Eukaryote Culturomics of the Gut Reveals New Species

Nina Gouba, Didier Raoult, Michel Drancourt*

Aix Marseille Université, URMITE, UMR63, CNRS 7278, IRD 198, Inserm 1095, Marseille, France

Abstract

The repertoire of microeukaryotes in the human gut has been poorly explored, mainly in individuals living in northern hemisphere countries. We further explored this repertoire using PCR-sequencing and culture in seven individuals living in four tropical countries. A total of 41 microeukaryotes including 38 different fungal species and three protists were detected. Four fungal species, *Davidiella tassiana*, *Davidiella sp.*, *Corticaceae sp.*, and *Penicillium sp.*, were uniquely detected by culture; 27 fungal species were uniquely detected using PCR-sequencing and *Candida albicans*, *Candida glabrata*, *Trichosporon asahii*, *Clavspora lusitaniae*, *Debaryomyces hansenii*, *Malassezia restricta*, and *Malassezia sp.* were detected using both molecular and culture methods. Fourteen microeukaryotes were shared by the seven individuals, whereas 27 species were found in only one individual, including 11 species in Amazonia, nine species in Polynesia, five species in India, and two species in Senegal. These data support a worldwide distribution of *Malassezia sp.*, *Trichosporon sp.*, and *Candida sp.* in the gut mycobiome. Here, 13 fungal species and two protists, *Stentor roeseli* and *Vorticella campanula*, were observed for the first time in the human gut. This study revealed a previously unsuspected diversity in the repertoire of human gut microeukaryotes, suggesting spots for further exploring this repertoire.

Citation: Gouba N, Raoult D, Drancourt M (2014) Eukaryote Culturomics of the Gut Reveals New Species. PLoS ONE 9(9): e106994. doi:10.1371/journal.pone.0106994

Editor: Kirsten Nielsen, University of Minnesota, United States of America

Received April 14, 2014; Accepted August 7, 2014; Published September 11, 2014

Copyright: © 2014 Gouba et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper.

Funding: These authors have no support or funding to report.

Competing Interests: The authors have declared that no competing interests exist.

* Email: michel.drancourt@univ-amu.fr

Introduction

The human gut microbiota is a diverse ecosystem comprising of bacteria, archaea, virus and eukaryotes referred to as the gut microbiota. It has been observed that the composition of gut microbiota depends on environmental factors [1,2]. Numerous studies focused on gut bacteria, but the repertoire of gut microeukaryotes has been poorly explored [3–8]. Previous studies indicated that components of the gut microbiota, including gut microeukaryotes, were interacting one with each other [9,10]. Recently, high-throughput sequencing and clone library sequencing of gut microeukaryote community indicated that fungi and *Blastocystis* were the two dominant components of gut micro-eukaryote community [4–6,8,11]. Interestingly, fungal abundance was found to be significantly associated with recently consumed foods: in particular *Candida* spp. abundance significantly correlated with recent consumption of diet rich in high carbohydrates [12]. Likewise, our previous studies on eukaryote community in an obese individual and in an anorexic individual and revealed fungal diversity related to diet [4,13]. A diversity of eukaryotic fungi was detected in healthy individuals and infants with low weight [5,6,8]. Despite evidence for the gut microeukaryote community being influenced by the environment, a few studies have been reported from a limited number of individuals, mainly living in the northern hemisphere countries. Indeed, of twelve studies, three issued from individuals in Europe [4,7,8], three from the USA [6,12,14], two from China [3,15], one from India [16], one from Turkey [17], one from Korea [11] and one from Senegal [5]. Therefore, the current body of knowledge may not be representative of the actual diversity of this repertoire, as no data issued from individuals living in southern hemisphere countries such as Polynesia and Amazonia. Here, in an effort to broaden knowledge on gut microeukaryotes, we investigated microeukaryotes in seven individuals living in four tropical countries.

Materials and Methods

Fecal sample collection

The study was approved by the local ethics committee of the Institut Fédératif de Recherche 48 (IFR 48, Marseille, France; agreement number 09–022). After the participants’ written consent was obtained, a stool sample was collected from three individuals from Polynesia (îles Kaitetia, rural area), two individuals from Amazonia (Manaus, urban area, forest area), one individual from Senegal (NDiop, rural area) and one individual in India (New Delhi) (Table 1). No specific pathology was reported in any of these individuals. Each stool sample was preserved as 1-g- aliquots in sterile microtubes stored at −80°C until use.

DNA-based analyses

Total DNA was extracted using the Qiamp stool mini kit (Qiagen, Courtaboeuf, France) as previously described using mechanic and enzymatic lyses [4]. Potential PCR inhibitors were tested by mixing *Acanthamoeba castellani* DNA with DNA extracted from stool specimen prior to PCR, as previously described [4]. A set of 35 eukaryotic PCR primer pairs obtained from the literature were used independently to target the 18S rRNA gene and the internal transcribed spacer (ITS) on all seven specimens as previously described [4]. The PCR reaction (50 μL final volume) contained 5 μL of dNTPs (2 mM of each
nucleotide), 5 μL of DNA polymerase buffer (Qiagen), 2 μL of MgCl₂ (25 mM), 0.25 μL HotStar Taq DNA polymerase (1.25 U) (Qiagen), 1 μL of each primer (Eurogentec, Seraing, Belgium) and 5 μL of DNA. PCR included a 15-min initial denaturation at 95°C followed by 40 cycles including denaturation at 95°C for 30-sec and extension at 72°C for 1 min. A 5-min final extension was performed at 72°C. All PCRs were performed using the 2720 thermal cycler (Applied Biosystems, Saint Aubin, France). PCR products were visualized by electrophoresis using a 1.5% agarose gel. The PCR products were purified using the NucleoFast 96 PCR Kit (Marcherey-Nagel, Hoerdt, France) and M13 primers on ABI PRISM 3130 automated sequencer (Applied Biosystems). Chimeras were eliminated by analyzing sequence with ChromasPro Software. Sequences were compared with sequences available in the GenBank database using BLAST. A 97% sequence similarity and 95% coverage with a described species were used for molecular identification [7]. All the sequences obtained in this work have been deposited in GenBank database with accession number KT768259-KT768340.

Table 1. Clone library of microeukaryotes in seven stool samples collected in four different countries. The number of positive clones / total number of clones is given into brackets.

Location	Individual (sex, age)	ITS1F/ITS4R	Euk1A/Euk516r	AmiF/AmiR	MAIF/MalR
Amazônia 1 (Manaus, urban area)	M, 49	Candida albicans (36/48) Clavispora lusitaniae (12/48)	Alternaria alternata (2/48)	Malassezia sp. (40/48)	Malassezia restricta (4/48)
Amazônia 2 (Amazonian forest area)	M, 39	Candida albicans (30/48) Trichosporon asahii (12/48)	Vorticella campanula (1/48) Saccharomyces cerevisiae (1/48) Pityrosporum oblongum (1/48) Trichosporon asahii (10/48) Pleosporales sp. (3/48) Puccinia porum (1/48) Sclerotinia sclerotiorum (2/48) Rhodospirillum babjovae (2/48)	Filobasidium capsuligenum (6/48) Penicillus chryogenum (2/48) Vorticella campanula (1/48) Exophiala equina (1/48)	Malassezia sp. (22/48) Malassezia restricta (10/48) Malassezia globosa (2/48)
Polynesia 1 (Rural area)	M, 48	Trichosporon asahii (12/48) Candida albicans (30/48) Trichosporon faecale (1/48)	Westerdykella cylindrica (2/48) Rhodotorula mucilaginosa (2/48) Blastocystis sp. (1/48)	Malassezia sp. (22/48) Malassezia restricta (6/48) Malassezia globosa (2/48)	
Polynesia 2 (Rural area)	M, 32	Trichosporon asahii (18/48) Candida albicans (20/48) Galactomyces geotrichum (1/48)	Candida albicans (1/48) Candida lusitana (1/48) Fomes fomentarius (1/48)	Malassezia sp. (20/48) Malassezia restricta (12/48)	
Polynesia 3 (Iles Raatea)	M, 49	Saccharomyces sp. (2/48) Clavispora lusitaniae (20/48) Fomitopsis pinicola (1/48) Fomes fomentarius (1/48)	Candida albicans (1/48) Candida lusitana (1/48) Fomes fomentarius (1/48)	Malassezia sp. (28/48) Malassezia restricta (10/48) Malassezia globosa (5/48)	
India (New Delhi)	M, 28	Candida albicans (12/48) Trichosporon asahii (20/48) Geotrichum candidum (1/48)	Debaryomyces Hansenii (5/48) Filobasidium globisporum (1/48) Candida dubliniensis (1/48) Stentor rosei (1/48) Rhodotorula mucilaginosa (5/48) Westerdykella cylindrica (2/48)	Malassezia pachydermatis (28/48) Malassezia restricta (10/48) Malassezia globosa (5/48)	
Senegal (Ndio, Dakar)	M, 20	Galactomyces geotrichum (7/48) Dipodascaceae sp. (2/48) Allactomyces candidum (8/48)	Malassezia restricta (10/48) Malassezia sp. (25/48)	Saccharomyces cerevisiae (4/48) Aspergillus restrictus (10/48)	

doi:10.1371/journal.pone.0106994.t001

Culture and identification of fungi

Stool samples were diluted in sterile phosphate-buffered saline (PBS) and cultured on potato dextrose agar (PDA) (Sigma-Aldrich, Saint-Quentin Fallavier, France) from potato infusion and dextrose, Czapek dox agar (Sigma-Aldrich), semi-synthetic solid medium containing sucrose as C-source and sodium nitrate as the sole source of nitrogen supplemented with 0.05 g/L chloramphenicol and 0.1 g/L gentamycin, Sabouraud dextrose agar (BD diagnostic system) and Dixon agar [18] supplemented with 0.05 mg/mL chloramphenicol and 0.2 mg/mL cycloheximide. Dixon agar medium was prepared as previously described [4]. Following previously published protocols [3,19,20] the agar plates were kept in plastic bags with humid gas to prevent desiccation and incubated aerobically at room temperature (15°C) in the dark [21]. Dixon agar medium plates were incubated aerobically at 30°C. Growth was observed for two weeks. The dilution method of the sample was spread on the same media and incubated in the same conditions as a negative control. Fungi were identified with ITS 1F / ITS 4R and MalF/MalR primers. Purified PCR were sequenced using the ITS1R / ITS4 and MalF/Mal R primers with the Big Dye Terminator V1,1 Cycle Sequencing Kit (Applied
Results

Culture-independent methods

In all PCR-based experimental the negative controls remained negative. Among the primers tested, four sets of primers yielded positive amplifications (Table 1). *A. castellanii* DNA mixed with stool sample yielded positive amplification. A total of 1,056 clones were sequenced and 528 sequences identified 37 microeukaryotes including 34 fungal species and three protists *Stentor roeseli*, *Vorticella campanula* and *Blastocystis* sp. (Table 1). Plant and human DNA sequences were excluded for analysis. Species distribution in stools from geographical locations is shown in Figure 1. *Malassezia* spp. and *Candida* spp. were detected in all stools from different locations except in Polynesia 3 and Senegal, respectively.

Culture dependant-methods

While the negative control plates remained sterile, stool specimens grew *Candida albicans* (4 positive), *Trichosporon asahii*

Location	PDA	SDA	CZPEK	DA
Amazonia1	Candida glabrata	Candida glabrata	Candida glabrata	Candida glabrata
	Candida albicans	Candida glabrata	Candida glabrata	Candida glabrata
		Candida glabrata	Candida glabrata	Candida glabrata
				Candida glabrata
				Davidiella tassiana
Polynesia1	Trichosporon asahii	Penicillium sp.		
Polynesia2	Candida albicans			Candidia albicans
				Malassezia restricta
Polynesia3	Trichosporon asahii	Candida albicans		Debaryomyces hansenii
India	Candida albicans	Trichosporon asahii		Malassezia restricta
	Clavispora lusitaniae	Candida albicans		Candida albicans
		Trichosporon asahii		Malassezia sp.
	Clavispora lusitaniae			Malassezia sp.
	Corticiaceae sp.			Malassezia sp.

Figure 1. Microeukaryotes species distributions in seven stool samples from different geographical locations detected by PCR-based methods. doi:10.1371/journal.pone.0106994.g001

Table 2. Fungal species isolated using four culture media in stool samples collected in four different countries.
Discussion

Overall results

Combining of the two approaches yielded a total of 38 different fungal species and three protists including S. roeseli, V. campanula and Blastocystis sp. Thirteen fungal species and two protists were observed for the first time in the human gut (Table 2). Fourteen fungal species including C. albicans, C. glabrata, C. lusitaniae, D. hansenii, Galactomyces candidum, Galactomyces geotrichum, Malassezia globosa, M. restricta, Mobilivera campanula E. equina Malassezia sp., Rhodotorula mucilaginosa, Saccharomyces cerevisiae, T. asahii and Westerdykella cylindrica were shared by the seven individuals whereas 27 microeukaryotes were found in only one individual including 11 species in Amazonia, nine species in Polynesia, five species in India and two species in Senegal.

Table 3. List of microeukaryotes detected by culture and PCR-cloning-sequencing in the gut of seven individuals.

Individual	Species	Culture	PCR-based
Amazonia 1	C. albicans C. glabrata D. tassiana	C. albicans Clavispora lusitaniae Alternaria alternata Malassezia sp. Malassezia restricta	
Amazonia 2	T. asahii Penicillium sp.	C. albicans T. asahii V. campanula S. cerevisiae P. pinifolia Pleosporales sp. P. poarum S. sclerotiorum R. babjevae F. capsuligenum P. chrysogenum V. campanula E. equine Malassezia sp. M. restricta M. globosa	
Polynesia 1	T. asahii Penicillium sp.	T. asahii C. albicans T. faecale1 Malassezia sp. M. restricta M. globosa	
Polynesia 2	C. albicans M. restricta T. asahii	T. asahii C. albicans G. geotrichum C. prunulus Malassezia sp. M. restricta	
Polynesia 3	D. hansenii C. albicans T. asahii	Saccharomyctes sp. C. lusitaniae F. pinicola F. fomentarius C. globara B. christiansenii Y. lipolytica	
India	T. asahii C. lusitaniae Corticiaceae sp. Penicillium sp. M. restricta C. albicans Malassezia sp.	C. albicans T. asahii G. candidum D. hansenii F. globisporum C. dubliniensis S. roeseli R. mucilaginosa W. cylindrica M. pachydermatis M. restricta M. globosa	
Senegal	G. geotrichum Dipodascaceae sp. G. candidum S. cerevisiae A. restrictus M. restricta Malassezia sp.		

(4 positive), Malassezia restricta (2 positive), and Candida glabrata, Clavispora lusitaniae, Debaryomyces hansenii, Malassezia sp., Corticiaceae sp., Davidiella tassiana, Davidiella sp., and Penicillium sp. each in one specimen. The four later fungal species were detected uniquely by culture-dependant methods (Table 2).

Discussion

Here, further exploration of gut microeukaryotes in stool specimens collected in seven individuals living in four tropical countries yielded new data about this poorly explored component of the gut microbiota. Fifteen species were observed for the first time in the human gut. S. roeseli detected in stool from India and V. campanula in stool from Amazonia, are two ciliates previously described from environment in particular in freshwater [22,23]. Moreover, environmental fungi Puccinia poarum, Rhosporidium babjevae, Phytophthora pinnocola, Alternaria alternata, Aspergillus restrictus, Bisporea christianseni, D. tassiana, Davidiella sp. and W. cylindrica were previously described as plant pathogen or from fresh water [24–30]. F. capsuligenum was previously found in fruit, brewery and in soil [31]. These fungal species have not been previously reported in the human gut.

Some opportunist pathogenic fungi including C. albicans, C. glabrata, Filobasidium globisporum, T. asahii, C. lusitaniae, Rhodotorula mucilaginosa, M. restricta, M. globosa and Yarrowia lipolytica were previously described in the human gut [3,4,7,15]. Geotrichum candidum and Saccharomyces cerevisiae were encountered in the human gut and associated with the consumption of cheese and brewery [16,32,33]. Similar study found a correlation between diet and fungi detected in gut [12]. Exophiala equina is an environmental fungi previously reported in dialysis water and subcutaneous abcesses [34,35].

Previous studies on eukaryotes diversity in people from Korea, the United Kingdom and Senegal detected some fungal species different from our study and this could be related of individuals location or diet. Here, the high diversity of microeukaryotes observed in Amazonia, India and Africa could be related to individual environment. Similar study on gut bacteria microbiota found the bacteria to be related to host environment and diet [1,2,36]. Our findings are in the same line with previous observation that found that fungal species and protists are dominant components of gut microeukaryotes [8].

Conclusions

A diversity of 41 microeukaryotes species including 38 fungal species and three protist was detected in stool samples collected from four different tropical locations. A total of 13 fungal species and two protists Stentor roeseli and Vorticella campanula were observed in the human gut for the first time. Indeed, these microeukaryotes have not been detected among the 249 fungi and the 36 protists cultured and detected from the human gut so far. These data plea for more extensive studies being performed in specimens collected from various geographical regions to further establish the human gut microeukaryote repertoire.

Author Contributions

Conceived and designed the experiments: MD. Performed the experiments: NG. Analyzed the data: NG MD DR. Contributed reagents/materials/analysis tools: DR. Contributed to the writing of the manuscript: NG MD DR.
References

1. De Filippo C, Cavalieri D, Di Pa, Ramazzotti M, Poullet JB, et al. (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A 107: 14961–14966.

2. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, et al. (2012) Human gut microbiome viewed across age and geography. Nature 486: 222–227.

3. Chen Y, Chen Z, Guo R, Chen N, Lu H, et al. (2011) Correlation between gastrointestinal fungi and varying degrees of chronic hepatitis B virus infection. Diagn Microbiol Infect Dis 70: 492–498.

4. Gouba N, Raoul D, Drancourt M (2013) Plant and fungal diversity in gut microbiota as revealed by molecular and culture investigations. PLoS One 8: e59474.

5. Hamad I, Sokhna C, Raoult D, Bittar F (2012) Molecular detection of eukaryotes in a single human stool sample from Senegal. PLoS One 7: e46030.

6. LaTuga MS, Ellis JC, Cotton CM, Goldberg RN, Wynn JL, et al. (2011) Beyond bacteria: a study of the enteric microbial consortium in extremely low birth weight infants. PLoS One 6: e27836.

7. Ott SJ, Kuhlbacker T, Musfeldt M, Rosenstiel P, Hellings S, et al. (2008) Fungi and inflammatory bowel diseases: Alterations of composition and diversity. Scand J Gastroenterol 43: 831–841.

8. Scudan PD, Marchesi JR (2008) Micro-eukaryotic diversity of the human distal gut microbiota: qualitative assessment using culture-dependent and -independent analysis of faeces. ISME J 2: 1183–1193.

9. Clemente JC, Ursell JK, Parfrey LW, Knight R (2012) The impact of the gut microbiota on human health: an integrative view. Cell 148: 1258–1270.

10. Erb Downward JR, Falkowski NR, Mason KL, Muraglia R, Huffnagle GB (2012) Human gut microbiome viewed across age and geography. Proc Natl Acad Sci U S A 107: 14961–14966.

11. Nam YD, Chang HW, Kim KH, Roh SW, Kim MS, et al. (2008) Bacterial, archael, and eukaryal diversity in the intestines of Korean people. J Microbiol 46: 491–501.

12. Hoffmann C, Dollive S, Grunberg S, Chen J, Li H, et al. (2013) Archaea and fungi of the human gut microbiome: correlations with diet and bacterial residents. PLoS One 8: e66019.

13. Gouba N, Raoul D, Drancourt M (2014) Gut microeukaryotes during anorexia nervosa: a case report. BMC Res Notes 7: 33.

14. Khatib R, Riederer KM, Ramanathan J, Baran J Jr (2001) Faecal fungal flora in healthy volunteers and inpatients. Mycoses 44: 151–156.

15. Li Q, Wang C, Zhang Q, Tang C, Li N, et al. (2012) Use of 18S ribosomal DNA polymerase chain reaction-denaturing gradient gel electrophoresis to study composition of fungal community in 2 patients with intestinal transplants. Hum Pathol 43: 1273–1281.

16. Pandey PK, Siddharth J, Verma P, Bavekar A, Patole MS, et al. (2012) Molecular typing of fecal eukaryotic microbiota of human infants and their respective mothers. J BioSci 37: 221–228.

17. Agirbasli H, Oncan SA, Govikoglu G (2005) Fecal fungal flora of pediatric healthy volunteers and immunosuppressed patients. Mycopathologia 159: 513–520.

18. Lee H, Qiao L, Lin RJ, He J, Zhou Y, et al. (2013) Molecular phylogeny and classification of Candida albicans and other Candida species. J Microbiol 51: 183–191.

19. Claesson AT, Boyle SI, Haskins KE, Overby ST, Hart SC (2003) Community-level physiological profiles of bacteria and fungi: plate type and incubation temperature influences on contrasting soils. FEMS Microbiol Ecol 44: 319–328.

20. Pereira E, Santos A, Reis F, Tavares RM, Baptista P, et al. (2013) A new effective assay to detect antimicrobial activity of filamentous fungi. Microbiol Res 168: 1–5.

21. Robrig J, Kastner C, Fischer R (2013) Light inhibits spor germination through phytochrome in Aspergillus nidulans. Curr Genet 59: 39–62.

22. Fournier W, Blake N, Wolf K, Beiner HW, Stoock T (2010) Morphological and molecular characterization of some Peritrichs (Ciliophora: Peritrichida) from Tank Bromelids, Including Two New Genera: Orborhabdostyla and Vorticellidae. Acta Protozool 48: 291–319.

23. Goug YC, Yu HY, Zhu F, Fong WS (2007) Molecular phylogeny of Stenotrophomonas maltophilia based on small subunit ribosomal RNA sequences. J Eurakyt Microbiol 34: 45–46.

24. Bhattacharya K, Raha S (2002) Deteriorative changes of maize, groundnut and soybean seeds by fungus in storage. Mycopathologia 150: 135–141.

25. Duran A, Spilizers B, Gryzenhout M, Ahnanda R, Drenth A, et al. (2009) DNA-based method for rapid identification of the pine pathogen, Phyllophthora pinea. FEMS Microbiol Lett 298: 99–104.

26. Goncalves VN, Vaz AB, Rosa CA, Rosa LH (2012) Diversity and distribution of fungal communities in lakes of Antarctica. FEMS Microbiol Ecol 82: 459–471.

27. McCormick MA, Grand LF, Post JB, Cubeta MA (2013) Phylogenetic and phenotypic characterization of Fomes fuscus and Fomes annosus in the United States. Mycologia 105: 1524–1534.

28. Al-Khesraji TO, Losel DM (1980) Intracellular structures of Puccinia Porum on its alternate hosts. T Brit Mycol Soc 75: 397–411.

29. Takahashi T (1997) Airborne fungal colony-forming units in outdoor and indoor environments in Yokohama, Japan. Mycopathologia 139: 23–33.

30. Vallini G, Frassinetti S, Scorzetti G (1997) Candida aquaticoloris sp. nov., a new species of yeast occurring in sludge from a textile industry wastewater treatment plant in Tuscany, Italy. Int J Syst Bacteriol 47: 536–540.

31. Kesarboly A, Hamari Z, Pfoeller I, Vagouligi G, Kacsera J (2006) Comparison of killer toxin-producing and non-producing strains of Filobasidium capitulum: a proposal for two varieties. Microbiol Res 163: 167–276.

32. Firmesse O, Alvaro E, Mogenet A, Bresson JL, Lerme R, et al. (2008) Fate and effects of Camembert cheese micro-organisms in the human colonic microbiota of healthy volunteers after regular Camembert consumption. Int J Food Microbiol 125: 176–181.

33. Kitagaki H, Kitamoto K (2013) Breeding research on sake yeasts in Japan: history, recent technological advances, and future perspectives. Annu Rev Food Sci Technol 4: 215–235.

34. Figel IC, Marangoni PR, Tralamazza SM, Vicente VA, Dalzoto PR, et al. (2008) Fate and effects of killer toxin-producing and non-producing strains of Filobasidium capitulum: Proposal for two varieties. Microbiol Res 163: 167–276.

35. Kimura O, Arai T, Mochida K, Sano T, Yoshikawa N (2008) Identification of a black yeast-like fungus isolated from dialysis water in hemodialysis units. J Med Microbiol 62: 797–800.

36. Smith MI, Yatsunenko T, Manary MJ, Trehan I, Mkakosya R, et al. (2013) Gut microbiomes of Malawian twin pairs discordant for kwashiorkor. Science 339: 14696.