Brillouin zone unfolding method for effective phonon spectra

Timothy B. Boykin, Arvind Ajoy, Ilatikhameneh, Michael Povolotskyi, and Gerhard Klimeck

1Department of Electrical and Computer Engineering, The University of Alabama in Huntsville, Huntsville, Alabama 35899, USA
2Network for Computational Nanotechnology, School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, USA
3Department of Electrical Engineering, University of Notre Dame, Indiana 46656, USA

(Dated: July 18, 2014)

Thermal properties are of great interest in modern electronic devices and nanostructures. Calculating these properties is straightforward when the device is made from a pure material, but problems arise when alloys are used. Specifically, only approximate bandstructures can be computed for random alloys and most often the Virtual Crystal Approximation (VCA) is used. Unfolding methods [T. B. Boykin, N. Kharche, G. Klimeck, and M. Korkusinski, J. Phys.: Condens. Matt. 19, 036203 (2007).] have proven very useful for tight-binding calculations of alloy electronic structure without the problems in the VCA, and the mathematical analogy between tight-binding and valence-force-field approaches to the phonon problem suggest they be employed here as well. However, there are some differences in the physics of the two problems requiring modifications to the electronic structure approach. We therefore derive a phonon alloy bandstructure (vibrational mode) approach based on our tight-binding electronic structure method, modifying the band-determination method to accommodate the different physical situation. Using the method, we study In$_x$Ga$_{1-x}$As alloys and find very good agreement with available experiments.

I. INTRODUCTION

Accurate modeling of the thermal properties of semiconductors is a technologically significant problem: Heat degrades conventional transistor performance and nanowires are becoming important in next-generation electronics. In addition, altering phonon properties via isotopic alloy disorder has been investigated as a possible method for improving the performance of carbon nanotube devices and high power GaN field effect transistors. Modeling thermal properties requires in turn accurate phonon spectra (or bands), which is a straightforward task for pure materials (Si, Ge, GaAs, InAs, etc.). Alloys, both bulk and nanostructure, are used in numerous advanced devices and modeling their properties, both thermal and electronic, is more difficult because translational symmetry exists in only an approximate sense. The simplest alloy treatment is the Virtual Crystal Approximation (VCA), but it does not accurately capture the effects of random alloying in electronic structure calculations for both bulk and nanostructures. To date, most thermal properties modeling of alloys has been with the VCA, as in the In$_x$Ga$_{1-x}$As bulk and nanowire calculations in Ref. 8. While VCA phonon models do use realistic underlying models such as valence force-field (VFF) approaches, the VCA is expected to have similar deficiencies for these cases as for electronic structure calculations, perhaps even worse. The reason for expecting worse VCA phonon bands comes directly from the periodic table: Exchanging an atom for another in the same column involves a very large change in mass, such as Ga (69.72) vs. In (114.8). Conversely, in electronic structure calculations, such an atomic exchange generally results in more modest overall changes to the inter- and intra-atomic parameters.

Electronic structure calculations beyond the VCA are often based on applying Brillouin zone unfolding to random-alloy supercells, using either tight-binding or pseudopotential bases. Unfolding has also been applied to the complex bands of surfaces and several other variants of the method have been proposed. These methods create a random alloy supercell (SC) having a very large number of primitive cells (PCs), then unfold the supercell bands onto a primitive-cell periodic basis. Sum rules allow one to define average energies and approximate bands. For a sufficiently large supercell, the effects of random alloying should be captured in the effective bandstructure. Supercell-unfolded effective bandstructures have many advantages over VCA bands because the unfolded bands reproduce trends which the VCA cannot, such as bandgap bowing in AlGaAs.

This success of supercell-unfolding effective bandstructure methods for electronic structure calculations argues strongly that they should be applied to the problem of alloy phonon spectra as well. To date, most applications of unfolding to vibrational problems has been to simple one-dimensional problems which do not encompass random alloys. Other supercell effective phonon bandstructure methods beyond the VCA involve creating a phase- and force-constant averaged primitive-cell dynamical matrix. In this work we modify our supercell-unfolding method to optimize them for the alloy phonon problem, studying the behavior of the phonon bands of In$_x$Ga$_{1-x}$As as a function of mole fraction, comparing the results to the VCA, and calculating the sound velocity. The paper is organized as follows: Sec. II presents the method; Sec. III the results; and Sec. IV the conclusions.
II. METHOD

A. Allowed primitive-cell wavevectors

The SC bands will be unfolded onto a PC-periodic basis. A PC is defined by direct translation vectors, \(\mathbf{a}_j, j = 1,2,3 \), not necessarily orthogonal; the corresponding reciprocal lattice vectors of the primitive cell are denoted \(\mathbf{b}_j, j = 1, 2, 3 \). Born-von Karman boundary conditions are imposed over the SC, which is composed of \(N_j \) primitive cells in the \(\mathbf{a}_j \) direction, for a total of \(N_c = N_1 N_2 N_3 \) PCs. SC states of SC wavevector \(\mathbf{Q} \) (this implies the existence of \(N_c \) SCs over which further Born-von Karman boundary conditions are imposed) unfold onto PC states of PC wavevector, \(\mathbf{q}_m \):

\[
\mathbf{q}_m = \mathbf{Q} + \mathbf{G}_m, m = 1,2,3.
\]

The SC reciprocal lattice vectors \(\mathbf{G}_m \) are:

\[
\mathbf{G}_m = \sum_{j=1}^{3} \frac{n_j}{N_j} \mathbf{b}_j,
\]

In eq. (2) the index \(m \) corresponds to one of the \(N_c \) trios \((n_1,n_2,n_3) \), and any \(\mathbf{q}_m \) falls outside the first Brillouin Zone it is translated back in by adding the appropriate PC reciprocal lattice vector. Our previous software \(\text{PCBands}^{22}\) required rectangular SCs, which necessitated using non-primitive small cells and hence additional allowed PC wavevectors \(\mathbf{q}_m \). Our new version accommodates non-rectangular SCs, thus allowing us to avoid these complications.\(\text{PCBand}^{22}\)

B. Primitive Cells

For probing the bands in the [100], [110], and [111] directions we use different PCs for zincblende. The direct and reciprocal lattice vectors for the \([lmn]\) PC are denoted \(\mathbf{\alpha}^{[lmn]}_1 \) and \(\mathbf{\beta}^{[lmn]}_1 \), respectively. The specific definitions are given in Cartesian coordinates in Table I. Note that all three cells defined in Table I are indeed primitive, since for all three \(\mathbf{\alpha}^{[lmn]}_1 \cdot (\mathbf{\alpha}^{[lmn]}_2 \times \mathbf{\alpha}^{[lmn]}_3) = a^3/4 \). An \([lmn]\)-SC has a large value for \(N_1 \) so as to probe the PC bands with a very fine resolution along the direction \(\mathbf{\beta}^{[lmn]}_1 \). Aravind\(\text{PCBands}^{22}\) gives a general method for determining the \(\mathbf{\alpha} \). The Appendix discusses the portions of the PC Brillouin zone probed by calculations using these cells.

C. Unfolding applied to Supercells

The phonon unfolding problem is mathematically equivalent to electronic structure unfolding when an underlying tight-binding basis is used. In the phonon case, each atom has three degrees of freedom, \(x, y, \) and \(z \), which play the role of orbitals in a tight-binding model. That is, when the problem is written in matrix notation, the components of the motion for an atom appear exactly as do orbitals in a tight-binding model. As in electronic structure unfolding\(\text{PCBands}^{22}\), we express the states in terms of SC- and PC-periodic basis functions, then observe that a SC state of wavevector \(\mathbf{Q} \) must be a linear combination of the PC states of wavevectors \(\mathbf{q}_m = \mathbf{Q} + \mathbf{G}_m, m = 1,2,3, N_c \). Unfolding recovers the contribution of all PC states of wavevector \(\mathbf{q}_m \) to a given SC state of wavevector \(\mathbf{Q} \), and sum rules allow PC-band determination.

The phonon spectra calculation is treated in standard reference and texts; our notation and treatment follows that of Madelung\(\text{PCBands}^{22}\). First, we consider the case of Born-von Karman boundary conditions applied a single SC (i.e., \(\mathbf{Q} = 0 \)), consisting of \(N_c = N_1 N_2 N_3 \) PCs. Here the normal mode amplitudes are written:

\[
\alpha_{n,\alpha,l}^{(s)} = b_{\alpha,1}^{(s)} \exp(\mathbf{i} \mathbf{q} \cdot \mathbf{r}_n) \]

where \(n \) is the primitive-cell index; \(\mathbf{r}_n \) is the location of the \(n \)-th PC relative to the SC origin; \(\alpha \) is the atom in the primitive-cell \((\alpha = 1,2,\ldots, r \) where each cell has \(r \) atoms), and \(l = x,y,z \) is the Cartesian coordinate of motion. \(\mathbf{q} \) is the PC phonon wavevector. Because PC periodicity is enforced, modes of different \(\mathbf{q} \) decouple and the \(s \)-th eigenstate (of 3\(r \) total) satisfies the Hamiltonian matrix equation:

\[
\omega_n^2 (\mathbf{q}) b_{\alpha,1}^{(s)} = \sum_{\alpha',l'} D_{(\alpha,l), (\alpha',l')} (\mathbf{q}) b_{\alpha',l'}^{(s)},
\]

where the dynamical matrix \(D \) is Hermitian and depends on the ion-ion interaction, \(V_{\text{ion-ion}} \):

\[
D_{(\alpha,l), (\alpha',l')} (\mathbf{q}) = \frac{1}{\sqrt{M_{\alpha} M_{\alpha'}}} \sum_m \Phi_{(\alpha,l), (\alpha',l')} (m) \exp(-i \mathbf{q} \cdot \mathbf{r}_n)
\]

The eigenvector for the \(s \)-th eigenstate \(s = 1,2,\ldots, 3r \) is written as a column vector

\[
b_s = \begin{bmatrix} b_s^{(1, x)} \\ b_s^{(1, y)} \\ \vdots \\ b_s^{(3r)} \end{bmatrix}
\]

Because the eigenproblem, eq. (4) is Hermitian, the \(b_s \) are orthonormal

\[
b_s^{(s')} \cdot b_s = \delta_{s',s}, \ s', s = 1,2,3, r
\]
Next we consider the case of N_s SCs, for a total of $N_s N_1 N_2 N_3$ PCs, but continue to enforce Born-von Karman boundary conditions over a single SC. Here each amplitude just acquires an extra phase factor based on the SC location, R_j. The amplitude for the n-th PC in the j-th SC is

$$u_{s,j}^{(n)}(Q + G_m) = \exp(iQ \cdot R_j) \cdot \exp[i(Q + G_m)p_n] \cdot b_s(Q + G_m)$$

where we recall from subsection II A above that $G_m \cdot R_j = 2\pi \times \text{integer}$. Now the vector for the j-th supercell is

$$u_{s,j}(Q + G_m) = \frac{1}{\sqrt{N_c}} \begin{bmatrix} u_{s,j}^{(1)}(Q + G_m) \\ \vdots \\ u_{s,j}^{(N_c)}(Q + G_m) \end{bmatrix}$$

These SC vectors remain orthogonal:

$$u^\dagger_{s',j}(Q + G_m) \cdot u_{s,j}(Q + G_m) = \frac{1}{N_c} \sum_{n=1}^{N_c} u_{s',j}^{(n)}(Q + G_m) \cdot u_{s,j}^{(n)}(Q + G_m) = \frac{1}{N_c} \sum_{n=1}^{N_c} \delta_{s',s} = \delta_{s's}.$$

Finally, when Born-von Karman boundary conditions are only applied over the entire set of SCs, the dynamical matrix eigenvalue problem is now of dimension $3rN_c$ and the only wavevector is that of the SC first Brillouin zone, Q: for each there are $3rN_c$ eigenstates. The p-th SC eigenstate in the j-th SC, in analogy with eq. (11) is written,

$$V_{p,j} = \exp(iQ \cdot R_j) \times \begin{bmatrix} v_p^{(1)} \\ \vdots \\ v_p^{(N_c)} \end{bmatrix}$$

$$V^\dagger_{p',j} \cdot V_{p,j} = \delta_{p,p'} \quad p, p' = 1, 2, \ldots, 3rN_c$$

$$v_p^{(n)} = \begin{bmatrix} \beta_p^{(n,1,z)} \\ \vdots \\ \beta_p^{(n,r,z)} \end{bmatrix}$$

Then using eqs. (10) and (12) and selecting the n-th row of the system of equations yields:

$$v_p^{(n)} = \frac{\exp(-iQ \cdot R_j)}{\sqrt{N_c}} \sum_{s=1}^{3r} \sum_{m=1}^{N_c} a_{p,(m,s)} u_{s,j}^{(n)}(Q + G_m).$$

Substituting eq. (13) on the LHS of eq. (15), eq. (1) on the RHS, and selecting the row corresponding to the α-th basis atom, $\alpha = 1, 2, \ldots, r$, and the w-th component of motion, $w = \{x, y, z\}$, one finds:

$$\exp(-iQ \cdot \rho_n)\beta_p^{(\alpha,w)} = \sum_{m=1}^{N_c} \frac{1}{\sqrt{N_c}} \exp(iG_m \cdot \rho_n) \times \begin{bmatrix} \sum_{s=1}^{3r} a_{p,(m,s)} b_s^{(\alpha,w)}(Q + G_m) \end{bmatrix}$$

$$B_p^{(\alpha,w)}(Q) = U \cdot C_p^{(\alpha,w)}(Q),$$

where $U^\dagger = U^{-1}$.
Because U is unitary, we can trivially solve eq. (17) for $C_p^{(a,w)}(Q)$

$$C_p^{(a,w)}(Q) = U^\dagger \cdot B_p^{(a,w)}(Q).$$ \hspace{1cm} \text{(21)}$$

The $C_p^{(a,w)}(Q)$ are the quantities needed for band determination, exact or approximate.

D. Sum Rule and Band Determination

We develop a probability sum rule, like that of the electronic structure case, which leads to a method for band determination. The sum of the square magnitudes of the m-th components (corresponding to $q_m = Q + G_m$) of the $C_p^{(a,w)}(Q)$ over atoms and components of motion is the projection probability for the SC state p onto the PC states of wavevector q_m:

$$P(E_p, q_m) = \sum_{a,w} \left| \left[C_p^{(a,w)}(Q) \right]_m \right|^2 = \sum_{a,w} \sum_{s'=1}^{3r} \sum_{s=1}^{3r} a_{p(m,s')}^* a_{p(m,s)} \times \left[\sum_{a,w} b_{s'}^{(a,w)}(Q + G_m) b_s^{(a,w)}(Q + G_m) \right]$$

$$= \sum_{s=1}^{3r} \left| a_{p(m,s)} \right|^2$$ \hspace{1cm} \text{(22)}$$

where the last step follows from the fact that the quantity in square brackets is the inner product $b_s^* \cdot b_s = \delta_{s,s'}$. Next sum eq. (22) over SC states, p, and replace the $a_{p(m,s)}$ using the orthogonality relation $u_{s,j}^*(Q + G_m)$ and $u_{s,j}^*(Q + G_{m'})$ twice. Making the replacement in eq. (22) results in

$$\sum_{p=1}^{3r N_c} \sum_{s=1}^{3r} \left| \left[C_p^{(a,w)}(Q) \right]_m \right|^2 = \sum_{s=1}^{3r} \left| u_{s,j}^*(Q + G_m) \right|^2$$

$$\sum_{p=1}^{3r N_c} \left| V_{p,j} V_{p,j}^\dagger \right| u_{s,j}^*(Q + G_m) = \sum_{s=1}^{3r} \delta_{s,s} = 3r.$$ \hspace{1cm} \text{(23)}$$

The sum in square brackets is nothing more than the closure relation for the eigenvectors of an Hermitian matrix,

$$\sum_{p=1}^{3r N_c} V_{p,j} V_{p,j}^\dagger = 3r N_c$$ \hspace{1cm} \text{(24)}$$

so that eq. (23) becomes the probability sum rule:

$$P_{\text{cum}}(E_B, Q + G_m) = \sum_{p=1}^{B} P(E_p, q_m)$$

$$= \sum_{p=1}^{B} \sum_{m=1}^{r} \sum_{s=1}^{3r} \left| \left[C_p^{(a,w)}(Q) \right]_m \right|^2$$

$$B \in [1, 3r N_c]$$ \hspace{1cm} \text{(25)}$$

In eq. (23) we immediately recognize that $3r$ is the total number of bands at each $q_m = Q + G_m$.

The sum rule eq. (23) suggests the following general approach for determining approximate band positions: Compute the cumulative probability for SC energies $E_p < E_B$ (the SC energies are in ascending order) at fixed $q_m = Q + G_m$, $m = 1, \ldots, N_c$,

$$P_{\text{cum}}(E_B, Q + G_m) = \sum_{p=1}^{B} P(E_p, q_m)$$

and look for gaps. Whenever the cumulative probability has increased by unity with increasing energy a band has been crossed. This observation encapsulates the essential physics of the procedure, but refinements are necessary to make it automated and practical.
The physics of effective phonon bands differs from that of effective electron bands in a few important respects. First, the actual or near degeneracy of the optical modes of effective electron bands in a few important respects. The cumulative probability converges with the electronic structure case – variations in the onsite and neighboring atom parameters are often only moderately. For the phonon problem, however, replacing one atom with another from the same column as happens in an alloy results in a significant mass change. Thus the spreads (uncertainties) in the phonon bands can be relatively large. Taken together, these observations led us to modify our effective band determination algorithm from the electronic structure case.

In the modified method, we eliminate the parameters for minimum resolvable gap and minimum probability. Instead, we concentrate on the cumulative probability and its slope. The cumulative probability converges with supercell size (see Sec. III below) and, as we note in connection with electron bands, step determination is simpler than peak determination. Our band determination method is given below and illustrated in Fig. 1, where we plot the cumulative probability for fixed PC wavevector $q_m = Q + G_m$ in the vicinity of the second band edge for an hypothetical system. There are two control parameters: δ and slopelim. δ is the difference in the cumulative probability from an integer used to bracket integral values, and slopelim is the cumulative probability slope above which the current candidate band cannot be separated from the next higher one. In practice we have found to $\delta = 0.05$ and $\text{slopelim} = 1.0$ work well. The steps in band determination are:

1. Bracket all integral values, j, of the cumulative probability, denoted by the energy ranges $[a_j, b_j]$. That is, $P_{\text{cum}}(a_j, q_m) = j - \delta, P_{\text{cum}}(b_j, q_m) = j + \delta$. Fig. 1 shows these brackets for $P_{\text{cum}} = 1, 2$. The band $(j + 1)$ then falls somewhere between energies b_j and a_{j+1}, as shown in the shaded area of Fig. 1 for band 2. Here band 2 is nondegenerate; degeneracies are treated in Step 3.

2. Next determine whether or not the band in the range $[b_j, a_{j+1}]$ can be resolved from the next-higher band. Physically, resolution is not possible when the slope of the cumulative probability is too large near the upper end of the range: A rapid increase in the cumulative probability near the upper end of the range means that the current band and the next higher one are for all practical purposes degenerate. We check the slope by fitting a line to the last 5% of points in the range $[b_j, a_{j+1}]$ and comparing it to the average slope over the entire interval, that of the straight line connecting points $(b_j, j + \delta)$ and $(a_{j+1}, j + 1 - \delta)$, denoted m_{ref}. If

$$\frac{m}{m_{\text{ref}}} > \text{slopelim}, m_{\text{ref}} = \frac{1 - 2\delta}{a_{j+1} - b_j} \quad (28)$$

the current band cannot be resolved and it is merged into the next-higher band. In Fig. 1 $m/m_{\text{ref}} < \text{slopelim}$ and therefore band 2 can be resolved, and its energy is the indicated by the weighted average value, E_2.

3. Degeneracies are characterized by a zero-bracket: This situation occurs when there is no cumulative probability sample satisfying $j - \delta \leq P_{\text{cum}} \leq j$. (Due to the finite size of the SC the cumulative probability is discrete.) In this case the candidate j-th band is merged into a doubly-degenerate band with the $(j + 1)$-st and the range under consideration is $[b_j, a_{j+2}]$. This effective band determination method is applied to the phonon bands of In$_x$Ga$_{1-x}$As in Sec. III below.

Once the bands have been determined, the band energies are computed. Although the dynamical matrix eigenproblem has an eigenvalue ω^2, or equivalently E^2, we continue to compute the average energy as in the electronic structure case. Once the range of SC energies contributing to the j-th PC band has been found by the procedure above, the PC energy for this band is computed as:

$$\epsilon_j(Q + G_m) = \frac{\sum_{i=M}^{N} P(E_i, Q + G_m) \cdot E_i}{\sum_{i=M}^{N} P(E_i, Q + G_m)} \quad (29)$$
TABLE II. Keating parameters for InAs and GaAs in both Random Alloy and VCA calculations from Ref. 28. Units are N/m.

	α	β
InAs	35.18	5.49
GaAs	41.19	8.94

where the SC states $i = M, M + 1, \ldots, N$ contribute to the j-th PC band. The energy range for a set of degenerate bands is determined by Step 3 above and the set’s average energy is computed as in the electronic structure case. We note that for strongly peaked functions eq. \ref{eq:26} and a weighted RMS computation over E^2 will give essentially the same results. More importantly, because the band positions are determined in terms of E, not E^2, eq. \ref{eq:26} is more fully consistent with the band determination method.

III. RESULTS

We demonstrate the effective phonon bandstructure method of Sec. II above by calculating the phonon bands for In$_x$Ga$_{1-x}$As alloys using the Keating model. The parameters for InAs and GaAs are listed in Table II. The Keating model has deficiencies, however it does accurately reproduce the longitudinal acoustic (LA) mode from Γ to L. The bulk phonon bands for GaAs and InAs reproduced by the Keating model are included in the supplemental material for this paper. In the Random Alloy (RA) calculations we use the geometric average of the GaAs and InAs Keating parameters whenever an As atom is the common nearest-neighbor to both a Ga and an In atom in the bond-pair sum. Otherwise, we use the appropriate bulk parameters for the single bond (α) or bond-pair (β). For the In$_{0.5}$Ga$_{0.5}$As Virtual Crystal Approximation (VCA) calculations used as a basis for comparison, we employ the geometric average of the respective Keating parameters.

Figures 2-4 show the RA unfolded In$_x$Ga$_{1-x}$As bands for $x = 0.2, 0.5$, and 0.8, respectively, along each of the symmetry directions [100], [110], and [111]. The special unit cells for these directions (see Section III B) are used and in each case, $N_1 \times N_2 \times N_3 = 101 \times 4 \times 4$. As discussed below the bond-length distribution for this size cell was well-converged. In these figures, dots indicate the weighted average energy and dot color (online) indicates degeneracy, D: red (1), blue (2), or black (3). Black lines and grey bars denote the spread in probability for the band they surround: $0.25 \leq P_{\text{band}} \leq D - 0.25$ (black) or $0.05 \leq P_{\text{band}} \leq D - 0.05$ (grey).

Figure 2. Random Alloy (RA) unfolded bands for In$_{0.5}$Ga$_{0.5}$As along [100] (a), [110] (b), and [111] (c). Dots indicate average energies and dot color (online) indicates degeneracy, D: red (1), blue (2), or black (3). Black lines and grey bars denote the spread in probability for the band they surround: $0.25 \leq P_{\text{band}} \leq D - 0.25$ (black) or $0.05 \leq P_{\text{band}} \leq D - 0.05$ (grey).

Figure 3. Random Alloy (RA) unfolded bands for In$_{0.5}$Ga$_{0.5}$As along [100] (a), [110] (b), and [111] (c). The symbols are the same as in Fig. 2.

FIG. 2. Random Alloy (RA) unfolded bands for In$_{0.5}$Ga$_{0.5}$As along [100] (a), [110] (b), and [111] (c). Dots indicate average energies and dot color (online) indicates degeneracy, D: red (1), blue (2), or black (3). Black lines and grey bars denote the spread in probability for the band they surround: $0.25 \leq P_{\text{band}} \leq D - 0.25$ (black) or $0.05 \leq P_{\text{band}} \leq D - 0.05$ (grey).

FIG. 3. Random Alloy (RA) unfolded bands for In$_{0.5}$Ga$_{0.5}$As along [100] (a), [110] (b), and [111] (c). The symbols are the same as in Fig. 2.

where the SC states $i = M, M + 1, \ldots, N$ contribute to the j-th PC band. The energy range for a set of degenerate bands is determined by Step 3 above and the set’s average energy is computed as in the electronic structure case. We note that for strongly peaked functions eq. \ref{eq:26} and a weighted RMS computation over E^2 will give essentially the same results. More importantly, because the band positions are determined in terms of E, not E^2, eq. \ref{eq:26} is more fully consistent with the band determination method.

III. RESULTS

We demonstrate the effective phonon bandstructure method of Sec. II above by calculating the phonon bands for In$_x$Ga$_{1-x}$As alloys using the Keating model. The parameters for InAs and GaAs are listed in Table II. The Keating model has deficiencies, however it does accurately reproduce the longitudinal acoustic (LA) mode from Γ to L. The bulk phonon bands for GaAs and InAs reproduced by the Keating model are included in the supplemental material for this paper. In the Random Alloy (RA) calculations we use the geometric average of the GaAs and InAs Keating parameters whenever an As atom is the common nearest-neighbor to both a Ga and an In atom in the bond-pair sum. Otherwise, we use the appropriate bulk parameters for the single bond (α) or bond-pair (β). For the In$_{0.5}$Ga$_{0.5}$As Virtual Crystal Approximation (VCA) calculations used as a basis for comparison, we employ the geometric average of the respective Keating parameters.

Figures 2-4 show the RA unfolded In$_x$Ga$_{1-x}$As bands for $x = 0.2, 0.5$, and 0.8, respectively, along each of the symmetry directions [100], [110], and [111]. The special unit cells for these directions (see Section III B) are used and in each case, $N_1 \times N_2 \times N_3 = 101 \times 4 \times 4$. As discussed below the bond-length distribution for this size cell was well-converged. In these figures, dots indicate the weighted average energy and dot color (online) indicates degeneracy, D: red (1), blue (2), or black (3). Black lines and grey bars denote the spread in probability for the band they surround: $0.25 \leq P_{\text{band}} \leq D - 0.25$ (black) or $0.05 \leq P_{\text{band}} \leq D - 0.05$ (grey).

Generally, the acoustic bands are much better resolved than the optical. This development is not surpris-
The effect on the phonon bands near $q = 0$ can be seen in the simple two-atom-per-cell chain model:\[\omega_A = \sqrt{1/(M_1 + M_2)}\] and \[\omega_O = \sqrt{(M_1 + M_2)/(M_1M_2)}\]. Assuming the same force constant for both materials one finds $\Delta \omega_A \Delta \omega_O \approx 0.3(qa)$, where $\Delta \omega_A = \omega_G^{As} - \omega_G^{In}$, $\gamma \in \{A, O\}$. Thus, there are good physical reasons for the greater spreads near the Brillouin zone boundary in the optical versus acoustic modes.

We can gain additional insight into the spreads of the alloy bands by examining the eigenvectors of the simple two-atom chain model. At $q = 0$, the acoustic branch eigenvector is \[\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\]. In other words, independent of mass and force constant the two atomic displacements have equal magnitudes and are in phase. For the optical mode, the displacements depend on the masses and are of opposite sign (out of phase). This behavior is clear in the RA calculations. In a like manner, the greater spreads near the Brillouin zone boundary in both the acoustic and optical modes of the RA calculations have parallels in the simple two-atom chain at $q = \pi/a$. To make the discussion concrete, assume that atom 1 is As while atom 2 is either Ga or In. In the simple model for $M_1 > M_2$ (GaAs) the acoustic (A) and optical (O) mode eigenvectors are: \[u_A = [1, 0]^T, u_O = [0, 1]^T\]. In the acoustic mode As is maximally displaced, while Ga is at rest; the optical mode is the opposite. For $M_1 < M_2$ (InAs), these results are exchanged: \[u_A = [0, 1]^T, u_O = [1, 0]^T\], so that for the acoustic mode As is stationary and In is maximally displaced, with the optical mode the opposite. Hence there is a serious mismatch between these two materials at $q = \pi/a$ and an increase in the band spread is hardly surprising.

The worst-case alloy, In$_{0.5}$Ga$_{0.5}$As, is an optimal candidate for further analysis. Fig. 4(a) shows the bond-length distributions in three different [100] cells, 101 \times 4 \times 2, 101 \times 4 \times 4, and 101 \times 8 \times 4. It is clear that the largest two are nearly identical in terms of bond lengths, while the smallest shows significant deviations. Thus, the intermediate cell, 101 \times 4 \times 4, can safely be used for calculating alloy dispersions: It offers good accuracy but at a lower computational cost.

The reasons for the large uncertainties in the phonon bands become clear when we examine the projection probability and cumulative probability for the [100] In$_{0.5}$Ga$_{0.5}$As SCs (color online). The SCs use the special [100] PC from Sec. II.B. Three different SC sizes are examined: 101 \times 4 \times 2 (black open circles), 101 \times 4 \times 4 (blue solid line and blue open squares), 101 \times 8 \times 4 (red solid line). The two largest cells agree well, and therefore we use the 101 \times 4 \times 4 SC since it affords accuracy at less computational cost than the 101 \times 8 \times 4.

FIG. 5. Bondlength convergence test for the [100] In$_{0.5}$Ga$_{0.5}$As SCs (color online). The SCs use the special [100] PC from Sec. II.B. Three different SC sizes are examined: 101 \times 4 \times 2 (black open circles), 101 \times 4 \times 4 (blue solid line and blue open squares), 101 \times 8 \times 4 (red solid line). The two largest cells agree well, and therefore we use the 101 \times 4 \times 4 SC since it affords accuracy at less computational cost than the 101 \times 8 \times 4.
FIG. 6. Projection probability (a) and cumulative probability (b) for the $101 \times 4 \times 4$ (blue open circles and blue solid line, color online) and $101 \times 8 \times 4$ (red solid circles and red dashed line) [100] SCs 75% of the way from Γ to X in the PC first Brillouin zone. The cumulative probability has obviously converged, and the projection probability must be lower for the larger cell because the sum rule, eq. 26 fixes the cumulative probability. The larger SC has twice as many samples so each must contribute less due to the fixed cumulative probability.

A continuous rise from around $27-38$ meV with little evidence of a pronounced step.

FIG. 7. RA and VCA bands for In$_{0.5}$Ga$_{0.5}$As along [110]. The RA bands are represented by dots (color online) and grey bars as in Figs. 2-4. As seen in 3(b) the acoustic modes are well-defined and the VCA in fact agrees well with the RA results for these modes. The RA optical modes are generally heavily mixed. Both trends have already been discussed with respect to the [100] bands. Although the one-dimensional model is perhaps not quite so direct an analogy in this case (the planes have both anions and cations, while the [100] are exclusively anion or cation), the optical modes are sufficiently close in energy that significant mixing occurs. In contrast, the VCA optical modes remain distinct because in that case the crystal is perfectly ordered.

As mentioned above, the Keating model27 does accurately reproduce the acoustic modes from Γ to L, so that a sound velocity calculation using RA results based on it a good test of the effective phonon bandstructure model presented here. Fig. 8 shows the sound velocity along [111] (i.e., of the LA mode) versus In mole fraction: Open squares and lines (to guide the eye) are the RA results while open circles are experimental results34. The $101 \times 4 \times 4$ [111] SC is used for the RA results, and the sound velocity $v_g = dw/dq$ at $q = 0$ is calculated with a forward-difference approximation. The uncertainties on the RA calculation are very small so they are not shown: Note the tiny uncertainties for each [111] LA mode near $q = 0$ in Figures 2-4(c). The RA calculations match the experimental results well with a maximum relative error of under 3%. Better agreement could be obtained by using either the modified valence-force-field (MVFF)28,29 or enhanced valence-force-field (EVFF)31 models instead of Keating27.

IV. CONCLUSIONS

We have developed an effective phonon bandstructure calculation method based on Brillouin zone unfolding. As in the electronic structure case$^{8-10}$ one first randomly populates a SC with the atoms of an alloy in the proper mole fraction, then finds the SC eigenstates. From these, one projects out their contributions to PC states of $q_m = Q + G_m$. The probability sum rule for the phonon
effective phonon bandstructure method, we calculate the
sound velocity along [111] versus mole fraction and find
very good agreement with experiment. The method de-
veloped here should be useful for thermal problems in
transistors, nanotransistors, and other devices made from
semiconductor alloys.

ACKNOWLEDGMENTS

This work was supported in part by the Center for
Low Energy Systems Technology (LEAST), one of six
centers of STARnet, a Semiconductor Research Cor-
poration program sponsored by MARCO and DARPA.
The use of nanoHUB.org computational resources oper-
ated by the Network for Computational Nanotechnology
funded by the US National Science Foundation under
grant EEC-1227110, EEC-0228390, EEC-0634750, OCI-
0438246, and OCI-0721680 is gratefully acknowledged.

Appendix

The special PCs of Sec. [111] are chosen so as to
probe specific parts of the PC Brillouin zone when start-
ing from \(q = 0 \). For all three cells, we follow the
path \(q : 0 \rightarrow (1/2)\beta_{1[10]} \) (see Table I). For the [100]
PC, this path is \(\Gamma \rightarrow X \), while for the [111] PC, it is
\(\Gamma \rightarrow L \). For the [110] cell, this path crosses the Brillouin
zone boundary at \((3/8)\beta_{1[110]}\), so the first three-fourths
of the path corresponds to \(\Gamma \rightarrow K \). The last quarter,
\(q : (3/8)\beta_{1[110]} \rightarrow (1/2)\beta_{1[110]} \) is easily shifted back into
the first Brillouin zone by adding the reciprocal lattice
vector \(\beta_{2[110]} \). After shifting, the remainder now traverses
the top diamond from the side midpoint to its center,
\(U \rightarrow X \). Here we only plot the bands for the \(\Gamma \rightarrow K \)
portion of the path since it is of the most interest.
15 W. Ku, T. Berlijn, and C.-C. Lee, Phys. Rev. Lett. 104, 216401 (2010).
16 T. Berlijn, Phys. Rev. B 89, 104511 (2014).
17 C.-C. Lee, Y. Yamada-Takamura, and T. Ozaki, J. Phys.: Condens. Matter 25, 345501 (2013).
18 H. Huang, F. Zheng, P. Zhang, J. Wu, B.-L. Gu, and W. Duan, New J. Phys. 16, 033034 (2014).
19 P. V. Medeiros, S. Stafström, and J. Björk, Phys. Rev. B 89, 041407 (2014).
20 O. E. Peil, A. V. Ruban, and B. Johansson, Phys. Rev. B 85, 165140 (2012).
21 Y. Wang, C. L. Zacherl, S. Shang, L.-Q. Chen, and Z.-K. Liu, J. Phys.: Condens. Matter 23, 485403 (2011).
22 T. B. Boykin, N. Kharche, and G. Klimeck, Physica E 41, 490 (2009).
23 S. Steiger, M. Povolotskyi, H.-H. Park, T. Kubis, and G. Klimeck, IEEE Trans. Nanotechnol. 10, 1464 (2011).
24 J. Fonseca, T. Kubis, M. Povolotskyi, B. Novakovic, A. Ajoy, G. Hegde, H. Ilatikhameneh, Z. Jiang, P. Sen-gupta, Y. Tan, et al., J. Comp. Electron. 12, 592 (2013).
25 P. Aravind, Am. J. Phys. 74, 794 (2006).
26 O. Madelung, “Introduction to solid-state theory,” (Springer, 1981) Chap. 3.3.
27 P. Keating, Phys. Rev. 145, 637 (1966).
28 C. Pryor, J. Kim, L. Wang, A. Williamson, and A. Zunger, J. Appl. Phys. 83, 2548 (1998).
29 Z. Sui and I. P. Herman, Phys. Rev. B 48, 17938 (1993).
30 A. Paul, M. Luisier, and G. Klimeck, J. Comp. Electron. 9, 160 (2010).
31 S. Steiger, M. Salmani-Jelodar, D. Areshkin, A. Paul, T. Kubis, M. Povolotskyi, H.-H. Park, and G. Klimeck, Phys. Rev. B 84, 155204 (2011).
32 Supplemental Material.
33 See, for example: W. A. Harrison, “Solid State Theory,” (Dover New York, 1979) Chap. IV; C. Kittel, “Introduction to Solid State Physics,” (Wiley New York, 1996) Chap. 4, 7th ed.
34 Y.-C. Wen, L.-C. Chou, H.-H. Lin, K.-H. Lin, T.-F. Kao, and C.-K. Sun, J. Appl. Phys. 100, 103516 (2006).
Supplemental Material: Brillouin zone unfolding method for effective phonon spectra

1. Keating model for InAs and GaAs

![Graph showing phonon dispersion of InAs and GaAs](image)

FIG. 1. Comparison of the Keating model (solid lines, with parameters given in Table II of the main paper) with experimental data (crosses, from Ref. 1 for InAs and Ref. 2 for GaAs) for the phonon dispersion of (a) InAs and (b) GaAs. Note that the Keating model captures the LA mode in both materials well.

2. Convergence with supercell size

Fig. 6 of the main paper shows the convergence of the cumulative probability for the $101 \times 4 \times 4$ and $101 \times 8 \times 4$ supercells at a point 75% of the distance from $\Gamma \rightarrow X$. Fig. 2 below shows the final effective bandstructure obtained from these two supercells. Note the good convergence of the effective bandstructure with supercell size. The differences seen w.r.t the position of the mean and the spread in the optical bands are artifacts of the slope condition (eq. 28) of the band determination algorithm. As pointed out in the discussion connected to Fig. 6 of the main paper, the optical bands are strongly mixed. Hence, there are cases where the slope condition is just about satisfied. In these cases, even small differences in cumulative probability with lead to different binning of energies, and their consequent mean and spread. Nevertheless, note that the degeneracies
A perfect crystal can have several equivalent directions in the Brillouin zone, based on its symmetry. By definition, a random alloy has no such equivalent directions. Nevertheless, if the individual constituents of an alloy belong to the same symmetry class (like for example, InAs and GaAs), we would like the effective unfolded bandstructure to manifest this symmetry. Ref. 3 achieves this by averaging the cumulative probability over these equivalent directions, prior to constructing an effective bandstructure. We do not perform this averaging in this work. However, we do not expect the final result of such an averaging to be significantly different from the results obtained from considering only one of the many equivalent directions. For example, Fig. 3 above shows the effective bandstructure of In$_{0.5}$Ga$_{0.5}$As along the [111] and [1 ¯11] directions, computed using $101 \times 4 \times 4$ supercells. The supercell for the [111] direction is constructed as before, using the primitive cell lattice vectors given in Table I of the main paper. The supercell for the [111] direction uses $\alpha_1 = (1, 0, 1), \alpha_2 = (0, 1, 1), \alpha_3 = (-1, -1, 0)$ (specified as earlier, in cartesian coordinates and units of $a/2$). The effective bandstructure indeed looks very similar for these directions (the small differences w.r.t mean and spread in the optical bands are due to the reason described in the previous section).

4. Effective bandstructure of In$_x$Ga$_{1-x}$As for $x = 0.0, 0.1, \ldots 1.0$

For completeness, we present the computed bandstructure of In$_x$Ga$_{1-x}$As for $x = 0.0, 0.1, \ldots 1.0$ in Figs. 4-14 below. Note that Figs. 2-4 of the main paper present the effective phonon
FIG. 3. Comparison of the effective band structure along equivalent directions in the Brillouin zone, shown for In$_{0.5}$Ga$_{0.5}$As along the [111] and [111] directions. Calculations were performed using 101 × 4 × 4 supercells. The symbols are the same as in Fig. 2 of the main paper.

The bandstructure of In$_{0.2}$Ga$_{0.8}$As, In$_{0.5}$Ga$_{0.5}$As and In$_{0.8}$Ga$_{0.2}$As respectively, but are nevertheless repeated here. All computations used the 101 × 4 × 4 supercell.

FIG. 4. Unfolded bands for GaAs along [100] (a), [110] (b), and [111] (c). The symbols are the same as in Fig. 2 of the main paper.
FIG. 5. Random Alloy (RA) unfolded bands for In$_{0.1}$Ga$_{0.9}$As along [100] (a), [110] (b), and [111] (c). The symbols are the same as in Fig. 2 of the main paper.

FIG. 6. Random Alloy (RA) unfolded bands for In$_{0.2}$Ga$_{0.8}$As along [100] (a), [110] (b), and [111] (c). The symbols are the same as in Fig. 2 of the main paper.
FIG. 7. Random Alloy (RA) unfolded bands for In$_{0.3}$Ga$_{0.7}$As along [100] (a), [110] (b), and [111] (c). The symbols are the same as in Fig. 2 of the main paper.

FIG. 8. Random Alloy (RA) unfolded bands for In$_{0.4}$Ga$_{0.6}$As along [100] (a), [110] (b), and [111] (c). The symbols are the same as in Fig. 2 of the main paper.
FIG. 9. Random Alloy (RA) unfolded bands for In$_{0.5}$Ga$_{0.5}$As along [100] (a), [110] (b), and [111] (c). The symbols are the same as in Fig. 2 of the main paper.

FIG. 10. Random Alloy (RA) unfolded bands for In$_{0.6}$Ga$_{0.4}$As along [100] (a), [110] (b), and [111] (c). The symbols are the same as in Fig. 2 of the main paper.
FIG. 11. Random Alloy (RA) unfolded bands for In$_{0.7}$Ga$_{0.3}$As along [100] (a), [110] (b), and [111] (c). The symbols are the same as in Fig. 2 of the main paper.

FIG. 12. Random Alloy (RA) unfolded bands for In$_{0.8}$Ga$_{0.2}$As along [100] (a), [110] (b), and [111] (c). The symbols are the same as in Fig. 2 of the main paper.
FIG. 13. Random Alloy (RA) unfolded bands for In$_{0.9}$Ga$_{0.1}$As along [100] (a), [110] (b), and [111] (c). The symbols are the same as in Fig. 2 of the main paper.

FIG. 14. Unfolded bands for InAs along [100] (a), [110] (b), and [111] (c). The symbols are the same as in Fig. 2 of the main paper.
1. Boykin@ece.uah.edu
2. Ajoy@nd.edu
3. Hilatikh@purdue.edu
4. Mpovolot@purdue.edu
5. Gekco@purdue.edu

1. http://www.ioffe.ru/SVA/NSM/Semicond/InAs/mechanic.html#phonon
2. D. Strauch and B. Dorner, “Phonon dispersion in GaAs,” *J. Physics: Condens. Matter*, vol. 2, no. 6, p. 1457, 1990.
3. V. Popescu and A. Zunger, “Extracting E versus k effective band structure from supercell calculations on alloys and impurities,” *Phys. Rev. B*, vol. 85, no. 8, p. 085201, 2012.