3 T, within the AFM state, suggest a reconstruction of the FS due to the magnetic ordering, similarly to the sister compound \(\kappa\)-(BETS)$_2\text{FeBr}_4\) \([15]\). The FS orbit responsible for the oscillations occupies only 1.4\% of the original (unreconstructed) first Brillouin zone but is characterized by a rather heavy cyclotron mass, \(\approx 0.8\) of the free electron mass. This is regarded as another indication of strong correlations in the conducting system.

The kink features in \(R(T)_{H=\text{const.}}\) and \(R(H)_{T=\text{const.}}\) curves associated with the AFM transition make it possible to determine the \(H-T\) phase diagram. This has been done for three field directions corresponding, respectively, to the principal magnetization axes, which coincide with the main crystallographic axes in the present compound.

For \(H\parallel a\)-axis, the easy axis of the Fe$^{3+}$ spin system, a clear evidence for a spin-flop transition was found. The field, at which the spin-flopped phase is broken, is about
diagram, by contrast to the spin-flopped phase in an extended part of the phase anisotropy of critical field. This explains the presence of twice as high as the spin-flop field. For the field applied along the two hard axes (b- and c-axes) the phase diagram looks simpler, with only one AFM phase. A comparison of these phase diagrams to those obtained for the κ-Br salt reveals a considerably lower in-plane anisotropy of critical field. This explains the presence of the spin-flopped phase in an extended part of the phase diagram, by contrast to κ-Br. The revealed weaker in-plane anisotropy seems to support the prediction of an enhanced relative contribution of π-d interactions in setting the AFM order in κ-Cl. However, it is not quite clear at present how to reconcile this prediction with the considerably stronger in- to out-of-plane anisotropy, as compared to the κ-Br salt.

ACKNOWLEDGMENTS

This work was supported by the German Research Foundation (DFG) via the grant KA 1652/4-1.

[1] H. Kobayashi, H. Cui, and A. Kobayashi, Chem. Rev. 104, 5265 (2004).
[2] T. Ishiguro, K. Yamaji, and G. Saito, Organic Superconductors, 2nd ed. (Springer-Verlag, Berlin Heidelberg, 1998).
[3] A. Kobayashi, T. Udagawa, H. Tomita, T. Naito, and H. Kobayashi, Chem. Lett. 22, 2179 (1993).
[4] F. Goze, V. N. Lauthin, L. Brossard, A. Audouard, J. P. Ullmet, S. Askenazy, T. Naito, H. Kobayashi, A. Kobayashi, M. Tomkouto, and P. Cassoux, Europhys. Lett. 28, 427 (1994).
[5] L. Brossard, R. Clerac, C. Coulon, M. Tomkouto, T. Ziman, D. K. Petrov, V. N. Lauthin, M. J. Naughton, A. Audouard, F. Goze, A. Kobayashi, H. Kobayashi, and P. Cassoux, Eur. Phys. J. B 1, 499 (1998).
[6] S. Uji, H. Shimagawa, T. Terashima, T. Yakabe, Y. Terai, M. Tomkouto, A. Kobayashi, H. Tanaka, and H. Kobayashi, Nature (London) 410, 908 (2001).
[7] V. Jaccarino and M. Peter, Phys. Rev. Lett. 9, 290 (1962).
[8] H. Kobayashi, H. Tomita, T. Naito, A. Kobayashi, F. Sakai, T. Watanabe, and P. Cassoux, J. Am. Chem. Soc. 118, 368 (1996).
[9] T. Konoike, S. Uji, T. Terashima, M. Nishimura, S. Yasuzuoka, K. Enomoto, H. Fujiwara, B. Zhang, and H. Kobayashi, Phys. Rev. B 70, 094514 (2004).
[10] T. Otsuka, A. Kobayashi, Y. Miyamoto, J. Kiuchi, S. Nakamura, N. Wada, E. Fujiwara, H. Fujiwara, and H. Kobayashi, J. Solid State Chem. 159, 407 (2001).
[11] E. Ojima, H. Fujiwara, K. Kato, H. Kobayashi, H. Tanaka, A. Kobayashi, M. Tomkouto, and P. Cassoux, J. Am. Chem. Soc. 121, 5581 (1999).
[12] T. Mori and M. Katsuhara, J. Phys. Soc. Jpn. 71, 826 (2002).
[13] O. Cépas, R. H. McKenzie, and J. Merino, Phys. Rev. B 65, 100502 (2002).
[14] L. Balicas, J. S. Brooks, K. Storr, S. Uji, M. Tomkouto, H. Tanaka, H. Kobayashi, A. Kobayashi, V. Barzykin, and L. P. Gor’kov, Phys. Rev. Lett. 87, 067002 (2001).
[15] T. Konoike, S. Uji, T. Terashima, M. Nishimura, S. Yasuzuoka, K. Enomoto, H. Fujiwara, E. Fujiwara, B. Zhang, and H. Kobayashi, Phys. Rev. B 72, 094517 (2005).
[16] H. Fujiwara, H. Kobayashi, E. Fujiwara, and A. Kobayashi, J. Am. Chem. Soc. 124, 6816 (2002).
[17] F. Pratt, S. Lee, S. Blindell, T. Marshall, H. Uozaki, and N. Toyota, Synthetic Met. 134, 489 (2003).
[18] N. Toyota, M. Lang, and J. Müller, Low-Dimensional Molecular Metals (Springer-Verlag Berlin Heidelberg, 2007).
[19] H. Fujiwara, E. Fujiwara, Y. Nakazawa, B. Z. Narymbetov, K. Kato, H. Kobayashi, A. Kobayashi, M. Tomkouto, and P. Cassoux, J. Am. Chem. Soc. 123, 306 (2001).
[20] N. Doiron-Leyraud, P. Auban-Senzier, S. Ren de Cotret, C. Bourbouhais, D. Jérome, K. Bechgaard, and L. Taillefer, Phys. Rev. B 80, 214531 (2009).
[21] L. Taillefer, Annual Review of Condensed Matter Physics 1, 51 (2010).
[22] R. Daout, N. Doiron-Leyraud, D. LeBoeuf, S. Y. Li, F. Laliberté, O. Cyp-Choinière, Y. J. Jo, L. Balicas, J.-Q. Yan, J.-S. Zhou, J. B. Goodenough, and L. Taillefer, Nat. Phys. 5, 31 (2009).
[23] A. Ardavan, S. Brown, S. Kagoshima, K. Kanoda, K. Kuroki, H. Mori, M. Ogata, S. Uji, and J. Wosnitza, J. Phys. Soc. Jpn. 81, 011004 (2012).
[24] M. Tanatar, M. Suzuki, T. Ishiguro, H. Tanaka, H. Fujiwara, H. Kobayashi, T. Toito, and J. Yamada, Synth. Metals 137, 1291 (2003).
[25] T. Konoike, S. Uji, M. Nishimura, K. Enomoto, H. Fujiwara, B. Zhang, and H. Kobayashi, Physica B 359, 457 (2005).
[26] L. Schädhammer, Master Thesis, Technische Universität München, 2014.
[27] T. Konoike, S. Uji, T. Terashima, M. Nishimura, T. Yasaguchi, K. Enomoto, H. Fujiwara, B. Zhang, and H. Kobayashi, J. Low Temp. Phys. 152, 531 (2008).
[28] M. V. Kartsovnik, P. D. Grigoriev, V. Biberacher, and N. D. Kushch, Phys. Rev. B 79, 165120 (2009).
[29] J. G. Analytis, A. Ardavan, S. J. Blundell, R. L. Owen, E. F. Garman, C. Jeynes, and B. J. Powell, Phys. Rev. Lett. 96, 177002 (2006).
[30] D. Shoenberg, Magnetic oscillations in metals (Cambridge University Press, 1984).
[31] P. D. Grigoriev, Phys. Rev. B 67, 144401 (2003).
[32] M. V. Kartsovnik, Chem. Rev. 104, 5737 (2004).
[33] The decrease of the SdH amplitude at $1/\mu_0H = 0.8 T^{-1}$ is caused by proximity to the critical field H_k at which the oscillations vanish.
[34] N. Harrison, R. Bogaerts, P. H. P. Reinders, J. Singleton, S. J. Blindell, and F. Herlach, Phys. Rev. B 54, 9977 (1996).
[35] L. D. Landau and E. M. Lifshitz, Electro-dynamics of continuous media, 2nd ed., Course of Theoretical Physics, Vol. 8 (Pergamon Press, 1984).
[36] S. Blindell, Magnetism in Condensed Matter (Oxford University Press, 2001).
[37] M. E. Fisher, Phys. Rev. Lett. 34, 1634 (1975).
[38] M. E. Fisher and D. R. Nelson, Phys. Rev. Lett. 32, 1350 (1974).

[39] D. P. Landau and K. Binder, Phys. Rev. B 17, 2328 (1978).

[40] P. Sengupta, C. D. Batista, R. D. McDonald, S. Cox, J. Singleton, L. Huang, T. P. Papageorgiou, O. Ignatchik, T. Herrmannsdörfer, J. L. Manson, J. A. Schlüeter, K. A. Funk, and J. Wosnitza, Phys. Rev. B 79, 060409 (2009).