ON THE A VERAGE EXPONENT OF CM ELLIPTIC CURVES MODULO p

KIM, SUNGJIN

Abstract. Let E be an elliptic curve defined over \mathbb{Q} and with complex multiplication by O_K, the ring of integers in an imaginary quadratic field K. It is known that $E(\mathbb{F}_p)$ has a structure

$$E(\mathbb{F}_p) \simeq \mathbb{Z}/d_p \mathbb{Z} \oplus \mathbb{Z}/e_p \mathbb{Z}.$$

with $d_p | e_p$. We give an asymptotic formula for the average order of e_p, with improved error term, and upper bound estimate for the average of d_p.

1. Introduction

Let E be an elliptic curve over \mathbb{Q}, and p be a prime of good reduction. Denote $E(\mathbb{F}_p)$ the group of \mathbb{F}_p-rational points of E. It is known that $E(\mathbb{F}_p)$ has a structure

$$E(\mathbb{F}_p) \simeq \mathbb{Z}/d_p \mathbb{Z} \oplus \mathbb{Z}/e_p \mathbb{Z}.$$

with $d_p | e_p$. By Weil’s bound, we have

$$|E(\mathbb{F}_p)| = p + 1 - a_p$$

with $|a_p| < 2\sqrt{p}$. We fix some notations before stating results. Let $E[k]$ be the k-torsion points of the group $E(\overline{\mathbb{Q}})$. Denote $\mathbb{Q}(E[k])$ the k-th division field, which is obtained by adjoining coordinates of $E[k]$. Denote n_k the field extension degree $[\mathbb{Q}(E[k]) : \mathbb{Q}]$. Recently, T.Freiberg and P.Kurlberg [TP] started investigating the average order of e_p(In the summation, we take 0 in place of e_p when E has a bad reduction at p). They obtained that there exists a constant $c_E \in (0,1)$ such that

$$\sum_{p \leq x} e_p = c_E \text{Li}(x^2) + O(x^{19/10} (\log x)^{6/5})$$

under GRH, and

$$\sum_{p \leq x} e_p = c_E \text{Li}(x^2) + O(x^2 \log \log \log x / \log x \log \log x).$$

unconditionally when E has CM. More recently, J.Wu [JW] improved their error terms in both cases

$$\sum_{p \leq x} e_p = c_E \text{Li}(x^2) + O(x^{11/6} (\log x)^{1/3})$$

1
under GRH, and
\[
\sum_{p \leq x} e_p = c_E \text{Li}(x^2) + O(x^2/(\log x)^{9/8}).
\]
unconditionally when \(E \) has CM.

In this paper we improve the unconditional error term in CM case by using a number field analogue of Bombieri-Vinogradov theorem due to [H, Theorem 1].

Theorem 1.1. Let \(E \) be a CM elliptic curve defined over \(\mathbb{Q} \) and with complex multiplication by \(\mathcal{O}_K \), the ring of integers in an imaginary quadratic field \(K \). Let \(N \) be the conductor of \(E \). Let \(A, B > 0 \), and \(N \leq (\log x)^A \). Then we have
\[
\sum_{p \leq x, p \nmid N} e_p = c_E \text{Li}(x^2) + O_{A,B}(x^2/(\log x)^B).
\]
where
\[
c_E = \sum_{k=1}^{\infty} \frac{1}{n_k} \sum_{d \mid m} \frac{\mu(d)}{m}.
\]

We are also interested in the average behavior of \(d_p \). For the average of \(d_p \), we have an upper bound result. We apply the number field analogue of Brun-Titchmarsh inequality due to [HL, Theorem 4].

Theorem 1.2. Let \(E \) be a CM elliptic curve defined over \(\mathbb{Q} \) and with complex multiplication by \(\mathcal{O}_K \), the ring of integers in an imaginary quadratic field \(K \). Let \(N \) be the conductor of \(E \). Let \(A > 0 \), and \(N \leq (\log x)^A \). Then we have
\[
\sum_{p \leq x, p \nmid N} d_p \ll_A x \log \log x,
\]
where the implied constant is absolute.

Note that the upper bound is sharper than the trivial bound \(\ll x \log x \).

2. Preliminaries

Lemma 2.1. Let \(E \) be a CM elliptic curve defined over \(\mathbb{Q} \) and with complex multiplication by \(\mathcal{O}_K \). Then for \(k > 2 \),
\[
\phi(k)^2 \ll n_k \ll k^2
\]
where \(\phi \) is the Euler function.

Lemma 2.2. Let \(E \) be an elliptic curve over \(\mathbb{Q} \), and \(p \) be a prime of good reduction. Then
\[
k \mid d_p \iff p \text{ splits completely in } \mathbb{Q}(E[k]).
\]
Proof. See [M, page 159].
Let \(N \) be the conductor of \(E \), and denote
\[
\pi_E(x; k) = \#\{ p \leq x : p \nmid N, \ p \text{ splits completely in } \mathbb{Q}(E[k]) \}
\]

Lemma 2.3. For \(2 \leq k \leq 2\sqrt{x} \), we have
\[
\pi_E(x; k) \ll \frac{x}{k^2}
\]
where the implied constant is absolute.

Proof. See A. Cojocaru [AC, Lemma 2.6], and note that there are only nine possibilities of \(K \). \(\square \)

We state some class field theory background. For the proofs, see [AM, Lemma 2.6, 2.7].

Lemma 2.4. If \(k \geq 3 \) then \(\mathbb{Q}(E[k]) = K(E[k]) \).

Lemma 2.5. Let \(E/\mathbb{Q} \) have CM by \(\mathcal{O}_K \) and \(k \geq 1 \) be an integer. Then there is an ideal \(\mathfrak{f} \) of \(\mathcal{O}_K \) and \(t(k) \) ideal classes mod \(k\mathfrak{f} \) with the following property:

If \(\mathfrak{p} \) is a prime ideal of \(\mathcal{O}_K \) with \(\mathfrak{p} \nmid k\mathfrak{f} \), then
\[
\mathfrak{p} \text{ splits completely in } K(E[k]) \iff \mathfrak{p} \sim m_1, \text{ or } m_2, \text{ or } \cdots, \text{ or } m_{t(k)} \mod k\mathfrak{f}.
\]
Moreover,
\[
t(k)[K(E[k]) : K] = h(k\mathfrak{f}),
\]
where
\[
t(k) \leq c\phi(f) \prod_{\mathfrak{p} \nmid \mathfrak{f}} \left(1 + \frac{1}{N(p) - 1} \right).
\]

Here \(c \) is an absolute constant and \(\phi(f) \) is the number field analogue of the Euler function.

Let \(\pi_K(x; q, a) = \#\{ \mathfrak{p} : \text{prime ideal; } N(\mathfrak{p}) \leq x, \text{ and } \mathfrak{p} \sim a \mod q \} \). The following is a number field analogue of the Bombieri-Vinogradov theorem due to Huxley [H, Theorem 1].

Lemma 2.6. For each positive constant \(B \), there is a positive constant \(C = C(B) \) such that
\[
\sum_{N(q) \leq Q} \max_{(a, q) = 1} \max_{y \leq x} \frac{1}{T(q)} \left| \pi_K(y; q, a) - \frac{Li(y)}{h(q)} \right| \ll \frac{x}{(\log x)^B},
\]
where \(Q = x^{1/2}(\log x)^{-C} \). The implied constant depends only on \(B \) and on the field \(K \).

There is a number field analogue of Brun-Titchmarsh inequality due to J. Hinz and M. Lodemann [HL, Theorem 4].
Lemma 2.7. Let H denote any of the $h(q)$ elements of the group of ideal-classes mod q in the narrow sense. If $1 \leq Nq < X$, then

$$
\sum_{\substack{Np < X \ \ p \in H}} 1 \leq 2 \frac{X}{h(q) \log \frac{X}{Nq}} \left\{ 1 + O\left(\frac{\log \log 3 \sqrt{X}}{\log \frac{X}{Nq}} \right) \right\}.
$$

We are now ready to prove Theorem 1.1. From now on, E is an elliptic curve over \mathbb{Q} that has CM by \mathcal{O}_K, where K is one of the nine imaginary quadratic field with class number 1. Let N be the conductor of E.

3. Proof of the theorem 1.1

By Weil’s bound, we have

$$
\sum_{p \leq x, p \nmid N} e_p = \sum_{p \leq x, p \nmid N} \frac{p}{d_p} + O\left(\frac{x^{3/2}}{\log x} \right).
$$

As shown in both [TP] and [JW], we use the following elementary identity

$$
\frac{1}{k} = \sum_{dm | k} \mu(d) \frac{1}{m}.
$$

Thus we obtain

$$
\sum_{p \leq x, p \nmid N} \frac{p}{d_p} = \sum_{p \leq x, p \nmid N} p \sum_{dm | d_p} \mu(d) \frac{1}{m} = \sum_{k \leq 2\sqrt{x}} \sum_{dm = k} \mu(d) \frac{1}{m} \sum_{p \leq x, p \nmid N, k | d_p} p.
$$

Then we split the sum into two parts as in [JW].

$$
S_1 = \sum_{k \leq y} \sum_{dm = k} \mu(d) \frac{1}{m} \sum_{p \leq x, p \nmid N, k | d_p} p,
$$

$$
S_2 = \sum_{y < k \leq 2\sqrt{x}} \sum_{dm = k} \mu(d) \frac{1}{m} \sum_{p \leq x, p \nmid N, k | d_p} p.
$$

Here a variable y is to be chosen later within $3 \leq y \leq 2\sqrt{x}$. We treat S_2 using trivial estimate

$$
\left| \sum_{dm = k} \mu(d) \frac{1}{m} \right| \leq 1
$$

and Lemma 2.3, then we obtain

$$
|S_2| \ll \sum_{y < k \leq 2\sqrt{x}} x \cdot \frac{x}{k^2} \ll \frac{x^2}{y}.
$$
Let \(\pi_E(x; k) = \frac{\operatorname{Li}(x)}{n_k} + E_k(x) \). Our goal for treating \(S_1 \) is making use of Lemma 2.6. First, we take care of the inner sum by partial summation

\[
\sum_{p \leq x, p \nmid N, k \mid d_p} x \pi_E(x; k) = \int_{2^{-}}^{x} t d\pi_E(t; k) = x \pi_E(x; k) - \int_{2}^{x} \pi_E(t; k) dt
\]

\[
= x \frac{\operatorname{Li}(x)}{n_k} - \int_{2}^{x} \frac{\operatorname{Li}(t)}{n_k} dt + O \left(x |E_k(x)| + \int_{2}^{x} |E_k(t)| dt \right)
\]

\[
= \frac{1}{n_k} \operatorname{Li}(x^2) + O \left(x \max_{t \leq x} |E_k(t)| + 1 \right).
\]

Then we deal with \(S_1 \) using the trivial estimate (10) and Lemma 2.1, we have

\[
S_1 = c_E \operatorname{Li}(x^2) + O \left(x \max_{t \leq x} |E_2(t)| \right) + O \left(\frac{x^2}{y \log x} + \sum_{3 \leq k \leq y} x \max_{t \leq x} |E_k(t)| + \sqrt{x} \right)
\]

where

\[
c_E = \sum_{k=1}^{\infty} \frac{1}{n_k} \sum_{d \text{ such that } d \mid m_k} \mu(d) \frac{\mu(d)}{m}.
\]

Let \(\tilde{\pi}_E(x; k) = \# \{ p : N(p) \leq x, p \mid k, p \text{ splits completely in } K(E[k]) \} \).

By Lemma 2.4, we have

\[
\pi_E(x; k) = \frac{1}{2} \tilde{\pi}_E(x; k) + O \left(\frac{x^{1/2}}{\log x} \right) + O(\log N) \text{ uniformly for } k \geq 3.
\]

For the detailed explanation, we refer to [AM, page 9]. By Lemma 2.5, we have

\[
\tilde{\pi}_E(x; k) - \frac{\operatorname{Li}(x)}{[K(E[k]): K]} = \sum_{i=1}^{t(k)} \left(\pi_K(x, k; \bar{m}_i) - \frac{\operatorname{Li}(x)}{h(k)} \right).
\]

Again using Lemma 2.5 to bound \(t(m) \) and applying Lemma 2.6 as in [AM, page 10],

\[
\sum_{3 \leq k \leq \frac{x^{1/4}}{N(\log x)^{C/2}}} \max_{t \leq x} \left| \tilde{\pi}_E(t; k) - \frac{\operatorname{Li}(t)}{[K(E[k]): K]} \right| \ll_{A, B} N \log N \frac{x}{(\log x)^{A+B+1}},
\]

where \(C = C(A, B) \) is the corresponding positive constant in Lemma 2.6 for the positive constant \(A + B + 1 \).

Note that \(T(q) \leq 6 \). Writing \(\tilde{E}_k(x) = \tilde{\pi}_E(x; k) - \frac{\operatorname{Li}(x)}{[K(E[k]): K]} \), and using a
bound for \(\max_{t \leq x} |E_2(t)| \) (See [AM, Lemma 2.3]), we have
(16)
\[
S_1 = c_E \text{Li}(x^2) + O_{A,B} \left(\frac{x^2}{(\log x)^B} \right) + O \left(\frac{x^2}{y \log x} + \sum_{3 \leq k \leq y} x \max_{t \leq x} |\tilde{E}_k(t)| + \frac{x^{3/2} y \log N}{\log x} \right)
\]
Now, taking \(y = \frac{x^{1/4}}{N(f)(\log x)^{C/2}} \), we obtain
(17)
\[
S_1 = c_E \text{Li}(x^2) + O_{A,B} \left(\frac{x^2}{(\log x)^B} + x^{7/4} N(f)(\log x)^{C/2-1} + \frac{x^2 N \log N}{(\log x)^{A+B+1} + x^{7/4} \log N \log x} + \frac{x^{7/4} \log N}{N(f)(\log x)^{1+C/2}} \right).
\]
Note that \(N = N(f)|d_K| \), where \(d_K \) is the discriminant of \(K \). Combining with estimate of \(|S_2| \) in (12), it follows that
(18)
\[
\sum_{p \leq x, p \nmid N} \frac{p}{d_p} = c_E \text{Li}(x^2) + O_{A,B} \left(\frac{x^2}{(\log x)^B} + x^2 N \log N \log x + x^{7/4} N(\log x)^C \right).
\]

Theorem 1.1 now follows.

4. PROOF OF THEOREM 1.2

Let \(N \) be the conductor of a CM elliptic curve \(E \) satisfying \(N \leq (\log x)^A \).
We use the following elementary identity
\[
k = \sum_{d | m} \mu(d)
\]
We unfold the sum similarly as in the proof of Theorem 1.1.
\[
\sum_{p \leq x, p \nmid N} d_p = \sum_{p \leq x, p \nmid N} \sum_{d | p} \mu(d) = \sum_{k \leq 2 \sqrt{x}} \sum_{d | k} m(d) \sum_{p \leq x, p \nmid N, k | d_p} 1
\]
We introduce a variable \(y \) and split the sum as shown in the proof of Theorem 1.1. The inequality in the last line is due to the primes \(p \) in \(K \) which have degree 2 over \(\mathbb{Q} \) and split completely in \(K(E[k]) \).
\[
\sum_{p \leq x, p \nmid N} d_p = \pi_E(x; 2) + \sum_{3 \leq k \leq 2 \sqrt{x}} \phi(k) \pi_E(x; k) \\
\leq \frac{2x}{\log x} + \sum_{3 \leq k \leq y} \phi(k) \frac{1}{2} \pi_E(x; k) + \sum_{y < k \leq 2 \sqrt{x}} \phi(k) \pi_E(x; k).
\]
Let S_1, S_2 denote the second sum and the third sum respectively.

\[
\begin{align*}
S_1 &= \sum_{3 \leq k \leq y} \phi(k) \frac{1}{2} \tilde{\pi}_E(x; k), \\
S_2 &= \sum_{y < k \leq 2\sqrt{x}} \phi(k) \pi_E(x; k).
\end{align*}
\]

Now, we use Lemma 2.5, and 2.7 to give an upper bound for each $\tilde{\pi}_E(x; k)$.

\[
(19) \quad \tilde{\pi}_E(x; k) \leq 2 \frac{t(k)x}{h(kf)} \log \frac{x}{N(f)} \left\{ 1 + O \left(\frac{\log \log 3 \cdot \frac{x}{N(f)}}{\log \frac{x}{N(f)}} \right) \right\}
\]

Then we treat S_1 by (19), and S_2 by the trivial bound $(\pi_E(x; k) \ll \frac{x}{k^2})$ in Lemma 2.3. As a result, we obtain

\[
\begin{align*}
S_1 &\ll x \sum_{3 \leq k \leq y} \frac{\phi(k)}{n_k \log \frac{x}{N(f)}}, \\
S_2 &\ll x \sum_{y < k \leq 2\sqrt{x}} \phi(k) \frac{1}{k^2} \ll x \log \frac{\sqrt{x}}{y},
\end{align*}
\]

where the implied constants are absolute. Applying partial summation to S_1 with $\phi(k)^2 \ll n_k$, and $\sum_{k \leq t} \frac{1}{\phi(k)} = A_1 \log t + O(1)$, we obtain

\[
(20) \quad S_1 \ll x \log \log \frac{x}{N(f)} \ll A_1 x \log \log x,
\]

provided that $3 \leq \frac{x}{N(f)}$.

Choosing $y = \sqrt{\frac{x}{N(f)}}$, it follows that

\[
(21) \quad S_1 + S_2 \ll A_1 x \log \log x
\]

Therefore, Theorem 1.2 now follows.

Note that the trivial bound in Theorem 1.2 given by Lemma 2.3 is $\ll x \log x$. The number field analogue of Brun-Titchmarsh Inequality(Lemma 2.7) contributed to the saving.

References

[AC] A. Cojocaru, Cyclicity of CM Elliptic Curves Modulo p, Transaction of Americal Mathematical Society, volume 355, number 7

[AM] A. Akbary, K. Murty, Cyclicity of CM Elliptic Curves Modulo p, Indian Journal of Pure and Applied Mathematics, 41 (1) (2010), 25-37

[H] M. Huxley, The Large Sieve Inequality for Algebraic Number Fields III, J. London Math. Soc. 3 (1971), 233-240

[HL] J. Hintz, M. Lodemann, On Siegel Zeros of Hecke-Landau Zeta-Functions, Monashefte für Mathematik, Springer-Verlag 1994

[JW] J. Wu, The Average Exponent of Elliptic Curves Modulo p, arXiv preprint arXiv:1205.5929 (2012)

[M] R. Murty, On Artin’s Conjecture, Journal of Number Theory, Vol 16, no.2, April 1983
[TP] T. Freiberg, P. Kurlberg, *On the Average Exponent of Elliptic Curves Modulo p*, arXiv preprint [arXiv:1203.4382] (2012)